Chapter 5 Large and Fast: Exploiting the Memory Hierarchy

I/O Topics and Storage (Online Section 5.11)

Introduction

Input/Output Devices

■ I/O Devices Connections

Traditional Bus Structures

A Bus is a shared communication link.

Memory Read / Write transaction

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

I/O Management

- I/O devices are managed by I/O controller hardware
 - Transfers data to/from device
 - Synchronizes operations with software

■ I/O Execution Process

I/O Commands and I/O Register Mapping

- Command registers
 - Cause device to do something
- Status registers
 - Indicate what the device is doing and occurrence of errors
- Data registers
 - Write: transfer data to a device
 - Read: transfer data from a device
- Memory mapped I/O
 - I/O Registers are addressed in same space as memory
 - Address decoder distinguishes between them
 - OS uses address translation mechanism to make them only accessible to kernel
- I/O instructions : x86
 - Separate instructions to access I/O registers
 - Can only be executed in kernel mode

Polling vs. Interrupts

- Periodically check I/O status register
 - If device ready, do operation; otherwise wait
 - If error, take action
- Common in small or low-performance real-time embedded systems
 - Predictable timing, Low hardware cost
- In other systems, wastes CPU time
- When a device is ready or error occurs
 - Controller interrupts CPU
- Interrupt is like an exception
 - But not synchronized to instruction execution
 - Can invoke handler between instructions
 - Cause information often identifies the interrupting device
- Priority interrupts
 - Devices needing more urgent attention get higher priority
 - Can interrupt handler for a lower priority interrupt computer Architecture -10- ঠাই এ 교수

I/O Data Transfer

- Polling and interrupt-driven I/O
 - CPU transfers data between memory and I/O data registers
 - Time consuming for high-speed devices

- □ Direct memory access (DMA)
 - OS provides starting address in memory
 - Special I/O controller (DMA controller) transfers to/from memory autonomously
 - DMA controller interrupts on completion or error
- If DMA writes to a memory block that is cached
 - Cached copy becomes stale
- Need to ensure cache coherence
 - Invalidate blocks from cache on DMA writes to memory blocks

Mass Storage

- Many systems today need to store many terabytes of data
- Don't want to use single, large disk
 - too expensive
 - failures could be catastrophic
- Would prefer to connect many smaller disks to provide
 - large storage capacity
 - faster access to reading data
 - redundant data

- Dependability Measures
 - Reliability
 - Availability

RAID

- □ Redundant Array of Inexpensive/Independent Disks
- Technology of managing multiple storage devices
 - Typically in a single machine/array, due to limitations of faulttolerance

 Differing levels of redundancy, error checking, capacity, and cost

- RAID can improve performance and availability
 - High availability requires hot swapping

RAID Levels

Concluding Remarks

- □ I/O performance measures
 - Throughput, response time
 - Dependability and cost also important
- I/O Management
- Buses used to connect CPU, memory, I/O controllers
 - Polling, interrupts, DMA
- RAID
 - Improves performance and dependability