Envariabelanalys Sammanfattning av definitioner och satser

Jacob Adlers

March 12, 2016

1 Funktioner

1.1 Definition

En funktion f är en regel som för varje element i en mängd, definitionsmängden av f, tilldelar ett unikt element i värdemängden av f.

1.2 Sats (Bevis sid 51)

$$cos(s-t) = cos(s)cos(t) + sin(s)sin(t)$$

1.3 Sats

Om f(x) är både jämn och udda då är $f(x) = 0 \quad \forall x$

1.4 Sats

Om p(x) är ett polynom och p(a) = 0 så finns det ett polynom q(x) sådant att p(x) = q(x)(x-a)

2 Gränsvärden

2.1 Definition

Vi säger att f(x) går mot $L \in \mathcal{R}$ när x går mot oändligheten $(f(x) \to L$ då $x \to \infty$ $\lim_{x \to \infty} f(x) = L$).

Det gäller om det $\forall \varepsilon > 0$ existerar ett R_{ε} sådant att om $x > R_{\varepsilon}$ så $|f(x) - L| < \varepsilon$

2.2 Definition

Vi säger att en funktion f(x) går mot L då x går mot a om det $\forall \varepsilon > 0$ existerar ett $\delta_{\varepsilon} > 0$ sådant att $0 < |x - a| < \delta_{\varepsilon}$. Det medför att $|f(x) - L| < \varepsilon$

2.3 Definition

$$\lim_{x\to a^+} f(x) = L$$

3 Kontinuitet

3.1 Definition

Vi säger att en funktion f(x) är kontinuerlig i en inre punkt c av sitt definitionsområde om $\lim_{x\to c}f(x)=f(c)$

3.2 Definition

Vi säger att f(x) är vänster/(höger)-kontinuerlig i en punkt c om: $\lim_{x\to c^-}f(x)=f(c)$ $(\lim_{x\to c^+}f(x)=f(c))$

3.3 Sats

Om f(x) och g(x) är kontinuerliga så kommer f(x)+g(x), f(x)-g(x), f(x)g(x) och f(g(x)) att vara kontinuerliga där de är definerade.

3.4 Sats

Om f(x) är kontinuerlig på ett slutet och begränsat intervall [a, b] då kommer det att finnas två punkter $p, q \in [a, b]$ sådant att $f(p) \le f(x) \le f(q) \quad \forall x \in [a, b]$

3.5 Sats om mellanliggande värden

Om f(x) är kontinuerlig på [a,b] och om s ligger mellan f(a) och f(b) då finns det ett $x \in [a,b]$ sådant att f(x) = s