内存管理作业

一、 选择题

常现象的是:

1,	设备分配问题中,算法实现时,同样要考虑安全性问题,防止在多个进程进行设备请求时,因相互等待对方释放所占设备所造成的()现象。 A. 瓶颈 B. 碎片 C. 系统抖动 D. 死锁
2,	主存与辅存间频繁的页面置换现象被称为()。 A. 请求调页 B. 碎片整理 C. 系统抖动 D. 输入输出
3,	在可变分区存储管理中,最差适应分配算法要求对空闲区表项按()进行排列。 A. 地址从大到小 B. 地址从小到大 C. 尺寸从大到小 D. 尺寸从小到大
4、	段页式存储管理汲取了页式管理和段式管理的长处,其实现原理结合了页式和段式管理的基本思想,即()。 A、用分段方法来分配和管理物理存储空间,用分页方法来管理用户地址空间。 B、用分段方法来分配和管理用户地址空间,用分页方法来管理物理存储空间。 C、用分段方法来分配和管理主存空间,用分页方法来管理辅存空间。 D、用分段方法来分配和管理辅存空间,用分页方法来管理主存空间。
5、	下列措施中,能加快虚实地址转换的是: I. 增大快表(TLB) II. 让页表常驻内存 III. 增加交换区 A. 仅 I B. 仅 II C. 仅 I,II D. 仅 II,III

6、在页式存储管理系统中,采用某些页面置换算法,会出现Belady异常现象,即进程的缺

I. LRU 算法 II. FIFO 算法 III. OPT 算法

A. 仅 II B.仅 I,II C. 仅 I,III D. 仅 II,III

页次数会随着分配给该进程的页框个数的增加而增加。下列算法中,可能出现Belady异

	A.加快地址变换速度		B.源	域少缺	页中的	断次数	汝
	C. 减少一个页表项所占字	2节数	D.	咸少页	表所	占的区	内存空间
8,	下列关于虚拟存储器的叙述	述中,正	确的是	<u>.</u>			
	A. 虚拟存储器只能基于连	连续分配拉	支术	В. Д	虚拟存	储器	只能基于非连续分配技术
	C. 虚拟存储器只受外存容	F量的限制	制	D. <u>J</u>	虚拟存	储器	只受内存容量的限制
9,	在一个请求分页系统中,	采用 LRU	页面轴	传换第	法时	,加	入一个作业的页面走向为:
	1, 3, 2, 1, 1, 3, 5, 1,	3, 2, 1	,5.当	分配给	给该作	业的	1物理块数分别为3和4时,在
	访问过程中所发生的缺页至	率为					
	A. 25%, 33% B. 50%	, 25%	C.50	0%,33	%		D. 50%, 75%
10,	设有8页的逻辑空间	,每页有	j 1024I	3,它们]被映	射到	32 块的物理存储区中。那么,
	逻辑地址的有效位是	位,制	勿理地	址至少	〉是		<u></u>
	A. 10, 11 B. 12, 14	C. 13,	15	D. 1	4, 16		
11,	某基于动态分区存储	管理的计	算机,	其主有	序容量	为 5.	5M B(初始为空闲),采用最佳适
	配(Best Fit)算法,分配和释放	汝的顺序	为:分酉	己 15N	I B,分	配 3	0M B,释放 15M B,分配 8M B,
	分配 6M B,此时主存中最大	大空闲分	区的大	:小是		_°	
	A.7MB B.9MB		C.10	0MB	I	D.15N	MB
12,	某作业的逻辑地址空	间为4页,	,页面	大小	为 2048	,已	知页表如下所示,则逻辑地址
	4865(十进制)对应的物理	里地址为	()。)			
		页号	0	1	2	3	
		块号	2	4	6	8	

7、下列选项中,属于多级页表优点的是:

 13、 若用户进程访问内存时产生缺页,则下列选项中,操作系统可能执行的操作是

 I.处理越界错
 II.置换页
 III.分配内存

 A.仅I、II
 B.仅II、III
 C. 仅I、III
 D. I、II和III

A, 4865 B, 8961 C, 13057 D, 6865

A. 顺	序代码	B. 机器语言代码	B C.不能自身值	多改的代码	D. 无转移指令	个代码
的内容	字为 2000 止方式下	:寄存器 R 的内容 H,地址 2000H 中 访问到的操作数是 B. 2000H	中的内容为 300	0H,地址 300	00 H 中的内容为	
法,系 程序要	《统分给 要对整个	数矩阵为 100 行物 该进程 5 个页面来 数组初始化,数组 有页都以请求方式	天存储数据(不 且存储时是按行	包含程序),	设每页可存放 20	0 个整数,该
		-: =0;i<99;i++) or(j=0;j<=199;j a[i][j]=i*j;			; j<=199; j++) (i=0; i<99; i++) a[i][j]=i*j;	
p, 包	考虑页面 含了 n /	B. 100,20000 「置换算法,系统 ト不同的页号,无 B、p C、n	论用什么算法	- 供调度,初 ,缺页次数プ		用串长度为
有些種	呈序设计	i,"按需调页"(I 技术并不适合于i B、线性搜索	这适种环境。例	刘如()		є略。但是 ,
		」址空间中使用的: B、物理化				

20、 在可变分区存储管理中,最佳适应分配算法要求对空闲区表项按()进行排列。

A、地址从大到小 B、地址从小到大 C、尺寸从大到小 D、尺寸从小到大

14、 可以被多个进程在任意时刻共享的代码必须是____。

21, 主存与辅存间频繁的页面置换现象被称为()。

- A、请求调页 B、碎片整理 C、系统抖动 D、输入输出
- 22、 某作业的逻辑地址空间为 4 页, 页面大小为 2048, 已知页表如下所示, 则逻辑地址 4865(十进制)对应的物理地址为()。

页号	0	1	2	3
块号	2	4	6	8

A, 4865

- B, 8961 C, 13057
- D, 6865
- 23, 某基于动态分区存储管理的计算机,其主存容量为 55M B(初始为空闲),采用最佳适 配(Best Fit)算法,分配和释放的顺序为:分配 15M B,分配 30M B,释放 15M B,分配 8M B, 分配 6M B,此时主存中最大空闲分区的大小是____。

A.7MB

B.9MB

C.10MB

D.15MB

二、计算题(选择)

某操作系统中,进程的逻辑地址空间和系统的物理地址空间均为 64KB,按字节编址。 某进程最多需要 8 页(Page)数据存储空间,页的大小为 2KB,操作系统采用固定分配局 部置换策略为此进程分配 6 个页框 (Page Frame), 采用老化算法 (aging) 进行页面置换, 每个页面使用 8bits 记录使用情况。在每个 clock tick 结束时, 6 个页面的 R 位如下所示:

	页面 0	页面 1	页面 2	页面3	页面 4	页面 5
clock tick 0	0	1	0	1	0	1
clock tick 1	1	1	1	0	0	0
clock tick 2	0	0	1	1	1	0
clock tick 3	1	0	0	1	0	0

此时的页表如下所示:

页号	页框号	是否在内存中(P 位)	是否在 TLB(快表)中			
00H	08H	1	是			
01H	07H	1	是			
02H	04H	1	是			
03H	1EH	1	是			

04H	15H	1	是
05H	0FH	1	是
06H		0	否
07H		0	否

页表存放在主存中,对主存的一次存取需要100ns,对TLB表的查找时间为10ns,处理 一次缺页中断需要10⁸ ns(10的8次方ns,含更新TLB和慢表的时间)。

- 24、 如果现在程序执行时遇到逻辑地址1AC5H,这次访问耗费时间为____。
 - A. $10^8 + 220 \text{ns}$ B. 100 ns
- C. 110ns
- D. 210ns
- 25、 然后,程序执行时遇到逻辑地址32C5H,这次访问耗费时间为____。
 - A. $10^8 + 220 \text{ns}$
- B. 100ns
- C. 110ns
- D. 210ns
- 26、 32C5H对应的物理地址为____。
- A. 7AC5H
- B. 22C5H
- C. 3AC5H
- D. F2C5H

有一个整数矩阵为 100 行*100 列,即 α[100][100]。系统分给该进程 5 个页面来存储此矩 阵,设每页可存放100个整数,该程序要对整个数组初始化,数组存储时是按行存放的。页 面采用 LRU 页面置换算法和局部置换策略。试计算下列两个程序各自的缺页次数(假定所 有页都以请求方式调入)。

程序一:

for (i=0; i<99; i++)

for $(j=0; j \le 99; j++)$

a[i][j]=i*j;

程序二:

for $(j=0; j \le 99; j++)$

for (i=0; i<99; i++)

a[i][j]=i*j;

27, 程序一执行时产生的缺页中断次数为____。

- A. 20
- B. 100
- C. 2000
- D. 10000

程序二执行时产生的缺页中断次数为____。

- A. 20
- B. 100 C. 2000
- D. 10000

某基于动态分区存储管理的计算机,其主存容量为 55MB(初始为空闲),分配和释放的顺 序为:分配 15MB,分配 30MB,释放 15MB,分配 8MB,分配 6MB。

29、 若采用最佳适配(Best Fit)算法,此时主存中最大空闲分区的大小是____。

- A.7MB
- B.9MB
- C.10MB D.15MB

若采用最差适配(Worst Fit)算法,此时主存中最大空闲分区的大小是____。

A.7MB

B.9MB

C.10MB

D.15MB

某计算机主存按字节编址,逻辑地址和物理地址都是 32 位,页面大小为 4KB,页表项 大小为4字节。请回答下列问题。

30、 若使用一级页表的分页存储管理方式,逻辑地址结构为:

页号 (20 位) 页内偏移量(12位)

此时页表最大占用空间为_____。

A. 4KB

B. 1MB C. 4MB D. 32MB

31、 若使用二级页表的分页存储管理方式,逻辑地址结构为:

页目录号(10位)

页表索引(10位)

页内偏移量(12位)

若该进程共用到了10000个页,则此时此二级页表占用的总空间最小为____。

A. 4KB

B. 11KB

C. 44KB

D. 11MB

在 Intel i386 的保护模式下, 段寄存器作为段选符, 其结构如下图所示

已知 GDT 的部分内容如下:

索引	段描述符中的段基址 Base	段描述符中的段长度限 Limit (字节)
0	80000000H	64MB
1	81000000H	64MB

LDT 的部分内容如下:

索引	段描述符中的段基址 Base	段描述符中的段长度限 Limit (字节)
0	00000000H	64MB
1	01000000H	64MB

设 DS=0007H, ES=0008H, EDI=0000FF00H, ESI=00FF0000H, DS:EDI 和 ES:ESI 中存 放的是进程的逻辑地址。

32、 DS:EDI 对应的线性地址是_____

	A.	越界	B. 0000FF00H	C. 0100FF00H	D. 8000FF00H
33、		ES:ESI	对应的线性地址是_		
	A.	越界	B. 80FF0000H	C. 81FF0000H	D. 01FF0000H

某操作系统的内存管理器采用请求式分页,页面大小为 1KB,逻辑地址空间为 32 位,物理地址空间大小为 4 GB,按字节编址。页表采用多级页表,一个页表项大小为 4B。TLB(快表)采用全相联映射,有 4 个页表项,内容如下表所示。

有效位	页号	页框号	•••
0	FF180H		•••
1	3FFF1H	0F035H	
1	FFFC6H	3054CH	
1	03FFFH	0C153H	

34、 该系统的页表项中,最多可以保存位标志	位。
------------------------	----

- A. 8 B. 10 C. 12 D. 16
- 35、 若采用多级页表,要求每级页表均可以装入一个页面内,则应该采用_____级页表较合适。
 - A. 0 B. 1 C. 2 D. 3
- 36、 对逻辑地址3FFF1880H转换为物理地址的结果是____。
 - A. 0C153080H B. 0F035880H C. TLB 缺失 D.缺页

某请求页式存储管理,允许用户空间为32个页面(每页2KB),主存为16KB,如有一个用户程序有10页长,且某时刻该用户进程的页表如下表所示

页号	物理块号	是否在 TLB 中
0	8	是
1	7	是
2	4	否
3	9	否
4	5	否
5	3	是
6	2	是
其它	not valid	

37、 如果	具程序执行时遇到逻辑地址	1AC5H,则它对	应的物理地址为	o		
A. 7AC	5H B. 4AC5H	С. 3АС5Н	D. 缺页			
38、 页表	38、 页表存放在主存中,对主存的一次存取需要100ns,对TLB表的查找时间为10ns,					
这次访问	耗费时间为。					
A. 10ns	B. 100ns C.	110ns D. 21	0ns			
39、 如果	具不考虑缺页的情况,对于	已经载入内存的	页面,快表命中率	为80%,则访问		
内存中数	:据的平均有效访问时间是_	o				
A. 20ns	B. 30ns C.	70ns	D. 90ns			
某操作系	系统的内存管理器采用请求	式分页,页面大	小为 4KB, 逻辑地	址空间为 32 位,		
物理地址空间	可为 36 位,一个页表项大小	、为 4B。一次快表	虔 (TLB) 的访问时			
内存的访问时	付间是 100ns, 处理一次缺	页的平均时间 10	0^8 ns(已含更新	TLB 和页表的时		
间)。进程的驻	主留集大小固定为 2,采用最	设 近未使用置换算	法(NRU)和局部淘	汰策略。假设(1)		
TLB 初始为空	空;(2)地址转换时先访问	TLB,若 TLB 未	命中,再访问页表(忽	忍略访问页表之后		
的 TLB 更新	f时间); (3) 有效位为 0 表	示页面不在内存,	产生缺页中断,缺页	〔中断处理后,返回		
到产生缺页中	中断的指令处重新执行。进	程的部分页表如	下所示:			
页号	页框(Page Frame)号	P存在位	R访问位	M修改位		
00000Н		0	1	-		
00001H	007F61H	1	0	0		
00002H	101254H	1	0	0		
00003H		0	-	-		
40、 该系	· 系统的页表项中,最多可以	保存位标	示志位。			
A. 4	B. 8 C. 12	D. 16				
41、 若采用多级页表,要求每级页表均可以装入一个页面内,则应该采用级页						
表较合适。						
A. 0	B. 1 C. 2	D. 3				
42、 如果	具不考虑缺页的情况,对于	已经载入内存的	页面,快表命中率	为90%,则访问		
内存中数据的平均有效访问时间是。						
A. 20ns	B. 110ns	C. 120ns	D. 320ns			
43、 首先,访问逻辑地址00001618H,则读入所需数据需要的总时间是。						
A. 约10	0^8ns B. 110ns	C. 200ns	D. 210ns	i		

然后,访问逻辑地址00000FA6H,则读入所需数据需要的总时间是____。

44、

- A. 约10⁸ns B. 110ns C. 200ns D. 210ns

- 45、 最后,访问逻辑地址0000126CH,则读入所需数据需要的总时间是____。
 - A. 约10^8ns
- B. 110ns
- C. 200ns
- D. 210ns
- 46、 在依次访问完上述三个逻辑地址后,页框101254H对应的页号为___
 - A. 00000H B. 00001H C. 00002H D. 00003H

三、计算题(填空)

- 1、在 Intel i386 的保护模式下,逻辑地址转换为物理地址需要分两步,即 48 位的逻辑地址 通过段表转换为 32 位的线性地址,然后线性地址再通过页表转换为 32 位的物理地址。
 - 1) 在逻辑地址转换为线性地址时,逻辑地址段寄存器作为段选符,其结构如下图 所示

已知 GDT 的部分内容如下:

索引	段描述符中的段基址 Base	段描述符中的段长度限 Limit
0	80000000H	4MB
1	80000001H	4MB

LDT 的部分内容如下:

索引	段描述符中的段基址 Base	段描述符中的段长度限 Limit
0	00000000Н	1GB
1	00000001H	1GB

设 DS=000FH, ES=0008H, ESI=00DBFFACH, EDI=00FEED24H 如果 DS:ESI 和 ES:EDI 中 存放的是程序的逻辑地址,则 DS:ESI 对应的线性地址是___(1)____, ES:EDI 对应的线性地 址是___(2)___。(如越界则填写"越界")

2) 在线性地址转换为物理地址时,采用页式存储管理,两级页表,页面大小为 4 KB。线性地址的结构为:

若该进程共用到了 3072 个页,则此时此二级页表占用的总空间最小为___(3)___。 TLB(快表)采用全相联映射,有 4 个页表项,内容如下表所示。

有效位	页号	页框号	
0	FF180H	00022H	•••
1	3FFF1H	00350H	•••
0	02FF3H	03511H	
1	03FFFH	01535H	•••

则线性地址 03FFF180H 对应的物理地址是____(4)______,线性地址 02FF3036H 对应的物理地址是____(5)_____。(如无对应的物理地址,则填写原因,可能为"TLB 缺失"或"缺页")

- 2、某计算机主存按字节编址,逻辑地址和物理地址都是32位,页表项大小为4字节。请回答下列问题。
 - (1) 若使用一级页表的分页存储管理方式,逻辑地址结构为:

页号 (20 位) 页内偏移量 (12 位)

则页的大小是__(1)___。页表最大占用空间为__(2)__。

(2) 若使用二级页表的分页存储管理方式,逻辑地址结构为:

页目录号(10 位)	页表索引(10位)	页内偏移量(12位)
------------	-----------	------------

设逻辑地址为LA,则其对应的页目录号的表达式___(3)___和页表索引的表达式___(4)___。 若该进程共用到了3072个页,则此时此二级页表占用的总空间最小为___(5)____。

(3) 采用(1) 中的分页存储管理方式,一个代码段起始逻辑地址为0000 8000H, 其长度为8 KB, 被装载到从物理地址0090 0000H 开始的连续主存空间中。页表从主存0020 0000H 开始的物理地址处连续存放,如下图所示(地址大小自下向上递增)。则该代码段对应的两个页表项,物理地址1是___(6)___, 物理地址2是___(7)___; 这两个页表项中的页框号1是___(8)___, 页框号2是___(9)___; 以及代码页面2的起始物理地址3是___(10)___。

四、 计算题(简答)

1. 请求分页管理系统中,假设某进程的页表内容如下表所示:

页号	页框(Page Frame)号	有效位(存在位)
0	101H	1
1		0
2	254H	1

页面大小为 4KB,一次内存的访问时间是 100ns,一次快表(TLB)的访问时间是 10ns,处理一次缺页的平均时间 10⁸ ns(已含更新 TLB 和页表的时间),进程的驻留集大小固定为 2,采用最近最少使用置换算法(LRU)和局部淘汰策略。假设 (1) TLB 初始为空; (2) 地址转换时先访问 TLB,若 TLB 未命中,再访问页表(忽略访问页表之后的 TLB 更新时间); (3) 有效位为 0 表示页面不在内存,产生缺页中断,缺页中断处理后,返回到产生缺页中断的指令处重新执行。设有虚地址访问序列 2362H、1565H、25A5H,请问:

- 1) 依次访问上述三个虚地址,各需多少时间?给出计算过程。
- 2) 基于上述访问序列,虚地址 1565H 的物理地址是多少?请说明理由。
- 2. 某系统的页面淘汰算法采用老化(Aging)算法,每个页面分配一个8位二进制数的计数器。 某进程共有6个页面,在时刻0之前所有页面均未被引用过。下表是前5个clock tick 中 各页面的被引用情况,被引用者标1,未被引用者标0。

Clock tick	Page 0	Page 1	Page 2	Page 3	Page 4	Page 5
0	1	0	1	0	1	1
1	1	1	0	0	1	0
2	1	1	0	1	0	1
3	1	0	0	0	1	0
4	0	1	1	0	0	0

- 1) 在 clock tick 4 过后,需要淘汰一个页面,应选择哪个页面进行淘汰?为什么?
- 2) 为什么说老化(Aging)算法是一种简单有效的算法,但只是 LRU 的一个近似实现?

3. 设某计算机的逻辑地址空间和物理地址空间均为 64KB,按字节编址。若某进程最多需要 6 页(Page)数据存储空间,页的大小为 1KB,操作系统采用固定分配局部置换策略为此进程分配 4 个页框(Page Frame)。在时刻 260 前的该进程访问情况如下表所示(访问位即使用位)。

页号	页框号	装入时刻	访问位
0	7	130	1
1	4	230	1
2	2	200	1
3	9	160	1

当该进程执行到时刻 260 时,要访问逻辑地址为 17CAH 的数据。请回答下列问题:

- (1) 该逻辑地址对应的页号是多少?
- (2) 若采用最近最少使用(LRU)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。
- 4. 已知某系统页面长 4KB, 页表项 4B, 虚拟地址空间为 64 位。
 - (1) 如采用多层分页策略,限定各分层页表最多占 1 页大小,请问可以采用几层分页策略?
 - (2) 如采用倒排页表方式,请问倒排页表的大小?是每个进程一张倒排页表还是系统维护一张倒排页表?如何解决倒排页表不便于逻辑地址向物理地址转换的问题?

五、简答题

- 1、在虚拟存储管理中,分段式内存管理方式解决了分页式内存管理中的什么问题,又带来了什么问题呢?
- 2、Intel IA32体系结构中的保护模式是将逻辑地址转成线性地址再转成物理地址,这种内存管理方式是段页式内存管理方式吗,为什么?
- 3、LRU页面置换算法是一种比较优秀的算法但是较难实现,为什么?试给出一种可行的近似算法作为LRU的取代方案。

- 4、单纯的分段式和分页式内存管理各有什么缺点?为什么段页式可以避免这些缺点? 为什么段页式内存管理没有被广泛采用呢?
- 5、为什么内存管理方式中,可变分区管理中有最差适应(worst fit)分配算法,而固定 分区管理中没有这个算法? 分区管理中的交换技术(swap)和段式管理中的请求式 分段技术有什么区别?请求式分段与覆盖技术(overlay)又有什么区别?
- 6、页面置换(淘汰)的时机是什么?哪种算法最理想同时也不可能实现?为什么说LRU算法很有效但是很难实现?什么是Belady异常?哪种算法存在Belady异常现象?
- 7、 请讨论一下页面置换算法中工作集(Working Set)置换算法的工作原理。
- 8、在内存管理的方法中,分段式管理比分页式管理有什么优势?段页式与其他方式相 比有什么好处?
- 9、为了同时抢占高端和中低端市场,CPU厂商常常在同一生产线上生产主频和制作工艺相同的高端和低端CPU,如 Intel 曾经同时生产相同主频和制作工艺的"奔腾 4"和"赛扬",价格上相差很大,据称主要区别在二级缓存的大小。请问缓存(Cache)有什么用,什么地方会用到它?
- 10、 为什么要使用倒排页表? 倒排页表面临的最大的问题是什么? 如何解决?
- 11、 内存分区管理中的交换技术与请求式分段技术相比,有什么相同点和不同点?
- 12、 在页面淘汰算法中,为什么说老化(Aging)算法只是 LRU 的一个近似实现?