Lec2_Models of Computation

Goal

- What's an algorithm? What is time?
- Random Access Machine
- Pointer Machine
- Python Model
- Document Distance : Problem & Algorithms

What's an algorithm?

- Mathematical abstraction of computer program
- Computational procedure to solve a problem

Model of Computation

•

Random Access Machine	Pointer Machine
Modeled by big array	val 5 prev næt prev hext næt Dynamically allocated objects

Python Model

- 1. List \rightarrow RAM
 - a. $L[i] = I[j] + 5 \rightarrow \Theta(1)$ time
 - b. L.append(x) \rightarrow $\Theta(1)$ time
 - c. $L = L1 + L2 \rightarrow \Theta(1 + L1 + L2)$ time

- d. L1. extend(L2) $\rightarrow \Theta(1+L2)$ time
- e. $len(L) \rightarrow \Theta(1)$ time
- f. L.sort() $\rightarrow \Theta(|L|^* |g|L|)$ time
- 2. Object with O(1) attributes \rightarrow Pointer machine
 - a. $x = x.next \rightarrow \Theta(1)$ time
- 3. dict
 - a. $D[key] = val (key in D) \rightarrow \Theta(1) time$
- 4. heap q
 - a. heappush & heappop $\rightarrow \Theta(\lg n)$ time
- 5. long
 - a. $x+y \rightarrow O(|x|+|y|)$ time
 - b. $x^*y \rightarrow O((|x|+|y|)^{n} g 3)$ time

Document Distance Problem

- applications : find similar documents
- How to approach?
 - word = sequence of alphanumeric chars
 - document = sequence of words
 - o Think of document D as VECTOR

- Distance : d"(D1,D1) = (D1*D2) / (|D1|*|D2|)
- Geometric re-scaling d(D1,D2) = arccos(d"(D1,D2))
- Distance Algorithm
 - Split each document into words
 - Θ(Doc)
 - Count word frequencies document
 - $\Theta(k * \lg(k) * | word|) \rightarrow k : \# words$
 - Compute dot product
 - O(|doc|)

•

Code:

If words equal

Total += count1 * count2

If word1 <= word2

Advance list 1

else

Advance list 2

Repeat until either list done