# Error Modelling of Demand Patterns to Improve Forecasting Accuracy

School of Computer Science and Engineering

Author: Sa Ziheng

Supervisor: Jagath Chandana Rajapakse

# Research Gap + Objectives



Irregularly
Structured
Demand Patterns



### **Error Modelling**

- Use Residuals as Features
- Study its Impact
- On LSTM and Transformer

# **Environment Setup**

- Python Version 3.9.7
- Pytorch Version 2.0.1
- GPU Tesla P100-PCIE-16GB
- Random Seed = 1345



### **Experimental Flow**

- 1. Select a random time series data from a dataset
- 2. Perform hyperparameter tuning for baseline LSTM and transformer networks with the chosen time series data
- 3. With the hyperparameters obtained from step 2:
  - 3.1. conduct Experiment 1.
  - 3.2. conduct Experiment 2.
  - 3.3. conduct Experiment 3.
- 4. Select a random subset of time series data from the dataset
- 5. Repeat step 3 for each time series data.
- 6. Compare results between Experiments 1, 2 and 3.

### **Data Description**

M5-Competition dataset from Kaggle

- sales\_train\_validation.csv (30490 x 1919 (1913))
- sales\_train\_evaluation.csv (30490 x 1947 (1941))
- calendar.csv
- sell\_prices.csv

Use 1913 time steps as training/validation data and reserve 28 time steps as testing data.

### **Data Selection**

Select a random time series data (row **6780**), which displays reasonable variability.

Select data from 1 September 2011 onwards (1698 timestamps), due to constant 0 sales from the beginning

Randomly select another 450 rows of time series data.



# **Data Preprocessing**

- Min-max normalization to [-1, 1]
- Convert to single-step format
- Batch into data loaders

# Hyperparameter Tuning (LSTM)

3-Fold Cross Validation, with initial hyperparameters: N= 512, L = 1, W = 28.

| Batch Size (BS)           | <b>16</b> , 32, 64, 128, 256, 512         |
|---------------------------|-------------------------------------------|
| Hidden Neurons Number (N) | 32, 64, 128, 256, <mark>512</mark> , 1024 |
| Hidden Layers Number (L)  | 1, <mark>2</mark> , 3, 4, 5, 6            |
| Window Size (W)           | 7, 28, <mark>91</mark> , 182, 364         |

Optimal hyperparameters: BS = 16, N = 512, L = 2, W = 91

# Hyperparameter Tuning (Transformer)

3-Fold Cross Validation, with initial hyperparameters: N= 512, L = 1, W = 28.

| dmodel          | 64, 128, 512, 1024                |
|-----------------|-----------------------------------|
| h               | 2, 4, 8                           |
| N               | 2, 4, 6, 8                        |
| Batch Size (BS) | 16, <b>32</b> , 64, 128, 256      |
| Window Size (W) | 7, <mark>28</mark> , 91, 182, 364 |

Optimal hyperparameters: dmodel = 64, h = 4, N = 2, BS = 32, W = 28

# **Experiment 1: Baseline Models**

Given 1698 time stamps available, we use 1670 days as training set and the last 28 days as validation set.

$$\overline{x}_{i+1} = f_{baselineLSTM}(x_i, x_{i-1}, x_{i-2}, \dots, x_{i-90}; \theta)$$

#### **LSTM**

- LSTM network is trained on 1579 (1670 91) sets of windows and validated against the last 28 days of data.
- Predict 1607 days of demand to obtain train score.
- Forecast 28 days into the future with newly predicted demand continuously updated into the window to obtain test score.

# **Experiment 1: Baseline Models**

Given 1698 time stamps available, we use 1670 days as training set and the last 28 days as validation set.

$$\overline{x}_{i+1} = f_{baselineTransformer}(x_i, x_{i-1}, x_{i-2}, \dots, x_{i-27}; \theta)$$

#### Transformer

- Transformer network is trained on 1642(1670 28) sets of windows and validate against the last 28 days of data.
- Predict 1670 days of demand to obtain train score.
- Forecast 28 days into the future with newly predicted demand continuously updated into the window to obtain test score.

# Experiment 2: Error Models + predicted residuals

#### General Idea

Utilize residuals obtained from respective network models in experiment 1 and we use these residuals as feature in addition to the sales demand.

$$\hat{x}_{i+1}, \hat{e}_{i+2} = f_{errormodel}(x_i, x_{i-1}, x_{i-2}, \dots, x_{i-L+1}; e_{i+1}, e_i, \dots, e_{i-L+2}; \theta),$$
 
$$e_i = x_i - x_i$$

Residuals are shifted left by one time stamp.

Residuals are Min-max normalized to [-1, 1].

# **Experiment 2**

### **Training Phase**

L window is used -> first L - 1 residuals are unavailable.

Use sample mean to fill up empty values, given by the equation:

$$\overline{e} = \frac{1}{n} \sum_{i=L+1}^{T} e_{i}$$

# **Experiment 2**

T - L - 1 training/ validation data remaining instead of the original T - L training/ validation data, due to residuals being shifted left by one timestamp.



T= the total timestamps for training data, L= the lookback period,  $\widehat{x}_i=$  the predicted sales demand and  $\widehat{e}=$  the predicted residuals.

# **Experiment 2**

### **Testing Phase**

Newly predicted output is continuously updated into the window whenever actual sales or residuals data is unavailable.

#### Input:

| $x_{T-L+1}$    | ••• | <i>x</i> <sub><i>T</i>-1</sub> | $x_T$           | $\hat{x}_{T+1}$ | <br>$\hat{x}_{T+\tau-L}$ | $\hat{x}_{T+\tau-L+1}$ | <br>$\hat{x}_{T+\tau-1}$ |
|----------------|-----|--------------------------------|-----------------|-----------------|--------------------------|------------------------|--------------------------|
| $e_{_{T-L+2}}$ |     | $e_{_{T}}$                     | $\hat{e}_{T+1}$ | $\hat{e}_{T+2}$ | <br>$e_{T+\tau-L+1}$     | $e_{_{T-L+1}}$         | <br>$\hat{e}_{T+\tau}$   |

Output:



T = the total timestamps for training data, L = the lookback period,  $x_i$  = the predicted sales demand,  $\hat{e}_i$  = the predicted residuals and  $\tau$  = the future timestamp period = 28.

# Experiment 3: $\hat{x}_{i+1}, \hat{e}_{i+2} = f_{errormodel}(x_i, x_{i-1}, x_{i-2}, \dots, x_{i-L+1}; e_{i+1}, e_i, \dots, e_{i-L+2}; \theta)$ Error Models + sample mean residuals

#### **General Idea**

Training phase is the same as Experiment 2.

During testing phase, sample mean residuals instead of predicted residuals are used whenever the residual data is unavailable.

| Input:      |                |                 |                 |     |                        |                        |     |                      |
|-------------|----------------|-----------------|-----------------|-----|------------------------|------------------------|-----|----------------------|
| $x_{T-L+1}$ | <br>$x_{T-1}$  | $x_{_{T}}$      | $\hat{x}_{T+1}$ | *** | $\hat{x}_{T+\tau-L}$   | $\hat{x}_{T+\tau-L+1}$ |     | $\hat{x}_{T+\tau-1}$ |
| $e_{T-L+2}$ | <br>$e_{_{T}}$ | –<br>e          | -<br>e          |     | _<br>e                 | –<br>e                 | :   | e<br>e               |
| Output:     |                |                 |                 |     |                        |                        |     |                      |
|             |                | $\hat{x}_{T+1}$ | $\hat{x}_{T+2}$ | *** | $\hat{x}_{T+\tau-L+1}$ | $\hat{x}_{T+\tau-L+2}$ | *** | $\hat{x}_{T+\tau}$   |

T = the total timestamps for training data, L = the lookback period,  $x_i$  = the predicted sales

# **Analysis Method**

#### Single-item

Visualizations and comparison between RMSE and R2 score.

#### 450-item

Compare test statistics and confidence intervals

- Paired 2-group comparison with Hotelling's T-squared statistic with 95% confidence
  - Test for the null hypothesis where both evaluation metrics are the same.
- Bonferroni simultaneous confidence intervals (SCIs)
  - Obtain the 95% simultaneous confidence interval of the difference in evaluation metrics.

# Summary of Test Score: 1 Item

| Model                     | Test RMSE | Test R2  |
|---------------------------|-----------|----------|
| Experiment 1: LSTM        | 1.60280   | -0.04464 |
| Experiment 2: LSTM        | 2.88533   | -2.38533 |
| Experiment 3: LSTM        | 2.53887   | -1.6211  |
| Experiment 1: Transformer | 1.51024   | 0.07252  |
| Experiment 2: Transformer | 1.50423   | 0.07989  |
| Experiment 3: Transformer | 1.5105    | 0.07226  |

# **Experiment 1/2: Transformer**

### **Experiment 1 Train Set and Test Set:**





### **Experiment 2 Train Set and Test Set:**





# Summary of Comparison: 450-item

### **Basic Comparisons**

| Comparison                       | Differe<br>Test R |     | Difference in Test R2 |     |    |
|----------------------------------|-------------------|-----|-----------------------|-----|----|
|                                  | >                 | <   | >                     | <   | =  |
| 1. Experiment 1 – 2: LSTM        | 27                | 423 | 412                   | 27  | 11 |
| 2. Experiment 1 - 3: LSTM        | 136               | 314 | 307                   | 132 | 11 |
| 3. Experiment 1 - 2: Transformer | 131               | 319 | 313                   | 126 | 11 |
| 4. Experiment 1 - 3: Transformer | 136               | 314 | 307                   | 132 | 11 |

# Summary of Comparison: 450-item

### Paired 2-Group Comparison

| Comparison                       | Null Hypothesis |
|----------------------------------|-----------------|
| 1. Experiment 1 – 2: LSTM        | Rejected        |
| 2. Experiment 1 - 3: LSTM        | Not Rejected    |
| 3. Experiment 1 - 2: Transformer | Rejected        |
| 4. Experiment 1 – 3: Transformer | Not Rejected    |

# **Summary of Comparison: 450-item**

#### 95% Bonferroni SCIs

| Comparison                       | Difference in Test<br>RMSE SCIs | Difference in Test R2<br>SCIs |  |
|----------------------------------|---------------------------------|-------------------------------|--|
| 1. Experiment 1 – 2: LSTM        | {-1.03591, -0.65436}            | {2.95151, 7.07173}            |  |
| 2. Experiment 1 – 3: LSTM        | {-0.21150, -0.01189}            | {-0.15113, 1.69016}           |  |
| 3. Experiment 1 - 2: Transformer | {-0.12818, -0.01858}            | {0.02199, 0.20830}            |  |
| 4. Experiment 1 – 3: Transformer | {-0.04201, 0.02205}             | {-0.03294, 0.12772}           |  |

### Conclusion

- Error modelling does not consistently lead to accuracy improvements.
- Sample mean residuals generally serve as a better estimate than predicted residuals.
- Attention-based model generally produces better results with error modelling as compared to LSTM.

### Limitations

- Same hyperparameters for different time series data
- Choice of time series models

### **Future Improvements**

- Obtain optimal hyperparameters for each time series data
  - Optuna
  - Hyperopt
  - Bayesian optimization
- Choice of time series models
  - Informer
  - Autoformer
- Include noise in residuals feature to prevent overfitting

# Thank You

