001:

BASIC MULTIMEDIA CONCEPTS

INTRODUCTION TO MULTIMEDIA:- COMPRESSION

TuK

Bachelor Information Technology/Communications and Computing Networks Year 4 Semester 1

MULTIMEDIA APPLICATIONS / SYSTEMS AND APPLICATIONS

SUBJECT CODE: ECCI/ECII 4102

OVERVIEW

- 1. Lecture Introduction & Attendance Registration
- 2. Lecture Aims & Objectives
- 3. Lecture 1 Outline
- 4. Recommended Chapter from Recommended Reading List
- 5. Lecture 1 Topic
- 7. Q&A

LECTURE AIMS & OBJECTIVES

- 1) To introduce students to Multimedia text, graphic, sound, video & animation theories.
- 2) To equip students with the knowledge to develop and use multimedia text, graphics, sound, video, animation skills
- 3) To develop students' expertise in the use of Multimedia text, graphics, sound, video & animation tools and techniques
 - 4) To design multimedia text, graphics, sound, video & animation applications
- 5) To implement the design, and maintain the implemented multimedia text, graphics, sound, video & animation systems while also supporting users
 - 6) To enable graduates to find a wide variety of career opportunities in information technology related areas in both private and public sectors

BASIC MULTIMEDIA CONCEPTS

INTRODUCTION TO MULTIMEDIA DATA COMPRESSION

RECOMMENDED CHAPTER FROM RECOMMENDED READING LIST

1. "Multimedia Foundations: Core Concepts for Digital Design" Focal Press, 2016

INTRODUCTION TO MULTIMEDIA-COMPRESSION

How To Compress Data (speech, video, images, graphics, audio)

- •Exploit inherent redundancy and irrelevancy through transforming a data file into a smaller file from which the original image file can later be reconstructed exactly or approximately
- Data compression algorithms are either Lossy or Lossless
- •Lossy (throw away non-essential- perceptually less relevant parts of the data stream
- •Lossless (ideal e.g. zip)- not good enough for MM data but filter the data somehow
- •Video and sound images are normally compressed with a lossless compression

INTRODUCTION TO MULTIMEDIA-COMPRESSION

LOSSLESS COMPRESSION

- •Techniques guaranteed to generate an exact duplicate of the input data stream after a compress/expand cycle
- •Example:- the transfer of a text file over a network
- •No part of the source information should be lost during either compression or decompression
- Popular lossless coding techniques:- Entropy, Huffman Coding and Arithmetic
 Methods

INTRODUCTION TO MULTIMEDIA-COMPRESSION

LOSSLESS COMPRESSION ENTROPY ENCODING

- •Independent of the type of information being compressed.
- Concerned solely with how the information is represented
- •First convert it into run-length encoding (make the source information comprise of long substrings of the same character or binary digit)

INTRODUCTION TO MULTIMEDIA-COMPRESSION

LOSSLESS COMPRESSION (ENTROPY ENCODING)

- EXAMPLE: If an application requires the transmission of long strings of binary bits that comprise a limited number of substrings then each substring can be assigned a separate code-word
- Used instead of transmitting source string in the form of independent code-words or bits

• Transmission then takes place in the form of a different set of code-words but also an indication of the number of characters/bits in the substring

INTRODUCTION TO MULTIMEDIA-COMPRESSION

LOSSLESS COMPRESSION (ENTROPY ENCODING)

• EXAMPLE: the data to be transmitted is: 0000000111111111110000011...

- Could be represented as: {0,7} {1,10} {0,5} {1,2}
- To send this the individual decimal digits would be sent in binary form

 Assuming a fixed number of bits per code-word, the number of bits per code-word would be determined by the largest possible substring.

INTRODUCTION TO MULTIMEDIA-COMPRESSION

LOSSY COMPRESSION

- •Information once uncompressed cannot be fully recovered.
- •Involves analyzing data and determining which part of it has little effect on the resulting compressed data.
- •Example#1:- compression of an image to reduce the resolution of the image
- •Allows much lower data rates and file sizes than lossless compression,
- Lossy codecs commonly used for final production of Internet video

INTRODUCTION TO MULTIMEDIA-COMPRESSION

LOSSY COMPRESSION

- Aim is not to reproduce an exact copy of the source information after decompression but instead a version of it perceived by the recipient as a true copy
- •With such algorithms the higher the level of compression being applied to the source information the more approximate the received version becomes
- •Example#2: transfer of digitized images and audio and video streams.
- •Sensitivity of the human eye or ear is such that any fine details missing from the original source signal after decompression are not detectable.

Compression Methods Used by Various Image File Formats

	BMP	GIF	PNG	JPEG
RLE	X	620 63		X
LZ	22	X	x	
Huffman	V-2	9.5	X	X
DCT				X

QUESTION AND ANSWER SESSION

ANY

QUESTIONS

?