Equipa docente:

- Rui Pereira Departamento de Matemática Azurém;
- Pedro Patrício Departamento de Matemática Gualtar;

Principais temas da UC:

- 1. O dados : tipos, representação, operações;
- 2. Métricas ponto a ponto;
- 3. Subset metrics; Representantes;
- 4. Principal Components Analysis (PCA);
- 5. LDA+ Kernel PCA.
- 5. Clustering: LLoyd, Hierarchical. Avaliação do clustering; Implementações.
- 6. Trabalho prático. (Temas a 6/10; Escolha: 24/11; Entrega: 2/1; Apresentação: 4/1)

Avaliação:

```
Teste (50%) + Trabalho em grupo (50%) \rightarrow grupos de 3 a 4 alunos; (14 de dezembro)
```

ou

Exame final : parte teórica + parte prática

Bibliografia:

- Metric Learning, Bellet, Habrard, Sebban, 2015.
- Pattern recognition and ML, Bishop, 2006.
- Introduction to ML, Alapaydin, 2010.

1. Os dados

Machine Learning (ML):

É uma sub área da IA que se dedica ao estudo de algoritmos que tem por objetivo 'ensinar os computadores a aprender'.

Há essencialmente 2 tipos de filosofia - Supervised ML (SML) /Unsupervised ML (UML).

SML: Dados rotulados (training set) \rightarrow constrói função \rightarrow determina valor var. dep. (classif./regressão)

UML: algoritmos que têm por objetivo identificar padrões em dados não rotulados (ex: clustering); Depois de criados os clusters, e usando métricas adequadas poderão ser usados para classificação (se os dados o permitirem).

IMPORTANTE: Tanto em SML como em UML, são necessárias métricas. É importante usarmos as métricas adequadas.

Dados:

Podem ser classificados de diferentes formas. Por exemplo: nominativos, binários, ordenados, monóide, discretos, reais, etc.

De acordo com o tipo de dados, as operações possíveis são diferentes.

Notações

Def. 1: Seja A um conjunto. Será usado para definir atributos. |A| é a cardinalidade do conjunto.

Def. 2: Sejam A_1, A_2, \ldots, A_d atributos e C_1, C_2, \ldots, C_p classes. Então $\mathcal{D} = (A_1 \times A_2 \times \ldots A_d) \times (C_1 \times C_2 \times \ldots C_p) = \mathcal{A} \times \mathcal{C}$ representa o espaço admissível para os dados.

Nota: $A \times B = \{(a, b) : a \in A \land b \in B\}.$

Um elemento $e = (x, y) \in \mathcal{D}$ é caracterizado por:

$$x = (x_1, x_2, ..., x_d) x_i \in A_i$$
, e, $y = (y_1, y_2, ..., y_p) x_i \in C_i$

Def. 3: Um conjunto de dados D é uma lista de eventos que pode representar uma BD.

$$D = \{e^n = (x^n, y^n), n = 1, ...N\},\$$

onde N é o número de eventos, e $x_i^n \in A_i$ representa o valor do atributo i do evento n e $y_i^n \in C_i$ representa a classe j do evento n.

Nota: D é um conjunto com N eventos, os quais são pares ordenados (x^n, y^n) , onde $x^n \in \mathcal{A}$ e $y^n \in \mathcal{C}$.

Exemplo 1: Seja $A_1 = \mathbb{N}_0$, $A_2 = \{azul, vermelho, laranja\}$, $A_3 = \{1, 2, 3\}$, $C_1 = \{yes, no\}$ e $C_2 = \mathbb{R}$. Considere ainda a vase de dados D com os seguintes eventos:

n	A1	A2	A3	C1	C2
1	1	azul	1	yes	1.32
2	17	vermelho	3	no	4.17
3	0	laranja	3	yes	2.22
4	4	laranja	2	yes	7.44

Represente o conjunto *D* em extensão.

1.1 Dados nominativos ou categóricos

Constituem uma lista finita de objetos sem regras particulares entre eles. A **única** operação que podemos fazer é dizer se 2 destes dados são iguais ou diferentes.

Se A é um conjunto de dados categóricos. Para 2 elementos $x, x' \in A$ temos que x = x' ou $x \neq x'$.

Seja agora $A = \{a_1, a_2, ..., a_I\}$ é um conjunto com I dados categóricos. Seja $D = \{x^1, x^2, ..., x^N\}$ um conjunto, onde $x^n \in A$.

Podemos definir as frequências absolutas e relativas, a saber,

 $N_i = |\{x \in D : x = a_i\}|$ representa o número de ocorrências do atributo a_i em D

 $f_i = \frac{N_i}{N}$ i = 1,...I representa o rácio entre o número de ocorrências do atributo a_i em D e o número de elementos de D.

Exemplo 2:

Considere que $A = \{banana, gato, rato, caixa, caneta\}$ define um atributo A. Considere ainda a base de dados

 $D = \{banana, gato, rato, banana, banana, caixa, caneta, caixa, caneta, gato\}$ onde os seus eventos são objetos de A.

Temos que N = |D| = 10. $N_1 = 3$, $N_2 = 2$, $N_3 = 1$, $N_4 = 2$ e $N_5 = 2$. Pelo que $f_1 = 0.3$, $f_2 = 0.2$, $f_3 = 0.1$, $f_4 = 0.2$ e $f_5 = 0.2$.

1.2 Dados binários

- $A = \{0, 1\}.$
- Complementaridade, $x \in A \land \neg x \in A$, $\{x\}U\{\neg x\} = A$, $x \neq \neg x$.
- Pode-se aplicar lógica binária: $x \wedge x'$, $x \vee x'$, $x \oplus x'$, ...
- Uma vez que $A=\{0,1\}$ também pode ser considerado dados categóricos, para $D=\{x^1,x^2,...,x^N\}$ com $x^i\in A$, podemos definir, $N_0=|\{x\in D:x=0\}|,\ N_1=|\{x\in D:x=1\}|,\ f_0=\frac{N_0}{N}$ e $f_1=\frac{N_1}{N}$.
- Se tivermos 2 conjuntos D e D' com N elementos, respectivamente $x \in A$ e $x' \in A$, podemos definir,

$$M00 = |\{x^n = 0 \land x'^n = 0\}| \text{ com } n = 1,..N$$

$$M01 = |\{x^n = 0 \land x'^n = 1\}| \text{ com } n = 1,..N$$

$$M10 = |\{x^n = 1 \land x'^n = 0\}| \text{ com } n = 1,..N$$

$$M11 = |\{x^n = 1 \land x'^n = 1\}| \text{ com } n = 1,..N$$

Se o conjunto D representar os dados reais e D' o resultado duma classificação dos dados, temos aqui os ingredientes duma **Tabela de Confusão**.

Uma das avaliações é $Accuracy = \frac{M00+M11}{M00+M01+M10+M11}$.

7	0	1
0	M00	M01
1	M10	M11

Binarização de dados: Por vezes podemos binarizar os dados, mas, temos que ter o cuidado de usar **princípio de exclusão**.

Exemplo 3: $A = \{red, blue, green\}$. Se $D = \{x^1, x^2, ..., x^N\}$ onde $x^i \in A$ com i = 1, ..., N.

Cada evento de D pode ser red ou blue ou green. Se for red, não é blue ou green.

Binarizar os dados, significa representar os mesmos dados duma forma 'binária'. Assim, podemos considerar $A_1=\{0,1\},\ A_2=\{0,1\},\ A_3=\{0,1\}.$

Se
$$x = blue \rightarrow x' = (1, 0, 0)$$

Se
$$x = green \rightarrow x' = (0, 1, 0)$$

Se
$$x = red \to x' = (0, 0, 1)$$

NOTA:
$$x \in A \rightarrow x' \in A_1 \times A_2 \times A_3 + P$$
. exclusão

Ou seja, não podemos ter por exemplo x' = (1, 1, 1).

1.3 Dados Ordenados.

Vamos agora considerar $A = \{a_1, a_2, a_3, ..., A_I\}$ um conjunto ordenado. Ou seja, existe um operador \leq que verifica as propriedades:

- i) $\forall x \in A, x \leq x$;
- ii) $\forall x, x' \in A \ [x \le x' \land x' \le x \rightarrow x = x'].$
- iii) $\forall x, x', x'' \in A \ [x \le x' \land x' \le x'' \rightarrow x \le x''].$
- iv) $\forall x, x' \in A [x \le x' \lor x' \le x].$

Se A fôr conjunto ordenado então:

- não podemos quantificar diferença não faz sentido grande pequeno.
- não podemos aritemizar dados grande pequeno = medio?
- podemos definir operações MAX e MIN entre 2 objetos de A.
- podemos definir estatísticas a partir dum conjunto de dados A.

Seja $D = \{x^1, x^2, x^3, ..., x^n\}$ onde $x^i \in A$. Podemos definir,

$$N_i = |\{x \in D : x = a^i\}| \text{ com } i = 1, ..., N.$$

 $P_i = \sum_{j \leq i} N_j$ que representa a frequência absoluta acumulada.

para $\alpha \in [0,1]$ podemos definir $E_{\alpha} = floor(\alpha.N)$ tal que,

$$E_{\alpha} \leq \alpha.N \leq E_{\alpha} + 1$$

Nota: O modo $a \in A$ associado a α é o valor de $a_i \in A$ tal que $P_{i-1} < E_{\alpha} \le P_i$ (com $P_0 = 0$). A mediana corresponde a $\alpha = 1/2$.

Exemplo 4: Seja $A = \{small, medium, large, huge\}.$

 $D = \{large, large, medium, huge, small, large, small, medium, large, small, medium, medium\}$. Qual a mediana?

$$N_1 = 3$$
 , $N_2 = 4$, $N_3 = 4$, $N_4 = 1$;

A mediana corresponde ao valor $a_i \in A$ tal que $P_{i-1} < floor(0.5 \times 12) \le P_i$.

$$P_0 = 0, P_1 = 3, P_2 = 7, P_3 = 11, P_4 = 12.$$

Se
$$i = 1 \rightarrow P_0 < floor(0.5 \times 12) \leq P_1$$
 (falso).

Se
$$i=2 \rightarrow P_1 < floor(0.5 \times 12) \leq P_2 \text{ (verdadeiro)} \rightarrow \text{mediana} = a_2 = \textit{medium}.$$

1.4 Dados tipo monóide - string.

Seja $\varepsilon = \{\epsilon, a, b, c, ..., z\}$ a que chamamos alfabeto. Um monóide livre é ε^* constituido por todas as listas finitas e ordenadas I, baseadas em ε com a operação de concatenação +, tal que,

- i) $\forall I \in \varepsilon^*$, $I + \epsilon = \epsilon + I = I$, onde ϵ é o elemento neutro.
- ii) $\forall I, I', I'' \in \varepsilon^*, (I + I') + I'' = I + (I' + I'').$

Um monóide livre ε^* corresponde a todas as palavras que se conseguem definir com as letras de ε . |I| representa o número de elementos da lista I. I_k corresponde à letra k da lista I.

Podem-se definir operações tais como:

Eliminação: E(I, k), elimina a letra k da lista I.

Inserção: $I(I, k, \alpha)$, que insere o elemento α na posição k da lista I.

Outras como Substituição, permutação, poderiam ser definidas...

O portugues usa monóides de monóides, onde, $\varepsilon = \{\epsilon, a, b, c, ..., z\}$ é o alfabeto, palavras $\subset \epsilon^*$, $S = \{palavras, \epsilon, \}$, S^* poderá ser todos os textos que se podem escrever.

1.5 Números discretos.

Por exemplo os números inteiros \mathbb{Z} .

Propriedades: ordenados, operçes +, -, \times , divisão euclidiana %.

Proposição: Sejam $a, b \in A$ com b > 0. Existe $q \in A$ com $0 \le r < b$ tal que a = a.q + r. q é o queiente da divisão e r é o seu resto.

Como temos atributos ordenados, o representante dum conjunto cujos elementos são inteiros poderá ser a mediana.

Como temos divisão Euclidiana o representante dum conjunto cujos elementos são inteiros poderá ser a média.

Exemplo 5: Considere $A = \mathbb{Z}$, $D = \{7, 8, 3, 4, 1, 9, 7, 0\}$. Calcule os representantes de D.

 $S=7+8+3+4+1+9+7+0=39, \rightarrow 39~\%$ 8 tem quociente q=4 e resto r=7. Se Representante fôr média, então é 4.

Ordenando D, temos $DO = \{0, 1, 3, 4, 7, 7, 8, 9\}$. Se pretendemos a mediana, callculamos $\frac{N}{2} = 4$. Se N é ímpar escolhemos elemento do meio. Senão o utilizador pode definir critério, por exemplo o elemento $ceil(\frac{N}{2})$ ou $floor(\frac{N}{2})$ ou mesmo o elemento que corresponde média entre este 2 últimos.

1.6 Números Reais e seus derivados.

 $A = \mathbb{R}$ ou afins. É o tipo mais usado em ML:

Temos a noção de continuidade entre os valores.

Propriedades: aritemética $(+,-,\times,\%)$, logo podemos calcular média; ordenado logo podemos calcular mediana, quartis, etc.

Exemplo 6: Vetores de \mathbb{R}^2 .

Podemos por exemplo definir $A_i = \mathbb{R}$, $i = 1, 2 \rightarrow \mathcal{A} = \mathbb{R}^2$.

Aritemética: vetores (+,-) como soma e subtração de vetores. para os valores (componentes) $(\times,\%)$ a multiplicação e divisão reais.

Não há ordem natural em $\mathbb{R}^2.$ Poderá ser introduzida usando preferências (regras a definir) .

Muitas outros exemplos poderiam ser considerados.