

计算机图像处理

COMPUTER IMAGE PROCESSING

信息理论基础与熵编码

离散信源的熵

设一个离散信源X:
$$(x_1, x_2, \dots, x_N)$$

其概率分布:
$$\{p_1, p_2, \dots, p_N\}$$
 満足 $\sum_{i=1}^{N} p_i = 1$

$$\sum_{i=1}^{N} p_i = 1$$

图像X

像素值
$$(x_1, x_2, \cdots, x_N)$$

直方图
$$\{p_1, p_2, \cdots, p_N\}$$

离散信源的熵

信源X,某个信源符号xk,如果它出现的概率是pk

$$I(x_k) = \log \frac{1}{2p_k} = -\log_2 p_k$$

$$H(X) = -\sum_{i=1}^{N} p_i \log_2 p_i$$

等长编码:对于一个离散信源中每一个符号,若采用相同长度的不同码字代表相应符号,就叫做等长编码,例如中国4位电报码。

变长编码:若对信源中的不同符号,用不同长度的码字表示就叫做不等长或变长编码。与定长编码相比,变长编码更复杂,除唯一可译码(也称为单义可译)的要求,还存在即时解码问题。

$$X = \{a, b, c, d\}$$

 $p(a) = p(b) = p(c) = p(d) = 1/4$

各信源符号自信息量:

$$I(a) = I(b) = I(c) = I(d) = \log_2 4 = 2$$

信源熵

$$H(X) = 1/4 * 2 + 1/4 * 2 + 1/4 * 2 + 1/4 * 2 = 2$$

符号	a	b	С	d	平均码长/ _{avg}
码字	00	01	10	11	2
符号	а	b	С	d	平均码长/ _{avg}
码字	0	10	110	111	2.25

$$X = \{a,b,c,d\}$$

 $p(a) = 1/2, p(b) = 1/4, p(c) = 1/8, p(d) = 1/8$

各信源符号自信息量:

$$I(a) = \log_2 2 = 1, I(b) = \log_2 4 = 2, I(c) = I(d) = \log_2 8 = 3$$

$$H(X) = 1/2 * 1 + 1/4 * 2 + 1/8 * 3 + 1/8 * 3 = 1.75$$

符号	a	b	С	d	平均码长l _{uvg}	
码字	00	01	10	11	2	

符号	а	b	С	d	平均码长/wg
码字	0	10	110	111	1.75

7

$$X = \{a,b,c,d\}$$

 $p(a) = 0.45, p(b) = 0.25,$
 $p(c) = 0.18, p(d) = 0.12$

各信源符号自信息量:

$$I(a) = 1.152, I(b) = 2, I(c) = 2.4739, I(d) = 3.0589$$

信源熵

$$H(X) = 0.45 * 1.152 + 0.25 * 2 + 0.18 * 2.4739 + 0.12 * 3.0589 = 1.8308$$

符号	a	b	С	d	平均码长I _{wg}
码字	00	01	10	11	2

符号	а	b	С	d	平均码长I _{mg}
码字	0	10	110	111	1.85

8

离散信源的熵

几点提示:

- \rightarrow 信源的平均码长 l_{avg} >=H(X);也就是说熵是无失真编码的下界。
- \rightarrow 如果所有 $I(x_k)$ 都是整数,且 $I(x_k)=I(x_k)$,可以使平均码长等于熵。
- ▶ 对非等概率分布的信源,采用不等长编码其平均码长小于等长编码的平均码长。
- >如信源中各符号的概率相等,信源熵值达到最大,即最大离散熵定理。

$$H(X) = -\sum_{i=1}^{N} p_i \log_2 p_i$$

香农信息保持编码定理

香农信息论已证明,信源熵是进行无失真编码的理论极限。低于此极限的无失真编码方法是不存在的,这是熵编码的理论基础。

熵编码:一类对无语义数据流利用数据的统计信息去冗余的无 损编码

变长编码定理

若一个离散信源具有熵,并有个码元符号集,则总可以找到一种无失真信源编码,使其平均码长满足:

$$H(X) \le L < H(X) + 1$$

变长最佳编码定理

在变长编码中,对出现概率大的信息符号赋予短码字,而对于出现概率小的信息符号赋予长码字。如果码字长度严格按照所对应符号出现概率大小逆序排列,则编码结果平均码字长度一定小于任何其他排列形式.

如何编码?

• 两个符号 (x_1, x_2) $\{p_1, p_2\} = \{0.7, 0.3\}$

符号	x1	x2
码字	0	1

• 三个符号 (x_1, x_2, x_3) $\{p_1, p_2, p_3\} = \{0.3, 0.5, 0.2\}$

排序、合并、分码

符号	x1	x2	х3
码字	10	0	11

• 四个符号?

• 方法一:

- (1)将信源中符号 X_I 按其出现的概率,由大到小顺序排列。
- (2)将信源分成两部分,使两个部分的概率和尽可能接近。重复第(2)步直至不可再分,即每一个叶子只对应一个符号。
- (3) 从左到右次序为这两部分标记0,1。
- (4) 将各个部分标记的0, 1串接起来就得到各信源符号 所对应的码字

Shannon-Fano编码

概率	灰度 级		x1	0	x1		
0.4	x1						
0.175	x2	0	x2	1	x2		
0.15	х3	1	х3	0	х3		
0.15	x4		x4		x4	0	7
0.125	x5		x5	1	x5		4

灰度 级	码字	码长
x1	00	2
x2	01	2
x3	10	2
x4	110	3
x5	111	3

Shannon-Fano编码

概率	灰度 级		x1	0	x1			
0.4	x1	0	x2		x2			
0.175	x2	0	X-	1	X-			
0.15	x3	1	х3	0	х3			
0.15	x4		x4		x4	0	x4	
0.125	x5		x5	1				
	5				_			5

灰度 级	码字	码长
x1	00	2
x2	01	2
x3	10	2
x4	110	3
.,r	111	2

$$H(X) = -\sum_{i=1}^{3} p(x_i) \log p(x_i) = 2.1649 \qquad L = \sum_{i=1}^{3} p(x_i) l_i = 2.275$$

• 方法二

- (1)将信源符号X/按其出现的概率,由大到小顺序排列。
- (2) 将两个最小的概率的信源符号组合相加,并重复这一步骤,始终将较大的概率分支放在上部,直到只剩下一个信源符号且概率达到1.0为止;
- (3) 对每对组合的上边一个指定为1, 下边一个指定为0(或上边为0, 下边为1);
- (4) 画出由每个信源符号到概率1.0处的路径,记下沿路径的1和0;
- (5) 对于每个信源符号都写出1、0序列,则从右到左就得到 非等长的码字。

概率	灰度 级
0.4	x1
0.175	x2
0.15	x3
0.15	x4
0.125	x5

概率	灰度 级		概率	灰度 级
0.4	x1		0.4	x1
0.175	x2		0.175	x2
0.15	x3		0.15	x3
0.15	x4		0.275	x4+ x5
0.125	x5			

概率	灰度 级	概率	灰度 级
0.4	x1	0.4	x1
0.175	x2	0.275	x4+ x5
0.15	x3	0.175	x2
0.15	x4	0.15	x3
0.125	x5		

概率	灰度 级	概率	灰度 级		概率	灰度 级
0.4	x1	0.4	x1		0.4	x1
0.175	x2	0.275	x4+ x5		0.275	x4+ x5
0.15	x3	0.175	x2	-	0.325	x2+ x3
0.15	x4	0.15	х3			
0.125	x5					

概率	灰度 级	概率	灰度 级	概率	灰度 级
0.4	x1	0.4	x1	0.4	x1
0.175	x2	0.275	x4+ x5	0.325	x2+ x3
0.15	x3	0.175	x2	0.275	x4+ x5
0.15	x4	0.15	x3		
0.125	x5				

概率	灰度 级	概率	灰度 级	概率	灰度 级		概率	灰度 级
0.4	x1	0.4	x1	0.4	x1		0.4	x1
0.175	x2	0.275	x4+ x5	0.325	x2+ x3	\Rightarrow	0.6	x2+x3x 4+x5
0.15	x3	0.175	x2	0.275	x4+ x5			
0.15	x4	0.15	х3					
0.125	x5							

概率	灰度 级	概率	灰度 级	概率	灰度 级		概率	灰度 级
0.4	x1	0.4	x1	0.4	x1	Part of the second seco	0.6	x2+x3x 4+x5
0.175	x2	0.275	x4+ x5	0.325	x2+ x3		0.4	x1
0.15	х3	0.175	x2	0.275	x4+ x5			
0.15	х4	0.15	x3					
0.125	x5							

概率	灰度 级
0.6	x2+x3x 4+x5
0.4	x1

				<u> </u>	ni amalak				
概率	灰度 级	概率	灰度 级	概率	灰度 级	概率	灰度 级	概率	灰度 级
0.4	x1	0.4	x1	0.4	x1	0.6	x2+x3x 4+x5	1	x2+x3x 4+x5 x1
0.175	x2	0.275	x4+ x5	0.325	x2+ x3	0.4	x1		,,_
0.15	x3	0.175	x2	0.275	x4+ x5				
0.15	x4	0.15	x3						
0.125	x5								

		to a		Prome No.				Property No.	1
概率	灰度 级	概率	灰度 级	概率	灰度 级	概率	灰度 级	概率	灰度 级
0.4	x1	0.4	x1	0.4	x1	0.6	x2+x3x 4+x5	1	x2+x3x 4+x5 x1
0.175	x2	0.275	x4+ x5	0.325	x2+ x3	0.4	x1		
0.15	x3	0.175	x2	0.275	x4+ x5				
0.15	x4	0.15	х3						
0.125	x5								

概率	灰度 级
0.4	x1
0.175	x2
0.15	х3
0.15	L ^{x4}
0.125	x5

概率	灰度 级
0.4	x1
0.275	x4+ x5
0.175	x2
0.15	х3

概率	灰度 级
0.4	x1
0.325	x2+ x3
0.275	x4+ x5

概率	灰度 级
0.6	x2+x3x 4+x5
0.4	x1

概率	灰度 级
0.4	x1
0.175	x2
0.15	x3
0.15	L ^{x4}
0.125	x5

概率	灰度 级
0.4	x1
0.275	x4+ x5
0.175	L ^{x2}
0.15	x3

概率	灰度 级
0.4	x1
0.325	x2+ x3
0.275	x4+ x5

概率	灰度 级
0.6	x2+x3x 4+x5
0.4	x1

概率	灰度 级
1	x2+x3x 4+x5 x1

概率	灰度 级
0.4	x1
0.175	x2
0.15	x3
0.15	L ^{x4}
0.125	x5

<u> </u>	
概率	灰度 级
0.4	x1
0.275	x4+ x5
0.175	x2 L
0.15	x3

概率	灰度级
0.4	x1
0.325	1 x2+ x3
0.275	0x4+ 0x5

概率	灰度 级
0.6	x2+x3x 4+x5
0.4	x1

概率	灰度 级
1	x2+x3x 4+x5 x1

概率	灰度 级
0.4	x1
0.175	x2
0.15	x3
0.15	L ^{x4}
0.125	x5

概率	灰度 级
0.4	x1
0.275	x4+ x5
0.175	1 <mark>1</mark> .x2
0.15	0) x3

概率	灰度 级
0.4	x1
0.325	Lx2+ x3
0.275	x4+ x5

灰度 级
x2+x3x 4+x5
0) ^{x1}

概率	灰度 级
1	x2+x3x 4+x5 x1

概率	灰度 级	
0.4	x1	
0.175	x2	
0.15	x3	
0.15	L ^{x4}	
0.125	x5	

概率	灰度 级
0.4	x1
0.275	x4+ x5
0.175	x2 L
0.15	x3)

概率	灰度 级
0.4	x1
0.325	Lx2+ x3
0.275	x4+ x5

概率	灰度 级
0.6	x2+x3x 4+x5
0.4))

灰度 级	灰度 级
x1	0
x2	111
x3	110
x4	101
x5	100

信源符号	出现概率	码字	码长
X1	0.4	0	1
X2	0. 175	111	3
Х3	0. 15	110	3
X4	0. 15	101	3
X5	0. 125	100	3

$$H(X) = -\sum_{i=1}^{5} p(x_i) \log p(x_i) = 2.1649$$

$$L = \sum_{i=1}^{5} p(si)li = 2.2$$

特点:

(1) Huffman编码不唯一

两个概率分配码字"0"和"1"是任意选择的(大概率为"0",小概率为"1",或者反之)

在排序过程中两个概率相等, 谁前谁后随机

- (2) 变长码, 平均码字短, 效率高, 但实时硬件实现很复杂 (特别是译码), 抗误码能力差
- (3) 信源概率是2的负幂时,效率达100%
- (4) Huffman编码只能用近似的整数位来表示单个符号,而不是理想的小数

这是Huffman编码无法达到最理想的压缩效果的原因

编码框架

编码框架

解码: 利用码表将编码数据还原成图像 图像

程序?