作者: 张陈成

学号: 023071910029

1

K-理论笔记 泛函分析拾遗

目录

 2 谱理论
 3

 3 C* 代数一览
 5

 4 Gel'fand 对偶
 6

1 Banach 代数的极大理想

Banach 代数的极大理想

定义 1 (Banach 代数). 称复 Banach 空间 $(X,\|\cdot\|)$ 为 Banach 代数, 若存在 X 上的乘法使得 $\|xy\| \leq \|x\|\cdot\|y\|$. 注 1. 不妨假定 Banach 代数有单位元. 实际上, 总可以对具有乘法结构加群添加单位元. 任给 Banach 代数 $(X,\|\cdot\|,\cdot)$, 定义含有单位元的 Banach 代数 $(X\oplus\mathbb{C},\|\cdot\|',\odot)$ 如下.

- 范数 ||(x,z)||' := ||x|| + |z| 满足 \mathbb{C} -线性性与次可加性.
- 乘法 (x,z) ⊙ (y,w) := (xy + zy + wx, zw) 与结合律, 分配律, 范数相容.
- 单位元 (0,1) 具有范数 1, 且与乘法相容.

上述单位化过程对交换 Banach 代数亦适用.

命题 1 (逆元子群). Banach 代数的逆元全体 X^{\times} 为开群, 且 $(-)^{-1}$ 为同胚.

证明. 任取 $x \in X^{\times}$, 以及 $t \in B(0, ||x^{-1}||)$, 根据一致收敛性有

$$e = (x+t)(x^{-1} - x^{-1}tx^{-1} + x^{-1}tx^{-1}tx^{-1} - \dots) = (x+t) \cdot x^{-1} \cdot \sum_{n \ge 1} (-tx^{-1})^n.$$

往证 $(-)^{-1}$ 的连续性. 注意到 $|(\|(x+s)^{-1}\|-\|x^{-1}\|)| \le \|x^{-1}\|\cdot|1-\|e+x^{-1}s\||$, 往后仅需验证单位元处逆映射连续. 对足够小的 s, 有

$$||e - (e - s)^{-1}|| = \left\| \sum_{n \ge 1} s^n \right\| \le \frac{|s|}{1 - ||s||}.$$

从而
$$(e-s)^{-1} \in B\left(e, \frac{|s|}{1-|s|}\right)$$
. 证毕.

定义 2 ((双边) 理想). Banach 代数 X 的理想为线性子空间 I, 满足 $IX + XI \subseteq I$.

命题 2. 真理想之闭包也是真理想. 特别地, 极大理想闭.

证明. 真理想 $I \subsetneq X$ 中元素不可逆, 从而对任意 $r \in I$ 总有 $\|e - r\| \ge 1$. 显然 $\overline{I} \subsetneq X$. 极大理想 \mathfrak{m} 的存在性由选择公理保证, 再由 $\mathfrak{m} \subseteq \overline{\mathfrak{m}} \subsetneq X$ 知 $\mathfrak{m} = \overline{\mathfrak{m}}$.

定义 3 (商代数). 给定 Banach 代数 X 与理想 I, 商代数 X/I 的单位元为 e+I, 范数定义作

$$||x + I||_{X/I} := \inf_{r \in I} ||x + r||_X.$$

注 2. 商算子 $X \stackrel{\pi}{\rightarrow} X/I$ 的范数为 1.

定义 4 (特征). 称 \mathbb{C} -代数同态 (可乘线性泛函) $\varphi: X \to \mathbb{C}$ 为特征.

命题 3. 特征有如下特性.

- 1. 特征的范数为 1, 且在 X* 中弱-* 紧.
- 2. φ 是特征, 当且仅当 $\varphi(e) = 1$ 与 $\varphi(x^2) = \varphi(x)^2$ 成立.
- 3. 特征与极大理想对应.

证明. 以下依次证明之.

1. 仅需证明对任意 $x \in X$ 均有 $|\varphi(x)| \le 1$. 若不然, 则存在 $x \in X$ 使得 $e - \frac{x}{\varphi(x)}$ 可逆, 但

$$\varphi\left(e - \frac{x}{\varphi(x)}\right) = \varphi(e) - \frac{\varphi(x)}{\varphi(x)} = 0.$$

这与 $\varphi: X^{\times} \to \mathbb{C}^{\times}$ 矛盾. 对弱-* 紧性, Banach-Alaoglu 定理表明 1-范数的线性泛函全体弱-* 紧, 因此证明全体特征弱-* 闭即可. 直接验证之, 显然.

2. 注意到 $0 = \varphi(x+y)^2 - \varphi((x+y)^2) = \varphi(xy+yx) - 2\varphi(x)\varphi(y)$, 故 φ 与 $\ker(\varphi)$ 相容. 根据

$$2x(yxy) + 2(yxy)x = (xy + yx)^{2} + (xy - yx)^{2},$$

从而 $x \in \ker(\varphi)$ 当且仅当 $(xy \pm yx) \in \ker(\varphi)$, 即 $xy, yx \in \ker(\varphi)$. 遂有

$$0 = \varphi((x - e\varphi(x))(y - e\varphi(y))) = \varphi(xy) - \varphi(x)\varphi(y), \quad \forall x, y \in X.$$

3. 先证明特征 $\varphi_1 = \varphi_2$ 当切仅当 $\ker(\varphi_1) = \ker(\varphi_2)$. 往证必要性. 若 $\varphi_1 \neq \varphi_2$, 则存在 x 使得 $\varphi_1(x) \neq \varphi_2(x)$. 此时 $x - e\varphi_1(x)$ 为 φ_1 的核, 但非 φ_2 的核. 遂得证.

由于 $\dim_{\mathbb{C}}(X/\varphi_i)=1$,故 $\ker(\varphi_i)$ 为极大理想. 相反地, 给定任意极大理想 $\mathfrak{m}\subseteq X$,则 X/\mathfrak{m} 为复交换可除 Banach 代数, 因此只能是 \mathbb{C} . 商映射 X/\mathfrak{m} 自然给出特征. 结合特征到极大理想的典范映射是单的, 因此是一一对应.

2 谱理论

定义 5 (全纯函数). 对开区域 $\Omega \subset \mathbb{C}$ 与 Banach 代数 X, 称 $f:\Omega \to X$ 是全纯的当且仅当极

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0)$$

对任意 $z_0 \in \Omega$ 存在.

注 3. 若 X 是复拓扑线性空间, 则称 $f:\Omega\to X$ 弱全纯, 当且仅当对任意对偶空间中的线性泛函 $l\in X^*$ 总有全纯函数

$$l(f):\Omega\to\mathbb{C},\quad x\mapsto (l(f))(x)=l(f(x)).$$

若 X 为复 Banach 空间,则弱全纯函数等价于全纯函数.

命题 4. 类比复分析中证明, 全纯函数 $f: \Omega \to X$ 满足以下性质.

- 1. f 光滑.
- 2. 定义参数化闭道路 $\gamma \subseteq \Omega$ 关于 $z_0 \in (\mathbb{C} \setminus \gamma)$ 的盈数为 $\operatorname{Ind}_{\gamma}(z_0) := \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\mathrm{d}z}{z-z_0} \in \mathbb{Z}$.
- 3. (Cauchy 定理) 若 γ 在 Ω 上零伦, 即, 对任意 $z_0 \in (\mathbb{C} \setminus \Omega)$ 均有 $\operatorname{Ind}_{\gamma}(z_0) = 0$, 则 $\int_{\gamma} f(z) dz = 0$.
- 4. (Cauchy 积分公式) 对任意参数化闭曲线 γ 与 $z_0 \in (\Omega \setminus \gamma)$, 总有

$$\operatorname{Ind}_{\gamma}(z_0) \cdot f(z_0) = \int_{\gamma} \frac{f(z)}{z - z_0} \, \mathrm{d}z.$$

5. (Liouville 定理) 取 $Y \subseteq X^*$ 分离 X, 若对任意 $l \in Y$, $l(f) : \mathbb{C} \to \mathbb{C}$ 有界, 则 f 是常映射.

定义 6 (谱). 给定 Banach 代数 X, 定义 $x \in X$ 的谱为

$$\sigma(x) := \{ z \in \mathbb{C} \mid (ze - x) \notin X^{\times} \}.$$

定理 1. $\sigma(x) \in \overline{B(0,||x||)}$, 且 σ 为非空闭集.

证明. 对任意 |z| > ||x|| 有 $ze - x = ze(1 - z^{-1}x)$. 注意到 $||z^{-1}x|| < 1$, 故 x 可逆, 从而 $\sigma(x) \subseteq \overline{B(0,||x||)}$. 作 连续函数 $T_x := (\cdot)e - x : \mathbb{C} \to X$, 从而闭集 $(X \setminus X^{\times}) \cap T_x(\mathbb{C})$ 的原像仍是闭集. 最后证明 $\sigma(x)$ 非空, 若不然, 则 $||(ze - x)^{-1}||$ 在 \mathbb{C} 上定义. 注意到 $\lim_{z \to \infty} |z|^{-1}||(e - z^{-1}x)^{-1}|| = 0$, 从而 $(ze - x)^{-1}$ 一致有界. 依照 Liouville 定理, ze - x 为常数算子, 矛盾.

定义 7 (广义幂零元). 根据 Laurent 展开直接验证得幂零元的谱为 $\{0\}$; 相应地, 称谱为 $\{0\}$ 的元素为广义幂零元.

定义 8 (谱半径). 定义 $x \in X$ 的谱半径为紧集 $\sigma(x)$ 中模长最大者, 记 r(x).

命题 5. $r(x) = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}$.

证明. 一方面, $r(x) \leq \liminf_{n \to \infty} \sqrt[n]{\|x^n\|}$ 是显然的. 另一方面, 有 Laurent 展开

$$(ez - x)^{-1} = \sum_{n>0} z^{-n+1} x^n \quad (|z| > r(x)).$$

以上收敛半径为 $\limsup_{n\to\infty}\|z^{-1-n}x^n\|\leq 1$,从而 $r(x)\geq \limsup_{n\to\infty} {}^{n+1}\sqrt{\|x^n\|}$. 综上,得证.

注 4. $r: X \to \mathbb{R}_{\geq 0}$ 上半连续, 即, 对一切依范数收敛的序列 $x_n \to x$ 总有

$$\limsup_{n \to \infty} r(x_n) \le r(x).$$

注 5. 谱可以定义在一般 X-算子上, 其中 $x:X\to X,y\mapsto xy$ 自然是 Banach 空间的算子. 归根结底, 算子代数也是 Banach 代数.

命题 6. 对 Banach 代数 X 与子代数 Y, 定义

$$G(X) := \{(x, z) \in X \times \mathbb{C} \mid z \notin \sigma_X(x)\}.$$

则 G(Y) 无非 $G(X) \cap (\mathbb{C} \times Y)$ 去掉若干连通分支, 且数量不超过 $\omega \cdot \dim_{\mathbb{C}} Y$.

证明. 将证明拆解为如下步骤.

- 1. 对任意 $y \in Y$, 有 $\partial \sigma_Y(y) \subseteq \sigma_X(y) \subseteq \sigma_Y(y)$. 于是 $\sigma_Y(y)$ 无非 $\sigma_X(y)$ 填上若干开连通分支.
- 2. 任意给定 $\sigma_X(x)$, 则对任意小的 ε -网 $\bigcup_{t \in \sigma_X(x)} B(t, \varepsilon)$, 存在 δ 使得对任意 $\|y\| < 1$ 均有

$$\sigma_X(x+\delta y)\subseteq\bigcup_{t\in\sigma_X(x)}B(t,\varepsilon).$$

换言之, σ_X (-) 关于 ε-网诱导的度量连续. 记上述 ε-网作 N_{ε} .

对第一部分, $\sigma_X(y) \subseteq \sigma_Y(y)$ 是显然的, 因为 $Y^{\times} \subseteq X^{\times}$. 对任意 $z_0 \in \partial \sigma_Y(y)$, 存在道路

$$z:[0,1]\to\mathbb{C},\quad (0,1]\to\mathbb{C}\setminus\sigma_Y(y),\quad 0\mapsto z_0.$$

因此对 $t \in (0,1]$, $(z(t)e-y)^{-1} \in Y^{\times} \subseteq X^{\times}$. 若 $z_0 \notin \sigma_X(y)$, 则根据 $(-)^{-1}$ 的连续性知 $(z_0e-y)^{-1} \in X^{\times}$. 注意到 Y 是 X 的闭子空间,故 $\{(z(t)e-y)^{-1} \mid t \in [0,1]\}$ 的原像均在 Y 中. 显然 $(z_0e-y)^{-1} \in Y$ 有逆元 $(z_0r-y) \in Y$.

对第二部分, 考虑连续映射 $N: \mathbb{C} \setminus \sigma_X(x) \to \mathbb{R}$, $z \mapsto \|(ze-x)^{-1}\|$. 显然 $N(\infty) = 0$, 故 N 在 $\mathbb{C} \setminus N_{\varepsilon}$ 中有上界 M. 根据 $(-)^{-1}$ 与 $\|\cdot\|$ 之连续性, 存在 $\delta = M^{-1}$ 使得对任意 $\|x' - x\| < \delta$ 与 $z \in \mathbb{C} \setminus N_{\varepsilon}$, 总有

$$||(ze - x) - (ze - x')|| < \delta \le \frac{1}{||(ze - x)^{-1}||}.$$

因此 $1 > ||e - (ze - x)^{-1}(ze - x')||$. 这也说明

$$e - (e - (ze - x)^{-1}(ze - x')) = (ze - x)^{-1}(ze - x') \in X^{\times}.$$

对一切 $y \in Y$, 步骤一中填充的连通分支数量至多可数, 从而 G(Y) 与 $G(X) \cap (\mathbb{C} \times Y)$ 相差的连通分支数不 超过 $\omega \cdot \dim_{\mathbb{C}} Y$.

3 C* 代数一览

定义 9 (伴随, Banach* 代数). Banach 代数 X 上的伴随为 \mathbb{R} -反自同构 $(-)^*: X \to X$, 满足

$$(z \cdot x)^* = \overline{z}x^*, \quad (x^*)^* = x.$$

称具有伴随的 Banach 代数为 Banach* 代数.

命题 7. 自伴元全体 $\{x = x^* \mid x \in X\}$ 为包含 e 的 X 的实子空间.

命题 8. x 可逆当且仅当 x^* 可逆,且 $(x^{-1})^* = (x^*)^{-1}$, $\sigma_X(x)$ 与 $\sigma_X(x^*)$ 共轭.

证明. 注意到 $(ze-x)^*((ze-x)^{-1})^*=((ze-x)^{-1}(ze-x))^*=e^*=e$. 从而 $\sigma_X(x)$ 与 $\sigma_X(x^*)$ 共轭. 考虑 z=0, 则 $x\in X^\times$ 当且仅当 $x^*\in X^\times$.

定义 10 (C* 代数). 称 Banach* 代数为 C* 代数, 当且仅当 (-)* 等距.

注 6. 对一般交换 Banach 代数, $(-)^*$ 等距当且仅当 $||xx^*|| = ||x^*x|| = ||x||^2 = ||x^2||$.

命题 9 (C^* 代数的单位化). 对非单位 C^* 代数 X 未完待续.

定义 11 (正规元, 酉元, 自伴元 (实元)). 称 $x \in X$ 正规, 若且仅若 $x^*x = xx^*$; 称 x 是酉的, 若且仅若 $x^*x = xx^* = e$; 称 x 是自伴的 (实的) 若且仅若 $x = x^*$.

命题 10 (C^* 代数中正规元, 酉元, 实元的谱)**.** 正规元满足 r(x) = ||x||. 酉元的谱为 S^1 中的若干闭弧 (点), 实元的谱为 \mathbb{R} 中的有限闭集之并.

证明. 显然 $r(x) \leq ||x||$. 注意到

$$||x^{2^n}|| = \sqrt{||(x^*)^{2^n}x^{2^n}||} = \sqrt{||(x^*x)^{2^n}||} \le \sqrt{||x^*x||^{2^n}} = ||x||^{2^n},$$

从而 $r(x) \ge \limsup_{n\to\infty} \|x^{2^n}\|^{2^{-n}} = \|x\|$. 因此 $r(x) = \|x\|$. 从而酉元的谱在单位闭圆盘内, 且关于共轭运算封闭, 因此在 S^1 上. 结合紧性知酉元的谱为 S^1 上有限闭圆弧 (点) 之并. 给定实元 x, 收敛幂级数定义的 $\exp(ix)$ 是酉元. 对任意 $z \in \sigma_X(x)$, 往证 $\exp(iz)$ 为 $\exp(ix)$ 的谱. 注意到

$$\exp(iz) - \exp(ix) = (ze - x) \left(\sum_{n>1} \frac{i^n}{n!} \sum_{0 \le k \le n} z^k x^{n-k} \right) =: (ze - x)T.$$

显然 T 可逆, 从而 $\sigma_X(\exp(iz)) = \exp(i\sigma_X(z)) \in S^1$. 这表明实元的谱在 \mathbb{R} 中, 结合紧性知谱为有限闭区间之 并.

注 7. 一般地, 全纯函数保持谱. 即, 对一切定义在 $\sigma_X(x)$ 的某个 ε 网上的全纯函数 f 总有 $f(\sigma_X(x)) = \sigma_X(f(x))$.

命题 11. 取 Banach* 代数中任意元 x, 总有 $\ker(x) = \ker(x^*x)$.

证明.
$$xy = 0 \implies y^*x^*xy = 0 \implies (xy)^*(xy) = 0 \implies xy = 0.$$

命题 12. 在命题 6 中置 $X 与 Y 为 C^*$ 代数, 则 $G(Y) = G(X) \cap (\mathbb{C} \times Y)$.

证明. 对任意 $x \in Y$, 往证 $x \in Y^{\times}$ 当且仅当 $x \in X^{\times}$. 对任意 $x \in Y$, 实元的谱 $\sigma_Y(x^*x)$ 内部为空, 根据命题 6 知 $\sigma_X(x^*x) = \sigma_Y(x^*x)$. 结合命题 11 知 $x^* \in X^{\times}$ 当且仅当 $x^* \in Y^{\times}$. 得证.

注 8. C* 代数扩张不改变谱.

4 Gel'fand 对偶

定义 12 (Gel'fand 变换). 定义极大理想空间 \mathfrak{M} 为赋予弱-* 拓扑的特征全体, 则 \mathfrak{M} 是紧的. 依照命题 3 等同极大理想与特征. 定义 Gel'fand 变换为如下线性映射

$$\widehat{(-)}: X \to C(\mathfrak{M}), \quad x \mapsto [\mathfrak{M} \to \mathbb{C}, \quad \varphi \mapsto \varphi(x)].$$

命题 13. 若 X 是交换 Banach 代数,则有如下命题.

- 1. $\overline{(-)}$ 是交换 Banach 代数的连续同态, 且范数为 1.
- 2. $\ker (-) = J(X) = \bigcap_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{m}$ 为 Jacobson 根.
- 3. $\hat{x}: \mathfrak{M} \to \sigma_X(x)$, $\varphi \to \varphi(x)$ 给出交换 Banach 代数与谱的对应.
- 4. $\|\widehat{x}\| := \sup_{\varphi \in \mathfrak{M}} |\varphi(x)| = r(x)$.
- 5. 以下关于复半单交换 Banach 代数 X 的论断等价.
 - (a) J(X) = 0. 根据以上, $\widehat{(-)}$ 是交换 Banach 代数范畴的单态射.
 - (b) \mathfrak{M} 分离 X. 即, 对任意不相等的 $x, y \in X$, 总存在 $\varphi \in \mathfrak{M}$ 使得 $\varphi(x) \neq \varphi(y)$.
 - (c) 谱半径 r(-) 为范数. 换言之, X 中不存在非零的广义幂零元.
- 6. $\widehat{(-)}: X \to C(\mathfrak{M})$ 等距当且仅当 $||x^2|| = ||x||^2$.

证明. 下依次证明之.

1. 注意到 $\widehat{xy}(\varphi) = \varphi(xy) = \varphi(x)\varphi(y) = \widehat{x}(\varphi)\widehat{y}(\varphi)$, $\widehat{e} = 1$, 故 $\widehat{(-)}$ 为同态. 由于特征范数为 1, 故 \widehat{X} 的范数 满足

$$\|\widehat{x}\| := \sup_{\varphi \in \mathfrak{M}} |\varphi(x)| \le \|x\|.$$

从而 $\|\widehat{(-)}\| < 1$. 考虑单位元知 $\|\widehat{(-)}\| = 1$.

- 2. 注意到 $\hat{r} = 0$ 当且仅当 $\varphi(r) = 0$ 对任意 $\varphi \in \mathfrak{M}$ 成立, 故当且仅当 $r \in J(X)$.
- 3. 一方面, 对任意 $\varphi \in \mathfrak{M}$, 总有 $\varphi : (\varphi(x)e x) \mapsto 0$, 从而 $\varphi(x) \in \sigma_X(x)$. 另一方面, 对任意 $z \in \sigma(x)$, 考虑包含不可逆元 ze x 的极大理想即可.

- 4. 根据上一条, $\|\hat{x}\| = \sup_{\varphi \in \mathfrak{M}} |\varphi(x)| = \sup_{z \in \sigma(x)} = |z| = r(x)$.
- 5. 对任意 $(x-y) \in J(X)$, 总有 $\varphi(x) = \varphi(y)$ 对一切 $\varphi \in \mathfrak{M}$ 成立, 因此 (a) 与 (b) 等价. 若非 (b), 则存在 非零的 x 使得 $\|\hat{x}\| = r(x) = 0$, 遂得非 (c). 既证 $\|\hat{x}\| = r(x)$ 是良定义的范数, 从而 (b) 蕴含 (c).
- 6. 一方面, 若 $\|\hat{x}\| = \|x\|$ 恒成立, 则依照 $\widehat{x \cdot x}(\varphi) = (\widehat{x}(\varphi))^2$ 可知 $\|x^2\| = \|\widehat{x}^2\| = \|\widehat{x}\|^2 = \|x\|^2$. 另一方面, 若 $\|x^2\| = \|x\|^2$, 则有

$$\|\widehat{x}\| = r(x) = \lim_{n \to \infty} \sqrt[n]{x^n} = \lim_{n \to \infty} \sqrt[2^n]{\|x^{2^n}\|} = \lim_{n \to \infty} \sqrt[2^n]{\|x\|^{2^n}} = \|x\|.$$

注 9. 上述第 5 条 (b) 表明全体特征 (极大理想) 有自然的紧 Hausdorff 拓扑.

命题 14. 记 C(K) 为紧 Hausdorff 空间上的连续复函数全体, 则 $\|\cdot\| := \|\cdot\|_{\infty}$ 给出复 Banach 代数结构. 则 极大理想空间 \mathfrak{M} 与 K 无异. 实际上, C(X) 中极大理想形如 $\ker(g \mapsto g(x_0))$. 遂有同构

$$\widehat{(-)}: C(K) \xrightarrow{\sim} C(\mathfrak{M}), \quad f \mapsto [\ker(g \mapsto g(x_0)) \mapsto f(x_0)].$$

证明. 先证明 C(X) 中的极大理想形如 $\ker(g \mapsto g(x_0))$. 记 $\mathfrak{m}_{x_0} = \ker(g \mapsto g(x_0))$, 则 $C(X)/\mathfrak{m}_{x_0} = \mathbb{C}$ 是域, 从而 \mathfrak{m}_{x_0} 是极大理想. 若存在极大理想 \mathfrak{m} 与形如 \mathfrak{m}_{x_0} 的理想不同, 则对任意 $x \in X$, 总存在 $l_x \in \mathfrak{m}$ 使得 $l_x(x) = 1$. 遂得开覆盖 $\{ \sup(l_x) \}_{x \in X}$, 记 $\{ \sup(l_{x_k}) \}_{1 \le k \le n}$ 为有限子覆盖. 注意到

$$\left(\sum_{1 \le k \le n} |f_{x_k}(x)|^2\right) \in (C(X))^{\times} \cap \mathfrak{m},$$

从而 m 中理想包含可逆元, 与假定矛盾.

定理 2 (Gel'fand 对偶). 交换 C^* 代数范畴与紧 Hausdorff 空间范畴范畴等价.

证明. 先证明定义 12 给出交换 C^* 代数 X 到极大理想空间 $C(\mathfrak{M})$ 的等距同构, 且保持 $(-)^*$. 注意到

$$\widehat{x^*}: \varphi \mapsto \varphi(x^*) = \overline{\varphi(x)}, \quad \overline{\widehat{x}}: [\varphi \mapsto \overline{\varphi(x)}].$$

从而 $\widehat{(-)}$ 为保持(-)*的同态.

未完待续.

定理 3 (Riez 算法). 未完待续.