Computability theory

FAMAF - UNC

SLP

1 Computational paradigms

 Pro^{Σ} is a $(\Sigma \cup \Sigma_p)$ -p.r. Since each $\mathcal{P} \in Pro^{\Sigma}$ corresponds to a Σ -recursive function, this entails \mathcal{R} is Σ -p.r. Which means there is an enumeration $\varphi_1, \varphi_2, \ldots$ such that every Σ -recursive function f satisfies that $f = \varphi_i$ for some $i \in \mathbb{N}$.

2 Halting function

Recall that we say that \mathcal{P} halts with input \overrightarrow{s} , \overrightarrow{p} in t steps when:

$$S_{\mathcal{P}}^{t}(1,\overrightarrow{s},\overrightarrow{p}) = \left(n(\mathcal{P})+1,\overrightarrow{x},\overrightarrow{w}\right)$$

for any \overrightarrow{x} , \overrightarrow{w} . Recall too that, if \mathcal{P} halts with input $\omega^n \times \Sigma^{*m}$, we use $\Psi_{\mathcal{P}}^{n,m,\#}$ to denote the value of N1 in the halting state. This lead to our definition of Σ -computability, where we said that f(n,m,#) is Σ -computable if and only if there is a program \mathcal{P} such that

$$f=\Psi_{\varphi}^{n,m,\#}$$

(and analogously for the alphabetic case). The computability of sets was analogously defined, with S being Σ -computable if and only if $\chi_S^{\omega^n \times \Sigma^{*m}}$ is Σ -computable. With regards to Σ -enumerability, we say a set $S \subseteq \omega^n \times \Sigma^{*m}$ is Σ -enumerable if it is empty or if there is a functon $F: \omega \to \omega^n \times \Sigma^{*m}$ such that $I_F = S$ and $F_{(i)}$ is Σ -computable. In other words, if there are programs $\mathcal{P}_1, \ldots, \mathcal{P}_{n+m}$ such that

$$S = \text{Im} \left[\Psi_{\mathcal{P}_1}^{1,0,\#}, \dots, \Psi_{\mathcal{P}_n}^{1,0,\#}, \Psi_{\mathcal{P}_{n+1}}^{1,0,*}, \dots, \Psi_{\mathcal{P}_{n+m}}^{1,0,*} \right]$$

and the domain of each $\Psi_{\mathcal{P}^{n,m,z}}$ is ω .

Given $n, m \in \omega$, we define:

$$\operatorname{Halt}^{n,m} = \lambda t \overrightarrow{x} \overrightarrow{\alpha} \mathcal{P} \left[i^{n,m}(t, \overrightarrow{x}, \overrightarrow{\alpha}, \mathcal{P}) = n(\mathcal{P}) + 1 \right]$$