

Barick Chung

Employment:
2014-present Senior Lecturer, Department of Economics, CUSZ – Shenzhen.
2012-2014 Lecturer, School of Economics and Finance, University of Hong Kong.
2006-2012 Instructor, Department of Economics, CUHK – Hong Kong.

Education. 2003-2007 Ph.D. (Business) Indiana University – Bloomington. 1987-1991 BS.Sc. (Economics) Chinese University of Hong Kong – Hong Kong.

Research paper: Chung, Barick, "Two Level Price Discrimination and Vertical Relationship" (March 05, 2012). Available at SSRN: http://ssrn.com/abstract=1997070.

Homepage: Deleted Facebook: Deleted Wechat ID: barickchung

ECO 2011 (Sections L07-10) **Basic Microeconomics**

Barick Chung Department of Economics 235-18822 Zhiren Building, 409 barickchung@cuhk.edu.cn

2:46:39

Pindyck and Rubinfeld, p.218:

 $\textbf{Marginal rate of technical substitution} \ (\text{MRTS}) : Amount$ by which the quantity of one input can be reduced when one extra unit of another input is used, so that output remains constant.

MRTS_{LK} = - Change in capital input / change in labor input

 $= - \Delta K / \Delta L$

Definition

2:46:39

Pindyck and Rubinfeld, p. 219:

Diminishing MRTS: The MRTS falls as we move down along an isoquant. In other words, isoquants are convex.

Assumption

product / output / rcturn

2 special cases

2:46:39

6

Iso-cost line

2:46:39

9

Pindyck and Rubinfeld, p. 219:

Returns to scale: Rate at which output increases as inputs are increased proportionately.

Increasing returns to scale: Situation in which output more than doubles when all inputs are doubled.

Constant returns to scale: Situation in which output doubles when all inputs are doubled.

Decreasing returns to scale: Situation in which output less than doubles when all inputs are doubled.

Definitions

2:46:39

MOGROUPING ST TOTAL	Pindyck and Rubinfeld, pp.206 – 7: Average product: Output per unit of a particular input. Marginal product: Additional output produced as an input is increased by one unit.
2:46:30	Definitions

_				
_				
_				
_				
_				
_				

1000			,	pp.206–7:		
15	· 4.	1				V
1 000		_,	1.5 00			
Labor L	Capital K	Output Q	$AP_L = Q/L$	$MP_L = \Delta Q/\Delta L$	$AP_K = Q/K$	$MP_K = \Delta Q / \Delta I$
0	10	0	-	-		
1	10	10	10	10		(
2	10	30				١.
3	10	60	20	30		\ /
4	10	80				
5	10	95				V
6	10	108				\sim
7	10	112				
l '		112				/ \
8	10	112				

The end		
2.46:39	19	