Regression and Time Series Analysis

1. Introduction to regression and time series analysis

Presenter: Hayun Lee

Contents

- 1. Introduction to regression and time series analysis
 - 1.1 Introduction to data analysis
 - 1.2 Python packages and data

1.1 Introduction to Data Analysis

Data Analysis

- When given data, data analysis means that
 - Understand the relationship between data
 - The process of creating new (output) data we want using the identified relationships
- Data analysis is a process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusions and supporting decision-making. — Wikipedia
- Problems of data analysis
 - Prediction
 - Clustering
 - Approximation
 - ...

Example) Prediction

- Outputs different data as a result of data analysis when various input data such as numbers, documents, images, audio, and video are given.
- The term prediction in data analysis does not include the meaning of the future in time.
 - Time series analysis → forecasting

Input and Output Data

- In the prediction problem, it should be possible to classify data types into two types of data
 - Input data and output data

Input Data (denoted X)

- Data on which analysis is based
- Synonyms: independent variable, feature, explanatory variable

Output Data (denoted Y)

- Purpose data to estimate or predict
- Synonyms: dependent variable

Rule-based and Training-based Methods

- Rule-based Methods
 - Create rules or algorithms by a person

- Training-based Methods (= Data-based Methods)
 - Allow computers to create rules on their own by displaying a large amount of data to your computers

Supervised Learning

- Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs.
 - Wikipedia

- To use a training-based prediction methodology, a training data set must be created by a person.
 - Training data set

 Set(<input data, target>)

Principles of Supervised Learning

Preprocessing and Encoding

 Data such as documents and images must be converted into "number" data that can be processed by a computer through a process called preprocessing or encoding.

• Example: MNIST

Regression Analysis and Classification

- The prediction problem depends on whether the data to be output is a number value or a category value.
 - Output = number → Regression analysis
 - Output = category → Classification

Example) Regression Analysis

House price prediction (provided by the scikit-learn package)

Example) Classification

• Iris classification (provided by the scikit-learn package)

Unsupervised Learning

 Unsupervised learning is a type of machine learning that looks for previously undetected patterns in a data set with no pre-existing labels and with minimum of human supervision. – Wikipedia

- Unsupervised learning methods
 - Clustering
 - ...

Example) Clustering

Affinity Propagation 방법을 사용한 클러스터링 결과

1.2 Python Packages and Data

statsmodels package

- One of the development goals of the statsmodels package
 - Allow users who have previously used R to perform statistical and time series analysis to do the same analysis in Python.
- statsmodels package provides
 - Test and estimation
 - Regression analysis
 - Time-series analysis
- Package import method

import statsmodels.api as sm

Data Provided by statsmodels

- Rdatasets project supports the use of over 1000 standard datasets used by R.
 - Project homepage: https://github.com/vincentarelbundock/Rdatasets
 - List of provided datasets: https://vincentarelbundock.github.io/Rdatasets/datasets.html
 - Usage:

```
get_rdataset(item, [package="datasets"])
```

Example) get_rdataset

• The *Titanic* data in the *datasets* package is for passengers on the Titanic.

```
data = sm.datasets.get_rdataset("Titanic", package="datasets")

df = data.data
df.tail()
```

	Class	Sex	Age	Survived	Freq
27	Crew	Male	Adult	Yes	192
28	1st	Female	Adult	Yes	140
29	2nd	Female	Adult	Yes	80
30	3rd	Female	Adult	Yes	76
31	Crew	Female	Adult	Yes	20

scikit-learn Package

• The scikit-learn package is a Python package for machine learning training.

- Advantages of the scikit-learn package
 - Provides a variety of machine learning models, or algorithms, all in one package.

Package import method

import sklearn as sk

Data Provided by scikit-learn

- The sklearn.datasets subpackage provides various example datasets.
 - The commands for loading data can be divided into three types of commands.
 - Load series command
 - Command to get the data included in the scikit-learn installation package.
 - Fetch series command
 - Command to fetch data that can be downloaded from the Internet.
 - Make series command
 - Command to generate virtual data at random.

Regression and Time Series Analysis

2. Basis of linear regression analysis

Presenter: Kyuhun Sim

Contents

- 2. Basis of linear regression analysis
 - 2.1 Basis of linear regression analysis
 - 2.2 Geometry of regression analysis
 - 2.3 Partial Regression

2.1 Basis of linear regression analysis

Regression anaylsis

 Estimating the relationships between a dependent variable y and one or more independent variables x

$$\hat{y} = f(x) \approx y$$

• if the relationships between x and y is f(x) -> linear

Regression anaylsis

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D = w_0 + w^T x$$

• $w0, \dots, wD$ is the coefficient of f(x), and also parameter

$$f(x) = w_0 + w_1x_1 + w_2x_2 + \cdots + w_Dx_D = egin{bmatrix} 1 & x_1 & x_2 & \cdots & x_D\end{bmatrix} egin{bmatrix} w_0 \ w_1 \ w_2 \ dots \ w_D\end{bmatrix} = x_a^Tw_a = w_a^Tx_a \ dots \ d$$

Regression analysis -bias augmentation

Using numpy

Using statsmodels

OLS(Ordinary Least Squares)

 method to find the weight vector that minimizes RSS as matrix derivative.

$$\hat{y} = Xw$$

• Residual vector $e = e = y - \hat{y} = y - Xw$

RSS =
$$e^T e$$

= $(y - Xw)^T (y - Xw)$
= $y^T y - 2y^T Xw + w^T X^T Xw$

$$= y^T y - 2y^T Xw + w^T X^T Xw$$

$$\frac{dRSS}{dw} = -2X^T y + 2X^T Xw$$

OLS(Ordinary Least Squares)

$$rac{d ext{RSS}}{dw} = 0$$
 $X^T X w^* = X^T y$

ullet If inverse of xTx matrix exists $w^* = (X^TX)^{-1}X^Ty$

OLS(Ordinary Least Squares)-normal equation

$$rac{d\mathbf{RSS}}{doldsymbol{w}} = \mathbf{0}$$
 $X^T y - X^T X w = 0$ $X^T X w^* = X^T y$ $X^T X w^* = X^T y$ Gradient = 0 $X^T (y - X w) = 0$ $X^T e = 0$

Linear regression analysis by using numpy

• By using $w^* = (X^T X)^{-1} X^T y$ w = np.linalg.inv(X.T @ X) @ X.T @ y

$$\hat{y} = 99.79150869 + 86.96171201x$$

y = y.reshape(len(y), 1)

Linear regression analysis by using numpy

Linear regression analysis by using scikit-learn

```
model = LinearRegression(fit_intercept=True)
```

• fit_intercept = True-> bias is default, False -> bias does not exist

```
model = model.fit(X, y)
```

 Automatically do bias augmentation -> does not have to use command like add_constant

```
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(X0, y)
print(model.coef_, model.intercept_)
[[86.96171201]] [99.79150869]
model.predict([[3]])
array([[360.67664473]])
```

2.2 Geometry of regression analysis

Geometry of regression analysis

y[^] is a vector projected into a vector space where y is the base vector of each column c1,···,cM of X.

The residual vector e is the orthogonal vector remaining after projection.

Geometry of regression analysis

• 1) Dependent vector y -> residual vector e: e=My

```
e = y - \hat{y}
= y - Xw
= y - X(X^TX)^{-1}X^Ty
= (I - X(X^TX)^{-1}X^T)y
= My
```

• 2) Dependent vector y -> predict vector y^ : y^ = Hy

```
\hat{y} = y - e
= y - My
= (I - M)y
= X(X^TX)^{-1}X^Ty
= Hy
```

Geometry of regression analysis

- Property of M, H
 - Symmetric matrix $M^T = M$

$$H^T = H$$

• Idempotent matrix $M^2 = M$

$$H^2 = H$$

- M and H is orthogonal MH = HM = 0
- M and X is orthogonal MX = 0
- H times X equal to X HX = X

2.3 Partial Regression

Partial Regression

Regression analysis

 Just use one independent variable x1

$$y = w_1 x_1 + e$$

After add new independent variable

• w1' ≠ w1

$$y = w_1' x_1 + w_2' x_2 + e'$$

Weight of the model is always biased unless we include all independent variables that affect the dependent variable in the regression model.

Partial Regression

- Divide independent variables to two groups $X = [X_1 \ X_2]$
- Regression analysis using only the independent variable X1 $w_1 = (X_1^T X_1)^{-1} X_1^T y$
- New model add new independent variables $y = \hat{y} + e' = [X_1 \ X_2] \begin{bmatrix} w_1' \\ w_2' \end{bmatrix} + e'$
- By using normal equation $\begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_2 \end{bmatrix} \begin{bmatrix} w_1' \\ w_2' \end{bmatrix} = \begin{bmatrix} X_1^T y \\ X_2^T y \end{bmatrix}$

$$w_1' = w_1 - (X_1^T X_1)^{-1} X_1^T X_2 w_2'$$

Partial Regression – FWL theorem

• y* = Linear regression analysis of dependent variable y with independent variable group X1

x2* = Linear regression analysis of other independent variable x2 with
 X1

$$x_2^{*^T} x_2^* w_2 = x_2^{*T} y^*$$

Partial Regression – remove mean

By FWL Theorem

 Regression analysis removed mean from independent variables and removed mean from dependent variables Regression analysis that included constant

Partial Regression Plot

- When number of independent variables is large
 - To visualize effects of specific independent variables

AGE independent variable and the MEDV dependent variable seems to have a negative correlation.

Partial regression Plot

CCPR Plot

 Unlike the partial regression plot, the independent variable appears as it is.

$$y = \hat{y} + e = w_1 x_1 + w_2 x_2 + \dots + w_i x_i + \dots + w_K x_K + e$$

xi as horizontal axis and wixi+e as vertical axis

CCPR Plot

sm.graphics.plot_ccpr(result_boston, "AGE")
plt.show()

fig = sm.graphics.plot_regress_exog(result_boston, "AGE")
plt.tight_layout(pad=4, h_pad=0.5, w_pad=0.5)
plt.show()

Regression Plots for AGE

