EA721 A - Princípios de Controle e Servomecanismos

Primeiro Semestre de 2010 - Prova 1 - Prof. Paulo Valente

RA: Assinatura (como no RG): Nome Legível:

Antes de começar a resolver a prova, atente para o seguinte:

- Resoluções. Na resolução das questões a seguir é absolutamente imprescindível, para fins de correção, que todos os resultados e afirmações estejam devidamente justificadas;
- Esboço do Lugar das Raízes. O esboço deve incluir os pólos e zeros de malha aberta, as raízes sobre o eixo real e os pontos e direções associadas a k = 0 e k → ∞. Determine ou mostre que não existem: assíntotas (ângulos e interseção), pontos de cruzamento com o eixo imaginário, pontos de entrada ou saída no eixo real, ângulos de partida de pólos (ou de chegada em zeros) complexos conjugados.

Figura 1. Sistema de controle em malha fechada.

Questão 1. [2,5 p] O sistema de controle da Figura 1 com C(s) = k(s+1), $P(s) = 1/(s^2-1)$ e F(s) = 1 representa o controle em malha fechada de um pêndulo invertido por meio de um controlador proporcional-derivativo. Assuma

 $r(t)=A_1,\,t\geq 0,\,w(t)=A_2\sin t,\,t\geq 0$ e $v(t)=0,\,t\geq 0;\,A_1$ e A_2 são constantes. Determine

$$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{t \to \infty} y_r(t) + \lim_{t \to \infty} y_w(t)$$

onde $y_r(t)$ e $y_w(t)$ são as componentes da saída devidas à referência r e ao distúrbio w, respectivamente. Em seguida determine o valor do ganho k para que a amplitude da componente devida ao distúrbio w seja igual a $A_2/10$.

Questão 2. [2,5 p] É muito comum que sistemas instáveis possam ser estabilizados reduzindo-se o ganho de malha do sistema. Entretanto, existem sistemas, chamados de *condicionalmente estáveis*, que também podem ser estabilizados *aumentando-se* o ganho de malha do sistema.

Considere o sistema de controle da Figura 1 com controlador C(s) = k, planta $P(s) = (s+6)^2/[s(s+1)^2]$ e realimentação unitária, F(s) = 1. Determine todos os valores de k para os quais o sistema de controle em malha fechada é a) estável, b) marginalmente estável, e c) instável.

Questão 3. [2,5 p] Considere o sistema de controle da Figura 1 com controlador C(s) = k(s+2), planta $P(s) = 1/(s^2-1)$ e realimentação unitária, F(s) = 1.

Esboce o diagrama de Nyquist do sistema, isto é, a curva \mathcal{C}_G no plano G(s) para uma escolha apropriada da curva \mathcal{C}_s no plano s; G(s) é o ganho de malha do sistema. Em seguida, usando o Critério de Nyquist, determine todos os valores de k para os quais o sistema de controle em malha fechada é a) estável, b) marginalmente estável, e c) instável.

Questão 4. [2,5 p] Muitos problemas em Engenharia requerem a resolução de problemas de equilíbrio envolvendo plantas descritas por integradores duplos.

Considere o sistema de controle da Figura 1 com planta $P(s)=1/s^2$, compensador do tipo avanço de fase, $C(s)=k_c(s+1/T)/[s+1/(\alpha T)],\ T>0$, $\alpha\in(0,1)$, e realimentação unitária, F(s)=1. Os pólos dominantes do sistema em malha fechada devem apresentar fator de amortecimento $\xi=0,5$ e frequência natural $\omega_n=2$ rad/s. Projete C(s) que realize essa alocação através do método do Lugar das Raízes. Em seguida esboce o Lugar das Raízes do sistema compensado.

Informações Gerais

Tabela de Tangentes

θ em Graus	$\operatorname{tg} \theta$
0^{o}	0
15^{o}	$2-\sqrt{3}$
30^{o}	$\sqrt{3}/3$
45^{o}	1
60^{o}	$\sqrt{3}$
75^{o}	$2+\sqrt{3}$
90°	$\pm \infty$

Princípio do Argumento. N = Z - P, onde $P \in Z$ são os números de pólos e zeros de uma função racional F(s) envolvidos por uma curva C_s no plano s; N é o número de envolvimentos da origem do plano F(s) pela curva C_F .

Lugar das Raízes. Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 1 + k\frac{\prod_{j=1}^{m}(s - z_j)}{\prod_{j=1}^{n}(s - p_j)} = 0, \quad k > 0.$$

- 1. Magnitude e fase: |kG(s)| = 1, $\angle G(s) = 180^{\circ} \times r$, $r = \pm 1, \pm 3, \ldots$
- 2. Assíntotas e Ângulos:

$$\theta = \frac{180^{\circ} \times r}{n - m}, r = \pm 1, \pm 3, ..., \qquad \sigma_a = \frac{\sum_{i=1}^{n} p_i - \sum_{j=1}^{m} z_j}{n - m}.$$

3. Ângulos de partida e chegada: satisfazem

$$\sum_{i=1}^{m} \phi_{z_j} - \sum_{i=1}^{n} \phi_{p_i} = 180^{\circ} \times r, r = \pm 1, \pm 3, \dots$$

onde ϕ_{z_j} (respectivamente, ϕ_{p_i}) são os ângulos entre os zeros (respectivamente, pólos) de G(s) e o ponto de interesse.

4. Pontos de entrada e saída: entre as raízes de

$$D'(s)N(s) - D(s)N'(s) = 0.$$

5. Pontos de cruzamento com o eixo imaginário podem ser determinados por meio do Critério de Routh-Hurwitz.

Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em