

AMORTIZED ANALYSIS OF ALGORITHMS

Presented by:

Dr. Shivangi K. Surati

Assistant Professor,
Department of Computer Science and Engineering,
School of Technology,
Pandit Deendayal Energy University

Introduction

- Used for algorithms where an occasional operation is very slow
 - but most of the other operations are faster
- Analyze a sequence of operations
 - Such a way that the time required to perform a sequence of data structure operations is averaged over all the operations performed

Introduction...

- Amortized analysis can be used to show that the average cost of operation is small, if one averages over a sequence of operations, even though a single operation within a sequence might be expensive
 - guarantee a worst-case average time that is lower than the worst-case time of a particularly expensive operation
- Not an average case analysis of algorithm!
 - does not always take the average case scenario
 - cases that occur as a worst-case scenario of analysis

Amortized cost = cost of n operations / n

Methods of Amortized Analysis

- Aggregate Method
- Accounting Method
- Potential Method

Aggregate Method

Algorithms

- Dynamic Table
- 2. Binary Counter
- Stack (Push, Pop, Multipop)

1. Dynamic Table

Item Table No (i) Size		Cost of Operation	Cost of Doubling and Copying	Total Cost _i (C _i)	
1	1	1	0	1	
2	2	1	1	2	
3	4	1	2	3	
4	4	1	0	1	
5	8	1	4	5	
6	8	1	₽ 0	1	
7	8	1	0	1	
8	8	1	0	1	
9	16	1	8	9	
10	16	1	0	1	
11	16	1	0	1	
12	16	1	0	1	
13	16	1	0	1	
14	16	1	0	1	
15	16	1	0	1	
16	16	1	0	1	
17	32	1	16	17	

Dynamic Table Algorithm

```
TABLE (T, X)

b) If size[I] == 0
2) then Size [7] = 1
3-) If nym(T) == Size(T)
4) then allocute a new-table of double Size (n)
           insert x into new talohe.
     TABLE [T] < new-table
      Size[T] = 2*Size[T]
9) num(7) < num(7)+1
10) reform table(7)
```

2. Binary Counter

Counter value	M. Melte Perfer Stoft Par	Total cost	INCREMENT(A)
0	00000000	0	1. i ← 0
1	00000001	1	
2	00000010	3	2. while i <length[a] a[i]="1</td" and=""></length[a]>
3	0 0 0 0 0 0 1 1	4	
4	0 0 0 0 0 1 0 0	7	3. $A[i]=0$
5	00000101	8	
6	00000110	10	4. i←i+1
7	0 0 0 0 0 1 1 1	11	5 dbil-
8	0 0 0 0 1 0 0 0	15	5. endwhile
9	00001001	16	6 if iclanath[A]
10	0 0 0 0 1 0 1 0	18	6. if i <length[a]< td=""></length[a]<>
11	0 0 0 0 1 0 1 1	19	7. then A[i]←1
12	0 0 0 0 1 1 0 0	22	/. tileli A[i]←i
13	00001101	23	
14	0 0 0 0 1 1 1 0	25	
15	0 0 0 0 1 1 1 1	26	
16	0 0 0 1 0 0 0 0	31	

Binary Counter...

	Binary	Flips	Total	
	00000			
	00001	1	1	
	00010	2	3	21-1
	00011	1	4	
	00100	3	7	21-1
Ī	00101	1	8	
	00110	2	10	
	00111	1	11	
	01000	4	15	2 ¹ -1
	01001	1	16	

Worst case Analysis

- Number of bits =k
- Number of elements = n
- A single execution of INCREMENT takes time $\theta(k)$ in the worst case.
- Hence, n elements (n INCREMENTS)
 take O(nk) in the worst case.

Amortized Analysis

Amortized Analysis...

Observation: The running time determined by #flips but not all bits flip each time INCREMENT is called.

Counter value	NO.	36	16	Na.	10	10	NI)	NO)	Total cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1		1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0.	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	2.5
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

A[0] flips every time, total *n* times.

A[1] flips every other time,

n/2 times.

A[2] flips every forth time, n/4

times.....

for i=0,1,...,k-1, A[i] flips $n/2^{i}$ times.

Amortized Analysis...

- A single exec. of INCREMENT takes O(k) worst case time.
- A sequence of n increments would take time O(nk).
- We can tighten our analysis to yield a worst case of O(n) op.
- A[0] is flipped every time we call INCREMENT.
- A[1] is only flipped every other time.
- A[2] is flipped $\lfloor n/4 \rfloor$ times.
- In general, for $i = 0, 1, ..., \lfloor \lg n \rfloor$, bit A[i] flips $\lfloor n/2^i \rfloor$ times in a sequence of n increments.
- For $i > \lfloor \lg n \rfloor$, bit A[i] never flips at all.
- The total number of flips is $\sum_{i=0}^{\lfloor \lg n \rfloor} \lfloor \frac{n}{2^i} \rfloor < n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$.

Amortized Analysis...

- The worst case time for a sequence of n INCREMENT operations on an initially zero counter is therefore O(n).
- The average cost of each operation and therefore the amortized cost per operation is O(n)/n = O(1).

Accounting Method (Banker's Method)

Idea

- Investing for future
- Assign differing charges to different operations.
- The amount of the charge is called amortized cost.
- Amortized cost is more or less than actual cost.
- When amortized cost > actual cost, the difference is saved in specific objects (termed as bank) as credits.
- The credits can be used by later operations whose amortized cost < actual cost.</p>

Algorithms

- Dynamic Table in notebook
- 2. Binary Counter
- Stack (Push, Pop, Multipop) HW

2. Binary Counter

- Let \$1 represent each unit of cost (the flip of one bit).
- Charge an amortized cost of \$2 to set a bit to 1.
- Whenever a bit is set, use \$1 to pay the actual cost, and store another \$1 on the bit as credit.
- When a bit is reset, the stored \$1 pays the cost.
- At any point, a 1 in the counter stores \$1, the number of
 1's is never negative, so is the total credits.
- At most one bit is set in each operation, so the amortized cost of an operation is at most \$2.
- Thus, total amortized cost of n operations is O(n), and average is O(1).

Potential Method

Idea

- Same as accounting method
 - something prepaid is used later
- Different from accounting method-
 - The prepaid work not as credit, but as "potential energy", or "potential".
 - The potential is associated with the data structure as a whole rather than with specific objects within the data structure.

Idea...

- Designed on the concept of 'Potential energy'
- Compute the quantity of potential energy that the state has to provide
- Define a potential function on entire data structure
 - that changes the data structure's states into non-negative values

- Initial data structure D_0 ,
- n operations, resulting in D_0 , D_1 ,..., D_n with costs C_1 , C_2 ,..., C_n .
- $_{\square}$ A potential function Φ: $\{D_i\} \rightarrow \mathbb{R}$ (real numbers)
- $\Phi(D_i)$ is called the potential of D_i .
- \Box Amortized cost c_i of the *i*th operation is:

$$C_i' = C_i + \Phi(D_i) - \Phi(D_{i-1})$$
 (actual cost + potential change)

Amortized cost of all *n* operations is:

$$\sum_{i=1}^{n} c_i' = \sum_{i=1}^{n} (C_i + \Phi(D_i) - \Phi(D_{i-1}))$$
$$= \sum_{i=1}^{n} C_i + \Phi(D_n) - \Phi(D_0)$$

- Amortized cost c_i of the *i*th operation is:

$$C_i' = C_i + \Phi(D_i) - \Phi(D_{i-1})$$

where $\Phi(D_i) - \Phi(D_{i-1}) = \Delta \Phi_i$ = potential difference

- If $\Delta \Phi_i > 0$, then $C_i' > C_i$. Operation i stores work in the data structure for later use.
- If $\Delta \Phi_i$ < 0,then C_i' < $C_{i,j}$. The data structure delivers up stored work to help pay for operation i.

Algorithms

- Dynamic Table
- 2. Binary Counter
- Stack (Push, Pop, Multipop) HW

Dynamic Table

- Let the potential function be
 Φ = 2 * No of items in the array capacity of the array
- Amortized cost c_i of the *i*th operation is:

$$C_{i}' = C_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

Dynamic Table...

Item No (i)	Table Size	Cost of Operation	Cost of Doubling and Copying	Total Cost _i (C _i)	Φ	Amortized Cost C _i + Pi - Pi-1
1	1	1	0	1	2 x 1 - 1 = 1	1+(1-0)=2
2	2	1	1	2	2 x 2 - 2 = 2	2+(2-1)=3
3	4	1	2	3	2 x 3 - 4 = 2	3+(2-2)=3
4	4	1	0	1	2 x 4 - 4 = 4	1+(4-2)=3
5	8	1	4	5	2 x 5 - 8 = 2	5+(2-4)=3
6	8	1	₽0	1	2 x 6 - 8 = 4	1+(4-2)=3
7	8	1	0	1	2 x 7 - 8 = 6	1+(6-4)=3
8	8	1	0	1	2 x 8 - 8 = 8	1+(8-6)=3
9	16	1	8	9	2 x 9 - 16 = 2	9+(2-8)=3
10	16	1	0	1	2 x 10 - 16 = 4	1+(4-2)=3
11	16	1	0	1	2 x 11 - 16 = 6	1+(6-4)=3
12	16	1	0	1	2 x 12 - 16 = 8	1+(8-6)=3
13	16	1	0	1	2 x 13 - 16 = 10	1+(10-8)=3
14	16	1	0	1	2 x 14 - 16 = 12	1+(12-10)=3
15	16	1	0	1	2 x 15 - 16 = 14	1+(14-12)=3
16	16	1	0	1	2 x 16 - 16 = 16	1+(16-14)=3
17	32	1	16	17	2 x 17 - 32 = 2	17 + (2 - 16) = 3

Dynamic Table...

□ Amortized cost = 3*n / n = O(1)

- Define potential function
 - Such that it has tight upper bound
 - Doesn't charge too much in each operation

2. Binary Counter

Counter value	M. Melte for for for from	Total cost	INCREMENT(A)
0	0000000	0	1. i ← 0
1	00000001	1	
2	00000010	3	2. while i <length[a] a[i]="1</td" and=""></length[a]>
3	0 0 0 0 0 0 1 1	4	
4	00000100	7	3. $A[i]=0$
5	0 0 0 0 0 0 1 0 1	8	4
6	00000110	10	4. i ← i+1
7	0 0 0 0 0 1 1 1	11	5 andershile
8	0 0 0 0 1 0 0 0	15	5. endwhile
9	00001001	16	6 if i clanath[A]
10	0 0 0 0 1 0 1 0	18	6. if i <length[a]< td=""></length[a]<>
11	0 0 0 0 1 0 1 1	19	7. then A[i]←1
12	00001100	22	/. tileli A[i]←i
13	0 0 0 0 1 1 0 1	23	
14	0 0 0 0 1 1 1 0	25	
15	0 0 0 0 1 1 1 1	26	
16	0 0 0 1 0 0 0 0	31	

Amortized Analysis

- Define the potential of the counter after the ith INCREMENT is
 - $\Phi(D_i) = b_i$, the number of 1's.
 - $\Phi(0) = 0$, as all bits are zero
 - $\Phi(i) > 0$, all i > 0
- Define the cost C_i of i^{th} INCREMENT as
 - $C_i = \text{#bits flipped}$
 - = #bits changed from 0 to 1 + #bits changed from 1 to 0

Cost function (C_i)

Row No	3	2	1	0	Ci
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	1
5	0	1	0	0	3
6	0	1	0	1	1
7	0	1	1	0	2
8	0	1	1	1	1
9	1	0	0	0	4
10	1	0	0	1	1
11	1	0	1	0	2
12	1	0	1	1	1
13	1	1	0	0	3
14	1	1	0	1	1
15	1	1	1	0	2
16	1	1	1	1	1

Amortized Cost

- Potential function is defined as:
 - $Φ(D_i) = b_i$, the number of 1's in the current state after ith INCREMENT
- Amortized cost is:

$$C_{i}' = C_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

Amortized Cost...

Row No	3	2	1	0	Φ	Ci	Amortized Cost Ci + Pi - Pi-1
1	0	0	0	0	0	0	0+(0-0)=0
2	0	0	0	1	1	1	1+(1-0)=2
3	0	0	1	0	1	2	2+(1-1)=2
4	0	0	1	1	2	- 1	1+(2-1)=2
5	0	1	0	0	1	3	3+(1-2)=2
6	0	1	0	1	2	1	1+(2-1)=2
7	0	1	1	0	2	2	2+(2-2)=2
8	0	1	1	1	3	1	1+(3-2)=2
9	1	0	0	0	1	4	4+(1-3)=2
10	1	0	0	1	2	1	1+(2-1)=2
11	1	0	1	0	2	2	2+(2-2)=2
12	1	0	1	1	3	1	1+(3-2)=2
13	1	1	0	0	2	3	3+(2-3)=2
14	1	1	0	1	3	1	1+(3-2)=2
15	1	1	1	0	3	2	2+(3-3)=2
16	1	1	1	1	4	1	1+(4-3)=2

Amortized Cost

- $\Phi(D_i) = b_i$, the number of 1's in the current state after ith INCREMENT
- Suppose ith operation resets (flip 1 to 0) t_i bits.
- Actual cost: c_i = t_i + 1
- □ If b_i =0, then the i^{th} operation resets all k bits, so b_{i-1} = t_i =k.
- \Box If $b_i > 0$, then $b_i = b_{i-1} t_i + 1$
- In either case, $b_i \le b_{i-1} t_i + 1$
- So potential change is $\Phi(D_i)$ -Φ(D_{i-1}) = $b_{i-1} t_i + 1 b_{i-1} = 1 t_i$
- So amortized cost is: $C_i' = C_i + \Phi(D_i) \Phi(D_{i-1})$ $\leq t_i + 1 + 1 - t_i = 2$