Fecha de entrega: Abril 8, 2011, 12:00 (por Sicua+)

1 [30/100]

Considere el problema de calcular la raíz cúbica entera de un número natural n de acuerdo con la siguiente especificación:

```
[ Ctx C: n: nat {Q: true} ... {Inv P: a = (b+1)^2 \land c = (b+1)^3 \land b^3 \le n } {cota t: n-c}

do ... od
{R1: b^3 \le n < (b+1)^3 }
{R2: b \le \sqrt[3]{n} < b+1 }
{R: b = \lfloor \sqrt[3]{n} \rfloor }
```

1a [15/30] Escriba código GCL que siga la especificación indicada. Dentro del código use únicamente operaciones de suma, resta y multiplicación.

```
Variante 1a-1:
```

```
[ Ctx C: n: nat
     {Q: true}
           a,b,c:=1,0,1;
                                                                                           [3/15]
          {Inv P: a = (b+1)^2 \land c = (b+1)^3 \land b^3 \le n }
          {cota t: n-c}
      do n \geq c
                                                                                           [2/15]
              \rightarrow a, b, c:= a+2*b+3, b+1, c+3*a+3*b+4
                                                                                          [10/15]
      {R1: b^3 \le n < (b+1)^3}
     {R2: b \le \sqrt[3]{n} < b+1 }
     {R : b = \lfloor \sqrt[3]{n} \rfloor }
  1
Variante 1a-2:
   [ Ctx C: n: nat
     {Q: true}
           a,b,c:=1,0,1;
                                                                                           [3/15]
          {Inv P : a = (b+1)^2 \land c = (b+1)^3 \land b^3 \le n }
           {cota t: n-c}
      do n \ge c
                                                                                           [2/15]
              \rightarrow c:= c+3*a+3*b+4;
                     a := a + 2 * b + 3;
```

DAIgo 2011-1 T02 1 de 5

```
b := b+1
                                                                                                                  [10/15]
     od
   {R : b = \lfloor 3\sqrt{n} \rfloor}
1
```

Variante 1a-3:

Otro orden de actualización de las variables a, b, c, pero cuidando que el invariante se mantenga, por

```
[ Ctx C: n: nat
  {Q: true}
       a,b,c:=1,0,1;
                                                                                            [3/15]
       {Inv P : a = (b+1)^2 \land c = (b+1)^3 \land b^3 \le n }
       {cota t: n-c}
   do n \ge c
                                                                                            [2/15]
                a := a + 2 * b + 3;
                  b := b+1;
                  c := c + 3*a - 3*b - 2;
                                                                                           [10/15]
   od
  \{R : b = \lfloor \sqrt[3]{n} \rfloor \}
```

1b [8/30] Indique qué técnica(s) puede(n) explicar la definición del invariante P a partir de la especificación dada.

Hay dos técnicas involucradas:

• Eliminar una conjunción de R1. Se elimina la conjunción n < (b+1)³

P1 : $b^3 \le n$

[4/8]

P1 se fortalece hasta P, para evitar el cálculo de potencias dentro del código.

[4/8]

1c [7/30] Cuente asignaciones como operaciones básicas y estime el orden de complejidad de su solución (como θ (...)).

El algoritmo calcula las potencias cubicas desde 0 hasta n. Así: $T(n) = \theta(\sqrt[3]{n})$.

[7/7]

[30/100]

1

Una función $f:[a,b] \rightarrow real$ es unimodal si es continua y existe un punto m, con a $\le m \le b$, tal que f es creciente en [a,m] y decreciente en [m,b]. El predicado unimodal(f,a,m,b) denotará esta situación. Dado un número real eps>0, se quiere escribir un programa que determine un valor de $x \in [a,b]$ que aproxime a c con un error menor que eps.

Estime la complejidad de su solución, contando asignaciones.

AYUDA: El problema es una búsqueda. Use la técnica de apretar el cerco para proponer un invariante. Asegúrese de aprovecharse de las hipótesis para mejorar la eficiencia.

Se propone el invariante:

```
Inv P: a \le p \le c \le q \le b \land x = (p+q)/2
                                                                                          [10/30]
```

DAIgo 2011-1 T02 2 de 5 que establece un cerco para c definido por el intervalo [p, q] (números reales).

La cota debe ser tal que, al final, x y c estén a una distancia menor que eps. Es natural proponer Cota t: |x-c| - eps

[5/30]

Nótese que $p \le c \le q$ y por tanto, $-q \le -c \le -p$. También $p \le x \le q$, de modo que, sumando miembro a miebro las dos últimas desigualdades, el invariante dice que siempre debe valer

```
p-q \le x-c \le q-p
= |x-c| \le q-p
```

De modo que si se propone como guarda q-p≥eps, si esto deja de cumplirse se tendrá la condición deseada.

[5/30]

Para mantener el invariante se condideran los puntos a 1/3 y 2/3 del intervalo de incertidumbre y se toma una decisión de refinir p o g según los valores de la función en esos puntos.

La solución propuesta es:

```
[Ctx C: unimodal(f,a,c,b) \land eps>0

p,q:= a,b;

{Inv P: a \le p \le c \le q \le b \land x = (p+q)/2 }

{Cota t: |x-c| - eps }

do q-p \ge eps \rightarrow u,v:= p+(q-p)/3,q-(q-p)/3;

if f(u)\left(v) \rightarrow p:= u

[] f(u)\rightarrow f(v) \rightarrow q:= v

fi;

x:= (p+q)/2

od

{Pos R: |x-c| < eps}
```

[10/30]

Para la complejidad, cada iteración reduce el intervalo a 2/3 del tamaño antes de iterar. Es decir:

```
T(b,a) = \theta(\log_{3/2} (b-a))
```

[+10/30]

3 [40/100]

Un agente secreto se encuentra en el origen (posición (0,0)) de una ciudad cuadriculada y desconocida, cuyo plano tiene la forma:

La ciudad tiene muchas calles y carreras ("muchas" \approx infinitas!). El agente sabe que su contacto se encuentra en una cierta posición (m, n). Aunque ignora las coordenadas exactas, su contacto le ha comunicado que desde el origen a su posición hay exactamente r maneras de llegar desde el origen,

DAIgo 2011-1 T02 3 de 5

caminando siempre hacia la izquierda o hacia arriba, y que, además, m≥n>1. Por ejemplo, si el contacto está en (3,2), le ha comunicado que está en un punto al que se puede llegar de 10 maneras.

3a [30 puntos] Utilice programación dinámica para explicar cómo puede el agente averiguar (m, n), las coordenadas de su contacto. Para empezar, use como lenguaje

 $nc(i,j) = maneras de ir desde el origen a (i,j), para <math>i \ge j \ge 0$.

Complete los demás pasos para construir su solución (recurrencia, diagrama de necesidades, invariante). No es necesario que escriba su algoritmo.

Recurrencia:

$$nc(i,j) = 1$$
 , $si i \ge j = 0$
= $nc(i-1,j) + nc(i,j-1)$, $si i \ge j > 0$

[10/30]

Diagrama de necesidades:

El diagrama sugiere un recorrido del cuadrante por diagonales de pendiente -1 que se alejan del origen. Las diagonales pueden ser recorridas ascendentemente, i.e., empezando la diagonal i-sima en (i,0). En algún momento se tendrá nc(i,j)=r, para ciertos $i \ge j > 0$, según lo prometido.

Entonces: (m,n) = (i,j).

[10/30]

Invariante: (se requiere una estructura de datos NC, no acotada, pero finita)

[10/30]

Variaciones

El cuadrante se puede recorrer, por ejemplo, con cuadrados de lado 1,2,..., cuya esquina inferior izquierda esté en el origen. Para calcular un cuadrado a partir del anterior se calculan los lados izquierdo (excepto la esquina derecha) y superior. En este caso el contacto se encuentra en el cuadrado de lado $\max(m,n) = m$. Las complejidades son $O(m^2)$. La espacial puede mejorarse, guardando los lados derecho y superior del cuadrado, i.e., O(m+m) = O(m).

Como en la primera solución, se puede aprovechar la simetría de nc para reducir a la mitad los cálculos necesarios.

DAIgo 2011-1 T02 4 de 5

3b [10 puntos] Estime las complejidades espacial y temporal de su algoritmo en términos de m y n. Para lo temporal, use la asignación como operación básica.

La posición del contacto se encuentra en la diagonal m+n. La diagonal i tiene i+1 puntos en los que debe ser calculada la función nc.

```
S(m,n) = O(1+2+...+(m+n))
= O((m+n)^2/2)
= O(m^2)
```

Algo mejor: bastan dos vectores que guarde las dos últimas diagonales. Así:

```
S(m,n) = O(m+n) = O(m)
```

El tiempo es proporcional al área barrida:

```
T(m,n) = O((m+n)^2/2)
= O(m^2)
```

Hay mejoras posibles. Observando que nc(x,y) = nc(y,x), la mitad superior de cada diagonal puede determinarse conociendo la mitad inferior. Más aun: no debería calcularse esa parte superior, porque la respuesta está en la parte inferior de la diagonal. Sin embargo, debe calcularse hasta la diagonal. Puede aprovecharse el hecho de que

```
nc(i,i) = nc(i-1,i)+nc(i,i-1)
= 2 nc(i,i-1).
```

[10/30]

DAIgo 2011-1 T02 5 de 5