BÀI 25: ANKAN (tiết 1)

I. MŲC TIÊU:

- 1. Kiến thức: HS biết được:
- Định nghĩa hiđrocacbon, hiđrocacbon no và đặc điểm cấu tạo phân tử của chúng.
- Công thức chung, đồng phân mạch cacbon, đặc điểm cấu tạo phân tử và danh pháp.
- Tính chất vật lí chung (quy luật biến đổi về trạng thái, nhiệt độ nóng chảy, nhiệt độ sôi, khối lượng riêng, tính tan).

2.Kī năng:

- Quan sát mô hình phân tử rút ra được nhận xét về cấu trúc phân tử.
- Viết được công thức cấu tạo, gọi tên một số ankan đồng phân mạch thẳng, mạch nhánh.
 - Xác định công thức phân tử, viết công thức cấu tạo và gọi tên.
- 3. Thái độ: Kích thích sự hứng thú với bộ môn, phát huy khả năng tư duy của học sinh

4. Phát triển năng lực

- Phát triển năng lực phát hiện và giải quyết vấn đề
- Phát triển năng lực sáng tạo

II. PHƯƠNG PHÁP:

- Dạy học phát hiện và giải quyết vấn đề
- PPDH đàm thoại tái hiện

III. CHUẨN BỊ:

- 1. Giáo viên: Mô hình phân tử C₄H₁₀. Máy chiếu.
- 2. Học sinh: Chuẩn bị bài mới

IV. <u>TIẾN TRÌNH BÀI DẠY</u>:

- 1. <u>Ôn định lớp</u>: Kiểm tra sĩ số, đồng phục...
- 2. Kiểm tra bài cũ: Không
- 3. Nội dung:

5. <u>Nor dung</u> :	
HOẠT ĐỘNG GV VÀ HS	NỘI DUNG
Hoạt động 1: Đồng đẳng, đồng phân, danh	I. Đồng đẳng, đồng phân, danh
pháp:	pháp:
- Gv: yêu cầu hs nhắc lại khái niệm của đồng	1. Dãy đồng đẳng metan:
đẳng.	- CH ₄ , C ₂ H ₆ , C ₃ H ₈
Hs: nêu khái niệm về đồng đẳng.	- CTTQ: $C_n H_{2n+2} (n \ge 1)$
- Gv: nêu ra hệ thống câu hỏi.	$n^{11}2n+2$ $(n-1)$
+ Dãy đồng đẳng của CH ₄ là ankan. Hãy lập	
CT các chất đồng đẳng tiếp theo?	
+ Rút ra CTTQ của dãy đồng đẳng ankan và	
cho biết chỉ số n có giá trị như thế nào?	
Hs: Trả lời	

- Gv: Cho hs quan sát mô hình phân tử C_4H_{10} , yêu cầu hs cho biết loại liên kết trong phân tử ankan và góc liên kết trong phân tử bằng bao nhiêu? Các nguyên tử C trong <u>phân tử</u> ankan có nằm trên 1 đường thẳng không?

Hs: Trả lời

Hoạt động 2: Đồng phân

- Gv: đặt câu hỏi: với 3 chất đầu dãy.

+ Hãy viết CTCT của CH₄, C₂H₆, C₃H₈.

+ Các chất này có 1 hay nhiều CTCT?

Hs: Trả lời

- Gv: yêu cầu h
s viết các CTCT của C_4H_{10} , C_5H_{12}

Hs: Thảo luận cặp đôi, 2 hs lên bảng trình bày → Nhận xét bổ sung: Các chất còn lại trong dãy đồng đẳng ankan có các đồng phân mạch cacbon: Thẳng và phân nhánh

Hoạt động 3: Danh pháp:

- Gv: giới thiệu bảng 5.1sgk/111

Hs: Rút ra nhận xét về đặc điểm trong tên gọi của ankan và gốc ankyl.

- Gv: Nêu quy tắc IUPAC và lấy ví dụ phân tích cho hs hiểu được quy tắc này.

Hs: Gọi tên các đồng phân của phần 2

- Gv: Cho hs nhận xét về số lượng nguyên tử C liên kết trực tiếp với mỗi nguyên tử C rồi rút ra đinh nghĩa bâc C.

Hs: bậc c (trong ankan) = số ngtử c liênkết với ngtử c đó.

2. <u>Đồng phân</u>:

Từ C_4H_{10} trở đi có đồng phân mạch C.

Vd:Viết các đồng phân của C₅H₁₂:

$$CH_3$$
 - CH_2 - CH_2 - CH_2 - CH_3 pentan

$$CH_3 - CH - CH_2 - CH_3$$

$$CH_3 - CH_3 \qquad \text{(isopentan)}$$

$$CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3 - CH_3$$

3. <u>Danh pháp</u>:

- * Ankan không phân nhánh: Bảng 5.1
- Ankan 1H = nhóm ankyl $(C_nH_{2n+1}$ -)
- Tên nhóm ankyl= tên ankan an + yl
- * Ankan phân nhánh: Gọi theo danh pháp thay thể.
- Chọn mạch C chính (Dài nhất và nhiều nhánh nhất)
- Đánh số thứ tự mạch C chính phía gần nhánh hơn (sao cho tổng chỉ số nhánh là nhỏ nhất)
- Tên = chỉ số nhánh tên nhánh + tên mạch chính

Lưu ý: Nếu có nhiều nhánh, gọi theo thứ tư âm vần

Vd: 2,2 – dimetylpentan

Hoạt động 4: Tính chất vật lí

- Gv: Dựa vào sgk, gv yêu cầu hs thống kê được các đặc điểm sau của ankan: Trạng thái, quy luật về sự biến đổi nhiệt độ nóng chảy, nhiệt độ sôi, khối lượng riêng, tính tan.

Hs: Nêu t/c vật lý.

- Gv: Bổ sung

$$\begin{array}{c} | \\ CH_3 \\ Vd: \ 3\text{- etyl- } 2\text{-metylpentan} \\ | \\ CH_3 - CH - CH - C_2H_5 \\ | \\ CH_3 - C_2H_5 \end{array}$$

* Bậc C: Được tính bằng số liên kết của nó với các nguyên tử C khác

II. Tính chất vật lí:

- C₁→C₄: Khí
- $C_5 \rightarrow C_{10}$: Long
- C₁₈ trở lên: Rắn
- Ankan nhẹ hơn nước, không tan trong nước, tan trong dung môi hữu cơ

Nhiệt độ nóng chảy, nhiệt độ sôi, khối lượng riêng tăng theo phân tử khối

4. <u>Củng cố</u>: Viết các đồng phân cấu tạo của C₇H₁₆ và gọi tên?

V. Dặn dò:

- Học bài, làm bài tập trong sgk
- Chuẩn bị phần tiếp theo

Tiết 38 ANKAN (tiết 2)

I. MUC TIÊU:

- 1.Kiến thức: HS biết được:
- Tính chất hoá học (phản ứng thế, phản ứng cháy, phản ứng tách hiđro, phản ứng crăckinh).
- Phương pháp điều chế metan trong phòng thí nghiệm và khai thác các ankan trong công nghiệp, ứng dụng của ankan.

2.Kī năng:

- Viết các phương trình hoá học biểu diễn tính chất hoá học của ankan.
- Xác định công thức phân tử, viết công thức cấu tạo và gọi tên.
- Tính thành phần phần trăm về thể tích và khối lượng ankan trong hỗn hợp khí, tính nhiệt lượng của phản ứng cháy.
- 3. Thái độ: Phát huy tinh thần làm việc tập thể, khả năng tư duy của học sinh

4. Phát triển năng lực

- Phát triển năng lực phát hiện và giải quyết vấn đề
- Phát triển năng lực sáng tạo

II. PHƯƠNG PHÁP:

- Dạy học phát hiện và giải quyết vấn đề
- PPDH đàm thoại tái hiện

III. CHUÂN BỊ:

- 1. Giáo viên: Cơ chế phản ứng thế của ankan (ảo). Máy chiếu.
- 2. Học sinh: Học bài cũ, chuẩn bị bài mới

IV. <u>TIẾN TRÌNH BÀI DẠY</u>:

- 1. <u>Ôn định lớp</u>: Kiểm tra sĩ số, đồng phục...
- 2. Kiểm tra bài cũ: Viết các đồng phân cấu tạo của C₄H₁₀, C₅H₁₂ và gọi tên?
- 3. <u>Nội dung:</u>

TO WALLE	
HOẠT ĐỘNG GV VÀ HS	NỘI DUNG
Hoạt động 1:Phản ứng thế	III. <u>Tính chất hóa học</u> :
- Gv: Yêu cầu hs đọc sgk và đưa ra nhận	1. Phản ứng thế bởi halogen (Halogen
xét chung về đặc điểm cấu tạo và tính	<u>hoá)</u> :
chất hoá học của ankan.	Vd1: Cho CH ₄ phản ứng với Cl ₂ :
Hs: Trong phân tử ankan chỉ chứa các	CH ₄ + Cl ₂ CH ₃ Cl + HCl
liên kết đơn C – C, C – H, đó là các liên	Clometan (metyl clorua)
kết σ bền vững.	$CH_3Cl + Cl_2$ + HCl
- Gv: Vì lk 🛕 bền, do đó ankan khá trơ	điclometan (metylen clorua)
về mặt <u>hóa học</u> , ankan không phản ứng	CH ₂ Cl ₂ + Cl ₂ CHCl ₃ + HCl
với axit, kiềm, dd KMnO ₄ nhưng có khả	triclometan (clorofom)
năng tham gia vào phản ứng thế, phản	CHCl ₃ + Cl ₂ CCl ₄ + HCl
ứng tách, phản ứng oxi hoá.	tetraclometan
+ Luru ý cho hs phản ứng đặc trưng của	(cachon tetraclorua)

ankan là phản ứng thể.

- Gy: Yêu cầu hs nhắc lai khái niêm phản ứng thể và nêu quy tắc thể thay thể lần lượt từng nguyên tử H trong phản ứng thê của CH₄ với Cl₂.
- + Lưu ý tỉ lệ mol CH₄ và Cl₂ mà sản phâm sinh ra khác nhau.
- -Gv: Trình chiếu cơ chế phản ứng thế Hs: Thảo luận nhóm viết p/u, gọi tên sản phâm
- Gv: Yêu câu hs xác định bậc của các nguyên tử C trong ptử $CH_3 - CH_2 - CH_3$ và viết pthh.
- + Rút ra nhận xét: Hướng thế chính.

Hoạt động 2:Phản ứng tách

- Gv: Viết 2 phản ứng tách H₂ và bẽ gãy mach C của butan.

Hs: Nhận xét, viết phương trình tổng quát

→ Dưới tác dụng của t^o, xt các ankan không những bị tách H₂ mà còn bị bẽ gãy các lên kết C – C tạo ra các phân tử nhỏ hơn.

Hoạt động 3:Phản ứng oxi hóa

- Gv: Đưa thông tin: gas là hỗn hợp của nhiều HC no khác nhau, việc sử dụng gas dưa vào phản ứng cháy của ankan
- → Yêu cầu hs viết phương trình phản ứng cháy tổng quát của ankan, nhận xét môi liên hệ giữa số mol ankan, CO₂ và H_2O ?
- Gv lưu ý: Pứ cháy là pứ oxi hoá hoàn toàn khi thiều O_2 pứ cháy của ankan xảy ra ko hoàn toàn: sp cháy ngoài CO₂, H_2O còn có C, CO, ...

* Vd2:

HC1 CH₃CH₂CH₃+Cl₂

(1-clopropan:43%)

CH₃-CHCl-CH₃

+HC1

(2-clopropan: 57%)

* Nhận xét: Nguyên tử H liên kết với nguyên tử C bậc cao dễ bị thế hơn nguyên tử H liên kết với C bậc thấp hơn.

2. Phản ứng tách:

a. Đehidro hóa(tách H2):

Vd: CH₃-CH₃-CH₃-CH₂=CH₂+H₂ CH_3 - CH_2 - $CH_3 \xrightarrow{to,Ni} CH_3$ - CH_2 = CH_2 + H_2 $TQ: C_nH_{2n+2} \xrightarrow{to,Ni} C_nH_{2n} + H_2$

b. Phản ứng crackinh:

 CH_3 - CH_2 - CH_3 \xrightarrow{to} CH_4 + CH_2 = CH_2 CH_3 - CH_2 - CH_3 \xrightarrow{to} CH_4 + CH_2 =CH- CH_3 CH₃-CH₃

$$\begin{array}{c} CH_2 = CH_2 \\ \underline{TQ:} C_nH_{2n+2} \xrightarrow{\mathit{crackinh}} C_mH_{2m+2} + C_xH_{2x} \end{array}$$

Với: n = m + x $m \ge 1$; $x \ge 2$; $n \ge 3$

3. Phản ứng oxi hóa:

$$C_nH_{2n+2} + \frac{3n+2}{2}O_2 \rightarrow nCO_2 + (n+1)H_2O$$

 $*n_{H,O} > n_{CO_2}$

 $CH_2=CH_2$

$$*1 < \frac{n_{H_2O}}{n_{CO_2}} \le 2$$

$$*n_{ankan} = n_{H_2O} - n_{CO_2}$$

Vd: $CH_4+O_2 \xrightarrow{to} CO_2+H_2O$ $C_3H_8 + 5O_2 \xrightarrow{to} 3CO_2 + 4H_2O$

IV. <u>Điều chế</u>:

Hoạt động 4: Điều chế và ứng dụng

- Gv: Viết phương trình điều chế CH₄ bằng cách nung nóng CH₃COONa với CaO, NaOH; giới thiệu phương pháp khai thác ankan trong công nghiệp
- Gv: Cho hs nghiên cứu sgk, rút ra những ứng dụng cơ bản của ankan.
- 2. Trong công nghiệp: (SGK)
- **V.<u>Úng dụng</u>:** sgk
- **4.** <u>Củng cố</u>: Một hỗn hợp A gồm 2 ankan là đồng đẳng kế tiếp nhau có khối lượng 10,2 gam. Đốt cháy hoàn toàn hỗn hợp A cần 36,8 gam oxi
 - a) Tính khối lượng CO₂ và H₂O tạo thành?
 - b) Tìm CTPT của 2 ankan?

V. Dăn dò:

- Học bài, làm bài tập SGK
- Ôn tập kiến thức chuẩn bị luyện tập