

Bank Loan Default Risk Analysis

Introduction

This case study aims to give an idea about applying EDA in real business scenario. In this case study we will develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimise the risk of losing money while lending to customers.

Abstract of Risk factors associated with bank decision

The project Bank Loan Default Risk Analysis is about predicting how much amount of loan should be disbursed based on the attributes of person's income, property (if he is holding any).

Apart from the above said the main factors that impact are will the person be capable of repaying the loan amount or if not how much will be able to repay based on income, or will he default.

These factors which can be utilised this knowledge for its portfolio and risk assessment

Algorithm

An algorithm is an step by step sequential procedure which creates a structure of handling tasks or projects given

- Getting Jupyter Ready
- Reading and Understanding Data
- Data Cleaning and Manipulation
- Data Analysis
- Conclusions

Getting jupyter Ready: Importing Libraries

```
In [24]: #importing required packages
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import matplotlib.style as style
         import seaborn as sns
         import itertools
         %matplotlib inline
         #setting up plot style
         style.use('seaborn-poster')
         style.use('fivethirtyeight')
```

Reading and Understanding data

Importing data and reading using pandas, understanding metrics like shape, informations, objects, if there any null values

Selecting relevant attributes from data and performing basic operations

Reading and Understanding data

```
Reading and Understanding Data
In [27]: #Importing the input files
         import csv
        import os
         for dirname, _, filenames in os.walk('/Desktop/IT'):
            for filename in filenames:
                print(os.path.join(dirname, filename))
        Application Data = pd.read csv(r'C:\Users\Venkat RC\Desktop\IT\Naresh IT\resu
        Application Data
```


In [31]:	Application_Data.info(verbose=True) <class 'pandas.core.frame.dataframe'=""></class>			In [32]:	#Checking the numeric variables of the dataframes Application_Data.describe()						
				Out[32]:	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AM	
		angeIndex: 307511 entries, 0 to 307510 ata columns (total 122 columns):			count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	30:
	# (Column	Dtype		mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	2:
		SK_ID_CURR TARGET	int64 int64		std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	1.
	2 1	NAME_CONTRACT_TYPE	object		min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	10
	4 1	CODE_GENDER FLAG_OWN_CAR	object object		25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	10
		FLAG_OWN_REALTY CNT_CHILDREN	object int64		50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	2.
		AMT_INCOME_TOTAL AMT_CREDIT	float64 float64		75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	3,
	9 /	AMT_ANNUITY AMT GOODS PRICE	float64 float64		max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	25
	11 1	NAME_TYPE_SUITE NAME_INCOME_TYPE	object object		4 600						Þ
	13	NAME_EDUCATION_TYPE	object								

Data Cleaning and Manipulation

Analyse and Delete Unnecessary columns

Correlation

Insights:

In previous slide: Based on the heatmap, we can say that EXT_SOURCE_1 has 56% null values, where as EXT_SOURCE_3 has to close to 20% null values

There is no correlation between flags of mobile, email etc with loan repayment thus these columns can be deleted.

Outlier detection

Data Analysis

Inference:

Contract type: revolving loans are just a small fraction (10%) from the total number of leans in the same time a larger amount of revolving loans, comparing with their frequency, are not repaid.

Categorical variable analysis

The number of female clients is almost double the number of male clients, based on the percentage of defaulted credits, males have a higher chance of not returning their loans (\sim 10%), comparing with women (\sim 7%)

Viewpoints:

Majority of people live in House/Apartment, whereas people living in office apartments have lowest default rate while people living with parents (~11.5%) and living in rented apartments (>12%) have higher probability of defaulting

View Points:

The companies with the largest percentage of loans that have not been repaid fall into the following categories: Transport: type 3 (16%), Industry: type 13 (13.5%), Industry: type 8 (12.5%) and Restaurant (less than 12%). Self-employed individuals have a comparatively high default rate, so they should be avoided when applying for loans or given loans with higher interest rates to reduce the chance of default.

The majority of those that apply for loans are from Business Entity Type 3

Organisation type information is unavailable (XNA) for a very large number of applications.

View points:

Correlating factors amongst repayers:

Credit amount is highly correlated with amount of goods price, loan annuity, total income

We can also see that repayers have high correlation in number of days employed.

Numerical Univariate Analysis

Numerical Univariate analysis

Pair plot

View points

When amy_annuinty is greater than 15000 amt_goods_price > 3M, there is a lesser chance of defaulters

AMT_CREDIT and AMT_GOODS_PRICE are highly correlated as based on the scatterplot where most of the data are consolidated in form of a line

There are very less defaulters for AMT_CREDIT > 3M

Suggestions

After analyzing datasets, there are few attributes of a client with which the bank would be able to identify if they will repay the loan or not.

90% of the previously cancelled client have actually replayed the loan. Keep track of the cause so that the bank can later decide and negotiate conditions with those who are paying their debts in order to expand its commercial opportunities.

88% of the clients whose loan requests had previously been denied by the bank are now reimbursing clients. Documenting the cause for rejection could therefore help to reduce the company loss and allow for additional loan requests from these clients.

Thank You

Durgesh Kumar Nandan