HW 8 - MATH403

Danesh Sivakumar

April 4th, 2022

Problem 1 (Chapter 24, Exercise 10) Let H be a proper subgroup of a finite group G. Show that G is not the union of all conjugates of H. Proof. Problem 2 (Chapter 24, Exercise 16) Find all the Sylow 3-subgroups of S_4 . Proof. Problem 3 (Chapter 24, Exercise 22) Show that every group of order 56 has a proper nontrivial normal subgroup. Proof. Problem 4 (Chapter 24, Exercise 26) How many Sylow 5-subgroups of S_5 are there? Exhibit two. Proof. Problem 5 (Chapter 24, Exercise 40)

Suppose that G is a group of order 60 and G has a normal subgroup N of order 2. Show that

- a. G has normal subgroups of orders 6, 10, and 30.
- b. G has subgroups of orders 12 and 20.
- c. G has a cyclic subgroup of order 30.

Proof.

Determine the groups of order 45.
Proof.
Problem 7 (Chapter 12, Exercise 26)
Determine $U(\mathbb{R}[x])$.
Proof.
Problem 8 (Chapter 12, Exercise 40)
Let $M_2(\mathbb{Z})$ be the ring of all 2×2 matrices over the integers and let $R = (1 + 1)^{-1}$
$\left\{ \begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix} \mid a,b \in \mathbb{Z} \right\}$. Prove or disprove that R is a subring of $M_2(\mathbb{Z})$.
Proof. \Box
Problem 9 (Chapter 12, Exercise 54)
Show that $4x^2 + 6x + 3$ is a unit in $\mathbb{Z}_8[x]$.
Proof.
Problem 10
Calculate the number of different conjugacy classes in S_5 and write down a representative element for each conjugacy class.
Proof.
Problem 11
Prove that the 3-cycles in A_5 do form a single conjugacy class but that the 5-cycles do not.
Proof.

Problem 6 (Chapter 24, Exercise 60)