О сходимости задач Майера, возникающих в теории финансовых рынков с транзакционными издержками Научный руководитель: д.ф.-м.н., проф. Юрий Михайлович Кабанов

Артур Сидоренко МГУ имени М.В. Ломоносова Механико-математический факультет Кафедра Теории вероятностей

4 мая 2022 г.

Обзор работ

- Истоки теории: оптимальное управление с транзакционными издержками рассматривалась в Magill и Constantinides, 1976, Davis и Norman, 1990 и Shreve и Soner, 1994.
- Геометрический подход к рынкам со многими активами описан в Kabanov и Safarian, 2009.
- В работе Bayraktar и др., 2020 рассмотрена следующая задача: дана последовательность процессов цен S^n , которая в некотором смысле сходится к S, требуется описать, при каких условиях решения задач портфельного инвестирования тоже будут сходиться

Постановка задачи

Используя результаты из Bayraktar и др., 2020 и геометрическую теорию рынков, получить результаты сходимости решений задач портфельного инвестирования для случая многих рисковых активов.

В двумерном случае (один рисковый актив и один безрисковый актив) типичный конус — сектор, ограниченный двумя лучами. Многомерные даже полиэдральные конусы устроены значительно сложнее.

Практическая значимость: модели портфельного инвестирования должны быть устойчивы относительно искажений в исходных данных, так как калибровка параметров моделей неидеальна.

Формулировка задачи максимизации

Модель рынка M(S, K) состоит из двух компонент:

- процесс цен $S = (S_t)_{t \in [0,T]}$ со значениями в \mathbb{R}^d на неком стохастическом базисе $(\Omega, \mathcal{F}, \mathbb{F}, P)$; актив 1 безрисковый: $S^{(1)} \equiv 1$;
- конус платежеспособности K.

Имеются последовательность моделей $M^n = M^n(S^n, K)$ и предельная модель M(S, K). Процессы S^n определены на своих стохастических базисах $(\Omega^n, \mathcal{F}^n, \mathbb{F}^n, P^n)$.

Процессы S^n и S положительны и имеют непрерывные траектории.

Формулировка задачи максимизации

Начальное состояние портфеля $x\in \mathrm{int}\, K$. Управление B-d-мерный процесс ограниченной вариации, $\dot{B}\in -K$. Управляемый процесс $\widehat{V}_t^{(i)}=x^{(i)}+(1/S^{(i)})\cdot B_t^{(i)}$, а $V_t^{(i)}=S_t^{(i)}\widehat{V}_t^{(i)}$. Требуется максимизировать по классу допустимых стратегий $\mathcal{A}(x)$ ожидаемую полезность

$$u(x) = u(x, S, K) := \sup_{B \in \mathcal{A}(x)} \mathbb{E}[U(\widehat{V}_{\mathcal{T}}(x, B), S)].$$

Допустимость стратегии означает, что управляемый процесс $V \in K$. Другими словами, учитывается возможность разорения портфеля.

- **A.1**. Условие, ограничивающее класс функций полезности U;
- А.2. Порождение фильтрации некоторым процессом Y^n для приближенных моделей и процессом Y для предельной модели, слабая сходимость (Y^n, S^n) к (Y, S);
- А.З. Аналог условия робастной безарбитражности;
- **А.4**. Расширенная слабая сходимость Y^n к Y.

Основной результат

Теорема

В условиях А.1-А.4

$$\lim_{n\to\infty}u^n(x)=u(x)$$

для всех $x \in \text{int } K \cap \text{int dom } u$.

Теорема

В условиях **A.1–A.4** максимум u(x) достигается на некоторой стратегии $B \in \mathcal{A}(x)$.

Идея доказательства

Основные этапы доказательства такие же, как в Bayraktar и др., 2020.

- Полунепрерывность снизу: построить по стратегии из точной модели последовательность стратегий в приближенных моделях.
- Полунепрерывность сверху: по асимптотически оптимальной последовательности стратегий построить стратегию в предельной модели.

Список литературы 1

- Magill, M. J. & Constantinides, G. M. (1976). Portfolio selection with transactions costs. *Journal of economic theory*, 13(2), 245—263.
- Davis, M. H. & Norman, A. R. (1990). Portfolio selection with transaction costs. *Mathematics of operations research*, 15(4), 676—713.
- Shreve, S. E. & Soner, H. M. (1994). Optimal investment and consumption with transaction costs. *The Annals of Applied Probability*, 609—692.
- Kabanov, Y. & Safarian, M. (2009). *Markets with transaction costs: Mathematical Theory.* Springer Science & Business Media.
- Bayraktar, E., Dolinskyi, L. & Dolinsky, Y. (2020). Extended weak convergence and utility maximisation with proportional transaction costs. *Finance and Stochastics*, *24*(4), 1013—1034.

Список литературы II

Jacod, J. & Shiryaev, A. (2013). Limit theorems for stochastic processes (T. 288). Springer Science & Business Media.

Спасибо за внимание

Применяемые методы

- Теория рынков с транзакционными издержками;
- Элементы выпуклого анализа;
- Теорема Скорохода;
- Топологии Скорохода и Мейера–Женга;
- Опциональная проекция.

Полунепрерывность снизу

Лемма

Если **A.1** (i) выполнено, то и непрерывна на $\operatorname{int} K \cap \operatorname{int} \operatorname{dom} u$.

Предложение

Пусть **A.1** и **A.2** выполнены. Пусть $x \in \text{int } K \cap \text{int dom } u$. Тогда $u(x) \leq \liminf_n u^n(x)$.

Модель рынка Ю.М. Кабанова

Используется модель из Kabanov и Safarian, 2009, глава 3.6.

- Временной горизонт T>0, d активов, актив 1 безрисковый постоянной единичной ценой.
- Стохастический базис $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, P)$, удовлетворяющий обычным условиям

Модель рынка Ю.М. Кабанова

Используется модель из Kabanov и Safarian, 2009, глава 3.6.

- Временной горизонт T>0, d активов, актив 1 безрисковый постоянной единичной ценой.
- Стохастический базис $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, P)$, удовлетворяющий обычным условиям
- Процесс цен $S=(S^1_t,\dots,)^T_{t=0},\ S^i_t>0$, траектории непрерывны, $S^1=1$, $S_0=(1,\dots,1)$.

Модель рынка Ю.М. Кабанова

- Замкнутый собственный выпуклый полиэдральный конус K, int $K\supset \mathbb{R}^d_+\setminus\{0\}$
- $K^*:=\{w\in\mathbb{R}^d\colon wx\geq 0\; \forall\,x\in K\}$ двойственный конус, $K^*\subset\mathbb{R}^d_+$, $\mathrm{int}K^*
 eq\varnothing$
- Конус К постоянный и детерминированный
- Конус в физических единицах $\widehat{K}_t := \varphi_t K$, где $\varphi_t : (x^1,...,x^d) \mapsto (x^1/S^1_t,\dots,x^d/S^d_t)$. Тогда $\widehat{K}^*_t = \varphi_t^{-1} K^*$
- K и \widehat{K} конусы платежеспособности в денежных и физических единицах соответственно

Определение стратегии

- Непрерывный справа согласованный d-мерный процесс $B=(B_t)_{t\in[0,T]}$ ограниченной вариацией называется стратегией, если $\dot{B}_{\tau}\in -K$ для всех моментов остановки $\tau < T$.
- Определим \dot{B} как согласованный процесс такой, что $B=\dot{B}\cdot {\sf Var}B$, где ${\sf Var}B=\sum_{i=1}^d {\sf Var}B^i$. Процесс \dot{B} аналог производной Радона— Никодима для B относительно ${\sf Var}B$ (Jacod и Shiryaev, 2013, Proposition I.3.13)
- ullet Положим $B_{0-}=0$, тогда B(0) мера в нуле.
- Физический смысл $B_{t_2}^i B_{t_1}^i$ изменение позиции по активу i в денежных единицах за промежуток $[t_1, t_2]$.

Управляемый процесс — активы в физических единицах

- - обозначение интеграла Римана-Стилтьеса
- Для стратегии B и $x \in K$ определим процесс $\widehat{V} = \widehat{V}(x,B,S)$ с компонентами $\widehat{V}^{(i)} = x^{(i)} + (1/S^{(i)}) \cdot B^{(i)}$.
- Положим $V = (V_t^1, \dots, V_t^d)_{t=0}^T$ с $V^{(i)} = S^{(i)} \widehat{V}^{(i)}$.
- Физический смысл \widehat{V}^i количество актива i в физических единицах, V^i количество актива i в денежных единицах.
- Мы не требуем, чтобы S был семимартингалом.

Допустимые стратегии

- Множество $\mathcal{A}(x)$ of допустимых стратегий состоит из таких B, что $\widehat{V}(x,B,S) \in \widehat{K}$, т.е. $\widehat{V}_t(x,B,S) \in \widehat{K}_t \ \forall t \in [0,T].$
- $\mathcal{A}(x)$ выпукло
- $A(y) \supseteq A(x)$ для $y x \in K$
- $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x) \ \forall \ \lambda > 0$
- Выполнено следующее условие

$$\alpha \mathcal{A}(x) + (1 - \alpha)\mathcal{A}(y) \subseteq \mathcal{A}(\alpha x + (1 - \alpha)y), \quad \forall \alpha \in [0, 1].$$

Идея доказательства

Пусть имеется допустимый процесс $B \in \mathcal{A}(x_{\epsilon})$ в предельной модели, где $x_{\epsilon} = x - \epsilon 1$. Для этого процесса построим последовательность процессов $X^n \in \mathcal{A}^n(x)$ такую, что $\liminf_n \mathbb{E}[U(\widehat{V}^{x,C^n},S^n)] \geq \mathbb{E}[U(\widehat{V}^{x_{\epsilon},B},S)]$.

- По теореме Скорохода, процессы $Y^n = (S^n, Y'^n)$ и $Y = (S^n, Y'^n)$ переопредяем на общем вероятностном пространстве так, чтобы $Y^n \to Y$ п.н. (с точностью до подпоследовательности)
- Процесс B приближается (в смысле *-слабой сходимости) кусочнопостоянным процессами B^m , которые имеют скачки в точках некого разбиения t_1, \ldots, t_q
- Скачки ΔB^m_{tj} приближаем (по метрике сходимости по вероятности) величинами вида $\psi^m_j(Y'_{s_1^{m,j}},\dots,Y'_{s_m^{m,j}})$

Идея доказательства

- В функции ψ_i^m могу подставить Y'^n вместо Y.
- Выбираю последовательность кусочно-постоянных процессов C^n , у которых скачки имеют вид $\Delta C^n_{tj} = psi^n(Y'^n_{s^n_1}, \dots, Y'^n_{s^n_{n^n}})$
- Чтобы сделать стратегии C допустимыми, будем производить ликвидацию позиции

$$au^n:=\inf\{t\geq 0: x_\epsilon+rac{1}{S^n}\cdot C^n
otin \widehat{K}^n\}\wedge T$$
, т.е. берем стратегию

$$X^n := C^n I_{[0,\tau^n[} + \ell \left(S^n_{\tau^n-} (x_{\varepsilon/3} + \frac{1}{S^n} \cdot C^n_{\tau^n-}) \right) e_1 I_{[\tau^n,\infty[}$$

Полунепрерывность сверху

Рассмотрим асимптотически оптимальную последовательность стратегий B^n , т.е.

$$\lim_{n\to\infty}\left(\mathbb{E}_{P^n}\left[U(\widehat{V}_T^{x,B^n},S^n)\right]-u^n(x)\right)=0.$$

Считаем, что $\lim_n u^n(x)$ существует, надо проверить $\lim_n u^n(x) \leq u(x)$, предъявив некоторую "предельную" стратегию B.

По теореме Скорохода на некотором общем пространстве $(Y^n,B^n) o (Y,B)$ п.н. С точностью до подпоследовательности, $1/S^n \cdot B^n_T o 1/S \cdot B_T$ и $\mathbb{E} U(x+1/S^n \cdot B^n_T,S^n) o \mathbb{E} U(x+1/S \cdot B_T,S)$

Полунепрерывность сверху

Рассмотрим фильтрацию \mathcal{F}^Y и ${}^\circ B$ — опциональную проекцию. Доказывается, что это — допустимая стратегия и

$$\mathbb{E}_{P}[1/S \cdot B_{T} | \mathcal{F}_{T}^{Y}] = 1/S \cdot {}^{\circ}B_{T}.$$

По неравенству Йенсена,

$$\mathbb{E}\left[\mathbb{E}\left[U(\widehat{V}_T^{x,B},S)|\mathcal{F}_T^Y\right]\right] \leq \mathbb{E}\left[U(\mathbb{E}[\widehat{V}_T^{x,B}|\mathcal{F}_T^Y],S)\right] = \mathbb{E}\left[U(\widehat{V}_T^{x,\circ B},S)\right].$$

Отсюда
$$u(x) = \mathbb{E}\left[U(\widehat{V}_{T}^{ imes,\,^{\circ}B},S)
ight]$$

Топология Мейера-Женга

Рассмотрим пространство $\mathcal{D}([0,T],\mathbb{R}^d)$ траекторий, непрерывных справа и с пределами слева. Определим метрику

$$d_{MZ}(f,g) = \int_{[0,T[} \min(||f(s)-g(s)||_1,1)ds + ||f(T)-g(T)||_1,$$

где
$$||x||_1 = \sum_{j=1}^d |x^j|$$
.
В $\mathcal{D}^d_{MZ,T} := (\mathcal{D}([0,T],\mathbb{R}^d),d_{MZ})$ множество $H_c = \{f: \mathrm{Var} f \leq c\}$ компактно

Плотность мер для стратегий

Положим $\mathcal{N}:=\mathcal{D}_T^d imes \mathcal{D}_T^l$

Предложение

Пусть верны **A.2** и **A.3**. Фиксируем $x \in \text{int } K$. Пусть $B^n \in \mathcal{A}(x)$, $n \in \mathbb{N}$ — последовательность допустимых стратегий. Тогда последовательность мер $\mathcal{L}(Y^n, B^n|P^n)$ на $\mathcal{N} \times \mathcal{D}^d_{MZ,T}$ плотна. Кроме того, любая предельная точка имеет вид $\mathcal{L}(Y, B|P)$, где $B \in \mathcal{D}^d_{MZ,T}$, $VarB < \infty$, $\dot{B} \in -K$ и $\hat{V}(x, B, S) \in \hat{K}$.

Расширенная слабая сходимость и условная независимость

Лемма

Пусть верны А.2 – А.4. В условиях предыдущего утверждения, любая предельная точка $\mathcal{L}(Y,B|P)$ имеет следующее свойство: если $\mathcal{F}^{Y',B}$ обычная фильтрация, порожденная Y' и B, то $\mathcal{F}_{t}^{Y',B}$ и $\mathcal{F}_{\tau}^{Y'}$ условно независимы по $\mathcal{F}_{+}^{Y'}$: для любой ограниченной $\mathcal{F}_{+}^{Y'}$ -измеримой с.в. Z_{1} и ограниченной $\mathcal{F}_{t}^{Y',B}$ -измеримой с.в. Z_{2}

$$\mathbb{E}_{P}[Z_1Z_2|\mathcal{F}_t^{Y'}] = \mathbb{E}_{P}[Z_1|\mathcal{F}_t^{Y}]\mathbb{E}_{P}[Z_2|\mathcal{F}_t^{Y}].$$

Кроме этого, $\mathbb{E}_P[VarB|\mathcal{F}_T^{Y'}] < \infty$.

A.1. (*i*) Существуют непрерывные функции $m_i:\mathbb{R}^d\to\mathbb{R}_+$ с $m_i(0)=0,\ i=1,2,$ и интегрируемая с.в. ζ такая, что для всех с.в. $X\in\widehat{K}_T$ and $\alpha>0$

$$U((1-\alpha)X,S) \geq (1-m_1(\alpha))U(X,S) + m_2(\alpha)\zeta.$$

(ii) Для всех $x\in \operatorname{int} K\cap \operatorname{int} \operatorname{dom} u$ и $B^n\in \mathcal{A}^n(x)$ $\{U(\widehat{V}_{\mathcal{T}}(x,B^n,S^n),S^n):n\in \mathbb{N}\}$ равномерно интегрируемо.

Примеры для (i): $U(x,S)=(\ell(xS))^{1-\gamma}$, $U(x,S)=\ln(\ell(xS))$, где $\ell(x):=\sup\{\lambda\in\mathbb{R}:x-\lambda e_1\in\mathcal{K}\}$ функция ликвидации. Физический смысл ℓ : количество безрискового актива, которое можно получить, ликвидируя все позиции.

А.2. (*i*) Фильтрация $(\mathcal{F}^n_t)_{t\in[0,T]}$ — пополненная фильтрация, порожденная процессом $Y^n:=(S^n,Y'^n)$, где Y'^n имеет траектории из \mathcal{D}^l_T ; $(\mathcal{F}_t)_{t\in[0,T]}$ — пополненная фильтрация, порожденная процессом Y:=(S,Y'), где Y' имеет траектории из \mathcal{D}^l_T . $(\mathcal{F}^n_t)_{t\in[0,T]}$ и $(\mathcal{F}_t)_{t\in[0,T]}$ непрерывны справа. \mathcal{F}^n_0 и \mathcal{F}_0 порождены множествами нулевой меры. (*ii*) Последовательность распределений $\mathcal{L}(Y^n|\mathcal{P}^n) \to \mathcal{L}(Y|\mathcal{P})$.

Обозначим множество мартингалов $(M_t)_{t=0}^T$ со значениями из G как $\mathcal{M}_0^T(G)$. Положим $\phi_t^n(x) = \phi_t^n(x^1, \dots, x^d) = (x^1/S_t^{n,1}, \dots, x^d/S_t^{n,d})$. $\phi_t(x) = (x^1/S_t^1, \dots, x^d/S_t^d).$

- **А.3.** Существует постоянный полиэдральный конус G такой, что $\operatorname{int} G \supset K \setminus \{0\}, \, \mathcal{M}_0^T(\widehat{G}^{n*} \setminus \{0\}) \neq \emptyset$ для всех n и $\mathcal{M}_0^T(\widehat{G}^*\setminus\{0\}) \neq \emptyset$, где $\widehat{G}^{n*}=(\varphi^n)^{-1}(G)$ и $\widehat{G}^*=\varphi^{-1}(G)$.
 - $M \in \mathcal{M}_0^T(\widehat{G}^* \setminus \{0\})$ означает, что $M \neq 0$ мартингал, $\phi_t(M_t) \in G^*$.
 - В условиях предположения $G^* \subset K^*$.
 - ullet Мартингалы $M \in \mathcal{M}_0^{\mathcal{T}}(\widehat{G}^* \setminus \{0\})$ называются состоятельными ценовыми системами, само А.3 может рассматриваться как усиленное требование безарбитражности

Основные предположения

А.3 (продолжение). Последовательность мер P^n контигуальна относительно $Q^n := Z^{n,1}P^n$ для некоторого $Z^n \in \mathcal{M}_0^T(\widehat{G}^{n*} \setminus \{0\})$, т.е. $\forall A^n \in \mathcal{F}_T^n$ таких, что $Q^n(A^n) \to 0$, выполнено $P^n(A^n) \to 0$.

А.4 Для процессов Y' верна расширенная слабая сходимость: для любой непрерывной ограниченной функции $\phi: \mathcal{D}([0,T],R^d) \to R$

$$\mathcal{L}(X^n, Y'^n|P^n) \to \mathcal{L}(X, Y'|P),$$

где X^n и X — версии мартингалов с RCLL траекториями

$$X_t^n = \mathbb{E}[\psi(Y'^n)|\mathcal{F}_t^n], \quad X_t = \mathbb{E}[\psi(Y')|\mathcal{F}_t]$$