All Pairs Shortest Path

Floyd-Warshall Algorithm

Shortest Path Problems

- What is shortest path?
 - shortest length between two vertices for an unweighted graph:
 - smallest cost between two vertices for a weighted graph:

Shortest Path Problems

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

Shortest Path Problems

• Input:

- Directed graph G = (V, E)
- Weight function w : E → R
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Shortest-path weight from u to v:

$$\delta(\mathbf{u}, \mathbf{v}) = \min$$
 $\begin{cases} w(p) : \mathbf{u} & \stackrel{p}{\sim} \mathbf{v} \text{ if there exists a path from } \mathbf{u} \text{ to } \mathbf{v} \end{cases}$ otherwise

• Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

• G = (V, E) \Rightarrow find a shortest path from a given source vertex s to each vertex $v \in V$

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Optimal Substructure of Shortest Paths

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbb{R}$,

• A subpath of p:
$$p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$$
, with $1 \le i \le j \le k$

Then: \mathbf{p}_{ij} is a shortest path from \mathbf{v}_i to \mathbf{v}_j

Proof:
$$p = v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{ik}) < w(p) contradiction!

What can we use?

Use Dijkstra's |V| times!!!

- If all the weights are non-negative.
- Dijkstra has $O(E \log V)$ complexity. For all pairs, it becomes $O(VE \log V)$
- Which is equal $O(V^3 \log V)$ in the case of $E = O(V^2)$.

Use Bellman-Ford |V | times!!!

- If negative weights are allowed.
- Then, we have $O(V^2E)$.
- Which is equal $O(V^4)$ in the case of $E = O(V^2)$.

All Pairs Shortest Path

- The problem: find the shortest path between every pair of vertices of a graph
 - Expensive using a brute-force approach
- The graph may contain negative edges but no negative cycles
- Representation: a weight matrix where
 W(i,j)=0 if i=j.
 W(i,j)=∞ if there is no edge between i and j.
 W(i,j)="weight of edge"
- Note: we have shown principle of optimality applies to shortest path problems

Weight Matrix

The Shortest Path Structure

Intermediate Vertex

For a path $p = (v_1, v_2, ..., v_l)$, an **intermediate vertex** is any vertex of p other than v_1 or v_l .

Define

 $d_{ij}^{(k)}$ =weight of a shortest path between i and j with all intermediate vertices are in the set $\{1, 2, ..., k\}$.

The Sub-problems

- How can we define the shortest distance $d_{i,j}$ in terms of "smaller" problems?
- One way is to restrict the paths to only include vertices from a restricted subset.
- Initially, the subset is empty.
- Then, it is incrementally increased until it includes all the vertices.

The Sub-problems

• Let $D^{(k)}[i,j]$ =weight of a shortest path from v_i to v_j using only vertices from $\{v_1,v_2,\ldots,v_k\}$ as intermediate vertices in the path

- D(0)=W
- $D^{(n)}=D$ which is the goal matrix
- How do we compute $D^{(k)}$ from $D^{(k-1)}$?

The Sub-problems

- d_{ij}^(k) is the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in the set {1, 2, ..., k}.
- Let $D^{(k)}$ be the $n \times n$ matrix $[d_{ij}^{(k)}]$.
- Subproblems: compute $D^{(k)}$ for $k = 0, 1, \dots, n$.
- Original Problem: $D = D^{(n)}$, i.e. $d_{ij}^{(n)}$ is the shortest distance from i to j

The Recursive Idea

Simply look at the following cases cases

Case I k is not an intermediate vertex, then a shortest path from i to j with all intermediate vertices $\{1, ..., k-1\}$ is a shortest path from i to j with intermediate vertices $\{1, ..., k\}$.

$$\Rightarrow d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

- **Case II** if k is an intermediate vertice. Then, $i \stackrel{p_1}{\sim} k \stackrel{p_2}{\sim} j$ and we can make the following statements:
 - p_1 is a shortest path from i to k with all intermediate vertices in the set $\{1, ..., k-1\}$.
 - p_2 is a shortest path from k to j with all intermediate vertices in the set $\{1, ..., k-1\}$.

$$\Rightarrow d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

The Graphical Idea

Consider All possible intermediate vertices in $\{1, 2, ..., k\}$ p: All intermediate vertices in $\{1, 2, ..., k\}$ Figure: The Recursive Idea

The Recursive Solution

The Recursion

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

Final answer when k = n

We recursively calculate $D^{(n)}=\left(d_{ij}^{(n)}\right)$ or $d_{ij}^{(n)}=\delta\left(i,j\right)$ for all $i,j\in V$.

Floyd-Warshall Algorithm

```
Floyd//Computes shortest distance between all pairs of
  //nodes, and saves P to enable finding shortest paths
   1. D^0 \leftarrow W // initialize D array to W[]
  2. P \leftarrow 0 // initialize P array to [0]
  3. for \underline{k} \leftarrow 1 to n
                                                                                  O(V^3)
        for i \leftarrow 1 to n
  5.
                for j \leftarrow 1 to n
                    if (D^{k-1}[i,j] > D^{k-1}[i,k] + D^{k-1}[k,j])
  6.
   7.
                       then D^{k}[i,j] \leftarrow D^{k-1}[i,k] + D^{k-1}[k,j]
  8.
                             P[i,j] \leftarrow k;
                    else D^{k}[i,j] \leftarrow D^{k-1}[i,j]
  9.
```


$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$d^{(1)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & \infty & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$d^{(1)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & \infty & 0 \end{pmatrix}, \quad d^{(2)} = \begin{pmatrix} 0 & 1 & 2 & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

$$d^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$d^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}, \quad d^{(4)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}.$$

		_1		- 3
$W = D^0 =$	1	0	4	5
W = D°=	2	2	0	oo.
	3	00	-3	0

$$P = \begin{array}{c|ccccc}
 & 1 & 2 & 3 \\
 & 0 & 0 & 0 \\
 & 2 & 0 & 0 & 0 \\
 & 3 & 0 & 0 & 0 & 0
\end{array}$$

k = 1

Vertex 1 can be intermediate node

 $D^1 =$

00

0

-3

3

00

-	1	2	3
1	0	4	5
2	2	0	7
3	∞	-3	0

$$D^{1}[2,3] = min(D^{0}[2,3], D^{0}[2,1]+D^{0}[1,3])$$

= min (\infty, 7)
= 7

$$D^{1}[3,2] = min(D^{0}[3,2], D^{0}[3,1]+D^{0}[1,2])$$

= min (-3,\infty) = -3

$$P = \begin{array}{c|cccc} & 1 & 2 & 3 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{array}$$

k = 2: Vertices 1, 2 can be intermediate

,	1	_ 2	3
$D^1 = 1$	0	4	5
2	2	0	7
3	œ	-3	0

$$D^{2} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
\hline
 & 0 & 4 & 5 \\
\hline
 & 2 & 0 & 7 \\
\hline
 & 3 & -1 & -3 & 0
\end{array}$$

$$D^{2}[1,3] = min(D^{1}[1,3],$$

 $D^{1}[1,2]+D^{1}[2,3])$
 $= min(5,4+7)$
 $= 5$

$$P = \begin{array}{c|cccc} & 1 & 2 & 3 \\ \hline 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ \hline 3 & 2 & 0 & 0 \end{array}$$

$$D^{2}[3,1] = min(D^{1}[3,1],$$

 $D^{1}[3,2]+D^{1}[2,1])$
 $= min(\infty, -3+2)$
 $= -1$

k = 3: Vertices 1, 2, 3 can be intermediate

D2	_1	2	3
1	0	4	5
2	2	0	7
3	-1	-3	0

$$D^{3} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
\hline
 & 0 & 2 & 5 \\
\hline
 & 2 & 0 & 7 \\
\hline
 & 3 & -1 & -3 & 0
\end{array}$$

$$D^{3}[1,2] = min(D^{2}[1,2], D^{2}[1,3]+D^{2}[3,2])$$

= min (4, 5+(-3))
= 2

$$P = \begin{array}{c|cccc} & 1 & 2 & 3 \\ 1 & 0 & 3 & 0 \\ 2 & 0 & 0 & 1 \\ 3 & 2 & 0 & 0 \end{array}$$

$$D^{3}[2,1] = min(D^{2}[2,1], D^{2}[2,3]+D^{2}[3,1])$$

= min (2, 7+ (-1))
= 2