Chute verticale d'un solide

Chapitre 8

I. Lois de Newton

Première loi : $\overrightarrow{a_G} = 0 \Leftrightarrow \Sigma \overrightarrow{F_{ext}} = \overrightarrow{0}$

Deuxième loi : $m \overrightarrow{a_G} = \Sigma \overrightarrow{F_{ext}}$

Troisième loi : $\overrightarrow{F_{A/B}} = -\overrightarrow{F_{B/A}}$

II. Vecteur champ de pesanteur \vec{g}

$$\vec{g} = \frac{\vec{P}}{m}$$
 $\vec{g} \begin{cases} \text{Direction} : \updownarrow \\ \text{Sens} : \downarrow \\ \text{Valeur} : g \end{cases}$

$$F_{terre/A} = \frac{mGM_T}{(R_T + h)^2} = mg \quad \Rightarrow \quad g = G\frac{M_T}{(R_T + h)^2}$$

III. Forces exercées par un fluide

Poussée d'Archimède	Force de frottements
$ec{\pi}egin{cases} ext{Direction}:\ ec{\pi} ext{Sens}:\ ec{\gamma} ext{Valeur}: ho_f V g \end{cases}$	$ec{f} egin{cases} ext{Direction:} \updownarrow \ ext{Sens: opposé à $ec{v}$} \ ext{Valeur:} f = kv ext{ ou } f = kv^2 \end{cases}$

IV. Chute verticale avec frottements

$$ma_G = P - \pi - f$$

$$\frac{dv}{dt} = A - \frac{f}{m}$$

$$\boxed{\frac{dv}{dt} = A - \frac{f}{m}} \qquad \boxed{A = g\left(1 - \frac{\rho_f V}{m}\right)} \qquad \boxed{B = \frac{k}{m}}$$

$$B = \frac{k}{m}$$

Si le solide est totalement immergé,

$$\frac{V}{m} = \frac{1}{\rho_s}$$

Frottements de type f = kv	Frottements de type f = kv ²
$\frac{dv}{dt} = A - Bv$	$\frac{dv}{dt} = A - Bv^2$
$v_{lim} = \frac{A}{B}$ $\tau = \frac{1}{B}$	$v_{lim} = \sqrt{\frac{A}{B}}$

V. Chute verticale libre

$$\begin{aligned} \overline{a_Z &= g} \\ \overline{v_Z &= gt + v_0} \\ \overline{z(t) &= \frac{1}{2}gt^2 + v_0t + z_0} \end{aligned}$$