The Broad Optimality of Profile Maximum Likelihood

Yi Hao and Alon Orlitsky

University of California San Diego {yih179, alon}@ucsd.edu

Discrete Distributions

- Discrete support set \mathcal{X} {heads, tails} = {h, t} $\{\dots, -1, 0, 1, \dots\} = \mathbb{Z}$
- Distribution p over \mathcal{X} , probability p_x for $x \in \mathcal{X}$ $p_x \ge 0 \qquad \sum_{x \in \mathcal{X}} p_x = 1$ $p = (p_h, p_t) \qquad p_h = .6, \ p_t = .4$
- P collection of distributions
- $-\mathcal{P}_{\mathcal{X}}$ all distributions over \mathcal{X}
- $\mathcal{P}_{\{h, t\}} = \{(p_h, p_t)\} = \{(.6, .4), (.4, .6), (.5, .5), (0, 1), \ldots\}$

Distribution Property (Functional)

- $f: \mathcal{P}_{\mathcal{X}} \to \mathbb{R}$
- Maps distribution to real value

_				
Shannon entropy	H(p)	$\sum_{x} p_x \log \frac{1}{p_x}$		
Rényi entropy	$H_{lpha}(p)$	$\frac{1}{1-\alpha}\log\left(\sum_x p_x^{\alpha}\right)$		
Support size	S(p)	$\sum_{x} \mathbb{1}_{p_x > 0}$		
Support coverage	$S_m(p)$	$\sum_{x} (1 - (1 - p_x)^m)$		
Expected $\#$ distinct symbols in m samples				
Distance to uniformity	$L_{ m uni}(p)$	$\sum_{x} \left p_x - \frac{1}{ \mathcal{X} } \right $		

Property Estimation

- Given: support set \mathcal{X} , property f
- Unknown: $p \in \mathcal{P}_{\mathcal{X}}$
- Estimate: f(p)

Entropy of English words

Given: $\mathcal{X} = \{\text{English words}\}, \text{ unknown: } p, \text{ estimate: } H(p)$ # species in habitat

Given: $\mathcal{X} = \{\text{bird species}\}, \text{ unknown: } p, \text{ estimate: } S(p)$

- How to estimate f(p) when p is unknown?
- Many applications:
 vocabulary and population estimation, database
 similarity, graphical model learning, neural spike
 trains, property testing ...

Learn from Examples

ullet Observe n independent samples

$$X^n = X_1, \dots, X_n \sim p$$

- Estimate f(p)
- Estimator: $f^{\text{est}}: \mathcal{X}^n \to \mathbb{R}$
- Estimate for f(p): $f^{est}(X^n)$

Empirical Estimator

- $n \text{ samples} X^n$
- $p_x^{\text{emp}}(X^n) := (N_x: \# \text{ times } x \text{ appears in } X^n)/n$ • $\mathcal{X} = \{a, b, c\}$ $p = (p_a, p_b, p_c) = (.5, .3, .2)$ • $X^{10} = c, a, b, a, b, a, b, a, b, c$ • $p_a^{\text{emp}} = \frac{4}{10}, \quad p_b^{\text{emp}} = \frac{4}{10}, \quad p_c^{\text{emp}} = \frac{2}{10}$
- Maximum likelihood estimator (MLE): $p^{ml} = p^{emp}$

Empirical Plug-In Estimator

- $f^{\text{emp}}(X^n) = f(p^{\text{emp}}(X^n))$
- Advantages:

Plug-and-play: simple two steps
Universal and Intuitive: applies to all properties

Best-known, most-used property estimator

Sample Complexity

- Probably Approximately Correct (PAC)
- Allowed additive approximation error $\epsilon > 0$
- Allowed error probability $\delta > 0$
- $n_f(f^{\text{est}}, \varepsilon, \delta)$: number of samples f^{est} needs to approximate property f well:

$$|f^{\rm est}(X^n) - f(p)| \le \varepsilon$$

with probability $\geq 1 - \delta$, for all $p \in \mathcal{P}$

Empirical and Optimal Complexity

• \mathcal{P}_k all k-symbol distributions, $\varepsilon \gtrsim n^{-0.1}, \delta = 1/3$

Property	$n_f(f^{ ext{emp}},arepsilon)$	$ n_f(f^{ ext{opt}},arepsilon) $
Entropy	$k \cdot \frac{1}{arepsilon}$	$\frac{k}{\log k} \cdot \frac{1}{\varepsilon}$
Support coverage	e m	$\frac{m}{\log m} \cdot \log \frac{1}{\varepsilon}$
Distance to unifor	$ \mathbf{r}_{\mathbf{m}} k \cdot \frac{1}{arepsilon^2}$	$\frac{k}{\log k} \cdot \frac{1}{\varepsilon^2}$
Support size	$k \cdot \log \frac{1}{\varepsilon}$	$\frac{k}{\log k} \cdot \log^2 \frac{1}{\varepsilon}$

- For support size, $\mathcal{P}_{\geq 1/k} := \{ p \mid p_x \geq 1/k, \forall x \in \mathcal{X} \}$
- Support size and coverage normalized by k and m

Profiles

- iid: order doesn't matter
- Symmetric properties: labels don't matter
- Profile: # elements appearing any given # times
- (h,h,t), (t,t,h), (h,t,h), (t,h,t), (t,h,h) same entropy 1 element appeared once, 1 element twice Profile: $\varphi = \{1,2\}$
- $\varphi(x^n)$: multiset of symbol frequencies in x^n

Profile Probability

- Probability of observing φ when sampling from p

$$p(\varphi) := \sum_{\substack{y^n : \varphi(y^n) = \varphi}} p(y^n) = \sum_{\substack{y^n : \varphi(y^n) = \varphi}} \prod_{i=1}^n p(y_i)$$

• p, q p + q = 1 $\Pr(\varphi = \{1, 2\}) = 3(p^2q + q^2p)$

Profile Maximum Likelihood (PML)

- Distribution maximizing profile probability
- Maps x^n to $p_{\varphi(x^n)}^{\mathrm{pml}} := \operatorname*{argmax}_{p \in \mathcal{P}} p(\varphi(x^n))$

Broad optimality of PML

PML – unified, time- and sample-optimal for

- Additive property estimation
- Non-additive property Rényi entropy estimation
- Sorted distribution estimation
- Identity/Uniformity testing

Additive Property Estimation

- Additive property: $f(p) = \sum_{x} f_{x}(p_{x})$ entropy, support size, distance to uniformity . . .
- For **all** symmetric, additive, properly Lipschitz, properties, for $n \ge n_f(|\mathcal{X}|, \varepsilon, 1/3)$ and $\varepsilon \gtrsim n^{-0.1}$,

$$\Pr\left(\left|f\left(p_{\varphi(X^{4n})}^{pml}\right) - f(p)\right| > 5\varepsilon\right) \le \exp(-\sqrt{n})$$

- With four times the optimal # samples for error probability 1/3, PML plug-in achieves much lower error probability
- Near **linear-time** (A)PML approximation [CSS19]

Rényi, Distribution, Testing

Rényi entropy

Integer $\alpha > 1$, PML has optimal $k^{1-1/\alpha}$ complexity Non-integer $\alpha > 3/4$, PML improves best-known

• Sorted distribution estimation

(A)PML yields optimal $\Theta(k/(\varepsilon^2 \log k))$ sample complexity under ℓ_1 distance

• Uniformity testing: $p = p_u$ v.s. $|p - p_u| \ge \varepsilon$; optimal $\Theta(\sqrt{k}/\varepsilon^2)$ up to logarithmic factors of k:

Input: params k, ε , and a sample with profile φ If $\exists N_x \geq 3 \max\{1, n/k\} \log k$, return 1 If $||p_{\varphi}^{\text{pml}} - p_u||_2 \geq 3\varepsilon/(4\sqrt{k})$, return 1; else, 0