Dwuwymiarowy rozkład pary zmiennych losowych X oraz Y dany jest za pomocą tablicy

	Y		
X	-1	1	
-5	0,2	0,1	
1	0,3	0,4	

Wyznaczyć E(-4X-2Y²) oraz E(XY)

Zadanie 19

W magazynach hutrowni znajdują się sanki produkowane w trzech różnych zakładach Z₁, Z₂, Z₃. Zapasy stanowią odpowiednio 40%, 35%, 25% produkcji zakładów Z₁, Z₂, Z₃. Wiadomo, że zakłady dostarczają odpowiednio 1%, 2%, 3% braków.

- a) Jakie jest prawdopodobieństwo, że losowo sprawdzone sanki okażą się dobre?
- b) Sprawdzone sanki okazały się dobre. Jakie jest prawdopodobieństwo, że zostały wyprodukowane przez zakład \mathbb{Z}_2 ?
- Z_1, Z_2, Z_3 losowo wybrane sanki wyprodukowane w Z_1, Z_2, Z_3 .
- D zdarzenie, że losowo wybrane sanki są dobre
- B zdarzenie, że losowo wybrane sanki są brakiem

D=1-B

$$\begin{array}{ll} P(Z_1) = 40\% = 0,4 & a) \ P(D) = P(Z_1) \cdot P(D/Z_1) + P(Z_2) \cdot P(D/Z_2) + P(Z_3) \cdot P(Z_2) = 35\% = 0,35 \\ P(Z_2) = 35\% = 0,25 & 0,9815 = 98,15\% \\ P(D/Z_1) = 1 \cdot 0,01 = 0,99 \\ P(D/Z_2) = 1 \cdot 0,02 = 0,98 \\ P(D/Z_3) = 1 \cdot 0,03 = 0,97 & 0,3495 = 34,95\% \end{array}$$

Gęstość zmiennej losowej X wyraża się wzorem:

$$f(x) = \begin{cases} (-x^2 + 1)\frac{3}{4} dla \ x \in [-1,1] \\ 0 & dla \ x \notin [-1,1] \end{cases}$$

Wyznaczyć dystrybuantę zmiennej losowej X

$$\int (-x^2 + 1)\frac{3}{4}dx = \frac{3}{4}\int (-x^2 + 1) dx = -\frac{3}{4}\int x^2 dx + \frac{3}{4}\int dx = -\frac{3}{4} \cdot \frac{1}{3}x^3 + \frac{3}{4}x$$
$$= -\frac{1}{4}x^3 + \frac{3}{4}x$$

$$\int_{a}^{b} f(x)dx \to \left[-\frac{1}{4}x^{3} + \frac{3}{4}x \right]_{a=-1}^{b=1} = -\frac{1}{4} \cdot 1^{3} + \frac{3}{4} \cdot 1 - \left(-\frac{1}{4} \right) \cdot (-1)^{3} + \frac{3}{4} \cdot (-1)$$

$$= \frac{2}{4} - \left(-\frac{4}{4} \right) = 1\frac{1}{2}$$

Zadanie 13

Wśród 300 zdających egzaminy na wyższą uczelnię techniczną jest 200 absolwentów klas matematyczno-fizycznych, 75 klas ogólnokształcących i 25 klas humanistycznych. Prawdopodobieństwo zdania egzaminu przez absolwenta jest następujące: dla absolwentów klas matematyczno-fizycznych wynosi 0,9, dla klas ogólnokształcących 0,25 i klas humanistycznych 0,1.

- a) Jakie jest prawdopodobieństwo, że losowo wybrany spośród zdających egzamin zda?
- b) Wylosowany absolwent zdał egzamin. Jakie jest prawdopodobieństwo, że ukończył klasę matematyczno-fizyczną?

A₁ - absolwent klasy matematyczno fizycznej

A₂ - absolwent klasy ogólnokształcącej

A₃ - absolwent klasy humanistycznej

Z - zdarzenie takie, ze absolwent zdał egzamin

$$P(A_1) = \frac{200}{300} = \frac{2}{3}$$

$$P(A_2) = \frac{75}{300} = \frac{1}{4}$$

$$P(A_3) = \frac{25}{300} = \frac{1}{12}$$

$$P(Z/A_1) = 0.9$$

$$P(Z/A_2) = 0.25$$

$$P(Z/A_3) = 0.1$$

a)
$$P(Z) = P(A_1) \cdot P\left(\frac{Z}{A_1}\right) + P(A_2) \cdot P\left(\frac{Z}{A_2}\right) + P(A_3) \cdot P\left(\frac{Z}{A_3}\right) = \frac{2}{3} \cdot 0.9 + \frac{1}{4} \cdot 0.25 + \frac{1}{12} \cdot 0.1 = \frac{161}{240} = 0.6708(3) \approx 67.08\%$$

b) $P(A_1/Z) = \frac{P(A_1) \cdot P(Z/A_1)}{P(D)} = \frac{\frac{2}{3} \cdot 0.9}{\frac{161}{240}} = \frac{144}{161} \approx 89.44\%$

Dwie siostry, Ania i Beata zmywają szklanki. Ania jako starsza zmywa trzy razy częściej aniżeli Beata. Wiadomo, że prawdopodobieństwo zbicia szklanki w czasie mycia przez Anię wynosi 0,01, a przez Beatę 0,04.

- a) Jakie jest prawdopodobieństwo, że w czasie zmywania zostanie zbita jedna szklanka?
- b) Szklanka została zbita. Jakie jest prawdopodobieństwo, że zrobiła to Ania?
- A szklanki myje Ania
- B szklanki myje Beata
- Z zdarzenie takie, że szklanka została zbita

$$P(A)=3P(B)$$
 $P(A)+P(B)=1$
 $P(A)=0.75$
 $P(B)=0.25$
 $P(Z/A)=0.01$
 $P(Z/B)=0.04$

a)
$$P(Z)=P(Z/A)\cdot P(A)+P(Z/B)\cdot P(B)=0,01\cdot0,75+0,04\cdot0,25=0,0175=1,75\%$$

b) $P(A/Z)=\frac{P(A)\cdot P(Z/A)}{P(Z)}=\frac{0,1\cdot0,75}{0,0175}\approx0,4286=42,86\%$

Zadanie 5

Czas życia żarówki jest zmienną losową o rozkładzie wykładniczym o średniej 1000 h. Jaki jest rozkład czasu pracy układu złożonego z dwóch równolegle połączonych żarówek? jakie jest prawdopodobieństwo, że układ przepracuje co najmniej 1500 h.

X, Y - zmienne losowe X - żarówka 1., Y - żarówka 2.

 $\lambda = 1000 \text{ h (średnia)}$

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{\left(\frac{-x}{\lambda}\right)} \\ 0 & x < 0 \end{cases}$$
$$\int e^{(ax)} = \frac{e^{(ax)}}{a}$$
$$P(a \le x \le b) = \int_{a}^{b} f(x) dx$$

$$P(X \ge 1500) = 1 - P(< 1500)$$

$$= 1 - \int_{0}^{1500} \frac{1}{1000} e^{\left(\frac{-x}{1000}\right)}$$

$$= 1 - \frac{1}{1000} \int_{0}^{1500} e^{\left(\frac{-x}{1000}\right)}$$

$$= 1 - \left[-1000e^{\left(\frac{-x}{1000}\right)}\right] \frac{1500}{0}$$

$$= 1 - 1 \left[e^{-\frac{3}{2}} - 1\right]$$

$$\approx 1 - 0,7769 = 0,2231$$

Jest to dla dwóch niezależnych zmiennych losowych bo żywotność dwóch żarówek jest niezależna $P(X\geq 1500, Y\geq 1500) = P(X\geq 1500) \cdot P(Y\geq 1500) = 0,2231 \cdot 0,2231 = 0,04977361 \approx 0,0498 = 4,98\%$

W szpitalu na oddziale wewnętrznym przebywa średnio 2000 chorych. Wśród leczonych było 800 cierpiących na chorobę K₁, 600 na Chorobę K₂, 400 na chorobę K₃ oraz 200 cierpiących na chorobę K₄. Prawdopodobieństwo pełnego wyleczenia z chorób wynosiło odpowiednio 0,9; 0,8; 0,7; 0,5.

- a) Obliczyć prawdopodobieństwo, że losowo wybrany pacjent będzie całkowicie wyleczony przy wypisaniu ze szpitala.
- b) Wypisany pacjent jest całkowicie wyleczony. Jakie jest prawdopodobieństwo, ze cierpiał na chorobę K_2 ?
- K₁ losowo wybrany pacjent jest chory na chorobę K₁.
- K_2 losowo wybrany pacjent jest chory na chorobę K_2 .
- K_3 losowo wybrany pacjent jest chory na chorobę K_3 .
- K₄ losowo wybrany pacjent jest chory na chorobę K₄.
- B zdarzenie takie, że pacjent będzie całkowicie wyleczony

$$\begin{split} P(K_1) &= \frac{800}{2000} = 0.4 & P(B/K_1) = 0.9 \\ P(B/K_2) = 0.3 & P(B/K_3) = 0.7 \\ P(K_2) &= \frac{600}{2000} = 0.3 & P(B/K_4) = 0.5 \\ P(K_3) &= \frac{400}{2000} = 0.2 \\ P(K_4) &= \frac{200}{2000} = 0.1 \end{split} \qquad \begin{aligned} & \text{a)} P(B) = P(B/K_1) \cdot P(K_1) + P(B/K_2) \cdot P(K_2) + P(B/K_3) \cdot P(K_3) + \\ P(B/K_4) \cdot P(K_4) = 0.4 \cdot 0.9 + 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) \cdot P(K_4) = 0.4 \cdot 0.9 + 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.5 & P(K_2/B) = \frac{P(K_2) \cdot P(B/K_2)}{P(B)} = \frac{0.3 \cdot 0.8}{0.79} \approx 0.3038 = 30.38\% \\ P(K_4) &= \frac{200}{2000} = 0.1 & P(K_4) = 0.4 \cdot 0.9 + 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.5 = 0.79 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.8 + 0.2 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0.7 + 0.1 \cdot 0.7 \\ P(B/K_4) = 0.3 \cdot 0.7 + 0.1 \cdot 0$$

Zadanie 11

Dwuwymiarowy rozkład pary zmiennych losowych X oraz Y dany jest za pomocą tablicy

	Y		
X	-1	1	
-3	0,1	0,2	
1	0,3	0,4	

Wyznaczyć E(X-2Y²) oraz E(Y- XY)

Pewna partia polityczna ma dwudziestoprocentowe poparcie w społeczeństwie. Jakie jest prawdopodobieństwo, że w okręgu wyborczym składającym się z 10000 wyborców, partia uzyska co najmniej 1000 głosów przy siedemdziesięcioprocentowej frekwencji. Zastosuj przybliżenie rozkładem normalnym lub Poissona.

 $n=0.7\cdot10000=7000$

p=0,2

q=1-p=0.8

 $P(X \ge 1000) = ?$

Zmienną losową X przybliżamy rozkładem normalnym ze średnią np=1400 i wariancją npq=1120

$$P(X \ge 1000) = P\left(\frac{X - 1400}{\sqrt{1120}} \ge \frac{1000 - 1400}{\sqrt{1120}}\right) = P(Z \ge -1,195) = P(Z \le 1,195)$$
$$= 1 - \Phi(1,195) \approx 1 - 0,88298 = 0,11702 \approx 11,7\%$$

Zadanie

Wśród ziaren pszenicy znajduje się 0,2% ziaren chwastów. Jakie jest prawdopodobieństwo, ze wśród wybranych losowo tysiąca ziaren znajdują się co najmniej trzy ziarna chwastów? Zastosuj przybliżenie rozkładem normalnym lub Poissona.

p=0,002

n=1000

np=2

$$P(X \ge 3) = 1 - P(X \le 2) = 1 - P(0) - P(1) - P(2) = 1 - \frac{2^0}{0!e^2} - \frac{2^1}{1!e^2} - \frac{2^2}{2!e^2} = 1 - 0.1353 - 0.2707 - 0.2707 = 1 - 0.6765 = 0.3235 = 32.35\%$$

Sklep spożywczy zaopatrują w spirytus dostawcy D_1 , D_2 , D_3 zachowując proporcje 1:1:2. Wiadomo ze dostawcy D_1 zawierają średnio 2% butelek z uszkodzonym stemplem lakowym, dostawcy D_2 - 4%, a dostawcy D_3 -1%. Klient który kupił butelkę z uszkodzonym stemplem lakowym kwestionuje jej zawartość.

Wyznaczyć prawdopodobieństwo że:

- a) Na tysiąc reklamowanych butelek co najmniej 300 pochodzi od dostawcy D₃
- b) Na sto butelek, co najmniej cztery będą reklamowane

Ponadto zbadać, ile co najmniej butelek należy kupić, aby z prawdopodobieństwem nie mniejszym niż 0,99 trafić na co najmniej jedną butelkę z uszkodzonym stemplem lakowym.

W punktach a) i b) zastosować przybliżenie rozkładem Poissona lub normalnym uzasadniając swój wybór.

D ₁ - butelki od I dosta	ıwcy			$1 = P(D_1) + P(D_2) + P(D_3)$
D ₂ - butelki od II dostawcy				$P(D_3)=2P(D_1)+2 P(D_2)$
D ₃ - butelki od III dostawcy				$P(D_1)=0.25$
B - wylosowanie	butelki	Z	uszkodzonym	$P(D_2)=0,25$
stemplem lakowym				$P(D_3)=0,5$
				$P(B/D_1)=0.02$
				$P(B/D_2)=0,04$
				$P(B/D_3)=0,01$

a) X - ilość butelek wylosowanych od III dostawcy

$$\begin{array}{ccc} p{=}0,5 & q{=}1{\text{-}}p{=}0,5 \\ n{=}1000 & npq{=}250 \\ P(X{\ge}300){=}? \end{array}$$

Stosujemy przybliżenie rozkładem naturalnym ponieważ np>>1

$$P(X \ge 300) = P\left(\frac{X - 500}{\sqrt{250}} \ge \frac{300 - 500}{\sqrt{250}}\right)$$
$$Z = \frac{X - 500}{\sqrt{250}} \sim N(0,1)$$

$$P(X \ge 300) = P(Z \ge -1,265) = P(Z \le 1,265) = 1 - \Phi(1,265) = 1 - 0,89617 = 0,10383$$

 $\approx 10,83\%$

b)
$$p = P(B) = P(B/D_1) \cdot P(D_1) + P(B/D_2) \cdot P(D_2) + P(B/D_3) \cdot P(D_3) = 0,02$$

n=100

np=2

Stosujemy przybliżenie rozkładem Poissona ponieważ λ=np=2 jest wystarczająco małe

$$P(X \ge 4) = 1 - \frac{2^0}{0! e^2} - \frac{2^1}{1! e^2} - \frac{2^2}{2! e^2} - \frac{2^3}{3! e^2} = 1 - 0,1353 - 0,2707 - 0,2707 - 0,1804$$
$$= 0,1429 = 14,29\%$$

c) x - ilość sztuk uszkodzonych butelek od wszystkich dostawców

p=0.02

$$P(X \ge 1) = 0.99 = 1 - P(X = 0)$$

$$0,01=P(X=0)=e^{-\lambda}$$

$$\lambda = -\ln(0.01) = 4.605$$

$$n = \frac{\lambda}{p} = 230$$

Zadanie

Wśród tysiąca skontrolowanych w centralnej Polsce pojazdów osiemdziesią nie posiadało ubezpieczenia. W podobnej kontroli przeprowadzonej w zachodniej części kraju na półtora tysiąca samochodów sto czterdzieści nie posiadało nie posiadało ubezpieczenia. Ocenić czy odsetek pojazdów bez ubezpieczenia zależy od części kraju.

$n_1 = 1000$	$n_2 = 1500$	
$m_1 = 80$	$m_2=140$	
$\alpha = 0.05$	Test hipotezy o dwóch wskaźnikach struktur	
$H_0: p_1=p_2$		
$H_1: p_1 \neq p_2$		
$T = \frac{p_1 - p_2}{\sqrt{\frac{\overline{p} \cdot \overline{q}}{n}}}$	$p = \frac{m_1}{n_1} = 0.08$ $p = \frac{m_2}{n_2} = 0.093$	
$\overline{p} = \frac{m_1 + m_2}{n_1 + n_2} = \frac{80 + 140}{1000 + 1500} = 0,088$	$n = \frac{n_1 \cdot n_2}{n_1 + n_2} = 600$	
$\overline{q} = 1 - \overline{p} = 1 - 0.088 = 0.912$		

Statystyka ta przy założeniu hipotezy H₀ ma rozkład zbliżony do normalnego N(0,1) T=-1,12

$Z(\emptyset) = 1 - \frac{\alpha}{2} = 0,975$	Z _{0,975} =1,96

Obszar krytyczny $K = (-\infty, -1.96) \cup (1.96, \infty)$

Brak podstaw do odrzucenia hipotezy H₀

Badano dzienny czas poświęcony przez dzieci w wieku przedszkolnym na oglądaniu telewizji. Uzyskano następujące wyniki na próbie przedszkolaków (w minutach): 132, 114, 51, 97, 117, 119, 122, 65, 109, 84, 85, 134, 133, 107, 149. Czy zebrane wyniki potwierdzają przypuszczenia, ze przedszkolaki spędzają dziennie dwie godziny na oglądaniu telewizji?

Obliczenia: $\bar{x} = 107,8667, s = 27,14739$

n=15	$H_0=120$
$\alpha = 0.05$	$H_1 \neq 120$

Ponieważ n<30 to sprawdzianem jest T_{n-1} który ma rozkład studenta o 14 stopniach swobody

$$T = \frac{\bar{x} - m}{s} \cdot \sqrt{n - 1} = \frac{107,8667 - 120}{27,14739} \cdot \sqrt{14} = -1,6723$$

Obszar krytyczny K = $(-\infty, -2,1448) \cup (2,1448, \infty)$

Brak podstaw do odrzucenia tezy zerowej

Zadanie

Postanowiono oszacować parametr CSS (czytelnictwo Cyklu Sezonowego) dla pewnego kwartalnika. Pnieważ jest to kwartalnik, za sezon przyjmuje się jeden rok. Zatem interesuje nas odsetek osób, które miało kontakt z danym kwartalnikiem w ciągu roku. Okazało się, ze na tysiąc wylosowanych osób z grupy docelowej 350 miało kontakt z tym kwartalnikiem. Oszacować interesujący nas parametr CCS na poziomie ufności 95%. Zinterpretuj wynik.

m = 350

n=1000

 $\alpha = 0.95$

$$1 - \frac{\alpha}{2} = 0.975$$

$$0,35 - 1,96\sqrt{\frac{0,35 \cdot 0,65}{1000}} < P < 0,35 + 1,96\sqrt{\frac{0,35 \cdot 0,65}{1000}}$$

Przy poziomie ufności 95% odsetek osób które miały styczność z kwartalnikiem wynosi od 33,49% do 36,51%