Integer Multiplication and Division

- Multiplication
- Signed Multiplication
- Faster Multiplication
- M Unsigned Division
- Signed Division
- Multiplication and Division in MIPS

Unsigned Multiplication

```
Paper and Pencil Example:
```

Product 100111002 = 156

m-bit multiplicand × n-bit multiplier = (m+n)-bit product Accomplished via **shifting** and **addition** Consumes more time and more chip area

Binary multiplication is easy

 $0 \times \text{multiplicand} = 0$

1 × multiplicand = multiplicand

Initialize Product = 0 Multiplicand is zero extended

Shah Murtaza Rashid Al Masud

Consider: $1100_2 \times 1101_2$, Product = 10011100_2 4-bit multiplicand and multiplier are used in this example Multiplicand is zero extended because it is **unsigned**

Iteration		Multiplicand	Multiplier	Product
0	Initialize	00001100	110 <mark>1</mark>	_ 00000000
1	Multiplier[0] = 1 => ADD			- + → 00001100
	SLL Multiplicand and SRL Multiplier	00011000	0110	
2	Multiplier[0] = 0 => Do Nothing			_ 00001100
	SLL Multiplicand and SRL Multiplier	00110000	001 <mark>1</mark>	
3	Multiplier[0] = 1 => ADD			+ > 00111100
	SLL Multiplicand and SRL Multiplier	01100000	0001	
4	Multiplier[0] = 1 => ADD			+ → 10011100
	SLL Multiplicand and SRL Multiplier	11000000	0000	

Signed Multiplication

- W Version 1 of Signed Multiplication
 - M Convert multiplier and multiplicand into positive numbers
 - If negative then obtain the 2's complement and remember the sign
 - M Perform unsigned multiplication
 - Compute the sign of the product
- Refined Version:
 - Use the refined version of the unsigned multiplication hardware
 - When shifting right, extend the sign of the product
 - M If multiplier is negative, the last step should be a subtract

```
Case 1: Positive Multiplier

Multiplicand
1100_2 = -4

Multiplier × 0101_2 = +5

11111100
111100
```

Product
$$11101100_2 = -20$$

Case 2: Negative Multiplier

```
Multiplicand 1100_2 = -4
Multiplier × 1101_2 = -3
```

```
11111100
111100
00100 (2's complement of 1100)
```


Consider: 1100_2 (-4) × 1101_2 (-3), Product = 00001100_2 Multiplicand and HI are sign-extended before addition Last iteration: add 2's complement of Multiplicand

Iteration		Multiplicand	Sign	Product = HI, LO
0	Initialize (LO = Multiplier)	1100 _		_ 0000 110 <mark>1</mark>
1	LO[0] = 1 => ADD	└ → † −	→ 1	1100 1101
	Shift Product = (HI, LO) right 1 bit	1100		1110 0110
2	LO[0] = 0 => Do Nothing			
	Shift Product = (HI, LO) right 1 bit	1100		_ 1111 001 <mark>1</mark>
3	LO[0] = 1 => ADD	□ + -	→ 1	1011 0011
	Shift Product = (HI, LO) right 1 bit	/1100 _		- 1101 100 <mark>1</mark>
4	LO[0] = 1 => SUB (ADD 2's compl)	→ 0100 ¥-	→0	0001 1001
	Shift Product = (HI, LO) right 1 bit			0000 1100

Unsigned Division

First Division Algorithm & Hardware

- Remainder = Dividend (0-extended)
- Load Upper 32 bits of Divisor

Start

Consider: 1110₂ / 0011₂ (4-bit dividend & divisor)

Quotient = 0100_2 and Remainder = 0010_2

8-bit registers for Remainder and Divisor (8-bit ALU)

Iteration		Remainder	Divisor	Difference	Quotient
0	Initialize	00001110	00110000		0000
1	1: SRL Di∨, SLL Q, Difference	00001110	00011000	11110110	0000
	2: Diff < 0 => Do Nothing				
2	1: SRL Di∨, SLL Q, Difference	00001110	00001100	00000010	0000
	2: Rem = Diff, set Isb Quotient	00000010			000 <mark>1</mark>
3	1: SRL Di∨, SLL Q, Difference	00000010	00000110	11111100	0010
	2: Diff < 0 => Do Nothing				
4	1: SRL Div, SLL Q, Difference	00000010	00000011	11111111	0100
	2: Diff < 0 => Do Nothing				

Observations on Version 1 of Divide

- Wersion 1 of Division hardware can be optimized
- Main Instead of shifting divisor right,

Shift the remainder register left

Has the same net effect and produces the same results

- Reduce Hardware:
 - Divisor register can be reduced to 32 bits (instead of 64 bits)
 - MALU can be reduced to 32 bits (instead of 64 bits)
 - M Remainder and Quotient registers can be combined

Refined Division Hardware

sub

sign

write

shift left

set Isb

- Observation:
 - Shifting remainder left does the same as shifting the divisor right
- Initialize:
 - Quotient = Dividend, Remainder = 0

32 bits

Quotient

32 bits

Divisor

32-bit ALU

Remainder

Difference

32 bits

Shah Murtaza Rashid Al Masud

Control

Same Example: $1110_2 / 0011_2$ (4-bit dividend & divisor) Quotient = 0100_2 and Remainder = 0010_2 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration		Remainder	Quotient	Divisor	Difference
0	Initialize	0000	1110	0011	
1	1: Shift Left, Difference	0001 +	- 1100	0011	1110
	2: Diff < 0 => Do Nothing				
2	1: Shift Left, Difference	0011 +	- 1000	0011	0000
	2: Rem = Diff, set lsb Quotient	0000	1001		
3	1: Shift Left, Difference	0001 +	- 0010	0011	1110
	2: Diff < 0 => Do Nothing				
4	1: Shift Left, Difference	0010 +	- 0100	0011	1111
	2: Diff < 0 => Do Nothing				

Signed Division

- Simplest way is to remember the signs
- M Convert the dividend and divisor to positive
 - MODITION OF COMPLEMENT OF THE PROPERTY OF THE
- Do the unsigned division
- Compute the signs of the quotient and remainder
 - Quotient sign = Dividend sign XOR Divisor sign
 - M Remainder sign = Dividend sign
- Negate the quotient and remainder if their sign is negative
 - Obtain the 2's complement to convert them to negative

1. Positive Dividend and Positive Divisor

Example: +17 / +3 Quotient = +5 Remainder = +2

1. Positive Dividend and Negative Divisor

Example: +17 / -3 Quotient = -5 Remainder = +2

1. Negative Dividend and Positive Divisor

Example: -17 / +3 Quotient = -5 Remainder = -1

1. Negative Dividend and Negative Divisor

Example: -17 / -3 Quotient = +5 Remainder = -2

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

Multiplication in MIPS

- Two Multiply instructions
 - mult \$s1,\$s2Signed multiplication
 - multu \$s1,\$s2Unsigned multiplication
- 32-bit multiplication produces a 64-bit Product
- Separate pair of 32-bit registers
 - **№ HI = high-order 32-bit**
 - **№ LO = low-order 32-bit**
 - MResult of multiplication is always in HI & LO
- Moving data from HI/LO to MIPS registers
 - mfhi Rd (move from HI to Rd)
 - mflo Rd (move from LO to Rd)

Division in MIPS

- Two Divide instructions
 - Ø div \$s1,\$s2
 - divu \$s1,\$s2

- **Signed division**
- **Unsigned division**
- Division produces quotient and remainder
- Separate pair of 32-bit registers

 - **№ LO = 32-bit quotient**
 - M If divisor is 0 then result is unpredictable
- Moving data to HI/LO from MIPS registers
 - mthi Rs (move to HI from Rs)
 - mtlo Rs (move to LO from Rs)

Booth's multiplication algorithm

- Booth's algorithm involves repeatedly adding one of two predetermined values A and S to a product P, then performing a rightward arithmetic shift on P. Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.
- Determine the values of A and S, and the initial value of P. All of these numbers should have a length equal to (x + y + 1).
 - A: Fill the most significant (leftmost) bits with the value of **m**. Fill the remaining (y + 1) bits with zeros.
 - S: Fill the most significant bits with the value of (-m) in two's complement notation. Fill the remaining (y + 1) bits with zeros.
 - P: Fill the most significant *x* bits with zeros. To the right of this, append the value of **r**. Fill the least significant (rightmost) bit with a zero.
- Determine the two least significant (rightmost) bits of *P*.
 - If they are 01, find the value of P + A. Ignore any overflow.
 - If they are 10, find the value of P + S. Ignore any overflow.
 - If they are 00, do nothing. Use *P* directly in the next step.
 - If they are 11, do nothing. Use *P* directly in the next step.
- Arithmetically shift the value obtained in the 2nd step by a single place to the right.

 Let P now equal this new value.
- Repeat steps 2 and 3 until they have been done *y* times.
- Drop the least significant (rightmost) bit from *P*. This is the product of **m** and **r**.

Example1

```
Find 3 \times -4, with \mathbf{m} = 3 and \mathbf{r} = -4, and x = 4 and y = 4:
   A = 0011 \ 0000 \ 0
   S = 1101\ 0000\ 0
   P = 0000 1100 0
   Perform the loop four times:
    P = 0000 \ 1100 \ 0. The last two bits are 00.
        P = 0000 0110 0. Arithmetic right shift.
    P = 0000 0110 0. The last two bits are 00.
        P = 0000 0011 0. The last two bits are 10.
        M P = 1101 0011 0. P = P + S.
        P = 1110 1001 1. Arithmetic right shift.
    P = 1110 1001 1. The last two bits are 11.
        P = 1111 0100 1. Arithmetic right shift.
\bigcirc The product is 1111 0100, which is -12.
```

Example2

The above mentioned technique is inadequate when the multiplicand is the largest negative number that can be represented (i.e. if the multiplicand has 8 bits then this value is -128). One possible correction to this problem is to add one more bit to the left of A, S and P. Below, we demonstrate the improved technique by multiplying -8 by 2 using 4 bits for the multiplicand and the multiplier:

A = 1 1000 0000 0

S = 0 1000 0000 0

P = 0 0000 0010 0

Perform the loop four times:

P = 0 0000 0010 0. The last two bits are 00.

P = 0 0000 0001 0. Right shift.

P = 0 0000 0001 0. The last two bits are 10.

P = 0 1000 0001 0. P = P + S. P = 0 0100 0000 1. Right shift.

P = 0 0100 000**0 1**. The last two bits are 01.

P = 1 1100 0000 1. P = P + A.

P = 1 1110 0000 0. Right shift.

P = 1 1110 000**0 0**. The last two bits are 00.

P = 0 1111 0000 0. Right shift.

The product is 11110000 (after discarding the first and the last bit) which is −16.

Booth's multiplication algorithm

Procedure

If x is the count of bits of the multiplicand, and y is the count of bits of the multiplier :

Draw a grid of three lines, each with squares for x + y + 1 bits. Label the lines respectively A (add), S

(subtract), and P (product).

In two's complement notation, fill the first *x* bits of each line with :

A: the multiplicand

S: the negative of the multiplicand

P: zeroes

Fill the next y bits of each line with:

A: zeroes

S: zeroes

P: the multiplier

Fill the last bit of each line with a zero.

Do both of these steps *y* times :

1. If the last two bits in the product are...

00 or 11: do nothing.

01: P = P + A. Ignore any overflow.

10: P = P + S. Ignore any overflow.

2. Arithmetically shift the product right one position.

Drop the last bit from the product for the final result.

Example

```
Find 3 \times -4:
```

- $A = 0011\ 0000\ 0$
- S = 110100000
- P = 0000 1100 0

Perform the loop four times:

- $P = 0000 \ 1100 \ 0$. The last two bits are 00.
- $P = 0000 \ 0110 \ 0$. A right shift.
- $P = 0000 \ 0110 \ 0$. The last two bits are 00.
- $P = 0000 \ 0011 \ 0$. A right shift.
- $P = 0000\ 0011\ 0$. The last two bits are 10.
- P = 1101 0011 0. P = P + S.
- P = 1110 1001 1. A right shift.
- P = 1110 100**1 1**. The last two bits are 11.
- P = 1111 0100 1. A right shift.
- The product is 1111 0100, which is -12.