Espacios de proximidad

Sésar

1. Definiciones de proximidad

Definition 1. Sea $X \neq \emptyset$. Una **proximidad** es una relación binaria δ en $\mathcal{P}(X)$ tal que para todo $A, B, C \in \mathcal{P}(X)$:

P1 (Simetría) $A\delta B \Leftrightarrow B\delta A$.

P2 (Nulidad) $A \delta \varnothing$.

P3 (Reflexividad) $A \cap B \neq \emptyset \Rightarrow A\delta B$.

P4 (Aditividad) $A\delta(B \cup C) \Leftrightarrow A\delta B$ o $A\delta C$.

P5 (Transitividad) Si para todo $E \subseteq X$, $A\delta E$ o $B\delta(X \setminus E)$, entonces $A\delta B$.

Decimos que el par (X, δ) es un **espacio de proximidad**.

Decimos que $A, B \subseteq X$ están **próximos** si $A\delta B$.

Example 1. Sea la relación $A\delta_t B \Leftrightarrow A, B \neq \emptyset$. Entonces se puede comprobar fácilmente que δ_1 es una proximidad. Esta relación es la conocida **proximidad trivial**.

Example 2. Sea la relación $A\delta_d B \Leftrightarrow A \cap B \neq \emptyset$. Entonces también cumple con los axiomas de la proximidad. Esta relacición es la conocida **proximidad discreta**.

Proposition 1. Toda proximidad es isótona: $\forall A, B, C \subseteq X, A\delta B \subseteq C \Rightarrow A\delta C$.

Demostración. Como $A\delta B$, entonces por P4, $A\delta(B\cup C)$ y como $B\cup C=C$, obtenemos $A\delta C$. \square

Remark 1. Si la relación binaria δ no cumple la simetría P1, redefiniendo la nulidad P2 y la aditividad P4 tomándose en ambos lados, se dice que δ es una quasi-proximidad.

Definition 2. Sea (X, δ) un espacio de proximidad. Definimos la **lejanía** como la relación binaria \bowtie tal que para todo $A, B \subseteq X$,

$$A \bowtie B \Leftrightarrow A \delta B$$
.

En este caso, decimos que A y B son **lejanos**.

Proposition 2. Sea (X, δ) un espacio de proximidad. Para todo $A, B, C \subseteq X$,

L1 $A \bowtie B \Rightarrow B \bowtie A$.

L2 $A \bowtie \emptyset$.

L3 $A \bowtie B \Rightarrow A \cap B = \emptyset$.

L4 $A \bowtie (B \cup C) \Leftrightarrow A \bowtie B \lor A \bowtie C$.

L5 Si $A \bowtie B$, entonces existe un $E \subseteq X$ tal que $A \bowtie E$ y $B \bowtie (X \setminus E)$.

Demostraci'on. Se obtiene simplemente negando las condiciones P1-P5 de la definici\'on de proximidad.

Proposition 3. Para todo $A, B, C \subseteq X, A \subseteq B \bowtie C \Rightarrow A \bowtie C$.

Demostración. Sean $A \subseteq B$ y $A \bowtie C$. Entonces $A\delta B$ y por isotonía, $B\delta C$, es decir, $B \bowtie C$.

Decimos además que si \times es una relación binaria que cumple con L1-L5, entonces (X, \times) es un **espacio de lejanía**.

Proposition 4. Supongamos que (X, \times) es un espacio de lejanía. Entonces existe una única proximidad δ en X tal que $\times = \bowtie$ es la lejanía de δ .

Demostración. Definamos δ de manera que para todo $A, B \subseteq X$, tenemos que $A\delta B \Leftrightarrow A \not \!\!\!/ B$. Se puede demostrar fácilmente que δ es una proximidad y que $A \bowtie B \Leftrightarrow A \not \!\!\!/ B \Leftrightarrow A \times B$. Además, si δ' es otra proximidad con las mismas características, entonces $A\delta'B \Leftrightarrow A \not \!\!\!/ B \Leftrightarrow A\delta B$.

Definition 3. Sea (X, δ) . La **vecindad** es una relación binaria \ll definida tal que para todo $A, B \subseteq X$,

$$A \ll B \Leftrightarrow A \bowtie (X \setminus B)$$
.

Decimos en este caso que B es un δ -entorno de A.

Proposition 5. Sea (X, δ) un espacio de proximidad. Para todo $A, B, C, D \subseteq X$,

V1 $A \ll X$.

V2 $A \ll B \Rightarrow A \subseteq B$.

V3 $A \subseteq B \ll C \subseteq D \Rightarrow A \ll D$.

V4 $A \ll B$ y $A \ll C \Rightarrow A \ll C \cap D$.

V5 $A \ll B \Rightarrow X \setminus B \ll X \setminus A$.

V6 $A \ll B \Rightarrow$ existe un $E \subseteq X$ tal que $A \ll E \ll B$.

Demostración. En primer lugar, notemos que $A \bowtie \emptyset \Leftrightarrow A \bowtie (X \setminus X) \Leftrightarrow A \ll X$.

Por otro lado, Si $A \ll B$, entonces $A \bowtie (X \backslash B)$, por lo que $A \cap (X \backslash B) = \emptyset$, equivalentemente, $A \subseteq B$.

Supongamos ahora que $A \subseteq B \ll C \subseteq D$. Entonces por un lado tenemos que $B \bowtie (X \setminus C)$. Como $A \subseteq B$, entonces por isotonía de la lejanía $A \bowtie (X \setminus C)$ y como $X \setminus D \subseteq X \setminus D$, entonces por la isotonía de nuevo $A \bowtie (X \setminus D)$, luego $A \ll D$.

Tomemos $A \ll B$ y $A \ll C$. Entonces $A \bowtie (X \setminus B)$ y $A \bowtie (X \setminus C)$. Por tanto, $A \bowtie (X \setminus B \cup X \setminus C)$ que por las leyes de Morgan, $A \bowtie (X \setminus B \cap C)$ y por lo tanto, $A \ll B \cap C$.

A continuación, sea $A \ll B$. Entonces $A \bowtie (X \setminus B)$, que es lo mismo que $(X \setminus B) \bowtie (X \setminus (X \setminus A))$, es decir, $X \setminus B \ll X \setminus A$.

Finalmente, supongamos que $A \ll B$, entonces $A \bowtie (X \setminus B)$ y por lo tanto, existe un $E \subseteq X$ tal que $A \bowtie X \setminus E$ y $(X \setminus B) \bowtie E$, que son equivalentes a $A \ll E$ y $E \ll B$.

Decimos además que si \prec es una relación binaria que cumple con V1-V6, decimos que (X, \prec) es un **espacio de vecindad**.

Proposition 6. Sea (X, \prec) un espacio de vecindad. Entonces existe una única proximidad δ tal que \prec es la vecindad en δ .

Demostración. Para demostrar la existencia, basta con demostrar que $A \times B \Leftrightarrow A \prec X \setminus B$ es una lejanía.

En primer lugar, la simetría se da porque $A \times B \Leftrightarrow A \times X \setminus B \Leftrightarrow B \times X \setminus A \Leftrightarrow B \times A$.

Por otro lado, como $A \prec X$, entonces $A \times \emptyset$.

Ahora bien, Supongamos que $A \times B$. Entonces $A \prec X \setminus B$, lo que implica que $A \subseteq X \setminus B$ y por tanto, $A \cap B = \emptyset$.

Supongamos ahora que $A \times (B \cup C)$. Entonces $A \prec X \setminus (B \cup C)$, equivalentemente, $A \prec X \setminus B \cap X \setminus C$. Como $X \setminus B \cap X \setminus C \subseteq X \setminus B, X \setminus C$, en particular $A \prec X \setminus B$ y $A \prec X \setminus C$, es decir, $A \times B$ y $A \times C$. Contrariamente, si $A \times B$ y $A \times C$, entonces $A \prec X \setminus B$ y $A \prec \setminus C$ y por las propiedades de \prec , $A \prec X \setminus B \cap X \setminus C$, es decir, $A \prec X \setminus (B \cup C)$ y por lo tanto $A \times B \cup C$.

Finalmente, supongamos que $A \times B$. Entonces $A \prec X \setminus B$ y de este modo, existe un $E_0 \subseteq X$ tal que $A \prec E_0 \prec B$. Como $A \prec E_0$, entonces $A \times X \setminus E_0$ y como $E_0 \prec B$, entonces $B \times E_0$. Tomando $E = X \setminus E_0$ se tiene.

Por tanto (X, \times) es un espacio de lejanía, por lo que existe una proximidad tal que \times es su lejanía y, por construcción, \prec es su vecindad. Supongamos que esta misma vecindad \prec puede definir dos espacios de lejanía. Por la unicidad del espacio de proximidad, son lejanías \bowtie_1 y \bowtie_2 de ciertas proximidades. De este modo, \prec es la vecindad de estos espacios de proximidad y por definición, $A\bowtie_1 B\Leftrightarrow A\prec X\setminus B\Leftrightarrow A\bowtie_2$. Por tanto, \bowtie_1 y \bowtie_2 son la misma lejanía y por unicidad, los espacios de proximidad son iguales.

Definition 4. Un espacio de proximidad (X, δ) está **separado** si $\forall x, y \in X$,

$$\{x\}\delta\{y\} \Rightarrow x = y.$$

Remark 2. Ser separado es más fuerte que la nulidad. Supongamos que $\emptyset \delta\{y\}$. Entonces para todo $x \neq y$, tenemos que como $\emptyset \subseteq \{x\}$, entonces por isotonía se obtiene que $\{x\}\delta\{y\}$.

Proposition 7. Sea (X, δ) un espacio de proximidad.

- (I) (X, δ) es separable.
- (II) $x \neq y \Rightarrow \{x\} \bowtie \{y\}$ para todo $x, y \in X$.
- (III) $x \neq y \Rightarrow \{x\} \ll X \setminus \{y\}$ para todo $x, y \in X$.

Demostración. Que (X, δ) sea separable es equivalente a afirmar que para todo $x \neq y$, $\{x\} \delta \{y\}$, es decir, $\{x\} \bowtie \{y\}$ y reescribiendo esta expresión con la vecindad, obtenemos $\{x\} \ll X \setminus \{y\}$. \square

2. Aplicaciones próximas

Definition 5. Sea $f:(X,\delta_X)\to (Y,\delta_Y)$ aplicación entre espacios de proximidad. Decimos que f es **próxima** si para todo $A,B\subseteq X$.

$$A\delta_X B \Rightarrow f(A)\delta_Y f(B)$$
.

Proposition 8. Sea $f:(X,\delta_X)\to (Y,\delta_Y)$ aplicación entre espacios de proximidad. Son equivalentes:

- (I) f es una aplicación próxima.
- (II) Para todo $C, D \subseteq Y, C \bowtie_Y D \Rightarrow f^{-1}(C) \bowtie_X f^{-1}(D)$.
- (III) Para todo $C, D \subseteq Y, C \ll_Y D \Rightarrow f^{-1}(C) \ll_X f^{-1}(D)$.

Demostración. Supongamos primero que f es una aplicación próxima y sean $C, D \subseteq Y$. Entonces si $C \bowtie_Y D$, por isotonía se tiene que $f(f^{-1}(C))\bowtie f(f^{-1}(D))$, por lo que $f(f^{-1}(C))\not \sim f(f^{-1}(D))$ y por la proximidad de f, $f^{-1}(C)\not\sim f^{-1}(D)$, es decir, $f^{-1}(C)\bowtie_X f^{-1}(D)$.

Supongamos ahora que se da la proximidad de f para la lejanía y sean $C, D \subseteq Y$ tales que $C \ll_Y D$. Esto significa que $C \bowtie_Y Y \setminus D$ y por la proximidad de f, tenemos que $f^{-1}(C) \bowtie_X f^{-1}(Y \setminus D)$ que es lo mismo que $f^{-1}(C) \bowtie_X X \setminus f^{-1}(D)$, por lo que $f^{-1}(C) \ll_X f^{-1}(D)$.

Finalmente, comprobemos que f es una aplicación próxima. Si $A\delta_X B$, entonces por la isotonía se la proximidad se tiene que $f^{-1}(f(A))\delta_X f^{-1}(f(B))$. Supongamos que $f(A)\delta_Y f(B)$. Esto significa que $f(A) \ll_Y Y \setminus f(B)$ y por hipótesis, $f^{-1}(f(A)) \ll_Y f^{-1}(Y \setminus (f(B)))$ que es lo mismo que $f^{-1}(f(A)) \ll_Y X \setminus f^{-1}(f(B))$, y esto es equivalente a decir que $f^{-1}(f(A))\delta_X f^{-1}(f(B))$ lo cual es una contradicción.

3. Topología de la proximidad

Theorem 1. Sea (X, δ) un espacio de proximidad. Entonces para todo $x \in X$,

$$\mathcal{N}_{\delta}(x) := \{ U \subseteq X \mid \{x\} \ll U \}$$

define una familia de entornos en X.

Demostración. En primer lugar, como para todo $x \in X$, $x \ll X$, entonces $X \in \mathcal{N}_{\delta}(x)$ y por tanto no son vacíos. Además, si $U \in \mathcal{N}\delta(x)$, entonces $\{x\} \ll V$ y por tanto, $x \in U$. Por otro lado, Supongamos que $U \in \mathcal{N}_{\delta}(x)$ y $U \subseteq V$. Entonces $\{x\} \ll U \subseteq V$ y por lo tanto, $\{x\} \ll V$, a lo que llegamos que $V \in \mathcal{N}_{\delta}(x)$. Ahora, si $U, V \in \mathcal{N}_{\delta}(x)$, entonces $\{x\} \ll U, V \Rightarrow \{x\} \ll U \cap V$, por lo que tenemos que $U \cap V \in \mathcal{N}_{\delta}(x)$. Finalmente, supongamos que $U \in \mathcal{N}_{\delta}(x)$. Entonces $\{x\} \ll U$ y existe un $V \subseteq X$ tal que $\{x\} \ll V \ll U$. Por definición, $V \in \mathcal{N}_{\delta}(x)$. Supongamos ahora que $y \in V$. Entonces $y \in V \ll U$, por lo que $y \ll U$ y tenemos que $y \in \mathcal{N}_{\delta}(x)$.

Definition 6. La **topología próxima** es la topología \mathcal{T}_{δ} definida por la familia de entornos \mathcal{N}_{δ} de la proximidad δ .

Example 3. Tomemos la proximidad del espacio métrico. Entonces $\{x\} \ll U$ si y solo si $d(x, X \setminus U) > 0$. Llamando $\varepsilon = d(x, X \setminus U) > 0$, tenemos que para todo $y \notin U$, $d(x, y) \geq \varepsilon$. Por tanto $x \in \mathbb{B}_{\varepsilon}(x) \subseteq U$. Concluimos pues que la topología relativa a esta proximidad coincide con la topología usual de los espacios métricos.

Corollary 1. Sea (X, δ) un espacio de proximidad.

- 1. $A \in \mathcal{T}_{\delta}$ si y solo si $x \in A \Rightarrow \{x\} \ll A$.
- 2. $C \in \mathcal{C}_{\delta}$ si y solo si $\{x\}\delta C \Rightarrow x \in C$.

Demostración. A es un abierto si y solo si es entorno de todos sus puntos, es decir, si $x \in A$, entonces $A \in \mathcal{N}_{\delta}(x) \Leftrightarrow \{x\} \ll A$.

Por otro lado, C es cerrado si y solo si $X \setminus C$ es abierto, luego es equivalente a $x \in X \setminus C \Rightarrow \{x\} \ll X \setminus C \Leftrightarrow \{x\} \bowtie C$, es decir, $\{x\}\delta C \Rightarrow x \in C$.

Proposition 9. Sea (X, δ) un espacio de proximidad y $S \subseteq X$.

- 1. El interior de S en la topología próxima es $S^{\circ} = \{x \in X \mid \{x\} \ll S\}.$
- 2. La clausura de S en la topología próxima es $\overline{S} = \{x \in X \mid \{x\}\delta S\}.$

Demostración. Probemos primero que el conjunto \overline{S} es el cerrado más pequeño que contiene a S. En primer lugar, es fácil observar que si $x \in S$, entonces $\{x\}\delta S$, por lo que $x \in \overline{S}$. Veamos ahora que \overline{S} es un cerrado. Supongamos que $x \notin \overline{S}$. Entonces $\{x\} \bowtie S$, por lo que existe un $E_0 \subseteq X$ tal que $\{x\} \bowtie E_0$ y $S \bowtie X \setminus E_0$. Si demostramos que $\overline{S} \subseteq E_0$, entonces por isotonía se

tiene que $\{x\} \bowtie \overline{S}$, demostrando así que \overline{S} es cerrado. Tomemos $y \notin E_0$, entonces $\{y\} \subseteq X \setminus E_0$ y por istotonía, $S \bowtie \{y\}$, es decir, $y \notin \overline{S}$. Finalmente, demostremos que \overline{S} es el cerrado más pequeño que contiene a S. Supongamos que C es un cerrado que contiene a S. Si $x \in \overline{S}$, entonces $\{x\}\delta S \subseteq C$ y por isotonía $\{x\}\delta C$ y como C es cerrado, $x \in C$.

Para el caso del interior, por propiedades básicas de topología general, es suficiente con probar la siguiente igualdad: $X \setminus S^{\circ} = \overline{X \setminus S}$. De este modo $x \notin S^{\circ}$ es equivalente a $\{x\} \mathscr{M} S$, es decir, $\{x\} \delta X \setminus S$ que por definición significa que $x \in \overline{X \setminus S}$.

Proposition 10. Sea (X, δ) un espacio de proximidad y $A, B \subseteq X$.

$$A\delta B \Leftrightarrow \overline{A}\delta \overline{B}$$
.

Demostración. Por un lado, como $A \subseteq \overline{A}$ y $B \subseteq \overline{B}$, por isotonía tenemos que $A\delta B \Rightarrow \overline{A}\delta \overline{B}$. Supongamos ahora que $A \bowtie B$, entonces existe un $E \subseteq X$ tal que $A \bowtie E$ y $B \bowtie X \setminus E$. Podemos observar que $\overline{B} \subseteq E$, ya que si $x \in X \setminus E$, entonces por isotonía $B \bowtie \{x\}$, es decir, $x \notin \overline{B}$. Por lo tanto, por isotonía, $A \bowtie \overline{B}$. Por simetría, tenemos entonces que $\overline{A} \bowtie \overline{B}$. □

Corollary 2. Sea (X, δ) un espacio de proximidad y $A, B \subseteq X$.

$$A \ll B \Leftrightarrow \overline{A} \ll B^{\circ}$$
.

 $\underline{Demostraci\'on}$. Basta con ver la siguiente cadena de implicaciones: $A \ll B \Leftrightarrow A \bowtie X \setminus B \Leftrightarrow \overline{A} \bowtie \overline{X \setminus B} \Leftrightarrow \overline{A} \bowtie X \setminus B^{\circ} \Leftrightarrow \overline{A} \ll B^{\circ}$.

Proposition 11. Si (X, δ) espacio de proximidad separado, entonces $(X, \mathcal{T}_{\delta})$ es Hausdorff.

Demostración. Para demostrar la propiedad Hausdorff, supongamos que $x \neq y$. Entonces por ser separado, $\{x\} \ll X \setminus \{y\}$. Además, existen $E_1, E_2 \subseteq X$ tales que $\{x\} \ll E_1 \ll E_2 \ll X \setminus \{y\}$. Llamemos $U = E_1$ y $V = X \setminus E_2$. Entonces por un lado, $\{x\} \ll U$, por lo que $U \in \mathcal{N}(x)$. Como además $E_2 \ll X \setminus \{y\}$, esto es equivalente a decir que $\{x\} \ll V$, luego $V \in \mathcal{N}(y)$. Finalmente, como $E_1 \ll E_2$, entonces $U \ll X \setminus V$, luego $U \bowtie V$ y por lo tanto $U \cap V = \emptyset$.

Proposition 12. Toda aplicación próxima es continua.

Demostración. Supongamos que $f: X \to Y$ es una aplicación próxima entre dichos espacios de proximidad. Sea $A \in \mathcal{T}_Y$ un abierto de la topología próxima de Y. Veamos que $f^{-1}(A) \in \mathcal{T}_X$. Sea $x \in f^{-1}(A)$. Entonces $f(x) \in A$ y por la caracterización de conunto abierto, $f(x) \ll_Y A$. Como f es próxima, tenemos que $f^{-1}(f(x)) \ll_X f^{-1}(A)$ y finalmente como $x \in f^{-1}(f(x))$, entonces $\{x\} \ll f^{-1}(A)$. Como esto es cierto para cualquier $x \in f^{-1}(A)$, entonces $f^{-1}(A) \in \mathcal{T}_X$. \square

4. Teorema de Urysohn

Lemma 1. Sea (X, δ) un espacio de proximidad. Si $A \ll B$, entonces existe un abierto $G \in \mathcal{T}_{\delta}$ tal que $A \ll G \ll B$.

Demostración. Por las propiedades de la vecindad, existe un $E \subseteq X$ tal que $A \ll E \ll X \setminus C$. Además, $A \subseteq \overline{A} \ll E^{\circ} \subseteq \overline{E} \ll B^{\circ} \subseteq B$, luego $A \ll E^{\circ} \ll B$. Basta con tomar $G = E^{\circ}$.

Remark 3. Como [0,1] con la distancia euclídea es un espacio métrico, en particular es un espacio de proximidad.

Theorem 2 (Urysohn). Sea (X, δ) un espacio de proximidad. Si $A \bowtie B$, entonces existe una función $f: X \to [0, 1]$ continua tal que $A \subseteq f^{-1}(0)$ y $B \subseteq f^{-1}(1)$.

Demostración. Podemos reescribir $A \bowtie B$ como $B \ll X \setminus A$. Por el lema, existe un $G_{1/2} \in \mathcal{T}_{\delta}$ tal que $B \ll G_{1/2} \ll X \setminus A$. De esta manera, podemos repetir este proceso en cada una de las relaciones dadas de esta cadena de vecindades. Por consiguiente, podemos construir una familia de abiertos $\mathcal{G} = \{G_r\}$ donde 0 < r < 1 es un racional diádico, es decir, $r = \frac{a}{2^k}$ donde $a, b \in \mathbb{N}$. Esta familia cumple con las siguientes tres propiedades para todo 0 < r, s < 1 diádicos:

- 1. $B \ll G_r$.
- 2. $A \ll X \setminus G_r$.
- 3. $r < s \Rightarrow G_r \ll G_s$.

De esta manera, podemos definir la siguiente aplicación $f: X \to [0,1]$ como sigue:

$$f(x) := \begin{cases} 1 & x \notin G_r, \ \forall r \\ \inf\{r \mid x \in G_r\} & \text{en otro caso} \end{cases}.$$

Notemos que $x \in f^{-1}(0) \Leftrightarrow \{x\} \ll G_r$ para todo r diádico. Por tanto, $B \subseteq f^{-1}(0)$. De manera análoga, $x \in f^{-1}(1) \Leftrightarrow \{x\} \ll X \setminus G_r$ para todo r diádico. Por tanto, $A \subseteq f^{-1}(1)$.

Falta comprobar que f es continua. Para ello, probaremos que para todo $x \in X$, la preimagen de un entorno de f(x) es un entorno de x. Supongamos primero que f(x) = 1. Entonces podemos considerar entornos de la forma [s,1] donde s < 1 es diádico. De aquí, podemos observar que $x \in X \setminus \overline{G_s} \subseteq f^{-1}([s,1])$, luego $f^{-1}([s,1]) \in \mathcal{N}(x)$. Por otro lado, si f(x) = 0, entonces podemos tomar [0,r] como entorno del 0, donde r > 0 es también diádico y de manera similar se demuestra que $x \in G_r \subseteq f^{-1}([0,r])$, luego $f^{-1}([0,r]) \in \mathcal{N}(x)$. Finalmente, si $f(x) \notin \{0,1\}$, entonces un entorno de f(x) tiene la forma [r,s] donde r < s diádicos. Por tanto, se comprueba que $x \in G_s \setminus \overline{G_r} \subseteq f^{-1}([r,s])$ y por tanto, $f^{-1}([r,s]) \in \mathcal{N}(x)$.

Corollary 3. Si (X, δ) es de proximidad, entonces $(X, \mathcal{T}_{\delta})$ es completamente regular.

Demostración. Tomemos $C \in \mathcal{C}$ y $x \notin C$. Por definición de conjunto cerrado en la topología de la proximidad, $\{x\} \bowtie C$. Por el Teorema de Urysohn se tiene.

Remark 4. Si $f: X \to [0,1]$ es una aplicación próxima, donde [0,1] tiene la proximidad de la distancia, tal que $A \subseteq f^{-1}(0)$ y $B \subseteq f^{-1}(1)$, entonces tendríamos que como $\{0\} \bowtie_{[0,1]} \{1\}$, entonces $f^{-1}(0) \bowtie f^{-1}(1)$ y por isotonía se tendría que $A \bowtie B$.

Theorem 3 (Proximidad completa). Sea (X, \mathcal{T}) espacio topológico. Definamos:

$$A\widetilde{\bowtie}B \Leftrightarrow \exists f: X \to [0,1] \text{ continua t.q. } A \subseteq f^{-1}(0) \text{ y } B \subseteq f^{-1}(1).$$

Entonces $\widetilde{\bowtie}$ define una lejanía en $(X, \widetilde{\delta})$ tal que $\mathcal{T}_{\widetilde{\delta}} \subseteq \mathcal{T}$.

Demostración. Basta con comprobar que $\widetilde{\bowtie}$ satisface los axiomas de la lejanía. En primer lugar, si $A\widetilde{\bowtie}B$, entonces existe un $f:X\to [0,1]$ continua tal que $A\subseteq f^{-1}(0)$ y $B\subseteq f^{-1}(1)$. Si definimos g:=1-f, entonces $g:X\to [0,1]$ y es continua por ser suma de funciones continuas. Además, $B\subseteq f^{-1}(1)=g^{-1}(0)$ y $A\subseteq f^{-1}(0)=g^{-1}(1)$, por lo que $B\widetilde{\bowtie}A$.

Por otro lado, podemos considerar la función constante f = 0 y observar que $A \subseteq f^{-1}(0)$ y $\varnothing \subseteq f^{-1}(1)$, por lo que $A \widetilde{\bowtie} \varnothing$.

Ahora bien, si $A \cong B$, entonces $A \subseteq f^{-1}(0)$ y $B \subseteq f^{-1}(1)$ para una cierta aplicación $f: X \to [0,1]$ continua. Por lo tanto, $A \cap B \subseteq f^{-1}(0) \cap f^{-1}(1) = \emptyset$, por lo que $A \cap B = \emptyset$.

Por otro lado, $A\widetilde{\bowtie}(B\cup B)$, entonces para una cierta aplicación $f:X\to [0,1]$ continua, $A\subseteq f^{-1}(0)$ y $B,C\subseteq B\cup C\subseteq f^{-1}(0)$, luego tomando la misma f para B y C obtenemos que $A\widetilde{\bowtie}B$ y $A\widetilde{\bowtie}C$. Por otro lado, supongamos que $A\widetilde{\bowtie}B$ y $A\widetilde{\bowtie}C$. Entonces existen $f_1,f_2:X\to [0,1]$ continuas tales que $A\subseteq f_1^{-1}(0)\cap f_2^{-1}(0)$, $B\subseteq f_1^{-1}(1)$ y $C\subseteq f_2^{-1}(1)$. La aplicación $f:=\max\{f_1,f_2\}:X\to [0,1]$ es continua tal que $A\subseteq f^{-1}(0)$ y $B\cup C\subseteq f^{-1}(1)$, por lo que $A\widetilde{\bowtie}(B\cup C)$.

Finalmente, Supongamos que $A\widetilde{\bowtie}B$. Entonces para una cierta aplicación $f:X\to [0,1]$ continua $A\subseteq f^{-1}(0)$ y $B\subseteq f^{-1}(1)$. Tomemos el conjunto $E:=f^{-1}((1/2,1])$. Por un lado, podemos definir una función $g:[0,1]\to [0,1]$ tal que g(t)=2t si $t\le 1/2$ y g(t)=1 si t>1/2. Esta función g es continua y por lo tanto $f_A:=g\circ f:X\to [0,1]$ es continua de manera que $A\subseteq f^{-1}(0)=f_A^{-1}(0)$ y $E=f^{-1}((1/2,1])=f_A^{-1}(1)$, por lo tanto $A\widetilde{\bowtie}E$. Por otro lado, podemos definir otra función $h:[0,1]\to [0,1]$ tal que h(t)=2t-1 si t>1/2 y h(t)=0 si $t\le 1/2$. De la misma manera, h es continua y por tanto $f_B:h\circ f:X\to [0,1]$ es continua y satisface que $B\subseteq f^{-1}(1)=f_B^{-1}(1)$ y $X\setminus E=X\setminus f^{-1}((1/2,1])=f^{-1}([0,1/2])=f_B^{-1}(1)$, por lo que $B\widetilde{\bowtie}X\setminus E$.

Supongamos ahora que $G \in \mathcal{T}_{\delta}$. Veamos que G es entorno de todos sus puntos. Si $x \in G$, entonces $\{x\} \ll G$, es decir, $\{x\} \widetilde{\bowtie} X \setminus G$. Por definición de la lejanía, existe una función continua $f: X \to [0,1]$ tal que f(x) = 0 y $X \setminus G \subseteq f^{-1}(1)$. Sabemos que $x \notin f^{-1}(1)$ y que $f^{-1}(1)$ es un cerrado por ser f continua. Por propiedades básicas de Topología General, $G \in \mathcal{N}(x)$, lo que demuestra que G es abierto.

Remark 5. El Teorema de la Proximidad completa, si \mathcal{T} no es completamente regular entonces $\mathcal{T} \nsubseteq \mathcal{T}_{\widetilde{\delta}}$. El corolario siguiente nos indica que la regularidad completa es \mathcal{T} es suficiente para conseguir la igualdad entre las topologías.

Corollary 4. (X, \mathcal{T}) es completamente regular si y solo si $\mathcal{T}_{\tilde{\delta}} = \mathcal{T}$.

Demostración. Si $\mathcal{T}_{\widetilde{\delta}} = \mathcal{T}$, es claro ver que (X,\mathcal{T}) es completamente regular. Consideremos ahora que (X,\mathcal{T}) es completamente regular. Basta comprobar que $\mathcal{T} \subseteq \mathcal{T}_{\widetilde{\delta}}$. Supongamos que $G \in \mathcal{T}$. Tomemos $x \in G$. Esto significa que $x \notin C$, donde $C = X \setminus G$ es un cerrado. Como \mathcal{T} es completamente regular, existe una función $f: X \to [0,1]$ continua tal que f(x) = 0 y $C \subseteq f^{-1}(1)$. Por definición de la lejanía, $\{x\} \widetilde{\bowtie} C$, es decir, $\{x\} \ll G$, por lo que $G \in \mathcal{T}_{\delta}$.

Remark 6. Por el Teorema de Urysohn, $A \bowtie B \Rightarrow A\widetilde{\bowtie}B$.

Corollary 5. Si (X, \mathcal{T}) es Urysohn, entonces $(X, \widetilde{\delta})$ es separado.

Demostración. Si $x \neq y$, entonces por ser el espacio T_1 , tenemos que $\{y\}$ es un cerrado tal que $x \notin \{y\}$. Por ser además completamente regular, podemos separarlos mediante una función continua $f: X \to [0,1]$ tal que f(x) = 0 y f(y) = 1 y por definicón, $\{x\} \widetilde{\bowtie} \{y\}$.

5. Proximidad normal

Lemma 2. Sea (X, \mathcal{T}) un espacio topológico normal. Entonces la relación δ definida como

$$A\delta B \Leftrightarrow \overline{A} \cap \overline{B} \neq \emptyset$$

es una proximidad tal que $\mathcal{T}_{\delta} \subseteq \mathcal{T}$.

 $\overline{A} \cap \overline{\varnothing} = \overline{A} \cap \varnothing = \varnothing, \text{ luego } A \otimes \varnothing. \text{ Además, si } A \cap B \neq \varnothing, \text{ tenemos que } \varnothing \neq A \cap B \subseteq \overline{A} \cap \overline{B}, \text{ por lo que } A \otimes B. \text{ Por las propiedades de la clausura, } A \delta(B \cup C) \text{ si y solo si } \overline{A} \cap \overline{B} \cup \overline{C} = \overline{A} \cap (\overline{B} \cap \overline{C}) \neq \varnothing \text{ que es equivalente a decir que } \overline{A} \cap \overline{B} \neq \varnothing \text{ o } \overline{A} \cap \overline{C} \neq \varnothing, \text{ es decir, } A \otimes B \text{ o } A \otimes C. \text{ Finalmente, supongamos que } A \otimes B, \text{ entonces por definición } \overline{A} \cap \overline{B} = \varnothing. \text{ Por ser el espacio normal, existen } G_1, G_2 \in \mathcal{T} \text{ tales que } \overline{A} \subseteq G_1, \overline{B} \subseteq G_2 \text{ y } G_1 \cap G_2 = \varnothing. \text{ Llamemos } E_0 = G_2. \text{ Por un lado, como } \overline{B} \subseteq G_2, \text{ entonces } \varnothing = \overline{B} \cap X \setminus G_2 = \overline{B} \cap \overline{X} \setminus \overline{G_2}, \text{ por lo que } B \otimes X \setminus E_0. \text{ Por otro lado, si demostramos que } \overline{A} \cap \overline{G_2} = \varnothing, \text{ entonces } A \otimes E_0 \text{ demostrando así la propiedad transitiva. Supongamos por reducción al absurdo que } \overline{A} \cap \overline{G_2} \neq \varnothing, \text{ entonces } G_1 \cap \overline{G_2} \neq \varnothing, \text{ luego existirá un elemento } x \in G_1 \cap \overline{G_2}. \text{ Como } x \in \overline{G_2}, \text{ entonces tomando } G_1 \in \mathcal{N}(x), \text{ tenemos que } G_1 \cap G_2 \neq \varnothing, \text{ pero esto es una contradicción porque el espacio es normal.}$

Esta proximidad tiene la siguiente propiedad: $A \ll B \Leftrightarrow \overline{A} \subseteq B^{\circ}$. Esto es ya que $A \ll B \Leftrightarrow \overline{A} \ll B^{\circ} \Leftrightarrow \overline{A} \bowtie X \setminus B^{\circ} \Leftrightarrow \overline{\overline{A}} \cap \overline{X \setminus B^{\circ}} = \overline{A} \cap X \setminus B^{\circ} = \varnothing \Leftrightarrow \overline{A} \subseteq B^{\circ}$.

Finalmente, veamos que $\mathcal{T}_{\delta} \subseteq \mathcal{T}$. Si $G \in \mathcal{T}_{\delta}$, entonces para todo $x \in G$, tenemos que $\{x\} \ll G \Leftrightarrow \overline{\{x\}} \subseteq G^{\circ}$, lo que implica que $x \in G^{\circ} \subseteq G$, es decir, $G \in \mathcal{N}(x)$ y como hemos probado que G es entorno de todos sus puntos, $G \in \mathcal{T}$.

Corollary 6. Sea (X, \mathcal{T}) un espacio normal. $\mathcal{T}_{\delta} = \mathcal{T}$ si y solo si X es R_0 .

Demostración. Como todo espacio T_4 es T_1 , todo punto es cerrado y $\{x\}\delta\{y\} \Leftrightarrow \overline{\{x\}}\cap \overline{\{y\}} = \{x\}\cap \{y\} \neq \emptyset \Leftrightarrow x=y$, luego (X,δ) es separado.

Para ver que $\mathcal{T} = \mathcal{T}_{\delta}$, basta con probar la inclusión $\mathcal{T} \subseteq \mathcal{T}_{\delta}$. Supongamos que $G \in \mathcal{T}$, entonces si $x \in G$, tenemos que $\overline{\{x\}} = \{x\} \subseteq G = G^{\circ}$ lo que es equivalente a $\{x\} \ll G$ y por tanto $G \in \mathcal{T}_{\delta}$.

6. Proximidad uniforme

Proposition 13. Todo espacio uniforme (X,\mathcal{U}) define una proximidad como sigue:

$$A\delta B \Leftrightarrow \forall U \in \mathcal{U}, \ (A \times B) \cap U \neq \varnothing.$$

Demostración. La comprobación de la simetría de δ es rutinaria. Por otro lado, dado $A \subseteq X$. Por otro lado, por definición $A \times \emptyset = \emptyset$, luego tomemos cualquier $U \in \mathcal{U}$ y obtenemos $(A \times \emptyset) \cap U = \emptyset$, es decir, $A \not \delta \emptyset$. Supongamos ahora que $A \cap B \neq \emptyset$, si $x \in A \cap B$, entonces $(x,x) \in A \times B$ y como la diagonal está contenida en cada $U \in \mathcal{U}$, en particular $(x,x) \in (A \times B) \cap U$ para todo $U \in \mathcal{U}$, por lo que $A \delta B$. Supongamos ahora que $A \delta (B \cup C)$. Entonces para todo $U \in \mathcal{U}$, $(A \times (B \cup C)) \cap U = ((A \times B) \cup (A \times C)) \cap U \neq \emptyset$, luego $(A \times B) \cap U \neq \emptyset$ o $(A \times C) \cap U \neq \emptyset$. Como esto es cierto para todo $U \in \mathcal{U}$, se tiene que $A \delta B$ o $A \delta C$. Supongamos ahora el converso. Si $A \delta B$, entonces $\emptyset \neq (A \times B) \cap U \subseteq (A \times (B \cup C)) \cap U$, luego $A \delta (B \cup C)$. Finalmente, supongamos que $A \delta B$. Entonces en particular $A \cap B = \emptyset$ y además, existe un $U_0 \in \mathcal{U}$ tal que $(A \times B) \cap U_0 = \emptyset$. Denotemos por U'_0 la proyección de U_0 en X, entonces $A \cap U'_0 = \emptyset$ o $A \cap U'_0 = \emptyset$. Supongamos lo primero sin pérdida de generalidad. Denotemos por $E_0 = U'_0 \cup B$. Entonces $A \cap E_0 = (A \cap U'_0) \cup (A \cap B) = \emptyset$, por lo que $A \delta E_0$. Por otro lado, $B \cap X \setminus E_0 = B \cap X \setminus U'_0 \cap X \setminus B = \emptyset$, por lo que $B \delta X \setminus E_0$. \square

Definition 7. Llamamos **proximidad uniforme** a la proximidad $\delta_{\mathcal{U}}$ definida por el espacio uniforme (X,\mathcal{U}) .

Proposition 14. Toda aplicación uniformemente continua es próxima.

Demostración. Supongamos que $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ es una aplicación uniformemente continua. Supongamos que $A\delta_XB$. Tomemos un $V\in\mathcal{V}$ arbitrario. Entonces como f es uniformemente continua, existe un $U\in\mathcal{U}$ tal que $(x,y)\in U\Rightarrow (f(x),f(y))\in V$. Como $A\delta B$, entonces $(A\times B)\cap U\neq\varnothing$. Por lo tanto, existen $x\in A$ e $y\in B$ tales que $(x,y)\in U$ y por la uniformidad continua, $(f(x),f(y))\in V$ y por tanto, $(f(A)\times f(B))\cap V\neq\varnothing$. Como esto es cierto para todo $V\in\mathcal{V}$, se tiene que $f(A)\delta_Y f(B)$.

Proposition 15. Sea (X,\mathcal{U}) un espacio uniforme y $\delta_{\mathcal{U}}$ la proximidad uniforme. Entonces la topología uniforme $\mathcal{T}_{\mathcal{U}}$ coincide con la topología próxima de $\mathcal{T}_{\delta_{\mathcal{U}}}$.

Demostración. Basta con demostrar que la familia de entornos de $\mathcal{N}_{\mathcal{U}}(x)$ coincide con $\mathcal{N}_{\delta}(x)$. Recordemos que la familia $\mathcal{B}_{\mathcal{U}}(x) = \{U(x)\}_{U \in \mathcal{U}}$ forma una base de entornos de $\mathcal{N}_{\mathcal{U}}(x)$.

Supongamos que $V \in \mathcal{N}_{\delta}(x)$. Entonces $\{x\} \ll_{\mathcal{U}} V$. Esto significa que existe un $U \in \mathcal{U}$ tal que $(\{x\} \times X \setminus V) \cap U = \emptyset$. Es decir, si $y \notin V$, entonces $(x,y) \notin U \Leftrightarrow y \notin U(x)$. Dicho de otro modo, $U(x) \subseteq V$. Como U(x) pertenece a la base de entornos de la topología uniforme, tenemos que $V \in \mathcal{N}_{\mathcal{U}}(x)$.