Multi-Input Multi-Output Electric Motor Signal Prediction using Neural Networks

Sagar Verma

Centre de Vision Numérique, Centralesupélec, Gif-sur-Yvette

December, 2018

Table Of Contents

- 1. Dataset
- 2. Experiments
- 3. Results
- 4. Questions

What we discussed in the last meeting?

- 1. Defined the problem
- 2. Brief introduction of feed-forward and recurrent networks
- Results on a publicly available time series motor control dataset
- 4. Error in predicting impulse peeks and scaling problem

Dataset Description

- 1. Single experiment
- 2. 1200 seconds long
- 3. Simulink dq-frame model is used

Dataset Voltages

Dataset Stator Pulse

Dataset Speed

Dataset Currents

Dataset

Torque

Dataset Speed

Dataset

Voltage2 and Stator Pulse

Dataset Train-Test Split

- 1. Single experiment
- 2. Biased if splitted like 0-800s and 800-1200s
- 3. Random sampling
 - 3.1 Take window w with stride s
 - 3.2 Randomply sample windows
 - 3.3 Train-test cover whole data
 - 3.4 No overlaping b/w train-test

Experiments

ANN for signal prediction

- 1. Three outputs, three networks.
- 2. Input: $w \times 3$ 1-D vector, Output: 1 middle value
- 3. Activation, f: Leaky Relu

Experiments

ANN with auxilary task

- 1. Also reconstruct input signal.
- 2. Three outputs, three networks.
- 3. Input: $w \times 3$ 2-D vector, Output1: 1, output2: $w \times 3$ 2-D vector
- 4. Activation, f: Leaky Relu

Experiments

Convolution network

- 1. CNN and ANN works better then RNN (Miller et al. 2018).
- 2. Three outputs, three networks.
- 3. Input: $w \times 3$ 2-D vector, Output1: 1
- 4. Activation, f: Leaky Relu

Best Model

Model	w	Current1	Current2	Torque
	100	0.072	0.197	0.672
ANN	60	0.043	0.105	0.564
	30	0.031	0.091	0.056
	100	0.146	0.182	0.723
LSTM	60	0.136	0.107	0.688
	30	0.045	0.105	0.072
MO-LSTM	60	0.139	0.112	0.691
	30	0.051	0.109	0.081

Table: MSE of different models with different sequence lengths.

Model Convergence

Example Outputs

Figure: Top row: ground truth, bottom row: predicted signal, left to right: current1, current2, and torque

Some Answers

- 1. How to handle continous signals? Use tanh
- 2. How to handle long sequences? Find optimal subsequence
- 3. Which prediction model to use? ANN
- 4. How to handle multiple outputs? Independent Models

Thank you! Questions?