

MRTV

CSE TEST – OCTOBER 2010

YEAR 12 - CHEMISTRY

Written test 2

SOLUTIONS BOOK

SECTION A - Multiple choice questions (20 marks)

1	В	5	В	9	В	13	D	17	C
2	С	6	Α	10	D	14	В	18	Α
3	С	7	D	11	Α	15	C	19	D
4	D	8	В	12	Α	16	C	20	С

Question 1 (5 marks)

a. $\Delta H = +60 \text{ kJ mol}^{-1}$

1 mark

b. Greater

1 mark

c. Reactants because energy absorbed in formation of products

1 mark

d. Lower the EA

1 mark

e. No effect

1 mark

Question 2 (6 marks)

a. Increase as the ethanoic acid is diluted and this is more significant than increased ionisation.

1 mark

b. $K_a = [H_3O^{\dagger}][CH_3COO^{\dagger}]$ [CH₃COOH]

1 mark

c.
$$c_1V_1 = c_2V_2$$
 $c_2 = 0.100 \times 0.0100 / 0.020 = 0.0500$
 $1.7 \times 10^{-5} = [H_3O^{+}]^2$ $[H_3O^{+}] = (1.7 \times 10^{-5} \times 0.100)^{1/2} = 1.30 \times 10^{-3}$ pH = 2.88 [0.10]
 $1.7 \times 10^{-5} = [H_3O^{+}]^2$ $[H_3O^{+}] = (1.7 \times 10^{-5} \times 0.0500)^{1/2} = 9.22 \times 10^{-4}$ pH = 3.04 [0.05]
Change of pH = 3.04 - 2.88 = 0.16

2 marks

d. Ka remains constant at constant temperature.

1 mark

e. Phenolphthalein (phenol red acceptable)

1 mark

Question 3 (8 marks)

a.

i. After 5 minutes the temperature of the system was decreased.

3 marks

b.

Change to the system	Net shift	Effect on the number of moles of O ₂	Effect on the concentration of Cl ₂
Addition of nitrogen gas at constant volume	none	none	none
Increase in pressure	right	decrease	increase
The temperature is raised to 150°C.	left	increase	decrease
Steam is removed	right	decrease	increase
Addition of a catalyst	none	none	none

5 marks

Question 4 (4 marks)

a.
$$CF = VIt/\Delta T = 5.50 \times 2.50 \times 60.0 / 0.53 = 1600 \text{ J} ^{\circ}\text{C}^{-1}$$

1 mark

b.
$$n_{\text{sucrose}} = 1.50/342 = 4.386 \times 10^{-3} \text{ mol}$$

 $\Delta H = E / n = CF \times \Delta T / n = 1600 \times (31.30 - 17.30) \times 10^{-3} / 4.386 \times 10^{-3} = -5100 \text{ kJ mol}^{-1}$

2 marks

c. Combustion may be incomplete, experimental measurement errors and heat loss.

1 mark

Question 5 (9 marks)

a. $H_2O(s) \rightarrow H_2O(l)$

 $\Delta H = +6.02 \text{ kJ mol}^{-1}$

1 mark

b. $\Delta H = 6.02/18 = 0.334 \text{ kJ g}^{-1} = 334 \text{ J g}^{-1}$

1 mark

c. $E = 334 \times 50.0 / 1000 = 16.7 \text{ kJ}$

1 mark

d. $E = 4.18 \times 50.0 \times 25.0 = 5230 \text{ J}$ Total energy = 5.23 kJ + 16.7 = 21.9 kJ

2 marks

e. $n(H_2O) = E / \Delta H$ n = 5.50 / 6.02 = 0.914 mol $m = n \times M_r = 0.914 \times 18.0 = 16.4 \text{ g}$ mass remaining = 93.5 - 16.5 = 77.1 g

2 marks

f. $\Delta H_{\text{freezing}} = -\Delta H_{\text{fusion}} = -6.02 \text{ kJ mol}^{-1}$

1 mark

g. Heat used to break the intermolecular H-bonds rather than to increase the temperature.

1 mark

Question 6 (8 marks)

a. +16/3

1 mark

b. $U_3O_8(s) + 4H^+(aq) + 4e^- \rightarrow 3UO_2(s) + 2H_2O(l)$

1 mark

c. $H_2(g) \rightarrow 2H^+(aq) + 2e^-$

1 mark

d. $U_3O_8(s) + 2H_2(g) \rightarrow 3UO_2(s) + 2H_2O(l)$

1 mark

e. i. Two of disposal of nuclear waste, terrorist attack, cost, safe operation

1 mark

ii. Two of no greenhouse gas emissions, large energy reserves, no fossil fuel combustion gas emissions, conserves fossil fuels

1 mark

iii. The sun has fusion nuclear reactions whereas uranium undergoes nuclear fission

1 mark

iv. Two of biomass, hydroelectricity, wind generation, geothermal, solar, ethanol

1 mark

Question 7 (5 marks)

a. $CH_4(g) + 2H_2O(I) \rightarrow CO_2(g) + 8H^+(aq) + 8e^-$

1 mark

b. Anode

1 mark

c. To prevent poisoning the electrodes containing the catalyst.

1 mark

 ${f d}.$ The ${\it BlueGen}$ units having a single energy conversion and are more efficient so less ${\it CO}_2$ is produced.

1 mark

e. They use stacks of solid electrolyte plates which are excellent conductors and permeable to gases.

1 mark

Question 8 (9 marks)

a.

3 marks

b. i.
$$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

1 mark

ii.
$$2AI(s) + 3H_2O(I) \rightarrow AI_2O_3(s) + 3H_2(g)$$

1 mark

c. i. Volume = surface x thickness =
$$1130 \times 90.0 \times 10^{-4} = 10.2 \text{ cm}^3$$

1 mark

$$m = d \times V = 3.95 \times 10.17 = 40.2 g$$

1 mark

ii.
$$n(Al_2O_3) = 40.2/102.0$$
 $n_{e.} = 40.2 \times 6 / 102.0$
 $t = Q/I = (40.2 \times 6 \times 96500 / 102.0) / 2.5 = 91278 \text{ s} = 25.4 \text{ hrs}$

2 marks

Question 9 (6 marks)

a.

b. i.
$$A(s) \rightarrow A^{2+}(aq) + 2e^{-}$$

ii.
$$B^+(aq) + e^- \rightarrow B(s)$$

2 marks

c. Overall chemical equation A(s) +
$$2B^+(aq) \rightarrow 2B(s) + A^{2+(aq)}$$

 $n_{Ag} = 5.8/107.9$
 $n_A = 5.8 / 107.9 \times 2 = 3.2 / M_A$
 $M_A = 119 = Tin$

2 marks

Question 10 (5 marks)

a. i. Correct name of industrial process and equation

1 mark

ii. Conditions relate to rate and equilibrium concepts such as catalyst, pressure, temperature

1 mark

iii. Use appropriate for that chemical.

1 mark

b. Removal of a product, excess of a reactant

2 marks