Problem Statement: Abalone Age Prediction

- ▼ 1. Download the dataset: Dataset
 - 2. Load the dataset into the tool.

```
import numpy as np
import pandas as pd

ds=pd.read_csv("abalone.csv")

# Rings / integer / -- / +1.5 gives the age in years

ds['Age']=ds["Rings"]+1.5

ds.head(5)
```

4	•	h
4		

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	16.5	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	8.5	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	10.5	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	11.5	
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	8.5	

- → 3. Perform Below Visualizations.
 - · Univariate Analysis
 - · Bi-Variate Analysis
 - · Multi-Variate Analysis

```
# univarient analysis

#frequency table for age

ft = ds1['Age'].value_counts()

print("Frequency table for Age is given below")
print("{}\n\n\n".format(ft))
```

```
# mean
print("Mean, Median, std \n")
ma=ds1['Age'].mean() #mean of age
mh = ds1['Height'].mean() #mean of height
mel = ds1['Length'].median() #median value of length
stw = ds1['Whole weight'].std() #standard devation of whole weight
#chart
import matplotlib.pyplot as plt # library for plot or graph
import seaborn as sns
plt.subplot(1,2,1)
ch = ds1.boxplot(column='Diameter',grid=True,color ='red')
plt.title('Box plot')
plt.subplot(1,2,2)
DC = sns.kdeplot(ds1['Diameter'])
plt.title('Density Curve')
print("1-mean of age = ",ma)
print("2-mean of height = ",mh)
print("3-median value of length = ",mel)#
print("4-standard devation of whole weight = ",stw)
print("5-frequency table for rings = \n {}" .format(fre))
print("\nChart\n\n6-boxplot of Diameter",flush=True)
```

```
Frequency table for Age is given below
     11.5
     10.5
             28
     8.5
             20
     9.5
             18
     13.5
             17
     12.5
             16
     14.5
             13
     15.5
             11
     16.5
             10
     17.5
             7
     6.5
              6
     7.5
              5
     21.5
              4
     5.5
              4
     20.5
              3
     19.5
              3
     22.5
              2
     18.5
              1
     Name: Age, dtype: int64
     Mean, Median, std
     1-mean of age = 12.235
     2-mean of height = 0.13482500000000003
     3-median value of length = 0.53
     4-standard devation of whole weight = 0.48292555269001314
     5-frequency table for rings =
      10
            32
           28
     7
           20
     8
           18
     12
           17
     11
           16
     13
           13
     14
           11
     15
           10
     16
            7
     5
            6
            5
     6
     20
            4
     4
            4
            3
     19
            3
     18
            2
     21
#multi-varient analysis
import matplotlib.pyplot as plt
import seaborn as sns
ds1=ds.head(200)
df=sns.countplot(x="Viscera weight",hue='Sex',data=ds1)
print(df)
```

AxesSubplot(0.125,0.125;0.775x0.755)

▼ 4. Perform descriptive statistics on the dataset.

ds.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000
4						>

▼ 5. Check for Missing values and deal with them.

ds.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64

7 Shell weight 4177 non-null float64 8 Rings 4177 non-null int64 9 Age 4177 non-null float64 dtypes: float64(8), int64(1), object(1) memory usage: 326.5+ KB

ds.isnull().sum()

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
Age 0
dtype: int64

ds.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	True	True	True	True	True	True	True	True	True	True
1	True	True	True	True	True	True	True	True	True	True
2	True	True	True	True	True	True	True	True	True	True
3	True	True	True	True	True	True	True	True	True	True
4	True	True	True	True	True	True	True	True	True	True
4172	True	True	True	True	True	True	True	True	True	True
4173	True	True	True	True	True	True	True	True	True	True
4174	True	True	True	True	True	True	True	True	True	True
4175	True	True	True	True	True	True	True	True	True	True
4176	True	True	True	True	True	True	True	True	True	True
4										

▼ 6. Find the outliers and replace them outliers

#occurence of outliers
#a data point in a data set that is distant from all other observations
sns.boxplot(ds.Diameter)

```
/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: Futu
warnings.warn(
```

<AxesSubplot:xlabel='Diameter'>


```
Q1= ds.Diameter.quantile(0.25)
Q3=ds.Diameter.quantile(0.75)
```

IQR=Q3-Q1 #spread the middle values are

```
upper_limit =Q3 + 1.5*IQR
lower_limit =Q1 - 1.5*IQR
```

```
ds['Diameter'] = np.where(ds['Diameter']>upper_limit,30,ds['Diameter'])
```

sns.boxplot(ds.Diameter)

/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:36: Futu
warnings.warn(

<AxesSubplot:xlabel='Diameter'>

▼ 7. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

ds1['Sex'] = le.fit_transform(ds1['Sex'])
ds1

# 0 = female, 1 = infant, 2 = male
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age	
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	16.5	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	8.5	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	10.5	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	11.5	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	8.5	
195	2	0.500	0.405	0.155	0.7720	0.3460	0.1535	0.245	12	13.5	
196	0	0.505	0.410	0.150	0.6440	0.2850	0.1450	0.210	11	12.5	
197	2	0.640	0.500	0.185	1.3035	0.4445	0.2635	0.465	16	17.5	
198	2	0.560	0.450	0.160	0.9220	0.4320	0.1780	0.260	15	16.5	
199	2	0.585	0.460	0.185	0.9220	0.3635	0.2130	0.285	10	11.5	

200 rows × 10 columns

▼ 8. Split the data into dependent and independent variables.

```
#Splitting the Dataset into the Independent Feature Matrix
x = ds1.iloc[:, 0:9]
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10

#Extracting the Dataset to Get the Dependent Vector

```
y = ds1.iloc[:,9:10]
print(y)
          Age
     0
         16.5
     1
          8.5
     2
         10.5
     3
         11.5
         8.5
     195 13.5
     196 12.5
     197 17.5
     198 16.5
     199 11.5
     [200 rows x 1 columns]
```

▼ 9. Scale the independent variables

```
#scaling the independent variables using scale and MinMaxScaler
from sklearn.preprocessing import scale
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
x_scaled = mm.fit_transform(x)
y scaled = mm.fit transform(y)
x_scaled
                      , 0.51351351, 0.52808989, ..., 0.17680075, 0.14070352,
     array([[1.
             0.64705882],
            [1. , 0.32432432, 0.30337079, ..., 0.07857811, 0.06030151,
             0.17647059],
                      , 0.64864865, 0.65168539, ..., 0.2525725 , 0.20100503,
             0.29411765],
            . . . ,
                       , 0.84684685, 0.83146067, ..., 0.4808232 , 0.45728643,
            [1.
             0.70588235],
                       , 0.7027027 , 0.71910112, ..., 0.32086062, 0.25125628,
```

```
0.64705882],
[1. , 0.74774775, 0.74157303, ..., 0.38634238, 0.27638191, 0.35294118]])
```

y_scaled

```
array([[0.64705882],
       [0.17647059],
       [0.29411765],
       [0.35294118],
       [0.17647059],
       [0.23529412],
       [0.94117647],
       [0.70588235],
       [0.29411765],
       [0.88235294],
       [0.58823529],
       [0.35294118],
       [0.41176471],
       [0.35294118],
       [0.35294118],
       [0.47058824],
       [0.17647059],
       [0.35294118],
       [0.17647059],
       [0.29411765],
       [0.41176471],
       [0.35294118],
       [0.47058824],
       [0.29411765],
       [0.35294118],
       [0.41176471],
       [0.41176471],
       [0.47058824],
       [0.64705882],
       [0.41176471],
       [0.35294118],
       [0.64705882],
       [0.82352941],
       [0.88235294],
       [0.52941176],
       [0.23529412],
       [0.70588235],
       [0.23529412],
       [0.41176471],
       [0.29411765],
       [0.29411765],
       [0.58823529],
        [0.05882353],
       [0.05882353],
       [0.
       [0.17647059],
       [0.29411765],
       [0.17647059],
       [0.11764706],
       [0.29411765],
       [0.23529412],
       [0.17647059],
       [0.35294118],
```

```
[0.35294118],
[0.17647059],
[0.23529412],
[0.23529412],
[0.23529412],
```

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split # library for split the data into tra
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y_scaled,train_size=0.80,test_si
x_train
                        , 0.17117117, 0.15730337, ..., 0.0261927 , 0.01809045,
     array([[0.5
             0.17647059],
                       , 0.71171171, 0.69662921, ..., 0.34985968, 0.31155779,
            [0.
             0.47058824],
                       , 0.73873874, 0.71910112, ..., 0.49672591, 0.27638191,
             0.41176471],
                        , 0.48648649, 0.47191011, ..., 0.16651076, 0.15577889,
             0.35294118],
                        , 0.52252252, 0.5505618 , ..., 0.19363891, 0.14070352,
             0.17647059],
                        , 0.63963964, 0.68539326, ..., 0.42376052, 0.27638191,
             0.23529412]])
y_train
     array([[0.17647059],
            [0.47058824],
            [0.41176471],
            [0.29411765],
            [0.58823529],
            [0.17647059],
            [0.29411765],
            [0.64705882],
```

```
[0.35294118],
[0.52941176],
[0.17647059],
[0.82352941],
[0.17647059],
[0.52941176],
[0.29411765],
[0.64705882],
[0.29411765],
[0.64705882],
[0.35294118],
[0.47058824],
[0.29411765],
[0.35294118],
[0.47058824],
[0.35294118],
[0.35294118],
[0.29411765],
[0.29411765],
[0.47058824],
[0.29411765],
[0.35294118],
[0.29411765],
[0.17647059],
[0.17647059],
[0.70588235],
[0.05882353],
[0.58823529],
[0.35294118],
[0.41176471],
[0.41176471],
[0.
[0.17647059],
[0.11764706].
```

x_test

```
array([[1. , 0.35135135, 0.37078652, 0.21052632, 0.08948413,
        0.08160377, 0.06828812, 0.09045226, 0.17647059],
                 , 0.94594595, 0.94382022, 0.92105263, 0.76448413,
        0.66226415, 1.
                        , 0.58291457, 0.58823529],
                , 0.59459459, 0.60674157, 0.44736842, 0.25297619,
       0.23632075, 0.23386342, 0.21105528, 0.35294118],
                , 0.54054054, 0.53932584, 0.47368421, 0.19543651,
        0.17971698, 0.23666978, 0.15577889, 0.17647059],
               , 0.26126126, 0.25842697, 0.23684211, 0.04503968,
        0.04009434, 0.0767072 , 0.04020101, 0.23529412],
                 , 0.7027027 , 0.71910112, 0.63157895, 0.39424603,
        0.39481132, 0.48924228, 0.29145729, 0.35294118],
               , 0.45945946, 0.38202247, 0.28947368, 0.12757937,
        0.12311321, 0.13283442, 0.11055276, 0.23529412],
                 , 0.52252252, 0.49438202, 0.42105263, 0.19246032,
       [1.
        0.20141509, 0.1898971, 0.14723618, 0.35294118,
                 , 0.57657658, 0.56179775, 0.5
                                                     , 0.20297619,
        0.19528302, 0.1655753, 0.18090452, 0.41176471],
                 , 0.83783784, 0.86516854, 0.78947368, 0.53234127,
        0.46792453, 0.55846586, 0.44221106, 0.35294118],
                 , 0.6036036 , 0.61797753, 0.36842105, 0.23611111,
        0.27783019, 0.28718428, 0.16582915, 0.29411765,
                  , 0.18018018, 0.14606742, 0.10526316, 0.01706349,
       [0.5
```

```
0.01698113, 0.03180543, 0.0201005, 0.05882353],
         , 0.72072072, 0.78651685, 0.73684211, 0.3609127 ,
0.36650943, 0.36202058, 0.28643216, 0.58823529],
       , 0.71171171, 0.71910112, 0.5
                                         , 0.38035714,
0.35518868, 0.26753976, 0.30150754, 0.47058824],
         , 0.72972973, 0.70786517, 0.52631579, 0.36150794,
0.35283019, 0.45930776, 0.27638191, 0.29411765],
       , 0.67567568, 0.66292135, 0.44736842, 0.29285714,
0.26745283, 0.26753976, 0.25125628, 0.70588235],
         , 0.91891892, 0.94382022, 0.71052632, 0.7015873 ,
0.75896226, 0.72217025, 0.44723618, 0.88235294],
        , 0.76576577, 0.78651685, 0.65789474, 0.48888889,
0.44622642, 0.51730589, 0.40201005, 0.76470588],
        , 0.5045045 , 0.50561798, 0.34210526, 0.19543651.
0.21367925, 0.20579981, 0.13567839, 0.23529412],
          , 0.78378378, 0.71910112, 0.81578947, 0.42380952,
0.44386792, 0.52946679, 0.30653266, 0.52941176],
         , 0.81081081, 0.7752809 , 0.71052632, 0.39146825,
0.4009434 , 0.38821328, 0.31658291, 0.35294118],
        , 0.57657658, 0.56179775, 0.44736842, 0.20595238,
0.22122642, 0.18896165, 0.16482412, 0.35294118],
       , 0.3963964 , 0.37078652, 0.28947368, 0.06865079,
0.07264151, 0.07202993, 0.06532663, 0.17647059],
         , 0.72972973, 0.74157303, 0.65789474, 0.43412698,
0.27169811, 0.32179607, 0.4321608, 0.52941176],
        , 0.5045045 , 0.48314607, 0.34210526, 0.15138889,
0.15990566, 0.19831618, 0.12562814, 0.17647059],
         , 0.36036036, 0.30337079, 0.18421053, 0.07301587,
[1.
0.075
         , 0.08325538, 0.06030151, 0.11764706],
          , 0.73873874, 0.7752809 , 0.57894737, 0.37301587,
0.35330189, 0.39289055, 0.34170854, 0.41176471],
        , 0.81081081, 0.80898876, 0.78947368, 0.47142857,
0.50471698, 0.54256314, 0.34673367, 0.52941176],
       , 0.62162162, 0.66292135, 0.52631579, 0.29206349,
0.27688679, 0.31057063, 0.24623116, 0.58823529],
```

y_test

```
array([[0.17647059],
       [0.58823529],
       [0.35294118],
       [0.17647059],
       [0.23529412],
       [0.35294118],
       [0.23529412],
       [0.35294118],
       [0.41176471],
       [0.35294118],
       [0.29411765],
       [0.05882353],
       [0.58823529],
       [0.47058824],
       [0.29411765],
       [0.70588235],
       [0.88235294],
       [0.76470588],
       [0.23529412],
       [0.52941176],
       [0.35294118],
```

```
[0.35294118],
             [0.17647059],
             [0.52941176],
             [0.17647059],
             [0.11764706],
             [0.41176471],
             [0.52941176],
             [0.58823529],
             [0.
             [0.17647059],
             [0.23529412],
             [0.64705882],
             [0.29411765],
             [0.47058824],
             [0.29411765],
             [0.82352941],
             [0.17647059],
             [1.
             [0.41176471]])
print(x_scaled.shape)
print(y_scaled.shape)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
     (200, 9)
     (200, 1)
     (160, 9)
     (160, 1)
     (40, 9)
     (40, 1)
```

→ 11. Build the Model

```
from sklearn.linear_model import LinearRegression
mlr = LinearRegression()
mlr.fit(x_train,y_train)
    LinearRegression()
```

→ 12. Train the Model

13. Test the Model

```
prediction = mlr.predict(x_test)
```

prediction

```
array([[1.76470588e-01],
             [5.88235294e-01],
             [3.52941176e-01],
             [1.76470588e-01],
             [2.35294118e-01],
             [3.52941176e-01],
             [2.35294118e-01],
             [3.52941176e-01],
             [4.11764706e-01],
             [3.52941176e-01],
             [2.94117647e-01],
             [5.88235294e-02],
             [5.88235294e-01],
             [4.70588235e-01],
             [2.94117647e-01],
             [7.05882353e-01],
             [8.82352941e-01],
             [7.64705882e-01],
             [2.35294118e-01],
             [5.29411765e-01],
             [3.52941176e-01],
             [3.52941176e-01],
             [1.76470588e-01],
             [5.29411765e-01],
             [1.76470588e-01],
             [1.17647059e-01],
             [4.11764706e-01],
             [5.29411765e-01],
             [5.88235294e-01],
             [2.20691474e-16],
            [1.76470588e-01],
             [2.35294118e-01],
             [6.47058824e-01],
             [2.94117647e-01],
             [4.70588235e-01],
             [2.94117647e-01],
             [8.23529412e-01],
             [1.76470588e-01],
             [1.0000000e+00],
             [4.11764706e-01]])
prediction.astype(int)
             [0],
```

```
array([[0],
        [0],
        [0],
         [0],
        [0],
        [0],
        [0],
        [0],
        [0],
         [0],
        [0],
        [0],
```

[0],

[0], [0],

> [0], [1], [0]])

- y_test.astype(int)
 - array([[0], [0],

[0], [0], [0], [0], [0], [0],

▼ 14. Measure the performance using Metrics.

```
from sklearn.metrics import r2 score
r2_score(prediction,y_test)
     1.0
from sklearn.preprocessing import PolynomialFeatures
plr = PolynomialFeatures(degree=2)
x_poly = plr.fit_transform(x)
x_poly
     array([[1.00000e+00, 2.00000e+00, 4.55000e-01, ..., 2.25000e-02,
             2.25000e+00, 2.25000e+02],
            [1.00000e+00, 2.00000e+00, 3.50000e-01, ..., 4.90000e-03,
             4.90000e-01, 4.90000e+01],
            [1.00000e+00, 0.00000e+00, 5.30000e-01, ..., 4.41000e-02,
             1.89000e+00, 8.10000e+01],
            [1.00000e+00, 2.00000e+00, 6.40000e-01, ..., 2.16225e-01,
             7.44000e+00, 2.56000e+02],
            [1.00000e+00, 2.00000e+00, 5.60000e-01, ..., 6.76000e-02,
             3.90000e+00, 2.25000e+02],
            [1.00000e+00, 2.00000e+00, 5.85000e-01, ..., 8.12250e-02,
             2.85000e+00, 1.00000e+02]])
```

Abalone Age Prediction

1. LinearRegression

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_poly,y)
        LinearRegression()

lr.predict(plr.transform([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]]))
```

```
/home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning:
   warnings.warn(
   array([[17.5]])
```



```
from sklearn.linear_model import Ridge
r = Ridge()
r.fit(x,y)
    Ridge()

r.predict([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]])
    /home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning:
    warnings.warn(
    array([[17.49624459]])
```

→ 3. Lasso

```
from sklearn.linear_model import Lasso
l = Lasso()
l.fit(x,y)

Lasso()

l.predict([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]])

/home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning:
    warnings.warn(
    array([17.08721342])
```

Colab paid products - Cancel contracts here

• ×