ALGORITMOS EM GRAFOS DEFINIÇÕES E REPRESENTAÇÃO

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

PUC MINAS

Agradecimentos

O Material desta disciplina foi confeccionado em conjunto com os professores João Caram, Max Machado e Raquel Mini

Problema das Pontes de Königsberg

No século XVIII havia na cidade de Königsberg um conjunto de sete pontes que cruzavam o rio Pregel. Elas conectavam duas ilhas (**A** e **D**) entre si e as ilhas com as margens (**B** e **C**)

Por muito tempo os habitantes daquela cidade perguntavam-se se era possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes por qualquer uma delas

O Problema das 3 Casas e 3 Serviços

Suponha que tenhamos três casas e três serviços, a exemplo de:

É possível conectar cada serviço a cada uma das três casas sem que haja cruzamento de tubulações?

Problemas de Transporte

- Problema de Conectividade: dadas as direções das vias, é possível ir da cidade A até a cidade B, sem andar na contramão?
- Problema de Fluxo Máximo: dada a capacidade de fluxo em cada via, qual é a quantidade de mercadoria que podemos mandar de uma cidade A a uma cidade B?
- Problema de Menor Caminho: Dados os comprimentos de cada via, qual o percurso mais rápido para sair de uma cidade A e chegar a uma cidade B?

□ Um par G = (V, E), sendo V um conjunto finito e E um conjunto de subconjuntos de dois elementos de V (Scheinerman, 2011)

- Chamamos os elementos de V de <u>vértices</u>
- □ Chamamos os elementos de E de <u>arestas</u> (edges)

- Modelo que formaliza relações de interdependência entre os elementos de um conjunto (Goldbarg,2012)
- Vértices são objetos simples que podem ter nomes e outros atributos
- Arestas são conexões entre dois vértices

- \square $V = { A, B, C, D }$
- \Box E = { (A;B), (A;D), (B;C), (B;D), (C;D) }

- \square $V = { A, B, C, D }$
- \Box E = { (A;B), (A;D), (B;C), (B;D), (C;D) }

- \square $V = { A, B, C, D }$
- \Box E = { (A;B), (A;D), (B;C), (B;D), (C;D) }

- □ Vértices: cidades
- □ Arestas: rodovias entre as cidades

- \square \vee = { A, B, C, D }
- \Box E = { (A;B), (A;D), (B;C), (B;D), (C;D) }

- □ Vértices: autores
- Arestas: autores que publicaram livros ou artigos em conjunto

Ordem e tamanho

- □ A ordem de um grafo G é a cardinalidade de V
- □ O tamanho de um grafo G é a cardinalidade de E

Ordem e tamanho

- □ A ordem de um grafo G é a cardinalidade de V
- □ O tamanho de um grafo G é a cardinalidade de E

Grafo valorado / ponderado

 Um grafo G é dito valorado se existem valores associados a seus vértices ou arestas

□ Tais valores são denominados pesos

Grafo valorado / ponderado

Ex: custo de se movimentar entre dois pontos

Grafo não direcionado / não orientado

□ Por padrão, duas arestas (v_a, v_b) e (v_b, v_a) são consideradas a mesma

Grafo direcionado / orientado / digrafo

- Já em um grafo direcionado, o conjunto E de arestas é uma relação binária em V
- $(v_a, v_b) \neq (v_b, v_a)$ e podem ter significados diferentes
- O sentido da aresta importa e é indicado
- □ Arestas, neste caso, podem ser chamadas de arcos

Grafo direcionado / orientado / dígrafo

Grafo direcionado / orientado / dígrafo

Se há correspondência em ambos os sentidos, duas arestas

Vértices sucessores e antecessores

 Em grafos direcionados, podemos falar de sucessores e antecessores de um vértice

- □ B é sucessor de A
- □ A é antecessor de B

Incidência

Quando um vértice v_i é o vértice final de alguma aresta e_i, v_i e e_i são incidentes

Laço (Loop)

□ Aresta que liga um vértice a si mesmo (v_i, v_i)

Arestas paralelas

Duas ou mais arestas associadas ao mesmo par de vértices

Grafo simples

□ Não possui nem arestas paralelas nem laços

Vértices adjacentes (vizinhos)

 Dois vértices são ditos adjacentes se existe uma aresta que os liga

Arestas adjacentes

 Duas arestas não paralelas são adjacentes se elas são incidentes a um vértice comum

Arestas adjacentes

Grau de um vértice

O número de arestas incidentes a um vértice v_i é chamado de grau, d(v_i), do vértice i

Vértice 1:

Vértice 2:

Vértice 3:

Vértice 4:

Vértice 5:

Graus e vértices

□ Vértices com grau 0 são chamados isolados

Graus e vértices

 Grafos que possuem somente vértices isolados são chamados de grafos nulos

1

2

3

5

Graus e vértices

□ Um vértice de grau 1 é chamado de pendente

 A soma dos graus de todos os vértices de um grafo G é duas vezes o número de arestas de G

$$\sum_{i=1}^{n} d(v_i) = 2 e$$

$$\sum_{i=1}^{n} d(v_i) = 2 e$$

Demonstre!

$$\sum_{i=1}^{n} d(v_i) = 2 e$$

 Ao contar os graus dos vértices, contamos cada extremidade de aresta uma vez. Como cada aresta tem duas extremidades, cada aresta foi contada duas vezes.

- O número de vértices de grau ímpar em um grafo é par
 - Prove o teorema!

Provando...

$$\sum_{v \in V} d(v) = \sum_{v \in Par} d(v) + \sum_{v \in \text{Impar}} d(v)$$

Graus e vértices

Em um grafo orientado, o grau de saída de um vértice é o número de arestas que saem dele, e o grau de entrada de um vértice é o número de arestas que entram nele. O grau de um vértice em um grafo orientado é seu grau de entrada somado a seu grau de saída

grau do vértice 2 é 4

grau de entrada do vértice 5 é 2 grau de saída do vértice 5 é 1

Grafo regular

 Um grafo no qual todos os vértices possuem o mesmo grau é chamado de grafo regular

Grafo completo

- Um grafo G=(V,E) é dito completo se para cada par de vértices v_a e v_b existe uma aresta entre v_a e v_b
- Em um grafo completo quaisquer dois vértices distintos são adjacentes
- □ Um grafo completo com n vértices é dito K_n

Grafos completos

Fonte:

https://pt.wikipedia.org/wiki/Grafo_completo

Grafos completos

$K_1:0arestas$	$K_2: 1 are sta$	$K_3: 3arestas$	$K_4:6 are stas$	
•	•			
$K_5:10 are stas$	$K_6:15 are stas$	$K_7:21 are stas$	$K_8:28 are stas$	

- Qual é o grau dos vértices de um grafo K_n ?
- Qual é o número de arestas de um grafo K_n?

Grafo complementar

- Seja G = (V,E) um grafo simples, seu grafo complementar, C(G) ou G, é um grafo formado da seguinte maneira:
 - Os vértices de C(G) são todos os vértices de G
 - As arestas de C(G) são exatamente as arestas que faltam em G para formarmos um grafo completo

Grafo complementar

Representação de Grafos

Grafo

Como representar um grafo computacionalmente, de modo que possamos executar algoritmos e resolver problemas diversos ?

Representação de Grafos

- □ Principais estruturas de dados:
 - Matriz de adjacências
 - Listas de adjacências

Matriz de adjacências

 \square Dado n = |G|, criar uma matriz n x n.

 A posição [u,v] da matriz conterá 0 se não há aresta entre v, e v, ou um valor não nulo se houver

Matriz de adjacências

	<u> 1</u>	2	3	4	5	6
1	0 1 0 0 1	1	0	0	1	1
2	1	0	0	1	1	0
3	0	0	0	1	0	0
4	0	1	1	0	1	1
5	1	1	0	1	0	0
6	1	0	0	1	0	0

Matriz de adjacências

Se as arestas tivessem pesos, suas posições poderiam ter estes valores

	<u> 1</u>	2	3	4	5	6
1	1 0 4 0 0 1	4	0	0	1	1
2	4	0	0	1	1	0
3	0	0	0	3	0	0
4	0	1	3	0	8	1
5	1	1	0	8	0	0
6	1	0	0	1	0	0

Listas de adjacências

□ Cada vértice é um elemento de uma lista

 Cada vértice contém uma lista de arestas, indicando o outro par que a compõe

Listas de adjacências

Listas de adjacências

Se as arestas tivessem pesos, isto poderia ser armazenado nos elementos das listas

Representação de digrafos

- □ Matriz de incidência
 - □ Valor positivo: indica direção linha → coluna
 - □ Valor negativo: indica direção coluna → linha

Representação de digrafos

Representação de digrafos

- □ Matriz de incidência
 - □ Valor positivo: indica direção linha → coluna
 - □ Valor negativo: indica direção coluna → linha

□ Listas de incidência

Estruturas de Dados para Dígrafos

Matriz de Adjacências

Lista de Adjacências

Considerações

- □ Matrizes x listas
 - Espaço
 - Complexidade de busca

 Estruturas de dados otimizadas para busca de vértices e/ou arestas