

CET2001B Advanced data Structure

S. Y. B. Tech CSE

Semester - IV

SCHOOL OF COMPUTER ENGINEERING AND TECHNOLOGY

Graph

Graph- Basic Terminology, memory representation: Adjacency matrix, Adjacency list, Creation of Graph and Traversals,

Minimum spanning Tree- Prim's and Kruskal's Algorithms, Dikjtra's Single source shortest path, Topological sorting

08/02/23 Advanced Data Structure

Graph

- Basic Terminology
- Memory representation
- •Creation of graph and traversals
- •Minimum spanning tree
- Topological sorting

Basic Terminology

- Definition
- Complete Graph
- Adjacent and Incident
- Subgraph and path
- •Simple path and cycle
- •Connected components
- •Degree

Graph Applications

Social Network

Hypertext

Circuits

Definition

•A graph G consists of two sets

- \square a finite, nonempty set of vertices V(G)
- \Box a finite, possible empty set of edges E(G)
- \square G(V,E) represents a graph

Graph G1

Vertex Set: $V(G1) = \{0,1,2,3\}$

Edge Set: $E(G1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$

Vertex Set:

 $V(G2)=\{0,1,2\}$

Edge Set:

 $E(G2)=\{(2,0),(2,1)\}$

Directed and Undirected Graph

- •An undirected graph is one in which the pair of vertices in an edge is unordered, (v0, v1) = (v1, v0)
- •A directed graph is one in which each edge is a directed pair of vertices,

$$< v0, v1 > != < v1, v0 >$$

Undirected Graph

Directed Graph

Degree

- •The degree of a vertex is the number of edges incident to that vertex.
- •For directed graph,
- \Box the in-degree of a vertex v is the number of edges that have v as the head
- \Box the out-degree of a vertex v is the number of edges that have v as the tail
- \square If d_i is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges (of undirected graph) are :-

$$e = \left(\sum_{i=0}^{n-1} d_i\right)/2$$

Examples for Degree

Undirected Graph: G1

Directed Graph: G₃

Adjacent and Incident

- If (v0, v1) is an edge in an undirected graph,
- U v0 and v1 are adjacent
- The edge (v0, v1) is incident on vertices v0 and v1

- If <v0, v1> is an edge in a directed graph
- Uv0 is adjacent to v1, and v1 is adjacent from v0
- The edge $\langle v0, v1 \rangle$ is incident on v0 and v1

Complete graph

- •A complete graph is a graph that has the maximum number of edges
- \square for undirected graph with n vertices, the maximum number of edges is n(n-1)/2
- \square for directed graph with n vertices, the maximum number of edges is n(n-1)

Examples for Graph

Complete Graph

(b) Complete undirected graph.

No. of edges (complete undirected graph): n(n-1)/2

No. of edges (complete directed graph): n(n-1)

Subgraph and Path

•A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)

•A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, v_p , v_{i1} , v_{i2} , ..., v_{in} , v_q , such that (v_p, v_{i1}) , (v_{i1}, v_{i2}) , ..., (v_{in}, v_q) are edges in an undirected graph

• The length of a path is the number of edges on it

Example for Subgraph

Simple path and cycle

- •A simple path is a path in which all the vertices, are distinct.
- •A cycle is a path, in which the first and the last vertices are same.
- •In an undirected graph G, two vertices, v0 and v1, are connected if there is a path in G from v0 to v1
- •An undirected graph is connected if, for every pair of distinct vertices vi, vj, there is a path from vi to vj.

Examples for Graph

Connected Graphs: G₁,G₂

Graph G₃: (not connected)

Connected Component

- •A connected component of an undirected graph is a maximal connected subgraph.
- •A tree is a graph that is connected and acyclic.
- •A directed graph is strongly connected if there is a directed path from vi to vj and also from vj to vi.
- •A strongly connected component is a maximal subgraph that is strongly connected.

Examples for Connected Component

Two Connected Components for Graphs G₄: H₁ and H₂

Examples for Strongly Connected Component

G₃ (Not strongly connected)

Strongly connected components of G₃

Graph Representation

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- •Let G=(V,E) be a graph with n vertices.
- •The adjacency matrix of G is a two-dimensional n x n array, say adj_mat
- \sqcup If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0
- •The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Adjacency Matrix

Graph G1

Adjacency Matrix for Graph G1

 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Adjacency Matrix for Graph G2

Merits: Adjacency Matrix

- •From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{j=0}^{n-1} adj_{mat}[i][j]$
- •For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Adjacency List: Interesting Operations

- •The degree of any vertex in an undirected graph is determined by counting the no. of nodes in its adjacency list.
- •No. of edges in a graph is determined in O(n+e)
- •out-degree of a any vertex in a directed graph is determined by counting No. of nodes in its adjacency list.

Adjacency Lists


```
class Gnode
 { int vertex;
    node *next;
   friend class Graph;
 class Graph
private:
    Gnode *Head[20];
    int n;
public:
    Graph()
             create head nodes for n vertices
```


Adjacency List for Graph G1

```
graph()
                                                                         Allocate memory for curr node;
                                                                          curr->vertex=v;
 Accept no of vertices;
 for i=0 to n-1
                                                                          temp->next=curr;
   {Allocate a memory for head[i] node (array)
                                                                          temp=temp->next;
   head[i]->vertex=i; }
                                                                         accept the choice;
create()
                                                                        }while(ans=='y'||ans=='Y');
 for i=0 to n-1
  temp=head[i];
  do
   Accept adjacent vertex v;
   if(v==i)
      Print Self loop are not allowed;
   else
```

08/02/23 **27**

Graph Traversal

- •Depth First Traversal
- Breadth First Traversal

Depth First Traversal (Recursive)

```
Algorithm DFS()
 //initially no vertex will be visited
  for( int i=0 ; i< n; i++)
      visited[i]=0;
//start search at vertex v
  accept starting vertex v
  DFS(v);
```

```
Algorithm DFS(int v)

{     print v;
     visited[v]=1;
     for(each vertex w adjacent to v)
         if(!visited[w])

DFS(w);
}
```


Depth First Search Traversal

Task: Conduct a depth-first search of the graph starting with node D

Depth First SearchTraversal

The DFT of nodes in graph:

D

Visited Array

B C

D **1**

E F

G H

D

Visit D

08/02/23

31

The DFT of nodes in graph:

Visited Array

Consider nodes adjacent to D, decide to visit C first (Rule: visit adjacent nodes in alphabetical order or in order of the adjacancy list)

The DFT of nodes in graph:

D, C

Visited Array

A	
В	
С	1
D	1
Е	
F	
G	
Н	

Visit C

The DFT of nodes in graph:

D, C

Visited Array

No nodes adjacent to C; cannot continue

□ *backtrack*, i.e., pop stack and restore previous state

The DFT of nodes in graph:
D, C

Visited Array

A		
В		
C	1	
D	1	
Е		
F		
G		ח
Н		D

Back to D – C has been visited, decide to visit E next

The DFT of nodes in graph:
D, C, E

Visited Array

A		
В		
С	1	
D	1	
Е	1	
F		
G		
Н		

Back to D – C has been visited, decide to visit E next

E

D

The DFT of nodes in graph:

D, C, E

Visited Array

A		
В		
С	1	
D	1	
Е	1	
F		Е
G		
Н		D

Only G is adjacent to E

The DFT of nodes in graph:

D, C, E, G

Visited Array

A	
В	
С	1
D	1
Е	1
F	
G	1
Н	

Visit G

The DFT of nodes in graph:

D, C, E, G

Visited Array

A	
В	
С	1
D	1
Е	1
F	
G	1
Н	

Nodes D and H are adjacent to G. D has already been visited. Decide to visit H.

The DFT of nodes in graph:

D, C, E, G, H

Visited Array

A	
В	
С	1
D	1
Е	1
F	
G	1
Н	1

Visit H

The DFT of nodes in graph:
D, C, E, G, H

Visited Array

A		
В		
С	1	
D	1	
Е	1	
F		
G	1	
Н	1	

Nodes A and B are adjacent to F. Decide to visit A next.

The DFT of nodes in graph:

D, C, E, G, H, A

Visited Array

A	1
В	
С	1
D	1
Е	1
F	
G	1
Н	1

Visit A

The DFT of nodes in graph:
D, C, E, G, H, A

Visited Array

A	1
В	
С	1
D	1
Е	1
F	
G	1
Н	1

Only Node B is adjacent to A. Decide to visit B next.

H

G

E

D

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1
В	1
С	1
D	1
Е	1
F	
G	1
Н	1

B A H G E D

Visit B

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1	
В	1	
C	1	
D	1	
Е	1	
F		
G	1	
Н	1	

No unvisited nodes adjacent to B. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to A. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1	
В	1	
C	1	
D	1	
Е	1	G
F		E
G	1	
Н	1	D

No unvisited nodes adjacent to H. Backtrack (pop the stack).

The DFT of nodes in graph:
D, C, E, G, H, A, B

Visited Array

A	1		
В	1		
C	1		
D	1		
Е	1		
F		,	E
G	1		
Н	1)

No unvisited nodes adjacent to G. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1
В	1
С	1
D	1
Е	1
F	
G	1
Н	1

No unvisited nodes adjacent to E. Backtrack (pop the stack).

The DFT of nodes in graph:
D, C, E, G, H, A, B

Visited Array

A	1	
В	1	
C	1	
D	1	
Е	1	
F		
G	1	ח
Н	1	D

F is unvisited and is adjacent to D. Decide to visit F next.

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

A	1
В	1
С	1
D	1
Е	1
F	1
G	1
Н	1

Visit F

The DFT of nodes in graph:
D, C, E, G, H, A, B, F

No unvisited nodes adjacent to F. Backtrack.

The order nodes are visited:

D, C, E, G, H, A, B, F

Visited Array

A	/
В	✓
С	√
D	√
Е	√
F	√
G	√
Н	√

No unvisited nodes adjacent to D. Backtrack.

The DFT of nodes in graph:
D, C, E, G, H, A, B, F

Visited Array

Stack is empty. Depth-first traversal is done.

Depth First Traversal (Non-recursive)

```
Algorithm DFS(int v)
 for all vertices of graph
      visited[i]=0;
  push(v);
  visited[v]=1;
  do
    v=pop();
   print(v);
    for(each vertex w adjacent to v)
    if(!visited[w])
           { push(w); visited[w]=1;}
} //end for
 } while(stack not empty)
 } //end dfs
```

08/02/23 55

Graph G1

Find DFT for given graph G1 starting at vertex 0


```
Algorithm BFS(int v) {
for(int i=0;i < n;i++)
     visited[i]=0;
  Queue q;
  q.insert(v);
  while(!q.IsEmpty())
       v=q.Delete();
      for(all vertices w adjacent to v)
       if(!visited[w])
           q.insert(w);
           visited[w]=1;
```


Enqueued Array

How is this accomplished? Simply replace the stack with a queue! Rules: (1) Maintain an *enqueued* array. (2) Visit node when *dequeued*.

Nodes visited:

Enqueued Array

Q:**D**

Enqueue D. Notice, D not yet visited.

Nodes visited: D

Enqueued Array

A |
B |
C | √ |
D | √ |
F | √ |
G |
H |

Q: C, E, F

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Nodes visited: D, C

Enqueued Array

A |
B |
C | √ |
D | √ |
E | √ |
F | √ |
G |
H |

Q:E,F

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Nodes visited: D, C, E

Enqueued Array

A	
В	
С	1
D	1
Е	1
F	1
G	
Н	

Q:F, G

Dequeue E. Visit E. Enqueue unenqueued nodes adjacent to E.

Nodes visited: D, C, E, F

Enqueued Array

A |
B |
C | √ |
D | √ |
E | √ |
F | √ |
G | √ |
H |

Q:G

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Nodes visited: D, C, E, F, G

Enqueued Array

A |
B |
C | √ |
D | √ |
E | √ |
F | √ |
G | √ |
H | √

Q:H

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Nodes visited: D, C, E, F, G, H

Enqueued Array

A	
В	1
С	1
D	1
Е	
F	
G	1
Н	$\sqrt{}$

Q:A, B

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to H.

Enqueued Array

 $\begin{array}{c|c} A & \sqrt{} \\ B & \sqrt{} \\ C & \sqrt{} \\ D & \sqrt{} \\ E & \sqrt{} \\ F & \sqrt{} \\ G & \sqrt{} \\ H & \sqrt{} \\ \end{array}$

Q:B

Nodes visited: D, C, E, F, G, H, A

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A.

Enqueued Array

A	1
В	1
С	1
D	1
Е	1
F	1
G	1
Н	

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Enqueued Array

A	
В	1
С	1
D	1
Е	1
F	1
G	1
Н	

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Q empty. Algorithm done.

Graph G1

Find BFT for given graph G1 starting at vertex 0

Spanning Trees

- •A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- •A spanning tree is a minimal subgraph, G', of G such that V(G')=V(G) and G' is connected.
- •Either dfs or bfs can be used to create a spanning tree
- ☐ When dfs is used, the resulting spanning tree is known as a depth first spanning tree
- ☐ When bfs is used, the resulting spanning tree is known as a breadth first spanning tree

Examples of Spanning Trees

Graph G1

Possible spanning trees

71

DFS VS BFS Spanning Trees

Graph

DFS Spanning Tree

BFS Spanning Tree

Minimum Spanning Tree

- •The cost of a spanning tree of a weighted undirected graph is the sum of the costs of the edges in the spanning tree
- •A minimum cost spanning tree is a spanning tree of least cost
- •n-1 edges from a weighted graph of n vertices with minimum cost.

- •Two different algorithms can be used
 - □Kruskal
 - Prim

Minimum Spanning Tree

Applications of MST in Network design

Telephone

☐ Electrical

TV cable

Computer

Iroad

Greedy Strategy

- An optimal solution is constructed in stages
- At each stage, the best decision is made at this time
- Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

- Build a minimum cost spanning tree T by adding edges to T one at a time
- Select the edges for inclusion in T in nondecreasing order of the cost
- An edge is added to T if it does not form a cycle
- Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected


```
T = \{\};
while (T contains less than n-1 edges && E is not empty)
  choose a least cost edge (v,w) from E;
  delete (v,w) from E;
  if ((v,w) does not create a cycle in T)
  add (v,w) to T
else
   discard (v,w);
if (T contains fewer than n-1 edges)
 printf("No spanning tree\n");
```


Consider an undirected, weight graph

Sort the edges by increasing edge weight

edge	d_{v}	
(D,E)	1	
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	_

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	\checkmark
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	$d_{_{v}}$	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	√
(D,G)	2	
(E,G)	3	χ
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	$d_{_{_{\boldsymbol{v}}}}$	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Accepting edge (E,G) would create a cycle

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	√
(D,G)	2	\checkmark
(E,G)	3	χ
(C,D)	3	\checkmark
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	$d_{_{v}}$	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	$\sqrt{}$
(D,G)	2	$\sqrt{}$
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	$\sqrt{}$
(C,F)	3	
(B,C)	4	

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	
(D,G)	2	
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	$d_{_{v}}$	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	
(D,G)	2	
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	
(C,F)	3	√
(B,C)	4	$\sqrt{}$

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	$\sqrt{}$
(D,G)	2	
(E,G)	3	χ
(C,D)	3	$\sqrt{}$
(G,H)	3	
(C,F)	3	√
(B,C)	4	

edge	d_{v}	
(B,E)	4	χ
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	
(D,G)	2	
(E,G)	3	χ
(C,D)	3	$\sqrt{}$
(G,H)	3	
(C,F)	3	$\sqrt{}$
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	
(B,C)	4	

edge	d_{v}	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	\checkmark
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	
(G,H)	3	\checkmark
(C,F)	3	
(B,C)	4	V

edge	d_{v}	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	$\sqrt{}$
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_{v}	
(D,E)	1	$\sqrt{}$
(D,G)	2	
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	V
(B,C)	4	V

edge	d_{v}		
(B,E)	4	χ	
(B,F)	4	χ	
(B,H)	4	χ	
(A,H)	5	V	
(D,F)	6		not
(A,B)	8		considere
(A,F)	10		

Done

Total Cost = $\sum d_v = 21$


```
//Assume G has at least one vertex
TV=\{0\}; //start with vertex 0 and no edges
for (T=Ø; T contains less than n-1 edges; add(u,v) to T)
 let (u,v) be a least cost edge such that u \in TV and v \notin TV;
 if (there is no such edge ) break;
 add v to TV;
if (T contains fewer than n-1 edges)
cout << "No spanning tree \n";
```

92


```
Algorithm prims(start_v){
//cost[i][j] is either +ve or infinity.
//A MST is computed & stored as a set of edges in the
//array t[n][1]. t[i][0], t[i][1]) is an edge in the MST
//where 0<i<n.
// start v be the starting vertex
//Initialize nearest
nearest [start_v] = -1;
 for i=0 to n-1 do
    if(i!=start v)
                 nearest[i]= start v;
 r=0;
```

```
for i=1 to n-1 do
 { //find n-1 additional edges for t
    min = \infty
   for k=0 to n-1
   { // find j : vertex such that;
      if (nearest[k]!= -1 and cost[k, nearest[k]] <min)
            { j=k; min=cost[k, nearest[k]];}
//update tree and total cost
   t[r][0]=i, t[r][1]=nearest[i]; r=r+1;
   mincost = mincost + cost[i], nearest[i]);
   nearest[j]=-1;
//update nearest for remaining vertices
   for k=0 to n-1
             if(nearest[k]!= -1 and (cost[k, nearest[k])> cost[k, j]
           nearest[k]=j;
    return mincost;
   \} //end for i=1 to n-1
```

93

Initialize array

	K	$d_{_{_{\boldsymbol{v}}}}$	p_{v}
A	F	8	_
В	F	8	
C	F	8	_
D	F	8	
E	F	8	_
F	F	∞	-
G	F	∞	_
Н	F	8	_

Start with any node, say D

	K	d_{v}	p_{v}
A			
В			
C			
D	T	0	_
E			
F			
G			
Н			

Update distances of adjacent, unselected nodes

	K	$d_{_{v}}$	p_{v}
A			
В			
C		3	D
D	Т	0	
E		25	D
F		18	D
G		2	D
Н			

Select node with minimum distance

	K	d_{v}	p_{v}
A			
В			
C		3	D
D	T	0	_
E		25	D
F		18	D
G	T	2	D
Н			

Update distances of adjacent, unselected nodes

	K	$d_{_{v}}$	p_{v}
A			
В			
C		3	D
D	T	0	-
E		7	G
F		18	D
G	Т	2	D
Н		3	G

08/02/23 98

Select node with minimum distance

	K	$d_{_{v}}$	p_{v}
A			
В			
C	T	3	D
D	T	0	1
E		7	G
F		18	D
G	T	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_{v}	p_{v}
A			
В		4	C
C	Т	3	D
D	T	0	1
E		7	G
F		3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_{v}	p_{v}
A			
В		4	C
C	T	3	D
D	T	0	1
E		7	G
F	T	3	C
G	T	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_{v}	p_{v}
A		10	F
В		4	C
C	Т	3	D
D	T	0	ı
E		2	F
F	Т	3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	$d_{_{_{\boldsymbol{v}}}}$	p_{v}
A		10	F
В		4	C
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	С
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	$d_{_{v}}$	p_{v}
A		10	F
В		4	С
C	Т	3	D
D	Т	0	_
E	Т	2	F
F	Т	3	C
G	Т	2	D
Н		3	G

Table entries unchanged

Select node with minimum distance

	K	$d_{_{v}}$	p_{v}
A		10	F
В		4	C
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

Update distances of adjacent, unselected nodes

	K	$d_{_{v}}$	p_{v}
A		4	Н
В		4	C
C	Т	3	D
D	T	0	_
E	T	2	F
F	T	3	С
G	Т	2	D
Н	Т	3	G

Select node with minimum distance

	K	$d_{_{v}}$	p_{v}
A	T	4	Н
В		4	C
C	Т	3	D
D	Т	0	_
E	T	2	F
F	T	3	С
G	T	2	D
Н	Т	3	G

Update distances of adjacent, unselected nodes

	K	$d_{_{v}}$	p_{v}
A	T	4	Н
В		4	C
C	Т	3	D
D	T	0	-
E	T	2	F
F	T	3	С
G	Т	2	D
Н	Т	3	G

Table entries unchanged

Select node with minimum distance

	K	d_{v}	p_{v}
A	T	4	Н
В	T	4	С
C	Т	3	D
D	T	0	1
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G