Patterns and Correlates of Substance Abuse and Socio-Health Demographic Factors

Kun Woo Cho¹, Tyler Park¹, Minsung Kim¹, Sai Srikar Kasi¹

INTRODUCTION

- Substance abuse and mental health issues affect a large proportion of adolescents and adults in the United States every year and contributes heavily to the burden of disease.
- The National Survey on Drug Use and Health (NSDUH¹) provides information on illicit drug use, and mental health issues for the civilian and non-institutionalized American population.
- The dataset consists of ~60k users with ~3k features each.

PROJECT GOALS

- Predicting the cause: the substance usage patterns based on the
- Predicting the effect: the mental health disorder patterns of
- Investigating the relation: between the predictions made and the patterns observed in the original dataset by feature comparison.

DATA PREPROCESSING

- Dataset are partitioned into health,
- ratio of 4:1
- Since most of missing data are NMAR, we use one-hot encoding rather than imputation.
- removed.

 Our project attempts to explore the underlying causes of substance abuse and its effect on mental health by finding correlations and patterns in the NSDUH dataset to help reduce medical disorders.

- Finding and Analyzing: hidden patterns in the NSDUH dataset via several Unsupervised Machine Learning techniques, and interpreting a relatively better model observed among them.
- individuals' demographics.
- individuals', raised due to such substance abuse.
- substance, demography.
- Each subset is spitted into train/test
- Features with over 80% of NaN are

Before After

Health Demo.

Drug

ABBREVATIONS

- Mean Squared Error
- MAE Mean Absolute Error
- Coefficient of determination
- RE Reconstruction Error ALL – Average Log-Likelihood]
- SIL Silhouette
- SCORE the opposite of the value on the K-means objective.
- · CIG cigarette
- CRK crack
- MJ marijuana
- STIM stimulant
- PNR pain reliever.
- ALC alcohol

TOB – tobacco

- DRG drug
 - HALLUC hallucination
- INHAL inhalant

OXC - oxycontin

SUPERVISED LEARNING

Question 1: Which features can predict use of severe, rare substances? Hypothesis A: Use of gateway substances. Hypothesis B: Socio-economic status.

Regressor	Нуро	thesis A	Hypothesis B			
	MSE	R ²	MSE	R ²		
LASSO	0.030	0.056	0.029	0.056		
RIDGE	0.023	0.149	0.028	0.073		
ELAS_NET	0.029	0.056	0.029	0.056		
PLS	0.025	0.112	0.028	0.066		
RND_FRST	0.024	0.118	0.029	0.063		

Question 2: Given an individual's substance usage data, how well can we predict the future potential mental disorders?

☐ Models below are evaluated at their best hyperparameters which were exhaustively tuned through GridSearchCV.

	Regressor	Train_Test_Split		5-FOLD CV		10-FOLD CV			
		MAE	R ²	MAE	R ²	MAE	R ²		
	RIDGE	0.614	0.158	0.626	0.156	0.628	0.156		
	LINEAR	0.615	0.147	0.622	0.137	0.613	0.146		
	ELAS_NET	0.873	0.134	0.879	0.067	0.877	0.066		
	LASSO	1.015	0.004	1.018	0.0019	1.023	0.0037		
	A ETED BOOTSTD ADDING								

	AFTER BOOTSTRAPPING				
	R² (mean)	R ² (std)			
RIDGE	0.0141	0.2635			
LINEAR	Poor	Poor			
ELAS_NET	0.0665	0.001360			
LASSO	0.0388	0.000290			

UNSUPERVISED LEARNING

Model performance comparison

- ☐ Some models are unable to generate RE and/or ALL, and thus written as NA.
- ☐ Overall, PCA has the smallest train time, RE and the second largest ALL value for train data.

Model		Train Data	Test Data		
	Time	RE	ALL	RE	ALL
PCA	4.36s	0.0323	0.0136	0.0323	0.0546
LDA	510.2s	NA	-2246	NA	-2253
FA	52.62s	NA	0.0076	NA	-12071
GMM	2297s	NA	0.2157	NA	-0.3176
NMF	66.80s	0.0346	NA	0.0346	NA

Hyperparameter optimization for PCA and K-means

- ☐ The number of components for PCA is set to 8 based on the cumulative explained variance ratio, ALL, and RE.
- ☐ The number of clusters for K-means is set to 10 according to the sum of squared distance, SIL, and SCORE.

Pattern analysis using PCA components

- ☐ We extract top 5 features with the highest pseudocount for each component and list the commonalities among 5 features
- ☐ For health and demo., the first half row shows its own top features while the second half row is the top features of drug.

Data\Comp #	0	1	2	3	4	5	6	7
Drug	Use CIG/MJ	Not use CG	N/A	N/A	Sometimes use STIM	Sometimes use PNR/ALC	Sometimes use TRQ, Not use PNR	Use PNR, Not use CIG
Health (Health & drug)	No youth mental service utilization	Has mental illness	No physical illness	No nervousness	Feel nervous	Has mental health treatment	No difficulty in daily routine	No difficulty in daily routine
	Use PNR	Not use INHAL	Use CIG	Not use ALC/TOB/DRG	Use ALC/TOB/DRG	Not use CIG	Not inhale marker	Sometimes inhale lighter gases
	Refuse to answer METHA question						Sometimes inhale lighter gases	
Demo (Demo & drug)	Less than \$10k income	26+ age	No health insurance	No health insurance	45+ pregnancy age	Female, white	Male, white	Female
			Part time job		No test for ALC/DRG			No children
	N/A	N/A	Not use CRK	Not use CRK	Not use MJ	N/A	N/A	N/A
ALL	12-17 age	Use MJ/HALLUC	18-25 age	Unemployed	Has mental illness	Not use CIG	Not use ETHER	Use MJ/ALC/DRG
		Not use PEYOTE					Use INHAL	Unemployed

Pattern analysis using K-means clusters

- ☐ Pattern in each data for cluster # 0 to 9 (red-male, blue-female)
- ☐ Clusters with drug data tend to be more separated because the data is largely divided into those who answered and those refused to answer the questions.

T-SNE analysis

- ☐ T-SNE (component 2) scatter as visualization of dataset: 5 separate clusters and centroids for dataset and more clusters for subset
- ☐ Most important features of each centroid among 50 nearest neighbors are : Experience of Heroin, sexual disease, pipe tobacco, difficulty of hearing, and difficulty of seeing.

CONCLUSION

- We identified latent structure and correlation in the dataset using supervised and unsupervised learning.
- Supervised: low predictive power of the supervised learning
- Unsupervised: correlation of the substance use is greater towards health relative to demographic factors.

BIBLIOGRAPHY

- [1] NSDUH. Website. https://nsduhweb.rti.org/respweb/homepage.cfm.
- [2] Ryan, Heather, Angela Trosclair, and Joe Gfroerer. "Adult current smoking: differences in definitions and prevalence estimates—NHIS and NSDUH, 2008." Journal of environmental and public health 2012 (2012).
- [3] Fix, Brian V., et al. "Patterns and correlates of polytobacco use in the United States over a decade: NSDUH 2002-2011." Addictive behaviors 39.4 (2014): 768-781.

