Laboratorium Podstaw Fizyki

Nr ćwiczenia 48

Temat ćwiczenia Wyznaczenie Stałej Plancka Na Podstawie Charakterystyki Diody Elektroluminescencyjnej

Wykonawca:	
Imię i Nazwisko	Bartłomiej Brzozowski
Termin zajęć: dzień tygodnia, godzina	Czwartek, 17:05
Data oddania sprawozdania:	16.03.2023

Zatwierdzam	vyniki pomiarów.
Data i podpis	prowadzącego zajęcia

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

Spis treści

1.Wprowadzenie	3
1.1 Cele Ćwiczenia	3
1.2 Spis Przyrządów	3
1.3 Schemat Układu Pomiarowego	3
1.4 Oznaczenia	4
2.Pomiary	4
2.1 Wyniki Pomiarów	4
2.2 Opracowanie Wyników	7
2.3 Przykładowe Obliczenia	16
3.Wnioski	16

1. Wprowadzenie

1.1 Cele Ćwiczenia

- Pomiar charakterystyki prądowo-napięciowej diody elektroluminescencyjnej w kierunku przewodzenia
- Wyznaczenie długości fali promieniowania emitowanego przez diodę elektroluminescencyjną
- Obliczenie stałej Plancka

1.2 Spis Przyrządów

- Diody elektroluminescencyjna (czerwona, niebieska, zielona)
- Układ zasilający
- Amperomierz (SANWA CD771)
- Woltomierz (KT890)
- Monochromator

1.3 Schemat Układu Pomiarowego

Układ pomiarowy

Rysunek 1 - Schemat Układu Pomiarowego

Schemat bloczkowy

Rysunek 2 - Schemat Bloczkowy Układu Pomiarowego

1.4 Oznaczenia

- *U* Napięcie [*V*] (Wolt),
- I Natężenie [μA] (mikroAmper = 10^{-3} · miliAmper = 10^{-6} · Amper),
- e Wartość Elementarnego Ładunku Elektrycznego [C] (Kolumb),
- c- Prędkość Światła w Próżni [m/s] (Metr/Sekundę),
- λ Długość Fali Światła [nm] (nanoMetr = 10^{-9} ·Metr),
- h Stała Plancka [$kg \cdot m^2 \cdot s^{-1}$] (Kilogram · Metr^2 /Sekundę).

2.Pomiary

2.1 Wyniki Pomiarów

Wybrano sprzęt do przeprowadzenia pomiaru. W dalszej kolejności, zgodnie z instrukcją zbudowano schemat pomiarowy (Rys.1) i przeprowadzono pomiar charakterystyki prądowo napięciowej dla diod w trzech kolorach. W każdym pomiarze, zmieniano napięcie na układzie zasilającym. Pomiary przeprowadzono w całym dostępnym zakresie napięć. Następnie wyniki dla każdej z diod zapisano w dalszych tabelach (Rys6., Rys.7 i Rys.8). W pomiarach w pewnych momentach zmieniono zakres na Amperomierzu w celu odczytania wartości, co skutkowało zmianą jednostki z mikroamperów na miliampery, do łatwiejszej analizy wyników, zapisano je od razu w mikroamperach, w obliczeniach zostały uwzględnione różnice, takie jak na przykład dgt. Dalej przeprowadzono pomiar długości fali świetlnej dla każdej z diod. Wyniki zaprezentowano poniżej.

Dioda Czerwona:

$$\lambda = 639 [nm]$$

Dioda Niebieska:

Rysunek 3 – Długość fali diody czerwonej

$$\lambda = 470 \ [nm]$$

Rysunek 4 – Długość fali diody niebieskiej

Dioda Zielona:

$$\lambda = 540 \ [nm]$$

Rysunek 5 – Długość fali diody zielonej

Nr	Napięcie <i>U</i> [V]	Natężenie $I [\mu A]$
1	1,20	0,0
2 3 4 5	1,25	0,0
3	1,30 1,35	0,0
4	1,35	0,1
5	1,40	0,2
6	1,45 1,49 1,53	0,0 0,0 0,1 0,2 0,5 1,1 3,2
7	1,49	1,1
8	1,53	3,2
9	1,5/	10,1
10	1,61 1,65	28,1
11	1,65	66,9
12	1,69	175,0
13	1,73	408,0
14 15	1,77	776,0
15	1,81	1505
16	1,85	2586
17	1,86	2847
18	1,87	3225
19	1,87 1,88	3560
20	1,89	4040
21	1,90	4800
22 23 24	1,91	5030
23	1,92	5310
24	1,93	5850
25 26	1,94	6330
26	1,95	6750
27	1,96	7460
28	1,97	7840
29	1,98	8490
30	1,99	9310
31	2,00	9680
32	2,01	10600
33	2,02	11180
34	2,03	12200
35	2,04	12750
36	2,05	13610

Rysunek 6 – Wyniki pomiarów dla diody czerwonej

Nr	Napięcie <i>U</i> [<i>V</i>]	Natężenie $I [\mu A]$
1	2,24	0,3
2	2,28	0.5
3	2,32	1,0
4	2,36	1,9
2 3 4 5 6 7	2,40	1,0 1,9 4,5 12,3 34,6 95,5
6	2,44	12,3
	2,48	34,6
8	2,52	95,5
9	2,56	196,6
10	2,60	385,3
11	2,64	697,0
11 12 13 14 15	2,28 2,32 2,36 2,40 2,44 2,48 2,52 2,56 2,60 2,64 2,68 2,72 2,76 2,80	1097
13	2,72	1672
14	2,76	2403
15	2,80	3391
16	2,82	3962
17 18	2,82 2,84 2,86 2,88	5040
18	2,86	5530
19	2,88	6260 7170
20 21	2,90	7170
21	2,92	7880
22	2,94	8940
22 23 24 25	2,90 2,92 2,94 2,96 2,98	10060
24	2,98	11300
25	3.00	12600
26	3,01	13290
27	3,01 3,02	13900
28	3.03	14360
29	3,04 3,05	15300
30	3,05	16240
31	3,06	16780
32	3,06 3,07	17260
33	3,08	18400

Rysunek 7 – Wyniki pomiarów dla diody niebieskiej

Nr	Napięcie <i>U</i> [<i>V</i>]	Natężenie <i>I</i> [μ <i>A</i>]
1	1,20	0,0
2	1,25	0,0
3	1,30	0,0
4	1,35	0,0
5	1,40	0,1
2 3 4 5 6 7	1,45	0,1 0,2
7	1,48	0,3 0,5
8	1,51	0,5
9	1,54	0,9 1,7
10	1,57	1,7
11	1,60	3,1
12	1,63	6,8
13	1,66	14,9
14	1,69	34,6
15	1,72	68,4
16	1,75	158,9
17	1,78	311,8
18	1,81	594,0
19	1,82	723,0
20 21	1,83	873,0
21	1,84	1046
22 23	1,85	1215
23	1,86	1511
24	1,87	1722
25	1,88	2152
26	1,89	2455
27	1,90	2895
28	1,91	3382
29	1,92	3963
30	1,93	5200
31	1,94	5540
32	1,95	6260
33	1,96	7380
34	1,97	8420
35	1,98	9790
36	1,99	11860
37	2,00	20770
38	2,01	22580

Rysunek 8 – Wyniki pomiarów dla diody zielonej

2.2 Opracowanie Wyników

Po dokonaniu analizy wyników, dokonano obliczeń niepewności pomiarowych. Korzystano w nich z wzorów z poniższej grafiki (Rys.9). Po czym zapisano je w poniższych tabelach(Rys.10, Rys.11 i Rys.12). Zgodnie z zasadami zaokrąglano niepewności do dwóch miejsc znaczących w górę. Następnie wpisano je do tabel.

$\Delta \lambda, \Delta U, \Delta I$ – Niepewności przyrządu pomiarowego, gdzie:

$$\Delta \lambda = 1 nm,$$
 $\Delta U = 0.5\% rdg + 1 dgt,$ $\Delta I = 1.4\% rdg + 3 dgt.$

 $u_A(x)$ - Niepewność standardowa (statyczna) typu A, gdzie

$$u_A(x) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2}, \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

 $u_{\scriptscriptstyle B}(x)$ – Niepewność standardowa (szacowana) typu B, gdzie

$$u_B(x) = \sqrt{\frac{\Delta x^2}{3} + \frac{\Delta_e x^2}{3}},$$

 $\Delta_e x$ – niepewność eksperymentatora.

u(x) – Niepewność standardowa całkowita, gdzie

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)}.$$

 $u_c(x)$ – Niepewność złożona, gdzie

$$u_c(x) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}.$$

Rysunek 9 - Wzory użyte do obliczeń

Nr	<i>U</i> [<i>V</i>]	u(U)[V]	$\approx u(U)[V]$	Ι [μΑ]	<i>u(I)</i> [μ <i>A</i>]	$\approx u(I) [\mu A]$	
1	1,2000	0,00923760430703401	0,0093	0,00	0,173205080756888	0,18	
2	1,2500	0,00938194187433142	0,0094	0,00	0,173205080756888	0,18	
3	1,3000	0,00952627944162883	0,0096	0,00	0,173205080756888	0,18	
4	1,3500	0,00967061700892623	0,0097	0,10	0,174013371133753	0,18	
5	1,4000	0,00981495457622364	0,0099	0,20	0,174821661510619	0,18	
6	1,450	0,00995929214352105	0,001	0,50	0,177246532641215	0,18	
7	1,490	0,01007476219735900	0,011	1,10	0,182096274902408	0,19	
8	1,530	0,01019023225119690	0,011	3,20	0,199070372816583	0,20	
9	1,570	0,01030570230503480	0,011	10,10	0,254842408820301	0,26	
10	1,610	0,01042117235887270	0,011	28,10	0,400334676656087	0,41	
11	1,650	0,01053664241271070	0,011	66,90	0,713951342879891	0,72	
12	1,690	0,01065211246654860	0,011	175,00	1,587713240271470	1,60	
13	1,730	0,01076758252038650	0,011	408,00	3,471029818368030	3,50	
14	1,770	0,01088305257422440	0,011	776,00	6,445538405232980	6,50	
15	1,810	0,01099852262806240	0,011	1505	13,896820979394300	14	
16	1,850	0,01111399268190030	0,012	2586	22,634439953310100	23	
17	1,860	0,01114286019535980	0,012	2847	24,744077836929000	25	
18	1,870	0,01117172770881930	0,012	3225	27,799415461480500	28	
19	1,880	0,01120059522227870	0,012	3560	30,507188223979800	31	
20	1,890	0,01122946273573820	0,012	4040	34,386982032934100	35	
21	1,900	0,01125833024919770	0,012	4800	56,118446165231600	57	
22	1,910	0,01128719776265720	0,012	5030	57,977514032022200	58	
23	1,920	0,01131606527611670	0,012	5310	60,240727087245600	61	
24	1,930	0,01134493278957610	0,012	5850	64,605495122319100	65	
25	1,940	0,01137380030303560	0,012	6330	68,485288931273400	69	
26	1,950	0,01140266781649510	0,012	6750	71,880108514108400	72	
27	1,960	0,01143153532995460	0,012	7460	77,618970189853300	78	
28	1,970	0,01146040284341410	0,012	7840	80,690473621942100	81	
29	1,980	0,01148927035687360	0,012	8490	85,944361071567700	86	
30	1,990	0,01151813787033300	0,012	9310	92,572342161864600	93	
31	2,000	0,01154700538379250	0,012	9680	95,563016556266900	95	
32	2,010	0,01157587289725200	0,012	10600	102,999288023429000	110	
33	2,020	0,01160474041071150	0,012	11180	107,687372209249000	110	
34	2,030	0,01163360792417100	0,012	12200	115,931934053277000	120	
35	2,040	0,01166247543763040	0,012	12750	120,377531126037000	130	
36	2,050	0,01169134295108990	0,012	13610	127,328828367080000	130	
	Rysunek 10 – Niepewności pomiarowe dla czerwonej diody						

Nr	U[V]	<i>u(U)</i> [V]	$\approx u(U)[V]$	Ι [μΑ]	$u(I)[\mu A]$	$\approx u(I) [\mu A]$
1	2,240	0,0122398257068201	0,013	0,30	0,175629951887484	0,18
2	2,280	0,0123552957606580	0,013	0,50	0,177246532641215	0,18
3	2,320	0,0124707658144959	0,013	1,00	0,181287984525543	0,19
4	2,360	0,0125862358683338	0,013	1,90	0,188562597917332	0,19
5	2,400	0,0127017059221718	0,013	4,50	0,209578147715834	0,21
6	2,440	0,0128171759760097	0,013	12,30	0,272624797111341	0,28
7	2,480	0,0129326460298476	0,013	34,60	0,452873551152343	0,46
8	2,520	0,0130481160836855	0,014	95,50	0,945122390663417	0,95
9	2,560	0,0131635861375235	0,014	196,6	1,762303961674410	1,8
10	2,600	0,0132790561913614	0,014	385,3	3,287547902819570	3,3
11	2,640	0,0133945262451993	0,014	697,0	5,806989007509260	5,9
12	2,680	0,0135099962990372	0,014	1097	10,598996241783200	11
13	2,720	0,0136254663528752	0,014	1672	15,246665908759600	16
14	2,760	0,0137409364067131	0,014	2403	21,155268563646300	22
15	2,800	0,0138564064605510	0,014	3391	29,141177487077200	30
16	2,820	0,0139141414874700	0,014	3962	33,756515538979000	34
17	2,840	0,0139718765143889	0,014	5040	58,058343069708800	59
18	2,860	0,0140296115413079	0,015	5530	62,018965916349600	63
19	2,880	0,0140873465682269	0,015	6260	67,919485667467600	68
20	2,900	0,0141450815951458	0,015	7170	75,274928096943400	76
21	2,920	0,0142028166220648	0,015	7880	81,013789772688300	82
22	2,940	0,0142605516489838	0,015	8940	89,581667767462300	90
23	2,960	0,0143182866759027	0,015	10060	98,634519988355700	99
24	2,980	0,0143760217028217	0,015	11300	108,657320661488000	110
25	3,000	0,0144337567297406	0,015	12600	119,165095560739000	120
26	3,010	0,0144626242432001	0,015	13290	124,742299161111000	130
27	3,020	0,0144914917566596	0,015	13900	129,672870459990000	130
28	3,030	0,0145203592701191	0,015	14360	133,391006193571000	140
29	3,040	0,0145492267835786	0,015	15300	140,988935736107000	150
30	3,050	0,0145780942970381	0,015	16240	148,586865278642000	150
31	3,060	0,0146069618104975	0,015	16780	152,951633313716000	160
32	3,070	0,0146358293239570	0,015	17260	156,831427122670000	160
33	3,080	0,0146646968374165	0,015	18400	166,045937418936000	170

Rysunek 11 – Niepewności pomiarowe dla niebieskiej diody

Nr	U[V]	u(U)[V]	$\approx u(U)[V]$	$I [\mu A]$	$u(I)[\mu A]$	$\approx u(I) [\mu A]$
1	1,2000	0,00923760430703401	0,0093	0,00	0,173205080756888	0,18
2	1,2500	0,00938194187433142	0,0094	0,00	0,173205080756888	0,18
3	1,3000	0,00952627944162883	0,0096	0,00	0,173205080756888	0,18
4	1,3500	0,00967061700892623	0,0097	0,00	0,173205080756888	0,18
5	1,4000	0,00981495457622364	0,0099	0,10	0,174013371133753	0,18
6	1,4500	0,00995929214352105	0,0010	0,20	0,174821661510619	0,18
7	1,480	0,01004589468389950	0,011	0,30	0,175629951887484	0,18
8	1,510	0,01013249722427790	0,011	0,50	0,177246532641215	0,18
9	1,540	0,01021909976465640	0,011	0,90	0,180479694148677	0,19
10	1,570	0,01030570230503480	0,011	1,70	0,186946017163601	0,19
11	1,600	0,01039230484541330	0,011	3,10	0,198262082439718	0,20
12	1,630	0,01047890738579170	0,011	6,80	0,228168826383740	0,23
13	1,660	0,01056550992617020	0,011	14,90	0,293640346909844	0,30
14	1,690	0,01065211246654860	0,011	34,60	0,452873551152343	0,46
15	1,720	0,01073871500692700	0,011	68,40	0,726075698532873	0,73
16	1,750	0,01082531754730550	0,011	158,9	1,457578489596130	1,5
17	1,780	0,01091192008768390	0,011	311,8	2,693454475823440	2,7
18	1,810	0,01099852262806240	0,011	594,0	4,974449919337820	5,0
19	1,820	0,01102739014152190	0,012	723,0	6,017144505494280	6,1
20	1,830	0,01105625765498130	0,012	873,0	7,229580070792490	7,3
21	1,840	0,01108512516844080	0,012	1046	10,186768149581800	11
22	1,850	0,01111399268190030	0,012	1215	11,552778886484400	12
23	1,860	0,01114286019535980	0,012	1511	13,945318402006200	14
24	1,870	0,01117172770881930	0,012	1722	15,650811097192400	16
25	1,880	0,01120059522227870	0,012	2152	19,126459717713900	20
26	1,890	0,01122946273573820	0,012	2455	21,575579559616300	22
27	1,900	0,01125833024919770	0,012	2895	25,132057217824400	26
28	1,910	0,01128719776265720	0,012	3382	29,068431353159300	30
29	1,920	0,01131606527611670	0,012	3963	33,764598442747700	34
30	1,930	0,01134493278957610	0,012	5200	59,351607672693500	60
31	1,940	0,01137380030303560	0,012	5540	62,099794954036100	63
32	1,950	0,01140266781649510	0,012	6260	67,919485667467600	68
33	1,960	0,01143153532995460	0,012	7380	76,972337888360900	77
34	1,970	0,01146040284341410	0,012	8420	85,378557807761900	86
35	1,980	0,01148927035687360	0,012	9790	96,452135970818900	97
36	1,990	0,01151813787033300	0,012	11860	113,18374677193400	120
37	2,000	0,01154700538379250	0,012	20770	185,20241935064800	190
38	2,010	0,01157587289725200	0,012	22580	199,83247517191300	200

Rysunek 12 – Niepewności pomiarowe dla zielonej diody

Następnie dokonano obliczeń niepewności długości fali dla każdej z diod. Wyniki zapisano poniżej.

• Dioda Czerwona:

$\lambda [nm]$	$u(\lambda)$ [nm]	$\approx u(\lambda) [nm]$
639,0	2,94392028877595	3,0

Rysunek 13 – Niepewność długości fali dla czerwonej diody

• Dioda Niebieska:

λ [nm]	$u(\lambda)$ [nm]	$\approx u(\lambda) [nm]$
470,0	2,94392028877595	3,0

Rysunek 14 – Niepewność długości fali dla niebieskiej diody

• Dioda Zielona:

$\lambda \ [nm]$	$u(\lambda)$ [nm]	$\approx u(\lambda) [nm]$
540,0	2,94392028877595	3,0

Rysunek 15 – Niepewność długości fali dla zielonej diody

Dalej dla każdej z diod, za pomocą regresji liniowej wyznaczono punkt przecięcia osi napięcia $U_b=\frac{-b}{a}$ z wyznaczoną prostą. Wykonano wykresy znajdującej się na następnych stornach. Następnie obliczono jego niepewność, oraz wyznaczono stała Plancka wraz z niepewnością.

• Dioda Czerwona:

а	u(a)	$\approx u(a)$	b	u(b)	$\approx u(b)$
0,0546	0,00160297323864695	0,0017	- 0,0991	0,00312730452108516	0,0032

$U_b[V]$	$\approx U_b[V]$	$u_c(U_b)[V]$	$\approx u_c(U_b)[V]$
1,81604926073973	1,816	0,0783225984377501	0,079

Rysunek 16 – Wyniki Regresji liniowej dla diody czerwonej

• Dioda Niebieska:

а	u(a)	$\approx u(a)$	b	u(b)	$\approx u(b)$
0,0513	0,00182312847671877	0,0019	- 0,1409	0,00538289295693398	0,0054

$U_b[V]$	$\approx U_b[V]$	$u_c(U_b)[V]$	$\approx u_c(U_b)[V]$
2,74616355309293	2,75	0,143365893078721	0,15

Rysunek 17 – Wyniki Regresji liniowej dla diody niebieskiej

• Dioda Zielona:

а	u(a)	$\approx u(a)$	b	u(b)	$\approx u(b)$
0,473	0,0986563733369515	0,099	-0,93	0,196822555521464	0,20

$U_b[V]$	$\approx U_b [V]$	$u_c(U_b)[V]$	$\approx u_c(U_b)[V]$
1,96063028764805	1,96	0,583671162408026	0,59

Rysunek 18 – Wyniki Regresji liniowej dla diody zielonej

• Dioda Czerwona:

$h[kg \cdot m^2 \cdot s^{-1}]$	$u_c(h) [kg \cdot m^2 \cdot s^{-1}]$	$\approx u_c(h) [kg \cdot m^2 \cdot s^{-1}]$
6,19· 10 ⁻³⁴	$0,268442054103232 \cdot 10^{-34}$	0,27·10 ⁻³⁴

Rysunek 19 – Stała Plancka dla czerwonej diody

• Dioda Niebieska:

$h\left[kg\cdot m^2\cdot s^{-1}\right]$	$u_c(h) [kg \cdot m^2 \cdot s^{-1}]$	$\approx u_c(h) [kg \cdot m^2 \cdot s^{-1}]$
6,89· 10 ⁻³⁴	0,361947866913212· 10 ⁻³⁴	0,37·10 ^{−34}

Rysunek 20 – Stała Plancka dla niebieskiej diody

• Dioda Zielona:

$h[kg \cdot m^2 \cdot s^{-1}]$	$u_c(h) [kg \cdot m^2 \cdot s^{-1}]$	$\approx u_c(h) [kg \cdot m^2 \cdot s^{-1}]$
5,6· 10 ⁻³⁴	1,6812547950076· 10 ⁻³⁴	$1,7 \cdot 10^{-34}$

Rysunek 21 – Stała Plancka dla zielonej diody

Rysunek 22 - Wykres Regresji liniowej dla diody czerwonej

Rysunek 23 – Wykres Regresji liniowej dla diody niebieskiej

Rysunek 24 – Wykres Regresji liniowej dla diody zielonej

2.3 Przykładowe Obliczenia

Przykład obliczeń dla pierwszych wartości zmierzonych dla czerwonej diody.

 $\Delta \lambda, \Delta U, \Delta I$ – Niepewności przyrządu pomiarowego:

$$\Delta f = 1 nm$$
,
$$\Delta U = 0.5\% \cdot 1.20 + 1 \cdot 0.01 = 0.016 V$$
,
$$\Delta I = 1.4\% \cdot 0.0 + 3 \cdot 0.1 = 0.3 \mu A$$
.

 $u_A(x)$ - Niepewność standardowa (statyczna) typu A:

 $u_A(x) = 0$, dla pojedynczych pomiarów.

 $u_B(x)$ – Niepewność standardowa (szacowana) typu B:

$$u_B(x) = \sqrt{\frac{\Delta x^2}{3} + \frac{\Delta_e x^2}{3}}.$$

$$u_B(\lambda) = \sqrt{\frac{\Delta \lambda^2}{3} + \frac{\Delta_e \lambda^2}{3}} = 2,94392028877595 \ nm \approx 3,0 \ nm,$$

$$u_B(U) = \sqrt{\frac{\Delta U^2}{3} + \frac{0^2}{3}} = \frac{\Delta U}{\sqrt{3}} = 0,00923760430703401 \ \mathrm{V} \approx 0,0093 \ \mathrm{V},$$

$$u_B(I) = \sqrt{\frac{\Delta I^2}{3} + \frac{0^2}{3}} = \frac{\Delta I}{\sqrt{3}} = 0,173205080756888 \ \mu\mathrm{A} \approx 0,18 \ \mu\mathrm{A}.$$

u(x) – Niepewność standardowa całkowita:

Z tego, że $u_A(x)=0$, dla pojedynczych pomiarów, wzór prezentuję się następująco:

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)} = u_B(x).$$

$$u(\lambda) = u_B(\lambda),$$

$$u(U) = u_B(U),$$

$$u(I) = u_B(I),$$

 $u_c(x)$ – Niepewność złożona:

$$u_c(U_b) = \sqrt{\left(\frac{b \cdot u(a)}{a^2}\right)^2 + \left(\frac{-u(b)}{a}\right)^2} = 0,0783225984377501 \text{ V} \approx 0,079 \text{ V}$$

$$u_c(h) = \sqrt{\left(\frac{e \cdot U_b \cdot u(\lambda)}{c}\right)^2 + \left(\frac{e \cdot \lambda \cdot u(U_b)}{c}\right)^2} = 0,268442054103232 \cdot 10^{-34} \text{ Js} \approx 0,27 \cdot 10^{-34} \text{ Js}$$

3. Wnioski

Analizując wartości stałej Plancka (dla każdej z diod) obliczonych za pomocą regresji liniowej (Rys.19, Rys.20 i Rys.21), a tablicową wartością tej stałej $h=6,62607015\cdot 10^{-34}~[kg\cdot m^2\cdot s^{-1}]$, widzimy, że wartości dla diody czerwonej i niebieskiej są zbliżone do tablicowej wartości, natomiast dla diody w kolorze zielonym, wartości są znacznie oddalone od siebie. Może, to być spowodowane zbyt mała liczbą pomiarów, w końcowej fazie pomiarów, dostępny zakres napięć nie był zgodny z odgórnie założonym zakresem, co mogło wpłynąć na wynik przybliżonej wartości stałej Plancka.

Dioda:	λ [nm]	$U_b[V]$	$h\cdot 10^{-34}[kg\cdot m^2\cdot s^{-1}]$
Czerwona	(639,0±3,0)	(1,816±0,079)	(6,19±0,27)
Niebieska	(470,0±3,0)	(2,75±0,15)	(6,89±0,37)
Zielona	(540,0±3,0)	(1,96±0,59)	(5,6±1,7)

Rysunek 26 – Wyniki końcowe