

Done

- Implement two generic IMU fusion algorithms
 - Mean-based
 - Maximum likelihood
 - https://doi.org/10.1109/TSP.2016.2560136
 - Work with an arbitrary number of IMUs
 - At least 3 IMUs required for estimation of angular acceleration
 - Identical interface:
 - Measurements for a and omega
 - IMU positions

Mean-based with real data

Max. likelihood-based with real data ENGINEERING

Both with simulation data

Next steps

- Fix a_z for max. likelihood estimator
- Implement IMU fusion with motion model
 - https://doi.org/10.23919/ICIF.2018.8455269
- Add basic IMU outlier detection
 - Connectivity Check
 - Range
- EKF input switching
- Improve velocity estimation from wheel speeds

Studienarbeit Gliederung

- Introduction (10%)
 - FS + eSleek
 - Problem + Motivation (why a good SE is important)
 - Scope (what will be covered)
- Background (30%)
 - Vehicle Dynamics (basic models)
 - Estimation Algorithms (EKF vs ...)
 - Outlier Detection
- Design (25%)
 - Requirements (flexible, robust, DV support, sensors)
 - O Design (Architecture, Preprocessing, EKF, Outlier Detection, IMU Fusion)
- Implementation (Simulink, Matlab, VDC Integration, testing) (15%)
- Evaluation (15%)
 - Results (plots, plots, plots)
 - Discussion (impact of results on eSleek)
- Conclusion (summary, future work) (5%)