Exclusion mutuelle (suite)

Exclusion mutuelle: <u>Jamais</u> les deux processus ne peuvent se trouver en SC au même moment.

$$\neg \mathbf{F} (SC_1 \land SC_2)$$

$$\neg \mathbf{F} (SC_1 \land SC_2) \qquad \mathbf{G} (\neg SC_1 \lor \neg SC_2)$$

▶II n'y a <u>jamais</u> de blocage.

$$G(X \top)$$

 $G(X \top)$ (NB: toujours vrai si \rightarrow est totale)

▶ Absence de famine: Si un processus demande l'accès à la SC, il y arrivera <u>un jour</u>.

$$\mathbf{G} (\mathsf{D}_1 \Rightarrow \mathbf{F} \; \mathsf{SC}_1) \wedge \mathbf{G} (\mathsf{D}_2 \Rightarrow \mathbf{F} \; \mathsf{SC}_2)$$

Attente bornée: Si un processus demande l'accès à la SC, l'autre processus ne peut pas passer <u>avant</u> lui plus d'une fois.

il nous manque encore un opérateur... patience !

LTL

Syntaxe: $P \in AP$ $\phi, \psi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid X \phi \mid \psi U \phi \mid X^{-1} \phi \mid \psi S \phi$

$$U = until$$
 $S = since$

 $\rho, i \models X \Leftrightarrow ssi \rho, i+1 \models \varphi$ $\rho, i \models \psi U \varphi$ ssi ($\exists j \ge i$. $(\rho, j \models \varphi \text{ et } \forall i \le k < j \text{ on a } \rho, k \models \psi)$ $\rho, i \models X^{-1} \oplus ssi (i>0 et \rho, i-1 \models \Phi)$ $\rho, i \models \psi S \varphi$ ssi ($\exists j \le i$. $(\rho, j \models \varphi \text{ et } \forall j < k \le i \text{ on a } \rho, k \models \psi$)

Exemples de formules

Exemples de formules

$$\mathbf{F}^{-1} \Phi = \top \mathbf{S} \Phi$$

```
def:

\rho, i \models \mathbf{F}^{-1} \varphi ssi (\exists j \le i. \ \rho, j \models \varphi)

\rho, i \models \psi S \varphi ssi (\exists j \le i. \ (\rho, j \models \varphi \text{ et } \forall j < k \le j \text{ on a } \rho, k \models \psi)

\rho, i \models \mathbf{T} S \varphi ssi (\exists j \le i. \ (\rho, j \models \varphi \text{ et } \forall j < k \le i \text{ on a } \rho, k \models \top)

\Longleftrightarrow

(\exists j \le i. \ \rho, j \models \varphi)

\varphi

\rho, i \models \mathbf{F}^{-1} \varphi
```

$\underline{\mathbf{Exercice}}\ 2:$

On considère le STE \mathcal{S} de la figure ci-contre (q_0 est l'état initial). Pour chacune des formules suivantes, dire si la formule est vraie pour \mathcal{S} (ie pour toutes ses exécutions). Justifier les réponses.

Evaluer les formules

1.
$$\Psi_1 = \mathbf{G}(b \Rightarrow (\mathbf{X}(a \lor b)))$$

2.
$$\Psi_2 = \mathbf{G} \Big(a \Rightarrow (a \mathbf{U} b) \Big)$$

3.
$$\Psi_3 = \mathbf{GF}a$$

4.
$$\Psi_4 = \mathbf{GF}b$$

5.
$$\Psi_5 = (\mathbf{FG}b) \Rightarrow (\mathbf{G}(a \Rightarrow \mathbf{X}b))$$

6.
$$\Psi_6 = (\mathbf{FG}b) \Rightarrow (\mathbf{GF}a)$$

7.
$$\Psi_7 = ((\neg a) \mathbf{U} (a \wedge \mathbf{X} \mathbf{G} \neg a)) \Rightarrow \mathbf{F} \mathbf{G} b$$

Pourquoi utiliser la logique temporelle?

- ▶une bonne expressivité
- → on peut exprimer beaucoup de choses
- ▶une sémantique naturelle,
- → facilement et succinctement
- de bonnes propriétés de décision
- → des algorithmes et des outils
- ▶ beaucoup d'extensions
- → pour les systèmes probabilistes, temps-réel, les jeux, les données,...

Problèmes de vérification

Model-checking:

input: un modèle (STE) S et une formule φ

output: oui ssi $S \models \phi$.

Satisfaisabilité:

input: une formule φ

output: oui ssi il existe un modèle S t.q. $S \models \phi$.

(+ S si il existe!)

Synthèse de contrôleur:

input: un modèle partiel S une formule φ

output: un « controleur » C t.q. $S \times C \models \varphi$.

Spécifier un système réactif

On distingue plusieurs grandes familles de propriétés:

Propriétés de sûreté (safety):

"une mauvaise chose n'arrive jamais".

Ex: il y a au plus un processus en section critique.

Propriétés de vivacité (liveness):

"de bonnes choses arrivent un jour".

Ex: chaque demande d'accès à la SC est satisfaite un jour.

Propriétés d'équité (fairness):

→ Vérification d'exécution équitable.

Ex: Chaque processus doit « avancer » infiniment souvent.