E. Lista

Dostępna pamięć: 128 MB

Zaprojektuj i zaimplementuj strukturę, która umożliwi przechowywanie listy liczb całkowitych L i wykonywanie na niej opisanych poniżej operacji. Poniżej length(L) będzie oznaczać aktualną długość listy. Pozycje na liście numerowane są od 1 do length(L).

- Insert(p, x). Wstawia liczbę całkowitą x do listy za p pierwszymi elementami listy, gdzie $0 \le p \le \text{length}(L)$. (Dla p = 0 element x wstawiony zostanie na początek listy, zaś dla p = length(L) na jej koniec).
- Delete(p). Usuwa liczbę całkowitą stojącą na miejscu p listy, gdzie $1 \le p \le \text{Length}(L)$.
- Sum (p_1, p_2) . Zwraca sumę elementów na pozycjach od p_1 do p_2 włącznie, gdzie $1 \le p_1 \le p_2 \le \text{LENGTH}(L)$.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się liczba naturalna $N \in [1, 10^6]$, oznaczająca liczbę operacji na liście L. Początkowo lista L jest pusta. W każdym z kolejnych N wierszy znajduje się opis jednej operacji wykonywanej na liście L.

- W przypadku operacji Insert(p, x) wiersz zawiera literę I, pojedynczy odstęp, liczbę całkowitą p, pojedynczy odstęp i liczbę całkowitą $x \in [-10^6, 10^6]$.
- W przypadku operacji Delete(p) wiersz zawiera literę D, pojedynczy odstęp i liczbę całkowitą p.
- W przypadku operacji Sum (p_1, p_2) wiersz zawiera literę S, pojedynczy odstęp, liczbę całkowitą p_1 , pojedynczy odstęp i liczbę całkowitą p_2 .

Zakładamy, że opisane wyżej liczby p, p_1 i p_2 zawsze mają sens, tj. dotyczą istniejących miejsc na liście.

Specyfikacja danych wyjściowych

Dla każdej operacji $Sum(p_1, p_2)$ Twój program powinien wypisać wiersz zawierający jedną liczbę będącą sumą elementów na pozycjach od p_1 do p_2 włącznie.

Przykład A

Przykład B

Wejście: Wyjście:

3 66 I 0 66 S 1 1 D 1

Przykład C

I 0 2

S 1 2

Wejście: Wyjście:

5 I **0** 1

I 0 3 D 2