IP Layer: Introduction

ECE 50863 – Computer Network Systems

Can the Internet be One Big Switched Ethernet?

- Inefficient
 - Too much flooding
- Explosion of forwarding table
 - Need to have one entry for every Ethernet address in the world!
- Poor performance
 - Tree topology does not have good load balancing properties
 - Hot spots

Layered Protocol Architecture

What is an Internetwork?

- Multiple incompatible LANs can be physically connected by specialized computers called *routers*.
- The connected networks are called an internetwork.
 - The "Internet" is one (very big & successful) example of an internetwork

Connected LANs might be completely different (e.g., Ethernet and ATM)

Issues in Designing an Internetwork

- How do I designate a distant host?
 - Addressing / naming
- How do I send information to a distant host?
 - Routing
- Challenge
 - Scalability
 - Ensure ability to grow to worldwide scale

Router Operation

- Destination-Based Routing
 - Move packet through network via series of hops
- Forwarding:
 - Hardware table-lookup to determine next hop
 - Fast, must be done at line rate (i.e., per packet basis)
- Route table computation
 - How routers determine the routes in the first place
 - Software: more involved protocols

IP Service Model

- Datagram
 - Each packet self-contained
 - Contains all information needed to get to destination

IPv4 Header Fields: Word1

- Version: IP Version
 - 4 for IPv4
- HLen: Header Length
 - 32-bit words (typically 5)
- TOS: Type of Service
 - Priority information
- Length: Packet Length
 - Bytes (including header)

- Header format can change with versions
 - First byte identifies version
- Length field limits packets to 65535 bytes
 - In practice, break into much smaller packets for network performance considerations

Other Fields

0	4	8	12	16	19	24	28	31
ver- sion	HLen		TOS		Length			
	Ide	Ident		Flag Offset				
T	TL	Pı	rotocol		Checksum			
Source Address								
Destination Address								
Options (if any)								
Data								

Ident, Flags, Offset; Associated with IP fragmentation (longer packet than the data link layer can handle).

TTL: "Time to Live": decremented by 1 hop at each router

Protocol: For Demultiplexing. E.g. UDP/TCP

Checksum: On header

IP Layer: Addressing

ECE 50863 – Computer Network Systems

IP Addressing

- IPv4: 32-bit addresses
 - Typically, write in dotted decimal format
 - E.g., 128.2.198.135
 - Each number is decimal representation of byte

0	8	16	24 3	1
128	2	198	135	Decimal
80	02	c6	87	Hexadecimal
0100 0000	0000 0010	1100 0110	1000 0111	Binary

Possible Addressing Schemes

Flat

- e.g., every host identified by its 48-bit MAC address
- Router would need entry for every host in the world
 - Too big
 - Too hard to maintain as hosts come & go

Hierarchy

- Address broken into segments of increasing specificity
 - Indiana/ W. Lafayette / Purdue/ Sanjay
- Route to general region and then work toward specific destination
- As people and organizations shift, only update affected routing tables

IP Addressing and Forwarding

- Routing Table Requirement
 - Flat: For every destination IP address, give next hop
 - Nearly 2³² (4.3 x 10⁹) possibilities!
- Hierarchical Addressing Scheme

pfx	network	host

- Address split into network ID and host ID
 - · Purdue has one network ID shared by all hosts within Purdue
- All packets to given network follow same route
 - Until they reach destination network
- Fields
 - pfx
 Prefix to specify split between network & host IDs
 - network 2^x possibilities
 - host
 2^y possibilities

Uniform vs. Non-uniform hierarchy

- Uniform Hierarchy
 - All hosts have same split of network/host
- Nonuniform Hierarchy
 - Network/host splits may vary

Discussion: Why non-uniform?

<u>Uniform vs. Non-uniform hierarchy</u>

- Uniform Hierarchy
 - All hosts have same split of network/host
- Nonuniform Hierarchy
 - Network/host splits may vary

- Discussion: Why non-uniform?
 - Handle heterogeneous organizations
 - Large campus vs. small start-up

IP Address Classes: OLD SCHEME

- Classes D, E, F
 - Not commonly used

IP Address Classes

Class	Count	Hosts
А	2 ⁷ -2 = 126	2 ²⁴ -2 = 16,777,214
В	214 = 16,398	2^{16} -2 = 65,534
С	$2^{21} = 2,097,512$	28-2 = 254
Total	2,114,036	

Partitioning too Coarse

- Class A wasteful: Few organizations have 16.7 million hosts
- Class C insufficient: Many organizations require multiple class C's
- Too few Class B's.

Too many different Network IDs

Routing tables must still have 2.1 million entries

Classless Interdomain Routing: NEW SCHEME

- Arbitrary Split Between Network & Host IDs
 - Specify either by mask or prefix length

11111111111111110000000000000000000

network host

- E.g.
 - 128.46.0.0 with netmask 255.255.0.0
 - 128.46.0.0/16

Aggregation with CIDR

Example: CIDR address 207.46.192.0/18

Upper 18 bits frozen Lower 14 bits arbitrary

- Represents 2⁶ = 64 class C networks
- Use single entry in routing table
 - Just as if were single network address

IP Lookup with CIDR Addressing

Example Routing Table

Network	Next Hop
128.96.170.0/23	Interface 0
128.96.168.0/23	Interface 1
128.96.166.0/23	R2
128.96.164.0/22	R3
(default)	R4

Packet to destination 128.96.167.151: Which next hop? Determined based on Longest Prefix Match.

Longest Prefix Matching Example

Example Routing Table

Network	Next Hop	3 rd Octet
128.96.170.0/23	Interface 0	1010 1010
128.96.168.0/23	Interface 1	1010 1000
128.96.166.0/23	R2	1010 0110
128.96.164.0/22	R3	1010 0100
(default)	R4	

Packet to destination 128.96.167.151: 1010 0111

- Matches two entries.
- Forwarded to R2 (Longer Prefix Match)

Important Concepts

- Hierarchical addressing critical for scalable system
- Non-uniform hierarchy useful for heterogeneous networks
 - Class-based addressing too coarse
 - CIDR helps
- Realizing CIDR addressing scheme involves longest prefix match