Package 'backpay'

September 5, 2018

•
Type Package
Title Identify 'pre-defined' expression PAtterns in transcriptomic/proteomic data
Version 1.0
Date 2018-09-05
Author Thierry Chekouo
Maintainer Thierry Chekouo <thierry.chekouotekou@ucalgary.ca></thierry.chekouotekou@ucalgary.ca>
Description The backpay package implements the BACkPAy (BAyesian mixture model for identifying Clusters of features (e.g. proteins) with similar 'pre-defined' expression PAtterns) algorithm.
SystemRequirements GSL (GNU Scientific Library)
License GPL (>= 2.0)
Imports scatterplot3d,AUC
RoxygenNote 6.1.0
Encoding UTF-8
R topics documented:
backpay-package
BAckPay
clust
DataOrga
datNorm
Generate
Nameclust
PlotThreeD
ThreeDplot1
Index 10

2 BAckPay

backpay-package	Identify 'pre-defined' expression PAtterns in transcriptomic/proteomic data
-----------------	---

Description

The backpay package implements the BACkPAy (BAyesian mixture model for identifying Clusters of features (e.g. proteins) with similar 'pre-defined' expression PAtterns) algorithm.

Author(s)

Thierry Chekouo

Maintainer: Thierry Chekouo <thierry.chekouotekou@ucalgary.ca>

References

Thierry Chekouo et al (2018), *Investigating Protein Patterns in Human Leukemia Cell Line Experiments: A Bayesian Approach for Extremely Small Sample Sizes*, submitted.

See Also

BAckPay, Generate

BAckPay	BAyesian mixture model for identifying Clusters of features (e.g. pro-
	teins) with similar "pre-defined" expression PAtterns.

Description

Calculate (i) the marginal posterior probabilities of inclusions for each feature, and (ii) estimated false discovery rate for detecting differential features.

Usage

```
BAckPay(data = data, Ind.Var = Ind.Var, Expe.Var = NULL, sample = 10000, burnin = 1000, a.tau = a.tau, b.tau = b.tau, c.h = 0.5, b.beta = 0.1)
```

Arguments

data	Continuous (\log_2 -) expression data of size $p \times n$, with p the number of features (e.g proteins or genes) and n the number of samples
Ind.Var	Independent explanatory (categorial) variable. We aim to group features based on the change (or no change) in expression between the modalities of this variable. This argument must be of type "factor".
Expe.Var	Experimental explanatory (categorial) variable. It's the "confounding" variable. The patterns are compared for every modality of Expe.Var. This argument must be of type "factor".
sample	Total number of MCMC draws. It must be larger than burnin.

BAckPay 3

burnin	Number of draws to discard for burn-in
a.tau	Shape of $\tau_{hl}\sim {\rm Gamma}(a_{\tau},b_{\tau})$, the truncated parameter of the independent variable effects β_{hl} .
b.tau	Rate hyperparameters of $\tau_{hl} \sim \operatorname{Gamma}(a_{\tau},b_{\tau})$, the truncated parameter of the independent variable effects β_{hl} . We have $E(\beta_{hl}) \geq a_{\tau}/b_{\tau}$. The choice of these hyperparameters is guided by the experimenter, who would need to decide on a threshold for biological significance. Note that $E(\beta_{hl})$ can be interpreted as the \log_2 fold change if the feature expression is \log_2 transformed.
c.h	Variance hyperparameter of the random effect a_{jh} , that captures positive correlations between samples of the same type.
b.beta	Variance hyperparameter of the effects β_{hl} 's. This parameter is involved in capturing positive correlations between features within the same cluster.

Details

The function will return several R objects, which can be assigned to a variable. To see the results, use the "\$" operator.

Value

probDiff	a numeric vector of the probability of differential expression for each feature in the data set.
q.valueDiff	Estimated "q values" of detecting differential expression.
rhoMean	Estimated marginal posterior probabilities of cluster memberships, ρ_{jk} , $P(\rho_{jk}=h)$, where $k=1,,T,h=1,,H,H=3^{q-1}$ the number of clusters, q the number of modalities of $\mathit{Ind.Var}$, and T is the number of modalities of the experimental variable $(\mathit{Expe.Var})$. It's an array of size $T\times p\times H$.
ProbProtGrp	Estimated (joint) marginal posterior probabilities of proteins for patterns or groups (jMPP). It's a matrix of size $q \times p$ where $q = H^T = 3^{(q-1)*T}$ is the total num-

ber of patterns or groups. For instance, if *Ind.Var* has two modalities: Resistant and Sensitive, and the experimental variable has also two modalities: Time 0h and 48h. Hence group *Up-Up* is the pattern or group of features that go up from Resistance to Sensitive for both times 0h and 48h.

See Also

Generate

Examples

```
library(backpay)
##---- Simulate data
Gen=Generate(NbrModCov=2,NbrGps=3,p=8000,nbrDuplic=1,seed=1)
data=Gen$data
IndVar=as.factor(Gen$Ind.Var);
ExpVar=as.factor(Gen$Expe.Var);
Result=BAckPay(data=data,Ind.Var=IndVar,Expe.Var=ExpVar,\ sample=10000,burnin=5000,\ a.tau=8,b.tau=10);
round(Result$probDiff[1:10],digits=4)
dim(Result$rhoMean)
round(head(Result$rhoMean[1,,]),digits=2)
dim(Result$ProbProtGrp)
print(round(head(Result$ProbProtGrp[,1:10]),digits=2))
```

4 DataOrga

```
library(AUC)
KnownRho=Gen$RhoKnown ## true clustering memberships
H=3^(length(unique(IndVar))-1);
rhodiffTrue=1-apply(KnownRho[,,(H+1)/2],2,prod)
AUC=auc(roc(Result$probDiff, as.factor(rhodiffTrue)))
AUC
```

clust

Internal function: List possible clusters along with the signs of the effect of each covariate.

Description

Provide all possible clusters

Usage

```
clust(VV=c(1,0,-1), nbrcov=nbrcov)
```

Arguments

VV Possible signs of the effects in each cluster.

nbrcov Number of covariates included in the model. It's NbrModCov-1 where Nbr-

ModCov is the number of modalities of the independent variable.

Value

It gives a matrix of dimension $H \times 3$, where $H = 3^{nbrcov}$.

Examples

```
clust(nbrcov=2)
```

DataOrga

Internal Function: Organize the data to plot in 3D.

Description

It returns averaged data over the replicates.

Usage

DataOrga(Proba=Proba,thres=thres,data=data, Expe.Var =Expe.Var,varcovlist=varcovlist)

datNorm 5

Arguments

Proba Joint marginal probabilities (see paper) to plot features

thres Threshold used on joint marginal probabilities (see paper) to plot features

data Continuous expression data of size $p \times n$, with p the number of features (e.g.

proteins or genes) and n the number of samples.

Expe. Var Experimental explanatory (categorial) variable. It's the "confounding" variable.

The patterns are compared for every modality of Expe. Var.

varcovlist Independent variable for each modality of the experimental variable. This is

obtained using function datNorm.

Value

DataAveraged Data averaged over the replicates.

Feature names of the new data set.

See Also

BAckPay

datNorm

Internal function: Mean-centering data for each modality of the experimental variable

Description

This function mean-centers features for each modality of the experimental variable.

Usage

datNorm(data=data,Expe.Var=NULL,Ind.Var=Ind.Var)

Arguments

data Continuous (\log_2 -) expression data of size $p \times n$, with p the number of features

(e.g proteins or genes) and n the number of samples

Ind. Var Independent explanatory (categorial) variable. We aim to group features based

on the change (or no change) in expression between the modalities of this vari-

able.

Expe. Var Experimental explanatory (categorial) variable. It's the "confounding" variable.

The patterns are compared for every modality of Expe. Var.

Value

y Mean-centered data matrix $p \times n$.

covlist Independent variable for each modality of the experimental variable.

6 Generate

Generate	Generate independent features (e.g proteins or genes) with NbrMod-Cov and NbrGps modalities of the independent and experimental vari-
	ables respectively (see the reference for more details).

Description

Generate simulated data as esplained in the reference.

Usage

```
Generate(NbrModCov = 2, NbrGps = 3, p = p, nbrDuplic = 2, bmin = 0.5, bmax = 1, smin = 0.2, smax = 0.2, seed = seed)
```

Arguments

NbrModCov	This is the number of modalities of the independent variable $(q = NbrModCov)$
NbrGps	This is the number of modalities of the experimental variable ($T=\mbox{NbrGps}$)
р	number of features (e.g. proteins or genes).
nbrDuplic	number of duplicates for each combination <i>Ind.Var/Expe.Var</i> . For instance, if <i>nbrDuplic=1</i> , only one sample is available for each combination <i>Ind.Var/Expe.Var</i> .
bmin	Minimum of the coefficients effects β , which are generated as Uniform(bmin,bmax).
bmax	Maximum of the coefficients effects β , which are generated as Uniform(bmin,bmax).
smin	Minimum and maximum of the error variances of proteins in cluster, σ , which are generated as Uniform(smin,smax).
smax	Maximum of the error variances of proteins in cluster, σ , which are generated as Uniform(smin,smax).
seed	seed number for generating random numbers.

Value

data	Expression data of size $p \times n$, with p the number of features (e.g proteins or genes) and n the number of samples ($n = nbrDuplic * NbrModCov * NbrGps$).
Ind.Var	A vector of size n with modalities $0, 1,, NbrModCov - 1$.
Expe.Var	A vector of size n with modalities $0, 1,, NbrGps - 1$.
KnownRho	A binary array of dimension $T \times p \times H$, of known (true) cluster memberships where KnownRho $[i, k, h] = 1$ if $\rho_{ik} = h$ and 0 otherwise.

References

Thierry Chekouo et al (2018), Investigating Protein Patterns in Human Leukemia Cell Line Experiments: A Bayesian Approach for Extremely Small Sample Sizes, submitted.

Nameclust 7

Examples

```
Gen=Generate(NbrModCov=2,NbrGps=3,p=8000,nbrDuplic=1,seed=1)
dim(Gen$data)
round(head(Gen$data),digits=2)
IndVar=as.factor(Gen$Ind.Var);
ExpVar=as.factor(Gen$Expe.Var);
IndVar
ExpVar
```

Nameclust

Internal function: Define the names of the obtained cluster patterns from BAckPAy.

Description

List all the cluster pattern names (or groups) with respect to the number of modalities of both the independent and experimental variable.

Usage

Nameclust(NbrModCov, NbrGps)

Arguments

NbrModCov Number of modalities of the independent variable.

NbrGps Number of modalities of the experimental variable (T = NbrGps)

Value

namecl Cluster names with respect of the independent variable. For instance, if the

independent variable has 3 modalities, then cluster UpDown contains features

that are up from modality 1 from 2, and down from 2 to 3.

namegroup Pattern (or groups) names obtained with combinations of both the independent

and experimental variables. If both variables have 2 modalities, then the group pattern *DownFlat-UpUp* contains features that are DownFlat and UpUp for the

first and second modality of the experimental variable respectively.

Examples

```
Res=Nameclust(NbrModCov=3, NbrGps=2)
#List of cluster names with 3 modalities from the indep. variable
Res$namecl
#List of all cluster pattern (or groups) names with 3 and 2 modalities
#from the indep. and experimental variables respectively.
Res$namegroup
```

8 PlotThreeD

PlotThreeD	Plot 3D of patterns/groups	

Description

In addition to the 3D plot, the function also returns (i) the list of the top features with their respective joint marginal probabilities, and (ii) the expression data used to make the plot.

Usage

PlotThreeD(data=data,Ind.Var = Ind.Var, Expe.Var = NULL,ProbProtGrp=ProbProtGrp,
patternname=patternname,thres=thres)

Arguments

O	
data	Continuous (\log_2 -) expression data of size $p \times n$, with p the number of features (e.g proteins or genes) and p the number of samples. It should be the same dataset used in the function $BAckPAy$.
Ind.Var	Independent explanatory (categorial) variable. We aim to group features based on the change (or no change) in expression between the modalities of this variable. It should be the same <i>Ind.Var</i> used in the function <i>BAckPAy</i> .
Expe.Var	Experimental explanatory (categorial) variable. It's the "confounding" variable. The patterns are compared for every modality of Expe. Var. It should be the same <i>Expe. Var</i> used in the function <i>BAckPAy</i> .
ProbProtGrp	Estimated (joint) marginal posterior probabilities of proteins for patterns or groups (jMPP). It's a matrix of size $q \times p$ where $q = H^T$ is the total number of patterns or groups. This is obtained from the BAckPay function.
patternname	Pattern name to plot
thres	Threshold used on joint marginal probabilities (see paper) to plot features

Value

ProbSort	a numeric vector of the higher joint marginal posterior probabilities obtained with a threshold of <i>thres</i> .
data	data used to make the plot; centered data of features belonging to pattern <i>patternname</i>

See Also

BAckPay

Examples

```
library(backpay)
##---- Simulate data
Gen=Generate(NbrModCov=2,NbrGps=3,p=2000,nbrDuplic=1,seed=1)
data=Gen$data
IndVar=as.factor(Gen$Ind.Var);
ExpVar=as.factor(Gen$Expe.Var);
Result=BAckPay(data=data,Ind.Var=IndVar,Expe.Var=ExpVar, sample=10000,burnin=5000, a.tau=8,b.tau=10);
```

ThreeDplot1 9

```
round(Result$probDiff[1:10],digits=4)
dim(Result$rhoMean)
round(head(Result$rhoMean[1,,]),digits=2)
Names=Nameclust(NbrModCov=2, NbrGps=3)
Names$namegroup[1]
PlotResult= PlotThreeD(data=data,Ind.Var = IndVar, Expe.Var = ExpVar,ProbProtGrp=Result$ProbProtGrp,
patternname=Names$namegroup[1],thres=0.5)
```

ThreeDplot1 Internal function: Preparing to represent data in 3D

Description

Intermediate function to represent patterns.

Usage

ThreeDplot1(meanF=meanF,nbrMark=nbrMark,NbrGps=NbrGps,NbrModCov=NbrModCov, LabelsLegend=LabelsLegend,LabelConf=LabelConf,patternName=patternName,miny=miny, maxy=maxy,thres=thres,maxprob=maxprob)

Arguments

meanF Average expression data over the number of replicates for each modality of the

experimental variable.

nbrMark Number of features to plot

NbrGps This is the number of modalities of the experimental variable (T = NbrGps)

NbrModCov This is the number of modalities of the independent variable (q = NbrModCov)

LabelsLegend Label names of the independent variable
LabelConf Label names of the experimental variable

patternName Pattern name to plot

miny Minimium value of *meanF*maxy Maximum value of *meanF*

thres Threshold used on joint marginal probabilities (see reference) to plot features

maxprob The maximum of joint marginal probabilities (see reference) for pattern name

patternName.

Index

```
*Topic package
backpay-package, 2

BAckPay, 2, 2, 5, 8
backpay (backpay-package), 2
backpay-package, 2

clust, 4

DataOrga, 4
datNorm, 5

Generate, 2, 3, 6

Nameclust, 7

PlotThreeD, 8

ThreeDplot1, 9
```