Problem 1.

By considering the graphs of $y = \cos x$ and $y = -\frac{1}{4}x$, or otherwise, show that the equation $x + 4\cos x = 0$ has one negative root and two positive roots.

Use linear interpolation, once only, on the interval [-1.5, 1] to find an approximation to the negative root of the equation $x + 4\cos x = 0$ correct to 2 decimal places.

The diagram shows part of the graph of $y = x + 4\cos x$ near the larger positive root, α , of the equation $x + 4\cos x = 0$. Explain why, when using the Newton-Raphson method to find α , an initial approximation which is smaller than α may not be satisfactory.

Use the Newton-Raphson method to find α correct to 2 significant figures. You should demonstrate that your answer has the required accuracy.

Solution

Note that $x + 4\cos x = 0 \implies \cos x = -\frac{1}{4}x$. Plotting the graphs of $y = \cos x$ and $y = -\frac{1}{4}x$, we see that there is one negative root and two positive roots. Hence, the equation $x + 4\cos x = 0$ has one negative root and two positive roots.

Let $f(x) = x + 4\cos x$. Let β be the negative root of the equation f(x) = 0. Using linear interpolation on the interval [-1.5. - 1],

$$\beta = \frac{-1.5f(-1) - (-1)f(-1.5)}{f(-1) - f(1.5)}$$
$$= -1.24 \text{ (2 d.p.)}$$

$$\beta = -1.24 \; (2 \; \text{d.p.})$$

There is a minimum at x = m such that m is between the two positive roots. Hence, when using the Newton-Raphson method, an initial approximation which is smaller than m would result in subsequent approximations being further away from the desired root α . Hence, an initial approximation that is smaller than α may not be satisfactory.

We know from the above graph that $\alpha \in \left(\pi, \frac{3}{2}\pi\right)$. Following the above discussion, we pick $\frac{3}{2}\pi$ as our initial approximation.

$$x_1 = \frac{3}{2}\pi$$

$$\Rightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 3.7699$$

$$\Rightarrow x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 3.6106$$

$$\Rightarrow x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 3.5955$$

$$\Rightarrow x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} = 3.5953$$

Since f(3.55) = -0.1 < 0 and f(3.65) = 0.2 > 0, $\alpha \in (3.55, 3.65)$. Hence, $\alpha = 3.6$ (2 s.f.). $\alpha = 3.6$ (2 s.f.)

Problem 2.

Find the coordinates of the stationary points on the graph $y = x^3 + x^2$. Sketch the graph and hence write down the set of values of the constant k for which the equation $x^3 + x^2 = k$ has three distinct real roots.

The positive root of the equation $x^3 + x^2 = 0.1$ is denoted by α .

- (a) Find a first approximation to α by linear interpolation on the interval $0 \le x \le 1$.
- (b) With the aid of a suitable figure, indicate why, in this case, linear interpolation does not give a good approximation to α .
- (c) Find an alternative first approximation to α by using the fact that if x is small then x^3 is negligible when compared to x^2 .

Solution

For stationary points, y' = 0.

$$y' = 0$$

$$\implies 3x^2 + 2x = 0$$

$$\implies x(3x + 2) = 0$$

Hence, x = 0 or $x = -\frac{2}{3}$. When x = 0, y = 0. When $x = -\frac{2}{3}$, $y = \frac{4}{27}$. Thus, the coordinates of the stationary points of $y = x^3 + x^2$ are (0,0) and $\left(-\frac{2}{3}, \frac{4}{27}\right)$.

Therefore, $k \in \left(0, \frac{4}{27}\right)$.

$$\left| \left\{ k \in \mathbb{R} \colon 0 < k < \frac{4}{27} \right\} \right|$$

Part (a)

Let $f(x) = x^2 + x^2 - 0.1$. Using linear interpolation on the interval [0, 1],

$$\alpha = \frac{0f(1) - 1f(0)}{f(1) - f(0)}$$
$$= \frac{1}{20}$$

$$\alpha = \frac{1}{20}$$

Part (b)

On the interval [0, 1], the gradient of $y = x^3 + x^2 - 0.1$ changes considerably. Hence, linear interpolation gives an approximation much less than the actual value.

Part (c)

For small x, x^3 is negligible when compared to x^2 . Consider $g(x) = x^2 - 0.1$. Then the positive root of g(x) = 0 is approximately α . Hence, an alternative approximation to α is $\sqrt{0.1} = 0.316$ (3 s.f.).

$$\alpha = 0.316 \ (3 \text{ s.f.})$$

Problem 3.

The equation $2\cos x - x = 0$ has a root α in the interval [1, 1.2]. Iterations of the form $x_{n+1} = F(x_n)$ are based on each of the following rearrangements of the equation:

(a)
$$x = 2\cos x$$

(b)
$$x = \cos x + \frac{1}{2}x$$

(c)
$$x = \frac{2}{3}(\cos x + x)$$

Determine which iteration will converge to α and illustrate your answer by a 'staircase' or 'cobweb' diagram. Use the most appropriate iteration with $x_1 = 1$, to find α to 4 significant figures. You should demonstrate that your answer has the required accuracy.

Solution

Part (a)

Consider $f(x) = 2\cos x$. Then $f'(x) = -2\sin x$.

Observe that $\sin x$ is increasing on [1, 1.2]. Since $\sin 1 > \frac{1}{2}$, |f'(x)| > 1 for all $x \in [1, 1.2]$. Thus, fixed-point iteration fails and will not converge to α .

Part (b)

Consider $f(x) = \cos x + \frac{1}{2}x$. Then $f'(x) = -\sin x + \frac{1}{2} - \left(\sin x - \frac{1}{2}\right)$. Since $0 \le \sin x \le 1$ for $x \in \left[0, \frac{\pi}{2}\right]$, and $[1, 1.2] \subset \left[0, \frac{\pi}{2}\right]$, we know $-\frac{1}{2} \le \sin x - \frac{1}{2} \le \frac{1}{2}$ for $x \in [1, 1.2]$. Thus, $0 \le \left|\sin x - \frac{1}{2}\right| \le \frac{1}{2}$ for $x \in [1, 1.2]$. Hence, fixed-point iteration will work and converge to α .

Part (c)

Consider $f(x) = \frac{2}{3}(\cos x + x)$. Then $f'(x) = \frac{2}{3}(-\sin x + 1)$. For fixed-point iteration to converge to α , we need |f'(x)| < 1 for x near α . It thus suffices to show that $|-\sin x + 1| < \frac{3}{2}$ for all $x \in [1, 1.2]$. Observe that $1 - \sin x$ is strictly decreasing and positive for $x \in \left[0, \frac{\pi}{2}\right]$. Since $1 - \sin 1 < \frac{3}{2}$, and $[1, 1.2] \subset \left[0, \frac{\pi}{2}\right]$, we have that $|-\sin x + 1| < \frac{3}{2}$ for all $x \in [1, 1.2]$. Thus, |f'(x)| < 1 for x near α . Hence, fixed-point iteration will work and converge to α .

For $x \in [1, 1.2]$, $\left| \frac{2}{3} (-\sin x + 1) \right| < \left| -\sin x + \frac{1}{2} \right| < 1$. Thus, $x_{n+1} = \frac{2}{3} (\cos x_n + x_n)$ is the most suitable iteration as it will converge to α the quickest. Using $F(x) = \frac{2}{3} (\cos x + x)$ with $x_1 = 1$,

$$x_1 = 1$$

$$\Rightarrow x_2 = F(x_1) = 1.02687$$

$$\Rightarrow x_3 = F(x_2) = 1.02958$$

$$\Rightarrow x_4 = F(x_3) = 1.02984$$

$$\Rightarrow x_5 = F(x_4) = 1.02986$$

Since F(1.0295) > 1.0295 and F(1.0305) < 1.0305, $\alpha \in (1.0295, 1.0305)$. Hence, $\alpha = 1.030$ (4 s.f.).

$$\alpha = 1.030 \text{ (4 s.f.)}$$