TRANSFORMAÇÕES GEOMÉTRICAS 2D

Prof. Dr. Bianchi Serique Meiguins

Prof. Dr. Carlos Gustavo Resque dos Santos

Introdução

- Transformações geométricas são operações que podem ser utilizadas visando a alteração de características como posição, forma ou tamanho do objeto a ser desenhado.
- Operações matemáticas para alterar uniformemente o aspecto de um desenho

Por que as transformações geométricas são necessárias?

 Como operações de posicionamento de objetos em 2D e 3D.

 Como operações de modelagem de objetos em 2D e 3D.

Como operações de visualização em 2D e 3D.

Modelagem de Objetos

- Transformações geométricas podem especificar operações de modelagem de objetos
- Permitem a definição dum objeto no seu próprio sistema de coordenadas locais
- Permite usar a definição de um objeto várias vezes numa cena com um sistema de coordenadas globais

Modelagem de Objetos em 2D

Modelagem de Objetos em 2D

Coordenadas Globais

Variação de Tamanho

Modelagem de Objetos em 2D

Coordenadas Globais

Translação

Sistemas de Coordenadas

 Pode-se utilizar diferentes sistemas de coordenadas para descrever os objetos modelados em um sistema 2D.

 O Sistema de Coordenadas serve para nos dar uma referência em termos de medidas do tamanho e posição dos objetos dentro da nossa área de trabalho.

Sistemas de Coordenadas

Outros sistemas de coordenadas:

Sistemas de Coordenadas

 Um determinado sistema de coordenadas é denominado sistema de referência se for um sistema de coordenadas cartesianas para alguma finalidade especifica.

Sistema de Coordenadas

- Sistema de Referência do Universo (SRU)
 - Coordenadas do mundo ou universo, depende da aplicação, milímetro ou metro, sistema de radar ?
- Sistema de Referência do Objeto (SRO)
 - Cada objeto é um mini universo individual
- Sistema de Referência Normalizado (SRN)
 - Valores entre 0<=x <=1, 0<=y <=1</p>
 - Sua principal aplicação é tornar a geração das imagens independentes de dispositivos.
- Sistema de Referência do Dispositivo(SRD)
 - Sistema de coordenadas baseado características dos dispositivos

Transformações em Sistemas de Coordenadas

- Aplicações gráficas freqüentemente requerem transformações de um sistema de coordenadas para outro.
- Exemplo: muitas vezes o objeto é descrito em um sistema de coordenadas não cartesiano e precisa ser convertido para um sistema de coordenadas cartesianas.

Matrizes em Computação Gráfica

- Todas as transformações geométricas podem ser representadas na forma de equações.
 - Necessita de muitas operações aritméticas simples.
- Computadores entendem e manipulam melhor matrizes

Pontos, Vetores e Matrizes

- $\Box P(2,3) \rightarrow P=[2,3]$
- Matriz quadrada

```
1 2 3
3 2 1
2 1 2
```

Aritmética de Matrizes

Soma

Multiplicação por um Escalar

$$1/2 \times \begin{bmatrix} 2 & 4 & 6 \\ 6 & 4 & 2 \\ 4 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

Aritmética de Matrizes

Transposta

$$A = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{vmatrix} \qquad A^{T} = \begin{vmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix}$$

Multiplicação

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1X1+1X3 & 1x2+2X2 \\ 3X1+2x3 & 3x2+2x2 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 9 & 10 \end{bmatrix}$$

Transformações Básicas

- Quando se trata de gerar imagens em duas dimensões, apenas a criação de primitivas e aplicação de atributos não é suficiente.
- É absolutamente necessário que sejam feitas certas transformações.
- Facilidade de aplicação de transformações em primitivas, para depois gerar as formas mais complexas.
- Transformações mais comuns: translação, rotação e escala.

 Chamamos de translação o ato de levar um objeto de um ponto a outro, num sistema de referência.

O objetivo de uma translação é bem simples: ao calcularmos os pontos de um objeto, devemos escolher a posição mais simples para sua geração – por exemplo, para um círculo fazer coincidir o centro com a origem dos eixos – e depois transferir a figura para posição final.

- A translação deve ser aplicada a cada ponto.
 Não é necessário calcular a figura inteira e transladá-la depois.
- Assim, pode-se afirmar que para cada ponto (x,y) calculado para figura. Existe um ponto (x',y') transladado, que corresponde ao ponto original, dado por:

$$\begin{cases} x' = x + Tx \\ y' = y + Ty \end{cases} \longrightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} Tx \\ Ty \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

 Onde o par (Tx, Ty) é chamado de vetor de translação ou vetor de deslocamento: Tx indica quantos pixels a figura está deslocada na direção horizontal, e Ty na direção vertical.

Pergunta

Uma linha com muitos pontos, qual a melhor maneira de transladar essa linha?

Rotação

 Dá-se ao nome de rotação ao ato de girar um objeto de um ângulo, num sistema de referência.

O objetivo de uma rotação é bem simples: ao calcular os ponto de um objeto, deve-se escolher o ângulo mais simples para sua geração, e depois girar a figura para a posição final.

Rotação

 Movimentação da figura para outra posição, de forma que todos os pontos da imagem mantenham a mesma distância da origem

Rotação

$$L = \sqrt{x^2 + y^2};$$

$$\cos \alpha = \frac{x}{L}$$
;

$$\operatorname{sen} \alpha = \frac{y}{L};$$

Rotação em torno da origem

L é a distância de (x', y') à origem também, temos

$$L = \sqrt{x'^2 + y'^2}$$
 e $\cos(\theta + \alpha) = \frac{x'}{L}$; $\sin(\theta + \alpha) = \frac{y'}{L}$

Como:
$$\begin{cases} \cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b \\ \sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a \end{cases}$$

Temos:
$$\begin{cases} \frac{x'}{L} = \cos\theta \cdot \cos\alpha - \sin\theta \cdot \sin\alpha \\ \frac{y'}{L} = \sin\theta \cdot \cos\alpha + \sin\alpha \cdot \cos\theta \end{cases}$$

$$x' = L \cdot \cos\theta \cdot \cos\alpha - L \cdot \sin\theta \cdot \sin\alpha$$
Daí:
$$y' = L \cdot \sin\theta \cdot \cos\alpha + L \cdot \sin\alpha \cdot \cos\theta$$

Rotação em torno da origem

$$x' = L \cdot \cos\theta \cdot \cos\alpha - L \cdot \sin\theta \cdot \sin\alpha$$
$$y' = L \cdot \sin\theta \cdot \cos\alpha + L \cdot \sin\alpha \cdot \cos\theta$$

- Substituindo L.cos(α) e L.sen(α) por x e y nas equações anteriores tem-se:
- \Box x'=x.cos θ y.sen θ
- \neg y'=x.sen θ + y.cos θ

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \end{bmatrix}$$

Matriz de rotação do plano xy por um ângulo $\,\theta$

Transformação de Rotação

- Quando se aplica uma transformação de escala a um objeto, o resultado é um novo objeto semelhante ao original, mas "esticado" ou "encolhido".
- A transformação de escala também deve ser aplicada ao se calcular os pontos de um objeto.
- Valores diferentes nas dimensões.

 Variar o tamanho de um objeto é multiplicar cada componente de cada um dos seus pontos (x, y) por um escalar.

$$\begin{cases} x' = Ex \cdot x \\ y' = Ey \cdot y \end{cases} \longrightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} Ex & 0 \\ 0 & Ey \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

obs:
$$\begin{cases} E > 1 \Rightarrow \text{Ampliação da imagem} \\ 0 < E < 1 \Rightarrow \text{redução da imagem} \\ E < 0 \Rightarrow \text{Espelhamento} \end{cases}$$

Exemplos de fatores de escala:

Transformações 2D

É importante lembrar de que, se o objeto não estiver definido em relação a origem, essa operação de multiplicação de suas coordenadas por um matriz também fará com que o objeto translade.

Exercícios

- □ Considere o ponto p1 = (5,7) e o ponto p2 = (9,3).
 - Realize as transformações *escala*(0.5,0.7), rotação(30°) e translação(2,3) no dois pontos
 - Realize as transformações $rotação(30^\circ)$, translação(2,3) e escala(0.5,0.7) no dois pontos
- Considere um objeto que sofre suas transformações (uma rotação e uma escala, por exemplo). A ordem das transformações é importante ? Por que ?

Exercícios

 Implemente em uma linguagem de programação a multiplicação de matrizes