

Dr. rer. nat. Johannes Riesterer

Lipschitz-Stetig

Eine Abbildung $F:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ heißt Lipschitz-Stetig, falls es eine Konstante $L\geq 0$ gibt mit

$$||F(t,x) - F(t,x')|| \le L||x - x'||$$

für alle (t,x) und (t,x') in U.

Metrischer Raum

Ein metrischer Raum (X,d) ist eine Menge X zusammen mit einer Abbildung $d: X \times X \to \mathbb{R}$ die linear ist in beiden Argumenten und die Dreiecksungleichung $d(x,y) \le d(x,z) + d(z,y)$ erfüllt.

Beispiel

d(x,y) := ||y - x|| wobei $|| \cdot ||$ eine Norm ist.

Beispiel

Das für uns später relevante Beispiel ist der Funktionenraum mit der Maximumsnorm $||\varphi||:=\max_t$.

Banachscher Fixpunktsatz

Es sei (X, d) ein vollständiger metrischer Raum und $P: X \to X$ eine Abbildung mit

$$d(P(x), P(x)) < \lambda d(x, y)$$

und $\lambda < 1$. Dann besitzt P genau einen Fixpunkt $x^* \in X$ mit $P(x^*) = x^*$.

Figure: Quelle: Wikipedia

Figure: Quelle: Wikipedia

Angewandte Mathematik

Wähle beliebiges $x_0 \in X$. Durch wiederholtes Abbilden erhalten wir die Folge $x_n := P(x_{n-1})$. Für diese Gilt nach Voraussetzung an P

$$d(x_{n+1},x_n) < \lambda d(x_n,x_{n-1}) < \lambda^n d(x_1,x_0).$$

Mit wiederholtem Anwenden der Dreiecksungleichung gilt

$$d(x_{n+m},x_n) \leq d(x_{n+1},x_n) + d(x_{n+2},x_{n+1}) + \cdots + d(x_{n+m},x_{n+m-1}).$$

Da $\lambda < 1$ folgt $\lim_{n \to \infty} d(x_{n+m}, x_n) \le \lim_{n \to \infty} \frac{\lambda^n}{1 - \lambda} d(x_1, d_0) = 0$ und damit ist x_n eine Cauchyfolge. Da (X, d) vollständig ist, konvergiert die Folge in X gegen einen Grenzwert x^* . Für diesen gilt $P(x^*) = P(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} P(x_n) = \lim_{n \to \infty} x_{n+1} = x^*$ und damit ist x^* ein Fixpunkt von P.

Lokaler Existenzsatz von Picard-Lindelöf

Das dynamisches System

$$F: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

sei lokal Lipschitz-Stetig. Dann gibt es zu jedem Punkt $(t_0, x_0) \in U$ ein Intervall $I_{\delta}(t_0) := (t_0 - \delta, t_0 + \delta) \subset \mathbb{R}$ auf dem das AWP

$$x' = F(t, x), x(t_0) = x_0$$

Angewandte Mathematik Beweis

Betrachte die Menge $M:=\{\psi:I_{\delta}(t_0)\to\mathbb{R}^n\mid ||\psi(t)-x_0||\leq b\}$ von Wegen in der Nähe von x_0 und die Abbildung

$$P: M \to M$$

$$(P\psi)(t) := x_0 + \int_{t_0}^t F(t, \psi(t)) dt$$

Ein Fixpunkt von *P* ist eine Lösung der Differentialgleichung. P ist eine Kontraktion.

Lineare (gewöhnliche) Differentialgleichung.

Eine Differentialgleichung der Form

$$x'(t) := A(t)x(t) + b(t)$$

mit $A:I\subset\mathbb{R}\to\mathbb{R}^{n\times n}$ und $b:I\subset\mathbb{R}\to\mathbb{R}^n$ heißt lineare (gewöhnliche) Differentialgleichung.

Existenz und Eindeutigkeit]

Ist x'(t) := A(t)x(t) + b(t) eine lineare Differentialgleichung und A und b stetig, so besitzt das AWP

$$x'(t) := A(t)x(t) + b(t); x(t_0) = x_0$$

genau eine auf ganz / definierte Lösung.

Beweis

F(t,x) := A(t)x(t) + b(t) ist Lipschitz-Stetig mit Konstanten $L := \max_{t \in J} ||A(t)||$ für jedes kompakte Intervall $J \subset I$.

Lineare (gewöhnliche) Differentialgleichung.

- Die Menge \mathcal{L} der auf I definierten Lösungen der homogenen Gleichung x'(t) = A(t)x(t) ist eine n-dimensionaler reeller Vektorraum.
- n Lösungen $\varphi_1, \dots, \varphi_n : I \to \mathbb{R}^n$ bilden genau dann eine Basis für \mathcal{L} , wenn die Vektoren $\varphi_1(t), \dots, \varphi_n(t)$ für ein $t \in I$ eine Basis des \mathbb{R}^n bilden.

Angewandte Mathematik

Sind $\varphi_1, \dots, \varphi_n$ Lösungen der homogenen Gleichung, so auch $c_1 \cdot \varphi_1 + \dots + c_n \cdot \varphi_n$, da die Ableitung linear ist. \mathcal{L} ist somit ein Vektorraum. Definiere

$$\alpha_{t_0}: \mathcal{L} \to \mathbb{R}^n$$

 $\alpha_{t_0}(\varphi) := \varphi(t_0).$

Aufgrund des Existenzsatzes und der linearität ist α_{t_0} surjektiv und wegen der Eindeutigkeit der Lösung injektiv.

Lineare (gewöhnliche) Differentialgleichung.

Eine Basis $\varphi_1, \dots, \varphi_n$ des Lösungsraumes \mathcal{L} der homogenen Gleichung x'(t) = A(t)x(t) heißt Fundamentalsystem.

Lineare (gewöhnliche) Differentialgleichung.

Für eine Matrix $A \in \mathbb{R}^{n \times n}$ definiert man die Exponentialfunktion

$$e^A := \sum_{k=0}^{\infty} \frac{1}{k!} A^k .$$

Es gilt

$$(e^{tA})' = Ae^{tA} .$$

Lineare (gewöhnliche) Differentialgleichung.

Für eine Matrix A lautet die Lösung des Anfangswertproblems x'(t) = Ax(t) und $x(0) = x_0$

$$x(t)=e^{tA}x_0.$$

Ist v_1, \dots, v_n eine Basis des \mathbb{R}^n , so ist $e^{tA}v_1, \dots, e^{tA}v_n$ ein Fundamentalsystem für \mathcal{L} . Damit bilden die Spalten von e^{tA} ein Fundamentalsystem.

Beweis

Es ist $x(0) = x_0$ und x'(t) = Ax(t).

Lineare (gewöhnliche) Differentialgleichung.

Sei v eine Eigenvektor von A zum Eigenwert λ . Dann löst

$$\varphi_{v}(t) := e^{t\lambda}v$$

das AWP x' = Ax mit x(0) = v.

Beweis

$$\varphi_{\nu}'(t) = \lambda e^{t\lambda} v = e^{t\lambda} \lambda v = e^{t\lambda} A v = A e^{t\lambda} v = A \varphi_{\nu}(t).$$

Lineare (gewöhnliche) Differentialgleichung.

Hat eine Matrix A n Eigenvektoren v_1, \cdots, v_n zu den Eigenwerten $\lambda_1, \cdots \lambda_n$, so bilden die Lösungen $\varphi_{v_1}, \cdots \varphi_{v_n}$ ein Fundamentalsystem.

Beweis

Eigenvektoren sind linear unabhängig.

Hauptvektoren.

Ein Vektor v heißt Hauptvektor zum Eigenwert λ , falls es eine Zahl s>0 gibt mit

$$(A - \lambda E)^s v = 0$$

Die kleinste Zahl s, für die dies gilt heißt Stufe.

Hauptvektoren

Zu jeder Matrix $A \in \mathbb{R}^{n \times n}$ gibt es eine Basis aus Hauptvektoren.

Hauptvektoren

Für einen Haupvektor v der Stufe s zum Eigenwert λ ist

$$e^{At}v = e^{\lambda It}e^{(A-\lambda I)t} = e^{\lambda t}\sum_{k=0}^{s-1}\frac{1}{k!}((A-\lambda I)^kt^kv)$$

Klassifikation linearer Systeme in dimension 2

Hauptvektoren

Sei x' = Ax mit $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und λ, μ die Eigenwerte von A.

Dann können folgende Fälle auftreten:

- Es gibt zwei verschiedene reelle Eigenwerte λ_1, λ_2 . Die allgemeine Lösung lautet dann $\varphi(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 \ c_1, c_2 \in \mathbb{R}$ mit den Eigenvektoren v_1, v_2 .
- λ ist ein doppelter reller Eigenwert.
 - Der Lösungsraum $(A-\lambda I)x=0$ hat dimension 2. Das ist der Fall, wenn bis auf Basistransformation $A=\lambda I$ ist. In diesem Fall hat die Differentialgleichung die allgemeinen Lösungen

$$\varphi(t) = e^{\lambda t} v, \ v \in \mathbb{R}^2$$
 beliebig

Hauptvektoren

• Der Lösungsraum $(A - \lambda I)x = 0$ hat dimension 1. In diesem Fall gibt es einen Hauptvektor h der Stufe 2, also eine Lösung von $(A - \lambda I)h = v$. Die allgemeinen Lösungen lauten damit

$$\varphi(t) = e^{\lambda t} (c_1 v + c_2 (h + t v)) c_1, c_2 \in \mathbb{R}$$

• A hat die komplex konjugierten Eigenwerte $\lambda, \bar{\lambda} \in \mathbb{C}$. Dann hat A die komplexen Eigenvektoren $w, \bar{w} \in \mathbb{C}^2$. Da A reell ist, sind $\varphi_1(t) := Re(we^{\lambda t})$ und $\varphi_2(t) := Im(we^{\lambda t})$. Mit w = u + iv und $\lambda = \gamma + i\theta$ ergibt sich

$$\varphi_1(t) = Re(we^{\lambda t}) = e^{\gamma t}(\cos \theta t \cdot u - \sin \theta t \cdot v)$$

$$\varphi_2(t) = Im(we^{\lambda t}) = e^{\gamma t}(\sin \theta t \cdot u + \cos \theta t \cdot v)$$

Klassifikation linearer Systeme in dimension 2

Hauptvektoren

Die Lösungen sind damit gegeben durch

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t)$$