09. Random Variables in Statistics

Mahir Faysal Tusher

June 2025

Definition of Random Variable

- ullet A random variable (denoted X,Y, etc.) is a function that derives values from random processes or experiments
- Maps outcomes of random processes to numerical values
- Key characteristic: Values are determined by chance

Types of Random Variables

1. Discrete Random Variables

- Take countable number of distinct values
- Usually whole numbers (but not necessarily)
- Values derived from countable outcomes

Examples:

- Coin Toss: $X = \begin{cases} 0 & \text{heads} \\ 1 & \text{tails} \end{cases}$
- Die Roll: $X \in \{1, 2, 3, 4, 5, 6\}$
- Number of customers: X = 0, 1, 2, 3, ...

2. Continuous Random Variables

• Take any value in a continuous range

• Can be fractions or decimals

 $\bullet\,$ Infinite possible values

Examples:

• Rainfall: X = 1.1", 5.5", 10.75" (any non-negative real number)

• Height: X = 150.0 cm, 160.1 cm, 175.5 cm

• Temperature: $X = 98.6^{\circ}F$, $101.2^{\circ}F$

Key Differences

Feature	Discrete	Continuous
Values	Distinct, countable	Any value in interval
Notation	$X \in \{x_1, x_2,\}$	$X \in [a, b]$
Examples	Coin toss $(0,1)$	Rainfall
Examples	Die roll (1-6)	Height
Probability	Probability mass function	Probability density function
Graph		$\stackrel{\textstyle \smile}{\longrightarrow}$

Why Random Variables Matter

- Foundation for probability distributions
- Essential for statistical modeling
- Critical in machine learning algorithms
- Enable quantification of uncertain outcomes

