Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba December 16, 2022

SOLUTION OF EXERCISESHEET 9

Exercise 9-1

Exercise 9-2

Exercise 9-3

- (a) **To show:** Prove that regular CPA security implies λ -CPA security. We do this by a reduction. We assume there is an efficient adversary $\mathcal A$ against the λ -CPA-security of Π . From this we construct our adversary $\mathcal B$ against the CPA-security of Π .
- (b) **To show:** Prove that λ -CPA security implies normal CPA security We do this by a reduction. We assume there is an efficient adversary $\mathcal A$ against the CPA-security of Π . From this we construct our adversary $\mathcal B$ against the λ -CPA-security of Π which invokes $\mathcal A$. $\mathcal B$ has to provide an encryption oracle for $\mathcal A$ To do this he forwards any message m $\mathcal A$ sends to his oracle to his own oracle and recieves the ciphertextvector C_b . He then forwards only the first ciphertext c_1 to $\mathcal A$. $\mathcal A$ eventually outputs two messages $(\widetilde{m_0},\widetilde{m_1})$, which $\mathcal B$ forwards to his challenger. From the recieved ciphertextvector C_b he again forwards only the first ciphertext to $\mathcal A$. Then $\mathcal B$ outputs the same bit b like $\mathcal A$ does.

Exercise 9-4