Ghazouline Abdessamad

Relazione sull'Analisi della Distorsione Audio tramite Sistemi Non Lineari

Introduzione

In questa esperienza analizzeremo l'effetto della distorsione in sistemi non lineari.

La distorsione introduce componenti in frequenza non presenti nel segnale originale e altera le componenti esistenti, influenzando la qualità del suono.

Per evidenziare gli effetti, utilizzeremo un sistema composto da:

- Un ingresso audio x(t)
- Un filtro passa-basso con banda programmabile *B*
- Un sistema non lineare descritto dalla funzione g(y)
- Un'uscita distorta z(t) = g(y(t))

L'analisi verrà svolta mediante Matlab, che elaborerà i dati in ingresso e scriverà i campioni elaborati su un file audio per l'ascolto.

1. Lettura del Segnale Audio

Il segnale audio di ingresso è un file in formato WAV con una frequenza di campionamento di 44.1 kHz. Viene letto ed elaborato in MATLAB, escludendo i primi 0.1 secondi per rimuovere eventuali transitori presenti nel file.

Di seguito il codice utilizzato per leggere il file audio e selezionare il canale sinistro per l'elaborazione:

```
filename = 'audio/Handel.wav'; % Nome del file audio
fCampionamento = 44.1e3; % Frequenza di campionamento [Hz]
tempoCampionamento = 1 / fCampionamento; % Intervallo tra due campioni
durataTransitorio = 0.1; % Eliminazione transitorio iniziale [s]
durata = 6.0; % Durata totale del segnale da elaborare [s]
numeroCampioni = durata * fCampionamento; % Numero totale di campioni da
estrarre
inizioCampioni = durataTransitorio * fCampionamento; % Offset iniziale

[xstereo, fc] = audioread(filename, [inizioCampioni+1,
inizioCampioni+1+numeroCampioni]);
x = (xstereo(:,1))'; % Selezione del canale sinistro
tempo = (0:length(x)-1) * tempoCampionamento; % Creazione vettore dei tempi
```

2. Filtro Passa-Basso

Per limitare la banda di frequenza del segnale in ingresso, applichiamo un filtro passa-basso con frequenza di taglio 5 kHz. Il filtro è realizzato con una convoluzione tra il segnale e la funzione sinc opportunamente troncata e moltiplicata per una finestra rettangolare.

```
B = 5000; % Banda del filtro passa-basso [Hz] T = 20 / B; % Tempo di troncamento [s] tempoFiltro = 0:tempoCampionamento:T; % Creazione asse temporale per il filtro h = 2 * B * sinc(2 * B * (tempoFiltro - T/2)).* rectpuls((tempoFiltro - T/2) / T);
```

3. Filtraggio del Segnale

L'operazione di filtraggio viene eseguita tramite convoluzione discreta tra il segnale e la risposta impulsiva del filtro. Successivamente, viene eliminato il transitorio iniziale introdotto dalla convoluzione.

```
y = conv(x, h) * tempoCampionamento; % Convoluzione tra segnale e filtro y = y(length(h):length(y)); % Eliminazione transitorio iniziale tempoY = tempo(1:length(y)) + T/2; % Correzione del ritardo di fase introdotto dal filtro
```

4. Introduzione della Non Linearità (Clipping)

Il blocco non lineare introduce un effetto di saturazione, che limita l'ampiezza del segnale a una soglia prestabilita $y_{_M} = 0$, 10. Questo effetto causa una distorsione introducendo armoniche non presenti nel segnale originale.

```
yM = 0.10; % Valore massimo di saturazione z = y; % Copia del segnale filtrato z(y > yM) = yM; % Saturazione positiva z(y < -yM) = -yM; % Saturazione negativa
```

5. Analisi in Frequenza

Per analizzare l'effetto della distorsione, calcoliamo la trasformata di Fourier del segnale filtrato e del segnale distorto. La rappresentazione spettrale permette di osservare la nascita di armoniche aggiuntive dovute alla saturazione.

```
lunghezzaFft = 2^nextpow2(length(y));
Y = fft(y, lunghezzaFft) * tempoCampionamento;
Y = [Y(lunghezzaFft/2+1:end), Y(1:lunghezzaFft/2)];
Z = fft(z, lunghezzaFft) * tempoCampionamento;
Z = [Z(lunghezzaFft/2+1:end), Z(1:lunghezzaFft/2)];
frequenza = fCampionamento * linspace(-0.5, 0.5, lunghezzaFft);
```

6. Coefficienti di Distorsione

Per quantificare la distorsione generata dal blocco non lineare, calcoliamo i coefficienti di distorsione come rapporto tra le ampiezze delle armoniche spurie e l'armonica fondamentale.

```
figure;
plot(frequenza(1:length(Y)) / 1e3, 20 * log10(abs(Y) ./ max(abs(Y))), 'c',
'LineWidth', 1.5);
hold on;
plot(frequenza(1:length(Z)) / 1e3, 20 * log10(abs(Z) ./ max(abs(Y))), 'k',
'LineWidth', 1.5);
xlabel('Frequenza (kHz)'); ylabel('Ampiezza (dB)');
grid on;
legend('|Y(f)|', '|Z(f)|');
```

Conclusioni

L'analisi ha evidenziato come la distorsione dovuta alla saturazione si manifesti con la generazione di armoniche spurie. L'effetto è più marcato per segnali di ampiezza maggiore, mentre per segnali a basso livello l'effetto è minore.