WHAT IS CLAIMED IS:

1	1. An inventory label generating method comprising:
2	generating a plurality of candidate labels; and
3	selecting a plurality of acceptably distinguishable labels from among the
4	candidate labels by determining spectra emitted by the candidate labels when the
5	candidate labels are energized, and by comparing the spectra of the candidate labels.
1	2. The method of claim 1, wherein the labels comprise semiconductor
2	nanocrystals.
1	3. The method of claim 1, wherein the candidate labels are generated
2	by combining a plurality of markers, each marker emitting a marker signal at an
3	associated signal wavelength in response to excitation energy.
3	associated signal wavelength in response to excitation energy.
1	4. The method of claim 1, further comprising directing an excitation
2	energy toward the markers and measuring the wavelength/intensity spectra emitted by the
3	labels.
1	5. The method of claim 1, wherein the wavelength/intensity spectra o
2	the candidate labels are determined by modeling a combination of a plurality of marker
3	signals.
1	6. The method of claim 5, further comprising calculating at least one
2	of the signals by modeling emissions from a manufacturable marker.
1	7. The method of claim 6, further comprising adjusting the calculated
2	signals from the manufacturable marker in response to measured marker signal variations
1	8. The method of claim 5, further comprising measuring at least one
2	of the signals by energizing a marker so that the marker emits the signal.
1	9. The method of claim 1, further comprising comparing at least some
2	of the candidate labels with a library of distinguishable labels to determine if the
3	candidate labels are acceptable, and adding acceptable candidate labels to the library.
J	Candidate labels are acceptable, and adding acceptable candidate labels to the library.
1	10. A method for identifying a plurality of identifiable elements, the
2	method comprising:

3	energizing a plurality of labels so that a first marker of each label
4	generates a first signal with a first wavelength peak, at least some of the labels comprising
5	multiple-signal labels, each multiple-signal label having a second marker generating a
6	second signal with a second wavelength peak;
7	measuring the first wavelength peaks;
8	for each multiple-signal label, measuring the second wavelength peak at at
9	least a predetermined minimum wavelength separation from the associated first peak; and
10	identifying the labels in response to the measured peaks.
1	11. The method of claim 10, wherein each predetermined minimum
2	wavelength separation is at least as large as a full width half maximum (FWHM) of at
3	least one of the associated first peak and the associated second peak.