Design of voice-activated snake game based on FPGA

Li Jinjie, Lei Tongtong, Zhao Qian

Contents

FUNCTIONAn overall understanding

O2 SCHEME DESIGN
Content input, control and output

O3 ACHIEVEMENT
What have we done?

FUNCTIONAn overall understanding

Functions

Why do this?

- high parallelism, high speed
- shorten the game development cycle
- somatosensory game (体感)

a somatosensory control game based on FPGA

Functions

Input circuit

- Keyboard
- Voice

The rules of the Snake game

- Eat a mouse, the snake will grow longer
- Next mouse appears
- Bite itself or hit the wall, FAIL
- Up to 10 points

Display through VGA port

- External display is connected to VGA
- Different items, different colours

Functions

Hardware block diagram

SCHEME DESIGNContent input, control and output

Frequency sampling flowchart

Digital Cymometer block diagram

Signal to be measured

Lock gate

Astable Multivibrator And frequency demultiplier

Gate circuit

3-bit mod 10 Counter

FPGAControl program

Scheme Design- FPGA control program

Direction control, snake movement, mouse coordinate generation and scorer

Scheme Design- VGA output

Scanning by line

Scan from the upper left corner
Scan each pixel(像素) from left to right
Return to the left side of the next line
Scan the next line
Until all the lines are scanned,completed

Scheme Design- VGA output

VGA module design

Control the RGB number to display the wall, the snake body, and the randomly generated mouse

O3 ACHIEVEMENT What have we done?

Achievement: Learning, Design and Finish all programming task

```
164-58 - Despite Augment Repress (procedural visit (order to the control of the c
```

```
PROCESS (Clk_H, Rst)
  if (Rst='1') then
      ColorBuf<="000";
  elsif(rising edge(Clk H)) then
      if (Cnt_H \geq= 144) and (Cnt_H \leq=783) then
        Col <= (Cnt H-144)/16;
         ColorBuf <= "000";
      if (Cnt V >= 35) and (Cnt V <= 510) then
        Row <= (Cnt V-35)/16;
        ColorBuf <= "000";
      end if;
      case S Matrix (Row, Col) is
         when 0 => ColorBuf <="000";
                                        --BACKGROUND
         when 1 => ColorBuf <="111";
                                        --WALLS
         when 2 => ColorBuf <="010";
                                        --HEAD
         when 3 => ColorBuf <="011";
                                        --BODY
         when 4 => ColorBuf <="100";
                                        --FOOD
         when 5 => ColorBuf <="110";
         when others => ColorBuf <="000";
     end case;
  end if;
ND PROCESS;
```


Achievement: Finish all programming task

Achievement: Design, Simulation, Schematic and PCB Board

Thanks