МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 12

РАБОТА ЗАЩИЩЕ	НА С ОПЕНКОЙ			
ПРЕПОДАВАТЕЛЬ	,			
доцент, канд. те	хн. наук		Д.Л. Головцов	
должность, уч. о	степень,	подпись, дата инициалы, фами		
Sbaine				
	Практ	гическая работа №1		
	•	•		
«Графически	й метол реше	ния залач пинейного	программирования»	
wi papii ieekii	и метод реше	иил зада і зишенного	iipoi pammiipobaiiiii//	
по дисі	циплине: «Систе	емный анализ и методы	оптимизации»	
РАБОТУ ВЫПОЛНИ	IЛ			
СТУДЕНТ ГР.	1842		А.В.Герасимец	
		подпись, дата	инициалы, фамилия	

1. Цель работы

Нахождение графического решения задачи линейного программирования.

Вариант 5:

$$z = 6x_1 + 5x_2 \to max$$

$$x_1 + 2x_2 \le 11 \tag{1}$$

$$2x_1 + x_2 \le 7 \tag{2}$$

$$2x_1 - x_2 \le 1 \tag{3}$$

$$2x_1 + 3x_2 \ge 3 \tag{4}$$

$$x_1, x_2 \ge 0$$

2. Решение задачи линейного программирования графическим методом

На рисунке 1 представлена область допустимых значений.

Рисунок 1 – Область допустимых значений

На рисунке 2 представлен графический метод решения ЗЛП.

Рисунок 2 – Решение ЗЛП графическим методом

Точка D является оптимумом, так как при перемещении целевой функции в направлении

D находится на пересечении прямых:
$$\begin{cases} x_1 + 2x_2 = 11 \\ 2x_1 + x_2 = 7 \end{cases}$$

Решив эту систему, получим: $x_1 = 1$, $x_2 = 5$.

3. Анализ чувствительности

$$z = 6x_1 + 5x_2 \rightarrow max$$

Точка оптимума D находится на пересечении прямых:

$$\begin{cases} x_1 + 2x_2 = 11 \\ 2x_1 + x_2 = 7 \end{cases}$$
 , соответствующих ограничениям: $\begin{cases} x_1 + 2x_2 \leq 11 \\ 2x_1 + x_2 \leq 7 \end{cases}$

Находим диапазоны изменения каждого коэффициента:

Диапазон изменения C_1 , при $C_2 = const$:

$$\frac{2}{1} \le \frac{C_2}{C_1} \le \frac{1}{2}$$

При условии С1 не равно 0

Или

$$\frac{2}{1} \le \frac{C_1}{C_2} \le \frac{1}{2}$$

При условии С2 не равно 0

Получили две системы неравенств, определяющих интервал оптимальности

При С2=5

$$\frac{2}{1} \leq \frac{C_1}{5} \leq \frac{1}{2}$$

Или

$$\frac{5}{2} \le C_1 \le 10$$

$$\frac{2}{1} \le \frac{C_2}{6} \le \frac{1}{2}$$

Или

$$3 \le C_2 \le 12$$

3.1. Оценка ресурса М1

Количество соответствующего точке (0,7), равно 1.0 + 2.7 = 14сырья, $1 \cdot 2 + 2 \cdot 3 = 8$ Количество соответствующего точке (2,3), равно сырья, Таким образом, интервал осуществимости для ресурса М1 составляет $8 \le M1 \le 14$ значение Вычислим функции целевой В ЭТИХ точках: $Z(0,7)=6\cdot 0+5\cdot 7=35$

$$Z(0,7)=0$$
 0+3 7=33
 $Z(2,3)=6\cdot 2+5\cdot 3=27$

$$M1 = \frac{35 - 27}{14 - 8} = 1.333$$

3.2. Оценка ресурса М2

Количество сырья, соответствующего точке (2.6,4.2), равно $2\cdot 2.6+1\cdot 4.2=9.4$ Количество сырья, соответствующего точке (0,5.5), равно $2\cdot 0+1\cdot 5.5=5.5$ Таким образом, интервал осуществимости для ресурса M2 составляет $5.5\leq M2\leq 9.4$ Вычислим значение целевой функции в этих точках:

$$Z(2.6,4.2)=6\cdot 2.6+5\cdot 4.2=36.6$$

$$Z(0,5.5) = 6.0 + 5.5.5 = 27.5$$

$$M2 = \frac{36,6 - 27,5}{9,4 - 5,5} = 2,333$$

Уменьшение правой части не связывающего ограничения (3). Прямую L3 можно опустить до пересечения с оптимальной точкой, не изменяя оптимального решения. Правая часть ограничения (3) станет равной $2x_1$ - x_2 =-3, что позволит записать ограничение (1) в виде $2x_1$ - x_2 <-3.

Диапазон правой части для ограничения 3 равен [-3;∞].

Уменьшение правой части не связывающего ограничения (4). Прямую L4 можно опустить до пересечения с оптимальной точкой, не изменяя оптимального решения. При этом правая часть ограничения (4) станет равной $2x_1+3x_2=17$, что позволит записать ограничение (1) в виде $2x_1+3x_2\ge 17$.

Диапазон правой части для ограничения 4 равен [-∞;17].

4. Решение в табличном процессоре Excel

На рисунке 2 и 3 представлены решения задачи линейного программирования при помощи среды Microsoft Excel.

целевая функция	6	5	31		
orp1	1	2	11	<=	11
огр2	2	1	7	<=	7
огр3	2	-1	-3	<=	1
огр4	2	3	17	>=	3
перем	x1	x2	L(x)		
	1	5	31		

Рисунок 2 – Модель задачи

M crosoft Excel 16.0 Отчет об устойчивости

Лист: [ЛР1.xlsx]Лист1

Отчет создан: 18.02.2022 18:21:29

Ячейки переменных

		Окончательное	Приведенн.	Целевая функция	Допустимое	Допустимое
Ячейка	Имя	Значение	Стоимость	Коэффициент	Увеличение	Уменьшение
\$B\$8	x1	1	0	6	4	3,5
\$C\$8	x2	5	0	5	7	2

Ограничения

		Окончательное	Тень	Ограничение	Допустимое	Допустимое
Ячейка	Имя	Значение	Цена	Правая сторона	Увеличение	Уменьшение
\$D\$2	огр1	11	1,333333333	11	3	3
\$D\$3	огр2	7	2,333333333	7	2,4	1,5
\$D\$4	огр3	-3	0	1	1E+30	4
\$D\$5	огр4	17	0	3	14	1E+30

Рисунок 3 - Решение

5. Выводы

В ходе выполнения лабораторной работы была решена графическим методом задача линейного программирования. Найденная точка оптимума – точка D(1; 5);

Также были рассчитаны диапазоны изменения коэффициентов целевой функции, при которых точка оптимума не меняется. Из полученных результатов можно сделать вывод, что коэффициент С1 можно уменьшить до 5/2 и увеличить до 10, так как точка оптимума меняться не будет. Коэффициент С2 можно увеличить до 12 и уменьшить до 3 и при этом точка оптимума не изменится.

Результаты, которые были получены при расчетах, совпали с результатами, полученными при помощи MS Excel.