NMB -Oefenzitting 4

Hendrik Speleers

Krylov

Arnoldi

- -

NMB - Oefenzitting 4: Iteratieve methoden

Hendrik Speleers

Overzicht

NMB -Oefenzitting 4

> Hendri Spelee

rylov

Arnoldi

1 Krylov deelruimten

2 Arnoldi

3 CG

Krylov deelruimten

NMB -Oefenzitting 4

Hendrik Speleers

Krylov

iti yiov

Arnoldi

• Krylov deelruimten $\mathcal{K}_n = \langle b, Ab, \dots, A^{n-1}b \rangle$

- Slechte basis (cfr. $\langle 1, x, x^2, \ldots \rangle$)
- ullet Orthonormale basis $\langle q_1,\ldots,q_n
 angle$

$$Ax = \lambda x$$
 $Ax = b$
 $A \neq A^T$ Arnoldi GMRES
 $A = A^T$ Lanczos CG

- Andere iteratieve methodes
 - Splitsingsmethodes : Jacobi, Gauss-Seidel
 - Multigrid

Arnoldi

NMB -Oefenzitting 4

Hendril Speleer

Krylov

Arnoldi

- Analoog aan GGS : $A = QHQ^T$ (Hessenberg)
 - $H_n = Q_n^T A Q_n$
 - $K_n = Q_n R_n$
- Orthogonale projectie op Krylov deelruimte
- Berekening :
 - $AQ = QH \rightsquigarrow AQ_n = Q_{n+1}\tilde{H}_n$
 - iteratief, tussenstappen geven al info
- Ritz-waarden : ew van H_n
 - benadering spectrum A
 - extreme ew worden snel gevonden

Arnoldi iteratie

NMB -Oefenzitting 4

> Hendrik Speleers

Krylov

Arnoldi

•
$$q_1 = b/\|b\|$$

• for
$$n = 1, 2, ...$$

•
$$v = Aq_n$$

• for
$$j=1$$
 to n

•
$$h_{jn} = q_i^T v$$

$$v = v - h_{jn}q_j$$

•
$$h_{n+1,n} = ||v||$$

•
$$q_{n+1} = v/h_{n+1,n}$$

NMB -Oefenzitting 4

Hendril Speleer

Krylov

Arnold

- Conjugate Gradients (Toegevoegde Gradiënten)
- SPD matrices
- Fout $||e_n||_{\mathcal{A}} = ||x_* x_n||_{\mathcal{A}}$ minimaliseren, $x_n \in \mathcal{K}_n$
- Minimalisatie met slimme keuze van zoekrichtingen
- Eigenschappen :
 - $\mathcal{K}_n = \langle x_1, \dots, x_n \rangle = \langle p_0, \dots, p_{n-1} \rangle = \langle r_0, \dots, r_{n-1} \rangle$
 - \bullet $r_n^T r_j = 0 \rightarrow r_m = 0$
 - $p_n^T A p_j = 0$ \leftarrow A-toegevoegde zoekrichting

CG iteratie

NMB -Oefenzitting 4

 \bullet $x_0 = 0$, $r_0 = b$, $p_0 = r_0$

• for n = 1, 2, ...

•
$$\alpha_n = (r_{n-1}^T r_{n-1})/(p_{n-1}^T A p_{n-1})$$

•
$$x_n = x_{n-1} + \alpha_n p_{n-1}$$

$$\bullet r_n = r_{n-1} - \alpha_n A p_{n-1}$$

• $\beta_n = (r_n^T r_n)/(r_{n-1}^T r_{n-1})$

$$\bullet p_n = r_n + \beta_n p_{n-1}$$

staplengte benadering

residu

zoekrichting

CG convergentie

NMB -Oefenzitting 4

Hendrik Speleers

Krylov

Arnold

Convergentie . . .

schatting via veeltermen :

$$\frac{\|e_n\|_A}{\|e_0\|_A} \leq \max_{z \in \Lambda(A)} |p_n(z)|$$

• schatting via conditiegetal van A :

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^n$$

• in n stappen als $n \neq$ eigenwaarden