Оглавление

0.1	Существование жордановой формы	
0.2	Комплексификация	2

0.1 Существование жордановой формы

Доказательство (теоремы о существовании жордановый формы).

• Докажем для случая, когда минимальный многочлен $\mathcal A$ имеет вид $P(t)=(t-\lambda)^r$ Сведём к случаю нильпотентного опреатора:

Положим $B = A - \lambda \mathcal{E}$

 $\mathcal{B}^r = 0$, \mathcal{B} – нильпотентный

Значит, существует жорданов базис \mathcal{B} , причём на диагонали жордановой формы стоят нули

• Общий случай

$$\chi_{\mathcal{A}} = (-1)^n (t - \lambda_1)^{s_1} \cdot \dots \cdot (t - \lambda_m)^{s_m}$$

По следствию к теореме Гамильтона-Кэли минимальный многочлен – делитель $\chi \implies$ минимальный многочлен имеет вид

$$P(t) = (t - \lambda_1)^{r_1} \cdot \dots \cdot (t - \lambda_m)^{r_m}$$

Применим теорему о разложении в сумму примарных подпространств:

Пусть $Q_i := (t - \lambda_i)^{r_i}$

По теореме

$$V = U_1 \oplus ... \oplus U_k$$

 U_i инвариантны

 $Q_i(t)$ – минимальный многочлен ${\cal A}$ на U_i

 $\mathrm{K}\ U_i$ применяем нильпотентный случай:

Существует жорданов базис U_i

Матрица $\mathcal{A} \bigg|_{U_i}$ имеет вид

$$J_i = \begin{pmatrix} J_{r_1}(\lambda_i) & . & . \\ . & . & . \\ . & . & J_{r_k}(\lambda_1) \end{pmatrix}$$

Значит, в базисе, полученном объединением базисов U_i матрица $\mathcal A$ имеет вид

$$J = \begin{pmatrix} J_1 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & J_m \end{pmatrix}$$

Свойства (возведения в степень жордановой клетки).

1. (a)
$$\left(J_r(0)\right)^s = \begin{pmatrix} 0 & . & . & . & . \\ 0 & 0 & . & . & . \\ . & . & . & . & . \\ 1 & . & . & . & . \\ . & . & . & . & . \\ . & 1 & . & 0 & 0 \end{pmatrix}$$
 при $s < r$

То есть

$$a_{ij} = \begin{cases} 1, & i - j = s \\ 0, & \text{иначе} \end{cases}$$

(b)
$$\left(J_r(0)\right)^s 0$$
 при $s \ge r$

Пример. r=4

$$\left(J_4(0)\right)^1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \left(J_4(0)\right)^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Доказательство. Формально — **индукция** по s. На самом деле, повторяем действия из примера

• **База.** s = 1

$$J_1(0) = (0)$$

• Переход. $s \rightarrow s+1$

$$J_r^s(0) = a_{ij}, J_r(0) = b_{ij}, J_r^{s+1}(0) = c_{ij}$$
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2i} + \dots + a_{in}b_{ni} (1)$$

Среди a_{ij} не более одной единицы, остальные нули Среди b_{xj} не более одной единицы, остальные нули Значит, $c_{ij}=0$ или $c_{ij}=1$

$$c_{ij} = 1 \iff \exists x : \begin{cases} a_{ix} = 1 \\ b_{xi} = 1 \end{cases} \iff i - j = s + 1$$

2. Пусть $\lambda \neq 0$, $A = \left(J_r(\lambda)\right)^s$

Тогда А нижнетреугольная

$$a_{ij} = \begin{cases} \lambda^{i-j} C_s^{i-j}, & i > j, i-j \le s \\ 0, & i > j, i-j > s \end{cases}$$

Пример.

$$\begin{pmatrix} J_4(2) \end{pmatrix}^5 = \begin{pmatrix} 2^5 & 0 & 0 & 0 & 0 \\ C_5^1 \cdot 2^4 & 2^5 & 0 & 0 & 0 \\ C_5^2 \cdot 2^3 & C_5^1 \cdot 2^4 & 2^5 & 0 & 0 \\ C_5^3 \cdot 2^3 & C_5^2 \cdot 2^5 & C_5^1 \cdot 2 & 2^5 \end{pmatrix} = \begin{pmatrix} 2^5 & 0 & 0 & 0 & 0 \\ 5 \cdot 2^4 & 2^5 & 0 & 0 & 0 \\ 10 \cdot 2^3 & 5 \cdot 2^4 & 2^5 & 0 & 0 \\ 10 \cdot 2^3 & 10 \cdot 2^3 & 5 \cdot 2^4 & 2^5 \end{pmatrix} = \\
= \begin{pmatrix} 32 & 0 & 0 & 0 & 0 \\ 80 & 32 & 0 & 0 & 0 \\ 80 & 80 & 32 & 0 & 0 \\ 40 & 80 & 80 & 32 \end{pmatrix}$$

Доказательство. $J_r(\lambda) = \lambda \cdot E + J_r(0)$

Возведём в степень и распишем как бином Ньютона (учитывая, что λE коммутирует с чем угодно, а значит, можно приводить подобные):

$$\left(J_r(\lambda)\right)^s = (\lambda E)^s + C_s^1(\lambda E)^{s-1}J_r(0) + \dots + C_s^{r-1}(\lambda E)^{s-r+1}J_r(0)^{r-1} + \underbrace{J_r^r(0)}_{\in \mathbb{C}^{B-BO}}(\dots) \xrightarrow{\text{CB-BO}} 1a$$

$$= \lambda^s E + C_s^1\lambda^{s-1}J_r(0) + \dots + C_s^{r-1}\lambda^{s-r+1}J_r^{r-1}(0) =$$

$$= \begin{pmatrix} \lambda^s & 0 \\ \vdots & \vdots \\ 0 & \lambda^s \end{pmatrix} + \begin{pmatrix} 0 & \vdots & 0 \\ \lambda^{s-1}C_s^1 & \vdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \lambda^{s-1}C_s^1 & 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 & 0 \\ \vdots & \vdots \\ \lambda^{s-r+1}C_s^{r-1} & \vdots \\ \lambda^{s-r+1}C_s^{r-1} & \vdots \\ 0 \end{pmatrix}$$

3. $\operatorname{rk}\left(\left(J_r(0) \right)^s \right) = \begin{cases} r - s, & s < r \\ 0, & s \ge r \end{cases}$

Теорема 1 (количество клеток и ранг). J – жорданова матрица

Тогда количество клеток вида $J_r(\lambda)$ равно

$$\operatorname{rk}\left(J - \lambda E\right)^{r-1} - 2\operatorname{rk}\left(J - \lambda E\right)^{r} + \operatorname{rk}\left(J - \lambda E\right)^{r+1}$$

Доказательство. Положим $f(s) := \operatorname{rk}(J - \lambda E)^s$

Какое-то из λ_i совпало с λ

$$f(s) = \sum_{i=1}^{k} \operatorname{rk} \left(\left(J_{r_i}(\lambda_i - \lambda) \right)^s \right)$$

• Если $\lambda \neq \lambda_i$, то $\operatorname{rk}\left(\left(J_{r_i}(\lambda - \lambda_i)\right)^s\right) = r_i \quad \forall s$

$$f(s) - f(s+1) = \sum \left(\operatorname{rk} \left(J_{r_i}^s(\lambda_i - \lambda) \right) - \operatorname{rk} \left(J_{r_i}^{s+1}(\lambda - \lambda_i) \right) \right)$$

То есть, если $\lambda_i \neq \lambda_j$, то *i*-е слагаемое равно $r_i - r_j = 0$

• Если $\lambda_i=\lambda,\quad r_i\leq s,$ то i-е слагаемое равно 0-0=0

ullet Если $\lambda_i=\lambda,\quad r_i< s,$ то i-е слагаемое равно $(r_i-s)-igg(r_i-(s+1)igg)=1$

$$f(s+1)-f(s)$$
 – количество клесток, для которых $\lambda_i=\lambda,\quad r_i>s$ $\left(f(s+1)-f(s)\right)-\left(f(s)-f(s-1)\right)$ – количество клеток размера s

Применяя три случая, получаем, что это равно f(s+1) - 2f(s) + f(s-1)

Следствие (единственность жордановой формы). Пусть J, J' – жордановы

J, J' – матрицы \mathcal{A} в некоторых базисах

Тогда J,J' совпадают с точностью до перестановки жордановых клеток

Доказательство. J, J' – матрицы A

$$J-\lambda E, J'-\lambda E$$
 – матрицы $\mathcal{A}-\lambda \mathcal{E}$

$$(J-\lambda E)^s, (J'-\lambda E)^s$$
 – матрицы $(\mathcal{A}-\lambda \mathcal{E})^s$

rk не зависит от выбора базиса

Теорема 2 (минимальный многочлен). J – жоданова матрица,

$$\lambda_1, ..., \lambda_k$$
 – с. ч. J

 r_i – максимальный размер жордановой клетки, соотв. λ_i

Тогда минимальный многочлен равен $(t-\lambda_1)^{r_1}...(t-\lambda_k)^{r_k}$

Доказательство. Пусть $e_1, ..., e_n$ – жорданов базис

 P_i – минимальный аннулятор e_i

Тогда минимальный многочлен равен $HOK(P_1,...,P_n)$

Пусть e_i соответствует j-му столбцу клетки $J_r(\lambda)$

$$(\mathcal{A} - \lambda \mathcal{E})^{r-i}(e_i) = 0, \qquad (\mathcal{A} - \lambda \mathcal{E})^{r-i-1}(e_i) \neq 0$$

$$\implies P_i(t) = (t - \lambda)^{r-i}$$

Минимальный многочлен – это НОК многочленов вида $(t - \lambda_i)^s$, $s \le r_i$

Среди них есть $(t - \lambda_1)^{r_1}, ..., (t - \lambda_k)^{r_k}$

Значит, среди них есть P_i , а остальные – не делители

$$\implies$$
 HOK = $(t - \lambda_1)^{r_1}...(t - \lambda_k)^{r_k}$

0.2Комплексификация

В предыдущем параграфе мы доказали, что жорданова форма существует, если многочлен расладывается на простейшие множители. Это всегда верно над С. В этом параграфе рассмотрим жордановы формы над

[. Идея построения] V – вект. пространство над \mathbb{R}

Построим \hat{V} над \mathbb{C} , состоящее из u + vi, $u, v \in \mathbb{R}$

Для этого определим сложение и умножение:

- $(u_1 + v_1 i) + (u_2 + v_2 i) = (u_1 + u_2) + (v_1 + v_2)i$
- $(a+bi)(u+vi) = au + bui + avi + bvi^2$

Определение 1. V – векторное пространство над \mathbb{R}

Комплексификация V – это множество \hat{V} , состоящее из пар (u,v) с операцией