AL	EM. Examen sobre el Tema 3.
Gru	po E, Curso 2013–2014.
Ape	ellidos, Nombre:
DN	I:
una	a cuestión tipo test vale 0.8. No es obligatorio responder a cada de ellas. Cada tres fallos resta 0.8 al valor total del examen. jercicio práctico final vale 2 puntos.
1.	Consideramos los siguientes enunciados sobre números enteros:
	(1) $a (b \cdot c) \implies a b \circ a c$ (2) $a b \ y \ a c \implies a (b^{30} + c^{40})$
	Entonces:
	 a) Tanto (1) como (2) son falsos. b) (1) es falso y (2) es verdadero. c) (1) es verdadero y (2) es falso. d) Ambos son verdaderos.
2.	El número de pares ordenados $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ que satisfacen $x^2 \cdot y = 9900$ es: a) 16 b) 4 c) 32 d) 8
3.	El número de divisores positivos del número 7128 es: a) 24 b) 40 c) 60 d) 66
4.	Cuando n varía en \mathbb{Z} , el máximo común divisor de los números $2n^3-2n^2-39n+73$ y $2n^2+4n-29$ puede valer como máximo:

a) 97 b) 1 c) 257 d) 67

- El número de unidades del anillo \mathbb{Z}_{7128} es:
 - a) 720
- b) 2376
- c) 2160
- d) 3564
- El resto de dividir 26743²⁶⁷⁴³ entre 17 es igual a:
 - a) 11 b) 4 c) 15
- d) 9
- 7. Sea el polinomio $p(x) = x^5 + 4x^4 + x^3 + x^2 + 2 \in \mathbb{Z}_5[x]$. Entonces p(x) es igual a:
 - a) $(x+1)(x+2)^2(x+3)^2$
 - b) $(x+1)^2(x+2)(x+3)^2$
 - c) $(x+1)^3(x+2)(x+3)$
 - d) $(x+1)^2(x+2)^2(x+3)$
- En $\mathbb{Z}_7[x]$ el resto de dividir el polinomio $x^{30}+2x^{29}+5x^{24}+x^{10}+x^2+5$ entre x+1
 - a) 4 b) 0 c) 2 d) 1
- 9. El anillo $\frac{\mathbb{Z}_2[x]}{(m(x))}$ es un cuerpo cuando m(x) es igual a:
 - a) $x^5 + x^4 + x + 1$ b) $x^5 + x^4 + 1$ c) $x^5 + x + 1$ d) $x^5 + x^2 + 1$

- 10. En el anillo $\frac{Z_5[x]}{(x^3+x^2+1)}$ el elemento $x^{-1}+(x+1)^{-1}$ es igual a:

- a) 2x + 1 b) $3x^2 + 4x$ c) x + 2 d) $4x^2 + 3x$

	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

Aplique la metodología estudiada en clase basada en el algoritmo de Euclides para calcular todas las soluciones del sistema de ecuaciones en congruencia siguiente:

$$\begin{cases} 3x \equiv 81 \mod 267 \\ 5x \equiv 80 \mod 147 \end{cases}$$