SOIL FERTILITY MANAGEMENT FOR SUSTAINABLE AGRICULTURE

Rajendra Prasad and James F. Power

Library of Congress Cataloging-in-Publication Data

Prasad, Rajendra, 1936-

Soil fertility management for sustainable agriculture / by Rajendra Prasad, James F. Power.

p. cm.

Includes bibliographical references and index.

ISBN 1-56670-254-2 (alk. paper)

1. Soil fertility. 2. Fertilizers. 3. Sustainable agriculture. I. Power, J. F. II. Title.

S633.P83 1997

631.4'1—dc20 96-44795

CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

© 1997 by CRC Press LLC

Lewis Publishers is an imprint of CRC Press

No claim to original U.S. Government works International Standard Book Number 1-56670-254-2 Library of Congress Card Number 96-44795 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

FOREWORD

The world population is expected to double within the next three to five decades, thus making the task of several national agricultural systems more difficult to provide needed food security. This is likely to be further complicated by environmental problems, which are cropping up due to intense use of chemicals. Therefore, sustainability of national agricultural systems is a major concern today. Management of soil fertility and soil health is the key to the development of sustainable agriculture.

Focusing attention on soil fertility in relation to sustainable agriculture is the need of the day. In view of this, it gives me great pleasure to write the foreword for this book entitled *Soil Fertility Management for Sustainable Agriculture* jointly authored by Dr. Rajendra Prasad, an eminent agronomist from India, and Dr. J. F. Power, a pioneer of soil fertility management from the U.S. Although the basic principles of soil fertility management for sustainable agriculture in temperate and tropical regions remain the same, the environmental factors, such as high temperature and heavy precipitation during short spells of time, make management practices more difficult under tropical conditions. It is thus gratifying to see a joint effort by two experienced researchers and teachers in producing a textbook on soil fertility using data from tropical as well as temperate regions and presenting the fundamentals of soil fertility for the benefit of students. This book is an excellent reflection of the Indo–U.S. Senior Scientists Panel Program, and I am sure it will prove useful to all concerned.

R. S. Paroda

Secretary to Government of India Department of Agricultural Research and Education Ministry of Agriculture Indian Council of Agricultural Research New Delhi

PREFACE

Sustainable agriculture is now on the agenda of agricultural institutions over the entire world. Most national governments are concerned with this issue. The problem is aggravated by environmental hazards associated with modern technology in the agriculture of advanced countries. There are also pressures to reduce the use of agricultural inputs, such as chemical fertilizers and pesticides, and to cut down on the use of farm machinery dependent on fossil fuels. With reduced chemical input, the United States can still produce enough food to meet its own needs, as well as the needs of several other parts of the world, but most developing countries with ever-increasing population pressure cannot afford to cut down the use of agricultural chemicals, especially chemical fertilizers. They must produce more and more food and yet maintain the fertility of soils. Soil fertility management for sustainable agriculture is therefore a primary concern.

There is a growing demand on young agricultural graduates coming out of U.S. universities to serve in developing countries in Asia, Africa, and South America. The soil, climate, and crop conditions in these continents are much different than those prevailing in the U.S. and Europe. Several countries have tropical and subtropical climates with large areas under oxisols, ultisols, and saline–alkali soils. Although there has been considerable research in the U.S. on such soils, not much has been placed in our textbooks on soil fertility. It is highly desirable that undergraduate students in agriculture in all universities have greater exposure to soil fertility problems in these other continental soils and in their management.

Also, most textbooks on soil fertility available to the millions of undergraduate and graduate students in developing countries of the world are based on scientific information obtained in advanced countries from temperate regions, such as the United States, United Kingdom and other European countries. While the basic principles of soil fertility apply to all soils, there is an urgent need for a textbook on soil fertility that incorporates available and useful scientific data obtained from developing countries.

The approach of this book is to present the principles for controlling soil fertility in the various climates of the world and to provide examples of soil fertility management for sustainable agriculture from both tropical and subtropical regions, as well as from the temperate regions.

ABOUT THE AUTHORS

Dr. Rajendra Prasad is the former Chair of the Division of Agronomy, and now, ICAR National Professor at the Indian Agricultural Research Institute (IARI) in New Delhi, India. Dr. Prasad holds B.Sc. (Ag.) and M.Sc. (Ag) (1956) degrees from Agra University, Government Agricultural College, Kanpur Campus, and a Ph.D. degree (1961) from Mississippi State University. He is a member of Phi Kappa Phi. Dr. Prasad has published over 150 research papers and participated in a number of national and international seminars. He is a recipient of the

Hooker Award of the Indian Agricultural Research Institute (New Delhi), the Rafi Ahmed Kidwai Prize of the Indian Council of Agricultural Research (New Delhi), and the Silver Jubilee Award of the Fertilizer Association of India (New Delhi) for his contributions in soil fertility and fertilizer nitrogen management. He is a Fellow of the Indian National Science Academy and National Academy of Agricultural Sciences (India). Dr. Prasad was the Secretary of the Indian Society of Agronomy for the period of 1975 to 1978 and was Vice President and Executive Chairman for 1979 and 1980. He is a member of editorial board of the *Journal of Agronomy and Crop Science*, Berlin. Dr. Prasad has been teaching a course on soil fertility and its management at IARI for the last 20 years and has guided over 30 graduate students in obtaining their Ph.D. degrees in agronomy. His students today occupy senior positions in state agricultural universities, institutes of the Indian Council of Agricultural Research and Council of Scientific and Industrial Research, and the fertilizer industry in India.

Dr. James F. Power is Research Leader for the Soil and Water Conservation Research Unit of the Agricultural Research Service (ARS) of the U.S. Department of Agriculture located at the University of Nebraska, Lincoln, Nebraska. He leads a group of nine ARS scientists, plus post-doctorates, visiting scientists, and graduate students, in a research program dedicated to improvement of sustainable agricultural production practices that maintain or

enhance economic production and environmental quality. His B.S. (1951) and M.S. (1952) degrees in agronomy are from the University of Illinois, and his Ph.D. (1954) in soils is from Michigan State University. He has had over 40 years of employment as a Research Soil Scientist with ARS: 6 years at Sidney, Montana; 18 years at Mandan, North Dakota; and over 16 years at Lincoln, Nebraska. He is a member of a number of honorary societies and a Fellow in the Soil and Water Conservation Society, American Society of Agronomy, Soil Science Society of America, and American Institute of Chemists. In 1996, he was elected Fellow of the National Academy of Agricultural Sciences (India). He has held various offices and committee assignments in the above societies, as well as serving in several positions on the editorial staffs of their journals. In 1990 he was Scientist of the Year for the Northern Plains area of ARS. He has conducted extensive research on nitrogen nutrition and interactions with water availability for grassland soils, reclamation of lands disturbed by stripmining, tillage methods (especially reduced and no-till) for grain production, and nitrogen cycling in cultivated ecosystems. He has served on the advisory committee for a number of graduate students. He and his graduate students have published over 200 peer-reviewed journal papers and book chapters.

ACKNOWLEDGMENTS

The author (Rajendra Prasad) is grateful to the Honorable Minister of Agriculture of the Government of India, Director General for the Indian Council of Agricultural Research, and the Director of the Indian Agricultural Research Institute, New Delhi for deputing him to the Agronomy Department at the University of Nebraska and to the Soil and Water Conservation Research Unit of the Agricultural Research Service, U.S. Department of Agriculture. The USDA-ARS group at Lincoln, Nebraska also provided financial assistance. Special thanks are due to my co-author, Dr. J.F. Power, Research Leader of the USDA-ARS group at the University of Nebraska, for his valuable guidance and assistance in writing this book. Thanks are due also to Dr. J.S. Schepers, Dr. J.W. Doran, Dr. G.E. Varval, Dr. W.W. Wilhelm, Dr. D.D. Francis, and Dr. B. Eghball of the USDA-ARS group for discussion and advice. Special thanks go to Ms. Pam Bushman for her dedication in entering the manuscript in the computer and for handling correspondence. In addition, thanks are due to my sons, Dheerendra and Neelendra, for their help and especially to my wife, Uma, for library assistance and help in preparing the subject index. Finally, my co-author and I are grateful to the large number of scientists and writers and their publishers for their kind permission to include their work in this text; we also thank Dr. R.S. Paroda, Director General, Indian Council of Agricultural Research, New Delhi for arrangements and for writing the foreword.

DEDICATION

The authors wish to dedicate this book to their wives

Uma Prasad Marlene Power

CONTENTS

CHA	FIERI	
INTR	RODUCTION	
1.1.	Sustainable Agriculture: Definitions and Goals	1
1.2.	Factors Determining Sustainability	3
	Soil Fertility	
Refer	rences	4
CHA	PTER 2	
	ENTIAL PLANT NUTRIENTS	
	Criteria for Essentiality	5
2.2.	Basis for Classification of Nutrients as Primary, Secondary,	
	and Micronutrients	8
2.3.	Primary Nutrients, Secondary Nutrients, and Micronutrients	8
2.4.	Functions of Essential Nutrients in Plants	10
Refer	rences	11
	PTER 3	
	., THE SUSTAINER	
3.1.	Soil Organic Matter	13
3.2.	Soil Water	14
3.3.	Soil Air	15
3.4.	Soil Mineral Matter	18
	3.4.1. Soil Texture	18
	3.4.2. Soil Structure	19
3.5.	Soil Colloids	22
3.6.	Soil Living Organisms	23
Refer	rences	26
	PTER 4	
	COLLOIDS	
4.1.	Clay Minerals	
	4.1.1. The 1:1 Layer Silicates	28
	4.1.1.1. Kaolinite	28
	4.1.1.2. Halloysite	30

	4.1.2. The 2:1 Layer Silicates	33
	4.1.2.1. Pyrophyllite and Talc	33
	4.1.2.2. Micas	
	4.1.2.3. Vermiculite	35
	4.1.2.4. Smectites	36
	4.1.2.5. Chlorite	36
	4.1.2.6. Polygorskite and Sepiolite	36
	4.1.3. Interstratified Silicate Minerals	36
	4.1.4. Noncrystalline Silicates	37
4.2.	Oxide Minerals	37
	4.2.1. Iron Oxides	39
	4.2.2. Manganese Oxides	
	4.2.3. Aluminum Hydroxides and Oxyhydroxides	44
	4.2.4. Silicon Oxides	
	4.2.5. Titanium Oxides	
Refer	ences	45
	PTER 5	
	ANIC MATTER	
	Humus, Its Structure and Properties	
	C:N Ratio	
5.3.	Factors Affecting the Organic-Matter Content of Soil	
	5.3.1. Climate	
	5.3.2. Texture	
	5.3.3. Agricultural Practices	
	5.3.4. Fertilizers and Manures	
Refer	ences	64
	PTER 6	
	ACIDITY	
	Acids	
	The pH Concept	
6.3.	Determination of Soil pH	
6.4.	Active and Potential Acidity	
6.5.	Buffering Capacity	
6.6.	Nature of Soil Acidity	
6.7.	Factors Affecting Soil Acidity	
	6.7.1. Chemical Fertilizers	
	6.7.2. Removal of Basic Cations	
	6.7.3. Nitrogen Transformations	
	6.7.4. Acids Brought in by Rain	
	6.7.5. Leaching of Bases	
6.8.	Soil pH and Crop Production	
6.9.	Lime Requirement	
6.10.	Liming Materials	88

6.11.	Fineness of Limestone	91
6.12	Benefits of Liming	91
Refer	rences	92
	PTER 7	
SOIL	SALINITY AND SODICITY	
7.1.	0 1	
7.2.	Criteria for Determining Salinity/Sodicity	
7.3.	Classification	
7.4.	Reclamation and Management of Saline Soils	
	7.4.1. Scraping	
	7.4.2. Flushing	
	7.4.3. Leaching	
	7.4.4. Drainage	
7.5.	Crop Production on Saline Soils	
7.6.	Reclamation and Management of Sodic Soils	
	7.6.1. Gypsum	
	7.6.2. Sulphur	
	7.6.3. Pyrite	
7.7.	Crop Production on Sodic Soils	
Refer	rences	113
	PTER 8	
	ROGEN	
8.1.		
8.2.		
	8.2.1. Aminization	
	8.2.2. Ammonification	
	8.2.3. Nitrification	
8.3.	Factors Affecting Nitrification	
	8.3.1. Soil Water and Aeration	
	8.3.2. Soil pH	
	8.3.3. Soil Temperature	
	8.3.4. Supply of Ammonium	
	8.3.5. Population of Nitrifying Organisms	
8.4.		
8.5.		127
8.6.	NH ₄ ⁺ Versus NO ₃ ⁻ Nutrition of Plants	
8.7.	Biological Nitrogen Fixation	
	8.7.1. Nitrogen Fixation by Legumes	
	8.7.2. Nitrogen Fixation by Blue-Green Algae (Cyanobacteria)	
	8.7.3. Azolla-Anabaena Systems	
	8.7.4. Nonphotosynthetic Bacteria	
	8.7.5. Nodule-Forming Nonlegumes	
	8.7.6. Nonsymbiotic N ₂ -Fixation	136

8.8.	Nitrogen Fertilizers or Industrial Nitrogen Fixation	137
	8.8.1. Cyanamide Process	137
	8.8.2. Arc Process	
	8.8.3. Haber-Bosch Process (Ammonia Synthesis)	138
8.9.	Efficient Nitrogen Management	139
	8.9.1. Recovery of Fertilizer Nitrogen	139
	8.9.2. Nitrogen Loss Mechanisms	
	8.9.2.1. Surface Runoff	
	8.9.2.2. Urea Hydrolysis	
	8.9.2.3. Ammonia Volatilization from Soils	
	8.9.2.4. Nitrogen Losses from Plants	
	8.9.2.5. Denitrification	
	8.9.2.6. Leaching	
8.10.	Increasing N Use Efficiency	
	8.10.1. Rate of Nitrogen Application	
	8.10.2. Method of N Application	
	8.10.3. Time of N Application	
	8.10.4. Nitrification Inhibitors	
	8.10.5. Slow-Release N Fertilizers	
	8.10.6. Urea Supergranules (USG)	
	Nitrogen Availability Indices	
	Nitrogen-Deficiency Symptoms	
Refe	rences	162
CIIA	PETER A	
	PTER 9	
	SPHORUS Seil Phosphorus	171
9.1.	1	
	9.1.1. Inorganic P	
0.2	9.1.2. Organic P	
9.2.	Phosphate Retention or Fixation in Soil	1 / /
	9.2.1. P Retention by Hydroxides and Oxyhydroxides of Fe and Al	177
	9.2.2. P Retention by Clay Minerals	
	9.2.3. Retention by Soil Carbonates	
	9.2.4. Retention by Soil Carbonates	
9.3.	Factors Affecting the Retention of Phosphorus by Soil	
9.5.	9.3.1. pH	
	9.3.2. Cations Present in Soil Solution	102 187
	9.3.3. Anion Effects	
	9.3.4. Temperature	
9.4.	Phosphate Fertilizer Reaction Products in Soil	
9.4.	Intensity (I) and Quantity (Q) Factors	103
٠.٥.	in Phosphorus Availability	188
9.6.	Soil Testing for Phosphorus	
9.7.	Phosphorus-Deficiency Symptoms in Plants	
2.1.	Theopherus Denerone, Symptoms in Francis	

9.8.	Phosp	hate Fertilizers	192
	9.8.1.	Terminology	194
		9.8.1.1. Water-Soluble Phosphorus	194
		9.8.1.2. Citrate-Soluble Phosphorus	194
		9.8.1.3. Available Phosphorus	197
		9.8.1.4. Total Phosphorus	197
	9.8.2.	Phosphate Fertilizers	
		9.8.2.1. Ordinary (Single) Superphosphate	
		9.8.2.2. Concentrated (Triple) Superphosphate	198
		9.8.2.3. Enriched Superphosphates	
		9.8.2.4. Ammoniated Superphosphates	
		9.8.2.5. Ammonium Phosphates	198
		9.8.2.6. Nitric or Nitrophosphates	198
		9.8.2.7. Ammonium Polyphosphate	199
		9.8.2.8. Thermal Phosphates	199
		9.8.2.9 Partially Acidulated Rock Phosphate (PARP)	200
		9.8.2.10. Rock Phosphate	201
9.9.	Efficie	ent Phosphate Management	201
	9.9.1.	Strategies for Efficient Utilization of Native Soil P	201
		9.9.1.1. Use of P-Efficient Crops and Their Cultivars	201
		9.9.1.2. Use of Vesicular Arbuscular Mycorrhizae	202
		9.9.1.3. Use of Phosphobacterium	202
	9.9.2.		
		Fertilizer Phosphorus	202
	9.9.3.	Strategies for the Direct Use of Rock Phosphate	204
Refer	ences		206
CHA	PTER 1	10	
	ASSIUN		
10.1.	Forms	s of Soil Potassium	211
	10.1.1	. Primary-Mineral K	211
	10.1.2	Nonexchangeable or Fixed K	211
		S. Exchangeable K	
		Soil-Solution K	
		ity/Intensity Relationships	
10.3.		sium Fixation	
		. Clay Minerals	
		2. Soil pH	
		8. Wetting and Drying	
		Potassium Fertilization	
		5. Freezing and Thawing	
10.4.		ing of Potassium	
10.5.		sium Fertilizers	
		. Choice of K Fertilizers	
10.6.	Efficie	ent Use of Potassium Fertilizers	
Refer	ences		226

CHAPTER 11

CIT	r mr	m
5 U.	LFU	K

11.1.	Sulfur in Soils	230
	11.1.1. Organic S	232
	11.1.2. Inorganic S	232
11.2.	Elemental Sulfur and Its Oxidation	233
11.3.	Oxidation of Pyrites	234
11.4.		
11.5.	Sulfur Deficiency Symptoms in Plants	236
11.6.	Sulfur Needs of Crops	238
11.7.	Sulfur Fertilization	239
Refer	rences	241
СНА	PTER 12	
CAL	CIUM AND MAGNESIUM	
12.1.	Calcium and Magnesium in Soil	243
12.2.	Factors Affecting the Availability of Calcium	
	and Magnesium in Soils	244
12.3.	Leaching of Calcium and Magnesium	245
12.4.	Determining Available Calcium and Magnesium	247
12.5.	Calcium and Magnesium Deficiency Symptoms	249
12.6.	Calcium and Magnesium Amendments	250
Refer	rences	252
СНА	PTER 13	
IRON	N AND MANGANESE	
13.1.	Amounts and Forms of Iron and Manganese in Soil	256
	Soil Solution Iron and Manganese	
13.3.	Factors Affecting Iron and Manganese Availability	260
	13.3.1. Organic Matter	
	13.3.2. Interaction with Other Nutrients	261
13.4.	Soil Tests for Iron and Manganese	261
13.5.	<i>y y</i> 1	
13.6.	5 5 1	
13.7.		
Refer	rences	268
	PTER 14	
	PER AND ZINC	
	Amounts in Soil	
14.2.	Forms of Copper and Zinc in Soils	
	14.2.1. Copper and Zinc in Soil Solutions	
	14.2.2. Copper and Zinc Adsorbed onto Clay Minerals	271

	14.2.3.	Copper and Zinc Adsorbed onto Fe and	
		Al Hydrous Oxides	
	14.2.4.	Copper and Zinc Adsorbed by Organic Matter	271
14.3.	Factors	Affecting the Availability of Copper and Zinc	272
		Soil pH	
	14.3.2.	Interaction with Other Elements in Soil	272
	14.3.3.	Fertilizer Practices	273
	14.3.4.	Soil Amendments	273
	14.3.5.	Flooding or Submergence	274
	14.3.6.	Weather Conditions	274
	14.3.7.	Plant Factors	274
14.4.	Soil Te	sts for Copper and Zinc	274
	14.4.1.	Copper	274
	14.4.2.	Zinc	274
14.5.	Deficie	ncy Symptoms in Plants	276
	14.5.1.	Copper	276
	14.5.2.	Zinc	276
14.6.	Copper	and Zinc Fertilizers	276
Refer	ences		279
BOR 15.1.) MOLYBDENUM	283
		Forms of Boron in Soils	
	15.1.2.	Factors Affecting Boron Availability	284
		15.1.2.1. Soil pH and Liming	
		15.1.2.2. Interactions with Other Nutrients	
		15.1.2.3. Environmental Factors	286
	15.1.3.	Soils Tests for Boron	286
		Boron Deficiency Symptoms in Plants	
	15.1.5.	Boron Fertilizers	289
15.2.	Molybo	denum	2 90
	15.2.1.	Forms of Molybdenum in Soils	2 91
	15.2.2.	Factors Affecting Molybdenum Availability in Soils	2 91
		15.2.2.1. Soil pH and Liming	2 91
		15.2.2.2. Effects of Fe and Al Oxides	292
		15.2.2.3. Interaction with Other Ions in Soil Solution	292
		15.2.2.4. Environmental Effects	
		Soil Test for Molybdenum	
		Molybdenum Deficiency Symptoms in Plants	
		Molybdenum Toxicity to Animals	
	15.2.6.	Molybdenum Fertilizers	
Dofor	onooc		207

CHAPTER 16 CHLORINE. 16.3. 16.4. 16.5. 16.6 16.7. 16.8. References 304 **CHAPTER 17** BENEFICIAL ELEMENTS 17.1. 17.2. 17.3. Cobalt 309 17.4. References 311 **CHAPTER 18** NUTRIENT INTERACTIONS 18.1. Interactions 313 References 321 **CHAPTER 19 ORGANIC MANURES** 19.1. Crop Residues 323 Composting 328 19.3. References 336 **CHAPTER 20** CROPPING SYSTEMS, SOIL FERTILITY, AND FERTILIZER USE

 20.2. Intercropping Systems
 340

 20.3. Cropping Systems and Soil Fertility
 342

 20.4. Fertilizer Application in Cropping Systems
 342

 References
 346