Cambridge (CIE) A Level Chemistry

Carbon-13 NMR Spectroscopy

Contents

- Interpreting & Explaining Carbon-13 NMR Spectroscopy
- * Predicting Carbon-13 NMR Spectra

Interpreting & Explaining Carbon-13 NMR Spectroscopy

Interpreting & Explaining Carbon-13 **NMR Spectra**

- Nuclear Magnetic Resonance (NMR) spectroscopy is used for analysing organic compounds
- Atoms with odd mass numbers usually show signals on NMR
 - For example isotopes of atoms
 - Many of the carbon atoms on organic molecules are carbon-12
 - A small quantity of organic molecules will contain the isotope carbon-13 atoms
 - These will show signals on a ¹³C NMR
- In ¹³C NMR, the magnetic field strengths of carbon-13 atoms in organic compounds are measured and recorded on a spectrum
- Just as in ¹H NMR, all samples are measured against a reference compound Tetramethylsilane (TMS)
- On a 13 C NMR spectrum, non-equivalent carbon atoms appear as peaks with different chemical shifts

Chemical shift values (relative to TMS) for 13 C NMR analysis table

Hybridisation of carbon atom	Environment of carbon atom	Example	Range of chemical shift (ppm)
sp ³	alkyl	CH ₃ -, CH ₂ -, CH-, -C-	0 - 50
sp ³	next to alkene / arene	- C -C=C, - C - Ar*	25 - 50
sp ³	next to carbonyl / carboxyl	C -COR, C - CO ₂ R	30 - 65
sp ³	next to halogen	C-X	30 - 60
sp ³	next to oxygen	C-O	50 - 70
sp ²	alkene / arene	- C =C-, - A r*-	110 - 160

sp ²	carboxyl	R-COOH, R- COOR	160 - 185
sp ²	carbonyl	R-CHO, R-CO-R	190 - 220
sp	nitrile	R- C ≡ N-	100 - 125

Features of a ¹³C NMR spectrum

- ¹³C NMR spectra display sharp single signals
 - There aren't any complicated spitting patterns as seen with ¹H NMR spectra
- The height of each signal is **not** proportional to the number of carbon atoms present in a single molecular environment
- CDCl₃ is used as a solvent to dissolve samples for ¹³C NMR
 - On spectra, a single solvent peak appears at 80 ppm caused by ¹³C atoms in the
 - This can be ignored when interpreting ¹³C spectra

Explaining ¹³C molecular environments

- On an organic molecule, the carbon-13 environments can be identified in a similar way to the proton environments in ¹H NMR
- For example, propanone

Identifying molecular environments in propanone

There are 2 molecular environments in propanone

- There are 2 molecular environments
 - Therefore, 2 signals will be present on its ¹³C NMR spectrum
- The carbonyl carbon will produce a ¹³C peak in the range of 190 220 ppm

^{*} represents a benzene ring

■ The 2 methyl groups will produce a ¹³C peak in the range of 30 - 65 ppm

Carbon-13 NMR spectrum for propanone

The ¹³C NMR of propanone shows 2 signals for the 2 molecular environments

Predicting Carbon-13 NMR Spectra

Predicting ¹³C molecular environments

- The key to carbon-13 NMR spectroscopy is identifying different carbon environments
 - It can help to look for symmetry in the molecules
- For example, propanol
 - There are 2 isomers of propanol: propan-1-ol and propan-2-ol
 - Since both isomers contain 3 carbons, the maximum possible number of ¹³C NMR peaks is 3
 - Propan-1-ol
 - There is no symmetry or equivalent carbons in a molecule of propan-1-ol
 - Therefore, there will be 3 peaks in the ¹³C NMR spectrum of propan-1-ol
 - Propan-2-ol
 - There is a line of symmetry through the second carbon with the hydroxyl / OH group attached
 - This means that the CH₃ groups on either side are equivalent
 - Therefore, there will be 2 peaks in the ¹³C NMR spectrum of propan-2-ol

Identifying molecular environments in propanol

Propan-1-ol has no symmetry / equivalent carbons in its structure, while propan-2-ol has symmetry and, therefore, 2 equivalent carbons

- For example, pentane-1,4-diol
 - Since pentane-1,4-diol contains 5 carbons, the maximum possible number of ¹³C NMR peaks is 5

- There are 2 carbons with hydroxyl / OH groups attached but these are not equivalent
- Your notes

- Carbon-1 is CH₂OH with a neighbouring CH₂
- Carbon-4 is CHOH with a neighbouring CH₂ and a neighbouring CH₃
- This means that there is no symmetry within the molecule and, therefore, no equivalent carbons
- So, there will be 5 peaks in the ¹³C NMR spectrum of pentane-1,4-diol

Identifying molecular environments in pentane-1,4-diol

Pentane-1,4-diol has no symmetry / equivalent carbons in its structure

- The same principle of carbon environments also applies to aromatic compounds
- For example, benzene
 - Since benzene contains 6 carbons, the maximum possible number of ¹³C NMR peaks
 - The benzene molecule has several lines of symmetry leading to the fact that all of the carbons are equivalent
 - So, there will be I peak in the ¹³C NMR spectrum of benzene

Identifying molecular environments in benzene

Benzene has symmetry / equivalent carbons in its structure

Examiner Tips and Tricks

- Counting the number of ¹³C resonances should be the first step in analysing a spectrum
- For example, it is possible to differentiate the three isomers of dihydroxybenzene quickly be considering the symmetry of the molecules and therefore the number of resonances expected in their spectra.

Worked Example

Predict the number of peaks / resonances in the ¹³C spectrum of 1,3dihydroxybenzene.

Answer:

- There are 4 chemical environments
- Therefore, there will be four peaks / resonances in the ¹³C spectrum

