PARTE I: Responda a apenas três das quatro seguintes perguntas:

1. (3 valores) Seja K um corpo e $x, y, z \in K$. Usando os axiomas de corpo, e justificando cuidadosamente, mostre que:

(a)
$$x + z = y + z \implies x = y$$
. (b) $-(-x) = x$. (c) $x \cdot 0 = 0$.

2. (2 valores) Seja K um corpo ordenado e $x,y\in K$. Usando a definição de valor absoluto de um elemento $x\in K$, mostre que

$$|x+y| \le |x| + |y|.$$

- 3. (2 valores) Seja K um corpo ordenado e $X \subset K$ um conjunto limitado superiormente.
 - (a) Defina supremo de X.
 - (b) Se X =]a, b[, onde $a, b \in K$, mostre que sup X = b.
- 4. (2 valores) Determine o conjunto dos majorantes, o conjunto dos minorantes e, se existirem, o supremo, o ínfimo, o máximo e o mínimo do conjunto

$$X = \{ x \in \mathbb{Q} : x \ge 0 \land x^2 < 25 \}$$

PARTE II: Responda a apenas duas das três seguintes perguntas:

- 1. (3 valores) Dê um exemplo de:
 - (a) uma sucessão alternada e limitada.
 - (b) uma sucessão limitada, mas não monótona nem alternada.
 - (c) uma sucessão $\{u_n\}$ tal que $\lim |u_n| = 3$, mas $\{u_n\}$ não é convergente para 3.
 - (d) uma sucessão de Cauchy.
 - (e) sucessões $\{u_n\}$, $\{w_n\}$ tais que $\lim u_n = +\infty$, $\lim w_n = -\infty$ e $\lim (u_n + w_n) = 4$.
- 2. (3 valores)
 - (a) Defina sucessão monótona.
 - (b) Defina sucessão limitada.
 - (c) Considere $a \in \mathbb{R}$ tal que 0 < a < 1. Mostre que a sucessão de termo geral

$$u_n = 1 + a + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}$$

é monótona e limitada.

- 3. (3 valores)
 - (a) Defina sucessão convergente.
 - (b) Mostre, usando a definição, que se $\lim u_n = a$ e $\lim w_n = b$, então $\lim (u_n + w_n) = a + b$.

PARTE III: Responda a apenas duas das três seguintes perguntas:

- 1. (3,5 valores) Considere uma série $\sum_{n=1}^{+\infty} u_n$.
 - (a) Defina sucessão $\{s_n\}$ das somas parciais da série.
 - (b) Usando a definição da alínea anterior, defina série convergente.
 - (c) Mostre que se a série é convergente, então $\lim u_n = 0$.
- 2. (3,5 valores)
 - (a) Dê, justificando, um exemplo de uma sucessão $\{u_n\}$ tal que:
 - i. $\lim u_n = 0$ e $\sum_{n=1}^{+\infty} u_n$ é divergente.
 - ii. $\sum_{n=1}^{+\infty} u_n$ é convergente e $\sum_{n=1}^{+\infty} (u_n)^2$ é divergente.
 - (b) Mostre que:

i.
$$\sum_{n=1}^{+\infty} \frac{3^{n-1}}{2^{2n}} = 1$$

ii.
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$

3. (3,5 valores) Diga, justificando, se as séries seguintes são convergentes:

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{1+n}$$

$$(b) \sum_{n=1}^{+\infty} \frac{n^n}{n!};$$

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{1+n}$$
; (b) $\sum_{n=1}^{+\infty} \frac{n^n}{n!}$; (c) $\sum_{n=1}^{+\infty} \frac{3\sqrt[3]{n^5} + 4\sqrt{n}}{n^2}$;

$$(d) \sum_{n=1}^{+\infty} \left(\frac{7}{3n^5} + \frac{1}{4^n} \right); \quad (e) \sum_{n=1}^{+\infty} \left(1 + \frac{1}{n^8} \right); \quad (f) \sum_{n=1}^{+\infty} \frac{\ln \sqrt{n}}{n}.$$

$$(e) \sum_{n=1}^{+\infty} \left(1 + \frac{1}{n^8} \right);$$

$$(f)\sum_{n=1}^{+\infty}\frac{\ln\sqrt{n}}{n}$$