Supplement 1

Characters on Finite Abelian Groups

By a character of a finite abelian group G we mean a homomorphism $\chi: G \to \mathbb{C} \setminus \S \circ 3$

i.e. $\chi(xy) = \chi(x)\chi(y)$ for all x, y e G.

Notice that every value which such a χ assomes must be a root of unity. The characters of G form a group \hat{G} (called the dual group of G) with multiplication given by $\chi_1 \chi_2(x) = \chi_1(x) \chi_2(x)$ for all $x \in G$

and identity element the trivial character Xo (which is identically 1 on 6)

Theorem 1: |G|=161

Theorem 2: (Orthogonality relations)

(a)
$$\frac{1}{1G1}\sum_{x\in G}\chi(x)=\begin{cases} 1 & \text{if } \chi=\chi_0\\ 0 & \text{ol}\omega \end{cases}$$

In order to establish Theorem 2 (b) we will also need to following Theorem 3: If $x \neq 1$, then $\chi(x) \neq 1$ for some $\chi \in \widehat{G}$.

The following is key to the proofs of Theorems I and 3.

Lemma 1 (Character extension lemma)

Let G be a finite abelian group and H=G be a subgroup. Any character of H can be extended to a character of G in [G:H] ways.

(Here [G:H] denotes the midex of H in G, which of course equals 161/141.)

Proof We induct on the index [G: H] and may assume that H & G.

Pick x & G: H and let X be a character of H. We will

extend X to a character X of (x, H) and count the number of possible X. The we use induction to lift the character on (x, H) all the way up to G.

Let $K \ge 1$ be minimal such that $X^K \in H$, in other words K is the order of X in G/H and K = [(X,H):H].

If $\widetilde{\chi}$ is to be a character, then $\widetilde{\chi}(x)$ must sahisfy

$$\widetilde{\chi}(x)^{\kappa} = \chi(x^{\kappa})$$
 (*)

This gives us K possible choices for $\widehat{\chi}(x)$. We will show they all work. Once we have chosen $\widehat{\chi}$ to satisfy (*), we define $\widehat{\chi}$ on (*, H) by $\widehat{\chi}(xih) := \widehat{\chi}(x)^{i} \chi(h)$. (**)

Exercise (): Show that X is a well-defined character on (x, H) which restricts to X on H.

The number of choices of $\tilde{\chi}$ extending χ is equal to the number of choices for $\tilde{\chi}(x)$, namely $\kappa = [\langle x, H \rangle : H]$.

Since $[G: \langle x, H \rangle] < [G: H]$, by induction on the nidex there are $[G: \langle x, H \rangle]$ extensions of each $\widehat{\chi}$ to a character of G, so the number of extensions of a character of H to a character of G is

 $[G:\langle x,H\rangle]\cdot [\langle x,H\rangle;H] = [G:H].$

Proof of Theorem 1: Apply Lemma 1 with H=1.

Proof of Theorem 3: Let $H=\langle \times \rangle$. Since H is a non-trivial cyclic group, it follow from Theorem 1 that there exists a non-trivial character $\chi \in H$ such that $\chi(x) \neq 1$. Now use Lemma 1 to extend χ to G. Π

Proof of Theorem 2:

(a): Let S = Zi X(x).

If X= Xo, the S= IGI. If X + Xo, then I xoEG s.t. X(xo) +1.

$$\Rightarrow \chi(x_0)S = \sum_{x \in G} \chi(x \times x_0) = \sum_{x \in G} \chi(x) = S$$

⇒ S=O.

(b): If $x \neq 1$, then by Theorem 3 we know $\exists X \in G$ such that $X(x) \neq 1$. The argument now follows as in part (a) above, but with $S = \sum X(x)$.

Dirichlet Characters

Consider the characters X'on the multiplicative group of residue classes a mod q with (a,q)=1, (Z/qZL)x.

We extend these to Runchious X on I be setting

$$\chi(n) := \begin{cases} \chi'(n+qZ) & \text{if } (n,q) = 1 \\ 0 & \text{if } (n,q) > 1 \end{cases}$$

These functions on I are what we call Dirichlet characters, note that these functions are periodic mod q & completely multiplicative

The corresponding extension of the trivial character Xo mod q is called the principal character modulo q and denoted by Xo.

Note that
$$\chi_0(n) = \begin{cases} 1 & \text{if } (n,q) = 1 \\ 0 & \text{olw} \end{cases}$$

$$(x_0(n) = \begin{cases} 1 & \text{if } (n,q) = 1 \\ 0 & \text{olw} \end{cases}$$
Corellary I (of Theorem 2 (b))

If $a, n \in \mathbb{Z}$ with (a,q)=1, then $\frac{1}{\varphi(q)}\sum_{i}(\overline{\chi}(a)\chi(n))=\begin{cases} 1 & \text{if } n \equiv a \mod q \\ 0 & \text{olw} \end{cases}$

where the som is over all Dirichlet characters modulo q.

Exercise (2): Deduce Corollary I from Theorem 2 (b).