This is my capstone project for the Udacity Machine Learning Nanodegree.

Import the libraries needed.

```
In [1]: import pandas as pd
import numpy as np
import keras as kr
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from os import listdir
```

Using TensorFlow backend.

Get the data.

```
In [2]: directory = 'sandp500/individual_stocks_5yr'
    dir_listing = listdir(directory)

In [3]: symbols_list = []
    for symbol in dir_listing:
        symb = symbol.split('_')[0]
        symbols_list.append(symb)

    print(len(symbols_list))
    print(symbols_list[0])

504
    AAL

In [4]: csv_file = '{}/{}_data.csv'.format(directory, symbols_list[0])
```

Since we already know the name of the specific stock we are trying to get from the name of the file, we can drop that column in the dataframe.

```
In [5]: dataset = pd.read_csv(csv_file)
In [6]: dataset = dataset.assign(trading_date = pd.to_datetime(dataset['Date']))
```

Out[7]:

	Date	Open	High	Low	Close	Volume	Name	trading_date
0	2013-12-09	23.85	25.44	23.45	24.60	43197268	AAL	2013-12-09
1	2013-12-10	24.50	25.17	24.41	24.88	18660625	AAL	2013-12-10
2	2013-12-11	25.48	27.20	25.37	25.99	38843371	AAL	2013-12-11
3	2013-12-12	26.20	26.71	25.45	25.45	19981824	AAL	2013-12-12
4	2013-12-13	25.75	26.30	25.52	26.23	12192421	AAL	2013-12-13
5	2013-12-16	26.63	26.77	26.35	26.61	13190945	AAL	2013-12-16
6	2013-12-17	26.48	26.59	25.95	26.10	11413199	AAL	2013-12-17
7	2013-12-18	25.99	26.23	25.55	26.23	9994162	AAL	2013-12-18
8	2013-12-19	26.12	26.49	25.82	26.12	6916497	AAL	2013-12-19
9	2013-12-20	26.18	26.49	26.14	26.33	8530924	AAL	2013-12-20
10	2013-12-23	26.29	26.49	26.05	26.18	5403084	AAL	2013-12-23
11	2013-12-24	26.00	26.26	26.00	26.25	2652974	AAL	2013-12-24
12	2013-12-26	26.12	26.36	25.98	26.13	4226639	AAL	2013-12-26
13	2013-12-27	25.95	26.10	24.91	24.94	13227018	AAL	2013-12-27
14	2013-12-30	24.87	25.25	24.65	24.78	8841369	AAL	2013-12-30
15	2013-12-31	24.74	25.25	24.63	25.25	7168395	AAL	2013-12-31
16	2014-01-02	25.07	25.82	25.06	25.36	8998943	AAL	2014-01-02
17	2014-01-03	25.75	26.75	25.51	26.54	13836062	AAL	2014-01-03
18	2014-01-06	26.62	27.20	26.60	27.03	11272273	AAL	2014-01-06
19	2014-01-07	27.20	27.40	26.67	26.90	11288775	AAL	2014-01-07
20	2014-01-08	26.37	27.68	26.35	27.63	15736891	AAL	2014-01-08
21	2014-01-09	28.24	29.60	28.20	29.42	26056445	AAL	2014-01-09
22	2014-01-10	29.05	29.83	28.75	29.35	12824160	AAL	2014-01-10
23	2014-01-13	29.18	29.53	28.58	28.65	10591701	AAL	2014-01-13
24	2014-01-14	28.75	29.04	28.71	28.87	10601529	AAL	2014-01-14
25	2014-01-15	28.90	29.44	28.70	28.84	11192558	AAL	2014-01-15
26	2014-01-16	28.94	29.39	28.70	29.34	7034698	AAL	2014-01-16
27	2014-01-17	29.30	30.02	29.17	30.02	18304949	AAL	2014-01-17
28	2014-01-21	30.66	30.80	30.20	30.66	10612821	AAL	2014-01-21
29	2014-01-22	30.71	31.24	30.65	31.20	7583631	AAL	2014-01-22
•••								
896	2017-06-30	49.92	50.51	49.60	50.32	6618701	AAL	2017-06-30

	Date	Open	High	Low	Close	Volume	Name	trading_date
897	2017-07-03	50.78	51.28	50.37	50.39	2906524	AAL	2017-07-03
898	2017-07-05	50.44	51.54	50.18	51.26	5157516	AAL	2017-07-05
899	2017-07-06	50.97	52.58	50.86	52.05	7021422	AAL	2017-07-06
900	2017-07-07	52.30	53.38	52.18	53.03	6596952	AAL	2017-07-07
901	2017-07-10	52.98	53.16	52.23	52.66	4600014	AAL	2017-07-10
902	2017-07-11	52.58	52.66	51.47	51.61	4545699	AAL	2017-07-11
903	2017-07-12	53.12	53.82	52.45	53.80	8348363	AAL	2017-07-12
904	2017-07-13	53.40	54.48	53.15	53.81	5346686	AAL	2017-07-13
905	2017-07-14	53.80	54.28	53.34	54.22	4537895	AAL	2017-07-14
906	2017-07-17	54.21	54.28	53.85	53.87	3727804	AAL	2017-07-17
907	2017-07-18	53.83	53.84	53.02	53.15	4101431	AAL	2017-07-18
908	2017-07-19	52.26	53.19	51.78	52.61	5774713	AAL	2017-07-19
909	2017-07-20	52.72	52.78	52.10	52.34	4836234	AAL	2017-07-20
910	2017-07-21	52.13	52.55	51.45	51.91	4544423	AAL	2017-07-21
911	2017-07-24	51.79	52.03	51.24	51.28	4876393	AAL	2017-07-24
912	2017-07-25	51.50	51.90	50.54	50.61	4484890	AAL	2017-07-25
913	2017-07-26	50.63	51.16	50.01	51.01	4776112	AAL	2017-07-26
914	2017-07-27	50.34	50.34	48.75	50.00	10260337	AAL	2017-07-27
915	2017-07-28	49.02	50.67	48.73	50.49	9153445	AAL	2017-07-28
916	2017-07-31	50.85	51.23	50.04	50.44	6062854	AAL	2017-07-31
917	2017-08-01	51.13	52.00	50.32	51.06	5045298	AAL	2017-08-01
918	2017-08-02	50.89	51.18	49.90	50.45	4679746	AAL	2017-08-02
919	2017-08-03	50.56	51.20	50.36	50.55	3231366	AAL	2017-08-03
920	2017-08-04	50.67	50.92	50.39	50.80	2993515	AAL	2017-08-04
921	2017-08-07	50.82	51.13	50.46	50.58	3016726	AAL	2017-08-07
922	2017-08-08	50.68	50.78	49.89	50.00	4274416	AAL	2017-08-08
923	2017-08-09	49.74	49.92	49.23	49.40	5020809	AAL	2017-08-09
924	2017-08-10	49.03	49.34	48.19	48.55	5441375	AAL	2017-08-10
925	2017-08-11	48.50	48.78	47.44	48.35	5610688	AAL	2017-08-11

```
In [8]: dataset = dataset.drop('Name', 1)
    dataset = dataset.drop('Date', 1)
    dataset.set_index(['trading_date'], inplace=True)
```

In [9]: dataset

	Open	High	Low	Close	Volume
trading_date					
2013-12-09	23.85	25.44	23.45	24.60	43197268
2013-12-10	24.50	25.17	24.41	24.88	18660625
2013-12-11	25.48	27.20	25.37	25.99	38843371
2013-12-12	26.20	26.71	25.45	25.45	19981824
2013-12-13	25.75	26.30	25.52	26.23	12192421
2013-12-16	26.63	26.77	26.35	26.61	13190945
2013-12-17	26.48	26.59	25.95	26.10	11413199
2013-12-18	25.99	26.23	25.55	26.23	9994162
2013-12-19	26.12	26.49	25.82	26.12	6916497
2013-12-20	26.18	26.49	26.14	26.33	8530924
2013-12-23	26.29	26.49	26.05	26.18	5403084
2013-12-24	26.00	26.26	26.00	26.25	2652974
2013-12-26	26.12	26.36	25.98	26.13	4226639
2013-12-27	25.95	26.10	24.91	24.94	13227018
2013-12-30	24.87	25.25	24.65	24.78	8841369
2013-12-31	24.74	25.25	24.63	25.25	7168395
2014-01-02	25.07	25.82	25.06	25.36	8998943
2014-01-03	25.75	26.75	25.51	26.54	13836062
2014-01-06	26.62	27.20	26.60	27.03	11272273
2014-01-07	27.20	27.40	26.67	26.90	11288775
2014-01-08	26.37	27.68	26.35	27.63	15736891
2014-01-09	28.24	29.60	28.20	29.42	26056445
2014-01-10	29.05	29.83	28.75	29.35	12824160
2014-01-13	29.18	29.53	28.58	28.65	10591701
2014-01-14	28.75	29.04	28.71	28.87	10601529
2014-01-15	28.90	29.44	28.70	28.84	11192558
2014-01-16	28.94	29.39	28.70	29.34	7034698
2014-01-17	29.30	30.02	29.17	30.02	18304949
2014-01-21	30.66	30.80	30.20	30.66	10612821
2014-01-22	30.71	31.24	30.65	31.20	7583631

	Open	High	Low	Close	Volume
trading_date					
2017-06-30	49.92	50.51	49.60	50.32	6618701
2017-07-03	50.78	51.28	50.37	50.39	2906524
2017-07-05	50.44	51.54	50.18	51.26	5157516
2017-07-06	50.97	52.58	50.86	52.05	7021422
2017-07-07	52.30	53.38	52.18	53.03	6596952
2017-07-10	52.98	53.16	52.23	52.66	4600014
2017-07-11	52.58	52.66	51.47	51.61	4545699
2017-07-12	53.12	53.82	52.45	53.80	8348363
2017-07-13	53.40	54.48	53.15	53.81	5346686
2017-07-14	53.80	54.28	53.34	54.22	4537895
2017-07-17	54.21	54.28	53.85	53.87	3727804
2017-07-18	53.83	53.84	53.02	53.15	4101431
2017-07-19	52.26	53.19	51.78	52.61	5774713
2017-07-20	52.72	52.78	52.10	52.34	4836234
2017-07-21	52.13	52.55	51.45	51.91	4544423
2017-07-24	51.79	52.03	51.24	51.28	4876393
2017-07-25	51.50	51.90	50.54	50.61	4484890
2017-07-26	50.63	51.16	50.01	51.01	4776112
2017-07-27	50.34	50.34	48.75	50.00	10260337
2017-07-28	49.02	50.67	48.73	50.49	9153445
2017-07-31	50.85	51.23	50.04	50.44	6062854
2017-08-01	51.13	52.00	50.32	51.06	5045298
2017-08-02	50.89	51.18	49.90	50.45	4679746
2017-08-03	50.56	51.20	50.36	50.55	3231366
2017-08-04	50.67	50.92	50.39	50.80	2993515
2017-08-07	50.82	51.13	50.46	50.58	3016726
2017-08-08	50.68	50.78	49.89	50.00	4274416
2017-08-09	49.74	49.92	49.23	49.40	5020809
2017-08-10	49.03	49.34	48.19	48.55	5441375
2017-08-11	48.50	48.78	47.44	48.35	5610688

This code is for comparing the different columns of the raw data.

```
In [10]: dataset[['Open', 'High', 'Low', 'Close']].plot()
    plt.show()
    dataset['Volume'].plot()
    plt.show()
```


The following is graphing a few of the graphs with the opening price and the volume on one graph to compare with two different axis'. I thought to do this as a comparison between the opening price (which all the raw data features follow roughly the same line) and the volume feature. Since the volume feature is important. [http://www.investopedia.com/terms/v/volume.asp (http://www.investopedia.com/terms/v/volume.asp)]

```
In [11]: def getting preprocessed data(symbol):
                 csv_file = '{}/{}_data.csv'.format(directory, symbol)
                 df = pd.read csv(csv file)
                 df = df.drop('Name', 1)
                 df.set_index('Date', inplace=True)
                 # below was found at https://stackoverflow.com/questions/29314033/pyth
         on-pandas-dataframe-remove-empty-cells
                 df['Open'].replace('', np.nan, inplace=True)
                 df.dropna(subset=['Open'], inplace=True)
                 return df
         def plotting_stocks(symbols_list, amount_of_stocks=0):
             if amount_of_stocks == 0:
                 amount of stocks = len(symbols list)
             for symbol in symbols_list[:amount_of_stocks]:
                 fig, ax = plt.subplots()
                 fig.subplots_adjust(right=0.7)
                 df = getting_preprocessed_data(symbol)
                 print(symbol)
                 df.Open.plot(ax=ax, style='b-', figsize=(20,10))
                 # same ax as above since it's automatically added on the right
                 df.Volume.plot(ax=ax, style='r-', secondary_y=True, figsize=(20,10))
                 # add Legend --> take advantage of pandas providing us access
                 # to the line associated with the right part of the axis
                 #ax.legend([ax.get lines()[0], ax.get lines()[0]], ['Open','Volume'],
          bbox to anchor=(1.5, 0.5)
                 plt.show()
                 #below is the Daily Returns calculation to put into the Sharpe Ratio.
                 df preprocessed = df.assign(Daily Returns = np.divide((df.Open - df.Cl
         ose), df.Close) * 100)
                 #Below is the calculation for the Sharpe Ratio column.
                 df_preprocessed = df_preprocessed.assign(Sharpe_Ratio = np.divide((df_
         preprocessed.Daily_Returns - 0.046), np.std(np.array([df_preprocessed.Open, df
         _preprocessed.High, df_preprocessed.Low, df_preprocessed.Close]))))
                 #Below is the rate of change (momentum) for the specific stock.
                 df preprocessed = df preprocessed.assign(Rate of Change = (np.divide(d
         f preprocessed.Close, df preprocessed.Open) - 1) * 100)
                 #df.plot.scatter(x='Open', y='Volume', label="AAL")
                 log df = np.log(df)
                 log df.plot.scatter(x='Volume', y='Open', label="AAL", figsize=(20,10
         ))
                 plt.show()
                 df_preprocessed.plot.scatter(x='Open', y='Sharpe_Ratio', label="Sharpe
          Ratio Open", figsize=(20,10))
                 plt.show()
                 df_preprocessed.plot.scatter(x='Volume',y='Sharpe_Ratio', label="Sharp
         e Ratio Close", figsize=(20,10), use index=True)
                 plt.show()
```

In [12]: # printing out the first four stocks to get an idea of how each stock is indiv
 idually represented.
 plotting_stocks(symbols_list, 1)

3.2

15.5

16.5

17.0

17.5

18.0

18.5

df.plot.scatter(x='Open', y='Volume', label="AAL")

log_df = np.log(df) log_df.plot.scatter(x='Volume', y='Open', label="AAL", figsize=(20,10)) plt.show()

log_df.plot.scatter(x='Volume', y='Close', label="AAL", figsize=(20,10)) plt.show()

log_df.plot(x=log_df.index, y='Open', label="AAL", figsize=(20,10), use_index=True, style='.') plt.show()

In [13]: #below is the Daily Returns calculation to put into the Sharpe Ratio.
 dataset_preprocessed = dataset.assign(Daily_Returns = np.divide((dataset.Open - dataset.Close), dataset.Close) * 100)

In [14]: #Below is the calculation for the Sharpe Ratio column.
 dataset_preprocessed = dataset_preprocessed.assign(Sharpe_Ratio = np.divide((d ataset_preprocessed.Daily_Returns - 0.046), np.std(np.array([dataset_preprocessed.Open, dataset_preprocessed.High, dataset_preprocessed.Low, dataset_preprocessed.Close]), ddof=1)))

In [17]: from IPython.display import display
display(dataset_preprocessed.head(n=1))

	Open	High	Low	Close	Volume	Daily_Returns	Sharpe_Ratio	Rate_o
trading_date								
2013-12-09	23.85	25.44	23.45	24.6	43197268	-3.04878	-0.490892	3.14465

```
In [19]: # I am using some of the techniques I learned from previous projects. The bel
         ow is from the Finding Donors Project.
         # Label encoder example from https://stackoverflow.com/questions/41925157/logi
         sticregression-unknown-label-type-continuous-using-sklearn-in-python
         lab enc = LabelEncoder()
         closing = lab_enc.fit_transform(dataset_preprocessed['Close'])
         features = dataset preprocessed.drop('Close', axis = 1)
         #features = Lab enc.fit transform(features)
         #closing raw
         #features raw
In [20]: X_train, X_test, y_train, y_test = train_test_split(features, closing, test_si
         ze=0.2, random state=0)
         print("Training set has {} samples.".format(X_train.shape[0]))
         print("Testing set has {} samples.".format(X test.shape[0]))
         Training set has 740 samples.
         Testing set has 186 samples.
In [21]: clf = SVC()
         learner = clf.fit(X_train, y_train)
In [22]: pred = clf.predict(X test)
         accuracy = accuracy_score(y_test, pred)*100
         print("Accuracy is: {:.4f}%".format(accuracy))
         Accuracy is: 0.0000%
```

This next section will be the creation of the RNN-LSTM model.

Some information gathered from https://machinelearningmastery.com (https://machinelearningmastery.com)

From my research and many hours of trial and error I have discovered that the preprocessing needs to be different for the RNN-LSTM as compared to the SVC. https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/)

```
In [23]: from keras.models import Sequential
    from keras.layers import Dense
    from keras.layers import LSTM
```

```
In [26]: #from machinelearningmastery.com
         dataset = dataset preprocessed.values
         dataset = dataset.astype('float32')
         print(dataset_preprocessed.shape)
         (926, 8)
In [27]: training_set = int(len(dataset) * 0.80)
         testing set = len(dataset) - training set
In [28]: X train rnn = dataset[0:training set]
         X test rnn = dataset[training set:len(dataset)]
         print(X_train_rnn.shape)
         print(X_test_rnn.shape)
         #X_train = np.reshape(X_train_rnn, (X_train_rnn.shape[0], 1, X_train_rnn.shape
         [1]))
         #X_train = np.reshape(X_train_rnn, (X_train_rnn.shape[0], 64))
         #X_test = np.reshape(X_test_rnn, (X_test_rnn.shape[0], 1, X_test_rnn.shape
         [1]))
         (740, 8)
         (186, 8)
In [29]: rnn model = Sequential()
         rnn_model.add(LSTM(64, batch_input_shape=(len(X_train), 1, 8)))
         rnn model.summary()
         Layer (type)
                                     Output Shape
                                                               Param #
         lstm 1 (LSTM)
                                     (740, 64)
                                                               18688
         _____
         Total params: 18,688
         Trainable params: 18,688
         Non-trainable params: 0
In [30]: rnn_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metric
         s=['accuracy'])
         print(X_train.shape)
In [31]:
```

Tensor("lstm_1_input:0", shape=(740, 1, 8), dtype=float32)

print(rnn_model.input)

(740, 7)

```
ValueError
                                           Traceback (most recent call last)
<ipython-input-32-a1a477a494eb> in <module>()
----> 1 rnn model.fit(X train, y train, epochs=100)
/usr/local/lib/python3.5/dist-packages/keras/models.py in fit(self, x, y, bat
ch_size, epochs, verbose, callbacks, validation_split, validation_data, shuff
le, class_weight, sample_weight, initial_epoch, **kwargs)
    865
                                      class weight=class weight,
                                      sample weight=sample weight,
    866
--> 867
                                      initial epoch=initial epoch)
    868
            def evaluate(self, x, y, batch_size=32, verbose=1,
    869
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in fit(self,
 x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_d
ata, shuffle, class weight, sample weight, initial epoch, steps per epoch, va
lidation steps, **kwargs)
   1520
                    class_weight=class_weight,
   1521
                    check batch axis=False,
-> 1522
                    batch size=batch size)
                # Prepare validation data.
   1523
   1524
                do validation = False
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in _standardi
ze_user_data(self, x, y, sample_weight, class_weight, check_batch_axis, batch
_size)
   1376
                                             self. feed input shapes,
   1377
                                             check_batch_axis=False,
-> 1378
                                             exception prefix='input')
   1379
                y = _standardize_input_data(y, self._feed_output_names,
   1380
                                            output_shapes,
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in standardi
ze_input_data(data, names, shapes, check_batch_axis, exception_prefix)
                                          ' to have ' + str(len(shapes[i])) +
    130
   131
                                          ' dimensions, but got array with sha
pe ' +
                                          str(array.shape))
--> 132
                    for j, (dim, ref dim) in enumerate(zip(array.shape, shape
    133
s[i])):
    134
                        if not j and not check batch axis:
ValueError: Error when checking input: expected 1stm 1 input to have 3 dimens
```

Resource used: https://www.kaggle.com/kwrjcr/predict-stock-prices-with-lstm/editnb (https://www.kaggle.com/kwrjcr/predict-stock-prices-with-lstm/editnb)

ions, but got array with shape (740, 7)

rnn model.fit(X train, y train, epochs=100)

In [32]:

One of my major issues was I was treating the RNN like the rest of the techniques and models I have learned. I didn't realize that I needed to think of it as a separate model, with its own needs and quarks. Special thanks to Jason Brownlee of MachineLearningMastery.com for creating a great resource.