Artificial Intelligence based Model for Ancient Text Analysis

Sergio Hernández González

Introduction **Previous study** Model building Results **Future directions**

Introduction

Rationale

Find unknown translations and adaptations from Ancient Language texts

- Identify semantic relationships
- Text written in structurally different languages
- Low resource Ancient Languages

Steps

State of the art	Selection	Implementation	
State of the art study on the field of NLP	Specific technique and tools selection	Coded implementations and model training	

Previous study

Semantic similarity

Quantification of likeness or relatedness between texts

Based on meaning rather than surface form

We need a way to measure and compare meaning

Word embeddings

Numerical representation for a word's meaning

Dense vectors

Multidimensional vectors

Easy to handle for machines

Able to represent the reality in a multidimensional space

Word embeddings

Image from: Google for developers ML course, https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space. Under Creative Commons 4.0 license. **CC BY 4.0**.

Word2Vec

Presented by Google in 2013

Neural Network based architecture

Learns from raw text, by examining the context where words appear

Relies on the hypothesis that neighboring words in text have semantic similarities with each other

https://projector.tensorflow.org/

Model building

Tools

/regex/

Two models

Test case

English:

Easy evaluation

More resources

- Data
- Tools

Target case

Middle High German (MHG)

Data collection

English:

Collection of 7.8 million sentences from the August 2018 English Wikipedia dump

MHG:

The "Reference Corpus of Middle High German" Corpus of diplomatically transcribed and annotated texts from Middle High German (1050-1350) with a size of around 2 million word forms

M001: Ad equum errehet

Normalisierter Lesetext

```
66 02.0 {10r.13}
                        [!] [!] erræhet.
66_02,1 {10r,13}
                        man gienc after wege,
66_02,2 {10r,14}
                        zôch sîn ros in handen.
66 02,3 {10r,14}
                        dô begegente ime mîn truhtîn
66_02,4 {10r,14}
                        mit sînere êrengrehte:
66_02,5 {10r,15}
                        "wes man gês dû?
66_02,6 {10r,15}
                        zuo iu ne rîtes dû?
66 02.7 {10r.15}
                       "waz mac ich rîten?
66_02,8 {10r,15}
                        mîn ros ist erræhet.
                        "nû ziuch ez dâ bî viere,
66_02,9 {10r,16}
66_02,10 {10r,16}
                         dû rûne ime in daz oere,
66_02,11 {10r,17}
                         trit ez an den zeswen vuoz:
66_02,12 {10r,17}
                         sô wirdet ime des erræhet buoz.
66_02,13 {10r,18}
                         [!] [!], [!] [!] [!] [!] [!]:"alsô schiere werde
66 02,14 {10r,19}
                         diseme, [!] [!], rôt, swarz, blanc, vale, grîsel, vêch,
66_02,15 {10r,20}
                         rosse des erræheten buoz, same deme got dâ selbe buozte.
```

https://www.linguistics.ruhr-uni-bochum.de/rem/

Text processing

Training the model

Word2Vec architecture

Provided by Gensim library

Results

Results: English

The model shows a good performance when compared to state of the art pre trained models'

Results: MHG

The model is capable of capturing words meaning

Results

Relationships that may seem inaccurate...

Future directions

Future directions

Improve current results

Address data scarcity

Collecting more data

Data augmentation

Transfer learning

Use specialized algorithms

Explore new technologies

Contextual embeddings

Sentence embeddings

Vectorial spaces alignment

Questions

Thank you