Corrigé 1

Exercice 1. Soit $D \subset \mathbb{R}^n$ un domaine et $f: D \to \mathbb{R}^m$ de classe \mathcal{C}^1 sur D. Que veut dire $x \mapsto Df|_x$ est continue (en termes de ϵ, δ)?

 $D\acute{e}monstration$. On utilise la définition de la continuité de la différentielle Df en $x: \forall \epsilon > 0, \exists \delta > 0$ tel que $\forall y \in D, \|y - x\| < \delta \Rightarrow \|Df(y) - Df(x)\| < \epsilon$.

Exercice 2. On a vu que si une fonction $f:D\to\mathbb{R}$ est \mathcal{C}^2 , pour tout $x\in D$ on a que

$$f(x+h) = f(x) + (\nabla f(x))^{T} h + \frac{1}{2} h^{T} H f|_{x} h + o(h^{2}),$$

où Hf dénote la Hessienne de f et $|o(h^2)|/||h||_{\mathbb{R}^n}^2 \underset{h \to 0}{\longrightarrow} 0$. Que peut-on dire pour une fonction \mathcal{C}^3 et pour des fonctions à valeurs dans \mathbb{R}^m ?

Démonstration. Pour une fonction $f: D \to \mathbb{R}^m$ de classe \mathcal{C}^3 , pour tout $x \in D$ on a que, pour tout $p = 1, \ldots, m$,

$$f_p(x+h) = f_p(x) + (\nabla f_p(x))^T h + \frac{1}{2} \sum_{i,j=1}^n h_i h_j \partial_{x_i x_j}^2 f_p \big|_x + \frac{1}{6} \sum_{i,j,k=1}^n h_i h_j h_k \partial_{x_i x_j x_k}^3 f_p \big|_x + o(h^3)$$

où
$$|o(h^3)|/\|h\|_{\mathbb{R}^n}^3 \xrightarrow[h \to 0]{} 0.$$

Exercice 3. (Fonctions inverses)

On rappelle le Théorème de la fonction inverse :

Si $f: D \to \mathbb{R}^n$ est une fonction C^1 sur un domaine $D \subset \mathbb{R}^n$ et si $Df\big|_x \in \mathcal{M}_n(\mathbb{R}) := \mathcal{M}_{n,n}(\mathbb{R})$ est inversible on a qu'il existe un voisinage ouvert U de x dans D et un voisinage ouvert V de y := f(x) tel que la restriction $f\big|_U : U \to V$ soit une bijection avec inverse $f^{-1}: V \to U$ de classe C^1 , de dérivée $D(f^{-1})\big|_y = (Df\big|_x)^{-1}$.

- (1) Donner une bijection différentiable dont l'inverse n'est pas différentiable.
- (2) Montrer qu'il existe un voisinage ouvert U' de x où $Df|_{x'}$ est inversible pour tout $x' \in U'$.
- (3) Montrer qu'avec un changement de variable affine, on peut supposer que x=0 et que $Df|_x=\mathrm{Id}$.
- (4) Montrer que l'existence de l'inverse $f^{-1}: V \to U$ est équivalente à l'existence d'un point fixe de $x \mapsto x + y f(x) = x$ sur U pour tout $y \in V$.
- (5) Montrer que cette application est une contraction si U est suffisamment petit.
- (6) Montrer que cette existence suit du théorème du point fixe de Banach.

$D\'{e}monstration.$

- (1) On considère $f:(-1;1)\to\mathbb{R}$, $f:x\mapsto x^3$ qui est \mathcal{C}^1 et bijective sur cet intervalle. Son inverse est $g:x\mapsto\sqrt[3]{x}$ qui n'est pas dérivable en 0.
- (2) Comme f est \mathcal{C}^1 , les composantes de $Df|_x$ sont également continues. Donc $\det(Df|_x)$ est une fonction continue de x (det A est un polynôme des composantes a_{ij} de A) et on peut donc trouver un voisinage U' de x dans lequel $\det(Df|_{x'}) \neq 0$ pour tout $x' \in U'$ (et donc dans lequel $Df|_{x'}$ est inversible).
- (3) Soit $x_0 \in D$ tel que $Df|_{x_0}$ est inversible. On considère g(x) = f(h(x)), où $h : \mathbb{R}^n \to \mathbb{R}^n$ est un changement de variable affine, c'est-à-dire qu'il est de la forme

$$h(r) = Ar + b$$

où A est une matrice réelle inversible et $b \in \mathbb{R}^n$.

Pour la différentielle de g, on a que $Dg|_x = Df|_{h(x)}D|h_x$. On pose alors $b = x_0$ et on a $g(0) = f(x_0)$. Il nous reste à choisir A pour que $\mathrm{Id} = Dg|_0$. On écrit

$$Id = Dg|_{0} = Df|_{h(0)}Dh|_{0} = Df|_{x_{0}}A.$$

On peut alors choisir $A = \left(Df\big|_{x_0}\right)^{-1}$ (pour quoi $Df\big|_{x_0}$ est inversible?) et obtient $h(x) = \left(Df\big|_{x_0}\right)^{-1}x + x_0$.

(4) \Rightarrow On suppose qu'il existe $f^{-1}: V \to U$, i.e. pour tout $y \in V$, il existe $x \in U$ t.q. y = f(x). Pour tout $y \in V$, la fonction

$$g_y: U \to \mathbb{R}^n$$

 $x \mapsto x + y - f(x)$

a toujours un point fixe. En effet, pour tout $y \in V$, on peut choisir $x = f^{-1}(y)$ et on a $g(x) = x + y - f(f^{-1}(x)) = x + y - y = x$, c'est-à-dire $x = f^{-1}(y)$ est un point fixe de g_y .

 \Leftarrow Maintenant si pour tout $y \in V$, il existe $x \in U$ point fixe de $g_y(x) = x + y - f(x)$, alors y = f(x) et nous avons donc une application telle que pour chaque $y \in V$, elle donne un $x \in U$ t.q. y = f(x): c'est la fonction inverse de f.

- (5) Nous avons vu dans (3) que l'on peut prendre $Df|_{x_0} = \operatorname{Id}$; puisque Df est \mathcal{C}^0 , on peut prendre un voisinage U suffisamment petit de x_0 t.q. $||Dg|_x|| = ||Df|_x \operatorname{Id}|| < 1$ pour tout $x \in U$.
- (6) Take the vicinity of x_0 from point 5. Since g_y is a contraction in this vicinity, it has a fixed point by the Banach fixed-point theorem.

Exercice 4. Soit $z \in \mathbb{C}$ avec $z \neq -1$. Montrer que $\operatorname{Re}\left(\frac{1}{1+z}\right) = \frac{1}{2}$ si et seulement si |z| = 1.

Démonstration. Soit $z = a + bi \in \mathbb{C}$ où $a, b \in \mathbb{R}$, alors

$$\frac{1}{1+a+bi} = \frac{1}{1+a+bi} \frac{1+a-bi}{1+a-bi} = \frac{1+a-bi}{1+a^2+b^2+2a}.$$

La partie réelle est égale à 1/2 signifie que

$$\frac{1+a}{1+a^2+b^2+2a} = \frac{1}{2},$$

ce qui est équivalent à $a^2 + b^2 = 1$.

Exercice 5. Démontrer le théorème fondamental de l'algèbre :

Tout polynôme non constant $P(z) = \sum_{k=0}^{n} a_k z^k$ a au moins une racine, c'est-à-dire qu'il existe $z_0 \in \mathbb{C}$ tel que $P(z_0) = 0$.

- (1) Montrer que $|P(z)| \to \infty$ quand $|z| \to \infty$, c'est-à-dire que pour tout $M \ge 0$ il existe $R \ge 0$ tel que pour tout $z \in \mathbb{C} \setminus D(0,R)$ on a $|P(z)| \ge M$.
- (2) Montrer que |P(z)| a un minimum sur \mathbb{C} .
- (3) Si on suppose par l'absurde que $\min_{z\in\mathbb{C}}|P(z)|=|P(z_0)|>0$ montrer qu'on peut (par changement de variable) supposer que $z_0=0$ et que $P(z_0)=1$ et que donc $P(z)=1+z^kQ(z)$ pour un certain $k\geq 1$ et un polynôme Q avec $Q(0)\neq 0$.
- (4) Montrer qu'il existe alors z' tel que |P(z')| < 1 et en déduire le théorème.
- (5) Montrer (en utilisant la division Euclidenne) que tout polynôme P de degré n peut s'écrire comme $P(z) = \alpha \prod_{k=1}^{n} (z z_k)$ avec $\alpha \in \mathbb{C}$ et où z_1, \ldots, z_n sont les racines de P.

Démonstration.

(1) On pose

$$L(z) = \left| \sum_{k=0}^{n} a_k \frac{1}{z^{n-k}} \right|.$$

On voit que $\lim_{|z|\to\infty} L(z) = |a_n|$, donc il existe R t.q. $L > \frac{|a_n|}{2}$ pour tout |z| > R. En particulier, on a que pour tout |z| > R,

$$|P(z)| = |z|^n \left| \sum_{k=0}^n a_k \frac{1}{z^{n-k}} \right| > R^n \frac{|a_n|}{2}.$$

Pour tout M > 0, on peut choisir R arbitrairement grand tel que le membre de droite soit plus grand que M, ce qui prouve l'énoncé.

- (2) Posons $m = \inf\{|P(z)|, z \in \mathbb{C}\} \ge 0$, on sait qu'il existe un R tel que |P(z)| > m si |z| > R. On a donc que $m = \inf\{|P(z)|, z \in \overline{D}(0,R)\}$. Puisque $\overline{D}(0,R)$ est compact, le minimum est atteint en un point $z_0 \in \overline{D}(0,R)$ (Bolzano-Weierstrass), c'est donc un minimum global.
- (3) Si $|P(z_0)| > 0$ alors on peut étudier le polynôme $\tilde{P}(z) = \frac{P(z+z_0)}{P(z_0)}$ qui a un zero si et seulement si P(z) en a un. De plus le minimum $\min_{z \in \mathbb{C}} |\tilde{P}(z)|$ est atteint en 0 et $\tilde{P}(0) = 1$. On doit donc avoir $\tilde{P}(z) = 1 + b_0 z^k + \dots + b_{n-k} z^n = 1 + z^k Q(z)$ pour un certain $k \geq 1$ et un polynôme Q avec $Q(0) \neq 0$.
- (4) Soit $\varepsilon > 0$ et $z_{\varepsilon} = \varepsilon(-\overline{b}_0)^{\frac{1}{k}}$. On a alors

$$\tilde{P}(z_{\varepsilon}) = 1 - \varepsilon^k |b_0|^2 + o(\varepsilon^k).$$

Il existe donc un ε suffisamment petit tel que $|\tilde{P}(z_{\varepsilon})| < 1$. Par contradiction le minimum m doit être 0 et donc z_0 est un zero de P.

(5) On rappelle que pour deux polynômes A et B avec $\deg(A) > \deg(B)$, il existe un unique couple de polynômes Q, R avec $\deg(B) > \deg(R)$ et $\deg(A) = \deg(Q) + \deg(B)$, tels que A = QB + R.

Procédons par récursion. Un polynôme de degré n=1 avec $P(z_0)=0$ s'écrit $P(z)=\alpha(z-z_1)$ pour un certain α (on applique la formule précédente, R étant un polynôme de degré 0, c'est donc une constante, qui vaut 0 en évaluant P en z_1).

Supposons la propriété vraie au rang n-1. Pour un polynôme de degré n avec $P(z_0)=0$, on a montré qu'il existe une racine z_1 de P, et donc on a $P(z)=Q(z)(z-z_1)$, où R=0. Puisque $\deg(Q)=n-1$, on a $Q(z)=\alpha'\prod_{k=1}^{n-1}(z-w_k)$ où les w_k sont les racines de Q, ce qui conclut la preuve.

Exercice 6. Soit $P(z) = \sum_{k=0}^n a_k z^k \in \mathbb{C}[z]$ un polynôme de degré n avec $a_n = 1$ et avec racines $z_1, \ldots, z_n \in \mathbb{C}$ et soit $Q(z) = \sum_{k=0}^n b_k z^k \in \mathbb{C}[z]$, avec $b_n = 1$, le polynôme avec racines z_1^2, \ldots, z_n^2 . Montrer que si $a_1 + a_3 + a_5 + \ldots$ et $a_0 + a_2 + a_4 + a_6 + \ldots$ sont des nombres réels, alors $b_0 + b_1 + \ldots$ est réel aussi.

Démonstration. On note que

$$P(1) = a_0 + a_1 + a_2 \dots$$

 $P(-1) = a_0 - a_1 + a_2 - \dots$

On a donc $a_0 + a_2 + \cdots = \frac{1}{2}(P(1) + P(-1))$ et $a_1 + a_3 + \cdots = \frac{1}{2}(P(1) - P(-1))$. Ces deux valeurs sont réelles si et seulement si P(1) et P(-1) sont réelles.

Nous voulons prouver que $Q(1) = b_0 + b_1 + \dots$ est réel. Or les contraintes $a_n = 1$ et $b_n = 1$ impliquent que $P(z) = \prod_{k=1}^{n} (z - z_k)$ et que $Q(z) = \prod_{k=1}^{n} (z - z_k^2)$. On a alors

$$P(1)P(-1) = \prod_{k=1}^{n} (1 - z_k) \prod_{k=1}^{n} (-1 - z_k) = \prod_{k=1}^{n} -(1 - z_k^2) = (-1)^n Q(1).$$

Qui est réel si P(1) et P(-1) le sont.