Formale Grundlagen der Informatik I 3. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer Pavol Safarik **SS 2012**

Gruppenübung

Aufgabe G1 (Zum Aufwärmen)

(a) Sei $\Sigma = \{a, b\}$. Welche Sprache wird von dem folgenden DFA \mathcal{A} akzeptiert?

(b) Beschreiben Sie L(A) durch einen regulären Ausdruck.

Aufgabe G2 (Potenzmengentrick)

Betrachten Sie den folgenden NFA:

Bestimmen Sie einen DFA, der genau dieselbe Sprache erkennt. Geben Sie neben dem Automaten selbst auch die im Zuge der Lösung erstellte Tabelle an (siehe Skript, Beispiel 2.2.10).

Aufgabe G3

Gegeben seien die folgenden DFA:

- (a) Geben Sie einen DFA an, der $L(A_1) \cap L(A_2)$ erkennt.
- (b) Geben Sie einen NFA an, der $L(A_1) \cdot L(A_2)$ erkennt. Extra: Was ändert sich an der Lösung, wenn der Zustand 1 in A_1 auch akzeptierend ist?

1

Hausübung

Aufgabe H1 (6 Punkte)

L und M seien Σ -Sprachen.

- (a) Zeigen Sie, dass $L \subseteq L^*$ und $(L \subseteq M^* \Rightarrow L^* \subseteq M^*)$.
- (b) Schließen Sie aus (a), dass $(L^*)^* = L^*$ und $(L \subseteq M \Rightarrow L^* \subseteq M^*)$.
- (c) Zeigen Sie, dass $(L \cup M)^* = (L^*M^*)^*$.

Aufgabe H2 (NFA-Umkehrung)

Für ein Wort $w=a_1\dots a_n\in \Sigma^*$ wird w^{-1} durch $a_n\dots a_1$ definiert (d.h. w wird rückwärts gelesen). Die Sprache $\operatorname{rev}(L)$ ist definiert als

$$rev(L) := \{ w^{-1} \in \Sigma^* \mid w \in L \}.$$

Zeigen Sie, dass für jede reguläre Sprache L die Umkehrung $\operatorname{rev}(L)$ regulär ist, indem Sie zeigen, wie aus einem NFA, der die Sprache L erkennt, ein NFA, der die Sprache $\operatorname{rev}(L)$ erkennt, allgemein konstruiert werden kann.

Hinweise:

- Überlegen Sie sich dazu beispielhaft für den Automaten A_1 aus Aufgabe G2 zunächst, wie solch ein "umgekehrter NFA", erkennend die Sprache $rev(L(A_1))$, auszusehen hat.
- Überlegen Sie sich, wie sich die Umkehrung eines NFA mit mehreren akzeptierenden Zuständen durch Ausnutzung der Abschlusseigenschaften regulärer Sprachen auf den Fall mit nur einem akzeptierenden Zustand zurückführen lässt.