(12) UK Patent Application (19) GB (11) 2 298 862 (13) A

(43) Date of A Publication 18.09.1996

(21)	Application No	9603860.9
(21)	Application No	9603860.9

(22) Date of Filing 23.02.1996

(30) Priority Data

(31) 29395 (32) 13.03.1995 (33) IN 9501976 30.05.1995 SE 13.07.1995 9502596 9503246 19.09.1995

(71) Applicant(s) Astra Aktiebolag

(Incorporated in Sweden)

S-151 85 Sodertalje, Sweden

(72) Inventor(s) Meenakshi Balganesh Umender Sharma

(74) Agent and/or Address for Service

J A Kemp & Co 14 South Square, Gray's Inn, LONDON, WC1R 5LX, United Kingdom

(51) INT CL⁶ C07K 14/35 , C12N 15/31 , C12Q 1/48

(52) UK CL (Edition O.) C3H HB7P H650 H654 H655 H685

(56) Documents Cited WO 95/17511 A2

PROC. NATL. ACAD. SCI, Vol. 92, August 1995, pages 8036-8040 GENE, Vol. 165, 1995, pages 67-70 JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT, 0 (19B) 1995 73

(58) Field of Search UK CL (Edition O) C3H HB7P HC2 INT CL⁶ C07K 14/35 ONLINE: WPI; BIOTECH/DIALOG; CAS ONLINE

(54) Sigma subunits of Mycobacterium tuberculosis RNA polymerase

(57) The present invention provides novel nucleic acid molecules coding for sigma subunits of Mycobacterium tuberculosis RNA polymerase. It also relates to polypeptides, referred to as SigA and SigB, encoded by such nucleic acid molecules, as well as to vectors and host cells transformed with the said nucleic acid molecules. The invention further provides screening assays for compounds which inhibit the interaction between a sigma subunit and a core RNA polymerase.

NEW DNA MOLECULES

2298862

TECHNICAL FIELD

5 The present invention provides novel nucleic acid molecules coding for sigma subunits of Mycobacterium tuberculosis RNA polymerase. It also relates to polypeptides, referred to as SigA and SigB, encoded by such nucleic acid molecules, as well as to vectors and host cells transformed with the said nucleic acid molecules. The invention further provides screening assays for compounds which inhibit the interaction between a sigma subunit and a core RNA polymerase.

BACKGROUND ART

15

Transcription of genes to the corresponding RNA molecules is a complex process which is catalyzed by DNA dependent RNA polymerase, and involves many different protein factors. In eubacteria, the core RNA polymerase is composed of α, β, and β' subunits in the ratio 2:1:1. To direct RNA polymerase to promoters of specific genes to be transcribed, bacteria produce a variety of proteins, known as sigma (σ) factors, which interact with RNA polymerase to form an active holoenzyme. The resulting complexes are able to recognize and attach to selected nucleotide sequences in promoters.

25

30

Physical measurements have shown that the sigma subunit induces conformational transition upon binding to the core RNA polymerase. Binding of the sigma subunit to the core enzyme increases the binding constant of the core enzyme for DNA by several orders of magnitude (Chamberlin, M.J. (1974) Ann. Rev. Biochem. 43, 721-).

- 5

10

Characterisation of sigma subunits, identified and sequenced from various organisms, allows them to be classified into two broad categories; Group I and Group II. The Group I sigma has also been referred to as the sigma⁷⁰ class, or the "house keeping" sigma group. Sigma subunits belonging to this group recognise similar promoter sequences in the cell. These properties are reflected in certain regions of the proteins which are highly conserved between species.

Bacterial sigma factors do not have any homology with eukaryotic transcription factors, and are consequently a potential target for antibacterial compounds. Mutations in the sigma subunit, effecting its association and ability to confer DNA sequence specificity to the enzyme, are known to be lethal to the cell.

15 Mycobacterium tuberculosis is a major pulmonary pathogen which is characterized by its very slow growth rate. As a pathogen it gains access to alveolar macrophages where it multiplies within the phagosome, finally lysing the cells and being disseminated through the blood stream, not only to other areas of the lung, but also to extrapulmonary tissues. Thus the 20 pathogen multiplies in at least two entirely different environments, which would involve the utilisation of different nutrients and a variety of possible host factors; a successful infection would thus involve the coordinated expression of new sets of genes. This regulation would resemble different physiological stages, as best exemplified by Bacillus, in which the 25 expression of genes specific for different stages are transcribed by RNA polymerases associating with different sigma factors. This provides the possibility of targeting not only the house keeping sigma of M. tuberculosis, but also sigma subunits specific for the different stages of infection and dissemination

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1: Map of plasmid pARC 8175

Fig. 2: Map of plasmid pARC 8176

5

10

15

PURPOSE OF THE INVENTION

Since the association to a specific sigma subunit is essential for the specificity of RNA polymerase, this process of association is a suitable target for drug design. In order to identify compounds capable of inhibiting the said association process, the identification of the primary structures of sigma subunits is desirable.

It is thus the purpose of the invention to provide information on sequences and structure of sigma subunits, which information will enable the screening, identification and design of compounds competing with the sigma subunit for binding to the core RNA polymerase, which compounds may be developed into effective therapeutic agents.

20

25

30

DISCLOSURE OF THE INVENTION

Throughout this description and in particular in the following examples, the terms "standard protocols" and "standard procedures", when used in the context of molecular cloning techniques, are to be understood as protocols and procedures found in an ordinary laboratory manual such as: Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

10

15

20

25

30

In a first aspect, this invention provides an isolated polypeptide which is a Group I sigma subunit of Mycobacterium tuberculosis RNA polymerase, or a functionally equivalent modified form thereof.

Preferred such polypeptides having amino acid sequences according to SEQ ID NO: 2 or 4 of the Sequence Listing have been obtained by recombinant DNA techniques and are hereinafter referred to as SigA and SigB polypeptides. However, it will be understood that the polypeptides according to the invention are not limited strictly to polypeptides with an amino acid sequence identical with SEQ ID NO: 2 or 4 in the Sequence Listing. Rather the invention additionally encompasses modified forms of these native polypeptides carrying modifications like substitutions, small deletions, insertions or inversions, which polypeptides nevertheless have substantially the biological activities of a M. tuberculosis sigma subunit. Such biological activities comprise the ability to associate with the core enzyme and / or confer the property of promoter sequence recognition and initiation of transcription. Included in the invention are consequently polypeptides, the amino acid sequence of which are at least 90% homologous, preferably at least 95% homologous, with the amino acid sequence shown as SEQ ID NO: 2 or 4 in the Sequence Listing.

In another aspect, the invention provides isolated and purified nucleic acid molecules which have a nucleotide sequence coding for a polypeptide of the invention e.g. the SigA or SigB polypeptide. In a preferred form of the invention, the said nucleic acid molecules are DNA molecules which have a nucleotide sequence identical with SEQ ID NO: 1 or 3 of the Sequence Listing. However, the nucleic acid molecules according to the invention are not to be limited strictly to the DNA molecules with the sequence shown as SEQ ID NO: 1 or 3. Rather the invention encompasses nucleic acid molecules carrying modifications like substitutions, small deletions, insertions or inversions, which nevertheless encode proteins having substantially the biochemical activity of the polypeptides according to the

invention. Included in the invention are consequently DNA molecules, the nucleotide sequences of which are at least 90% homologous, preferably at least 95% homologous, with the nucleotide sequence shown as SEQ ID NO: 1 or 3 in the Sequence Listing.

5

10

15

20

25

30

Included in the invention are also DNA molecule which nucleotide sequences are degenerate, because of the genetic code, to the nucleotide sequences shown as SEQ ID NO: 1 or 3. A sequential grouping of three nucleotides, a "codon", codes for one amino acid. Since there are 64 possible codons, but only 20 natural amino acids, most amino acids are coded for by more than one codon. This natural "degeneracy", or "redundancy", of the genetic code is well known in the art. It will thus be appreciated that the DNA sequence shown in the Sequence Listing is only an example within a large but definite group of DNA sequences which will encode the polypeptide as described above.

Included in the invention are consequently isolated nucleic acid molecule selected from:

(a) DNA molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 or SEQ ID NO: 3 encoding a Group I sigma subunit of Mycobacterium tuberculosis RNA polymerase;

(c) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing to a nucleotide sequence complementary the polypeptide coding region of a DNA molecule as defined in (a) and which codes for a polypeptide which is a Group I sigma subunit of Mycobacterium tuberculosis or a functionally equivalent modified form thereof; and (c) nucleic acid molecules comprising a nucleic acid sequence which is degenerate, as a result of the genetic code, to a nucleotide sequence as defined in (a) or (b) and which codes for a polypeptide which is a Group I sigma subunit of Mycobacterium tuberculosis or a functionally equivalent modified form thereof.

The term "hybridizing to a nucleotide sequence" should be understood as hybridizing to a nucleotide sequence, or a specific part thereof, under stringent hybridization conditions which are known to a person skilled in the art.

5

10

15

20

A DNA molecule of the invention may be in the form of a vector, e.g. a replicable expression vector which carries and is capable of mediating the expression of a DNA molecule according to the invention. In the present context the term "replicable" means that the vector is able to replicate in a given type of host cell into which is has been introduced. Examples of vectors are viruses such as bacteriophages, cosmids, plasmids and other recombination vectors. Nucleic acid molecules are inserted into vector genomes by methods well known in the art. Vectors according to the invention can include the plasmid vector pARC 8175 (NCIMB 40738) which contains the coding sequence of the sigB gene.

Included in the invention is also a host cell harbouring a vector according to the invention. Such a host cell can be a prokaryotic cell, a unicellular eukaryotic cell or a cell derived from a multicellular organism. The host cell can thus e.g. be a bacterial cell such as an E. coli cell; a cell from a yeast such as Saccharomyces cervisiae or Pichia pastoris, or a mammalian cell. The methods employed to effect introduction of the vector into the host cell are standard methods well known to a person familiar with recombinant DNA methods.

25

A further aspect of the invention is a process for production of a polypeptide of the invention, comprising culturing host cells transformed with an expression vector according of the invention under conditions whereby said polypeptide is produced, and recovering said polypeptide.

30

The medium used to grow the cells may be any conventional medium suitable for the purpose. A suitable vector may be any of the vectors described above, and an appropriate host cell may be any of the cell types listed above. The methods employed to construct the vector and effect introduction thereof into the host cell may be any methods known for such purposes within the field of recombinant DNA. The recombinant polypeptide expressed by the cells may be secreted, i.e. exported through the cell membrane, dependent on the type of cell and the composition of the vector.

10

5

If the polypeptide is produced intracellularly by the recombinant host, i.e. is not secreted by the cell, it may be recovered by standard procedures comprising cell disrupture by mechanical means, e.g. sonication or homogenization, or by enzymatic or chemical means followed by purification.

15

20

In order to be secreted, the DNA sequence encoding the polypeptide should be preceded by a sequence coding for a signal peptide, the presence of which ensures secretion of the polypeptide from the cells so that at least a significant proportion of the polypeptide expressed is secreted into the culture medium and recovered.

25

30

Another important aspect of the invention is a method of assaying for compounds which have the ability to inhibit the association of a sigma subunit to a Mycobacterium tuberculosis RNA polymerase, said method comprising the use of a recombinant SigA or SigB polypeptide or a nucleic acid molecule as defined above. Such a method will preferably comprise (i) contacting a compound to be tested for such inhibition ability with a SigA or SigB polypeptide as described above and a Mycobacterium tuberculosis core RNA polymerase; and (ii) detecting whether the said polypeptide associates with the said core RNA polymerase to form RNA polymerase holoenzyme. The term "core RNA polymerase" is to be understood as an

10

15

20

25

30

RNA polymerase which comprises at least the α , β , and β' subunits, but not the sigma subunit. The term "RNA polymerase holoenzyme" is to be understood as an RNA polymerase comprising at least the α , β , β' and sigma subunits. If desirable, the sigma subunit polypeptide can be labelled, for example with a suitable radioactive molecule, e.g. 35 S or 125 I.

Suitable methods for determining whether a sigma polypeptide has associated to core RNA polymerase are disclosed by Lesley et al. (Biochemistry 28, 7728-7734, 1989). Such a method may thus be based on the size difference between sigma polypeptides bound to core RNA polymerase, versus polypeptides not bound. This difference in size allows the two forms to be separated by chromatography, e.g. on a gel filtration column, such as a Waters Protein Pak[®] 300SW sizing column. The two forms eluted from the column may be detected and quantified by known methods, such as scintillation counting or SDS-PAGE followed by immunoblotting.

According to another method also described by Lesley et al. (supra), RNA polymerase holoenzyme is detected by immunoprecipitation using an antibody binding to RNA polymerase holoenzyme. Core RNA polymerase from an organism such as E. coli, M. tuberculosis or M. smegmatis can be allowed to react with a radiolabelled SigA or SigB polypeptide. The reaction mix is treated with Staphylococcus aureus formalin-treated cell suspension, pretreated with an anti-RNA polymerase antibody. The cell suspension is washed to remove unbound proteins, resuspended in SDS-PAGE sample buffer and separated on SDS-PAGE. Bound SigA or SigB polypeptides are monitored by autoradiography followed by scintillation counting.

Another method of assaying for compounds which have the ability to inhibit sigma subunit-dependent transcription by a Mycobacterium tuberculosis RNA polymerase can comprise (i) contacting a compound to be

10

15

20

25

30

tested for said inhibition ability with a polypeptide of the invention, a Mycobacterium tuberculosis core RNA polymerase, and a DNA having a coding sequence operably-linked to a promoter sequence capable of recognition by said core RNA polymerase when bound to said polypeptide, said contacting being carried out under conditions suitable for transcription of said coding sequence when Mycobacterium tuberculosis RNA polymerase is bound to said promoter; and (ii) detecting formation of mRNA corresponding to said coding sequence.

Such an assay is based on the fact that E. coli consensus promoter sequences are not transcribable by core RNA polymerase lacking the sigma subunit. However, addition of a sigma⁷⁰ protein will enable the complex to recognise specific promoters and initiate transcription. Screening of compounds which have the ability to inhibit sigma-dependent transcription can thus be performed, using DNA containing a suitable promoter as a template, by monitoring the formation of mRNA of specific lengths. Transcription can be monitored by measuring incorporation of ³H-UTP into TCA-precipitable counts (Ashok Kumar et al. (1994) J. Mol. Biol. 235, 405-413; Kajitani, M. and Ishihama, A. (1983) Nucleic Acids Res. 11, 671-686 and 3873-3888) and determining the length of the specific transcript. Compounds which are identified by such an assay can inhibit transcription by various mechanisms, such as (a) binding to a sigma protein and preventing its association with the core RNA polymerase; (b) binding to core RNA polymerase and sterically inhibiting the binding of a sigma protein; or (c) inhibiting intermediate steps involved in the initiation or elongation during transcription.

A further aspect of the invention is a method of determining the protein structure of a Mycobacterium tuberculosis RNA polymerase sigma subunit, characterised in that a SigA or SigB polypeptide is utilized in X-ray crystallography. The use of SigA or SigB polypeptide in crystallisation will facilitate a rational design, based on X-ray crystallography, of therapeutic

compounds inhibiting interaction of a sigma⁷⁰ protein with the core RNA polymerase, alternatively inhibiting the binding of a sigma⁷⁰ protein, in association with a core RNA polymerase, to DNA during the course of gene transcription.

5

10

15

EXAMPLES

EXAMPLE 1: Identification of *M. tuberculosis* DNA sequences homologous to the sigma⁷⁰ gene

1.1. PCR amplification of putative sigma⁷⁰ homologues

The following PCR primers were designed, based on the conserved amino acid sequences of sigma⁴⁵ (a sigma⁷⁰ homologue) of *Bacillus subtilis* and sigma⁷⁰ of *E. coli* (Gitt, M.A. et al. (1985) J. Biol. Chem. 260, 7178-7185):

Forward primer (SEQ ID NO: 5):

5'-AAG TTC AGC ACG TAC GCC ACG TGG TGG ATC-3'

20

Reverse primer (SEO ID NO: 6):

25

The alternative nucleotides indicated at certain positions indicate that the primers are degenerate primers suitable for amplification of the unidentified gene.

30 Chromosomal DNA from M. tuberculosis H37RV (ATCC 27294) was prepared following standard protocols. PCR amplification of a DNA fragment of approximately 500 bp was carried out using the following conditions:

15

20

25

Annealing: +55°C 1 min
Denaturation: +93°C 1 min
Extension: +73°C 2 min

5 1.2. Southern hybridisation of M. tuberculosis DNA

Chromosomal DNA from M. tuberculosis H37RV (ATCC 27294),
M. tuberculosis H37RA and Mycobacterium smegmatis was prepared
following standard protocols and restricted with the restriction enzyme
Sall. The DNA fragments were resolved on a 1% agarose gel by
electrophoresis and transferred onto nylon membranes which were
subjected to "Southern blotting" analysis following standard procedures. To
detect homologous fragments, the membranes were probed with a
radioactively labelled ~500 bp DNA fragment, generated by PCR as
described above.

Analysis of the Southern hybridisation experiment revealed the presence of at least three hybridising fragments of approximately 4.2, 2.2 and 0.9 kb, respectively, in the Sall-digested DNA of both of the M. tuberculosis strains. In M. smegmatis, two hybridising fragments of 4.2 and 2.2 kb, respectively, were detected. It could be concluded that there were multiple DNA fragments with homology to the known sigma⁷⁰ genes.

Similar Southern hybridisation experiments, performed with four different clinical isolates of *M. tuberculosis*, revealed identical patterns, indicating the presence of similar genes also in other virulent isolates of *M. tuberculosis*.

EXAMPLE 2: Cloning of putative sigma⁷⁰ homologues

30

2.1. Cloning of M. tuberculosis sigA

10

15

20

25

30

A lambda gtl1 library (obtained from WHO) of the chromosomal DNA of M. tuberculosis Erdman strain was screened, using the 500 bp PCR probe as described above, following standard procedures. One lambda gtl1 phage with a 4.7 kb EcoRl insert was identified and confirmed to hybridise with the PCR probe. Restriction analysis of this 4.7 kb insert revealed it to have an internal 2.2 kb Sall fragment which hybridised with the PCR probe.

The 4.7 kb fragment was excised from the lambda gt 11 DNA by EcoRI restriction, and subcloned into the cloning vector pBR322, to obtain the recombinant plasmid pARC 8175 (Fig. 1) (NCIMB 40738).

The putative sigma⁷⁰ homologue on the 2.2 kb Sall fragment was designated M. tuberculosis sigA. The coding sequence of the sigA gene was found to have an internal Sall site, which could explain the hybridisation of the 0.9 kb fragment in the Southern experiments.

2.2. Cloning of M. tuberculosis sigB

M. tuberculosis H37Rv DNA was restricted with SalI and the DNA fragments were resolved by preparative agarose gel electrophoresis. The agarose gel piece corresponding to the 4.0 to 5.0 kb size region was cut out, and the DNA from this gel piece was extracted following standard protocols. This DNA was ligated to the cloning vector pBR329 at its SalI site, and the ligated DNA was transformed into E. coli DH5α to obtain a sub-library. Transformants of this sub-library were identified by colony blotting, using the PCR-derived 500 bp probe, following standard protocols. Individual transformant colonies were analyzed for their plasmid profile. One of the recombinant plasmids retaining the expected plasmid size, was analyzed in detail by restriction mapping and was found to harbour the expected 4.2 kb SalI DNA fragment. This plasmid with the sigB gene on the 4.2 kb insert was designated pARC 8176 (Fig. 2) (NCIMB 40739).

EXAMPLE 3: Nucleotide sequence of M. tuberculosis sigA and sigB genes

3.1. Nucleotide sequence of sigA

5 The EcoRV - EcoRI DNA fragment expected to encompass the entire sigA gene was subcloned into appropriate M13 vectors and both strands of the gene sequenced by the dideoxy method. The sequence obtained is shown as SEQ ID NO: 1 in the Sequence Listing. An open reading frame (ORF) of 1580 nucleotides (positions 70 to 1650 in SEQ ID NO: 1) coding for a protein of 526 amino acids was predicted from the DNA sequence. The Nterminal amino acid has been assigned tentatively based on the first GTG (initiation codon) of the ORF.

The derived amino acid sequence of the gene product SigA (SEQ ID NO:

2) showed 60% identity with the *E. coli* sigma⁷⁰ and 70% identity with the
HrdB sequence of *Streptomyces coelicolor*. The overall anatomy of the SigA
sequence is compatible with that seen among sigma⁷⁰ proteins of various
organisms. This anatomy comprises a highly conserved C-terminal half,
while the N-terminal half generally shows lesser homology. The two

20 regions are linked by a stretch of amino acids which varies in length and is
found to be generally unique for the protein. The SigA sequence has a
similar structure, where the unconserved central stretch correspond to
amino acids 270 to 306 in SEQ ID NO: 2.

25 The N-terminal half has limited homology to E. coli sigma⁷⁰, but shows resemblance to that of the sigma⁷⁰ homologue HrdB of S. coelicolor. The highly conserved motifs of regions 3.1, 3.2, 4.1 and 4.2 of S. coelicolor which were proposed to be involved in DNA binding (Lonetto, M. et al. (1992) J. Bacteriol. 174, 3843-3849) are found to be nearly identical also in the M. tuberculosis SigA sequence. The N-terminal start of the protein has been tentatively assigned, based on homologous motifs of the S. coelicolor HrdB sequence.

The overall sequence similarity of the SigA and SigB amino acid sequences to known sigma⁷⁰ sequences suggests assignment of the *M. tuberculosis* SigA to the Group I sigma⁷⁰ proteins. However, SigA also shows distinct differences with known sigma⁷⁰ proteins, in particular a unique and lengthy N-terminal stretch of amino acids (positions 24 to 263 in SEQ ID NO: 2), which may be essential for the recognition and initiation of transcription from promoter sequences of *M. tuberculosis*.

3.2. Nucleotide sequence of sigB

10

15

20

5

The nucleotide sequence of the sigB gene (SEQ ID NO: 3) encodes a protein of 323 amino acids (SEQ ID NO: 4). The N-terminal start of the protein has been tentatively identified based on the presence of the first methionine of the ORF. The ORF is thus estimated to start at position 325 and to end at 1293 in SEQ ID NO: 3. Alignment of the amino acid sequence of the sigB gene with other sigma⁷⁰ proteins places the sigB gene into the Group I family of sigma⁷⁰ proteins. The overall structure of the gene product SigB follows the same pattern as described for SigA. However, the SigB sequence has only 60% homology with the SigA sequence, as there are considerable differences not only within the unconserved regions of the protein, but also within the putative DNA binding regions of the sigB protein. These characteristics suggest that the SigB protein may play a distinct function in the physiology of the organism.

25

EXAMPLE 4: Expression of sigA and sigB

4.1. Expression of M. tuberculosis sigA gene in E. coli

30 The N-terminal portion of the sigA gene was amplified by PCR using the following primers:

15

20

25

Forward primer (SEQ ID NO: 7), comprising an NcoI site:

66nt-----80nt

5'-TT CC ATG GGG TAT GTG GCA GCG ACC-3'

Reverse primer (SEQ ID NO: 8):

5'-GTA CAG GCC AGC CTC GAT CCG CTT GGC-3'

- (a) A fragment of approximately 750 bp was amplified from the sigA gene construct pARC 8175. The amplified product was restricted with Ncol and BamHI to obtain a 163 bp fragment.
 - (b) A 1400 bp DNA fragment was obtained by digestion of pARC 8175 with BamHI and EcoRV.
 - (c) The expression plasmid pET 8ck, which is a derivative of pET 8c (Studier, F.W. et al. (1990) Methods Enzymol. 185, 61-89) in which the β-lactamase gene has been replaced by the gene conferring kanamycin resistance, was digested with NcoI and EcoRV and a fragment of approximately 4.2 kb was purified.

These three fragments (a), (b) and (c) were ligated by standard methods and the product was transformed into E. coli DH5a. Individual transformants were screened for the plasmid profile following standard protocols. The transformant was identified based on the expected plasmid size (approximately 6.35 kb) and restriction mapping of the plasmid. The recombinant plasmid harbouring the coding fragment of sigA was designated pARC 8171.

30

The plasmid pARC 8171 was transformed into the T₇ expression host E. coli BL21(DE3). Individual transformants were screened for the presence of the 6.35 kb plasmid and confirmed by restriction analysis. One of the - 5

10

15

20

25

30

transformants was grown at 37°C and induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) using standard protocols. A specific 90 kDa protein was induced on expression. Cells were harvested by low speed centrifugation and lysed by sonication in phosphate buffered saline, pH 7.4. The lysate was centrifugated at 100,000 x g to fractionate into supernatant and pellet. The majority of the 70 kDa product obtained after induction with IPTG was present in the pellet fraction, indicating that the protein formed inclusion bodies.

For purifying the induced sigA gene product, the cell lysate as obtained above was clarified by centrifugation at 1000 rpm in Beckman JA 21 rotor for 15 min. The clarified supernatant was layered on a 15-60% sucrose gradient and centrifugated at 100,000 x g for 60 min. The inclusion bodies sedimented as a pellet through the 60% sucrose cushion. This pellet was solubilised in 6 M guanidine hydrochloride which was removed by sequential dialysis against buffer containing decreasing concentration of guanidine hydrochloride. The dialysate was 75% enriched for the SigA protein which was purified essentially following the protocol for purification E. coli sigma⁷⁰ as described by Brokhov, S. and Goldfarb, A. (1993) Protein expression and purification, vol. 4, 503-511.

4.2. Expression of M. tuberculosis sigB gene in E. coli

The sigB gene product was expressed and purified from inclusion bodies.

The coding sequence of the sigB gene was amplified by PCR using the following primers:

Forward primer (SEQ ID NO: 9), comprising an Nool restriction site:

5'- TTTC ATG GCC GAT GCA CCC ACA AGG GCC-3'

M A D A P T R A

Reverse primer (SEQ ID NO: 10), comprising an EcoRI restriction site: 5'- CTT GAA TTC AGC TGG CGT ACG ACC GCA-3'

10

The amplified 920 bp fragment was digested with EcoRI and NcoI and ligated to the EcoRI- and NcoI-digested pRSET B (KroII et al. (1993) DNA and Cell Biology 12, 441). The ligation mix was transformed into E. coli DH5 α . Individual transformants were screened for plasmid profile and restriction analysis. The recombinant plasmid having the expected plasmid profile was designated pARC 8193.

E. coli DH5 α harbouring pARC 8193 was cultured in LB containing in 50 μ g/ml ampicillin till an OD of 0.5, and induced with 1 mM IPTG at 37 $^{\circ}$ C, following standard protocols. The induced SigB protein was obtained as inclusion bodies which were denatured and renatured following the same protocol as described for the SigA protein. The purified SigB protein was >90% homogenous and suitable for transcription assays.

15

20

DEPOSIT OF MICROORGANISMS

The following plasmids have been deposited under the Budapest Treaty at the National Collections of Industrial and Marine Bacteria (NCIMB), Aberdeen, Scotland, UK.

<u>Plasmid</u>	Accession No.	Date of deposit
pARC 8175	NCIMB 40738	15 June 1995
pARC 8176	NCIMB 40739	15 June 1995

(1) GENERAL INFORMATION:

SEQUENCE LISTING

(i) APPLICANT: (A) NAME: Astra AB (B) STREET: Vastra Mālarehamnen 9 (C) CITY: Södertālje (E) COUNTRY: ewed (E) (F) POSTRA (E) (G) TELLEHONE: 46-8-53 260 00 (H) TELLEFAX: 46-8-553 282 0 (I) TELLEFAX: 46-8-573 288 20	
(ii) TITLE OF INVENTION: New DNA Molecules	
(iii) NUMBER OF SEQUENCES: 10	
(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Ploppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EFO)	
(2) INFORMATION FOR SEQ ID NO: 1:	
(i) SOUTENCE CHARACTERISTICS: (ii) ALVENTH: 1724 base pairs (iii) TYPE: nucleic acid (ic) STRANDEDNESS: both (iii) TOPOLOGY: linear	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Mycobacterium tuberculosis (B) STRAIN: Erdman strain	
(vii) IMMEDIATE SOURCE: (B) CLONE: parc 8175	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:701653	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
AACTAGCAGA CACTTTCGGT TACGCACGCC CAGACCCAAC CGGAAGTGAG TAACGACCGA	60
AGGGTGTAT GTG GCA GCG ACC AAA GCA AGC ACG GCG ACC GAT GAG CCG Val Ala Ala Thr Lys Ala Ser Thr Ala Thr Asp Glu Pro 1 1 0 10 1	108
GTA ANA CGC ACC GCC ACC ANG TCG CCC GCG GCT TCC GCG TCC GGG GCC Val Lye Arg Thr Ala Thr Lye Ser Pro Ala Ala Ser Ala Ser Gly Ala 25 25	156
AAG ACC GGC GCC AAG CGA ACA GCG GCG AAG TCC GCT AGT GGC TCC CCA Lys Thr Gly Ala Lys arg Thr Ala Ala Lys Ser Ala Ser Gly Ser Pro 30	204
CCC GCG AAG CGC GCC ACC AAG CCC GCG GCC CGG TCC GTC AAG CCC GCC Pro Ala Lys Arg Ala Thr Lys Pro Ala Ala Arg Ser Val Lys Pro Ala 50	252

TCG Ser	GCA Ala	CCC Pro	CAG Gln 65	GAC Asp	ACT Thr	ACG Thr	ACC Thr	AGC Ser 70	ACC Thr	ATC Ile	CCG Pro	AAA Lys	AGG Arg 75	AAG Lys	ACC Thr	300
CGC Arg	GCC Ala	GCG Ala 80	GCC Ala	AAA Lys	TCC Ser	GCC Ala	GCC Ala 85	GCG Ala	AAG Lys	GCA Ala	CCG Pro	TCG Ser 90	GCC Ala	CGC Arg	GGC Gly	348
CAC His	GCG Ala 95	ACC Thr	AAG Lys	CCA Pro	CGG Arg	GCG Ala 100	CCC Pro	AAG Lys	GAT Asp	GCC Ala	CAG Gln 105	CAC His	GAA Glu	GCC Ala	GCA Ala	396
ACG Thr 110	GAT Asp	CCC Pro	GAG Glu	GAC Asp	GCC Ala 115	CTG Leu	GAC Asp	TCC Ser	GTC Val	GAG Glu 120	GAG Glu	CTC Leu	GAC Asp	GCT Ala	GAA Glu 125	444
CCA Pro	GAC Asp	CTC Leu	GAC Asp	GTC Val 130	GAG Glu	CCC Pro	GGC Gly	GAG Glu	GAC Asp 135	CTC Leu	GAC Asp	CTT	GAC Asp	GCC Ala 140	GCC Ala	492
GAC Asp	CTC Leu	AAC Asn	CTC Leu 145	GAT Asp	GAC Asp	CTC Leu	GAG Glu	GAC Asp 150	GAC Asp	GTG Val	GCG Ala	CCG Pro	GAC Asp 155	GCC Ala	GAC Asp	540
GAC Asp	GAC Asp	CTC Leu 160	GAC Asp	TCG Ser	GGC Gly	GAC Asp	GAC Asp 165	GAA Glu	GAC Asp	CAC His	GAA Glu	GAC Asp 170	CTC Leu	GAA Glu	GCT Ala	588
GAG Glu	GCG Ala 175	GCC Ala	GTC Val	GCG Ala	CCC Pro	GGC Gly 180	CAG Gln	ACC Thr	GCC Ala	GAT Asp	GAC Asp 185	GAC Asp	GAG Glu	GAG Glu	ATC Ile	636
GCT Ala 190	GAA Glu	ccc Pro	ACC Thr	GAA Glu	AAG Lys 195	GAC Asp	AAG Lys	GCC Ala	TCC Ser	GGT Gly 200	GAT Asp	TTC Phe	GTC Val	TGG Trp	GAT Asp 205	684
GAA Glu	GAC Asp	GAG Glu	TCG Ser	GAG Glu 210	GCC Ala	CTG Leu	CGT Arg	CAA Gln	GCA Ala 215	CGC Arg	AAG Lys	GAC Asp	GCC Ala	GAA Glu 220	CTC Leu	732
ACC Thr	GCA Ala	TCC Ser	GCC Ala 225	GAC Asp	TCG Ser	GTT Val	CGC Arg	GCC Ala 230	TAC Tyr	CTC Leu	AAA Lys	CAG Gln	ATC Ile 235	GGC	AAG Lys	780
GTA Val	GCG Ala	CTG Leu 240	CTC Leu	AAC Asn	GCC Ala	GAG Glu	GAA Glu 245	GAG Glu	GTC Val	GAG Glu	CTA Leu	GCC Ala 250	AAG Lys	CGG Arg	ATC Ile	828
GAG Glu	GCT Ala 255	GGC Gly	CTG Leu	TAC Tyr	GCC Ala	ACG Thr 260	CAG Gln	CTG Leu	ATG Met	ACC Thr	GAG Glu 265	CTT Leu	AGC Ser	GAG Glu	CGC Arg	876
		AAG Lys														924
CGC Arg	GAC Asp	GGC Gly	GAT Asp	CGC Arg 290	GCG Ala	AAA Lys	AAC Asn	CAT His	CTG Leu 295	CTG Leu	GAA Glu	GCC Ala	AAC Asn	CTG Leu 300	CGC Arg	972
		GTT Val														1020
CTC Leu	GAC Asp	CTG Leu 320	ATC Ile	CAG Gln	GAA Glu	GGC Gly	AAC Asn 325	CTG Leu	GGG Gly	CTG Leu	ATC Ile	CGC Arg 330	GCG Ala	GTG Val	GAG Glu	1068

Lys	Phe 335	Asp	TAC	Thr	AAG Lys	GGG Gly 340	TAC	AAG Lys	Phe	Ser	Thr 345	Tyr	Ala	ACG	Trp	1116
TGG Trp 350	Ile	CGC	C AG Gln	GCC Ala	ATC Ile 355	ACC Thr	CGC Arg	GCC Ala	ATG Met	GCC Ala 360	Asp	CAG Gln	GCC Ala	CGC A rg	ACC Thr 365	1164
ATC Ile	CGC Arg	ATC	CCG Pro	GTG Val 370	CAC His	ATG Met	GTC Val	GAG Glu	GTG Val 375	ATC Ile	AAC Asn	AAG Lys	CTG Leu	GGC Gly 380	Arg	1212
ATT Ile	CAA Gln	CGC	GAG Glu 385	Leu	CTG Leu	CAG Gln	GAC Asp	CTG Leu 390	GGC Gly	CGC Arg	GAG Glu	CCC Pro	ACG Thr 395	CCC Pro	GAG Glu	1260
GAG Glu	CTG Leu	GCC Ala 400	AAA Lys	GAG Glu	ATG Met	GAC Asp	ATC Ile 405	ACC Thr	CCG Pro	GAG Glu	AAG Lys	GTG Val 410	CTG Leu	GAA Glu	ATC Ile	1308
CAG Gln	CAA Gln 415	TAC Tyr	GCC Ala	CGC Arg	GAG Glu	CCG Pro 420	ATC Ile	TCG Ser	TTG Leu	GAC Asp	CAG Gln 425	ACC Thr	ATC Ile	GGC Gly	GAC Asp	1356
GAG Glu 430	GGC Gly	GAC Asp	AGC Ser	CAG Gln	CTT Leu 435	GGC Gly	GAT Asp	TTC Phe	ATC Ile	GAA Glu 440	GAC Asp	AGC Ser	GAG Glu	GCG Ala	GTG Val 445	1404
GTG Val	GCC Ala	GTC Val	GAC Asp	GCG Ala 450	GTG Val	TCC Ser	TTC Phe	ACT Thr	TTG Leu 455	CTG Leu	CAG Gln	GAT Asp	CAA Gln	CTG Leu 460	CAG Gln	1452
TCG Ser	GTG Val	CTG Leu	GAC Asp 465	ACG Thr	CTC Leu	TCC Ser	GAG Glu	CGT Arg 470	GAG Glu	GCG Ala	GGC Gly	GTG Val	GTG Val 475	CGG Arg	CTA Leu	1500
CGC Arg	TTC Phe	GGC Gly 480	CTT Leu	ACC Thr	GAC Asp	GGC Gly	CAG Gln 485	CCG Pro	CGC Arg	ACC Thr	CTT Leu	GAC Asp 490	GAG Glu	ATC Ile	GGC Gly	1548
CAG Gln	GTC Val 495	TAC Tyr	GGC Gly	GTG Val	ACC Thr	CGG Arg 500	GAA Glu	CGC Arg	ATC Ile	CGC Arg	CAG Gln 505	ATC Ile	GAA Glu	TCC Ser	AAG Lys	1596
ACT Thr 510	ATG Met	TCG Ser	AAG Lys	TTG Leu	CGC Arg 515	CAT His	CCG Pro	AGC Ser	CGC Arg	TCA Ser 520	CAG Gln	GTC Val	CTG Leu	CGC Arg	GAC Asp 525	1644
TAC Tyr	CTG Leu	GAC Asp	TGAG	AGCG	icc c	GCCG	AGGC	G AC	CAAC	GTAG	CAC	GTGA	GCC.			1693
CCCA	GCAG	CT A	GCCG	CACC	A TG	GTCT	CGTC	С								1724

(2) INFORMATION FOR SEQ ID NO: 2:

- - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 528 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Thr Ala Thr Lys Ser Pro Ala Ala Ser Ala Ser Gly Ala Lys Thr Gly Ala Lys Arg Thr Ala Ala Lys Ser Ala Ser Gly Ser Pro Pro Ala Lys Arg Ala Thr Lys Pro Ala Ala Arg Ser Val Lys Pro Ala Ser Ala Pro Gln Asp Thr Thr Thr Ser Thr Ile Pro Lys Arg Lys Thr Arg Ala Ala 65 70 75 80 Ala Lys Ser Ala Ala Ala Lys Ala Pro Ser Ala Arg Gly His Ala Thr 85 90 95 Lys Pro Arg Ala Pro Lys Asp Ala Gln His Glu Ala Ala Thr Asp Pro Glu Asp Ala Leu Asp Ser Val Glu Glu Leu Asp Ala Glu Pro Asp Leu 115 120 125 Asp Val Glu Pro Gly Glu Asp Leu Asp Leu Asp Ala Ala Asp Leu Asn 130 135 140 Leu Asp Asp Leu Glu Asp Asp Val Ala Pro Asp Ala Asp Asp Asp Leu
145 150 160 Asp Ser Gly Asp Asp Glu Asp His Glu Asp Leu Glu Ala Glu Ala Ala 165 170 175 Val Ala Pro Gly Gln Thr Ala Asp Asp Asp Glu Glu Ile Ala Glu Pro 180 185 190 Thr Glu Lys Asp Lys Ala Ser Gly Asp Phe Val Trp Asp Glu Asp Glu 195 200 205 Ser Glu Ala Leu Arg Gln Ala Arg Lys Asp Ala Glu Leu Thr Ala Ser 210 215 220 Ala Asp Ser Val Arg Ala Tyr Leu Lys Gln Ile Gly Lys Val Ala Leu 225 230 235 240 Leu Asn Ala Glu Glu Glu Vai Glu Leu Ala Lys Arg Ile Glu Ala Gly 245 250 255 Leu Tyr Ala Thr Gln Leu Met Thr Glu Leu Ser Glu Arg Gly Glu Lys Leu Pro Ala Ala Gln Arg Arg Asp Met Met Trp Ile Cys Arg Asp Gly 275 280 285 Asp Arg Ala Lys Asn His Leu Leu Glu Ala Asn Leu Arg Leu Val Val 290 295 300 Ser Leu Ala Lys Arg Tyr Thr Gly Arg Gly Met Ala Phe Leu Asp Leu 305 310 315 320 Ile Gln Glu Gly Asn Leu Gly Leu Ile Arg Ala Val Glu Lys Phe Asp Tyr Thr Lys Gly Tyr Lys Phe Ser Thr Tyr Ala Thr Trp Trp Ile Arg 340 345 350 Gln Ala Ile Thr Arg Ala Met Ala Asp Gln Ala Arg Thr Ile Arg Ile 355 360 365 Pro Val His Met Val Glu Val Ile Asn Lys Leu Gly Arg Ile Gln Arg 370 375 380

Glu 385	Leu	Leu	Gln	Asp	Leu 390	Gly	Arg	Glu	Pro	Thr 395	Pro	Glu	Glu	Leu	Ala 400
Lys	Glu	Met	Asp	11e 405	Thr	Pro	Glu	Lys	Val 410	Leu	Glu	Ile	Gln	Gln 415	Tyr
Ala	Arg	Glu	Pro 420	Ile	Ser	Leu	Asp	Gln 425	Thr	Ile	Gly	Asp	Glu 430	Gly	Asp
Ser	Gln	Leu 435	Gly	Asp	Phe	Ile	Glu 440	Asp	Ser	Glu	Ala	Val 445	Val	Ala	Val
Asp	Ala 450	Val	Ser	Phe	Thr	Leu 455	Leu	Gln	Asp	Gln	Leu 460	Gln	Ser	Val	Leu
Asp 465	Thr	Leu	Ser	G1u	Arg 470	Glu	Ala	Gly	Val	Val 475	Arg	Leu	Arg	Phe	Gly 480
Leu	Thr	Asp	Gly	G1n 485	Pro	Arg	Thr	Leu	Asp 490	Glu	Ile	Gly	Gln	Val 495	Tyr
Gly	Val	Thr	Arg 500	Glu	Arg	Ile	Arg	Gln 505	Ile	Glu	Ser	Lys	Thr 510	Met	Ser
Lys	Leu	Arg 515	His	Pro	Ser	Arg	Ser 520	Gln	Val	Leu	Arg	Asp 525	Tyr	Leu	Asp
(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	3:							
	(i	SE						CS:							
							aci		r s						
					DEDNI		boti	h							
		()	D, 10	or oth		1111	cal								

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Mycobacterium tuberculosis (C) INDIVIDUAL ISOLATE: atcc27294
- (vii) IMMEDIATE SOURCE: (B) CLONE: pARC 8176
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 325..1293

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ACCAGCCCGA CGACCGACGA ACCCCGCCGC TTCGACGTGC CCAGCCGGCG CATCCCGCTG TTCCCGACCG CGAACGCCC GCACTCGAGC CGACGGCGAC AGCCGGCAAG AAGCGGTCAG 120 180 CCCGCGGGGA TTCGCCGACC ACGGTTAGCC GTCTGTTGGC CGGCGTTCCG GGTTGTCGCC ACTGGCCACA CTTCTCAGGA CTTTCTCAGG TCTTCGGCAG ATTCCTGCAC GTCACAGGGC 240 GTCAGATCAC TGCTGGGTGG GAACTCAAAG TCCGGCTTTG TCGTTAAACC CTGACAGTGC 300 AAGCCGATCG GGGAACGGCT CGCT ATG GCC GAT GCA CCC ACA AGG GCC ACC Met Ala Asp Ala Pro Thr Arg Ala Thr 530351

ACA Thr	AGC Ser	CGG Arg 540	GTT Val	GAC Asp	ACA Thr	GAT Asp	CTG Leu 545	GAT Asp	GCT Ala	CAA Gln	AGC Ser	CCC Pro 550	GCG Ala	GCG Ala	GAC Asp	399
CTC Leu	GTG Val 555	CGC Arg	GTC Val	TAT Tyr	CTG Leu	AAC Asn 560	GGC Gly	ATC Ile	GGC Gly	AAG Lys	ACG Thr 565	GCG Ala	TTG Leu	CTC Leu	AAC Asn	447
GCG Ala 570	GCG Ala	GAT Asp	GAA Glu	GTC Val	GAA Glu 575	CTG Leu	GCC Ala	AAG Lys	CGC Arg	ATA Ile 580	GAA Glu	GCC Ala	GGG Gly	TTG Leu	TAT Tyr 585	495
GCC Ala	GAG Glu	CAT His	CTG Leu	CTG Leu 590	GAA Glu	ACC Thr	CGG Arg	AAG Lys	CGC Arg 595	CTC Leu	GGC Gly	GAG Glu	AAC Asn	CGA Arg 600	AAA Lys	543
CGC Arg	GAC Asp	CTG Leu	GCG Ala 605	GCC Ala	GTG Val	GTG Val	CGT Arg	GAT Asp 610	GGC Gly	GAG Glu	GCC Ala	GCC Ala	CGC Arg 615	CGC Arg	CAC His	591
CTG Leu	CTG Leu	GAA Glu 620	GCA Ala	AAC Asn	CTG Leu	CGG Arg	CTG Leu 625	GTG Val	GTA Val	TCG Ser	CTG Leu	GCC Ala 630	AAG Lys	CGC Arg	TAC Tyr	639
ACG Thr	GGT Gly 635	CGG Arg	GGC Gly	ATG Met	CCG Pro	TTG Leu 640	CTG Leu	GAC Asp	CTC Leu	ATC Ile	CAG Gln 645	GAG Glu	GGC Gly	AAC Asn	CTG Leu	687
	CTG Leu															735
TTC Phe	TCA Ser	ACG Thr	TAT Tyr	GCC Ala 670	ACG Thr	TGG Trp	TGG Trp	ATC Ile	CGC Arg 675	CAG Gln	GCC Ala	ATC Ile	ACC Thr	CGC Arg 680	GGA Gly	783
ATG Met	GCC Ala	GAC Asp	CAG Gln 685	AGC Ser	CGC Arg	ACC Thr	ATC Ile	CGC Arg 690	CTG Leu	CCC Pro	GTA Val	CAC His	CTG Leu 695	GTT Val	GAG Glu	831
CAG Gln	GTC Val	AAC Asn 700	AAG Lys	CTG Leu	GCG Ala	CGG Arg	ATC Ile 705	AAG Lys	CGG Arg	GAG Glu	ATG Met	CAC His 710	CAG Gln	CAT His	CTG Leu	879
GGT Gly	CGC Arg 715	GAA Glu	CGC Arg	ACC Thr	GAT Asp	GAG Glu 720	GAG Glu	CTC Leu	GCC Ala	GCC Ala	GAA Glu 725	TCC Ser	GGC Gly	ATT Ile	CCA Pro	927
ATC Ile 730	GAC Asp	AAG Lys	ATC Ile	AAC Asn	GAC Asp 735	CTG Leu	CTG Leu	GAA Glu	CAC His	AGT Ser 740	CGC Arg	GAC Asp	CCG Pro	GTG Val	AGT Ser 745	975
CTG Leu	GAT Asp	ATG Met	CCG Pro	GTC Val 750	GGC Gly	TCC Ser	GAG Glu	GAG Glu	GAG Glu 755	GCC Ala	CCT Pro	TTG Leu	GGC Gly	GAT Asp 760	TTC Phe	1023
ATC Ile	GAG Glu	GAC Asp	GCC Ala 765	GAA Glu	GCC Ala	ATG Met	TCC Ser	GCG Ala 770	GAG Glu	AAC Asn	GCG Ala	GTC Val	ATC Ile 775	GCC Ala	GAA Glu	1071
CTG Leu	TTA Leu	CAC His 780	ACC Thr	GAC Asp	ATC Ile	CGC Arg	AGC Ser 785	GTG Val	CTG Leu	GCC Ala	ACT Thr	CTC Leu 790	GAC Asp	GAG Glu	CGT Arg	1119
GAC Asp	GAC Asp 795	CAG Gln	GTG Val	ATC Ile	CGG Arg	CTG Leu 800	CGC Arg	TTC Phe	GGC Gly	CTG Leu	GAT Asp 805	GAC Asp	GGC Gly	CAA Gln	CCA Pro	1167

Arg 810	Thr							Leu			Leu						1213
								ATG Met									1263
								GCC Ala 850		TGA	AGCT	GGA	CATO	CTGA	GC		1313
CAG	GTAG	CAG	ACGG'	PATG	ce co	CCG	CGCC	A GC	ATAG	CTG	CGG	TGGG	GCG	GCGG	GCAAC	c	1373
ATT	TTCG	CAG	CTGG	CCAA	GT G	raga(CTCA	G CT	GCAA'	TGGA	GGG	TGCT	GAA	TGAA	CGAGT	T	1433
GGT	TGAT	ACC I	ACCG	AGAT	ST A	CCTG	CGGA	C CA	TCTA	CGAC	CTC	GAGG	AAG	AGGG	CGTG	C	1493
GCA	CTGC	GTG (cccc	A													1508
	(ii) (xi)	(i) : (i) (l) (l) (i) (i) (i)	SEQUI A) LI B) T D) T LECUI QUENC	ENGTH (PE: (POL) (POL) (E T)	CHAI i: 3; amii OGY: PE:	RACTI 23 ar no ac line prot	ERIST mino cid ear tein	rics acid	ds ID No								
Met 1	Ala	Asp	Ala	Pro 5	Thr	Arg	Ala	Thr	Thr 10	Ser	Arg	Val	Asp	Thr 15	Asp		
Leu	Asp	Ala	Gln 20	Ser	Pro	Ala	Ala	Asp 25	Leu	Val	Arg	Val	Tyr 30	Leu	Asn		
Gly	Ile	Gly 35	Lys	Thr	Ala	Leu	Leu 40	Asn	Ala	Ala	Asp	Glu 45	Val	Glu	Leu		
Ala	Lys 50	Arg	Ile	Glu	Ala	Gly 55	Leu	Tyr	Ala	Glu	His 60	Leu	Leu	Glu	Thr		
Arg 65	Lys	Arg	Leu	Gly	Glu 70	Asn	Arg	Lys	Arg	Asp 75	Leu	Ala	Ala	Val	Va 1 80		
Arg	Asp	Gly	Glu	Ala	Ala	Arg	Arg	His	Leu	Leu	Glu	Ala	λsn	Leu	Arg		

Leu Val Val Ser Leu Ala Lys Arg Tyr Thr Gly Arg Gly Met Pro Leu $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$ Leu Asp Leu Ile Gln Glu Gly Asn Leu Gly Leu Ile Arg Ala Met Glu 115 \$120\$Trp Ile Arg Gln Ala Ile Thr Arg Gly Met Ala Asp Gln Ser Arg Thr 145 150 155 160Ile Arg Leu Pro Val His Leu Val Glu Gln Val Asn Lys Leu Ala Arg 165 170 175Ile Lys Arg Glu Met His Gln His Leu Gly Arg Glu Arg Thr Asp Glu 180 185 190

Glu Leu Ala Ala Glu Ser Gly Ile Pro Ile Asp Lys Ile Asn Asp Leu 195

Leu Glu His Ser Arg Asp Pro Val Ser Leu Asp Met Pro Val Gly Ser 215

Glu Glu Glu Ala Pro Leu Gly Asp Phe Ile Glu Asp Ala Glu Ala Met 225

Ser Ala Glu Asn Ala Val Ile Ala Glu Leu His Thr Asp Ile Arg 255

Ser Val Leu Ala Thr Leu Asp Glu Arg Asp Asp Gln Val Ile Arg 255

Arg Phe Gly Leu Asp Asp Gly Gln Pro Arg Thr Leu Asp Gln Ile Gly 275

Lys Leu Phe Gly Leu Ser Arg Glu Arg Val Arg Gln Ile Glu Arg Asp 295

Val Met Ser Lys Leu Arg His Gly Glu Arg Ala Asp Arg Leu Arg Ser 310

Tyr Ala Ser

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = *PCR primer*

30

27

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AAGTTCAGCA CSTACGCSAC STGGTGGATC

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

 - (xi) SEQUENCE DESCRIPTION: SEQ ID No: 6:

CTTSGCCTCG ATCTGSCGGA TSCGCTC

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
TTCCATGGGG TATGTGGCAG CGACC	25
(2) INFORMATION FOR SEQ ID NO: 8:	
(i) SEQUENCE CHARACTERISTICS: (A) LENOTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = *PCR primer*	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
GTACAGGCCA GCCTCGATCC GCTTGGC	27
(2) INFORMATION FOR SEQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDENRESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = *PCR primer*	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: TTTCATGGCC GATGCACCCA CAAGGGCC	28
(2) INFORMATION FOR SEQ ID NO: 10:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = 'PCR primer'</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
CTTGAATTCA GCTGGCGTAC GACCGCA	27

10

4.

thereof: and

CLAIMS

- An isolated polypeptide which is a Group I sigma subunit of Mycobacterium tuberculosis RNA polymerase, or a functionally equivalent modified form thereof.
- A polypeptide according to claim 1 which amino acid sequence is identical to, or substantially similar to, SEQ ID NO: 2 or 4 in the Sequence Listing.
- An isolated nucleic acid molecule which has a nucleotide sequence coding for a polypeptide according to claim 1 or 2.
- (a) DNA molecules comprising a nucleotide sequence as shown in SEQ ID NO: 1 or SEQ ID NO: 3 encoding a Group I sigma subunit of Mycobacterium tuberculosis RNA polymerase;
 (b) nucleic acid molecules comprising a nucleotide sequence capable of hybridizing to a nucleotide sequence complementary the
 polypeptide coding region of a DNA molecule as defined in (a) and which codes for a polypeptide which is a Group I sigma subunit of Mycobacterium tuberculosis or a functionally equivalent modified form

An isolated nucleic acid molecule selected from:

- (c) nucleic acid molecules comprising a nucleic acid sequence which is degenerate, as a result of the genetic code, to a nucleotide sequence as defined in (a) or (b) and which codes for a polypeptide which is a Group I sigma subunit of Mycobacterium tuberculosis or a functionally equivalent modified form thereof.
- A vector which comprises a nucleic acid molecule according to claim
 3 or 4.

- A vector according to claim 5 which is the plasmid vector pARC 8175 (NCIMB 40738) or pARC 8176 (NCIMB 40739).
- A vector according to claim 5 which is an expression vector capable
 of mediating the expression of a polypeptide according to claim 1 or
 2.
 - 8. A host cell harbouring a vector according to any one of claims 5 to 7.
- A process for production of a polypeptide according to claim 1 or 2 which comprises culturing a host cell according to claim 8 transformed with an expression vector according to claim 7 under conditions whereby said polypeptide is produced and recovering said polypeptide.

- 10. A method of assaying for compounds which have the ability to inhibit the association of a sigma subunit with a Mycobacterium tuberculosis core RNA polymerase, said method comprising (i) contacting a compound to be tested for said inhibition ability with a polypeptide according to claim 1 or claim 2 and a Mycobacterium tuberculosis core RNA polymerase; and (ii) detecting whether the said polypeptide associates with the said core RNA polymerase to form RNA polymerase holoenzyme.
- 25 11. A method according to claim 10 wherein polypeptides which are associated to core RNA polymerase and / or polypeptides which are not associated to core RNA polymerase are detected by chromatography such as gel filtration.
- 30 12. A method according to claim 10 wherein RNA polymerase holoenzyme is detected by immunoprecipitation, using an antibody binding to RNA polymerase holoenzyme.

13. A method of assaying for compounds which have the ability to inhibit sigma subunit-dependent transcription by a Mycobacterium tuberculosis RNA polymerase, said method comprising (i) contacting a compound to be tested for said inhibition ability with a polypeptide according to claim 1 or claim 2, a Mycobacterium tuberculosis core RNA polymerase, and a DNA having a coding sequence operably-linked to a promoter sequence capable of recognition by said core RNA polymerase when bound to said polypeptide, said contacting being carried out under conditions suitable for transcription of said coding sequence when Mycobacterium tuberculosis RNA polymerase is bound to said promoter; and (ii) detecting formation of mRNA corresponding to said coding sequence.

5

10

- 14. A method of determining the protein structure of a Mycobacterium tuberculosis RNA polymerase sigma subunit, characterised in that a polypeptide according to claim 1 or claim 2 is utilized in X-ray crystallography.
- 15 15. A polypeptide according to claim 1 substantially as described in the Examples.
 - An isolated nucleic acid according to claim 3 or 4 substantially as described in the Examples.
 - 17. A vector according to claim 5 substantially as described in the Examples.
 - 18. A host cell according to claim 8 substantially as described in the Examples.

Application No: Claims searched: GB 9603860.9

Examiner:

Dr. Nicola Curtis

ns searched: 1-18

Date of search:

30 April 1996

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.O): C3H (HB7P; HC2)

Int Cl (Ed.6): C07K 14/35

Other: ONLINE: WPI; BIOTECH/DIALOG; CAS ONLINE

Documents considered to be relevant:

Category	Identity of document and relevant passage	Relevant to claims
E,X	WO 95/17511 A2 (Agresearch New Zealand Pastoral Agriculture Research Institute) (See Fig. 9A)	3-5
P,X	PROC. NATL. ACAD. SCI., Vol. 92, August 1995, Collins et al., "Mutation of the principal sigma factor causes loss of virulence in a strain of the <i>Mycobacterium tuberculosis</i> complex", pages 8036-8040 (See Fig. 4)	3-5
P,X	GENE, Vol. 165, 1995, Doukhan et al., "Genomic organization of the mycobacterial sigma gene cluster", pages 67-70. (See "Mycobacterial sigma genes")	1-8
х	JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT 0 (19B). 1995. 73, Balganesh et al. "Sigma factors of M. tuberculosis RNA polymerase". (See abstract)	1-8

Document indicating lack of novelty or inventive step
 Document indicating lack of inventive step if combined with one or more other documents of same category.

[&]amp; Member of the same patent family

A Document indicating technological background and/or state of the art.
P Document published on or after the declared priority date but before
the filing date of this invention.
E Patent document published on or after, but with priority date earlier

than, the filing date of this application.