

Well-posedness for Stochastic Generalized Fractional Benjamin-Ono Equation *

Wei Yan

Department of Mathematics and information science, Henan Normal University,
Xinxiang, Henan 453007, P.R.China
Email:yanwei19821115@sina.cn

Jianhua Huang[†]

College of Science, National University of Defense and Technology,
Changsha, P. R. China 410073
Email: jhhuang32@nudt.edu.cn

and

Boling Guo

Institute of Applied Physics and Computational Mathematics, Beijing, 100088
Email: gbl@iapcm.ac.cn

Abstract. This paper is devoted to the Cauchy problem for the stochastic generalized Benjamin-Ono equation. By using the Bourgain spaces and Fourier restriction method and the assumption that u_0 is \mathcal{F}_0 -measurable, we prove that the Cauchy problem for the stochastic generalized Benjamin-Ono equation is locally well-posed for the initial data $u_0(x, w) \in L^2(\Omega; H^s(\mathbf{R}))$ with $s \geq \frac{1}{2} - \frac{\alpha}{4}$, where $0 < \alpha \leq 1$. In particular, when $u_0 \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$, we prove that there exists a unique global solution $u \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R}))$ with $0 < \alpha \leq 1$.

Keywords: Cauchy problem; Stochastic fractional Benjamin-Ono equation, bilinear estimate

Mathematics Subject Classification(2000): 35E15, 35Q53, 60H15

*Supported by the NSF of China (No.11371367) and Fundamental program of NUDT(JC12-02-03)

[†]Corresponding author

1 Introduction

In this paper, we consider the following stochastic generalized fractional Benjamin-Ono type equation

$$\begin{cases} du(t) = [-|D_x|^{\alpha+1}\partial_x u(t) + u(t)^k u_x(t)]dt + \Phi dW(t), \\ u(0) = u_0 \end{cases} \quad (1.1)$$

where $0 < \alpha \leq 1$ and $|D_x|$ is the Fourier multiplier operator with symbol $|\xi|$. We recall that the Benjamin-Ono equation is a nonlinear partial integro-differential equation that describes one-dimensional internal waves in deep water, which was introduced by Benjamin [1] and Ono[34].

In fact, equation (1.1) is equivalent to the following equations:

$$\begin{cases} \frac{du(t)}{dt} = [-|D_x|^{1+\alpha}\partial_x u(t) + u(t)^k u_x(t)] + \Phi \frac{dW(t)}{dt}, \\ u(0) = u_0. \end{cases} \quad (1.2)$$

Equation (1.2) is considered as the Benjamin-Ono type equation

$$\begin{cases} \frac{dv(t)}{dt} = [-|D_x|^{1+\alpha}\partial_x v(t) + v^k(t)v_x(t)], \\ v(0) = u_0. \end{cases} \quad (1.3)$$

forced by a random term. (1.3) which contains Benjamin-Ono equation and KdV equation arise as mathematical models for the weakly nonlinear propagation of long waves in shallow channels.

When $\alpha = 1$ and $k = 1$, (1.1) reduces to the stochastic KdV equation which has been studied by some people, we refer the readers to [2, 3, 4].

When $\alpha = 1$ and $k = 1$, (1.3) reduces to the KdV equation which has been investigated by many authors, we refer the readers to [5, 20, 21, 7, 8, 9, 10, 14, 15, 22, 23, 24, 26]. The result of [23] and [24] implies that $s = -\frac{3}{4}$ is the critical well-posedness indices for the Cauchy problem for the KdV equation. Guo[15] and [26] almost proved that the KdV equation is globally well-posed in $H^{-3/4}$ with the aid of I -method and the dyadic bilinear estimates at the same time. When $\alpha = 1$ and $k = 2$, (1.3) reduces to the mKdV equation which has been studied by some people, we refer the readers to [10, 15, 22, 26, 35]. Recently, Chen et.al [6] studied the Cauchy problem for the stochastic Camassa-Holm equation. When $\alpha = 0$ and $k = 1$, (1.3) reduces to the Benjamin-Ono equation which has been studied by many people, we refer the readers to [27, 28, 29, 30, 31, 32, 33, 37]. By using the gauge transformation introduced by [37] and a new bilinear estimate, Ionescu and Kenig [25] proved that the Benjamin-Ono equation is globally well-posed in $H^s(\mathbf{R})$ with $s \geq 0$. When $0 < \alpha \leq 1$ and $k = 1$, (1.3) has been investigated by some people, we refer the readers to [11, 13, 17, 18, 20]. In [18], the author proved that (1.3) is locally well-posed in $H^{(s,w)}$ and globally well-posed in $H^{(0,w)}$. Recently, by using a frequency dependent renormalization method, Herr [19] proved that (1.3) is globally well-posed in L^2 if $0 < \alpha < 1$. Very recently, Guo [16] proved that (1.3) is globally well-posed in H^s with $s \geq 1 - \alpha$ if $0 \leq \alpha \leq 1$.

with $k = 1$ and in H^s with $s \geq \frac{1}{2} - \frac{\alpha}{4}$. Richards prove a global well-posedness result for stochastic KDV-Burgers equation under an additional smoothing of the noise, we refer to [36] for the details.

In this paper, we focus the case $0 < \alpha \leq 1$ and $k = 2$ of (1.1). In this paper, we consider the Cauchy problem for the stochastic generalized Benjamin-Ono equation. By using the Bourgain spaces and Sobolev spaces and the assumption that u_0 is \mathcal{F}_0 - measurable and $\Phi \in L_2^{0, \frac{\alpha+1}{2}}$, we prove that the Cauchy problem for the stochastic generalized Benjamin-Ono equation is locally well-posed for the initial data $u_0(x, w) \in L^2(\Omega; H^s(\mathbf{R}))$ with $s \geq \frac{1}{2} - \frac{\alpha}{4}$, where $0 < \alpha \leq 1$. In particular, when $u_0 \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ and $\Phi \in L_2^{0, \frac{\alpha+1}{2}}$, we prove that there exists a unique global solution $u \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R}))$ if $0 < \alpha \leq 1$.

We give some notations before giving the main result. We denote $X \sim Y$ by $A_1|X| \leq |Y| \leq A_2|X|$, where $A_j > 0$ ($j = 1, 2$) and denote $X \gg Y$ by $|X| > C|Y|$, where C is some positive number which is larger than 2. $\langle \xi \rangle^s = (1 + \xi^2)^{\frac{s}{2}}$ for any $\xi \in \mathbf{R}$, and $\mathcal{F}u$ denotes the Fourier transformation of u with respect to its all variables. $\mathcal{F}^{-1}u$ denotes the Fourier inverse transformation of u with respect to its all variables. $\mathcal{F}_x u$ denotes the Fourier transformation of u with respect to its space variable. $\mathcal{F}_x^{-1}u$ denotes the Fourier inverse transformation of u with respect to its space variable. \mathcal{S} is the Schwartz space and is its dual space. $H^s(\mathbf{R})$ is the Sobolev space with norm $\|f\|_{H^s(\mathbf{R})} \|\langle \xi \rangle^s \mathcal{F}_x f\|_{L_\xi^2(\mathbf{R})}$. For any $s, b \in \mathbf{R}$, $X_{s, b}(\mathbf{R}^2)$ is the Bourgain space with phase function $\phi(\xi) = \xi |\xi|^{1+\alpha}$. That is, a functions $u(x, t)$ in belongs to $X_{s, b}(\mathbf{R}^2)$ iff

$$\|u\|_{X_{s, b}(\mathbf{R}^2)} = \|\langle \xi \rangle^s \langle \tau - \xi |\xi|^{\alpha+1} \rangle^b \mathcal{F}u(\xi, \tau)\|_{L_\tau^2(\mathbf{R}) L_\xi^2(\mathbf{R})} < \infty.$$

For any given interval L , $X_{s, b}(\mathbf{R} \times L)$ is the space of the restriction of all functions in $X_{s, b}(\mathbf{R}^2)$ on $\mathbf{R} \times L$, and for $u \in X_{s, b}(\mathbf{R} \times L)$ its norm is

$$\|u\|_{X_{s, b}(\mathbf{R} \times L)} = \inf\{\|U\|_{X_{s, b}(\mathbf{R}^2)}; U|_{\mathbf{R} \times L} = u\}.$$

When $L = [0, T]$, $X_{s, b}(\mathbf{R} \times L)$ is abbreviated as $X_{s, b}^T$. Throughout this paper, we always assume that $w(\xi) = \xi |\xi|^{\alpha+1}$, ψ is a smooth function, $\psi_\delta(t) = \psi(\frac{t}{\delta})$, satisfying $0 \leq \psi \leq 1$, $\psi = 1$ when $t \in [0, 1]$, $\text{supp } \psi \subset [-1, 2]$ and $\sigma = \tau - \xi |\xi|^{\alpha+1}$, $\sigma_k = \tau_k - \xi_k |\xi_k|^{\alpha+1}$ ($k = 1, 2$),

$$\begin{aligned} U(t)u_0 &= \int_{\mathbf{R}} e^{i(x\xi - \xi |\xi|^{\alpha+1})} \mathcal{F}_x u_0(\xi) d\xi, \\ \|f\|_{L_t^q L_x^p} &= \left(\int_{\mathbf{R}} \left(\int_{\mathbf{R}} |f(x, t)|^p dx \right)^{\frac{q}{p}} dt \right)^{\frac{1}{q}}, \\ \|f\|_{L_t^p L_x^p} &= \|f\|_{L_{xt}^p}. \end{aligned}$$

We assume that $B(x, t)$, $t \geq 0, x \in \mathbf{R}$, is a zero mean gaussian process whose covariance function is given by

$$\mathbf{E}(B(t, x)B(s, y)) = (t \wedge s)(x \wedge y)$$

for $t, s \geq 0, x, y \in \mathbf{R}$ and $W(t) = \frac{\partial B}{\partial x} = \sum_{i=1}^{\infty} \beta_i e_j$, where $(e_i)_{i \in \mathbb{N}}$ is an orthonormal basis of $L^2(\mathbf{R})$ and (β_i) is a sequence of mutually independent real brownian motions in a fixed probability space, is a cylindrical Wiener process on $L^2(\mathbf{R})$. (\cdot, \cdot) denotes the L^2 space duality product, i.e., $(f, g) = \int_{\mathbf{R}} f(x)g(x)dx$. $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space endowed with a filtration $(\mathcal{F}_t)_{t \geq 0}$. $\mathbf{E}f = \int_{\Omega} f d\mathbf{P}$. $W(t)$ is a cylindrical Wiener process $(W(t))_{t \geq 0}$ on $L^2(\mathbf{R})$ associated with the filtration $(\mathcal{F}_t)_{t \geq 0}$. For any orthonormal basis $(e_k)_{k \in \mathbb{N}}$ of $L^2(\mathbf{R})$, $W = \sum_{k=0}^{\infty} \beta_k e_k$ for a sequence $(\beta_k)_{k \in \mathbb{N}}$ of real, mutually independent brownian motions on $(\Omega, \mathcal{F}, \mathbf{P}, \mathcal{F}_t)_{t \geq 0}$. Let H be a Hilbert space, $L_2^0(L^2(\mathbf{R}), H)$ the space of Hilbert-Schmidt operators from $L^2(\mathbf{R})$ into H . Its norm is given by

$$\|\Phi\|_{L_2^0(L^2(\mathbf{R}), H)}^2 = \sum_{j \in \mathbb{N}} |\Phi e_j|_H^2.$$

When $H = H^s(\mathbf{R})$, $L_2^0(L^2(\mathbf{R}), H^s(\mathbf{R})) = L_2^{0,s}$.

The main results of this paper are as follows:

Theorem A Let $0 < \alpha \leq 1$, $u_0(x) \in L^2(\Omega; H^s(\mathbf{R}))$ be \mathcal{F}_0 -measurable with $s \geq \frac{1}{2} - \frac{\alpha}{4}$ and $\Phi \in L_2^{0, \frac{\alpha+1}{2}}$. Then the Cauchy problem for (1.1) locally well-posed with $k = 2$.

Theorem B Let $0 < \alpha \leq 1$, $u_0 \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ be \mathcal{F}_0 -measurable and $\Phi \in L_2^{0, \frac{\alpha+1}{2}}$. Then the Cauchy problem for (1.1) possesses a unique global solution $u \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R}))$ with $k = 2$.

The rest of the paper is organized as follows. In section 2, some key interpolate inequalities and preliminary estimates are established. The section 3 is devoted to bilinear estimate by Fourier restriction norm method. We will show the trilinear estimate and local well-posedness of Cauchy problem in section 4. The global well-posedness of Cauchy problem is established in section 5.

2 Preliminaries

Lemma 2.1. Let $\theta \in [0, 1]$ and $W_{\gamma}(t)u_0(x) = \int_R e^{i(t\phi(\xi)+x\xi)} |\phi''(\xi)|^{\frac{\gamma}{2}} \mathcal{F}_x u_0(\xi) d\xi$. Then

$$\|W_{\frac{\theta}{2}}(t)u_0\|_{L_t^q L_x^p} \leq C \|u_0\|_{L_x^2},$$

where $(p, q) = (\frac{2}{1-\theta}, \frac{4}{\theta})$.

For the proof of Lemma 2.1, we refer the readers to Theorem 2.1 of [21].

Lemma 2.2. Let $b = \frac{1}{2} + \epsilon$, then

$$\|u\|_{L_{xt}^4} \leq C \|u\|_{X_{0, \frac{\alpha+3}{2(\alpha+2)}(\frac{1}{2}+\epsilon)}} \quad (2.1)$$

and

$$\left\| D_x^{\frac{\alpha}{8}} u \right\|_{L_{xt}^6} \leq C \|u\|_{X_{0, \frac{3}{4}b}}. \quad (2.2)$$

Proof. Let $\theta = \frac{2}{3}$, it follows from lemma 1 that

$$\left\| \int_R e^{it\phi(\xi)+ix\xi} |\phi''(\xi)|^{\frac{1}{6}} \mathcal{F}_x u_0(\xi) d\xi \right\|_{L_{xt}^6} \leq C \|u_0\|_{L_x^2}.$$

where $|\phi| = |\xi|^{\alpha+1}$, $|\phi''| = c|\xi|^\alpha$, then

$$\left\| \int_R e^{it\phi(\xi)+ix\xi} |\xi|^{\frac{\alpha}{6}} \mathcal{F}_x u_0(\xi) d\xi \right\|_{L_{xt}^6} \leq C \|u_0\|_{L_x^2}.$$

Due to $\|f\|_{L_{xt}^{2\alpha+6}} \leq C \|D_x^\gamma D_t^\gamma f\|_{L_{xt}^6}$ where $\gamma = \frac{\alpha}{6(\alpha+3)}$. Then

$$\begin{aligned} \|W(t)u_0(x)\|_{L_{xt}^{2\alpha+4}} &= C \left\| \int_R e^{i(t\phi+x\xi)} \mathcal{F}_x u_0(\xi) d\xi \right\|_{L_{xt}^{2\alpha+4}} \\ &\leq C \left\| D_x^\gamma D_t^\gamma \int_R e^{i(t\phi+x\xi)} \mathcal{F}_x u_0(\xi) d\xi \right\|_{L_{xt}^6} \\ &= C \left\| \int_R e^{i(t\phi+x\xi)} |\xi|^{\frac{\alpha}{6}} \mathcal{F}_x u_0(\xi) d\xi \right\|_{L_{xt}^6} \leq C \|u_0\|_{L_x^2}. \end{aligned} \quad (2.3)$$

By a standard argument, it follows from $\|W(t)u_0(x)\|_{L_{xt}^{2\alpha+6}} \leq C \|u_0\|_{L_x^2}$ that

$$\|u(x)\|_{L_{xt}^{2\alpha+6}} \leq C \|u\|_{X_{0,\frac{1}{2}+\epsilon}}. \quad (2.4)$$

By using the Plancherel identity, we have that

$$\|u\|_{L_{xt}^2} = C \|u\|_{X_{0,0}}. \quad (2.5)$$

Interpolating (2.4) with (2.5) yields

$$\|u\|_{L_{xt}^4} \leq C \|u\|_{X_{0,\frac{\alpha+3}{2(\alpha+2)}(\frac{1}{2}+\epsilon)}}. \quad (2.6)$$

From (2.3), by using a standard proof, we have that

$$\|D_x^{\frac{\alpha}{6}} u\|_{L_{xt}^6} \leq C \|u\|_{X_{0,b}}. \quad (2.7)$$

Interpolating (2.7) with (2.5) yields

$$\|D_x^{\frac{\alpha}{8}} u\|_{L_{xt}^4} \leq C \|u\|_{X_{0,\frac{3}{4}b}}. \quad (2.8)$$

Hence, the proof of Lemma 2.2 is completed. \square

Lemma 2.3. Let $b = \frac{1}{2} + \epsilon$. Then, for $0 \leq s \leq \frac{1}{2}$, we have that

$$\|I^s(u_1, u_2)\|_{L_{xt}^2} \leq C \prod_{j=1}^2 \|u_j\|_{X_{0,\frac{\alpha+3+2(\alpha+1)s}{2(\alpha+2)}b}}, \quad (2.9)$$

where

$$\mathcal{FI}^s(u_1, u_2)(\xi, \tau) = \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^s \mathcal{F}u_1(\xi_1, \tau_1) \mathcal{F}u_2(\xi_2, \tau_2) d\xi_1 d\tau_1.$$

Proof. Let $F_j(\xi_j, \tau_j) = \langle \sigma_j \rangle^{\frac{\alpha+3+2(\alpha+1)s}{2\alpha+4}b} \mathcal{F}u_j(\xi_j, \tau_j)$ ($j = 1, 2$). To prove Lemma 2.3, by the Plancherel identity, it suffices to prove that

$$\left\| \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^s \frac{F_1}{\langle \sigma_1 \rangle^{\frac{\alpha+3+2(\alpha+1)s}{2\alpha+2}b}} \frac{F_2}{\langle \sigma_2 \rangle^{\frac{\alpha+3+2(\alpha+1)s}{2\alpha+2}b}} d\xi_1 d\tau_1 \right\|_{L_{\xi\tau}^2} \leq C \prod_{j=1}^2 \|F_j\|_{L_{\xi\tau}^2}. \quad (2.10)$$

Assume that $b_1 = \frac{\alpha+3+2(\alpha+1)s}{2\alpha+4}b$. By using the Young inequality, since $0 < s < \frac{1}{2}$, we have that

$$\begin{aligned} & ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^s \langle \sigma_1 \rangle^{-b_1} \langle \sigma_2 \rangle^{-b_1} \\ &= ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^s \langle \sigma_1 \rangle^{-2bs} \langle \sigma_2 \rangle^{-2bs} \langle \sigma_1 \rangle^{-(b_1-2bs)} \langle \sigma_2 \rangle^{-(b_1-2bs)} \\ &\leq 2s ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^{1/2} \langle \sigma_1 \rangle^{-b} \langle \sigma_2 \rangle^{-b} + (1-2s) \langle \sigma_1 \rangle^{-\frac{\alpha+3}{2\alpha+4}b} \langle \sigma_2 \rangle^{-\frac{\alpha+3}{2\alpha+4}b} \\ &\leq ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^{1/2} \langle \sigma_1 \rangle^{-b} \langle \sigma_2 \rangle^{-b} + \langle \sigma_1 \rangle^{-\frac{\alpha+3}{2\alpha+4}b} \langle \sigma_2 \rangle^{-\frac{\alpha+3}{2\alpha+4}b}. \end{aligned} \quad (2.11)$$

By using (2.11), Plancherel identity, Lemma 3.1 in [18], we have that

$$\begin{aligned} & \left\| \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^s \frac{F_1}{\langle \sigma_1 \rangle^{\frac{\alpha+3+2(\alpha+1)s}{2\alpha+4}b}} \frac{F_2}{\langle \sigma_2 \rangle^{\frac{\alpha+3+2(\alpha+1)s}{2\alpha+2}b}} d\xi_1 d\tau_1 \right\|_{L_{\xi\tau}^2} \\ &\leq \left\| \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} ||\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}|^{1/2} \prod_{j=1}^2 \frac{F_j}{\langle \sigma_j \rangle^b} d\xi_1 d\tau_1 \right\|_{L_{\xi\tau}^2} + \left\| \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \prod_{j=1}^2 \frac{F_j}{\langle \sigma_j \rangle^{\frac{\alpha+3}{2\alpha+4}b}} d\xi_1 d\tau_1 \right\|_{L_{\xi\tau}^2} \\ &\leq C \prod_{j=1}^2 \left\| \mathcal{F}^{-1} \left(\frac{F_j}{\langle \sigma_j \rangle^b} \right) \right\|_{X_{0,b}} + C \prod_{j=1}^2 \left\| \mathcal{F}^{-1} \left(\frac{F_j}{\langle \sigma_j \rangle^{\frac{\alpha+3}{2\alpha+4}b}} \right) \right\|_{X_{0,\frac{\alpha+3}{2\alpha+4}b}} \\ &\leq C \prod_{j=1}^2 \|F_j\|_{L_{\xi\tau}^2}. \end{aligned} \quad (2.12)$$

The proof of Lemma 2.3 is completed. \square

Lemma 2.4. *Let $u_0 \in H^s(\mathbf{R})$, $c > 1/2$, $0 < b < 1/2$. Then for $t \in [0, T]$, $W(t)u_0 \in X_{s,c}^T$ and there is a constant $k_2 > 0$ such that*

$$\|U(t)u_0\|_{X_{s,c}^T} \leq k_2 \|u_0\|_{H^s}. \quad (2.13)$$

There is a constant $c > 0$ such that for $t \in [0, 1]$ and $f \in X_{s,b}^T$,

$$\left\| \int_0^T U(t-s)f(s)ds \right\|_{X_{s,b}^T} \leq CT^{1-2b} \|f\|_{X_{-b,s}}. \quad (2.14)$$

For the proof of Lemma 2.4, we refer the readers to Lemma 3.1 of [3].

Lemma 2.5. *Let*

$$\bar{u} = \int_0^t U(t-s) \Phi dW(s)$$

and $\Phi \in L_2^{0,s}$, for $t \in [0, T]$, we have

$$E(\sup_{t \in [0, T]} \|\bar{u}\|_{H^s}^2) \leq 38T \|\Phi\|_{L_2^{0,s}}^2. \quad (2.15)$$

Lemma 2.5 can be proved similarly to Proposition 3.1 of [2].

Lemma 2.6. *Let*

$$\bar{u} = \int_0^t U(t-s) \Phi dW(s)$$

and $\Phi \in L_2^{0,s}$, for $t \in [0, T]$, we have $\Psi \bar{u} \in L^2(\Omega; X_{s,b})$ and

$$E(\sup_{t \in [0, T]} \|\Psi \bar{u}\|_{X_{s,b}}^2) \leq M(b, \Psi) \|\Phi\|_{L_2^{0,s}}^2. \quad (2.16)$$

Lemma 2.6 can be proved similarly to Proposition 2.1 of [3].

3 Bilinear estimate

Theorem 3.1. *For all u, v on $\mathbf{R} \times \mathbf{R}$ and $0 < \alpha \leq 1$, $0 < \epsilon \leq \frac{\alpha}{2(3\alpha+8)}$ and $b = \frac{1}{2} - \epsilon$, we have*

$$\|u_1 u_2\|_{L^2} \leq C \|u_1\|_{X_{-\frac{1}{2}, b}} \|u_2\|_{X_{\frac{1}{2}-\frac{\alpha}{4}, b}}. \quad (3.1)$$

Proof. Define

$$F_1(\xi_1, \tau_1) = \langle \xi_1 \rangle^{-1/2} \langle \sigma_1 \rangle^b \mathcal{F}u_1(\xi_1, \tau_1), \quad F_2(\xi_2, \tau_2) = \langle \xi_2 \rangle^{\frac{1}{2}-\frac{\alpha}{4}} \langle \sigma_2 \rangle^b \mathcal{F}u(\xi_2, \tau_2),$$

$$\sigma_j = \tau_j - |\xi_j|^{\alpha+1} \xi_j, \quad j = 1, 2.$$

To obtain (4.4), it suffices to prove that

$$\int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} K_1(\xi_1, \tau_1, \xi, \tau) |F| \prod_{j=1}^2 |F_j| d\xi_1 d\tau_1 d\xi d\tau \leq C \|F\|_{L_{\xi, \tau}^2} \prod_{j=1}^2 \|F_j\|_{L_{\xi, \tau}^2}, \quad (3.2)$$

where

$$K_1(\xi_1, \tau_1, \xi, \tau) = \frac{\langle \xi_1 \rangle^{1/2} \langle \xi_2 \rangle^{\frac{\alpha}{4}-\frac{1}{2}}}{\langle \sigma_1 \rangle^b \langle \sigma_2 \rangle^b}.$$

Without loss of generality, we assume that $F \geq 0, F_j \geq 0 (j = 1, 2)$. Obviously,

$$\{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j\} \subset \sum_{j=1}^6 \Omega_j$$

where

$$\begin{aligned}\Omega_1 &= \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_1| \leq |\xi_2| \leq 6\}, \\ \Omega_2 &= \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_2| \geq 6, |\xi_2| \gg |\xi_1|\}, \\ \Omega_3 &= \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_2| \geq 6, |\xi_2| \sim |\xi_1|\}, \\ \Omega_4 &= \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_2| \leq |\xi_1| \leq 6\}, \\ \Omega_5 &= \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_1| \geq 6, |\xi_1| \gg |\xi_2|\}, \\ \Omega_6 &= \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_1| \geq 6, |\xi_1| \geq |\xi_2|, |\xi_1| \sim |\xi_2|\},\end{aligned}$$

We define

$$f_j = \mathcal{F}^{-1} \frac{F_j}{\langle \sigma_j \rangle^b}, j = 1, 2.$$

The integrals corresponding to $\Omega_j (1 \leq j \leq 6, j \in \mathbb{N}^+)$ will be denoted by $J_k (1 \leq k \leq 6, k \in \mathbb{N}^+)$ in (3.2), respectively.

(1). $\Omega_1 = \{(\xi_1, \tau_1, \xi, \tau) \in \mathbb{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_1| \leq |\xi_2| \leq 6\}$. In this subregion, we have that

$$K_1(\xi_1, \tau_1, \xi, \tau) \leq \frac{C}{\prod_{j=1}^2 \langle \sigma_j \rangle^b}.$$

By using the Plancherel identity and the Hölder inequality and $\frac{\alpha+3}{2(\alpha+2)}(\frac{1}{2}+\epsilon) < \frac{1}{2}-\epsilon$, we have that

$$\begin{aligned}
J_1 &\leq C \int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \frac{F \prod_{j=1}^2 F_j}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 d\xi d\tau \\
&\leq C \int_{\mathbf{R}^2} \mathcal{F}^{-1}(F) f_1 f_2 dx dt \leq C \|\mathcal{F}^{-1}(F)\|_{L_{xt}^2} \prod_{j=1}^2 \|f_j\|_{L_{xt}^4} \\
&\leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^2 \|f_j\|_{X_{0, \frac{\alpha+3}{2(\alpha+2)}(\frac{1}{2}+\epsilon)}} \\
&\leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^2 \|F_j\|_{L_{\xi\tau}^2}.
\end{aligned} \tag{3.3}$$

(2). $\Omega_2 = \{(\xi_1, \tau_1, \xi, \tau) \in \mathbf{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_2| \geq 6, |\xi_2| \gg |\xi_1|\}$.

If $|\xi_1| \leq 1$, we have that

$$K_1(\xi_1, \tau_1, \xi, \tau) \leq \frac{C}{\prod_{j=1}^2 \langle \sigma_j \rangle^b}$$

This case can be proved similarly to Ω_1 .

If $|\xi_1| \geq 1$, we have that

$$K_1(\xi_1, \tau_1, \xi, \tau) \leq C \frac{|\xi_2|^{\frac{\alpha}{4}}}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} \leq C \frac{||\xi_2|^{\alpha+1} - |\xi_1|^{\alpha+1}|^{\frac{\alpha}{4(\alpha+1)}}}{\prod_{j=1}^2 \langle \sigma_j \rangle^b}.$$

By using the Cauchy-Schwartz inequality and Lemma 2.3 as well as $0 < \epsilon < \frac{1}{14}$, we have that

$$\begin{aligned}
J_2 &\leq C \int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \frac{||\xi_2|^{\alpha+1} - |\xi_1|^{\alpha+1}|^{\frac{\alpha}{4(\alpha+1)}} F \prod_{j=1}^2 F_j}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 d\xi d\tau \\
&\leq C \|F\|_{L_{\xi\tau}^2} \left\| \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \frac{||\xi_2|^{\alpha+1} - |\xi_1|^{\alpha+1}|^{\frac{\alpha}{4(\alpha+1)}} F \prod_{j=1}^2 F_j}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 \right\|_{L_{\xi\tau}^2} \\
&\leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^2 \|F_j\|_{L_{\xi\tau}^2}.
\end{aligned}$$

(3). $\Omega_3 = \{(\xi_1, \tau_1, \xi, \tau) \in \mathbf{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_2| \geq 6, |\xi_2| \sim |\xi_1|\}$. In this subregion, we have that

$$K_1(\xi_1, \tau_1, \xi, \tau) \leq C \frac{|\xi_2|^{\frac{\alpha}{4}}}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} \leq C \frac{\prod_{j=1}^2 |\xi_j|^{\frac{\alpha}{8}}}{\prod_{j=1}^2 \langle \sigma_j \rangle^b}$$

By using the Plancherel identity and the Cauchy-Schwartz inequality as well as $\frac{3}{4}(\frac{1}{2} + \epsilon) < \frac{1}{2} - \epsilon$, we have that

$$\begin{aligned} J_3 &\leq C \int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \frac{\prod_{j=1}^2 |\xi_j|^{\frac{\alpha}{8}} F \prod_{j=1}^2 F_j}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 d\xi d\tau \\ &\leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^2 \left\| D_x^{\frac{\alpha}{8}} \mathcal{F}^{-1} \left(\frac{F_j}{\langle \sigma_j \rangle^b} \right) \right\|_{L_{xt}^4} \\ &\leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^2 \|F_j\|_{L_{\xi\tau}^2}. \end{aligned} \quad (3.4)$$

(4). $\Omega_4 = \{(\xi_1, \tau_1, \xi, \tau) \in \mathbf{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_2| \leq |\xi_1| \leq 6\}$. In this subregion, we have that

$$K_1(\xi_1, \tau_1, \xi, \tau) \leq \frac{C}{\prod_{j=1}^2 \langle \sigma_j \rangle^b}.$$

Thus subregion can be proved similarly to Ω_1 .

(5). $\Omega_5 = \{(\xi_1, \tau_1, \xi, \tau) \in \mathbf{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_1| \geq 6, |\xi_1| \gg |\xi_2|\}$. In this subregion, we have that

$$K_1(\xi_1, \tau_1, \xi, \tau) \leq C \frac{\|\xi_1|^{\alpha+1} - |\xi_2|^{\alpha+1}\|^{1/(2(\alpha+1))}}{\prod_{j=1}^2 \langle \sigma_j \rangle^b}.$$

By using the Cauchy-Schwartz inequality and using Lemma 2.3 as well as $\frac{\alpha+4}{2(\alpha+2)}(\frac{1}{2} + \epsilon) \leq \frac{1}{2} - \epsilon$, we have that

$$\begin{aligned} J_5 &\leq C \int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \frac{\|\xi_2|^{\alpha+1} - |\xi_1|^{\alpha+1}\|^{1/(2(\alpha+1))} F \prod_{j=1}^2 F_j}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 d\xi d\tau \\ &\leq C \|F\|_{L_{\xi\tau}^2} \left\| \int_{\substack{\xi = \xi_1 + \xi_2 \\ \tau = \tau_1 + \tau_2}} \frac{\|\xi_2|^{\alpha+1} - |\xi_1|^{\alpha+1}\|^{1/(2(\alpha+1))} F \prod_{j=1}^2 F_j}{\prod_{j=1}^2 \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 \right\|_{L_{\xi\tau}^2} \\ &\leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^2 \|F_j\|_{L_{\xi\tau}^2}. \end{aligned}$$

(6). $\Omega_6 = \{(\xi_1, \tau_1, \xi, \tau) \in \mathbf{R}^4, \xi = \sum_{j=1}^2 \xi_j, \tau = \sum_{j=1}^2 \tau_j, |\xi_1| \geq 6, |\xi_1| \geq |\xi_2|, |\xi_1| \sim |\xi_2|\}$. In this subregion, $|\xi_1| \sim |\xi_2|$.

This subregion can be proved similarly to Ω_3 .

Thus, We have completed the proof of Theorem 3.1. \square

4 Local well-posedness

In this section, we will establish two new trilinear estimates which play a crucial role in establishing the local well-posedness of solution, and then we will show the local well-posedness of the Cauchy problem (1.1) by Banach Fixed Point theorem.

We will establish the Lemma 4.1 with the aid of the idea in [38]. Let $Z = \mathbf{R}$ and $\Gamma_k(Z)$ denote the hyperplane in \mathbf{R}^k

$$\Gamma_k(Z) := \{(\xi_1, \dots, \xi_k) \in Z^k, \xi_1 + \dots + \xi_k = 0\}$$

endowed with the induced measure

$$\int_{\Gamma_k(Z)} f := \int_{Z^{k-1}} f(\xi_1, \dots, \xi_{k-1}, -\xi_1 - \dots - \xi_{k-1}) d\xi_1 \cdots d\xi_k.$$

A function $m : \Gamma_k(Z) \rightarrow C$ is said to be a $[k; Z]$ -multiplier, and we define the norm $\|m\|_{[k; Z]}$ to be the best constant such that the inequality

$$\left| \int_{\Gamma_k(Z)} m(\xi) \prod_{j=1}^k f_j(\xi_j) \right| \leq \|m\|_{[k; Z]} \prod_{j=1}^k \|f_j\|_{L^2}.$$

holds for all test function f_j on Z .

Lemma 4.1. *Let $s_0 = \frac{1}{2} - \frac{\alpha}{4}$, $b = \frac{1}{2} - \epsilon$. Then*

$$\|\partial_x(u_1 u_2 u_3)\|_{X_{s_0, -b}} \leq C \prod_{j=1}^3 \|u_j\|_{X_{s_0, b}}. \quad (4.1)$$

Proof. By duality, Plancherel identity and the definition, to obtain (4.4), it suffices to prove that

$$\left\| \frac{(\sum_{j=1}^3 \xi_j) \langle \xi_4 \rangle^{\frac{1}{2} - \frac{\alpha}{4}}}{\prod_{j=1}^4 \langle \tau_j - w(\xi_j) \rangle^{\frac{1}{2} - \epsilon} \prod_{j=1}^3 \langle \xi_j \rangle^{\frac{1}{2} - \frac{\alpha}{4}}} \right\|_{[4; \mathbf{R} \times \mathbf{R}]} \leq C. \quad (4.2)$$

By using the symmetry and

$$\langle \xi_4 \rangle^{\frac{3}{2} - \frac{\alpha}{4}} \leq C \langle \xi_4 \rangle^{\frac{1}{2}} \left[\sum_{j=1}^3 \langle \xi_j \rangle^{1 - \frac{\alpha}{4}} \right]$$

resulting from

$$|\xi_1 + \xi_2 + \xi_3| \leq \langle \xi_4 \rangle,$$

to obtain (4.2), it suffices to prove

$$\left\| \frac{\langle \xi_4 \rangle^{1/2} \langle \xi_2 \rangle^{1/2}}{\langle \xi_1 \rangle^{\frac{1}{2} - \frac{\alpha}{4}} \langle \xi_3 \rangle^{\frac{1}{2} - \frac{\alpha}{4}} \prod_{j=1}^4 \langle \tau_j - w(\xi_j) \rangle^{\frac{1}{2} - \epsilon}} \right\|_{[4; \mathbf{R} \times \mathbf{R}]} \leq C. \quad (4.3)$$

(4.3) follows from TT^* identity in Lemma 3.7 of [38] and Theorem 3.1.

The proof of lemma 4.1 has been completed. \square

Lemma 4.2. Let $s \geq s_0 = \frac{1}{2} - \frac{\alpha}{4}$, $b = \frac{1}{2} - \epsilon$. Then

$$\|\partial_x(u_1 u_2 u_3)\|_{X_{s,-b}} \leq C \prod_{j=1}^3 \|u_j\|_{X_{s,b}}. \quad (4.4)$$

Proof. (4.4) is equivalent to the following inequality

$$\int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 + \xi_3 \\ \tau = \tau_1 + \tau_2 + \tau_3}} \frac{|\xi| \langle \xi \rangle^s F \prod_{j=1}^3 F_j}{\langle \sigma \rangle^b \prod_{j=1}^3 \langle \xi_j \rangle^s \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 d\xi_2 d\tau_2 d\xi d\tau \leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^3 \|F_j\|_{L_{\xi\tau}^2}. \quad (4.5)$$

Since

$$\langle \xi \rangle^{s-s_0} \leq C \prod_{j=1}^3 \langle \xi_j \rangle^{s-s_0}, \quad (4.6)$$

(4.5) is equivalent to the following inequality

$$\int_{\mathbf{R}^2} \int_{\substack{\xi = \xi_1 + \xi_2 + \xi_3 \\ \tau = \tau_1 + \tau_2 + \tau_3}} \frac{|\xi| \langle \xi \rangle^{s_0} F \prod_{j=1}^3 F_j}{\langle \sigma \rangle^b \prod_{j=1}^3 \langle \xi_j \rangle^{s_0} \langle \sigma_j \rangle^b} d\xi_1 d\tau_1 d\xi_2 d\tau_2 d\xi d\tau \leq C \|F\|_{L_{\xi\tau}^2} \prod_{j=1}^3 \|F_j\|_{L_{\xi\tau}^2}, \quad (4.7)$$

which is just the lemma 4.1. Hence, the proof of lemma 4.2 is completed. \square

Following the method of [3], combining Lemma 4.2, Lemmas 2.4, 2.5 with the Banach Fixed Point Theorem, we have the following local well-posedness of Cauchy problem (1.1).

Theorem 4.1. Let $0 < \alpha \leq 1$, $u_0(x) \in L^2(\Omega; H^s(\mathbf{R}))$ be \mathcal{F}_0 -measurable with $s \geq \frac{1}{2} - \frac{\alpha}{4}$ and $\Phi \in L_2^{0, \frac{\alpha+1}{2}}$. Then the Cauchy problem for (1.1) locally well-posed with $k = 2$.

5 Global Well-posedness

In this section, we always assume that $0 < \alpha \leq 1$, $u_0 \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ be \mathcal{F}_0 -measurable and $\Phi \in L_2^{0, \frac{\alpha+1}{2}}$. In order to obtain the global well-posedness, we follow the argument given by Bouard and Debussche in [3], in which, they established the global well-posedness for stochastic Korteweg-de Vries equation driven by white noise, we also refer [36] to the global well-posedness for stochastic KVD-Burgers equation.

Notice that the deterministic equation (1.3) possesses two important conservation laws:

$$\frac{1}{2} \int_{\mathbf{R}} u^2 dx, \quad \frac{1}{2} \int_{\mathbf{R}} (D_x^{\frac{\alpha+1}{2}} u)^2 dx - \frac{1}{k+1} \int_{\mathbf{R}} u^{k+1} dx.$$

Let $(\Phi_m)_{m \in \mathbf{N}}$ be a sequence in $L_2^{0,4}$ such that $\Phi_m \rightarrow \Phi$ in $L_2^{0, \frac{\alpha+1}{2}}$ and let $(u_{0m})_{m \in \mathbf{N}}$ be a sequence in $H^3(\mathbf{R})$ such that $u_{0m} \rightarrow u_0$ in $L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ and in $H^{\frac{\alpha+1}{2}}(\mathbf{R})$ a.s..

Lemma 5.1. *For sufficiently large m , then there exists a unique solution u_m P-a.s in*

$$L^\infty(0, T; H^{\frac{\alpha+1}{2}}(\mathbf{R}))$$

of

$$du_m + (D_x^{\alpha+1}u_{mx} - u_m^2 u_{mx}) = \Phi_m dW, \quad (5.1)$$

$$u_m(0) = u_{0m} \quad (5.2)$$

For any $T > 0$.

Proof. Define $v_m = u_m - \bar{u}_m$, then v_m satisfies

$$v_{mt} + D_x^{\alpha+1}v_{mx} - (v_m + \bar{u}_m)^2 \partial_x(v_m + \bar{u}_m) = 0, \quad (5.3)$$

$$v_m(0) = u_{0m}. \quad (5.4)$$

By using Lemmas 2.4-2.6 and Lemma 4.2 as well as the fixed point point, we know that (5.3)-(5.4) have a local solution $u_m \in L^\infty(0, T_0(\omega), H^{\frac{\alpha+1}{2}}(\mathbf{R}))$ a.s. for a.s. $u_{0m} \in H^{\frac{\alpha+1}{2}}$, where $T_0(\omega)$ is the lifespan of the local solution. It follows from Lemma 2.5 that

$$\bar{u}_m = \int_0^t U(t-s)\Phi_m dW(s) \longrightarrow \int_0^t U(t-s)\Phi dW(s) \quad (5.5)$$

in $L^2(\Omega; H^4(\mathbf{R}))$ and \bar{u}_m is in $L^\infty(0, T; H^4)$ a.s. From (5.5), we have that there exists a subsequence, still denoted by \bar{u}_m , such that

$$\bar{u}_m \longrightarrow \bar{u} \quad (5.6)$$

in $H^4(\mathbf{R})$ a.s.

We claim that the sequence u_m is bounded in $L^2(\Omega; L^\infty(0, T; H^{\frac{\alpha+1}{2}}(\mathbf{R})))$ when $u_0 \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ for any $T > 0$.

In fact, denote

$$I(u_m) = \frac{1}{2} \int_{\mathbf{R}} (D_x^{\frac{\alpha+1}{2}} u_m)^2 dx - \frac{1}{4} \int_{\mathbf{R}} u_m^4 dx. \quad (5.7)$$

Applying the Itô formula to $I(u_m)$ yields

$$I(u_m) = I(u_{m0}) - \int_0^t (D_x^{\alpha+1}u_m - u_m^3, \Phi dW(s)) + \frac{1}{2} \int_0^t Tr(I''(u_m)\Phi_m \Phi_m^*) ds. \quad (5.8)$$

with

$$I''(u_m)\phi = D_x^{\alpha+1}\phi - 3u_m^2\phi.$$

Let $(e_i)_{i \in N}$ be an orthonormal basis of $L^2(R)$, by using $H^{\frac{\alpha+1}{2}} \hookrightarrow L^\infty$, we have that

$$\begin{aligned} Tr(I''(u_m)\Phi_m\Phi_m^*) &= -\sum_{j \in N} \int_{\mathbf{R}} [D_x^{\alpha+1}(\Phi_m e_j)\Phi_m e_j + 3u_m^2(\Phi_m e_j)^2] dx \\ &\leq \sum_{j \in N} \left(\left\| D_x^{\frac{\alpha+1}{2}}(\Phi_m e_j) \right\|_{L^2}^2 + 3\|u_m\|_{L^2}^2 \|\Phi_m e_j\|_{L^\infty}^2 \right) \leq 3\|\Phi_m\|_{L_2^{0,\frac{\alpha+1}{2}}}^2 [\|u_m\|_{L^2}^2 + 1]. \end{aligned} \quad (5.9)$$

We derive from (5.8) that

$$E \left(\sup_{t \in [0, T]} \frac{1}{2} \int_0^t Tr(I''(u_m)\Phi_m\Phi_m^*) ds \right) \leq CE \left(\sup_{t \in [0, T]} \|u_m\|_{L^2}^4 \right) + CT^2 \|\Phi_m\|_{L_2^{0,\frac{\alpha+1}{2}}}^4 + C. \quad (5.10)$$

Applying the martingale inequality (Theorem 3.14 of [12]) yields

$$E \left(\sup_{t \in [0, T]} - \int_0^t (D_x^{\frac{\alpha+1}{2}} u_m - u_m^3, \Phi dW(s)) \right) \leq 3E \left(\left(\int_0^T \left| \Phi_m^* \left(D_x^{\frac{\alpha+1}{2}} u_m - u_m^3 \right) \right|^2 ds \right)^{1/2} \right). \quad (5.11)$$

By using the Sobolev embedding $H^{\frac{\alpha+1}{2}} \hookrightarrow L^\infty$ and interpolation Theorem, we obtain

$$\begin{aligned} |\Phi_m^* (D_x^{\alpha+1} u_m - u_m^3)|^2 &= \sum_{j \in N} [(D_x^{\alpha+1} u_m, \Phi_m e_j) + (u_m^3, \Phi_m e_j)]^2 \\ &\leq C \sum_{j \in N} \left[\|u_m\|_{H^{\frac{\alpha+1}{2}}}^2 \|\Phi_m e_j\|_{H^{\frac{\alpha+1}{2}}}^2 + \|u_m\|_{L^3}^6 \|\Phi_m e_j\|_{L^\infty}^2 \right] \\ &\leq C \left[\|u_m\|_{H^{\frac{\alpha+1}{2}}}^2 + \|u_m\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha+1}} \|D_x^{\frac{\alpha+1}{2}} u_m\|_{L^2}^{\frac{2}{\alpha+1}} \right] \|\Phi_m\|_{L_2^{0,\frac{\alpha+1}{2}}}^2. \end{aligned} \quad (5.12)$$

Substituting (5.12) into (5.11), using Cauchy-Schwartz inequality and Young inequality, we deduce

$$\begin{aligned} E \left(\sup_{t \in [0, T]} - \int_0^t (D_x^{\alpha+1} u_m - u_m^3, \Phi dW(s)) \right) \\ \leq \frac{1}{8} E \left(\sup_{t \in [0, T]} \|D_x^{\frac{\alpha+1}{2}} u_m\|_{L^2}^2 \right) + CE \left(\sup_{t \in [0, T]} \|u_m\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + CT \|\Phi_m\|_{L_2^{0,\frac{\alpha+1}{2}}}^2. \end{aligned} \quad (5.13)$$

Applying Itô formula to $F(u_m) = \|u_m\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}}$ yields

$$\begin{aligned} \|u_m\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \\ = \|u_0\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} + \frac{2(2+3\alpha)}{\alpha} \int_0^t \|u_m\|_{L^2}^{\frac{2(2+2\alpha)}{\alpha}} (u_m, \Phi_m dW) + \frac{1}{2} \int_0^t Tr(F''(u_m)\Phi_m\Phi_m^*) ds, \end{aligned} \quad (5.14)$$

where

$$F''(u_m)\phi = \frac{4(2+3\alpha)(2+2\alpha)}{\alpha^2} \|u_m\|_{L^2}^{\frac{2(2+\alpha)}{\alpha}} (u_m, \phi) u_m + \frac{2(2+3\alpha)}{\alpha} \|u_m\|_{L^2}^{\frac{2(2+\alpha)}{\alpha}} \phi.$$

By using a martingale inequality (Theorem 3.14 in [12]) and Young inequality, we have that

$$\begin{aligned}
& \mathbb{E} \left(\sup_{t \in [0, T]} \frac{2(2+3\alpha)}{\alpha} \int_0^t \|u_m\|_{L^2}^{\frac{2(2+2\alpha)}{\alpha}} (u_m, \Phi_m dW) \right) \\
& \leq 3\mathbb{E} \left(\left(\int_0^T \|u_m\|_{L^2}^{\frac{4(2+2\alpha)}{\alpha}} \|\Phi_m^* u_m\|_{L^2}^2 \right)^{1/2} \right) \\
& \leq \frac{1}{16} \mathbb{E} \left(\sup_{t \in [0, T]} \|u_m\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + CT \|\Phi_m\|_{L_2^{0,0}}^{4\alpha+6}.
\end{aligned} \tag{5.15}$$

Direct computation implies

$$\begin{aligned}
& \text{Tr}(F''(u_m) \Phi_m \Phi_m^*) \\
& = \sum_{j \in N} \frac{4(2+3\alpha)(2+2\alpha)}{\alpha^2} \|u_m\|_{L^2}^{\frac{2(2+\alpha)}{\alpha}} (u_m, \Phi_m e_j)^2 + \sum_{j \in N} \frac{2(2+3\alpha)}{\alpha} \|u\|_{L^2}^{\frac{2(2+2\alpha)}{\alpha}} \|\Phi_m e_j\|_{L^2}^2 \\
& \leq \frac{2(2+3\alpha)(4+5\alpha)}{\alpha^2} \|u_m\|_{L^2}^{\frac{2(2+\alpha)}{\alpha}} \|\Phi_m\|_{L_2^{0,0}}^2 \\
& \leq \frac{1}{2} \|u_m\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} + C \|\Phi_m\|_{L_2^{0,0}}^{\frac{2+3\alpha}{\alpha}}.
\end{aligned} \tag{5.16}$$

Combining (5.15), (5.16) with (5.14), we have that

$$\mathbb{E} \left(\sup_{t \in [0, T_0]} \|u_m(t)\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) \leq C \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + C \|\Phi_m\|_{L_2^{0,0}}^{\frac{2+3\alpha}{\alpha}} + CT \|\Phi_m\|_{L_2^{0,0}}^{4\alpha+6}. \tag{5.17}$$

By using interpolation Theorem, we have that

$$\|u_m\|_{L^4}^4 \leq C \|u_m\|_{L^2}^{\frac{2(2\alpha+1)}{\alpha+1}} \|D_x^{\frac{\alpha+1}{2}} u_m\|_{L^2}^{\frac{2}{\alpha+1}} \leq C \|u_m\|_{L^2}^{\frac{2(2\alpha+1)}{\alpha}} + \frac{1}{8} \|D_x^{\frac{\alpha+1}{2}} u_m\|_{L^2}^2. \tag{5.18}$$

Similarly, we derive that

$$\mathbb{E} \left(\sup_{t \in [0, T_0]} \|u_m(t)\|_{L^2}^{\frac{2(1+2\alpha)}{\alpha}} \right) \leq C \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(1+2\alpha)}{\alpha}} \right) + CT \|\Phi_m\|_{L_2^{0,0}}^{C(\alpha)} \tag{5.19}$$

and

$$\mathbb{E} \left(\sup_{t \in [0, T_0]} \|u_m(t)\|_{L^2}^4 \right) \leq C \mathbb{E} (\|u_{0m}\|_{L^2}^4) + CT \|\Phi_m\|_{L_2^{0,0}}^4, \tag{5.20}$$

$$\mathbb{E} \left(\sup_{t \in [0, T_0]} \|u_m(t)\|_{L^2}^2 \right) \leq C \mathbb{E} (\|u_{0m}\|_{L^2}^2) + CT \|\Phi_m\|_{L_2^{0,0}}^2, \tag{5.21}$$

where $C(\alpha)$ is a constant relative to α . Combining (5.18) with (5.19), we get

$$\mathbb{E} \left(\sup_{t \in [0, T]} \|u_m\|_{L^4}^4 \right) \leq C \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(1+2\alpha)}{\alpha}} \right) + CT \|\Phi_m\|_{L_2^{0,0}}^{C(\alpha)} + \frac{1}{8} \mathbb{E} \left(\sup_{t \in [0, T]} \|D_x^{\frac{\alpha+1}{2}} u_m\|_{L^2}^2 \right). \tag{5.22}$$

Combining (5.10), (5.13), (5.17), (5.20)-(5.22) with (5.8), we obtain

$$\begin{aligned}
& \frac{1}{2} \mathbb{E} \left(\sup_{t \in [0, T]} \int_{\mathbf{R}} \left[u_m^2 + (D_x^{\frac{\alpha+1}{2}} u_m)^2 \right] dx \right) \\
&= \frac{1}{2} \mathbb{E} \left(\sup_{t \in [0, T]} \int_{\mathbf{R}} u_m^2 dx \right) + \mathbb{E} \left(\sup_{t \in [0, T]} I(u_m) \right) + \frac{1}{4} \mathbb{E} \int_{\mathbf{R}} u_m^4 dx \\
&\leq C \mathbb{E} \int_{\mathbf{R}} \left[u_{0m}^2 + (D_x^{\frac{\alpha+1}{2}} u_{0m})^2 \right] dx + C \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) \\
&\quad + C \mathbb{E} \left(\|u_{m0}\|_{L^2}^{\frac{2(1+2\alpha)}{\alpha}} \right) + \frac{1}{4} \mathbb{E} \left(\sup_{t \in [0, T]} \int_{\mathbf{R}} \left[u_m^2 + (D_x^{\frac{\alpha+1}{2}} u_m)^2 \right] dx \right) \\
&\quad + C \mathbb{E} (\|u_{0m}\|_{L^2}^4) + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{C(\alpha)} + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{D(\alpha)} \\
&\quad + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{E(\alpha)} + CT^2 \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^4 + C,
\end{aligned} \tag{5.23}$$

where $C(\alpha)$, $D(\alpha)$, $E(\alpha)$ are constants relative to α .

From (5.22), by using the Young inequality, we have that

$$\begin{aligned}
& \mathbb{E} \left(\sup_{t \in [0, T]} \int_{\mathbf{R}} \left[u_m^2 + (D_x^{\frac{\alpha+1}{2}} u_m)^2 \right] dx \right) \\
&\leq C \mathbb{E} \int_{\mathbf{R}} \left[u_{0m}^2 + (D_x^{\frac{\alpha+1}{2}} u_{0m})^2 \right] dx + C \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + C \mathbb{E} \left(\|u_{m0}\|_{L^2}^{\frac{2(1+2\alpha)}{\alpha}} \right) \\
&\quad + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{C(\alpha)} + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{D(\alpha)} + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{E(\alpha)} + C + C \mathbb{E} (\|u_{0m}\|_{L^2}^4) \\
&\leq C \mathbb{E} \int_{\mathbf{R}} \left[u_{0m}^2 + (D_x^{\frac{\alpha+1}{2}} u_{0m})^2 \right] dx + C \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) \\
&\quad + CT \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{F(\alpha)} (1 + T) + C + CT^2,
\end{aligned} \tag{5.24}$$

where $F(\alpha) = \max \{4, C(\alpha), D(\alpha), E(\alpha)\}$.

From $u_{0m} \rightarrow u_0$ in $L^2(\Omega; L^\infty(0, T; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ and $\Phi_m \rightarrow \Phi$ in $L_2^{0, \frac{\alpha+1}{2}}$, we know that $\forall \epsilon > 0$, there exists sufficiently large $m \in N^+$ such that

$$\begin{aligned}
& \mathbb{E} \|u_{0m}\|_{H^{\frac{\alpha+1}{2}}}^2 + \mathbb{E} \left(\|u_{0m}\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + \|\Phi_m\|_{L_2^{0, \frac{\alpha+1}{2}}}^{F(\alpha)} \\
&\leq \mathbb{E} \|u_0\|_{H^{\frac{\alpha+1}{2}}}^2 + \mathbb{E} \left(\|u_0\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + \|\Phi\|_{L_2^{0, \frac{\alpha+1}{2}}}^{F(\alpha)} + C + CT^2 + \epsilon.
\end{aligned} \tag{5.25}$$

Combining (5.24) with (5.25), we have that

$$\begin{aligned} & \mathbb{E} \left(\sup_{t \in [0, T]} \int_{\mathbf{R}} \left[u_m^2 + (D_x^{\frac{\alpha+1}{2}} u_m)^2 \right] dx \right) \\ & \leq C \mathbb{E} \|u_0\|_{H^{\frac{\alpha+1}{2}}}^2 + C \mathbb{E} \left(\|u_0\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right) + CT \|\Phi\|_{L_2^{0, \frac{\alpha+1}{2}}}^{F(\alpha)} (1 + T) + C\epsilon. \end{aligned} \quad (5.26)$$

Combining (5.26) with (5.5), we have that

$$\begin{aligned} & \mathbb{E} \left(\sup_{t \in [0, T]} \int_{\mathbf{R}} \left[v_m^2 + (D_x^{\frac{\alpha+1}{2}} v_m)^2 \right] dx \right) \\ & \leq C \left(\mathbb{E} \|u_0\|_{H^{\frac{\alpha+1}{2}}}^2, \mathbb{E} \left(\|u_0\|_{L^2}^{\frac{2(2+3\alpha)}{\alpha}} \right), T, \|\Phi\|_{L_2^{0, \frac{\alpha+1}{2}}}^{F(\alpha)} \right). \end{aligned} \quad (5.27)$$

Thus, combining the local existence of solution with (5.28), we obtain that (5.3)-(5.4) possesses a unique global solution. Consequently, (5.1)-(5.2) possesses a unique global solution u_m P-a.s in $L^\infty(0, T; H^{\frac{\alpha+1}{2}}(\mathbf{R}))$ for any $T > 0$.

The proof of Lemma 5.1 has been completed. \square

Theorem 5.1. *Let $0 < \alpha \leq 1$, $u_0 \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R})) \cap L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega; L^2(\mathbf{R}))$ be \mathcal{F}_0 -measurable. Then the Cauchy problem for (1.1) possesses a unique global solution $u \in L^2(\Omega; H^{\frac{\alpha+1}{2}}(\mathbf{R}))$ with $k = 2$.*

Proof. From (5.25), we know that after extraction of a subsequence, we can find a function

$$\tilde{u} \in L^2(\Omega; L^\infty(0, T; H^{\frac{\alpha+1}{2}}(\mathbf{R})))$$

such that

$$u_m \rightharpoonup \tilde{u} \quad (5.28)$$

in $L^2(\Omega; L^\infty(0, T_0; H^{\frac{\alpha+1}{2}}(\mathbf{R})))$ weak star. Moreover, we have that

$$\mathbb{E} \left(\sup_{t \in [0, T]} \|\tilde{u}\|_{H^{\frac{\alpha+1}{2}}}^2 \right) \leq C \mathbb{E} \left(\|u_0\|_{H^{\frac{\alpha+1}{2}}}^2 \right) + CT \|\Phi\|_{L_2^{0, \frac{\alpha+1}{2}}}^{F(\alpha)} + CT + C. \quad (5.29)$$

Now we define the mapping

$$G_m v = U(t) u_{0m} + \int_0^t U(t - \tau) \left\{ \frac{1}{3} \partial_x(v^3) \right\} d\tau + \bar{u}_m, \quad (5.30)$$

it is easily checked that G_m is a strict contraction uniformly on $B_{r_w}^{t_w}$, where

$$r_w \geq C \left[\left(\sup_{m \in \mathbf{N}} \|\Psi \bar{u}_m\|_{X^{\frac{\alpha+1}{2}, b}} \right) + K_2 \|\tilde{u}\|_{L^\infty(0, T; H^{\frac{\alpha+1}{2}})} \right]$$

and

$$2Ct_w^{1-2b} \left(r_w + K_2 \|\tilde{u}\|_{L^\infty(0, T_0; H^{\frac{\alpha+1}{2}})} \right)^2 \leq 1.$$

It is easily checked that G_m has a unique fixed point u_m for sufficiently large $m \in \mathbb{N}^+$. Now we prove that

$$u_m \rightarrow u$$

in $X_{\frac{\alpha+1}{2}, b}^{t_w}$. Let $z_m = U(t)u_{0m}$, $v_m = u_m - z_m - \bar{u}_m$. Then

$$v_m(t) = -\frac{1}{2} \int_0^t U(t-s) \partial_x [(v_m + z_m(t) + \bar{u}_m)^3] ds. \quad (5.31)$$

Combining lemma 4.2 with (5.31), by using Lemmas 2.4-2.6, we have that

$$\begin{aligned} & \|v_m - v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \\ & \leq Ct_w^{1-2b} \left[\|v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|v_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|z_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|\bar{u}\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|\bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 \right] \\ & \quad \times \left[\|v_m - v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|z_m - z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|\bar{u} - \bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \right] \\ & \leq Ct_w^{1-2b} \left[\|u\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|u_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|z_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|\bar{u}\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 + \|\bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2 \right] \\ & \quad \times \left[\|v_m - v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|z_m - z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|\bar{u} - \bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \right] \\ & \leq Ct_w^{1-2b} \left[\|u_0\|_{H^{\frac{\alpha+1}{2}}}^2 + \|u_{0m}\|_{H^{\frac{\alpha+1}{2}}}^2 + r_w \right] \\ & \quad \times \left[\|v_m - v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|z_m - z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|\bar{u} - \bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \right] \\ & \leq \frac{1}{2} \left[\|v_m - v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|z_m - z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|\bar{u} - \bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \right]. \end{aligned} \quad (5.32)$$

From (5.32), we have that

$$\|v_m - v\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \leq \|z_m - z\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} + \|\bar{u} - \bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \leq C\|u_{0m} - u_0\|_{H^{\frac{\alpha+1}{2}}} + \|\bar{u} - \bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}} \quad (5.33)$$

From Lemma 2.6, we have that

$$E(\sup_{t \in [0, T]} \|\Psi\bar{u} - \Psi\bar{u}_m\|_{X_{\frac{\alpha+1}{2}, b}^{t_w}}^2) \leq M(b, \Psi) \|\Phi\|_{L_2^{0, \frac{\alpha+1}{2}}}^2. \quad (5.34)$$

Combining (5.33), (5.34) with the fact that

$$u_{0m} \longrightarrow u_0. \quad (5.35)$$

in $H^{\frac{\alpha+1}{2}}$ a.s., we have that

$$u_m \rightarrow u \quad (5.36)$$

in $X_{\frac{\alpha+1}{2}, b}^{t_w}$. From (5.36), we have that

$$u = \tilde{u} \quad (5.37)$$

on $[0, t_w]$ and

$$\|u(t_w)\|_{H^{\frac{\alpha+1}{2}}} \leq \|\tilde{u}\|_{L^\infty(0, T; H^{\frac{\alpha+1}{2}})}. \quad (5.38)$$

Combining (5.38) with Theorem 4.1, we can construct a solution on $[t_w, 2t_w]$; starting from $u(2t_w)$, we obtain a solution on $[0, T]$ by reiterating this argument. Thus, the proof of Theorem 5.1 has been completed. \square

Acknowledgment

We would like to thank an anonymous referee for the valuable suggestion for improving the quality of this paper.

References

- [1] , T. B. Benjamin, Internal waves of permanent form in fluids of great depth, *J. Fluid Mech.* 29(1967) 559-562.
- [2] A. de Bouard, A. Debussche, On the stochastic Korteweg-de Vries equation, *J. Funct. Anal.* 154(1998) 215-251.
- [3] A. de Bouard, A. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Vries equation, *J. Funct. Anal.* 169(1999) 532-558.
- [4] A. de Bouard, A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation, *Annales de l'Institut Henri Poincaré (C) NonLinear Analysis*, 24(2007) 251-278.
- [5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: The KdV equation, *Geom. Funct. Anal.* 3(1993) 209-262.
- [6] Y. Chen, H. Gao and B. Guo, Well-posedness for stochastic Camassa-Holm equation, *J. Diff. Eqns.* 253(2012) 2353-2379.

- [7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal. 33(2001) 649-666.
- [8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness for the KdV in Sobolev spaces of negative indices, Electr. J. Diff. Eqns. 26(2001) 1-7.
- [9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett. 9(2002) 659-682.
- [10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global wellposedness for KdV and modified KdV on $R \times T$, J. Amer. Math. Soc. 16(2003) 705-749.
- [11] J. Colliander, C. Kenig and Staffilani, Local well-posedness for dispersion generalized Benjamin-Ono equations, Diff. Int. Eqns. 16(2003) 1441-1472.
- [12] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its applications, *Cambridge Univ. Press, Cambridge*, 1992.
- [13] J. Ginibre, G. Velo, Smoothing properties and existence of solutions for the generalized Benjamin-Ono equation, J. Diff. Eqns. 93(1991) 150-212.
- [14] A. Grünrock, New applications of the Fourier restriction norm method to wellposedness problems for nonlinear evolution equations, Dissertation, University of Wuppertal. 2002.
- [15] Z. Guo, Global well-posedness of the Kortegweg-de Vries equation in $H^{-3/4}$, J. Math. Pures Appl. 91 (2009) 583-597.
- [16] Z. Guo, Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces, J. Diff. Eqns. 252(2012) 2053-2084.
- [17] S. Herr, Well-posedness results for dispersive equations with derivative nonlinearities, Dissertation, Dem Fachbereich Mathematik der Universität Dortmund vorgelegt von. 2006.
- [18] S. Herr, Well-posedness for equations of Benjamin-Ono type, Illinois J. Math. 51(2007) 951-976.
- [19] S. Herr, A. Ionescu, C. Kenig and H. Koch, A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Diff. Eqns. 35(2010) 1827-1875.
- [20] C. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4(1991) 323-347.
- [21] C. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Mah. J. 40(1991) 33-69.

- [22] C. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46(1993) 527-620.
- [23] C. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9(1996) 573-603.
- [24] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106(2001) 617-633.
- [25] A. Ionescu, C. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc. 20(2007) 753-798.
- [26] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential and integral equations, 22(2009) 447-464.
- [27] H. Koch, N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbf{R})$, Int. Math. Res. Not. 26(2003) 1449-1464.
- [28] H. Koch, N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, $H^s(\mathbf{R})$, Int. Math. Res. Not. 30(2005) 1833-1847.
- [29] L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle, 337(2007) 353-383.
- [30] L. Molinet, Global well-posedness in L^2 for the periodic Benjamin-Ono equation, Amer. J. Math. 130(2008) 635-683.
- [31] L. Molinet, Sharp ill-posedness result for the periodic Benjamin-Ono equation. J. Funct. Anal. 257(2009) 3488-3516.
- [32] L. Molinet, D. Pilod, The Cauchy problem for the Benjamin-Ono equation in L^2 revisited, Anal. PDE 5(2012) 365-395.
- [33] L. Molinet, J. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33(2001) 982-988.
- [34] H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39(1975) 1082-1091.
- [35] P. Olver, P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support Phys. Rev. E. 53(1996) 1900-1906.
- [36] G. Richards, Well-posedness of the stochastic KDV-Burgers equation, Stoch. Proc. Appl., 124(2014), 1627-1647.

- [37] T. Tao, Global well-posedness of the Benjamin-Ono equation in H^1 , *J. Hyperbolic Differ. Equ.* 1(2004) 27-49.
- [38] Multilinear weighted convolution of L^2 function and applications to nonlinear dispersive equation, *Amer. J. Math.* 123(2001) 839-908.