Analízis szigorlat

Szili László előadásai nyomán készítette Utasi Róbert és Sántha Attila *

1999 szeptember - 2000 december

^{*}A szerzők a jegyzet tartalmáért, annak helyességéért, illetve teljességéért semmiféle felelősséget nem vállalnak. A jegyzet et mindenki csak és kizárólag a saját felelősségére használhatja, a jegyzet tartalmára a szigorlat során nem hivatkozhat!
②2001 Utasi Holding, Hungary. Minden jog fenntartva. A jegyzet sokszorosítása, kereskedelmi célzatú terjesztése tilos! (Törjön le a keze annak a pupáknak, aki ilyet merészel csinálni!)

Ί	Tartalomjegyzék		Függvényvizsgálat			
1	Halmazok, relációk és függvények	2	8.1	Előzetes vizsgálatok		
	1.1 Halmazok	2		8.1.2 Periodicitásvizsgálat	30	
	1.2 Függvények bevezetése, mint speciális relációk	2	0.0	8.1.3 Zérushelyek meghatározása		
	1.3 valós-valós függvények néhány tulajdonsága	3	8.2 8.3	Monotonitásvizsgálat		
2	Valós számok	4	8.4	Szélsőértékvizsgálat		
	2.1 Testaxiómák	4	8.5	Határértékek		
	2.2 Rendezési axiómák 2.3 Teljességi axióma (Dedekind- vagy szétválasztási axióma)	4	8.6	Asszimptoták	32	
	2.4 R részhalmazai	49	\mathbb{R}^{n} -	$ o \mathbb{R}^{m}$ típusú függvények differenciálhatósága I.	33	
	2.5 A teljességi axióma néhány következménye	4	9.1	Metrikus terek		
	2.5.1 szuprémum elv előkészítése	4 5	9.2 9.3	Lineáris terek (lsd.: linalg)		
	2.5.3 Gyökvonás	5	0.0	9.3.1 Példák: \mathbb{R}^n tér különböző normákkal $x = (x_1,, x_n)$		
	2.6 Természetes számok ($\mathbb N$) bevezetése	5		9.3.2 Példák: C[a,b] tér különböző normákkal $f \in {\rm C}[a,b]$	34	
	2.7 Racionális és valós számok közötti kapcsolat	6 6	9.4 9. 5	Banach terek		
	2.9 Nevezetes egyenlőtlenségek	6	9.0	9.5.1 Vektorok szöge		
	2.9.1 Abszolútértékre vonatkozó (háromszög-) egyenlőtlenségek:	6	9.6	Hilbert terek	35	
	2.9.2 Számtani-mértani középre vonatkozó egyenlőtlenség:	6 6	9.7	Differenciálszámítás $(\mathbb{R}^n \to \mathbb{R}^m)$ 9,7.1 \mathbb{R}^n -beli normák	36	
	2.9.3 Bernoulli-egyenlőtlenség:	7		9.7.1 \mathbb{R}^n -beli normák	36 36	
			9.8	Ekvivalens átfogalmazások	36	
3	Metrikus terek topológiája	8	9.9	Műveletek és a derivált kapcsolata		
	3.1 Metrikus terek értelmezése (bevezetés)	8 8	9.10	Iránymenti deriváltak	38	
	3.1.2 Valós metrikus tér		\mathbb{R}^{n} -	$ o \mathbb{R}^{m}$ típusú függvények differenciálhatósága II.	39	
	$3.1.3$ \mathbb{R}^n tér különböző metrikákkal	8		Középértéktételek: csak Lagrange féle középértéktétel		
	3.1.4 C[a,b] tér különböző metrikákkal	8 9		P. Többször deriválható függvények		
	3.3 Topológiai fogalmak metrikus terekben	9		Inverz függvények		
	3.4 Metrikus terek összefüggő részhalmazai	10	10.5	i Implicit függvények	40	
	3.5 Metrikus terek kompakt részhalmazai	10 10 11	\mathbb{R}^{n} -	$ o \mathbb{R}^{m}$ típusú függvények differenciálhatósága III.	42	
	o in kondoossag, es a zarosag szerepe, kompakosag ze ben	1011		Lokális szélsőérték		
4		11		Abszolút szélsőérték vizsgálata		
	4.1 Sorozat szuprémuma, infímuma	$\frac{11}{12}$	11.3	B Feltételes szélsőérték	43	
	4.3 R ⁿ konvergens sorozatai		Pri	mitív függvények	45	
	4.4 Teljes metrikus terek (Cauchy-sorozatok)	12		Integrálási szabályok		
	4.5 Példák	13 13		P. Helyettesítéssel való integrálás		
	4.7 Tágabb értelemben vett határérték	13		Racionális fv-ek integráljára visszavezethető helyettesítések		
	4.8 A műveletek és a határérték kapcsolata	13	12.5	Racionális fy-ek integráljára visszavezethető típusok		
	4.9 Nevezetes sorozatok	14		12.5.1 $\int R(\sin t, \cos t) dt$		
5	Végtelen sorok	15		12.5.2 $\int R\left(t, \sqrt[n]{\frac{at+b}{ct+d}}\right) dt$	47	
	5.1 Sorok konvergenciája	15 15 13	Hat	tározott integrál	48	
	5.2.1 geometriai sor	15	13.1	. A határozott integrál fogalma	48	
	5.2.2 Harmónikus sor	15		RAz integrál meghatározása a definícióból		
	$5.2.3 \sum_{n^2} \frac{1}{n^2} \text{sor}$ $5.3 \text{ Pozitív tagú sorok}$	15 16	13.4	Az integrál intervallum szerinti additivitása	49	
	5.4 Leibniz-típusú sorok	17	13.5	i Integrálható függvények	49	
	5.5 Számok p-adikus tört előállítása	17		Egyenlőtlenségek Az integrál kiszámítása		
	5.6 Műveletek sorokkal	17		Integral Riszamitasa		
	5.7 Sorok zárójelezése (csoportosíthatóság)	17 18	13.9	Az integrálszámítás alkalmazásai	50	
	5.9 Sorok szorzása	18		0Binomiális sor		
	5.10 Komplex tagú sorozatok és sorok	18		2Görbe ívhossza		
	5.11 Függvénysorozatok, függvénysorok 5.12 Elemi függvények, addiciós tételek, Euler összefüggések	19 19		$13.12.1\mathbb{R} \to \mathbb{R}^n$ típusú függvények	52	
	00 1 1 00			13.12.2 fontos fogalmak $\mathbb{R} \to \mathbb{R}^n$ függvényekre		
6	Függvények határértéke, folytonossága	21 21		13.12.3 Sima elemi görbe	$\frac{52}{52}$	
	6.1 Metrikus terek (bevezetés)	$\frac{21}{21}$	13.1	3Impropius integrálok	53	
	6.1.2 Valós metrikus tér	21		13.13.1 Műveletek	53	
	6.1.3 \mathbb{R}^n tér különböző metrikákkal	21 21 14	Töb	obszörös integrálok	53	
	6.2 C[a, b] tér különböző metrikákkal	$\frac{21}{22}$	14.1	Többszörös integrál értelmezése		
	6.4 R ⁿ konvergens sorozatai	23		PMűveletek és az integrál kapcsolata BLebesgue féle kritérium (szükséges-elégséges feltétel)		
	6.5 Teljes metrikus terek (Cauchy-sorozatok)	23		Integrál kiszámítása (szukcesszív integrálással)		
	6.6 Példák	$\frac{23}{24}$		14.4.1 intervallumon	55	
	6.8 Kompakt halmazon folytonos függvények tulajdonságai	25	145	14.4.2 normáltartományon		
	6.9 Összefüggő halmazok 6.10 ℝ ⁿ → ℝ ^m függyények falutanossága	25	14.0	i Integráltranszformáció		
	6.10 $\mathbb{R}^n \to \mathbb{R}^m$ függvények folytonossága	$\frac{25}{26}$				
	6.12 Bolzano féle fixponttétel	26 15	Von	nalintegrál Paraméteres integrál	5 7 57	
7	$\mathbb{R} o \mathbb{R}$ típusú függvények differenciálhatósága	27		Parameteres integral Cauchy-Riemann egyenletek		
•	7.1 Többször deriválható függvények	29	15.3	B Vektor-vektor függvény vonalintegrálja $(\mathbb{R}^n o \mathbb{R}^n)$	57	
	7.2 Hatványsor összegfüggvényének a deriválása	29		l sima utak		
			15.6	Primitív függvények	58	
				Primitív függvény létezése		
				Feltételek primitív függvények létezéséhez		

1 Halmazok, relációk és függvények

1.1 Halmazok

1. Definíció. Az A halmaz esetén beszélhetünk:

```
\begin{array}{ll} a \in \mathcal{A} \hspace{0.2cm} ; \hspace{0.2cm} a \notin \mathcal{A} \hspace{0.2cm} ; \hspace{0.2cm} \emptyset \hspace{0.2cm} ; \\ \mathcal{A} \subset \mathcal{B} \hspace{0.2cm} ; \hspace{0.2cm} \mathcal{A} \subseteq \mathcal{B} \\ \mathcal{A} \subset \mathcal{B} \Leftrightarrow \forall a \in \mathcal{A} : a \in \mathcal{B} \\ \mathcal{A} = \mathcal{B} \Leftrightarrow \mathcal{A} \subset \mathcal{B} \wedge \mathcal{B} \subset \mathcal{A} \\ Halmazok \hspace{0.2cm} megadása: \begin{array}{ll} 1. \hspace{0.2cm} \mathcal{A} := \{a,b,c\} \\ 2. \hspace{0.2cm} \mathcal{A} := \{x \mid s(x) = igaz \} \hspace{0.2cm} ; \hspace{0.2cm} s : \mathcal{A} \rightarrow \{igaz, hamis\} \end{array}
```

2. Definíció. Műveletek halmazokkal

```
\mathcal{A} \cup \mathcal{B}

\mathcal{A} \cap \mathcal{B}

\mathcal{A} \setminus \mathcal{B}

\mathcal{A} \setminus \mathcal{B}

\mathcal{A} \setminus \mathcal{B}

\mathcal{A} \setminus \mathcal{B}
```

3. Definíció. Descartes szorzat:

$$\mathcal{A}, \mathcal{B} \text{ halmazok } ; \ \mathcal{A} \times \mathcal{B} := \{ (a, b) \mid a \in \mathcal{A}, b \in \mathcal{B} \}$$

4. Definíció. Reláció: Legyenek A, B halmazok.

R az \mathcal{A} és a \mathcal{B} halmazok közötti reláció, ha $R \subset \mathcal{A} \times \mathcal{B}$, azaz $(a,b) \in R \leftrightarrow : aRb$

5. Definíció.

Reláció értelmezési tartománya: \mathcal{D}_{R} értékészlete \mathcal{R}_{R} . $\mathcal{D}_{R} := \left\{ a \in \mathcal{A} \middle| \exists b \in \mathcal{B} : (a,b) \in R \right\}$ $\mathcal{R}_{R} := \left\{ b \in \mathcal{B} \middle| \exists a \in \mathcal{A} : (a,b) \in R \right\}$

6. Definíció. Bináris reláció:

 \mathcal{A} halmaz, R bináris reláció, ha $R \subset \mathcal{A} \times \mathcal{A}$.

7. Definíció.

 $\begin{array}{ll} \mathbf{R} \subset \mathcal{A} \times \mathcal{A} & \textit{reflex}(v): & \forall a \in \mathcal{A} : a \mathbf{R} a \\ & \textit{szimmetrikus}: & (a,b) \in \mathbf{R} \Leftrightarrow (b,a) \in \mathbf{R} \\ & \textit{antiszimmetrikus}: & (a,b) \in \mathbf{R} \wedge (b,a) \in \mathbf{R} \Rightarrow a = b \\ & \textit{tranzit}(v): & (a,b) \in \mathbf{R} \wedge (b,c) \in \mathbf{R} \Rightarrow (a,c) \in \mathbf{R} \\ & \textit{ekvivalenciareláció}: & \textit{reflex}(v,\textit{szimmetrikus},\textit{tranzit}(v) \end{array}$

8. Definíció. Az $R \subset A \times A$ bináris reláció parciális rendezés az A-n,

ha reflexív, antiszimmetrikus, és tranzitív.

Az R $\subset \mathcal{A} \times \mathcal{A}$ bináris reláció <u>teljes rendezés</u> az \mathcal{A} -n, ha parciális rendezés, és bármely két eleme összehasonlítható, azaz $\forall a, b \in \mathcal{A} : (a, b) \in \mathbb{R}$ vagy $(b, a) \in \mathbb{R}$

1.2 Függvények bevezetése, mint speciális relációk

9. Definíció. $A \neq \emptyset$; $B \neq \emptyset$; az $f \subset A \times B$ reláció függvény, ha $\forall a \in \mathcal{D}_f$ pontosan egy olyan $b \in \mathcal{B}$ tartozik, amelyre $(a,b) \in f$, azaz:

$$f \subset \mathcal{A} \times \mathcal{B} \text{ függvény} \Leftrightarrow \begin{pmatrix} (a,b_1) \in f \\ \land \\ (a,b_2) \in f \end{pmatrix} \Rightarrow b_1 = b_2.$$

$$Jelölések: \quad f: \mathcal{A} \rightarrow \mathcal{B}: \quad \Leftrightarrow \quad \mathcal{D}_f = \mathcal{A}$$

$$f \in \mathcal{A} \rightarrow \mathcal{B}: \quad \Leftrightarrow \quad \mathcal{D}_f \subset \mathcal{A}$$

$$\mathcal{B} \text{ képhalmaz} \quad \Rightarrow \quad \mathcal{R}_f \subset \mathcal{B}.$$

Függvények megadása: értelmezési tartomány megadása,

képhalmaz megadása,

hozzárendelés módjának megadása.

```
 \textbf{1. T\'etel. } f = g \Leftrightarrow \begin{array}{l} \mathcal{D}_f = \mathcal{D}_g \\ \forall x \in \mathcal{D}_f = \mathcal{D}_g : f(x) = g(x). \end{array}
```

- 10. Definíció. $Az f : A \to B$ függvény
 - injektív, ha különböző elemek képe különböző, azaz $x, y \in \mathcal{A}, x \neq y \Rightarrow f(x) \neq f(y),$
 - szürjektív, ha $\mathcal{B} = \mathcal{R}_f$,
 - bijektív, ha injektív és szürjektív.
- 11. **Definíció.** f függvény ; $A \subset \mathcal{D}_f$. $f|_{\mathcal{A}}:\mathcal{A}\to\mathcal{R}_f$, $x\to f(x)$ az f függvény \mathcal{A} -ra való <u>leszűkítése</u>
- 12. Definíció. $f: \mathcal{A} \to \mathcal{B}$
 - 1. $\mathcal{C} \subset \mathcal{A}$; $f(\mathcal{C}) := \{ f(x) \in \mathcal{B} | x \in \mathcal{C} \}$. A \mathcal{C} halmaz f függvény által létesített képe.
 - $2. \quad \mathcal{D} \subset \mathcal{B} \;\; ; \;\; f^{(-1)}(\mathcal{D}) := \big\{\, x \in \mathcal{A} \big| f(x) \in \mathcal{D} \,\big\}. \;\; A \; \mathcal{D} \;\; \text{halmaz} \; f \; \text{f\"{u}ggv\'{e}ny\'{a}ltal l\'{e}tes\'{t}ett} \; \~{o}sk\'{e}pe.$
- 13. **Definíció.** $f: A \to B$; $g: C \to D$; $\mathcal{R}_q \cap A \neq \emptyset$. Ekkor az f és a g függvények ebben a sorrendben vett kompozíciója az $f \circ g$ -vel jelölt alábbi függvény:

 $\mathcal{D}_{f \circ g} : g^{(-1)}(\mathcal{R}_g \cap \mathcal{A}) \text{ \'es } (f \circ g)(x) := f(g(x)).$ Ekkor $\mathcal{D}_{f \circ g} \subset \mathcal{C} \; ; \; \mathcal{R}_{f \circ g} \subset \mathcal{B}.$

g belső függvény,

f külső függvény.

- **14.** Definíció. Az f függvény invertálható, ha $\forall x \neq y$; $x, y \in \mathcal{D}_f$ esetén $f(x) \neq f(y)$.
- 15. Definíció. Legyen f invertálható függvény. Ekkor $f^{-1}: \mathcal{R}_f \to \mathcal{D}_f$; $y \to x$, amelyre f(x) = y, az f inverz függvénye.
- 2. Tétel.
 - f, g, h függvények ; $\mathcal{R}_h \subset \mathcal{D}_g$; $\mathcal{R}_g \subset \mathcal{D}_f$. Ekkor $(f \circ g) \circ h = f \circ (g \circ h)$, azaz a kompozícióképzés asszociatív.
 - Ha f invertálható, akkor
 - $i) \quad (f^{-1})^{-1} = f,$
 - ii) $f \circ f^{-1} = id_{\mathcal{R}_f}$ (\mathcal{R}_f -re vonatkozó identitásfüggvény),
 - (iii) $f^{-1} \circ f = id_{\mathcal{D}_f}$
- Legyen f, g invertálható, és $\mathcal{R}_g \subset \mathcal{D}_f$. Ekkor az $f \circ g$ is invertálható, és $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- **3. Tétel.** Műveletek számértékű függvényekkel ($\mathbb{R} \to \mathbb{R}$)

 $f, g \in \mathbb{R} \to \mathbb{R}$; $\mathcal{D}_f \cap \mathcal{D}_g \neq \emptyset$. Ekkor

 $\begin{array}{ll} f+g: & \mathcal{D}_f\cap\mathcal{D}_g\ni x \longrightarrow f(x)+g(x),\\ f\cdot g: & \mathcal{D}_f\cap\mathcal{D}_g\ni x \longrightarrow f(x)\cdot g(x), \end{array}$

 $\lambda \cdot f : \mathcal{D}_f \ni x \longrightarrow \lambda \cdot f(x) \; ; \; \lambda \in \mathbb{R},$

 $f/g: (\mathcal{D}_f \cap \mathcal{D}_g) \setminus \left\{ x \in \mathcal{D}_g \mid g(x) = 0 \right\} \ni x \longrightarrow \frac{f(x)}{g(x)}$

- valós-valós függvények néhány tulajdonsága
- 16. Definíció. $Az \ f \in \mathbb{R} \to \mathbb{R}$ függvény

 $\underline{\text{monoton n\"ovekv\'o}}$ (\nearrow), ha $\forall x_1, x_2 \in \mathcal{D}_f, x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$, szigorúan monoton növekvő (†), ha $\forall x_1, x_2 \in \mathcal{D}_f, x_1 < x_2 \Rightarrow f(x_1) < f(x_2),$ monoton csökkenő () analóg, szigorúan monoton csökkenő (1) analóg.

17. **Definíció.** Az $f \in \mathbb{R} \to \mathbb{R}$ függvény korlátos, ha $\mathcal{R}_f \subset \mathbb{R}$ korlátos, azaz $\forall x \in \mathcal{D}_f \exists K > 0 : |f(x)| \leqslant K$.

Alulról korlátos, felülről korlátos - értelemszerűen.

2 Valós számok

Valós számok egy axiómarendszere

Testaxiómák

- **1.** Axióma. Értelmezve van egy $+: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$; +(x,y) =: x + y függvény (az összeadás művelete), melyre
 - i) $\forall x, y \in \mathbb{R} : x + y = y + x \ \underline{kommutativ},$
- $\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z \text{ asszociativ},$ ii)
- $\exists \Theta \in \mathbb{R} \ \forall x \in \mathbb{R} \ x + \Theta = x \ (\Theta \ az \ \mathbb{R} \ nulleleme),$
- $\forall x \in \mathbb{R} \ \exists \tilde{x} \in \mathbb{R} : x + \tilde{x} = \Theta \ (\tilde{x} \ az \ x \ ellentettje).$
- **2.** Axióma. Értelmezve van egy $: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$; $(x,y) =: x \cdot y$ függvény (a szorzás művelete), melyre
 - $\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x \ \underline{kommutativ},$
 - $\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z \text{ asszociatív},$
 - iii) $\exists \varepsilon \in \mathbb{R} \setminus \{\Theta\} \ \forall x \in \mathbb{R} : x \cdot \varepsilon = x \ (\varepsilon \ az \ \mathbb{R} \ egységeleme),$
 - iv) $\forall x \in \mathbb{R} \setminus \{\Theta\} \ \exists \hat{x} \in \mathbb{R} : x \cdot \hat{x} = \varepsilon \ (\hat{x} \ \text{az} \ x \ \text{reciproka}) \ \hat{x} =: x^{-1} = \frac{1}{x}.$
- 3. Axióma. (Disztributivitás)

 $\forall x, y, z \in \mathbb{R} : (x+y) \cdot z = xz + yz$.

Rendezési axiómák

 \mathbb{R} -en értelmezve van egy \leq reláció ($\leq \subset \mathbb{R} \times \mathbb{R}$), melyre a következők teljesülnek:

- 4. Axióma. ≤ reláció lineáris rendezés, azaz
- $\forall x \in \mathbb{R} : x \leqslant x \text{ reflexiv},$
- $\forall x, y \in \mathbb{R} : x \leqslant y, y \leqslant x \Rightarrow x = y \text{ antiszimmetrikus,}$
- iii) $\forall x, y, z \in \mathbb{R} : x \leq y, y \leq z \Rightarrow x \leq z \text{ tranzitiv},$
- iv) $\forall x,y \in \mathbb{R}$: vagy $x \leqslant y$ vagy $y \leqslant x$ azaz bármely két elem összehasonlítható.
- **5.** Axióma. $A \leq rendez$ ésre és a műveletekre fennáll:
 - i) $\forall x, y, z \in \mathbb{R} : x \leqslant y \Rightarrow x + z \leqslant y + z$,
- ii) $\forall x, y, z \in \mathbb{R} : x \leq y, z \geq 0 \Rightarrow x \cdot z \leq y \cdot z$.
- 2.3Teljességi axióma (Dedekind- vagy szétválasztási axióma)
- 6. Axióma.

```
\mathcal{A}, \mathcal{B} \subset \mathbb{R} és
                                                                                               \Rightarrow \exists \xi \in \mathbb{R} \text{ úgy, hogy } \forall a \in \mathcal{A} \text{ és } \forall b \in \mathcal{B} \text{ esetén } a \leqslant \xi \leqslant b. 
            \mathcal{A} \neq \emptyset ; \mathcal{B} \neq \emptyset
  ii) \quad \forall a \in \mathcal{A} \text{ \'es } \forall b \in \mathcal{B} \text{ eset\'en } a \leqslant b
(nem biztos, hogy A-nak van legnagyobb eleme)
```

2.4 $\mathbb R$ részhalmazai

18. **Definíció.**1) \mathbb{R}^+ ; \mathbb{R}_0^+ ; \mathbb{R}^- ; \mathbb{R}_0^-

2) intervallumok:
$$a, b \in \mathbb{R}$$
; $a < b$

$$[a, b] := \{ x \in \mathbb{R} \mid a \leqslant x \leqslant b \}$$

$$(a, b) := \{ x \in \mathbb{R} \mid a < x < b \}$$

$$[a,b) := \left\{ x \in \mathbb{R} \middle| a \leqslant x < b \right\}$$

$$(a,b] := \left\{ x \in \mathbb{R} \middle| a < x \leqslant b \right\}$$

$$(a,b] := \left\{ x \in \mathbb{R} \middle| a < x \leqslant b \right\}$$

A teljességi axióma néhány következménye

- szuprémum elv előkészítése
- 19. **Definíció.** $\emptyset \neq \mathcal{H} \subseteq \mathbb{R}$. A \mathcal{H} -nak van <u>maximuma</u>, ha $\exists \alpha \in \mathcal{H} \ \forall x \in \mathcal{H} : x \leqslant \alpha$ $Jel\"{o}l\acute{e}s: \max \mathcal{H} := \alpha$ min H hasonlóan

Példák: $\{1,2\}$; [1,2]; (1,2); $\{\frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\}$

20. Definíció. $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ felülről korlátos, ha $\exists K \in \mathbb{R} \ \forall x \in \mathcal{H} : x \leqslant K$

Alulról korlátos - analóg,

korlátos ⇔ alulról is, felülről is korlátos

4. Tétel. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ felülről korlátos. Ekkor a felső korlátok között van legkisebb, azaz $\exists \min \{ K \in \mathbb{R} \mid K \text{ felső korlátja } \mathcal{H}\text{-nak} \}$

- 21. Definíció. Ezt a minimális elemet a halmaz felső határának ill. szuprémumának nevezzük, azaz: $\emptyset \neq \mathcal{H} \subset \mathbb{R} : \sup \mathcal{H} = \min \{ K \in \mathbb{R} \mid K \text{ felső korlátja } \mathcal{H}\text{-nak} \}$
- 22. Definíció. A szuprémum elve kimondja, hogy minden nemüres, felülről korlátos halmaznak van szuprémuma.

5. Tétel. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ felülről korlátos. Ekkor

 $\rho = \sup \mathcal{H} \iff \begin{array}{l} i) \quad \forall x \in \mathcal{H} \; ; \; x \leqslant \rho \; (\rho \; \text{felső korlát}) \\ ii) \quad Ha \; K \; \text{felső korlát} \Rightarrow \rho \leqslant K \\ \rho = \sup \mathcal{H} \iff \begin{array}{l} i) \quad \forall x \in \mathcal{H} \; ; \; x \leqslant \rho \; (\rho \; \text{felső korlát}) \\ ii) \quad \forall \alpha < \rho \exists x \in \mathcal{H} : x > \alpha \end{array}$

Megj.: infímum - (inf \mathcal{H}) analóg módon, min helyett max.

2.5.2Archimedesi és Cantor axiómák

23. Definíció. Archimedesi tula jdonság: $\forall a, b \in \mathbb{R}^+ \exists n \in \mathbb{N} : b < n \cdot a$ azaz akárhányszor felvehetem az a-t⇒bármilyen számon túl léphetek.

Köv.: N felülről nem korlátos halmaz

 $\forall K \subset \mathbb{N} \; ; \; K \neq \emptyset \text{ halmaznak van minimuma.}$

24. Definíció. Cantor tulajdonság: Ha $\forall n \in \mathbb{N} \exists [a_n, b_n]$ zárt intervallumok sorozata úgy, hogy $[a_{n+1},b_{n+1}]\subset [a_n,b_n], \text{ akkor }\bigcap [a_n,b_n]\neq \emptyset \text{ azaz egymásba skatulyázott intervallumoknak a közös részentenen.}$ nem üres halmaz.

Megj.: a zártság nem hagyható el!

2.5.3 Gyökvonás

- **6. Tétel.** Legyen n > 2; $n \in \mathbb{N}$. Ekkor $\forall \alpha \in \mathbb{R}_0^+ \exists ! \rho \in \mathbb{R}_0^+ : \rho^n = \alpha$
- **25.** Definíció. Legyen n > 2 rögzített ; $n \in \mathbb{N}$.

Ekkor az $\alpha \in \mathbb{R}_0^+$ n-edik gyöke az az egyértelműen létező $\rho \in \mathbb{R}_0^+$: $\rho^n = \alpha$. $Jel\"{o}l\acute{e}s: \sqrt[n]{\alpha} := \alpha^{\frac{1}{n}} = \rho$

Természetes számok (N) bevezetése

26. Definíció. A $\mathcal{H} \subset \mathbb{R}$ induktív halmaz, ha

- $i) \quad 0 \in \mathcal{H}$
- ii) $x \in \mathcal{H} \Rightarrow x + 1 \in \mathcal{H}$

7. Tétel.

- a) R induktív halmaz
- b) induktív halmazok metszete is induktív
- 27. Definíció. Az R induktív részhalmazainak a közös részét a természetes számok halmazának nevezzük, és \mathbb{N} -el jelöljük. Azaz ha \mathcal{I} jelöli az induktív halmazok rendszerét, akkor $\mathbb{N}:=\bigcap \mathcal{I}$, azaz $\mathbb{N} = \{ x \in \mathbb{R} \mid x \in \mathcal{I}, \forall \mathcal{I} \subset \mathbb{R} \text{ induktiv halmaz} \}$

Köv.: a. N induktív halmaz.

a legszűkebb induktív halmaz.

8. Tétel. Teljes indukció elve:

Tfh A(n) állítás $\forall n \in \mathbb{N}$ esetén adott, továbbá:

$$\begin{array}{ccc} i) & & a\left(0\right) \ igaz \\ ii) & A(n) \ igaz \Rightarrow A(n+1) \ igaz \end{array} \right\} \Rightarrow \forall n \in \mathbb{N} : A(n) \ igaz$$

$$\begin{split} \text{Megj.:} \quad \mathbb{N}\text{-ből felépíthető} \ \mathbb{Z}, \text{továbbá} \ \mathbb{Z}\text{-ből és }\mathbb{N}\text{-ből felépíthető} \ \mathbb{Q}. \\ \mathbb{Q} = \left\{ \left. r = \frac{p}{q} \in \mathbb{R} \ \right| \ p \in \mathbb{Z} \land q \in \mathbb{N} \setminus \{0\} \right. \right\} \end{split}$$

2.7 Racionális és valós számok közötti kapcsolat

- 9. Tétel. $\mathbb Q$ az $\mathbb R$ -beli műveletekkel és rendezéssel
- i) rendezett test
- ii) $\mathbb{Q} \neq \mathbb{R}$; $\mathbb{Q} \subset \mathbb{R}$ $(\mathbb{Q}^* := \mathbb{R} \setminus \mathbb{Q})$ \mathbb{Q}^* elemei irracionális számok
- iii) Q-ban a Dedekind-féle teljességi axióma nem teljesül.
- 10. Tétel. Ha az $a, b \in \mathbb{R}$; $a < b \Rightarrow$
- i) $(a,b) \cap \mathbb{Q} \neq \emptyset$ (minden intervallum tartalmaz racionális számot)
- ii) $(a,b) \cap \mathbb{Q}^* \neq \emptyset$ (minden intervallum tartalmaz irracionális számot is)

Megj.: minden nyílt intervallum végtelen sok racionális és irracionális számot tartalmaz.

2.8 Valós számok kibővített halmaza

28. Definíció. $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$

 $\textit{Megj.:} \quad \textit{nem \'ertelmezz\"uk:} \ (-\infty) + (+\infty) \ \ ; \ \ 0 \cdot (\pm \infty) \ \ ; \ \ \frac{\pm \infty}{+\infty}.$

29. Definíció.

 $\begin{array}{lll} \text{Ha} \ \emptyset \neq \mathcal{H} \subset \mathbb{R} \ \text{felülről nem korlátos, akkor} & \Rightarrow & \sup \mathcal{H} := +\infty. \\ \text{Ha} \ \emptyset \neq \mathcal{H} \subset \mathbb{R} \ \text{alulról nem korlátos, akkor} & \Rightarrow & \inf \mathcal{H} := -\infty. \end{array}$

2.9 Nevezetes egyenlőtlenségek

2.9.1 Abszolútértékre vonatkozó (háromszög-) egyenlőtlenségek:

minden $x, y \in \mathbb{R}$ esetén

- $a) \quad |x+y| \leqslant |x| + |y|,$
- b) $||x| |y|| \le |x y|$.

2.9.2 Számtani-mértani középre vonatkozó egyenlőtlenség:

$$n \in \mathbb{N} \; \; ; \; \; a_1, \ldots, a_n \in \mathbb{R}_0^+ : a_1 \cdot a_2 \cdots a_n \leqslant \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right)^n$$
 Egyenlőség akkor és csak akkor, ha $a_1 = a_2 = \cdots = a_n$.

2.9.3 Bernoulli-egyenlőtlenség:

$$h \in \mathbb{R}$$
; $h > -1$; $n \in \mathbb{N}$: $(1+h)^n \geqslant 1+n \cdot h$.

${\bf 2.9.4} \quad {\bf Cauchy-Bunyakovszkij-Schwarz\ egyenl\"{o}tlens\'{e}g:}$

Legyen $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \in \mathbb{R}$. Ekkor $|a_1b_1 + \cdots + a_nb_n| \leq \sqrt{(a_1^2 + \cdots + a_n^2)} \cdot \sqrt{(b_1^2 + \cdots + b_n^2)}$, egyenlőség akkor és csak akkor, ha $\exists \lambda \in \mathbb{R}$ úgy, hogy $a_i = \lambda b_i$ minden i = 1, 2, ..., n esetén.

3 Metrikus terek topológiája

3.1 Metrikus terek értelmezése (bevezetés)

Motiváció: számsorozat határértéke

 $(a_n): \mathbb{N} \to \mathbb{R}$ konv., ha $\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: |a_n - A| < \varepsilon$

Általánosítás: $\mathbb{R} \to \mathbb{R}^n \longrightarrow \text{metrikus terek}$.

30. Definíció. Az (\mathcal{M}, ρ) rendezett pár metrikus tér, ha

 $\mathcal{M} \neq \emptyset$ halmaz; $\rho: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ olyan függvény, melyre $\forall x, y, z \in \mathcal{M}$ -re:

- $-\rho(x,y) \geqslant 0$ és $= 0 \Leftrightarrow x = y$
- $\rho(x,y) = \rho(y,x)$

- $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$ (háromszögegyenlőtlenség)

Az ilyen tulajdonságú ρ függvényt \mathcal{M} -en értelmezett <u>metrikának</u> vagy távolságfüggvénynek nevezzük, a $\rho(x,y)$ számot pedig az x és az y távolságának.

3.1.1 Diszkrét metrikus tér

11. Tétel. $\mathcal{M} \neq \emptyset$ tetszőleges halmaz ; $\rho(x,y) := \begin{cases} 0 \text{ ha } x = y \\ 1 \text{ ha } x \neq y \end{cases} (x,y \in \mathcal{M}).$ Ekkor (\mathcal{M}, ρ) metrikus tér.

3.1.2 Valós metrikus tér

12. Tétel. $(\mathcal{M}, \rho) := (\mathbb{R}, \rho)$; $\rho(x, y) := |x - y| (x, y \in \mathbb{R})$. Ekkor (\mathbb{R}, ρ) metrikus tér.

3.1.3 \mathbb{R}^n tér különböző metrikákkal

$$n \in \mathbb{N}: \mathbb{R}^n := \left\{ \; (x_1, ..., x_n) \; \left| \; x_i \in \mathbb{R} \; , \; i = 1..n \; \right\} \quad n \in \mathbb{N} \text{ r\"{o}gz. } x = (x_1, ..., x_n) \in \mathbb{R}^n \right. \right.$$

13. Tétel.
$$\rho_1(x,y) := \sum_{i=1}^n |x_i - y_i| \ (x,y \in \mathbb{R}^n)$$
. Ekkor (\mathbb{R}^n, ρ_1) metrikus tér.

Megj.: n = 2: befogók hosszának az összege

14. Tétel.
$$\rho_2(x,y):=\sqrt{\sum_{i=1}^n|x_i-y_i|^2} \ (x,y\in\mathbb{R}^n)$$
. Ekkor (\mathbb{R}^n,ρ_2) metrikus tér.

Megj.: Euklideszi metrika: n = 2-re: átfogó hossza.

15. Tétel.
$$\rho_{\infty}(x,y) := \max_{1 \leqslant i \leqslant n} |x_i - y_i| \ (x,y \in \mathbb{R}^n)$$
. Ekkor $(\mathbb{R}^n, \rho_{\infty})$ metrikus tér.

Megj.: n = 2: a hosszabb befogó hossza.

3.1.4 C[a,b] tér különböző metrikákkal

Legyen $[a,b] \subset \mathbb{R}$ kompakt int.; C[a,b] az [a,b]-n folytonos függvények halmaza.

16. Tétel. Legyen
$$f, g \in C[a, b]$$
: $\rho_{\infty}(f, g) := \max_{x \in [a, b]} |f(x) - g(x)|$ (Weierstrass) ahol ρ_{∞} jól definiált függvény.

Ekkor $(C[a,b], \rho_{\infty})$ metrikus tér (maximum metrika, Csebisev metrika)

17. **Tétel.**
$$f, g \in C[a, b] : \rho_1(f, g) := \int_a^b |f - g|$$
. Ekkor $(C[a, b], \rho_1)$ metrikus tér. $(\rho_1 \text{ jól definiált, ui. minden folytonos függvény invertálható})$

18. Tétel.

$$f,g\in \mathrm{C}[a,b]:
ho_2(f,g):=\sqrt{\int_a^b|f-g|^2} \ (
ho_2 \ ext{j\'ol def.}). \ Ekkor (\mathrm{C}[a,b],
ho_2) \ ext{metrikus t\'er.}$$

Környezetek, ekvivalens metrikák értelmezése, példák

31. Definíció. Legyen (\mathcal{M}, ρ) metrikus tér, $a \in \mathcal{M}$, $\varepsilon > 0$,

$$\mathrm{K}_{\varepsilon}^{\rho}(a) := \left\{ \left. x \in \mathcal{M} \right| \middle| \rho(x,a) < \varepsilon \right\} \ \mathrm{Az} \ a \in \mathcal{M} \ \mathrm{pont} \ \varepsilon \ \mathrm{sugar\'u} \ \mathrm{k\"{o}rnyezete}.$$

1. Példa:
$$(\mathbb{R}^n, \rho_1)$$
, $a \in \mathbb{R}^n$, $\varepsilon > 0$ $K_{\varepsilon}^{\rho_1}(a) := \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i - a_i| < \varepsilon \right\}$

$$n = 2 : a = (0,0) \quad K_{\varepsilon}^{\rho_1}(a) := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| + |x_2| < \varepsilon \right\}$$

2. Példa:
$$(\mathbb{R}^{n}, \rho_{2})$$
, $a \in \mathbb{R}^{n}$, $\varepsilon > 0$ $K_{\varepsilon}^{\rho_{2}}(a) := \left\{ x \in \mathbb{R}^{n} \mid \sqrt{\sum_{i=1}^{n} |x_{i} - a_{i}|^{2}} < \varepsilon \right\}$

$$n = 2 : a = (0, 0) \quad K_{\varepsilon}^{\rho_{2}}(a) := \left\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} \mid \sqrt{x_{1}^{2} + x_{2}^{2}} < \varepsilon \right\}$$

3. Példa:
$$(\mathbb{R}^n, \rho_{\infty})$$
, $a \in \mathbb{R}^n$, $\varepsilon > 0$ $K_{\varepsilon}^{\rho_{\infty}}(a) := \left\{ x \in \mathbb{R}^n \mid \max_{1 \leq i \leq n} |x_i - a_i| < \varepsilon \right\}$

$$n = 2 : a = (0, 0) \quad K_{\varepsilon}^{\rho_{\infty}}(a) := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \max\{|x_1|, |x_2|\} < \varepsilon \right\}$$

32. Definíció. Legyenek (\mathcal{M}, ρ_1) , (\mathcal{M}, ρ_2) metrikus terek. Ekkor a $\rho_1 \wedge \rho_2$ metrika ekvivalens, ha $\exists c_1, c_2 > 0 \forall x, y \in \mathcal{M} : c_1 \cdot \rho_1(x, y) \le \rho_2(x, y) \le c_2 \cdot \rho_1(x, y)$ Jelölés: $\rho_1 \backsim \rho_2$

Állítás: ∽ ekvivalenciareláció.

- 19. Tétel. Legyen $n \in \mathbb{N}$, $i := 1, 2, \infty$, (\mathbb{R}^n, ρ_i) metrikus tér. Ekkor $\rho_1 \backsim \rho_2 \backsim \rho_\infty$ azaz
- 1. $\rho_{\infty} \leq \rho_1 \leq n \cdot \rho_{\infty}$ 2. $\rho_{\infty} \leq \rho_2 \leq \sqrt{n} \cdot \rho_{\infty}$ 3. $\frac{1}{\sqrt{n}} \cdot \rho_1 \leq \rho_2 \leq \rho_1$
- **20.** Tétel. \mathbb{R}^n -ben bármely két metrika ekvivalens.
- **21. Tétel.** A C[a,b] téren a ρ_1 és a ρ_{∞} nem ekvivalens metrikák.

Topológiai fogalmak metrikus terekben 3.3

33. Definíció. (\mathcal{M}, ρ) metrikus tér $\mathcal{A} \subset \mathcal{M}$.

 $Az \ a \in \mathcal{M} \ az \ \mathcal{A} \ halmaz \ torlódási pontja, ha <math>\forall K_r(a) : (K_r(a) \setminus \{a\}) \cap \mathcal{A} \neq \emptyset$.

Jelölés:
$$\mathcal{A}' := \left\{ \left. a \in \mathcal{M} \, \right| \, a \, \operatorname{torlódási} \, \operatorname{pontja} \, \mathcal{A}\operatorname{-nak} \, \right\}$$

- **22.** Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \neq \emptyset$; $\mathcal{A} \subset \mathcal{M}$. Ekkor
- a) $a \in \mathcal{A}' \Leftrightarrow K_r(a) \cap \mathcal{A}$ végtelen halmaz
- b) $a \in \mathcal{A}' \Leftrightarrow \exists (a_k) : \mathbb{N} \to \mathcal{A}$ invertálható, konvergens és $\lim_{k \to \infty} (a_k) = a$
- **34.** Definíció. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$.
- a) $a \in \mathcal{A}$ az \mathcal{A} belső pontja, ha $\exists K_r(a) : K_r(a) \subset \mathcal{A}$

$$int \mathcal{A} := \left\{ a \in \mathcal{A} \mid a \text{ belső pontja } \mathcal{A}\text{-nak.} \right\}$$

- b) $a \in \mathcal{A}$ izolált pontja \mathcal{A} -nak, ha $\exists K_r(a) : (K_r(a) \setminus \{a\}) \cap \mathcal{A} = \emptyset$
- **35.** Definíció. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$.
- a) A nyilt halmaz, ha minden pontja belső pont, azaz $\forall a \in \mathcal{A} : \exists K_r(a) \subset \mathcal{A}$ (az \emptyset nyilt halmaz)
- b) A zárt halmaz, ha $M \setminus A$ nyilt halmaz M-ben. (komplementer)

Példák: 1. \mathcal{M} zárt is, nyilt is.

- 2. $K_r(a)$ nyilt halmaz
- 3. ∀ véges halmaz zárt.
- 4. $[a,b) \subset \mathbb{R}$ se nem nyilt, se nem zárt.
- **23.** Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$. Ekkor a következő állítások ekvivalensek:
- 1. A zárt halmaz (M, ρ)-ban.
- 2. $\mathcal{A}' \subset \mathcal{A}$
- 3. $\forall (a_k) : \mathbb{N} \to \mathcal{A} \text{ konvergens, \'es } \lim_{k \to \infty} (a_k) \in \mathcal{A}$

3.4 Metrikus terek összefüggő részhalmazai

24. Tétel.
$$(\mathcal{M}, \rho)$$
 metrikus tér, $\mathcal{A}_i \subset \mathcal{M}$ nyilt halmaz $(i \in \Gamma \text{ tesz. ind. halmaz}) \Rightarrow$

a)
$$\bigcup_{i \in \Gamma} A_i$$
 nyilt

b) ha
$$\Gamma$$
 véges, $\bigcap_{i \in \Gamma} A_i$ nyilt.

25. Tétel.
$$(\mathcal{M}, \rho)$$
 metrikus tér, $\mathcal{A}_i \subset \mathcal{M}$ zárt halmaz $(i \in \Gamma \text{ tesz. ind. halmaz}) \Rightarrow$

a)
$$\bigcap_{i \in \Gamma} A_i$$
 zárt

b) ha
$$\Gamma$$
 véges, $\bigcup_{i \in \Gamma} A_i$ zárt.

3.5 Metrikus terek kompakt részhalmazai

Eml.: ℝ-ben kompakt halmaz def.: sorozatokkal⇔ korlátos, zárt

36. Definíció.
$$(\mathcal{M}, \rho)$$
 metrikus tér.

$$Az \ \mathcal{A} \subset \mathcal{M} \ kompakt, \ ha \ \forall (a_k) : \mathbb{N} \to \mathcal{A} \ \exists (a_{k_{\nu}}) \ r\'{e}szs.: \ (a_{k_{\nu}}) \ konvergens, \ \'{e}s \lim_{k \to \infty} (a_{k_{\nu}}) \in \mathcal{A}.$$

37. **Definíció.**
$$(\mathcal{M}, \rho)$$
 metrikus tér. Az $\mathcal{A} \subset \mathcal{M}$ nyilt lefedésén egy

$$\left\{ \left. \mathcal{G}_{i} \subset \mathcal{M} \; \right| \; i \in \Gamma \; \text{tetsz., } \mathcal{G}_{i} \neq \emptyset \; \text{nyilt} \; \right\} \; \text{halmazrendszert \'ert\"unk, ha} \; \bigcup_{i \in \Gamma} \mathcal{G}_{i} \supset \mathcal{A} \; (\text{befed\'es})$$

- **26. Tétel.** (\mathcal{M}, ρ) metrikus tér. Ekkor a következő állítások ekvivalensek:
- a) $A \subset M$ kompakt
- b) az A minden nyilt lefedése tartalmaz véges lefedést. (Borel-féle befedési tétel)
- c) Az A minden végtelen részhalmazának van torlódási pontja.

Példák: Legyen $(\mathcal{M}, \rho) = (\mathbb{R}, \rho)$

- 1. $\mathcal{A} = \mathbb{R}$ nem kompakt.
- 2. $\mathcal{A} = (-1, +1)$ nem kompakt. Pl.:

$$\mathcal{A} = \bigcup_{k=1}^{\infty} \left(-1 + \frac{1}{k}, 1 - \frac{1}{k}\right)$$
 lefedi, de nem tartalamaz véges lefedést.

3.6 A korlátosság, és a zártság szerepe, kompaktság \mathbb{R}^n -ben

- **27. Tétel.** (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$ kompakt.
- a) az A zárt halmaz is
- b) az A korlátos is
- c) ha A korlátos, és zárt ≠ A kompakt.
- **28. Tétel.** $n \in \mathbb{N}$ rögzített. Ekkor az (\mathbb{R}^n, ρ_i) $i = 1, 2, \infty$ metrikus terekben az $\mathcal{A} \subset (\mathbb{R}^n, \rho_i)$ kompakt $\Leftrightarrow \mathcal{A}$ korlátos, és zárt.

4 Sorozatok

38. Definíció. Az $a: \mathbb{N} \to \mathbb{R}$ függvényt (valós) számsorozatnak nevezzük.

Jelölés: a; a_n ; (a_n) $n \in \mathbb{N}$

 $\operatorname{Megj:} \quad a(n) \neq a_n^{\text{függvény}} = a_n^{\text{sorozat}}!$

Megj.: $a: \mathbb{N}^* \to \mathbb{R}$ is sorozat!

Példák: $a_n := \alpha + n \cdot d$ számtani sorozat (α kezdőtag, d differencia) $a_n := \alpha \cdot q^n$ mértani sorozat (q hányados)

 $a_n := \frac{1}{n}$ harmónikus sorozat

- **29. Tétel.** Legyen $a := (a_n)$; $b := (b_n)$; $\lambda \in \mathbb{R}$. Ekkor
 - i. λ a sorozat
 - ii. a + b sorozat
 - iii. $a \cdot b$ sorozat
 - iv. $\frac{a}{b}: \mathbb{N} \setminus \{ n \in \mathbb{N} \mid b_n = 0 \} \to \mathbb{R}$ $n \to \frac{a_n}{b_n} \text{ általában nem sorozat}$

Megj.: $\frac{a}{b}$ sorozat $\Leftrightarrow 0 \notin \mathcal{R}_b$

Megj.: Értelmezhetünk monoton és korlátos sorozatokat: $a_n : \mathbb{N} \to \mathbb{R}$; $\uparrow, \downarrow, \nearrow, \searrow$

4.1 Sorozat szuprémuma, infímuma

39. Definíció.

$$a: \mathbb{N} \to \mathbb{R}: \begin{array}{l} \sup a := \sup \mathcal{R}_a \\ \inf a := \inf \mathcal{R}_a \end{array}$$

30. Tétel.

$$M = \sup a \Leftrightarrow \begin{array}{ll} i. & \forall n \in \mathbb{N} : a_n \leqslant M \\ ii. & \forall M' < M \exists n_0 \in \mathbb{N} : a_{n_0} > M' \end{array}$$

40. Definíció. Indexsorozat:

 $A \nu := (\nu_n) : \mathbb{N} \to \mathbb{N}$ sorozat indexsorozat, ha ν szig.mon.növekvő.

41. Definíció.

Legyen $a = (a_n) : \mathbb{N} \to \mathbb{R}$ (valós sorozat), és $\nu := (\nu_n) : \mathbb{N} \to \mathbb{N}$ indexsorozat. Ekkor az $a \circ \nu = (a_{\nu_n})$ sorozatot az a sorozat ν által indukált (generált, meghatározott) részsorozatának nevezzük.

42. Definíció.

 $p: \mathbb{N} \to \mathbb{N}$ az \mathbb{N} egy átrendezése vagy permutációja, ha p bijekció \mathbb{N} és \mathbb{N} között.

43. Definíció.

 $Az \ a : \mathbb{N} \to \mathbb{R} \ a \ p : \mathbb{N} \to \mathbb{N}$ permutáció által indukált átrendezése az $a \circ p$ sorozat.

44. Definíció. $Az(a_n): \mathbb{N} \to \mathbb{R}$ sorozat határértéke az $A \in \mathbb{R}$ szám, ha A minden környezetén kívül a sorozatnak csak véges sok eleme van, azaz

```
\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : |a_n - A| < \varepsilon
Jelölés: \lim_{n \to \infty} a_n = A
```

45. Definíció. Az $a : \mathbb{N} \to \mathbb{R}$ sorozat <u>konvergens</u>, ha $\exists A \in \mathbb{R}$ olyan, hogy az A szám az a sorozatnak határértéke.

 $Az \ a : \mathbb{N} \to \mathbb{R}$ sorozat divergens, ha nem konvergens.

46. Definíció. $\forall n \in \mathbb{N} : T(n)$ "tulajdonság".

Azt mondjuk, hogy a T tulajdonság majdnem minden (m.m.) n-re teljesül, ha $\exists n_0 \in \mathbb{N} \forall n > n_0 : T(n)$ fennáll.

31. Tétel. Konvergens sorozat határértéke egyértelműen meghatározott.

32. Tétel.
$$(a_n), (b_n) : \mathbb{N} \to \mathbb{R} \atop m.m.n \in \mathbb{N} : a_n = b_n$$
 $\} \implies (a_n) \ konv. \Leftrightarrow (b_n) \ konv.$

Konvergens sorozatok

Legyen (\mathcal{M}, ρ) metrikus tér , $(a_k) : \mathbb{N} \to \mathcal{M}$ \mathcal{M} -beli sorozat.

47. Definíció. Az (\mathcal{M}, ρ) metrikus tér egy $(a_k) : \mathbb{N} \to \mathcal{M}$ sorozatra konvergens, ha $\exists \alpha \in \mathcal{M} \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} \forall k > k_0 : \rho(\alpha, a_k) < \varepsilon \text{ ahol } \alpha \text{ a sorozat határértéke.}$ Jelölés: $\lim_{k \to +\infty} (a_k) = \alpha \quad a_k \stackrel{\rho}{\to} \alpha \quad (k \to +\infty)$

Megj.: ha (\mathcal{M}, ρ) a szokásos (| |), akkor ez a definíció a korábbival megegyezik.

- **33. Tétel.** $\alpha^{\rho} = \lim_{k \to +\infty} (a_k) \Leftrightarrow \lim_{k \to +\infty} \rho(\alpha, a_k) = 0 \Leftrightarrow \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} \forall k > k_0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow \forall \varepsilon > 0 :$ $\{k \in \mathbb{N} \mid a_k \notin K_{\varepsilon}(\alpha)\}\ \text{v\'eges}.$
- 34. Tétel. Konvergens sorozat határértéke egyértelműen meghatározott
- **35.** Tétel. Legyen (\mathcal{M}, ρ) metrikus tér. $(a_k) : \mathbb{N} \to \mathcal{M}$ konvergens, és $\lim(a_k) = \alpha$. Ekkor 1) az (a_k) korlátos, azaz $\mathcal{R}_{(a_k)} \subset \mathcal{M}$ korlátos, azaz $\exists r > 0$ és $y \in \mathcal{M} : \mathcal{R}_{(a_k)} \subset K_r(y)$
- 2) $\forall \nu : \mathbb{N} \to \mathbb{N}$ ind.s. esetén $a \circ \nu$ konvergens, és $\lim a \circ \nu = \alpha$
- 48. **Definíció.** Legyen $(\mathcal{M}, \rho_1), (\mathcal{M}, \rho_2)$. Ekkor $\rho_1 \sim \rho_2$, ha $\forall x, y \in \mathcal{M} \ \exists c_1, c_2 > 0 : c_1 \cdot \rho_2(x, y) < \rho_1(x, y) < c_2 \cdot \rho_2(x, y)$
- **36. Tétel.** $(\mathcal{M}, \rho_1), (\mathcal{M}, \rho_2)$ metrikus terek, $(a_k) : \mathbb{N} \to \mathcal{M}$; $\rho_! \sim \rho_2$. Ekkor $(a_k) \stackrel{\rho_1}{\to} \alpha \Leftrightarrow (a_k) \stackrel{\rho_2}{\to} \alpha \quad (k \to +\infty)$

\mathbb{R}^n konvergens sorozatai 4.3

mindegy milyen metrikát veszünk egy feladat megoldásánál. $n \in \mathbb{N}$ $(a_k)_{k \in \mathbb{N}} : \mathbb{N} \to \mathbb{R}^n$ $a_k \in \mathbb{R}^n$ $a_k = (a_k^{(1)}, ..., a_k^{(n)})$

37. Tétel. (\mathbb{R}^n, ρ_l) $(l = 1, 2, +\infty)$ metrikus tér. Ekkor az $(a_k): \mathbb{N} \to \mathbb{R}^n \ (a_k) \stackrel{\rho_l}{\to} \alpha = (\alpha^{(1)}, ..., \alpha^{(n)}) \Leftrightarrow \forall i \in [1..n]: (a_k^{(i)})_{k \in \mathbb{N}} \ koordinatasorozat \ konvergens, \ és$ $\lim_{k \to +\infty} (a_k^{(i)}) = \alpha^{(i)}$

Teljes metrikus terek (Cauchy-sorozatok)

Eml.: \mathbb{R} -ben $(a_k): \mathbb{N} \to \mathbb{R}$ Cauchy-sorozat, ha $\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k, l > k_0: |a_k - a_l| < \varepsilon$ Cauchy-féle konvergenciakritérium: (a_k) konvergens $\Leftrightarrow (a_k)$ Cauchy-sorozat

49. **Definíció.** (\mathcal{M}, ρ) metrikus tér.

 $Az(a_k): \mathbb{N} \to \mathcal{M}$ Cauchy-sorozat, ha $\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k, l > k_0 : \rho(a_k, a_l) < \varepsilon$

- **38. Tétel.** (\mathcal{M}, ρ) metrikus tér ; $(a_k) : \mathbb{N} \to \mathcal{M}$ a) ha (a_k) konvergens $\Rightarrow (a_k)$ Cauchy-sorozat b) **≠**
- 50. Definíció.

 $Az(\mathcal{M}, \rho)$ metrikus tér teljes, ha minden Cauchy-sorozat konvergens \mathcal{M} -ben.

Megj.: (\mathcal{M}, ρ) teljes $\Longrightarrow [(a_k) \text{ konvergens } \Leftrightarrow (a_k) \text{ Cauchy-sorozat }]$

Példák 4.5

- 1. Diszkrét metrikus tér teljes
- **2.a.** (\mathbb{R}, ρ) ahol $\rho = |\cdot|$ teljes metrikus tér.
- **2.b.** (\mathbb{Q}, ρ) ahol $\rho = | |$ nem teljes metrikus tér.
- 3. $n \in \mathbb{N}$ rögzített: (\mathbb{R}^n, ρ_i) $i = 1, 2, \infty$ teljes metrikus tér.
- **4.** $(C[a,b], \rho_{\infty})$ ahol $\rho_{\infty} = \max_{x \in [a,b]} |f(x) g(x)|$ teljes metrikus tér.
- **5.** $(C[a,b], \rho_1)$ ahol $\rho_1 = \int |f-g|$ nem teljes metrikus tér.

A rendezés és a határérték kapcsolata 4.6

39. Tétel. Közrefogási elv: Legyen
$$(a_n), (b_n), (c_n) : \mathbb{N} \to \mathbb{R}$$
. $m.m.n \in \mathbb{N} : a_n \leqslant b_n \leqslant c_n$ $A := \lim(a_n) = \lim(c_n)$ $\Rightarrow b_n$ is konvergens és $\lim(b_n) = A$

40. Tétel. Legyen
$$(a_n), (b_n) : \mathbb{N} \to \mathbb{R}$$
 konvergensek. Ekkor

- 1. $m.m.n \in \mathbb{N} : a_n \geqslant b_n \Rightarrow \lim(a_n) \geqslant \lim(b_n)$ 2. $\lim(a_n) \geqslant \lim(b_n) \Rightarrow m.m.n \in \mathbb{N} : a_n \geqslant b_n$

41. Tétel. Monoton sorozatokra vonatkozó konvergenciatétel:

$$\left. \begin{array}{l} (a_n): \mathbb{N} \to \mathbb{R} \\ \text{monoton} \\ \text{korlátos} \end{array} \right\} \Rightarrow (a_n) \text{ konvergens (elégséges feltétel)}$$

$$\lim(a_n) = \sup(a_n), \text{ ha } (a_n) \nearrow \text{mon.n\"ov.}$$

$$\lim(a_n) = \inf(a_n), \text{ ha } (a_n) \searrow \text{mon.cs\"okk.}$$

42. Tétel. Bolzano-Weierstrass kiválasztási tétel:

Minden korlátos sorozatnak van konvergens részsorozata (Minden végtelen, korlátos halmaznak van torlódási pontja)

Tágabb értelemben vett határérték

- **51.** Definíció. Azt mondjuk, hogy a valós (a_n) számsorozatnak a $+\infty$ $[-\infty]$ a határérteke, ha $\forall p \in$ $\mathbb{R} \exists n_0 \in \mathbb{N} \forall n > n_0 : a_n > p \ [a_n < p]$ Jelölés: $\lim(a_n) = +\infty \left[\lim(a_n) = -\infty\right]$
- **52.** Definíció. Tetszőleges $\varepsilon > 0$ számra: $K_{\varepsilon}(+\infty) := (\frac{1}{\varepsilon}, +\infty)$; $K_{\varepsilon}(-\infty) := (-\infty, -\frac{1}{\varepsilon})$ halmazokat $a + \infty \frac{1}{\varepsilon}$ kezdőpontú $[-\infty - \frac{1}{\varepsilon}$ végpontú] környezetének nevezzük. Ezzel a kiterjesztéssel a határérték definiciója változtatás nélkül kimondható!

A műveletek és a határérték kapcsolata 4.8

```
53. Definíció.
```

```
(a_n): \mathbb{N} \to \mathbb{R} <u>nullsorozat</u>, ha \lim(a_n) = 0, azaz \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0: |a_n| < \varepsilon
```

```
43. Tétel.
```

- $(a_n): \mathbb{N} \to \mathbb{R}$ nullsorozat \Leftrightarrow $(|a_n|)$ nullsorozat
- $\lim(a_n) = A$ $\Leftrightarrow (a_n - A) \text{ nullsorozat}$ 2.
- $\left. \begin{array}{c} m.m.n \in \mathbb{N} : |a_n| < \alpha_n \\ \alpha_n \to 0 \ (n \to +\infty) \end{array} \right\}$ \Rightarrow (a_n) nullsorozat

44. Tétel.

- $\begin{array}{ccc} (a_n), (b_n) & \text{nullsorozat} & \Rightarrow & (a_n + b_n) & \text{nullsorozat} \\ (a_n) & \text{nullsorozat} \\ (b_n) & \text{korlátos sorozat} \end{array} \right\} \quad \Rightarrow \quad (a_n \cdot b_n) & \text{nullsorozat}$

54. Definíció. Egy konstruktív definíció a lim, lim-re:

Legyen $a := (a_n)$ tetszőleges, valós, felülről [alulról] korlátos számsorozat, és a tagjaiból képezzük:

$$\begin{array}{l} A_n = \sup \left\{ \left. a_k \right| k = n, n+1, n+2, \dots \right\} & n \in \mathbb{N} \\ B_n = \inf \left\{ \left. a_k \right| k = n, n+1, n+2, \dots \right\} & n \in \mathbb{N} \end{array} \right. \\ számsorozatokat.$$

 $\begin{array}{l} \textit{Mivel} \ \forall n \in \mathbb{N} \ \textit{számra} \ \big\{ \ a_k \ \big| \ k = n, n+1, n+2, \dots \big\} \supset \big\{ \ a_k \ \big| \ k = n+1, n+2, \dots \big\}, \\ \textit{ezért} \ A_n \geqslant A_{n+1} \ \ ; \ B_n \geqslant B_{n+1} \ \ (n \in \mathbb{N}) \ \Rightarrow \ \exists \lim A_n \ \ ; \ \exists \lim B_n \ \textit{határértékek}. \end{array}$

Ezek ismeretében azt mondhatjuk, hogy tetszőleges $a=(a_n):\mathbb{N}\to\mathbb{R}$ számsorozatra legyen

$$\limsup a_n := \left\{ \begin{array}{ll} +\infty & \text{ha } a_n \text{ felülről nem korlátos} \\ \lim A_n & \text{különben} \end{array} \right.$$

$$\liminf a_n := \left\{ \begin{array}{ll} -\infty & \text{ha } a_n \text{ alulról nem korlátos} \\ \lim B_n & \text{különben} \end{array} \right.$$

 $Jel\ddot{o}l\acute{e}s$: $\limsup = \overline{\lim}$; $\liminf = \lim$

45. Tétel. $a = (a_n) : \mathbb{N} \to \mathbb{R}$ sorozat. Ekkor:

- $\forall K < \overline{\lim} a \ [k > \underline{\lim} a] \ számnál \ a$ -nak ∞ sok tagja nagyobb [kisebb], és $\forall L > \overline{\lim} a \ [\ell < \underline{\lim} a] \ számnál \ a$ -nak véges sok tagja nagyobb [kisebb].
- $\underline{\lim} a \leqslant \lim a \circ \nu \leqslant \overline{\lim} a$, és $\forall (a_n) : \mathbb{N} \to \mathbb{R} \ \exists \nu : \mathbb{N} \to \mathbb{N} \ ind.s. \ melyre \ az = fennáll.$
- (a_n) -nek létezik határértéke $\Leftrightarrow \overline{\lim} a = \underline{\lim} a = \lim a$
- $tetsz \delta leges \ \lambda > 0 : \overline{\lim} (\lambda a) = \lambda \overline{\lim} a ; \underline{\lim} (\lambda a) = \lambda \underline{\lim} a$

4.9 Nevezetes sorozatok

55. Definíció. Geometriai sorozat: $q \in \mathbb{R}$; (q^n) geometriai sorozat

$$\lim_{n \to +\infty} q^n = \begin{cases} 0 & \text{ha } |q| < 1\\ 1 & \text{ha } q = 1\\ \text{divergens} & \text{egyébként} \end{cases}$$

56. Definíció. Tekintsük $\left(1+\frac{1}{n}\right)^n$; $n\in\mathbb{N}$ sorozatot. Ekkor

$$\left.\begin{array}{c} monoton \ n\"{o}v\~{o} \\ \text{fel\"{u}lr\'{o}l korl\'{a}tos} \end{array}\right\} \Rightarrow konvergens, \ \acute{e}s \ jel\"{o}lj\"{u}k: \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n =: e$$

Az e szám irracionális szám.

Végtelen sorok 5

 $S(\mathbb{R}) = \{a_n : \mathbb{N} \to \mathbb{R}\}$ az összes lehetséges számsorozatok halmaza $\Sigma: S(\mathbb{R}) \to S(\mathbb{R})$ függvény ; $a = a_n \longrightarrow (a_1 + a_2 + \dots + a_n \ n \in \mathbb{N}) =: \sum a_n$

58. Definíció.

Legyen $(a_n): \mathbb{N} \to \mathbb{R}$ valós sorozat. A fenti módon értelmezett $\sum a_n$ sorozatot az a_n sorozatból képzett (végtelen, numerikus, szám-) sornak nevezzük.

 $Az \ a_1 + \cdots + a_n =: s_n \ a \sum a_n \ sor \ n$ -edik részletösszege, vagy n-edik szelete.

- $\Sigma: S(\mathbb{R}) \to S(\mathbb{R})$ függvény lineáris, azaz $\sum (\alpha a + \beta b) = \alpha \sum a + \beta \sum b$ $(\alpha, \beta \in \mathbb{R} ; a, b \in S(\mathbb{R}))$
- A ∑ leképezés bijekció.

Sorok konvergenciája

59. Definíció.

 $\sum a_n$ konvergens, ha a részletösszegek sorozatának - azaz az $a_1 + \cdots + a_n$ sorozatnak - van határértéke, és ez véges. Ellenkező esetben $\sum a_n$ sor divergens.

Ha a
$$\sum a_n$$
 konvergens, akkor $\exists \lim_{n \to \infty} (a_1 + \dots + a_n) = \lim_{n \to \infty} (s_n) = \sum_{n=1}^{\infty} a_n$.

Ezt a számot a sor összegének nevezzük.

5.2Példák

geometriai sor

47. Tétel.

Legyen
$$q \in \mathbb{R}$$
; $1, q, q^2, q^3, \dots$ geometriai sorozat.
Ekkor $\sum_{0}^{n} q^n = (1 + q + \dots + q^n)$ $n \in \mathbb{N}$ geometriai sor.

$$1 + q + \dots + q^{n} = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{ha } q \neq 1\\ n + 1 & \text{ha } q = 1 \end{cases}$$

A
$$(q^n)$$
 geometriai sorozat konvergens \iff $|q|<1$; $\lim_{n\to\infty}(q^n)=0$ vagy $q=1$.

48. Tétel.
$$A \sum_{n=0}^{\infty} q^n$$
 sor konvergens $\iff |q| < 1$.

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q} \quad (|q| < 1).$$

5.2.2 Harmónikus sor

49. Tétel.

 $A \sum \frac{1}{n}$ harmónikus sor divergens.

5.2.3
$$\sum \frac{1}{n^2}$$
 sor

50. Tétel.

 $A \sum \frac{1}{n^2}$ sor konvergens.

$$\mathrm{Megj.:} \quad \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

Megj.:
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

17

51. Tétel. Cauchy-féle konvergenciakritérium

$$\sum a_n \text{ konvergens} \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall m > n > n_0 : \left| \sum_{i=n+1}^m a_i \right| < \varepsilon$$

52. Tétel. Következmény: sorok konvergenciájának szükséges feltétele

 $Ha \sum a_n \text{ konvergens} \Rightarrow \lim(a_n) = 0$

Megj.:
$$\sum 2^n$$
 divergens u.i. $\lim_{n\to\infty} (2^n) \neq 0$

Megj.:
$$\not \Leftarrow$$
 nem elégséges pl.: $\sum \frac{1}{n}$ div. de $\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$

53. Tétel. Következmény

Legyen
$$a_n = b_n \ (m.m. \ n \in \mathbb{N})$$
 $\Rightarrow \sum_{n=0}^{\infty} b_n$ sorok ekvikonvergensek azaz az egyik pontosan akkor konvergens, ha a másik is konvergens.

60. Definíció. A
$$\sum a_n$$
 sor abszolútkonvergens, ha $\sum |a_n|$ sor konvergens.

54. Tétel. Következmény

Ha a $\sum a_n$ sor abszolútkonvergens $\Rightarrow \sum a_n$ sor konvergens is.

$$\mathrm{Megj.:} \quad \not = \mathrm{nem~igaz!}$$

példa:
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$$
 sor konv (biz. később) de $\sum_{n=0}^{\infty} \left| (-1)^n \frac{1}{n} \right| = \sum_{n=0}^{\infty} \frac{1}{n}$ divergens.

Pozitív tagú sorok 5.3

61. Definíció. $\sum a_n$ pozitív tagú sor, ha $\forall n \in \mathbb{N} : a_n \geq 0$

Megi.: jobb lenne nemnegatív tagú sornak nevezni, de ez az elterjedt.

55. Tétel.

 $A \sum a_n$ pozitív tagú sor konvergens \Leftrightarrow a részletösszegek sorozata, azaz az $(a_1 + \cdots + a_n)_{n \in \mathbb{N}}$ sorozat korlátos.

56. Tétel. Összehasonlítókritérium

$$tfh \ 0 \le a_n \le b_n \ m.m. \ n \in \mathbb{N}$$
. Ekkor

tfh
$$0 \leqslant a_n \leqslant b_n \quad m.m. \quad n \in \mathbb{N}$$
. Ekkor
1. Ha $\sum b_n$ sor konvergens $\Rightarrow \sum a_n$ sor konvergens $(\sum b_n \text{ majorálja } \sum a_n - t)$
2. Ha $\sum a_n$ sor divergens $\Rightarrow \sum b_n$ sor divergens

57. Tétel. Cauchy-féle gyökkritérium

 $Ha \sum a_n \text{ sorra:}$

1.
$$\overline{\lim} \left(\sqrt[n]{|a_n|} \right) < 1 \implies \sum a_n \text{ sor abszolútkonvergens (tehát konvergens is)}$$

2.
$$\overline{\lim} \left(\sqrt[n]{|a_n|} \right) > 1 \implies \sum a_n \text{ sor divergens}$$

58. Tétel. Következmény

Ha a
$$\sum a_n$$
 sorra $\exists \lim_{n \to \infty} \left(\sqrt[n]{|a_n|} \right) =: \alpha$ és
ha $0 \le \alpha < 1 \implies \sum_{n \to \infty} a_n$ abszolútkonvergens
ha $\alpha > 1 \implies \sum_{n \to \infty} a_n$ divergens
ha $\alpha = 1 \implies b$ ármi lehet

ha
$$\alpha = 1 \Rightarrow \overline{b}$$
ármi lehet

59. Tétel. D'Alembert-féle hányadoskritérium

Ha $\sum a_n$ sorra $(a_n \neq 0)$:

1.
$$\left| \frac{a_n}{\ln} \left| \frac{a_{n+1}}{a_n} \right| < 1 \implies \sum a_n \text{ sor abszolútkonvergens (tehát konvergens is)} \right|$$
2. $\left| \frac{\ln}{a_n} \right| > 1 \implies \sum a_n \text{ sor divergens}$

2.
$$\underline{\lim} \left| \frac{a_{n+1}}{a_n} \right| > 1 \implies \sum a_n \text{ sor divergens}$$

60. Tétel. Következmény

Ha a
$$\sum a_n$$
 sorra $a_n \neq 0$; $\exists \lim \left| \frac{a_{n+1}}{a_n} \right| =: \alpha$ és ha $0 \leq \alpha < 1 \Rightarrow \sum a_n$ abszolútkonvergens ha $\alpha > 1 \Rightarrow \sum a_n$ divergens ha $\alpha = 1 \Rightarrow \text{nem alkalmazhat}$

5.4Leibniz-típusú sorok

62. Definíció. $Ha \ \forall n \in \mathbb{N} : 0 \leqslant a_{n+1} \leqslant a_n$, akkor a $\sum (-1)^{n-1}a_n$ sort Leibniz-típusú (vagy váltakozó előjelű) sornak nevezzük.

Megj.: vigyázni a definiciónál, u.i.

√ fontos!

- **61. Tétel.** Legyen $\sum (-1)^{n-1}a_n$ Leibniz-típusú sor. Ekkor
 - (konvergencia) A Leibniz-típusú sor konvergens $\Leftrightarrow \lim(a_n) = 0$
 - (konvergenciasebesség) tfh konv, és $\alpha = \sum_{n=1}^{\infty} (-1)^{n-1} a_n$; $s_n = \sum_{k=1}^{n} (-1)^{k-1} a_k$. $Ekkor \ \forall n \in \mathbb{N} : |\alpha - s_n| \leqslant a_n$

Számok p-adikus tört előállítása 5.5

62. Tétel. Legyen $p\geqslant 2$; $(a_n):\mathbb{N}\to\{0,1,...,p-1\}$. Ekkor $\forall x\in[0,1)\exists\sum_{n=1}^{\infty}\frac{a_n}{p^n}$ alakú pozitív tagú sor, amelynek összege x, és minden $\sum_{n=1}^{\infty}\frac{a_n}{p^n}$ alakú pozitív tagú sor összege valamely, a [0,1] intervallumba

Az x-hez a fenti módon hozzárendelt sort az x szám végtelen p-adikus tört előállításának, az a_n $(n \in \mathbb{N})$ számot pedig az előállítás jegyeinek nevezzük.

- Legyen $u \in \mathbb{N}$. Ekkor u felírható $\sum_{n=0}^{r} a_n \cdot p^n = \sum_{n=-r}^{0} \frac{a_n}{p^n}$ alakban. Ez alapján bármely $x \geqslant 0$ valós szám felírható $\sum_{n=-r}^{\infty} \frac{a_n}{p^n}$ alakban.
- Az $x = \sum_{n=1}^{r} \frac{a_n}{p^n} \quad (r < \infty \; ; \; a_r \neq 0)$ alakú számokat p-adikus racionális számoknak nevezzük. Belátható, hogy minden ilyen számhoz két olyan $\sum_{n=1}^{\infty} \frac{a_n}{p^n}$ alakú sor is rendelhető, amelynek az összege x.

Műveletek sorokkal

- **63. Definíció.** Legyenek $\sum a_n$; $\sum b_n$ tetszőleges sorok. Ekkor 1. $\sum (a_n + b_n)$ sort ezek összegének 2. $\sum (\lambda a_n)$ sort a $\sum a_n$ sor és a λ szám számszorosának nevezzük.
- **63. Tétel.** Legyenek $\sum a_n$; $\sum b_n$ sorok konvergensek, és $A := \sum_{n=1}^{\infty} a_n$; $B := \sum_{n=1}^{\infty} b_n$. Ekkor 1. $\sum (a_n + b_n)$ sor konvergens, és $\sum_{n=1}^{\infty} (a_n + b_n) = A + B$ 2. $\sum (\lambda a_n)$ sor konvergens, és $\sum_{n=1}^{\infty} (\lambda a_n) = \lambda A$

Sorok zárójelezése (csoportosíthatóság)

64. Definíció. Legyen $(a_n): \mathbb{N} \to \mathbb{R}$ tetsz. sorozat ; $(m_n): \mathbb{N} \to \mathbb{N}$ † indexsorozat. Ekkor a $\sum_{n=0}^{\infty} a_n \text{ sor az } (m_n) \text{ indexsorozat által meghatározott (generált) zárójelezésén a } \sum_{n=0}^{\infty} \alpha_n \text{ sort értjük, ahol } \alpha_n := \sum_{i=m_{(n-1)}+1}^{m_n} a_i \text{ } (n \in \mathbb{N})$

64. Tétel.

 $Ha \sum a_n \text{ konvergens} \Rightarrow \forall z \text{ \'a} r \text{\'o} \text{ jelez\'es mellett a} \sum \alpha_n z \text{\'a} r \text{\'o} \text{ jelezett sor is konvergens, \'es} \sum_{n=1}^{\infty} \alpha_n = \sum_{n=1}^{\infty} a_n$

19

65. Tétel.

 $tfh \quad 1. \quad (m_n) : \mathbb{N} \to \mathbb{N} \uparrow$

- 2. $(m_{n+1}-m_n)_{n\in\mathbb{N}}$ korlátos
- $3. \quad \lim(a_n) = 0$
- 4. $\sum a_n \text{ sor } (m_n)$ által meghatározott $\sum \alpha_n$ zárójelezése konvergens Ekkor $\sum a_n$ sor konvergens.

Sorok átrendezése

65. Definíció. Legyen $p: \mathbb{N} \to \mathbb{N}$ bijekció (az \mathbb{N} egy permutációja). Ekkor a $\sum a_n$ sor p által meghatározott átrendezésének nevezzük a $\sum a_{p_n}$ $(\sum a_n \circ p)$ sort.

66. Tétel. Ha a $\sum a_n$ sor abszolút konvergens $\Rightarrow \forall p: \mathbb{N} \to \mathbb{N}$ bijekcióra a $\sum a_{p_n}$ sor is konvergens és $\sum_{n=1}^{\infty} a_{p_n} = \sum_{n=1}^{\infty} a_n$

67. Tétel. Riemann:

Ha a $\sum a_n$ sor konvergens, de nem abszolútkonvergens (a sor feltételesen konvergens) akkor

- ∀A ∈ R∃p: N → N bijekció, hogy ∑ a_{pn} konvergens, és ∑_{n=1}[∞] a_{pn} = A
 ∃p: N → N bijekció, melyre ∑ a_{pn} sor divergens

Az abszolút konvergens sorok tudják megtartani az asszociatív, és a kommutatív tulajdonságokat.

Sorok szorzása 5.9

véges összeg - $(a_1 + \cdots + a_n) \cdot (b_1 + \cdots + b_m) = \sum a_i b_j$ probléma - hogyan értelmezzük két sor szorzatát? többféle módon is értelmezhetjük.

					,	
×	a_1	a_2	a_3	a_4		\nearrow \uparrow \uparrow
			a_3b_1			\rightarrow \nearrow \uparrow téglányszorzat
b_2	$a_{1}b_{2}$	$a_{2}b_{2}$	$a_{3}b_{2}$	$a_{4}b_{2}$		\rightarrow \rightarrow \nearrow
b_3	$a_{1}b_{3}$	$a_{2}b_{3}$	$a_{3}b_{3}$	$a_{4}b_{3}$		
b_4	$a_{1}b_{4}$	a_2b_4	a_3b_4	a_4b_4		Cauchy-szorzat
:	:	:	:	:	٠.	77 Cauchy-szorzat
•	•	•	•	•	•	7

66. Definíció. $A \sum a_n$ és a $\sum b_n$ sor téglányszorzatának nevezzük, és $(\sum a_n) \cdot (\sum b_n)$ -nel jelöljük a következő sort:

$$(\sum a_n) \cdot (\sum b_n) := \sum t_n \text{ ahol } t_n = a_n b_1 + a_n b_2 + \dots + a_n b_n + a_{n-1} b_n + \dots + a_1 b_n \ (n \in \mathbb{N})$$

67. **Definíció.** $A \sum a_n$ és a $\sum b_n$ sor Cauchy-szorzatának nevezzük, és $(\sum a_n) \times (\sum b_n)$ -nel jelöljük a következő sort:

$$(\sum a_n) \times (\sum b_n) := \sum c_n \text{ ahol } c_n = \sum_{i+j=n+1} a_i b_j \ (n \in \mathbb{N})$$

68. Tétel.

- Ha a $\sum a_n$ és a $\sum b_n$ sor konvergens \Rightarrow téglányszorzat konvergens, és a téglányszorzat összege $= (\sum_{n=1}^{\infty} a_n) \cdot (\sum_{n=1}^{\infty} b_n)$ Ha a $\sum a_n$ és a $\sum b_n$ sor abszolút konvergens \Rightarrow téglányszorzat
- és a Cauchy-szorzat is konvergens, és az összegük = $(\sum_{n=1}^{\infty} a_n) \cdot (\sum_{n=1}^{\infty} b_n)$
- (Mertens-tétel) Ha a $\sum a_n$ és a $\sum b_n$ konvergens, és legalább az egyik abszolút konvergens \Rightarrow Cauchy-szorzat is konvergens és az összege = $(\sum_{n=1}^{\infty} a_n) \cdot (\sum_{n=1}^{\infty} b_n)$

5.10Komplex tagú sorozatok és sorok

68. Definíció.

$$(z_n): \mathbb{N} \to \mathbb{C}$$
 sorozat konvergens, ha $\exists v \in \mathbb{C} \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0: |z_n - v| < \varepsilon$ $|z| = \sqrt{x^2 + y^2}$

komplex sorozatokra ugyanazok a tételek érvényesek, mint a valós számokra, kivéve amelyek a rendezési tulajdonságokat használják

komplex sorok: $(z_n): \mathbb{N} \to \mathbb{C}$; $\sum z_n = (z_1 + z_2 + \cdots + z_n)_{n \in \mathbb{N}}$

Függvénysorozatok, függvénysorok

- **69.** Definíció. Legyen $A \subset \mathbb{K}$ rögzített. $\forall n \in \mathbb{N}$ -re adott $f_n : A \to \mathbb{K}$ függvény $\mathbb{K}^{\mathcal{A}} := \{ g | g : \mathcal{A} \to \mathbb{K} \} \text{ függvényhalmaz.}$ $(f_n): \mathbb{N} \to \mathbb{K}^{\mathcal{A}}$ függvénysorozat.
- 70. Definíció. Az $(f_n): \mathbb{N} \to \mathbb{K}^A$ függvénysorozatból képzett $\sum f_n$ függvénysoron a következő függvénysorozatot értjük: $(f_0 + f_1 + \cdots + f_n)_{n \in \mathbb{N}}$.
- 71. Definíció. A függvénysor konvergenciahalmaza (KH)
- 1. $\mathcal{KH}(\sum f_n) := \{\bar{x} \in \mathcal{A} | \sum f_n(x) \text{ számsor konvergens} \} \subset \mathcal{A}$
- A függvénysor összegfüggvénye $\mathcal{KH}(\sum f_n) \to \mathbb{K}$; $x \to \sum_{n=0}^{\infty} f_n(x) \in \mathbb{K}$

függvénysor konvergenciahalmaza általában nehezen jellemezhető. Ha az f_n függvények hatványfüggvények, akkor a $\sum f_n$ hatványsor konvergenciahalmazát igen egyszerűen lehet jellemezni.

72. Definíció. Legyen $x_0 \in \mathbb{K}$ tetszőleges, rögzített pont, és $(a_n) : \mathbb{N} \to \mathbb{K}$ tetszőleges számsorozat. Ekkor a $\sum_{n} a_n (x - x_0)^n$ $(x \in \mathbb{K})$ függvénysort hatványsornak nevezzük. (a_n) a hatványsor együtthatói, x_0 a konvergenciaközéppont.

69. Tétel. Cauchy-Hadamard

$$Legyen \ R := \left\{ \begin{array}{ccc} 0 & ha \ \overline{\lim} \left(\sqrt[n]{|a_n|}\right) = +\infty \\ +\infty & ha \ \overline{\lim} \left(\sqrt[n]{|a_n|}\right) = 0 \\ \overline{\frac{1}{\overline{\lim} \left(\sqrt[n]{|a_n|}\right)}} & k\"{u}l\ddot{o}nben \end{array} \right. \quad ahol \ R \ a \ konvergencia sug\'{a}r.$$

Ekkor a $\sum_0 a_n (x-x_0)^n$ hatványsor a $\mathrm{K}_R(x_0) := \{ x \in \mathbb{K} \big| \, |x-x_0| < R \, \}$ pontjaiban konvergens, sőt abszolútkonvergens, és az olyan $x \in \mathbb{K}$ pontjaiban, ahol $|x - x_0| > R$, ott divergens.

a konvergenciahatáron lehet konevergens is és divergens is. Itt külön vizsgálat kell ennek eldöntésére.

73. **Definíció.** Legyen $\sum a_n(x-x_0)^n$ $(x \in \mathbb{K})$ hatványsor konvergenciasugara R > 0. Ekkor az $f: \mathrm{K}_R(x_0) \to \mathbb{K}$; $x \to \sum_{n=0}^{\infty} a_n(x-x_0)^n$ függvény a hatványsor összegfüggvénye.

70. Tétel. Műveletek hatványsorokkal:

$$\begin{array}{lll} \sum_0 a_n (x-x_0)^n & (x\in\mathbb{K}) \text{ hatványsor konvsugara } R_a>0 \\ \sum_0 b_n (x-x_0)^n & (x\in\mathbb{K}) \text{ hatványsor konvsugara } R_b>0 \end{array} \quad \rho:=\min\{R_a,R_b\}. \text{ Ekkor }$$

- $\forall x \in \mathcal{K}_{\rho}(x_0) : \sum_{0} (a_n + b_n) (x x_0)^n \text{ hatványsor konvergens, és}$ $\sum_{n=0}^{\infty} (a_n + b_n) (x x_0)^n = \sum_{n=0}^{\infty} a_n (x x_0)^n + \sum_{n=0}^{\infty} b_n (x x_0)^n$ $A \text{ két sor Cauchy-szorzata hatványsor, és } (\sum_{n=0}^{\infty} a_n (x x_0)^n) \times (\sum_{n=0}^{\infty} b_n (x x_0)^n) = \sum_{n=0}^{\infty} (a_n b_0 + a_{n-1} b_1 + \dots + a_0 b_n) (x x_0)^n \text{ konvergens,}$ és az összege= $(\sum_{n=0}^{\infty} a_n (x x_0)^n) \cdot (\sum_{n=0}^{\infty} b_n (x x_0)^n)$
- 71. Tétel. Hatványsor átrendezése:

Legyen $\sum_{0} a_{n}(x-x_{0})^{n} (a_{n}, x_{0}, x \in \mathbb{K})$ hatványsor konvergenciasugara $R_{a} > 0$, és $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n \quad (x \in K_R(x_0))$. Legyen $x_1 \in K_R(x_0)$; $0 < \rho < R - |x_0 - x_1|$ Ekkor az f összegfüggvény a $K_\rho(x_1)$ -ben előállítható az $(x-x_1)$ hatványai szerint, azaz $f(x) = \sum_{k=0}^{\infty} A_k (x-x_1)^k \quad (x \in K_\rho(x_1))$ ahol $A_k = \sum_{n=k}^{\infty} {n \choose k} a_n (x_1-x_0)^{n-k} \quad k = 0, 1, \dots$

Elemi függvények, addiciós tételek, Euler összefüggések

72. Tétel. Tfh $\forall n \in \mathbb{N} : \varepsilon_n \in \{0, 1, -1\}$. Ekkor a $\sum_{0} \varepsilon_{n} \frac{z^{n}}{n!}$ hatványsor $\forall z \in \mathbb{C}$ -re abszolútkonvergens, és a konvergenciasugara végtelen.

74. Definíció.

$$\exp(z) \ := \ \sum_{n=0}^{\infty} \frac{z^n}{n!} \qquad z \in \mathbb{C} \quad \text{az e alapú exponenciális függvény}$$

$$\sin(z) \ := \ \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \qquad z \in \mathbb{C} \qquad \text{színuszfüggvény}$$

$$\cos(z) \ := \ \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \qquad z \in \mathbb{C} \qquad \text{koszinuszfüggvény}$$

$$\text{sh}(z) \ := \ \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} \qquad z \in \mathbb{C} \qquad \text{színusz-hiperolikusz függvény}$$

$$\text{ch}(z) \ := \ \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} \qquad z \in \mathbb{C} \qquad \text{koszinusz-hiperbolikusz függvény}$$

73. Tétel.

1.
$$\exp(0) = 1$$

 $\exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots = e \quad \left(= \lim \left(1 + \frac{1}{n} \right)^n \right)$

2.
$$\forall z \in \mathbb{C} : \exp(z_1 + z_2) = (\exp(z_1)) \cdot (\exp(z_2))$$

2.
$$\forall z \in \mathbb{C} : \exp(z_1 + z_2) = (\exp(z_1)) \cdot (\exp(z_2))$$

3. $\forall z \in \mathbb{C} : \exp(-z) = \frac{1}{\exp(z)}$

Megj.:
$$\forall z \in \mathbb{C} : \exp(z) = e^z$$

 2^{π} később

74. Tétel.

1. sin, sh páratlan

$$\sin(-z) = -\sin(z) \quad (z \in \mathbb{C})$$

 $\sin(-z) = -\sin(z) \quad (z \in \mathbb{C})$

2. cos, ch páros

$$\begin{array}{rcl}
\cos(-z) & = & \cos(z) & (z \in \mathbb{C}) \\
\cosh(-z) & = & \cosh(z) & (z \in \mathbb{C})
\end{array}$$

75. Tétel. Euler összefüggések:

1.
$$\exp(iz) = \cos(z) + i\sin(z)$$
 $z \in \mathbb{C}$

2.
$$\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}$$
 $z \in \mathbb{C}$

2.
$$\cos(z) = \frac{1}{2} \frac{1}{2} z \in \mathbb{C}$$

3. $\sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i} z \in \mathbb{C}$

76. Tétel. Addiciós tételek:

1.
$$\sin(z_1 + z_2) = \sin(z_1) \cdot \cos(z_2) + \cos(z_1) \cdot \sin(z_2) \quad z_1, z_2 \in \mathbb{C}$$

2.
$$\cos(z_1 + z_2) = \cos(z_1) \cdot \cos(z_2) - \sin(z_1) \cdot \sin(z_2) \quad z_1, z_2 \in \mathbb{C}$$

3.
$$\operatorname{sh}(z_1 + z_2) = \operatorname{sh}(z_1) \cdot \operatorname{ch}(z_2) + \operatorname{ch}(z_1) \cdot \operatorname{sh}(z_2) = z_1, z_2 \in \mathbb{C}$$

4.
$$\operatorname{ch}(z_1 + z_2) = \operatorname{ch}(z_1) \cdot \operatorname{ch}(z_2) + \operatorname{sh}(z_1) \cdot \operatorname{sh}(z_2) = z_1, z_2 \in \mathbb{C}$$

77. Tétel.

1.
$$\operatorname{ch}(iz) = \cos(z)$$

$$2. \quad \sinh(iz) = i\sin(z)$$

78. Tétel.

1.
$$\sin^2(z) + \cos^2(z) = 1 \quad \forall z \in \mathbb{C}$$

2.
$$\operatorname{ch}^{2}(z) - \operatorname{sh}^{2}(z) = 1 \quad \forall z \in \mathbb{C}$$

79. Tétel.

Ha
$$z = x + iy \in \mathbb{C}$$
 $(x, y \in \mathbb{R})$ akkor $\exp(z) = e^z = e^{x + iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$

6 Függvények határértéke, folytonossága

Eddig $f \in \mathbb{R} \to \mathbb{R}$ határérték, folytonosság, deriválhatóság, integrálhatóság Általánosítás: $\mathbb{R} \to \mathbb{R}^n \longrightarrow \text{metrikus terek}$.

6.1 Metrikus terek (bevezetés)

Motiváció: számsorozat határértéke

 $(a_n): \mathbb{N} \to \mathbb{R}$ konv., ha $\exists A \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: |a_n - A| < \varepsilon$

75. Definíció. Az (\mathcal{M}, ρ) rendezett pár metrikus tér, ha

 $\mathcal{M} \neq \emptyset$ halmaz ; $\rho : \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ olyan függvény, melyre $\forall x, y, z \in \mathcal{M}$ -re:

$$-\rho(x,y) \geqslant 0$$
 és = $0 \Leftrightarrow x = y$

$$-\rho(x,y) = \rho(y,x)$$

- $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$ (háromszögegyenlőtlenség)

Az ilyen tulajdonságú ρ függvényt \mathcal{M} -en értelmezett <u>metrikának</u> vagy távolságfüggvénynek nevezzük, a $\rho(x,y)$ számot pedig az x és az y távolságának.

6.1.1 Diszkrét metrikus tér

80. Tétel.
$$\mathcal{M} \neq \emptyset$$
 tetszőleges halmaz ; $\rho(x,y) := \begin{cases} 0 \text{ ha } x = y \\ 1 \text{ ha } x \neq y \end{cases} (x,y \in \mathcal{M})$. Ekkor (\mathcal{M},ρ) metrikus tér.

6.1.2 Valós metrikus tér

81. Tétel.
$$(\mathcal{M}, \rho) := (\mathbb{R}, \rho)$$
; $\rho(x, y) := |x - y|(x, y \in \mathbb{R})$. Ekkor (\mathbb{R}, ρ) metrikus tér.

6.1.3 \mathbb{R}^n tér különböző metrikákkal

$$n \in \mathbb{N} : \mathbb{R}^n := \left\{ (x_1, ..., x_n) \mid x_i \in \mathbb{R} , i = 1..n \right\} \quad n \in \mathbb{N} \text{ r\"{o}gz. } x = (x_1, ..., x_n) \in \mathbb{R}^n$$

82. Tétel.
$$\rho_1(x,y):=\sum_{i=1}^n|x_i-y_i|\ (x,y\in\mathbb{R}^n).$$
 Ekkor (\mathbb{R}^n,ρ_1) metrikus tér.

83. Tétel.
$$\rho_2(x,y) := \sqrt{\sum_{i=1}^n |x_i - y_i|^2} \ (x,y \in \mathbb{R}^n)$$
. Ekkor (\mathbb{R}^n, ρ_2) metrikus tér.

84. Tétel.
$$\rho_{\infty}(x,y) := \max_{1 \leqslant i \leqslant n} |x_i - y_i| \ (x,y \in \mathbb{R}^n)$$
. Ekkor $(\mathbb{R}^n, \rho_{\infty})$ metrikus tér.

$\mathbf{6.2} \quad \mathrm{C}[a,b]$ tér különböző metrikákkal

Legyen $[a,b]\subset\mathbb{R}$ kompakt int.; $\mathrm{C}[a,b]$ az [a,b]-n folytonos függvények halmaza.

85. Tétel. Legyen
$$f,g \in C[a,b]$$
 esetén $\rho_{\infty}(f,g) := \max_{x \in [a,b]} |f(x) - g(x)|$.

 $(\rho_{\infty} \text{ jól definiált függvény, lsd Weierstrass-tétel.})$

Ekkor $(C[a,b], \rho_{\infty})$ metrikus tér (maximum metrika, Csebisev metrika)

86. Tétel.
$$f,g \in C[a,b]: \rho_1(f,g) := \int_a^b |f-g|$$
. Ekkor $(C[a,b], \rho_1)$ metrikus tér. $(\rho_1 \text{ jól definiált, ui. minden folytonos függvény integrálható})$

$$f,g\in \mathrm{C}[a,b]:
ho_2(f,g):=\sqrt{\int_a^b|f-g|^2} \ (
ho_2\ ext{j\'ol}\ def.).$$
 Ekkor $(\mathrm{C}[a,b],
ho_2)$ metrikus tér.

Környezetek, ekvivalens metrikák 6.3

76. Definíció. Legyen (\mathcal{M}, ρ) metrikus tér, $a \in \mathcal{M}$, $\varepsilon > 0$,

$$\mathrm{K}_{arepsilon}^{
ho}(a) := \left\{ \left. x \in \mathcal{M} \; \middle| \; \rho(x,a) < arepsilon
ight.
ight. Az \; a \in \mathcal{M} \; \mathrm{pont} \; arepsilon \; \mathrm{sugar\'u} \; \mathrm{k\"{o}rnyezete}.$$

1. Példa:
$$(\mathbb{R}^n, \rho_1)$$
, $a \in \mathbb{R}^n$, $\varepsilon > 0$ $\mathcal{K}^{\rho_1}_{\varepsilon}(a) := \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i - a_i| < \varepsilon \right\}$

$$n = 2 : a = (0,0) \quad \mathcal{K}^{\rho_1}_{\varepsilon}(a) := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| + |x_2| < \varepsilon \right\}$$

2. Példa:
$$(\mathbb{R}^{n}, \rho_{2})$$
, $a \in \mathbb{R}^{n}$, $\varepsilon > 0$ $K_{\varepsilon}^{\rho_{2}}(a) := \left\{ x \in \mathbb{R}^{n} \mid \sqrt{\sum_{i=1}^{n} |x_{i} - a_{i}|^{2}} < \varepsilon \right\}$

$$n = 2 : a = (0, 0) \quad K_{\varepsilon}^{\rho_{2}}(a) := \left\{ (x_{1}, x_{2}) \in \mathbb{R}^{2} \mid \sqrt{x_{1}^{2} + x_{2}^{2}} < \varepsilon \right\}$$

3. Példa:
$$(\mathbb{R}^n, \rho_{\infty})$$
, $a \in \mathbb{R}^n$, $\varepsilon > 0$ $K_{\varepsilon}^{\rho_{\infty}}(a) := \left\{ x \in \mathbb{R}^n \mid \max_{1 \leq i \leq n} |x_i - a_i| < \varepsilon \right\}$

$$n = 2 : a = (0, 0) \quad K_{\varepsilon}^{\rho_{\infty}}(a) := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \max\{|x_1|, |x_2|\} < \varepsilon \right\}$$

77. **Definíció.** Legyenek (\mathcal{M}, ρ_1) , (\mathcal{M}, ρ_2) metrikus terek. Ekkor a $\rho_1 \wedge \rho_2$ metrika ekvivalens, ha $\exists c_1, c_2 > 0 \forall x, y \in \mathcal{M} : c_1 \cdot \rho_1(x, y) \leq \rho_2(x, y) \leq c_2 \cdot \rho_1(x, y)$ Jelölés: $\rho_1 \backsim \rho_2$

Állítás: ∽ ekvivalenciareláció.

- **88.** Tétel. Legyen $n \in \mathbb{N}$, $i := 1, 2, \infty$, (\mathbb{R}^n, ρ_i) metrikus tér. Ekkor $\rho_1 \backsim \rho_2 \backsim \rho_\infty$ azaz
- 1. $\rho_{\infty} \leq \rho_1 \leq n \cdot \rho_{\infty}$ 2. $\rho_{\infty} \leq \rho_2 \leq \sqrt{n} \cdot \rho_{\infty}$ 3. $\frac{1}{\sqrt{n}} \cdot \rho_1 \leq \rho_2 \leq \rho_1$
- 89. Tétel. \mathbb{R}^n -ben bármely két metrika ekvivalens.
- 90. Tétel. A C[a,b] téren a ρ_1 és a ρ_{∞} nem ekvivalens metrikák.

Legyen (\mathcal{M}, ρ) metrikus tér , $(a_k) : \mathbb{N} \to \mathcal{M}$ \mathcal{M} -beli sorozat.

78. Definíció. Az (\mathcal{M}, ρ) metrikus tér egy $(a_k) : \mathbb{N} \to \mathcal{M}$ sorozatra konvergens, ha $\exists \alpha \in \mathcal{M} \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} \forall k > k_0 : \rho(\alpha, a_k) < \varepsilon \text{ ahol } \alpha \text{ a sorozat határértéke.}$ Jelölés: $\lim_{k \to +\infty} (a_k) = \alpha \quad a_k \xrightarrow{\rho} \alpha \ (k \to +\infty)$

Megj.: ha (\mathcal{M}, ρ) a szokásos (| |), akkor ez a definíció a korábbival megegyezik.

91. Tétel.
$$\alpha^{\rho} = \lim_{k \to +\infty} (a_k) \Leftrightarrow \lim_{k \to +\infty} \rho(\alpha, a_k) = 0 \Leftrightarrow \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} \forall k > k_0 : a_k \in K_{\varepsilon}(\alpha) \Leftrightarrow (\blacktriangle) \ \forall \varepsilon > 0 :$$

$$\left\{ k \in \mathbb{N} \ \middle| \ a_k \notin K_{\varepsilon}(\alpha) \right\} \text{ véges.}$$

- 92. Tétel. Konvergens sorozat határértéke egyértelműen meghatározott
- 93. Tétel. Legyen (\mathcal{M}, ρ) metrikus tér. $(a_k) : \mathbb{N} \to \mathcal{M}$ konvergens, és $\lim(a_k) = \alpha$. Ekkor 1) az (a_k) korlátos, azaz $\mathcal{R}_{(a_k)} \subset \mathcal{M}$ korlátos, azaz $\exists r > 0$ és $y \in \mathcal{M} : \mathcal{R}_{(a_k)} \subset K_r(y)$ 2) $\forall \nu : \mathbb{N} \to \mathbb{N}$ ind.s. esetén $a \circ \nu$ konvergens, és $\lim a \circ \nu = \alpha$
- **94. Tétel.** $(\mathcal{M}, \rho_1), (\mathcal{M}, \rho_2)$ metrikus terek, $(a_k) : \mathbb{N} \to \mathcal{M}$; $\rho_1 \sim \rho_2$. Ekkor $(a_k) \stackrel{\rho_1}{\to} \alpha \Leftrightarrow (a_k) \stackrel{\rho_2}{\to} \alpha \quad (k \to +\infty)$

\mathbb{R}^n konvergens sorozatai

Megj.: Tétel+előző megj. ⇒ mindegy milyen metrikát veszünk egy feladat megoldásánál. $n \in \mathbb{N} \ (a_k)_{k \in \mathbb{N}} : \mathbb{N} \to \mathbb{R}^n \ a_k \in \mathbb{R}^n \ a_k = (a_k^{(1)}, ..., a_k^{(n)})$

95. Tétel. (\mathbb{R}^n, ρ_l) $(l=1,2,+\infty)$ metrikus tér. Ekkor az

 $(a_k): \mathbb{N} \to \mathbb{R}^n \quad (a_k) \stackrel{\rho_l}{\to} \alpha = (\alpha^{(1)}, ..., \alpha^{(n)}) \Leftrightarrow \forall i \in [1..n]: (a_k^{(i)})_{k \in \mathbb{N}} \text{ koordinátasor konvergens, és}$ $\lim (a_k^{(i)}) = \alpha^{(i)}$

Teljes metrikus terek (Cauchy-sorozatok) 6.5

Eml.: \mathbb{R} -ben $(a_k): \mathbb{N} \to \mathbb{R}$ Cauchy-sorozat, ha $\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k, l > k_0: |a_k - a_l| < \varepsilon$ Cauchy-féle konvergenciakritérium: (a_k) konvergens \Leftrightarrow (a_k) Cauchy-sorozat

79. **Definíció.** (\mathcal{M}, ρ) metrikus tér.

 $Az(a_k): \mathbb{N} \to \mathcal{M}$ Cauchy-sorozat, ha $\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} \ \forall k, l > k_0: \rho(a_k, a_l) < \varepsilon$

96. Tétel. (\mathcal{M}, ρ) metrikus tér ; $(a_k) : \mathbb{N} \to \mathcal{M}$

- a) ha (a_k) konvergens $\Rightarrow (a_k)$ Cauchy-sorozat
- *b*) ≠

80. Definíció. $Az(\mathcal{M}, \rho)$ metrikus tér teljes, ha minden Cauchy-sorozat konvergens \mathcal{M} -ben.

Megj.: (\mathcal{M}, ρ) teljes $\Longrightarrow [(a_k) \text{ konvergens } \Leftrightarrow (a_k) \text{ Cauchy-sorozat }]$

6.6 Példák

- 1. Diszkrét metrikus tér teljes
- (\mathbb{R}, ρ) ahol $\rho = |\cdot|$ teljes metrikus tér.
- (\mathbb{Q}, ρ) ahol $\rho = | |$ nem teljes metrikus tér.
- $n \in \mathbb{N}$ rögzített: (\mathbb{R}^n, ρ_i) $i = 1, 2, \infty$ teljes metrikus tér.
- $(C[a,b], \rho_{\infty})$ ahol $\rho_{\infty} = \max_{x \in [a,b]} |f(x) g(x)|$ teljes metrikus tér.
- $(\mathbf{C}[a,b],
 ho_1)$ ahol $ho_1=\int |f-g|$ nem teljes metrikus tér.

81. Definíció. (\mathcal{M}, ρ) metrikus tér $\mathcal{A} \subset \mathcal{M}$.

 $Az \ a \in \mathcal{M} \ az \ \mathcal{A} \ halmaz \ torlódási pontja, ha <math>\forall K_r(a) : (K_r(a) \setminus \{a\}) \cap \mathcal{A} \neq \emptyset$.

Jelölés: $\mathcal{A}' := \left\{ a \in \mathcal{M} \mid a \text{ torlódási pontja } \mathcal{A}\text{-nak} \right\}$

97. Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \neq \emptyset$; $\mathcal{A} \subset \mathcal{M}$. Ekkor

- a) $a \in \mathcal{A}' \Leftrightarrow K_r(a) \cap \mathcal{A}$ végtelen halmaz
- b) $a \in \mathcal{A}' \Leftrightarrow \exists (a_k) : \mathbb{N} \to \mathcal{A} \text{ invertálható, konvergens és } \lim_{k \to \infty} (a_k) = a$

82. Definíció. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$.

- $a \in \mathcal{A}$ az \mathcal{A} belső pontja, ha $\exists K_r(a) : K_r(a) \subset \mathcal{A}$ $\operatorname{int} \mathcal{A} := \left\{ a \in \mathcal{A} \mid a \text{ belső pontja } \mathcal{A}\text{-nak.} \right\}$ $a \in \mathcal{A} \text{ izolált pontja } \mathcal{A}\text{-nak, ha } \exists K_r(a) : (K_r(a) \setminus \{a\}) \cap \mathcal{A} = \emptyset$
- 83. Definíció. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$.
- a) A nyilt halmaz, ha minden pontja belső pont, azaz $\forall a \in \mathcal{A} : \exists K_r(a) \subset \mathcal{A}$ (az \emptyset nyilt halmaz)
- b) \mathcal{A} zárt halmaz, ha $\mathcal{M} \setminus \mathcal{A}$ nyilt halmaz \mathcal{M} -ben. (komplementer)

1. M zárt is, nyilt is. Példák:

- 2. $K_r(a)$ nyilt halmaz
- 3. ∀ véges halmaz zárt.
- 4. $[a,b) \subset \mathbb{R}$ se nem nyilt, se nem zárt.

98. Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$. Ekkor a következő állítások ekvivalensek:

- 1. \mathcal{A} zárt halmaz (\mathcal{M}, ρ) -ban.
- 2. $\mathcal{A}' \subset \mathcal{A}$
- 3. $\forall (a_k) : \mathbb{N} \to \mathcal{A} \text{ konvergens, \'es } \lim_{k \to \infty} (a_k) \in \mathcal{A}$

99. Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A}_i \subset \mathcal{M}$ nyilt halmaz $(i \in \Gamma \text{ tesz. ind. halmaz}) \Rightarrow$

a)
$$\bigcup_{i \in \Gamma} A_i$$
 nyilt

b) ha Γ véges, $\bigcap_{i \in \Gamma} A_i$ nyilt.

100. Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A}_i \subset \mathcal{M}$ zárt halmaz $(i \in \Gamma$ tesz. ind. halmaz) \Rightarrow

a)
$$\bigcap_{i \in \Gamma} A_i$$
 zárt

- b) ha Γ véges, $\bigcup_{i \in \Gamma} A_i$ zárt.
- **84.** Definíció. (\mathcal{M}, ρ) metrikus tér.

$$Az \ \mathcal{A} \subset \mathcal{M} \ kompakt, \ ha \ \forall (a_k) : \mathbb{N} \to \mathcal{A} \ \exists (a_{k_{\nu}}) \ r\'{e}szs.: \ (a_{k_{\nu}}) \ konvergens, \ \'{e}s \lim_{k \to \infty} (a_{k_{\nu}}) \in \mathcal{A}.$$

85. Definíció. (\mathcal{M}, ρ) metrikus tér. Az $\mathcal{A} \subset \mathcal{M}$ nyilt lefedésén egy $\left\{ \begin{array}{l} \mathcal{G}_i \subset \mathcal{M} \mid i \in \Gamma \text{ tetsz., } \mathcal{G}_i \neq \emptyset \text{ nyilt} \end{array} \right\} \text{ halmazrendszert értünk, ha} \bigcup_{i \in \Gamma} \mathcal{G}_i \supset \mathcal{A} \text{ (befedés)}$

101. Tétel. (\mathcal{M}, ρ) metrikus tér. Ekkor a következő állítások ekvivalensek:

- a) $A \subset M$ kompakt,
- b) az A minden nyilt lefedése tartalmaz véges lefedést. (Borel-féle befedési tétel)
- c) Az A minden végtelen részhalmazának van torlódási pontja.

102. Tétel. (\mathcal{M}, ρ) metrikus tér, $\mathcal{A} \subset \mathcal{M}$ kompakt.

- a) az A zárt halmaz is
- b) az A korlátos is
- c) ha A korlátos, és zárt ∌ A kompakt.

103. Tétel. $n \in \mathbb{N}$ rögzített. Ekkor az (\mathbb{R}^n, ρ_i) $i = 1, 2, \infty$ metrikus terekben az $A \subset (\mathbb{R}^n, \rho_i)$ kompakt $\Leftrightarrow A$ korlátos, és zárt.

6.7 Függvények folytonossága, határértéke

$$(\mathcal{M}_1, \rho_1), (\mathcal{M}_2, \rho_2)$$
 metrikus terek ; $f: \mathcal{M}_1 \to \mathcal{M}_2$; $x \in \mathcal{M}_1 : K^{\rho_1}(x) := K^{(1)}(x)$; $y \in \mathcal{M}_2 : K^{\rho_2}(y) := K^{(2)}(y)$.

86. Definíció. $f: \mathcal{M}_1 \to \mathcal{M}_2$; $a \in \mathcal{D}_f$.

Az f függvénynek van határértéke az $a \in \mathcal{D}_f'$ pontban, ha

$$\exists A \in \mathcal{M}_2 : \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (K_{\delta}^{(1)}(A) \setminus \{a\}) \cap \mathcal{D}_f : f(x) \in K_{\varepsilon}^{(2)}(A)$$

Jelölés: $\lim_{a} f = A$.

- 104. Tétel. Ha $\exists A \in \mathcal{M}_2$, akkor egyértelmű
- 105. Tétel. (Átviteli elv) $f: \mathcal{M}_1 \to \mathcal{M}_2$; $a \in \mathcal{D}_f'$. $\lim_{a} f = A \Leftrightarrow \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{n \to \infty} (x_n) = a \Rightarrow \lim_{n \to \infty} f(x_n) = A$.
- 87. **Definíció.** Az f függvény folytonos az $a \in \mathcal{D}_f$ -ben $(f \in C\{a\})$, ha $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in K_{\delta}^{(1)}(a) : f(x) \in K_{\varepsilon}^{(2)}(f(a))$.
- 106. Tétel. Ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor $f \in \mathbb{C}\{a\} \Leftrightarrow \exists \lim_a f \text{ \'es } \lim_a f = f(a)$.

107. Tétel. (Folytonosságra vonatkozó átviteli elv) $f \in C\{a\} \Leftrightarrow \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to \infty} (x_n) = a \Rightarrow \lim_{n \to \infty} (f(x_n)) = f(a).$

Műveletek: kompozíció (csak!).

A többi nem biztos, hogy értelmezve van tetszőleges metrikus térben. Pl.: (+,·)

108. Tétel. $f \in \mathcal{M}_2 \to \mathcal{M}_1$; $g \in \mathcal{M}_3 \to \mathcal{M}_2$ $Ha \ g \in C\{a\}$; $a \in \mathcal{D}_g \subset \mathcal{M}_3$; $f \in C\{g(a)\}$; $g(a) \in \mathcal{D}_f \subset \mathcal{M}_2 \Rightarrow f \circ g \in \mathcal{M}_3 \to \mathcal{M}_1$; $f \circ g \in C\{a\}$.

6.8 Kompakt halmazon folytonos függvények tulajdonságai

109. Tétel.

 $(\mathcal{M}_1, \rho_1), (\mathcal{M}_2, \rho_2)$ metrikus terek ; $\mathcal{A} \subset \mathcal{M}$ kompakt ; $f : \mathcal{A} \to \mathcal{M}_2$; f folytonos. Ekkor a) $f(\mathcal{A}) \subset \mathcal{M}_2$ is kompakt

b) $Ha(\mathcal{M}_2, \rho_2) = (\mathbb{R}, |\cdot|) \Rightarrow \exists \alpha, \beta \in \mathcal{A} : \begin{cases} f(\alpha) = \inf \mathcal{R}_f = \min \mathcal{R}_f \\ f(\beta) = \sup \mathcal{R}_f = \max \mathcal{R}_f \end{cases}$ (Weierstrass)

88. Definíció. Egyenletes folytonosság:

 $Az \ f \in \mathcal{M}_1 \to \mathcal{M}_2$ függvény egyenletesen folytonos az $\mathcal{A} \subset \mathcal{D}_f$ halmazon, ha $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in \mathcal{A} : \rho_1(x, y) < \delta : \rho_2(f(x), f(y)) < \varepsilon.$

110. Tétel. Ha f egyenletesen folytonos az A-n \Rightarrow f folytonos az A-n.

111. Tétel. (Heine)

Ha $f: A \to \mathcal{M}_2$ folytonos, és $A \subset \mathcal{M}_1$ kompakt $\Rightarrow f$ egyenletesen folytonos az A-n.

6.9 Összefüggő halmazok

89. Definíció. (\mathcal{M}, ρ) metrikus tér.

- a) $Az \ \mathcal{A} \subset \mathcal{M} \ halmaz \ \underline{nem \ \ddot{o}sszef \ddot{u}gg \ \ \ }, \ ha \ \exists \mathcal{G}_1, \mathcal{G}_2 \subset \mathcal{M} \ nyilt \ halmazok, \ \mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset \ ; \ \mathcal{G}_1 \neq \emptyset \ ; \ \mathcal{G}_2 \neq \emptyset \ ; \ \acute{e}s \ (\mathcal{A} \cap \mathcal{G}_1) \cap (\mathcal{A} \cap \mathcal{G}_2) = \emptyset \ ; \ (\mathcal{A} \cap \mathcal{G}_1) \cup (\mathcal{A} \cap \mathcal{G}_2) = \mathcal{A}.$
- b) $Az A \subset M$ összefüggő, ha a) nem teljesül.

112. Tétel. $(\mathcal{M}, \rho_1), (\mathcal{M}, \rho_2)$ metrikus terek ; $f \in \mathcal{M}_1 \to \mathcal{M}_2$ folytonos függvény. Ekkor ha $\mathcal{A} \subset \mathcal{M}$ összefüggő $\Rightarrow f(\mathcal{A}) \subset \mathcal{M}_2$ is összefüggő.

Megj.: \mathbb{R} -ben intervallumok

113. Tétel. Bolzano: (\mathcal{M}, ρ) metrikus tér ; $f \in \mathcal{M} \to \mathbb{R}$; $f \in \mathbb{C}$; $\mathcal{A} \subset \mathcal{D}_f$ összefüggő. Ekkor $\forall a, b \in \mathcal{A}$ és $\forall c \in [f(a), f(b)] \lor [f(b), f(a)]$ esetén $\exists \xi \in \mathcal{A}$ melyre $f(\xi) = c$.

6.10 $\mathbb{R}^n \to \mathbb{R}^m$ függvények folytonossága

 (\mathbb{R}^n, ρ_i) $(i = 1, 2, \infty)$. Ekkor \mathbb{R}^n -ben $\rho_1 \sim \rho_2 \sim \rho_\infty \Rightarrow f \in \mathbb{R}^n \to \mathbb{R}^m$ folytonossága független attól, hogy \mathbb{R}^n illetve \mathbb{R}^m -ben melyik metrikát választjuk.

90. Definíció. Az $f \in \mathbb{R}^n \to \mathbb{R}^m$ az $a \in \mathcal{D}_f$ -ben folytonos, ha $f \in (\mathbb{R}^n, \rho^{(1)}) \to (\mathbb{R}^m, \rho^{(2)})$ függvény folytonos $a \in D_f$ -ben, ahol $\rho^{(1)}$ az \mathbb{R}^n -beli, $\rho^{(2)}$ az \mathbb{R}^m -beli metrikák valamelyike.

114. Tétel. $f = (f_1, ..., f_m) \in \mathbb{R}^n \to \mathbb{R}^m$; $a \in \mathcal{D}_f \subset \mathbb{R}^n$. Ekkor $f \in \mathbb{C}\{a\} \Leftrightarrow i = 1, 2, ..., m$ esetén $f_i \in \mathbb{C}\{a\}$.

6.11 Műveletek folytonos $\mathbb{R}^n \to \mathbb{R}^m$ függvények körében

115. Tétel.
$$g, f \in \mathbb{R}^n \to \mathbb{R}^m$$
 ; $a \in \mathcal{D}_f \cap \mathcal{D}_g$; $f, g \in \mathcal{C}\{a\}$. Ekkor $f + g \in \mathcal{C}\{a\}$, $\forall \lambda \in \mathbb{R} : \lambda f \in \mathcal{C}\{a\}$.

116. Tétel.
$$g, f \in \mathbb{R}^n \to \mathbb{R}$$
 ; $a \in \mathcal{D}_f \cap \mathcal{D}_g$; $f, g \in \mathbb{C}\{a\}$. Ekkor $f \cdot g \in \mathbb{C}\{a\}$, $g(a) \neq 0 : \frac{f}{g} \in \mathbb{C}\{a\}$.

6.12 Bolzano féle fixponttétel

$$(\mathcal{M}, \rho^{(1)})$$
 ; $(\mathcal{M}, \rho^{(2)})$; $f: \mathcal{M}_1 \to \mathcal{M}_2$

91. **Definíció.**
$$f: \mathcal{M}_1 \to \mathcal{M}_2$$
 kontrakció, ha $\exists \alpha \in [0,1): \forall x,y \in \mathcal{M}_1: \rho^{(2)}(f(x),f(y)) \leq \alpha \cdot \rho^{(1)}(x,y).$

92. Definíció. $f \in \mathcal{M} \to \mathcal{M}$, $a \in \mathcal{M}$ az f fixpontja, ha f(a) = a.

- 117. Tétel. Tegyük fel, hogy (\mathcal{M}, ρ) teljes metrikus tér, és az $f : \mathcal{M} \to \mathcal{M}$ függvény kontrakció. Ekkor
- a) $\exists !x^* \in \mathcal{M} : f(x^*) = x^*,$ b) $x_0 \in \mathcal{M}, \ x_{n+1} = f(x_n) \ n \in \mathbb{N} \ iterációs \ sorozat \ konvergens, \ és \ lim(x_n) = x^*.$ c) Hibabecslés: $\rho(x_n, x^*) \leq \frac{\alpha^n}{1 \alpha} \cdot \rho(x_0, x_1) \quad (n \in \mathbb{N}).$

$\mathbb{R} \to \mathbb{R}$ típusú függvények differenciálhatósága

93. Definíció. $f \in \mathbb{R} \to \mathbb{R}$; $a \in \text{int} \mathcal{D}_f$. Ekkor azt mondjuk, hogy az

f deriválható vagy differenciálható az a pontban $(f \in D\{a\})$, ha $\exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ és véges. Jelölés: f'(a) a függvény pontbeli deriváltja.

Megj.: $\frac{f(x) - f(a)}{x - a}$ a szelő meredeksége

118. Tétel.

$$f \in D\{a\} \Leftrightarrow \exists A \in \mathbb{R} \text{ \'es } \exists \varepsilon : \mathcal{D}_f \to \mathbb{R}, \lim_a \varepsilon = 0 : f(x) - f(a) = A(x-a) + \varepsilon(x)(x-a) \quad x \in \mathcal{D}_f$$

94. Definíció. $f \in D\{a\}$. Az f függvény grafikonjának az (a, f(a)) pontbeli érintője az y - f(a) = f'(a)(x - a) egyenes.

1. Ha
$$f \in D\{a\} \Rightarrow f \in C\{a\}$$
.
2. $\not \models$

120. Tétel. (Hatványsor deriválása) $x_0 \in \mathbb{R}$; $(a_n) : \mathbb{N} \to \mathbb{R}$ együttható sorozat, a $\sum a_n(x-x_0)^n$ hatványsor konvergenciasugara (R) pozitív (R > 0),

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in K_R(x_0)).$$

Ekkor
$$\forall \alpha \in K_R(x_0)$$
 esetén $f \in D\{a\}$ és $f'(\alpha) = \sum_{n=1}^{\infty} n \cdot a_n (\alpha - x_0)^{n-1}$.

121. Tétel. (Műveleti tételek) Legyen $f, g \in D\{a\}$. Ekkor

i.
$$f + g \in D\{a\}$$
 és $(f + g)'(a) = f'(a) + g'(a)$,

ii.
$$f \cdot g \in D\{a\}$$
 és $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$

122. Tétel. (összetett függvény deriválása)

$$Ha \ f \in D\{a\}$$
 ; $g \in D\{f(a)\}$ \Rightarrow $g \circ f \in D\{a\}$ és $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$.

123. Tétel. (inverz függvény deriválása)

$$f \in (a,b) \to \mathbb{R} \; ; \; \uparrow \; ; \; f \in \mathcal{C} \; ; \; f \in \mathcal{D}(\xi) \; ; \; \xi \in (a,b) \; ; \; f'(\xi) \neq 0 \; ; \; \eta = f(\xi) \Rightarrow \\ \Rightarrow f^{-1} \in \mathcal{D}\{\eta\} \; és \; (f^{-1})'(\eta) = \frac{1}{f'(\xi)} = \frac{1}{f'(f^{-1}(\eta))} \; ahol \; \xi = f^{-1}(f(\xi)) = f^{-1}(\eta).$$

124. Tétel.

$$\log_a'(x) = \frac{1}{\ln(a) \cdot \exp_a(\log_a(x))} = \frac{1}{x \cdot \ln(a)} \quad (x \in \mathbb{R})$$

$$a = e \text{ eset\'en } \ln'(x) = \frac{1}{x} \quad (x \in \mathbb{R}) \text{ mivel } \ln(e) = 1.$$

125. Tétel. x^n ; x>0 ; $n\in\mathbb{R}$ hatványfüggvényre: $(x^n)'=n\cdot x^{n-1}$

126. Tétel. $\forall x \in \mathbb{R}$ esetén exp, sin, cos, sh, ch függvények differenciálhatók, és

$$\exp'(x) = \exp(x)$$

$$\sin'(x) = \cos(x)$$

$$\cos'(x) = -\sin(x)$$

$$\operatorname{sh}'(x) = \operatorname{ch}(x)$$

$$\operatorname{ch}'(x) = \operatorname{sh}(x)$$

127. Tétel.
$$\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - (\sin(\arcsin(x)))^2}} = \frac{1}{\sqrt{1 - x^2}}$$

$$\arcsin'(x) = -\arccos'(x) \Rightarrow \arccos'(x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\arctan'(x) = \frac{1}{\operatorname{tg}'(\arctan'(x))} = \frac{1}{1 + \operatorname{tg}^2(\arctan'(x))} = \frac{1}{1 + x^2}$$

$$\arctan'(x) = -\arctan'(x) \Rightarrow \arctan'(x) = -\frac{1}{1 + x^2}$$

$$\begin{array}{lll} \textbf{96. Definíció.} \\ \exists \operatorname{sh}^{-1} & = \operatorname{arsh} & \uparrow & \in \operatorname{C} \\ \exists \operatorname{ch} \Big|_{[0, +\infty)}^{-1} & = \operatorname{arch} & \uparrow & \in \operatorname{C} \\ \exists \operatorname{th}^{-1} & = \operatorname{arch} & \uparrow & \in \operatorname{C} \\ \exists \operatorname{cth}^{-1} & = \operatorname{arcth} & \uparrow & \in \operatorname{C} \end{array}$$

128. Tétel.

128. Tétel.
$$\operatorname{arsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{arsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{arsh}(x))} = \frac{1}{\sqrt{1 + \operatorname{sh}^2(\operatorname{arsh}(x))}} = \frac{1}{\sqrt{1 + x^2}}$$
$$\operatorname{arch}'(x) = \frac{1}{\operatorname{ch}'(\operatorname{arch}(x))} = \frac{1}{\operatorname{sh}(\operatorname{arch}(x))} = \frac{1}{\sqrt{\operatorname{ch}^2(\operatorname{arch}(x)) - 1}} = \frac{1}{\sqrt{x^2 - 1}}$$
$$\operatorname{arth}'(x) = \frac{1}{1 - x^2} !$$
$$\operatorname{arcth}'(x) = \frac{1}{1 - x^2} !$$

129. Tétel. (Rolle) Legyen $f: \mathbb{R} \to \mathbb{R}$; $f \in \mathbb{C}[a,b]$; $f \in \mathbb{D}(a,b)$; f(a) = f(b). Ekkor $\exists \xi \in (a,b) : f'(\xi) = 0.$

130. Tétel. (Cauchy)

Legyen $f, g : \mathbb{R} \to \mathbb{R}$; $f, g \in C[a, b]$; $f, g \in D(a, b)$; $\forall x \in (a, b) : g'(x) \neq 0$. $Ekkor \exists \xi \in (a, b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

131. Tétel. (Lagrange) Legyen $f : \mathbb{R} \to \mathbb{R}$; $f \in C[a,b]$; $f \in D(a,b)$. $Ekkor \exists \xi \in (a,b) : \frac{f(b)-f(a)}{b-a} = f'(\xi)$.

97. **Definíció.** Az $f:(a,b)\to\mathbb{R}$ Darboux tulajdonságú, ha

 $\forall x_1, x_2 \in (a, b), x_1 < x_2$ esetén az f minden $f(x_1)$ és $f(x_2)$ közötti értéket felvesz, azaz $\forall x_1, x_2 \in (a, b), x_1 < x_2 \land \begin{cases} f(x_1) < f(x_2) \land c \in (f(x_1), f(x_2)) \\ f(x_2) < f(x_1) \land c \in (f(x_2), f(x_1)) \end{cases} \Rightarrow \exists \xi \in (x_1, x_2) : f(\xi) = c(x_1, x_$

132. Tétel. Ha $f:(a,b)\to\mathbb{R}$ folytonos $\Rightarrow f$ Darboux tulajdonságú.

133. Tétel. Darboux-tétele:

Ha az $f:(a,b)\to\mathbb{R}$ deriválható, akkor az f' deriváltfüggvény Darboux tulajdonságú, azaz $\forall x_1, x_2 \in (a,b), x_1 < x_2 \land \begin{array}{l} f'(x_1) < f'(x_2) \land c \in \left(f'(x_1), f'(x_2)\right) \\ f'(x_2) < f'(x_1) \land c \in \left(f'(x_2), f'(x_1)\right) \end{array} \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = c \in \left(f'(x_1), f'(x_2)\right) \Rightarrow \exists \xi \in (a,b) : f'(\xi) = f'(\xi) = f'(\xi)$

7.1 Többször deriválható függvények

98. Definíció.

 $f \in D\{a\} \Leftrightarrow f \in \mathbb{R} \to \mathbb{R}, \ a \in Int\mathcal{D}_f, \ f \ derivalhato \ az \ a-ban \ f \in D(\mathcal{H}) \Leftrightarrow \mathcal{H} \subset \mathbb{R}, \ \forall a \in \mathcal{H} : f \in D\{a\}$

99. Definíció. $f \in \mathcal{H} \to \mathbb{R}$, $f \in D(\mathcal{H})$, $f' \in \mathcal{H} \to \mathbb{R}$, $x \to f'(x)$ az f derivált függvénye, ahol f'(x) az x-beli derivált étéke.

100. Definíció. Legyen $f \in \mathcal{H} \to \mathbb{R}$, $f \in D(\mathcal{H})$. Ha $f' \in D\{a\}$, akkor azt mondjuk, hogy az f függvény kétszer deriválható az a-ban, és (f')'(a) = f''(a) (az f második deriváltja az a-ban.

Ennek megfelelően definiálható a második derivált függvény. s.í.t.

Következmény: $f^{(n+1)}(a) := (f^{(n)})'(a) \quad (n \in \mathbb{N}).$

Jelölések: $f^{I}(a), f^{II}(a), f^{III}(a), f^{IV}(a), f^{(500)}(a), stb.$ $D^{n}\{a\} \quad (n \in \mathbb{N})$ $D^{n}(\mathcal{H}) \quad (n \in \mathbb{N})$

101. **Definíció.** Az $f \in D^{\infty}\{a\}$, az f végtelen sokszor deriválható az a-ban $\Leftrightarrow \forall n \in \mathbb{N} : f \in D^n\{a\}$. Jelölés: $f \in D^{\infty}(\mathcal{H})$.

134. Tétel. $f, g \in D^n(\mathcal{H})$ $(n \in \mathbb{N}, r\ddot{o}gz)$ 1. $\lambda f + \mu g \in D^n(\mathcal{H})$ és $(\lambda f + \mu g)^{(n)} = \lambda f^{(n)} + \mu g^{(n)}$ $(\forall \lambda, \mu \in \mathbb{R})$. 2. $f \cdot g \in D^n(\mathcal{H})$ és $(f \cdot g)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} \cdot g^{(n-k)}$. Leibniz szabály, ahol $g^{(0)} = g$.

7.2 Hatványsor összegfüggvényének a deriválása

135. Tétel. Legyen $\sum_{k=0}^{\infty} \alpha_k (x-a)^k$ hatványsor olyan, ahol $R_{\alpha} := \frac{1}{\overline{\lim} \sqrt[k]{|\alpha_k|}} > 0$ továbbá $f(x) := \sum_{k=0}^{\infty} \alpha_k (x-a)^k \quad (x \in K_{R_{\alpha}}(a), \quad \alpha_k, a \in \mathbb{K}).$ Ekkor $f \in D^{\infty}(K_{R_{\alpha}}(a))$ és

$$f^{(n)}(x) = \sum_{k=n}^{\infty} k(k-1) \cdots (k-n+1) \alpha_k (x-a)^{k-n} \quad (n = 1, 2, 3, \dots \ x \in K_{R_{\alpha}}(a))$$

136. Tétel. Ha az f (adott) függvény egy $\sum_{k=0}^{\infty} \alpha_k (x-a)^k$ hatványsor összegfüggvénye

(ahol az α_k együtthatók ismeretlenek), akkor $\forall k \in \mathbb{N}_0 : \alpha_k = \frac{f^{(k)}(a)}{k!}$

102. Definíció. Legyen $f \in \mathbb{K} \to \mathbb{K}$, elég sokszor deriválható, $a \in \operatorname{Int}\mathcal{D}_f, n \in \mathbb{N}$. Ekkor a $\operatorname{T}_{n,a}(f;x) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$, $(x \in \mathbb{K})$ polinomot az f függvénynek az a ponthoz tartozó n-edrendű Taylorpolinomjának nevezzük.

103. Definíció. Ha $f \in D^{\infty}$.

akkor a $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, $(x \in \mathbb{K})$ az f függvény a-hoz tartozó Taylor sora.

137. Tétel. Taylor-formula: $f \in \mathbb{R} \to \mathbb{R}$; $f \in D^{n+1}(K_r(a))$; $a \in Int \mathcal{D}_f$. Ekkor $\forall x \in K_r(a) \exists \xi \ az \ x \ és \ az \ a \ között$:

$$f(x) - T_{n,a}(f;x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

138. Tétel. Ha $f \in D^{\infty}(K_r(a))$ és (\blacktriangle) $\exists M > 0 \forall n \in \mathbb{N} : \left| f^{(n)}(x) \right| < M \ (x \in K_r(a))$. Ekkor $\sum \frac{f^{(k)}(a)}{k!} (x-a)^k \text{ hatványsor konvergens } K_r(a)\text{-ban és } f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$

Függvényvizsgálat 8

Előzetes vizsgálatok

8.1.1 Paritás vizsgálat

Páros: f(x) = f(-x); Páratlan: f(x) = -f(-x)

8.1.2 Periodicitásvizsgálat

104. Definíció. Az $f:\mathbb{R}\to\mathbb{R}$ függvény periodikus, ha $\exists p\in\mathbb{R}\ \forall x\in\mathbb{R}: f(x+p)=f(x)$, ahol p az f-nek egy periodusa.

Ha p periodusa f -nek $\Rightarrow \forall k \in \mathbb{Z} : k \cdot p$ is periodusa f -nek.

8.1.3 Zérushelyek meghatározása

NO COMMENT

8.2Monotonitásvizsgálat

105. Definíció. Legyen $f:(a,b)\to\mathbb{R}$; $x_0\in(a,b)$.

Ekkor azt mondjuk, hogy az f függvény az x_0 pontban növő [fogyó], ha $\exists K(x_0)$ környezet, melyre $x_1, x_2 \in$

$$\mathbf{K}(x_0), x_1 \leqslant x_0 \leqslant x_2 \text{ eset\'en} \quad \begin{array}{l} f(x_1) \leqslant f(x_0) \leqslant f(x_2) \\ [f(x_1) \geqslant f(x_0) \geqslant f(x_2)] \end{array}$$

Megj.: $f x_0$ -ban növő $\Rightarrow f$ monoton növő!

[minimuma] van, ha $\exists K(x_0)$: 106. Definíció. Az $f: \mathbb{R} \to \mathbb{R}$ -nek az $x_0 \in \operatorname{int} \mathcal{D}_f$ pontjában lokális

$$f\mid_{\mathcal{D}_f\cap \mathrm{K}(x_0)}\text{-nek}\quad \frac{maximuma}{[minimuma]}\text{ az }x_0\text{-ban van}.$$

139. Tétel. Legyen $f:(a,b)\to\mathbb{R}$; $f\in\mathrm{D}(\{x\})$. Ekkor

- szükséges feltétel Ha f az $x_0 \in (a,b)$ -ben $\begin{cases} n \ddot{o} v \delta \\ f o g y \delta \end{cases}$, akkor $\begin{cases} f'(x_0) \geqslant 0 \\ f'(x_0) \leqslant 0 \end{cases}$ elégséges feltétel Ha $\begin{cases} f'(x_0) > 0 \\ f'(x_0) < 0 \end{cases}$, akkor az f $\begin{cases} szig \ n \ddot{o} v \delta \\ szig \end{cases}$ fogyó

8.3 Konvexitásvizsgálat

Az, hogy egy függvény konvex, szemléletes módon azt jelenti, hogy bármely két belső pontjában felvett értékpontja között a függvény képe az ugyanezen pontok által meghatározott húr alatt helyezkedik el. A konvexitás numerikus megközelítése a következő: Legyenek $x_1, x_2 \in \mathcal{D}_f$ pontok. Ekkor az $f(x_1), f(x_2)$ pontok által meghatározott húr valamely $f(x_1)$ és $f(x_2)$ pontjai között elhelyezkedő pontja $\lambda f(x_1)$ + $(1-\lambda)f(x_2)$. Belátható, hogy a húr tképpen egy lineális függvény képe $(l \in \mathbb{R} \to \mathbb{R})$, azaz $(\lambda f(x_1) + (1-\lambda)f(x_2)) \in \mathcal{R}_l$. Ekkor vehetjük ennek a pontnak az ősképét, ami $(\lambda x_1 + (1-\lambda)x_2)$ -vel egyenlő, ahol $\lambda \in [0,1] \subset \mathbb{R}$, $(\lambda x_1 + (1-\lambda)x_2) \in \mathcal{R}_l^{-1} = \mathcal{D}_l \subseteq \mathcal{D}_f$.

107. **Definíció.** $A(\lambda x_1 + (1-\lambda)x_2)$ kifejezést konvex lineális kombinációnak nevezzük, ahol $\lambda \in [0,1]$ és $x_1, x_2 \in \mathbb{R}$.

108. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Azt mondjuk, hogy az f függvény $\frac{konvex}{konkáy}$, ha

$$\forall a < x_1 < x_2 < b \quad \forall \lambda \in [0,1]: f(\lambda x_1 + (1-\lambda)x_2) \underset{\geqslant}{\leqslant} \lambda f(x_1) + (1-\lambda)f(x_2) \ \text{teljes\"{u}l}.$$

140. Tétel.

Legyen $f:(a,b)\to\mathbb{R}$; $f\in D$. Ekkor f konvex $\Leftrightarrow f'$ monoton növő. Legyen $f:(a,b)\to\mathbb{R}$; $f\in\mathbb{D}^2$. Ekkor f konvex $\Leftrightarrow \forall x\in(a,b):f''(x)\geq0$.

109. **Definíció.** $f:(a,b) \to \mathbb{R}$, f előjelet vált az $x_0 \in (a,b)$ -ben, ha $\exists \delta > 0$ $\begin{cases} \forall x: x_0 - \delta < x < x_0: f(x) \leqslant 0 \\ \forall x: x_0 + \delta > x > x_0: f(x) \geqslant 0 \end{cases}$, illetve fordítva.

110. Definíció. Legyen $f:(a,b)\to\mathbb{R}$, $f\in D$. Ekkor az x_0 az f inflexiós pontja, ha $\varphi(x):=f(x)-[f'(x_0)(x-x_0)+f(x_0)]$ $(x\in (a,b))$ függvény előjelet vált az x_0 -ban. Itt az $[f'(x_0)(x-x_0)+f(x_0)]$ kifejezés a függvény értintőjének az egyenlete.

141. Tétel.

Ha $f \in D(a,b)$; f az (a,x_0) -ban konvex; (x_0,b) -ben konkáv \Rightarrow az x_0 inflexiós pont.

8.4 Szélsőértékvizsgálat

111. Definíció. Globális szélsőérték: Legyen $f \in \mathbb{R} \to \mathbb{R}$.

Ekkor az $x_0 \in \mathcal{D}_f$ az f függvénynek globális maximumhelye, ha $\forall x \in \mathcal{D}_f : f(x) \leq f(x_0)$, ahol az x_0 pont az f függvény globális maximuma. A globális minimumot analóg módon adhatjuk meg.

Használható:

- Weierstrass tétele
- lokálisnál használható eredmények.

112. Definíció. Lokális szélsőérték: $f:(a,b) \to \mathbb{R}$.

 $Az \ x_0 \in (a,b)$ az f lokális maximumhelye, ha $\exists \delta > 0 \forall x \in (x_0 - \delta, x_0 + \delta) : f(x) \leq f(x_0)$, és $f(x_0)$ az f egy lokális maximuma.

A lokális minimumot analóg módon adhatjuk meg.

Használható eredmények:

142. Tétel. Elsőrendű szükséges:

Legyen $f:(a,b)\to\mathbb{R}$, $f\in D$. Ekkor ha $x_0\in (a,b)$ lokális szésőértékhely, $\Rightarrow f'(x_0)=0$.

Megj.: Ott lehet szélsőérték, ahol $f'(x_0) = 0$, de nem biztos pl.: $f(x) := x^3 (x \in \mathbb{R})$ ekkor f'(0) = 0 de a 0 **nem** lokális szélsőértékhely.

143. Tétel. Elsőrendű elégséges: Legyen $f:(a,b) \to \mathbb{R}$; $f \in D$. Ekkor ha $x_0 \in (a,b)$; $f'(x_0) = 0$ és $f'(x_0)$ -ban előjelet vált, akkor az x_0 lokális szélsőértékhely.

144. Tétel. Másodrendű elégséges: Legyen $f:(a,b)\to\mathbb{R}$; $f\in D^2$. Ekkor ha x_0 olyan pontja (a,b)-nek, melyre $f'(x_0)=0$ és $f''(x_0)>0$ $[f''(x_0)<0]$ \Rightarrow az x_0 pont lokális minimum [maximum].

145. Tétel. Másodrendű szükséges:

 $Legyen \ f:(a,b) \to \mathbb{R} \ ; \ f \in \mathbf{D}^2 \ ; \ f\text{-nek az } x_0 \in \mathrm{int} \mathcal{D}_f \ pontban \ lokális \ \begin{array}{c} \min \mathrm{imuma} \\ \max \mathrm{imuma} \end{array} \ \mathrm{van}.$

$$Ekkor f'(x_0) = 0 \quad \text{\'es} \quad \begin{array}{l} f''(x_0) > 0 \\ f''(x_0) < 0 \end{array}$$

8.5 Határértékek

A \mathcal{D}_f -nek a \mathcal{D}_f -hez **nem** tartozó torlódási pontjaiban kell a határértékeket vizsgálni.

$$\begin{aligned} \mathbf{146.\ T\acute{e}tel.}\ &(L'Hospital) - \infty \leq a < b < + \infty, \qquad f,g \in \mathcal{D}\left(a,b\right), \qquad \forall x \in (a,b): g'(x) \neq 0, \\ &\lim_{a \neq 0} f = \lim_{a \neq 0} g = 0 \ tov\acute{a}bb\acute{a} \ \exists \lim_{a \neq 0} \frac{f'}{g'} \in \overline{\mathbb{R}}.\ Ekkor \ \exists \lim_{a \neq 0} \frac{f}{g} \ \acute{e}s \lim_{a \neq 0} \frac{f}{g} = \lim_{a \neq 0} \frac{f'}{g'}. \end{aligned}$$

$$\begin{array}{ll} \textbf{147. T\'etel.} \ \ (L'Hospital) - \infty \leq a < b < + \infty, \qquad f,g \in \mathcal{D} \ (a,b) \ , \qquad \forall x \in (a,b) : g'(x) \neq 0, \\ \lim_{a \to 0} f = \lim_{a \to 0} g = + \infty \ \ \text{tov\'abb\'a} \ \exists \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}. \ Ekkor \ \exists \lim_{a \to 0} \frac{f}{g} \ \acute{e}s \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'}. \\ \end{array}$$

8.6 Asszimptoták

113. **Definíció.** Legyen $f:(a,+\infty)\to\mathbb{R}$. Azt mondjuk, hogy az f függvénynek a $+\infty$ -ben van asszimptotája, ha $\exists \ell:\mathbb{R}\to\mathbb{R}$, $\ell(x)=\alpha x+\beta$ elsőfokú függvény, melyre

$$\lim_{\substack{x\to +\infty\\ A-\infty\text{-ben asszimptotákat analóg módon adhatjuk meg.}}} (f(x)-\ell(x)) = 0, \text{ ahol } \alpha = \lim_{\substack{x\to +\infty\\ x\to +\infty}} \frac{f(x)}{x} \text{ és } \beta = \lim_{\substack{x\to +\infty\\ x\to +\infty}} (f(x)-\alpha x) \ .$$

9 $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvények differenciálhatósága I.

(metrikus terek, lineáris terek, normált terek, Banach-tér, Euklideszi terek, Hilbert-tér)

9.1 Metrikus terek

O.K.

9.2 Lineáris terek (lsd.: linalg)

- 1.) $(\mathcal{X}, +, \lambda, \mathbb{K})$ lineáris tér vagy vektortér. $(\lambda \in \mathbb{K})$
- 2.) lineáris függőség, függetlenség
- 3.) alterek:
- 114. Definíció. $A \mathcal{H} \subset \mathcal{X}$ halmaz lineáris burka: $\bigcap_{\substack{\mathcal{H} \subset \mathcal{X}_0 \\ \mathcal{X}_0 \subset \mathcal{X} \text{ altér}}} \mathcal{X}_0$

Jelölés: $L(\mathcal{H})$.

- 115. Definíció. $\forall \emptyset \neq \mathcal{H} \subset \mathcal{X}$ esetén $L(\mathcal{H})$ altér \mathcal{X} -ben.
- 4.) dimenzió:
- 116. Definíció. Az X lineáris tér véges dimenziós, ha:

$$\exists n \in \mathbb{N} \text{ \'es } \stackrel{\text{lin. független}}{e_1, \dots, e_n} \in \mathcal{X} : L(\{e_1, \dots, e_n\}) = \mathcal{X}$$

Végtelen dimenziós, ha $\forall n \in \mathbb{N} \exists e_1, ..., e_n$ lin független elem.

Példa: $n \in \mathbb{N} : \mathbb{R}^n$ n-dimenziós tér.

Példa: C[a, b] a szokásos műveletekkel lineáris tér.

C[a,b] végtelen dimenziós tér u.i.:

$$\forall n \in \mathbb{N} \quad f_0(x) := 1 \qquad x \in [a,b]$$

$$f_1(x) := x \qquad x \in [a,b]$$

$$\vdots$$

$$f_{n-1}(x) := x^{n-1} \quad x \in [a,b]$$

$$\lim \text{ függetlenek ui.: } \sum_{i=0}^n \alpha_i x^i = 0$$

polinom csak trivi módon 0

Példa: mátrixok $m, n \in \mathbb{N} : \mathbb{R}^{n \times m}$ lineáris tér, $dim = n \cdot m$.

9.3 Normált terek

- 117. Definíció. Az $(\mathcal{X}, || ||)$ normált tér, ha
 - 1. \mathcal{X} lineáris tér \mathbb{R} felett
 - 2. $\| \ \| : \mathcal{X} \to \mathbb{R} \text{ olyan:} \quad \| x \| \geqslant 0 \quad (\forall x \in \mathcal{X}) \text{ \'es } = 0 \Leftrightarrow x = 0 \\ \| \lambda x \| = |\lambda| \cdot \| x \| \quad (\forall x \in \mathcal{X} \forall \lambda \in \mathbb{R}) \\ \| x + y \| \leqslant \| x \| + \| y \| \quad (\forall x, y \in \mathcal{X}) \text{ \triangleegyenl\"otlens\'eg} \\ \| x \| \text{ az } x \text{ elem norm\'aja}; \| \| \text{ normaf\"uggv\'eny}$
- 148. Tétel. $(\mathcal{X}, || ||)$ normált tér. Ekkor

 $\rho(x,y) := \|x-y\|$ $(\forall x,y \in \mathcal{X})$ függvény metrika az \mathcal{X} -en, és ρ a $\|\cdot\|$ által indukált metrika.

Megj.: Minden norma indukál egy metrikát.

Minden normált tér egyúttal metrikus tér is.

118. Definíció. $(\mathcal{X}, \|\ \|)$ normált tér; $(x_n): \mathbb{N} \to \mathcal{X}$ sorozat $\|\ \|$ -ban konvergens,ha

$$\exists \xi \in \mathcal{X} : \lim_{\substack{n \to \infty \\ n \neq \infty}} (\|x_n - \xi\|) = 0 \text{ azaz } x_n \xrightarrow{\|\cdot\|} \xi \quad (n \longrightarrow \infty)$$
$$\rho(x_n, \xi) = \|x_n - \xi\|$$

 (x_n) konvergens az (\mathcal{X}, ρ) metrikus térben $\Leftrightarrow x_n \xrightarrow{|| \cdot ||} \xi \quad (n \longrightarrow \infty)$

 $x_n \xrightarrow{\parallel \parallel} \xi \Leftrightarrow H$ a az indukált metrikában konvergens, és ξ a határértéke.

9.3.1 Példák: \mathbb{R}^n tér különböző normákkal $x = (x_1, ..., x_n)$

$$(\mathbb{R}^{n}, \| \|_{1}) \quad \|x\|_{1} \quad := \quad \sum_{i=1}^{n} |x_{i}|$$

$$(\mathbb{R}^{n}, \| \|_{2}) \quad \|x\|_{2} \quad := \quad \sqrt{\sum_{i=1}^{n} |x_{i}|^{2}}$$

$$(\mathbb{R}^{n}, \| \|_{\infty}) \quad \|x\|_{\infty} \quad := \quad \max_{1 \leqslant i \leqslant n} |x_{i}|$$

$$\|x - y\|_{1} \quad := \quad \sum_{i=1}^{n} |x_{i} - y_{i}| \quad = \rho_{1}(x, y)$$

$$\|x - y\|_{2} \quad := \quad \sqrt{\sum_{i=1}^{n} |x_{i} - y_{i}|^{2}} \quad = \rho_{2}(x, y)$$

$$\|x - y\|_{\infty} \quad := \quad \max_{1 \leqslant i \leqslant n} |x_{i} - y_{i}| \quad = \rho_{\infty}(x, y)$$

149. Tétel. $(\mathbb{R}^n, || \cdot ||_i)$ $i = 1, 2, \infty$ normált terek.

150. Tétel.
$$1 < n \in \mathbb{N}$$
; $1 \le p < +\infty(\mathbb{R}^n, ||\ ||_p) ||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^2}$ is normált terek.

Példák: C[a,b] tér különböző normákkal $f \in C[a,b]$

$$\begin{array}{lll} (\mathbf{C}[a,b], \| \ \|_1) & \| f \|_1 & \coloneqq & \int_a^b |f| \\ (\mathbf{C}[a,b], \| \ \|_2) & \| f \|_2 & \coloneqq & \sqrt{\int_a^b |f|^2} \\ (\mathbf{C}[a,b], \| \ \|_\infty) & \| f \|_\infty & \coloneqq & \max_{x \in [a,b]} |f(x)| \\ \mathbf{v}\ddot{\mathbf{c}} \colon & \mathbf{C}[a,b] \text{ metrikáiya} \end{array}$$

vö: C[a,b] metrikáival.

151. Tétel.
$$(C[a,b], || \cdot ||_i)$$
 $i=1,2,\infty$ normált tér, sőt $\forall 1 \leqslant p < +\infty : ||f||_p := \sqrt[p]{\int_a^b |f|^p}$ $f \in C[a,b]$ esetén $(C[a,b], || \cdot ||_p)$ normált tér.

Banach terek 9.4

119. Definíció. Ha az $(\mathcal{X}, || ||)$ normált tér a norma által indukált metrikával <u>teljes</u> metrikus tér, akkor az $(\mathcal{X}, || ||)$ -t Banach térnek nevezzük.

Példák:
$$1\leqslant n\in\mathbb{N}$$
 $1\leqslant p\leqslant +\infty$: $(\mathbb{R}^n,\|\ \|_p)$ Banach terek.
$$(C[a,b],\|\ \|_\infty)$$
 Banach tér.
$$(C[a,b],\|\ \|_1)$$
 nem Banach tér
$$(C[a,b],\|\ \|_2)$$
 nem Banach tér sőt $1\leqslant p<+\infty$:
$$(C[a,b],\|\ \|_p)$$
 nem Banach terek, azaz $\exists f$ olyan, hogy f Cauchy-sor, de f nem konvergens.
$$\mathrm{pl.:}\ \frac{1}{n^2}\ (C[a,b],\|\ \|_1)\ \|f\|_1\ \mathrm{túl\ kicsi.}$$

9.5 Euklideszi terek

Minta: \mathbb{R}^2 sík, \mathbb{R}^3 tér + skaláris szorzat.

- 120. Definíció. Az (X, <>) (valós) euklideszi tér, ha
- 1. \mathcal{X} lineáris tér \mathbb{R} felett,

2.
$$\langle \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$
 amelyre $\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in \mathcal{X}$
 $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \forall x, y \in \mathcal{X} \quad \forall \lambda \in \mathbb{R}$
 $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle \quad \forall x_1, x_2, y \in \mathcal{X}$
 $\langle x, x \rangle \geqslant 0 \text{ \'es } = 0 \Leftrightarrow x = \mathbf{0}$

 $\text{Megj.: } \mathbb{R}^2$ -beli skaláris szorzat rendelkezik a fenti tulajdonságokkal.

152. Tétel. $(\mathcal{X}, <>)$ e.t. Ekkor $||x|| := \sqrt{< x, x>} (x \in \mathcal{X})$ fÿggvény norma az \mathcal{X} -en $||\cdot||$ a skaláris szorzat által indukált norma.

153. Tétel. Cauchy-Bunyakovszkij egyenlőtlenség: Ha $(\mathcal{X}, <>)$ e.t. és $\| \ \|$ az indukált norma, akkor $|Mx, y>| \leq \|x\| \cdot \|y\| \quad \forall x, y \in \mathcal{X}$.

Megj.: minden euklideszi tér egyben mormált tér is.

9.5.1 Vektorok szöge

154. Tétel.
$$(\mathcal{X}, <>)$$
 euklideszi tér. Ekkor $\forall x, y \in \mathcal{X} \setminus \{\mathbf{0}\} \exists ! 0 < \varphi \leqslant \pi : \cos \varphi = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$

- 121. Definíció. A fenti φ az x és az y szöge.
- 122. Definíció. $(\mathcal{X}, <>)$ euklideszi tér.

Ekkor az x és az y ($\in \mathcal{X}$) merőlegesek (ortogonálisak), ha < x, y >= 0. Jelölés: $x \perp y$.

1. Példa:
$$n \in \mathbb{N}$$
 ; $(\mathbb{R}^n, <>)$; $< x, y> := \sum_{i=1}^n x_i y_i$ $(x, y \in \mathbb{R}^n)$ euklideszi tér (trivi 1,2,3,4)
Az indukált norma: $||x|| = \sqrt{< x, x>} = \sqrt{\sum_{i=1}^n |x_i|^2}$ $(= \rho_2)$ vö: síkbeli vektorok skaláris szorzata.

2. Példa:
$$(C[a,b], <>)$$
 ; $< f,g>:=\int_a^b fg$; $f,g\in C[a,b]$ euklideszi tér.

Az indukált norma:
$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f^2} \ (= \rho_2)$$

9.6 Hilbert terek

123. Definíció. Az $(\mathcal{X}, <>)$ euklideszi teret Hilbert térnek nevezzük, ha a skaláris szorzat által indukált normával teljes normált teret kapunk.

Példák:
$$n \in \mathbb{N}$$
 ; $(\mathbb{R}^n, <>)$ Hilbert tér $(\mathbb{C}[a, b], <>)$ nem Hibert tér

Összefoglalva halmazos ábrázolással:

Megj.:

- Valódi tartalmazások.
- 2. \mathbb{R}^2 sík, \mathbb{R}^3 tér \longrightarrow Hilbert terek kapcsolódnak legjobban a vektoraik tulajdonságaihoz.
- 3. Funkcionál-analízis foglalkozik ezekkel.
- Probléma: adott (X, || ||) normált térhez van-e olyan skaláris szorzat, ami az adott normát indukálja?
 Nem minden normához lehet ilyet találni.
- **155. Tétel.** $(\mathcal{X}, || ||)$ valós normált tér. Ekkor $\exists a || ||$ -t indukáló skaláris szorzat \Leftrightarrow $(\blacktriangle) ||x-y||^2 + ||x+y||^2 = 2 \cdot (||x||^2 + ||y||^2)$ paralelogramma szabály.

$$\begin{split} & \text{Megj.: } a,b \text{ befog\'ok; } e,f \text{ átfog\'ok: } \underline{e}^2 + f^2 = 2(a^2 + b^2) \\ & \text{Megj.: } (\mathbb{R}^n, \|\ \|_p) \ ; \ \|\ \|_p = \sqrt[p]{\sum_{i=1}^n x_i^p}. \quad \text{A } (\blacktriangle) \text{ teljes\"ul} \Leftrightarrow p = 2 \end{split}$$

9.7Differenciálszámítás $(\mathbb{R}^n \to \mathbb{R}^m)$

Megj.: normált terekben megcsinálható.

Eml.:

$$F \in \mathbb{R} \to \mathbb{R} \quad ; \quad a \in \mathrm{int} \mathcal{D}_f \quad ; \quad f \in \mathrm{D}\{a\} \Leftrightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \Leftrightarrow \\ \Leftrightarrow \exists A \in \mathbb{R} \exists \varepsilon : \mathbb{R} \to \mathbb{R}, \lim_{a} \varepsilon = 0 : (\blacktriangle) f(a+h) - f(a) = A \cdot h + \varepsilon(h) \cdot h \\ \text{ahol } A \cdot h \text{ line\'aris f\"{u}gg\'{e}nnyel j\'{o}l helyettes\'{t}het\~{o}}.$$

$$\frac{f(a+h) - f(a)}{h} \longrightarrow A \quad (h \longrightarrow 0)$$

$$\frac{|f(a+h) - f(a) - A \cdot h|}{|h|} \longrightarrow 0 \quad (h \longrightarrow 0)$$

9.7.1 \mathbb{R}^n -beli normák

156. Tétel. $n \in \mathbb{N} : \mathbb{R}^n$ -ben bármelyik két norma ekvivalens, azaz $\| \|_1, \| \|_2 \text{ normák } \mathbb{R}^{n}$ -ben: $\forall x \in \mathbb{R}^{n} \exists m, M > 0 : m \cdot \|x\|_1 \leqslant \|x\|_2 \leqslant M \cdot \|x\|_1$

9.7.2 $\mathbb{R}^n \to \mathbb{R}^m$ lineáris leképezései (lsd linalg)

124. Definíció. L:
$$\mathbb{R}^n \to \mathbb{R}^m$$
 L $(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$ $\forall x, y \in \mathbb{R}^n$; $\alpha, \beta \in \mathbb{R}$

 $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ lineáris leképezések halmaza (lin. tér) $m \times n$ -es mátrixok halmaza (lin. tér)

Ekkor $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \cong \mathbb{R}^{m \times n}$ azaz $\exists L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \exists A \in \mathbb{R}^{m \times n} : L(x) = A(x)$ és fordítva. Megj.: n = m = 1; L: $\mathbb{R} \to \mathbb{R}$ lin. $\Leftrightarrow \forall x \in \mathbb{R} \exists A \in \mathbb{R} : L(x) = A(x)$

125. Definíció. $m, n \in \mathbb{N} \; ; \; f : \mathbb{R}^n \to \mathbb{R}^m \; ; \; a \in \text{int} \mathcal{D}_f$. Ekkor az f differenciálható az 'a' pontban $(f \in D\{a\})$, ha

Ekkor az f dinerenciamato az a pontban
$$(f \in D\{a\})$$
, na $\exists L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) : \lim_{h \to 0 \in \mathbb{R}^n} \frac{\|f(a+h) - f(a) - L(h)\|_1}{\|h\|_2} = 0$ ahol $\|\cdot\|_1 \mathbb{R}^m$ -beli , $\|\cdot\|_2 \mathbb{R}^n$ -beli norma. Az $f'(a)$ pontbeli deriváltja $f'(a) = L$

157. Tétel. Ha $\exists L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, akkor az egyértelműen meghatározott.

158. Tétel. A deriválhatóság ténye, és a derivált független attól, hogy \mathbb{R}^n -ben, illetve \mathbb{R}^m -ben melyik normát választjuk.

9.8Ekvivalens átfogalmazások

159. Tétel.
$$f \in D\{a\} \Leftrightarrow \exists A \in \mathbb{R}^{m \times n} : \lim_{h \to 0} \frac{\|f(a+h) - f(a) - Ah\|_1}{\|h\|_2} = 0$$

160. Tétel. $f \in D\{a\} \Leftrightarrow \exists A \in \mathbb{R}^{m \times n} \exists \varepsilon : \mathbb{R}^n \to \mathbb{R}^m$ függvény, melyre $\lim_{n \to \infty} \varepsilon = 0$. Ekkor f(a+h) - f(a) = 0 $Ah + \varepsilon(h) \cdot ||h||_2 \ (\forall h \in \mathbb{R}^n; \ a+h \in \mathcal{D}_f)$

Példák: 1. $c \in \mathbb{R}^m$; f(x) := c konstans függvény $(x \in \mathbb{R}^n)$. Ekkor $\forall a \in \text{int} \mathcal{D}_f (= \mathbb{R}^n) : f'(a) = \mathbf{0} \in \mathbb{R}^{n \times m} \text{ nullmátrix}.$

161. Tétel. $f: \mathbb{R}^n \to \mathbb{R}^m$. Ekkor $f \in D\{a\} \stackrel{\not\Leftarrow}{\Rightarrow} f \in C\{a\}$.

162. Tétel. $f: \mathbb{R}^n \to \mathbb{R}^m$ (vagyis $f = (f_1, ..., f_m)$); ahol $\forall i = 1...m: f_i \in \mathbb{R}^n \to \mathbb{R}$. Ekkor $f \in D\{a\} \Leftrightarrow \forall i = 1...m : f_i \in D\{a\} \text{ \'es } f'(a) = (f'_1(a), ..., f'_m(a)) \in \mathbb{R}^{m \times n}.$

Műveletek és a derivált kapcsolata

163. Tétel.
$$f, g \in \mathbb{R}^n \to \mathbb{R}^m$$
; $a \in (\operatorname{int}\mathcal{D}_f \cap \operatorname{int}\mathcal{D}_g)$; $f, g \in D\{a\}$. Ekkor $(f+g) \in D\{a\}$ és $(f+g)'(a) = f'(a) + g'(a)$ $\forall \lambda \in \mathbb{R} : \lambda f \in D\{a\}$ és $(\lambda f)'(a) = \lambda \cdot f'(a)$.

164. Tétel. $f \in \mathbb{R}^n \to \mathbb{R}^m$; $a \in \operatorname{int} \mathcal{D}_f$; $f \in D\{a\}$; $g \in \mathbb{R}^m \to \mathbb{R}^r$; $\mathcal{R}_f \subset \mathcal{D}_g$; $g \in D\{f(a)\}$. $Ekkor \ (g \circ f) \in \mathbb{R}^n \to \mathbb{R}^r; \ (g \circ f) \in \mathrm{D}\{a\} \ \text{ \'es } (g \circ f)'(a) = g'(f(a)) \cdot f'(a).$

Megj.:
$$f'(a) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \Rightarrow A \in \mathbb{R}^{m \times n}$$
$$g'(f(a)) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^r) \Rightarrow B \in \mathbb{R}^{r \times m}$$
$$(g \circ f)'(a) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^r) \Rightarrow C \in \mathbb{R}^{r \times n}$$
$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$
$${}_{r}[{}_{n}] = {}_{r}[{}_{m}] \cdot {}_{m}[{}_{n}]$$

126. Definíció. Parciális derivált (deriváltmátrix előállításához)

P1.:
$$\mathbb{R}^2 \to \mathbb{R}^1$$
; $a = (a_1, a_2)$; $f(x_1, x_2)$
 $x_1 \to (f(x_1, a_2))'_{x_1 = a_1} \stackrel{\text{def}}{=} \partial_1 f(a) = \frac{\partial f}{\partial x_1} \cdot (a_1, a_2)$
Az első változó szerinti parciális derivált

Az első változó szerinti parciális derivált
$$x_2 \to (f(a_1, x_2))'_{x_2=a_2} \stackrel{\text{def}}{=} \partial_2 f(a) = \frac{\partial f}{\partial x_2} \cdot (a_1, a_2)$$

Az második változó szerinti parciális derivált

127. Definíció. $f \in \mathbb{R}^n \to \mathbb{R}^m$; $a \in \text{int}\mathcal{D}_f$; $e_1, ..., e_n$ az \mathbb{R}^n -beli kanonikus bázis. Ekkor azt mondjuk, hogy \exists az f-nek az i-edik változó szerinti parciális deriváltja az $a \in \text{int}\mathcal{D}_f$ pontban, ha $F: t \to 0$

 $\underbrace{f(a+t\cdot e_i)}_{\in\,\mathbb{R}^n} \, deriv\'{a}lhat\'{o} \,\, a \,\, 0 \in \mathbb{R} \,\, pontban.$

 $Jel\"{o}l\acute{e}s: \partial_i f(a) := F'(0).$

Megj.:
$$f: \mathbb{R}^n \to \mathbb{R} \; ; \; f(x_1, ..., x_n)$$
$$\partial_1 f(a) = \frac{\partial f}{\partial x_1}(a) \; ; \; \cdots \; ; \; \partial_i f(a) = \frac{\partial f}{\partial x_i}(a) \; ; \; \cdots \; ; \; \partial_n f(a) = \frac{\partial f}{\partial x_n}(a)$$

165. Tétel.
$$f \in \mathbb{R}^n \to \mathbb{R}^m$$
 ; $a \in \text{int}\mathcal{D}_f$; $f = [f_1, ..., f_m]^{-1}$; $f_i : \mathbb{R}^n \to \mathbb{R}$.
 $Ha \ f \in D\{a\} \ akkor \ f'(a) = \begin{bmatrix} \partial_1 f_1(a) & \cdots & \partial_n f_1(a) \\ \vdots & \ddots & \vdots \\ \partial_1 f_m(a) & \cdots & \partial_n f_m(a) \end{bmatrix} \in \mathbb{R}^{m \times n}$

128. Definíció. Spec. eset: gradiens vektor (fizikai elnevezés)

$$m=1$$
; $n \in \mathbb{N}$; $f: \mathbb{R}^n \to \mathbb{R}$; $f \in D\{a\}$; $a \in \operatorname{int} \mathcal{D}_f$.
 $Ekkor \mathbb{R}^{1 \times n} \ni f'(a) = [\partial_1 f(a), ..., \partial_n f(a)] =: \operatorname{grad} f(a)$ az f gradiense az a -ban.

166. Tétel.
$$f \in \mathbb{R}^n \to \mathbb{R}^m$$
 ahol $f := \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix}$; $f_i \in \mathbb{R}^n \to \mathbb{R}$. Ekkor $f \in \mathrm{D}\{a\} \Leftrightarrow \forall i = 1..m : f_i \in \mathrm{D}\{a\}$

167. Tétel.
$$f \in \mathbb{R}^n \to \mathbb{R}$$
. Ekkor $f \in D\{a\} \stackrel{\not=}{\Rightarrow} \forall i = 1..n \exists \partial_i f(a)$

168. Tétel. Elégséges feltétel a deriválhatóságra:

```
\begin{cases}
f \in \mathbb{R}^n \to \mathbb{R} & ; a \in \text{int} \mathcal{D}_f \\
\forall i = 1..n : \exists \partial_i f(x) & (\forall x \in K_r(a)) ; \\
\forall i = 1..n : \partial_i f : K_r(a) \ni x \to \partial_i f(x) ; \\
\forall i = 1..n : \partial_i f \in C\{a\}
\end{cases}
\Rightarrow f \in D\{a\}
```

9.10 Iránymenti deriváltak

129. Definíció. $f: \mathbb{R}^n \to \mathbb{R}^m$; $a \in \mathbb{R}^n$ ahol $f: K_r(a) \to \mathbb{R}^m$; $e \in \mathbb{R}^n$ egységvektor ($||e||_2 = 1$). Azt mondjuk, hogy az f függvénynek az a-ban \exists az e iránymentén vett deriváltja, ha $F: (-r, +r) \ni t \to f(a+t\cdot e) \in \mathbb{R}^m$ differenciálható a 0-ban.

Az $F'(0) \in \mathbb{R}^m$ vektor az f függvény a-beli e-mentén vett iránymenti deriváltja $(\partial_e f(a))$.

Megj.: a parciális derivált fogalmának általánosítása.

$$e \to e_i = (\stackrel{1}{0}, ..., 0, \stackrel{i}{1}, 0, ..., \stackrel{n}{0})$$
 így $\partial_e f(a) = \partial_i f(a)$

169. Tétel.
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 ; $d \in D\{a\} \stackrel{\not=}{\Rightarrow} \forall e \in \mathbb{R}^n$ irányban $\exists \partial_e f(a)$ és $\partial_e f(a) = f'(a) \cdot e \in \mathbb{R}^m \in \mathbb{R}^m \in \mathbb{R}^m$

Spec. eset:
$$m=1$$
; $f:\mathbb{R}^n\to\mathbb{R}$; $e\in\mathbb{R}^n(\operatorname{azaz}\|e\|_2=1)$. Ekkor $\partial_e f(a)=< f'(a), e>\operatorname{azaz}<\operatorname{grad} f(a), e>$ ahol $\operatorname{grad} f(a)=(\partial_1 f(a),...,\partial_n f(a))$.

Megj.: pontbeli deriválhatóság (totális deriválhatóság) jel:f'(a) parciális deriválhatóság iránymenti deriválhatóság

10 $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvények differenciálhatósága II.

10.1 Középértéktételek: csak Lagrange féle középértéktétel

Eml.: $f:[a,b]\to\mathbb{R}$; $f\in\mathrm{C}[a,b]$; $f\in\mathrm{D}(a,b)$ \Rightarrow $\exists\xi\in(a,b):f(b)-f(a)=f'(\xi)\cdot(b-a)$ Megj.: a szelő meredeksége.

170. Tétel. $\mathcal{U} \subset \mathbb{R}^n$ nyílt ; $[a,a+h] := \{a+t\cdot h \in \mathbb{R}^n | 0 \leqslant t \leqslant 1\} \subset \mathcal{U}$ azaz bármely két pontját összekötő szakasz benne van \mathcal{U} -ban ; $\varphi: \mathcal{U} \to \mathbb{R}$ diffható az \mathcal{U} minden pontjában. $Ekkor \exists \nu \in (0,1): \varphi(a+h) - \varphi(a) = \varphi'(a+\nu \cdot h) \cdot \underset{vektor}{h} = < \operatorname{grad} \varphi(a+\nu \cdot h), h >$

171. Tétel. $f: \mathcal{U} \to \mathbb{R}^m \quad (m > 1)$ diffható az \mathcal{U} minden pontjában. Ekkor $\|f(a+h) - f(a)\| \leqslant \left(\sup_{\nu \in (0,1)} \|f'(a+\nu \cdot h)\|_{\infty} \right) \cdot \|h\|_{\infty} \quad (\blacktriangle)$

10.2 Többször deriválható függvények

130. **Definíció.** $\varphi : \mathbb{R}^n \to \mathbb{R}$; $a \in \text{int}\mathcal{D}_{\varphi}$.

Ekkor azt mondjuk, hogy a φ kétszer deriválható az a-ban ($\varphi \in D^2\{a\}$), ha

- $\exists K_r(a) \subset \mathcal{D}_{\varphi} : \varphi \in D(K_r(a))$ és
- $\varphi': K_r(a) \to \mathbb{R}^n$; $x \to \varphi'(x)$ függvény deriválható az a-ban.

Megj.: $\varphi' = (\partial_1 \varphi, ..., \partial_n \varphi)$ ezért $\varphi \in \mathcal{D}\{a\} \Leftrightarrow \forall i = 1..n : \partial_i \varphi \in \mathcal{D}\{a\}$

Megj.: $\partial_i \varphi \in D\{a\} \Rightarrow \forall \partial_j (\partial_i \varphi)(a) \quad j = 1..n$ vegyes parciális deriváltak bármely változó szerint

131. Definíció. $\varphi: \mathbb{R}^n \to \mathbb{R}$; $a \in \text{int} \mathcal{D}_{\varphi}$.

Ekkor azt mondjuk, hogy a φ s-szer differenciálható az a-ban $(\varphi \in D^s\{a\})$, ha

- $\exists K_r(a) \subset \mathcal{D}\varphi : \varphi \ (s-1)$ -szer differenciálható (ronda a függvénykép)
- $\partial_{i_1}\partial_{i_2}\cdots\partial_{i_{s-1}}\varphi$ Vegyes parciális deriváltak az a-ban léteznek. $\underset{az \text{ összes lehetséges módon}}{\underset{i\leqslant i_1,i_2,\ldots,i_{s-1}\leqslant n}{\underset{i\leqslant i_1,i_2,\ldots,i_s}{\underset{i\leqslant i_1,i_2,\ldots,i_s}{\underset{i\leqslant$

132. Definíció.
$$f:\mathbb{R}^n o \mathbb{R}^m \ (m>1) \ ; \ f=\left[egin{array}{c} f_1 \ dots \ f_m \end{array}
ight].$$

Ekkor $f \in D^s\{a\} \Leftrightarrow \forall i = 1..m : f_i \in D^s\{a\}$

Probléma: $\partial_j(\partial_i\varphi) \stackrel{?}{=} \partial_i(\partial_j\varphi)$

172. Tétel. Young: $\varphi : \mathbb{R}^n \to \mathbb{R}$; $a \in \text{int} \mathcal{D}_f$. $Ha \varphi \in D^2\{a\} \Rightarrow \forall i = 1..n : \partial_i(\partial_i \varphi)(a) = \partial_i(\partial_i \varphi)(a)$

Megj.: $\varphi \in D^2\{a\}$ nem hagyható el, ugyanis $\exists \varphi$ melyre $\exists \partial_i(\partial_i\varphi)(a)$ és $\exists \partial_i(\partial_i\varphi)(a)$ de nem esnek egybe.

Köv.: $\varphi \in \mathbb{R}^n \to \mathbb{R}$; $s \in \mathbb{N}$ rögz. Ekkor ha $\varphi \in D^s\{a\} \Rightarrow \forall 1 \leqslant i_1, i_2, ..., i_s \leqslant n : \partial_{i_1}\partial_{i_2} \cdots \partial_{i_s}\varphi(a) = \partial_{\sigma_1}\partial_{\sigma_2} \cdots \partial_{\sigma_s}\varphi(a)$ ahol $\sigma_1, \sigma_2, ..., \sigma_s$ az $i_1, i_2, ..., i_s$ egy tetszőleges permutációja.

10.3 Taylor-formula - bevezetés az általánosításhoz

$$f: \mathbb{R} \to \mathbb{R} \; ; \; m \in \mathbb{N} \; ; \; f \in \mathcal{D}^{m+1}\{\mathcal{K}_r(a)\} \; ; \; h \in \mathbb{R} \; ; \; a+h \in \mathcal{K}_r(a). \; \text{Ekkor}$$

$$\exists v \in (0,1): f(a+h) = f(a) + \sum_{\substack{k=1 \\ \text{m-edrendű Taylor-polinom}}}^m \frac{f^{(k)}(a)}{k!} h^k + \frac{f^{(m+1)}(a+v \cdot h)}{(m+1)!} h^{m+1}$$

$$\text{Lagrange féle maradéktag}$$

133. Definíció. Multiindexes jelölések

 $n \in \mathbb{N}$; $i = (i_1, ..., i_n) \in \mathbb{N}_0^n$ $(i_k \geqslant 0 \text{ egész})$ multiindex: multiindex rendje: $|i| := i_1 + i_2 + \cdots + i_n$ multifaktoriális: $i! := i_1! \cdot i_2! \cdot \cdot \cdot i_n!$ $x=(x_1,...,x_n)\in\mathbb{R}^n$; i multiindex. Ekkor x hatványai: $x^i:=x_1^{i_1}\cdot x_2^{i_2}\cdot \cdot \cdot x_n^{i_n}$; i multiindex. Ekkor $\partial^i \varphi = \partial_1^{i_1} \partial_2^{i_2} \cdots \partial_n^{i_n} \varphi$ ahol $\partial_i^0 \varphi \stackrel{\text{def}}{=} \varphi$ $\varphi: \mathbb{R}^n \to \mathbb{R}$

134. Definíció. Homogén n-változós m-edfokú polinomok

 $n \in \mathbb{N}$; $m \in \mathbb{N}_0$; $i \in \mathbb{N}_0^n$ multiindex ; |i| = m.

Ekkor $\mathbb{R}^n \ni x \longrightarrow \sum_{|i|=m} a_i x^i \in \mathbb{R}$ polinom, ahol $a_i = a_{i_1,i_2,\dots,i_n}$ adott valós számok.

1. n = 1; $m \in \mathbb{N}_0$; $\mathbb{R} \ni x \to ax^m$ Példák:

- 2. n=2 ; m=1 ; $\mathbb{R}^2\ni (x_1,x_2)\to a_{1,0}^{=a}\cdot x_1^1\cdot x_2^1+a_{0,1}^{=b}\cdot x_1^0\cdot x_1^1\cdot x_2^1=a\cdot x_1+b\cdot x_2$ $i=(i_1,i_2)$ itt (0,1) és (1,0) mivel a rendje 1. 3. n=2 ; m=2 ; $\mathbb{R}^2\ni (x_1,x_2)\to a\cdot x_1^2+bx_1x_2+cx_2^2$ (kvadratikus alak)
- $i = (i_1, i_2)$; |i| = 2 : (2, 0), (1, 1), (0, 2)

173. Tétel. Taylor-formula: $\varphi: \mathcal{U} \to \mathbb{R}$; $\mathcal{U} \subset \mathbb{R}^n$ nyílt; $a \in \mathcal{U}$; $h \in \mathbb{R}^n$;

$$\exists v \in [0,1] : \varphi(a+h) = \varphi(a) + \sum_{k=1}^{m} \left(\sum_{\substack{|i|=k \\ n\text{-v\'altoz\'os } k\text{-adfok\'u}}} \frac{\partial^{i} \varphi(a)}{i!} h^{i} \right) + \sum_{\substack{|i|=m+1 \\ marad\'ektag}} \frac{\partial^{i} \varphi(a+vh)}{i!} h^{i}$$

Inverz függvények 10.4

 $\Omega\subset\mathbb{R}^n$ nyílt ; $f:\Omega\to\mathbb{R}^n$ $(n\in\mathbb{N})$; f folytonosan differenciálható ; $a\in\Omega$; $\det(f'(a))\neq0.$ Ekkor 174. Tétel.

$$\exists \mathcal{U} = \mathrm{K}_r(a) \exists \mathcal{V} = \mathrm{K}_r(f(a)) : f \bigg|_{\mathcal{U}} : \mathcal{U} \to \mathcal{V} \text{ bij. azaz } \exists f^{-1} := f \bigg|_{\mathcal{U}}^{-1} \text{ melyre}$$
$$f^{-1} \in \mathrm{D}(\mathcal{V}) \text{ \'es } (f^{-1})'(x) = \left[f'(f^{-1}(x)) \right]^{-1}$$

 $\operatorname{Megj}: \mathrm{K}_r(f(a)) \; ; \; \det(f'(a)) \neq 0 \; - \; lokális \, tétel!$

Alkalmazás: tekintsük a következő nemlineáris egyenletrendszert:

$$y_1 := f_1(x_1, ..., x_n)$$

$$\vdots$$

$$y_n := f_n(x_1, ..., x_n)$$
inverting even total

inverzfüggvénytételből elégséges feltétel a megoldhatóságra

kell: a, b ; f(a) = b

 $\det(f'(a)) = b \Rightarrow \text{van inverz, ekkor } x_1, ..., x_n \text{ kifejezhető.}$

Implicit függvények

 $f \in \mathbb{R}^2 \to \mathbb{R}$; $\mathcal{H} := \{ (x, y) \in \mathcal{D}_f | f(x, y) = 0 \} \neq \emptyset$? $\mathcal{H} \subset \mathbb{R}^2$ nilyen halmaz? Példa: $f(x,y) := x^2 + y^2 - 1$ (körvonal) $2x + 3y + 4e^{xy} = 0$ $x^3 + y^3 - 3x^2y = 0$

Kérdés: Megadható-e olyan függvény, melynek a \mathcal{H} halmaz a képe? Általában nincs, de megadható olyan részhalmaz, melyre van, azaz megadható $\mathbb{R} \to \mathbb{R}$ alakú függvény.

135. Definíció. $f \in \mathbb{R} \to \mathbb{R}$; $\exists \mathcal{I} \subset \mathbb{R}$; $\exists \varphi : \mathcal{I} \to \mathbb{R} : f(x, \varphi(x)) = 0$) $(x \in \mathcal{I})$. Ekkor a φ függvény az f(x,y) = 0 implicit egyenlet egy megoldása. (vagy a φ az f(x,y) = 0 egyenlettel van megadva).

```
Probléma: f \in \mathbb{R}^2 \to \mathbb{R}; f(x,y) = 0. y kifejezhető-e
                 az x egyértékű függvényeként? (Általában nem)
                 Ha (x_0, y_0) : f(x_0, y_0) = 0 akkor esetleg
                 az (x_0, y_0) egy környezetében kifejezhető-e
                 az x egyértékű függvényeként?
                 (pl. körvonal esetén y = 0 pontokban nem jó)
```

Megi.: 1. lokális eredményt várunk.

ha ez 0 akkor gond van

2.
$$(f(x,y(x)) = 0)' = f'_x(x,y(x)) + \overbrace{f'_y(x,y(x))}^{\text{ha ez 0 akkor gond van}} y'(x) = 0 \quad (\blacktriangle) \quad (x \in \mathcal{I})$$
 $f'_y(x_0,y_0) = \partial_2 f(x_0,y_0) \neq 0 \text{ fgy jó.}$
(pl. körvonal $y = 0$ pontjaiban $\partial_2 f(x_0,y_0) = 0$ ezért rossz)
tetszőleges függvényre is igaz az állítás

175. Tétel. lokális létezésre egy elégséges feltétel:

$$f: \mathbb{R}^2 \to \mathbb{R} \; ; \; f \; folyt.deriv. \; ; \; f(a,b) = 0 \; ; \; \partial_2 f(a,b) \neq 0. \; Ekkor \\ a) \; \exists \mathrm{K}_r(a) \subset \mathbb{R} \exists \mathrm{K}_r(b) \forall x \in \mathrm{K}_r(a) \exists ! \varphi(x) \in \mathrm{K}_r(b) : f(x,\varphi(x)) = 0 \\ b) \; \varphi: \mathrm{K}_r(a) \to \mathbb{R} \; folyt. \; deriv. \; ; \; \; \varphi'(x) \stackrel{\blacktriangle}{=} -\frac{\partial_1 f(x,\varphi(x))}{\partial_2 f(x,\varphi(x))} \; (x \in \mathrm{K}_r(a))$$

Megj.:
$$\partial_2 f(a,b) \neq 0 \stackrel{\partial_2 f \text{ folyt.}}{\Rightarrow} \exists K_r(a), K_r(b) : \partial_2 f(x,y) \neq 0 \quad (x \in K_r(a) , y \in K_r(b))$$

Megj.: Implicit alakban megadott függvények: $x^3 + y^3 = 0 \quad (f(x,y) = 0)$
 $y(x) = ?$
 $(x_0, y_0) \text{ tetsz. pontja a görbének } (x_0, y_0) : (0, -\sqrt[3]{2}), (-\sqrt[3]{2}, 0). \text{ (hozzátartoznak)}$
 $\partial_2 f(0, -\sqrt[3]{2}) \neq 0 \Rightarrow \exists K_r(a)$
 $\varphi'(0) = -\frac{\partial_1 f(0, -\sqrt[3]{2})}{\partial_2 f(0, -\sqrt[3]{2})} \text{ tehát } 0 \text{ az érintő meredeksége a } (0, -\sqrt[3]{2}) \text{ pontban.}$

136. **Definíció.** Általánosítás:
$$n_1, n_2 \in \mathbb{N}$$
 ; $\Omega_1 \subset \mathbb{R}^{n_1}$; $\Omega_2 \subset \mathbb{R}^{n_2}$ nyíltak ; $f: \Omega_1 \times \Omega_2 \to \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}$; $(a,b) \in \Omega_1 \times \Omega_2$; $f(a,b) = 0$

$$\mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$$

$$\partial_1 f(a,b) := (\Omega_1 \ni x \to f(x,b))'_{x=a} \text{ első } \underline{\text{változócsoport}} \text{ szerinti}$$

$$\partial_2 f(a,b) := (\Omega_2 \ni x \to f(a,y))'_{y=b} \text{ második } \underline{\text{változócsoport}} \text{ szerinti}$$

176. Tétel. Implicit függvénytétel általánosítása

 $\mathbb{R}^{n_2} \rightarrow \mathbb{R}^{n_2}$ azaz mátrix

```
a fenti jelölések mellett f folyt.deriv. ; f(a,b) = \mathbf{0} (\in \mathbb{R}^{n_2}) ; \det(\partial_2 f(a,b)) \neq 0. Ekkor
a) \exists \mathcal{U}_1 := \mathrm{K}_r(a) \subset \mathbb{R}^{n_1} \exists \mathcal{U}_2 := \mathrm{K}_r(b) \subset \mathbb{R}^{n_2} \forall x \in \mathcal{U}_1 \exists ! \varphi(x) \in \mathcal{U}_2 : f(x, \varphi(x)) = 0
b) \varphi : \mathcal{U}_1 \to \mathcal{U}_2 folyt.deriv. és \varphi'(x) = -\left[\partial_2 f(x, \varphi(x))\right]^{-1} \cdot \partial_1 f(x, \varphi(x)) (x \in \mathcal{U}_1)
```

Megi.: 1. φ explicit alakjáról nem szól a tétel.

> 2. Egyenletrendszerek megoldásának létezése $f_1(x_1, , x_n, y_1, y_m) = 0$ $f_m(x_1, , x_n, y_1, y_m) = 0$ Ha van olyan pont $(x_{01}, x_{0n}, y_{01}, y_{0m})$ melyre $f(\underline{x_0}, y_0) = \underline{0}$ és $\det(\partial_2 f(x_0, y_0)) \neq 0$, akkor y_1 , y_m kifejezhetőek az x_1 , x_n segítségével.

11 $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvények differenciálhatósága III.

11.1 Lokális szélsőérték

137. **Definíció.** Kvadratikus alak (forma): homogén másodfokú polinom, azaz $Q: \mathbb{R}^n \ni x \longrightarrow \sum_{|i|=2} a_i x^i \in \mathbb{R}$, ahol i multiindex ; $a_i \in \mathbb{R}$

177. Tétel. Q kvadratikus alak $\Leftrightarrow \exists A = [a_{ij}] \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix, melyre

$$Q(x) = \langle Ax, x \rangle = \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

178. Tétel. Q kvadratikus alak. Ekkor

1.
$$Q(\lambda x) = \lambda^2 Q(x) \quad (x \in \mathbb{R}^n ; \lambda \in \mathbb{R})$$

2.
$$\exists m, M > 0 : m \cdot ||x||^2 \leqslant Q(x) \leqslant M \cdot ||x||^2 \quad (x \in \mathbb{R}^n)$$

138. Definíció.

A Q kvadratikus forma pozitív definit, ha
$$\forall x \in \mathbb{R}^n \setminus \{\mathbf{0}\} : Q(x) > 0$$
 pozitív szemidefinit, ha $\forall x \in \mathbb{R}^n : Q(x) \geq 0$ negatív definit, ha $\forall x \in \mathbb{R}^n : Q(x) \geq 0$ negatív szemidefinit, ha $\forall x \in \mathbb{R}^n \setminus \{\mathbf{0}\} : Q(x) < 0$ pozitív szemidefinit, ha $\forall x \in \mathbb{R}^n : Q(x) \leq 0$

Megj.: 1. Q(0) = 0

- 2. pozitív definit csak **0**-ban vehet fel 0-t.
- 3. pozitív szemidefinit 0-n kívül is felvesz valahol 0-t.
- 4. van olyan kvadratikus alak, amely nem tartozik egyik definitmeghatározáshoz sem a 4 közül.

179. Tétel. Sylvester-kritérium:

$$Q(x) = \langle Ax, x \rangle$$
 $(x \in \mathbb{R}^n)$ kvadratikus forma

$$A = [a_{ij}] \in \mathbb{R}^{n \times n}$$
 szimmetrikus mátrix

$$\Delta_k := \det \left[\begin{array}{ccc} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{array} \right] \quad (k=1..n) \quad \text{az A sarok-aldetermin\'ansai.}$$

139. Definíció. $\mathcal{U} \subset \mathbb{R}^n$ nyílt ; $\varphi : \mathcal{U} \to \mathbb{R}$. Ekkor φ -nek az $a \in \mathcal{U}$ -ban lokális minimuma van, ha $\exists K_r(a) \subset \mathcal{U} \forall x \in K_r(a) : \varphi(a) \leqslant \varphi(x)$

180. Tétel. elsőrendű szükséges:

$$\mathcal{U} \subset \mathbb{R}^n$$
 nyílt ; $\varphi : \mathcal{U} \to \mathbb{R}$

1.
$$\varphi \in D\{a\}$$

2. φ-nek a-ban lokális szelsőértéke van

Ekkor
$$\varphi'(a) = \mathbf{0}$$

Megj.: 1. ott lehet szelsőérték, ahol
$$\varphi'(a) = \mathbf{0}$$
.

2. nem elégséges! pl.: n = 1 esetén x^3 függvény.

181. Tétel. Másodrendű elégséges: $\mathcal{U} \subset \mathbb{R}^n$ nyílt ; $\varphi : \mathcal{U} \to \mathbb{R}$ továbbá

1.
$$\varphi \in D^2\{a\}$$

$$2. \quad \varphi'(a) = \mathbf{0}$$

3.
$$Q(h) = \sum_{i,j=1}^{n} \partial_i \partial_j \varphi(a) h_i h_j \quad (h \in \mathbb{R}^n)$$
 kvadratikus forma pozitív [negatív] definit.

Ekkor φ-nek az a-ban lokális szélsőértéke van, és

pozitív definit esetén lokális minimum

negatív definit esetén lokális maximum

Megj.: Ha nem alkalmazható, akkor egyedi módon kell meghatározni. Az elégséges feltétel *nincs túlságosan messze* a szükségestől.

182. Tétel. Másodrendű szükséges: $\mathcal{U} \subset \mathbb{R}^n$ nyílt ; $\varphi : \mathcal{U} \to \mathbb{R}$ továbbá

- 1. $\varphi \in D^2\{a\}$; $\varphi \in C^2\{a\}$!!
- 2. φ-nek az a-ban lokális minimuma [maximuma] van

Ekkor $\varphi'(a) = \mathbf{0}$ és $Q(h) = \sum_{i,j=1}^{n} \partial_i \partial_j \varphi(a) h_i h_j$ $(h \in \mathbb{R}^n)$ kvadratikus forma

11.2 Abszolút szélsőérték vizsgálata

Deriválás technikájával csak lokálisat tudunk

Eml.: $\mathbb{R} \to \mathbb{R}$ vagy belül van, vagy a határon, ami két pontot jelent.

itt: 1. Weierstrass: kompakt halmazon folytonos függvénynek van szélsőértéke

2. Abszolút szélsőérték: vagy a határon, vagy belső pontban külön vizsgálat kell deriválással megadható

pl.: téglalap határvonala egy egyváltozós függvénnyel megadható, de nem mindíg ilyen egyszerű.

11.3 Feltételes szélsőérték

Példa: x + y = 2 egyenes mely pontja esik legközelebb az origóhoz, azaz milyen P-re lesz $\overline{\text{OP}}$ minimális?

$$\overline{\mathrm{OP}}^2 = f(x, y) := x^2 + y^2 \quad ((x, y) \in \mathbb{R}^2)$$

$$\mathcal{H} := \left\{ (x, y) \in \mathbb{R}^2 \middle| x + y - 2 = 0 \right\}$$

$$?f|_{\mathcal{H}} \stackrel{?}{\to} \min$$

Példa: egységsugarú körbe beírt téglalap mikor lesz maximális területű?

$$T(x,y) := 4xy \quad (0 < x, y < 1)$$

$$\mathcal{H} := \left\{ (x,y) \in \mathbb{R}^2 \middle| x^2 + y^2 - 1 = 0 \right\}$$

$$?T \middle|_{\mathcal{H}} \xrightarrow{?} \max$$

Általánosan: adott $m, n \in \mathbb{N}$; $\mathcal{U} \subset \mathbb{R}^n$ nyílt; $f: \mathcal{U} \to \mathbb{R}$; $g_i: \mathcal{U} \to \mathbb{R}$ (i = 1..m)

 $\mathcal{H} := \left\{ z \in \mathcal{U} \mid g_i(z) = 0 \quad (i = 1..m) \right\}$ Határozzuk meg $f|_{\mathcal{H}}$ szélsőértékeit. Ezt nevezzük feltételes szélsőértéknek.

140. Definíció.

Az $f: \mathcal{U} \to \mathbb{R}$ függvénynek az $a \in \mathcal{U}$ -ban a $g_i(z) = 0$ (i = 1..m) feltételekre vonatkozóan <u>lokális feltételes minimuma</u> van, ha $\exists K_r(a) \subset \mathcal{U} \forall x \in K_r(a) \cap \mathcal{H}: f(x) \geqslant f(a)$.

1. Példa megoldás: $f(x,y) = x^2 + y^2$ $(x,y) \in \mathbb{R}^2$

 $g(x,y)=x+y-2=0 \Rightarrow y=2-x$ $\varphi(x):=f(x,2-x)=x^2+(2-x)^2 \quad (x\in\mathbb{R}^2) \text{ már egyváltozós}$

keresem az abszolút minimumot

Megj.: g(x,y) = 0-ból könnyen kifejezhető volt az y Általánosan ez nem megy.

Megj.: $f: \mathbb{R}^n \to \mathbb{R}$ lokális szélsőérték-meghatározását már ismerjük ha deriválható, azaz \mathcal{D}_f belső pontjaiban tudjuk meghatározni, de a \mathcal{H} az görbe - nincs belső pontja - így itt ez a módszer nem alkalmazható.

(Lagrange) visszavezetni feltétel nélküli szélsőértékproblémára.

Adott f; g_i (i=1..m); keresni olyan $F:\mathbb{R}^n\to\mathbb{R}$ függvényt, melyre

Lagrange: $F(x) = f(x) + \lambda_1 g_1(x) + \dots + \lambda_m g_m(x)$ ($\mathcal{U} \subset \mathbb{R}^n$ nyîlt ; $x \in \mathcal{U}$)

 λ_i -k megválszthatók úgy, hogy (\blacktriangle) teljesüljön.

 $(\lambda_i$ - Lagrange féle multiplikátor)

183. Tétel. Feltételes szélsőértékre vonatkozó szükséges feltétel:

 $m,n\in\mathbb{N}$; $\mathcal{U}\subset\mathbb{R}^n$ nyílt ; $f:\mathcal{U}\to\mathbb{R}$; $g_i:\mathcal{U}\to\mathbb{R}$ (i=1..m) ; f,g folyt.deriv. ; f-nek $a\in\mathcal{U}$ -ban a $g_i(z) = 0$ (i = 1..m) feltételek mellett lokális szélsőértéke van ; $g_i'(a)$ (i = 1..m) vektorok lineárisan függetlenek. Ekkor

$$\exists \lambda_1, \lambda_m \in \mathbb{R} : F(x) = f(x) + \lambda_1 g_1(x) + \cdots + \lambda_m g_m(x) \quad (x \in \mathcal{U}) \text{ függvényre } F'(a) = \mathbf{0}$$

Hogyan alkalmazzuk ezt a tételt?

 $F(x) = f(x) + \lambda_1 g_1(x) + \dots + \lambda_m g_m(x)$; $F'(a) = \mathbf{0} \Rightarrow n$ db egyenlet,

ahol $g_1(a) = 0$, $g_m(a) = 0$ ugyanis rajta van a \mathcal{H} halmazon

ismeretlenek: $a = (a_1, ..., a_n)$ $\lambda_1, ..., \lambda_m$ m + n db ismeretlen1. Példa: megoldás (Lagrange): $f(x, y) := x^2 + y^2 \quad ((x, y) \in \mathbb{R}^2) \quad g(x, y) := x + y - 2 = 0$ $F'(x, y) := f(x, y) + \lambda g(x, y) = (x^2 + y^2) + \lambda (x + y - 2)$

Szüks.f.: $F'(x,y) = 0 = (\partial_x F(x,y), \partial_y F(x,y))$

Elégséges feltétel lehetne, de most nem fogalmazzuk meg.

megoldás: $f(x,y) = 4xy \ ((x,y) \in \mathbb{R}^2)$; $g(x,y) = x^2 + y^2 - 1$ Szüks.f.: $F(x,y) := f(x,y) + \lambda g(x,y) = 4xy + \lambda (x^2 + y^2 - 1)$

$$\frac{\partial F}{\partial x} = 4y + 2\lambda x = 0$$

$$\frac{\partial f}{\partial y} = 4x + 2\lambda y = 0$$

$$-x^2 + y^2 - 1 = 0$$

$$\Rightarrow x^2 = y^2 \Rightarrow x^2 = \frac{1}{2} \Rightarrow x = \pm \frac{\sqrt{2}}{2}$$

Elég az első síknegyedben nézni $(x, y > 0) \Rightarrow (x_0, y_0) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

a lehetséges feltételes lokális szélsőértékhely.

12 Primitív függvények

141. Definíció. Legyen $f:(a,b)\to\mathbb{R}$. Az $F:(a,b)\to\mathbb{R}$ az f egy primitív függvénye, ha F deriválható (a,b)-n és $\forall x\in(a,b):F'(x)=f(x)$.

Jelölés:
$$\int f := \left\{ \left. F \right| F \text{ primitív függvénye } f\text{-nek} \right. \right\}$$

184. Tétel. Ha $f:(a,b)\to\mathbb{R}$ és f-nek van primitív függvénye, akkor

$$\int f = \left\{ \left. F + c \, \right| \, F \, \text{ az } f \text{-nek } \underline{\text{egy }} \text{ primitiv függvénye} \land c \in \mathbb{R} \, \right\}$$

Jelölés: $\int f$ függvényhalmaz.

142. Definíció. Legyen $x_0 \in (a,b)$; $f:(a,b) \to \mathbb{R}$. Ekkor az $\int_{x_0} f \ x_0$ pontban eltűnő primitív fv-e, azaz $\forall x \in (a,b)$: $\left[F(x_0) = \left(\int_{x_0} f \right) (x_0) = 0 \right]$, $F'(x) = \left(\int_{x_0} f \right)'(x) = f(x)$.

${\cal D}_f$, ${\cal D}_F$	f(x)	F(x)
R	$x^n \ (n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1}$
$(-\infty,0) \lor (0,\infty)$	$x^n \ (n = -2, -3, \ldots)$	$\frac{x^{n+1}}{n+1}$
$(0,+\infty)$	$x^{\mu} \ (\mu \in \mathbb{R}, \mu \neq -1)$	$\frac{x^{\mu+1}}{\mu+1}$
$(-\infty,0)\vee(0,\infty)$	$\frac{1}{x}$	$\ln x $
\mathbb{R}	$\frac{1}{1+x^2}$	$\operatorname{arctg} x$
$k\pi \neq x \ (k \in \mathbb{Z})$	$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$
$\left(k - \frac{1}{2}\right)\pi \neq x \ (k \in \mathbb{Z})$	$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$

${\mathcal D}_f$, ${\mathcal D}_F$	f(x)	F(x)
(-1, 1)	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
\mathbb{R}	e^x	e^x
\mathbb{R}	$\sin x$	$-\cos x$
\mathbb{R}	$\cos x$	$\sin x$
\mathbb{R}	$\operatorname{sh} x$	$\operatorname{ch} x$
\mathbb{R}	$\operatorname{ch} x$	$\operatorname{sh} x$
$\mathbb{R} \setminus 0$	$\frac{1}{\sinh^2 x}$	$\coth x$
\mathbb{R}	$\frac{1}{\cosh^2 x}$	$\tanh x$

185. Tétel. Hatványsor primitív függvénye:

Legyen $f(x) = \sum_{x=0}^{\infty} \alpha_n (x - x_0)^n$ $(x \in K_R(x_0), R > 0)$. Ekkor f-nek van primitív függvénye és $F(x) = \sum_{n=0}^{\infty} \frac{\alpha_n}{n+1} (x - x_0)^{n+1}$ $(x \in K_R(x_0))$.

12.1 Integrálási szabályok

186. Tétel. Legyen $f,g:(a,b)\to\mathbb{R}$, mindegyiknek van primitív függvénye. Ekkor $\lambda f + \mu g$ -nek is van primitív függvénye, és $\int_{x_0} (\lambda f + \mu g) = \lambda \int_{x_0} f + \mu \int_{x_0} g$.

187. Tétel. Parciális integrálás:

Legyen $f,g:(a,b)\to\mathbb{R}$, $g,f\in\mathbb{D}$, és f'g-nek van primitív függvénye. Ekkor fg'-nek is van primitív függvénye, és $\int_{x_0}fg'=fg-f(x_0)g(x_0)-\int_{x_0}f'g$.

12.2 Helyettesítéssel való integrálás

188. Tétel. Legyen $I, J \subset \mathbb{R}$ int., $g \in D(I)$, $f: J \to \mathbb{R}$, $\mathcal{R}_g \subset J$ ($\Rightarrow f \circ g$ értelmezhető).

Ha f-nek van primitív függvénye \Rightarrow $(f \circ g)g'$ -nek is van primitív függvénye, és

$$\int_{t_0} (f \circ g)g' = \left(\int_{g(t_0)} f\right) \circ g \quad (t_0 \in I, g(t_0) \in J)$$

189. Tétel. Legyen I, $J \subset \mathbb{R}$ int., $g \in D(I)$, $f : J \to \mathbb{R}$, $\mathcal{R}_g \subset J$ ($\Rightarrow f \circ g$ értelmezhető) Ha f-nek van primitív függvénye, és $\exists g^{-1}$, akkor $\int_{g(t_0)} f = \left(\int_{t_0} (f \circ g)g'\right) \circ g^{-1}$ azaz

$$\int_{x_0} f(x) dx = \left(\int_{g^{-1}(x_0)} f(g(t)) \cdot g'(t) dt \right)_{t=g^{-1}(x)}$$

12.3 Elemi függvények

143. Definíció. Az $x \to 1$, $x \to x$, exp, ln, sin, arcsin függvényekből az $(+,\cdot,:,\circ)$ műveletek véges sokszori alkalmazásával kapott függvényeket elemi függvényeknek nevezzük. $f \in E$, mind folytonosak.

190. Tétel.

 $Ha \ f \in E \Rightarrow f' \in E$

Ha $f \in E \Rightarrow f$ -nek van primitív függvénye.

Vannak olyan elemi fv-ek, melyeknek van primitív függvénye, de az nem elemi függvény.

Példa:
$$x \to e^{x^2}$$
, $x \to \sin(x^2)$, $x \to \cos(x^2)$, $x \to \frac{\sin x}{x}$
 $x \to \frac{\cos x}{x}$, $x \to \frac{e^x}{x}$, $x \to \frac{1}{\ln x}$, $x \to \sqrt{x^3 + 1}$
Példa: $\int \frac{\sin x}{x} dx = \int \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k+1)!} dx = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)(2k+1)!}$

12.4 Racionális fv-ek integráljára visszavezethető helyettesítések

Racionális törtfüggvények általános alakja: $R(x) = \frac{P_m(x)}{Q_n(x)}$, ahol $P_m(x) = b_m x^m + \dots + b_1 x + b_0$, és $Q_n(x) = a_n x^n + \dots + a_1 x + a_0$ Ha R valódi rac. törtfv., akkor m < n, ellenkező esetben $m \ge n$ és $R(x) = \frac{P_m(x)}{Q_n(x)} = c_{m-n} x^{m-n} + \dots + c_1 x + c_0 + \frac{S_k(x)}{Q_n(x)}$, ahol $S_k(x) = d_k x^k + \dots + d_1 x + d_0$ és k < n. Tehát $\int R(x) = \int c_{m-n} x^{m-n} + \dots + \int c_1 x + \int c_0 + \int \frac{S_k(x)}{Q_n(x)}$ ahol $\frac{S_k(x)}{Q_n(x)} := \hat{R}(x)$ $Q_n(x)$ valós együtthatójú polinom egyértelműen felírható a gyöktényezős alakjában, azaz: $Q_n(x) = a_n x^n + \dots + a_1 x + a_0 = a_n (x - x_1)^{k_1} \dots (x - x_s)^{k_s} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_t x + q_t)^{l_t}$,

 $k_1 + \dots + k_s + 2(l_1 + \dots + l_t) = n$ és $k_1, \dots, k_s, l_1, \dots, l_t \in \mathbb{N}$.

Tehát az $\hat{R}(x)$ valódi racionális törtfüggvény. Ekkor $\hat{R}(x)$ egyértelműen felbontható parciális törtek összegére az alábbi módon:

$$\begin{split} \sum_{i=1}^s \sum_{u=1}^{k_i} \frac{\mathbf{A}_{i,u}}{(x-x_i)^u} + \sum_{j=1}^t \sum_{v=1}^{l_j} \frac{\mathbf{B}_{j,v} x + \mathbf{C}_{j,v}}{(x^2+p_j x+q_j)^v} \\ \text{ahol } \forall i \in [1,s] \ \forall u \in [1,k_i] \ \forall j \in [1,t] \ \forall v \in [1,l_t] : \ \mathbf{A}_{i,u}, \mathbf{B}_{j,v}, \mathbf{C}_{j,v} \in \mathbb{R}, \text{ \'es egy\'ertelm\'u\'ek}. \end{split}$$

$$\begin{aligned} \text{Teh\'at} \ \int \hat{R}(x) &= \sum_{i=1}^s \sum_{u=1}^{k_i} \int \frac{\mathbf{A}_{i,u}}{(x-x_i)^u} \, \mathrm{d}x + \sum_{j=1}^t \sum_{v=1}^{l_j} \int \frac{\mathbf{B}_{j,v} x + \mathbf{C}_{j,v}}{(x^2+p_j x+q_j)^v} \, \mathrm{d}x \\ \text{Hat\'arozzuk meg} \ \int \frac{\mathbf{A}_{i,u}}{(x-x_i)^u} \, \mathrm{d}x \stackrel{\text{\'es}}{=} \int \frac{\mathbf{B}_{j,v} x + \mathbf{C}_{j,v}}{(x^2+p_j x+q_j)^v} \, \mathrm{d}x \stackrel{\text{\'ert\'ek\'et}}{=} . \end{split}$$

$$\int \frac{\mathbf{A}_{i,u}}{(x-x_i)^u} \, \mathrm{d}x = \mathbf{A}_{i,u} \int \frac{1}{(x-x_i)^u} \, \mathrm{d}x = \mathbf{A}_{i,u} \int (x-x_i)^{-u} \, \mathrm{d}x = \mathbf{A}_{i,u} \frac{(x-x_i)^{-u+1}}{-u+1} + c \end{split}$$

$$De \ u = 1 \ \text{eset\'en} \ \int \frac{\mathbf{A}_{i,u}}{x-x_i} \, \mathrm{d}x = \mathbf{A}_{i,u} \int \frac{1}{x-x_i} \, \mathrm{d}x = \mathbf{A}_{i,u} \ln|x-x_i| + c \end{split}$$

$$\int \frac{\mathbf{B}_{j,v} x + \mathbf{C}_{j,v}}{(x^2+p_j x+q_j)^v} \, \mathrm{d}x = \mathbf{A}_{i,u} \ln|x-x_i| + c \end{split}$$

$$\int \frac{\mathbf{B}_{j,v} x + \mathbf{C}_{j,v}}{(x^2+p_j x+q_j)^v} \, \mathrm{d}x := \int \frac{\mathbf{B}x + \mathbf{C}}{(x^2+p x+q)^v} \, \mathrm{d}x.$$

$$\hat{\mathbf{I}} \text{Fjuk fel} \ \left[\mathbf{B}x + \mathbf{C} \right] \text{-t} \ \left[\mathbf{M}(2x+p) + \mathbf{N} \right] \ \text{alakban, ahol } \mathbf{B} = 2\mathbf{M} \ , \ \mathbf{C} = \mathbf{M}p + \mathbf{N} \Rightarrow \mathbf{M} = \frac{\mathbf{B}}{2} \ , \ \mathbf{N} = \mathbf{C} - \frac{\mathbf{B}}{2}p \end{split}$$

$$v = 1: \int \frac{\mathbf{B}x + \mathbf{C}}{x^2 + px + q} \, \mathrm{d}x = \int \frac{\mathbf{M}(2x + p) + \mathbf{N}}{x^2 + px + q} \, \mathrm{d}x = = \mathbf{M} \int \frac{2x + p}{x^2 + px + q} \, \mathrm{d}x + \mathbf{N} \int \frac{1}{x^2 + px + q} \, \mathrm{d}x$$

$$= \text{Ahol } \mathbf{N} \int \frac{1}{x^2 + px + q} \, \mathrm{d}x = \mathbf{N} \int \frac{1}{\left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right)} \, \mathrm{d}x =$$

$$= \frac{2\mathbf{N}}{4q - p^2} \int \frac{1}{\left(\frac{2x + p}{\sqrt{4q - p^2}}\right)^2 + 1} \, \mathrm{d}x = \left[\frac{2\mathbf{C} - \mathbf{B}p}{\sqrt{4p - q^2}} \operatorname{arctg}\left(\frac{2x + p}{\sqrt{4q - p^2}}\right)\right] + c$$

$$= \text{és } \mathbf{M} \int \frac{2x + p}{x^2 + px + q} \, \mathrm{d}x = \frac{\mathbf{B}}{2} \ln(x^2 + px + q) + c$$

$$v > 1: \int_0^1 \frac{\mathbf{B}x + \mathbf{C}}{(x^2 + px + q)^v} \, \mathrm{d}x = \frac{\mathbf{B}_1 x + \mathbf{C}_1}{(x^2 + px + q)^{v-1}} + \mathbf{D}_1 \int_0^1 \frac{1}{(x^2 + px + q)^{v-1}} \, \mathrm{d}x + \mathbf{E}_1 \text{ (rekurzív)}$$

12.5 Racionális fv-ek integráljára visszavezethető típusok

144. Definíció. Legyenek $n \in \mathbb{N} : \forall i, j \in [0, n] : a_{i,j} \in \mathbb{R}$. Ekkor

$$\mathbb{R}^2\ni(x,y)\to P(x,y):=\sum_{i,j=0}^na_{i,j}x^iy^j$$

 $R^2 \to \mathbb{R}$ típusu függvényt valós kétváltozós polinomnak nevezzük.

145. Definíció.

Legyenek P,Q kétváltozós polinomok, és $A:=\left\{ \left. (x,y)\in\mathbb{R}^2 \;\middle|\; Q(x,y)=0 \right. \right\}$. Ekkor

$$\mathbb{R}^2 \setminus A \ni (x,y) \to R(x,y) := \frac{P(x,y)}{Q(x,y)}$$

 $R^2 \to \mathbb{R}$ típusu kétváltozós racionális függvénynek nevezzük

Legyen $\mathbb{I} \subset \mathbb{R}$ intervallum, $\varphi_1, \varphi_2 \in \mathbb{I} \to \mathbb{R}$, $(\varphi_1(t), \varphi_2(t)) \notin A$, és $t \in \mathbb{I} : t \to (\varphi_1(t), \varphi_2(t))$ elemien integrálható.

12.5.1
$$\int R(\sin t, \cos t) dt$$

Legyen
$$\mathbb{I} \subset (-\Pi, +\Pi)$$
. $\mathbb{I} \ni t \to \varphi(t) := \operatorname{tg} \frac{t}{2} \in \mathbb{D}(\mathbb{I})$.

$$\sin t = \frac{2 \sin \frac{t}{2} \cos \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{2 \operatorname{tg} \frac{t}{2}}{1 + \operatorname{tg}^2 \frac{t}{2}} = \frac{2x}{1 + x^2}$$

$$\cos t = \frac{\cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{1 - \operatorname{tg}^2 \frac{t}{2}}{1 + \operatorname{tg}^2 \frac{t}{2}} = \frac{1 - x^2}{1 + x^2}$$

$$t:=2 \operatorname{arctg} x$$
 , $\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{2}{1+x^2}$. Ekkor

$$\int R(\sin t, \cos t) = \int R\left(\frac{2x}{1+x^2}, \frac{1-x^2}{1+x^2}\right) \cdot \frac{2}{1+x^2} dx \bigg|_{x=\lg \frac{t}{2}}$$

És ezzel a $t \to R(\sin t, \cos t)$ integrálját racionális függvény integráljára vezettük vissza.

12.5.2
$$\int R\left(t, \sqrt[n]{\frac{at+b}{ct+d}}\right) dt \text{ ahol } ad-bc \neq 0.$$

$$x := \sqrt[n]{\frac{at+b}{ct+d}} \Rightarrow x^n = \frac{at+b}{ct+d} ; t := \frac{dx^n-b}{a-cx^n} ; \frac{dt}{dx} = \frac{nx^{n-1}(ad-bc)}{(a-cx^n)^2} \Rightarrow$$

$$\Rightarrow \int R\left(t, \sqrt[n]{\frac{at+b}{ct+d}}\right) dt = \int R\left(\frac{dx^n-b}{a-cx^n}, x\right) \cdot \frac{n(ad-bc)x^{n-1}}{(a-cx^n)^2} dx \Big|_{x=\sqrt[n]{\frac{at+b}{ct+d}}}$$

És ezzel a $\int R\left(t, \sqrt[n]{\frac{at+b}{ct+d}}\right) dt$ integrálját racionális függvény integráljára vezettük vissza.

13Határozott integrál

-görbe ívhossza, terület, térfogat Motiváció: -munka (fizika) $w = F \cdot s$

A határozott integrál fogalma

Alapfeltételek(\mathbf{AF}): $\mathbb{I}:[a,b]$ kompakt intervallum $f: \mathbb{I} \to \mathbb{R}$ korlátos függvény

146. Definíció. $\mathcal{F}(\mathbb{I}) \ni \mathcal{T} \Leftrightarrow \exists n \in \mathbb{N} : \mathcal{T} = \{x_0, \dots, x_n\} \subset \mathbb{I}; a = x_0 < x_1 < \dots < x_n = b \text{ az } \mathbb{I} \text{ felosztások}$ halmaza.

147. Definíció. ${\mathcal T}_1, {\mathcal T}_2 \in {\mathcal F}({\mathbb I})$ A ${\mathcal T}_1$ a ${\mathcal T}_2$ felosztás finomítása, ha ${\mathcal T}_2 \subset {\mathcal T}_1$

148. Definíció. Tfh AF teljesül, $T \in \mathcal{F}(\mathbb{I})$

$$\begin{split} S(f,\mathcal{T}) := & \sum_{i=1}^n \left(\sup_{x_{i-1} \leq x \leq x_i} \{f(x)\} \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^n M_i \Delta x_i \\ & \text{Az } f \ \mathcal{T} \ \text{felosztásához tartozó felső közelítő összeg.} \end{split}$$

$$\begin{split} s(f,\mathcal{T}) &:= \sum_{i=1}^n \left(\inf_{x_{i-1} \leq x \leq x_i} \{f(x)\} \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^n m_i \Delta x_i \\ \text{Az } f \ \mathcal{T} \ \text{felosztásához tartozó alsó közelítő összeg.} \end{split}$$

Megj.: $\exists m_i, M_i$ mert feltettük, hogy a függvény korlátos.

191. Tétel. Tfh AF teljesül.

a) Ha $\mathcal{T}_1 \subset \mathcal{T}_2$; $\mathcal{T}_1, \mathcal{T}_2 \in \mathcal{F}(\mathbb{I})$: $s(f, \mathcal{T}_1) \leq s(f, \mathcal{T}_2)$

 $S(f, \tau_1) > S(f, \tau_2)$

b) $\forall \tau_1, \tau_2 \in \mathcal{F}(\mathbb{I}) \Rightarrow$ $s(f, \tau_1) < S(f, \tau_2)$

192. Tétel. (Következmény)

- $\{\,s(f,\mathcal{T})\mid \mathcal{T}\in\mathcal{F}(\mathbb{I})\,\}$ halmaz felülről korlátos $\Rightarrow \exists \sup \{ s(f, \mathcal{T}) \mid \mathcal{T} \in \mathcal{F}(\mathbb{I}) \} := \mathcal{I}_*(f) \text{ az } f \text{ Darboux f\'ele als\'o integr\'alja}.$
- $\{S(f,T) \mid T \in \mathcal{F}(\mathbb{I})\}$ halmaz alulról korlátos $\Rightarrow \exists \inf \left\{ \dot{S}(f, \mathcal{T}) \mid \mathcal{T} \in \mathcal{F}(\mathbb{I}) \right\} := \mathcal{I}^*(f) \text{ az } f \text{ Darboux féle felső integrálja.}$
- $\forall \mathbf{AF}$ -et kielégítő f-re: $\mathcal{I}_*(f) \leq \mathcal{I}^*(f)$ ahol $\mathcal{I}_*(f), \mathcal{I}^*(f)$ $\forall f$ -re értelmezve van.
- 149. Definíció. Legyen $\mathbb{I}:=[a,b]\subset\mathbb{R}$ kompakt; $f:\mathbb{I}\to\mathbb{R}$ korlátos függvény. Ekkor az f Riemann integrálható $(f \in R[a, b])$, ha $\mathcal{I}_*(f) = \mathcal{I}^*(f)$. Ezt a számot az $f \mathbb{I}$ -n vett Riemann integráljának nevezzük, és $\int_{-\infty}^{\infty} f$, $\int_{-\infty}^{\infty} f(x) dx$ valamelyikével jelöljük.
- 150. Definíció. Tfh AF teljesül f-re; $T \in \mathcal{F}(\mathbb{I})$. Az $\Omega(f,T) := S(f,T) s(f,T)$ értéket az f T-hoz tartozó oszcillációs összegének nevezzük.
- 193. Tétel. $f \in \mathbb{R}[a,b] \Leftrightarrow \forall \varepsilon > 0 \exists \tau \in \mathcal{F}(\mathbb{I}) : \Omega(f,\tau) < \varepsilon$
- 194. Tétel. Ha $f \in C[a,b] \Rightarrow f$ integrálható.

13.2 Az integrál meghatározása a definícióból

$$\begin{split} \text{P\'elda: } f(x) &:= x^2 \;,\; x \in [0,1] =: \mathbb{I} \;\; \text{Bizony\'itsuk be, hogy } f \in \mathcal{R}[0,1], \text{\'es } \int_0^1 f. \\ \text{Legyen } n \in \mathbb{N} \;,\; \mathcal{T}_n &:= \left\{ \left. \frac{k}{n} \; \right| \; k = 0, ..., n \right\} \; m_k = \left(\frac{k-1}{n} \right)^2 M_k = \left(\frac{k}{n} \right)^2 x_k - x_{k-1} = \frac{1}{n} \\ S(f,\mathcal{T}_n) &:= \sum_{k=1}^n \frac{k^2}{n^2} \cdot \frac{1}{n} = \frac{1}{n^3} \cdot \sum_{k=1}^n k^2 = \frac{1}{n^3} \cdot \frac{n(n-1)(2n+1)}{6} \to \frac{1}{3} \quad (n \to \infty) \end{split}$$

$$s(f,\mathcal{T}_n) = \sum_{k=1}^n \frac{(k-1)^2}{n^2} \cdot \frac{1}{n} = \frac{1}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} \to \frac{1}{3} \quad (n \to \infty)$$

$$\frac{1}{3} = \sup_n \frac{\sum_{k=1}^n \frac{(k-1)^2}{n^2}}{s(f,\mathcal{T}_n)} \leq \mathcal{I}_*(f) \leq \mathcal{I}^*(f) \leq \inf_n \frac{\sum_{k=1}^n \frac{(k-1)n(2n-1)}{s(f,\mathcal{T}_n)}}{s(f,\mathcal{T}_n)} = \frac{1}{3} \Rightarrow \mathcal{I}_*(f) = \mathcal{I}^*(f) = \int_0^1 f = \frac{1}{3}$$

Általában a definícióból körülményes (itt volt zárt képlet - szerencse)

13.3 Műveletek és az integrál kapcsolata

195. Tétel. $f, g \in \mathbb{R}[a, b]$, $\lambda \in \mathbb{R} \Rightarrow$

$$f+g\in\mathbf{R}[a,b]\text{ \'es }\int_a^b(f+g)=\int_a^bf+\int_a^bg$$

$$\lambda f\in\mathbf{R}[a,b]\text{ \'es }\int_a^b(\lambda f)=\lambda\int_a^bf$$

$$fg\in\mathbf{R}[a,b]\text{ de nincs sz\'ep \"osszef\"ugg\'es}$$

$$Ha\inf\mathcal{R}_g\stackrel{!}{=}:m>0\Rightarrow\frac{f}{g}\in\mathbf{R}[a,b]\text{. }Pl.\text{: }\forall n\in\mathbb{N}:\frac{1}{n}>0\text{ de inf }\frac{1}{n}=0$$

Következmény: R[a, b] lineáris tér \mathbb{R} felett $(+, \lambda)$

13.4 Az integrál intervallum szerinti additivitása

196. Tétel. If
$$f:[a,c] \to \mathbb{R}$$
 korlátos; $b \in (a,c)$ $f_1 := f \Big|_{[a,b]}$ $f_2 := f \Big|_{[b,c]}$. Ekkorl $f \in \mathbb{R}[a,c] \Leftrightarrow f_1 \in \mathbb{R}[a,b]$; $f_2 \in \mathbb{R}[b,c]$ 2) $\int_a^c f = \int_a^b f + \int_b^c f$

197. Tétel. (Következmény) Tfh $f:[A,B] \to \mathbb{R}$ korlátos, $a,b,c \in [A,B]; f \in \mathbb{R}[A,B]$. Ekkor $\int_a^b f = \int_a^c f + \int_c^b f$ függetlenül, hogy hol vannak a pontok.

151. Definíció.
$$\int_{a}^{a} f := 0$$
 és $a > b : \int_{a}^{b} f = -\int_{b}^{a} f$

13.5 Integrálható függvények

198. Tétel. Ha $f:[a,b] \to \mathbb{R}$ folytonos $\Rightarrow f$ integrálható. $(C[a,b] \subset R[a,b])$

199. Tétel. $f:[a,b] \to \mathbb{R}$ monoton $\Rightarrow f$ integrálható.

200. Tétel. Ha $f \in \mathbb{R}[a,b]$, és f értékét véges sok pontban megváltoztatjuk, akkor a kapott $\tilde{f} \in \mathbb{R}[a,b]$, és $\int_a^b f = \int_a^b \tilde{f}$.

152. Definíció. Azt mondjuk, hogy az $f \in R[a,b]$ szakaszosan folytonos,

$$ha \exists \mathcal{T} = \{x_0, ..., x_n\} \in \mathcal{F}([a, b]) \text{ \'es } \begin{matrix} 1 \\ 2 \end{pmatrix} \quad \begin{matrix} f \mid_{(x_{i-1}, x_i)} \in \mathcal{C} \\ \forall i \in [1, n] : \exists \lim_{x_{i-1} \neq 0} f , \exists \lim_{x_{i-0}} f \text{ v\'egesek.} \end{matrix}$$

201. Tétel. Ha $f:[a,b] \to \mathbb{R}$ szakaszosan folytonos ; $\mathcal{T} = \{x_0,...,x_n\} \in \mathcal{F}([a,b]) \Rightarrow f \in \mathbb{R}[a,b]$ és $\int_a^b f - \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f$.

13.6 Egyenlőtlenségek

202. Tétel.

1.
$$f \in \mathbb{R}[a,b] \; ; \; f \geqslant 0 \implies \int_{a}^{b} f \geqslant 0$$

2. $f,g \in \mathbb{R}[a,b] \; ; \; f \leqslant g \quad [a,b]-n \implies \int_{a}^{b} f \leq \int_{a}^{b} g.$

203. Tétel.
$$f \in R[a,b] \Rightarrow 1$$
. $|f| \in R[a,b]$ 2 . $\left| \int_a^b f \right| \le \int_a^b |f|$

204. Tétel. Az integrálszámítás első középértéktétele:

$$f,g \in \mathbb{R}[a,b] , g \ge 0 , m := \inf \mathcal{R}_f , M := \sup \mathcal{R}_f \Longrightarrow m \cdot \int_a^b g \le \int_a^b (f \cdot g) \le M \cdot \int_a^b g = \lim_{a \to \infty} f(g) = \lim_{a$$

205. Tétel. Az integrálszámítás második középértéktétele:

$$f \in \mathcal{C}[a,b]$$
, $g \in \mathcal{R}[a,b]$, $g \ge 0 \Rightarrow \exists \xi \in (a,b) : \int_a^b (fg) = f(\xi) \cdot \int_a^b g(g) dg$

13.7 Az integrál kiszámítása

206. Tétel. Newton-Leibniz:
$$f \in \mathbb{R}[a,b]$$
, $\exists F$ primitív függvénye f -ne $k \Longrightarrow \int_a^b f = F(b) - F(a) =: [F]_a^b$

 ${
m Megj.:}\ \ {
m A}\ {
m N-L}$ tételben egyik feltétel sem hagyható el.

 $\exists f \in \mathbf{R}[a,b]: \not\exists F$. Példa:

f = sign. Derivált függvény Darboux de sign nem Darboux,

szakaszonként folytonos \Rightarrow sign integrálható. $\exists f: \exists F \land f \text{ nem integrálható. Példa: Volterra példája (nehéz).}$

207. Tétel. Parciális integrálás:

$$f,g \in \mathcal{D}[a,b] \; ; \; f,g' \in \mathcal{R}[a,b] \Rightarrow \int_{a}^{b} (fg') = f(b) \cdot g(b) - f(a) \cdot g(a) - \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(b) - f(a) \cdot g(a) = \int_{a}^{b} (f'g) \cdot g(a) - f(a) \cdot g(a) = \int_{a}^{b}$$

208. Tétel. Helyettesítéssel való integrálás:

$$f \in \mathcal{C}(a,b) \;\; ; \;\; \varphi : [\alpha,\beta] \to [a,b] \;\; ; \;\; \varphi \; \text{folytonosan deriválható } (a,b)\text{-n} \Rightarrow \\ \Rightarrow \int_{\varphi(\alpha)}^{\varphi(\beta)} f = \int_{\alpha}^{\beta} (f \circ \varphi) \cdot \varphi'$$

13.8 Integrálfüggvény

153. Definíció. Legyen $f \in \mathbb{R}[a,b]$; $x_n \in [a,b]$ tetszőlegesen rögzített. Ekkor $[a,b] \ni x \to \int_{x_0}^x f$ az f függvény x_0 -ban eltűnő deriváltfüggvénye.

209. Tétel. A differenciál- és integrálszámítás alaptétele:

Legyen
$$f \in \mathbb{R}[a,b]$$
; $x_0 \in [a,b]$ tetsz.; $F(x) := \int_x^x f$; $(x \in [a,b])$. Ekkor

- 1. $F \in \mathbb{C}[a,b]$ azaz \forall integrálható függvénynek az integrálfüggvénye folytonos függvény.
- 2. Ha még $f \in C\{d\}$, $d \in (a,b) \Rightarrow F \in D\{d\} \land F'(d) = f(d)$ azaz ha f folytonos, akkor az integrálfüggvény deriválható, és a deriváltja egyenlő az f függvénnyel.

13.9 Az integrálszámítás alkalmazásai

Jelölés: $f \in \mathcal{C}^{(n)}(\mathcal{H}) \iff$ az f a \mathcal{H} -n n-szer folytonosan deriválható.

210. Tétel. Taylor-formula az integrálmaradéktaggal:

$$n \in \mathbb{N} \;\; ; \;\; f \in \mathcal{C}(\alpha, \beta) \;\; ; \;\; a \in (\alpha, \beta) \;\; \Rightarrow \;\; \forall x \in (\alpha, \beta) : f(x) - \mathcal{T}_{n,a}(f; x) = \\ = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t) (x - t)^{h} \, \mathrm{d}t$$

211. Tétel. Legyen $n \in \mathbb{N}$; $f \in C(\alpha, \beta)$; $a \in (\alpha, \beta)$. Ekkor $\exists \xi \in (\alpha, \beta)$ melyre $f(x) - \operatorname{T}_{n,a}(f;x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$ azaz Taylor-formula a Lagrange maradéktaggal.

13.10Binomiális sor

212. Tétel. Binomiális tétel:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \wedge (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k \quad n \in \mathbb{N}$$

$$n \in \mathbb{N} : \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{(n-k+1)(n-k+2)\cdots(n)}{k!}$$

154. Definíció.
$$\alpha \in \mathbb{R} : \binom{\alpha}{k} = \frac{\alpha(\alpha - 1)(\alpha - 2) \cdots (\alpha - k + 1)}{k!} \wedge \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k \text{ binomiális sor.}$$

213. Tétel.
$$\forall |x| < 1 : \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$
 abszolút konvergens, és $(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$

Következmény:

$$\forall |x| < 1 : \arcsin x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots$$

$$(\blacktriangle) \ \arcsin' x = \frac{1}{\sqrt{1 - x^2}} \ (|x| < 1) = (1 - x^2)^{-\frac{1}{2}}$$

$$\text{Binom: } \alpha = -\frac{1}{2} : \ \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \cdots \left(-\frac{1}{2} - k + 1\right)}{k!} = (-1)^k \frac{1 \cdot 3 \cdot 5 \cdots (2k - 1)}{2 \cdot 4 \cdot 6 \cdots (2k)}$$

$$\text{Binom: } (1 + x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 + \cdots \Rightarrow$$

$$\Rightarrow (1 + x^2)^{-\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \frac{1 \cdot 3}{2 \cdot 4}x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^6 + \cdots \Rightarrow$$

$$(\blacktriangle) \ \arcsin x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots$$

$$\text{Megj.: elemi fv-ek: } 1 \ , \ x \ , \ \exp \ , \ \sin \ , \ \arcsin \ , \ \ln \ \Rightarrow +, -, \cdot, /, \circ \text{ véges sokszori alkalmazásával az összes}$$

függvény előállítható

13.11 Síkidom területe

Megj.: a terület problémája

$$f:[a,b] \to \mathbb{R} \; ; \; f \ge 0 \; ; \; f \in \mathbb{R}[a,b]$$
 $A:=\left\{ \begin{array}{l} (x,y) \in \mathbb{R}^2 \; \middle| \; a \le x \le b \; , \; 0 \le y \le f(y) \end{array} \right\}$
 $T(A):=\int_a^b f$
Példa: **A kör területe**

$$f(x) := \sqrt{R^2 - x^2} \; ; \; x \in [-R, R] \; ; \; f \in \mathbf{R}[-1, 1]$$

$$T = \int_{-1}^{1} \sqrt{R^2 - x^2} \, \mathrm{d}x = \int_{-1}^{1} (R^2 - x^2)^{\frac{1}{2}} \, \mathrm{d}x = \int_{-\frac{\Pi}{2}}^{\frac{\Pi}{2}} \sqrt{R^2 - R^2 \sin^2 t} R \cos t \, \mathrm{d}t = \left(x := R \sin t \; ; \; -\frac{\Pi}{2} \le t \le +\frac{\Pi}{2} \; ; \; x \in [-1, +1] \Rightarrow t \in \left(-\frac{\Pi}{2}, +\frac{\Pi}{2}\right)\right)$$

$$= R^2 \int_{-\frac{\Pi}{2}}^{+\frac{\Pi}{2}} \underbrace{\sqrt{1 - \sin^2 t} \cos t \, \mathrm{d}t}_{\cos t} = R^2 \int_{-\frac{\Pi}{2}}^{+\frac{\Pi}{2}} \underbrace{\cos^2 t \, \mathrm{d}t}_{\frac{1 + \cos 2t \, \mathrm{d}t}{2}} = R^2 \left[\frac{t}{2} + \frac{\sin 2t}{4}\right]_{-\frac{\Pi}{2}}^{+\frac{\Pi}{2}} = R^2 \cdot \frac{1}{2} \underbrace{\left(\frac{\Pi}{2} - \left(-\frac{\Pi}{2}\right)\right)}_{\Pi} = \frac{R^2 \Pi}{2} \leftarrow$$

Görbe ívhossza 13.12

 \mathbb{R}^n -beli görbék $(n \in \mathbb{N})$

13.12.1 $\mathbb{R} \to \mathbb{R}^n$ típusú függvények

$$f \in \mathbb{R} \to \mathbb{R}^n$$
, $\forall x \in \mathcal{D}_f$, $f(x) \in \mathbb{R}^n$
 $f(x) = (f_1(x), \dots, f_n(x))$
 $f_i \in \mathbb{R} \to \mathbb{R}$ $(i = 1...n)$
 $f = (f_1, \dots, f_n)$ koordinátafüggvények

fontos fogalmak $\mathbb{R} \to \mathbb{R}^n$ függvényekre 13.12.2

- folytonosság
- differenciálhatóság

(koordinátafüggvényenként érvényesül)

155. Definíció. Az $f := (f_1, \ldots, f_n) : [\alpha, \beta] \to \mathbb{R}^n$ folytonosan deriválható, azaz $f \in C^1([\alpha, \beta], \mathbb{R}^n)$, ha $\forall i \in [1..n] : f_i \in \mathbb{R} \to \mathbb{R}$ folytonosan deriválható, és $f' = (f'_1, \dots, f'_n)$ a deriváltfüggvény.

13.12.3Sima elemi görbe

A $\Gamma \in \mathbb{R}^n$ halmaz sima elemi görbe, ha $\exists [\alpha, \beta] \subset \mathbb{R}$, $\varphi \in C^1([\alpha, \beta], \mathbb{R}^n)$: $-\varphi'(t) \neq \underline{0} \ (\forall t \in [\alpha, \beta])$

- $\varphi : [\alpha, \beta] \to \Gamma$ bijektív

A φ a Γ-nak egy paraméteres előállítása.

Példa: $f(t) := \sqrt{1 - t^2}$ $(t \in [-1, +1])$

 $\varphi_1: [-1,+1] \to (t,f(t))$ a Γ egy paraméteres előállítása

 $\varphi_2:[0,\Pi]\to (\cos\xi,\sin\xi)(\xi\,$ szög) szintén a Γ egy paraméteres előállítása.

Megj.: Egy adott görbéhez általában sok paraméterezés adható.

13.12.4 Síkbeli görbe ívhossza (\mathbb{R}^2)

 Γ sima elemi görbe, $\varphi:[\alpha,\beta]\to\mathbb{R}^2$ egy paraméteres előállítás $\varphi(t_i) = (\varphi_1(t_i), \varphi_2(t_i))$; $\mathcal{T} := \{t_0, ..., t_n\} \in \mathcal{F}([\alpha, \beta])$; $\ell(\varphi, \mathcal{T})$ a töröttvonal hossza.

156. Definíció. A $\Gamma \subset \mathbb{R}^2$ sima elemi görbének van ívhossza (a Γ rektifikálható),

ha
$$\left\{ \ell(\varphi, \mathcal{T}) \mid \mathcal{T} \in \mathcal{F}([\alpha, \beta]) \right\} (\subseteq \mathbb{R})$$
 korlátos (alulról jó, nemnegatív számok),
$$\sup \left\{ \ell(\varphi, \mathcal{T}) \mid \mathcal{T} \in \mathcal{F}([\alpha, \beta]) \right\} - t \text{ a } \Gamma \text{ ivhosszának nevezzük.}$$

214. Tétel. $\ell(\Gamma)$ független a Γ paraméteres előállításától.

215. Tétel.

Legyen $\Gamma \subset \mathbb{R}^2$ sima elemi görbe. $\varphi := (\varphi_1, \varphi_2) : [\alpha, \beta] \to \mathbb{R}^2$ paraméterezése Γ -nak. Ekkor Γ rektifikálható, és $\ell(\Gamma) = \int_{\mathbb{R}^3}^{\beta} \sqrt{[\varphi_1'(t)]^2 + [\varphi_2'(t)]^2} dt$

A kör kerülete: $\varphi:[0,2\pi]\to\mathbb{R}^2$, $t\to(R\cos t,R\sin t)$ 1. Példa:

$$\ell(\Gamma) = \int_0^{2\pi} \sqrt{R^2 \sin^2 t + R^2 \cos^2 t} \, \mathrm{d}t = 2R\pi$$

$$f \in \mathrm{C}^1[a,b] \; ; \; \varphi : [a,b] \to \mathbb{R}^2 \; ; \; (t,f(t))$$

$$\ell(\Gamma) = \int_a^b \sqrt{1 + (f'(t))^2} \, \mathrm{d}t \; (\blacktriangle)$$

2. példa:

$$\ell(\Gamma) = \int_a^b \sqrt{1 + (f'(t))^2} \, \mathrm{d}t \ (\blacktriangle)$$

3. Példa: kör kerülete (▲) formulával

13.13 Impropius integrálok

Eddig:
$$f$$
-re vett feltételek $\mathcal{D}_f := [a,b]$ kompakt ; f korlátos (#) ; $f \in \mathbb{R}[a,b]$; $f \to \int_a^b f$ Most: (##) tfh $-\infty < a < b \le +\infty$; $f : [a,b) \to \mathbb{R} : \forall \omega \in (a,b) : f \in R[a,\omega]$ (###) vagy $-\infty \leqslant c < a < +\infty$; $f : (c,a] \to \mathbb{R} : \forall \omega \in (c,a) : f \in \mathbb{R}[\omega,a]$

157. Definíció. f-re teljesül (##).

$$\begin{aligned} & \text{Ha } F(\omega) := \int_a^\omega f \quad \omega \in (a,b) \text{ függvénynek b-ben \exists bal oldali véges határértéke, akkor} \\ & \text{az } \int_a^b f \text{ impropius integrál konvergens, és } \int_a^b f := \lim_{\omega \to b-0} F(\omega) \\ & \text{Az } \int_a^b f \text{ impropius integrál divergens, ha } \not\exists \lim_{\omega \to b-0} F(\omega) \text{ (véges).} \end{aligned}$$

Megj.: hasonlóan (###) is.

13.13.1 Műveletek

216. Tétel.
$$\int_a^b f$$
; $\int_a^b g$ impropius integrálok konvergensek. Ekkor $\Rightarrow \forall \lambda_1, \lambda_2 \in \mathbb{R} : \lambda_1 \int f + \lambda_2 \int g$ konvergens, és $\int_a^b (\lambda_1 f + \lambda_2 g) = \lambda_1 \int_a^b f + \lambda_2 \int_a^b g$.

Megj.: impropius integrál konvergenciája $F(\omega) := \int_a^\omega f + \lim_{\omega \to b} F(\omega)$ bonyolult lehet.

217. Tétel. Majoráns kritérium: $tfh \ 0 \le f \le g$.

Ha
$$\int_a^b g$$
 impropius integrál konvergens, $\Rightarrow \int_a^b f$ impropius integrál is konvergens
Ha $\int_a^b f$ impropius integrál divergens, $\Rightarrow \int_a^b g$ impropius integrál is divergens

14 Többszörös integrálok

Példa: N=2 ; $f:\mathbb{R}^2\to\mathbb{R}$ felület. Pl.: térfogat kiszámítására jó.

A következők kellenek: - \mathbb{R}^{N} -beli intervallumok értelmezése

- az intervallumok mértékének az értelmezése

- az intervallumok felosztásának az értelmezése

158. Definíció.

$$\mathcal{I}^{j} := [a^{j}, b^{j}] \subset \mathbb{R} \text{ korlátos, zárt (kompakt) } N \in \mathbb{N} \text{ ; } j = 1..N \text{ ; } a^{j}, b^{j} \in \mathbb{R} \text{ } \frac{\text{indexelés}}{\text{nem hatványok}}$$

$$\mathcal{I} := \bigvee_{j=1}^{N} \mathcal{I}^{j} \text{ } N \text{-dimenziós intervallum.}$$

159. Definíció.
$$\mathcal{I} \subset \mathbb{R}^N$$
 intervallum. Ekkor $\mu(\mathcal{I}) := \prod_{j=1}^N (b^j - a^j)$ az intervallum mértéke.

160. Definíció.
$$\mathcal{I} \subset \mathbb{R}^N$$
 intervallum. Ekkor $d(\mathcal{I}) := \sqrt{\sum_{j=1}^N (b^j - a^j)^2}$ az intervallum átmérője.

 $\label{eq:Megj.:} \mbox{$M$ egj.:} \mbox{$N=1,2,3$. Mi a jelentése? (hossz,terület,térfogat)}$

Megj.:
$$\mathcal{I}$$
 intervallum felosztásai: a koordinátatengelyekkel párhuzamosan, és ezekenek a Descartes szorzatai. $j=1,2,...,N:\mathcal{I}^j\subset\mathbb{R}$ egy felosztása:

$$a^j = x_0^j < x_1^j < \dots < x_{m_j}^j = b^j \quad m_j + 1 \text{ db osztópont, azaz}$$

$$\mathcal{T}^j := \left\{ \left[x_{r_j-1}^j \; , \; x_{r_j}^j \right] = \mathcal{I}^j_{r_j} \; \middle| \; 1 \leqslant r_j \leqslant m_j \;
ight\}$$

R-beli kompakt intervallumok halmaza

161. Definíció. Az $\mathcal{I} \subset \mathbb{R}^N$ intervallum egy felosztása: $\mathcal{T} := \mathcal{T}^1 \times \mathcal{T}^2 \times \times \mathcal{T}^N = \left\{ \mathcal{I}^1 \times \times \mathcal{I}^N \middle| 1 \leqslant r_j \leqslant m_j \; ; \; j = 1..N \right\}$ intervallumrendszer $\mathcal{F}(\mathcal{I})$ az \mathcal{I} felosztásainak a halmaza.

$$\begin{array}{lll} \mathrm{Megj.:} & \mathrm{Vil\acute{a}gos:} & \mathcal{I} = \bigcup_{\mathbb{J} \in \mathcal{T}} \mathbb{J} \;\; ; \;\; \mu(\mathcal{I}) = \sum_{\mathbb{J} \in \mathcal{T}} \mu(\mathbb{J}) \\ & \mathcal{T} \in \mathcal{F}(\mathcal{I}) \;\; ; \;\; \mathbb{J} \; \mathrm{r\acute{e}szintervallum} \end{array}$$

Többszörös integrál értelmezése 14.1

- 1. lépés: $f: \mathcal{I} \to \mathbb{R}$; $\mathcal{I} \subset \mathbb{R}^N$ intervallum; f korlátos
- 2. lépés: tetszőleges korlátos halmazon értelmezett függvényekre való áttérés

162. Definíció. $T \in \mathcal{F}(\mathcal{I})$. Ekkor

$$s(f, \mathcal{T}) := \sum_{\mathbb{J} \in \mathcal{T}} \inf \left\{ f(x) \, \middle| \, x \in \mathbb{J} \, \right\} \cdot \mu(\mathbb{J})$$

alsó közelítő összege.

az f függvény T felosztáshoz tartozó

$$S(f,\mathcal{T}) := \sum_{\mathbb{J} \in \mathcal{T}} \sup \Big\{ f(x) \, \Big| \, x \in \mathbb{J} \, \Big\} \cdot \mu(\mathbb{J}) \qquad \text{az } f \text{ f\"{u}gg} \text{ v\'{e}ny } \mathcal{T} \text{ feloszt\'{a}shoz tartoz\'{o}}$$
 felső közelítő összege.

 $\left\{ \begin{array}{l} s(f,\mathcal{T}) \middle| \mathcal{T} \in \mathcal{F}(\mathcal{I}) \right\} \subset \mathbb{R} \\ \left\{ S(f,\mathcal{T}) \middle| \mathcal{T} \in \mathcal{F}(\mathcal{I}) \right\} \subset \mathbb{R} \end{array} \right. \quad halmazok \ korlátosak.$

163. Definíció. $\mathcal{I} \subset \mathbb{R}^N$ intervallum ; $f: \mathcal{I} \to \mathbb{R}$ korlátos függvény. Ekkor $\mathrm{I}_*f:=\sup\Big\{\;s(f,\mathcal{T})\;\Big|\;\mathcal{T}\in\mathcal{F}(\mathcal{I})\;\Big\}$ az f függvény Darboux-féle alsó integrálja. $\mathrm{I}^*f:=\inf\left\{S(f,\mathcal{T})\,\Big|\,\mathcal{T}\in\mathcal{F}(\mathcal{I})
ight\}$ az f függvény Darboux-féle felső integrálja.

164. Definíció. Az f Riemann-integrálható az \mathcal{I} -n, ha $I_*f = I^*f$. Jelölés: $\int_{\tau} f$ az integrál értéke.

Problémák: - milyen függvények integrálhatóak? - ha igen, hogyan?

Műveletek és az integrál kapcsolata

- $\mathbb{R}^N \to \mathbb{R} \; ; \; \mathcal{I} \subset \mathbb{R}^N \text{ intervallumok } ; \; f: \mathcal{I} \to \mathbb{R} \; ; \; I_*(f) \leqslant I^*(f)$
- Oszcillációs összegek
- Integrálhatóság oszcillációs összegekkel

219. Tétel.
$$\mathcal{I} \subset \mathbb{R}^N$$
 ; $f, g : \mathcal{I} \to \mathbb{R}$; $f, g \in \mathcal{R}(\mathcal{I})$; $\lambda \in \mathbb{R}$. Ekkor $f + g \in \mathcal{R}(\mathcal{I})$ és
$$\int_{\mathcal{I}} (f + g) = \int_{\mathcal{I}} f + \int_{\mathcal{I}} g$$

$$\lambda f \in \mathcal{R}(\mathcal{I})$$
 és
$$\int_{\mathcal{I}} (\lambda f) = \lambda \int_{\mathcal{I}} f$$

220. Tétel.
$$\mathcal{I} \subset \mathbb{R}^N$$
 ; $f, g : \mathcal{I} \to \mathbb{R}$; $f, g \in \mathcal{R}(\mathcal{I})$. Ekkor $f \leqslant g \Rightarrow \int_{\mathcal{I}} f \leqslant \int_{\mathcal{I}} g$ $|f| \in \mathcal{R}(\mathcal{I}) \Rightarrow \left| \int_{\mathcal{I}} f \right| \leqslant \int_{\mathcal{I}} |f|$

221. Tétel. középértéktétel:
$$\mathcal{I} \subset \mathbb{R}^N$$
 intv.; $f \in \mathcal{R}(\mathcal{I})$; $\rho \to [0, +\infty)$; $\rho \in \mathcal{R}(\mathcal{I})$.
 $Ekkor \ f \cdot \rho \in \mathcal{R}(\mathcal{I})$ és $m \cdot \int_{\mathcal{I}} \rho \leqslant \int_{\mathcal{I}} f \rho \leqslant M \cdot \int_{\mathcal{I}} \rho$ ahol $m = \inf \mathcal{R}_f$; $M = \sup \mathcal{R}_f$ ha még $f \in \mathcal{C}(\mathcal{I})$ akkor $\exists \xi \in \mathcal{I} : \int_{\mathcal{I}} f \rho = f(\xi) \cdot \int_{\mathcal{I}} \rho$

222. Tétel. Elégséges feltétel az integrálhatóságra: Ha $f \in C(\mathcal{I}) \Rightarrow f \in R(\mathcal{I})$.

Megj.: lásd N=1 eset ; Heine+oszcillációs összegek.

14.3 Lebesgue féle kritérium (szükséges-elégséges feltétel)

165. Definíció. Az $A \subset \mathbb{R}^N$ Lebesgue értelemben nullmértékű, ha $\forall \varepsilon > 0 \exists \mathcal{I}_n \subset \mathbb{R}^N \quad (n \in \mathbb{N})$ intervallumsorozat, melyre

$$\mathcal{A} \subset \bigcup_{n \in \mathbb{N}} \mathcal{I}_n$$
 (azaz lefedi \mathcal{A} -t)
$$\sum_{n=1}^{\infty} \mu(\mathcal{I}_n) < \varepsilon$$
 összmérték.

Példák: 1. $\mathcal{A} \subset \mathbb{R}^N$ véges halmaz $\Rightarrow \mathcal{A}$ Lebesgue értelemben nullmértékű. 2. $\mathcal{A} \subset \mathbb{R}^N$ megszámlálható $\Rightarrow \mathcal{A}$ Lebesgue értelemben nullmértékű.

$$\varepsilon > 0: \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{1 - \frac{1}{2}} = 2 \quad \text{ekkor} \quad \sum_{n=0}^{\infty} \frac{\varepsilon}{2^{n+1}} = \varepsilon$$

223. Tétel. Lebesgue kritérium:

⇔ m.m. (majdnem minden) $f \in \mathcal{R}(\mathcal{I}) \iff \exists \mathcal{A} \subset \mathcal{I}$, \mathcal{A} Lebesgue értelemben nullmértékű : $f \in \mathcal{C}(\mathcal{I} \setminus \mathcal{A})$

166. Definíció. Az integrál értelmezése tetszőleges $\mathcal{H} \subset \mathbb{R}^N$ korlátos halmazon:

 $\mathcal{H} \subset \mathbb{R}^{N} \text{ korlátos halmaz } ; \ f: \mathcal{H} \to \mathbb{R} \ \Rightarrow \ \exists \mathcal{I} \subset \mathbb{R}^{N} \ ; \ \mathcal{H} \subset \mathcal{I}$ $\tilde{f}(x) := \left\{ \begin{array}{cc} f(x) & \text{ha } x \in \mathcal{H} \\ 0 & \text{ha } x \in \mathcal{I} \setminus \mathcal{H} \end{array} \right.$

$$\tilde{f}(x) := \begin{cases} f(x) & \text{ha } x \in \mathcal{H} \\ 0 & \text{ha } x \in \mathcal{I} \setminus \mathcal{H} \end{cases}$$

Megj.: H a határon nem folytonos, de ott viszont Lebesgue értelemben nullmértékű.

167. Definíció.
$$f:\mathcal{H}\to\mathbb{R}$$
 Riemann-integrálható, ha $\tilde{f}:\mathcal{I}\to\mathbb{R}$ Riemann-integrálható, azaz $\int_{\mathcal{H}}f=\int_{\mathcal{I}}\tilde{f}$

Integrál kiszámítása (szukcesszív integrálással)

Megj.: 2 db egymás utáni egyváltozós integrál kiszámításával

14.4.1 intervallumon

$$\mathcal{I} \subset \mathbb{R}^{N} \;\; ; \;\; N = 2 \;\; ; \;\; \mathcal{I} = [a,b] \times [c,d]$$

$$\int_{\mathcal{I}} = \int_{a}^{b} \left(x \to \underbrace{\int_{c}^{d} \left(y \to f(x,y) \right) \mathrm{d}y}_{x \text{-nek ery függyénve}} \right) \mathrm{d}x \stackrel{\text{jelölés}}{=} \int_{a}^{b} \int_{c}^{d} f(x,y) \mathrm{d}y \mathrm{d}x \stackrel{!}{=} \int_{c}^{d} \int_{a}^{b} f(x,y) \mathrm{d}x \mathrm{d}y$$

14.4.2 normáltartományon

$$\begin{split} \varphi, \psi &: [a,b] \to \mathbb{R} \quad ; \quad \varphi \leqslant \psi \quad ; \quad \varphi, \psi \text{ folytonos függvények.} \\ \mathcal{A} &:= \left\{ \left. (x,y) \, \right| \, a \leqslant x \leqslant b \quad ; \quad \varphi(x) \leqslant y \leqslant \psi(x) \, \right\} \end{split}$$

224. Tétel.

$$\mathcal{H} \subset \mathbb{R}^2 \; ; \; \text{x-re n\'ezve norm\'altartom\'any} \; ; \; f:\mathcal{H} \to \mathbb{R} \; \text{folytonos} \; ; \; (\Rightarrow f \in \mathbf{R}(\mathcal{H})). \; Ekkor \int_{\mathcal{H}} f = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) \mathrm{d}y \right) \mathrm{d}x$$

Integráltranszformáció 14.5

helyettesítéssel való integrálás:

$$\begin{array}{l} \mathrm{N}{=}1 \;\; ; \;\; (\mathbb{R} \rightarrow \mathbb{R}) \;\; ; \;\; \int_a^b f(x) \mathrm{d}x \;\; ; \;\; x = \varphi(t) \;\; ; \;\; t \in [a,b] \;\; ; \;\; \varphi \in \mathrm{D} \;\; ; \\ \varphi \; \mathrm{szig.mon, \, azaz \; invertálhat} \circ \; (\exists \varphi^{-1}) \;\; ; \;\; \varphi(\alpha) = a \;\; ; \;\; \varphi(\beta) = b \,.} \\ \mathrm{Ekkor} \; \int_a^b f(x) \mathrm{d}x = \int_\alpha^\beta f(\varphi(t)) \cdot \varphi'(t) \, \mathrm{d}t \end{array}$$

168. Definíció.
$$\mathcal{T} := \left\{ \varphi : \mathcal{U} \to \mathcal{V} \middle| \mathcal{U}, \mathcal{V} \subset \mathbb{R}^N \text{ nyílt } ; \varphi \text{ folyt.der. } ; \det \varphi' \neq 0 \right\}$$

$$C_{\varphi} := \left\{ f : \mathbb{R}^N \to \mathbb{R} \middle| \substack{\text{tart\'o}, \text{support} \\ \text{supp} f \subset \mathcal{R}_{\varphi}} ; \text{ supp} f \text{ kompakt} \right\}$$
 supp
$$f := \overline{\left\{ x \in \mathcal{D}_f \middle| f(x) \neq 0 \right\}} \leftarrow \text{lez\'ar\'as, hozz\'avessz\"uk az \"osszes torl\'odási pontot.}$$

225. Tétel.
$$\varphi \in \mathcal{T}$$
 ; $\varphi : \mathcal{U} \to \mathcal{V}$; $f \in C_{\varphi} \Rightarrow \int_{\mathcal{V}} f = \int_{\mathcal{U}} f \circ \varphi \cdot |\det \varphi'|$

Megj.: (példák jegyzetben)

pl. körcikk esetén polárkoordinátákra célszerű áttérni.

Alkalmazások: terület, térfogat.

14.5.1 R-sugarú félkör területe

$$\mathcal{A} := \left\{ \begin{array}{l} (x,y) \middle| -R \leqslant x \leqslant +R \hspace{0.2cm} ; \hspace{0.2cm} 0 \leqslant y \leqslant \sqrt{R^2 - x^2} \hspace{0.2cm} \right\}$$

$$\mathbf{T}(\mathcal{A}) = \int_{-R}^{+R} \sqrt{R^2 - x^2} \, \mathrm{d}x = \frac{R^2 \pi}{2} \hspace{0.2cm} \text{ahol} \hspace{0.2cm} \mathbf{T}(\mathcal{A}) := \int_{\mathcal{A}} 1$$

$$\Phi \in \mathbb{R}^2 \to \mathbb{R}^2 \hspace{0.2cm} ; \hspace{0.2cm} \Phi : \hspace{0.2cm} (r,\varphi) \to \hspace{0.2cm} (r \cdot \cos \varphi, r \cdot \sin \varphi) \hspace{0.2cm} ; \hspace{0.2cm} \Phi(r,\varphi) = (r \cdot \cos \varphi, r \cdot \sin \varphi)$$

$$\mathcal{R}_{\Phi} = \overline{\mathcal{A}} = \left\{ \begin{array}{l} (x,y) \middle| -R \leqslant x \leqslant +R \hspace{0.2cm} ; \hspace{0.2cm} 0 < y < \sqrt{R^2 - x^2} \end{array} \right\}$$

$$\Phi \in \mathcal{T} \hspace{0.2cm} ; \hspace{0.2cm} (x,y) \in \mathcal{A} : f(x,y) = 1 \hspace{0.2cm} \text{konstans fv.} \hspace{0.2cm} ; \hspace{0.2cm} \text{supp} \hspace{0.2cm} f = \mathcal{A} \hspace{0.2cm} ; \hspace{0.2cm} \mathcal{A} \hspace{0.2cm} \text{kompakt}$$

15 Vonalintegrál

15.1 Paraméteres integrál

169. Definíció. $n \in \mathbb{N}$; $\mathcal{U} \subset \mathbb{R}^n$ nyílt ; $\mathcal{I} = [a,b] \subset \mathbb{R}^n$ intervallum ; $f: \mathcal{U} \times \mathcal{I} \to \mathbb{R}$ folytonos függvény. Ekkor $\varphi: \mathcal{U} \to \mathbb{R}$; $x = (x_1, ..., x_n)$; $\varphi(x) := \int_a^b f(x,t) dt$ függvényt paraméteres integrálnak nevezzük.

226. Tétel. Parciális integrálás tétele:

a) $\mathcal{U} \subset \mathbb{R}^n$; $f: \mathcal{U} \times \mathcal{I} \to \mathbb{R}$ folytonos függvény $\Rightarrow \varphi: \mathcal{U} \to \mathbb{R}$ folytonos b) $\forall i = 1..n: \exists \partial_i f \text{ \'es } \partial_i f \in \mathcal{C} \Rightarrow \varphi \text{ folytonasn deriv\'alhat\'o az } \mathcal{U}\text{-n},$ $\text{\'es } \partial_i \varphi(x) = \int_a^b \partial_i f(x,t) dt \quad (x \in \mathcal{U})$

15.2 Cauchy-Riemann egyenletek

170. Definíció. $\mathcal{U}\subset \mathbb{C}$ nyílt ; $f:\mathcal{U}\to \mathbb{C}$; $a\in\mathcal{U}$.

Ekkor az f differenciálható az $a \in \mathcal{U}$ -ban $(f \in D\{a\})$, ha $\exists \lim_{z \to a} \frac{f(z) - f(a)}{z - a}$, és $\in \mathbb{C}$.

227. Tétel.

$$f \in \mathcal{D}\{a\} \Leftrightarrow \exists A \in \mathbb{C} \exists \varepsilon : \mathcal{U} \to \mathbb{C}, \lim_{a} \varepsilon = 0 \quad : \quad f(z) - f(a) = A(z-a) + \varepsilon(z)(z-a) \quad (z \in \mathcal{U})$$

228. Tétel. Cauchy-Riemann egyenletek: $\mathcal{U}\subset\mathbb{C}$ nyílt ; $f:\mathcal{U}\to\mathbb{C}$; f=u+iv ;

 $u, v : \mathbb{R}^2 \to \mathbb{R}$; $a = a_1 + i \cdot a_2 \in \mathcal{U}$; $a_1, a_2 \in \mathbb{R}$. Ekkor

 $f \in D\{a\} \Leftrightarrow 1. \quad u,v: \mathbb{R}^2 \to \mathbb{R}$ függvények deriválhatók az a_1 ill a_2 -ben, továbbá

2. teljesülnek a Cauchy-Riemann egyenletek, azaz $\partial_1 u(a_1, a_2) = \partial_2 v(a_1, a_2)$ $\partial_2 u(a_1, a_2) = -\partial_1 v(a_1, a_2)$

15.3 Vektor-vektor függvény vonalintegrálja $(\mathbb{R}^n \to \mathbb{R}^n)$

Példa: $f \in \mathbb{R}^3 \to \mathbb{R}^3$ fizikában erőterek

 $\forall x \in \mathbb{R}^3$ -höz hozzá van rendelve egy $f(x) \in \mathbb{R}^3$ érték

Probléma: pl. gravitációs erőtér $f: \mathbb{R}^3 \to \mathbb{R}^3$

egységnyi tömeget elmozdítunk egy görbén,

mennyi munkát végzünk? $W = F \cdot s$; $W = |\underline{F}| \cdot \underline{s}$; $W = \langle F, s \rangle$

ötlet: görbe felbontása szakaszokra

15.4 sima utak

171. **Definíció.** $n \in \mathbb{N}$; \mathbb{R}^n ; $\varphi : [a,b] \to \mathbb{R}^n$ $(a < b ; a,b \in \mathbb{R})$ folytonosan deriválható függvényt \mathbb{R}^n -beli sima útnak nevezzük.

172. Definíció. $\Gamma \subset \mathbb{R}^n$ sima görbe, ha $\exists \varphi : [a,b] \to \mathbb{R}^n$ sima út, melyre $\mathcal{R}_{\varphi} = \Gamma$. Ilyenkor a φ a Γ görbének egy paraméteres előállítása.

Megj.: A φ a-beli deriváltja $\varphi'(a) = \lim_{t \to 0+0} \frac{\varphi(a+t) - \varphi(a)}{t}$

173. Definíció.

 $a,b\in\mathbb{R}$; a< b; $\varphi:[a,b]\to\mathbb{R}^n$ függvény \mathbb{R}^n -beli szakaszonként sima út, ha 1 $\varphi\in C$

2. $\exists a = t_0 < t_1 < \dots < t_m = b : \varphi \big|_{[t_i, t_{i+1}]}$ sima út

Példa: 1. $a, b \in \mathbb{R}^n$; szakasz $\varphi(t) := a + t(b - a) \quad (t \in [0, 1])$

- 2. töröttvonal $m \in \mathbb{N}$; a_0 , $a_m \in \mathbb{R}^n$; $\varphi: [0,m] \to \mathbb{R}^n$; $\varphi(t) := a_i + (t-i)(a_{i+1} a_i)$; $t \in [i,i+1]$; i = 0..m 1 szakaszonként sima út.
- 3. $\varphi(t) := (\cos t, \sin t)$; $t \in [0, 2\pi]$; $\varphi : [0, 2\pi] \to \mathbb{R}^n$ egységsugarú kör.

15 VONALINTEGRÁL 59

```
174. Definíció. \varphi:[a,a+h]\to\mathbb{R}^n; \psi:[b,b+k]\to\mathbb{R}^n, ahol \varphi(a+h)=\psi(b).
Ekkor a \varphi és a \psi utak egyesítése (\varphi \cup \psi):
 \Phi(t) := \left\{ \begin{array}{ll} \varphi(t) & \text{ha } t \in [a,a+h] \\ \psi(t-a-h+b) & \text{ha } t \in [a+h,a+h+k] \\ A \ \varphi\text{-vel ellent\'etes ir\'any\'it\'a\'s\'u\'u\'t\~\varphi(t) := } \varphi(2a+h-t) & ; \quad t \in [a,a+h] \end{array} \right.
```

229. Tétel. $\mathcal{U} \subset \mathbb{R}^n$ nyílt ; \mathcal{U} összefüggő $\Leftrightarrow \forall x, y \in \mathcal{U}$ pont összeköthető \mathcal{U} -beli szakaszonként sima úttal.

175. **Definíció.** Az $\mathcal{U} \subset \mathbb{R}^n$ tartomány, ha \mathcal{U} nyílt, és \mathcal{U} összefüggő.

176. Definíció. Vonalintegrál: $\mathcal{U} \subset \mathbb{R}^n$ tartomány ; $\varphi : [a,b] \to \mathcal{U}$ szakaszonként sima út; $f : \mathcal{U} \to \mathbb{R}^n$. Ekkor a $\int_{-\infty}^{\infty} \langle f \circ \varphi , \varphi' \rangle$ számot az f függvény φ útra vett vonalintegráljának nevezzük, és $\int_{-\infty}^{\infty} f \cdot el \, jelöljük$.

A vonalintegrál egyszerű tulajdonságai

230. Tétel. $\mathcal{U} \subset \mathbb{R}^n$ tartomány ; $n \in \mathbb{N}$; $f, g : \mathcal{U} \to \mathbb{R}^n$ folytonos függvények; $\lambda_1,\lambda_2\in\mathbb{R}$; $\varphi:[a,a+h]\to\mathcal{U}$; $\psi:[b,b+k]\to\mathcal{U}$ szakaszonként sima utak ; $\varphi(a+h) = \psi(b)$. Ekkor 1. $\int_{\mathbb{S}^2} (\lambda_1 f + \lambda_2 g) = \lambda_1 \int_{\mathbb{S}^2} +\lambda_2 \int_{\mathbb{S}^2} g$ 2. $\int_{\varphi} f = -\int_{\tilde{\varphi}} f$ $\tilde{\varphi} \text{ a } \varphi \text{ ellentettje (visszafele, fordított paraméterezéssel)}$ 3. $\int_{\varphi \cup \psi} f = \int_{\varphi} f + \int_{\psi}$ intervallum szerinti additivitás
ahol $M := \max \{ \| f(x) \|_2 \mid x \in \mathcal{R}_{\varphi} \} ;$ $(f \text{ kompakt halmazon folytonos, } \exists M) ;$ $\ell(\varphi) = \mathcal{R}_{\varphi} \text{ görbe hossza.}$

Megj.: f-nek lehet értelmezni F primitív függvényét $f \in \mathbb{R}^n \to \mathbb{R}^n \Rightarrow F \in \mathbb{R}^n \to \mathbb{R}^n$ - igaz N-L f erőtér $\Rightarrow F$ potenciál

Primitív függvények

177. **Definíció.** $\mathcal{U} \subset \mathbb{R}^n$ tartomány ; $f: \mathcal{U} \to \mathbb{R}^n$. $Az F : \mathcal{U} \to \mathbb{R}$ függvényt az f primitív függvényének nevezzük, ha $F \in D(\mathcal{U})$ $\forall x \in \mathcal{U} : F'(x) = f(x)$ Megj.: Ha $F: \mathcal{U} \to \mathbb{R}$ diffható, akkor $F'(x) = (\partial_1 F(x), ..., \partial_n F(x))$

231. Tétel. $\mathcal{U} \subset \mathbb{R}^n$ tartomány ; $f: \mathcal{U} \to \mathbb{R}^n$. Ekkor $F: \mathcal{U} \to \mathbb{R}$ primitív függvénye f-nek $\Rightarrow F + c$ is primitív függvénye f-nek $(c \in \mathbb{R})$ $F_1, F_2: \mathcal{U} \to \mathbb{R}$ primitív függvénye f-nek $\Rightarrow \exists c_0 \in \mathbb{R} \forall x \in \mathcal{U}: F_1(x) - F_2(x) = c_0$

Primitív függvény létezése 15.7

233. Tétel. Ha $f: \mathcal{U} \to \mathbb{R}^n$ függvénynek van primitív függvénye, akkor $\forall \varphi \ szakaszonként \ sima, zárt útra: \int_{\mathbb{R}^{d}} f = 0.$

15 VONALINTEGRÁL 60

Köv.: Ha f-nek van primitív függvénye $\Rightarrow \int_{\overline{AB}} f$ vonalintegrál független attól, hogy milyen úton jutunk el oda (A-ból B-be).

$$\begin{array}{l} \varphi_1, \varphi_2 \text{ tetsz\"oleges szakaszosan sima \'ut} \quad ; \\ \varphi_1: [\alpha,\beta] \to \mathbb{R}^n \quad ; \quad \varphi_2: [a,b] \to \mathbb{R}^n \quad ; \\ \varphi_1(\alpha) = \varphi_2(a) \quad ; \quad \varphi_2(\beta) = \varphi_2(b) \quad ; \quad \int_{\varphi_1} f = \int_{\varphi_2} f \\ \tilde{\varphi_2}: = \text{visszafele } \varphi_2 \text{ azaz} \int_{\tilde{\varphi_2}} f = -\int_{\varphi_2} \Rightarrow \int_{\varphi_1} f = \int_{\varphi_2} f \end{array}$$

15.8 Integrálfüggvény

Megi.: (Konzervatív) erőterek.

178. Definíció. $f: \mathcal{U} \to \mathbb{R}^n$, melyre $\forall \varphi$ szakaszosan sima, zárt útra $\oint_{\omega} f = 0$.

Legyen $a\in\mathcal{U}$ rögz. Ekkor a $\Phi(x):=\int_{\overline{ax}}f$ az f egy integrálfüggvénye. (ahol \overline{ax} tetszőleges szakaszosan sima a-t és x-et összekötő út)

234. Tétel. $\mathcal{U} \subset \mathbb{R}^n$ tartomány ; $f: \mathcal{U} \to \mathbb{R}^n$ folyt. ; $\oint_{\varphi} f = 0$. Ekkor a Φ integrálfüggvény ($\forall a \in \mathcal{U}$ esetén) deriválható, és $\Phi'(x) = f(x)$ ($x \in \mathcal{U}$).

15.9 Feltételek primitív függvények létezéséhez

235. Tétel. primitív függvény létezésének szükséges feltétele:

 $\mathcal{U} \subset \mathbb{R}^n$ tartomány ; $f: \mathcal{U} \to \mathbb{R}^n$; $f \in \mathcal{D}$; f-nek $\exists F$ primitív függvénye. Ekkor az f' deriváltmátrix szimmetrikus, azaz $\partial_j f_i = \partial_i f_j$ $(1 \leqslant i, j \leqslant n \; ; \; f = (f_1, ..., f_n))$

179. Definíció.

 $\mathcal{U} \subset \mathbb{R}^n$ halmaz az $a \in \mathcal{U}$ pontra nézve csillagtartomány, ha $\forall x \in \mathcal{U}: [a,x] \subset \mathcal{U}$.

236. Tétel. Elégséges feltétel primitív függvény létezésére:

$$\mathcal{U} \subset \mathbb{R}^n$$
 az $\overline{a \in \mathcal{U}}$ -ra nézve csillagtartomány $f: \mathcal{U} \to \mathbb{R}^n$ folytonosan deriválható az f' deriváltmátrix szimmetrikus $\Rightarrow f$ -nek létezik primitív függvénye.

1. Példa:
$$f(x,y) := \binom{x+y}{x-y} \quad (x,y) \in \mathbb{R}^2$$
 Van-e primitív függvénye? Ha igen, határozzuk meg.
$$\exists ?F : \mathbb{R}^2 \to \mathbb{R} \quad ; \quad F \in \mathbf{D} \quad ;$$

$$F'(x,y) = (\partial_x F(x,y), \partial_y F(x,y)) = (x+y,x-y)$$

$$\partial_x F(x,y) = x+y \Rightarrow F(x,y) = \frac{x^2}{2} + xy + h(y)$$

$$\partial_y F(x,y) = x + h'(y) = x - y. \text{ Ha } h'(y) = -y \text{ azaz } h(y) = \frac{-y^2}{2} + c \text{ akkor}$$

$$F(x,y) = \frac{x^2}{2} + xy - \frac{y^2}{2} + c \quad (x,y) \in \mathbb{R}^2$$

Megj.: Ez egy általánosan alkalmazható módszer.

Megj.: $f'(x,y) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ $\forall (x,y) \in \mathbb{R}^2$ -re szimmetrikus és az egész sík csillagtartomány

15 VONALINTEGRÁL 61

2. Példa:
$$f(x,y) := \binom{x-y}{x+y} \quad (x,y) \in \mathbb{R}^2$$
 Van-e primitív függvénye? Ha igen, határozzuk meg.
$$\exists ?F : \mathbb{R}^2 \to \mathbb{R} \quad ; \quad F \in \mathcal{D} \quad ;$$

$$F'(x,y) = (\partial_x F(x,y), \partial_y F(x,y)) = (x-y,x+y)$$

$$\partial_x F(x,y) = x-y \Rightarrow F(x,y) = \frac{x^2}{2} - xy + h(y)$$

$$\partial_y F(x,y) = -x + h'(y) = x-y \Rightarrow$$

$$2x = h'(y) - y \Rightarrow \nexists \text{ primitív függvénye } f\text{-nek}$$

$$\underset{x \in Sak}{\text{csak}} \underset{x \in Si}{\text{prigg}} \underset{\text{függ}}{\text{függ}}$$

Megj.: $f'(x,y) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ $\forall (x,y) \in \mathbb{R}^2$ -re <u>nem</u> szimmetrikus $\nexists F$ primitív függvénye f-nek

Megj.: Azokat az $\mathbb{R}^n \to \mathbb{R}^n$ függvényeket, melyeknek \exists primitív függvénye konzervatív erőtereknek nevezzük. (örvénymentes erőterek)