SBML Model Report

Model name: "Tomida2003 - Calcium Oscillatory-induced translocation of nuclear factor of activated T cells"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Matthew Grant Roberts¹ at February 22nd 2018 at 3:25 p. m. and last time modified at March 14th 2018 at 9:35 a. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	4
events	0	constraints	0
reactions	4	function definitions	2
global parameters	11	unit definitions	2
rules	5	initial assignments	2

Model Notes

Tomida2003 - NFAT functions CalciumOscillation

This model is described in the article:NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation.Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M.EMBO J. 2003 Aug; 22(15): 3825-3832

¹EMBL-EBI, mroberts@ebi.ac.uk

Abstract:

Transcription by the nuclear factor of activated T cells (NFAT) is regulated by the frequency of Ca(2+) oscillation. However, why and how Ca(2+) oscillation regulates NFAT activity remain elusive. NFAT is dephosphorylated by Ca(2+)-dependent phosphatase calcineurin and translocates from the cytoplasm to the nucleus to initiate transcription. We analyzed the kinetics of dephosphorylation and translocation of NFAT. We show that Ca(2+)-dependent dephosphorylation proceeds rapidly, while the rephosphorylation and nuclear transport of NFAT proceed slowly. Therefore, after brief Ca(2+) stimulation, dephosphorylated NFAT has a lifetime of several minutes in the cytoplasm. Thus, Ca(2+) oscillation induces a build-up of dephosphorylated NFAT in the cytoplasm, allowing effective nuclear translocation, provided that the oscillation interval is shorter than the lifetime of dephosphorylated NFAT. We also show that Ca(2+) oscillation is more cost-effective in inducing the translocation of NFAT than continuous Ca(2+) signaling. Thus, the lifetime of dephosphorylated NFAT functions as a working memory of Ca(2+) signals and enables the control of NFAT nuclear translocation by the frequency of Ca(2+) oscillation at a reduced cost of Ca(2+) signaling.

This model is hosted on BioModels Database and identified by: BIOMD0000000678.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition mmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Jurkat_cell	Jurkat cell		3	1	litre	Ø	

3.1 Compartment Jurkat_cell

This is a three dimensional compartment with a constant size of one ml.

Name Jurkat cell

4 Species

This model contains four species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
NFAT- _phosphorylated	NFAT_phosphorylated	Jurkat_cell	mmol⋅ml ⁻¹	В	
NFATdephosphorylated	NFAT_dephosphorylated	Jurkat_cell	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		
NFAT_transported stimulus	NFAT_transported stimulus	Jurkat_cell Jurkat_cell	$\begin{array}{c} \operatorname{mmol} \cdot \operatorname{ml}^{-1} \\ \operatorname{mmol} \cdot \operatorname{ml}^{-1} \end{array}$		✓

5 Parameters

This model contains eleven global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0.359		\overline{Z}
k2	k2	0.147		\square
k3	k3	0.060		\square
k4	k4	0.035		\square
stim-	stim_frequency	3.000		\square
$_{ extsf{ iny frequency}}$				
dNFAT	dNFAT%	0.000		
pNFAT	pNFAT%	100.000		
tNFAT	tNFAT%	0.000		
stim-	stim_duration	1.000		\square
$_{ extsf{ iny duration}}$				
ModelValue-	Initial for stim-	1.000		\square
_17	_duration			
ModelValue-	Initial for stim-	3.000		\square
_13	_frequency			

6 Initialassignments

This is an overview of two initial assignments.

6.1 Initialassignment ModelValue_17

Derived unit contains undeclared units

Math stim_duration

6.2 Initialassignment ModelValue_13

Derived unit contains undeclared units

Math stim_frequency

7 Function definitions

This is an overview of two function definitions.

7.1 Function definition function_for_modified_reaction_1

Name function for modified reaction_1

Arguments [NFAT_phosphorylated], k1, [stimulus]

Mathematical Expression

$$k1 \cdot [stimulus] \cdot [NFAT_phosphorylated]$$
 (1)

7.2 Function definition function_for_modified_reaction_0

Name function for modified reaction

Arguments k1, [stimulus], substrate

Mathematical Expression

$$k1 \cdot [stimulus] \cdot substrate$$
 (2)

8 Rules

This is an overview of five rules.

8.1 Rule NFAT_transported

Rule NFAT_transported is an assignment rule for species NFAT_transported:

$$NFAT_{transported} = 1 - [NFAT_{phosphorylated}] - [NFAT_{dephosphorylated}]$$
 (3)

8.2 Rule pNFAT

Rule pNFAT is an assignment rule for parameter pNFAT:

$$pNFAT = 100 \cdot [NFAT_phosphorylated]$$
 (4)

8.3 Rule tNFAT

Rule tNFAT is an assignment rule for parameter tNFAT:

$$tNFAT = 100 \cdot [NFAT_transported]$$
 (5)

8.4 Rule dNFAT

Rule dNFAT is an assignment rule for parameter dNFAT:

$$dNFAT = 100 \cdot [NFAT_dephosphorylated]$$
 (6)

8.5 Rule stimulus

Rule stimulus is an assignment rule for species stimulus:

$$stimulus = \begin{cases} 1 & \text{if time} - \left\lfloor \frac{\text{time}}{\text{ModelValue_13}} \right\rfloor \cdot \text{ModelValue_13} < \text{ModelValue_17} \\ 0 & \text{otherwise} \end{cases}$$
 (7)

9 Reactions

This model contains four reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	Dephosphorylatio	nDephosphorylation	NFAT_phosphorylated $\xrightarrow{\text{stimulus}}$ NFAT_dephosphoryla	ted
2	Phosphorylation	Phosphorylation	NFAT_dephosphorylated> NFAT_phosphorylated	
3	Translocation	Translocation	NFAT_dephosphorylated> NFAT_transported	
4	${\tt Nuclear_export}$	Nuclear_export	$NFAT_transported \longrightarrow NFAT_phosphorylated$	

9.1 Reaction Dephosphorylation

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Dephosphorylation

Reaction equation

NFAT_phosphorylated
$$\xrightarrow{\text{stimulus}}$$
 NFAT_dephosphorylated (8)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
NFAT_phosphorylated	NFAT_phosphorylated	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
stimulus	stimulus	

Product

Table 8: Properties of each product.

Id	Name	SBO
NFAT_dephosphorylated	NFAT_dephosphorylated	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = vol\left(Jurkat_cell\right) \cdot function_for_modified_reaction_1\left([NFAT_phosphorylated], k1, [stimulus]\right) \tag{9}$$

9.2 Reaction Phosphorylation

This is an irreversible reaction of one reactant forming one product.

Name Phosphorylation

Reaction equation

$$NFAT_dephosphorylated \longrightarrow NFAT_phosphorylated$$
 (12)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
${\tt NFAT_} dephosphorylated$	$NFAT_dephosphorylated$	

Product

Table 10: Properties of each product.

Id	Name	SBO
NFAT_phosphorylated	NFAT_phosphorylated	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{Jurkat_cell}) \cdot \text{k2} \cdot [\text{NFAT_dephosphorylated}]$$
 (13)

9.3 Reaction Translocation

This is an irreversible reaction of one reactant forming one product.

Name Translocation

Reaction equation

$$NFAT_dephosphorylated \longrightarrow NFAT_transported$$
 (14)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
NFAT_dephosphorylated	NFAT_dephosphorylated	

Product

Table 12: Properties of each product.

Id	Name	SBO
NFAT_transported	NFAT_transported	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{Jurkat_cell}) \cdot \text{k3} \cdot [\text{NFAT_dephosphorylated}]$$
 (15)

9.4 Reaction Nuclear_export

This is an irreversible reaction of one reactant forming one product.

Name Nuclear_export

Reaction equation

$$NFAT_transported \longrightarrow NFAT_phosphorylated$$
 (16)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
NFAT_transported	NFAT_transported	

Product

Table 14: Properties of each product.

Id	Name	SBO
NFAT_phosphorylated	NFAT_phosphorylated	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{Jurkat_cell}) \cdot \text{k4} \cdot [\text{NFAT_transported}]$$
 (17)

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

10.1 Species NFAT_phosphorylated

Name NFAT_phosphorylated

Initial concentration $1 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in three reactions (as a reactant in Dephosphorylation and as a product in Phosphorylation, Nuclear_export).

$$\frac{d}{dt} NFAT_phosphorylated = |v_2| + |v_4| - |v_1|$$
 (18)

10.2 Species NFAT_dephosphorylated

Name NFAT_dephosphorylated

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in three reactions (as a reactant in Phosphorylation, Translocation and as a product in Dephosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NFAT}_{-} \mathrm{dephosphorylated} = |v_1| - |v_2| - |v_3| \tag{19}$$

10.3 Species NFAT_transported

Name NFAT_transported

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

Involved in rule NFAT_transported

This species takes part in two reactions (as a reactant in Nuclear_export and as a product in Translocation). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.4 Species stimulus

Name stimulus

Initial concentration 1 mmol·ml⁻¹

Involved in rule stimulus

This species takes part in one reaction (as a modifier in Dephosphorylation). Not this but one rule determines the species' quantity because this species is on the boundary of the reaction system.

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany