In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import statsmodels.formula.api as smf import statsmodels.api as sm from statsmodels.graphics.regressionplots import influence_plot

In [2]: data = pd.read_csv('ToyotaCorolla.csv', encoding = 'latin1') data.head()

Out[2]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_Colo
0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13500	23	10	2002	46986	Diesel	90	
1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13750	23	10	2002	72937	Diesel	90	
2	3	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	(
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	(

5 rows × 38 columns

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 38 columns):

#	Column (total 38	Non-Null Count	Dtype
0	Id	1436 non-null	int64
1	Model	1436 non-null	object
2	Price	1436 non-null	int64
3	Age_08_04	1436 non-null	int64
4	Mfg_Month	1436 non-null	int64
5	Mfg_Year	1436 non-null	int64
6	KM	1436 non-null	int64
7	Fuel_Type	1436 non-null	object
8	HP	1436 non-null	int64
9	Met_Color	1436 non-null	int64
10	Color	1436 non-null	object
11	Automatic	1436 non-null	int64
12	CC	1436 non-null	int64
13	Doors	1436 non-null	int64
14	Cylinders	1436 non-null	int64
15	Gears	1436 non-null	int64
16	Quarterly_Tax	1436 non-null	int64
17	Weight	1436 non-null	int64
18	Mfr_Guarantee	1436 non-null	int64
19	BOVAG_Guarantee	1436 non-null	int64
20	Guarantee_Period	1436 non-null	int64
21	ABS	1436 non-null	int64
22	Airbag_1	1436 non-null	int64
23	Airbag_2	1436 non-null	int64
24	Airco	1436 non-null	int64
25	Automatic_airco	1436 non-null	int64
26	Boardcomputer	1436 non-null	int64
27	CD_Player	1436 non-null	int64
28	Central_Lock	1436 non-null	
29	Powered_Windows		int64
30	Power_Steering	1436 non-null	int64
31	Radio	1436 non-null	int64
32	Mistlamps	1436 non-null	int64
33	Sport_Model	1436 non-null	int64
34	Backseat_Divider		int64
35	<u>—</u>	1436 non-null	
	Radio_cassette	1436 non-null	
37	—	1436 non-null	int64
dtype	es: int64(35), obje		

memory usage: 426.4+ KB

In [4]: data.describe()

Out [4]:

	ld	Price	Age_08_04	Mfg_Month	Mfg_Year	КМ
count	1436.000000	1436.000000	1436.000000	1436.000000	1436.000000	1436.000000
mean	721.555014	10730.824513	55.947075	5.548747	1999.625348	68533.259749
std	416.476890	3626.964585	18.599988	3.354085	1.540722	37506.448872
min	1.000000	4350.000000	1.000000	1.000000	1998.000000	1.000000
25%	361.750000	8450.000000	44.000000	3.000000	1998.000000	43000.000000
50%	721.500000	9900.000000	61.000000	5.000000	1999.000000	63389.500000
75 %	1081.250000	11950.000000	70.000000	8.000000	2001.000000	87020.750000
max	1442.000000	32500.000000	80.000000	12.000000	2004.000000	243000.000000

8 rows × 35 columns

```
Out[5]: Price
                            int64
         Age_08_04
                            int64
         KΜ
                            int64
         HP
                            int64
                            int64
         \mathsf{CC}
         Doors
                            int64
         Gears
                            int64
         Quarterly_Tax
                            int64
         Weight
                            int64
         dtype: object
```

In [6]: data2=data1.rename({"Age_08_04":"age","Quarterly_Tax":"tax","Weight
data2.head()

Out[6]:

	Price	age	KM	HP	cc	door	Gears	tax	weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170

```
In [7]: data2.isnull().sum()
Out[7]: Price
                     0
                     0
         age
         KM
                     0
         HP
                     0
                     0
         \mathsf{CC}
         door
         Gears
                     0
                     0
         tax
         weight
                     0
         dtype: int64
```

In [8]: data2.duplicated().value_counts()
 data2[data2.duplicated()]

Out[8]:

 Price
 age
 KM
 HP
 cc
 door
 Gears
 tax
 weight

 113
 24950
 8
 13253
 116
 2000
 5
 5
 234
 1320

In [9]: data2.drop_duplicates(inplace=True)

In [10]: data2.corr()

Out[10]:

	Price	age	KM	HP	cc	door	Gears	ti
Price	1.000000	-0.876273	-0.569420	0.314134	0.124375	0.183604	0.063831	0.2115
age	-0.876273	1.000000	0.504575	-0.155293	-0.096549	-0.146929	-0.005629	-0.1933
KM	-0.569420	0.504575	1.000000	-0.332904	0.103822	-0.035193	0.014890	0.2833
HP	0.314134	-0.155293	-0.332904	1.000000	0.035207	0.091803	0.209642	-0.3022
СС	0.124375	-0.096549	0.103822	0.035207	1.000000	0.079254	0.014732	0.3059
door	0.183604	-0.146929	-0.035193	0.091803	0.079254	1.000000	-0.160101	0.1073
Gears	0.063831	-0.005629	0.014890	0.209642	0.014732	-0.160101	1.000000	-0.0051;
tax	0.211508	-0.193319	0.283312	-0.302287	0.305982	0.107353	-0.005125	1.0000
weight	0.575869	-0.466484	-0.023969	0.087143	0.335077	0.301734	0.021238	0.6219

```
In [11]: sns.set_style(style="darkgrid")
sns.pairplot(data= data2)
```

Out[11]: <seaborn.axisgrid.PairGrid at 0x7ffd7683ed00>

removing gears column as it has very less correlation with Price

In [12]: data3 = data2.drop("Gears", axis=1)
 data3.head()

Out[12]:

	Price	age	KM	HP	cc	door	tax	weight
0	13500	23	46986	90	2000	3	210	1165
1	13750	23	72937	90	2000	3	210	1165
2	13950	24	41711	90	2000	3	210	1165
3	14950	26	48000	90	2000	3	210	1165
4	13750	30	38500	90	2000	3	210	1170

In [13]: data3.corr()

Out[13]:

	Price	age	KM	НР	СС	door	tax	weig
Price	1.000000	-0.876273	-0.569420	0.314134	0.124375	0.183604	0.211508	0.5758
age	-0.876273	1.000000	0.504575	-0.155293	-0.096549	-0.146929	-0.193319	-0.4664
KM	-0.569420	0.504575	1.000000	-0.332904	0.103822	-0.035193	0.283312	-0.0239
HP	0.314134	-0.155293	-0.332904	1.000000	0.035207	0.091803	-0.302287	0.0871
СС	0.124375	-0.096549	0.103822	0.035207	1.000000	0.079254	0.305982	0.3350
door	0.183604	-0.146929	-0.035193	0.091803	0.079254	1.000000	0.107353	0.3017
tax	0.211508	-0.193319	0.283312	-0.302287	0.305982	0.107353	1.000000	0.6219
weight	0.575869	-0.466484	-0.023969	0.087143	0.335077	0.301734	0.621988	1.0000

In [14]: model=smf.ols("Price~age+KM+HP+cc+door+tax+weight",data = data3).fi
model.summary()

Out[14]:

OLS Regression Results

Covariance Type:

Dep. Variable:	Price	R-squared:	0.862
Model:	OLS	Adj. R-squared:	0.861
Method:	Least Squares	F-statistic:	1269.
Date:	Wed, 07 Dec 2022	Prob (F-statistic):	0.00
Time:	01:16:36	Log-Likelihood:	-12371.
No. Observations:	1435	AIC:	2.476e+04
Df Residuals:	1427	BIC:	2.480e+04
Df Model:	7		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2636.3843	1061.677	-2.483	0.013	-4718.999	-553.770
age	-121.8478	2.622	-46.476	0.000	-126.991	-116.705
KM	-0.0205	0.001	-16.325	0.000	-0.023	-0.018
НР	33.6479	2.742	12.270	0.000	28.269	39.027
cc	-0.1227	0.090	-1.358	0.175	-0.300	0.054
door	-23.9806	39.372	-0.609	0.543	-101.214	53.253
tax	4.0353	1.313	3.073	0.002	1.459	6.611
weight	16.8844	1.072	15.743	0.000	14.781	18.988

Omnibus: 149.646 Durbin-Watson: 1.551

Prob(Omnibus): 0.000 Jarque-Bera (JB): 980.896

Skew: -0.217 **Prob(JB):** 1.00e-213

Kurtosis: 7.027 **Cond. No.** 2.34e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.34e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [15]: m1 = smf.ols('Price~cc', data= data3).fit()
m1.summary()
```

Out[15]:

OLS Regression Results

Dep. Variable:			Price	R-	0.015		
	Model:		OLS	Adj. R-	squared:	0.015	
ı	Method:	Least So	quares	F-	-statistic:	22.52	
	Date: W	ed, 07 Dec	2022	Prob (F-	statistic):	2.29e-06	
Time:		01	:16:36	Log-Li	kelihood:	-13779.	
No. Obser	vations:		1435		AIC:	2.756e+04	
Df Residuals:		1433			BIC:	2.757e+04	
D	f Model:		1				
Covarian	се Туре:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	9053.5368	363.894	24.880	0.000	8339.715	9767.359	
сс	1.0576	0.223	4.745	0.000	0.620	1.495	
Omnibus: 463.846 Durbin-Watson: 0.269							

Omnibus: 463.846 **Durbin-Watson:** 0.269

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1386.822

Skew: 1.645 **Prob(JB):** 7.17e-302

Kurtosis: 6.518 **Cond. No.** 6.28e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.28e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Out[16]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.034
Model:	OLS	Adj. R-squared:	0.033
Method:	Least Squares	F-statistic:	49.99
Date:	Wed, 07 Dec 2022	Prob (F-statistic):	2.40e-12
Time:	01:16:36	Log-Likelihood:	-13765.
No. Observations:	1435	AIC:	2.753e+04
Df Residuals:	1433	BIC:	2.755e+04
Df Model:	1		
Covariance Type:	nonrobust		

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 Intercept
 7916.1452
 407.596
 19.422
 0.000
 7116.596
 8715.694

 door
 695.4978
 98.366
 7.071
 0.000
 502.541
 888.454

 Omnibus:
 465.543
 Durbin-Watson:
 0.289

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1403.980

 Skew:
 1.647
 Prob(JB):
 1.35e-305

 Kurtosis:
 6.554
 Cond. No.
 19.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[17]:

	Price	age	KM	HP	door	tax	weight
0	13500	23	46986	90	3	210	1165
1	13750	23	72937	90	3	210	1165
2	13950	24	41711	90	3	210	1165
3	14950	26	48000	90	3	210	1165
4	13750	30	38500	90	3	210	1170

In [18]: data4.corr()

Out[18]:

	Price	age	KM	HP	door	tax	weight
Price	1.000000	-0.876273	-0.569420	0.314134	0.183604	0.211508	0.575869
age	-0.876273	1.000000	0.504575	-0.155293	-0.146929	-0.193319	-0.466484
KM	-0.569420	0.504575	1.000000	-0.332904	-0.035193	0.283312	-0.023969
HP	0.314134	-0.155293	-0.332904	1.000000	0.091803	-0.302287	0.087143
door	0.183604	-0.146929	-0.035193	0.091803	1.000000	0.107353	0.301734
tax	0.211508	-0.193319	0.283312	-0.302287	0.107353	1.000000	0.621988
weight	0.575869	-0.466484	-0.023969	0.087143	0.301734	0.621988	1.000000

```
In [19]: m3= smf.ols('Price~age+KM+HP+door+tax+weight',data=data4).fit()
m3.summary()
```

Out [19]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.861
Model:	OLS	Adj. R-squared:	0.861
Method:	Least Squares	F-statistic:	1480.
Date:	Wed, 07 Dec 2022	Prob (F-statistic):	0.00
Time:	01:16:37	Log-Likelihood:	-12372.
No. Observations:	1435	AIC:	2.476e+04
Df Residuals:	1428	BIC:	2.479e+04
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2518.7574	1058.453	-2.380	0.017	-4595.046	-442.468
age	-121.8917	2.622	-46.483	0.000	-127.036	-116.748
KM	-0.0206	0.001	-16.455	0.000	-0.023	-0.018
HP	33.3055	2.731	12.194	0.000	27.947	38.663
door	-23.2523	39.380	-0.590	0.555	-100.502	53.997
tax	3.8184	1.304	2.929	0.003	1.261	6.376
weight	16.6515	1.059	15.724	0.000	14.574	18.729

Durbin-Watson:

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 937.411

 Skew:
 -0.206
 Prob(JB):
 2.78e-204

 Kurtosis:
 6.938
 Cond. No.
 2.33e+06

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.548

[2] The condition number is large, 2.33e+06. This might indicate that there are strong multicollinearity or other numerical problems.

vif calculation

Omnibus: 145.933

```
In [20]: rsq_age=smf.ols('age~KM+HP+door+tax+weight',data=data4).fit().rsqua
         vif age=1/(1-rsg age)
In [21]: rsq_KM=smf.ols('KM~age+HP+door+tax+weight',data=data4).fit().rsquar
         vif_KM=1/(1-rsq_KM)
         rsg HP=smf.ols('HP~age+KM+door+tax+weight',data=data4).fit().rsguar
In [22]:
         vif_HP=1/(1-rsq_HP)
In [23]: rsq_door=smf.ols('door~age+KM+HP+tax+weight',data=data4).fit().rsqu
         vif_door=1/(1-rsq_door)
         rsg tax=smf.ols('tax~age+KM+HP+door+weight',data=data4).fit().rsgua
In [24]:
         vif_tax=1/(1-rsq_tax)
In [25]: rsq_Weight=smf.ols('weight~age+KM+HP+door+tax',data=data4).fit().rs
         vif_Weight=1/(1-rsq_Weight)
In [26]: d1 = {'variables':['age','KM','HP','door','tax','weight'],
               'vif':[vif_age,vif_KM,vif_HP,vif_door,vif_tax,vif_Weight]}
In [27]: vif_frame = pd.DataFrame(d1)
         vif_frame
Out [27]:
            variables
                         vif
                age 1.875416
          0
          1
                KM 1.738917
                 HP 1.325246
          3
                door 1.113939
                 tax 2.256997
              weight 2.423423
          5
```

residual analysis for normality

```
In [28]: res=m3.resid
          res.head(10)
Out[28]: 0
              -3339.719690
              -2555.830091
          1
          2
              -2876.350450
          3
              -1503.183434
          4
              -2494.317424
          5
              -2587.641707
          6
                195.534750
          7
               1876.021951
          8
               1276.335218
              -1598.873899
          dtype: float64
```

In [29]: res.mean()

Out [29]: 1.042505291384687e-09

```
In [30]: import statsmodels.api as sm
    qqplot=sm.qqplot(res,line='q')
    plt.title('test for normality of residuals(q-qplot)')
    plt.show
```

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/graphics/go
fplots.py:993: UserWarning: marker is redundantly defined by the '
marker' keyword argument and the fmt string "bo" (-> marker='o').
The keyword argument will take precedence.
 ax.plot(x, y, fmt, **plot_style)

Out[30]: <function matplotlib.pyplot.show(close=None, block=None)>

In [31]: sns.boxplot(m3.resid)

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[31]: <AxesSubplot:>


```
In [32]: list(np.where(m3.resid<-6000))</pre>
```

Out[32]: [array([220, 600, 959])]

residual plot for homoscedasticity

```
In [33]: def get_standardized_values(vals):
    return(vals - vals.mean())/vals.std()
```

Out[34]: <matplotlib.collections.PathCollection at 0x7ffd79bd3490>

residual vs regressor

In [36]: fig = sm.graphics.plot_regress_exog(m3,'KM',fig=fig)
fig

Out[36]:

In [37]: fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(m3,'weight',fig=fig)
plt.show()

Out[38]:

In [39]: sm.graphics.plot_regress_exog(m3,'door',fig=fig)


```
In [40]:
         sm.graphics.plot_regress_exog(m3,'tax',fig=fig)
Out [40]:
                           Y and Fitted vs. X
                                                                CCPR Plot
            2588
            -$888
In [41]: model_influence=m3.get_influence()
          (c, _) = model_influence.cooks_distance
In [42]: c
Out[42]: array([9.38906054e-03, 5.17943805e-03, 7.10668449e-03, ...,
                 2.10208718e-06, 8.65451174e-04, 1.37001373e-02])
In [43]:
         fig=plt.subplots(figsize=(20,7))
          plt.stem(np.arange(len(data4)),np.round(c,3))
          plt.xlabel("index")
          plt.ylabel("cooks distance")
Out[43]: Text(0, 0.5, 'cooks distance')
           1.2
```

In [44]: np.argmax(c),np.max(c)

Out[44]: (220, 1.1987544668622254)

In [45]: data_new=data4.drop(data4.index[220],axis=0)
 data_new.head()

Out [45]:

	Price	age	KM	HP	door	tax	weight
0	13500	23	46986	90	3	210	1165
1	13750	23	72937	90	3	210	1165
2	13950	24	41711	90	3	210	1165
3	14950	26	48000	90	3	210	1165
4	13750	30	38500	90	3	210	1170

In [46]: m4 = smf.ols("Price~age+KM+HP+door+tax+weight",data=data_new).fit()
m4.summary()

Out [46]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.867
Model:	OLS	Adj. R-squared:	0.866
Method:	Least Squares	F-statistic:	1546.
Date:	Wed, 07 Dec 2022	Prob (F-statistic):	0.00
Time:	01:16:50	Log-Likelihood:	-12336.
No. Observations:	1434	AIC:	2.469e+04
Df Residuals:	1427	BIC:	2.472e+04

Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-5450.5835	1109.915	-4.911	0.000	-7627.823	-3273.344
age	-119.1731	2.599	-45.861	0.000	-124.271	-114.076
KM	-0.0208	0.001	-16.937	0.000	-0.023	-0.018
HP	31.5845	2.690	11.741	0.000	26.308	36.861
door	-46.5493	38.767	-1.201	0.230	-122.595	29.497
tax	1.9212	1.304	1.473	0.141	-0.637	4.479
weight	19.6687	1.114	17.648	0.000	17.482	21.855

Omnibus: 131.540 **Durbin-Watson:** 1.580

Prob(Omnibus): 0.000 Jarque-Bera (JB): 729.534

Skew: -0.206 **Prob(JB):** 3.83e-159

Kurtosis: 6.470 **Cond. No.** 2.49e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.49e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [51]: model_influence_1 = m4.get_influence()
(c1, _) = model_influence_1.cooks_distance
```

```
In [52]: fig = plt.subplots(figsize = (20,7))
    plt.stem(np.arange(len(data_new)), np.round(c1,3))
    plt.xlabel("Row Index")
    plt.ylabel("Cooks Distance")
    plt.show()
```


In [54]: np.argmax(c1), np.max(c1)

Out[54]: (958, 1.3402996914231093)

In [55]: dataa = data_new.drop(data_new.index[958],axis=0).reset_index()

In [56]: dataa

Out [56]:

		index	Price	age	KM	HP	door	tax	weight
	0	0	13500	23	46986	90	3	210	1165
	1	1	13750	23	72937	90	3	210	1165
	2	2	13950	24	41711	90	3	210	1165
	3	3	14950	26	48000	90	3	210	1165
	4	4	13750	30	38500	90	3	210	1170
14	128	1431	7500	69	20544	86	3	69	1025
14	129	1432	10845	72	19000	86	3	69	1015
14	130	1433	8500	71	17016	86	3	69	1015
14	131	1434	7250	70	16916	86	3	69	1015
14	132	1435	6950	76	1	110	5	19	1114

1433 rows × 8 columns

In [57]: dataa1 = data_new.drop(data_new.index[958],axis=0).reset_index()

In [59]: dataa1.drop(['index'],axis = 1)

Out[59]:

	Price	age	KM	HP	door	tax	weight
0	13500	23	46986	90	3	210	1165
1	13750	23	72937	90	3	210	1165
2	13950	24	41711	90	3	210	1165
3	14950	26	48000	90	3	210	1165
4	13750	30	38500	90	3	210	1170
•••							
1428	7500	69	20544	86	3	69	1025
1429	10845	72	19000	86	3	69	1015
1430	8500	71	17016	86	3	69	1015
1431	7250	70	16916	86	3	69	1015
1432	6950	76	1	110	5	19	1114

1433 rows × 7 columns

In [60]: m5 = smf.ols("Price~age+KM+HP+door+tax+weight",data=dataa1).fit()
 m5.summary()

Out [60]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.871
Model:	OLS	Adj. R-squared:	0.870
Method:	Least Squares	F-statistic:	1602.
Date:	Wed, 07 Dec 2022	Prob (F-statistic):	0.00
Time:	01:36:40	Log-Likelihood:	-12305.
No. Observations:	1433	AIC:	2.462e+04
Df Residuals:	1426	BIC:	2.466e+04
D4 Madali	c		

Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-8477.4104	1181.676	-7.174	0.000	-1.08e+04	-6159.400
age	-116.1584	2.598	-44.713	0.000	-121.254	-111.062
KM	-0.0211	0.001	-17.446	0.000	-0.023	-0.019
HP	28.3392	2.692	10.525	0.000	23.058	33.621
door	-82.8874	38.556	-2.150	0.032	-158.519	-7.255
tax	-0.8966	1.351	-0.664	0.507	-3.546	1.753
weight	23.0339	1.206	19.103	0.000	20.669	25.399

Omnibus: 135.138 Durbin-Watson: 1.631

Prob(Omnibus): 0.000 Jarque-Bera (JB): 741.678

Skew: -0.235 **Prob(JB):** 8.84e-162 **Kurtosis:** 6.493 **Cond. No.** 2.69e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.69e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [61]: model_influence_2 = m5.get_influence()
(c2, _) = model_influence_2.cooks_distance
```

```
In [63]: fig = plt.subplots(figsize = (20,7))
   plt.stem(np.arange(len(dataa1)), np.round(c2,3))
   plt.xlabel("Row Index")
   plt.ylabel("Cooks Distance")
   plt.show()
```



```
In [64]: np.argmax(c2), np.max(c2)
```

Out[64]: (599, 0.4074330373473679)

```
In [65]: data.shape
```

Out[65]: (1436, 38)

```
In [66]: k= data.shape[0]
    n = data.shape[1]
    lev_cutoff = 3*((k+1)/n)
    lev_cutoff
```

Out [66]: 113.44736842105263

In [67]: from statsmodels.graphics.regressionplots import influence_plot

```
In [73]: influence_plot(model, aplha = 0.5)
         y=[i for i in range (-2,8)]
         x= [lev_cutoff for i in range(10)]
         plt.plot(x,y,'r+')
         plt.show()
```



```
In [74]: final model = smf.ols("Price~age+KM+HP+door+tax+weight",data=dataa1
In [75]: final_model.rsquared , final_model.aic
Out[75]: (0.8707773883293434, 24624.807746446797)
In [76]: | pred_y = final_model.predict(dataa1)
         pred_y
Out[76]:
                  16807.692483
                  16260.176738
         1
         2
                  16802.826307
         3
                  16437.823729
                  16288.791032
         1428
                   8810.603810
         1429
                   8264.364896
         1430
                   8422.381886
         1431
                   8540.650133
```

1432

11040.126985 Length: 1433, dtype: float64

```
In [77]: x1 = dataa1
    y1 = pred_y
    plt.title('Actual Values vs Predicted values')
    plt.xlabel("Predicted Values")
    plt.ylabel(" Actual Values")
    plt.plot(x1,y1)
    plt.show()
```


In []: