Système de Classification Automatique d'Images de Chiens

Faciliter le travail de l'association de protection animale.

Réaliser par Hicham, Théo et Boubaker

Contexte et Problématique

L'association et ses missions

Protection animale et adoption responsable dans notre quartier.

Défi à relever

Classer automatiquement les photos de chiens reçues par l'association.

Objectif du projet

Réduire la charge manuelle via un modèle d'intelligence artificielle.

Jeu de données Utilisé

Source et taille

Stanford Dogs Dataset: 20 580 images couvrant 120 races.

Variété des races

Grande diversité pour une classification robuste.

Format des données

Images étiquetées avec des races précises, tailles variées.

Pipeline de Prétraitement

Redimensionnement

Toutes les images sont uniformisées à 224x224 pixels.

Augmentation de données

Rotations, zoom, et renversements pour enrichir le dataset.

Normalization

Valeurs de pixels normalisées pour accélérer l'apprentissage.

Exploration et Qualité des Données

Analyse des classes

Distribution inégale avec certaines races sous-représentées.

Qualité visuelle

Images variées en luminosité et arrière-plan, nécessitant robustesse.

Races rares renforcées par techniques d'augmentation.

Approche 1: CNN from Scratch

Architecture

Réseau profond construit et entraîné depuis zéro.

Performances

Accuracy initiale d'environ 70%, nécessite optimisation.

Limitations

Long temps d'entraînement et surapprentissage potentiel.

Approche 2: Transfer Learning

Modèle utilisé

Base ResNet50 pré-entraînée sur ImageNet.

Avantages

Faster training, meilleure généralisation sur notre dataset.

Résultats

Accuracy montée à 87%, robuste aux variations.

Comparatif des Modèles et Choix

Modèle	Accuracy (%)	Temps d'entraînement
CNN Scratch	70	Long
Transfer Learning	87	Court

Le Transfer Learning est retenu pour ses performances et rapidité.

bep learnninğg mo'del eep èranmeel εεις utit

simpller stimtler very conpless modlels seippatele verry-acturecs

Made with **GAMMA**

Intégration et Déploiement Web

1

Upload d'image

L'utilisateur envoie la photo du chien via le navigateur.

2

Prédiction IA

Le modèle retourne les 3 races les plus probables.

3

Affichage Résultat

Résultats présentés simplement pour l'équipe vétérinaire.

Golden Retriever

Identify Breed

Bénéfices et Prochaines Étapes

Gain de temps

Moins de tri manuel et identification rapide.

Amélioration continue

Enrichissement du dataset et amélioration du modèle.

Évolution du projet

Intégration de nouvelles fonctionnalités et déploiement mobile.