Contents

1	A Model Problem 1.1 The auto-correlation function 1.2 Gradient	1 1 2
2	Preturbation Method 2.1 Computation of $\nabla_{\delta}I[f]$	2 3
3	KKT conditions	3
4	Piecewise constant functions4.1 Two peaks4.2 Multiple peaks	5 6 7
5	Maximum of the mutual information5.1Maximum of the negative entropy5.2Upper bound of the entropy of auto-correlation5.3Main Theorem	9
A	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	11

1 A Model Problem

Consider a simplified version of the continuous limit case. Assume θ is on the circle [0,1) with uniform distribution $p(\theta) = 1$. X, Y are conditionally independent of θ :

$$p(x, y|\theta) = p(x|\theta)p(y|\theta).$$

Also, assume that X, Y comes from the same population and satisfy translation invariance:

$$p(x|\theta) = f(x - \theta), p(y|\theta) = f(y - \theta)$$

and f satisfies the constraint:

$$\int_0^1 f(\theta)d\theta = 1.$$

Then the mutual information of (X, Y) and Θ is:

$$I(X,Y;\Theta) = D_{KL}(p(x,y,\theta)||p(x,y)p(\theta))$$

$$= \int_0^1 dx \int_0^1 dy f(x) f(y) \ln\left(\frac{f(x)f(y)}{\int_0^1 d\theta f(x-\theta) f(y-\theta)}\right)$$
(1)

where we have applied the prodicity of f on [0,1).

1.1 The auto-correlation function

Define

$$A(u) := \int_0^1 d\theta f(\theta) f(u + \theta)$$

Properties of $A(\cdot)$ on circle [0,1):

- A(u) = A(-u) since $\int_0^1 d\theta f(\theta) f(u+\theta) = \int_0^1 d\theta' f(\theta'-u) f(\theta');$
- A(u) = A(1-u), i.e. A(u) is symmetric w.r.t. $u = \frac{1}{2}$;
- $A(x-y) = \int_0^1 d\theta f(\theta) f(x-y+\theta) = \int_0^1 d\theta f(x-\theta) f(y-\theta);$
- If $\bar{f} = 1$ then $\int A = 1, f_{-} \leq A \leq f_{+}$;
- \bullet A is continuous if f only has a finite number of discontinuities.

Thus the expression for mutual information can be simplified as:

$$I(X,Y;\Theta) = -2H[f] - \int dx \int dy f(x) f(y) \ln (A(x-y))$$

$$= -2H[f] - \int d\theta \int dx \int dy f(x-\theta) f(y-\theta) \ln (A(x-y))$$

$$= -2H[f] + H[A]$$
(2)

where H is the continuous entropy: $H[f] = -\int_0^1 f(x) \ln f(x) dx$.

1.2 Gradient

$$\nabla_f I(x) = 2\left(\ln f(x) - \int_0^1 dy f(y) \ln \left(A(y-x)\right)\right) \tag{3}$$

Detailed computation in the Appendix A.1.

2 Preturbation Method

Let $\delta(x)$ be a smooth, 1-Lipschitz function which satisfies $\delta(0) = \delta(1) = 0$. When ϵ is small enough, $x \mapsto x + \epsilon \delta(x)$ is a one-to-one mapping. Also, we require that $\int_0^1 f(x + \epsilon \delta(x)) = 1$, which implies

$$\int_0^1 f(x)\delta'(x) = 0. \tag{4}$$

Assume f is **piecewise** C^1 on the circle [0,1).

Proposition 1. If f is piecewise C^1 , for any $\delta(x) \in C^{\infty}(0,1)$,

$$\int \delta'(\eta)f(\eta)d\eta = -\left[\int \delta(\eta)f'_c(\eta) + \sum_{i \in D} \triangle_i f \cdot \delta(x_i)\right]$$
(5)

i.e. the distributional derivative of f is

$$f'(x) = f'_c(x) + \sum_{i \in D} \Delta_i f \cdot \delta_{x_i}(x)$$
(6)

where $f'_c(x)$ is the point-wise derivative of f (zero at discontinuities), D is the set of discontinuities of f, $\triangle_i f := f(x_i^+) - f(x_i^-)$, where $x_i \in D$.

Proof. Assume f is discontinuous only at $a \in (0,1)$:

$$\begin{split} \int_{0}^{1} \delta'(\eta) f(\eta) d\eta &= \int_{0}^{a} \delta'(\eta) f(\eta) d\eta + \int_{a}^{1} \delta'(\eta) f(\eta) d\eta \\ &= \delta(a) f(a^{-}) - \delta(0) f(0) - \int_{0}^{a} \delta(\eta) f'(\eta) d\eta + \delta(1) f(1) - \delta(a) f(a^{+}) - \int_{a}^{1} \delta(\eta) f'(\eta) d\eta \\ &= - \left[\int_{0}^{1} \delta(\eta) f'(\eta) d\eta + \left(f(a^{+}) - f(a^{-}) \right) \delta(a) \right] \end{split}$$

Similarly, when we have more than one discontinuities $x_i \in D$,

$$\int_0^1 \delta'(\eta) f(\eta) d\eta = -\left[\int \delta(\eta) f'_c(\eta) d\eta + \sum_{i \in D} \triangle_i f \cdot \delta(x_i) \right]$$

2.1 Computation of $\nabla_{\delta}I[f]$

By writting $I[f(x + \epsilon \delta(x))] - I[f]$, we obtain

$$\nabla_{\delta}I[f] = 2\left[f'_{c}(x)\left(\log f_{c}(x) + 1\right) - f'_{c}(x)\int dy f(y)\log A(y - x) - f(x)\int dy f(y)\frac{\int_{0}^{1}d\theta f'(x - \theta)f(y - \theta)}{\int_{0}^{1}d\theta f(x - \theta)f(y - \theta)}\right] + 2\sum_{i \in D}\left[\Delta_{i}(f\log f) - \Delta_{i}f \cdot \int dy f(y)\log A(y - x_{i})\right]\delta_{x_{i}}(x)$$

$$(7)$$

Notice that $A(y-x) = \int_0^1 d\theta f(x-\theta) f(y-\theta)$ is continuous, and the intergral $\int_0^1 d\theta f'(x-\theta) f(y-\theta)$ is well-defined even though f' may enclude dirac delta terms. The detailed computations are in the Appendix A.2.

Proposition 2.

$$\int \nabla_{\delta} I[f](x) dx = 0$$

Proof. From integration by parts,

$$\int dx f(x) \int dy f(y) \frac{\int_0^1 d\theta f'(x-\theta) f(y-\theta)}{\int_0^1 d\theta f(x-\theta) f(y-\theta)} = \int f(y) dy \int f(x) \frac{\partial}{\partial x} \log (A(y-x)) dx$$

$$= -\int f(y) dy \int f'(x) \log (A(y-x)) dx$$

$$= -\int f(y) dy \int f'_c(x) \log (A(y-x)) dx - \sum_{i \in D} \Delta_i f \int f(y) \log (A(y-x_i)) dy$$

Thus

$$\int dx f(x) \int dy f(y) \frac{\int_0^1 d\theta f'(x-\theta) f(y-\theta)}{\int_0^1 d\theta f(x-\theta) f(y-\theta)} + \int f(y) dy \int f'_c(x) \log (A(y-x)) dx + \sum_{i \in D} \triangle_i f \int f(y) \log (A(y-x_i)) dy = 0,$$

$$\int \nabla_{\delta} I[f](x) dx = \int dx \left(f'_c(x) \left(\log f_c(x) + 1 \right) + \sum_{i \in D} \triangle_i (f \log f) \delta_{x_i}(x) \right) = \int (f \log f)'(x) dx = 0.$$

3 KKT conditions

$$\nabla_f I(x) = \mu + \alpha_+(x) - \alpha_-(x) \tag{8}$$

$$\nabla_{\delta}I(x) = \nu \left[f_c'(x) + \sum_{i \in D} \triangle_i f \cdot \delta_{x_i}(x) \right]$$
(9)

where the 2nd one comes from minimizing $I[f(x+\epsilon\delta(x))]$ w.r.t δ , where $\int f(x)\delta'(x)dx = -\int \delta(x)dx \left(f'_c(x) + \sum_{i \in D} \triangle_i f \delta_{x_i}(x)\right) = 0$.

Proposition 3. If f(x) is continuous at x, then $\nabla_f I(x)$, $\alpha_+(x)$, $\alpha_-(x)$ are continuous at x.

Proof. Directly observe from $\nabla_f I(x) = 2 \left(\log f(x) - \int dy f(y) \log A(y-x) \right)$ and $\nabla_f I(x) = \mu + \alpha_+(x) - \alpha_-(x)$. Note that $\alpha_+(x)$ and $\alpha_-(x)$ cannot be nonzero at the same time.

Take (distributional) derivative of the first condition with respect to x:

$$2\left(\log f(x) - \int_{0}^{1} dy f(y) \log (A(y-x))\right) = \mu + \alpha_{+}(x) - \alpha_{-}(x)$$

$$\frac{f'_{c}(x)}{f_{c}(x)} + \sum_{i \in D} \triangle_{i}(\log f) \delta_{x_{i}}(x) - \int_{0}^{1} dy f(y) \frac{\int_{0}^{1} f'(x-\theta) f(y-\theta) d\theta}{\int_{0}^{1} f(x-\theta) f(y-\theta) d\theta} = \frac{\alpha'_{+}(x)}{2} - \frac{\alpha'_{-}(x)}{2} + \frac{\sum_{i \in D} (\triangle_{i}\alpha_{+} - \triangle_{i}\alpha_{-}) \delta_{x_{i}}(x)}{2}$$

$$\frac{f'(x)}{f(x)} - \int_{0}^{1} dy f(y) \frac{\int_{0}^{1} f'(x-\theta) f(y-\theta) d\theta}{\int_{0}^{1} f(x-\theta) f(y-\theta) d\theta} = \frac{\alpha'_{+}(x)}{2} - \frac{\alpha'_{-}(x)}{2} \text{ for } x \notin D$$

$$(10)$$

 $\Delta_i(\log f) = \frac{\Delta_i \alpha_+}{2} - \frac{\Delta_i \alpha_-}{2} \text{ for } x_i \in D$ (11)

Proposition 4. If f(x) is C^1 on [0,1) and does not reach the upper/lower bounds (f_+, f_-) , then f(x) is constant.

Proof. Assume $\frac{f'(x)}{f(x)}$ is not constant, set $x = \arg\max\frac{f'(x)}{f(x)}$. Then there exists an interval where $\frac{f'(x-\theta)}{f(x-\theta)} < \frac{f'(x)}{f(x)}$. Averaging $f'(x-\theta)$ by $f(y-\theta)$,

$$\int_0^1 f'(x-\theta)f(y-\theta)d\theta < \int_0^1 \frac{f'(x)}{f(x)}f(x-\theta)f(y-\theta)d\theta$$

$$\frac{\int_0^1 f'(x-\theta)f(y-\theta)d\theta}{\int_0^1 f(x-\theta)f(y-\theta)d\theta} < \frac{f'(x)}{f(x)}$$

$$\int_0^1 dy f(y) \frac{\int_0^1 f'(x-\theta)f(y-\theta)d\theta}{\int_0^1 f(x-\theta)f(y-\theta)d\theta} < \frac{f'(x)}{f(x)}$$

Also, since f does not take f_+ or f_- , $\alpha_+(x) = \alpha_-(x) = 0$ for all x. From equation (10),

$$\frac{f'(x)}{f(x)} = \int_0^1 dy f(y) \frac{\int_0^1 f'(x-\theta)f(y-\theta)d\theta}{\int_0^1 f(x-\theta)f(y-\theta)d\theta}$$

which contradicts the inequality above. Therefore $\frac{f'(x)}{f(x)}$ is constant, $\log f(x) = kx + c$, $f(x) = ce^{kx}$. However since f is continuous and periodic on [0,1), k=0, f(x) is constant. From $\int_0^1 f(y)dy = 1$, $f(x) \equiv 1$.

Proposition 5. If f(x) has a jump discontinuity at x, then either one of $f(x^+)$ and $f(x^-)$ must take f_+ or f_- . That is, every jump of f takes the function value either to or from the upper/lower bounds.

Proof. Assume that at $x_i \in D$, neither $f(x_i^+)$ nor $f(x_i^-)$ reach the bounds. Then $\alpha_+(x_i^+) = \alpha_+(x_i^-) = \alpha_-(x_i^+) = \alpha_-(x_i^-) = 0$, which contradicts the equation (11):

$$\frac{\triangle_i \alpha_+}{2} - \frac{\triangle_i \alpha_-}{2} = \log f(x_i^+) - \log f(x_i^-) \neq 0$$

Piecewise constant functions

We focus on piecewise constant f which only takes f_+ and f_- .

Notice that for given f_- , f_+ and $\int f(x)dx = 1$, the proportion of f taking f_+ and f_- are fixed. Then H[f] = $-\int f(x) \log f(x) dx$ is fixed. Since I[f] = -2H[f] + H[A], it only sufficies to study the auto-correlation function A(x) = -2H[f] + H[A] $\int f(\theta)f(x+\theta)d\theta$. First, we look at when $f(\cdot)$ and $f(\cdot+x)$ both reach f_+ or f_- :

Proposition 6. Denote:

$$\begin{array}{lcl} d_+(x) & \coloneqq & |\{y: f(y) = f(y+x) = f_+\}| \\ d_-(x) & \coloneqq & |\{y: f(y) = f(y+x) = f_-\}| \end{array}$$

Then $d_{+}(x) - d_{-}(x) = d_{+}(0) - d_{-}(0) \triangleq d$.

Proof. Denote

$$l_{+}(x) = |\{y : f(y) = f_{+}, f(y+x) = f_{-}\}|$$

 $l_{-}(x) = |\{y : f(y) = f_{-}, f(y+x) = f_{+}\}|$

Then

$$\begin{aligned} d_+(0) - l_+(x) &= |\{y : f(y) = f_+\}| - |\{y : f(y) = f_+, f(y+x) = f_-\}| = |\{y : f(y) = f_+, f(y+x) = f_+\}| = d_+(x) \\ d_-(0) - l_-(x) &= |\{y : f(y) = f_-\}| - |\{y : f(y) = f_-, f(y+x) = f_+\}| = |\{y : f(y) = f_-, f(y+x) = f_-\}| = d_-(x) \end{aligned}$$

Since $f(x+\cdot)$ is a translation of f, $l_{+}(x) = l_{-}(x)$. Thus $d_{+}(x) - d_{-}(x) = d_{+}(0) - d_{-}(0)$.

Denote $d := d_{-}(0) - d_{+}(0)$,

$$d_{+}(0) + d_{-}(0) = 1$$

$$d_{+}(0)f_{+} + d_{-}(0)f_{-} = \int f dx = \bar{f}$$

We get

$$d_{+}(0) = \frac{\bar{f} - f_{-}}{f_{+} - f_{-}} = \frac{1 - f_{-}}{f_{+} - f_{-}}$$

$$(12)$$

$$d_{-}(0) = \frac{f_{+} - \bar{f}}{f_{+} - f_{-}} = \frac{f_{+} - 1}{f_{+} - f_{-}} \tag{13}$$

$$d = \frac{f_{+} + f_{-} - 2\bar{f}}{f_{+} - f_{-}} = \frac{f_{+} + f_{-} - 2}{f_{+} - f_{-}}$$

$$\tag{14}$$

Then

$$A(x) = \int f(\theta)f(x+\theta)d\theta$$

$$= f_{+}^{2}d_{+}(x) + f_{-}^{2}d_{-}(x) + f_{+}f_{-}(1 - d_{+}(x) - d_{-}(x))$$

$$= f_{+}^{2}d_{+}(x) + f_{-}^{2}(d_{+}(x) + d) + f_{+}f_{-}(1 - d_{+}(x) - d_{+}(x) - d)$$

$$= (f_{+} - f_{-})^{2}d_{+}(x) - f_{-}(f_{+} - f_{-})d + f_{+}f_{-}$$

$$= (f_{+} - f_{-})^{2}d_{+}(x) - f_{-}(f_{+} + f_{-} - 2\bar{f}) + f_{+}f_{-}$$

$$= (f_{+} - f_{-})^{2}d_{+}(x) + f_{-}(2\bar{f} - f_{-})$$
(15)

$$= (f_{+} - f_{-})^{2} d_{-}(x) + f_{+}(2\bar{f} - f_{+}) \tag{17}$$

$$= (f_{+} - f_{-})^{2} d_{-}(x) + f_{+}(2f - f_{+})$$
(17)

Figure 1: Mutual information I with fixed f_+ , f_- and varying (t, d)

Figure 2: The shapes of A(x) and H[A] with varying (t, d)

4.1 Two peaks

We first focus on the case when f only has two peaks. Fix the proportion of $f = f_+$ to be $\triangle = \frac{1 - f_-}{f_+ - f_-}$. Express f as:

$$f = f_{+}1_{[0,t)} + f_{-}1_{[t,t+d)} + f_{+}1_{[t+d,\triangle+d]} + f_{-}1_{[1-\triangle-d,1)}$$

$$\tag{18}$$

where $0 \le t \le \triangle$, $0 \le d \le 1 - \triangle$.

The magnitude of mutual information w.r.t. (t,d) generally follows a diamond shape. In figure 2, we plot different shapes of A(x) with varying (t,d).

One **principle observation** is that large H[A] favors those curves f, such that for all $x \in (0,1)$, the number of overlappling peaks of $f(\cdot)$ and $f(x + \cdot)$ is at most one. (When x = 0, f and $f(x + \cdot)$ totally overlaps and there are two peaks).

In this case, $A(x) = \int f(x+\theta)f(\theta)d\theta$ puts more mass on smaller values of A, i.e. the values of A is more distributed around f_- . This phenomena might be roughly explained by the following change of variable:

$$-\int_0^1 A(x)\log(A(x))dx = -\int_R^H \log(A)\ell(A)dA$$

where ℓ is the lebesgue measure: $\ell(A) = \lambda(\{x : A(x) < A\})$. Because $\log x$ is a concave function and $\int_B^H \ell(A) dA = \int_0^1 A(x) dx = 1$, putting more mass $\ell(A)$ on smaller values of A decreases $\int \log(A) \ell(A) dA$, thus increases the entropy.

Figure 3: Illustration of a function with k peaks

4.2 Multiple peaks

We still consider $f_+ \gg f_-$, $|\{f = f_+\}| = \Delta = \frac{1 - f_-}{f_+ - f_-}$. Also, assume $\{f = f_+\}$ is splitted into k peaks with equal width $w = \frac{\Delta}{k}$.

Based on our observation from the 2-peaks case, we first focus on those function f such that for all $x \in (0,1)$, the number of overlapping peaks of $f(x+\cdot)$ and $f(\cdot)$ is at most one.

Since A(x) is a piecewise linear function, the width and heights of each linear part can be calculated:

$$\begin{array}{rcl} w & \coloneqq & \frac{\Delta}{k} \\ H & \coloneqq & A(0) = f_{+}^{2}\Delta + f_{-}^{2}(1 - \Delta) \\ B & \coloneqq & 2f_{+}f_{-}\Delta + f_{-}^{2}(1 - 2\Delta) \\ h(k) & \coloneqq & f_{+}^{2}\frac{\Delta}{k} + 2(k - 1)f_{+}f_{-}\frac{\Delta}{k} + f_{-}^{2}\left(1 - (2k - 1)\frac{\Delta}{k}\right) \end{array}$$

In this case, H[A] can be expressed as

$$H[A] = -\int_{0}^{1} A(x) \log(A(x)) dx$$

$$= 2Int(H, B, w) + 2\binom{k}{2} \cdot 2Int(h(k), B, w) + \left(-B \log B \left(1 - 2w - 2 \cdot 2\binom{k}{2}w\right)\right)$$

$$= 2Int(H, B, w) + 2k(k-1)Int(h(k), B, w) + (-B \log B (1 - 2w - 2k(k-1)w))$$
(19)

An illustration of this setting is shown in Figure 3. Here Int(h, b, w) stands for the integral of $-A(x) \log A(x)$ on each interval where A(x) is linear, with upper height h, lower height b and width w:

$$Int(h,b,w) := -\int_0^w (h - \frac{h-b}{w}x)\log(h - \frac{h-b}{w}x) = \frac{w}{4(h-b)}\left[h^2 - b^2 - 2(h^2\log h - b^2\log b)\right]$$
(20)

We first evaluate equation (19) numerically for different k's. We observe that:

- 1. H(A) increases as k is increasing, suggesting that large H[A] favors the splitting of f(x) into more peaks.
- 2. k cannot increase to infinity since $k(k-1)2\frac{\Delta}{k}+2\frac{\Delta}{k}\leq 1$.

We finally tried to do **randomly** split f into widths $\{\alpha_i\}_{i=1,...,k}, \{\beta_i\}_{i=1,...,k}$, with $\sum_{i=1}^k \alpha_i = \Delta$, $\sum_{i=1}^k \beta_i = 1 - \Delta$, such that $f = f_+$ on intervals $\left[\sum_{j=1}^{i-1} (\alpha_j + \beta_j), \sum_{j=1}^{i-1} (\alpha_j + \beta_j) + \alpha_i\right]$, and $f = f_-$ on intervals $\left[\sum_{j=1}^{i-1} (\alpha_j + \beta_j) + \alpha_i, \sum_{j=1}^{i} (\alpha_j + \beta_j)\right]$. For each k, we took the maximum of H[A] from 1000 samples of α_i and β_i 's, drawn from Multinomial distributions.

Figure 4 shows the numerical results. As k increases, H[A] increases and approaches a fixed value, and as shown in Figure 4b, 4c, the function f which produces highest H[A] seems to vary more and more 'wildy' between f_- and f_+ . A(x) approaches a near-constant function, taking $H = f_+^2 \Delta + f_-^2 (1 - \Delta)$ at 0, and fastly decreases to 1.

Figure 4: Random experiments of a function with k peaks

5 Maximum of the mutual information

5.1 Maximum of the negative entropy

Lemma 7. Assume f(x) is piece-wise C^1 . Under the given constraints $f_- \leq f \leq f_+$ and $\int_0^1 f(x)dx = 1$, -H[f] is maximized when f only takes f_- and f_+ a.e.

Proof. We combined the KKT conditions for both $\nabla_f H$ and $\nabla_\delta H$ in the Section of preturbation method. Let G[f] = -G[f] be the objective function we want to maximize. It can be derived from G[f+h] - G[f] that

$$\nabla_f \left(G[f] \right)(x) = \ln f(x) + 1.$$

For a local maximizer f of G, there exists functions $\alpha_+(x) \ge 0$, $\alpha_-(x) \ge 0$ and a constant μ , such that for all x where f(x) (thus also $\nabla_f G(x)$) is continous, the following KKT conditions hold:

$$\nabla_f I(x) = \alpha_+(x) - \alpha_-(x) + \mu$$

and $\alpha_+(x)(f(x)-f_+)=0$, $\alpha_-(x)(f_--f(x))=0$. From $\nabla_f G(x)=\ln f(x)+1$, f(x) is constant when $f(x)\neq f_+$ or f_- , since $\alpha_+=\alpha_-=0$ implies $\ln f(x)+1=\mu$. Hence f(x) is a piece-wise constant function which takes at most 3 values:

$$f(x) = \begin{cases} f_{+} \\ f_{-} \\ e^{\mu - 1} & \text{if } f \neq f_{+} \text{ or } f_{-} \end{cases}$$

Next we show that the third option is impossible using preturbation method. It is shown in the Appendix A.2 that

$$\nabla_{\delta} \left(G[f] \right)(x) = 1_{\{x \notin D\}} (f \log f)'_{c}(x) + \sum_{x_{i} \in D} \triangle_{i} (f \log f) \delta_{x_{i}}(x)$$

where D is the set of discontinuities of f, $(f \log f)'_c(x)$ is the point-wise derivative of f. From maximizing the function G with respect to δ , there exists $\nu \in \mathbb{R}$ such that the KKT condition holds:

$$\nabla_{\delta} \left(G[f] \right)(x) = \nu \left(f'_{c}(x) + \sum_{x_{i} \in D} \triangle_{i} f \delta_{x_{i}}(x) \right)$$

where the right-hand-side comes from the constraint $\int f(x)\delta'(x)dx = -\int \delta(x)dx \left(f'_c(x) + \sum_{i \in D} \triangle_i f \delta_{x_i}(x)\right) = 0$. Now since f is piecewise constant, for all $x \notin D$, $f'_c(x) = 0$ and $(f \log f)'_c(x) = 0$. Thus

$$\sum_{x_i \in D} \triangle_i(f \log f) \delta_{x_i}(x) = \nu \sum_{x_i \in D} \triangle_i f \delta_{x_i}(x)$$

$$\frac{\triangle_i(f \log f)}{\triangle_i f} = \nu, \forall x_i \in D$$

Suppose that there exists \tilde{f} such that $f_+ < \tilde{f} < f_-$ and that $\{f = \tilde{f}\}$ has positive measure. Then at discontinuities, f either jumps between f_+ and f_- , or between f_+ (or f_-) and \tilde{f} . There are 3 options for $\frac{\triangle_i(f \log f)}{\triangle_i f}$, which are equal to a constant ν :

$$\frac{f_{+} \log(f_{+}) - f_{-} \log(f_{-})}{f_{+} - f_{-}} = \frac{f_{+} \log(f_{+}) - \tilde{f} \log(\tilde{f})}{f_{+} - \tilde{f}} = \frac{\tilde{f} \log(\tilde{f}) - f_{-} \log(f_{-})}{\tilde{f} - f_{-}} = \nu.$$

However, this contradicts the convexity of the function $y = t \log t$. Therefore it is impossible to have $f_+ < \tilde{f} < f_-$ with positive measure, and $f = f_+$ or f_- a.e.

5.2 Upper bound of the entropy of auto-correlation

Lemma 8. Given $\int_0^1 f(x)dx = 1$, there is an upper bound for I[f] such that

$$I[f] \leq -2H[f]$$

Proof. It sufficies to show $H(A) \leq 0$. Since A(x) satisfies $\int_0^1 A(x)dx$ and $A \geq 0$, the entropy of a density function is maximized by uniform distribution on [0,1):

First, the K-L divergence $D_{KL}(f||g) \ge \text{for any two distributions } f, g$. Let U be the uniform distribution on [0, 1), then

$$D_{KL}(A||U) = \int_0^1 A(x) \log \frac{A(x)}{U(x)} dx$$
$$= \int_0^1 A(x) \log \frac{A(x)}{1} dx$$
$$= -H[A]$$
$$> 0$$

Therefore $H[A] \le 0$, $I[f] = -2H[f] + H[A] \le -2H[f]$.

As shown in the proof the above lemma, this maximum reachable only when A is the uniform distribution on [0,1). Ideally, this happens when f(x) are i.i.d. random variables with $P(f=f_+)=\triangle$, $P(f=f_-)=1-\triangle$, where $\triangle=\frac{1-f_-}{f_+-f_-}$:

$$A(x) = \int f(\theta)f(x+\theta)d\theta$$

$$= E[f(\theta)f(x+\theta)]$$

$$= E[f(\theta)]E[f(x+\theta)]$$

$$= (\triangle f_{+} + (1-\triangle)f_{-})^{2}$$

$$= 1$$

Questions remained:

• Integral well-defined?

Note that this auto-correlation function A(x) may not be continuous, which is different from the property stated in Section 1, since here f does not satisfy the condition that it has only a finite number of discontinuities.

5.3 Main Theorem

The conclusion above can be generalized to our Poissonian model:

Theorem 9. $I[f] = -E_N\left[\int_0^1 \prod_{i=1}^n \frac{f(s_i-\theta)}{f(s_i)} d\theta\right] \le -\bar{f}H[h]$, where h is a piece-wise constant function only taking two values $\left\{\frac{f_-}{f}, \frac{f_+}{f}\right\}$ on [0,1) with $\int_0^1 h(x) dx = 1$. For such an h, H[h] has fixed value: $H[h] = -\left(\frac{f_+}{f}\ln\left(\frac{f_+}{f}\right)\triangle + \frac{f_-}{f}\ln\left(\frac{f_-}{f}\right)(1-\triangle)\right)$, where $\triangle = \frac{\bar{f}-f_-}{f_+-f_-}$.

Proof. Let $\tilde{f} = \frac{f}{f}$, then $\frac{f_{-}}{f} \leq \tilde{f} \leq \frac{f+}{f}$,

$$I[f] = -E_{N} \left[\int_{0}^{1} \prod_{i=1}^{n} \frac{f(s_{i} - \theta)}{f(s_{i})} d\theta \right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} ds_{i} f(s_{i}) e^{-\int_{0}^{1} f(s) ds} \ln \left(\frac{\prod_{i=1}^{n} f(s_{i})}{\int_{0}^{1} \prod_{i=1}^{n} f(s_{i} - \theta) d\theta} \right)$$

$$= \sum_{n} \frac{1}{n!} e^{-\bar{f}} (\bar{f})^{n} \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} ds_{i} \tilde{f}(s_{i}) \ln \left(\frac{\prod_{i=1}^{n} \tilde{f}(s_{i})}{\int_{0}^{1} \prod_{i=1}^{n} \tilde{f}(s_{i} - \theta) d\theta} \right)$$

$$= \sum_{n} \frac{1}{n!} e^{-\bar{f}} (\bar{f})^{n} \left[\int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} ds_{i} \tilde{f}(s_{i}) \ln \left(\prod_{i=1}^{n} \tilde{f}(s_{i}) \right) - \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} ds_{i} \tilde{f}(s_{i}) \ln \left(A(s_{1}, \dots, s_{n}) \right) \right]$$

$$\leq \sum_{n} \frac{1}{n!} e^{-\bar{f}} (\bar{f})^{n} \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} ds_{i} \tilde{f}(s_{i}) \ln \left(\prod_{i=1}^{n} \tilde{f}(s_{i}) \right)$$

$$= \sum_{n} \frac{1}{n!} e^{-\bar{f}} (\bar{f})^{n} \left(-nH[\tilde{f}] \right)$$

$$= \left(-H[\tilde{f}] \right) \sum_{n=1}^{\infty} \frac{1}{(n-1)!} e^{-\bar{f}} (\bar{f})^{n}$$

$$= -\bar{f}H[\tilde{f}]$$

$$\leq -\bar{f}H[\tilde{h}]$$

$$(21)$$

Where the last step is followed from Lemma 7.

Note that the maximum is attained when $A(s_1, \ldots, s_n)$ is constant (equal to one) for all n.

\mathbf{A} Appendix: Computaion of the gradients

A.1Computation of $\nabla_f I$

First we show the following two conclusions:

$$\nabla_f|_t \left(H[f]\right) = -\left(\ln f(t) + 1\right) \tag{22}$$

$$\nabla_{f|_{t}} (A[f](u)) = f(t+u) + f(t-u)$$
(23)

where the 2nd one can be derived from

$$\int_0^1 d\theta \left(f(u+\theta) + h(u+\theta) \right) \left(f(\theta) + h(\theta) \right)$$

$$= A(u) + \int d\theta f(u+\theta) h(\theta) + \int d\theta f(\theta) h(u+\theta) + O(h^2)$$

$$= A(u) + \int d\theta f(u+\theta) h(\theta) + \int d\theta' f(\theta'-u) h(\theta') + O(h^2).$$

Now since I = -2H(f) + H(A), using (22)(23), we obtain

$$\nabla_{f}I(t) = -2\nabla_{f}|_{t} (H[f]) + \int_{0}^{1} du \left(-\left(\ln A(u) + 1\right)\right) \nabla_{f}|_{t} A(u)$$

$$= 2\left(\ln f(t) + 1\right) - \int_{0}^{1} du \left(\ln A(u) + 1\right) \left(f(t+u) + f(t-u)\right)$$

$$= 2\left(\ln f(t) + 1\right) - \int_{0}^{1} f(t+u) \ln A(u) du - \int_{0}^{1} f(t-u) \ln A(u) du - 2$$

$$= 2\left(\ln f(t) - \int_{0}^{1} f(y) \ln A(y-t) dy\right)$$

*Note that previously we derived $\nabla_f I(t) = 2 \left(\ln f(t) - H[f] - \int_0^1 f(y) \ln A(y-t) dy \right)$ from the expression of I: $\int_0^1 dx \int_0^1 dy f(x) f(t) dx$ before simplification. Since the simplification envolves plugging in the constraint $\int f(x) dx = 1$, which also produces some derivative, the expression of $\nabla_f I$ is differed by a constant. Either including the constant H[f] or not does not affect our conclusions since it can be absorbed into μ in the KKT condition.

A.2 Computation of $\nabla_{\delta}I$

To compute $\nabla_{\delta}I[f]$, first we compute $\nabla_{\delta}(\int f \log f)$: applying change of variable $\eta = x + \epsilon \delta(x)$, $d\eta = (1 + \epsilon \delta'(x))dx$,

$$dx = \frac{1}{1 + \epsilon \delta'(x)} d\eta = (1 - \epsilon \delta'(x) + O(\epsilon^2)) d\eta = (1 - \epsilon \delta'(\eta) + O(\epsilon^2)) d\eta$$

$$\begin{split} -H[f(x+\epsilon\delta(x))] &= \int dx f(x+\epsilon\delta(x)) \log(f(x+\epsilon\delta(x))) \\ &= \int d\eta \left(1-\epsilon\delta'(\eta)+O(\epsilon^2)\right) f(\eta) \log(f(\eta)) \\ &= -H[f]+\epsilon \left[\int \delta(\eta) (f\log f)_c'(\eta) d\eta + \sum_{i\in D} \Delta_i (f\log f) \delta(x_i)\right] + O(\epsilon^2) \end{split}$$

Similarly, define $F(x,y) = f(x)f(y)\ln\left(\int_0^1 d\theta f(x-\theta)f(y-\theta)\right)$, then

$$\begin{split} &\int dx \int dy F(x+\epsilon\delta(x),y+\epsilon\delta(y)) \\ &= \int d\eta \int d\gamma F(\eta,\gamma) - 2\epsilon \int \left(\int d\gamma F(\eta,\gamma)\right) \delta'(\eta) d\eta + O(\epsilon^2) \\ &= \int d\eta \int d\gamma F(\eta,\gamma) + 2\epsilon \left[\int \left(\int d\gamma \frac{\partial F_c(\eta,\gamma)}{\partial \eta}\right) \delta(\eta) d\eta + \sum_{i\in D} \triangle_i \left(\int d\gamma F(\eta,\gamma)\right) \delta_{x_i}(\eta)\right] + O(\epsilon^2) \\ &= \int d\eta \int d\gamma F(\eta,\gamma) + O(\epsilon^2) + 2\epsilon \int \delta(\eta) d\eta \int d\gamma f'_c(\eta) f(\gamma) \ln\left(A(\gamma-\eta)\right) \\ &+ 2\epsilon \left[\int \delta(\eta) d\eta \int d\gamma f(\gamma) f(\eta) \frac{\int_0^1 d\theta f'(\eta-\theta) f(\gamma-\theta)}{A(\gamma-\eta)} + \sum_{i\in D} \triangle_i \left(f(\eta) \int d\gamma f(\gamma) \ln\left(A(\gamma-\eta)\right) \delta_{x_i}(\eta)\right)\right] \end{split}$$

Thus

$$\nabla_{\delta} \left(-H[f] \right) = (f \log f)'_{c}(x) + \sum_{i \in D} \triangle_{i}(f \log f) \delta_{x_{i}}(x)$$

$$\nabla_{\delta} \left(\int dx \int dy F(x, y) \right) = 2 \left[f'_{c}(x) \int dy f(y) \log \left(A(y - x) \right) + f(x) \int dy f(y) \frac{\int_{0}^{1} d\theta f'(x - \theta) f(y - \theta)}{\int_{0}^{1} d\theta f(x - \theta) f(y - \theta)} \right]$$

$$+2 \sum_{i \in D} \triangle_{i} f \cdot \left(\int dy f(y) \log A(y - x_{i}) \right) \cdot \delta_{x_{i}}(x)$$

$$(24)$$

Therefore from $I[f] = -2H(f) - \int dx \int dy F(x,y)$ we obtain

$$\nabla_{\delta}I[f] = 2\left[f'_{c}(x)\left(\log f(x) + 1\right) - f'_{c}(x)\int dy f(y)\log A(y - x) - f(x)\int dy f(y)\frac{\int_{0}^{1}d\theta f'(x - \theta)f(y - \theta)}{\int_{0}^{1}d\theta f(x - \theta)f(y - \theta)}\right] + 2\sum_{i \in D}\left[\triangle_{i}(f\log f) - \triangle_{i}f \cdot \int dy f(y)\log A(y - x_{i})\right]\delta_{x_{i}}(x)$$

A.3 Other conclusions

*The following conclusions are derived from 'integration by parts' below, which we were not sure about their correctness (and they contradict the numerical simulations):

$$\int_{0}^{1} f'(x-\theta)f(y-\theta)d\theta = \int_{0}^{1} \left(f'_{c}(x-\theta) + \sum_{i \in D} \triangle_{i} f \delta_{x_{i}}(x-\theta) \right) f(y-\theta)d\theta$$

$$= -\int_{0}^{1} f_{c}(x-\theta)f'(y-\theta)d\theta + \sum_{i \in D} \triangle_{i} f \cdot f(y-x+x_{i})$$

$$= -\int_{0}^{1} f(x-\theta)f(y-\theta)d\theta + \sum_{i \in D} \triangle_{i} f \cdot f(y-x+x_{i})$$

$$\int dy f(y) \frac{\int_0^1 d\theta f'(x-\theta) f(y-\theta)}{\int_0^1 d\theta f(x-\theta) f(y-\theta)} = -\int dy f(y) \frac{\int_0^1 d\theta f(x-\theta) f'(y-\theta)}{A(y-x)} + \sum_{i \in D} \triangle_i f \cdot \int \frac{f(y) f(y-x+x_i)}{A(y-x)} dy$$

$$= -\int dy f(y) \frac{\partial \log A(y-x)}{\partial y} + \sum_{i \in D} \triangle_i f \cdot \int \frac{f(y) f(y-x+x_i)}{A(y-x)} dy$$

$$= \int dy f'(y) \log A(y-x) + \sum_{i \in D} \triangle_i f \cdot \int \frac{f(y) f(y-x+x_i)}{A(y-x)} dy$$

$$\nabla_{\delta}I[f] = 2\left[f'_{c}(x)(\log f_{c}(x) + 1) - \int dy \left(f'_{c}(x)f(y) + f(x)f'(y)\right)\log A(y - x) - f(x)\sum_{i \in D} \triangle_{i}f \int \frac{f(y)f(y - x + x_{i})}{A(y - x)}dy\right] + 2\sum_{i \in D} \left(\triangle_{i}(f\log f) - \triangle_{i}f \cdot \int dy f(y)\log A(y - x_{i})\right) \cdot \delta_{x_{i}}(x)$$

$$(25)$$

*Especially, if f is piece-wise constant, since its point-wise derivative $f'_c(x) = 0$,

$$\nabla_{\delta}I[f] = -2f(x) \int dy f'(y) \log A(y-x) - 2f(x) \sum_{i \in D} \triangle_{i} f \cdot \int \frac{f(y)f(y-x+x_{i})}{A(y-x)} dy$$

$$+2 \sum_{i \in D} \left(\triangle_{i}(f \log f) - \triangle_{i} f \cdot \int dy f(y) \log A(y-x_{i}) \right) \cdot \delta_{x_{i}}(x)$$

$$= -2f(x) \sum_{i \in D} \triangle_{i} f \left(\log A(x_{i}-x) + \int \frac{f(y)f(y-x+x_{i})}{A(y-x)} dy \right)$$

$$+2 \sum_{i \in D} \left(\triangle_{i}(f \log f) - \triangle_{i} f \cdot \int dy f(y) \log A(y-x_{i}) \right) \cdot \delta_{x_{i}}(x)$$

By plugging in equation (10) into $\nabla_{\delta}I$ in (25) and (9), we get

$$\nabla_{\delta}I[f] = 2\left[f'_{c}(x)(\log f_{c}(x) + 1) - f'_{c}(x)\int dy f(y)\log A(y - x) - f(x)\int dy f(y)\frac{\int_{0}^{1}d\theta f'(x - \theta)f(y - \theta)}{\int_{0}^{1}d\theta f(x - \theta)f(y - \theta)}\right]$$

$$+2\sum_{i\in D}\left(\triangle_{i}(f\log f) - \triangle_{i}f \cdot \int dy f(y)\log A(y - x_{i})\right) \cdot \delta_{x_{i}}(x)$$

$$= 2f'(x)(\log f(x) + 1) - 2f'(x)\int dy f(y)\log (A(y - x)) - 2f(x)\left(\frac{f'(x)}{f(x)} - \frac{\alpha'_{+}(x)}{2} + \frac{\alpha'_{-}(x)}{2}\right)$$

$$+2\left(\triangle_{i}(f\log f) - \triangle_{i}f \cdot \int dy f(y)\log A(y - x_{i})\right) \cdot \delta_{x_{i}}(x)$$

$$= \nu\left[f'(x) + \sum_{i\in D}\triangle_{i}f \cdot \delta_{x_{i}}(x)\right]$$

$$f'(x)\log f(x) = f'(x)\left(\int dy f(y)\log A(y-x) + \frac{\nu}{2}\right) - f(x)\left(\alpha'_{+}(x) - \alpha'_{-}(x)\right) \text{ for } x \notin D$$
 (26)

$$\frac{\triangle_i(f\log f)}{\triangle_i f} = \int dy f(y) \log A(y - x_i) + \frac{\nu}{2} \text{ for } x_i \in D$$
 (27)

Proposition 10. $\alpha_{+}(x)$, $\alpha_{-}(x)$, $\nabla_{f}I(x)$ are piecewise constant functions.

Proof. From equation (8) we only need to show $\alpha_{+}(x)$ is piecewise const.

If
$$f(x) < f_+, \alpha_+(x) = 0$$
.

If $f(x) = f_+$, $\alpha_+(x) \ge 0$, $\alpha_-(x) = 0$. There exists an interval \mathcal{I} around x such that $f = f_+$ on \mathcal{I} . Thus on inverval \mathcal{I} , f'(x) = 0, by equation (26),

$$f(x) \left(\alpha'_{+}(x) - \alpha'_{-}(x) \right) = 0$$
$$\alpha'_{+}(x) = 0$$

Thus $\alpha_+(x)$ is constant on inverval \mathcal{I} around x, which gives us the conclusion that α_+ is piecewise const.

Therefore, f cannot vary continuously between f_+ and f_- , otherwise ∇f is continuous but α_+ or α_- is discontinuous.

We can also further simplify equation (10) as

$$\frac{f'(x)}{f(x)} = \int_0^1 dy f(y) \frac{\int_0^1 f'(x-\theta)f(y-\theta)d\theta}{\int_0^1 f(x-\theta)f(y-\theta)d\theta} \text{ for } x \notin D$$
(28)

Proposition 11. If f(x) has a jump discontinuity at x_0 , then there exists an open interval (β_1, β_2) such that $\beta_1 < x_0 < \beta_2$ and f(x) is constant on both (β_1, x_0) and (x_0, β_2) .

Proof. Suppose there's no such interval on the left of x_0 . Then there exists a sequence $x_k \to x_0^-$ such that $f'(x_k) \neq 0$. Applying equations (26), (27),

$$\log f(x_0^-) = \int dy f(y) \log A(y - x_0) + \frac{\nu}{2}$$

$$\frac{\triangle_{x_0} (f \log f)}{\triangle_{x_0} f} = \int dy f(y) \log A(y - x_0) + \frac{\nu}{2}$$

Therefore

$$\log f(x_0^-) = \frac{\triangle_{x_0}(f \log f)}{\triangle_{x_0} f} = \frac{f(x_0^+) \log f(x_0^+) - f(x_0^-) \log f(x_0^-)}{f(x_0^+) - f(x_0^-)}$$

which implies $f(x_0^+) = f(x_0^-)$. This contradicts with the discontinuity at x_0 . Similarly, there's an interval to the right of x_0 such that f is constant.