Universität Potsdam - Wintersemester 2023/24

Stoffdidaktik Mathematik

Kapitel 6 - Kernideen und Kontexte

Stoffdidaktik Mathematik

Kapitel 6 - Kernideen und Kontexte

- Sie kennen das Konzept von Kernideen als das Wesen des Lerngegenstands aus der Perspektive der Schülerinnen und Schüler.
- Sie kennen Kernideen zu einzelnen Lerngegenständen.
- Sie können gegebene Kontexte zu Lerngegenständen hinsichtlich ihrer Sinnstiftung beurteilen.
- Sie sind sich der Möglichkeiten und Bedeutung horizontaler und vertikaler Mathematisierung bewusst.

Stoffdidaktische Analyse als Spezifizieren & Strukturieren von Lerngegenständen

Spezifizieren

Strukturieren

konkrete Ebene

- Welche Kernfragen und Kernideen können die Entwicklung der Begriffe, Sätze und Verfahren leiten?
- Welche (inner- und außermathematischen) Kontexte sind geeignet, um an ihnen die Kernfragen und -ideen exemplarisch zu behandeln und die Inhalte zu rekonstruieren?
- Wie kann das Verständnis sukzessive über realitätsbezogene Situationen in dem beabsichtigten Lernpfaden konstruiert werden (horizontale Mathematisierung)?
- Wie kann der Lernpfad in Bezug auf die mathematische Problemstruktur angeordnet werden (vertikale Mathematisierung)?

konkrete Ebene ≠ konkrete Unterrichtsplanung

(Hußmann & Prediger, 2016)

Was ist (aus Sicht der Schüler/-innen) das Wesentliche des Lerngegenstands?

Funktionen

Formale Grundlagen

$$f \subseteq D \times Z$$

f linkstotal und rechtseindeutig, d.h. $\forall x \in X \; \exists ! y \in Z : (x, y) \in f$

Fundamentale Ideen

- Approximierung
- Optimierung
- Linearität
- Symmetrie
- Invarianz
- Rekursion
- Vernetzung

- Ordnen
- Strukturierung
- Formalisierung
- Exaktifizierung
- Verallgemeinern
- Idealisieren
- -

Zuordnung

	Χ	- 2	_ 1	0	1	2
•	У	8	2	0	2	8

Änderung/Kovariation

Objekt

Grundvorstellungen

Muster erkennen

Algebraisierung

(vgl. Thiel-Schneider, 2018, S. 31).

Kernideen und Kernfragen

Was ist (aus Sicht der Schüler/-innen) das Wesentliche des Lerngegenstands?

Funktionen

Kernideen und Kernfragen

Was ist (aus Sicht der Schüler/-innen) das Wesentliche des Lerngegenstands?

»Wie kann man die Beziehung zwischen zwei sich verändernden Größen beschreiben und wie kann man damit weitere Werte bestimmen?« (Thiel-Schneider, 2018, S. 49).

Vorschauperspektive

Rückschauperspektive

Kernideen und Kernfragen

Was ist (aus Sicht der Schüler/-innen) das Wesentliche des Lerngegenstands?

Eine **Kernidee** beschreibt unter sinnstiftender Perspektive das mathematische Wesen eines Lerngegenstand.

Eine **Kernfrage** stellt die Kernidee in Frageform aus der Perspektive der Schülerinnen und Schüler dar.

Kernideen und Kernfragen verfolgen eine **Vorschauperspektive**, die der Orientierung und Initiierung der Auseinandersetzung mit dem neuen Lerngegenstand dient, sowie eine **Rückschauperspektive**, die es den Schülerinnen und Schülern ermöglicht, ihren eigenen Lernprozess zu reflektieren und den Lerngegenstand einzuordnen.

(angelehnt an Leuders et al. 2011, S. 8)

Kernideen und Kernfragen

Was ist (aus Sicht der Schüler/-innen) das Wesentliche des Lerngegenstands?

Quadratische Funktionen

Wie kann ich krumme Kurven beschreiben?

(Barzel et al., 2016, S. 190)

Negative Zahlen

Wie kann ich rechnen, wenn ich mehr wegnehme, als ich habe? (Leuders et al., 2015, S. 74)

Konstruktion von Dreiecken

Wie kann ich mit Dreiecken Landschaften vermessen?

(Leuders et al., 2015, S. 164)

Bedingte Wahrscheinlichkeiten

Wie kann ich einschätzen, einem medizinischen Testergebnis zu vertrauen?

Vorschauperspektive: Orientierung, Initiierung der Auseinandersetzung mit Lerngegenstand

Rückschauperspektive: Reflexion des eigenen Lernprozesses, Einordnung des Lerngegenstands

Quadratische Funktionen

»Wie kann ich krumme Kurven beschreiben?« (Barzel et al., 2016, S. 190)

Kontexte

Ein **sinnstiftender Kontext** ist ein Ausschnitt einer inner- oder außermathematischen Welt, der folgende Anforderungen möglichst gut erfüllt:

- Er ist anschlussfähig an die Erfahrungen, Interessen und die Denk- und Handlungsmuster der Lernenden (Lebensweltbezug).
- Er ermöglicht es, authentische Fragen zu bearbeiten und dabei auch etwas über den Kontext zu lernen (Kontextauthentizität).
- Er ist problemhaltig und offen genug, um Lernende zum reichhaltigen Fragen und Erkunden anzuregen (Reichhaltigkeit).

Kernfragen / Kernideen

Funktionen

»Wie kann ich die Beziehung zwischen zwei sich verändernden Größen beschreiben und wie kann ich damit weitere Werte bestimmen?« (Thiel-Schneider, 2018, S. 49).

Lineare Funktionen

Wie kann ich sich gleichmäßig verändernde Prozesse beschreiben?

Quadratische Funktionen

»Wie kann ich krumme Kurven beschreiben?« (Barzel et al., 2016, S. 190)

Sinnstiftender Kontext

Ausschnitt aus inner- oder außermathematischer Welt; erfüllt folgende Anforderungen möglichst gut:

Lebensweltbezug: anschlussfähig an Erfahrungen, Interessen, Denk- und Handlungsmuster der Lernenden

Kontextauthentizität: ermöglicht, authentische Fragen zu bearbeiten und etwas über den Kontext zu lernen

Reichhaltigkeit: problemhaltig und offen genug, um zum reichhaltigen Fragen und Erkunden anzuregen

(vgl. Leuders et al. 2011)

Abbrennen einer Kerze

Analyse eines Ballwurfs

Kernfragen / Kernideen

Wurzel

Wie kann ich Quadrieren rückwärts rechnen?

Term

Wie kann ich komplizierte Berechnungen übersichtlich darstellen?

Sinnstiftender Kontext

Ausschnitt aus inner- oder außermathematischer Welt; erfüllt folgende Anforderungen möglichst gut:

Lebensweltbezug: anschlussfähig an Erfahrungen, Interessen, Denk- und Handlungsmuster der Lernenden

Kontextauthentizität: ermöglicht, authentische Fragen zu bearbeiten und etwas über den Kontext zu lernen

Reichhaltigkeit: problemhaltig und offen genug, um zum reichhaltigen Fragen und Erkunden anzuregen

(vgl. Leuders et al. 2011)

Quadrat mit halben Flächeninhalt finden

horizontale Mathematisierung

vertikale Mathematisierung

Beschreiben, Ordnen und Lösen realer Situationen und alltäglicher Probleme mithilfe mathematis Objekte und Operationen

Reorganisieren und perieren innerhalb des mathematischen Systems

b) Schaue für verschiedene x-Werte die y-Werte von $f(x) = x^2$ und $g(x) = (x + 2)^2$ an.

Wie entstehen die y-Werte von g(x)?
Was kann man in der Wertetabelle erkennen?

• Wie erkennt man das im Graphen von x^2 und $(x + 2)^2$?

Das Hoch- und Runterschieben ist mir klar: Wenn man zum Term etwas Positives addiert, dann erhöhen sich alle y und geht es hoch. Aber wenn man das mit x macht, geht es nach links und nicht nach rechts!

(Barzel et al., 2016, S. 194)

(Barzel et al., 2016, S. 198)

Formale Grundlagen

- als Zahlenpaar: [(0,2)] = [(5,7)] = -2 oder als Gegenzahl: -2 vs. 2
- n m mit m > n nun lösbar

• $\mathbb{N} \subset \mathbb{Z}$

Rechenregeln nach
 Permanenzprinzip erweitert

Fundamentale Ideen

Grundvorstellungen

• Vernetzung, Verallgemeinerung, Erweiterung

als Gegensätze

- als Richtungen
- als Zustände und Zustandsänderungen

Kernideen/Kernfragen

Vorschauperspektive & Rückschauperspektive

- Wie kann man rechnen, wenn man mehr wegnimmt, als man hat?
- Wie kann man mit negativen Zahlen wiederholt dasselbe rechnen?

(Leuders et al., 2015, S. 80, 82)

Kontexte

Lebensweltbezug, Kontextauthentizität & Reichhaltigkeit

Mathematisierung

horizontal & vertikal

- horizontal: z. B. mehrfache Schulden
- vertikal: z. B. Permanzenreihen

• Ergänzung: Blick- und Bewegungsrichtung beim Rechnen auf Zahlenstrahl

Fundamentale Ideen

Grundvorstellungen

Kernideen/Kernfragen

Vorschauperspektive & Rückschauperspektive

Kontexte

Lebensweltbezug, Kontextauthentizität & Reichhaltigkeit

Mathematisierung

horizontal & vertikal

bewusste Sprachbildung

(wenige) Kontext(e) für Einführung auswählen

Kalkül vermeiden

Schwierigkeiten und Herausforderungen

-5 > -3

Kardinalzahlaspekt nicht mehr tragfähig

• Minus-Zeichens als Vor-, Rechen- und Inversionszeichen

• Fehlinterpretation der Ordnungsrelation (nicht mehr über Mächtigkeit möglich; fehlerhafte spiegelbildliche Interpretation)

»negativ« als Wort mit mehreren verschiedenen Bedeutungen (homonym)

negative Stimmung

negativer Corona-Test

negative Zahl

- Generalisierung der Vorstellung »Hinzufügen vermehrt immer«
 - Übertragung von Vorstellung bei Addition als Hinzufügen
 - wird teils auch sprachlich gestützt
- komplexer Wortschatzaufbau, abhängig vom Kontext

»Obergeschoss«

»Meeresspiegel«

»Plusgrade«

»Erdgeschoss«

»Normal-Null«

»Gefrierpunkt«

»Untergeschoss«

»Tauchtiefe«

»Minusgrade« »Frost«

Vermischung der Rechenregeln

Formale Grundlagen

Fundamentale Ideen

Grundvorstellungen

Kernideen / Kernfragen

Kontexte

Mathematisierung horizontal & vertikal

Schwierigkeiten und Herausforderungen

All das beeinflusst die Auswahl und Anordnung der Unterrichtsinhalte

Vorschlag eines Lernpfades zu Z

Literatur

- Barzel, B., Hußmann, S., Leuders, T., & Prediger, S. (Hrsg.). (2016). Mathewerkstatt. 9, Schulbuch (1. Auflage). Cornelsen.
- Hußmann, S., & Prediger, S. (2016). Specifying and Structuring Mathematical Topics: A Four-Level Approach for Combining Formal, Semantic, Concrete, and Empirical Levels Exemplified for Exponential Growth. *Journal Für Mathematik-Didaktik*, 37(S1), 33-67. https://doi.org/10.1007/s13138-016-0102-8
- Leuders, T., Hußmann, S., Barzel, B., & Prediger, S. (2011). Das macht Sinn! Sinnstiftung mit Kontexten und Kernideen. *Praxis der Mathematik in der Schule*, 53(37), 2-9. https://www.researchgate.net/publication/233978329
- Leuders, T., Prediger, S., Barzel, B., & Hußmann, S. (Hrsg.). (2015). *Mathewerkstatt. 7, Schulbuch* (1. Auflage). Cornelsen.
- Thiel-Schneider, A. (2018). Spezifizierung und Strukturierung des Lerngegenstandes. In A. Thiel-Schneider, *Zum Begriff des exponentiellen Wachstums* (S. 23–57). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-21895-9_4