Project Euler Problem 190

Aug 2022

Problem 190: Let $S_m = (x_1, x_2, ..., x_m)$ be the m-tuple of positive real numbers with $x_1 + x_2 + ... + x_m = m$ for which $P_m = x_1 \cdot x_2^2 \cdot ... \cdot x_m^m = m$ is maximised. For example, it can be verified that $[P_{10}] = 4112$ ([] is the integer part function). Find $\sum [P_m]$ for $2 \le m \le 15$.

Proof. We are looking to maximize the multivariate function

$$f_m(x_1, x_2, \cdots, x_m) = x_1 x_2^2 \cdot \ldots \cdot x_m^m$$

subject to the constraint function

$$x_1 + x_2 + \dots + x_m = m \Rightarrow$$

$$x_1 + x_2 + \dots + x_m - m = 0 \Rightarrow$$

$$g(x_1, x_2, \dots, x_m) = 0$$

We use the method of *Lagrange Multipliers* for extrema under constraints:

Proposition 0.1. Let U be an open subset of \mathbb{R}^{\ltimes} and $f, g : U \to \mathbb{R}^{\ltimes}$ be C^1 functions. If x_0 is a local extrema of f subject to g(x) = K with $\nabla g(x_0) \not\equiv 0$ then there exists $\lambda_0 \not\equiv 0$ (called a Lagrange multiplier) such that: $\nabla f(x_0) = \lambda_0 \nabla g(x_0)$.

The Method of Lagrange Multipliers allows us to first solve the following system of equations $\nabla f(x) = \lambda \nabla g(x)$, g(x) - K = 0, then plug in all solutions into f to identify the minimum and maximum values.

$$\nabla f(x_1, \dots, x_m) = (x_2^2 x_3^3 \dots x_m^m, 2x_1 x_2 x_3^3 \dots x_m^m, \dots, m x_1 x_2^2 \dots x_m^{m-1}))$$

and

$$\nabla g(x_1,\ldots,x_m)=(1,1,\ldots,1)$$

$$\lambda_0 = mx_1 x_2^2 \dots x_m^{m-1} \Rightarrow$$

$$\lambda_0 = \frac{mx_1 x_2^2 \dots x_m^m}{x_m} \Rightarrow$$

$$\lambda_0 = \frac{mf(x_1, \dots, x_m)}{x_m} \Rightarrow$$

$$x_m = \frac{mf(x_1, \dots, x_m)}{\lambda_0}$$

So $x_k = \frac{kf(x_1, \dots, x_m)}{\lambda_0} = kx_1$ for $1 \le k \le m$. Hence

$$g(x_1, \dots, x_m) = 0 \Rightarrow$$

$$\sum_{i=1}^m x_i - m = 0 \Rightarrow$$

$$x_1 + 2x_1 + \dots + mx_1 - m = 0 \Rightarrow$$

$$x_1 \frac{m(m+1)}{2} - m = 0 \Rightarrow$$

$$x_1 = \frac{2}{m+1}$$

So for any $j = 1, ..., m : x_j = \frac{2j}{m+1}$. Taking the product and the floor function for P_m we now have that

$$[P_m] = \left[\prod_{i=1,\dots,m} \left(\frac{2k}{m+1} \right)^k \right]$$

Summing through $m=2,\ldots,15$ we obtain the solution.