GÉNÉRALITÉS SUR LES SUITES Page: 1 sur 2

I- Définition

Une suite numérique est une fonction de \mathbb{N} dans \mathbb{R} , définie à partir d'un certain rang n_0 . La notation (U_n) désigne la suite en tant qu'objet mathématique et U_n désigne l'image de l'entier n (appelé encore terme d'indice n de la suite , terme que l'on pourrait noter U(n) mais l'usage en a voulu autrement.

II-Mode de génération de suite

1) Suite définie en fonction du rang (forme explicite): type $U_n = f(n)$:

$$U_n = \frac{1}{n}$$
 pour $n \ge 1$, on obtient $U_1 = 1$; $U_2 = \frac{1}{2}$; $U_3 = \frac{1}{3}$; etc...

 $V_n=2n+1$ pour $n \ge 0$, on obtient $V_0=1$; $V_1=3$; $V_2=5$; etc...

2) Suite définie en fonction de terme(s) précédent(s) (relation de récurrente)

$$(W_n): \begin{cases} W_0 = 2 \\ W_{n+1} = W_n (1 - W_n) \end{cases} , \text{ on obtient :}$$

$$W_1 = 2(1-2) = -2; \quad W_2 = -2(1-(-2)) = -6; \quad W_3 = -6(1-(-6)) = -42; \quad \text{etc...}$$

Exemple: Déterminer le rang à partir duquel la suite (U_n) suivante est définie : $U_n = \sqrt{x-3}$

III- Représentation

Pour tout n de \mathbb{N} , on donne $U_n = \frac{n^2}{2} - 3$.

Représenter, graphiquement les 10 premiers terme de la suite (U_n)

n	0	1	2	3	4	5	6	7	8	9
U_n	-3	-2,5	-1	1,5	5	9,5	15	21,5	29	37,5

N.B:

C'est un nuage de points qu'il ne faut pas relier sauf dans un cas où c'est demandé par l'exercice

Les points sont définie par des coordonnées :

$$P_n(n;U_n)$$

Le graphique ci-contre représente le nuage de points d'une suite.

GÉNÉRALITÉS SUR LES SUITES Page : 2 sur 2

En l'observant, on peut conjecturer que cette suite est croissante pour $n \ge 3$. Propriétés ;

Une suite (U_n) est croissante à partir du rang p , signifie que pour $n \ge p$ on a $U_{n+1} \ge U_n \Rightarrow U_{n+1} - U_n \ge 0$

Une suite $\begin{pmatrix} U_n \end{pmatrix}$ est décroissante à partir du rang $\begin{pmatrix} p \end{pmatrix}$, signifie que pour $n \ge p$ on a $\begin{pmatrix} U_{n+1} \le U_n \end{pmatrix} \begin{pmatrix} U_{n+1} - U_n \le 0 \end{pmatrix}$

Soit une fonction f définie sur $[0;+\infty[$ et une suite (U_n) définie sur \mathbb{N} par $U_n=f(n)$. Soit un entier p

- Si f est croissante sur $[p;+\infty[$, alors la suite (U_n) est croissante à partir du rang p
- Si f est décroissante sur $[p;+\infty[$, alors la suite (U_n) est décroissante à partir du rang p

IV- Limites

1) Suite convergente

On considère la suite (U_n) définie par $U_n = \frac{2n+1}{n}$

n	1	2	3	4	5	10	20	50	100	500
U_{n}	3,000	2,500	2,333	2,250	2,200	2,100	2,050	2,020	2,010	2,002

On dit que la suite (U_n) converge vers 2 et on note $\lim_{n\to +\infty} U_n = 2$

2) Suite divergente

On considère la suite (V_n) définie par $V_n = n^2 + 1$

		\ 117		11							
n	1	2	3	4	5	10	20	50	100	500	
U_n	2	5	10	17	26	101	401	2501	10001	250001	

On constate que plus **n** devient grand, plus les termes de la suite semblent devenir grand

On dit que la suite (V_n) diverge vers $+\infty$ et on note $\lim_{n\to+\infty} V_n = +\infty$

On considère la suite (W_n) définie par $W_{n+1} = (-1)^n W_n$ et $W_0 = 2$

		\ 117	-		,	**	U			
n	0	1	2	3	4	5	6	7	8	9
U_n	2	2	-2	-2	2	2	-2	-2	2	2

On constate que plus n devient grand, plus les termes de la suite ne semblent pas s'approcher d'une valeur unique. On dit que la suite (W_n) diverge.

La définition d'une suite divergente est donc « une suite qui n'est pas convergente ».