REALIZATION OF LOGIC GATES USING VERILOG

Aim:

- 1) To write the Verilog HDL code for the following logic gates using dataflow modelling and simulate it in ModelSim.
 - a) NOT gate
 - b) AND gate
 - c) OR gate
 - d) XOR gate
 - e) NAND gate
- 2) To write the Verilog HDL code for the given Boolean function using dataflow modelling and simulate it in ModelSim.

F = A'B'C + ABC' + A'BC' + ABC

CODE: (ON RIGHT SIDE)

DESIGN BLOCK:

<>

TEST BENCH:

<>

Result:

- 1) The Verilog HDL code for the given logic gates is simulated in ModelSim and the output is obtained and verified.
- 2) The Verilog HDL code for the given Boolean function is simulated in ModelSim and the output is obtained and verified.

NB: Diagram, Truth table and Screenshots of output: (on left side)

NB: Change the letter notation according to your program

NOT gate:

AND gate

OR gate

XOR gate

NAND gate

F = A'B'C + ABC' + A'BC' + ABC

A	В	C	F
0	0	0	0
0	0	1	1
0	k	0	
0		1	0
1	0	0	0
1	0	1	0
1	1	0	1.1
1	1	1	1

REALIZATION OF ADDER AND SUBTRACTOR CIRCUITS USING VERILOG

Aim:

- 1) Design Half adder, Full Adder, Half Subtractor, Full Subtractor circuits. Write the Verilog codes for the circuits and simulate them in ModelSim.
- 2) Write the Verilog code of Full Adder using Half Adder by using structural style of modelling and implement it in ModelSim.

CODE: (ON RIGHT SIDE)

DESIGN BLOCK:

<>

TEST BENCH:

<>

Result:

- 1) The Verilog HDL code for Half adder, Full Adder, Half Subtractor, Full Subtractor circuits are simulated in ModelSim and the output is obtained and verified.
- 2) The Verilog HDL code for Full Adder using Half Adder by using structural style of modelling is simulated in ModelSim and the output is obtained and verified.

NB: Diagram, Truth table and Screenshots of output: (on left side)

NB: Change the letter notation according to your program

HALF ADDER:

FULL ADDER

1	Cin	B.	A	Sum	Cout
	0000	0000-	0-0-0-0	0 0 - 0 0	000-0-1

HALF SUBTRACTOR

A	В	D	Во
0	0	0	0
0	1	1	1
1	0	- 1	Ö
1	1	0	0

FULL SUBTRACTOR

P	B	C	D	Borrow
0000	0000-	0-0-0-0	00-00	0000
1	1	1	١	١

FULL ADDER USING HALF ADDER BY USING STRUCTURAL STYLE OF MODELING

A	В	On	Sum	Carry
0000111	00110011	0-0-0-0-	00-00-	000-0

REALIZATION OF 4:1 MULTIPLEXER AND 1:4 DEMULTIPLEXER CIRCUITS USING VERILOG

Aim:

- 1) Design a 4:1 Multiplexer circuit. Write the Verilog codes for the circuits and simulate them in ModelSim.
- 2) Design a 1:4 Demultiplexer circuit. Write the Verilog codes for the circuits and simulate them in ModelSim.

CODE: (ON RIGHT SIDE)

DESIGN BLOCK:

<>

TEST BENCH:

<>

Result:

- 1) The Verilog 4:1 Multiplexer circuit is simulated in ModelSim and the output is obtained and verified.
- 2) The Verilog 1:4 Demultiplexer circuit is simulated in ModelSim and the output is obtained and verified.

NB: Diagram, Truth table and Screenshots of output: (on left side)

NB: Change the letter notation according to your program

4:1 MULTIPLEXER:

1:4 DEMULTIPLEXER

REALIZATION OF D, T, SR, JK FLIP FLOPS AND 4-BIT UP COUNTER USING STRUCTURAL STYLE OF MODELING USING VERILOG

Aim:

- 1) Design and implement the Verilog code of D, T, SR & JK flip flops and stimulate them in ModelSim.
- 2) Design and implement the Verilog code for 4-bit up counter using structural style of modelling and simulate it in ModelSim.

CODE: (ON RIGHT SIDE)

DESIGN BLOCK:

<>

TEST BENCH:

<>

Result:

- 1) The Verilog HDL code for the given logic gates is simulated in ModelSim and the output is obtained and verified.
- 2) The Verilog HDL code for the given Boolean function is simulated in ModelSim and the output is obtained and verified.

NB: Diagram, Truth table and Screenshots of output: (on left side)

NB: Change the letter notation according to your program

D FLIP FLOP:

T FLIP FLOP

SR FLIP FLOP

JK FLIP FLOP

4-BIT UP COUNTER USING STRUCTURAL STYLE OF MODELING

