Level	Scenario	Configuration	Explanation
4	Single Call Handling	$c_2, f=2$	The elevator is initially at Level 2 $(f = 2)$, and a car call request is made at Level 2 (c_2) , mean- ing a passenger inside the elevator requests to go to another level. The direction is not yet determined (DIR=NA).
4	Unreachable Level	l_3^u , $f = 2$	The elevator is at Level 2 $(f = 2)$, and there is an up request at Level 3 (l_3^a) . However, the elevator is currently moving down (DIR=DOWN), meaning it cannot service the up request at Level 3 immediately.
10	Multi Call Handling	$l_0^u, l_3^d, f=5$	The elevator is at Level 5 $(f = 5)$, with a landing call at Level 0 (up) $\binom{n}{0}$ and another landing call at Level 3 (down) $\binom{n}{3}$. The elevator is currently moving up (DIR=UP), meaning it must decide how to prioritize these requests.
10	Direction Switching Test	$l_5^u, l_8^d, f = 6$	The elevator is at Level 6 $(f = 6)$, with a landing call at Level 5 (up) (l_8^4) and another landing call at Level 8 (down) (l_8^4) . Since it is moving down (DIR=DOWN), it must determine when and how to switch direction to accommodate the requests.
15	Conflict Request Handling	$l_2^d, l_5^u, f=4$	The elevator is at Level 4 $(f = 4)$, with a down- ward request at Level 2 (l_2^u) and an upward request at Level 5 (l_3^u) . The elevator is currently moving up (DIR=UP), creating a conflict in direction prioriti- zation.
15	Idle Mode Test	$c_8, f = 10$	The elevator is idle at Level 10 ($f=10$, DIR=NA), and a car call request at Level 8 (c_8) is made. This tests how the system handles requests when the elevator is not in motion.
20	High-Level Request Simulation	$c_{10}, c_{15}, c_{18}, f = 12$	The elevator is at Level 12 ($f = 12$), with car calls from Levels 10, 15, and 18 (c_{10} , c_{15} , c_{18}). The direction alternates between UP and DOWN (DIR=UP/DOWN), testing the system's ability to schedule requests across multiple levels.
20	Invalid Path Detection	l_{18}^u , $f = 19$	The elevator is at Level 19 $(f = 19)$, and there is a landing call at Level 18 (up) (l_{18}^*) . However, since the elevator is moving down (DIR=DOWN), it cannot immediately serve this request.
30	Stress Test	$i \in [10,30], c_i, l_i^u, l_i^d, f = 15$	The elevator is at Level 15 $(f=15)$, with random car and landing calls across Levels 10 to 30 $(i\in[10,30])$. The direction fluctuates between UP and DOWN (DIR=UP/DOWN), testing the system's handling of high-traffic situations.
30	Failure to Switch Direction	$l_{25}^u, l_{28}^d, f = 26$	The elevator is at Level 26 ($f = 26$), with up and down requests at Levels 25 and 28 (l_{26}^{*} , l_{28}^{*}). The direction is not determined (DR=NA), testing cases where the elevator fails to switch direction properly.
30	Scheduling Anomaly	$c_{10}, c_{20}, c_{25}, f = 22$	The elevator is at Level 22 $(f=22)$, with car call requests at Levels 10, 20, and 25 (c_{10}, c_{20}, c_{25}) . The direction fluctuates between UP and DOWN (DIR=UP/DOWN), testing for potential anomalies or incorrect scheduling behaviors.

 ${\it Table 1: Explanation of Multi-Level Elevator Scheduling Test Scenarios}$