Теория вероятностей и математическая статистика

Пересдача, 11.09.2017

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Ни пуха, ни пера!

Вопрос 1 \clubsuit Ковариационная матрица вектора $X=(X_1,X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 10 \end{pmatrix}$. Дисперсия разности элементов вектора, $\mathrm{Var}(X_1-X_2)$, равняется

A 15

14

E 18

B 12

 $\overline{\mathbb{D}}$ 2

F Нет верного ответа.

Вопрос 2 \clubsuit Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае известных и неравных дисперсий используется распределение

A $\mathcal{N}(0;1)$

 $\boxed{\mathbb{C}} \chi^2_{m+n-2}$

E t_{m+n}

 t_{m+n-2}

 $\boxed{\mathbf{D}} \ t_{m-1,n-1}$

F Нет верного ответа.

Вопрос 3 ♣ Выборочная доля успехов в некотором испытании составляет 0.3. Исследователь Ромео хочет, чтобы длина двустороннего 95%-го доверительного интервала для истинной доли не превышала 0.1. Количество наблюдений, необходимых для этого, примерно равно

322

C 225

E 113

B 161

D 81

F Нет верного ответа.

Вопрос 4 🖡 При проверке гипотезы о равенстве долей можно использовать распределение

 $\boxed{\mathbf{A}} \ t_{m-1,n-1}$

C χ^2_{m+n-2}

 $\boxed{\mathbb{E}} t_{m+n-2}$

 $\mathcal{N}(0;1)$

 $\boxed{\mathbf{D}} t_{m+n}$

F Нет верного ответа.

Вопрос 5 . Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером m и n соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

 $\boxed{\mathsf{A}} \ t_{m+n-2}$

 $E \mid F_{m,n}$

 $\boxed{\mathbf{B}} \ F_{m+1,n+1}$

 \square $F_{m,n-2}$

Нет верного ответа.

Вопрос 6 ♣ Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

A 1/49

C 1/7

E 1/14

1/4

D 1/2

F Нет верного ответа.

 \fbox{B} Для любой оценки T из класса $\mathcal K$ и любого $\hat{\theta}_n \xrightarrow{P} \theta$ θ выполнено $\mathrm{E}((\hat{\theta}_n - \theta)^2) \leq \mathrm{E}((T - \theta)^2)$

$$\boxed{\mathsf{C}} \ \mathsf{Var}(\hat{\theta}_n) = \frac{\sigma^2}{n}$$

F Нет верного ответа.

Вопрос 20 \clubsuit Оценка $\hat{\theta}_n$ параметра θ называется эффективной в некотором классе оценок \mathcal{K} , если

 $\boxed{\mathbf{D}} \operatorname{Var}(\hat{\theta}_n) \to 0$

 $\begin{bmatrix} \mathbf{E} \end{bmatrix} \hat{\theta}_n \xrightarrow{P} \theta$

Для любой оценки T из класса $\mathcal K$ и любого θ выполнено $\mathrm{E}((\hat{\theta}_n - \theta)^2) \leq \mathrm{E}((T - \theta)^2)$

F Нет верного ответа.

Вопрос 21 \clubsuit Если Р-значение (P-value) больше уровня значимости lpha, то гипотеза $H_0: \sigma=1$

Не отвергается

 \square Отвергается, только если $H_a: \sigma < 1$

В Отвергается

 $oxed{E}$ Отвергается, только если $H_a:\ \sigma
eq 1$

 \square Отвергается, только если $H_a: \sigma > 1$

| F | *Нет верного ответа.*

По выборке из 5 наблюдений X_1,\dots,X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0: \mu=\mu_0$ против $H_a: \mu
eq \mu_0$, можно считать, что величина $rac{ar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

 $A t_4$

 $|E| \mathcal{N}(0,1)$

 $B \chi_4^2$

Нет верного ответа.

Вопрос 23 🌲

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка - «честная», Вася может получить следующее значение тестовой статистики

C 0.4

E -1.02

-1

F | Нет верного ответа.

Вопрос 24 🖺

По выборке X_1, \dots, X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0: \sigma^2 = 30$ против $H_a: \sigma^2 \neq 30$. Известно, что $\sum_{i=1}^{n} (X_i - \bar{X})^2 = 270$. Тестовая статистика может быть равна

А Не хватает данных

B 27

F Нет верного ответа.

Вопрос 25 🖺

По выборке X_1, \dots, X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0:\sigma^2=30$ против $H_a:\sigma^2\neq 30$. Тестовая статистика будет иметь распределение

A $\mathcal{N}(0,1)$

 χ^2_{n-1}

 $B \chi_n^2$

F Нет верного ответа.

Вопрос 26 🌲

Дана реализация выборки: 7, -2, 3, 0. Первая порядковая статистика принимает значение

A 7

 $\mathbf{B} = 0$

D 2.25

F | Нет верного ответа.

Вопрос 27 🐥

Дана реализация выборки: 7, -2, 3, 0. Выборочная функция распределения в точке (-2) принимает значение

A 0.75

B 1

0.25 \boxed{D} 0.5

F Нет верного ответа.

Вопрос 28 🐥

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

A 1/3

B 0.05

1/2

D 3/8

E 0.1

F Нет верного ответа.

Вопрос 29 🌲

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

A
$$T < 52, k = 1$$

$$C T > 52, k = 2$$
 $D T > 52, k = 3$

$$T > 52, k = 1$$

$$\boxed{\text{B}} \ T < 52, k = 4$$

$$|D| T > 52, k = 3$$

Вопрос 30 🐥

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая	7	6	6	8	
Б.Б. Злой	6	3	10	9	3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

A 20

C 22.5

E 19

B 20.5

D 7.5

Нет верного ответа.

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B D E F Вопрос 2 : А С С Б Е Г **Вопрос 3** : **В** В С D E F **Вопрос 5** : A B C D E Вопрос 7 : А С С Б Е Г **Вопрос 8** : **В** В С D E F Вопрос 9 : А В С **Вопрос 10** : A B D E F Вопрос 11 : А С С Вопрос 12 : А В С D Вопрос 13 : 📕 🛭 С 🖸 Вопрос 14 : Вопрос 15 : А В В D Вопрос 16: А В С D **Вопрос** 17 : A B C D Вопрос 18 : А В С Вопрос 19 : А В С D **Вопрос 20** : A B D E F **Вопрос 21** : **В** В С D E F Вопрос 22 : А В С D Вопрос 23 : А |C|D|Вопрос 24 : |А| |В| |D|Вопрос 25 : А В В О Вопрос 26 : А В С D Вопрос 27 : А В D Вопрос 28 : А В В О

Вопрос 30 : А В С D Е

Вопрос 29 : А В С D