5 Náhodné vektory

Príklad 5.1. Nech U je m-rozmerný a V je n-rozmerný náhodný vektor. Uvažujme maticu \mathbf{A} typu $p \times m$ a \mathbf{B} typu $r \times n$, a vektor $\mathbf{b} \in \mathbb{R}^p$. Ukážte, že

- a) $Cov(\mathbf{A}U, \mathbf{B}V) = \mathbf{A}Cov(U, V)\mathbf{B}^T$,
- b) $Var(\mathbf{A}U + \mathbf{b}) = \mathbf{A}Var(U)\mathbf{A}^T$.

Príklad 5.2. Nech $Z \sim N_n(\mu, \Sigma)$, pričom Σ je regulárna. Ukážte, že potom

- a) $\Sigma^{-1/2}(Z \mu) \sim N_n(\mathbf{0}, \mathbf{I}),$
- b) $(Z \mu)^T \Sigma^{-1} (Z \mu) \sim \chi_n^2$.

Príklad 5.3. Nech $Z \sim N_n(\mathbf{0}, \mathbf{I})$ a nech \mathbf{K} je symetrická idempotentná matica. Dokážte, že $Z^T\mathbf{K}Z \sim \chi^2_{\mathrm{rank}(\mathbf{K})}$.