С.К. Кожухов

УРАВНЕНИЯ И НЕРАВЕНСТВА С ПАРАМЕТРОМ

Учебно-методическое пособие для учителей математики, студентов математических специальностей педагогических вузов, абитуриентов

Кожухов С.К.

Уравнения и неравенства с параметром. – Орел, 2013

В пособии систематизирован опыт работы автора по изучению темы "Уравнения и неравенства с параметром" в классах физикоматематического профиля. Оно содержит большое число разобранных примеров, к каждой теме предлагаются упражнения для самостоятельного решения. Данное пособие можно использовать при подготовке к сдаче ЕГЭ по математике.

Книга адресована учителям математики, студентам математических специальностей педагогических вузов, выпускникам средних учебных заведений.

Предисловие

Решение уравнений и неравенств, содержащих параметр, является, пожалуй, одним из самых трудных разделов элементарной математики. Это связано с тем, что в школе стараются развить умения и навыки решения определенного набора стандартных задач, связанных часто с техникой алгебраических преобразований. Задачи с параметром относятся к другому типу. Для их решения обычно требуются гибкость мышления, логика в рассуждениях, умение хорошо и полно анализировать ситуацию.

Опыт показывает, что учащиеся, владеющие методами решения задач с параметром, успешно справляются и с другими задачами. Именно поэтому задачи с параметром обладают диагностической и прогностической ценностью.

На протяжении ряда лет многие вузы включают уравнение (неравенство) с параметром в задания вступительных экзаменов (олимпиад). Но до сих пор задача с параметром остается самой "неудобной" для абитуриентов. Более того, в последние годы задачи с параметром регулярно встречаются в вариантах ГИА и ЕГЭ. И здесь далеко не все школьники приступают к решению этих заданий, и еще меньшее число — выполняют решение верно.

Автор надеется, что предлагаемое пособие поможет старшеклассникам самостоятельно овладеть некоторыми приемами решения уравнений и неравенств с параметром, а учителям — планомерно организовать работу по данной теме в классе на уроке или факультативных занятиях (элективных курсах).

Введение

Параметр (от греческого "parametron" – отмеривающий) – величина, значения которой служат для различения элементов некоторого множества между собой.

С использованием параметров проводятся исследования многих систем и процессов реальной жизни. В частности, в физике в качестве параметров могут выступать температура, время и др. В математике параметры вводятся для обозначения некоторой совокупности объектов. Так, уравнение $(x-a)^2+(y-b)^2=c^2$ с параметрами a, b и c определяет совокупность всех окружностей; уравнение $(x-a)^2+(y-b)^2=1$ – всех единичных окружностей; уравнение $x^2+y^2=c^2$ – совокупность концентрических окружностей с центром в начале координат.

Рассмотрим с точки зрения алгебры, как определяется уравнение (неравенство) с параметром.

Пусть P(x; a) (I) — предложение с двумя переменными, где $x \in R$ и $a \in R$. Если переменным x и a придать числовые значения x_i , a_i из множества R, то может получиться:

- запись, лишенная смысла (Например, в уравнении $\frac{x}{a} = 3$ при x = 3, a = 0),
- ложное высказывание (Например, в уравнении $\frac{x}{a} = 3$ при x = 3, a = -1),
- истинное высказывание (Например, в уравнении $\frac{x}{a} = 3$ при x = 3, a = 1).

Множество всех (x_i, a_i) , при которых имеем 2-й или 3-й случай называется областью допустимых значений переменных (ОДЗ).

Множество всех (x_i, a_i) , при которых имеем 3-й случай называется областью истинности (ОИ) данного высказывания.

Если в высказывании (I) переменной a придать какое-либо значение a_i из ОДЗ, то (I) станет предложением с одной переменной: P(x) (II), которое имеет свою ОДЗ и ОИ.

Таким образом, для любого a_i из ОДЗ можно рассматривать предложение с переменной P(x) и находить его ОИ. В этом случае предложение P(x; a) называется предложением с одной переменной (x) и параметром (a).

Замечания.

- 1) В качестве предложений с переменной и параметром в школьном курсе чаще всего рассматриваются уравнения, неравенства и их системы.
- 2) Такой алгебраический подход позволяет определить уравнения (неравенства) не только с одним, но и с любым конечным числом параметров.
- 3) В некоторых школьных учебниках и пособиях для абитуриентов уравнение (неравенство) с параметром определяется более примитивно: «Это уравнение (неравенство), в запись которого, кроме неизвестных, входят числа, обозначенные буквами».
- 4) В школьном курсе математики чаще всего решаются задачи с одним параметром (реже с двумя или тремя).
- 5) В задачах с параметром переменные обозначаются, как правило, x, y, z, t, а параметры a, b, c, p, n, k, m. Однако при решении ряда задач бывает целесообразно придать параметру статус переменной, а переменной статус параметра. Такой подход называется решением относительно параметра. В самом деле, предложение P(x; a) можно считать как предложением с переменной (x) и параметром (x).

В отношении уравнений (неравенств) с параметром чаще всего встречаются две постановки задачи.

- 1) Для каждого значения параметра найти все решения заданного уравнения (неравенства).
- 2) Найти все значения параметра, при каждом из которых решения уравнения (неравенства) удовлетворяют заданным требованиям.

Основной принцип решения уравнений (неравенств) с параметром состоит в следующем: нужно разбить область допустимых значений параметра на такие участки, в каждом из которых уравнение (неравенство) решается одним и тем же способом. Отдельно для каждого такого участка находятся решения, зависящие от значений параметра. Ответ к уравнению (неравенству) состоит из списка участков изменения параметра с указанием для каждого из них всех решений этого уравнения (неравенства).

Замечания.

- 1) Указанный подход к решению задач с параметром часто называется методом ветвления.
- 2) Для осуществления такого плана нужно знать "граничные" или "контрольные" значения параметра, которые разбивают ОДЗ на указанные участки. Поиск этих значений тесно связан со спецификой параметра и его двойственной природой ("число" "неизвестная").

Специфика уравнений (неравенств) с параметром состоит в том, что изменение значений параметра влечет за собой изменение не только коэффициентов, но и ряда других характеристик.

- 1) Степень уравнения (Например, уравнение $ax^2 3x + 6 = 0$ при a = 0 является линейным, а при $a \neq 0$ квадратным).
- 2) Характер монотонности функции (Например, функция $y = \log_a x$ при a > 1 является возрастающей, а при 0 < a < 1 убывающей).
- 3) *ОДЗ переменной* (Например, в неравенстве $\sqrt{ax} > x+1$ область допустимых значений переменной также зависит от a: при a=0 ОДЗ: $x \in R$, при a>0: ОДЗ: $x \ge 0$, при a<0 ОДЗ: $x \le 0$).

§1. Линейные уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Для каждого значения параметра a выясните, какое из чисел больше: 3a или 2a+1.

♦ Найдем разность данных чисел: 3a - 2a - 1 = a - 1.

При a = 1 разность равна нулю, следовательно, числа равны.

При a > 1 разность положительна, следовательно, первое число больше.

При a < 1 разность отрицательна, следовательно, первое число меньше.

Ответ: при a=1 числа равны, при a>1 первое число больше, при a<1 второе число больше.

ПРИМЕР 2. Решите уравнение $a^2(x-1) + 6x = (5x-2)a$.

♦ После преобразований данное уравнение примет вид:

$$(a-2)(a-3)x = a(a-2)$$
.

Для того, чтобы выразить х нужно будет поделить a(a-2) на (a-2)(a-3). Но выполнение этой операции возможно не всегда (делить на нуль нельзя). Все выше сказанное определяет дальнейший ход рассуждений: исследовать случаи, когда коэффициент при х равен нулю и когда – отличен от нуля.

Если a = 2, то уравнение примет вид 0x=0. Решением полученного уравнения является любое действительное число.

Если a = 3, то уравнение примет вид 0x = 3. Решений нет.

Если
$$a \neq 2$$
 и $a \neq 3$, то $x = \frac{a(a-2)}{(a-2)(a-3)} = \frac{a}{a-3}$.

Ответ: при a = 2 $x \in R$; при a = 3 решений нет;

при
$$a \ne 2$$
 и $a \ne 3$ $x = \frac{a}{a-3}$.

ПРИМЕР 3. Решите неравенство $(a-2)(a-3)x \ge a(a-2)$.

◆ Ход рассуждений при решении этого неравенства частично схож с рассуждениями в предыдущем примере. Принципиальное же отличие состоит в том, что отдельно нужно рассмотреть случаи, когда коэффициент при х равен нулю, положительный и отрицательный. Это связано с тем, что деление обеих частей неравенства на положительное число не меняет знак неравенства, в то время как деление обеих частей неравенства на отрицательное число приводит к замене знака неравенства ему противоположным. Следующий рисунок показывает, при каких значениях параметра а число (a-2)(a-3) равно нулю, при каких — положительно, а при каких — отрицательно.

Если a=2, то неравенство примет вид $0x \ge 0$. Решением полученного неравенства является любое действительное число.

Если a = 3, то неравенство примет вид $0x \ge 3$. Решений нет.

Если
$$a \in (2;3)$$
, то $x \le \frac{a}{a-3}$.

Если
$$a \in (-\infty; 2) \cup (3; +\infty)$$
, то $x \ge \frac{a}{a-3}$.

Ответ: при a = 2 $x \in R$; при a = 3 решений нет;

при
$$a \in (2;3)$$
 $x \le \frac{a}{a-3}$; при $a \in (-\infty; 2) \cup (3;+\infty)$ $x \ge \frac{a}{a-3}$.

ПРИМЕР 4. Решите уравнение с параметром $\left(\frac{25}{a} - a\right) x = a - \frac{5}{a} - 4$.

• При a = 0 данное уравнение теряет смысл, а значит, и не имеет корней. При $a \neq 0$ исходное уравнение приводится к уравнению следующего вида: (5-a)(5+a)x = (a-5)(a+1).

Если a = 5, то решением является любое действительное число.

Если a = -5, то уравнение решений не имеет.

Если
$$a \neq 5$$
 и $a \neq -5$, то $x = -\frac{a+1}{a+5}$.

Ответ: при a = 0 и a = -5 решений нет; при a = 5 $x \in R$,

при
$$a \neq -5$$
, $a \neq 0$ и $a \neq 5$ $x = -\frac{a+1}{a+5}$.

ПРИМЕР 5. Решите неравенство ax < b.

• Пример 3 уже предопределяет ход рассуждений при решении этого неравенства: нужно рассмотреть случаи a = 0, a > 0, a < 0. Заметим, что значения параметра b являются существенными только в первом случае, когда a = 0.

Если a=0 и b>0, то решением неравенства является любое действительное число.

Если a = 0 и $b \le 0$, то неравенство не имеет решений.

Если
$$a > 0$$
, то $x < \frac{b}{a}$.

Если
$$a < 0$$
, то $x > \frac{b}{a}$.

Ответ: при a=0 и b>0 $x\in R$; при a=0 и $b\leq 0$ решений нет;

при
$$a > 0$$
 $x < \frac{b}{a}$; при $a < 0$ $x > \frac{b}{a}$.

ПРИМЕР 6. Для каждого значения параметра a укажите количество решений (x; y) системы уравнений $\begin{cases} 3y - (a-2)x = 5, \\ 3ay + (3a-6)x = 10. \end{cases}$

решение. При
$$a \neq 0$$
 получаем систему
$$\begin{cases} y = \frac{a-2}{3}x + \frac{5}{3}, \\ y = \frac{2-a}{a}x + \frac{10}{3a}. \end{cases}$$

Эта система может а) не иметь решений; б) иметь бесконечно много решений; в) иметь единственное решение.

a)
$$\begin{cases} \frac{a-2}{3} = \frac{2-a}{a}, \\ \frac{5}{3} \neq \frac{10}{3a} \end{cases} \Leftrightarrow a = -3.$$
 6)
$$\begin{cases} \frac{a-2}{3} = \frac{2-a}{a}, \\ \frac{5}{3} = \frac{10}{3a} \end{cases} \Leftrightarrow a = 2.$$

в) $\frac{a-2}{3} \neq \frac{2-a}{a}$. Решением этого неравенства будут все a, кроме -3; 0; 2.

Ответ: при a=-3 решений нет; при a=2 бесконечно много решений; при $a\neq -3$ и $a\neq 2$ одно решение.

ПРИМЕР 7. Найти все значения параметра a, при каждом из которых уравнение a|x-1|=x+2 имеет ровно один корень. Укажите этот корень для каждого такого значения a.

 $lack Для того чтобы перейти от данного уравнения к уравнению, не содержащему модуль, нужно рассмотреть два случая: <math>x \ge 1$ и x < 1. После раскрытия модуля исходное уравнение примет вид линейного. Однако нужно помнить, что значение x, найденное, например, в первом случае, должно удовлетворять условию $x \ge 1$. В противном случае корень будет посторонним. Аналогично для второго случая. Таким образом, получим:

<u>1 случай</u>. Если $x \ge 1$, то данное уравнение примет вид a(x-1) = x+2. После преобразований получим (a-1)x = a+2. При a=1 корней нет.

При $a \ne 1$ $x = \frac{a+2}{a-1}$. Найденное значение x является корнем исходного урав-

нения при выполнении условия $x \ge 1$. Решим неравенство $\frac{a+2}{a-1} \ge 1$.

После преобразований получим равносильное ему неравенство $\frac{3}{a-1} \ge 0$, решением которого будут все $a \in (1; +\infty)$. Таким образом, только при $a \in (1; +\infty)$ $x = \frac{a+2}{a-1}$ является корнем исходного уравнения.

<u>2 случай</u>. Если x < 1, то данное уравнение примет вид a(1-x) = x + 2. После преобразований получим (a+1)x = a-2. При a = -1 корней нет.

При $a \neq -1$ $x = \frac{a-2}{a+1}$. Найденное значение x является корнем исходного

уравнения при выполнении условия x < 1. Решим неравенство $\frac{a-2}{a+1} < 1$.

После преобразований получим равносильное ему неравенство $\frac{-3}{a+1} < 0$, решением которого будут все $a \in (-1; +\infty)$. Таким образом, только при $a \in (-1; +\infty)$ $x = \frac{a-2}{a+1}$ является корнем исходного уравнения.

Отметим на числовой оси значения параметра a, при которых исходное уравнение имеет найденные корни.

Видим, что при $a \in (-1;1]$ (на рисунке одна штриховка) уравнение

имеет ровно один корень. Этот корень $x = \frac{a-2}{a+1}$.

Otbet: $a \in (-1, 1]$; $x = \frac{a-2}{a+1}$.

УПРАЖНЕНИЯ

№ 1. Для каждого значения параметра a сравните числа

б)
$$a$$
 и a^{2} .

№ 2. Для каждого значения параметра a решите уравнение

a)
$$(a-7)(a-3)x = (a+1)(a-7)$$
;

6)
$$a^2(x-1) = 4x + 3a + 2$$
;

B)
$$ax = 5x - 1$$
;

$$\Gamma\left(\frac{4}{a}-a\right)x=1-a+\frac{2}{a};$$

$$\pi$$
д) $\frac{ax-1}{a+2} = 3$;

e)
$$|x+1|=a-3$$
;

ж)
$$a^3(x-a) = 9(ax-9)$$
;

3)
$$||x|-a|=2$$
.

№ 3. Для каждого значения параметра a решите неравенство

a)
$$(a+5)(a-1)x > a(a-1)$$
;

6)
$$ax \le x+3$$
;

B)
$$a^2(x-1) < 9x - 5a + 6$$
;

$$\Gamma\left(1-\frac{3}{a}\right)x \le 1+\frac{2}{a};$$

д)
$$|x+1| \le a-3$$
;

e)
$$|x-2a| < |x|$$
;

ж)
$$a^3(x-a) \le 9ax - 81$$
;

3)
$$16-4ax > a^4-a^3x$$
.

№ 4. Решите уравнение (неравенство) с параметрами a и b

a)
$$(a^2 - 1)x = b$$
;

$$6) \ ax = \frac{1}{b};$$

B)
$$(a+1)x \ge b-1$$
:

$$\Gamma$$
) $(a^2 + b^2)x = b^4 - a^4$.

№ 5. Для каждого значения параметра a решите систему уравнений

a)
$$\begin{cases} ax + 2y = 6, \\ 2x - y = 1; \end{cases}$$
 6) $\begin{cases} -4x - ay = 4, \\ ax + y = 2. \end{cases}$

№ 6. Найдите все значения параметра a, при каждом из которых уравнение a|x+4|=x+2 имеет ровно два корня. Укажите эти корни.

№ 7. Найдите все значения параметра a, при каждом из которых уравнение a|x-5|=x+1 имеет ровно один корень.

№ 8. Найдите все значения параметра a, при каждом из которых неравенство a|x+4|>x+2 выполняется для любого действительного x;

№ 9. Найдите все значения параметра a, при каждом из которых неравенство $a|x+3| \ge 5-x$ не имеет решений.

№ 10.Для каждого значения параметра a решите уравнение |x-a|+|x|=a .

§2. Квадратные уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Решите уравнение с параметром $x^2 - 2x + a = 0$.

lacktriangledown Ясно, что количество корней квадратного уравнения зависит от значения дискриминанта. Поэтому решение задачи будет связано с анализом значений дискриминанта данного уравнения $D_1 = 1 - a$.

Если a > 1, то $D_1 < 0$. В этом случае уравнение не имеет корней.

Если a = 1, то $D_1 = 0$. В этом случае получим один корень x = 1.

Если a < 1, то $D_1 > 0$, следовательно, уравнение имеет два различных действительных корня $x = 1 \pm \sqrt{1-a}$.

Ответ: при a > 1 решений нет;

при
$$a = 1$$
 $x = 1$;

при
$$a < 1$$
 $x = 1 \pm \sqrt{1-a}$.

¹ Часто говорят, что в этом случае уравнение имеет два равных корня.

ПРИМЕР 2. Найдите все значения a, при каждом из которых уравнение $ax^2 - 2x + a = 0$ имеет ровно один корень. Для каждого такого a укажите этот корень.

◆ Было бы неверно сразу найти дискриминант и приравнять его к нулю. Дело в том, что данное уравнение не при всех значениях параметра а является квадратным. Поэтому сначала нужно исследовать случай, когда уравнение будет линейным и только потом переходить к рассмотрению дискриминанта квадратного уравнения.

Если a=0, то уравнение примет вид -2x=0. Его корень x=0.

Если $a \neq 0$, то уравнение является квадратным. $D_1 = 1 - a^2$. $D_1 = 0$ при a = -1 или a = 1, причем, если a = -1, то x = -1; если a = 1, то x = 1.

Ответ: при a = 0 x = 0, при a = -1 x = -1, при a = 1 x = 1.

ПРИМЕР 3. Найдите все значения a, при каждом из которых ровно один корень уравнения $x^2 - 2ax + a^2 - 1 = 0$ принадлежит интервалу (-3; 3).

• Корнями данного квадратного уравнения являются x = a - 1 и x = a + 1. Заметим, что при любом значении параметра a корни различны, так как a-1 < a+1.

Найдем все a, при которых первый корень принадлежит интервалу (-3; 3): -3 < a - 1 < 3, откуда -2 < a < 4. Далее аналогично определяем, что при -4 < a < 2 второй корень принадлежит интервалу (-3; 3).

Приведенный рисунок наглядно показывает, что при $a \in (-4; -2] \cup [2; 4)$ (на этих участках одна штриховка) ровно один корень уравнения принадлежит интервалу (-3; 3).

Ответ: $a \in (-4, -2] \cup [2, 4)$.

ПРИМЕР 4. Найдите все значения a, при каждом из которых неравенство $x^2 - (2a+1)x + a^2 + a - 12 \le 0$ выполняется при любом $x \in (1; 2)$.

• Корнями квадратичной функции $y = x^2 - (2a+1)x + a^2 + a - 12$ являются x = a - 3 и x = a + 4, причем a - 3 < a + 4 для любого значения параметра a. Решением неравенства будет отрезок [a - 3; a + 4]. Очевидно, что требование задачи будет выполнено, если интервал (1; 2) целиком содержится в отрезке [a - 3; a + 4].

Решая систему $\begin{cases} a-3 \le 1, \\ a+4 \ge 2, \end{cases}$ находим $-2 \le a \le 4$.

Otbet: $-2 \le a \le 4$.

ПРИМЕР 5. Для каждого a решите неравенство (x+15)(x-3a) < 0.

• Корнями квадратичной функции f(x) = (x+15)(x-3a) являются x = -15 и x = 3a. Так как однозначно указать, какое из этих чисел больше, а какое — меньше, нельзя, то рассмотрим все возможные случаи:

1)
$$-15 < 3a \Leftrightarrow a > -5$$
.

$$15 < x < 3a$$
.

2)
$$-15 = 3a \Leftrightarrow a = -5$$
.

Решений нет.

3)
$$-15 > 3a \Leftrightarrow a < -5$$
.

$$3a < x < -15$$
.

Ответ: при a > -5

$$x \in (-15; 3a);$$

при a = -5 решений нет;

при
$$a < -5 \ x \in (3a; -15)$$
.

ПРИМЕР 6. Для каждого значения параметра a решите неравенство $ax^2 - (2a+1)x + 2 > 0$.

• Сразу заметим, что при a=0 неравенство будет линейным, а при $a \neq 0$ – квадратным. В случае квадратного неравенства важен знак числа a, потому что именно он будет определять, куда направлены ветви параболы – графика квадратичной функции $y = ax^2 - (2a+1)x + 2$, $(a \neq 0)$.

Если a=0, то исходное неравенство примет вид -x+2>0, откуда x<2. Если $a\neq 0$, то данное неравенство является квадратным. Корни квадратичной функции $y=ax^2-(2a+1)x+2$: x=2 или $x=\frac{1}{a}$.

При a < 0 ветви параболы направлены вниз. Кроме того, при a < 0 $2 > \frac{1}{a}$.

В этом случае решением неравенства будут все $x \in \left(\frac{1}{a}; 2\right)$.

При a>0 ветви параболы направлены вверх, однако нельзя однозначно указать, какой корень квадратичной функции больше, а какой меньше. Необходимо рассмотреть все возможные варианты.

При a=0,5 корни квадратичной функции совпадают, и решением неравенства являются все $x \in (-\infty; 2) \cup (2; +\infty)$.

При 0 < a < 0.5 $2 < \frac{1}{a}$. В этом случае решения: $x \in (-\infty; 2) \cup (\frac{1}{a}; +\infty)$.

При a>0,5 $2>\frac{1}{a}$. Решением неравенства будут все $x\in\left(-\infty;\frac{1}{a}\right)\cup(2;+\infty)$.

Ответ: при a < 0 $x \in \left(\frac{1}{a}; 2\right)$, при a = 0 $x \in (-\infty; 2)$,

при
$$0 < a < 0.5$$
 $x \in (-\infty; 2) \cup (\frac{1}{a}; +\infty),$

при
$$a = 0.5$$
 $x \in (-\infty; 2) \cup (2; +\infty)$, при $a > 0.5$ $x \in \left(-\infty; \frac{1}{a}\right) \cup (2; +\infty)$.

УПРАЖНЕНИЯ

№ 1. Для каждого значения параметра a решите уравнение

a)
$$x^2 + 6x + a = 0$$
;

6)
$$x^2 - 2ax + 5a - 6 = 0$$
:

a)
$$x^2 + 6x + a = 0$$
; 6) $x^2 - 2ax + 5a - 6 = 0$; b) $2x^2 - 3ax - 2a^2 + 2 = 0$;

$$\Gamma$$
) $x^2 - 3ax + 4 = 0$;

$$\Gamma$$
) $x^2 - 3ax + 4 = 0$; д) $(a+4)x^2 - 6x + a - 4 = 0$; e) $ax^2 + 2x + 1 = 0$.

e)
$$ax^2 + 2x + 1 = 0$$

№ 2. Для каждого значения параметра a определите, сколько различных действительных корней имеет уравнение

a)
$$(a-1)x^2 + 2(a+1)x + a - 2 = 0$$
; 6) $(a+10)x^2 - 2(a-2)x + 2 = 0$.

$$6) (a+10)x^2 - 2(a-2)x + 2 = 0$$

№ 3. Для каждого значения параметра a решите неравенство

6)
$$x^2 - 4x + 8a - a^2 - 12 > 0$$

B)
$$x^2 + ax + 1 > 0$$
:

$$\Gamma$$
) $ax^2 + x + 1 < 0$;

д)
$$(1+a)x^2-2ax+a-3 \le 0$$

д)
$$(1+a)x^2 - 2ax + a - 3 \le 0$$
; e) $\frac{x^2}{a} - 2x - \frac{x}{a} + a + 1 > 0$.

№ 4. Найдите все значения параметра a, при которых для уравнения (неравенства) выполняется следующее условие:

- а) оба корня уравнения $x^2 (3a + 3)x + 2a^2 + 6a = 0$ меньше двух;
- б) ровно один корень уравнения $5x^{2} + (5-6a)x + a^{2} a = 0$ принадлежит интервалу (0; 2);

- в) один из корней уравнения $x^2 + ax + a^2 3a 4 = 0$ равен 1, а другой отрицательный;
- г) неравенство $ax^2 + (a-1)x + a 3 < 0$ верно при любом значении x;
- д) неравенство $x^2 (2a+1)x + a^2 + a 2 \ge 0$ выполняется для любого $x \in (1; +\infty)$.

№5. Для каждого значения a решите уравнение $x^2 - 2a \cdot |x| + a^2 - 4 = 0$.

§3. Дробно-рациональные уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Решите уравнение с параметром $\frac{a-1}{x} = \frac{a}{x+1}$.

◆ План решения этого уравнения состоит в следующем: после преобразований получить линейное уравнение, найти его корень и выяснить, при каких значениях параметра он является посторонним (обращает знаменатель дроби в нуль).

Область допустимых значений переменной (ОД3): $x \neq 0$ и $x \neq -1$. На ОД3 исходное уравнение равносильно уравнению (a-1)(x+1) = ax, откуда находим x = a - 1. Теперь выясним, при каких значениях параметра a найденное значение x является посторонним корнем для исходного уравнения: a-1=0 при a=1; a-1=-1 при a=0.

Ответ: при a = 1 и a = 0 корней нет, при $a \ne 1$ и $a \ne 0$ x = a - 1.

ПРИМЕР 2. Решите уравнение с параметром $\frac{x+2}{a+1} = \frac{2x-a-1}{x-2}$.

• Сразу заметим, что при a = -1 уравнение теряет смысл, а следовательно, не имеет корней. Далее рассматриваем только случай $a \neq -1$.

ОДЗ: $x \neq 2$. На ОДЗ исходное уравнение равносильно уравнению (x+2)(x-2) = (2x-a-1)(a+1). После преобразований получим уравнение $x^2-2(a+1)x+a^2+2a-3=0$, корни которого x=a-1 и x=a+3.

Первый корень принимает "запретное" значение при a=3; второй корень в этом случае равен 6. Таким образом, при a=3 уравнение имеет один корень x=6.

Второй корень принимает "запретное" значение при a=-1. Однако случай a=-1 уже был рассмотрен (при a=-1 исходное уравнение теряет смысл).

Ответ: при a = -1 корней нет, при a = 3 единственный корень x = 6, при $a \neq -1$ и $a \neq 3$ уравнение имеет два корня x = a - 1 и x = a + 3.

ПРИМЕР 3. Решите неравенство с параметром $\frac{x-a}{x-1} \ge 0$.

• Решим данное неравенство методом интервалов. Рассмотрим функцию $f(x) = \frac{x-a}{x-1}$: $D(f) = (-\infty; 1) \cup (1; +\infty)$; f(x) = 0 при x = a. Точки 1 и a разбивают числовую прямую на интервалы, в каждом из которых функция сохраняет знак. Так как определить порядок расположения этих точек на числовой прямой однозначно нельзя, то необходимо рассмотреть все воз-

Если
$$a < 1$$
, то $x \in (-\infty; a] \cup (1; +\infty)$.

можные случаи: a < 1, a = 1 и a > 1.

Если
$$a = 1$$
, то $x \in (-\infty; 1) \cup (1; +\infty)$.

Если
$$a > 1$$
, то $x \in (-\infty; 1) \cup [a; +\infty)$.

Ответ: при
$$a < 1$$
 $x \in (-\infty; a] \cup (1; +\infty)$, при $a = 1$ $x \in (-\infty; 1) \cup (1; +\infty)$, при $a > 1$ $x \in (-\infty; 1) \cup [a; +\infty)$.

УПРАЖНЕНИЯ

№ 1. Для каждого значения параметра a сравните числа

a)
$$a$$
 и $\frac{1}{a}$;

б)
$$\frac{3}{a-1}$$
 и $\frac{2}{a+1}$.

№ 2. Для каждого значения параметра a решите уравнение

a)
$$\frac{x+a}{ax} + \frac{2a-1}{x^2 - ax} = \frac{2a-1}{ax-a^2}$$
;

6)
$$\frac{2x+a-1}{x-1}=1$$
;

B)
$$\frac{x-1}{x-a} = 0$$
;

$$\Gamma$$
) $\frac{ax}{a-x}=1$;

e)
$$\frac{2x^2 - (3a+2)x + a^2 + a}{x-3} = 0$$
;

ж)
$$\frac{x^2 - (3-a)x + 3a - 2a^2}{x^2 - 9} = 0$$
; 3) $\frac{x^2 - (3a-3)x + 2a^2 - 6a}{25 - x^2} = 0$.

3)
$$\frac{x^2 - (3a - 3)x + 2a^2 - 6a}{25 - x^2} = 0$$

№ 3. Для каждого значения параметра a решите неравенство

a)
$$\frac{x+a}{2x} \ge 1$$
;

$$6) \frac{a-1}{x+a} < \frac{-1}{x};$$

B)
$$\frac{(x-a)^2}{x^2-1} \le 0$$
;

$$\Gamma$$
) $\frac{1}{x} \le a$;

д)
$$\frac{x+8}{2a-x} \ge 0$$
;

e)
$$\frac{12-x}{(x-3a)x} \le 0$$
.

§4. Теорема Виета

ПРИМЕР 1. Найдите все значения параметра a, при каждом из которых сумма квадратов корней уравнения $x^2 + ax + 4 = 0$ равна 1.

• $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$. По теореме Виета $\begin{cases} x_1 + x_2 = -a, \\ x_1 \cdot x_2 = 4. \end{cases}$ Из уравнения

 $a^2 - 8 = 1$ находим a = -3 или a = 3. Однако полученный результат нельзя считать ответом. Легко проверить, что при a = -3 и a = 3 квадратное уравнение не имеет действительных корней. Поэтому, используя теорему Виета, мы не должны забывать о существовании действительных корней уравнения.

Итак, задача сводится к решению системы $\begin{cases} a^2-16 \geq 0, \\ a^2-8=1. \end{cases}$ Эта система решений не имеет.

Ответ: таких значений параметра a нет.

Заметим, что условие $a^2-16 \ge 0$ предполагает, что при D=0 квадратное уравнение имеет также два корня (одинаковых). Если бы в условии задачи говорилось о различных корнях квадратного уравнения, то первое неравенство системы должно быть строгим: $a^2-16>0$.

ПРИМЕР 2. Найдите все значения параметра a, при которых сумма кубов различных действительных корней уравнения $x^2 - 3x + 4a = 0$ меньше 18.

D=9-16a. Если данное квадратное уравнение имеет действительные корни x_1 и x_2 , то по теореме Виета $x_1+x_2=3$, а $x_1\cdot x_2=4a$. $x_1^3+x_2^3=(x_1+x_2)((x_1+x_2)^2-3x_1x_2)=3(9-12a)=27-36a$.

Таким образом, искомые значения параметра находим из системы $\begin{cases} 9-16a>0,\\ 27-36a<18. \end{cases}$ Ее решением будет промежуток $\left(\frac{1}{4};\frac{9}{16}\right)$.

OTBET: $\frac{1}{4} < a < \frac{9}{16}$.

ПРИМЕР 3. Найдите все значения параметра a, при каждом из которых уравнение $3x^2 - 2(a+3)x - a^2 - 2a = 0$ имеет корни разных знаков.

• Необходимым и достаточным условием того, что квадратное уравнение имеет корни разных знаков $(x_1$ и $x_2)$, является неравенство $x_1 \cdot x_2 < 0$. По

теореме Виета имеем: $\frac{-a^2-2a}{3} < 0$, откуда $\begin{bmatrix} a < -2, \\ a > 0. \end{bmatrix}$

Ответ: a < -2 или a > 0.

Обратите внимание на то, что в нашем случае при выполнении неравенства $x_1 \cdot x_2 < 0$ дискриминант автоматически положителен.

ПРИМЕР 4. Найдите все значения a, при каждом из которых уравнение $x^4 - 2x^2 - a + 3 = 0$ имеет четыре различных действительных корня.

• Пусть $y = x^2$, тогда исходное уравнение примет вид $y^2 - 2y - a + 3 = 0$ (1). Исходное уравнение имеет четыре различных корня, если квадратное уравнение (1) имеет два различных положительных корня. Это возможно

$$\begin{cases} D>0,\\ y_1+y_2>0, &\text{По теореме Виета} \end{cases} \begin{cases} a>2,\\ 2>0,\\ y_1\cdot y_2>0. \end{cases}$$

откуда находим 2 < a < 3.

Ответ: 2 < a < 3.

ПРИМЕР 5. Найдите все значения a, при каждом из которых уравнение $x^2 - (a-2) \cdot |x| + a^2 - 9 = 0$ имеет ровно три различных действительных корня.

• Пусть y = |x|, тогда исходное уравнение примет следующий вид: $y^2 - (a-2)y + a^2 - 9 = 0$. Исходное уравнение имеет ровно три различных корня, если один из корней полученного квадратного уравнения равен нулю, а другой корень – положительный. По теореме Виета последнее требование достигается при выполнении системы $\begin{cases} a^2 - 9 = 0, \\ a - 2 > 0, \end{cases}$ решением кото-

рой является a = 3. Ответ: a = 3.

ПРИМЕР 6. Найдите все значения параметра a, при каждом из которых уравнение $x^2 - ax + a - 3 = 0$ имеет корни разных знаков, причем положительный корень по модулю больше.

• Корни данного квадратного уравнения удовлетворяют условию тогда и только тогда, когда их произведение будет отрицательно, а сумма положительна. По теореме Виета получим систему $\begin{cases} a-3<0, \\ a>0 \end{cases} \Leftrightarrow 0 < a < 3 \, .$

Ответ: 0 < a < 3.

ПРИМЕР 7.* Найдите все значения a, при каждом из которых попарно различные корни уравнения $x^4 + (a-5)x^2 + (a+2)^2 = 0$ являются четырьмя последовательными членами арифметической прогрессии.

• $x^4 + (a-5)x^2 + (a+2)^2 = 0$ (1). Пусть $y = x^2$ ($y \ge 0$). Тогда уравнение (1) примет вид $y^2 + (a-5)y + (a+2)^2 = 0$ (2).

Требование задачи выполняется лишь тогда, когда уравнение (1) имеет четыре различных действительных корня. Это возможно в том случае, если квадратное уравнение (2) имеет два различных положительных корня.

Если квадратное уравнение (2) имеет два различных положительных корня y_1 и y_2 ($y_1 < y_2$), то корни уравнения (1) — числа $\pm \sqrt{y_1}$ и $\pm \sqrt{y_2}$. Они будут являться четырьмя последовательными членами арифметической прогрессии, если будут расположены в порядке возрастания или убывания: $-\sqrt{y_2}$; $-\sqrt{y_1}$; $\sqrt{y_1}$; $\sqrt{y_2}$ или $\sqrt{y_2}$; $\sqrt{y_1}$; $-\sqrt{y_1}$; $-\sqrt{y_2}$. В каждом из этих случаев выполняется соотношение $3\sqrt{y_1} = \sqrt{y_2}$ (*), откуда $y_2 = 9y_1$. Рассмотрим систему уравнений, составленную на основе теоремы Виета для уравнения (2): $\begin{cases} y_1 + (9y_1) = 5 - a, \\ y_1 \cdot (9y_1) = (a+2)^2. \end{cases}$ Ее решением будут a=-5 или $a=-\frac{5}{13}$.

Далее проверкой убеждаемся, что при этих значениях, во-первых, дискриминант квадратного уравнения (2) положителен, а во-вторых, оба корня квадратного уравнения (2) больше нуля.

Заметим, что при a=-5 арифметическую прогрессию составят числа -3; -1; 1; 3. При $a=-\frac{5}{13}$ этими числами будут $-\sqrt{\frac{63}{13}}$; $-\sqrt{\frac{7}{13}}$; $\sqrt{\frac{63}{13}}$. Ответ: a=-5 или $a=-\frac{5}{13}$.

УПРАЖНЕНИЯ

- **№ 1.** Найдите все значения a, при каждом из которых квадрат разности различных действительных корней трехчлена $ax^2 4x + 3a + 1$ меньше 8.
- № 2. Найдите все значения параметра a, при каждом из которых уравнение $x^2 (9+a)x + 9 = 0$ имеет два различных действительных корня x_1 и x_2 , удовлетворяющих неравенству $\frac{1}{x_1} + \frac{1}{x_2} < 2$.
- **№ 3.** Найдите все значения параметра a, при каждом из которых сумма квадратов корней трехчлена $x^2 4ax + 5a 1$ равна 2.
- **№ 4.** Найдите все значения параметра a, при каждом из которых уравнение $x^2 + (a-2) \cdot |x| + 5 6a + a^2 = 0$ имеет ровно два различных корня.
- **№** 5. Найдите все значения параметра a, при каждом из которых уравнение $x^2 + (3+a)x + a 5 = 0$ имеет корни разных знаков, причем положительный корень по модулю меньше отрицательного.
- **№** 6. Найдите все значения параметра a, при каждом из которых квадратное уравнение $ax^2 + 2ax + 9 = 0$ имеет корни одного знака.
- **№ 7.** Найдите все значения параметра a, при каждом из которых уравнение $x^4 (a-2)x^2 + a^2 9 = 0$ имеет ровно три различных корня.
- **№ 8.** Найдите все значения параметра a, при каждом из которых уравнение $x^4 (a-3)x^2 + a^2 16 = 0$ имеет ровно один корень.
- **№ 9.** Найдите все значения параметра a, при каждом из которых уравнение $x^2 2(a+1)x + a^2 9 = 0$ имеет только положительные корни.
- **№ 10.** Найдите все значения параметра a, при каждом из которых уравнение $x^4 2(a+1)x^2 + a^2 9 = 0$ не имеет действительных корней.
- **№ 11.** Найдите все значения параметра a, при каждом из которых сумма квадратов различных действительных корней квадратного трехчлена $x^2 (a+2)x + 4$ не превосходит 17.

- **№ 12.** Найдите все значения a, при каждом из которых квадрат разности действительных корней уравнения $x^2 + (2a 2)x + a + 5 = 0$ меньше 24.
- **№ 13.** Найдите все значения параметра a, при каждом из которых уравнение $ax^2 + x + a 1 = 0$ имеет два различных действительных корня x_1 и x_2 , удовлетворяющих неравенству $\left|\frac{1}{x_1} \frac{1}{x_2}\right| > 1$.
- **№ 14.** Найдите все значения параметра a, при каждом из которых корни уравнения $x^4 + (a-3)x^2 + (a+10)^2 = 0$ являются четырьмя последовательными членами арифметической прогрессии.
- **№ 15.** Найдите все значения параметра a, при каждом из которых уравнение $x^4 + ax^2 + (a+2)^2 = 0$ имеет четыре корня, причем величины, обратные корням, образуют арифметическую прогрессию.

§5. Расположение корней квадратичной функции

Существует довольно большой класс задач с параметром, в которых необходимо делать ограничения на корни квадратичной функции $f(x) = x^2 + px + q$ (оба корня больше 5, только один корень принадлежит отрезку [-1; 1] и т.д.). В таких случаях целесообразно придерживаться следующего плана.

Если дискриминант квадратного уравнения $x^2 + px + q = 0$ является полным квадратом, то лучше найти корни уравнения и дальше работать с этими корнями (составить соответствующие неравенства).

Если дискриминант квадратного уравнения $x^2 + px + q = 0$ не является полным квадратом, то корни уравнения лучше не находить, а нужные ограничения составить на основе следующих теорем (приведем их в виде следующей таблицы).

3десь и далее x_0 – абсцисса вершины параболы.

ОГРАНИЧЕНИЕ		
НА РАСПОЛОЖЕНИЕ КОРНЕЙ КВАДРАТИЧНОЙ ФУНКЦИИ	ЭСКИЗ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ	НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ
$f(x) = x^2 + px + q$	$f(x) = x^2 + px + q$	УСЛОВИЕ ДЛЯ ПРИВЕДЕННОГО РАСПОЛОЖЕНИЯ ГРАФИКА
$\int (x) - x + px + q$	$\int (x) = x + px + q$	PACHOJOMEHNATPAGNICA
1. Оба корня больше	1 /	$D \ge 0$,
заданного числа A	x_0	$\begin{cases} f(A) > 0, \end{cases}$
		$\begin{cases} f(A) > 0, \\ x_0 > A. \end{cases}$
	$A \bigvee x$	
2. Оба корня меньше	\ /:	$\int D \ge 0$,
заданного числа В	$\setminus x_0$	f(B) > 0,
		$x_0 < B$.
	B x	C
3. Оба корня лежат в		$D \ge 0$,
интервале $(A; B)$	x_0	f(A) > 0,
		f(B) > 0,
	$A \bigcirc B x$	$A < x_0 < B$.
4. Отрезок [<i>A</i> ; <i>B</i>] лежит		
между корнями	AB	$ \begin{cases} f(A) < 0, \\ f(B) < 0. \end{cases} $
	x	f(B) < 0.
5 20-0		
5. Заданное число <i>А</i>		
лежит между корнями	$A \longrightarrow A$	f(A) < 0.
	x	
6. Только меньший	\ /	
корень входит в	\setminus B	f(A)>0,
		$\begin{cases} f(A) > 0, \\ f(B) < 0 \end{cases} \text{или} \begin{cases} f(A) > 0, \\ f(B) = 0, \\ x_0 < B. \end{cases}$
интервал $(A; B)$	$A \bigvee X$	$(x_0 < B)$
7. Только больший	\ /	
корень входит в		(f(B)>0,
		$\begin{cases} f(A) < 0, \\ f(B) > 0 \end{cases} \text{ или } \begin{cases} f(B) > 0, \\ f(A) = 0, \\ x_0 > A. \end{cases}$
интервал $(A; B)$	B x	$\int (B) > 0 \qquad (x_0 > A.$

Если в теоремах (1) и (2) в качестве чисел A и B рассматривать 0, то мы приходим к условию, идентичному тому, которое получается на основе теоремы Виета.

ПРИМЕР 1. Найдите все значения a, при каждом из которых ровно один корень уравнения $x^2 - (2a+1)x + a^2 + a - 2 = 0$ принадлежит интервалу (1; 5).

lack Дискриминант уравнения равен 9. Корни уравнения: x=a-1 и x=a+2. 1 < a-1 < 5 при 2 < a < 6; 1 < a+2 < 5 при -1 < a < 3.

Видим, что ровно один корень уравнения принадлежит интервалу (1; 5) при $-1 < a \le 2$ или $3 \le a < 6$.

Ответ: $-1 < a \le 2$ или $3 \le a < 6$.

ПРИМЕР 2. Найдите все значения a, при каждом из которых корни уравнения $x^2 - 6ax + 9a^2 - 2a + 2 = 0$ больше числа 3.

• <u>1 способ.</u> $D_1 = 2a - 2$; $x_1 = 3a - \sqrt{2a - 2}$, $x_2 = 3a + \sqrt{2a - 2}$. Для того, чтобы найденные корни были больше 3 $(3 < x_1 \le x_2)$, достаточно решить только одно неравенство: $3a - \sqrt{2a - 2} > 3$. Уединив радикал, получим неравенство $\sqrt{2a - 2} < 3a - 3$, которое будет равносильно следующей системе

$$\begin{cases} 3a-3>0, \\ 2a-2 \ge 0, \\ 2a-2 < (3a-3)^2 \end{cases} \iff \begin{cases} a>1, \\ a \ge 1, \\ 9a^2-20a+11>0 \end{cases} \Leftrightarrow a>\frac{11}{9}.$$

• <u>2 способ.</u> Рассмотрим функцию $f(x) = x^2 - 2ax + 9a^2 - 2a + 2$. Ее корни больше 3 при выполнении системы $\begin{cases} D \ge 0, \\ f(3) > 0, \text{ (теорема 1)}. \end{cases}$

$$\begin{cases} 2a-2 \ge 0, \\ 9a^2-20a+11 > 0, \iff \begin{cases} a \ge 1, \\ a \in (-\infty;1) \cup \left(\frac{11}{9}; +\infty\right), \iff a > \frac{11}{9}. \end{cases}$$

$$a > 1$$

Ответ: $a > \frac{11}{9}$.

ПРИМЕР 3. Найдите все значения a, при каждом из которых неравенство $x^2 + ax + a - 3 < 0$ выполняется для любого -2 < x < 1.

• Требование задачи выполняется, если интервал (– 2; 1) расположен между корнями квадратичной функции $f(x) = x^2 + ax + a - 3$.

Воспользуемся теоремой 4: $\begin{cases} f(-2) \le 0, \\ f(1) \le 0. \end{cases}$

$$\begin{cases} 4-2a+a-3\leq 0,\\ 1+a+a-3\leq 0 \end{cases} \Longleftrightarrow \begin{cases} a\geq 1,\\ a\leq 1 \end{cases} \Longleftrightarrow a=1.$$

Ответ: a = 1.

ПРИМЕР 4. Найдите все значения параметра a, при которых функция $y = \sqrt{x^2 - 2ax + a + 2}$ определена для любого действительного значения x.

◆ Данная функция определена для любого x, если для любого x выполняется неравенство $x^2 - 2ax + a + 2 \ge 0$.

Последнее возможно тогда и только тогда, когда график квадратичной функции $f(x) = x^2 - 2ax + a + 2$ расположен выше оси абсцисс или касается ее. Это выполняется, если уравнение $x^2 - 2ax + a + 2 = 0$ не имеет корней или имеет один корень.

$$D_1 = a^2 - a - 2$$
. Из неравенства $a^2 - a - 2 \le 0$, находим $-1 \le a \le 2$. Ответ: $-1 \le a \le 2$.

ПРИМЕР 5. Найдите все значения параметра a, при каждом из которых неравенство $ax^2 + ax + a + 3 > 0$ не имеет положительных решений.

• При a = 0 неравенство примет вид 3>0, что верно при любом x.

При $a \neq 0$ рассмотрим квадратичную функцию $f(x) = ax^2 + ax + a + 3$. Легко заметить, что при a > 0 (ветви параболы направлены вверх) неравенство имеет положительные решения. При a < 0 (ветви параболы направлены вниз) данное неравенство не имеет положительных решений в двух случаях:

- а) квадратичная функция $f(x) = ax^2 + ax + a + 3$ не имеет корней;
- б) корни квадратичной функции не превосходят 0.

- а) D < 0: $-3a^2 12a < 0 \Leftrightarrow a \in (-\infty; -4) \cup (0; +\infty)$. С учетом того, что a < 0 получим $a \in (-\infty; -4)$.
- б) Решим систему $\begin{cases} D \ge 0, \\ f(0) \le 0, \text{ с учетом того, что } a < 0: \\ x_0 \le 0 \end{cases}$

$$\begin{cases}
-3a^{2} - 12a \ge 0, \\
a + 3 \le 0, \\
-\frac{a}{2a} \le 0, \\
a < 0
\end{cases} \iff \begin{cases}
a \in [-4; 0], \\
a \le -3, \\
a \ne 0, \\
a < 0
\end{cases} \iff a \in [-4; -3].$$

Объединяя решения для случаев (a) и (б), получим $a \in (-\infty; -3]$.

Ответ: $a \in (-\infty; -3]$.

УПРАЖНЕНИЯ

№ 1. Найдите все значения a, при каждом из которых корни уравнения $x^2 + ax + a = 0$ меньше 1.

- **№ 2.** Найдите все значения a, при каждом из которых оба корня уравнения $2x^2 (6-a)x + 3a a^2 = 0$ принадлежат промежутку (0; 2].
- **№ 3.** Найдите все значения a, при каждом из которых корни уравнения $x^2 + x + a = 0$ больше числа a.
- **№ 4.** Найдите все значения a, при каждом из которых корни уравнения $x^2 (2a+1)x + 4 a = 0$ лежат по разные стороны от числа 3.
- **№** 5. Найдите все значения a, при каждом из которых ровно один корень уравнения $5x^2 10ax + 4a^2 1 = 0$ принадлежит отрезку [-1;1].
- **№** 6. Найдите все значения a, при каждом из которых корни уравнения $(a+1)x^2 3ax + 4a = 0$ лежат в интервале (2; 5).
- **№ 7.** Найдите все значения параметра a, при каждом из которых неравенство $x^2 ax a + 3 \le 0$ имеет хотя бы одно положительное решение.
- **№ 8.** Найдите все значения параметра a, при каждом из которых неравенство $x^2 + 6x + a \ge 0$ выполняется для любого значения x.
- **№ 9.** Найдите все значения параметра a, при каждом из которых неравенство $ax^2 + 4x + 3a 1 > 0$ верно для любого x > 0.
- **№ 10.** Найдите все значения параметра a, при каждом из которых функция $y = \sqrt{ax^2 + 2x + a}$ определена ровно в одной точке.
- **№ 11.** Найдите все значения a, при каждом из которых корни трехчлена $x^2 + (a-12)x + 25$ принадлежат интервалу (4; 8).
- **№ 12.** Найдите все значения a, при каждом из которых ровно один корень уравнения $x^2 + x a^2 a = 0$ входит в промежуток (-2; 3).
- **№ 13.** Найдите все значения a, при каждом из которых оба корня уравнения $x^2 ax a = 0$ меньше 2.
- **№ 14.** Найдите все значения a, при каждом из которых оба корня уравнения $x^2 ax + a = 0$ больше -2.
- **№ 15.** Найдите все значения a, при каждом из которых ни один из корней уравнения $x^2 (2a+1)x + a^2 + a 2 = 0$ не входит в промежуток (1; 5).

§6. Графический способ решения уравнений и неравенств, содержащих параметр

ПРИМЕР 1. Для каждого значения параметра a определите количество корней уравнения $|x^2 - 6x + 8| = a$.

lacktriangledown Для решения этой задачи эффективен графический способ: построить график функции $y = \left| x^2 - 6x + 8 \right|$, и для каждого значения а определить количество общих точек этого графика с прямой y = a.

По графику видим, что при a < 0 корней нет; при a = 0 и a > 1 два корня; при a = 1 три корня; при 0 < a < 1 четыре корня.

Ответ: при a < 0 корней нет; при a = 0 и a > 1 два корня;

при a = 1 три корня; при 0 < a < 1 четыре корня.

ПРИМЕР 2. Для каждого значения параметра a определите число решений системы уравнений $\begin{cases} |x|+|y|=1, \\ x^2+y^2=a^2. \end{cases}$

• Первое уравнение системы на координатной плоскости Oxy задает квадрат, а второе уравнение – семейство концентрических окружностей с центром в начале координат и радиусом r=|a|. Из прямоугольного равнобедренного треугольника OPA находим $OP=\frac{\sqrt{2}}{2}$.

По графику видим, что система не имеет решений, если $r < \frac{\sqrt{2}}{2}$ или r > 1; при $r = \frac{\sqrt{2}}{2}$ или r = 1 – четыре решения; при $\frac{\sqrt{2}}{2} < r < 1$ – восемь решений.

С учетом того, что r = |a|, получим:

система не имеет решений, если $a \in (-\infty; -1) \cup \left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right) \cup (1; +\infty);$

четыре решения, если $a \in \left\{\pm 1; \pm \frac{\sqrt{2}}{2}\right\};$

восемь решений, если $a \in \left(-1; -\frac{\sqrt{2}}{2}\right) \cup \left(\frac{\sqrt{2}}{2}; 1\right)$.

Ответ: при $a \in (-\infty; -1) \cup \left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right) \cup (1; +\infty)$ решений нет,

при $a \in \left\{\pm 1; \pm \frac{\sqrt{2}}{2}\right\}$ четыре решения,

при $a \in \left(-1; -\frac{\sqrt{2}}{2}\right) \cup \left(\frac{\sqrt{2}}{2}; 1\right)$ восемь решений.

ПРИМЕР 3. Найдите все значения a, при каждом из которых уравнение $|x^2 - 6x + 5| = ax + 1$ имеет ровно 4 корня.

• Переформулируем задачу на графическом языке: нужно найти все значения параметра a, при которых прямая y=ax+1 (проходящая через точку (0; 1)) имеет четыре общих точки с графиком функции $y = |x^2 - 6x + 5|$.

По графику видим, что условию задачи удовлетворяют все прямые, расположенные внутри заштрихованной области. Найдем граничные значения параметра, соответствующие прямым (1) и (2).

- 1) Прямая y=ax+1 проходит через точку (5; 0): 0=5a+1, a=-0,2.
- 2) Прямая y=ax+1 касается параболы $y=-(x^2-6x+5)$. Следовательно, уравнение $-x^2+6x-5=ax+1$ должно иметь ровно один корень. $x^2+(a-6)x+6=0. \ \ D=(a-6)^2-24. \ \ \text{Решая} \ \ \text{уравнение} \ \ (a-6)^2-24=0 \, , \ \text{на-ходим} \ \ a=6\pm2\sqrt{6} \, .$ Очевидно, что прямой (2) соответствует угловой коэффициент $a=6-2\sqrt{6}$.

Otbet: $-0.2 < a < 6 - 2\sqrt{6}$.

Заметим, что значение $a=6+2\sqrt{6}$ получено не случайно. Оно также соответствует касанию прямой y=ax+1 и параболы $y=-x^2+6x-5$. Точка касания будет находиться в III четверти.

ПРИМЕР 4. Найдите все значения a, при каждом из которых неравенство $3-x^2>|x-a|$ имеет хотя бы одно отрицательное решение.

• Переформулируем задачу на графическом языке: нужно найти все значения параметра a, при которых существует хотя бы одна точка графика функции $y = 3 - x^2$ с отрицательной абсциссой, лежащая выше точки графика функции y = |x - a| с той же абсциссой.

Из графических соображений ясно, что искомые значения $a \in (a_1; a_2)$. Значение a_2 соответствует тому, что левый луч уголка проходит через точку (0; 3). Подставляя координаты этой точки в уравнение $y = a_2 - x$, получим $a_2 = 3$. Значение a_1 соответствует тому, что правый луч уголка касается параболы, т.е. уравнение $3 - x^2 = x - a_1$ имеет ровно один корень. Дискриминант этого уравнения равен $13 + 4a_1$ и обращается в нуль при $a_1 = -\frac{13}{4}$. Таким образом, $a \in \left(-\frac{13}{4}; 3\right)$.

Ответ: $a \in \left(-\frac{13}{4}; 3\right)$.

ПРИМЕР 5. Найдите все значения параметра a, при каждом из которых уравнение $\left| \frac{6}{x} - 3 \right| = ax - 2$ на промежутке $(0;+\infty)$ имеет ровно три корня.

• Найдем все значения параметра a, при которых прямая y = ax - 2 имеет ровно три общие точки с той частью графика функции $y = \left| \frac{6}{x} - 3 \right|$, которая расположена в правой полуплоскости (x>0). Последний график представляет собой правую ветку гиперболы $y = \frac{6}{x}$, которую а) сместили на 3 единицы вниз, б) ту часть графика, которая расположена ниже оси Ox зеркально отразили относительно оси абсцисс в верхнюю полуплоскость. Заметим также, что прямая y = ax - 2 проходит через точку (0; -2) при любом значении параметра a, который является угловым коэффициентом.

Видим, что условию задачи отвечают все прямые, расположенные внутри заштрихованной области.

Значение параметра, соответствующее границе (1), находим из уравнения 0 = 2a - 2, a = 1.

Значение параметра, соответствующее границе (2), находим из условия касания прямой y = ax - 2 и графика функции $y = -\left(\frac{6}{x} - 3\right)$ (отраженной части гиперболы). Уравнение $-\frac{6}{x} + 3 = ax - 2$ должно иметь ровно один корень. После преобразований получаем квадратное уравнение $ax^2 - 5x + 6 = 0$ (очевидно, что a > 0), дискриминант которого приравниваем к нулю: 25 - 24a = 0, $a = \frac{25}{24}$. Условию удовлетворяют все $a \in \left(1; \frac{25}{24}\right)$. Ответ: $1 < a < \frac{25}{24}$.

ПРИМЕР 6. Найдите все значения a, при каждом из которых система $\begin{cases} a^2 - x^2 + 2x - 2a \le 0, \\ x^2 = 4x - a \end{cases}$ имеет ровно одно решение.

• Особенностью этой системы является отсутствие в ней переменной y. Чтобы использовать графический метод решения, придадим параметру a статус ординаты и рассмотрим координатную плоскость Oxa. После очевидных преобразований система примет вид $\begin{cases} (a-x)(a+x-2) \leq 0, \\ a=4x-x^2. \end{cases}$

Неравенство системы на координатной плоскости Oxa задает пару закрашенных вертикальных углов, ограниченных прямыми a=x и a=2-x. Уравнение задает параболу $a=4x-x^2$. Решение системы на графике представляет собой те участки параболы, которые попали в закрашенную область. По графику видим, что условию задачи удовлетворяют все значения параметра $a \in [a_3;0) \cup (a_2;a_1]$.

Значение
$$a_1$$
 находим из системы $\begin{cases} a = x, \\ a = 4x - x^2, \end{cases}$ $a_1 = 3.$

(Другое решение системы a=0 соответствует второй точке пересечения прямой и параболы.)

Из системы
$$\begin{cases} a=2-x,\\ a=4x-x^2 \end{cases}$$
 находим a_2 и a_3 : $a_2=\frac{-1+\sqrt{17}}{2},\ a_3=\frac{-1-\sqrt{17}}{2}.$

Таким образом, искомые значения
$$a \in \left[\frac{-1-\sqrt{17}}{2}; 0\right] \cup \left(\frac{-1+\sqrt{17}}{2}; 3\right]$$
.

OTBET:
$$\left[\frac{-1-\sqrt{17}}{2};0\right] \cup \left(\frac{-1+\sqrt{17}}{2};3\right]$$

ПРИМЕР 7. Найдите все значения a, при каждом из которых наименьшее значение функции $f(x)=x^2-4|x|-ax+a$ на отрезке [-1; 3] не меньше, чем -5.

◆ Так как наименьшее значение функции на отрезке [-1; 3], не меньше, чем -5, то значения функции во всех точках отрезка также не меньше, чем -5. Следовательно, неравенство $x^2 - 4|x| - ax + a \ge -5$ должно выполняться для любого $x \in [-1; 3]$. Последнее неравенство перепишем в следующем виде $x^2 - 4|x| \ge a(x-1) - 5$.

Выясним, при каких значениях параметра a прямая y = a(x-1)-5 будет располагаться *не выше* графика функции $y = x^2 - 4|x|$, построенного на отрезке [-1; 3].

Заметим, что прямая y = a(x-1)-5 проходит через точку (1; -5). При изменении параметра a будет меняться угловой коэффициент (а значит, и угол наклона) этой прямой.

Условию задачи удовлетворяют все прямые, расположенные внутри закрашенной пары вертикальных углов, включая границы. Найдем значения a, соответствующие этим границам.

- 1) Значение a находим из условия, что прямая y = a(x-1)-5 проходит через точку (-1; -3): -3 = -2a-5, a = -1.
- 2) Значение a находим из условия, что прямая y = a(x-1)-5 касается параболы $y = x^2 4x$. То есть уравнение $x^2 4x = a(x-1)-5$ должно иметь ровно один корень. Приведя уравнение к виду $x^2 (4+a)x + a + 5 = 0$, потребуем, чтобы его дискриминант равнялся нулю.

 $D=(4+a)^2-4a-20=a^2+4a-4$. Решая уравнение $a^2+4a-4=0$, находим $a=-2-2\sqrt{2}$ или $a=-2+2\sqrt{2}$. Легко понять, что нашему случаю удовлетворяет лишь одно значение $a=-2+2\sqrt{2}$.

Таким образом, искомые значения $a \in [-1; -2 + 2\sqrt{2}]$. Ответ: $[-1; -2 + 2\sqrt{2}]$.

УПРАЖНЕНИЯ

- **№ 1.** Найдите все значения a, при каждом из которых уравнение ||x|-3|=a-3 имеет ровно 4 корня.
- **№ 2.** Для каждого значения a определите количество решений уравнения $a) |1-x^2| = 1-a$; 6) ||x|-a| = 2.

- **№ 3.** Найдите все значения a, при каждом из которых уравнение a|x+4|=x-3 имеет ровно один корень.
- **№ 4.** Найдите все значения a, при каждом из которых система уравнений $\begin{cases} 2|x|+3|y|=6, \\ x^2+y^2=a \end{cases}$ имеет ровно 6 решений.
- **№ 5.** Найдите все положительные значения a, при каждом из которых система $\begin{cases} (|x|-4)^2 + (y-3)^2 = 4, \\ (x-1)^2 + (y+1)^2 = a^2 \end{cases}$ имеет ровно одно решение.
- **№ 6.** Найдите все значения a, при каждом из которых система неравенств $\begin{cases} x^2 + y^2 a^2 \le 6x 4y 13, \\ x^2 + y^2 4a^2 \le 8y 10x + 4a 40 \end{cases}$ имеет ровно одно решение.
- **№ 7.** Найдите все значения a, при каждом из которых уравнение $|x^2 2x 8| = a(x + 5) + 2$ не имеет корней.
- **№ 8.** Найдите все значения a, при каждом из которых график функции $f(x) = \left| \frac{6}{x} 5 \right| ax + 1$ имеет более двух общих точек с осью абсцисс на промежутке $(0; +\infty)$.
- **№ 9.** Найдите все значения параметра a, при каждом из которых уравнение $\frac{3}{x+1} = a|x-5|$ на промежутке $(0;+\infty)$ имеет ровно три корня.
- **№ 10.** Найдите все значения параметра a, при каждом уравнение $(a+1-|x-1|)(a+x^2-4x)=0$ имеет четыре различных корня.
- **№ 11.** Найдите все значения параметра a, при каждом из которых система $\begin{cases} x^2 + y^2 = 9, \\ y = |x| + a \end{cases}$ имеет ровно два решения.
- **№ 12.** Найдите все значения параметра a, при каждом из которых система $\begin{cases} a^2 + ax 2x 4a + 4 \le 0, \\ xa = -4 \end{cases}$ имеет хотя бы одно решение.
- **№ 13.** Найдите все значения параметра a, при каждом из которых система $\begin{cases} (y-a-2)^2 + (x-a)^2 = 3a+5, \\ y \ge |x|. \end{cases}$ имеет единственное решение.
- **№ 14.** Найдите все значения параметра a, при каждом из которых система $\begin{cases} \sqrt{y^2 + x^2 2ax + 4ay + 5a^2} = \sqrt{5}, \text{ имеет ровно одно решение.} \\ y = |x| \end{cases}$

№ 15. Найдите все значения параметра a, при каждом из которых система $\begin{cases} y^2 + xy - 7x - 14y + 49 = 0, \\ y = ax + 1, \end{cases}$ имеет единственное решение. $x \ge 3$

№ 16.Найдите все значения a, при каждом из которых графики функции $f(x) = (x-4)|x| + a \ g(x) = |x-a| - a$ имеют ровно две общих точки.

№ 17. Найдите все значения a, при каждом из которых функция $f(x) = |x-2| \cdot (x+2) - |x-a| + 2a$ принимает значение, равное a, ровно в трех различных точках.

№ 18. Найдите все значения a, при каждом из которых графики функций $f(x) = 2 + |x + \sqrt{x^2 - 8x + 16}|$ и g(x) = ax + 4a имеют максимально возможное количество общих точек.

№ 19. Найдите все значения a, при каждом из которых наибольшее значение функции $f(x) = a(x-1) - |x^2 + 4x + 3|$ меньше (-3).

№ 20. Найдите все значения a, при каждом из которых наименьшее значение функции $f(x) = |x^2 - 6x + 5| -ax - 3a$ меньше 2.

§7. Тригонометрические уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Найдите все значения a, при каждом из которых уравнение $4\cos^2 x + 5a\sin x - a^2 - 4 = 0$ имеет решения. Найдите эти решения.

lack Данное уравнение сводится к уравнению $4\sin^2 x - 5a\sin x + a^2 = 0$,

которое равносильно совокупности $\begin{bmatrix} \sin x = a, \\ \sin x = \frac{a}{4}. \end{bmatrix}$

Первое уравнение совокупности имеет решения, если $-1 \le a \le 1$. В этом случае $x = (-1)^n \arcsin a + \pi n$, $n \in \mathbb{Z}$.

Второе уравнение совокупности имеет решения, если $-4 \le a \le 4$. В этом случае $x=(-1)^k \arcsin \frac{a}{4}+\pi k, \ k \in Z$.

Видим, что исходное уравнение имеет решения при всех $-4 \le a \le 4$, причем, если $a \in [-1;1]$, то решения имеют оба уравнения совокупности (на рисунке две штриховки); если $a \in [-4;-1) \cup (1;4]$ (одна штриховка), то лишь второе уравнение совокупности имеет решения.

Ответ: уравнение имеет решения при всех $-4 \le a \le 4$.

При
$$a \in [-1;1]$$
 $x = (-1)^n \arcsin a + \pi n$, $n \in \mathbb{Z}$, $x = (-1)^k \arcsin \frac{a}{4} + \pi k$, $k \in \mathbb{Z}$,

при
$$a \in [-4; -1) \cup (1; 4]$$
 $x = (-1)^k \arcsin \frac{a}{4} + \pi k$, $k \in \mathbb{Z}$.

ПРИМЕР 2. Найдите все значения a, при каждом из которых уравнение $2\cos 2x - 4\cos x - a + 2 = 0$ не имеет корней.

• После преобразований получим уравнение $4\cos^2 x - 4\cos x = a$. Пусть $\cos x = t$, $t \in [-1;1]$. Тогда необходимо выяснить, при каких значениях параметра a уравнение $4t^2 - 4t = a$ не имеет корней на отрезке [-1; 1]. Для этого изобразим на указанном отрезке график функции $y = 4t^2 - 4t$.

По графику видим, что уравнение не имеет корней, если a<-1 или a>8. Ответ: a<-1 или a>8.

ПРИМЕР 3. Решите неравенство $\sin ax < \frac{1}{2}$.

•
$$\sin ax < \frac{1}{2}$$
; $-\frac{7\pi}{6} + 2\pi n < ax < \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$.

Если a = 0, то исходное неравенство примет вид $\sin 0x < \frac{1}{2}$. Решением является любое действительное x.

Если
$$a > 0$$
, то $\frac{1}{a} \left(-\frac{7\pi}{6} + 2\pi n \right) < x < \frac{1}{a} \left(\frac{\pi}{6} + 2\pi n \right)$, $n \in \mathbb{Z}$.

Если
$$a < 0$$
, то $\frac{1}{a} \left(\frac{\pi}{6} + 2\pi n \right) < x < \frac{1}{a} \left(-\frac{7\pi}{6} + 2\pi n \right)$, $n \in \mathbb{Z}$.

Ответ: при
$$a = 0$$
 $x \in R$, при $a > 0$ $\frac{1}{a} \left(\frac{-7\pi}{6} + 2\pi n \right) < x < \frac{1}{a} \left(\frac{\pi}{6} + 2\pi n \right)$, $n \in Z$,

при
$$a < 0$$
 $\frac{1}{a} \left(\frac{\pi}{6} + 2\pi n \right) < x < \frac{1}{a} \left(\frac{-7\pi}{6} + 2\pi n \right)$, $n \in \mathbb{Z}$.

ПРИМЕР 4. Для каждого значения параметра a решите уравнение $\cos(x+a) - \sin(x-a) = 0$.

• Используя формулу приведения, преобразуем данное уравнение к виду $\sin\!\left(\frac{\pi}{2}\!-\!x\!-\!a\right)\!-\!\sin\!\left(x\!-\!a\right)\!=\!0\,.$ Разложим левую часть уравнения на множите-

ли:
$$2\sin\left(\frac{\pi}{4}-x\right)\cos\left(\frac{\pi}{4}-a\right)=0$$
.

Если $\cos\left(\frac{\pi}{4} - a\right) = 0$, то решением будет любое действительное x. Ес-

ли
$$\cos\left(\frac{\pi}{4}-a\right)\neq 0$$
, то $\sin\left(\frac{\pi}{4}-x\right)=0$, откуда $x=\frac{\pi}{4}-\pi n,\ n\in Z$.

Осталось выяснить, при каких значениях параметра $a \cos \left(\frac{\pi}{4} - a \right) = 0$.

Имеем
$$a - \frac{\pi}{4} = \frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$, откуда находим $a = \frac{3\pi}{4} + \pi k$, $k \in \mathbb{Z}$.

Ответ: при
$$a = \frac{3\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$ $x \in \mathbb{R}$, при $a \neq \frac{3\pi}{4} + \pi k$, $k \in \mathbb{Z}$ $x = \frac{\pi}{4} - \pi n$, $n \in \mathbb{Z}$.

ПРИМЕР 5. Найдите все значения a, при каждом из которых уравнение $3\cos^2 2x - (3a-2)\cos 2x + a - 1 = 0$ имеет ровно шесть корней на промежутке $\left[-\frac{3\pi}{4}, \frac{3\pi}{4} \right]$.

• Пусть $y = \cos 2x$, тогда уравнение примет вид $3y^2 - (3a - 2)y + a - 1 = 0$. Его корни: $y = \frac{1}{3}$ и y = a - 1. Дальнейшие рассуждения проведем графическим способом.

Из условия следует, что $2x \in \left[-\frac{3\pi}{2}; \frac{3\pi}{2} \right]$. На этом промежутке прямая

 $y = \frac{1}{3}$ пересекает график функции $y = \cos 2x$ в двух точках.

Искомыми являются те значения a, при которых прямая y=a-1 пересекает этот же график на промежутке $\left[-\frac{3\pi}{2};\,\frac{3\pi}{2}\right)$ ровно в четырех точках.

Это возможно в случае, когда $-1 \le a-1 \le 0$, т.е. при $0 \le a \le 1$.

Otbet: 0 < a < 1.

ПРИМЕР 6. Найдите все значения a, при каждом из которых неравенство $\sin^2 7x + (2a+1)\sin 7x + a - 5 < 0$ выполняется для любого действительного значения x.

 $\bullet \sin^2 7x + (2a+1)\sin 7x + a - 5 < 0$. (1)

Пусть $y = \sin 7x$, причем E(y) = [-1; 1]. Тогда неравенство (1) примет вид $y^2 + (2a+1)y + a - 5 < 0$. (2)

Неравенство (1) будет выполняться для любого x, если для любого $y \in [-1;1]$ будет выполняться неравенство (2). Это возможно только тогда, когда отрезок [-1;1] будет расположен между корнями квадратичной функции $f(y) = y^2 + (2a+1)y + a - 5$.

Приведенное расположение параболы задается системой $\begin{cases} f(-1) < 0, \\ f(1) < 0. \end{cases}$

Имеем
$$\begin{cases} 1 - 2a - 1 + a - 5 < 0, \\ 1 + 2a + 1 + a - 5 < 0 \end{cases} \iff \begin{cases} a > -5, \\ a < 1, 5. \end{cases}$$

Otbet: -5 < a < 1.5.

ПРИМЕР 7. Найдите все значения параметра a, при каждом из которых уравнение $tg\sqrt{a-x^2}=0$ имеет ровно четыре корня.

• $tg\sqrt{a-x^2}=0 \Leftrightarrow \sqrt{a-x^2}=\pi n, n\in Z$. На координатной плоскости (x;y) графиком функции $y=\sqrt{a-x^2}=0$ является полуокружность радиуса $r=\sqrt{a}$, (a>0), расположенная выше оси Ox (включая точки на оси); уравнение $y=\pi n, n\in Z$ задает семейство прямых, параллельных оси Ox.

По графику видим, что эти прямые имеют с полуокружностью ровно четыре общих точки, если $\pi < r < 2\pi$, откуда находим $\pi^2 < a < 4\pi^2$.

Ответ: $\pi^2 < a < 4\pi^2$.

УПРАЖНЕНИЯ

- **№** 1. Для каждого значения параметра a решите уравнение
- a) $\sin x \sqrt{3} \cos x = 2a$;
- $6) \sin x + a |\sin x| = 2;$
- B) $2\sin^2 x 5a\cos x + 3a^2 2 = 0$; Γ) $4\sin^2 x 4\sin x a^2 8 = 0$.
- № 2. Найдите все значения параметра a, при каждом из которых уравнение $\cos(\sqrt{a^2-x^2})=1$ имеет ровно восемь корней.
- **№ 3.** Найдите все значения параметра a, при каждом из которых уравнение $\sin^2 x - (2a - 1)\sin x + a^2 - a - 2 = 0$ не имеет корней.
- **№ 4.** Найдите все значения параметра a, при каждом из которых уравнение $\cos^2 x - (a-2)\cos x + 4a + 1 = 0$ не имеет корней.
- № 5. Найдите все значения параметра a, при каждом из которых неравенство $\cos^2 x - (2a + 3)\cos x + a^2 + 3a \le 0$ не имеет решений.
- **№** 6. Найдите все значения параметра a, при каждом из которых система $\begin{cases} x^2 + y^2 = a, \\ \sin(\pi y + \pi x) = 0 \end{cases}$ имеет ровно четыре решения.
- **№ 7.** Найдите все значения a, при каждом из которых $2\sin^2 x - (2a+1)\sin x = a+1$ имеет ровно 9 корней на отрезке $\left| -2\pi; \frac{5\pi}{2} \right|$.
- **№ 8.** Найдите все значения a, при каждом из которых уравнение $5\cos^2 2x - 10a\cos 2x + 4a^2 = 1$ имеет ровно три корня на отрезке $\left[-\frac{\pi}{2}; \frac{5\pi}{2}\right]$.
- **№ 9.** Найдите все значения параметра a, при которых уравнение $\cos^2 x + (a^2 - 1)\cos x - 5a + 6 = 0$ имеет два корня на отрезке $[-\pi; 3\pi]$.
- **№ 10.**Для каждого значения параметра a решите неравенство:

§8. Иррациональные уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Найти все значения параметра a, при каждом из которых уравнение $a(x+1) = \sqrt{x}$ имеет хотя бы один корень.

• Применим графический метод: найдем все значения a, при которых прямая y = a(x+1) имеет хотя бы одну общую точку с графиком функции $y = \sqrt{x}$. Заметим, что для прямой y = a(x+1) параметр a является угловым коэффициентом (при изменении a одна прямая будет переходить в другую с помощью поворота около точки (-1; 0), так как для любого a y(-1)=0).

По графику видим, что искомыми являются прямые, лежащие внутри заштрихованной пары вертикальных углов, включая границы. Им соответствуют значения $a \in [0; a_0]$, где a_0 отвечает моменту касания прямой y = a(x+1) графика функции $y = \sqrt{x}$. (Заметим, что $a_0 > 0$).

Значение a_0 находим из условия, что уравнение $a_0(x+1)=\sqrt{x}$ имеет ровно один корень. После преобразований получим квадратное уравнение $a_0^2x^2+(2a_0^2-1)x+a_0^2=0$. Дискриминант $D=1-4a_0^2$ обращается в нуль при $a_0=-0.5$ или $a_0=0.5$. Так как $a_0\!>\!0$, то искомое значение $a_0=0.5$. Ответ: $a\in[0;0.5]$.

ПРИМЕР 2. Решите неравенство $(x-a)\sqrt{x^2-5x+6} \le 0$.

• Решим это неравенство методом интервалов. Область определения функции $f(x) = (x-a)\sqrt{x^2-5x+6}$ $D(f) = (-\infty; 2] \cup [3; +\infty)$. Нули функции — числа 2; 3 и a, если $a \in D(f)$.

1) Если a < 2, то $x \in (-\infty; a] \cup \{2; 3\}$.

- 2) Если $2 \le a \le 3$, то $x \in (-\infty; 2] \cup \{3\}$.
- 3) Если a > 3, то $x \in (-\infty; 2] \cup [3; a]$.
- Ответ: при a < 2 $x \in (-\infty; a] \cup \{2; 3\}$; при $2 \le a \le 3$ $x \in (-\infty; 2] \cup \{3\}$; при a > 3 $x \in (-\infty; 2] \cup [3; a]$.

ПРИМЕР 3. Для каждого *a* решите уравнение $\sqrt{2x(a-2)+5-a^2} = x-2$.

◆ Данное уравнение равносильно системе

$$\begin{cases} x \ge 2, \\ 2x(a-2) + 5 - a^2 = (x-2)^2 \end{cases} \iff \begin{cases} x \ge 2, \\ x^2 - 2ax + a^2 - 1 = 0 \end{cases} \iff \begin{cases} x \ge 2, \\ x = a - 1, \\ x = a + 1. \end{cases}$$

 $a-1 \ge 2$ при $a \ge 3$; $a+1 \ge 2$ при $a \ge 1$.

Таким образом, видим, что при a<1 корней нет; при $1\leq a<3$ уравнение имеет один корень x=a+1; при $a\geq 3$ уравнение имеет два корня x=a-1 и x=a+1.

Ответ: при a < 1 корней нет; при $1 \le a < 3$ x = a + 1; при $a \ge 3$ $x = a \pm 1$.

ПРИМЕР 4. Найдите все значения параметра a, при которых неравенство $\sqrt{x+1} < \sqrt{x^2 - 2ax + x + a^2}$ выполняется для любого допустимого x.

◆ Данное неравенство равносильно системе

$$\begin{cases} x \ge -1, \\ x^2 - 2ax + a^2 - 1 > 0; \end{cases} \Longleftrightarrow \begin{cases} x \ge -1, \\ x \in (-\infty; \ a - 1) \cup (a + 1; +\infty). \end{cases}$$

Решением системы будет любое допустимое x ($x \ge -1$) тогда и только тогда, когда $[-1; +\infty) \subset (-\infty; a-1) \cup (a+1; +\infty)$. Выполнение этого условия возможно только при a+1 < -1, откуда находим a < -2.

Ответ: a < -2.

ПРИМЕР 5. Найдите все значения a, при каждом из которых уравнение $\sqrt{-x^2 - 6x - 5} = ax + 2$ имеет ровно один корень.

• Данное уравнение приводится к виду $\sqrt{4-(x+3)^2}=ax+2$. Выясним, при каких значениях параметра a прямая y=ax+2 имеет ровно одну общую точку с графиком функции $y=\sqrt{4-(x+3)^2}$. Последнее равенство равносильно системе $\begin{cases} y \ge 0, \\ (x+3)^2+y^2=4. \end{cases}$ Эта система на координатной плоскости задает

полуокружность (так как $y \ge 0$) с центром в точке (-3; 0) и радиусом 2.

- 1) Приведенное положение прямой, очевидно, соответствует a=0.
- 2) Подставив в уравнение прямой y=ax+2 точку (-5; 0), находим a=0,4.
- 3) Подставив в уравнение прямой y=ax+2 точку (-1; 0), находим a=2.

По графику видим, что прямая и полуокружность имеют единственную общую точку при a=0 или 0,4<a<2.

Ответ: a=0 или $0,4 \le a \le 2$.

ПРИМЕР 6. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{2x^2 + ax + 2a + 10} = x - 1$ не имеет корней.

♦ 1-й способ. Данное уравнение (обозначим его (1)) равносильно системе

$$\begin{cases} x \ge 1, \\ 2x^2 + ax + 2a + 10 = (x - 1)^2 \end{cases} \iff \begin{cases} x \ge 1, \\ x^2 + (a + 2)x + 2a + 9 = 0. \end{cases}$$
 (2)

Уравнение (1) не имеет корней тогда и только тогда, когда не имеет решений полученная система. Это возможно в двух случаях:

- а) квадратное уравнение (3) не имеет корней;
- б) корни уравнения (3) не удовлетворяют условию (2).

Найдем все значения a, при которых выполним хотя бы один случай:

а) уравнение $x^2 + (a+2)x + 2a + 9 = 0$ не имеет коней, если D < 0:

$$a^2 - 4a - 32 < 0$$
, $a \in (-4, 8)$;

б) корни уравнения $x^2 + (a+2)x + 2a + 9 = 0$ меньше 1, если его больший корень меньше 1:

$$\frac{-a-2+\sqrt{a^2-4a-32}}{2} < 1 \iff \sqrt{a^2-4a-32} < a+4 \iff \begin{cases} a^2-4a-32 \ge 0, \\ a+4 > 0, \\ a^2-4a-32 < (a+4)^2 \end{cases} \iff a \in [8; +\infty).$$

Объединяя множества значений параметра a, найденные для случаев (a) и (б), получим ответ: $a \in (-4; +\infty)$.

◆ <u>2-й способ.</u> Рассмотрим графический подход к решению этой задачи.

$$(1) \Leftrightarrow \begin{cases} x \ge 1, \\ 2x^2 + ax + 2a + 10 = (x - 1)^2 \end{cases} \Leftrightarrow \begin{cases} x \ge 1, \\ x^2 + 2x + 9 = -a(x + 2). \end{cases}$$

Найдем все значения a, при которых прямая y = -a(x+2), не имеет общих точек с параболой $y = x^2 + 2x + 9$ на промежутке $[1; +\infty)$. (На рисунке таким прямым соответствует закрашенная часть плоскости).

Для прямой y = -a(x+2) угловой коэффициент равен -a. При $a \le a_0$ прямая и парабола имеют общие точки на промежутке $[1;+\infty)$. При $a>a_0$ общих точек нет. Значение a_0 найдем из условия, что прямая $y = -a_0(x+2)$ проходит через точку M(1;12). Имеем $a_0 = -4$.

Ответ: a > -4.

УПРАЖНЕНИЯ

№ 1. Для каждого значения параметра a решите уравнение (неравенство)

- г) $(x-a)\sqrt{x}=0$; д) $\sqrt{x} \ge \sqrt{x-a}$; e) $x\sqrt{x-a}=0$.

№ 2. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{19x^2 - (9a+2)x + a^2 + 1} = x - 1$ не имеет корней.

№ 3. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{a-2(a+1)x} = x-1$ имеет ровно один корень.

№ 4. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{x^4 - 7x^2 - 2(a-5)x + 2a + 6} = x^2 - 4$ имеет хотя бы один корень.

№ 5. Найдите все значения a, при каждом из которых графики функций $f(x) = \sqrt{15 + 2x - x^2}$ - 5a и g(x) = ax + 3 имеют ровно одну общую точку.

№ 6. Найдите все значения параметра a, при которых уравнение $\sqrt{a^2 + a + 3 - 3\cos^2 x - (3a + 2)\sin x} = -\sin x$ не имеет корней.

№ 7. Найдите все значения параметра a, при которых неравенство $\sqrt{2a\sin x + 1} > \sqrt{\sin^2 x + a^2}$ не имеет решений.

№ 8. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{x+a} = x$ имеет ровно два корня.

№ 9. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{(a+4)x+a-8} = x-1$ имеет два различных корня.

№ 10. Для каждого значения *a* решите неравенство $(a + x)\sqrt{9 - x^2} \ge 0$.

§9. Показательные уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Для каждого значения параметра a решите уравнение $25^x - (2a+1) \cdot 5^x + a^2 + a - 2 = 0$.

• После замены $y = 5^x$ (y > 0) данное уравнение сводится к квадратному $y^2 - (2a+1) \cdot y + a^2 + a - 2 = 0$, которое равносильно совокупности $\begin{bmatrix} y = a - 1, \\ y = a + 2. \end{bmatrix}$

Таким образом, имеем $\begin{bmatrix} 5^x = a - 1, \\ 5^x = a + 2. \end{bmatrix}$ Первое уравнение совокупности имеет

решение при a > 1. Его корень $x = \log_5(a-1)$. Второе уравнение совокупности имеет решение при a > -2. Его корень $x = \log_5(a+2)$.

Ответ: при $a \le -2$ корней нет; при $-2 < a \le 1$ $x = \log_5(a+2)$; при a > 1 $x = \log_5(a-1)$ и $x = \log_5(a+2)$.

ПРИМЕР 2. Найдите все значения параметра a, при каждом из которых неравенство $4^{\sqrt{3}x+1} + (8a-22) \cdot 2^{\sqrt{3}x+1} - 40a + 8 < 0$ выполняется для любого значения x из промежутка [1; 5).

◆ Пусть $y = 2^{\sqrt{3}x+1}$, тогда исходное неравенство (обозначим его (1)) примет вид $y^2 + (8a - 22)y - 40a + 8 < 0$ (2). Из условия $1 \le x < 5$, получим: $4 \le 3x + 1 < 16$, $2 \le \sqrt{3x+1} < 4$, $4 \le 2^{\sqrt{3x+1}} < 16$.

Таким образом, исходное неравенство выполняется для любого значения x из промежутка [1; 5), когда для любого значения y из промежутка [4; 16) выполняется квадратное неравенство (2). Последнее требование имеет место лишь в том случае, если меньший корень квадратичной функции $f(y) = y^2 + (8a - 22)y - 40a + 8$ меньше 4, а больший корень не меньше 16.

Искомые значения параметра находим из системы $\begin{cases} f(4) < 0, \\ f(16) \le 0. \end{cases}$

$$\begin{cases} 16 + 32a - 88 - 40a + 8 < 0, \\ 256 + 128a - 352 - 40a + 8 \le 0 \end{cases} \Leftrightarrow \begin{cases} a > -8, \\ a \le 1 \end{cases} \Leftrightarrow -8 < a \le 1.$$

Ответ: (-8; 1].

ПРИМЕР 3. Найдите все значения a, при каждом из которых неравенство $9^{\cos x} - 2a \cdot 3^{\cos x} + a^2 - 9 \ge 0$ выполняется для любого допустимого значения x.

•
$$9^{\cos x} - 2a \cdot 3^{\cos x} + a^2 - 9 \ge 0$$
 (1). Пусть $y = 3^{\cos x}$, причем $E(y) = \left[\frac{1}{3}; 3\right]$.

Неравенство (1) примет вид $y^2 - 2ay + a^2 - 9 \ge 0$ (2).

Исходное неравенство выполняется для любого x тогда и только тогда, когда неравенство (2) выполняется для любого $y \in \left[\frac{1}{3}; 3\right]$. Решением квадратного неравенства (2) будут $y \in (-\infty; a-3] \cup [a+3; +\infty)$.

Таким образом, необходимо, чтобы промежуток $\left[\frac{1}{3};3\right]$ целиком содержался во множестве решений неравенства (2). Это достигается, если $3 \le a-3$ или $a+3 \le \frac{1}{3}$, откуда $a \ge 6$ или $a \le -\frac{8}{3}$.

Ответ: $a \le -\frac{8}{3}$ или $a \ge 6$.

ПРИМЕР 4. Найдите все значения параметра a, при каждом из которых уравнение $4^x - 2^{x+1} - a \cdot 2^x = 2a - 1$ имеет два различных корня.

• Перепишем исходное уравнение в виде $4^x - 2 \cdot 2^x = a \cdot (2^x + 2) - 1$ (1). Пусть $2^x = t$, t > 0. Тогда уравнение примет вид $t^2 - 2t = a(t+2) - 1$ (2).

Уравнение (1) имеет два различных решения, если уравнение (2) имеет два различных положительных корня. Найдем значения параметра a, при каждом из которых прямая y = a(t+2) - 1 имеет ровно две общие точки с частью параболы $y = t^2 - 2t$, где t > 0 (закрашенная область).

Положение прямой (1) достигается при a=0. Положение прямой (2) определяется ее прохождением через начало координат. В этом случае 0 = a(0+2)-1, a=0,5.

Ответ: 0<*a*<0,5.

УПРАЖНЕНИЯ

№ 1. Найдите все значения a, при каждом из которых уравнение $16^x - 12 \cdot 4^x = a^2 - 2a - 35$ имеет ровно один корень. Укажите этот корень.

№ 2. Найдите все значения параметра a, при каждом из которых уравнение $121^x - 3a \cdot 11^x + a^2 - 4 = 0$ имеет ровно два корня.

№ 3. Найдите все значения параметра a, при каждом из которых уравнение $16^x - 2a \cdot 4^x - a + 20 = 0$ не имеет корней.

№ 4. Найдите все значения параметра a, при каждом из которых уравнение $4^{|x-1|} + (a-1) \cdot 2^{|x-1|} - 2a - 1 = 0$ не имеет корней.

№ 5. Найдите все значения параметра a, при каждом из которых уравнение $9^{4x-x^2-3} - 2a \cdot 3^{4x-x^2-3} + a^2 - 1 = 0$ имеет хотя бы один корень.

№ 6. Найдите все значения параметра a, при каждом из которых уравнение $\sqrt{(4a+1)\cdot 9^x - 2(a+2)\cdot 3^x + 3a - 2} = 2 - 3^x$ имеет ровно два корня.

- **№ 7.** Найдите все значения параметра a, при каждом из которых неравенство $25^{|\sin x|} 2a \cdot 5^{|\sin x|} + a^2 4 > 0$ имеет хотя бы одно решение.
- **№ 8.** Найдите все значения параметра a, при каждом из которых неравенство $4^{|x-1|} + (a-1) \cdot 2^{|x-1|} 2a 1 > 0$ выполняется для всех x, удовлетворяющих условию $|x-1| \ge 2$.
- **№ 9.** Найдите все значения параметра a, при каждом из которых неравенство $a \cdot 9^x + 4(a+1) \cdot 3^x + a + 1 > 0$ верно при любом значении x.

№ 10. Для каждого значения параметра a решите неравенство $4^x - (2a+1) \cdot 2^x + a^2 + a < 0$.

§10. Логарифмические уравнения и неравенства, содержащие параметр

ПРИМЕР 1. Для каждого значения параметра a решите уравнение $\log_8(x^2-1) = \log_8(2ax-a^2)$.

♦ Данное уравнение равносильно следующей системе:

$$\begin{cases} x^2 - 1 = 2ax - a^2, \\ x^2 - 1 > 0 \end{cases} \Leftrightarrow \begin{cases} x^2 - 2ax + a^2 - 1 = 0, \\ x \in (-\infty; -1) \cup (1; +\infty) \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} x = a - 1, \\ x = a + 1, \\ x \in (-\infty; -1) \cup (1; +\infty). \end{cases}$$

x=a-1 удовлетворяет условию $x\in (-\infty;-1)\cup (1;+\infty)$, если $a\in (-\infty;0)\cup (2;+\infty)$; x=a+1 удовлетворяет условию $x\in (-\infty;-1)\cup (1;+\infty)$, если $a\in (-\infty;-2)\cup (0;+\infty)$.

Итак, видим, что при a < -2 и a > 2 уравнение имеет два корня: x = a - 1, x = a + 1; при a = 0 уравнение имеет один корень a = a - 1; при a = 0 корней нет; при a = 0 уравнение имеет один корень a = a + 1.

Ответ: при
$$a < -2$$
 и $a > 2$ $x = a - 1$ или $x = a + 1$;

при $-2 \le a < 0$ x = a - 1; при $0 < a \le 2$ x = a + 1; при a = 0 корней нет.

ПРИМЕР 2. Найдите все значения параметра a, при каждом из которых система уравнений $\begin{cases} \log_3(x+|x|) = \log_3 y, \\ x^2 - ay + 6a - 8 = 0 \end{cases}$ имеет два различных решения.

• Из условия существования логарифма следует: что x + |x| > 0, что выполнимо только при x > 0. Тогда, имеем:

$$\begin{cases} x > 0, \\ \log_3 2x = \log_3 y, \\ x^2 - ay + 6a - 8 = 0; \end{cases} \begin{cases} x > 0, \\ 2x = y, \\ x^2 - ay + 6a - 8 = 0; \end{cases} \begin{cases} x > 0, \\ 2x = y, \\ x^2 - ay + 6a - 8 = 0; \end{cases} \begin{cases} x > 0, \\ 2x = y, \\ x^2 - 2ax + 6a - 8 = 0. \end{cases}$$

Исходная система имеет два решения, если квадратное уравнение $x^2 - 2ax + 6a - 8 = 0$ имеет два различных положительных корня.

Пусть x_1 и x_2 – различные корни этого уравнения, причем $x_1 > 0$ и $x_2 > 0$; По теореме Виета $x_1 \cdot x_2 = 6a - 8$; $x_1 + x_2 = 2a$. Кроме того, $D_1 = a^2 - (6a - 8)$.

Условие задачи выполняется, если

$$\begin{cases} D_1 > 0, & \begin{cases} a^2 - 6a + 8 > 0, \\ x_1 \cdot x_2 > 0, \\ x_1 + x_2 > 0; \end{cases} & \begin{cases} a \in (-\infty; 2) \cup (4; + \infty), \\ a \in \left(\frac{4}{3}; + \infty\right), \\ a \in \left(0; + \infty\right); \end{cases} & a \in \left(\frac{4}{3}; 2\right) \cup (4; + \infty). \end{cases}$$

Otbet: $a \in \left(\frac{4}{3}; 2\right) \cup (4; +\infty)$.

ПРИМЕР 3. Найдите все значения параметра a, при каждом из которых уравнение $\lg(12x-x^2-32)=\lg(ax-7)$ имеет ровно один корень.

♦ Уравнение $lg(12x-x^2-32) = lg(ax-7)$ равносильно системе

$$\begin{cases} 12x - x^2 - 32 > 0, \\ 12x - x^2 - 32 = ax - 7 \end{cases} \Leftrightarrow \begin{cases} 4 < x < 8, \\ 12x - x^2 - 32 = ax - 7. \end{cases}$$

Дальше решение проведем графическим способом: найдем все значения параметра a, при которых прямая y = ax - 7 имеет ровно одну общую точку с графиком функции $y = -x^2 + 12x - 32$ на интервале (4; 8).

Видим, что искомые значения параметра $a \in (a_1; a_2] \cup \{a_3\}$.

Значение a_1 находим из уравнения $0 = 8 a_1 - 7$; $a_1 = \frac{7}{8}$.

Значение a_2 находим из уравнения $0 = 4 a_2 - 7$; $a_2 = \frac{7}{4}$.

Значение a_3 соответствует моменту касания прямой y=ax-7 графика функции $y=-x^2+12x-32$. Для нахождения a_3 необходимо потребовать, чтобы уравнение $-x^2+12x-32=a_3\cdot x-7$ имело ровно один корень.

Имеем $x^2 - (a_3 - 12)x + 25 = 0$; D = 0 при $a_3 = 2$ или $a_3 = 22$.

Если $a_3 = 22$, то x = -5, что не удовлетворяет условию 4 < x < 8.

Если $a_3 = 2$, то x = 5. Это значение удовлетворяет условию 4 < x < 8.

Otbet: $a \in \left(\frac{7}{8}; \frac{7}{4}\right] \cup \{2\}$.

ПРИМЕР 4. Найдите все значения параметра a, при каждом из которых неравенство $\lg(ax^2 + 4x + a) \ge \lg(5x^2 + 5)$ не имеет решений.

♦ Исходное неравенство равносильно неравенству $ax^2 + 4x + a \ge 5x^2 + 5$, откуда $(a-5)x^2 + 4x + a - 5 \ge 0$.

Если a = 5, то решением неравенства является любое $x \ge 0$.

Если $a \neq 5$, то последнее неравенство не имеет решений тогда и только

тогда, когда выполняется система $\begin{cases} a-5 < 0, \\ D < 0. \end{cases}$

 $D_1 = 4 - (a - 5)^2 = -(a - 7)(a - 3)$. Таким образом, получим систему

$$\begin{cases} a-5<0, \\ -(a-7)(a-3)<0 \end{cases} \Leftrightarrow \begin{cases} a<5, \\ a\in(-\infty;3)\cup(7;+\infty) \end{cases} \Leftrightarrow a<3.$$

Ответ: a < 3.

ПРИМЕР 5. Найдите все значения параметра a, при каждом из которых уравнение $\log_7(21a+59-a^2+\sin 2x+\sqrt{\sin^2 2x})=\log_7(3a+5)+1$ имеет ровно три корня на промежутке $\left[-\frac{3\pi}{4};\frac{13\pi}{12}\right]$.

•
$$\log_7(21a + 59 - a^2 + \sin 2x + \sqrt{\sin^2 2x}) = \log_7(3a + 5) + 1 \Leftrightarrow$$

 $\Leftrightarrow \log_7(21a + 59 - a^2 + \sin 2x + \sqrt{\sin^2 2x}) = \log_7(21a + 35) \Leftrightarrow$

$$\Leftrightarrow \begin{cases} 21a + 35 > 0, \\ 21a + 59 - a^2 + \sin 2x + \sqrt{\sin^2 2x} = 21a + 35 \end{cases} \Leftrightarrow \begin{cases} a > -\frac{5}{3}, \\ \sin 2x + |\sin 2x| = a^2 - 24. \end{cases}$$

Дальше определим графически, при каких значениях параметра a прямая $y=a^2-24$ $\left(a>-\frac{5}{3}\right)$ имеет ровно три общих точки с графиком функции $y=\sin 2x+\left|\sin 2x\right|$ на промежутке $\left[-\frac{3\pi}{4};\frac{13\pi}{12}\right)$.

Для построения графика функции $y = \sin 2x + |\sin 2x|$ раскроем модуль: $y = \begin{cases} 2\sin 2x, & \text{если } \sin 2x \geq 0; \\ 0, & \text{если } \sin 2x < 0. \end{cases}$

Построим график этой функции в системе координат (2x; y). В этом случае $(2x) \in \left[-\frac{3\pi}{2}; \frac{13\pi}{6}\right]$.

Видим, что искомые значения параметра удовлетворяют системе

$$\begin{cases} a > -\frac{5}{3}, & \iff a > -\frac{5}{3}, \\ 1 \le a^2 - 24 < 2 & a \in (-\sqrt{26}; -5] \cup [5; \sqrt{26}) \end{cases} \Leftrightarrow a \in [5; \sqrt{26}).$$

Ответ: $a \in [5; \sqrt{26})$.

УПРАЖНЕНИЯ

- № 1. Для каждого значения a решите неравенство $\log_{3-a}(x+a) \ge 0$.
- **№ 2.** Найдите все значения параметра a, при каждом из которых уравнение $\log_{2a+1}(4\sin x + 5 + 4a) = 2$ имеет 5 корней на отрезке $\left[-\frac{\pi}{2}; 4\pi \right]$.
- **№ 3.** Найдите все значения параметра a, при каждом из которых уравнение $\lg(4x^2 6ax x 8a^2 + 12) = \lg(x + 4) + \lg(3 x)$ имеет ровно 2 корня.
- **№ 4.** Найдите все значения параметра a, для которых при каждом x из промежутка [3; 9) значение выражения $\log_3^2 x 7$ не равно значению выражения $(a-4)\cdot \log_3 x$.
- **№** 5. Найдите все значения параметра a, при каждом из которых уравнение $\lg(3x-x^2) = \lg(3x-2ax+a^2-1)$ имеет ровно один корень.
- **№ 6.** Найдите все значения параметра a, при каждом из которых система $\begin{cases} x^2 + y^2 = \log_2 \left(3 \frac{|x|}{x} \right), & \text{имеет ровно одно решение.} \\ y |x| = a \end{cases}$
- **№** 7. Найдите все значения параметра a, при каждом из которых система

уравнений
$$\begin{cases} \log_4\left(-\frac{x}{\mid x\mid}\right) = y - 2x, \\ x^2 - ay - 7a - 12 = 0 \end{cases}$$
 имеет два различных решения.

- **№ 8.** Найдите все значения параметра a, при каждом из которых неравенство $\lg(3x-x^2) \le \lg(3x-2ax+a^2-4)$ имеет хотя бы одно решение.
- **№ 9.** Найдите все значения параметра a, при каждом из которых неравенство $\log_{0.5}(4x-x^2) \ge \log_{0.5}(4x+ax+3a)$ не имеет решений.
- **№ 10.** Найдите все значения a, при каждом из которых уравнение $\log_x(4^x 6 \cdot 2^x a) = 0$ имеет ровно один корень, удовлетворяющий неравенству $|x-1| \le 1$.

§11. Свойства функций в задачах с параметром

ПРИМЕР 1. Найдите все значения параметра a, при которых уравнение $3^{x^2+x} + \sqrt[3]{x^2+x} = 3^{a-x} + \sqrt[3]{a-x}$ имеет ровно один корень.

• Рассмотрим функцию $f(t) = 3^t + \sqrt[3]{t}$. Эта функция возрастает на R (как сумма двух возрастающих функций). Исходное уравнение имеет вид $f(x^2 + x) = f(a - x)$. Оно будет равносильно уравнению $x^2 + x = a - x$.

Ясно, что требование задачи выполняется, когда дискриминант квадратного уравнения $x^2 + 2x - a = 0$ равен нулю. $D_1 = 1 + a$; $D_1 = 0$ при a=-1. Ответ: -1.

ПРИМЕР 2. Решите неравенство $\sqrt{x+9a} - \sqrt{10a} \le a - x$.

• Перепишем неравенство в виде $\sqrt{x+9a} + x \le \sqrt{a+9a} + a$ (1).

Так как функция $f(t) = \sqrt{t+9a} + t$ возрастает на всей своей области определения $D(f) = [-9a; +\infty)$, то неравенство (1) равносильно системе $\begin{cases} x \leq a, \\ x \geq -9a \end{cases}$. Найдём решение полученной системы с помощью координат-

ной плоскости Oax. Все решения системы задают на координатной плоскости Oax один из четырёх углов, полученных при пересечении прямых x = a и x = -9a.

Видим, что при a < 0 решений нет; при a = 0 x = 0; при a > 0 $x \in [-9a; a]$. Ответ: при a < 0 решений нет; при a = 0 x = 0; при a > 0 $x \in [-9a; a]$.

ПРИМЕР 3. Найдите все положительные значения a, при каждом из которых наименьшее значение функции $f(x) = 2x^3 - 3ax^2 + 5$ на отрезке [1; 3] не меньше, чем -3.

• І способ. (Аналитический). $f'(x) = 6x^2 - 6ax$. Из уравнения $6x^2 - 6ax = 0$ находим критические точки функции: x=0 или x=a. Во-первых, заметим, что $0 \notin [1;3]$. Во-вторых, x=a (a>0) – точка минимума функции (рис.).

I. Если $a \in [1;3]$, то наименьшее значение функция принимает в точке a. Следовательно, должно выполняться неравенство $f(a) \ge -3$: $2a^3 - 3a^3 + 5 \ge -3$, откуда $a \le 2$. Таким образом, этому случаю удовлетворяют все $a \in [1;2]$. II. Если $a \notin [1;3]$, т.е. $a \in (0;1) \cup (3;+\infty)$, то наименьшее значение функция принимает либо в точке x=1, либо в точке x=3. Независимо от того, какая это точка, должна выполняться система неравенств $\begin{cases} f(1) \ge -3, \\ f(3) \ge -3. \end{cases}$

Имеем
$$\begin{cases} 2-3a+5\geq -3,\\ 54-27a+5\geq -3; \end{cases} \begin{cases} a\leq \frac{10}{3},\\ a\leq \frac{62}{7}; \end{cases} a\leq \frac{62}{7}. \text{ C учетом условия } a\in (0;1).$$

Объединяя решения из пунктов (I) и (II), получим $a \in (0, 2]$.

<u>ІІ способ.</u> (Графический). Так как наименьшее значение функции на отрезке [1; 3], не меньше, чем -3, то значения функции *во всех точках* отрезка также не меньше, чем -3. Следовательно, неравенство $2x^3 - 3ax^2 + 5 \ge -3$ должно выполняться для любого $x \in [1; 3]$. Полученное неравенство перепишем в виде $2x^3 + 8 \ge 3ax^2$, откуда $\frac{2x}{3} + \frac{8}{3x^2} \ge a$.

Выясним, при каких значениях a прямая y=a будет располагаться <u>не</u> <u>выше</u> графика функции $y = \frac{2x}{3} + \frac{8}{3x^2}$, построенного на отрезке [1; 3]. Проведем исследование функции $y = \frac{2x}{3} + \frac{8}{3x^2}$ с помощью производной:

$$y' = \frac{2}{3} - \frac{16}{3x^3} = \frac{2(x^3 - 8)}{3x^3}$$
. $y' = 0$ при $x = 2$. $y(1) = \frac{10}{3}$, $y(2) = 2$, $y(3) = \frac{62}{27}$.

Далее изобразим график функции $y = \frac{2x}{3} + \frac{8}{3x^2}$ на отрезке [1; 3].

По графику видим, что требованию удовлетворяет любая прямая y=a, для которой $a\in(0;2]$.

Ответ: $a \in (0; 2]$.

Замечания. 1) Любые другие графические интерпретации, такие как $2x^3+8\geq 3ax^2$ или $x^3\geq \frac{3a}{2}x^2-4$, были бы весьма неудачны. В них пришлось бы рассматривать взаимное расположение обычной параболы и кубической. Не намного лучше выглядит графическая интерпретация вида $2x^2+\frac{8}{x}\geq 3ax$. В этом случае пришлось бы выяснять, при каком значении а прямая y=3ax является касательной к графику функции $y=2x^2+\frac{8}{x}$.

2) Сравнивая оба способа решения (аналитический и графический), можно констатировать, что в данной ситуации предпочтительнее выглядит первый.

ПРИМЕР 4. Найдите все значения a, при каждом из которых функция $f(x) = ax^3 - 30x^2 + 3ax - 1$ будет убывающей на всей области определения.

• $f'(x) = 3ax^2 - 60x + 3a$. Функция будет убывающей, если для любого x выполняется условие $f'(x) \le 0$: $3ax^2 - 60x + 3a \le 0$, $ax^2 - 20x + a \le 0$.

Последнее неравенство будет верно при любом значении x, если $\begin{cases} a < 0, \\ D \le 0. \end{cases}$

Имеем
$$\begin{cases} a < 0, \\ 100 - a^2 \le 0, \end{cases} \quad a \le -10.$$

Otbet: $a \le -10$.

ПРИМЕР 5. Найдите все значения a, при каждом из которых функция $f(x) = x^3 - 3ax^2 + 3a^2x - 3x + 1$ имеет ровно один экстремум на промежутке (0;3].

• $f'(x)=3x^2-6ax+3a^2-3$. f'(x)=0 при x=a-1 или x=a+1. Очевидно, что обе найденные точки будут являться точками экстремума данной функции.

Выясним, при каких значениях a только одна из них попадает в промежуток (0;3].

1)
$$0 < a - 1 \le 3$$
, $1 < a \le 4$. 2) $0 < a + 1 \le 3$, $-1 < a \le 2$.

Видим, что искомые значения $-1 < a \le 1$, $2 < a \le 4$ (одна штриховка). Ответ: $-1 < a \le 1$, $2 < a \le 4$.

ПРИМЕР 6. Найдите все значения a, при каждом из которых уравнение $3x^4 - 6x^2 - a = 0$ имеет ровно один корень на промежутке (-1; 2).

♦ Приведем уравнение к виду $3x^4-6x^2=a$. Исследуем функцию $y=3x^4-6x^2$. $y'=12x^3-12x$; y'=0 при x=0 или $x=\pm 1$. При этом y(0)=0, y(-1)=-3, y(1)=-3

На координатной плоскости изобразим график функции $y=3x^4-6x^2$, где $x \in (-1; 2)$. Заметим, что y(2)=24.

По графику видим, что уравнение $3x^4-6x^2=a$ имеет ровно один корень при a=-3 или 0 < a < 24.

Ответ: *a*=-3, 0<*a*<24.

УПРАЖНЕНИЯ

№ 1. Найдите все значения параметра a, при каждом из которых уравнение $(0,1)^{x^2-x} - \sqrt[5]{x^2-x} = 10^{2x-a} + \sqrt[5]{2x-a}$ не имеет корней.

№ 2. Найдите все значения параметра a, при каждом из которых уравнение $\cos(x^2 + a) - \cos ax = ax - x^2 - a$ имеет единственный корень.

№ 3. Найдите все значения параметра a, при каждом из которых уравнение $6\sin^3 x = a - 5\cos 2x$ не имеет корней.

№ 4. Найдите все значения параметра a, при каждом из которых уравнение $2x^3 + 1 = 3x^2 + a$ имеет два различных действительных корня.

№ 5. Решите неравенство $\sqrt{x-5a} - \sqrt{-4a} \le 4a - 4x$.

№ 6. Найдите все значения параметра a, при каждом из которых наименьшее значение функции $f(x) = x^2 - 4ax + 5a^2$ на отрезке, заданном неравенством $|x| \le 6$, больше 8.

№ 7. Найдите все значения a, при каждом из которых наибольшее значение функции $f(x) = -x^2 + 2ax - a^2 + 2a$ на отрезке [-3; 1] не превосходит –5.

№ 8. Найдите все значения параметра a, при каждом из которых функция $f(x) = ax^3 + 3x^2 + 3ax - 2$ будет возрастающей на всей области определения.

№ 9. Найдите все значения параметра a, при каждом из которых функция $f(x) = x^3 - 12x - 2$ имеет ровно один экстремум на промежутке (a-5; a].

№ 10. Найдите все значения параметра a, при каждом из которых функция $f(x) = x^3 + ax^2 - ax$ не имеет экстремумов.

Ответы

§ 1

- **№1. б)** при a=0 и a=1 числа равны; при a<0 и a>1 первое число меньше; при 0<a<1 первое число больше.
- **№2. б)** при a=2 решений нет; при a=-2 $x \in R$; при $a \neq \pm 2$ $x = \frac{a+1}{a-2}$;
- г) при a=-2 и a=0 решений нет; при a=2 $x \in R$; при $a \neq \pm 2$, $a \neq 0$ $x = \frac{a+1}{a+2}$;
- **e)** при a<3 решений нет; при a=3 x=-1; при a>3 x=2-a или x=a-4;
- **3)** при a < -2 решений нет; при a = -2 x = 0; при -2 < a < 2 $x = \pm (a+2)$; при a = 2 $x = \pm 4$ или x = 0; при a > 2 $x = \pm (a+2)$ или $x = \pm (a-2)$.
- **№3. б)** при a=1 $x \in R$; при a < 1 $x \ge \frac{3}{a-1}$; при a > 1 $x \le \frac{3}{a-1}$; г) при a=0

решений нет; при a=3 $x \in R$; при 0 < a < 3 $x \ge \frac{a+2}{a-3}$; при a < 0 и a > 3 $x \le \frac{a+2}{a-3}$;

- **e)** при a=0 решений нет; при a>0 x>a; при a<0 x<a; **3)** при $a=\pm 2$ решений нет; при a=0 $x \in R$; при a<-2 и 0<a<2 $x<\frac{a^2+4}{a}$; при -2<a<0 и a>2 $x>\frac{a^2+4}{a}$.
- **№4. в)** при a=-1, $b \le 1$ $x \in R$; при a=-1, b>1 решений нет; при a<-1 $x \le \frac{b-1}{a+1}$;

при $a \ge -1$ $x \ge \frac{b-1}{a+1}$; г) при a = b = 0 $x \in \mathbb{R}$; при $a \ne 0$ или $b \ne 0$ $x = b^2 - a^2$.

- **№5. б)** при a=2 решений нет; при a=-2 бесконечно много решений вида (t; 2+2t), где $t \in R$; при $a \neq -2$ и $a \neq 2$ одно решение $\left(\frac{2}{a-2}; \frac{4}{2-a}\right)$.
- **№6**. При a < -1 $x = \frac{2-4a}{a-1}$, $x = -\frac{2+4a}{a+1}$. **№7.** (-1; 1]. **№8.** $a \ge 1$. **№9.** $a \le -1$. **№10.** При a < 0 корней нет; при a = 0 x = 0; при a > 0 $0 \le x \le a$.

§ 2

№1. б) при a=2 x=2; при a=3 x=3; при 2 < a < 3 решений нет; при a < 2 и a > 3 $x = a \pm \sqrt{a^2 - 5a + 6}$; г) при $a = \frac{4}{3}$ x=2; при $a = -\frac{4}{3}$ x=-2; при $a = -\frac{4}{3}$ x=-2; при $a < -\frac{4}{3}$ и $a > \frac{4}{3}$ и $a > \frac{4}{3}$ $x = \frac{3a \pm \sqrt{9a^2 - 16}}{2}$;

- е) при a=0 x=-0.5; при a=1 x=-1; при a>1 решений нет; при a<0 и 0< a<1 $x=\frac{-1\pm\sqrt{1-a}}{a}$.
- **№2. a)** при a=1 и a=0,2 один корень; при a<0,2 корней нет; при 0,2< a<1 и a>1 два корня.
- **№3. б)** при a < 4 $x \in (-\infty; a-2) \cup (6-a; +\infty)$; при a=4 $x \in (-\infty; 2) \cup (2; +\infty)$; при a > 4 $x \in (-\infty; 6-a) \cup (a-2; +\infty)$;
- г) при a=0 x<-1; при $0<a<\frac{1}{4}$ $x\in\left(\frac{-1-\sqrt{1-4a}}{2a};\frac{-1+\sqrt{1-4a}}{2a}\right)$; при a<0 $x\in\left(-\infty;\frac{-1+\sqrt{1-4a}}{2a}\right)\cup\left(\frac{-1-\sqrt{1-4a}}{2a};+\infty\right)$; при $a\geq\frac{1}{4}$ решений нет;
- **e)** при a=0 решений нет; при a>0 $x \in (-\infty; a) \cup (a+1; +\infty)$; при a<0 $x \in (a; a+1)$.

№4. а)
$$a < -1$$
; **б)** $0 < a \le 1$, $a = \frac{5}{4}$, $3 \le a < 10$; **в)** $a = 3$; г) $a < \frac{5 - 2\sqrt{7}}{3}$; д) $a \le -1$.

№5. при a<-2 решений нет; при a=-2 x=0; при -2< a<2 $x=\pm(a+2)$; при a=2 $x=\pm 4$ или x=0; при a>2 $x=\pm(a+2)$ или $x=\pm(a-2)$.

§ 3

- **№1.** при a=-5 числа равны; при a<-5 и -1<a<1 первое число меньше; при -5<a<-1 и a>1 первое число больше.
- **№2. a)** при a=0 и a=1 решений нет; при $a \ne 0$, $a \ne 1$ x=a-1; **6)** при a=-1 решений нет; при $a \ne -1$ x=-a; **b)** при a=1 решений нет; при $a \ne 1$ x=a;
- г) при a=-1 и a=0 решений нет; при $a \neq -1$, $a \neq 0$ $x = \frac{a}{a+1}$; д) при

$$a=\pm 1$$
 решений нет; при $a=0$ $x=0$; при $a=\frac{1}{\sqrt{2}}$ $x=\frac{1}{\sqrt{2}}$; при $a=-\frac{1}{\sqrt{2}}$

$$x = -\frac{1}{\sqrt{2}}$$
; при $a \neq \pm \frac{1}{\sqrt{2}}$, $a \neq \pm 1$, $a \neq 0$ $x = a$, $x = \frac{1}{a} - a$; **e)** при $a = 2$ $x = 1$; при

a=-2 x=-1; при a=6 x=7; при $a\neq\pm2$, $a\neq6$ x=a+1, $x=\frac{a}{2}$; ж) при a=3 решений нет; при a=1 x=1; при a=-3 x=9; при a=0 x=0; при $a\neq\{\pm3;0;1\}$ x=a, x=3-2a; з) при a=-3 x=-6; при a=2,5 x=-0,5; при a=-2,5 x=-5,5; при a=8 x=16; при a=-2 x=-4; при $a\neq\{\pm2,5;-3;-2;8\}$ x=2a, x=a-3.

№3. а) при a=0 решений нет; при a>0 $0 < x \le a$; при a<0 $a \le x < 0$;

- **б)** при a=0 решений нет; при a<0 $x\in (-1;0)\cup (-a;+\infty)$; при 0< a<1 $x\in (-\infty;-1)\cup (-a;0)$; при $a\geq 1$ $x\in (-\infty;-a)\cup (-1;0)$;
- **B)** при a < -1 и a > 1 $x \in (-1, 1) \cup \{a\}$; при $-1 \le a \le 1$ $x \in (-1, 1)$.
- г) при a=0 x<0; при a>0 $x\in (-\infty;0)\cup [\frac{1}{a};+\infty)$; при a<0 $x\in [\frac{1}{a};0)$;
- д) при a=-4 решений нет; при a>-4 $-8 \le x < 2a$; при a<-4 $2a < x \le -8$;
- **e)** при a < 0 3a < x < 0, $x \ge 12$; при a = 0 $x \ge 12$; при 0 < a < 4 0 < x < 3a, $x \ge 12$; при a = 4 0 < x < 12, x > 12; при a > 4 $0 < x \le 12$, x > 3a.

§ 4

№1.
$$\left(-\frac{4}{3}; -1\right) \cup \left(\frac{4}{5}; 1\right)$$
. **№2.** $(-\infty; -15) \cup (-3; 9)$. **№3.** 0. **№4.** $(1; 5)$.

Nº5. (-3; 5). **Nº6.** $a \ge 9$. **Nº7.** 3. **Nº8.** -4. **Nº9.** a > 3. **Nº10.** a < -3.

№11.
$$[-7;-6) \cup (2;3]$$
. **№12.** $(-2;-1] \cup [4;5)$. **№13.** $(0;1) \cup (1;1,2)$.

№14.
$$-7$$
; $-\frac{109}{7}$. **№15.** $-\frac{20}{7}$; $-\frac{20}{13}$.

§ 5

No1.
$$\left(-\frac{1}{2};0\right]$$
 ∪ [4;+∞). **No2.** [1;3). **No3.** a <-2. **No4.** $a > \frac{10}{7}$.

No.
$$\left[-2; -\frac{1}{2}\right] \cup \left(\frac{1}{2}; 2\right]$$
. **No.** $\left[-\frac{16}{7}; -2\right)$. **No.** $a \ge 2$. **No.** $a \ge 9$.

№9.
$$a \ge \frac{1}{3}$$
. **№10.** $a = -1$. **№11.** $(\frac{7}{4}; 2]$. **№12.** $(-4; -2] \cup \{-0,5\} \cup [1; 3)$.

No13.
$$(-\infty; -4] \cup [0; \frac{4}{3})$$
. **No14.** $(-\frac{4}{3}; 0] \cup [4; +\infty)$. **No15.** $(-\infty; -1] \cup [6; +\infty)$.

№1. (0; 3). №2. а) при a > 1 корней нет; при a = 1 и a < 0 два корня; при a = 0 три корня; при 0 < a < 1 четыре корня; б) при a < -2 корней нет; при a = -2 один корень; при -2 < a < 2 два корня; при a = 2 три корня; при a > 2 четыре корня. №3. [-1; 1). №4. a = 4. №5. a = 3 или $a = 2 + \sqrt{41}$. №6. a = 3 или $a = -\frac{11}{3}$. №7. $-22 < a < -\frac{2}{3}$. №8. $\frac{5}{6} < a < \frac{3}{2}$. №9. $\left(\frac{1}{3},\frac{3}{5}\right)$. №10. $(-1;0) \cup \left(0;\frac{\sqrt{17}-1}{2}\right) \cup \left(\frac{\sqrt{17}-1}{2};4\right)$. №11. $a = -4\sqrt{2}$ или -3 < a < 3. №12. $[1-\sqrt{5};0) \cup [2;1+\sqrt{5}]$. №13. -1,5. №14. a = 1 или $a = -\sqrt{10}$. №15. (1;2]. №16. a = 0 или a = 2,25. №17. $\left(-\frac{17}{8};1\right)$. №18. (0,75;2). №19. $(1,5;6+2\sqrt{5})$. №20. $\left(-\infty;-12-2\sqrt{30}\right) \cup \left(-0,5;+\infty\right)$.

§ 7

№1. б) при a < 1 корней нет; при $1 \le a < 3$ $x = (-1)^n \arcsin \frac{2}{a+1} + \pi n, \ n \in \mathbb{Z}$; при $a \ge 3$ $x = (-1)^n \arcsin \frac{2}{a+1} + \pi n, \ x = (-1)^n \arcsin \frac{2}{1-a} + \pi n, \ n \in \mathbb{Z}$; г) при a = 0 $x = -\frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}$, при $a \ne 0$ корней нет.

No. $-8\pi < a < -6\pi$, $6\pi < a < 8\pi$. No. a < -2, 0 < a < 1, a > 3. No. $a < -\frac{4}{3}$, a > 0. No. a < -4, a > 1. No. a = 0.5. No. a < 0. No. a = 2. No. a

при a < 1 $\frac{1}{a-1} \left(\frac{\pi}{2} + \pi n \right) < x \le \frac{1}{a-1} \left(\frac{\pi}{4} + \pi n \right)$, $n \in \mathbb{Z}$; при a = 1 решений нет.

§ 8

№1. а) при a < 0 решений нет; при $a \ge 0$ $x = a^2$; **б)** при a < 0 $x \ge 0$; при $a \ge 0$ $x > a^2$; **в)** при a < 0 решений нет; при $a \ge 0$ $x \in [0; a^2]$;

г) при a>0 x=a, x=0; при $a\le 0$ x=0; д) при a<0 решений нет; при $a\ge 0$ $x\ge a$; е) при a<0 x=a, x=0; при $a\ge 0$ x=a.

N2.
$$a$$
<3. **N23.** a <−2, $a = \frac{-1-\sqrt{5}}{2}$. **N24.** $a \le \frac{13}{3}$, $a \ge 7$. **N25.** a =0, $-2 \le a < -0.4$.

№6. a < -2, a > 0. **№7.** $a \le -2$, $a \ge 2$. **№8.** $-0.25 < a \le 0$. **№9.** $0 < a \le 2$. **№10.** При $a \ge 3$ $-3 \le x \le 3$; при -3 < a < 3 x = -3, $-a \le x \le 3$; при $a \le -3$ $x = \pm 3$.

§ 9

№1. $a \le -5$, a = 1, $a \ge 7$. При $a \le -5$ $x = \log_4(7 - a)$; при a = 1 $x = \log_4 6$; при $a \ge 7$ $x = \log_4(5 + a)$. **№2.** $a \ge 2$. **№3.** a < 4. **№4.** -5 < a < -1. **№5.** $-1 < a \le 4$. **№6.** $2 < a < \frac{24}{11}$. **№7.** a < 3, a > 3. **№8.** a > -5,5. **№9.** $a \ge 0$. **№10.** При $a \le -1$ решений нет; при $-1 < a \le 0$ $x < \log_2(a + 1)$; при a > 0 $\log_2 a < x < \log_2(a + 1)$.

§ 10

№1. При $a \ge 3$ и a = 2 \varnothing ; при a < 2 $x \ge 1 - a$; при $2 < a < 3 - a < x \le 1 - a$.

No2.
$$\left(-\frac{1}{2};0\right) \cup (0;1]$$
. **No3.** $(-2;0) \cup (0;1,5)$. **No4.** $(-\infty;-2) \cup [2,5;+\infty)$.

No5. (-1;1] ∪ [2;4). **No6.**
$$a = -2$$
, $1 \le a < \sqrt{2}$. **No7.** $(-\infty; -4) \cup \left(-3; -\frac{12}{7}\right)$.

No8.
$$(-\infty;1) \cup (2;+\infty)$$
. **No9.** $\left(-\infty;-\frac{16}{7}\right]$. **No10.** $a=-10, -9 \le a < -6$.

§ 11

№1. a < -0.25. **№2.** a = 0, a = 4. **№3.** a < -11, a > 5. **№4.** 0; 1. **№5.** При a < 0 $5a \le x \le a$; при a = 0 x = 0; при a > 0 решений нет. **№6.** $(-\infty, -2\sqrt{2}) \cup (2\sqrt{2}; +\infty)$. **№7.** $(-\infty, -2\sqrt{2}) \cup [2+2\sqrt{2}; +\infty)$. **№8.** $a \ge 1$. **№9.** $[-2; 2) \cup [3; 7)$. **№10.** [-3; 0].

Приложение

◆ Приведем примерное тематическое планирование изучения раздела "Задачи с параметром" на факультативных занятиях (элективных курсах) в 11-м классе.

Тема занятия:	Часов:
§ 1. Линейные уравнения и неравенства,	
содержащие параметр	3
§ 2. Квадратные уравнения и неравенства,	
содержащие параметр	3
§ 3. Дробно-рациональные уравнения и неравенства,	
содержащие параметр	3
§ 4. Теорема Виета	3
§ 5. Расположение корней квадратичной функции	3
§ 6. Графический способ решения уравнений и	
неравенств, содержащих параметр	4
§ 7. Тригонометрические уравнения и неравенства,	
содержащие параметр	3
§ 8. Иррациональные уравнения и неравенства,	
содержащие параметр	3
§ 9. Показательные уравнения и неравенства,	
содержащие параметр.	3
§ 10. Логарифмические уравнения и неравенства,	
содержащие параметр	3
§ 11. Свойства функций в задачах с параметром	3
Всего:	34

Примерные задания для зачета (итоговой контрольной работы)

Вариант – 1

- **№1.** Для каждого значения a решите систему уравнений $\begin{cases} ax 3y = 5, \\ 4x + y = 2. \end{cases}$
- **№2.** Для каждого значения *a* решите неравенство 2ax + 5 > a + 10x.
- **№3.** Для каждого значения a решите уравнение $\frac{x^2 (3a 1)x + 2a^2 2}{x^2 3x 4} = 0$.
- **№4.** Найдите все значения a, при каждом из которых сумма квадратов корней трехчлена $x^2 2(a-3)x + 2a 6$ больше 48.
- **№5.** Найдите все значения a, при каждом из которых корни уравнения $x^2 (a-2)x a + 5 = 0$ больше 1.
- **№6.** Найдите все положительные значения a, при каждом из которых система $\begin{cases} (x+3)^2 + (|y|-7)^2 = 9, \\ (x-9)^2 + (y-2)^2 = a^2 \end{cases}$ имеет ровно одно решение.
- **№7.** Найдите все значения параметра a, при каждом из которых уравнение $\cos 2x + (a-1)\sin x + 0,5a 1 = 0$ имеет ровно семь корней на промежутке $\left[-\pi; \frac{13\pi}{6}\right)$.
- **№8.** Для каждого a решите уравнение $3^{1+2|x-1|} + a^2 + 2a = (4a+6) \cdot 3^{|x-1|}$.
- **№9.** Найдите все значения a, при каждом из которых уравнение $\log_{1-x}(4ax-a-7)=2$ не имеет корней.
- **№10.** Найдите все значения параметра a, при каждом из которых функция $f(x) = x^3 3ax^2 + 3a^2x 75x + 5$ имеет ровно один экстремум на промежутке (-5; 6].

Примерные задания для зачета (итоговой контрольной работы)

Вариант – 2

- **№1.** Для каждого значения a решите систему уравнений $\begin{cases} ay + 5x = 7, \\ 3y x = 1. \end{cases}$
- **№2.** Для каждого значения a решите неравенство 2ax + 6 < 4x + 3a.
- **№3.** Для каждого значения a решите уравнение $\frac{x^2 (3a+1)x + 2a^2 + 3a 2}{x^2 6x + 5} = 0$.
- **№4.** Найдите все значения a, при каждом из которых сумма квадратов корней трехчлена $x^2 ax + 3 + a$ меньше 29.
- **№5.** Найдите все значения a, при каждом из которых корни уравнения $x^2 (a+1)x + a + 4$ меньше 2.
- **№6.** Найдите все положительные значения a, при каждом из которых система $\begin{cases} (x+4)^2 + (|y|-6)^2 = 16, \\ (x-8)^2 + (y+1)^2 = a^2 \end{cases}$ имеет ровно одно решение.
- **№7.** Найдите все значения параметра a, при каждом из которых уравнение $\cos 2x (4a 1)\cos x 2a + 1 = 0$ имеет ровно шесть корней на промежутке $\left[-\frac{3\pi}{2}, \frac{5\pi}{3} \right]$.
- **№8.** Для каждого a решите уравнение $2^{1+2|x+1|} + a^2 a = (3a-2) \cdot 2^{|x+1|}$.
- **№9.** Найдите все значения a, при каждом из которых уравнение $\log_{x-1}(4ax + a 9) = 2$ имеет ровно два корня.
- **№10.** Найдите все значения параметра a, при каждом из которых функция $f(x) = x^3 3ax^2 + 3a^2x 108x + 6$ имеет ровно один экстремум на промежутке [-8; 7).

Содержание

Предисловие	3
Введение	4
§ 1. Линейные уравнения и неравенства,	
содержащие параметр	7
§ 2. Квадратные уравнения и неравенства,	
содержащие параметр	12
§ 3. Дробно-рациональные уравнения и неравенства,	
содержащие параметр	17
§ 4. Теорема Виета	19
§ 5. Расположение корней квадратичной функции	24
§6. Графический способ решения уравнений и	
неравенств, содержащих параметр	30
§ 7. Тригонометрические уравнения и неравенства,	
содержащие параметр	38
§ 8. Иррациональные уравнения и неравенства,	
содержащие параметр	44
§ 9. Показательные уравнения и неравенства,	
содержащие параметр	49
§ 10. Логарифмические уравнения и неравенства,	
содержащие параметр	52
§ 11. Свойства функций в задачах с параметром	57
Ответы	62
Приложение	67

Кожухов Сергей Константинович
Уравнения и неравенства с параметром
Учебно-методическое пособие для учителей математики,
студентов математических специальностей
педагогических вузов, абитуриентов