Partiel 2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Distribution continue de charges Exercice 1 (Sur 5 points)

On considère un fil infini, chargé avec une densité linéaire à constante et positive. On montre à l'aide des règles de symétrie que le vecteur champ électrique est porté par (Ox) et que le champ élémentaire $dE_x(M)$ créé par une charge élémentaire dQ, en un point M extérieur au fil est :

$$dE_x(x) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$$
 (figure 1). On pose : OM = x.

1- Utiliser l'expression donnée ci-dessus pour exprimer le champ total E(M) créé par le fil infini, en fonction de k, λ et x.

2- Soit un fil fini de longueur AB = a, chargé uniformément avec une densité linéaire λ positive. Le point O est le centre de AB et M un point de la médiatrice au fil, tel que OBM = $\beta = \pi/6$.

a-	-	-	•	onnée plus haut), p ut d'observation M.	_

b-Représenter le champ $\vec{E}_{AB}(M)$ sur la figure 2.

Exercice 2: Théorème de Gauss

Partie A (Sur 5 points)

Un cylindre creux d'axe Oz, de rayon R, de longueur <u>infiniment grande</u> h est chargé en surface latérale avec une densité σ constante et positive.

1-	a.	Utiliser	les	règles	de	symétrie	pour	trouver	la	direction	du	champ	électriqu	$\operatorname{ie} E$.
_									_					

1			
1			
L			

b- Utiliser les invariances pour déterminer les variables de dépendance du champ E.				
2- a. A l'aide du théorème de Gauss, exprimer le champ électrique, dans les régions r < R et r > R.				
b. Le champ $E(r)$ est-il continu en $r = R$? Justifier votre réponse.				

3- En déduire la fonction potentiel V(r) pour (r < R et r > R).

(Ne pas calculer les constantes d'intégration)

4- On suppose maintenant le cylindre chargé en volume avec une densité $\rho(r)$.

On montre que le champ électrique produit par ce système à l'extérieur (r > R) est de la forme :

$$E(r) = (\frac{\rho_0 . R^2}{3\varepsilon_0}) . \frac{1}{r}$$
 (Où ρ_0 , ε_0 et R sont des constantes).

Retrouver l'expression de la charge Q_{int} (charge totale du cylindre), en fonction de ρ_0 , h et R.

Partie B (Sur 3 points)

Une sphère creuse de centre O, de rayon R est chargée en surface avec une densité σ, constante et positive.

R

1- a. Utiliser le	s règles de symétrie pour trouver la direction du champ électrique.
b. Utiliser le	es invariances pour déterminer les variables de dépendance du champ E.
2- A l'aide du 1	théorème de Gauss, exprimer le champ électrique, dans les régions $r < R$ et $r > R$.

Exercice 3: Electrocinétique (Sur 4 points)

Un conducteur en cuivre, de conductivité $\gamma = 10^8 \, \Omega^{-1} \, \text{m}^{-1}$, de longueur L = 1m, de section S = $10^{-6} \, \text{m}^2$, est traversé par un courant I de densité \vec{J} uniforme de valeur I = $16 \, \text{A}$.

Calculer:

- 1- L'intensité du vecteur densité de courant \vec{J} traversant le conducteur.
- 2- Le champ électrique à l'intérieur du conducteur. Représenter les grandeurs I, \vec{J} et \vec{E} .
- 3- La différence de potentiel U entre les bornes du conducteur.
- 4- La résistance R du conducteur.
- 5- La vitesse moyenne des charges sachant que : $q_{e-} = -1.6.10^{-19} C$ et $n_{e-} = 10^{26} m^{-3}$.

Partie Cours	Magnétostatique	(Sur 3	points).

L'électron est animé d'un mouvement de rotation autour du proton de l'atome d'hydrogène. On suppose que l'électron tourne dans le sens trigonométrique.

On montre qu'une particule de charge q et de vitesse V crée un champ $\vec{B}(M) = \frac{\mu_0}{4\pi} \cdot \frac{q\vec{V} \wedge P\vec{M}}{PM^3}$

1- Exprimer le module du champ magnétique créé au niveau du proton en fonction de V, e, μ_0 et R. (R : rayon de l'atome, $|q_{e-}|=e$).

2- Représenter le vecteur champ magnétique $\vec{B}(M)$

Formulaire

1- Théorème de Gauss

$$\Phi(\vec{E}) = \oint \int_{Sg} \vec{E} . d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

2- Elément de surface latérale en coordonnées cylindriques

$$dS_{lat} = rd\theta dz$$

$$0 \le \theta \le 2\pi$$

3- Elément de surface en coordonnées sphériques

$$dS = r^2 \sin(\theta) d\theta . d\varphi \qquad 0 \le \theta \le \pi$$

$$0 \le \theta \le \pi$$

$$0 \le \varphi \le 2\pi$$

4- Charge répartie en surface

$$Q = \iint_{S} \sigma . dS$$

5- Les composantes du gradient en coordonnées cylindriques

$$gra\vec{d} = \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \cdot \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial z} \end{pmatrix}$$