

#2021_전자제조데이터분석_Team Project

위드 코로나 시대의 이동 수단 개선 방안 도출

데이터사이언스

Team 2

21510004 이예빈

21512023 정주현

목차

A table of Contents

#1, Project Topic

#2, Data Description

#3, Visualization

#4, Conclusion

Project Topic

위드 코로나 시대의 이동 수단 개선 방안 도출

- 2019년(COVID-19 이전), 2020년, 2021년을 비교하여 전염병이 장기화 됨에 따른 서울시의 이동 수단 이용 변화를 분석하고자 함
 - ① 이동 수단별 전체 이용량의 증감률 분석
 - 승용차, 지하철, 버스, 공공자전거(서울시 따름이)의 전체 이용량 패턴 변화를 시각화
 - ② 통행 목적에 따른 수단별 이용량의 증감률 분석
 - 통행 목적
 - ✓ 일반적 통행: 주말과 공휴일을 제외한 평일 전체 시간대의 통행
 - ✓ 필수 통행: 주말과 공휴일을 제외한 평일 출퇴근 시간대의 통행
 - ✓ 비필수 통행: 주말과 공휴일의 전체 시간대의 통행
 - 각 목적별 수단별 이용량 패턴 변화를 시각화
 - ③ 지도 시각화
 - 각 수단별 증감률 분포에서 상 하위 지역을 지도로 시각화
- ▶ 각 이동 수단의 이용 변화 분석 결과를 확진자 추세, 정부 정책, 장기화에 따른 전염병에 대한 사람들의 인식 변화를 고려하여 해석한 후 위드 코로나 시대에 걸맞는 이동 수단 개선 방안을 도출

Data Description

2.1. 데이터 수집

이동수단	Data	설명	수집 기간	출처	
승용차	서울시 교통량 조사자료	일별, 시간별, 조사지점별 승용차 통행량	2019.01.~2019.12.	서울시 교통정보 시스템 (Seoul TOPIS)	
		수집 지점 좌표	2020.01.~2020.12. 2021.01.~2021.09.		
지하철	서울교통공사(1~8호선) 승차자료	일별, 시간별, 역별 지하철 이용객 수	2019.01.~2019.12.	서울교통공사 (Seoul METRO)	
	지하철 역 좌표	지하철 역 좌표	2020.01.~2020.12. 2021.01.~2021.10.	서울 열린데이터 광장 (Seoul Open Data)	
버스	서울시 버스 정류장별 승하차 인원자료	일별, 노선별, 정류장별 버스 이용객 수 (시간대별 정보 X)	2019.01.~2019.12.	서울 열린데이터 광장 (Seoul Open Data)	
		월별, 시간별, 노선별, 정류장별 버스 이용객 수 (승하차 인원을 월 단위로 합계)	2020.01.~2020.12. 2021.01.~2021.10.		
	서울시 버스 정류소 좌표	버스 정류소 좌표			
공공자전거	서울특별시 공공자전거 이용정보	일별, 시간별, 정류장별 이용 건수	2019.06.~2019.12. 2020.01.~2020.12. 2021.01.~2021.06.	서울 열린데이터 광장 (Seoul Open Data)	
	서울시 공공자전거 대여소정보	공공자전거 대여소 위도, 경도, 설치 시기 정보	2021.01.31일 기준		

- 모든 데이터는 csv 또는 excel 형식으로 제공됨
- 월별로 수집된 각 데이터를 합하여 각 연도별 통합데이터 구축

Data Description

┃2.2. 데이터 전처리 및 시각화

데이터 전처리 - pandas 라이브러리를 활용하여 DataFrame 을 다루는 여러가지 함수 사용 데이터 시각화 - matplotlib, seaborn 라이브러리를 활용하여 그래프 시각화, 지리적 시각화는 geopandas 라이브러리 등을 사용

- 2021년의 데이터의 수집 기간 기준으로 2019, 2020년의 데이터를 축소
- ② 날짜 기준 데이터 분리
 - 평일 전체 시간대, 평일 출퇴근 시간대, 주말 전체 시간대로 구분
 - ✓ 출퇴근 시간은 버스 전용 차로 운행 시간을 기준으로 구분 (출근: 07시~10시, 퇴근: 17시~20시)
 - groupby 를 통해 일별 평균, 합계를 구하여 사용
 - ✓ 승용차는 관측소의 문제로 결측치가 다수 존재 (관측소의 작동 오류, 점검 시간 등) 하므로 평균 사용, 나머지는 합계 사용
 - ✓ 버스, 지하철은 승차와 하차 정보가 함께 존재하므로 승차 자료를 기준으로 사용
- ③ 위치 기준 데이터 분리
 - 수단별 위치를 기준으로 groupby 를 통해 각 위치의 이용량 평균, 합계를 구하여 사용
 - ✓ 승용차는 관측소의 문제로 결측치가 다수 존재 (관측소의 작동 오류, 점검 시간 등) 하므로 평균 사용, 나머지는 합계 사용
 - ✓ 각 관측소, 역, 정류소, 대여소의 위도, 경도 정보 활용.

3.1. 승용차

■ 전체 이용량의 변화

	2019-2020		2020-2021	
	증감량	증감률 (%)	증감량	증감률 (%)
1월	-56.742096	-3.65	-183.966838	-12.27
2월	-64.069859	-4.20	-54.714138	-3.74
3월	-130.666290	-8.39	20.934276	1.47
4월	-148.533498	-9.14	37.540454	2.54
5월	-109.613461	-6.83	-6.456292	-0.43
6월	-30.941978	-1.96	-23.589352	-1.52
7월	-50.082878	-3.17	-50.510653	-3.30
8월	-175.530845	-11.04	37.969850	2.68
9월	-87.962285	-5.64	-11.104053	-0.75

- 2020년의 이용량이 전년도 대비 크게 줄었으며, 2021년에도 여전히 감소세를 보임
- 2020년 3, 4월 본격적으로 사회적 거리두기 정책이 시행되었기 때문에 감소폭이 큼
- 2020년 5월 이태원 집단 감염 사건, 8월 광화문 집단 감염 사건 이후 급격한 감소세를 보임
- 2021년에는 시간이 지남에 따라 약간의 회복세를 보임

3.1. 승용차

■ 평일 전체 이용량의 변화

■ 평일 출퇴근 시간대 이용량의 변화

■ 주말, 공휴일 전체 이용량의 변화

- 몇몇 이상치 값을 가지는 날을 제외하고 전체적으로 비슷한 패턴을 보임
- 평일 전체 시간대에서는 2019년보다 2020년, 2021년의 이용량이 확실히 줄었으며 2021년에는 회복세를 보임
- 평일 출퇴근 시간대 또한 감소세는 눈에 띄나 감소폭이 그렇게 크지 않으며 특정 날짜가 감소세를 보임은 공휴일에 맞춘 휴가 시즌의 영향이라 할 수 있음
- 주말 전체 시간대는 토,일을 반복하며 들쭉날쭉한 형태를 띄나 전반적인 추세를 보면 2019년 대비 2020년에 감소세를 보이고 2021년에 회복하는 경향은 동일함

3.1. 승용차

- 지도 시각화
 - 감소폭이 큰 경우 (1사분위 수 안 쪽)

• 감소폭이 작거나 증가한 경우 (3사분위 수 바깥 쪽)

- 감소폭이 작거나 증가한 경우가 감소폭이 큰 경우보다 적기 때문에 전반적으로 감소세를 보임을 알 수 있음
- 감소폭이 큰 경우는 주로 서울 중심부이며, 감소폭이 작거나 증가한 경우는 서울 외곽 쪽임 서울 중심부는 회사 밀집 지역이고 외곽부는 주거 밀집 지역이기 때문에 재택 근무 등의 영향이라 할 수 있음.

Visualization

3.2. 지하철

■ 전체 이용량의 변화

	2019-2020		2020-2021		
	증감량 (만명)	증감률 (%)	증감량 (만명)	증감률 (%)	
1월	-1075.6747	-7.35	-4275.5357	-31.52	
2월	-1280.1153	-10.27	-1887.3826	-16.87	
3월	-5974.9872	-39.24	2345.5585	25.35	
4월	-5541.6330	-36.13	1676.0440	17.11	
5월	-5011.9077	-31.81	460.2584	4.28	
6월	-3132.1850	-21.82	338.0244	3.01	
7월	-3042.2588	-20.28	-1632.7638	-13.65	
8월	-4314.9471	-30.13	-129.7231	-1.30	
9월	-4403.2961	-31.87	534.4438	5.68	
10월	-4745.1420	-30.48	218.4809	2.02	

- 2020년의 이용량이 전년도 대비 크게 줄었으며, 2021년에도 약간의 감소세를 보임
- 승용차의 경우와 감소세, 증가세 추세가 비슷하지만 감소폭이 훨씬 크며 이는 대중교통 운행 감축의 영향이라 할 수 있음
- 마찬가지로 2020년 3, 4월, 5월, 8월 등 일련의 사건들 직후 급격한 감소세를 보임
- 2021년 초반(3,4월) 완화된 거리두기로 회복세를 보이는 듯 했으나 7월 확진자가 2000명대로 급격히 증가함에 따라 다시 감소세를 보임 그러나 이전 추세와는 다르게 그 영향이 오래가지 않고 바로 회복세를 보임

Visualization

3.2. 지하철

■ 평일 전체 이용량의 변화

■ 평일 출퇴근 시간대 이용량의 변화

■ 주말, 공휴일 전체 이용량의 변화

- 몇몇 이상치 값을 가지는 날을 제외하고 전체적으로 비슷한 패턴을 보임
- 평일 전체 시간대에서는 2019년보다 2020년, 2021년의 이용량이 확실히 줄었으며 2021년에는 회복세를 보임
- 평일 출퇴근 시간대 또한 감소세는 눈에 띄나 감소폭이 그렇게 크지 않으며 특정 날짜가 감소세를 보임은 공휴일에 맞춘 휴가 시즌의 영향이라 할 수 있음 (2021년에는 공휴일이 많이 없었기 때문에 휴가 시즌의 영향이 적음)
- 2020년 8월 광화문 집단 감염 사건 이후 급격한 감소를 보임
- 2021년 7월 확진자가 2000명 대로 증가함에 따라 이용량이 크게 감소함
- 수 무말 전체 시간대는 토,일을 반복하며 들쭉날쭉한 형태를 띄나 전반적인 추세를 보면 2019년 대비 2020년에 큰 감소세를 보이고 2021년에 회복하는 경향은 동일함

3.2. 지하철

- 지도 시각화
 - 감소폭이 큰 경우 (1사분위 수 안 쪽)

• 감소폭이 작거나 증가한 경우 (3사분위 수 바깥 쪽)

- 2019년~2020년의 경우의 수와 2020년~2021년의 경우의 수가 비슷한 것을 보아 회복세가 더딤을 알 수 있음
- 승용차와 비슷하게 중심부 쪽이 더 감소폭이 큰 형태를 띔

Visualization

3.3. 버스

■ 전체 이용량의 변화

	2019-2020		2020-2021		
	증감량 (만명)	증감률 (%)	증감량 (만명)	증감률 (%)	
1월	-930.0273	-6.08	-4265.9428	-29.68	
2월	-844.2904	-6.41	-2214.4062	-17.98	
3월	-5602.6891	-34.73	1997.2505	18.97	
4월	-5152.8854	-31.83	1291.4235	11.70	
5월	-4514.4252	-27.10	26.9291	0.22	
6월	-2597.1070	-16.79	-187.0646	-1.45	
7월	-2652.3187	-16.20	-1801.2160	-13.13	
8월	-4173.6170	-26.31	-151.4512	-1.30	
9월	-4086.1357	-27.00	490.9513	4.44	
10월	-4199.0656	-25.43	35.4194	0.29	

- 2020년의 이용량이 전년도 대비 크게 줄었으며, 2021년에도 약간의 감소세를 보임
- 지하철과 비슷하게 승용차에 비해 감소폭이 훨씬 크며 이는 대중교통 운행 감축의 영향이라 할 수 있음
- 마찬가지로 2020년 3, 4월, 5월, 8월 등 일련의 사건들 직후 급격한 감소세를 보임
- 2021년 초반(3,4월) 완화된 거리두기로 회복세를 보이는 듯 했으나 7월 확진자가 2000명대로 급격히 증가함에 따라 다시 감소세를 보임 그러나 이전 추세와는 다르게 그 영향이 오래가지 않고 바로 회복세를 보임

3.3. 버스

■ 평일 전체 이용량의 변화

■ 평일 출퇴근 시간대 이용량의 변화

■ 주말, 공휴일 전체 이용량의 변화

- 몇몇 이상치 값을 가지는 날을 제외하고 전체적으로 비슷한 패턴을 보임
- 평일 전체 시간대에서는 2019년보다 2020년, 2021년의 이용량이 확실히 줄었으며 2021년에는 회복세를 보임
- 전체적으로 지하철과 비슷한 결과를 보임

3.3. 버스

- 지도 시각화
 - 감소폭이 큰 경우 (하위 300개)

• 감소폭이 작거나 증가한 경우 (상위 300개)

- 버스정류장 개수가 많으므로 (10,000개 이상) 상,하위 300개 기준으로 시각화 함
- 다른 이동 수단과 달리, 버스는 이용 증감량과 지리적 위치와 큰 관계가 없음

3.4. 공공자전거

■ 전체 이용량의 변화

	2019-2020		2020-2021	
	증감량 (만명)	증감률 (%)	증감량 (만명)	증감률 (%)
1월	41.3604	141.29	1.2521	1.77
2월	39.6767	142.96	43.4355	64.42
3월	69.0187	129.65	57.1748	46.77
4월	46.1814	38.57	94.1167	56.72
5월	16.1785	9.55	42.4556	22.88
6월	38.9935	22.45	49.0050	23.04

- 승용차, 지하철, 버스와 반대로 2020년의 이용량이 전년도 대비 크게 증가하였으며, 2021년에도 꾸준히 증가함
- 특히 코로나 바이러스가 처음 나온 2020년 1, 2월의 증가폭이 매우 큼
- 꾸준히 이용량이 증가하는 것은 코로나 바이러스의 영향 뿐만 아니라 공공자전거 이용 활성화를 위한 대여소 증가 등의 영향이라고도 볼 수 있음

Visualization

3.4. 공공자전거

■ 평일 전체 이용량의 변화

■ 평일 출퇴근 시간대 이용량의 변화

■ 주말, 공휴일 전체 이용량의 변화

- 몇몇 이상치 값을 가지는 날을 제외하고 전체적으로 비슷한 패턴을 보임
- 전체적으로 앞선 이동수단들과는 정반대의 결과를 보이며 꾸준한 증가세를 보임
- 공공자전거는 날씨의 영향을 무시할 수 없기 때문에 이에 대한 추가적인 분석이 필요함

3.4. 공공자전거

- 지도 시각화
 - 감소하거나 증가폭이 작은 경우 (1사분위 수 안 쪽)

• 증가폭이 큰 경우 (3사분위 수 바깥 쪽)

- 2019년~2020년에 감소하거나 증가폭이 작은 경우는 주로 회사 밀집 지역인 서울 중심부이며 증가폭이 큰 경우는 서울 외곽지역임이는 재택근무 증가에 따른 영향이라 할 수 있음
- 2020년~2021년에 감소하거나 증가폭이 작은 경우는 고르게 분포되어 있으며, 증가폭이 큰 경우는 인구 밀집 지역인 서울 남부지역에 위치해 있음

Conclusion

요약

- 이동 수단별 전체 이용량의 증감률 분석
 - 승용차
 - ✓ 개인 이동 수단이기 때문에 2020년 이용량이 크게 감소한 후, 2021년 이용량이 회복할 것이라 예상했으나 약간의 회복세를 제외하고는 전체적으로 감소세를 보임
 - 지하철, 버스
 - ✔ 대중교통을 피하는 경향에 맞게 급격하고 꾸준한 감소세를 보임
 - ✓ 그러나 2021년에는 감소 후 회복되는 기간이 짧아짐을 알 수 있음
 - 공공자전거
 - ✔ 타이동 수단 대비 증가폭이 매우 크며 개인 이동 수단 답게 감염병 시기에 적극적으로 활용됨을 알 수 있음
- 통행 목적에 따른 수단별 이용량의 증감률 분석
 - 필수 통행
 - ✓ 재택 근무, 온라인 수업 등으로 승용차, 지하철, 버스에서 감소세를 보이긴 하나 출퇴근 시간대의 감소폭은 이외 시간대보다 낮음
 - 비필수 통행
 - ✓ 전염병에 대한 경각심에 따라 승용차, 지하철, 버스에서 꾸준한 감소세를 보임
 - ✓ 그러나 승용차의 경우 휴가 시즌의 영향이 거의 없음

Conclusion

결론

- 위드 코로나에 맞는 이동수단 개선 방안
 - 대중교통(지하철, 버스)
 - ✓ 실제로 대중교통에서의 감염율은 미미함 [1]
 - 승용차, 공공자전거
 - ✔ 필수 통행의 경우 대중교통 이용자들이 승용차나 자전거로 교통 수단을 전환하는 경향이 많음 [2] (Teixeira and Lopes, 2020)
 - ✓ 승용차의 경우 심각한 교통체증을 야기함
- ▶ 위드 코로나 정책과 더불어 대중교통 이용을 장려하고 승용차 이용을 억제하기 위한 개인의 인식 개선 및 홍보 정책이 필요함
- ▶ 서울시의 공공자전거를 활성화하기 위한 정책은 이미 많이 시행되고 있으며 이는 긍정적인 결과를 가져옴 자전거 이외의 개인 이동 수단(전동킥보드 등)의 활성화 또한 앞으로 고려해볼 수 있음
- 한계
 - 관측소의 결측치, 날짜의 결측치(공휴일에 맞춘 휴가 시기)등에 대한 구체적인 대체 방법이 필요함
 - 이용률 증감이 단순 코로나의 영향인지 다른 영향 또한 포함되었는지 불분명함
 - ✓ 정책 변화, 대여소의 설치 시기, 대여소 증가 등의 영향도 고려한 더욱 구체적인 분석이 필요함
 - ✓ 날씨의 영향 또한 무시할 수 없기 때문에 날씨 데이터를 추가로 확보한 더욱 구체적인 분석이 필요함
 - ✓ 온라인 수업, 재택 근무의 비율 등을 고려한 더욱 구체적인 분석이 필요함

Role & Responsibility

■ 정주현

- ✓ 주제 아이디어 제공
- ✓ 데이터 통합 및 전처리 (버스, 공공자전거)
- ✓ 그래프 시각화 코드
- ✔ 위치 시각화 코드
- ✓ 결과 해석
- ✓ 프로포절 발표

■ 이예빈

- ✓ 데이터 수집
- ✓ 데이터 통합 및 전처리 (승용차, 지하철)
- ✓ 그래프 시각화 코드
- ✓ ppt 제작 + 결과 해석
- ✓ 최종 발표

Reference

■ 주제 선정 참고 문헌

- 서정식, 2015. "메르스사태 전후의 서울메트로 수송실적 분석", 「철도저널」, 18(4): 61-65.
- 성현곤, 2016. "메르스의 발발과 확산이 대중교통 이용에 미친 영향", 「국토계획」, 51(3): 163-179.
- 김진만·기동환·이수기, 2021. "COVID-19 확산에 따른 통행 수단 선택 변화 분석",「국토계획」, 56(3): 113-129.

■ 데이터 수집

- 서울시 교통정보 시스템 (Seoul TOPIS): https://topis.seoul.go.kr/
- 서울교통공사 (Seoul METRO): http://www.seoulmetro.co.kr/kr/board.do?menuldx=551
- 서울 열린데이터 광장 (Seoul Open Data): https://data.seoul.go.kr/index.do

■ 결론 참고

- [1] 보건환경연구원 생활환경연구부, "서울시, 950건 대중교통 코로나19 검체 검사…모두 '바이러스 불검출'", 서울특별시, 2021.03.16, https://news.seoul.go.kr/welfare/archives/529714
- [2] Teixeira, J.F. and Lopes, M., 2020. "The Link between Bike Sharing and Subway Use during the COVID-19 Pandemic: The Case-study of New York's City Bike", Transportation Research Interdisciplinary Perspectives, 6: 100166. [https://doi.org/10.1016/j.trip.2020.100166]

Thank You ©