CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

Seventh Semester of B. Tech (IT) Examination November-December 2014

IT404 Language Processor

Date: 05.12.2014, Friday Time: 10.00 a.m. To 01.00 p.m. Maximum Marks: 70

Instructions:

- 1. The question paper comprises two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

Q - 1 Answer the following questions.

[07]

- a. Define the term: lexeme.
- b. List out the criteria for any grammar to be operator grammar.
- c. List out the fields of activation record.
- d. Which phase of compiler set the attributes of token in a symbol table?
- e. What is the significance of look-ahead symbol in parsing?
- f. Define: Ambiguous Grammar.
- g. Write an example for constant propagation technique in code optimization.
- $\mathbf{Q} \mathbf{2.a}$ Define macro. Write a nested macro for calculating average of three integer numbers.

[04]

Q - 2.b Answer any TWO questions.

[10]

- (i) What is language processor? Why do we need language processor? List out the different types of language processor.
- (ii) Define DFA. Draw DFA for (0 + 1)* (00 + 11) regular expression.
- (iii) Explain two phases of an assembler in detail.

Q - 3 Answer any TWO questions.

[14]

a. What is a function of compiler? Discuss the action taken by every phase of the compiler on the following string. Assume A, B, C and D are of float type variable.

$$A = B * C + D$$

- b. What is the significance of Code Optimization phase in compiler? Explain peephole optimization techniques with suitable examples.
- c. Attempt following.
 - (i) Construct NFA-^ for following regular expression using Thompson's Construction.

$$(0+1)(01)*(011)*$$

(ii) Minimize the following DFA. Each Node indicates state of the DFA.

SECTION - II

Q - 4	Answer the following questions.						
a.	Parsing is also known as						
	(a) Lexical Analysis	(b) Syntax	Analysis				
b.	(c) Semantic Analysis TII stands for		eneration				
	(a) Table of Information Instr	ructions	(b) Translations of Instructions Information				
c.	(c) Translation of Information Instructions (d) Table of Incomplete Instructions Bottom up Parsing involves						
	(a) Shift reduce	(b) Handle F	Pruning				
d.	(c) Operator check (d) Both (a) and (b) In a two pass assembler the object code generation is done during the						
	(a) Second pass	(b) First pass					
e.	(c) Zeroth pass (d) Not done by assembler A system program that sets up an executable program in main memory ready for execution is						
	(a) Assembler	(b) Linker					
f.	(c) Loader (d) All of the above The regular expression (0 / 1) * denotes the set of all strings						
	(a) with zero or more occurrences of 0 or 1 (b) with one or more occurrences of 0 or 1						
g.	(c) equal to regular expression (0* 1*) (d) None of the above A top-down parser generates						
	(a) left most derivation	(b) right	most derivation				
	(c) right most derivation in reverse (d) left most derivation in reverse						

(Cand	lic	late	Seat	nο					

Q - 5.a Answer the following questions.

[05]

(i) Eliminate the left recursion from the following grammar:

[03]

$$S \rightarrow Aa \mid b$$

$$A \rightarrow Ac \mid Sd \mid \epsilon$$

(ii) Perform the Left factoring on following Grammar:

[02]

$$A \rightarrow ad \mid a \mid ab \mid abc \mid b$$

OR

Q - 5.a Consider the following operator grammar.

[05]

$$E \rightarrow E + E \mid E * E \mid id$$

Check the following string is valid or not using operator precedence parsing technique:

$$id + id * id$$

Q – 5.b List the different types of error generated during each phase of compiler. Explain the [05] different error recovery strategies used in the compiler.

OR

- **Q 5.b** List the different types of actions performed during shift-reduce parsing technique. **[05]** Explain "shift-reduce" and "reduce-reduce" conflicts with suitable example.
- Q-5.c Which phase of compiler is responsible for memory allocation? Discuss memory [04] allocation techniques in detail.
- $\mathbf{Q} \mathbf{6.a}$ Generate the canonical LR(0) item set for following grammar:

[05]

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

 $\mathbf{Q} - \mathbf{6.b}$ Construct the LL(1) parsing table for the following grammar:

[05]

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Q – **6.c** Generate Quadruple and Triple for following statement.

[04]

$$a = (b + c) / d + -e$$

OR

 $\mathbf{O} - \mathbf{6.a}$ Generate the canonical LR(1) item set for following grammar:

[05]

$$S \rightarrow C C$$

 $C \rightarrow c C \mid d$

Q-6.b Which layer is responsible for generating three address code? Why the name is given [05]

Three Address code? Generate three address code for following statement.

$$x = (3 + a * (b - c / d)) / e$$

Q – **6.c** Write down basic functionalities of Loader and Linker.

[04]
