STAT 346/446 Lecture 13

Miscellaneous stuff we did not have time to cover

Chapter 9 and Sections 10.2, 10.3, 10.4

- Interval estimation Chapter 9
- Asymptotics Chapter 10

Interval estimation

- Statements about parameters
 - Point estimation: " $\theta = W(\mathbf{x})$ " (one value)
 - Hypothesis testing: " $\theta \in \Theta_0$ " or " $\theta \in \Theta_0^c$ " (Θ_0 not a function of **x**)
 - Interval estimation: " $\theta \in C(\mathbf{x})$ " (set or interval)

Interval estimator

An **interval estimate** of θ is any pair of functions $L(\mathbf{x})$ and $U(\mathbf{x})$ that satisfy

$$L(\mathbf{x}) \leq U(\mathbf{x})$$
 for all $\mathbf{x} \in \mathcal{X}$

The random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called an interval estimator

- Two-sided interval: $[L(\mathbf{x}), U(\mathbf{x})]$
- One-sided intervals: $(-\infty, U(\mathbf{x})]$ or $[L(\mathbf{x}), \infty)$

Coverage probability and Confidence

Coverage probability

The **coverage probability** of an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that it covers the true value of the parameter θ . That is:

$$P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

Confidence coefficient

The **confidence coefficient** of an interval estimator $[L(\mathbf{X}), U(\mathbf{x})]$ is the *smallest* coverage probability. That is:

$$1 - \alpha = \inf_{\theta} P_{\theta}(\theta \in [L(\mathbf{X}), \ U(\mathbf{X})])$$

The interval is usually called a confidence interval

Example: Normal Model

- Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$
- The usual 1α confidence interval

$$\left[\overline{X}-t_{n-1,\alpha/2}\frac{S}{\sqrt{n}},\ \overline{X}+t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}\right]$$

is an interval estimator of μ

Coverage probability:

$$\begin{aligned} &P_{\mu}\left(\mu \in \left[\overline{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}, \ \overline{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}\right]\right) \\ = &P_{\mu}\left(\overline{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}\right) \\ = &P_{\mu}\left(-t_{n-1,\alpha/2} \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le t_{n-1,\alpha/2}\right) = 1 - \alpha \end{aligned}$$

• Confidence coefficient: $\inf_{\mu} (1 - \alpha) = 1 - \alpha$

Example: Uniform Model

- Let X_1, \ldots, X_n be a random sample from Uniform $(0, \theta)$
- For some constants a and b with $1 \le a < b$

$$[aX_{(n)}, bX_{(n)}]$$

is an interval estimator of θ

Coverage probability:

$$P_{\theta}\left(\theta \in [aX_{(n)}, bX_{(n)}]\right) = P_{\theta}\left(aX_{(n)} \leq \theta \leq bX_{(n)}\right) = P_{\theta}\left(\frac{1}{a} \leq \frac{X_{(n)}}{\theta} \leq \frac{1}{a}\right)$$

By deriving the pdf of $T = X_{(n)}/\theta$ (which does not depend on θ) we find that the coverage probability is $\left(\frac{1}{a}\right)^n - \left(\frac{1}{b}\right)^n$

• Confidence coefficient: $\left(\frac{1}{a}\right)^n - \left(\frac{1}{b}\right)^n$

Methods of Finding Interval Estimators

- Inverting a Test Statistic
 - Section 9.2.1
- Pivotal Quantities
 - Sections 9.2.2 and 9.2.3
- Bayesian Interval = credible interval
 - Section 9.2.4

Inverting a Test Statistic

Theorem - Inverting a Test Statistic

- From test to interval:
 - For any $\theta_0 \in \Theta$ let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$.
 - For each $\mathbf{x} \in \mathcal{X}$ define $C(\mathbf{x}) = \{\theta : \mathbf{x} \in A(\theta)\}$

Then $C(\mathbf{X})$ is a $1 - \alpha$ confidence set

- From interval to test:
 - Let $C(\mathbf{X})$ be a 1α confidence set.
 - For any $\theta_0 \in \Theta$ let $A(\theta_0) = \{ \mathbf{x} : \theta_0 \in C(\mathbf{x}) \}$

Then $A(\theta_0)$ is the acceptance region of a level α test of $H_0: \theta = \theta_0$.

Example: Normal model

- Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$
- The two-sided t-test has acceptance region

$$A(\mu_0) = \left\{ \mathbf{x} \in \mathcal{X} : -t_{n-1,\alpha/2} \le \frac{\overline{\mathbf{x}} - \mu_0}{\mathbf{s}/\sqrt{n}} \le t_{n-1,\alpha/2} \right\}$$

Set

$$\begin{split} C(\mathbf{x}) &= \{ \mu_0 : \mathbf{x} \in A(\mu_0) \} \\ &= \left\{ \mu_0 : -t_{n-1,\alpha/2} \le \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \le t_{n-1,\alpha/2} \right\} \\ &= \left\{ \mu_0 : \overline{x} - t_{n-1,\alpha/2} s/\sqrt{n} \le \mu_0 \le \overline{x} + t_{n-1,\alpha/2} s/\sqrt{n} \right\} \end{split}$$

By theorem

$$C(\mathbf{X}) = \left[\overline{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}, \ \overline{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}\right]$$

is a 1 $-\alpha$ confidence set

Inverting a Test Statistic

- Inverting a two-sided test gives a two-sided interval
- Inverting a one-sided test gives a one-sided interval
- Converting a test statistic can in some cases be quite involved see examples 9.2.3 and 9.2.5

Pivotal Quantities

Pivotal Quantity

A random variable $Q(\mathbf{X}, \theta)$ is a **pivotal quantity (pivot)** if the distribution of $Q(\mathbf{X}, \theta)$ is independent of all parameters.

• For a random sample X_1, \ldots, X_n from $N(\mu, \sigma^2)$ both

$$Q(\mathbf{X}, \mu) = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$
 and $Q(\mathbf{X}, \sigma^2) = \frac{(n-1)S^2}{\sigma^2}$

are pivotal quantities

Pivot

Find a and b such that

$$P(a \le Q(\mathbf{X}, \theta) \le b) \ge 1 - \alpha$$

Note that a and b will not depend on θ since $Q(\mathbf{X}, \theta)$ is a pivot

• Then the acceptance region for a level α test of $H_0: \theta = \theta_0$ is

$$A(\theta_0) = \{\mathbf{x} : a \le Q(\mathbf{x}, \theta_0) \le b\}$$

Then set

$$C(\mathbf{x}) = \{\theta_0 : a \leq Q(\mathbf{x}, \theta_0) \leq b\}$$

Then $C(\mathbf{X})$ is a $1-\alpha$ confidence set for θ

Evaluating Interval Estimators

- Want large coverage probability
 - Control by setting the confidence coefficient
- Want small sets, i.e. short intervals

Bayesian Intervals

Credible Set

Let $\pi(\theta \mid \mathbf{x})$ be the posterior distribution for θ . A set $A \subset \Theta$ for which

$$P(\theta \in A \mid \mathbf{x}) = 1 - \alpha$$

is a $1 - \alpha$ credible set for θ

- Very easy to obtain (if you have the posterior distribution)
- Different interpretation from confidence intervals

Approximate tests and confidence intervals

Sections 10.3 and 10.4

- Can use CLT (+ Slutsky, etc) to come up with approximate tests based on a normal approximation
- Remember that MLEs are (usually) approximately normal
- Find asymptotic variance using Fisher information (as in Cramer-Rao Lower bound)

CLT based

Wald test for either one or two-sided hypotheses

$$H_0: \theta = \theta_0$$
 $H_1: \theta \neq \theta_0$
or $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$
or $H_0: \theta \geq \theta_0$ $H_1: \theta < \theta_0$

is based on a test statistic of the form

$$Z_n = \frac{W_n - \theta_0}{S_n}$$

where W_n is an estimator of θ and S_n is the standard error of W_n

Example: Tests for proportions in intro stats

Approximate LRTs

Can usually easily construct and evaluate the test statistic

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})}$$

even if the (constrained) maximization is via numerical methods

 Problem: Determining a sampling distribution so that we can choose c such that

$$\sup_{\Theta_0} P_{\theta}(\lambda(\mathbf{X}) \le c) \le \alpha$$

Under some regularity assumptions we have

$$-2\log(\lambda(\mathbf{X})) \stackrel{D}{\longrightarrow} \chi_{\nu}^2$$

16/17

STAT 346/446 Theoretical Statistics II Lecture 13

