Numerical Linear Algebra Workshop on Eigenvalues

Zhouyang Lou

Industrial Engineering, Purdue University

April 4, 2016

Overview

Applications

PageRank problem
Graph Clustering Problem

Numerical Methods for Solving Eigenvalues

Eigenvalue Problem Statement Normalized Power Method Simultaneous Iteration Arnoldi Method Lanczos Method QR Algorithm

K-smallest Eigenvalue

Conditioning of Eigenvalues

${\sf PageRank}$

PageRank

- Web search: e.g. Google
- PageRank is an objective measure of the citation importance of a web page. [Brin & Page 1998]
- What does importance mean?

Definition

A page is important if other important pages link to it.

Advantage

The importance of a web page does not depend on the contents, but what pages link to it.

Procedure

- 1. Represent the PageRank problem as graph
- 2. Model the graph as stochastic matrix
- 3. Modify stochastic matrix to Google matrix
- 4. Compute the *PageRank*, which is the dominant eigenvector of *Google matrix*

Make a Graph

Example

Web Graph: Web pages = nodes Links = edges

PageRank

► The PageRank model:

Definition

Given a Webpage data set, the PageRank of the *i*th webpage is the *i*th element π_i of π , which satisfies

$$\pi^T P = \pi^T$$

where P is a matrix of weights of webpages that indicate their importance

- ► The stochastic matrix: *P*, is non-negative, defined by the hyperlink structure
- ► The PageRank vector: π , is probability vector satisfied $\pi^T \mathbf{e} = 1$ where \mathbf{e} is a vector of all-ones.

The Stochastic Matrix

Definition

Let $d_i \geq 1$ be the number of pages pointing to it. The Google matrix $P = \{p_{ij}\}$ is defined as

$$p_{ij} = egin{cases} 0, & ext{if there is no outlink from page i to page j;} \ 0, & ext{if $i=j$;} \ 1/d_i, & ext{Otherwise} \end{cases}$$

PageRank

Example

4 web pages with directed links shown below

The Stochastic Matrix

According to the construction of our model, the matrix could be

$$\begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

Possible Difficulty 1

The existence of an all-zero row in the matrix, which could have very important pages but without any outlinks.

Example

$$\begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Remdy: Example

$$\begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

Possible Difficulty 2

Periodicity: a cyclic path in the Webgraph. (e.g. one points only to his wife's webpage and his wife points only to his.)

Example: Periodicity

Remedy: The Google Matrix

P can be replaced by

$$P_{\alpha} = \alpha P + (1 - \alpha) \mathbf{e} \mathbf{v}^T$$

where $\alpha \in [0,1)$ and **v** a personalized probability vector satisfied $\mathbf{v} > 0$ and $\mathbf{e}\mathbf{v}^T = 1$

Zhouyang Lou 14

Graph Clustering Problem

Example: Community Detection

Graph Clustering Problem

Example: Spectral Clustering

Clustering Idea

Objective:

- Data points assigned to the same cluster should be highly similar.
- Data points assigned to the different cluster should be highly dissimilar.
- Apply the objectives to our graph representation:
 - 1. Maximize the weight of within-group connections.
 - 2. Minimize the weight of between-group connections.

Graph Partition

Min-cut: Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum. And can be expressed as

$$\min Cut(A,B) = \sum_{i \in A, j \in B} W_{ij}$$

NP-hard!

Procedure

For undirected graph

- 1. Construct pairwise adjacency matrix.
- 2. Construct degree matrix
- 3. Compute Laplacian
- 4. Compute the first k eigen-vectors of the Laplacian
- 5. Construct a new matrix U with the eigenvectors as columns
- 6. Cluster the points corresponding to the ith row of U with K-means

Construct Adjacency Matrix

E.g. Gaussian Kernel similarity function:

$$W_{ij} = e^{\frac{\left|\left|x_i - x_j\right|\right|^2}{2\sigma^2}}$$

Example

Construct Adjacency Matrix

E.g. Social Networks:

For a graph with n vertices, the entries of the $n \times n$ adjacency matrix are defined by

$$A := egin{cases} A_{ij} = 1 & ext{if there is an edge connecting two vertices;} \ A_{ij} = 0 & ext{if there is no edge;} \ A_{ii} = 0 & ext{} \end{cases}$$

Example

Construct Adjacency Matrix

Example:

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆
X ₁	0	0.8	0.6	0	0.1	0
X ₂	0.8	0	0.8	0	0	0
X ₃	0.6	8.0	0	0.2	0	0
X ₄	0	0	0.2	0	8.0	0.7
X ₅	0.1	0	0	0.8	0	0.8
X ₆	0	0	0	0.7	0.8	0

Construct Laplacian Matrix

Degree Matrix D:

A degree matrix D is an $n \times n$ diagonal matrix that contains information about the degree of each vertex v_i , which is the number of edges incident to the vertex.

Laplacian Matrix L:

$$L = D - A$$

Some Properties:

- L is symmetric and positive semi-definite
- ► The smallest eigenvalue is 0, the corresponding eigenvector is the constant 1.

Construct Laplacian Matrix

Example:

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆
X ₁	1.5	-0.8	-0.6	0	-0.1	0
X ₂	-0.8	1.6	-0.8	0	0	0
X ₃	-0.6	-0.8	1.6	-0.2	0	0
X ₄	0	0	-0.2	1.7	-0.8	-0.7
X ₅	-0.1	0	0	-0.8	1.7	-0.8
X ₆	0	0	0	-0.7	-0.8	1.5

Compute Eigenvector

Example:

```
lambda =
```

```
        0.0000
        0
        0
        0
        0
        0

        0
        0.1882
        0
        0
        0
        0

        0
        0
        2.0840
        0
        0
        0

        0
        0
        0
        2.2853
        0
        0

        0
        0
        0
        0
        2.4690
        0

        0
        0
        0
        0
        0
        2.5735
```

x =

```
0.4082 -0.4084

0.4082 -0.4418

0.4082 -0.3713

0.4082 0.3713

0.4082 0.4050

0.4082 0.4050
```

Eigenvalue Problem

Given $n \times n$ matrix A, find Find scalar λ and nonzero x such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

where λ is eigenvalue, and x is corresponding eigenvector.

Normalized Power Method

Good for approximating the dominant eigenvalue.

Procedure:

- 1. Pick an initial guess x_0
- 2. Repeat

$$\mathbf{y}_k = A\mathbf{x}_{k-1}$$
 $\mathbf{x}_k = \frac{\mathbf{y}_k}{||\mathbf{y}_k||_{\infty}}$

until the chosen stopping criteria.

- Normalization applied since the geometric growth of components at each iteration may eventually cause overflow/underflow.
- 4. Note: The maximum eigenvalue could be obtained by the Rayleigh Quotient(find $r(\mathbf{x}) = \alpha$ such that $||A\mathbf{x} \alpha \mathbf{x}||_2$)

$$r(\mathbf{x}_k) = \frac{\mathbf{x}_k^T A \mathbf{x}_k}{\mathbf{x}_k^T \mathbf{x}_k}$$

Power Method Convergence

- 1. Why it works?
- 2. Express the starting vector \mathbf{x}_0 as linear combination

$$\mathbf{x}_0 = \sum_{i=1}^n \alpha_i \mathbf{v}_i$$

where \mathbf{v}_i 's are eigenvectors of A, and $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$

3. Then

$$x_k = Ax_{k-1} = A^2x_{k-2} = \dots = A^kx_0 =$$

$$\sum_{i=1}^n \lambda_i^k \alpha_i \mathbf{v}_i = \lambda_1^k (\alpha_1 \mathbf{v}_1 + \sum_{i=2}^n (\frac{\lambda_i}{\lambda_1})^k \alpha_i \mathbf{v}_i)$$

4. Since $|\frac{\lambda_i}{\lambda_1}|<1$ for i>1, and higher powers go to zero, leaving $\lim_{k\to\infty}x_k=\lambda_1^k\alpha_1\mathbf{v}_1$

Limitations of Power Method

- 1. There may be more than one eigenvalue dominants others.(e.g. $|\lambda_1|=|\lambda_2|$)
- 2. For real matrix and starting vector, iteration can never converge to complex vector

Good conditions:

When matrix is symmetric.

Simultaneous Iteration

- ▶ What if we want different eigenvalues of a matrix?
- We use Simultaneous iteration, also called Subspace Method, which repeatedly multiplies matrix times matrix of initial starting vectors.
- ▶ Starting from $n \times p$ matrix \mathbf{X}_0 of rank p, iteration scheme is

$$\mathbf{X}_k = A\mathbf{X}_{k-1}$$

▶ $span(\mathbf{X}_k)$ converges to invariant subspace determined by p largest eigenvalues of A, provided $|\lambda_p| > |\lambda_{p+1}|$

Simultaneous Iteration

- But Each column of X_k converges to dominant eigenvector, so columns of X_k become increasingly ill-conditioned basis for span(X_k)
- Remedy is to obtain an orthonormal set of eigenvector estimates during each iteration, forcing the eigenvector approximations to be orthogonal at all times.
 Orthogonalization is the basis of Arnoldi and Lanczos method.
- ► This is realized by using *QR factorization*, or *modified Gram-Schmidt process*.

▶ Given $A \in \mathbb{R}^{n \times n}$ and $q_0 \in \mathbb{R}^n$, compute a sequence of orthonormal basis

$$Q_k = [q_0, q_1, \dots, q_{k-1}]$$

or Krylov subspace

$$K_k = span\{q_0, Aq_0, \dots, A^{k-1}q_0\}$$

so that

$$AQ_k = Q_{k+1}H_{k+1,k}, Q_k^TAQ_k = H_{k,k}$$

where $H_{k+1,k} \in \mathcal{R}^{(k+1)\times k}$ is upper Hessenberg

Recall: A subspace should satisfy following three conditions: contains zero vector, addition and scaling.

Let λ and **x** be the eigenvalue and eigenvector of A,

$$Q_n^T A Q_n(Q_n^T \mathbf{x}) = \lambda(Q_n^T \mathbf{x})$$

Let $H_{k,k} = Q_k^T A Q_k$ also upper Hessenberg. The eigenvalue of $H_{k,k}$ called Ritz values of A, are approximate eigenvalues of A, and the eigenvectors of $H_{k,k}$ are corresponding approximate eigenvectors of A.

- ► Given an arbitrary starting vector \mathbf{q} , q, Aq, ..., A^kq usually ill-conditioned
- ▶ therefore: replace these vectors by orthogonal vectors q_1, \ldots, q_{k+1} that span the same subspace
- Gram-Schmidt process with slight modification
- ▶ theory: orthogonalize $A^k q$ against q_1, \ldots, q_k
- ▶ practice: orthogonalize Aq_k against q_1, \ldots, q_k
- ▶ produces exactly the same sequence of vectors as the Gram-Schmidt process applied to q, Aq, \ldots, A_q^k

Normalization

$$q_1 = \frac{q}{||q||_2}$$

On subsequent steps $k = 1, 2, \ldots$ take

$$\tilde{q}_{k+1} = A_{q_k} - \sum_{j=1}^k q_j h_{jk}$$

where h_{jk} is the Gram-Schmidt coefficient $h_{jk} = \langle A_{q_k}, q_j \rangle$.

Normalization

$$\tilde{q}_{k+1} = \frac{\tilde{q}_{k+1}}{h_{k+1,k}}$$

where $h_{k+1,k} = ||\tilde{q}_{k+1}||_2$

Limitation and Modification

Arnoldi iteration fairly expensive in work and storage because each new vector q_k must be orthogonalized against all previous columns of Q_k , and all must be stored for that purpose.

Algorithm

1:
$$q_1 = \frac{q}{||q||_2}$$

2: **for** $k = 1$ to $m - 1$ **do**
3: $q_{k+1} = Aq_k$
4: **for** $j = 1$ to k **do**
5: $h_{jk} = q_j q_{k+1}$
 $q_{k+1} = q_{k+1} - q_j h_{jk}$
6: **end for**
7: %reorthogonalize
 $h_{k+1,k} = ||q_{k+1}||_2$
if $h_{k+1,k} = 0$ **then**
| stop
end
8: $q_{k+1} = \frac{q_{k+1}}{h_{k+1,k}}$

$$h_{k+1,k}$$
 Compute eigenvalues and eigenvectors by using QR decomposition

Lanczos Method

- ▶ Lanczos method is actually a special case of Arnoldi method, and in this case, $T_{k,k} = Q_k^T A Q_k$, where A is symmetric.
- ▶ The process can be written in the form

$$AQ_k = Q_k T_k + q_{k+1} \beta_k e_k^T$$

, where T is

$$T_k = \begin{bmatrix} \alpha_1 & \beta_1 & & & \\ \beta_1 & \alpha_2 & \ddots & & \\ & \ddots & \ddots & \beta_{k-1} \\ & & \beta_{k-1} & \alpha_k \end{bmatrix}$$

Algorithm

1:
$$q_1 = \frac{q}{||q||_2}$$

2: **for** $k = 1$ to $m - 1$ **do**
3: $q_{k+1} = Aq_k$
 $\alpha_k = q_k q_{k+1}$
 $q_{k+1} = q_{k+1} - \alpha_k q_k$
if $k > 1$ **then**
| $q_{k+1} = q_{k+1} - q_{k-1} \beta_{k-1}$
end
4: $\beta_k = ||q_{k+1}||_2$
if $\beta_k = 0$ **then**
| stop
end

5:
$$q_{k+1} = \frac{q_{k+1}}{\beta_k}$$

Compute eigenvalues and eigenvectors by using QR decomposition

6: end for Eigenvalue Problem

QR Algorithm

- 1. The QR decomposition (also called the QR factorization) of a matrix is a decomposition of the matrix into an orthogonal matrix and a triangular matrix.
- Given

$$A = \begin{bmatrix} a_1 | & a_2 | & \dots | & a_n \end{bmatrix}$$

, then

$$\begin{array}{lll} \mathbf{u}_1 & = & \mathbf{a}_1, & \mathbf{e}_1 = \frac{\mathbf{u}_1}{||\mathbf{u}_1||}, \\ \\ \mathbf{u}_2 & = & \mathbf{a}_2 - (\mathbf{a}_2 \cdot \mathbf{e}_1)\mathbf{e}_1, & \mathbf{e}_2 = \frac{\mathbf{u}_2}{||\mathbf{u}_2||}. \\ \\ \mathbf{u}_{k+1} & = & \mathbf{a}_{k+1} - (\mathbf{a}_{k+1} \cdot \mathbf{e}_1)\mathbf{e}_1 - \dots - (\mathbf{a}_{k+1} \cdot \mathbf{e}_k)\mathbf{e}_k, & \mathbf{e}_{k+1} = \frac{\mathbf{u}_{k+1}}{||\mathbf{u}_{k+1}||}. \end{array}$$

$$A = \begin{bmatrix} \mathbf{a}_1 \mid \mathbf{a}_2 \mid \cdots \mid \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 \mid \mathbf{e}_2 \mid \cdots \mid \mathbf{e}_n \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \cdot \mathbf{e}_1 & \mathbf{a}_2 \cdot \mathbf{e}_1 & \cdots & \mathbf{a}_n \cdot \mathbf{e}_1 \\ 0 & \mathbf{a}_2 \cdot \mathbf{e}_2 & \cdots & \mathbf{a}_n \cdot \mathbf{e}_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{a}_n \cdot \mathbf{e}_n \end{bmatrix} = QR.$$

Condion of use

Method	Applies to		Produces	
Power iteration	General		Eigenpair with	
			largest value	
Arnoldi iteration	General		Hessenberg	
Lanczos iteration	Hermitian(symmetric)		Tridiagonal	
QR Decompostion	Hessenberg	g(tridiagonal)	all eigenpairs	
Method		Convergence	rate	
Power it	eration	linear		
QR Dec	omposition	Cubic		

K-smallest Eigenvalue

Converge faster after removing more k smallest eigenvalues.

By Zhengyi

Conditioning of Eigenvalues

- Condition of eigenvalue problem is sensitivity of eigenvalues and eigenvectors to changes in matrix
- ► Conditioning of eigenvalue problem is not same as conditioning of solution to linear system for same matrix
- ▶ Different eigenvalues and eigenvectors are not necessarily equally sensitive to perturbations in matrix

Condition number of a given eigenvalue

$$\kappa(\lambda, A) = \sup_{\delta A} \frac{|\delta \lambda|}{||\delta A||} = \frac{1}{\cos \theta_{xy}}$$

Useful Tips from Condition Number

- Matlab code: condeig()
- ▶ Unitarily diagonalizable matrices $\mathbf{y} = \mathbf{x}$, and $[\kappa(\lambda, A) = 1$, are perfectly conditioned.
- Non-diagonalizable matrices' eigenvalues are very badly conditioned

Thank you!