Introduction à l'Algorithmique L2I

L'algorithmique est un terme d'origine arabe, comme algèbre, amiral ou zénith. Ce n'est pas une excuse pour massacrer son orthographe, ou sa prononciation.

Ainsi, l'algo n'est pas « rythmique », à la différence du bon rock'n roll. L'algo n'est pas non plus « l'agglo ».

Alors, ne confondez pas l'algorithmique avec l'agglo rythmique, qui consiste à poser des parpaings en cadence.

1. Qu'est-ce que l'algomachin?

Avez-vous déjà ouvert un livre de recettes de cuisine? Avez vous déjà déchiffré un mode d'emploi traduit directement du coréen pour faire fonctionner un magnétoscope ou un répondeur téléphonique réticent? Si oui, sans le savoir, vous avez déjà exécuté des algorithmes.

Plus fort : avez-vous déjà indiqué un chemin à un touriste égaré ? Avez vous fait chercher un objet à quelqu'un par téléphone ? Ecrit une lettre anonyme stipulant comment procéder à une remise de rançon ? Si oui, vous avez déjà fabriqué – et fait exécuter – des algorithmes.

Comme quoi, l'algorithmique n'est pas un savoir ésotérique réservé à quelques rares initiés touchés par la grâce divine, mais une aptitude partagée par la totalité de l'humanité. Donc, pas d'excuses...

Un algorithme, c'est une suite d'instructions, qui une fois exécutée correctement, conduit à un résultat donné. Si l'algorithme est juste, le résultat est le résultat voulu, et le touriste se retrouve là où il voulait aller. Si l'algorithme est faux, le résultat est, disons, aléatoire, et décidément, cette saloperie de répondeur ne veut rien savoir.

Complétons toutefois cette définition. Après tout, en effet, si l'algorithme, comme on vient de le dire, n'est qu'une suite d'instructions menant celui qui l'exécute à résoudre un problème, pourquoi ne pas donner comme instruction unique : « résous le problème », et laisser l'interlocuteur se débrouiller avec ça ? A ce tarif, n'importe qui serait champion d'algorithmique sans faire aucun effort. Pas de ça Lisette, ce serait trop facile.

Le malheur (ou le bonheur, tout dépend du point de vue) est que justement, si le touriste vous demande son chemin, c'est qu'il ne le connaît pas. Donc, si on n'est pas un goujat intégral, il ne sert à rien de lui dire de le trouver tout seul. De même les modes

d'emploi contiennent généralement (mais pas toujours) un peu plus d'informations que « débrouillez vous pour que ça marche ».

Pour fonctionner, un algorithme doit donc contenir uniquement des instructions compréhensibles par celui qui devra l'exécuter. C'est d'ailleurs l'un des points délicats pour les rédacteurs de modes d'emploi : les références culturelles, ou lexicales, des utilisateurs, étant variables, un même mode d'emploi peut être très clair pour certains et parfaitement abscons pour d'autres.

En informatique, heureusement, il n'y a pas ce problème : les choses auxquelles ont doit donner des instructions sont les ordinateurs, et ceux-ci ont le bon goût d'être tous strictement aussi idiots les uns que les autres.

2. Faut-il être matheux pour être bon en algorithmique ?

Je consacre quelques lignes à cette question, car cette opinion aussi fortement affirmée que faiblement fondée sert régulièrement d'excuse : « moi, de toute façon, je suis mauvais(e) en algo, j'ai jamais rien pigé aux maths ». Faut-il être « bon en maths » pour expliquer correctement son chemin à quelqu'un ? Je vous laisse juge.

La maîtrise de l'algorithmique requiert deux qualités, très complémentaires d'ailleurs :

- il faut avoir une certaine **intuition**, car aucune recette ne permet de savoir a priori quelles instructions permettront d'obtenir le résultat voulu. C'est là, si l'on y tient, qu'intervient la forme « d'intelligence » requise pour l'algorithmique. Alors, c'est certain, il y a des gens qui possèdent au départ davantage cette intuition que les autres. Cependant, et j'insiste sur ce point, les réflexes, cela s'acquiert. Et ce qu'on appelle l'intuition n'est finalement que de l'expérience tellement répétée que le raisonnement, au départ laborieux, finit par devenir « spontané ».
- il faut être **méthodique** et **rigoureux**. En effet, chaque fois qu'on écrit une série d'instructions qu'on croit justes, il faut **systématiquement** se mettre mentalement à la place de la machine qui va les exécuter, armé d'un papier et d'un crayon, afin de vérifier si le résultat obtenu est bien celui que l'on voulait. Cette opération ne requiert pas la moindre once d'intelligence. Mais elle reste néanmoins indispensable, si l'on ne veut pas écrire à l'aveuglette.

Et petit à petit, à force de pratique, vous verrez que vous pourrez faire de plus en plus souvent l'économie de cette dernière étape : l'expérience fera que vous « verrez » le résultat produit par vos instructions, au fur et à mesure que vous les écrirez. Naturellement, cet apprentissage est long, et demande des heures de travail patient. Aussi, dans un premier temps, évitez de sauter les étapes : la vérification

méthodique, pas à pas, de chacun de vos algorithmes représente plus de la moitié du travail à accomplir... et le gage de vos progrès.

3. L'ADN, les Shadoks, et les ordinateurs

Quel rapport me direz-vous? Eh bien le point commun est : quatre mots de vocabulaire.

L'univers lexical Shadok, c'est bien connu, se limite aux termes « Ga », « Bu », « Zo », et « Meu ». Ce qui leur a tout de même permis de formuler quelques fortes maximes, telles que : « Mieux vaut pomper et qu'il ne se passe rien, plutôt qu'arrêter de pomper et risquer qu'il se passe quelque chose de pire » (pour d'autres fortes maximes Shadok, n'hésitez pas à visiter leur <u>site Internet</u>, il y en a toute une collection qui vaut le détour).

L'ADN, qui est en quelque sorte le programme génétique, l'algorithme à la base de construction des êtres vivants, est une chaîne construite à partir de quatre éléments invariables. Ce n'est que le nombre de ces éléments, ainsi que l'ordre dans lequel ils sont arrangés, qui vont déterminer si on obtient une puce ou un éléphant. Et tous autant que nous sommes, splendides réussites de la Nature, avons été construits par un « programme » constitué uniquement de ces quatre briques, ce qui devrait nous inciter à la modestie.

Enfin, les ordinateurs, quels qu'ils soient, ne sont fondamentalement capables de comprendre que quatre catégories d'ordres (en programmation, on n'emploiera pas le terme d'ordre, mais plutôt celui d'**instructions**). Ces quatre familles d'instructions sont :

- l'affectation de variables
- la lecture / écriture
- les tests
- les boucles

Un algorithme informatique se ramène donc toujours au bout du compte à la combinaison de ces quatre petites briques de base. Il peut y en avoir quelques unes, quelques dizaines, et jusqu'à plusieurs centaines de milliers dans certains programmes de gestion. Rassurez-vous, dans le cadre de ce cours, nous n'irons pas jusque là (cependant, la taille d'un algorithme ne conditionne pas en soi sa complexité : de longs algorithmes peuvent être finalement assez simples, et de petits très compliqués).

4. Algorithmique et programmation

Pourquoi apprendre l'algorithmique pour apprendre à programmer ? En quoi a-ton besoin d'un langage spécial, distinct des langages de programmation compréhensibles par les ordinateurs ?

Parce que l'algorithmique exprime les instructions résolvant un problème donné **indépendamment des particularités de tel ou tel langage**. Pour prendre une image, si un programme était une dissertation, l'algorithmique serait le plan, une fois mis de côté la rédaction et l'orthographe. Or, vous savez qu'il vaut mieux faire d'abord le plan et rédiger ensuite que l'inverse...

Apprendre l'algorithmique, c'est apprendre à manier la **structure logique** d'un programme informatique. Cette dimension est présente quelle que soit le langage de programmation; mais lorsqu'on programme dans un langage (en C, en Visual Basic, etc.) on doit en plus se colleter les problèmes de syntaxe, ou de types d'instructions, propres à ce langage. Apprendre l'algorithmique de manière séparée, c'est donc sérier les difficultés pour mieux les vaincre.

A cela, il faut ajouter que des générations de programmeurs, souvent autodidactes (mais pas toujours, hélas!), ayant directement appris à programmer dans tel ou tel langage, ne font pas mentalement clairement la différence entre ce qui relève de la structure logique générale de toute programmation (les règles fondamentales de l'algorithmique) et ce qui relève du langage particulier qu'ils ont appris. Ces programmeurs, non seulement ont beaucoup plus de mal à passer ensuite à un langage différent, mais encore écrivent bien souvent des programmes qui même s'ils sont justes, restent laborieux. Car on n'ignore pas impunément les règles fondamentales de l'algorithmique... Alors, autant l'apprendre en tant que telle!

Bon, maintenant que j'ai bien fait l'article pour vendre ma marchandise, on va presque pouvoir passer au vif du sujet...

5. Avec quelles conventions écrit-on un algorithme?

Historiquement, plusieurs types de notations ont représenté des algorithmes.

Il y a eu notamment une représentation graphique, avec des carrés, des losanges, etc. qu'on appelait des **organigrammes**. Aujourd'hui, cette représentation est quasiment abandonnée, pour deux raisons. D'abord, parce que dès que l'algorithme commence à grossir un peu, ce n'est plus pratique du tout du tout. Ensuite parce que cette représentation favorise le glissement vers un certain type de programmation, dite non structurée (nous définirons ce terme plus tard), que l'on tente au contraire d'éviter.

C'est pourquoi on utilise généralement une série de conventions appelée « pseudo-code », qui ressemble à un langage de programmation authentique dont on aurait évacué la plupart des problèmes de syntaxe. Ce pseudo-code est susceptible de varier légèrement d'un livre (ou d'un enseignant) à un autre. C'est bien normal : le pseudo-code, encore une fois, est purement conventionnel ; aucune machine n'est

censée le reconnaître. Donc, chaque cuisinier peut faire sa sauce à sa guise, avec ses petites épices bien à lui, sans que cela prête à conséquence.

Comme je n'ai pas moins de petites manies que la majorité de mes semblables, le pseudo-code que vous découvrirez dans les pages qui suivent possède quelques spécificités mineures qui ne doivent qu'à mes névroses personnelles.

Rassurez-vous cependant, celles-ci restent dans les limites tout à fait acceptables.

En tout cas, personnellement, je les accepte très bien.

Les Variables

1. A quoi servent les variables?

Dans un programme informatique, on va avoir en permanence besoin de stocker provisoirement des valeurs. Il peut s'agir de données issues du disque dur, fournies par l'utilisateur (frappées au clavier), ou que sais-je encore. Il peut aussi s'agir de résultats obtenus par le programme, intermédiaires ou définitifs. Ces données peuvent être de plusieurs types (on en reparlera): elles peuvent être des nombres, du texte, etc. Toujours est-il que dès que l'on a besoin de stocker une information au cours d'un programme, on utilise une variable.

Pour employer une image, une variable est une **boîte**, que le programme (l'ordinateur) va repérer par une **étiquette**. Pour avoir accès au contenu de la boîte, il suffit de la désigner par son étiquette.

En réalité, dans la mémoire vive de l'ordinateur, il n'y a bien sûr pas une vraie boîte, et pas davantage de vraie étiquette collée dessus (j'avais bien prévenu que la boîte et l'étiquette, c'était une image). Dans l'ordinateur, physiquement, il y a un emplacement de mémoire, repéré par une adresse binaire. Si on programmait dans un langage directement compréhensible par la machine, on devrait se fader de désigner nos données par de superbes 10011001 et autres 01001001 (enchanté!). Mauvaise nouvelle: de tels langages existent! Ils portent le doux nom d'assembleur. Bonne nouvelle: ce ne sont pas les seuls langages disponibles.

Les langages informatiques plus évolués (ce sont ceux que presque tout le monde emploie) se chargent précisément, entre autres rôles, d'épargner au programmeur la gestion fastidieuse des emplacements mémoire et de leurs adresses. Et, comme vous commencez à le comprendre, il est beaucoup plus facile d'employer les étiquettes de son choix, que de devoir manier des adresses binaires.

2. Déclaration des variables

La première chose à faire avant de pouvoir utiliser une variable est de **créer la boîte et de lui coller une étiquette**. Ceci se fait tout au début de l'algorithme, avant même les instructions proprement dites. C'est ce qu'on appelle la **déclaration des variables**. C'est un genre de déclaration certes moins romantique qu'une déclaration d'amour, mais d'un autre côté moins désagréable qu'une déclaration d'impôts.

Le **nom** de la variable (l'étiquette de la boîte) obéit à des impératifs changeant selon les langages. Toutefois, une règle absolue est qu'un nom de variable peut comporter des lettres et des chiffres, mais qu'il exclut la plupart des signes de ponctuation, en particulier les espaces. Un nom de variable correct commence également impérativement par une lettre. Quant au nombre maximal de signes pour un nom de variable, il dépend du langage utilisé.

En pseudo-code algorithmique, on est bien sûr libre du nombre de signes pour un nom de variable, même si pour des raisons purement pratiques, et au grand désespoir de Stéphane Bern, on évite généralement les noms à rallonge.

Lorsqu'on déclare une variable, il ne suffit pas de créer une boîte (réserver un emplacement mémoire); encore doit-on préciser ce que l'on voudra mettre dedans, car de cela dépendent la **taille** de la boîte (de l'emplacement mémoire) et le **type de codage** utilisé.

2.1 Types numériques classiques

Commençons par le cas très fréquent, celui d'une variable destinée à recevoir des nombres.

Si l'on réserve un octet pour coder un nombre, je rappelle pour ceux qui dormaient en lisant le chapitre précédent qu'on ne pourra coder que 2⁸ = 256 valeurs différentes. Cela peut signifier par exemple les nombres entiers de 1 à 256, ou de 0 à 255, ou de – 127 à +128... Si l'on réserve deux octets, on a droit à 65 536 valeurs ; avec trois octets, 16 777 216, etc. Et là se pose un autre problème : ce codage doit-il représenter des nombres décimaux ? des nombres négatifs ?

Bref, le type de codage (autrement dit, le type de variable) choisi pour un nombre va déterminer :

- les valeurs maximales et minimales des nombres pouvant être stockés dans la variable
- la précision de ces nombres (dans le cas de nombres décimaux).

Tous les langages, quels qu'ils soient offrent un « bouquet » de types numériques, dont le détail est susceptible de varier légèrement d'un langage à l'autre. Grosso modo, on retrouve cependant les types suivants :

Type Numérique	Plage
Byte (octet)	0 à 255
Entier simple	-32 768 à 32 767
Entier long	-2 147 483 648 à 2 147 483 647
Réel simple	-3,40x10 ³⁸ à -1,40x10 ⁴⁵ pour les valeurs négatives

	1,40x10 ⁻⁴⁵ à 3,40x10 ³⁸ pour les valeurs positives
Réel double	1,79x10 ³⁰⁸ à -4,94x10 ⁻³²⁴ pour les valeurs négatives 4,94x10 ⁻³²⁴ à 1,79x10 ³⁰⁸ pour les valeurs positives

Pourquoi ne pas déclarer toutes les variables numériques en réel double, histoire de bétonner et d'être certain qu'il n'y aura pas de problème? En vertu du principe de **l'économie de moyens**. Un bon algorithme ne se contente pas de « marcher » ; il marche en évitant de gaspiller les ressources de la machine. Sur certains programmes de grande taille, l'abus de variables surdimensionnées peut entraîner des ralentissements notables à l'exécution, voire un plantage pur et simple de l'ordinateur. Alors, autant prendre dès le début de bonnes habitudes d'hygiène.

En algorithmique, on ne se tracassera pas trop avec les sous-types de variables numériques (sachant qu'on aura toujours assez de soucis comme ça, allez). On se contentera donc de préciser qu'il s'agit d'un nombre, en gardant en tête que dans un vrai langage, il faudra être plus précis.

En pseudo-code, une déclaration de variables aura ainsi cette tête :

Variable g **en Numérique**

ou encore

Variables PrixHT, TauxTVA, PrixTTC en Numérique

2.2 Autres types numériques

Certains langages autorisent d'autres types numériques, notamment :

- le type **monétaire** (avec strictement deux chiffres après la virgule)
- le type date (jour/mois/année).

Nous n'emploierons pas ces types dans ce cours ; mais je les signale, car vous ne manquerez pas de les rencontrer en programmation proprement dite.

2.3 Type alphanumérique

Fort heureusement, les boîtes que sont les variables peuvent contenir bien d'autres informations que des nombres. Sans cela, on serait un peu embêté dès que l'on devrait stocker un nom de famille, par exemple.

On dispose donc également du **type alphanumérique** (également appelé **type caractère**, **type chaîne** ou en anglais, le **type string** – mais ne fantasmez pas trop vite, les string, c'est loin d'être aussi excitant que le nom le suggère. Une étudiante qui se reconnaîtra si elle lit ces lignes a d'ailleurs mis le doigt - si j'ose m'exprimer ainsi - sur le fait qu'il en va de même en ce qui concerne les bytes).

Dans une variable de ce type, on stocke des **caractères**, qu'il s'agisse de lettres, de signes de ponctuation, d'espaces, ou même de chiffres. Le nombre maximal de caractères pouvant être stockés dans une seule variable **string** dépend du langage utilisé.

Un groupe de caractères (y compris un groupe de un, ou de zéro caractères), qu'il soit ou non stocké dans une variable, d'ailleurs, est donc souvent appelé **chaîne** de caractères.

En pseudo-code, une chaîne de caractères est toujours notée entre guillemets

Pourquoi diable ? Pour éviter deux sources principales de possibles confusions :

- la confusion entre des nombres et des suites de chiffres. Par exemple, 423 peut représenter le nombre 423 (quatre cent vingt-trois), ou la suite de caractères 4, 2, et 3. Et ce n'est pas du tout la même chose! Avec le premier, on peut faire des calculs, avec le second, point du tout. Dès lors, les guillemets permettent d'éviter toute ambiguïté: s'il n'y en a pas, 423 est quatre cent vingt trois. S'il y en a, "423" représente la suite des chiffres 4, 2, 3.
- ...Mais ce n'est pas le pire. L'autre confusion, bien plus grave et bien plus fréquente consiste à se mélanger les pinceaux entre le nom d'une variable et son contenu. Pour parler simplement, cela consiste à confondre l'étiquette d'une boîte et ce qu'il y a à l'intérieur... On reviendra sur ce point crucial dans quelques instants.

2.4 Type booléen

Le dernier type de variables est le type **booléen** : on y stocke uniquement les valeurs logiques VRAI et FAUX.

On peut représenter ces notions abstraites de VRAI et de FAUX par tout ce qu'on veut : de l'anglais (TRUE et FALSE) ou des nombres (0 et 1). Peu importe. Ce qui compte, c'est de comprendre que le type booléen est très économique en termes de place mémoire occupée, puisque pour stocker une telle information binaire, un seul bit suffit.

Le type booléen est très souvent négligé par les programmeurs, à tort. Il est vrai qu'il n'est pas à proprement parler indispensable, et qu'on pourrait écrire à peu près n'importe quel programme en l'ignorant complètement. Pourtant, si le type booléen est mis à disposition des programmeurs dans tous les langages, ce n'est pas pour rien. Le recours aux variables booléennes s'avère très souvent un puissant instrument de lisibilité des algorithmes : il peut faciliter la vie de celui qui écrit l'algorithme, comme de celui qui le relit pour le Alors, maintenant, c'est certain, en algorithmique, il y a une question de style : c'est exactement comme dans le langage courant, il y a plusieurs manières de s'exprimer pour dire sur le fond la même chose. Nous verrons plus loin différents exemples de variations stylistiques autour d'une même solution. En attendant, vous êtes prévenus : l'auteur de ce cours est un adepte fervent (mais pas irraisonné) de l'utilisation des variables booléennes.

3. L'instruction d'affectation

3.1 Syntaxe et signification

Ouf, après tout ce baratin préliminaire, on aborde enfin nos premières véritables manipulations d'algorithmique. Pas trop tôt, certes, mais pas moyen de faire autrement!

En fait, la variable (la boîte) n'est pas un outil bien sorcier à manipuler. A la différence du couteau suisse ou du superbe robot ménager vendu sur Télé Boutique Achat, on ne peut pas faire trente-six mille choses avec une variable, mais seulement une et une seule.

Cette seule chose qu'on puisse faire avec une variable, c'est **l'affecter**, c'est-àdire **lui attribuer une valeur**. Pour poursuivre la superbe métaphore filée déjà employée, on peut remplir la boîte.

En pseudo-code, l'instruction d'affectation se note avec le signe ←

Ainsi:

Toto ← 24

Attribue la valeur 24 à la variable Toto.

Ceci, soit dit en passant, sous-entend impérativement que Toto soit une variable de type numérique. Si Toto a été défini dans un autre type, il faut bien comprendre que cette instruction provoquera une erreur. C'est un peu comme si, en donnant un ordre à quelqu'un, on accolait un verbe et un complément incompatibles, du genre « Epluchez la casserole ». Même dotée de la meilleure volonté du monde, la ménagère lisant cette phrase ne pourrait qu'interrompre dubitativement sa tâche. Alors, un ordinateur, vous pensez bien...

On peut en revanche sans aucun problème attribuer à une variable la valeur d'une autre variable, telle quelle ou modifiée. Par exemple :

Tutu ← Toto

Signifie que la valeur de Tutu est maintenant celle de Toto.

Notez bien que cette instruction n'a en rien modifié la valeur de Toto : une instruction d'affectation ne modifie que ce qui est situé à gauche de la flèche.

Tutu ← Toto + 4

Si Toto contenait 12, Tutu vaut maintenant 16. De même que précédemment, Toto vaut toujours 12.

Tutu ← Tutu + 1

Si Tutu valait 6, il vaut maintenant 7. La valeur de Tutu est modifiée, puisque Tutu est la variable située à gauche de la flèche.

Pour revenir à présent sur le rôle des guillemets dans les chaînes de caractères et sur la confusion numéro 2 signalée plus haut, comparons maintenant deux algorithmes suivants :

```
Exemple n°1

Début

Riri ← "Loulou"

Fifi ← "Riri"

Fin

Exemple n°2

Début

Riri ← "Loulou"

Fifi ← Riri

Fin
```

La seule différence entre les deux algorithmes consiste dans la présence ou dans l'absence des guillemets lors de la seconde affectation. Et l'on voit que cela change tout!

Dans l'exemple n°1, ce que l'on affecte à la variable Fifi, c'est la suite de caractères R - i - r - i. Et à la fin de l'algorithme, le contenu de la variable Fifi est donc « Riri ».

Dans l'exemple n°2, en revanche, Riri étant dépourvu de guillemets, n'est pas considéré comme une suite de caractères, mais comme un nom de variable. Le sens de la ligne devient donc : « affecte à la variable Fifi le contenu de la variable Riri ». A la fin de l'algorithme n°2, la valeur de la variable Fifi est donc « Loulou ». Ici, l'oubli des quillemets conduit certes à un résultat, mais à un résultat différent.

A noter, car c'est un cas très fréquent, que généralement, lorsqu'on oublie les guillemets lors d'une affectation de chaîne, ce qui se trouve à droite du signe d'affectation ne correspond à aucune variable précédemment déclarée et affectée. Dans ce cas, l'oubli des guillemets se solde immédiatement par une erreur d'exécution.

Ceci est une simple illustration. Mais elle résume l'ensemble des problèmes qui surviennent lorsqu'on oublie la règle des guillemets aux chaînes de caractères.

3.2 Ordre des instructions

Il va de soi que l'ordre dans lequel les instructions sont écrites va jouer un rôle essentiel dans le résultat final. Considérons les deux algorithmes suivants :

```
Exemple 1
Variable A en Numérique
Début
A ← 34
A ← 12
Fin
```

Exemple 2

Variable A en Numérique

Début

A ← 12

A ← 34

Fin

Il est clair que dans le premier cas la valeur finale de A est 12, dans l'autre elle est 34 .

Il est tout aussi clair que ceci ne doit pas nous étonner. Lorsqu'on indique le chemin à quelqu'un, dire « prenez tout droit sur 1km, puis à droite » n'envoie pas les gens au même endroit que si l'on dit « prenez à droite puis tout droit pendant 1 km ».

Enfin, il est également clair que si l'on met de côté leur vertu pédagogique, les deux algorithmes ci-dessus sont parfaitement idiots; à tout le moins ils contiennent une incohérence. Il n'y a aucun intérêt à affecter une variable pour l'affecter différemment juste après. En l'occurrence, on aurait tout aussi bien atteint le même résultat en écrivant simplement :

Exemple 1

Variable A en Numérique

Début

A ← 12

Fin

Exemple 2

Variable A en Numérique

Début

A ← 34

Fin

Tous les éléments sont maintenant en votre possession pour que ce soit à vous de jouer!

Si on fait le point, on s'aperçoit que dans une instruction d'affectation, on trouve :

- à gauche de la flèche, un nom de variable, et uniquement cela. En ce monde empli de doutes qu'est celui de l'algorithmique, c'est une des rares règles d'or qui marche à tous les coups : si on voit à gauche d'une flèche d'affectation autre chose qu'un nom de variable, on peut être certain à 100% qu'il s'agit d'une erreur.
- à droite de la flèche, ce qu'on appelle une **expression**. Voilà encore un mot qui est trompeur ; en effet, ce mot existe dans le langage courant, où il

revêt bien des significations. Mais en informatique, le terme d'expression ne désigne qu'une seule chose, et qui plus est une chose très précise :

Une expression est un ensemble de valeurs, reliées par des opérateurs, et équivalent à une seule valeur

Cette définition vous paraît peut-être obscure. Mais réfléchissez-y quelques minutes, et vous verrez qu'elle recouvre quelque chose d'assez simple sur le fond. Par exemple, voyons quelques expressions de type **numérique**. Ainsi :

```
7
5+4
123-45+844
Toto-12+5-Riri
```

...sont toutes des expressions valides, pour peu que Toto et Riri soient bien des nombres. Car dans le cas contraire, la quatrième expression n'a pas de sens. En l'occurrence, les opérateurs que j'ai employés sont l'addition (+) et la soustraction (-).

Revenons pour le moment sur l'affectation. Une condition supplémentaire (en plus des deux précédentes) de validité d'une instruction d'affectation est que :

• l'expression située à droite de la flèche soit du même type que la variable située à gauche. C'est très logique : on ne peut pas ranger convenablement des outils dans un sac à provision, ni des légumes dans une trousse à outils... sauf à provoquer un résultat catastrophique.

Si l'un des trois points énumérés ci-dessus n'est pas respecté, la machine sera incapable d'exécuter l'affectation, et déclenchera une erreur (est-il besoin de dire que si aucun de ces points n'est respecté, il y aura aussi erreur!)

On va maintenant détailler ce que l'on entend par le terme d' opérateur.

Un opérateur est un signe qui relie deux valeurs, pour produire un résultat.

Les opérateurs possibles dépendent du type des valeurs qui sont en jeu. Allons-y, faisons le tour, c'est un peu fastidieux, mais comme dit le sage au petit scarabée, quand c'est fait, c'est plus à faire.

4.1 Opérateurs numériques

Ce sont les quatre opérations arithmétiques tout ce qu'il y a de classique.

- +: addition
- -: soustraction
- *: multiplication
- /: division

Mentionnons également le ^ qui signifie « puissance ». 45 au carré s'écrira donc 45 ^ 2.

Enfin, on a le droit d'utiliser les parenthèses, avec les mêmes règles qu'en mathématiques. La multiplication et la division ont « naturellement » priorité sur l'addition et la soustraction. Les parenthèses ne sont ainsi utiles que pour modifier cette priorité naturelle.

Cela signifie qu'en informatique, 12 * 3 + 5 et (12 * 3) + 5 valent strictement la même chose, à savoir 41. Pourquoi dès lors se fatiguer à mettre des parenthèses inutiles ?

En revanche, 12 * (3 + 5) vaut 12 * 8 soit 96. Rien de difficile là-dedans, que du normal.

4.2 Opérateur alphanumérique : &

Cet opérateur permet de **concaténer**, autrement dit d'agglomérer, deux chaînes de caractères. Par exemple :

```
Variables A, B, C en Caractère
Début
A ← "Gloubi"
B ← "Boulga"
C ← A & B
Fin
```

La valeur de C à la fin de l'algorithme est "GloubiBoulga"

4.3 Opérateurs logiques (ou booléens) :

Il s'agit du ET, du OU, du NON et du mystérieux (mais rarissime XOR). Nous les laisserons de côté... provisoirement, soyez-en sûrs.

5. Deux remarques pour terminer

Maintenant que nous sommes familiers des variables et que nous les manipulons les yeux fermés (mais les neurones en éveil, toutefois), j'attire votre attention sur la trompeuse similitude de vocabulaire entre les mathématiques et l'informatique. En mathématiques, une « variable » est généralement une inconnue, qui recouvre un nombre non précisé de valeurs. Lorsque j'écris :

$$y = 3 x + 2$$

les « variables » x et y satisfaisant à l'équation existent en nombre infini (graphiquement, l'ensemble des solutions à cette équation dessine une droite). Lorsque j'écris :

$$ax^{2} + bx + c = 0$$

la « variable » x désigne les solutions à cette équation, c'est-à-dire zéro, une ou deux valeurs à la fois...

En informatique, une variable possède à un moment donné une valeur et une seule. A la rigueur, elle peut ne pas avoir de valeur du tout (une fois qu'elle a été déclarée, et tant qu'on ne l'a pas affectée. A signaler que dans certains langages, les variables non encore affectées sont considérées comme valant automatiquement zéro). Mais ce qui est important, c'est que cette valeur justement, ne « varie » pas à proprement parler. Du moins ne varie-t-elle que lorsqu'elle est l'objet d'une instruction d'affectation.

La deuxième remarque concerne le signe de l'affectation. En algorithmique, comme on l'a vu, c'est le signe \leftarrow . Mais en pratique, la quasi totalité des langages emploient le signe égal. Et là, pour les débutants, la confusion avec les maths est également facile. En maths, A = B et B = A sont deux propositions strictement équivalentes. En informatique, absolument pas, puisque cela revient à écrire $A \leftarrow B$ et $B \leftarrow A$, deux choses bien différentes. De même, A = A + 1, qui en mathématiques, constitue une équation sans solution, représente en programmation une action tout à fait licite (et de surcroît extrêmement courante). Donc, attention !!! La meilleure des vaccinations contre cette confusion consiste à bien employer le signe \leftarrow en pseudocode, signe qui a le mérite de ne pas laisser place à l'ambiguïté. Une fois acquis les bons réflexes avec ce signe, vous n'aurez plus aucune difficulté à passer au = des langages de programmation.

Lecture et Ecriture

quoi parle-t-on?

Trifouiller des variables en mémoire vive par un chouette programme, c'est vrai que c'est très marrant, et d'ailleurs on a tous bien rigolé au chapitre précédent. Cela dit, à la fin de la foire, on peut tout de même se demander à quoi ça sert.

En effet. Imaginons que nous ayons fait un programme pour calculer le carré d'un nombre, mettons 12. Si on a fait au plus simple, on a écrit un truc du genre :

Variable A en Numérique Début A ← 12^2

Fin

D'une part, ce programme nous donne le carré de 12. C'est très gentil à lui. Mais si l'on veut le carré d'un autre nombre que 12, il faut réécrire le programme. Bof.

D'autre part, le résultat est indubitablement calculé par la machine. Mais elle le garde soigneusement pour elle, et le pauvre utilisateur qui fait exécuter ce programme, lui, ne saura jamais quel est le carré de 12. Re-bof.

C'est pourquoi, heureusement, il existe des d'instructions pour permettre à la machine de dialoguer avec l'utilisateur (et Lycée de Versailles, eût ajouté Pierre Dac, qui en précurseur méconnu de l'algorithmique, affirmait tout aussi profondément que « rien ne sert de penser, il faut réfléchir avant »).

Dans un sens, ces instructions permettent à l'utilisateur de rentrer des valeurs au clavier pour qu'elles soient utilisées par le programme. Cette opération est la **lecture**.

Dans l'autre sens, d'autres instructions permettent au programme de communiquer des valeurs à l'utilisateur en les affichant à l'écran. Cette opération est **l'écriture**.

Remarque essentielle: A première vue, on peut avoir l'impression que les informaticiens étaient beurrés comme des petits lus lorsqu'ils ont baptisé ces opérations; puisque quand l'utilisateur doit écrire au clavier, on appelle cette instruction la lecture, et quand il doit lire sur l'écran on l'appelle l'écriture. Mais avant d'agonir d'insultes une digne corporation, il faut réfléchir un peu plus loin. Un algorithme, c'est une suite d'instructions qui programme la machine, pas l'utilisateur! Donc quand on dit à la machine de lire une valeur, cela implique que l'utilisateur va devoir écrire cette valeur. Et quand on demande à la machine d'écrire une valeur, c'est pour que l'utilisateur puisse la lire. Lecture et écriture sont donc des termes qui comme toujours en programmation, doivent être compris du point de vue de la machine qui sera chargée de les exécuter, et non de l'utilisateur qui se servira du programme. Et là, tout devient parfaitement logique. Et toc.

2. Les instructions de lecture et d'écriture

Tout bêtement, pour que l'utilisateur entre la (nouvelle) valeur de Titi, on mettra:

Lire Titi

Dès que le programme rencontre une instruction Lire, l'exécution s'interrompt, attendant la frappe d'une valeur au clavier. L'interruption peut durer quelques secondes, quelques minutes ou plusieurs heures : la seule chose qui fera exécuter la suite des instructions, c'est que la touche Entrée (Enter) ait été enfoncée.

Aussitôt que c'est le cas, il se passe deux choses. Pour commencer, tout ce qui a été frappé avant la touche Entrée (une suite de lettres, de chiffres, ou un mélange des deux) est rentré dans la variable qui suit l'instruction Lire (ici, Titi). Et ensuite, immédiatement, la machine exécute l'instruction suivante.

Lire est donc une autre manière d'affecter une valeur à une variable. Avec l'instruction d'affectation, c'est le programmeur qui choisit à l'avance quelle doit être cette valeur. Avec l'instruction Lire, il laisse ce choix à l'utilisateur.

Dans le sens inverse, pour écrire quelque chose à l'écran, c'est aussi simple que :

Ecrire Toto

Parenthèse : « les bonnes manières du programmeur » : avant de Lire une variable, il est très fortement conseillé d'écrire des **libellés** à l'écran, afin de prévenir l'utilisateur de ce qu'il doit frapper (sinon, le pauvre utilisateur passe son temps à se demander ce que l'ordinateur attend de lui... et c'est très désagréable !) :

Ecrire "Entrez votre nom : "
Lire NomFamille

Lecture et Ecriture sont des instructions algorithmiques qui ne présentent pas de difficultés particulières, une fois qu'on a bien assimilé ce problème du sens du dialogue (homme → machine, ou machine ← homme).

Et ça y est, vous savez d'ores et déjà sur cette question tout ce qu'il y a à savoir...

Les Tests

Je vous avais dit que l'algorithmique, c'est la combinaison de quatre structures élémentaires. Nous en avons déjà vu deux, voici la troisième. Autrement dit, on a quasiment fini le programme.

Mais non, je rigole.

1. De quoi s'agit-il?

Reprenons le cas de notre « programmation algorithmique du touriste égaré ». Normalement, l'algorithme ressemblera à quelque chose comme : « Allez tout droit jusqu'au prochain carrefour, puis prenez à droite et ensuite la deuxième à gauche, et vous y êtes ».

Mais en cas de doute légitime de votre part, cela pourrait devenir : « Allez tout droit jusqu'au prochain carrefour et là regardez à droite. Si la rue est autorisée à la circulation, alors prenez la et ensuite c'est la deuxième à gauche. Mais si en revanche elle est en sens interdit, alors continuez jusqu'à la prochaine à droite, prenez celle-là, et ensuite la première à droite ».

Ce deuxième algorithme a ceci de supérieur au premier qu'il prévoit, en fonction d'une situation pouvant se présenter de deux façons différentes, deux façons différentes d'agir. Cela suppose que l'interlocuteur (le touriste) sache analyser la condition que nous avons fixée à son comportement (« la rue est-elle en sens interdit ? ») pour effectuer la série d'actions correspondante.

Eh bien, croyez le ou non, mais les ordinateurs possèdent cette aptitude, sans laquelle d'ailleurs nous aurions bien du mal à les programmer. Nous allons donc pouvoir parler à notre ordinateur comme à notre touriste, et lui donner des séries d'instructions à effectuer selon que la situation se présente d'une manière ou d'une autre. Cette structure logique répond au doux nom de **test**. Toutefois, ceux qui tiennent absolument à briller en société parleront également de **structure alternative**.

2. Structure d'un test

Il n'y a que **deux formes possibles** pour un test ; la première est la plus simple, la seconde la plus complexe.

Si booléen Alors Instructions Finsi Si booléen Alors
Instructions 1
Sinon
Instructions 2
Finsi

Ceci appelle quelques explications.

Un **booléen** est une **expression** dont la valeur est VRAI ou FAUX. Cela peut donc être (il n'y a que deux possibilités) :

- une variable (ou une expression) de type booléen
- une condition

Nous reviendrons dans quelques instants sur ce qu'est une **condition** en informatique.

Toujours est-il que la structure d'un test est relativement claire. Dans la forme la plus simple, arrivé à la première ligne (Si... Alors) la machine examine la valeur du booléen. Si ce booléen a pour valeur VRAI, elle exécute la série d'instructions. Cette série d'instructions peut être très brève comme très longue, cela n'a aucune importance. En revanche, dans le cas où le booléen est faux, l'ordinateur saute directement aux instructions situées après le FinSi.

Dans le cas de la structure complète, c'est à peine plus compliqué. Dans le cas où le booléen est VRAI, et après avoir exécuté la série d'instructions 1, au moment où elle arrive au mot « Sinon », la machine saute directement à la première instruction située après le « Finsi ». De même, au cas où le booléen a comme valeur « Faux », la machine saute directement à la première ligne située après le « Sinon » et exécute l'ensemble des « instructions 2 ». Dans tous les cas, les instructions situées juste après le FinSi seront exécutées normalement.

En fait, la forme simplifiée correspond au cas où l'une des deux « branches » du Si est vide. Dès lors, plutôt qu'écrire « sinon ne rien faire du tout », il est plus simple de ne rien écrire. Et laisser un Si... complet, avec une des deux branches vides, est considéré comme une très grosse maladresse pour un programmeur, même si cela ne constitue pas à proprement parler une faute.

Exprimé sous forme de pseudo-code, la programmation de notre touriste de tout à l'heure donnerait donc quelque chose du genre :

Allez tout droit jusqu'au prochain carrefour **Si** la rue à droite est autorisée à la circulation **Alors** Tournez à droite Avancez

Prenez la deuxième à gauche

Sinon

Continuez jusqu'à la prochaine rue à droite Prenez cette rue Prenez la première à droite

Finsi

3. Qu'est ce qu'une condition?

Une condition est une comparaison

Cette définition est essentielle ! Elle signifie qu'une condition est composée de trois éléments :

- une valeur
- un opérateur de comparaison
- une autre valeur

Les valeurs peuvent être a priori de n'importe quel type (numériques, caractères...). Mais si l'on veut que la comparaison ait un sens, il faut que les deux valeurs de la comparaison soient du même type!

Les opérateurs de comparaison sont :

- égal à...
- différent de...
- strictement plus petit que...
- strictement plus grand que...
- plus petit ou égal à...
- plus grand ou égal à...

L'ensemble des trois éléments composant la condition constitue donc, si l'on veut, une affirmation, qui à un moment donné est VRAIE ou FAUSSE.

À noter que ces opérateurs de comparaison peuvent tout à fait s'employer avec des caractères. Ceux-ci sont codés par la machine dans l'ordre alphabétique (rappelez vous le code ASCII vu dans le préambule), les majuscules étant systématiquement placées avant les minuscules. Ainsi on a :

"t" < "w"	VRAI
"Maman" > "Papa"	FAUX
"maman" > "Papa"	VRAI

Remarque très importante

En formulant une condition dans un algorithme, il faut se méfier comme de la peste de certains raccourcis du langage courant, ou de certaines notations valides en mathématiques, mais qui mènent à des non-sens informatiques. Prenons par exemple la phrase « Toto est compris entre 5 et 8 ». On peut être tenté de la traduire par : 5 < Toto < 8 Or, une telle expression, qui a du sens en français, comme en mathématiques, ne veut rien dire en programmation. En effet, elle comprend deux opérateurs de comparaison, soit un de trop, et trois valeurs, soit là aussi une de trop. On va voir dans un instant comment traduire convenablement une telle condition.

4. Conditions composées

Certains problèmes exigent parfois de formuler des conditions qui ne peuvent pas être exprimées sous la forme simple exposée ci-dessus. Reprenons le cas « Toto est inclus entre 5 et 8 ». En fait cette phrase cache non une, mais deux conditions. Car elle revient à dire que « Toto est supérieur à 5 et Toto est inférieur à 8 ». Il y a donc bien là deux conditions, reliées par ce qu'on appelle un opérateur logique, le mot ET.

Comme on l'a évoqué plus haut, l'informatique met à notre disposition quatre opérateurs logiques : ET, OU, NON, et XOR.

- Le ET a le même sens en informatique que dans le langage courant. Pour que "Condition1 ET Condition2" soit VRAI, il faut impérativement que Condition1 soit VRAI et que Condition2 soit VRAI. Dans tous les autres cas, "Condition 1 et Condition2" sera faux.
- Il faut se méfier un peu plus du OU. Pour que "Condition1 OU Condition2" soit VRAI, il suffit que Condition1 soit VRAIE ou que Condition2 soit VRAIE. Le point important est que si Condition1 est VRAIE et que Condition2 est VRAIE aussi, Condition1 OU Condition2 reste VRAIE. Le OU informatique ne veut donc pas dire « ou bien »
- Le XOR (ou OU exclusif) fonctionne de la manière suivante. Pour que "Condition1 XOR Condition2" soit VRAI, il faut que soit Condition1 soit VRAI, soit que Condition2 soit VRAI. Si toutes les deux sont fausses, ou que toutes les deux sont VRAI, alors le résultat

global est considéré comme FAUX. Le XOR est donc l'équivalent du "ou bien" du langage courant.

J'insiste toutefois sur le fait que le XOR est une rareté, dont il n'est pas strictement indispensable de s'encombrer en programmation.

• Enfin, le NON inverse une condition : NON(Condition1)est VRAI si Condition1 est FAUX, et il sera FAUX si Condition1 est VRAI. C'est l'équivalent pour les booléens du signe "moins" que l'on place devant les nombres.

Alors, vous vous demandez peut-être à quoi sert ce NON. Après tout, plutôt qu'écrire NON(Prix > 20), il serait plus simple d'écrire tout bonnement Prix=<20. Dans ce cas précis, c'est évident qu'on se complique inutilement la vie avec le NON. Mais si le NON n'est jamais indispensable, il y a tout de même des situations dans lesquelles il s'avère bien utile.

On représente fréquemment tout ceci dans des **tables de vérité** (C1 et C2 représentent deux conditions, et on envisage à chaque fois les quatre cas possibles)

C1 et C2	C2 Vrai	C2 Faux
C1 Vrai	Vrai	Faux
C1 Faux	Faux	Faux

C1 ou C2	C2 Vrai	C2 Faux
C1 Vrai	Vrai	Vrai
C1 Faux	Vrai	Faux

C1 xor C2	C2 Vrai	C2 Faux
C1 Vrai	Faux	Vrai
C1 Faux	Vrai	Faux

Non C1	
C1 Vrai	Faux
C1 Faux	Vrai

LE GAG DE LA JOURNÉE...

...Consiste à formuler dans un test une condition qui ne pourra jamais être vraie, ou jamais être fausse. Si ce n'est pas fait exprès, c'est assez rigolo. Si c'est fait exprès, c'est encore plus drôle, car une condition dont on sait d'avance qu'elle sera toujours fausse n'est pas une condition. Dans tous les cas, cela veut dire qu'on a écrit un test qui n'en est pas un, et qui fonctionne comme s'il n'y en avait pas.

Cela peut être par exemple : Si Toto < 10 ET Toto > 15 Alors... (il est très difficile de trouver un nombre qui soit à la fois inférieur à 10 et supérieur à 15 !)

Bon, ça, c'est un motif immédiat pour payer une tournée générale, et je sens qu'on ne restera pas longtemps le gosier sec.

5. Tests imbriqués

Graphiquement, on peut très facilement représenter un SI comme un aiguillage de chemin de fer (ou un aiguillage de train électrique, c'est moins lourd à porter). Un SI ouvre donc deux voies, correspondant à deux traitements différents. Mais il y a des tas de situations où deux voies ne suffisent pas. Par exemple, un programme devant donner l'état de l'eau selon sa température doit pouvoir choisir entre trois réponses possibles (solide, liquide ou gazeuse).

Une première solution serait la suivante :

Vous constaterez que c'est un peu laborieux. Les conditions se ressemblent plus ou moins, et surtout on oblige la machine à examiner trois tests successifs alors que tous portent sur une même chose, la température de l'eau (la valeur de la variable Temp). Il serait ainsi bien plus rationnel d'imbriquer les tests de cette manière :

```
Variable Temp en Entier
Début
```

```
Ecrire "Entrez la température de l'eau :"
Lire Temp
Si Temp =< 0 Alors
    Ecrire "C'est de la glace"
Sinon
    Si Temp < 100 Alors
    Ecrire "C'est du liquide"
    Sinon
    Ecrire "C'est de la vapeur"
    Finsi
Finsi
Finsi</pre>
```

Nous avons fait des économies : au lieu de devoir taper trois conditions, dont une composée, nous n'avons plus que deux conditions simples. Mais aussi, et surtout, nous avons fait des économies sur le temps d'exécution de l'ordinateur. Si la température est inférieure à zéro, celui-ci écrit dorénavant « C'est de la glace » et passe directement à la fin, sans être ralenti par l'examen d'autres possibilités (qui sont forcément fausses).

Cette deuxième version n'est donc pas seulement plus simple à écrire et plus lisible, elle est également plus performante à l'exécution.

Les structures de tests imbriqués sont donc un outil indispensable à la simplification et à l'optimisation des algorithmes.

6. De l'aiguillage à la gare de tri

« J'ai l'âme ferroviaire : je regarde passer les vaches » (Léo Ferré)

Cette citation n'apporte peut-être pas grand chose à cet exposé, mais je l'aime bien, alors c'était le moment ou jamais.

En effet, dans un programme, une structure SI peut être facilement comparée à un aiguillage de train. La voie principale se sépare en deux, le train devant rouler ou sur l'une, ou sur l'autre, et les deux voies se rejoignant tôt ou tard pour ne plus en former qu'une seule, lors du FinSi. On peut schématiser cela ainsi :

Mais dans certains cas, ce ne sont pas deux voies qu'il nous faut, mais trois, ou même plus. Dans le cas de l'état de l'eau, il nous faut trois voies pour notre « train », puisque l'eau peut être solide, liquide ou gazeuse.

Alors, nous n'avons pas eu le choix : pour deux voies, il nous fallait un aiguillage, pour trois voies il nous en faut deux, imbriqués l'un dans l'autre.

Cette structure (telle que nous l'avons programmée à la page précédente) devrait être schématisée comme suit :

Soyons bien clairs : cette structure est la seule possible du point de vue logique (même si on peut toujours mettre le bas en haut et le haut en bas). Mais du point de vue de l'écriture, le pseudo-code algorithmique admet une simplification supplémentaire. Ainsi, il est possible (mais non obligatoire, que l'algorithme initial :

```
Variable Temp en Entier
Début
Ecrire "Entrez la température de l'eau :"
Lire Temp
Si Temp =< 0 Alors
    Ecrire "C'est de la glace"
Sinon
    Si Temp < 100 Alors
        Ecrire "C'est du liquide"
    Sinon
        Ecrire "C'est de la vapeur"
    Finsi
Finsi
Fin</pre>
```

devienne:

```
Variable Temp en Entier

Début

Ecrire "Entrez la température de l'eau :"

Lire Temp

Si Temp =< 0 Alors

Ecrire "C'est de la glace"

SinonSi Temp < 100 Alors

Ecrire "C'est du liquide"

Sinon

Ecrire "C'est de la vapeur"

Finsi

Fin
```

Dans le cas de tests imbriqués, le Sinon et le Si peuvent être fusionnés en un SinonSi. On considère alors qu'il s'agit d'un seul bloc de test, conclu par un seul FinSi

Le **SinonSi** permet en quelque sorte de créer (en réalité, de simuler) des aiguillages à plus de deux branches. On peut ainsi enchaîner les SinonSi les uns derrière les autres pour simuler un aiguillage à autant de branches que l'on souhaite.

7. Variables Booléennes

Jusqu'ici, pour écrire nos tests, nous avons utilisé uniquement des **conditions**. Mais vous vous rappelez qu'il existe un type de variables (les booléennes) susceptibles de stocker les valeurs VRAI ou FAUX. En fait, on peut donc entrer des conditions dans ces variables, et tester ensuite la valeur de ces variables.

Reprenons l'exemple de l'eau. On pourrait le réécrire ainsi :

```
Variable Temp en Entier

Variables A, B en Booléen

Début

Ecrire "Entrez la température de l'eau :"

Lire Temp

A ← Temp =< 0

B ← Temp < 100

Si A Alors

Ecrire "C'est de la glace"

SinonSi B Alors

Ecrire "C'est du liquide"

Sinon

Ecrire "C'est de la vapeur"

Finsi

Fin
```

A priori, cette technique ne présente guère d'intérêt : on a alourdi plutôt qu'allégé l'algorithme de départ, en ayant recours à deux variables supplémentaires.

- Mais souvenons-nous : une variable booléenne n'a besoin que d'un seul bit pour être stockée. De ce point de vue, l'alourdissement n'est donc pas considérable.
- dans certains cas, notamment celui de conditions composées très lourdes (avec plein de ET et de OU tout partout) cette technique peut faciliter le travail du programmeur, en améliorant nettement la lisibilité de l'algorithme. Les variables booléennes peuvent également s'avérer très utiles pour servir de flag, technique dont on reparlera

plus loin (rassurez-vous, rien à voir avec le flagrant délit des policiers).

Encore de la Logique

1. Faut-il mettre un ET? Faut-il mettre un OU?

Une remarque pour commencer : dans le cas de conditions composées, les parenthèses jouent un rôle fondamental.

```
Variables A, B, C, D, E en Booléen

Variable X en Entier

Début

Lire X

A ← X > 12

B ← X > 2

C ← X < 6

D ← (A ET B) OU C

E ← A ET (B OU C)

Ecrire D, E

Fin
```

Si X = 3, alors on remarque que D sera VRAI alors que E sera FAUX.

S'il n'y a dans une condition que des ET, ou que des OU, en revanche, les parenthèses ne changent strictement rien.

Dans une condition composée employant à la fois des opérateurs ET et des opérateurs OU, la présence de parenthèses possède une influence sur le résultat, tout comme dans le cas d'une expression numérique comportant des multiplications et des additions.

On en arrive à une autre propriété des ET et des OU, bien plus intéressante.

Spontanément, on pense souvent que ET et OU s'excluent mutuellement, au sens où un problème donné s'exprime soit avec un ET, soit avec un OU. Pourtant, ce n'est pas si évident.

Quand faut-il ouvrir la fenêtre de la salle ? Uniquement si les conditions l'imposent, à savoir :

```
Si il fait trop chaud ET il ne pleut pas Alors
  Ouvrir la fenêtre
Sinon
```

```
Fermer la fenêtre
Finsi
```

Cette petite règle pourrait tout aussi bien être formulée comme suit :

```
Si il ne fait pas trop chaud OU il pleut Alors
  Fermer la fenêtre
Sinon
  Ouvrir la fenêtre
Finsi
```

Ces deux formulations sont strictement équivalentes. Ce qui nous amène à la conclusion suivante :

Toute structure de test requérant une condition composée faisant intervenir l'opérateur ET peut être exprimée de manière équivalente avec un opérateur OU, et réciproquement.

Ceci est moins surprenant qu'il n'y paraît au premier abord. Jetez pour vous en convaincre un œil sur les tables de vérité, et vous noterez la symétrie entre celle du ET et celle du OU. Dans les deux tables, il y a trois cas sur quatre qui mènent à un résultat, et un sur quatre qui mène au résultat inverse. Alors, rien d'étonnant à ce qu'une situation qui s'exprime avec une des tables (un des opérateurs logiques) puisse tout aussi bien être exprimée avec l'autre table (l'autre opérateur logique). Toute l'astuce consiste à savoir effectuer correctement ce passage.

Bien sûr, on ne peut pas se contenter de remplacer purement et simplement les ET par des OU; ce serait un peu facile. La règle d'équivalence est la suivante (on peut la vérifier sur l'exemple de la fenêtre):

```
Si A ET B Alors
   Instructions 1
Sinon
   Instructions 2
Finsi

équivaut à :

Si NON A OU NON B Alors
   Instructions 2
Sinon
   Instructions 1
Finsi
```

Cette règle porte le nom de **transformation de Morgan**, du nom du mathématicien anglais qui l'a formulée.

2. Au-delà de la logique : le style

Ce titre un peu provocateur (mais néanmoins justifié) a pour but d'attirer maintenant votre attention sur un fait fondamental en algorithmique, fait que plusieurs remarques précédentes ont déjà dû vous faire soupçonner : il n'y a jamais une seule manière juste de traiter les structures alternatives. Et plus généralement, il n'y a jamais une seule manière juste de traiter un problème. Entre les différentes possibilités, qui ne sont parfois pas meilleures les unes que les autres, le choix est une affaire de **style**.

C'est pour cela qu'avec l'habitude, on reconnaît le style d'un programmeur aussi sûrement que s'il s'agissait de style littéraire.

Reprenons nos opérateurs de comparaison maintenant familiers, le ET et le OU. En fait, on s'aperçoit que l'on pourrait tout à fait s'en passer! Par exemple, pour reprendre l'exemple de la fenêtre de la salle:

```
Si il fait trop chaud ET il ne pleut pas Alors
  Ouvrir la fenêtre
Sinon
  Fermer la fenêtre
Finsi
```

Possède un parfait équivalent algorithmique sous la forme de :

```
Si il fait trop chaud Alors
Si il ne pleut pas Alors
Ouvrir la fenêtre
Sinon
Fermer la fenêtre
Finsi
Sinon
Fermer la fenêtre
Finsi
```

Dans cette dernière formulation, nous n'avons plus recours à une condition composée (mais au prix d'un test imbriqué supplémentaire)

Et comme tout ce qui s'exprime par un ET peut aussi être exprimé par un OU, nous en concluons que le OU peut également être remplacé par un test imbriqué supplémentaire. On peut ainsi poser cette règle stylistique générale :

Dans une structure alternative complexe, les conditions composées, l'imbrication des structures de tests et l'emploi des variables booléennes ouvrent la possibilité de choix stylistiques différents. L'alourdissement des conditions allège les structures de tests et le nombre des booléens nécessaires; l'emploi de booléens supplémentaires permet d'alléger les conditions et les structures de tests, et ainsi de suite.

Si vous avez compris ce qui précède, et que l'exercice de la date ne vous pose plus aucun problème, alors vous savez tout ce qu'il y a à savoir sur les tests pour affronter n'importe quelle situation. Non, ce n'est pas de la démagogie!

Malheureusement, nous ne sommes pas tout à fait au bout de nos peines ; il reste une dernière structure logique à examiner, et pas des moindres...

Les Boucles

Et ça y est, on y est, on est arrivés, la voilà, c'est Broadway, la quatrième et dernière structure : ça est les **boucles**. Si vous voulez épater vos amis, vous pouvez également parler de **structures répétitives**, voire carrément de **structures itératives**. Ca calme, hein ? Bon, vous faites ce que vous voulez, ici on est entre nous, on parlera de boucles.

Les boucles, c'est généralement le point douloureux de l'apprenti programmeur. C'est là que ça coince, car autant il est assez facile de comprendre comment fonctionnent les boucles, autant il est souvent long d'acquérir les réflexes qui permettent de les élaborer judicieusement pour traiter un problème donné.

On peut dire en fait que les boucles constituent la seule vraie structure logique caractéristique de la programmation. Si vous avez utilisé un tableur comme Excel, par exemple, vous avez sans doute pu manier des choses équivalentes aux variables (les cellules, les formules) et aux tests (la fonction SI...). Mais les boucles, ça, ça n'a aucun équivalent. Cela n'existe que dans les langages de programmation proprement dits.

Le maniement des boucles, s'il ne différencie certes pas l'homme de la bête (il ne faut tout de même pas exagérer), est tout de même ce qui sépare en informatique le programmeur de l'utilisateur, même averti.

Alors, à vos futures – et inévitables - difficultés sur le sujet, il y a trois remèdes : de la rigueur, de la patience, et encore de la rigueur !

1. A quoi cela sert-il donc?

Prenons le cas d'une saisie au clavier (une lecture), où par exemple, le programme pose une question à laquelle l'utilisateur doit répondre par O (Oui) ou N (Non). Mais tôt ou tard, l'utilisateur, facétieux ou maladroit, risque de taper autre chose que la réponse attendue. Dès lors, le programme peut planter soit par une erreur d'exécution (parce que le type de réponse ne correspond pas au type de la variable attendu) soit par une erreur fonctionnelle (il se déroule normalement jusqu'au bout, mais en produisant des résultats fantaisistes).

Alors, dans tout programme un tant soit peu sérieux, on met en place ce qu'on appelle un **contrôle de saisie**, afin de vérifier que les données entrées au clavier correspondent bien à celles attendues par l'algorithme.

A vue de nez, on pourrait essayer avec un SI. Voyons voir ce que ça donne :

```
Variable Rep en Caractère

Début

Ecrire "Voulez vous un café ? (0/N)"

Lire Rep

Si Rep <> "0" et Rep <> "N" Alors

Ecrire "Saisie erronnée. Recommencez"

Lire Rep

FinSi

Fin
```

C'est impeccable. Du moins tant que l'utilisateur a le bon goût de ne se tromper qu'une seule fois, et d'entrer une valeur correcte à la deuxième demande. Si l'on veut également bétonner en cas de deuxième erreur, il faudrait rajouter un SI. Et ainsi de suite, on peut rajouter des centaines de SI, et écrire un algorithme aussi lourd qu'une blague des Grosses Têtes, on n'en sortira pas, il y aura toujours moyen qu'un acharné flanque le programme par terre.

La solution consistant à aligner des SI... en pagaille est donc une impasse. La seule issue est donc de flanquer une **structure de boucle**, qui se présente ainsi :

```
TantQue booléen
...
Instructions
...
FinTantQue
```

Le principe est simple : le programme arrive sur la ligne du TantQue. Il examine alors la valeur du booléen (qui, je le rappelle, peut être une variable booléenne ou, plus fréquemment, une condition). Si cette valeur est VRAI, le programme exécute les instructions qui suivent, jusqu'à ce qu'il rencontre la ligne FinTantQue. Il retourne ensuite sur la ligne du TantQue, procède au même examen, et ainsi de suite. Le manège enchanté ne s'arrête que lorsque le booléen prend la valeur FAUX.

Illustration avec notre problème de contrôle de saisie. Une première approximation de la solution consiste à écrire :

```
Variable Rep en Caractère
Début
Ecrire "Voulez vous un café ? (0/N)"
TantQue Rep <> "0" et Rep <> "N"
   Lire Rep
FinTantQue
FinTantQue
```

Là, on a le squelette de l'algorithme correct. Mais de même qu'un squelette ne suffit pas pour avoir un être vivant viable, il va nous falloir ajouter quelques muscles et organes sur cet algorithme pour qu'il fonctionne correctement.

Son principal défaut est de provoquer une erreur à chaque exécution. En effet, l'expression booléenne qui figure après le TantQue interroge la valeur de la variable Rep. Malheureusement, cette variable, si elle a été déclarée, n'a pas été affectée avant l'entrée dans la boucle. On teste donc une variable qui n'a pas de valeur, ce qui provoque une erreur et l'arrêt immédiat de l'exécution. Pour éviter ceci, on n'a pas le choix : il faut que la variable Rep ait déjà été affectée avant qu'on en arrive au premier tour de boucle. Pour cela, on peut faire une première lecture de Rep avant la boucle. Dans ce cas, celle-ci ne servira qu'en cas de mauvaise saisie lors de cette première lecture. L'algorithme devient alors :

```
Variable Rep en Caractère

Début

Ecrire "Voulez vous un café ? (O/N)"

Lire Rep

TantQue Rep <> "O" et Rep <> "N"

Lire Rep

FinTantQue

Fin
```

Une autre possibilité, fréquemment employée, consiste à ne pas lire, mais à affecter arbitrairement la variable avant la boucle. Arbitrairement ? Pas tout à fait, puisque cette affectation doit avoir pour résultat de provoquer l'entrée obligatoire dans la boucle. L'affectation doit donc faire en sorte que le booléen soit mis à VRAI pour déclencher le premier tour de la boucle. Dans notre exemple, on peut donc affecter Rep avec n'importe quelle valeur, hormis « O » et « N »: car dans ce cas, l'exécution sauterait la boucle, et Rep ne serait pas du tout lue au clavier. Cela donnera par exemple:

```
Variable Rep en Caractère
Début
Rep ← "X"
Ecrire "Voulez vous un café ? (0/N)"
TantQue Rep <> "0" et Rep <> "N"
```

Lire Rep FinTantQue Fin

Cette manière de procéder est à connaître, car elle est employée très fréquemment.

Il faut remarquer que les deux solutions (lecture initiale de Rep en dehors de la boucle ou affectation de Rep) rendent toutes deux l'algorithme satisfaisant, mais présentent une différence assez importante dans leur structure logique.

En effet, si l'on choisit d'effectuer une lecture préalable de Rep, la boucle ultérieure sera exécutée uniquement dans l'hypothèse d'une mauvaise saisie initiale. Si l'utilisateur saisit une valeur correcte à la première demande de Rep, l'algorithme passera sur la boucle sans entrer dedans.

En revanche, avec la deuxième solution (celle d'une affectation préalable de Rep), l'entrée de la boucle est forcée, et l'exécution de celle-ci, au moins une fois, est rendue obligatoire à chaque exécution du programme. Du point de vue de l'utilisateur, cette différence est tout à fait mineure ; et à la limite, il ne la remarquera même pas. Mais du point de vue du programmeur, il importe de bien comprendre que les cheminements des instructions ne seront pas les mêmes dans un cas et dans l'autre.

Pour terminer, remarquons que nous pourrions peaufiner nos solutions en ajoutant des affichages de libellés qui font encore un peu défaut. Ainsi, si l'on est un programmeur zélé, la première solution (celle qui inclut deux lectures de Rep, une en dehors de la boucle, l'autre à l'intérieur) pourrait devenir :

Quant à la deuxième solution, elle pourra devenir :

```
Variable Rep en Caractère
Début
Rep ← "X"
Ecrire "Voulez vous un café ? (0/N)"
TantQue Rep <> "0" et Rep <> "N"
    Lire Rep
Si Rep <> "0" et Rep <> "N" Alors
```

```
Ecrire "Saisie Erronée, Recommencez"
FinSi
FinTantQue
Fin
```

Le(s) gag(s) de la journée C'est d'écrire une structure TantQue dans laquelle le booléen n'est jamais VRAI. Le programme ne rentre alors jamais dans la superbe boucle sur laquelle vous avez tant sué!

Mais la faute symétrique moins aussi désopilante. est au Elle consiste à écrire une boucle dans laquelle le booléen ne devient jamais FAUX. L'ordinateur tourne alors dans la boucle comme un dératé et n'en sort plus. Seule solution, quitter le programme avec un démonte-pneu ou un bâton de dynamite. La « boucle infinie » est une des hantises les plus redoutées des programmeurs. C'est un peu comme le verre baveur, le poil à gratter ou le bleu de méthylène : c'est éculé, mais fait ça toujours rire. Cette faute de programmation grossière – mais fréquente - ne manquera pas d'égayer l'ambiance collective de cette formation... et accessoirement d'étancher la soif proverbiale de vos enseignants.

Bon, eh bien vous allez pouvoir faire de chouettes algorithmes, déjà rien qu'avec ça...

2. Boucler en comptant, ou compter en bouclant

Dans le dernier exercice, vous avez remarqué qu'une boucle pouvait être utilisée pour augmenter la valeur d'une variable. Cette utilisation des boucles est très fréquente, et dans ce cas, il arrive très souvent qu'on ait besoin d'effectuer un nombre **déterminé** de passages. Or, a priori, notre structure TantQue ne sait pas à l'avance combien de tours de boucle elle va effectuer (puisque le nombre de tours dépend de la valeur d'un booléen).

C'est pourquoi une autre structure de boucle est à notre disposition :

```
Variable Truc en Entier
Début
Truc ← 0
TantQue Truc < 15
   Truc ← Truc + 1
   Ecrire "Passage numéro : ", Truc
FinTantQue
Fin</pre>
```

Equivaut à :

```
Variable Truc en Entier
Début
```

```
Pour Truc ← 1 à 15

Ecrire "Passage numéro : ", Truc

Truc Suivant
Fin
```

Insistons: la structure « Pour ... Suivant » n'est pas du tout indispensable; on pourrait fort bien programmer toutes les situations de boucle uniquement avec un « Tant Que ». Le seul intérêt du « Pour » est d'épargner un peu de fatigue au programmeur, en lui évitant de gérer lui-même la progression de la variable qui lui sert de compteur (on parle d'incrémentation, encore un mot qui fera forte impression sur votre entourage).

Dit d'une autre manière, la structure « Pour ... Suivant » est un cas particulier de TantQue : celui où le programmeur peut dénombrer à l'avance le nombre de tours de boucles nécessaires.

Il faut noter que dans une structure « Pour ... Suivant », la progression du compteur est laissée à votre libre disposition. Dans la plupart des cas, on a besoin d'une variable qui augmente de 1 à chaque tour de boucle. On ne précise alors rien à l'instruction « Pour » ; celle-ci, par défaut, comprend qu'il va falloir procéder à cette incrémentation de 1 à chaque passage, en commençant par la première valeur et en terminant par la deuxième.

Mais si vous souhaitez une progression plus spéciale, de 2 en 2, ou de 3 en 3, ou en arrière, de –1 en –1, ou de –10 en –10, ce n'est pas un problème : il suffira de le préciser à votre instruction « Pour » en lui rajoutant le mot « Pas » et la valeur de ce pas (Le « pas » dont nous parlons, c'est le « pas » du marcheur, « step » en anglais).

Naturellement, quand on stipule un pas négatif dans une boucle, la valeur initiale du compteur doit être **supérieure** à sa valeur finale si l'on veut que la boucle tourne! Dans le cas contraire, on aura simplement écrit une boucle dans laquelle le programme ne rentrera jamais.

Nous pouvons donc maintenant donner la formulation générale d'une structure « Pour ». Sa syntaxe générale est :

```
Pour Compteur ← Initial à Final Pas ValeurDuPas
...
Instructions
...
Compteur suivant
```

Les structures **TantQue** sont employées dans les situations où l'on doit procéder à un traitement systématique sur les éléments d'un ensemble dont on ne connaît pas d'avance la quantité, comme par exemple :

• le contrôle d'une saisie

- la gestion des tours d'un jeu (tant que la partie n'est pas finie, on recommence)
- la lecture des enregistrements d'un fichier de taille inconnue(cf. Partie 9)

Les structures **Pour** sont employées dans les situations où l'on doit procéder à un traitement systématique sur les éléments d'un ensemble dont le programmeur connaît d'avance la quantité.

Nous verrons dans les chapitres suivants des séries d'éléments appelés tableaux (parties 7 et 8) et chaînes de caractères (partie 9). Selon les cas, le balayage systématique des éléments de ces séries pourra être effectué par un Pour ou par un TantQue : tout dépend si la quantité d'éléments à balayer (donc le nombre de tours de boucles nécessaires) peut être dénombrée à l'avance par le programmeur ou non.

3. Des boucles dans des boucles (« tout est dans tout... et réciproquement »)

On rigole, on rigole!

De même que les poupées russes contiennent d'autres poupées russes, de même qu'une structure SI ... ALORS peut contenir d'autres structures SI ... ALORS, une boucle peut tout à fait contenir d'autres boucles. Y a pas de raison.

```
Variables Truc, Trac en Entier
Début
Pour Truc ← 1 à 15
   Ecrire "Il est passé par ici"
   Pour Trac ← 1 à 6
        Ecrire "Il repassera par là"
   Trac Suivant
Truc Suivant
Fin
```

Dans cet exemple, le programme écrira une fois "il est passé par ici" puis six fois de suite "il repassera par là", et ceci quinze fois en tout. A la fin, il y aura donc eu $15 \times 6 = 90$ passages dans la deuxième boucle (celle du milieu), donc 90 écritures à l'écran du message « il repassera par là ». Notez la différence marquante avec cette structure :

```
Variables Truc, Trac en Entier

Début

Pour Truc ← 1 à 15

Ecrire "Il est passé par ici"

Truc Suivant

Pour Trac ← 1 à 6

Ecrire "Il repassera par là"
```

Trac Suivant Fin

Ici, il y aura quinze écritures consécutives de "il est passé par ici", puis six écritures consécutives de "il repassera par là", et ce sera tout.

Des boucles peuvent donc être **imbriquées** (cas n°1) ou **successives** (cas n°2). Cependant, elles ne peuvent jamais, au grand jamais, être croisées. Cela n'aurait aucun sens logique, et de plus, bien peu de langages vous autoriseraient ne serait-ce qu'à écrire cette structure aberrante.

```
Variables Truc, Trac en Entier
Pour Truc ← ...
  instructions
  Pour Trac ← ...
   instructions
Truc Suivant
  instructions
Trac Suivant
```

Pourquoi imbriquer des boucles? Pour la même raison qu'on imbrique des tests. La traduction en bon français d'un test, c'est un « cas ». Eh bien un « cas » (par exemple, « est-ce un homme ou une femme ? ») peut très bien se subdiviser en d'autres cas (« a-t-il plus ou moins de 18 ans ? »).

De même, une boucle, c'est un traitement systématique, un examen d'une série d'éléments un par un (par exemple, « prenons tous les employés de l'entreprise un par un »). Eh bien, on peut imaginer que pour chaque élément ainsi considéré (pour chaque employé), on doive procéder à un examen systématique d'autre chose (« prenons chacune des commandes que cet employé a traitées »). Voilà un exemple typique de boucles imbriquées : on devra programmer une boucle principale (celle qui prend les employés un par un) et à l'intérieur, une boucle secondaire (celle qui prend les commandes de cet employé une par une).

Dans la pratique de la programmation, la maîtrise des boucles imbriquées est nécessaire, même si elle n'est pas suffisante. Tout le contraire d'Alain Delon, en quelque sorte.

4. Et encore une bêtise à ne pas faire!

Examinons l'algorithme suivant :

```
Variable Truc en Entier

Début

Pour Truc ← 1 à 15

Truc ← Truc * 2

Ecrire "Passage numéro : ", Truc
```

Truc Suivant

Fin

Vous remarquerez que nous faisons ici gérer « en double » la variable Truc, ces deux gestions étant contradictoires. D'une part, la ligne

Pour...

augmente la valeur de Truc de 1 à chaque passage. D'autre part la ligne

Truc ← Truc * 2

double la valeur de Truc à chaque passage. Il va sans dire que de telles manipulations perturbent complètement le déroulement normal de la boucle, et sont causes, sinon de plantages, tout au moins d'exécutions erratiques.

Le gag de la journée Il consiste donc à manipuler, au sein d'une boucle **Pour**, la variable qui sert de compteur à cette boucle. Cette technique est à proscrire absolument... sauf bien sûr, si vous cherchez un prétexte pour régaler tout le monde au bistrot. Mais dans ce cas, n'ayez aucune inhibition, proposez-le directement, pas besoin de prétexte.

Les Tableaux

Bonne nouvelle! Je vous avais annoncé qu'il y a avait en tout et pour tout quatre structures logiques dans la programmation. Eh bien, ça y est, on les a toutes passées en revue.

Mauvaise nouvelle, il vous reste tout de même quelques petites choses à apprendre...

1. Utilité des tableaux

Imaginons que dans un programme, nous ayons besoin simultanément de 12 valeurs (par exemple, des notes pour calculer une moyenne).

Evidemment, la seule solution dont nous disposons à l'heure actuelle consiste à déclarer douze variables, appelées par exemple Notea, Noteb, Notec, etc. Bien sûr, on peut opter pour une notation un peu simplifiée, par exemple N1, N2, N3, etc. Mais cela ne change pas fondamentalement notre problème, car arrivé au calcul, et après une succession de douze instructions « Lire » distinctes, cela donnera obligatoirement une atrocité du genre :

$Moy \leftarrow (N1+N2+N3+N4+N5+N6+N7+N8+N9+N10+N11+N12)/12$

Ouf! C'est tout de même bigrement laborieux. Et pour un peu que nous soyons dans un programme de gestion avec quelques centaines ou quelques milliers de valeurs à traiter, alors là c'est le suicide direct.

Cerise sur le gâteau, si en plus on est dans une situation on l'on ne peut pas savoir d'avance combien il y aura de valeurs à traiter, là on est carrément cuits.

C'est pourquoi la programmation nous permet de rassembler toutes ces variables en une seule, au sein de laquelle chaque valeur sera désignée par un numéro. En bon français, cela donnerait donc quelque chose du genre « la note numéro 1 », « la note numéro 2 », « la note numéro 8 ». C'est largement plus pratique, vous vous en doutez.

Un ensemble de valeurs portant le même nom de variable et repérées par un nombre, s'appelle un tableau, ou encore une variable indicée. Le nombre qui, au sein d'un tableau, sert à repérer chaque valeur s'appelle – ô surprise – l'indice.

Chaque fois que l'on doit désigner un élément du tableau, on fait figurer le nom du tableau, suivi de l'indice de l'élément, entre parenthèses.

2. Notation et utilisation algorithmique

Dans notre exemple, nous créerons donc un tableau appelé Note. Chaque note individuelle (chaque élément du tableau Note) sera donc désignée Note(0), Note(1), etc. Eh oui, attention, les indices des tableaux commencent généralement à 0, et non à 1.

Un tableau doit être déclaré comme tel, en précisant le nombre et le type de valeurs qu'il contiendra (la déclaration des tableaux est susceptible de varier d'un langage à l'autre. Certains langages réclament le nombre d'éléments, d'autre le plus grand indice... C'est donc une affaire de conventions).

En nous calquant sur les choix les plus fréquents dans les langages de programmations, nous déciderons ici arbitrairement et une bonne fois pour toutes que :

- les "cases" sont numérotées à partir de zéro, autrement dit que le plus petit indice est zéro.
- lors de la déclaration d'un tableau, on précise la plus grande valeur de l'indice (différente, donc, du nombre de cases du tableau, puisque si on veut 12 emplacements, le plus grand indice sera 11). Au début, ça déroute, mais vous verrez, avec le temps, on se fait à tout, même au pire.

Tableau Note(11) en Entier

On peut créer des tableaux contenant des variables de tous types : tableaux de numériques, bien sûr, mais aussi tableaux de caractères, tableaux de booléens, tableaux de tout ce qui existe dans un langage donné comme type de variables. Par contre, hormis dans quelques rares langages, on ne peut pas faire un mixage de types différents de valeurs au sein d'un même tableau.

L'énorme avantage des tableaux, c'est qu'on va pouvoir les traiter en faisant des boucles. Par exemple, pour effectuer notre calcul de moyenne, cela donnera par exemple :

```
Tableau Note(11) en Numérique
Variables Moy, Som en Numérique
Début
Pour i ← 0 à 11
    Ecrire "Entrez la note n°", i
    Lire Note(i)
i Suivant
Som ← 0
Pour i ← 0 à 11
    Som ← Som + Note(i)
i Suivant
Moy ← Som / 12
Fin
```

NB: On a fait deux boucles successives pour plus de lisibilité, mais on aurait tout aussi bien pu n'en écrire qu'une seule dans laquelle on aurait tout fait d'un seul coup.

Remarque générale : l'indice qui sert à désigner les éléments d'un tableau peut être exprimé directement comme un nombre en clair, mais il peut être aussi une variable, ou une expression calculée.

Dans un tableau, la valeur d'un indice doit toujours :

• **être égale au moins à 0** (dans quelques rares langages, le premier élément d'un tableau porte l'indice 1). Mais comme je l'ai déjà écrit plus haut, nous avons choisi ici de commencer la numérotation

des indices à zéro, comme c'est le cas en langage C et en Visual Basic. Donc attention, Truc(6) est le septième élément du tableau Truc!

- **être un nombre entier** Quel que soit le langage, l'élément Truc(3,1416) n'existe jamais.
- être inférieure ou égale au nombre d'éléments du tableau (moins 1, si l'on commence la numérotation à zéro). Si le tableau Bidule a été déclaré comme ayant 25 éléments, la présence dans une ligne, sous une forme ou sous une autre, de Bidule(32) déclenchera automatiquement une erreur.

Je le re-re-répète, si l'on est dans un langage où les indices commencent à zéro, il faut en tenir compte à la déclaration :

Tableau Note(13) en Numérique

...créera un tableau de 14 éléments, le plus petit indice étant 0 et le plus grand 13.

LE GAG DE LA JOURNEE

Il consiste à confondre, dans sa tête et / ou dans un algorithme, l'**indice** d'un élément d'un tableau avec le **contenu** de cet élément. La troisième maison de la rue n'a pas forcément trois habitants, et la vingtième vingt habitants. En notation algorithmique, il n'y a aucun rapport entre i et truc(i).

Holà, Tavernier, prépare la cervoise!

3. Tableaux dynamiques

Il arrive fréquemment que l'on ne connaisse pas à l'avance le nombre d'éléments que devra comporter un tableau. Bien sûr, une solution consisterait à déclarer un tableau gigantesque (10 000 éléments, pourquoi pas, au diable les varices) pour être sûr que « ça rentre ». Mais d'une part, on n'en sera jamais parfaitement sûr, d'autre part, en raison de l'immensité de la place mémoire réservée – et la plupart du temps non utilisée, c'est un gâchis préjudiciable à la rapidité, voire à la viabilité, de notre algorithme.

Aussi, pour parer à ce genre de situation, a-t-on la possibilité de déclarer le tableau sans préciser au départ son nombre d'éléments. Ce n'est que dans un second temps, au cours du programme, que l'on va fixer ce nombre via une instruction de redimensionnement : Redim.

Notez que tant qu'on n'a pas précisé le nombre d'éléments d'un tableau, d'une manière ou d'une autre, ce tableau est inutilisable.

Exemple : on veut faire saisir des notes pour un calcul de moyenne, mais on ne sait pas combien il y aura de notes à saisir. Le début de l'algorithme sera quelque chose du genre :

```
Tableau Notes() en Numérique
Variable nb en Numérique
Début
Ecrire "Combien y a-t-il de notes à saisir ?"
Lire nb
Redim Notes(nb-1)
...
```

Cette technique n'a rien de sorcier, mais elle fait partie de l'arsenal de base de la programmation en gestion.

Tableaux Multidimensionnels

« Le vrai problème n'est pas de savoir si les machines pensent, mais de savoir si les hommes pensent » - B.F. Skinner

« La question de savoir si un ordinateur peut penser n'est pas plus intéressante que celle de savoir si un sous-marin peut nager » - Edgar W. Dijkstra

Ceci n'est pas un dérèglement de votre téléviseur. Nous contrôlons tout, nous savons tout, et les phénomènes paranormaux que vous constatez sont dus au fait que vous êtes passés dans... la quatrième dimension (musique angoissante : « tintintin... »).

Oui, enfin bon, avant d'attaquer la quatrième, on va déjà se coltiner la deuxième.

1. Pourquoi plusieurs dimensions?

Une seule ne suffisait-elle pas déjà amplement à notre bonheur, me demanderez-vous ? Certes, répondrai-je, mais vous allez voir qu'avec deux (et davantage encore) c'est carrément le nirvana.

Prenons le cas de la modélisation d'un jeu de dames, et du déplacement des pions sur le damier. Je rappelle qu'un pion qui est sur une case blanche peut se déplacer (pour simplifier) sur les quatre cases blanches adjacentes.

Avec les outils que nous avons abordés jusque là, le plus simple serait évidemment de modéliser le damier sous la forme d'un tableau. Chaque case est un emplacement du tableau, qui contient par exemple 0 si elle est vide, et 1 s'il y a un pion. On attribue comme indices aux cases les numéros 1 à 8 pour la première ligne, 9 à 16 pour la deuxième ligne, et ainsi de suite jusqu'à 64.

Arrivés à ce stade, les fines mouches du genre de Cyprien L. m'écriront pour faire remarquer qu'un damier, cela possède 100 cases et non 64, et qu'entre les damiers et les échiquiers, je me suis joyeusement emmêlé les pédales. A ces fines mouches, je ferai une double réponse de prof :

- 1. C'était pour voir si vous suiviez.
- 2. Si le prof décide contre toute évidence que les damiers font 64 cases, c'est le prof qui a raison et l'évidence qui a tort. Rompez.

Reprenons. Un pion placé dans la case numéro i, autrement dit la valeur 1 de Cases(i), peut bouger vers les cases contiguës en diagonale. Cela va nous obliger à de petites acrobaties intellectuelles : la case située juste au-dessus de la case numéro i ayant comme indice i-8, les cases valables sont celles d'indice i-7 et i-9. De même, la case située juste en dessous ayant comme indice i+8, les cases valables sont celles d'indice i+7 et i+9.

Bien sûr, on peut fabriquer tout un programme comme cela, mais le moins qu'on puisse dire est que cela ne facilite pas la clarté de l'algorithme.

Il serait évidemment plus simple de modéliser un damier par... un damier !

2. Tableaux à deux dimensions

L'informatique nous offre la possibilité de déclarer des tableaux dans lesquels les valeurs ne sont pas repérées par une seule, mais par deux coordonnées.

Un tel tableau se déclare ainsi :

Tableau Cases(7, 7) en Numérique

Cela veut dire : réserve moi un espace de mémoire pour 8 x 8 entiers, et quand j'aurai besoin de l'une de ces valeurs, je les repèrerai par deux indices (comme à la bataille navale, ou Excel, la seule différence étant que pour les coordonnées, on n'utilise pas de lettres, juste des chiffres).

Pour notre problème de dames, les choses vont sérieusement s'éclaircir. La case qui contient le pion est dorénavant Cases(i, j). Et les quatre cases disponibles sont Cases(i-1, j-1), Cases(i-1, j+1), Cases(i+1, j-1) et Cases(i+1, j+1).

REMARQUE ESSENTIELLE :

Il n'y a aucune différence qualitative entre un tableau à deux dimensions (i, j) et un tableau à une dimension (i*j). De même que le jeu de dames qu'on vient d'évoquer, tout problème qui peut être modélisé d'une manière peut aussi être modélisé de l'autre. Simplement, l'une ou l'autre de ces techniques correspond plus spontanément à tel ou tel problème, et facilite donc (ou complique, si on a choisi la mauvaise option) l'écriture et la lisibilité de l'algorithme.

Une autre remarque : une question classique à propos des tableaux à deux dimensions est de savoir si le premier indice représente les lignes ou le deuxième les colonnes, ou l'inverse. Je ne répondrai pas à cette question non parce que j'ai décidé de bouder, mais parce qu'elle n'a aucun sens. « Lignes » et « Colonnes » sont des concepts graphiques, visuels, qui s'appliquent à des objets du monde réel ; les indices des tableaux ne sont que des coordonnées logiques, pointant sur des adresses de mémoire vive. Si cela ne vous convainc pas, pensez à un jeu de bataille navale classique : les lettres doivent-elles désigner les lignes et les chiffres les colonnes ? Aucune importance ! Chaque joueur peut même choisir une convention différente, aucune importance ! L'essentiel est qu'une fois une convention choisie, un joueur conserve la même tout au long de la partie, bien entendu.

3. Tableaux à n dimensions

Si vous avez compris le principe des tableaux à deux dimensions, sur le fond, il n'y a aucun problème à passer au maniement de tableaux à trois, quatre, ou pourquoi pas neuf dimensions. C'est exactement la même chose. Si je déclare un tableau Titi(2, 4, 3, 3), il s'agit d'un espace mémoire contenant $3 \times 5 \times 4 \times 4 = 240$ valeurs. Chaque valeur y est repérée par quatre coordonnées.

Le principal obstacle au maniement systématique de ces tableaux à plus de trois dimensions est que le programmeur, quand il conçoit son algorithme, aime bien faire des petits gribouillis, des dessins immondes, imaginer les boucles dans sa tête, etc. Or, autant il est facile d'imaginer concrètement un tableau à une dimension, autant cela reste faisable pour deux dimensions, autant cela devient l'apanage d'une minorité privilégiée

pour les tableaux à trois dimensions (je n'en fais malheureusement pas partie) et hors de portée de tout mortel au-delà. C'est comme ça, l'esprit humain a du mal à se représenter les choses dans l'espace, et crie grâce dès qu'il saute dans l'hyperespace (oui, c'est comme ça que ça s'appelle au delà de trois dimensions).

Donc, pour des raisons uniquement pratiques, les tableaux à plus de trois dimensions sont rarement utilisés par des programmeurs non matheux (car les matheux, de par leur formation, ont une fâcheuse propension à manier des espaces à n dimensions comme qui rigole, mais ce sont bien les seuls, et laissons les dans leur coin, c'est pas des gens comme nous).

Abdoulaye Gaye