机械蛙跳格子

叶卢庆*

杭州师范大学理学院, 浙江 杭州 310036

2014年3月10日

如图1,一个正五边形,一只机械蛙从 A_1 开始逆时针方向起跳,每次跳两格.于是机械蛙的运动路径为

$$A_1 \rightarrow A_3 \rightarrow A_5 \rightarrow A_2 \rightarrow A_4$$
.

我们发现机械蛙不重不漏地跳完了所有的格子. 一般地, 对于正 n 边形 $(n \ge 3)$ $A_1A_2 \cdots A_n$ 来说, 如果

图 1

 A_1, \dots, A_n 按照逆时针方向排列, 且机械蛙从 A_1 开始逆时针起跳, 每次跳 m 步 (m > 1), 且 m < n, 则 m, n 互素, 当且仅当机械蛙能不重不漏地跳完所有格子.

在进行正式的证明之前, 我们通过画图来看一个例子, 以找到感觉. 如下图的 23 边形, 有 23 个格子, 机械蛙以步长 4 从 A_1 开始逆时针跳. 机械蛙在跳 5 步之后到达 A_{21} , 此时与 A_1 尚相差 3 步, 表现在带 余除法上, 即

$$23 = 5 \times 4 + 3$$
.

到达 A_{21} 后, 机械蛙继续以步长 4 逆时针跳, 它下一步就跳入了第二圈. 在第二圈里, 机械蛙显然不会重复过去已经跳过的点, 因为机械蛙在 A_{21} 时, 是在 A_1 顺时针方向 3 个位置, 然后机械蛙在第二圈里所跳的格子, 总是在其第一圈跳过了的格子的顺时针方向的 3 个位置, 直到机械蛙在第二圈跳到 A_{18} . 此时机械蛙在 A_1 的顺时针方向的 $3 \times 2 = 6$ 个位置. 而

$$6 = 1 \times 4 + 2$$
,

因此机械蛙在第二圈达到 A_{18} 后,继续跳一步,会达到 A_{22} , A_{22} 在 A_1 顺时针方向 2 个位置,2 < 3. 机械蛙在到达 A_{22} 后,继续跳一步,会到达第三圈,在第三圈,机械蛙也不会重复以前已经跳过的格子,然后机械蛙在第三圈跳到格子 A_{23} . 格子 A_{23} 在 A_1 的顺时针 1 个格子的位置,1 < 2. 然后,机械蛙继续跳第四圈,在第四圈,机械蛙跳到 A_{20} ,到此为止,机械蛙已经不重不漏地跳过了所有点. 不重,已经是显然的,之所以不漏,是因为根据机械蛙跳步的平移不变性,既然能在 A_1 开始跳一直跳到 A_{23} ,那么肯定能从 A_{23} 开始跳一直跳到 A_{22} ,……,直至从 A_3 开始跳一直跳到 A_2 . 这样所有点都已经跳遍.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com

有了这个例子做支撑,下面我们开始证明.

证明. \Rightarrow : 肯定存在唯一的正整数 p_1 , 使得当机械蛙跳 p_1 次时, 在格子 A_{1+p_1m} 上, 而当其跳 p_1+1 次时, 却在格子 $A_{1+(p_1+1)m-n}$ 上. 这正和带余除法对应, 在带余除法中, 存在唯一的 p_1, r_1 , 使得

$$n = p_1 m + r_1,$$

且 $r_1 < m$. 易得 $A_{1+(p_1+1)m-n} = A_{1+m-r_1}$. 然后机械蛙继续逆时针以步长 m 跳第二圈, 会到达 $A_{1+p_1m-r_1}$. 如果 $2r_1 < m$, 则机械蛙的下一步会直接跳入第三圈, 否则 $2r_1 > m$, 机械蛙的下一步仍然在第二圈, 但是下下步会跳入第三圈.

我们先讨论 $2r_1 < m$ 的情形, 此时, 机械蛙的下一步直接跳入第三圈, 达到格子 A_{m-2r_1+1} . 然后机械 蛙在第三圈里继续以步长 m 逆时针运动, 达到点 $A_{1+p_1m-2r_1}$. 如果 $3r_1 < m$, 则机械蛙的下一步会直接 跳入第四圈, 否则 $3r_1 > m$, 机械蛙的下一步仍然在第三圈, 但是下下步会跳入第四圈.

可见, 无论如何, 终究会存在一个最小的 k_1 , 使得 $k_1r_1 > m$, 在这个时候, 机械蛙的下一步仍然在第 k 圈, 但是下下步会跳入第 k+1 圈. 因此 $(k_1-1)r_1 < m$. 这对应着带余除法

$$k_1 r_1 = m + r_2,$$

其中 $r_2 = k_1 r_1 - m < r_1$. 然后机械蛙继续以步长 m 逆时针运动. 我们发现, 现在 r_2 已经能被当成新的 r_1 . 终究存在一个最小的 k_2 , 使得 $k_2 r_2 > m$, 因此 $(k_2 - 1)r_2 < m$. 这对应着带余除法

$$k_2r_2 = m + r_3,$$

其中 $r_3 = k_2 r_2 - m < r_2$. 这样子不断进行下去, 我们会发现肯定存在 q, 使得 $r_q = 1$ (至于为什么不是 $r_q > 1$, 是因为 m, n 互素). 然后结合机械蛙运动的平移不变性, 就完成了证明.

 \Leftarrow : 能不重不漏地跳完所有格子, 说明存在 $a,b \in \mathbf{Z}$, 使得

am + bn = 1,

因此 m, n 互素. 证明完毕.