Activité 2 : Chute d'une balle

Objectifs de la séance :

- > Comprendre la notion de vecteur vitesse.
- > Tracer des vecteurs vitesses.

Compétences	Items	D	\mathbf{C}	В	A
APP	Représenter la situation par un schéma.				
COM	Travailler en groupe, échanger entre élèves.				

▶ Problématique : Quelle est l'influence d'une translation sur la description du mouvement d'un objet ?

Document 1 – Chronophotographie de la chute d'une balle

Une chronophotographie est une superposition de plusieurs images prises les unes après les autres avec un intervalle de temps régulier. Pour réaliser cette chronophotographie, on a pris une image toutes les 40 ms.

Réaliser une chronophotographie permet de repérer des positions par lesquelles passent la balle, ce qui est impossible à l'oeil nu. Les ronds indiquent les positions de la balle, les carrés indiquent les positions du centre de masse de l'homme sur la trottinette.

Document 2 - Vecteur

Vecteur : objet mathématique représenté par un segment fléché \longrightarrow et noté avec une lettre surmontée d'une flèche \overrightarrow{v} .

Un vecteur contient quatre information : une **direction**, un **sens**, une **norme**, et un **point d'application** (ou origine).

Un vecteur est **constant** si sa direction, son sens et sa norme ne varie pas le long du mouvement.

Document 3 – Vecteur déplacement et vecteur vitesse d'un point

Soient P_1 la position d'un point à l'instant t_1 et P_3 la position de ce même point à l'instant t_3 . Le déplacement du point matériel entre les dates t_1 et t_3 est défini par le vecteur déplacement P_1P_3 . Graphiquement, c'est la flèche qui relie P_1 à P_3 .

Le vecteur $\overrightarrow{P_1P_3}$ est caractérisé par

- une direction : celle de la droite P_1P_3 .
- Un sens : de P_1 vers P_2 .
- Une norme : égale à la distance P_1P_3 en mètre (m).
- Une origine : le point P_1

Le **vecteur vitesse** $\overrightarrow{v_2}$ d'un système au point P_2 entre les instants t_1 et t_3 a pour expression

$$\overrightarrow{v_2} = \frac{\overrightarrow{P_1 P_3}}{t_3 - t_1} \tag{1}$$

Le vecteur $\overrightarrow{v_2}$ est caractérisé par :

- \bullet une direction : parallèle au segment P_1P_3 et tangent à la trajectoire.
- Un sens : le sens du mouvement.
- Une norme : $v_2 = \|\overrightarrow{v_2}\| = \left\| \frac{\overrightarrow{P_1 P_3}}{t_3 t_1} \right\| = \frac{P_1 P_3}{t_3 t_1}.$
- Une origine : P_2 .

 P_1P_3 est la distance entre les points P_1 et P_3 en mètre (m). $t_3 - t_1$ est la durée séparant les instants t_1 et t_3 en seconde (s). v_2 est la norme de la vitesse en mètre par seconde (m/s).

1 – Mouvement dans le référentiel de
${f 1}$ — Quel est le référentiel utilisé pour décrire le mouvement de la balle et de l'homme sur la trottinette ici ?
A – Mouvement de l'homme sur la trottinette
2 – Quelle est la trajectoire de l'homme sur la trottinette?
${f 3}$ — Comment évolue la vitesse de l'homme sur la trottinette? Indiquer la nature de son mouvement.
B – Mouvement de la balle
4 — Repérer sur la chronophotographie du document 1, le point de départ de la balle. On notera P_1 cette position. Numéroter les positions successives de la balle, que l'on notera $P_2, P_3, \ldots P_8$
5 - Tracer sur la photo du document 1 le vecteur $\overrightarrow{P_2P_3}$ et le vecteur $\overrightarrow{P_5P_7}$.
${f 6}$ — En utilisant l'échelle sur la photo, déterminer les normes en mètre de ces deux vecteurs. Indiquer si ces normes sont identiques.
7 – Schématiser le vecteur vitesse $\overrightarrow{v_2}$ entre les points P_1 et P_3 et le vecteur vitesse $\overrightarrow{v_6}$ entre les points P_5 et P_7 , en vous aidant du document 3.
8 — Calculer la norme en mètre par seconde de ces deux vecteurs, en vous aidant du document 3.

2 - Mouvement dans le référentiel de la trottinette

9 - Ouvrir la vidéo de la de chute balle dans le logiciel Tracker.
10 - Repérer dans la vidéo le moment où la balle commence à tomber.
11 - Sur la vidéo, réaliser le pointage de la balle.
12 - Tracer la norme de la vitesse, la vitesse selon l'axe x et la vitesse selon l'axe y. Que remarquez vous pour la vitesse selon l'axe x?
13 - Que pouvez-vous en déduire sur la nature du mouvement de la balle dans le référentiel de la trottinette? Représenter avec un schéma sa trajectoire.

 ${f 14}$ — Conclure sur la position de la balle au moment où elle touche le sol par rapport à la trottinette.