830-H-15

aci 5 NASA Technical Paper 1502

NASIGOTED COMPLETED

ORIGINAL

Aerodynamic Performance of 1.38-Pressure-Ratio, Variable-Pitch Fan Stage

Royce D. Moore and Walter M. Osborn

SEPTEMBER 1979

NASA

NASA Technical Paper 1502

Aerodynamic Performance of 1.38-Pressure-Ratio, Variable-Pitch Fan Stage

Royce D. Moore and Walter M. Osborn Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Branch

SUMMARY

A variable-pitch fan stage was tested over a range of blade-setting-angles, speeds, and flows. The stage was designed for a pressure ratio of 1.376 at a tip speed of 289.6 meters per second and a flow of 29.61 kilograms per second. To reduce the effects of tip clearance on this variable-pitch rotor, the casing above the rotor tip was recessed. During the test program several modifications were made to the stage. The overall performances of the design configuration and those of the various modifications are presented.

For the design configuration the measured performance was in good agreement with the design point. However, the stall margin was only 5 percent. The pressure ratio and flow at stall decreased as the blades were closed. An operating line corresponding to a fixed exit throat area approaches stall at the more opened angles. Calculated static-thrust values along the operating line ranged from less than 15 percent to more than 115 percent of that obtained at design blade angle, for blade setting angles from 25° (closed) to -8° (opened).

Operating the stage with casing treatment over the rotor tips increased the stall margin to 20.6 percent; however, the adiabatic efficiency decreased by 4 percentage points.

INTRODUCTION

A research program on axial-flow fans and compressors for advanced airbreathing engines is being conducted at the NASA Lewis Research Center. The intent of the program is to improve the performance and to reduce the weight, volume, and cost of fans and compressors.

As a part of this program experimental studies (refs. 1 to 7) were conducted on two variable-pitch fan stages suitable for use in engines for quiet, powered-lift aircraft (short takeoff and landing). For one of those fans the rotor blade setting angle was varied $\pm 3^{\circ}$ from the design setting angle. For the other it was varied from -7° (opened) to 13° (closed). The design pressure ratio for these fans was relatively low (1.15 and 1.20). The results of these investigations indicated that the various flight requirements for quiet, powered-lift aircraft can be achieved with variable-pitch fan engines.

The Lewis Research Center is studying various engine concepts for vertical-lift aircraft. Not only are the flight requirements more demanding than those for powered-lift aircraft, there is also a requirement that the thrust for each engine be varied to

provide aircraft stability control during takeoffs and landings. One possible concept would be to use variable-pitch fans similar to the powered-lift aircraft fans. However, the aircraft stability requirement for relatively large changes in thrust will probably require that the rotor blades be operated over a much wider range in blade setting angle. Another concept being considered is the use of variable inlet guide vanes to vary the engine thrust.

A 1.38-pressure-ratio fan stage has been tested to evaluate the performance of a variable-pitch rotor fan stage designed for higher pressure ratio and operating over a wider range of rotor blade setting than those previously tested. The stage was designed and fabricated by the Hamilton Standard Division of United Technologies Corporation and was tested by Lewis in its single-stage compressor test facility. The fan was designed for a nominal tip speed of 289.6 meters per second and an airflow of 29.6 kilograms per second. During the test operations the rotor-blade angle was varied from -8 (opened) to 35° (closed) from the design setting.

This fan stage was modified several times during the investigation. For variable-pitch rotor blades, the blade tips must be contoured so that the tip clearance will be minimum at the radial axis of rotation and considerably greater at the leading and trailing edges. As discussed in reference 7, a method for reducing the tip clearance would be to reshape the casing above the rotor tip to match the blade-tip contour when the tip is in the feather position. The original fan was designed with this type of recessed contour above the rotor tip. Although the performance was close to design, the stall margin was small. In an effort to increase the stall margin, the rotor blade was recoined in the tip region to increase the inlet blade angle. To evaluate the effect of the casing contour on the performance, the recoined stage was also tested with a straight contour above the rotor tip. And, finally, the stage was tested with casing treatment over the rotor tips. The use of casing treatment had been an effective method for improving stall margin (ref. 8).

This report presents the overall performances of the fan stage for the original configuration and the three modifications. Data are presented over the stable operating range for speeds from 60 to 120 percent of design speed. For each configuration the rotor was tested with at least three setting angles. The stage performances with the original and recoined blades are compared. The effects of the casing contour and of casing treatment on performance with the recoined blades are also presented.

TEST STAGE

Aerodynamic Design

The flow path of the test stage, designated stage 57, is shown in figure 1. Basically the variable-pitch fan stage was designed for a pressure ratio of 1.376 at a tip speed of 289.6 meters per second and a flow of 29.61 kilograms per second. Photographs of the rotor and stator are presented in figure 2. There are 19 rotor blades with an aspect ratio of 1.26. The 38 stator blades have an aspect ratio of 1.70. The overall design parameters are presented in table I. Both the rotor and stator bladegeometry parameters for the original stage are presented in tables II to V. The values presented are based on design values supplied by Hamilton Standard and interpolated to the desired radial positions. The symbols and equations are defined in appendixes A and B. The abbreviations and units used for the tabular data are defined in appendix C.

To allow the variable-pitch rotor blades to turn through feather to a reverse flow setting, the tip contour must be basically a circular arc in the chordwise direction. Thus, the tip clearance with the straight cylindrical casing will be the least at the radial axis of blade rotation and greatest at the leading and trailing edges. The casing above the rotor was recessed in an attempt to reduce the effects of tip clearance (fig. 3). The sketch of figure 3 shows the blade tip in both the design and feather position, and the photograph shows the blade tip in the feather position only. The tip radius at the blade leading and trailing edges is equal to the nominal casing radius (25.4 cm). At the blade radial axis of rotation, the blade tip radius is greater. In an engine a split nacelle would have to be used to allow replacement of the fan rotor — a disadvantage.

The stage was tested with the rotor blades set at several angles. Listed below are the letter designations for each of the setting angles.

Setting angle, deg from design
0
4 (Closed)
-5 (Opened)
-8 (Opened)
15 (Closed)
25 (Closed)
35 (Closed)

Modifications

During this investigation, three major changes were made to the stage:

- (1) Recoined blades In an effort to improve the stall margin, the original blades were reshaped in the tip region by recoining them. The inlet blade metal angle was increased while the outlet angle was unchanged. The inlet blade angles are compared in figure 4. From a radius of about 23.6 centimeters to the tip, the inlet blade angle was progressively increased; at the tip the angle change was about 5.3°. This stage with the recoined blades was designated stage 57M1.
- (2) Straight casing insert The stage was also tested with a straight insert to evaluate the effects of the recessed casing above the rotor tip. To test with the straight cylindrical insert, the rotor blade tips were remachined to the contour shown in figure 5. The recoined rotor with the straight insert was designated stage 57 M3.
- (3) Casing treatment The casing treatment insert used in this study is shown in figure 6. The slots were alined with the axial planes but are skewed at a 60° angle to the radial plane in the direction of rotation. There are two rows of 110 equally spaced slots. The rows are axially spaced as shown in the figure. The casing treatment was centered about the blade axis of rotation. The sketch of the blade shown represents the design setting angle. The recoined rotor was tested with the casing treatment insert. This configuration was designated stage 57M4.

APPARATUS AND PROCEDURE

Test Facility

The fan stage was tested in the Lewis single-stage compressor test facility (fig. 7), which is described in reference 9. Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow measuring orifice into the plenum chamber upstream of the test stage. The air then passes through the experimental fan stage into the collector and is exhausted to the facility exhaust system.

Instrumentation

The fan flow was determined from measurements on a calibrated thin-plate orifice that was 38.9 centimeters in diameter. The orifice temperature was determined from an average of two Chromel-Constantan thermocouples. Orifice pressures were measured by calibrated transducers.

Radial surveys of the flow were made upstream of the rotor, between the rotor and stator, and downstream of the stator (see fig. 1 for axial locations). Photographs of

the survey instrumentation are shown in figure 8. At stations 1 and 2 total pressure, total temperature, and flow angle were measured with the combination probe (fig. 8(a)), and the static pressure was measured with an 18° wedge probe (fig. 8(b)). At station 3 total pressure and total temperature were measured with a nine-element radial rake (fig. 8(c)), and the static pressure and flow angle were determined from the wedge probe. Each probe was positioned with a null-balancing, steam-direction-sensitive control system that automatically alined the probe to the direction of flow. The rakes were set straight ahead. The thermocouple material was Chromel-Constantan for both the combination probe and the rake.

Inner- and outer-wall static-pressure taps were located at approximately the same axial stations as the survey instrumentation. The circumferential locations of the survey instrumentation along with the inner- and outer-wall static-pressure taps are shown in figure 9. At the station 3 the rakes were circumferentially traversed one stator gap (9.5°) from the angles shown.

An electronic speeder counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm).

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Airflow, kg/sec	3
Rotative speed, rpm	0
Flow angle, deg	0
Temperature, K	6
Rotor-inlet total pressure, N/cm ² ±0.0	
Rotor-outlet total pressure, N/cm ²	
Stator-outlet total pressure, N/cm ²	
Rotor-inlet static pressure, N/cm ² ±0.0	4
Rotor-outlet static pressure, N/cm ² ±0.0	
Stator-outlet static pressure, N/cm ² ±0.0	7

Test Procedure

For each configuration the stage survey data were taken over a range of speeds from 60 to 120 percent of design speed and a range of flows from maximum to near-stall conditions. Data were recorded at nine radial positions for each speed and weight flow. The performance for each configuration was obtained at three or more rotor-blade setting angles.

The combination probes at stations 1 and 2 and the wedge probes at all stations were traversed radially at the same time the nine-element rakes at station 3 were

traversed circumferentially. The wedge probes at station 3 were set at midgap because preliminary studies showed that the static pressure across the stator gap was constant. The probes and rakes were set at their initial positions, and values of pressure, temperature, and flow angle were recorded. The instruments were then traversed to their next scheduled positions, and data were again recorded. When the rakes are at their last circumferential position, the probes are at their last radial position.

Calculation Procedure

Measured values of total pressure, static pressure, and total temperature were corrected for Mach number and streamline slope. These corrections were based on an average calibration for the type of instrument used. Orifice airflow, rotative speed, static and total pressures, and total temperatures were all corrected to standard-day conditions based on the rotor-inlet condition.

For the data reduction program the circumferential distributions of sertic pressure and flow angle downstream of the stator (station 3) were assumed to be constant for each radial position and equal to the measured midgap values. The nine circumferential values of total pressure and total temperature obtained at each radial position were averaged. The nine total temperatures were mass averaged to obtain the stator-outlet temperature; and the nine total pressures were converted to their enthalpy equivalents and then mass averaged. All blade-element data presented at the stator outlet are based on these average total pressures and total temperatures.

To obtain the overall performance, the radial values of total temperature were mass averaged, and the radial values of total pressure were converted to their enthalpy equivalent and then mass averaged as before.

The sea-level static thrust is a mass-averaged value and is composed of both the momentum thrust and the pressure thrust. The momentum thrust is a product of the flow rate and the outlet velocity. The pressure thrust consists of a product of the outlet area and the difference between outlet static pressure and inlet total pressure.

The flow at stall was obtained in the following manner: during operation at near stall, the collector valve was slowly closed in small increments. At each increment the airflow was recorded. The airflow obtained just before stall occurred is defined as the stall airflow. The pressure ratio at stall was obtained by extrapolating the total pressure obtained from the survey data to the stall airflow.

RESULTS AND DISCUSSION

The results from this investigation are presented in five main sections. The overall performance of the design configuration at the various rotor-blade setting angles is presented first. This is followed by discussions of stage overall performances of the stage with recoined blades, casing tip contour, and casing treatment. Finally, there is a brief comparison of the performances of the stage with the various modifications. All of the overall performance parameters for the various configurations and rotor blade setting angles are presented in tables VI to XXI.

Design Configuration Performance

Design setting angle. - The overall performances for the rotor and stage are presented in figures 10 and 11. Pressure ratio and adiabatic efficiency are presented at several flows for 60, 70, 80, 90, 100, 110, and 120 percent of design speeds. The solid symbols represent the design values. At design speed the rotor performance agrees quite well with the design values. A peak efficiency of 0.872 for the rotor occurred at a flow of 29.42 kilograms per second and a pressure ratio of 1.390. The rotor was designed for an efficiency of 0.904 at a flow of 29.61 kilograms per second and a pressure ratio of 1.396.

The peak stage efficiency at design speed is 0.844, and it occurs at an airflow of 29.42 kilograms per second and a pressure ratio of 1.368. The results in a stall margin of about 5 percent between the peak efficiency and stall conditions.

Although the measured performance of the stage agrees reasonably well with design values, the stall margin is probably inadequate for vertical-lift engine application. Blade-element data indicated that the rotor tip was operating at high incidence angles at the stall condition, thus it was desirable to recoin the blades.

Rotor-blade setting angles. - The overall performance of the stage is presented in figure 12 for three setting angles: -8° (opened), 15° and 25° (closed). The performance at design angle was presented in figure 11. As the blades are closed from -8° to 15° (fig. 12(a), fig. 11, and fig. 12(b)), the peak efficiency and flow range for each speed increases. Further closing to 25° (fig. 12(c)), however, results in a decrease of both peak efficiency and flow range.

Closing the blades results in lower stall weight flow and stall pressure ratio at all speeds. This is illustrated for design speed in figure 13 where the pressure ratio is presented as a function of airflow for all six blade setting angles. Based on the data presented, it appears the design flow and pressure ratio would be obtained at a blade setting angle of about -1^o.

Since it is desirable to operate with a constant area nozzle in the actual engine, an operating line is shown in figure 13. The operating line was obtained from a constant throttle valve position in the test rig. At the more opened blade angles (negative angles), the operating line is limited by the stall conditions; at the more closed blade angles (positive), the operating line moves to a very low operating pressure and efficiency.

A primary purpose of variable-pitch fan stages is to provide thrust modulation at constant speed. The effect of blade setting angle on calculated static thrust at design speed is given in figure 14. For each angle at design speed the maximum static thrust and the static thrust for the assumed operating line are presented as a functions of blade setting angle. Thrust changes almost linearly with changes in blade setting angle. The maximum calculated thrust increases from 3700 to 8300 newtons (which correspond to 54 to 118 percent of the value at design angle) as the blade angle is opened from 25° to -8°.

At the most opened angle (-8^0) the operating line thrust is approximately equal to the maximum value. However, as blades are closed down, the operating thrust decreases more rapidly than the maximum value. At an angle of 25^0 the operating line thrust is only 12 percent of the design angle thrust.

These data indicate that the variable-pitch fan concept may indeed be a viable method for obtaining the thrust modulation for vertical-lift engines.

Performance with Recoined Rotor Blades

The overall performance of the stage with the recoined rotor blades at the design angle (stage 57M1A) are presented in figures 15 and 16 for the rotor and stage. Data are presented over the stable operating range for speeds from 60 to 120 percent of design speed. For comparison, design-speed data and the stall line are also presented for the original configuration.

At design speed the rotor pressure ratio and efficiency are essentially the same for the recoined blade as for the original. The maximum flow occurs about 1 kilogram per second less than that for the original configuration (fig. 15).

The peak efficiency at design speed for stage 57M1A is higher than that for stage 57A. Since the rotor efficiencies were the same, this would indicate that the rotor match with the stator is slightly better with the recoined blades. The stall line for stage 57M1A was at a lower flow at all the speeds. The flow range is about the same for both configurations. The stall margin for the recoined blade configuration is 6 percent, based on conditions at stall and peak efficiency.

The effects of rotor-blade setting angles on the pressure ratio and static thrust for stage 57M1 are presented in figure 17 and 18 for design speed. The pressure ratio

trends with blade angle (fig. 17) are similar to those for the original configuration. For the recoined blade configuration it appears that the rotor blades would have to be set at an angle of -2° to achieve design pressure ratio and flow. The assumed operating line is the same as that for stage 57. The maximum and operating line static thrust trends with blade angle (fig. 18) are also similar to those for the original stage.

Performance with Straight Casing Contour

The overall performances with the recoined rotor blades at the design angle and the straight casing contour (stage 57M3A) are presented in figures 19 and 20. Data are presented over the stable operating range for speeds from 60 to 120 percent of design speed. For comparison, design-speed data and the stall line are also presented for stage 57M1A (recoined blades and recessed tip contour).

At a given flow and speed the pressure ratio is lower for the straight casing (stage 57M3A) than for the recessed one (stage 57M1A). However, the stall line has moved to lower flows. At design speed the peak efficiency for stage 57M3A is 2 percentage points higher than for stage 57M1A. The stall margin for stage 57M3A is 13.6 percent based on conditions at stall and peak efficiency.

The effect of rotor-blade setting angle on the stage pressure ratio and static thrust for stage 57M3 is presented in figures 21 and 22. The assumed operating line is the same as that shown for the two previous configurations. For this configuration the blades were also tested at 35° . The data of figure 21 suggest that the design pressure ratio and flow would be achieved at a blade angle of -3° . The thrust trends with blade angle are the same as for the other two configurations. The difference between the maximum and the operating-line thrust are, however, greater at the more closed blade angles.

Performance with Tip Casing Treatment

The overall performances with the recoined rotor blades and the casing-treatment insert (stage 57M4A) are presented at the design angle in figures 23 and 24. Data are presented over the stable operating range for speeds from 60 to 120 percent of design speed. For comparison, design-speed data and the stall line stage 57M3A are also presented.

Casing treatment had two significant effects on design-speed performance: The stall line moved to significantly lower flows, and the peak adiabatic efficiency decreased more than 4 percentage points. The stall margin for stage 57M4A is 20.6 percent based on conditions at stall and peak efficiency.

The effect of rotor-blade setting angle on the stage pressure ratio and static thrust for stage 57M4 are presented in figures 25 and 26. The stall line and assumed operating line are presented in figure 25. For this stage there appears to be adequate stall margin at the opened blade angles. However, as previously indicated the casing treatment significantly lowers efficiency. The static-thrust trends (fig. 26) are the same with as without casing treatment.

Comparison of Performance with the Various Configurations

The effects of the various configuration changes on the stall line and operating line static thrust are summarized in figures 27 and 28. The design-speed data are presented on both figures.

The recoining of the rotor blades results in the stall line moving to lower flows (improved stall margin). (See data from stages 57M1 and 57.) However, the calculated static thrust decreased for all settling angles.

The recoined blades with the straight casing contour gave a slight decrease in static thrust. (See data from stages $57\,\mathrm{M}3$ and $57\,\mathrm{M}1$.) At the 0 and -5^O setting angles, the stall line moved to lower flows; however, at the 15^O setting angle, there was essentially no change in the stall point.

The final modification to this stage was to add casing treatment above the recoined blades (stage 57M4). This change resulted in a significant increase in the stall margin at the 0 and -5^{0} setting angles and essentially no change in the stall point at the 15^{0} setting angle. The static thrust was the same as that for stage 57M3.

At the $15^{\rm O}$ setting angle, there was essentially no change in the stall point between stages 57M1, 57M3, and 57M4. These three stages used the same recoined rotor blades, but had different tip configurations. It appears that the tip elements do not control stall at the $15^{\rm O}$ angle setting.

The results from this investigation indicate that this fan stage with variable-pitch rotor represents a viable concept for obtaining thrust modulation for the vertical-lift aircraft. However, the stall margin may have to be improved. A variable-exit nozzle may be required for the engine to achieve the total range of thrust modulation desired with adequate stall margin. At the high thrust angles (opened), the operating line is very close to the stall line. Inlet flow distortions are most likely to be encountered during takeoffs and landings and will further reduce stall margin. For adequate stall margin, casing treatment may be used with a compromise in the fan efficiency.

SUMMARY OF RESULTS

A variable-pitch fan stage has been tested over a range of blade-setting angles, speeds, and flows. The fan stage was designed for a pressure ratio of 1.376 at a tip speed of 289.6 meters per second and a flow of 29.61 kilograms per second. To reduce the effects of tip clearance on this variable-pitch rotor, the casing above the rotor tip was recessed. During the course of this test program, several modifications were made to the stage. These included recoining the rotor blades, the use of a straight tip casing insert, the casing treatment for the rotor. Each of the modifications resulted in changes in the overall performance, but the basic trends observed with setting angle, speed, and flow were the same for each configuration. This investigation yielded the following principal results:

- 1. Although the original stage's measured pressure ratio and efficiency were in good agreement with the design values, the stall margin was only 5 percent.
- 2. An operating line corresponding to a fixed-exit throttle-valve position is limited on the high end (more opened blade angles) by stall and on the low end (more closed angles) by very low operating pressures and efficiencies.
- As the rotor blades were closed at a constant speed, the stage pressure ratio and flow decreased.
- 4. Calculated static thrust values along the operating line ranged from less than 15 percent to more than 115 percent of that obtained at design angle with variations in blade setting angle from 25° (closed) to -8° (opened).
- 5. The stall margin with the recoined blades and recessed casing increased to 6 percent; however, calculated thrust decreased slightly.
- 6. Operating the recoined rotor with the straight cylindrical casing increased stall margin to 13.6 percent; but calculated thrust decreased relative to that for the recessed casing.
- 7. The stall margin with the casing treatment increased to 20.6 percent and the calculated thrust was about the same as that for the straight casing. The adiabatic efficiency decreased more than 4 percentage points.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, April 19, 1979, 505-04.

APPENDIX A

SYMBOLS

A	area, m ²
Aan	annulus area at rotor leading edge, m ²
A_f	frontal area at rotor leading edge, m ²
C _p	specific heat at constant pressure, 1004 J/(kg)(K)
D	diffusion factor
i _{mc}	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
i _{ss}	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
N	rotative speed, rpm
P	total pressure, N/cm ²
p	static pressure, N/cm ²
r	radius, cm
SM	stall margin
T	total temperature, K
U	wheel speed, m/sec
v	air velocity, m/sec
W	airflow, kg/sec
Z	axial distance referenced from rotor-blade hub leading edge, cm
$\alpha_{\mathbf{c}}$	cone angle, deg
$\alpha_{\mathbf{s}}$	slope of streamline, deg
β	air angle (angle between air velocity and axial direction), deg
$\beta_{\mathbf{c}}^{\prime}$	relative meridional air angle based on cone angle, arctan (tan $\beta_{\rm m}^{ \prime} \cos \alpha_{\rm c}/\cos \alpha_{\rm s}$), deg
$\beta'_{\mathbf{m}}$	relative meridional air angle, deg
γ	ratio of specific heats
ô	ratio of rotor-inlet total pressure to standard pressure of 10.13 $\mathrm{N/cm}^2$

```
    φ<sup>0</sup> deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
    η efficiency
    θ ratio of rotor inlet total temperature to standard temperature of 288.2 K
```

 κ_{me} angle between blade mean camber line and meridional plane, deg

 $\kappa_{\rm SS}^{}$ angle between blade suction-surface camber line at leading edge and meridional plane, ${\rm deg}$

 ρ density

σ solidity, ratio of chord to spacing

 $\overline{\omega}$ total loss coefficient

 $\overline{\omega}_{\rm p}$ profile loss coefficient

 $\overline{\omega}_{s}$ shock loss coefficient

Subscripts:

ad adiabatic (temperature rise)

id ideal

LE blade leading edge

m meridional direction

mom momentum-rise

p polytropic

TE blade trailing edge

tip blade tip

z axial direction

 θ tangential direction

Superscript:

relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle -

$$i_{ss} = (\beta_c')_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta'_c)_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle -

$$\delta^{O} = (\beta_{c}')_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{V_{TE}'}{V_{LE}'} + \left| \frac{(rV_{\theta})_{TE} - (rV_{\theta})_{LE}}{(r_{TE} + r_{LE})\sigma(V_{LE}')} \right|$$
(B4)

Total-loss coefficient -

$$\overline{\omega} = \frac{(P'_{id})_{TE} - P'_{TE}}{P'_{LE} - P_{LE}}$$
(B5)

Profile-loss coefficient -

$$\overline{\omega}_{\rm p} = \overline{\omega} - \overline{\omega}_{\rm S}$$
 (B6)

Total-loss parameter -

$$\frac{\overline{\omega}\cos\left(\beta_{\rm m}'\right)_{\rm TE}}{2\sigma} \tag{B7}$$

Profile-loss parameter -

$$\frac{\overline{\omega}_{\mathbf{p}} \cos (\beta'_{\mathbf{m}})_{\mathbf{TE}}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{(UV_{\theta})_{\text{TE}} - (UV_{\theta})_{\text{LE}}}{T_{\text{LE}}C_{\text{D}}}}$$
(B10)

Equivalent airflow -

$$\frac{\mathbf{w}\sqrt{\theta}}{\delta}$$
 (B11)

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Airflow per unit annulus area -

$$\underbrace{\frac{\mathbf{w}\mathbf{\sqrt{\theta}}}{\delta}}_{\mathbf{A_{an}}}$$
(B13)

Airflow per unit frontal area -

$$\underbrace{\begin{pmatrix} \mathbf{w} \sqrt{\theta} \\ \delta \end{pmatrix}}_{\mathbf{A_f}} \tag{B14}$$

Head-rise coefficient -

$$\frac{C_{\mathbf{p}^{\mathsf{T}}\mathbf{LE}}}{U_{\mathbf{tip}}^{2}} \left[\left(\frac{\mathbf{P}_{\mathbf{TE}}}{\mathbf{P}_{\mathbf{LE}}} \right)^{(\gamma-1)/\gamma} - 1 \right]$$
(B15)

Flow coefficient -

$$\left(\frac{v_z}{v_{tip}}\right)_{LE}$$
 (B16)

Stall margin -

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}}\right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}}\right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency -

$$\eta_{p} = \frac{\ln\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{T_{TE}}{T_{LE}}\right)}$$
(B18)

Static thrust -

$$\rho V_z^2 A_{TE} + (p_{TE} - P_{LE}) A_{TE}$$
(B19)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AIRFLOW equivalent airflow, kg/sec

BETAM meridional air angle, deg

CHOKE MARGIN ratio of flow area above critical area to critical area

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction-

surface blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean

defined by eq. (B2)), deg

KIC angle between the blade mean camber line at the leading edge

and the meridional plane, deg

KOC angle between the blade mean camber line at the trailing edge

and the meridional plane, deg

KTC angle between the blade mean camber line at the transition

point and the meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined

by eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

E-9700

17

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOTAL CAMBER difference between inlet and outlet blade mean camber lines,

deg

TURN RATE ratio to turning on front section of blade to back section

VEL velocity, m/sec

WHEEL SPEED wheel speed, m/sec

ZI axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZO axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- Kovich, George; and Steinke, Ronald J.: Performance of a Low-Pressure-Ratio Low-Tip Speed Fan Stage With Blade Tip Solidity of 0.65. NASA TM X-3341, 1976.
- Kovich George; Tysl, Edward R.; and Moore, Royce D.: Perfomance of a Low-Pressure Ratio Fan Stage at Two Off-Design Blade Setting Angles. NASA TM X-3447, 1977.
- Lewis, George W., Jr.; Moore, Royce D.; and Kovich, George: Performance of a 1.20 Pressure-Ratio STOL Fan Stage at Three Rotor Blade Setting Angles. NASA TM X-2837, 1973.
- Lewis, George W., Jr.; and Tysl, Edward R.: Overall and Blade-Element Performance of a 1.20-Pressure-Ratio Fan Stage at Design Blade Setting Angle. NASA TM X-3101, 1974.
- Lewis, George W., Jr.; Osborn, Walter M.; and Moore, Royce D.: Overall and Blade-Element Performance of a 1.20-Pressure Ratio Fan Stage with Rotor Blades Reset Minus 5 Degrees. NASA TM X-3338, 1976.
- Lewis, George W., Jr.; and Kovich, George: Overall and Blade-Element Performance of a 1.20-Pressure Ratio Fan Stage with Rotor Blades Reset Minus 7 Degrees. NASA TM X-3342, 1976.
- Moore, Royce D.; and Kovich, George: Aerodynamic Performance of Two Variable-Pitch Fan Stages. NASA TM X-73416, 1976.
- 8. Osborn, Walter M.; Lewis, George W., Jr.; and Heidelberg, Laurence J.: Effect of Several Porous Casing Treatments on Stall Limit and Overall Performance of an Axial-Flow Compressor Rotor. NASA TN D-6537, 1971.
- Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet per Second. NASA TM X-2484, 1972.

TABLE I, - DESIGN OVERALL PARAMETERS FOR STAGE 57

ROTOR TOTAL PRESSURE RATIO
STAGE TOTAL PRESSURE RATIO
ROTOR TOTAL TEMPERATURE RATIO 1.111
STAGE TOTAL TEMPERATURE RATIO 1.111
ROTOR ADIABATIC EFFICIENCY
STAGE ADIABATIC EFFICIENCY
ROTOR POLYTROPIC EFFICIENCY
STAGE POLYTROPIC EFFICIENCY
ROTOR HEAD RISE COEFFICIENT
STAGE HEAT RISE COEFFICIENT
FLOW COEFFICIENT
AIRFLOW PER UNIT FRONTAL AREA
AIRFLOW PER UNIT ANNULUS AREA 200, 206
AIRFLOW
RPM
TIP SPEED
HUB-TIP RADIUS RATIO
ROTOR ASPECT RATIO
STATOR ASPECT RATIO
NUMBER OF ROTOR BLADES
NUMBER OF STATOR BLADES

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 57

RP TIP 1 2 3 4 5 6 7 8 9 HUB	24.840 2 24.253 2	OUT 25.400	ABS 1 M . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	BETAM OUT 35.2 35.3 35.6 36.5 37.9 39.8 40.9 42.9 43.7	REL IN 54.7 54.1 53.5 52.8 50.7 47.4 43.5 40.0 38.8 37.5 36.3	BETAH 0UT 46.4 41.5 39.5 33.4 25.5 15.8 8.9 7.1 5.4	TOTA 1 N 288 - 1 288 - 1	TEMP RATIO 1.116 1.118 1.119 1.118 1.116 1.111 1.105 1.098 1.095 1.092 1.089	TOTAL IN 10 · 13 10 · 13	PRESS RATIO 1.390 1.406 1.417 1.422 1.428 1.409 1.382 1.341 1.309 1.266 1.218
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS 1N 205.2 204.9 204.6 204.4 203.5 202.6 202.4 203.1 203.6 204.9	VEL 201.8 201.8 208.2 213.2 216.3 224.0 229.3 235.6 237.3 232.7 225.4 216.9	REL IN 354.9 349.5 344.0 338.4 321.5 299.4 278.9 265.1 261.2 257.5 254.2	VEL 0UT 239.3 235.3 231.6 227.8 215.4 200.3 188.1 181.7 174.3 163.8 151.5	MERID 1N 205.2 204.9 204.6 203.5 202.6 202.6 203.1 203.6 204.2 204.9	OUT	TAN IN .0 .0 .0 .0 .0 .0	G VEL 0UT 116.3 120.4 123.8 126.0 133.4 140.9 155.2 155.7 155.7	HHEEL IN 289.6 283.2 276.5 269.7 248.8 220.4 191.9 170.4 163.6 156.9 150.6	SPEED 0UT 289.6 283.3 277.1 270.8 252.1 227.2 2183.5 177.2 171.0 164.8
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS M/ IN .626 .625 .624 .624 .621 .618 .617 .619 .623 .623	ACH NO OUT .580 .599 .614 .624 .649 .667 .689 .697 .683 .635	REL MI IN 1.083 1.067 1.050 1.032 .980 .913 .850 .809 .797 .786 .776	ACH NO OUT .683 .677 .667 .657 .624 .583 .550 .534 .512 .480	.626 .625 .624 .624	CH NO 0UT .474 .489 .500 .507 .521 .526 .529 .527 .508 .443	STREAMLI IN09 .53 .91 1.78 4.20 6.35 8.23 8.86 9.48 10.08	0UT 21 .05 .33	VEL R .804 .829 .848 .860 .884	PEAK SS HACH NO 1.325 1.337 1.350 1.364 1.418 1.423 1.447 1.508 1.563 1.626
RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN .00 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI HEAN 0 .2 .3 .5 1.4 2.5 3.4 4.1 6.1 9.0 12.3	DENCE SS -2.3 -3.0 -3.0 -3.6 -3.8 -6.2 -5.6 -4.3 -2.7	DEV 3.1 2.2 1.6 1.3 2.1 3.4 6.0 8.8 10.4 12.2 13.9	D-FACT .490 .492 .493 .491 .497 .499 .497 .483 .502 .535	EFF .849 .868 .884 .897 .922 .931 .919 .889 .838 .759	.104	COEFF PROF .089 .079 .070 .062 .046 .047 .064 .093 .135 .198 .274	.036	PARAM PROF .031 .027 .024 .021 .015 .015 .019 .026 .037 .053

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 57

1 IP 1 2 3 4 5 6 7 8 9 HUB	RADII IN 0UT 25.400 25.400 24.836 24.829 24.326 24.336 23.813 23.846 22.273 22.392 20.208 20.489 18.118 18.621 16.514 17.214 15.960 16.710 15.395 16.186 14.795 15.545	ABS 1N 32.3 32.6 32.9 33.1 34.1 35.9 38.7 41.2 43.1 46.0 49.9	BETAM OUT 6 .5 1.2 1.4 1.0 7 -1.0 6	REL 1M 32.3 32.6 32.9 33.1 34.1 35.9 38.7 41.2 43.1 46.0 49.9	1.2 1.4 1.0 .2 7	322.3 1.000 322.1 1.000 321.6 1.000 320.0 1.000 318.5 1.000	TOTAL PRESS IN RATIO 14.07 .976 14.24 .978 14.36 .980 14.40 .982 14.47 .987 14.28 .993 14.00 .993 13.59 .979 13.27 .973 12.84 .967 12.32 .952
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS VEL IN OUT 217.3 178.2 223.5 185.3 227.9 190.1 230.4 192.7 236.1 197.5 236.9 195.5 236.1 189.9 229.9 173.2 222.0 157.9 210.9 136.4 198.2 107.0	223.5 227.9 230.4 236.1 236.9 236.1 229.9 222.0 210.9	VEL 0UT 178.2 185.3 190.1 192.7 197.5 195.5 189.9 173.2 157.9 136.4 107.0	MERID 183.7 188.3 191.4 193.1 195.4 191.8 184.1 173.1 164.5 127.5	VEL 178.2 185.3 190.0 192.6 197.5 195.5 189.8 173.1 157.9 136.4	TANG VEL IN OUT 116.1 -1.7 120.5 1.8 123.7 3.8 125.7 4.6 132.5 3.3 139.0 .6 147.8 -2.5 151.4 -3.0 151.7 -1.8 151.8 .2 151.7 3.1	HHEEL SPEED IN OUT .0
RP TIP 1 2 3 4 5 6 7 8 9 HUB	.647 .529	REL MA 1N .628 .647 .660 .668 .687 .692 .691 .673 .649 .615	.508	HERID HA IN .531 .545 .555 .560 .569 .560 .539 .507 .474 .427	.508	STREAHLINE SLOPE IN OUT190305 .13 .09 .28 .26 .46 .90 1.09 2.01 2.21 3.35 3.82 4.30 5.74 4.27 7.01 4.03 8.67 3.65 10.92	.970 1.068 .984 1.109
RP TIP 1 2 3 4 5 6 7 9 HUB	PERCENT INC SPAN MEAN .00 -6.9 5.00 -6.5 10.00 -6.3 15.00 -6.1 30.00 -5.1 50.00 -3.9 90.00 -3.9 95.00 -3.9	SS -12.9 -12.5 -12.2 -12.0 -11.1 -9.8 -9.6 -9.6 -8.9 -7.4	9.7 10.9 11.6 11.9 11.8 11.6 12.0 13.9 15.3 17.3 20.4	D-FACT .369 .352 .342 .336 .331 .337 .354 .399 .440 .505	EFF .000 .000 .000 .000 .000 .000	.102 .102	LOSS PARAM TOT PROF .036 .036 .031 .031 .027 .027 .023 .023 .014 .014 .007 .007 .006 .006 .019 .019 .024 .024 .032 .032 .048 .048

TABLE IV. - BLADE GEOMETRY FOR ROTOR 57

RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT RADII SPAN RI RO 0. 25.400 25.40 5. 24.840 24.85 10. 24.253 24.30 15. 23.657 23.75 30. 21.826 22.11 50. 19.338 19.92 70. 16.831 17.73 85. 14.950 16.09 90. 14.349 15.50 95. 13.763 15.00 100. 13.208 14.45	3 53.95 47.77 41.59 5 53.16 46.52 39.88 8 52.32 45.23 38.14 6 49.35 40.34 31.33 6 44.86 33.47 22.10 7 40.11 24.97 9.84 5 35.94 18.02 .13 7 32.74 14.72 -3.27 28.62 10.89 -6.82	2.83 .121 3.29 .494 3.65 .926 4.33 2.412 5.14 4.385 7.18 6.189 10.29 7.494 11.72 7.879 13.31 8.247
RP TIP 1 2 3 4 5 6 7 8 9 HUB	BLADE THICKNESSES TI TM TO .015 .190 .01 .018 .211 .02 .021 .235 .02 .022 .264 .02 .030 .351 .03 .040 .482 .05 .054 .655 .06 .069 .842 .08 .082 .981 .09 .100 1.159 .11 .119 1.350 .13	7 1.646 4.248 4.248 1.541 4.247 4.247 3 1.431 4.250 4.250 7 1.321 4.260 4.260 7 .969 4.181 4.181 0 .543 4.129 4.129 4 .182 4.102 4.102 5 .067 4.195 4.195 8 .042 4.185 4.185 4 .020 4.149 4.149	7.162 7.162 7.295 7.437 7.590 7.852 8.218 8.536 8.772 8.772 8.705 8.553
RP T1P 1 2 3 4 5 6 7 8 9 HUB	AERO SETTING TOTAL CHORD ANGLE CAMBE 8.395 48.99 11.4 8.553 47.78 12.3 8.719 46.53 13.2 8.894 45.25 14.1 9.030 40.38 18.0 9.226 33.57 22.7 9.273 25.14 30.2 9.241 18.30 35.8 9.049 15.01 36.0 8.786 11.18 35.4 8.513 7.22 34.6	R SOLIDITY RATE PHISS 1 .999 1.000 8.19 6 1.041 1.000 9.14 8 1.086 1.000 10.04 8 1.134 1.000 10.82 1 1.243 1.000 13.31 6 1.421 1.000 16.23 8 1.622 1.030 27.41 1 1.800 1.030 27.41 2 1.831 1.000 29.00	.049 .008 022 059

TABLE V. - BLADE GEOMETRY FOR STATOR 57

	1110111 11 0111		
RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT RADII SPAN RI RO 0. 25.400 25.400 5. 24.836 24.829 10. 24.326 24.336 15. 23.813 23.846 30. 22.273 22.392 50. 20.208 20.489 70. 18.118 18.621 85. 16.514 17.214 90. 15.960 16.710 95. 15.395 16.186 100. 14.795 15.545	BLADE ANGLES KIC KTC KOC 39.19 14.49 -10.21 39.14 14.40 -10.35 39.12 14.33 -10.45 39.13 14.29 -10.54 39.24 14.21 -10.83 39.81 14.19 -11.44 41.86 14.57 -12.74 44.91 15.03 -14.91 46.18 15.15 -15.94 47.57 15.25 -17.15 49.10 15.34 -18.72	DFLTA CONE 'C ANGLE 96 .057 .96073 5.96 .102 5.95 .315 5.95 1.167 5.91 2.762 5.84 4.952 5.75 6.922 5.75 6.922 5.70 7.427 5.65 7.842 5.59 7.439
RP TIP 1 2 3 4 5 6 7 8 9 HUB	BLADE THICKNESSES TI TM TO .031 .361 .031 .031 .361 .031	AXIAL DIMENSION ZIC ZTC ZTC ZTC ZTC ZTC ZTC ZTC ZTC ZTC ZT	70 33.603 33.606 33.607 33.608 33.605 33.605 33.593 33.593 33.578 33.578
RP T1P 1 2 3 4 5 6 7 8 9 HUB	AERO SETTING TOTAL CHORD ANGLE CAMBER 4.019 14.49 49.40 6.019 14.40 49.49 6.019 14.33 49.57 6.019 14.30 49.67 6.019 14.23 50.37 6.019 14.25 51.24 6.019 14.69 54.60 6.019 15.21 59.82 6.020 15.36 62.12 6.020 15.36 62.12 6.020 15.49 64.72 6.006 15.53 67.82	1.466 1.000 30.72 1.496 1.000 30.77 1.528 1.000 30.82 1.630 1.000 31.01 1.789 1.000 31.58 1.982 1.000 33.21 2.159 1.000 35.72 2.229 1.000 36.87 2.306 1.000 38.19	CHOKE MARGIN .108 .092 .081 .074 .065 .069 .077 .086 .131 .203

TABLE VI. - OVERALL PERFORMANCE FOR STACE STA

(a) 120 l	Percent of	design spe	eed		
READING NUMBER ROTOR TOTAL PRESSURE RATIC STATOR TOTAL TEMPERATURE RATIO SCHOOL TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENCY FLOW COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	7.926 7.826 7.400 0.589 154.52 211.80 31.32 30.59	1.563 0.984 1.167	222.02 32.83 32.31 32.71 32.21	0049 1.466 0.968 1.149 0.997 0.774 0.773 0.31.50 33.50 33.50 33.50 33.50 33.95	00 48 1 - 450 0 - 957 1 - 147 0 - 763 0 - 763 0 - 367 0 - 367 0 - 367 233 - 71 223 - 71 37 - 53 37 - 53 37 - 53 37 - 30 20 - 9
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.550 1.165 0.808	1.538	1.156 0.766	1.146	1.308 1.142 0.692
(b) 110 F	ercent of	design spe	ed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STAIOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR MOTAL TEMPERATURE RATIO ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOM COEFFICIENT AIRFLOM PER UNIT FRONTAL AREA AIRFLOM AT ROTOR INLET AIRFLOM AT ROTOR INLET AIRFLOM AT ROTOR OUTLET AIRFLOM AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.868 0.402	0 7 8 7 7 7 7 7 7 7 9 2 7 8 7 7 9 9 2 8 7 7 9 9 0 2 8 7 7 9 1 0 2 3 7 1 5 9 1 2 3 1 0 2 3 1 2 3	0078 1.453 0.983 1.133 1.080 0.849 0.857 0.763 0.649 155.82 213.58 31.58 31.13 31.10	0079 1.4163 1.129 0.997 0.834 0.3352 157.76 216.248 31.50 31.50 31.74	0 0 8 0 1 - 38 4 2 1 - 9 2 2 6 - 9 7 9 5 0 - 8 9 0 0 0 - 3 6 5 5 2 1 7 - 3 2 - 1 4 2 3 1 - 7 8 1 2 0 0 7 - 9 1 1 0 0 . 3
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.469 1.139 0.833	1.455 1.137 0.825	1.429 1.132 0.810	1.391 1.126 0.787	1.346 1.120 0.740
(c) 100 P	ercent of	design spe	ed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MODERIUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT FRONTAL AREA AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORTICE AIRFLOW AT ROTOR DUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.891 0.307 0.601 139.37 191.03 26.25 27.85 27.82 27.43	0146 1.390 0.983 0.983 0.983 0.978 0.375 145.95 29.95 29.95 29.95 29.95 29.95 109.44 100.5	0045 1.373 9.782 1.919 0.785 0.886 0.465 149.665 149.62 30.39 29.79 29.79 109.5	0044 1.359 0.7777 0.78797 0.8550 0.3484 0.3481 208.22 30.35 30.35 30.35 102.5	0043 1.338 0.974 1.104 0.997 0.637 0.861 0.328 0.693 153.58 219.51 31.13 30.66 31.10 10938.6
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.375 1.113 0.844	1.368 1.111 0.844	1.349 1.107 0.833	1.329 1.104 0.015	1.304 1.100 0.786
(d) 90 I	ercent of	des ign spe	ed		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENCY FLOW COEFFICIENT FLOW PER UNIT ANNULUS AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR DUTLET AIRFLOW AT ROTOR DUTLET ROTATIVE SPEED PERCENT OF DESIG# SPEED	0055 1.314 0.983 1.093 0.998 0.871 0.871 0.537 123.19 168.85 24.97 24.52 24.53 90.5	0.000000000000000000000000000000000000	0 2899 1 2985 1 0 9989 1 0 9989 0 9914 0 3 4 6 6 3 7 7 7 5 6 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.7722719-110-09779-110-09779-110-09779-110-979-110-9979-110-9979-1149-11971-1149-1149-1149-1149-114	0 5 3 0 1 6 1 . 9 0 1 3 0 1 6 1 . 9 0 1 1 4 0 . 9 1 1 4 0 . 9 1 1 4 0 . 9 1 1 4 4 7 7 6 . 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.295 1.091 0.846	1.292 1.009 0.853	1.266 1.092 0.845	1.236	1.283 1.084 0.854

TABLE VI. - Concluded. OVERALL PERFORMANCE FOR STAGE 5"A

TABLE VI Concluded.	OVERALL PI	REORMA	NCE FOR	STAGE 57A	k.
60 80	Percent of de	nign ap-od			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENT ROTOR MEAD-RISE COLFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT TRONTAL ARE AIRFLOW PER UNIT TRONTAL ARE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0861 1.239 9.788 0 1.072 10 9.998 8.898 9.362 9.559 4 198.94 4 149.32 22.08 21.72 21.63 8744.7 80.3	00 a 5 1 . 23 2 9 . 98 9 0 . 99 9 0 . 99 9 0 . 99 9 0 . 35 5 1 5 4 . 9 5 1 5 7 . 3 0 22 . 9 1 22 . 5 9 8 7 8 3 . 3	0064 1.221 0.221 1.0866 0.9995 0.914 0.328 121.94 124.21 24.20 24.01 8789.3	0063 1.214 9.984 1.064 0.998 0.976 0.324 0.458 126.59 173.52 25.66 25.19 24.56 8746.9	9962 1.198 9.7961 1.961 0.997 0.306 13.208 13.208 26.58 26.54 87.39
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIADATIC EFFICIENCY	0 1.224 0 1.070 0.848	1.220 1.068 0.958	1.207 1.064 0.859	1.195 1.062 0.843	1.167 1.058 0.782
	Percent of de	sign speed			
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MODENTUM-RISE EFFICIENT FLOW COEFFICIENT FLOW PER UNIT ROWTAL ARE AIRFLOW PER UNIT ANNULUS ARE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0067 1.178 0.790 1.055 10 0.798 0.869 CT 0.869 0.253 0.253 0.253 0.409 4.099 128.97 19.07 18.75 18.59 18.33 7656.4	00772 1.772 1.0952 0.0952 0.0954 0.3527 120.472 120.47	0 7 6 4 1 . 1 6 4 1	0049 1.154 1.985 1.0878 0.998 0.898 0.461 11155.89 22.452 22.452 22.257 76.23	0 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
COMPRESSOR PERFORMANCE	1. 2.2				
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	0 1.167 1.053 0.847	1.162 1.051 0.059	1.153 1.048 0.863	1.139 1.045 0.842	1.122 1.042 0.787
(g) 60	Percent of d	estan speed	1		
READING NUMBER ROTOR TOTAL PRESSURE RAT STATOR TOTAL PRESSURE RA ROTOR TOTAL TEMPERATURE STATOR TOTAL TEMPERATURE ROTOR ADIABATIC EFFICIES ROTOR MOMENTUM-RISE EFFI ROTOR HEAD-RISE CEFFICIES FLOW LOCEFFICIEST AIRFLOW PER UNIT FRONTAL AIRFLOW PER UNIT ANNULUS AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	RATIO 1. RATIO 0. CY 0. CIENCY 0. ENT 0. AREA 7. SAREA 107	1.9 1.999 0.	122 1. 9937 0. 9999 0. 9910 0. 9929 0. 5773 0. 5773 1. 984 1.9 -511 1.9 -511 1.9	112 1.990 0.1999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 10498 1	172 198 191 171 199 199 45 24 195 25 25 25 25 25 25 25 25 25 25 25 25 25
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RAT STAGE TOTAL TEMPERATURE STAGE ADIABATIC EFFICIE	RATIO 1.	039 1. 037 0.	136 1.	101 1.0 033 1.0 048 0.7	138

(a) 120 Percent of design speed						
READING NUMBER ROTOR TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR HOMENTUM-RISE EFFICIENCY ROTOR HODENTUM-RISE EFFICIENCY FLOW COEFFICIENT FLOW COEFFICIENT AIRFLOW FER UNIT FROWTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0137 0136 1.563 1.531 0.980 0.986 1.164 1.155 0.993 0.998 0.822 0.841 0.381 0.359 0.539 0.560 145.91 149.32 200.20 204.67 29.57 30.27 29.57 30.27 29.					
COMPRESSOR PERFORMANCE						
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.532 1.509 1.156 1.153 0.829 0.816	1.476 1.343 1.147 1.126 0.798 0.699				
(b) 110 Percen	t of design speed					
READING NUMBER ROTOR TOTAL PRESSUR STATOR TOTAL PRESSUR ROTOR TOTAL TEMPERA STATOR TOTAL TEMPERA ROTOR ADIABATIC EFF ROTOR MOMENTUM-RISE ROTOR HEAD-RISE COE FLOW COEFFICIENT AIRFLOW PER UNIT FA	RE RATIO TURE RATIO ATURE RATIO ICIENCY EFFICIENCY ONTAL AREA	0124 .490 .977 .139 .995 .870 .8872 .391 .543 8.55				

READI				0124
ROTOR	TOTA	AL PRES	SSURE RATIO	1.490
STATO	R TO	TAL PRE	ESSURE RATIO	0.977
ROTOR	TOTA	AL TEM	PERATURE RATIO	1.139
STATO	R TO	TAL TER	PERATURE RATIO	0.995
			EFFICIENCY	0.870
			RISE EFFICIENCY	0.892
ROTOR	HEAD	-PISE	COEFFICIENT	0.391
		FICIE		0.543
			FRONTAL AREA	138.55
AIDEL	DH PE	D HHIT	ANNULUS AREA	189.91
AIREL	14 A1	DRIF	ANNULUS AREA	28.08
AIRFLI	JH A	DATE	100	
AINTL	JH A	KUIUN	INLET	27.65
AIRFL	IA HE	ROTOR	TOUTLET	27.50
AIRFL	IA HE	STAT.	ROUTLET	27.39
ROTATI	WE S	PEED		11993.8
			N SPEED	110.2

COMPRESSOR PERFORMANCE

STAGE	TOTAL	PRESSURE RATIO	1.455
		TEMPERATURE RATIO	1.133
STAGE	ADIAB	ATIC FFFICIENCY	0.850

(c) 100 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MODENTUM-RISE EFFICIENCY	0118 1.381 0.985 1.109 0.998 0.886 0.902	0123 1.371 0.987 1.105 0.999 0.897	0122 1.356 0.988 1.102 0.999 0.893	0121 1.337 0.986 1.098 0.998 0.883 0.904	0120 1.309 0.981 1.694 0.998 0.853	0119 1.276 0.974 1.089 0.997 0.812 0.840
ROTOR HEAD-RISE COEFFICIENT	0.369	0.361	0.346	0.328	0.302	0.270
AIRFLON PER UNIT FRONTAL AREA	127.23	131.73	136.60	140.91	144.81	146.14
AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE	174.40 25.79	180.56 26.70	27.69	28.56	198.49 29.35	200.31 29.62
AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET	25.45 25.14	26.33 26.15	27.35 27.12	28.02	29.01 28.85	29.25 29.15
ATPELON AT STATOR OUTLET	25 15	26.13	27.14	27.99	28.82	29.52

AIRFLOM AT ROTOR INLET AIRFLOM AT ROTOR OUTLET AIPFLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	25.45 25.14 25.15 10911.0 100.2	26.33 26.15 26.13 10872.1 99.9	27.35 27.12 27.14 10889.7 100.0	28.24 28.02 27.99 10889.8 100.0	29.01 28.85 28.82 10892.8 106.1	29.25 29.15 29.52 10910.6 100.2
AIRFLON PER UNIT ANNULUS AREA	174.40 25.79	180.56	187.24	193.15	198.49 29.35	200.31

COMPRE	SSOR PERFORMANCE						
STAGE	TOTAL PRESSURE RATIO	1.361	1.352	1.339	1.319	1.284	1.243
	TOTAL TEMPERATURE RATIO	1.107	1.104	1.100	1.096	1.091	1.086
	ADIABATIC EFFICIENCY	0.864	0.869	0.869	0.857	0.812	0.750

(d) 90 Percent of design speed

READING NUMBER	0138
ROTOR TOTAL PRESSURE RATIO	1.301
STATOR TOTAL PRESSURE RATIO	0.987
ROTOR TOTAL TEMPERATURE RATIO	1.086
STATOR TOTAL TEMPERATURE RATIO	0.997
ROTOR ADIABATIC EFFICIENCY	0.885
ROTOR MOMENTUM-RISE EFFICIENCY	0.905
RUTOR HEAD-RISE COEFFICIENT	0.361
FLOW COEFFICIENT	0.504

SIMIUM	IUIAL IES	TERMIUNE MAILU	0.99
ROTOR AL	DIABATIC	EFFICIENCY	0.88
		RISE EFFICIENCY	0.90
RUTOR HI	EAD-RISE	COEFFICIENT	0.36
FLOW C	DEFFICIEN	NT	0.50
		T FRONTAL AREA	111.6
AIRFLOW	PER UNIT	T ANNULUS AREA	153.0
AIRFLOW	AT ORIFI	ICE	22.6
AIRFLOW	AT ROTOR	RINLET	22.2
	AT ROTOR		22.1
AIRFLOW	AT STATE	OR OUTLET	21.9
	E SPEED		9805.
PERCENT	OF DESIG	GN SPEED	90.

COMPRESSOR PERFORMANCE

STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.284	5
---	-------	---

TABLE VII. - Concluded. OVERALL PERFORMANCE FOR STAGE 57B

(e) 80 Percent of design speed	103	80	Pere	cent	of	desi	271	speed
--------------------------------	-----	----	------	------	----	------	-----	-------

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR HEAD-RISE COEFFICIENCY ROTOR HEAD-RISE COEFFICIENCY FLOM COEFFICIENT FLOM COEFFICIENT AIRFLOM PER UNIT FRONTAL AREA AIRFLOM PER UNIT FRONTAL AREA AIRFLOM AT ROTOR TINLET AIRFLOM AT ROTORDOUTLET AIRFLOM AT ROTORDOUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.229 1.222 1.0991 0.992 1.0991 0.992 1.066 1.0992 0.999 0.9	.80 162.36
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO	1.217 1.212 1.1 1.067 1.064 1.0	196 1.177 059 1.055 983 0.865

(f: 70 Percent of design speed

READING NUMBER	0115
ROTOR TOTAL PRESSURE RATIO	1.172
STATOR TOTAL PRESSURE RATIO	0.992
ROTOR TOTAL TEMPERATURE RATIO	1.053
STATOR TOTAL TEMPERATURE RATIO	0.999
ROTOR ADIABATIC EFFICIENCY	0.876
ROTOR HOMENTUM-RISE EFF!CIENCY	0.897
ROTOR HEAD-RISE COEFFICIENT	
FLOW COEFFICIENT	0.477
AIRFLOW PER UNIT FRONTAL AREA	84.98
AIRFLOW PER UNIT ANNULUS AREA	116.48
AIRFLOW AT ORIFICE	17.22
AIRFLOW AT ROTOR INLET	16.93
AIRFLOW AT ROTOR OUTLET	16.73
AIRFLOW AT STATOR OUTLET	16.60
	7613.3
ROTATIVE SPEED	
PERCENT OF DESIGN SPEED	69.9

COMPRESSOR PERFORMANCE

STAGE	TOTAL TEM	SSURE RATIO PERATURE RATIO	1.162 1.051 0.854
STAGE	ADIABATIC	EFFIC!ENCT	0.034

(g) 60 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR HOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0144 0145 1.124 1.116 0.995 0.995 1.039 1.035 0.999 0.999 0.876 0.902 0.901 0.925 0.332 0.310 0.469 0.526 73.10 81.44 100.19 111.63 14.82 16.51 14.55 16.24 14.22 16.01 14.25 15.97 6581.7 6590.3	0146 0.993 1.031 0.9995 0.925 0.594 90.897 124.42 18.12 17.16 60.5	0147 1.089 0.985 1.028 0.999 0.900 0.238 0.670 101.19 138.51 20.51 20.51 20.55
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.118 1.111 1.038 1.034 0.864 0.883	1.096 1.030 0.871	1.073 1.026 0.766

TABLE VIII. - OVERALL PERFORMANCE FOR STAGE 57C

												-					- 1	-	-																						
		(3)	1	20	Pe	erc	e'n	t c	ics	igr	3 5	pe	ed														(b)	11	0	e	CC	nt	cie	si	gn	sts	ee	1			
READTOR STATOR STATOR STATOR ROTOR ROTOR AIRFL AIRFL AIRFL AIRFL AIRFL AIRFL AIRFL AIRFL AIRFL AIRFL AIRFL	R T R A H C C C H C C C H C C C H C C C C H C	TO T	TALATABN - FER	BEP LT LTUUR OR	REPRETE SEE NITOTAL	SSEPER RICT TO RECENT OF SM	URUAREFSEE FAN NUO S	ERFUTICE FOR LETUT PE	RAR REUREFIC TALL TETLE	TIII ATRICICIE NCICE IE	O IGIATA Y IET AR	100 TI NC EA	0	1	100000000000000000000000000000000000000	011-6	61 61 69 69 69 69 69 69 69 69 69 69 69 69 69						RESESERE	E ALLON TO	DIR RESERVED TO RE	TO T	NUTATION ADDITION AT SECOND	AL ALBERT FR CHARGE	PR P T T T T T T T T T T T T T T T T T T	ESEMPIES OR ISTOR	SUSSER PERSON FACELON	RE URI	E URUCIETIUL ET LE	AT RATE OF THE TO	TIO RAI CT CIE ENI	TIO	0	1	1 2	011111111111111111111111111111111111111	158 157 156 156 175 175 175 176 176 177 177 177 177 177 177 177 177
COMPR	ES	SO	R	PE	RF	0R	ĦΑ	NC	Ε														C	OM	PRE	SS	OR	a,	ER	FO	RM.	a w	CE								
STAGE STAGE STAGE	T	T O T	AL BA	PTAT	RE	SS PE	UR AFF	E TU IC	RE	T I	O A T Y	10			-		757	3					5000	TAI	36	TO	TA	L	PR TE TI	ES MP	SUI ERI	RE ATI	a. URI	ENG	RAT	10			1	1.4	83 49 98
														į	C)	10	0.1	Pe	14.	ent	de	518	n :	spe	ed																
	RECTORNERS AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ADD TO	ROR RR LCCC	T T T T T T T T T T T T T T T T T T T	NOTE AND	UME TALLANTAL AND FERRITTER	TENTE CONTROL OF THE	RESERVED TO THE PERSON OF THE	SSEPPER CO.	TRESTER SEE	E FI	RECIRCUS	T I I	O IOO AT ARA	10 TI NC EA	9	1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	50 131 176 127 196 119 119 119 119 119 119 119 119 119		100	01.4	54 129 129 129 129 170 170 170 170 170 170 170 170 170 170	1	1	100000000000000000000000000000000000000	1 9 8 8 4 7	53 72 72 73 73 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74	1	15121	011.6	1112 121 121 121 137 137 137 137 141 141 141 141 141 141 141 141 141 14		1	101000000000000000000000000000000000000	15.464	10796770196771760			
	CC) MF	RE	S	sos	R	988	RF(ORI	141	IC E	Ε																													
	5	AC	35	TI	TI	AL AB	TE	REMI	SSI	RAT	UF	RE	R	O A T	10			1	.1	397 123 113			1 . 1	392	2		1 0	31.0	21		1 0	. 3	18			1	11	5			
											CI	0 11	PR	R R R B B B B B B B B B B B B B B B B B	OTOTOTO PPAAAA	UALALABN-FRR	SP T LATURE OR OR OF E	REPRETE	SSIER REPORTED FOR THE POPULATION OF THE POPULAT	POUR ARREST CONTRACTOR OF STANK	E RETURN LE		TI RAR CTIEN	O TIAT	O I O C Y																
											SSS	TA	GE	1	01	AL	AT	E	P	ERA	TU	RAT	RA	T!	0				98												

TABLE VIII. - Concluded. OVERALL PERFORMANCE FOR STAGE 57C

ier 80 Ferrent design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MEAD-RISE COEFFICIENCY FLOW COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT ANNULUS AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0174 0173 1.255 1.250 0.987 0.985 1.072 1.069 0.998 0.998 0.993 0.995 0.911 0.383 0.644 0.684 1.24.66 131.18 170.87 179.80 25.27 26.59 24.63 25.87 24.63 25.87 24.83 25.97 24.83 25.79 888.1 9677.9	0172 1.244 1.067 0.9983 0.977 0.770 135.285 27.534 27.54 27.687 26.80 8679	0171 1.235 0.997 1.065 0.997 0.959 0.760 0.760 194.36 28.02 28.02 28.02 79.7
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.240 1.232 1.070 1.067 0.906 0.914	1.221 1.065 0.907	1.201 1.061 0.878

(f) 70 Percent design speed

READING NUMBER	0170
ROTOR TOTAL PRESSURE RATIO	1.189
STATOR TOTAL PRESSURE RATIO	0.989
ROTOR TOTAL TEMPERATURE RATIO	
STATOR TOTAL TEMPERATURE RAVIO	0.999
ROTOR ADIABATIC EFFICIENCY	0.938
ROTOR HOMENTUM-RISE EFFICIENCY	0.904
ROTOR HEAD-RISE COEFFICIENT	0.380
FLOW COEFFICIENT	0.620
AIRFLOW PER UNIT FRONTAL AREA	108.19
AINFLUM PER UNIT FRUNTAL AREA	148.30
AIRFLOW PER UNIT ANNULUS AREA	21.93
AIRFLOW AT ORIFICE	21.32
AIRFLOW AT ROTOR INLET	
AIRFLOW AT ROTOR OUTLET	21.44
AIRFLOW AT STATOR OUTLET	21.11
ROTATIVE SPEED	7577.0
PERCENT OF DESIGN SPEED	69.6

COMPRESSOR PERFORMANCE

STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY

STAGE	TOTAL PRESSURF RATIO TOTAL TEMPERATURE RATIO ADIABATIC EFFICIENCY	1.176 1.053 0.902
-------	---	-------------------------

(g) Percent design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO POTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR MODIBATIC EFFICIENCY ROTOR MEDA-RISE COEFFICIENCY FLOW COEFFICIENT AIRLOW PER UNIT FRONTAL AREA AIRTOW PER UNIT FRONTAL AREA AIRTOW AT ROTOR INLET AIRTOW AT ROTOR UNITET ROTATIVE SPEED ROSECOM OF DELOW SPEED	0.992 0.992 1.040 1.039 0.998 0.999 0.916 0.912 0.872 0.912 0.368 0.370 0.567 0.619 87.78 95.37 120.32 18.78 17.43 18.88 17.11 18.52 4556,7 6576.8	0168 1.132 0.993 0.999 0.999 0.994 0.355 0.465 143.44 20.72 6564.8	
AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	6556.7 6576.8 60.2 60.4		6567.4
COMPRESSOR PERFORMANCE			

1.176 1.129 1.120 1.108 1.039 1.038 1.035 1.032 0.698 0.919 0.938 0.921

TABLE IX. - OVERALL PERFORMANCE FOR STAGE 57D

	car 1	20 Percent	f design speed	
READING NUM ROTOR TOTAL STATOR TOTAL STATOR TOTAL STATOR TOTAL ROTOR ADIAB ROTOR ADIAB ROTOR HOMEN ROTOR HEAD- FLOW COFF AIRFLOW PER AIRFLOW AT AIRFLOW AT AIRFLOW AT AIRFLOW AT ROTOR TOTAL ROTOR TOTAL ROTOR TOF			0275 027 1.596 1.56 0.952 0.88 1.184 1.18 0.996 0.99 0.775 0.76 0.766 0.74 0.409 0.38 0.700 0.70 1.70 0.70 0.70 1.70 0.70 0.70 1.70 0.70 0.70 0.70 1.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	3 0274 1 569 9 1 569 9 0 998 0 1 180 0 997 2 0 762 0 748 9 0 399 1 170,48 1 23,47 3 34,55 3 3,86 2 35,32 3 5,08 1 10,88
COMPRESSOR				
			1.520 1.384 1.180 1.174 0.705 0.556	1 .472 1 .176 0 .663
	rts 1	i O Percent o	f design speed	
R S R S R R R R R R R R R R R R R R R R	READING NUM COTOR TOTAL STATOR TOTAL STATOR TOTAL STATOR TOTAL STATOR TOTAL OTTOR ADJAB OTTOR HOMEN OTTOR HEAD TOM COEFF AIRFLOW PER AIRFLOW AT	RBER PRESSURE L PRESSURE L PRESSURE L PRESSURE L TEMPERATU L TEMPERATU L TUM-RISE COSEF LCIENT R UNIT ANNU R UNIT	### 10 0271 ### 10 1.546 ### 10 1.546 ### 10 1.546 ### 10 1.546 ### 1.56	
	COMPRESSOR			
\$ \$	STAGE TOTAL STAGE TOTAL STAGE ADIAE	PRESSURE TEMPERATU BATIC EFFIC	RATIO 1.496 RE RATIO 1.156 IENCY 0.772	
	(c) 100	Percent of c	fesign speed	
PEADING NUMBER ROTOR TOTAL PRESSURE A ROTOR TOTAL PRESSURE ROTOR TOTAL TERPERATUR STATOR TOTAL TERPERATUR STATOR TOTAL TERPERATUR STATOR TOTAL TERPERATUR STATOR TOTAL TERPERATUR GOTOR HEAD-HISE COFFI- FLOW COEFFICIENT LIFECOM PER UNIT FROM LIFECOM PER UNIT ANNUL LIFECOM AT ROTOR HILET LIFECOM AT ROTOR HILET LIFECOM AT ROTOR OUTLE LIFECOM AT STATOR OUTL LIFECOM AT STATOR LIFECOM AT STATOR	RATIO RATIO RE RATIO USE RATIO USE RATIO IENCY FFICIENCY ICIENT TAL AREA LUS AREA T ELET	0.265 1.457 0.971 1.136 0.996 0.836 0.445 0.728 157.54 215.93 31.49 31.49 31.49	0270 0269 1.459 1.457 0.969 0.968 1.136 1.135 0.996 0.996 0.440 0.844 0.865 0.867 0.445 0.445 158.67 168.22 217.48 219.61 32.16 32.48 31.71 32.01 31.84 32.18 31.156 31.84 0911.2 10981.6	0267 0266 1.449 1.44 0.968 0.91 1.132 1.13 0.996 0.979 0.845 0.873 0.476 0.872 0.772 0.783 163.06 164.39 223.51 225.33 32.53 32.78 32.72 33.04 32.77 33.42 10899.9 10898.2
COMPRESSOR PERFORMANCE	Ε			
STAGE TOTAL PRESSURE A STAGE TOTAL TEMPERATUR STAGE ADIABATIC EFFICI	RATIO RE RATIO IENCY	1.415 1.131 0.795	1.414 1.411 1.131 1.130 0.793 0.792	1.403 1.325 1.128 1.125 0.793 0.667

TABLE IX.	- Conc	luded. (VERALL PERFORMAN	SCE FOR STAGE 57D	
		idi 30 P	ercent of design speed		
	ROTOR STATOR ROTOR	TOTAL T	RESSURE RATIO	0287 1.352 0.978 1.106 0.996	
	ROTOR	MOMENTU	IC EFFICIENCY H-RISE EFFICIENCY SE COEFFICIENT	0.846 0.896 0.423	
	FLOW	COEFFIC W PER U	TENT NIT FRONTAL AREA	0.736 148.65	
	AIRFLE	M AT OR	NIT ANNULUS AREA IFICE TOR INLET TOR OUTLET ATOR OUTLET	203.74 30.13 29.72	
	MIG 1 M 1 /	WE SPEE	U .	29.81 29.54 9818.8	
	PERCE	IT OF DE	SIGN SPEED	90.2	
			RFORMANCE		
	STAGE STAGE	TOTAL P TOTAL T ADIABAT	RESSURE RATIO EMPERATURE RATIO IC EFFICIENCY	1.319 1.102 0.807	
			ercent of design speed		
READING NUMBER	CHOF DA	Tin	0280 0279	0278 0277 1.261 1.258	1.25
STATOR TOTAL PRES	SURE A	DITAS	1 083 1 081		0.91 1.07 0.99
ROTOR TOTAL TEMPE STATOR TOTAL TEMP ROTOR ADIABATIC E ROTOR MOMENTUM-RI ROTOR HEAD-RISE (FFICIE	NCY ICIENCY	0.849 0.854 0.888 0.898	0.854 0.858 0.904 0.910	0.85
FLOW COEFFICIENT	FRONTA	L AREA	0.407 0.404 0.709 0.742 133.29 137.79 182.70 188.86	142 51 145 50	0.01
AIRFLOW AT DRIFTO AIRFLOW AT ROTOR	INLET	S AREA	24.47 27.53	195.34 199.43 28.89 29.49 28.49 29.05	200.9 29.7 29.3 29.3
AIRFLOW AT DRIFIC AIRFLOW AT ROTOR AIRFLOW AT ROTOR AIRFLOW AT STATOR ROTATIVE SPEED	DUTLET	T	8/24.1 8/23.3	48.31 47.42	9738
PERCENT OF DESIGN	SPEED		80.2 80.2	80.2 80.1	80.
COMPRESSOR PERFOR					
STAGE TOTAL PRESS STAGE TOTAL TEMPE STAGE ADIABATIC E	HATURE	RATIO NCT	1.246 1.240 1.080 1.078 0.816 0.809	1.238 1.228 1.077 1.075 0.793 0.780	1.154
			ercent of design speed		
	ROTOR	G NUMBE	R SESSURE RATIO	0201 1.196	
	ROTOR	TOTAL T	PRESSURE RATIO EMPERATURE RATIO TEMPERATURE RATIO	1.063	
	ROTOR	ADIABAT	IC EFFICIENCY M-RISE EFFICIENCY SE COEFFICIENT	0.997 0.838 0.863	
		LUEFF 1L	SE CORPFICIENT JENT WIT FRONTAL AREA FIT ANNULUS AREA	0.393 0.652 111.87	
	AIRFLO AIRFLO	W PER U	FIT ANNULUS AREA IFICE TOR INLET	153.33 22.67 22.34	
	AIRFLO AIRFLO	M AT RO M AT ST	IFICE TOR INLET TOR OUTLET ATOR OUTLET OF SEED	22.34 21.96 7621.7	
	PERCEN	T OF DE	SIGN SPEED	70.0	
	COMPRE	SSOR PE	REORMANCE		
	STAGE STAGE STAGE	TOTAL TOTAL TO ADTABAT	RESSURE MATIO EMPERATURE RATIO IC EFFICIENCY	1.180 1.060 0.809	
EADING NUMBER			orcent of design speed 0202 0205	0284 0283	0290
TOTOR TOTAL PRESS TATOR TOTAL PRES TOTOR TOTAL TEMPE	SIRE R	RATIO	1.140 1.143 0.990 0.989 1.046 1.045	1.140 1.134 0.987 0.982 1.044 1.042	1.122 0.962 1.039
TATOR TOTAL TEMP OTOR ADIABATIC E OTOR MOMENTUM-RI	FRATUR	E RATIO	0.778 0.778 0.827 0.847 0.848 0.874	0.798 0.798 0.875 0.878 0.912 0.927	0.997 0.850 0.923
OTOR HEAD-RISE C LOW COEFFICIENT IRFLOW PER UNIT	DEFFIC	15.41	0.388 0.388 0.671	0.388 0.364 0.732 0.801	0.335 0.891 27.40
IRFLOW PER UNIT	AMMULU	SAREA	120.15 130.30	22.05 23.03	74.63
IRFLOW AT ROTOR IRFLOW AT ROTOR IRFLOW AT STATOR	UUTLET OUTLET	Ť	18.59 20.09 18.60 20.14 18.26 19.61	21 64 23 37 21 24 23 05	25.39 25.36 25.46
			6547.2 6540.4	548.4 6546.7 6 60.2 60.1	519.3
OTATIVE SPEED			60.1 60.1	00.2 00.1	
POTATIVE SPEED PERCENT OF DESIGN	SPEED		60.1 69.1	00.2	
ROTATIVE SPEED PERCENT OF DESIGN COMPRESSOR PERFOR STAGE TOTAL PRESS STAGE TOTAL TEMPE STAGE TOTAL TEMPE	SPEED			1.126 1.113 1.042 1.039	1.090

			1 12-14		
READING NUMBER RECERTION TOTAL PRESSUR STATOR TOTAL TEMPE STATOR TOTAL TEMPE STATOR TOTAL TEMPE RECERT TOTAL TEMPE RECERT MOTERATION FOR RECERT TOTAL TEMPE RECERT RECERT TOTAL ASSESSMENT ASSESSMEN	RE RATIO JRE HATTO ATURE RATIO RATURE RATIO FICIENCY EFFICIENCY UTLET UTLET SPEED	1213 1.514 2 973 1 144 2 996 2 896 0 346 0 466 118.01 161.75 23 58 23 22 23 19 119 8	0212 1,483 2,979 1,137 0,978 0,970 0,387 0,421 121 5,72 165 5,72 2,42 1,65 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73	0211 1.436 0.986 1.170 0.998 0.837 0.435 0.297 0.435 124.49 173.64 25.23 24.47 24.47 173.63 117.8	1210 1219 1 373 1 727 1 991 1 976 1 119 1 976 1 119 1 976 1 100 0 997 9 799 0 640 0 813 0 553 0 255 127 92 126 65 127 92 173 59 175 34 25 67 25 61 24 97 25 67 25 67 25 93 24 97 25 57 25 25 25 22 3 48 2 13342 6 119 9 119 8
COMPRESSOR PERFORM					
STACE TOTAL PRESS STAGE TOTAL TEMPER STAGE ADJABATIC E	STURE STIO	1.474 1.139 0.840	1 452 1 135 0 838	1 416 1 128 0 817	1 363 1 198 1 119 1 591 2 773 3 594
			1 120 -14		
	READING NUMB READING NUMB READING TOTAL STATEM TOTAL READING TOTAL	ER PRESSURE PRESSURE TEMPERATI TEMPERATI TEMPERATI THORSE TEMPERATI THORSE THORS THORSE THORS THORSE THORSE THORSE THORSE THORSE THORSE THORS T	PATIO	10214 1 471 2 977 1 120 9 903 0 903 0 903 0 348 0 387 175 11 174 97 20 98 20 652 11718 9	
	COMPRESSOR P	ERFORMANC	E		
	STAGE TOTAL STAGE TOTAL STAGE ADIABA	PRESSURE TEMPERATU TIC EFFIC	RATIO RE RATIO LENCT	1.399 1.117 3.859	
		(ivinto	f de stan spe		
READING NUMBER RD TR TOTAL PRESSURE RATE STATOR TOTAL PRESSURE RATE ROTOR TOTAL TEMPERATURE STATOR TOTAL TEMPERATURE STATOR TOTAL TEMPERATURE ROTOR ADIABATIC EFFICIES ROTOR HEAD-RISE EFFI ROTOR HEAD-RISE COFFFICIES ALRECOM PER UNIT ARNOLUS ALRECOM AT ROTOR INLET ALRECOM AT ROTOR OUTLET ALRECOM AT STATOR OUTLET ALRECOM AT STATOR OUTLET ALRECOM AT STATOR OUTLET ALRECOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	10 1. 1710 0 RATIO 1. RATIO 1. RATIO 0. CT CIENCT 0. CIENT 0. AREA 933. AREA 127. 18. 19. 19. 19. 10. 10. 10. 10. 10. 10. 10. 10	220 348 989 989 989 989 989 10 887 10 10 10 10 10 10 10 10 10 10 10 10 10	7 19 7 33 9 1 9 9 8 6 1 9 9 8 6 1 9 9 8 6 9 9 8 9 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	218	7 0216 0215 9 1.216 1.175 9 0.990 0.981 13 1.074 1.065 9 0.999 0.997 10 0.842 0.748 10 0.959 0.748 11 0.231 0.172 12 0.481 0.490 11 69.13 163.20 16 16.83 119.07 17 23 36 23.79 23.04 23.44 9 1000 0.100 4.4
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RA STAGE TOTAL TEMPERATURE STAGE ADIABATIC EFFICIE	TIO 1 RATIO 1 NCY 0	324 1 097 1 858 0	311 1 1992 1 875 0	295 1 2 087 1 06 882 0 8	76 1.224 1.152 12 1.073 1.062 78 0.819 0.665

PARTY STORY OF THE STATE OF THE STATE OF

) (h =0 } ;	control beign space	
READING NUMBER ROTOR TOTAL PRESS STATOR TOTAL PRESS STATOR TOTAL TEMPE ROTOR TOTAL TEMPE ROTOR MONEYTHM-RI ROTOR MONEYTHM-RI ROTOR MONEYTHM-RI ROTOR MOSEFFICIENT A REFLOW PER UNIT A ARFLOW AT OPTICE ALRELOW AT OPTICE ALRELOW AT OPTICE ALRELOW AT STATOR RIPECOW AT STATOR ROTATIVE SPEED PERCENT OF DESIGN	SURE RATIO RATURE RATIO RATURE RATIO RATURE RATIO REFFICIENCY REFFICIENT ROUTAL AREA RUNGUUS AREA RUET OUTLET	0226 0225 1.205 1.189 9.991 2.993 1.301 1.056 9.999 9.999 9.899 9.999 9.322 9.299 9.365 9.403 74.999 82.96 102.728 112.47 14.98 15.43 14.73 16.10 8714.2 8709.4	0224 0223 0222 1.170 1.146 1.126 0.993 0.992 0.994 1.051 1.045 1.079 0.999 0.999 0.999 0.999 0.999 0.999 0.993 0.997 0.775 0.248 0.927 0.75 0.937 0.907 0.822 0.248 0.223 0.164 0.945 0.465 0.466 0.522 0.445 0.466 0.522 123 28 133 41 141 53 123 28 137 41 141 53 17 79 19 14 40 62 62 17 75 19 13 20 21 17 75 19 13 20 21 17 75 19 14 20 87 17 75 19 18 70 87 17 75 19 18 0.0
COMPRESSOR PERFORM	ANCE		
STAGE TOTAL PRESSU STAGE TOTAL TEMPER STAGE ADIABATIC EF	DITAR BRUTA	1 194 I 181 1 160 I 165 0 868 0 883	1 162 1.137 1.088 1.049 1.044 1.036 0.890 0.854 0.682
	0.070 (1	ment of Newton species	
R(5) R(0227 1 152 0 992 1 046 0 998

READING NUMBER	0227
ROTOR TOTAL PRESSURE RATTO	1.152
STATOR TOTAL PRESSURE RATIO	0.992
ROTOR TOTAL TEMPERATURE RATTO	1.046
	0.999
ROTOR ADIABATIC EFFICIENCY	0.900
ROTOR MOMENTUM-RISE EFFICIENCY	0.933
ROTOR HEAD-RISE COEFFICIENT	0.304
FLOW COEFFICIENT	0.360
AIRFLOW PER UNIT FRONTAL AREA	65.68
ATRFLOW PER UNIT ANNULUS AREA	89.20
AIRFLOW AT DRIFICE	13.19
ATRELOW AT ROTOR INLET	13.00
AIRFLOW AT ROTOR DUTLET	12.85
AIRFLOW AT STATOR DUTLET	12.74
ROTATIVE SPEED	7599.9
PERCENT OF DESIGN SPEED	69.9
LEWREN OF RESIDE SLEED	97.0

COMPRESSOR PERFORMANCE

5	٢	٨	GE	110) 1	AL.	P	ĐΕ	55		R	E	4	2.5	11	0		1	143
																	110	1	045
5	ř	٨	GE	A		ABA	Ť	10	. 6	F	í.	11	Ċ	16	40	1		2	863

A IRFLOW AT STATOR DUTLET 10.92 13.09 14.07 16.44 A ROTATIVE SPEED 6553.4 6550.1 6553.6 6552.0 PERCENT OF DESIGN SPEED 60.2 60.2 60.2	ROTATIVE SPEED	6553.4 6558.1	6553.6	4552.0
---	----------------	---------------	--------	--------

COMPRESSOR PERFORMANCE

TACE	TOTAL PRESSURE RATIO			1 072	1 124
SINGE TOTAL	TOTAL TEMPERATURE HATTO	1 105	1 028	1 024	1 038
STAJE	ADIABATIC EFFICIENCY	0.863	3 896	0 852	0.596

TABLE XI. - OVERALL FERFORMANCE FOR STAGE TO

(a) 120 Percent of	design speed	the lite later and of design speed
READING NUMBER ACTOR TOTAL PRESSURE R STATOR TOTAL TERESSURE ROTOR TOTAL TERESATIVE STATOR TOTAL TERESATIVE STATOR TOTAL TERESATIVE STATOR TOTAL TERESATIVE ROTOR MEAD RISE CEFFIT PLOW COEFFICIENT AIRFLOW PER UNIT FROMT AIRFLOW AT BATOR OUTLE AIRFLOW AT ROTOR OUTLE ROTATIVE SPEED PERCENT OF DESIGN SPEE	ATIO	THE LIVE STREET OF DESIGN SPEED THE LIVE STREET OF DESIGN SPEED TO A UNIDER TO THE PRESSURE RATIO 1.0.7 THE TOTAL PRESSURE RATIO 1.0.7 THE TOTAL PRESSURE RATIO 1.0.7 THE TOTAL TEMPERATURE THE 1.0.7 THE TOTAL THE TOTAL THE THE TEMPERATURE THE 1.0.7 THE TOTAL THE TOTAL THE THE TOTAL THE THE TEMPERATURE THE 1.0.7 THE TOTAL THE TOTAL THE THE THE TOTAL THE THE TOTAL THE TEMPERATURE THE THE TOTAL THE TEMPERATURE THE TOTAL THE TOTAL THE TEMPERATURE THE TOTAL THE
COMPRESSOR PERFORMANCE		COMPRESSOR PERFORMANCE
STAGE TOTAL PRESSURE R STAGE TOTAL TEMPERATUR STAGE ADIABATIC EFFICE	ATIO 1.363 E RATIO 1.116 ENCT 2.797	STAGE TOTAL PRESSURE RATIO 1.31 STAGE TOTAL TEMPERATURE RATIO 1.31 STAGE ADIABATIC EFFICIENCY 0.81
	ar loo Feny	ent of design specif
READING NUMBER ROTOR TOTAL PRESSURE & ROTOR TOTAL PRESSURE: ROTOR TOTAL TEMPERATURE STATOR TOTAL TEMPERATURE ROTOR ADDABATIC FFFICE ROTOR MEAD-RISE COFFFI FLOW COFFFICIENT AIRFLOW PER UNIT FRONT AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLE ROTAL TEMPERATURE ROTOR MEAD TO RESTOR AIRFLOW AT ROTOR OUTLE ROTATIVE SPEED PERCENT OF DESIGN SPEEL	ATIO 1.274 RATIO 1.274 RATIO 1.274 RATIO 1.981 RE RATIO 1.981 RE RATIO 1.981 RE RET 0.886 FICIENT 0.286 AL AREA 72.78 US AREA 99.76 14.75 T 14.20 T 14.10 T 1993.0	0310 0399 0309 0308 0307 030 1.261 1.249 1.217 1.156 1.0 9.988 0.991 0.992 0.998 0.99 0.978 1.077 1.070 1.058 1.4 0.989 0.998 0.999 0.999 1.000 0.99 0.875 0.887 0.923 0.726 0.55 0.875 0.887 0.923 0.726 0.55 0.875 0.881 0.836 0.732 0.5 0.255 0.244 0.213 0.154 0.08 0.275 0.304 0.316 0.329 0.5 0.275 0.304 0.316 0.329 0.5 1.2445 1.07 2.0 111.11 115.70 118.4 15.45 15.85 16.43 17.11 17.5 15.13 15.54 16.10 16.75 17.1 14.93 15.31 15.74 16.54 17.3 14.94 15.44 15.81 16.33 17.0 10990.1 10892.0 10889.8 10901.9 10887.
COMPRESSOR PERFORMANCE		
STAGE TOTAL PRESSURE RE STAGE TOTAL TEMPERATURE STAGE ADIABATIC EFFICIE	AT10 1.254 E #AT10 1.080 ENCT 0.840	1.246 1.238 1.207 1.142 1.06 1.077 1.074 1.069 1.059 1.04 0.847 0.844 0.804 0.668 0.40
	idi 90 Fercer	nt of design speed
	READING NUMBER HOTOR TOTAL PRESS STATOR TOTAL PRESS ROTOR TOTAL TEMPER STATOR TOTAL TEMPER ROTOR ADIABATIC EF ROTOR MOMENTUR-RIS ROTOR MEAD-RISE TO FLOW COEFFICIENT AIRFLOW PER UNIT A AIRFLOW AT ORITICA AIRFLOW AT ORITICA AIRFLOW AT ORITICA AIRFLOW AT ROTOR I AIRFLOW AT ROTOR I AIRFLOW AT ROTOR I AIRFLOW AT STATOR ROTARTIVE SPEED PERCENT OF DESIGN	URE RATIO 1.203 SURE RATIO 9.991 RATURE RATIO 9.991 RATURE RATIO 8.999 FICLENCY 0.079 EFFICIENCY 0.251 FRONTAL AREA 65.47 ANNULUS AREA 67.73 INLET 12.73 DUTLET 12.73 DUTLET 12.79 9667.0 SPEED 99.1
	COMPRESSOR PERFORM	
	STAGE TOTAL PRESSU STAGE TOTAL TEMPER STAGE ADIABATIC EF	RE RATIO 1.192 ATURE RATIO 1.061 FICIENCY 8.851

14.1	NII	4.174	and c	12 147	- 14071	2144A)

READING NUMBER	0311	0316	0315	0314	0313	0312
ROTOR TOTAL PRESSURE RATIO	1.167	1.158	2.996	1.127 0.996 1.042	0.993	1.045 0.964 1.025
ROTOR TOTAL TEMPERATURE RATIO	0.999	1.049	1.044	1.000	1.000	0.999
ROTOR ADIABATIC EFFICIENCY ROTUR MOMENTUM-RISE EFFICIENCY	0.863 0.906 0.255	0.978 0.907 0.243	0.882	0.850	0.738	0.503
ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA	0.276 57.75	8.292 60.84	0.313	0.324 67.14	0.345	0.363 74.69
AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORIFICE	79.16 11.71	93.39	88.99	92.03	97.95	102.37
AIRFLON AT ROTOR INLET AIRFLON AT ROTOR DUTLET	11.50	12.11	12.93	13.37	14.20	14.85
AIRFLON AT STATOR OUTLET	11.24 8724.1	11.95	12.73 8704.4	8713.5	8719.4	8699.6
PERCENT OF DESIGN SPEED	99.1	79.9	80.0	80.0	80.1	79.9
COMPRESSOR PERFORMANCE						
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO	1.158	1.151	1.138	1.122	1.093	1.020
STAGE ADIABATIC EFFICIENCY	1.050 0.057	0.864	0.028	0.801	0.663	0.322

STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY		1.151 1.048 0.864	1.139 1.045 0.028			1.028 1.024 0.322
---	--	-------------------------	-------------------------	--	--	-------------------------

of 10 Lercent of design speed

READING NUMBER	1317
ROTOR TOTAL PRESSURE RATIO	1.123
STATOR TOTAL PRESSURE RATIO	0.995
ROTOR TOTAL TEMPERATURE RATTO	1.030
STATOR TOTAL TEMPERATURE RATIO	0.999
ROTOR ADIASATIC EFFICIENCY	0.881
ROTOR MOMENTUM-RISE EFFICIENCY	0.907
ROTOR HEAD-RISE COEFFICIENT	0.246
FLOW COEFFICIENT	0.279
AIRFLOW PER UNIT FRONTAL AREA	51.08
AIRFLOW PER UNIT ANNULUS AREA	78.01
AIRFLOW AT DRIFICE	
AIRFLOW AT ROTOR INCET	19.17
AIRFLOW AT ROTOR DUTLET	9.94
AIRFLOW AT STATOR DUTLET	9.96
ROTATIVE SPECD	7616.7
PERCENT OF DESIGN SPEED	70.0

COMPRESSOR PERFORMANCE

STAI	36 1	0.1	AL.	PΑ	€ 8	SU	R		Q A	7.1	0	1	117
STA	3E 1	01	AL.	38	mp	€ 4	a.	U	96	-	ATIO	1	037
STAI	36	101	ABA	11	C	86	F 1	10	16	40	*	0	864

ign to Dercent of design speed.

READING NUMBER	0318	0322	0321	0328
MERUING NUMBER		1266		
ROTOR TOTAL PRESSURE RATTO	0.796	1.077	1.049	1.021
STATOR TOTAL PRESSURE RATIO	2.776	8.978	0.776	0.989
ROTOR TOTAL TEMPERATURE MATIO	1.029	1.025	1.049 0.994 1.019	1.013
STATOR TOTAL TEMPERATURE RATIO	1.000	1 000	1 000	1.999
ROTOR ADIABATIC EFFICIENCY	0.075	4 014	8 774	0.441
WOLDS STREET OF CLUSTERS	4 004	0.030		0 451
ROTOR MOMENTUM-RISE EFFICIENCY	0.708	0.004	0./44	0.431
ROTOR HEAD-RISE COEFFICIENT	0.249	0.211	0.133	0.058
FLOW COEFFICIENT	1.029 1.000 0.870 0.908 0.249 0.274	0.311	0.354	0.382
ATRELOW PER UNIT FRONTAL AREA	0 970 0 909 0 249 0 274 42 75 58 60 9 66 8 56 8 39 9 39 6486 2	1.025 1.025 1.025 1.000 0.050 0.086 0.211 0.311	0.736 0.744 0.133 0.354 55.70 76.35	1.021 0.909 1.013 0.999 0.441 0.451 0.056 0.302 59.92 02.13
ATRFLOW PER UNIT ANNULUS AREA	58 48	67.11	74 35	02.13
MINITUM TEN DALL MANDEDS AND	9 44		11 20	12 14
AIRFLOW AT DRIFICE	9.00	7.72	11.47	14.14
ATRFLOW AT ROTOR INLET	8.56	9.74	11.00	11.73
ALRELOW AT ROTOR OUTLET	8.39	9.61	10.96	11.95
ATRFLOW AT STATOR OUTLET	8 38	9.92 9.74 9.61 9.52	11.29 11.08 10.96 10.88 6550.1	6554.7
POTATIVE SPEED	6.88A 3	6530.4	4550 1	4554.7
WOLDSTAN OF DESIGN COLES	59.4	0320.	60.2	60.2
PERCENT OF DESIGN SPEED	27.0	60.1	00.2	00.4

STAGE TOTAL PRESSURE MATTO STAGE TOTAL TEMPERATURE MATTO	1.084 1.075	1.045	1.009
STAGE ADIABATIC EFFICIENCY	0.020 0.044	1.609	0.220

10 I	20 Terrent	id design is	441		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MODENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRHLOW PER UNIT ANNULUS AREA AIRHLOW AT RATICE AIRHLOW AT ROTOR INLEY AIRHLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.588 152.08 208.45 30.82	1.558 0.987 1.165 0.916 0.838 0.377 0.600 154.74 212.10	1 518 4 783 1 155 1 201 2 507 0 347 0 627 159 10 218 25	1.20 0.77 0.77 0.31 0.61 159 21 159 21 172 16 172 16 172 16 172 16	0 .996 0 .731 0 .738 0 .286 7 0 .631 1 159 51 1 159 54 1 2 .33 32 .17 32 .50 32 .94
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIEMEN	1.551 1.156 0.803	1 537 1 164 0 799	1.483 1.156 0.765	1 .424 1 147 0 .722	1.330 1.138 0.613
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TREPRATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR MOMENTUM RISE EFFICIENCY ROTOR MEAD RISE COEFFICIENT FLOW COEFFICIENT FLOW COEFFICIENT AURICUM PER UNIT ARNULUS AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ROTOR DUTLET AIRFLOW AT ROTOR DUTLET AIRFLOW AT STATOR DUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0337 1.507 0.978 1.147 0.995 0.848 0.404	design special 1 475 1 4	03379 1 453 0 989 1 135 1 003 0 834	0.794 0.816 0.317	0.956 1.121 0.997 0.754 0.776 0.289 0.655
COMPRESSOR PERFORMANCE					
STACE TOTAL PRESSURE MATIO STACE TOTAL TEMPERATURE WATED STACE ADJABATIC EFFICIENCY	1 475 1 141 0 831	1.467 1.139 0.830	1 437 1 135 0 810	1.375 1.125 0.762	1 298 1 118 0 656
		design spee	ref		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATCH TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE PATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADDISATIC FEFTICIENT ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD RISE COFFFICIENT FLOW COEFFICIENT LOW COEFFICIENT AIRFCOM PER UNIT FRONTAL AREA AIRFCOM PER UNIT FRONTAL AREA AIRFCOM AT ROTOR THEFT AIRFCOM AT ROTOR OUTLET AIRFCOM AT STATUR OUTLET ROTATIVE SPEED	0 3 3 : 1 4 0 2 7 1 1 1 7 7 0 . 9 9 8 1 1 0 2 9 8 9 1 1 0 3 8 9 9 1 1 3 5 1 5 5 1 1 3 5 1 2 7 7 2 7 2 5 6 9 8 1 1 2 9 1 0 2 2 5 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9332 1 3899 2 7899 2 1123 3 9998 0 999 0 979 0 979 0 140 324 28 442 28 42 28 139 1 100 1	0333 1.369 0.799 0.999 0.999 0.950 0.350 0.448 144.97 129.30 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97	033394 1.3894 1.9894 0.855 0.855 0.752 0.755 20.755 1.096 2.1	0335 1330 0985 1399 0986 0.8225 9.2852 150.64 30.41 30.41 30.42 30.41 30.41 30.41
COMPRESSOR PERFORMANCE					
CTASE TOTAL PRESSURE MATTO STAGE ADIABATIC EFFICIENCY	1 384 1 114 5 851	1.374 1.111 0.856	1.355 1.107 0.046	1.317 1.102 0.806	1 280 1 096 0.758
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MEADINESE COEFFICIENCY FLOW COEFFICIENT FLOW COEFFICIENT AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR DUTLEY ROTAL AT ROTOR DUTLEY ROTAL THE SPEED PERCENT OF DESIGN SPEED	0352	174 85 25 86 25 70 25 47 25 46	9 358 9 1 269 1 5 998 4 8 998 9 7 9 5 9 7 9 5 9 7 9 5 1 3 4 4 1 5 5 1 1 6 4 1 7 5 2 7 7 0 8 7 2 6 8 9 1	192.66 28.49 28.35 28.20 28.25	0348 12466 09797 09278 09278 09278 09278 09278 176112 17612
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE ADIABATIC EFFICIENCY	1 295 1 389 0 857	1 286 1 086 7 865	1 269 1 082 0 858	1 237 1 077 0 616	1 229 1 075 0 779

TABLE XII. - Concluded. OVERALL PERFORMANCE OF STAGE 57MIA

tet 80 Percent of design speed

	tei 80 Ferce	ent of design	speed		
READING NUMBER OTOR TOTAL PRESSURE TATOR TOTAL PRESSUR OTOR TOTAL TEMPERATION OTOR ADTABATIC EFFI OTOR ADTABATIC EFFI OTOR MOMENTUM-RISE OTOR MOMENTUM-RISE TOTOR MEAD-RISE COEFI LOW COEFFICIENT LIFECOM PER UNIT AND LIFECOM PER UNIT AND LIFECOM AT ROTOR INL LIFECOM AT ROTOR OUT ORIFICOM AT ROTOR OUT ORIFICOM AT STATOR OUT ORIFICOM OF DESIGN SF	FICIENT	0.898	9322579 1.29799 1.297999 1.39729 1.507399 1.50739 1.50	0309488475 11.989488475 11.989488475 12.989488475 12.9894884 12.9894884 12.989488 12.98948 12	0356 1.184 1.060 6.997 8.872 9.203 131.13 179.81 126.52 26.44 26.22 271.32
COMPRESSOR PERFORMA	CE				
STAGE TOTAL PRESSUR STAGE TOTAL TEMPERA STAGE ADIABATIC EFF	RATIO TURE RATIO ICIENCT	1.227 1 070 0.859	1.215 1.066 0.868	1.198 1.062 0.855	1.164 1.057 0.782
	(f) 70 Ferc	ent of desig	n speed		
READING NUMBER ROTOR TOTAL PRESSUR ROTOR TOTAL TEMPERA STATOR TOTAL TEMPERA ROTOR ADIABATIC FRO ROTOR MOMENTUM-RISE ROTOR MOMENTUM-RISE ROTOR MEAD-RISE COE FLOW COEFFICIENT AIRFLOW PER UNIT FR AIRFLOW PER UNIT AW AIRFLOW AT ROTOR IN AIRFLOW AT ROTOR IN AIRFLOW AT ROTOR IN AIRFLOW AT ROTOR OW ROTATIVE SPEED PERCENT OF DESIGN S	E RATIO E RATIO URE RATIO LIENCY EFFICIENCY FFFICIENCY FFFICIENCY ONTAL AREA NULUS AREA LET TLET VYLET	0357 1.1795 1.9795 1.9596 0.9592 0.35247 124.75 188.5247 128.5247 128.5247 188.5247 188.5247 188.5247 188.5247 188.5247	3358 3.169 8.169 8.9952 8.999 8.338 86 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.858 0.889 0.300 0.641 110.02	0360 1134 0997 0997 0813 0.264 0.53 0.264 0.53 24.08 23.66 23.66 768
COMPRESSOR PERFORMA					
STAGE TOTAL PRESSUR STAGE TOTAL TEMPERA STAGE ADIABATIC EFF	E RATIO TURE RATIO ICIENCT	1.173 1.054 0.658	1.165 1.051 0.873	1.146 1.046 0.857	1.12
READING NUMBER ROTOR TOTAL PR STATOR TOTAL PR STATOR TOTAL PR STATOR TOTAL PR ROTOR ADIABAT ROTOR ADIABAT ROTOR HEAD-RIS FLOW COFFIC ALRELOW PER UM ALRELOW AT ROT ALRELOW AT ST.	ESSURE RATI RESSURE RAT RESSURE RAT MPERATURE R EMPERATURE R EMPERATURE EMPERATURE TO EFFICE EMPT IT FROMTAL IT ANNULUS FICE OR INLET OR OUTLET TOR OUTLET	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7361 .123 .998 .048 .049 .049 .049 .071 .017	.109 .999 .039 .849 .849 .849 .611 .1.83 .5.87 .61 .61 .61	0.3993 0.0993 0.0993 0.7934 0.
COMPRESSOR PER					
STAGE TOTAL PE	ESSURE RAT! MPERATURE R IC EFFICIENC	A110 1	.121	1.108 1.034 1.870	1.093

TABLE XIII. - OVERALL PERFORMANCE OF STAGE 57M1C (a) 120 Percent of design speed 0424 1.598 0.967 0425 1.597 0.996 1.177 0.995 0.797 0.811 3.399 0.672 163.91 224.66 33.22 33.20 33.83 33.02 0426 1.541 0.944 1.167 0.989 0.785 0.369 0.369 0.688 166.27 227.90 33.77 34.35 33.44 13049.0 1.504 9.925 1.162 9.997 0.760 0.345 0.689 166.51 228.23 33.75 33.61 34.52 0.967 1.1913 0.7913 0.812 0.409 0.650 160.92 220.58 32.62 32.75 32.35 13013.5 13062 COMPRESSOR PERFORMANCE 1.486 1.166 0.722 STAGE TOTAL PRESSURE RATIO 1.545
STAGE TOTAL TEMPERATURE RATIO 1.174
STAGE ADIABATIC EFFICIENCY 0.762 1.545 1.534 1.172 0.757 1.392 1.159 0.624 (b) 110 Percent of design speed READING NUMBER
RUTOR TOTAL PRESSURE RATIO
STATOR TOTAL PRESSURE RATIO
STATOR TOTAL PRESSURE RATIO
O.974
ROTOR TOTAL TEMPERATURE RATIO
ROTOR ADIABATIC EFFICIENCT
ROTOR HEAD-RISE COEFFICIENCT
ROTOR HEAD-RISE COEFFICIENCT
AIRFLOW PER UNIT FROWTAL AREA
AIRFLOW PER UNIT FROWTAL AREA
AIRFLOW PER UNIT ANNULUS AREA
AIRFLOW AT ROTOR TILLET
AIRFLOW AT ROTOR OUTLET
AIRFLOW AT ROTOR OUTLET
AIRFLOW AT ROTOR OUTLET
AIRFLOW AT STATOR OUTLET
AIRFLOW AT STATOR OUTLET
ROTOR
ROTAT: JE SPEED
110.2 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TITAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY 1.484 (c) 100 Percent of design speed READING NUMBER

ROTOR TOTAL PRESSURE RATIO

1.432
STATOR TOTAL PRESSURE RATIO

ROTOR TOTAL PRESSURE RATIO

1.26
STATOR TOTAL TEMPERATURE RATIO

ROTOR DIABATIC EFFICIENCT

ROTOR MOLABATIC EFFICIENCT

ROTOR MOLENTUM-RISE EFFICIENT

ROTOR HEAD-RISE COEFFICIENT

ROTOR HEAD-RISE COEFFICIENT

AIRFLOW PER UNIT FRONTAL AREA

AIRFLOW PER UNIT TANNULUS AREA

AIRFLOW AT ROTOR TINET

AIRFLOW AT ROTOR TINET

AIRFLOW AT ROTOR OUTLET

AIRFLOW AT ROTOR OUTLET

AIRFLOW AT STATOR OUTLET

POTATIVE SPEED

PERCENT OF DESIGN SPEED

100.1 0416 1.431 0.978 0.978 0.892 9.415 151.63 207.73 30.73 30.73 30.73 30.73 30.73 0415 1.420 0.977 1.122 0.998 0.900 0.406 0.728 155.52 213.17 31.53 31.53 31.53 31.53 0421 1.307 0.940 1.116 0.997 0.876 0.753 150.753 151.44 32.16 32.16 32.16 32.99 9915.9 0 41 4 1 391 1 997 1 117 0 997 0 882 0 386 158 71 217 58 32 17 32 15 33 22 10 912 10 10915.7 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO 1.401 1.401 STAGE TOTAL TEMPERATURE RATIO 1.123 1.122 STAGE ADIABATIC EFFICIENCY 0.825 0.826 1.350 (d) 90 Percent of design speed TO SUFFERENT OF OVERLIP SPEED

READING NUMBER

READING TOTAL PRESSURE RATIO

STATOR TOTAL THREASURE RATIO

ROTOR TOTAL TEMPERATURE RATIO

ROTOR TOTAL TEMPERATURE RATIO

ROTOR MOTOR TOTAL TEMPERATURE RATIO

ROTOR MOTOR HORATOR RISE EFFICIENCY

ROTOR MEAD-RISE COEFFICIENT

ROTOR MEAD-RISE COEFFICIENT

ROTOR MEAD-RISE COEFFICIENT

AIRFLOW PER UNIT FRONTAL AREA

AIRFLOW PER UNIT FRONTAL AREA

AIRFLOW AT ROTOR THEFT

AIRFLOW AT ROTOR THEFT

AIRFLOW AT ROTOR DUTLET

AIRFLOW AT ROTOR DUTLET

ROTATIVE SPEED

PERCENT OF DESIGN SPEED 0428 1.3314 9.999 0.998 0.648 0.648 134.94 137.22 277.25 249.75 999.3

COMPRESSOR PERFORMANCE

STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY

TABLE XIII. - Concluded. OVERALL PERFORMANCE OF STAGE 57MIC

ter 80 Percent of design speed

	(c) 80 P	ercent of d	rața speri	ed		
READING NUMBER ROTOR TOTAL PRESSURE STATOR TOTAL PRESSURE ROTOR TOTAL TEMPERATE STATOR TOTAL TEMPERATE STATOR TOTAL TEMPERATE ROTOR MOMENTUM RISE E ROTOR MEAD-RISE COEFF FLOW COEFFICIENT AISFLOW PER UNIT ANNI AISFLOW AT ORIFICE AIRFLOW AT ORIFICE AIRFLOW AT ROTOR OUT ROTATIVE SPEED PERCENT OF DESIGN SPE	RATIO RATIO RE RATIO UNE RATIO IENCT ICIENCY ICIENCY ITAL AREA LUS AREA T LET LET	5429 1.250 5.250 1.9977 5.9977 6.879 6.359 6.359 114 23.63 24.67 23.63 8.679 8.799 8.799 8.790 8.700 8	0.458868 0.79790 0.97970 0.9790 0.9790 0.3654 1.654.461 24.69 79	0 4 3 1 1 . 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0.432 1.238 9.981 0.998 0.925 0.3623 133.37.36 126.37 27.86 26.60 87	0.433 1.227 0.973 0.997 0.872 0.346 0.768 139.26 28.22 28.25 28.15 80.1
COMPRESSOR PERFORMANC						
STAGE TOTAL PRESSURE STAGE TOTAL TEMPERATU STAGE ADIABATIC EFFIC	RATIO RE RATIO IENCT	1.233 1.074 0.831	1.237 1.074 0.845	1.227 1.071 0.843	1.217 1.069 0.831	1.193 1.066 0.786
	(f) 70 Pe	rcent of de	sign speed			
ROTO: STAT: ROTO: STAT: ROTO: ROTO:	ING NUMBER R TOTAL PRE R TOTAL PRE R TOTAL TEM BR TOTAL TEM R TOTAL TEM COMPER UNI COMPER UNI COMPER UNI COM AT ROTO COM AT ROTO COM AT STATI LIVE SPEED NT OF DESI	SSURE RAT ESSURE RAT PERATURE EFFICIE RISE EFFI COEFFICI I FRONTAL T FRONTAL T FRONTAL T FRONTAL T GN SPEED	ID RATIO RATIO RATIO CT CIENCY ENT AREA AREA	0 4 3 4 9 9 1 1 1 1 8 9 9 1 1 2 9 9 9 9 9 9 7 8 8 9 9 9 9 9 9 9 9 9 9 9		
COMP	RESSOR PERF	ORMANCE				
STAGE STAGE STAGE	TOTAL PRE	SSURE RAT PERATURE EFFICIEN	RATIO CT	1.177 1.057 0.833		
	(g) 60 Per	rcent of de-	sign speed			
READING NUMBER ROTOR TOTAL PRESSURE STATOR TOTAL PRESSURE ROTOR TOTAL TEMPERATI ROTOR ADIABATIC EFFIC POTOR MOMENTUM-RISE ROTOR MEAD-RISE CORFF FLOW COEFFICIENT AIRFLOW PER UNIT FROM AIRFLOW AT ROTOR INLE AIRFLOW AT ROTOR INLE AIRFLOW AT ROTOR INLE AIRFLOW AT ROTOR INLE AIRFLOW AT STATOR OUT ROTATIVE SPEED PERCENT OF DESIGN SPEE					0.428 1.124 0.909 1.038 0.998 0.998 0.924 0.735 0.723 106.29 145.69 121.49 21.24 21.06 6560.7	0439 1.117 0.993 0.998 0.970 0.318 0.770 1153.49 222.64 222.41 222.24 656.2
COMPRESSOR PERFORMANCE						
STAGE TOTAL PRESSURE STAGE TOTAL TEMPERATUR STAGE ADIABATIC EFFIC	RATIO RE RATIO IENCT	1.042 0.831	1.125 1.041 0.949	1.121	1.111 1.036 0.847	1.079

TABLE XIV. - OVERALL PERFORMANCE OF STAGE 57M1E

(9) 110		

READING NUMBER	0397
ROTOR TOTAL PRESSURE RATIO	1.431
STATOR TOTAL PRESSURE RATIO	0.980
ROTOR TUTAL TEMPERATURE RATIO	1.118
STATOR TOTAL TEMPERATURE RATIO	0.998
ROTOR ADIABATIC EFFICIENCY	0.912
ROTOR MOMENTUM-RISE EFFICIENCY	0.935
ROTOR HEAD-RISE COEFFICIENT	0.345
FLOW COEFFICIENT	0.375
AIRFLOW PER UNIT FRONTAL AREA	101.37
SIRFLOW PER UNIT ANNULUS AREA	139.94
AIRFLOW AT ORIFICE	20.55
AIRFLON AT ROTOR INLET	20.46
AIRFLOW AT ROTOR OUTLET	19.97
AIRFLOW AT STATOR OUTLET	19.81
ROTATIVE SPEED	11968.7
PERCENT OF DESIGN SPEED	109.9

COMPRESSOR PERFORMANCE

STAGE	TOTAL PRESSURE RATIO	1.402
STAGE	TOTAL TEMPERATURE RATIO	1.116
STAGE	ADIABATIC EFFICIENCY	0.872

(b) 100 Percent of design speed

READING NUM	BER	0392	0393	0394	0395	0396
ROTOR TOTAL	PRESSURE RATIO	1.342	1.313	1.282	1.220	1.157
	L PRESSURE RATIO	0.984	0.990	0.993	0.993	0.979
	TEMPERATURE RATIO	1.096	1.088	1.081	1.072	1.061
	L TEMPERATURE RATIO	0.998	0.999	0.999	1.000	0.998
	ATIC EFFICIENCY	0.912	0.914	0.902	0.813	0.696
	TUM -RISE EFFICIENCY	0.935	0.935	0.923	0.831	0.718
	RISE COEFFICIENT	0.332	0.302	0.273	0.215	0.155
	ICIENT	0.366	0.406	0.439	0.463	0.470
	UNIT FRONTAL AREA	91.16	100.21	107.31	112.22	113.79
AIRFLOH PER	UNIT ANNULUS AREA	124.96	137.36	147.09	153.82	155.97
AIRFLOH AT	DRIFICE	19.48	20.31	21.75	22.75	23.06
AIRFLOH AT	ROTOR INLET	18.42	20.25	21.69	22.67	22.97
AIRFLOW AT	ROTOR DUTLET	17.99	19.87	21.25	22.27	22.91
	STATOR DUTLET	18.03	19.86	21.28	. 22.28	22.57
ROTATIVE SP		10893.8	10912.0	10916.4	10910.5	10933.6
						100.4
PERCENT OF	DESIGN SPEED	100.1	100.2	100.3	100.2	100.4

COMPRESSOR PERFORMANCE

CUMPRESSUR PERFURMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.321 1.094 0.877	1.299	1.273	1.211	1.133

(c) 90 Percent of design speed

READING	NUMBER	0398
ROTOR TO	TAL PRESSURE RATIO	1.262
STATOR 1	OTAL PRESSURE RATIO	0.988
ROTOR TO		1.076
STATOR 1	OTAL TEMPERATURE RATIO	0.999
ROTOR AD	IABATIC EFFICIENCY	0.906
ROTOR HO	HENTUH-RISE EFFICIENCY AD-RISE COEFFICIENT	0.939
ROTOR HE	AD-RISE COEFFICIENT	0.316
	DEFFICIENT	0.362
AIRFLOW	PER UNIT FRONTAL AREA	81.91
AIRFLOW	PER UNIT ANNULUS AREA	112.27
	AT ORIFICE	16.60
AIRFLOW	AT ROTOR INLET	16.57
AIRFLOW	AT ROTOR OUTLET	16.29
AIRFLOW	AT STATOR OUTLET	16.13
ROTATIVE		9792.9
PERCENT	OF DESIGN SPEED	90.0

STAGE	TOTAL	PRESSURE RATIO	1.247
		TEMPERATURE RATIO	1.075
STACE	ADIAR	ATIC SESICIENCY	0 874

READING NUMBER ROTOR TOTAL PRESS ROTOR TOTAL PRESS ROTOR TOTAL PRESS ROTOR TOTAL TEMP ROTOR ADIABATIC E ROTOR MOMENTUM-RI ROTOR MOMENTUM-RI ROTOR MOMENTUM-RI REFLOM PER UNIT RIFFLOM PER UNIT RIFFLOM AT ROTOR RIFFLOM AT STATOR ROTATIVE SPEED PERCENT OF DESIGN	SURE RATIO RATIOR RATIO ERATURE RATIO FFICIEMET SE EFFICIENCY OBEFFICIENT FRONTAL AREA ANNULUS AREA E INLET OUTLET	0399 0401 1.201 1.183 0.992 0.295 1.060 1.054 0.999 0.999 0.901 0.914 0.934 0.946 0.310 0.292 0.348 0.389 70.50 78.43 96.64 107.50 14.29 15.90 14.29 15.90 14.24 15.84 13.94 15.55 13.94 15.55 13.91 15.48 8663.1 8674.7 79.7	0.915 0.944 0.254 0.430 85.71 117.48 17.37 17.34 17.06	0403
COMPRESSOR PERFOR STAGE TOTAL PRESS STAGE TOTAL TEMPE STAGE ADIABATIC E		1.191 1.177 1.058 1.053 0.877 0.896	1.159 1.047 0.906	1.128 1.081 1.041 1.034 0.853 0.668
	READING NUMBER ROTOR TOTAL PRE STATOR TOTAL PRE ROTOR TOTAL TER STATOR TOTAL TER ROTOR HOLBATIC ROTOR HOLBATIC AIRFLOW PER UNI AIRFLOW PER UNI AIRFLOW AT ROTO AIRFLOW AT ROTO	ESSURE RATIO PERATURE RATIO EFFICIENCY COEFFICIENCY COEFFICIENT NT I FRONTAL AREA I CANULUS AREA ICE R INLET R OUTLET OR OUTLET	0405 1.151 0.993 1.046 0.999 0.999 0.935 0.303 0.342 61.28 83.99 12.12 7614.8	

COMPRESSOR PERFORMANCE

STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY

if) 60 Percent of design speed

	READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT FRONTAL AREA AIRFLOW AT ROTOR ISLET AIRFLOW AT ROTOR ISLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0 4 0 6 1 · 109 9 0 · 993 0 · 999 0 · 999 0 · 999 0 · 299 0 · 293 0 · 293 0 · 293 1 0 · 651 1 0	0407 1.098 0.996 1.029 1.000 0.918 0.264 0.387 5.387 82.16 12.15 12.15 11.97 11.97 6567.7	0408 1.084 1.0996 1.025 0.999 0.917 0.944 0.445 68.24 13.83 13.61 13.37 6553 66.2	0409 1.06932 0.9991 0.9999 0.8966 74.663 14.766 14.7663 14.786 14.786 14.786 14.786 14.786 14.786 14.786 14.786 14.786 14.786	0410 1.047 0.947 0.968 0.999 0.749 0.769 0.127 0.526 16.26 15.98 15.98
--	--	---	---	--	--	---

STAGE TOTAL PRESSURE RATI	AT10 1.033	1.094	1.080	1.061	1.032
STAGE TOTAL TEMPERATURE R		1.029	1.025	1.021	1.016
STAGE ADIABATIC EFFICIENC		0.893	0.897	0.810	0.559

TABLE XV. - OVERALL PERFORMANCE OF STAGE 57M3A

(a) 120 Percent of design speed READING NUMBER
ROTOR TOTAL PRESSURE RATIO
STATOR TOTAL PRESSURE RATIO
OFFICE
STATOR TOTAL PRESSURE RATIO
OFFICE
ROTOR TOTAL TEMPERATURE RATIO
OFFICE
ROTOR HOLABATIC EFFICIENCY
ROTOR HOLABATIC EFFICIENCY
ROTOR HOMENTUM-RISE EFFICIENCY
ROTOR HEAD-RISE CORFFICIENT
OFFICE
AIRFLOM PER UNIT FRONTAL AREA
AIRFLOM PER UNIT ANNULUS AREA
AIRFLOM AT ROTOR TINLET
AIRFLOM AT ROTOR TINLET
OFFICE
STATEMENT OF DESIGN SPEED
13053.2
PERCENT OF DESIGN SPEED
119.9 0913 1.397 0.934 1.137 0.993 0.729 0.652 0.273 0.613 157.08 216.40 32.00 31.67 33.21 32.10 9915 1.466 0.985 1.149 0.990 0.782 0.729 0.317 0.611 157.61 216.03 31.94 31.60 32.51 31.81 0916 1.513 0.992 1.155 1.000 0.011 0.784 0.347 0.607 156.52 214.54 31.72 31.49 31.65 31.54 0917 1.579 0.984 1.164 0.998 0.862 0.388 0.592 154.11 211.24 31.23 31.24 31.23 31.24 31.24 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO 1.578 1.553 STAGE TOTAL TEMPERATURE RATIO 1.167 1.161 STAGE ADIABATIC EFFICIENCY 0.835 0.831 1.501 1.154 0.797 1.444 1.145 0.764 (b) 110 Percent of design speed (b) 110 Fercent of design spreading number (c) 110 Fercent of design spreading number (c) 151 1.496 0910 1.461 1.784 1.132 0.999 0.867 0.871 0.369 0.621 150.69 206.55 30.30 30.30 30.30 30.03 0.960 1.117 0.960 1.117 0.993 0.761 0.699 0.292 1.401 0.997 1.125 0.997 0.811 0.772 0.324 0.635 152.99 31.01 30.71 31.40 30.84 153.61 210.55 31.14 30.80 32.50 11989 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO 1.401 1.467
STAGE TOTAL TEMPERATURE RATIO 1.138 1.135
STAGE ADIABATIC EFFICIENCY 0.059 0.059 1.393 (c) 100 Percent of design speed 0904 1.338 0.981 1.102 0.996 0.817 0.328 0903 1.299 0.970 1.097 0.994 0.801 0.293 0905 1.369 0.987 1.105 0.997 0.892 0.888 0.628 141.77 194.28 28.52 28.65 28.25 0.328 0.654 146.80 201.21 29.75 29.49 30.50 29.25 10921.4 100.3 0.273 0.664 149.45 203.48 30.09 29.78 31.44 30.04 10921.2 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE MATIO 1.391 1.372
STAGE TOTAL TEMPERATURE MATIO 1.112 1.109
STAGE ADIABATIC EFFICIENCY 2.862 0.875 1.351 1.102 0.878 (d) 90 Percent of design speed READING NUMBER
ROTOR TOTAL PRESSURE RATIO
STATOR TOTAL PRESSURE RATIO
OFFICIAL STATOR
OTTAL TEMPERATURE RATIO
OFFICIAL STATOR
OTOR ADIABATIC EFFICIENCY
ROTOR ADIABATIC EFFICIENCY
ROTOR HEAD-RISE COEFFICIENT
ROTOR HEAD-RISE COEFFICIENT
AIRFLOM PER UNIT FRONTAL AREA
AIRFLOM PER UNIT FRONTAL AREA
AIRFLOM AT ROTOR INLET
AIRFLOM AT ROTOR INLET
AIRFLOM AT ROTOR OUTLET
AIRFLOM AT ROTOR OUTLET
AIRFLOM AT STATOR OUTLET
PERCENT OF DESIGN SPEED
90.2 0937 1.2679 0.9779 0.9775 0.316 0.6587 187.56 27.56 27.56 98.90 98.90 0930 0938 1.286 0.983 0.987 0.897 0.342 0.342 0.7.31 26.61 26.65 25.59 9827 0936 1.244 0.967 1.077 0.840 0.794 0.697 141.29 123.66 28.37 20.27 20.17 9017.42 1.301 0.909 1.009 0.902 0.902 0.359 168.77 24.74 24.61 24.29 9828 COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO 1.296
STAGE TOTAL TEMPERATURE RATIO 1.090
STAGE ADIABATIC EFFICIENCY 0.859

TABLE XV Concluded.				TAGE 57N	ВА
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM RISE EFFICIENT ROTOR MEAD-RISE COEFFICIENT AIRFLOM PER UNIT FRONTAL AREA AIRFLOM PER UNIT FRONTAL AREA AIRFLOM AT ROTOR TINLET AIRFLOM AT ROTOR TINLET AIRFLOM AT ROTOR DUTLET AIRFLOM AT ROTOR DUTLET AIRFLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0 Percent of 1238 0.990 1.071 10.0 .999 0.887 17.0 .999 0.887 17.0 .992 0.366 0.502 4.99.44 1.36.30 1.20.16 1.99.49	0923 1.235 0.991 1.069 0.999 0.898 0.359 0.529 142.98 21.12	0921 1.214 0.988 1.0647 0.899 0.3629 0.609 117.31 160.3.78 23.559	0929 1.1993 1.9961 0.9968 0.8246 0.8246 0.8246 129.664 24.49 125.664 24.43 24.43 26.24	0 . 974 1 . 059 0 . 994 0 . 287 0 . 287 1 29 . 11 1 74 . 97 25 . 90 28 . 02
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.225 1.070 0.059	1.223 1.068 0.867	1.200 1.061 0.885	1.179 1.057 0.649	1.155 1.053 0.793
(f) 70	Dercent of	design spec			
READING NUMBER ROTCH TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTCH TOTAL TEMPERATURE RATIO ROTCH TOTAL TEMPERATURE RATIO ROTCH ADIABATIC EFFICIENCY ROTCH MOMENTUM-RISE EFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AT ORTFICE AIRFLOW AT ROTCH THEE AIRFLOW AT ROTCH THEE AIRFLOW AT ROTCH THEE AIRFLOW AT ROTCH TOTELET AIRFLOW AT ROTCH OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0924 1.188 0.991 1.055 0.999 0.889 0.359 0.488 4.86.24 118.21 17.48 17.48 17.48 17.48 17.48 17.48 17.48	0 9 2 8 1 . 175 0 . 992 1 . 053 0 . 998 0 . 895 0 . 530 0 . 530 127 . 51 18 . 64 18 . 64 18 . 64 70 . 2	0927 1.169 0.991 1.051 0.998 0.975 0.337 0.337 99.00 135.70 20.07 19.09 19.36 7633.4	0926 1.154 0.949 1.048 0.997 0.879 0.832 0.302 0.302 107.58 147.46 21.59 21.59 21.59 21.59 21.59	0925 1.139 0.905 0.995 0.838 0.277 0.684 159.24 22.52 23.59 25.54 27.53 70.1
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.169 1.053 0.855	1.166 1.052 0.970	1.159 1.049 0.886	1.141 1.044 0.872	1.116 1.040 0.796
(g) 60	Percent of o		1		
READING NUMBER POTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO POTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATI ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENT FLOW COEFFICIENT AIRTLOW PER UNIT FRONTAL AREA AIRTLOW PER UNIT TANNULUS AREA AIRTLOW AT ROTOR UNITET AIRTLOW AT ROTOR OUTLET AIRTLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0 0.999 0.886 7 0.896	16.09	0932 1.119 0.993 1.037 0.998 0.892 0.892 0.574 87.09 117.65 17.49 18.39 16.98 60.2	0931 1.109 1.1099 1.0397 0.977 0.873 0.9296 0.6378 129.91 19.21 19.21 19.21 18.46 6538.3	0938 1.098 8.984 1.033 0.996 0.831 0.2690 141.05 20.62 20.62 20.63 20.63 6551.7
COMPRESSOR PERFORMANCE					

STAGE TOTAL PRESSURE RATIO 1.122 1.119 1.111 1.098 1.080 STAGE TOTAL TEMPERATURE RATIO 1.039 1.037 1.034 1.031 1.028 STAGE ADIABATIC EFFICIENCY 0.850 0.874 0.889 0.869 0.787

(a) 120 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO	0948	0949	1952	2951
ROTOR TOTAL PRESSURE RATIO	1.633	1.598	1.496	1.497
STATOR TOTAL PRESSURE RATIO	0.967	0.977	0.883	0.937
ROTOR TOTAL TEMPERATURE RATIO	1.187	1.175	1.161	1.160
STATOR TOTAL TEMPERATURE RATIO	0.991	0.998	0.994	0.994
ROTOR ADIABATIC EFFICIENCY	0.806	0.811	0.759	0.761
ROTOR MOMENTUM-RISE EFFICIENCY	0 802	8 747	0.671	0.671
ROTOR HEAD-RISE COEFFICIENT	0.426	0.399		
ROTOR HEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA	0.626	0.658	0.669	0.669
AIRFLOW PER UNIT FRONTAL AREA	158.44	163.27	165.66	
			227 04	227 14
AIRFLOW AT DRIFICE	32.11	33.09	33.58	33.59
ATRFLOW AT ROTOR INLET	32.05	32.89	33.19	33.18
AIRFLOW AT ROTOR OUTLET	31.86	33.47	34.80	34.76
AIRFLOW AT STATOR OUTLET	32.44	33.13	33.28	34.14
ROTATIVE SPEED	13085.1	13074.4	13086.2	13083.7
AIRFLOW AT ORIFICE AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	120.2	120.1	120.2	120.2
COMPRESSOR PERFORMANCE				
STACE TOTAL PRESSURE PATIO	1 579	1 664	1 321	1 402
STAGE TOTAL PRESSURE RATIO	1 174	1 172	1 153	1 153
STAGE ADIABATIC EFFICIENCY	0.798	0.779	0.539	0.661

the 110 Percent of design speed

READING NUMBER	0947
ROTOR TOTAL PRESSURE RATIO	1.545
STATOR TOTAL PRESSURE RATIO	0.974
ROTOR TOTAL TEMPERATURE RATIO	1.155
STATOR TOTAL TEMPERATURE RATIO	
ROTOR ADIABATIC EFFICIENCY	0.856
ROTOR MOMENTUM-RISE EFFICIENCY	0.857
ROTOR HEAD-RISE COEFFICIENT	0.437
FLOW COEFFICIENT	0.644
AIRFLOW PER UNIT FRONTAL AREA	153.69
AIRFLOW PER UNIT ANNULUS AREA	210.67
AIRFLOW AT DRIFICE	31.15
AIRFLOW AT ROTOR INLET	30.93
AIRFLOW AT ROTOR QUILET	30.53
AIRFLOW AT STATOR OUTLET	30.97
ROTATIVE SPEED	11963.1
PERCENT OF DESIGN SPEED	109.9

COMPRESSOR PERFORMANCE

STAGE	TOTAL	PRESSURE RATIO	1.505
STAGE	TOTAL	TEMPERATURE RATI	
STAGE	ADIAB	ATIC EFFICIENCY	0.830

(c) 100 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MONENTUM-RISE EFFICIENCY ROTOR MONENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW AT ROTOR INLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0946 1 434 1 998 1 1.25 8 997 8 869 0 645 198.56 29.36 29.36 29.36 29.36 100.1	0945 1.428 0.980 1.123 0.973 0.673 0.414 0.687 151.03 207.01 30.41 30.41 30.65 1000 0.9	0944 1.413 0.976 1.1.20 0.995 0.867 0.722 155.20 213.56 31.58 31.34 32.25 100.2	0943 1.378 0.969 1.114 0.838 0.783 0.370 0.738 157.94 216.48 131.70 32.78 10877.6	0942 1.374 0.934 1.114 0.994 0.781 0.779 157.94 216.40 312.01 312.01 312.01 312.01
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE PATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.406 1.121 9.842	1.399	1.379 1.115 0.841	1.335 1.108 0.798	1.283 1.107 0.691

(d) 90 Percent of design speed

READING NUMBER	0953
ROTOR TOTAL PRESSURE RATIO	1.333
STATOR TOTAL PRESSURE RATIO	0.985
ROTOR TOTAL TEMPERATURE RATIO	1.099
STATOR TOTAL TEMPERATURE RATIO	
ROTOR ADIABATIC EFFICIENCY	0.863
ROTOR MOMENTUM-RISE EFFICIENCY	0.842
ROTOR HEAD-RISE COEFFICIENT	
FLOW COEFFICIENT	0.611
AIRFLOW PER UNIT FRONTAL AREA	
AIRFLOW PER UNIT ANNULUS AREA	
AIRFLOW AT ORIFICE	26.19
AIRFLOW AT ROTOR INLET	26.01
	26.44
ATRELOW AT STATOR OUTLET	25.70
ROTATIVE SPEED	9807.9
DEDCEMT OF DECICE COCCO	90 1

STAGE	TOTAL	PRESSURE RATIO	1.313
STAGE	TOTAL	TEMPERATURE RATIO	1.076
CTACE	ADTABL	TIC CECICIENCY	0 042

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOM ADIABATIC EFFICIENCY ROTOR MONENTUM-RISE EFFICIENCY ROTOR MONENTUM-RISE EFFICIENCY ROTOP HEAD-RISE COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ANNULUS AREA AIRFLOW AI ROTOR INLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET AIRFLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0958 1.254 0.998 0.997 0.997 0.863 0.368 1.55.71 1.58.645 23.89 0.713 23.89 0.713 23.89	0957 1,249 0,976 0,996 0,835 0,385 124,32 170,40 24,98 26,98 2712 8712 8712 9	0956 1.2393 1.9735 0.865 0.366 0.369 1.30.76 1.79.22 26.50 27.74 87.00 8	0955 1.2771 1.9771 0.952 0.3789 0.7391 1367.25 27.647 297.28 8122 8122 8122 8122 8122 8122 8122 8	0 9 5 4 1 . 2 2 2 0 . 9 7 0 . 9 7 0 . 3 4 0 . 7 5 1 7 9 2 8 . 1 2 8 . 1 2 7 . 6 8 7 3 0 . 6
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE MATIO STAGE TOTAL TEMPERATURE MATIO STAGE ADIABATIC EFFICIENCY	1.239 1.074 0.849	1.232 1.071 0.859	1.218 1.068 0.858	1.198 1.065 0.819	1.18 1.06 0.78

if) 76 Percent of design spec	ed
READING NUMBER	0960
ROTOR TOTAL PRESSURE RATIO	1.198
STATOR TOTAL PRESSURE RATIO	0.991
ROTOR TOTAL TEMPERATURE RATIO	1.059
STATOR TOTAL TEMPERATURE RATIO	0.998
ROTOR ADIABATIC EFFICIENCY	0.862
ROTOR MOMENTUM-RISE EFFICIENCY	0.831
ROTOR HEAD-RISE COEFFICIENT	0.376
FLOW COEFFICIENT	0.600
AIRFLOW PER UNIT FRONTAL AREA	104.00
AIRFLOW PER UNIT ANNULUS AREA	
AIRFLOW AT ORIFICE	21.08
AIRFLOW AT ROTOR INLET	20.92
	21.67
AIRFLOW AT STATOR DUTLET	20.42
ROTATIVE SPEED	7667.2
PERCENT OF DESIGN SPEED	70.4

COMPRI	ESSOR PERFORMANCE	
STAGE	TOTAL PRESSURE RATIO	1.179
STAGE	TOTAL TEMPERATURE RATIO	1.057
STAGE	ADIABATIC EFFICIENCY	0.848

				1000	
READING NUMBER	0965	0764	0963	0962	0961
ROTOR TOTAL PRESSURE RATIO	1.132	1.135	1.133	1.124	1.115
STATOR TOTAL PRESSURE RATIO	0.985	0.993	0.992	0.788	0.982
ROTOR TOTAL TEMPERATURE RATIO	1.047	1.043	1.042	1.040	1.038
STATOR TOTAL TEMPERATURE RATIO	8.999	0.998	0.998	0.996	0.795
ROTOR ADIABATIC EFFICIENCY	8.771	0.852	0.864	0.855	0.827
ROTOR MOMENTUM-RISE EFFICIENCY	0.749	0.819	0.828	0.810	0.776
ROTOR HEAD-RISE COEFFICIENT	0.367	0.373	0.366	0.340	0.317
FLOW CDEFFICIENT	0.428	0.552	0.609	0.700	0.757
AIRFLOW PER UNIT FRONTAL AREA	65.10	83.34	91.22	103.31	110.51
AIRFLOW PER UNIT ANNULUS AREA	89.23	114.23	125.03	141.60	151.48
	13.20	16.89	18.49	20.94	22.40
AIRFLOW AT ORIFICE	13.12	16.73	10 33	20.76	22.16
AIRFLOW AT ROTOR INLET		10.73	18.33	22.68	24.66
AIRFLOW AT ROTOR OUTLET	13.31	17.25	17.83	20.17	21.54
AIRFLOW AT STATOR OUTLET	13.46	16.43			
ROTATIVE SPEED	6496.2	6497.6	6505.8	6518.5	6499.7
PERCENT OF DESIGN SPEED	59.7	59.7	59.8	59.9	59.7

PERCENT OF DESIGN SPEED	59.7	59.7	59.8	59.9	59.7
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE MATTO STAGE TOTAL TEMPERATURE RATTO STAGE ADIABATIC EFFICIENCY	1.115 1.045 0.697	1.127 1.041 0.839	1.124 1.040 0.859	1.111 1.035 0.857	1.095 1.033 0.798

TABLE XVII. - OVERALL PERFORMANCE OF STAGE 57M T

on 110 then ent of deaten argent

100	110 Ferrant of design spee		
READING M ROTOR TOT STATOR TOTO ROTOR TOT STATOR TOTO ROTOR ATOT ROTOR ATOT ROTOR ATOT ROTOR ATOT ROTOR HEA FLOW P AIRFLOW P AIRFLOW A AIRFLOW A AIRFLOW A AIRFLOW A AIRFLOW A	UMBER AL PRESSURE RATIO TAL PRESSURE RATIO AL TEMPERATURE RATIO TAL TEMPERATURE RATIO ABATIC EFFICIENCY ENTUR-RISE EFFICIENT FFICIENT FFICIENT FFICIENT FROMTAL AREA AT ORIFICE TI ORION OUTLET SPEED FF DESIGN SPEED	0973 1.422 0.981 1.111 1.003 0.955 1.184 0.335 0.335 100.09 29.29 20.29 20.29 20.29 15.98 19.79 119.65	
COMPRESSO	R PERFORMANCE		
STAGE TOT STAGE TOT STAGE AD	TAL PRESSURE RATIO TAL TEMPERATURE RATIO TABATIC EFFICIENCY	1.396 1.115 0.873	
ibi	100 Fercent of design spec		
READING NUMBER ROTUR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTIS MODENTUM-RISE EFFICIENT ROTIS MODENTUM-RISE EFFICIENT FLOM COFFICIENT AIRFLOM PER UNIT FRONTAL ARI AIRFLOM AT ROTOR INLET AIRFLOM AT ROTOR INLET AIRFLOM AT ROTOR QUILET AIRFLOM AT ROTOR QUILET ROTATIVE SPEED	TID 1.003 1.001 0.948 0.938 KCT 1.166 1.068 0.324 0.293 0.355 0.397 EA 09.23 98.77	0,992 1,076 1,000 0,895 0,940 0,253 0,436 107,29 1,47,04	0969
COMPRESSOR PERFORMANCE			
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RAT STAGE ADJABATIC EFFICIENCY	1.317 1.291		1.180 1.128 1.045 1.054

a i 90 Percent of design speed

READING NUMBER	8974
ROTOR TOTAL PRESSURE RATIO	1.267
	0.987
ROTOR TOTAL TEMPERATURE RATIO	1.073
STATOR TOTAL TEMPERATURE RATIO	1.002
ROTOR ADIABATIC EFFICIENCY	
ROTOR HOMENTUM-RISE EFFICIENCY	
ROTOR HEAD-RISE COEFFICIENT	0.321
FLOW COEFFICIENT	0.340
AIRFLOW PER UNIT FRONTAL AREA	77.69
AIRFLOW PER UNIT ANNULUS AREA	106.49
AIRFLOW AT DRIFICE	15.75
AIRFLOW AT ROTOR THLET	15.62
AIRFLOW AT ROTOR OUTLET	12.46
AIRFAON AT STATOR OUTLET	15.44
ROTATIVE SPEED	9784.4
PERCENT OF DESIGN SPEED	87.7

COMPRESSOR PERFORMANCE

STAGE TOTAL PRESSURE RATIO 1.250 STAGE TOTAL TEMPERATURE RATIO 1.576 STAGE AGLABATIC EFFICIENCY 0.866

TARLEXVII	on Balest 11	CHALL DERIVER	IANCE OF STALE	10 M ()
READIES NUMBER ROTOR TOTAL PRESSURE STATOR TOTAL PRESSURE ROTOR TOTAL TEMPERATU	RATIO RATIO RE RATIO	0980 4983 1.204 1.191 0.990 0.993 1.057 1.052	0982 097 1.160 1.12 0.994 0.99 1.047 1.04	9 0981 7 1.097 1 9.984 2 1.038
STATOM TOTAL TEMPERAT ROTOR ADIADATIC EFFIC ROTOR MODERATUR-RISE E ROTOR MEAD-RISE COEFF FLOW COEFFICIENT AIRFLOW PER UNIT FROM	TAL AREA	1.002 1.000 9.947 9.944 1.156 1.051 9.319 9.277 0.335 9.385 68.75 78.33	0.999 0.99 0.919 0.82 0.948 0.79 0.244 0.19 0.429 0.46 86.65 93.7	7 0.996 7 0.704 7 0.641 6 0.151 8 0.409 97.59
READING NUMBER ROTOR TOTAL PRESSURE STATOR TOTAL PRESSURE STATOR TOTAL TEMPERATU STATOR TOTAL TEMPERATU STATOR TOTAL TEMPERATU STATOR TOTAL TEMPERATU ROTOR MODERTUM—RISE E ROTOR MEAD—RISE COEFF FLOW COEFFICIENT AIRFLOW PER UNIT FROM AIRFLOW AT ORIFICE AIRFLOW AT ROTOR OUT AIRFLOW AT ROTOR OUT AIRFLOW AT STATOR OUT ROTALINE SPEED PERCENT OF DESIGN SPE	T ET LET	94.23 197.37 13.93 15.88 13.82 15.71 10.96 13.84 13.64 15.29 8712.2 8705.6 80.0 80.0	118.77 128.4 17.56 19.0 17.38 18.0 16.69 19.7 16.89 18.2 8719.8 8702. 89.1 79.	7 133.76 19.79 0 19.55 3 21.71 7 18.93 9 8714.3 9 80.1
COMPRESSOR PERFORMANC				
STAGE TOTAL PRESSURE STATE TOTAL TEMPERATU STAGE ADIABATIC EFFIC		1.192 1.174 1.059 1.052 0.868 0.899	1.153 1.11 1.046 1.03 0.698 0.81	7 1.080 9 1.034 6 0.658
	H1.70 14	ment of disign spec	ref	
READ ROTO STAT	R TOTAL PRE	SSURE RATIO SSURE RATIO SSURE RATIO PERATURE RATIO REFRICIENCY COEFFICIENCY IF FRONTAL AREA T ANNULUS AREA CE R IMLEY R OUTLEY OR OUTLEY SIRED	0984 1.150 0.994	
ROTO STAT	R TOTAL TEM	PERATURE RATIO	1.043 1.001 0.946	
ROTO ROTO Flow	R MODERTUR-	RISE EFFICIENCY COEFFICIENT	1.147 0.299 0.334	
A 1 R F A 1 R F A 1 R F	LOW PER UNIT	T FRONTAL AREA T ANNULUS AREA ICE	60.36 92.74 12.22	
A 1 RF A 1 RF A 1 RF	LOW AT ROTOR	R I#LET R DUTLET DR DUTLET	12.12 9.70 11.97	
PE 9C	ENT OF DESIG	S. SPEED	69.9	
	RESSOR PERF			
STAG STAG STAG	E TOTAL PRES E TOTAL TERS E ADIABATIC	SSURE RATIO PERATURE RATIO EFFICIENCT	1.142 1.044 0.873	
	(f) +0 1 e	rient of design spec		
READING NUMBER ROTOR TOTAL PRESSURE (STATOR TOTAL PRESSURE)	RATIO	0787 0788 1.074 1.081	0987 0986 1.062 1.04 0.992 0.98	6 0985 7 1.107 7 0.995
ROTOR TOTAL TEMPERATURE TOTAL TEMPERATURE TOTAL TEMPERATURE FOR ADJABATIC EFFIC	RE RATIO URE RATIO	1.028 1.025 1.008 2.999 0.931 0.904	1.022 1.02 0.998 0.99 0.795 0.66	0 1.031 7 1.001 3 0.743
ROTOR MOMENTUM-RISE (I ROTOR MEAD-RISE COEFF FLOW COEFFICIENT	FICIENT	1.001 0.004 0.250 0.223 0.384 0.437	0.778 0.61 0.167 0.12 0.486 0.51	7 1.133 9 0.294 3 0.330
AIRFLOW PER UNIT FROM AIRFLOW PER UNIT ANNUI AIRFLOW AT DRIFICE	US AREA	59.35 67.07 01.35 91.93 12.03 13.59	74.44 78.2 102.04 107.2 15.09 15.8	8 51.23 9 70.22 7 10.38
AIRFLOW AT ROTOR INLE AIRFLOW AT ROTOR OUTLE AIRFLOW AT STATOR OUTLE	T E T L E T	11.93 13.48 10.99 13.59 11.52 13.05	14.72 15.6 16.59 18.3 14.37 15.1	9 10.32 1 8.27 4 10.17
PEADING MUMBER ROTOR TOTAL PRESSURE ROTOR TOTAL PRESSURE ROTOR TOTAL TEMPERATUR PATTOR TOTAL TEMPERATUR ROTOR ADIABATIC COFF FLOW COEFFICIEST AIRFLOW PER UNIT FROM AIRFLOW AT ROTOR INCE AIRFLOW AT ROTOR INCE AIRFLOW AT STATOR OUT ROTATIVE SPEED PERCENT OF DESIGN SPEE	E D	6518.7 6513.8 59.9 59.8	6517.1 6519. 59.9 59.	6517.5 9 59.7
COMPRESSOR PERFORMANCE	ī			
STAGE TOTAL PRESSURE (STACE TOTAL TEMPERATUR STAGE ADIABATIC EFFIC	RATIO RE RATIO	1.090 1.077	1.053 1.03 1.019 1.01 0.761 0.56	3 1.102 6 1.032 9 9.073
STAGE ADIABATIC EFFIC	15.46.4	U.074 U.074	#.781 #.56	

TABLE AVID OF BOATT TERRORISANCE OF STACE SMILE

) #	P	R E	S	S	Qě	2	p	ε	R	F	SEPR R STTERRO O	SSEPETCT C	SUSCEPTION OF SU		EUTCER BU ELT E	A BUILT TELE	ARERESC AU TE D	E MILLS	T I I	100	THE RE	01 0	0 7					5 5 7 9 4 9 8 8	919896811	9 67 69 67 67 311159	99797568656930930															
			明日 50 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	FOT OF DOG L	ROTATO ACCRECATE	TOTOMORA LLLLLTE		OF T SECURES	0 = 0 = 0 = 0 = 0	STOTO-REEPPAAA O	UATATAEDFEETTTTSF	LALABA FRA	T TUTE COUNTER	一 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	THE RESIDENCE OF THE PARTY OF T	SEPR R STTIRRO G	SSEPERCT C	US SEE SEE	PER TON LITTLE POR	EUT CEF	R RUTET TL TEL E	ARERESC AU TE D	7 1 1 E E C C C C C C C C C C C C C C C C		OT A ET RR	T T E	0 0 0	9	CTI		1011000075	82776718	099307948478776	333333333333333333333333333333333333333				1010000045	1	9090977077	1993000125196251					
			5 555	1	8.0	18																338	T 1	000	17	11	0				1 1 0	10.00	17	4 9 2				1 1 0	.1	0102	8					
RRSRSRRFAAAARP	ATATTTORRERETE	DOTOTOON	TROPER LOCGO	GT T ARROWS	0+0+00E0	MTOTO-MAEPPAAA	UATATAEDFEETTTTSF	AL LABOR DE SE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E H H E C - E E I I F C C C I	SEPE R STT-RRO G	SSEPERCT C	USB EFFE	RUARFEE	E E E E E E E E E E E E E E E E E E E	A BUTEL TEL	AREREC AU TE D	TA ENILL LS	TITE	D CO RATE RATE RATE	1 E	0	0 7	- 9	4	1010101	0	0000001111	969206287235464			6	1011000024	9 8 6 5 5 5 2 5	9 0 0 6 7 1 1	9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1				101086674	3566761	0927887	19194131026647	4069969237937	
CC	Ħ	P	RE	9	S	01	R	p	9 6	E	F	0	R	Ħ,	A.I	10	E																								1 1		0 0 0	0 1 6	4 5 9	

	ALL TERFORMANCE OF STAGE	77 M 4 A
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MEMBERTUR-RISE EFFICIENCY ROTOR NEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLUM PER UNIT FRONTAL AREA AIRFLOM PER UNIT ANNULUS AREA AIRFLOM AT ROTOR DUTLET AIRFLOM AT ROTOR DUTLET AIRFLOM AT ROTOR DUTLET ROTATIVE SPEED	1006 1007 1008 1006 1662 1586 0.953 0.966 0.980 1200 1192 1.175 0.994 0.995 0.796 0.998 0.913 0.904 0.862 0.894 0.875 0.456 0.532 0.597 132.94 138.94 154.88 182.2 197.29 212.28 26.95 29.17 31.39 26.38 29.33 32.37 13026.7 12993.5 13016.2 119.7 119.4 119.6	215.40 216.13 71.05 31.96 31.48 31.67 32.13 32.49 13073.7 13098.1
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1 509 3 606 1 555 1 192 1 106 1 172 0.736 0 701 0.700	1.153 1.134
READING NUMBER ROTOR TO TALE FOR TOTAL FOR TOTAL ROTOR TOTAL ROTOR AD IABAR ROTOR MORE TOTAL ROTOR MORE MILE FLOW COFFIC ALBERTOR FOR MORE TOTAL ROTOR FOR MEADING ALBERTOR AT GRAFTOR AT G	### SSURE RATIO 1.533 ### SSURE RATIO 0.970 ### ENERGY ### RATIO 1.162 ### ENERGY ### RATIO 1.162 ### ENERGY ### RATIO 0.960 ### ENERGY ### RATIO 0.860 ### ENERGY ### ENERGY ### RATIO 0.860 ### ENERGY ### ENERG	

COMPRESSOR PE STAGE TOTAL P STAGE TOTAL T STAGE ADIABAT		1.48# 1.157 0.76#	
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATUR TOTAL PRESSURE RATIO STATUR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATUR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC FFICIENT ROTOR MOMENTUM-RISE (FFICIENT ROTOR MOMENTUM-RISE (FRICIENT ROTOR MOMENTUM-RISE (FRICIENT ROTOR TO ROTER ROTOR TO ROTOR AURICUM AT ROTOR OUTLET AURICUM AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1012 1019 1.423 1 410 9.903 1.429 1 121 0.904 9.908 0.824 0.918 0.824 0.918 0.825 0.918 0.825 0.918 0.826 0.918 0.827 0.918	1014 1398 01995 11168 0957 0916 0573 0573 133.99 27.152 26.66	1015 1016 1 306 1 307 1 1016 1 306 1 307 1 100 1
COMPRESSOR PERFORMANCE			
STACE TOTAL PRESSURE MATER STACE TOTAL TEMPERATURE MATER STACE ADIABATIC EFFECTEMENT	1 700 1 706 1 125 1 119 8 769 0 625	1 173 1 114 0 834	1 161 1 275 1 106 1 094 0 826 0 763

FFICIENCT		1 78			0.934
READING ROTOR TO STATUR STATUR ROTOR TO ROTOR RO RO ROTOR RO RO ROTOR ROTOR RO ROTOR	TAL PREDICT CONTROL PREDICT CONTROL CO	55UM (655UM (655UM (660) (600) (600) (700)	NE WAT! TUDE DE ATUDE DE ATUDE (60 FIC.) (60 F	0 1110 1110 14110 14007 11	10389297492974929749931997499319974993199749931997499319999999999
COMP84.55	08 11 11	0000	e ∈ ξ		
STACE TO STACE AD	18 50	F 1 1 1 1 1	91 8	8110	1 324 1 105 0 792

TABLE XIX. - Concluded. OVERALL PERFORMANCE OF STAGE 57M4A

e) S0 Dercent of design speed

163 SU I	ercent of	design spe	60		
READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT AIRFLOM PER UNIT FRONTAL AREA AIRFLOM PER UNIT ANNULUS AREA AIRFLOM AT ROTOR OUTLET AIRFLOM AT ROTOR OUTLET AIRFLOM AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1017 1.257 0.981 0.999 0.890 0.890 0.394 90.391 123.32 18.00 10.00	1018 1.240 8.992 1.0793 0.999 0.911 0.3652 101.94 139.665 20.387 20.23 8719.6	1019 1.227 9.992 1.067 0.9994 0.926 0.347 1.0.34 151.25 22.37 22.07 21.86 8709.9	1020 1.212 9.989 1.063 0.994 0.924 0.323 0.611 118.09 161.86 23.56 23.56 23.56 23.56	1021 1 - 169 0 - 979 1 - 058 9 - 997 0 - 908 0 - 289 0 - 289 127 - 32 174 - 52 25 - 48 25 - 33 25 - 10 87 25 - 2
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO . STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.239	1.230 1.072 0.847	1.217 1.066 0.872	1.198 1.061 0.868	1.164 1.055 6.805

th 70 Percent of design speed

READING NUMBER	1922
ROTOR TOTAL PRESSURE RATIO	1.193
STATOR TOTAL PRESSURE RATIO	0.991
ROTOR TOTAL TEMPERATURE RATIO	1.062
STATOR TOTAL TEMPERATURE RATIO	0.999
ROTOR ADIABATIC EFFICIENCY	0.837
ROTOR MOMENTUM-RISE EFFICIENCY	0.898
ROTOR HEAD-RISE COEFFICIENT	0.379
FLOW COEFFICIENT	0.448
AIRFLOW PER UNIT FRONTAL AREA	80.85
AIRFLOW PER UNIT ANNULUS AREA	110.83
AIRFLOW AT ORIFICE	16.39
AIRFLOW AT ROTOR IMLET	16.14
AIRFLOW AT ROTOR OUTLET	15.99
AIRFLOW AT STATOR OUTLET	16.16
ROTATIVE SPEED	7704.2
PERCENT OF DESIGN SPEED	70.8

COMPRESSOR PERFORMANCE

STAGE	TOTAL	PRESSURE RATIO	1.183
STACE	TOTAL	TEMPERATURE RATIO	1.041
STAGE	ADIABA	TIC EFFICIENCT	0.810

igi si0 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE CFFICIENCY ROTOR MOMENTUM-RISE CFFICIENCY ROTOR MEAD-RISE COEFFICIENT RIPECOM PER UNIT FRONTAL AREA AIRELOM PER UNIT ANNULUS AREA AIRELOM AT ROTOR IMLEY AIRECOM AT ROTOR OUTLET AIRECOM AT ROTOR OUTLET POTATIVE SPEED PERCENT OF DESIGN SPEED	1023 1024 1137 1:126 0.994 0.995 1:045 1:039 0.999 0.999 0.025 0.024 0.076 0.919 0.376 0.914 0.419 0.514 68.08 78.65 93.31 107.00 13.00 15.75 13.63 15.55 13.63 15.55 65.53 9 65.28 5	1.116 1.106 0.994 0.999 1.035 1.032 0.999 0.998 0.903 0.905 0.926 0.927 0.314 0.287 0.577 0.442
COMPRESSOR PERFORMANCE		
STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.130 1.120 1.044 1.038 0.805 0.856	1.109 1.094 1.034 1.031 0.078 0.044

(a) 120 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO	1037	1056 1.644 0.970	1.549	1039	1038
STATOR TOTAL PRESSURE RATIO	1.212	1.123	1.174	0.951 1.164	1.163
STATOR TOTAL TEMPERATURE RATIO	0.774	0.791	0.767	0.994	0.993
ROTOR MOMENTUM-RISE EFFICIENCY	0.844	0.851	0.808	0.769	0.764
ROTOR HEAD-RISE COEFFICIENT	8.479	0.441	0.300	0.348	0.336
FLOW COEFFICIENT	0.578	160.62	0.658	0.662	0.662
AIRFLOW PER UNIT FRONTAL AREA AIRFLOW "ER UNIT ANNULUS AREA		220.16	163.67	164.42 225.37	164.56
AIRFLOW AT DRIFICE	30.76	32.54	33.17	33.33	33.35
ATRELOW AT ORIFICE ATRELOW AT ROTOR INLET	30.47	32.26	32.77	32.90	32.91
BIMPLOW AT MOTOM DUTLET	27.77		33.07	33.36	33.30
AIRFLOW AT STATOR OUTLET	30.74	32.85	33.30	34.03	33.19
ROTATIVE SPEED PERCENT OF DESIGN SPEED	119.6	13002.8	11974.4	12999.8	13001.9
COMPRESSOR PERFORMANCE					
STAGE TOTAL PRESSURE RATIO	1.623	1.596	1.514	1.417	1.341
STAGE TOTAL TEMPERATURE RATTO	1.201	1.191		1.157	1.155
STAGE ADIABATIC EFFICIENCY	0.737	0.747	0.721	0.666	0.564

(b) 110 Percent of design speed

READING NUMBER	1036
ROTOR TO AL PRESSURE RATIO	1.567
STATOR TOTAL PRESSURE RATIO	0.970
ROTOR TOTAL TEMPERATURE RATIO	1.174
STATOR TOTAL TEMPERATURE RATIO	0.994
ROTOR ADIABATIC EFFICIENCY	0.788
ROTOR MOMENTUM-RISE EFFICIENCY	0.855
ROTOR HEAD-RISE COEFFICIENT	0.459
FLOW COEFFICIENT	0.566
AIRFLOW PER UNIT FRONTAL AREA	141.58
AIRFLOW PER UNIT ANNULUS AREA	194.06
AIRFLOW AT ORIFICE	28.70
AIRFLOW AT ROTOR INLET	28.43
AIRFLOW AT ROTOR OUTLET	28.23
ATRFLOW AT STATOR DUTLET	28.61
ROTATIVE SPEED	11979.2
PERCENT OF DESIGN SPEED	110.0

COMPRESSOR PERFORMANCE

STACE	TOTAL	PRESSURE	RATIO	1.521
STAGE	TOTAL	TEMPERAT	URE RATIO	1.167
CTACE	ADIAD	ATTE FEET	*****	0.744

ici 100 Percent of design speed

READING NUMBER ROIDE TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROIDE TOTAL TEMPERATURE RATIO ROIDE TOTAL TEMPERATURE RATIO ROIDE ADIABATIC EFFICIENCY ROIDE MONNITUM-RISE EFFICIENCY ROIDE MONNITUM-RISE EFFICIENCY ROIDE MEAD-RISE COEFFICIENT FLOW COEFFICIENT AIRFLOW PER UNIT FRONTAL AREA AIRFLOW PER UNIT ARNUTS AREA AIRFLOW AT ROIDE OUTLET AIRFLOW AT ROIDE OUTLET ROIDELOW AT STATOR OUTLET	0.974 1.776 0.0040 0.040 0.540 126.34 175.92 25.74 25.72	0.032 0.002 0.430 0.603 130.70	1034 1.433 0.981 1.129 0.997 0.896 0.419 0.656 147.03 201.53 27.54 29.42 29.43 109.4	1033 1.403 0.977 1.124 0.995 0.802 0.797 154.36 211.57 30.98 31.04	1032 1.369 0.957 1.118 9.993 0.797 0.861 1.56 61 214 66 214 66 31.74 31.40 32.75
COMPRESSOR PERFORMANCE					

STACE	TOTAL PRESSURE RATTO	1.406	1.416	1.496	1.371	1.310
STAGE	TOTAL TEMPERATURE RATIO	1 132	1.129	1.126	1.119	1.110
STACE	ADIABATIC SEFECTERCY	0 276	0.008	0 013	8 792	8 727

idi 90 Percent of design speed

READING NUMBER	1942
ROTOR TOTAL PRESSURE RATIO	1.350
STATOR TOTAL PRESSURE RATIO	0.982
ROTOR TOTAL TEMPERATURE RATIO	1.109
STATOR TOTAL TEMPERATURE RATTO	0.997
ROTOR ADIABATIC EFFICIENCY	0.823
ROTOR MOMENTUM RISE EFFICIENCY	0.871
ROTOR MEAD-RISE COEFFICIENT	0.422
FLOW CDEFFICIENT	0.539
ATRFLOW PER UNIT FRONTAL AREA	117.44
AIRFLOW PER UNIT ANNULUS AREA	168.97
WINEFOR WE DELETCE	23.80
AIRFLOW AT ROTOR INLET	23.50
AIRFLOW AT ROTOR OUTLET	23.39
AIRFLOW AT STATOR OUTLET	23.46
ROTATIVE SPEED	9604.8
PERCENT OF DESIGN SPEED	98 1

STACE	TOTAL	PRESSURE RATIO	1 326
		TERREGATURE RATIO	1.105
		ATTE SESTETEMEN	8 797

TABLE XX - Concluded. OVERALL PERFORMANCE OF STACE 55M-4C

iei 80 Percent of design speed

PEADING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO POTOR ADIABATIC EFFICIENCY ROTOR MOHENTUM-RISE EFFICIENCY ROTOR MOHENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENCY AUTOR COEFFICIENT LINE COMPRESSURE AND AUTOR ON A TORNOLOGY AIRCLOM PER UNIT ANNULUS AREA AIRCLOM AT ROTOR OUTECT AIRCLOM AT ROTOR OUTECT ROTATIVE SPEED PERCENT OF DESIGN SPEED	1044 1.249 0.9866 1.9858 8.8313 0.4127 104.073 0.527 104.075 20.79 8673.99	1048 1047 1.258 1.249 0.990 0.997 1.378 1.078 0.999 0.998 0.869 0.915 0.393 0.979 0.593 0.644 115.15 123.91 127.93 168.61 23.34 24.93 22.91 24.65 22.91 24.65 23.18 871.8	1046 1.246 0.993 1.9797 0.995 0.918 0.499 130.96 26.29 26.29 25.98 8706.0	10.45 1.219 0.973 1.067 0.903 0.735 0.746 137.61 138.62 27.62 27.62 27.62 27.37 8711.5
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.251	1.245 1.233	1.215	1.186
	1.082	1.077 1.072	1.067	1.063
	0.804	0.641 0.057	0.655	0.793

(f) 70 Percent of design speed

READING NUMBER	1049
ROTOR TOTAL PRESSURE RATIO	1.200
STATOR TOTAL PRESSURE RATIO	0.988
ROTOR TOTAL TEMPERATURE RATIO	1.065
STATOR TOTAL TEMPERATURE RATIO	0.998
ROTOR ADIABATIC EFFICIENCY	0.818
ROTOR HOMENTUM-RISE EFFICIENCY	0.668
ROTOR HEAD-RISE COEFFICIENT	0.404
FLOW COEFFICIENT	0.500
AIRFLOW PER UNIT FRONTAL AREA	88.05
AIRFLOW PER UNIT ANNULUS AREA	120.69
AIRFLOW AT DRIFICE	17.85
AIRFLOW AT ROTOR INLET	17.64
AIRFLOW AT ROTOR DUTLET	17.54
AIRFLOW AT STATOR OUTLET	17.58
ROTATIVE SPEED	7604.6
PERCENT OF DESIGN SPEED	69.9

COMPRESSOR PERFORMANCE

STACE	TOTAL	PRE	SSURE	RATIC	1.186
STAGE	TOTAL	TEM	PERAT	URE RATIO	1.063
STACE	ADIAD	ATIC	FFFI	CIENCY	0.796

(g) 60 Percent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MOMENTUM-RISE COEFFICIENCY ROTATIVE SPEED PERCENT OF DESIGN SPEED	104938964589914865899115566	1051 1.141 0.7945 0.7945 0.7945 0.7945 0.795 0.795 0.795 0.795 15.06 16.775 16.75 16.75 16.75 16.75	1052 1136 1136 11942 0.999 0.913 0.369 90.369 90.369 18.162 17.73 6551.2	1054 11292 0.9299 0.9299 0.9188 0.4587 120.029 197.35 6560	1055 1 118 9 - 985 0 - 998 0 998 0 915 0 915 0 736 108 83 149 17 22 - 96 21 - 82 21 - 80 21 - 31
COMPRESSOR PERFORMANCE					

| STAGE TOTAL PRESSURE RATIO | 1.138 | 1.124 | 1.128 | 1.126 | 1.101 | STAGE TOTAL TEMPERATURE RATIO | 1.047 | 1.044 | 1.041 | 1.038 | 1.034 | STAGE ADIABA COLUMN | COLUMN |

TABLE XXL - OVERALL PERFORMANCE OF STAGE 57M4)

on 110 Percent of design speed

READING MUMBER	1059
ROTOR TOTAL PRESSURE RATIO	1.427
STATOR TOTAL PRESSURE RATIO	
ROTOR TOTAL TEMPERATURE RATIO	1.122
STATOR TOTAL TEMPERATURE RATE	0 1.000
ROTOR ADIABATIC EFFICIENCY	0.878
ROTOR MOMENTUM-RISE EFFICIENC	T 0.950
ROTOR HEAD-RISE COEFFICIENT	0.336
FLOW COEFFICIENT	0.367
AIRFLOW PER UNIT FRONTAL AREA	161.80
AIRFLOW PER UNIT ANNULUS AREA	139.53
AIRFLOW AT DRIFICE	20.63
AIRFLOW AT ROTOR INLET	20.28
AIRFLOW AT ROTOR DUTLET	19.80
AIRFLOW AT STATOR OUTLET	19.90
ROTATIVE SPEED	12093.9
PERCENT OF DESIGN SPEED	111.1

COMPRESSOR PERFORMANCE

STAGE	TOTAL	PRESSURE RATIO .	1.397
STAGE	TOTAL	TEMPERATURE RATIO	1.122
STAGE	ADIAB	ATIC EFFICIENCY	0.823

ibi 100 Fercent of design speed

READING NUMBER HOTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMERTUM—RISE EFFICIENCY FLOW COEFFICIENT AIRFLOW PER UNIT FROM'AL AREA AIRFLOW AT ROTOR TIMET AIRFLOW AT ROTOR OUTLET AIRFLOW AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1040 1.349 0.980 1.101 0.979 0.975 0.337 0.337 0.740 119,73 17,45 17,19 10923.25	1061 1314 0.989 1.092 0.984 0.305 0.305 0.305 0.305 19.03 19.03 18.76 18.76	10.62 1.271 10.9*4 1.041 10.999 0.975 0.928 0.245 0.425 0.429 103.990 142.42 20.76 20.76 20.54 10872.9	1 0 6 3 1 197 0 989 1 0 6 7 0 988 0 621 0 194 0 453 111 1 19 22 54 22 54 22 196 21 0 2	1044 1154 0.974 1.059 0.997 0.715 0.753 0.155 0.155 112.23 153.03 22.75 22.47 22.48 21.96 10973.9
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.322	1.300	1.263	1.184	1.120
	1.101	1.091	1.080	1.065	1.056
	0.824	0.052	0.863	0.758	0.629

ici 90 Percent of design speed

READING MUMBER	1065
ROTOR TOTAL PRESSURE RATIO	1.258
STATOR TOTAL PRESSURE RATIO	0.987
ROTOR TOTAL TEMPERATURE RATIO	1.076
STATOR TOTAL TEMPERATURE RATIO	4.999
ROTOR ADIABATIC EFFICIENCY	0.870
ROTOR MOMENTUM-RISE EFFICIENCY	0.955
ROTOR HEAD-RISE COEFFICIENT	0.320
FLOW COEFFICIENT	0.342
AIRFLOW PER UNIT FRONTAL AREA	77.43
AIRFLOW PER UNIT ANNULUS AREA	106.40
AIRFLOW AT DRIFICE	15.73
AIRFLOW AT ROTOR INLET	15.49
AIRFLOW AT ROTOR DUTLET	15.23
AIRFLOW AT STATOR OUTLET	15.24
ROTATIVE SPEED	7453.8
PERCENT OF DESIGN SPEED	99.7

STAGE	TOTAL	PRESSURE RATIO	1.242
STACE	TOTAL	TEMPERATURE RATIO	1.075
STAGE	ADIAB	ATIC EFFICIENCY	0.851

TABLE XXI. - Concluded, OVERALL PERFORMANCE OF STAGE 57M4F

id so Descent of design speed

READING NUMBER ROTOR TOTAL PRESSURE RATIO STATOR TOTAL PRESSURE RATIO STATOR TOTAL TEMPERATURE RATIO STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR HOMENTUM-RISE EFFICIENCY ROTOR HOMENTUM-RISE EFFICIENCY FLOM COEFFICIENT FLOM COEFFICIENT AINFLOM PER UNIT FRONTAL AREA AIRFLOM PER UNIT ANNULUS AREA AIRFLOM AT ORTIFICE AIRFLOM AT ROTOR OUTLET AIRFLOM AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1066 1.266 0.992 0.999 0.983 0.9314 68.350 93.988 13.42 68.70 13.42 13.50	1067 1.185 0.995 1.055 1.0599 0.9947 0.282 76.05 104.23 145.27 15.01 8713.4	1068 1.1610 0.998 0.999 0.904 0.937 0.2416 84.32 115.09 16.65 8708 0.90	103921 0.9921 0.9921 0.9990 0.8683 0.24689 128.857 18.37 805.20	1070 1.101 0.984 1.036 6.998 0.791 0.796 0.156 0.489 97.54 133.69 19.54 19.54 19.54 19.01
COMPRESSOR PERFORMANCE STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE ADIABATIC EFFICIENCY	1.194	1.179	1.156	1.121	1.083
	1.061	1.054	1.047	1.040	1.034
	0.849	0.884	0.895	0.832	0.685

(e) 70 Percent of design speed

READING NUMBER	1071
ROTOR TOTAL PRESSURE RATIO	1.154
STATOR TOTAL PRESSURE RATIO	
ROTOR TOTAL TEMPERATURE RATIO	1.047
STATOR TOTAL TEMPERATURE RATIO	1.000
ROTOR ADIABATIC EFFICIENCY	0.882
ROTOR HOMENTUM-RISE EFFICIENCY	0.951
ROTOR HEAD-RISE COEFFICIENT	0.305
FLOW COEFFICIENT	0.327
AIRFLOW PER UNIT FRONTAL AREA	59.41
AIRFLOW PER UNIT ANNULUS AREA	81.43
AIRFLOW AT ORIFICE	12.04
AIRFLOW AT ROTOR INLET	11.92
AIRFLOW AT ROTOR OUTLET	11.58
AIRFLOW AT STATOR DUTLET	11.81
ROTATIVE SPEED	7653.3
PERCENT OF DESIGN SPEED	70.3

COMPRESSOR PERFORMANCE

STAGE	TOTAL	PRESSURE RATIO	1.146
STAGE	TOTAL	TEMPERATURE RATIO	1.047
STAGE	ADIABI	ATIC EFFICIENCY	0.850

(f) 60 Percent of design speed

READING NUMBER	1072	1074	1075	1077	1076
ROTOR TOTAL PRESSURE RATIO	1.111	1.098	1.075	1.048	1.061
STATOR TOTAL PRESSURE RATIO	8 995	0.997	0.996	3.986	0.991
ROTOR TOTAL TEMPERATURE RATIO	1.111 0.995 1.035	1.030	1.023	1.017	1.020
CTATOR TOTAL TENTERATURE RATIO	1.023			0.999	0.999
STATOR TOTAL TEMPERATURE RATIO	1.000	1.000	1.000	0.777	0.777
ROTOR ADIABATIC EFFICIENCY	0.881	0.897	0.903	0.773	0.854
ROTOR MOMENTUM-RISE EFFICIENCY	1.000 0.881 0.952	0.948	0.913	0.771	0.857
ROTOR HEAD-RISE COEFFICIENT	0.303	0.266	0.205	0.131	0.167
FLOW COEFFICIENT	0.321	0.366	0.451	0.514	0.488
	0.321			30.313	
AIRFLOW PER UNIT FRONTAL AREA	59.09	56.99	69.37	78.43	74.76
AIRFLON PER UNIT ANNULUS AREA	68.66	78.12	95.09	107.51	102.47
AIRFLON AT ORIFICE	10.15	11.55	14.06	15.90	15.15
AIRFLOW AT ROTOR INLET	10.04	11.43	13.93	15.74	15.02
AIRTON AT NOTON THEET	10.07	11.72		15.49	14.78
AIRFLON AT ROTOR OUTLET	9.80	11.17	13.62		
AIRFLON AT STATOR OUTLET	9.95	11.25	13.51	15.21	14.50
ROTATIVE SPEED	6537.3	6541.6	6538.7	6526.4	6533.7
PERCENT OF DESIGN SPEED	60.1	60.1	60.1	60.0	60.0
reactar or pesion sietes		00.1			****
COMPRESSOR DESCRIPTION					
COMPRESSOR PERFORMANCE					

STAGE TOTAL PRESSURE RATIO 1.105 1.095 1.071 1.034 1.052 STAGE TOTAL TEMPERATURE RATIO 1.034 1.030 1.023 1.016 1.019 STAGE ADIABATIC EFFICIENCY 0.847 0.884 0.869 0.579 0.751

Figure 1. - Flow path for stage 57.

(a) Rotor 57.

(b) Stator 57.

Figure 2. - Stage 57.

Figure 3. - Recessed casing contour (stage 57).

Figure 4. - Inlet blade angle for original and recoined rotor blade (stages 57 and 57M1).

Figure 5. - Straight casing and rotor contour (stage 75M3).

Figure 6. - Casing treatment insert (stage 57M4).

Figure 7. - Compressor test facility.

Figure 8. - Survey instrumentation,

Figure 9. - Circumferential location of instrumentation (looking downstream).

Figure 10. - Overall performance for rotor 57A. Design rotor-blade setting angle.

Figure 11. - Overall performance for stage 57A. Design rotor blade setting angle.

Figure 12. - Effect of blade setting angle on overall stage performance.

Figure 13. - Effect of rotor-blade setting angle on stage pressure ratio and stall I:ne of stage 57 operating at design speed.

Figure 14. - Effect of rotor-blade setting angle on calculated static thrust. Stage 57; design speed.

Figura 15. - Overall performance of rotor 57M1A (recoined blade, design rotor-blade setting angle).

Figure 16. - Overall performance of stage 57M1A (recoined blade, design rotor-blade setting angle).

Figure 17. - Effect of rotor-blade setting angle on stage pressure ratio and stall line of stage 57M1 operating at design speed.

Figure 18. - Effect of rotor-blade setting angle on calculated static thrust. Stage 57M1; design speed.

Figure 19. - Overall performance of rotor 57M3A (recoined rotor with straight casing; design rotor-blade setting angle).

Figure 20. - Overall performance of stage 57M3A (recoined rotor with straight casing; design rotor-blade setting angle).

Figure 21, - Effect of rotor-blade setting angle on stage pressure ratio and stall line of stage 57M3 operating at design speed.

Figure 22. - Effect of rotor-blade setting angle on calculated static thrust. Stage 57M3, design angle.

Figure 23. - Overall performance of rotor 57M4A (recoined rotor with casing treatment; design rotor-blade setting angle).

Figure 24. - Overall performance of stage 57M4A (recoined rotor with casing treatment; design rotor blade setting angle.

Figure 25. - Effect of rotor-blade setting angle on stage pressure ratio and stall line of stage 57M4 operating at design speed.

Figure 26. - Effect of rotor-blade setting angle on calculated static thrust. Stage 57M4, design speed.

Figure 27. - Effect of configuration and setting angle changes on stall line. Design speed.

Figure 28. - Effect of configuration changes on static thrust. Design speed.

1	Report No.	2. Government Acces	ssion No	Recipient's Catalog	ya No		
	NASA TP-1502	2. Government Acces	331011 140.	3. Necipient's Catalo	g 140		
4.	AERODYNAMIC PERFORMANCE OF 1.38-PRES VARIABLE-PITCH FAN STAGE		ESSURE-RATIO,	5. Report Date September 19 6. Performing Organ			
7.	Royce D. Moore and Walter M. Osborn			8 Performing Organization Report No E-9700			
9.	Performing Organization Name and Address		505-04				
	National Aeronautics and Space Lewis Research Center	ace Administration		11, Contract or Grant No.			
	Cleveland, Ohio 44135	13. Type of Report and Period Covered					
12.	12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546			Technical Paper 14. Sponsoring Agency Code			
16	Abstract						
	speeds, and flows is presented of 29.6 kg/sec. The measured ever, stall margin was only 5 pless than 15 to over 115 percent from 25° (closed) to -8° (opene 20.6 percent but decreased effi	performance ag percent. Static (it of that at design d). The use of (reed reasonably we thrust values along in angle as the blade casing treatment in	ell with the desig an operating line e setting angle w	on point. How- e ranged from was varied		
17.	Key Words (Suggested by Author(s)) Turbomachinery Rotor blades (turbomachinery) Compressors VTOL	STOL	18. Distribution Statement Unclassified - STAR Category	unlimited			
19.	Security Classif. (of this report)	20. Security Classif. (d	of this page)	21. No. of Pages	22 Price*		
	Unclassified	Unclassified		70	A04		

