Assignment 1

1 Case: $y = w \cdot x$

1.1 Generate Data

Generate $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ as follows.

- 1. Choose a number w^{opt} for w.
- 2. Generate 1000 random numbers from 0 to 1000. We call this set X.
- 3. For each $x \in X$, generate $y = w^{opt} \cdot x$. (You may generate the number y like $x \sim N(w^{opt} \cdot x, 1)$.)

1.2 Estimate w

- 1. Choose a number for η .
- 2. Find w.
 - 2-1. Choose a number for w arbitrarily.
 - 2-2. $w \leftarrow w \eta \sum_{i=1}^{n} (w \cdot x_i y_i) \cdot x_i$ until convergence. Let the final w be w^* .
- 3. Check w^* with $w^{\overline{opt}}$.
- 2 Case: $y = w \cdot x + b$

2.1 Generate Data

Generate $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ as follows.

- 1. Choose a number w^{opt} , b^{opt} for w, b, repectively.
- 2. Generate 1000 random numbers from 0 to 1000. We call this set X.
- 3. For each $x \in X$, generate $y = w^{opt} \cdot x + b^{opt}$. (You may generate the number y like $x \sim N(w^{opt} \cdot x + b^{opt}, 1)$.)

2.2 Estimate w and b

- 1. Choose numbers for parameters.
 - 1-1. Choose a number for η_w .
 - 1-2. Choose a number for η_b .

2. Until convergence,
$$2\text{-}1. \ w \leftarrow w - \eta_w \sum_{i=1}^n (w \cdot x_i + b - y_i) \cdot x_i.$$

$$2\text{-}2. \ b \leftarrow b - \eta_b \sum_{i=1}^n (w \cdot x_i + b - y_i).$$

$$2\text{-}3. \ \text{Let the final } w, b \text{ be } w^*, b^*, \text{ respectively.}$$

$$3. \ \text{Check } w^*, b^* \text{ with } w^{opt}, b^{opt}.$$

2-2.
$$b \leftarrow b - \eta_b \sum_{i=1}^{n} (w \cdot x_i + b - y_i)$$

3 Next

Design the online versions of the above batch versions.