Homework I 2022.9.20

1. (a) Proof: Notice that $f(\vec{x}) = (x_1 + x_2)^2 + (x_1 - \frac{1}{2})^2 + 2(x_1 - \frac{1}{2})^2 - \frac{3}{4}$ Therefore, $\lim_{\|\vec{x}\| \to \infty} f(\vec{x}) = +\infty$ (2 square terms work be both finite) f(x) is continuous and coercive, so it has a global minimum.

(b) Proof: $f(\vec{x}) = (\frac{2}{3}x_1 + \frac{3}{2}x_2)^2 + \frac{1}{18}(x_1 - 9)^2 + \frac{1}{4}(x_2 - 4)^2 - \frac{17}{2}$ Similarly, f(x) is continuous and coercive, so it has a global minimum.

(c) Proof: Suppose $x_2 = kx_1$, $k \in \mathbb{R}$ Then $f(\vec{x}) = (k+1)^2 x_1^2 - (x_1^2 + 1) x_1$ Let k = -1, Then $f(\vec{x}) = x_1$, so $\lim_{\substack{x_1 > -\infty \\ x_2 = x_1 \\ 2z = x_1}} f(\vec{x}) = x_1$. Therefore, f(x) doesn't have a global minimum.

2. (a) $f(x) = \frac{1}{2}x^Tx$ $\nabla f(x) = [f'(x)]^T = [\frac{1}{2} \cdot 2x^T \cdot 1]^T = (x^T)^T = x$

(b) $f(\omega) = \frac{1}{2} ||X\omega - y||^2 + \frac{1}{2} ||\omega||^2$ $\nabla f(\omega) = \nabla \left(\frac{1}{2} ||X\omega - y||^2\right) + \lambda \nabla \left(\frac{1}{2} ||\omega||^2\right)$

 $= \chi^{\mathsf{T}} \left[(\chi_{\omega} - y)^{\mathsf{T}} \right]^{\mathsf{T}} + \lambda \omega$

 $= X^{T}(X\omega-y) + \lambda\omega$

 $= (X^TX + \lambda E) \omega - X^Ty$

3. (a) Suppose we separates entire dutaset, we have

y; x; ω. >0, ∀i=1,2, ..., m

Now consider w'= two (too),

yixiw'= t(yixiwo)>0, \i=1, 2, ..., m

Then $\lim_{t \to +\infty} f(tw) = \lim_{t \to +\infty} \frac{m}{\sum_{i=1}^{m} \log(1 + e^{iz_{i}^{T} \omega})}$

 $= \sum_{i=1}^{m} \lim_{t\to +\infty} \log(1+e^{-t(y_i x_i^T \omega)})$

 $= \sum_{i=1}^{m} \log(1+0) = 0$

But f(w)>0, $\forall w \in \mathbb{R}^n$, which means o is not feasible. Therefore, f doesn't have a global minimum.

Then

$$f(\omega) = \sum_{i=1}^{m} \log(1 + e^{-yix_i\omega})$$

$$> \sum_{i=1}^{m} e^{-yix_i\omega}$$

$$> \max_{i \le i \le m} e^{-yix_i\omega}$$

$$= h(\omega)$$

ii. Notice: S is compact and h is continuous, by Extreme Value Theorem, $h(\omega)$ has a global minimum $\omega_0 \in S$.

At the same time, for wo, there exists an io=1,2,..., m s.t.

Then

Therefore, C=h(coo)>0

iii. Using homogeneity, let $\omega' = \frac{\omega}{11\omega 11}$, and $||\omega'|| = |$, which means $\omega' \in S$ By conclusion of ii,

Then

Therefore, h(w) > 11 w11 · C

iv. We have known that

Then

$$\lim_{|\omega|\to\infty} f(\omega) = +\infty$$

So f is continuous and coersive, it has a global minimum.

(c)
$$\nabla f(\omega) = \sum_{i=1}^{m} \nabla \log(1 + e^{-\lambda i x_i^T \omega})$$

$$= \sum_{i=1}^{m} \frac{-y_i x_i}{1 + e^{i x_i \omega}}$$

(d) Notice $\log(1+e^{-\frac{1}{2}iz^{T}\omega})>0$, we have $\widetilde{f}(\omega)>\frac{1}{2}||\omega||^{2}$ ($\lambda>0$)
Then

 $\lim_{\infty} \widetilde{f}(\omega) = +\infty$

So $\tilde{f}(\omega)$ is continuous and coercive, it has a global minimum.

This doesn't require the dataset linearly separable, because no assumption about yixwo is made.