Data Collection and Preprocessing Phase

Date	28th June 2025
Team ID	LTVIP2025TMID60530
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques.
Maximum Marks.	6 Marks

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Descri	ptio	n											
	Dimens 949 rov	vs ×	39 col											
Data Overview	S.NO	Age	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	тсн	HDL	Hemoglobin (g/dl)	PCV (%)	RBC (million cells/microliter)	MCV (femtoliters/cell) "	Basophils (%)	Platelet Count (lakhs/mm)	Direct (mg/dl)	Indirect (mg/dl)
	count 950.000000	950.000000	950.000000	950.000000	591.000000	582.000000	950.000000	920.000000	398.000000	941.000000	901.000000	950.000000	950.000000	895.000000 ;
	mean 475.500000	50.632632	20.606316	5.158947	197.544839	35.486254	10.263979	33.810000	3.390704	87.651435	0.498557	475.130042	4.040737	2.457542
	std 274.385677	8.808272	7.980664	22.908785	26.694968	7.982057	1.942300	5.751592	0.937089	13.844181	0.712546	6515.406159	2.757443	1.093691
	min 1.000000	32.000000	4.000000		100.000000	25.000000	4.000000	12.000000	1.000000	60.000000	0.000000	0.520000	0.800000	0.200000
	25% 238.250000	44.000000	15.000000		180.000000	30.000000	9.000000	30.000000	2.825000	78.000000	0.000000	1.200000	2.700000	2.000000
	50% 475.500000	50.000000	20.000000		194.000000	35.000000	10.000000	35.000000	3.500000	87.000000	0.000000	1.420000	3.700000	2.300000
	75% 712.750000 max 950.000000	57.000000 80.000000	26.000000 45.000000		210.000000	38.000000 81.000000	11.500000 15.900000	38.000000 48.000000	4.000000 5.700000	94.000000 126.000000	1.000000	1.700000	4.200000 25.000000	3.000000 6.600000
	plt.title("Lo plt.show()		x='Place(location plor='y',size=20		patient l	ives)')				Place(location v				
	500 -							50	-		1			
Univariate Analysis	400 -													
Ollivariate Aliarysis	- 000 count							96 30	-					
	200 -							10						
	100 -							0						
	0.2	rural P	urb lace(location wher			cun			rura	Place(location	urban vhere the pa		ocun	

Data Preprocessing Code Screenshots

Loading Data

5	s.no	Age	Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	Type of alcohol consumed	Hepatitis B infection	c	Diabetes Result	Blood pressure (mmhg)	Obesity	Family history of cirrhosis/ hereditary	тсн	TG	LDL	HDL	Hemoglobin (g/dl)	PCV (%)
	1	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	12.0	40.0
	2	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	9.2	40.0
	3	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2	40.0
	4	55	male	rural	12	2	branded liquor	negative	negative	NO	138/90	no	no	NaN	NaN	NaN	NaN	7.2	40.0
	5	55	female	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2	40.0

```
df('Tct')-df('Tct').fillna(df('Tct').mean())
df('Yct)-df('Not').fillna(df('Yct)'.mean())
df('Yct)-df('Yct').fillna(df('Yct)'.mean())
df('Yct').df('Yct').fillna(df('Yct').mean())
df('Yct').df('Yct').fillna(df('Yct').mean())
df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct').df('Yct'
Handling Missing Data
                                                                                                                                                                              df['A/G Ratio']=df['A/G Ratio'].fillna(df['A/G Ratio'].mode()[0])
                                                                                                                                                                                                                                          from sklearn.preprocessing import StandardScaler
                                                                                                                                                                                                                                          sc = StandardScaler()
                                                                                                                                                                                                                                        x_train = sc.fit_transform(x_train)
#x_test = sc.transform(x_test)
                                                                                                                                                                                                                                          x_train
                                                                                                                                                                                                                           array([[ 2.44060333, -1.84159498, 1.29329571, ..., 1.08599342,
                                                                                                                                                                                                                                                     4.92950302, 6.81450659],

[ 0.15458485, 0.50365769, 1.29329571, ..., -0.83331467,

-0.20286021, -0.14674577],
                                                                                                                                                                                                                                                      [-1.44562809, 0.50365769, 1.29329571, ..., 0.49543709, -0.20286021, -0.14674577],
                                                                                                                                                                                                                                                      [ 0.72608947, 0.50365769, -0.76458992, ..., 0.27397846,
                                                                                                                                                                                                                                                      [ 0.72608947, 0.50365769, -0.76458992, ..., 0.27397846, -0.20286021, -0.14674577], [ 0.49748762, -1.84159498, -0.76458992, ..., 2.61774893, -0.20286021, -0.14674577], [ 0.15458485, 0.50365769, -0.76458992, ..., 0.20015892, -0.20286021, -0.14674577]])
Data Transformation
                                                                                                                                                                                                                                                            from sklearn.preprocessing import LabelEncoder
                                                                                                                                                                                                                                                           le = LabelEncoder()
                                                                                                                                                                                                                                                            for column in df.columns:
                                                                                                                                                                                                                                                                           # Check if the column has categorical data
                                                                                                                                                                                                                                                                           if df[column].dtype == 'object':
    # Perform label encoding
                                                                                                                                                                                                                                                                                         df[column] = le.fit_transform(df[column])
```

```
categorical features = df.select dtypes(include=[np.object])
                                           categorical features.columns
                                        Index(['Gender', 'Place(location where the patient lives)',
                                                'Type of alcohol consumed', 'Hepatitis B infection',
                                               'Hepatitis C infection', 'Diabetes Result', 'Blood pressure (mmhg)',
                                               'Obesity', 'Family history of cirrhosis/ hereditary', 'TG', 'LDL',
                                               'Total Bilirubin (mg/dl)', 'A/G Ratio',
                                               'USG Abdomen (diffuse liver or not)', 'Outcome'],
                                              dtype='object')
Feature Engineering
                                           numeric_features = df.select_dtypes(include=[np.number])
                                           numeric_features.columns
                                        Index(['S.NO', 'Age', 'Duration of alcohol consumption(years)',
                                               'Quantity of alcohol consumption (quarters/day)', 'TCH', 'HDL',
                                               'Hemoglobin (g/dl)', 'PCV (%)', 'RBC (million cells/microliter)',
                                               'MCV (femtoliters/cell)', 'MCH (picograms/cell)',
                                               'MCHC (grams/deciliter)', 'Total Count', 'Polymorphs (%)',
                                               'Lymphocytes (%)', 'Monocytes (%)', 'Eosinophils (%)',
                                               'Basophils (%)', 'Platelet Count (lakhs/mm)', 'Direct (mg/dl)',
                                               'Indirect
                                                              (mg/dl)', 'Total Protein (g/dl)', 'Albumin (g/dl)',
                                               'Globulin (g/dl)', 'AL.Phosphatase
                                                                                          (U/L)', 'SGOT/AST
                                                                                                                   (U/L)',
                                               'SGPT/ALT (U/L)'],
                                              dtype='object')
                                           # Save the cleaned and processed DataFrame to a CSV file
                                           df.to_csv('cleaned_data.csv', index=False)
                                           df.head()
                                       ✓ 0.0s
                                                                                    Quantity of
                                                       Place(location
                                                                                               Type of
                                                                                                               Blood
                                                                  Duration of alcohol
                                                                                      alcohol
                                                                                                      Diabetes
                                                                                                             pressure Obesity
                                            Age Gender
                                                          where the
                                                                                               alcohol
                                                                  consumption(years)
                                                                                   consumption
                                                                                                       Result
                                                                                                              (mmha)
                                                        patient lives)
                                                                                             consumed
Save Processed Data
                                                                                  (quarters/day)
                                         0 55.0
                                                                             12.0
                                                                                         2.0
                                                                                                                  32
                                                                                                   2
                                                                                                                 32
                                         1 55.0
                                                                             12.0
                                                                                         2.0
                                                                                         2.0
                                                                                                                  32
                                                                                                                         0
                                         2 55.0
                                                                             12.0
                                                                                         2.0
                                                                                                   2
                                                                                                                 32
                                                                                                                         0
                                         3 55.0
                                                                             12.0
                                                                                                           0
                                         4 55.0
                                                                                                                         0
```