一般拓扑学

第 3 课. 序列紧, Cantor 集, Peano 曲线

张德学

 $2025.\,3.\,10$

Outline

ℝ 的序列紧子集

平面的拓扑

Peano 曲线定理

定理 1 (Bolzano-Weierstrass)

闭区间 [a, b] 的每个序列都有子列收敛于它的某个点.

换种说法, 实数集的每个有界序列有收敛子列.

定义 (序列紧子集)

设 $K \subseteq \mathbb{R}$. 若 K 的每个序列都有子列收敛到 K 的某个点,则称 K 序列紧.

换种说法, K 序列紧当且仅当 K 的每个序列都有收敛子列. 注意, 这里要求该子列的极限属于 K.

定义 (序列紧子集)

设 $K \subseteq \mathbb{R}$. 若 K 的每个序列都有子列收敛到 K 的某个点,则称 K 序列紧.

换种说法, K 序列紧当且仅当 K 的每个序列都有收敛子列. 注意, 这里要求该子列的极限属于 K.

例 2

- ▶ 每个闭区间 [a, b] 都序列紧.
- ▶ $\{0\} \cup \{1/n : n \ge 1\}$ 序列紧.
- ▶ 开区间 (0,1) 和 ℝ 都不序列紧.

序列紧的等价刻画

定义 (序列的聚点)

设 $\{x_n\}_n$ 为 \mathbb{R} 的一个序列, $U \subseteq \mathbb{R}$, $x \in \mathbb{R}$.

- ▶ 若任给自然数 N, 总是存在 $n \ge N$ 使得 $x_n \in U$, 则称 $\{x_n\}_n$ 常在 U (frequently in U).
- ▶ 若 $\{x_n\}_n$ 常在 x 的每个邻域, 则称 x 为 $\{x_n\}_n$ 的一个聚点 (cluster point).

序列紧的等价刻画

定义 (序列的聚点)

设 $\{x_n\}_n$ 为 \mathbb{R} 的一个序列, $U \subseteq \mathbb{R}$, $x \in \mathbb{R}$.

- ▶ 若任给自然数 N, 总是存在 $n \ge N$ 使得 $x_n \in U$, 则称 $\{x_n\}_n$ 常在 U (frequently in U).
- ▶ 若 $\{x_n\}_n$ 常在 x 的每个邻域, 则称 x 为 $\{x_n\}_n$ 的一个聚点 (cluster point).

命题 3 (聚点与子列极限)

实数 x 是数列 $\{x_n\}_n$ 的聚点当且仅当 $\{x_n\}_n$ 有子列收敛于 x.

定理 4

设 $K \subseteq \mathbb{R}$. 下列等价:

- (1) K 序列紧.
- (2) K 的每个序列都有聚点属于 K.
- (3) K 是有界闭集.

设 X 为集合, A 为 X 的一个子集, U 为 X 的一个子集族.

- ▶ 若 $A \subseteq \bigcup \mathcal{U}$, 则称 \mathcal{U} 为 A 的一个覆盖 (cover).
- ▶ 若 U 覆盖 A, 并且 U 有有限个元素覆盖 A, 即存在 $U_1, U_2, \dots, U_n \in U$ 使得 $A \subseteq \bigcup_{i \in I} U_i$, 则称 U 有有限子覆盖 (finite subcover).

设 X 为集合, A 为 X 的一个子集, U 为 X 的一个子集族.

- ▶ 若 $A \subseteq \bigcup \mathcal{U}$, 则称 \mathcal{U} 为 A 的一个覆盖 (cover).
- ▶ 若 U 覆盖 A, 并且 U 有有限个元素覆盖 A, 即存在 $U_1, U_2, \dots, U_n \in U$ 使得 $A \subseteq \bigcup_{i \le n} U_i$, 则称 U 有有限子覆盖 (finite subcover).

定理 5 (开覆盖刻画序列紧)

实数集 ℝ 的子集 K 序列紧当且仅当 K 的每个开覆盖 (即由 ℝ 的开集构成的覆盖)都有有限子覆盖.

设 X 为集合, A 为 X 的一个子集, U 为 X 的一个子集族.

- ▶ 若 $A \subseteq \bigcup \mathcal{U}$, 则称 \mathcal{U} 为 A 的一个覆盖 (cover).
- ▶ 若 U 覆盖 A, 并且 U 有有限个元素覆盖 A, 即存在 $U_1, U_2, \dots, U_n \in U$ 使得 $A \subseteq \bigcup_{i \le n} U_i$, 则称 U 有有限子覆盖 (finite subcover).

定理 5 (开覆盖刻画序列紧)

实数集 ℝ 的子集 K 序列紧当且仅当 K 的每个开覆盖 (即由 \mathbb{R} 的开集构成的覆盖)都有有限子覆盖.

推论 6 (Heine-Borel 定理)

闭区间的每个开覆盖都有有限子覆盖.

序列紧子集的性质

定理7

非空的序列紧子集上的连续函数有最大值.

定理 8

设 $X, Y \subseteq \mathbb{R}, f: X \to Y$ 连续. 若 X 序列紧, 则 f 一致连续.

设 $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$. 若任给 $\epsilon > 0$, 存在 $\delta > 0$ 满足

$$x, y \in D, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon,$$

则称 f 一致连续.

Cantor 集

 $C := \bigcap_{n \in \mathbb{N}} C_n$

定理9

存在从 Cantor 集到闭区间 [0,1] 的连续满映射. 特别地, Cantor 集不可数.

证明思路

Outline

ℝ 的序列紧子集

平面的拓扑

Peano 曲线定理

欧氏空间

任给自然数 $N \ge 1$, 乘积 \mathbb{R}^N 称为 N 维欧氏空间.

 \mathbb{R}^N 的一个点 x 是一个序组

$$(x_1, x_2, \cdots, x_N)$$
 $(x_i \in \mathbb{R}, i \leqslant N),$

称 x_i 为 x 的第 i 个坐标.

设 $x, y \in \mathbb{R}^N$. 实数

$$||x|| \coloneqq \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$$

称为 x 的长度; ||x - y|| 称为 x 到 y 的距离.

约定: \mathbb{R}^N 的一个序列记作

$${x(n)}_n;$$

 $x(n)_i$ 表示第 n 项的第 i 个坐标.

定义(欧氏空间中序列的极限)

设 $\{x(n)\}_n$ 是 \mathbb{R}^N 的序列, $a \in \mathbb{R}^N$. 若 x(n) 到 a 的距离趋于 0, 即

$$\lim_{n \to \infty} ||x(n) - a|| = 0,$$

则称 $a \in \{x(n)\}_n$ 的极限或者 $\{x(n)\}_n$ 收敛于 a, 记为 $x(n) \to a$.

定义(欧氏空间中序列的极限)

设 $\{x(n)\}_n$ 是 \mathbb{R}^N 的序列, $a \in \mathbb{R}^N$. 若 x(n) 到 a 的距离趋于 0, 即

$$\lim_{n \to \infty} ||x(n) - a|| = 0,$$

则称 $a \in \{x(n)\}_n$ 的极限或者 $\{x(n)\}_n$ 收敛于 a, 记为 $x(n) \to a$.

命题 10 (欧氏空间中, 收敛 = 按坐标收敛)

欧氏空间 \mathbb{R}^N 的序列 $\{x(n)\}_n$ 收敛于 a 当且仅当任给 $i \leq N$, 实数列 $\{x(n)_i\}_n$ 收敛于 a_i .

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$, $a \in D$.

► 若任给 $\epsilon > 0$, 存在 $\delta > 0$ 满足

$$x \in D, ||x - a|| < \delta \implies ||f(x) - f(a)|| < \epsilon,$$

则称 f 在 a 处连续.

- ► 若 f 在 D 的每一点处都连续,则称 f 在 D 上连续.
- ▶ 若任给 $\epsilon > 0$, 存在 $\delta > 0$ 满足

$$x, y \in D, ||x - y|| < \delta \implies ||f(x) - f(y)|| < \epsilon,$$

则称 f 在 D 上一致连续.

-致连续 \Rightarrow 连续.

定理 11 (连续 = 保持极限)

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$, $a \in D$. 则 f 在 a 处连续当且仅当任给 D 的序列 $\{x(n)\}_n$,

$$x(n) \to a \implies f(x(n)) \to f(a).$$

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$.

任给 $i \leq M$, 函数

$$f_i \colon D \to \mathbb{R}, \quad f_i(x) = f(x)_i$$

称为 f 的第 i 个坐标函数 (也称为 i 方向的分量).

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$.

任给 $i \leq M$, 函数

$$f_i \colon D \to \mathbb{R}, \quad f_i(x) = f(x)_i$$

称为 f 的第 i 个坐标函数 (也称为 i 方向的分量).

命题 12

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$, $a \in D$. 则 f 在 a 处连续当且仅当 f 的每个 坐标函数在 a 处都连续.

欧氏空间的闭集和开集

定义

设 $D \subseteq \mathbb{R}^N$, $x \in \mathbb{R}$.

- ▶ 若 D 的序列的极限都属于 D, 则称 D 为 \mathbb{R}^N 的闭集.
- ▶ 若 D 的补集 $\mathbb{R}^N \setminus D$ 是闭集, 则称 D 为 \mathbb{R}^N 的开集.
- ▶ 若存在开集 U 满足 $x \in U \subseteq D$, 则称 D 为 x 的邻域.
- ightharpoonup 若 D 与 x 的每个邻域都相交, 则称 x 为 D 的邻近点.

欧氏空间的闭集和开集

定义

设 $D \subseteq \mathbb{R}^N$, $x \in \mathbb{R}$.

- ▶ 若 D 的序列的极限都属于 D, 则称 D 为 \mathbb{R}^N 的闭集.
- ▶ 若 D 的补集 $\mathbb{R}^N \setminus D$ 是闭集, 则称 D 为 \mathbb{R}^N 的开集.
- ▶ 若存在开集 U 满足 $x \in U \subseteq D$, 则称 D 为 x 的邻域.
- ightharpoonup 若 D 与 x 的每个邻域都相交,则称 x 为 D 的邻近点.

闭集和开集的基本性质

- ightharpoonup 空集 \varnothing , 全集 \mathbb{R}^N 都是闭集; 两个闭集的并是闭集; 一族闭集的交是闭集.
- ▶ 空集 \varnothing , 全集 \mathbb{R}^N 都是开集; 两个开集的交是开集; 一族开集的并是开集.

设 $x \in \mathbb{R}^N$, r > 0. 子集

$$B(x, r) := \{ y \in \mathbb{R}^N : ||x - y|| < r \}$$

称为以x为球心,r为半径的开球.

设 $x \in \mathbb{R}^N$, r > 0. 子集

$$B(x,r) := \{ y \in \mathbb{R}^N : ||x - y|| < r \}$$

称为以x为球心,r为半径的开球.

- ▶ 开球是开集.
- ▶ U 是开集当且仅当若 $x \in U$, 则存在 r > 0 使得 $B(x, r) \subseteq U$.
- ▶ $U \neq a$ 的邻域当且仅当存在 r > 0 使得 $B(a, r) \subseteq U$.
- ► *U* 是开集当且仅当 *U* 能写成一族开球的并.

命题 13

设 $\{x(n)\}_n$ 为 \mathbb{R}^N 的序列, $x \in \mathbb{R}^N$. 下列等价:

- (1) $\{x(n)\}_n$ 收敛于 x.
- (2) 任给 r > 0, $\{x(n)\}_n$ 终在开球 B(x, r).
- (3) $\{x(n)\}_n$ 终在 x 的每一个邻域.

定理 14 (\mathbb{R}^N 的序列紧子集)

设 $K \subseteq \mathbb{R}^N$. 下列等价:

- (1) K 序列紧.
- (2) K 的每个序列都有聚点属于 K.
- (3) K 是有界闭集.

定理 15

设 K 为 \mathbb{R}^N 的序列紧子集.

- (i) 若 $f: K \to \mathbb{R}$ 连续,则 f 有最大值.
- (ii) 若 $f: K \to \mathbb{R}^M$ 连续, 则 f 一致连续.

同胚

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$.

- ▶ 若 f 是连续的双射并且逆映射 f^{-1} : $E \to D$ 也连续, 则称 f 为同胚映射 (简称同胚).
- ▶ 若存在同胚映射 $h: D \to E$, 则称 D 和 E 同胚.

同胚

设 $D \subseteq \mathbb{R}^N$, $E \subseteq \mathbb{R}^M$, $f: D \to E$.

- ► 若 f 是连续的双射并且逆映射 f^{-1} : $E \to D$ 也连续, 则称 f 为同胚映射 (简称同胚).
- ▶ 若存在同胚映射 $h: D \to E$, 则称 D 和 E 同胚.

命题 16

欧氏空间的子集 D 和 E 同胚当且仅当存在连续映射 $f: D \to E, g: E \to D$ 满足 $g \circ f = 1_D, f \circ g = 1_E$.

例 17

直线 \mathbb{R} 同胚于 \mathbb{R}^2 的子集 $D = \{(x,0) : -1 < x < 1\}$. 映射

$$f \colon \mathbb{R} \to D, \quad f(x) = \left(\frac{2}{\pi} \arctan x, 0\right)$$

是同胚.

例 18

▶ 开区间 (0,1) 与闭区间 [0,1] 不同胚.

例 18

- ▶ 开区间 (0,1) 与闭区间 [0,1] 不同胚.
- ▶ 闭区间 [0,1] 与闭圆盘 $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ 不同胚.

Outline

ℝ 的序列紧子集

平面的拓扑

Peano 曲线定理

Peano 曲线

1878 年, Cantor 证明了存在双射 $[0,1] \to [0,1] \times [0,1]$. 1879 年, Netto 证明了每个这样的双射都不连续.

Peano 曲线

1878 年, Cantor 证明了存在双射 $[0,1] \to [0,1] \times [0,1]$. 1879 年, Netto 证明了每个这样的双射都不连续.

是否存在连续满射 $[0,1] \rightarrow [0,1] \times [0,1]$?

Peano 曲线

1878 年, Cantor 证明了存在双射 $[0,1] \to [0,1] \times [0,1]$. 1879 年, Netto 证明了每个这样的双射都不连续.

是否存在连续满射 $[0,1] \rightarrow [0,1] \times [0,1]$?

1890年, Peano 证明了确实存在这样的连续满射.

闭区间 [a,b] 到 \mathbb{R}^N 的一个连续映射称为 \mathbb{R}^N 的一条Peano 曲线, 简称曲线.

闭区间 [a, b] 到 \mathbb{R}^N 的一个连续映射称为 \mathbb{R}^N 的一条Peano 曲线, 简称曲线.

若 γ : $[a,b] \to \mathbb{R}^N$ 连续, 也把区间 [a,b] 在 γ 下的像

$$\{\gamma(t):t\in[a,b]\}$$

称为一条曲线, $\gamma(a)$ 和 $\gamma(b)$ 称为它的起点和终点.

定理 19 (Peano)

存在连续满映射 $\gamma \colon [0,1] \to [0,1] \times [0,1]$.

Hilbert 的证明

任给 $n \ge 1$, 把 [0,1] 等分为 4^n 个闭区间, 从左至右编号为

$$I_1^n, I_2^n, \cdots, I_{4^n}^n;$$

把正方形 $[0,1] \times [0,1]$ 等分为 4^n 个正方形, 编号为

$$S_1^n, S_2^n, \cdots, S_{4^n}^n,$$

并且要求这些正方形的编号满足以下条件:

- ▶ 左下角的正方形编号为 S_1^n , 右下角的正方形编号为 S_{4n}^n ;
- ▶ 编号相邻的两个正方形有一条公共边.

用剪刀做拉面

S_2^1	S_3^1
S_1^1	S^1_4

S_6^2	S_7^2	S_{10}^{2}	S_{11}^{2}
S_5^2	S_8^2	S_{9}^{2}	S_{12}^{2}
S_4^2	S_3^2	S_{14}^2	S_{13}^{2}
S_1^2	S_2^2	S_{15}^2	S_{16}^2

推论 20

存在从 Cantor 集到正方形 $[0,1] \times [0,1]$ 的连续满映射.

Lebesgue 曲线

Cantor 集 C 的每个元素可以唯一地表示为如下形式

$$c = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}, \quad a_n \in \{0, 1\}.$$

Lebesgue 曲线

Cantor 集 C 的每个元素可以唯一地表示为如下形式

$$c = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}, \quad a_n \in \{0, 1\}.$$

定理 9 中给出的连续满射 $f: C \rightarrow [0,1]$ 把

$$c = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}$$

映为

$$f(c) = \sum_{n=1}^{\infty} \frac{a_n}{2^n}.$$

1904年, Lebesgue 借助 Cantor 集构造了另一条填满正方形的曲线.

1904年, Lebesgue 借助 Cantor 集构造了另一条填满正方形的曲线.

定义映射 $h: C \to [0,1] \times [0,1]$ 如下:

$$\sum_{n=1}^{\infty} \frac{2a_n}{3^n} \quad \mapsto \quad \left(\sum_{n=1}^{\infty} \frac{a_{2n-1}}{2^n}, \sum_{n=1}^{\infty} \frac{a_{2n}}{2^n}\right),$$

则 h 是连续满射.

1904年, Lebesgue 借助 Cantor 集构造了另一条填满正方形的曲线.

定义映射 $h: C \to [0,1] \times [0,1]$ 如下:

$$\sum_{n=1}^{\infty} \frac{2a_n}{3^n} \quad \mapsto \quad \left(\sum_{n=1}^{\infty} \frac{a_{2n-1}}{2^n}, \sum_{n=1}^{\infty} \frac{a_{2n}}{2^n}\right),$$

则 h 是连续满射.

按以下方式把 h 连续地延拓到整个区间 [0,1] 上: 把每个闭区间 $[p_i,q_i]$ 按比例映为正方形 $[0,1] \times [0,1]$ 中连接 $h(p_i)$ 和 $h(q_i)$ 的线段. 由此得到的填满正方形的曲线称为 Lebesgue 曲线.

问题:

欧氏空间什么样的子集能被一条曲线填满?

更一般的, 什么样的空间能被一条曲线填满?

作业

- 2.1(3)
- 3. 证明 Cantor 集与实数集等势.

附加题 (选做). 设 C 为 Cantor 集. 证明任给 $a \in [0,1]$, 存在 $x, y \in C$ 使得 |x-y|=a. (提示: 证明对每个 $n \ge 1$, 存在 $x_n, y_n \in C_n$ 使得 $|x_n-y_n|=a$, 再利用 C 序列紧.)

- 2.2(1, 2, 3, 4)
- 1. 设 $U \subset \mathbb{R}$ 是开集, $f: U \to \mathbb{R}$ 是连续单射. 证明 U = f(U) 同胚.
- 2. 证明闭圆盘 $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ 与开圆盘 $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ 不同胚.
- 3. 令 $S^1 = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$. 证明若 $f: S^1 \to \mathbb{R}$ 连续, 则存在 $z \in S^1$ 使得 f(z) = f(-z), 其中 -z 表示 z 的对径点. 由此说明每个单射 $h: [0,1] \times [0,1] \to [0,1]$ 都不连续.
- 4. 证明若 $f: [0,1] \to [0,1] \times [0,1]$ 是连续双射, 则 f 的逆映射 f^{-1} 也连续. 由此说明 [0,1] 到 $[0,1] \times [0,1]$ 的每个双射都不连续.

预习 3.1.