# MULTI-LABEL CLASSIFICATION

| <b>X</b> 2 | $X_3$                    | $X_4$                                    | $X_5$                                                                                             | $C_1$                                                                                                                             | $C_2$                                                                                                                                                     | $C_3$                                                                                                                                                                             | $C_4$ |
|------------|--------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.4        | 4.7                      | 7.5                                      | 3.7                                                                                               | 1                                                                                                                                 | 0                                                                                                                                                         | 1                                                                                                                                                                                 | 1     |
| 3.3        | 1.6                      | 4.7                                      | 2.7                                                                                               | 0                                                                                                                                 | 0                                                                                                                                                         | 1                                                                                                                                                                                 | 0     |
| 6.2        | 4.1                      | 3.3                                      | 7.7                                                                                               | 1                                                                                                                                 | 0                                                                                                                                                         | 1                                                                                                                                                                                 | 1     |
| ).4        | 2.8                      | 0.5                                      | 3.9                                                                                               | 0                                                                                                                                 | 1                                                                                                                                                         | 0                                                                                                                                                                                 | 0     |
| 5.3        | 4.9                      | 0.6                                      | 6.6                                                                                               | 1                                                                                                                                 | 1                                                                                                                                                         | 0                                                                                                                                                                                 | 1     |
|            | 1.4<br>6.3<br>6.2<br>0.4 | 1.4 4.7<br>6.3 1.6<br>6.2 4.1<br>0.4 2.8 | 1.4     4.7     7.5       6.3     1.6     4.7       6.2     4.1     3.3       0.4     2.8     0.5 | 1.4     4.7     7.5     3.7       6.3     1.6     4.7     2.7       6.2     4.1     3.3     7.7       0.4     2.8     0.5     3.9 | 1.4     4.7     7.5     3.7     1       6.3     1.6     4.7     2.7     0       6.2     4.1     3.3     7.7     1       0.4     2.8     0.5     3.9     0 | 1.4     4.7     7.5     3.7     1     0       6.3     1.6     4.7     2.7     0     0       6.2     4.1     3.3     7.7     1     0       0.4     2.8     0.5     3.9     0     1 |       |

# **OUTLINE – MULTI-LABEL**

- Basic vocabulary and framework
- Applications
- Evaluation metrics
- Overview of techniques
- Software and references

# SINGLE versus MULTI-LABEL

| $X_1$ | $X_2$ | $X_3$ | $X_4$ | <i>X</i> <sub>5</sub> | C |
|-------|-------|-------|-------|-----------------------|---|
| 3.2   | 1.4   | 4.7   | 7.5   | 3.7                   | 1 |
| 2.8   | 6.3   | 1.6   | 4.7   | 2.7                   | 0 |
| 7.7   | 6.2   | 4.1   | 3.3   | 7.7                   | 1 |
| 9.2   | 0.4   | 2.8   | 0.5   | 3.9                   | 0 |
| 5.5   | 5.3   | 4.9   | 0.6   | 6.6                   | 1 |

| <i>X</i> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $C_1$ | $C_2$ | $C_3$ | $C_4$ |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3.2                   | 1.4   | 4.7   | 7.5   | 3.7   | 1     | 0     | 1     | 1     |
| 2.8                   | 6.3   | 1.6   | 4.7   | 2.7   | 0     | 0     | 1     | 0     |
| 7.7                   | 6.2   | 4.1   | 3.3   | 7.7   | 1     | 0     | 1     | 1     |
| 9.2                   | 0.4   | 2.8   | 0.5   | 3.9   | 0     | 1     | 0     | 0     |
| 5.5                   | 5.3   | 4.9   | 0.6   | 6.6   | 1     | 1     | 0     | 1     |

## **MULTI-LABEL CLASSIFICATION**

#### [PDF] Multilabel text classification for automated tag suggestion

I Katakis, G Tsoumakas, I Vlahavas - Proceedings of the ECML/PKDD, 2008 - Citeseer The increased popularity of tagging during the last few years can be mainly attributed to its embracing by most of the recently thriving user-centric content publishing and management Web 2.0 applications. However, tagging systems have some limitations that have led ...

☆ Save 切 Cite Cited by 387 Related articles All 10 versions ≫

#### Deep learning for extreme multi-label text classification

J Liu, WC Chang, Y Wu, Y Yang - ... of the 40th international ACM SIGIR ..., 2017 - dl.acm.org Extreme multi-label text classification (XMTC) refers to the problem of assigning to each document its most relevant subset of class labels from an extremely large label collection, where the number of labels could reach hundreds of thousands or millions. The huge label ...

☆ Save 𝔊ਓ Cite Cited by 377 Related articles All 3 versions

#### Large-scale multi-label text classification—revisiting neural networks

J Nam, J Kim, EL Mencía, I Gurevych... - ... european conference on ..., 2014 - Springer Neural networks have recently been proposed for **multi-label classification** because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing ... ☆ Save 𝒴 Cite Cited by 356 Related articles All 14 versions

#### Multi-label text classification with a mixture model trained by EM

AK McCallum - AAAI 99 workshop on text learning, 1999 - Citeseer

In many important document **classification** tasks, documents may each be associated with multiple class labels. This paper describes a Bayesian **classification** approach in which the multiple classes that comprise a document are represented by a mixture model. While the ...

☆ Save 切 Cite Cited by 703 Related articles All 4 versions ≫

## FRAMEWORK

X: d-dimensional input space

**Y**: output space of q labels  $\{\lambda_1, \lambda_2, ..., \lambda_q\}$ 

**S**: multi-label training set of m samples,  $\{(\mathbf{x}_i, \mathbf{y}_i) | 1 \le i \le m\}$ 

*h*: multi-label classifier,  $h: X \to 2^y$  or ranking the associated labels to a sample x, e.g.  $r_x(\lambda_2) < r_x(\lambda_4) < r_x(\lambda_1) < r_x(\lambda_3)$ 

## FRAMEWORK

Given a set of initial labels  $L=\{\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5\}$ Given a new instance **x** 

Multi-label classification → outputs a bipartition of the set of labels, i.e. positive and negative ones,

 $P_x$ : { $\lambda_1$ ,  $\lambda_4$ } and

 $N_x$ :  $\{\lambda_2, \lambda_3, \lambda_5\}$ 

| <i>X</i> <sub>1</sub> | $X_2$ | <i>X</i> <sub>3</sub> | $X_4$ | <i>X</i> <sub>5</sub> | $Y\subseteq \mathcal{Y}$                                                                                                                         |
|-----------------------|-------|-----------------------|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.2                   | 1.4   | 4.7                   | 7.5   | 3.7                   | $\{\lambda_1, \lambda_4\}$                                                                                                                       |
| 2.8                   | 6.3   | 1.6                   | 4.7   | 2.7                   | $\{\lambda_3, \lambda_4\}$                                                                                                                       |
| 7.7                   | 6.2   | 4.1                   | 3.3   | 7.7                   | $\{\lambda_1, \lambda_4\}$                                                                                                                       |
| 9.2                   | 0.4   | 2.8                   | 0.5   | 3.9                   | $\{\lambda_2\}$                                                                                                                                  |
| 5.5                   | 5.3   | 4.9                   | 0.6   | 6.6                   | $ \{\lambda_1, \lambda_4\} $ $ \{\lambda_3, \lambda_4\} $ $ \{\lambda_1, \lambda_4\} $ $ \{\lambda_2\} $ $ \{\lambda_1, \lambda_2, \lambda_3\} $ |
|                       |       |                       |       |                       | •                                                                                                                                                |

## **APPLICATIONS - TEXT**

### **ACM COMPUTING CLASSIFICATION (Veloso et al. 2007)**

- A document described by its title, abstract, citation, autorship: huge feature space
- First hierarchy level, 11 labels: general literature, hardware, software, information systems...
- Second hierarchy level with 81 labels
- 81,251 digital archives



## **APPLICATIONS - TEXT**

REUTERS CORPUS (Lewis et al. 2004)

- 804,414 newswire stories
- To be indexed in 103 topic codes
- Words: huge and sparse feature space
- A benchmark in multi-label learning



# APPLICATIONS – e-MAIL

### **ENRON COMPANY e-MAILS**

- UC Berkeley Enron e-mail analysis project
- Company-professional e-mails of about 150 Enron senior managers
- 1,702 samples, 53 labels
- Public datasets during a Federal Energy Regulatory Commission investigation



# OTHER APPLICATIONS

- BIOLOGY:
  - Annotation of protein functions
  - Gene ontology annotations (e.g. of a gene)
- DIRECT MARKETING:
  - Product offers to customers





# OTHER APPLICATIONS

#### IMAGE AND AUDIO:

- Simultaneous object class recognition
- Demographic classification of facial images: sex, age, ethnicity...
- Music categorization: instruments, country, rhythm...
- Categorization of song emotions: happy, calm, amazed...



# BENCHMARK DATASETS

- MULAN multi-label datasets
- MEKA multi-label datasets

|            |                                                                     | attr                                                                                                                            | ibutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| domain     | instances                                                           | nominal                                                                                                                         | numeric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cardinality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | distinct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| text       | 7395                                                                | 1836                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| audio      | 645                                                                 | 2                                                                                                                               | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| text       | 87856                                                               | 2150                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| music      | 502                                                                 | 0                                                                                                                               | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| images     | 5000                                                                | 499                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| images     | 13811±87                                                            | 500                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 161±9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.867±0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.018±0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4937±158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| text (web) | 16105                                                               | 500                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| music      | 593                                                                 | 0                                                                                                                               | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| text       | 1702                                                                | 1001                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| text       | 19348                                                               | 0                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| text       | 19348                                                               | 0                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| text       | 19348                                                               | 0                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | text audio text music images images text (web) music text text text | text 7395 audio 645 text 87856 music 502 images 5000 images 13811±87 text (web) 16105 music 593 text 1702 text 19348 text 19348 | domain         instances         nominal           text         7395         1836           audio         645         2           text         87856         2150           music         502         0           images         5000         499           images         13811±87         500           text (web)         16105         500           music         593         0           text         1702         1001           text         19348         0           text         19348         0 | text       7395       1836       0         audio       645       2       258         text       87856       2150       0         music       502       0       68         images       5000       499       0         images       13811±87       500       0         text (web)       16105       500       0         music       593       0       72         text       1702       1001       0         text       19348       0       5000         text       19348       0       5000 | domain         instances         nominal         numeric         labels           text         7395         1836         0         159           audio         645         2         258         19           text         87856         2150         0         208           music         502         0         68         174           images         5000         499         0         374           images         13811±87         500         0         161±9           text (web)         16105         500         0         983           music         593         0         72         6           text         1702         1001         0         53           text         19348         0         5000         412           text         19348         0         5000         201 | domain         instances         nominal         numeric         labels         cardinality           text         7395         1836         0         159         2.402           audio         645         2         258         19         1.014           text         87856         2150         0         208         2.028           music         502         0         68         174         26.044           images         5000         499         0         374         3.522           images         13811±87         500         0         161±9         2.867±0.033           text (web)         16105         500         0         983         19.020           music         593         0         72         6         1.869           text         1702         1001         0         53         3.378           text         19348         0         5000         201         2.213 | domain         instances         nominal         numeric         labels         cardinality         density           text         7395         1836         0         159         2.402         0.015           audio         645         2         258         19         1.014         0.053           text         87856         2150         0         208         2.028         0.010           music         502         0         68         174         26.044         0.150           images         5000         499         0         374         3.522         0.009           images         13811±87         500         0         161±9         2.867±0.033         0.018±0.001           text (web)         16105         500         0         983         19.020         0.019           music         593         0         72         6         1.869         0.311           text         1702         1001         0         53         3.378         0.064           text         19348         0         5000         201         2.213         0.011 |

# BENCHMARK DATASETS

### Multi-Label Classification Dataset Repository

| Dataset ÷           | Domain ÷ | m ÷   | d \$ | <b>q</b> \$ | Card ÷ | Dens ÷ | Div \$ | avgIR\$ | rDep \$ | m×q×d \$ | Full dataset   Meka |
|---------------------|----------|-------|------|-------------|--------|--------|--------|---------|---------|----------|---------------------|
| 20NG 🖹              | Text     | 19300 | 1006 | 20          | 1.029  | 0.051  | 0.003  | 1.007   | 0.984   | 3.88E+08 | <u></u>             |
| 3s-bbc1000 <u>□</u> | Text     | 352   | 1000 | 6           | 1.125  | 0.188  | 0.234  | 1.718   | 0.733   | 2.11E+06 | *                   |
| 3s-guardian1000 🖹   | Text     | 302   | 1000 | 6           | 1.126  | 0.188  | 0.219  | 1.773   | 0.667   | 1.81E+06 | <u>*</u>            |
| 3s-inter3000 🖹      | Text     | 169   | 3000 | 6           | 1.142  | 0.190  | 0.172  | 1.766   | 0.400   | 3.04E+06 | <u>*</u>            |
| 3s-reuters1000 🖹    | Text     | 294   | 1000 | 6           | 1.126  | 0.188  | 0.219  | 1.789   | 0.667   | 1.76E+06 | <u>*</u>            |
| Bibtex <u>□</u>     | Text     | 7395  | 1836 | 159         | 2.402  | 0.015  | 0.386  | 12.498  | 0.111   | 2.16E+09 | <u>*</u>            |
| Birds <u>■</u>      | Audio    | 645   | 260  | 19          | 1.014  | 0.053  | 0.206  | 5.407   | 0.123   | 3.19E+06 | *                   |
| Bookmarks <b>■</b>  | Text     | 87860 | 2150 | 208         | 2.028  | 0.010  | 0.213  | 12.308  | 0.315   | 3.93E+10 | <u>*</u>            |

## **EVALUATION METRICS**

- X: d-dimensional input space  $X = (X_1,...X_m)$
- Y: output space of q labels  $\{\lambda_1, \lambda_2, ..., \lambda_a\}$ , real labels,  $Y = \{\lambda_7, \lambda_9\}$
- S: multi-label training set of m samples,  $\{(x, y_i)|1 \le i \le m\}$
- h: multi-label classifier,  $h: X \rightarrow 2^{y}$
- Predicted labels for a example,  $Pred_h(Y) = \{\lambda_6, \lambda_9, \lambda_{11}, \lambda_{15}\}$
- Evaluation metrics:
  - -Example-based:
    - → calculated separately for each sample and averaged
  - Label-based:
    - → calculated separately **for each label** and averaged

## **EVALUATION METRICS**



## 0/1 SUBSET ACCURACY EXACT MATCH - PER SAMPLE

|                         | $Y^{(i)}$                  | $\hat{Y}^{(i)}$            |
|-------------------------|----------------------------|----------------------------|
| <b>x</b> <sup>(1)</sup> | $\{\lambda_1, \lambda_3\}$ | $\{\lambda_1, \lambda_4\}$ |
| <b>x</b> <sup>(2)</sup> | $\{\lambda_2, \lambda_4\}$ | $\{\lambda_2, \lambda_4\}$ |
| <b>x</b> <sup>(3)</sup> | $\{\lambda_1,\lambda_4\}$  | $\{\lambda_1,\lambda_4\}$  |
| $x^{(4)}$               | $\{\lambda_2, \lambda_3\}$ | $\{\lambda_2\}$            |
| <b>x</b> <sup>(5)</sup> | {λ <sub>1</sub> }          | $\{\lambda_1, \lambda_4\}$ |

- EXACT MATCH =  $1/5 \times (0+1+1+0+0)$
- For each sample → checks whether the predicted set of labels is an exact match of the true set of labels
- Very strict evaluation

### ACCURACY – PER SAMPLE

$$\frac{\mathbf{y}^{(i)} \qquad \hat{\mathbf{y}}^{(i)}}{\mathbf{x}^{(1)} \qquad \{\lambda_{1}, \lambda_{3}\} \qquad \{\lambda_{1}, \lambda_{4}\}}$$

$$\mathbf{x}^{(2)} \qquad \{\lambda_{2}, \lambda_{4}\} \qquad \{\lambda_{2}, \lambda_{4}\}$$

$$\mathbf{x}^{(3)} \qquad \{\lambda_{1}, \lambda_{4}\} \qquad \{\lambda_{1}, \lambda_{4}\}$$

$$\mathbf{x}^{(4)} \qquad \{\lambda_{2}, \lambda_{3}\} \qquad \{\lambda_{2}\}$$

$$\mathbf{x}^{(5)} \qquad \{\lambda_{1}\} \qquad \{\lambda_{1}, \lambda_{4}\}$$

$$\mathbf{x}^{(5)} \qquad \{\lambda_{1}\} \qquad \{\lambda_{2}, \lambda_{3}\} \qquad \{\lambda_{2}\} \qquad \{\lambda_{2}\} \qquad \{\lambda_{1}, \lambda_{4}\}$$

$$\mathbf{x}^{(5)} \qquad \{\lambda_{1}\} \qquad \{\lambda_{1}, \lambda_{4}\} \qquad \{\lambda_{1}, \lambda_{4}\}$$

$$\mathbf{x}^{(5)} \qquad \{\lambda_{1}\} \qquad \{\lambda_{1}, \lambda_{4}\} \qquad \{\lambda_{2}, \lambda_{3}\} \qquad \{\lambda_{2}\} \qquad \{\lambda_{2}\} \qquad \{\lambda_{1}, \lambda_{4}\} \qquad \{\lambda_{1}, \lambda_{2}\} \qquad \{\lambda_{1}\} \qquad \{\lambda$$

- Scores → from the "Information Retrieval" area
- Using AND and OR logical operations

# HAMMING LOSS PER SAMPLE

$$\begin{array}{c|c} \boldsymbol{x} & \boldsymbol{Y}^{(i)} & \hat{\boldsymbol{Y}}^{(i)} \\ \hline \boldsymbol{x}^{(1)} & \{\lambda_1, \lambda_3\} & \{\lambda_1, \lambda_4\} \\ \boldsymbol{x}^{(2)} & \{\lambda_2, \lambda_4\} & \{\lambda_2, \lambda_4\} \\ \boldsymbol{x}^{(3)} & \{\lambda_1, \lambda_4\} & \{\lambda_1, \lambda_4\} \\ \boldsymbol{x}^{(4)} & \{\lambda_2, \lambda_3\} & \{\lambda_2\} \\ \boldsymbol{x}^{(5)} & \{\lambda_1\} & \{\lambda_1, \lambda_4\} \end{array}$$

- **HAMMING LOSS** =  $1/4 \times 1/5 (2+0+0+1+1)$
- Symmetric difference between both sets: XOR operation
- Average binary classification error

# LABEL-BASED METRICS METRICS PER LABEL

| Conting   | ency           | Actual Value    |                 |  |
|-----------|----------------|-----------------|-----------------|--|
| Table for | or $\lambda_j$ | POS             | NEG             |  |
| Learner   | POS            | TP <sub>j</sub> | FP <sub>j</sub> |  |
| Output    | NEG            | FŃ <sub>j</sub> | ΤŃ <sub>j</sub> |  |



$$ACC_{i} = \frac{TP_{i} + TN_{i}}{TP_{i} + TN_{i} + FP_{i} + FN_{i}}$$

$$Precision_{i} = \frac{TP_{i}}{TP_{i} + FP_{i}}$$

$$Recall_{i} = \frac{TP_{i}}{TP_{i} + FN_{i}}$$

$$F1_{i} = \frac{2 * Precision_{i} * Recall_{i}}{Precision_{i} + Recall_{i}}$$

# LABEL-BASED METRICS METRICS PER LABEL

$$ACC_{i} = \frac{TP_{i} + TN_{i}}{TP_{i} + TN_{i} + FP_{i} + FN_{i}}$$

$$Precision_{i} = \frac{TP_{i}}{TP_{i} + FP_{i}}$$

$$Recall_{i} = \frac{TP_{i}}{TP_{i} + FN_{i}}$$

$$F1_{i} = \frac{2 * Precision_{i} * Recall_{i}}{Precision_{i} + Recall_{i}}$$

|                         | $Y^{(i)}$                  | $\hat{Y}^{(i)}$            |
|-------------------------|----------------------------|----------------------------|
| $x^{(1)}$               | $\{\lambda_1, \lambda_3\}$ | $\{\lambda_1, \lambda_4\}$ |
| $x^{(2)}$               | $\{\lambda_2, \lambda_4\}$ | $\{\lambda_2, \lambda_4\}$ |
| $x^{(3)}$               | $\{\lambda_1,\lambda_4\}$  | $\{\lambda_1, \lambda_4\}$ |
| $x^{(4)}$               | $\{\lambda_2, \lambda_3\}$ | $\{\lambda_2\}$            |
| <b>x</b> <sup>(5)</sup> | $\{\lambda_1\}$            | $\{\lambda_1, \lambda_4\}$ |

- ACCURACY [LABEL<sub> $\alpha$ </sub>] = (2+1)/(2+1+2+0)
- PRECISION [LABEL<sub>4</sub>] = (2)/(2+2)
- RECALL-SENSITIVITY [LABEL<sub>4</sub>] = (2)/(2+0)

# LABEL-BASED METRICS MACRO vs. MICRO

$$ACC_{i} = \frac{TP_{i} + TN_{i}}{TP_{i} + TN_{i} + FP_{i} + FN_{i}}$$

$$Precision_{i} = \frac{TP_{i}}{TP_{i} + FP_{i}}$$

$$Recall_{i} = \frac{TP_{i}}{TP_{i} + FN_{i}}$$

$$F1_{i} = \frac{2 * Precision_{i} * Recall_{i}}{Precision_{i} + Recall_{i}}$$

| Conting   | ency           | Actual Value    |                 |  |
|-----------|----------------|-----------------|-----------------|--|
| Table for | or $\lambda_j$ | POS             | NEG             |  |
| Learner   | POS            | TP <sub>j</sub> | $FP_j$          |  |
| Output    | NEG            | FŃj             | ΤŃ <sub>j</sub> |  |

### Macro-averaging

- Ordinary averaging of a binary measure
- $B_{macro} = \frac{1}{d} \sum_{j=1}^{d} B(TP_j, FP_j, TN_j, FN_j)$

$$Precision_{macro} = \frac{\sum_{i=1}^{q} Precision_i}{q}$$

#### Micro-averaging

Labels as different instances of the same global label

• 
$$B_{micro} = B(\sum_{j=1}^{d} TP_j, \sum_{j=1}^{d} FP_j, \sum_{j=1}^{d} TN_j, \sum_{j=1}^{d} FN_j)$$

$$Precision_{micro} = \frac{\sum_{i=1}^{q} TP_i}{\sum_{i=1}^{q} (TP_i + FP_i)}$$

## TECHNIQUES - TAXONOMY

### 1. Problem transformation methods:

- In several single-label tasks
- Algorithm independent

### 2. Algorithm adaptation methods:

- Extending supervised algorithms to multi-label data
- Decision trees, SVM, Bayesian networks, K-NN...

## **TECHNIQUES - TAXONOMY**

| Strategy function | Description                           | Approach <sup>a</sup> | Reference                     |
|-------------------|---------------------------------------|-----------------------|-------------------------------|
| baseline          | Baseline                              | _                     | Metz et al. (2012)            |
| br                | Binary Relevance                      | BR                    | Tsoumakas et al. (2010)       |
| brplus            | BR+                                   | BR, STA               | Cherman et al. (2012)         |
| СС                | Classifier Chains                     | BR, CC                | Read et al. (2009)            |
| clr               | Calibrated Label Ranking              | PW                    | Brinker et al. (2006)         |
| ctrl              | ConTRolled Label correlation          | BR, ENS               | Li and Zhang (2014)           |
| dbr               | Dependent Binary Relevance            | BR, STA               | Montañes et al. (2014)        |
| ebr               | Ensemble of Binary Relevance          | BR, ENS               | Read et al. (2009)            |
| ecc               | Ensemble of Classifier Chains         | BR, CC, ENS           | Read et al. (2009)            |
| eps               | Ensemble of Pruned Set                | ENS, PS               | Read et al. (2008)            |
| homer             | Hierarchy Of Multi-label classifiER   | HIE                   | Tsoumakas et al. (2008)       |
| lift              | Learning with Label specIfic FeaTures | BR, CLU               | Zhang and Wu (2015)           |
| lp                | Label Powerset                        | PS                    | Tsoumakas and Katakis (2007)  |
| mbr               | Meta-BR, 2BR or stacking              | BR, STA               | Tsoumakas et al. (2009)       |
| mlknn             | Multi-label kNN                       | AD                    | Zhang and Zhou (2007)         |
| ns                | Nested Stacking                       | BR, CC                | Senge et al. (2013)           |
| ppt               | Pruned Problem Transformation         | PS                    | Read et al. (2008)            |
| prudent           | PRUned and confiDENT Stacking         | BR, STA               | Alali and Kubat (2015)        |
| ps                | Pruned Set                            | PS                    | Read (2008)                   |
| rakel             | Random k-labelsets                    | ENS, PS               | Tsoumakas and Vlahavas (2007) |
| rdbr              | Recursive Dependent Binary Relevance  | BR, ENS, STA          | Rauber et al. (2014)          |
| rpc               | Ranking by Pairwise Comparison        | PW                    | Hüllermeier et al. (2008)     |

<sup>&</sup>lt;sup>a</sup> AD = Adaptation; BR = Binary transformation; CC = Chain of classifiers; CLU = Clustering based; ENS = Ensemble; HIE = Hierarchy; PS = Powerset transformation; PW = Pairwise transformation; STA = Stacking

Table 3: Strategies available in the utiml package

# PROBLEM TRANSFORMATION BINARY RELEVANCE - BR

| X                       | $Y\subseteq \mathcal{Y}$              |
|-------------------------|---------------------------------------|
| $x^{(1)}$               | $\{\lambda_1, \lambda_4\}$            |
| <b>x</b> <sup>(2)</sup> | $\{\lambda_3, \lambda_4\}$            |
| <b>x</b> <sup>(3)</sup> | $\{\lambda_1, \lambda_4\}$            |
| $x^{(4)}$               | $\{\lambda_2\}$                       |
| <b>x</b> <sup>(5)</sup> | $\{\lambda_1, \lambda_2, \lambda_3\}$ |

- Learning one binary classifier per class
- Output the union of their predictions
- Not consider label relationships
- Ensemble of BR base classifiers → common

| X                       | $\lambda_{1}$ |
|-------------------------|---------------|
| <b>x</b> <sup>(1)</sup> | true          |
| <b>x</b> <sup>(2)</sup> | false         |
| $x^{(3)}$               | true          |
| $\mathbf{x}^{(4)}$      | false         |
| <b>x</b> <sup>(5)</sup> | true          |

| X         | $\lambda_2$ |
|-----------|-------------|
| $x^{(1)}$ | false       |
| $x^{(2)}$ | false       |
| $x^{(3)}$ | false       |
| $x^{(4)}$ | true        |
| $x^{(5)}$ | true        |

| X         | $\lambda_3$ |
|-----------|-------------|
| $x^{(1)}$ | false       |
| $x^{(2)}$ | true        |
| $x^{(3)}$ | false       |
| $x^{(4)}$ | false       |
| $x^{(5)}$ | true        |

| X                       | $\lambda_4$ |
|-------------------------|-------------|
| <b>x</b> <sup>(1)</sup> | true        |
| <b>x</b> <sup>(2)</sup> | true        |
| $x^{(3)}$               | true        |
| $x^{(4)}$               | false       |
| <b>x</b> <sup>(5)</sup> | false       |

# PROBLEM TRANSFORMATION LABEL POWERSET – LC-LP

| x                       | $Y\subseteq \mathcal{Y}$              | Label |
|-------------------------|---------------------------------------|-------|
| <b>x</b> <sup>(1)</sup> | $\{\lambda_1, \lambda_4\}$            | 1001  |
| <b>x</b> <sup>(2)</sup> | $\{\lambda_3, \lambda_4\}$            | 0011  |
| $\mathbf{x}^{(3)}$      | $\{\lambda_1, \lambda_4\}$            | 1001  |
| $x^{(4)}$               | $\{\lambda_2^{}\}$                    | 0100  |
| <b>x</b> <sup>(5)</sup> | $\{\lambda_1, \lambda_2, \lambda_3\}$ | 1110  |

- Each set of labels → recodify as a different class value
- e.g. "1001" → classA, "0011" → classB, etc...
- → a new single-class-variable classification task
- Limited training samples for many new labelsets
- High complexity
- Can not predict unseen labelsets

# PROBLEM TRANSFORMATION PRUNED SETS – PS

| Labelset                            | Count |
|-------------------------------------|-------|
| $\{\lambda_1\}$                     | 12    |
| $\{\lambda_2\}$                     | 10    |
| $\{\lambda_2, \lambda_3\}$          | 9     |
| $\{\lambda_4\}$                     | 7     |
| $\{\lambda_3, \lambda_4\}$          | 2     |
| $\{\lambda_1,\lambda_2,\lambda_3\}$ | 3     |



| Labelset                   | Count |
|----------------------------|-------|
| $\{\lambda_1\}$            | 13    |
| $\{\lambda_2\}$            | 11    |
| $\{\lambda_2, \lambda_3\}$ | 10    |
| $\{\lambda_4\}$            | 9     |

- Start considering all labelsets → too many!! → Reduce labelsets
- Prune examples belonging to less frequent classes (e.g. < 7)</p>
- Distribute pruned examples → along more frequent subsets of their labelset
- Reduce the number of labelsets and focus on frequent ones
- Train a label Powerset multi-label classifier

# PROBLEM TRANSFORMATION CLASSIFIER CHAINS - CC



- Given a dataset with |L| labels: y<sub>1</sub>,y<sub>2</sub>,...,y<sub>11</sub>
- Dataset is transformed in |L| datasets where instances in the "j" dataset are of the form:

$$((x_{i}, y_{1}, y_{2}, ..., y_{j-1}), y_{j})$$

- Classifiers build a CHAIN → each learns a binary classification of a single label
- Features in each classifier → EXTENDED with binary labels indicating the prediction of previous labels-classifiers in the chain
- Partial label dependence is maintained, but... order of the chain?

# **ALGORITHM ADAPTATION**

- Extending supervised algorithms to deal with multi-label data
- Literature shows plenty of examples Just a couple:
  - K-NN: assigns to x the most common labels of its K neighbours
  - Decision trees: extending the concept of multi-label entropy. Multiple labels at leaves





# REMARKS

- Hot topic specially in NLP
- Closely related with "tagging"-"annotation", news' categories, web 2.0, multiple outputs, learning from crowds, recommender systems...
- Many real world applications
- Software:
  - MULAN: WEKA-based library
  - MEKA: WEKA-based framework and GUI
  - Utiml, mldr, mldr.datasets R packages
- Datasets' repositories:
  - http://mulan.sourceforge.net/datasets.html
  - http://meka.sourceforge.net/#datasets
  - http://www.uco.es/kdis/mllresources/

# **EXTENDED INFO**

#### Talks-Tutorials:

- C. Bielza, P. Larrañaga, UPM-Madrid [link]
- J. Read, MEKA's programmer [link]
- G. Tsoumakas et al., tutorial [link]

#### Review:

- M-L. Zhang, Z-H. Zhou (2013). "A review on multi-label learning algorithms". IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819-1837
- F. Herrera, F. Charte, A.J. Rivera, M.J. Del Jesús (2016). Multilabel Classification. Springer

# SOFTWARE

## The utiml Package: Multi-label Classification in R

by Adriano Rivolli and Andre C. P. L. F. de Carvalho

Working with Multilabel Datasets in R: The **mldr** Package

| Strategy function | Description                           | Approach <sup>a</sup> | Reference                     |
|-------------------|---------------------------------------|-----------------------|-------------------------------|
| baseline          | Baseline                              | =                     | Metz et al. (2012)            |
| br                | Binary Relevance                      | BR                    | Tsoumakas et al. (2010)       |
| brplus            | BR+                                   | BR, STA               | Cherman et al. (2012)         |
| cc                | Classifier Chains                     | BR, CC                | Read et al. (2009)            |
| clr               | Calibrated Label Ranking              | PW                    | Brinker et al. (2006)         |
| ctrl              | ConTRolled Label correlation          | BR, ENS               | Li and Zhang (2014)           |
| dbr               | Dependent Binary Relevance            | BR, STA               | Montañes et al. (2014)        |
| ebr               | Ensemble of Binary Relevance          | BR, ENS               | Read et al. (2009)            |
| ecc               | Ensemble of Classifier Chains         | BR, CC, ENS           | Read et al. (2009)            |
| eps               | Ensemble of Pruned Set                | ENS, PS               | Read et al. (2008)            |
| homer             | Hierarchy Of Multi-label classifiER   | HIE                   | Tsoumakas et al. (2008)       |
| lift              | Learning with Label specIfic FeaTures | BR, CLU               | Zhang and Wu (2015)           |
| lp                | Label Powerset                        | PS                    | Tsoumakas and Katakis (2007)  |
| mbr               | Meta-BR, 2BR or stacking              | BR, STA               | Tsoumakas et al. (2009)       |
| mlknn             | Multi-label kNN                       | AD                    | Zhang and Zhou (2007)         |
| ns                | Nested Stacking                       | BR, CC                | Senge et al. (2013)           |
| ppt               | Pruned Problem Transformation         | PS                    | Read et al. (2008)            |
| prudent           | PRUned and confiDENT Stacking         | BR, STA               | Alali and Kubat (2015)        |
| ps                | Pruned Set                            | PS                    | Read (2008)                   |
| rakel             | Random k-labelsets                    | ENS, PS               | Tsoumakas and Vlahavas (2007) |
| rdbr              | Recursive Dependent Binary Relevance  | BR, ENS, STA          | Rauber et al. (2014)          |
| rpc               | Ranking by Pairwise Comparison        | PW                    | Hüllermeier et al. (2008)     |

<sup>&</sup>lt;sup>a</sup> AD = Adaptation; BR = Binary transformation; CC = Chain of classifiers; CLU = Clustering based; ENS = Ensemble; HIE = Hierarchy; PS = Powerset transformation; PW = Pairwise transformation; STA = Stacking



| base.algorithm value | Description                         | R function Called          |
|----------------------|-------------------------------------|----------------------------|
| "C5.0"               | C5.0 Decision Trees                 | C50::C5.0                  |
| "CART"               | Classification and regression trees | rpart::rpart               |
| "KNN"                | K Nearest Neighbor                  | kknn::kknn                 |
| "NB"                 | Naive Bayes                         | e1071::naiveBayes          |
| "RF"                 | Random Forest                       | randomForest::randomForest |
| "SMO"                | Sequential Minimal Optimization     | RWeka::SMO                 |
| "SVM"                | Support Vector Machine              | e1071::svm                 |
| "XGB"                | eXtreme Gradient Boosting           | xgboost::xgboost           |
| "MAJORITY"           | Majority class prediction           | -                          |
| "RANDOM"             | Random prediction                   | -                          |

# SOFTWARE + EXERCISE

```
# "utiml" and "mldr" packages for multi-label classification in R
# https://journal.r-project.org/archive/2018/RJ-2018-041/RJ-2018-041.pdf
# https://github.com/rivolli/utiml
# https://cran.r-project.org/web/packages/mldr/vignettes/mldr.pdf
# https://github.com/fcharte/mldr
install.packages("utiml")
library(utiml)
install.packages("mldr")
library (mldr)
# following package offers benchmarks for multi-label classification
install.packages("mldr.datasets")
library (mldr.datasets)
summary (ng20)
# ng20, a corpus with 19300 documents, 1006 words and 20 multi-labels
# Ken Lang, "Newsweeder: Learning to filter netnews", 12th ICML Conference
ng20$labels
# not practical, but part of its corpus can be viewed doing
ng20corpus = ng20$dataset
View(ng20corpus)
# ng20's bag of words
dim(ng20corpus)
colnames(ng20corpus)
# consult the help of the following function
ng20 <- remove_skewness_labels(ng20,10)
# label bat plot
plot(ng20, type="LB")
# visual relations among labels
plot(ng20, type="LC")
# an external GUI interface to explore the "ng20" dataset
mldrGUI() # press "escape" to exit GUI
# start modeling
set.seed(123)
# create a holdout partition: train and predict to evaluate
# I created a small test partition as the prediction step takes a long time
ds <- create_holdout_partition(ng20, c(train=0.90, test=0.10))
```

```
# Binary relevance ML strategy with naive Bayes base classifier
model_BR_NB <- br(ds$train, "NB")
predictionsBR <- predict(model_BR_NB, ds$test)</pre>
head(predictionsBR)
resultsBRPerExamples <- multilabel_evaluate(ds$test, predictionsBR,
                                           c("example-based"))
resultsBRPerExamples
resultsBRPerLabel <- multilabel_evaluate(ds$test, predictionsBR,
                                        c("label-based"))
result.sBRPerLabel
# Classifier Chain ML strategy with naive Bayes base classifier
# Define the chain-order between labels: sample a random order
mychain <- sample(rownames(ng20$labels))</pre>
model_CC_NB <- cc(ds$train, "NB", mychain)
predictionsCC <- predict(model_CC_NB, ds$test)</pre>
resultsCCPerExamples <- multilabel_evaluate(ds$test, predictionsCC,
                                           c("example-based"))
resultsCCPerExamples
resultsCCPerLabel <- multilabel_evaluate(ds$test, predictionsCC,
                                        c("label-based"))
resultsCCPerLabel
# PROPOSED EXERCISE
# Complete a similar work, for the popular Enron-Corpus of e-mails
# To create the corpus and the associated dataFrame
enron = enron()
enron$labels
# A description of its labels appears in the following lists:
# https://bailando.berkeley.edu/enron/enron_categories.txt
# https://data.world/brianray/enron-email-dataset
# where for example "label 2.13" in the lists is "label B.B13" for enron-labels
```

# **EXERCISE**

- "utiml" + "mldr" + "mldr.datasets" R packages
- Consult its R-vignette [R-Journal][CRAN]
- It is so linked with "mldr" package: loaded both together
- Choose a multilabel dataset (e.g. "Enron") → understand the problem
- Understand its specific "multilabel preprocessing filters"
- Choose two multilabel strategies
- Choose a supervised base classifier type
- Create a train + test partition
- multilabel\_evaluate() + predict() functions
- Understand its associated parameters
- Compare both multilabel strategies → types of offered metrics?