Total No	No. of Questions : 4] SEAT No. :		
P2	FE/Insem./APR - 2	No. of Pages : 2	
	F.E. (Common)		
107002 : ENGINEERING PHYSICS			
(2019 Pattern) (Semester - II)			
m -			
	: 1 Hour] [N	Max. Marks: 30	
111st1 ucti 1)			
2)			
3)			
<i>4</i>)	Use of logrithmic tables slide rule, Mollier charts, electronic pocket calculator and		
-	steam tables is allowed.		
5)			
6)	6) All questions carry equal marks.		
O(1)	a) Evaloin with next discreme interference in this parallel file	m in raflacted	
Q1) a)	a) Explain with neat diagram interference in thin parallel fill system. calculate the total path difference. Obtain the		
	maximum and minimum.	[6]	
		[0]	
b)	b) Explain with diagram how principle of interference is u	sed to design	
٥,	antireflection coating. Derive the expression for thickness.		
c)	c) Polarizer and Analyzer are adjusted in such a way that,	they transmit	
• •	maximum light. Calculate the angle of analyzer for which Int		
	i) 2/3	' کین '	
	ii) 1/5 of the original Intensity.	[4]	
	26.	2000	
	OR		
02)			
Q2) a)		Define diffraction grating. How it is prepared? Calculate the angular width	
	of central maximum, when it is diffracted from single slit		
	nm. $\lambda = 5500$ A°.	[6]	
b)	b) Define double refraction. Explain Huygen's theory of doub		
		[5]	
c)	· · · · · · · · · · · · · · · · · · ·		
	and bright when it is illuminated by a light of wavelength 600	_	
	Data given $\mu = 1.43$.	[4]	
		<i>P.T.O.</i>	

Describe construction and working of CO, LASER with the help of **Q3**) a) energy level diagram. [6] Define critical angle, acceptance angle and numerical Aperture for optical b) Fibre. Explain different types of mode of fibre optics communication with diagram. [5] Calculate the maximum value of angle of incidence such that light ray c) can travel through the fibre. Data given : $n_1 = 1.6$, $n_2 = 1.5$. OR When light travels denser to rarer medium, calculate the critical angle for **Q4**) a) the medium. Define acceptance angle, acceptance cone and Numerical aperture. [6] b) Explain applications of LASER in industry and medical field. Discuss any one of them in details. [5] What is Hologram. Explain the process of reconstruction of Hologram c) with Diagram. A STANDARD OF THE STANDARD OF