

INDIAN INSTITUTE OF TECHNOLOGY JODHPUR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Week 5 - Live Session

Data Mining

Swapnil S. Mane

mane.1@iitj.ac.in
PMRF Research Scholar

Q1. Margin of a hyperplane is defined as:

- a) The angle it makes with the axes
- b) The intercept it makes on the axes
- Perpendicular distance from its closest point
 - d) Perpendicular distance from origin

Q3. The primal optimization problem solved to obtain the hard margin optimal separating hyperplane is:

Q4. The dual optimization problem solved to obtain the hard margin optimal separating hyperplane is:

Si(w[ri 40) // 1 Si(w[ri+5)-170

- A. Maximize $\frac{1}{2}$ W^TW, such that $y_i(W^TX_i+b) \ge 1-\alpha_i$ for all i
- B. Minimize $\sqrt{2} \ W^TW \Sigma \alpha (y_i(W^TX_i+b)-1)$, such that $\alpha_i \geq 0$, for all i
 - C. Minimize $\frac{1}{2}$ W^TW $\sum \alpha_i$, such that $y_i(W^TX_i+b) \leq 1$ for all i
 - D. Maximize $\frac{1}{2}$ W^TW + $\sum \alpha_i$, such that $y_i(W^TX_i+b) \leq 1$ for all i

Q5. The Lagrange multipliers corresponding to the support vectors have a value:

- a) Equal to zero
- b) Less than zero
- Greater than zero
 - d) Can take on any value

Q6. The SVM's are less effective when:

- a) The data is linearly separable
- b) The data is clean and ready to use
- The data is noisy and contains overlapping points
 - d) None of the above

oeuc (

Q7. The dual optimization problem in SVM design is solved using:

