Handwritten Signature Verification using Local Binary Pattern & KNN

A Project Report

Submitted by

Tejas Jadhav

Under The Guidance Of

Prof. Abhay Kolhe

in partial fulfillment for the award of the degree of

M. TECH.
in
COMPUTER ENGINEERING
at

SVKM's NMIMS,
Mukesh Patel School of Technology Management & Engineering,
Mumbai

2018 - 19

CERTIFICATE FROM INTERNAL MENTOR

This is to certify that the project synopsis entitled "Handwritten Signature

Verification using Local Binary Pattern & KNN" is the proposed work by Tejas

Jadhav of M. Tech. (Computer Engineering), MPSTME (NMIMS), Mumbai,

during the III/IV semester of the academic year 2018 - 2019 is verified by me.

The presentation for the same is also verified by me.

Prof. Abhay Kolhe

Internal Mentor

CERTIFICATE FROM EXAMINERS

This is to certify that the project entitled "Handwritten Signature Verification using Local Binary Pattern & KNN" is the bonafide work carried out by Tejas Jadhav of M.Tech. (Computer Engineering), MPSTME (NMIMS), Mumbai, during the III and IV semester of the academic year 2018-2019 in fulfilment of the requirements for the award of the Degree of Masters of Technology as per the norms prescribed by NMIMS. The project work has been assessed and found to be satisfactory.

Examiner 1	Examiner 2
Head of Computer Engin	eering Department

Dr. Pravin Shrinath

DECLARATION

I, Tejas Jadhav, Roll No. B002, M.Tech (Computer Engineering), IV semester understand that plagiarism is defined as anyone or combination of the following:

- 1. Un-credited verbatim copying of individual sentences, paragraphs or illustration (such as graphs, diagrams, etc.) from any source, published or unpublished, including the internet.
- 2. Un-credited improper paraphrasing of pages paragraphs (changing a few words phrases, or rearranging the original sentence order)
- 3. Credited verbatim copying of a major portion of a paper (or thesis chapter) without clear delineation of who did wrote what. (Source: IEEE, The institute, Dec. 2004)
- 4. I have made sure that all the ideas, expressions, graphs, diagrams, etc., that are not a result of my work, are properly credited. Long phrases or sentences that had to be used verbatim from published literature have been clearly identified using quotation marks.
- 5. I affirm that no portion of my work can be considered as plagiarism and I take full responsibility if such a complaint occurs. I understand fully well that the guide of the seminar/ project report may not be in a position to check for the possibility of such incidences of plagiarism in this body of work. I declare that the written submission represents my ideas in my own words and where others ideas or works have included; I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any new idea/data/fact/source in my submission. I understand that any violation of the above will cause for disciplinary action by the institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

Tejas Jadhav
B - 002
Mumbai

Signature of the Student:

Date:

Acknowledgement

This has been the light of the day due to valuable contribution of certain individuals whose constant guidance, support and encouragement resulted in the realization of my project. I am grateful to my Guide Prof Abhay Kolhe for providing me the necessary help and encouragement whenever I needed, which has resulted in the success of my project.

I take this opportunity to thank Dr. N. T. Rao, Dean of Mukesh Patel School of Technology Management & Engineering, NMIMS University Mumbai for providing a healthy environment in the college, which helped me in concentrating on my task.

I would also like to thank Dr Pravin Srinath, Head of Computer Science Department of Mukesh Patel School of Technology Management & Engineering, NMIMS University Mumbai for providing his invaluable guidance, comments and suggestions throughout the course of the project.

This project would not have been possible without the efforts of Dr. Dhirendra Mishra and all the other faculty members of M.Tech Computer Science, without whose constructive suggestions and valuable advice, the simple idea, which had born in me, would not have been able to blossom into a successful project.

Last but not the least, I am grateful to all my friends and my parents for their constant support throughout the course of this project.

Table of Contents

Chapter no	Title	Page no
	List of Figures	i
	List of Tables	iii
	Abstract	iv
1	Introduction	1
1.1	Real life applications	1
1.2	Types & methods of Signature Verification	1
1.3	Performance evaluation parameters	2
2	Motivation	3
3	Problem definition	4
4	Literature review	5
5	Proposed work	13
5.1	Algoritm to be used	13
5.2	Otsu thresholding	15
5.2.1	Why use Otsu's thresholding?	15
5.2.2	What is Otsu's thresholding?	15
5.2.3	How Otsu's thresholding works?	16
5.3	Local Binary Patterns	17
5.3.1	What is LBP?	17
5.3.2	How LBP works?	17
5.3.3	Why use LBP?	18
5.4	K-Nearest Neighbours	19
5.4.1	What is KNN?	19
5.4.2	How KNN works?	20
5.4.3	Why use KNN?	20
5.5	Implementation tools end setup	21
5.5.1	Python using PyCharm	21

5.5.2	Database using MySQL	22
5.5.3	Hardware	22
6	Implementation Work	23
6.1	Dataset	23
6.2	Development	23
6.3.1	Main.py	24
6.3.2	Dataset.py	25
6.3.3	PreProcessing.py	25
6.3.4	NormalFeat.py	26
6.3.5	LocalBinaryPattern.py	29
6.3.6	LbpFeat.py	30
6.3.7	Classification.py	31
6.3.8	Evaluation.py	32
7	Comparative study	34
7.1	Dataset	34
7.2	Preprocessing	34
7.3	Model used	34
7.4	Comparison & Discussion	35
8	Conclusion & Future Work	38
9	References	39
10	Appendix	42

List of Figures

Chapter no	Title	Page no
1	Performance evaluation graph	2
5	Block diagram of the proposed approach	14
	Different thresholding methods	15
	The first step in constructing a LBP.	17
	The second step in constructing a LBP.	18
	The third step in constructing a LBP.	18
	data points set 1	19
	data points set 2	20
	Feature vectors in python console	22
	Tables in MySQL database	22
6	Python program files prepared in PyCharm	23
	Main menu GUI	24
	Menu functions	24
	Test An image UI	24
	DataSet analysis popup UI	25
	Preprocessing signature image	26
	Progress meter bar GUI while training and testing	26
	Normal features printed on console	27
	LBP image conversion	29
	8-neighbour pixels	29
	LBP texture features printed on console	30
	Classification printed on console	32
	Line Graph for analysis of different LBP Variants	33
	Evaluation popup UI	33

7	Architecture of existing project	35
	Running the Existing project	36
	Sample signature image for comparison	36
	Simple line graph of comparing features	37
	100% stacked collumns bar graph of comparing features	37

List of Tables

Chapter no	Title	Page no
4	Local radon transform features	6
5	An example of Otsu thresholding approach	16
6	Expermintatal Analysis of different LBP Variants	32
6	Expermintatal Analysis with different values of K	33
7	Comparison table for Existing vs Proposed approach	35
7	Comparison table based on 12 features	36

ABSTRACT

Whether one signs a petition, work documents, contract, or wants to approve payment of a check, he/she uses personal signature to do all those things. An offline signature verification method has been described in this designed project and the subsequent project report. Handwritten signature has been critical person identification technique for decades. The objective of this project report is to give away an efficient biometric signature recognition and verification techniques. The study intends to give away information all about the application of biometrics i.e. signature detection and also about the various stages that are necessary to be studied by a designer while creating an application that will use it. The system works in different stages which includes pre-processing, LBP image conversion, feature extraction, and classification. A total of 40 different signature recognition approaches were read and studied before designing the system here that are been taken from different research papers. The output obtained is evaluated in the papers itself by performing experimental analysis and can be compared with another existing system in this synopsis as well.