Week 7 Submission

Ameer Karas

44948956

	= 0 (n to 3 4)		- 27
Recursive cell: T(n) = 4T(\(^n\chi_3\) + \(\chi_n\) n	here (20		# operations
Recursive cell:	Tree	Lad sum in	per level
T(n)	cn	cn	per (evo) 1 = 4°
T(n/3)	1 /11 /11 /11 /	3 4/3	4 = 4'
て(%) いる	,,,,,,,,	16 ng	16 = 42
T("/3;)		4'n	4'
at depth i is Mzi	$i = log_3 n. T$	e subproblem size	for a note
Thus the subgroblem size lits n=1 when 3 = 1. The tree has logn+1 levels, and the cost at each level is 43 n.			
At depth logger, there are 4' operations where $i = log_3 n$, 4 logg n = $nlog_3 t$ nodes, each costing $T(1)$			
. Oln logs			*

Assume guess is true for Man. Must prove:
Assume guess is true for MEN. Must prove:
- box 4
1(n) = (n = 3 , assuming 1(m) = (m = 3 & m = n
$T(n) \leq cn^{\log_3 4}$, assuming $T(m) \leq cm^{\log_3 4}$ \ \ m \colon \\ If $n = \sqrt[n]{3} \leq n$: $T(n) = 4T(\sqrt[n]{3}) + n \leq 4[c(\sqrt[n]{3})^{\log_3 4}] + n$
T(n) = 4T(1/s)+n \(\lefta \(\lefta \(\lefta \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1
= (4ch) 0034 + n
, 6934
$= \frac{4 c n^{\log_3 4}}{3^{\log_3 4}} + n$ $= \frac{4 c n^{\log_3 4}}{3^{\log_3 4}} + n$
But we want to prove Tins inlogs 4, not Tin) = chogs 4+n
But we want to prove I (n) & chars, not I (n) & chars +1
: This proof fails

c) Make the guess:
$$T(n) \leq c_n \log_3 4 - 3n$$

$$T(n) = 4T(n/3) + n \leq 4(c(n/3)\log_3 4 - n) + n$$

$$= c_n \log_3 4 - 4n + n$$

$$= c_n \log_3 4 - 3n$$