Comenzado el	miércoles, 2 de sep	otiembre de	2020, 1	5:21				
	Finalizado							
	miércoles, 2 de sep		2020, 1	6:57				
Tiempo empleado	1 hora 36 minutos							
	8,37 de 10,00 (84 9	%)						
gunta 1 rrecta								
ntúa 2,00 sobre 2,00								
1) Inicio del diagra	ıma para P → 0 . M			responda. ✓ FA	SE -90	✓ Grados	_	
2) Final del diagra 3) Existe corte al	ma para P → ∞ . M eje Real ? SI	JÓDULO 1 JÓDULO 0	le20	✓ FASE	-360	✓ Grados		
2) Final del diagra 3) Existe corte al	ma para P → ∞ . M	JÓDULO 1 JÓDULO 0	le20	✓ FASE	-360	✓ Grados		l simbolo #
2) Final del diagra 3) Existe corte al 4) Si existe corte o 1,154	ma para P → ∞ . M eje Real ? SI	IÓDULO 1 IÓDULO 0 V e el valor p	l e20) positiva	✓ FASE	-360 Són de corte, si	✓ Grados no existe cort		l simbolo # ✔
2) Final del diagra 3) Existe corte al 4) Si existe corte a 1,154 5) Si existe corte	ma para P → ∞ . M eje Real ? SI al eje real, indiqua al eje real, indiqu	IÓDULO 1 IÓDULO 0 V e el valor p	l e20) positiva	✓ FASE	-360 Són de corte, si	✓ Grados no existe cort	te, escriba e	l simbolo # ✔
2) Final del diagra 3) Existe corte al 4) Si existe corte a 1,154 5) Si existe corte 6) Existe corte al	ma para P → ∞ . M eje Real ? SI al eje real, indiqua al eje real, indiqu eje Imaginario ?	IÓDULO 1 IÓDULO 0 e el valor p e el valor c	positivo	✓ FASE o de la pulsace e, si no existe	-360 cón de corte, si corte, escriba	✓ Grados no existe cort el simbolo #	te, escriba e -2,25	~
2) Final del diagra 3) Existe corte al 1) Si existe corte 1,154 5) Si existe corte 6) Existe corte al 7) Si existe corte	ma para P → ∞ . M eje Real ? SI al eje real, indiqua al eje real, indiqu eje Imaginario ? al eje Imaginario,	IÓDULO 1 IÓDULO 0 e el valor p e el valor c	positivo	✓ FASE o de la pulsace e, si no existe	-360 cón de corte, si corte, escriba	✓ Grados no existe cort el simbolo #	te, escriba e -2,25	~
2) Final del diagra 3) Existe corte al 4) Si existe corte 1,154 5) Si existe corte 6) Existe corte al 7) Si existe corte	ma para P → ∞ . M eje Real ? SI al eje real, indiqua al eje real, indiqu eje Imaginario ? al eje Imaginario,	IÓDULO 1 IÓDULO 0 e el valor p e el valor c	positivo	✓ FASE o de la pulsace e, si no existe	-360 cón de corte, si corte, escriba	✓ Grados no existe cort el simbolo #	te, escriba e -2,25	~
2) Final del diagra 3) Existe corte al 4) Si existe corte al 1,154 5) Si existe corte 6) Existe corte al 7) Si existe corte 1,732	ma para P → ∞ . M eje Real ? SI al eje real, indiqua al eje real, indiqu eje Imaginario ? al eje Imaginario,	e el valor c	oositivo	✓ FASE o de la pulsace e, si no existe positivo de la	-360 con de corte, si corte, escriba pulsación de c	✓ Grados no existe cort el simbolo #	te, escriba e -2,25 iste corte, es	✓ scriba el
2) Final del diagra 3) Existe corte al 4) Si existe corte al 1,154 5) Si existe corte al 6) Existe corte al 7) Si existe corte al 6) Si existe corte al 7) Si existe corte al 6) Si existe corte al	ma para P → ∞ . M eje Real ? SI al eje real, indiqual al eje real, indiqual eje Imaginario ? al eje Imaginario,	e el valor c	oositivo	✓ FASE o de la pulsace e, si no existe positivo de la	-360 con de corte, si corte, escriba pulsación de c	✓ Grados no existe cort el simbolo #	te, escriba e -2,25 iste corte, es	✓ scriba el
2) Final del diagra 3) Existe corte al 4) Si existe corte 1,154 5) Si existe corte al 7) Si existe corte al 8) Si existe corte al	ma para P → ∞ . M eje Real ? SI al eje real, indiqual al eje real, indiqual eje Imaginario ? al eje Imaginario,	e el valor condique el indique el	oositiva valor p	✓ FASE ✓ FASE o de la pulsace e, si no existe positivo de la de corte (No e	-360 cón de corte, si corte, escriba pulsación de c escriba la "j ", s	✓ Grados no existe cort el simbolo # corte, si no exi	te, escriba e -2,25 iste corte, es gno) , si no	✓ scriba el existe corte
2) Final del diagra 3) Existe corte al 4) Si existe corte a 1,154 5) Si existe corte al 7) Si existe corte al simbolo # 1,732 8) Si existe corte al escriba el simbolo escriba el simbolo	ma para P → ∞ . M eje Real ? SI al eje real, indiqua al eje real, indiqua eje Imaginario ? al eje Imaginario, al eje Imaginario, al eje Imaginario, p # 0,288	e el valor condique el indique el	oositiva valor p	✓ FASE ✓ FASE o de la pulsace e, si no existe positivo de la de corte (No e	-360 cón de corte, si corte, escriba pulsación de c escriba la "j ", s	✓ Grados no existe cort el simbolo # corte, si no exi	te, escriba e -2,25 iste corte, es gno) , si no	✓ scriba el existe corte

Pregunta **2**Parcialmente correcta

Puntúa 1,35 sobre 1,50

Dado el circuito RLC serie de la figura y su función transformada de la corriente, complete y responda las consignas :

- A) El valor de la pulsación natural ωo es 5250 ✓ [rad/seg]
- B) El valor del factor de amortiguamiento ζ es 1 ✓
- C) El valor del resistor "R" es de = 262,5 \checkmark [Ω]
- D) El valor del capacitor "C" es de 1,451 ✓ [uF]
- E) El valor de la Resistencia Crítica "Rc" es de 181,865 × [Ω]
- F) El valor de la Tensión de la fuente "E" es de 17,5 ✓ [Voltios]
- G) Las raíces de la ecuación característica serán REALES E IGUALES
- H) El comportamiento del circuito es AMORTIGUAMIENTO CRÍTICO
- I) Indique el valor de la corriente $i_{(t)}$ para t que tiende a cero $i_{(t)}|_{t\to 0} = 0$ \checkmark [Amperes]
- J) Indique el valor de la corriente $i_{(t)}$ para t que tiende a infinito $i_{(t)}|_{t\to\infty}=0$ [Amperes]

2 de 7

Pregunta **4**Parcialmente correcta

Puntúa 1,23 sobre 1,50

Dada la siguiente función de transferencia F_(P) , responda si las consignas son VERDADERAS o FALSAS, si respondió VERDADERO en VALOR CORRECTO elija VERDADERO, si respondió FALSO, indique el VALOR CORRECTO y si de los valores propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{75*(P+65)^2*(P+820)^2(P+5400)}{P^2*(P+610)*(5P^2+4575P+70312500)}$$

	VERDADERO		VALOR	
CONSIGNAS	Ó FALSO		CORRECTO	
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MAX} = 10000 [rad/seg] .	VERDADERO	×	VERDADERO ×	
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO	~	-180° y +180° ✔	
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de –40 dB/octava.	FALSO	~	-40 dB/dec ✔	
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de –180 º/década.	VERDADERO	×	VERDADERO ≭	
5) El Diagrama de Bode de Módulo a <u>altas</u> <u>frecuencias</u> tendrá una pendiente de 0 dB/octava.	VERDADERO	~	VERDADERO ✓	
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO	•	88,570 dB 🗸	
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 65 < w < 610 [rad/seg].	VERDADERO	~	VERDADERO 🗸	
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO	~	3750 [rad/seg] ✔	
9) La función de 2º grado del denominador tiene un factor de amortiguamiento ζ = 0,61	FALSO	~	ζ = 0,122	
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO	~	VERDADERO ✓	

Pregunta **5**Correcta
Puntúa 1,50 sobre 1,50

Dada la siguiente función $G_{(P)}H_{(P)}$. Aplique criterio de Routh Hourwitz e indique: número de raices a parte real positiva, de numerador y denominador de $G_{(P)}H_{(P)}+1$, indique si el sistema es estable (SI), inestable (NO) o no se sabe (N / S). Indique cuantos rodeos tendría el diagrama de Nyquist correspondiente, alrededor de -1+j0.

$$G_{(P)}H_{(P)} = \frac{15P + 400}{6P^5 - 36P^4 + 64P^3 + 64P^2 + 5P}$$

Dado el circuito de la figura, cuya función de transferencia tiene el formato mostrado, determine los valores de los coeficientes B y C, a continuación cambie P → jω, separe en parte Real y parte Imaginaria, calcule los valores para las pulsaciones dadas en la Tabla y responda a las consignas .

NOTA: PONGA EL SIGNO (-) EN CASO DE QUE UN VALOR SEA NEGATIVO Y TRES (3) DECIMALES SIN REDONDEO, DONDE CORRESPONDA.

$$R1 = 500 [\Omega]$$

$$R2 = 250 [\Omega]$$

$$C1 = 200 [uF]$$

Valor del coeficiente B de la Función de Transferencia F_(P): 10

Valor del coeficiente C de la Función de Transferencia $F_{(P)}$: 30

Valor de ω	Valor Parte Real	Valor Parte Imaginaria (sin "j")			
0	0,333	0			
1	0,331	0,0443			
5	0,297	0,216			
10	0,2	0,4			
20	-0,076	0,615			
100	-0,889	0,366			
∞	1	0			

El circuito Atenua ó No Atenúa para ω→∞ NO ATENÚA

El circuito Adelanta o Atraza la Fase para $\omega = 0$ EN FASE

El circuito Adelanta o Atraza la Fase para $\omega = \infty$ EN FASE

El circuito es ADELANTADOR, ATRASADOR ó ATRASO-ADELANTO = ADELANTADOR ✓ de Fase

▼ CUESTIONARIO 10 - CUADRIPOLOS ADAPTADORES Y ATENUADORES - 2020

Ir a...

RESUMEN SOBRE FILTROS DE K-CONSTANTE ►

7 de 7