PRÁCTICA 06

DETECTOR DE TECLADO

Diseñe, programe, simule y construya un sistema en el cual se muestre en un arreglo de 4 displays de 7 segmentos cuál de los pines del puerto RB4-RB7 cambió de estado lógico (Por ejemplo 000H, 00H0, 0H00, H000). El diagrama esquemático para resolver el problema debería contener los siguientes elementos:

Se sugiere utilizar el puerto C para el control de los segmentos de los displays y el puerto D para el control de la activación de los displays de acuerdo con el siguiente diagrama sin embargo pueden cambiar los puertos a utilizar. Los pulsadores solo pueden estar asociados al puerto RB(7:4). El diagrama del circuito resultante que se sugiere es el siguiente:

Para poder realizar esta práctica es necesario multiplexar la información que llega a los segmentos de los displays de tal forma que en un primer instante se le envía la información al display 1 (mientras los displays 2, 3 y 4 permanecen apagados), y en un segundo instante se envía la información al display 2 (mientras los displays 1, 3 y 4 permanece apagado); este proceso se repite de manera infinita con los siguientes displays a una velocidad lo suficientemente alta para que el ojo humano no detecte las intermitencias de los displays. La activación o desactivación de los displays se realiza mediante transistores NPN los cuales hacen las veces de switches electrónicos conectados a los cátodos comunes.

Respecto a los pulsadores, estos deben estar conectados solo a los pines del puerto B (RB7-RB4) y además debe suponerse que solo un pulsador puede ser activado a la vez. La detección del evento externo (activación de un pulsador) debe estar programado/configurado para atender cada vez que ocurre un cambio en el puerto B.

El efecto esperado es que, si se presiona el pulsador asociado a RB4, en los displays se pueda visualizar 000H; si se presiona el pulsador asociado a RB5, en los displays se pueda visualizar 00H0; si se presiona el pulsador asociado a RB6, en los displays se pueda visualizar 0H00; si se presiona el pulsador asociado a RB7, en los displays se pueda visualizar H000. Cabe señalar que el caracter que indique el pulsador presionado puede ser distinto de "H".

Para poder validar la elaboración de la práctica deberán realizar el reporte de práctica correspondiente incluyendo los siguientes elementos:

- a) Describa los pines de entrada y salida a utilizar para la aplicación solicitada.
- b) Elaborar el diagrama de flujo del programa.
- c) Mediante MPLAB X IDE, escribir el programa en lenguaje C para generar el archivo .hex que permitirá al microcontrolador implementar la aplicación solicitada. Se deben generar capturas de pantalla del programa en C realizado. Estas capturas de pantalla deben mostrar el código fuente y no toda la pantalla del programa MPLAB.
- d) Realice la simulación del funcionamiento del programa generado en el inciso C (se sugiere el uso de Proteus) para comprobar que el circuito y la aplicación se comportan de acuerdo con los requerimientos solicitados. Se deben realizar capturas de pantalla del diagrama construido en el simulador.
- e) Construya el circuito con todos los elementos físicos requeridos para comprobar en el laboratorio que el circuito cumple con lo solicitado en la práctica. Tome fotografías y video para evidenciar el trabajo dentro del laboratorio. Sea ordenado y cuidadoso en la construcción del circuito.
- f) Elaborar conclusiones en donde se mencionen los problemas afrontados como equipo en la elaboración de la práctica y como fueron superados.
- g) Elaborar el reporte de práctica correspondiente que incluya todo lo realizado en los incisos A al G.
- h) Elaborar un video no mayor a 5 minutos donde participen todos los integrantes del equipo (en cámara y voz) en donde se explique el funcionamiento del circuito. Esta explicación debe abordar la programación en C y la configuración del microcontrolador (explicar el programa), el funcionamiento del mismo desde alguna plataforma de simulación (por ejemplo Proteus) y el funcionamiento del circuito construido físicamente (en el laboratorio). Todos los diagramas que se muestren en el video deben funcionar de

manera simulada y física para cada una de las condiciones de funcionamiento solicitadas. El video realizado debe ser subido a alguna plataforma de videos de algún integrante del equipo, y compartir el enlace de dicho video en el reporte de práctica para que el profesor pueda revisarlo. Deben asegurarse que el video es completamente accesible.

Recuerde que el reporte de práctica y el video, deben cumplir con los lineamientos descritos en la guía para la elaboración de tareas y práctica y que todos los integrantes del equipo deben subir el reporte de práctica a la plataforma Classroom.