7. NGHIỆM VỚI YẾU TỐ GIẢI TÍCH

7.1. Liên tục:

Cho $f \in \mathbb{R}[x]$, $\deg f = n$. Nếu tồn tại 2 số a, b mà f(a).f(b) < 0 thì đa thức f(x) có ít nhất một nghiệm x = c nằm giữa a và b.

Bổ đề: Nguyên lí về dãy các đoạn thát:

• Một dãy các đoạn $\left(\Delta_n\right)_n$ với $\Delta_n = \left[a_n, b_n\right] \subset \mathbb{R}$ được gọi là một dãy thắt những đoạn nếu $\Delta_{n+1} \subset \Delta_n$ và $\lim_{n \to \infty} \left(b_n - a_n\right) = 0$. Nếu $\left(\Delta_n\right)_n$ là một dãy thắt những đoạn thì tồn tại phần tử duy nhất thuộc mọi đoạn Δ_n .

Chứng minh: Vì $\Delta_{n+1} < \Delta_1$ nên (a_n) là dãy tăng và (b_n) là dãy giảm. Mặt khác: $\Delta_{n+1} \subset \Delta_1$ nên cả 2 dãy này bị chặn trong đoạn $[a_1; b_1]$, do đó chúng có giới hạn.

Và $\lim (b_n - a_n) = 0 \Rightarrow \lim b_n = \lim a_n = c$.

Ta có: $a_n \le c \le b_n \Rightarrow c \in \Delta_n$, $\forall n$.

Giả sử có $c' \in [a_n; b_n], \forall n \Rightarrow 0 \le |c' - c| \le b_n - a_n$.

Cho $n \rightarrow \infty$ thì c = c' (dpcm).

• Chứng minh định lí:

Vì f(a).f(b) < 0 nên giả sử f(a) > 0, f(b) < 0.

và vì $f(b_n) < 0$, nên $f(c) \le 0$. Do đó : f(c) = 0.

Ta thành lập dãy thát những đoạn bởi các điểm chia là trung điểm.

Néu:
$$f\left(\frac{a+b}{2}\right) = 0 \Rightarrow c = \frac{a+b}{2}$$

Neu:
$$f\left(\frac{a+b}{2}\right) \neq 0$$
 thì gọi $\Delta_i = \left[\frac{a+b}{2}; b\right]$ khi $f\left(\frac{a+b}{2}\right) > 0$.

Còn gọi $\Delta_1 = \left[a; \frac{a+b}{2}\right]$ khi $f\left(\frac{a+b}{2}\right) < 0$. Như vậy, ta có $\Delta_1 = \left[a_1; b_1\right]$ mà $f\left(a_1\right).f\left(b_1\right) < 0$. Tiếp tục như vậy thì có dãy thát những đoạn Δ_n và $\frac{b_n - a_n}{2} = \frac{a-b}{2^n} = 0$. Theo nguyên lí thì tồn tại duy nhất $c \in \Delta_n$, $\forall n$. Suy ra $\lim a_n = \lim b_n = c$. Mà f liên tục và $f\left(a_n\right) > 0$, suy ra $f\left(c\right) \ge 0$

7.2. Nghiệm bội:

 α là nghiệm bội k của $f \in \mathbb{R}[x]$ khi :

$$\begin{cases} f(\alpha) = f'(\alpha) = \dots = f^{(k-1)}(\alpha) = 0 \\ f^{(k)}(\alpha) \neq 0 \end{cases}$$

Chúng minh: Vì theo phân tích: $f(x) = (x - \alpha)^k g(x)$, $g(\alpha) \neq 0$.

• Kết quả :

Nếu f(x) có nghiệm bội k > 1 thì f'(x) có nghiệm bội k - 1.

7.3. Nghiệm của đa thức bậc 3:

$$f(x) = ax^3 + bx^2 + cx + d, a \neq 0.$$

Ta có: $f'(x) = 3ax^2 + 2bx + c \Rightarrow \Delta' = b^2 - 3ac$.

- Nếu $f'(x) \ge 0$, $\forall x$ hay $f'(x) \le 0$, $\forall x$ thì f(x) = 0 chỉ có 1 nghiệm.
- Nếu f'(x) = 0 có 2 nghiệm phân biệt thì đồ thi có 2 cực tri :
- Với $y_{CD}.y_{CT} > 0$ thì f(x) = 0 chỉ có 1 nghiệm.
- Với $y_{CD}.y_{CT} = 0$ thì f(x) = 0 có 2 nghiệm (1 đơn, 1 kép).
- Với $y_{CD}.y_{CT} < 0$ thì f(x) = 0 có 3 nghiệm phân biệt.

7.4. Số nghiêm từ bảng biến thiên:

Dựa vào bảng biến thiên hàm số f(x) trên 1 miền xác định.

- Nếu f giữ nguyên một dấu trên khoảng (a; b) thì vô nghiệm trên khoảng đó, còn nếu f biến đổi dấu từ (-) sang (+) hay ngược lại trên khoảng (c; d) thì có đúng một nghiệm trên đó.
- Số lượng nghiệm f(x) = 0 là số giá trị y = 0 được mô tả qua BBT.

• Kết quả:

- (1): Da thức bậc lẻ thì có ít nhất 1 nghiệm.
- (2): Nếu $a_0 > 0$ thì tồn tại $(b; +\infty)$ để f' > 0 nên f vô nghiệm trên đó.
- (3) : Nếu f(x) vô nghiệm trên khoảng (A; B) thì f giữ nguyên một dấu trên miền đó.
- (4) : Nếu đa thức vô nghiệm trên \mathbb{R} thì hoặc đa thức là hằng số khác 0 hoặc đa thức bậc chẵn luôn luôn dương hoặc luôn luôn âm.
- (5): Đa thức liên tục trên \mathbb{R} , nếu đổi dấu bao nhiều lần thì có ít nhất bấy nhiều nghiệm thuộc từng khoảng đó.

7.5. Định lí La-gơ-răng:

Nếu hàm số f(x) liên tục trên đoạn [a;b] và có đạo hàm trên khoảng (a;b) thì tồn tại số $c \in (a;b)$ sao cho : $\frac{f(b)-f(a)}{b-a} = f'(c)$.

- Định lí Rolle: Nếu f có hai nghiệm x = a, x = b và có đạo hàm trên [a; b] thì giữa hai nghiệm của f(x) có một nghiệm của đạo hàm f'(x) sao cho: ∃c∈(a; b): f'(c) = 0.
- Áp dụng vào đa thức f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x), nếu f(a) = f(b) hoặc f(a) = f(b) = 0 thì tồn tại nghiệm c của f'(x) nằm giữa a và b. Nếu f có k nghiệm thì f' có k-1 nghiệm, f" có k-2 nghiệm,...
- 7.6. Quy tắc dấu Descarte: $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, $a_0 \neq 0$ Gọi D là số nghiệm dương (kể cả bội).

L là số lần đổi dấu trong dãy hệ số khác 0 từ a_0 đến a_n (bỏ $a_i = 0$).

Thì $D \le L$ và L - D là số chắn. Do đó : L = D + 2m, $m \in N$.

Bài tập 75: Chứng minh phương trình:

- a) $x^4 3x + 1 = 0$ có nghiệm.
- b) $x^5 5x^3 + 4x 1 = 0$ có 5 nghiệm.

Giải :

a) Xét $f(x) = x^4 - 3x + 1$ thì f liên tục trên \mathbb{R} .

Vì f(0).f(1) < 0 nên phương trình có nghiệm $x \in (0;1)$.

b) Giải tương tư với 6 giá trị liên tiếp đổi dấu:

$$f(-2) = -1$$
; $f(-\frac{3}{2}) = \frac{73}{32}$; $f(0) = -1$;

$$f\left(\frac{1}{2}\right) = \frac{13}{32}$$
; $f(1) = -1$; $f(3) = 119$

nên phương trình có 5 nghiệm thuộc 5 khoảng rời nhau:

$$\left(-2;-\frac{3}{2};\left(-\frac{3}{2};0\right);\left(0;\frac{1}{2};1\right);\left(1;3\right).$$

Bài tập 76: Cho $f \in \mathbb{R}[x]$. Chứng minh:

- a) Nếu deg f = 2n và f(1)+f(3)+f(5)=0 thì có 2 nghiệm.
- b) Néu f(0) = f(1) thì $f(x + \frac{1}{m}) = f(x)$, m nguyên dương có nghiệm.

Giải:

a) Vì đa thức f liên tục trên \mathbb{R} và deg f = 2n nên :

$$\lim_{\substack{x \to \pm \infty \\ 1 \text{ sign}}} f(x) = +\infty \text{ ness } a_0 > 0$$

$$\lim_{\substack{x \to \pm \infty \\ 1 \text{ sign}}} f(x) = -\infty \text{ ness } a_0 < 0.$$

Vì f(1)+f(3)+f(5)=0 nên tồn tại hai giá trị trái dấu trong ba giá trị f(1), f(3), f(5). Do đó f luôn có 2 khoảng (a;b) mà f(a).f(b)<0.

Vậy f có ít nhất 2 nghiệm.

b) Đặt
$$g(x) = f\left(x + \frac{1}{m}\right) - f(x)$$
, m nguyên dương.

Thì tổng: $g(0)+g\left(\frac{1}{m}\right)+g\left(\frac{2}{m}\right)+...+g\left(\frac{m-1}{m}\right)=0$ nên tồn tại 2 giá

trị trái dấu g(a).g(b) < 0, tức là g(x) có nghiệm.

Vậy:
$$f\left(x + \frac{1}{m}\right) = f(x)$$
 có nghiệm.

Bài tập 77: Cho hai đa thức $f, g \in \mathbb{R}[x]$ mà f(g(x)) = g(f(x)).

Chứng minh rằng nếu f(x) = g(x) vô nghiệm thì f(f(x)) = g(g(x)) cũng vô nghiệm.

Giải:

Xét h(x) = f(x) - g(x) liên tục trên \mathbb{R} .

Vì h(x) vô nghiệm nên h(x) luôn luôn dương hoặc âm.

Do đó:
$$f(f(x))-g(g(x))=f(f(x))-g(f(x))+g(f(x))-g(g(x))$$

= $h(f(x))+f(g(x))-g(g(x))$
= $h(f(x))+h(g(x))$: luôn dương hoặc âm.

 $V_{x}^{a}y: f(f(x)) = g(g(x)) \text{ vo nghiệm.}$

Bài tập 78: Tìm a, b để $f(x) = 2x^4 + ax^3 + bx^2 + ax - b$ chia hết cho $(x-1)^2$. Chứng minh khi đó thì f(x) không chia hết cho $(x-1)^3$.

Giải:

Ta có: $f(x):(x-1)^2$ nên f có nghiệm bội $k \ge 2$.

$$\Rightarrow \begin{cases} f(1) = 0 \\ f'(1) = 0 \end{cases} \Rightarrow \begin{cases} 2 + a + b + a - b = 0 \\ 8 + 3a + 2b + a = 0 \end{cases} \Rightarrow \begin{cases} a = -1 \\ b = -2. \end{cases}$$

Do dó:
$$f(x) = 2x^4 - x^3 - 2x^2 - x + 2$$

 $f'(x) = 8x^3 - 3x^2 - 4x - 1$
 $f''(x) = 24x^2 - 6x - 4$

Vì $f''(1) = 14 \neq 0$ nên f(x) không chia hết cho $(x-1)^3$.

Bài tập 79: Cho $f \in \mathbb{R}[x]$, deg f = n. Giả sử a < b mà f(a).f(b) < 0. Chứng minh f(x) có một số lẻ nghiệm trong khoảng (a;b) kể cả bội. Còn nếu f(a).f(b) > 0 thì f(x) có một số chắn các nghiệm trong khoảng (a;b).

Giải:

Giả sử $\alpha_1, \alpha_2, ..., \alpha_s$ là các nghiệm của f(x) với các bội tương ứng là $k_1, k_2, ..., k_s$. Khi đó: $f(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} ... (x - \alpha_s)^{k_s} g(x)$

Trong đó g(x) không có nghiệm trong (a;b) nên đa thức g(x) giữ nguyên dấu trong (a;b). Giả sử g(x)>0 với $x \in [a;b]$. Ta có f(b).g(b)>0 còn $f(a).g(a).(-1)^{k_1+k_2+...+k_r}>0$. Vì f(a) trái dấu với f(b) và g(a) cùng dấu với g(b) do đó f(a) trái dấu với g(a). Vì thế $k_1+k_2+...+k_r$ là số lẻ. Chứng minh tương tự khi f(a).f(b)>0.

Bài tập 80: Chứng minh rằng với mọi số a nguyên, đa thức:

$$f(x) = x^4 - 2001x^3 + (2000 + a)x^2 - 1999x + a$$

không thể có hai nghiệm nguyên (phân biệt hay trùng nhau).

Giải:

Trước hết ta chứng minh rằng nếu x_0 là một nghiệm nguyên của f(x) thì x_0 phải là số chắn.

That vay:
$$\begin{cases} f(x_0) = 0 \\ f(1) = 2a - 1999 = so \text{ lê} \end{cases} \Rightarrow f(x_0) - f(1) = so \text{ lê}.$$

Nhưng $f(x_0)-f(1)$ chia hết cho x_0-1 nên x_0-1 là một số lẻ, do đó x_0 chắn. Ta xét 2 trường hợp:

a) Giả sử f(x) cố 2 nghiệm nguyên x_1, x_2 phân biệt, thì :

$$0 = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = (x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3) - 2001(x_1^2 + x_1 x_2 + x_2^2) + (2000 + a)(x_1 + x_2) - 1999.$$

Đẳng thức không thể xảy ra vì x_1, x_2 chẵn.

b) Giả sử f(x) có nghiệm kép x_0 (chẩn). Khi đó x_0 cũng là nghiệm của đạo hàm f'(x):

$$f'(x_0) = 4x_0^3 - 6003x_0^2 + 2(2000 + a)x_0 - 1999 = 0.$$

Đảng thức này không thể xảy ra vì x₀ chẩn.

Bài tập 81: Sử dụng quy tắc dấu Descarte để chứng minh phương trình:

- a) $x^4 6x^3 + 8x^2 + 4x 1 = 0$ có ít nhất 1 nghiệm dương.
- b) $x^4 2x^3 2x + 1 = 0$ có đúng 2 nghiệm.
- c) $x^5 2x^4 8x^3 x^2 9x + 1 = 0$ có đúng 2 nghiệm dương và ít nhất 1 nghiệm âm.

Giải:

a) Dãy các dấu của các hệ số là: + - + + -

Gọi L là số lần đổi dấu hệ số và D là số nghiệm dương thì:

$$L=3 \Rightarrow 3=D+2k$$
.

Do đó D=3 hoặc D=1 hay $D\ge 1$ nên phương trình có ít nhất một nghiệm dương.

b) Dãy các dấu của hệ số là : + - - + nên : $L = 2 \Rightarrow 2 = D + 2k$.

Do đó D = 0 hoặc D = 2.

Mặt khác f(0) = 1, f(1) = -2 nên f(0).f(1) < 0 do đó phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (0; 1).

Vây D > 0 do đó D = 2 nên phương trình có 2 nghiệm dương.

Rõ ràng f(x) > 0 nếu x < 0 nên phương trình chỉ có 2 nghiệm đương, không có nghiệm âm.

c) Dãy các dấu của hệ số là : + - - - + nên : L = 2.

Do đó D = 0 hoặc D = 2.

Vì f(0)=1 và r(1)<0 nên phương trình có nghiệm dương trong khoảng (0;1). Vậy D>0 do đó D=2.

Xét
$$g(x) = f(-x) = -x^5 - 2x^4 + 8x^3 - x^2 + 9x + 1$$
.

Dãy các dấu hệ số của g(x) là: - - + - + +

Suy ra L=3, do đó phương trình g(x)=0 có ít nhất 1 nghiệm dương nên phương trình f(x)=0 có ít nhất 1 nghiệm âm.

Bài tập 82: a) Cho abc $\neq 0$ và $\frac{a}{7} + \frac{b}{5} + \frac{c}{3} = 0$.

Chứng minh: $f(x) = ax^4 + bx^2 + c = 0$ có nghiệm.

b) Cho
$$f \in \mathbb{R}[x], f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
.

Chứng minh rằng nếu: $\frac{a_n}{n+1} + \frac{a_{n-1}}{n} + ... + \frac{a_1}{2} + \frac{a_0}{1} = 0$ thì f có nghiệm.

(Vô dịch sinh viên)

Giải:

a) Xét $F(x) = \frac{a}{7}x^7 + \frac{b}{5}x^5 + \frac{c}{3}x^3$ thì F liên tục, có đạo hàm $F'(x) = x^2 f(x)$. Áp dụng định lí La-go-răng trên [0;1] thì tồn tại $c \in (0;1)$: $\frac{F(1) - F(0)}{1 - O} = F'(c)$.

Mà
$$F(0) = 0$$
; $F(1) = \frac{a}{7} + \frac{a}{5} + \frac{c}{3} = 0$ nên $F'(x) = 0$.

Vì $c \in (0,1)$ nên $c^2 \neq 0$ do đó f(c) = 0.

Vây f(x) có nghiệm.

b) Xét Q(x) =
$$\frac{a_n}{n+1}x^{n+1} + \frac{a_{n-1}}{n}x^n + ... + \frac{a_1}{2}x^2 + \frac{a_0}{1}x$$
.

Thì Q(0) = Q(1) = 0.

Áp dụng định lí Rolle thì Q(x) có 2 nghiệm nên Q'(x) = f(x) có nghiệm.

Bài tập 83 : Cho $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n, a_0 \neq 0$ có n nghiệm phân biệt. Chứng minh :

a)
$$f(x)-f'(x)=0$$
 cũng có n nghiệm phân biệt.

b)
$$(n-1)a_1^2 > 2na_0a_2$$
.

Giải:

a) Đặt $g(x) = e^{-x} f(x)$. Vì f(x) = 0 có n nghiệm $\alpha_1 < \alpha_2 < ... < \alpha_n$ nên $g(\alpha_i) = 0, (i = 1, 2, ..., n)$. Theo định lí Rolle, trong mỗi khoảng $(\alpha_i; \alpha_{i+1}), (i = 1, 2, ..., n-1)$ có tồn tại β_i để $g'(\beta_i) = 0$.

Mặt khác ta thấy: $g'(x) = e^{-x}[f(x) - f'(x)]$.

Suy ra : f(x)-f'(x) có n-1 nghiệm $\beta_1,\beta_2,...\beta_{n-1}$ và do đó nó sẽ có đủ n nghiệm.

b) Vì f(x) có n nghiệm phân biệt nên theo định lí Rolle thì : f'(x) có n-1 nghiêm.

f''(x) có n-2 nghiệm, ...

$$\Rightarrow f^{(n-2)}(x) = \frac{n!}{2} a_0 x^2 + (n-1)! a_1 x + (n-2)! a_2 \text{ có 2 nghiệm phân biệt.}$$

Do đó $\Delta > 0$ nên $((n-1)!a_1)^2 - 2n!a_0(n-2)!a_2 > 0$.

 $V_{ay}: (n-1)a_1^2 > 2na_0a_2.$

Bài tập 84: Chứng minh với mỗi số nguyên dương thì phương trình:

$$x + x^2 + x^3 + ... + x^{2n} + 2007x^{2n+1} = 1999$$

có nghiệm duy nhất.

Giải:

Dăt
$$f(x) = x + x^2 + x^3 + ... + x^{2n} + 2007x^{2n+1}$$
, $D = \mathbb{R}$.

Xét
$$x \le -1$$
 thì : $f(x) = x + x^2(1+x) + ... + x^{2n}(1+x) + 2006x^{2n+1} < 0$.

 $X\acute{e}t -1 < x ≤ 0$ thì:

$$f(x) = x(1+x) + x^3(1+x) + ... + x^{2n-1}(1+x) + 2007x^{2n+1} < 0.$$

Do đó f(x) < 0, $\forall x \le 0$ nên không có nghiệm $x \le 0$.

Xét
$$x > 0$$
: $f'(x) = 1 + 2x + 3x^2 + ... + 2nx^{2n-1} + 2007(2n+1)x^{2n} > 0$, nên f đồng biến. Ta có bảng biến thiên:

$$\begin{array}{c|cccc}
x & 0 & +\infty \\
\hline
f' & + & \\
\hline
f & 0 & \\
\end{array}$$

Dựa vào BBT thì phương trình f(x) = 1999 có nghiệm duy nhất x > 0. Vậy phương trình có 1 nghiệm duy nhất.

Bài tập 85: Cho 2+2n số a_i , b_i thoả: $0 < b_0 \le |a_0|$, $b_i \ge |a_i|$ với i = 1,...,n. Chứng minh các nghiệm nếu có của đa thức $a_0 x^n + a_1 x^{n-1} + ... + a_n$ có giá trị tuyệt đối không vượt quá nghiệm dương duy nhất x_0 của phương trình:

$$b_0 x^n - b_1 x^{n-1} - \dots - b_n = 0,$$

(Dư tuyển IMO)

Giải:

$$Dat: f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n; g(x) = b_0 x^n - b_1 x^{n-1} - ... - b_n.$$

Ta có:
$$g(x) = x^n \left(b_0 - \frac{b_1}{x} - \frac{b_2}{x^2} - ... - \frac{b_n}{x^n} \right) = x^n h(x).$$

Thì
$$h'(x) = \frac{b_1}{x^2} + \frac{2b_2}{x^3} + ... + \frac{nb_n}{x^{n+1}} \ge 0$$
 do $b_i \ge |a_i| \ge 0$.

Nên h(x) tăng trên $(0; +\infty)$ và nhận giá trị $(-\infty; b_0)$.

Do đó g(x) có 1 nghiệm dương duy nhất là x_0 .

Và khi $x > x_0$ suy ra g(x) > 0.

Ta có:
$$|f(x)| = |a_0 x^n + a_1 x^{n-1} + ... + a_n|$$

$$\geq |a_0 x^n| - |a_1 x^{n-1} + ... + a_n| \geq |a_0 x^n| - |a_1 x^{n-1}| - ... - |a_n|$$

$$= |a_0||x|^n - |a_1||x^{n-1}| - ... - |a_n|$$

$$\geq b_0 |x|^n - b_1 |x|^{n-1} - ... - |a_n| = g(|x|).$$

Nên với nghiệm x nếu có của f(x) thì $x \le x_0$.

Bài tập 86: Cho ab ≠ 0. Chứng minh phương trình:

$$x^3 - 3(a^2 + b^2)x + 2(a^3 + b^3) = 0$$
 có 3 nghiệm phân biệt.

Giải

Xét hàm số $y = x^3 - 3(a^2 + b^2)x + 2(a^3 + b^3)$, $D = \mathbb{R}$.

Ta chứng minh hàm số có cực đại, cực tiểu và y_{CD} . y_{CT} < 0:

$$y' = 3x^2 - 3(a^2 + b^2)$$

Do đó
$$y' = 0 \Leftrightarrow x_{1,2} = \pm \sqrt{a^2 + b^2}$$
, $(S = 0, P = a^2 + b^2)$.

• Vì y' bậc 2 có 2 nghiệm phân biệt nên có CĐ và CT.

Lấy y chia y' ta có:
$$y = \frac{1}{3}xy' - 2(a^2 + b^2)x + 2(a^3 + b^3)$$

$$\Rightarrow y_{CD}.y_{CT} = (-2(a^2 + b^2)x_1 + 2(a^3 + b^3))(-2(a^2 + b^2)x_2 + 2(a^3 + b^3))$$

$$= 4(a^3 + b^3)^2 - 4(a^2 + b^2)^3 = -4a^2b^2(3a^2 + 3b^2 - 2ab)$$

$$= -4a^2b^2\left[2a^2 + 2b^2 + (a - b)^2\right] < 0.$$

Vậy phương trình đã cho có 3 nghiệm phân biệt.

Bài tập 87: Cho phương trình: $ax^3 + 27x^2 + 12x + 2001 = 0$ có 3 nghiệm phân biệt. Hỏi phương trình:

$$4(ax^3 + 27x^2 + 12x + 2001)(3ax + 27) = (3ax^2 + 54x + 12)^2$$
có máy nghiệm ?

(Olympic 30/4)

Giải:

Xét
$$f(x) = ax^3 + 27x^2 + 12x + 2001$$
, $D = \mathbb{R}$ có 3 nghiệm α, β, γ
 $f'(x) = 3ax^2 + 54x + 12$
 $f''(x) = 6ax + 54$
 $f'''(x) = 6a$.

Phương trình viết lại : $2f(x)f''(x) = (f'(x))^2$

Xét:
$$g(x) = 2f(x)f''(x) - (f'(x))^2$$

 $\Rightarrow g'(x) = 2f'(x)f''(x) + 2f(x)f'''(x) - 2f'(x)f''(x)$

$$=2f(x)f'''(x)=12a^{2}(x-\alpha)(x-\beta)(x-\gamma), \ \alpha < \beta < \gamma$$

Bảng biến thiên:

Vì
$$A = g(\alpha) = -(f'(\alpha))^2 < 0$$
; $B = g(\beta) = -(f'(\beta))^2 < 0$.

Nên phương trình đã cho chỉ có 2 nghiệm.

Bài tập 88: Cho phương trình:
$$2x^4 - 17x^3 + 51x^2 - (36 + k)x + k = 0$$
 (1)

- a) Chứng minh rằng phương trình (1) có nghiệm không phụ thuộc tham số k.
 - b) Biện luận theo tham số k về số nghiệm của phương trình (1).

Giải:

a) Rõ ràng $\forall k$ thì x = 1 luôn thoả mãn phương trình.

Vậy (1) có một nghiệm không phụ thuộc vào tham số k.

b) Do x = 1 là nghiệm của (1) nên theo (1) được phân tích thành:

$$(x-1)(2x^3-15x^2+36x-k)=0$$

$$\Leftrightarrow \begin{bmatrix} x-1=0 \\ k=2x^3-15x^2+36x \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=1 \\ k=2x^3-15x^2+36x \end{cases} (*)$$

Vậy khi k = 23 thì (1) có nghiệm duy nhất x = 1.

• x = 1 sẽ là nghiệm của (*) $\Leftrightarrow k = 2 - 15 + 36 \Leftrightarrow k = 23$.

Khi đó (*) tương đương:

(*)
$$\Leftrightarrow 2x^3 - 15x^2 + 36x - 23 = 0 \Leftrightarrow (x - 1)(2x^2 - 13x - 23) = 0$$

 $\Leftrightarrow \begin{bmatrix} x - 1 = 0 \\ 2x^2 - 13x - 23 = 0 \text{ (vô nghiệm)} \end{bmatrix} \Leftrightarrow x = 1.$

• $k \neq 23$:

Khi đó x = 1 không phải là nghiệm của (*) nên số nghiệm của (1) sẽ là 1 + số nghiệm của phương trình (*).

Xét hàm số: $f(x) = 2x^3 - 15x^2 + 36x$. Ta có đạo hàm của hàm số:

$$f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6)$$

$$f'(x) = 0 \Leftrightarrow x = 2 \lor x = 3.$$

Bảng biến thiên:

x			2	₹.	3		+∞,
f'(x)		+	0		0	+	
f(x)	•		→ 28 ~				> +∞
•	-∞-				27 -		

Qua bảng biến thiên, ta thấy:

• Nếu
$$\begin{bmatrix} k > 28 \\ 23 \neq k < 27 \end{bmatrix}$$
 thì (*) có nghiệm duy nhất.

Suy ra phương trình (1) có 2 nghiệm phân biệt.

8. PHÂN TÍCH THEO CÁC NGHIỆM SỐ NGHIỆM

8.1. Phân tích nhân tử theo các nghiệm:

Cho $f \in \mathbb{R}[x]$ có nghiệm $x_1, x_2, ..., x_m$ với bội tương ứng $k_1, k_2, ..., k_m$ thì tồn tại $g \in \mathbb{R}[x]$ sao cho:

$$f(x) = (x-x_1)^{k_1} (x-x_2)^{k_2} ... (x-x_m)^{k_m} g(x)^{k_m}$$

Kết quả này nhận được từ định lí Bezout : a là nghiệm của f(x) thì f(x) = (x-a)h(x).

8.2. Quan hệ số nghiệm và bậc của đa thức:

Nếu deg f = n và k_i là bội của nghiệm k_i , $i = \overline{1, m}$.

Thì: $k_1 + k_2 + ... + k_m \le \deg f$, tức là số nghiệm $\le n$.

Đặc biệt khi $k_1 + k_2 + ... + k_m = n$ thì ta có phân tích đầy đủ theo các nghiệm $x_1, x_2, ..., x_n$ (có thể trùng nhau) của f(x) bậc n:

$$f(x) = a_0(x-x_1)(x-x_2)...(x-x_n).$$

8.3. Định lí:

Cho $f \in \mathbb{R}[x]$: $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$.

Nếu f có hơn n nghiệm thì tất cả các hệ số bằng 0, tức là $f \equiv 0$.

• Kết quả :

- (1): $f(x) = ax^2 + bx + c$ có 3 nghiệm phân biệt x_1, x_2, x_3 thì $f(x) \equiv 0$.
- (2): Cho $f \in \mathbb{R}[x]$ và $\deg f \le n$. Nếu có n+1 giá trị $\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1}$ mà $f(\alpha_i) = C$ thì $f(x) \equiv C$.

Khẳng định này từ nhận xét : g(x) = f(x) - C có quá n nghiệm mà $\deg g \le n$ nên $g(x) \equiv 0 \Rightarrow f(x) \equiv C$.

• $Chú \ \acute{y}$: Ta chứng minh một đa thức bậc n không thể có hơn n nghiệm khác nhau đầy đủ hơn như sau :

Giả thiết trái lại rằng đa thức f(x) bậc $n \ge 1$ có ít nhất n + 1 nghiệm khác nhau : $a_1, a_2, ..., a_n, a_{n+1}$.

Vì a, là nghiệm của đa thức f(x) nên:

$$f(x):(x-a_1)$$
, tức là: $f(x)=(x-a_1)q_{n-1}(x)$ (1)

với $q_{n-1}(x)$ là đa thức bậc n-1.

Trong đẳng thức (1), đặt $x = a_2$, ta được:

$$f(a_2) = (a_2 - a_1)q_{n-1}(a_2) = 0$$

Suy ra a_2 là một nghiệm của $q_{n-1}(x)$.

$$\Rightarrow$$
 $q_{n-1}(x) = (x - a_2)q_{n-2}(x)$, với $q_{n-2}(x)$ là đa thức bậc $n-2$.

$$\Rightarrow f(x) = (x - a_1)(x - a_2)q_{n-2}(x).$$

Đặt
$$x = a_3 \Rightarrow f(a_3) = (a_3 - a_1)(a_3 - a_2)q_{n-2}(a_3) = 0$$

Suy ra a_3 là nghiệm của $q_{n-3}(x)$.

$$\Rightarrow$$
 f(x) = $(x-a_1)(x-a_2)(x-a_3)q_{n-3}(x)$, $q_{n-3}(x)$ là đa thức bậc $n-3$.

Tiếp tục lập luận như vậy đến bước thứ n, ta được:

$$f(x) = (x-a_1)(x-a_2)...(x-a_n)q_0(x)$$

với $q_0(x)$ là đa thức bậc 0, tức là $q_0(x)$ là một hằng số C.

$$\Rightarrow f(x) = C(x - a_1)(x - a_2)...(x - a_n)$$
 (*)

Nếu $C = 0 \Rightarrow f(x) = 0$, điều này trái với giả thiết nên $C \neq 0$.

Lấy $x = a_{n+1}$ thì từ (*) ta có:

$$f(a_{n+1}) = C(a_{n+1} - a_1)(a_{n+1} - a_2)...(a_{n+1} - a_n).$$

Vì $a_{n+1} \neq a_1, a_2, ..., a_n$ nên về phải đẳng thức khác không. Mà theo giả thiết a_{n+1} là một nghiệm của f(x), điều này vô lí. Do đó f(x) bậc n không thể có hơn n nghiệm khác nhau.

Bài tập 90: Phân tích ra thừa số:

- a) $P(x) = x^3 + 4x^2 + 4x + 1$.
- b) $Q(x) = x^3 (a+b+c)x^2 + (ab+bc+ca)x abc$.
- c) $H(x) = x^4 + 1$.
- d) $R(x) = x^8 + 1$.

Giải:

a)
$$P(x) = x^3 + 1 + 4(x^2 + x)$$

 $= (x+1)(x^2 - x + 1 + 4x) = (x+1)(x^2 + 3x + 1)$
 $= (x+1)\left(x - \frac{-3 - \sqrt{5}}{2}\right)\left(x - \frac{-3 + \sqrt{5}}{2}\right)$.

b)
$$O(x) = x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc$$

Ta có:
$$deg Q = 3 và Q(a) = Q(b) = Q(c) = 0.$$

Do đó:
$$Q(x) = (x-a)(x-b)(x-c)$$
.

c) $H(x) = x^4 + 1$ tuy vô nghiệm nhưng vẫn phân tích được như sau :

$$H(x) = x^4 + 2x^2 + 1 - 2x^2 = (x^2 + 1)^2 - (\sqrt{2}x)^2$$
$$= (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1).$$

d)
$$R(x) = (x^4 + 1)^2 - (\sqrt{2}x^2)^2 = (x^4 + \sqrt{2}x^2 + 1)(x^4 - \sqrt{2}x^2 + 1)$$

 $= (x^2 + \sqrt{2 + \sqrt{2}x} + 1).(x^2 - \sqrt{2 + \sqrt{2}x} + 1)*$
 $*(x^2 + \sqrt{2 - \sqrt{2}x} + 1).(x^2 - \sqrt{2 - \sqrt{2}x} + 1)$

Bài tập 91: Giả sử đa thức: $P(x) = x^5 + x^2 + 1$ có 5 nghiệm r_1, r_2, r_3, r_4, r_5 .

Dặt
$$Q(x) = x^2 - 2$$
. Tính tích : $Q(r_1).Q(r_2).Q(r_3).Q(r_4).Q(r_5)$.

(USA MTS 2001)

Giải:

Ta có:
$$P(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)(x - r_5) = x^5 + x^2 + 1$$
.
Và: $Q(r_1).Q(r_2).Q(r_3).Q(r_4).Q(r_5)$

$$= (r_1^2 - 2)(r_2^2 - 2)(r_3^2 - 2)(r_4^2 - 2)(r_5^2 - 2)$$

$$= (\sqrt{2} - r_1)(\sqrt{2} - r_2)(\sqrt{2} - r_3)(\sqrt{2} - r_4)(\sqrt{2} - r_5) *$$

$$*(-\sqrt{2} - r_1)(-\sqrt{2} - r_2)(-\sqrt{2} - r_3)(-\sqrt{2} - r_4)(-\sqrt{2} - r_5)$$

$$= P(\sqrt{2}).P(-\sqrt{2}) = ((\sqrt{2})^5 + (\sqrt{2})^2 + 1).((-\sqrt{2})^5 + (-\sqrt{2})^2 + 1)$$

$$= (4\sqrt{2} + 3)(-4\sqrt{2} + 3) = 9 - 32 = -23.$$

Bài tập 92: a) Tính gọn:

$$f(x) = \frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)}$$

với a, b, c phân biệt.

b) Chứng minh:

$$\frac{a-b}{a+b} + \frac{b-c}{b+c} + \frac{c-a}{c+a} + \frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)} = 0,$$

với a, b, c đôi một không đối nhau.

18 gs **Giải :**1845 - 1974 (1994 - 1994) 3

- a) Ta có $\deg f \le 2$. Mà $f(a) = f(b) = f(c) = 1 \Rightarrow f(x) + 1 = 0$ có 3 nghiệm phân biệt nên f(x) = 1. Vây f(x) = 1.
 - b) Quy đồng mẫu số vế trái, ta được tử thức:

$$f = (a-b)(b+c)(c+a)+(b-c)(c+a)(a+b)+$$

$$+(c-a)(a+b)(b+c)+(a-b)(b-c)(c-a)$$

Ta xem f là đa thức theo a có $\deg f \le 2$.

Để
$$\dot{y}$$
: $f(0) = f(b) = f(c) = 0$.

- Xét b, c đôi một khác nhau thì $f(a) \equiv 0$.
- Xét 3 trường hợp còn lại b=c hay b=0 hay c=0 thì ta đều có f(a)=0. Vây f=0.

Bài tập 93: Cho đa thức f(x) có bậc 6 thỏa:

$$f(1) = f(-1); f(2) = f(-2); f(3) = f(-3).$$

Chứng minh rằng với mọi x ta có f(x) = f(-x).

žili estrollizado i koloni militario i na Gidi, in j

Đặt g(x) = f(x) - f(-x) là đa thức có bậc ≤ 6 . Giả sử x_0 là nghiệm của g(x) thì $g(-x_0) = f(-x_0) - f(x_0) = -g(x_0) = 0$. Suy ra $-x_0$ cũng là nghiệm của g(x).

Theo giả thiết g(1) = g(2) = g(3) = 0, do đó g(-1) = g(-2) = g(-3) = 0, hơn nữa g(0) = f(0) - f(0) = 0. Khi đó đa thức g(x) có bậc ≤ 6 có ít nhất 7 nghiệm khác nhau nên $g(x) \equiv 0$. Suy ra : f(x) = f(-x), $\forall x$.

• Tổng quát: Cho f(x) bậc 2n thỏa: f(-k) = f(k), $\forall k = 1,2,...,n$ thì f(-x) = f(x), $\forall x$ hay hàm đa thức là hàm số chắn.

Bài tập 94: Tìm tất cả các đa thức P(x) thỏa mãn đồng nhất thức : 100 100

a)
$$P(x+1) = P(x) + 2x + 1$$
.

b)
$$P((x+1)^2) = P(x^2) + 2x + 1$$
.

(Đức 1997)

Giải:

a) Để ý đa thức sai phân $\Delta x = (x+1)^2 - x^2 = 2x+1$.

Nen
$$P(x+1) = P(x) * 2x + 1 \Rightarrow P(x+1) - (x+1)^2 = P(x) - x^2$$
.

Xét
$$Q(x) = P(x) - x^2$$
 thì $Q(x+1) = Q(x)$.

Đặc biệt: Q(0) = Q(1) = Q(2) = ... Nên Q(x) = C.

Vây: $P(x) = x^2 + C$, thử lại đúng.

b) Ta có: $P((x+1)^2) = P(x^2) + 2x + 1$

$$\Leftrightarrow P((x+1)^2)-(x+1)^2=P(x^2)-x^2.$$

Giải tương tự cho Q(x) = P(x) - x thì $Q(x) \equiv C$.

Vay: P(x) = x + C.

Bài tập 95: Cho 2 số a và b, $a \ne 0$. Đa thức P(x) thỏa mãn : xP(x-a) = (x-b)P(x).

- a) Chứng minh nếu $\frac{b}{a}$ không nguyên dương thì P(x) = 0.
- b) Giả sử $\frac{b}{a} = n$ nguyên dương. Tìm P(x).

Giải:

a) Nếu $P(x) \equiv 0$ thì rõ ràng P(x) thỏa mãn hệ thức:

$$xP(x-a) = (x-b)P(x)$$
 (1)

Ta cần chứng minh nếu P(x) là một đa thức bậc $n \ge 1$, thỏa mãn hệ thức (1), thì tỉ số $\frac{b}{a}$ phải là một số nguyên dương. Ta có :

$$(1) \Leftrightarrow bP(x) = x[P(x) - P(x - a)]$$
(2)

Xét:
$$P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n, (a_0 \neq 0)$$
 (3)

Thi:
$$P(x-a) = a_0(x-a)^n + a_1(x-a)^{n-1} + ... + a_{n-1}(x-a) + a_n$$

Do dó:
$$P(x)-P(x-a)=a_0[x^n-(x-a)^n]+a_1[x^{n-1}-(x-a)^{n-1}]+...$$

Để ý rằng : $x^k - (x-a)^k = a \left[x^{k-1} + x^{k-2} (x-a) + ... + (x-a)^{k-1} \right]$ là một đa thức bậc k-1, nên :

$$P(x)-P(x-a) = a_0 \left[x^n - (x-a)^n \right] + H(x) \text{ (da thức bậc } n-2)$$

$$= na_0 a x^{n-1} + K(x) \qquad \text{(da thức bậc } n-2) \qquad \text{(4)}$$

Thế (3) và (4) vào (2), ta được:

$$a_0bx^n + a_1bx^{n-1} + ... = x[na_0ax^{n-1} + K(x)]$$

= $na_0ax^n + R(x)$ (da thức bậc $n-1$).

Vì vậy $a_0b = na_0a$ mà $a_0 \neq 0$ nên b = na. Suy ra $\frac{b}{a}$ nguyên dương.

b) Giả sử b = na (n nguyên dương). Hệ thức (1) trở thành:

$$xP(x-a) = (x-na)P(x)$$
 (5)

Cho x = 0 thì được: $0.P(x-a) = (-na)P(0) \Rightarrow P(0) = 0$ (do $a \ne 0$).

Trong (5) cho x = a, ta có:

$$aP(0) = -a(n-1)P(a) \Rightarrow P(a) = 0.$$

Cho x = 2a, ta có:

$$2aP(a) = -a(n-2)aP(2a) \Rightarrow P(2a) = 0.$$

Giả sử với mọi k nguyên sao cho $0 \le k \le (n-1)$ sao cho : P(ka) = 0.

Trong (5) cho x = (k+1)a, ta có:

$$(k+1)aP(ka) = -(n-k+1)aP((k+1)a) \Rightarrow P((k+1)a) = 0$$

Phép quy nap theo k (với $0 \le k \le n-1$) thì:

$$P(0) = P(a) = P(2a) = ... = P((n-1)a) = 0$$

Suy ra:
$$P(x) = x(x-a)(x-2a)...[x-(n-1)a]Q(x)$$

Thế biểu thức trên vào (1), ta được:

$$Q(x-a)x(x-a)(x-2a)...(x-na) = x(x-a)(x-2a)...(x-na)Q(x)$$

Do đó:
$$Q(x-a) = Q(x) \Rightarrow Q(x) = C$$
 (hằng số).

Vay:
$$P(x) = Cx(x-a)...[x-(n-1)a].$$

Bài tập 96: Cho $a_0, a_1, ..., a_n$ là n+1 số đôi một khác nhau.

Giải hệ phương trình sau:

$$\begin{cases} x_0 + x_1 a_0 + x_2 a_0^2 + \dots + x_n a_0^n = 0 \\ x_0 + x_1 a_1 + x_2 a_1^2 + \dots + x_n a_1^n = 0 \\ \dots \\ x_0 + x_1 a_n + x_2 a_n^2 + \dots + x_n a_n^n = 0 \end{cases}$$

Giải :

Xét đa thức: $f(y) = x_n y^n + x_{n-1} y^{n-1} + ... + x_1 y + x_0$

Ta có : $\deg f \le n$. Từ hệ trên ta có $f(a_0) = f(a_1) = ... = f(a_n) = 0$, nên f(y) có n+1 nghiệm phân biệt, do đó $f(y) \equiv 0$.

Từ đó $x_0 = x_1 = ... = x_n = 0$. Thử lại ta thấy $x_0 = x_1 = ... = x_n = 0$ thỏa mãn hệ đã cho. Vậy hệ có nghiệm duy nhất $(x_0, x_1, ..., x_n) = (0, 0, ..., 0)$.

Bài tập 97: Đa thức f(x) bậc n thỏa mãn đẳng thức:

$$P(k) = \frac{k}{k+1} \text{ v\'oi } k = 0,1,2,...,n.$$

Tim P(n+1)?

Giải:

Đa thức P(x) thỏa mãn điều kiện trên là duy nhất. Vì nếu có đa thức $Q(x) \neq P(x)$ cũng thỏa mãn thì bậc đa thức $P(x) - Q(x) \leq n$ nhưng có số nghiệm $\geq n+1$. Xét đa thức :

$$R(x) = x + \frac{(0-x)(1-x)...(n-x)}{(n+1)!}.$$

Vì R(-1) = 0 nên R(x): x + 1, do đó $S(x) = \frac{R(x)}{x + 1}$ là đa thức bậc n

và $S(k) = \frac{k}{k+1}$ với k = 0,1,...,n nên S(x) thỏa mãn điều kiện bài toán, nghĩa là $P(x) \equiv S(x)$ và do đó:

$$P(n+1) = \frac{R(n+1)}{n+2} = \frac{n+1+(-1)^{n+1}}{n+2}.$$

Bài tập 98: Cho đa thức P(x) có bậc n > 1 có n nghiệm thực $x_1, x_2, ..., x_n$ phân biệt. Chứng minh:

$$\frac{1}{P'(x_1)} + \frac{1}{P'(x_2)} + \dots + \frac{1}{P'(x_n)} = 0,$$
(Ba Lan 1979)

Ciái

Đặt
$$P(x) = a(x - x_1)(x - x_2)...(x - x_n), a \neq 0$$

$$\Rightarrow P'(x) = P_1(x) + P_2(x) + ... + P_n(x), \text{ với } P_i(x) = \prod_{\substack{j=1 \ j \neq i}}^n (x - x_j).$$
Ta thấy $P_i(x_j) = 0, \forall j \neq i \Rightarrow P'(x_j) = P_j(x_j) \neq 0, \forall j = \overline{1, n}.$

Xét đa thức:
$$F(x) = \sum_{i=1}^{n} \frac{P_i(x)}{P_i(x_i)} - 1$$
 có bậc không vượt quá $n-1$.

Với
$$i = \overline{1, n}$$
, ta có: $F(x_i) = \frac{P_i(x_i)}{P'(x_i)} - 1 = 0$

Suy ra F(x) có n nghiệm phân biệt, do đó $F(x) \equiv 0$.

Mà hệ số của F(x) đối với x_{n-1} bằng 0.

Nên:
$$\frac{a}{P'(x_1)} + \frac{a}{P'(x_2)} + ... + \frac{a}{P'(x_n)} = 0.$$

Vay:
$$\frac{1}{P'(x_1)} + \frac{1}{P'(x_2)} + ... + \frac{1}{P'(x_n)} = 0$$
 (dpcm).

Bài tập 99: Cho các số thực $x_1, x_2, ..., x_n : 0 < x_1 < x_2 < ... < x_n < 1$. Kí hiệu

$$x_0 = 1$$
, $x_{n+1} = 1$. Giả sử các số này thoả: $\sum_{\substack{j=0 \ j \neq i}}^{n+1} \frac{1}{x_i - x_j} = 0$, $i = 1, 2, ..., n \in \mathbb{N}$

Chứng minh rằng : $x_{n+1-i} = 1 - x_i$ với i = 1, 2, ..., n.

Giải

$$\begin{aligned} \text{Dặt } P(x) &= (x - x_0)(x - x_1)...(x - x_n)(x - x_{n+1}) \text{ thi } : \\ P'(x) &= \sum_{i=1}^{n+1} \prod_{\substack{j=0 \ j \neq i}}^{n+1} (x - x_j) \text{ và } P''(x) = \sum_{k=0}^{n+1} \prod_{\substack{j=1 \ j \neq k, \ j = 1} \end{aligned}$$

Từ đó:
$$P''(x_j) = \sum_{i=1}^{j \neq i} \prod_{\substack{j=0 \ j \neq i}}^{n+1} (x - x_j) = \prod_{\substack{j=1 \ j \neq i}}^{n+1} (x - x_j) \sum_{\substack{k=0 \ k \neq i}}^{n+1} \frac{1}{x_i - x_k} = 0.$$

Suv ra:
$$x(x-1)P''(x) = (n+2)(n+1)P(x)$$
 (1)

Do đó chỉ tồn tại duy nhất một đã thức bậc n+2 với hệ số cao nhất bằng 1, thoả (1). Mặt khác, đã thức $Q(x) = (-1)^n P(1-x)$ thoả mẫn phương trình (1). Q(x) là đã thức bậc n+2 với hệ số cao nhất bằng 1.

Vậy
$$(-1)^n P(1-x) = P(x)$$
 và vì $0 < x_1 < x_2 < ... < x_n < 1$ (địcm).

Bài tập 100: Cho p là một số nguyên tố. Xét đa thức to một có là a lung

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0, n \in \mathbb{N}, a_i \in \mathbb{Z}.$$

Giả sử có n+1 số nguyên $\alpha_1, \alpha_2, ..., \alpha_{n+1}$ sao chọ :

$$\alpha_i \neq \alpha_1 \pmod{p}$$
, $i \neq j \text{ và } P(\alpha_i) \equiv 0 \pmod{p}$, $i = 1/2, ..., n+1$.

Chúng minh: $a_i \equiv 0 \pmod{p}$, i = 1, 2, ..., n.

(Đinh lí La-go-răng)

Giải:

Ta chứng minh quy nạp theo n. Khi n = 1 thì định lí đúng. Giả sử định lí đúng với mọi đa thức có bậc < n.

Xét:
$$G(x) = P(x) - a_n(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)$$
 thì:

$$\deg G(x) < n$$
 và $G(\alpha_i) \equiv 0 \pmod{p}$, $i = 1, 2, ..., n$.

$$\Rightarrow G(x) \equiv 0 \Rightarrow G(\alpha_{n+1}) \equiv 0 \pmod{p}$$

$$\Rightarrow a_n (\alpha_{n+1} - \alpha_1) ... (\alpha_{n+1} - \alpha_n) \equiv 0 \pmod{p} \Rightarrow a_n \equiv 0 \pmod{p}.$$

Xét tiếp $H(x) = P(x) - a_n x^n$ thì deg H(x) < n và:

$$H(\alpha_i) \equiv 0 \pmod{p}, i = 1, 2, ..., n.$$

Do đó, theo quy nạp thì các hệ số: $a_0, a_1, ..., a_{n-1} \equiv 0 \pmod{p}$ (đpcm).

Bài tập 101: Giả sử $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ là đa thức với các hệ số thực, có $a_0 \neq 0$ và thoả mãn đẳng thức sau :

$$f(x)f(2x^2) = f(2x^3 + x), \forall x \in \mathbb{R}$$
 (*)

Chứng minh f(x) không có nghiệm số thực.

(Việt Nam 1990)

Giải:

Từ (*) ta nhận thấy nếu x_0 là nghiệm thực của f(x) thì tất cả các số thực $x_n = 2x_{n-1}^{-3} + x_{n-1}$; n = 1, 2, ... cũng sẽ là nghiệm của f(x). Hơn nữa dễ dàng nhận thấy $x_0 < 0$ thì $x_0 > x_1 > x_2 ... > x_n > x_{n+1} > ...$ và với $x_0 > 0$ thì $x_0 < x_1 < x_2 < ... < x_n < x_{n+1} < ...$ Từ đó suy ra nếu f(x) có 1 nghiệm thực khác 0 thì f(x) sẽ có vô số nghiệm thực khác nhau. Tuy nhiên f(x) chỉ có tối đa n nghiệm thực, do f(x) là đa thức bậc n với các hệ số thực. Mâu thuẫn, chứng tỏ f(x) không có nghiệm thực khác 0.

Ta chúng minh $f(0) \neq 0 \Leftrightarrow a_n \neq 0$. Giả sử $a_n = 0$.

Gọi k là số lớn nhất thoả a, $\neq 0$. Do vậy:

$$g(x) = f(x)f(2x^2) = a_0^2 2^n x^{3n} + ... + a_k^2 2^{n-k} x^{3(n-k)}$$

$$h(x) = f(2x^3 + x) = a_0 2^n x^{3n} + ... + a_k x^{n-k}$$

Vì $n-k>0 \Rightarrow 3(n-k)>n-k$. Do đó: g(x) = h(x).

Vậy $a_k = 0$ (mâu thuẫn). Nên $a_n \neq 0$. Vậy f(x) không có nghiệm số thực.

9. ĐỊNH LÍ VI- ẾT

9.1. Định lí thuận : Cho $f \in \mathbb{R}[x]$, ta có :

$$f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$
, deg $f = n$.

Nếu f có n nghiệm $x_1, x_2, ..., x_n$ (phân biệt hay trùng nhau)

thì:
$$\begin{cases} x_1 + x_2 + ... + x_n = -\frac{a_1}{a_0} \\ x_1 x_2 + x_1 x_3 + ... + x_{n-1} x_n = \frac{a_2}{a_0} \\ ... \\ x_1 x_2 ... x_n = (-1)^n \frac{a_n}{a_0} \end{cases}$$

Ta kí hiệu:
$$S_1 = \sum_{i=1}^n x_i = -\frac{a_1}{a_0}$$
; $S_2 = \sum_{1 \le i < j \le n} x_i x_j = \frac{a_2}{a_0}$

$$S_k = \sum_{1 \le i_1 < i_2 < ... < i_k \le n} x_{i_1} x_{i_2} ... x_{i_k} = (-1)^k \frac{a_k}{a_0}.$$

Với S_k là tổng các tích chập k của n số x_i . Gọi S_k là các đa thức đối xứng cơ bản của các nghiệm.

• Chứng minh dựa vào so sánh hệ số của 2 cách khai triển :

$$f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$

$$Va f(x) = a_0(x-x_1)(x-x_2)...(x-x_n)$$

$$f(x) = a_0 x^n - a_0 (x_1 + x_2 + ... + x_n) x^{n-1} + ... + (-1)^n a_0 x_1 x_2 ... x_n$$

• Đặc biệt :

(1): Gọi x_1, x_2 là 2 nghiệm của $f(x) = ax^2 + bx + c$, $a \ne 0$ thì:

$$x_1 + x_2 = -\frac{b}{a}, x_1 x_2 = \frac{c}{a}.$$

(2): Gọi x_1, x_2, x_3 là 3 nghiệm của $f(x) = ax^3 + bx^2 + cx + d, a \neq 0$ thì:

$$x_1 + x_2 + x_3 = -\frac{b}{a}$$
; $x_1x_2 + x_1x_3 + x_2x_3 = \frac{c}{a}$: $x_1x_2x_3 = -\frac{d}{a}$

9.2. Định lí đảo: 9. DINHILLYI EY

Nếu n số $x_1, x_2, x_3, ..., x_n$ có các tổng của tích chập k từ n số đó là S_k

thì
$$x_1, x_2, x_3, ..., x_n$$
 là nghiệm nếu có của phương trình :
$$X^n - S_1 X^{n-1} + S_2 X^{n-2} + ... + (-1)^{n-1} S_{n-1} X + (-1)^n S_0 = 0.$$

· Đặc biết :

(1):
$$x_1 + x_2 = S$$
; $x_1 x_2 = P \rightarrow X^2 - SX + P = 0$

(2):
$$x_1 + x_2 + x_3 = A$$
; $x_1x_2 + x_1x_3 + x_2x_3 = B$; $x_1x_2x_3 = C$
 $\rightarrow X^3 - AX^2 + BX - C = 0$

Ta có thể chứng minh định lí Vi-ét trực tiếp cho phương trình bậc 2 và phương trình bậc 3 từ định nghĩa về nghiệm.

1) Phương trình bậc hai: $ax^2 + bx + c = 0$, $a \ne 0$ có 2 nghiệm x_1, x_2

Suy ra:
$$\begin{cases} ax_1^2 + bx_1 + c = 0 \Rightarrow a(x_1^2 - x_2^2) + b(x_1 - x_2) = 0 \\ ax_2^2 + bx_2 + c = 0 \end{cases}$$

$$\Rightarrow (x_1 - x_2) [a(x_1 + x_2) + b] = 0$$

Xét
$$x_1 = x_2$$
 thì:
$$\begin{cases} x_1 + x_2 = \frac{-b}{2a} + \frac{-b}{2a} = \frac{-b}{a} \\ x_1 x_2 = \frac{-b}{2a} \cdot \frac{-b}{2a} = \frac{b^2}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a} \end{cases}$$

$$X\acute{e}t \ a(x_1+x_2)+b=0 \Rightarrow x_1+x_2=-\frac{b}{a}.$$

Ta có:
$$ax_1^2 + bx_1 + c = 0 \Leftrightarrow a \left[x_1^2 + \frac{b}{a} x_1 + \frac{c}{a} \right] = 0$$

The
$$x_1 + x_2 = -\frac{b}{a} \Rightarrow x_1 x_2 = \frac{c}{a}$$
.

1.

2) Phương trình bắc ba: $ax^3 + bx^2 + cx + d = 0$, $a \ne 0$ cố 3 nghiệm x_1, x_2, x_3 thì: $ax_1^3 + bx_1^2 + cx + d = 0$

$$\Rightarrow a(x^3-x_1^3)+b(x^2-x_1^2)+c(x-x_1)=0$$

$$\Rightarrow (x - x_1) [a(x^2 + xx_1 + x_1^2) + b(x + x_1) + c] = 0$$

$$\Rightarrow (x-x_1)[ax^2 + (ax_1 + b)x + ax_1^2 + bx_1 + c] = 0$$

Do đó: x2, x3 là nghiệm phương trình bậc 2 nên:

$$x_{2} + x_{3} = -\frac{ax_{1} + b}{a} = -x_{1} - \frac{b}{a} \Rightarrow x_{1} + x_{2} + x_{3} = -\frac{b}{a}$$

$$x_{2}x_{3} = \frac{ax_{1}^{2} + bx_{1} + c}{a} = x_{1}^{2} + \frac{b}{a}x_{1} + \frac{c}{a}$$

$$= x_{1}^{2} - (x_{1} + x_{2} + x_{3}^{4})x_{1} + \frac{c}{a} = -x_{2}x_{1} - x_{3}x_{1} + \frac{c}{a}$$

$$\Rightarrow x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{1} = \frac{c}{a}$$
Phương trình: $a \left[x_{1}^{3} + \frac{b}{a}x_{1}^{2} + \frac{c}{a}x_{1} + \frac{d}{a} \right] = 0$
Thế $\frac{b}{a}$, $\frac{c}{a}$ theo nghiệm, suy ra $x_{1}x_{2}x_{3} = \frac{d}{a}$.

Bài tập 102: Gọi x_1, x_2 là 2 nghiệm của phương trình bậc $2 ax^2 + bx + c = 0$. Lập công thức tính tổng: $S_n = x_1^n + x_2^n$, $n \in \mathbb{Z}^+$.

Giải

$$S_{1} = x_{1} + x_{2} = -\frac{b}{a}.$$

$$S_{2} = x_{1}^{2} + x_{2}^{2} = (x_{1} + x_{2})^{2} - 2x_{1}x_{2} = \frac{b^{2}}{a^{2}} - \frac{2c}{a}$$

$$Ta có: \begin{cases} ax_{1}^{2} + bx_{1} + c = 0 \\ ax_{2}^{2} + bx_{2} + c = 0 \end{cases} \Rightarrow \begin{cases} ax_{1}^{n} + bx_{1}^{n-1} + cx_{1}^{n-2} = 0 \\ ax_{2}^{n} + bx_{2}^{n-1} + cx_{2}^{n-2} = 0 \end{cases}$$

Cộng lại ta có công thức truy hồi : $aS_n + bS_{n-1} + cS_{n-2} = 0$.

Từ đó tính được S.

Bài tập 103: Chứng minh điều kiện cần và đủ để phương trình bậc hai : $ax^2 + bx + c = 0$ có 2 nghiệm mà nghiệm này gấp k lần nghiệm kia là $kb^2 = (k+1)^2 c$, $k \neq -1$.

Giải:

• Thuận: Giả sử phương trình có
$$x_2 = kx_1$$
 hay $x_1 = kx_2$.

$$\Leftrightarrow (x_2 - kx_1)(x_1 - kx_2) = 0$$

$$\Rightarrow -(x_1^2 + x_2^2)k + (1 + k^2)x_1x_2 = 0$$

$$\Leftrightarrow (S^2 - 2P)k - (1 + k^2)P = 0 \text{ (v\'oi } S = -\frac{b}{a}, P = \frac{c}{a})$$

$$\Leftrightarrow$$
 kb² = $(k+1)^2$ ac.

Đảo lại: nếu
$$kb^2 = (k+1)^2$$
 ac \Rightarrow ac $= \frac{kb^2}{(k+1)^2}$, $k \neq -1$

$$\Delta = b^2 - 4ac = b^2 - \frac{4kb^2}{(k+1)^2} = \left(\frac{k-1}{k+1}\right)^2 b^2 \ge 0.$$

Do đó phương trình có nghiệm nên theo biến đổi tương đương trên thì ta có đpcm.

Bài tập 104: Giả sử m là một tham số để phương trình:

$$(x-1)(x-2)(x-3)(x-4) = m$$
 (1)

có 4 nghiệm khác nhau. Tính giá trị của biểu thức:

$$P = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$$
 theo m.

Giải :

Ta có: (1)
$$\Leftrightarrow$$
 $(x^2 - 5x + 4)(x^2 - 5x + 6) = m$

Đặt
$$y = x^2 - 5x \Rightarrow (y+4)(y+6) = m \Leftrightarrow y^2 + 10y + 24 - m = 0.$$

Gọi
$$y_1, y_2$$
 là hai nghiệm. Ta có :
$$\begin{cases} y_1 + y_2 = -10 \\ y_1 y_2 = 24 - m \end{cases}$$

Giả sử x_1, x_2 là nghiệm của phương trình : $x^2 - 5x - y_1 = 0$

 x_3 , x_4 là nghiệm của phương trình : $x^2 - 5x - y_2 = 0$.

Ta co:
$$x_1 + x_2 = 5$$
, $x_1x_2 = -y_1$, $x_3 + x_4 = 5$, $x_3x_4 = -y_2$

Vay:
$$P = \frac{x_1 + x_2}{x_1 x_2} + \frac{x_3 + x_4}{x_3 x_4} = \frac{5}{-y_1} + \frac{5}{-y_2} = \frac{-5(y_1 + y_2)}{y_1 y_2} = \frac{50}{24 - m}$$

Bài tập 105: Cho đa thức: $f(x) = x^4 + 4x^3 - 2x^2 - 12x + 1$.

Hãy tính tổng $S = \sum_{i=1}^{n} \frac{2x_i^2 + 1}{(x_i^2 - 1)^2}$ ở đó n là số nghiệm x_i của đa thức f(x).

Giải :

Ta có:
$$f(x) = 0 \Leftrightarrow (x^2 + 2x)^2 - 6(x^2 + 2x) + 9 = 8$$

$$\Leftrightarrow (x^2 + 2x - 3)^2 = 8 \Leftrightarrow \begin{bmatrix} x^2 + 2x - 3 + \sqrt{8} = 0 & (1) \\ x^2 + 2x - 3 - \sqrt{8} = 0 & (2) \end{bmatrix}$$

Gọi x_1, x_2 là nghiệm của phương trình (1) và x_3, x_4 là nghiệm của phương trình (2). Khi đó x_1, x_2, x_3, x_4 là nghiệm của f(x).

$$S_{1} = \frac{2x_{1}^{2} + 1}{(x_{1}^{2} - 1)^{2}} + \frac{2x_{2}^{2} + 1}{(x_{2}^{2} - 1)^{2}}$$

$$= \frac{2x_{1}^{2} + 1}{(4 - \sqrt{8})(x_{1} - 1)^{2}} + \frac{2x_{2}^{2} + 1}{(4 - \sqrt{8})(x_{2} - 1)^{2}} \text{ Vi } (x_{1} + 1)^{2} = (x_{2} + 1)^{2} = 4 - \sqrt{8}$$

$$= \frac{1}{4 - \sqrt{8}} \left[\frac{(2x_{1}^{2} + 1)(x_{2} - 1)^{2} + (2x_{2}^{2} + 1)(x_{1} - 1)^{2}}{[(x_{1} - 1)(x_{2} - 1)]^{2}} \right]$$

Dùng định lí Vi-ét để tìm giá trị của biểu thức trong dấu ngoặc vuông :

$$S_1 = \frac{1}{4 + \sqrt{8}} \cdot \frac{80 + 22\sqrt{8}}{8}$$
, giải tương tự ta có $S_2 \Rightarrow S = S_1 + S_2 = \frac{9}{2}$.

Bài tập 106: Cho x_1, x_2, x_3 là 3 nghiệm của phương trình: $x^3 + 3px + q = 0$.

Lập phương trình bậc 3 có 3 nghiệm là:

$$\alpha = (x_1 - x_2)(x_1 - x_3), \beta = (x_2 - x_3)(x_2 - x_1), \gamma = (x_3 - x_1)(x_3 - x_2)$$

Giải

Áp dụng định lí Vị-ét, ta có :
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 x_2 + x_2 x_3 + x_3 x_1 = 3p \\ x_1 x_2 x_3 = -q \end{cases}$$

Nen:
$$\alpha + \beta + \gamma = x_1^2 + x_2^2 + x_3^2 - (x_1x_2 + x_2x_3 + x_3x_1)$$

= $(x_1 + x_2 + x_3)^2 - 3(x_1x_2 + x_2x_3 + x_3x_1) = -9p$.

$$\alpha\beta + \beta\gamma + \gamma\alpha = (x_1 - x_2)(x_2 - x_3)(x_3 - x_1)^*$$

$$*[(x_1 - x_2) + (x_2 - x_3) + (x_3 - x_1)] = 0.$$

$$\alpha\beta\gamma = -\left[(x_1 - x_2)(x_2 - x_3)(x_3 - x_1) \right]^2$$

$$= -(x_1x_2x_3 - x_1^2x_2 - x_1x_3^2 + x_1^2x_3 - x_2^2x_3 + x_2^2x_1 + x_2x_3^2 - x_1x_2x_3)^2$$

$$=27(q^2+4p^3)$$
,

Vậy α , β , γ là 3 nghiệm của phương trình :

$$x^3 + 9px^2 - 27(q^2 + 4p^3) = 0.$$

Bài tập 107: Giả sử a và b là 2 trong số 4 nghiệm của đa thức $x^4 + x^3 - 1$.

Chứng minh a.b là nghiệm của đa thức : $x^6 + x^4 + x^3 - x^2 - 1$.

(Mĩ 1977)

Giải:

Giả sử a, b, c, d là nghiệm của đa thức : $x^4 + x^3 - 1$

$$P(x) = x^4 + x^3 - 1 = (x - a)(x - b)(x - c)(x - d) \Rightarrow abcd = -1.$$

Ta cần chứng minh Q(ab) = 0 nếu:

$$Q(x) = x^6 + x^4 + x^3 - x^2 - 1 = x^3 \left(x^3 + x + 1 - \frac{1}{x} - \frac{1}{x^3} \right)$$

Suy ra :
$$Q(ab) = (ab)^3 \left[(ab)^3 + (ab) + 1 - \frac{1}{ab} - \frac{1}{(ab)^3} \right]$$

= $(ab)^3 \left[(ab)^3 + ab + 1 + cd + (cd)^3 \right]$

Do dó:
$$Q(ab) = 0 \Leftrightarrow (ab)^3 + ab + 1 + cd + (cd)^3 = 0$$
.

That vay:
$$P(a) = 0 \Rightarrow a^4 + a^3 = 1 \Rightarrow a^3 = \frac{1}{a+1}$$
, turing the $b^3 = \frac{1}{b+1}$.

Nên:
$$a^3b^3 = \frac{1}{(a+1)(b+1)} = -(1+c)(1+d)$$
.

Turong ty:
$$c^3d^3 = -(1+a)(1+b)$$
.

$$(ab)^{3} + ab + 1 + cd + (cd)^{3} = -(1+c)(1+d) + ab + 1 + cd - (1+a)(1+b)$$

= -1-a-b-c-d=0 (Vi-ét).

Vay: Q(ab) = 0 (dpcm).

Bài tập 108: Giải liệ phương trình sau:

$$\begin{cases} x + y + z = 6 \\ x^2 + y^2 + z^2 = 14 \end{cases}$$

$$\begin{cases} x + y + z + a(x + y) + a^2x = a^3 \\ x + y + z + b(x + y) + b^2x = b^3 \\ x + y + z + c(x + y) + c^2x = c^3 \end{cases}$$

Giải:

a) Ta có:
$$(x+y+z)^2 = 36 \Rightarrow xy + yz + zx = 11$$

$$Va: \frac{11}{6} = \frac{xy + yz + zx}{xyz} \Rightarrow xyz = 6.$$

Do đó x, y, z là nghiệm của phương trình sau :

$$X^3 - 6X^2 + 11X - 6 = 0 \Leftrightarrow (X - 1)(X - 2)(X - 3) = 0$$

 $\Leftrightarrow X = 1 \text{ hay } X = 2 \text{ hay } X = 3.$

Vậy nghiệm của hệ là : $\{x, y, z\} = \{1, 2, 3\}$.

b) Đặt A = x + y + z, B = x + y, $C = x^3$ thì a, b, c là 3 nghiệm của phương trình $T^3 = A + BT + CT^2$ hay $T^3 - CT^2 - BT - A = 0$.

Áp dụng định lí Vi-ét, ta được:

$$\begin{cases} a+b+c=C=x\\ ab+bc+ca=-B=-x-y\\ abc=A=x+y+z\\ \begin{cases} x=a+b+c \end{cases} \end{cases}$$

Do đó nghiệm của hệ là:
$$\begin{cases} x = a + b + c \\ y = ab + bc + ca - a - b - c \\ z = ab + bc + ca + abc \end{cases}$$

Bài tập 109: Hãy tìm tất cả các giá trị của a để ba nghiệm x_1, x_2, x_3 của $x^3 - 6x^2 + ax + a$ thỏa mãn $(x_1 - 3)^3 + (x_2 - 3)^3 + (x_3 - 3)^3 = 0$.

(Áo.1983)

Light Steel & Glaig Stage of the first and the

Ta thay y = x - 3. Khi đó các số: $y_1 = x_1 - 3$; $y_2 = x_2 - 3$; $y_3 = x_3 - 3$. là nghiệm của đa thức:

$$(y+3)^3-6(y+3)^3+a(y+3)+a=y^3+3y^2+(a-9)y+4a-27$$

Theo định lí Vi-ét, ta có:

$$\sum y_i = -3$$
; $\sum y_i y_i = a - 9$; $\prod y_i = 27 - 4a$

 $va^{3} + y_{3}^{3} + y_{3}^{3} = 0$ (theo giả thiết)

$$\mathbf{Ma}: \ \mathbf{y_1^3 + y_2^3 + y_3^3} = \left(\mathbf{y_1 + y_2 + y_3}\right)^3 - \\ = 3\left(\mathbf{y_1 y_2 + y_2 y_3 + y_1 y_3}\right)\left(\mathbf{y_1 + y_2 + y_3}\right) + 3\mathbf{y_1 y_2 y_3}$$

Từ đó có điều kiên cần và đủ của a là:

$$0 = (-3)^3 - 3(a-9)(-3) + 3(27-4a) = -27 - 3a \Rightarrow a = -9.$$

Bài tập 110: Cho $P(x) = x^3 + ax^2 + bx + c$ có hệ số nguyên. Chứng minh rằng nếu có một nghiệm bằng tích 2 nghiệm còn lại thì:

$$2P(-1): P(1)+P(-1)-2(1+P(0))$$

(Canada 1982)

Giải:

Gọi 3 nghiệm là u, v, uv, théo định lí Vi-ét :
$$\begin{cases} u+v+uv=-a \\ uv(1+u+v)=b \\ u^2v^2=-c \end{cases}$$

- Xét a = 1 thì 0 = u + v + uv + 1 = (u+1)(v+1) nên có nghiệm bằng -1, do đó 2P(-1) = 0 chia hết cho mọi số.
 - Xét $a \ne 1$ thì b-c = uv(1+u+v+uv) = uv(1-a).

Nên $uv = \frac{b-c}{1-a}$ hữu tỉ. Do : $u^2v^2 = -c$ nguyên nên uv nguyên.

Ta có:
$$P(1)+P(-1)-2(1+P(0))=2(a-1)=-2(u+v+uv+1)$$

= $-2(1+u)(1+v) \neq 0$.

$$Va: 2P(-1) = 2(-1-u)(-1-v)(-1-uv)$$

$$= -2(1+uv)(1+u)(1+v).$$

Do dó: 2P(-1): P(1)+P(-1)-2(1+P(0)).

Bài tập 111: Cho phương trình bậc $3: x^3 + px^2 + qx + r = 0$ có 3 nghiệm phân biệt. Chứng minh điều kiện cần và đủ để 3 nghiệm x_1, x_2, x_3 :

Lập thành cấp số cộng là : $2p^3 - 9pq + 27r = 0$.

Giải:

Giả sử: $x_1 + x_2 = 2x_2$.

Theo dinh If Vi-ét, ta có: $x_1 + x_2 + x_3 = -p \Rightarrow x_2 = -\frac{p}{3}$.

Nên:
$$\left(-\frac{p}{3}\right)^3 + p\left(-\frac{p}{3}\right)^2 + q\left(-\frac{p}{3}\right) + r = 0$$
. Do đó: $2p^3 - 9pq + 27r = 0$.

Đảo lại nếu có hệ thức trên thì $x_2 = -\frac{p}{3}$ là 1 nghiệm của phương trình :

$$\left(x + \frac{p}{3}\right)\left(x^2 + \frac{2}{3}px + q - \frac{2}{9}p^2\right) = 0.$$

Khi đó
$$x_1 + x_3 = -p + \frac{p}{3} = -\frac{2p}{3} = 2x_2$$
.

Nên x_1, x_2, x_3 lập thành cấp số cộng.

Bài tập 112: Phương trình: $z^3 - 2z^2 - z + m = 0$ có thể có 3 nghiệm số hữu tỉ phân biệt không? Tại sao?

(Việt Nam 1980)

Giải:

Giả sử các nghiệm số của phương trình bậc $3z^3-2z^2-2z+m=0$ là : $\frac{u}{t}, \frac{v}{t}, \frac{w}{t}$ hữu tỉ phân biệt.

Trong đó: u, v, w, t là những số nguyên và không phải tất cả là chẵn.

Theo dinh lí Vi-ét, ta có: u+v+w=2t, uv+vw+wu=-2t.

Nên tổng: $u^2 + v^2 + w^2 = 4t(t+1)$: 8.

Điều này chứng tỏ rằng u, v, w phải chấn. Nhưng $\frac{t}{2} = -\frac{uv}{2} - \frac{wv}{2} - \frac{wu}{2}$ cũng là số nguyên. Điều này mâu thuẫn.

Vậy: $z^3 - 2z^2 - 2z + m = 0$ không thể có 3 nghiệm số hữu tỉ phân biệt.

Bài tập 113: Tìm a, b nguyên sao cho phương trình:

$$x^4 + ax^3 + bx^2 + ax + 1 = 0 ag{1}$$

có 2 trong số các nghiệm có tích bằng -1.

Giải:

Giả sử có 2 số nguyên a, b mà phương trình cho 2 nghiệm u, v với $uv \in \mathbb{Z}$ và $uv \neq 1$. Để ý rằng nếu x là 1 nghiệm thì $x \neq 0$ và $\frac{1}{x}$ cũng là nghiệm. Như vậy phương trình (1) có 4 nghiệm là : u, v, $\frac{1}{u}$, $\frac{1}{v}$.

Theo dinh lí Vi-ét, ta có:

$$u+v+\frac{1}{u}+\frac{1}{v}=\frac{(u+v)(uv+1)}{uv}=-a$$
 (2)

và
$$uv + \frac{v}{u} + \frac{u}{v} + \frac{1}{uv} + 2 = uv + \frac{(u+v)^2 + 1}{uv} = b$$
 (3)

Ta sẽ chứng minh uv = -1.

• Chứng minh phản chứng: Giả sử uv ≠1. Từ (2) và (3) ta suy ra u+v hữu tỉ và $(u+v)^2 \in \mathbb{Z}$ nên $(u+v) \in \mathbb{Z}$ và cả hai $(u+v), (u+v)^2+1$ đều chia hết cho uv. Nhưng $[(u+v),(u+v)^2+1]=1$, nên suy ra hoặc uV = 1 hoad wv = =1. Late for the line of the line of the line of the line years of the line work.

Điều này mâu thuẫn với uv ≠ ±1.

$$V_{ay}^{(3)} = -1$$
 và do đó $a = 0$, $b = -(u+v)^2 - 2 \le -2$.

Ngược lại nếu $a = 0, b \in \mathbb{Z}, b \le -2$.

Phương trình (1) trở thành: $x^4 + bx^2 + 1 = 0$.

Phương trình này có 2 nghiệm:

$$u = \sqrt{\frac{-b + \sqrt{b^2 - 4}}{2}}, v = \sqrt{\frac{-b - \sqrt{b^2 - 4}}{2}}.$$

Thỏa mãn : $uv = -1 \in \mathbb{Z}$, $uv \neq 1$.

Như vậy các số nguyên a, b cần tìm là : $a = 0, b \in \mathbb{Z}, b \le -2$.

Bài tập 114: Tim a để phương trình: $16x^4 - ax^3 + (2a + 17)x^2 - ax + 16 = 0$ có 4 nghiệm phân biệt lập thành một cấp số nhân chiết bằ (same do cá shiệc)

Sandy is and the last feet a feet greate it has a feet of Viet Nami 1985)

The cold to propriate the sales

The second Giái:

Gọi 4 nghiệm lập thành cấp số nhân là y, ym, ym², ym³ với $y \neq 0$, $m \neq \pm 1$, $m \neq 0$. Theo dinh lí Vi-ét, ta có in the state of the sta

$$\begin{cases} y(1+m+m^2+m^3) = A & (1) \\ y^2(m+m^2+2m^3+m^4+m^5) = 2A + \frac{17}{16} & (2) \\ y^3(m^3+m^4+m^5+m^6) = A & (3) \text{ v\'oi } A = \frac{a}{16} \end{cases}$$

Ta có: $m \neq -1$ vì nếu m = -1 thì phương trình có 2 nghiệm trùng nhau là $y = ym^2$ (trái với giả thiết).

Ta có (1) tương đương với : $y(m+1)(m^2+1) = A \neq 0$.

Chia (3) cho (1) ve theo ve ta dugc: (1)
$$\Rightarrow$$
 y²m³ = 1 (4)

Suy ra $m^3 > 0$, m > 0. Thay (4) vào (2), $ta^{1/2}c\delta$:

$$y^{2}(m+m^{2}+m^{4}+m^{5}) = 2A - \frac{15}{16} > 0$$
 (2')

Vì m > 0, $y^2 > 0$, do đó A > 0. Từ (1) suy ra y > 0.

Từ (4) ta có :
$$\sqrt[3]{y} = \frac{1}{\sqrt{m}}$$
.

Đặt: $\sqrt{m} = v$ thì $y = v^{-3}$.

Thay vào (2) và (2') được: $v^{-3}(1+v^2+v^4+v^6) = A$ (5) Tiếp tục biến đổi (5), ta sẽ được phương trình sau:

$$(5) \Rightarrow \frac{1}{8}(v-2)\left(v-\frac{1}{2}\right)(2v^2+3v+2)*$$

*
$$[2v^2 - (1 + \sqrt{2})v + 2][2v^2 + (\sqrt{2} - 1)v + 2] = 0$$

Ta luôn luôn có: $2v^2 + 3v + 2 > 2v^2 - (1 + \sqrt{2})v + 2 > 0$

$$2v^2 + (\sqrt{2} - 1)v + 2 > 0$$
 do các biệt số đều âm nên :

$$(v-2)\left(v-\frac{1}{2}\right)=0 \Rightarrow v=2 \lor v=\frac{1}{2}.$$

Thay vào (5) thì được : $A = \frac{170}{16}$. Suy ra : a = 170.

Khi a = 170 thì phương trình của bài toán là:

$$16x^4 - 170x^3 + 357x^2 - 170x + 6 = 0$$

có 4 nghiệm phân biệt $\frac{1}{8}$, $\frac{1}{2}$, 2,8 lập thành cấp số nhân công bội là 4.

Bài tập 115: Chứng minh $\cos 20^{\circ}$, $\cos 100^{\circ}$, $\cos 140^{\circ}$ là 3 nghiệm của phương trình $4x^3 - 3x - \frac{1}{2} = 0$. Suy ra:

$$\begin{cases} \cos 20^{0} + \cos 100^{0} + \cos 140^{0} = 0 \\ \cos 20^{0} \cos 100^{0} + \cos 100^{0} \cos 140^{0} + \cos 140^{0} \cos 20^{0} = -\frac{3}{4} \\ \cos 20^{0} \cos 100^{0} \cos 140^{0} = \frac{1}{8} \end{cases}$$

Giải:

Ta có:
$$\cos 3.20^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$

 $\cos 3.100^{\circ} = \cos 300^{\circ} = \frac{1}{2}$

$$\cos 3.140^{\circ} = \cos 420^{\circ} = \frac{1}{2}$$

và $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$ nên ta có $\cos 20^\circ, \cos 100^\circ, \cos 140^\circ$ là ba nghiệm của phương trình $4x^3 - 3x = \frac{1}{2}$ hay $4x^3 - 3x - \frac{1}{2} = 0$.

Áp dụng định lí Vi-ét, ta có:

$$\cos 20^{0} + \cos 100^{0} + \cos 140^{0} = \frac{0}{4} = 0$$

$$\cos 20^{0} \cos 100^{0} + \cos 100^{0} \cos 140^{0} + \cos 140^{0} \cos 20^{0} = -\frac{3}{4}$$

$$\cos 20^{0} \cdot \cos 100^{0} \cdot \cos 140^{0} = \frac{1}{8}.$$

Bài tập 116: Tính:
$$T = \frac{1}{\sin^2 \frac{2\pi}{7}} + \frac{1}{\sin^2 \frac{3\pi}{7}} + \frac{1}{\sin^2 \frac{6\pi}{7}}$$

Ta có $\frac{2\pi}{7}, \frac{3\pi}{7}, \frac{6\pi}{7}$ là nghiệm của phương trình : $\sin^2 4x = \sin^2 3x$.

Đặt
$$t = \sin x$$
 thì: $\sin^2 3x = (3t - 4t^3)^2$
 $\sin^2 4x = (2\sin 2x \cdot \cos 2x)^2 = 16t^2 (1 - t^2)(1 - 2t^2)^2$

Ta có phương trình: $64t^6 - 112t^4 + 56t^2 - 7 = 0$.

Do đó: $\sin^2 \frac{2\pi}{7}$, $\sin^2 \frac{3\pi}{7}$, $\sin^2 \frac{6\pi}{7}$ là 3 nghiệm của phương trình:

$$64z^3 - 112z^2 + 56z - 7 = 0$$

Nen:
$$T = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = \frac{x_1 x_2 + x_2 x_3 + x_1 x_3}{x_1 x_2 x_3} = \frac{\frac{56}{64}}{\frac{7}{64}} = 8.$$

Bài tập 117: Tính:

- a) $A = \tan^6 20^0 + \tan^6 40^0 + \tan^6 80^0$.
- b) $B = \cos 5^{0} + \cos 77^{0} + \cos 149^{0} + \cos 221^{0} + \cos 293^{0}$.

Giải:

a) Ta có : 20° , 40° , 80° là nghiệm của phương trình : $\tan 3x = \sqrt{3}$.

Hay:
$$\frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} = \sqrt{3} \Rightarrow (3\tan x - \tan^3 x)^2 = 3(1 - 3\tan^2 x)$$

 $\Rightarrow \tan^6 x - 33\tan^4 x + 27\tan^2 x - 3 = 0.$

Do đó: $\tan^2 20^\circ$, $\tan^2 40^\circ$, $\tan^2 80^\circ$ là 3 nghiệm của phương trình:

$$t^3 - 33t^2 + 27t - 3 = 0$$

Áp dụng định lí Vi-ét, ta có:
$$\begin{cases} t_1 + t_2 + t_3 = 33 \\ t_1 t_2 + t_2 t_3 + t_3 t_1 = 27 \\ t_1 t_2 t_3 = 3 \end{cases}$$

Do đó:
$$A = t_1^3 + t_2^3 + t_3^3$$

= $(t_1 + t_2 + t_3)^3 - 3(t_1 + t_2 + t_3)(t_1t_2 + t_2t_3 + t_3t_1) + 3t_1t_2t_3$
= 35946:

b) Ta có: $\cos 5\alpha = 16\cos^5 \alpha - 20\cos^3 \alpha + 5\cos \alpha$.

Với các giá trị $\alpha = 5^{\circ}$, $\alpha = 77^{\circ}$, $\alpha = 149^{\circ}$, $\alpha = 221^{\circ}$, $\alpha = 293^{\circ}$ thì $\cos 5\alpha$ đều bằng $\cos 25^{\circ}$.

Do đó $\cos 5^{\circ}$, $\cos 77^{\circ}$, $\cos 149^{\circ}$, $\cos 221^{\circ}$, $\cos 293^{\circ}$ là nghiệm của đa thức $P(x) = 16x^5 - 20x^3 + 5x - \cos 25^{\circ}$.

Theo dinh lí Vi-ét, ta có : $S = \frac{0}{16} = 0$.

Bài tập 118: Đặt
$$u_n = \cos^n \frac{\pi}{7} + \cos^n \frac{3\pi}{7} + \cos^n \frac{5\pi}{7}$$
, n nguyên.

- a) Tính u₁, u₂, u₃, u₄?
- b) Chứng minh u_n hữu tỉ với mọi n nguyên.

Giải:

a) Ta.có:
$$\frac{\pi}{7}$$
, $\frac{3\pi}{7}$, $\frac{5\pi}{7}$ là nghiệm của phương trình: $\cos 3x = -\cos 4x$.

Hay: $4\cos^3 x - 3\cos x = -(8\cos^4 x - 8\cos^2 x + 1)$

Hay: $8\cos^4 x + 4\cos^3 x - 8\cos^2 x - 3\cos x + 1 = 0$

 \Leftrightarrow $(\cos x + 1)(8\cos^3 x - 4\cos^2 x - 4\cos x + 1) = 0$

 $\Leftrightarrow 8\cos^3 x - 4\cos^2 x - 4\cos x + 1 = 0.$

Đặt $t = \cos x$ thì $\cos \frac{\pi}{7}$, $\cos \frac{3\pi}{7}$, $\cos \frac{5\pi}{7}$, là 3 nghiệm của phương trình:

$$8t^3 - 4t^2 - 4t + 1 = 0 (*)$$

Do đó:
$$u_1 = t_1 + t_2 + t_3 = \frac{1}{2}$$

$$u_2 = t_1^2 + t_2^2 + t_3^2 = (t_1 + t_2 + t_3)^2 - 2(t_1t_2 + t_2t_3 + t_3t_1)$$

$$= \frac{1}{4} - 2\frac{-1}{2} = \frac{5}{4}.$$

Từ (*) suy ra :
$$8t_i^3 = 4t_i^2 + 4t_i - 1 \Rightarrow u_3 = \frac{1}{2}$$
, $u_4 = \frac{13}{16}$.

b) Tổng quát : $8u_{n-1} = 4u_n + 4u_{n-1} - u_{n-2}$, $n \ge 3$.

Do đó theo quy nạp, vì u_1, u_2, u_3 là số hữu tỉ nên u_4 hữu tỉ và vì u_n, u_{n-1}, u_{n-2} hữu tỉ nên u_{n+1} cũng hữu tỉ.

Khi n nguyên âm thì từ (*) $\Leftrightarrow \frac{1}{t^3} - 4\frac{1}{t^2} - 4\frac{1}{t} + 8 = 0$.

Nen
$$\frac{1}{\cos \frac{\pi}{7}}$$
, $\frac{1}{\cos \frac{3\pi}{7}}$, $\frac{1}{\cos \frac{5\pi}{7}}$ là nghiệm phương trình $u^3 - 4u^2 - 4u + 8 = 0$.

Giải tương tự ta có u hữu tỉ với n nguyên âm.

Bài tập 119: Cho 5 số nguyên a, b, c, d, e sao cho a+b+c+d+e và $a^2+b^2+c^2+d^2+e^2$ chia hết cho n số lẻ.

Chúng minh: $a^5 + b^5 + c^5 + d^5 + e^5 - 5abcde$: n.

on on a survey than the sub-

Giải :

Xét đa thức $P(x) = x^5 + px^4 + qx^3 + rx^2 + kx + h$ có 5 nghiệm a, b, c, d, e.

Theo định lí Vi-ét thì các hệ số nguyên và p,q: n và h = -5abcde.

Ta có:
$$P(a) + P(b) + P(c) + P(d) + P(e) = 0$$

$$\Rightarrow (a^5 + b^5 + c^5 + d^5 + e^5) + p(a^4 + b^4 + c^4 + d^4 + e^4) + q(a^3 + b^3 + c^3 + d^3 + e^3) + r(a^2 + b^2 + c^2 + d^2 + e^2) + k(a + b + c + d + e) + 5h = 0$$

$$\Rightarrow a^5 + b^5 + c^5 + d^5 + e^5 - 5abcde : n (dpcm).$$

10. CÔNG THỨC NỘI SUY LA-GƠ-RẰNG

10.1. Công thức nội suy La-go-răng:

Cho $f \in \mathbb{R}[x]$, deg f = n và n+1 số thực $\alpha_1, \alpha_2, ..., \alpha_{n+1}$ cho trước thì f được xác định như sau :

$$f(x) = f(\alpha_1) \frac{(x - \alpha_2)(x - \alpha_3)...(x - \alpha_{n+1})}{(\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)...(\alpha_1 - \alpha_{n+1})} + ... +$$

$$+ f(\alpha_{n+1}) \left(\frac{(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)}{(\alpha_{n+1} - \alpha_1)(\alpha_{n+1} - \alpha_2)...(\alpha_{n+1} - \alpha_n)} \right)$$

Hay:
$$f(x) = \sum_{i=1}^{n+1} f(\alpha_i) \prod_{j=1, j \neq i}^{n+1} \frac{x - \alpha_j}{\alpha_i - \alpha_j}$$
.

Chứng minh:

Xét
$$g(x) = f(x) - \sum_{i=1}^{n+1} f(\alpha_i) \prod_{j=1, j \neq i}^{n+1} \frac{x - \alpha_j}{\alpha_i - \alpha_j}$$
 thì $\deg g \le n$ và có $n+1$ nghiệm $g(\alpha_i) = f(\alpha_i) - f(\alpha_i) = 0$ nên $g(x) \equiv 0$.

Do đó ta có công thức La-go-răng.

10.2. Kết quả:

Một đã thức bậc n hoàn toàn xác định khi biết n+1 giá trị $f(\alpha_k)$ với k=1,2,...,n+1.

10.3. Định lí:

Cho $f \in \mathbb{R}[x]$, deg f = n. Với n+1 số thực phân biệt $x_1, x_2, ..., x_{n+1}$

bất kì. Đặt :
$$\phi(x) = \prod_{i=1}^{n+1} (x - x_i)$$
.

Thì:
$$f(x) = \sum_{i=1}^{n+1} f(x_i) \prod_{\substack{j=1\\i=i}}^{n+1} \frac{x - x_j}{x_i - x_j} = \sum_{i=1}^{n+1} \frac{f(x_i) \cdot \phi(x)}{(x - x_i) \cdot \phi'(x_i)}$$

• Két quả:
$$\frac{f(x)}{\varphi(x)} = \sum_{i=1}^{n} \frac{A_i}{x - x_i} = \sum_{i=1}^{n} \frac{f(x_i)}{\varphi'(x_i)} \cdot \frac{1}{x - x_i}$$

Trong dó deg f < n và
$$\varphi(x) = (x - x_1)(x - x_2)...(x - x_n)$$
.

Đây là công thức phân tích thành phần tử đơn của các phân thức thật sự (bậc của tử bé hơn bậc của mẫu).

Bài tạp 120 x Xác định đa thức bậc 2 nhận giá trị hằng 3; 5; -1 tại x bằng 1, 2, 7 tương ứng.

Ta có: $x_1 = 1$; $x_2 = 2$; $x_3 = 7$ và $f(x_1) = 3$; $f(x_2) = 5$; $f(x_3) = -1$.

Áp dụng công thức nội suy La-go-rằng với n = 2, ta được :

$$f(x) = \sum_{i=1}^{3} f(x_i) \prod_{\substack{j=1 \ j \neq i}}^{3} \frac{x - x_j}{x_i - x_j}$$

$$= f(1) \frac{(x - 2)(x - 7)}{(1 - 2)(1 - 7)} + f(2) \frac{(x - 1)(x - 7)}{(2 - 1)(2 - 7)} + f(7) \frac{(x - 1)(x - 2)}{(7 - 1)(7 - 2)}$$

$$= \frac{1}{2} (x - 2)(x - 7) + 1(x - 1)(x - 7) - \frac{1}{30} (x - 1)(x - 2)$$

$$= \frac{8}{15} \dot{x}^2 + \frac{8}{15} x - \frac{1}{15}.$$

Bài tập 121: Chứng minh rằng nếu đa thức bậc hai nhận giá trị nguyên tại 3 giá trị nguyên liên tiếp của biến số x thì đa thức nhận giá trị nguyên tại mọi x nguyên.

Giải:

Giả sử f(k-1), f(k), f(k+1) là những số nguyên với k nguyên.

Áp dụng công thức nội suy La-go-rằng cho đa thức bậc 2 f(x) với 3 số nguyên k-1; k; k+1, ta có:

$$f(x) = f(k-1)\frac{(x-k)(x-k-1)}{2} + f(k)\frac{(x-k+1)(x-k-1)}{-1} + f(k+1)\frac{(x-k)(x-k+1)}{2}$$

Đặt m = x - k thì:

$$f(x) = f(k-1)\frac{m(m-1)}{2} - f(k)(m^2 - 1) + f(k+1)\frac{m(m+1)}{2}$$

Vì tích hai số nguyên liên tiếp chia hết cho 2 nên f(x) nguyên với mọi x nguyên.

Bài tập 122: Phân tích thành phân thức đơn giản bằng công thức La-go-răng:

a)
$$\frac{x^2}{(x-1)(x+2)(x+3)}$$
. b) $\frac{1}{(x-1)(x-2)(x-3)(x-4)}$.

Ta đã biết công thức La-go-rằng:

Nếu đặt
$$\varphi(x) = (x - x_1)...(x - x_n)$$
 thì $f(x) = \sum_{k=1}^{n} \frac{f(x_k).\varphi(x)}{(x - x_k).\varphi'(x_k)}$, do đó

$$\frac{f(x)}{\phi(x)} = \sum_{k=1}^{n} \frac{f(x_k)}{(x - x_k).\phi'(x_k)}$$
 đó là công thức xác định đa thức $f(x)$ và có giá

trị là $f(x_k)$ tại giá trị x_k của đối số (k = 1, 2, ..., n). Áp dụng kết quả trên thì :

a)
$$\frac{x^2}{(x-1)(x+2)(x+3)} = \frac{1}{(x-1)\cdot 3\cdot 4} + \frac{4}{(x+2)\cdot 1\cdot (-3)} + \frac{9}{(x+3)4\cdot 1}$$
$$= \frac{1}{12(x-1)} - \frac{4}{3(x+2)} + \frac{9}{4(x+3)}.$$

b) Giải tương tự, ta có:

$$\frac{1}{(x-1)(x-2)(x-3)(x-4)} = -\frac{1}{6(x-1)} + \frac{1}{2(x-2)} - \frac{1}{2(x-3)} + \frac{1}{6(x-4)}.$$

Bài tập 123: Cho $a_1, a_2, ..., a_n$ là n số khác nhau. Gọi A_i (i = 1, 2, ..., n) là phần dư trong phép chia đa thức f(x) cho $x - a_i$. Hãy tìm phần dư r(x) trong phép chia f(x) cho $(x - a_1)(x - a_2)...(x - a_n)$.

Giải:

Gọi q(x) là thương và r(x) là phần dư trong phép chia đa thức f(x) cho $(x-a_1)(x-a_2)...(x-a_n)$.

Ta có:
$$f(x) = ((x-a_1)(x-a_2)...(x-a_n))q(x)+r(x), \deg r(x) < n.$$

Đặt
$$x = a_i$$
 ($i = 1, 2, ..., n$) và để ý rằng $A_i = f(a_i)$.

Thi:
$$r(a_i) = A_i$$
 (i = 1,2,...,n).

Như vậy ta biết được các giá trị của đa thức r(x) có bậc nhỏ hơn n tại n điểm khác nhau $a_1, a_2, ..., a_n$ thành thử trong công thức nội suy La-go-rằng thì:

$$r(x) = A_1 \frac{(x - a_2)(x - a_3)...(x - a_n)}{(a_1 - a_2)(a_1 - a_3)...(a_1 - a_n)} + ... + A_n \frac{(x - a_1)...(x - a_{n-1})}{(a_n - a_1)...(a_n - a_{n-1})}$$

$$= \sum_{i=1}^n A_i \prod_{\substack{j=1 \ j=1}}^n \frac{x - a_j}{a_i - a_j}.$$

Bài tập 124: Cho $a_1, a_2, ..., a_n$ là n số khác nhau. Chứng minh rằng nếu đa thức f(x) có bậc $\le n-2$ thì:

$$T = \frac{f(a_1)}{(a_1 - a_2)(a_1 - a_3)...(a_1 - a_n)} + ... + \frac{f(a_n)}{(a_n - a_1)...(a_n - a_{n-1})} = 0$$

Giải:

Theo công thức La-gơ-răng thì mọi đa thức f(x) có bậc $\leq n+1$ đều được viết dưới dang :

$$f(x) = f(a_1) \cdot \frac{(x - a_2) \cdot ... (x - a_n)}{(a_1 - a_2) \cdot ... (a_1 - a_n)} + f(a_2) \cdot \frac{(x - a_1)(x - a_3) \cdot ... (x - a_n)}{(a_2 - a_1)(a_2 - a_3) \cdot ... (a_2 - a_n)} + \dots + f(a_n) \cdot \frac{(x - a_1) \cdot ... (x - a_{n-1})}{(a_n - a_1) \cdot ... (a_n - a_{n-1})}.$$

Hê số của x^{n-1} ở vế trái bằng 0, còn hệ số của x^{n-1} ở vế phải là:

$$T = \frac{f(a_1)}{(a_1 - a_2)...(a_1 - a_n)} + \frac{f(a_2)}{(a_2 - a_1)(a_2 - a_3)...(a_2 - a_n)} + ... + \frac{f(a_n)}{(a_n - a_1)...(a_n - a_{n-1})}.$$

$$Vay T = 0.$$

Bài tập 125: Giả sử đa thức: $c_0 + c_1 x + c_2 x^2 + ... + c_n x^n$ có giá trị hữu tỉ khi x hữu tỉ. Chứng minh rằng tất cả các hệ số c_0 , c_1 , c_2 ,..., c_n là những số hữu tỉ.

Giải:

Áp dụng công thức nội suy La-go-rằng với $a_k = k (k = 0, 1, ..., n)$ thì được:

$$f(x) = \frac{(-1)^n f(0)}{n!} (x-1)(x-2)...(x-n) + \frac{(-1)^{n-1} f(1)}{1!(n-1)!} x(x-2)...(x-n) + \frac{(-1)^{n-2} f(2)}{2!(n-2)!} x(x-1)(x-2)...(x-n)$$
(1)

Theo giả thiết f(0), f(1),..., f(n) là những số hữu tỉ. Vì vậy khai triển vế phải của (1) ta thấy rằng các hệ số của các luỹ thừa của x đều là những số hữu tỉ. Rút gọn các số hạng đồng dạng, ta được:

$$f(x) = c_0 + c_1 x + ... + c_n x^n$$
 với $c_0, c_1, ..., c_n$ là những số hữu tỉ.

Có thể áp dụng công thức nội suy La-gơ-răng tại n+1 điểm a_k với
 k = 0, 1,..., n hữu tỉ tuỳ ý và khác nhau thì cũng đi đến kết quả trên.

• <u>Kết quả</u>: Nếu đa thức f(x) có bạc không quá n và có giá trị hữu tỉ tại n+1 điểm hữu tỉ khác nhau thì:

$$f(x) = c_0 + c_1 x + ... + c_n x^n$$
 với $c_0, c_1, ..., c_n$ là những số hữu tỉ.

Bài tập 126: Cho đa thức P(x) bậc $\leq 2n$ thoả mãn điều kiện:

$$|P(k)| \le 1, k = -n, -(n-1), ..., 0, 1, ..., n.$$

Chứng minh rằng: $|P(x)| \le 2^{2n}$, $\forall x \in [-n; n]$.

(Hungrari 1979)

Giải:

Theo công thức nội suy La-go-rằng thì:

$$P(x) = \sum_{k=-n}^{n} P(k) \prod_{j \neq k} \frac{x-j}{k-j}$$

Vì $|P(k)| \le 1$ với $k \in \{-n, -(n-1), ..., 0, 1, ..., n\}$ nên:

$$\left| P(x) \right| \leq \sum_{k=-n}^{n} \left| P(k) \right| \prod_{j \neq k} \frac{\left| x - j \right|}{\left| k - j \right|} \leq \sum_{k=-n}^{n} \prod_{j \neq k} \frac{\left| x - j \right|}{\left| k - j \right|}$$

Nhận xét rằng với $x \in [-n; n]$ thì xét $x \ge i, x < j$ cho kết quả:

$$\prod_{j \neq k} |x - j| \le (2n)!$$

Vì vây:
$$\prod_{j\neq k} \frac{|x-j|}{|k-j|} \le \frac{(2n)!}{\prod |j-k|} \le \frac{(2n)!}{(k+n)!(k-n)!}$$

Do dó:
$$|P(x)| \le \sum_{k=-n}^{n} \frac{(2n)!}{(k+n)!(n-k)!}$$

= $\sum_{k=0}^{2n} \frac{(2n)!}{(k+n)!(n-k)!} = \sum_{k=0}^{2n} C_{2n}^{k} = 2^{2n}$

 $Vay: |P(x)| \le 2^{2n}, \forall x \in [-n; n].$

Bài tập 127: Tìm tất cả các đa thức P(x) và Q(x) có bậc 3 với các hệ số thực thoả 4 điều kiện:

- a) Cả 2 đa thức nhận giá trị 0 hoặc 1 tại các điểm x = 1, 2, 3, 4.
- b) Nếu P(1) = 0 hoặc P(2) = 1 thì Q(1) = Q(3) = 1.
- c) Nếu P(2) = 0 hoặc P(4) = 0 thì Q(2) = Q(4) = 0.
- d) Nếu P(3) = 1 hoặc P(4) = 1 thì Q(1) = 0.

(Đức 1980),

Giải:

Giả sử kí hiệu $\alpha_k = P(k)$, $\beta_k = Q(k)$ với k = 1, 2, 3, 4 còn P(x) và Q(x) là các đa thức thoả mãn đầu bài. Khi đó các số có 4 chữ số $\overline{\alpha_1\alpha_2\alpha_3\alpha_4}$ và $\overline{\beta_1\beta_2\beta_3\beta_4}$ không thể bằng số 0000; 0110; 1001; 1111 vì các đa thức P(x) và Q(x) có bậc 3. Mặt khác số $\overline{\alpha_1\alpha_2\alpha_3\alpha_4}$ không thể có dạng $\overline{0\alpha_21\alpha_4}$; $\overline{0\alpha_2\alpha_31}$; $\overline{\alpha_111\alpha_4}$ hay $\overline{\alpha_11\alpha_31}$, vì nếu không thì từ các điều kiện b) và d) ta có $\beta_1 = 1$ và $\beta_1 = 0$. Từ đó theo điều kiện c) ta thấy điều kiện của bài toán thoả với 7 cặp số $\overline{(\alpha_1\alpha_2\alpha_3\alpha_4; \overline{\beta_1\beta_2\beta_3\beta_4})}$ và chỉ có cặp số đó (0100; 1010); (1000; 0010); (1000; 1000); (1000; 1010); (1010; 0010); (1011; 0010) và (1100; 1010).

Dùng công thức nội suy La-go-rằng ta thay mỗi số $\overline{\gamma_1\gamma_2\gamma_3\gamma_4}$ tương ứng vào các đa thức R(x) thoả mãn các đẳng thức $P(k)=\gamma_1$ với k=1,2,3,4. Khi đó ta nhận được 6 đa thức tương ững.

$$R_{1}(x) = \left(-\frac{1}{2}\right)x^{3} + \frac{7}{2}x^{2} - 7x + 4$$

$$R_{2}(x) = \frac{1}{2}x^{3} - 4x^{2} + \frac{19}{2}x - 6$$

$$R_{3}(x) = \left(-\frac{1}{6}\right)x^{3} + \frac{3}{2}x^{2} - \frac{13}{3}x + 4$$

$$R_{4}(x) = \left(-\frac{2}{3}\right)x^{3} + 5x^{2} - \frac{34}{3}x + 8$$

$$R_{5}(x) = \left(-\frac{1}{2}\right)x^{3} + 4x^{2} - \frac{19}{2}x + 7$$

$$R_{6}(x) = \frac{1}{3}x^{3} - \frac{5}{2}x^{2} + \frac{31}{6}x - 2.$$

Như vậy, cặp đa thức (P(x), Q(x)) trùng với một trong các cặp :

 $(R_2(x); R_4(x)); (R_3(x); R_1(x)); (R_3(x); R_3(x)); (R_3(x); R_4(x)); (R_1(x); R_1(x)); (R_5(x); R_1(x)); (R_6(x); R_4(x)).$

Bài tập 128: Cho tam thức bậc hai $f(x) = ax^2 + bx + c$ thoả điều kiện: $|f(x)| \le 1$ khi $|x| \le 1$. Chứng minh rằng với mọi $M \ge 1$ sao cho $|f(x)| < 2M^2 - 1$ khi |x| < M.

Giải:

Theo giả thiết:
$$f(0) = |c| \le 1$$

$$f(1) = |a+b+c| \le 1$$

$$f(-1) = |a-b+c| \le 1$$

nên $|2a| = |2a+b-b+c-c| + |a+b+c| + |2c| \le 4 \Rightarrow |a| < 2$.

• Néu
$$x \in [1; M]$$
 thì $|f(x)| = |ax^2 + bx + c|$

$$= |(a+b+c)x+ax(x-1)+c(1-x)|$$

Suy ra: $|f(x)| \le |a+b+c||x|+|a||x(x-1)|+|c||1-x|$

$$\leq M.1 + 2M(M-1) + 1(M-1) = 2M^2 - 1.$$

- Néu -1 < x < 1 thì $|f(x)| \le 1 \le 2M^2 1$.
- Nếu $-M \le x \le -1$ thì:

$$f(x) = |(-a+b+c)x + ax(x+1) + c(x+1)| + |c||x-1|$$

$$\leq M.1 + 2M(M-1) + 1.M = 2M^2 - 1 \text{ (dpcm)}.$$

Bài tập 129: Cho $f_1(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ thoả $|f(x)| \le 1$ với mọi $x \in [-1; 1]$. Chứng minh đa thức:

$$f^*(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
 có tính chất :

$$|f^*(x)| \le 2^{n-1}$$
 với mọi $x \in [-1; 1]$.

Giải:

Với $x \neq 0$, ta có mối liên hệ sau đây giữa f(x) và $f^*(x)$:

$$f^*(x) = x^n f\left(\frac{1}{x}\right)$$
.

Vì đa thức f(x) có bậc không quá n, nên ta có thể áp dụng công thức nội suy La-go-răng cho f(x) tại (n+1) điểm x_k (k=0,1,...,n) thì:

$$f(x) = \sum_{k=0}^{n} f(x_k) \frac{(x - x_0)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

Do vậy với
$$x \neq 0$$
, ta có: $f^*(x) = x^n \cdot f\left(\frac{1}{x}\right)$

$$\Rightarrow f^*(x) = \sum_{k=0}^{n} f(x_k) \frac{(1 - xx_0)...(1 - xx_{k-1})(1 - xx_{k+1})...(1 - xx_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

Hệ thức này đúng với mọi $x \neq 0$, mà hai vế đều là hai đa thức của x, vậy hệ thức đúng với mọi x. Suy ra với mọi $x \in \mathbb{R}$ (nhớ rằng $x_k \in [-1;1]$ nên theo giả thiết của bài toán $|f(x_k) \leq 1|$.

$$\left| f^*(x) \right| \le \sum_{k=0}^n \left| \frac{(1 - xx_0)...(1 - xx_{k-1})(1 - xx_{k+1})...(1 - xx_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)} \right|$$

Uớc lượng $|f^*(x)|$ với $x \in [-1, 1]$.

Muốn vậy, ta để ý rằng:

a)
$$1 = X_0 > X_1 > ... > X_k > ... > X_{n+1} > X_n = -1$$
.

b) Với $|x| \le 1$, ta có $1-xx_i \ge 0$, (i = 0, 1, ..., n).

Suy ra với $x \in [-1; 1]$:

$$\left| f^*(x) \right| \le \sum_{k=0}^{n} (-1)^k \frac{(1 - xx_0) ... (1 - xx_{k-1}) (1 - xx_{k+1}) ... (1 - xx_n)}{(x_k - x_0) ... (x_k - x_{k-1}) (x_k - x_{k+1}) ... (x_k - x_n)} \tag{1}$$

Mặt khác, áp dụng công thức nội suy La-gơ-rằng cho đa thức Trê-bu-sếp $T_n(x)$ tại n+1 điểm x_k (k=0,1,...,n), ta được :

$$T_{n}(x) = \sum_{k=0}^{n} T_{n}(x_{k}) \frac{(x - x_{0})...(x - x_{k-1})(x - x_{k+1})...(x - x_{n})}{(x_{k} - x_{0})...(x_{k} - x_{k-1})(x_{k} - x_{k+1})...(x_{k} - x_{n})}$$

$$= \sum_{k=0}^{n} (-1)^{k} \frac{(x - x_{0})...(x - x_{k-1})(x - x_{k+1})...(x - x_{n})}{(x_{k} - x_{0})...(x_{k} - x_{k-1})(x_{k} - x_{k+1})...(x_{k} - x_{n})}$$
(2)

Xem đa thức $T_n^*(x)$ xác định bởi : $T_n^*(x) = x^n T_n \left(\frac{1}{x}\right) (x \neq 0)$.

Từ đó ta thấy với $x \neq 0$ thì:

$$T_n^*(x) = \sum_{k=0}^n (-1)^k \frac{(1-xx_0)...(1-xx_{k-1})(1-xx_{k+1})...(1-xx_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$

Vì 2 vế là hai đa thức của x, nên nếu chúng bằng nhau khi $x \neq 0$ thì chúng cũng bằng nhau với mọi $x \in \mathbb{R}$. So sánh với (1), ta suy ra $|f^*(x)| \leq T_n^*(x)$ khi $x \in [-1;1]$.

Vì đa thức Trê-bu-sếp $T_n(x)$ bậc n có nghiệm :

$$x_k = \cos\left(\frac{\pi}{2n} + \frac{k}{n}\right), (k = 0, 1, ..., n-1)$$

Và có hệ số cao nhất bằng 2", vậy nó được phân tích dưới dạng:

$$T_n(x) = 2^{n-1}(x-x_0)(x-x_1)...(x-x_{n-1}),$$

Từ đó suy ra:
$$T^*(x) = 2^{n-1} (1 - xx_0) (1 - xx_1) ... (1 - xx_{n-1})$$
 (4)

Dãy $x_0, x_1, ..., x_{n-1}$ là một dãy "đối xứng" tức là : $x_0 = -x_n, x_n = x_{n-1}$,

 $x_2 = -x_{n-2}...$ nên theo (4) ta cũng có :

$$T_n^*(x) = 2^{n-1} (1 + xx_0) (1 + xx_1) ... (1 + xx_{n-1}).$$

Cùng với (4), suy ra:

$$\left[T_{n}^{*}(x)\right]^{2} = 4^{n-1} \left(1 - x^{2} x_{0}^{2}\right) \left(1 - x^{2} x_{1}^{2}\right) \dots \left(1 - x^{2} x_{n-1}^{2}\right)$$

Nên với $|x| \le 1 : [T_n^*(x)]^2 \le 4^{n-1}$.

Theo (3), ta có: $T_n^*(x) \ge 0$ khi $|x| \le 1$.

Vậy với $x \in [-1;1] : T_n^*(x) \le 2^{n-1}$.

Kết hợp với (3), ta được: $|f^*(x)| \le 2^{n-1}$ khi $|x| \le 1$.

11. KHAI TRIỂN VÀ BIỂU DIỄN

11.1. Khai triển A-ben:

Cho $f \in \mathbb{R}[x]$, deg f = n và n số $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R}$ khi đó tồn tại bộ n+1 số thực duy nhất $b_0, b_1, ..., b_n$ sao cho:

$$f(x) = b_0(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n) + +b_1(x - \alpha_1)(x - \alpha_2)...(x - \alpha_{n-1}) + ... + b_{n+1}(x - \alpha_1) + b_n.$$

Đặc biệt nếu $f \in \mathbb{Z}[x]$ và $\alpha \in \mathbb{Z}$ thì $b \in \mathbb{Z}$.

Chúng minh: Quy nap theo n.

Khi
$$n = 1$$
: $f(x) = a_0 x + a_1 = a_0 (x - \alpha) + (a_0 \alpha + a_1)$ thì $b_0 = a_0, b_1 = f(\alpha)$.

Giả sử khẳng định đúng đến n = k.

Xét đa thức $f(x) - a_0(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)$ có bậc $\leq n - 1$ nên tồn tại duy nhất bộ n số thực $b_1, b_2, ..., b_n$ thoả:

$$f(x) - a_0(x - \alpha_1)(x - \alpha_2)...(x - \alpha_n) = b_1(x - \alpha_1)(x - \alpha_2)...(x - \alpha_{n-1}) + ... + b_{n-1}(x - \alpha_1) + b_n \text{ (dpcm)}.$$

11.2. Khai triển theo x - a:

Cho $f \in \mathbb{R}[x]$ và deg f = n, $\forall a \in \mathbb{R}$ ta có khai triển theo x - a?

$$f(x) = c_0(x-a)^n + c_1(x-a)^{n-1} + ... + c_{n-1}(x-a) + c_n$$

với bộ n+1 số $c_0, c_1, ..., c_n$ duy nhất thuộc \mathbb{R} .

Chứng minh dựa vào quy nạp theo bậc n.

11.3. Khai triển Tay-lo:

Cho $f \in \mathbb{R}[x]$ và deg f = n, $\forall x_0 \in \mathbb{R}$ ta có khai triển :

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

• Chứng minh dựa vào khai triển trên và quy nạp theo $n(x_0 = a)$.

$$k!c_k = f^{(k)}(x_0) \Rightarrow c_k = \frac{f^{(k)}(x_0)}{k!}$$

Bài tập 130: Tìm điều kiện của các hệ số để $f(x) = ax^3 + bx^2 + cx + d$ nguyên với mọi x nguyên.

(Viêt Nam 1977)

Giải:

Lấy 4 số nguyên liên tiếp: -1; 0; 1; 2:

$$f(0) = d \in \mathbb{Z}$$
; $f(1) = a + b + c + d \in \mathbb{Z}$

$$f(2) = 8a + 4b + 2c + d \in \mathbb{Z}$$
; $f(-1) = -a + b - c + d \in \mathbb{Z}$

$$\Rightarrow$$
 d $\in \mathbb{Z}$, a+b+c $\in \mathbb{Z}$ và f(1)+f(-1)=2b+2d $\in \mathbb{Z}$ \Rightarrow 2b $\in \mathbb{Z}$.

$$Vi f(2) = 6a + 2(a+b+c) + 2b + d \in \mathbb{Z} \Rightarrow 6a \in \mathbb{Z}.$$

Đảo lại, khi 6a, 2b, a + b + c, $d \in \mathbb{Z}$ thì áp dụng khai triển A-ben, cụ thể:

$$f(x) = 6a \frac{x(x-1)(x+1)}{6} + 2b \frac{x(x-1)}{2} + (a+b+c)x + d$$

nên f(x) nguyên với mọi x nguyên. Sau đây là kết quả tổng quát hơn:

• Cho $f \in \mathbb{R}[x]$, $\deg f = n$, $a \in \mathbb{Z}$ sao cho $f(a+i) \in \mathbb{Z}$, $\forall i = \overline{0, n}$ thì $f(x) \in \mathbb{Z}$, $\forall x \in \mathbb{Z}$. Nghĩa là nếu f(x) nhận giá trị nguyên tại n+1 số nguyên liên tiếp thì f(x) nguyên với mọi x nguyên.

Giải:

Áp dụng khai triển A-ben với $\alpha_i = a + i$, $i = \overline{1, n}$ thì:

$$f(x) = b_0 (x - a - 1)(x - a - 2)...(x - a - n) + b_1 (x - a - 1)...(x - a - n + 1) + ... + b_{n-1} (x - a - 1) + b_n$$

$$\Rightarrow f(a + 1) = b_n \in \mathbb{Z}$$

$$f(a + 2) = b_{n-1} 1 + b_n \in \mathbb{Z} \Rightarrow b_{n-1} \in \mathbb{Z}$$

$$f(a + 3) = b_{n-2} .2! + b_{n-1} .1 + b_n \in \mathbb{Z} \Rightarrow b_{n-2} .2! \in \mathbb{Z}$$

$$f(a+n) \in \mathbb{Z} \Rightarrow b_1(n-1)! \in \mathbb{Z}$$

$$f(a) \in \mathbb{Z} \Rightarrow b_0 n! \in \mathbb{Z}.$$

Do dó:
$$f(x) = b_0 \cdot n! \frac{(x-a-1)...(x-a-n)}{n!} + b_1 \cdot (n-1)! \frac{(x-a-1)...(x-a-n-1)}{(n-1)!} + ... + b_n$$

thuộc \mathbb{Z} với $\forall x \in \mathbb{Z}$ (vì tích k số nguyên liên tiếp chia hết cho k!).

Bài tập 131: Nếu p nguyên tố, m số nguyên sao cho : $1 \le r_1 < r_2 < ... < r_m < p-1$ thoả $r_1^m \equiv 1 \pmod{p}$, $i = \overline{1, m}$ thì $\forall x \in \mathbb{Z}$:

$$x^{m}-1 \equiv (x-r_{1})(x-r_{2})...(x-r_{m}) \pmod{p}$$

Giải:

Dùng khai triển A-ben:

$$f(x) = x^m - 1 = b_0(x - r_1)...(x - r_m) + ... + b_{m-1}(x - r_1) + b_m$$

Vì $f \in \mathbb{Z}[x]$ và r nguyên nên b nguyên.

So sánh hệ số thì $b_0 = 1$ và $f(r_1) = r_1^m - 1 = b_m : p$

$$f(r_2) = r_2^m - 1 = b_{m-1}(r_2 - r_1) + b_m : p$$

 $Vi \ 0 < r_2 - r_1 < p \Rightarrow b_{m-1} : p.$

Turong ty: $f(r_m)$: $p \Rightarrow b_1 : p \Rightarrow x^m - 1 \equiv 1(x - r_1)...(x - r_m) \pmod{p}$.

Bài tập 132: Cho $f \in \mathbb{R}[x]$ có deg f = n và $f(k) = 2^k$, k = 0, 1, 2, ..., n. Tính f(n+1).

(Viêt Nam 1986)

Giải:

Xét đa thức:

$$g(x) = 1 + \frac{x}{1!} + \frac{x(x-1)}{2!} + \dots + \frac{x(x-1)(x-2)\dots(x-n+1)}{n!}$$

Thì deg g = n và g(k) = $\sum_{i=0}^{n} C_k^i = 2^k = f(k)$ với n+1 giá trị nên f = g.

Do đó:
$$f(n+1) = g(n+1) = \sum_{i=0}^{n} C_{n+1}^{i} = 2^{n+1} - 1$$
.

Bài tập 133: Chứng minh rằng nếu phân số tối giản $\frac{p}{q}$ là nghiệm của đa thức $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$, thì p - mq là ước của f(m) với m nguyên. Đặc biệt, p - q là ước của f(1); p + q là ước của f(-1).

Giải:

Phân tích f(x) theo các luỹ thừa của x - m:

$$f(x) = a_0 (x-m)^n + c_1 (x-m)^{n-1} + ... + c_{n-1} (x-m) + c_n = \phi(x-m)$$

Các hệ số $c_1, c_2, ..., c_n$ đều nguyên vì m nguyên.

Chú ý rằng:
$$c_n = f(m)$$
. Thay $x = \frac{p}{q}$, ta được:

$$f\left(\frac{p}{q}\right) = \phi\left(\frac{p}{q} - m\right) = \phi\left(\frac{p - mq}{q}\right) = 0.$$

Tức là: $\frac{p-mq}{q}$ là nghiệm của $\phi(x-m)$.

Vây: p - mq phải là ước của c_n , tức là ước của f(m), suy ra đọcm.

Trường hợp $m = \pm 1$ thì:

- Khi m = 1 : p q là ước của f(1).
- Khi m = -1: p + q là ước của f(-1).
- Khi m = 0: p là ước của f(0).

Bài tập 134: Cho đa thức P(x) bậc n và 2 số a < b thoả:

$$P(a) < 0, -P'(a) \le 0, P''(a) \le 0, ..., (-1)^n P^{(n)}(a) \le 0$$

 $P(b) > 0, P'(b) \ge 0, P''(b) \ge 0, ..., P^{(n)}(b) \ge 0.$

Chứng minh các nghiệm thực của P(x) thuộc (a; b).

(Singapore 1978)

Giải:

Khai triển Tay-lo, ta có:

$$P(x) = P(b) + \frac{P'(b)}{1!}(x-b) + \frac{P''(b)}{2!}(x-b)^2 + ... + \frac{P^{(n)}(b)}{n!}(x-b)^n$$

Nếu $x \ge b \Rightarrow P(x) > 0 \Rightarrow P(x)$ không có nghiệm $x \ge b$.

Tuong tu:

$$P(x) = P(a) + \frac{P'(a)}{1!} (x-a) + \frac{P''(a)}{2!} (x-a)^2 + ... + \frac{P^{(n)}(a)}{n!} (x-a)^n$$

$$= P(a) + \frac{-P'(a)}{1!} (a-x) + \frac{P''(a)}{2!} (a-x)^2 + ... + \frac{(-1)^n P^{(n)}(a)}{n!} (a-x)^n$$

Nếu $x < a \Rightarrow P(x) < 0 \Rightarrow P(x)$ không có nghiệm $x \le a$.

Vây các nghiệm phải thuộc khoảng (a; b).

• Ta gọi ước lượng về nghiệm ở trên là ước lượng Niu-ton.

Bài tập 135: Biểu diễn đa thức: $f(x) = x^4 + x^3 + x^2 + x + 1$ dưới dạng hiệu bình phương của đa thức: $f(x) = [P(x)]^2 - [Q(x)]^2$ có bậc khác nhau và với các hệ số thực. Chứng minh rằng không tồn tại đa thức g(x) với các hệ số thực để $f(x) = [g(x)]^2$.

Giải:

Ta thấy ngay rằng deg P(x) = 2 và deg Q(x) < 2. Do đó:

$$[P(x)]^2 = x^4 + x^3 + ... = \left(x^2 + \frac{1}{2}x + a\right)^2 + ...$$

Nên P(x) = $x^2 + \frac{1}{2}x + a$.

Chọn
$$a = 1$$
 thì: $f(x) = \left(x^2 + \frac{1}{2}x + 1\right)^2 - \left(\frac{1}{2}\sqrt{5}x\right)^2$ thoả yếu cầu.

Nếu đẳng thức $f(x) = [g(x)]^2$ thì g(x) phải có dạng $g(x) = x^2 + ax + b$.

So sánh hệ số: $x^4 + x^3 + x^2 + x + 1 = (x^2 + ax + b)^2$ thì không tồn tại a, b.

Vậy không tồn tại $g(x) = (f(x))^2$.

Bài tâp 136: Giả sử các đa thức P(x), Q(x), R(x) và S(x) thoả mãn:

$$P(x^5) + xQ(x^5) + x^2R(x^5) = (x^4 + x^3 + x^2 + x + 1)S(x)$$
 (1)

Chứng minh rằng khi đó tồn tại đã thức H(x) để P(x) viết được dưới dạng P(x) = (x-1)H(x). Tức là P(x) chia hết cho (x-1).

(USA:1976)

Giải:

Giả sử: $S(x) = s_0 + s_1 x + ... + s_n x^n$.

Khi đó theo (1) thì:

$$(x-1)P(x^5) + x(x-1)Q(x^5) + x^2(x-1)R(x^5) =$$

$$= (x^4 + x^3 + x^2 + x + 1)(x-1)S(x)$$

Hay:
$$P(x^5)+(x^5-1)S_1(x) \equiv (x^5-1)S_2(x)+xP(x^3)+$$

 $+(x^2-x)Q(x^5)+(x^3-x^2)R(x^5)$ (2)

Trong
$$d6: S_1(x) = s_0 + s_5 x^5 + s_{10} x^{10} + ... + s_{5m} x^{5m}, m = \left[\frac{n}{5}\right].$$

 $S_2(x) = S(x) - S_1(x).$

Vì yế trái của (2) là đa thức mũ bội 5 còn yế phải của (2) là đa thức không là lũy thừa bội của 5 nên chúng đồng nhất bằng 0. Từ đó ta có H(x) thỏa đề bài.

$$P(x^5) = -(x^5 - 1)S_1(x) \Rightarrow P(1) = 0 \Leftrightarrow P(x) = (x - 1)H(x).$$

Bài tập 137: Cho a, b, $c \in \mathbb{Z}$, $f(x) = ax^2 + bx + c$ thỏa $\forall x \in \mathbb{Z}$, f(x) là bình phương một số nguyên. Chúng minh $\exists A, B \in \mathbb{Z}$ sao cho $f(x) = (Ax + B)^2$.

Giải:

1)
$$a = 0 \Rightarrow f(x) = bx + c$$

 $f(0) = c = B^2 \Rightarrow b = 0, f(x) = B^2 \text{ (v\'oi A = 0)}.$

2)
$$a \neq 0 \Rightarrow a > 0. \exists n \text{ sao cho } \forall n \geq \mathbb{N} \text{ thì } f(n+1) > f(n).$$

Với mỗi
$$n \ge \mathbb{N}$$
, đặt $M_n = \sqrt{an^2 + bn + c} \in \mathbb{Z}$

$$M_{n+1} = \sqrt{a(n+1)^2 + b(n+1) + c} = M_n + k_n$$

$$\Rightarrow 2M_n k_n + k_n^2 = 2an + a + b$$

$$k_{n} = M_{n+1} - M_{n} = \frac{M_{n+1} - M_{n}}{M_{n+1} + M_{n}} = \frac{-\frac{2a + \frac{a + b}{n}}{M_{n+1} + M_{n}}}{\frac{n+1}{n} + \frac{M_{n+1} + M_{n}}{n}}$$

$$\mathbf{\hat{V}}_{1}: \lim_{n \to +\infty} \frac{\mathbf{M}_{n}}{\mathbf{n}} = \sqrt{\mathbf{a}} \Rightarrow \lim_{n \to +\infty} \mathbf{k}_{n} = \sqrt{\mathbf{a}}, \, \mathbf{k}_{n} \in \mathbb{Z}, \forall n > \mathbb{N}$$

Vây:
$$\sqrt{a} = A \in \mathbb{N}^+$$
, $\exists n_0, \forall n \ge n_0$ sao cho: $k_n = A$

$$M_n = M_{n-1} + A = M_{n-2} + 2A = \dots = M_{n_0} + (n - n_0)A$$

$$f(n) = M_n^2 = \left[Mn_0 + (n - n_0)A\right]^2$$

$$\Rightarrow f(n) \equiv (An + Mn_0 - n_0A)^2, \forall n \ge n_0.$$

Do đó:
$$\forall x \notin \mathbb{R}$$
, $f(x) = (An + Mn_0 - n_0A)^2$ tấy $B = Mn_0 - n_0A$
thì $f(x) = (Ax + B)^2$.

Bài tập 13 \mathcal{E} : Cho một dãy các đa thức $P_n(x)$ (n = 0,1,2,...) xác định như sau : $P_0 = 2, P_1 = x$, khi $n \ge 1$: $P_{n+1} + P_{n-1} = xP_n$. Chứng minh rằng có thể tìm được các số a, b, c sao cho, $\forall n \ge 1$ thì :

$$(x^2-4)(P_n^2-4)=(aP_{n+1}+bP_n+cP_{n-1})^2$$

Chú ý : Ở đây ta hiểu P_0 , P_1 ,..., P_n tức là $P_0(x)$,..., $P_n(x)$.

$$P_2 = xP_1 - P_0 = x^2 - 2$$
. Giả sử có các hằng số a, b, c.

Trong hệ thức đã cho, lấy n = 1, ta có:

$$(x^{2}-4)^{2} = [a(x^{2}-2)+bx+2c]^{2} = [ax^{2}+bx+2(c-a)]^{2}$$

$$x^{2}-4 = \pm [ax^{2}+bx+2(c-a)]$$

$$\Rightarrow \begin{bmatrix} a=1 \ ; \ b=0 \ ; \ c=-1 \\ a=-1 \ ; \ b=0 \ ; \ c=1. \end{bmatrix}$$

Ta chứng minh
$$\forall n \ge 1$$
 thì : $(P_{n+1} - P_{n-1})^2 = (x^2 - 4)(P_n^2 - 4)$ (1)

Khi n = 1 thì (1) đúng.

Giả sử (1) đúng đến n:

$$\begin{split} \left(P_{n+2} - P_{n}\right)^{2} &= \left(P_{n+2} + P_{n} - 2P_{n}\right)^{2} = \left(xP_{n+1} - 2P_{n}\right)^{2} \\ &= x^{2}P_{n+1}^{2} - 4xP_{n}P_{n+1} + 4P_{n}^{2} \\ &= x^{2}P_{n+1}^{2} - 4\left(P_{n+1} + P_{n-1}\right)P_{n+1} + 4P_{n}^{2} \\ &= \left(x^{2} - 4\right)P_{n+1}^{2} + 4P_{n}^{2} - 4P_{n+1}P_{n-1} \\ &= \left(x^{2} - 4\right)P_{n+1}^{2} + 4P_{n}^{2} + \left(P_{n+1} - P_{n-1}\right)^{2} - \left(P_{n+1} + P_{n-1}\right)^{2} \\ &= \left(x^{2} - 4\right)P_{n+1}^{2} + 4P_{n}^{2} + \left(x^{2} - 4\right)\left(P_{n}^{2} - 4\right) - x^{2}P_{n}^{2} \\ &= \left(x^{2} - 4\right)P_{n+1}^{2} - 4\left(x^{2} - 4\right) = \left(x^{2} - 4\right)\left(P_{n+1}^{2} - 4\right). \end{split}$$

Suy ra (1) đúng cho n+1.

Vậy (1) đúng với mọi n nguyên dương.

12. NHỊ THỰC NIU-TƠN - TỔ HỢP

12.1. Định lí:

$$(x+b)^{n} = C_{n}^{0}x^{n} + C_{n}^{1}x^{n-1}b + ... + C_{n}^{k}x^{n-k}b^{k} + ... + C_{n}^{n}b^{n}$$
$$= \sum_{k=0}^{n} C_{n}^{k}x^{n-k}b^{k}, \text{ v\'oi } n \in \mathbb{Z}^{+}$$

Ngược lại:
$$(x+b)^n = (b+x)^n = \sum_{i=0}^n C_n^i b^{n-i} x^i$$
.

Chúng minh quy nap theo n.

Khi
$$n = 1 : (x + b)^1 = x + b = C_1^0 x + C_1^1 b : dúng.$$

Giả sử công thức đúng đến n = m.

Ta chứng minh công thức đúng đến n = m + 1:

$$(x+b)^{m+1} = (x+b)(x+b)^{m} = (x+b)\sum_{i=0}^{m} C_{m}^{i} x^{m-i} b^{i}$$

$$= \sum_{j=0}^{m} C_{m}^{i} x^{m-j+1} b^{i} + \sum_{i=0}^{m} C_{m}^{i} x^{m-i} b^{i+1}$$

$$= \sum_{j=0}^{m+1} (C_{m}^{j-1} + C_{m}^{j}) x^{m-j+1} b^{j} = \sum_{j=0}^{m+1} C_{m+1}^{j} x^{m-j+1} b^{j} \text{ (dpcm)}.$$

12.2. Các kết quả:

(1):
$$C_n^0 + C_n^1 + ... + C_n^n = 2^n$$
.

$$Vi: 2^n = (1+1)^n = \sum_{k=0}^n C_n^k 1^{n-k} 1^k = \sum_{k=0}^n C_n^k.$$

(2):
$$C_{2n}^0 + C_{2n}^2 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + ... + C_{2n}^{2n-1}$$

$$Vi: 0 = (1-1)^{2n} = \sum_{i=0}^{2n} C_{2n}^{i} 1^{2n-i} (-1)^{i} = \sum_{i=0}^{2n} (-1)^{i} C_{2n}^{i}$$
$$= C_{2n}^{0} - C_{n}^{1} + C_{2n}^{2} - C_{2n}^{3} + \dots - C_{2n}^{2n-1} + C_{2n}^{2n}$$

(3):
$$n(x+b)^{n-1} = nC_n^0 x^{n-1} + (n-1)C_n^1 x^{n-2}b +$$

...+
$$(n-k)C_n^k x^{n-k-1}b^k + ... + C_n^{n-1}b^{n-1}$$
.

$$Vi: n(x+b)^{n-1} = ((x+b)^n)'.$$

$$(4): \frac{(\alpha+b)^{n+1}-b^{n+1}}{n+1} = \frac{C_n^0}{n+1}\alpha^{n+1} + \frac{C_n^1}{n}\alpha^nb + ... + \frac{C_n^k}{n-k+1}\alpha^{n+k+1}b^n + ... + \frac{C_n^n}{1}b^n.$$

$$\int_{0}^{\alpha} (x+b)^{n} dx = \int_{0}^{\alpha} (C_{n}^{0}x^{n} + ... + C_{n}^{k}x^{n-k}b^{k} + ... + C_{n}^{n}b^{n})dx$$

$$\Rightarrow \frac{(x+b)^{n+1}}{n+1} \bigg]_{n}^{\alpha} = \left[\frac{C_{n}^{0}}{n+1} x^{n+1} + ... + \frac{C_{n}^{k}}{n-k+1} x^{n-k+1} b^{k} + ... + C_{n}^{n} b^{n} x \right]_{0}^{\alpha}.$$

(5):
$$C_m^0 C_n^k + C_m^1 C_n^{k-1} + ... + C_m^m C_n^{k-m} = C_{m+n}^k$$
 với $m \le k \le n$.

Vì $(1+x)^m \cdot (1+x)^n = (1+x)^{m+n}$, So sánh hệ số theo x^k của 2 vế, suy ra điều phải chứng minh.

- Một số chú ý về hệ số sau khi khai triển tính gọn thành :
 P(x) = a_n + a₁x + ... + a_nx^k + ... + a_nxⁿ.
- a) Tổng các hệ số là: P(1).
- b) Tổng các hệ số theo số mũ chấn : $\frac{P(1) + P(-1)}{2}$; tổng các hệ số theo số mũ lẻ : $\frac{P(1) P(-1)}{2}$.
- c) Nếu P(x) là hàm đa thức chắn thì các hệ số $a_{2k+1} = 0$, ngược lại P(x) là hàm đa thức lẻ thì $a_{2k} = 0$.

Từ công thức tổ hợp:
$$C_n^k = \frac{n!}{k!(n-k)!} = \frac{n(n-1)...(n-k+1)}{k!}$$
 thì ta cố kết quả: tích k số nguyên liên tiếp chia hết cho $k! = 1.2...k$.

Bài tập 139_: Tính tổng các hệ số và tổng các lũy thừa lẻ sau khi khai triển thành đa thức:

a)
$$P(x) = (x^{27} + x^7 - 1)^{2005}$$

b)
$$Q(x) = (1 + x + x^2 + ... + x^{100})(1 - x + x^2 - x^3 + ... + x^{100}).$$

Giải:

a)
$$P(x) = (x^{27} + x^7 - 1)^{2005}$$
 có $deg P = n = 27.2005$.
 $= a_0 + a_1 x + ... + a_k x^k + ... + a_n x^n$ (n lê)
 $P(1) = a_0 + a_1 + ... + a_n$; $P(-1) = a_0 - a_1 + ... - a_n$.

Tổng các hệ số: $P(1) = (1+1-2)^{2005} = 1$.

Tổng các hệ số theo lũy thừa lẻ:

$$\frac{P(1)-P(-1)}{2}=\frac{1-(-3)^{2005}}{2}=\frac{1+3^{2005}}{2}.$$

b)
$$Q(x) = (1 + x + x^2 + ... + x^{100})(1 - x + x^2 - x^3 + ... + x^{100})$$

Tổng các hệ số: Q(1) = 101.1 = 101. Ta có:

$$Q(-x) = (1 - x + x^2 - x^3 + \dots + x^{100})(1 + x + x^2 + x^3 + \dots + x^{100}) = Q(x^3).$$

Vì vậy Q là hàm đa thức chẵn, suy ra $a_{2k+1} = 0$.

Do đó tổng các hệ số theo lũy thừa lẻ bằng 0.

Bài tập 140: Tìm hệ số:

- a) Theo x^3 của khai triển $P(x) = (x+1)^2 + (x-2)^3 (x-3)^4$.
- b) Theo x^9 của khai triển $Q(x) = (1+x)^9 + (1+x)^{10} + ... + (1+x)^{14}$.
- c) Theo x^4 của khai triển $R(x) = (1 + 2x + 3x^2)^{10}$.

Giải :

a)
$$P(x) = (x+1)^2 + \sum_{i=0}^{3} C_3^i x^i (-2)^{3-i} - \sum_{i=0}^{4} C_4^i x^i (-3)^{4-i}$$
.

Hệ số theo x^3 ứng với i = 3, j = 3 nên hệ số theo x^3 sau khi khai triển rút gọn là : $C_3^3(-2)^0 - C_4^3(-3)^1 = 13$.

b)
$$O(x) = (1+x)^9 + (1+x)^{10} + ... + (1+x)^{14}$$
.

Hệ số theo x^9 là : $C_9^0 + C_{10}^1 + C_{11}^2 + C_{12}^3 + C_{13}^4 + C_{14}^5 = 3003$.

c)
$$R(x) = ((1+2x)+3x^2)^{10} = \sum_{k=0}^{10} C_{10}^k (1+2x)^{10-k} (3x^2)^k$$

Khi k > 2 thì $(3x^2)^k$ có bác lớn hơn 4.

Khi
$$k = 0$$
: $C_{10}^{0} (1+2x)^{10} .1$.

Khi
$$k = 1$$
: $C_{10}^{1} (1+2x)^{9} .3x^{2}$.

Khi
$$k = 2 : C_{10}^{2} (1 + 2x)^{8} 9x^{4}$$
.

Vậy hệ số theo $x^4 \cdot la$: $C_{10}^0 C_{10}^4 \cdot 2^4 + C_{10}^1 C_9^2 \cdot 2^2 \cdot 3 + C_{10}^2 C_8^0 \cdot 9 = 8085$.

Bài tập 141: Tìm hệ số theo:

- a) x^3 của khai triển $P(x) = (x+1)^2 (3-x)^{10}$.
- b) x^{n-2} cúa khai triển $Q(x) = \left(x + \frac{1}{2}\right)\left(x + \frac{1}{2^2}\right)...\left(x + \frac{1}{2^n}\right)$.
- c) x^k của khai triển $R(x) = (1+2x)^{12}$ mà nó là hệ số lớn nhất.

Giải:

a)
$$P(x) = (x^2 + 2x + 1)(3 - x)^{10}$$

= $x^2 \sum_{i=0}^{10} C_{10}^i 3^{10-i} (-x)^i + 2x \sum_{i=0}^{10} C_{10}^i 3^{10-i} (-x)^j + \sum_{k=0}^{10} C_{10}^k 3^{10-k} (-x)^k$

Hệ số theo x^3 ứng với i = 1, j = 2, k = 3 là:

$$-C_{10}^{1}.3^{9} + 2C_{10}^{2}.3^{8} - C_{10}^{3}.3^{7} = 131220.$$

b)
$$Q(x) = x^n + Ax^{n-1} + Bx^{n-2} + ... \text{ v\'oi}$$
:

$$A = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$
; $B = \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{2} \cdot \frac{1}{2^3} + \dots$

Mà
$$A^2 = \sum \frac{1}{4^k} + 2B \Rightarrow B = \frac{4^n - 3 \cdot 2^n + 2}{3 \cdot 4^n}$$

c) Ta có:
$$R(x) = (1+2x)^{12} = \sum_{k=0}^{12} a_k x_k$$
 với $a_k = C_{12}^k 2^k > 0$.

Xét
$$a_m < a_{m+1} \Leftrightarrow C_{12}^m 2^m < C_{12}^{m+1} 2^{m+1} \Leftrightarrow m < \frac{23}{3}$$
 nên các hệ số:

$$a_0 < a_1 < a_2 < ... < a_6 < a_7 < a_8 > a_9 > ... > a_{12}$$

Vậy hệ số lớn nhất là $a_x = 126720$.

Bài tập 142: Tìm hệ số của x^{50} trong các đa thức có được sau khi bỏ các dấu ngoặc và nhóm các số hạng giống nhau trong các biểu thức:

a)
$$(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + ... + x^{1000}$$

b)
$$(1+x)+2(1+x)^2+3(1+x)^3+...+1000(1+x)^{1000}$$
.

Giải:

a) Bằng cách chứng minh dùng công thức tổng một cấp số nhân và công thức nhị thức Niu-tơn ta tìm được:

$$(1+x)^{1000} + x(1+x)^{999} + x^{2}(1+x)^{998} + ... + x^{1000}$$

$$= \frac{x^{1001}}{1+x} - (1+x)^{1000}}{\frac{x}{1+x} - 1} = \frac{x^{1001} - (1+x)^{1001}}{x - 1 - x} = (1+x)^{1001} - x^{1001}$$

$$= 1 + 1001x + C_{1001}^{2}, x^{2} + C_{1001}^{3}, x^{3} + ... + 1001x^{1000}.$$

Vậy hệ số phải tìm là :
$$C_{1001}^{50} = \frac{1001!}{50!951!}$$

b) Ta gọi đa thức đã cho là P(x). Ta có:

$$(1+x)P(x) - P(x) = [(1+x)^{2} + 2(1+x)^{3} + ... + 999(1+x)^{1000} + 1000(1+x)^{1001}]$$

$$-[(1+x) + 2(1+x)^{2} + ... + 1000(1+x)^{1000}].$$

$$= 1000(1+x)^{1001} - [(1+x) + (1+x^{2}) + (1+x)^{3} + ... + (1+x)^{1000}]$$

$$= 1000(1+x)^{1001} - \frac{(1+x)^{1001} - (1+x)}{1+x-1}$$

$$= 1000(1+x)^{1001} - \frac{(1+x)^{1001} - (1+x)}{x}.$$

Suy ra :
$$P(x) = \frac{1000(1+x)^{1001}}{x} - \frac{(1+x)^{1001} - (1+x)}{x^2}$$

= $1000 \left[1001 + C_{1001}^2 x + C_{1001}^3 x^2 + ... + 1001 x^{999} + x^{1000} \right]$
 $- \left[C_{1001}^2 + C_{1001}^3 x + C_{1001}^4 x^2 + ... + 1001 x^{998} + x^{999} \right].$

Vậy hệ số phải tìm bằng:

$$1000C_{1001}^{51} - C_{1001}^{52} = \frac{1000.1001!}{51!950!} - \frac{1001!}{52!949!}$$
$$= \frac{1001!}{52!950!} [52.100 - 950] = \frac{51150.1001!}{52!950!}$$

Bài tập 143 :

Sau khai triển $P(x) = (1 + x^2 - x^3)^{1000}$ và $Q(x) = (1 - x^2 + x^3)^{1000}$ thì hệ số theo x^{20} của đã thức nào lớn hơn?

Giải :

Để ý hệ số theo x^{20} của hai đa thức : $P(x) = (1 + x^2 - x^3)^{1000}$ và $P_1(x) = (1 + x^2 + x^3)^{1000}$ là như nhau, kí hiệu a_{20} (vì $P_1(-x) = P(x)$).

Tương tự: $Q(x) = (1-x^2+x^3)^{1000}$ và $Q_1(x) = (1-x^2-x^3)^{1000}$ có hệ số cùng là b_{20} theo x^{20} .

Mà: $P_1(x) = (1 + x^2 + x^3)^{1000}$ có hệ số theo x^{20} là a_{20} lớn hơn hệ số b_{20} của $Q_1(x) = (1 - x^2 - x^3)^{1000}$ (vì toàn hệ số dương).

Vay: $a_{20} > b_{20}$.

Bài tập 144: Cho đa thức: $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ với $n \ge 3$ có n nghiệm thực và $a_0 = 1$, $a_1 = -n$, $a_2 = \frac{n^2 - n}{2}$. Xác định $a_3, a_4, ..., a_n$.

(Việt Nam 1988)

Giải :

Ta kí hiệu $x_i (i = \overline{1,n})$ là n nghiệm của đa thức thì : $\sum_{i=1}^{n} x_i = n$

và
$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} = \frac{n^{2} - n}{2}$$
 (với $j \neq i$).

Từ đó ta có:
$$\sum_{i=1}^{n} x_i^2 = \left(\sum_{i=1}^{n} x_i\right)^2 - 2\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j = n^2 - n^2 + n = n.$$

$$va \sum_{i=1}^{n} (x_i - 1)^2 = \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i + n = n - 2n + n = 0.$$

Từ đó suy ra: $x_i = 1$ (i = 1, n) nên đa thức có dạng $P(x) = (x - 1)^n$.

Vậy các hệ số của đa thức sẽ là : $a_k = (-1)^k C_n^k (k = \overline{0, n})$.

Bài tập 145: Tồn tại hay không tồn tại các số $a_1, a_2, ..., a_n \in \mathbb{R}$ là các nghiệm của các đa thức: $P(x) = x^n + \sum_{k=1}^n (-1)^k C_n^k a_k^k x^{n-k}$.

Giải:

Giả sử tồn tại các số như vậy. Khi đó theo định lí Vi-ét thì:

$$C_n^k a_k^k = \sum_{i_1 \leq i_2 \leq k} a_{i_1} a_{i_2} ... a_{i_k} \ \left(k = 1,...,n\right) \ (tổng có \ C_n^k \ số hạng).$$

Giả sử: $|a_k| = \max\{|a_1|, |a_2|, ..., |a_n|\}$

Suy ra :
$$C_n^k |a_k^k| = \sum_{i_1 \le i_2 \le ... \le i_k} |a_{i_1}| |a_{i_2}| ... |a_{i_k}| \le C_n^k |a_k|^k$$

Do đó:
$$|a_1| = |a_2| = ... = |a_n|$$
.

Mà $|a_1 + a_2 + ... + a_n| = na_1$ nên $a_1, a_2, ..., a_n$ cùng dấu và do đó chúng bằng nhau. Đặt $a_1 = a_2 = ... = a_n = a$ thì ta có đa thức:

$$P(x) = (x-a)^n = \sum_{k=0}^n (-1)^k . a^k . x^{n-k}$$
: thoả mãn.

Bài tập 146: Chứng minh rằng với m = 0, 1, 2,... thì:

$$S_{n_1}(n) = 1^{2m+1} + 2^{2m+1} + ... + n^{2m+1}$$
 là da thức theo $n(n+1)$.

Ta chúng minh:
$$2C_1^0.S_0(n) = n(n+1)$$

 $2C_2^1.S_1(n) = (n(n+1))^2$
 $2C_3^0.S_1(n) + 2C_3^2S_2(n) = (n(n+1))^3$
 $2C_4^1.S_2(n) + 2C_4^3S_3(n) = (n(n+1))^4$

Và tổng quát : $2\sum_{r=0}^{k} C_{k}^{r} . S_{\frac{r+k-1}{2}}(n) = (n(n+1))^{k} \text{ với } r+k \text{ lể.}$

Thật vậy, dùng quy nạp với r+k lẻ:

$$\begin{split} 2\sum_{r=0}^{k}C_{k}^{r}.S_{\frac{r+k-1}{2}}(n) &= 2\sum_{r\neq 0}^{k}C_{k}^{r}.\sum_{h=1}^{n}h^{r+k} = 2\sum_{h=1}^{n}\sum_{r=0}^{k}C_{k}^{r}.h^{r+k} \\ &= \sum_{h=1}^{n}\sum_{r=0}^{k}C_{k}^{r}.h^{2r}(h^{k-r}-(-h)^{k-r}) = \sum_{h=1}^{n}((h^{2}+h)^{k}-(h^{2}-h)^{k}) \\ &= \sum_{h=1}^{n}\left[(h(h+1)^{k}-(h(h-1))^{k}\right] \\ &= n(n+1)^{k}-1(1-1)^{k}=\left(n(n+1)\right)^{k}. \end{split}$$

Bài tập 147: Giả sử $(1+x)^{p-2} = 1 + a_1x + a_2x^2 + ... + a_{p-2}x^{p-2}$ với p nguyên tố lẻ. Chứng minh rằng : $a_1 + 2$, $a_2 - 3$, $a_3 + 4$,..., $a_{p-3} - (p-2)$ và $a_{p-2} + (p-1)$ đều là bội của p.

(Hồng Kông 1998)

Giải:

Số hạng tổng quát của nhị thức $(1+x)^{p-2}$ là $a_k = C_k^{p-2}$.

Nên:
$$a_k + (-1)^{k-1} (k+1) = C_k^{p-2} + (-1)^{k-1} (k+1)$$

$$= \frac{(p-2)(p-3)...(p-k+1)}{k!} + (-1)^{k-1} (k+1)$$

$$= \frac{(p-2)(p-3)...(p-k+1) + (-1)^{k-1} (k+1)!}{k!}.$$

Vì a_k nguyên nên phân số trên nguyên và do p nguyên tố lẻ nên p-i không chia hết cho k!, hơn nữa tử thức viết gọn thành mp nên $a_k + (-1)^{k-1} (k+1)$; p.

13. ĐA THỨC VỚI HỆ SỐ PHỨC — SỐ PHỨC

13.1. Số phức:

a) Dinh nghĩa: z = a + bi với $a, b \in \mathbb{R}$, i là đơn vi ảo: $i^2 = -1$.

Trong đó: a là phần thực: a = Re z; b là phần ảo: a = Im z.

$$C = \{z = a + bi/a, b \in \mathbb{R}\}\$$
 gọi là tập các số phức (ảo).

 $\overline{z} = a - bi$ gọi là số phức liên hiệp của z = a + bi.

b) Phép toán: z = a + bi; z' = a' + b'i thì:

$$z + z' = (a + a') + (b + b')i$$

 $z - z' = (a - a') + (b - b')i$

$$zz' = (aa' - bb') + (ab' + a'b)i$$

$$\frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i \text{ v\'oi } z \neq 0.$$

13.2. Dạng lượng giác của số phức:

a) Dinh nghĩa: $z = a + bi = r(\cos \varphi + i \sin \varphi)$

với
$$r = \sqrt{a^2 + b^2}$$
 gọi là môđun của z.

$$\varphi = (Ox, \overline{OM})$$
 với $M(a; b)$ gọi là argumen của z.

b) Phép toán dang lượng giác:

Cho $z = r(\cos \alpha + i \sin \alpha), z' = r'(\cos \beta + i \sin \beta)$

Thi:
$$zz' = rr' \left[\cos(\alpha + \beta) + i \sin(\alpha + \beta) \right]$$

$$\frac{z}{z'} = \frac{r}{r'} \Big[\cos(\alpha - \beta) + i \sin(\alpha - \beta) \Big]$$

c) Công thức Moivre ;

$$[r(\cos \varphi + i \sin \varphi)]^n = r^n (\cos n\varphi + i \sin n\varphi)$$

Đặc biệt: $(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi$

• Kết quả : Từ đồng nhất phần thực, phần ảo của khai triển, ta có :

$$n = 2 \Rightarrow \sin 2\phi = 2 \sin \phi \cos \phi$$
; $\cos 2\phi = \cos^2 \phi - \sin^2 \phi$

$$n=3 \Rightarrow \sin 3\phi = 3\sin \phi - 4\sin^3 \phi ; \cos 3\phi = 4\cos^3 \phi - 3\cos \phi$$

Và tổng quát:

$$\cos n\phi + i\sin n\phi = (\cos \phi + i\sin \phi)^n = \sum_{k=0}^n C_n^k \cos^{n-k} \sin^k \phi.$$

Cho ta:
$$\cos n\phi = \cos^{n} \phi - C_{n}^{2} \cos^{n-2} \phi \sin^{2} \phi + ...$$

 $\sin n\phi = C_{n}^{1} \cos^{n-1} \phi \sin \phi - C_{n}^{3} \cos^{n-3} \phi \sin^{3} \phi + ...$

13.3. Căn bậc n của một số phức:

- a) Định nghĩa: Căn bậc n của số phức z là số phức z' sao cho $(z')^n = z$. Khi $z = 0 \Rightarrow z' = 0$.
- b) Định lí: Mọi số phức $z \neq 0$ có đúng n căn bậc n.

Dặt:
$$z = r(\cos \varphi + i \sin \varphi)$$
, $z' = r'(\cos \varphi' + i \sin \varphi')$ thì

$$(z')^n = z \Leftrightarrow \begin{cases} r' = \sqrt[n]{r} \\ \phi' = \frac{\phi}{n} + \frac{k2\pi}{n}, k = 0, 1, ..., n-1 \end{cases}$$

• Đặc biệt : z = 1 thì có n căn bậc nguyên dương của đơn vị là :

$$z' = \cos \frac{k2\pi}{n} + i \sin \frac{k2\pi}{n}, n = 0, 1, ..., n - 1.$$

• Khi n = 2 thì mọi số phức $z \neq 0$ đều có 2 căn bậc 2 đối nhau.

13.4. Đa thức với hệ số phức:

- a) Định nghĩa: $P(z) = a_0 z^n + a_1 z^{n-1} + ... + a_{n-1} z + a_n$ với các hệ số $a_i \in \mathbb{C}$, biến $z \in \mathbb{C}$. Ta cũng định nghĩa bậc, nghiệm như đa thức với hệ số thực.
- **b)** Đinh lí Vi-ét: Phát biểu thuận và đảo như $f \in \mathbb{R}[x]$.
- c) Tam thức bậc hai:

Định lí: Mọi tam thức bậc hai hệ số đều có đủ hai nghiệm phức phân biệt hoặc trùng nhau.

Ching minh: $P(z) = az^2 + bz + c$, $a \ne 0$. $\Delta = b^2 - 4ac$.

Vì $\Delta \in \mathbb{C}$ luôn có 2 căn bậc hai đối nhau, kí hiệu là $\pm \sqrt{\Delta}$ nên có 2

nghiệm:
$$z_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \in \mathbb{C}$$
.

d) Định lí Dalembert: Mọi đa thức bậc n hệ số phức:

$$P(z) = a_0 z^n + a_1 z^{n-1} + ... + a_{n-1} z + a_n, a_0 \neq 0$$

đều có đủ n nghiệm phức phân biệt hay trùng nhau.

• Kết quả : Gọi $z_1, z_2, ..., z_n$ là n nghiệm của P(z) thì ta có phân tích :

$$P(z) = a_0(z-z_1)(z-z_2)...(z-z_n).$$

13.5. Phân tích đa thức hệ số thực thành nhân tử:

Định lí: Mọi đa thức hệ số thực $f \in \mathbb{R}[x]$ đều phân tích được thành các nhân tử dạng $x - \alpha$ hoặc $x^2 + px + q$, với $\Delta = p^2 - 4q < 0$:

$$f(x) = a_0 \prod_{i=1}^{m} (x - \alpha_i) \prod_{k=1}^{s} (x^2 + p_k x + q_k).$$

- $Chú \ \dot{y}$: Việc phân tích không đồng thời với yêu cầu đã thức phải có nghiệm thực.
- <u>Kết quả</u>: Nếu P(x) > 0, $\forall x \in \mathbb{R}$ thì f không có nhân tử $(x \alpha_i)$ với $\alpha_i \in \mathbb{R}$, do đó P(x) chỉ có các nghiệm phức liên hợp trong tặp C nên P(x) là tổng bình phương của 2 đa thức:

$$P(x) = a_0 \prod (x - z_k) (x - \overline{z_k}) = a_0 (f^2(x) + g^2(x))$$
với
$$\begin{cases} f(x) + ig(x) = \prod (x - z_k) \\ f(x) - ig(x) = \prod (x - \overline{z_k}) \end{cases}$$

Bài tập 148: Trong C, giải phương trình:

a)
$$x^2 - \sqrt{3}x + 1 = 0$$
 (1)

b)
$$3x^3 - 24 = 0$$
 (2)

c)
$$2x^4 + 16 = 0$$
 (3)

Giải:

a)
$$x^2 - \sqrt{3}x + 1 = 0$$
. Ta có $\Delta = 3 - 4 = -1 = -i^2$.

Vậy phương trình (1) có 2 nghiệm phức : $x = \frac{\sqrt{3}}{2} \pm \frac{1}{2}i$.

b) Ta có: (2) $\Leftrightarrow x^3 = 8 \Leftrightarrow x^3 = 8(\cos 0 + i \sin 0)$

$$\Leftrightarrow x = \sqrt[3]{8} \left(\cos \frac{k2\pi}{3} + i \sin \frac{k2\pi}{3} \right), k \in \mathbb{Z}.$$

Do đó (2) có 3 nghiệm : $x_1 = 2$; $x_2 = 1 + i\sqrt{3}$; $x_3 = -1 - i\sqrt{3}$.

c) Ta có: (3) $\Leftrightarrow x^4 = -8 = 8(\cos \pi + i \sin \pi)$

$$\Leftrightarrow x = \sqrt[4]{8} \left[\cos \frac{\pi + k2\pi}{4} + i \sin \frac{\pi + k2\pi}{4} \right], \ k \in \mathbb{Z}.$$

Do đó phương trình (3) có 4 nghiệm:

$$x_1 = \sqrt[4]{2} + i\sqrt[4]{2}$$
 ; $x_2 = -\sqrt[4]{2} + i\sqrt[4]{2}$
 $x_3 = -\sqrt[4]{2} + i\sqrt[4]{2}$; $x_4 = -\sqrt[4]{2} - i\sqrt[4]{2}$

Bài tập 149: a) Phân tích thành nhân tử bậc nhất trong C[x]:

$$f(x) = x^3 - 6x^2 + 11x - 6.$$

$$g(x) = x^4 + 4.$$

$$h(x) = x^4 - 10x^2 + 1.$$

b) Phân tích thành phân tử đơn : $\frac{3+x}{(x-1)(x^2+1)}$ trong C[x], $\mathbb{R}[x]$.

Giải:

a)
$$f(x) = x^3 - 6x^2 + 11x - 6 = x^3 - 3x^2 - 3x^2 + 9x + 2x - 6$$

 $= x^2(x-3) - 3x(x-3) + 2(x-3) = (x-3)(x^2 - 3x + 2)$
 $= (x-3)(x-1)(x-2)$.

$$g(x) = x^4 + 4 = (x^2 + 2i)(x^2 - 2i) = \left[x^2 - (1-i)^2\right] \left[x^2 - (1+i)^2\right]$$
$$= (x-1+i)(x+1-i)(x-1-i)(x+1+i).$$

$$Vi: (1-i)^2 = 1-2i-1 = -2i$$
 và $(1+i)^2 = 1+2i-1 = 2i$.

$$h(x) = x^{4} - 10x^{2} + 1 = x^{4} - 10x^{2} + 25 - 24 = (x^{2} - 5)^{2} - 24$$

$$= (x^{2} - 5 + \sqrt{24})(x^{2} - 5 - \sqrt{24})$$

$$= (x^{2} - 5 + 2\sqrt{6})(x^{2} - 5 - 2\sqrt{6})$$

$$= \left[x^{2} - (5 - 2\sqrt{6})\right]\left[x^{2} - (5 + 2\sqrt{6})\right]$$

$$= \left[x^{2} - (\sqrt{2} - \sqrt{3})^{2}\right]\left[x^{2} - (\sqrt{2} + \sqrt{3})^{2}\right].$$

Vav:

$$x^{4} - 10x^{2} + 1 = (x - \sqrt{3} + \sqrt{2})(x + \sqrt{3} - \sqrt{2})(x - \sqrt{3} - \sqrt{2})(x + \sqrt{3} + \sqrt{2})$$

b) Ta có:
$$\frac{3+x}{(x-1)(x^2+1)} = \frac{x+3}{(x-1)(x-i)(x+i)} = T(x)$$
.

Áp dụng công thức nội suy La-gơ-răng cho f bậc n và n+1. Số α_i bất kì:

$$f(x) = \sum_{i=1}^{n+1} f(\alpha_i) \cdot \prod_{j \neq i} \frac{x - \alpha_j}{\alpha_i - \alpha_j} \Rightarrow \frac{f(x)}{\varphi(x)} = \sum_{i=1}^{n+1} \frac{f(\alpha_i)}{(x - \alpha_i) \cdot \varphi'(\alpha_i)}$$

với
$$\varphi(x) = \prod (x - \alpha_i)$$
.

Cụ thể f(x) = x + 3 và $\alpha_1 = 1$, $\alpha_2 = i$, $\alpha_3 = -i$, ta có:

$$T(x) = \frac{2}{x-1} + \frac{-2+i}{2(x-i)} + \frac{-2-i}{2(x+i)} \text{ trên } C[x]$$
$$= \frac{2}{x-1} - \frac{2x+1}{x^2+1} \text{ trên } \mathbb{R}[x].$$

Bài tập 150: a) Chứng minh:

$$\sin x + \sin(x+a) + \dots + \sin(x+na) = \frac{\sin \frac{n+1}{2} a \cdot \sin \left(x + \frac{na}{2}\right)}{\sin \frac{a}{2}}$$

$$\cos x + \cos(x+a) + \dots + \cos(x+na) = \frac{\sin\frac{n+1}{2}a \cdot \cos\left(x + \frac{na}{2}\right)}{\sin\frac{a}{2}}$$

b) Chúng minh:

Nếu
$$L_n(x) = a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx) = 0$$
 thì $a_k = b_k = 0, \forall k$.

(Vô địch sinh viên)

Giải:

a) Đặt $A = \cos x + i \sin x$, $X = \cos a + i \sin a$.

Ta có:
$$S = A + AX^2 + ... + AX^n = \frac{A(X^{n+1} - 1)}{X - 1}$$

Ma:
$$S = (\cos x + i \sin x) + \cos(x + a) + i \sin(x + a) + ...$$

$$+\cos(x+na)+i\sin(x+na)$$

$$= [\cos x + \cos(x + a) + ... + \cos(x + na)] +$$

$$+i[\sin x + \sin(x+a) + ... + \sin(x+na)]$$

Và:
$$S = (\cos x + i \sin x) \frac{\cos(n+1)a + i \sin(n+1)a - 1}{\cos a + i \sin a - 1}$$

$$= \frac{\sin\frac{n+1}{2}a}{\sin\frac{a}{2}} \left[\cos\left(x + \frac{na}{2}\right) + i\sin\left(x + \frac{na}{2}\right)\right].$$

So sánh phần thực, phần ảo ta có điều cần chứng minh.

b) Ta có: $\forall n \in \mathbb{N}, n \ge 2, k = 1, 2, ..., n - 1$ thì:

$$\sum_{i=0}^{n} \cos k \left(x + i \frac{2\pi}{n} \right) = \frac{\cos k \left(x + \frac{(n-1)\pi}{n} \right) \sin k\pi}{\sin \frac{k\pi}{n}} = 0$$

$$\sum_{i=0}^{n} \sin k \left(x + i \frac{2\pi}{n} \right) = \frac{\sin k \left(x + \frac{(n-1)\pi}{n} \right) \sin k\pi}{\sin \frac{k\pi}{n}} = 0$$

Do đổ:
$$L_n\left(x+i\frac{2\pi}{n}\right)=0, i=1,2,...,n-1.$$

Từ việc chọn các giá trị x thì ta có điều phải chứng minh là các hệ số $a_k = b_k = 0$, $\forall k$.

Bài tâp 151: Cho đa thức hệ số phức P(z) bậc n.

- a) Chứng minh: dư của phép chia P(z) cho $z-z_0$ là $P(z_0)$.
- b) Cho P(z) chia z i có dư i và chia z + i có dư là 1 + i. Tìm dư của P(z) chia cho $z^2 + 1$.

Giải:

a) Ta có:
$$P(z) = (z - z_0)Q(z) + r$$

 $z = z_0 \Rightarrow P(z_0) = 0 + r \Rightarrow du r = P(z_0).$

b)
$$P(z) = (z^2 + 1)H(z) + az + b \Rightarrow P(z) = (z + i)(z - i)H(z) + az + b$$

Lấy
$$z = i \Rightarrow P(i) = ai + b \Rightarrow i = ai + b$$
 (1)

Lấy
$$z = -1 \Rightarrow P(-i) = -ai + b \Rightarrow 1 + i = -a_i + b$$
 (2)

Từ (1), (2) suy ra :
$$a = \frac{1}{2}i$$
; $b = \frac{1}{2} + i$.

Vây dư của P(z) chia cho $z^2 + 1$ là : $\frac{1}{2}i, z + \frac{1}{2} + i$.

Bài tập 152: Chứng minh:

- a) $x^{3m} + x^{3n+1} + x^{3p+2}$: $x^2 + x + 1$ với m, n, p nguyên dương.
- b) $f(x) = x^{ka_1} + x^{ka_2+1} + ... + x^{ka_k+k-1}$ chia hết cho: $g(x) = x^{k-1} + x^{k-2} + ... + 1$.

Giải :

a) Để chứng minh một đa thức f(x) chia hết cho đa thức g(x) chỉ cần chứng minh mọi nghiệm của g(x) đều là nghiệm của f(x).

Nếu gọi w là nghiệm của $x^2 + x + 1$ thì $w^2 + w + 1 = 0$

hay
$$w^2 = -w - 1$$
; $w^3 = -w^2 - w = w + 1 - w = 1$.

Vậy $w^3 = 1$ (ở đây w nhận 2 giá trị phức liên hợp của $\sqrt[3]{-1}$).

$$\sum_{i=0}^{n} \sin k \left(x + i \frac{2\pi}{n} \right) = \frac{\sin k \left(x + \frac{(n-1)\pi}{n} \right) \sin k\pi}{\sin \frac{k\pi}{n}} = 0$$

Do đổ:
$$L_n\left(x+i\frac{2\pi}{n}\right)=0, i=1,2,...,n-1.$$

Từ việc chọn các giá trị x thì ta có điều phải chứng minh là các hệ số $a_k = b_k = 0$, $\forall k$.

Bài tập 151: Cho đa thức hệ số phức P(z) bậc n.

- a) Chứng minh: dư của phép chia P(z) cho $z-z_0$ là $P(z_0)$.
- b) Cho P(z) chia z-i có dư i và chia z+i có dư là 1+i. Tìm dư của P(z) chia cho z^2+1 .

Giải :

a) Ta có:
$$P(z) = (z - z_0)Q(z) + r$$

 $z = z_0 \Rightarrow P(z_0) = 0 + r \Rightarrow du r = P(z_0).$

b)
$$P(z) = (z^2 + 1)H(z) + az + b \Rightarrow P(z) = (z + i)(z - i)H(z) + az + b$$

Lấy
$$z = i \Rightarrow P(i) = ai + b \Rightarrow i = ai + b$$
 (1)

Láy
$$z = -1 \Rightarrow P(-i) = -ai + b \Rightarrow 1 + i = -a_i + b$$
 (2)

Từ (1), (2) suy ra :
$$a = \frac{1}{2}i$$
; $b = \frac{1}{2} + i$.

Vậy dư của P(z) chia cho $z^2 + 1$ là : $\frac{1}{2}i, z + \frac{1}{2} + i$.

Bài tập 152: Chứng minh:

- a) $x^{3m} + x^{3n+1} + x^{3p+2}$: $x^2 + x + 1$ với m, n, p nguyên dương.
- b) $f(x) = x^{ka_1} + x^{ka_2+1} + ... + x^{ka_k+k-1}$ chia hết cho: $g(x) = x^{k-1} + x^{k-2} + ... + 1$.

Giải :

a) Để chứng minh một đa thức f(x) chia hết cho đa thức g(x) chỉ cần chứng minh mọi nghiệm của g(x) đều là nghiệm của f(x).

Nếu gọi w là nghiệm của $x^2 + x + 1$ thì $w^2 + w + 1 = 0$

hay
$$w^2 = -w - 1$$
; $w^3 = -w^2 - w = w + 1 - w = 1$.

Vậy $w^3 = 1$ (ở đây w nhận 2 giá trị phức liên hợp của $\sqrt[3]{-1}$).

Thay w vào đạ thức thứ nhất, ta có:

$$w^{3m} + w^{3m+1} + w^{3p+2} = 1 + w + w^2 = 0.$$

Vậy w cũng là nghiệm của đa thức bị chia (đpcm).

b) Gọi ϵ là nghiệm của g(x), ta thấy : $g(\epsilon) = \epsilon^{k-1} + \epsilon^{k-2} + ... + 1 = 0$ nên ϵ chính là giá trị của căn bậc k của đơn vị, nghĩa là $\epsilon^k = 1$.

Do dó;
$$f(\varepsilon) = \varepsilon^{ka} + \varepsilon^{ka+1} + ... + \varepsilon^{ka_k+k-1} - 1 + \varepsilon + ... + \varepsilon^{k-1} = 0.$$

Vì vậy mọi nghiệm của g(x) đều là nghiệm của f(x) nên f(x): g(x).

Bài tạp 153: Chứng minh rằng với mọi giá trị $n \in \mathbb{N}$ và $\alpha \in \mathbb{R}$ thoả mãn các điều kiện $n \neq 1$, $\sin \alpha \neq 0$ thì đa thức:

$$P(x) = x^{n} \sin x - x \sin n\alpha + \sin(n-1)\alpha$$

chia hết cho đa thức $Q(x) = x^2 - 2x \cos \alpha + 1$.

(Rumani 1962)

Giải:

Kí hiệu $x_{\beta} = \cos \alpha + i\beta \sin \alpha$ với $\beta = \pm 1$.

Khi đó đa thức Q(x) được biểu diễn dưới dạng:

$$Q(x) = (x - \cos \alpha - i \sin \alpha)(x - \cos \alpha + i \sin \alpha) = (x - x_1)(x - x_{-1}).$$

Theo công thức Moivre, ta có:

$$x_{\beta}^{"} = (\cos \beta \alpha + i \sin \beta \alpha)^{"} = \cos \beta n\alpha + i \sin \beta n\alpha$$

= $\cos n\alpha + \beta i \sin n\alpha$.

Do đó:

$$P(x_{\beta}) = (\cos n\alpha + \beta i \sin n\alpha)^{n} \sin x - (\cos \alpha + \beta i \sin \alpha) \sin n\alpha + \sin(n-1)\alpha$$
$$= \cos n\alpha \sin \alpha - \cos \alpha \sin n\alpha + \sin(n-1)\alpha$$
$$= \sin(1-n)\alpha + \sin(n-1)\alpha = 0.$$

Do đó theo định lí Bezout, đa thức P(x) chia hết cho mỗi đa thức x-x, x-x (đa thức này khác nhau vì $\sin \alpha \neq 0$) nghĩa là chia hết cho Q(x).

Bài tạp 154: Tìm tất cả các cặp số m, $n \in \mathbb{N}$ để đa thức:

$$1+x^{n}+2^{2n}+...+x^{mn}$$
 chia hét cho $1+x+x^{2}+...+x^{m}$ (USA 1977)

Giai:

Các đa thức : $Q(x) = 1 + x^n + x^{2n} + ... + x^{nm}$

Và $P(x) = 1 + x + x^2 + ... + x^m$ không có nghiệm bội vì các đa thức:

 $x^{m+1}-1=(x-1)P(x)$ và $x^{u(m+1)}-1=(x^m-1)Q(x)$ không có nghiệm bội. Do đó Q(x):P(x) khi và chỉ khi mỗi nghiệm của P(x) cũng là nghiệm của Q(x) hoặc nếu mỗi nghiệm khác 1 của phương trình $x^{m+1}=1$ không là nghiệm của $x^n=1$.

Vậy tất cả các cặp số cần tìm m, n phải thoả mãn hệ thức $\begin{cases} x^{m+1}=1\\ x^n=1 \end{cases}$ có nghiệm duy nhất x=1.

Nếu (m+1, n) = d > 1 thì hệ có 1 nghiệm là:

$$x = \cos\frac{2\pi}{d} + i\sin\frac{2\pi}{d} \Rightarrow x \neq 1.$$

Nếu (m+1, n) = 1 thì tồn tại $k, l \in \mathbb{Z}$ sao cho:

$$k(m+1)+ln=1.$$

Nghĩa là với mỗi nghiệm x của hệ, ta có:

$$x = x^{k(m+1)} + lm = (x^{m+1})^k (x^n)^l = 1.$$

Vậy cặp số nguyên m, n thoả mãn đề bài là : (m+1,n)=1.

Bài tập 155: Cho đa thức $P(x) \in \mathbb{R}[x]$ và $P(x) \ge 0$ với mọi $x \in \mathbb{R}$. Chứng minh rằng đa thức P(x) có thể biểu diễn được dưới dạng: $P(x) = [A(x)]^2 + [B(x)]^2$, trong đó A(x), B(x) cũng là các đa thức.

(Hungary 1979)

Giải:

Do $P(x) \ge 0$, $\forall x \in \mathbb{R}$ nên đa thức P(x) có bậc bằng 2n và có thể phân tích được dưới dạng tích của các nhân tử bậc hai không âm, nghĩa là :

$$P(x) = \prod_{j=1}^{n} [(a_{j}x + x_{j})^{2} + y_{j}^{2}]$$

Trong đó $a_j, x_j, y_j \in \mathbb{R}, j = 1, 2, ..., n$. Từ hằng đẳng thức :

$$(p_1^2 + q_1^2)(p_2^2 + q_2^2) = (p_1p_2 + q_1q_2)^2 + (p_1q_2 - p_2q_1)^2$$

Ta có kết luận: tích của hai biểu thức dạng $[u(x)]^2 + [v(x)]^2$ cũng là một biểu thức có dạng đó. Sau hữu hạn bước thực hiện quy trình đó ta thu được biểu thức có dạng: $P(x) = [A(x)]^2 + [B(x)]^2$.

14. ĐA THỨC HỆ NGUYÊN — SỰ KHẢ QUY

14.1. Đa thức hệ số nguyên:

a) Phần đầu ta đã định nghĩa đa thức hệ số nguyên $P(x) \in \mathbb{Z}[x]$ như sau : $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, $a_0 \neq 0$ với các hệ số $a_0, a_1, ..., a_n$ nguyên và x nguyên.

b) Các kết quả:

- (1): Nếu P(x) có nghiệm nguyên x = a thì phân tích được: P(x) = (x a)Q[x] trong đó Q[x] là đa thức hệ nguyên.
- (2): Nếu a, b nguyên và $a \neq b$ thì P(a) P(b) chia hết cho a b.
- (3): Nếu x = p/q là một nghiệm của P(x) thì p là ước của hệ số tự do a_n và q là ước của hệ số cao nhất a_0 . Đặc biệt $a_0 = \pm 1$ thì nghiệm hữu tỉ là nghiệm nguyên.
- (4) : Nếu P(x) có nghiệm vô tỉ $x = m + n\sqrt{c}$ với m, n nguyên, \sqrt{c} vô tỉ thì còn có nghiệm $x' = m n\sqrt{c}$ liên hiệp của x.
- (5) : Nếu $x = m + n\sqrt{c}$ với m, n nguyên, \sqrt{c} vô tỉ thì giá trị $P(x) = m' + n'\sqrt{c}$ trong đó m', n' là các số nguyên.
- · Chú ý:
- 1) Một đa thức hệ số hữu tỉ $P(x) \in Q[x]$ thì viết được thành $P(x) = \frac{a}{b}Q[x]$ với a, b nguyên và Q[x] là hệ số nguyên.
- 2) Từ công thức tổ hợp C_n^k suy ra tích k số nguyên liên tiếp chia hết cho k!.

14.2. Đa thức bất khả quy:

- a) Định nghĩa: Cho $f \in \mathbb{Z}[x]$, ta gọi f là bất khả quy trên $\mathbb{Z}[x]$ nếu f không phân tích được thành tích 2 đa thức thuộc $\mathbb{Z}[x]$ với bậc ≥ 1 . Tương tư, định nghĩa cho $f \in \mathbb{Q}[x]$.
- b) **Dinh** lí: Cho $f \in \mathbb{Z}[x]$, deg f = n sao cho: $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n.$

Giả sử có số nguyên tố p thoả mãn với $0 \le k < n$ sao cho:

$$\begin{cases} a_0 & \text{không chia hết cho p} \\ a_{n-k}, a_{n-k+1}, ..., a_n & \text{chia hết cho p} \\ a_n & \text{không chia hết cho p}^2 \end{cases}$$

Khi đó nếu f được viết dưới dạng tích của 2 đa thức thuộc $\mathbb{Z}[x]$ thì có ít nhất một đa thức có bậc lớn hơn hoặc bằng k+1.

• Đặc biệt : Khi k = n - 1 ta có tiêu chuẩn Eisenstein.

Cho
$$f \in \mathbb{Z}[x]$$
, deg $f = n$, $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$.

Nếu có số nguyên tố p thỏa mãn các điều kiện sau :

a₀ không chia hết cho p

a₁,a₂,..,a_n chia hết cho p

a, không chia hết cho p²

thì f bất khả quy trên Q[x].

Chứng minh: Giả sử
$$f(x) = h(x).g(x)$$
 với ;
$$h(x) = b_0 x^m + b_1 x^{m+1} + ... + b_m$$

$$g(x) = c_0 x^{n-m} + c_1 x^{n-m-1} + ... + c_{n-m} đều có hệ nguyên.$$

Ta có $a_n = b_m c_{n-m}$ chia hết cho p và không chia hết cho p^2 nên có đúng 1 số chia hết cho p, chẳng hạn $b_m : p$ còn $c_{n-m} \nmid p$.

Ta có: $a_0 = b_0 c_0$, không chia hết cho p nên $b_0 l p$.

Gọi i_0 là số nhỏ nhất mà $b_{i_0} l p (0 < i_0 \le m)$.

Vì $a_{i_0} = c_{n-m}.b_{i_0} + c_{n-m-1}b_{i_0-1} + ...$ nên a_{i_0} không chia hết cho p, suy ra $i_0 \ge k+1$. Mà $m \ge i_0 \Longrightarrow m \ge k+1$.

- c) Quan hê bất khả quy trên $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$:
- **Dịnh lí**: Nếu đa thức $f \in \mathbb{Z}[x]$ bất khả quy trên $\mathbb{Z}[x]$ thì f cũng bất khả quy trên $\mathbb{Q}[x]$.
- Bổ đề Gausse: Ta gọi đa thức $f \in \mathbb{Z}[x]$ là nguyên bản nếu các hệ số nguyên tố cùng nhau. Ta có bổ đề Gausse:

Tích của hai đa thức nguyên bản là một đa thức nguyên bản.

Chứng minh: Cho hai đa thức nguyên bản sau:

$$f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$$
 và $g(x) = b_0 x^{m'} + b_1 x^{m-1} + ... + b_m$

thì $f(x).g(x) = c_0 x^{n+m} + c_1 x^{n+m-1} + ... + c_{n+m}$

Giả sử tích trên không nguyên bản thì tồn tại một số nguyên tố p là ước chung của các hệ số $c_0, c_1, ..., c_{n+m}$.

Vì f nguyên bản nên gọi a_i là số đầu tiên mà $a_i lp$ và g nguyên bản nên gọi b_j là số đầu tiên mà $b_j lp$. Bằng cách xét hệ số theo lũy thừa x^{i+j} ta có hệ số tương ứng không chía hết cho p nên vô lí. Vậy f(x).g(x) là nguyên bản.

• Chứng minh định lí: Cho f bất khả quy trên $\mathbb{Z}[x]$.

Giả sử f khả quy trên $Q[x]:f(x)=f_1(x)f_2(x)$ với $f_1,f_2 \in Q[x]$, có bậc

lớn hơn hoặc bằng 1. Đặt
$$f_1(x) = \frac{a_1}{b_1}g_1(x)$$
; $f_2(x) = \frac{a_2}{b_2}g_2(x)$ với $\frac{a_1}{b_1}$

tối giản và $g_1(x)$, $g_2(x)$ nguyên bản thì:

$$f(x) = \frac{a_1 a_2}{b_1 b_2} g_1(x) g_2(x) = \frac{p}{q} g_1(x) g_2(x)$$
 với $(p,q) = 1$.

Do đó $f \in \mathbb{Z}[x]$ nên mọi hệ số của khai triển tích $g_1(x)g_2(x)$ đều là bội số của q, suy ra tích $g_1(x)g_2(x)$ không nguyên bản. Điều này trái với kết quả của bổ đề Gausse. Vây: f bất khả quy trên Q[x].

Bài tập 156: Chứng minh rằng đa thức: $P(x) = \frac{x^5}{30} + \frac{x^3}{6} - \frac{x}{5}$ luôn có giá trị nguyên khi x là số nguyên.

Giải:

Ta c6:
$$P(x) = \frac{x^5}{30} + \frac{x^3}{6} - \left(\frac{x}{30} + \frac{x}{6}\right) = \frac{x^5 - x}{30} + \frac{x^3 - x}{6}$$
 (1)

Mà: $x^3 - x = x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên chia hết cho 6, do đó $\frac{x^3 - x}{6} \in \mathbb{Z}$ khi $x \in \mathbb{Z}$ (2)

$$x^{5}-x = x(x-1)(x+1)(x^{2}+1)$$

$$= x(x-1)(x+1)(x^{2}-4+5)$$

$$= x(x-1)(x-2)(x+1)(x+2) + 5x(x-1)(x+1)$$

Với $x \in \mathbb{Z}$ thì : (x-2)(x-1)x(x+1)(x+2): 5! : 30

Và
$$(x-1)x(x+1)$$
: 3! nên $5(x-1)x(x+1)$: 30.

Do đó:
$$(x^5 - x) : 30 \Rightarrow \frac{x^5 - x}{30} \in \mathbb{Z} \text{ với } x \in \mathbb{Z}$$
 (3)

Từ (1), (2) và (3) suy ra điều phải chứng minh.

Bài tập 157: Đa thức P(x) bậc n nhận giá trị nguyên tại mọi điểm nguyên khi và chỉ khi P(x) nhận giá trị nguyên tại (n+1) điểm nguyên liên tiếp.

Giải:

- Điều kiên cần là hiển nhiên.
- Điều kiên đủ:

Sử dụng công thức khai triển A-ben với $x_i = a + i (i = 1, 2, ..., n)$, ta được:

$$P(x) = b_0 + b_1(x-a-1) + b_2(x-a-1)(x-a-2) + ...$$

+ $b_n(x-a-1)(x-a-n)$

Ta có :
$$P(a+1) \in \mathbb{Z} \Rightarrow b_0 \in \mathbb{Z}$$
.

$$P(a+2) \in \mathbb{Z} \Rightarrow b_0 + b_1 \in \mathbb{Z} \Rightarrow b_1 \in \mathbb{Z}$$
.

$$P(a+3) \in \mathbb{Z} \Rightarrow b_0 + 2b_1 + 2!b_2 \in \mathbb{Z} \Rightarrow 2!b_0 \in \mathbb{Z}.$$

Turong ty: $P(a+n) \in \mathbb{Z} \Rightarrow (n-1)!b_n \in \mathbb{Z} \Rightarrow k!b_k \in \mathbb{Z}$.

Do đó ta có điều phải chứng minh.

• Đặc biệt : $P(x) = x^n + A_n x^{n-1} + ... + A_{n-1} x + A_n$ nhận giá trị nguyên với mọi x nguyên thì P(x) được biểu diễn thành tổng các đa thức :

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{x(x-1)}{2!}, \dots, P_n(x) = \frac{x(x-1)...(x-n+1)}{n!}.$$

Bài tập 158: Chứng minh rằng không tổn tại đã thức P(x) với hệ số nguyên có bậc không quá 4 và 5 số nguyên x_1, x_2, x_3, x_4, x_5 sao cho $P_1(x)P_2(x)P_3(x)P_4(x)P_5(x) = -1$.

Giải:

Vì vai trò của $P(x_i)$, i = 1,5 như nhau nên ta chia ra các trường hợp sau :

1)
$$P(x_1) = P(x_2) = P(x_3) - P(x_4) = P(x_5) = -1$$

$$\Rightarrow P(x) = -1$$
 (hằng số), suy ra vô lí.

2)
$$\begin{cases} P(x_1) = P(x_2) = P(x_3) = -1 \\ P(x_4) = P(x_5) = 1 \end{cases}$$

Với a, b nguyên và
$$a \neq b$$
 thì $P(a) - P(b) : (a - b)$

$$\Rightarrow 2 = P(x_4) - P(x_1) = P(x_4) - P(x_2) = P(x_4) - P(x_3)$$

$$= P(x_5) - P(x_1) = P(x_5) - P(x_2) = P(x_5) - P(x_3)$$

 $\Rightarrow (x_5 - x_1); (x_5 - x_2); (x_5 - x_3); (x_4 - x_1); (x_4 - x_2); (x_4 - x_3) \text{ là ước} số của 2 (điều này vô lí).}$

3)
$$P(x_1) = -1$$
; $P(x_2) = P(x_3) = P(x_4) = P(x_5) = 1$

$$\Rightarrow P(x_1) = -1$$
 có 4 nghiệm.

$$P(x_1)-1 = A(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)$$

Do đó A là hằng số và:

$$-2 = P(x_1) - 1 = A(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1 - x_5)$$

 $\Rightarrow (x_1 - x_2), (x_1 - x_3); (x_1 - x_4); (x_1 - x_5); \text{ là các số nguyên khác nhau}$ nên vô lí. Vây không tồn tại P thỏa mãn yêu cầu đề toán.

Bài tập 159: Cho f(x) là một đa thức nguyên bậc 5 nhận giá trị 1999 với 4 giá trị nguyên khác nhau của biến x.

Chứng minh phương trình f(x) = 2030 không thể có nghiệm nguyên.

Giải:

Theo để bài ta có phương trình f(x)-1999=0 có ít nhất 4 nghiệm nguyên. Do đó $f(x)-1999=(x-x_1)(x-x_2)(x-x_3)(x-x_4)g(x)$.

Với $x_1 < x_2 < x_3 < x_4$ và g(x) là một đa thức hệ nguyên.

Giả sử tồn tại số nguyên x_0 , sao cho $f(x_0) = 2030$ thì:

$$31 = (x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)g(x)$$

Với $x_0 - x_1 > x_0 - x_2 > x_0 - x_3 > x_0 - x_4$ và các số này đều là số nguyên. Vì 31 là số nguyên tố nên :

$$31 = 31.1 = (-1)1(-31) = (-1)(-31) = 31(-1)(-1)$$

Do đó 31 không thể phân tích thành tích của 4 số nguyên khác nhau.

Điều này chứng tỏ rằng phương trình f(x) = 2030 không thể có nghiệm nguyên.

Bài tập 160: Có hay không một đa thức P(x) với hệ số nguyên thỏa mãn:

$$P(26) = 1931 \text{ và } P(3) = 2005.$$

Giải:

Giả sử tồn tại đa thức P(x) với hệ số nguyên thỏa mãn:

$$P(26) = 1931 \text{ và } P(3) = 2005.$$

Đặt
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

$$\Rightarrow P(26) - P(3) = a_n (26^n - 3^n) + a_{n-1} (26^{n-1} - 3^{n-1}) + ... + a_1 (26 - 3)$$

$$\Rightarrow$$
 1931 – 2005 : (26 – 3) \Rightarrow –74 : 23 (vô lî).

Vậy không tồn tại đa thức P(x) thỏa mãn đề bài.

Bài tập 161: Cho đa thức P(x) có hệ số nguyên và tồn tại số nguyên dương m sao cho: P(1), P(2),...,P(m) không chia hết cho m.

Chứng minh rằng $P(k) \neq 0$, $\forall k \in \mathbb{Z}$.

(Bắc Kinh 1967)

Giải:

Giả sử tồn tai k nguyên để P(k) = 0.

Suy ra: P(x) = (x - k)Q(x) với $Q \in \mathbb{Z}[x]$.

Đặt k = md + r, $1 \le r < m$ thì P(r) = P(k - md) = -mdQ(r)

Suy ra P(r): m (vô lí). Vây $P(k) \neq 0$, $\forall k \in \mathbb{Z}$.

• Nói cách khác là đa thức P(x) không có nghiệm nguyên.

Bài tập 162: Chứng minh rằng không tồn tại đa thức P(x) bậc lớn hơn 1 có tính chất $P(x) \in \mathbb{Z}$ luôn luôn kéo theo $P(x+1) \in \mathbb{Z}$.

Giải:

Giả sử P(x) có bậc n ($n \ge 2$) với hệ số cao nhất dương có tính chất trên. Khi đó các đa thức sai phân :

$$\Delta^{1}P(x) = P(x+1) - P(x)$$

$$\Delta^{2}P(x) = \Delta^{1}P(x+1) - \Delta^{1}P(x)...$$

Cũng có tính chất trên. Đặc biệt, tam thức bậc hai thu được:

$$\Delta^{n-2}P(x) = ax^2 + bx + c, a > 0$$

Hay đa thức dạng $f(t) = at^2 + d$ có tính chất đó. Điều này là không thể vì nếu $g(t_0) = \hat{r}(t_0 + 1) - f(t_0) = 2at_0 + a \in \mathbb{Z}$ thì $g(t_0 + 1) \in \mathbb{Z}$, tức là : $g(t_0 + 1) - g(t_0) = 2a \in \mathbb{Z}$.

Ta chọn $n \in \mathbb{N}$ để $y = \sqrt{\frac{n-d}{a}}$ là vô tỉ thì $f(y) = a \frac{n-d}{a} + d = n \in \mathbb{Z}$. còn $f(y+1) = f(y) + 2ay + a \notin Q$: mâu thuẫn.

Bài tập 163: Dùng tiêu chuẩn Eisenstein để chứng minh các đa thức sau bất khả quy trên Q[x]:

a)
$$x^4 + 8x^3 + 12x^2 - 6x + 2$$
.

b)
$$x^{n} + 5x^{n-1} + 35$$
 với $n \ge 2$.

c)
$$x^4 - x^3 + 2x + 1$$
.

Giải:

a) Chọn số nguyên tố p = 2 thì:

$$\begin{cases} a_0 = 1 \ l \ 2 \\ a_1 = 8, a_2 = 12, a_3 = -6, a_4 = 2 \ \vdots \ 2 \\ a_4 = 2 \ l \ 2^2 \end{cases}$$

Theo tiêu chuẩn Eisenstein thì đa thức bất khả quy trên Q[x].

- b) Chon số nguyên tố p = 5.
- c) Để như vậy chưa áp dụng tiêu chuẩn Eisenstein, do đó ta phân tích :

$$f(x) = x^4 - x^3 + 2x + 1$$

theo lũy thừa của x-1:

$$f(x) = (x-1)^4 + 3(x-1)^3 + 3(x-1)^2 + 3(x-1) + 3$$

Thì số nguyên tố p = 3 thoả mãn:

$$\begin{cases} a_0 = 1 \ l \ 3 \\ a_1 = 3, \ a_2 = 3, \ a_3 = 3, \ a_4 = 3 \ i \ 3 \\ a_4 = 3 \ l \ 3^2 \end{cases}$$

Vậy f bất khả quy trên Q[x].

Bài tập 164: Chứng minh đa thức $P(x) = x^5 - 3x^4 + 6x^3 - 3x^2 + 9x - 6$ không thể biểu diễn thành tích của hai đa thức bậc thấp hơn với hệ số nguyên.

Giải:

1) Giá sử: $P(x) = x^5 - 3x^4 + 6x^3 - 3x^2 + 9x - 6 = (x + a)G(x)$ (1) trong đó a là số nguyên.

Thay
$$x = -a$$
 vào (1), ta có: $-a^5 - 3a^4 - 6a^3 - 3a^2 - 9a - 6 = 0$

Da thức này không thoả mãn. Thật vậy, nếu a chia hết cho 3 thì số nguyên đứng ở vế trái không chia hết cho 9 (và do đó không bằng 0). Còn với a không chia hết cho 3 thì nó cũng không chia hết cho 3. Vậy đã thức P(x) không thể biểu diễn được dưới dạng tích của 2 đã thức như (1).

2) Giả sử:
$$P(x) = x^5 - 3x^4 + 6x^3 - 3x^2 + 9x - 6$$

= $(x^2 + a_1x + a_2)(x^3 + b_1x^2 + b_2x + b_3)$ (2)

Trong đó a_1, a_2, b_1, b_2, b_3 là các số nguyên. Áp dụng phương pháp đồng nhất hệ số ta có:

$$\begin{cases} a_2b_3 = 6 & (3) \\ a_1b_3 + a_2b_2 = 9 & (4) \\ a_1b_2 + a_2b_1 + b_3 = -3 & (5) \\ a_1b_1 + a_2 + b_2 = 6 & (6) \\ a_1 + b_1 = -3 & (7) \end{cases}$$

Từ (3) ta thấy rằng có một và chỉ một trong hai số a, và b, chia hết cho 3.

- Nếu a₂ chia hết cho 3, b₃ không chia hết cho 3, từ (4) suy ra a₁ : 3, suy ra b₃ : 3, theo (5) điều này mâu thuẫn.
- Nếu a₂ l'3, b₃:3, từ (4) suy ra b₃:3, suy ra b₁:3, theo (5), do đó
 a₂:3, điều này cũng mâu thuẫn (theo (6)).

Vậy P(x) cũng không thể phân tích theo dạng (2).

15. ĐA THỰC NHIỀU BIẾN ĐA THỰC ĐỐI XỰNG

15.1. Da thức hai biến:

a) Định nghĩa: Ta nói f(x,y) là đa thức hai biến nếu có họ số thực a_{ii} hữu hạn sao cho:

$$f(x,y) = \sum a_{ij} x^i x^j \text{ v\'oi } x, y \in \mathbb{R}.$$

Ta kí hiệu tập các đa thức hai biến, hệ số thực là $\mathbb{R}[x,y]$ và bậc của f(x,y) là $\deg f = \max\{i+j\}$.

- $f \in \mathbb{R}[x, y]$ thi $f(x, y) : (x y) \Leftrightarrow f(x, x) = 0$.
- b) Đa thức thuần nhất (đẳng cấp):

Cho $f(x,y) \in \mathbb{R}[x,y]$, $f(x,y) \not\equiv 0$. Ta gọi f là đa thức thuần nhất bậc n nếu $f(tx,ty) = t^n f(x,y)$ với mọi $x,y \in \mathbb{R}$.

• <u>Kết quả</u>: f, thuần nhất bậc n khi và chỉ khi tồn tại n+1 số b_i và $\sum b_i^2 \neq 0$ sao cho:

$$f(x,y) = b_0 x^n + b_1 x^{n-1} y + b_2 x^{n-2} y^2 + ... + b_{n-1} x y^{n-1} + b_n y^n.$$

• Định lí Bezout cho đa thức f(x,y) thuần nhất bậc n :

Nếu a, b không đồng thời bằng 0 và f(a,b) = 0 thì tồn tại đa thức thuần nhất bậc n-1 là g(x,y) sao cho:

$$f(x,y) = (bx - ay)g(x,y), \forall x, y \in \mathbb{R}.$$

15.2. Đa thức nhiều biến:

Mở rộng ta có đa thức nhiều biến $f(x_1, x_2, ..., x_n) = \sum a_{i,i_2...i_n} x_1^{i_1} x_2^{i_2} ... x_n^{i_m}$ với các hệ số thực, biến thực. Ta kí hiệu tập các đa thức nhiều biến là $\mathbb{R}[x_1, x_2; ..., x_n]$. Sau đây ta xét các đa thức nhiều biến đặc biệt.

15.3. Đa thức đối xứng cơ bản :

a) Định nghĩa: Cho $n \ge 1$ số $x_1, x_2, ..., x_n$. Ta có các đa thức đối xứng cơ bản đồng bậc: $E_1 = x_1 + x_2 + ... + x_n$

$$E_2 = X_1 X_2 + X_1 X_3 + ... + X_{n-1} X_n$$

$$\begin{split} E_3 &= x_1 x_2 x_3 + x_1 x_2 x_4 + ... + x_{n-2} x_{n-1} x_n \\ ... \\ E_k &= \sum x_{i_1} x_{i_2} ... x_{i_k} \text{ (là tổng các tích chập k của n số)} \\ E_n &= x_1 x_2 ... x_n \end{split}$$

Đôi khi ta cũng viết $S_k = \sum x_{i_1} x_{i_2} ... x_{i_k}$.

b) Nếu đa thức f(x) bậc n có nghiệm $x_1, x_2, ..., x_n$ thì E_k (hay S_k) là tổng các tích chập k của n nghiệm đó. Ta thường gọi là các đa thức đối xứng cơ bản hay hàm cơ bản hay đa thức đối xứng sơ cấp Vi-ét.

Neu
$$f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n = \prod_{i=1}^n (x - x_i)$$
 thì:

$$S_k = E_k = (-1)^k \frac{a_k}{a_k}, \quad k = 1, 2, ..., n.$$

c) Các bộ chữ số thường dùng:

$$n = 2:2$$
 số a, $b \Rightarrow S_1 = a + b$, $S_2 = ab$.

$$n=3:3$$
 số a, b, c \Rightarrow S₁ = a+b+c, S₂ = ab+bc+ca, S₃ = abc.

$$n = 4:4 \text{ số a, b, c, d}:$$

$$\Rightarrow S_1 = a + b + c + d, S_2 = ab + ac + ad + bc + bd + cd$$

$$S_3 = abc + abd + acd + bcd, S_4 = abcd.$$

Chú ý: (1):
$$C_n^k = \frac{n!}{k!(n-k)!}$$
 là số tổ hợp n chập k.

(2) : Từ bất đẳng thức Cauchy ta có các đánh giá với a, b, c, d > 0 :

$$\frac{a+b}{2} \ge \sqrt{ab}$$
; $\frac{a+b+c}{3} \ge \sqrt{abc}$; $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$.

Bài tập 165 :

- a) Trong khai triển $(x+y+z)^n$ tìm số hạng chứa $x^k y^m$, $(k+m \le n)$.
- b) Tìm hệ số theo $x^6y^5z^4$ của khai triển $(2x-5y+z)^{15}$.

Giải:

a) Ta có:
$$(x+y+z)^n = (x+(y+z))^n = \sum_{k=0}^n C_n^k x^k \cdot (y+z)^{n-k}$$

$$= \sum_{k=0}^n C_n^k x^k \cdot (\sum_{k=0}^{n-k} C_{n-k}^m y^m \cdot z^{n-k-m}).$$

Vậy số hạng cần tìm là: $\frac{n!}{k!m!l!} \dot{x}^k y^m z^l$ với l = n - k - m.

• Ta có khai triển :
$$(x+y+z)^n = \sum_{k+\ell+m=n} \frac{n!}{k!m!\ell!} x^k y^m z^\ell$$
.

b) Áp dụng:
$$(2x-5y+z)^{15} = ((2x)+(-5y)+z)^{15}$$
.

He so theo $x^6y^5z^4$ là : $2^6(-5)^5\frac{15!}{6!5!4!} = -126.126.10^6$.

• Chú ý:
$$C_n^k C_{n-k}^m = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{m!(n-k-m)!} = \frac{n!}{k!m!(n-k-m)!}$$

Bài tập 166: a) Chứng minh đa thức $f(x,y) = x^n y^n + 1$ không thể phân tích thành tích 2 đa thức một biến.

b) Cho đa thức P(x,y,z,t) với các hệ số thực thoả mãn hệ thức :

$$P(x, y, z, \pm \sqrt{x^2 + y^2 + z^2}) \equiv 0, \forall x, y, z \in \mathbb{R}.$$

Chứng minh P(x, y, z, t) có thể biểu diễn được dưới dạng:

$$P(x, y, z, t) = (x^2 + y^2 + z^2 - t^2)Q(x, y, z, t),$$

trong đó Q(x, y, z, t) là đa thức với hệ số thực.

Giải

a) Giả sử
$$f(x,y) = x^n y^n + 1 = h(x)g(x)$$
 với :

$$h(x) = a_0 + a_1 x + ... + a_n x^n$$
 và $g(y) = b_0 + b_1 y + ... + b_n y^n$.

Lay
$$x = 0 \Rightarrow 1 = a_0 g(y) \Rightarrow g(y) \equiv \frac{1}{a_0}, \forall y.$$

Lay
$$y = 0 \Rightarrow 1 = h(x)b_0 \Rightarrow h(x) \equiv \frac{1}{b_0}, \forall x.$$

Do đó
$$h(x)g(x) = \frac{1}{a_0b_0}$$
: vô lí.

Vậy không thể phân tích f(x,y) thành tích 2 đa thức 1 biến.

b) Thực hiện phép chia P(x,y,z,t) cho $(t^2-x^2-y^2-z^2)$ theo biến t(x,y,z) là tham số). Ta có:

$$P(x,y,z,t) = (x^2 + y^2 + z^2 - t^2)Q(x,y,z,t) + tR(x,y,z) + S(x,y,z)$$
(1)

Thay
$$t = \pm \sqrt{x^2 + y^2 + z^2}$$
 vào (1) ta được:
 $tR(x,y,z) + S(x,y,z) = -tR(x,y,z) + S(x,y,z)$.

Suy ra $R(x,y,z) \equiv 0$. Với x, y, z cổ định, ta chọn $t = \sqrt{x^2 + y^2 + z^2}$ thì từ giả thiết và (1) ta được $S(x,y,z) \equiv 0$. Từ đây tạ biểu diễn:

$$P(x, y, z, t) = (x^2 + y^2 + z^2 - t^2)Q(x, y, z, t).$$

Bài tâp 167: Cho đa thức hai biến $f(x,y) = ax^2 + 2bxy + cy^2$ luôn luôn dương. Chúng minh rằng:

$$(f(x_1, y_1)f(x_2, y_2))^{\frac{1}{2}} f(x_1 - x_2, y_1 - y_2) \ge (ac - b)^2 (x_1 y_2 - x_2 y_1)^2$$
với mọi x_1, x_2, y_1, y_2 .

Từ giả thiết, ta có: $b^2 - ac < 0$ hay $ac - b^2 > 0$. Ta có đồng nhất thức: $(ax_1^2 + 2bx_1y_1 + cy_1^2)(ax_2^2 + 2bx_1y_2 + cy_1^2) =$ $= (ax_1x_2 + bx_1y_2 + bx_2y_1 + cy_1y_2)^2 + (ac - b)^2(x_1y_2 - x_2y_1)^2$ Dăt: $E_1 = f(x_1, y_1) > 0, E_2 = f(x_2, y_2) > 0$ $F = |ax_1x_2 + bx_1y_1 + bx_2y_1 + cy_1y_2| \ge 0.$ Từ (1) suy ra $E_1E_2 = F^2 + (ac - b)^2 (x_1y_2 - x_2y_1)^2$. Mà: $f(x_1-x_2, y_1-y_2) = E_1 + E_2 \pm 2F$. Do đó: $(f(x_1,y_1)f(x_2,y_2))^{\frac{1}{2}}f(x_1-x_2,y_1-y_2)=$ = $(E_1E_2)^{\frac{1}{2}}(E_1+E_2-2F) \ge (E_1E_2)^{\frac{1}{2}}(2(E_1E_2)^{\frac{1}{2}}-2F)$ $=2E_1E_2-2((E_1E_2)^{\frac{1}{2}})F$ $=2F^{2}+2(ac-b)^{2}(x_{1}y_{2}-x_{2}y_{1})^{2}-2F(F^{2}+(ac-b^{2})(x_{1}y_{2}-x_{2}y_{1})^{2})^{\frac{1}{2}}$ $=2F^{2}+2(ac-b)^{2}(x_{1}y_{2}-x_{2}y_{1})^{2}-2F^{2}\left(1+\frac{(ac-b^{2})(x_{1}y_{2}-x_{2}y_{1})^{2}}{E^{2}}\right)^{\frac{1}{2}}$ $\geq 2F^2 + 2(ac - b)^2 (x_1 y_2 - x_2 y_1)^2 - 2F^2 \left(1 + \frac{(ac - b^2)(x_1 y_2 - x_2 y_1)^2}{2F^2}\right)$

$$= (ac - b^2)(x_1y_2 - x_2y_1)^2.$$

$$V_{2}^{a}y: (f(x_{1}, y_{1})f(x_{2}, y_{2}))^{\frac{1}{2}}f(x_{1} - x_{2}, y_{1} - y_{2}) \ge (ac - b)^{2}(x_{1}y_{2} - x_{2}y_{1})^{2}.$$

Bài tập 168: Xác định tất cả các đa thức hai biến P(x,y) sao cho:

(1) Với mỗi số n nguyên dương và mọi số thực t, x, y thì:

$$P(tx, ty) = t^{n}P(x, y).$$

(2) Với mọi số thực x, y, z sao cho:

$$P(y+z, x)+P(z+x, y)+P(x+y, z)=0.$$

(3) P(1,0)=1.

(Quốc tế 1975)

Giải:

Điều kiện (1) thường được gọi là tính thuần nhất bậc n của P(x,y).

Xét trường hợp n = 1,2,3 ta dễ dàng tìm thấy các đa thức tương ứng thoả điều kiện đề bài là : x-2y; (x+y)(x-2y); $(x+y)^2(x-2y)$.

Từ (2) cho $x = y = z \Rightarrow P(2x, x) = 0$, nên đa thức P(x, y) thoả điều kiện đề bài luôn nhận (x - 2y) là một nhân tử.

Lấy x = y = 1, z = -2, điều kiện (2) cho ta:

$$P(1,-1)(2^{h}-2) = 0 \Rightarrow x + y \text{ là một nhân tử.}$$

Ta sẽ chúng minh nghiệm tổng quát là : $(x+y)^n (x-2y)$.

Từ (2), cho y = 1 - x, z = 0, ta được:

$$P(x, 1-x) = -1-P(1-x, x),$$

đặc biệt P(0,1) = -2. Bây giờ cho z = 1 - x - y, ta được:

$$P(1-x,x)+P(1-y,y)+P(x+y,1-x-y)=0$$
,

Suy ra f(x+y) = f(x) + f(y).

Ở đây ta đặt f(x) = P(1-x,x)-1. Bằng quy nạp, ta dễ dàng chứng minh được rằng, với mọi số nguyên m và mọi số thực x, ta có f(mx)mf(x). Từ đó suy ra với mọi r, s, ta có :

$$f\left(\frac{1}{s}\right) = \frac{1}{s}f(1), f\left(\frac{r}{s}\right) = \frac{r}{s}f(1).$$

Nhưng P(0,1) = -2, do đó f(1) = -3, vậy f(x) = -3x với mọi số hữu tỉ x. Nhưng f(x) là hàm liên tục nên f(x) = -3x với mọi số thực x. Với a, b là các số thực tuỳ ý và $a + b \neq 0$, ta đặt $x = \frac{b}{a + b}$ thì:

$$P(a,b) = (a+b)^{n} P(1-x,x) = (a+b)^{n} \left(\frac{-3b}{a+b}+1\right) = (a+b)^{n-1} (a-2b)$$

Để ý rằng khi a+b=0 với n>1, từ tính liên tục ta cũng có P(a,b)=0. Tóm lại nghiệm tổng quát của bài toán là:

$$P(x,y) = (x+y)^{n}(x-2y).$$

Bài tập 169: Cho $f(x) = x^3 - 3x^2 + x - 1$ có 3 nghiệm x_1, x_2, x_3 .

$$\mathbf{Dat} \ \mathbf{E}_{1} = \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} \ ; \ \mathbf{E}_{2} = \mathbf{x}_{1}\mathbf{x}_{2} + \mathbf{x}_{1}\mathbf{x}_{3} + \mathbf{x}_{2}\mathbf{x}_{3} \ ; \mathbf{E}_{3} = \mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3}.$$

Biểu diễn : $E = \sum_{i \neq j} x_i^3 x_j^2$ theo E_1, E_2, E_3 rồi tính E.

Giải :

Ta c6:
$$E = x_1^3 x_2^2 + x_1^3 x_3^2 + x_1^2 x_2^3 + x_2^3 x_3^2 + x_1^2 x_2^3 + x_1^2 x_3^3$$

$$= (x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2) + (x_1 + x_2 + x_3) -$$

$$-(x_1 x_2^2 x_3^2 + x_1^2 x_2 x_3^2 + x_1^2 x_2^2 x_3)$$

$$= (E_2^2 - 2E_1 E_3) E_1 - E_2 E_3$$

Áp dụng định lí Vi-ét, ta có : $E_1 = 3$, $E_2 = 1$, $E_3 = 1$.

Do dó: E = -16.

Bài tập 170: Cho n số thực $x_1, x_2, ..., x_n$ thoả $0 \le x_i \le 1, i = 1, n$.

$$\mathbf{D}\mathbf{\tilde{a}t} \ \mathbf{T} = \mathbf{x}_1 + \mathbf{x}_2 + ... + \mathbf{x}_n - \mathbf{x}_1 \mathbf{x}_2 - \mathbf{x}_1 \mathbf{x}_3 - ... - \mathbf{x}_{n-1} \mathbf{x}_n.$$

Chúng minh:
$$\frac{3n-n^2}{2} \le T \le 1$$
, $\forall n \ge 3$.

Giải:

Ta cố định các biến $x_2, x_3, ..., x_n$, riêng biến $x_1 = x$ biến thiên trong đoạn [0;1]. Khi đó T có dạng T = kx + b với các số cố định:

$$k = 1 - x_2 - x_3 - \dots - x_n$$

$$b = x_2 + \dots + x_n - x_2 x_3 - \dots - x_2 x_n - x_3 x_4 - \dots - x_{n-1} x_n$$

Rõ ràng, khi này các giá trị lớn nhất và nhỏ nhất của hàm tuyến tính đạt được tại 0 hoặc 1 là các mút của đoạn [0;1]. Chú ý rằng các số $x_2, x_3, ..., x_n$ tuy là cố định nhưng trước khi cố định chúng lấy các giá trị tuỳ ý thuộc đoạn [0;1]. Dò vậy, sau khi áp dụng tương tự các lập luận trên vào $x_2, x_3, ..., x_n$ ta có kết quả là : các giá trị lớn nhất và nhỏ nhất của T đạt được khi một vài số trong các số x_i bằng 1, còn các số còn lại bằng 0. Gọi các số bằng 1 là m, vậy m là số nguyên và $0 \le m \le n$. Khi đó :

$$\sum_{i=1}^{n} x_{i} = m \text{ và } x_{1}x_{2} + ... + x_{1}x_{n} + x_{2}x_{3} + ... + x_{n-1}x_{n} = C_{m}^{2}$$

Nên $T=m-\frac{m(m-1)}{2}=\frac{(3m-m^2)}{2}$. Nếu coi m là biến liên tục thì đây là phương trình parabol mà độ thị của nó quay bề lõm xuống dưới, toạ độ đỉnh là $\left(\frac{3}{2},\frac{9}{8}\right)$ và cắt trục hoành ở 0 và 3. Do m nguyên, và $0 \le m \le n$ mà tại m=1, m=2 (là các giá trị nguyên không âm gần hoành độ của đỉnh nhất), giá trị của T đều bằng 1, nên giá trị lớn nhất $T_{max}=1$ đạt được tại m=1 hoặc m=2.

Còn vì
$$n \ge 3$$
 nên T_{min} đạt được tại $m=n$ và $T_{min}=\frac{\left(3n-n^2\right)}{2}$.

$$Vay: \frac{3n-n^2}{2} \le T \le 1.$$