Deep Joint Image Filtering

Yijun Li¹, Jia-Bin Huang², Narendra Ahuja², Ming-Hsuan Yang¹

¹University of California, Merced

²University of Illinois, Urbana-Champaign

Project webpage: http://bit.ly/deepjointfiltering

Joint image filtering

Limitations of existing methods

- 1. Fail to consider mutual structures.
- 2. Hand-crafted objective functions.
- 3. Inefficiency for optimization-based methods.

Design rationale

- Directly stack the RGB guidance image and target depth image, and feed them through a generic network → poor performance
- Replace the RGB guidance image with its edge map [Dollár et al., 2013] → good performance
- End-to-End: Extract structural features from both the target and guidance image. Then, combine them and reconstruct.

What has the network learned?

- · The learned guidance appears like an edge map.
- CNN_T and CNN_G show strong responses to edges from the target and guidance image respectively.
- CNN_E re-organizes the extracted structural features and suppresses inconsistent details.

Network architecture

Contributions

- 1. A learning-based approach for joint image filters.
- 2. State-of-the-art performance on depth upsampling.
- 3. A generic filter to handle image data in a variety of domains.

Experiments

1. Depth map upsampling

2. Chromaticity map upsampling

3 times faster than the direct solution on the highresolution intensity images

Bicubic

Ours

3. Saliency map upsampling

GF [He et al., 2010]

RGB guidance

4. Inverse halftoning

Our result 5. Cross-modal noise reduction

NIR/RGB

Non-Flash/Flash Our denoised result

RMSE comparisons for depth map upsampling.						
	Middlebury (#30, [0,255])			NYU v2 (#449, cm)		
Method	4x	8x	16x	4x	8x	16x
He et al., 2010	4.01	7.22	11.70	7.32	13.62	22.03
Ferstl et al., 2013	3.39	5.41	12.03	6.98	11.23	28.13
Ham et al., 2015	3.14	5.03	8.83	5.27	12.31	19.24
Ours	2.14	3.77	6.12	3.54	6.20	10.21