Answers/Solutions of Exercise 2 (Version: May 25, 2012)

1. (a)
$$\begin{pmatrix} -6 & 6 & -6 \\ -6 & 6 & -6 \\ -6 & 6 & -6 \end{pmatrix}$$
 (b) $\begin{pmatrix} -4 & 2 & 5 & 8 \\ 1 & -5 & -5 & -8 \\ -1 & 2 & 2 & 8 \\ 1 & -2 & -5 & -11 \end{pmatrix}$ (c) Not possible

(d)
$$\begin{pmatrix} 1 & 3 & 6 \\ 0 & 4 & 10 \\ 0 & 0 & 9 \end{pmatrix}$$
 (e) $\begin{pmatrix} -3 & 3 & -4 \\ 3 & -3 & 4 \\ -3 & 3 & -4 \\ 3 & -3 & 4 \end{pmatrix}$ (f) $\begin{pmatrix} 3 & -6 & -15 & -24 \\ 8 & -4 & -16 & -28 \\ 9 & 0 & -9 & -18 \end{pmatrix}$

(g) Not possible (h)
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 (i)
$$\begin{pmatrix} -38 \\ -28 \\ -18 \end{pmatrix}$$

(m)
$$\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$$
 (n) Not possible (o) $\begin{pmatrix} 1 & -1 & 3 & 2 \\ -1 & 1 & -3 & -2 \\ 3 & -3 & 9 & 6 \\ 2 & -2 & 6 & 4 \end{pmatrix}$

(p) 15

2.
$$a = 0, b = -1, c = 2, d = -4.$$

3. (a) (i) (3,4)-entry of
$$AB$$
 (ii) (4,1)-entry of AB (iii) (3,2)-entry of BA (iv) (2,5)-entry of BA

(b) (i)
$$\sum_{j=1}^{n} a_{3j}b_{j2}$$
 (ii) $\sum_{i=1}^{m} b_{4i}a_{i1}$

4. (a)
$$a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

(b)
$$c_{i1}c_{1j} + c_{i2}c_{2j} + c_{i3}c_{3j} + \dots + c_{ip}c_{pj} = \sum_{k=1}^{p} c_{ik}c_{kj}$$

(c)
$$a_{i1}c_{j1} + a_{i2}c_{j2} + a_{i3}c_{j3} + \dots + a_{ip}c_{jp} = \sum_{k=1}^{p} a_{ik}c_{jk}$$

5. For example, $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$.

The general form of the matrix $\mathbf{A} = (a_{ij})_{3\times 3}$ is $a_{ii} = 0$ for i = 1, 2, 3 and $a_{ij} = -a_{ji}$ for all other values of $1 \le i, j \le 3$.

- 6. (a) For example, $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
 - (b) For example, $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 - (c) For example, $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 7. The matrix \mathbf{A} can be $\begin{pmatrix} 2 & 3 & -1 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 & -1 \\ 2 & 3 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 & -1 \\ 4 & 6 & -2 \end{pmatrix}$, etc.
- 8. (a) S is a straight line joining (1,0,3) and (0,-1,3).
 - (b) For example, $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

The linear system consists of two planes which intersect at the line S.

- 9. If Ax = b has a solution x = u, then u + v is also a solution to Ax = b for all solutions x = v to Ax = 0. Hence Ax = b has either no solutions or infinitely many solutions.
- 10. (a) Let x = u be any solution to the system Bx = 0. Then ABu = A0 = 0. The system ABx = 0 has at least as many solutions as the system Bx = 0. Thus it has infinitely many solutions.
 - (b) No. For example, let $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and consider two cases (i) $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and (ii) $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Note that $\mathbf{B}\mathbf{x} = \mathbf{0}$ has only the trivial solution. For (i), $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$ has only the trivial solution while for (ii), $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
- 11. (a) (i) 2; (ii) -6; (iii) 16.

(b)
$$\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = (a_{11} + b_{11}) + (a_{22} + b_{22}) + \dots + (a_{nn} + b_{nn})$$

= $(a_{11} + a_{22} + \dots + a_{nn}) + (b_{11} + b_{22} + \dots + b_{nn}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}).$

(c)
$$\operatorname{tr}(c\mathbf{A}) = ca_{11} + \dots + ca_{nn} = c(a_{11} + \dots + a_{nn}) = c\operatorname{tr}(\mathbf{A}).$$

(d) The
$$(i, i)$$
-entry of $\mathbf{CD} = c_{i1}d_{1i} + c_{i2}d_{2i} + ... + c_{in}d_{ni}$. Thus,

$$\operatorname{tr}(\boldsymbol{C}\boldsymbol{D}) = \sum_{i=1}^{m} (c_{i1}d_{1i} + c_{i2}d_{2i} + \dots + c_{in}d_{ni}) = \sum_{j=1}^{n} (c_{1j}d_{j1} + c_{2j}d_{j2} + \dots + c_{mj}d_{jm}).$$

But the (i, i)-entry of $DC = d_{i1}c_{1i} + d_{i2}c_{2i} + ... + d_{im}c_{mi}$. So the trace of DC is precisely the term on the right hand side above.

- (e) By (d), $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$. Then by (b) and (c), $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B} \boldsymbol{B}\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}) = 0$. However, $\operatorname{tr}(\boldsymbol{I}) = n$. It is impossible to have square matrices \boldsymbol{A} and \boldsymbol{B} such that $\boldsymbol{A}\boldsymbol{B} \boldsymbol{B}\boldsymbol{A} = \boldsymbol{I}$.
- 12. (a) (i) is not orthogonal while (ii) is orthogonal.
 - (b) $(AB)(AB)^{\mathrm{T}} = ABB^{\mathrm{T}}A^{\mathrm{T}} = AIA^{\mathrm{T}} = I$ and $(AB)^{\mathrm{T}}(AB) = B^{\mathrm{T}}A^{\mathrm{T}}AB = BIB^{\mathrm{T}} = I$ since both A and B are orthogonal. Thus AB is orthogonal.

13. (a)
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- (b) Since AB = BA, $(AB)^k = A^k B^k$ (you need to prove it by using the mathematical induction). Since A is nilpotent, $A^k = 0$ for some positive integer k. Thus $(AB)^k = A^k B^k = 0$ and AB is nilpotent.
- (c) No. For example, let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Note that \mathbf{A} is nilpotent and $\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{BA}$. But $(\mathbf{AB})^k = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ for all k and hence \mathbf{AB} is not nilpotent. (For this case, $(\mathbf{AB})^k \neq \mathbf{A}^k \mathbf{B}^k$.)
- 14. (a) All except $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ satisfy (\star) .
 - (b) Since $P, Q \in \mathcal{B}$, AP = PA and AQ = QA. Then,

$$A(P+Q) = AP + AQ = PA + QA = (P+Q)A.$$

Hence P + Q satisfies (\star) .

Likewise, A(PQ) = APQ = PAQ = PQA = (PQ)A and hence PQ satisfies (\star) .

(c)
$$\mathbf{A} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \mathbf{A} \iff \begin{pmatrix} p+r & q+s \\ r & s \end{pmatrix} = \begin{pmatrix} p & p+q \\ r & r+s \end{pmatrix}$$

Thus the conditions are r = 0 and s = p.

15. (a) The statement is clearly true when k = 1. Assume that statement is true when k = n, i.e.

$$\mathbf{D}^n = \begin{pmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{pmatrix}.$$

Then $\mathbf{D}^{n+1} = \mathbf{D}\mathbf{D}^n$ ie.

$$\boldsymbol{D}^{n+1} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{pmatrix} = \begin{pmatrix} a^{n+1} & 0 & 0 \\ 0 & b^{n+1} & 0 \\ 0 & 0 & c^{n+1} \end{pmatrix}.$$

Thus the statement is true when k = n+1. By the mathematical induction the statement is true for all positive intergers k.

(b)
$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
.

- (c) There are 8 such diagonal matrices \boldsymbol{B} : $\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 2 & 0 \\ 0 & 0 & \pm 3 \end{pmatrix}$.
- 16. (a) No. For example, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.
 - (b) ABC = BAC = BCA and ACB = CAB = CBA.
- 17. (a) $x_1 = z_0$ is the number of babies in next year; $y_1 = 0.5x_0$ is the number of one-year-old cubs in next year; and $z_1 = 0.6y_0 + 0.7z_0$ is the number of adults in next year.
 - (b) x_n , y_n and z_n are the numbers of babies, one-year-old cubs and adults, respectively, after n years.

(c)
$$\begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0.5 & 0 & 0 \\ 0 & 0.6 & 0.7 \end{pmatrix}^3 \begin{pmatrix} 0 \\ 0 \\ 100 \end{pmatrix} = \begin{pmatrix} 49 \\ 35 \\ 64.3 \end{pmatrix}.$$

Thus the total population three years later is $x_3 + y_3 + z_3 \approx 148$.

18. Let $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{ij})_{m \times n}$. Since all matrices in this question are of the same size, we only need to check the (i, j)-entries.

4

(a) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $\mathbf{A} + \mathbf{B} = a_{ij} + b_{ij}$
 $= b_{ij} + a_{ij}$ (by a property of real numbers)
 $= \text{the } (i, j)$ -entry of $\mathbf{B} + \mathbf{A}$.

Thus $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.

(b) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $c(\mathbf{A} + \mathbf{B}) = c(\text{the } (i, j)\text{-entry of } \mathbf{A} + \mathbf{B})$
 $= c(a_{ij} + b_{ij})$
 $= ca_{ij} + cb_{ij}$ (by a property of real numbers)
 $= \text{the } (i, j)\text{-entry of } c\mathbf{A} + \text{the } (i, j)\text{-entry of } c\mathbf{B}$
 $= \text{the } (i, j)\text{-entry of } c\mathbf{A} + c\mathbf{B}$.

Thus $c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$.

(c) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $(c + d)\mathbf{A} = (c + d)a_{ij}$
 $= ca_{ij} + da_{ij}$ (by a property of real numbers)
 $= \text{the } (i, j)$ -entry of $c\mathbf{A}$ + the (i, j) -entry of $d\mathbf{A}$
 $= \text{the } (i, j)$ -entry of $c\mathbf{A} + d\mathbf{A}$.

Thus $(c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$.

an by (a), A + 0 = 0 + A = A.

(d) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $c(d\mathbf{A}) = c(\text{the } (i, j)\text{-entry of } d\mathbf{A})$
 $= c(da_{ij})$
 $= (cd)a_{ij}$ (by a property of real numbers)
 $= \text{the } (i, j)\text{-entry of } (cd)\mathbf{A}.$

Thus $c(d\mathbf{A}) = (cd)\mathbf{A}$ and hence $d(c\mathbf{A}) = (dc)\mathbf{A} = (cd)\mathbf{A}$ (where the last equality follows by dc = cd which is a property of real number).

(e) For
$$i=1,2,\ldots,m$$
 and $j=1,2,\ldots,n,$ the (i,j) -entry of $\mathbf{0}+\mathbf{A}=0+a_{ij}$ = a_{ij} (by a property of real numbers) = the (i,j) -entry of \mathbf{A} .

(f) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $\mathbf{A} - \mathbf{A} = a_{ij} - a_{ij}$
 $= 0$ (by a property of real numbers)
 $= \text{the } (i, j)$ -entry of $\mathbf{0}$.

Thus A - A = 0.

(g) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $0\mathbf{A} = 0 \cdot a_{ij}$
 $= 0$ (by a property of real numbers)
 $= \text{the } (i, j)$ -entry of $\mathbf{0}$.

Thus $0\mathbf{A} = \mathbf{0}$.

- 19. It is easier to use the summation notation \sum to do this question.
 - (a) Let $\mathbf{A} = (a_{ij})_{m \times p}$, $\mathbf{B} = (b_{ij})_{p \times q}$ and $\mathbf{C} = (c_{ij})_{q \times n}$.
 - (i) The size of BC is $p \times n$ and hence the size of A(BC) is $m \times n$. On the other hand, the size of AB is $m \times q$ and hence the size of (AB)C is $m \times n$. So the sizes of A(BC) and (AB)C are the same.

(ii) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $\mathbf{A}(\mathbf{B}\mathbf{C})$

$$= \sum_{k=1}^{p} a_{ik} (\text{the } (k, j)\text{-entry of } \mathbf{B}\mathbf{C})$$

$$= \sum_{k=1}^{p} a_{ik} (b_{k1}c_{1j} + b_{k2}c_{2j} + \cdots + b_{kq}c_{qj})$$

$$= \sum_{k=1}^{p} (a_{ik}b_{k1}c_{1j} + a_{ik}b_{k2}c_{2j} + \cdots + a_{ik}b_{kq}c_{qj})$$

$$= \sum_{k=1}^{p} \sum_{r=1}^{q} a_{ik}b_{kr}c_{rj}.$$
On the other hand,
the (i, j) -entry of $(\mathbf{A}\mathbf{B})\mathbf{C}$

the
$$(i, j)$$
-entry of $(\mathbf{AB})\mathbf{C}$

$$= \sum_{r=1}^{q} (\text{the } (i, r)\text{-entry of } \mathbf{AB})c_{r,j}$$

$$= \sum_{r=1}^{q} (a_{i1}b_{1r} + a_{i2}b_{2r} + \dots + a_{iq}b_{qr})c_{r,j}$$

$$= \sum_{r=1}^{q} (a_{i1}b_{1r}c_{rj} + a_{i2}b_{2r}c_{rj} + \dots + a_{iq}b_{qr}c_{rj})$$
$$= \sum_{r=1}^{q} \sum_{k=1}^{p} a_{ik}b_{kr}c_{rj} = \sum_{k=1}^{p} \sum_{r=1}^{q} a_{ik}b_{kr}c_{rj}.$$

Thus the (i, j)-entries of A(BC) and (AB)C are the same.

By (i) and (ii),
$$A(BC) = (AB)C$$
.

- (b) Let $\mathbf{A} = (a_{ij})_{p \times n}$, $\mathbf{C_1} = (c_{ij})_{m \times p}$ and $\mathbf{C_2} = (d_{ij})_{m \times p}$.
 - (i) The size of $C_1 + C_2$ is $m \times p$ and hence the size of $(C_1 + C_2)A$ is $m \times n$. On the other hand, the sizes of both C_1A and C_2A are $m \times n$ and hence the size of $C_1A + C_2A$ is $m \times n$. So the sizes of $(C_1 + C_2)A$ and $C_1A + C_2A$ are the same.
 - (ii) For i = 1, 2, ..., m and j = 1, 2, ..., n, the (i, j)-entry of $(C_1 + C_2)A$ $= \sum_{k=1}^{p} (\text{the } (i, k)\text{-entry of } C_1 + C_2)a_{kj}$ $= \sum_{k=1}^{p} (c_{ik} + d_{ik})a_{kj}$ $= \sum_{k=1}^{p} (c_{ik}a_{kj} + d_{ik}a_{kj})$ $= \sum_{k=1}^{p} c_{ik}a_{kj} + \sum_{k=1}^{p} d_{ik}a_{kj}$ $= (\text{the } (i, j)\text{-entry of } C_1A) + (\text{the } (i, j)\text{-entry of } C_2A).$

By (i) and (ii),
$$(C_1 + C_2)A = C_1A + C_2A$$
.

- (c) Let $\mathbf{A} = (a_{ij})_{m \times p}$ and $\mathbf{B} = (b_{ij})_{p \times n}$.
 - (i) The sizes of all the three matrices are $m \times n$.
 - (ii) For $i=1,2,\ldots,m$ and $j=1,2,\ldots,n$, the (i,j)-entry of $c(\boldsymbol{A}\boldsymbol{B})=c\sum_{k=1}^p a_{ik}b_{kj}=\sum_{k=1}^p ca_{ik}b_{kj}$, the (i,j)-entry of $(c\boldsymbol{A})\boldsymbol{B}=\sum_{k=1}^p (\operatorname{the}\ (i,k)$ -entry of $c\boldsymbol{A})b_{kj}=\sum_{k=1}^p (ca_{ik})b_{kj}$, the (i,j)-entry of $\boldsymbol{A}(c\boldsymbol{B})=\sum_{k=1}^p a_{ik}(\operatorname{the}\ (k,j)$ -entry of $c\boldsymbol{B})=\sum_{k=1}^p a_{ik}(cb_{kj})$.

Thus the (i, j)-entries of all the three matrices are the same.

By (i) and (ii),
$$c(\mathbf{AB}) = (c\mathbf{A})\mathbf{B} = \mathbf{A}(c\mathbf{B})$$
.

(d) Let
$$\mathbf{A} = (a_{ij})_{m \times p}$$
 and let $\delta_{ij} = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j. \end{cases}$

- (i) The size of $\mathbf{A0}_{n\times q}$ is $m\times q$ which is equal to the size of $\mathbf{0}_{m\times q}$; the size of $\mathbf{0}_{p\times m}\mathbf{A}$ is $p\times n$ which is equal to the size of $\mathbf{0}_{p\times n}$; and finally, all three matrices \mathbf{AI}_n , $\mathbf{I}_m\mathbf{A}$ and \mathbf{A} are $m\times n$.
- (ii) For i = 1, 2, ..., m and j = 1, 2, ..., q,

the
$$(i,j)$$
-entry of $\mathbf{A0}_{n\times q} = \sum_{k=1}^{n} a_{ik} 0 = 0 = \text{the } (i,j)$ -entry of $\mathbf{0}_{m\times q}$.

For
$$i = 1, 2, ..., p$$
 and $j = 1, 2, ..., n$,

the
$$(i, j)$$
-entry of $\mathbf{0}_{p \times m} \mathbf{A} = \sum_{k=1}^{m} 0 a_{kj} = 0 = \text{the } (i, j)$ -entry of $\mathbf{0}_{p \times n}$.

For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,

the
$$(i, j)$$
-entry of $\mathbf{A}\mathbf{I}_n = \sum_{k=1}^n a_{ik} \delta_{kj} = a_{ij} = \text{the } (i, j)$ -entry of \mathbf{A} .

For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,

the
$$(i, j)$$
-entry of $\mathbf{I}_m \mathbf{A} = \sum_{k=1}^m \delta_{ik} a_{kj} = a_{ij} = \text{the } (i, j)$ -entry of \mathbf{A} .

Thus
$$A\mathbf{0}_{n\times q}=\mathbf{0}_{m\times q},\, \mathbf{0}_{p\times m}A=\mathbf{0}_{p\times n}$$
 and $AI_n=I_mA=A$.

20. (a) (i) The size of \mathbf{A}^{T} is $n \times m$ and hence the size of $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}}$ is $m \times n$ which is equal to the size of \mathbf{A} .

(ii) For
$$i=1,2,\ldots,m$$
 and $j=1,2,\ldots,n$,
the (i,j) -entry of $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}}=$ the (j,i) -entry of $\mathbf{A}^{\mathrm{T}}=$ the (i,j) -entry of \mathbf{A} .
By (i) and (ii), $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}}=\mathbf{A}$.

(b) Let
$$\mathbf{A} = (a_{ij})_{m \times n}$$
 and $\mathbf{B} = (b_{ij})_{m \times n}$.

(i) The sizes of the two matrices are $n \times m$.

(ii) For
$$i = 1, 2, ..., m$$
 and $j = 1, 2, ..., n$,
the (i, j) -entry of $(\mathbf{A} + \mathbf{B})^{\mathrm{T}}$
= the (j, i) -entry of $\mathbf{A} + \mathbf{B}$

$$= a_{ji} + b_{ji}$$
= the (i, j) -entry of \mathbf{A}^{T} + the (i, j) -entry of \mathbf{B}^{T}
= the (i, j) -entry of \mathbf{A}^{T} + \mathbf{B}^{T} .

By (i) and (ii),
$$(\boldsymbol{A} + \boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}} + \boldsymbol{B}^{\mathrm{T}}$$
.

- (c) (i) The sizes of the two matrices are $n \times m$.
 - (ii) For i = 1, 2, ..., m and j = 1, 2, ..., n, the (i, j)-entry of $(c\mathbf{A})^{\mathrm{T}}$ = the (j, i)-entry of $c\mathbf{A}$ = c (the (j, i)-entry of \mathbf{A}) = c (the (i, j)-entry of $c\mathbf{A}^{\mathrm{T}}$) = the (i, j)-entry of $c\mathbf{A}^{\mathrm{T}}$.

By (i) and (ii),
$$(c\mathbf{A})^{\mathrm{T}} = c\mathbf{A}^{\mathrm{T}}$$
.

21.
$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.

22. It suffice to show that if the linear system has more than one solution, it must has infinitely many solutions.

Suppose Ax = b has two different solutions u and v, i.e. Au = b, Av = b and $u \neq v$. Then for all $t \in \mathbb{R}$,

$$A(tu + (1-t)v) = tAu + (1-t)Av = tb + (1-t)b = b$$

and hence $t\mathbf{u} + (1-t)\mathbf{v}$ is a solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$. Since $t_1\mathbf{u} + (1-t_1)\mathbf{v} \neq t_2\mathbf{u} + (1-t_2)\mathbf{v}$ whenever $t_1 \neq t_2$, there are infinitely many solutions.

23. (a) Let $B_1 = (b_1 \cdots b_p)$ and $B_2 = (c_1 \cdots c_q)$ where b_1, \ldots, b_p are columns of B_1 and c_1, \ldots, c_p are columns of B_2 . Then

$$egin{pmatrix} \left(B_1 & B_2
ight) = \left(b_1 & \cdots & b_p & c_1 & \cdots & c_q
ight). \end{pmatrix}$$

By (2) of Notation 2.2.15, we have

$$egin{aligned} oldsymbol{AB_1} &= egin{pmatrix} oldsymbol{Ab_1} & \cdots & oldsymbol{Ab_p} \end{pmatrix}, \ oldsymbol{AB_2} &= egin{pmatrix} oldsymbol{Ac_1} & \cdots & oldsymbol{Ac_q} \end{pmatrix}, \ oldsymbol{A} oldsymbol{B_1} & oldsymbol{B_2} \end{pmatrix} &= egin{pmatrix} oldsymbol{Ab_1} & \cdots & oldsymbol{Ab_p} & oldsymbol{Ac_1} & \cdots & oldsymbol{Ac_q} \end{pmatrix}. \end{aligned}$$

Hence $A(B_1 \ B_2) = (AB_1 \ AB_2)$.

- (b) No. The size of $(C_1 \ C_2)$ is $r \times 2m$ and hence we cannot pre-multiply the matrix to A.
- (c) Let $m{D_1} = egin{pmatrix} m{d_1} \\ \vdots \\ m{d_s} \end{pmatrix}$ and $m{D_2} = egin{pmatrix} m{f_1} \\ \vdots \\ m{f_t} \end{pmatrix}$ where $m{d_1}, \, \dots, \, m{d_s}$ are rows of $m{D_1}$ and

 f_1, \ldots, f_t are rows of D_2 . Then

$$egin{pmatrix} egin{pmatrix} D_1 \ D_2 \end{pmatrix} = egin{pmatrix} d_1 \ d_s \ f_1 \ dots \ f_t \end{pmatrix}.$$

By (3) of Notation 2.2.15, we have

$$egin{aligned} oldsymbol{D_1} oldsymbol{A} = egin{pmatrix} oldsymbol{d_1} oldsymbol{A} \ dots \ oldsymbol{d_s} oldsymbol{A} \end{pmatrix}, \quad oldsymbol{D_2} oldsymbol{A} = egin{pmatrix} oldsymbol{d_1} oldsymbol{A} \ dots \ oldsymbol{d_s} oldsymbol{A} \ dots \ oldsymbol{f_1} \ oldsymbol{f_1} \ oldsymbol{f_1} \ oldsymbol{A} \ dots \ oldsymbol{f_1} \ oldsymbol{f_2} \ oldsymbol{f_1} \ oldsymbol{f_2} \ oldsymbol{f_1} \ oldsymbol{f_2} \ oldsymbol{f_3} \ oldsymbol{f_2} \ oldsymbol{f_2} \ oldsymbol{f_3} \ oldsymbol{f_2} \ oldsymbol{f_3} \ oldsymbol{f_3} \ oldsymbol{f_3}$$

Hence
$$egin{pmatrix} m{D_1} \ m{D_2} \end{pmatrix} m{A} = egin{pmatrix} m{D_1} m{A} \ m{D_2} m{A} \end{pmatrix}.$$

24. (a) True. Let $\mathbf{A} = (a_{ij})_{n \times n}$ and $\mathbf{B} = (b_{ij})_{n \times n}$. Since $a_{ij} = b_{ij} = 0$ for $i \neq j$, the (i, j)-entry of \mathbf{AB} is equal to

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \begin{cases} a_{ii}b_{ii} & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Likewise, the (i, j)-entry of BA is equal to

$$b_{i1}a_{1j} + b_{i2}a_{2j} + \dots + b_{in}a_{nj} = \begin{cases} b_{ii}a_{ii} & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus AB = BA.

(b) True. Let $\boldsymbol{D} = \frac{1}{2}(\boldsymbol{A} + \boldsymbol{A}^{\mathrm{T}})$.

$$oldsymbol{D}^{ ext{ iny T}} = \left[rac{1}{2}(oldsymbol{A} + oldsymbol{A}^{ ext{ iny T}})
ight]^{ ext{ iny T}} = rac{1}{2}(oldsymbol{A} + oldsymbol{A}^{ ext{ iny T}})^{ ext{ iny T}} = rac{1}{2}(oldsymbol{A}^{ ext{ iny T}} + (oldsymbol{A}^{ ext{ iny T}})^{ ext{ iny T}}) = rac{1}{2}(oldsymbol{A}^{ ext{ iny T}} + oldsymbol{A}) = oldsymbol{D}.$$

Thus D is symmetric.

- (c) False. For example, let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

 (Note that $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A} + \mathbf{B}^2$.)
- (d) True. Since \boldsymbol{A} and \boldsymbol{B} are symmetric, $(\boldsymbol{A} \boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}^{\mathrm{T}} = \boldsymbol{A} \boldsymbol{B}$.
- (e) False. For example, let $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.
- (f) False. For example, let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- (g) True. The (i, i)-entry of $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ is equal to

$$a_{i1}a_{i1} + a_{i2}a_{i2} + \dots + a_{in}a_{in} = \sum_{i=1}^{n} a_{ik}^{2}.$$

So $\mathbf{A}\mathbf{A}^{\mathrm{T}}=0$ implies that $a_{ik}=0$ for all i and k, i.e. $\mathbf{A}=\mathbf{0}$.

25. (a) $\mathbf{A}^2 = \begin{pmatrix} 4 & -6 & -6 \\ 0 & 10 & 6 \\ 0 & 6 & 10 \end{pmatrix}$, $-6\mathbf{A} = \begin{pmatrix} -12 & 6 & 6 \\ 0 & -18 & -6 \\ 0 & -6 & -18 \end{pmatrix}$, $8\mathbf{I} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{pmatrix}$.

It is easy to be checked that $\mathbf{A}^2 - 6\mathbf{A} + 8\mathbf{I} = \mathbf{0}$.

(b) By (a), $A^2 = 6A - 8I$. Since

$$A\left[\frac{1}{8}(6I - A)\right] = \frac{1}{8}A(6I - A) = \frac{1}{8}(6A - A^2) = \frac{1}{8}(6A - 6A + 8I) = I,$$
 $A^{-1} = \frac{1}{8}(6I - A).$

- 26. (a) Since $(I A)(I + A) = I A^2 = I$, I A is invertible and $(I A)^{-1} = I + A$.
 - (b) Since $(I A)(I + A + A^2) = I A^3 = I$, I A is invertible and $(I A)^{-1} = I + A + A^2$.
 - (c) Yes. In general, we have $(I A)(I + A + \cdots + A^{n-1}) = I A^n$. So if $A^n = 0$, then I A is invertible and its inverse is $I + A + \cdots + A^{n-1}$.
- 27. (a) For example, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
 - (b) Since $(\boldsymbol{I} + \boldsymbol{A}) \left[\frac{1}{2} (2\boldsymbol{I} \boldsymbol{A}) \right] = \frac{1}{2} (\boldsymbol{I} + \boldsymbol{A}) (2\boldsymbol{I} \boldsymbol{A}) = \frac{1}{2} (2\boldsymbol{I} + \boldsymbol{A} \boldsymbol{A}^2) = \boldsymbol{I},$ $\boldsymbol{I} + \boldsymbol{A}$ is invertible and its inverse is $\frac{1}{2} (2\boldsymbol{I} - \boldsymbol{A})$.

28. (a) False. For example, let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

(b) False. For example, let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

29. Since we cannot assume that $\mathbf{A}^{-1} + \mathbf{B}^{-1}$ is invertible at the beginning, we cannot prove $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1}(\mathbf{A}^{-1} + \mathbf{B}^{-1})^{-1}\mathbf{B}^{-1}$ directly. Instead, we first prove the equivalent form

$$(A(A+B)^{-1}B)^{-1} = A^{-1} + B^{-1}.$$

Since A, B and A + B are invertible, $A(A + B)^{-1}B$ is invertible and

$$(\boldsymbol{A}(\boldsymbol{A}+\boldsymbol{B})^{-1}\boldsymbol{B})^{-1} = \boldsymbol{B}^{-1}(\boldsymbol{A}+\boldsymbol{B})\boldsymbol{A}^{-1} = (\boldsymbol{B}^{-1}\boldsymbol{A}+\boldsymbol{I})\boldsymbol{A}^{-1} = \boldsymbol{A}^{-1}+\boldsymbol{B}^{-1}.$$

Hence $A^{-1} + B^{-1}$ is invertible and $A(A + B)^{-1}B = (A^{-1} + B^{-1})^{-1}$ which implies $(A + B)^{-1} = A^{-1}(A^{-1} + B^{-1})^{-1}B^{-1}$.

- 30. (a) $(c\mathbf{A})(\frac{1}{c}\mathbf{A}^{-1}) = (c\frac{1}{c})\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ and $(\frac{1}{c}\mathbf{A}^{-1})(c\mathbf{A}) = (\frac{1}{c}c)\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$. So $c\mathbf{A}$ is invertible and $(c\mathbf{A})^{-1} = \frac{1}{c}\mathbf{A}^{-1}$.
 - (b) $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ and $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. So \mathbf{A}^{-1} is invertible and $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.
 - (c) $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AIA^{-1} = AA^{-1} = I$ and $(B^{-1}A^{-1})(AB) = B^{-1}A^{-1}AB = B^{-1}IB = B^{-1}B = I$. So AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- 31. (a) $\mathbf{A}^k = \underbrace{(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})\cdots(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})}_{k \text{ times}} = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}.$

(b)
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

It is easy to be checked that $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$. Hence

$$\boldsymbol{A}^{10} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} (-2)^{10} & 0 \\ 0 & 3^{10} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2^{11} - 3^{10} & 3^{10} - 2^{10} \\ 2^{11} - 2 \cdot 3^{10} & 2 \cdot 3^{10} - 2^{10} \end{pmatrix}.$$

32.
$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 6 & 0 \\ -2 & 1 & 3 & 1 \end{pmatrix} \overset{R_2 + \frac{2}{5}R_1}{\longrightarrow} \begin{pmatrix} 5 & -2 & 6 & 0 \\ 0 & \frac{1}{5} & \frac{27}{5} & 1 \end{pmatrix} \overset{R_1 + 10R_2}{\longrightarrow} \begin{pmatrix} 5 & 0 & 60 & 10 \\ 0 & \frac{1}{5} & \frac{27}{5} & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5}R_1} \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & \frac{1}{5} & \frac{27}{5} & 1 \end{pmatrix} \overset{5R_2}{\longrightarrow} \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix} = \mathbf{R}$$
So $\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{2}{5} & 1 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix}$ and hence

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -\frac{2}{5} & 1 \end{pmatrix} \begin{pmatrix} 1 & -10 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix}.$$

33. (a)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

(b)
$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$R_1 - R_3$$
 $R_1 \leftrightarrow R_3$ $R_3 + 2R_2$ $2R_3$
 $B4.$ (a) $B \longrightarrow \longrightarrow \longrightarrow A$

- (b) Yes. Since $\boldsymbol{B} = \boldsymbol{E_4}^{-1} \boldsymbol{E_3}^{-1} \boldsymbol{E_2}^{-1} \boldsymbol{E_1}^{-1} \boldsymbol{A}$, if \boldsymbol{A} is invertible, \boldsymbol{B} is invertible.
- 35. Since $E_1E_2A = E_3E_4B$, we have $E_4^{-1}E_3^{-1}E_1E_2A = B$. Thus B can be obtained from A by the following elementary row operations.

36. (a) Since $ac \neq 0$, we have $a \neq 0$ and $c \neq 0$.

$$m{A} \stackrel{rac{1}{a}R_1}{\longrightarrow} egin{pmatrix} 1 & rac{b}{a} \\ 0 & c \end{pmatrix} \stackrel{rac{1}{c}R_2}{\longrightarrow} egin{pmatrix} 1 & rac{b}{a} \\ 0 & 1 \end{pmatrix} \stackrel{R_1 - rac{b}{a}R_2}{\longrightarrow} m{I}_2$$

So
$$\mathbf{A} = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix}$$
.

(b)
$$\mathbf{B} \xrightarrow{R_3 + R_1} \begin{array}{cccc} R_3 - R_2 & R_2 - 3R_3 & R_1 - 2R_2 \\ \longrightarrow & \longrightarrow & \longrightarrow & \mathbf{I}_3 \end{array}$$

So $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

37. (a)
$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 Gauss-Jordan $\begin{pmatrix} 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$

Hence the matrix is invertible and its inverse is $\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$

(b)
$$\begin{pmatrix} -1 & 3 & -4 & 1 & 0 & 0 \\ 2 & 4 & 1 & 0 & 1 & 0 \\ -4 & 2 & -9 & 0 & 0 & 1 \end{pmatrix}$$
 Gaussian $\begin{pmatrix} -1 & 3 & -4 & 1 & 0 & 0 \\ 0 & 10 & -7 & 2 & 1 & 0 \\ 0 & 0 & 0 & -2 & 1 & 1 \end{pmatrix}$ Elimination

Hence the matrix is not invertible.

(c)
$$\begin{pmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 & 0 & 1 \end{pmatrix}$$
 Gauss-Jordan $\begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & 1 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$

Hence the matrix is invertible and its inverse is $\begin{pmatrix} \frac{1}{2} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$

$$\text{(d)} \left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 0 & 0 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \text{Gauss-Jordan} \left(\begin{array}{cccc|ccc|c} 1 & 0 & 0 & 0 & 1 & 0 & \frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{8} & \frac{1}{8} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{4} & \frac{1}{4} \end{array} \right)$$

Hence the matrix is invertible and its inverse is $\begin{pmatrix} 1 & 0 & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{8} & \frac{1}{8} \\ 0 & -\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{4} & \frac{1}{4} \end{pmatrix}.$

$$\text{(e)} \left(\begin{array}{ccc|ccc|c} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 2 & 6 & 3 & 0 & 1 & 0 & 0 \\ 1 & -2 & -6 & -4 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \text{Gaussian} \\ \longrightarrow \\ \text{Elimination} \end{array} \left(\begin{array}{cccc|ccc|c} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 7 & 4 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & 1 \end{array} \right)$$

Hence the matrix is not invertible.

$$\text{(f)} \left(\begin{array}{ccc|ccc|c} 1 & 3 & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 5 & 2 & 2 & 0 & 1 & 0 & 0 \\ 1 & 3 & 8 & 9 & 0 & 0 & 1 & 0 \\ 1 & 3 & 2 & 2 & 0 & 0 & 0 & 1 \end{array} \right) \begin{array}{c} \text{Gauss-Jordan} \left(\begin{array}{cccc|ccc|c} 1 & 0 & 0 & 0 & -4 & 3 & 0 & -1 \\ 0 & 1 & 0 & 0 & 2 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -7 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 & 6 & 0 & 1 & -7 \end{array} \right)$$

Hence the matrix is invertible and its inverse is $\begin{pmatrix} -4 & 3 & 0 & -1 \\ 2 & -1 & 0 & 0 \\ -7 & 0 & -1 & 8 \\ 6 & 0 & 1 & -7 \end{pmatrix}.$

38. The inverse of
$$\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 2 \end{pmatrix}$$
 is $\frac{1}{7} \begin{pmatrix} 4 & -1 & -1 \\ -2 & -3 & 4 \\ 1 & 5 & -2 \end{pmatrix}$. So

$$\boldsymbol{X} = \frac{1}{7} \begin{pmatrix} 4 & -1 & -1 \\ -2 & -3 & 4 \\ 1 & 5 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 1 & 0 & 3 & 7 \\ 2 & 1 & 1 & 2 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 5 & 11 & 12 & -5 \\ 1 & -2 & -13 & -15 \\ 3 & 1 & 17 & 32 \end{pmatrix}.$$

39. (a) Let x_1 , x_2 , x_3 denote the number of chairs of type A, B, C manufactured respectively. We have the linear system

$$\begin{cases} 4x_1 + 4x_2 + 3x_3 = 260 \\ x_2 + 2x_3 = 60 \\ 2x_1 + 4x_2 + 5x_3 = 240, \end{cases}$$

or

$$\begin{pmatrix} 4 & 4 & 3 \\ 0 & 1 & 2 \\ 2 & 4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 260 \\ 60 \\ 240 \end{pmatrix}.$$

The inverse of the data matrix is $\begin{pmatrix} \frac{3}{2} & 4 & -\frac{5}{2} \\ -2 & -7 & 4 \\ 1 & 4 & -2 \end{pmatrix}$ and hence

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & 4 & -\frac{5}{2} \\ -2 & -7 & 4 \\ 1 & 4 & -2 \end{pmatrix} \begin{pmatrix} 260 \\ 60 \\ 240 \end{pmatrix} = \begin{pmatrix} 30 \\ 20 \\ 20 \end{pmatrix}.$$

That is, 30 chairs of type A, 20 chairs of type B and 20 chairs of type C should be manufactured.

(b) Since $10 \times (\text{the } (3,1)\text{-entry of the inverse of the data matrix}) = 10$, the number of chairs of type C is increased by 10.

40. If a=0, then the matrix can be easily checked to be invertible. If $a\neq 0$,

$$\begin{pmatrix} 1 & 0 & a \\ 0 & a & 1 \\ a & 1 & 0 \end{pmatrix} R_3 - aR_1 \begin{pmatrix} 1 & 0 & a \\ 0 & a & 1 \\ 0 & 1 & -a^2 \end{pmatrix} R_3 - \frac{1}{a}R_2 \begin{pmatrix} 1 & 0 & a \\ 0 & a & 1 \\ 0 & 0 & \frac{-(a^3+1)}{a} \end{pmatrix}.$$

The matrix is invertible if and only if $a \neq -1$. The inverse is $\frac{1}{1+a^3} \begin{pmatrix} 1 & -a & a^2 \\ -a & a^2 & 1 \\ a^2 & 1 & -a \end{pmatrix}$.

41. (a) $\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix} \xrightarrow{R_2 - aR_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & b - a & c - a \\ 0 & b^2 - a^2 & c^2 - a^2 \end{pmatrix} \xrightarrow{R_3 - (b+a)R_2}$

$$\left(\begin{array}{cccc}
1 & 1 & 1 \\
0 & b-a & c-a \\
0 & 0 & (c-a)(c-b)
\end{array}\right)$$

The homogeneous linear system has nontrivial solution if and only if (b - a) = 0 or (c - a)(c - b) = 0, i.e. a = b or a = c or b = c.

- (b) The matrix is invertible if and only if the homogeneous system in (a) has only the trivial solution, i.e. $a \neq b$ and $a \neq c$ and $b \neq c$.
- 42. Assume AB is invertible. Let C be the inverse of AB. Then (AB)C = I and hence A(BC) = I. By Theorem 2.4.12, A is invertible which contradicts that A is singular.

Assume BC is invertible. Let D be the inverse of AB. Then D(BC) = I and hence (DB)A = I. By Theorem 2.4.12, A is invertible which contradicts that A is singular.

43. Suppose $\mathbf{A} = \mathbf{E_k} \cdots \mathbf{E_1} \begin{pmatrix} \mathbf{R} \\ 0 & \cdots & 0 \end{pmatrix}$ for some elementary matrices $\mathbf{E_1}, \ldots, \mathbf{E_k}$. Let

$$b = E_k \cdots E_1 \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
. (This is only an example of many possible choices of b .)

Then

$$m{A}m{x} = m{b} \quad \Leftrightarrow \quad egin{pmatrix} m{R} \\ 0 & \cdots & 0 \end{pmatrix} m{x} = egin{pmatrix} 0 \\ dots \\ 0 \\ 1 \end{pmatrix}$$

which is inconsistent, see Remark 1.4.8.1.

44. (a) A is row equivalent to $\begin{pmatrix} R \\ 0 & \cdots & 0 \end{pmatrix}$ $\Rightarrow A = E_k \cdots E_1 \begin{pmatrix} R \\ 0 & \cdots & 0 \end{pmatrix} \text{ for some elementary matrices } E_1, \ldots, E_k.$ $\Rightarrow AB = E_k \cdots E_1 \begin{pmatrix} R \\ 0 & \cdots & 0 \end{pmatrix} B \text{ for some elementary matrices } E_1, \ldots, E_k.$ $\Rightarrow AB \text{ is row equivalent to } \begin{pmatrix} R \\ 0 & \cdots & 0 \end{pmatrix} B = \begin{pmatrix} RB \\ (0 & \cdots & 0)B \end{pmatrix} = \begin{pmatrix} RB \\ 0 & \cdots & 0 \end{pmatrix}.$

The last matrix can never be row equivalent to an identity matrix. So \boldsymbol{AB} is singular.

- (b) Since a row-echelon form of \boldsymbol{A} can have at most n non-zero rows and m>n, a row-echelon form of \boldsymbol{A} must have a zero row. By (a), $\boldsymbol{A}\boldsymbol{B}$ cannot be invertible.
- (c) For example, let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is invertible.
- 45. For i = 1, 2, ..., n, let \mathbf{E}_i be the elementary matrix associated with the row operation \mathcal{R}_i (and the column operation \mathcal{C}_i). Since \mathbf{A} is reduced to \mathbf{I} by the row operations $\mathcal{R}_1, \mathcal{R}_2, ..., \mathcal{R}_n$, we have

$$E_n \cdots E_2 E_1 A = I$$
.

By Theorem 2.4.12, \boldsymbol{A} is invertible and $\boldsymbol{A}^{-1} = \boldsymbol{E_n} \cdots \boldsymbol{E_2} \boldsymbol{E_1}$. So

$$AE_n\cdots E_2E_1=I$$
.

- 46. If $\mathbf{B} = \mathbf{E}\mathbf{A}$ where \mathbf{E} is an elementary matrix, then $\mathbf{B}^{-1} = \mathbf{A}^{-1}\mathbf{E}^{-1}$. Note that \mathbf{E}^{-1} is also an elementary matrix, see Discussion 2.4.2. By Discussion 2.4.15, post-multipling an elementary matrix to a matrix \mathbf{A} is equivalent to do an elementary column operation on \mathbf{A} .
 - (a) If \boldsymbol{B} is obtained from \boldsymbol{A} by multiplying a constant c to the ith row, then \boldsymbol{B}^{-1} can be obtained from \boldsymbol{A}^{-1} by multiplying $\frac{1}{c}$ to the ith column.
 - (b) If \boldsymbol{B} is obtained from \boldsymbol{A} by interchanging the *i*th row and the *j*th row, then \boldsymbol{B}^{-1} can be obtained from \boldsymbol{A}^{-1} by interchanging the *i*th column and the *j*th column.

(c) If \mathbf{B} is obtained from \mathbf{A} by adding c times of the ith row to the jth row, then \mathbf{B}^{-1} can be obtained from \mathbf{A}^{-1} by adding -c times of the jth column to the ith column.

47. (a) (i)
$$0 - \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 2$$

(ii)
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \xrightarrow{R_3 - R_1} \xrightarrow{R_3 - R_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

So
$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{vmatrix} = 2.$$

(iii)
$$\frac{1}{2} \begin{pmatrix}
\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} \\
- \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} & - \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \\
\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} & - \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}
\end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

(b) (i)
$$(-1)\begin{vmatrix} 4 & 1 \ 2 & -9 \end{vmatrix} - 3\begin{vmatrix} 2 & 1 \ -4 & -9 \end{vmatrix} + (-4)\begin{vmatrix} 2 & 4 \ -4 & 2 \end{vmatrix} = 0$$

(ii)
$$\begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}$$
 $\xrightarrow{R_2 + 2R_1}$ $\xrightarrow{R_3 - 4R_1}$ $\xrightarrow{R_3 + R_2}$ $\begin{pmatrix} -1 & 3 & -4 \\ 0 & 10 & -7 \\ 0 & 0 & 0 \end{pmatrix}$

So
$$\begin{vmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{vmatrix} = \begin{vmatrix} -1 & 3 & -4 \\ 0 & 10 & -7 \\ 0 & 0 & 0 \end{vmatrix} = 0.$$

(iii) The matrix is not invertible.

(c) (i)
$$2 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - 0 + 0 = 6$$

(ii)
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 $R_3 + \frac{1}{2}R_2$ $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & \frac{3}{2} \end{pmatrix}$

So
$$\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & \frac{3}{2} \end{vmatrix} = 6.$$

(iii)
$$\frac{1}{6} \begin{pmatrix} \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} & -\begin{vmatrix} 0 & -1 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 0 & 2 \\ 0 & -1 \end{vmatrix} \\ -\begin{vmatrix} 0 & 1 \\ -1 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ 0 & 2 \end{vmatrix} & -\begin{vmatrix} 2 & 0 \\ 0 & -1 \end{vmatrix} \\ \begin{vmatrix} 0 & 1 \\ 2 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 0 & -1 \end{vmatrix} & \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 3 & -1 & -2 \\ 0 & 4 & 2 \\ 0 & 2 & 4 \end{pmatrix}$$

(d) (i)
$$\begin{vmatrix} 2 & 0 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 4 \end{vmatrix} - 0 + 0 - \begin{vmatrix} 1 & 2 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix} = \left[2 \begin{vmatrix} 3 & 0 \\ 3 & 4 \end{vmatrix} - 0 + 0 \right] - \left[\begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} + 0 \right] = 24$$

(ii)
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 4 \end{pmatrix} \xrightarrow{R_2 - R_1} \xrightarrow{R_3 - R_2} \xrightarrow{R_4 - R_3} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
So
$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{vmatrix} = 24.$$

(iii)
$$\frac{1}{24} \begin{pmatrix}
\begin{vmatrix} 2 & 0 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 4 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 3 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 4 \end{vmatrix} & - \begin{vmatrix} 1 & 2 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix} \\
- \begin{vmatrix} 0 & 0 & 1 \\ 2 & 3 & 0 \\ 2 & 3 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 0 & 1 \\ 1 & 3 & 0 \\ 1 & 3 & 4 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{vmatrix} \\
- \begin{vmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 2 & 3 & 4 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 3 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 4 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{vmatrix} \\
- \begin{vmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 2 & 3 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 3 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{vmatrix} \\
- \begin{vmatrix} 2 & 4 & 0 & 6 & -6 \\ -12 & 12 & -3 & 3 \\ 0 & -8 & 8 & 0 \\ 0 & 0 & 6 & 6 \end{vmatrix}$$

$$= \frac{1}{24} \begin{pmatrix} 24 & 0 & 6 & -6 \\ -12 & 12 & -3 & 3 \\ 0 & -8 & 8 & 0 \\ 0 & 0 & 6 & 6 \end{pmatrix}$$

48. (a) x = 1, y = -1.

(b)
$$x = \frac{1}{2}, y = \frac{1}{2}, z = \frac{3}{2}$$
.

(c)
$$x = 1, y = 0, z = -2.$$

(d)
$$w = 0, x = 0, y = 0, z = -1.$$

- 49. (a) abc
 - (b) \boldsymbol{A} is invertible if and only if $a \neq 0$, $b \neq 0$ and $c \neq 0$.

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a} & -\frac{1}{a} & 0\\ 0 & \frac{1}{b} & -\frac{1}{b}\\ 0 & 0 & \frac{1}{c} \end{pmatrix}.$$

50. (a)
$$\begin{pmatrix} 1 & 0 & 2 & 0 & 2 \\ 0 & 1 & 3 & -1 & 4 \\ -2 & 1 & 0 & -2 & 6 \\ 0 & 0 & 2 & 1 & 8 \end{pmatrix}$$
Gauss-Jordan
$$\begin{pmatrix} 1 & 0 & 0 & 0 & -\frac{22}{3} \\ 0 & 1 & 0 & 0 & -\frac{34}{3} \\ 0 & 0 & 1 & 0 & \frac{14}{3} \\ 0 & 0 & 0 & 1 & -\frac{4}{3} \end{pmatrix}$$
So $x_1 = -\frac{22}{3}$, $x_2 = -\frac{34}{3}$, $x_3 = \frac{14}{3}$, $x_4 = -\frac{4}{3}$.

- (b) Note that C is a triangular matrix. Its determinant is the product of its diagonal entries which is zero. Since $\det(AC) = \det(A)\det(C) = 0$, the homogeneous system ACx = 0 has infinitely many solutions.
- 51. (a) Since $\det(\mathbf{A}) = (\lambda 2)(\lambda + 4) + 5 = (\lambda + 3)(\lambda 1)$, $\det(\mathbf{A}) = 0$ if and only if $\lambda = -3$ or 1.
 - (b) Since $\det(\mathbf{A}) = (\lambda 1)(\lambda^2 \lambda 6) = (\lambda 4)(\lambda 3)(\lambda + 2)$, $\det(\mathbf{A}) = 0$ if and only if $\lambda = 4$, 3 or -2.

(c)
$$\begin{pmatrix} 1 & \lambda & \lambda & \lambda \\ 2 & \lambda & \lambda & \lambda \\ \lambda + 1 & 1 & 2 & 0 \\ 4 & 0 & 1 & 2\lambda \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & \lambda & \lambda & \lambda \\ 1 & 0 & 0 & 0 \\ \lambda + 1 & 1 & 2 & 0 \\ 4 & 0 & 1 & 2\lambda \end{pmatrix}$$

$$\det(\mathbf{A}) = \begin{vmatrix} 1 & \lambda & \lambda & \lambda \\ 1 & 0 & 0 & 0 \\ \lambda + 1 & 1 & 2 & 0 \\ 4 & 0 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} \lambda & \lambda & \lambda \\ 1 & 2 & 0 \\ 0 & 1 & 2\lambda \end{vmatrix} = 2\lambda^2 + \lambda.$$

Hence $det(\mathbf{A}) = 0$ if and only if $\lambda = 0$ or $-\frac{1}{2}$.

(d)
$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 - \lambda^2 & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 9 - \lambda^2 \end{pmatrix} \xrightarrow{R_2 - R_1} \xrightarrow{R_4 - R_3} \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 - \lambda^2 & 0 & 0 \\ 2 & 3 & 1 & 5 \\ 0 & 0 & 0 & 4 - \lambda^2 \end{pmatrix}$$

$$\det(\mathbf{A}) = \begin{vmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 - \lambda^2 & 0 & 0 \\ 2 & 3 & 1 & 5 \\ 0 & 0 & 0 & 4 - \lambda^2 \end{vmatrix} = (1 - \lambda^2) \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 5 \\ 0 & 0 & 4 - \lambda^2 \end{vmatrix}$$
$$= (1 - \lambda^2)(4 - \lambda^2) \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3(1 - \lambda^2)(4 - \lambda^2).$$

Hence $det(\mathbf{A}) = 0$ if and only if $\lambda = \pm 1$ or ± 2 .

52.
$$\begin{pmatrix}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{pmatrix}
\xrightarrow{R_{2} - R_{1}}
\begin{pmatrix}
1 & a & a^{2} \\
0 & b - a & b^{2} - a^{2} \\
0 & c - a & c^{2} - a^{2}
\end{pmatrix}$$
So
$$\begin{vmatrix}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{vmatrix} =
\begin{vmatrix}
1 & a & a^{2} \\
0 & b - a & b^{2} - a^{2} \\
0 & c - a & c^{2} - a^{2}
\end{vmatrix} = (b - a)(c^{2} - a^{2}) - (c - a)(b^{2} - a^{2})$$

53. (a)
$$3^4 \cdot 9 = 729$$
 (b) $\frac{1}{9}$ (c) $3^4 \cdot \frac{1}{9} = 9$ (d) $\frac{1}{729}$

= (b-a)(c-a)(c-b)

(b)
$$\det(\mathbf{A}) = 1 \cdot 2 \cdot 3 \cdot (-1) = -6$$
 and hence $\det(\mathbf{B}) = (-1) \cdot \frac{1}{3} \cdot \det(\mathbf{A}) = 2$.

$$R_1 - 2R_3 \quad R_3 - 3R_2 \quad \frac{1}{2}R_2 \quad R_1 \leftrightarrow R_2$$
55. (a) $\boldsymbol{B} \longrightarrow \longrightarrow \longrightarrow \longrightarrow \boldsymbol{A}$
(b) $\det(\boldsymbol{B}) = (-1) \cdot 2 \cdot \det(\boldsymbol{A}) = -8$

(b)
$$\det(\mathbf{B}) = (-1) \cdot 2 \cdot \det(\mathbf{A}) = -8$$

56. $\det(\mathbf{A}) = aei + bfg + cdh - afh - bdi - ceg$. If all a, b, c, d, e, f, g, h, i are 1, then $\det(\mathbf{A}) = 0$.

Suppose at least one of a, b, c, d, e, f, g, h, i is 0, say a = 0 (other cases are similar). Then $\det(\mathbf{A}) = bfg + cdh - bdi - ceg$. As b, c, d, e, f, g, h, i can only be 0 and 1, $-2 \le \det(\mathbf{A}) \le 2$.

Note that
$$\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 2$$
 and $\begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = -2$.

The maximum possible value of $det(\mathbf{A})$ is 2 and the minimum is -2.

57. (a) Since $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{I}$ and $\det(\mathbf{A}) = \det(\mathbf{A}^{\mathrm{T}})$, we have $\det(\mathbf{A})^2 = \det(\mathbf{I}) = 1$. Thus $\det(\mathbf{A}) = \pm 1$.

(b) Let
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Since \mathbf{A} is orthogonal, $\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}$, i.e.

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

So a = d and b = -c. Furthermore, $\det(\mathbf{A}) = 1$ implies $a^2 + c^2 = ad - bc = 1$. Let $a = \cos(\theta)$ and $c = \sin(\theta)$. Then

$$\mathbf{A} = \begin{pmatrix} a & -c \\ c & a \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

- (c) Similar to (b) except now a = -d and b = c.
- 58. (a) Let \mathbf{A} be a 2×2 matrix with two identical rows, say, $\mathbf{A} = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$. Then $\det(\mathbf{A}) = ab ab = 0$.

Assume that the determinant of any $k \times k$ matrices with two identical rows is zero where $k \geq 2$.

Let \mathbf{A} be a $(k+1) \times (k+1)$ matrices with two identical rows, say, the *i*th and *j*th row of \mathbf{A} are identical. Take $m=1,2,\ldots,k+1$ such that $m \neq i,j$. Then by Theorem 2.5.6,

$$\det(\mathbf{A}) = a_{m1}A_{m1} + a_{m2}A_{m2} + \dots + a_{i,k+1}A_{m,k+1}$$

where $A_{mr} = (-1)^{m+r} \det(\mathbf{M_{mr}})$. Each $\mathbf{M_{mr}}$ is a $k \times k$ matrix obtained from \mathbf{A} by deleting the mth row and the rth column of \mathbf{A} . Since the ith and jth row of \mathbf{A} are identical, the corresponding rows of $\mathbf{M_{mr}}$ are identical. By the inductive assumption, $\det M_{mr} = 0$, i.e. $A_{mr} = 0$, for every r. This means $\det(\mathbf{A}) = 0$.

By mathematical induction, the determinant of any square matrix with two identical row is zero.

- (b) If \boldsymbol{A} is a square matrix with two identical columns, then $\boldsymbol{A}^{\mathrm{T}}$ has two identical rows. By (a), $\det(\boldsymbol{A}^{\mathrm{T}}) = 0$. So $\det(\boldsymbol{A}) = \det(\boldsymbol{A}^{\mathrm{T}}) = 0$.
- 59. Since Theorem 2.5.15.3 has been proved, we can use it in the following proofs.
 - (a) Let $\mathbf{A} = (a_{ij})_{n \times n}$. Suppose \mathbf{B} is obtained from \mathbf{A} by multiplying the mth row of \mathbf{A} by k. Observe that for all j, the (m, j)-cofactor of \mathbf{B} is the equal to the (m, j)-cofactor of \mathbf{A} ; and the (m, j)-entry of \mathbf{B} is ka_{mj} . Thus by Theorem 2.5.6,

$$\det(\mathbf{B}) = ka_{i1}A_{i1} + ka_{i2}A_{i2} + \dots + ka_{i,n}A_{i,n}$$

= $k(a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{i,n}A_{i,n}) = k \det(\mathbf{A}).$

(b) Suppose \boldsymbol{B} is obtained from \boldsymbol{A} by interchanging the *i*th and *j*th rows of \boldsymbol{A} . Observe that

By (a) and Theorem 2.5.15.3, $det(\mathbf{B}) = -det(\mathbf{A})$.

- (c) (i) Suppose \mathbf{E} is the elementary matrix defined in Discussion 2.4.2.1. Note that $\det(\mathbf{E}) = k$. Since $\mathbf{E}\mathbf{A}$ can be obtained from \mathbf{A} by multiplying the *i*th row by k, by (a), $\det(\mathbf{E}\mathbf{A}) = k \det(\mathbf{A}) = \det(\mathbf{E}) \det(\mathbf{A})$.
 - (ii) Suppose E is the elementary matrix defined in Discussion 2.4.2.2. Note that E can be obtained form I by interchanging the ith and jth rows of I. By (b), $\det(E) = -\det(I) = -1$. Since EA can be obtained from A by interchanging the ith and jth rows of A, by (b) again, $\det(EA) = -\det(A) = \det(E) \det(A)$.
 - (iii) Suppose E is the elementary matrix defined in Discussion 2.4.2.3. Note that $\det(E) = 1$. Since EA can be obtained from A by adding k times of the ith row of A to the jth row, by Theorem 2.5.15.3, $\det(EA) = \det(A) = \det(E) \det(A)$.
- 60. (a) $A\left[\frac{1}{\det(A)}\operatorname{adj}(A)\right] = I \Rightarrow \left[\frac{1}{\det(A)}A\right]\operatorname{adj}(A) = I$ So $\operatorname{adj}(A)$ is invertible.
 - (b) $\det(\mathbf{adj}(\mathbf{A})) = \det(\mathbf{A})^{n-1}$ and $\mathbf{adj}(\mathbf{A})^{-1} = \frac{1}{\det(\mathbf{A})}\mathbf{A}$.
 - (c) $\operatorname{adj}(A)^{-1} = \frac{1}{\det(\operatorname{adj}(A))} \operatorname{adj}(\operatorname{adj}(A)) \Rightarrow \operatorname{adj}(\operatorname{adj}(A)) = \det(A)^{n-2}A$ If $\det(A) = 1$, then $\operatorname{adj}(\operatorname{adj}(A)) = A$.
- 61. (a) False. For example, let $\mathbf{A} = \mathbf{I}_2$ and $\mathbf{B} = -\mathbf{I}_2$.
 - (b) True. $\det(\boldsymbol{A} + \boldsymbol{I}) = \det((\boldsymbol{A} + \boldsymbol{I})^{\mathrm{T}}) = \det(\boldsymbol{A}^{\mathrm{T}} + \boldsymbol{I}).$
 - (c) True. Since $\det(\mathbf{A}) = \det(\mathbf{P}) \det(\mathbf{B}) \det(\mathbf{P}^{-1})$ and $\det(\mathbf{P}) \det(\mathbf{P}^{-1}) = 1$, $\det(\mathbf{A}) = \det(\mathbf{B})$
 - (d) False. For example, let $A = I_2$ and $B = C = -I_2$.