代数学 I 第2回復習レポート課題解答例

担当:大矢 浩徳 (OYA Hironori)*

問題 1 -

整数 ℤ に以下の二項演算を考えたものが群となるかどうかを判定せよ.

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (m, n) \mapsto \min\{m, n\}$$

ただし、 $\min\{m,n\}$ は m と n の小さいほう (同じだったらどちらでも良い) を取るという意味である. (例. $\min\{2,3\}=2$. $\min\{5,5\}=5$.)

問題1解答例. 群とならない

問題 1 補足解説. 与えられた二項演算が定義 1.2(群の定義) に述べた 3 性質 (I), (II), (III) を満たすかどうかをチェックすれば良い. すると、本問の演算に関しては (II) の単位元の存在が満たされないことがわかる. 実際、 $e \in \mathbb{Z}$ が単位元であるとすると、任意の $n \in \mathbb{Z}$ に対して、

$$\min\{e, n\} = n \tag{*}$$

を満たすが、e < N となる $N \in \mathbb{Z}$ をとれば、

$$\min\{e, N\} = e \neq N$$

であるため、これは(*)に矛盾する.

なお、本問の演算は (I) の結合法則は満たす。実際、任意の $n_1, n_2, n_3 \in \mathbb{Z}$ に対して、

$$\min\{\min\{n_1, n_2\}, n_3\} = \min\{n_1, n_2, n_3\} = \min\{n_1, \min\{n_2, n_3\}\}$$

となる. □

問題 2

乗法群 \mathbb{C}^{\times} の以下の部分集合 H が \mathbb{C}^{\times} の部分群となるかどうかを判定せよ.

$$H = \{ z \in \mathbb{C}^{\times} \mid |z| \in \mathbb{R}_{>0} \}.$$

ここで、複素数 $z = x + yi \in \mathbb{C}$ $(x, y \in \mathbb{R})$ に対し、|z| は z の絶対値 $\sqrt{x^2 + y^2}$ を表す.

問題 2 解答例. 部分群となる

問題 2 補足解説. 命題 1.5 より,群 G の部分集合 H が G の部分群であることの必要十分条件は,

H が空でなく、任意の $h,k \in H$ に対し、 $h \cdot k \in H$ かつ $h^{-1} \in H$ となること

であった.このため、部分群であることを確かめるときはこの条件を確認すればよい.

本問の場合,まず $1\in H$ なので, $H\neq\varnothing$ である.次に,任意の $w,z\in H$ に対して,H の定義より $|w|,|z|\in\mathbb{R}_{>0}$ であるから,

$$|wz| = |w||z| \in \mathbb{R}_{>0}.$$

 $^{^*}$ $e ext{-}mail:$ hoya@shibaura-it.ac.jp

よって, $wz \in H$ である. さらにこのとき,

$$|w^{-1}| = \left| \frac{1}{w} \right| = \frac{1}{|w|} \in \mathbb{R}_{>0}$$

П

であるから、 $w^{-1} \in H$ も成立する. 以上より、H は \mathbb{C}^{\times} の部分群である.

問題3

乗法群 \mathbb{C}^{\times} の以下の部分集合 H が \mathbb{C}^{\times} の部分群となるかどうかを判定せよ.

$$H = \{1, e^{\frac{2\pi}{5}i}, e^{-\frac{2\pi}{5}i}\}.$$

問題3解答例.部分群とならない

問題3補足解説.考える方針は問題2補足解説に述べたものと同様である.

本問の H については, $e^{\frac{2\pi}{5}i} \in H$ であるが,

$$e^{\frac{2\pi}{5}i} \cdot e^{\frac{2\pi}{5}i} = e^{\frac{4\pi}{5}i} \notin H$$

なので、二項演算で閉じておらず、部分群とならない.問題 2 補足解説に述べた「任意の $h,k\in H$ に対し、 $h\cdot k\in H$ 」という条件においては、h と k が異なっているという条件は入っていないので、h=k の場合も考えないといけないということに注意しよう.

なお,

$$1^{-1} = 1 \in H$$
, $(e^{\frac{2\pi}{5}i})^{-1} = e^{-\frac{2\pi}{5}i} \in H$, $(e^{-\frac{2\pi}{5}i})^{-1} = e^{\frac{2\pi}{5}i} \in H$

なので、本問のHは逆元をとる操作では閉じている.

問題 4 ·

一般線型群

$$GL_2(\mathbb{C}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{C}, ad - bc \neq 0 \right\}$$

を考える. 以下の $GL_2(\mathbb{C})$ の部分集合 H が $GL_2(\mathbb{C})$ の部分群となるかどうかを判定せよ.

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C}) \mid bc = 0 \right\}.$$

問題4解答例.部分群とならない

問題4補足解説. 考える方針は問題2補足解説に述べたものと同様である.

本問の
$$H$$
については, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in H$ であるが,

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

となり、これは $1\cdot 1 \neq 0$ より、H の元ではない。よって、H は二項演算で閉じておらず、部分群とならない。

なお、
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$$
 に対し、

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

なので、bc = 0 であれば (-b)(-c) = 0 も成り立つから、本問の H は逆元をとる操作では閉じている.

bc=0 は「b=0 または c=0」と同値なので,H は正則な上三角行列全体のなす集合 B_+ と正則な下三角行列全体のなす集合 B_- の和集合 $B_+\cup B_-$ である.実は, B_+ や B_- 自体は $GL_2(\mathbb{C})$ の部分群となる.是非各自で確認してみてほしい.

一般線型群

$$GL_2(\mathbb{C}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{C}, ad - bc \neq 0 \right\}$$

を考える. 以下の $GL_2(\mathbb{C})$ の部分集合 H が $GL_2(\mathbb{C})$ の部分群となるかどうかを判定せよ.

$$H = \left\{ A \in GL_2(\mathbb{C}) \mid {}^t A A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

ここで、 tA は A の転置行列を表す.

問題 5 解答例. 部分群となる

問題 5 補足解説. 考える方針は問題 2 補足解説に述べたものと同様である.

まず、単位行列 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ は $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ を満たすので、 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in H$ であるため、 $H \neq \varnothing$ である.次に、任意の $A,B \in H$ に対し、転置の性質と仮定から、

$${}^{t}(AB)(AB) = {}^{t}B{}^{t}AAB = {}^{t}B\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}B = {}^{t}BB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

よって, $AB \in H$. さらに, ${}^tAA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ なので, ${}^tA = A^{-1}$ であるから,

$$^{t}(A^{-1})A^{-1} = {}^{t}(A^{-1}){}^{t}A = {}^{t}(AA^{-1}) = {}^{t}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

よって、 $A^{-1} \in H$. 以上より、H は $GL_2(\mathbb{C})$ の部分群である.

なお,この証明においては,行列のサイズが 2×2 であることはあまり本質的ではない.実際,n 次正方行列の設定で.

$$O_n(\mathbb{K}) := \{ A \in GL_n(\mathbb{K}) \mid {}^t AA = I_n \}$$

とすると、全く同じ証明でこれは $GL_n(\mathbb{K})$ の部分群となることがわかる (\mathbb{K} は \mathbb{Q} , \mathbb{R} 又は \mathbb{C}). これは、**直交群** (orthogonal group) と呼ばれる. 直交群の元が**直交行列**と呼ばれたこともあわせて思い出そう. この記号を使えば、本問の H は $O_2(\mathbb{C})$ である.

直交行列 A の行列式は

$$\det(A)^2 = \det({}^t A A) = \det(I_n) = 1$$

となるので±1であるが、このうち+1の方をとって、

$$SO_n(\mathbb{K}) := \{ A \in GL_n(\mathbb{K}) \mid {}^tAA = I_n, \det(A) = 1 \}$$

としたものはまた $GL_n(\mathbb{K}), O_n(\mathbb{K})$ の部分群となる*1. これを特殊直交群 (special orthogonal group) と呼ぶ. 例えば,

$$SO_2(\mathbb{R}) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mid \theta \in \mathbb{R} \right\}$$

である.

 $^{^{*1}\}det(A)=-1$ のものだけを集めたものは部分群ではない.例えば単位元 I_n が入っていない.

線形代数の復習 (本講義の範囲では証明無しに用いてよい)

• 行列
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 に対し、 (i,j) 成分を a_{ji} としたものを、

$${}^{t}A = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

と書き, A の転置行列という. $\ell \times m$ 行列 A, $m \times n$ 行列 B に対し,

$$^{t}(AB) = {}^{t}B^{t}A$$

となる. また, n 次正則行列 A に対し, $^t(A^{-1}) = (^tA)^{-1}$ である.

• n を正の整数とする. n 次正方行列 A に対して, $\det(A)$ を A の行列式とする. このとき,n 次正方行列 A,B に対し,

$$det(AB) = det(A) det(B)$$
 $det(^tA) = det(A)$

である. 特に、 $\det(A) \neq 0$ のとき、 A^{-1} が存在して、 $\det(A^{-1}) = \det(A)^{-1}$ である.

• $(2 \times 2$ 行列の逆行列の一般形) 行列式 ad-bc が 0 でない 2×2 行列 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ に対し,その逆行列は

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

である.

Г