Question 1

 $\label{thm:complexity} \textbf{Suppose you have the following runtime data for an algorithm. What complexity class do they indicate?}$

Input size	Seconds
1000	7
2000	15
4000	31
8000	63
16000	125

Question 2

Consider the following code fragment. Based on its structure, what is its complexity class?

```
int s = 0;
for(int i = 0; i < n; i++)
  for(int j = 0; j < 6; j++)
    m += j;</pre>
```

Question 3

Suppose we use Binary Search to find the value 3 on the following array. Which array elements get checked, in which order, and why?

index	0	1	2	3	4	5	6
value	1	2	3	5	8	13	21

Question 4

Suppose we run Bubble Sort to sort the following array in increasing order. What does the array look like after the first 3 iterations, and why?

index	0	1	2	3	4	5	6
value	13	2	21	3	1	8	5

Question 5

Suppose we remove the value 4 from the following binary search tree. What does the resulting tree look like?

To enter your answer, write the contents of the tree one level at a time, using "*" to indicate missing nodes. For example, the above tree would be written

1

04

**25

*3**

Question 6

Suppose we insert the value 6 in the following AVL tree, and re-balance it. What does the resulting tree look like?

To enter your answer, write the contents of the tree one level at a time, using "--" to indicate missing nodes. For example, the above tree would be written

3

15

***7

Question 7

Consider the following array representation of a Min-Heap. How does this change after inserting the value 0?

index	0	1	2	3	4
value	1	2	4	5	3

Question 8

Consider the undirected graph given by $% \left\{ \left\{ 1\right\} \right\} =\left\{ 1\right\} =\left\{ 1\right$

 $V = \{a,b,c,d,e\}$

 $\mathsf{E} = \{\{\mathsf{a},\mathsf{b}\}, \{\mathsf{a},\mathsf{c}\}, \{\mathsf{a},\mathsf{d}\}, \{\mathsf{a},\mathsf{e}\}, \{\mathsf{b},\mathsf{c}\}, \{\mathsf{c},\mathsf{d}\}, \{\mathsf{d},\mathsf{e}\}\}.$

Write the adjacency matrix of this graph.

Question 9

Suppose we use an in-order traversal to output the following tree. What does this traversal do? What is the resulting output?

Question 10

For this question, consider the following problem:

Input: An array of positive integers

Output: A positive integer that is **not** in the array

What would a brute force algorithm for this problem do? What is the complexity of this algorithm in terms of the size n of the array?