CUESTIONARIO (A)

- 1. Una muestra de datos cualitativos:
 - a) Debe transformarse obligatoriamente en datos numéricos, asignando un valor a cada categoría.
 - b) No tiene moda, pero sí el resto de parámetros o medidas de posición central.
 - c) No tiene media, ni moda, ni varianza.
 - d) No tiene media, ni varianza, ni rango.
- 2. ¿Qué medida estadística deberíamos utilizar para determinar si una persona de un colectivo sobre el que se ha observado la calificación obtenida en un examen está entre el $25\,\%$ de los mejores?
 - a) El primer cuartil.
 - b) El tercer cuartil.
 - c) La moda.
 - d) La mediana.
- 3. Las distribuciones _____ corresponden al estudio, por separado, de cada una de las dos variables que componen una variable estadística bidimensional. (Señala la palabra que falta en esta frase):
 - a) Absolutas.
 - b) Condicionadas.
 - c) Marginales.
 - d) Relativas.
- 4. En una distribución bidimensional, ¿son compatibles los siguientes datos $S_{xy} = -4$, $\hat{y} = -3 + 2x$, r = -0.9?
 - a) Sí ya que expresan una relación inversa.
 - b) No ya que la covarianza tiene que estar entre -1 y 1.
 - c) No va que la pendiente de la recta de regresión debería ser también negativa.
 - d) Necesitaría la otra recta de regresión para poder tomar una decisión.
- 5. Dados los sucesos A y B pertenecientes al mismo espacio de sucesos tales que P(A)=0.9, P(B)=0.3 y $P(A\cap B)=0.27$. ¿Cuál de las siguientes opciones es correcta?
 - a) La P(A/B) = 0.8
 - b) Los sucesos A y B son incompatibles.
 - c) Los sucesos A y B son complementarios.
 - d) Los sucesos A y B son independientes.

- 6. En un grupo de 10 alumnos 7 han aprobado el test de estadística y 3 no. Elegimos al azar y sin reemplazamiento a 2 alumnos. ¿Cuál es la probabilidad de que los dos hayan aprobado el test?
 - a) 0.49
 - b) 0,466...
 - c) 0,42
 - d) 0.54
- 7. Si Z representa una variable normal N(0;1), ¿cuál de las siguientes afirmaciones es cierta?
 - a) $P[Z \le -0.67] = 1 P[Z > -0.67]$
 - b) $P[Z \le -0.67] = 1 P[Z > 0.67]$
 - c) $P[Z \le -0.67] = 1 P[Z < 0.67]$
 - d) $P[Z \le -0.67] = 1 P[Z < -0.67]$
- 8. En la inferencia Estadística, al conjunto de individuos o elementos en los que se desea estudiar alguna/s característica/s aleatoria/s, se denomina:
 - a) Población
 - b) Parámetro muestral
 - c) Variable
 - d) Muestra
- 9. En un intervalo de confianza, ¿cuál de las siguientes opciones es correcta?
 - a) Es más pequeño cuanto menor es el nivel de confianza, para los mismos datos.
 - b) Es más pequeño cuanto mayor es el nivel de confianza, para los mismos datos.
 - c) Es más grande cuanto menor es el nivel de confianza, para los mismos datos.
 - d) El tamaño no depende del nivel de confianza utilizado.
- 10. La probabilidad de error α de un contraste de hipótesis, es la probabilidad de:
 - a) Aceptar H_0 cuando es verdadera H_1 .
 - b) Rechazar H_0 cuando es verdadera H_0 .
 - c) Equivocarse cuando se rechaza H_1 .
 - d) Equivocarse cuando se acepta H_0 .

CUADRO DE RESPUESTAS

PREGUNTA	1	2	3	4	5	6	7	8	9	10
(a)										
(b)										
(c)										
(d)										

Nota: Cada respuesta correcta suma 0,20 y cada respuesta errónea resta 0,067.

EJERCICIOS (A)

1. La siguiente tabla recoge el tiempo de respuesta (en nanosegundos) de un circuito lógico en frío (X) y después de una hora de uso intensivo (Y), para un total de 8 máquinas:

X	6	5	8	16	7	4	5	9
Y	4	8	11	9	11	6	9	6

- a) (0.75 pts.) ¿Cuánto se estima que tardaría en responder un determinado circuito tras una hora de funcionamiento intensivo, si en frío tuvo un tiempo de respuesta de 10 nanosegundos?
- b) (0.5 pts) ¿Es fiable la estimación obtenida en el apartado anterior?
- 2. El administrador de correo electrónico de una empresa quiere establecer un filtro para el correo tipo spam (mensajes no solicitados, no deseados o con remitente no conocido, habitualmente de tipo publicitario). Según sus datos el 40 % de los correos recibidos en la empresa son spam. Además, la palabra "gratis" aparece en el 85 % de los correos spam y en el 4 % de los que no son spam. Tomando como referencia estos datos se pregunta:
 - a) (0.5 pts.) Si un correo elegido al azar no incluye la palabra "gratis", ¿cuál es la probabilidad de que sea un correo spam?
 - b) (0.5 pts.) Si un correo elegido al azar incluye la palabra "gratis", ¿cuál es la probabilidad de que no sea un correo spam?
 - c) (0.5 pts.) Si elegimos aleatoriamente 15 correos, ¿cuál es la probabilidad de que 3 o 4 de ellos contengan la palabra "gratis"?
- 3. Una empresa que presta servicios de internet asegura a todos sus usuarios, después de una profunda renovación y actualización de sus instalaciones, que han aumentado la velocidad de conexión de manera significativa. Seleccionados aleatoriamente una muestra de usuarios, la siguiente tabla recoge sus velocidades de conexión antes y después del cambio.

Velocidad Antes (mbps)	21	25	26	25	19	22	22	28	29	18	16	21	30	27
Velocidad Después (mbps)	26	22	30	32	24	16	18	30	29	21	20	26	33	32

Suponiendo normalidad en los datos:

- a) (0.5 pts.) ¿podemos confirmar lo que asegura esta empresa con un 1% de significación?
- b) (0.5 pts.) ¿qué tamaño muestral sería necesario, para poder construir un intervalo de confianza al 95 % del incremento medio de la velocidad de conexión, con un error de estimación inferior a 0.1 mbps.?
- 4. Una encuesta realizada por internet a 1500 usuarios reveló que 525 de ellos tenían preferencia por los ordenadores portátiles mientras que el resto mostraban sus preferencia por los ordenadores de sobremesa. A partir de estos datos y con la finalidad de estimar la proporción poblacional de internautas que preferían utilizar portátiles, se construyó el siguiente intervalo de confianza: (0,33 0,37).
 - a) (0.75 pts.) ¿Cuál es el nivel de confianza del intervalo anterior?
 - b) (0.5 pts.) A partir de estos datos, ¿es posible afirmar con un 1% de significación que la proporción de internautas que prefieren los ordenadores portátiles es inferior al 40%?

CUESTIONARIO (B)

- 1. Una muestra de datos cualitativos:
 - a) No tiene media, ni moda, ni varianza.
 - b) No tiene media, ni varianza, ni rango.
 - c) Debe transformarse obligatoriamente en datos numéricos, asignando un valor a cada categoría.
 - d) No tiene moda, pero sí el resto de parámetros o medidas de posición central.
- 2. ¿Qué medida estadística deberíamos utilizar para determinar si una persona de un colectivo sobre el que se ha observado la calificación obtenida en un examen está entre el $25\,\%$ de los mejores?
 - a) La moda.
 - b) La mediana.
 - c) El primer cuartil.
 - d) El tercer cuartil.
- 3. Las distribuciones _____ corresponden al estudio, por separado, de cada una de las dos variables que componen una variable estadística bidimensional. (Señala la palabra que falta en esta frase):
 - a) Absolutas.
 - b) Relativas.
 - c) Condicionadas.
 - d) Marginales.
- 4. En una distribución bidimensional, ¿son compatibles los siguientes datos $S_{xy} = -4$, $\hat{y} = -3 + 2x$, r = -0.9?
 - a) No ya que la covarianza tiene que estar entre -1 y 1.
 - b) No ya que la pendiente de la recta de regresión debería ser también negativa.
 - c) Necesitaría la otra recta de regresión para poder tomar una decisión.
 - d) Sí ya que expresan una relación inversa.
- 5. Dados los sucesos A y B pertenecientes al mismo espacio de sucesos tales que P(A)=0.9, P(B)=0.3 y $P(A\cap B)=0.27$. ¿Cuál de las siguientes opciones es correcta?
 - a) Los sucesos A y B son independientes.
 - b) Los sucesos A y B son incompatibles.
 - c) Los sucesos A y B son complementarios.
 - d) La P(A/B) = 0.8

- 6. En un grupo de 10 alumnos 7 han aprobado el test de estadística y 3 no. Elegimos al azar y sin reemplazamiento a 2 alumnos. ¿Cuál es la probabilidad de que los dos hayan aprobado el test?
 - a) 0,466...
 - b) 0,49
 - c) 0,42
 - d) 0.54
- 7. Si Z representa una variable normal N(0;1), ¿cuál de las siguientes afirmaciones es cierta?
 - a) $P[Z \le -0.67] = 1 P[Z > -0.67]$
 - b) $P[Z \le -0.67] = 1 P[Z > 0.67]$
 - c) $P[Z \le -0.67] = 1 P[Z < 0.67]$
 - d) $P[Z \le -0.67] = 1 P[Z < -0.67]$
- 8. En la inferencia Estadística, al conjunto de individuos o elementos en los que se desea estudiar alguna/s característica/s aleatoria/s, se denomina:
 - a) Variable
 - b) Muestra
 - c) Población
 - d) Parámetro muestral
- 9. En un intervalo de confianza, ¿cuál de las siguientes opciones es correcta?
 - a) Es más grande cuanto menor es el nivel de confianza, para los mismos datos.
 - b) Es más pequeño cuanto menor es el nivel de confianza, para los mismos datos.
 - c) Es más pequeño cuanto mayor es el nivel de confianza, para los mismos datos.
 - d) El tamaño no depende del nivel de confianza utilizado.
- 10. La probabilidad de error α de un contraste de hipótesis, es la probabilidad de:
 - a) Equivocarse cuando se rechaza H_1 .
 - b) Equivocarse cuando se acepta H_0 .
 - c) Aceptar H_0 cuando es verdadera H_1 .
 - d) Rechazar H_0 cuando es verdadera H_0 .

CUADRO DE RESPUESTAS

PREGUNTA	1	2	3	4	5	6	7	8	9	10
(a)										
(b)										
(c)										
(d)										

Nota: Cada respuesta correcta suma 0,20 y cada respuesta errónea resta 0,067.

EJERCICIOS (B)

1. La siguiente tabla recoge el tiempo de respuesta (en nanosegundos) de un circuito lógico en frío (X) y después de una hora de uso intensivo (Y), para un total de 10 máquinas:

X	8	7	10	16	11	6	7	11	14	10 5
Y	4	5	9	12	10	6	6	6	8	5

- a) (0.75 pts.) ¿Cuánto se estima que tardaría en responder un determinado circuito tras una hora de funcionamiento intensivo, si en frío tuvo un tiempo de respuesta de 10 nanosegundos?
- b) (0.5 pts) ¿Es fiable la estimación obtenida en el apartado anterior?
- 2. El administrador de correo electrónico de una empresa quiere establecer un filtro para el correo tipo spam (mensajes no solicitados, no deseados o con remitente no conocido, habitualmente de tipo publicitario). Según sus datos el 40 % de los correos recibidos en la empresa son spam. Además, la palabra "gratis" aparece en el 90 % de los correos spam y en el 2 % de los que no son spam. Tomando como referencia estos datos se pregunta:
 - a) (0.5 pts.) Si un correo elegido al azar no incluye la palabra "gratis", ¿cuál es la probabilidad de que sea un correo spam?
 - b) (0.5 pts.) Si un correo elegido al azar incluye la palabra "gratis", ¿cuál es la probabilidad de que no sea un correo spam?
 - c) (0.5 pts.) Si elegimos aleatoriamente 12 correos, ¿cuál es la probabilidad de que 3 o 4 de ellos contengan la palabra "gratis"?
- 3. Una empresa que presta servicios de internet asegura a todos sus usuarios, después de una profunda renovación y actualización de sus instalaciones, que han aumentado la velocidad de conexión de manera significativa. Seleccionados aleatoriamente una muestra de usuarios, la siguiente tabla recoge sus velocidades de conexión antes y después del cambio.

Suponiendo normalidad en los datos:

- a) (0.5 pts.) ¿podemos confirmar lo que asegura esta empresa con un 1% de significación?
- b) (0.5 pts.) ¿qué tamaño muestral sería necesario, para poder construir un intervalo de confianza al 95 % del incremento medio de la velocidad de conexión, con un error de estimación inferior a 0,1 mbps.?
- 4. Una encuesta realizada por internet a 1500 usuarios reveló que 900 de ellos tenían preferencia por los ordenadores portátiles mientras que el resto mostraban sus preferencia por los ordenadores de sobremesa. A partir de estos datos y con la finalidad de estimar la proporción poblacional de internautas que preferían utilizar portátiles, se construyó el siguiente intervalo de confianza: (0,57 0,63).
 - a) (0.75 pts.) ¿Cuál es el nivel de confianza del intervalo anterior?
 - b) (0.5 pts.) A partir de estos datos, ¿es posible afirmar con un 1% de significación que la proporción de internautas que prefieren los ordenadores portátiles es inferior al 62%?