【2018年松江一模20题】

20. 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 经过点 $(1, \frac{\sqrt{3}}{2})$, 其左焦点为

 $F(-\sqrt{3},0)$, 过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.

- (1) 求椭圆E的方程;
- (2) 过点F且与l垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为 $\frac{4}{3}$,求直线l的方程;

【2018年虹口一模20题】

- 20. 已知平面内的定点F到定直线l的距离等于p (p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A作l的垂线,垂足为E.
 - (1) 求曲线C的轨迹方程;
 - (2) 记点 A 到直线 l 的距离为 d ,且 $\frac{3p}{4} \le d \le \frac{4p}{3}$,求 $\angle EAF$ 的取值范围;
 - (3) 判断 $\angle EAF$ 的平分线所在的直线与曲线的交点个数,并说明理由.

【2018年杨浦一模 20 题】

- 20. 设直线 l 与抛物线 Ω : $v^2 = 4x$ 相交于不同两点 $A \times B$, O 为坐标原点.
- (1) 求抛物线 Ω 的焦点到准线的距离;
- (2) 若直线 l 又与圆 $C:(x-5)^2 + y^2 = 16$ 相切于点 M ,且 M 为线段 AB 的中点,求直线 l 的方程;
- (3) 若 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$, 点Q在线段AB上,满足 $OQ \perp AB$,求点Q的轨迹方程.

【2018年金山一模20题】

- 20. 给出定理: 在圆锥曲线中,AB 是抛物线 Γ : $y^2=2px$ (p>0)的一条弦,C 是 AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D,若A、B 两点纵坐标之差的绝对值 $|y_A-y_B|=a$ (a>0),则 ΔADB 的面积 $S_{\Delta ADB}=\frac{a^3}{16p}$,试运用上述定理求解以下各题:
- (1) 若 p=2, AB 所在直线的方程为 y=2x-4, C 是 AB 的中点,过 C 且平行于 x 轴的直线与抛物线 Γ 的交点为 D,求 $S_{\Delta ADB}$;
- (2)已知 AB 是抛物线 Γ : $y^2 = 2px$ (p > 0)的一条弦,C 是 AB 的中点,过点 C 且平行于 x 轴的直线与抛物线的交点为 D , E 、 F 分别为 AD 和 BD 的中点,过 E 、 F 且平行于 x 轴的直线与抛物线 Γ : $y^2 = 2px$ (p > 0)分别交于点 M 、 N ,若 A 、 B 两点纵坐标之差的绝对值 $|y_A y_B| = a$ (a > 0),求 $S_{\Delta AMD}$ 和 S_{ABND} ;
- (3)请你在上述问题的启发下,设计一种方法求抛物线: $y^2 = 2px$ (p > 0)与弦 AB 围成的"弓形"的面积,并求出相应面积.

【2018年普陀一模 20 题】

20. 设点 F_1 、 F_2 分别是椭圆 C : $\frac{x^2}{2t^2} + \frac{y^2}{t^2} = 1$ (t > 0) 的左、右焦点,且椭圆 C 上的点到点 F_2 的距离的最小值为 $2\sqrt{2} - 2$,点 M、 N 是椭圆 C 上位于 x 轴上方的两点,且向量 $\overline{F_1M}$ 与向量 $\overline{F_2N}$ 平行.

- (1) 求椭圆C的方程;
- (2) 当 $\overline{F_1N} \cdot \overline{F_2N} = 0$ 时,求 ΔF_1MN 的面积;
- (3) 当 $|\overline{F_2N}| |\overline{F_1M}| = \sqrt{6}$ 时,求直线 F_2N 的方程.

【2018年徐汇一模20题】

20. 已知椭圆 $\Gamma: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左、右焦点分别为 F_1 、 F_2 ,且 F_1 、 F_2 与短轴的一个端点Q构成一个等腰直角三角形,点 $P(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2})$ 在椭圆 Γ 上,过点 F_2 作互相垂直且与x轴不重合的两直线AB、CD分别交椭圆 Γ 于A、B、C、D,且M、N分别是弦AB、CD的中点.

- (1) 求椭圆Γ的标准方程;
- (2) 求证: 直线 *MB* 过定点 $R(\frac{2}{3},0)$;
- (3) 求 ΔMNF, 面积的最大值.