HW8

Due Friday April 13

Exercises: 8.1.1, 8.2.2, 8.3.1, (8.3.5), (8.3.6), 8.4.1, 8.4.3, 8.4.4, 8.4.5, 8.5.1, (8.5.2), 8.5.5.

To pass this assignment, submit well-written, complete, correct solutions to at least **five** exercises from among the non-parenthesized numbers above.

- **8.1.1.** Let $\varphi \in L$ define a finite set X in the L-structure \mathcal{M} . Show that in every \mathcal{N} elementarily equivalent to \mathcal{M} , the set defined by φ has the same power as X. Formulate and prove a converse of this.
- **8.2.2.** Given a structure \mathcal{M} and an ultrafilter U on a nonempty set I, prove that the canonical embedding (from Exercise 4.1.2) of \mathcal{M} in its ultrapower \mathcal{M}^I/U is elementary.
- **8.3.1.** Let $\mathcal M$ be an L-structure. Prove that the following are equivalent for any formula $arphi \in L_n(M)$.
- (i) $\varphi(\mathcal{M})$ is finite.
- (ii) $\varphi(\mathcal{M}) = \varphi(\mathcal{N})$ for every $\mathcal{N} \succcurlyeq \mathcal{M}$.
- (iii) $\varphi(\mathcal{M}) \subseteq M^n$ for every $\mathcal{N} \succcurlyeq \mathcal{M}$.
- (8.3.5) Show by counterexample that the criterion 8.3.4 is not necessary for being an elementary substructure.
- (8.3.6) Prove that, given an arbitrary subordering $\mathcal{M}=(M,<)\subseteq \rho$, this inclusion is elementary if and only if $\mathcal{M}\models \mathrm{DLO}_{--}$.
- **8.4.1.** Suppose \mathcal{M} is an L-structure and $\varphi \in L_n(n > 0)$ is such that $\varphi(\mathcal{M})$ is infinite. Then for every $\kappa \in \mathbf{Cn}$ with $\kappa \geq |L|$, there is an L-structure $\mathcal{N} \equiv \mathcal{M}$ of power κ and such that $|\varphi(\mathcal{N})| = \kappa$.
- **8.4.3.** Verify that ultrapowers (along with isomorphic correction) provide us with another tool to construct elementary extensions.
- **8.4.4** Consider $\mathcal M$ and $\mathcal N$ as in Example (4) of §6.3 and the disjoint union of $\mathcal M$ and $\mathcal N$, regarded as an $L_<$ -structure $\mathcal N'$. Prove that $\mathcal M$ and $\mathcal N'$ are elementarily equivalent.
- **8.4.5.** Find an example of a theory T and a model of T_{\exists} that does not contain a model of T (this showing that we cannot improve on Exercise 6.2.6).
- **8.5.1.** Show that DLO_{-+} , DLO_{+-} , and DLO_{++} are complete theories.
- (8.5.2) Prove that DLO__ is in no uncountable power categorical.

Show that the theory of the structure ${\cal M}$ from Exercise 8.4.4 is categorical in all uncountable pow					