Mathematik 3 (Stochastik/Statistik)

Zusammenfassung

Fabian Damken

8. November 2023

Inhaltsverzeichnis

1	Eint	uhrung		4		
2	Grundbegriffe					
	2.1	-	neine Definitionen	5		
	2.2	Messre	eihen			
		2.2.1	Empirische Verteilungsfunktion			
		2.2.2	Klassen	5		
			Zweidimensionale Messreihen	6		
	2.3	Maßza	ahlen	6		
		2.3.1	Lagemaßzahlen			
		2.3.2	Streuungsmaße			
			Regressionsgerade			
	2.4	Zufalls	sexperimente und Wahrscheinlichkeit			
		2.4.1	Zufallsexperimente			
		2.4.2	Wahrscheinlichkeit			
	2.5	Zufalls	svariablen und Verteilungsfunktion			
		2.5.1	Zufallsvariablen			
		2.5.2	Verteilungsfunktion			
		2.5.3	Diskret/Stetig verteilte Zufallsvariablen			
		2.5.4	Erwartungswert und Varianz			
		2.5.5	Tschebyscheffsche Ungleichung	16		
		2.5.6	Unabhängigkeit	17		
	2.6	Einige	Sätze			
		2.6.1	Das schwache Gesetz der großen Zahlen	17		
		2.6.2	Zentraler Grenzwertsatz	17		
		2.6.3	Zentralsatz der Statistik	18		
		2.6.4	Anwendungen	18		
3			ahren und Konfidenzintervalle	19		
	3.1	Grund	lagen	19		
		3.1.1	(Asymptotische) Erwartungstreue	19		
		3.1.2	Mittlerer quadratischer Fehler	20		
		3.1.3	Konsistenz	20		
	3.2	Maxin	num-Likelihood-Schätzer	20		
	3.3		enzintervalle			
		3.3.1	Konstruktion für normalverteilte Zufallsvariablen	21		
4						
	4.1		lagen	23		
		411	Testoröße	23		

		4.1.2 Allgemeines Konstruktionsprinzip zum Niveau α	24				
	4.2	Wichtige Tests bei Normalverteilungsannahme	24				
		Verteilungstests					
		Weitere statische Tests					
5	Robuste Statistik 2						
	5.1	Median	29				
		5.1.1 Schätzer					
	5.2	M-Schätzer	30				
6	Multivariate Verteilungen und Summen von Zufallsvariablen						
	6.1	Grundlagen	31				
		6.1.1 Multivariate Normalverteilung					
		6.1.2 Unabhängigkeit	32				
		6.1.3 Korrelation	32				
	6.2	Verteilung der Summe von Zufallsvariablen	33				
		6.2.1 Faltung					
		6.2.2 Diskret verteilte Zufallsvariablen	33				

1 Einführung

- Nahezu überall treten unsicherheitsbehaftete Daten, Parameter oder Prozesse auf. Beispiele: Messfehler, Materialschwankungen, Rauschen, Inferenz, Nutzerverhalten, ...
- In vielen Bereichen der Informatik sind mathematische Modelle zur Verarbeitung unsicherer Daten eine unerlässliche Basis.
 - Beispiele: Signalverarbeitung, Regelungstechnik, Machine Learning, Robotik, ...
- Im allgemeinen lässt sich die Statistik/Stochastik in folgende Bereiche einteilen:
 - Die Beschreibende Statistik dient dazu, Beobachtungsdaten darzustellen und zu charakterisieren.
 - In der *Schließenden Statistik* geht es darum, Risiken auf Basis von mathematischen Modellen abzuschätzen und einzustufen.
 - Diese mathematischen Modelle werden in der Wahrscheinlichkeitstheorie behandelt.

2 Grundbegriffe

2.1 Allgemeine Definitionen

Gamma-Funktion

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \quad x > 0$$

Beta-Funktion

$$B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt, \quad \alpha, \beta > 0$$

2.2 Messreihen

Eine Messreihe ist eine Reihe von n Zahlen:

$$x_1, x_2, \cdots, x_n$$

Messreihen können in quantitativ-diskrete und quantitativ-stetige Typen eingeordnet werden, wobei die Merkmalsausprägungen bei ersterem ganze Zahlen sind und bei letzterem reelle Zahlen.

Wird eine beliebige Messreihe der Größe nach sortiert, so entsteht eine geordnete Messreihe:

$$x_{(1)}, x_{(2)}, \cdots, x_{(n)}$$

Sie enthält die gleichen Werte, aber so angeordnet, dass $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ gilt.

2.2.1 Empirische Verteilungsfunktion

Die empirische Verteilungsfunktion zu einer Messreihe x_1, x_2, \cdots, x_n ist die Funktion

$$F(z; x_1, x_2, \dots, x_n) = \frac{\text{Anzahl der } x_i \text{ mit } x_i \le z}{n} = \frac{\max\{i \mid x_{(i)} \le z\}}{n}$$

2.2.2 Klassen

Werden r-1 Zahlen $a_1 < a_2 < \cdots < a_{r-1}$ gewählt, so entsteht die Unterteilung von $\mathbb R$ in r Klassen:

$$\mathbb{R} = (-\infty, a_1) \cup (a_1, a_2] \cup \cdots \cup (a_{r-1}, a_{r-1}] \cup (a_{r-1}, \infty)$$

Mit $F(z) = F(z; x_1, x_2, \dots, x_n)$ ergibt sich die relative Klassenhäufigkeit für die r Klassen mit:

$$F(a_1)$$
, $F(a_2) - F(a_1)$, $F(a_{r-1}) - F(a_{r-2})$, $1 - F(a_{r-1})$

Werden noch zwei zusätzliche Zahlen $a_0 < \min\{a_1, x_{(1)}\}$ und $a_r > \max\{a_{r-1}, x_{(n)}\}$ gewählt, so kann die Klassenhäufigkeit als Histogramm dargestellt werden, wobei über jedem Intervall $(a_{j-1}, a_j], \quad j = 1, \cdots, r$ ein Rechteck mit der Fläche der jeweiligen Klassenhäufigkeit erstellt wird. Die Gesamtfläche des Histogramms ist somit 1.

2.2.3 Zweidimensionale Messreihen

Werden bei einer statistischen Erhebung zwei Merkmale gleichzeitig ermittelt, entstehen zweidimensionale Messreihen:

$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

2.3 Maßzahlen

2.3.1 Lagemaßzahlen

Eindimensional

Sei x_1, x_2, \dots, x_n eine Messreihe mit der dazugehörigen geordneten Messreihe $x_{(1)}, x_{(2)}, \dots, x_{(n)}$.

Arithmetisches Mittel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

Empirischer Median

$$\tilde{x} = \begin{cases} x_{(\frac{n}{2})} & \text{falls } n \text{ gerade} \\ x_{(\frac{n+1}{2})} & \text{falls } n \text{ ungerade} \end{cases}$$

p-Quantil (
$$0)$$

$$x_p = \begin{cases} x_{np} & \text{falls } np \text{ ganzzahlig} \\ x_{\lfloor np \rfloor + 1} & \text{falls } np \text{ nicht ganzzahlig} \end{cases}$$

Das 0.25-Quantil wird unteres Quantil, das 0.75-Quantil oberes Quantil genannt. Das 0.5-Quantil entspricht dem Median.

 α -gestutztes Mittel (0 < α < 0.5)

$$\bar{x}_{\alpha} = \frac{1}{n-2k} (x_{(k+1)} + \dots + x_{(n-k)}), \quad k = \lfloor n\alpha \rfloor$$

Anschaulich: Die extremsten k Messwerte werden ignoriert.

Zweidimensional

Sei $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ eine Messreihe.

Arithmetische Mittel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2.3.2 Streuungsmaße

Eindimensional

Sei x_1, x_2, \dots, x_n eine Messreihe mit der dazugehörigen geordneten Messreihe $x_{(1)}, x_{(2)}, \dots, x_{(n)}$.

Empirische Varianz

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

Empirische Streuung

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{s^2}$$

Spannweite

$$v = x_{(n)} - x_{(1)}$$

Quartilsabstand

$$q = x_{0.75} - x_{0.25}$$

Zweidimensional

Empirische Varianzen

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
 $s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$

Empirische Streuungen

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 $s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$

Empirische Kovarianz

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} \right)$$

Empirische Korrelationskoeffizient

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

Es gilt immer $|r_{xy}| \leq 1$. Je näher $|r_{xy}|$ an 1 liegt, desto stärker korrelieren x und y.

2.3.3 Regressionsgerade

Der Zusammenhang der x- und y-Werte lässt sich durch eine Regressionsgerade visualisieren.

$$y = \hat{a}x + \hat{b}$$

Die Parameter \hat{a} und \hat{b} berechnen sich dabei wie folgt:

$$\hat{a} = \frac{s_{xy}}{s_x^2} \qquad \hat{b} = \bar{y} - \hat{a}\bar{x}$$

Der Korrelationskoeffizient gibt den Trend der Abhängigkeiten der y-Werte von den x-Werten an:

Die Regressiongerade verläuft $\begin{cases} \text{streng monoton steigend.} & r_{xy} > 0 \\ \text{streng monoton fallend.} & r_{xy} < 0 \\ \text{horizontal.} & r_{xy} = 0 \end{cases}$

Residuen

Die Abweichungen der Punkte (x_i, y_i) von der Regressionsgerade in vertikaler Richtung

$$r_i = y_i - \hat{a}x_i - \hat{b}, \quad i = 1, \cdots, n$$

werden Residuen genannt.

Für das Residuenquadrat gilt:

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - \hat{y})^2 (1 - r_{xy}^2)$$

Die vertikale Abweichung von der Regressionsgerade hängt also stark von dem Korrelationskoeffizienten ab. Für Werte von $|r_{xy}|$, die nahe an 1 liegen verschwinden die Residuen annähernd (für $|r_{xy}| = 1$ verschwinden sie vollständig).

2.4 Zufallsexperimente und Wahrscheinlichkeit

2.4.1 Zufallsexperimente

Ein *Zufallsexperiment* ist ein Vorgang, der so genau beschrieben wird, dass er als beliebig oft wiederholbar betrachtet werden kann und dessen Ergebnisse vom Zufall abhängen.

- Die Menge Ω heißt *Ergebnismenge*.
- Die Elemente $\omega \in \Omega$ heißen Ergebnisse,
- Teilmengen $A \subseteq \Omega$ heißen *Ereignisse*. Ein Ereignis A tritt ein gdw. ein Ergebnis $\omega \in A$ eintritt.

Ereignisse

- Ein zusammengesetztes Ereignis $A \cup B$ tritt ein gdw. ein Ergebnis ω mit $\omega \in A$ oder $\omega \in B$ eintritt.
- Analog tritt ein Ereignis $A \cap B$ ein gdw. ein Ergebnis ω mit $\omega \in A$ und $\omega \in B$ eintritt.
- Das Ereignis $A^c = \Omega \setminus A$ ist das zu A komplementäre Ereignis.
- Zwei Ereignisse A, B heißen unvereinbar gdw. $A \cap B = \setminus$ (d.h. die Ereignisse sind disjunkt).
- Die leere Menge \emptyset heißt unmögliches Ereignis und die Menge Ω sicheres Ereignis.
- Einelementige Mengen $\{\omega\}$ heißen *Elementarereignisse*.
- Für Folgen A_1, A_2, \cdots von Ereignissen wird das zusammengesetzte Ereignis $\bigcup_{i=1}^{\infty} A_i$ definiert, das eintritt gdw. mindestens ein A_i eintritt. Analog für $\bigcap_{i=1}^{\infty} A_i$ gdw. alle Ereignisse zugleich eintreten.

Ereignissysteme Ein System $A \subseteq \mathcal{P}(\Omega)$ heißt $\sigma - Algebra$ oder *Ereignissystem* gdw. gilt:

- 1. $\Omega \in \mathcal{A}$
- 2. $A \in \mathcal{A} \implies A^c \in \mathcal{A}$
- 3. Für jede Folge $A_1, A_2, \dots \in \mathcal{A}$ gilt auch $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

Aufgrund von 2 und 3 gilt auch: $A \cap B = (A^c \cup B^c)^c \in A$.

• Eine σ -Algebra erlaubt genau die Verknüpfungen von Ereignisse, die in der Praxis nützlich sind.

Ereignispartition Mengen A_1, \dots, A_n werden *Ereignispartition* (oder *vollständige Ereignisdisjunktion*) genannt, wenn die Ereignisse paarweise unvereinbar sind und $\bigcup_{i=1}^n A_i = \Omega$ gilt.

2.4.2 Wahrscheinlichkeit

Formeln der Kombinatorik

Sei Ω eine Ereignismenge mit n Elementen $k \in \mathbb{N}$.

Geordnete Probe mit Wiederholungen Ein k-Tupel x_1, \dots, x_k mit $x_i \in \Omega$, $i = 1, \dots, k$ heißt geordnete Probe von Ω vom Umfang k mit Wiederholungen. Dann existieren

$$n^k$$

solcher Proben (für jede Stelle x_i gibt es n Möglichkeiten).

Geordnete Probe ohne Wiederholungen Ein k-Tupel $x_1, \dots, x_k, k \le n$ mit $x_i \in \Omega, i = 1, \dots, k$ und $x_i \ne x_j$ für $i \ne j$ heißt geordnete Probe von Ω vom Umfang k ohne Wiederholungen. Dann existieren

$$n(n-1)(n-2)\cdots(n-k+1)$$

solcher Proben (für die erste Stelle gibt es n Möglichkeiten, für die zweite n-1, usw.).

Gilt k=n wird von Permutationen der Menge Ω gesprochen, wovon

$$n! = n(n-1)(n-2)\cdots 2\cdots 1$$

existieren.

Ungeordnete Probe mit Wiederholungen Eine k-Sammlung $x_1, \dots, x_k, k \le n$ mit $x_i \in \Omega, i = 1, \dots, k$ heißt ungeordnete Probe von Ω vom Umfang k mit Wiederholungen. Dann existieren

$$\frac{(n+k-1)!}{(n-1)! \cdot k!} = \binom{n+k-1}{k}$$

solcher Proben.

Ungeordnete Probe ohne Wiederholungen Eine Teilmenge $x_1, \dots, x_k, k \le n$ mit $x_i \in \Omega, i = 1, \dots, k$ heißt *ungeordnete Probe* von Ω vom Umfang k ohne Wiederholungen. Dann existieren

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

solcher Proben (es gibt $n(n-1)(n-2)\cdots(n-k+1)$ geordnete Proben, aber jeweils k! bestehen aus den gleichen k Elementen).

Wahrscheinlichkeiten

Um jedem Ereignis eine Wahrscheinlichkeit zuzuordnen, wird eine Abbildung $P: \mathcal{A} \to \mathbb{R}$ betrachtet. Diese Abbildung heißt *Wahrscheinlichkeitsmaß*, wenn sie den *Axiomen von Kolmogorov* genügt:

- 1. $\forall A \in \mathcal{A} : P(A) \geq 0$
- **2.** $P(\Omega) = 1$
- 3. $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ mit paarweise unvereinbaren $A_1, A_2, \dots \in \mathcal{A}$ (auch für endliche Folgen!)

Rechenregeln

- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$
- 0 < P(A) < 1
- $A \subseteq B \implies P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Ist jedes Elementarereignis gleich Wahrscheinlich (wie z.B. bei einem Würfelwurf), so gilt für beliebige Ereignisse $A \subseteq \Omega$:

$$P(A) = \sum_{\omega_i \in A} P(\{\omega_i\}) = \frac{|A|}{n}$$

Bedingte Wahrscheinlichkeit

Seien A, B zwei Ereignisse mit P(A), P(B) > 0. In vielen Fällen ist interessant, was die Wahrscheinlichkeit von A ist unter der Bedingung, dass B eintritt.

Diese bedingte Wahrscheinlichkeit wird als P(A|B) formuliert (Wahrscheinlichkeit von A unter der Bedingung B) und ist gegeben durch:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Ereignispartition Für eine Ereignispartition A_1, \dots, A_n mit $P(A_i) > 0$, $i = 1, \dots, n$ und ein Ereignis B gilt:

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

Formel von Bayes Seien A_1, \dots, A_n eine Ereignispartition mit $P(A_i) > 0$, $i = 1, \dots, n$ und B ein Ereignis mit P(B) > 0. Dann gilt für $i = 1, \dots, n$:

$$P(A_i|B) = \frac{P(A_i) \cdot P(B|A_i)}{P(B)}$$

Multiplikationsformel Seien A_1, \dots, A_n Ereignisse mit $P(A_1 \cap A_2 \cap \dots \cap A_n) > 0$. Dann gilt:

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdots P(A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1})$$

Unabhängigkeit

Zwei Ereignisse A, B heißen paarweise unabhängig, wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B)$$

Mehrere Ereignisse A_1, \dots, A_n heißen vollständig unabhängig, wenn für alle $\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}$ gilt:

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$$

Warning: Aus der paarweisen Unabhängigkeit mehrerer Ereignisse folgt nicht immer die vollständige Unabhängigkeit!

2.5 Zufallsvariablen und Verteilungsfunktion

Sei Ω eine Ereignismenge und \mathcal{A} ein Ereignissystem bzgl. Wahrscheinlichkeit P.

2.5.1 Zufallsvariablen

Eine Zufallsvariable ist eine Abbildung

$$X:\Omega\to\mathbb{R}$$

mit der Eigenschaft, dass für jedes Intervall $I \in \mathbb{R}$ die Urbildmenge

$$A = \{ \omega \in \Omega : X(\omega) \in I \}$$

zum Ereignissystem \mathcal{A} gehört. Die Wahrscheinlichkeit, dass X Werte in diesem Intervall annimmt wird mit $P(X \in I)$ bezeichnet, woraus sich folgende Schreibweisen ergeben:

$$P(a \le X \le b)$$
, $P(X \le x)$, $P(X < x)$, $P(|X - a| < b)$, $P(X = b)$, usw.

Messreihen

Eine Messreihe x_1, \dots, x_n wird als Realisierung der Zufallsvariablen X_1, \dots, X_n angesehen. Es wird daher angenommen, dass ein Ergebnis $\omega \in \Omega$ existiert mit:

$$x_1 = X_1(\omega), \quad \cdots, \quad x_n = X_n(\omega)$$

2.5.2 Verteilungsfunktion

Sei $X:\Omega\to\mathbb{R}$ eine Zufallsvariable.

Die Abbildung $F : \mathbb{R} \to \mathbb{R}$ wird dann Verteilungsfunktion von der Zufallsvariable X genannt:

$$F: \mathbb{R} \to \mathbb{R}: x \mapsto P(X \le x)$$

Dabei müssen Verteilungsfunktionen monoton wachsende Funktionen sein mit:

$$F(-\infty) = 0$$
 $F(\infty) = 1$ $F(x+) = F(x), \forall x \in \mathbb{R}$

Dabei sind die Schreibweisen wie folgt definiert:

$$\begin{array}{llll} F(x+) & \coloneqq & \lim_{h \to 0} F(x+h) & & F(x-) & \coloneqq & \lim_{h \to 0} F(x-h) \\ F(-\infty) & \coloneqq & \lim_{x \to -\infty} & & F(\infty) & \coloneqq & \lim_{x \to \infty} F(x) \end{array}$$

Eigenschaften

$$\begin{array}{rclrcl} P(X=a) & = & P(X \leq a) - P(X < a) & = & F(a) - F(a-) \\ P(a < X \leq b) & = & P(X \leq b) - P(X \leq a) & = & F(b) - F(a) \\ P(a \leq X < b) & = & P(X < b) - P(X < a) & = & F(b-) - F(a-) \\ P(a \leq X \leq b) & = & P(X \leq b) - P(X < a) & = & F(b) - F(a-) \\ P(X > a) & = & 1 - P(X \leq a) & = & 1 - F(a) \end{array}$$

Quantile

Ist die Verteilungsfunktion F stetig, so ist das p-Quantil x_p gegeben durch die Gleichung

$$F(x_p) = p$$

Die Quantile sind für gängige Verteilungsfunktionen somit tabellierbar und als Tabellen verfügbar.

2.5.3 Diskret/Stetig verteilte Zufallsvariablen

- Eine Zufallsvariable ist *diskret verteilt*, wenn sie nur endlich viele oder abzählbar unendliche viele Werte x_1, x_2, \cdots annehmen kann. Die Verteilungsfunktion ist entsprechend eine monoton wachsende Treppenfunktion, die an den Stellen $P(X = x_i)$ anspringt.
- Eine Zufallsvariable ist stetig verteilt mit Dichte f, wenn die Verteilungsfunktion gegeben ist durch

$$F(x) = \int_{-\infty}^{x} f(t) dt, \quad x \in \mathbb{R}$$

Die Dichte ist dabei nichtnegativ, die Verteilungsfunktion F ist stetig und es gilt $\frac{d}{dx}F=f$.

Beispiele für diskrete Verteilungen

Geometrische Verteilung Sei 0 .

Eine Zufallsvariable X mit Wertebereich \mathbb{N}^* heißt geometrisch verteilt mit Parameter p, falls gilt

$$P(X = i) = (1 - p)^{i-1}p, \quad i = 1, 2, \cdots$$

Erwartungswert/Varianz:

$$E(x) = \frac{1}{p}$$
$$Var(X) = \frac{1-p}{p^2}$$

Anwendung Zufallsexperimente mit Ereignis mit Wahrscheinlichkeit p. Die Anzahl unabhängiger Wiederholung bis zum Eintreten des Ereignissen kann als geometrisch verteilte Zufallsvariable modelliert werden ("Warten auf den ersten Erfolg").

Binomialverteilung Seien $n \in \mathbb{N}$ und 0 .

Eine Zufallsvariable X mit Wertebereich \mathbb{N}_0 heißt binomialverteilt mit Parametern n, p (kurz: B(n, p)-verteilt), falls gilt

$$P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n-1}, \quad i = 0, 1, \dots, n$$

Erwartungswert/Varianz:

$$E(x) = np$$
$$Var(X) = np(1 - p)$$

Anwendung n-mal unabhängig wiederholtes Zufallsexperiment mit Ereignis mit Wahrscheinlichkeit p. Die Anzahl des Ereignis-Eintretens kann als B(n,p)-verteilte Zufallsvariable modelliert werden ("Anzahl der Erfolge bei n Versuchen").

Poissonverteilung Sei $\lambda > 0$.

Eine Zufallsvariable X mit Wertebereich \mathbb{N}_0 heißt *Poisson-verteilt mit Parameter* λ , falls gilt

$$P(X = i) = \frac{\lambda^{i}}{i!}e^{-\lambda}, \quad i = 0, 1, 2, \dots$$

Erwartungswert/Varianz:

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

Anwendung Anzahl der in einer Telefonzentrale innerhalb von 10 Minuten eingehenden Anrufe. λ gibt die "mittlere Anzahl" an eingehenden Anrufen an.

Beispiele für stetige Verteilungen

Rechteckverteilung Sei a < b.

Eine stetig verteilte Zufallsvariable heißt rechteckverteilt im Intervall [a, b] (kurz: R(a, b)-verteilt), falls

$$f(t) = \begin{cases} \frac{1}{b-a} & a \le t \le b\\ 0 & \text{sonst} \end{cases}$$

gilt. Dann ergibt sich für die Verteilungsfunktion:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$$

Exponentialverteilung Sei $\lambda > 0$.

Eine stetig verteilte Zufallsvariable heißt exponentialverteilt mit Parameter λ (kurz: $Ex(\lambda)$ -verteilt), falls

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t \ge 0 \end{cases}$$

gilt. Dann ergibt sich für die Verteilungsfunktion:

$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

Erwartungswert/Varianz:

$$E(x) = \frac{1}{\lambda}$$
$$Var(X) = \frac{1}{\lambda^2}$$

Normalverteilung Seien $\mu \in \mathbb{R}$ und $\sigma \in R$.

Eine stetig verteilte Zufallsvariable heißt normalverteilt mit Parametern μ, σ^2 (kurz: $N(\mu, \sigma^2)$), falls

$$f(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2}$$

gilt. Mit Φ aus der Standard-Normalverteilung (siehe 2.5.3) ergibt sich für die Verteilungsfunktion:

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

Erwartungswert/Varianz:

$$E(x) = \mu$$
$$Var(X) = \sigma^2$$

Standard-Normalverteilung Ist $\mu=0$ und $\sigma^2=1$, wird ist *Standard-Normalverteilung* genannt und die Verteilungsfunktion mit

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

bezeichnet.

Da Φ nicht geschlossen angebbar ist, muss die Funktion tabelliert oder numerisch ausgewertet werden. Es gilt:

$$\Phi(0) = \frac{1}{2}, \qquad \Phi(-x) = 1 - \Phi(x), \quad x \ge 0$$

Chi-Quadrat-Verteilung Sei $r \in \{1, \dots, n\}$.

Eine Zufallsvariable X heißt Chi-Quadrat-verteilt mit Parameter r (kurz: χ^2_r -verteilt), falls

$$F(x) = P(Z_1^2 + \dots + Z_r^2 \le x)$$

gilt. Die Dichte ist dabei

$$f(x) = \frac{x^{\frac{r}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{r}{2}} \Gamma(\frac{n}{2})}, \quad x > 0$$

mit der Gamma-Funktion.

Studentsche t-Verteilung Sei $r \in \{1, \dots, n-1\}$.

Eine Zufallsvariable X heißt Student-t-verteilt mit Parameter r (kurz: t_r -verteilt), falls

$$F(x) = P\left(\frac{Z_{r+1}}{\sqrt{(Z_1^2 + \dots + Z_r^2)/r}} \le x\right)$$

gilt. Die Dichte ist dabei

$$f(x) = \frac{\Gamma\left(\frac{r+1}{2}\right)}{\sqrt{\pi r} \cdot \Gamma\left(\frac{2}{2}\right)} \left(1 + \frac{x^2}{r}\right)^{-\frac{r+1}{2}}$$

mit der Gamma-Funktion.

Fisher-Verteilung Seien $r, s \in \{1, \dots, n-1\}$ mit $r+s \le n$.

Eine Zufallsvariable X heißt Fisher-Verteilt mit Parametern r, s (kurz: $F_{r,s}$ -verteilt), falls

$$F(x) = P\left(\frac{(Z_1^2 + \dots + Z_r^2)/r}{(Z_{r+1}^2 + \dots + Z_{r+s}^2)/s} \le x\right) = \frac{\chi_r^2/r}{\chi_s^2/s}$$

gilt. Die Dichte ist dabei

$$f(x) = m^{\frac{r}{2}} n^{\frac{s}{2}} \cdot \frac{\Gamma\left(\frac{r}{2} + \frac{s}{2}\right)}{\Gamma\left(\frac{r}{2}\right) \cdot \Gamma\left(\frac{s}{2}\right)} \cdot \frac{x^{\frac{r}{2} - 1}}{(rx + s)^{\frac{r + s}{2}}}, \quad x \ge 0$$

mit der Gamma-Funktion.

2.5.4 Erwartungswert und Varianz

Erwartungswert

Sei $h: \mathbb{R} \to \mathbb{R}$ eine stückweise stückweise stetige Funktion.

Der Erwartungswert einer diskret verteilten Zufallsvariable X und einer Funktion h(X) mit den Werten x_1, x_2, \cdots ist

$$E(X) = \sum_{i} x_i P(X = x_i) \qquad E(h(X)) = \sum_{i} h(x_i) P(X = x_i)$$

sofern $\sum_{i} |x_i| P(X = x_i)$ konvergiert.

Der Erwartungswert einer stetig verteilten Zufallsvariable X und einer Funktion h(X) mit Dichte f ist

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx \qquad E(h(X)) = \int_{-\infty}^{\infty} h(x) f(x) dx$$

sofern $\int_{-\infty}^{\infty} |x| f(x) dx$ konvergiert.

Rechenregeln Seien X, X_1, \dots, X_n Zufallsvariablen, $b, a, a_1, \dots, a_n \in \mathbb{R}$ und $h_1, h_2 : \mathbb{R} \to \mathbb{R}$ stückweise stetig. Dann gelten folgende (teilweise redundante) Rechenregeln für den Erwartungswert:

$$E(aX + b) = aE(X) + b$$

$$E(h_1(X) + h_2(X)) = E(h_1(X)) + E(h_2(x))$$

$$E(a_1X_1 + \dots + a_nX_n + b) = a_1E(X_1) + \dots + a_nE(X_n) + b$$

Varianz

Die Varianz einer Zufallsvariable X ist der Erwartungswert der quadratischen Abweichung von X zu ihrem Erwartungswert:

$$Var(X) = E((X - E(X))^{2})$$

Die Standardabweichung ist dann definiert durch: $\sqrt{\operatorname{Var}(X)}$

Rechenregeln Sei X eine Zufallsvariable, $a, b \in \mathbb{R}$. Dann gelten folgende Rechenregeln für die Varianz:

$$Var(X) = E(X^{2}) - (E(X))^{2}$$
$$Var(aX + b) = a^{2} Var(X)$$

Sind Zufallsvariablen X_1, \dots, X_n unabhängig, dann gilt zusätzlich:

$$\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)$$

2.5.5 Tschebyscheffsche Ungleichung

Sei X eine Zufallsvariable. Dann gilt nach der tschebyscheffschen Ungleichung:

$$P(|X - E(X)| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}, \quad c > 0$$

2.5.6 Unabhängigkeit

Seien X_1, \dots, X_n Zufallsvariablen mit den Verteilungsfunktionen F_1, \dots, F_n . Die gemeinsame Verteilungsfunktion ist gegeben durch:

$$F(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n), \quad (x_1, \dots, x_n)^T \in \mathbb{R}^n$$

Die Zufallsvariablen heißen *unabhängig*, wenn für alle $(x_1, \dots, x_n)^T \in \mathbb{R}^n$ die Ereignisse

$$\{X_1 \le x_1\}, \cdots, \{X_n \le x_n\}$$

vollständig unabhängig sind, d.h.

$$P(X_1 \le x_1, \cdots, X_n \le x_n) = P(X_1 \le x_1) \cdots P(X_n \le x_n)$$

oder kurz

$$F(x_1, \cdots, x_n) = F_1(x_1) \cdots F_n(x_n)$$

2.6 Einige Sätze

2.6.1 Das schwache Gesetz der großen Zahlen

Ist X_1, X_2, \cdots eine Folge von unabhängigen identisch verteilten Zufallsvariablen mit $\mu = E(X_i)$, $\sigma^2 = \text{Var}(X_i)$, dann gilt:

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} X_i - \mu\right| \ge \varepsilon\right) = 0, \quad \forall \epsilon > 0$$

2.6.2 Zentraler Grenzwertsatz

Sei X_1, X_2, \cdots eine Folge von identisch verteilten unabhängigen Zufallsvariablen mit $\mu_i = E(X_i)$, $\sigma_i^2 = \text{Var}(X_i)$, $i = 1, 2, \cdots$. Dann gilt für alle $y \in \mathbb{R}$:

$$\lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - (\mu_1 + \dots + \mu_n)}{\sqrt{\sigma_1^2 + \dots + \sigma_n^2}} \le y\right) = \Phi(y)$$

Das arithmetische Mittel $\bar{X}_{(n)}=\frac{1}{n}(X_1+\cdots+X_n)$ ist also für große n annähernd $N(\mu,\sigma^2)$ verteilt mit

$$\mu = \frac{1}{n}E(X_1 + \dots + X_n) = \frac{1}{n}(\mu_1 + \dots + \mu_n) \qquad \sigma^2 = \frac{1}{n^2}\operatorname{Var}(X_1 + \dots + X_n) = \frac{1}{n^2}(\sigma_1^2 + \dots + \sigma_n^2)$$

Anmerkung: Hat X den Erwartungswert μ und die Varianz σ^2 , dann hat $\frac{X-\mu}{\sigma}$ den Erwartungswert 0 und die Varianz 1.

2.6.3 Zentralsatz der Statistik

$$F_n(z; x_1, \dots, x_n) = \frac{|\{x_i \mid x_i \le z\}|}{n}$$

Sei X_1, X_2, \cdots eine Folge von unabhängigen identisch verteilten Zufallsvariablen mit der Verteilungsfunktion F und sei

$$D_n(X_1, \cdots, X_n) = \sup_{z \in \mathbb{R}} |F_n(z; X_1, \cdots, X_n) - F(z)|$$

die zufällige Maximalabweichung zwischen empirischer und "wahrer" Verteilungsfunktion. Dann gilt

$$P\bigg(\lim_{n\to\infty}D_n(X_1,\cdots,X_n)=0\bigg)=1$$

Die zufällige Maximalabweichung konvergiert also mit einer Wahrscheinlichkeit 1 gegen 0.

2.6.4 Anwendungen

Seien X_1, \cdots, X_n unabhängige identisch $N(\mu, \sigma^2)$ -verteilte Zufallsvariablen mit arithmetischem Mittel und Stichprobenvarianz:

$$\bar{X}_{(n)} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S_{(n)}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_{(n)})^2$

Dann gilt:

- $\bar{X}_{(n)}$ ist $N\left(\mu, \frac{\sigma^2}{n}\right)$ -verteilt
- $\frac{n-1}{\sigma^2}S_{(n)}^2$ ist χ_{n-1}^2 -verteilt
- $\bar{X}_{(n)}$ und $S^2_{(n)}$ sind unabhängig
- $\sqrt{n} \frac{\bar{X}_{(n)-\mu}}{\sqrt{S_{(n)}^2}}$ ist t_{n-1} -verteilt

3 Schätzverfahren und Konfidenzintervalle

3.1 Grundlagen

- Sei im folgenden die Messreihe x_1, \dots, x_n die Realisierung von unabhängigen identisch wie X verteilten Zufallsvariablen X_1, \dots, X_n .
- Außerdem wird angenommen, dass die Verteilungsfunktion F von X und aller X_i einer durch k Parameter $\theta \in \Theta \subset \mathbb{R}^k$ parametrisierte Familie $F_{\theta}, \quad \theta \in \Theta$ von Verteilungsfunktionen angehört.
- Der Parameter oder ein dadurch bestimmter Zahlenwert $\tau:\Theta\to\mathbb{R}$ sei unbekannt und soll geschätzt werden.
- Ein *Schätzverfahren* ist wie folgt definiert: Ein *Schätzverfahren* (oder eine *Schätzfunktion* oder ein *Schätzer*) ist eine Abbildung

$$T_n: \mathbb{R}^n \to \mathbb{R}$$

die einer Messreihe x_1, \dots, x_n einen Schätzwert $T_n(x_1, \dots, x_n)$ für den Wert $\tau(\theta)$ zuordnet. Die Zufallsvariable $T_n(X_1, \dots, X_n)$ wird Schätzvariable genannt.

• Der Erwartungswert und die Varianz der Schätzvariablen und allen X_i hängen von der Verteilungsfunktion F_{θ} ab. Zur Verdeutlichung dieses Umstandes wird der Parameter θ an sämtliche Funktionen geschrieben:

$$E_{\theta}(T_n(X_1, \dots, X_n)), \quad E_{\theta}(X_1), \dots$$

 $\operatorname{Var}_{\Theta}(T_n(X_1, \dots, X_n)), \quad \operatorname{Var}_{\theta}(X_i), \dots$
 $P_{\theta}(a \leq T_n(X_1, \dots, X_n) \leq b), \quad P_{\theta}(a \leq X_1 \leq b), \dots$

3.1.1 (Asymptotische) Erwartungstreue

Ein Schätzer $T_n: \mathbb{R}^n \to \mathbb{R}$ heißt erwartungstreu für $\tau: \Theta \to \mathbb{R}$, wenn gilt:

$$E_{\theta}(T_n(X_1, \cdots, X_n)) = \tau(\theta)$$
 für alle $\theta \in \Theta$

Eine Folge von Schätzern $T_n: \mathbb{R}^n \to \mathbb{R}, \quad n=1,2,\cdots$ heißt asymptotisch erwartungstreu für $\tau: \Theta \to \mathbb{R}$, wenn gilt:

$$\lim_{n\to\infty} E_{\theta}(T_n(X_1,\cdots,X_n)) = \tau(\theta) \quad \text{für alle } \theta \in \Theta$$

Das heißt, ein Schätzer liefert bei genügender Anzahl an Stichproben ein erwartungstreues Ergebnis.

3.1.2 Mittlerer quadratischer Fehler

Um die Güte eines Schätzers zu beurteilen dient der Mittlere quadratische Fehler (Mean squared error, MSE):

$$MSE_{\theta}(T) := E_{\theta}((T - \tau(\theta))^2)$$

Es gilt T erwartungstreu $\implies MSE_{\theta}(T) = Var_{\theta}(T)$.

Seien T_1 und T_2 Schätzer für τ , dann heißt T_1 effizienter als T_2 , wenn gilt

$$MSE_{\theta}(T_1) \leq MSE_{\theta}(T_2) \quad \forall \theta \in \Theta$$

Sind T_1, T_2 erwartungstreu, dann heißt dies

$$\operatorname{Var}_{\theta}(T_1) \leq \operatorname{Var}_{\theta}(T_2) \quad \forall \theta \in \Theta$$

3.1.3 Konsistenz

Eine Folge an Schätzern T_1, T_2, \cdots heißt konsistent für τ , wenn für alle $\varepsilon > 0$ und alle $\theta \in \Theta$ gilt

$$\lim_{n\to\infty} P_{\theta}(|T_n(X_1,\cdots,X_n) - \tau(\theta)| > \varepsilon) = 0$$

Die Folge heißt konsistent im quadratischen Mittel für τ , wenn für alle $\theta \in \Theta$ gilt

$$\lim_{n\to\infty} \mathrm{MSE}_{\theta}(T_n) = 0$$

Sätze Ist T_1, T_2, \cdots eine Folge von Schätzern, die für τ erwartungstreu sind und gilt

$$\lim_{n\to\infty} \operatorname{Var}_{\theta} \left(T_n(X_1, \cdots, X_n) \right) = 0 \quad \forall \theta \in \Theta$$

dann ist die Folge von Schätzern konsistent für τ .

Allgemeiner gilt: Ist T_1, T_2, \cdots eine Folge von Schätzern, die konsistent im quadratischen Mittel für τ sind, dann ist die Folge konsistent für τ .

3.2 Maximum-Likelihood-Schätzer

- Bei gegebener Verteilungsklasse F_{θ} , $\theta \in \Theta$ lassen sich Schätzer für den Parameter θ oftmals mit der Maximum-Likelihood-Methode gewinne.
- Sind die Zufallsvariablen X_1, \dots, X_n stetig mit einer Dichte verteilt, hängt die Dichte ebenfalls von den Parametern ab (f_{θ}) .
- Für diskrete Zufallsvariablen sei $f_{\theta}(x) = P_{\theta}(X = x)$ für alle x aus dem Wertebereich. Sei dieser Wertebereich \mathbb{X} .

Für eine Messreihe x_1, \dots, x_n heißt die Funktion $L(\cdot; x_1, \dots, x_n)$ mit

$$L(\theta; x_1, \dots, x_n) = f_{\theta}(x_1) \cdot f_{\theta}(x_2) \cdots f_{\theta}(x_n)$$

die zu der Messreihe gehörige Likelihood-Funktion.

Eine Parameterschätzung $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ mit

$$L(\hat{\theta}; x_1, \cdots, x_n) \ge L(\theta; x_1, \cdots, x_n) \quad \forall \theta \in \Theta$$

heißt Maximum-Likelihood-Schätzwert. Existiert ein solcher Schätzwert für jede mögliche Messreihe, dann ist

$$T_n: \mathbb{X}^n \to \Theta: (x_1, \cdots, x_n) \mapsto \hat{\theta}(x_1, \cdots, x_n)$$

ein Maximum-Likelihood-Schätzer.

3.3 Konfidenzintervalle

- Wie beim Schätzen wird eine Messreihe x_1, \dots, x_n beobachtet und es sollen Ober- und Unterschranken für $\tau(\theta)$ ermittelt werden.
- Dabei wird durch ein Paar $U: \mathbb{R}^n \to \mathbb{R}$, $O: \mathbb{R}^n \to \mathbb{R}$ von Schätzern mit $U(x_1, \cdots, x_n) \leq O(x_1, \cdots, c_n)$ ein "zufälliges" Intervall $I(X_1, \cdots, X_n) = [U(X_1, \cdots, X_n), O(X_1, \cdots, X_n)]$ definiert.
- Dieses Intervall heißt Konfidenzintervall für $\tau(\theta)$ zum Konfidenzniveau $1-\alpha$, falls gilt:

$$P_{\theta}(U(X_1, \dots, X_n) \le \tau(\Theta) \le O(X_1, \dots, X_n)) \ge 1 - \alpha \quad \forall \theta \in \Theta$$

- Gehört das Intervall zu einer bestimmten Messreihe, heißt es konkretes Schätzintervall für $\tau(\theta)$.
- Dann enthält ein konkretes Schätzintervall den Wert $\tau(\theta)$ mit einer Wahrscheinlichkeit von $1-\alpha$.

3.3.1 Konstruktion für normalverteilte Zufallsvariablen

Seien X_1, \dots, X_n unabhängig und identisch normalverteilte Zufallsvariablen. Dann ist die Verteilungsfunktion F_{θ} durch den Parameter $\theta = (\mu, \sigma^2)$ bestimmt:

$$F_{\theta}(x) = F_{(\mu,\sigma^2)}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

Das Konfidenzniveau ist dabei immer $1 - \alpha$.

Für μ bei bekannter Varianz Es ist $\Theta = \{(\mu, \sigma^2) \mid \mu \in \mathbb{R}\}$ und $\tau(\theta) = \mu$. Das Konfidenzintervall für μ zum Niveau $1 - \alpha$ lautet dann

$$I(X_1, \dots, X_n) = \left[\bar{X}_{(n)} - u_{1-\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}, \quad \bar{X}_{(n)} + u_{1-\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \right]$$

mit dem $1-\frac{\alpha}{2}$ -Quantil $u_{1-\frac{\alpha}{2}}$ der N(0,1)-Verteilung, also

$$\Phi(u_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$$

Für μ bei unbekannter Varianz Es ist $\Theta = \{(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 > 0\}$ und $\tau(\theta) = \mu$. Das Konfidenzintervall für μ zum Niveau $1 - \alpha$ lautet dann

$$I(X_1, \dots, X_n) = \left[\bar{X}_{(n)} - t_{n-1;1-\frac{\alpha}{2}} \cdot \sqrt{\frac{S_{(n)}^2}{n}}, \quad \bar{X}_{(n)} + t_{n-1;1-\frac{\alpha}{2}} \cdot \sqrt{\frac{S_{(n)}^2}{n}} \right]$$

mit dem $1-\frac{\alpha}{2}$ -Quantil $t_{n-1;1-\frac{\alpha}{2}}$ der t_{n-1} -Verteilung.

Für σ^2 bei bekanntem Erwartungswert Es ist $\Theta = \{(\mu_0, \sigma^2) \mid \sigma^2 > 0\}$ und $\tau(\theta) = \sigma^2$. Das Konfidenzintervall für σ^2 zum Niveau $1 - \alpha$ lautet dann

$$I(X_1, \dots, X_n) = \left[\frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\chi_{n;1-\frac{\alpha}{2}}^2}, \quad \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\chi_{n;\frac{\alpha}{2}}^2} \right]$$

mit dem $1-\frac{\alpha}{2}$ -Quantil $\chi^2_{n;1-\frac{\alpha}{2}}$ und dem $\frac{\alpha}{2}$ -Quantil $\chi^2_{n;\frac{\alpha}{2}}$ der χ^2_n -Verteilung.

Für σ^2 bei unbekanntem Erwartungswert Es ist $\Theta = \{(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 > 0\}$ und $\tau(\theta) = \sigma^2$. Das Konfidenzintervall für σ^2 zum Niveau $1 - \alpha$ lautet dann

$$I(X_1, \dots, X_n) = \left[\frac{(n-1) S_{(n)}^2}{\chi_{n-1; 1-\frac{\alpha}{2}}^2}, \frac{(n-1) S_{(n)}^2}{\chi_{n-1; \frac{\alpha}{2}}^2} \right]$$

mit dem $1-\frac{\alpha}{2}$ -Quantil $\chi^2_{n-1;1-\frac{\alpha}{2}}$ und dem $\frac{\alpha}{2}$ -Quantil $\chi^2_{n-1;\frac{\alpha}{2}}$ der χ^2_{n-1} -Verteilung.

4 Testverfahren

Warning: Sämtliche Tests, die auf einer approximierten Verteilung und empirischen Daten basieren, sind nur für große Anzahl an Werten (großes *n*) anwendbar!

4.1 Grundlagen

- Die Nullhypothese H_0 ist die zu prüfende Annahme.
- Ein Verfahren zur Prüfung, ob eine Messreihe der Nullhypothese genügt, wird Test genannt.
- Die Tests sind dabei durch Angabe von kritischen Bereichen $K \subset \mathbb{R}^n$ vollständig beschrieben.

$$\begin{cases} \text{Lehne } H_0 \text{ ab} & \text{falls } (x_1, \cdots, x_n) \in K \\ \text{Akzeptierte } H_0 & \text{sonst} \end{cases}$$

• Die wichtigen Fehlermöglichkeiten eines solchen Tests sind:

Fehler 1. Art (False Negative) H_0 wird abgelehnt, obwohl H_0 zutrifft.

Fehler 2. Art (False Positive) H_0 wird akzeptiert, obwohl H_0 nicht zutrifft.

- Ziel
 - Wahrscheinlichkeit für den Fehler 1. Art klein.
 - Dazu wird ein Testniveau α vorgegeben.
 - Dann muss gelten:

 $\text{Unter Nullhypothese gilt } P\big((X_1,\cdots,X_n)\in K\big) \leq \alpha \quad \iff \quad P\big((K_1,\cdots,K_n)\in K \quad | \quad H_0\big) \leq \alpha$

4.1.1 Testgröße

Der kritische Bereich wird durch eine passende Funktion, genannt Testgröße:

$$T:\mathbb{R}^n\to\mathbb{R}$$

und kritische Schranken c bzw. c_1 , c_2 beschrieben.

Damit können bspw. folgende Möglichkeiten an Tests spezifiziert werden, wobei diese immer die allgemeine Form

$$K = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \,|\, \psi \big(T(x_1, \dots, x_n) \big) \right\}$$

für die Definition der kritischen Bereiche annehmen mit unterschiedlichen Prädikaten $\psi(t)$:

- $\psi(t)\coloneqq \big(|t|>c\big)$ Betragsmäßig große Werte sprechen gegen H_0 .
- $\psi(t) \coloneqq (t < c_1 \lor t > c_2)$ Betragsmäßig kleine Werte sprechen gegen H_0 .
- $\psi(t) \coloneqq (t > c)$ Große Werte sprechen gegen H_0 .
- $\psi(t) := (t < c)$ Kleine Werte sprechen gegen H_0 .

4.1.2 Allgemeines Konstruktionsprinzip zum Niveau lpha

- 1. Verteilungsannahmen formulieren.
- 2. Nullhypothese H_0 formulieren.
- 3. Testgröße T wählen und die Verteilung dieser unter H_0 bestimmen.
- 4. $I \subseteq \mathbb{R}$ so wählen, dass unter H_0 gilt $P(T(X_1, \dots, x_N) \in I) \leq \alpha$.

Dabei wird I durch die kritischen Schranken festgelegt und ist bspw. von der Form:

$$I = \mathbb{R} \setminus [-c, c]$$
 $I = \mathbb{R} \setminus [c_1, c_2]$ $I = (c, \infty)$ $I = (-\infty, c)$

Für das Niveau α wird oft 0.1, 0.05 oder 0.01 gewählt.

4.2 Wichtige Tests bei Normalverteilungsannahme

Für μ_0 bei bekannter Varianz (Gauß-Test) Seien X_1, \dots, X_n unabhängig und identisch $N(\mu, \sigma_0^2)$ -verteilt, sei σ_0^2 bekannt und μ_0 zu testen.

- 1. Wählen der Nullhypothese:
 - A) H_0 : $\mu = \mu_0$
 - B) H_0 : $\mu \le \mu_0$
 - C) H_0 : $\mu \ge \mu_0$
- 2. Berechnen der Testgröße:

$$T(X_1, \cdots, X_n) = \frac{\sqrt{n}}{\sigma_0} (\bar{X}_{(n)} - \mu_0)$$

- 3. Ablehnung von H_0 , falls:
 - A) $|T| > u_{1-\frac{\alpha}{2}}$
 - B) $T > u_{1-\alpha}$
 - C) $T < u_{\alpha}$

Für μ_0 bei unbekannter Varianz (t-Test) Seien X_1, \dots, X_n unabhängig und identisch $N(\mu, \sigma^2)$ -verteilt und μ_0 zu testen.

- 1. Wählen der Nullhypothese:
 - A) H_0 : $\mu = \mu_0$
 - B) H_0 : $\mu \le \mu_0$
 - C) H_0 : $\mu \ge \mu_0$
- 2. Berechnen der Testgröße:

$$T(X_1, \dots, X_n) = \sqrt{n} \frac{\bar{X}_{(n)} - \mu_0}{\sqrt{S_{(n)}^2}}$$

- 3. Ablehnung von H_0 , falls:
 - A) $|T| > t_{n-1;1-\frac{\alpha}{2}}$
 - B) $T > t_{n-1;1-\alpha}$
 - C) $T < t_{n-1:\alpha}$

Für σ^2 bei bekanntem Erwartungswert Seien X_1, \cdots, X_n unabhängig und identisch $N(\mu, \sigma^2)$ -verteilt, sei μ bekannt und σ_0^2 zu testen.

- 1. Wählen der Nullhypothese:
 - A) H_0 : $\sigma^2 = \sigma_0^2$
 - B) $H_0: \sigma^2 \le \sigma_0^2$
 - C) $H_0: \sigma^2 \ge \sigma_0^2$
- 2. Berechnen der Testgröße:

$$T(X_1, \dots, X_n) = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2$$

- 3. Ablehnung von H_0 , falls:
 - A) $T < \chi^2_{n;\frac{\alpha}{2}}$ oder $T > \chi^2_{n;1-\frac{\alpha}{2}}$
 - B) $T > \chi_{n;1-\alpha}^2$
 - C) $T < \chi^2_{n:\alpha}$

Für σ_0^2 bei unbekanntem Erwartungswert (χ^2 -Test) Seien X_1, \cdots, X_n unabhängig und identisch $N(\mu, \sigma^2)$ -verteilt und σ_0^2 zu testen.

- 1. Wählen der Nullhypothese:
 - A) H_0 : $\sigma^2 = \sigma_0^2$
 - B) $H_0: \sigma^2 \le \sigma_0^2$
 - C) $H_0: \sigma^2 \ge \sigma_0^2$

2. Berechnen der Testgröße:

$$T(X_1, \dots, X_n) = \frac{n-1}{\sigma_0^2} S_{(n)}^2$$

3. Ablehnung von H_0 , falls:

A)
$$T < \chi^2_{n;rac{lpha}{2}} ext{ oder } T > \chi^2_{n;1-rac{lpha}{2}}$$

B)
$$T > \chi^2_{n;1-\alpha}$$

C)
$$T < \chi^2_{n:\alpha}$$

4.3 Verteilungstests

 χ^2 -Anpassungstest Der χ^2 -Anpassungstest dient zur Prüfung, ob die empirische Verteilung einer Zufallsvariable einer erwarteten Verteilung entspricht.

Seien X_1, \dots, X_n unabhängig und identisch verteilt mit unbekannter Verteilung F und sei x_1, \dots, x_n eine realisierende Messreihe.

- 1. H_0 : $F = F_0 \iff X_i \sim F_0$
- 2. Partitionierung von R in k Intervalle ($z_1 < z_2 < \cdots < z_{k-1}$):

$$A_1 = (-\infty, z_1], \quad A_2 = (z_1, z_2], \quad , \dots, \quad A_k = (z_{k-1}, \infty)$$

3. Bestimmen der Häufigkeiten:

$$h_i = |\{i \mid x_i \in A_i\}|, \quad j = 1, \dots, k$$

4. Unter H_0 gilt (mit $z_0 := -\infty$ und $z_k := \infty$):

$$p_j := P(X \in A_j) \stackrel{H_0}{=} F_0(z_j) - F_0(z_{j-1}) \approx \frac{h_j}{n}, \quad j = 1, \dots, k$$

5. Berechnen der Testgröße:

$$T(X_1, \dots, X_n) = \sum_{j=1}^{k} \frac{(H_j - np_j)^2}{np_j}$$

6. Ablehnung von H_0 , falls:

$$T>\chi^2_{k-1;1-\alpha}$$

 χ^2 -Test auf Unabhängigkeit (Kontingenztest) Der χ^2 -Kontingenztest dient zur Prüfung, ob Zufallsvariablen unabhängig sind.

Seien $(X_1,Y_1),\cdots,(X_n,Y_n)$ unabhängig und identisch wie (X,Y) verteilt und sei $(x_1,y_1),\cdots,(x_n,y_n)$ eine realisierende Messreihe.

- 1. H_0 : X und Y sind unabhängig
- 2. Partitionierung in k bzw. l Intervalle $(z_1 < z_2 < \cdots < z_{k-1}, \tilde{z}_1 < \tilde{z}_2 < \cdots < \tilde{z}_{k-1})$:

• x-Achse:
$$A_1 = (-\infty, z_1], \quad A_2 = (z_1, z_2], \quad , \dots, \quad A_k = (z_{k-1}, \infty)$$

• y-Achse:
$$B_1 = (-\infty, \tilde{z}_1], \quad B_2 = (\tilde{z}_1, \tilde{z}_2), \quad , \cdots, \quad B_l = (\tilde{z}_{l-1}, \infty)$$

3. Bestimmen der Häufigkeiten:

$$h_{ij} = |\{r \in \{1, \dots, n\} | (x_r, y_r) \in A_i \times B_i\}|, \quad i = 1, \dots, k, j = 1, \dots, l$$

und der Randhäufigkeiten:

$$h_{i.} = h_{i1} + \dots + h_{il}, \quad i = 1, \dots, k$$
 $h_{.j} = h_{1j} + \dots + h_{kj}, \quad j = 1, \dots, l$

4. Seien unter H_0 :

$$\frac{h_{i.}}{n} \approx P(X \in A_i) \qquad \frac{h_{.j}}{n} \approx P(Y \in B_j)$$
$$\frac{\tilde{h}_{ij}}{n} := \frac{h_{i.}h_{.j}}{n^2} \approx P(X \in A_i) \cdot P(Y \in B_j) \stackrel{H_0}{=} P(X \in A_i, Y \in B_j) \approx \frac{h_{ij}}{n}$$

5. Berechnen der Testgröße (mit Zufallsvariablen H_{ij} und \tilde{H}_{ij} für h_{ij} und \tilde{h}_{ij}):

$$T(X_1, \dots, X_n) = \sum_{i=1}^k \sum_{j=1}^l \frac{(H_{ij} - \tilde{H}_{ij})^2}{\tilde{H}_{ij}}$$

6. Ablehnung von H_0 , falls:

$$T > \chi^2_{(k-1)(l-1):1-\alpha}$$

 χ^2 -Homogenitätstest Der χ^2 -Homogenitätstest dient zur Prüfung, ob die mehrere Zufallsvariablen identisch verteilt sind.

Seien $X_1^{(i)}, \cdots, X_{n_i}^{(i)}$ unabhängig und identisch verteilt mit einer Verteilungsfunktion F_i für alle $i=1,\cdots,k$.

- 1. H_0 : $F_1 = F_2 = \cdots = F_k$
- 2. Partitionierung in m Intervalle $(z_1 < z_2 < \cdots < z_{k-1})$:

$$A_1 = (-\infty, z_1], \quad A_2 = (z_1, z_2], \quad \cdots, \quad A_m = (z_{m-1}, \infty)$$

3. Bestimmen der Häufigkeiten:

$$H_{ij} = |\{X_j^{(i)} \mid X_j^{(i)} \in A_j\}|, \quad i = 1, \dots, k, j = 1, \dots, m$$

und der summierten Häufigkeiten:

$$H_{.j} = H_{ij} + \cdots + H_{kj}, \quad j = 1, \cdots, m$$

4. Unter H_0 gilt daher für die relativen Häufigkeiten (mit $n = n_1 + \cdots + n_k$):

$$\frac{h_{ij}}{n_i} \approx \frac{h_{.j}}{n} \iff h_{ij} - \frac{n_i h_{.j}}{n} \approx 0$$

5. Berechnen der Testgröße (mit Zufallsvariablen X_{ij} und $H_{.j}$ für h_{ij} und $h_{.j}$):

$$T(X_1^{(1)}, \dots, X_{n_k}^{(k)}) = \sum_{i=1}^k \sum_{j=1}^m \frac{\left(H_{ij} - \frac{n_i H_{.j}}{n}\right)^2}{\frac{n_i H_{.j}}{n}}$$

6. Ablehnung von H_0 , falls:

$$T > \chi^2_{(k-1)(m-1);1-\alpha}$$

Wilcoxon Vorzeichen-Rang-Test Der *Wilcoxon Vorzeichen-Rang-Test* dient zur Prüfung, ob zwei Algorithmen in der gleichen Zeit laufen, d.h. gleich schnell sind.

Seien X, Y Zufallsvariablen, die die Laufzeit der beiden Algorithmen angeben und seien x_1, \dots, x_n , y_1, \dots, y_n zwei realisierende Messreihen.

- 1. H_0 : Beide Algorithmen sind gleich schnell.
- 2. Berechne $q_1=\frac{x_1}{y_1},\cdots,q_n=\frac{x_n}{y_n}$ und entferne alle Quotienten nahe 1 und sei N die Anzahl noch verbleibender Messwerte.
- 3. Ersetze alle $0 \le q_i < 1$ durch $-\frac{1}{q_i}$ $(i = 1, \dots, N)$ und erhalte das Ergebnis $\tilde{q}_1, \dots, \tilde{q}_N$.
- 4. Sortiere $|\tilde{q}_1| < |\tilde{q}_2| < \cdots < |\tilde{q}_N|$.
- 5. Berechne und setze

$$G_1 \coloneqq \{i \, | \, \tilde{q}_i < -1 \}$$
 (Algorithmus 1 schneller) $G_2 \coloneqq \{i \, | \, \tilde{q}_i > 1 \}$ (Algorithmus 2 schneller) $r_1 \coloneqq \sum_{i \in G_1} i$ $r_2 \coloneqq \sum_{i \in G_2} i$

6. Berechnen der Testgröße:

$$T = \frac{\min\{r_1, r_2\} - \frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}}$$

7. Ablehnung von H_0 , falls:

$$|T| > u_{1-\frac{\alpha}{2}}$$

4.4 Weitere statische Tests

Parametrische Tests Verteilung bekannt, Parameter unbekannt

ANOVA (mehrere Stichproben, normalverteilt, gleiche Varianz), ...

Nichtparametrische Verteilung soll getestet werden

Tests

Kolmogorow-Smirnow-Test (Verteilungstyp), Wilcoxon-Mann-Whitney-Test (Lage von Stichproben), Kruskal-Wallis-Tests (≥ 3 Gruppen von Stichproben), ...

Unabhängigkeitstests McNemar-Test (zwei abhängige Stichproben), ...

Tests zu Regressions- *t*-Test: Regressionskoeffizient, ... **methoden**

5 Robuste Statistik

Ausreißer innerhalb einer Messreihe können die geschätzten statistischen Parameter stark verfälschen. Diesem Phänomen soll die robuste Statistik mit bestimmten Methodiken entgegenwirken.

5.1 Median

Sei X eine Zufallsvariable. Dann ist jede Zahl μ_m ein robuster Median mit:

$$P(X \le \mu_m) \ge \frac{1}{2}$$
 und $P(X \ge \mu_m) \ge \frac{1}{2}$

mit der Verteilungsfunktion F von X gilt gleichbedeutend:

$$F(\mu_m) \ge \frac{1}{2}$$
 und $F(\mu_m -) \le \frac{1}{2}$

Eigenschaften

- Der Median ist so nur eindeutig, wenn $F(x) = \frac{1}{2}$ genau eine Lösung besitzt.
- Wenn der Media eindeutig ist und die Verteilung F symmetrisch ist (d.h. es gilt $\forall x \in \mathbb{R} : F(\mu_m + x) = q F(\mu_m x)$), dann gleicht der Median dem Erwartungswert.

5.1.1 Schätzer

Sei $T(x_1, \cdots, x_n) \coloneqq \tilde{x}$ der empirische Median, dann kann ein Schätzer $\tilde{X}_{(n)}$ für μ_m mit diesem konstruiert werden:

$$\tilde{X}_{(n)} \coloneqq \begin{cases} X_{(\frac{n}{2})}(\omega) & \text{falls } n \text{ gerade} \\ X_{(\frac{n+1}{2})}(\omega) & \text{falls } n \text{ ungerade} \end{cases}$$

für $\omega \in \Omega$ und der geordneten Messreihe $X_{(1)}(\omega), \cdots, X_{(n)}(\omega)$.

Erwartungstreue Seien X_1, \dots, X_n unabhängig und identisch verteilt mit Verteilungsfunktion F_{θ} . Sei außerdem der Median $\mu_m = \tau(\theta)$ eindeutig und F_{θ} symmetrisch.

Dann ist $\mu_m = \mu$ und $X_{(n)}$ ein erwartungstreu für $\mu_m = \mu = \tau(\theta)$.

Vergleich Median/Arithmetisches Mittel Seien $\bar{X}_{(n)}$ und $\tilde{X}_{(n)}$ Schätzer, wobei $\bar{X}_{(n)}$ auf dem arithmetischen Mittel und $\tilde{X}_{(n)}$ auf dem empirischen Median basiert.

Für die beiden Schätzer gilt (asymptotisch):

$$MSE_{\theta}(\bar{X}_{(n)}) = \frac{\sigma^2}{n}$$
$$MSE_{\theta}(\tilde{X}_{(n)}) = \frac{\pi \sigma^2}{2n}$$

Somit ist der empirische Median um den Faktor $\frac{2}{\pi}\approx 0.64$ weniger effizient als das arithmetische Mittel. Anders ausgedrückt: Der Median ist bei 100 Beobachtungen genauso verlässlich wie das arithmetische mittel bei 64 Beobachtungen als Schätzer für den Erwartungswert

5.2 M-Schätzer

- Seien X_1, \dots, X_n unabhängige identisch symmetrisch verteilte Zufallsvariablen mit der Realisierung x_1, \dots, x_n .
- Ziel: Erstellung eines Schätzers für den Erwartungswert μ .
- Der M-Schätzer bildet ein allgemeines Prinzip zur Konstruktion für Schätzer des Erwartungswertes.
- Sei $\Phi:[0,\infty)\to\mathbb{R}$ eine monoton wachsende Straffunktion und betrachte

$$S(x) \coloneqq \sum_{i=1}^{n} \Phi(|x - x_i|)$$

• Existiert ein eindeutiges Minimum $\mu_M(x_1,\cdots,x_n)$, ist dies der zu Φ gehörige M-Schätzer.

Typische M-Schätzer Üblicherweise wird $\Phi(s) = s^p$ mit p > 0 gewählt. Dann liefert:

p=1 den Median \tilde{x} . Er minimiert die Abstandssumme:

$$S(x) = \sum_{i=1}^{n} |x - x_i|$$

 $p=2\,$ das arithmetische Mittel. Es minimiert die quadratische Abstandssumme:

$$S(x) = \sum_{i=1}^{n} (x - x_i)^2$$

 $p \to \infty$ die Midrange

$$\frac{\max\{x_1,\cdots,x_n\}+\min\{x_1,\cdots,x_n\}}{2}$$

Kleinere Werte für p liefern dabei robustere M-Schätzer, da Ausreißer weniger stark bestraft werden. Eine weitere übliche Straffunktion ist z.B. die Lorentz-Straffunktion

$$\Phi(s) = \ln\left(1 + \frac{s^2}{2}\right)$$

die robuster ist als die übliche quadratische Straffunktion.

6 Multivariate Verteilungen und Summen von Zufallsvariablen

Oftmals ist es nötig, Zufallsvariablen zu betrachten, die voneinander abhängig, also nicht unabhängig sind. Dazu wird hier die gemeinsame Verteilung des Zufallsvektors $X=(X_1,\cdots,X_n)^T$ und die Summe der Zufallsvariablen betrachtet.

6.1 Grundlagen

Gemeinsame Verteilungsfunktion Seien X_1, \dots, X_n Zufallsvariablen mit Verteilungsfunktionen F_1, \dots, F_n . Dann ist die *gemeinsame Verteilungsfunktion* (oder Verteilung des Zufallsvektors $XI(X_1, \dots, X_n)^T$) gegeben durch:

$$F(x_1, \dots, x_n) = P(X_1 \le x_q, \dots, X_n \le x_n), \quad (x_1, \dots, x_n) \in \mathbb{R}^n$$

Gemeinsame Dichte Eine Funktion $f: \mathbb{R}^n \to [0, \infty)$ heißt *gemeinsame Dichte* von X_1, \dots, X_n , wenn für alle $(x_1, \dots, x_n) \in \mathbb{R}^n$ gilt:

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f(s_1, \dots, s_n) ds_1 \dots ds_n$$

Erwartungswertvektor Der Vektor $\mu = (E(X_1), \cdots, E(X_n))^T$ heißt (sofern er existiert) *Erwartungswertvektor* von X.

Kovarianzmatrix Die *Kovarianzmatrix* ist (sofern sie existiert) eine Matrix $\Sigma \in \mathbb{R}^{n \times n}$ der folgenden Form:

$$\Sigma = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) \end{pmatrix}$$

wobei die Kovarianz von zwei Zufallsvariablen gegeben ist durch

$$Cov(X_i, X_j) := E((X_i - E(X_i)) \cdot (X_j - E(X_j)))$$

sofern $Var(X_i)$ existiert, d.h. $< \infty$ ist $(i = 1, \dots, n)$.

Es gilt weiterhin $Var(X_i) = Cov(X_i, X_i)$ und $Cov(X_i, X_j) = Cov(X_j, X_i)$.

Rechenregeln Seien X, Y, Z Zufallsvariablen und $a, b, c, d \in \mathbb{R}$.

Dann gelten:

- Cov(X, Y) = E(XY) E(X)E(Y)
- Var(X Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
- Cov(aX + b, cY + d) = ac Cov(X, Y)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

Interpretationen

- Unabhängigkeit impliziert Cov(X, Y) = 0.
- Ist Cov(X,Y) > 0, so wird X erhöht, wenn Y erhöht wird und umgekehrt.
- Ist Cov(X,Y) < 0, so wird X verringert, wenn Y erhöht wird und umgekehrt.
- Der Korrelationskoeffizient

$$\varrho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \in [-1,1]$$

ist skalierungsunabhängig.

• Der empirische Korrelationskoeffizient ist ein erwartungstreuer Schätzer für ϱ .

6.1.1 Multivariate Normalverteilung

- Dies ist die wichtigste multivariate Verteilung: $N_n(\mu, \Sigma)$
- Sei $X=(X_1,\cdots,X_n)^T$ ein Vektor mit normalverteilten Zufallsvariablen mit Erwartungswert $\mu=\left(E(X_1),\cdots,E(X_n)\right)^T$ und Kovarianzmatrix Σ .
- Dann ist die multivariate Normalverteilungsdichte gegeben durch:

$$f(x) = \frac{1}{\sqrt{2\pi}^n \sqrt{\det \Sigma}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}, \quad x \in \mathbb{R}^n$$

6.1.2 Unabhängigkeit

Seien X_1, \dots, X_n Zufallsvariablen mit Dichten $f_1(x_1), \dots, f_n(x_n)$. Die Zufallsvariable sind unabhängig gdw. für die gemeinsame Verteilungsfunktion f gilt:

$$f(x_1, \cdots, x_n) = f_1(x_1) \cdots f_n(x_n)$$

6.1.3 Korrelation

Seien X_1, \dots, X_n Zufallsvariablen mit $\operatorname{Var}(X_i) < \infty, \quad i = 1, \dots, n$. Die heißen paarweise unkorreliert, wenn gilt:

$$Cov(X_i, X_j) = 0 \quad \forall i \neq j$$

Unabhängigkeit impliziert Unkorreliertheit, da für unabhängige Zufallsvariablen X_1, \dots, X_n die obige Bedingung immer gilt.

Sind die Zufallsvariablen gemeinsam normalverteilt, folgt aus der Unkorreliertheit sogar die Unabhängigkeit.

6.2 Verteilung der Summe von Zufallsvariablen

Seien X_1, \dots, X_n unabhängige Zufallsvariablen, die $N(\mu_i, \sigma_i^2)$ -verteilt sind. Dann ist $X = X_1 + \dots + X_n$ $N(\mu, \sigma^2)$ -verteilt mit

$$\mu = \mu_1 + \dots + \mu_n, \qquad \sigma^2 = \sigma_1^2 + \dots + \sigma_n^2$$

6.2.1 Faltung

Falls für die Funktionen $f,g:\mathbb{R} \to \mathbb{R}$ das Integral

$$(f * g)(x) := \int_{-\infty}^{\infty} f(x - y)g(y) \, dy$$

für alle $x \in \mathbb{R}$ existiert, dann heißt f * g die Faltung von f und g.

Für $f = (f_i)_{i \in \mathbb{Z}}$ und $g = (g_i)_{i \in \mathbb{Z}}$ ist die diskrete Faltung von f und g gegebene durch:

$$(f*g)_i \coloneqq \sum_{j \in \mathbb{Z}} f_{i-j}g_j$$

Sind X_1, X_2 unabhängige stetige Zufallsvariablen mit Dichten $f_1(x_1)$ und $f_2(x_2)$, dann hat $X_1 + X_2$ die Dichte $f_1 * f_2$.

6.2.2 Diskret verteilte Zufallsvariablen

Seien X_1, X_2 unabhängige diskrete \mathbb{Z} -wertige Zufallsvariablen und seien

$$f_{X_1} := (P(X_1 = i))_{i \in \mathbb{Z}}$$

 $f_{X_2} := (P(X_2 = i))_{i \in \mathbb{Z}}$

Dann ist $f_{X_1+X_2}=ig(P(X_1+X_2=i)ig)_{i\in\mathbb{Z}}$ gegeben durch

$$f_{X_1+X_2} = f_{X_1} * f_{X_2}$$

Binomialverteilten Zufallsvariablen

Seien X, Y jeweils B(n, p) bzw. B(m, p) verteilt. Dann ist X + Y B(n + m, p)-verteilt.

Poissonverteilte Zufallsvariablen

Seien X,Y jeweils Poisson-verteilt mit Parameter λ_1 bzw. λ_2 . Dann ist X+Y Poisson-verteilt mit Parameter $\lambda_1+\lambda_2$.

Poisson Verteilung und bedingte Wahrscheinlichkeit

Seien X,Y jeweils Poisson-verteilt mit Parameter λ_1 bzw. λ_2 . Sei außerdem Z=X+Y. Dann ist Z ebenfalls Poisson-verteilt mit Parameter $\lambda_1+\lambda_2$.

Betrachte nun X|Z. Aufgrund der Unabhängigkeit folgt, dass X|Z mit $P(X=x\,|\,Z=z)$ Binomialverteilt ist mit $B(z,\frac{\lambda_1}{\lambda_1+\lambda_2})$.

Geometrische Verteilung und bedingte Wahrscheinlichkeit

Sei X geometrisch verteilt mit Parameter p.

Betrachte nun $Y_k = X - k | X > k$, d.h. die Anzahl der Versuche, bis das Ereignis eintritt, unter der Voraussetzung, dass es in den vorherigen k Versuchen nicht eingetreten ist. Die Zufallsvariable Y_k ist dann wieder geometrisch verteilt mit Parameter p.