MATH 2130 Problem Workshop 4

- 1. Find all unit vectors tangent to the curve $x^2 + z^2 = 4$, x + y = 1 at the point $(\sqrt{2}, 1 \sqrt{2}, \sqrt{2})$.
- 2. Find all unit vector tangent to the curve $x = t^2, y = 2t^3, z = 3t^2$ at the origin.
- 3. Find the angle between the tangent vectors to the curves

$$x^{2} + y = z + 4, x + 2y = 5$$
 and $x + y^{2} = 5, 2x + 3y + 4z = 4$

at the point of intersection between the curves.

- 4. Find the length of the curve $x = t + 1, y = 2t^{3/2} 3, z = 4t 2$ between the points (2, -1, 2) and (1, -3, -2)
- 5. Show that it is impossible for the length of a curve joining the points (1, -2, 3) and (0, 4, 10) to be equal to 9.
- 6. Set up but do not evaluate a definite integral to find the length of the curve $x^2 + y^2 = z^2 4$, x + y = 4 joining the points $(4, 0, 2\sqrt{5})$ and $(2, 2, 2\sqrt{3})$. Simplify the integrand as much as possible.

Answers:

1.
$$\pm \frac{1}{\sqrt{3}}(-\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}.)$$

2.
$$\pm \frac{1}{\sqrt{10}} (\hat{\mathbf{i}} + 3\hat{\mathbf{k}}.)$$

3.
$$\arccos\left(\frac{21}{\sqrt{14}\sqrt{297}}\right)$$
.

4.
$$\frac{2}{27} (26^{3/2} - 17^{3/2}).$$

6.
$$2\int_{2}^{4} \sqrt{\frac{t^2 - 4t + 7}{t^2 - 4t + 10}} dt$$