Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №1

по «Вычислительной математике» «Решение систем линейных алгебраических уравнений»

Выполнил:

Студент группы Р32312

Лебедев В.В.

Преподаватель:

Перл О.В.

Санкт-Петербург

2023

Описание метода

Метод простых итераций - численный метод решения систем линейных алгебраический уравнений. Метод позволяет получить значения корней системы с заданной точностью e.

СЛАУ задается в виде: AX = B,

где A - матрица коэффициентов, X - вектор неизвестных, B - вектор свободных членов.

В итоге метод сводится к последовательным итерациям по ј:

$$x_i^{j+1} = x_i^j - \frac{1}{a_{ii}} \left(\sum_{k=1}^n a_{ik} x_k^{j} - b_i \right)$$
, где для каждой строки і вычисляется новое значение x_i .

При этом, сходимость обеспечивается при условии диагонального преобладания матрицы коэффициентов: $|a_{ii}| \geq \sum\limits_{j \neq i} |a_{ij}|$.

Блок-схема численного метода

Листинг программы

Приведение к диагональному преобладанию:

```
dominant_type is_dominant_row(std::vector<double> row, std::size_t col) {
    double sum = 0;
    for (std::size_t i = 0; i < row.size() - 1; i++) {
        sum += std::abs(x:row[i]);
    }
    sum -= std::abs(x:row[col]);
    if (std::abs(x:row[col]) > sum) {
        return STRICTLY_DOMINANT;
    } else if (std::abs(x:row[col]) >= sum) {
        return DOMINANT;
    } else {
        return NONDOMINANT;
    }
}
```

```
bool diagonal_dominance(std::vector<std::vector<double>>& matrix) {
   bool strict_flag = false;
   for (std::size_t col = 0; col < matrix.size(); col++) {
      bool dominant_flag = false;
      for (std::size_t row = col; row < matrix.size(); row++) {
            dominant_type dominant = is_dominant_row(row matrix[row], col)
            if (dominant == STRICTLY_DOMINANT) {
                strict_flag = true;
            }
            if (dominant == STRICTLY_DOMINANT || dominant == DOMINANT) {
                 std::swap( & matrix[row], & matrix[col]);
                 dominant_flag = true;
                  break;
            }
        }
        if (!dominant_flag) {
            return false;
        }
    }
    return strict_flag;
}</pre>
```

Итерационный метод:

```
static double iterate(std::vector<double>& x,
                       const std::vector<std::vector<double>>& matrix,
                       std::vector<double>& error) {
    double max_error = 0;
    for (std::size_t i = 0; i < x.size(); i++) {</pre>
        double xj = -matrix[i][matrix.size() - 1];
        for (std::size_t j = 0; j < x.size(); j++) {</pre>
            xj += matrix[i][j] * x[j];
        xj -= matrix[i][i];
        xj /= -matrix[i][i];
        xj += x[i];
        error[i] = std::abs(x:x[i] - xj);
        if (error[i] > max_error) {
            max_error = error[i];
        x[i] = xj;
    return max_error;
result solve_iter_method(const std::vector<std::vector<double>>& matrix, double precision) {
```

Примеры

Рандомизированная матрица небольшого размера:

```
Enter number of linear equations: 2
Enter accuracy epsilon: 0.801
Choose input type: "console", "random" or "file": random
Your matrix after conversions:
401 -21.1 56.6
59.7 530 -60.5
Time elapsed while solving system of equations: 2[\mu s]
Solution vector:
1.05 1.88
Error vector:
3.52e-06 3.96e-07
Number of iterations:
3
```

Рандомизированная матрица размером 20

```
Enter accuracy epsilon:

Enter accuracy epsilo
```

Solution vector:
6.9188 0.9878 1.024 0.9302 0.7779 1.032 1.138 1.014 0.9073 0.0034 1.049 1.029 1.049 1.011 0.8858 0.9818 1.145 1.015 1.082 2.051

Error vector:
6.2886-00 2.407e-05 1.405e-05 5.899e-00 1.450e-05 7.69e-00 1.997e-00 8.700e-00 1.955e-00 3.173e-00 8.433e-07 7.419e-07 4.982e-07 1.72e-00 6.889e-07 2.128e-07 8.403e-07 9.504e-09

Number of iterations:

Матрица, считанная с файла:

Your matrix:																				
200	-4	2	5	7	-4	3	0	-4	-2	-8	-3	-2	8	-1	4	-2	1	6	-5	3
-2	200	1	-4	1	10	-3	9	-4	3	-7	-5	1	-9	-9			-4	8	8	1
-0	-5	200	-4	-1	-1	-1	-3	8	-8	3	-5	-2	8	-1	1	-0	3	2	6	1
4	1	-4	8	200	-4	4	-1	1	-9	-3	-5	3	0	-1		-10	9	-5	-9	-1
5		-10	-3	8	-2	-9	-3	6	200	-7	1	-10	5	6	-8	-2	-7	4	6	-9
3	8	1	-2	0	-7	221	-2	-8	1	5	-5	-9	-8	-2	-2	7	7	10	-7	6
8	6	2	3	3	5	-8	200	-6	-1	-3	-3	-1	-8	-5	9	-5	2	-6	-8	-8
9	4	-5	-1	9	364	2	-4	-0	3	-6	-2	3	9	-5	-5	7	-2	5	-6	-1
0	1	5	-8	9	3	3	5	432	4	3	8	-6	8	-2	-3	-1	8	0	-5	-2
-9	-5	0	-0	6	7	-0	-1	2	5	213	-2	-5	-2	-9	-2	-6	10	-5	-7	3
9	3	4	6	3	-2	-3	-9	2	8	8	321	7	-2	7	2	-3	7	-0	7	-9
-4	9	5	5		-9	0	8	7	-7	2	2	-8	142	-0	10	0	2	7	10	10
-10	-8	-7	0	-3	-9	-4	-10	-2	6	-5	-1	8	-4	200	10	-6	-1	-8	-8	-6
-1	9	2	202	-6	-5	-3	-1	6	-0	-8		3		-4	6	-2	5	2	1	2
-4	-4	-4	-9	-1	-5	1	-9	-6	3	5	4	2	8	-2	200	8	9	4	7	1
1	2	-5	-7	5	1	-4	-1	4	-3	6	-8	-9	-9	10	8	200	-4	7	-4	2
-4	-5	-5	-1	-1	1	-0	1	-0	1	-1	3	200	7	-1	5	-1	-7	6	-1	5
7	4	2	10	-6	0	-2	-6	1	-9	-2	-2	7	8	-3	-9	-7	-4	7	200	0
-7		5	-1	-4	5	10	-5	8	9	6	0	-10	8	-7	7	-4	200	-7	-4	4
1	8	-4	-3	7	7	-0	5		-5	6	-5	7	9	-6	-0	-8	-7	200	2	-1

```
        Correct Series
        <th
```

Time elapsed while solving system of equations: 14[µs]

Solution vector:

1.011 0.9853 1.014 0.9681 1.091 0.9697 1.034 1.076 0.9328 1.084 1.117 0.8198 1.032 0.703 1.307 0.9799 1.017 0.9568

Error vector:

3.636e-06 2.32e-05 1.03e-05 6.111e-05 5.95e-06 7.533e-06 1.506e-06 3.595e-05 3.787e-06 9.738e-06 1.244e-05 1.945e-06

Number of iterations:

Вывод

Алгоритмическая сложность алгоритма: $O(1 * n^2)$, где 1 - число итераций, а n - размер матрицы.

Анализ применимости метода: Когда необходимо минимизировать погрешность вычислений, можно настраивать e, чтобы добиться необходимой точности. Вычисления можно производить параллельно и нет необходимости хранить всю матрицу в памяти.

Сравнение с другими методами:

- алгоритм Гаусса-Зейделя: скорость сходимости может быть больше, чем при прямых итерациях, но сложнее распараллеливать; также не обязательно держать всю матрицу в памяти;
- прямые методы: нужно держать матрицу в памяти; может накапливаться набегающая погрешность; если у СЛАУ есть решение, оно будет найдено, в отличие от итерационных методов, которые требуют условий сходимости; решение находится за конечное число операций;