

5

CLAIMS

1. Mashing process, wherein mash is filtered and wort is obtained, characterized in that the mash is fed to the filter material of a dynamic cross-flow filtration system, wort is withdrawn from the side-stream side of the filter material and thickened remainder is withdrawn from the feed side of the filter material.
- 10 2. Process according to claim 1 characterized by one or more of the following features:
- 15 a. a dynamic cross-flow filtration system with rotating disks or concentrically rotating cylinders or with oscillating disks is used as a dynamic cross-flow filtration system;
- 20 b. a material selected from:
- 25 - polymer membranes, especially polyamide membranes, PTFE membranes, PVDF membranes, preferably selected from membranes with a retention rate (measured after Pall, Colloid and Surface Science Symposium, Tennessee (1978)) of below 2 μm , more preferably of 1 μm to 0.04 μm , most preferably about 0.1 μm ;
- 30 - steel;
- nickel; or
- ceramic;

TOP SECRET - SECURITY INFORMATION

or a combination of two or more of such materials
is used as a filter material;

- 5 c. a closed, pressurized dynamic cross-flow filtration system is used
as a dynamic cross-flow filtration system.

3. Process according to claim 1
characterized by one or more of the following features:

- 10 a. the mash used has a reduced husk content, preferably a husk
content of 40 to 95% by weight, more preferably a husk content
of 50 to 80% by weight, in terms of the husk content in the
starting mash as 100% by weight
- 15 b. the mash used has starch particles of a grain size of below 100
μm, preferably with a particle size distribution, wherein 99% of
the particles have a grain size of below 100 μm, 70% of the
starch particles have a grain size of below 65 μm, with a signif-
icant portion of the starch particles preferably having a bimodal
particle size distribution (determined with a laser diffraction spec-
trometer; Helosystem, Sympatec) with distinct maxima at about 5
μm and about 25 μm;
- 20 c. the mash used is derived from finely ground powder grist;
- 25 d. the mash includes modified malts;
- 30 e. the mash comprises a mixture of at least two malt flours of
different specification.

4. Process according to claim 1

characterized by one or more of the following features:

a. the operational flow rates, pressures and temperatures are such that a wort flow of 90 to 250, preferably 130 to 200 l/hm² is obtained;

b. the portion of spent grain of the mash is edulcorated acceleratedly by the mash flow dynamic;

c. when operating, at least two dynamic cross-flow filtration systems (steps) are used in serial order, wherein preferably the first wort is obtained from the first dynamic cross-flow filtration system, while from the second step and possibly from further steps second wort and spent grain are obtained;

d. filtration is such that the wort obtained is essentially free of particles which are larger than 0.1 µm;

e. no recycling of the initial feed is applied when operating.

5. Process for the preparation of beer, wherein a mash is filtered, the wort obtained is fermented with yeast and the produced beer is recovered, characterized in that the mash is filtered by means of a dynamic cross-flow filtration system.

6. Process for the preparation of beer according to claim 5, characterized in that a mash is used, which at least partially includes at least one flour having one of the two following particle size distributions A or

B:

A. Partially de-husked, pulverized B: "Reiter"-grist
bimodal

100% < 125 μm	99% < 600 μm
80% < 60 μm	80% < 200 μm
60% < 35 μm	75% < 150 μm
40% < 25 μm	60% < 80 μm
20% < 10 μm	40% < 40 μm
	20% < 20 μm

- 10 7. Use of dynamic cross-flow filtration systems for the filtration of mash.
- 11 8. Use according to claim 7, characterized in that a dynamic cross-flow filtration system with rotating disks or with concentrically rotating cylinders or with oscillating disks is used.
- 15 9. Use according to claim 7 characterized in that a dynamic cross-flow filtration system is used, wherein the separation material is at least partially a microporous membrane, especially a microporous polyamide membrane, a microporous PTFE membrane or a microporous PVDF membrane, preferably a membrane with a retention rate of below 2 μm , more preferably from 1 μm to 0.04 μm , most preferably of about 0.1 μm .
- 20 10. Use of dynamic cross-flow filtration systems as defined in
25 claim 1 for the filtration of mash.
11. Device for the execution of a mashing process according to
claim 1 characterized by:

09837755-634760

- a. at least one vessel for the reception of mash, which is supplied with a heating device provided with a thermostat;
 - b. a dynamic filtration device for the reception of mash with an inlet for the mash at the feed side of the filter material and a device for the withdrawal of the wort from the side-stream side of the filter material;
 - c. a device for the transfer of the mash from the vessel to the inlet device of the dynamic filtration device.
- 10
12. Device according to claim 11, characterized in that the filter material is selected from:
- 15
- polymer membranes, especially polyamide membranes, PTFE membranes, PVDF membranes, preferably membranes which have a retention rate (measured according to Pall, Colloid and Surface Science Symposium, Tennessee (1978)) of below 2 μm , more preferably of 1 μm to 0.04 μm , most preferably of about 0.1 μm ;
 - 20 - steel;
 - nickel; or
 - ceramic;
- 25
- or a combination of two or more thereof.
13. Apparatus according to claim 11, characterized in that the filter material has a retention rate of below 2 μm , more preferably of 1 μm to 0.04 μm , most preferably of about 0.1 μm .

14. Device according to claim 11, characterized in that the dynamic filtration device has at least one rotating disk and two filter plates in a stationary casing.

0363255-003190