

Plano de Ensino

- Apresentação e Revisão
- Introdução à Teoria da Computação.
- Conceitos Básicos de Teoria da Computação.
- Programas, Máquinas e Computações.
- Modelos Computacionais.
- Máquinas Universais.
- Tese de Church.
- Máquina de Turing.

Livro-Texto

- Bibliografia Básica:
 - » LEWIS, Harry R.; PAPADIMITRIOU, Christos H. Elementos da Teoria da Computação. 2ª ed. Porto Alegre: Bookman, 2000.
 - » SIPSER, Michael. Introdução à Teoria da Computação. 2ª ed. São Paulo: Cengage Learning, 2011.

2. Introdução à TC - Áreas de Estudo

- Existem 3 áreas focais da Teoria da Computação: Autômatos, Computabilidade e Complexidade.
- Interligadas pela questão:

Quais são as capacidades e limitações fundamentais dos computadores?

- Em cada uma das áreas acima, a questão acima é interpretada de forma distinta e suas respostas também.
- Início dos estudos em 1930 → lógicos matemáticos iniciaram os estudos sobre o significado da computação.

2. Introdução à TC - Áreas de Estudo

- Teoria dos Autômatos:
 - » Trabalha com definições e propriedades de modelos matemáticos de computação.
 - » Estes modelos possuem papel em diversas áreas aplicadas da Ciência da Computação:
 - Autômato finito → processamento de texto, compiladores e projeto de hardware.
 - Gramática livre de contexto → linguagens de programação e inteligência artificial.
 - » Os autômatos utilizam definições formais utilizadas em áreas não-teóricas da computação.

2. Introdução à TC - Áreas de Estudo

- Teoria da Computabilidade:
 - » Matemáticos descobriram que existem problemas básicos que não podem ser resolvidos por nenhum algoritmo computacional.
 - » Consequentemente, desenvolveu-se ideias de modelos teóricos de computadores para construção de computadores reais.
 - » A teoria da computabilidade classifica os problemas em solúveis e não-solúveis.

Anhanguera 2. Introdução à TC - Áreas de Estudo Teoria da Complexidade: » Problemas computacionais possuem diferentes níveis de complexidade: alguns são fáceis, outros difíceis. » O que faz alguns problemas computacionais difíceis e outros fáceis é uma questão central da teoria da complexidade e notavelmente sem resposta. » Possui relação intrínseca com a teoria da computabilidade, sendo que esta última classifica um problema em solúvel/nãosolúvel e a teoria da complexidade em difícil/não-difícil. 2. Conceitos de TC - Programas Pode ser descrito como um conjunto estruturado de instruções que capacitam uma máquina a aplicar operações básicas e testes sobre os dados fornecidos. • Possui uma estrutura de controle de operações e testes. • Formas de estruturação de controle: » Monolítica → desvios condicionais e incondicionais, não possuindo mecanismos explícitos de iteração, subdivisão ou recursão. » Iterativa → controle de iterações de trechos de programas; não permite desvios incondicionais. » Recursiva → estruturação em sub-rotinas recursivas; não permite desvios incondicionais.

2. C	onceitos de TC – Programas	Anhanguera
O >	dependente da estrutura de controle, duas ou mai perações ou testes podem ser compostos: Sequencial: a execução da operação ou teste subsequente somente pode ser realizada após o encerramento da execuanterior. Não-determinística: uma das operações ou testes composte escolhido para ser executada → também conhecida como escolha. Concorrente: as operações ou testes compostos podem se executados em qualquer ordem, inclusive simultaneamente	e ução tos é er

	_
2. Conceitos de TC – Programas	
 Para o estudo de programas, as operações e testes serão identificados pelos seus nomes, conforme descrito: Identificadores de operações: F, G, H, Identificadores de testes: T. Um identificador de teste produz somente um valor verdade: verdadeiro (v) ou falso (f). Se a operação não faz nada; ela é denominada vazia (✓). 	
	-
2. Conceitos de TC – Programa Monolítico	
 Programa estruturado usando desvios condicionais e incondicionais. Não faz uso explícito de mecanismos auxiliares de programação que permita uma melhor estruturação 	
como iteração, subdivisão ou recursão. Pode ser descrito através de fluxograma (diagramas) ou na forma de textos (instruções rotuladas).	
2. Conceitos de TC – Programa Monolítico	
 Definição: um Programa Monolítico P é um par ordenado 	
P=(I, r)	
» Onde:l: representa o conjunto de Instruções Rotuladas o qual é finito;	
r: representa o Rótulo Inicial o qual distingue a instrução rotulada inicial em I.	
 Não existem 2 instruções diferentes com o mesmo rótulo; Um rótulo referenciado por alguma instrução que não está associado a nenhuma instrução é dito um <i>Rótulo Final</i>. 	

Conceitos de TC – Programa Iterativo Teve sua origem na tentativa de solucionar os problemas decorrentes da dificuldade do entendimento e manutenção de programas monolíticos, com grande liberdade de desvios → quebra de lógica. Substitui desvios incondicionais por estruturas de controle de ciclos ou repetições. Deu origem à Programação Estruturada e inspirou uma série de linguagens de programação como Pascal, C, dentre outras.

2	Conceitos	do TC -	Drograma	Itorativo
۷.	Conceitos	ae IC -	Programa	iterativo

- Baseado em 4 mecanismos de composição de programas:
 - » Sequencial → composição de 2 programas, resultando em um terceiro. Executa-se o primeiro e em seguida o segundo programa componente.
 - » Condicional → composição de 2 programas, resultando em um terceiro. Executa-se somente um dos dois programas dependendo do resultado de um teste.
 - » Enquanto → composição de um programa, resultando em um segundo. Executa-se repetidamente o programa componente enquanto o resultado de um teste for verdadeiro.
 - » Até → análoga à composição enquanto, excetuando-se que a execução do programa componente ocorre enquanto o resultado de um teste for falso.

2. Conceitos de TC - Programa Iterativo

- Definição: um Programa Iterativo P é indutivamente definido como segue:
 - a) A operação ✓ constitui um programa iterativo;
 - b) Cada identificador de operação constitui um programa iterativo;
 - c) Composição Sequencial → se V e W são programas iterativos, então a composição sequencial denotada por: V;W resulta em um programa iterativo cujo efeito é a execução de V e, após, a execução de W;

2. Conceitos de TC - Programa Iterativo

- d) Composição Condicional → se V e W são programas iterativos e T é um identificador de teste, então a composição condicional denotada por: (se T então V senão W) resulta em um programa iterativo cujo efeito é a execução de V se T é verdadeiro ou W se T é falso;
- e) Composição Enquanto → se V é um programa iterativo e se T é um identificador de teste, então a composição enquanto denotada por: enquanto T faça (V) resulta em um programa iterativo que testa T e executa V, repetidamente, enquanto o valor do teste for verdadeiro; caso contrário a iteração termina;
-) Composição Até → se V é um programa iterativo e se T é um identificador de teste, então a composição até denotada por: até T faça (V) resulta em um programa iterativo que testa T e executa V, repetidamente, enquanto o resultado do teste for falso; caso contrário a iteração termina.

2. Conceitos de TC – Programa Iterativo • Exemplo 1: P₁ = (enquanto T faça (F;G))

2. Conceitos de TC – Programa Iterativo	Anhanguera
■ Exemplo 2:	
$P_2 =$ (se T_1 então enquanto T_2 faça (até T_3 faça (V;W)) senão \checkmark)	

2. Conceitos de TC – Programa Recursivo	guera
 É um tipo de programa encontrada na maioria das linguagens de alto nível que admite a definição de subrotinas recursivas. Recursão é uma forma indutiva de definir programas. Sub-rotinas permitem a estruturação hierárquica de programas, possibilitando níveis diferenciados de abstração. Identificadores de sub-rotinas são descritos por: R₁, R₂, 	

2. Conceitos de TC - Programa Recursivo

- Definição: uma Expressão de Sub-Rotina (ou simplesmente Expressão) E, é indutivamente definida como segue:
 - » A operação vazia ✓ constitui uma expressão de sub-rotina;
 - » Cada identificador de operação constitui uma expressão de subrotina:
 - » Composição Sequencial → se D₁ e D₂ são expressões de subrotina, então a composição sequencial denotada por: D₁,D₂ resulta em uma expressão de sub-rotina cujo efeito é a execução de D₂ e após, a execução de D₂;
 - » Composição Condicional → se D₁ e D₂ são expressões de subrotina e T é um identificador de teste, então a composição condicional denotada por: (se T então D₁ senão D₂) resulta em uma expressão de sub-rotina cujo efeito é a execução de D₁ se T é verdadeiro ou D₂ se T é falso.

2. Conceitos de TC - Programa Recursivo

 Definição: um Programa Recursivo P tem a seguinte forma:

P é E_0 onde R_1 def E_1 , R_2 def E_2 , ..., R_n def E_n

» Onde suponha k \in {1, 2, ..., n}:

 $\mathbf{E_{0}}$ Expressão Inicial a qual é uma expressão de sub-rotina; $\mathbf{E_{k}}$ Expressão que define R_{k} , ou seja, a expressão que define a sub-rotina identificada por R_{k} .

2. Conceitos de TC - Programa Recursivo

Exemplo 1:

 P_1 é R onde $R \text{ def (se T então } \checkmark \text{ senão } F; G; R)$

