ACT: Architectural Carbon Modeling Tools

@ MICRO 2022 Tutorial

Udit Gupta

ACT Tutorial: Today

Time	Topic
1:00 – 1:15pm	Introductory remarks
1:15 – 1:30pm	Motivation: Understanding the source of computing's emissions
1:30 – 2:15pm	Overview of ACT: An Architectural Carbon Modeling Tool
2:15 –2:30pm	Coffee Break
2:30 – 3:00pm	Hands-on ACT demo's
3:00 – 3:15pm	Extending ACT
3:15 – 3:45pm	Office Hours
3:45 – 4:00pm	Closing remarks

Where does computing's carbon footprint come from?

Where does computing's carbon footprint come from?

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Manufacturing -

Manufacturing Manufacturing accounts for 74% of Apple's end to end breakdown in Business travel Recycling 2019 Product transport **Product Use** Manufacturing → Product Transport → **Product Use** Recycling

Manufacturing Manufacturing accounts for 74% of Apple's end to end breakdown in Business travel Recycling 2019 Product transport -Other iOS macOS Idle macOS Active **Product Use** Manufacturing → Product Transport → **Product Use** Recycling

Manufacturing accounts for 74% of Apple's end to end breakdown in 2019

Aluminum

Other

Manufacturing accounts for 74% of Apple's end to end breakdown in 2019

Integrated circuits account for 33% of emissions (SoCs, DRAMs, NAND Flash)

·Business travel

Product transport

Recycling

Aggregating across hundreds of millions of phones, iPads, and other consumer devices sold every year!

Data from public industry validated sustainability reports and life cycle analyses

Data from public industry validated sustainability reports and life cycle analyses

Roughly 75% life cycle emissions for battery operated devices comes from hardware manufacturing.

Data from public industry validated sustainability reports and life cycle analyses

Roughly 75% life cycle emissions for battery operated devices comes from hardware manufacturing.

Emissions for always-connected devices come mainly from energy consumption

Data from public industry validated sustainability reports and life cycle analyses

Roughly 75% life cycle emissions for battery operated devices comes from hardware manufacturing.

¹ "Latest Game Consoles: Environmental Winners or Losers?" National Resources Defense Council. Noah Horowitz

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Technology company

Technology company

Technology company

Technology company

Technology company

Technology company

Scope 2 emissions come from <u>opex-related</u> activities Scope 1 and Scope 3 emissions come from <u>capex-related</u> activities

Crucial to look at emissions across HW cycle

Economic incentives and carbon sequestration

How Microsoft is using an internal carbon fee to reach its carbon negative goal

March 24, 2022 • 2 min read

Thought leadership, Sustainability

Projecting future <u>annual</u> cost of over \$1 billion

Google: Estimates **\$50-\$300/tCO2e** as carbon sequestration scales up to **20%** of the cost of a server!

Today

Where does computing's carbon footprint come from? A combination of both energy consumed and hardware manufacturing (embodied carbon).

Understanding the breakdown of mobile emissions

Understanding the breakdown of data center emissions

Understanding the breakdown of semiconductor manufacturing

Chip manufacturing is energy intensive

Source: 2021 corporate sustainability reports

Semiconductor fab

Wafer & gas (10%)

Gupta et. al. Chasing Carbon: The Elusive Environmental Footprint of Computing (HPCA 2021)

"Green" powered fabs are not enough

TSMC plans for **25% renewable by 2025** and

100% renewable by 2050.

Semiconductor fab
Wafer & gas (10%)
PFCs (10%)
Energy
(60%)

(15%)

100% Renewable powered semiconductor fab

Reduces manufacturing footprint by 2.5x

We must elevate carbon as a first order design target and constraint alongside performance, power, energy, and area

ACT Tutorial: Today

Time	Topic
1:00 – 1:15pm	Introductory remarks
1:15 – 1:30pm	Motivation: Understanding the source of computing's emissions
1:30 – 2:15pm	Overview of ACT: An Architectural Carbon Modeling Tool
2:15 –2:30pm	Coffee Break
2:30 – 3:00pm	Hands-on ACT demo's
3:00 – 3:15pm	Extending ACT
3:15 – 3:45pm	Office Hours
3:45 – 4:00pm	Closing remarks

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Between 2017 and 2019 the Pareto frontier has shifted to the right prioritizing performance.

Designing sustainable systems requires shifting the frontier down.

Data from industry (Apple, Google, Huawei) life cycle analyses and GeekBench performance measurements https://www.geekbench.com/blog/2019/09/geekbench-5/

Between 2017 and 2019 the Pareto frontier has shifted to the right prioritizing performance.

Designing sustainable systems requires shifting the frontier down.