

MATHMATICAL FORMULA

VER. 2024.05.15

@HARU.TEACH_ING

中学数学公式一覧

1.計算の公式

1.1 指数法則

$$a^m \times a^n = a^{m+n}$$

$$(a^m)^n = a^{mn}$$

$$(ab)^m = a^m b^m$$

1.2 展開・因数分解

$$(a+b)(c+d) = ac + ad + bc + bd$$

$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

左辺と右辺を入れ替えたら因数分解の公式

1.3 平方根

$$(\sqrt{a})^2 = a$$

$$\sqrt{a^2} = |a|$$

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$\frac{\sqrt{b}}{\sqrt{a}} = \sqrt{\frac{b}{a}}$$

1.4 2次方程式の解の公式

$$ax^2 + bx + c = 0$$
 の解

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^2 + 2b'x + c = 0$$
 の解

$$x = \frac{-b' \pm \sqrt{b'^2 - ac}}{a}$$

2.関数の公式

2.1 比例

y = ax

(a: 比例定数)

原点を通る直線

2.2 反比例

$$y = \frac{a}{x}$$
 (a: 比例定数)

双曲線

$$\bigcirc$$
 変化の割合 = $\frac{y \circ 4}{x \circ 4}$ 変化の割合 = $\frac{y \circ 4}{x \circ 4}$ の増加量

2.3 1 次関数

y = ax + b

(a: 傾き b: 切片)

(1)a>0 のとき

(2) a<0 のとき

- ○2 直線が平行⇒2 直線の傾きが等しい
- ○2 直線が垂直⇒2 直線の傾きの積が-1

$$\bigcirc$$
 変化の割合 = $\frac{y \circ 4$ 加量 $x \circ 4$ 加量

(a = 傾き = 変化の割合=一定)

2.4 2 次関数

 $y = ax^2$

原点を通る放物線、y軸について対称

変化の割合 = $\frac{y \text{ の増加量}}{x \text{ の増加量}}$ 0

2.5 中点の座標

中点 M の座標

$$\left(\frac{x_a+x_b}{2}, \frac{y_a+y_b}{2}\right)$$

足して2で割る

3.図形の公式

3.1 円

円周
$$l=2\pi r$$

面積
$$S = \pi r^2$$

3.2 おうぎ形

弧の長さ
$$l=2\pi r \times \frac{\theta}{360}$$

面積
$$S = \pi r^2 \times \frac{\theta}{360}$$
$$= \frac{1}{2} lr$$

$$=\frac{1}{2}lr$$

3.3 角柱·円柱

表面積 = 側面積 + 底面積×2

側面積 = 底面の周 × 高さ

体積 = 底面積 × 高さ (V = Sh)

3.4 円錐

中心角
$$\theta$$
 360° × $\frac{2\pi r}{2\pi l}$ = 360° × $\frac{r}{l}$

側面積
$$\pi l^2 \times \frac{2\pi r}{2\pi l} = \pi l r$$

表面積 底面積 + 側面積 =
$$\pi r^2 + \pi l r = \pi r (r + l)$$

体積
$$V = \frac{1}{3}Sh$$
 (S:底面積)

3.5 球

表面積
$$S=4\pi r^2$$

体積
$$V = \frac{4\pi r^3}{3}$$

3.6 平行線と角

対頂角

錯角は等しい

同位角

3.7 多角形の内角・外角

n 角形の内角の和 $180^{\circ} \times (n-2)$

n 角形の外角の和 360°

3.8 三角形の合同条件

3組の辺がそれぞれ等しい

2組の辺とその間の角がそれぞれ等しい

1組の辺とその両端の角がそれぞれ等しい

3.9 直角三角形の合同条件

斜辺と1つの鋭角がそれぞれ等しい 斜辺と他の1辺がそれぞれ等しい

3.10 二等辺三角形

二等辺三角形の底角は等しい 頂角の二等分線は底辺を垂直に二等分する

3.11 平行四辺形

性質

2組の対辺がそれぞれ等しい

2組の対角がそれぞれ等しい

対角線がそれぞれの中点で交わる

平行四辺形になる条件

2組の対辺がそれぞれ平行である

2組の対辺がそれぞれ等しい

2組の対角がそれぞれ等しい

対頂角がそれぞれの中点で交わる

1組の対辺が平行でその長さが等しい

3.12 三角形の相似条件

3組の辺の比がすべて等しい

2組の辺の比とその間の角がそれぞれ等しい

2組の角がそれぞれ等しい

3.13 相似の基本

相似の三角形は

対応する角がそれぞれ等しい 対応する辺の比がすべて等しい

3.14 平行線と線分の比

AB: BC =DE:EF =GH:HI

3.15 面積比·体積比

2つの図形の相似比が m:n であるとき、

面積比 $m^2:n^2$

体積比 $m^3:n^3$

3.18 円周角の定理

- ・同じ弧に対する円周角は等しい
- ・同じ弧に対する中心角は円周角の2倍
- ・円周角・中心角の大きさは弧の長さに比例
- ・円に内接する四角形の対角の和は 180°

3.16 三角形の内角,外角の二等分線と線分の比

AB:AC=BD:DC

3.19 円の接線・弦

- ・円の接線は接点を通る半径に垂直
- ・円の弦の垂直二等分線は円の中心を通る
- ・円外の点から円に引いた2つの接線の長さは 等しい

3.17 中点連結定理

 $MN \ /\!\!/ \ BC$

 $MN = \frac{1}{2}BC$

3.20 接弦定理

接線と弦の作る角 = 円周角

3.21 方べきの定理

 $PA \times PB = PC \times PD$

3.22 三平方の定理

$$a^2 + b^2 = c^2$$

3.23 三角形に内接する円の半径

△ABC の面積を S、

△ABC の内接円の半径をrとすると、

$$r = \frac{2S}{a + b + c}$$

3.24 直方体の対角線

4.資料の活用

・中央値

資料の値を大きさの順に並べたとき、 その中央の値のこと

奇数個のデータの場合

10 20 **25** 28 70

中央値= 25

偶数個のデータの場合

61 70 78 86 94 98

中央値= $\frac{78+86}{2}=82$

5.場合の数と確率

5.1 場合の数の求め方

がむしゃらに数えると漏れがあるため、 「規則的」に数えるのがコツ

数え方は主に 4 パターン (①、②がおすすめ)

- ① 列挙する
- ② 計算で求める
- ③ 樹形図を書く
- ④ 表にする