

M5 forecasting

陳志瑄 2021/1/28

目錄

- 資料理解與目的
- 探索性分析的過程
- 建立模型與驗證
- 結論
- 附錄

資料理解與猜測

- Calendar: 為日期資料(2011/1-2016/6)包含節假日、政府補助日SNAP等 等資料(或許節日會影響買氣、購買衝動)
- Sell_price:為各產品每日的銷售價錢(或許價錢會影響購買意願)
- sales_train_validation:前1913天的銷售量
- sales_train_evaluation:前1941天的銷售量(比 validation 多28天)

目的:預測3049種商品*(10家店)的28天銷售量(1942~1969天)

資料範例參照附錄-資料合併

資料分析流程

Memory reduction

Memory reducing between before and after

鑒於本次資料集稍微龐大,因此須採用將資料型態改至最小範圍(int64 → int16)等等,來減少記憶體使用。最大可減少70%的記憶體

Ref: https://www.kaggle.com/fabiendaniel/elo-world

各資料直方圖

3大產品分類

Histplot for categories

7000 -

14000

12000

Supplemental Nutrition Assistance Program (SNAP)

美國補充營養援助計畫(Supplemental Nutrition Assistance Program; SNAP)亦被稱為食物券計畫(Food Stamp Program),主要為無收入及低收入美國居民提供購買食品的補助。

將calendar資料的snap經由表格 觀察以及畫圖發現,snap在各州 的每個月是有週期性的,而且每年 是固定的,因此需考慮此因素當作 特徵進行預測。

EDA -資料截取

資料對每個商品統一給了1941天的銷售量,因此會出現許多商品會有一段時間的銷售量皆為0,其原因是為尚未開賣。我採取了對每個商品進行抓取開賣時間,並將未開賣的資料捨去。舉例 HOBBIES_1_001_CA_2 (左)前900天捨去,但像FOODS_2_154_WI_3 (右)就第一天就開賣,就不需要進行截取。

EDA-Event sales

左圖為根據不同的節日以不同種的商品來計算銷售量。 很明顯得知在超級盃(Super Bowl)的食物銷售量為最多, 可能原因為大家在看賽事的時候喜歡配著東西吃。

然而推斷 Christmas、Thanksgiving、New Year 可能因為歐美最重大的特殊節日會有許多家庭大量購買食物來慶祝,實際狀況是為倒數三名。但 Christmas 當天 Walmart 是停業的,因此我加入了聖誕夜前一天(Christmas Eve before)的銷售狀況,也並沒有預期的高。推測原因為消費習慣與想像中不同,多數人不在家裡烹調而是選擇在外用餐來慶祝。

EDA-Weekly sales

Copmarsion of different sale between state and weekday

左圖為根據不同的天以不同種的商品來計算銷售量。 並不意外的,銷售量在五、六、日的時候會大幅提 升,其餘維持平常的銷售量。

EDA-Monthly sales

左圖為根據不同的月以不同種的商品來計算銷售量。三、四、五月為推測為這三個月的特殊節日相對後半年較為多,且其總銷售的皆為前幾名,因此才會造成銷售旺季。

EDA-Yearly sales

Copmarsion of different sale between state and year

左圖為根據不同的年以不同種的商品來計算 銷售量。可以觀察到每種商品在每州的總銷 售量皆是逐年上升,為每年的總體趨勢。 2011至2012的快速上升原因詳見EDA-資料截取。 (2016年資料未滿半年,故不考慮)

模型與驗證

Loss function 選擇

- 本次比賽的評估方法為 RMSE 的變形-Weighted Root Mean Squared Scaled Error (RMSSE) 的,但在 Discussion 有許多人討論到採用此方法 當做 loss function 的結果並不如預期。我的推論原因是銷售量(預測值)是 並不屬於常態分配,所以不該使用 RMSE, MAE, etc.應看預測值的分布來 採取不同的 loss function。此資料接近 Poisson,但 Tweedie 更為合適。
- Tweedie 分布為 Poisson 分布及 Gamma 分布的混合型。其概念是屬於 0 的用Poisson,非 0 的用Gamma。
- Tweedie 分布最明顯的一個特點是以一定的概率生成數值為 0 的樣本。左 圖為本次資料(截取開始商品販售之後)所畫出的直方、機率密度圖,由圖得 知銷售量為 0 的機率佔了大多數,這是 Tweedie 分布的特性,因此採用 Tweedie loss 作為 loss function。

5-Folds Cross Validation

與一般 Classification 問題的 Cross Validation 不同的地方在於, Time series 的 Forecasting 預測會有時序性問題,因此採用的資料分割也會有所不同。此次 5-Folds Cross Validation 的平均RMSE為1.988

Testing 資料說明

- Testing 資料準備:由於採用了 lag 及 lag with rolling mean 的特徵,在預測新一筆資料(Predict 1)的時候必須要 往 前 提 取 28 + 28 天 數 的 資 料 (lag 28 天 + 對 lag 28 天使用 rolling mean 28 天)由此 資料才會完整,與 training 資料一樣
- · **遞迴預測:**在每次預測新一筆的時候,都會重新對其特徵 做 lag 及 lag with rolling mean 且這些特徵範圍選取到 上一個的 testing 資料,e.g.,預測 T1 往前選取 56 天資料;預測 T2 也往前選取 56 天資料,但會包含 T1 的資料重新做特徵工程。

Testing 資料示意圖

Feature importance

左圖為進行 lightGBM 的 Feature importance 可以看出在 14D_11ag_rolling_sold_mean, 28D_11ag_rolling_sold_mean, 7D_11ag_rolling_sold_mean 中的表現佔了極大部分,此三個 feature 皆為做 1 lag 再將其往前7、14、28天做平均,前半個月、一個月或者一個星期的銷售量趨勢會影響到當天所要預測的銷售量。

結論與問題討論

- 1. 每個州每種商品在前半年是銷售旺季,與節日有關,尤其 FOODS 最為明顯。
- 2. 每個州每種商品在每年的總銷售量都有逐漸上升,為長時間的趨勢,並無大 斷層或者急速上升的狀況。
- 3. 每一種損失函數背後都有一種假設,滿足假設的前提下, 利用 loss function 訓練出來的模型才有比較好的效果。
- 4. 在特徵工程中,rolling mean的表現特別重要,可見在前數天銷售平均會影響預測當天的狀況
- 5. 資料應加入是否缺貨狀況,否則可能會誤判實際的銷售結果。
- 6. 未來可選用多模型進行 stacking 以達到更好的結果。

附錄

附錄-資料重整 (melt)

Item_id	d_1	d_2	d_3
S_1_001	1	0	2
S_1_002	0	3	0
S_1_003	0	0	0

Item_id	d	sold
S_1_001	1	1
S_1_001	2	0
S_1_001	3	2
S_1_002	1	0
S_1_002	2	3
S_1_002	3	0
S_1_003	1	0
S_1_003	2	0
S_1_003	3	0

59181090 rows **X** 8 columns

為了使 sales 與 Calendar 及 Sell_price 在合併資料的時候比較容易,先採用 melt 方法重整資料

附錄-資料合併

2

1

Sales	
(melt)	

id item_id dept_id cat_id store_id state_id sold d 001_CA_1_evaluation HOBBIES_1_001 HOBBIES_1 HOBBIES CA_1 CA d_1 002_CA_1_evaluation HOBBIES_1_002 HOBBIES_1 CA_1 CA d_1 HOBBIES 003_CA_1_evaluation HOBBIES_1_003 HOBBIES_1 HOBBIES CA_1 CA d_1 004_CA_1_evaluation HOBBIES_1_004 HOBBIES_1 CA_1 CA d_1 HOBBIES 0 005_CA_1_evaluation HOBBIES_1_005 HOBBIES_1 HOBBIES CA_1 CAd_1 0

Salendar

date	wm_yr_wk	weekday	wday	month	year	d	event_name_1	event_type_1	event_name_2	event_type_2	snap_CA	snap_TX	snap_WI
2011/1/29	11101	Saturday	1	1	2011	d_1					0	0	0
2011/1/30	11101	Sunday	2	1	2011	d_2					0	0	0
2011/1/31	11101	Monday	3	1	2011	d_3					0	0	0
2011/2/1	11101	Tuesday	4	2	2011	d_4					1	1	0
2011/2/2	11101	Wednesday	5	2	2011	d_5					1	0	1

Sell_price

store_id	item_id	wm_yr_wk	sell_price
CA_1	HOBBIES_1_001	11325	9.58
CA_1	HOBBIES_1_001	11326	9.58
CA_1	HOBBIES_1_001	11327	8.26
CA_1	HOBBIES_1_001	11328	8.26
CA 1	HOBBIES_1_001	11329	8.26

首先透過

1 將sales、calendar串接

再將其結果透過

2 與 Sell_price 串接

附錄-時間序列的特徵工程

- Component encoding:利用資料的時間相關性,給予對應時間相關的特徵,如年、月、周、星期,或是時、分、秒。
- Characteristics in time series :
 - Feature Lag N period : 取先前時間點(Lag)的單一數值當作特徵。Ex:以月為週期的資料中,前30天的資料點 (Lag30)
 - Feature Lag N periods Aggregate: 取先前一段時間點(Window)的數值,經過統計方式的計算(平均值、最大值、標準差)後當作特徵。Ex:過往七天銷售量的平均,通常代表了銷售量的趨勢。
 - Feature Lag N periods Interaction :不同時間點資料彼此的變化。Ex:前兩天銷售額的變化(Lag2-Lag1)
- Dummy variables :在零售行業遇到特殊時節時,營業的整體供給需求會有所變化。如聖誕節、感恩節、SNAP

附錄-Feature - Lag and rolling mean

Date	sold	Lag(3D)
2011/2/1	10	
2011/2/2	3	
2011/2/3	5	
2011/2/4	7	10
2011/2/5	2	3
2011/2/6	6	5
2011/2/7	0	7

Lag by 3 days

透過 Lag 計算過往1、7、28天的銷售量, time series 的資料特性, 有可能當下數據會因為前一天至前幾天的數據受影響。以左表來說, 2011/2/4 銷售量 7 可能會受到2011/2/1 銷售量 10 的影響。

Date	Lag X	Rolling_mean(3D)
2011/2/1	10	
2011/2/2	3	
2011/2/3	5	6
2011/2/4	7	5
2011/2/5	2	4.666667
2011/2/6	6	5
2011/2/7	0	2.666667

Rolling mean by 3 days

透過 rolling windows 計算 lag 1、7、14、 28的往前7、14、28天的平均值。

