МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студентка гр. 3343	Добрякова А.А
Преподаватель	Иванов Д. В.

Санкт-Петербург 2023

Цель работы

Изучение принципа работы машины Тьюринга, её реализация на языке программирования Руthon для решения поставленных задач.

Задание

Вариант 2

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a,b,c\}.$

a c c a b c b a b a a c a b	
---	--

Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

		c	c	c	a	b	c	b	a	b	a	a	c	a	b		

Алфавит:

- a
- b
- (
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Таблица 1 - Таблица состояний

	'a'	'b'	'c'	11
q1	'a', R, 'q2'	'b', R, 'q1'	'c', R, 'q1'	'', R, 'q1'
q2	'a', R, 'q3'	'b', R, 'q1'	'c', R, 'q1'	'', R, 'q1'
q3	'a', L, 'q7'	'b', L, 'q4'	'c', L, 'q10'	' ', L, 'q7'
q4	'a', R, 'q5'	'b', N, 'q4'	'c', N, 'q4'	' ', R, 'q1'
q5	'a', R, 'q6'	'b', N, 'q4'	'c', N, 'q4'	' ', R, 'q1'
q6	'b', R, 'q1'	'b', R, 'q1'	'b', R, 'q1'	'b', R, 'q1'
q7	'a', L, 'q8'	'a', L, 'q8'		
q8	'a', L, 'q9'	'a', L, 'q9'		
q9	'a', R, 'qx'	'a', R, 'qx'	'a', R, 'qx'	'a', R, 'qx'
q10	'a', R, 'q11'	'b', N, 'q4'	'c', N, 'q4'	' ', R, 'q1'
q11	'a', R, 'q12'	'b', N, 'q4'	'c', N, 'q4'	' ', R, 'q1'
q12	'c', R, 'q1'	'c', R, 'q1'	'c', R, 'q1'	'c ', R, 'q1'

Описание состояний:

- q1 начальное состояние для поиска первого вхождения в строку символа 'a'.
- q2 состояние, считывающее и анализирующее символ, встретишийся после предыдущего символа 'a'.
- q3 состояние, определяющее символ, стоящий после двух символов 'a' и отправляющее программу на соответствующий трек состояний.
- q4 состояние для символа 'b', совершающее сдвиг влево.
- q5 состояние для символа 'b', совершающее сдвиг влево.
- q6 состояние, заменяющее текущий символ на 'b'.
- q7 состояние для символа 'а', совершающее сдвиг влево.
- q8 состояние для символа 'а', совершающее сдвиг влево.
- q9 состояние, заменяющее текущий символ на 'a'.
- q10 состояние для символа 'с', совершающее сдвиг влево.

- q11 состояние для символа 'с', совершающее сдвиг влево.
- q12 состояние, заменяющее текущий символ на 'c'.

Принцип работы Машины Тьюринга в коде:

- lenta введенная строка (лента машины Тьюринга);
- states таблица состояний, заданная словарем;
- current_state текущее состояние программы, изначально равно q1;
- і индекс текущей ячейки, изначально равен 0;
- current_symbol Текущий символ, рассматриваемый программой;
- step параметры изменения текущего символа в текущем состоянии.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	aabcbcbaaaba	aabebebaaaaa	
2.	aabbaaabac	aabbaaaaac	

Выводы

Был изучен принцип работы машины Тьюринга.

Была реализована программа на языке Python, решающая все поставленные задачи.

С помощью словаря была создана таблица состояний, а с помощью цикла while сымитирована работа машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
R, L, N = 1, -1, 0
states = {
    'q1': {'a': ['a', R, 'q2'], 'b': ['b', R, 'q1'], 'c': ['c', R, 'q1'],
' ': [' ', R, 'q1']},
    'q2': {'a': ['a', R, 'q3'], 'b': ['b', R, 'q1'], 'c': ['c', R, 'q1'],
' ': [' ', R, 'q1']},
    'q3': {'a': ['a', L, 'q7'], 'b': ['b', L, 'q4'], 'c': ['c', L, 'q10'],
' ': [' ', L, 'q7']},
    'q7': {'a': ['a', L, 'q8']},
    'q8': {'a': ['a', L, 'q9']},
    'q9': {'a': ['a', R, 'q_out'], 'b': ['a', R, 'q_out'], 'c': ['a', R,
'q out'], ' ': ['a', R, 'q out']},
    'q4': {'a': ['a', L, 'q5']},
    'q5': {'a': ['a', L, 'q6']},
    'q6': {'a': ['b', R, 'q out'], 'b': ['b', R, 'q out'], 'c': ['b', R,
'q out'], ' ': ['b', R, 'q out']},
    'q10': {'a': ['a', L, 'q11']},
'q11': {'a': ['a', L, 'q12']},
    'q12': {'a': ['c', R, 'q out'], 'b': ['c', R, 'q out'], 'c': ['c', R,
'q out'], ' ': ['c', R, 'q out']},
lenta = list(input())[::-1]
current state = "q1"
i = 0
space = list(' ')
lenta = space + lenta + space
while current state != 'q out':
    current symbol = lenta[i];
    step = states[current state][current symbol];
    lenta[i] = step[0]
    i += step[1]
    if i == len(lenta):
        lenta = lenta + space
    current state = step[2]
lenta.pop(0)
lenta.pop(len(lenta) - 1)
print(*lenta[::-1], sep='')
```