

Operational amplifiers circuits design basics

Nikolay Nikolaev Nikolai Poliakov (nanikolaev@itmo.ru) (polyakov_n_a@itmo.ru)

OPERATIONAL AMPLIFIERS (OP-AMP)

Nikolay Nikolaev Nikolai Poliakov (nanikolaev@itmo.ru) (polyakov_n_a@itmo.ru)

AC equivalent of op-amp circuit

Effect of Feedback Connection on Impedance

ideal

IDEAL OP AMP ATTRIBUTES

- ✓ Infinite Differential Gain
- ✓ Zero Common Mode Gain
- ✓ Zero Offset Voltage
- ✓ Zero Bias Current
- ✓ Infinite Bandwidth

OP AMP INPUT ATTRIBUTES

- ✓ Infinite Impedance
- ✓ Zero Bias Current
- ✓ Respond to Differential Voltages
- ✓ Do Not Respond to Common Mode Voltages

OP AMP OUTPUT ATTRIBITES

✓ Zero Impedance

OP-AMP BASICS

ITMO

A component-level diagram of the common 741 op amp.
Dotted lines outline: current mirrors; differential amplifier; class A gain stage; voltage level shifter; output stage.

Gain-Bandwidth

Slew Rate (SR)

Slew rate = maximum rate at which amplifier output can change in volts per microsecond ($V/\mu s$)

Slew rate calculation & formula

$$SR = \frac{\Delta V_o}{\Delta t} V/\mu s$$
 or $SR = 2\pi f V$

Where

Slew Rate (SR) is measured in volts / second, although actual measurements are often given in v/ μ s f – the highest signal frequency, Hz V – the maximum peak voltage of the signal.

ITMO

Maximum Signal Frequency

The maximum frequency at which an op-amp may operate depends on both the bandwidth (BW) and slew rate (SR) parameters of the op-amp. For a sinusoidal signal of general form

$$v_o = K \sin(2\pi f t)$$

the maximum voltage rate of change can be shown to be signal maximum rate of change = $2\pi f K V/s$

To prevent distortion at the output, the rate of change must also be less than the slew rate, that is,

$$2\pi f K \le SR$$
$$\omega K \le SR$$

Differential and common-mode operation

Differential Inputs
$$V_d = V_{i_1} - V_{i_2}$$

Common Inputs
$$V_c = \frac{1}{2}(V_{i_1} + V_{i_2})$$

Output Voltage
$$V_o = A_d V_d + A_c V_c$$

Common-Mode Rejection Ratio
$$\frac{\text{CMRR}}{A_c} = \frac{A_d}{A_c}$$

Single-Ended Input

ITMO

- ✓ Single-Ended Input
- ✓ Double-Ended (Differential) Input
- ✓ Double-Ended Output
- ✓ Common-Mode Operation

Double-ended input, Single-Ended output

Double-ended input, double-ended output

Single-Ended Input

ітмо

Double-Ended (Differential) Input

Noninverting input

Inverting input

Output

Single-ended input with double-ended output

Differential-input, differential-output operation

$$V_o = A_d V_d = V_{o1} - V_{o2}$$

Common-Mode Operation

Inverting Amplifier

Noninverting Amplifier

$$\frac{V_o}{V_1} = \frac{R_1 + R_f}{R_1} = 1 + \frac{R_f}{R_1}$$

Amplifier

Inverting Amplifier	Non-inverting Amplifier
The feedback used in amplifier is voltage shunt or negative feedback	The type of feedback used in amplifier is voltage series or negative feedback
The output of this amplifier is inverted	The output of is in phase by the input signal
the reference voltage can be given to the inverting terminal	In this amplifier, the reference voltage can be given to the non-inverting terminal
The gain is $A_d = -\frac{R_f}{R_1}$	The gain is $A_d = 1 + \frac{R_f}{R_1}$
The voltage gain is $A_d \leq \geq 1$ (less than, greater than or equal)	The voltage gain is $A_d \geq 1$
The input impedance is R ₁	The input impedance is very large

Unity Follower

Summing Amplifier

$$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

Integrator

ITMO

scale factor

$$-\frac{1}{RC} = \frac{1}{(1 \text{ M}\Omega)(1 \mu\text{F})} = -1$$

$$(-\frac{1}{RC} = -1)$$

$$-1 \text{ V}$$

$$v_o(t) = -\frac{1}{RC} \int v_1(t) \, dt$$

$$-\frac{1}{RC} = \frac{1}{(100 \text{ k}\Omega)(1 \mu\text{F})} = -10 \qquad \left(-\frac{1}{RC} = -10\right)$$

Differentiator

Input Offset Voltage

$$V_o = A * V_i$$

$$V_o = AV_i = A\left(V_{\text{IO}} - V_o \frac{R_1}{R_1 + R_f}\right)$$

$$V_o = V_{\rm IO} \frac{A}{1 + A [R_1/(R_1 + R_f)]} \approx V_{\rm IO} \frac{A}{A [R_1/(R_1 + R_f)]}$$

$$V_o(\text{offset}) = V_{IO} \frac{R_1 + R_f}{R_1}$$

Input Offset Current

ітмо

$$I_{\mathrm{IO}} = I_{\mathrm{IB}}^+ - I_{\mathrm{IB}}^-$$

$$V_o^+ = I_{\rm IB}^+ R_C \left(1 + \frac{R_f}{R_1} \right)$$

$$V_o$$
(offset due to $I_{\rm IB}^+$ and $I_{\rm IB}^-$) = $I_{\rm IB}^+ R_C \left(1 + \frac{R_f}{R_1} \right) - I_{\rm IB}^- R_1 \frac{R_f}{R_1}$

$$V_o^- = I_{\rm IB}^- R_1 \left(-\frac{R_f}{R_1} \right)$$

$$V_o$$
 (offset due to $I_{\rm IO}$) = $I_{\rm IO}R_f$

$$|V_o(\text{offset})| = |V_o(\text{offset due to}V_{IO})| + |V_o(\text{offset due to}I_{IO})|$$

Op-Amp Performance

Multiple-Stage Gains

Voltage Subtraction

Instrumentation Amplifier

$$V_o = \left(1 + \frac{2R}{R_P}\right)(V_1 - V_2) = k(V_1 - V_2)$$

Comparator

Schmitt trigger

$$\frac{Vin}{R1} = -\frac{Vout}{R2}$$

$$V_{in} = -\frac{R_1}{R_2} V_{out}$$

Example:

$$R1 = 1K$$
; $R2 = 2K$; $Vout = +/- 12V$
 $Vin = -\frac{1}{2}(+/-12) = +/- 6V$

Non-Symmetrical Schmitt Trigger

Multivibrator

Wien Bridge Oscillator

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

$$f_o = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

If, in particular, the values are $R_1 = R_2 = R$ and $C_1 = C_2 = C$, the resulting oscillator frequency is

$$f_o = \frac{1}{2\pi RC}$$

$$\frac{R_3}{R_4} = 2$$

Tuned Oscillator Circuit

Oscillator Type	Reactance Element		
	X_1	X_2	X_3
Colpitts oscillator	С	С	L
Hartley oscillator	L	L	\boldsymbol{C}
Tuned input, tuned output	LC	LC	_

Crystal Oscillator

Advantages of Voltage Follower

- 1. Very large input resistance
- 2. Very low output resistance
- 3. Large bandwidth
- 4. The output follows the input exactly without any phase shift

$$V_o = -\frac{R_f}{R_c}V_1 = kV_1$$

$$V_o = -\frac{R_f}{R_1}V_1 = kV_1$$
 $V_o = \left(1 + \frac{R_f}{R_1}\right)V_1 = kV_1$

$$I_o = \frac{V_1}{R_1} = kV_1$$

Current-Controlled Voltage Source

$$V_o = -I_1 R_L = kI_1$$

Current-Controlled Current Source

$$I_o = I_1 + I_2 = I_1 + \frac{I_1 R_1}{R_2} = \left(1 + \frac{R_1}{R_2}\right) I_1 = k I_1$$

- 1. Sarma M. S. Introduction to electrical engineering. New York: Oxford University Press, 2001. C. 715-716.
- Boylestad, Robert L. Electronic devices and circuit theory / Robert L. Boylestad, Louis Nashelsky.—11th ed.
- ISBN 978-0-13-262226-4Scherz P., Monk S. Practical electronics for inventors.
 McGraw-Hill Education, 2016.
- 4. Horowitz, Paul, and Winfield Hill. "The Art of Electronics. 3rd." *New York, NY, USA: University of Cambridge* (2015).
- 5. All about circuits (https://www.allaboutcircuits.com/)
- 6. https://www.electronics-tutorials.ws/
- 7. https://en.wikipedia.org/

