La fonction inverse E03

EXERCICE N°3 (Le corrigé)

par: $f(x) = 0.5x + 2 + \frac{8}{x}$ Soit f la fonction définie sur l'intervalle \mathbb{R}^* Justifier toutes les informations données par le tableau de variation de f ci-dessous.

x	$-\infty$	-4	()		4		+∞
f'(x)	+	0 -	-		_	0	+	
f(x)	1	-2		+∞			1	+∞
	$-\infty$		$-\infty$		*	6		0

Calculons
$$f'(x)$$
 pour $x \in [1;10]$

$$f(x) = 0.5 \times x + 2 + 8 \times \frac{1}{x}$$

$$f(x) = 0.5x + 2 + \frac{8}{x}$$

$$f(x) = 0.5 \times x + 2 + 8 \times \frac{1}{x}$$

$$f'(x) = 0.5 \times 1 + 0 + 8 \times \frac{-1}{x^2}$$

$$f'(x) = 0.5 - \frac{8}{x^2} = \frac{0.5x^2 - 8}{x^2} = \frac{0.5[x^2 + 16]}{x^2} = \frac{0.5(x - 4)(x + 4)}{x^2}$$

On a factorisé la dérivée afin de pouvoir justifier le tableau de signe (qui est basé sur la règle des signes) et bien sûr en déduire le sens de variation de f

- 0,5 est toujours positif; x^2 est positif pour $x \in [1;10]$
- $x-8 > 0 \Leftrightarrow x > 8$ et
- $r+8>0 \Leftrightarrow r>-8$

$x+8>0 \Leftrightarrow x>-8$											
x	$-\infty$	-4	0)	4		$+\infty$				
0,5	+		+	+		+					
x-8	_		-	_	0	+					
x+8	_	0	+	+		+					
x^2	+		+	+		+					
f'(x)	+	0	-	_	0	+					
f(x)	-∞	-2		+∞	6	▼	+∞				
$c(-\alpha)$	2										

f(-8) = -3 et f(8) = 7

Limite en $-\infty$

 $\lim x = -\infty$

d'où

 $\lim_{x \to \infty} 0.5 x = -\infty$

- $\lim 2=2$
- $\lim_{x \to -\infty} \frac{1}{x} = 0$
- d'où $\lim \frac{8}{}=0$

On en déduit que : $\lim_{x \to \infty} f(x) = -\infty$

- Limite en 0⁻
- $\lim x = 0$
- d'où

 $\lim_{x \to 0} 0.5 x = 0$

- $x \rightarrow 0^ \lim 2=2$
- $x \rightarrow 0^ \lim \frac{1}{-} = -\infty$
- $x \rightarrow 0^- X$ d'où lim ⁸= $x \rightarrow 0^- X$

On en déduit que : $\lim_{x \to \infty} f(x) = -\infty$

- Limite en 0⁺
- $\lim x=0$
- d'où

 $\lim_{x \to 0} 0.5 x = 0$

- $x \rightarrow 0^+$ $\lim 2=2$
- $x \rightarrow 0^+$ $\lim \frac{1}{-} = +\infty$ $x \to 0^+ X$

 $d'où \lim_{x\to 0^+} \frac{8}{x} = +\infty$

On en déduit que : $\lim f(x) = +\infty$

- Limite en $+\infty$
- $\lim x = +\infty$
- d'où

 $\lim_{x \to \infty} 0.5 x = +\infty$

- $\lim 2 = 2$ $x \to +\infty$
- $\lim_{x \to +\infty} \frac{1}{x} = 0$

<mark>d'où lim </mark>8

On en déduit que : $\lim_{x \to \infty} f(x) = +\infty$