

2012 VCAA Specialist Mathematics Exam 1 Solutions © 2012 itute.com Free download from www.itute.com

Q1
$$\int \frac{6+x}{x^2+4} dx = \int \left(\frac{6}{x^2+4} + \frac{x}{x^2+4}\right) dx$$

$$\int \frac{6}{x^2+4} dx + \int \frac{x}{x^2+4} dx = 3\int \frac{2}{x^2+4} dx + \frac{1}{2} \int \frac{1}{u} du \qquad u = x^2+4$$

$$= 3 \tan^{-1} \left(\frac{x}{2}\right) + \frac{1}{2} \log_e \left(x^2 + 4\right) + 0$$

Q2
$$2\cos x = \sqrt{3}\cot x$$
, $2\cos x - \sqrt{3}\cot x = 0$

$$2\cos x - \sqrt{3}\frac{\cos x}{\sin x} = 0, \left(2 - \frac{\sqrt{3}}{\sin x}\right)\cos x = 0$$

:
$$2 - \frac{\sqrt{3}}{\sin x} = 0$$
, i.e. $\sin x = \frac{\sqrt{3}}{2}$, $x = \left(2n + \frac{1}{2} \mp \frac{1}{6}\right)\pi$

OR
$$\cos x = 0$$
, i.e. $x = \left(n + \frac{1}{2}\right)\pi$, where $n = 0$, ± 1 , ± 2 ,

Q3a Given $z = 2cis\left(\frac{2\pi}{3}\right) = -1 + i\sqrt{3}$ is a root of the equation

 $z^3 - z^2 - 2z - 12 = 0$ which has real coefficients,

 $z = -1 - i\sqrt{3}$ is also a root.

Since $(z - \alpha)(z - \beta)(z - \gamma) = z^3 - z^2 - 2z - 12$ where

 $\alpha = -1 + i\sqrt{3}$ and $\beta = -1 - i\sqrt{3}$ and γ is the third root,

:
$$\alpha\beta\gamma = 12$$
, $(-1 + i\sqrt{3})(-1 - i\sqrt{3})\gamma = 12$, : $4\gamma = 12$, $\gamma = 3$.

Q3b

Q4a

Q4b Without the crate leaving the floor, maximum tension $T_{\rm max}$ occurs when the normal reaction force $N\to 0$,

$$T_{\text{max}} \sin 30^{\circ} - 50g = 0$$
, .: $T_{\text{max}} = 100g = 980 \text{ N}$

Q4c On the point of moving:

$$T \sin 30^{\circ} + N - 50g = 0 \dots (1)$$

and
$$T \cos 30^{\circ} - \mu N = 0$$
 (2)

From (2),
$$N = \frac{T\cos 30^{\circ}}{\mu} = \frac{5\sqrt{3}T}{2}$$
 (3)

Substitute (3) in (1):
$$\frac{T}{2} + \frac{5\sqrt{3}T}{2} - 50g = 0$$
, .: $(1 + 5\sqrt{3})T = 100g$

$$T = \frac{100g}{1 + 5\sqrt{3}}$$
 N

Q5
$$y = \tan^{-1}(2x)$$
, $\frac{dy}{dx} = \frac{2}{1+(2x)^2} = \frac{2}{1+4x^2} = 2(1+4x^2)^{-1}$

$$\frac{d^2y}{dx^2} = -2\left(1 + 4x^2\right)^{-2} \left(8x\right) = -\frac{16x}{\left(1 + 4x^2\right)^2} = -4x\left(\frac{2}{1 + 4x^2}\right)^2$$

Comparing with
$$\frac{d^2y}{dx^2} = ax\left(\frac{2}{1+4x^2}\right)^2$$
, $a = -4$

Q6
$$xy^2 + y + (\log_e(x-2))^2 = 14$$

Implicit differentiation:
$$\frac{d}{dx}(xy^2) + \frac{dy}{dx} + \frac{d}{dx}(\log_e(x-2))^2 = 0$$

$$y^2 + 2xy \frac{dy}{dx} + \frac{dy}{dx} + \frac{2\log_e(x-2)}{x-2} = 0$$

At
$$(3,2)$$
, $4+13\frac{dy}{dx}=0$, $\therefore \frac{dy}{dx}=-\frac{4}{13}$

O7
$$y = (x-1)\sqrt{2-x}$$
, $1 \le x \le 2$

Let y = 0 to find the x-intercepts: $(x-1)\sqrt{2-x} = 0$, x = 1, 2y > 0 for $1 \le x \le 2$

Area of the region enclosed by the curve and the x-axis

$$= \int_{1}^{2} (x-1)\sqrt{2-x} dx$$

$$= \int_{1}^{0} -(1-u)u^{\frac{1}{2}} du$$

$$= \int_{0}^{1} (1-u)u^{\frac{1}{2}} du$$

$$= \int_{0}^{1} \left(u^{\frac{1}{2}} - u^{\frac{3}{2}}\right) du$$

$$= \left[\frac{2u^{\frac{3}{2}}}{3} - \frac{2u^{\frac{5}{2}}}{5}\right]_{0}^{1} = \frac{2}{3} - \frac{2}{5} = \frac{4}{15}$$

Let
$$u = 2 - x$$
,
 $x - 1 = 1 - u$ and
$$\frac{du}{dx} = -1$$
When $x = 1$, $u = 1$.
When $x = 2$, $u = 0$.

Q8
$$v = \frac{2x}{\sqrt{1+x^2}}, \frac{1}{2}v^2 = \frac{2x^2}{1+x^2}$$

$$a = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{d}{dx} \left(\frac{2x^2}{1+x^2}\right) = \frac{(1+x^2)(4x) - (2x^2)(2x)}{(1+x^2)^2}$$

$$= \frac{4x}{(1+x^2)^2}$$

Q9a
$$\widetilde{r}(t) = \left(2\sqrt{t^2 + 2} - t^2\right)\widetilde{i} + \left(2\sqrt{t^2 + 2} + 2t\right)\widetilde{j}, t \ge 0$$

$$\widetilde{v}(t) = \frac{d\widetilde{r}}{dt} = \left(\frac{2t}{\sqrt{t^2 + 2}} - 2t\right)\widetilde{i} + \left(\frac{2t}{\sqrt{t^2 + 2}} + 2\right)\widetilde{j}$$

Q9b At
$$t = 1$$
, $\tilde{v} = \left(\frac{2}{\sqrt{3}} - 2\right)\tilde{i} + \left(\frac{2}{\sqrt{3}} + 2\right)\tilde{j}$, and the speed $|\tilde{v}| = \sqrt{\left(\frac{2}{\sqrt{3}} - 2\right)^2 + \left(\frac{2}{\sqrt{3}} + 2\right)^2} = \frac{4\sqrt{6}}{3}$

Q9c
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
, .: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{2}{\sqrt{3}} + 2}{\frac{2}{\sqrt{3}} - 2} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}$ at $t = 1$

Q9d At time t = 0, $\tilde{r} = 2\sqrt{2}\tilde{i} + 2\sqrt{2}\tilde{j}$ and makes an angle of $\frac{\pi}{4}$ with the positive x-axis, whilst vector $-\sqrt{3}\tilde{i} + \tilde{j}$ makes an angle of $\frac{5\pi}{6}$ with the positive x-axis.

: angle between the two vectors = $\frac{5\pi}{6} - \frac{\pi}{4} = \frac{7\pi}{12}$

Q10ai
$$-1 \le \frac{x}{2} \le 1$$
, .: $-2 \le x \le 2$. The maximal domain of $f_1(x) = \sin^{-1}\left(\frac{x}{2}\right)$ is $[-2,2]$.

Q10aii
$$25x^2 - 1 > 0$$
, .: $x < -\frac{1}{5}$ or $x > \frac{1}{5}$. The maximal domain of $f_2(x) = \frac{3}{\sqrt{25x^2 - 1}}$ is $\left(-\infty, -\frac{1}{5}\right) \cup \left(\frac{1}{5}, \infty\right)$.

Q10aiii
$$f(x) = \sin^{-1}\left(\frac{x}{2}\right) + \frac{3}{\sqrt{25x^2 - 1}}$$
 is defined over the intersection of the maximal domains of $f_1(x)$ and $f_2(x)$, i.e. $\left[-2, -\frac{1}{5}\right] \cup \left(\frac{1}{5}, 2\right]$.

Q10b
$$h(x) = \sin^{-1}\left(\frac{x}{2}\right) + \sin^{-1}(3x)$$

Let $\theta = h\left(\frac{1}{4}\right) = \sin^{-1}\left(\frac{1}{8}\right) + \sin^{-1}\left(\frac{3}{4}\right) = \alpha + \beta$ where $\alpha = \sin^{-1}\left(\frac{1}{8}\right)$ and $\beta = \sin^{-1}\left(\frac{3}{4}\right)$.
 $\therefore \sin \alpha = \frac{1}{8}$ and $\sin \beta = \frac{3}{4}$
 $\therefore \cos \alpha = \frac{3\sqrt{7}}{8}$ and $\cos \beta = \frac{\sqrt{7}}{4}$ by the identity $\sin^2 A + \cos^2 A = 1$.
 $\therefore \sin \theta = \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
 $= \frac{1}{8} \times \frac{\sqrt{7}}{4} + \frac{3\sqrt{7}}{8} \times \frac{3}{4} = \frac{5\sqrt{7}}{16}$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors