MA571 Problem Set 1

Carlos Salinas

August 31, 2015

Problem 1.1 (Munkres \S 2, 1(a,b).)

Let $f: A \to B$. Let $A_0 \subset A$ and $B_0 \subset B$.

- (a) Show that $A_0 \subset f^{-1}(f(A_0))$ and that equality holds if f is injective.
- (b) Show that $f(f^{-1}(B_0)) \subset B_0$ and that equality holds if f is surjective.

Proof. (a). First, we will show $A_0 \subset f^{-1}(f(A_0))$. Let $x \in A_0$. Then $f(x) \in f(A_0)$. By definition, $f^{-1}(f(A_0))$ is the set of those points $x_0 \in A$ such that $f(x_0) \in f(A_0)$ and in particular we see that the containment $A_0 \subset f^{-1}(f(A_0))$ holds. Thus, $x \in f^{-1}(f(A_0))$.

Now, let us suppose the map f is injective. By our former argument, we have that $A_0 \subset f^{-1}(f(A_0))$ therefore, we will show the reverse containment. If $y \in f(A_0)$, then f(x) = y for some $x \in A_0$. By the injectivity of f, if $f(x_0) = y$ for some $x_0 \in A$, then we must have that $x_0 = x$. In particular, $x_0 \in A_0$. Thus $f^{-1}(f(A_0)) \subset A_0$ and equality $A_0 = f^{-1}(f(A_0))$ holds.

(b). First, we will show that $f(f^{-1}(B_0)) \subset B_0$. Consider the preimage $f^{-1}(B_0)$ of B_0 . Let $x \in f^{-1}(B_0)$. Then f(x) = y for some $y \in B_0$. Since $f(f^{-1}(B_0))$ is, by definition, the set of all points $f(x) \in B$ where $x \in f^{-1}(B_0)$ and f(x) = y for $y \in B_0$, we have that $f(f^{-1}(B_0)) \subset B_0$.

Now, let us suppose the map f is surjective. Let $y \in B_0$, then there exists $x \in A$ such that f(x) = y. Thus, $x \in f^{-1}(B_0)$. Then $y = f(x) \in f(f^{-1}(B_0))$ (in particular $B_0 \subset f(f^{-1}(B_0))$) and we have equality $B_0 = f(f^{-1}(B_0))$.

Problem 1.2 (Munkres, §2, 2(g).)

Let $f: A \to B$ and let $A_i \subset A$ and $B_i \subset B$ for i = 0 and i = 1. Show that f^{-1} preserves inclusion, unions, intersections, and differences of sets:

(g) $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$; show that equality holds if f is injective.

Proof of (g). The claim is evident if A_0 and A_1 are disjoint subsets. Suppose $A_0 \cap A_1 \neq \emptyset$. Let $y \in f(A_0 \cap A_1)$. Then y = f(x) for some $x \in A_0$, $x \in A_1$. Then $f(x) \in f(A_0)$ and $f(x) \in f(A_1)$ so $y \in f(A_0) \cap f(A_1)$. Thus, $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$.

Now, suppose f is injective. Then, if f(x)=f(x')=y for some $y\in B$, then x=x'. Let $y\in f(A_0)\cap f(A_1)$. Then $y=f(x_0),\,y=f(x_1)$ for some $x_0\in A_0,\,x_1\in A_1$. But, by the injectivity of $f,\,x_0=x_1$ so $x_0\in A_0\cap A_1$. Hence, $y\in f(A_0\cap A_1)$ and the equality $f(A_0\cap A_1)=f(A_0)\cap f(A_1)$ holds.

Problem 1.3 (Munkres, §13, 3.)

Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X. Is the collection

$$\mathcal{T}_{\infty} = \{\, U \mid X \smallsetminus U \text{ is infinite or empty or all of } X \,\}$$

a topology on X?

Proof. Recall that \mathcal{T}_c is the collection of all subsets U of X such that $X \setminus U$ is either countable or is all of X. Let us verify that \mathcal{T}_c defines a topology on X. First, $\emptyset \in \mathcal{T}_c$ since $X \setminus \emptyset = X$ and $X \in \mathcal{T}_c$ since $X \setminus X = \emptyset$ is countable. Second, let $\{U_\alpha\}$, $\alpha \in A$, be an indexed family of nonempty elements of \mathcal{T}_c , then $X \setminus U_\alpha$ is countable for all α . Thus, by DeMorgan's laws, we have that

$$X \setminus \bigcup U_{\alpha} = \bigcap X \setminus U_{\alpha}$$

is countable (this follows from Corollary 7.3, since $\bigcap_{\alpha} X \setminus U_{\alpha}$ is a subset of U_{β} for all $\beta \in A$, hence it is countable). Thus, the union $\bigcup U_{\alpha}$ is in \mathcal{T}_c . Lastly, let $U_1,...,U_n$ be nonempty elements of \mathcal{T}_c , then by DeMorgan's laws, we have that

$$X \setminus \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X \setminus U_i)$$

is countable by Theorem 7.5 since $\bigcup_{i=1}^n (X \setminus U_i)$ is a countable union of countable sets. So the finite intersection $\bigcap_{i=1}^n U_i \in \mathcal{T}_c$. Therefore, \mathcal{T}_c satisfies all the properties to define a topology on X.

Now, let us consider the collection of subsets of X, \mathcal{T}_{∞} , given above. We will show that arbitrary unions of elements of \mathcal{T}_{∞} are, in general, not in \mathcal{T}_{∞} . Let $X = \mathbf{Z}_{+}$ and suppose that \mathcal{T}_{∞} defines a topology on X. Consider the collection of subsets $\{\{i\}\}_{i=1}^{\infty}$. $\mathbf{Z}_{+} \setminus \{i\} = \{1, ..., i-1, i+1, ...\}$ is infinite hence, $\{i\} \in \mathcal{T}_{\infty}$ for all $i \in \mathbf{N}$. However, $\mathbf{Z}_{+} \setminus \bigcup_{i=1}^{\infty} \{i\} = \{0\}$ is finite so $\bigcup_{i=1}^{\infty} \{i\} \notin \mathcal{T}_{\infty}$, this is a contradiction. Therefore, \mathcal{T}_{∞} does not define a topology on X.

Problem 1.4 (Munkres, §13, 5.)

Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.

Proof. Let \mathcal{T} be the topology generated by \mathcal{A} and let \mathcal{S} be the collection of all topologies \mathcal{T}' that contain \mathcal{A} . By Lemma 13.3, it suffices to check that $\mathcal{T} = \bigcap \mathcal{T}'$. First we will show that the intersection $\bigcap \mathcal{T}'$ indeed defines a topology on X. To that end we shall prove the following lemma:

Lemma 1. Let X be a nonempty set and let $\{\mathcal{T}_{\alpha}\}$ be an indexed collection of topologies on X. Then $\bigcap \mathcal{T}_{\alpha}$ defines a topology on X.

Proof of Lemma 1. Let $\mathcal{T} = \bigcap \mathcal{T}_{\alpha}$. First, since $\emptyset \in \mathcal{T}_{\alpha}$ and $X \in \mathcal{T}_{\alpha}$ for all $\alpha \in A$, \emptyset and X are in \mathcal{T} . Second, let $\{U_{\beta}\}$, $\beta \in B$, be an indexed family of nonempty elements of \mathcal{T} . Then, $U_{\beta} \in \mathcal{T}_{\alpha}$ for all $\beta \in B$ for all $\alpha \in A$ so $\bigcup U_{\beta} \in \mathcal{T}_{\alpha}$ for all $\alpha \in A$. Hence, $\bigcup U_{\beta} \in \mathcal{T}$. Lastly, let $U_1, ..., U_n$ be nonempty elements of \mathcal{T} . Then, $U_1, ..., U_n \in \mathcal{T}_{\alpha}$ for all $\alpha \in A$ so $\bigcap_{i=1}^n U_i \in \mathcal{T}_{\alpha}$ for all $\alpha \in A$ thus, $\bigcap_{i=1}^n U_i \in \mathcal{T}$. We see that, indeed, \mathcal{T} defines a topology on X.

By the Lemma 1 above, it follows that $\bigcap \mathcal{T}'$ gives a topology on X. Now, it is easy to see that $\bigcap \mathcal{T}' \subset \mathcal{T}$ since $\mathcal{T} \in \mathcal{S}$ is the coarsest topology containing \mathcal{A} . Let us prove this fact:

Lemma 2. Let X be a nonempty set. Let \mathcal{A} be a basis for the topology \mathcal{T} on X. Then \mathcal{T} is the coarsest topology containing \mathcal{A} .

Proof of Lemma 2. This can be easily proven by contradiction for suppose \mathcal{T} is not the coarsest topology containing \mathcal{A} . Let \mathcal{C} be a strictly coarser topology that contains \mathcal{A} . Then there exists some open set $U \in \mathcal{T}$ not in \mathcal{C} . Thus, \mathcal{C} is not generated by \mathcal{A} .

On the other hand we see by Lemma 13.1 that $\mathcal{T} \subset \bigcap \mathcal{T}'$ since each $\mathcal{T}' \in \mathcal{S}$ contains the basis \mathcal{A} of \mathcal{T} , hence contains the open sets of \mathcal{T} .

Suppose \mathcal{A} is a subbasis for the topology on X. Then the topology \mathcal{T} on X generated by \mathcal{A} is the collection of unions of finite intersections. Like above, let \mathcal{S} be the collection of topologies \mathcal{T}' in X which contain \mathcal{A} . Then, $\bigcap \mathcal{T}' \subset \mathcal{T}$ since $\mathcal{T} \in \mathcal{S}$ is the coarsest topology which contains \mathcal{A} . To see the reverse containment, let $U \in \mathcal{T}$ then U is the union of elements $\{U_{\alpha}\}$ where U_{α} , $\alpha \in \mathcal{A}$, is a finite intersection of elements of \mathcal{A} . Then, $U \in \bigcap \mathcal{T}'$ since $U_{\alpha} \in \mathcal{T}'$ for every $\alpha \in \mathcal{A}$, for every topology $\mathcal{T}' \in \mathcal{S}$.

Problem 1.5 (Munkres, §13, 8(b).)

(b) Show that the collection

$$\mathcal{C} = \{ [a, b) \mid a < b, a \text{ and } b \text{ rational} \}$$

is a basis that generates a topology different from the lower limit topology on R.

Proof of (b). Let \mathcal{T} denote the topology on \mathbf{R}_{ℓ} , i.e, \mathcal{T} is the lower limit topology on \mathbf{R} . It is immediate, by the definition of the lower limit topology, that \mathcal{T} is finer than \mathcal{T}' where \mathcal{T}' denotes the topology in \mathbf{R} generated by \mathcal{C} . Now, consider the interval [a,b) for $a \in \mathbf{R} \setminus \mathbf{Q}, b \in \mathbf{Q}$. [a,b) is in \mathcal{T} however, [a,b) is not in \mathcal{T}' since [a,b) is not expressible as a union or finite intersection of open sets $[a,b) \in \mathcal{T}$.

Proof of claim. We must show that [a,b) is not expressible as a union of half closed intervals $[a_{\alpha},b_{\alpha})$ and as an finite intersection of half closed intervals $[a_1,b_1),...[a_n,b_n)$. Seeking a contradiction, suppose $[a,b)=\bigcup[a_{\alpha},b_{\alpha})$ for α in some index A. Then $[a,b)=[a_{\beta},b_{\beta})$ for some $\beta\in A$. But this implies that $a_{\beta}=a\in \mathbf{Q}$. This is a contradiction. Similarly, if $[a,b)=\bigcap_{i=1}^n[a_i,b_i)$ then $[a,b)=[a_j,b_j)$ for some $j\in\{1,...,n\}$ and additionally we must have $[a_j,b_j)\subset[a_k,b_k)$ for $k\neq j$. Again, this leads to a contradiction since it implies that $a=a_j\in \mathbf{Q}$ contrary to our choice of a.

Thus $\mathcal{T}' \not\supset \mathcal{T}$ and so \mathcal{T}' does not give the same topology as \mathcal{T} on \mathbf{R} .

6

Problem 1.6 (Munkres, §16, 1.)

Show that if Y is a subspace of X, and A is a subset of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X.

Proof. Let \mathcal{T} denote the topology on X and \mathcal{S} denote the topology on Y inherited as a subspace of X. In addition, let \mathcal{T}_X denote the topology on A viewed as a subspace of X and \mathcal{T}_Y denote the topology on A viewed as a subspace of Y. Then, by definition

$$\mathcal{T}_X = \{\, A \cap U \mid U \in \mathcal{T} \,\} \quad \mathcal{T}_Y = \{\, A \cap U \mid U \in \mathcal{S} \,\} \quad \text{and} \quad \mathcal{S} = \{\, Y \cap U \mid U \in \mathcal{T} \,\}.$$

We claim $\mathcal{T}_Y=\mathcal{T}_X.$

First, we write \mathcal{T}_X in a more illuminating fashion namely, (noting that $A\cap Y=A$ and that \cap is associative)

$$\mathcal{T}_X = \{\, (A \cap Y) \cap U \mid U \in \mathcal{T} \,\} = \{\, A \cap (Y \cap U) \mid U \in \mathcal{T} \,\}.$$

(It is an exercise in triviality to show that the above sets are in fact equivalent.) At once one containment becomes obvious, namely if $U \in \mathcal{T}_Y$ then $U = A \cap V$ for some $V \in \mathcal{S}$, but $V = Y \cap W$ for some $W \in \mathcal{T}$ so $U = A \cap (Y \cap W)$ which, by the associativity of \cap , is just $U = (A \cap Y) \cap W = A \cap W$. Hence $U \in \mathcal{T}_X$ so $\mathcal{T}_Y \subset \mathcal{T}_X$. To see the reverse containement let $U \in \mathcal{T}_X$ then $U = A \cap V$ for $V \in \mathcal{T}$ and we note that, since $A \cap Y = A$, we have $U = (A \cap Y) \cap V = A \cap (Y \cap V)$ and $Y \cap V \in \mathcal{S}$ so $U \in \mathcal{T}_Y$. Thus, the topologies \mathcal{T}_X and \mathcal{T}_Y are equivalent.

Problem 1.7 (Munkres, §16, 4.)

A map $f: X \to Y$ is said to be an *open map* if for every open set U of X, the set f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.

Proof. Let \mathcal{T} denote the topology on X and \mathcal{S} the topology on Y and give the Cartesian product $X \cap Y$ the product topology. Let U be open in $X \times Y$. Then $U = \bigcup_{\alpha} V_{\alpha} \times W_{\alpha}$ for $V_{\alpha} \in \mathcal{T}$, $W_{\alpha} \in \mathcal{S}$, $\alpha \in A$. First, we shall prove the following lemma:

Lemma 3. Let X be a nonempty set. Let A_0 and A_1 be subsets of X and $f: X \to Y$. Then $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.

Proof of Lemma 3. Let $y \in f(A_0 \cup A_1)$. Then y = f(x) for some $x \in A_0$ or $x \in A_1$. Thus $f(x) \in f(A_0)$ or $f(x) \in f(A_1)$ so $y = f(x) \in f(A_0) \cup f(A_1)$. So $f(A_0 \cup A_1) \subset f(A_0) \cup f(A_1)$. To see the reverse containment, let $y \in f(A_0) \cup f(A_1)$, then y = f(x) for $x \in A_0$ or $x \in A_1$. Hence $x \in A_0 \cup A_1$ so $f(x) = y \in f(A_0 \cup A_1)$ and we see that $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$ holds. \blacklozenge

By Lemma 1 and the definition of the projection maps, we have

$$\begin{split} \pi_1 \biggl(\bigcup_{\alpha} U_{\alpha} \times V_{\alpha} \biggr) &= \pi_1 \biggl(\bigcup_{\beta \neq \alpha_0} U_{\beta} \times V_{\beta} \biggr) \cup \pi_1 \bigl(U_{\alpha_0} \times V_{\alpha_0} \bigr) \\ &= \bigcup_{\alpha} \pi_1 (U_{\alpha} \times V_{\alpha}) \\ &= \bigcup_{\alpha} U_{\alpha} \end{split}$$

and

$$\begin{split} \pi_2 \biggl(\bigcup_\alpha U_\alpha \times V_\alpha \biggr) &= \pi_2 \biggl(\bigcup_{\beta \neq \alpha_0} U_\beta \times V_\beta \biggr) \cup \pi_2 \bigl(U_{\alpha_0} \times V_{\alpha_0} \bigr) \\ &= \bigcup_\alpha \pi_2 (U_\alpha \times V_\alpha) \\ &= \bigcup_\alpha V_\alpha \end{split}$$

both of which are open in X and Y, respectively.

Problem 1.8 (Munkres, §16, 6.)

Show that the countable collection

$$\{(a,b) \times (c,d) \mid a < b \text{ and } c < d, \text{ and } a,b,c,d \text{ are rational}\}$$

is a basis for \mathbb{R}^2 .

Proof. Let \mathcal{B} denote the collection

$$\{(a,b) \times (c,d) \mid a < b \text{ and } c < d, \text{ and } a,b,c,d \text{ are rational }\}.$$

Then, for every $p = (x, y) \in \mathbf{R}^2$, by the density of the rationals in \mathbf{R} , there exists rational a and b, c and d such that a < x < b and c < y < d, so $p \in (a, b) \times (c, d)$ which is in \mathcal{B} . Next, suppose $p = (x, y) \in ((a, b) \times (c, d)) \cap ((a', b') \times (c', d'))$. Then a < x < b, c < y < d and a' < x < b', c' < y < d'. Let

$$\alpha = \min\{a, a'\}, \qquad \beta = \min\{b, b'\},$$

$$\gamma = \min\{c, c'\}, \qquad \delta = \min\{d, d'\}.$$

Then,

$$x \in (\alpha, \beta) \times (\gamma, \delta) \subset ((a, b) \times (c, d)) \cap ((a', b') \times (c', d')).$$

Thus, \mathcal{B} is a basis.

Problem 1.9 (Munkres, §16, 9.)

Show that the dictionary order topology on the set $\mathbf{R} \times \mathbf{R}$ is the same as the product topology $\mathbf{R}_d \times \mathbf{R}$, where \mathbf{R}_d denotes \mathbf{R} in the discrete topology. Compare this topology with the standard topology on \mathbf{R}^2 .

Proof. Let \mathcal{B}_1 denote a basis for the dictionary topology on $\mathbf{R} \times \mathbf{R}$ and let \mathcal{B}_2 denote a basis for the product topology on $\mathbf{R}_d \times \mathbf{R}$ where, as in the problem prompt, \mathbf{R}_d denotes the set \mathbf{R} equipped with the discrete topology. We want to show that the topologies on $\mathbf{R} \times \mathbf{R}$ and $\mathbf{R}_d \times \mathbf{R}$ are equivalent. We will proceed by Lemma 13.3. Let $x \in \mathbf{R} \times \mathbf{R}$ and let $U \in \mathcal{B}_1$ be a neighborhood of x. Then