Université Paris-Dauphine Analyse 3 (L2)

Responsable : Emeric Bouin

Année universitaire 2022-2023 Date : 9 janvier 2023 Durée : 3 heures

EXAMEN FINAL

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

J'veux plus calculer, j'déteste les maths ...

Exercice 1. (Ma vie, c'est de trouver les soluces ... - (1+1+1+1)+1+(2+1)+(1+1+2)+(1+2)+(1

Répondre aux questions suivantes en justifiant tout intégralement mais de manière concise.

- 1. Pour chacune des assertions suivantes, dire si elles sont vraies ou fausses, en le justifiant.
 - (a) La série de terme général u_n converge implique qu'il existe $\alpha > 1$ tel que $|u_n| \leq \frac{1}{n^{\alpha}}$.
 - (b) Si u_n est le terme général d'une série convergente, et v_n une suite positive qui converge, alors la série de terme général $u_n v_n$ est convergente.
 - (c) Si $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ convergent pour les mêmes valeurs de $z\in\mathbb{C}$, alors $a_n\sim b_n$.
 - (d) Si $a_n \sim b_n$ alors $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ convergent pour les mêmes valeurs de $z\in\mathbb{C}$.
- 2. Quel est le rayon de convergence de $\sum_{n} \frac{4^{n}}{n} z^{n^{2}}$?
- 3. Développer en série entière (préciser le rayon de convergence) les fonctions

$$f(z) = \frac{1}{z^3 - 5z^2 + 8z - 4}, \qquad g(z) = \frac{e^z}{1 - z}.$$

4. Etudier l'absolue convergence, la semi-convergence des séries de terme général

$$u_n = (-1)^n \arctan\left(\frac{1}{n}\right), \qquad v_n = \left(\frac{n^2 - 1}{n^2 + 1}\right)^{\frac{n^3}{2}}, \qquad w_n = \sin\left(\frac{2\pi}{n^{\beta}} \left(1 + n^{2\beta}\right)^{\frac{1}{2}}\right) - \frac{\alpha}{n^{2\beta}}.$$

avec $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}^+$.

5. Donner la nature des intégrales suivantes

$$\int_0^{+\infty} x^3 \exp(-\ln(x)^4) \, dx, \qquad \int_0^{+\infty} x^2 \sin\left(\frac{1}{x^\alpha}\right) \, dx, \qquad \int_0^{+\infty} \frac{|x-1|^{\frac{3}{2}} e^{-x}}{\sqrt{x} \ln(x)^2} \, dx,$$

avec $\alpha > 0$.

- 6. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue d'intégrale convergente sur \mathbb{R}^+ .
 - (a) La fonction f tend elle vers 0 en $+\infty$?
 - (b) Soit h > 0. Quelle est la limite de $\int_x^{x+h} f(t) dt$ lorsque x tend vers l'infini?
 - (c) Rappeler la définition d'une fonction uniformément continue sur \mathbb{R}^+ .
 - (d) Montrer que si l'on suppose de plus que f est uniformément continue, alors f tend vers 0 en $+\infty^{1}$.
- 7. On considère la suite de fonctions

$$\forall x \in \mathbb{R}, \quad u_n(x) = x^2 \exp\left(-\sin\left(\frac{x}{n}\right)\right).$$

1. On pourra considérer une quantité de la forme $\int_x^{x+h} \left(f(t) - f(x) \right) \, dt.$

- (a) Etudier la convergence simple sur \mathbb{R} .
- (b) Etudier la convergence uniforme sur \mathbb{R} .
- (c) Etudier la convergence uniforme sur [-a, a], pour a > 0.
- 8. On s'intéresse à l'équation différentielle suivante

$$xf''(x) - f(x) = 0. \tag{*}$$

(a) Montrer que, parmi les solutions développables en série entière de (\star) , il en existe une et une seule notée y qui vérifie y'(0) = 1. Préciser son rayon de convergence R_a et expliciter les coefficients a_n tels que

$$\forall x \in]-R_a, R_a[, \qquad y(x) = \sum_{n=0}^{\infty} a_n x^n.$$

(b) (Interlude) Soient u_n et v_n deux suites positives telles que $\sum u_n z^n$ et $\sum v_n z^n$ ont rayon de convergence infini. Montrer que si u_n et v_n sont équivalentes, alors

$$\sum u_n x^n \sim_{x \to +\infty} \sum v_n x^n.$$

- (c) Montrer que $a_n \sim_{n \to +\infty} \sqrt{\frac{n}{\pi}} \frac{4^n}{(2n)!}^2$.
- (d) En déduire finalement que $\liminf_{x\to +\infty} \frac{y(x)}{\cosh(2\sqrt{x})} > 0$.

Exercice 2. (Une série de fonctions ... - 1+2+2+1+2+2+3=13 points) Pour x>0, on définit la série de fonctions,

$$f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{1 + nx}.$$

- 1. Etudier la convergence simple de la série de fonctions sur \mathbb{R}^{+*} .
- 2. Etudier la convergence normale de la série de fonctions sur \mathbb{R}^{+*} .
- 3. Montrer que f est une fonction continue sur \mathbb{R}^{+*} .
- 4. Quelle est la limite de f en $+\infty$?
- 5. Donner un équivalent de f en $+\infty$.
- 6. La fonction f est-elle de classe C^1 sur \mathbb{R}^{+*} ?
- 7. Donner un équivalent de f en 0.

Exercice 3. (Pacman begins ... - 1+2+(1+2)+3+1 = 10 points)

- 1. Rappeler *scrupuleusement* le résultat du cours relatif à la convergence uniforme d'une série entière sur le disque ouvert de convergence.
- 2. Montrer que la série entière $\sum_{n=0}^{+\infty} \frac{z^n}{\sqrt{n}}$ ne converge pas uniformément sur $\mathcal{D} = \{z \in \mathbb{C}, \ |z| < 1\}$.
- 3. Soit $\alpha \in \left]0, \frac{\pi}{2}\right]$. On s'intéresse à la convergence uniforme de $\sum_{n=0}^{+\infty} \frac{z^n}{\sqrt{n}}$ sur le domaine

$$\mathcal{D}_{\alpha} = \{ z \in \mathbb{C}, |z| \le 1 \text{ et } \operatorname{Re}(z) \le \cos(\alpha) \}.$$

- (a) Dessiner proprement le domaine \mathcal{D}_{α} . On pensera à faire apparaître lisiblement l'angle α .
- (b) On note $F_n(z) := \sum_{k=0}^n z^k$. Montrer que,

$$|F_n(z)| \le \frac{2}{1 - \cos(\alpha)}.$$

- 4. Démontrer la convergence uniforme de $\sum_{n=0}^{+\infty} \frac{z^n}{\sqrt{n}}$ sur le domaine \mathcal{D}_{α} .
- 5. A la lumière de cet exemple, proposer un théorème de convergence uniforme d'une série entière $\sum_{n=0}^{+\infty} a_n z^n$ sur le domaine \mathcal{D}_{α} .

Exercice 4. (Je fais peur mais en fait je suis gentil ... - 1+1+(1+1+1)+(1+1+1)+4=12 points) Pour A>1 fixé et $x\in\mathbb{R}$, on considère la série de fonctions (de Weierstrass),

$$W(x) := \sum_{n \ge 0} A^{-n} \sin(2\pi A^{2n} x)$$

1. (Préliminaire) Montrer que si f est une fonction réelle dérivable en $x \in \mathbb{R}$, alors pour toutes suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ satisfaisant

$$x_n \longrightarrow x, \qquad y_n \longrightarrow x, \qquad x_n \neq y_n,$$

on a

$$\lim_{n \to \infty} \frac{f(x_n) - f(y_n)}{x_n - y_n} = f'(x).$$

- 2. Montrer que W est définie et continue sur \mathbb{R} .
- 3. Etablir les estimations suivantes.
 - (a) Pour tout $(x, y) \in \mathbb{R}$, on a $|\sin(x) \sin(y)| \le |x y|$.
 - (b) Il existe $\delta > 0$ tel que pour tout $(x, y) \in \mathbb{R}$, on a,

$$[x \in 2\pi \mathbb{Z}, |x - y| \le \delta] \Longrightarrow |\sin(x) - \sin(y)| \ge \frac{1}{2}|x - y|.$$

- (c) Pour tout $(x, y) \in \mathbb{R}$, on a $|\sin(x) \sin(y)| \le 2$.
- 4. Le paramètre $\delta > 0$ étant fixé par la question précédente, on se donne maintenant deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \quad x_n A^{2n} \in \mathbb{Z}, \quad |x_n - y_n| \le \frac{\delta}{2\pi A^{2n}} := \varepsilon_n.$$

Etablir les estimations suivantes, pour A assez grand.

- (a) Pour tout $n \in \mathbb{N}$, on a $\frac{1}{\varepsilon_n} \sum_{k \le n-1} A^{-k} \left| \sin(2\pi A^{2k} x_n) \sin(2\pi A^{2k} y_n) \right| \le \frac{A^n}{4}$.
- (b) Pour tout $n \in \mathbb{N}$, on a $\frac{1}{\varepsilon_n A^n} |\sin(2\pi A^{2n} x_n) \sin(2\pi A^{2n} y_n)| \ge A^n$.
- (c) Pour tout $n \in \mathbb{N}$, on a $\frac{1}{\varepsilon_n} \sum_{k \ge n+1} A^{-k} \left| \sin(2\pi A^{2k} x_n) \sin(2\pi A^{2k} y_n) \right| \le \frac{A^n}{4}$.
- 5. Montrer que si A est bien choisi, alors W n'est dérivable en aucun point de \mathbb{R} .

Bonus. (S'il vous reste un tout petit peu plus d'une minute ... - 2 points)

	7		5	8	3		2	
	5	9	2			3		
3	4				6	5		7
7	9	5				6	3	2
		3	6	9	7	1		
6	8				2	7		
9	1	4	8	3	5		7	6
	3		7		1	4	9	5
5	6	7	4	2	9		1	3