

隐私计算三剑客在营 销中的应用

陈治宇 百度 资深安全工程师

目录 CONTENT

数字营销与隐私

此部分内容作为文字排版占位显示 (建议使用主题字体)

(建议使用主题字体)

联邦学习/多方安全计算 05 百度点石产品矩阵

此部分内容作为文字排版占位显示 (建议使用主题字体)

此部分内容作为文字排版占位显示 (建议使用主题字体)

此部分内容作为文字排版占位显示 (建议使用主题字体)

(建议使用主题字体)

数字营销与隐私

替换文字内容,点击添加相关标题文字

营销技术的发展

阶段	传统营销	互联网+营销	大数据+营销	AI+营销	AI+全域营销
核心	触达	交互	精准	效率	生态
特点	相对于传统线下营销模式,大众媒体的出现使得营销信息可以覆盖十分广大的消费者群体	在广泛覆盖性的基础上 有了更多交互的可能性, 不再是单向信息传播,而 是与消费者互动与沟通	大数据技术成熟应用,精准营销概念和平台不断 出现,关注营销对用户触 达的精准度	人工智能技术在营销领域的逐渐渗透,营销各个场景和环节更加智能化,营销效率不断提高	实现用户全场景覆盖、全 链路数据采集、全域用户 洞察、全渠道精准触达的 AI+全域营销
技术	广播 电视 广告 广告 —————————————————————————————————	门户 搜索 社交媒 广告 广告 体广告	Adexchange) &	智能 创意 2010 2012 2016	数据中台,5G, AIOT,数字人、 开放域对话, 和器人 AR、VR
目标	获取增量用户	获取增量用户	获取增量用户	获取增量+存量运营	客户全时全场景 价值挖掘
理念	以产品为中	中心	以客户为中心	客户全时	全场景价值挖掘

资料来源:知萌咨询公共资料整理。

图表引自:中国广告协会《2022AI营销白皮书》

AI+营销: 涉及隐私数据

隐私数据

什么是: 隐私计算?

• 解决的问题: "数据可用不可见"

• 什么效果: 仅获取到"结果", 但得不到以外的信息

• 价值: "使用权"和"所有权"分离

• 怎么实现: 软件, 硬件, 不软不硬

隐私计算:三剑客

02

联邦学习/多方安全计算

替换文字内容,点击添加相关标题文字

联邦学习 (FL)

联邦学习和安全多方计算

优势

- 不依赖硬件
- 原始数据不出区域
- 点对点链接
- 知名度高

航空领域营销

教育领域营销

汽车营销领域 (推荐)

实现多样性

同态类型:

部分同态 (Partially Homomorphic) 有点同态 (Somewhat Homomorphic) 全同态 (Fully Homomorphic)

安全模型:

无攻击模型 半诚实模型(Semi-Honest Adversary) 恶意模型模型 (Malicious Adversary) 隐蔽敌手模型 (Covert Adversary)

调度方式:

算子层面: Operator Layer 算法层面: Algorithm Layer 组件层面: Component Layer 引擎层面: Engine Layer

计算平台:

通信方式: Socket通信 Local Docker/Kubernetes RPC诵信 MQ通信 Spark P2P通信 MPI

存储方式:

File DataFrame(vTable) DataBase

劣势

- 速度慢(计算复杂度,网络波动)
- 原理复杂,安全性难以度量(多样性)
- 可用算法有限

期待,有没有:

- 1. 速度快
- 2. 简单易懂
- 3. 有充足的算法?

是否可以通过"硬件"解决?

03 可信执行环境

替换文字内容,点击添加相关标题文字

优势

- 计算速度快: 大数据, 低延迟
- 执行逻辑较清晰, 容易度量其安全
- 移植算法成本较低,可以用的算法很多

可信执行环境(TEE)

更加简单化的TEE

- 基于LibOS的可信执行环境
 - Occlum
 - Gramine(GrapheneSGX)
- 基于可信虚拟化技术
 - AMD: SEV,SEV-ES
 - INTEL: TDX
 - ARM: CCA

通信领域营销

生物基因领域

汽车音乐推荐

数据源

数据融合与应用

- 人脸检测:有效识别图片中的人脸, 精确定位人脸位置, 返回高精度人脸;
- 关键点对齐: 对图片中的人脸进行关 键点定位,并返回人脸关键点坐标位 置,包括人脸轮廓、眼睛、眉毛、嘴 唇以及鼻子轮廓等;
- 模型训练:通过读取训练集海量图 片,进行情绪识别模型多轮迭代, 输出模型参数:
- 模型预测:输入测试集人脸图片, 调用情绪识别模型,输出情绪识别 结果 (happy/sad/neutral)

数据融合与应用:结合用户情绪识 别结果与车端其他数据,可以用于 车载音频切换,随着客户的情绪, 切换相关主题音乐

劣势

- 数据需要加密后传到TEE
- 依赖硬件
 - INTEL: SGX1/2, TDX
 - AMD: SME, SEV, SEV-ES
 - ARM: TRUSTZONE, CCA
- 算法需要移植适配
- 需要权衡安全性和高可用: 数据重放

期待,有没有:

- 1. 速度更快
- 2. 简单易懂
- 3. 所有算法和工具可用
- 4. 不依赖硬件

是否可以通过"隔离"解决?

安全数据沙箱

替换文字内容,点击添加相关标题文字

安全数据沙箱 (SANDBOX)

优势

- 简单, 速度快, 几乎无损耗
- 可大规模应用,适用特大的数据场景
- 不依赖物理硬件
- 所有算法都可以使用

广告传媒领域

金融理财营销

政务数据在营销里的应用

劣势

• 仅保护平台方的数据安全

期待,有没有:

- 1. 不依赖硬件
- 2. 速度快
- 3. 简单易懂
- 4. 所有算法和工具可用
- 5. 两方的数据可进出

是否有"全覆盖"的产品?

05 百度产品矩阵

替换文字内容,点击添加相关标题文字

隐私计算中的舍得

联邦学习FL

- 舍: 计算效率, 可用的算法

- 得:无硬件要求,原始数据不出域

• 可信执行环境TEE

- 舍: 硬件的通用性, 加密原始出域

- 得: 更快的计算效率,一定算法的可扩展

安全数据沙箱SBX

- 舍: 仅保护数据方的安全

- 得:超大规模的数据计算,复用所有的算法和工具

恰当的应用隐私技术

- 明确保护/防御对象
- 明确数据的规模
- 明确操作的范围
- 明确实施的运行环境

隐私计算一指禅

- ▶数据小,两方不出,常规算法: **联邦学习**
- ▶数据中,两方汇聚,专用算法: **可信执行环境**
- ▶ 数据大,一方不出,任意算法: *安全沙箱*

百度隐私计算: 技术框架图

06 未来趋势分析

替换文字内容,点击添加相关标题文字

趋势1: 技术融合

• 联邦FL/MPC + TEE -> 降复杂, 提效率

• SANDBOX + TEE -> 使用方数据安全问题

• SANDBOX + MPC -> 外部数据引入

趋势2: 软硬结合

• FL/MPC + GPU/FPGA -> 深度学习提速

Paddle/PaddleFL, CryptGPU/CrypTen

MPC: CPU(200X) 降低到 GPU(35X), 提升10X以上

SANDBOX + TrustedVM + Clear Container

启动加速,不同数据,不同等级

启动速度: 100s 降低到 10s以内

趋势3: 互联互通

- 隐私计算平台的互通
 - 中国信通院云大所《隐私计算 跨平台互联互通》系列标准
 - IEEE SA 《P3117 Standard for Interworking Framework for Privacy-Preserving Computation》

非常感谢您的观看

Bai de 目 :: DataFun.

