SÈRIE 0

EXERCICI 1

(2,5 punts)

a) [1 punt]

Càlculs i respostes

PISCINES OLÍMPIQUES

Generalitat de Catalunya

Oficina d'Accés a la Universitat

Consell Interuniversitari de Catalunya

Volum (m³)= Massa (kg) / Densitat (kg/m³)

Volum de formigó =
$$\frac{125.000.000 \text{ kg de formig}}{2400 \text{ kg/m3}}$$
 = 52.083,33 m³

Nombre de piscines = Volum total del formigó/Volum d'una piscina olímpica

Nombre de piscines
$$\frac{52.083,33 \text{ m}^3}{2500m^3} = 20,83$$

PETJADA DE CARBONI DEL FORMIGÓ

125 milions de kg de formigó = 125.000 tones de formigó

125.000 tones formigó
$$\cdot \frac{0.913 \ tones \ CO2eq}{1 \ tona \ formigó} = 114.125 \ tones \ CO_2eq$$

 $114.125 \text{ tones} / 54.000 \text{ tones} \cdot \text{any}^{-1} = 2,11 \text{ anys}$

Oficina d'Accés a la Universitat

Pàgina 2 de 8 Geologia i Ciències Ambientals Proves d'accés a la Universitat 2025. Criteri d'avaluació

b) [1 punt]

Acció	Justificació
Plantació 590.000 arbres del projecte Bosc Olímpic per combatre la desertificació.	Els arbres capten CO ₂ de l'atmosfera per portar a terme la fotosíntesi, per tant, major massa forestal implica una menor quantitat de CO ₂ a l'atmosfera.
Cotxes impulsats per hidrogen	Disminueixen les emissions de CO ₂ i altres gasos contaminants, així com de partícules per la combustió de gasolina o gasoil. (Només cal que diguin una de les raons)
Medalles de metalls reciclats	El procés de reciclatge dels metalls necessita menys energia que el procés extractiu i el processament. Tenint en compte que una gran part de l'energia prové dels combustibles fòssils, si estalviem energia reduïm emissions.
Energies sostenibles	Si utilitzem energies renovables disminuïm les emissions associades a la crema de combustibles fòssils.
Reutilització d'instal·lacions preexistents.	Estalviem recursos i per tant, l'energia que necessitem per crear-los i per construir l'edifici. Si estalviem energia, reduïm emissions.

c) [0,5 punts]

Material	Recurs natural
Cautxú sintètic de la pilota	Petroli
Ferro del cèrcol de la cistella	Hematites
Formigó de la graderia	Calcàries
Carcassa d'alumini del marcador	Bauxita
Coure de la medalla de bronze	Calcopirita

Pàgina 3 de 8

Geologia i Ciències Ambientals

Proves d'accés a la Universitat 2025. Criteri d'avaluació

EXERCICI 2 (2,5 punts)

a) [1 punt]

Dibuix	Nivell freatic Roca permeable Roca impermeable
Tipus d'aqüífer i argumentació	El de Celrà ha de ser de tipus lliure ja que es troba en materials quaternaris superficials i permeables (sorres i graves). Els aqüífers lliures estan en contacte directa amb la zona subsaturada del sòl, no estan confinats per cap capa impermeable

b) [0,5 punts]

Nivell piezomètric	És el nivell per sobre del nivell del mar al qual l'aigua d'un aqüífer es troba a pressió atmosfèrica, en aqüífers lliures coincideix amb el nivell freàtic.
	A Flaçà trobarem aigua més ràpidament, haurem de perforar 9 metres (40m-31m).
Profunditat	Haurem de perforar 9 metres (40m – 31m)

Oficina d'Accés a la Universitat

Pàgina 4 de 8 Geologia i Ciències Ambientals Proves d'accés a la Universitat 2025. Criteri d'avaluació

d) [1 punt]

Correlació temporal entre els dos paràmetres

La correlació s'explica com a conseqüència de la recàrrega de l'aquífer per infiltració de la precipitació, a l'agost però és quan hi major extracció d'aigua de l'aqüífer a través de pous (o major evapotranspiració o bé pluges torrencials on es perd molta aigua per escolament superficial que va al riu sense infiltrar-se)

Pàgina 5 de 8

Geologia i Ciències Ambientals

Proves d'accés a la Universitat 2025. Criteri d'avaluació

EXERCICI 3 (2,5 punts)

Risc geològic	Risc d'inundacions
Argumentació	El càmping Bella Vall i el municipi de Sinera es troben en les zones baixes del mapa, on hi ha a més a més sediments al·luvials, i just a les zones d'inundació. En aquests punts és on hi haurà una major acumulació d'aigua en cas de pluja intensa. és el més exposat ja que es troba a la zona d'inundació i en recorregut d'un curs d'aigua.
Mesures (propostes i raonament)	Reforestació i protecció de la vegetació en zones altes: Les zones de conglomerats i calcàries, situades en terrenys elevats, podrien ajudar a retenir aigua. Això redueix l'erosió i el flux ràpid d'aigua cap a les valls. Alerta i plans d'evacuació: Establir sistemes d'alerta primerenca tant pels residents de Sinera com per els visitants del càmping en cas de risc d'inundació, acompanyat d'un bon la d'evacuació. Construcció de dics i murs de contenció: A les zones baixes, especialment al voltant del Càmping Bella Vall i el Poblet de Sinera, es podrien construir estructures de contenció per evitar que les crescudes del curs d'aigua els afectin. Aquests només són alguns exemples, n'hi hauria molts més.

Officina d Acces a la Universitat

Pàgina 6 de 8

Geologia i Ciències Ambientals

Proves d'accés a la Universitat 2025. Criteri d'avaluació

EXERCICI 4 (2,5 punts)

a) [1 punt]

Númer o	Part del sistema d'alerta de tsunamis	Descripció
3	Sistema de monitoratge	Els canvis de pressió que detecten els sensors s'envien a boies oceàniques a la superfície del mar a través de senyals acústiques
8	Centre de gestió d'emergències	És l'organisme encarregat de transmetre l'alerta de tsunami a la població a través de diferents canals de comunicació.
6	Centre de monitoratgede riscos geològics	recopila, analitza i avalua les dades rebudes i activa alerta notificant si la situació és crítica
Fenòmens geològics que poden generar tsunamis		

Terratrèmols submarins (de magnitud alta), grans esllavissaments, impactes de meteorits, enfonsaments de plataformes....

Pàgina 7 de 8

Geologia i Ciències Ambientals

Proves d'accés a la Universitat 2025. Criteri d'avaluació

b.1) [1,5 punts]

Definició d'índex d'explosivitat volcànica (IEV)	Definició	d'index	d'exp	losivitat	volcànica	(IEV)
--	-----------	---------	-------	-----------	-----------	-------

L'IEV és una escala que s'utilitza per mesurar la força explosiva de les erupcions volcàniques. És una escala logarítmica oberta amb valors màxims de 8 representant les majors magnituds de les erupcions conegudes. Aquest índex es determina en base a diferents factors

Factor	Característiques de l'erupció volcànica de Tonga amb un IEV de 6
Tipus d'erupció volcànica	Pliniana o Freato-Pliniana
Altura del núvoleruptiu	57 km d'altura. Per un IEV de 6, l'altura de la columna eruptiva sol ser superior als 20-30 km.
Tipus i volum dematerial emès	Piroclastos (cendres) i gasos. S'estimen uns 9,5 km³. Aquests valors són alts i estan en el rang de les erupcions volcàniques amb un IEV de 6.
Recurrència eruptiva	Aproximadament cada 100 anys.

Pàgina 8 de 8

Geologia i Ciències Ambientals

Proves d'accés a la Universitat 2025. Criteri d'avaluació

b.2) [1,5 punts]

Magnitud	La magnitud és una paràmetre que mesura l'energia dissipada en el focus d'un terratrèmol i transformada en ones sísmiques.
Theocentre	És el punt a l'interior de la Terra a partir del qual es propaga l'energia en totes direccions en forma d'ones elàstiques i de calor.

Terratrèmol del Japó de l'11 de març de 2011 registrat al Walferdange Underground Laboratory for Geodynamics (Luxemburg). Registre del moviment en les tres direccions de l'espai

