

Syllabus for Compiler Design I

Kompilatorteknik I

5 credits

Course code: 1DL321 Education cycle: First cycle

Main field(s) of study and in-depth level: Computer Science G2F, Technology G2F

Grading system: Fail (U), 3, 4, 5.

Established: 2012-03-08

Established by: The Faculty Board of Science and Technology

Applies from: week 02, 2012

Entry requirements: 60 credits including at least 15 credits in mathematics, including Automata Theory, and 30 credits in

computer science, including Operating Systems and second course in computer programming.

Responsible department: Department of Information Technology

LEARNING OUTCOMES

To pass, the student must understand, how simple imperative programming languages equivalent to C can be compiled to machine code for RISC-like machines.

The students must specifically be able to

- structure a compiler as a sequence of distinct translation steps
- use regular languages to describe the lexical elements of a programming language
- describe lexical analysis using a finite automaton
- use context free languages to describe the syntactic structure of a programming language
- use the parsing methods top-down (recursive descent) and bottom-up (LR)
- use abstract syntax trees to represent the results of the syntactic analysis
- break down statements and expressions to simpler designs, and translate syntax trees to intermediate code
- describe how recursive procedure calls can be implemented by means of stacks, activation posts and machine registers
- translate the simplified intermediate code of a program to machine-specific instructions

CONTENT

Lexical analysis (scanning).

Syntactical analysis (parsing).

Program representation in Abstract Syntax Trees (AST).

Symbol tables and scope rules for C-like languages.

Type-checking for C-like languages.

Different forms of intermediate code (IR).

Generation of intermediate code.

Call stacks and activation posts.

Code generation for RISC-like machines.

Uppsala University uses cookies to make your website experience as good as possible. Read more about cookies.

OK

INSTRUCTION

Lectures, laboratory sessions.

ASSESSMENT

The course is examined by written examination (4 credits) and assignments (1 credit).

READING LIST

Applies from: week 02, 2012