Matemática Discreta-Hoja 4

- 1. Razona cuáles de las afirmaciones siguientes son verdaderas:
 - a) $1 \in \{1\} X$

- d) $\emptyset \in \emptyset$

- e) $\{1\} \subseteq \{\{1\}\}\ X$ i) $\emptyset \subseteq \{1\}\$
- b) $\{1\} \subseteq \{1\} \checkmark$ f) $\{1\} \in \{\{1\}\} \checkmark$ j) $\emptyset \in \{1\}$
- $h) \emptyset \subseteq \{\emptyset\}$ 1) $\emptyset \in \{\emptyset\}$
- 2. De las cuatro afirmaciones que se presentan, para A, B, C conjuntos cualesquiera no vacíos, demuestra que únicamente una es cierta y pon contraejemplos para las otras tres, que son falsas:
 - a) Si $A \in B$ y $B \subseteq C$ entonces $A \in C$.
- BO (LUA)
- b) Si $A \in B$ y $B \subseteq C$ entonces $A \subseteq C$.
- c) Si $A \subseteq B$ y $B \in C$ entonces $A \in C$.
- d) Si $A \subseteq B$ y $B \in C$ entonces $A \subseteq C$.
- 3. Sea $U = \{1, 2, ..., 10\}$ A = $\{1, 4, 7, 10\}$ B = $\{1, 2, 3, 4, 5\}$ C = $\{2, 4, 6, 8\}$. Enumera los elementos de:
- a) $B \cap (\overline{C \cup A})$ b) $\mathcal{P}(A (B \cap C))$ c) $\left[((A B) \times (C B)) \times (A \cap C) \right] \cup \left[B \cap (\overline{C \cup A}) \right]$
- 4. Dibuja un diagrama de Venn y sombrea el conjunto:

- siguientes conjuntos:

- a) $A \cup B$ | $A \cap B$ | A
- 9. Sean A, B, X conjuntos. Demuestra que las tres condiciones siguientes son equivalentes:

$$\mathbf{a})X\subseteq A\cup B$$

$$b)(X - A) \cap (X - B) = \emptyset \qquad c)(X - A) \subseteq B$$

$$c)(X - A) \subseteq B$$

10. Sean $A, B, C \neq \emptyset$, demuestra que:

$$(A \cap C) \subseteq (B \cap C)$$

$$(A \cap \overline{C}) \subseteq (B \cap \overline{C})$$

$$\Rightarrow A \subseteq B$$

- 11. Usa las leves de Boole para demostrar las afirmaciones siguientes:
 - a) $\overline{(A \cup (B \cap C))} = (\overline{C} \cup \overline{B}) \cap \overline{A}$
- b) $(\overline{(A \cup B)} \cap C) = (\overline{C} \cup B) \cup A$
- c) $(\overline{A} \cup B) \cap A = A \cap B$
- d) $\overline{(\overline{A} \cup B)} \cup B = A \cup B$

- e) $\overline{(\overline{A} \cup B)} \cup A = A$
- 12. Determina si las siguientes afirmaciones son verdaderas o falsas. Demuestra las válidas y construye un contraejemplo para las falsas.
 - a) $(A B) \cap C = (A \cap C) B$
- b) $(A \cap B) C = A \cap (B C) = (A C) \cap B$
- c) A (B C) = (A B) C
- $d(A \times B) (C \times D) = ((A C) \times B) \cup (A \times (B D))$

- 13. Sean $A, B, C \subseteq \mathcal{U}$, demuestra que
 - a) $A \cup B = \mathcal{U} \operatorname{sii} \overline{A} \subseteq B$
 - b) $A \cap B = \emptyset \text{ sii } \overline{A} \supseteq B$
- 14. Sean A, B, C conjuntos. ?'Podemos deducir A = B si
 - a) $A \cup C = B \cup C$?
 - b) $A \cap C = B \cap C$?
 - c) $A \cup C = B \cup C$ y $A \cap C = B \cap C$?
- 15. Sean $A, B, C \subseteq \mathcal{U}$. Demuestra que $(A \cap B) \cup C = A \cap (B \cup C)$ sii $C \subseteq A$.
- 16. Simplifica las expresiones siguientes usando las Leyes de Boole:
 - $a) \ ((A \cup B) \cap \overline{C \cup A}) \cup ((C \cap B) \cup A)$
 - $b) \ \overline{A} \cup \overline{B} \cup (A \cap B \cap \overline{C})$
 - c) $\overline{(A \cup B) \cap C} \cup \overline{B}$
 - $d) \ (\overline{(\overline{A \cup \overline{C}}) \cap B}) \cup \overline{(A \cap (\overline{(C \cap \overline{B})})} \cup C$
- 17. La Diferencia Simétrica de los conjuntos A y B se define como: $A \oplus B \stackrel{\text{def}}{=} (A B) \cup (B A)$

Determina si las siguientes afirmaciones son verdaderas o falsas. Demuestra las válidas y construye un contraejemplo para las falsas.

- a) $A \oplus (B \cap C) = (A \oplus B) \cap (A \oplus C)$
- $\mathbf{b})A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- c) $A \oplus C = B \oplus C \Longrightarrow A = B$
- d) $A \subseteq B \implies A \oplus C \subseteq B \oplus C$
- 18. Definimos una sucesión de conjuntos:

$$A_k = \{ \{ m \in \mathbb{N} \mid m < n \} \mid n \leq k \} \qquad \quad (\text{para todo } k \in \mathbb{N})$$

y un conjunto $B = \{\{m \in \mathbb{N} \: | \: m < n\} \: | \: n \in \mathbb{N}\}$

- a) Enumera A_0 , A_1 and A_2 .
- b) Demuestra que $A_k \subseteq B$ para todo $k \in \mathbb{N}$.
- c) Demuestra que $\emptyset \in A_k$ para todo $k \in \mathbb{N}$.
- 19. Para todo $k \in \mathbb{N}$, sea

$$A_k = \{ n \in \mathbb{N} \mid n \le k \}$$

$$B_k = \{ n \in \mathbb{N} \mid n > k \}$$

Determina:

$$\bigcup \{A_k \mid k \in \mathbb{N}\} \qquad \qquad \bigcap \{A_k \mid k \in \mathbb{N}\}
\bigcup \{B_k \mid k \in \mathbb{N}\} \qquad \qquad \bigcap \{B_k \mid k \in \mathbb{N}\}$$

20. Para todo $k \in \mathbb{Z}^+$, sea

$$A_k = \{k+1, k+2, k+3...\}$$

Determina:

- a) $\bigcup \{A_k \mid 1 \le k \le 8\}$
- b) $\bigcap \{A_k \mid 3 \le k \le 12\}$
- c) $\bigcup \{A_k \mid k \ge 1\}$
- $d) \cap \{A_k \mid 1 \leq k\}$