Erdem Arinc Bulgur

in www.linkedin.com/in/arincbulgur

• https://github.com/arincbulgur

☑ arincbulgur@gmail.com

SUMMARY

- Machine learning engineer in a Level-4 Autonomous Driving Platform company working on the development of the perception pipeline.
- o Research topics include: Deep reinforcement learning, NLP, knowledge graph, computer vision.
- o Experienced in machine learning and deep learning frameworks including PyTorch, Scikit-Learn and TensorFlow.

WORK EXPERIENCE

Adastec Corp. Ann Arbor, Michigan

Machine Learning Engineer

Jan 2021 - Present

o Enhanced 3D-object detection performance in adverse weather conditions 15% by integrating an LSTM-based video segmentation model into the PointPainting object detection pipeline.

Oden Institute at UT Austin Austin, Texas

Research Assistant

Aug 2018 - Jan 2021

- Carried out PhD level research on deep reinforcement learning, inverse reinforcement learning, computer vision, knowledge graph and optimization.
- Please look at the second page of this resume to learn more about my academic projects.

Max-Planck Institute for Intelligent Systems

Stuttgart, Germany

Research Intern

Mar 2018 - Jun 2018

 Slashed the time spent for microrobots' kinematic analysis 90% by developing a CNN-based image processing pipeline.

EDUCATION

The University of Texas at Austin

Austin, Texas

M.Sc. in Aerospace Engineering

August 2018 - Dec 2020

Statistical Machine Learning (ECE), Probability and Stochastic Processes (ECE), Large Scale Optimization (ECE), Verification and Synthesis of Cyber-Physical Systems (ASE), Automated Logical Reasoning (CS), Optimal Control (ASE).

Bogazici University Istanbul, Turkey Sep 2013 - Jan 2018

Bachelor of Science in Mechanical Engineering

SKILLS

- o Languages: Python, C++, Bash, SQL, Matlab, Arduino
- o Frameworks: TensowFlow, Pytorch, Scikit-learn, Docker, YOLO, AirSim, PX4, MAVROS, Prism Model Checker, SPOT LTL and Automata Manipulation Tool, SLUGS Reactive Synthesis Tool
- o Softwares: ROS, Unreal Engine, Siemens NX

Publications

- o M. Ghasemi, E.A. Bulgur and U. Topcu, "Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics", 2020 International Conference on Machine Learning (ICML), Virtual Conference,
- o E. A. Bulgur, H. Demircioglu and H. I. Basturk, "Light Source Tracking with Quadrotor by Using Extremum Seeking Control" 2018 Annual American Control Conference (ACC), Milwaukee, WI, 2018, pp. 1746-1751.

ACADEMIC PROJECTS

Trajectory Predictions by Variational Gaussian Process

July 2020 - December 2020

 Developed an algorithm to make sparse gaussian process approximations for online streamed data which yields a 40 times speedup compared to the exact model for the trajectory prediction task.

Mastering Sabotage Games by Reinforcement Learning

April 2020 - *December* 2020

- o Designed a reinforcement learning algorithm based on Monte-Carlo tree search and graph neural network to solve the PSPACE complexity of the sabotage games and sped up the exact solution up to 5 times faster.
- Published the results at GandALF 2O21.

Context Reasoning Using Deep Learning and Knowledge Graph

o Designed a new architecture using LSTM networks and a knowledge graph for grounding robot plans from natural language instructions with 70% accuracy.

D3D 3D Printing Drone

July 2019 - June 2020

o Decreased overall test time, required for parameter tuning of an hexacopter, by orders of magnitude by programming an Offboard control algorithm integrating a safe parameter optimization algorithm on C++.

Simulation platforms

May 2019 - December 2020

- o I was the person in charge for performing visual simulations of the papers that my colleagues published in my research group. In particular, I standardized AirSim and another simulator designed by Army Research Lab as main platforms for the simulations. You can see some related projects below:
 - Synthesis of Surveillance Strategies via Belief Abstraction: Designed a new Unreal Engine environment and discretized it as a GridWorld. Implemented the belief abstraction strategy controller using the AirSim Python APIs for the surveillance task performed by the simulated drone.
 - Active Perception and Planning: Integrated the state-of-art YOLOV3 and SegNet frameworks into AirSim to achieve object detection and semantic segmentation from the camera images. Constructed point clouds out of depth images.
 - Gridworld-2-Unreal Pipeline: Automatized Unreal Engine environment construction by building a pipeline which transforms a labeled GridWorld to an Unreal Engine environment using the Unreal Engine Python scripting APIs.

Policy Adaptation between Similar Environments

Mar 2019 - *June* 2019

 Designed a Domain Adversarial Neural Network to obtain a policy for an agent in a real-world setting by using the policy of an agent evaluated in a simulation environment which might be a coarser model of the real-world. Although the project did not finalize I gained a great experience while implementing recent papers in the literature as I was working with recent deep learning techniques and TensorFlow.

Accelerated Value Iteration by Anderson Acceleration

Jan 2019 – Mar 2019

o Identified counter examples which classical methods for value iteration do not converge or are very slow to converge such that online implementation of them would be intractable. Presented a value iteration algorithm that utilizes Anderson acceleration method to address the aforementioned issue. The efficiency of the presented algorithm was further shown empirically through examples.

Extremum Seeking for Light Source Tracking

Jun 2017 – *Sep* 2017

o I worked on a real-time optimization project which is an implementation of extremum seeking algorithm in the Control Laboratory. In the project, it is aimed that a quadrotor tracks the active light source by performing extremum seeking. During this project, I got familiar with the dynamics of a quadrotor, extremum seeking control theory and usage of many different hardware and software. At the end of the project, we published a conference paper at American Control Conference (ACC).

November 2019 - July 2020