IAT'13 Atlanta, Nov. 17-20, 2013

The Best-partitions Problem How to Build Meaningful Aggregations

Laboratoire d'Informatique de Grenoble

Robin Lamarche-PerrinUniv. Grenoble AlpesYves DemazeauCNRSJean-Marc VincentUniv. Grenoble Alpes

The Analysis of Large-scale Systems

The Analysis of Large-scale Systems

The Analysis of Large-scale Systems

Analysis of international relations

through print media observation

Agents: nations

Interactions: international relations

Organisation: geopolitical context

IAT'13

Counting Citations

150 Newspapers

1,530,000 Articles

TEMPORAL INFORMATION

630 Days or 90 Weeks (from 2011-05-03 to 2013-01-20)

Counting Citations

150 Newspapers

1,530,000 Articles

SPATIAL INFORMATION

193 Countries (United Nation members)

Analysis of international relations

through print media observation

EXAMPLE OF TEMPORAL AGGREGATION

EXAMPLE OF SPATIAL AGGREGATION

Citation number during July 2011

THE GUARDIAN for all countries of the UN

x 2.9

x 2.2

x 1.7

x 1.3

x 0.8

Citation number during July 2011

Citation number during July 2011

The General Problem

A generic aggregation algorithm that can be applied to the various system's dimensions

Ordered dimensions

Hierarchically organized

19

The General Problem

A generic aggregation algorithm that can be applied to the various system's dimensions

Given a **fitness function** on parts:

- 1. Which partition optimizes this function?
- 2. How to preserve the topological properties?
- 3. How to be computationally efficient?

Constrained algorithm

Admissible partitions

TOPOLOGICAL PROPERTIES

Structure of Ordered Dimensions

Admissible parts

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 3 4 1 2 3 4

Admissible partitions

Structure of Hierarchical Dimensions

Admissible parts

Admissible partitions

AGGREGATION ALGORITHM

Divide and Conquer

Covering relation: covered partitions correspond to the smallest disaggregations in the set of admissible partitions

Decomposition of an ordered dimension

Decomposition of a hierarchical dimension

Divide and Conquer

Sum property: the quality of a partition is the sum of the qualities of its parts

Recursion on an ordered dimension

Recursion on a hierarchical dimension

Example of Execution

Optimization of the Algorithm

Once the optimal subpartition of a given part has been computed, it can be used in the next recursive calls

EXPERIMENTS

Comparison of Media Attention regarding Syria

Comparison of Media Attention regarding Syria

CONCLUSION AND PERSPECTIVES REGARDING THE ALGORITHM

Complexity of the Algorithm

The space and time algorithmic complexities depend on the structure of the covering relation:

the more constraint, the less complex

Dimension	Number of parts	Number of partitions	Time complexity	Space complexity
Unconstrained	$\Theta(2^n)$	$\Theta(e^{n\log n})$	$\Theta(3^n)$	$\Theta(2^n)$
Ordered	$\Theta(n^2)$	$\Theta(2^n)$	$\Theta(n^3)$	$\Theta(n^2)$
Hierarchical	O(n)	$O(1.23^n)$	O(n)	O(n)
Other topologies	?	?	?	?

IAT'13 Atlanta, Nov. 17-20, 2013

THANK YOU FOR YOUR ATTENTION

Email: Yves.Demazeau@imag.fr

Page: http://membres-lig.imag.fr/demazeau/