

S2-20_DSECFZC415
Classification and Prediction

Pilani | Dubai | Goa | Hyderabad

- The slides presented here are obtained from the authors of the books and from various other contributors. I hereby acknowledge all the contributors for their material and inputs.
- I have added and modified a few slides to suit the requirements of the course.

Classification

Classification

- Classification involves dividing up objects so that each is assigned to one of a number of mutually exhaustive and exclusive categories known as classes
- Many practical decision-making tasks can be formulated as classification problems
 - customers who are likely to buy or not buy a particular product in a supermarket
 - people who are at high, medium or low risk of acquiring a certain illness.
 - student projects worthy of a distinction, merit, pass or fail grade
 - objects on a radar display which correspond to vehicles, people, buildings or trees
 - people who closely resemble, slightly resemble or do not resemble someone seen committing a crime
 - houses that are likely to rise in value, fall in value or have an unchanged value in 12 months' time
 - people who are at high, medium or low risk of a car accident in the next 12 months
 - people who are likely to vote for each of a number of political parties (or none)
 - the likelihood of rain the next day for a weather forecast (very likely, likely, unlikely, very unlikely).

Classification vs. Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

- Prediction
 - models continuous-valued functions, i.e., predicts unknown or missing values

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.)
 are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Illustrating Classification Task

Test Set

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Neural Networks
 - computational networks that simulate the decision process in neurons (networks of nerve cell)
- Naïve Bayes and Bayesian Belief Networks
 - uses the *probability theory* to find the most likely of the possible classifications
- Support Vector Machines
 - fits a boundary to a region of points that are all alike; uses the boundary to classify a new point

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation")
 until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

Example of a Decision Tree

Another Example of Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Apply Model to Test Data

Decision Tree Classification Task

Issues: Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Underfitting and Overfitting (Example)

500 circular and 500 triangular data points.

Circular points:

$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2+x_2^2) > 0.5 or$$

$$sqrt(x_1^2+x_2^2) < 1$$

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Decision Tree Based Classification

- Decision trees are intuitive and frequently used data mining technique for Classification
- For an analyst, they are easy to set up and for a business user they are easy to interpret.
- A decision tree model is a decision flowchart where an attribute is tested in each node and ends in a leaf node where a prediction is made.
- There are many algorithms for decision tree induction such as Hunt's Algorithm, CART, ID3, C4.5, SLIQ, SPRINT

Hunt's Algorithm - Structure

- Hunt's algorithm is among the earliest. More complex algorithms were built upon it.
- It grows a decision tree in a recursive fashion by partitioning the training records into successively purer subsets
- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm - Example

Tid	Refund	Marital Status	Taxable Income	Che
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

O R

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

• What about this split?

Data Mining

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

lead

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Gini Index
- Entropy
- Misclassification error

How to Find the Best Split

Measure of Impurity: GINI

• Gini Index for a given node t:

GINI (t) =
$$1 - \sum_{j} [p(j|t)]^2$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

lead

Examples for computing GINI

GINI (t) =
$$1 - \sum_{j} [p(j|t)]^2$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

innovate achieve

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType							
	Family	Sports	Luxury					
C1	1	2	1					
C2	4	1	1					
Gini		0.393						

Two-way split (find best partition of values)

	CarType					
	{Sports}	(Family, Luxury)				
C1	2	2				
C2	1	5				
Gini	0.419					

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Sorted Values Split Positions

Cheat		No		No)	N	0	Ye	s	Ye	s	Υe	es	N	0	N	lo	N	lo		No										
		Taxable Income																													
-		60		70)	7	5	85	5	90)	9	5	10	00	12	20	13	25		220										
-	5	5	6	55	7	2	8	0	8	7	9	2	9	7	11	10	12	22	10	72	23	30									
	<=	^	<=	^	=	^	<=	^	<=	^	<=	^	=	^	=	^	=	^	"	^	<=	>									
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0									
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0									
Gini	0.4	20	0.4	400	0.3	375	0.3	343	0.4	.417 0.400		417 0.40		400 <u>0.300</u>		400 <u><i>0.300</i></u>		400 <u>0.300</u>		400 <u>0.30</u>		0.400		0.3	143	0.3	375	0.4	100	0.4	120

Alternative Splitting Criteria

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum ($log n_c$) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

lead

Comparison among Splitting Criteria

For a 2-class problem:

Gain Ratio

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_{i} \log_{2}(p_{i})$$

Information needed (after using A to split D^{\prime} into v partitions) to classify D:

$$Info_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
31 40	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
31 40	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
31 40	medium	no	excellent	yes
31 40	high	yes	fair	yes
>40	medium	no	excellent	no

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

Attribute Selection: Information Gain

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)$$

= 0.694

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
31 40	4	0	0
>40	3	2	0.971

$$\frac{5}{14}$$
 /(2,3) means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain) $SplitInfo_{A}(D) = -\sum_{i=1}^{\nu} \frac{|D_{i}|}{|D|} \times \log_{2}(\frac{|D_{i}|}{|D|})$
 - GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex.

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) = 1.557$$

• gain_ratio(income) = 0.029/1.557 = 0.019

 The attribute with the maximum gain ratio is selected as the splitting attribute

Refining Decision Tree Model

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values
- Costs of Classification

Underfitting vs. Overfitting

- Underfitting results in decision trees that are too simple to solve the problem. They may offer superior interpretability.
- Overfitting results in decision trees that are more complex than necessary
 - Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
 - Need new ways for estimating errors

Model Overfitting

Underfitting: when model is too simple, both training and test errors are large Overfitting: when model is too complex, training error is small but test error is large

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - General stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions (for pre-pruning) :
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

- Post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error(i.e. expected error of the model on previously unseen records) improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Prescribed Text Books

	Author(s), Title, Edition, Publishing House
T1	Tan P. N., Steinbach M & Kumar V. "Introduction to Data Mining" Pearson Education
T2	Data Mining: Concepts and Techniques, Third Edition by Jiawei Han, Micheline Kamber and Jian Pei Morgan Kaufmann Publishers
R2	Principles of Data Mining, Second Edition by Max Bramer Springer © 2013
R1	Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner by Vijay Kotu and Bala Deshpande Morgan Kaufmann Publishers

Thank You