

Cryptographic Hash and Integrity Protection

Cryptographic Hash Applications

Sang-Yoon Chang, Ph.D.

Module: Cryptographic Hash Applications

Hash Chain

S/Key: One-Time Password

Hash Tree

Cryptocurrency and Bitcoin

Cryptographic Hash Applications

Hash Function

Cryptographic Hash Applications

Hash Function

Hash Chain

Hash Chain

 $H^n(x)$: apply H function on x n times

E.g., $H^3(x) = H(H(H(x)))$

One-way (preimage resistance) of H

Hash Chain

 $H^n(x)$: apply H function on x n times

E.g., $H^3(x) = H(H(H(x)))$

One-way (preimage resistance) for H

Server (verifier) generates x, H(x), $H^{2}(x)$, ..., $H^{n+1}(x)$

Server (verifier) generates

X, H(x), $H^{2}(x)$, ..., $H^{n+1}(x)$

Server (verifier) generates H(x), $H^2(x)$, ..., $H^{n+1}(x)$

Server (verifier) generates H(x), $H^{2}(x)$, ..., $H^{n+1}(x)$

User (prover) is given n passwords:

 $H(x), H^{2}(x), ..., H^{n}(x)$

Server (verifier) generates

$$H(x), H^{2}(x), ..., \underline{H^{n+1}(x)}$$

Server only stores $H^{n+1}(x)$

User (prover) is given n passwords:

$$H(x), H^{2}(x), ..., H^{n}(x)$$

Server (verifier) generates

$$H(x), H^{2}(x), ..., \underline{H^{n+1}(x)}$$

Server only stores $H^{n+1}(x)$

User (prover) is given n passwords:

$$H(x), H^2(x), ..., H^n(x)$$

Server (verifier) generates

$$H(x), H^{2}(x), ..., H^{n+1}(x)$$

Server only stores $H^{n+1}(x)$

User (prover) is given n passwords:

$$H(x), H^2(x), ..., H^n(x)$$

Server (verifier) generates

$$H(x), H^{2}(x), ..., \underline{H^{n+1}(x)}$$

Server only stores $H^{n+1}(x)$

User (prover) is given n passwords:

$$H_1(x), H^2(x), ..., H^n(x)$$

Server (verifier) generates

$$H(x), H^{2}(x), ..., \underline{H^{n+1}(x)}$$

Server only stores $H^{n+1}(x)$

User (prover) is given n passwords:

$$H(x), H^2(x), ..., H^n(x)$$

Server (verifier) generates

$$H(x), H^{2}(x), ..., \underline{H^{n+1}(x)}$$

Server only stores $H^{n+1}(x)$

User (prover) is given n passwords:

$$H_1(x), H^2(x), ..., H^n(x)$$

Compromise yields outdated passwords

Compromise yields outdated passwords

Limits the number passwords to n

Hash Tree (Merkle Tree)

$$H_{Root}$$
 H_{1234}
 H_{5678}
 H_{12}
 H_{34}
 H_{56}
 H_{78}
 H_{11}
 H_{12}
 H_{13}
 H_{24}
 H_{25}
 H_{2

$$H(x_1) H(x_2) H(x_3) H(x_4) H(x_5) H(x_6) H(x_7) H(x_8)$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8$

$$H_1$$
 H_2 H_3 H_4 H_5 H_6 H_7 H_8 X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8

$$H_{12} = H(H_1 | | H_2)$$
 $H_1 \quad H_2 \quad H_3 \quad H_4 \quad H_5 \quad H_6 \quad H_7 \quad H_8$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7 \quad X_8$

Н	12	Н	34	Н	56	Н	78
H_1	H_2	H_3	H_4	H_5	H_6	H ₇	H_8
\mathbf{x}_1	X_2	X_3	X_4	X ₅	x ₆	X ₇	x_8

$$H_{1234}$$
 H_{5678} H_{12} H_{34} H_{56} H_{78} H_{78} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H_{5} H_{5} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H_{5} H_{5} H_{5} H_{7} H_{8} H_{8} H_{1} H_{1} H_{2} H_{3} H_{3} H_{4} H_{5} H_{5} H_{5} H_{5} H_{5} H_{7} H_{8} H

$$H_{Root}$$
 H_{1234}
 H_{5678}
 H_{12}
 H_{34}
 H_{56}
 H_{78}
 H_{1}
 H_{2}
 H_{3}
 H_{4}
 H_{5}
 H_{6}
 H_{7}
 H_{8}
 H_{1}
 H_{2}
 H_{3}
 H_{4}
 H_{5}
 H_{6}
 H_{7}
 H_{8}
 H_{8}
 H_{1}
 H_{1}
 H_{2}
 H_{3}
 H_{4}
 H_{5}
 H_{6}
 H_{7}
 H_{8}
 H_{8}

$$H_{Root}$$
 H_{1234}
 H_{5678}
 H_{12}
 H_{34}
 H_{56}
 H_{78}
 H_{13}
 H_{14}
 H_{2}
 H_{3}
 H_{4}
 H_{5}
 H_{6}
 H_{7}
 H_{8}
 H_{1}
 H_{2}
 H_{3}
 H_{4}
 H_{5}
 H_{6}
 H_{7}
 H_{8}
 H_{8}
 H_{1}
 H_{1}
 H_{2}
 H_{3}
 H_{4}
 H_{5}
 H_{6}
 H_{7}
 H_{8}
 H_{8}

$$H_{234}$$
 H_{5678}
 H_{12} H_{34} H_{56} H_{78}
 H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8}
 H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8}
 H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8}

$$H_{12}$$
 H_{34} H_{5678} H_{12} H_{34} H_{56} H_{78} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{6} H_{7} H_{8} H_{8} H_{1} H_{2} H_{3} H_{4} H_{5} H_{8} $H_{$

Verification efficiency

Scale exponentially with tree depth

Bitcoins

Verification with hash tree:

Merkle root (the root of hash tree) appended at the transactions

Bitcoins

Verification with hash tree:

Merkle root (the root of hash tree) appended at the transactions

Mining with hash reverse:

Bitcoin mining based on reversing hash function (SHA-256)