ECE 141, Spring 2022 Homework 4

- 4.11 Consider the system shown in Fig. 4.29, which represents control of the angle of a pendulum that has no damping.
 - (a) What condition must $D_c(s)$ satisfy so that the system can track a ramp reference input with constant steady-state error?
 - (b) For a transfer function $D_c(s)$ that stabilizes the system and satisfies the condition in part(a), find the class of disturbances w(t) that the system can reject with zero steady-state error.

Figure 4.29 Control system for Problem 4.11

- 4.26 We wish to design an automatic speed control for an automobile. Assume that (1) the car has a mass m of 1000 kg, (2) the accelerator is the control U and supplies a force on the automobile of 10 N per degree of accelerator motion, and (3) air drag provides a friction force proportional to velocity of 10 N · sec/m.
 - (a) Obtain the transfer function from control input U to the velocity of the automobile.
 - (b) Assume the velocity changes are given by

$$V(s) = \frac{1}{s + 0.02}U(s) + \frac{0.05}{s + 0.02}W(s),$$

where V is given in meters per second, U is in degrees, and W is the percent grade of the road. Design a proportional control law $U = -k_P V$ that will maintain a velocity error of less than 1 m/sec in the presence of a constant 2% grade.

- (c) Discuss what advantage (if any) integral control would have for this problem.
- (d) Assuming that pure integral control (that is, no proportional term) is advantageous, select the feedback gain so that the roots have critical damping ($\zeta = 1$).

- 4.29 The transfer functions of speed control for a magnetic tape-drive system are shown in Fig. 4.42. The speed sensor is fast enough that its dynamics can be neglected and the diagram shows the equivalent unity feedback system.
 - (a) Assuming the reference is zero, what is the steady-state error due to a step disturbance torque of 1 N·m? What must the amplifier gain K be in order to make the steady-state error $e_{ss} \le 0.01$ rad/sec?
 - (b) Plot the roots of the closed-loop system in the complex plane and accurately sketch the time response of the output for a step reference input using the gain K computed in part (a).
 - (c) Plot the region in the complex plane of acceptable closed-loop poles corresponding to the specifications of a 1% settling time of $t_s \le 0.1$ sec and an overshoot $M_p \le 5\%$.
 - (d) Give values for k_P and k_D for a PD controller, which will meet the specifications.
 - (e) How would the disturbance-induced steady-state error change with the new control scheme in part (d)? How could the steady-state error to a disturbance torque be eliminated entirely?

Figure 4.42
Speed-control system for a magnetic tape drive

