```
In [1]: #Practical No 1
        #ajit waman B54
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
        %matplotlib inline
         #so that we can view the graphs inside the notebook
In [2]: #from google.colab import drive
        #drive.mount('/content/gdrive')
In [3]: | s1 = pd.Series(range(1,10,1))
In [4]:
Out[4]: 0
              1
              2
        2
              3
        3
              4
        4
              5
        5
              6
              7
        6
              8
        7
        8
              9
        dtype: int64
In [5]: | s3 = pd.Series({1:21, 2:13,3:45})
In [6]: s3
Out[6]: 1
              21
              13
        3
              45
        dtype: int64
In [7]: | s2 = pd.Series([1, 2, 3, 4], index=['p', 'q', 'r', 's'], name='one')
In [8]:
        s2
Out[8]: p
              1
              2
        q
              3
              4
        S
        Name: one, dtype: int64
```

In [9]: df1 = pd.DataFrame(s2)
df1

Out[9]:

p 1

q 2

r 3

s 4

In [11]: df2 = pd.read_csv("/home/kj-comp/california_housing_test.csv")
#dataframe_name = pd.read_<format>(filename)

In [12]: df2.head(10)

Out[12]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0
1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.0
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0
4	-119.67	36.33	19.0	1241.0	244.0	850.0	237.0
5	-119.56	36.51	37.0	1018.0	213.0	663.0	204.0
6	-121.43	38.63	43.0	1009.0	225.0	604.0	218.0
7	-120.65	35.48	19.0	2310.0	471.0	1341.0	441.0
8	-122.84	38.40	15.0	3080.0	617.0	1446.0	599.0
9	-118.02	34.08	31.0	2402.0	632.0	2830.0	603.0
4							>

In [13]: df2.tail(3)

Out[13]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househo
2997	-119.70	36.30	10.0	956.0	201.0	693.0	22
2998	-117.12	34.10	40.0	96.0	14.0	46.0	1
2999	-119.63	34.42	42.0	1765.0	263.0	753.0	26
4							>

In [14]: df2['median_house_value_new']=df2['median_house_value']+111

```
df2.tail(3)
In [15]:
Out[15]:
                longitude latitude housing_median_age total_rooms total_bedrooms population househo
           2997
                  -119.70
                           36.30
                                               10.0
                                                         956.0
                                                                        201.0
                                                                                  693.0
                                                                                             22
           2998
                                               40.0
                  -117.12
                           34.10
                                                          96.0
                                                                         14.0
                                                                                   46.0
                                                                                              1
           2999
                  -119.63
                           34.42
                                               42.0
                                                         1765.0
                                                                        263.0
                                                                                  753.0
                                                                                             26
In [16]:
          # <dataframe's name>.to <file format>(<file name>)
In [17]: df2.to json('data1.json')
In [18]: len(df2['total_rooms'])
Out[18]: 3000
In [19]: | df2['total_rooms'].count()
Out[19]: 3000
In [20]: | df2['total_rooms'].mean()
Out[20]: 2599.578666666667
In [21]: | df2['total_rooms'].sum()
Out[21]: 7798736.0
In [22]: df2['total_rooms'].median()
Out[22]: 2106.0
In [23]: | df2['total_rooms'].std()
Out[23]: 2155.59333162558
In [24]: df2['total_rooms'].min()
Out[24]: 6.0
In [25]: df2['total_rooms'].max()
Out[25]: 30450.0
```

```
df2['total_rooms'].describe()
In [26]:
Out[26]: count
                    3000.000000
         mean
                    2599.578667
         std
                    2155.593332
         min
                       6.000000
         25%
                    1401.000000
         50%
                    2106.000000
         75%
                    3129.000000
         max
                   30450.000000
         Name: total rooms, dtype: float64
         df2['total rooms'].cumsum()
In [27]:
Out[27]: 0
                     3885.0
         1
                     5395.0
         2
                     8984.0
         3
                     9051.0
         4
                    10292.0
                    . . .
         2995
                  7790662.0
         2996
                  7795919.0
         2997
                  7796875.0
         2998
                  7796971.0
         2999
                  7798736.0
         Name: total_rooms, Length: 3000, dtype: float64
         # When you give the whole dataframe, then all numerical columns will be analys
In [28]:
          is
         df2.mean()
Out[28]: longitude
                                       -119.589200
         latitude
                                         35.635390
         housing median age
                                         28.845333
         total_rooms
                                       2599.578667
         total_bedrooms
                                        529.950667
         population
                                       1402.798667
         households
                                        489.912000
         median_income
                                          3.807272
         median house value
                                     205846.275000
         median_house_value_new
                                     205957.275000
         dtype: float64
```

In [29]: df2.describe()

Out[29]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
count	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	3000.000000
mean	-119.589200	35.63539	28.845333	2599.578667	529.950667	1402.798667
std	1.994936	2.12967	12.555396	2155.593332	415.654368	1030.543012
min	-124.180000	32.56000	1.000000	6.000000	2.000000	5.000000
25%	-121.810000	33.93000	18.000000	1401.000000	291.000000	780.000000
50%	-118.485000	34.27000	29.000000	2106.000000	437.000000	1155.000000
75%	-118.020000	37.69000	37.000000	3129.000000	636.000000	1742.750000
max	-114.490000	41.92000	52.000000	30450.000000	5419.000000	11935.000000
4						

In [31]: df = pd.read_csv("/home/kj-comp/california_housing_test.csv")

In [32]: df.describe()

Out[32]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
count	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	3000.000000
mean	-119.589200	35.63539	28.845333	2599.578667	529.950667	1402.798667
std	1.994936	2.12967	12.555396	2155.593332	415.654368	1030.543012
min	-124.180000	32.56000	1.000000	6.000000	2.000000	5.000000
25%	-121.810000	33.93000	18.000000	1401.000000	291.000000	780.000000
50%	-118.485000	34.27000	29.000000	2106.000000	437.000000	1155.000000
75%	-118.020000	37.69000	37.000000	3129.000000	636.000000	1742.750000
max	-114.490000	41.92000	52.000000	30450.000000	5419.000000	11935.000000
4						•

In [33]: df.columns

```
df['longitude']
In [34]:
Out[34]: 0
                 -122.05
         1
                 -118.30
         2
                 -117.81
         3
                 -118.36
         4
                 -119.67
                   . . .
         2995
                 -119.86
         2996
                 -118.14
         2997
                 -119.70
         2998
                 -117.12
         2999
                 -119.63
         Name: longitude, Length: 3000, dtype: float64
In [35]: df.longitude
Out[35]: 0
                 -122.05
         1
                 -118.30
         2
                 -117.81
         3
                 -118.36
                 -119.67
                   . . .
         2995
                 -119.86
         2996
                 -118.14
         2997
                 -119.70
         2998
                 -117.12
         2999
                 -119.63
         Name: longitude, Length: 3000, dtype: float64
         df.iloc[:,1:3]
In [36]:
```

Out[36]:

	latitude	housing_median_age
)	37.37	27.0
	34.26	43.0
2	33.78	27.0
3	33.82	28.0
ļ	36.33	19.0
	•••	
5	34.42	23.0
5	34.06	27.0
,	36.30	10.0
3	34.10	40.0
)	34.42	42.0
	3 4 - 5	37.37 34.26 33.78 33.82 36.33 34.42 34.06 36.30 34.10

3000 rows × 2 columns

In [38]: # importing pandas as pd
import pandas as pd
making data frame from csv file
data = pd.read_csv("employees.csv")
data.head(10)

Out[38]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308.0	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933.0	4.170	True	NaN
2	Maria	Female	4/23/1993	11:17 AM	130590.0	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705.0	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004.0	1.389	True	Client Services
5	Dennis	Male	4/18/1987	1:35 AM	115163.0	10.125	False	Legal
6	Ruby	Female	8/17/1987	4:20 PM	65476.0	10.012	True	Product
7	NaN	Female	7/20/2015	10:43 AM	45906.0	11.598	NaN	Finance
8	Angela	Female	11/22/2005	6:29 AM	95570.0	18.523	True	Engineering
9	Frances	Female	8/8/2002	6:51 AM	139852.0	7.524	True	Business Development

In [39]: data.describe()

Out[39]:

	Salary	Bonus %			
count	969.000000	1000.000000			
mean	90579.972136	10.207555			
std	32916.214577	5.528481			
min	35013.000000	1.015000			
25%	62666.000000	5.401750			
50%	90370.000000	9.838500			
75%	118733.000000	14.838000			
max	149908.000000	19.944000			

In [40]: data.isnull()

Out[40]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management		Team
0	False	False	False	False	False	False		False	False
1	False	False	False	False	False	False		False	True
2	False	False	False	False	False	False		False	False
3	False	False	False	False	False	False		False	False
4	False	False	False	False	False	False		False	False
995	False	True	False	False	False	False		False	False
996	False	False	False	False	False	False		False	False
997	False	False	False	False	False	False		False	False
998	False	False	False	False	False	False		False	False
999	False	False	False	False	False	False		False	False

1000 rows × 8 columns

In [41]: data.notnull()

Out[41]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management		Team
0	True	True	True	True	True	True		True	True
1	True	True	True	True	True	True		True	False
2	True	True	True	True	True	True		True	True
3	True	True	True	True	True	True		True	True
4	True	True	True	True	True	True		True	True
995	True	False	True	True	True	True		True	True
996	True	True	True	True	True	True		True	True
997	True	True	True	True	True	True		True	True
998	True	True	True	True	True	True		True	True
999	True	True	True	True	True	True		True	True

1000 rows × 8 columns

```
data.isnull().sum()
In [42]:
Out[42]: First Name
                                67
         Gender
                               145
         Start Date
                                 0
                                 0
         Last Login Time
         Salary
                                31
         Bonus %
                                 0
         Senior Management
                                67
         Team
                                43
         dtype: int64
In [43]: # filling a null values using fillna()
         data["Gender"].fillna("No Gender", inplace = True)
In [44]: data.isnull().sum()
Out[44]: First Name
                               67
         Gender
                                0
         Start Date
                                0
                                0
         Last Login Time
                               31
         Salary
         Bonus %
                                0
         Senior Management
                               67
         Team
                               43
         dtype: int64
```

In [45]: # will replace Nan value in dataframe with value -99
import numpy as np
data.replace(to_replace = np.nan, value = -99)

Out[45]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308.0	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933.0	4.170	True	-99
2	Maria	Female	4/23/1993	11:17 AM	130590.0	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705.0	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004.0	1.389	True	Client Services
995	Henry	No Gender	11/23/2014	6:09 AM	132483.0	16.655	False	Distribution
996	Phillip	Male	1/31/1984	6:30 AM	42392.0	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914.0	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500.0	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949.0	10.169	True	Sales

1000 rows × 8 columns

5/9/24, 8:17 PM PRACTICAL NO1 ajit

Out[46]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308.0	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933.0	4.170	True	Marketing
2	Maria	Female	4/23/1993	11:17 AM	130590.0	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705.0	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004.0	1.389	True	Client Services
995	Henry	No Gender	11/23/2014	6:09 AM	132483.0	16.655	False	Distribution
996	Phillip	Male	1/31/1984	6:30 AM	42392.0	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914.0	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500.0	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949.0	10.169	True	Sales

1000 rows × 8 columns

5/9/24, 8:17 PM PRACTICAL NO1 ajit

Out[47]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308.0	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933.0	4.170	True	Marketing
2	Maria	Female	4/23/1993	11:17 AM	130590.0	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705.0	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004.0	1.389	True	Client Services
995	Henry	No Gender	11/23/2014	6:09 AM	132483.0	16.655	False	Distribution
996	Phillip	Male	1/31/1984	6:30 AM	42392.0	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914.0	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500.0	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949.0	10.169	True	Sales

1000 rows × 8 columns

In [48]: data.dropna(axis=1)

Out[48]:

	Gender	Start Date	Last Login Time	Bonus %
0	Male	8/6/1993	12:42 PM	6.945
1	Male	3/31/1996	6:53 AM	4.170
2	Female	4/23/1993	11:17 AM	11.858
3	Male	3/4/2005	1:00 PM	9.340
4	Male	1/24/1998	4:47 PM	1.389
995	No Gender	11/23/2014	6:09 AM	16.655
996	Male	1/31/1984	6:30 AM	19.675
997	Male	5/20/2013	12:39 PM	1.421
998	Male	4/20/2013	4:45 PM	11.985
999	Male	5/15/2012	6:24 PM	10.169

1000 rows × 4 columns

```
In [49]:
         # importing pandas as pd
          import pandas as pd
          # Creating the dataframe
          df = pd.DataFrame({"A":[12, 4, 5, None, 1],
          "B":[None, 2, 54, 3, None],
          "C":[20, 16, None, 3, 8],
          "D":[14, 3, None, None, 6]})
          # Print the dataframe
          df
Out[49]:
             Α
                  В
                       С
                            D
             12.0 NaN 20.0 14.0
          1
              4.0
                   2.0 16.0
                             3.0
              5.0
                  54.0 NaN NaN
                   3.0
                        3.0 NaN
             NaN
              1.0 NaN
                        8.0
                             6.0
In [50]:
          df.interpolate(method ='linear', limit_direction ='forward')
Out[50]:
                       С
             Α
                  В
                            D
             12.0 NaN
                       20.0
                           14.0
              4.0
          1
                   2.0 16.0
                            3.0
              5.0 54.0
                       9.5
                            4.0
          3
              3.0
                   3.0
                        3.0
                             5.0
              1.0
                   3.0
                        8.0
                             6.0
In [51]:
          #remove white space everywhere
          text="today is Monday"
          #df['Col Name'] = df['Col Name'].str.replace(' ', '')
          text.replace(' ','')
Out[51]: 'todayisMonday'
In [52]: text=' Today'
          text.lstrip()
Out[52]: 'Today'
In [53]: text='Today '
          text.rstrip()
Out[53]: 'Today'
In [54]: text=' Today '
          text.strip()
Out[54]: 'Today'
```

```
In [55]: import pandas
         import scipy
          import numpy
         from sklearn.preprocessing import MinMaxScaler
         # data values
         X = [110, 200], [120, 800], [310, 400], [140, 900], [510, 200], [653, 400],
         [310, 880
         1 1
         # transofrm data
         scaler = MinMaxScaler(feature_range=(0,5))
         rescaledX = scaler.fit transform(X)
In [56]: X
Out[56]: [[110, 200],
          [120, 800],
          [310, 400],
          [140, 900],
          [510, 200],
          [653, 400],
          [310, 880]]
In [57]: rescaledX
Out[57]: array([[0.
                            , 0.
                 [0.09208103, 4.28571429],
                 [1.84162063, 1.42857143],
                 [0.27624309, 5.
                                        ],
                 [3.68324125, 0.
                                        ],
                 [5.
                           , 1.42857143],
                 [1.84162063, 4.85714286]])
In [58]: | from sklearn.preprocessing import StandardScaler
         import pandas
          import numpy
         # data values
         X = [[110, 200], [120, 800], [310, 400], [140, 900], [510, 200], [653, 400],
         [310, 880
         ] ]
         # scaler
         scaler = StandardScaler().fit(X)
         rescaledX = scaler.transform(X)
In [59]: | rescaledX
Out[59]: array([[-1.02004521, -1.17792918],
                 [-0.96841602, 0.90076937],
                 [ 0.01253852, -0.48502966],
                 [-0.86515765, 1.24721913],
                 [ 1.04512224, -1.17792918],
                 [ 1.78341961, -0.48502966],
                 [ 0.01253852, 1.17792918]])
```

```
In [60]:
         from sklearn.preprocessing import Normalizer
         import pandas
         import numpy
         # data values
         X = [110, 200], [120, 800], [310, 400], [140, 900], [510, 200], [653, 400],
         [310, 880
         1 1
         # normalize values
         scaler = Normalizer().fit(X)
         normalizedX = scaler.transform(X)
In [61]: | normalizedX
Out[61]: array([[0.48191875, 0.87621591],
                 [0.14834045, 0.98893635],
                 [0.61257167, 0.79041505],
                 [0.15370701, 0.98811647],
                 [0.9309732, 0.36508753],
                 [0.8527326, 0.52234769],
                 [0.33225942, 0.94318804]])
In [62]: from sklearn.preprocessing import Binarizer
         import pandas
         import numpy
         # data values
         X = [501, 200], [120, 800], [310, 400], [140, 900], [510, 200], [653, 400],
         [310, 880
         1 1
         # binarize data
         binarizer = Binarizer(threshold=500).fit(X)
         binaryX = binarizer.transform(X)
In [63]: binaryX
Out[63]: array([[1, 0],
                 [0, 1],
                 [0, 0],
                 [0, 1],
                 [1, 0],
                 [1, 0],
                 [0, 1]
```

In [72]: import pandas as pd import numpy as np # Read in the CSV file and convert "?" to NaN headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiratio n", "num_doors", "body_style", "drive_wheels", "engine_location", "wheel_base", "length", "width", "height", "curb_weight", "engine_type", "num_cylinders", "engine_size", "fuel_system", "bore", "stroke", "compression_ratio", "horsepower", "peak_rpm", "city_mpg", "highway_mpg", "price"] df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/au tos/imports-85.data",header=None, names=headers, na_values="?") df.head()

Out[72]:

	symboling	normalized_losses	make	fuel_type	aspiration	num_doors	body_style	drive_wh
0	3	NaN	alfa- romero	gas	std	two	convertible	
1	3	NaN	alfa- romero	gas	std	two	convertible	
2	1	NaN	alfa- romero	gas	std	two	hatchback	
3	2	164.0	audi	gas	std	four	sedan	
4	2	164.0	audi	gas	std	four	sedan	

5 rows × 26 columns

```
In [73]: df.dtypes
```

Out[73]: symboling int64 normalized_losses float64 make object object fuel_type aspiration object object num_doors body_style object drive wheels object engine_location object wheel base float64 length float64 width float64 height float64 curb_weight int64 engine_type object num_cylinders object engine size int64 fuel_system object bore float64 stroke float64 compression_ratio float64 horsepower float64 float64 peak_rpm int64 city_mpg highway_mpg int64 price float64 dtype: object

utype. Object

In [74]: obj_df = df.select_dtypes(include=['object']).copy()
 obj_df.head()

Out[74]:

	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_location	engine_ty
0	alfa- romero	gas	std	two	convertible	rwd	front	dc
1	alfa- romero	gas	std	two	convertible	rwd	front	dc
2	alfa- romero	gas	std	two	hatchback	rwd	front	oł
3	audi	gas	std	four	sedan	fwd	front	C
4	audi	gas	std	four	sedan	4wd	front	C
4								>

```
5/9/24. 8:17 PM
                obj_df[obj_df.isnull().any(axis=1)]
      In [75]:
      Out[75]:
                     make
                           fuel_type aspiration num_doors body_style drive_wheels engine_location engine_t
                 27
                     dodge
                                         turbo
                                                    NaN
                                                              sedan
                                                                            fwd
                                                                                          front
                                gas
                 63
                    mazda
                               diesel
                                           std
                                                     NaN
                                                              sedan
                                                                            fwd
                                                                                          front
      In [76]:
                obj_df["num_doors"].value_counts()
      Out[76]: four
                         114
                two
                          89
                Name: num doors, dtype: int64
                obj_df = obj_df.fillna({"num_doors": "four"})
      In [77]:
                obj_df[obj_df.isnull().any(axis=1)]
      Out[78]:
                   make fuel_type aspiration num_doors body_style drive_wheels engine_location engine_type
      In [79]:
                obj_df["num_cylinders"].value_counts()
      Out[79]: four
                           159
                            24
                six
                five
                            11
                              5
                eight
                two
                twelve
                three
                Name: num_cylinders, dtype: int64
                cleanup_nums = {"num_doors": {"four": 4, "two": 2},
      In [80]:
                 "num_cylinders": {"four": 4, "six": 6, "five": 5, "eight": 8,
```

"two": 2, "twelve": 12, "three":3 }}

```
obj_df = obj_df.replace(cleanup_nums)
In [81]:
          obj_df.head()
Out[81]:
              make
                              aspiration num_doors body_style drive_wheels engine_location engine_ty
                     fuel type
                alfa-
           0
                                     std
                                                     convertible
                                                                       rwd
                                                                                      front
                                                                                                  dα
                          gas
              romero
                alfa-
                                                     convertible
                                                                                                  dc
                                     std
                                                 2
                                                                       rwd
                                                                                      front
                          gas
              romero
                alfa-
           2
                                                 2
                                                     hatchback
                                     std
                                                                       rwd
                                                                                      front
                                                                                                  oł
                          gas
              romero
           3
                                                 4
                                                                                      front
                audi
                          gas
                                     std
                                                         sedan
                                                                       fwd
                                                                                                  C
                audi
                                     std
                                                 4
                                                         sedan
                                                                       4wd
                                                                                      front
                                                                                                  C
                          gas
In [82]:
          obj df.dtypes
Out[82]:
          make
                                object
                                object
          fuel_type
          aspiration
                                object
          num doors
                                 int64
          body_style
                                object
          drive_wheels
                                object
          engine_location
                                object
          engine type
                                object
          num_cylinders
                                 int64
          fuel system
                                object
          dtype: object
          obj_df["body_style"].value_counts()
In [83]:
Out[83]:
          sedan
                           96
          hatchback
                           70
                           25
          wagon
                            8
          hardtop
          convertible
                            6
          Name: body_style, dtype: int64
In [84]:
          obj_df["body_style"] = obj_df["body_style"].astype('category')
          obj_df.dtypes
Out[84]: make
                                  object
                                  object
          fuel_type
          aspiration
                                  object
          num_doors
                                   int64
          body_style
                                category
          drive_wheels
                                  object
          engine location
                                  object
          engine_type
                                  object
          num_cylinders
                                   int64
          fuel_system
                                  object
          dtype: object
```

5/9/24, 8:17 PM PRACTICAL NO1 ajit

```
In [85]: obj_df["body_style_cat"] = obj_df["body_style"].cat.codes
    obj_df.head()
```

Out[85]:

	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_location	engine_ty
0	alfa- romero	gas	std	2	convertible	rwd	front	dc
1	alfa- romero	gas	std	2	convertible	rwd	front	dc
2	alfa- romero	gas	std	2	hatchback	rwd	front	ot
3	audi	gas	std	4	sedan	fwd	front	(
4	audi	gas	std	4	sedan	4wd	front	C
4								•

In [86]: pd.get_dummies(obj_df, columns=["drive_wheels"]).head()

Out[86]:

	make	fuel_type	aspiration	num_doors	body_style	engine_location	engine_type	num_cylin
0	alfa- romero	gas	std	2	convertible	front	dohc	
1	alfa- romero	gas	std	2	convertible	front	dohc	
2	alfa- romero	gas	std	2	hatchback	front	ohcv	
3	audi	gas	std	4	sedan	front	ohc	
4	audi	gas	std	4	sedan	front	ohc	
4								•

```
In [87]: from sklearn.preprocessing import OrdinalEncoder
    ord_enc = OrdinalEncoder()
    obj_df["make_code"] = ord_enc.fit_transform(obj_df[["make"]])
    obj_df[["make", "make_code"]].head(11)
```

Out[87]:

	make	make_code
0	alfa-romero	0.0
1	alfa-romero	0.0
2	alfa-romero	0.0
3	audi	1.0
4	audi	1.0
5	audi	1.0
6	audi	1.0
7	audi	1.0
8	audi	1.0
9	audi	1.0
10	bmw	2.0

Out[88]:

	convertible	hardtop	hatchback	sedan	wagon
0	1.0	0.0	0.0	0.0	0.0
1	1.0	0.0	0.0	0.0	0.0
2	0.0	0.0	1.0	0.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0

In [90]: obj_df.head()

Out[90]:

	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_location	engine_ty
0	alfa- romero	gas	std	2	convertible	rwd	front	dc
1	alfa- romero	gas	std	2	convertible	rwd	front	dc
2	alfa- romero	gas	std	2	hatchback	rwd	front	oł
3	audi	gas	std	4	sedan	fwd	front	C
4	audi	gas	std	4	sedan	4wd	front	C
4								•

In []: