PROCESS 2 – ESSAY

Course: Introduction to Artificial Intelligence

Duration: 03 weeks

I. Formation

• The project is conducted in groups of 03 - 05 students.

 Student groups conduct required tasks and submit the project following instructions below.

II. Tasks

a) Task 1 (8.0 point(s)): Forward Chaining in Propositional Logic

• Given a data file consisting of definite clauses, one clause per row, for example,

а

b

d

- Literals are separated by spaces
- o "-" means negation
- Students implement a class named **Clause** to represent clauses with related information such as the premise, the conclusion, the number of known literals of the premise, etc.
- Draw a direct graph, using graphviz, to illustrate the given knowledge base read from the given data file. An implication can be displayed as below.

Ton Duc Thang University Faculty of Information Technology

• Implement the Forward Chaining algorithm to verify whether the given knowledge base entails a symbol q, input by the user.

```
function PL-FC-ENTAILS?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional definite clauses

q, the query, a proposition symbol

count ← a table, where count[c] is the number of symbols in c's premise

inferred ← a table, where inferred[s] is initially false for all symbols

agenda ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do

p ← POP(agenda)

if p = q then return true

if inferred[p] = false then

inferred[p] ← true

for each clause c in KB where p is in c.PREMISE do

decrement count[c]

if count[c] = 0 then add c.CONCLUSION to agenda

return false
```

- Students organize the program regarding to the OOP model, ensure source code is compact and reasonable.
- Recommended editor: Google Colab
- b) Task 2 (2.0 point(s)): Report
- Student groups compose the project report using the IEEE conference proceeding template.
- Recommended editor: Overleaf.
- Selective contents:
 - o *Title*: the project title
 - Authors: group member's information, the lecturer is appended as the last author.
 - Abstract: summarize the project requirements, approaches, experimental results, and levels of completion.
 - Each following section presents a task in the project, with a meaningful and human-readable title. Briefly introduce the approach to tackle the problem and illustrate results with related figures/tables, etc.

Ton Duc Thang University Faculty of Information Technology

- o "Contributions" section: individual tasks, individual completion levels (0%-100%).
- o "Self-evaluation" section: self-evaluate task completion and estimate scores.
- o "Conclusion" section: summarize the project requirements, approaches, experimental results, and levels of completion.
- References are in the IEEE format.
- Maximal length is 05 pages.

III. Submission Instructions

- Create a folder whose name is as

process2_<group ID>_<your student ID>

- Content:
 - o source → project folder, each task is located in a subfolder
 - \circ report.pdf \rightarrow report.
 - o demo.txt → URL to the demo video with the maximal duration of 03 minutes.
- Compress the folder into a zip file and submit by the deadline.
- Every member must submit the project.

IV. Policy

- Student groups submitting late get 0.0 points for each member.
- Missing required materials in the submission loses at least 50% points of the presentation.
- Copying source code on the internet/other students, sharing your work with other groups, etc. cause 0.0 points for all related groups.
- If there exist any signs of illegal copying or sharing of the assignment, then extra interviews are conducted to verify student groups' work.
- AI tools are forbidden in this project.

-- THE END --