ON ROS TOPICS

MOBILE ROBOTICS COURSE POLITECNICO DI BARI LUCA DE CICCO

PROBLEM

In this assignment you are going to experiment with ROS nodes, publisher, and subscribers. The goal is to implement a ROS application to simulate the generation of a point cloud from a fake LiDAR sensor, a node that based on the point cloud generated by the fake LiDAR sensor implements a rotation of α degrees around the Z axis and publishes the output of this computation to a topic, and a consumer that subscribes to the topics generated by the previous node.

Specifications. You are required to implement all the nodes as part of a single ROS package that will be called fakelidar.

The package will host three nodes defined as follows:

- fakelidar.py: This node outputs a point cloud using the message¹ sensor_msgs/PointCloud.msg. The point cloud holds (x_i, y_i, z_i) points for i = 0, ..., N-1 (N is a parameter set in the ROS param server in the variable named fakelidar_points). The points should draw a circle of radius R (R is a parameter in the ROS param server stored in the variable named fakelidar_radius) parallel to the XY plane at a constant Z (i.e. $z_i = Z$, for all i = 0, ..., N-1) to which it is superposed a zero mean gaussian noise with a standard deviation equal to R/10. The N points should be published on the topic /fakelidar_pc.
- fakelidar_process.py: This node subscribes to the /fakelidar_pc topic and computes all the points in the point cloud in order to produce a new point cloud that is rotated of a given angle α (whose value is stored in the param server in the variable alpha) around the Z axis. The rotated point cloud should be published to a new topic named /fakelidar_pc_rot.
- fakelidar_consumer.py: This node subscribes to /fakelidar_pc_rot and prints to the screen the data produced by this topic (hint this is very similar to the chatter node).

1

 $^{^{1}} http://docs.ros.org/en/api/sensor_msgs/html/msg/PointCloud.html$