

Lightweight Convolutional Occupancy Networks for Efficient Virtual Scene Generation

Computer Vision A.A. 2024-2025 - Project 5

Leonardo Sandri -2137374

Presentation Outline

Content:

- Problem Statement & Objectives (3)
- State of the Art & Proposed Method (4 6)
- Dataset & Best parameters (7)
- Iterative Development & Model Evaluation (8 9)
- Conclusions & Future Work (10 11)

Challenge: Fast, Accurate 3D Scenes

The Problem:

- Generating accurate 3D representations of scenes is critical in each field that requires
- simulations. However, a major challenge is the trade-off between reconstruction quality and inference speed, which limits real-time applicability.

Project Goal:

- Implement and optimize a Lightweight Convolutional Occupancy Network (TransONet) for
- virtual scene generation from point clouds, specifically adapted to the
 - synthetic_rooms_dataset. The primary objective is minimizing inference time while preserving reconstruction quality, enabling deployment on embedded devices.

State of the Art: Occupancy Networks

Instead of explicit meshes, Occupancy Networks learn a continuous function that maps any 3D point to its occupancy probability. This allows for extracting meshes at any desired resolution.

Key Architectures

- **Convolutional Occupancy Networks** (Peng et al.): 3D convolutional features, powerful but computationally intensive.
- **Dynamic Plane Convolutional Occupancy Networks** (Lionar et al.): Proposes projecting 3D features onto dynamic 2D planes, significantly improving efficiency.

Proposed Method: An implementation and methodical experimentation and analysis based on the ALCOR Lab TransONet architecture, based on the Dynamic Plane CONet concept.

Approach: The TransONet Model

High-Level Diagram:

Challenge:

The original ALCOR Lab repository was Docker-based, which is incompatible with cloud platforms like Google Colab/Kaggle.

Solution:

Re-engineered the entire code structure to be cloud-native, enabling GPU-accelerated training and evaluation for this project.

Approach: The TransONet Model

Key Components:

- **Network**: A ResNet-based PointNet encoder extracts point-wise features.
- **Dynamic Planes**: A predictor learns 3 orthogonal planes to project features onto.
- **U-Net**: Processes these 2D feature planes to capture hierarchical spatial information.
- **Decoder**: A final MLP predicts the occupancy value for any given 3D query point

Dataset and Experimental Configuration

Dataset:

- **Dataset:** Synthetic-Rooms subset
- Provided dataset composed of structured scenes from ShapeNet.
- Training Set: 1600 samples
- Validation Set: 400 samples

Best parameters:

- Batch Size: 64
- Learning Rate: 5e-4 with Adam Optimizer and ReduceLROnPlateau
- **Epochs**: 100 (with Early Stopping)
- **Sampling**: WeightedRandomSampler with a 16x multiplier for positive samples

Model Evaluation: An Iterative Journey

Methodology: A series of experiments was conducted, methodically addressing performance bottlenecks.

Key Iterations & Insights:

- (Baseline): Low Precision (6.83%) and Slow Inference (2.31s).
- **(Speed):** Resolved Inference Bottleneck. Vectorized the PlanarProjection module, achieving a 23x speedup to 0.098s.
- (Stability): Introduced Early Stopping & LR Scheduler. Improve in precision with longer trains.
- (Regression): Learned that overly aggressive sampling (25x) and dropout (0.2) harmed performance.
- (Breakthrough): Recalibrated hyperparameters (Batch Size 64, LR 5e-4, Sampling 16x).

Model Evaluation: An Iterative Journey

From Bottlenecks to Breakthroughs:

Challenge:	Solution	Impact:	
1. Prediction Collapse	Strategic Bias Initialization & weighted sampling	Enabled Meaningful Learning	
2. Severe Over- Prediction and long training times	Systematic Weighted Sampling	Precision Improvement	
3. Crippling Inference Speed	Vectorizing the PlanarProjection	Reduced inference time to ~0.1s, Speedup	

Final Results & Objectives Achieved

Final Results & Objectives Achieved:

Metric	Baseline	Final	Improvement
F1-Score	12.58%	19.87%	+58%
Precision	6.83%	11.49%	+68%
Volumetric IoU	7.11%	11.03%	+55%
Inference Time	2.31s	0.09 - 0.232s	-90%

Conclusions & Future Work

Key Learnings:

- Systematic Tuning is Crucial: Success was driven by a balanced, data-driven approach.
- The 3-Layer U-Net is Essential: A shallower, 2-layer U-Net, was tested hypothesizing it could be more efficient. This led to a significant performance regression.
- The Architecture Resisted Simple Pruning: Experiments with L1 pruning showed that the model's performance is intrinsically tied to its dense 1.77M parameters. This presents a compelling challenge for future work in model compression.

Future Work:

- Refine Sampling: Explore the optimal sampling multiplier range with more granularity.
- Advanced Loss Functions: Experiment with Focal Loss to better handle the class imbalance.
- **Model Compression**: Investigate knowledge distillation as a more effective compression technique than pruning for this architecture

References

- 1. Lionar, S., Emtsev, D., Svilarkovic, D., and Peng, S. (2020). Dynamic Plane Convolutional Occupancy Networks. arXiv.
- 2. Tonti, C. M., Papa L. and Amerini, I., "Lightweight 3-D Convolutional Occupancy Networks for Virtual Object Reconstruction," in IEEE Computer Graphics and Applications, 2024.
- 3. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and Geiger, A. (2020). Convolutional Occupancy Networks. arXiv.