PHẦN 5: PHƯƠNG PHÁP TAGUCHI

Applying the Taguchi Method on an EDM Machine

Chirag Kishor Kolambe, Sambhaji.V.Sagare

Chirag Kishor Kolambe, Mechanical Department & Matoshri College of Engineering; Research Center, Nashik, India

₂Sambhaji.V.Sagare Mechanical Department & Sarvepalli Radhakrishnan University Bhopal India

5.1 Tóm tắt nội dung bài báo khoa học

Úng dụng phương pháp Taguchi vào việc thực hiện gia công thép nhẹ (Mild Steel – loại thép có hàm lượng cacbon thấp) trên máy cắt dây EDM (Electrical Discharge Machine – phương pháp gia công bằng tia lửa điện được phát triển vào năm 1943 bởi Liên Xô), từ đó, có thể điều chỉnh các thông số trong quá trình gia công đến mức tối ưu để sản phẩm ổn định ở mức chất lượng tốt nhất

Ta tiến hành khảo sát các thông số như dòng điện cực đại (peak current), thời gian đánh lửa (spark on time), thời gian duy trì (spark off time), áp suất dòng chảy (flushing pressure), những yếu tố trên có ảnh hưởng trực tiếp đến lượng gia công thép tấm (MRR – Metal Removal Rate) và tỷ lệ hao mòn dụng cụ cắt (TWR – Tool Wear Rate)

Ngày nay, công nghệ này càng phát triển, việc ứng dụng hệ thống máy móc tự động trong ngành công nghiệp chế tạo ngày càng phổ biến, giúp nâng cao năng suất công việc cũng như chất lượng sản phẩm. Song đi kèm theo đó, máy móc thường phát sinh lỗi ngoài mong muốn mà chúng ta phải tìm giải pháp. Trong bài báo này, ta tiến nghiên cứu khả năng gia công thép (MRR) và tỷ lệ hao mòn dao cắt (TWR) trên máy cắt dây EDM nhằm làm giảm chi phí chế tạo và nâng cao chất lượng sản phẩm

5.2 Các nhân tố đầu vào, đầu ra, miền giá trị

No	Ip (A)	Ton (us)	Toff (us)	Fp (kg/cm²)
1	10	5	3	0.2
2	10	10	5	0.3
3	10	15	7	0.5
4	12	5	5	0.5
5	12	10	7	0.2
6	12	15	3	0.3
7	14	5	7	0.3
8	14	10	3	0.5
9	14	15	5	0.2

Giá trị các nhân tố trong thực nghiệm

Thông	Ký hiệu	nhân tố	Μú	Mức độ nhân tố			
số	Tự nhiên	Mã hóa	Thấp	Trung bình	Cao	Khoảng thay đổi	
Peak current	Ip	X ₁	10	12	14	4	
Spark on time	Ton	X 2	5	10	15	10	
Spark off time	Toff	X 3	3	5	7	4	

5.3 Dạng ma trận quy hoạch thực nghiệm, số thí nghiệm lặp và kết quả thực nghiệm

Ip (A)	Ton (us)	Toff (us)	Fp (kg/cm ²)	Machine time (Min)	MRR (gm/min)	TWR (gm/min)	SNRA1	STDE1	MEAN1
10	5	3	0.2	27	0.000037	0.01458	- 22.6069	13.4645	6.80365
10	10	5	0.3	20	0.00005	0.0176	-20.001	9.948	5.07941
10	15	7	0.5	22	0.0000454	0.01589	20.8301	10.9165	5.62898
12	5	5	0.5	32	0.0000312	0.01745	- 24.0835	15.9154	8.12937
12	10	7	0.2	26	0.0000384	0.01925	- 22.2791	12.9638	6.55482
12	15	3	0.3	9	0.000111	0.03958	- 13.0692	4.4454	2.33492
14	5	7	0.3	35	0.0000285	0.01576	- 24.8611	17.4479	8.82895
14	10	3	0.5	12	0.0000833	0.04625	- 15.5706	5.9132	3.13658
14	15	5	0.2	11	0.0000909	0.04163	- 14.8088	5.4604	2.81043

5.4 Xử lý kết quả thực nghiệm trên Minitab

Trên thẻ Stat -> DOE -> Taguchi -> Create Taguchi Design (để tạo ma trận quy hoạch trực giao)

Chọn thẻ 'Display Available Design'

Chọn thẻ 'Design'

Chọn thẻ 'Factors'

Chọn thẻ 'Option'

Kết quả thu được

Trên Stat -> DOE -> Taguchi -> Analyze Taguchi Design (để phân tích kết quả thực nghiệm)

Trên thẻ 'Graphs' chọn

Trên thẻ 'Analysis' chọn

Trên thẻ 'Terms', chọn

Trên thẻ 'Analysis Graphs'

Trên thẻ 'Options', chọn

Trên thẻ 'Storage', chọn

Kết quả thu được

+	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
	SNRA1	STDE1	MEAN1	CV1	FITS_MEANS1	FITS_STDEV1	FITS_SN1	RESI_MEANS1	RESI_STDEV1	RESI_SN1	SRES_MEANS1	SRES_STDEV1	SRES_SN1
1	-22.6069	13.4645	6.80365	1.97902	6.89259	13.5544	-22.4987	-0.088934	-0.089897	-0.108243	-0.81806	-0.64928	-0.30427
2	-20.0010	9.9480	5.07941	1.95850	5.14355	10.0537	-20.4806	-0.064142	-0.105696	0.479615	-0.59001	-0.76340	1.34820
3	-20.8301	10.9165	5.62898	1.93933	5.47591	10.7209	-20.4587	0.153076	0.195593	-0.371373	1.40807	1.41268	-1.04393
4	-24.0835	15.9154	8.12937	1.95777	7.97629	15.7198	-23.7121	0.153076	0.195593	-0.371373	1.40807	1.41268	-1.04393
5	-22.2791	12.9638	6.55482	1.97774	6.64376	13.0537	-22.1709	-0.088934	-0.089897	-0.108243	-0.81806	-0.64928	-0.30427
6	-13.0692	4.4454	2.33492	1.90386	2.39906	4.5511	-13.5488	-0.064142	-0.105696	0.479615	-0.59001	-0.76340	1.34820
7	-24.8611	17.4479	8.82895	1.97622	8.89309	17.5536	-25.3407	-0.064142	-0.105696	0.479615	-0.59001	-0.76340	1.34820
8	-15.5706	5.9132	3.13658	1.88525	2.98351	5.7177	-15.1993	0.153076	0.195593	-0.371373	1.40807	1.41268	-1.04393
9	-14.8088	5.4604	2.81043	1.94290	2.89936	5.5503	-14.7005	-0.088934	-0.089897	-0.108243	-0.81806	-0.64928	-0.30427

Response Table for Signal to Noise Ratios

Smaller is better

Level	lp	Ton	Toff
1	-21.15	-23.85	-17.08
2	-19.81	-19.28	-19.63
3	-18.41	-16.24	-22.66
Delta	2.73	7.61	5.57
Rank	3	1	2

Response Table for Means

Level	lp	Ton	Toff
1	5.837	7.921	4.092
2	5.673	4.924	5.340
3	4.925	3.591	7.004
Delta	0.912	4.329	2.913
Rank	3	1	2

Response Table for Standard Deviations

Level	lp	Ton	Toff	
1	11.443	15.609	7.941	
2	11.108	9.608	10.441	
3	9.607	6.941	13.776	
Delta	1.836	8.669	5.835	
Rank	3	1	2	

+ Phân tích hồi quy bậc nhất (SN Ratios vs Ip, Ton, Toff)

Linear Model Analysis: SN ratios versus Ip, Ton, Toff

Estimated Model Coefficients for SN ratios

Term	Coef	SE Coef	Т	P
Constant	-19.7900	0.2516	-78.672	0.000
lp 10	-1.3560	0.3557	-3.812	0.062
lp 12	-0.0206	0.3557	-0.058	0.959
Ton 5	-4.0605	0.3557	-11.414	0.008
Ton 10	0.5064	0.3557	1.424	0.291
Toff 3	2.7078	0.3557	7.612	0.017
Toff 5	0.1590	0.3557	0.447	0.699

Model Summary

 S
 R-Sq
 R-Sq(adj)

 0.7547
 99.23%
 96.90%

Analysis of Variance for SN ratios

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
lp	2	11.202	11.202	5.6009	9.83	0.092
Ton	2	88.125	88.125	44.0624	77.37	0.013
Toff	2	46.727	46.727	23.3634	41.02	0.024
Residual	2	1.139	1.139	0.5695		
Error						
Total	8	147.192				

+ Phân tích hồi quy bậc nhất (Means vs Ip, Ton, Toff)

Linear Model Analysis: Means versus Ip, Ton, Toff

Estimated Model Coefficients for Means

Coef	SE Coef	Т	P
5.4786	0.07687	71.269	0.000
0.3588	0.10871	3.300	0.081
0.1945	0.10871	1.789	0.216
2.4421	0.10871	22.464	0.002
-0.5550	0.10871	-5.105	0.036
-1.3868	0.10871	-12.757	0.006
-0.1388	0.10871	-1.277	0.330
	5.4786 0.3588 0.1945 2.4421 -0.5550 -1.3868	0.3588 0.10871 0.1945 0.10871 2.4421 0.10871 -0.5550 0.10871 -1.3868 0.10871	5.4786 0.07687 71.269 0.3588 0.10871 3.300 0.1945 0.10871 1.789 2.4421 0.10871 22.464 -0.5550 0.10871 -5.105 -1.3868 0.10871 -12.757

Model Summary

 S
 R-Sq
 R-Sq(adj)

 0.2306
 99.76%
 99.03%

Analysis of Variance for Means

Source	DF	Seq SS	Adj SS	Adj MS	F	P
lp	2	1.4179	1.4179	0.7089	13.33	0.070
Ton	2	29.4990	29.4990	14.7495	277.33	0.004
Toff	2	12.8110	12.8110	6.4055	120.44	800.0
Residual	2	0.1064	0.1064	0.0532		
Error						
Total	8	43.8343				

+ Phân tích hồi quy bậc nhất (StDevs vs Ip, Ton, Toff)

Linear Model Analysis: StDevs versus Ip, Ton, Toff

Estimated Model Coefficients for StDevs

Term	Coef	SE Coef	Т	P
Constant	10.7195	0.09790	109.491	0.000
lp 10	0.7235	0.13846	5.226	0.035
lp 12	0.3887	0.13846	2.808	0.107
Ton 5	4.8898	0.13846	35.317	0.001

Ton 10 -1.1111 0.13846 -8.025 0.015 Toff 3 -2.7784 0.13846 -20.067 0.002 Toff 5 -0.2782 0.13846 -2.009 0.182

Model Summary

S R-Sq R-Sq(adj) 0.2937 99.90% 99.61%

Analysis of Variance for StDevs

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
lp	2	5.735	5.735	2.8677	33.24	0.029
Ton	2	118.271	118.271	59.1356	685.51	0.001
Toff	2	51.419	51.419	25.7095	298.03	0.003
Residual	2	0.173	0.173	0.0863		
Error						
Total	8	175.598				

+ General Linear Model: MRR (gm/min) versus Ip (A), Ton (us), Toff (us) Method

Factor coding (-1, 0, +1) Box-Cox λ = -1 transformation

Factor Information

Factor	Туре	Levels Values
lp	Fixed	3 10, 12, 14
Ton	Fixed	3 5, 10, 15
Toff	Fixed	3 3, 5, 7

Analysis of Variance for Transformed Response

Source	DF	Adj SS	Adj MS	F-Value	P-Value
lp	2	22786280	11393140	25.65	0.038
Ton	2	475380429	237690214	535.13	0.002
Toff	2	206950709	103475354	232.96	0.004
Error	2	888347	444174		
Total	8	706005765			

Model Summary for Transformed Response

Coefficients for Transformed Response

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constar	it -21583	222	-97.15	0.000	
lp					
10	-1435	314	-4.57	0.045	1.33
12	-784	314	-2.50	0.130	1.33
Ton					
5	-9805	314	-31.21	0.001	1.33
10	2234	314	7.11	0.019	1.33
Toff					
3	5570	314	17.73	0.003	1.33
5	566	314	1.80	0.214	1.33

Regression Equation

-MRR^-1 = -21583 - 1435 lp_10 - 784 lp_12 + 2219 lp_14 - 9805 Ton_5 + 2234 Ton_10 + 7571 Ton_15 + 5570 Toff_3 + 566 Toff_5 - 6135 Toff_7

+ General Linear Model: TWR (gm/min) versus Ip (A), Ton (us), Toff (us)

Method

Factor coding (-1, 0, +1) Box-Cox λ = -2 transformation

Factor Information

Factor	Type	Levels Values
lp	Fixed	3 10, 12, 14
Ton	Fixed	3 5, 10, 15

Analysis of Variance for Transformed Response

Source	DF	Adj SS	Adj MS	F-Value	P-Value
lp	2	8526977	4263488	685.70	0.001
Ton	2	8870424	4435212	713.32	0.001
Toff	2	4259438	2129719	342.52	0.003
Error	2	12435	6218		
Total	8	21669274			

Model Summary for Transformed Response

S	R-sq	R-sq(adj)	R-sq(pred)
78 8527	99 94%	99 77%	98 84%

Coefficients for Transformed Response

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constar	Constant -2620.5		-99.70	0.000	
lp					
10	-1343.8	37.2	-36.15	0.001	1.33
12	413.5	37.2	11.12	0.008	1.33
Ton					
5	-1384.3	37.2	-37.24	0.001	1.33
10	489.0	37.2	13.16	0.006	1.33
Toff					
3	683.8	37.2	18.40	0.003	1.33
5	257.4	37.2	6.92	0.020	1.33

Regression Equation

TWR^-2 = -2620.5 - 1343.8 lp_10 + 413.5 lp_12 + 930.3 lp_14 - 1384.3 Ton_5

+ 489.0 Ton_10

+ 895.2 Ton_15 + 683.8 Toff_3 + 257.4 Toff_5 - 941.2 Toff_7

5.5 So sánh kết quả bài báo với Minitab

Kết quả bài báo với Minitab là hoàn toàn trùng khớp

5.6 Nhận xét chung

Ta có phương trình hồi quy bậc nhất cho:

+ MRR

```
-MRR^-1 = -21583 - 1435 lp_10 - 784 lp_12 + 2219 lp_14 - 9805 Ton_5
+ 2234 Ton_10 + 7571 Ton_15 + 5570 Toff_3 + 566 Toff_5 - 6135 Toff_7
+ TWR

TWR^-2 = -2620.5 - 1343.8 lp_10 + 413.5 lp_12 + 930.3 lp_14 - 1384.3 Ton_5
+ 489.0 Ton_10 + 895.2 Ton_15 + 683.8 Toff_3 + 257.4 Toff_5 - 941.2 Toff_7
```

Vì vậy, ứng dụng phương pháp Taguchi trên máy cắt dây EDM có thể tối ưu các thông số MRR và TWR nhằm giảm chi phí sản xuất và tang chất lượng sản phẩm