Matchings in Weighted Bipartite Graphs – Kuhn-Munkres Algorithm

Textbook Reading:

Chapter 4, Subsection 4.1.3, pp. 104-107

Perfect Matchings in Weighted Bipartite Graphs

Weighted complete bipartite graph:

$$G = (V,E)$$
 with vertex bipartition $V = X \cup Y$, where $X = \{x_1, \ldots, x_{n-1}\}$ and $Y = \{y_1, \ldots, y_n\}$.

Each edge $x_i y_j$ of G is assigned the a real weight ω_{ij} , $i, j \in \{1, ..., n\}$.

Sample weighted complete bipartite graph

It can be input using the two-dimensional array (matrix):

$$\begin{pmatrix} 3 & 3.4 & 0 \\ 29 & 10 & 6 \\ 1.25 & 0 & 67 \end{pmatrix}$$

A perfect matching corresponds to a traversal of the matrix.

Weight of a matching

The **weight** of a matching M, denoted by $\omega(M)$, is the sum of the weights of its edges, i.e.

$$\omega(M) = \sum_{e \in M} \omega(e).$$

Maximum Weight Perfect Matching

A maximum-weight perfect matching is one that maximizes $\omega(M)$.

There are many natural applications for finding a maximum weight perfect matching. For example, finding an assignment of workers to jobs so that the total effectiveness of the workers is optimized.

Brute force very inefficient

A brute-force algorithm that enumerates all n! perfect matchings and chooses one of maximum weight is hopelessly inefficient.

There is a combinatorial explosion of perfect

matchings.

Kuhn-Munkres algorithm

- We now describe an $O(n^3)$ algorithm due to Kuhn and Munkres for finding a maximum perfect matching in a weighted complete bipartite graph.
- The Kuhn-Munkres algorithm utilizes the Hungarian algorithm, together with the notion of a *feasible vertex weighting*.

Feasible Vertex Weighting

A **feasible vertex weighting** is a mapping ϕ from V to the real numbers such that for each edge $xy \in E$

$$\phi(x) + \phi(y) \ge \omega(xy)$$
.

Let

$$\phi(V) = \sum_{v \in V} \phi(v).$$

PSN. Handle on knowing whether we have a perfect matching

a) Show that for **any** perfect matching M and **any** feasible vertex weight ϕ ,

$$\omega(M) \leq \phi(V)$$
.

b) Suppose there exists a perfect matching M^* and a feasible vertex weighting ϕ^* , such that

$$\omega(M^*) = \phi^*(V).$$

Then M^* is a maximum-weight perfect matching and ϕ^* is a minimum-weight feasible vertex weighting, i.e., minimizes $\phi^*(V)$ over all feasible vertex weightings.

Equality Subgraph

Equality subgraph consists of all edges $xy \in E$ such that

$$\phi(x) + \phi(y) = \omega(xy).$$

A perfect matching in the **equality subgraph** is necessarily a **maximum-weight** perfect matching in *G*.

Initial feasible vertex weighting ϕ

Choose initial feasible vertex weighting so that equality subgraph **spans** X. One such equality subgraph is obtained by choosing $\phi(x)$ for each $x \in X$ to be the **maximum** value of $\omega(xy)$ over all edges xy incident with x and setting $\phi(y) = 0$ for all $y \in Y$.

Grow M-alternating Tree in equality subgraph

Apply Hungarian Algorithm to increase size of matching M in the equality subgraph

Keep applying Hungarian algorithm in the equality subgraph until either

1) a perfect matching M is found in equality subgraph

OR

2) it terminates with an *M*-alternating tree in the equality subgraph

Adjusting the Feasible Weighting

Once Hungarian algorithm terminates construct a new feasible weighting ϕ' so that its equality subgraph still contains the M-alternating tree T, but T it can be expanded

Let S be the vertices of the M-alternating tree T that lie in X, i.e., $S = V(T) \cap X$.

The new feasible weighting ϕ' is constructed as follows. Set

$$\varepsilon = \min \{ \phi(x) + \phi(y) - \omega(xy) \mid x \in S, y \in Y - \Gamma_{\phi}(S) \}. \tag{4.1.10}$$

For each $v \in V(G)$, the weighting ϕ' is defined by

$$\phi'(v) = \begin{cases} \phi(v) - \varepsilon & v \in S, \\ \phi(v) + \varepsilon & v \in \Gamma_{\phi}(S), \\ \phi(v) & \text{otherwise.} \end{cases}$$
 (4.1.11)

Expand M-alternating Tree in new equality subgraph

Overview of Kuhn-Munkres Algorithm

1) Use Hungarian algorithm to either find a perfect matching in equality subgraph in which case $\omega(M) = \phi(V)$ and we are done, i.e., M is a maximum-weight perfect matching,

OR

2) Change feasible vertex weighting, so that *M*-alternating tree can be expanded in new equality subgraph.

Since bipartite graph G is complete, eventually case 1) will occur!

Maximum-Weight Perfect Matching in General Bipartite Graph

PSN. Show that the problem of finding a maximum-weight matching in any weighted bipartite graph can be transformed (reduced) to the problem we just solved of finding a maximumweight perfect matching in a complete bipartite graph.

Important Special Cases

- Thus, we can use the Kuhn-Munkres algorithm to compute a maximum-weight matching in a weighted bipartite graph.
- As a special case we can compute a maximum cardinality matching in a bipartite graph.
- Computing a perfect matching in a bipartite graph is a special case of computing a maximum cardinality matching.

Complexity Analysis

The worst-case complexity is O(mn)

In terms of just n worst-case complexity is $O(n^3)$

Surprise Quiz!

