☐ FIRST Set in Syntax Analysis

First(α) is a set of terminal symbols that begin in strings derived from α .

Consider the production rule:

$$A \rightarrow abc / def / ghi$$

Then, we have-

Rules For Calculating First Function-

Rule-01:

For a production rule $X \rightarrow \in$, First(X) = { \in }

Rule-02:

For any terminal symbol 'a', First(a) = { a }

Rule-03:

For a production rule $X \rightarrow Y_1Y_2Y_3$,

Calculating First(X)

```
If \in \notin First(Y_1), then First(X) = First(Y_1)
If \in \in First(Y_1), then First(X) = \{ First(Y_1) - \in \} \cup First(Y_2Y_3) \}
```

Calculating First(Y₂Y₃)

```
If \in \notin First(Y_2), then First(Y_2Y_3) = First(Y_2)
If \in \in First(Y_2), then First(Y_2Y_3) = \{ First(Y_2) - \in \} \cup First(Y_3) \}
```

Similarly, we can make expansion for any production rule $X \rightarrow Y_1Y_2Y_3....Y_n$.

☐ FOLLOW Set in Syntax Analysis

Follow(α) is a set of terminal symbols that appear immediately to the right of α .

Rules For Calculating Follow Function-

Rule-01:

For the start symbol S, place \$ in Follow(S).

Rule-02:

For any production rule $A \rightarrow \alpha B$, Follow(B) = Follow(A)

Rule-03:

For any production rule A $\rightarrow \alpha B\beta$,

```
If \in \notin First(\beta), then Follow(B) = First(\beta)
If \in \in First(\beta), then Follow(B) = \{ First(\beta) - \in \} \cup Follow(A) \}
```

Important Notes-

Note-01:

€ may appear in the first function of a non-terminal.

∈ will never appear in the follow function of a non-terminal.

Note-02:

Before calculating the first and follow functions, eliminate **Left Recursion** from the grammar, if present.

Note-03:

We calculate the follow function of a non-terminal by looking where it is present on the RHS of a production rule.

PRACTICE PROBLEMS BASED ON CALCULATING FIRST AND FOLLOW-

Problem-01: Calculate the first and follow functions for the given grammar-

 $S \rightarrow aBDh$ $B \rightarrow cC$ $C \rightarrow bC / \in$ $D \rightarrow EF$ $E \rightarrow g / \in$ $F \rightarrow f / \in$

Solution- The first and follow functions are as follows-

First Functions-	Follow Functions-
First(S) = { a } First(B) = { c } First(C) = { b , ∈ } First(D) = { First(E) − ∈ } ∪ First(F) = { g , f , ∈ } First(E) = { g , ∈ } First(F) = { f , ∈ }	Follow(S) = $\{ \$ \}$ Follow(B) = $\{ First(D) - \in \} \cup First(h) = \{ g, f, h \}$ Follow(C) = Follow(B) = $\{ g, f, h \}$ Follow(D) = $\{ First(h) = \{ h \}$ Follow(E) = $\{ First(F) - \in \} \cup Follow(D) = \{ f, h \}$ Follow(F) = Follow(D) = $\{ h \}$

Problem-02: Calculate the first and follow functions for the given grammar-

```
S \rightarrow (L) / a

L \rightarrow SL'

L' \rightarrow ,SL' / \in
```

Solution- The first and follow functions are as follows-

First Functions-	Follow Functions-
First(S) = { (, a }	Follow(S) = $\{ \$ \} \cup \{ First(L') - \in \} \cup Follow(L) \cup Follow(L') = \{ \$, , ,) \}$
First(L) = First(S) = { (, a }	Follow(L) = $\{ \} \}$
First(L') = { , , ∈ }	Follow(L') = Follow(L) = $\{ \} \}$

Problem-03: Calculate the first and follow functions for the given grammar-

 $S \rightarrow A$ $A \rightarrow aB / Ad$ $B \rightarrow b$ $C \rightarrow g$

Solution- We have-

- The given grammar is left recursive.
- So, we first remove left recursion from the given grammar.

After eliminating left recursion, we get the following grammar-

 $S \rightarrow A$ $A \rightarrow aBA'$ $A' \rightarrow dA' / \in B \rightarrow b$ $C \rightarrow g$

Now, the first and follow functions are as follows-

First Functions-	Follow Functions-
First(S) = First(A) = { a } First(A) = { a } First(A') = { d , ∈ } First(B) = { b }	Follow(S) = $\{ \$ \}$ Follow(A) = Follow(S) = $\{ \$ \}$ Follow(A') = Follow(A) = $\{ \$ \}$ Follow(B) = $\{ \text{First}(A') - \in \} \cup \text{Follow}(A) = \{ d, \$ \}$
First(C) = { g }	Follow(C) = NA

Problem-04: Calculate the first and follow functions for the given grammar-

 $S \rightarrow AaAb / BbBa$ $A \rightarrow \in$ $B \rightarrow \in$

Solution- The first and follow functions are as follows-

First Functions-	Follow Functions-
={a,b}	Follow(S) = { \$ } Follow(A) = First(a) U First(b) = { a , b } Follow(B) = First(b) U First(a) = { a , b }

Problem-05: Calculate the first and follow functions for the given grammar-

```
E \rightarrow E + T / T

T \rightarrow T \times F / F

F \rightarrow (E) / id
```

Solution- We have-

- The given grammar is left recursive.
- So, we first remove left recursion from the given grammar.

After eliminating left recursion, we get the following grammar-

```
E \rightarrow TE'

E' \rightarrow + TE' / \in

T \rightarrow FT'

T' \rightarrow x FT' / \in

F \rightarrow (E) / id
```

Now, the first and follow functions are as follows-

First Functions First(E) = First(T) = First(F) = { (, id } Follow(E) = { \$,) } First(E') = { + , \in } Follow(E') = Follow(E) = { \$,) } Follow(E') = Follow(E) U Follow(E') = { + , \$,) } First(T') = { x , \in } Follow(T') = Follow(T) = { + , \$,) } Follow(F) = { First(T') - \in } U Follow(T) U Follow(T') = { x , + , \$,) }

Problem-06: Calculate the first and follow functions for the given grammar-

```
S \rightarrow ACB / CbB / Ba

A \rightarrow da / BC

B \rightarrow g / \in

C \rightarrow h / \in
```

Solution- The first and follow functions are as follows-

```
First Functions-
                                                                   Follow Functions-
First(S) = \{ First(A) - \in \} \cup \{ First(C) - \in \} \cup First(B) \}
                                                                  Follow(S) = \{ \$ \}
\cup First(b) \cup { First(B) - \in } \cup First(a)
                                                                  Follow(A) = { First(C) - \in } U { First(B) - \in } U
= \{d,g,h,\in,b,a\}
                                                                  Follow(S) = \{ h, g, \$ \}
First(A) = First(d) \cup \{ First(B) - \in \} \cup First(C) 
                                                                  Follow(B) = Follow(S) \cup First(a) \cup { First(C) - \in } \cup
= \{d,g,h,\in\}
                                                                  Follow(A) = \{ , a, h, g \}
First(B) = \{g, \in \}
                                                                  Follow(C) = { First(B) - \in } \cup Follow(S) \cup First(b) \cup
                                                                  Follow(A) = \{g, \$, b, h\}
First(C) = \{ h, \in \}
```