(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 October 2001 (25.10.2001)

(10) International Publication Number WO 01/79526 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/DK01/00264

(22) International Filing Date: 11 April 2001 (11.04.2001)

C12Q 1/00

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PA 2000 00651 PA 2000 00849 17 April 2000 (17.04,2000) 29 May 2000 (29.05.2000)

(71) Applicant (for all designated States except US): BIOIM-AGE A/S [DK/DK]; Mørkhøj Bygade 28, DK-2860 Søborg (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TERRY, Bernard, Robert [GB/DK]; Frederiksberg Allé 15,1., DK-1820 Frederiksberg C (DK). SCUDDER, Kurt, Marshall [US/DK]; Lavendelhaven 70, DK-2830 Virum (DK). BJØRN, Sara, Petersen [DK/DK]; Klampenborgvej 102, DK-2800 Lyngby (DK). THASTRUP, Ole [DK/DK]; Birkevej 37, DK-3460 Birkerød (DK). ALMHOLT, Dorthe, Christensen [DK/DK]; Egilsgade 32, 4. tv, DK-2300 København S (DK). PRÆSTEGAARD, Morten [DK/DK]; Bueparken 52, DK-2750 Ballerup (DK).

(74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).

- (81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH. CN. CO. CR. CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: LIVE CELL PROCEDURES TO IDENTIFY COMPOUNDS MODULATING INTRACELLULAR DISTRIBUTION OF PHOSPHODIESTERASE (PDE) ENZYMES

(57) Abstract: An alternative therapeutic approach for PDE4 inhibition is disclosed. PDE4 dislocators, will remove the PDE4 away from the native location in the cell and thereby increase the concentration of cAMP in this location. By dislocating the PDE4, and thereby not acting directly on the catalytic, among phosphodiesterase inhibitors, well conserved site, the compound will act e.g. at the binding domain of the PDE4, thereby providing isoform-specific 'inhibitors' of PDE4. The dislocation of PDE4s are visualised with fusions to GFP. The native location is induced by treatment with Rolipram.

WO 01/79526 PCT/DK01/00264

Live cell procedur s to id ntify compounds modulating intracellular distribution of phosphodiest ras (PDE) nzymes

Background

5 Cyclic AMP is a ubiquitous second messenger. It is generated through the action of adenylyl cyclase and serves to transduce the action of many hormones, neurotransmitters and other cellular effectors. cAMP exerts its effects on cells through its ability to bind to specific intracellular regulatory proteins. These are protein kinase A (PKA), cyclic nucleotide gated ion channels (CNG channels) and cyclic AMP stimulated GTPase exchange factors (cAMP-GEFs, EPACs). Such effectors allow cAMP to regulate cellular processes in a cell-type specific fashion. Thus elevated cAMP levels can for example affect CNS function (e.g. depression), cardiovascular function, inflammatory cells/immune system, cell adhesion and metabolic processes. These actions, however, depend upon cAMP being elevated not only in particular cell types but also in particular intracellular locations (Houslay and Milligan 1997).

The only way to degrade cAMP is through the action of cyclic nucleotide phosphodiesterases (PDEs) (Conti and Jin 1999). These hydrolyse 3',5' cyclic adenosine monophosphate (cAMP) to 5'-adenosine monophosphate (AMP). It is now well-20 recognised that a large multi-gene family encode PDEs. However, only certain of these enzymes are capable of hydrolysing cAMP. These are members of the PDE1, PDE2, PDE3, PDE4, PDE7, PDE8 and PDE11 families. Selective inhibitors have been generated against certain of these families, e.g. PDE3 and PDE4 enzymes. These inhibitors are targeted to the enzyme catalytic unit, being identified through screens which looked for 25 inhibition of cAMP hydrolysis. Such inhibitors thus display competitive kinetics of inhibition. PDE3 and PDE4 selective inhibitors have, for example, been shown to generate clearly distinct pharmacological responses. For example, the PDE3 inhibitor, milrinone serves as positive inotropic agent and increase the force of contraction of the heart, whereas the PDE4 inhibitor, Rolipram does not (Manganiello et al. 1995). In 30 contrast to this, PDE4 inhibitors (Rollpram, Ariflo®) can inhibit the action of many cells of haematopoiec origin that are associated with inflammatory responses and may also exert antidepressant effects (Rolipram), whereas PDE3 inhibitors (milrinone, cilostamide) do not. Whilst PDE isoenzymes show cell-type specific patterns of expression, PDE3 and

WO 01/79526

PDE4 enzymes are often found in many types of cells, including cardiac myocytes and inflammatory cells. Thus the ability of PDE isoenzyme selective inhibitors to exert very different effects on a particular cell type is not necessarily due to lack of expression of one or other PDE isoenzyme in that cell type. Of course, in certain instances apparent selectivity can arise due to very different levels of PDE3 and PDE4 enzyme activity in cells where different actions of PDE isoenzyme-selective inhibitors have been noted. However, in many instances this is simply not the case. To explain this apparent dichotomy the concept of compartmentalised cAMP signalling has arisen. This envisages that cAMP is not uniformly distributed through the cell interior. Indeed, there is direct evidence which demonstrates this (Hempel et al. 1996).

As cAMP is only degraded by cAMP-PDEs in cells, then the attenuation of their activity can be expected to lead to an increase in cAMP levels and the triggering of a cellular response. As PDE3 and PDE4 enzymes are localised to discrete intracellular sites then 15 they can be expected to control 'localised pools' of cAMP that, in turn, may control the activity of restricted PKA-RII/EPAC/CNG channels. Traditional approaches have focussed entirely on developing active site-directed selective PDE inhibitors to provide novel therapeutic agents (Souness and Rao 1997). However, the realisation (Houslay et al. 1998) that specific PDE4 isoforms show precise intracellular targeting offers a radically 20 new means of altering PDE functioning in intact cells and generating a novel class of therapeutic agents affecting PDE functioning. This exploits an ability to disrupt the intracellular targeting of specific PDE4 isoenzymes and thus to remove the target isoenzyme from its functionally relevant intracellular compartment. Such a relocalisation would be expected to elevate intracellular cAMP levels in a particular subcellular location 25 ('compartment') and lead to activation of PKA/EPAC/CNG channels in the vicinity. This offers the potential of generating isoform-specific 'inhibitors' that rather than acting on the enzyme catalytic unit serve to displace the target PDE4 isoforms from its functional relevant (anchor) site within a cell. This may involve the release of the enzyme into the cytosol where it will be grossly diluted or re-targeted.

30

The PDE4 enzyme family is a family where active-site directed inhibitors have antidepressant and anti-inflammatory action. PDE4 isoforms show distinct and cell-type specific patterns of expression (Houslay et al. 1998). In addition, within cells PDE4 isoforms also exhibit highly specific intracellular distribution patterns. Thus, for example, 35 the PDE4A1 isoform appears to be expressed only in within certain brain regions (Houslay et al. 1998). Indeed, when PDE4A1 is expressed in various cell types it shows a distinctive pattern of intracellular distribution, implying targeted association (Pooley t al. 1997).

5 PDE4 enzymes encoded by four distinct genes (Houslay et al. 1998), specifically hydrolyse cAMP. The large family of PDE4 isoforms arise through the use of alternative promoters and alternative mRNA splicing.

The recruitment or re-localisation of proteins plays a major role in many key signalling systems. This is evident in (i) the activation of protein kinase C (PKC), where recruitment to the plasma membrane is an inherent part of the activation process of this enzyme; (ii) the activation of p42/44 MAP Kinase depends on multiple proteins whose transfer from cytosolic to membrane compartments has a central role and (iii) the cAMP-driven relocalisation of rap1 is crucial to its activation. Thus there is a need for the ability to detect the localisation and any re-localisation of PDE4 enzymes in intact, living cells, as such detection is expected to provide a novel and innovative means for identifying new therapeutic agents.

Present screening assays for compounds interfering with the activity of PDE enzymes are 20 based upon variations of methods which assess PDE catalytic activity; namely the ability of the enzyme to hydrolyse 3'5' cyclic adenosine monophosphate (cAMP) to 5'-AMP. This is usually performed in multiwell format using detection of cAMP hydrolysis using proximity-based radionuclide assays. Such screens detect compounds that alter catalytic activity. To date these have identified compounds that bind to the catalytic site as 25 competitive inhibitors. Thus all compounds reported on to date bind to the catalytic site and thus compete with the substrate cAMP for binding. The enzymes used in these screens often are cell extracts of endogenous PDE4 enzymes that have been partially purified to remove non-PDE4 enzymes. These suffer from the fact that they may be contaminated by as yet unknown PDE species and that they will contain mixtures of PDE4 30 isoforms. An alternative approach has been to use recombinant enzymes in screens where expression has been done in various of cell lines / systems such as sf9 cells, S. cerevisiae, E. coli and transfected mammalian cell lines. This allows for isoform specific analyses to be done. However, as the catalytic unit of PDE4 enzymes is identical for isoforms within each PDE4 subfamily then it is near impossible to conceive that an 35 isoform selective inhibitor could be identified through such analyses. In addition, the

4

catalytic subunit is highly conserved within the enzymes of the 4 gene PDE4 family itself. This means that it is likely to be extremely difficult, although not inconceivable, to obtain inhibitors that are highly selective between each of the four families. To date, the best selectivity reported is that for Ariflo® which shows some 8 to 10-fold selectivity for the PDE4D family over enzymes from the other three PDE4 families (Barnette et al. 1998). There is thus a need to develop strategies that will allow for the identification of compounds that serve as isoform-specific 'inhibitors'. There is therefore a need for procedures that can (i) allow for the rapid screening of agents that disrupt the targeting of PDE4 isoforms in living cells and (ii) identify conformationally distinct forms of PDE4 living cells. Procedures that allow for these aims to be achieved can be expected to lead to the development of novel therapeutics. In addition they will lead to the provision of diagnostic aids to identify compounds exerting conformationally distinct effects on PDE4 enzymes and thus as being of use in compound development to either screen for beneficial e.g. (anti-inflammatory, anti-depressant) or against adverse effects (e.g nausea, vomiting,

Summary of th invention

The examples in the application disclose, for the first tim, that the selective PDE4 inhibitor Rolipram affects the physical properties and behaviour of PDE4A4 such that the general cytoplasmic distribution of PDE4A4 in most cells gradually changes to one consisting of concentrations of PDE4A4 located at several distinct spots within the cytoplasm (example 3). Pre-treatment of the cells with cycloheximide, a protein synthesis inhibitor, prevents formation of spots induced by Rolipram, indicating that protein synthesis is a necessary part of the observed spot formation. Once spots have formed, removal of Rolipram results in their rapid dissolution. However, replacement of Rolipram 10 causes the spots to rapidly reform. This is the first evidence that binding of Rolipram induce changes in distribution.

Additionally, example 15 discloses, also for the first time, that Rolipram affects the physical properties and behaviour of PDE4A1 but in a way that is very different to the effects this compound has on the behaviour of PDE4A4. PDE4A1 accumulates as small perinuclear spots in otherwise untreated cells, and treatment with Rolipram causes these spots to disperse into the cytoplasm. Subsequent removal of Rolipram results in the rapid re-appearance of perinuclear spots.

- 20 Rolipram causes a change in the distribution of probes based on both PDE4A4 and PDE4A1. The non PDE4-specific inhibitors of cyclic nucleotide phosphodiesterases such as trequinsin, etazolate, milrinone, zaprinast, caffeine, theophylline and cilostamide cause no redistribution of the PDE4A probes, even at physiologically very high concentrations, whereas the PDE4-specific inhibitors Denbufylline (BRL30892), RS25344, and Ro 20-1724 produce changes in the distribution of these probes which are indistinguishable from
- those induced by Rolipram treatment (examples 5, 6, 15 and 16). Piclamilast (RP73401), also a highly potent and specific PDE4 inhibitor, induces no redistribution of the PDE4A probes. However, RP73401 will prevent the redistribution that normally is caused by the presence of Rolipram (examples 9 and 17). Thus, only certain classes of PDE inhibitors cause intracellular redistribution of the PDE4A probes, and these are all specific inhibitors of PDE4 enzymes (such as Rolipram); certain other PDE inhibitors are unable to cause the intracellular redistribution of PDE4A, but are able to compete with, reverse or prevent the action of compounds that cause redistribution, and these are also PDE4-specific inhibitors (the non PDE4-specific inhibitors are not able to reverse or inhibit the

WO 01/79526 PCT/DK01/00264

6

intracellular redistribution of PDE4A caused by, for example, Rolipram). The induction of redistribution of the PDE4A probes by a certain class of PDE4-specific Inhibitors is a new and inventive finding of a concept of reverse interaction between different regions of the PDE4A protein; the impulse for redistribution originates at the catalytic cleft of the PDE4A where Rolipram binds, and effects a critical switch-like change at some other domain that anchors the enzymes in position within the cell. This finding immediately provides a screen for compounds that induce the intracellular redistribution of PDE4As (agonists) from those that prevent the induction of redistribution (antagonists) and a screen for those compounds that can antagonise this induced redistribution.

7

Detail d disclosur of the inv ntion

10

15

30

In this deposition, we propose a new method to screen for compounds that can disrupt the intracellular targeting of specific PDE4 isoenzymes/isoforms and that either detect or generate specific conformational states of PDE4 isoforms which either lead to alterations in or define intracellular distribution.

In summary, Rolipram and certain other PDE4 inhibitors affect the distribution of at least two isoforms of PDE4. Compounds with the same effect as Rolipram on the distribution of these PDE4 isoforms also share certain other properties:

- 1) They are all PDE4 inhibitors, although with very wide ranging affinities, from Ro 20-1724 with an IC₅₀ against PDE4 of 2.4 μM (Souness and Rao,1997) to RS25344 with IC₅₀ of 0.28 nM (Saldou et al., 1998). These compounds are termed specific to PDE4, since they inhibit other PDEs either weakly or not at all. The inverse ratio between IC₅₀ of a compound to PDE4s versus its inhibition of other cAMP-degrading PDEs, such as PDE3s is often used as a measure of specificity. For example, (IC₅₀ PDE3)/(IC₅₀ PDE4) values are >2,200 for Rolipram, 1,170,000 for RS25344 but 0.00041 for Trequinsin, clearly marking Rolipram and RS25344 highly specific for PDE4s, whereas Treqinsin is a more specific inhibitor of PDE3 enzymes.
- 20 2) They are all known to be able to displace tritiated Rolipram from what has commonly been referred to as the high affinity Rolipram binding site (HARBS), usually assayed using microsomal vesicles obtained from brain see Souness and Rao (1997). It is widely accepted that compounds having affinity for this site are associated with certain pharmacologies and physiological effects in animals, of which some are beneficial, but others are troublesome and may be characterised as undesirable side-effects, such as headaches, nausea and emesis.
 - 3) The compounds that change the distribution of the PDE4A probes all have a relatively lower affinity for the "cAMP binding site" in PDE4s than they do for the HARBS, so that the ratio of (IC₅₀ PDE4)/(K_i for HARBS) gives a high score for Rolipram-like compounds, and low scores for those compounds that do not cause changes in PDE4 distribution (see Table 1).

Tabl 1

Compound	PDE4 inhibition (IC ₅₀ : μM)	Displacement of [°H] Rolipram (K _i : μM)	PDE4/HARBS
(±) Rolipram	0.31	0.0017	238
Ro 20-1724	2.4	0.017	141
Denbufylline	0.20	0.0041	49
IBMX	14	0.84	17
RP73401	0.0012	0.0004	3
Trequinsin	0.4	1.7	0.23

(Data from Souness and Rao, 1997)

As illustrated in Table 2, the assay of the present invention will *inter alia* identify sharing 5 the Rolipram antidepressent and/or anti-inflammatory properties, without inducing emesis.

Table 2

Drug name	Clinical effect	Emesis	Inhibition of PDE4 catalytic activity	Formation of PDE4A4 spots	Removal of Rolipram- induced PDE4A4- spots	Removal of PDE4A1 spots	Reversal of Rolipram- induced removal of PDE4A1
Rolipram	antidepressant anti- inflammatory	yes	yes	yes	-	yes	spots
Denbufylline (BRL30892)	anti- inflammatory	yes	yes	yes	no	yes	no
RS25344	anti- inflammatory	yes	yes	yes	по	yes	no
RO 20-1724	anti- inflammatory	yes	yes	yes	no	yes	no
Piclamilast (RP73401)	anti- inflammatory	no	yes	no	yes	no	yes
Ariflo®	anti- inflammatory	no	yes	no	yes	no	yes

One aspect of the present invention is the number and type of uses to which this observation can be put. Examples of such uses are:

10 1) Screening of potential or newly discovered PDE4 inhibitors for Rolipram-like properties. Such a screen may be most useful as a counterscreen, for the

10

- detection of compounds which cause undesirable side effects, such as emesis, nausea, headaches, and excess gastric acidity.
- Scr ening for pot ntial or newly discovered PDE4 inhibitors with the ability to reverse or prevent the change in PDE4 distribution caused by Rolipram. Such compounds should be useful inhibitors of PDE4 but lack Rolipram-like properties, such as emesis, nausea, headaches, and excess gastric acidity.
 - 3) Screening for potential inhibitors of PDE4 cellular activity that have a defined and novel mode of action, inhibitors which work by dislocating specific PDE4 isoforms from their normal sites within cells thereby modulating their effectiveness to function in cellular signalling.

The uses can be applied also to gene families B, C and D of PDE4. Uses 1 and 2 can be applied e.g. through exchange of their catalytic domains into the structure of PDE4As. Such hybrid probes, when expressed in cells, bind Rolipram and other PDE4-specific

- 15 inhibitors with affinities reflecting the particular properties of the substitute catalytic site (of PDE4B in the example above), but exhibit the redistribution behaviour of the chosen PDE4A. Measurement of the redistribution behaviour reflects the binding properties specific to the imported catalytic site.
- Uses 1 and 2 may also be applied rather generally to any PDE families and subfamilies

 thereof that do not belong to the class of PDE4 enzymes, through construction of hybrid
 probes between a PDE4A and the catalytic domain of the chosen PDE type in the manner
 described. However with these mixed class hybrids, the choice of Rolipram-like reference
 compound, which for PDE4s may be Rolipram, will be made from those that are known to
 be specific inhibitors of the particular PDE class which contributes the catalytic domain to
 the hybrid probe.

Thus, one aspect of the invention relates to a method to monitor changes in intracellular distribution of phosphodiesterases of subtype 4 (PDE4s) in living cells, the method comprising the steps of:

- 30 (a) recording the intracellular distribution of the PDE4;
 - (b) adding a Rolipram-like reference compound to the cells in (a) or to similar cells, the Rolipram-like compound being able to bind to the catalytic cleft of the PDE4, or to some other part of the enzyme or an associated protein whereby it induces redistribution of the PDE4 probe;
- 35 (c) recording the intracellular distribution of the PDE4 in the cells in step (b);

- (d) determining the effect on the intracellular distribution of the PDE4 of the Rolipram-like reference compound by comparing the intracellular distribution recorded in step (a) with the intracellular distribution recorded in step (c).
- 5 In another aspect of the invention inclusion of multiple cell types allows tissue specific characterisation of specific PDE4 isoforms and/or mutations thereof.

In the present invention phosphodiesterases of class 4 (PDE4s) should be understood as enzymes which are inhibited by Rolipram with an IC₅₀ of less than 5 μM; enzymes capable of reacting in this specific way being selected from the list of all protein products (including all splice variants derived from) the genes designated PDE4A, PDE4B, PDE4C and PDE4D. Throughout this application the PDE4 is selected from this group.

In the present invention the intracellular distribution should be understood as the

distribution of a gene product within the volume of the cell. More specifically, how it is
disposed relative to other identifiable cellular features or compartments, or organelles
such as the plama membrane, the Golgi membranes, endosomal vesicles, nucleus,
endoplasmic reticulum, mitochondria and so on. As such, the intracellular distribution
indicates possible direct association with such features, or at least with components that
themselves are associated in some way with those features. It should be noted that a
distinctive non-homogenous distribution may be maintained not only through static
anchoring or tethering, but may also be maintained through dynamic interchange, where
the rates of association and dissociation favour the state of association. In this context
location, position, localisation and distribution can be used interchangeably.

In the invention the cell and/or cells are mechanically intact and alive throughout the
experiment. In another embodiment of the invention, the cell or cells is/are fixed at a point

30

The mechanically intact living cell or cells could be selected from the group consisting of fungal cells, such as a yeast cells; invertebrate cells including insect cells; and vertebrate cells, such as mammalian cells. These cells are incubated at a temperature of 30°C or above, preferably at a temperature of from 32°C to 39°C, more preferably at a temperature of from 35°C to 38°C, and most preferably at a temperature of about 37°C

in time after the application of the influence at which the response has been predetermined to be significant, and the recording is made at an arbitrary later time.

during the time period over which the influence is observed. In one aspect of the invention the mechanically intact living cell is part of a matrix of identical or non-identical cells.

A cell used in the present invention may contain a nucleic acid construct encoding a 5 fusion polypeptide as defined herein and be capable of expressing the sequence encoded by the construct. The cell is a eukaryotic cell selected from the group consisting of fungal cells, such as yeast cells; invertebrate cells including insect cells; vertebrate cells such as mammalian cells. The preferred cells are mammalian cells.

10 The term "mammalian cell" is intended to indicate any living cell of mammalian origin. The cell may be an established cell line, many of which are available from The American Type Culture Collection (ATCC, Virginia, USA) or a primary cell with a limited life span derived from a mammalian tissue, including tissues derived from a transgenic animal, or a newly established immortal cell line derived from a mammalian tissue including transgenic 15 tissues, or a hybrid cell or cell line derived by fusing different celltypes of mammalian origin e.g. hybridoma cell lines. The cells may optionally express one or more non-native gene products, e.g. receptors, enzymes, enzyme substrates, prior to or in addition to the fluorescent probe. Preferred cell lines include but are not limited to those of fibroblast origin, e.g. BHK, CHO, BALB, NIH-3T3 or of endothelial origin, e.g. HUVEC, BAE (bovine 20 artery endothelial), CPAE (cow pulmonary artery endothelial), HLMVEC (human lung microvascular endothelial cells), or of airway epithelial origin, e.g. BEAS-2B, or of pancreatic origin, e.g. RIN, INS-1, MIN6, bTC3, aTC6, bTC6, HIT, or of hematopoietic

25 JAWS, or of adipocyte origin, e.g. 3T3-L1, human pre-adipocytes, or of neuroendocrine origin, e.g. AtT20, PC12, GH3, muscle origin, e.g. SKMC, A10, C2C12, renal origin, e.g. HEK 293, LLC-PK1, or of neuronal origin, e.g. SK-N-DZ, SK-N-BE(2), HCN-1A, NT2/D1.

origin, e.g.primary isolated human monocytes, macrophages, neutrophils, basophils, eosinophils and lymphocyte populations, AML-14, AML-193, HL-60, RBL-1, U937, RAW,

The examples of the present invention is based on CHO cells. Therefore fibroblast 30 derived cell lines such as BALB, NIH-3T3 and BHK cells are preferred.

In another aspect of the invention the cells could be from an organism carrying in at least one of its component cells a nucleic acid sequence encoding a fusion polypeptide as defined herein and be capable of expressing said nucleic acid sequence. The organism is selected from the group consisting of unicellular and multicellular organisms, such as a mammal.

- 5 Recording the intracellular distribution of the PDE4 in cells can be performed in numerous ways, known to the person skilled in the art. One example is antibody staining of the PDE4s wherein antibodies are raised essentially as described by Shakur *et al.* (1995); the cells are treated and stained essentially as described by Pooley *et al.* (1997). In raising the antisera, it is desirable to use isoform-specific epitopes in order to allow the
- distribution of specific PDE4 isoforms to be identified and recorded. The four families of PDE4s can be indvidually recognised using antisera raised against peptides that copy all or part of the C-terminal protein sequences that are unique to each family. Individual PDE4 isoforms may be recognised by antisera raised in the same way against the unique N-terminal portions of these enzymes.

A preferred way of recording the intracellular distribution of the PDE4 in the cells is by, prior to the initial recording, constructing a probe allowing the location of the PDE4 to be recorded and subsequently transfecting cells with the constructed probe.

20 Throughout this application a probe must be understood as a nucleotide sequence genetically encoding an identifiable protein comprising the PDE4 or part thereof.

15

Identification of the probe protein in a way which allows the location of the PDE4 to be recorded can be performed in several ways. Examples are:

- 25 immunodetection, wherein an engineered antigenic tag is incorporated into the probe, such as the "flag" or "myc" tags which are foreign and therefore unique antigens within mammalian cells, and for which mass-produced antibodies are available so that the need to develop an antibody to each new probe produced is avoided.
- direct detection, wherein the probe is engineered to include a protein sequence able to
 trap or chelate a luminophore, or to breakdown luciferin and thereby generate light, or
 to convert a substrate to a coloured product thereby directly revealing its own cellular distribution.

A preferred method of recording the localisation of the PDE4 is by fluorescence detection, wherein the probe is a fusion of a luminophore and a PDE4, wherein the luminophore

PCT/DK01/00264

13

encodes a fluorescent protein such as the fluorophore GFP. Using fluorescence detection methods the distribution of GFP can be visualised continuously.

In the present context, the term "green fluorescent protein" (GFP) is intended to indicate a 5 protein which, when expressed by a cell, emits fluorescence upon exposure to light of the correct excitation wavelength (e.g. as described by Chalfie, M. et al. (1994) Science 263, 802-805). Such a fluorescent protein in which one or more amino acids have been substituted, inserted or deleted is also termed "GFP". "GFP" as used herein includes wildtype GFP derived from the jelly fish Aequorea victoria, or from other members of the 10 Coelenterata, such as the red fluorescent protein from Discosoma sp. (Matz, M.V. et al. 1999, Nature Biotechnology 17: 969-973) or fluorescent proteins from other animals, fungi or plants, and modifications of GFP, such as the blue fluorescent variant of GFP disclosed by Heim et al. (Heim, R. et al., 1994, Proc.Natl.Acad.Sci. 91:26, pp 12501-12504), and other modifications that change the spectral properties of the GFP fluorescence, or 15 modifications that exhibit increased fluorescence when expressed in cells at a temperature above about 30°C described in PCT/DK96/00051, published as WO 97/11094 on 27 March 1997 and hereby incorporated by reference, and which comprises a fluorescent protein derived from Aequorea Green Fluorescent Protein or any functional analogue thereof, wherein the amino acid in position 1 upstream from the chromophore has 20 been mutated to provide an increase of fluorescence intensity when the fluorescent protein of the invention is expressed in cells. Preferred GFP variants are F64L-GFP, F64L-Y66H-GFP F64L-S65T-GFP, F64L-E222G-GFP. One especially preferred variant of GFP for use in all the aspects of this invention is EGFP (DNA encoding EGFP which is a F64L-S65T variant with codons optimized for expression in mammalian cells is available from 25 Clontech, Palo Alto, plasmids containing the EGFP DNA sequence, cf. GenBank Acc. Nos. U55762, U55763). Another especially preferred variant of GFP is F64L-E222G-GFP.

Another method of recording the localisation of the PDE4 by fluorescence methods uses standard chemical means to label purified PDE4 proteins with fluorophores such as 30 fluorescein, BODIPY or Cy dyes, or rhodamine. Labelling is performed using reactive forms of these dyes as supplied by, for example, Molecular Probes Inc. (Oregon, USA), and allowing the proteins to react under the conditions and protocols recommended by the manufacturers of these reagents. Following chemical labelling and appropriate purification the probes can be microinjected into cells by standard techniques known to 35 the art, and their behaviour within cells observed by fluorescence techniques.

It is desirable, but not always necessary, that the identity of the probe, and hence its cellular distribution, can be followed in living cells. This allows for the progress of transient changes in distribution to be recorded. Thus a preferred aspect of the invention is a method as described, wherein the comparison between the effect of the reagent and the effect of the compound is based on a time series of measurements.

When an assay as been set up, one aspect of such assay is precise knowledge on when (in a time series) the effect is seen. Then, in order to optimise the screening and to

minimise the data-output, the invention relates to a method as described, wherein the comparison between the effect of the reagent and the effect of the compound is based on an end-point measurement.

In general, a probe, i.e. a "GeneX"-GFP fusion or a GFP-"GeneX" fusion, is constructed using PCR with "GeneX"-specific primers followed by a cloning step to fuse "GeneX" in frame with GFP. The fusion may contain a short vector derived sequence between "GeneX" and GFP (e.g. part of a multiple cloning site region in the plasmid) resulting in a peptide linker between "GeneX" and GFP in the resulting fusion protein.

20 Some of the steps involved in the development of a probe include the following: Identify the sequence of the gene. This is most readily done by searching a depository of genetic information, e.g. the GenBank Sequence Database, which is widely available and routinely used by molecular biologists. In the specific examples below the GenBank Accession number of the gene in question is provided.

25

Design the gene-specific primers. Inspection of the sequence of the gene allows design of gene-specific primers to be used in a PCR reaction. Typically, the top-strand primer encompasses the ATG start codon of the gene and the following ca. 20 nucleotides, while the bottom-strand primer encompasses the stop codon and the ca. 20 preceding nucleotides, if the gene is to be fused behind GFP, i.e. a GFP-"GeneX" fusion. If the gene is to be fused in front of GFP, i.e. a "GeneX"-GFP fusion, a stop codon must be avoided. Optionally, the full-length sequence of GeneX may not be used in the fusion, but merely the part that localizes and redistributes like GeneX in response to a signal. In addition to gene-specific sequences, the primers contain at least one recognition sequence for a restriction enzyme, to allow subsequent cloning of the PCR product. The sites are chosen

so that they are unique in the PCR product and compatible with sites in the cloning vector. Furthermore, it may be necessary to include an xact number of nucleotides between the restriction enzyme site and the gene-specific sequence in order to establish the correct reading frame of the fusion gene and/or a translation initiation consensus sequence.

5 Lastly, the primers always contain a few nucleotides in front of the restriction enzyme site to allow efficient digestion with the enzyme.

Identify a source of the gene to be amplified. In order for a PCR reaction to produce a product with gene-specific primers, the gene-sequence must initially be present in the reaction, e.g. in the form of cDNA. Information in GenBank or the scientific literature will usually indicate in which tissue(s) the gene is expressed, and cDNA libraries from a great variety of tissues or cell types from various species are commercially available, e.g. from Clontech (Palo Alto), Stratagene (La Jolla) and Invitrogen (San Diego). Many genes are also available in cloned form from The American Type Tissue Collection (Virginia).

15

Optimise the PCR reaction. Several factors are known to influence the efficiency and specificity of a PCR reaction, including the annealing temperature of the primers, the concentration of ions, notably Mg²⁺ and K⁺, present in the reaction, as well as pH of the reaction. If the result of a PCR reaction is deemed unsatisfactory, it might be because the parameters mentioned above are not optimal. Various annealing temperatures should be tested, e.g. in a PCR machine with a built-in temperature gradient, available from e.g. Stratagene (La Jolla), and/or various buffer compositions should be tried, e.g. the OptiPrime buffer system from Stratagene (La Jolla).

Clone the PCR product. The vector into which the amplified gene product will be cloned
and fused with GFP will already have been taken into consideration when the primers
were designed. When choosing a vector, one should at least consider in which cell types
the probe subsequently will be expressed, so that the promoter controlling expression of
the probe is compatible with the cells. Most expression vectors also contain one or more
selective markers, e.g. conferring resistance to a drug, which is a useful feature when one
wants to make stable transfectants. The selective marker should also be compatible with
the cells to be used.

The actual cloning of the PCR product should present no difficulty as it typically will be a one-step cloning of a fragment digested with two different restriction enzymes into a vector digested with the same two enzymes. If the cloning proves to be problematic, it

WO 01/79526 PCT/DK01/00264

16

may be because the restriction enzym s did not work well with the PCR fragment. In this case one could add longer extensions to the end of the primers to overcome a possible difficulty of digestion close to a fragment end, or one could introduce an intermediate cloning step not based on restriction enzyme digestion. Several companies offer systems for this approach, e.g. Invitrogen (San Diego) and Clontech (Palo Alto).

Once the gene has been cloned and, in the process, fused with the GFP gene, the resulting product, usually a plasmid, should be carefully checked to make sure it is as expected. The most exact test would be to obtain the nucleotide sequence of the fusion-

Once a DNA construct for a probe has been generated, its functionality and usefulness may be evaluated by transfecting it into cells capable of expressing the probe.

15 Some of the advantages of using live cells in the design and operation of assays to screen for therapeutic drugs include the inherent ability of the assay to determine the availability of any compound to targets in the cell interior, and also an inherent assessment of the possible toxicity of a test compound or its cellular metabolites over the period of the assay, for example the PDE4A4 spot assay can involve up to 24 hours
20 exposure of cells to test compounds before the readout, or measurement, is made, during which time any immediate toxic effects of test compounds or their cellular metabolites on cells can be observed.

Numerous cell systems for transfection exist. A few examples are Xenopus oocytes or
25 insect cells, such as the sf9 cell line, or mammalian cells isolated directly from tissues or
organs taken from healthy or diseased animals (primary cells), or transformed mammalian
cells capable of indefinite replication under cell culture conditions (cell lines). However, it
is preferred that the cells used are mammalian cells. This is due to the complex
biochemical interactions specific for each cell type.

30

The fluorescence of the cell is inspected soon after, typically the next day. At this point, two features of cellular fluorescence are noted: the transfection intensity and the subcellular localisation.

WO 01/79526 PCT/DK01/00264

17

The intensity should usually be at least as strong as that of unfused GFP in the cells. If it is not, the sequence or quality of the probe-DNA might be faulty, and should be carefully checked. Other causes of poor expression can often be corrected by linearising the plasmid DNA prior to transfection, or by increasing the concentration of DNA used for a transfection process, or by choosing a different transfection agent or method, of which many are known to those skilled in the art.

The sub-cellular localisation is an indication of whether the probe is likely to perform well. If it localises as expected for the gene in question, e.g. form spots upon treatment with 10 Rolipram, it can immediately go on to a functional test. If the probe is not localised soon after the transfection procedure, it may be because of overexpression at this point in time, as the cell typically will have taken up very many copies of the plasmid, and localisation will occur in time, e.g. within a few weeks, as plasmid copy number and expression level decreases. If localisation does not occur after prolonged time, it may be because the 15 fusion to GFP has destroyed a localisation function, e.g. masked a protein sequence essential for interaction with its normal cellular anchor-protein. In this case the opposite fusion might work, e.g. if GeneX-GFP does not work, GFP-GeneX might, as two different parts of GeneX will be affected by the proximity to GFP. If this does not work, the proximity of GFP at either end might be a problem, and it could be attempted to increase 20 the distance by incorporating a longer linker between GeneX and GFP in the DNA construct. Lack of proper localisation may also be due to a lack of suitable anchorage or scaffold sites within the cell, which can often be corrected by co-transfection of genes coding for the the protein component or components responsible for providing the appropriate anchorage or scaffold sites.

25

If there is no prior knowledge of localisation, and no specific localisation is observed, it may be because the probe should not be localised at this point, because such is the nature of the protein fused to GFP. It should then be subjected to a functional test.

30 In a functional test, the cells expressing the probe are treated with at least one Rolipram-like reference compound. If a redistribution is observed and if prior knowledge suggests that it should translocate from location X to location Y, then the probe has passed the first critical test. In this case it can go on to further characterisation and quantification of the response.

If it does not perform as xpected, it may be because the cell lacks at least one component of the signalling pathway, .g. a cell surface receptor, or the anchoring site is absent or saturated, or there is species incompatibility, e.g. if the probe is modelled on sequence information of a human gene product, and the cell is of hamster origin. In both instances one should identify other cell types for the testing process where these potential problems would not apply.

In the present invention preferred fusion probes are listed in Table 3. Most preferred probes are PDE4 probes of human origin, fusion probes like HSPDE4A1-EGFP,

10 HSPDE4A4-EGFP, HSPDE4A4-H506N-EGFP, and HSPDE4A4-\(\Delta\text{LR2-EGFP}\). The construction and testing of the probes used in the scientific findings of the present invention are described in examples 1 and 2. Terminology used here for PDE4 proteins follows the recommendations of the nomenclature committee (Beavo et al., 1994). The recommendations of the committee are that the first two letters should indicate the source species (HS, Homo sapiens; RN, Rattus norvegicus), that PDE be used to designate cyclic nucleotide phophodiesterase, that an arabic numeral indicate the superfamily (4, in this case), that a single letter indicate the gene family (A, B, C, D for PDE4), that another arabic numeral indicate the splice variant, and finally a single letter be used for the report describing the enzyme in question (generally omitted after validation and full description of the isoform).

The behaviour and use of probes based on PDE4A may also be applied to gene families B, C and D of PDE4 through exchange of their catalytic domains into the structure of PDE4As. Since there exist identifiably homologous regions within the catalytic domains of the four gene families, hybrid molecules can conveniently be constructed as follows:

A conserved amino acid is chosen within a stretch of the PDE4A protein's primary sequence, within the catalytic domain, that is homologous, or preferably identical, to the corresponding region in an enzyme from a different gene family of PDE4: one such region of amino acid identity is found for example between amino acids 457 and 467 (numbering from HSPDE4A4). Standard molecular biology techniques are then used to remove all codons for amino acids in the PDE4A gene sequence that are C-terminal to that position, and they are replaced with the corresponding coding sequence from a different PDE4 gene (say that of PDE4B). The PDE4 hybrid sequence is then fused to a sequence coding for a label/marker such as EGFP, such that the gene product will have EGFP attached to the C-terminal of the enzyme.

These hybrid probes, when expressed in cells, bind Rolipram and other PDE4-specific inhibitors with affinities refl cting the particular properties of the substitute catalytic site (of PDE4B in the example above), but exhibit the redistribution behaviour of the chosen PDE4A. Measurement of the redistribution behaviour reflects the binding properties specific to the imported catalytic site.

It is published that the association of certain partner proteins with certain PDE4s will affect the affinity of the enzymes for Rolipram. It is presently contemplated that specific compounds binding to the enzyme (e.g. Rolipram) will alter the mobility of the enzyme (that is the binding to an anchorage or docking partner) altering the freedom of the enzyme to move in 3 dimensional space.

One major aspect of this invention is based on the finding that incubation of cells with

Rolipram causes redistribution of PDE4A probes. This redistribution is not a consequence
of an increase in cAMP brought about by inhibition of PDE4 activity, since the
redistribution is not simply mimicked by treatment with IBMX, or Forskolin ± IBMX
(example 10).

Rather, it seems that binding of Rollpram and certain other PDE4 inhibitors induces

conformational changes in PDE4A leading to a change in the affinity of the PDE4A probes
for their docking or anchorage partners, which results in their subsequent redistribution in
the cell.

It is further speculated, from the known properties of Rolipram and the other compounds
that mimic the effects of Rolipram on PDE4A redistribution, that it is the binding of these
compounds to what is commonly referred to as the "high affinity Rolipram binding site"
(HARBS) or "Sr", or HPDE4 form, (Souness and Rao, 1997) that specifically triggers the
changes that lead to redistribution of the PDE4A probes. Specific PDE4 inhibitors such as
RP73401 and SB207499 do not recognise HARBS, but apparently recognise an
alternative site within the catalytic domain and inhibit the cAMP hydrolysing ability of the
catalytic site (Sc) in a somewhat different way; Rolipram also binds in this second way,
and in this case it is said to bind to a "low affinity site", or to the LPDE4 form (Souness
and Rao, 1997). Since RP73401 does not cause redistribution of PDE4A probes, it is
predicted that SB207499 will also fail to cause redistribution of these probes, and further,
that like RP73401, SB207499 will compete against and reverse the redistribution caused
by Rolipram and other compounds that bind to the Sr. It is presently unknown whether

HARBS and the low affinity site (or sites), are truly distinct and separate positions within the catalytic cleft of PDE4 enzymes, or whether they represent different conformational states of the same sit. The role of binding to the Sc or the Sr, in terms of elevation of cAMP and inhibition of cell responses, is not yet fully understood. The importance of the Sr in influencing the pharmacological profile of PDE4 inhibitors may have implications in predicting not only efficacy but also the side-effects of these drugs, such as nausea, emesis, excess gastric acid secretion and headache, which have hampered the clinical development of PDE4 inhibitors to date. (Souness & Rao, 1997)

10 The majority of the experiments in the present application are based on the effects of Rolipram. Thus, it is preferred that the method of the invention is carried out using Rolipram as a reference compound. However, in another embodiment of the present invention, a Rolipram-like reference compound is used. A Rolipram-like reference compound is a compound, sharing the properties of Rolipram with regards to their ability to cause redistribution of the PDE probe being used and with regards to the ability to inhibit the catalytic activity of the PDE4.

It is an important aspect of the present invention that a change in localisation of the PDE4 is detected as a consequence of the treatment with the Rolipram-like reference compound. Examples 1-14 illustrates the formation of spots caused by Rolipram. Thus it is preferred that the method relates to a change in localisation of the PDE4 as formation of spots. Example 15 illustrates the dispersal of spots caused by Rolipram treatment. Thus, it is another preferred embodiment that the method relates to a change in localisation of the PDE4 as dispersal of spots.

One aspect of the present invention relates to the identification of a compound that produces a distinct change in intracellular distribution of the probe, such as a test compound that will mimic the distinct change in localisation caused by the Rolipram-like reference compound, and by inference that the test compound and the Rolipram-like reference compound will share a common pharmacological profile.

This identification of compounds with an agonistic effect is preferably carried out as a method to monitor changes in intracellular distribution of PDE4s in living cells caused by a test compound, the method comprising the steps of:

- O1) optionally constructing a probe allowing the location of the PDE4 to be recorded;O2) optionally transfecting cells with the constructed probe of step (O1);
 - (a) recording the intracellular distribution of the PDE4;

PCT/DK01/00264

(b) adding a Rolipram-lik reference compound to the cells in (a) or to similar cells, the Rolipram-like reference compound being able to bind to the catalytic cleft of the PDE4;

21

(b1) adding the test compound to the cells in (a) or similar cells;

15 intracellular distribution of the PDE4.

- (b2) recording the intracellular distribution of the PDE4 in the cells in step (b1);
- 5 (c) recording the intracellular distribution of the PDE4 in the cells in step (b);
 - (d) determining the effect on the intracellular distribution of the PDE4 of the Rolipram-like reference compound by comparing the intracellular distribution recorded in step (a) with the intracellular distribution recorded in step (c);
- (d1) determining the effect of the test compound by comparing the intracellular distribution recorded in step (b2) with the intracellular distribution recorded in step (a); 10 the pharmacology of the test compound being established by comparing the determined effect in step (d1) with the determined effect in step (d) a substantial copy of the effect determined in step (d), in step (d1), being indicative of an agonistic effect of the test compound to the Rolipram-like reference compound in regards to the change in
- Agonists induce the formation of very bright spots, often a single pair, in cells expressing the HSPDE4A4-EGFP probe. Certain agonists (RS25344, but not Rolipram) will induce formation of the same kind of spots in cells expressing the H506N mutant of this probe, indicating their ability to "bridge" or compensate for the mutation which removes Rolipram 20 agonism. In all cases, formation of bright spots requires protein synthesis and accumulation of probe: two hour incubation with Rolipram, or other agonists, is sufficient to determine that spot formation is under way, but the spots become larger and brighter, and therefore easier to measure, after a total of about 6 hours incubation with the test compound. Between 6 to 24 hours, spot numbers do not increase greatly, although their 25 size and brightness does continue to grow. Incubation of cells with test compounds for a period of 16 hours before fixation proves to be a convenient and reliable method to screen batches of compounds, allowing many plates of cells to be treated in the evening, incubated overnight, and fixed, stained and analysed the following morning.
- With the HSPDE4A1-EGFP probe, agonists induce dispersal of the bright spots that 30 normally lie in the perinuclear area of cytoplasm. Dispersal of spots is easily measurable after 60 to 90 minutes, and therefore is a faster process than spot formation with HSPDE4A4-EGFP.
- Agonists found through use of either probe may be expected to be specific PDE4 inhibitors, and a suitable secondary screen for PDE4 specific inhibition is desirable to 35 confirm this property.

Another aspect of the present invention relates to the identification of a test compound that will prevent and revers the distinct change in localisation produced by action of th Rolipram-like reference compound e.g. by displacing th Rolipram-like reference compound.

This identification of test compounds with an antagonistic effect is preferably carried out as a method to monitor changes in intracellular distribution of PDE4s in living cells, the method comprising the steps of:

- 10 O1) optionally constructing a probe allowing the location of the PDE4 to be recorded;
 - O2) optionally transfecting cells with the constructed probe of step (O1);
 - (a) recording the intracellular distribution of the PDE4;
 - (b) adding a Rolipram-like reference compound to the cells in (a) or to similar cells, the Rolipram-like reference compound being able to bind to the catalytic cleft of the PDE4;
- 15 (b1) adding a test compound to the cells with the Rolipram-like reference compound in step (b) or similar cells;
 - (b2) recording the intracellular distribution of the PDE4 in the cells in step (b1);
 - (c) recording the intracellular distribution of the PDE4 in the cells in step (b);
- (d) determining the effect on the intracellular distribution of the PDE4 of the Rolipram-like
 reference compound by comparing the intracellular distribution recorded in step (a)
 with the intracellular distribution recorded in step (c).;
- (d1) determining the effect of the test compound by comparing the intracellular distribution recorded in step (b2) with the intracellular distribution recorded in step (a); the pharmacology of the test compound being established comparing the determined
 25 effect in step (d1) with the determined effect in step (d) a reversal, in step (d1), of the effect determined in step (d) to an effect substantially identical to the effect determined in step (a) being indicative of an antagonistic effect of the test compound on the Rolipram-like reference compound in regards to the change in intracellular distribution.
- 30 The pharmacology of the test compound can also be established by comparing the determined effect in step (d1) with the determined effect in step (d) an increased effect, in step (d1), of the effect determined in step (d), comparable to an effect in step (d) obtained with a higher doses of the Rolipram-like reference compound, being indicative of the augmenting effect of the test compound on the Rolipram-like reference compound in regards to the change in intracellular distribution.

Antagonists induce the dispersal of the very bright spots formed by the Rolipram-like reference compound in cells expressing the HSPDE4A4-EGFP probe. Dispersal of bright spots does not require protein synthesis, and is generally easily measurable after 30 to 60 minutes. Some compounds at higher concentrations, such as RP73401, can disperse

- 5 spots very rapidly; spots formed by 2 μM Rolipram over 16 hours will disperse within 10 minutes with 1 μM RP73401. A screen for antagonists may involve incubating cells with Rolipram-like reference compound (say 3 µM Rolipram, or 0.5 µM RS25344) for a period of 16 hours, then adding the test compound and incubating further for a period of 60 minutes before being fixed, stained and analysed.
- 10 With the HSPDE4A1-EGFP probe, antagonists reverse the dispersal of perinuclear bright spots that normally results from treatment with Rolipram-like reference agonists such as Rolipram, Compounds may be added simultaneously with Rolipram-like reference compounds, or at some time later (such as after 60 to 90 minutes incubation with the Rolipram-like reference compound). Reappearance of spots is easily measurable after 15 240 minutes.
- As detailed in examples 10, 11 and 12, certain treatments are known to disperse PDE4A4 Rolipram spots in CHO cells. These include [Forskolin + IBMX] (example 10) and IPMA \pm ionomycin] (example 11). Appropriate counterscreens will help to identify compounds that redistribute PDE4s through dislocation: dislocator compounds will not bind to the catalytic 20 cleft, so will not inhibit catalytic activity of PDE4s, will not induce increase in
- cAMP/activation of PKA in cells (as forskolin + IBMX does), will not mimic the effects of PMA ± ionomycin, i.e. directly stimulate PKC isoforms, perhaps through prolonged increase of intracellular Ca2+ or through increase in levels of diacyl glycerol. Since the antagonist assay using the PDE4A4 probe detects compounds by their ability to
- 25 disperse spots, this assay is also useful in detecting compounds that dislocate PDEs, or their anchor protein(s), from their preferred cellular location. If a compound is found to disperse spots in the PDE4A4 antagonist assay, AND causes spots to reform, or persist, in the 4A1 antagonist assay, that compound is most likely to be a PDE4 specific inhibitor with little affinity for the HARB site, and should have properties similar to RP73401 (and,
- 30 as predicted, to Ariflo®, or SB207499), If a compound found in the PDE4A4 antagonist assay fails to cause spots to reform or persist in the 4A1 antagonist assay, and does not screen as positive in the suggested counterscreens, that compound is likely to be a dislocator of PDE4A4, or it's anchor protein(s). By extension, a compound with activity in the 4A1 agonist assay, but no activity in the PDE4A4 agonist assay, and which does not

screen positive in a PDE4 inhibition assay, is likely to be a dislocator of PDE4A1 or it's anchor protein(s).

Test compounds identified by the method of the present invention include specific

5 inhibitors of PDE4 enzymes, which can be categorised from their effect on the distribution
of PDE4A probes as being either Rolipram-like, or non Rolipram-like inhibitors. It is
speculated that the crucial property all Rolipram-like inhibitors share, is the ability to bind
to the high affinity Rolipram binding site of PDE4 enzymes, and/or the ability to trigger a
conformational change in PDE4A enzymes from an interaction within the catalytic cleft.

10 Test compounds identified by the method of the present invention are also predicted to
include dislocator compounds, which either disrupt/enhance the association of PDE4
isoenzymes with particular anchor proteins or to disrupt/enhance machinery responsible
for the trafficking of PDE4 proteins between different locations within the cell. In so doing,
compounds are identified whose usage would be in disrupting or relocalising the

15 placement of a PDE4 isoenzyme in its established place in the cell so as to enhance
compartmentalised cAMP function. Through this novel approach and the derivation of
appropriate assays an entirely new way of generating PDE4 isoform-selective
therapeutics is envisaged.

20 It is preferred that the test compound identified, e.g. as an agonist or an antagonist, is a single substance composed of one or more chemical elements. An example of such a test compound is a peptide.

The term "compound" is intended to indicate any sample which has a biological function
25 or exerts a biological effect in a cellular system. The sample may be a sample of a
biological material such as a sample of a body fluid including blood, plasma, saliva, milk,
urine, or a microbial or plant extract, an environmental sample containing pollutants
including heavy metals or toxins, or it may be a sample containing a compound or mixture
of compounds prepared by organic synthesis or genetic techniques.

30

In a further aspect of the invention it is preferred that the test compound binds to the catalytic cleft of the PDE4. The catalytic cleft of the PDE4 is the cleft within the protein macromolecule to which a substrate for the enzyme is introduced, and where conditions for a specific chemical (or physical) reaction involving the substrate are

35 thermodynamically optimised for the reaction to run in a particular direction. For the PDE4s it lies within the region recognised as the conserved catalytic domain, which (using amino acid numbering from HSPDE4A4) has been determined from a combination of truncation and deletion experiments as comprising som 315 to 348 amino acids located between residues 332/365 and 680 (Houslay, Sullivan and Bolger, 1998). Mutations and deletions within this consensus region are likely to ablate or decrease cAMP binding and hydrolytic abilities of PDE4 enzymes. The terms catalytic site and active site have a similar meaning in this regard.

The affinity with which a test or Rolipram-like reference compound binds to the catalytic cleft may be determined through use of standard radioligand binding assays, wherein the test compound is radiolabelled and incubated with a more or less purified preparation of the target PDE4 enzyme. Such an enzyme preparation may be obtained from cells transfected with and expressing the PDE4 enzyme chosen. Typical systems used in such a procedure may be found described in Saldou et al. (1998). Alternatively displacement of tritiated Rolipram from brain-derived microsomal preparations can be used to determine the affinity of a test compound for the so-called high-affinity Rolipram binding site of PDE4 enzymes.

Binding affinity, effects on PDE4A probe redistribution and inhibitory effects on catalytic activity are not necessarily correlated. In certain aspects of the invention is preferred that 20 test compounds found through such use of the invention also inhibit the catalytic activity of PDE4s. Effects of a test compound on the catalytic activity of a PDE4 can easily be determined by standard competitive binding experiments between PDE inhibitors and cAMP on enzyme activity for which known amounts of cAMP substrate and fixed amounts of enzyme are incubated together with various amounts of inhibitor substance for fixed 25 periods of time, after which the reaction is stopped and the residual amount of unhydrolysed cAMP is measured. This may be done for any test sample by use of a scintillation proximity based assay (SPA) designed to measure the competition between cAMP in the test sample and a known amount of radiolabelled cAMP for binding to a cAMP-specific antibody attached to scintillant beads (Hancock et al., 1995). The assay is 30 read in a scintillation counter where the counts per sample are inversely related to the amount of cAMP present in the test sample. SPA kits for measurement of cAMP are available from Amersham Pharmacia Biotech (Amersham, UK). Yet another class of compounds that can be detected by the method of the invention is

Yet another class of compounds that can be detected by the method of the invention is

described *inter alia* in example 13. These compounds inhibit the reappearance of spots in
cells expressing the PDE4A4 probe, where the spot reappearance process is triggered by

various imposed conditions, and is specific to cells that have formed spots under th influence of a Rolipram-like PDE4 inhibitor (an agonist compound selected from Rolipram, Ro 20-1724, RS25344 etc.), and where the cells have then been cleared of spots by removal of the agonist compound. Thalidomide is an example of a compound that is a spot reappearance inhibitor, as described in example 13.

Spot reappearance inhibitors may be compounds that inhibit cellular stress responses.

The identification of test compounds as spot reappearance inhibitors is preferably carried out as a method comprising the steps of:

- (1) treating PDE4A4 expressing cells with a reference agonist compound for a period to
 induce spots (e.g. 7-24 hours);
 - (2) checking that spots have formed:
 - (3) washing away the Rolipram-like reference compound and leaving cells in incubator for spots to completely disappear (about 150 minutes);
 - (4) checking that all spots have disappeared;
- 15 (5) adding the test compounds, keeping some wells as negative controls;
 - (6) exposing all cells to 100 mM salt and 4°C for 4 hours, or leaving the cells at ambient conditions for 4 hours to allow cooling to 22°C, alkalinisation of medium (pH=6.5 shifting to pH=8.2) and partial evaporation (about 20% decrease in volume);
- (7) determining the degree of spot reappearance compared to control wells that have not
 been treated with any test compound.

As will be evident to the person skilled in the art, compounds capable of inhibition of the function of PDE4 are capable of preventing/decreasing inflammation and/or depression. The present invention provides at least two novel approaches to identifying such

25 compounds. All approaches are based on the initial discovery that Rolipram, by binding to the catalytic cleft of the PDE4, induces a change in the cellular distribution of the PDE4.

One method is a method to determine if a compound is a dislocator of PDE4, comprising the steps of:

- 30 testing if the compound removes PDE4-spots, where PDE4-spots may optionally be induced by a Rolipram-like reference compound and
 - testing if the compound inhibits the catalytic activity of the PDE4;
 the compound being a disclocator of PDE4, if the compound removes PDE4-spots and if
 the compound does not inhibit the catalytic activity of PDE4.

PDE4 dislocators will remove the PDE4 away from the native location in the cell and thereby increase the concentration of cAMP in said native location ('compartment') in the cell. Such increased concentration of cAMP is also seen upon inhibition of the catalytic activity of the PDE4, however, by dislocating the PDE4, and thereby not acting directly on the catalytic well conserved site, the compound will act e.g. at the binding domain of the PDE4, thereby providing isoform-specific 'inhibitors' of PDE4.

One aspect of the present invention thus relates to a PDE4 dislocator obtainable by the method described. Such PDE4 dislocator is preferably included into a pharmaceutical composition comprising a compound, the compound being a dislocator of PDE4, and the pharmaceutical composition having a market authorisation, the market authorisation being based on an application for market authorisation comprising data showing removal of PDE4-spots, optionally induced by a Rolipram-like reference compound, by the compound and lack of inhibition of the catalytic activity of PDE4 by the compound.

15

An example of the market authorisation is described in 65/65/EEC. The data required specified in Article 4,8. of said directive.

Preferred dislocators of PDE4 are dislocators of PDE4A isoforms, such as the PDE4A1 isoform and/or the PDE4A4 isoform.

PDE4A1 dislocators are identified by a method comprising the steps of:

- testing if the compound removes PDE4A1-spots, and
- testing if the compound inhibits the catalytic activity of the PDE4A1;
- 25 the compound being a disclocator of PDE4A1, if the compound removes PDE4A1-spots and if the compound does not inhibit the catalytic activity of PDE4A1.

PDE4A1 dislocators obtainable by the method described are preferably included in a pharmaceutical composition wherein the indication on the market authorisation is diseases in the central nervous system such as depression.

PDE4A4 dislocators are identified by a method comprising the steps of:

- testing if the compound removes PDE4A4-spots induced by a Rolipram-like reference compound and
- 35 testing if the compound inhibits the catalytic activity of the PDE4A4;

the compound being a disclocator of PDE4A4, if the compound removes PDE4A4-spots and if the compound does not inhibit the catalytic activity of PDE4A4.

PDE4A4 dislocators obtainable by the method described are preferably included in a

5 pharmaceutical composition wherein the indication on the market authorisation is
inflammatory diseases. Examples of inflammatory diseases are joint inflammation,
Crohn's disease, inflammatory bowel disease, respiratory diseases, chronic obstructive
pulmonary disease (COPD), including asthma, chronic bronchitis, pulmonary emphysema,
endotoxic shock, toxic shock syndrome, systemic lupus erythematosis, psoriasis, bone

10 resorption diseases, reperfusion injury, cancer and HIV infection.

Another method according to the invention, is a method to determine if a compound is a low emesis PDE4 inhibitor comprising the steps of:

- testing if the compound causes PDE4A4-spots induced by a Rolipram-like reference
 compound to dissolve,
 - testing if the compound induces re-appearance of PDE4A1-spots in cells exposed to a Rolipram-like reference compound, and
- testing if the compound inhibits the catalytic activity of PDE4;
 the compound being a low emesis PDE4 inhibitor if the compound removes spots induced
 by the Rolipram-like reference compound and induces re-appearance of PDE4A1 spots in cells exposed to the Rolipram-like reference compound and if the compound inhibits the catalytic activity of PDE4.

Low emesis PDE4 inhibitors will inhibit the catalytic activity of the PDE4, causing the anti-25 inflammatory and anti-depressant effects without causing the side effects as emesis, nausea, headaches, and excess gastric acidity.

It is preferred that the low emesis PDE4 inhibitor is included in a pharmaceutical composition comprising a compound, the compound being a low emesis PDE4 inhibitor, and the pharmaceutical composition having a market authorisation, the market authorisation being based on an application for market authorisation comprising data showing that the compound removes spots induced by the Rolipram-like reference compound, and that the compound induces re-appearance of PDE4A1 spots in cells exposed to the Rolipram-like reference compound, and that the compound inhibits the catalytic activity of PDE4.

In one aspect the indication on the market authorisation is inflammatory diseases.

Another aspect relates to the use of a Low emesis PDE4 inhibitor or a PDE4 dislocator, or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, for the preparation of medicament for the treatment of inflammatory diseases including joint inflammation, Crohn's disease, and inflammatory bowel disease; respiratory diseases such as chronic obstructive pulmonary disease (COPD) including asthma, chronic bronchitis, and pulmonary emphysema; infections diseases including endotoxic shock and toxic shock syndrome; immune diseases including systemic lupus erythematosis and psoriasis; and other diseases including bone resorption diseases and reperfusion injury and conditions associated with proliferating hematopoitic cells, such as cancer and HIV infection; diseases in the central nervous system including depression.

15 Another important aspect of the present invention relates to the use of a Low emesis PDE4 inhibitor, or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, capable of competing against and reversing the effect of the Rolipram-like reference compound on the intracellular distribution of the PDE4 and being capable of inhibiting the catalytic activity of the PDE4 for the preparation of medicament for the treatment of 20 inflammatory diseases, e.g. rheumatoid arthritis.

Yet another aspect of the invention is a method for treating inflammatory diseases, e.g. asthma, or depression in an individual comprising administering to the individual an effective amount of a compound, or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, the compound being capable of competing against and reversing or mimicking the effect of the Rolipram-like reference compound on the intracellular distribution of the PDE4 and the compound being capable of mimicking the effect of the Rolipram-like reference compound on the catalytic activity of PDE4s.

30 The invention further relates to the test compound identified, or identifiable, by a method according to the invention. E.g. a Low emesis PDE4 inhibitor or a PDE4 dislocator.

It is evident to the skilled person, that a PDE4 dislocator or a Low emesis PDE4 inhibitor identified by the methods described will need further testing prior to human trials. Apart from the toxicology requirements, the PDE4 dislocator is tested in functional assays for

WO 01/79526 PCT/DK01/00264

30

relevant action, and counter indications, at both the cellular and organismal level.

Examples of such assays are th *in vitro* measurement of LPS-stimulated TNFα release from human peripheral blood mononucleocytes (e.g. as described by Barnett *et al.* 1998), and an *in vivo* measurement of anti-inflammatory action such as suppression of antigen-induced eosinophilia and bronchoconstriction in rat lung (e.g. as described by Hughes *et al.* 1996, an Asthma model) or *in vivo* measurement of an anti-depressant function such as the induction of brain-derived neurotrophic factor (BDNF) in rat hippocampus (a depression model; Fujimaki *et al.* 2000) or *in vivo* measurement of the amelioration of collagen II-induced arthritis in rats (a rheumatoid arthritis model; Nyman *et al.* 1997). Additionally, PDE4 dislocator compounds are screened for unwanted potential emetic properties in a ferret emesis test (e.g. as described by Robichaud et al. 1999).

The pharmaceutical compositions described herein may be formulated according to conventional pharmaceutical practice, see, e.g., "Remington's Pharmaceutical Sciences" and "Encyclopedia of Pharmaceutical Technology".

It is likely that mutations in an individual within the PDE4 can be the cause of certain disease states e.g. immunological illnesses and depression. Those individuals can, in one aspect of the invention, be diagnosed for functional mutations in the the Rolipram binding site, or in the anchor binding site

- by fishing the PDE4 subtype (e.g. by PCR)
- fuse the PDE4 subtype to GFP
- add Rolipram
- measure change in distribution of the PDE4.

25

Another important aspect of the invention is a method for providing the basis for diagnostic methods for the early and accurate detection and/or quantitation of PDE distribution associated with joint inflammation, Crohn's disease, and inflammatory bowel disease; respiratory diseases such as chronic obstructive pulmonary disease (COPD) including asthma, chronic bronchitis, and pulmonary emhpysema; infections diseases including endotoxic shock and toxic shock syndrome; immune diseases including systemic lupus erythematosis and psoriasis; and other diseases including bone resporption diseases and reperfusion injury and conditions associates with proliferating hematopotietic cells, such as cancer and HIV infection.

R f renc s

Ahluwalia, G.S., et al. (1982) Biochem. Pharmacol. 31: 665

Barnette MS, Christensen SB, Essayan DM, Grous M, Prabhakar U, Rush JA, Kagey-Sobotka A, Torphy TJ (1998) SB 207499 (Ariflo), a potent and selective second-

5 generation phosphodiesterase 4 inhibitor: In vitro anti-inflammatory actions. Journal of Pharmacology & Experimental Therapeutics 284:420-426

Beavo, J.A., Conti, M., Heaslip, R.J. (1994) Multiple cyclic nucleotide phosphodiesterases. Mol. Pharmacol. 46:399-405

Conti M, Jin SLC (1999) The molecular Biology of cyclic nucleotide phosphodiesterases.

10 Progress in Nucleic Acid Research 63:1-38

Fujimaki K, Morinobu S, Duman RS (2000) Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 1:42-51

Hancock, A.A., Vodenlich, A.D., Maldonado, C., Janis, R. (1995) a2-adrenergic agonist induced inhibition of cyclic AMP formation in transfected cell lines using a microtiter-based
 Scintillation Proximity Assay. J. of Receptor and Signal Transduction research 15:557-579

Hempel CM, Vincent P, Adams SR, Tsien RY, Selverston Al (1996) Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit. Nature 384:166-169

Houslay MD (1998) Adaptation in cyclic AMP signalling processes: a central role for cyclic 20 AMP phosphodiesterases. Semin Cell Dev Biol 9:161-7

Houslay MD, Milligan G (1997) Tailoring cAMP signalling responses through isoform multiplicity. Trends in Biochemical Sciences 22:217-224

Houslay MD, Sullivan M, Bolger GB (1998) The multi-enzyme PDE4 cyclic AMP specific phosphodiesterase family: intracellular targeting, regulation and selective inhibition by compounds exerting anti-inflammatory and anti-depressant actions. Advances in Pharmacology 44:225-342

Hughes B, Howat D, Lisle H, Holbrook M, James T, Gozzard N, Blease K, Hughes P, Kingaby R, Warrellow G, Alexander R, Head J, Boyd E, Eaton M, Perry M, Wales M, Smith B, Owens R, Catterall C, Lumb S, Russell A, Allen R, Merriman M, Bloxham D,

30 Higgs G (1996)The inhibition of antigen-induced eosinophilia and bronchoconstriction by CDP840, a novel stereo-selective inhibitor of phosphodiesterase type 4. Br. J. Pharmacol. 18:1183-91

Hughes, B., Owens, R., Perry, M., Warrellow, G., Allen, R. (1997) Drug Discovery Today 2:89-101

35 Jacobitz, S., Ryan, M.D., McLaughlin, M.M., Livi, G.P., DeWolf, W.E. Jr., Torphy, T.J. (1997) Mol. Pharmacol. 51: 999-1006

Manganiello VC, Murata T, Taira M, Belfrage P, Degerman E (1995) Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Archives of Biochemistry and Biophysics 322:1-13

40 Nyman U, Müssener A, Larsson E, Lorentzen J, Klareskog L (1997) Amelioration of collagen II-induced arthritis in rats by the type IV phosphodiesterase inhibitor Rolipram. Clin Exp Immunol 108:15-9 Pooley L, Shakur Y, Rena G, Houslay MD (1997) Intracellular localisation of the PDE4A cAMP-specific phosphodiesterase splice variant RD1 (RNPDE4A1A) in transfected human thyroid carcinoma FTC cell lines. Biochemical Journal 271:177-185

Robichaud, A. Savoie, C., Stamatiou, P.B., Tattersall, F.D., Chan, C.C. (1999) PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology 38:289-297

Rubin, L.L. et al. (1991) J. Cell Biol. 115: 1725

Saldou, N., Obernolte, R., Huber, A., Baecker, P.A., Wilhelm, R., Alvarez, R., Li, B., Xia, L., Callan, O., Su, C., Jamagin, K., Shelton, E.R. (1998) Cell. Signal. 10: 427-440

10 Schneider, H.H., et al. (1993) Eur. J. Pharmacol. 127:105-115

Shakur Y, Wilson M, Pooley L, Lobban M, Griffiths SL, Campbell AM, Beattie J, Daly C, Houslay MD (1995) Identification and characterization of the type-IVA cyclic AMP- specific phosphodiesterase RD1 as a membrane-bound protein expressed in cerebellum. Biochemical Journal 306:801-809

15 Souness JE, Rao S (1997) Proposal for pharmacologically distinct conformers of PDE4. Cellular Signalling 9:227-236.

Examples

Example 1: Cloning and construction of the GFP-labelled PDE probes

Here is described the cloning and construction of specific PDE4A variants fused to a GFP.

Currently at least 5 PDE4A splice variants are known. These all share C-terminal

sequences but differ in their N-termini, where targeting sequences of PDE4As are
believed to be located. To best preserve the normal distribution of PDE4As, the fusions
are made between the C-terminus of the PDE4A species and the N-terminal of the GFP.

To construct the HSPDE4A1-EGFP fusion, the ca. 1.95 kb coding region of HSPDE4A1

(GenBank Acc.no. U97584) is amplified using PCR and primers 4A1-top and 4A-bottom described below. The top primer includes specific HSPDE4A1 sequences following the ATG, a Kozak sequence, and a Hind3 cloning site. The bottom primer includes the common PDE4A C-terminal sequence minus the stop codon, a BamH1 cloning site, and two extra nucleotides to preserve the reading frame when inserted into in pEGFP. The PCR product is digested with restriction enzymes hind3 and BamH1, and cloned into pEGFP (Clontech, Palo Alto; GenBank Accession number U55762) cut with Hind3 and BamH1. This produces a HSPDE4A1-EGFP fusion under the control of the CMV promoter. The resulting plasmid is referred to as PS461 and is deposited under the Budapest Treaty with Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on 17 April 2000 with DSM 13449.

4A1-top (SEQ ID NO: 9):

 ${\bf 5'\text{-}GTAAGCTTAAGATGCCCTTGGTGGATTTCTTC-3', specific for PDE4A1,}\\$

4A-bottom (SEQ ID NO: 10):

5'-GTGGATCCCAGGTAGGGTCTCCACCTGA-3'

25

To construct the HSPDE4A4-EGFP fusion, the common ca. 1.9 kb C-terminal part of HSPDE4A4 (GenBank Acc.no. L20965) is amplified using PCR with primers 4A-Ct-top and 4A -bottom described below. The sequence of the top primer contains a silent mutation which introduces a Dra1 site exactly at the beginning of the shared 4A region.

The bottom primer includes the common C-terminal sequence minus the stop codon, a BamH1 cloning site, and two extra nucleotides to preserve the reading frame when cloned into pEGFP. The unique ca. 0.8 kb N-terminal part of HSPDE4A4 is amplified using PCR in the presence of 5% DMSO with primers 4A4-top and 4A4N-bottom described below.

The top primer includes specific HSPDE4A4 sequences following the ATG, a Kozak

34

sequence, and a Hind3 cloning site. The bottom primer spans th junction of the unique 4A4 N-terminal part and the common 4A C-terminal part, and it contains a silent mutation which introduces a Dra1 site exactly at the beginning of the shared 4A region. The PCR products are digested with the relevant restriction enzymes (Hind3 and Dra1 for the unique N-terminal part and Dra1 and BamH1 for the common C-terminal part), and ligated

5 unique N-terminal part and Dra1 and BamH1 for the common C-terminal part), and ligated together into pEGFP (Clontech, Palo Alto; GenBank Accession number U55762) digested with Hind3 and BamH1. This produces a HSPDE4A4-EGFP fusion under the control of a CMV promoter. The resulting plasmid is referred to as PS462 and is deposited under the Budapest Treaty with Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 10 (DSMZ) on 17 April 2000 with DSM 13450.

4A-Ct-top (SEQ ID NO: 11): 5'-GTTTAAAAGGATGTTGAACCGTGAGCTC-3'
4A-bottom (SEQ ID NO: 12): 5'-GTGGATCCCAGGTAGGGTCTCCACCTGA-3'
4A4-top (SEQ ID NO: 13): 5'-GTAAGCTTGCGCCATGGAACCCCCGACC-3'
4A4N-bottom (SEQ ID NO: 14): 5'-GGTTTTAAACTTGTGCGAGGCCATCTCGCTGAC-3'

Catalytically inactive PDE4 fusions that redistribute normally within the cell, can be constructed by introducing specific point mutations in the catalytic domain. Use of such fusions may be advantageous if a cell is sensitive to some overexpression of a catalytically active PDE4. Many mutations are known in PDE4As that greatly reduces catalytic activity, e.g. H506N in HSPDE4A4.

15

Plasmid PS535 (HSPDE4A4-H506N-EGFP) is a variant of PS462 (HSPDE4A4-EGFP) containing a substitution of His-506 to Asn in HSPDE4A4. This substitution is introduced using the PCR-based Quickchange mutagenesis kit (Stratagene, La Jolla). The PCR reaction leading to this substitution utilises plasmid PS462 as template and the complementary primers 4AH-N-forward and 4AH-N-reverse shown below. In addition to the substitution, these two primers contain a silent mutation that removes an Xho I restriction site, a feature that can be used to quickly distinguish mutants from the original template. Plasmid PS535 is deposited under the Budapest Treaty with Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on 17 April 2000 with DSM 13451.

Plasmid PS533 (HSPDE4A4-ALR2-EGFP) is a deletion mutant of plasmid PS462 (HSPDE4A4-EGFP). In plasmid PS533, 8 amino acid residues comprising the region Ala-313 to Gin-320 in the linker region 2 (LR2) of HSPDE4A4 is deleted using the PCR-based

Quickchange mutagenesis kit (Stratagene, La Jolla). The PCR reaction leading to this deletion uses plasmid PS462 as template and the primers 4AALR2-forward and 4AALR2-reverse shown below. In addition to the deletion, thes two primers introduce an Acc65 I restriction site by a silent mutation, which can be used to quickly distinguish mutants from the original template. Plasmid PS533 is deposited under the Budapest Treaty with

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) on 17 April 2000 with DSM 13452.

4AH-N-forward (SEQ ID NO: 15):

10 5'-GATGAGTCGGTGCTCGAAAATCACAACCTGGCCGTGGGCTTCAAGCTGC 4AH-N-reverse (SEQ ID NO: 16):

5'-GCAGCTTGAAGCCCACGGCCAGGTTGTGATTTTCGAGCACCGACTCATC 4AALR2-forward primer (SEQ ID NO: 17):

5'-CCCATCACCCACGATGAAGGAACGAGAAAAACAGCAACCGCCCCCGCCCCCGGT

15 ACCACACTTACAGCCC

4AΔLR2-reverse primer (SEQ ID NO: 18): 5'GGGCTGTAAGTGTGGTACCGGGGGGGGGGGGGGGGTTGCTGTTTTTCTCGTTCCTTCATCGTGGGTGATGGG

- 20 To construct HSPDE4A4catD-EGFP fusion, a 5'-end fragment of HSPDE4A4 and the common 3'-end catalytic region of HSPDE4D isoforms are amplified separately by PCR and ligated into pEGFP.
 - The 5'end of HSPDE4A4 (nucleotides 1-1023; GenBank accession number L20965) is amplified by PCR in the presence of 5% DMSO using plasmid PS462 (HSPDE4A4 in
- 25 pEGFP) as template and primers 4A4-EcoRI-top and 4A4-HindIII-bottom described below. The 4A4-BamHI-top primer contains an EcoRI restriction site followed by a Kozak sequence and the ATG of HSPDE4A4. The 4A4-HindIII-bottom primer contains a HindIII site that has been introduced into the HSPDE4A4 sequence of the primer by two silent mutations (underlined in the primer sequence). These mutations preserve correct
- 30 translation of the protein and allow ligation to the HSPDE4Dcat fragment.
 For the amplification of the common 3'-end catalytic region of HSPDE4D isoforms,
 HSPDE4Dcat, the HSPDE4D3 isoform (GenBank accession number L20970) is amplified from a pool of placenta and fetal brain cDNA (Clontech, Palo Alto) using the primers 9855 and 9858 described below. Primer 9855 contains a HindIII restriction site and nucleotides
- 35 specific for the 5'-end of HSPDE4D3 including the ATG start codon. Primer 9858 contains

WO 01/79526

an EcoRI restriction site and nucleotides specific for the 3'-end of HSPDE4D except for the stop-codon. This fragment is digested with HindIII and EcoRI and ligated into the corresponding sites in pEGFP (Clontech, Palo Alto). The resulting plasmid is termed PS449. From this plasmid, the 3'-end catalytic region of HSPDE4D isoforms (nucleotides

36

5 700-2019 of HSPDE4D3 cDNA; GenBank accession number L20970) is amplified by PCR using primers 4Dcat-HinDIII-top and 4Dcat-SacII-bottom as described below. The 4Dcat-HinDIII-top contains a HindIII restriction site that has been integrated into the HSPDE4D sequence by two silent mutations (underlined in the primer sequence). The 4Dcat-SacIIbottom primer contains the 3'-end sequence of PDE4D isoforms except for the stop-10 codon in order to make fusion to EGFP possible.

The HSPDE4A4 5'-end fragment is digested with EcoRI and HindIII. The HSPDE4Dcat fragment is digested with HindIII and SacII. These two fragments are ligated in a threepart ligation into pEGFP (Clontech, Palo Alto; GenBank accession number U55762) digested with EcoRI and SacII. This results in an HSPDE4A4catD-EGFP fusion under 15 control of a CMV promoter. The plasmid is referred to as PS687.

4A4-EcoRI-top (SEQ ID NO: 19)

5'-CCGGAATTCCGCCATGGAACCCCCGACCGTCCCCTC

4A4-HindIII-bottom (SEQ ID NO: 20)

20 5'-GGCAAGCTTTTTCAACCCTGTGATTTGGGACATGGGCTGTAAGTG

4Dcat-HinDIII-top (SEQ ID NO: 21)

5'-GGCAAGCTTATGCACAGCTCTAGTCTGACTAATTCAAGTATCCCAAGGTTTGG

4Dcat-SacII-bottom (SEQ ID NO: 22)

5'-GCCCGCGCGCGTGTCAGGAGAACGATCATCTATGACACAGGCTTCAGGC

25 9855 (SEQ ID NO: 27):

5'-GTAAGCTTGCGAACATGATGCACGTGAAT

9858 (SEQ ID NO: 28):

5'-GTGAATTCCCGTGTCAGGAGAACGATCAT

- 30 Plasmid PS716 expresses a fusion between PDE4A1 and a E222G derivative of GFP, and plasmid PS717 expresses a fusion between PDE4A4 and a E222G derivative of GFP. They were made by replacing a ca. 0.8 kb BamH1-Xba1 fragment containing EGFP sequence with a similar fragment containing the E222G derivative of GFP from plasmid PS699.
- 35 PS699 was constructed as described below.

GFP sequence.

Construction of GFP plasmid combining F64L and E222G and mammalian codon usage.

Plasmid pEGFP (GenBank accession number U55762) contain a derivative of GFP in which one extra amino acid has been added at position two to provide a better translational start sequence (a Kozak sequence) and so the total number of amino acids is increased by one to 239 instead of the 238 found in wildtype GFP. Therefore the denomination of mutations in GFP in these plasmids strictly should be referred to as e.g. F65L rather than F64L. However, to avoid this source of confusion and because the GFP community has adopted the numbering system of wildtype GFP in its communications, the numbers used here conform to the commonly used naming of mutations in wildtype GFP. The relevant mutations in this respect are F64L, S65T, and E222G. Plasmid pEGFP contains the following mutations in the chromophore: F64L and S65T. The codon usage of the GFP DNA sequence has been optimized for expression in mammalian cells. N1 and refers to the position of multiple cloning sites relative to the

- To construct a plasmid combining F64L and E222G, pEGFP is first subjected to PCR with primers 9859 and 9860 described below. The primers are complementary to the DNA sequence around the chromophore region and introduce a point mutation changing the
- 20 threonine at position 65 to serine. In addition the primers introduce a unique Spe1 restriction site by silent mutation. The 4.7 kb PCR product is digested with Spe1, religated, and transformed into E.coli. The resulting plasmid is referred to as PS399. This plasmid contains the chromophore sequence 64-LSYG-67. Plasmid PS399 is subjected to Quick-Change mutagenesis (Stratagene) employing PCR with primers 0225 and 0226
- 25 described below. These primers are complementary to sequences near the C-terminus of the GFP and change glutamate at position 222 to glycine, and in addition they introduce an Avr2 restriction site by silent mutation. The resulting plasmid is referred to as PS699. It combines an LSYG chromophore with E222G.
 - 9859-top (SEQ ID NO: 33): 5'-TGTACTAGTGACCACCCTGTCTTACGGCGTGCA-3'
- 30 9860-bottom (SEQ ID NO: 34): 5'-CTGACTAGTGTGGGCCAGGGCACGGCAGC-3' 0225-bottom (SEQ ID NO: 35):
 - 5'-CCCGGCGGCGGTCACGAACCCTAGGAGGACCATGTGATCGCG-3'
 0226-top (SEQ ID NO: 36):
 - 5'-CGCGATCACATGGTCCTCCTAGGGTTCGTGACCGCCGCCGGG-3'

Table 3

Name	Nucleotide sequence	Predicted amino acid sequence
HSPDE4A1-EGFP	SEQ ID NO: 1	SEQ ID NO: 2
HSPDE4A4-EGFP	SEQ ID NO: 3	SEQ ID NO: 4
HSPDE4A4-delLR2-EGFP	SEQ ID NO: 5	SEQ ID NO: 6
HSPDE4A4-H506N-EGFP	SEQ ID NO: 7	SEQ ID NO: 8
HSPDE4A4catD-EGFP	SEQ ID NO: 23	SEQ ID NO: 24
HSPDE4D3-EGFP	SEQ ID NO: 25	SEQ ID NO: 26
HSPDE4A1-E222G	SEQ ID NO: 29	SEQ ID NO: 30
HSPDE4A4-E222G	SEQ ID NO: 31	SEQ ID NO: 32

Example 2: In vivo expression, visualisation and measurement of changes undergone by the probes

5 Transfection and cell culture:

Chinese hamster ovary cells (CHO), are transfected with the plasmids described in Example 1 above using the transfection agent FuGENE™ 6 (Boehringer Mannheim Corp, USA) according to the method recommended by the suppliers. Stable transfectants are selected using 1 mg/ml G418 sulphate (Calbiochem) in the growth medium (HAM's F12

- 10 nutrient mix with Glutamax-1, 10 % foetal bovine serum (FBS), 100 μg penicillinstreptomycin mixture mF¹ (GibcoBRL, supplied by Life Technologies, Denmark). Cell are cultured at 37 °C in 100% humidity and conditions of normal atmospheric gases supplemented with 5% CO₂.
- Clonal cell lines with particular properties are subcultured from mixed populations of 15 stably transfected cells by isolating individual cells and removing them to sterile culture flasks containing fresh culture medium with 1 mg/ml G418 sulphate.
 - For fluorescence microscopy, cells are allowed to adhere to Lab-Tek chambered coverglasses (Nalge Nunc International, Naperville USA) for at least 24 hours and are then cultured to about 80% confluence. Cells can also be grown in plastic 96-well plates
- 20 (Polyfiltronics Packard 96-View Plate or Costar Black Plate, clear bottom; both types tissue culture treated) for imaging purposes. Prior to experiments, the cells are cultured over night without G418 sulphate in HAM F-12 medium with glutamax, 100 μg penicillin-streptomycin mixture mi⁻¹ and 10 % FBS. This medium has low autofluorescence enabling fluorescence microscopy of cells straight from the incubator. For certain tests requiring
- 25 medium of defined composition, particularly with regard to the presence of specific cell

growth factors, the HAM's culture medium is replaced prior to imaging with a buffered saline solution (KRW buffer) containing (in mM) 3.6 KCl, 140 NaCl, 2 NaHCO₃, 0.5 NaH₂PO₄, 0.5 MgSO₄, 1.5 CaCl₂, 10 Hepes, 5 glucose, pH7.4.

Confocal imaging:

- 5 Confocal images are collected using a Zeiss LSM 410 microscope (Carl Zeiss, Jena, Germany) equipped with an argon ion laser emitting excitation light at 488 nm. In the light path are a FT510 dichroic beamsplitter and a 515 nm long-pass filter or a 510 to 525 nm bandpass emission filter. Images are typically collected with a Fluar 40X, NA: 1.3 oil immersion objective, the microscope's confocal aperture set to a value of 10 units
- 10 (optimum for this lens). Typical regions of CHO cells containing HSPDE4A1-EGFP, HSPDE4A4-EGFP, HSPDE4A4-ΔLR2-EGFP and HSPDE4A4-H506N-EGFP probes are shown in Figs 1, 2, 3, and 4 respectively.

Time lapse sequences and analysis:

Image sequences of live cells over time (time lapse) are gathered using a Zeiss Axiovert 135M fluorescence microscope fitted with a Fluar 40X, NA: 1.3 oil immersion objective and coupled to a Photometrics CH250 charged coupled device (CCD) camera (Photometrics, Tucson, AZ USA). The cells are illuminated with a 100 W HBO arc lamp. In the light path are a 470±20 nm excitation filter, a 510 nm dichroic mirror and a 515±15 nm emission filter for minimal image background. The cells are maintained at 37°C with a 20 custom built stage heater.

Time lapse response profiles are extracted from image sequences using a region of interest (ROI) defined over the same co-ordinates or pixels for each successive image in a sequence: pixel values are summed and averaged over the ROI in each image, and the resulting values plotted against image number to generate a time lapse response profile for that defined region of the sequence. A ROI can include many cells, a single cell, or a region within a single cell.

Automated imaging and analysis:

Changes in cellular distribution of a transfected probe can be imaged and quantified in an automated fashion. For this purpose cells are cultured to near 80% to 90% confluence in coverglass chambers or plastic 96-well plates, given the relevant treatment and allowed to respond. At the end of the response period, cells are fixed in 4% formaldehyde buffer (Lillies fixative buffer, pH7.0: Bie and Bemtsen A/S, Denmark) for 30 minutes to 2 hours, then washed in phosphate buffered saline (PBS, Life Technologies, Denmark). Nuclear DNA is stained with 1 µM Hoechst 33258 (Molecular Probes, Eugene, Oregon, USA) in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected

40

on a Nikon Diaphot 300 (Nikon, Japan) using a Nikon Plan Fluor 20X/0.5NA objective I ns. The basic microscop is fitted with a motorised specimen stag and motorised focus control (Prior Scientific, Fulbourn, Cambridge UK), excitation filter wheel (Sutter Instruments, Novato CA USA) and Photometrics PXL series camera with a KAF1400 CCD 5 chip (Photometrics, Tucson, AZ USA), each of these items being under the control of an Macintosh 7200/90 computer (Apple Computer, Cupertino, CA USA). Automation of stage positioning, focus, excitation filter selection, and image acquisition is performed using macros written in-house, running under IPLab Spectrum for Macintosh (Scanalytics, Fairfax, VA USA). Fluorescence illumination comes from a 100 W HBO lamp. Images are 10 collected in pairs, the first using a 340/10 nm excitation filter, the second with a 475RDF40 excitation filter (Chroma, Brattleboro, Vermont). Both images are collected via the same dichroic and emission filters, which are optimised for EGFP applications (XF100 filter set, Omega Optical, Brattleboro, Vermont). While the choice of filters for imaging the nuclear stain (Hoechst 33258) is not well matched to that dye's spectral properties, 15 resulting in lower image intensity, it greatly improves the throughput of the procedure by allowing both images to be collected using the same dichroic and emission filter. This eliminates any image registration problems and focus shifts which would result from using two different filter sets, which would require more steps in the acquisition procedure and more extensive image processing to overcome.

20

The necessary images are collected as follows: A holder containing four 8-well coverglass chambers, or a single 96-well plate, is loaded onto the microscope. The program is started, and the first well of cells is moved into position and manually coarse-focused by the operator. The image is fine-focused by an auto-focus routine using the 340/10 excitation. An image is captured and stored at this excitation wavelength (the nuclear image), and then a second image is captured and stored at the longer wavelength excitation (the GFP image). The stage is automatically repositioned and microscope automatically refocused to capture a second pair of images within the same well. This process is repeated a set number of times (typically 4 to 8) for the first well. The stage then advances the next well to the imaging position, and the process repeats itself until the set number of image pairs has been captured from each well of cells.

Image pairs are automatically analysed in the following way using a suite of macros running under the IPLab Spectrum software: First the nuclear image of a pair is filtered with a digital filter to simultaneously sharpen the edges of and suppress differences in

intensity of the nuclei. The choice of filter, and the filter constants, were arrived at through experimentation with various data sets. The filtered image is then segmented at a predetermined intensity value, such that pixels below this threshold are very likely not within a nuclear region, and pixels above this threshold are very likely within a nuclear region. 5 The contiguous regions above the threshold are then counted, after rejecting contiguous regions that are larger than a certain area or smaller than a certain (different) area, the areas having been previously determined to provide a sufficiently accurate distinction between nuclei and other objects that are not nuclei. The final count is the estimated number of nuclei in the field. The GFP image of each pair is then digitally filtered with a 10 filter chosen experimentally to suppress the variation of intensity due to the typical nonlocalised distribution of GFP, while accentuating the intensity of any bright point-like objects relative to this background. This filtered image is then segmented at a threshold that has been experimentally determined to divide the image into pixels that are very likely to be in a spot (above the threshold) and pixels that are very likely not to be in a spot 15 (below the threshold). The contiguous regions of pixels that are above the threshold are counted, after rejecting regions that do not have certain morphological properties which were previously determined to be characteristic of spots. The ratio of spot count to nuclear count for each pair represents an estimate of the average number of spots per cell in that image pair. All image pairs are treated in this way, and the final table of values is used to 20 establish the cellular response to a given treatment. Data derived from automated imaging experiments are shown in Figs. 15 to 30, and 35 to 37.

Example 3: Redistribution of probe HSPDE4A4-EGFP caused by Rolipram treatment

- 25 This example illustrates how Rolipram affects the physical properties and behaviour of the HSPDE4A4-EGFP probe as expressed in stably transfected CHO cells. Stably transfected (non-clonal) cells are allowed to adhere to chambered coverglasses in HAM's F12 medium containing 10% FBS. Once adhered, 2 μM Rolipram (4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone; Calbiochem) is added to the medium, and cells incubated further at 37 °C with 5% CO₂ + air. At certain times after addition of Rolipram cells are checked on a fluorescence microscope for changes in cellular distribution of GFP fluorescence.
 - These experiments show that the general cytoplasmic distribution of fluorescence in most cells gradually changes to one consisting of bright concentrations of fluorescence located

at several distinct spots within the cytoplasm, some fluorescence remaining mor ev nly distributed within the rest of the (non nuclear) cytoplasm. A common pattern appears to be the presence of only 2 major accumulations of fluorescence diametrically separated across the nucleus of the cell (Fig. 5). Spots are stable in cells as long as Rolipram 5 continues to be present.

Spots begin to be visible about 3 hours after addition of 2 µM Rolipram. The effect is qualitatively similar at concentrations spanning the range 100 µM to 0.5 µM Rolipram. Pre-treatment of cells with 5 µg/ml cycloheximide prevents formation of spots induced by Rolipram, indicating that protein synthesis is a necessary part of spot formation. Once spots have formed, removal of Rolipram results in their rapid dissolution, within 60 minutes at 37 °C. However, replacement of Rolipram causes the bright spots to reform, also within 60 minutes. This is more rapid than is seen for *de novo* production of spots by Rolipram in these cells.

These experiments indicate that the spots are built around anchor proteins that require

15 time to be synthesised and to accumulate. Rolipram treated PDE4 appears to be
necessary for this accumulation to occur. Once the accumulations of anchor proteins are
formed, they remain stable within the cells, for periods of at least 4 hours.

Fig. 6 shows the homogenous response to 2

µM Rolipram of a clonal population of cells
derived from a single progenitor cell transfected with probe HSPDE4A4-EGFP – more

20 than 95% of cells have produced bright spots after 6.7 hours of exposure to Rolipram. The presence of 10% FBS is not necessary for the formation of bright spots in response to Rolipram treatment (Fig. 6).

Example 4: Redistribution of probes HSPDE4A4-∆LR2-EGFP and 25 HSPDE4A4-H506N-EGFP caused by Rolipram treatment

This example illustrates how Rolipram affects the physical properties and behaviour of the HSPDE4A4-ΔLR2-EGFP and HSPDE4A4-H506N-EGFP probes as expressed in stably transfected CHO cells. The change in behaviour of the probe(s) is easily measurable by means of fluorescent imaging and allows this method to be used in the search for compounds that have similar properties to the PDE4 inhibitor Rolipram. Comparison of the behaviours of the 4A4 variants to that of the wild-type enzyme indicates which regions of the molecule are important in effecting the Rolipram response.

Stably transfected (non-clonal) cells are allowed to adhere to chambered coverglasses in HAM's F12 medium containing 10% FBS. Once adhered, 2 μM Rolipram (Calbiochem) is

added to the medium, and cells incubated further at 37 $^{\circ}$ C with 5% CO₂ + air. At certain times after addition of Rolipram cells are checked on a fluorescence microscope for changes in cellular distribution of GFP fluorescence.

Cells transfected with the HSPDE4A4-ΔLR2-EGFP probe had the same initial appearance (Fig. 3) as those transfected with the HSPDE4A4-EGFP probe, and subsequently reacted to treatment with 3 μM Rolipram in a similar way to those transfected with the HSPDE4A4-EGFP probe (Fig. 7), indicating that deletion of the region of the enzyme designated LR2 did not ablate the Rollpram response. Cells transfected with the HSPDE4A4-H506N-EGFP probe had the appearance shown in Fig. 4. Subsequent treatment with 100 μM Rollpram for 23.5 hours in HAM's F12 + 10% FBS causes spots to appear in only about 15% of the cells (Fig. 8). This result indicates that the histidine at position 506 in the primary sequence of the protein, located in the catalytic cleft of the enzyme, is essential to the Rollpram response. Mutation of this histidine is known to leave the Rollpram binding affinity of a shortened version of a recombinant human PDE4A enzyme virtually unchanged (Jacobitz *et al.*, 1997), although the Km of the enzyme for cAMP increases 11 fold, and hence it's activity decreases by approximately 90%. The conclusion can therefore be drawn that the binding of Rollpram within the catalytic cleft of the enzyme initiates the change in the cellular distribution and behaviour of the

HSPDE4A4-EGFP and HSPDE4A4-ΔLR2-EGFP probes via a mechanism that is
dependent on the presence of this critical histidine residue at position 506. The ability of
the enzyme to simultaneously bind cAMP and Rolipram may also be important in the
formation of spots in cells.

Example 5: Effects on the cellular distribution of HSPDE4A4-EGFP of
treatments with several compounds known either to inhibit PDE4 enzymes
directly or processes that are known to be inhibited by Rolipram

This example illustrates how various compounds with either general or specific inhibitory activity against PDEs, and/or with proven anti-inflammatory or anti-depressive properties, affect the physical properties and behaviour of the HSPDE4A4-EGFP probe as expressed in stably transfected CHO cells. The results of these experiments show how changes in cellular distribution of the HSPDE4A4-EGFP probe following treatment with a compound can be used to predict or evaluate the biological activity and therapeutic consequences of administering that compound to mammals, especially to humans.

44

Stably transfected (clonal and non-clonal) CHO cells are allowed to adhere to chambered coverglasses in HAM's F12 medium containing 10% FBS. Once adhered, compounds are added singly to each test chamb r, and cells incubated further at 37 °C with 5% CO₂ + air. At certain times after addition of the compounds cells are checked on a fluorescence 5 microscope for changes in cellular distribution of GFP fluorescence. Different compounds

- cause different changes in the pattern of GFP fluorescence in these cells.
- The compounds treguinsin (HL-725; 9,10-dimethoxy-2-mesitylimino-3-methyl-3,4,6,7tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one) and etazolate (SQ20009; 1-ethyl-4-[(1methylethylidene)hydrazino]-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid ethyl ester, HCl;
- 10 Calbiochem) both have some inhibitory activity towards PDE4s, although they are not specific inhibitors of these enzymes; IC₅₀ values of trequinsin against PDE4 is 1 μM (Saldou et al.: 1998) and of etazolate is 2 µM (Ahluwalia et al.: 1982). Neither compound causes formation of spots in clonal CHO cells transfected with the HSPDE4A4-EGFP probe.
- 15 Denbufylline (BRL 30892, Beecham), a selective PDE4 inhibitor (IC₅₀ 1 μM against PDE4) which is structurally unrelated to Rolipram, produces spots in cells transfected with the HSPDE4A4-EGFP probe (Fig. 9). The spots it produces are indistinguishable from those induced by Rolipram treatment, although it is less effective; only 40% of cells develop spots after 24.5 hours with 10 µM of the compound.
- 20 RS 25344 is a specific inhibitor of PDE4 enzymes, also structurally unrelated to Rolipram, which has an IC₅₀ of 0.00028 μM against PDE4s (Saldou et al.; 1998). At 0.03 μM RS25344, spots appeared in about 40% of clonal cells transfected with the HSPDE4A4-EGFP probe after 24.5 hours (Fig 10a), the spots being indistinguishable from those caused by Rolipram. Under similar conditions, 1 µM of the compound produces very large 25 and bright spots in more than 95% of cells (Fig 10b).
 - RP 73401 (also known as Piclamilast; Rhone-Poulenc Rorer), a specific inhibitor of PDE4 enzymes, produces no spots in clonal cells transfected with the HSPDE4A4-EGFP probe when tested over the range 0.3 nM to 3 μM. The IC₅₀ of RP73401 for PDE4 is 0.3 nM (Saldou et al. 1998), Rolipram (2μΜ) plus 0.001 μΜ RP73401 will produce spots in less
- 30 than 5 % of cells (Fig. 11b) 7.5 hours. Under similar conditions, but without RP73401, more than 95% of the same cells respond to 2 µM Rolipram by producing bright spots in their cytoplasm (Fig 11a). With 0.003 µM RP73401, 2 µM Rolipram is unable to elicit the production of any spots in these cells (Fig 12). Furthermore, spots take over 4 hours to appear following subsequent replacement of the [Rolipram + RP73401] with 2 µM

Rolipram alone, indicating that no anchor proteins accumulate in the combined presence of Rolipram and RP73401.

The Rolipram-like compound Ro-20-1724 (Calbiochem) is a specific inhibitor of PDE4 enzymes with an IC₅₀ of 2 μM (Rubin et al.; 1991). At 10 μM Ro-20-1724 spots appear in about 80% of clonal cells transfected with the HSPDE4A4-EGFP probe after 4.5 hours (Fig 13), the spots being indistinguishable from those caused by Rolipram. Incubation of non-clonal cells with 500 μM of the non-selective PDE inhibitor IBMX (Sigma Aldrich) causes spots to become visible in only about 5 to 10% of cells after 14 hours incubation. These spots are rather smaller and more numerous within each cell than those formed in the presence of Rolipram (Fig 14). IBMX is a general inhibitor of all PDEs, and its presence will therefore encourage cAMP levels to rise in treated cells, which is not the case for PDE4 selective inhibitors which leave the activity of other families of PDEs

CHO cells transfected with the HSPDE4A4-EGFP probe do not produce spots when treated, in HAM's F12 with or without 10% FBS, with 500 μM theophylline (a general PDE inhibitor), or 100 μM caffeine (a weak and general PDE inhibitor), or 10 μM milrinone (a strong PDE3 inhibitor but also reported to have IC₅₀ for PDE4s of about 10 μM), or 0.5 μM cilostamide (a potent PDE3 inhibitor, IC₅₀ 70 nM), or 100 μM zaprinast (potent PDE5 inhibitor, IC₅₀ 0.4 μM), or 400 μM thalidomide (an anti-inflammatory compound with 20 unspecified mode of action); all these incubations are carefully observed over the period of 1 to 24 hours and none produces spots. Cells treated with 2 μM Rolipram plus either theophylline, caffeine, milrinone, cilostamide or zaprinast (same concentrations as previously, same treatment times and conditions) form the same number and type of bright spots as they do when treated with 2 μM Rolipram alone.

transfected with the HSPDE4A4-EGFP probe show that the formation in these cells of spots similar to those produced by Rolipram is apparently associated only with the particular sub-class of PDE inhibitors that are potent and specific inhibitors of PDE4. The example shows how screening of compounds for their ability to form spots in these cells can be used to identify PDE4 inhibitors, and that the compounds identified will have similar properties to Rolipram. Further, the example shows how the HSPDE4A4-EGFP-transfected cells can be used to screen for compounds that will prevent Rolipram from forming spots, and that these compounds so identified, such as RP73401, will also be potent and specific inhibitors of PDE4 with certain properties different to those of

25 Together, these experiments where PDE inhibitors are simply incubated with cells

35 Rolipram.

unaffected.

Example 6: Quantitative assessment of the effects of Rolipram, RS25344 and Ro 20 1724 on the cellular distribution of HSPDE4A4-EGFP probe in CHO cells.

- 5 This example shows how the number of spots per cell in CHO cells transfected with the HSPDE4A4-EGFP increases in a dose dependent fashion with certain PDE4-specific inhibitors, that this quantity is readily measurable by automated imaging, and that the dose response data from such measurements yield EC₅₀ values that are closely similar to the biological effectiveness of these compounds in therapeutic applications.
- 10 Fig. 15 shows dose response curves for spot formation in response to three different PDE4 inhibitors for a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP probe (spot assays). The three inhibitors are Rolipram (▼), RS25344 (■) and Ro 20-1724 (●). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken
- 15 from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Data
- 20 sets are fitted to a 4-parameter Hill equation giving the following EC₅₀ values of 0.34 micromolar for Rolipram, 0.017 micromolar for RS25344 and 3.77 micromolar for Ro 20-1724.

Example 7: Quantitative assessment of the effects of Rolipram on the cellular distribution of HSPDE4A4-EGFP, HSPDE4A4-ΔLR2-EGFP and HSPDE4A4-H506N-EGFP probes in CHO cells.

- This example shows how measurement of the number of spots per cell induced by different concentrations of Rolipram, in CHO cells transfected with various N1 fusions of EGFP to wild-type and mutant forms of HSPDE4A4, can be used to quantify the
- 30 importance of different amino acids in the primary sequence of the enzyme in the sensitivity of the Rolipram response.
 - Fig. 16 shows dose response curves for spot formation in response to Rolipram in three stable and clonal cell lines of CHO cells transfected with HSPDE4A4-EGFP (●),

HSPDE4A4-∆LR2-EGFP (∇) and HSPDE4A4-H506N-EGFP (▼). The number of spots per cell for each concentration is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of Rolipram for 23.5

- 5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Data sets are fitted to a 4-parameter Hill equation giving the following EC₅₀ values of 0.34 micromolar Rolipram for the HSPDE4A4-EGFP probe
- 10 and 0.41 micromolar Rolipram for the HSPDE4A4-ΔLR2-EGFP probe. An EC₅₀ value can not be determined for the HSPDE4A4-H506N-EGFP probe, since the mutation makes it almost unresponsive to Rolipram in this clonal cell line.

The example shows that when 8 amino acid residues comprising the region Ala-313 to Gin-320 in the linker region 2 (LR2) of HSPDE4A4 are deleted, Rolipram-induced spot-

- 15 formation is not significantly changed relative to that of the wild-type probe. However, mutation of histidine 506 to asparagine (H506N) produces an almost total loss of sensitivity to Rolipram, indicating that this is an essential residue in the protein for transducing the spot formation activated by Rolipram.
- 20 Example 8: Quantitative assessment of the effects of Rolipram, RS25344 and Ro 20-1724 on the cellular distribution of HSPDE4A4-H506N-EGFP probe in CHO cells.

This example shows how the number of spots produced per cell by different PDE4 inhibitors in CHO cells transfected with the HSPDE4A4-H506N-EGFP is useful in

- 25 discovering compounds that interact with an ensemble of amino acid residues in HSPDE4A4 that are different to those with which Rolipram interacts.
 - Fig. 17 shows dose-response curves for spot formation in response to three different PDE4 inhibitors for a stable and clonal CHO cell line transfected with the HSPDE4A4-H506N-EGFP probe. The three inhibitors are Rolipram (▼), RS25344 (■) and Ro 20-1724
- 30 (•). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst

33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Exampl 2. Th data set for RS25344 is fitted to a 4-parameter Hill equation giving an EC₅₀ value of 0.125 micromolar. These clonal cells containing the H506N mutant of HSPDE4A4-EGFP are almost unresponsive to the other two inhibitors over the concentrations tested. The data show that RS25344 is very different to Rolipram and Ro 20-1724 in that it does not require the presence of a histidine at position 506 to effect the production of spots, and this indicates that the RS compound interacts with an ensemble of amino acids that are different to those with which Rolipram and Ro 20-1724 interact. A spot production assay using the HSPDE4A4-H506N-EGFP probe is therefore able to identify other compounds that differ in this respect from Rolipram and Rolipram-like compounds.

Example 9: Quantitative assessment of the effects of RP73401 on the ability of Rollpram to produce spots in CHO cells transfected with the HSPDE4A4-15 EGFP probe.

This example shows that the spot assay can be run in a competitive way to identify compounds that are specific PDE4 inhibitors which interfere with the ability of Rolipram to form spots, and that the spot assay can be used to quantify the competitive strength of such compounds.

- 20 Fig. 18 shows a competitive dose-response curve for Rolipram-induced spot formation in a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP probe. The cells are challenged with a fixed concentration of 2 μM Rolipram and varying concentrations of the specific PDE4 inhibitor RP73401 (Piclamilast). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown
 - in HAM's F12 medium plus 10% FBS plus various concentrations of RP73401 plus 2 μ M Rolipram for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μ M Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the
 - Approximately 0.003 μM RP73401 is sufficient to inhibit 50% of the spot formation response of these cells that normally results from treatment with 2 μM Rolipram.

30 number of spots per cell as described in Example 2.

Example 10: Effect upon R lipram-induced distribution f HSPDE4A4-EGFP following treatment with 3-isobutyl-1-methylxanthine (IBMX) plus forskolin measured as time response profiles in low and high throughput.

This example illustrates how the Rolipram-stimulated accumulations, or large spots, of the 5 HSPDE4A4-EGFP probe may be mobilised and dispersed through the action of compounds that increase cAMP levels in transfected cells. Such treatments may be useful as positive controls in screening assays designed to search for novel compounds able to dislocate bound forms of the HSPDE4A4-EGFP probe. The example also illustrates how changes in the distribution of the HSPDE4A4-EGFP probe may be quantified with 10 standard imaging techniques using a fluorescence microscope or a Fluorescence Imaging Plate Reader device (FLIPR, Molecular Devices, Sunnyvale, California, USA). Furthermore, the example provides some evidence for the involvement of cAMPdependent protein kinase in the dispersal of Rolipram-induced spots. This example also suggests that either assays of PKA activity or of cellular cAMP concentration are useful as 15 secondary screens in conjunction with this PDE-dislocation assay based on the dispersal of Rolipram-induced spots, to rule out compounds causing dispersal through elevation of cAMP and possible activation of PKA. For the microscopic assessment of spot dispersal, stably transfected (non-clonal) cells transfected with the HSPDE4A4-EGFP probe are allowed to adhere to chambered 20 coverglasses in HAM's F12 medium containing 10% FBS. Once adhered, 2 μM Rolipram is added to the medium, and cells incubated further at 37 °C with 5% CO₂ + air until spots form in about 80% of cells (approx. 12 hours or more). Chambered coverglasses are then transferred to a Zelss 135 inverted microscope for time lapse imaging as described in Example 2, above. At a given point after starting an experiment, a mixture of IBMX and 25 forskolin is added to give final concentrations of 1 mM and 50 μM, respectively. Images are captured at regular intervals to form a time lapse sequence of the response, also as described in Example 2. Individual frames from the sequence are shown in Figs 19 a, b, c and d. Analysis of the sequence generated the response profiles shown in Figs 20a and b. Fig. 20a shows how the fluorescence intensity increases in the cytoplasm with time 30 following application of forskolin plus IBMX; contemporaneously, the fluorescence intensity of each bright spot decreases (Fig. 20b). The average intensity for the entire image does not change significantly over the period of the time lapse sequence (data not shown). These measurements taken together confirm that the bright spots disperse into the cytoplasm under the influence of forskolin plus IBMX, treatments that serve to elevate

35 cytosolic levels of cAMP.

For the FLIPR measurem nts, clonal CHO cells transfected with the HSPDE4A4-EGFP probe are cultured in a 96-well black microtitr plate (Packard Polyfiltronics ViewPlate-96, Packard Instrument Co.) to near confluency, then treated with 2 μM Rolipram for 24 hours. The plate is washed with KRW buffer plus 2 μM Rolipram. Half the plate is treated with 2 μM H-89 (Calbiochem), a kinase inhibitor especially potent against the cAMP-dependent protein kinases (PKA, IC₅₀ about 50 nM) and incubated a further 20 minutes. The plate is then run in the FLIPR system at 37 °C, with addition of IBMX and forskolin to all wells at final concentrations of 500 μM and 50 μM respectively after the first minute. The experiment is continued for a further 45 minutes, readings being taken at intervals of 1 minute. Curves A and B in Fig. 21 represent averages over 8 wells each for responses to IBMX and forskolin, where wells for curve B are treated with compound H-89, and those for curve A are not.

The difference in the levels of response indicates that the inhibitor of PKA has a significant effect on the dispersal of spots induced by elevated cAMP, suggesting a role for PKA in this process.

A PKA-GFP redistribution assay, or SPA-based assay of cAMP, would be useful adjuncts to the Rolipram-induced spot-dispersal assay based on the HSPDE4A4-EGFP probe since they could counterscreen compounds that induced dispersal through elevation of cAMP.

20 Example 11: Effect upon Rolipram-induced distribution of HSPDE4A4-EGFP following treatment with phorbol-12-myristate-13-acetate (PMA) and/or ionomycin

This example illustrates how the Rolipram-stimulated accumulations, or large spots, of HSPDE4A4-EGFP probe may be mobilised and dispersed through the action of compounds that increase the concentration of cytosolic calcium ([Ca²¹]_{cx}) and activate C-type protein kinases (PKC) in transfected cells. Such treatments may be useful as positive controls in screening assays designed to search for novel compounds able to dislocate bound forms of the HSPDE4A4-EGFP probe. This example also suggests that either assays of PKC activity or of changes in [Ca²¹]_{cyt} are useful as secondary screens in conjunction with this PDE-dislocation assay based on the dispersal of Rolipram-induced spots, to rule out compounds causing dispersal through elevation of [Ca²¹]_{cyt} and possible activation of PKC.

Non-clonal CHO cells stably transfected with the HSPDE4A4-EGFP probe are allowed to adhere to chambered coverglasses in HAM's F12 medium containing 10% FBS and to

51

grow for 24 hours. After 24 hours, 2 μ M Rolipram (Calbiochem) is added to the medium, and cells incubated at 37 °C with 5% CO₂ + air for a further 42 hours. Approximately 70% of the cells contain bright spots wh n viewed on a fluorescence microscope. Different wells are then treated with fresh HAM's F12 medium plus 10% FBS plus 2 μ M

- 5 Rolipram containing either 0.2% DMSO, 200 nM PMA, 2 μM ionomycin or 200 nM PMA plus 2 μM ionomycin and returned to the incubator for 55 minutes prior to imaging. Figures 22, 23, 24 and 25 show that the number of cells with bright spots is unaffected in the DMSO control (70%), reduced to between 20-40% in the ionomycin treatment and that all spots dissolve entirely in the other two treatments.
- 10 In summary, 2 μ M ionomycin alone is capable of dispersing Rolipram-induced spots of the HSPDE4A4-EGFP probe in FBS-replete cells, but slowly and in an incomplete manner, whereas 200 nM PMA, \pm ionomycin, will disperse all spots of HSPDE4A4-EGFP probe rapidly and completely.
- A PKC-GFP redistribution assay, and/or assay to detect changes in [Ca²⁺]_{cyt}, for example 15 a fluorescence based assay with a cell permeable Ca²⁺-sensitive probe such as Fura 2-AM or Fluo 3-AM (both available from Molecular Probes, Eugene, Oregon, USA), are useful adjuncts to the Rollpram-induced spot-dispersal assay based on the HSPDE4A4-EGFP probe since they rule out compounds that induce dispersal through elevation of [Ca²⁺]_{cyt} and/or activation of PKC.

20

Example 12: Effect upon Rolipram-induced distribution of HSPDE4A4-EGFP following treatment with phorbol-12-myristate-13-acetate (PMA) plus ionomycin within serum-depleted cells

This example illustrates that in transfected cells which are serum depleted, the Rolipramstimulated accumulations, or large spots, of the HSPDE4A4-EGFP probe resist the
mobilisation or dispersal that is normally elicited by compounds which either increase the
concentration of cytosolic calcium ([Ca²+]_{0yl}) and/or activate C-type protein kinases (PKC).
This example demonstrates that accumulation and dispersal of the HSPDE4A4-EGFP
probe involves yet another control switch in addition to the Rolipram-, cAMP- and [PMA ±
ionomycin]-sensitive behaviours described in the preceding examples. However, this
switch affects only the behaviour governed by [PMA ± ionomycin]. As such, the system
has considerable in-built complexity, analysis of which in a drug-screening setting

demands assays of the highest information content, and secondary screens able to

unambiguously identify compounds with the desired mode of action.

Clonal CHO cells stably transfected with the HSPDE4A4-EGFP probe are allowed to adhere to chambered cov rglasses in HAM's F12 medium containing 10% FBS and to grow for 5 days without change of medium, which by this time is serum-depleted. After 4 days, 2 µM Rolipram is added to the same medium, and cells incubated at 37 °C with 5% 5 CO₂ + air for a further 22 hours. Approximately 95% of the cells contain bright spots when viewed on a fluorescence microscope. Cells are then washed to KRW buffer, with no added FBS but containing 2 µM Rolipram. Individual wells are then treated with either 50 µM forskolin plus 500 µM IBMX or 200 nM PMA plus 2 µM ionomycin. Spots started to disperse in cells treated with forskolin plus 10 IBMX within 10 to 20 minutes (Figs. 26a and 26b). In cells treated with PMA plus ionomycin there is little or no change in the number or size of spots present in the cells, even after 40 minutes (Figs. 27a and 27b) In summary, Rolipram-induced spots of probe HSPDE4A4-EGFP resist dispersal by agents that should activate PKC and increase [Ca2+]ct when cells are depleted of certain 15 substances normally found in foetal bovine serum. Spots in serum depleted cells remain sensitive to dispersal by agents that increase cAMP. Run as a primary screen for compounds that disperse Rolipram-induced spots, the assay does not require a counterscreen for PMA-like compounds or ones that increase [Ca2+] on if the cells are serum depleted, as when grown in the same medium for 5 days, without addition of fresh

Example 13: Description of treatments found to cause reappearance of

spots in CHO cells transfected with HSPDE4A4-EGFP from which spots have
been cleared by the removal of Rolipram, and use of the HSPDE4A4-EGFP
probe in an assay to identify compounds which inhibit the reappearance of
bright cytoplasmic spots under such conditions.

20 serum, in the manner described in this example. A secondary screen for agents that act in the same manner as [IBMX + forskolin] remains a useful adjunct to such a spot disappearance assay, for example a cell-based screen for increased cAMP.

This example describes conditions found to activate the reappearance of Rolipram-like spots in cells that have previously been treated with Rolipram, but then cleared of spots by removal of Rolipram. The example further shows how the reappearance of spots in cells given these appropriate conditions is sensitive to the presence of thalidomide, and therefore how such an assay can be used to screen for compounds with similar prop rties.

53

First, CHO cells stably transfected with probe HSPDE4A4-EGFP are grown in HAM's F12 medium with 10% FBS, and with 2 micromolar Rolipram for 15.5 hours. Bright spots are present in more than 95% of all cells. Rolipram is then washed from the cells, and fresh HAM's F12 + 10% FBS is added. Cells are returned to conditions of 37 °C + 5% CO₂ in humidified air (i.e. standard incubator conditions). After 150 minutes, all GFP-bright spots disappear from cells. Spots are induced to reappear in these ways:

- A) NaCl is added to the cells to increase the final concentration of salt in the medium. The cells in Figs. 28a, 28b and 28c are all in HAM's F12 + 10% FBS to which NaCl has been added to increase the concentration of NaCl by 100 mM. Cells in 28c are 10 additionally treated with 5 micromolar SB203580, a specific inhibitor of p38 mitogen activated protein kinases (p38 MAPK). The cells in Fig. 28b are returned to conditions of 37 °C + 5% CO₂ in humidified air (i.e. standard incubator conditions), while those in 28a and 28c are chilled to 4 °C. After 4 hours of these treatments cells were fixed with 4% formaldehyde pH 7.0 at room temperature for 1 hour, and washed with PBS buffer 15 ready for imaging. Many small GFP-bright spots form in more than 90% of the chilled cells, but of those returned to incubator conditions (Fig 28b) less than 5% of cells contain spots. Chilled and SB 203580-treated cells (Fig. 28c) contain significantly fewer, but larger, bright spots per cell than those in Fig. 28a. Fig. 30 shows the response of these cells to various amounts of NaCl where the concentration of salt in 20 the medium has been increased by 0 mM, 5 mM, 50 mM or 100 mM. A second group of the same cells are treated similarly but with the addition of 5 μM SB203580. All treatments are then chilled, fixed and then stained with 1 µM Hoechst 33258 in PBS for 10 minutes at 25 °C, and washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The number 25 of spots per cell increases in a dose-dependent fashion with increasing salt concentration. SB203580 decreases the number of spots per cell. Examination of the images from the SB203580 treatment (e.g. Fig. 28c) suggests that decreased spot number is accompanied by increased spot size.
- B) Cells are left at ambient conditions. The cells in Fig. 29a are pre-treated with Rolipram as above, and washed to remove spots as described. They are then left under ambient conditions (normal air, 22 to 25 °C) rather than in a cell incubator, for a period of 4 hours. During this time the medium evaporates by about 20%, and the pH of the medium shifts from pH6.5 to pH8.1 as the CO₂ in the medium equilibrates with ambient conditions. After 4 hours, spots reappear in the cytoplasm which are indistinguishable from those induced by the original Rolipram treatment. As time

54

continues the proportion of cells containing spots increases as does the siz of spots in cells. Return of cells to the incubator after 4 to 6 hours under ambient conditions results in complete reversal of this effect.

The cells in Fig. 29b are treated according to the protocol described in (B) above, and
also given 400 μM thalidomide at the time of removal of the Rolipram. The thalidomide appears to hasten disappearance of the spots, but also inhibits return of spots under ambient conditions. Fig. 31 is a dose-response curve for this effect, for which a set of cells are treated with a range of thalidomide concentrations at the time of removal of Rolipram. After 4 hours under ambient conditions the cells are fixed with 4% formaldehyde buffer
(pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, and washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The data set for this experiment is fitted to a 4-parameter Hill equation (the curve in Fig. 31) indicating an IC₅₀ value of 33 micromolar thalidomide against the reappearance of spots under these
conditions.

Thalidomide also inhibits the reappearance of spots under the NaCl treatment protocol. Cells treated with an addition of 100 mM NaCl as described in (A) above produce a mean spot count per cell (\pm sem) of 0.856 \pm 0.195 after 2 hours at 4 °C. In similar cells treated with 400 μ M thalidomide at the time of removal of Rolipram, the spot count is 0.364 \pm

20 0.047 after 2 hours at 4 °C.

Spots do not reappear in CHO cells stably transfected with probe HSPDE4A4-EGFP under ambient or chilled and salt-supplemented conditions unless the cells are pre-treated with Rolipram. These observations allow the reappearance of spots to be used as a procedure to screen for compounds similar to thalidomide which cannot, or do not, form spots themselves in CHO cells transfected with probe HSPDE4A4-EGFP, and cannot or

spots themselves in CHO cells transfected with probe HSPDE4A4-EGFP, and cannot or do not compete directly with Rolipram in the prevention of spot formation in these cells. Such compounds may share certain properties and therapeutic uses in common with thalldomide and related compounds, many of which are known to have useful anti-inflammatory properties together with mild to strong inhibitory actions against PDE4

30 enzymes.

55

Example 14: Effect upon distribution of prob HSPDE4A4-EGFP following treatment with ionomycin within serum-depleted Rolipram-treated cells

This example demonstrates yet another behaviour of the Rolipram-treated HSPDE4A4-EGFP probe, which is restricted to cells grown for long periods in serum-depleted media, 5 or starved of serum in KRW buffer. This behaviour involves only the fluorescence seen more or less evenly distributed within the cytoplasm of Rolipram-treated cells, and does not involve the large fluorescent accumulations characteristic of these cells. This example provides evidence that more than one component may be involved in anchoring the HSPDE4A4-EGFP probe in Rolipram-treated cells, and that direct or indirect sensitivity to 10 changes in [Ca²⁺]_{cyt} is a characteristic of that component (or components). Clonal CHO cells stably transfected with the HSPDE4A4-EGFP probe are allowed to adhere to chambered coverglasses in HAM's F12 medium containing 10% FBS and to grow for 4 days without change of medium. Rolipram at 2 µM is added to the medium 32 hours before the cells are used, and incubation continued at 37 °C with 5% CO₂ + air, At 15 the end of this time approximately 95% of the cells contain bright spots when viewed on a fluorescence microscope. Cells are then washed to KRW buffer, with no added FBS but containing 2 µM Rolipram. Individual wells are then treated first with 1 or 2 μM ionomycin, and then a short time later with 50 µM forskolin plus 500 µM IBMX. Within 1 minute of treatment with ionomycin, at 20 either 1 or 2 μM, small spots form in the cytoplasm of the cells (Fig. 32a and 32b). This occurs in nearly all cells, whether they contain large Rolipram-induced spots or not. Large

spots are not affected in any way during the formation of the smaller spots. The small spots will spontaneously disappear within 10 to 20 minutes. Application of forskolin plus IBMX clears them within minutes (Fig. 33a). The larger spots also disperse in time with this treatment, but more slowly (Fig. 33b). The formation of small spots will not occur in serum-replete cells, or in starved cells that then have been given 10% serum for more than 45 minutes. The response does not occur in cells transfected with the HSPDE4A4-EGFP probe if Rolipram is not present. The time course of transient appearance of the small spots of the HSPDE4A4-EGFP probe is consistent with that of the Ca²⁺ transient

This example suggests that the Rolipram-inhibited HSPDE4A4-EGFP probe, or some other anchoring component it is attached to in the Rolipram-inhibited state, is Ca²⁺ sensitive. Since there is no obvious effect on the large accumulations, it is also possible that the HSPDE4A4-EGFP probe distributed throughout the cytoplasm is anchored to a different component than that or those found in the large accumulations or spots. The

30 generally elicited by ionomycin in treated cells.

56

behaviour of the HSPDE4A4-EGFP probe under these conditions may be used to screen for compounds that remov the calcium sensitivity of the enzyme complex, or which simply prevent the formation of these minor spots. Such compounds may be useful in controlling inflammatory responses of pro-inflammatory cells such as eosinophils and other leucocytes.

Example 15: Redistribution of HSPDE4A1-EGFP caused by treatment with Rollpram

This example shows that the HSPDE4A1-EGFP probe redistributes within cells when treated with Rolipram, but in a way that is very different to the behaviour of the HSPDE4A4-EGFP probe. HSPDE4A1-EGFP accumulates as small perinuclear spots in otherwise untreated CHO cells transfected with the plasmid PS461 (Figs. 1 and 34a). Rolipram induces these spots to disperse into the cytoplasm (Fig. 34b).

The HSPDE4A1-EGFP probe is useful in the search for dislocators of this isoform, and to discover compounds that mimic or antagonise the effect of Rollpram on the probe. Such compounds will likely be therapeutically useful in the treatment of depressive disorders and inflammatory reactions in the central nervous system.

In Fig. 34a the cells are growing in only HAM's F12 medium with 10% FBS; the GFP fluorescence is restricted to bright granule-like spots within the perinuclear cytoplasm of each cell. The spots may be clustered around, in or on the Golgi membranes. In Fig. 34b similar cells to those seen in 34a have been treated with 2 micromolar Rolipram for 2 hours. The majority of GFP-bright spots disappear in all cells under Rolipram treatment, and the cytoplasm becomes generally brighter. Larger spots may not disperse completely in some cells. When Rolipram is washed away, the spots reform within 1.75 hours.

25 Certain other compounds also reduce PDE4A1 spot numbers, and these include Ro 20–1724, RS25344 and to a lesser extent, denbufylline and IBMX, but the latter compound only starts to have an effect after 100 μM. RP73401 does not disperse spots, and it is anticipated that other such compounds with affinity only for the "low affinity binding site" of PDE4s, such as SB207499 or CDP840 (CellTech/Chiroscience) will also fail to disperse spots of PDE4A1.

This example shows that the HSPDE4A1-EGFP probe does not share the same responses or behaviour demonstrated by the HSPDE4A4-EGFP probe. Since the 4A4 and 4A1 probes share much of the same genomic and therefore primary protein sequence, behavioural differences can be ascribed with some confidence to those regions

57

of the two enzymes that differ. Specifically, the seare from amino acid 1 to 22 of probe HSPDE4A1-EGFP and from amino acid 1 to 261 of probe HSPDE4A4-EGFP. The remaining primary sequence of these proteins is identical, as coded for in the plasmids described in Example 1 above.

5

Example 16: Quantitative assessment of the effects of Rolipram, RS25344, Ro 20-1724, Trequinsin and RP73401 on the cellular distribution of HSPDE4A1- EGFP probe in CHO cells.

This example shows how different PDE4 inhibitors, and one PDE3 inhibitor with some 10 PDE4 inhibitory activity, either affect the distribution of the 4A1 probe in a dose dependent fashion or have no significant effect on the distribution, that this distribution and any change thereof is readily measurable by automated imaging. Fig. 35 shows dose response curves for spot dispersal in response to three different PDE4 inhibitors for a stable and clonal CHO cell line transfected with HSPDE4A1-EGFP 15 probe. The three inhibitors are Rolipram, RS25344 (▼) and Ro 20-1724 (O). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells are then fixed with 4% formalin buffer 20 (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Estimated EC50 values are 0.35 micromolar for Rolipram, 0.005 micromolar for RS25344 and 3.5 micromolar for Ro 20-1724. These values are very closely similar to the EC₅₀ values each 25 of these compounds has in causing redistribution of HSPDE4A4-EGFP probe in CHO cells, except in such an experiment spots are formed, and not dispersed as here (example 6).

Data in Fig. 36 has also been obtained by automated imaging from CHO cells stably transfected with HSPDE4A1-EGFP probe, but treated with various concentrations of RP73401 (●), a specific and potent PDE4 inhibitor, and Trequinsin (∇), a PDE3 inhibitor with some action on PDE4. Again, the number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells

58

are then fixed with 4% formalin buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25°C, then washed twice in PBS.

Automat d images are collected and analysed for the number of spots per cell as described in Example 2. There is no significant spot dispersal over the concentration ranges tested for either compound, in agreement with the lack of agonist activity of these compounds upon CHO cells stably transfected with HSPDE4A4-EGFP probe.

Example 17: Quantitative assessment of the effects of RP73401 plus Rolipram on the cellular distribution of HSPDE4A1- EGFP probe in CHO 10 cells.

This example shows that RP73401 can overcome the effect of Rolipram, and prevent the Rolipram-induced disappearance of spots, in a dose dependent fashion. This example describes how antagonists to the Rolipram effect on 4A1 may be found.

- Fig. 37 shows a competitive dose response curve for Rolipram-induced spot dispersal in a stable and clonal CHO cell line transfected with. The cells are challenged with a fixed concentration of 3 μM Rolipram and then varying concentrations of the specific PDE4 inhibitor RP73401 (Piclamilast). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12
- 20 medium plus 10% FBS plus 3 μM Rolipram for 20 hours. This treatment removes most spots from all cells. Various concentrations of RP73401 are then added and incubation continued for a further 6 hours. When there is sufficient RP73401 compound present to compete against Rolipram, spots re-form within the cells. The process of spot reappearance in CHO cells expressing the HSPDE4A1-EGFP probe can be measured as little as 60 minutes after addition of the test compound (RP73401 in this example), or as much as 24 hours after addition, if the test compound is sufficiently stable. Alternatively, both Rolipram and the test compound can be added simultaneously to these cells, and incubation continued for a period in the range 1 hour to 24 hours, after which the spot
- 30 After the test period, cells are fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25°C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. In all cases, if increasing concentrations of a test compound give increasing spot count per cell, then that compound is by definition

count per cell will again be indicative of possible antagonistic action.

59

having an antagonistic effect on the action of Rolipram on 4A1. The data in Fig. 37 are fitted to a 4-parameter Hill equation, giving an IC $_{50}$ of 0.01 μ M for RP73401 against 3 μ M Rolipram.

Example 18: Quantitative assessment of the effects of SB207499 (Ariflo®) on the ability of Rolipram and RS25344 to produce spots in CHO cells transfected either with the HSPDE4A4-EGFP, HSPDE4A4-△LR2-EGFP or HSPDE4A4-H506N-EGFP probes.

This example shows that Ariflo® (SB207499), a specific PDE4 inhibitor with excellent therapeutic properties and minimal side effect profile is able to prevent or reverse the usual spot forming activity of Rolipram or RS25344 in cells transfected with HSPDE4A4-EGFP, HSPDE4A4-ΔLR2-EGFP or HSPDE4A4-H506N-EGFP probes in a dose dependent way. This example demonstrates that the spot assay can be run in a competitive way to identify compounds that are specific PDE4 inhibitors and which interfere with the ability of Rolipram-like compounds to form spots, and that the spot assay can be used to quantify the competitive strength of such compounds.

Ariflo® does not by itself produce spots in any CHO cells transfected with either

Ariflo[®] does not by itself produce spots in any CHO cells transfected with either HSPDE4A4-EGFP, HSPDE4A4-ΔLR2-EGFP or HSPDE4A4-H506N-EGFP probes over the concentration range 30 to 0.01 μM.

Fig. 38 shows competitive dose-response curves for Rolipram- and RS25344-induced
20 spot formation in a stable and clonal CHO cell line transfected with the HSPDE4A4-EGFP
probe. The cells are challenged with fixed concentrations of either Rolipram or RS25344
and various concentrations of Ariflo[®]. Cells are grown in HAM's F12 medium plus 10%
FBS plus various concentrations of RP73401 plus 2 μM Rolipram for 23.5 hours. The cells
are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and

25 stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2.

Approximately 3.5 μM SB207499 is sufficient to inhibit 50% of the spot formation response of these cells to 5 μM Rolipram, indicating approximately equal competitive affinity or strengths of the two compounds for the catalytic cleft of the enzyme. A higher concentration of Ariflo®, approximately 20 μM, is needed to produce the same effect against only 0.5 μM of RS25344, confirming the greater affinity of RS25344 for position in the catalytic cleft.

PCT/DK01/00264

60

Fig. 39 shows that the affinity of RS25344, as shown by the amount of Ariflo® needed to halve the spot formation response, is the same for the three different variants of the HSPDE4A4 probes used. This results also indicates that H506 is not involved in binding either RS25344 or Ariflo® to the catalytic cleft, nor is the LR2 region important in this regard.

Example 19: Redistribution of probe HSPDE4A4catD-EGFP caused by Rolipram and RS25344 treatment

This example illustrates how Rolipram and RS25344 affect the physical properties and behaviour of the HSPDE4A4catD-EGFP probe as expressed in stably transfected CHO to cells.

Transiently transfected or stably transfected (non-clonal) cells are allowed to adhere to chambered coverglasses in HAM's F12 medium containing 10% FBS. Once adhered, either Rolipram (4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone; Calbiochem) or RS25344 is added to the medium, and cells incubated further at 37 °C with 5% CO₂ + air.

15 At certain times after addition of Rolipram cells are checked on a fluorescence microscope for changes in cellular distribution of GFP fluorescence.

These experiments show that the general cytoplasmic distribution of cellular fluorescence gradually changes to one consisting of bright concentrations of fluorescence located at several distinct spots within the cytoplasm, some fluorescence remaining more evenly

20 distributed within the rest of the (non nuclear) cytoplasm. A common pattern appears to be the presence of only 2 major accumulations of fluorescence diametrically separated across the nucleus of the cell (Fig. 40). Spots are stable in cells as long as Rolipram or RS25344 continues to be present.

Spots begin to be visible about 6 hours after addition of 1 μM RS25344. The effect is qualitatively similar at concentrations spanning the range 10 μM to 0.1 μM RS25344, 100 μM to 10 μM Rolipram. Pre-treatment of cells with 5 μg/ml cycloheximide prevents formation of spots induced by Rolipram and RS25344, indicating that protein synthesis is a necessary part of spot formation. Once spots have formed, removal of eother compound results in their rapid dissolution, within 60 minutes at 37 °C. However, replacement of

30 either Rolipram or RS25344 causes the bright spots to reform, also within 60 minutes. This is more rapid than is seen for de novo production of spots by Rolipram or RS25344 in these cells.

These experiments indicate that the HSPDE4A4catD-EGFP probe responds to Rollpram or RS25344 in qualitatively the same way as the HSPDE4A4-EGFP probe, and shows

that a cassette substitution of PDE4 catalytic regions into the PDE4A4 enzyme is a feasible method to search for isoform-specific catalytic inhibitors of PDE4. By extension from the methods described for the uses of HSPDE4A4-EGFP and HSPDE4A1-EGFP probes, the cassette substitution of other PDE4 isoform catalytic regions into these

5 PDE4A probes will allow discovery of isoform-specific catalytic inhibitors which belong either to the Rollpram group of compounds, or to the group of PDE4 inhibitors with low potential for causing emesis in humans (members of this latter group being Ariflo® and RP73401, for example).

Fig. 40 shows the response to 1 μM RS25344 of a population of CHO cells stably

10 transfected with probe HSPDE4A4cat4D-EGFP. Cells have been treated with RS25344 for 32 hours. Many cells in this stable population respond by forming pairs of bright spots in their cytoplasm. Fig. 41 shows CHO cells transiently transfected with HSPDE4A4cat4D-EGFP and treated with 10 μM Rolipram for 26 hours. A fraction of cells in the heterogenous population respond by forming bright spots of fluorescence in their cytoplasm.

Example 20: Quantitative assessment of the effects of RP73401 on the reapearance of stress-induced spots in CHO cells stably transfected with HSPDE4A4- E222G probe.

This example describes the behaviour of the HSPDE4A4-E222G probe in a CHO cell clone treated to produce stress-induced spots (see Example 13), but in the presence of various concentrations of RP73401 compound. The example demonstrates (1) that the E222G version of the PDE4A4 probe behaves in the same way as does the EGFP version, namely that PDE4A4 spots reappear under stress conditions, and (2) that the number of spots per cell that reappear under stress conditions is inhibited in a dose-dependent way by RP73401 compound.

CHO cells stably transfected with the HSPDE4A4-E222G probe are grown in HAM's F12 medium with 10% FBS, and with 3 micromolar Rolipram for 20 hours. Bright spots, usually paired, are present in more than 95% of all cells. Rolipram is then washed from the cells, and fresh HAM's F12 (with no additions) is added. Cells are returned to conditions of 37 °C + 5% CO₂ in humidified air (i.e. standard incubator conditions). After 4 hours, all GFP-bright spots disappear from cells.

Cells are then treated with various concentrations of RP73401 in HAM's F12 and left at ambient conditions (normal air, 22 to 25 °C) for a period of 3 hours (stress treatment). During this time the medium evaporates by about 15%, and the pH of the medium shifts

from pH6.5 to pH8.1 as the CO $_2$ in the medium equilibrates with ambient conditions. After 3 hours, spots reappear in the cytoplasm. The cells are then fixed with 4% formalin buffer (pH7) for 15 minutes, washed with PBS and stained with 10 μ M Hoechst 33258 in PBS for 15 minutes at 25 °C, then washed twice in PBS. Automated images are collected and

- 5 analysed for the number of spots per cell as described in Example 2.
 Spots do not reappear in these CHO cells under ambient conditions unless the cells are pre-treated with Rolipram. Spot reappearance behaviour is indistinguishable from that of cells stably transfected with HSPDE4A4-EGFP probe (Example 13).
 - Fig. 42 shows a dose response curves for spot reappearance under stress treatment.
- 10 Estimated IC₅₀ value is 0.3 nanomolar for RP73401. This value is equal to the IC₅₀ value determined for inhibition of PDE4 enzyme by this compound (Saldou et al. 1998). This result indicates that in the absence of Rolipram, the action of RP73401 opposes spot formation with a kinetic determined by simple reversible binding of the compound to the catalytic site.
- 15 Example 21: Quantitative assessment of the effects of Rollpram on the cellular distribution of HSPDE4A1- E222G probe in CHO cells.

This example shows how Rolipram affects the distribution of the PDE4A1-E222G probe in a dose dependent fashion, as measured by automated imaging, and that the response of this probe is indistinguishable from that of the HSPDE4A1- EGFP probe.

- 20 Fig. 43 shows a dose response curves for spot dispersal in a clonal line of CHO cells stably transfected with the HSPDE4A1- EGFP probe treated with Rolipram. The number of spots per cell for each concentration of Rolipram is the mean of 3 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of
- 25 Rolipram for 25 hours. The cells are then fixed with 4% formalin buffer (pH7) for 15 minutes, washed with PBS and stained with 10 μM Hoechst 33258 in PBS for 15 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Estimated EC₅₀ value is 0.1 micromolar for Rolipram. This value is very closely similar to the EC₆₀ value determined
- 30 for the HSPDE4A1-EGFP probe in CHO cells (0.35 micromolar, Example 16).

63

Figur L g nds

Fig. 1

Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A1-EGFP growing in HAM's F12 medium with 10% FBS. The transfected cells are a clonal population derived from a single parent cell. GFP fluorescence is almost entirely restricted to bright granule-like spots within the perinuclear cytoplasm of each cell. The probe is not visible in the nuclei of these cells.

Fig. 2

10 Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS. The transfected cells are a mixed, non-clonal population. GFP fluorescence is more or less evenly distributed throughout the non-nuclear cytoplasm, darker regions within this area are probably mitochondria from which the probe is apparently excluded.

15

Fig. 3

Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-\(\Delta\LR2\)-EGFP growing in HAM's F12 medium with 10% FBS. The transfected cells are a clonal population derived from a single parent cell. GFP fluorescence is more or less evenly distributed throughout the non-nuclear cytoplasm, darker regions within this area are probably mitochondria from which the probe is apparently excluded.

Fig. 4

Confocal fluorescence image showing CHO cells stably transfected with probe

25 HSPDE4A4-H506N-EGFP growing in HAM's F12 medium with 10% FBS. The transfected cells are a clonal population derived from a single parent cell. GFP fluorescence is more or less evenly distributed throughout the non-nuclear cytoplasm, darker regions within this area are probably mitochondria from which the probe is apparently excluded.

64

Fig. 5

Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 2 micromolar Rolipram. The transfected cells are a mixed, non-clonal population, and have been tracted with Palisager for 40 bases CFD fluorescences.

5 treated with Rollpram for 42 hours. GFP fluorescence concentrates in bright spots in approximately 70% of the cell population.

As a scale to guide, nuclei sizes are generally in the range of 8 to 15 μ m (mean of 11 μ m s.d. 2.5 μ m (n=15)).

Fig. 6

- 10 Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium without FBS but with 2 micromolar Rolipram. The transfected cells have been derived from a single cell isolated from a nonclonal population. The cells have been treated with Rolipram for 6.7 hours. GFP fluorescence concentrates in bright spots in more than 95% of the cells.
- 15 As a scale to guide, nuclei sizes are generally in the range of 8 to 15 μm (mean of 11μm s.d. 2.5μm (n=15)).

Fig. 7

Confocal fluorescence image showing CHO cells stably transfected with probe
HSPDE4A4-ΔLR2-EGFP growing in HAM's F12 medium with 10% FBS plus 3 micromolar

20 Rolipram. The transfected cells are a clonal population, and have been treated with Rolipram for 23.5 hours. In approximately 90% of the cells GFP fluorescence concentrates in bright spots, which are indistinguishable from those in seen in Rolipramtreated cells transfected with the "wild-type" probe HSPDE4A4-EGFP.

25 Fig. 8

Confocal fluorescence image showing CHO cells stably transfected with probe
HSPDE4A4-H506N-EGFP growing in HAM's F12 medium with 10% FBS plus 100
micromolar Rolipram. The transfected cells are a clonal population, and have been
treated with Rolipram for 23.5 hours. In only approximately 15% of the cells GFP

fluorescence concentrates in bright spots, which are indistinguishable from those in seen

in Rolipram-treated cells transfected with the "wild-type" probe HSPDE4A4-EGFP.

65

Fig. 9

Confocal fluorescence imag showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS and 10 micromolar denbufylline (BRL30892). The transfected cells have been derived from a single cell isolated from a non-clonal population. The cells have been treated with denbufylline for 24.5 hours. GFP fluorescence concentrates in bright spots in approximately 40% of the cells.

Fig. 10a and 10b

10 Confocal fluorescence images showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS and two concentrations of RS 25344 for 24.5 hours: cells in 10a are treated with 0.03 micromolar RS 25344, cells in 10b with 1 micromolar. The transfected cells have been derived from a single cell isolated from a non-clonal population. GFP fluorescence concentrates in bright spots in approximately 40% of the cells in Fig 10a. In Fig 10b the accumulations of GFP fluorescence are considerably more massive, and present in more than 95% of cells.

Fig. 11a, b

Confocal fluorescence images showing CHO cells stably transfected with probe

HSPDE4A4-EGFP. The transfected cells are a clonal population. In Fig. 11a the cells are grown in HAM's F12 medium with 10% FBS plus 2 micromolar Rolipram for 6.7 hours.

The cells in Fig. 11b have been treated with a combination of Rolipram plus 0.001 micromolar of the specific PDE4 inhibitor RP 73401 for 7.5 hours. RP73401 inhibits the Rolipram-induced production of spots in these CHO cells; GFP fluorescence concentrates in bright spots in less than 5% of the cell population.

Fig. 12

Confocal fluorescence images showing CHO cells stably transfected with probe HSPDE4A4-EGFP. The transfected cells are a clonal population. The cells are grown in 30 HAM's F12 medium with 10% FBS with a combination of 2 micromolar Rolipram plus 0.003 micromolar of the specific PDE4 inhibitor RP 73401 for 7.5 hours. RP73401 inhibits the Rolipram-induced production of spots in these CHO cells; there are no spots formed in any of the cells.

66

Fig. 13

Wide-field fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 10 micromolar of the specific PDE4 inhibitor Ro-20-1724. The transfected cells are a clonal population, and are been treated with Ro-20-1724 for 4.5 hours. GFP fluorescence concentrates in bright spots in approximately 80% of the cell population.

Fig. 14

Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 500 micromolar of the general PDE inhibitor IBMX. The transfected cells are a mixed, non-clonal population, and are treated with IBMX for 14 hours. GFP fluorescence forms small bright spots in about 10% of cells. In the remaining cells, the distribution is uniformly cytoplasmic, indistinguishable from untreated cells (Fig. 2). Those cells that contain spots are dissimilar to Rolipram treated cells (Figs. 5 and 6) in that they each contain more than two major bright spots.

Fig. 15

- 20 Dose response curves for spot formation in response to three different PDE4 inhibitors for a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP probe. The three inhibitors are Rolipram (▼), RS25344 (■) and Ro 20-1724 (●). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells.
- 25 Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Data sets are fitted to a 4-parameter
- 30 Hill equation giving the following EC₅₀ values of 0.34 micromolar for Rolipram, 0.017 micromolar for RS25344 and 3.77 micromolar for Ro 20-1724.

67

Fig. 16

Dose response curves for spot formation in response to Rolipram in three stable and clonal cell lines of CHO cells transfected with HSPDE4A4-EGFP (), HSPDE4A4-ΔLR2-EGFP (∇) and HSPDE4A4-H506N-EGFP (▼). The number of spots per cell for each concentration is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of Rolipram for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Data sets are fitted to a 4-parameter Hill equation giving the following EC₅₀ values of 0.34 micromolar Rolipram for the HSPDE4A4-EGFP probe and 0.41 micromolar Rolipram for the HSPDE4A4-ΔLR2-EGFP probe. An EC₅₀ value can not be determined for the HSPDE4A4-H506N-EGFP probe, since the mutation makes it almost unresponsive to Rolipram.

Fig. 17

Dose response curves for spot formation in response to three different PDE4 inhibitors for a stable and clonal CHO cell line transfected with the HSPDE4A4-H506N-EGFP probe.

20 The three inhibitors are Rolipram (▼), RS25344 (■) and Ro 20-1724 (●). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The data set for RS25344 is fitted to a 4-parameter Hill equation giving an EC₅₀ value of 0.125 micromolar. These clonal cells containing the H506N mutant of HSPDE4A4-EGFP are almost

30 unresponsive to the other two inhibitors over the concentrations tested.

68

Fig. 18

A competitive dose response curve for Rolipram-induced spot formation in a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP probe. The cells are challenged with a fixed concentration of 2 micromolar Rolipram and varying concentrations of the specific PDE4 inhibitor RP73401 (Piclamilast). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of RP73401 plus 2 micromolar Rolipram for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Approximately 0.003 micromolar RP73401 is sufficient to inhibit 50% of the spot formation response of these cells that normally results from treatment with 2 micromolar Rolipram.

15

Fig. 19a to d

The figures show four fluorescence images from a time lapse sequence for non-clonal CHO cells transfected with the HSPDE4A4-EGFP probe. Cells are pre-treated with 2 micromolar Rolipram for 24 hours, then given 50 micromolar forskolin plus 1 millimolar 18MX (all in HAM's F12 medium plus 10% FBS). Fig. 15a is taken immediately before addition of IBMX plus forskolin, Fig. 15b, c and d at 6, 9 and 24 minutes after that addition. Two regions of interest, marked A and B in Fig. 15a, are used to generate the time profiles shown in Fig 16a and Fig 16b respectively (according to the method in Example 2).

25

Fig. 20a

Time profile derived from a region of interest (ROI) delineating an area of cytoplasm, marked as A in Fig. 15a. IBMX and forskolin are added 2 minutes prior to the start of imaging. The curve is derived by averaging pixel values within the ROI for each image in the sequence. Images are taken at intervals of 30 seconds.

69

Fig. 20b

Time profile derived from a ROI delineating a single bright spot, marked as B in Fig. 15a. IBMX and forskolin are added 2 minutes prior to the start of imaging. The curve is derived by averaging pixel values within the ROI for each image in the sequence. Images are taken at intervals of 30 seconds.

Fig. 21

This figure shows results from a FLIPR™ (Molecular Devices) 96-well plate reader. The plate contains clonal CHO cells transfected with the HSPDE4A4-EGFP probe that are treated with 2 micromolar Rolipram for 24 hours, then washed to KRW buffer plus 2 micromolar Rolipram just prior to running the experiment. Time traces A and B represent averages over 8 wells each for responses to 500 micromolar IBMX plus 50 micromolar forskolin, where wells for curve B are pre-treated with 2 micromolar compound H-89 for 20 minutes, and those for curve A are not. Curves are normalised and corrected to a buffer + DMSO control. The experiment is run at 37 °C, and addition of the test compounds occurs after the first minute. Readings after the addition are made at intervals of 1 minute. The difference in the levels of response indicates that the inhibitor of PKA has a significant effect on the dispersal of spots that is induced by IBMX plus forskolin, suggesting a role for PKA in this process.

20

Fig. 22

Confocal fluorescence image showing CHO cells stably transfected with probe
HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 2 micromolar
Rolipram. The transfected cells are a mixed, non-clonal population, and are treated with
Rolipram for 42 hours, then further treated with fresh HAM's F12 medium with 10% FBS
plus 2 micromolar Rolipram plus 0.2% DMSO for 50 minutes. All treatments are under
standard incubator conditions. GFP fluorescence remains concentrated in bright spots in
approximately 70% of the cell population.

30 Fig. 23

Confocal fluorescence image showing CHO cells stably transfected with probe
HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 2 micromolar
Rolipram. The transfected cells ar a mixed, non-clonal population, and are treated with

70

Rolipram for 42 hours, then further treated with fresh HAM's F12 medium with 10% FBS plus 2 micromolar Rolipram plus 2 micromolar ionomycin for 50 minutes. All treatments are under standard incubator conditions. GFP fluorescence remains concentrated in bright spots in approximately 20 to 40% of the cell population.

5

Fig. 24

Confocal fluorescence image showing CHO cells stably transfected with probe HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 2 micromolar Rolipram. The transfected cells are a mixed, non-clonal population, and are treated with Rolipram for 42 hours, then further treated with fresh HAM's F12 medium with 10% FBS plus 2 micromolar Rolipram plus 200 nM PMA for 50 minutes. All treatments are under standard incubator conditions. GFP fluorescence is no longer concentrated in bright spots in any of the cell population.

15 *Fig. 25*

Confocal fluorescence image showing CHO cells stably transfected with probe
HSPDE4A4-EGFP growing in HAM's F12 medium with 10% FBS plus 2 micromolar
Rolipram. The transfected cells are a mixed, non-clonal population, and have been
treated with Rolipram for 42 hours, then further treated with fresh HAM's F12 medium with
10% FBS plus 2 micromolar Rolipram plus 200 nM PMA plus 2 micromolar ionomycin for
50 minutes. All treatments are under standard incubator conditions. GFP fluorescence is
no longer concentrated in bright spots in any of the cell population.

Fig. 26a and 26b

25 Confocal fluorescence images showing clonal CHO cells stably transfected with probe HSPDE4A4-EGFP in KRW buffer with no FBS plus 2 micromolar Rolipram. The cells are depleted of serum for more than 22 hours. Fig 26a shows the cells before treatment, Fig. 26b 18 minutes after addition of 50 micromolar forskolin plus 500 micromolar IBMX. This treatment is under amblent conditions on the microscope stage. After 18 minutes, most 30 large spots have dispersed within the cells.

Fig. 27a and 27b

Confocal fluorescence images showing clonal CHO cells stably transfected with probe HSPDE4A4-EGFP in KRW buffer with no FBS plus 2 micromolar Rolipram. The cells have been depleted of serum for more than 22 hours. Fig 27a shows the cells before treatment, Fig. 27b 38 minutes after addition of 200 nanomolar PMA plus 2 micromolar ionomycin. This treatment is under ambient conditions on the microscope stage. There is no significant dispersal of the large fluorescent spots under this protocol.

Fig. 28a, 28b, 28c

10 Confocal fluorescence images showing CHO cells stably transfected with probe HSPDE4A4-EGFP. The transfected cells have been derived from a single cell isolated from a non-clonal population. These cells are grown in HAM's F12 medium with 10% FBS, and with 2 micromolar Rolipram for 15.5 hours. Bright spots are present in more than 95% of all cells. Rolipram is then washed from the cells, and fresh HAM's F12 + 10% 15 FBS is added. After 150 minutes all GFP-bright spots disappear from cells. A volume of 1 molar NaCl is then added to the cells to increase the final concentration of salt in the medium by 100 mM. The cells in Fig. 28c are additionally treated with 5 micromolar SB203580, a specific inhibitor of p38 mitogen activated protein kinases (p38 MAPK). The cells in Fig. 28b are returned to conditions of 37 °C + 5% CO2 in humidified air (i.e. 20 standard incubator conditions), while those in 28a and 28c are chilled to 4 °C. After 4 hours of these treatments cells were fixed with 4% formaldehyde pH 7.0 at room temperature for 1 hour, and washed with PBS buffer ready for imaging. Many small GFPbright spots form in more than 90% of the chilled cells, but of those returned to incubator conditions (Fig 28b) less than 5% of cells contain spots. Chilled and SB 203580-treated 25 cells (Fig. 28c) contain significantly fewer, but larger, bright spots per cell than those in Fig. 28a.

Fig. 29a, 29b

Confocal fluorescence images showing CHO cells stably transfected with probe

30 HSPDE4A4-EGFP. The transfected cells have been derived from a single cell isolated from a non-clonal population. These cells are grown in HAM's F12 medium without FBS, but with 2 micromolar Rolipram for 12 hours. Bright spots are present in more than 95% of all cells. Rolipram is then washed from the cells, and fresh HAM's F12 (no FBS) added.

72

The cells in Fig. 29b are additionally treated with 400 micromolar thalidomide. Cells are returned to conditions of 37 °C + 5% CO₂ in humidified air (i.e. standard incubator conditions). After 60 minutes all GFP-bright spots disappear from cells. The coverglass chambers or 96-well plates containing the cells are then left at ambient room conditions for a further 4 hours to cool during which the growth medium evaporates by about 20%. During this time GFP-bright spots reappear in about 50% of the cells which are not treated with thalidomide (Fig. 29a). Spots reappear in less than 5% of cells under these conditions in the presence of 400 micromolar thalidomide (Fig. 29b).

10 Fig. 30

Dose response curves for spot reappearance in response to different concentrations of added NaCl for a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP probe. The number of spots per cell for each concentration of NaCl is the mean of 2 measurements ± sem, where each measurement is itself an average taken from not less 15 than 100 cells. These cells are grown in HAM's F12 medium with 10% FBS, plus 2 micromolar Rolipram for 15.5 hours. Bright spots are present in more than 95% of all cells. Rolipram is then washed from the cells, and fresh HAM's F12 + 10% FBS is added, Cells are returned to conditions of 37 °C + 5% CO2 in humidified air (i.e. standard incubator conditions). After 150 minutes all GFP-bright spots disappear from cells. 20 Various amounts of 1 molar NaCl is then added to different populations of cells to increase the final concentration of salt in the medium by 0 mM, 5 mM, 50 mM or 100 mM. Another group of cells are treated similarly but with the addition of 5 micromolar SB203580, an inhibitor of p38 MAPK. All treatments are then chilled to 4 °C, in normal air, for 4 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, 25 washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The number of spots per cell increases in a dose-dependent fashion with increasing salt concentration. SB203580 decreases the number of spots per cell. Examination of the images from the SB203580 treatment (e.g. 30 Fig. 28c) suggests that decreased spot number is accompanied by increased spot size.

Fig. 31

A dose response curve for the inhibition of spot reappearance under ambient conditions by thalidomide for a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP

probe. The number of spots per cell for each concentration of thalidomide is the mean of 2 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. These cells are grown in HAM's F12 medium with 10% FBS, plus 2 micromolar Rolipram for 12 hours. Bright spots are present in more than 95% of all cells.
Rolipram is then washed from the cells, and fresh HAM's F12 + 10% FBS is added together with different concentrations of thalidomide. Cells are returned to conditions of 37 °C + 5% CO₂ in humidified air (i.e. standard incubator conditions). After 60 minutes all GFP-bright spots disappear from cells. The coverglass chambers (or 96-well plates) containing the cells are then left at ambient room conditions for a further 4 hours to cool during which the growth medium evaporates by about 20%. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The data set is fitted to a 4-parameter Hill equation giving an IC₅₀ value of 33 micromolar thalidomide under these conditions.

Fig. 32a and 32b

Confocal fluorescence images showing clonal CHO cells stably transfected with probe HSPDE4A4-EGFP treated with 2 micromolar Rolipram. The cells are depleted of serum 20 then washed to KRW buffer with no added FBS for over 3 hours. Fig 32a shows the cells before treatment, Flg. 32b 3 minutes after addition of 2 micromolar ionomycin. Very many smaller spots appear in the cytoplasm, without changing the size or number of the larger Rolipram-induced spots.

25 Fig. 33a and 33b

These images continue from the treatment shown in Fig 32a and 32b. The cells are further treated with 50 micromolar forskolin plus 500 micromolar IBMX 7 minutes prior to the image shown in Fig. 33a. There is significant dispersal of the smaller spots by this time. By 24 minutes after forskolin and IBMX treatment (Fig. 33b), the larger spots are 30 beginning to disperse as normal.

Fig. 34a and 34b

Confocal fluorescence images showing CHO cells stably transfected with probe
HSPDE4A1-EGFP. Images are recorded at the same microscope settings for direct
comparison of intensities. The transfected cells are a clonal population derived from a
5 single parent cell. In Fig. 34a the cells are growing in only HAM's F12 medium with 10%
FBS; the GFP fluorescence is restricted to bright granule-like spots within the perinuclear
cytoplasm of each cell. In Fig. 34b similar cells to those seen in 34a have been treated
with 2 micromolar Rolipram for 2 hours. The majority of GFP-bright spots disappear in all
cells under Rolipram treatment, and the cytoplasm becomes generally brighter. Larger
spots do not disperse in some cells. When Rolipram is washed away, the spots reform
within 1.75 hours.

Fig. 35

Dose response curves for spot dispersal in response to three different PDE4 inhibitors for a stable and clonal CHO cell line transfected with HSPDE4A1-EGFP probe. The three inhibitors are Rolipram (●), RS25344 (▼) and Ro 20-1724 (O). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5 hours. The cells are then fixed with 4% formalin buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Estimated EC50 values are 0.35 micromolar for Rolipram, 0.005 micromolar for RS25344 and 3.5 micromolar for Ro 20-1724.

25

Fig. 36

Dose response curves for spot dispersal in response to two different PDE inhibitors for a stable and clonal CHO cell line transfected with HSPDE4A1-EGFP probe. The two inhibitors are RP73401 (●), aspecific and potent PDE4 inhibitor, and Trequinsin (∇), a 30 PDE3 inhibitor with some action on PDE4. The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of inhibitors for 23.5

75

hours. The cells are then fixed with 4% formalin buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. There is no significant spot dispersal over the concentration 5 ranges tested for either compound.

Fig. 37

A competitive dose response curve for Rolipram-induced spot dispersal in a stable and clonal CHO cell line transfected with HSPDE4A1-EGFP probe. The cells are challenged
with a fixed concentration of 3 μM Rolipram and then varying concentrations of the specific PDE4 inhibitor RP73401 (Piclamilast). The number of spots per cell for each concentration of the different inhibitors is the mean of 4 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus 3 μM Rolipram for 20 hours. Various
concentrations of RP73401 are then added and incubation continued for a further 6 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The data are fitted to a 4-parameter Hill equation, giving an IC₅₀
of 0.01 μM for RP73401 against 3 μM Rolipram.

Fig. 38

Competitive dose response curves for Rolipram- and RS25344-induced spot formation in a stable and clonal CHO cell line transfected with HSPDE4A4-EGFP probe. The cells are challenged with a fixed concentration of either 5 micromolar Rolipram (◊) or 0.5 micromolar RS25344 (♦) and varying concentrations of the specific PDE4 inhibitor SB207499 (Ariflo®). Cells are grown in HAM's F12 medium plus 10% FBS plus the inhibitors for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. The data set for Rolipram is fitted to a 3-parameter Hill equation giving an IC₆₀ value of 3.37 micromolar for SB207499 in this competition.

76

Fig. 39

Competitive dose response curves for RS25344-induced spot formation in three stable and clonal CHO cell lines separately transfected with HSPDE4A4-EGFP (•), HSPDE4A4-5 H506N-EGFP (∇) or HSPDE4A4-ΔLR2-EGFP (□) probes. The cells are challenged with a fixed concentration of 0.5 micromolar RS25344 and varying concentrations of the specific PDE4 inhibitor SB207499 (Ariflo^Φ). Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of SB207499 plus 2 micromolar Rolipram for 23.5 hours. The cells are then fixed with 4% formaldehyde buffer (pH7) for 1 hour, washed with PBS and stained with 1 μM Hoechst 33258 in PBS for 10 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Approximately 20 micromolar SB207499 is needed to reduce by 50% the spot formation response to 0.5 micromolar RS25344.

15 Fig. 40

Confocal fluorescence image shows the response to 1 µM RS25344 of a population of CHO cells stably transfected with probe HSPDE4A4cat4D-EGFP. Cells have been treated with RS25344 for 32 hours. Many cells in this stable population respond by forming pairs of bright spots in their cytoplasm.

20

Fig. 41

Confocal fluorescence image shows CHO cells transiently transfected with HSPDE4A4cat4D-EGFP and treated with 10 µM Rolipram for 26 hours. A fraction of cells in the heterogenous population respond by forming bright spots of fluorescence in their cytoplasm.

Fig. 42

Shows a dose response curves for spot reappearance under stress treatment in the presence of various concentrations of RP73401 in a clonal line of CHO cells stably transfected with the HSPDE4A4-E222G probe. The number of stress-induced spots per cell for each concentration of RP73401 is the mean of 3 measurements ± sem, where each measurement is itself an average tak in from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus 3 μM Rolipram for 20 hours.

77

Rolipram is then washed from the cells, and fresh HAM's F12 (with no additions) is added. Cells are returned to conditions of 37 °C + 5% CO₂ in humidified air (i.e. standard incubator conditions). After 4 hours, all GFP-bright spots disappear from cells. Cells are then treated with various concentrations of RP73401 in HAM's F12 and left at ambient conditions (normal air, 22 to 25 °C) for a period of 3 hours (stress treatment). During this time the medium evaporates by about 15%, and the pH of the medium shifts from pH6.5 to pH8.1 as the CO₂ in the medium equilibrates with ambient conditions. After 3 hours, spots reappear in the cytoplasm.

The cells are then fixed with 4% formalin buffer (pH7) for 15 minutes, washed with PBS and stained with 10 μM Hoechst 33258 in PBS for 15 minutes at 25 °C, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Estimated IC₅₀ value is 0.3 nanomolar for RP73401. This value is equal to the IC₅₀ value determined for inhibition of PDE4 enzyme by this compound (Saldou *et al.* 1998).

15 *Fig. 43*

Shows a dose response curves for spot dispersal in a clonal line of CHO cells stably transfected with the HSPDE4A1- EGFP probe treated with Rolipram. The number of spots per cell for each concentration of Rolipram is the mean of 3 measurements ± sem, where each measurement is itself an average taken from not less than 100 cells. Cells are grown in HAM's F12 medium plus 10% FBS plus various concentrations of Rolipram for 25 hours. The cells are then fixed with 4% formalin buffer (pH7) for 15 minutes, washed with PBS and stained with 10 μM Hoechst 33258 in PBS for 15 minutes at 25 oC, then washed twice in PBS. Automated images are collected and analysed for the number of spots per cell as described in Example 2. Estimated EC₅₀ value is 0.1 micromolar for Rolipram.

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description		
on page 33 , line 20	•	
B. IDENTIFICATION OF DEPOSIT	Purther deposits are identified on an additional sheet	
Name of depositary institution	•	
DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH		
Address of depositary institution (including postal code and country)		
Mascheroder Weg 1B D-38124 Braunschweig Germany		
Date of deposit	Accession Number	
17 April 2000	DSM 13449	
C. ADDITIONAL INDICATIONS (tenve blank if not applicable) This information is continued on an additional sheet		
As regards the respective Patent Offices of the respective designated states, the applicants request that a sample of the deposited microorganisms only be made available to an expert nominated by the requester until the date on which the patent is granted or the date on which the application has been refused or withdrawn or is deemed to be withdrawn. D. DESIGNATED STATES FOR WEICH INDICATIONS ARE MADE (With indications are not for all designated States)		
R. SEPARATE FURNISHING OF INDICATIONS (Lowe blank if not applicable)		
The indications listed below will be submitted to the Internations (Number of Deposit*)	l Bureau later (specify the general nature of the indications e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application Yeld	This sheet was received by the International Bureau on:	
Authorized efficer Author	Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism reference page 34 line 10		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional abeet	
Name of depositary institution	•	
DSMZ-Deutsche Sammlung von Mikroon	rganismen und Zellkulturen GmbH	
Address of depositary institution (including postal code and country)		
Mascheroder Weg 1B D-38124 Braunschweig Germany		
x		
Date of deposit 17 April 2000	Accession Number DSM 13450	
C. ADDITIONAL INDICATIONS (lowe blank if not applicable) This information is continued on an additional sheet		
As regards the respective Patent Offices of the respective designated states, the applicants request that a sample of the deposited microorganisms only be made available to an expert nominated by the requester until the date on which the patent is granted or the date on which the application has been refused or withdrawn or is deemed to be withdrawn. D. DESIGNATED STATES FOR WHICH ENDICATIONS ARE MADE ([the indications event for all designated States]		
R. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the Internations Number of Deposit 9 .	al Bureau lates (specify the general asture of the indications e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application YUS	This sheet was received by the laternational Bureau on:	
Authorized afficer Will addolar by From PCTR (1) 34 (full 1 007)	Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 34 . line 30 .	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	•
DSMZ-Deutsche Sammlung von Mikroo	rganismen und Zellkulturen GmbH
Address of depositary institution (including postal code and country)	
Mascheroder Weg 1B D-38124 Braunschweig Germany	
	٠.
Date of deposit	Accession Number
17 April 2000	DSM 13451
C. ADDITIONAL INDICATIONS (Leave blank if not applicable	(e) This information is continued on an additional sheet
is deemed to be withdrawn.	n has been refused or withdrawn or ONS ARE MADE (if the indications are not for all designated States)
R. SEPARATE FURNISHING OF INDICATIONS (#	we blank if not applicable)
The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications e.g., "Accession Runber of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Authorized officer Authorized officer Form PCT00 of 14 (this 1992)	Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism refer on page 35, line 7	red to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	
DSMZ-Deutsche Sammlung von Mikroon	ganismen und Zellkulturen GmbH
Address of depositary institution (including postal code and country)	
Mascheroder Weg 1B D-38124 Braunschweig Germany	
* .	·
Date of deposit	Accession Number
17 April 2000	DSM 13452
C. ADDITIONAL INDICATIONS (loave blank if not applicable	This information is continued on an additional sheet
is deemed to be withdrawn. D. DESIGNATED STATES FOR WHICH INDICATED	NS ARB MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (lease The indications listed below will be submitted to the International Number of Deposit)	ne blank if not applicable) I Bureau later (specify the general nature of the Indications e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
1~	11.

Claims

- 1. A method to determine if a compound is a dislocator of PDE4, comprising the steps of:
- testing if the compound removes PDE4-spots, where PDE4-spots may optionally be induced by a Rolipram-like reference compound and
- 5 testing if the compound inhibits the catalytic activity of the PDE4; the compound being a disclocator of PDE4, if the compound removes PDE4-spots and if the compound does not inhibit the catalytic activity of PDE4.
- A method according to any of the preceding claims, wherein the Rolipram-like
 reference compound is Rolipram.
 - A method according to any of the preceding claims, wherein the PDE4 is a PDE4A isoform.
- 4. A method according to any of the preceding claims, wherein the PDE4 is the PDE4A1 isoform.
 - A method according to any of the preceding claims, wherein the PDE4 is the PDE4A4 isoform.

- 6. A method according to any of the previous claims, comprising the steps of:
- testing if the compound removes PDE4A1-spots, and
- testing if the compound inhibits the catalytic activity of the PDE4A1; the compound being a disclocator of PDE4A1, if the compound removes PDE4A1-spots
- 25 and if the compound does not inhibit the catalytic activity of PDE4A1.
 - 7. A method according to any of the previous claims, comprising the steps of:
 - testing if the compound removes PDE4A4-spots induced by a Rolipram-like reference compound and
- 30 testing if the compound inhibits the catalytic activity of the PDE4A4; the compound being a disclocator of PDE4A4, if the compound removes PDE4A4-spots and if the compound does not inhibit the catalytic activity of PDE4A4.
 - 8. A PDE4 dislocator obtainable by the method according to any of the previous claims.

- A pharmaceutical composition comprising a compound, the compound being a
 dislocator of PDE4, and the pharmaceutical composition having a market authorisation,
 the market authorisation b ing based on an application for market authorisation
 comprising data showing removal of PDE4-spots, optionally induced by a Rolipram-like
 reference compound, by the compound and lack of inhibition of the catalytic activity of
 PDE4 by the compound.
- 10. A pharmaceutical composition according to the previous claim, wherein the PDE4 is a10 PDE4A isoform.
 - 11. A pharmaceutical composition according to any of the previous claims, wherein PDE4 is the PDE4A1 isoform and wherein the indication on the market authorisation is diseases in the central nervous system.

- 12. A pharmaceutical composition according to the previous claim, wherein the indication is depression.
- 13. A pharmaceutical composition according to any of the previous claims, wherein PDE4
 20 is the PDE4A4 isoform and wherein the indication on the market authorisation is inflammatory diseases.
- 14. A pharmaceutical composition according to the previous claim, wherein the indication is selected from the group consisting of joint inflammation, Crohn's disease, inflammatory bowel disease, respiratory diseases, chronic obstructive pulmonary disease (COPD), including asthma, chronic bronchitis, pulmonary emphysema, endotoxic shock, toxic shock syndrome, systemic lupus erythematosis, psoriasis, bone resorption diseases, reperfusion injury, cancer and HIV infection.
- 30 15. A method to determine if a compound is a low emesis PDE4 inhibitor comprising the steps of:
 - testing if the compound causes PDE4A4-spots induced by a Rolipram-like reference compound to dissolve,
- testing if the compound induces re-appearance of PDE4A1-spots in cells exposed to a
 Rolipram-like reference compound, and

- testing if the compound inhibits the catalytic activity of PDE4;
 the compound being a low emesis PDE4 inhibitor if the compound removes spots induced by the Rolipram-like reference compound and induces re-appearance of PDE4A1 spots in cells exposed to the Rolipram-like reference compound and if the compound inhibits the
 catalytic activity of PDE4.
- 16. A pharmaceutical composition comprising a compound, the compound being a low emesis PDE4 inhibitor, and the pharmaceutical composition having a market authorisation, the market authorisation being based on an application for market authorisation comprising data showing that the compound removes spots induced by the Rolipram-like reference compound, and that the compound induces re-appearance of PDE4A1 spots in cells exposed to the Rolipram-like reference compound, and that the compound inhibits the catalytic activity of PDE4.
- 15 17. A pharmaceutical composition according to any of the previous claims, wherein the indication on the market authorisation is inflammatory diseases.
- 18. A pharmaceutical composition according to the previous claim, wherein the indication is selected from the group consisting of joint inflammation, Crohn's disease, inflammatory bowel disease, respiratory diseases, chronic obstructive pulmonary disease (COPD), including asthma, chronic bronchitis, pulmonary emphysema, endotoxic shock, toxic shock syndrome, systemic lupus erythematosis, psoriasis, bone resorption diseases, reperfusion injury, cancer and HIV.
- 25 19. A method to monitor changes in intracellular distribution of phosphodiesterases (PDEs) in living cells, the method comprising the steps of:
 - (a) recording the intracellular distribution of the PDE:
 - (b) adding a Rolipram-like reference compound to the cells in (a) or to similar cells:
 - (c) recording the intracellular distribution of the PDE in the cells in step (b);
- 30 (d) determining the effect on the intracellular distribution of the PDE of the Rolipram-like reference compound by comparing the intracellular distribution recorded in step (a) with the intracellular distribution recorded in step (c).
- 20. A method according to the previous claim, further comprising the following steps prior to step (a):

- (O1) constructing a probe allowing the location of the PDE to be recorded;
- (O2) transfecting cells with the constructed probe of step (a1);
- 21. A method according to the previous claim, wherein the probe is constructed such that5 the location of the PDE can be recorded continuously.
 - 22. A method to identify a reagent, capable of interfering with the intracellular distribution of PDEs, comprising the method according to any of the preceding claims further comprising the following steps after step (b):
- 10 (b1) adding a reagent to the compound treated cells in step (b) or similar cells;
 - (b2) recording the intracellular distribution of the PDE in the cells in step (b1); and the method comprising the following steps after step (d):
 - (d1) determining the effect of the reagent by comparing the intracellular distribution recorded in step (b2) with the intracellular distribution recorded in step (a);
- 15 (d2) establish the pharmacology of the reagent by comparing the determined effect in step (d1) with the determined effect in step (d)
 - a reversal of the effect determined in step (d) to the effect substantially identical to the effect determined in step (a) in step (d1) being indicative of an antagonistic effect of the reagent on the compound with affinity for the catalytic site of the PDE in regards to the
- 20 change in intracellular distribution.
 - 23. A method according to any of the preceding claims, further comprising the step of:
 - (e) determining the effect of the reagent on the catalytic activity of the PDE in an assay capable of measuring the catalytic activity of PDEs.

- 24. A method according to any of the preceding claims, further comprising the following steps after step (b):
- (b1) adding a reagent to similar cells of those in step (a);
- (b2) recording the intracellular distribution of the PDE in the cells in step (b1);
- 30 and the method comprising the following steps after step (d):
 - (d1) determining the effect of the reagent by comparing the intracellular distribution recorded in step (b2) with the intracellular distribution recorded in step (a);
 - (d2) establish the pharmacology of the reagent by comparing the determined effect in step (d1) with the determined effect in step (d)

a copy of the ffect determined in step (d) to the effect in step (a) in step (d1) being indicative of an agonistic effect of the reagent on the compound with affinity for the catalytic site of the PDE in regards to the change in intracellular distribution.

- 5 25. A method according to any the two previous claims, wherein the reagent does not bind to the docking site of the PDE4.
 - 26. A method according to any of the three previous claims, wherein the reagent binds to the catalytic site of the PDE4.
 - 27. A method according to any of the preceding claims, wherein the reagent inhibits the catalytic activity of the PDE.
- 28. A method according to any of the preceding claims, wherein the reagent is a peptide15 or a polypeptide.
 - 29. A method according to any of the preceding claims, wherein the reagent is a small molecule.
- 20 30. A method according to any of the preceding claims, wherein PDE is a PDE4.
 - 31. A method according to any of the preceding claims, wherein the Rolipram-like reference compound is Rolipram.
- 32. A method according to any of the preceding claims, wherein the comparison between the effect of the reagent and the effect of the compound is based on a time series of measurements.
- 33. A method according to any of the preceding claims, wherein the comparison between
 30 the effect of the reagent and the effect of the compound is based on an end-point measurement.
 - 34. A reagent obtainable by the method according to any of the preceding claims.

- 35. Use of a reagent being able to mimic the effect of the compound with affinity for the catalytic site on intracellular distribution of the PDE for the preparation of a medicament.
- 36. Use of a reagent being able to reverse the effect of the compound with affinity for the5 catalytic site on intracellular distribution of the PDE for the preparation of a medicament.
- 37. A method for treating asthma in an individual comprising administering to the individual an effective amount of a compound, or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, the compound being capable of reversing the effect of a
 10 compound with affinity for the catalytic site of a PDE on the intracellular distribution of the PDE and mimicking the effect of the compound with affinity for the catalytic site of the PDE on the catalytic activity of the PDE.
 - 38. The nucleic acid HSPDE4A1-EGFP construct.

- 39. The nucleic acid HSPDE4A4-EGFP construct.
- 40. The nucleic acid HSPDE4A4-H506N-EGFP construct.
- 20 41. The nucleic acid HSPDE4A4-ΔLR2-EGFP construct.
 - 42. The nucleic acid HSPDE4A4-EGFP construct.
 - 43. The nucleic acid HSPDE4A4catD-EGFP construct.

- 44. The nucleic acid HSPDE4D3-EGFP construct.
- 45. The nucleic acid HSPDE4A1-E222G construct.
- 30 46. The nucleic acid HSPDE4A4-E222G contruct.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

4/22

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig.15

AA4 wt dose-responses

Rolipram dose response (23.5 hr)

9/22

4A4H506N variant

Fig.17

 $Fig. 18 \hspace{35pt} \text{RP 73401 vs. rollpram dose response (23.5 hr)}$

10/22

Fig. 20a

Fig. 20b

WO 01/79526

Fig. 21

WO 01/79526

15/22

Spot reappearance with step-increased osmotic strength CHO462-0, 4 °C 4 hrs

Fig. 30

Fig. 31

Thalidomide effect on spot reappearance 4 hr at ambient

WO 01/79526

Fig. 32a

Fig. 32b

Fig. 33a

Fig. 33b

17/22

Fig. 34a

Fig. 34b

18/22

Redistribution of 4A1-eGFP in CHO

Redistribution of 4A1-eGFP in CHO

Fig. 37

WO 01/79526

 $\begin{tabular}{lll} 4A4 \ wt: Ariflo \ vs. \ RS25344 \ and \ rolipram \\ \hline Fig.38 \end{tabular}$

21/22

Fig. 40

Fig. 41

Fig. 43 PDE4A1-E222G vs. Rolipram

SEQUENCE LISTING

<110> BioImage A/S

<120> Live cell procedures to identify compounds modulating intracellular distribution of phosphodiesterase (PDE) enzymes

<130> 24365PC1

<160> 36

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2682

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (1)...(2689)

<223> Fusion between Aequorea victoria and human

<400> 1

	` '	100/	т													
atg Met 1	ccc Pro	ttg Leu	gtg Val	gat Asp 5	ttc Phe	ttc Phe	tgc Cys	gag Glu	acc Thr 10	tgc Cys	tct Ser	aag Lys	cct Pro	tgg Trp 15	ctg Leu	48
gtg Val	ggc Gly	tgg Trp	tgg Trp 20	gac Asp	cag Gln	ttt Phe	aaa Lys	agg Arg 25	atg Met	ttg Leu	aac Asn	cgt Arg	gag Glu 30	ctc Leu	aca Thr	96
		tca Ser 35														144
		aca Thr														192
acg Thr 65	atg Met	aag Lys	gaa Glu	cga Arg	gaa Glu 70	aaa Lys	cag Gln	caa Gln	gcg Ala	ccg Pro 75	cga Arg	cca Pro	aga Arg	ccc Pro	tcc Ser 80	240

cag ccg ccc ccg ccc cct gta cca cac tta cag ccc atg tcc caa atc
Gln Pro Pro Pro Pro Pro Val Pro His Leu Gln Pro Met Ser Gln Ile
85 90 95

aca ggg ttg aaa aag ttg atg cat agt aac agc ctg aac aac tct aac
Thr Gly Leu Lys Lys Leu Met His Ser Asn Ser Leu Asn Asn Ser Asn
100 105 110

att ccc cga ttt ggg gtg aag acc gat caa gaa gag ctc ctg gcc caa 384 Ile Pro Arg Phe Gly Val Lys Thr Asp Gln Glu Glu Leu Leu Ala Gln 115 120 125

															Ser	432
						Ser					Met				ttc Phe 160	480
cag Gln	gag Glu	cgg Arg	gac Asp	ctg Leu 165	ctg Leu	aag Lys	aaa Lys	ttc Phe	cgc Arg 170	atc Ile	ccg Pro	gtg Val	gac Asp	acg Thr 175		528
gtg Val	aca Thr	tac Tyr	atg Met 180	ctg Leu	acg Thr	ctg Leu	gag Glu	gat Asp 185	cac His	tac Tyr	cac His	gct Ala	gac Asp 190	gtg Val	gcc Ala	576
tac Tyr	cat His	aac Asn 195	agc Ser	ctg Leu	cac His	gca Ala	gct Ala 200	gac Asp	gtg Val	ctg Leu	cag Gln	tcc Ser 205	acc Thr	cac His	gta Val	624
ctg Leu	ctg Leu 210	gcc Ala	acg Thr	cct Pro	gca Ala	cta Leu 215	gat Asp	gca Ala	gtg Val	ttc Phe	acg Thr 220	gac Asp	ctg Leu	gag Glu	att Ile	672
ctc Leu 225	gcc Ala	gcc Ala	ctc Leu	ttc Phe	gcg Ala 230	gct Ala	gcc Ala	atc Ile	cac His	gat Asp 235	gtg Val	gat Asp	cac His	cct Pro	ggg Gly 240	720
gtc Val	tcc Ser	aac Asn	cag Gln	ttc Phe 245	ctc Leu	atc Ile	aac Asn	acc Thr	aat Asn 250	tcg Ser	gag Glu	ctg Leu	gcg Ala	ctc Leu 255	atg Met	768
tac Tyr	aac Asn	gat Asp	gag Glu 260	tcg Ser	gtg Val	ctc Leu	gag Glu	aat Asn 265	cac His	cac His	ctg Leu	gcc Ala	gtg Val 270	ggc Gly	ttc Phe	816
aag Lys	ctg Leu	ctg Leu 275	cag Gln	gag Glu	gac Asp	aac Asn	tgc Cys 280	gac Asp	atc Ile	ttc Phe	cag Gln	aac Asn 285	ctc Leu	agc Ser	aag Lys	864
ege Arg	cag Gln 290	cgg Arg	cag Gln	agc Ser	cta Leu	cgc Arg 295	aag Lys	atg Met	gtc Val	atc Ile	gac Asp 300	atg Met	gtg Val	ctg Leu	gcc Ala	912
acg Thr 305	gac Asp	atg Met	tcc Ser	aag Lys	cac His 310	atg Met	acc Thr	ctc Leu	ctg Leu	gct Ala 315	gac Asp	ctg Leu	aag Lys	acc Thr	atg Met 320	960
gtg Val	gag Glu	acc Thr	Lys	aaa Lys 325	gtg Val	acc Thr	agc Ser	Ser	330 Gly ggg	gtc Val	ctc Leu	ctg Leu	cta Leu	gat Asp 335	aac Asn	1008
ac Tyr	tcc Ser	Asp	cgc Arg 340	atc Ile	cag Gln	gtc Val	Leu	egg Arg 345	aac Asn	atg Met	gtg Val	cac His	tgt Cys 350	gcc Ala	gac Asp	1056
etc Seu	Ser	aac Asn 355	ccc Pro	acc Thr	aag Lys	ccg Pro	ctg Leu 360	gag Glu	ctg Leu	tac Tyr	cgc Arg	cag Gln 365	tgg Trp	aca Thr	gac Asp	1104

												gag Glu				1152
												gcc Ala				1200
												cca Pro				1248
												atc Ile				1296
ttg Leu	gag Glu	gac Asp 435	aac Asn	cgg Arg	gac Asp	tgg Trp	tac Tyr 440	tac Tyr	agc Ser	gcc Ala	atc Ile	cgg Arg 445	cag Gln	agc Ser	cca Pro	1344
												cac His				1392
cct Pro 465	gac Asp	aag Lys	ttc Phe	cag Gln	ttt Phe 470	gag Glu	ctg Leu	acg Thr	ctg Leu	gag Glu 475	gag Glu	gaa Glu	gag Glu	gag Glu	gaa Glu 480	1440
gaa Glu	ata Ile	tca Ser	atg Met	gcc Ala 485	cag Gln	ata Ile	ccg Pro	tgc Cys	aca Thr 490	gcc Ala	caa Gln	gag Glu	gca Ala	ttg Leu 495	act Thr	1488
												gca Ala				1536
												atg Met 525				1584
gca Ala	tcc Ser 530	ctg Leu	gag Glu	gcc Ala	gag Glu	ctg Leu 535	gag Glu	gca Ala	gtg Val	tat Tyr	ttg Leu 540	aca Thr	cag Gln	cag Gln	gca Ala	1632
												ttc Phe				1680
gag Glu	gaa Glu	ttc Phe	gtg Val	gtt Val 565	gct Ala	gta Val	agc Ser	cac His	agc Ser 570	agc Ser	ccc Pro	tct Ser	gcc Ala	ctg Leu 575	gct Ala	1728
												tct Ser				1776
cat His	gcc Ala	ccg Pro	ggc Gly	ctc Leu	ccg Pro	ggc Gly	ctc Leu	ccc Pro	tcc Ser	acg Thr	gcg Ala	gcc Ala	gag Glu	gtg Val	gag Glu	1824

			595					600					605				
				gag Glu									Ser				1872
G				ggg Gly						Leu							1920
9	igg Sly	tca Ser	ggt Gly	gga Gly	gac Asp 645	cct Pro	acc Thr	tgg Trp	gat Asp	cca Pro 650	ccg Pro	gtc Val	gcc Ala	acc Thr	atg Met 655	gtg Val	1968
				gag Glu 660													2016
				gac Asp													2064
				gcc Ala													2112
T	hr 05	ggc Gly	aag Lys	ctg Leu	ccc Pro	gtg Val 710	ccc Pro	tgg Trp	ccc Pro	acc Thr	ctc Leu 715	gtg Val	acc Thr	acc Thr	ctg Leu	acc Thr 720	2160
t	ac yr	ggc Gly	gtg Val	cag Gln	tgc Cys 725	ttc Phe	agc Ser	cgc Arg	tac Tyr	ccc Pro 730	gac Asp	cac His	atg Met	aag Lys	cag Gln 735	cac His	2208
g A	ac sp	ttc Phe	ttc Phe	aag Lys 740	tcc Ser	gcc Ala	atg Met	ccc Pro	gaa Glu 745	ggc Gly	tac Tyr	gtc Val	cag Gln	gag Glu 750	cgc Arg	acc . Thr	2256
				aag Lys													2304
				gac Asp													2352
P	tc he 85	aag Lys	gag Glu	gac Asp	ggc Gly	aac Asn 790	atc Ile	ctg Leu	ggg Gly	cac His	aag Lys 795	ctg Leu	gag Glu	tac Tyr	aac Asn	tac Tyr 800	2400
a. A.	ac sn	agc Ser	cac His	aac Asn	gtc Val 805	tat Tyr	atc Ile	atg Met	gcc Ala	gac Asp 810	aag Lys	cag Gln	aag Lys	aac Asn	ggc Gly 815	atc Ile	2448
a: L;	ag ys	gtg Val	aac Asn	ttc Phe 820	aag Lys	atc Ile	cgc Arg	cac His	aac Asn 825	atc Ile	gag Glu	gac Asp	ggc Gly	agc Ser 830	gtg Val	cag Gln	2496
c	tc	gcc	gac	cac	tac	cag	cag	aac	acc	ccc	atc	ggc	gac	ggc	ccc	gtg	2544

Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 835 840 ctg ctg ccc gac aac cac tac ctg agc acc cag tcc gcc ctg agc aaa 2592 Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 850 855 gac ccc aac gag aag cgc gat cac atg gtc ctg ctg gag ttc gtg acc 2640 Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 870 gcc gcc ggg atc act ctc ggc atg gac gag ctg tac aag taa 2682 Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys * <210> 2

<211> 893

<212> PRT

<213> Artificial Sequence

<223> Fusion between Aequorea victoria and human

<400> 2

260

Met Pro Leu Val Asp Phe Phe Cys Glu Thr Cys Ser Lys Pro Trp Leu 10 Val Gly Trp Trp Asp Gln Phe Lys Arg Met Leu Asn Arg Glu Leu Thr His Leu Ser Glu Met Ser Arg Ser Gly Asn Gln Val Ser Glu Tyr Ile Ser Thr Thr Phe Leu Asp Lys Gln Asn Glu Val Glu Ile Pro Ser Pro Thr Met Lys Glu Arg Glu Lys Gln Gln Ala Pro Arg Pro Arg Pro Ser Gln Pro Pro Pro Pro Val Pro His Leu Gln Pro Met Ser Gln Ile Thr Gly Leu Lys Lys Leu Met His Ser Asn Ser Leu Asn Asn Ser Asn 105 Ile Pro Arg Phe Gly Val Lys Thr Asp Gln Glu Glu Leu Leu Ala Gln 120 Glu Leu Glu Asn Leu Asn Lys Trp Gly Leu Asn Ile Phe Cys Val Ser 135 Asp Tyr Ala Gly Gly Arg Ser Leu Thr Cys Ile Met Tyr Met Ile Phe 150 155 Gln Glu Arg Asp Leu Leu Lys Lys Phe Arg Ile Pro Val Asp Thr Met 165 170 Val Thr Tyr Met Leu Thr Leu Glu Asp His Tyr His Ala Asp Val Ala 185 Tyr His Asn Ser Leu His Ala Ala Asp Val Leu Gln Ser Thr His Val 200 Leu Leu Ala Thr Pro Ala Leu Asp Ala Val Phe Thr Asp Leu Glu Ile 215 220 Leu Ala Ala Leu Phe Ala Ala Ala Ile His Asp Val Asp His Pro Gly 230 235 Val Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser Glu Leu Ala Leu Met 245 250 Tyr Asn Asp Glu Ser Val Leu Glu Asn His His Leu Ala Val Gly Phe

Lys Leu Leu Gln Glu Asp Asn Cys Asp Ile Phe Gln Asn Leu Ser Lys Arg Gln Arg Gln Ser Leu Arg Lys Met Val Ile Asp Met Val Leu Ala 295 Thr Asp Met Ser Lys His Met Thr Leu Leu Ala Asp Leu Lys Thr Met 310 315 Val Glu Thr Lys Lys Val Thr Ser Ser Gly Val Leu Leu Leu Asp Asn 330 Tyr Ser Asp Arg Ile Gln Val Leu Arg Asn Met Val His Cys Ala Asp 345 Leu Ser Asn Pro Thr Lys Pro Leu Glu Leu Tyr Arg Gln Trp Thr Asp 360 Arg Ile Met Ala Glu Phe Phe Gln Gln Gly Asp Arg Glu Arg Glu Arg 375 380 Gly Met Glu Ile Ser Pro Met Cys Asp Lys His Thr Ala Ser Val Glu 390 395 Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val His Pro Leu Trp Glu 405 410 Thr Trp Ala Asp Leu Val His Pro Asp Ala Gln Glu Ile Leu Asp Thr 425 Leu Glu Asp Asn Arg Asp Trp Tyr Tyr Ser Ala Ile Arg Gln Ser Pro 440 Ser Pro Pro Pro Glu Glu Glu Ser Arg Gly Pro Gly His Pro Pro Leu 455 460 Pro Asp Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Glu Glu Glu Glu 470 475 Glu Ile Ser Met Ala Gln Ile Pro Cys Thr Ala Gln Glu Ala Leu Thr 490 Ala Gln Gly Leu Ser Gly Val Glu Glu Ala Leu Asp Ala Thr Ile Ala 505 Trp Glu Ala Ser Pro Ala Gln Glu Ser Leu Glu Val Met Ala Gln Glu 520 525 Ala Ser Leu Glu Ala Glu Leu Glu Ala Val Tyr Leu Thr Gln Gln Ala 535 540 Gln Ser Thr Gly Ser Ala Pro Val Ala Pro Asp Glu Phe Ser Ser Arg 550 Glu Glu Phe Val Val Ala Val Ser His Ser Ser Pro Ser Ala Leu Ala 570 Leu Gln Ser Pro Leu Leu Pro Ala Trp Arg Thr Leu Ser Val Ser Glu 585 His Ala Pro Gly Leu Pro Gly Leu Pro Ser Thr Ala Ala Glu Val Glu 600 Ala Gln Arg Glu His Gln Ala Ala Lys Arg Ala Cys Ser Ala Cys Ala Gly Thr Phe Gly Glu Asp Thr Ser Ala Leu Pro Ala Pro Gly Gly Gly 630 635 Gly Ser Gly Gly Asp Pro Thr Trp Asp Pro Pro Val Ala Thr Met Val 650 Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu 665 Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly 680 Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr 695 700 Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr 710 715 Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His 730 Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr

T1.	Db.	Db.	740	T	3	C1	3	745	T	mh.m	3	71.	750	57-3	7	
		755				Gly	760	-				765			_	
Phe	Glu 770	Gly	Asp	Thr	Leu	Val 775	Asn	Arg	Ile	Glu	Leu 780	Lys	Gly	Ile	Asp	
Phe 785	ГАЗ	Glu	Asp	Gly	Asn 790	Ile	Leu	Gly	His	Lys 795	Leu	Glu	Tyr	Asn	Tyr 800	
Asn	Ser	His	Asn	Val 805	Tyr	Ile	Met	Ala	Asp 810	Lys	Gln	Lys	Asn	Gly 815		
Lys	Val	Asn	Phe 820		Ile	Arg	His	Asn 825		Glu	Asp	Gly	Ser 830		Gln	
Leu	Ala	Asp 835		Tyr	Gln	Gln	Asn 840		Pro	Ile	Gly	Asp 845		Pro	Val	
Leu	Leu 850	_	Asp	Asn	His	Tyr 855	-	Ser	Thr	Gln	Ser 860		Leu	Ser	ГÀЗ	
Asp 865		Asn	Glu	Lys	Arg 870	Asp	His	Met	Val	Leu 875		Glu	Phe	Val	Thr 880	
	Ala	Gly	Ile	Thr 885		Gly	Met	Asp	Glu 890		Tyr	Lys			000	
			_	883					030							
		210> 211>		a												
		212>														
	<2	213>	Art:	Lfic	ial S	Seque	ence									
		220>														
		221> 222>		,	3300											
	~ *		(+)		,,,,,,											
	<2	223>	Fus:	ion l	etwe	een 1	Aequo	orea	vict	cori	a and	d hur	nan			
		223> 400>		ion l	oetwe	een 1	Aequo	orea	vict	cori	a and	d hur	nan			
	<4 gaa	400> ccc	3 ccg	acc	gtc	ccc	tcg	gaa	agg	agc	ctg	tct	ctg			48
	<4 gaa	400> ccc	3 ccg	acc	gtc		tcg	gaa	agg	agc	ctg	tct	ctg	Ser		48
Met 1	<6	400> ccc Pro	3 ccg Pro	acc Thr 5	gtc Val	ccc Pro	tcg Ser	gaa Glu	agg Arg 10	agc Ser	ctg Leu	tct Ser	ctg Leu	Ser 15	Leu	
Met 1 ccc	gaa Glu ggg	400> ccc Pro	3 ccg Pro	acc Thr 5 gag	gtc Val ggc	ccc Pro	tcg Ser gcc	gaa Glu acc	agg Arg 10 ctg	agc Ser aag	ctg Leu cct	tct Ser	ctg Leu ccg	Ser 15 cag	Leu	48 96
Met 1 ccc	gaa Glu ggg	400> ccc Pro	3 ccg Pro	acc Thr 5 gag	gtc Val ggc	ccc Pro	tcg Ser gcc	gaa Glu acc	agg Arg 10 ctg	agc Ser aag	ctg Leu cct	tct Ser	ctg Leu ccg	Ser 15 cag	Leu	
Met 1 ccc Pro	gaa Glu ggg Gly	400> ccc Pro ccc Pro	3 ccg Pro cgg Arg 20	acc Thr 5 gag Glu	gtc Val ggc Gly	ccc Pro cag Gln	tcg Ser gcc Ala	gaa Glu acc Thr 25	agg Arg 10 ctg Leu	agc Ser aag Lys	ctg Leu cct Pro	tct Ser ccc Pro	ctg Leu ccg Pro 30	Ser 15 cag Gln ggc	cac His	
Met 1 ccc Pro	gaa Glu ggg Gly	400> ccc Pro ccc Pro	3 ccg Pro cgg Arg 20	acc Thr 5 gag Glu	gtc Val ggc Gly	ccc Pro cag Gln	tcg Ser gcc Ala ccc Pro	gaa Glu acc Thr 25	agg Arg 10 ctg Leu	agc Ser aag Lys	ctg Leu cct Pro	tct Ser ccc Pro	ctg Leu ccg Pro 30	Ser 15 cag Gln ggc	cac His	96
Met 1 ccc Pro ctg Leu	gaa Glu ggg Gly tgg Trp	ccc Pro ccc Pro ccc Pro cgg Arg	3 ccg Pro cgg Arg 20 cag Gln	acc Thr 5 gag Glu cct Pro	gtc Val ggc Gly cgg Arg	cec Pro cag Gln acc	tcg Ser gcc Ala ccc Pro	gaa Glu acc Thr 25 atc Ile	agg Arg 10 ctg Leu cgt Arg	agc Ser aag Lys atc Ile	ctg Leu cct Pro cag Gln	tct Ser ccc Pro cag Gln 45	ctg Leu ccg Pro 30 cgc	Ser 15 cag Gln ggc Gly	cac His tac Tyr	96 144
Met 1 ccc Pro ctg Leu	gaa Glu ggg Gly tgg Trp	doo> ccc Pro ccc Pro cgg Arg 35	3 ccg Pro cgg Arg 20 cag Gln	acc Thr 5 gag Glu cct Pro	gtc Val ggc Gly cgg Arg	cec Pro cag Gln acc Thr	tcg Ser gcc Ala ccc Pro 40	gaa Glu acc Thr 25 atc Ile	agg Arg 10 ctg Leu cgt Arg	agc Ser aag Lys atc Ile	ctg Leu cct Pro cag Gln	tct Ser ccc Pro cag Gln 45	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly	Leu cac His tac Tyr	96
Met 1 ccc Pro ctg Leu	gaa Glu ggg Gly tgg Trp	doo> ccc Pro ccc Pro cgg Arg 35	3 ccg Pro cgg Arg 20 cag Gln	acc Thr 5 gag Glu cct Pro	gtc Val ggc Gly cgg Arg	cec Pro cag Gln acc	tcg Ser gcc Ala ccc Pro 40	gaa Glu acc Thr 25 atc Ile	agg Arg 10 ctg Leu cgt Arg	agc Ser aag Lys atc Ile	ctg Leu cct Pro cag Gln	tct Ser ccc Pro cag Gln 45	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly	Leu cac His tac Tyr	96 144
Met 1 ccc Pro ctg Leu tcc Ser	gga Glu ggg Gly tgg Trp gac Asp 50	400> ccc Pro ccc Pro cgg Arg 35 agc Ser	3 ccg Pro cgg Arg 20 cag Gln gcg Ala	acc Thr 5 gag Glu cct Pro gag Glu	gtc Val ggc Gly cgg Arg cgc	ccc Pro cag Gln acc Thr gcc Ala 55	tcg Ser gcc Ala ccc Pro 40 gag Glu	gaa Glu acc Thr 25 atc Ile cgg Arg	agg Arg 10 ctg Leu cgt Arg gag Glu	agc Ser aag Lys atc Ile cgg Arg	ctg Leu cct Pro cag Gln cag Gln 60	tct Ser ccc Pro cag Gln 45 ccg Pro	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly cgg Arg	cac His tac Tyr ccc Pro	96 144
Met 1 ccc Pro ctg Leu tcc ser ata Ile	gga Glu ggg Gly tgg Trp gac Asp 50	400> ccc Pro ccc Pro cgg Arg 35 agc Ser	3 ccg Pro cgg Arg 20 cag Gln gcg Ala	acc Thr 5 gag Glu cct Pro gag Glu	gtc Val ggc Gly cgg Arg cgc Arg	ccc Pro cag Gln acc Thr gcc Ala 55	tcg Ser gcc Ala ccc Pro 40 gag Glu	gaa Glu acc Thr 25 atc Ile cgg Arg	agg Arg 10 ctg Leu cgt Arg gag Glu	agc Ser aag Lys atc Ile cgg Arg	ctg Leu cct Pro cag Gln cag Gln 60	tct Ser ccc Pro cag Gln 45 ccg Pro	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly cgg Arg	cac His tac Tyr ccc Pro	96 144 192
Met 1 ccc Pro ctg Leu tcc Ser	gga Glu ggg Gly tgg Trp gac Asp 50	400> ccc Pro ccc Pro cgg Arg 35 agc Ser	3 ccg Pro cgg Arg 20 cag Gln gcg Ala	acc Thr 5 gag Glu cct Pro gag Glu	gtc Val ggc Gly cgg Arg cgc	ccc Pro cag Gln acc Thr gcc Ala 55	tcg Ser gcc Ala ccc Pro 40 gag Glu	gaa Glu acc Thr 25 atc Ile cgg Arg	agg Arg 10 ctg Leu cgt Arg gag Glu	agc Ser aag Lys atc Ile cgg Arg	ctg Leu cct Pro cag Gln cag Gln 60	tct Ser ccc Pro cag Gln 45 ccg Pro	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly cgg Arg	cac His tac Tyr ccc Pro	96 144 192
Met 1 ccc Pro ctg Leu tcc Ser ata Ile 65	gga Glu ggg Gly tgg Trp gac Asp 50 gag Glu	400> ccc Pro ccc Pro cgg Arg 35 agc Ser cgc	3 ccg Pro cgg Arg 20 cag Gln gcg Ala	acc Thr 5 gag Glu cct Pro gag Glu gat Asp	gtc Val ggc Gly cgg Arg cgc Arg	ccc Pro cag Gln acc Thr gcc Ala 55 atg Met	tcg Ser gcc Ala ccc Pro 40 gag Glu gac Asp	gaa Glu acc Thr 25 atc Ile cgg Arg	agg Arg 10 ctg Leu cgt Arg gag Glu agc Ser	agc Ser aag Lys atc Ile cgg Arg gac Asp 75 cat	ctg Leu cct Pro cag Gln 60 cag Gln 60	tct Ser ccc Pro cag Gln 45 ccg Pro	ctg Leu ccg Pro 30 cgc Arg cac His	Ser 15 cag Gln ggc Gly cgg Arg ctg Leu acc	cac His tac Tyr ccc Pro cgc Arg 80	96 144 192
Met 1 ccc Pro ctg Leu tcc Ser ata Ile 65	gga Glu ggg Gly tgg Trp gac Asp 50 gag Glu	400> ccc Pro ccc Pro cgg Arg 35 agc Ser cgc	3 ccg Pro cgg Arg 20 cag Gln gcg Ala gcc Ala	acc Thr 5 gag Glu cct Pro gag Glu gat Asp	gtc Val ggc Gly cgg Arg cgc Arg	ccc Pro cag Gln acc Thr gcc Ala 55 atg	tcg Ser gcc Ala ccc Pro 40 gag Glu gac Asp	gaa Glu acc Thr 25 atc Ile cgg Arg	agg Arg 10 ctg Leu cgt Arg gag Glu agc Ser	agc Ser aag Lys atc Ile cgg Arg gac Asp 75 cat	ctg Leu cct Pro cag Gln 60 cag Gln 60	tct Ser ccc Pro cag Gln 45 ccg Pro	ctg Leu ccg Pro 30 cgc Arg cac His	Ser 15 cag Gln ggc Gly cgg Arg ctg Leu acc	cac His tac Tyr ccc Pro cgc Arg 80	96 144 192 240
Met 1 ccc Pro ctg Leu tcc Ser ata 11e 65 acg Thr	ggaa Glu ggg Gly tgg Trp gac Asp 50 gag Glu	d00> ccc Pro ccc Pro cgg Arg 35 agc Ser cgc Arg	3 ccg Pro cgg Arg 20 cag Gln gcg Ala gcc Ala	acc Thr 5 gag Glu cct Pro gag Glu gat Asp tcc Ser 85	gtc Val ggc Gly cgg Arg cgc Arg gcc Ala 70	cec Pro cag Gln acc Thr gcc Ala 55 atg Met	tcg Ser gcc Ala ccc Pro 40 gag Glu gac Asp	gaa Glu acc Thr 25 atc Ile cgg Arg acc Thr	agg Arg 10 ctg Leu cgt Arg gag Glu agc Ser ttc Phe 90	agc Ser aag Lys atc Ile cgg Arg gac Asp 75 cat His	ctg Leu cct Pro cag Gln 60 cgg Arg	tct Ser ccc Pro cag Gln 45 ccg Pro ccc Pro	ctg Leu ccg Pro 30 cgc Arg cac His	Ser 15 cag Gln ggc Gly cgg Arg ctg Leu acc Thr 95	cac His tac Tyr ccc Pro cgc Arg 80 ggc Gly	96 144 192 240
Met 1 ccc Pro ctg Leu tcc Ser ata Ile 65 acg Thr	ggaa Glu ggg Gly tgg Trp gac Asp 50 gag Glu acc Thr	ccc Pro ccc Pro cgg Arg 35 agc Ser cgc Arg	3 ccg Pro cgg Arg 20 cag Gln gcg Ala atg Met	acc Thr 5 gag Glu cct Pro gag Glu gat Asp tcc Ser 85	gtc Val ggc Gly cgg Arg cgc Arg gcc Ala 70 tgg Trp	ccc Pro cag Gln acc Thr gcc Ala 55 atg Met	tcg Ser gcc Ala ccc Pro 40 gag Glu gac Asp	gaa Glu acc Thr 25 atc Ile cgg Arg acc Thr	agg Arg 10 ctg Leu cgt Arg gag Glu agc Ser ttc Phe 90 agg	agc Ser aag Lys atc Ile cgg Arg gac Asp 75 cat His	ctg Leu cct Pro cag Gln cag Gln 60 cgg Arg	tct Ser ccc Pro cag Gln 45 ccg Pro ccc Pro	ctg Leu ccg Pro 30 cgc Arg cac His ggc Gly	Ser 15 cag Gln ggc Gly cgg Arg ctg Leu acc Thr 95	cac His tac Tyr ccc Pro	96 144 192 240

					cct Pro											384
					cac His											432
					tca Ser 150											480
					tcg Ser											528
					gct Ala											576
					ctg Leu											624
					ccc Pro											672
gaa Glu 225	acg Thr	tgt Cys	cag Gln	cag Gln	ttg Leu 230	gcc Ala	cgg Arg	gag Glu	act Thr	ctg Leu 235	gag Glu	gag Glu	ctg Leu	gac Asp	tgg Trp 240	720
					gag Glu											768
					ttt Phe											816
					agg Arg											864
					aaa Lys											912
					aaa Lys 310											960
					gta Val											1008
					atg Met											1056

					aag Lys											1104
					aag Lys											1152
					tca Ser 390											1200
					aag Lys											1248
					ctg Leu											1296
					gca Ala											1344
ctg Leu	gcc Ala 450	acg Thr	cct Pro	gca Ala	cta Leu	gat Asp 455	gca Ala	gtg Val	ttc Phe	acg Thr	gac Asp 460	ctg Leu	gag Glu	att Ile	ctc Leu	1392
					get Ala 470											1440
tcc Ser	aac Asn	cag Gln	ttc Phe	ctc Leu 485	atc Ile	aac Asn	acc Thr	aat Asn	tcg Ser 490	gag Glu	ctg Leu	gcg Ala	ctc Leu	atg Met 495	tac Tyr	1488
					ctc Leu											1536
					aac Asn											1584
cag Gln	cgg Arg 530	cag Gln	agc Ser	cta Leu	cgc Arg	aag Lys 535	atg Met	gtc Val	atc Ile	gac Asp	atg Met 540	gtg Val	ctg Leu	gcc Ala	acg Thr	1632
					atg Met 550											1680
					acc Thr											1728
tcc Ser	gac Asp	cgc Arg	atc Ile	cag Gln	gtc Val	ctc Leu	cgg Arg	aac Asn	atg Met	gtg Val	cac His	tgt Cys	gcc Ala	gac Asp	ctc Leu	1776

			580					585					590			
agc Ser	aac	ccc Pro 595	acc Thr	aag Lys	ccg	ctg Leu	gag Glu 600	ctg Leu	tac Tyr	cgc Arg	cag Gln	tgg Trp 605	aca Thr	gac Asp	cgc Arg	1824
atc Ile	atg Met 610	gcc Ala	gag Glu	ttc Phe	ttc Phe	cag Gln 615	Gln	ggt Gly	gac Asp	cga Arg	gag Glu 620	Arg	gag Glu	cgt Arg	ggc	1872
atg Met 625	Glu	atc Ile	agc Ser	ccc Pro	atg Met 630	tgt Cys	gac Asp	aag Lys	cac His	act Thr 635	gcc	tcc Ser	gtg Val	gag Glu	aag Lys 640	1920
tct Ser	cag Gln	gtg Val	ggt Gly	ttt Phe 645	att Ile	gac Asp	tac Tyr	att Ile	gtg Val 650	cac His	cca Pro	ttg Leu	tgg Trp	gag Glu 655	acc Thr	1968
tgg Trp	gcg Ala	gac Asp	ctt Leu 660	gtc Val	cac His	cca Pro	gat Asp	gcc Ala 665	cag Gln	gag Glu	atc Ile	ttg Leu	gac Asp 670	act Thr	ttg Leu	2016
gag Glu	gac Asp	aac Asn 675	cgg Arg	gac Asp	tgg Trp	tac Tyr	tac Tyr 680	agc Ser	gcc Ala	atc Ile	cgg Arg	cag Gln 685	agc Ser	cca Pro	tct Ser	2064
ccg Pro	cca Pro 690	ccc Pro	gag Glu	gag Glu	gag Glu	tca Ser 695	agg Arg	ggg	cca Pro	ggc Gly	cac His 700	cca Pro	ecc Pro	ctg Leu	cct Pro	2112
705	Lys	Phe	Gln	Phe	gag Glu 710	Leu	Thr	Leu	Glu	Glu 715	Glu	Glu	Glu	Glu	Glu 720	2160
Ile	Ser	Met	Ala	Gln 725	ata Ile	Pro	Cys	Thr	Ala 730	Gln	Glu	Ala	Leu	Thr 735	Ala	2208
cag Gln	gga Gly	ttg Leu	tca Ser 740	gga Gly	gtc Val	gag Glu	gaa Glu	gct Ala 745	ctg Leu	gat Asp	gca Ala	acc Thr	ata Ile 750	gcc Ala	tgg Trp	2256
Glu	Ala	Ser 755	Pro	Ala	cag Gln	Glu	Ser 760	Leu	Glu	Val	Met	Ala 765	Gln	Ğlu	Ala	2304
Ser	Leu 770	Glu	Ala	Glu	ctg Leu	Glu 775	Ala	Val	Tyr	Leu	Thr 780	Gln	Gln	Ala	Gln	2352
Ser 785	Thr	Gly	Ser	Ala	cct Pro 790	Val	Ala	Pro	Asp	Glu 795	Phe	Ser	Ser	Arg	Glu 800	2400
Glu	Phe	Val	Val	Ala 805	gta Val	Ser	His	Ser	Ser 810	Pro	Ser	Ala	Leu	Ala 815	Leu	2448
caa	agc	ccc	ctt	ctc	cct	gct	tgg	agg	acc	ctg	tct	gtt	tca	gag	cat	2496

PCT/DK01/00264 WO 01/79526

Gln Ser Pro Leu 820	Leu Pro Ala	Trp Arg Thr 825	Leu Ser Val Ser 830	Glu His
	Pro Gly Leu		gcg gcc gag gtg Ala Ala Glu Val 845	
			tgc agt gcc tgc Cys Ser Ala Cys 860	
			gct cct ggt ggc Ala Pro Gly Gly 875	
			gtc gcc acc atg Val Ala Thr Met	
			ccc atc ctg gtc Pro Ile Leu Val 910	
	Asn Gly His		gtg tcc ggc gag Val Ser Gly Glu 925	
			aag ttc atc tgc Lys Phe Ile Cys 940	
			gtg acc acc ctg Val Thr Thr Leu 955	
			cac atg aag cag His Met Lys Gln	
			gtc cag gag cgc Val Gln Glu Arg 990	
	Asp Gly Asn		cgc gcc gag gtg Arg Ala Glu Val 1005	
		Arg Ile Glu	ctg aag ggc atc Leu Lys Gly Ile 1020	
			ctg gag tac aac Leu Glu Tyr Asn 1035	
			cag aag aac ggc Gln Lys Asn Gly	

PCT/DK01/00264 12

gtg aac ttc aag atc cgc cac aac atc gag gac ggc agc gtg cag ctc Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 1060 1065 1070	3216
gcc gac cac tac cag cag aac acc ccc atc ggc gac ggc ccc gtg ctg Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 1075 1080 1085	3264
ctg ccc gac aac cac tac ctg agc acc cag tcc gcc ctg agc aaa gac Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 1090 1095 1100	3312
ccc aac gag aag cgc gat cac atg gtc ctg ctg gag ttc gtg acc gcc Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala 1105 1110 1115	3360
gcc ggg atc act ctc ggc atg gac gag ctg tac aag taa Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys * 1125 1130	3399
<210> 4 <211> 1132 <212> PRT <213> Artificial Sequence <220> <223> Fusion between Aequorea victoria and human	
<400> 4 Mot Clu Pro Pro Mbr Vol Pro Con Clu Are Gon Lou Con You Con You	
Met Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu Ser Leu	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80 Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg Gln Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly Thr Gly 85 90 95 Ser Gly Gly Ala Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80 Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly 95 Ser Gly Gly Ala Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn 100 105 110 Gly Pro Thr Pro Ser Pro Gly Arg Ser Pro Leu Asp Ser Gln Ala Ser	
1	
1	
1	
1	
1	
1	
1	

225					220					025					
	Leu	Glu	Gln	T.011	230	Thr	Mot	Cln	Th.σ	235	7 ~~	C	Wa 1		240
				245					250	-	_			255	
	Ala		260					265					270		
Leu	Ser	Glu 275	Met	Ser	Arg	Ser	Gly 280	Asn	Gln	Val	Ser	Glu 285	Tyr	Ile	Ser
Thr	Thr 290	Phe	Leu	Asp	Lys	Gln 295	Asn	Glu	Val	Glu	Ile 300		Ser	Pro	Thr
Met 305	Lys	Glu	Arg	Glu	Lys 310		Gln	Ala	Pro	Arg 315			Pro	Ser	Gln 320
Pro	Pro	Pro	Pro	Pro 325		Pro	His	Leu	Gln 330		Met	Ser	Gln	Ile 335	
Gly	Leu	Lуз	Lys 340	Leu	Met	His	Ser	Asn 345	Ser	Leu	Asn	Asn	Ser 350		Ile
Pro	Arg	Phe 355	Gly	Val	Lys	Thr	Asp 360	Gln	Glu	Glu	Leu	Leu 365		Gln	Glu
Leu	Glu 370	Asn	Leu	Asn	ГÀЗ	Trp 375	Gly	Leu	Asn	Ile	Phe 380	Суз	Val	Ser	Asp
Tyr 385	Ala	Gly	Gly	Arg	Ser 390	Leu	Thr	Суз	Ile	Met 395	Tyr	Met	Ile	Phe	Gln 400
	Arg			405					410					415	
Thr	Tyr	Met	Leu 420	Thr	Leu	Glu	Asp	His 425	Tyr	His	Ala	Asp	Val 430	Ala	Tyr
	Asn	435					440					445			
	Ala 450					455					460				
A1.a	Ala	Leu	Phe	Ala	Ala 470	Ala	Ile	His	Asp	Val 475	Asp	His	Pro	Gly	
	Asn	Gln	Phe	Leu 485		Asn	Thr	Asn	Ser 490		Leu	Ala	Leu	Met 495	480 Tyr
Asn	Asp	Glu	Ser 500		Leu	Glu	Asn	His 505		Leu	Ala	Val	Gly 510		Lys
Leu	Leu	Gln 515	Glu	Азр	Asn	Суз	Asp 520		Phe	Gln	Asn	Leu 525		ГÀЗ	Arg
	Arg 530					535					540				
Asp	Met	Ser	Lys	His	Met	Thr	Leu	Leu	Ala		Leu	Lys	Thr	Met	
545 Glu	Thr	Lys	Lys	Val	550 Thr	Ser	Ser	Gly		555 Leu	Leu	Leu	Asp		560 Tyr
Ser	Asp	Arg	Ile 580	565 Gln	Val	Leu	Arg		570 Met	Val	His	Суз		575 Asp	Leu
Ser	Asn	Pro 595		Lys	Pro	Leu	Glu 600	585 Leu	Tyr	Arg	Gln	Trp 605	590 Thr	Asp	Arg
Ile	Met 610		Glu	Phe	Phe	Gln 615		Gly	Asp	Arg	Glu 620		Glu	Arg	Gly
Met 625	Glu	Ile	Ser	Pro	Met 630		Asp	Lys	His			Ser	Val	Glu	_
	Gln	Val	Gly	Phe 645		Asp	Tyr	Ile	Val 650	635 His	Pro	Leu	Trp	Glu 655	640 Thr
Trp	Ala	Asp	Leu 660		His	Pro	Asp	Ala 665	Gln	Glu	Ile	Leu	Asp 670	Thr	Leu
Glu	Asp	Asn 675		Asp	Trp	Tyr	Tyr 680		Ala	Ile	Arg	Gln 685		Pro	Ser
Pro	Pro 690	Pro	Glu	Glu	Glu	Ser 695		Gly	Pro	Gly	His 700		Pro	Leu	Pro

Asp Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Glu Glu Glu Glu Glu 710 715 Ile Ser Met Ala Gln Ile Pro Cys Thr Ala Gln Glu Ala Leu Thr Ala 730 Gln Gly Leu Ser Gly Val Glu Glu Ala Leu Asp Ala Thr Ile Ala Trp 745 Glu Ala Ser Pro Ala Gln Glu Ser Leu Glu Val Met Ala Gln Glu Ala 760 Ser Leu Glu Ala Glu Leu Glu Ala Val Tyr Leu Thr Gln Gln Ala Gln 775 780 Ser Thr Gly Ser Ala Pro Val Ala Pro Asp Glu Phe Ser Ser Arg Glu 790 795 Glu Phe Val Val Ala Val Ser His Ser Ser Pro Ser Ala Leu Ala Leu 805 810 Gln Ser Pro Leu Pro Ala Trp Arg Thr Leu Ser Val Ser Glu His 825 Ala Pro Gly Leu Pro Gly Leu Pro Ser Thr Ala Ala Glu Val Glu Ala 840 Gln Arg Glu His Gln Ala Ala Lys Arg Ala Cys Ser Ala Cys Ala Gly 855 Thr Phe Gly Glu Asp Thr Ser Ala Leu Pro Ala Pro Gly Gly Gly Gly 870 875 Ser Gly Gly Asp Pro Thr Trp Asp Pro Pro Val Ala Thr Met Val Ser 885 890 Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu 905 Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu 920 Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr 935 940 Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr 950 955 Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp 965 970 Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 985 Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe 1000 1005 Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe 1015 1020 Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn 1030 1035 Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys 1045 1050 Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 1060 1065 Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 1080 Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 1095 1100 Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala 1110 1115 1120 Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys

<210> 5

<212> DNA

<213> Artificial Sequence

<211> 3375

	<: <:	220> 221> 222> 223>	(1)				Aequ	orea	vic	tori	a an	d hw	man				
	<	400>	5														
															ctg Leu		48
														cag Gln	cac His		96
														ggc Gly		1	.44
tcc Ser	gac Asp 50	agc Ser	gcg Ala	gag Glu	cgc Arg	gcc Ala 55	gag Glu	cgg Arg	gag Glu	egg Arg	cag Gln 60	ccg Pro	cac His	cgg Arg	ccc Pro	1	.92
														ctg Leu		2	40
														acc Thr 95		2	88
														gag Glu		3	36
GJ Å GG Å	ccg Pro	aca Thr 115	cca Pro	tct Ser	cct Pro	ggc Gly	cgc Arg 120	agc Ser	ccc Pro	ctg Leu	gac Asp	tcg Ser 125	cag Gln	gcg Ala	agc Ser	3	84
cca Pro	gga Gly 130	ctc Leu	gtg Val	ctg Leu	cac His	gcc Ala 135	G1Å GGG	gcg Ala	gcc Ala	acc Thr	agc Ser 140	cag Gln	cgc Arg	cgg Arg	gag Glu	4	32
tcc Ser 145	ttc Phe	ctg Leu	tac Tyr	cgc Arg	tca Ser 150	gac Asp	agc Ser	gac Asp	tat Tyr	gac Asp 155	atg Met	tca Ser	ccc Pro	aag Lys	acc Thr 160	4	80
atg Met	tcc Ser	cgg Arg	aac Asn	tca Ser 165	tcg Ser	gtc Val	acc Thr	agc Ser	gag Glu 170	gcg Ala	cac His	gct Ala	gaa Glu	gac Asp 175	ctc Leu	5	28
atc Ile	gta Val	aca Thr	cca Pro 180	ttt Phe	gct Ala	cag Gln	gtg Val	ctg Leu 185	gcc Ala	agc Ser	ctc Leu	cgg Arg	agc Ser 190	gtc Val	cgt Arg	5	76
agc Ser	aac Asn	ttc Phe 195	tca Ser	ctc Leu	ctg Leu	acc Thr	aat Asn 200	gtg Val	ccc Pro	gtt Val	ccc Pro	agt Ser 205	aac Asn	aag Lys	cgg Arg	6	24

tcc Ser	ccg Pro 210	ctg Leu	ggc Gly	ggc Gly	ccc Pro	acc Thr 215	cct Pro	gtc Val	tgc Cys	aag Lys	gcc Ala 220	acg Thr	ctg Leu	tca Ser	gaa Glu	672
	acg Thr															720
	ctg Leu															768
	gcc Ala															816
	tca Ser															864
	aca Thr 290															912
	aag Lys															960
	cag Gln															1008
	agc Ser															1056
	gaa Glu															1104
	aac Asn 370															1152
	atc Ile															1200
	atc Ile															1248
	tac Tyr															1296
	ctg Leu															1344

						att Ile 455										1392
						Gly Ggg										1440
aat Asn	tcg Ser	gag Glu	ctg Leu	gcg Ala 485	ctc Leu	atg Met	tac Tyr	aac Asn	gat Asp 490	gag Glu	tcg Ser	gtg Val	ctc Leu	gag Glu 495	aat Asn	1488
cac His	cac His	ctg Leu	gcc Ala 500	gtg Val	ggc Gly	ttc Phe	aag Lys	ctg Leu 505	ctg Leu	cag Gln	gag Glu	gac Asp	aac Asn 510	tgc Cys	gac Asp	1536
						aag Lys										1584
						gcc Ala 535										1632
						atg Met										1680
						aac Asn										1728
aac Asn	atg Met	gtg Val	cac His 580	tgt Cys	gcc Ala	gac Asp	ctc Leu	agc Ser 585	aac Asn	ccc Pro	acc Thr	aag Lys	ccg Pro 590	ctg Leu	gag Glu	1776
						gac Asp										1824
						cgt Arg 615										1872
						gag Glu										1920
						gag Glu										1968
gcc Ala	cag Gln	gag Glu	atc Ile 660	ttg Leu	gac Asp	act Thr	ttg Leu	gag Glu 665	gac Asp	aac Asn	cgg Arg	gac Asp	tgg Trp 670	tac Tyr	tac Tyr	2016
						cca Pro										2064

		675					680					685	ı			
ggg	cca Pro 690	Gly	cac His	cca Pro	ccc	ctg Leu 695	cct Pro	gac Asp	aag Lys	ttc Phe	cag Gln 700	Phe	gag Glu	ctg Leu	acg Thr	2112
ctg Leu 705	Glu	gag Glu	gaa Glu	gag Glu	gag Glu 710	gaa Glu	gaa Glu	ata Ile	tca Ser	atg Met 715	gcc Ala	cag Gln	ata Ile	ccg Pro	tgc Cys 720	2160
aca Thr	gcc Ala	caa Gln	gag Glu	gca Ala 725	Leu	act Thr	gcg Ala	cag Gln	gga Gly 730	Leu	tca Ser	gga Gly	gtc Val	gag Glu 735	gaa Glu	2208
gct Ala	ctg Leu	gat Asp	gca Ala 740	acc Thr	ata Ile	gcc Ala	tgg Trp	gag Glu 745	gca Ala	tcc Ser	ccg Pro	gcc Ala	cag Gln 750	Glu	tcg Ser	2256
ttg Leu	gaa Glu	gtt Val 755	atg Met	gca Ala	cag Gln	gaa Glu	gca Ala 760	tcc Ser	ctg Leu	gag Glu	gcc Ala	gag Glu 765	ctg Leu	gag Glu	gca Ala	2304
gtg Val	tat Tyr 770	ttg Leu	aca Thr	cag Gln	cag Gln	gca Ala 775	cag Gln	tcc Ser	aca Thr	ggc Gly	agt Ser 780	gca Ala	cct Pro	gtg Val	gct Ala	2352
ccg Pro 785	gat Asp	gag Glu	ttc Phe	tcg Ser	tcc Ser 790	cgg Arg	gag Glu	gaa Glu	ttc Phe	gtg Val 795	gtt Val	gct Ala	gta V al	agc Ser	cac His 800	2400
agc Ser	agc Ser	ccc Pro	tct Ser	gcc Ala 805	ctg Leu	gct Ala	ctt Leu	caa Gln	agc Ser 810	ccc	ctt Leu	ctc Leu	cct Pro	gct Ala 815	tgg Trp	2448
agg Arg	acc Thr	ctg Leu	tct Ser 820	gtt Val	tca Ser	gag Glu	cat His	gcc Ala 825	ccg Pro	ggc Gly	ctc Leu	ccg Pro	ggc Gly 830	ctc Leu	ccc Pro	2496
Ser	Thr	Ala 835	gcc Ala	Glu	Val	Glu	Ala 840	Gln	Arg	Glu	His	Gln 845	Ala	Ala	Lys	2544
Arg	Ala 850	Cys	agt Ser	Ala	Суѕ	Ala 855	Gly	Thr	Phe	Gly	Glu 860	Asp	Thr	Ser	Ala	2592
Leu 865	Pro	Ala	cct Pro	Gly	Gly 870	Gly	Gly	Ser	Gly	Gly 875	Asp	Pro	Thr	Trp	Asp 880	2640
Pro	Pro	Val	gcc Ala	Thr 885	Met	Val	Ser	Lys	Gly 890	Glu	Glu	Leu	Phe	Thr 895	Gly	2688
Val	Val	Pro	atc Ile 900	Leu	Val	Glu	Leu	708 708	Gly	Asp	Val	Asn	Gly 910	His	ГÀЗ	2736
ttc	agc	gtg	tcc	ggc	gag	ggc	gag	ggc	gat	gcc	acc	tac	ggc	aag	ctg	2784

Pne	Ser	Val 915	Ser	Gly	Glu	Gly	Glu 920	Gly	Asp	Ala	Thr	Tyr 925	Gly	Lys	Leu	
acc Thr	ctg Leu 930	aag Lys	ttc Phe	atc Ile	tgc Cys	acc Thr 935	acc Thr	ggc Gly	aag Lys	ctg Leu	ccc Pro 940	gtg Val	ccc Pro	tgg Trp	ccc Pro	2832
acc Thr 945	ctc Leu	gtg Val	acc Thr	acc Thr	ctg Leu 950	acc Thr	tac Tyr	ggc Gly	gtg Val	cag Gln 955	tgc Cys	ttc Phe	agc Ser	cgc Arg	tac Tyr 960	2880
	gac Asp															2928
ggc Gly	tac Tyr	gtc Val	cag Gln 980	gag Glu	ege Arg	acc Thr	atc Ile	ttc Phe 985	ttc Phe	aag Lys	gac Asp	gac Asp	ggc Gly 990	aac Asn	tac Tyr	2976
Ly s	acc Thr	ege Arg 99	Ala	gag Glu	gtg Val	aag Lys	ttc Phe 1000	Glu	ggc Gly	gac Asp	acc Thr	ctg Leu 1005	Val	aac Asn	cgc Arg	3024
	gag Glu 1010	Leu					Phe					Asn				3072
cac	aag	ctg	gag	tac	aac	tac	aac	agc	cac	aac	gtc	tat	atc	atg	gcc	3120
102		Leu	Glu	Tyr	Asn 1030		Asn	Ser	His	Asn 1035		Tyr	Ile	Met	Ala 1040	
102 gac		cag	aag	aac	1030 ggc Gly	atc	aag	gtg	aac	1035 ttc Phe	aag	atc	cgc	cac	1040 aac Asn	3168
gac Asp	5 aag	cag Gln gac	aag Lys ggc	aac Asn 1045 agc Ser	ggc Gly Gtg	atc Ile	aag Lys ctc	gtg Val gcc	aac Asn 1050 gac Asp	ttc Phe	aag Lys tac	atc Ile cag	cgc Arg cag	cac His 1055 aac Asn	1040 aac Asn acc	3168 3216
gac Asp atc Ile	aag Lys gag	cag Gln gac Asp	aag Lys ggc Gly 1060 gac Asp	aac Asn 1045 agc Ser	ggc Gly gtg Val	atc Ile cag Gln	aag Lys ctc Leu ctg	gtg Val gcc Ala 1065 ctg Leu	aac Asn 1050 gac Asp	ttc Phe cac His	aag Lys tac Tyr	atc Ile cag Gln	cgc Arg cag Gln 1070 tac Tyr	cac His 1055 aac Asn	aac Asn acc Thr	
gac Asp atc Ile ccc Pro	aag Lys gag Glu	cag Gln gac Asp ggc Gly 1075 tcc Ser	ggc Gly 1060 gac Asp	aac Asn 1045 agc Ser) ggc Gly	ggc Gly gtg Val ccc Pro	atc Ile cag Gln gtg Val	aag Lys ctc Leu ctg Leu 1080 gac Asp	gtg Val gcc Ala 1065 ctg Leu	aac Asn 1050 gac Asp ccc Pro	ttc Phe cac His gac Asp	aag Lys tac Tyr aac Asn	atc Ile cag Gln cac His 1085	cgc Arg cag Gln 1070 tac Tyr	cac His 1055 aac Asn Ctg Leu	aac Asn acc Thr agc Ser atg	3216
gac Asp atc Ile ccc Pro acc Thr	aag Lys gag Glu atc Ile cag Gln 1090 ctg Leu	cag Gln gac Asp ggc Gly 1075 tcc Ser	aag Lys ggc Gly 1060 gac Asp gcc Ala	aac Asn 1045 agc Ser Gly ctg Leu	ggc Gly gtg Val ccc Pro agc Ser	atc Ile cag Gln gtg Val aaa Lys 1095 acc Thr	aag Lys ctc Leu ctg Leu 1080 gac Asp	gtg Val gcc Ala 1065 ctg Leu ccc Pro	aac Asn 1050 gac Asp ccc Pro	ttc Phe cac His gac Asp	aag Lys tac Tyr aac Asn aag Lys 1100	atc Ile cag Gln cac His 1085	cag Cag Gln 1070 tac Tyr gat Asp	cac His 1055 aac Asn ctg Leu cac His	aac Asn acc Thr agc Ser atg Met	3216 3264

<210> 6 <211> 1124 <212> PRT

20

<213> Artificial Sequence

<220>

<223> Fusion between Aequorea victoria and human

Met Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu Ser Leu Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly Thr Gly Ser Gly Gly Ala Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn 105 Gly Pro Thr Pro Ser Pro Gly Arg Ser Pro Leu Asp Ser Gln Ala Ser Pro Gly Leu Val Leu His Ala Gly Ala Ala Thr Ser Gln Arg Arg Glu 135 Ser Phe Leu Tyr Arg Ser Asp Ser Asp Tyr Asp Met Ser Pro Lys Thr 150 155 Met Ser Arg Asn Ser Ser Val Thr Ser Glu Ala His Ala Glu Asp Leu 165 170 Ile Val Thr Pro Phe Ala Gln Val Leu Ala Ser Leu Arg Ser Val Arg 185 Ser Asn Phe Ser Leu Leu Thr Asn Val Pro Val Pro Ser Asn Lys Arg 200 Ser Pro Leu Gly Gly Pro Thr Pro Val Cys Lys Ala Thr Leu Ser Glu 215 Glu Thr Cys Gln Gln Leu Ala Arg Glu Thr Leu Glu Glu Leu Asp Trp 230 Cys Leu Glu Gln Leu Glu Thr Met Gln Thr Tyr Arg Ser Val Ser Glu 250 Met Ala Ser His Lys Phe Lys Arg Met Leu Asn Arg Glu Leu Thr His 265 Leu Ser Glu Met Ser Arg Ser Gly Asn Gln Val Ser Glu Tyr Ile Ser 280 Thr Thr Phe Leu Asp Lys Gln Asn Glu Val Glu Ile Pro Ser Pro Thr 295 300 Met Lys Glu Arg Glu Lys Gln Gln Pro Pro Pro Pro Pro Val Pro His 310 315 Leu Gln Pro Met Ser Gln Ile Thr Gly Leu Lys Lys Leu Met His Ser 330 Asn Ser Leu Asn Asn Ser Asn Ile Pro Arg Phe Gly Val Lys Thr Asp 345 Gln Glu Glu Leu Leu Ala Gln Glu Leu Glu Asn Leu Asn Lys Trp Gly 360 Leu Asn Ile Phe Cys Val Ser Asp Tyr Ala Gly Gly Arg Ser Leu Thr 375 Cys Ile Met Tyr Met Ile Phe Gln Glu Arg Asp Leu Leu Lys Lys Phe 390 395 Arg Ile Pro Val Asp Thr Met Val Thr Tyr Met Leu Thr Leu Glu Asp 410 His Tyr His Ala Asp Val Ala Tyr His Asn Ser Leu His Ala Ala Asp

			420					425					430		
Val	Leu	Gln 435	Ser	Thr	His	Val	Leu 440		Ala	Thr	Pro	Ala 445	Leu	Asp	Ala
Val	Phe 450	Thr	Asp	Leu	Glu	Ile 455	Leu	Ala	Ala	Leu	Phe 460	Ala	Ala	Ala	Ile
His 465	Asp	Val	Asp	His	Pro 470	Gly	Val	Ser	Asn	Gln 475	Phe	Leu	Ile	Asn	Thr 480
		Glu		485			_		490					495	
His	His	Leu	Ala 500	Val	Gly	Phe	Lys	Leu 505	Leu	Gln	Glu	Asp	Asn 510	Суз	Asp
		Gln 515					520		_			525	_	_	
	530	Asp				535		_			540				
545		Asp			550					555					560
		Leu		565					570					575	_
		Val	580					585					590		
		Arg 595					600					605			
	610					615	_				620			-	•
625		Thr			630					635				_	640
		His		645				_	650	_				655	-
		Glu	660					665					670		
		11e 675					680					685			_
	690	Gly				695					700				
705		Glu			710					715					720
		Gln		725					730					735	
		Asp	740					745					750		
		Val 755					760					765			
	770	Leu				775					780				
785		Glu -			790	_				795					800
		Pro		805					810					815	•
		Leu	820					825					830		
		Ala 835					840					845			
	850	Cys				855				-	860	_			
865		Ala			870				_	875	_			-	880
Pro	Pro	Val	Ala	Thr 885	Met	Val	Ser	Lys	61y 890	Glu	Glu	Leu	Phe	Thr 895	Gly

240

	Val	Pro	Ile 900		Val	Glu	Leu	Asp 905	Gly	Asp	Val	Asn	Gly 910	His	Lys	
Phe	Ser	Val 915			Glu	Gly	Glu 920		Asp	Ala	Thr	Tyr 925		Lys	Leu	
Thr	Leu 930	Lys	Phe	Ile	Суѕ	Thr 935	Thr	Gly	Lys	Leu	Pro 940		Pro	Trp	Pro	
Thr 945	Leu	Val	Thr	Thr	Leu 950		Tyr	Gly	Val	Gln 955		Phe	Ser	Arg	Tyr 960	
Pro	Asp	His	Met	Lys 965	Gln	His	Asp	Phe	Phe 970	Lys	Ser	Ala	Met	Pro 975		
Gly	Tyr	Val	Gln 980	Glu	Arg	Thr	Ile	Phe 985	Phe	Lys	Asp	Asp	Gly 990		Tyr	
Lys	Thr	Arg 995	Ala	Glu	Val	Lys	Phe 1000		Gly	Asp	Thr	Leu 1005		Asn	Arg	
Ile	Glu 1010		Lys	Gly	Ile	Asp 1015		Lys	Glu	Asp	Gly 1020		Ile	Leu	Gly	
His	Lys	Leu	Glu	Tyr			Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	
102		C1-	T	7	1030		T	17. 1		1035					1040	
Asp	ГЛЗ	GIII	гуда	1045		тте	гАз	var	ASn 1050		гÀз	TTG	Arg	H1S		
Ile	Glu	Asp	Gly 1060		Val	Gln	Leu	Ala 1065		His	Tyr	Gln	Gln 1070	Asn		
Pro	Ile	Gly 1075		Gly	Pro	Val	Leu 1080		Pro	Asp	Asn	His 1085		Leu	Ser	
	Gln 1090)				1095	,				1100)	_			
Val	Leu	Leu	Glu	Phe			Ala	Ala	Gly			Leu	Gly	Met		
1103	Leu	T117	1		1110)				1115	•				1120	
GLU	neu	TÄT	пуз													
			_													
		10>	3399	a												
	~2	.11		,												
	<2	:12>														
			DNA	fici	al S	eque	nce									
	<2		DNA	fici	al S	egue	nce									
	<2 <2	13>	DNA Arti	fici	al S	eque	nce									
	<2 <2 <2 <2	20> 21> 22>	DNA Arti CDS (1).	(3	1399)											
	<2 <2 <2 <2	20> 21> 22>	DNA Arti CDS (1).	(3	1399)			orea	vi ct	oria	and	hum	an			
	<2 <2 <2 <2 <2	20> 21> 22>	DNA Arti CDS (1). Fusi	(3	1399)			erea	vict	oria	and	hum	an			
atg	<2 <2 <2 <2 <2 <2 <4 gaa	20> 21> 22> 22> 223> 00>	DNA Arti CDS (1). Fusi 7 ccg	(3 lon b	399) etwe	en A	equo	gaa	agg	agc	ctg	tct	ctg	tca	ctg	48
atg Met 1	<2 <2 <2 <2 <2 <2	20> 21> 22> 22> 223> 00>	DNA Arti CDS (1). Fusi 7 ccg	(3 lon b	399) etwe	en A	equo	gaa	agg	agc	ctg	tct	ctg	tca Ser 15	ctg Leu	48
Met 1	<2 <2 <2 <2 <2 <4 gaa Glu	20> 21> 22> 22> 23> 00> ccc Pro	DNA Arti CDS (1). Fusi 7 ccg Pro	on b acc Thr	399) etwe gtc Val	en A ccc Pro	equo tcg Ser	gaa Glu	agg Arg 10	agc Ser	ctg Leu	tct Ser	ctg Leu	Ser 15	Leu	48
Met 1 ccc	<2 <2 <2 <2 <2 <2 <4 gaa	20> 21> 22> 22> 23> 00> ccc Pro	DNA Arti CDS (1). Fusi 7 ccg Pro	acc Thr 5	399) etwe gtc Val ggc	en A	equo tog Ser gcc	gaa Glu acc Thr	agg Arg 10 ctg	agc Ser aag	ctg Leu cct	tct Ser	ctg Leu ccg Pro	Ser 15 cag	Leu	
Met 1 ccc	<2 <2 <2 <2 <2 <4 gaa Glu ggg	20> 21> 22> 22> 23> 00> ccc Pro	DNA Arti CDS (1). Fusi 7 ccg Pro	acc Thr 5	399) etwe gtc Val ggc	en A	equo tog Ser gcc	gaa Glu acc	agg Arg 10 ctg	agc Ser aag	ctg Leu cct	tct Ser	ctg Leu ccg	Ser 15 cag	Leu	
Met 1 ccc Pro	<2 <2 <2 <2 <4 gaa Glu ggg	20> 221> 222> 223> 00> ccc Pro	CDS (1). Fusi 7 ccg Pro cgg Arg 20	acc Thr 5 gag Glu	gtc Val ggc Gly	ccc Pro cag	tcg Ser gcc Ala	gaa Glu acc Thr 25	agg Arg 10 ctg Leu	agc Ser aag Lys	ctg Leu cct Pro	tct Ser ccc Pro	ctg Leu ccg Pro 30	Ser 15 cag Gln	Leu cac His	96
Met 1 ccc Pro	<2 <2 <2 <2 <2 <4 gaa Glu ggg	20> 221> 222> 223> 00> ccc Pro	DNA Arti CDS (1). Fusi 7 ccg Pro cgg Arg 20 cag	acc Thr 5 gag Glu	gtc Val ggc Gly	ccc Pro cag Gln	tcg Ser gcc Ala ccc Pro	gaa Glu acc Thr 25	agg Arg 10 ctg Leu	agc Ser aag Lys	ctg Leu cct Pro	tct Ser ccc Pro	ctg Leu ccg Pro 30	Ser 15 cag Gln ggc	Leu cac His	
Met 1 ccc Pro	<2 <2 <2 <2 <4 gaa Glu ggg Gly tgg	20> 221> 222> 223> 00> ccc Pro	DNA Arti CDS (1). Fusi 7 ccg Pro cgg Arg 20 cag	acc Thr 5 gag Glu	gtc Val ggc Gly	ccc Pro cag Gln	equo tcg Ser gcc Ala	gaa Glu acc Thr 25	agg Arg 10 ctg Leu	agc Ser aag Lys	ctg Leu cct Pro	tct Ser ccc Pro	ctg Leu ccg Pro 30	Ser 15 cag Gln ggc	Leu cac His	96
Met 1 ccc Pro ctg Leu	<22 <22 <22 <22 <24 gaa Glu ggg Gly tgg Trp gac	220> 221> 222> 222> 223> 222> 223> 223> 223	DNA Arti CDS (1). Fusi 7 ccg Pro cgg Arg 20 cag Gln	(3 on b acc Thr 5 gag Glu cct Pro	gtc gtc Val ggc Gly cgg Arg	ccc Pro cag Gln acc	equo	gaa Glu acc Thr 25 atc Ile	agg Arg 10 ctg Leu cgt Arg	agc Ser aag Lys atc Ile	ctg Leu cct Pro cag Gln	tct Ser ccc Pro cag Gln 45	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly	cac His tac Tyr	96
Met 1 ccc Pro ctg Leu	<2 <2 <2 <2 <4 gaa Glu ggg Gly tgg	220> 221> 222> 222> 223> 222> 223> 223> 223	DNA Arti CDS (1). Fusi 7 ccg Pro cgg Arg 20 cag Gln	(3 on b acc Thr 5 gag Glu cct Pro	gtc gtc Val ggc Gly cgg Arg	ccc Pro cag Gln acc	equo	gaa Glu acc Thr 25 atc Ile	agg Arg 10 ctg Leu cgt Arg	agc Ser aag Lys atc Ile	ctg Leu cct Pro cag Gln	tct Ser ccc Pro cag Gln 45	ctg Leu ccg Pro 30 cgc Arg	Ser 15 cag Gln ggc Gly	cac His tac Tyr	96 144

ata gag ege gee gat gee atg gae acc age gae egg eee gge etg ege

65		ALG	, MIG	мар	70		АЗР	THE	Ser	75		Pro	GTÀ	Leu	80		
acg Thr	acc	Cgc Arg	atg Met	Ser 85	Trp	ccc Pro	tcg Ser	tcc Ser	ttc Phe 90	His	ggc	act Thr	Gly	acc Thr 95	ggc		288
agc Ser	ggc	ggc	gcg Ala 100	Gly	gga Gly	ggc Gly	agc Ser	age Ser 105	Arg	ege Arg	ttc Phe	gag Glu	gca Ala 110	Glu	aat Asn		336
ggg Gly	ccg Pro	aca Thr 115	Pro	tct Ser	cct Pro	ggc	cgc Arg 120	Ser	ccc Pro	ctg Leu	gac Asp	tcg Ser 125	Gln	gcg	agc Ser		384
cca Pro	gga Gly 130	Leu	gtg Val	ctg Leu	cac His	gcc Ala 135	ggg Gly	gcg Ala	gcc Ala	acc Thr	agc Ser 140	Gln	cgc Ar g	cgg Arg	gag Glu		432
tcc Ser 145	ttc Phe	ctg Leu	tac Tyr	cgc Arg	tca Ser 150	gac Asp	agc Ser	gac Asp	tat Tyr	gac Asp 155	atg Met	tca Ser	ccc Pro	aag Lys	acc Thr 160		480
atg Met	tcc Ser	cgg	aac Asn	tca Ser 165	tcg Ser	gtc Val	acc Thr	agc Ser	gag Glu 170	gcg Ala	cac His	gct Ala	gaa Glu	gac Asp 175	ctc Leu	!	528
Ile	Val	Thr	Pro 180	Phe	Ala	cag Gln	Val	Leu 185	Ala	Ser	Leu	Arg	Ser 190	Val	Arg	!	576
agc Ser	aac Asn	ttc Phe 195	tca Ser	ctc Leu	ctg Leu	acc Thr	aat Asn 200	gtg Val	ccc Pro	gtt Val	ccc Pro	agt Ser 205	aac Asn	aag Lys	cgg Arg	(624
tcc Ser	ccg Pro 210	ctg Leu	ggc Gly	ggc Gly	ccc Pro	acc Thr 215	cct Pro	gtc Val	tgc Cys	aag Lys	gcc Ala 220	acg Thr	ctg Leu	tca Ser	gaa Glu	(672
gaa Glu 225	acg Thr	tgt Cys	cag Gln	cag Gln	ttg Leu 230	gcc Ala	cgg Arg	gag Glu	act Thr	ctg Leu 235	gag Glu	gag Glu	ctg Leu	gac Asp	tgg Trp 240	7	720
tgt Cys	ctg Leu	gag Glu	cag Gln	ctg Leu 245	g ag Glu	acc Thr	atg Met	cag Gln	acc Thr 250	tat Tyr	cgc Arg	tct Ser	gtc Val	agc Ser 255	gag Glu	7	768
atg Met	gcc Ala	tcg Ser	cac His 260	aag Lys	ttt Phe	aaa Lys	agg Arg	atg Met 265	ttg Leu	aac Asn	cgt Arg	gag Glu	ctc Leu 270	aca Thr	cac His	8	316
ctg Leu	Ser	gaa Glu 275	atg Met	agc Ser	agg Arg	tcc Ser	gga Gly 280	aac Asn	cag Gln	gtc Val	tca Ser	gag Glu 285	tac Tyr	att Ile	tcc Ser	8	164
rnr	aca Thr 290	ttc Phe	ctg Leu	gac Asp	aaa Lys	cag Gln 295	aat Asn	gaa Glu	gtg Val	Glu	atc Ile 300	cca Pro	tca Ser	ccc Pro	acg Thr	9	12

atg Met 305	Lys	gaa Glu	cga Arg	gaa Glu	aaa Lys 310	Gln	caa Gln	gcg Ala	ccg Pro	cga Arg 315	Pro	aga Arg	ccc Pro	tco Ser	cag Gln 320	960
ccg Pro	Pro	Pro	Pro	Cct Pro 325	Val	cca Pro	Cac His	tta Leu	cag Gln 330	Pro	atg Met	tcc Ser	caa Gln	Ile 335	aca Thr	1008
G1 y	ttg Leu	aaa Lys	aag Lys 340	ttg Leu	atg Met	cat His	agt Ser	aac Asn 345	agc Ser	ctg Leu	aac Asn	aac Asn	tct Ser 350	Asn	att	1056
ccc Pro	cga Arg	ttt Phe 355	ggg Gly	gtg Val	aag Lys	acc Thr	gat Asp 360	Gln	gaa Glu	gag Glu	ctc Leu	ctg Leu 365	gcc Ala	caa Gln	gaa Glu	1104
ctg Leu	gag Glu 370	aac Asn	ctg Leu	aac Asn	aag Lys	tgg Trp 375	ggc Gly	ctg Leu	aac Asn	atc Ile	ttt Phe 380	Cys	gtg Val	tcg Ser	gat Asp	1152
tac Tyr 385	gct Ala	gga Gly	ggc Gly	cgc Arg	tca Ser 390	ctc Leu	acc Thr	tgc Cys	atc Ile	atg Met 395	tac Tyr	atg Met	ata Ile	ttc Phe	cag Gln 400	1200
gag Glu	cgg Arg	gac Asp	ctg Leu	ctg Leu 405	aag Lys	aaa Lys	ttc Phe	cgc Arg	atc Ile 410	ccg Pro	gtg Val	gac Asp	acg Thr	atg Met 415	gtg Val	1248
aca Thr	tac Tyr	atg Met	ctg Leu 420	acg Thr	ctg Leu	gag Glu	gat Asp	cac His 425	tac Tyr	cac His	gct Ala	gac Asp	gtg Val 430	gcc Ala	tac Tyr	1296
cat His	aac Asn	agc Ser 435	ctg Leu	cac His	gca Ala	gct Ala	gac Asp 440	gtg Val	ctg Leu	cag Gln	tcc Ser	acc Thr 445	cac His	gta Val	ctg Leu	1344
ctg Leu	gcc Ala 450	acg Thr	cct Pro	gca Ala	cta Leu	gat Asp 455	gca Ala	gtg Val	ttc Phe	acg Thr	gac Asp 460	ctg Leu	gag Glu	att Ile	ctc Leu	1392
gcc Ala 465	gcc Ala	ctc Leu	ttc Phe	gcg Ala	gct Ala 470	gcc Ala	atc Ile	cac His	gat Asp	gtg Val 475	gat Asp	cac His	cct Pro	GJ À aaa	gtc Val 480	1440
tcc Ser	aac Asn	cag Gln	ttc Phe	ctc Leu 485	atc Ile	aac Asn	acc Thr	aat Asn	tcg Ser 490	gag Glu	ctg Leu	gcg Ala	ctc Leu	atg Met 495	tac Tyr	1488
aac Asn	gat Asp	gag Glu	tcg Ser 500	gtg Val	ctc Leu	gaa Glu	aat Asn	cac His 505	aac Asn	ctg Leu	gcc Ala	gtg Val	ggc Gly 510	ttc Phe	aag Lys	1536
Leu	Leu	Gln 515	Glu	Asp	Asn		Asp 520	Ile	Phe	Gln	Asn	Leu 525	Ser	Lys	Arg	1584
cag Gln	cgg Arg 530	cag Gln	agc Ser	cta Leu	cgc Arg	aag Lys 535	atg Met	gtc Val	atc Ile	Asp	atg Met 540	gtg Val	ctg Leu	gcc Ala	acg Thr	1632

gac Asp 545	Met	tcc Ser	aag Lys	cac His	atg Met 550	Thr	ctc Leu	ctg Leu	gct Ala	gac Asp 555	Leu	aag Ly s	ace Thr	atg Met	gtg Val 560	1680
gag Glu	acc Thr	aag Lys	aaa Lys	gtg Val 565	acc Thr	agc Ser	tca Ser	ggg Gly	gtc Val 570	ctc Leu	ctg Leu	cta Leu	gat Asp	aac Asn 575	tac Tyr	1728
tcc Ser	gac Asp	cgc Arg	atc Ile 580	Gln	gtc Val	ctc	cgg Arg	aac Asn 585	atg Met	gtg Val	cac His	tgt Cys	gcc Ala 590	gac Asp	ctc Leu	1776
agc Ser	aac Asn	ccc Pro 595	acc Thr	aag Lys	ccg Pro	ctg Leu	gag Glu 600	ctg Leu	tac Tyr	cgc Arg	cag Gln	tgg Trp 605	aca Thr	gac Asp	cgc Arg	1824
atc Ile	atg Met 610	gcc Ala	gag Glu	ttc Phe	ttc Phe	cag Gln 615	cag Gln	ggt Gly	gac Asp	cga Arg	gag Glu 620	cgc Arg	gag Glu	cgt Arg	ggc Gly	1872
atg Met 625	gaa Glu	atc Ile	agc Ser	ccc Pro	atg Met 630	tgt Cys	gac Asp	aag Lys	cac His	act Thr 635	gcc Ala	tcc Ser	gtg Val	gag Glu	aag Lys 640	1920
tct Ser	cag Gln	gtg Val	ggt Gly	ttt Phe 645	att Ile	gac Asp	tac Tyr	att Ile	gtg Val 650	cac His	cca Pro	ttg Leu	tgg Trp	gag Glu 655	acc Thr	1968
								gcc Ala 665								2016
gag Glu	gac Asp	aac Asn 675	cgg Arg	gac Asp	tgg Trp	tac Tyr	tac Tyr 680	agc Ser	gcc Ala	atc Ile	cgg Arg	cag Gln 685	agc Ser	cca Pro	tct Ser	2064
ccg Pro	cca Pro 690	ccc Pro	gag Glu	gag Glu	gag Glu	tca Ser 695	agg Arg	GJÀ GGG	cca Pro	ggc Gly	cac His 700	cca Pro	ccc Pro	ctg Leu	cct Pro	2112
gac Asp 705	aag Lys	ttc Phe	cag Gln	ttt Phe	gag Glu 710	ctg Leu	acg Thr	ctg Leu	gag Glu	gag Glu 715	gaa Glu	gag Glu	gag Glu	gaa Glu	gaa Glu 720	2160
ata Ile	tca Ser	atg Met	gcc Ala	cag Gln 725	ata Ile	ccg Pro	tgc Cys	aca Thr	gcc Ala 730	caa Gln	gag Glu	gca Ala	ttg Leu	act Thr 735	gcg Ala	2208
cag Gln	gga Gly	ttg Leu	tca Ser 740	gga Gly	gtc Val	gag Glu	gaa Glu	gct Ala 745	ctg Leu	gat Asp	gca Ala	acc Thr	ata Ile 750	gcc Ala	tgg Trp	2256
gag Glu	gca Ala	tcc Ser 755	ccg Pro	gcc Ala	cag Gln	Glu	tcg Ser 760	ttg Leu	gaa Glu	gtt Val	atg Met	gca Ala 765	cag Gln	gaa Glu	gca Ala	2304
tcc Ser	ctg Leu	gag Glu	gcc Ala	gag Glu	ctg Leu	gag Glu	gca Ala	gtg Val	tat Tyr	ttg Leu	aca Thr	cag Gln	cag Gln	gca Ala	cag Gln	2352

	770					775					780					
												tcg Ser				2400
												gcc Ala				2448
caa Gln	agc Ser	ccc Pro	ctt Leu 820	ctc Leu	cct Pro	gct Ala	tgg Trp	agg Arg 825	aec Thr	ctg Leu	tct Ser	gtt Val	tca Ser 830	gag Glu	cat His	2496
												gag Glu 845				2544
												gcc Ala				2592
												ggt Gl y				2640
												acc Thr				2688
aag Lys	ggc Gly	gag Glu	gag Glu 900	ctg Leu	ttc Phe	acc Thr	Gly ggg	gtg Val 905	gtg Val	ccc Pro	atc Ile	ctg Leu	gtc Val 910	gag Glu	ctg Leu	2736
gac Asp	ggc Gly	gac Asp 915	gta Val	aac Asn	ggc Gly	cac His	aag Lys 920	ttc Phe	agc Ser	gtg Val	tcc Ser	ggc Gly 925	gag Glu	ggc Gly	gag Glu	2784
												atc Ile				2832
ggc Gly 945	aag Lys	ctg Leu	ccc Pro	gtg Val	ccc Pro 950	tgg Trp	ccc Pro	acc Thr	ctc Leu	gtg Val 955	acc Thr	acc Thr	ctg Leu	acc Thr	tac Tyr 960	2880
												aag Lys				2928
ttc Phe	ttc Phe	aag Lys	tcc Ser 980	gcc Ala	atg Met	ecc Pro	gaa Glu	ggc Gly 985	tac Tyr	gtc Val	cag Gln	gag Glu	cgc Arg 990	acc Thr	atc Ile	2976
ttc Phe	ttc Phe	aag Lys 995	Asp	gac Asp	ggc Gly	aac Asn	tac Tyr 1000	Lys	acc Thr	cgc Arg	gcc Ala	gag Glu 1005	Val	aag Lys	ttc Phe	3024
gag	ggc	gac	acc	ctg	gtg	aac	cgc	atc	gag	ctg	aag	ggc	atc	gac	ttc	3072

Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe 1010 1015 1020	
aag gag gac ggc aac atc ctg ggg cac aag ctg gag tac aac tac aac Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn 1025 1030 1035 1040	3120
agc cac aac gtc tat atc atg gcc gac aag cag aag aac ggc atc aag Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys 1050 1055	3168
gtg aac ttc aag atc cgc cac aac atc gag gac ggc agc gtg cag ctc Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 1060 1065 1070	3216
gcc gac cac tac cag cag aac acc ccc atc ggc gac ggc ccc gtg ctg Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 1075 1080 1085	3264
ctg ccc gac aac cac tac ctg agc acc cag tcc gcc ctg agc aaa gac Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 1090 1095 1100	3312
ccc aac gag aag cgc gat cac atg gtc ctg ctg gag ttc gtg acc gcc Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala 1105 1110 1115 1120	3360
gcc ggg atc act ctc ggc atg gac gag ctg tac aag taa Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys * 1125 1130	3399
<210> 8 <211> 1132 <212> PRT <213> Artificial Sequence	
<220>	
<223> Fusion between Aequorea victoria and human	
<400> 8 Met Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu	
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His	
20 25 30	
20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45	
Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60	
20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80	
20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80 Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly 85 90 95 Ser Gly Gly Ala Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn	
20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80 Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly Thr Gly 85 Ser Gly Gly Ala Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn 100 105 110 Gly Pro Thr Pro Ser Pro Gly Arg Ser Pro Leu Asp Ser Gln Ala Ser	
20 25 30 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45 Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60 Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80 Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly Thr Gly 85 90 95 Ser Gly Gly Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn 100 105	

Ser 145	Phe	Leu	Tyr	Arg	Ser 150	Asp	Ser	Asp	Tyr	Asp 155	Met	Ser	Pro	Lys	Thr 160
	Ser	Arg	Asn	Ser 165		Val	Thr	Ser	Glu 170		His	Ala	Glu	Asp 175	
Ile	Val	Thr	Pro 180		Ala	Gln	Val	Leu 185		Ser	Leu	Arg	Ser 190		Arg
Ser	Asn	Phe 195		Leu	Leu	Thr	Asn 200		Pro	Val	Pro	Ser 205		Lys	Arg
Ser	Pro 210		Gly	Gly	Pro	Thr 215		۷al	Cys	Lys	Ala 220		Leu	Ser	Glu
Glu 225	Thr	Суз	Gln	Gln	Leu 230		Arg	Glu	Thr	Leu 235		Glu	Leu	Asp	Trp 240
Суз	Leu	Glu	Gln	Leu 245		Thr	Met	Gln	Thr 250	_	Arg	Ser	Val	Ser 255	Glu
Met	Ala	Ser	His 260	ГÀЗ	Phe	Lys	Arg	Met 265	Leu	Asn	Arg	Glu	Leu 270	Thr	His
Leu	Ser	Glu 275		Ser	Arg	Ser	Gly 280		Gln	Val	Ser	Glu 285	Tyr	Ile	Ser
Thr	Thr 290	Phe	Leu	Asp	ГÀЗ	Gln 295	Asn	Glu	۷al	Glu	Ile 300	Pro	Ser	Pro	Thr
Met 305	Lys	Glu	Arg	Glu	Lys 310	Gln	Gln	Ala	Pro	Arg 315	Pro	Arg	Pro	Ser	Gln 320
Pro	Pro	Pro	Pro	Pro 325	Val	Pro	His	Leu	Gln 330	Pro	Met	Ser	Gln	Ile 335	Thr
Gly	Leu	Lys	Lys 340	Leu	Met	His	Ser	Asn 345	Ser	Leu	Asn	Asn	Ser 350	Asn	Ile
Pro	Arg	Phe 355	Gly	Val	Lys	Thr	Asp 360	Gln	Glu	Glu	Leu	Leu 365	Ala	Gln	Glu
Leu	Glu 370	Asn	Leu	Asn	ГĀЗ	Trp 375	Gly	Leu	Asn	Ile	Phe 380	Cys	Val	Ser	Asp
Tyr 385	Ala	Gly	Gly	Arg	Ser 390	Leu	Thr	Суз	Ile	Met 395	Tyr	Met	Ile	Phe	Gln 400
Glu	Arg	Asp	Leu	Leu 405	ГЛЗ	Lys	Phe	Arg	Ile 410	Pro	Val	Ąsp	Thr	Met 415	۷al
	Tyr		420				_	425	_			_	430		_
	Asn	435					440					445			
	Ala 450					455					460				
465	Ala				470				-	475	•			-	480
	Asn			485					490					495	-
	Asp		500					505					510		_
	Leu	515					520					525			
	Arg 530				_	535					540				
545	Met		_		550					555		-			560
	Thr	-	-	565				_	570					575	_
	Asp	Ī	580				Ī	585				-	590	-	
	Asn	595					600		_	_		605			
тте	Met	Ala	GLU	rue	rne	GIN	GTD	GTÅ	Asp	Arg	GIU	Arg	GIÜ	Arg	стА

Met Glu Ile Ser Pro Met Cys Asp Lys His Thr Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val His Pro Leu Trp Glu Thr Trp Ala Asp Leu Val His Pro Asp Ala Gln Glu Ile Leu Asp Thr Leu Glu Asp Asn Arg Asp Trp Tyr Tyr Ser Ala Ile Arg Gln Ser Pro Ser Pro Pro Pro Glu Glu Glu Ser Arg Gly Pro Gly His Pro Pro Leu Pro Asp Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Glu Glu Glu Glu Glu Ile Ser Met Ala Gln Ile Pro Cys Thr Ala Gln Glu Ala Leu Thr Ala Gln Gly Leu Ser Gly Val Glu Glu Ala Leu Asp Ala Thr Ile Ala Trp Glu Ala Ser Pro Ala Gln Glu Ser Leu Glu Val Met Ala Gln Glu Ala Ser Leu Glu Ala Glu Leu Glu Ala Val Tyr Leu Thr Gln Gln Ala Gln Ser Thr Gly Ser Ala Pro Val Ala Pro Asp Glu Phe Ser Ser Arg Glu Glu Phe Val Val Ala Val Ser His Ser Ser Pro Ser Ala Leu Ala Leu Gln Ser Pro Leu Leu Pro Ala Trp Arg Thr Leu Ser Val Ser Glu His หรอ Ala Pro Gly Leu Pro Gly Leu Pro Ser Thr Ala Ala Glu Val Glu Ala Gln Arg Glu His Gln Ala Ala Lys Arg Ala Cys Ser Ala Cys Ala Gly Thr Phe Gly Glu Asp Thr Ser Ala Leu Pro Ala Pro Gly Gly Gly Ser Gly Gly Asp Pro Thr Trp Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu

Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 1095 1100 Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala 1105 1110 1115 Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1125 1130 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 9 gtaagcttaa gatgcccttg gtggatttct tc 32 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 10 gtggatecca ggtagggtet ceacetga 28 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 11 gtttaaaagg atgttgaacc gtgagctc 28 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 12 gtggatccca ggtagggtct ccacctga 28 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence

<400> 13	
gtaagettge gecatggaac ceeegace	28
•	
<210> 14	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer sequence	
<400> 14	
ggttttaaac ttgtgcgagg ccatctcgct gac	33
	33
<210> 15	
<211> 49	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer sequence	
<400> 15	
gatgagtegg tgetegaaaa teacaacetg geegtggget teaagetge	49
J. J. J. Control Control of Googleggge Codagolige	4.7
<210> 16	
<211> 49	
<212> DNA	
<213> Artificial Sequence	
1000	
<220>	
<223> Primer sequence	
<400> 16	
gcagettgaa geceaeggee aggttgtgat tttegageae egaeteate	49
<210> 17	
<211> 70	
<212> DNA	
<213> Artificial Sequence	
ALLITOTAL Dequence	
<220>	
<223> Primer sequence	
<400> 17	
cecateacee acgatgaagg aacgagaaaa acagcaaceg ecceegeece eggtaceaca	60
cttacagece	70
<210> 18	
<211> 70	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer sequence	
4400 40	
<400> 18	
gggctgtaag tgtggtaccg ggggcggggg cggttgctgt ttttctcgtt ccttcatcgt	60
gggtgatggg	70

```
<210> 19
      <211> 36
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer sequence
      <400> 19
ccggaattcc gccatggaac ccccgaccgt cccctc
                                                                        36
      <210> 20
      <211> 45
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer sequence
      <400> 20
ggcaagettt ttcaacectg tgatttggga catgggetgt aagtg
                                                                        45
      <210> 21
      <211> 53
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer sequence
ggcaagctta tgcacagctc tagtctgact aattcaagta tcccaaggtt tgg
                                                                        53
      <210> 22
      <211> 49
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer sequence
      <400> 22
gccccgcggc gtgtcaggag aacgatcatc tatgacacag gcttcaggc
                                                                        49
      <210> 23
      <211> 3090
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> CDS
      <222> (1)...(3090)
     <400> 23
atg gaa ccc ccg acc gtc ccc tcg gaa agg agc ctg tct ctg tca ctg
                                                                       48
Met Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu Ser Leu
1
                 5
```

									Leu					Gln	cac His	96
		cgg Arg 35														144
tcc Ser	gac Asp 50	agc Ser	gcg Ala	gag Glu	cgc Arg	gcc Ala 55	gag Glu	cgg Arg	gag Glu	egg Arg	cag Gln 60	Pro	cac His	cgg Arg	ccc Pro	192
ata Ile 65	gag Glu	cgc Arg	gcc Ala	gat Asp	gcc Ala 70	atg Met	gac Asp	acc Thr	agc Ser	gac Asp 75	cgg Arg	ccc Pro	ggc Gly	ctg Leu	cgc Arg 80	240
acg Thr	acc Thr	cgc Arg	atg Met	tcc Ser 85	tgg Trp	ccc Pro	tcg Ser	tcc Ser	ttc Phe 90	cat His	ggc Gly	act Thr	ggc Gly	acc Thr 95	ggc Gly	288
agc Ser	ggc Gly	ggc Gly	gcg Ala 100	ggc Gly	gga Gl y	ggc Gly	agc Ser	agc Ser 105	agg Arg	cgc Arg	ttc Phe	gag Glu	gca Ala 110	gag Glu	aat Asn	336
G1 y ggg	ccg Pro	aca Thr 115	cca Pro	tct Ser	cct Pro	ggc Gly	ege Arg 120	agc Ser	ccc Pro	ctg Leu	gac Asp	tcg Ser 125	cag Gln	gcg Ala	agc Ser	384
cca Pro	gga Gly 130	ctc Leu	gtg Val	ctg Leu	cac His	gcc Ala 135	G1 y ggg	gcg Ala	gcc Ala	acc Thr	agc Ser 140	cag Gln	cgc Arg	cgg Arg	gag Glu	432
tec Ser 145	ttc Phe	ctg Leu	tac Tyr	cgc Arg	tca Ser 150	gac Asp	agc Ser	gac Asp	tat Tyr	gac Asp 155	atg Met	tca Ser	ccc Pro	aag Lys	acc Thr 160	480
atg Met	tcc Ser	cgg Arg	aac Asn	tca Ser 165	tcg Ser	gtc Val	acc Thr	agc Ser	gag Glu 170	gcg Ala	cac His	gct Ala	gaa Glu	gac Asp 175	ctc Leu	528
atc Ile	gta Val	aca Thr	cca Pro 180	ttt Phe	gct Ala	cag Gln	gtg V al	ctg Leu 185	gcc Ala	agc Ser	ctc Leu	cgg Arg	agc Ser 190	gtc Val	cgt Arg	576
agc Ser	aac Asn	ttc Phe 195	tca Ser	ctc Leu	ctg Leu	acc Thr	aat Asn 200	gtg Val	ccc Pro	gtt Val	ccc Pro	agt Ser 205	aac Asn	aag Lys	cgg Arg	624
tcc Ser	ccg Pro 210	ctg Leu	ggc Gly	ggc Gly	ccc Pro	acc Thr 215	cct Pro	gtc Val	tgc Cys	aag Lys	gcc Ala 220	acg Thr	ctg Leu	tca Ser	gaa Glu	672
gaa Glu 225	acg Thr	tgt Cys	cag Gln	cag Gln	ttg Leu 230	gcc Ala	egg Arg	gag Glu	act Thr	ctg Leu 235	gag Glu	gag Glu	ctg Leu	gac Asp	tgg Trp 240	720
tgt Cys	ctg Leu	gag Glu	Gln	ctg Leu 245	gag Glu	acc Thr	atg Met	cag Gln	acc Thr 250	tat Tyr	cgc Arg	tct Ser	gtc Val	agc Ser 255	gag Glu	768

		tcg Ser		Lys												816
		gaa Glu 275														864
		ttc Phe														912
		gaa Glu														960
		ccg Pro														1008
		aaa Lys														1056
		ttt Phe 355														1104
		gat Asp														1152
		ggt Gly														1200
		gat Asp														1248
aca Thr	tat Tyr	ctt Leu	atg Met 420	act Thr	ctc Leu	gaa Glu	gac Asp	cat His 425	tac Tyr	cat His	gct Ala	gat Asp	gtg Val 430	gcc Ala	tat Tyr	1296
		aat Asn 435														1344
		aca Thr														1392
gca Ala 465	gca Ala	att Ile	ttt Phe	gcc Ala	agt Ser 470	gca Ala	ata Ile	cat His	gat Asp	gta Val 475	gat Asp	cat His	cct Pro	ggt Gly	gtg Val 480	1440
tcc Ser	aat Asn	caa Gln	ttt Phe	ctg Leu	atc Ile	aat Asn	aca Thr	aac Asn	tct Ser	gaa Glu	ctt Leu	gcc Ala	ttg Leu	atg Met	tac Tyr	1488

35

				485					490					495		
	gat Asp															1536
	ctt Leu					Cys										1584
	aga Arg 530															1632
	atg Met															1680
	act Thr															1728
tcc Ser	gat Asp	agg Arg	att Ile 580	cag Gln	gtt Val	ctt Leu	cag Gln	aat Asn 585	atg Met	gtg Val	cac His	tgt Cys	gca Ala 590	gat Asp	ctg Leu	1776
agc Ser	aac Asn	cca Pro 595	aca Thr	aag Lys	cct Pro	ctc Leu	cag Gln 600	ctg Leu	tac Tyr	cgc Arg	cag Gln	tgg Trp 605	acg Thr	gac Asp	cgg Arg	1824
	atg Met 610															1872
	gag Glu															1920
	cag Gln															1968
	gca Ala															2016
	gac Asp															2064
cct Pro	gca Ala 690	cct Pro	gat Asp	gac Asp	cca Pro	gag Glu 695	gag Glu	ggc Gly	cgg Arg	cag Gln	ggt Gly 700	caa Gln	act Thr	gag Glu	aaa Lys	2112
ttc Phe 705	cag Gln	ttt Phe	gaa Glu	cta Leu	act Thr 710	tta Leu	gag Glu	gaa Glu	gat Asp	ggt Gly 715	gag Glu	tca Ser	gac Asp	acg Thr	gaa Glu 720	2160
aag	gac	agt	ggc	agt	caa	gtg	gaa	gaa	gac	act	agc	tgc	agt	gac	tcc	2208

Lys	Asp	Ser	Gly	Ser 725	Gln	Val	Glu	Glu	Asp 730	Thr	Ser	Cys	Ser	Asp 735	Ser		
					caa Gln											2	256
					gag Glu											2	2304
					gat Asp											2	2352
gat Asp 785	cca Pro	ccg Pro	gtc Val	gcc Ala	acc Thr 790	atg Met	gtg Val	agc Ser	aag Lys	ggc Gly 795	gag Glu	gag Glu	ctg Leu	ttc Phe	acc Thr 800	2	2400
					ctg Leu											2	2448
					ggc Gly											2	496
					atc Ile											2	544
					acc Thr											2	:592
					aag Lys 870											2	640
					gag Glu											2	688
tac Tyr	aag Lys	acc Thr	ege Arg 900	gcc Ala	gag Glu	gtg Val	aag Lys	ttc Phe 905	gag Glu	ggc	gac Asp	acc Thr	ctg Leu 910	gtg Val	aac Asn	2	736
					ggc Gly											2	784
					tac Tyr											2	832
					aac Asn 950											2	880

aac atc (Asn Ile (gag gad Glu Asp	ggc ago Gly Ser 965	gtg Val	cag Gln	ctc Leu	gcc Ala 970	gac Asp	cac His	tac Tyr	Gln	cag Gln 975	Asn	2928
acc ccc a	atc ggo Ile Gly 980	Asp Gly	Pro	Val	ctg Leu 985	ctg Leu	ccc Pro	gac Asp	aac Asn	cac His 990	tac Tyr	ctg Leu	2976
agc acc o	cag tcc Gln Ser 995	gcc cto Ala Leu	g agc n Ser	aaa Lys 1000	Asp	ccc Pro	aac Asn	gag Glu	aag Lys 100	Arg	gat Asp	cac His	3024
atg gtc o Met Val 1 1010	ctg ctg Leu Leu	gag tto Glu Phe	gtg Val 1015	Thr	gcc Ala	gcc Ala	ggg Gly	atc Ile 102	Thr	ctc Leu	ggc	atg Met	3072
gac gag o Asp Glu I 1025			L										3090
<21 <21 <21	20>										rt i f:	ici	
122	.52 1 40.	ION DECK	cen A	equo	rea	ATC	OTTO	and	ı nuı	nan			
	0> 24												
Met Glu F 1		5				10					15		
Pro Gly P	ro Arg 20	Glu Gly	Gln		Thr 25	Leu	Lys	Pro	Pro	Pro 30	Gln	His	
Leu Trp A	rg Gln 5	Pro Arg		Pro : 40	Ile	Arg	Ile	Gln	Gln 45	Arg	Gly	Tyr	
Ser Asp S 50			55					60					
Ile Glu A 65	rg Ala	Asp Ala 70	Met i	Asp 1	l hr		Asp 75	Arg	Pro	Gly	Leu	Arg 80	
Thr Thr A	rg Met	Ser Trp 85	Pro :	Ser S		Phe 90	His	Gly	Thr	Gly	Thr 95	Gly	
Ser Gly G	ly Ala 100	Gly Gly	Gly a		Ser.	Arg	Arg	Phe	Glu	Ala 110	Glu	Asn	
Gly Pro T	hr Pro 15	Ser Pro				Pro	Leu	Asp	Ser 125		Ala	Ser	
Pro Gly L	eu Val	Leu His			lla i	Ala		Ser 140		Arg	Arg	Glu	
Ser Phe L	eu Tyr	Arg Ser 150		Ser A	Asp '		Asp		Ser	Pro	Lys		
Met Ser A	rg Asn	Ser Ser	Val 7	Chr S		Glu .	155 Ala	His	Ala	G1u		160 Leu	
Ile Val T	hr Pro	165 Phe Ala	Gln V		eu i	170 Ala	Ser	Leu	Arg		175 Val	Arg	
Ser Asn P	180 he Ser	Leu Leu		Asn V	185 7al 1	Pro	Val.			190 Asn	Lys	Arg	
Ser Pro L	95 eu Gly	Gly Pro	Thr I	200 Pro V	al (Суз	Lys .	Ala	205 Thr	Leu	Ser	Glu	
210 Glu Thr C	ve Gln	Gln Leu	215 Ala A	Ara G	ilu (ľh.	Len	220 Glu	Glu	ī,en	Asn	Tro	
ord Int c													

225					230					235					040
		Glu	Gln	Leu			Met	Gln	Thr		Ara	Ser	Val	Ser	240 Glu
				245					250					255	
Met	Ala	Ser	His 260	Lys	Phe	Lys	Arg	Met 265	Leu	Asn	Arg	Glu	Leu 270		His
Leu	Ser	Glu 275	Met	Ser	Arg	Ser	Gly 280		Gln	Val	Ser	Glu 285		Ile	Ser
Thr	Thr 290	Phe	Leu	Asp	Lys	Gln 295	Asn	Glu	Val	Glu	Ile 300		Ser	Pro	Thr
305			Arg		310					315					320
Pro	Pro	Pro	Pro	Pro 325	Val	Pro	His	Leu	Gln 330		Met	Ser	Gln	Ile 335	
			Lys 340					345					350		
		355					360					365			
	370		Val			375					380				
385			Asn		390					395					400
			Leu	405					410					415	
			Met 420					425					430		
		435	Ile				440					445			
	450		Pro			455					460				
465	Ara	тте	Phe	Ala	Ser 470	Ala	Ile	His	Asp	Val 475	Asp	His	Pro	Gly	Val 480
Ser	Asn	Gln	Phe	Leu 485		Asn	Thr	Asn	Ser 490		Leu	Ala	Leu	Met 495	
Asn	Asp	Ser	Ser 500	Val	Leu	Glu	Asn	His 505		Leu	Ala	Val	Gly 510		Lys
		515	Glu				520					525		-	-
	530		Ser			535					540				
545			Lys		550					555					560
			Lys	565					570					575	
			Ile 580					585					590		
		595	Thr				600					605			
	PT0		Glu			615					620				
625	GIU	TTE	Ser	PTO	мет 630	Cys	Asp	гàз	His	Asn 635	Ala	Ser	Val	Glu	Lys 640
Ser	Gln	Val	Gly	Phe 645	Ile	qeA	Tyr	Ile	Val 650		Pro	Leu	Trp	Glu 655	
Trp	Ala	Ąsp	Leu 660		His	Pro	Asp	Ala 665	Gln	Asp	Ile	Leu	Asp 670	Thr	Leu
		675	Arg				680	Ser				685	Ser		
Pro	Ala 690	Pro	Ąsp	Asp	Pro	Glu 695	Glu	Gly	Arg	Gln	Gly 700	Gln	Thr	Glu	Lys

```
Phe Gln Phe Glu Leu Thr Leu Glu Glu Asp Gly Glu Ser Asp Thr Glu
                    710
                                        715
Lys Asp Ser Gly Ser Gln Val Glu Glu Asp Thr Ser Cys Ser Asp Ser
                725
                                    730
Lys Thr Leu Cys Thr Gln Asp Ser Glu Ser Thr Glu Ile Pro Leu Asp
            740
                                745
Glu Gln Val Glu Glu Glu Ala Val Gly Glu Glu Glu Glu Ser Gln Pro
                            760
Glu Ala Cys Val Ile Asp Asp Arg Ser Pro Asp Thr Pro Arg Ala Arg
                        775
                                            780
Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr
                    790
                                       795
Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His
                805
                                   810
Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys
            820
                                825
                                                    830
Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp
                            840
Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg
                        855
Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro
                    870
                                        875
Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn
                885
                                    890
Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn
            900
                                905
Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu
                            920
Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met
                        935
Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His
                    950
                                        955
Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn
                965
                                    970
Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu
                               985
Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His
                           1000
Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met
   1010
                        1015
Asp Glu Leu Tyr Lys
1025
     <210> 25
     <211> 2790
```

<212> DNA

<213> Fusion between Aequorea victoria and humanArtifici

<223> Fusion between Aequorea victoria and human

<221> CDS

<222> (1)...(2790)

<400> 25

atg atg cac gtg aat aat ttt ccc ttt aga agg cat tcc tgg ata tgt Met Met His Val Asn Asn Phe Pro Phe Arg Arg His Ser Trp Ile Cys

48

	gtg Val								96
	agc Ser 35								144
	cga Arg								192
	cca Pro								240
	gat Asp								288
	act Thr								336
	cct Pro 115								384
	acc Thr								432
	gag Glu								480
	tcc Ser							,	528
	gag Glu								576
	gag Glu 195								624
	cct Pro								672
	cag Gln							•	720
	tca Ser							•	768

											tgg Trp					816
											ttg Leu					864
cac His	acc Thr 290	att Ile	ttt Phe	cag Gln	gaa Glu	cgg Arg 295	gat Asp	tta Leu	tta Leu	aaa Lys	aca Thr 300	ttt Phe	aaa Lys	att Ile	cca Pro	912
											gaa Glu					960
											gca Ala					1008
											gag Glu					1056
											gca Ala					1104
											aat Asn 380					1152
											gag Glu					1200
											tgt Cys					1248
											aaa Lys					1296
											aat Asn					1344
ttg Leu	aag Lys 450	act Thr	atg Met	gtt Val	gaa Glu	act Th <i>r</i> 455	aag Lys	aaa Lys	gtg Val	aca Thr	agc Ser 460	tct Ser	gga Gly	gtt Val	ctt Leu	1392
											ctt Leu					1440
											ctc Leu					1488

				485					490					495		
			gac Asp 500													1536
			cgt Arg													1584
get Ala	tcc Ser 530	gtg Val	gaa Glu	aaa Lys	tca Ser	cag Gln 535	gtg Val	ggc Gly	ttc Phe	ata Ile	gac Asp 540	tat Tyr	att Ile	gtt Val	cat His	1632
ccc Pro 545	ctc Leu	tgg Trp	gag Glu	aca Thr	tgg Trp 550	gca Ala	gac Asp	ctc Leu	gtc Val	cac His 555	cct Pro	gac Asp	gcc Ala	cag Gln	gat Asp 560	1680
att Ile	ttg Leu	gac Asp	act Thr	ttg Leu 565	gag Glu	gac Asp	aat Asn	cgt Arg	gaa Glu 570	tgg Trp	tac Tyr	cag Gln	agc Ser	aca Thr 575	atc Ile	1728
cct Pro	cag Gln	agc Ser	ccc Pro 580	tct Ser	cct Pro	gca Ala	cct Pro	gat Asp 585	gac Asp	cca Pro	gag Glu	gag Glu	ggc Gly 590	cgg Arg	cag Gln	1776
ggt Gly	caa Gln	act Thr 595	gag Glu	aaa Lys	ttc Phe	cag Gln	ttt Phe 600	gaa Glu	cta Leu	act Thr	tta Leu	gag Glu 605	gaa Glu	gat A sp	ggt Gly	1824
			acg Thr													1872
agc Ser 625	tgc Cys	agt Ser	gac Asp	tcc Ser	aag Lys 630	act Thr	ctt Leu	tgt Cys	act Thr	caa Gln 635	gac Asp	tca Ser	gag Glu	tct Ser	act Thr 640	1920
gaa Glu	att Ile	ccc Pro	ctt Leu	gat Asp 645	gaa Glu	cag Gln	gtt Val	gaa Glu	gag Glu 650	gag Glu	gca Ala	gta Val	gly	gaa Glu 655	gaa Glu	1968
gag Glu	gaa Glu	agc Ser	cag Gln 660	ect Pro	gaa Glu	gcc Ala	tgt Cys	gtc Val 665	ata Ile	gat Asp	gat Asp	cgt Arg	tct Ser 670	cct Pro	gac Asp	2016
			ctg Leu													2064
gcc Ala	acc Thr 690	atg Met	gtg Val	agc Ser	aag Lys	ggc Gly 695	gag Glu	gag Glu	ctg Leu	ttc Phe	acc Thr 700	GJ Å ggg	gtg Val	gtg V al	ccc Pro	2112
			gag Glu													2160
tcc	gge	gag	ggc	gag	ggc	gat	gcc	acc	tac	ggc	aag	ctg	acc	ctg	aag	2208

Ser	Gly	Glu	Gly	Glu 725	Gly	Asp	Ala	Thr	Tyr 730		Lys	Leu	Thr	Leu 735		
ttc Phe	atc Ile	tgc Cys	acc Thr 740	Thr	ggc	aag Lys	ctg Leu	Pro 745	gtg Val	Pro	tgg Trp	Pro	acc Thr 750	Leu	gtg Val	2256
acc Thr	acc	ctg Leu 755	Thr	tac Tyr	ggc	gtg Val	cag Gln 760	Cys	ttc Phe	ago	ege Arg	tac Tyr 765	ccc	gac	cac His	2304
atg Met	aag Lys 770	Gln	cac His	gac Asp	ttc Phe	ttc Phe 775	aag Lys	tcc Ser	gcc Ala	atg Met	ccc Pro 780	Glu	ggc	tac Tyr	gtc Val	2352
cag Gln 785	Glu	cgc Arg	acc Thr	atc Ile	ttc Phe 790	ttc Phe	aag Lys	gac Asp	gac Asp	ggc Gly 795	aac Asn	tac Tyr	aag Lys	acc Thr	cgc Arg 800	2400
gcc Ala	gag Glu	gtg Val	aag Lys	ttc Phe 805	gag Glu	ggc Gly	gac Asp	acc Thr	ctg Leu 810	gtg Val	aac Asn	cgc Arg	atc Ile	gag Glu 815	ctg Leu	2448
aag Lys	ggc Gly	atc Ile	gac Asp 820	ttc Phe	aag Lys	gag Glu	gac Asp	ggc Gly 825	aac Asn	atc Ile	ctg Leu	GJ À GGÀ	cac His 830	aag Lys	ctg Leu	2496
gag Glu	tac Tyr	aac Asn 835	tac Tyr	aac Asn	agc Ser	cac His	aac Asn 840	gtc Val	tat Tyr	atc Ile	atg Met	gcc Ala 845	gac Asp	aag Lys	cag Gln	2544
aag Lys	aac Asn 850	ggc Gly	atc Ile	aag Lys	gtg Val	aac Asn 855	ttc Phe	aag Lys	atc Ile	cgc Arg	cac His 860	aac Asn	atc Ile	gag Glu	gac Asp	2592
ggc Gly 865	agc Ser	gtg Val	cag Gln	ctc Leu	gcc Ala 870	gac Asp	cac His	tac Tyr	cag Gln	cag Gln 875	aac Asn	acc Thr	ccc Pro	atc Ile	ggc Gly 880	2640
gac Asp	ggc Gly	ccc Pro	gtg Val	ctg Leu 885	ctg Leu	ccc Pro	gac Asp	aac Asn	cac His 890	tac Tyr	ctg Leu	agc Ser	acc Thr	cag Gln 895	tcc Ser	2688
gcc Ala	ctg Leu	agc Ser	aaa Lys 900	gac Asp	ccc Pro	aac Asn	gag Glu	aag Lys 905	cgc Arg	gat Asp	cac His	atg Met	gtc Val 910	ctg Leu	ctg Leu	2736
gag Glu	ttc Phe	gtg Val 915	acc Thr	gcc Ala	gcc Ala	GJ À aàà	atc Ile 920	act Thr	ctc Leu	ggc Gly	atg Met	gac Asp 925	gag Glu	ctg Leu	tac Tyr	2784
aag Lys	taa *															2790

<210> 26 <211> 929 <212> PRT <213> Fusion between Aequorea victoria and humanArtifici

<220>

<223> Fusion between Aequorea victoria and human

<400> 26 Met Met His Val Asn Asn Phe Pro Phe Arg Arg His Ser Trp Ile Cys Phe Asp Val Asp Asn Gly Thr Ser Ala Gly Arg Ser Pro Leu Asp Pro Met Thr Ser Pro Gly Ser Gly Leu Ile Leu Gln Ala Asn Phe Val His Ser Gln Arg Arg Glu Ser Phe Leu Tyr Arg Ser Asp Ser Asp Tyr Asp Leu Ser Pro Lys Ser Met Ser Arg Asn Ser Ser Ile Ala Ser Asp Ile His Gly Asp Asp Leu Ile Val Thr Pro Phe Ala Gln Val Leu Ala Ser Leu Arg Thr Val Arg Asn Asn Phe Ala Ala Leu Thr Asn Leu Gln Asp 105 Arg Ala Pro Ser Lys Arg Ser Pro Met Cys Asn Gln Pro Ser Ile Asn 120 Lys Ala Thr Ile Thr Glu Glu Ala Tyr Gln Lys Leu Ala Ser Glu Thr 135 140 Leu Glu Glu Leu Asp Trp Cys Leu Asp Gln Leu Glu Thr Leu Gln Thr Arg His Ser Val Ser Glu Met Ala Ser Asn Lys Phe Lys Arg Met Leu 170 Asn Arg Glu Leu Thr His Leu Ser Glu Met Ser Arg Ser Gly Asn Gln 180 185 190 Val Ser Glu Phe Ile Ser Asn Thr Phe Leu Asp Lys Gln His Glu Val 200 205 Glu Ile Pro Ser Pro Thr Gln Lys Glu Lys Glu Lys Lys Lys Arg Pro 215 220 Met Ser Gln Ile Ser Gly Val Lys Lys Leu Met His Ser Ser Ser Leu 235 230 Thr Asn Ser Ser Ile Pro Arg Phe Gly Val Lys Thr Glu Gln Glu Asp 250 Val Leu Ala Lys Glu Leu Glu Asp Val Asn Lys Trp Gly Leu His Val 265 Phe Arg Ile Ala Glu Leu Ser Gly Asn Arg Pro Leu Thr Val Ile Met 280 His Thr Ile Phe Gln Glu Arg Asp Leu Leu Lys Thr Phe Lys Ile Pro 300 Val Asp Thr Leu Ile Thr Tyr Leu Met Thr Leu Glu Asp His Tyr His 310 315 Ala Asp Val Ala Tyr His Asn Asn Ile His Ala Ala Asp Val Val Gln 325 330 Ser Thr His Val Leu Leu Ser Thr Pro Ala Leu Glu Ala Val Phe Thr 340 345 Asp Leu Glu Ile Leu Ala Ala Ile Phe Ala Ser Ala Ile His Asp Val 360 Asp His Pro Gly Val Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser Glu 380 Leu Ala Leu Met Tyr Asn Asp Ser Ser Val Leu Glu Asn His His Leu 395 Ala Val Gly Phe Lys Leu Leu Gln Glu Glu Asn Cys Asp Ile Phe Gln 410

Asn Leu Thr Lys Lys Gln Arg Gln Ser Leu Arg Lys Met Val Ile Asp

Ile Val Leu Ala Thr Asp Met Ser Lys His Met Asn Leu Leu Ala Asp Leu Lys Thr Met Val Glu Thr Lys Lys Val Thr Ser Ser Gly Val Leu Leu Leu Asp Asn Tyr Ser Asp Arg Ile Gln Val Leu Gln Asn Met Val His Cys Ala Asp Leu Ser Asn Pro Thr Lys Pro Leu Gln Leu Tyr Arg Gln Trp Thr Asp Arg Ile Met Glu Glu Phe Phe Arg Gln Gly Asp Arg Glu Arg Glu Arg Gly Met Glu Ile Ser Pro Met Cys Asp Lys His Asn Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val His Pro Leu Trp Glu Thr Trp Ala Asp Leu Val His Pro Asp Ala Gln Asp Ile Leu Asp Thr Leu Glu Asp Asn Arg Glu Trp Tyr Gln Ser Thr Ile Pro Gln Ser Pro Ser Pro Ala Pro Asp Asp Pro Glu Glu Gly Arg Gln Gly Gln Thr Glu Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Asp Gly Glu Ser Asp Thr Glu Lys Asp Ser Gly Ser Gln Val Glu Glu Asp Thr Ser Cys Ser Asp Ser Lys Thr Leu Cys Thr Gln Asp Ser Glu Ser Thr Glu Ile Pro Leu Asp Glu Gln Val Glu Glu Glu Ala Val Gly Glu Glu Glu Glu Ser Gln Pro Glu Ala Cys Val Ile Asp Asp Arg Ser Pro Asp Thr Arg Ile Leu Gln Ser Thr Val Pro Arg Ala Arg Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu

900 905 Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr 925 Lys <210> 27 <211> 29 <212> DNA <213> PArtificial Sequence <220> <223> Primer sequence <400> 27 gtaagcttgc gaacatgatg cacgtgaat 29 <210> 28 <211> 29 <212> DNA <213> PArtificial Sequence <220> <223> Primer sequence <400> 28 gtgaattccc gtgtcaggag aacgatcat 29 <210> 29 <211> 2682 <212> DNA <213> Artificial Sequence <220> <223> Fusion between Aequorea victoria and human <221> CDS <222> (1)...(2682) <400> 29 atg ccc ttg gtg gat ttc ttc tgc gag acc tgc tct aag cct tgg ctg 48 Met Pro Leu Val Asp Phe Phe Cys Glu Thr Cys Ser Lys Pro Trp Leu gtg ggc tgg tgg gac cag ttt aaa agg atg ttg aac cgt gag ctc aca 96 Val Gly Trp Trp Asp Gln Phe Lys Arg Met Leu Asn Arg Glu Leu Thr cac ctg tca gaa atg agc agg tcc gga aac cag gtc tca gag tac att 144 His Leu Ser Glu Met Ser Arg Ser Gly Asn Gln Val Ser Glu Tyr Ile tcc aca aca ttc ctg gac aaa cag aat gaa gtg gag atc cca tca ccc 192 Ser Thr Thr Phe Leu Asp Lys Gln Asn Glu Val Glu Ile Pro Ser Pro acg atg aag gaa cga gaa aaa cag caa gcg ccg cga cca aga ccc tcc 240 Thr Met Lys Glu Arg Glu Lys Gln Gln Ala Pro Arg Pro Arg Pro Ser

65					70	1				75					80		
cag Gln	ccg	Pro	ccg	ccc Pro 85	Pro	gta Val	cca Pro	cac His	tta Leu 90	Gln	Pro	atg Met	tcc Ser	Gln 95	atc Ile	288	
aca Thr	GJ À	ttg Leu	aaa Lys 100	aag Lys	ttg Leu	atg Met	cat His	agt Ser 105	Asn	agc Ser	ctg Leu	aac Asn	aac Asn 110	Ser	aac Asn	336	
att Ile	ccc	cga Arg 115	ttt Phe	ggg Gly	gtg Val	aag Lys	acc Thr 120	Asp	caa Gln	gaa Glu	gag Glu	ctc Leu 125	ctg Leu	gcc Ala	caa Gln	384	
gaa Glu	ctg Leu 130	gag Glu	aac Asn	ctg Leu	aac Asn	aag Lys 135	Trp	ggc Gly	ctg Leu	aac Asn	atc Ile 140	Phe	tgc Cys	gtg Val	tcg Ser	432	
gat Asp 145	tac Tyr	gct Ala	gga Gly	ggc Gly	cgc Arg 150	tca Ser	ctc Leu	acc Thr	tgc Cys	atc Ile 155	atg Met	tac Tyr	atg Met	ata Ile	ttc Phe 160	480	
cag Gln	gag Glu	cgg Arg	gac Asp	ctg Leu 165	ctg Leu	aag Lys	aaa Lys	ttc Phe	cgc Arg 170	atc Ile	ccg Pro	gtg Val	gac Asp	acg Thr 175	atg Met	528	
gtg Val	aca Thr	tac Tyr	atg Met 180	ctg Leu	acg Thr	ctg Leu	gag Glu	gat Asp 185	cac His	tac Tyr	cac His	gct Ala	gac Asp 190	gtg Val	gcc Ala	576	
tac Tyr	cat His	aac Asn 195	agc Ser	ctg Leu	cac His	gca Ala	gct Ala 200	gac Asp	gtg Val	ctg Leu	cag Gln	tcc Ser 205	acc Thr	cac His	gta Val	624	
ctg Leu	ctg Leu 210	gcc Ala	acg Thr	cct Pro	gca Ala	cta Leu 215	gat Asp	gca Ala	gtg Val	ttc Phe	acg Thr 220	gac Asp	ctg Leu	gag Glu	att Ile	672	
ctc Leu 225	gcc. Ala	gcc Ala	ctc Leu	ttc Phe	gcg Ala 230	gct Ala	gcc Ala	atc Ile	cac His	gat Asp 235	gtg Val	gat Asp	cac His	cct Pro	ggg Gly 240	720	
gtc Val	tcc Ser	aac Asn	cag Gln	ttc Phe 245	ctc Leu	atc Ile	aac Asn	acc Thr	aat Asn 250	tcg Ser	gag Glu	ctg Leu	gcg Ala	ctc Leu 255	atg Met	768	
ac Tyr	aac Asn	Азр	gag Glu 260	tcg Ser	gtg Val	ctc Leu	gag Glu	aat Asn 265	cac His	cac His	ctg Leu	gcc Ala	gtg Val 270	ggc Gly	ttc Phe	816	
aag Lys	Leu	ctg Leu 275	cag Gln	gag Glu	gac Asp	aac Asn	tgc Cys 280	gac Asp	atc Ile	ttc Phe	cag Gln	aac Asn 285	ctc Leu	agc Ser	aag Lys	864	
urg	cag Gln 290	cgg Arg	cag Gln	agc Ser	Leu	cgc Arg 295	aag Lys	atg Met	gtc Val	Ile	gac Asp 300	atg Met	gtg Val	ctg Leu	gcc Ala	912	
ıcg	gac	atg	tcc	aag	cac	atg	acc	ctc	ctg	gct	gac	ctg	aaq	acc	atσ	960	

Thr 305	Asp	Met	Ser	Lys	His 310	Met	Thr	Leu	Leu	Ala 315	Asp	Leu	Lys	Thr	Met 320	
					gtg Val											1008
					cag Gln							His				1056
					aag Lys											1104
					ttc Phe											1152
ggc Gly 385	atg Met	gaa Glu	atc Ile	agc Ser	ccc Pro 390	atg Met	tgt Cys	gac Asp	aag Lys	cac His 395	act Thr	gcc Ala	tcc Ser	gtg Val	gag Glu 400	1200
					ttt Phe											1248
					gtc Val											1296
					gac Asp											1344
					gag Glu											1392
					ttt Phe 470											1440
					cag Gln											1488
					gga Gly											1536
					gcc Ala											1584
					gag Glu											1632

		gca Ala 550						1680
		gct Ala						1728
		ctc Leu						1776
		ccg Pro						1824
		cag Gln						1872
		gac Asp 630						1920
		cct Pro						1968
		ctg Leu						2016
		aac Asn						2064
		tac Tyr						2112
		gtg Val 710						2160
		ttc Phe						2208
		gcc Ala						2256
		gac Asp						2304
		ctg Leu						2352

ttc aag gag Phe Lys Glu 785													2400
aac agc cac Asn Ser His		Tyr											2448
aag gtg aac Lys Val Asn													2496
ctc gcc gac Leu Ala Asp 835													2544
ctg ctg ccc Leu Leu Pro 850		His											2592
gac ccc aac Asp Pro Asn 865													2640
gcc gcc ggg Ala Ala Gly		Leu								taa *			2682
<220>	893		-		orea	vict	oria	ı and	l hun	nan			
<211> <212> <213> <220>	893 PRT Artific Fusion	betwe	en A	equo							Trp	Leu	
<211> <212> <213> <220> <223> <400>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp	betwe Phe	en A	equo Cys	Glu Arg	Thr 10	Cys	Ser	ГÀЗ	Pro Glu	15		
<pre><211> <212> <213> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser</pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20	betwe Phe Gln	en A	equo Cys Lys Ser	Glu Arg 25	Thr 10 Met	Cys Leu	Ser Asn	Lys Arg Ser	Pro Glu 30	15 Leu	Thr	
<pre><211> <212> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser 35 Ser Thr Thr</pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20 Glu Met	Phe Gln Ser Asp	en A Phe Phe Arg Lys	equo Cys Lys Ser 40	Glu Arg 25 Gly	Thr 10 Met Asn	Cys Leu Gln	Ser Asn Val Glu	Lys Arg Ser 45	Pro Glu 30 Glu	15 Leu Tyr	Thr Ile	
<pre><211> <212> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser 35</pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20 Glu Met	Phe Gln Ser Asp	Phe Phe Arg Lys 55	Cys Lys Ser 40 Gln	Glu Arg 25 Gly Asn	Thr 10 Met Asn Glu	Cys Leu Gln Val	Ser Asn Val Glu 60	Lys Arg Ser 45 Ile	Pro Glu 30 Glu Pro	15 Leu Tyr Ser	Thr Ile Pro	
<pre><211> <212> <213> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser 35 Ser Thr Thr 50 Thr Met Lys</pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20 Glu Met Phe Leu Glu Arg	Phe Gln Ser Asp Glu 70	Phe Phe Arg Lys 55 Lys	Cys Lys Ser 40 Gln	Glu Arg 25 Gly Asn Gln	Thr 10 Met Asn Glu Ala	Cys Leu Gln Val Pro 75	Ser Asn Val Glu 60 Arg	Lys Arg Ser 45 Ile Pro	Pro Glu 30 Glu Pro Arg	15 Leu Tyr Ser Pro	Thr Ile Pro Ser 80	
<pre> <211> <212> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser 35 Ser Thr Thr 50 Thr Met Lys 65 Gln Pro Pro Thr Gly Leu Thr Gly Leu </pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20 Glu Met Phe Leu Glu Arg Pro Pro 85 Lys 100	Phe Gln Ser Asp Glu 70 Pro	Phe Phe Arg Lys 55 Lys Val	Cys Lys Ser 40 Gln Gln Pro	Glu Arg 25 Gly Asn Gln His Ser 105	Thr 10 Met Asn Glu Ala Leu 90 Asn	Cys Leu Gln Val Pro 75 Gln Ser	Ser Asn Val Glu 60 Arg Pro Leu	Lys Arg Ser 45 Ile Pro Met Asn	Pro Glu 30 Glu Pro Arg Ser Asn 110	15 Leu Tyr Ser Pro Gln 95 Ser	Thr Ile Pro Ser 80 Ile Asn	
<pre> <211> <212> <213> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser 35 Ser Thr Thr 50 Thr Met Lys 65 Gln Pro Pro Thr Gly Leu Ile Pro Arg 115</pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20 Glu Met Phe Leu Glu Arg Pro Pro 85 Lys Lys 100 Phe Gly	Phe Gln Ser Asp Glu 70 Pro Leu Val	Phe Phe Arg Lys 55 Lys Val Met	Cys Lys Ser 40 Gln Fro His	Glu Arg 25 Gly Asn Gln His Ser 105 Asp	Thr 10 Met Asn Glu Ala Leu 90 Asn Gln	Cys Leu Gln Val Pro 75 Gln Ser	Ser Asn Val Glu 60 Arg Pro Leu Glu	Lys Arg Ser 45 Ile Pro Met Asn Leu 125	Pro Glu 30 Glu Pro Arg Ser Asn 110 Leu	15 Leu Tyr Ser Pro Gln 95 Ser Ala	Thr Ile Pro Ser 80 Ile Asn Gln	
<pre> <211> <212> <213> <220> <223> <400> Met Pro Leu 1 Val Gly Trp His Leu Ser 35 Ser Thr Thr 50 Thr Met Lys 65 Gln Pro Pro Thr Gly Leu Ile Pro Arg</pre>	893 PRT Artific Fusion 30 Val Asp 5 Trp Asp 20 Glu Met Phe Leu Glu Arg Pro Pro 85 Lys Lys 100 Phe Gly Asn Leu	Phe Gln Ser Asp Glu 70 Pro Leu Val	Phe Phe Arg Lys 55 Lys Val Met Lys Lys 135	Cys Lys Ser 40 Gln Pro His Thr	Glu Arg 25 Gly Asn Gln His Ser 105 Asp	Thr 10 Met Asn Glu Ala Leu 90 Asn Gln Leu	Cys Leu Gln Val Pro 75 Gln Ser Glu Asn	Ser Asn Val Glu 60 Arg Pro Leu Glu Ile 140	Lys Arg Ser 45 Ile Pro Met Asn Leu 125 Phe	Pro Glu 30 Glu Pro Arg Ser Asn 110 Leu	15 Leu Tyr Ser Pro Gln 95 Ser Ala Val	Thr Ile Pro Ser 80 Ile Asn Gln Ser	

Gln Glu Arg Asp Leu Leu Lys Lys Phe Arg Ile Pro Val Asp Thr Met Val Thr Tyr Met Leu Thr Leu Glu Asp His Tyr His Ala Asp Val Ala Tyr His Asn Ser Leu His Ala Ala Asp Val Leu Gln Ser Thr His Val Leu Leu Ala Thr Pro Ala Leu Asp Ala Val Phe Thr Asp Leu Glu Ile Leu Ala Ala Leu Phe Ala Ala Ala Ile His Asp Val Asp His Pro Gly Val Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser Glu Leu Ala Leu Met Tyr Asn Asp Glu Ser Val Leu Glu Asn His His Leu Ala Val Gly Phe Lys Leu Leu Gln Glu Asp Asn Cys Asp Ile Phe Gln Asn Leu Ser Lys Arg Gln Arg Gln Ser Leu Arg Lys Met Val Ile Asp Met Val Leu Ala Thr Asp Met Ser Lys His Met Thr Leu Leu Ala Asp Leu Lys Thr Met Val Glu Thr Lys Lys Val Thr Ser Ser Gly Val Leu Leu Leu Asp Asn Tyr Ser Asp Arg Ile Gln Val Leu Arg Asn Met Val His Cys Ala Asp Leu Ser Asn Pro Thr Lys Pro Leu Glu Leu Tyr Arg Gln Trp Thr Asp Arg Ile Met Ala Glu Phe Phe Gln Gln Gly Asp Arg Glu Arg Glu Arg Gly Met Glu Ile Ser Pro Met Cys Asp Lys His Thr Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val His Pro Leu Trp Glu Thr Trp Ala Asp Leu Val His Pro Asp Ala Gln Glu Ile Leu Asp Thr Leu Glu Asp Asn Arg Asp Trp Tyr Tyr Ser Ala Ile Arg Gln Ser Pro Ser Pro Pro Pro Glu Glu Glu Ser Arg Gly Pro Gly Ris Pro Pro Leu Pro Asp Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Glu Glu Glu Glu Glu Ile Ser Met Ala Gln Ile Pro Cys Thr Ala Gln Glu Ala Leu Thr Ala Gln Gly Leu Ser Gly Val Glu Glu Ala Leu Asp Ala Thr Ile Ala Trp Glu Ala Ser Pro Ala Gln Glu Ser Leu Glu Val Met Ala Gln Glu Ala Ser Leu Glu Ala Glu Leu Glu Ala Val Tyr Leu Thr Gln Gln Ala Gln Ser Thr Gly Ser Ala Pro Val Ala Pro Asp Glu Phe Ser Ser Arg Glu Glu Phe Val Val Ala Val Ser His Ser Ser Pro Ser Ala Leu Ala Leu Gln Ser Pro Leu Leu Pro Ala Trp Arg Thr Leu Ser Val Ser Glu His Ala Pro Gly Leu Pro Gly Leu Pro Ser Thr Ala Ala Glu Val Glu Ala Gln Arg Glu His Gln Ala Ala Lys Arg Ala Cys Ser Ala Cys Ala Gly Thr Phe Gly Glu Asp Thr Ser Ala Leu Pro Ala Pro Gly Gly Gly

192

625 630 635 Gly Ser Gly Gly Asp Pro Thr Trp Asp Pro Pro Val Ala Thr Met Val 650 645 Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu 665 Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly 680 Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr 695 700 Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Ser 710 715 Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His 730 725 Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr 745 Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys 760 765 Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp 775 780 Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr 790 795 Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile 805 810 815 Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln 820 825 Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 840 Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 855 860 Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Gly Phe Val Thr 870 875 Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 885 <210> 31 <211> 3399 <212> DNA <213> Artificial Sequence <220> <223> Fusion between Aequorea victoria and human <221> CDS <222> (1)...(3396) <400> 31 atq gaa eec eeg ace gte eec teg gaa agg age etg tet etg tea etg 48 Met Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu Ser Leu 1 ccc ggg ccc cgg gag ggc cag gcc acc ctg aag cct ccc ccg cag cac Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His ctg tgg cgg cag cct cgg acc ccc atc cgt atc cag cag cgc ggc tac 144 Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35

tec gac age geg gag ege gee gag egg gag egg eag eeg eac egg eec

Ser	Asp 50	Ser	Ala	Glu	Arg	Ala 55	Glu	Arg	Glu	Arg	Gln 60	Pro	His	Arg	Pro	
	gag Glu															240
	acc Thr									His						288
	ggc Gly															336
	ccg Pro															384
	gga Gly 130															432
	ttc Phe															480
	tcc Ser															528
	gta Val															576
	aac Asn															624
	ccg Pro 210															672
	acg Thr															720
	ctg Leu															768
	gcc Ala															816
	tca Ser															864

				gaa Glu					912
				gcg Ala					960
				tta Leu					1008
				aac Asn 345					1056
				caa Gln					1104
				ctg Leu					1152
				tgc Cys					1200
				cgc Arg					1248
				cac His 425	Tyr				1296
				gtg Val					1344
				gtg Val					1392
				cac Hìs					1440
				aat Asn					1488
				cac His 505					1536
				atc Ile					1584

		cgc Arg						1632
		atg Met 550						1680
		acc Thr						1728
		gtc Val						1776
		ccg Pro						1824
		ttc Phe						1872
		atg Met 630						1920
		att Ile						1968
		cac His						2016
		tgg Trp						2064
		gag Glu						2112
		gag Glu 710						2160
		ata Ile						2208
		gtc Val						2256
		cag Gln						2304

		755					760					765				
tcc Ser	ctg Leu 770	gag Glu	gcc Ala	gag Glu	ctg Leu	gág Glu 775	gca Ala	gtg Val	tat Tyr	ttg Leu	aca Thr 780	cag Gln	cag Gln	gca Ala	cag Gln	2352
						gtg Val										2400
						agc Ser										2448
						gct Ala										2496
						ctc Leu										2544
						gcc Ala 855										2592
						tcc Ser										2640
						tgg Trp										2688
						acc Thr										2736
						cac His										2784
						aag Lys 935										2832
						tgg Trp										2880
						cgc Arg										2928
						Pro										2976
ttc	ttc	aag	gac	gac	ggc	aac	tac	aag	acc	cgc	gcc	gag	gtg	aag	ttc	3024

Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe 995 1000 1005												
gag ggc gac acc ctg gtg aac cgc atc gag ctg aag ggc atc gac ttc Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe 1010 1015 1020	3072											
aag gag gac ggc aac atc ctg ggg cac aag ctg gag tac aac tac aac Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn 1025 1030 1035 1040	3120											
agc cac aac gtc tat atc atg gcc gac aag cag aag aac ggc atc aag Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys 1045 1050 1055	3168											
gtg aac ttc aag atc cgc cac aac atc gag gac ggc agc gtg cag ctc Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 1060 1065 1070	3216											
gcc gac cac tac cag cag aac acc ccc atc ggc gac ggc ccc gtg ctg Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 1075 1080 1085	3264											
ctg ccc gac aac cac tac ctg agc acc cag tcc gcc ctg agc aaa gac Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 1090 1095 1100	3312											
ccc aac gag aag cgc gat cac atg gtc ctc cta ggg ttc gtg acc gcc Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Gly Phe Val Thr Ala 1105 1110 1115	3360											
gcc ggg atc act ctc ggc atg gac gag ctg tac aag taa Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1125 1130	3399											
<210> 32 <211> 1132 <212> PRT <213> Artificial Sequence												
<220> <223> Fusion between Aequorea victoria and human												
<400> 32 Met Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu												
1 5 10 15 Pro Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His 20 25 30												
Leu Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr 35 40 45												
Ser Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro 50 55 60												
Ile Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg 65 70 75 80												
Thr Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly 85 90 95												
Ser Gly Gly Ala Gly Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn 100 105 110												

Gly Pro Thr Pro Ser Pro Gly Arg Ser Pro Leu Asp Ser Gln Ala Ser 120 Pro Gly Leu Val Leu His Ala Gly Ala Ala Thr Ser Gln Arg Arg Glu 135 Ser Phe Leu Tyr Arg Ser Asp Ser Asp Tyr Asp Met Ser Pro Lys Thr 150 155 Met Ser Arg Asn Ser Ser Val Thr Ser Glu Ala His Ala Glu Asp Leu 165 170 Ile Val Thr Pro Phe Ala Gln Val Leu Ala Ser Leu Arg Ser Val Arg 185 Ser Asn Phe Ser Leu Leu Thr Asn Val Pro Val Pro Ser Asn Lys Arg 200 Ser Pro Leu Gly Gly Pro Thr Pro Val Cys Lys Ala Thr Leu Ser Glu 215 220 Glu Thr Cys Gln Gln Leu Ala Arg Glu Thr Leu Glu Glu Leu Asp Trp 230 235 Cys Leu Glu Gln Leu Glu Thr Met Gln Thr Tyr Arg Ser Val Ser Glu 245 250 Met Ala Ser His Lys Phe Lys Arg Met Leu Asn Arg Glu Leu Thr His 265 Leu Ser Glu Met Ser Arg Ser Gly Asn Gln Val Ser Glu Tyr Ile Ser 280 285 Thr Thr Phe Leu Asp Lys Gln Asn Glu Val Glu Ile Pro Ser Pro Thr 295 300 Met Lys Glu Arg Glu Lys Gln Gln Ala Pro Arg Pro Arg Pro Ser Gln 310 315 Pro Pro Pro Pro Pro Val Pro His Leu Gln Pro Met Ser Gln Ile Thr 325 330 Gly Leu Lys Lys Leu Met His Ser Asn Ser Leu Asn Asn Ser Asn Ile 340 345 Pro Arg Phe Gly Val Lys Thr Asp Gln Glu Glu Leu Leu Ala Gln Glu 360 Leu Glu Asn Leu Asn Lys Trp Gly Leu Asn Ile Phe Cys Val Ser Asp 375 380 Tyr Ala Gly Gly Arg Ser Leu Thr Cys Ile Met Tyr Met Ile Phe Gln 395 Glu Arg Asp Leu Leu Lys Lys Phe Arg Ile Pro Val Asp Thr Met Val 410 Thr Tyr Met Leu Thr Leu Glu Asp His Tyr His Ala Asp Val Ala Tyr 425 His Asn Ser Leu His Ala Ala Asp Val Leu Gln Ser Thr His Val Leu 440 Leu Ala Thr Pro Ala Leu Asp Ala Val Phe Thr Asp Leu Glu Ile Leu 455 460 Ala Ala Leu Phe Ala Ala Ala Ile His Asp Val Asp His Pro Gly Val 470 475 Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser Glu Leu Ala Leu Met Tyr 485 490 Asn Asp Glu Ser Val Leu Glu Asn His His Leu Ala Val Gly Phe Lys 505 Leu Leu Gln Glu Asp Asn Cys Asp Ile Phe Gln Asn Leu Ser Lys Arg 520 Gln Arg Gln Ser Leu Arg Lys Met Val Ile Asp Met Val Leu Ala Thr 535 Asp Met Ser Lys His Met Thr Leu Leu Ala Asp Leu Lys Thr Met Val 550 555 Glu Thr Lys Lys Val Thr Ser Ser Gly Val Leu Leu Leu Asp Asn Tyr 570 Ser Asp Arg Ile Gln Val Leu Arg Asn Met Val His Cys Ala Asp Leu

Ser Asn Pro Thr Lys Pro Leu Glu Leu Tyr Arg Gln Trp Thr Asp Arg Ile Met Ala Glu Phe Phe Gln Gln Gly Asp Arg Glu Arg Glu Arg Gly Met Glu Ile Ser Pro Met Cys Asp Lys His Thr Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val His Pro Leu Trp Glu Thr Trp Ala Asp Leu Val His Pro Asp Ala Gln Glu Ile Leu Asp Thr Leu Glu Asp Asn Arg Asp Trp Tyr Tyr Ser Ala Ile Arg Gln Ser Pro Ser Pro Pro Pro Glu Glu Glu Ser Arg Gly Pro Gly His Pro Pro Leu Pro Asp Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Glu Glu Glu Glu Glu Ile Ser Met Ala Gln Ile Pro Cys Thr Ala Gln Glu Ala Leu Thr Ala Gln Gly Leu Ser Gly Val Glu Glu Ala Leu Asp Ala Thr Ile Ala Trp Glu Ala Ser Pro Ala Gln Glu Ser Leu Glu Val Met Ala Gln Glu Ala Ser Leu Glu Ala Glu Leu Glu Ala Val Tyr Leu Thr Gln Gln Ala Gln Ser Thr Gly Ser Ala Pro Val Ala Pro Asp Glu Phe Ser Ser Arg Glu Glu Phe Val Val Ala Val Ser His Ser Ser Pro Ser Ala Leu Ala Leu Gln Ser Pro Leu Leu Pro Ala Trp Arg Thr Leu Ser Val Ser Glu His Ala Pro Gly Leu Pro Gly Leu Pro Ser Thr Ala Ala Glu Val Glu Ala Gln Arg Glu His Gln Ala Ala Lys Arg Ala Cys Ser Ala Cys Ala Gly Thr Phe Gly Glu Asp Thr Ser Ala Leu Pro Ala Pro Gly Gly Gly Ser Gly Gly Asp Pro Thr Trp Asp Pro Pro Val Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys

Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu 1060 1065 Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu 1075 1080 1085 Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp 1095 1100 Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Gly Phe Val Thr Ala 1110 1115 Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 1125 <210> 33 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 33 tgtactagtg accaecetgt ettacggegt gea 33 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 34 ctgactagtg tgggccaggg cacqqqcagc 30 <210> 35 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence <400> 35 cccggcggcg gtcacgaacc ctaggaggac catgtgatcg cq 42 <210> 36 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Primer sequence cgcgatcaca tggtcctcct agggttcgtg accgccgccg gg 42