#### Part one

## **Alternating Sinusoidal Volage**

### **Casee of Resistor:**

 $Voltage\ across\ resistor: U_{R} = RI$ 

Where: R:resis tan ce of resistor and I:int ensity of current

U<sub>R</sub> and i are in phase.

### Casee of pure coil(L):

 $Voltage\ across\ coil: U_L = Z_L I;\ Z_L = Lw$ 

Where: L:induc tan c of coil and I:intensity of current

 $U_L$  leads above current i by  $90^0$  ( $\varphi = \frac{\pi}{2}rd$ )

## Casee of Resistive coil (L, r):

Voltage across coil:  $U_L = Z_{coil}I$ ;  $Z_{coil} = \sqrt{r^2 + (L\omega)^2}$ 

Where: L:induc tan c of coil and I:intensity of current

 $\omega$ : angular frequency (rd/s) and  $\omega = 2\pi f$  (f: frequency)

r:resis tan ce of coil

$$\cos \varphi = \frac{r}{Z}$$

 $U_L$  leads above current i  $\varphi$ 

#### **Casee of capacitor C:**

Voltage across capacitor:  $U_C = Z_c I$ ;  $Z_c = \frac{1}{C \omega}$ 

Where: C: capacitan c of capacitor and I: intensity of current  $\omega$ : angular frequency (rd/s) and  $\omega = 2\pi f$  (f: frequency)

 $U_C$  lags behind current i by  $90^0$  ( $\varphi = \frac{\pi}{2}rd$ )

#### Case of RLC series circuit

*Voltage across generator*:  $U_G = ZI$ ;  $Z = \sqrt{R^2 + (Z_L - Z_C)^2}$ 

$$\cos \varphi = \frac{R}{Z}$$

The amplitude  $I_m$  of current *i* reaches a maximum value when the frequency f of the applied voltage is equal to a particular value  $f_0$ .

$$f_0$$
: is called proper frequency.  $f_0 = \frac{1}{2\pi\sqrt{LC}}$ 



When  $f = f_0$ , the current and voltage are in phase. This phenomenon is called current resonance. So, the proper frequency is also called resonance frequency.

At resonance:  $Z_L = Z_C \Rightarrow L\omega_0^2 C = 1$ 

- a. When  $f < f_0$  (below resonance), the current leads the voltage by  $\varphi$ , then circuit is capacitive.
- b. When  $f = f_0$  (resonance), the current and voltage are in phase  $\phi = 0$ , then circuit is resistive.
- c. When  $f > f_0$  (above resonance), the current lags behind the voltage by  $\varphi$ , then circuit is inductive.

## Remark:

In case of RLC series circuit:  $U_G = \sqrt{U_R^2 + (U_L - U_C)^2}$ 

In case of RL series circuit :  $U_G = \sqrt{U_R^2 + U_L^2}$ 

In case of RC series circuit:  $U_G = \sqrt{U_R^2 + U_C^2}$ 

 $u_G = U_m \sin(\omega t)$  and  $i = I_m \sin(\omega t + \varphi)$ 

Power:  $P = U.I.\cos \varphi$ 

where  $:U = \frac{U_m}{\sqrt{2}}$  And  $I = \frac{I_m}{\sqrt{2}}$ 

U<sub>m</sub> is the max voltage and U is the effective voltage.

 $I_{\text{m}}$  is the max current, and I is the effective current.

 $\Phi$  is the phase difference.

## Part 2

# **Charging and Discharging a Capacitor**

Charge of capacitor: q = CV OR Q = CU

Where:

C: Capacitance of a capacitor (Unit in SI system is Farad: F)

Q or q: charge (quantity of electricity) of the capacitor (Unit in SI system is Coulomb: C)

U or u: voltage across the terminals of a capacitor. (Volt: V)

## Energy stored in a capacitor:

$$W = \frac{1}{2}CU^2$$
 or  $W = \frac{1}{2}QU$  or  $W = \frac{1}{2}\frac{Q^2}{C}$ . W is expressed in Joules (J).

# **Charging of capacitor:**

**Differential equation:**  $E = RC \frac{du_C}{dt} + u_C$ 

#### Solution of the differential equation:

$$u_C = E(1 - e^{-\frac{t}{\tau}})$$
 where  $\tau = RC$  is time constant.

after 
$$t = \tau \Rightarrow u_C = E(1 - e^{-\frac{\tau}{\tau}}) \Rightarrow u_C = E(1 - e^{-1}) = 0.63E$$



Time constant  $\tau$  is the interval of time after which the voltage across the capacitor reaches 63% of its maximum value during charging of the capacitor.





after 
$$t = 5\tau \Rightarrow u_C = E(1 - e^{-\frac{5\tau}{\tau}}) \Rightarrow u_C = E(1 - e^{-5}) = 0.99E \approx E$$

After  $t = 5\tau$ , the capacitor is practically completely charged

The tangent to  $u_C$  at t=0, meets the asymptote in a point of abscissa  $\tau$ .

# **Discharging of capacitor**

**Differential equation:**  $RC \frac{du_C}{dt} + u_C = 0$ 

**Solution of the differential equation:**  $u_C = E e^{-\frac{t}{\tau}}$  where  $\tau = RC$  is time constant.

after 
$$t = \tau \Rightarrow u_C = Ee^{-\frac{\tau}{\tau}} \Rightarrow u_C = Ee^{-1} = 0.37E$$

Time constant  $\tau$  is the interval of time after which the voltage across the capacitor reaches 37% of its maximum value during discharging of the capacitor.

after 
$$t = 5\tau \Rightarrow u_C = Ee^{-\frac{5\tau}{\tau}} \Rightarrow u_C = Ee^{-5} = 0.006E \approx 0$$

After  $t = 5\tau$ , the capacitor is practically completely discharged.

The tangent to  $u_C$  at t=0, meets the asymptote in a point of abscissa  $\tau$ .



