PENGALAMATAN MEMORI AKSES OLEH CPU

Dr. Surya Sumpeno S.T. M.Sc.

Kapasitas Memori

Kapasitas memori menunjukkan jumlah maksimum bit data yang dapat disimpan di dalam sebuah memori

- Dinyatakan dalam : Megabit, Gigabit, MegaByte (MB), KiloByte (KB)
- 1 Kbit = 2^{10} bit = 1.024 bit
- $4 \cdot 1 \text{ Mbit} = 2^{20} \text{ bit}, 1 \text{ Gbit} = 2^{30} \text{ bit}$
- ❖ 1 Byte = 8 bit
- ❖ 1 KiloByte = 1.024 x 8 bit
- Untuk menyatakan kapasitas memory jenis penyimpan permanen seperti hard disk, CD (Compact Disc), flash disk, SSD
- Dapat juga dinyatakan dalam : 2Kx8, 4Kx8, 32Kx16 dsb, lazim untuk memori jenis RAM (Random Access Memory) dan ROM (Read Only Memory)

Kapasitas Memori (2)

Menyatakan panjang bit dalam 1 set data yaitu 8 bit (D7 s.d. D0)

-2K x 8←

Menyatakan jumlah lokasi yang disediakan = 2x1024 = 2048 lokasi dengan 1 lokasi sel berisi 8 bit (1 byte) → Memori 2KB

- Dari lokasi 0 s.d. lokasi 2047
- Dari 000 0000 0000 s.d. 111 1111 1111 = 000 s.d. 7FF
 - 11 bit jalur alamat (A10 s.d A0)

Chip Select (CS)	Read/Write (RW) (atau Write Enable/WE)	Operasi Memory (Hanya Ilustrasi/Contoh)	
0	x	Tak ada operasi	
1	0	Tulis data ke memory	
1	1	Baca data dari memory	

Kaki "Chip Select" (CS) lazimnya digunakan untuk "mengaktifkan" (memilih/enable) keping memori tsb

Contoh:

• HT6116-70

in length

CMOS 2Kx8-Bit SRAM
 The HT6116-70 is a 16384-bit static random access memory. It is organized with 2048 words of 8 bits

Pin Assignment

Decoder/Demultiplexer ("lawan" dari Multiplexer/Mux)

- Untuk memilih keping memori yang akan diakses oleh CPU
 - ➤ Mengaktifkan Chip Select

DATA (15)

STROBE (14)

11) OUTPUT

2)OUTPUT

10 ☐ 2Y1

9∏ 2Y0

1Y0

GND 8

1Y3

 $^{\circ}$

Demultiplexer (1)

- Given an input line and a set of selection lines, the demultiplexer will direct data from input to a selected output line.
- An example of a 1-to-4 demultiplexer:

S_1	So	\mathbf{Y}_{0}	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_3
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Demultiplexer (2)

- Takes one input
- Out to one of 2ⁿ possible outputs

Fig. 3-24 1-to-4-Line Demultiplexer

Decoder (1)

What a decoder does

 A n-to-2ⁿ decoder uses its n-bit input to determine which of 2ⁿ outputs will be uniquely activated.

S1	S0	Q	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- Here is a block diagram and truth table for a 2-to-4 decoder.
 - The two-bit input is called \$150, and the four outputs are Q0-Q3.
 - If the input is the binary number i, then output Qi alone will be true.
- This circuit "decodes" a binary number into a "one-of-four" code.

Building a decoder

 We can use the truth table to derive minimal sum of products equations for each of the four outputs (Q0-Q3), based on the two inputs (S0-S1).

S1	S0	Q	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

In this case there's not much to be simplified. Here are the equations:

$$Q0 = S1'S0'$$

$$Q1 = S1'S0$$

$$Q2 = S1 S0'$$

$$Q3 = S1 S0$$

Device yang diperlukan

- RAM 2Kx8 (2 Kb) sebanyak 4 keping > 4 * 2Kb = 8 Kb (8192 byte)
- Dekoder 2-to-4

Semoga Memahami dan Mengerti

- Kembangkan imajinasi untuk
 - pengalamatan memori yang lebih besar
 - melibatkan lebih banyak keping memori