# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

#### Аннотация

#### Цель работы:

Изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

### Приборы:

Оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

#### Теория:

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь  $\Omega=2\pi/\Lambda$  — волновое число для ультразвуковой волны, m — глубина модуляции n ( $m\ll 1$ ).

Положим фазу  $\phi$  колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете,  $k = 2\pi/\lambda$  — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами  $\theta$ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1. Зная положение дифракционных максиму-



Рис. 1: Дифракция световых волн на акустической решетке

мов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость  $\theta$ :  $\sin\theta \approx$ 

 $\theta \approx l_m/F$ , где  $l_m$  — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где  $\nu$  — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Схема установки приведена на рисунке 2. Источник света  $\Pi$  через светофильтр  $\Phi$  и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива  $O_1$ . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива  $O_2$ , наблюдается при помощи микроскопа M. Фокусное расстояние объектива F=28 см, одно деление винта микроскопа составляет E=280 мкм, полоса пропускания фильтра E=280 мкм, цена деления лимба E=280 мкм.



Рис. 2: Схема установки



Рис. 3: Схема для наблюдения дифракции на акустической решетке

## Ход работы:

 Перемещая излучатель с помощью лимба, оценим по порядку величины длину λ УЗ-волны как удвоенное расстояние между наиболее чёткими дифракционными картинами, определим положения дифракционных полос и рассчитаем длину УЗ-волны Λ по формуле 3. Полученные значения занесем в таблицы 1 и 2.

| $N_{\overline{0}}$   | 1    | 2    | 3    | 4    | 5    | 6    |
|----------------------|------|------|------|------|------|------|
| $\lambda$ , MKM      | 1560 | 1520 | 1000 | 1000 | 840  | 760  |
| $\Lambda$ , MKM      | 1600 | 1400 | 1050 | 896  | 792  | 712  |
| $\nu$ , к $\Gamma$ ц | 900  | 1100 | 1400 | 1600 | 1800 | 2000 |
| $\overline{m}$       | 2    | 3    | 2    | 1    | 1    | 1    |

Таблица 1: Полученные данные из эксперимента с дифракцией на УЗ-волне.  $\sigma_{\lambda}=10$  мкм,  $\varepsilon_{\Lambda}=5\%,\,\sigma_{\nu}=10$  к $\Gamma$ ц

| $\mathbb{N}_{\overline{0}}$ | 1   | 2   | 3   | 4   | 5   | 6   |
|-----------------------------|-----|-----|-----|-----|-----|-----|
| 3, мкм                      | -   | 384 | -   | -   | -   | -   |
| 2, мкм                      | 228 | 250 | 342 | -   | -   | -   |
| 1, мкм                      | 111 | 128 | 171 | 200 | 226 | 250 |

Таблица 2: Полученные значения расстояния l от нулевого максимума до m-того.  $\sigma_l=10$  мкм

2. Рассчитаем скорости звука в воде по полученным значениям по формуле  $v = \Lambda \nu$ .

| $\mathrm{m}$ $N_{ar{\mathtt{0}}}$ | 1    | 2    | 3    | 4    | 5    | 6    | $\overline{v}$ |
|-----------------------------------|------|------|------|------|------|------|----------------|
| v, м/с                            | 1440 | 1540 | 1470 | 1433 | 1425 | 1424 | 1455           |

Таблица 3: Полученные значения скорости звука в воде.  $\varepsilon_v=5\%$ 



Рис. 4: График зависимости l(m) по полученным значения расстояния от полосы до нуля

3. Определим скорость распространения УЗ-волны в воде методом темного поля. Для этого закроем проволокой центральный максимум и определим период полученной решетки при фиксированных частотах. Зафиксируем с помощью окулярной шкалы микроскопа разность координат N первой и последней из хорошо видимых в поле зрения тёмных полос и количество m светлых промежутков между ними. По полученным данным рассчитаем длину волны  $\Lambda$ , построим график зависимости  $\Lambda = f(1/\nu)$  и по коэффициенту наклона прямой определим скорость звука в воде.

$$\Lambda/2 = \frac{N}{m-1}$$

| $\nu$ , М $\Gamma$ ц | N, мм | m  | $\Lambda$ , mkm |
|----------------------|-------|----|-----------------|
| 1                    | 3,1   | 10 | $688 \pm 68$    |
| 1,2                  | 4,4   | 16 | $586 \pm 39$    |
| 1,4                  | 4,1   | 17 | $512 \pm 30$    |
| 1,6                  | 4,0   | 19 | $444 \pm 25$    |
| 1,8                  | 4,4   | 23 | $400 \pm 20$    |
| 2                    | 3,6   | 22 | $342 \pm 16$    |

Таблица 4: Полученные значения для разности координат, числа максимумов и периода решетки.  $\sigma_m=1$ ,  $\sigma_N=0,1$  мм



Рис. 5: График зависимости  $\Lambda(1/\nu)$ , k=v - скорость звука в воде.

## Обсуждение результатов и выводы:

В ходе данной работы мы изучили явление дифракции света на синусоидальной акустической решетке и наблюдали фазовую решетку методом темного поля.

Расчет значения скорости звука в воде с помощью акустической решетки  $v=1445\pm70~\mathrm{m/c}$  сходится с теоретическим  $v=1490~\mathrm{m/c}$ .

Расчет значения скорости звука методом темного поля  $v=679\pm70~\mathrm{m/c}$  не сходится с теоретическим значением, это может быть связано с неправильным снятием данных расстояния между максимумами дифракционной картины.