

算丰AI芯片的产品设计与安全设计

芯之安全磐石 若广厦之地基

比特大陆 汤炜伟

01 比特大陆简介

03) 算丰AI芯片的安全六盾

04) 他山之石:区块链

01 比特大陆简介

比特大陆公司历程

ANTMINER

经过七年成长的高性能计算芯片设计企业: 掌握7纳米和5纳米芯片设计能力的全球几家公司之一

区块链业务-蚂蚁矿机

全球市场占有率第一

人工智能业务——算丰

AI芯片和产品 / 深度学习专用TPU

2018

首款7nm芯片 第二代AI芯片

超50亿元 累计纳税额

第二款7nm芯片 第三代AI芯片

2019

2015

AI业务算丰启动

BTC.com矿池上线

2017

年营收突破

25亿美元

第一代AI芯片

2013

公司成立 推出55nm芯片

推出28nm芯片 ANTPOOL矿池上线

推出16nm芯片

2016

01) 比特大陆算丰AI芯片

2021

BM1686

高算力,大带宽

8核A53, 主控能力提高2~3倍

接口丰富,超低功耗

支持双干兆以太网口

功耗较上代产品降低50%以上

INT8算力17.6T / 35.2T

BM1684

强劲的视频编解码能力

- 最高支持38路1080P解码,提升4倍
- 视频前后处理能力提升4倍

安全可靠,完美保障

- 新增安全引擎,保证数据安全
 - 、算法模型安全、设备安全

2018

BM1682

工艺制程 峰值性能 28nm 3T FP32 视频解码 8路1080P硬解码

2019

BM1880

BM1684

12nm

视频解码

工艺制程 峰值性能

32路1080P硬解码

17.6T/16W

工艺制程 峰值性能 1TOPS@INT8 28nm 视频解码 H.264解码

BM1682

第二代面向云端与边缘 应用的AI推理芯片

BM1880

第一代面向终端 应用的AI推理芯片 **BM1680**

工艺制程 峰值性能 28nm 2T FP32

2016

组建AI芯片团队

2017

AI芯片的设计初心

02 AI芯片的设计初心

Performance & Power

Application & Easy use

Lower cost & Safe

算力强、功耗适合 场景全覆盖 云端和边缘 机器视觉全算法支持 GPU迁移代价低 客户研发投入小 产品性价比优 客户数据安全 算法安全

全产品矩阵: 云和边缘全覆盖

PeaceNet

算力云管理平台

算力资源池

算力调度/弹性伸缩

算法资源池

算法适配/算法仓库

应用网关

运营管理

BMNNSDK

一站式开发工具链

Compiler 编译器

BMNetC / BMNetT / BMNetP / BMNetM / Paddle-Lite

Runtime 运行时部署工具

BMRuntime Engine / BMCV / OpenCV /FFMpeg / BMLib

边缘

AI计算模组 SM5 算力 17.6TOPS@INT8

AI单芯加速卡 SC5H 算力 17.6TOPS@INT8

굸

AI三芯加速卡 SC5+ 算力 52.8TOPS@INT8

AI计算盒 SE5 算力 17.6TOPS@INT8

AI计算盒 SE3 算力 3TFLOPS@FP32

SC5+ AI服务器系列 X86平台,国产飞腾FT平台 一机多卡 AI超级算力中心 AI推理服务器集群 P级超强算力

BM1684 12nm 17.6TOPS@INT8

BM1682 28nm 3TFLOPS@FP32

AI芯片的设计: ASIC专用架构, 算力、功耗、解码优于GPU

高算力,大带宽

- 8核A53, 主控能力提高2~3倍
- INT8算力17.6T / 35.2T

强劲的视频编解码能力

- 最高支持38路1080P解码,提升4倍
- 视频前后处理能力提升4倍

- ResNet超过GPU 20倍
- VggNet超过GPU 25倍
- 能量效率超过旗舰 GPU 20倍

同等的被动散热 边缘盒/模组 (<20W)

高半长板卡 (<=75W)

同等的的半

• ResNet超过旗舰 GPU 10%-32%

• VggNet超过旗舰 GPU **8%-41**%

(02) AI芯片的设计初心: 机器视觉类AI算法全覆盖

图像分类

典型模型

 AlexNet、GoogLeNet、VGGNet、 RESNET, DenseNet, mobilenet

目标检测

典型模型

• YOLO、SSD、Fast R-CNN

语义分割

语义分割:在语义上理解每个像素的角色

典型模型

• Deeplab, FCN, SegNet

实例分割

语义分割的基础上,实例分割将不同类型的

典型模型

• Mask R-CNN、Deeplab

行业/技术	图像分类	目标检测	语义分割	实例分割
安防	人体车辆属性分类	人脸检测、目标检测	行为姿态检测	行为姿态检测
互联网	电商图像识别、OCR	内容审查	视频广告	视频广告
消费电子	手机相册分类	手机相册分类	手机美颜	抠图、电影效果
汽车	人车分类、红绿灯	人车检测	可行驶区域感知	可行驶区域感知
医疗	病灶标注	病灶识别与标注	CT、X光辅助诊断	CT、X光辅助诊断

02) AI芯片的设计初心:框架完善支持、易开发易迁移

应用层	人脸	数育 交通 表情 车辆 识别 识别	物流 智能 调度	零售 医疗 无人 影像 商店 识别	其他
平台层	算力调度	算法管理	开放网关	运营服务	
算法层	视图处理	! 语音识别	语义分析	智能推荐	
框架层	Caffe	Tensor Flow	PyTorch	MxNet	Paddle
基础层	服务器	芯	片	AI算力硬件	

算丰AI芯片的安全六盾

03) 最新一代AI芯片: BM1684的安全六盾

- Secure boot
- Crypto engines
- Secure key for customer
- Trust zone
- Secure firewall
- Chip unique ID

03

构建可信的系统: Secure boot 验证启动

片内固化 ARM trust firmware framework

- 从efuse读取root key digest,从SPI flash读取bootloader镜像和root key
- 用root key digest验证root key的合法性
- 用root key验证bootloader镜像的合法性

授信启动 U-boot verified boot framework

- bootloader镜像里包含了bootloader的code和public key
- 读取kernel + ramdisk的镜像
- 验证镜像的合法性

授信启动 Linux dm-verity

- ramdisk里包含了eMMC上根文件系统分区的root hash
- 采用了kernel的dm-verity机制,从root hash出发,对根文件系统做校验

Application

验证启动

• 可采用非对称加密方法,对应用签名进行合法性验证

构建可信的系统: Trust zone 可信区

Normal World Secure World Client App Dynamic tee-Trusted supplicant App EE Client TEE Internal Generic TEE API (ioctl) User TEE subsystem Kernel Static OP-TEE **OP-TEE OP-TEE Msq** Trusted Trusted OS driver SMC call

- TrustZone提供一套高效系统安全保护硬件架构, 可以有效的抵御各种可能的攻击
- 它将SOC的资源划分为安全(secure world)和非安全(normal world)两个世界,关键的高敏感数据在安全世界执行,其它操作在正常世界执行
- 从芯片ROM开始,逐级建立信任链,每一步启动 都需要最高特权级别执行和密钥验证,防止软件 篡改替换
- BM1684遵循TrustZone设计规范进行了完整的实现

01

构建可信的系统: Secure Firewall & Secure key & Chip unique ID

TEE Client API

Generic TEE API

Rich OS

Cust Trust Apps

TEE Internal APIs

Trusted OS

TPU

SPACC

OTP

...

• 应用密钥

- 客户根钥烧写至OTP区域,采用 secure mode保护,仅供硬件加解密 引擎读取
- 加密后应用密钥由normal world传入 secure world解密,用于相应数据的 解密

• 数据:

- 加密存储在非易失设备中 (eMMC/SDD/HDD)
- 使用时加载至secure world解密后使用
- 算法模型:
 - 加密存储在非易失设备中或由网络下发
 - 通过TA加载至secure world解密运行

Hardware Platform

构建可信的系统: Crypto Engines

- Support crypto engines:
 - AES/DES;
 - SM4/SHA;
 - RSA/ECC;
- All above hardware accelerator
 - SPACC enabled one way read
 - Software (cpu) accelerator can read both ways not secure
- Secure key storage scheme support

区块链设想

01 边缘计算安全体系

保密性和安全共享

数据完整性

数据加密性

数据安全

隐私保护

数据隐私保护

身份隐私保护

位置隐私保护

边缘计算安全体系

边缘节点身份认证

云节点身份认证

节点身份管理

身份认证

访问控制

数据访问控制

角色访问控制

身份访问控制

04

边缘计算典型网络节点和结构图

抓拍机、摄像头以及应用终端等终端节点负责采集数据,将数据通过网络路由上传到AI计算盒,边缘计算节点对终端采集的数据进行AI运算和处理,然后存储各个区块的哈希值。云节点负责账本存储、共识、路由和应用等任务, 云节点是云平台上划分的多个虚拟机, 虚拟机负责共识出块和全账本存储, 并可以通过开发区块链应用来管理和监控整个网络。

04

边缘计算和云: 基于区块链的智能合约

智能合约封装了预定义的触发条件及响应规则、触发合约执行的场景(如达到特定时间或发生特定事件等)、特定情境下的应对动作等。在边缘计算场景中,可以采用智能合约来操作数据,实现区块链数据的生成、修改、删除等权限管理功能,智能合约为区块链部署到AI硬件产品上提供了灵活可编程的机制和算法。

5 结语

- 比特大陆作为最早的AI芯片厂家之一,芯片设计和软件设计健全;
- 从最底层的芯片和硬件层,提供多种安全框架的产品解决方案;而 芯片级别的安全保护、隐私保护等是最基础的磐石;
- 以AI芯片构建的边缘计算方案,未来有机会通过区块链智能合约,构建安全认证和访问体系;
- 5G+AI时代来临,千亿级的物联网设备,安全问题会更加突出。我们愿与滴滴和各界朋友合作,打造一个具有算力之美的、安全的智能世界;

