- 1. Să se calculeze $\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 4x} \right)$.
 - a) ∞ ; b) -2; c) 2; d) $-\infty$; e) nu există; f) 0.

Soluție. Amplificând cu conjugata, obținem:

$$\lim_{x \to -\infty} (x + \sqrt{x^2 + 4x}) = \lim_{x \to -\infty} \frac{x^2 + 4x - x^2}{\sqrt{x^2 + 4x} - x} = \lim_{x \to -\infty} \frac{4x}{|x|\sqrt{1 + \frac{4}{x}} - x} = \lim_{x \to -\infty} \frac{4x}{-x\left(\sqrt{1 + \frac{4}{x}} + 1\right)} = -2.$$

2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \left\{ \begin{array}{ll} x^2+1, & x>0 \\ m, & x=0 \\ 1-x^2, & x<0. \end{array} \right.$

Să se determine m real astfel încât să existe f'(0)

a) -1; b) 2; c) -2; d) 1; e) 0; f) $m \in (-1, 1)$.

Soluție. Continuitatea în 0 este asigurată de condițiile $l_s(0) = f(0) = l_d(0)$ și deci m = 1. Pentru m=1 funcția f este continuă în 0 și $\lim_{x\to 0} f'(x)=0$. Din consecința teoremei lui Lagrange rezultă că feste derivabilă în 0 și f'(0) = 0.

- 3. Să se determine numărul întreg cel mai apropiat de $\sqrt[4]{44}$.
 - a) 3; b) 6; c) 2; d) 4; e) 5; f) 7.

Soluție. Folosim monotonia funcțiilor $(\cdot)^4$ și $\sqrt[4]{\cdot}$ pentru argument real pozitiv. Dacă $m, n \in \mathbb{N}$, avem $m \ge \sqrt[4]{44} \ge n \Leftrightarrow m^4 \ge 44 \ge n^4$. Cele mai apropiate puteri de numere naturale care încadrează numărul 44 sunt $3^4 = 81 > 44$ și $2^4 = 16 < 44$. Dar 81 - 44 = 37 > 44 - 16 = 28. Deci întregul cel mai apropiat de $\sqrt[4]{4}$ este 2.

4. Câte cifre în baza 10 are numărul

$$N = 1 + 2 \cdot 10 + 3 \cdot 10^2 + \dots + 9 \cdot 10^8 + 10 \cdot 10^9$$
 ?

a) 11; b) 14; c) 9; d) 10; e) 12; f) 8.

Soluție. Avem $10 \cdot 10^9 < N < 10^9 + 10 \cdot 10^9$ deci $10^{10} < N < 10^{11}$, adică N are 11 cifre.

- 5. Să se calculeze f''(0) pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x e^x + \ln(x^2 + 1)$
 - a) 4; b) -1; c) 6; d) 0; e) 2; f) 8.

Soluţie. Avem $f'(x) = (x+1)e^x + \frac{2x}{x^2 + 1}$ şi

$$f''(x) = (x+2)e^x + \frac{2(x^2+1) - 2x(2x)}{(x^2+1)^2} = (x+2)e^x + \frac{2(1-x^2)}{(x^2+1)^2}$$

şi deci f''(0) = 2 + 2 = 4.

- 6. Să se calculeze aria mulțimii cuprinse între curba de ecuație $y = x e^x$ și dreptele x = -1, x = 0, y = 0.
 - a) $1 \frac{2}{6}$; b) 2; c) 3; d) -1; e) -2; f) e.

Soluție. Aria este $\int_{-1}^{0} |xe^x| dx = \int_{-1}^{0} -(xe^x) dx = e^x (1-x) \Big|_{-1}^{0} = 1 - \frac{2}{e}$.

- 7. Să se calculeze integrala $\int_{2}^{19} \sqrt{x+6-6\sqrt{x-3}} \ \mathrm{d}x$.
 - a) $\frac{38}{3}$; b) $\frac{19}{2}$; c) $\frac{39}{2}$; d) $\frac{18}{5}$; e) $\frac{36}{5}$; f) $\frac{38}{5}$.

Soluţie. Din condiția de existență a radicalului $\sqrt{x-3}$, avem $x-3 \ge 0 \Leftrightarrow x \in [3,\infty)$. Cum $x \in [3,19]$, această condiție este satisfăcută. Se observă că

$$\sqrt{x+6-6\sqrt{x-3}} = \sqrt{(\sqrt{x-3}-3)^2} = |\sqrt{x-3}-3| = \begin{cases} 3-\sqrt{x-3}, & x \in [3,12] \\ \sqrt{x-3}-3, & x \in [12,19]. \end{cases}$$

Atunci

$$I = \int_{3}^{19} \sqrt{x + 6 - 6\sqrt{x - 3}} \, dx = \int_{3}^{12} (3 - \sqrt{x - 3}) dx + \int_{12}^{19} (\sqrt{x - 3} - 3) dx.$$

Efectuăm schimbarea de variabilă $y=\sqrt{x-3}$, deci $x=y^2+3$, dx=2ydy și $x=3\Rightarrow y=0$, $x=12\Rightarrow y=3$, $x=19\Rightarrow y=4$. Rezultă

$$I = \int_0^3 (3-y)2y dy + \int_3^4 (y-3)2y dy = \left(3y^2 - \frac{2}{3}y^3\right) \Big|_0^3 + \left(\frac{2}{3}y^3 - 3y^2\right) \Big|_3^4 = \frac{38}{3}.$$

- 8. Fie a și b numere reale astfel încât -5 < a < 2 și -7 < b < 1. Atunci valorile posibile ale produsului ab sunt cuprinse în intervalul:
 - a) (2,35); b) (-14,7); c) (-12,3); d) (-14,35); e) (-35,2); f) (-14,2).

Soluție. Pentru a,b>0 avem $ab<2\cdot 1=2$. Pentru a,b<0 avem 0<-a<5 și 0<-b<7 și deci ab<35. Pentru a<0< b avem 0<-a<5 si 0< b<1 și deci -ab<5 $\Leftrightarrow ab>-5$. Dacă b<0< a rezultă 0<-b<7 și 0< a<2. Prin înmulțire avem -ab<14, deci ab>-14. Din aceste considerații avem $-14< ab<35 \Leftrightarrow ab \in (-14,35)$. Acest rezultat este optim deoarece $\lim_{\varepsilon\searrow 0} (-5+\varepsilon)(-7+\varepsilon)=35$ și $\lim_{\varepsilon\searrow 0} (2-\varepsilon)(-7+\varepsilon)=-14$.

9. Se consideră permutările

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right), \quad \tau = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array}\right).$$

Să se rezolve ecuația $\sigma^{11} \cdot x = \tau$.

a)
$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
; b) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$; c) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$; d) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$; e) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$; f) $x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$.

Soluție. Avem $\sigma^2 = e$ și deci $\sigma^{11} = \sigma^{10} \cdot \sigma = \sigma$. Ecuația devine $\sigma \cdot x = \tau$ și de aici

$$x = \sigma^{-1}\tau = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right) \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array}\right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right).$$

10. Dacă 2x - y + z = 0, x + y - z = 0 și $y \neq 0$, să se calculeze valoarea raportului

$$\frac{x^2 - 2y^2 + z^2}{x^2 + y^2 + z^2}.$$

a) 2; b) 4; c) $\frac{1}{2}$; d) $-\frac{1}{2}$; e) 3; f) 0.

Soluţie. Din 2x + z = y şi x - z = -y rezultă x = 0 şi z = y, deci $\frac{x^2 - 2y^2 + z^2}{x^2 + y^2 + z^2} = \frac{-2y^2 + y^2}{y^2 + y^2} = -\frac{1}{2}$.

- 11. Valoarea raportului $\frac{\ln 15}{\lg 15}$ este
 - a) $\frac{e}{15}$; b) 15; c) 5; d) $\lg e$; e) $\ln 10$; f) 1.

Soluţie. Avem $\lg 15 = \frac{\ln 15}{\ln 10}$ şi deci $\frac{\ln 15}{\lg 15} = \ln 10$.

- 12. Să se determine suma soluțiilor ecuației $x^3 + x + \hat{2} = \hat{0}$ în \mathbb{Z}_6 .
 - a) $\hat{0}$; b) $\hat{4}$; c) $\hat{5}$; d) $\hat{1}$; e) $\hat{3}$; f) $\hat{2}$.

Soluție. Prin înlocuiri succesive, se observă că dintre valorile $\{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}\}$, doar $\hat{2}$ și $\hat{5}$ verifică ecuația. Suma căutată este deci $\hat{2} + \hat{5} = \hat{1}$.

- 13. Robinetul A umple un rezervor gol în două ore, iar robinetul B umple același rezervor în patru ore. În câte minute vor umple același rezervor gol robinetele A și B curgând împreună ?
 - a) 40 min; b) 80 min; c) 100 min; d) 360 min; e) 180 min; f) 60 min.

Soluție. Într-o oră primul robinet umple $\frac{1}{2}$ din bazin iar al doilea umple $\frac{1}{4}$ din bazin. Ambele robinete umplu bazinul în $\frac{1}{\frac{1}{2}+\frac{1}{4}}$ ore adică $\frac{4}{3}\cdot 60=80\,\mathrm{min}$.

- 14. Câți termeni raționali sunt în dezvoltarea $\left(\sqrt{2} + \frac{1}{\sqrt[3]{2}}\right)^{25}$?
 - a) 6; b) 4; c) 5; d) 24; e) nici unul; f) 25.

Soluție. Termenul general este $T_{k+1} = C_{25}^k (\sqrt{2})^{25-k} \cdot (\frac{1}{\sqrt[3]{2}})^k = C_{25}^k 2^{\frac{5(15-k)}{6}}, \ k = \overline{0,25}$. Este necesar și suficient ca $\frac{15-k}{6} = h \in \mathbb{Z}$, deci k = 15-6h cu $h \in \mathbb{Z}$. Condiția $k \in \overline{0,25}$ se rescrie

$$0 \le 15 - 6h \le 25 \Leftrightarrow -\frac{10}{6} \le h \le \frac{5}{2} \Leftrightarrow h \in \{-1, 0, 1, 2\} \Leftrightarrow k \in \{21, 15, 9, 3\} \subset \overline{0, 25}.$$

Aceste valori corespund termenilor $\{T_{21}, T_{16}, T_{10}, T_4\}$ și deci dezvoltarea binomială conține patru termeni raționali.

- 15. Să se determine m real dacă există o singură pereche (x,y) de numere reale astfel încât $y \ge x^2 + m$ și $x \ge y^2 + m$.
 - a) nu există m; b) $m = \frac{1}{4}$; c) m = 0; d) $m \ge \frac{1}{8}$; e) $m < \frac{1}{8}$; f) m = 1.

Soluţie. Adunând relaţiile, obţinem

$$x^{2} + y^{2} - x - y + 2m \le 0 \Leftrightarrow \left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{1}{2}\right)^{2} \le -2m + \frac{1}{2}$$

Dacă $-2m+\frac{1}{2}<0$ se obține o contradicție. Dacă $m=\frac{1}{4}$, atunci $(x-\frac{1}{2})^2+(y-\frac{1}{2})^2=0$. Deci $x=\frac{1}{2},y=\frac{1}{2}$. Dacă $m<\frac{1}{4}$ alegem x=y, $x^2-x+m\leq 0$ deci $x\in\left[\frac{1-\sqrt{1-4m}}{2},\frac{1+\sqrt{1+4m}}{2}\right]$, deci există o infinitate de soluții cu proprietatea din enunț. Deci răspunsul este $m=\frac{1}{4}$.