MAT223 - Linear Algebra

Classnotes for Summer 2019

by

Callum Cassidy-Nolan

Computer Science

University of Toronto

Table of Contents

Index	10
Bibliography	9
1.1 Linear Transformations	7
1 Week 9	7
List of Procedures	5
List of Theorems	4
List of Definitions	3
Table of Contents	2

List of Definitions

1		Definition	(Linear	Transformation)																								7
---	--	------------	---------	-----------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

List of Theorems

List of Procedures

Linear transformations and such

1.1 Linear Transformations

■ Definition 1 (Linear Transformation)

Let V and W be subspaces. A function $\mathcal{T}:V\to W$ is called a linear transformation if for all $\vec{u},\vec{v}\in V$ and $a\in\mathbb{R}$ it satisfies

1.
$$\mathcal{T}(\vec{u} + \vec{v}) = \mathcal{T}(\vec{u}) + \mathcal{T}(\vec{v})$$

2.
$$\mathcal{T}(a\vec{u}) = a\mathcal{T}(\vec{u})$$

Example 1.1.1

We'll show that $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$ where $\mathcal{T} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2 \\ y \end{bmatrix}$ is not a linear transformation.

Let
$$\vec{j} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\vec{k} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ we have that

$$\mathcal{T}(\begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

But then we can see that

$$\mathcal{T}(\begin{bmatrix}0\\0\end{bmatrix}) + \mathcal{T}(\begin{bmatrix}0\\0\end{bmatrix}) = \begin{bmatrix}2\\0\end{bmatrix} + \begin{bmatrix}2\\0\end{bmatrix} = \begin{bmatrix}4\\0\end{bmatrix}$$

Then we conclude that $\mathcal{T}(\vec{j} + \vec{k}) \neq \mathcal{T}(\vec{j}) + \mathcal{T}(\vec{k})$

*

Example 1.1.2

We'll show that \mathcal{P} is a linear transformation ¹

$$\mathcal{P}(\begin{bmatrix} x \\ y \end{bmatrix}) = comp_{\vec{u}} \begin{bmatrix} x \\ y \end{bmatrix}$$

Let $\vec{j}, \vec{k} \in \mathbb{R}^2$ we know that

$$comp_{\vec{u}}\vec{j} = \left(\frac{\vec{u} \cdot \vec{j}}{\|\vec{u}\|^2}\right) \vec{u} \text{ and } comp_{\vec{u}}\vec{k} = \left(\frac{\vec{u} \cdot \vec{k}}{\|\vec{u}\|^2}\right) \vec{u}$$

And thus their product yields

$$comp_{ec{u}}ec{j} + comp_{ec{u}}ec{k} = \left(rac{ec{u}\cdot\left(ec{j} + ec{k}
ight)}{\left\|ec{u}
ight\|^2}
ight)ec{u}$$

Which is equal to

$$comp_{\vec{u}}(\vec{j}+\vec{k})$$

We must then show that it holds under multiplication let $\alpha \in \mathbb{R}$ and we know that

$$\alpha comp_{\vec{u}}\vec{j} = \alpha \left(\frac{\vec{u} \cdot \vec{j}}{\|\vec{u}\|^2}\right) \vec{u} = \left(\frac{\vec{u} \cdot \alpha \vec{j}}{\|\vec{u}\|^2}\right) \vec{u} = comp_{\vec{u}}\alpha \vec{j}$$

¹ We'll show that it is closed under addition and multiplication

Linear Transformation, 7