

Pranjal Ralegankar
Postdoctoral scientist, SISSA

Image source: Pauline Voß for Quanta Magazine

Ubiquitous Magnetic Fields

Pranjal Ralegankar

Primordial: Produced by Big Bang plasma

Allowed PMF parameter space

Durrer and Neronov 2013

PMFs
generated post
inflation lie on
the damping
line

Inflation generated PMFs can be anywhere on the right of damping line

Goal: test the primordial hypothesis of magnetic fields

Primordial Magnetic Fields enhance density perturbations

Primordial Magnetic Fields enhance density perturbations

Primordial Magnetic Fields enhance density perturbations

Primordial Magnetic Fields enhance power spectrum on small scales

Backreaction from baryons suppresses baryon density perturbations below Magnetic damping (Jeans) scale

Part 1: Enhanced baryon fraction above jeans scale

Part 2: Dark matter minihalos below jeans scale

Part 1

Enhancing baryon fraction through Primordial magnetic fields

Arxiv: 2402.14079

Post-recombination Ideal MHD

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + H\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a^5 \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Post-recombination Ideal MHD

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + H\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a^5 \rho_b} - \frac{c_b^2 \nabla \delta_b}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a} =$$

Post-recombination Ideal MHD

Focus on large scales, linear limit $\delta \ll 1, v_b \ll aH$

Post-recombination Ideal MHD linear limit

$$\frac{\partial (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{\nabla \cdot (\nabla \times \vec{B}) \times \vec{B}}{(4\pi a^3 \rho_b) a^5 H^2} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Comoving Magnetic fields are frozen

$$\frac{\partial (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{\nabla \cdot (\nabla \times \vec{B}) \times \vec{B}}{(4\pi a^3 \rho_b) a^5 H^2} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Baryons driven by Lorentz force and gravity

$$\frac{\partial (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{\nabla \cdot (\nabla \times \vec{B}) \times \vec{B}}{(4\pi a^3 \rho_b) a^5 H^2} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Dark matter only influenced by gravity

$$\frac{\partial (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{\nabla \cdot (\nabla \times \vec{B}) \times \vec{B}}{(4\pi a^3 \rho_b) a^5 H^2} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\nabla^2 \phi = \frac{\alpha^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Star of the show: S_0 term

$$\frac{\partial (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{\nabla \cdot (\nabla \times \vec{B}) \times \vec{B}}{(4\pi a^3 \rho_b) a^5 H^2} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Star of the show: S_0 term

$$\frac{\partial (\vec{B})}{\partial t} = 0$$

$$\frac{\partial^2 \delta_b}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_b}{\partial a^2} = -\frac{S_0}{a^2 (a^3 H^2)} + \frac{\nabla^2 \phi}{(a^2 H)^2}$$

$$\frac{S_0}{a^3 H^2} = \frac{\nabla \cdot (\nabla \times B) \times B}{4\pi a^3 \rho_b (a^3 H^2)} = \text{constant}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \frac{3}{2} \frac{\partial \delta_{DM}}{\partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

S_0 sources baryon perturbations

Baryon fraction decreases with time

Gravity quickly overcomes Lorentz force

Gravity quickly overcomes Lorentz force

Simulations

redshift = 10

Simulations

Baryon fraction in halos: enhanced by PMFs

Baryon fraction in halos: enhanced by PMFs

Scale invariant 1 nG PMFs

Baryon fraction in halos: stochastic nature

Scale invariant 1 nG PMFs

$$\frac{f_b^{halo}}{f_b^{cosmic}} = \frac{\delta_b^{PMF} + \delta_b^{\Lambda CDM}}{\delta_m^{PMF} + \delta_m^{\Lambda CDM}}$$

Enhancement moves to smaller scales with smaller PMF strength

Enhancement moves to smaller scales with smaller PMF strength

Enhancement moves to smaller scales with smaller PMF strength

Implications for PMFs

Power spectrum above magnetic jeans scale is sensitive upto 0.05 nG PMFs

Part 1: summary

- PMFs can enhance baryon fraction apart from enhancing matter power spectrum
- Can affect star formation efficiency, black hole formation etc. Need dedicated MHD sims.
- The final conclusion of enhanced baryon fraction in halos does not depend on MHD.
- Observing high baryon fraction at high redshift will be smoking gun signal for PMFs

Part 2

Probing Primordial magnetic fields through dark matter minihalos

ARXIV: 2303.11861

Part 2: Dark matter minihalos below jeans scale

Pre-recombination Ideal MHD.. With non-linear terms

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2}{4\pi a \rho_b}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} =$$

Pre-recombination Ideal MHD.. With non-linear terms

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Pre-recombination Ideal MHD: laminar flow due to photon drag

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Can analytically solve MHD eqs: viscous damping

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}}$$

$$k_D^{-1}(a) \sim \tau v_b$$

magnetic damping scale Evolution

$$k_D^{-1}(a) \sim \tau v_b$$

Perturbation evolution plot

Lorentz force enhances baryon perturbations for modes outside k_D^{-1}

baryon perturbations asymptote once mode enters k^{-1}

baryon perturbations damped by thermal pressure

baryon perturbations damped by turbulence at recombination

Dark matter perturbations continues to grow!

Dark matter perturbations enhanced by orders of magnitude compared to ΛCDM

Parameter Space with Enhanced Power on Small scales

Parameter Space with Enhanced Power on Small scales: THEIA SKA sensitivity

Subscript *I* refers to the time at the beginning of laminar flow regime

Parameter Space with Enhanced Power on Small

scales: PTA sensitivity

Subscript *I* refers to the time at the beginning of laminar flow regime

Minihalos from causally generated PMFs

Minihalos from causally generated PMFs

PMFs to explain cosmic void observations

Assuming Batchelor spectrum!

Universe Maybe filled with dark matter minihalos!!

Assuming Batchelor spectrum!

Part 2: Summary and Concluding remarks

- Magnetic fields can enhance power on small scale dark matter distribution gravitationally.
- PTA/GAIA detection of DM minihalos can provide best probe of primordial magnetic fields
- PMFs resolving Hubble tension likely produce minihalos
- Ironic: how invisible dark matter can help look for visible entity: magnetic fields

Backup

Back to power spectrum

