問題 2.1 (Lv.2)

次の関数の値の極限を求めよ.

(1)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + x - 2}$$

(2)
$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x-1}$$

(1)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + x - 2}$$
 (2) $\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{x - 1}$ (3) $\lim_{x \to \infty} \{ \log(x + 1) - \log x \}$ (4) $\lim_{x \to 0} \frac{e^{3x} - 1}{e^{2x} - 1}$ (5) $\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}$ (6) $\lim_{x \to 0} \frac{|x + 1| - |x - 1|}{x}$

$$(4) \lim_{x \to 0} \frac{e^{3x} - 1}{e^{2x} - 1}$$

(5)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}$$

(6)
$$\lim_{x\to 0} \frac{|x+1|-|x-1|}{x}$$

問題 2.2 (Lv.2)

次の関数の値の極限を求めよ.

- (1) $\lim_{x \to 0} \frac{\sin 3x}{2x}$ (2) $\lim_{x \to 0} x \sin \frac{1}{x}$ (3) $\lim_{x \to 0} \frac{1 \cos x}{x^2}$
- $(4) \lim_{x \to \infty} \frac{\sin 3x}{2x} \qquad (5) \lim_{x \to \infty} x \sin \frac{1}{x} \qquad (6) \lim_{x \to 0} \frac{\tan 3x}{\sin 2x}$

問題 2.3 (Lv.3)

次の関数の値の極限を求めよ.

$$(1) \lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{x}$$

(2)
$$\lim_{x\to 0} \left(1+\frac{x}{2}\right)^{\frac{1}{x}}$$

(1)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$$
 (2) $\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}}$ (3) $\lim_{x \to \infty} \left(1 + \frac{1}{x} + \frac{1}{4x^2} \right)^x$

(4)
$$\lim_{x \to 0} \frac{\log(1+x)}{\sin x}$$

(5)
$$\lim_{x \to 0} \frac{e^{3x} - 1}{2x}$$

(4)
$$\lim_{x \to 0} \frac{\log(1+x)}{\sin x}$$
 (5) $\lim_{x \to 0} \frac{e^{3x} - 1}{2x}$ (6) $\lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}}$

問題 2.4 (Lv.3)

次の関数 f(x) が原点 x=0 で連続かどうか調べよ.

(1)
$$f(x) = \begin{cases} \frac{\sin^2 x}{2x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
 (2) $f(x) = \begin{cases} e^{-\frac{1}{x}} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$

(2)
$$f(x) = \begin{cases} e^{-\frac{1}{x}} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

問題 2.5 (Lv.4)

- (1) 三角関数 $\cos \theta$ が連続関数であることを示せ.
- (2) 中間値の定理を用いて, $\cos \theta = \theta$ をみたす θ が存在することを示せ.

問題 2.6 (Lv.4)

 $\lim_{x \to c} f(x)$ および $\lim_{x \to c} g(x)$ は収束するとする.

- (1) $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$ が成り立つことを ε δ 論法で示せ.
- (2) f(x), g(x) が連続関数のとき、和 f(x) + g(x) も連続関数になることを示せ、

問題 2.1 (解答)

(1)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{(x - 1)(x + 2)} = \lim_{x \to 1} \frac{x + 3}{x + 2} = \frac{1 + 3}{1 + 2} = \frac{4}{3}$$

(3)
$$\lim_{x \to \infty} \{ \log(x+1) - \log x \} = \lim_{x \to \infty} \log \frac{x+1}{x} = \lim_{x \to \infty} \log \left(1 + \frac{1}{x} \right) = \log 1 = 0$$

$$\lim_{x \to \infty} \frac{e^{3x} - 1}{e^{2x} - 1} = \lim_{x \to 0} \frac{(e^x - 1)(e^{2x} + e^x + 1)}{(e^x - 1)(e^x + 1)} = \lim_{x \to 0} \frac{e^{2x} + e^x + 1}{e^x + 1} = \frac{1 + 1 + 1}{1 + 1} = \frac{3}{2}$$

(5)
$$\frac{\cos^2 x}{1 - \sin x} = \frac{1 - \sin^2 x}{1 - \sin x} = \frac{(1 - \sin x)(1 + \sin x)}{1 - \sin x} = 1 + \sin x$$

$$\sharp \, \Im \, \mathsf{T}, \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x} = \lim_{x \to \frac{\pi}{2}} (1 + \sin x) = 1 + 1 = 2$$

(6)
$$-1 < x < 1$$
 のとき $(x$ が 0 に近いとき), $x + 1 > 0$ かつ $x - 1 < 0$ より,
$$\lim_{x \to 0} \frac{|x + 1| - |x - 1|}{x} = \lim_{x \to 0} \frac{(x + 1) - \{-(x - 1)\}}{x} = \lim_{x \to 0} \frac{2x}{x} = \lim_{x \to 0} 2 = 2$$

問題 2.2 (解答)

 $\sin X \ (X \to 0)$ の項 (0 に収束の項) は、公式 $\lim_{X \to 0} \frac{\sin X}{X} = 1 \ (\S 2 - 3)$ の形に持ち込む. $\sin X \ (X \to \infty)$ の項 (振動する項) は、 $|\sin X| \le 1$ から、はさみうちの原理で処理する.

$$(1) \lim_{x \to 0} \frac{\sin 3x}{2x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3}{2} = 1 \cdot \frac{3}{2} = \frac{3}{2} \left(3x \to 0 \succeq \lim_{X \to 0} \frac{\sin X}{X} = 1 \right)$$

(2)
$$\left|\sin\frac{1}{x}\right| \le 1$$
 より、 $0 \le \left|x\sin\frac{1}{x}\right| \le |x| \left(-|x| \le x\sin\frac{1}{x} \le |x|\right)$ $\lim_{x\to 0} |x| = 0$ だから、はさみうちの原理より、 $\lim_{x\to 0} x\sin\frac{1}{x} = 0$

(4)
$$|\sin 3x| \le 1$$
 より, $0 \le \left|\frac{\sin 3x}{2x}\right| \le \frac{1}{|2x|} \left(-\frac{1}{|2x|} \le \frac{\sin 3x}{2x} \le \frac{1}{|2x|}\right)$ $\lim_{x \to \infty} \frac{1}{|2x|} = 0$ だから、はさみうちの原理より、 $\lim_{x \to \infty} \frac{\sin 3x}{2x} = 0$

(5)
$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1 \left(\frac{1}{x} \to 0 \ge \lim_{X \to 0} \frac{\sin X}{X} = 1 \right)$$

問題 2.3 (解答)

公式
$$\lim_{X \to \infty} \left(1 + \frac{1}{X}\right)^X = e$$
 または $\lim_{X \to 0} \left(1 + X\right)^{\frac{1}{X}} = e$ (§2 - 3) の形に持ち込む.

$$(1) \lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x = \lim_{x \to \infty} \left\{ \left(1 + \frac{1}{\frac{x}{2}} \right)^{\frac{x}{2}} \right\}^2 = e^2 \left(\frac{x}{2} \to \infty \succeq \lim_{X \to \infty} \left(1 + \frac{1}{X} \right)^X = e \right)$$

$$(2) \lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left\{ \left(1 + \frac{x}{2} \right)^{\frac{1}{\frac{x}{2}}} \right\}^{\frac{1}{2}} = e^{\frac{1}{2}} \left(\frac{x}{2} \to 0 \succeq \lim_{X \to 0} \left(1 + X \right)^{\frac{1}{X}} = e \right)$$

$$(3) \lim_{x \to \infty} \left(1 + \frac{1}{x} + \frac{1}{4x^2} \right)^x = \lim_{x \to \infty} \left\{ \left(1 + \frac{1}{2x} \right)^2 \right\}^x = \lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^{2x} = e \left(2x \to \infty \right)$$

$$(4) \lim_{x \to 0} \frac{\log(1+x)}{\sin x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \frac{1}{x} \log(1+x) = \lim_{x \to 0} \frac{1}{\frac{\sin x}{\sin x}} \log(1+x)^{\frac{1}{x}} = \frac{1}{1} \log e = 1$$

(5)
$$y = e^{3x} - 1$$
 とおくと, $e^{3x} = 1 + y$ より, $3x = \log(1+y)$ ∴ $x = \frac{1}{3}\log(1+y)$ $\frac{e^{3x} - 1}{2x} = \frac{y}{2 \cdot \frac{1}{3}\log(1+y)} = \frac{3}{2 \cdot \frac{1}{y}\log(1+y)} = \frac{3}{2\log(1+y)^{\frac{1}{y}}}$ $x \to 0 \Leftrightarrow y \to 0$ だから, $\lim_{x \to 0} \frac{e^{3x} - 1}{2x} = \lim_{y \to 0} \frac{3}{2\log(1+y)^{\frac{1}{y}}} = \frac{3}{2\log e} = \frac{3}{2}$

(6)
$$\log (1+\sin x)^{\frac{1}{x}} = \log \left\{ (1+\sin x)^{\frac{1}{\sin x}} \right\}^{\frac{\sin x}{x}} = \frac{\sin x}{x} \log (1+\sin x)^{\frac{1}{\sin x}}$$

$$\sin x \xrightarrow{x\to 0} 0 \, \text{LU}, \, \lim_{x\to 0} (1+\sin x)^{\frac{1}{\sin x}} = e, \, \text{Et.}, \, \lim_{x\to 0} \frac{\sin x}{x} = 1 \, \text{Eh.}, \, \lim_{x\to 0} \log (1+\sin x)^{\frac{1}{x}} = \lim_{x\to 0} \frac{\sin x}{x} \log (1+\sin x)^{\frac{1}{\sin x}} = 1 \cdot \log e = 1$$

$$\text{Loc.}, \, e^{\log A} = A \, \text{LU}, \, \lim_{x\to 0} (1+\sin x)^{\frac{1}{x}} = \lim_{x\to 0} e^{\log (1+\sin x)^{\frac{1}{x}}} = e^1 = e$$

[指数・対数関数の連続性
$$\left(\lim_{x \to a} e^x = e^a, \lim_{x \to a} \log x = \log a\right)$$
 を用いている. 上記を踏まえれば, $\lim_{x \to 0} \left(1 + \sin x\right)^{\frac{1}{x}} = \lim_{x \to 0} \left\{\left(1 + \sin x\right)^{\frac{1}{\sin x}}\right\}^{\frac{\sin x}{x}} = e^1 = e$ も可

問題 2.4 (解答)

- (1) 原点 x=0 での f(x) の値は 0 $\left(f(0)=0\right), \, x\neq 0$ の範囲では $f(x)=\frac{\sin^2 x}{2x}$ $\lim_{x\to 0}f(x)=\lim_{x\to 0}\frac{\sin^2 x}{2x}=\lim_{x\to 0}\frac{x}{2}\left(\frac{\sin x}{x}\right)^2=0\cdot 1^2=0$ $\lim_{x\to 0}f(x)=f(0)$ が成り立つので、f(x) は原点 x=0 で連続になる.
- (2) 原点 x=0 での f(x) の値は 0 $\left(f(0)=0\right), \, x\neq 0$ の範囲では $f(x)=e^{-\frac{1}{x}}$ $\lim_{x\to+0}\left(-\frac{1}{x}\right)=-\infty$ より, $\lim_{x\to+0}f(x)=\lim_{x\to+0}e^{-\frac{1}{x}}=0$ $\lim_{x\to-0}\left(-\frac{1}{x}\right)=+\infty$ より, $\lim_{x\to-0}f(x)=\lim_{x\to-0}e^{-\frac{1}{x}}=+\infty$

右側極限 $\lim_{x\to +0}f(x)$ と左側極限 $\lim_{x\to -0}f(x)$ が異なるので、極限 $\lim_{x\to 0}f(x)$ は発散 $\lim_{x\to 0}f(x)=f(0)$ が成り立たないので、f(x) は原点 x=0 で連続でない。

問題 2.5 (解答)

- (1) 任意の点 α において $\lim_{\theta \to \alpha} \cos \theta = \cos \alpha$ を示せば, $\cos \theta$ は連続関数といえる. 原点中心の単位円で点 (1,0) から左回りに角度 θ,α に対応する点を P,A とする. θ は α に近いとき, 弧度法の定義から, $|\theta-\alpha|$ は 2 点 P,A 間の円弧の長さ, $|\cos \theta \cos \alpha|$ は 2 点 P,A の x 座標の差より, $0 \le |\cos \theta \cos \alpha| \le |\theta-\alpha|$ $\lim_{\theta \to \alpha} |\theta-\alpha| = 0$ だから, はさみうちの原理より, $\lim_{\theta \to \alpha} \cos \theta = \cos \alpha$
- (2) $f(\theta) = \cos \theta \theta$ とおくと、連続関数 $\cos \theta$ と θ の差より、 $f(\theta)$ は連続関数になる。 閉区間 $\left[0 \ \frac{\pi}{2}\right]$ において、f(0) = 1 > 0、 $f\left(\frac{\pi}{2}\right) = -\frac{\pi}{2} < 0$ だから、中間値の定理 (Th.2.6) より、 $f(\theta) = 0$ つまり $\cos \theta = \theta$ をみたす θ が存在する.

問題 2.6 (解答)

- (1) 極限値 $\lim_{x \to c} f(x)$, $\lim_{x \to c} g(x)$ が存在するので,その値を A, B とする.任意に選んだ (小さな) 正の数 ε に対し,(十分小さな) 正の数 δ が存在して,点 x (\neq c) が点 c から(十分近い)距離 δ 内($0 \neq |x-c| < \delta$)にあるならば, f(x) + g(x) は A + B から誤差 ε 内($\left|\left(f(x) + g(x)\right) (A + B)\right| < \varepsilon$)を示す.そこで $\varepsilon > 0$ とし, $\lim_{x \to c} f(x) = A$ と $\lim_{x \to c} g(x) = B$ に ε - δ 論法の式を適用すると,正の数 $\frac{\varepsilon}{2}$ に対して,f(x) では正の数 δ_1 が,g(x) では正の数 δ_2 が存在して, $0 \neq |x-c| < \delta_1$ なら $|f(x) A| < \frac{\varepsilon}{2}$ 、 $0 \neq |x-c| < \delta_2$ なら $|g(x) B| < \frac{\varepsilon}{2}$ (ε - δ 論法の ε の部分は任意なので,最初に選んだ ε の半分の値に対して適用) $\delta = \min(\delta_1, \delta_2)$ とおくと, $0 \neq |x-c| < \delta$ ($\leq \delta_1, \delta_2$) のとき, $|f(x) A| < \frac{\varepsilon}{2}$, $|g(x) B| < \frac{\varepsilon}{2}$ より, $|f(x) A| + |g(x) B| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ 三角不等式より, $|(f(x) A) + (g(x) B)| \leq |f(x) A| + |g(x) B| < \varepsilon$ ゆえに, $|(f(x) + g(x)) (A + B)| = |(f(x) A) + (g(x) B)| < \varepsilon$ よって, ε - δ 論法より, $\lim_{x \to c} (f(x) + g(x)) = A + B = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
- (2) (定義域内の) 任意の点 c において $\lim_{x \to c} \left(f(x) + g(x) \right) = f(c) + g(c)$ を示せばよい. f(x), g(x) は連続関数だから, $\lim_{x \to c} f(x) = f(c)$, $\lim_{x \to c} g(x) = g(c)$ が成り立つ. 極限値が存在するので,極限操作と四則演算を交換することができる. $\lim_{x \to c} \left(f(x) + g(x) \right) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c)$ となり,連続関数といえる.