CLAIM AMENDMENTS

Claim 1 (previously presented)

A set of toners for developing static latent image to form a color image by combining chromatic toners comprising a yellow toner, a magenta toner and a cyan toner, and a black toner,

wherein each of the toners is a toner produced by polymerization of a polymerizable monomer in an aqueous medium,

the difference of re-dispersion electro-conductivity of each of the chromatic toners and the black toner is within the range of from 0.8 to 12 $\mu s/cm$,

the number of free colorant particles on the black toner surface is less than 9 per 500 toner particles, and

a light absorbance at 500 nm of a black toner dispersion is not more than 0.8.

Claim 2 (previously presented)

The set of toners of claim 1, wherein $\rho y > \rho b k$, $\rho m > \rho b k$ and $\rho c > \rho b k$, when the ρy is re-dispersion electroconductivity of the yellow toner, the ρm is a re-dispersion electro-conductivity of the magenta toner, the ρc is a re-

dispersion electro-conductivity of the cyan toner and the ρbk is re-dispersion electro-conductivity of the black toner.

Claim 3 (previously presented)

The set of toners of claim 1, wherein each of the toners is a toner produced by a process comprising:

polymerizing a polymerizable monomer in an aqueous $\ddot{}$ medium,

simultaneously salting out, aggregating and fusing, and

washing.

Claim 4 (previously presented)

The set of toners of claim 1, wherein each of the chromatic toners has an average diameter from 3 to 8 μm and a ratio of toner particles having a shape coefficient of from 1.2 to 1.6 of not less than 65%.

Claim 5 (cancelled)

Claim 6 (previously presented)

The set of toners of claim 1, wherein the sum M of a relative frequency ml of toner particles included in the highest frequency class and a relative frequency of m^2 toner particles included in the next frequency class is not less than 70% in a histogram showing the particle size distribution based on the number of the particles in which natural logarithm lnD of the particle diameter of each of the toners D μ m is taken on the horizontal axis and the axis is divided every 0.23.

Claims 7-8 (cancelled)