

MATHEMATICS

3C/3D

Calculator-free

WACE Examination 2013

Marking Key

Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They are essential to fair assessment because their proper construction underpins reliability and validity.

MARKING KEY

Section One: Calculator Free

(50 marks)

Question 1

(5 marks)

 $\frac{x+2}{2x-1} = \frac{2x+1}{x+4} \, .$ Solve the equation

Solution

$$(x+2)(x+4) = (2x+1)(2x-1) x \neq -4, 0.5$$

$$x^{2} + 6x + 8 = 4x^{2} - 1$$

$$0 = 3x^{2} - 6x - 9$$

$$0 = x^{2} - 2x - 3$$

$$0 = (x-3)(x+1)$$

$$x = 3 \text{ or } -1$$

Alternative method 1:

$$\frac{x+2}{2x-1} - \frac{2x+1}{x+4} = 0$$

$$\frac{(x+2)(x+4) - (2x+1)(2x-1)}{(2x-1)(x+4)} = 0$$

$$(x+2)(x+4) - (2x+1)(2x-1) = 0$$

Alternative method 2:

$$\frac{(x+2)(x+4)(2x-1)}{(2x-1)} = \frac{(2x+1)(x+4)(2x-1)}{(x+4)}$$
$$(x+2)(x+4) = (2x+1)(2x-1)$$

- cross-multiplies correctly, or otherwise obtains equivalent expression
- expands correctly
- simplifies correctly
- factorises correctly
- states correct solutions

Question 2 (7 marks)

An airline owns three small aircraft: P, Q and R. One day, a total of 80 passengers travelled on the three aircraft. The total number of passengers who travelled on aircraft P and Q was four times the number who travelled on aircraft R.

Each passenger who travelled on aircraft P paid \$200. Those who travelled on aircraft Q paid \$300 each, and those who travelled on aircraft R paid \$100 each. The 80 passengers paid \$19 400 in total.

- Let p = number of passengers who flew on aircraft P,
 - q = number of passengers who flew on aircraft Q, and
 - r = number of passengers who flew on aircraft R.
- (a) Write three equations relating p, q and r that will allow a solution for all three variables. (3 marks)

		Solution
p+q+r=80		
200p + 300q + 100r = 19400	or	2p + 3q + r = 194
$r = \frac{1}{4} (p+q)$	or	p + q = 4r
	Speci	fic behaviours

- ✓ states first equation correctly
- ✓ states second equation correctly
- ✓ states third equation correctly
- (b) How many passengers flew on each aircraft? (4 marks)

	Solution
p + q + r = 80	<i>eq</i> 1
p + q - 4r = 0	eq2
2p + 3q + r = 194	eq3
5r = 80	eq1-eq2
r = 16	subs eq2 & eq3
p + q = 64	eq4
2p + 3q = 178	eq5
q = 50	eq5-2eq4
p = 14, q =	=50, r=16
Hence 14 passenge	rs flew on aircraft P, 50 passengers flew on aircraft Q and 16

Hence 14 passengers flew on aircraft P, 50 passengers flew on aircraft Q and 16 passengers on aircraft R.

- ✓ sets up two equations with one variable eliminated
- ✓ sets up one equation with two variables eliminated
- ✓ correctly solves for one variable
- ✓ correctly solves for the other two variables

Question 3 (4 marks)

Let
$$f(x) = \frac{1}{x^2} + \frac{e^{2x}}{2}$$
.

Determine the second derivative f''(x).

Solution

$$f(x) = x^{-2} + \frac{e^{2x}}{2}$$

$$f'(x) = -2x^{-3} + e^{2x} = \frac{-2}{x^3} + e^{2x}$$

$$f''(x) = 6x^{-4} + 2e^{2x} = \frac{6}{x^4} + 2e^{2x}$$

Specific behaviours

- \checkmark differentiates $\frac{1}{r^2}$ correctly
- \checkmark differentiates $\frac{e^{2x}}{2}$ correctly
- \checkmark differentiates $\frac{-2}{x^3}$ correctly
- \checkmark differentiates e^{2x} correctly

Question 4 (10 marks)

Let $f(x) = (x-1)(x^2-16)$.

(a) Show that f'(x) = (3x-8)(x+2). (3 marks)

Solution

$$f'(x) = 1(x^2 - 16) + (x - 1)(2x)$$
$$= x^2 - 16 + 2x^2 - 2x$$
$$= 3x^2 - 2x - 16$$

$$(3x-8)(x+2) = 3x^2 - 8x + 6x - 16$$
$$= 3x^2 - 2x - 16$$

Hence
$$f'(x) = (3x-8)(x+2)$$

- \checkmark differentiates f(x) correctly
- √ simplifies correctly
- √ demonstrates equivalence of expressions

(b) Determine the equation of the tangent to the graph of f(x) at the point where x = 3. (3 marks)

Solution

$$f'(3) = (3(3)-8)(3+2) = 5$$

Tangent line has equation y = 5x + c

$$f(3) = (3-1)(3^2-16) = -14$$

$$-14 = 3(5) + c$$

$$c = -29$$

Tangent line has equation y = 5x - 29

Specific behaviours

- \checkmark correctly evaluates f'(3)
- \checkmark correctly evaluates f(3)
- ✓ correctly determines the equation of the tangent
- (c) What is the maximum value of the function over the domain $-4 \le x \le 4$? (4 marks)

Solution

Stationary points where (3x-8)(x+2)=0

$$x = \frac{8}{3}$$
 or -2

The local maximum must occur at x = -2.

Second derivative test:

$$f''(x) = 6x - 2$$

$$f''\left(\frac{8}{3}\right) = 14$$
 $f''(-2) = -14$

Sign test:

$$f'(-3) > 0$$
 $f'(0) < 0$ $f'(3) > 0$

Alternatively, this can be inferred from the shape of the cubic.

The maximum over the domain must occur at x = -2 or x = 4.

$$f(-2) = 36$$

$$f(4) = 0$$

The maximum value over the domain is 36.

- \checkmark finds x-values of stationary points
- ✓ test stationary points to determine maximum
- \checkmark correctly evaluates f(-2) = 36 and f(4) = 0
- ✓ states correct maximum value

6

Question 5 (6 marks)

A cubic function $f(x) = ax^3 + bx^2 + cx + d$ has these features:

- $f'(x) \ge 0$ only for $-2 \le x \le 6$
- $f''(x) \ge 0$ only for $x \le 2$
- There are exactly two points at which the graph of f(x) meets the x-axis
- d < 0.
- (a) (i) State the *x*-coordinate of the point of inflection.

(1 mark)

MARKING KEY

(ii) Is the graph of f(x) horizontal at the point of inflection? Explain your answer.

(1 mark)

Solution

- (i) x = 2
- (ii) No, as the stationary points of the cubic must be at x = -2 and x = 6, so $f'(2) \neq 0$.

Specific behaviours

- ✓ states correct *x*-coordinate
- ✓ states that the point of inflection is not horizontal with correct explanation

(b) Is *a* positive or negative? Explain your answer.

(2 marks)

Solution

As $x \to \pm \infty$, f'(x) is negative. This is characteristic of a cubic with a < 0

Specific behaviours

- ✓ states that a is negative (a < 0)
- ✓ explains correctly from given information

(c) Determine the coordinates of the local maximum.

(2 marks)

Solution

Local maximum is at (6,0)

- ✓ states correct *x*-coordinate
- ✓ states correct y-coordinate

Question 6 (7 marks)

A function is defined as f(x) = x(10-x), over the domain $0 \le x \le 10$.

(a) Determine the range of f(x).

(2 marks)

	Solution
$0 \le f$	$f(x) \le 25$
	Specific behaviours
✓	correctly determines that $f(x) \ge 0$
✓	correctly determines that $f(x) \le 25$

The graph of a second function g(x) is shown below for the domain $-4 \le x \le 4$. The coordinates of the endpoints and vertex of the graph are labelled.

(b) Determine:

(i)
$$f(g(2))$$
. (2 marks)

Solution
f(g(2)) = f(4) = 4(10-4) = 24
Specific behaviours
\checkmark correctly evaluates $g(2)$ from graph
\checkmark correctly evaluates $f(g(2))$

(ii) the domain and range of f(g(x)).

(3 marks)

Solution

Domain: $-4 \le x \le 4$

$$f(2) = 16$$

Range: $16 \le f(g(x)) \le 25$

- ✓ correctly states domain
- \checkmark correctly determines that $f(g(x)) \le 25$
- correctly determines that $f(g(x)) \ge 16$

Question 7 (11 marks)

9

The graph of the function f(x) is shown below for $-3 \le x \le 3$.

The areas enclosed between the graph, the x-axis and the lines x=-3 and x=3 are marked in the appropriate regions.

Determine:

(a) the value of
$$\int_{-2}^{3} f(x)dx$$
. (2 marks)

	Solution
\int_{-2}^{3}	f(x)dx = -4 + 4 - 2 = -2
	Specific behaviours
✓	uses additive property for integrals
✓	correctly uses signed areas

(b) the area enclosed between the graph of f(x) and the x-axis, from x=-2 to x=3. (2 marks)

	Solution
Area	a = 4 + 4 + 2 = 10
	Specific behaviours
√	uses additive property of areas
✓	correctly selects unsigned areas

(c) the value of $\int_0^3 f(-x)dx$.

(2 marks)

Solution

$$\int_{0}^{3} f(-x) dx = \int_{-3}^{0} f(x) dx = 3 - 4 = -1$$

Specific behaviours

- ✓ correctly determines the effect of the transformation on the integral
- ✓ correctly evaluates the integral
- (d) the value of $\int_0^2 (x f(x)) dx$.

(3 marks)

Solution

$$\int_0^2 (x - f(x)) dx = \int_0^2 x dx - \int_0^2 f(x) dx$$
$$= \left[\frac{x^2}{2}\right]_0^2 - 4$$
$$= 2 - 4$$
$$= -2$$

Specific behaviours

- ✓ separates integral into correct components
- ✓ integrates first component correctly
- integrates second component correctly
- (e) the value of $\int_{-1}^{1} f'(x) dx$.

(2 marks)

Solution

$$\int_{-1}^{1} f'(x) dx = [f(x)]_{-1}^{1} = 3 - (-3) = 6$$

- ✓ applies Fundamental Theorem of Calculus
- ✓ evaluates integral correctly

© School Curriculum and Standards Authority, 2013 This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.
Copying or communication for any other purpose can be done only within the terms of the <i>Copyright Act 1968</i> or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the <i>Copyright Act 1968</i> or with permission of the copyright owners.
Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the <u>Creative Commons Attribution-NonCommercial 3.0 Australia licence</u> .

Published by the School Curriculum and Standards Authority of Western Australia 27 Walters Drive OSBORNE PARK WA 6017