Stochastic Modelling

isakhammer

2020

Contents

1	Lecture 1					
	1.1	Practical Information				
	1.2					
	1.3	•				
		1.3.1 Combining Event	2			
		1.3.2 Probability	3			
		1.3.3 Law of total probability	3			
		1.3.4 Independence	3			
		1.3.5 Random Variables	4			
		1.3.6 Notation for random variables	4			
		1.3.7 Discrete random variables	4			
		1.3.8 CFD	5			
		1.3.9 Continious random vairbales	5			
		1.3.10 Important properties	5			
		1.3.11 Expectation	5			
		1.3.12 Variance	6			
		1.3.13 Joint CDF	6			
		1.3.14 Joint distribution for discrete random variables	6			
		1.3.15 Joint distribution for continous random variables	6			
		1.3.16 Independence	7			
2	Lec	ture 3	8			
	2.1	Randoms sum	8			
	2.2	Self Study	8			
	2.3	·				
	2.4	Markov chain				
	2.5					
3	Lecture 4					
	3.1	Introduction to first step analysis	13			
4	References 1					

1 Lecture 1

1.1 Practical Information

Two projects

- The projects count 20% and exam 80%.
- Must be done with two people.
- If you want to do statistics is it worth learning R.

Course Overview

- Markov chains for discret time and discrete outcome.
 - Set of states and discrete time points.
 - Transition between states
 - Future depends on the present, but not the past.
- Continious time Markoc chains. (continious time and discrete toutcome.
- Brownian motion and Gaussian processes (continionus time and continious outcome.)

1.2 Mathematical description

Definition 1.1. A stochastic process $\{x(t), t \in T\}$ is a family of random variables, where T is a set of indicies, and X(t) is a random variable for each value of t.

1.3 Recall from Statistics Course

A random experiment is performed the outcome of the experiment is random.

- THe set of possible outcomes is the sample space ω
 - An **event** $A \subset \omega$ if the outcome is contained in A
 - The **complement** of an event A is $A^c = \omega \setminus A$
 - The **null event** \emptyset is the empty set $\emptyset = \omega \setminus \omega$

1.3.1 Combining Event

Let A and B be events

- The union $A \cup B$ is the event that at least one of A and B occur.
- the intersection $A \cap B$ is the event that both A and B occur.

The events A_1,A_2,\ldots are called disjoint (or **mutually exclusive**) if $A_i\cap A_j=\emptyset$ for $i\neq j$

1.3.2 Probability

Pr is called a probability on ω if

- Pr $\{\omega\} = 1$
- $0 \le P\{A\} \le 1$ for all events A
- For A_1, A_2, \ldots that are mutually exclusive

$$P\left\{\bigcup_{i=1}^{\infty} A_i\right\} = \sum_{i=1}^{\infty} P\left\{A_i\right\}$$

We call $P\{A\}$ the probability of A.

1.3.3 Law of total probability

Let A_1, A_2, \ldots be a partition of ω ie

- $\omega = \bigcup_{i=1}^{\infty} A_i$
- A_1, A_2, A_3, \ldots are mutually exclusive.

Then for any event B

$$P\{B\} = \sum_{i=1}^{\infty} P\{B \cap A_i\}$$

This concept is very important.

1.3.4 Independence

Event A and B are independent of

$$P\{A \cap B\} = P\{A\}P\{B\}$$

Events A_1, \ldots, A_n are independent if for any subset

$$P\left\{\bigcap_{j=1}^{k} A_{i_j}\right\} = \prod_{j=1}^{k} P\left\{A_{i_j}\right\}$$

In this case $P\left\{\bigcap_{i=1}^{n} A_1\right\} = \prod_{i=1}^{n} P\left\{A_i\right\}$

1.3.5 Random Variables

Definition 1.2. A random variable is a real-vaued function on the sample space. Informally: A random variable is a real valued variable that takes on its value by chance.

Example.

- Throw two dice. X = sum of the two dice
- Throw a coin. X is 1 for heads and X is 0 for tails.

1.3.6 Notation for random variables

We use

- \bullet upper case letters such at X, Y and Z to represent random variables.
- lower case letters as x, y, z to denote the real-valued realized value of a the random variable.

Expression such as $\{X \leq x\}$ denators the event that X assumes a value less than or earl to the real number x.

1.3.7 Discrete random variables

The random variable X is **discrete** if it has a finite or countable number of possible outcomes x_1, x_2, \ldots

• The **probability mass function** $p_x(x)$ is given by

$$p_x\left(x\right) = P\left\{X = x\right\}$$

and satisfies

$$\sum_{i=1}^{\infty} p_x(x_i) = 1 \quad \text{and} \quad 0 \le p_x(x_i) \le 1$$

• The cumulative distribution function (CDF) a of X can be written

$$F_{x}\left(x\right) = P\left\{X \leq x\right\} = \sum_{i: x_{i} \leq x} p_{x}\left(x_{i}\right)$$

1.3.8 CFD

The CDF of X may also be called the **distribution function** of X Let $F_x(x)$ be the CDF of X, then

- $F_x(x)$ is monetonaly increasing.
- F_x is a stepfunction, which is a pieace-wise constant with jumps at x_i .
- $\lim_{x\to\infty} F_x(x) = 1$
- $\lim_{x\to-\infty} F_x(x) = 0$

1.3.9 Continious random vairbales

A continious random variables takes value o a continious scale.

- The CDF, $F_x(x) = P(X \le x)$ is continious.
- The **probability density function** (PDF) $f_x(x) = F'_x(x)$ can be used to calculate probabilities

$$\begin{split} \Pr\left\{a < X < b\right\} &= \Pr\left\{a \leq X < b\right\} = \Pr\left\{a < X \leq b\right\} \\ &= \Pr\left\{a \leq X \leq b\right\} = \int_{a}^{b} f_{x}\left(x\right) dx \end{split}$$

1.3.10 Important properties

- CDF:
 - Monotonely increaing
 - continious
 - $-\lim_{x\to\infty} F_x = 1$ and $\lim_{x\to-\infty} F_x(x) = 0$
- PDF

$$- f_x(x) \ge 0 \text{ for } x \in \mathbb{R}$$
$$- \int_{-\infty}^{\infty} f_x(x) dx = 1$$

1.3.11 Expectation

Let $g: \mathbb{R} \to \mathbb{R}$ be a function and X be a random variable.

• If X is discrete, the expected value of g(X) is

$$E\left[g\left(X\right)\right] = \sum_{x:p_{x}\left(x\right)>0} g\left(x\right) p_{x}\left(x\right)$$

• If X is continous, the expected value of g(X) is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_x(x) dx$$

1.3.12 Variance

The variance of the random variable X is

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

Important properties of expectation and variance.

• Expectations is linear

$$E[aX + bY + c] = aE[X] + bE[Y] + c.$$

• Variance scales quadratically and is invaraient to the addition of constants

$$Var\left[aX + b\right] = a^2 Var\left[X\right]$$

• fir independent stochastic variables.

$$Var[X + Y] = Var[X] + Var[Y]$$

1.3.13 Joint CDF

If (X,Y) is a pair for random variables, their **joint comulative distribution** function is given by

$$F_{X,Y} = F(x,y) = Pr\{X < x \cap Y < y\}$$

.

1.3.14 Joint distrubution for discrete random variables

If X and Y are discrete, the **joint probability mass function** $p_{x,y} = Pr\{X = x, Y = y\}$. can be used to compute probabilities

$$Pr\left\{ a < X < b, c < Y \le d \right\} = \sum_{a < x \le b} \sum_{c < y \le d} p_{X,Y}\left(x,y\right)$$

1.3.15 Joint distribution for continous random variables

If X and Y are continious the **joint probability density function**

$$.f_{X,Y}(x,y) = f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

can be used to compute probabilities

$$Pr\left\{a < X \leq b, \quad c < Y \leq d\right\} = \int_{a}^{b} \int_{a}^{d} f\left(x, y\right) dxdy$$

1.3.16 Independence

The random variables X and Y are independent if

$$Pr\{X \le a, Y \le b\} = Pr\{X \le a\} \cdot Pr\{Y \le b\}, \quad \forall a, b \in \mathbb{R}$$

In terms of CDFs: $F_{X,Y}(a,b) = F_X(a) \cdot F_Y(b) \quad \forall a,b \in \mathbb{R}$ Thus we have

- $p_{X,Y}\left(x,y\right)=p_{X}\left(x\right)\cdot p_{Y}\left(Y\right)$ for discrete random variables
- $f_{X,Y}\left(x,y\right)=f_{X}\left(x\right)\cdot f_{Y}\left(Y\right)$ for continuous random variables.

2 Lecture 3

2.1 Randoms sum

Building on the hunter example from last week. we can more generally consider random sums

$$X = \begin{cases} 0, & N = 0 \\ \zeta_1 + \zeta_2 + \dots + \zeta_N, & N > 0 \end{cases}$$

where

• N is a discrete random variable with values $0, 1, \ldots$

• ζ_1, ζ_2, \ldots are independent random variables

• N is independent of $\zeta_1, \zeta_2 + \ldots + \zeta_N$

• Notation $X = \sum_{i=1}^{N} \zeta_i = \zeta_1 + \zeta_2 + \ldots + \zeta_N$

Example.

1. Insurance company

N: Number of claims.

 ζ_1, ζ_2, \dots : Sizes of the claims

Total liability:

$$X = \zeta_1 + \zeta_2 + \ldots + \zeta_N$$

2. Be careful!

$$\underbrace{E\left[\sum_{i=1}^{N} E[\zeta_{i}]\right]}_{E\left[\sum_{i=1}^{N} \zeta_{i}\right]} = E\left[E\left[\sum_{i=1}^{N} \zeta_{i} \mid N\right]\right]$$

$$= E\left[\sum_{i=1}^{N} E\left[\zeta_{i} \mid N\right]\right]$$

2.2 Self Study

Section 2.2, 2.3, 2.4

2.3 Stochastic process in descrete time

Definition 2.1. A discrete-time stochastic process is a family of random variables $[X_t : t \in T]$ where T is discrete.

- We use $T = \{0, 1, 2, ...\}$ and write X_n instead of X_t
- we call X_n the **state** at time n = 0, 1, 2, 3, ...
- We call the set of all possible states the **state space**

Table 1: Table for example

Day	n=0	n = 1	n=2	
Random Variable	X_0	X_1	X_2	
Realization 1	$x_0 = 0$	$x_1 = 1$	$x_2 = 1$	
Realization 2	$x_0 = 1$	$x_1 = 1$	$x_2 = 1$	

Example.

$$X_n = \begin{cases} 1, & \text{if it rains on day } n \\ 0, & \text{no rain on day } n \end{cases}$$

State space = $\{0, 1\}$

We have a problem. Need

$$Pr\{X_n = x_n \mid X_{n-1} = x_n, X_{n-2} = x_{n-2}, \dots, X_0 = x_0\}.$$

for all n = 0, 1, 2, ...

2.4 Markov chain

Definition 2.2 (Discrete time Markov Chain). A **Discrete time markov** chain is a discrete time stochastic process $\{X_n : n = 0, 1, \ldots\}$ that statisfied the **markov** property such that

$$Pr \{X_{n-1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0\}$$

= $Pr \{X_{n+1} = j \mid X_n = i\}$

for $n = 0, 1, 2, 3, \ldots$ and for all states i and j

Definition 2.3 (One-step transition probabilities). We can define it as

• For a discrete Markov chain $\{X_n : n = 0, 1, 2, ...\}$ we call $P_{ij}^{n,n+1} = Pr\{X_{n+1} = j, X_n = i\}$ the one step trainsition probabilities.

• We will assume stationary transition probabilities , i.e that

$$P_{ij}^{n,n+1} = P_{ij}$$

for $n = 0, 1, 2, \dots$ and all states i and j.

Some of the properties

1. "You will always go somewhere"

$$\sum_{j} P_{ij} = 1 \quad \forall i$$

2. The markov chain can be described as follows.

$$\begin{split} & Pr\left\{X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right\} \\ & = Pr\left\{X_{0}=i_{0}\right\} Pr\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \ldots \\ & Pr\left\{X_{n}=x_{n} \mid X_{n-1}=i_{n-1} \ldots X_{0}=i_{0}\right\} \\ & \vdots \quad \text{Markov step} \\ & = Pr\left\{X_{0}=i_{0}\right\} \cdot Pr\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \ldots \\ & Pr\left\{X_{n}=x_{n} \mid X_{n-1}=i_{n-1}\right\} \\ & = Pr\left\{X_{0}=i_{0}\right\} P_{i_{0},i_{1}} \cdot P_{i_{1},i_{2}} \ldots P_{i_{n-1},i_{n}} \end{split}$$

Which is a major simplification.

Definition 2.4 (Transition Probability Matrix). For a discrete time markov-chain with state space $\{0, 1, ..., N\}$ we call

$$\mathbf{P} = \begin{bmatrix} P_{00} & \dots & P_{0N} \\ P_{10} & \dots & & \\ \vdots & & \ddots \\ P_{N0} & \dots & P_{NN} \end{bmatrix}$$

Is the transition matrix. For statespace $\{0,1,2,\ldots\}$ we envision an infinitely sized matrix.

Example.

- Markoc chain : $\{X_n : n = 0, 1, 2, \ldots\}$
- State space = $\{0, 1\}$
- Transition Matrix

$$\mathbf{P} = \begin{bmatrix} 0.9 & 0.1 \\ 0.6 & 0.4 \end{bmatrix}$$

We can compute

$$Pr \{X_3 = 1 \mid X_2 = 0\} = p_{01}$$

= 0.1
 $Pr \{X_{10} = 0 \mid X_9 = 1\} = P_{10}$
= 0.6

Definition 2.5 (Transition Diagram). Let $\{X_n : n = 0, 1, ...\}$ be a discrete time Markov chain. A **state transition diagram** visualizes the transition probabilities as a weighted directed graph where the nodes are the states and the edges are the possible transitions marked with the transistion probabilities.

Example. State space $= \{0, 1, 2\}$ and

$$P = \begin{bmatrix} 0.95 & 0.05 & 9\\ 0 & 0.9 & 0.1\\ 0.01 & 0 & 0.99 \end{bmatrix}$$

Transisition diagram

Nice figure of the diagram

2.5 Doing n transitions.

Theorem 2.1. For a Markoc chain $\{X_n : n = 0, 1, ...\}$ and any $m \ge 0$ we have

$$Pr\{X_{m-n} = j \mid X_m = i\} = P_{ij}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)}, \quad n > 0$$

where we define

$$P_{ij}^{(0)} = \begin{cases} 1, & i = j \\ 0, i \neq j \end{cases}$$

Proof. Set m = 0 then is

$$\begin{split} P_{ij}^{(n+1)} &= \Pr\left\{X_{n+1} = j \mid X_0 = i\right\} \\ &= \sum_k \Pr\left\{X_{n+1} = j, X_1 = k \mid X_0 = i\right\} \\ &= \sum_k \Pr\left\{X_{n+1} = j \mid X_1 = k, X_0 = i\right\} \cdot \Pr\left\{X_1 = k \mid X_0 = i\right\} \\ &= \sum_k P_{kj}^{(h)} \cdot P_{ik} = \sum_k P_{ik} P_{kj}^{(h)} \end{split}$$

Example. $\{X_n : n = 0, 1, 2, ...\}$ is a markoc chain and

$$P = \begin{bmatrix} 0.1 & 0.9 \\ 0.6 & 0.4 \end{bmatrix}$$

Find $P_{01}^{(4)}$. Solution.

$$P^2 = \begin{bmatrix} 0.55 & 0.45 \\ 0.30 & 0.70 \end{bmatrix}$$

So by doing matrix multiplication and we end up with

$$P^4 = P^2 \cdot P^2 = \begin{bmatrix} 0.4375 & 0.5625 \\ 0.3750 & 0.6250 \end{bmatrix}$$

Which therefore ends up with the answer

$$P_{01}^{(4)} = 0.5625$$

3 Lecture 4

3.1 Introduction to first step analysis

Input

- i_0 : starting state
- \bullet P: transition probability matrix
- T: number of time steps

Algorithm

- 1. Set $x_0 = i_0$
- 2. for $n = 1 \dots T$
- 3. Simulate x_n from $X_n \mid X_{n-1} = x_{n-1}$
- 4. end

output : One realization x_0, x_1, \dots, x_T

Example.

$$P = \begin{pmatrix} 0.95 & 0.05 & 0\\ 0 & 0.90 & 0.10\\ 0.01 & 0 & 0.99 \end{pmatrix}$$

Let $x_0 = 0$

1.
$$x_0 = 0$$

2.

$$Pr \{X_1 = 0 | X_0 = 0\} = P_{00} = 0.95$$

$$Pr \{X_1 | X_0\} = P_{01} = 0.05$$

$$Pr \{X_1 | X_0 = 0\} = P_{02} = 0$$

.

Assume we get $x_1 = 1$

3. States

•

$$0: P_{10} = 0$$

$$1: P_{11} = 0.90$$

$$2: P_{12} = 0.10$$

:

General notes on simulation

- $Pr\{A\} \approx \frac{\text{times A occure}}{\text{Simulations}}$
- $E[X] \approx \frac{1}{N} \sum_{i=1}^{B} x_i$

Example. We have N=100 divided into two containers labelled A and b. At each time n, one ball is selected at random and moved to the container. Let Y_n denote the number of balls in container A at time n, and define $X_n=Y_n-50$. Find the transition probabilities and simulate and plot one realization of

$${X_n : n = 0, 1, \dots, 500}$$

Answer

Figure 1: balls

- Only move One ball
- Can move only from i to j = i 1 or ji + 1

$$P_{ij} = \begin{cases} \frac{50-i}{100} & , & j=i+1\\ \frac{50+i}{100} & , j=i-1\\ 0 & , \text{otherwise.} \end{cases}$$

Motivation

Definition 3.1. For a markov chain, a state i sich that $P_{ij} = 0 \forall j \neq i$ is

called absorbing.

Example. Let $\{X_n\}$ be a Markov chain woth transition probability matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$

where $\alpha, \beta, \gamma > 0$ and $\beta = 1 - \alpha - \gamma$. Assume $x_0 = 1$

- 1. What is the expected time until absortion?
- 2. What is the probability to be absorbed in state 0?

Realization.

$$\underbrace{1,1,1,1,1,2}^{\text{4 steps to absorption}},2,2\dots$$

Mathematically

Let $T = \min \{n \ge 0 : X_n = 0 \text{ or } X_n = 2\}$. Then is

$$Q1: \quad E[T \mid X_0 = 1] \\ Q2: \quad Pr\{X_T = 0 \mid X_0 = 1\}$$

The idea of first step analysis is to define

- $T^{(n)} = \min \{ n \ge :: X_{m \times n} = 0 \text{ or } X_{m+b} = 2 \}$
- $T = T^{(0)}$
- $\bullet \ v_i^{(m)} = E\left[T^{(m)} \mid X_m = i\right]$
- $\bullet \ v_i = v_i^{(0)}$

Table 2: Let m be timesteps $m \mid 0 \quad 2 \quad 3 \quad 4 \quad 5$

First step analysis for Q1

$$v_{i} = \sum_{k=0}^{2} Pr \{X_{1} = k \mid X_{0} = i\} (1 + v_{k})$$

$$= \sum_{k=0}^{2} P_{ik} (1 + v_{k}) = \sum_{k=0}^{2} P_{ik} v_{k} + 1 \text{ which is true for } i = 0, 1, 2$$

Which is reduced to linear algebra. Solving it by

$$v_0 = v_2 = 0$$

$$\Rightarrow v_1 = \alpha v_0 + \beta v_1 + \gamma v_2 + 1$$

$$\Rightarrow v_1 = \frac{1}{1 - \beta} \quad [Q1]$$

$$P_{ij} \implies i = \text{row}, \quad j = \text{column}$$

First step analyis and let

$$u_i = Pr \{X_T = 0 \mid X_0 = i\}$$

$$\downarrow$$

$$u_i = \sum_{k=0}^{2} P_{ik} u_k, \quad i = 0, 1, 2$$

- Easy: $u_0 = 1, u_2 = 0$
- Harder: $u_1 = \alpha u_0 + \beta u_1 + \gamma u_2$ such that

$$u_1 = \alpha \frac{1}{1-\beta} = \frac{\alpha}{\alpha-\beta}$$
 [Q2]

Example. let $[X_n]$ be a markov chain with transition matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.4 & 0.3 & 0.2 & 0.1 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The starting state is $x_0 = 1$. Calculate the probability to be absorbed in the state D.

- 1. Define $u_i = Pr$ {absorbed in state $0 \mid X_0 = i$ } for i = 0, 1, 2, 3
- 2. Get the easy ones out of the way. In this case $u_0 = 1$ and $u_3 = 0$
- 3.

$$u_1 = P_{10}u_0 + P_{11}u_1 + P_{12}u_2 + P_{13}u_3$$

= 0.4 + 0.3 u_1 + 0.2 u_2
$$u_2 = P_{20}u_0 + P_{21}u_1 + P_{22}u_2 + P_{23}u_3$$

= 0.1 + 0.3 u_1 + 0.3 u_2

4. Solve for u_1 and u_2

4 References