# Modeling Melodic Dictation

David John Baker 2018-10-23

# Contents

| 1 | Significance of the Study                                                        | 5    |
|---|----------------------------------------------------------------------------------|------|
|   | 1.1 Claims about need to join the worlds of theory and pedagogy                  |      |
| _ | •                                                                                |      |
| 2 | Theoretical Background and Rationale                                             | 9    |
|   | 2.1 What is melodic dictation? and Why?                                          |      |
|   | 2.2 Individual Factors                                                           |      |
|   | 2.3 Musical Parameters                                                           |      |
|   | 2.4 Modeling and Polymorphism of Ability                                         |      |
|   | 2.5 Conclusions                                                                  | . 25 |
| 3 | Individual Differences                                                           | 27   |
|   | 3.1 Introduction                                                                 |      |
|   | 3.2 Overview of Experiment (cross sectional design)                              | . 29 |
| 4 | Computation Chapter                                                              | 35   |
|   | 4.1 Humans like patterns and are very good at picking them up                    | . 36 |
|   | 4.2 Pre-Musical Corpora                                                          |      |
|   | 4.3 Musical Corpora                                                              |      |
|   | 4.4 So What?                                                                     | . 37 |
| 5 | Hello, Corpus                                                                    | 39   |
|   | 5.1 Brief review of Chapter 4 on corpus (Language to reflect journal submission) |      |
|   | 5.2 Note problem with using corpus is making corpus                              |      |
|   | 5.3 Solem duty to encode and report on corpus                                    |      |
|   | 5.4 The Corpus                                                                   |      |
|   | 5.5 Descriptive Stats of Corpus                                                  |      |
| 6 | Experiments                                                                      | 41   |
| Ū | 6.1 Rationale                                                                    |      |
|   | 6.2 Experiments                                                                  |      |
| 7 | Commutational Madal                                                              | 43   |
| 1 | Computational Model 7.1 Levels of Abstraction                                    |      |
|   |                                                                                  |      |
|   | 7.2 Model Overview                                                               |      |
|   |                                                                                  |      |
|   | 7.4 Formal Model                                                                 |      |
|   | 1.9 Conclusions                                                                  | . 32 |
| 8 | Reference Log                                                                    | 53   |
|   | 8.1 To Incorporate                                                               |      |
|   | 8.2 Chapter 3                                                                    | . 54 |

4 CONTENTS

# Chapter 1

# Significance of the Study

All students pursing a Bachelor's degree in Music from universities accredited by the National Association of Schools of Music must learn to take melodic dictation (Nat, 2018, Section VIII.6.B.2.A). Melodic dictation is a cognitively demanding process that requires students to listen to a melody, retain it in memory, and then use their knowledge of Western musical notation in order to recreate the mental image of the melody on paper in a limited time frame. As of 2018 there are 647 Schools of Music belonging to National Association of Schools of Music (NASM) CITE WEBSITE, meaning that hundereds of students every year will be expected to learn this challenging task as part of their Aural Skills education. The logic being that as one improves in their ability to take melodic dictation, this practice of critical and active listening develops as a means to improve one's ability to "think in music" and thus become a more compotent musician. While learning Aural Skills has been a hallmark of being educated within the Western conservatory tradition, the rationale behind both the how and why of aural skills is often thought of as being esoteric. Throughout the past century, people have disagreed on exactly how one does go about learning a melody with different areas of research each attacking the problem from a different angle.

Despite its ubiqiquity in curricula within School of Music settings, research on topics pertain to how aural skills are acquired is limited at best. [Citations here about the cosntant calls butler, klondoski, pembrook] The fields of music theory and cognitive psychology are best positioned to make progress on this question, but often the skills required to be well versed ein ither of these subjects are disparate, published in other journals, and the research with overlap is scarce. This problem is not new and there have been repeated attempts to bridge the gap between practioners of aural skills and people in cognitive psychology CITES. Literature from music theory has established conceptual frameworks regarding aural skills Karpinski (2000) and the relavint cognitive psychology literature has explored factors that might contribute to melodic perception (SCHMUKLER SYNERR 2016 2016), and there exists applied literature from the world of music education (CITES).

However, despite these siloed areas of research, we as music researchers do not have an a concrete understanding of exactly what contributes to HOW individuals learn melodies (HALPERNBARLETT2010). This is peculiar since "how does one learn a melody" seems to be one of the fundamental questions to the fields of music theory, music psychology, as well as music education. Given this lack of understanding, it becomes even more peculiar that this lack of convergence of evidence is then unable to provide a solid baseline as to what student in their aural skills classrooms can be expected to do. (Also something about we should really know this if we are going to grade people on this ability). While no single dissertation can solve any problem completely, this dissertation aims to fill the gap in the literature between aural skills practitioners (theorists and educators) and music psychologists in order to reach conclusion that can be applied systematically in pedagogical contexts. In order to do this I draw both literatures (music and science) in order to demonstrate how tools from both cognitive psychology as well as computational musicology can help move both fields forward. Some line here about if we really want to understand what is happening we need to know about causal factors going on here and have experimental manipulation and things like making models of the whole thing or talk about what Judea Pearl thinks about the ability to do some sort of causal modeling

with diagrams. Great to rely on some sort of anecdoatal evidence, but if we are going to put things on the line with our education then we need to be able to make some sort of falsifiable claims about what we are doing. Can only do that through the lens of science.

# 1.1 Claims about need to join the worlds of theory and pedagogy

- (Butler, 1997)
- (Klonoski, 2000) perceptual hierarchy, not enough info from aural skills training
- (Karpinski, 2000) "There is indeed a gap between the disciples of music cognition and aural skills training", GK says that one of his goals is to bridge that gap, and he does.

# 1.2 Chapter Overview

In this first chapter, I introduce the process of melodic dictation and discuss factors that would presumably could play a role in taking melodic dictation. The chapter introduces both a theoretical backgorund and rationale for using method form both computational musicology and congitive psychology in order ot answr quesitona bout how individuals learn melodies. I argue that tools for understanding this best because as we currently understand it, I see us operating in a Kuhnian normal science where much can be learned by just using the tools in front of us. This chapter will clearly outline the factors hypothesized to contribute to an individual's abilit to learn melodies, incorporating both individual and musical parameters. The chapter ends with a discussion some of the philosophical/theoretical problems with attempting to measure thigns like this (is it just a party trick?) and establishes that I will be taking a more polymorphic view of musicianship in order to answer this question.

The second chapter of my dissertation focuses on the history and current state of aural skills pedagogy.

Tracing back its origins to the practical need to teach musical skills back with Guido d'Arezzo, I compare and contrast the different methodological approaches that have been used, along with their goals.

The third chapter discusses previous work that examines individual factors thought to contribute to one's ability to perform an aural skills task, and it will discuss results from an experiment contributing to a discussion of how individual differences could contribute to how a person learns melodies.

Turning away from individual differences and focusing on musical features, in the fourth chapter I plan to discuss how music researchers can use tools from computational musicology as predictive features of melodies. Inspired by work from computational linguistics and information theory, recent work in computational musicology has developed software capable of abstracting features thought to be important to learning melodies, such as note density and 'tonalness' (Müllensiefen, 2009). Talk a bit about how this has been also looked at before in the music education community.

While these features have been used in large scale, exploratory studies, work in this chapter will discuss how these features could be used in controlled, experimental studies as a stand-in for the intuition many music pedagogues have when determining difficulty of a melody in a classroom setting.

In my fifth chapter, I introduce a novel corpus of over 600 digitized melodies encoded in a queryable format. This dataset will also serve as a valuable resource for future researchers in music, psychology, and the digital humanities. This chapter begins with a discussion of the history of corpus studies, noting their origin outside of music, their current state in music, and their limitations. This chapter, encapsulating the encoding process, the sampling criteria, and the situation of corpus methodologies within the broader research area, will go over summary data and also talk about how it could be used to generate hypotheses for future experiemnts (n-gram stuff based on patterns).

Lastly, in the final chapter, I will synthesize the previous research in a series of melodic dictation experiments. Stimuli for the experiments are selected based on the abstracted features of the melodies and are manipulated

as independent variables based on the previous theoretical literature. I then model responses from the experiments using both individual factors and musical features in order to predict how well an individual performs in behavioral tasks similar to some of my previously published research (Baker & Müllensiefen, 2017). Here I also note important caveats in scoring melodic dictation, referencing some other of my own work on using metrics, such as edit distance (Baker & Shanahan, 2018), to discuss similarities between the correct answer and an individual's attempts at dictation. Results from the final chapter will be discussed with reference to how findings are applicable to pedagoges in aural skills settings. Recommendations will be made building on current conceptual frameworks (Karpinski, 2000).

# Chapter 2

# Theoretical Background and Rationale

# 2.1 What is melodic dictation? and Why?

Melodic dictation is the process in which an individual hears a melody, retains it in memory, and then uses their knowledge of Western musical notation to recreate the mental image of the melody on paper in a limited time frame. For many, becoming proficient at this task is at the core of developing one's aural skills (Karpinski, 1990). For over a century, music pedagogues have valued melodic dictation<sup>1</sup> which is evident from the fact that most aural skills texts with content devoted to honing one's listening skills have sections on melodic dictation (Karpinski, 2000). Additionally, any school accredited by the National Association of Schools of Music in North America requires students to learn this skill (Nat, 2018, §VIII.6.B.2.A).

Yet despite this tradition and ubiquity, the rationales as to why it is important for students to learn this ability often comes from some sort of appeal to tradition or underwhelming anecdotal evidence. The argument tends to go that time spent learning to take melodic dictation results in increases in near transfer abilities after an individual acquires a certain degree of proficiency learning to take melodic dictation. Rationales given for why students should learn melodic dictation has even been described by Gary Karpinski as being based on "comparatively vague aphorisms about mental relationships and intelligent listening" (Karpinski, 1990, p.192), thus leaving the evidence for the argument for learning to take melodic dictation not being well supported.

Some researchers have taken a more skeptical stance and asserted that the rationale for why we teach melodic dictation deserves more critique. For example, Klonoski in writing about aural skills education aptly questions "What specific deficiency is revealed with an incorrect response in melodic dictation settings?" (Klonoski, 2006). Earlier researchers like Potter, in their own publications, have noted how they have been baffled that many musicians do not actually keep up with their melodic dictation abilities after the class ends (Potter, 1990), but presumably go on to have successful and fulfilling musical lives. Additionally, suggesting that people who can hear music and then are unable to write it down, thus are unable to think *in* music (Karpinski, 2000), seems somewhat exclusionary to musical cultures that do not depend on any sort of written notation.

Though despite this skepticism towards the topic, melodic dictation remains at the forefront of many aural skills classrooms. The act of becoming better at this skill may or may not lead to large in increases in

<sup>&</sup>lt;sup>1</sup>In his highly influential book Aural Skills Acquisition: The Development of Listening, Reading, and Performing Skills in College-Level Musicians, Karpinski (2000) documents this sentiment in music pedagogy circles by highlighting poetic adages from Romantic composer Robert Schumann in the mid 19th century through 21st century music educator Charles Elliott in the opening of his book, thus providing concrete examples of the belief that improving one's aural skills, or ear, is a highly sought after advanced skill.

far transfer of ability, but used as a pedagogical tool, teaching students to take melodic dictation brings with it concepts that have been deemed relevant to the core of undergraduate music training. While there has not been extensive research on melodic dictation research in recent years—in fact Paney (2016) notes that since 2000, only four studies were published that directly examined melodic dictation—this skill set sits on the border between literature on learning, melodic perception, memory, and music theory pedagogy. Understanding and modeling exactly how melodic dictation works remains as a untapped watershed of knowledge for the field of music theory, music education, and music perception and is deserving of much more attention.

In this chapter I examine literature both directly and indirectly related to melodic dictation by first reviewing the prominent four step model put forth by Karpinski in order to establish and describe what melodic dictation is. After describing his model, I then critique what this model lacks and clarify what is missing by providing a taxonomy of parameters that presumably would contribute to an individual's ability to take melodic dictation. Using this taxonomy, I then review relevant literature and assert that the next steps forward in understanding how melodic dictation works come from examing the process both experimentally and computationally. It has been nearly two decades since *Aural Skills Acquistion* was first published as the first major step to finally build a bridge between the field of music cognition and music theory pedagogy (Butler, 1997; Karpinski, 2000; Klonoski, 2000) and as with all public works, they need to be maintained?<sup>2</sup>

# 2.1.1 Describing Melodic Dictation

Much of the foundational theoretical work on the topic of melodic dictation comes from Gary Karpinski. Summarized most recently in his *Aural Skills Acquisition* (Karpinski, 2000)– though first presented in an earlier article (Karpinski, 1990)– Karpinski proposes a four-step model of melodic dictation.<sup>3</sup>

The four steps of Karpinski's model include

- 1. Hearing
- 2. Short Term Melodic Memory
- 3. Musical Understanding
- 4. Notation

and occur as a looping process depicted in Figure 1. The model is discussed extensively in both this original article (Karpinski, 1990) and throughout the third chapter in his book (Karpinski, 2000).

[FULL SCAN HERE EVENTUALLY OF FIGURE 1]

#### 2.1.1.0.1 FIGURE 1 STAND IN

- 1. Hear (along with Portion B)
- 2. Remember (Portion A only)
- 3. Understand
- Temporal
  - Pulse
  - Meter
  - Rhythmic proportions
- Pitch
  - Tonic
  - Scale degree of starting pitch
  - Scale degree of subsequent pitches
    - \* Stepwise Groups
    - \* Each skip treated as new starting pitch

<sup>&</sup>lt;sup>2</sup>Yes I know this is an awful metaphor and I will change it eventually

<sup>&</sup>lt;sup>3</sup>This four stage process sythesizes earlier research where in Karpinski 1990 he notes two other models of melodic dictation, one from Rogers where he says there are 2 processes, another from Thomas who says there are 15

- 4. Notate
- What has been heard, remembered, understood

Karpinski's **hearing** stage involves the initial perceptions of the sound at the psychoacoustical level and the listener's *attention* to the incoming musical information. If the listener is not actively engaging in the task because of factors such as "boredom, lack of discipline, test anxiety, attention deficit disorder, or any number of other causes" then any further processes later down the model will be detrimentally effected. Karpinski notes that these types of interferences are normally "beyond the traditional jurisdiction of aural skills instruction", but I will later argue that the concept of willful attention, when re-conceptualized as working memory, may actually play a larger role in the melodic dictation process than is claimed here.

The **short-term melodic memory** stage in his process is where musical material is held in active memory. From Figure 1 it appears that the stage is not conceptualized as an active process where something like active rehearsal would occur, but rather just consists soley of passive mental representation. Though Karpinski does not posit any sort of active process in the short term melodic memory stage, he does suggest there are two separate memory encoding mechanisms, one for contour, and one for pitch. He arrives at these two mechanisms by using both empirical qualitative interview evidece as well as noting literature from music perception that supports this claim for contour (Dowling, 1978; Dewitt and Crowder, 1986) and literature suggesting that memory for melodic material is dependant on enculturation (Oura and Hatano, 1988; Handel, 1989; Dowling, 1990). Since its publication in 2000, this area of research has expanded with other reearchers also demonstrating the effects of musical acculturation via exposure (Eerola et al., 2009; Stevens, 2012; Pearce and Wiggins, 2012a).

In describing the short term melodic memory stage, Karpinksi also details two processes that he believes to be nesscary for this part of melodic dictation: extractive listening and chunking. Noting that there is probably some sort of capacity limit to the perception of musical material, citing Miller (1956), Karpinski explains how each strategy might be used. Extractive listening is the process in which someone dictating the melody will selectivly remember only a small part of the melody in order to lessen the load on memory. Chunking is the process in which smaller musical elements can be fused together in order to expand how much information can be actively held in memory and manipulated. The concept of chunking is very helpful as a pedagogical tool, but as detailed below, is a complicated concept to pin down how it works.

After some musical material is extracted, then represented in memory, the next step in the process is **musical understanding**. At this point in the dictation the dictator needs to take the extracted musical material that is represented in memory and the use their music theoretic knowledge in order to comprehend any sort of hierarchical relationships between notes, common rhythmic groupings, or any sorts of tonal functions. This is the point in the process where solimization of either or both pitch and rhythm, and musical material might be understood in terms of relative pitch. In the model solimization takes place later, but it is worth questioning if it is possible to dissacociate relative pitch relations from the qualia of the tones themselves (Arthur, 2018). For Karpinski, the more quickly what is represented in musical memory can be understood, the more quickly it can then be translated at the final step of notation.

Notation, the final step of the dictation loop, requires that the individual taking the notation have sufficient knowledge of Western musical notation so that they are able to translate their musical understanding into written notation. This last step is ripe for errors and has proved problematic for researchers attempting to study dictation (Taylor and Pembrook, 1983; Klonoski, 2006). It is also worth highlighting is that it is difficult to notate musical material if the individual who is dictating does not have the requisite musical category and knowledge for the sounds. Lack of this knowledge will limit an individual's ability to translate what is in their short term melodic memory into notation, even if it is perfectly represented in memory!

The final parts of the chapter, Karpinski notes that other factors like **tempo**, the **length and number of playings**, and the **duration between playings** will also play a role in determining how an individual will perform on a melodic dictation. While this framework can help illuminate this cognitive process and help pedagogues understand how to best help their students, presumably there are many more factors that contribute to this process. The model as it stands is not detailed enough for explanatory purposes and lacks in two areas that would need to be expanded if this model were to be explored experimentally and



Figure 2.1: Melodies of Equal Length



Figure 2.2: Melodies of Equal Length

### computationally.

First, having a single model for melodic dictation assumes that all individuals are likely to engage in this sequential ordering of events. This could in fact be the case<sup>4</sup>, but there is research from music perception (Goldman et al., 2018) and other areas of memory psychology such as work on expert chess players (Lane and Chang, 2018) that suggests that as individuals gain more expertise, their processing and categorization of information changes. Additionally, different individuals will most likely have different experiences dictating melodies based on their own past listening experience, an area that Karpinski refers to when citing literature on musical enculturation based on statistical exposure. The model does not have any flexibility in terms of individual differences.

Second, the model presumes the same sequence of events for every melody. As a general heurstic for communicating the process, this process is generalizable, but intuition would suggest that treating all melodies the same is not going to lead to having a robust model. For example, on page 103, Karpinski suggest that two listenings should be adequate for a listener with few to no chunking skills to listen to be able to dictate a melody of twelve to twenty notes. This process might generalize to many tonal melodies, but presumably different strategies in recognition would be involved in dictating the two melodies of equal length shown in Figure 2 and 3.

Presumably different people with different levels of abilities will perform differently on different melodies and while helpful as a pedagogogical tool, this one size-fits-all approach to melodic dictation is not robust. This

 $<sup>^4</sup>$ And in his Figure 3.1 he does caption it as an *idealized* dictation process

agnosticism for both variability for melodic and individual differences serves as a stepping off point for this study. In order to have a more through understanding of melodic dictation, there needs to be a model that is able to accommodate the exhaustive differences at both the individual and musical levels. Additionally, the model should be able to be operationalized so that it can be explored in both experimental and computational settings. By explicitly stating variables thought to contribute and noting how melodic dictation works, it will give the community a better sense of the melodic dictation process, which will then enable a more through understanding of melodic perception and subsequently allow for better teaching practices in aural skills classrooms.

At this point, it is worth stepping back and noting that the sheer amount of variables at play here is cumbersome and almost haphazard. In order to better understand and organize factors thought to contribute to this process, it would advantagous for future research to taxonomize the multitude of features thought to contribute to melodic dictation. In doing this, it wil allow for a clearer picture of what factors might contribute and what literatures to explore in order to learn more about them.

The taxonomy that I propose appears in Figure 4 and bifucates the possible factors thought to affect an individual's ability to take melodic dictation into two categories: **individual** parameters and **musical** parameters. Each of these two categories can then be split again into **cognitive** and **environmental** parameters as well as **structural** and **experimental factors** respectively. Below I expand on what these categories entail, then explore each in depth.

The **individual** parameters split broadly into **cognitive factors**, or factors of people that are relatively consistent with people over time and could be understood as largely being governed by *nature*. The other category of this division consist of factors that change with training and exposure and could be understand as largely being governed by *nurture*. This second set of parameters are the **environmental** factors. These categories are not deterministic, nor exclusive, and almost inevitably interact with one another.<sup>5</sup>

For example, it would be possible to imagine an individual with higher cognitive ability, the oppertunity to have a high degree of training early on in their musical career, and personality traits that are associated with higher learning aptitudes. This individual's musical perception abilities might be markedly different than someone with lower cognitive abilities, no opertunity for individualized training, come from a lower socio-economic status, and not have a general inclination to even take music lessons. This variability at the individual level might then lead to differences in their ability to take melodic dictation.

Complementing the individual differences, there would also be differences at the **musical** level which in turn divides into two categories. On one hand exists the **structural aspects** of the melody itself. These are aspects of the melody that would remain invariant when written down on a score. Parameters in this category would include features generated by the interval structure of the pitches over time that allow the melody to be categorically distinct from other melodies. These structural features are then complimented by the **experimental features** which are emergent properties of the structrual relation of the pitches over time based on performance pratice choices. Examples of these parameters would include, key, tempo, note density, timbral qualities, and the amount of times a melody is played during a melodic dictation or emergent properties like a melody's tonalness as computed through various metrics. This division is not an exhaustive, categorical divide. One could imagine exceptions to these rules where a melody is tranformed to the minor key, ornamented, and then played with extenive rubato and experienced as a phenomenologically similiar experience.

Given all of these parameters that could contribute to the melodic dictation process, the remainder of this chapter will exploring literature using this taxonomy as a guide. The chapter conculdes with a reflection on operationalizing each of these factors and problems that can arise in modeling and reminds the reader about the dangers of statistical reification. These are important to note since from an empirical standpoint, both the task as well as the process of melodic dictation as depicted by Karpinksi resemble something that could be operationalized as both an experiment, as well as a computational model and if understood this way will be subjected to the same types of critique.

<sup>&</sup>lt;sup>5</sup>Could footnote this interaction and talk about how AP people generally need to have genetic predisposition, fixed pitch instrumetn in house, and start at early age CITATION FOR THAT?



Figure 2.3: Taxonomy of Factors Contributing to Aural Skills

# 2.2 Individual Factors

# 2.2.1 Cognitive

Research from cognitive psychology suggests that individuals differ in their perceptual and cognitive abilities in ways that are both stable throughout a lifetime and are not easily influened by short term traning. When investigated on a large scale, these abilities—such as general intelligence or working memory capacity—predict a wealth of human behavior on a large scale ranging from longevity, annual income, ability to deal with stressful life events, and even the onset of Alzheimer's disease (Ritchie, 2015; Unsworth et al., 2005). Given the strength and generality of these predictors, it is worth investigating the extent that these abilities might contribute when investigating any modeling of melodic dictation. It is imporant to understand the degree to which these cognitive factors might influence aural skills abilities in order to ensure that the types of assessments that are given in music schools validly measure abilities that individuals have the ability to improve upon. If it is the case that much of the variance in a student's aural skills grades can be attributed to something the student has little control over, this would call for a serious upheaval of the current model of aural skills teaching and assessment.

Recently there has been a surge of interest in this area <sup>6</sup> which could be attributed to the fact that educators are picking up on the fact that cognitive abilities are powerful predictors and need to be understood since they inevitably will play a role in pedagogical settings.

Before diving into a discussion regarding differences in cognitive ability, I should note that sometimes ideas regarding differences in cognitive ability been hostily received (citation against people talking about IQ) and for good reasons. Research in this area can and has been taken advantage to further specious ideologies, but often arguments that assert meaningful differences in cognitive abilities between groups are founded on statistical misunderstandings and have been debunked in other literature (Gould, 1996). Considering that, it then becomes very difficult to maintain a scientific commitment to the theory of evolution (Darwin, 1859) and not expect variation in all aspects of human behavior, with cognition falling within that umbrella. Even given this statement, measuring a theoretical construct such as an aspect of cognition deserves to be examined since the ability to validly and reliably measure an individual's cognitive ability is a fundmental assumption of this study.

## 2.2.2 Measuring Intelligence

Attempting to measure and quantify aspects of cognition go back over a century. Even before concepts of intelligence were posited by Charles Spearman and his conception of g (Spearman, 1904), scientists were interested in establishing links between an individual's mental capacities and some sort of physical manifestation. The origins of this area of research have been critiqued on the basis that the early work implicitly tended to validate preconceptualized beliefs on the superiority of certain groups of peoples and used methodlogies that today would be considered risible.

- For example, BROCA thought he could get at intelligence by measuring skulls AND MORTON
- Or Spitzka who post hoc measured eminance and brain size page 127

While not immediatly relevant to current thinking in cognitive psychology, work from both Broca and XXX was continued by the American herediterian school of IQ (page 187 in Gould) and the early research done by Alfred Binet on IQ took inspiration from Broca. This lineage of ideas has often been used to tarnish systematic investigations into differences in cognitive ability, which from their outset were to initially funded by the French government to identify children struggling in the classroom so that they could be given special attention.

Bient was the initial developer of the idea of an intelligence quotient or IQ<sup>7</sup> and provided one of the first

 $<sup>^6\</sup>mathrm{DO}$  I CITE THINGS HERE LIKE THAT WORK OF NANCY ROGERS, LEIGH VAN HANDLE, THE UTAH GUY, GARY KARPINSKIS ICMPC, THE FORM AT SMPC

<sup>&</sup>lt;sup>7</sup>divide mental age by chronological age then multiply by 100

ways to attempt to quantify a theoretical concept that was not capable of being manifested in the physical world. It was also around the same time that researchers like Cyril Burt and Charles Spearmean began developing their new theories of intelligence founded on the reification of factor analysis. In developing a battry of tests whose performance on one subtest could often reliabily predict performance on another—a manifestation referred to as the postive manifold—Spearman and Burt put forth a separate conception of intelligence based on the ability to solve problems without any sort of background information and referred to this ability a g for general intelligence.

Though seemingly unrelated to the current state of thinking about cognitive abilities, Binet's and Spearman's ideologies about what intelligence is and how to measure it still represent two of the larger schools on cognitive ability. On one hand their idea that cognitive abilities are based upon a steady growth of incoming information that someone is able to manipulate once they retrieve from long term memor; on the other hand there is a school of thought that there is some sort of measureable construct, g that aids in the process of solving problems that do not depend on any sort of contextuxal information. Conceptualizing cognitive ability as these two different constructs inevitably leads to different types of measurements and subsequently what these constructs are then able to predict in terms of human behavior.

Without detailing entire histories of both lines of thought, Binet's conceptulization manifested into an argument for general crystallized intelligence or Gc, or the ability to solve problems based on previously acquired skills. Spearman and Burt's ideas about g school reflect a belief that individuals have some sort of latent cognitive ability to draw on to perform mental tasks. The cognitive psychology literature has noted that g often shares a statistically equivalent relationship to idea conceptualized as general fluid intelligence Gf, or the ability to solve problems in novel situations Cattell, 1971; Horn, 1994). This distinction between Gf and Gc is different than that of g, but again it should be noted that Gf and g share a statistically identical relationship Matzke, Dolan, and Molenaar (2010). These conceptions of intelligence and cognitive ability aslo differ from more current theories that sythesize these previous areas of research (Kovacs and Conway, 2016).

Even though both of these constructs are powerful predictors on a large scale and do predict things like educational success, income, and even life expectancy (Ritchie, 2015)— even when other variables like so-cioeconomic status are held constant. Yet despite this, only conceptualizing cognitive abilities in terms of intelligence does not fully explain the diversity of human cognition.

Another large area in the field of cognitive psychology is the area of working memory capacity. In addition to concepts of intelligence, be it Gf or Gc, the working memory capacity literature also is directly relevant to work on melodic dictation for reasons discussed below.

# 2.2.3 Working Memory Capacity

Working memory is one of the most investigated concepts in the cognitive psychology literature. According to Nelson Cowan, the term working memory generally refers to

the relatively small amount of information that one can hold in mind, attend to, or, technically speaking, maintain in a rapidly accessible state at one time. The term working is mean to indicate that mental work requires the use of such information. (p.1) (Cowan, 2005)

The term, like most concepts in science, does not have an exact definition, nor does it have a definitive method of measurement. While there is no universally recognized first use of the term, researchers began to postulate that there was some sort of system that mediated incoming sensory information with the world with the information in long term storage using modular models of memory in the mid-twentieth century. Summarized in (Cowan, 2005), one of the first modal models of memory was proposed by (Broadbent, 1958) and later expanded by (Atkinson and Shiffrin, 1968). As seen in FIGURE X, both models here posit incoming information that is then put into some sort of limited capacity store. These modal models were then expanded on by Baddeley and Hitch (Baddeley and Hitch, 1974) in their 1974 chapter with the name Working Memory, where they proposed a system with an central executive module that was able to carry

# Modal Model (after Broadbent, 1958)



# Working-Memory Model (after Baddeley, 2000)



# Embedded-Processes Model (after Cowan, 1988)



Figure 2.4: Schematics of Models of Working Memory taken from Cowan, 2005

out active maintenance and rehearsal of information that could be stored in either a phonological store for sounds or a visual sketchpad for images.

Later revisions of their model also incorporated an episodic buffer (Baddeley, 2000) where the modules were explicitly depicted as being able to interface with long term memory in the rehearsal processes. The model has even been expanded upon by other researchers throughout its lifetime. The most relevant to this study is by (Berz, 1995), who postulated adding a musical rehearsal loop to the already established phonological loop and visual spatial sketchpad. While Berz is most likely correct in asserting that the nature of storing and processing musical information is different to that of words or pictures and there has been experimental evidence to suggest this (Williamson et al., 2010) that has been interpreted in favor of multiple loops (Wöllner and Halpern, 2016), it does introduce the theoretical problem of multiple stores which has been addressed by other researchers.

In addressing the problem of explicitly stating which rehearsal loops do and do not exist, Nelson Cowan proposed a separate model (Cowan, 1988, 2005) dubbed the Embedded Process Model which do not claim the existence of any domain specific module (e.g. positing a phonological loop, visual spatial sketchpad) but

is rather based on an exhaustive model that did away with the problem of asserting specific buffers for new types of information.

In Cowan's own words comparing his model from that of Baddeley:

The aim was to see if the description of the processing structure could be exhaustive, even if not complete, in detail. By analogy, consider two descriptions of a house that has not been explored completely. Perhaps it has only been examined from the outside. Baddeley's (1986) approach to modeling can be compared with hypothesizing that there is a kitchen, a bathroom, two equal-size square bedrooms, and a living room. This is not a bad guess, but it does not rule out the possibility that there actually are extra bedrooms or bathroom, that the bedroom space is apportioned into two rooms very different in size, or that other rooms exist in the house. Cowan's (1988) apporach, on the other hand, can be compared with hypothesizing that the house includes food preparating quarters, sleeping quarters, batroom/toilet quarters, and other living quarters. It is meant to be exhaustive in that nothing was left out, even though it is noncommital on the details of some of the rooms. p.42 Cowan, 2005.

The system is depicted in the bottom tier of TABLE X, and conceptualizes the limited amount of information that is readily available as being in the focus of attention, with activated sensory and categorical features of what is in the focus of attention to be accessible nearby. Moving further from the locus of attention is long term memory, whose content can be turned to by using the central executive to access non-immediately available information. In contrast to the modular approaches, Cowan's framework does not require the researchers to specify exactly how and where each the incoming information is being stored which makes it advantageous for studying complex stimuli such as music and melodies.

In addition to having multiple frameworks for studying working memory capacity, there is also the problem of limits to the working memory system, often referred to as the working memory capacity. Most popularized by Miller in his famous (Miller, 1956) speech turned article, Miller suggests out of jest that the number 7 might be worth investigating, which has been used as a point of reference for many researchers since then. It is worth nothing that Miller has since gone on record as noting that using 7 (plus or minus 2) was a rhetorical device used to string together his speech (Miller, 1989). Nevertheless, while the number seven is most likely a red herring, it did inspire a large amount of research on capacity limits. In the decades since the number 7 has been reduced to about 4 (Cowan, 2010) and research around capacity limits has been investigated using a variety of novel tasks, most noteable the complex span task CITATION.

When used as predictors in both higher and lower cognitive tasks, measures of working memory capacity predict performance well and additionally tend to be stable across a lifetime (Unsworth et al., 2005).

Given its predictive strength as well as its direct similarity to tasks of melodic dictation, a in depth look at the literature is warranted.

Clearly an individual's ability to take in sensory information, maintain it in memory, actively carry out other tasks (like notating said melody) are almost identical to tasks of working memory capacity. Before venturing onward from this striking parallel, tasks investigating working memory capacity differ from melodic dictation tasks in a few key ways. The first is that musical information is always sequential: a melodic dictation task would never require the student to recall the pitches back in scrambled orders. Serial order recall is an important characteristic in the scoring and analyzing of working memory tasks (Conway et al., 2005), but musical tones do not appear in random order and are normally in discernable chunks as discussed by Karpinski(Karpinski, 2000). The use of chunks is pervasive in much of the memory literature, but often is used as more of a heuristic to help explain that information in the environment and why it is often grouped together. Of the problems with chunking, most are related to music and have relevance to melodic dictation. Below I review the problems with chunking noted by Cowan (Cowan, 2005), and any pertitant music psychology literature.

- 1. Chunks may have a hierarchical organization. Tonal music has historically been understood to be hierarchical (Krumhansl, 2001; Meyer, 1956; Schenker, 1935) with the study for memory for tones being confounded by some pitches being undestood by their relation to structurally more important tones.
- 2. The working memory load may be reduced as working memory shifts between levels in hierarchy. If an

individual understands a chunk to be something such as a major triad, the load on working memory would be less since it that information could be understood as a singular chunk.

- 3. Chunks may be the endpoints of a continuum of associations. Pairing a group of tones together that might be functionally anomolous like...
- 4. Chunks may include asymmetrical information. More tonal possibilities are possible from a stable note like tonic or dominant, whereas in a tonal context, a raised scale degree  $\#\hat{4}$  when understood in a functional context would be taken as having stricter transitional probabilities ( $\#\hat{4} \to \hat{5}$ ).
- 5. There may be a complex network of associations. If a set of pitches sounds like a similar set of pitches from long term memory, the information coming in can not be understood as being separate units of working memory.
- 6. Chunks may increase in size rapidly over time. Three tones that are seemingly unrelated when incoming like E4, G5, C5 might enter sensory perception as three different tones, but then be fused together when they are understood as one chunk— a first inversion major triad.
- 7. Information in working memory may benefit from rapid storage in long term memory. Given the amount of patterns that an individual learns and can understand, as soon as something is fused, it could be encoded in long term memory, especially if there is a salient feature in the incoming melodic information such as the immediate recognition of a mode or cadence.

The points by Cowan are important to acknowledge in that it it not possible to directly lift work and paradigms from working memory capcacity to work in music perception. That said, the enormous amount of theoretical frameworks put forward by the working memory liteature when understood in conjunction with theories in music psychology such as implicit statistical learning (Saffran et al., 1999) can provide for new, fruitul theories. Past reserachers have noted the strength and predictive abilities of literature from the working memory capacity as aiding research in music perception. In ending his article positing a musical memory loop to be annexed to the Baddley and Hitch modular model of working memory, Berz (Berz, 1995) captures the power of this concept in the last sentence of his article and warns future reserachers that

Individual differences portrayed in some music aptitude tests may [sic] represent not talent or musical intelligence but ability, reflecting differences in working memory capacity. p. 362

Berz's assertion has not been exhausivly tested since first published in 1995, but the subject of music, memory, and cognitive abilities has been the focus of research of both psychologists and musicologists alike. Below I survey literature bordering on both music, as well as cognitive abilitity.

#### 2.2.3.1 Working Memory Capacity and Music

Of the papers in the music science literature that specifically investigates working memory, each uses different measures, though but all tend to converge on two general findings. The first is that there are some sort of enhanced memory capabilities in individuals with musical training. The second is that working memory capacity, however it is measured, often plays a significant role in musical tasks. Evidence for the first point appears most convincingly in a recent meta analyses by Talamini and colleagues (Talamini et al., 2017) who demonstrated via three separate meta-analyses that musicians outperform their non-musical counterparts on tasks dealing with long-term memory, short-term memory, as well as working memory. The authors also noted that the effects were the strongest in working memory tasks where the stimuli were tonal, which again suggests an advantage of exposure and understanding of the hierarchical organization of musical materials. In this meta-analyse and others investigating music and cognitive ability, it is important to be reminded that the direction of causality still from these studies cannot be determined using these statistical methodologies. While it might seem that musical training tends to lead to these increases, it is also possible that higher functioning individuals will self select into musical activities. Even if there is no seletion bias in engaging with musical activity it also remains a possiblity that of the people that do engage with musical activity, the higher functioning individuals will be less likely to quit over a lifetime.

In terms of musical performance abilities, working memory capacity has also been shown to be a significant predictor. Kopiez and Lee suggested that working memory capacity should to contribute to sight reading tasks based on research where they found measures of working memory capacity, as measured by a matrix

span task, to significantly correlated with many of their measures hypothesized to be related to sight reading ability in pianists at lower difficulty grading (Kopiez and Lee, 2006, 2008).

Following up on this work on sight reading, Meinz and Hambrick (Meinz and Hambrick, 2010) found that working memory capacity, as measured by an operation span task, a reading span task, rotation span task, and a matrix span task was able to predict a small amount of variance  $R^2 = .074(0.067)$  above and beyond that of deliberate practice alone  $R^2 = .451(.441)$  in a sight-reading task. More recently, two studies looking at specific sub groups of musicians have shown working memory capacity to significantly contribute to models of performances on musical tasks related to novel stimuli. (Wöllner and Halpern, 2016) found that although no differences were found between pianists and conductors in measures of working memory capacity as measured via a set of span tasks, conductors showed superior performance in their attention flexibility. Following up on this line of research (Nichols et al., 2018) used the same battery of working memory tasks and found that jazz musicians excelled over their classically trained counterparts in a task which required them to hear notes and reproduce them on the piano. The authors also noted that of their working memory battery, based on standard operation span methods (Engle, 2002), that the auditory dictation condition scored surprisingly low and further research might consider further work on dictation abilities. Additionally (Colley et al., 2018) found that working memory capacity, as measured by a backwards digit span and operation span, to be successful predictors in a tapping task requiring sensory motor prediction abilities. As mentioned above, each of these tasks where working memory was a significant predictor of performance occurred where the task involved active enagement with novel musical material.

The growing evidence in this field suggests that the advantage of working memory capacity to be greatest in both musically trained people, dealing with novel information, using tonal materials. Since all three of these factors are related to melodic dictation, it would seem sensible to continue to include these measures in tasks of musical perception and continue Berz's assertion that research in music percetion could inadvertently be picking up on individual differences in working memory abilities.

# 2.2.4 General Intelligence

As discussed above, the idea of IQ or intelligence has a long history that is bothgood and bad. When used as a predictor in models it often serves to predict traits that society values like longevity and general income so given its ability to predict in more domain general settings, surveying literature where it applies to musical activity is a worthy task. Below I use the term intelligence as a catch all term to avoid the historical context of IQ and specify where available which measure was actually used. Before surveying the literature here it is also worth noting that reserach on music and intelligence is not as developed as some of the larger studies looking at intelligence which provides problems for both establishing causal directionality, as well as controlling for other factors like self theories of ability, socioeconomic status, and personality (Müllensiefen et al., 2015).

#### 2.2.4.1 Papers that suggest GF plays a role

As reviewed in Schellenberg (2017), both children and adults who engage in musical activity tend to score higher on general measures of intelligence than their non-musical peers (Gibson, Folley and Park, 2009; Hille et al., 2011; Schellenberg, 2011a; Schellenberg and Mankarious, 2012) with the duration of training sharing a relationship with the extent of the increases in IQ (Degé, Kubicek and Schwarzer, 2011a; Degé, Wehrum, Stark and Schwarzer, 2015; Corrigall and Schellenberg, 2015; Corrigall, Schellenberg and Misura, 2013; Schellenberg, 2006). Though many of these studies are correlational, they also have made attempts to control for confounding variables like socio-economic status and parental involvment in out of school activities. (Corrigall et al., 2013; Degé et al., 2011a; Schellenberg, 2006, 2011a, 2011b; Schellenberg and Mankarious, 2012). Schellenberg notes the problem of smaller sample sizes in his review (Corrigall and Trainor, 2011; Parbery-Clark et al., 2011; Strait, Parbery-Clark, Hittner and Kraus, 2012) in that studies that are typically smaller do not reach statistical significance. Schellenberg also references evidence that when professional musicians are matched with non-musicians from the general population there do not seem

to be these associations (CITE). Schellenberg's review suggests the current state of the literature points to support the hypothesis that higher functioning kids that take music lessons and they tend to stay in lessons longer. Additionally, Schellenberg remains skeptical of any sorts of causal factors regarding increases in IQ (e.g., François et al., 2013; Moreno et al., 2009) noting methodlogical problems like how short exposure times were in studies claiming increases in effects or researchers who not holding pre-exisiting cognitive abilitis constant (Mehr, Schachner, Katz and Spelke, 2013).

- (Corrigall et al., 2013a)
- (Corrigall et al., 2013b)
- (Swaminathan et al., 2017)

## 2.2.5 Environmental

Standing in contrast to factors that individuals do not have a much control over such as the size of their working memory capacity or factors related to their general fluid intelligence, most of the factors we believe contribute to someone's ability to take melodic dictation have to deal with factors related to training and the environment. In fact, one of the tacit assumptions of getting a music degree revolves around the belief that with deliberate and attentive practice, that an individual is able to move from novice to expertise in their chosen domain. The idea that time invested results in beneficial returns is probably best exemplified by work produced by Ericsson et al. (1993) that suggests that performance at more elite levels results from deliberate practice. Below I review literature that supports this argument, since it's no doubt that someone has to engage in something to be good at it.

# 2.2.6 Musical Training

- Papers that suggest practicing makes you better?
- It almost seems redundant to review literature in support of music practice leading to better results.
- List of those papers here

# 2.2.7 Aural Training

In additon to individuals differeng in their general musical abilities—however they are defined—individuals also differ in their abilities at the level of their aural skills. Though not heavily researched in the past few decades (Furby, 2016), there has been specific research looking at explaining how people do in aural skills examinatons. Harrison et al. (1994) examined the effect of aural skills training on undergraduate students by creating a latent variable model investigating musical aptitude, academic ability, musical expertise, and motivation to study music in a sample of 142 undergraduate students and claimed to be able to explain 73% of the variance in aural skills abilities using the variables measured. Work from Colin Wright's dissertation found that ... (Wright, 2016)

These are things that people have suggested people trying to do: As noted in Furby (2016), researchers in the past have suggested a variety of techniques for improving their abilities in melodic dictation by isolating rhythm and melody [Banton (1995); Bland (1984); Root (1931); WILSON], listening attentively to the melody before writing (Banton, 1995), recognizing patterns (Banton, 1995; Bland, 1984; Root, 1931) and silently vocalizing while dictating (Klonoski, 2006).

# 2.2.8 Sight Singing

Often described as the other side of the same coin of melodic dictation, sight singing is an area of music pedagogy research that has had sparse attention paid to it given its prevelance in school of music curricula.

Recently (Fournier et al., 2017) catalouged and categorized 14 different sub categories into four larger main categories while also providing commenatary on some of the current state of aural skills. Of the four large categories, they group them into reading mechanisms, sight singing, readings skills acquiskiton, and learnign support.

#### FIX HERE

The authors note a line of research that has documented that university students are often unprepared to sight-read single lines of music (Asmus, 2004; Davidson, Scripp & Welsh, 1988; Fournier, 2015; Thompson, 2004; Vujović & Bogunović, 2012) even though it is, like dictation, thought of as a means for deeper musical understanding. (DeBellis, 2005; Karpinski, 2000; Ottman, 1956; Rogers, 2004; Scripp, 1995; Scripp & Davidson, 1994) The authors of Fournier et. al also note that sight-reading has been an active area of research due to the often reported relationship that performance on sight reading often predicts several studies have shown links between academic success in sight-singing and predictors such as entrance tests (Harrison, 1987, 1990, 1991; Ottman, 1956; Rodeheaver, 1972; Schleuter, 1983), academic ability (Chadwick, 1933; Harrison, 1990, 1991; Harrison, Asmus, & Serpe, 1994; Rodeheaver, 1972), and musical experience (Brown, 2001; Dean, 1937; Furby, 2008; Harrison, 1990, 1991; Harrison et al., 1994; Thostenson, 1967).

Taken as a whole, the research tends to suggesting that learning to be a fluid and compotent sight reader helps musicians hone their skills by bootstrapping other musical skills since the skills needed for sightreading touch on many of the skills used in musical performance like pattern matching and listening for small changes in intonnation. Each of these individual factors contributes in a small and significant way and additionally will interact with the other half of the taxonomy: musical parameters.

# 2.3 Musical Parameters

Transitioning to the other half of the taxonomy on figure X, the other main source of variation on any study looking at melodic perception, and consequently studies of melodic dictation, is the effect of the melody itself. I find it safe to assume that not all melodies are equally difficult to dictate and assert that variance in the difficulty the melody can partitioned between both **structural** and **experimental** aspects of a melody. As noted above, there is not a strict deliniation between these two categories since once could imagine drastic manipulations in experimental parameters in order to result in a phenomenologically different experience of melody. Questions of transformations of melodies and musical similarity fall have been addressed in ohter research (Cambouropoulos, 2009; Wiggins, 2007) but are beyond the scope of this study.

#### 2.3.1 Structural

The notion that the music as represented by a score is able to provide insights towards understanding aspects about music is not new to music theory and anlaysis. Heinrich Schenker argued for an undertanding of tonal music (Schenker, 1935) that asserted hierarchical relationships of notes on the musical surface in the early 20th century and has since been expanded upon by theorists over the past century SALTZER, SCHAKTER, ROTHSTEIN. Leonard Meyer in his *Emotion and Meaning in Music* (Meyer, 1956) continued some of these lines of thought and was the first who put forward the idea that tethered the struture that earlier theorists wrote about and suggested that in addition to this struture being fundamental to the perception of the piece that there were also responsible for some aspects of the emotion and meaning listeners found in the piece.

Meyer's work since inspired a line of reserach investigating the perception of the structural aspects of music could be understood with the work of Eugene Narmor (Narmour, 1990, 1992), Glenn Schellenberg (Schellenberg, 1997), Elizabeth Hellmuth Margulis (Margulis, 2005), David Huron (Huron, 2006) and have inpsired computational, machine learning approaches to expectational frameworks in with work by Marcus Pearce (Pearce and Wiggins, 2012a).

• WHAT IS THE POINT OF ALL THIS RESERACH SETNECE

These general models of melodic perception tend suggest that Meyer was correct in his assertion that computational methodologies could be used to better understand question of melodic perception and structure and that there are links between the structure of the music and its perception.<sup>8</sup>

Turning to studies examining melodic dictation with a focus on musical structure, the first study to examine it extensively was Ortmann in 1933 (Ortmann, 1933). Ortamnn used a series of twenty five-note melodies in order to examine the effects of repetition, pitch direction, conjunct-disjunct motion (contour), interval size, order, and chord structure, all of which he deems to be the *determinants* of an individual's ability to dictate melodic material. Though Ortmann did not use any statistical methods to model his data, he did assert that each of his determinants contributed to an individual's ability to dictate musical material. This work was extended by (Taylor and Pembrook, 1983) which additionally incoporated using musical skill as a predictor and additionally found evidence that these factors contributed to individual dictation abilities in a sample of 122 undergraduate students.

Although the literature is generally sparce compared to other areas of music cognition, literature exploring the effects of structural characteristics on memory does exist. Long found that length, tonal structure, contour, and individual traits all contribute to performance on melodic dictation examinations and found that structure and tonalness to have significant, albeit small predictive powers in modeling (Long, 1977). One problem with studies such as (Long, 1977) is that they sometimes would make conspicuous methodloogical decisions such as elimnating individuals who were bad singers for the example. Not only does this reduce the spectrum of ability levels (assuming that singing ability correlates with dictation ability, a finding since which has been established (Norris, 2003)), but is additinally flawed in that it is at odds both with the intuition that an individual's singing ability cannot be taken as a direct representation of their mental image of the melody and is probably more related to the ability to have motor control over the vocal tract (Pfordresher and Brown, 2007).

Other researchers have also put forward other paramters thought to contribute like tempo (Hofstetter, 1981) tonality (Dowling, 1978) (Long, 1977) (Pembrook, 1986) (Oura and Hatano, 1988) interval motion (Ortmann, 1933; Pembrook, 1986) length of melody (Long, 1977; Pembrook, 1986) number of presentations (Hofstetter, 1981) [(Pembrook, 1986)] context of presentation (Schellenberg and Moore, 1985) listener experience (Long, 1977; Oura and Hatano, 1988) (Schellenberg and Moore, 1985; Taylor and Pembrook, 1983) familarity of style (Schellenberg and Moore, 1985)

Pembrook (1986) provides an extensive detailing of a systematic study to melodic dictation where they used tonality, melody length, and type of motion as variables in their experiment. They additionally also restricted their experimental melodies to those that were singable. The authors found all three variables to be significant predictors with tonality explaining 13% of the variance, length explaining 3% of the variance and type of motion explaining 1% of the variance. The paper also claims that people on average can hear and remember 10-16 notes, which is worth commenting that these 10–16 notes are dependent on the experimental context of the melodies played with the quarter note set to 90 beats per minute.

Given the lack of consistent methodlogies in administration and scoring of these experiments it becomes difficult to find ways to generalize basic findings like expected effect sizes— especially when the original materials and data have not been recorded— but there is often interesting theoretical insights to be gleaned. For example (Oura, 1991) used a sample of eight people to suggest that when taking melodic dictation, individuals use a system of pattern matching that interfaces with their long term memory in order to complete dictation tasks. While this paper does not bring with it exhaustive evidence supporting this claim, the idea is explored in detail in Chapter 6 the idea of pattern matching is used in conjunction with Cowan's embedded process model of working memory.

More recently the music education community has also began to do research around melodic dictation using both qualitative and quantitiatve methodogies. (Paney and Buonviri, 2014) interviewed high school teachers on methods they used to teach melodic dictation and (Gillespie, 2001) has done work on investigating methods as to best score melodic dictation. Other work by (Pembrook and Riggins, 1990) surveyed various methodogies used by instructurs in aural skills settings. Some of these studies consider aural skills as

<sup>&</sup>lt;sup>8</sup>This whole section sucks

a totality like (Norris, 2003) who provided quantitative evidence to suggest most aural skills pedagoge's intuition that there is some sort of relationship between melodic dictation and sight singing. Looking at the notorious subset of students with absolute pitch (AP), (Dooley and Deutsch, 2010) provided evidence demonstrated that students with AP tend to outperform their non-AP colleagues in tests of dication.

#### [SOME OF THESE ARE CLEARLY EXPERIMENTAL AND NEED TO BE PUT THERE]

Continuing exploring the pedagogical liteature, Naton Buonviri and colleagues have also made melodic dictation a central focus of some recent papers. Paney and Buonviri (2014) interviewed high school teachers on methods that they used to teach melodic dictation. Buonviri (2015a) interviewed six sophomore music majors to find successful strategies that students enaged with when completing melodic dictations. Paney (2016) reported beneficial effects to direct student's attention and guide them through melodic dictation exercises suggesting that some sort of mental organization of the dication process is helpful. Buonviri and Paney (2015) found that having students sing a preparatory singing pattern after hearing the target melody, essentially a distractor task, hindered performance on melodic dictation. Buonviri (2015b)... Buonviri (2015a) found no effects of test presentation format (visual versus aural-visual) using a melodic memory paradigm. Buonviri (2017) reported no significant advatage to listening strategies while partaking in a melodic dictation test.

# 2.3.1.1 Recent Computational Musicology Work papers and findings

Using symbolic features of the melodies themselves is not a novel approach as noted in the above literature attempting to predict performance on melodic dictations. Much of this work pre-dates recent advances in computational musicology such as the advent of technology like David Huron's Humdrum (Huron, 1994) and Michael Cutberth's Music21 (Cuthbert and Ariza, 2010) which now allows music researchers to systematically digitize symbolic musical material. In addition to creating accessible frameworks for encoding, the computational power available exponentially exceeds that of what was available in the 20th century and has opened up new possibilities in the computational modeling of music.

While I reserve a longer discussion on the histories of computational musicology for the fourth chapter, relevant to this study is the additional ways it is now possible to abstract features from symbolic melodies beyond what was capable in studies such as Ortmann (1933) and Taylor and Pembrook (1983).

An abstracted feature of a melody is an emergent property of the melody that results from performing some sort of calculation on the melody? This type of feature abstraction is in contrast to much of the work done in the field of music information retrivial which often relies on the recorded audio for feature abstraction and is addressed under Experimental features LINK THAT IN!. Abstracted symbolic features of melodies can largely be conceptualized as being **static** or **dynamic**. The above papers tended to use more simplisite methods of figuring out parameters such as counting the notes by hand but with the advent of new encoding systems and more powerful computing power it is now possible to take on much more rigerious computational analyses.

# 2.3.1.2 Static Views of Computational Features/ FANTASTIC

Static features of melodies work by summerizing some aspect of the melody as if it were to be experience in suspended animation. Using static features helps quantify something that might be intuitive about a melody or piece of encoded music. For example, something like David Huron's contour class used in a study investigating melodic arches (Huron, 1996) using the Essen Folk Song Collection (Schaffrath, 1995) can only be understood as a feature of the melody itself once the melody has been sounded and is recalled would be a static feature of a melody. Other examples include a melody's global note density, normalized pairwise variability index (CITATION), and a melody's tonalness as calculated by one of the various key profile algorithms (KRUMHANSL, ALBRECT AND SHANAHAN) These measures are useful when describing melodies and are predictive of various behavioral phenomena as detailed below, but at this point it has not been well established to what degree these summary features can be directly related to aspects of human behavior.

The quintessential and most comprehensive toolbox example of this is Daniel Müllensiefen's Feature ANalysis Technology Accesing STatistics (In a Corpus) or FANTASTIC (Mullensiefen, 2009). FANTASTIC is software that is capable summerizing musical material at for monophonic melodies. In addition to computing 37 features such as contour variation, tonalnesss, note density, note length, and measures inspired by computational linguistics (THAT BOOK OF GERAINT), FANTASTIC also calculates m-types (melodic-rhyhmic motives) that are based on the frequency distributions of melodic segements found genres of music. This is inspired by fact that repeition is key structure of music (Huron, 2006)

Work using the FANTASTIC toolboox has been sucessful in predicting court case decisions (Müllensiefen and Pendzich, 2009), predicting chart sucesses of songs on the Beatles' *Revolver* (Kopiez and Mullensiefen, 2011), memory for old and new melodies in signal detection experiments (Müllensiefen and Halpern, 2014), memory for earworms (Jakubowski et al., 2017; Williamson and Müllensiefen, 2012), memorability of pop music hook (Balen et al., 2015). In experimental studies, FANTASTIC has also been used to determine item difficulty (Baker and Müllensiefen, 2017; Harrison et al., 2016) and has even been the basis of the development of a computer assistted platform for studying memory for melodies (Rainsford et al., 2018).

# 2.3.1.3 Dynamic

In addition to using summary based features on melodies, it is also possible to model the perception of musical materials by using a dynamic approach that is dependent on the unfolding of musical material. First explored in CONKLIN, and then first published as a dynamic model of expectation in his doctoral dissertation, Marcus Pearce's Information Dynamics Of Melody IDyOM models musical expectancy using various information theoretic concepts inspired by Claude Shannon (SHANNON). The model takes an unsupervised machine learning approach and calculates the information content of the amount of DECLARED n-grams in the corpus. As a model exploring expection for melody IDyOM has has been applied to a variety of settings LIST THEM HERE. The domain general application of IDyOM has given creedence to Meyer's assertion that the enculturation of musical styles stems from statistical exposure to melodies and be somewhat refelective of the cogitive processes used in musical perception. IDyOM has also been recently extended to look at expectation in multi-part chorales (SAUVE WORK) and expectations of harmony (HARRISON WORK).

(Pearce and Wiggins, 2012b; ?)

The advantage of using a dynamic approach is that it theoretically reflects real time perception of music with the structural characteristics of the music mapping on to real human behavior.

# 2.3.2 Experimental

- Advantage of vocal melodies paper
- MIR stuff
- Stuff out of education stuff that is also experimental

# 2.4 Modeling and Polymorphism of Ability

Given the current state of cognitive psychology and psychometrics, as well as recent advances in computational musicology, the possibilities for now operationalizing and then modeling aspects of melodic dictation are as advanced as they ever have been. Given that we can now assign numbers to basically every factor that is thought to contribute to this process from concepts of musicianship, to features of a melody, to the variable size in an individual's working memory capacity all of these thighs can be put into some sort of model. While this will bring the community closer to formally modeling all of this and lead to a clearer understanding, before going ahead and doing this it is worth pointing out that many of the concepts discussed above are highly complex concepts like musicianship and tonalness and rest on lots of assumptions. Musicianship, for example, or any measure of musical training is not something that can be measured directly such as a

person's height or weight, but has to be inferred based on the logical assumptions of the person doing the measurments. So while the rest of this study will rely on this, it is important to note that people shouldn't confuse abstracted concepts with real things.

The most illustrative example of this comes from a study by HARRISON ET AL who created a latent variable model of aural skills that was able to predict 74% of the variance in aural skills performance. This latent trait that the authors created may be helpful in explaining the patterns of covariance in data, but this would be to reifig a statistical abstraction as an ontologically true idea. This idea has been discussed before critiquing ideas such as g (Gould, 1996; Kovacs and Conway, 2016) and has recently been the subject of critique in music psychology OUR GOLDMSI PAPER.

The same arguments put forward in this literature also are relevant here. In order to have a complete, causal model of *how* melodic dictation works, it is important to understand melodic dictation as a set of musical abilities that are related to other musical abilities, though may not be related. This idea is not new even in music psychology, the past two decades have seen calls for a more polymorphic definition of musical ability (Levitin, 2012; Peretz and Coltheart, 2003) which in its modeling will require more concrete ways of defining how it works than just correlating variable together that are helpful at prediction without saying exactly how that process happens.

# 2.5 Conclusions

In this chapter I first described what is melodic dictation using Karpinki's verbal model, noted what the things were that were missing from this model as a stepping off point, then went on to suggest a taxonomy of these based on what already has done. I suggest there are both individual as well as musical features that need to be understood in order to have a comprensive understanding of melodic dictation. Of the two sets of features, individual features can be either cognitive or environmental and musical features can be either structural or experimental. This taxonomy does not consist of exclusive categories and certainly permits interactions between any and all of the levels.

It would be impossible given the scope of this study to effectively quantify each and every factor and how it interacts at every level, but the degree to which there is the most literature and you can get the most bang for you buck seems like the obvious stepping off point. Rest of this dissertation will systehsize these areas and put forth novel research contributing to the modeling and subsequent understanding of melodic dictation. Understanding melodic dictation will help with both understanding melodic perception and help our pedagogy.

# 2.5.1 Add In

- (Hansen et al., 2013)
- Dowling 1991 (Dowling, 1991)

# Chapter 3

# Individual Differences

Audience: Individuals familiar with cognitive science that would think music is good way to talk about cognitive abilities

Eventually i will say that \* WMC is really governing a lot of this work and people need to control for this pre-existing difference \*

# 3.1 Introduction

Research investigating the relationship between musical and cognitive ability dates back to over a centry. In 1904, Charles Spearman (Spearman, 1904) used tests of pitch perception as part of his initial battery of tests when first introducing his initial conceptions of general intelligence. While musical ability is perhaps more affected by training than the other measures that were of interest to Spearman (i.e. language and mathematics), the relationship between musical and cognitive ability, and the factors that mediate their relationship still has yet to be fully understood.

- Current state suggests that in some cases, musicians tend to do better than non musical peers
- Okada and Slevc see this as explained by three possible hypotheses
- 1. Music makes you smarter
- 2. Smarter People take music lessons
- 3. Higher functioning people tend to take music lessons and music training amplifys already pre-existing differences.

It's important to get at this issue because if there were any causal elements found, this would have big implications since enhancing cognitive abilities would bring along with it the other benefits like X Y Z While this might be a nice side fiding, important to note that even if a causal link were to be established, tethering music engagement to its ability to make someone smarter is a bad idea for numerous reasons probably given by schellenberg.

Really the interesting reason to look into this relationship is that music, unlike other stimuli, provides a unique insight into looking things like gf and wmc bc no semantic information For example, if what is more likely the third hypothesis is true and there are just pre-existing differences that do not change but are mabye amplified with music lessons, this would have serious implications for a lot of the findings in the music psychology literature.

# 3.1.1 General intelligence and WMC

• Two biggest of interest are gf which is basically g which you can think of as IQ

- Other is working memory capacity
- WM is particularly relevant because design of a WMC study very much mirrors same different tasks used in music psych literature
- THIS IS LIKE A NO BRAINER ON MELODIC DICTATION BUT WILL REMOVE THIS SENTENCE
- Here are some examples of that
- We are not the first to make this parallel, Berz did it in 1995 and said that we need to look into this more
- His rationale was that he thinks there was a musical loop in the context of modular models of wmc ala baddely
- Not nessecarily the case since there are other theoretical frameworks to talk about music
- As stated above, looking at music provides a unique insight into contributing to discussions of wmc

# 3.1.2 Defining of terms

- Having established this is a good problem, time to talk about what I think these terms mean
- This is what gf is
- These are the people that have studied it and what they have found
- This is what wmc is as defined by Cowan
- Again, very clear parallels to wmc and if we can answer them w good evidence on large scale, good reason to think otherwise small
- We see that in this.... literature
- Could it be that there is a musical loop here ala Berz, Williamson, and would that explain Li Cowan Saults?
- See, it's a great qustion to investigate
- The one big problem with music is that it's a lot harrier than other stimuli
- Every problem with chunking that Cowan 2005 talks about could be applied to music
- Cant assume one note means one unit of memory and so on
- On top of that you have Pearce suggestion that things are encoded differently
- Also have problems of corpus distributions similar to words, good evidence for SLR and PPH
- regardless of this hariness, need to get further into it
- Okada and slevec show that EF is also really important to make picture clearer
- the if you really want to to do working memory capacity, need to do complex span
- $\bullet\,$  the reason for this is xyz, can continue on from there
- Again, WMC is underlying a lot of music stuff, we should see it on large scale
- Start setting up hypotheses
- What best predicts someone's ability to do well on a musical memory test?
- Not going to go straight to melodic dictation, first look into Berz
- If it really is musical training, we should be able to see that using measures of musical survey
- If it's actually some sort of cognitive process, then that should have more predictive ability
- We can figure this out by fitting a series of models to the data and seeing which matches up best and it's measurements

- Great ensemble of tests is the Gold-MSI bc it has self report and objective, and people have replicated
  it
- Specifically there are two objective tests
- Describe them here
- not exactly mmd, but similr skill set
- IF we accept these DVs, THEN we should be able to predict them with self reports and measures of WMC and gf
- Do this with hierarchical LVM ala Elliott paper
- List hypotheses and predictions

# 3.2 Overview of Experiment (cross sectional design)

# 3.2.1 Participants

Two hundred fifty-four students enrolled at Louisiana State University completed the study. We recruited students, mainly in the Department of Psychology and the School of Music. The criteria for inclusion in the analysis were no self-reported hearing loss, not actively taking medication that would alter cognitive performance, and univariate outliers (defined as individuals whose performance on any task was greater than 3 standard deviations from the mean score of that task). Using these criteria, eight participants were not eligible due to self reporting hearing loss, one participant was removed for age, and six participants were eliminated as univariate outliers due to performance on one or more of the tasks of working memory capacity. Thus, 239 participants met the criteria for inclusion. The eligible participants were between the ages of 17 and 43 (M = 19.72, SD = 2.74; 148 females). Participants volunteered, received course credit, or were paid \$20.

### 3.2.2 Materials

#### Cognitive Measures

All variables used for modeling approximated normal distributions. Processing errors for each task were positively skewed for the complex span tasks similar to Unsworth, Redick, Heitz, Broadway, and Engle (2009). Positive and significant correlations were found between recall scores on the three tasks measuring working memory capacity (WMC) and the two measuring general fluid intelligence (Gf). The WMC recall scores negatively correlated with the reported number of errors in each task, suggesting that rehearsal processes were effectively limited by the processing tasks (Unsworth et al., 2009).

#### 3.2.2.1 Measures

# 3.2.2.1.1 Goldsmiths Musical Sophistication Index Self Report (Gold-MSI)

Participants completed a 38-item self-report inventory and questions consisted of free response answers or choosing a selection on a likert scale that ranged from 1-7. (Müllensiefen, et al., 2014). The complete survey with all questions used can be found at goo.gl/dqtSaB.

### 3.2.2.1.2 Tone Span (TSPAN)

Participants completed a two-step math operation and then tried to remember three different tones in an alternating sequence (based upon Unsworth et al., 2005). We modelled the three tones after Li, Cowan,

Saults (2005) paper using frequencies outside of the equal tempered system (200Hz, 375Hz, 702Hz). The same math operation procedure as OSPAN was used. The tones was presented aurally for 1000ms after each math operation. During tone recall, participants were presented three different options H M and L (High, Medium, and Low), each with its own check box. Tones were recalled in serial order by clicking on each tone's box in the appropriate order. Tone recall was untimed. Participants were provided practice trials and similar to OSPAN, the test procedure included three trials of each list length (3-7 tones), totalling 75 letters and 75 math operations.

#### 3.2.2.1.3 Operation Span (OSPAN)

Participants completed a two-step math operation and then tried to remember a letter (F, H, J, K, L, N, P, Q, R, S, T, or Y) in an alternating sequence (Unsworth et al., 2005). The same math operation procedure as TSPAN was used. The letter was presented visually for 1000ms after each math operation. During letter recall, participants saw a 4 x 3 matrix of all possible letters, each with its own check box. Letters were recalled in serial order by clicking on each letter's box in the appropriate order. Letter recall was untimed. Participants were provided practice trials and similar to TSPAN, the test procedure included three trials of each list length (3-7 letters), totalling 75 letters and 75 math operations.

## 3.2.2.1.4 Symmetry Span (SSPAN)

Participants completed a two-step symmetry judgment and were prompted to recall a visually-presented red square on a 4 X 4 matrix (Unsworth et al., 2005). In the symmetry judgment, participants were shown an 8 x 8 matrix with random squares filled in black. Participants had to decide if the black squares were symmetrical about the matrix's vertical axis and then click the screen. Next, they were shown a "yes" and "no" box and clicked on the appropriate box. Participants then saw a 4 X 4 matrix for 650 ms with one red square after each symmetry judgment. During square recall, participants recalled the location of each red square by clicking on the appropriate cell in serial order. Participants were provided practice trials to become familiar with the procedure. The test procedure included three trials of each list length (2-5 red squares), totalling 42 squares and 42 symmetry judgments.

#### 3.2.2.1.5 Gold-MSI Beat Perception

Participants were presented 18 excerpts of instrumental music from rock, jazz, and classical genres (Müllensiefen et al., 2014). Each excerpt was presented for 10 to 16s through headphones and had a tempo ranging from 86 to 165 beats per minute. A metronomic beep was played over each excerpt either on or off the beat. Half of the excerpts had a beep on the beat, and the other half had a beep off the beat. After each excerpt was played, participants answered if the metronomic beep was on or off the beat and provided their confidence: "I am sure", "I am somewhat sure", or "I am guessing". The final score was the proportion of correct responses on the beat judgment.

#### 3.2.2.1.6 Gold-MSI Melodic Memory Test

Participants were presented melodies between 10 to 17 notes long through headphones (Müllensiefen et al., 2014). There were 12 trials, half with the same melody and half with different melodies. During each trial, two versions of a melody were presented. The second version was transposed to a different key. In half of the second version melodies, a note was changed a step up or down from its original position in the structure of the melody. After each trial, participants answered if the two melodies had identical pitch interval structures.

#### 3.2.2.1.7 Number Series

Participants were presented with a series of numbers with an underlying pattern. After being given two example problems to solve, participants had 4.5 minutes in order to solve 15 different problems. Each trial had 5 different options as possible answers (Thurstone, 1938).

#### 3.2.2.1.8 Raven's Advanced Progressive Matrices

Participants were presented a  $3 \times 3$  matrix of geometric patterns with one pattern missing (Raven et al., 1998). Up to eight pattern choices were given at the bottom of the screen. Participants had to click the choice that correctly fit the pattern above. There were three blocks of 12 problems, totalling 36 problems. The items increased in difficulty across each block. A maximum of 5 min was allotted for each block, totalling 15 min. The final score was the total number of correct responses across the three blocks.

#### 3.2.3 Procedure

Participants in this experiment completed eight different tasks, lasting about 90 minutes in duration. The tasks consisted of the Gold-MSI self-report inventory, coupled with the Short Test of Musical Preferences, and a supplementary demographic questionnaire that included questions about socioeconomic status, aural skills history, hearing loss, and any medication that might affect their ability to perform on cognitive tests. Following the survey they completed three WMC tasks: a novel Tonal Span, Symmetry span, and Operation span task; a battery of perceptual tests from the Gold-MSI (Melodic Memory, Beat Perception, Sound Similarity) and two tests of general fluid intelligence (Gf): Number Series and Raven's Advanced Progressive Matrices.

Each task was administered in the order listed above on a desktop computer. Sounds were presented at a comfortable listening level for the tasks that required headphones. All participants provided informed consent and were debriefed. Only measures used in modeling are reported below.

#### 3.2.4 Results

#### 3.2.4.1 Descriptive, Data Screening, Correlational

The goal of the analyses was to examine the relationships among the measures and constructs of WMC, general fluid intelligence, musical sophistication (operationalized as the General score from the Gold-MSI), in relation to the two objective listening tests on the Gold-MSI. Before running any sort of modeling, we inspected our data to ensure in addition to outlier issues as mentioned above, the data exhibited normal distributions. We report both our correlation values, as well as visually displaying our distributions in Figure 1.

Before running any modeling, we checked our data for assumptions of normality since violations of normality can strongly affect the covariances between items. While some items in Figure 1 displayed a negative skew, many of the individual level items from the self report scale exhibited high levels of Skew and Kurtosis beyond the generally accepted  $\pm$  2 (Field, Miles, & Field, 2012), but none of the items with the unsatisfactory measures are used in the general factor.

#### **3.2.4.2** Modeling

#### 3.2.4.2.1 Measurement Model

We then fit a measurement model to examine the underlying structure of the variables of interest used to assess the latent constructs (general musical sophistication, WMC, general fluid intelligence) by performing a confirmatory factor analysis (CFA) using the lavaan package (Rosseel, 2013) using R (R Core Team, 2017). Model fits in can be found in Table 3. For each model, latent factors were constrained to have a mean of 0 and variance of 1 in order to allow the latent covariances to be interpreted as correlations. Since the objective measures were on different scales, all variables were converted to z scores before running any modeling.

#### • MODEL HERE

Variables are defined as follows: gen: general factor latent variable; wmc: working memory capacity; gf: general fluid intelligence; zIS: "Identify What is Special"; zHO: "Hear Once Sing Back"; zSB: "Sing Back After 2-3"; zDS: "Don't Sing In Public"; zSH: "Sing In Harmony"; zJI: "Join In"; zNI: "Number of Instrumetns"; zRP: "Regular Practice"; zNCS: "Not Consider Self Musician"; zNcV: "Never Complimented"; zST: "Self Tonal"; zCP: "Compare Performances"; zAd: "Addiction"; zSI: "Search Internet"; zWr: "Writing About Music"; zFr: "Free Time"; zTP: "Tone Span"; zMS: "Symmetry Span"; zMO: "Operation Span"; zRA: "Ravens"; zAN: "Number Series".

## 3.2.4.3 Structural Equation Models

Following the initial measurement model, we then fit a series of SEMs in order to investigate both the degree to which factor loadings changed when variables were removed from the model as well as the model fits. We began with a model incorporating our three latent variables (general musical sophistication, WMC, general fluid intelligence) predicting our two objective measures (beat perception and melodic memory scores) and then detailed steps we took in order to improve model fit. For each model, we calculated four model fits: 2, comparative fit index (CFI), root mean square error (RMSEA), and Tucker Lewis Index (TLI). In general, a non-significant 2 indicates good model fit, but is overly sensitive to sample size. Comparative Fit Index (CFI) values of .95 or higher are considered to be indicative of good model fits as well as Root Mean Square Error (RMSEA) values of .06 or lower, Tucker Lewis Index (TLI) values closer to 1 indicate a better fit. (Beajean, 2014).

After running the first model (Model 1), we then examined the residuals between the correlation matrix the model expects and our actual correlation matrix looking for residuals above .1. While some variables scored near .1, two items dealing with being able to sing ("I can hear a melody once and sing it back after hearing it 2-3 times" and "I can hear a melody once and sing it back") exhibited a high level of correlation amongst the residuals (.41) and were removed for Model 2 and model fit improved significantly ( 2 (41)=123.39, p < 0.001).

After removing the poorly fitting items, we then proceeded to examine if removing the general musical sophistication self-report measures would significantly improve model fit for Model 3. Fit measures for Model 3 can be seen in Table 3 and removing the self-report items resulted in a significantly better model fit (2 (171)=438.8, p < . 001). Following the rule of thumb that at least 3 variables should be used to define any latent-variable (Beajuean, 2014) we modelled WMC as latent variable and Gf as a composite average of the two tasks administered in order to improve model fit. This model resulted in significant improvement to the model (2 (4)=14.37, p < . 001). Finally we examined the change in test statistics between Model 2 and a model that removed the cognitive measures—a model akin to one of the original models reported in Müllensiefen et al., (2014)—for Model 5. Testing between the two models resulted in a significant improvement in model fit (2 (78)=104.75, p < . 001). Figure 3 displays Model 4, our nested model with the best fit indices.

- TABLE HERE
- ALL FIGURES OF MODELS

## 3.2.5 Discussion

#### 3.2.5.0.1 Measurement Model

After running a confirmatory factor analysis on the variables of interest, the model fit was below the threshold of what is considered a "good model fit" as shown in Table 1 with references to above model fits. This finding is to be expected since no clear theoretical model has been put forward that would suggest that the general musical sophistication score, when modelled with two cognitive measures should have a good model fit. This model was run to create a baseline measurement.

#### 3.2.5.0.2 Structural Equation Model Fitting

Following a series of nested model fits, we were able to improve model fits on a series of SEMs that incorporated both measures of WMC and measures of general fluid intelligence. Before commenting on new models, it is worth noting that the Model 5 does not seem to align with the findings from the original 2014 paper by Müllensiefen et al. While the correlation between the objective tasks is the same (r = .16), the factor loadings from this paper suggest lower values for both Beat Perception (.37 original, .27 this paper) as well as Melodic Memory (.28 original, .18 this paper). Note that two items were removed dealing with melody for memory for this model; when those items were re-run with the data, the factor loadings did not deviate from these numbers.

The first two models we ran resulted in minor improvements to model fit. While difference in models was significant (2 (41)=123.39, p < . 001), probably due to the number of parameters that were now not constrained, the relative fit indices of the models did not change drastically. It was not until the self-report measures were removed from the model, and then manipulated according to latent variable modeling recommendations, was there a marked increase in the relative fit indices. Fitting the model with only the cognitive measures, we were able to enter the bounds of acceptable relative fit indices that were noted above. In order to find evidence that the cognitive models (Models 3 and 4) were indeed a better fit than using the General factor, we additionally ran a comparison between our adjusted measurement model and a model with only the self report. While both of our nested models were significantly different, the cognitive models exhibited superior relative fit indices. Lastly, turning to Figure 3, we note that our latent variable of WMC exhibited much larger factor loadings predicting the two objective, perceptual tests than our measure of general fluid intelligence. We also note that the factor loading predicting the Beat Perception task (.36) was higher than that of the Melodic Memory task (.21). These rankings mirror that of the original Müllensiefen et al., (2014) paper and merit further examination in order to disentangle what processes are contributing to both tasks.

These results align with predictions made with Process Overlap Theory (Kovacs & Conway, 2016), which predict that higher executive loads are needed for tasks of perception. While we failed to predict which task would load higher –we assumed that the ability to maintain and manipulate information in the Melodic Memory task would be better predicted by WMC than the Beat Perception task– this might be due to the fact that performing well in a melodic memory task demands a certain amount of musical training that is not captured by either cognitive measure. In the future, we are interested in exploring more theoretically-driven models that use specific, task oriented predictors in order to explain the relationships between the perceptual tasks and the cognitive measures. Given the results here that suggest that measures of cognitive ability play a significant role in tasks of musical perception, we suggest that future research should consider taking measures of cognitive ability into account, so that other variables of interest are able to be shown to contribute above and beyond baseline cognitive measures.

In this paper we fit a series of structural equation models in order to investigate the degree to which baseline cognitive ability was able to predict performance on a musical perception task. Our findings suggest that measures of WMC are able to account for a large amount of variance beyond that of self report in tasks of musical perception.

# Chapter 4

# Computation Chapter

# OTHER PEOPLE WHO HAVE DONE THIS

• look into Wiggins et al., 1993, for history of representation

#### Folk music

- Bartok 1936?
- Bartok and Lord 1951
- Lomax 1977
- Steinbeck 1982
- Jesser 1992
- Sagrillo 1999
- GET AND READ PAT SAVAGE ARTICLE

# Popular Music

- Moor 2006
- Kramarz 2006
- Furnes 2006
- Riedemann????

# Computational Musicology

- $\bullet~$  Eerola eta al 2007 and 2007
- McCay 2005
- Huron 2006
- Frieler 2008
- JAZZOMAT PROJECRT OUTPUT

# 4.1 Humans like patterns and are very good at picking them up

- 4.1.1 We learn things implicitly
- 4.1.2 We can represent that implicit knowledge with a corpus
- 4.2 Pre-Musical Corpora
- 4.2.1 Information Theory
- 4.2.2 Computational Linguistics as front runner
- 4.3 Musical Corpora
- 4.3.1 History of Musical Corpora
- 4.3.1.1 Fun old computational music papers
- 4.3.1.2 Corpora that are often used
- 4.3.1.3 Static vs Dynamic models of feature abstraction (daniel slides?)
- 4.3.2 FANTASTIC
- 4.3.2.1 static
- 4.3.2.2 ML approach gets it right
- 4.3.2.3 simple to understand
- 4.3.2.4 Can abstract features be percieved?
- 4.3.2.4.0.1 Note density
- 4.3.2.4.0.2 Contour variation
- 4.3.2.4.0.3 Tonalness
- 4.3.2.4.0.4 weird computational measures
- 4.3.3 IDyOM as representation of musical materials
- 4.3.3.1 n-gram models
- 4.3.3.2 mirrors human behavior
- 4.3.3.2.0.1 melody

4.4. SO WHAT? 37

#### 4.3.3.2.0.2 harmony

### 4.4 So What?

- 4.4.0.1 Other research (Chapt 3) suggest need to move beyond cognitive measures
- 4.4.0.2 Can operationalize item level items contextually with a corpus
- 4.4.0.3 IF features are real, they should effect dictation (Chater 6)
- 4.4.0.4 Not only important for one off, but then would be incorporated into computational learning models (Chapter 6)
- 4.4.0.5 We need new materials

## Chapter 5

# Hello, Corpus

- 5.1 Brief review of Chapter 4 on corpus (Language to reflect journal submission)
- 5.1.1 Corpus outside of music
- 5.1.2 Corpus in Music
- 5.1.3 The point is that it implicitly represents humand knowledge
- 5.1.4 IDyOM 1
- 5.1.5 IDyOM 2
- 5.1.6 IDyOM 3
- 5.1.7 Huron suggestions that starts of melodies relate to mental rotation
- 5.1.8 Other Huron claims
- 5.2 Note problem with using corpus is making corpus
- 5.2.1 Many are used on Essen
- 5.2.2 Brinkman says Essen Sucks
- 5.2.3 If going to make generlizable claims, need to always have new data
- 5.3 Solem duty to encode and report on corpus
- 5.3.1 Justin London Article on what makes it into a corpsu
- 5.3.2 Though I just encoded the whole thing because in my heart of hearts I'm a Bayesian
- 5.4 The Corpus
- 5.4.1 History of Sight Singign books

## Chapter 6

# Experiments

| 0 1                           | TD 4 * 1  |   |
|-------------------------------|-----------|---|
| 6.1                           | Rational  | Ω |
| $\mathbf{v} \cdot \mathbf{r}$ | rtational | L |

- 6.1.1 Have done all this and have not actually talked about dictation yet
- 6.1.2 Clearly many factors contribte to this whole thing and need to be taken into a model
- 6.1.3 Dictation is basically a within subjects design Experiment
- 6.1.3.1 Get very ecological and dirty and run it
  - Paney 2016 had 30 second timing
- 6.1.4 Factors
- 6.1.4.1 Cognitive
- 6.1.4.1.1 WMC
- 6.1.4.1.2 GF
- 6.1.4.2 Training
- 6.1.4.2.1 Goldsmiths MSI
- **6.1.4.3** Musical
- **6.1.4.3.1 FANTASTIC**
- 6.1.4.3.2 IDyOM

- 6.1.4.4 Investigate melodies with this context and set scoring
- 6.1.4.5 Mirror design to see if effects of melody are there

### 6.2 Experiments

- 6.2.1 Experiment I
- 6.2.1.1 Participants
- 6.2.1.2 Procedure
- 6.2.1.3 Materials
- **6.2.1.4** Scoring
- **6.2.1.5** Results
- **6.2.1.6** Modeling
- 6.2.1.7 Discussion
- 6.2.2 Experiment II
- 6.2.2.1 Participants (New)
- 6.2.2.2 Procedure (Same)
- 6.2.2.3 Materials (Swapped but controlled)
- 6.2.2.4 Scoring (Same)
- 6.2.2.5 Results
- 6.2.2.6 Modeling (same)
- 6.2.3 General Discussion
- 6.2.3.1 What happened
- 6.2.3.2 Assumption of all of this is that many things are happening linearly in combination with each other
- 6.2.3.3 Additionally the mixed effects framework works better with more data?
- 6.2.3.4 Also how we score it is going to mess wiht the DVs
- 6.2.4 Really what is needed is Computational Model

## Chapter 7

# Computational Model

#### 7.1 Levels of Abstraction

In his 2007 article *Models of Music Similarity* (Wiggins, 2007), Geraint Wiggins distinguishes between descriptive and explanatory models in describing the modeling of human behavior. Descriptive models assert what will happen in response to an event. For example, as discussed in the previous chapter, as the note density of a melody increases and the tonalness of a melody decreases, a melody may become harder to dictate. While the increase in note density is assumed to drive the decrease in dictation scores, merely stating that there is an established relationship between one variable and the other says nothing about the inner workings of this process. An explanatory model on the other hand not only describes what will happen, but additionally notes why and how this process occurs. For example, much of the work musical expectation demonstrates that as exposure to a musical style for an individual increases, so does that person's ability to to predict specific events with a given musical texture (Pearce, 2018). Not only does more exposure predict more accurate responses, but many of these models derive their underlying theory about this behavior from the brain's ability to implicitly track statistical regularities in musical perception (Saffran et al., 1999; Margulis, 2014). The how derives from the brain's ability to track statistical regularities in musical information in the environment and the why derives from evolutionary demands in that organisms that are able to make more predictions about their environment are more likely to survive and pass on their genes (Huron, 2006).

Wiggins writes that although there can be both explanatory and descriptive theories, depending on the level of abstraction, a theory may be explanatory at one level, yet descriptive at another. Using the mind-brain dichotomy, he asserts that the example of a theory of implicit expectations could be explanatory at the level of behavior as noted above, but says nothing about what is happening at the neuronal level. Both descriptive and explanatory theories are needed in that descriptive theories are used to test explanatory theories, and by stringing together different layers of abstraction, we can arrive at a better understanding of how the world works.

Returning to melodic dictation, under Wiggins' framework, the Karpinski model of melodic dictation (Karpinski, 2000, 1990) qualifies as a descriptive model. The model says what happens over the time course of a melodic dictation—specifying four discrete stages discussed in earlier chapters—but does not explicitly state how or why this process happens. In order to have a more complete understanding of melodic dictation, an explanatory model is needed.

In this chapter I introduce an explanatory model of melodic dictation. The model is inspired by work from both computational musicology drawing on the work of Marcus Pearce's IDyOM (Pearce, 2005), as well as cognitive psychology using the uniform memory mechanism inspired by Cowan's Embedded Process Model (Cowan, 1988, 2010) of working memory to explain the perceptual components. In addition to quantifying each step, the model incorporates flexible parameters that could be adjusted in order to accommodate for individual differences, while still relying on a domain general process. By relying on cognitive mechanisms

based in statistical learning, rather than a rule based system for music analysis (Lerdahl and Jackendoff, 1986; Narmour, 1990, 1992; Temperley, 2004) this model allows for the heterogeneity of musical experience amongst a diversity of music listeners.

#### 7.2 Model Overview

The model consists of three main modules, each with its own set of parameters:

- 1. Prior Knowledge
- 2. Selective Attention
- 3. Transcription

Inspired by Bayesian computational modeling, the *Prior Knowledge* module reflects the previous knowledge an individual brings to the melodic dictation. The *Selective Attention*—somewhat akin to Karpinski's extractive listening—segments incoming musical information by using the window of attention as conceptualized as the limits of working memory capacity as a sensory bottleneck to constrict the size of musical chunk that an individual could to transcribe. Once musical material is in the focus of attention, the *Transcription* function pattern matches against the *Prior Knowledge's* corpus of information in order to find a match of explicitly known musical information. The *Transcription* function will recursively truncate what musical information is in *Selective Attention* if no match is found. This process reflects, but does not actually mirror the exact cognitive process used in melodic dictation, yet seems to be phenomenologically similar to the decision making process used when attempting notate novel melodies. Based on both the prior knowledge and individual differences of the individual, the model will scale in ability, with the general retrieval mechanisms in place. The exact details of the assumptions, parameters, and complete formula of the model are discussed below.

#### 7.3 Verbal Model

Below I describe my model's assumptions, parameters, as well as the steps taken when the model is run. After detailing the inner workings of each of the assumptions and the modules, described in roughly the order that they occur, I present the model using modular notation with the terminology described below. I discuss the issues of assumptions and representations as they arise in describing the model.

#### 7.3.1 Model Representational Assumptions

In order to write a computer program that mirrors the melodic dictation process, how the mind perceives and thinks about musical information must be defined *a priori*. Before delving into questions of representation, this model assumes that the musical surface<sup>1</sup> as represented by the notes via Western musical notation are salient and can be perceived as distinct perceptual phenomena. Although there is work that suggests that different cultures and levels of experience might not categorize melodic information universally (McDermott et al., 2016), other work suggests that experiencing pitches as discrete, categorical phenomena is categorized as a statistical human universal (Savage et al., 2015). For the purposes of this model I assume that individuals do in fact perceive the musical surface similarly to the written score.

Knowing that it is melodic information or melodic data that needs to be represented, the question then becomes what is the best way in which to represent it. This issue becomes increasingly complex when considering literature suggesting that the human mind represents musical information in a variety of different forms (Krumhansl, 2001; Levitin and Tirovolas, 2009).

For the purposes of this model and further examples I choose to represent musical information using both the pitch (note and scale degree) and timing (rhythm and inter-onset-interval) representation described in Pearce

<sup>&</sup>lt;sup>1</sup>As conceptualized as either a Schenkerian foreground (Schenker, 1935) or defined by Lerdahl and Jackendoff (1986)

7.3. VERBAL MODEL 45

(2018). Future research comparing this model's output using different representations will also contribute to conversations regarding pedagogy in that if one form of data representation mirrors human behavior than the others, it would provide more than evidence in support of the pedagogy of one system over another. How the model represents musical information is the first important parameter value that needs be chosen before running the model and this establishes the prior information.

#### 7.3.2 Contents of the Prior Knowledge

The *Prior Knowledge* consists of a corpus of digitally represented melodies taken to reflect the implicitly understood structural patterns in a musical style that the listener has been exposed to. The logic of representing an individual's prior knowledge follows the assumptions of both the Statistical Learning Hypothesis (SLH) and the Probabilistic Prediction Hypothesis (PPH), both core theoretical assumptions of the Information Dynamic of Music (IDyOM) model of Marcus Pearce (Pearce, 2005, 2018). Using a corpus of melodies to represent an individual's prior knowledge relies on the Statistical Learning Hypothesis which states:

musical enculturation is a process of implicit statistical learning in which listeners progressively acquire internal models of the statistical and structural regularities present in the musical styles to which they are exposed, over short (e.g., an individual piece of music) and long time scales (e.g., an entire lifetime of listening). p.2 (Pearce, 2018)

The logic here is that the more an individual is exposed musical material, the more they will implicitly understand it which leads the corroborating probabilistic prediction hypothesis which states:

while listening to new music, an enculturated listener applies models learned via the SLH to generate probabilistic predictions that enable them to organize and process their mental representations of the music and generate culturally appropriate responses. p.2 (Pearce, 2018).

Taken together and then quantified using Shannon information content (Shannon, 1948), it then becomes possible using the IDyOM framework to have a quantifiable measure that reliably predicts the amount of perceived unexpectedness in a musical melody that can change pending on the musical corpus that the model is trained on. As a model IDyOM has been successful mirroring human behavior in melodies, harmony–outperforming (Harrison and Pearce, 2018) sensory models of harmony (Bigand et al., 2014)—, and is also being developed to handle polyphonic materials (Sauve, 2017).

Stepping beyond the assumptions of IDyOM, the prior knowledge also needs to have a implicit/explicitly known parameter which indicates whether or not an pattern of music— or n-gram<sup>2</sup> pattern— is explicitly learned. This threshold can be set relative to the entire distribution of all n-grams in the corpus.

#### 7.3.3 Modeling Information Content

Having established that the models first established parameters to be decided are the representation of strings and the implicit/explicit threshold, the next important decision that has to be made is how decides segmentation for the second stage of selective attention. Although there has been a large amount of work on different ways to segment the musical surface using rule based methods (Lerdahl and Jackendoff, 1986; Margulis, 2005; Narmour, 1990, 1992), which rely on matching a music theorist's intuition with a set of descriptive rules somewhat like the boundary formation rules put forward in A Generative Theory of Tonal Music, as noted by Pearce (Pearce, 2018), rule based models often fail at when applied to music outside the Western art music canon. Additionally, since melodic dictation is an active memory process, rather than a semi-passive process of listening this model needs to be able to quantify musical information that is both dependent on prior musical experience and allows a movable boundary for selective attention so that musical information that is memory can be actively maintained, whilst carrying out another cognitive process, that of notating the melody.

 $<sup>^{2}</sup>$ n-grams refer to the amount of musical objects in a string. For example a bi-gram or 2-gram, would be an interval. Tri-grams or 3-grams would consist of two intervals and so on



Figure 7.1: Cadential Excerpt from Schubert's Octet in F Major

In order to create this metric, I rely on IDyOM's use of information content (Shannon, 1948) which quantifies the information content of melodies based on corpus of materials. For example, when trained against a corpus of melodies, this excerpt in Figure 7.1 from the fourth movement of Schubert's Octet in F Major (D.803) lists the information content of the excerpt calculated for each note atop the notation<sup>3</sup> Appearing in Figure 7.2, I plot the cumulative information content of the melody, along with both an arbitrary threshold for the limits of working memory capacity and where the subsequent segmentation boundary for musical material to be put in the Selective Attention buffer would be. These values chosen show a small example of how the Selective Attention module works. The advantage of operationalizing how an individual hears a melody like this is that melodies with lower information content, derived from an understanding of having more predictable patterns from the corpus, will allow for larger chunks to be put inside of the selective attention buffer. Additionally, individuals with higher working memory capacity would be able to take in more musical information.

Note that the notes above the melody here are dependent on what is current in the *Prior Knowledge* module. A corpus of prior knowledge with less melodies would lead to higher information content measures for each set of notes, while a prior knowledge that has extensive tracking of the patterns would lead to lower information content.

#### 7.3.4 Setting Limits with Transcribe

With each note then quantified with a measure of information content, it then becomes possible to set a limit on the maximum amount of information that the individual would be able to hold in memory as defined by the *Selective Attention* module. A higher threshold would allow for more musical material to be put in the attentional buffer, and a lower threshold would restrict the amount of information held in an attentional buffer. By putting a threshold on this value, this serves as something akin to a perceptual bottleneck based on the assumption that there is a capacity limit to that of working memory. Modulating this boundary will help provide insights into the degree to which melodic material can be retained between high and low working memory span individuals.

In practice, notes would enter the attentional buffer until the information content from the melody is equal to the memory threshold. At this point, the notes that are in the attentional buffer are sequestered and will be actively maintained in the attentional buffer. In theory, the maximum of the attentional buffer should not be reached since the individual performing the dictation would still need mental resources and attention to actively manipulate the information in the attentional buffer for the process of notating.

#### 7.3.5 Pattern Matching

With subset of notes of the melody represented in the attentional buffer, whether or not the melody becomes notated depends on whether or not the melody or string in the buffer can be matched with a string that

<sup>&</sup>lt;sup>3</sup>The following musical examples is taken from (?) reflects a model where IDyOM was configured to predict pitch with an attribute linking melodic pitch interval and chromatic scale degree (pitch and scale degree) using both the short-term and long-term models, the latter trained on 903 folk songs and chorales (data sets 1, 2, and 9 from table 4.1 in (Schaffrath, 1995) comprising 50,867 notes.

7.3. VERBAL MODEL 47

## Cumulative Information Content of Melody



Figure 7.2: Cumulative Information in Schubert Octet Excerpt

is explicitly known in the corpus. Mirroring a search pattern akin to Cowan's Embedded Process Model (Cowan, 1988, 2010), the individual would search across their long term memory, or *Prior Knowledge* for anything close to or resembling the string pattern in the attentional buffer. Cowan's model differs from other more module based models of working memory like those of Baddeley and Hitch (1974) by positing that working memory should be conceptualized as a small window that is the limit of consious attention. As an individual directs their attention to concepts represented in their long term memory, they can only spotlight a finite amount of information where categorical information regarding what is in the window of attention not far. An example of this bottlenecking is given after a formal statement of the model. Using this logic, longer pattern strings n-grams would be less likely to be recalled exactly since they occur less frequently in the prior knowledge.

When searching for a pattern match, the *Transcription* module is at work. If a pattern match that has been moved to *Selective Attention* is immediately found, the contents of *Selective Attention* would be considered to be notated. The model would register that a loop had taken place and document what the n-gram match was. Of course, finding an immediate pattern match each time is highly unlikely and the model needs to be able to compensate if that happens. If a pattern is not found in the initial search that is *explicitly* known, one token of the n-gram would be dropped off the string and the search would happen again. This recursive process would happen until an explicit long term memory match is made. Like humans taking melodic dictation, the computer would have the best luck finding patterns that fall within the largest density of a corpus of intervals distribution. Additionally, like students performing a dictation, if a student does not explicitly know an interval, or a 2-gram, the dictation would not be able to be completed. If this happens, both the model and student would have to move on to the next segment.

Eventually there would be a successful explicit match of a string in the *Transcription* module and that section of the melody would be considered to be dictated. The model here would register that one iteration of the function has been run and the chunk transcribed would then be recorded. After recording this history, the process would happen again starting at either the next note from where the model left off, the note in the entire string with the lowest information content, or n-gram left in the melody with that is most represented in the corpus. This parameter is defined before the model is run and the question of dictation re-entry certainly warrants further research and investigation.

This type of pattern search is also dependent on the way that the prior knowledge is represented. In the example here, both pitch and rhythmic information are represented in the string. Since there is probably a very low likelihood of finding an exact match for every n-gram with both pitch and rhythm, this pattern search can happen again with both rhythms and pitch information queried separately. If not found, exact pitch-temporal matches are found and the search is run again on either the pitch or rhythmic information separately; this would be computationally akin to Karpinski's proto-notation that he suggests students use in learning how to take melodic dictation (Karpinski, 2000, Chapter 3). This feature of the model would predict that more efficient dictations would happen when pitch and interval information is dictated simultaneously. Running the model prioritizing the secondary search with either pitch or rhythmic information prioritized would provide new insights into practical applications of dictation strategies. Using this separate search feature as an option of the model seems to match with the intuitions strategies that someone dictating a melody might use.

#### 7.3.6 Dictation Re-Entry

Upon the successful pattern match of a string, the Selective Attention and Transcription module would need too then be run again. As noted above, re-entry in the melody could be a highly subjective point of discussion. The model could either re-enter at the last note where the function successfully left off, the note in the melody with the lowest information content, the n-gram most salient in the corpus, or theoretically any other type of way that could be decided by the programmar. Entering at the last note not transcribed is logical from a computational standpoint, but this linear approach seems to be at odds with anecdotal experience. Entering at the note with the lowest information content seems to provide a intuitive point of re-entry in that it would then be easier to transcribe. Entering at the most represented n-gram seems to match the most with intuition in that people would want to tackle the easier tasks first, but this rests on the

7.4. FORMAL MODEL 49

assumption that humans are able to reliably detect the sections of a melody that are easiest to transcribe based on implicitly learned statistical patterns. For example, some people might instead choose to go to the end of a melody after successful transcription of the start of the melody. This might be because this part of the melody is most active in memory due to a recency effect, or it could be that that cadential gestures are more common in being represented in the prior knowledge.

#### 7.3.7 Completion

Given the recursive nature of this process, if all 2-grams are explicitly represented in the prior knowledge then the target melody should be transcribed. If only represented using such a small chunk, the model will have to loop over the melody many times, thus indicating that the transcriber had a high degree of difficulty dictating the melody. If there is a gap in explicit knowledge in the prior knowledge, only patches of the melody will be recorded and the melody will not be recorded in its entirety. An easier transcription will result in less iterations of the model with larger chunks. Though the current instantiation of the model does not incorporate how multiple hearings might change how a melody is dictated, one could constrain the process to only allow a certain number of iterations to reflect this. Of course as a new melody is learned it is slowly being introduced into long term memory and could be completely be capable of being represented in long term memory without being explicitly notated at the end of a dictation with time running out and thus not possible to be completed. This of course then would be imposing some sort of experimental constraint on the process and since this is meant to be a cognitive computational model of melodic dictation this caveat would complicate the model. Future research could be done to optimize the choices that the model makes in order to satisfy whatever constraints are imposed and could be an interesting avenue of future research, but are beyond the initial goals of the model.

#### 7.3.8 Model Output

The model then outputs each n-gram transcribed and can be counted as a series with less attempts mapping to an easier transcription. I believe that this lines with many intuitions about the process of melodic dictation. It first creates a linear mapping of attempts to dictate with difficulty of the melody. It relies on a distinction between explicit and implicit statistical knowledge. It is based on the embedded process model from working memory and attention, so is part of a larger generative model, giving it a bit more credibility that this *could* be how melodic dictation works.

#### 7.4 Formal Model

Below I present the computational model in psudeocode as described above in Figure 7.3. First listed are the defined inputs, the functions needed to run the algorithm, and then the sequence the model runs. To aid distinguishing between functions and objects, I put functions in italics and objects in bold. Below the model in Figure 7.4, I provide a brief walk through of one iteration of the model.

#### 7.4.1 Computational Model

#### **7.4.2** Example

The example above shows one iteration of the model run using the musical example from above using a hypothetical corpus for the pattern matching. Using the model above, the following inputs were defined a priori:

- The **Prior Knowledge** is a hypothetical corpus of symbolic strings representing all n-grams of melodies
- The Threshold is set to five exact matches in the Prior Knowledge

### Computational Model

Pseudocode Notation

Functions = *italicised*Objects = **bold** 

#### **Define Inputs**

priorKnowledge ← corpus of symbolic strings representing all possible n-grams of melodies

Consists of complex (IDyOM) and simple (pitch and rhythm) representation

threshold ← threshold set for priorKnowledge that determines which n-grams are explicitly represented

wmc ← individual limit on amount of information that can be held in memory

selectiveAttention ← buffer used to hold truncated melodies

targetMelody← novel melody represented as symbol string with calculated information content

stringPosition ← object used to track position in dictation

difficulty ← counter used to track number of iterations of model

dictation ← segmented string that holds n-grams parsed by model

#### **Define Functions**

```
\textit{listen} \leftarrow \text{function}(\textbf{targetMelody}) \{
```

- 1. IF length(targetMelody == 0 { DONE }
- 2. ELSE{ Read in symbols of target melody until melody information content >= wmc
- 3. Put symbols into selectiveAttention
- 4. **stringPosition** ← floor(selectiveAttention\$position)
- 5. Move contents of **selectiveAttention** to *transcribe* }

#### transcribe ← function(selectiveAttention){

- 1. Current string counter ++
- 2. Pattern match selectiveAttention to corpus where explicit == TRUE
  - a. IF(Match == TRUE) { run notateReentry on **selectiveAttention** }
  - b. IF(NO match found) { drop 1 token; re-run transcribe }
  - c. IF(NO 2-gram found) { run separate searches on **priorKnowledge** simple notation}
- 3. Pattern match selectiveAttention to priorKnowledge pitch representation where explicit == TRUE
- 4. Pattern match selectiveAttention to priorKnowledge rhythm representation where explicit == TRUE
- 5. If no 2-grams found, run notateReentry with noMatch == TRUE

#### $notateReentry \leftarrow function(selectiveAttention, noMatch == FALSE){}$

- 1. IF (noMatch == TRUE) { run listen at position stringPosition + 1 }
- ELSE { dictation ←← selectiveAttention; run listen at position stringPosition + 1 }

#### Run Model

listen(targetMelody)
transcribe()
notateReentry()

Figure 7.3: Formal Model

7.4. FORMAL MODEL 51



Figure 7.4: Model Example

- The WMC is set at 17
- The **Target Melody** is the Schubert excerpt from above
- String Position is used to track the position in the dictation
- The **Difficulty** object starts at 0
- The Dictation object is NULL to begin, and each new n-gram successfully transcribed is annexed to it

Figure 7.4 progresses from left to right over the course of time. The algorithm begins by first running the listen() function on the **Target Melody**. First the model checks that there are notes to transcribe; this being the first loop of the model, this is obviously FALSE so the next step is taken. Notes of the **Target Melody** are read in to the **Selective Attention** buffer until the information content of the melody exceedes that of the working memory threshold. This is depicted graphically in the leftmost panel of Figure 7.4. Each note unfolding over time metaphorically fills up the **Selective Attention** working memory buffer. When the amount of information reaches the perceptual bottleneck—as indicated by the dashed line—the **Selective Attention** buffer stops recieving information. At this point the model will mark where in the melody it stopped taking in new information for later. Here the contents in **Selective Attention** are moved to the transcribe() function.

With the contents of **Selective Attention** passed to **transcribe()**, the model adds one to the counter indicating the first search is about to run. Moving to the middle panel of Figure 7.4, the symbol string of notes in the first column are indexed against the **Prior Knowledge**. Only if a five note pattern has appeared more than or equal to five times, as determined by the **Threshold** input, will the corresponding **EXPLICIT** column be **TRUE**. In this case, this pattern has occurred over the threshold of 5 and thus a successful match is found. It is at this step that the search resembles that of Cowan's model of working memory as active attention. The pattern being searched for is compared against a vast amount of information, with cues from the contents of what is in **Selective Attention** grouping similar patterns together. At the neural level, this is most likely a much more complex process, but to show this grouping I note that this search is at least organized by the first pitch. I assume it would be reasonable that patterns starting on G as **SOL<sup>4</sup>** might happen together. Since this string does have a TRUE match with **EXPLICIT**, the contents of **Selective Attention** are considered notated. At this point the model would record the 5-gram, along with the string that it was matched with. the function would then re-run listen at the next point in the melody as tracked by the **String Position** object.

<sup>&</sup>lt;sup>4</sup>As determined by being calculated against the corpus with both pitch and scale degree information

If there were not to have been an exact match, the model would remove one token from the melody and performed the search again on the knolwedge of all 4-grams and add another tick to the **Difficulty** counter. This process would happen recusively until a match is found. If no match is found in either the complex representation, or that of the two rhythm and pitch corpora, the fifth step of transcribe would trigger notateReentry to be run without documenting the n-gram currently being dictated. This would be akin to a student not being able to identify a difficult interval, thus having to restart the melody at a new position. Decisions about re-entry warrent further research and discussion, but this model for the sake of parsimony, assumes linear continuation. As notated in 7.3.5, other modes of re-entry could be incorporated into the model.

This looping process would occur again and again until the entire melody is notated. With each iteration of each n-gram notated, the difficulty counter would increase in relation to the representation of that string in the corpus. This provides an algorithmic implementation of a theorist's intuition that less common n-grams or intervals (2-grams) are going to lead to higher difficulty in dictation. Also worth noting is steps 3 and 4 in the transcribe function are akin to Karpinski's proto-notation. Further research might consider advantages in the order of searchinging the **Prior Knowledge** corpora.

#### 7.5 Conclusions

In this chapter, I presented an explanatory, computational model of melodic dictation. The model combines work from computational musicology and work from cognitive psychology. In addition to being a complete model that explicates every step of the dictation process, the model seems to match phenomenological intuitions as to the process of melodic dictation. Given the current state of the model, it makes predictions about the dictation process and can eventually be implemented and tested against human behavioral data to provide evidence in support of its verisimilitude. Most importantly from a pedagogical standpoint, the model gives exact language as to how and why melodic dictation works, which can serve as a valuable pedagogical and research contribution.

## Chapter 8

# Reference Log

### 8.1 To Incorporate

- (Margulis, 2005) Margulis Model
- (Nichols et al., 2018) Specialty jazz background helps in tasks, WMC
- (?) Fix intext
- (Schumann and Klauser, 1860) Quote about why people should do ear training
- (Smith, 1934) Quote from K2001 about why people should do ear training
- (Long, 1977) Musical Characteristics predict memory
- (Taylor and Pembrook, 1983) Great citation that lots of things change memory, even structural!
- (?) Long boring talk on STM, LTM
- (Oura, 1991) Awful experimental design that says people use structual tones
- (Buonviri, 2014) Call for experimental, suggestions as to what factors might contribute, use of deductive reasoning, qualitative
- (Buonviri, 2015b) People need to focus right away, not establish, distractors
- (Buonviri, 2015a) Showing people visual music does not help much.
- (Buonviri, 2017) Listening helps with other things, no best strategy in terms of writing
- (Buonviri and Paney, 2015) Literature to say people are bad at teaching melodic dictation and we don't know a lot about it, also interesting stuff about what solfege systems people use
- (Butler, 1997) Call for music educators to do aural skills research, notes problem with aural skills pedagogy in lack of direction, also nice Nicholas Cook quotes on point of theory
- (Furby, 2016) music ed study with weird stats, has references to follow up on with advantages of pitch systems and people who recommend things for sight singing
- (Pembrook, 1986) Effects of melodies, also how people do it. Interesting that they too effect of
  melodies, but talka bout things in terms of notes and not in terms of information content. Thought ot
  have an experiment where the n-grams that are more common are easier to write down. Lots of good
  charts too.
- (Paney, 2016) It's not good if you tell people what to do when they are dictating, article has a lot of good review for dictation materials to add to the 'toRead' folder.
- (Fournier et al., 2017) Good references that people are awful at Aural Skills, Also suggestions that people are not that great at transfer, and some stuff to suggest academic ability is intertwined in all of this. Good reference for when starting to talk about untangling the mess that is aural skills.
- (?, 1995) Add on a new module to the WMC model of baddel with music, presents some evidence for why this theoretically should be included, but actually takes examples of dictation. A lot of this article felt like things that i was reinventing...not good.
- (?) Proof some other people are starting to think in terms of pedagogical schemas
- (Klonoski, 2000) Music cognition needs to talk to aural skills more, also need to unbind theory routine
  with aural skills and think of things more as in a perceptual learning hierarchy

- (Klonoski, 2006) great quotes that when people get something wrong with aural skills, what does that even mean, lack of transfer effects, article ends with ways to get better at things
- (Pembrook and Riggins, 1990) Survey of what people in the late 1980s were doing in terms of aural skills pedagogy
- (?) addresses why Gary Karpinski thinks we should teach melodic dictation
- (Potter, 1990) dictation teacher surprised that people don't keep up their dictaiton skills quote

### 8.2 Chapter 3

- (Cowan, 2005) This book will probably serve as cornerstone of chapter in terms of creating relevant literature in addition to EE course readings on WMC. Provides history of WMC models and notes how attention based model as opposed to Baddely loop might actually be better theoretical model for talking about fact that WMC could just be something related to attention if not that. Provides extensive listing on problems with chunking that are all relevant to music, but then also supports it. Shows that Miller 1956 is a generally bad citation, own author even says that in Miller 1989 (check and add) and says limit is probably about 4 (use Cowan 2001 for ctation find that). Lots of good ideas like how music is always serial recall, examples of how to model the process, great discussions on zooming out and categorical nature of music within span of WMC ideas.
- (Ockelford, 2007) uses case of savant to argue bits of Berz WM Music Model

# Bibliography

- (2018). National Association of Schools of Music Handbook. Technical report, National Association of Schools of Music, Reston, Virginia.
- Arthur, C. (2018). A Perceptual Study of Scale-degree Qualia in Context. *Music Perception: An Interdisciplinary Journal*, 35(3):295–314.
- Atkinson, R. C. and Shiffrin, R. M. (1968). HUMAN MEMORY: A PROPOSED SYSTEM AND ITS CONTROL PROCESSES! *Human Memory*, page 54.
- Baddeley, A. (2000). The episodic buffer: A new component of working memory? *Trends in Cognitive Sciences*, 4(11):417–423.
- Baddeley, A. D. and Hitch, G. (1974). Working Memory. In *Psychology of Learning and Motivation*, volume 8, pages 47–89. Elsevier.
- Baker, D. J. and Müllensiefen, D. (2017). Perception of Leitmotives in Richard Wagner's Der Ring des Nibelungen. Frontiers in Psychology, 8.
- Balen, J. V., Burgoyne, J. A., and Bountouridis, D. (2015). Corpus Analysis Tools for Computational Hook Discovery. *Proceedings of International Society for Music Information Retrevial 15*.
- Banton, L. (1995). The Role of Visual and Auditory Feedback during Sight-Reading of Music. *Psychology of Music*, 23(1):3–16.
- Berz, W. L. (1995). Working Memory in Music: A Theoretical Model. *Music Perception: An Interdisciplinary Journal*, 12(3):353–364.
- Bigand, E., Delbé, C., Poulin-Charronnat, B. A. A., Leman, M., and Tillmann, B. (2014). Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems Neuroscience, 8.
- Bland, L. (1984). Sight Singing Through Melodic Analysis: A Guide to the Study of Sight Singing and an Aid to Ear Training Instruction. Scarecrow Press.
- Broadbent, D. E. D. E. (1958). Perception and Communication. Pergamon.
- Buonviri, N. (2015a). Effects of music notation reinforcement on aural memory for melodies. *International Journal of Music Education*, 33(4):442–450.
- Buonviri, N. O. (2014). An Exploration of Undergraduate Music Majors' Melodic Dictation Strategies. *Update: Applications of Research in Music Education*, 33(1):21–30.
- Buonviri, N. O. (2015b). Effects of a Preparatory Singing Pattern on Melodic Dictation Success. *Journal of Research in Music Education*, 63(1):102–113.
- Buonviri, N. O. (2017). Effects of Two Listening Strategies for Melodic Dictation. *Journal of Research in Music Education*, 65(3):347–359.

Buonviri, N. O. and Paney, A. S. (2015). Melodic Dictation Instruction. *Journal of Research in Music Education*, 62(2):224–237.

- Butler, D. (1997). Why the Gulf between Music Perception Research and Aural Training? Bulletin of the Council for Research in Music Education, (132).
- Cambouropoulos, E. (2009). How similar is similar? Musicae Scientiae, 13(1\_suppl):7-24.
- Colley, I. D., Keller, P. E., and Halpern, A. R. (2018). Working memory and auditory imagery predict sensorimotor synchronisation with expressively timed music. *Quarterly Journal of Experimental Psychology*, 71(8):1781–1796.
- Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., and Engle, R. W. (2005). Working memory span tasks: A methodological review and user's guide. *Psychonomic Bulletin & Review*, 12(5):769–786.
- Corrigall, K. A., Schellenberg, E. G., and Misura, N. M. (2013a). Music Training, Cognition, and Personality. Frontiers in Psychology, 4.
- Corrigall, K. A., Schellenberg, E. G., and Misura, N. M. (2013b). Music Training, Cognition, and Personality. Frontiers in Psychology, 4.
- Cowan, N. (1988). Evolving Conceptions of Memory Storage, Selective Attention, and Their Mutual Constraints Within the Human Information-Processing System. *Psychological Bulletin*, 104(2):163–191.
- Cowan, N. (2005). Working Memory Capacity. Working memory capacity. Psychology Press, New York, NY, US.
- Cowan, N. (2010). The Magical Mystery Four: How Is Working Memory Capacity Limited, and Why? Current Directions in Psychological Science, 19(1):51–57.
- Cuthbert, M. S. and Ariza, C. (2010). Music21: A Toolkit for Computer-Aided Musicology and Symbolic Music Data. page 7.
- Darwin, C. (1859). On the Origin of Species. Routledge.
- Dewitt, L. A. and Crowder, R. G. (1986). Recognition of Novel Melodies after Brief Delays. *Music Perception:*An Interdisciplinary Journal, 3(3):259–274.
- Dooley, K. and Deutsch, D. (2010). Absolute pitch correlates with high performance on musical dictation. The Journal of the Acoustical Society of America, 128(2):890–893.
- Dowling, W. J. (1978). Scale and Contour: Two Components of a Theory of Memory for Melodies. *Psychological Review*, 84(4):341–354.
- Dowling, W. J. (1990). Expectancy and attention in melody perception. *Psychomusicology: A Journal of Research in Music Cognition*, 9(2):148–160.
- Dowling, W. J. (1991). Tonal strength and melody recognition after long and short delays. *Perception & Psychophysics*, 50(4):305-313.
- Eerola, T., Louhivuori, J., and Lebaka, E. (2009). Expectancy in Sami Yoiks revisited: The role of data-driven and schema-driven knowledge in the formation of melodic expectations. *Musicae Scientiae*, 13(2):231–272.
- Engle, R. W. (2002). Working Memory Capacity as Executive Attention. Current Directions in Psychological Science, 11(1):19–23.
- Ericsson, K. A., Krampe, R. T., and Tesch-Romer, C. (1993). The Role of Deliberate Practice in the Acquisition of Expert Performance.

Fournier, G., Moreno Sala, M. T., Dubé, F., and O'Neill, S. (2017). Cognitive strategies in sight-singing: The development of an inventory for aural skills pedagogy. *Psychology of Music*, page 030573561774514.

- Furby, V. J. (2016). The Effects of Peer Tutoring on the Aural Skills Performance of Undergraduate Music Majors. *Update: Applications of Research in Music Education*, 34(3):33–39.
- Gillespie, J. L. (2001). Melodic Dictation Scoring Methods: An Exploratory Study. Journal for Music Theory Pedagogy, 15.
- Goldman, A., Jackson, T., and Sajda, P. (2018). Improvisation experience predicts how musicians categorize musical structures. *Psychology of Music*, page 030573561877944.
- Gould, S. J. (1996). The Mismeasure of Man. WW Norton & Company.
- Handel, S. (1989). Listening: An Introduction to the Perception of Auditory Events. MIT Press, Cambridge.
- Hansen, M., Wallentin, M., and Vuust, P. (2013). Working memory and musical competence of musicians and non-musicians. *Psychology of Music*, 41(6):779–793.
- Harrison, C. S., Asmus, E. P., and Serpe, R. T. (1994). Effects of Musical Aptitude, Academic Ability, Music Experience, and Motivation on Aural Skills. *Journal of Research in Music Education*, 42(2):131.
- Harrison, P. M., Musil, J. J., and Müllensiefen, D. (2016). Modelling Melodic Discrimination Tests: Descriptive and Explanatory Approaches. *Journal of New Music Research*, 45(3):265–280.
- Harrison, P. M. C. and Pearce, M. T. (2018). Dissociating sensory and cognitive theories of harmony perception through computational modeling.
- Hofstetter, F. T. (1981). Computer-Baesed Recognition of Perceptual Patterns and Learning Styles in Rhythmic Dictation Exercises. *Journal of Research in Music Education*, 29(4):265–277.
- Huron, D. (1994). The Humdrum Toolkit: Reference Manual.
- Huron, D. (1996). The Melodic Arch in Western Folk Songs. Computing in Musicology, 10:3–23.
- Huron, D. (2006). Sweet Anticipation. MIT Press.
- Jakubowski, K., Finkel, S., Stewart, L., and Müllensiefen, D. (2017). Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery. *Journal of Aesthetics, Creativity, and* the Arts, 11(2):112–135.
- Karpinski, G. (1990). A Model for Music Perception and Its Implications in Melodic Dictation. *Journal of Music Theory Pedagogy*, 4(1):191–229.
- Karpinski, G. S. (2000). Aural Skills Acquisition: The Development of Listening, Reading, and Performing Skills in College-Level Musicians. Oxford University Press.
- Klonoski, E. (2000). A Perceptual Learning Hierarchy: An Imperative for Aural Skills Pedagogy. College Music Symposium, 4:168–169.
- Klonoski, E. (2006). Improving Dictation as an Aural-Skills Instructional Tool. page 6.
- Kopiez, R. and Lee, J. (2006). Towards a dynamic model of skills involved in sight reading music. *Music Education Research*, 8(1):97–120.
- Kopiez, R. and Lee, J. (2008). Towards a general model of skills involved in sight reading music. *Music Education Research*, 10(1):41–62.
- Kopiez, R. and Mullensiefen, D. (2011). Auf der Suche nach den "Popularitätsfaktoren" in den Song-Melodien des Beatles-Albums Revolver: Eine computergestützte Feature-Analyse [In search of features explaining the popularity of the tunes from the Beatles album Revolver: A computer-assisted feature analysis]. Musik und Popularitat. Beitrage zu einer Kulturgeschichte zwischen, pages 207–225.

Kovacs, K. and Conway, A. R. A. (2016). Process Overlap Theory: A Unified Account of the General Factor of Intelligence. *Psychological Inquiry*, 27(3):151–177.

- Krumhansl, C. (2001). Cognitive Foundations of Musical Pitch. Oxford University Press.
- Lane, D. M. and Chang, Y.-H. A. (2018). Chess knowledge predicts chess memory even after controlling for chess experience: Evidence for the role of high-level processes. *Memory & Cognition*, 46(3):337–348.
- Lerdahl, F. and Jackendoff, R. (1986). A Generative Theory of Tonal Music. MIT Press, Cambridge.
- Levitin, D. J. (2012). What Does It Mean to Be Musical? Neuron, 73(4):633-637.
- Levitin, D. J. and Tirovolas, A. K. (2009). Current Advances in the Cognitive Neuroscience of Music. *Annals of the New York Academy of Sciences*, 1156(1):211–231.
- Long, P. A. (1977). Relationships Between Pitch Memory in Short Melodies and Selected Factors. *Journal of Research in Music Education*, 25(4):272–282.
- Margulis, E. H. (2005). A Model of Melodic Expectation. *Music Perception: An Interdisciplinary Journal*, 22(4):663–714.
- Margulis, E. H. (2014). On Repeat: How Music Plays the Mind. Oxford University Press, Oxford.
- McDermott, J. H., Schultz, A. F., Undurraga, E. A., and Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. *Nature*, 535(7613):547–550.
- Meinz, E. J. and Hambrick, D. Z. (2010). Deliberate Practice Is Necessary but Not Sufficient to Explain Individual Differences in Piano Sight-Reading Skill: The Role of Working Memory Capacity. *Psychological Science*, 21(7):914–919.
- Meyer, L. (1956). Emotion and Meaning in Music. University of Chicago Press, Chicago.
- Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information.
- Miller, G. A. (1989). A History of Psychology in Autobiography, volume VIII. Stanford University Press, Stanford, CA, l. gardner edition.
- Mullensiefen, D. (2009). Fantastic: Feature ANalysis Technology Accessing STatistics (In a Corpus): Technical Report v1.5.
- Müllensiefen, D. and Halpern, A. R. (2014). The Role of Features and Context in Recognition of Novel Melodies. *Music Perception: An Interdisciplinary Journal*, 31(5):418–435.
- Müllensiefen, D., Harrison, P., Caprini, F., and Fancourt, A. (2015). Investigating the importance of self-theories of intelligence and musicality for students' academic and musical achievement. *Frontiers in Psychology*, 6.
- Müllensiefen, D. and Pendzich, M. (2009). Court decisions on music plagiarism and the predictive value of similarity algorithms. *Musicae Scientiae*, 48:257–295.
- Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. University of Chicago Press, Chicago.
- Narmour, E. (1992). The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model. University of Chicago Press.
- Nichols, B. E., Wöllner, C., and Halpern, A. R. (2018). Score one for jazz: Working memory in jazz and classical musicians. *Psychomusicology: Music, Mind, and Brain*, 28(2):101–107.
- Norris, C. (2003). The Relationship Between Sight Singing Achievement and Melodic Dictation Achievement. Contributions to Music Education, 30(1):39–53.

Ockelford, A. (2007). A Music Module in Working Memory? Evidence from the Performance of a Prodigious Musical Savant. *Musicae Scientiae*, 11(2 suppl):5–36.

- Ortmann, O. (1933). Some tonal determinants of melodic memory. *Journal of Educational Psychology*, 24(6):454–467.
- Oura, Y. (1991). Constructing a Representation of a Melody: Transforming Melodic Segments into Reduced Pitch Patterns Operated on by Modifiers. *Music Perception: An Interdisciplinary Journal*, 9(2):251–265.
- Oura, Y. and Hatano, G. (1988). Memory for Melodies among Subjects Differing in Age and Experience in Music. *Psychology of Music*, 16:91–109.
- Paney, A. S. (2016). The effect of directing attention on melodic dictation testing. *Psychology of Music*, 44(1):15–24.
- Paney, A. S. and Buonviri, N. O. (2014). Teaching Melodic Dictation in Advanced Placement Music Theory. Journal of Research in Music Education, 61(4):396–414.
- Pearce, M. (2005). The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition. PhD thesis, City University of London., Department of Computer Science.
- Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation: Enculturation: Statistical learning and prediction. *Annals of the New York Academy of Sciences*, 1423(1):378–395.
- Pearce, M. T. and Wiggins, G. A. (2012a). Auditory Expectation: The Information Dynamics of Music Perception and Cognition. *Topics in Cognitive Science*, 4(4):625–652.
- Pearce, M. T. and Wiggins, G. A. (2012b). Auditory Expectation: The Information Dynamics of Music Perception and Cognition. *Topics in Cognitive Science*, 4(4):625–652.
- Pembrook, R. G. (1986). Interference of the Transcription Process and Other Selected Variables on Perception and Memory during Melodic Dictation. *Journal of Research in Music Education*, 34(4):238.
- Pembrook, R. G. and Riggins, H. L. (1990). "Send Help!": Aural Skills Instruction in U.S. Colleges and Universities. *Journal of Music Theory Pedagogy*, 4(1):230–241.
- Peretz, I. and Coltheart, M. (2003). Modularity of music processing. *Nature Neuroscience*, 6(7):688–691.
- Pfordresher, P. Q. and Brown, S. (2007). Poor-Pitch Singing in the Absence of "Tone Deafness". *Music Perception: An Interdisciplinary Journal*, 25(2):95–115.
- Potter, G. (1990). Identifying Sucessful Dictation Strategies. Journal of Music Theory Pedagogy, 4(1):63–72.
- Rainsford, M., Palmer, M. A., and Paine, G. (2018). The MUSOS (MUsic SOftware System) Toolkit: A computer-based, open source application for testing memory for melodies. *Behavior Research Methods*, 50(2):684–702.
- Ritchie, S. (2015). Intelligence: All That Matters. All that matters. Hodder & Stoughton.
- Root, F. (1931). Methodical Sight-Singing: Lessons in Vocal Culture. Bryn Mawr, Pennsylvania: Theodore Presser Co.
- Saffran, J. R., Johnson, E. K., Aslin, R. N., and Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. *Cognition*, 70(1):27–52.
- Sauve, S. (2017). Prediction in Polyphony: Modelling Auditory Scene Analysis. PhD thesis, Queen Mary, University of London, Centre for Digital Music.
- Savage, P. E., Brown, S., Sakai, E., and Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. *Proceedings of the National Academy of Sciences*, 112(29):8987–8992.

- Schaffrath, H. (1995). The Essen Folk Song Collection, D. Huron.
- Schellenberg, E. G. (1997). Simplifying the Implication-Realization Model of Melodic Expectancy. *Music Perception: An Interdisciplinary Journal*, 14(3):295–318.
- Schellenberg, E. G. (2017). Music and Nonmusical Abilities. page 17.
- Schellenberg, S. and Moore, R. S. (1985). The Effect of Tonal-Rhythmic Context on Short-Term Memory of Rhythmic and Melodic Sequences. *Bulletin of the Council for Research in Music Education*, (85):207–217.
- Schenker, H. (1935). Der Freie Satz, volume III. Universal Edition.
- Schumann, R. and Klauser, K. (1860). Musikalische Haus-Und Lebens-Regeln. J. Schuberth & Comp.
- Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379–423.
- Smith, M. (1934). Solfège: An essential in musicianship. Music Supervisors' Journal, 20(5):16–20.
- Spearman, C. (1904). "General Intelligence," Objectively Determined and Measured. page 93.
- Stevens, C. J. (2012). Music Perception and Cognition: A Review of Recent Cross-Cultural Research. *Topics in Cognitive Science*, 4(4):653–667.
- Swaminathan, S., Schellenberg, E. G., and Khalil, S. (2017). Revisiting the association between music lessons and intelligence: Training effects or music aptitude? *Intelligence*, 62:119–124.
- Talamini, F., Altoè, G., Carretti, B., and Grassi, M. (2017). Musicians have better memory than nonmusicians: A meta-analysis. *PLOS ONE*, 12(10):e0186773.
- Taylor, J. A. and Pembrook, R. G. (1983). Strategies in memory for short melodies: An extension of Otto Ortmann's 1933 study. *Psychomusicology: A Journal of Research in Music Cognition*, 3(1):16–35.
- Temperley, D. (2004). The Cognition of Basic Musical Structures. MIT Press, Cambridge.
- Unsworth, N., Heitz, R. P., Schrock, J. C., and Engle, R. W. (2005). An automated version of the operation span task. *Behavior Research Methods*, 37(3):498–505.
- Wiggins, G. A. (2007). Models of musical similarity. Musicae Scientiae, 11(1\_suppl):315-338.
- Williamson, V. J., Baddeley, A. D., and Hitch, G. J. (2010). Musicians' and nonmusicians' short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. *Memory & Cognition*, 38(2):163–175.
- Williamson, V. J. and Müllensiefen, D. (2012). Earworms from Three Angles: Situational Antecedents, Personality Predisposition and the Quest for a Musical Formula. *Proceedings from the 12th International Conference on Music Perception and Cognition*, pages 1124–1132.
- Wöllner, C. and Halpern, A. R. (2016). Attentional flexibility and memory capacity in conductors and pianists. *Attention, Perception, & Psychophysics*, 78(1):198–208.
- Wright, C. R. (2016). Investigating Aural: A Case Study of its Relationship to Degree Success and its Understanding by University Music Students.