Engage Ai

CHURN PREDICTION & RETENTION SYSTEM

RAJU KUMAR B.TECH (NIT DURGAPUR)

Table of Content

SL no.	Task	Page no.
1	Problem Statement	1
2	Data Understanding & Preprocessing	2 – 4
3	Predictive Models for Churn Analysis 1. Logistic Regression 2. Random Forest	5 - 7
4	NLP for Customer Feedback Analysis	8 – 9
5	Generative AI for Retention Strategies	10
6	System Integration & Deployment	11
7	Libraries used	12

Problem Statement

The task is to design and implement a churn prediction and retention system for a company.

The solution should include:

- Churn Prediction Models: Analyze customer data to predict churn and identify contributing factors.
- NLP for Customer Feedback Analysis: Analyze textual feedback to understand customer dissatisfaction.
- Generative AI for Retention: Develop personalized retention strategies to reduce churn.

Customer Dataset - attached

Data Understanding & Preprocessing

Preprocessing steps

Examine the provided datasets (Dataset Overview)

Shape: 999 rows × 23 columns.

Data Types:

- <u>Numerical:</u> Senior Citizen, tenure in months, Monthly Average Balance (USD), Recommendation.
- <u>Categorical:</u> Gender, Marital Status, Dependents, Priority Account, Credit Cards, Loan Account, etc.

Target Variable: Churn (Categorical)

Handling Missing Values (Use Imputation)

Imputation Techniques: Use <u>mean/median</u> for numerical data, <u>mode</u> for categorical data, <u>forward/backward fill</u> for time series, or drop rows/columns with excessive missing data.

Handling Outliers

- 1. Identifying Outliers: Use box plots, z-scores, or IQR methods.
- 2. Outlier Treatment:
 - <u>Cap/Clamp</u>: Replace outliers with threshold values.
 - Transformation: Apply transformations (e.g., log, square root) to mitigate impact.
 - Exclusion: Remove outliers from the dataset when necessary

Data Transformation

- 1. Encoding Categorical Variables: Convert categorical data to numerical using techniques like Label Encoding
- 2. Feature Scaling: Normalize or standardize numerical features using <u>StandardScaler</u> to bring them to the same scale,
- 3. Feature Engineering: Create new features based on existing data to improve model performance.

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

Exploratory Data Analysis to Get Insights

Insights-

1. High Correlation (Positive):

The 'Loan Account' feature has the strongest positive correlation with churn, suggesting it's a key factor in customers deciding to leave.

2. Moderate Correlation (Negative):

Features like 'Tenure in months', 'Tech Support Availed', 'Interest Deposited', and 'Paperless Banking' are moderately negatively correlated with churn, indicating they may help in retaining customers.

Models for Churn Analysis

Logistic Regression Model-

Logistic Regression is a statistical method used for binary classification, estimating the probability that an input belongs to one of two classes, such as churn or no churn.

Logistic Function (Sigmoid): Logistic Regression uses the sigmoid function to map the predicted values (log-odds) to a probability between 0 and 1.

$$\sigma(z) = \frac{1}{1+e^{-z}}$$
 where z is a linear combination of input features

(i.e.,
$$z = \beta 0 + \beta 1X1 + \beta 2X2 + ... + \beta nXn$$
)

Applications: Commonly used in customer churn prediction, credit scoring, and medical diagnosis.

Classificati	on Report:			
	precision	recall	f1-score	support
0	0.79	0.89	0.84	146
1	0.54	0.35	0.43	54
accuracy			0.74	200
macro avg	0.67	0.62	0.63	200
weighted avg	0.72	0.74	0.73	200

Random Forest Model-

Random Forest is an ensemble learning method that builds multiple decision trees during training and merges their outputs to improve accuracy and control overfitting. It Handles non-linear relationships well.

Key Concepts:

- <u>Decision Trees:</u> Base models that split data using criteria like Gini impurity or entropy.
- <u>Bagging (Bootstrap Aggregating)</u>: Multiple subsets of the data are created by random sampling with replacement.
- Random Feature Selection: At each split, a random subset of features is considered, reducing model variance.

Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.82	0.92	0.87	146
1	0.69	0.46	0.56	54
accuracy			0.80	200
macro avg	0.76	0.69	0.71	200
weighted avg	0.79	0.80	0.79	200

Prediction Process:

• Majority Voting: Each tree votes for a class (e.g., churn/no churn), and the final prediction is based on majority vote.

Feature Importance:

Random Forest provides insights into feature importance, showing which factors most influence predictions.

Feature Importance & Their Contribution to Churn

Importance by Random Forest:

 Measures feature importance by calculating the average decrease in impurity (e.g., <u>Gini impurity</u>) across all trees.

Example Features:

- <u>Tenure in Months:</u> Longer tenure may indicate loyalty.
- Monthly Average Balance: Higher balances could correlate with lower churn.
- <u>Service Usage:</u> Features like Netbanking or
 MobileApp usage can reflect customer engagement.

NLP for Customer Feedback Analysis

Sentiment Analysis to Gauge Overall Customer Satisfaction

Objective: Assess customer sentiment from feedback.

Process:

- 1. Preprocessing: Clean and prepare feedback text.
- Sentiment Analysis:
 - Library: SentimentIntensityAnalyzer from VADER.
 - Score Calculation: Uses VADER's **polarity_scores()** method to determine sentiment, providing a composite score ranging from -1 (most negative) to 1 (most positive).

Outcome:

- Sentiment Summary: Metrics include mean, standard deviation, and range of sentiment scores.
- <u>Insight:</u> Understand customer sentiment (positive, negative, or neutral) to identify trends and areas for improvement.

```
Sentiment Summary:
         999,000000
           0.148403
mean
           0.300404
std
          -0.757900
min
25%
           0.000000
50%
           0.000000
75%
           0.401900
           0.875000
max
Name: Sentiment, dtype: float64
```

Extracting Reason for Dissatisfaction

Topic Modeling with Latent Dirichlet Allocation (LDA)

Purpose: Extract meaningful topics from customer feedback to understand common themes.

Process:

- <u>Identify Topics:</u> LDA assigns feedback to topics based on word distributions.
- <u>Display Top Words:</u> display_topics() function lists the most significant words for each topic.
- Outcome: Each topic is characterized by a set of prominent words, revealing underlying themes in customer feedback.

Topics Extracted:

Topic 1:

loan processing long process time opening bank account activation easy

Topic 2:

customer service current account deposit fixed helpful support cards credit

Topic 3:

card debit process credit loan slow pin confusing complicated charges

Topic 4:

account savings branch interest rates current high get balance competitive

Topic 5:

banking mobile app atm online support network often limit device

Example:

Topic 5: Mobile Banking and Online Services

- Words: banking, mobile app, ATM, online, support, network, often, limit, device
- Insights: Feedback suggests dissatisfaction with mobile banking applications, ATM services, online services etc.
- Recommendation: Improving the functionality and reliability of digital banking services could address these issues.

Generative Al for Retention Strategies

- Customized Retention Strategies Based On Customer Profiles And Feedback.
 - **Tools:** Hugging Face '<u>transformers'</u> library with GPT-2 or GPT-3.
 - Method:
 - o Input Preparation: Integrate customer data, churn risk, feedback, and sentiment analysis result into detailed <u>prompts.</u>
 - o Generation: Utilize generative models to produce tailored communication plans and offers.
- Integrating Generative AI with Predictive Models and NLP:

Combine Random Forest for churn prediction with NLP for sentiment analysis to enhance Generative AI for personalized retention strategies.

1	Retention Strategy	
2	profile: Male Credit Card, Churn Risk: Low, Sentiment: Negative, Feedback: My Credit Card is not generating OTP. Suggested Approach: Provide a guide to resolving OTP issues, offer a security review to enhance the credit card exper	rience.
3	profile: Male Current Account, Churn Risk: Low, Sentiment: Negative, Feedback: The Current Account charges are too high. Suggested Approach: Review account fees, offer a fee reduction or a more suitable account plan, and explain	in the va
1	profile: Female Loans, Churn Risk: High, Sentiment: Negative, Feedback: The loan prepayment charges are too high. Suggested Approach: Introduce a flexible prepayment policy or discount charges, and provide personalized financial	ial advice

System Integration & Deployment

Architecture:

- Components: Integrate Predictive modelling, NLP Analysis (Hugging Face), and Generative AI into a unified system.
- **Flow:** Data Collection → Preprocessing → Predictive Analysis → NLP Analysis → Generative AI for Strategy → Output

Deployment Strategy:

Cloud-Based: Utilize platforms like AWS or <u>Azure</u> for scalable and flexible deployment.

Real-Time Data Processing:

- **Data Streaming:** Implement <u>Apache Kafka</u> or Apache Flink for real-time data ingestion.
- Model Updates: Use Docker for containerization and <u>CI/CD pipelines</u> to automate model updates.

Scalability Challenges:

- Challenges: Handling large datasets, maintaining quick response times, managing growing user demand.
- **Solutions:** Use <u>distributed databases</u> (e.g., MongoDB), implement <u>load balancing</u> and <u>caching</u> (e.g., Redis), and employ <u>auto-scaling</u> and <u>serverless architectures</u> (e.g., AWS Lambda).

Libraries and Versions Used

Libraries used:

1. Data Handling and Manipulation:

• Pandas: 2.0.0

• NumPy: 1.25.0

2. Machine Learning and Predictive Modelling:

• scikit-learn: 1.3.0

3. Deep Learning and NLP:

• Transformers (Hugging Face): 4.31.0

• PyTorch: 2.1.0

• TensorFlow: 2.14.0

4. Data Visualization:

Matplotlib: 3.8.0

• Seaborn: 0.13.2

5. Deployment and Integration:

• Docker: 24.0.3

Apache Kafka: 3.4.1

6. Database and Cloud Storage:

MongoDB: 6.0.4

• AWS SDK (boto3): 1.26.2

Thank You

Raju Kumar

Computer Science & Engineering National Institute of Technology, Durgapur

rajukumar6

rajukumar.sde@gmail.com