

Chris Choy, Ph.D. candidate
Stanford Vision and Learning Lab (SVL)
http://chrischoy.org

Understanding a Scene

- Objects
 - Chairs, Cups, Tables, etc....
 - Bounding boxes and labels
- Amorphous objects
 - Sky, Lawn, Background, etc....
 - 555

Image Segmentation

- One way to represent an image using a set of components
- Components share common properties
- Properties can be defined at different levels of abstraction

Segmentations 1D and 3D

• Sentence segmentation, topic segmentation

Table of Contents

- Types of Segmentations
- Clustering-based Segmentation
 - K-means
 - Mean Shift
- Graph-based Segmentation
 - Normalized Cut, Spectral Clustering
 - Conditional Random Field
- Supervised Segmentation
 - Feature learning
 - Fully Convolutional Neural Network (FCNN)
 - Probabilistic Graphical Model (CRF) + FCNN
 - Spectral Clustering + FCNN
- •Example code

Segmentation using Neural Networks

 Why should we learn old techniques that are beaten by neural networks?

- Neural Networkism
 - A social phenomenon or belief that giant neural networks can solve everything

• Ex. Consistency in a neural network

Clustering-based Segmentation

- Clustering-based segmentation
 - K-means clustering
 - Non-parametric Bayesian
 - Energy-based methods ...

- Each pixel = data point in a 5D space (bilateral space)
 - XYRGB or XYLUV
- Should we only use the 5D feature? (Hint: kernel)

Christopher Choy Stanford CS231A Stanford CS231A

K-means Clustering

$$E(\mathbf{X}, \mathbf{S}) = \sum_{i} \sum_{x \in S_i} ||x - \mu_i||$$

- Minimize the sum of distance to the centroid for all clusters
- NP-hard (Dasgupta et al. The hardness of k-means clustering)
- Heuristic algorithm
 - Random initialization
 - Repeat:
 - Assignment: find the cluster ID for all point
 - Update centroids

Clustering-based Segmentation

- K-means:
 - Soft assignment: Multi-modal Gaussian fitting
- Non-parametric Clustering:
 - Affinity Propagation
 - DBSCAN
 - Mean Shift
 - •

Clustering Methods

sklearn.cluster

Mean Shift

Non-parametric, iterative clustering method

Structure of the model is not fixed

Improves an initial guess by sequentially updating it

- Seeks modes or local maximum (plural of maxima) within a window
- Algorithm:
 - Starts from over sampled initial centroids
 - Repeat until convergence
 - Iteratively update centroids
 - Remove overlapping centroids if too close

Mean Shift

1. Initialize centroids (tessellation of space with windows)

2. Update centroids

$$\mathbf{c} = \sum_{i} w(\mathbf{x}_{i}, \mathbf{c}) \mathbf{x}_{i}$$
$$\sum_{i} w(\mathbf{x}_{i}, \mathbf{c}) = 1$$

3. Merge centroids

4. Repeat 2, 3 until convergence

Mean Shift: Attraction Basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Slide by Y. Ukrainitz & B. Sarel

Demo

- git clone http://github.com/chrischoy/segmentation_lecture
- cd segmentation_lecture
- (sudo) pip install -r requirements.txt
- python kmeans.py
- python meanshift.py

Table of Contents

- Types of Segmentations
- Clustering-based Segmentation
 - K-means
 - Mean Shift
- Graph-based Segmentation
 - Normalized Cut, Spectral Clustering
 - Conditional Random Field
- Supervised Segmentation
 - Feature learning
 - Fully Convolutional Neural Network (FCNN)
 - Probabilistic Graphical Model (CRF) + FCNN
 - Spectral Clustering + FCNN
- •Example code

Graph-based Segmentation

- Min-cut
- Normalized Cut
- Spectral Clustering
- Probabilistic Graphical Model
 - Conditional Random Field (CRF)
 - Markov Random Field (MRF)
 - Potts-model

Graphs on Image

- Graph: Data structure consisting of nodes, edges
- Weighted Undirected Connected Graph

Edges have associated weights Edges are bidirectional Every pair of nodes is connected

Ising Model

- Probabilistic Graphical Models
 - Markov Random Field and Conditional Random Field

More Graphs on Image

Graph-cut, Min-cut

- Represent features and their relationships using a weighted graph
 - Node ← every pixel, superpixel
 - Edge ← Affinity or similarity between two nodes
 - Affinity can be innerproduct between features (color) or RBF kernels
- Cut the graph to subgraphs

$$\operatorname{cut}(A,B) = \sum_{i \in A, j \in B} W_{ij}$$

Normalized Cut

Min-cut will favor isolated nodes

Normalize cut by its all weights

$$G = \{V, E, W\}$$

$$\operatorname{cut}(A, B) = \sum_{i \in A, j \in B} W_{ij}$$

$$\operatorname{Ncut}(A, B) = \frac{\operatorname{cut}(A, B)}{\sum_{i \in A, j \in V} W_{ij}} + \frac{\operatorname{cut}(A, B)}{\sum_{i \in B, j \in V} W_{ij}}$$

R-ary Normalized Cut

• Disjoint sets $A = (A_r)_{r \in \{1, ..., R\}}$

$$\bigcup_r A_r = V$$

$$Ncut(A, B) = \frac{cut(A, B)}{\sum_{i \in A, j \in V} W_{ij}} + \frac{cut(A, B)}{\sum_{i \in B, j \in V} W_{ij}}$$

$$C(A, W) = \sum_{r=1}^{R} \frac{\sum_{i \in A_r, j \in V \setminus A_r} W_{ij}}{\sum_{i \in A_r, j \in V} W_{ij}}$$

$$e_r \in \{0,1\}^{|V|}$$
 $D = \text{diag}(W1)$

$$c(e, W) = \sum_{r=1}^{R} \frac{e_r^T (D - W)e_r}{e_r^T D e_r}$$

Bach & Jordan, NIPS'03

Normalized Cut and Spectral Clustering

- ullet Finding the optimal $\ e_r \in \{0,1\}^{|V|}$ that minimizes the normalized cut is NP-hard $c(e, W) = \sum_{r=1}^{R} \frac{e_r^T (D - W)e_r}{e_r^T D e_r}$
- Continuous relaxation
 - Relax discrete variables to have intermediate values

$$c(Y, W) = R - \text{tr}Y^T D^{-1/2} W D^{-1/2} Y$$
 $Y = [e_1, e_2, ..., e_R]$ $Y^T Y = I$

- The solution is the sum of the R largest eigenvalues of $D^{-1/2}WD^{-1/2}$
- From the second smallest eigenvector $I D^{-1/2}WD^{-1/2}$
- Normalized Laplacian
- Hierarchically discretize corresponding eigenvectors

Probabilistic Graphical Model (PGM)

- Graphical representation of conditional dependence structure
- Markov Random Field
- Conditional Random Field

1D PGMs

Hidden Markov Model

$$p(\mathbf{H}, \mathbf{O}) = p(H_1) \prod_{t=1}^{T-1} p(H_{t+1}|H_t) \prod_{t=1}^{T} p(O_t|H_t)$$

Conditional Random Field

$$p(\mathbf{H}, \mathbf{O}) = p(H_1) \prod_{t=0}^{T-1} p(H_{t+1}|H_t) \prod_{t=0}^{T} p(O_t|H_t)$$

$$E(\mathbf{X}, \mathbf{Y}) = \sum_{t=0}^{T} \phi(X_t, Y_t) + \sum_{t=0}^{T} \psi(Y_t, Y_{t+1})$$

1D PGMs

Hidden Markov Model

Conditional Random Field

$$p(\mathbf{Y}|\mathbf{X}) = \frac{1}{Z} \exp(E(\mathbf{X}, \mathbf{Y}))$$

2D Conditional Random Field

- Unary potential
 - How consistent with the observations
- Pairwise potential
 - How smooth the predictions are (in 5D space)

$$\phi(x_i)$$

$$\sum_{x_j \in V_i} \phi(x_i, x_j)$$

CRF Inference

- Belief Propagation
- MCMC
 - Metropolis Hastings
 - Alpha-expansion, alpha-beta swap
- Variational Inference
 - Approximate the energy with a simpler function

- Solving an approximate problem with exact optimization
- Solving an approximate problem with an approximate method

Demo

- Variational mean field approximation
 - Approximate the conditional probability with simpler form
 - Message passing
- https://github.com/chrischoy/segmentation lecture/blob/master/crf.py
- python crf.py

Table of Contents

- Types of Segmentations
- Clustering-based Segmentation
 - K-means
 - Mean Shift
- Graph-based Segmentation
 - Normalized Cut, Spectral Clustering
 - Conditional Random Field
- Supervised Segmentation
 - Feature learning
 - Fully Convolutional Neural Network (FCNN)
 - Probabilistic Graphical Model (CRF) + FCNN
 - Spectral Clustering + FCNN
- •Example code

Supervised Segmentation

- Image → Feature representation → Classification
- What is a good feature?
 - Bilateral feat, Texton, Bag of words, HOG, SIFT,...
 - Ans: _____
 - Hint: Data Processing Inequality

- Learn
 - Features
 - Parameters in a classifier

YUV

Feature Representation

- Image: pixels
 - Pixel or patch
 - Texton, DSIFT, HOG, ...: extract a high dimensional feature from a patch
- Dense feature extraction
- Classifier
 - Support Vector Machine
 - Logistic Regression
 - Neural Network

Demo

• Dense feature: 3x3 image patch

• Classifier: SVM

Optimization: Momentum SGD

• https://github.com/chrischoy/segmentation lecture/blob/master/svm.py

Fully Convolutional Neural Network

- Demo svm.py
 - 3x3 convolution
- Stack another convolution and non-linearity between them
 - Convolutional Neural Network
- Convolutional Neural networks
 - Function approximators
 - Superclass of all hand designed features
- Fully Convolutional Neural Network

Dense feature extraction using convolutions (No flattening, No fully connected layer)

• Loss: Cross-Entropy

Fully Convolutional Neural Network

Long, Shelhamer, Darrel (Arxiv)

Neural Network + CRF

- Conditional Random Field
 - Consistency
- Neural Network
 - Strong unary potential
- Differentiable?
 - Initialization, Iterative Approximate Inference
 - Krähenbühl & Koltun, NIPS'11
 - Iterative Inference \rightarrow Recurrent Neural Network
 - CNN + CRF as RNN

Zheng et al., ICCV '15

Neural Network + Spectral Clustering

- Bach & Jordan, Learning Spectral Clustering
 - Continuous relaxation (spectral clustering)
 - Differentiable
- Ionescu et al., Matrix Backpropagation for Deep Networks with Structured Layers
 - Combines neural network for feature extraction

Problem Solving

- Input (feature) representation
- Problem definition
- Approximate optimization
 - Variational Inference
 - Continuous approximation
 - Heuristic optimization
- Learning parameters
 - Gradient, approximate gradient
 - Backpropagation
- Hyper-parameter sweep
 - Validation
- Test