

CLAIMS

1. A method for treating a subject with an allergic condition, said
 5 method comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a compound of formula (I) below:

10

wherein:

- R^1 is hydrogen, azido, halogen, C_{1-5} alkoxy, hydroxy, C_{1-5} alkyl, C_{2-5} alkenyl, cyano, nitro, R^7R^8N , C_{2-8} acyl, $R^9OC=O$, $R^{10}R^{11}NC=O$, or $R^{10}R^{11}NSO_2$; or R^1 is taken together with W as described below;
- 15 R^2 is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, C_{2-5} alkenyl, C_{1-5} haloalkyl, cyano, or $R^{48}R^{49}N$;
alternatively, R^1 and R^2 can be taken together to form an optionally substituted 5- to 7- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;
- 20 each of R^3 and R^4 is independently hydrogen or C_{1-5} alkyl;
each of R^5 and R^6 is independently hydrogen, C_{1-5} alkyl, C_{2-5} alkenyl, C_{1-5} alkoxy, C_{1-5} alkylthio, halogen, or a 4-7 membered carbocyclyl or heterocyclyl;
alternatively, R^5 and R^6 can be taken together to form an optionally substituted
- 25 5- to 7- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic, and may be optionally substituted with between one and three substituents independently selected from halo, cyano, amino, nitro, R^{40} , $R^{40}O-$, $R^{40}S-$, $R^{40}O(C_{1-5}\text{ alkylene})-$, $R^{40}O(C=O)-$,

$R^{40}(C=O)-$, $R^{40}(C=S)-$, $R^{40}(C=O)O-$, $R^{40}O(C=O)(C=O)-$, $R^{40}SO_2$,
 $NHR^{62}(C=NH)-$, $NHR^{62}SO_2-$, and $NHR^{62}(C=O)-$;
 R^{40} is H, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, benzyl, phenethyl, C_{1-5} heterocyclyl,
 $(C_{1-5}$ heterocyclyl) C_{1-5} alkylene, amino, or mono- or di(C_{1-5} alkyl)amino,
5 or $R^{58}OR^{59}-$, wherein R^{58} is H, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, benzyl,
phenethyl, C_{1-5} heterocyclyl, or (C_{1-5} heterocyclyl) C_{1-6} alkylene and R^{59}
is C_{1-5} alkylene, phenylene, or divalent C_{1-5} heterocyclyl; and
 R^{62} can be H in addition to the values for R^{40} ;
 R^7 is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl,
10 C_{2-8} acyl, aroyl, $R^{27}OC=O$, $R^{28}R^{29}NC=O$, $R^{27}SO$, $R^{27}SO_2$, or $R^{28}R^{29}NSO_2$;
 R^8 is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
alternatively, R^7 and R^8 can be taken together to form an optionally
15 substituted 4- to 7- membered heterocyclic ring, which ring may be
saturated, unsaturated or aromatic;
 R^9 is C_{1-5} alkyl, phenyl, naphthyl, or C_{1-5} heterocyclyl;
 R^{21} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl,
 C_{2-8} acyl, aroyl, $R^{30}OC=O$, $R^{31}R^{32}NC=O$, $R^{30}SO$, $R^{30}SO_2$, or $R^{31}R^{32}NSO_2$;
 R^{22} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
20 alternatively, R^{21} and R^{22} can be taken together to form an optionally
substituted 4- to 7-membered heterocyclic ring, which ring may be
saturated, unsaturated or aromatic;
each of R^{23} , R^{26} , R^{27} , R^{30} , R^{33} , R^{44} , R^{45} , and R^{50} is C_{1-5} alkyl, phenyl, naphthyl, or
25 C_{1-5} heterocyclyl;
 R^{24} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl,
 C_{2-8} acyl, aroyl, $R^{33}OC=O$, $R^{34}R^{35}NC=O$, $R^{33}SO$, $R^{33}SO_2$, or $R^{34}R^{35}NSO_2$;
 R^{25} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
30 alternatively, R^{24} and R^{25} can be taken together to form an optionally
substituted 4- to 7- membered heterocyclic ring, which ring may be
saturated, unsaturated or aromatic;
each of R^{10} and R^{11} is independently hydrogen, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl,
or C_{1-5} heterocyclyl;
alternatively, R^{10} and R^{11} or can be taken together to form an optionally
substituted 4- to 7- membered heterocyclic ring, which ring may be

saturated, unsaturated or aromatic;

each of R²⁸, R²⁹, R³¹, R³², R³⁴, R³⁵, R⁴⁶, R⁴⁷, R⁵¹ and R⁵² is independently hydrogen, C₁₋₅ alkyl, phenyl, or C₁₋₅ heterocyclyl;
 alternatively, R²⁸ and R²⁹, R³¹ and R³², R³⁴ and R³⁵, R⁴⁶ and R⁴⁷, or R⁵¹
 5 and R⁵², independently, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

n is 1 or 2;

G represents C₃₋₆ alkenediyl or C₃₋₆ alkanediyl, optionally substituted with hydroxy, halogen, C₁₋₅ alkyl, C₁₋₅ alkoxy, oxo, hydroximino, CO₂R⁶⁰,
 10 R⁶⁰R⁶¹NCO₂, (L)-C₁₋₄ alkylene-, (L)-C₁₋₅ alkoxy, N₃, or [(L)-C₁₋₅ alkylene]amino;

each of R⁶⁰ and R⁶¹ is independently hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, benzyl, phenethyl, or C₁₋₅ heterocyclyl; alternatively R⁶⁰ and R⁶¹, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
 15 L is amino, mono- or di-C₁₋₅ alkylamino, pyrrolidinyl, morpholinyl, piperidinyl homopiperidinyl, or piperazinyl, where available ring nitrogens may be optionally substituted with C₁₋₅ alkyl, benzyl, C₂₋₅ acyl, C₁₋₅ alkylsulfonyl or C₁₋₅ alkyloxycarbonyl;
 20 X is nitrogen or R¹²C;

Y is nitrogen or R¹³C;

Z is nitrogen or R¹⁴C;

R¹² is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro,
 25 R²¹R²²N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅ alkylene, R²³OC=O, R²³O(C=O)NH-, R²³SO, R²²NHCO-, R²²NH(C=O)NH-, R²³(C₁₋₄ alkylene)NHCO-, R²³SO₂, or R²³SO₂NH-;

R¹³ is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R⁴²R⁴³N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅ alkylene, R⁴⁴OC=O, R⁴⁴O(C=O)NH-, R⁴⁴SO, R⁴³NHCO-, R⁴³NH(C=O)NH-, R⁴⁴(C₁₋₄ alkylene)NHCO-, R⁴⁴SO₂, or R⁴⁴SO₂NH-;

30 R¹⁴ is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R²⁴R²⁵N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋

5 alkylene, $R^{26}OC=O$, $R^{26}O(C=O)NH-$, $R^{26}SO$, $R^{25}NHCO-$,
 $R^{25}NH(C=O)NH-$, $R^{26}(C_{1-4}$ alkylene)NHCO-, $R^{26}SO_2$, or $R^{26}SO_2NH-$;
 alternatively, R^{12} and R^{13} or R^{12} and R^2 or R^{13} and R^{14} can be taken
 together to form an optionally substituted 5- to 6- membered carbocyclic
 or heterocyclic ring, which ring may be unsaturated or aromatic;

10 Ar represents a monocyclic or bicyclic aryl or heteroaryl ring, optionally
 substituted with between 1 and 3 substituents selected from halogen,
 C_{1-5} alkoxy, C_{1-5} alkyl, C_{2-5} alkenyl, cyano, azido, nitro, $R^{15}R^{16}N$, $R^{17}SO_2$,
 $R^{17}S$, $R^{17}SO$, $R^{17}OC=O$, $R^{15}R^{16}NC=O$, C_{1-5} haloalkyl, C_{1-5} haloalkoxy, C_{1-5}
 haloalkylthio, and C_{1-5} alkylthio;

15 R^{15} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, C_{1-5} heterocyclyl, C_{2-8}
 acyl, aroyl, $R^{53}OC=O$, $R^{54}R^{55}NC=O$, $R^{53}S$, $R^{53}SO$, $R^{53}SO_2$, or
 $R^{54}R^{55}NSO_2$;

20 R^{16} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, or C_{1-5} heterocyclyl;
 alternatively, R^{15} and R^{16} can be taken together to form an optionally
 substituted 4- to 7- membered heterocyclic ring, which ring may be
 saturated, unsaturated or aromatic;
 each of R^{17} and R^{53} is C_{1-5} alkyl, phenyl, or C_{1-5} heterocyclyl;
 each of R^{54} and R^{55} is independently hydrogen, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl,
 benzyl, or C_{1-5} heterocyclyl;
 alternatively, R^{54} and R^{55} can be taken together to form an optionally
 substituted 4- to 7- membered heterocyclic ring, which ring may be
 saturated, unsaturated or aromatic;

25 W represents SO_2 , $C=O$, CHR^{20} , or a covalent bond; or W and R^1 , taken
 together with the 6-membered ring to which they are both attached, form
 one of the following two formulae:

(I)(a)

(I)(b)

- wherein X_a is O, S, or N; and X_b is O, S or SO_2 ;
- R^{20} is hydrogen, C_{1-5} alkyl, phenyl, benzyl, naphthyl, or C_{1-5} heterocyclyl;
- R^{42} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{45}\text{OC=O}$, $R^{46}R^{47}\text{NC=O}$, $R^{45}\text{SO}$, $R^{45}\text{SO}_2$, or $R^{46}R^{47}\text{NSO}_2$;
- 5 R^{43} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
alternatively, R^{42} and R^{43} can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- R^{44} is C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, naphthyl, or C_{1-5} heterocyclyl;
- 10 R^{48} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{50}\text{OC=O}$, $R^{51}R^{52}\text{NC=O}$, $R^{50}\text{SO}$, $R^{50}\text{SO}_2$, or $R^{51}R^{52}\text{NSO}_2$;
- R^{49} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
alternatively, R^{48} and R^{49} can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic; and
- 15 wherein each of the above hydrocarbyl or heterocarbyl groups, unless otherwise indicated, and in addition to any specified substituents, is optionally and independently substituted with between 1 and 3 substituents selected from methyl, halomethyl, hydroxymethyl, halo, hydroxy, amino, nitro, cyano, C_{1-5} alkyl, C_{1-5} alkoxy, -COOH, C_{2-6} acyl, [di(C_{1-4} alkyl)amino] C_{2-5} alkylene, [di(C_{1-4} alkyl)amino] C_{2-5} alkyl-NH-CO-, and C_{1-5} haloalkoxy;
- 20 or a pharmaceutically acceptable salt, ester, or amide thereof.
- 25 2. A method of claim 1, wherein each of R^3 and R^4 is hydrogen; Ar represents a six membered ring, optionally substituted with between 1 and 2 substituents selected from halogen, C_{1-5} alkyl, cyano, nitro, $R^{15}R^{16}\text{N}$, CF_3 and OCF_3 ; R^{12} is hydrogen, $R^{23}\text{SO}_2$ or $R^{23}\text{SO}_2$; R^{13} is hydrogen, $R^{44}\text{SO}_2$ or $R^{44}\text{SO}_2$; R^{14} is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, cyano, nitro, or $R^{24}R^{25}\text{N}$; and G is C_3 alkanediyl, optionally substituted with hydroxy, (L)- C_{1-5} alkyloxy-, or (L)- C_{1-5} alkylamino.

3. A method of claim 2, wherein Ar is phenyl.

4. A method of claim 1, wherein said compound is selected from:

5 1-[4-(2-Amino-6-chloro-phenyl)-piperazin-1-yl]-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propan-2-ol ;

10 1-[3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-3-methyl-urea ;

15 1-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-3-methyl-urea ;

20 3-Amino-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-benzoic acid methyl ester ;

25 3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenylamine ;

30 1-[2-(4-{3-[3-(4-Bromo-phenyl)-5-methanesulfonyl-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-3-chloro-phenyl]-3-methyl-urea ;

and 1-{3-[4-(2-Chloro-6-methanesulfonylamino-phenyl)-piperazin-1-yl]-propyl}-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide .

25

5. A method of claim 1, wherein said compound is selected from:

30 [3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-carbamic acid methyl ester ;

1-[3-(4-Benzodisothiazol-3-yl-piperazin-1-yl)-propyl]-3-(4-bromo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide ;

2-(4-{3-[5-Acetyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-3-nitro-benzoic

acid methyl ester ;

1-[4-(2-Chloro-6-nitro-phenyl)-piperazin-1-yl]-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propan-2-ol ;

- 5 2-(4-{2-Hydroxy-3-[3-(4-iodo-phenyl)-5-methanesulfonyl-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-benzonitrile ;
 3-(4-Bromo-phenyl)-1-{3-[4-(2-nitro-phenyl)-piperazin-1-yl]-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide ;
 2-(4-{3-[5-Acetyl-3-(4-iodo-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-benzonitrile ;
 10 2-(4-{3-[3-(4-Chloro-3-methyl-phenyl)-5-methanesulfonyl-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-benzonitrile;
 1-(3-(4-Chloro-3-methyl-phenyl)-1-{3-[4-(2,4-dimethyl-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-ethanone;
 15 1-{3-[4-(3,5-Dichloro-pyridin-4-yl)-piperazin-1-yl]-propyl}-5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine ;
 2-(4-{3-[5-Methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-benzonitrile;
 20 N-[3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-methanesulfonamide ;
 3-(3,4-Dichloro-phenyl)-1-{3-[4-(2-nitro-phenyl)-piperazin-1-yl]-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide;
 25 and 3-(4-Chloro-3-methyl-phenyl)-1-{3-[4-(2-cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide.

- 30 6. A method of claim 1, wherein said compound is selected from :
 1-(3-(4-Chloro-phenyl)-1-{3-[4-(2-fluoro-phenyl)-piperazin-1-yl]-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-ethanone;

DOCUMENT NUMBER
1590

- 1-{3-(4-Chloro-phenyl)-1-[2-hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl}-ethanone;
- 1-{3-(4-Chloro-phenyl)-1-[2-methoxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl}-ethanone;
- 5 1-[1-{2-Hydroxy-3-[4-(2-hydroxy-phenyl)-piperazin-1-yl]-propyl}-3-(4-iodo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone;
- 1-[1-[2-Hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone;
- 2-(4-{3-[5-Acetyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-benzonitrile;
- 10 1-[3-(3,4-Dichloro-phenyl)-pyrazol-1-yl]-3-(4-o-tolyl-piperazin-1-yl)-propan-2-ol;
- 1-[1-[2-(2-Piperazin-1-yl-ethylamino)-3-(4-o-tolyl-piperazin-1-yl)-propyl]-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone;
- 1-{3-[4-(2-Cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-3-(4-iodo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid tert-butyl ester;
- 15 1-{3-[4-(2-Cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-3-(4-iodo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide;
- Carbamic acid 1-[5-carbamoyl-3-(4-iodo-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-ylmethyl]-2-[4-(2-cyano-phenyl)-piperazin-1-yl]-ethyl ester;
- 20 1-{3-(3-Amino-4-chloro-phenyl)-1-[2-hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl}-ethanone;
- (*R*)-1-(3-(4-Bromo-phenyl)-1-{3-[4-(5-chloro-2-methyl-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-ethanone;
- 25 2-(4-{3-[5-Acetyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-fluoro-propyl}-piperazin-1-yl)-benzonitrile;
- (3-(4-Chloro-3-methyl-phenyl)-1-{3-[4-(2-cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-oxo-acetic acid methyl ester;
- 30 5-Methanesulfonyl-1-{3-[4-(2-nitro-phenyl)-piperazin-1-yl]-propyl}-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[4,3-c]pyridine;
- 1-[3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-urea;

- 1-{3-[4-(2-Chloro-6-methanesulfonylamino-phenyl)-piperazin-1-yl]-propyl}-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-sulfonic acid amide;
- 5 N-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-methanesulfonamide;
- 10 1-[4-(2,6-Dinitro-phenyl)-piperazin-1-yl]-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propan-2-ol;
- 15 2-(4-{2-Hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-3-methanesulfonylamino-benzoic acid methyl ester;
- 20 1-{3-[4-(1,1-Dioxo-1H-1l6-benzo[d]isothiazol-3-yl)-piperazin-1-yl]-propyl}-5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine;
- 25 1-[1-{3-[4-(6-Chloro-benzothiazol-2-yl)-piperazin-1-yl]-2-hydroxy-propyl}-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone; and
- 30 1-[1-[3-(4-Benzo[d]isoxazol-3-yl-piperazin-1-yl)-2-hydroxy-propyl]-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone.

7. A method of claim 1, wherein said compound is selected from:

- N-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-methanesulfonamide;
- 25 1-[3-(4-Benzo[d]isothiazol-3-yl-piperazin-1-yl)-propyl]-3-(4-bromo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide; and
- 30 1-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-3-methyl-urea.

8. A method of claim 1, wherein said pharmaceutical composition is formulated in a dosage amount appropriate for the treatment of an allergic condition.

RECEIVED
U.S. PATENT AND TRADEMARK OFFICE