Remember: function of 1 variable $\int_{a}^{b} f(x) dx$ = area below graph of f over $[a, b]$ Pouble integral = volume below graph $2 = f(x,y)$, over a reigon R on $x-y$ plane VR = $\int_{a}^{b} x f(x,y) dA$ buttom area $2 dA$ Definition: are R to small pieces of one AA V = $\sum_{x} f(x,y) dA$ U = $\sum_{x} f(x,y) dA$ To compute A $\sum_{x} f(x,y) dA$: take A $\sum_{x} f(x,y) dA$ To compute A $\sum_{x} f(x,y) dA$: take A $\sum_{x} f(x,y) dA$ The volume = $\sum_{x} f(x,y) dA$	Mo Tu We Th Fr Sa Su	Memo No. Date	/		
Pouble integral = volume Delow graph $2 = f(xy)$, over a reigon R on x-y plane VR = $\int R f(x, y) dA$ buttom. Area $2 dA$ Definition: cut R to small pieces of one ΔA V = $\sum f(x_i, y_i) \cdot Ai$ To compute $3 \cdot \sum R f(x_i, y_i) \cdot Ai$ To compute $3 \cdot \sum R f(x_i, y_i) \cdot Ai$ To compute $3 \cdot \sum R f(x_i, y_i) \cdot Ai$ To compute $3 \cdot \sum R f(x_i, y_i) \cdot Ai$ The volume = $\sum K_{many} f(x_i, y_i) \cdot Ai$ The volume = $\sum K_{many} f(x_i, y_i) \cdot Ai$ The volume = $\sum K_{many} f(x_i, y_i) \cdot Ai$	Leclb. Integrals.	2025.1,	15		
Pouble integral = volume below graph $z = f(xy)$, over a reigon $X > 0$	Remember: function of 1	variable ,	la fix	y dx	
below graph $z = f(x,y)$, over a reigon R on x-y plane VR = $\int R f(x,y) dA$ buttom Area $z dA$ Definition: cut R to small pieces of one ΔA $V = \sum_{x} f(x,y) dA$ U take $V = \sum_{x} f(x,y) dA$ To compute $S = \sum_{x} f(x,y) dA$ The volume $S = \sum_{x} f(x,y) dA$	= area below graph of f	over [a,b]		1111	
below graph $\frac{1}{2} = f(xy)$, over a reigon R on x-y plane VR = $\int_{\mathbb{R}} x f(x,y) dx$ buttom Area $\Rightarrow dx$ Definition: cut x to small pieces of are Δx $\int_{\mathbb{R}} x f(x,y) dx$ $\int_{\mathbb{R}} x f(x,y) dx$ To compute $\mathcal{Q} = \int_{\mathbb{R}} x f(x,y) dx$: take $\lim_{x \to \infty} x = \int_{\mathbb{R}} x f(x,y) dx$ To compute $\mathcal{Q} = \int_{\mathbb{R}} x f(x,y) dx$: take $\lim_{x \to \infty} x = \int_{\mathbb{R}} x f(x,y) dx$ The volume = $\int_{\mathbb{R}} x f(x,y) dx$	Pouble integral = volume		11	////	
Problem of shies by // y-x plane Rea of shies by // y-x plane Rea of shies by // y-x plane Rea of shies by // y-x plane The volume = $\int_{-\infty}^{\infty} x \cdot y \cdot dx$	below anuch = f(xx) ove	Y a reland	a	Ь	
To compute S S X $f(x,y)$ dp : take X X $f(x,y)$ dp : take X X $f(x,y)$ $f(x$	Definition: $ax \in X$ to small $y = S = f(X)$;	= Slrf(x,,) pieces of on yi). Ai	y)da e An		
$S(x) = area of slikes by // y-x plane$ The volume = $\int_{X_{min}}^{X_{max}} S(x) dx$			***************************************		
$\int_{X} (x) = anea \text{of succes by } // y-x \text{ plane}$ $= \int_{X_{min}} (x) dx$ $= \int_{X_{min}} (x) dx$ $= \int_{X_{min}} (x) dy$ $= \int_{X_{min}} (x) dy$ $= \int_{X_{min}} (x) dy$	•			a. What	
The volume = $\int S(x) dx$ $\int S(x) dx$ $\int S(x) = \int S(x) dx$ $\int S(x) = \int S(x) dx$ $\int S(x) = \int S(x) dx$ $\int S(x) dx$	$\int (x) = area of sums by$	11 Y-X plane	2		
ton given x , fix $S(x) = \int f(x,y) dy$	The volume = Schools	-			
Ymin (K)	tor given x, fix s(x) = (fix)	x)			
	Ymin (K)				

