Estimación de Poses en jugadores de Volley

Aplicaciones en Visión Computacional

Problemática

Problemática

Monitorear las posiciones de jugadores de volleyball de forma automática.

Garantizando que la técnica sea correcta en la recepción se contribuye a un mejor rendimiento personal y del equipo y permite evitar lesiones innecesarias por fallos técnicos

Dataset

138 videos correspondientes al movimiento de recepción de jugadores de volleyball.

Grabados a 60 fps.

De duración entre 1 a 5 segundos.

Fases de movimientos

Este proyecto ahonda en el tema de estimación de pose para obtener información sobre la configuración del cuerpo humano, ya sea a través de una representación 2D o 3D de articulaciones o una representación 3D del cuerpo humano en base a una imagen o video.

Con esta información, se revisó el estado del arte de esta área de investigación y se realizó la aplicación de un grupo de técnicas recientes que retornan resultados destacables . Por último, estos valores obtenidos a través de la aplicación de Deep Learning fueron interpretados para generar una estimación de cómo varían la posición de las articulaciones a través de la totalidad de los videos.

Antecedentes

Antecedentes

3D pose estimation using orthographic camera assumption (1985,2000)

(b)

(c)

(d)

C. J. Taylor, "Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image", Computer Vision and Image Understanding, Vol. 80, No. 10, Pgs. 349-363, October 2000

DeepPose: Human
Pose Estimation via
Deep Neural
Networks (CVPR'14)

Primera investigación especializada en aplicar Deep Learning para la estimación de poses en humanos.

Objects as Points(CenterNet, 2019)

Uso de técnica de detección de keypoints para detectar el bounding box del center point y obtener otras propiedades como el tamaño del bounding box y estimación de poses.

Realiza la estimación de un modelo corporal por cada frame de un video usando una red de generación temporal entrenada con un discriminador de movimiento con acceso a un gran conjunto de movimientos del cuerpo.

Action Recognition

HCI, Game and Animation

Clothing Parsing
[Yamaguchi et al. CVPR'14]

RGB raw sequence

Visualization of the attention process of our model

Estimación de pose

Tecnología de Computer Vision que detecta y analiza la postura humana. Su principal componente es el modelado del cuerpo humano.

También es definida como la búsqueda de una pose específica en un conjunto de poses articuladas.

Tipo de modelos de estimación de pose

Centernet

Implementación

hole framework of our method (In comparison with convolutional stacked hourglass network for human pose)

Resultados

Resultados

Estimación de ángulos

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Tipo	Lado	Ángulo
Pierna	Derecha	130.22
Pierna	Izquierda	121.52
Brazo	Izquierda	171.5
Brazo	Derecha	156.49
Cintura	Derecha	107.78
Cintura	Izquierda	89.26

Mask RCNN (2017)

Mask-RCNN
Shiny

VIBE: Video Inference for Human Body Pose and Shape Estimation

(2020)

Resultados con Implementación de Centernet

VideoPose3D

https://github.com/facebookresearch/VideoPose3D

Detección de bounding boxes y keypoints en 2D mediante **Detectron**

Detectron2

Luego de la extracción de 17 keypoints por frame se asocian los resultados obtenidos a las articulaciones correspondientes.

Por ejemplo, se identifican los keypoints del brazo izquierdo.

Detectron2

Se puede realizar el seguimiento continuo a la posición de los brazos utilizando los keypoints

El cálculo del **ángulo** entre brazo y antebrazo nos permite evaluar la calidad de recepción

119.06°

167.93°

176.52°

136.92°

145.02°

177.38°

A partir de los keypoints en 2D se estiman los keypoints en 3D usando un modelo temporal

Repositorios

Repositorio principal

https://github.com/jchaconm/PUCP-VC-Grupo3-Volleyball

Repositorio experimentos con VideoPose3D

https://github.com/manuel-montoya-gamio/VideoPose3D