Recap: Convergence in Probability

A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

This is denoted as $X_n \stackrel{P}{\to} X_0$

▶ By the definition of limit, the above means

$$\forall \delta > 0, \ \exists N < \infty, \ s.t. \ P[|X_n - X_0| > \epsilon] < \delta, \ \forall n > N$$

ightharpoonup We only need marginal distributions of individual X_n to decide whether a sequence converges to a constant in probability

Recap: Weak Law of large numbers

lacksquare X_i are iid, $EX_i=\mu$, $\mathrm{Var}(X_i)=\sigma^2$, $S_n=\sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

Weak law of large numbers states

$$\frac{S_n}{n} \stackrel{P}{\to} \mu$$

Recap: almost sure convergence

A sequence of random variables, X_n , is said to converge almost surely or with probability one to X if

$$P(\{\omega : X_n(\omega) \to X(\omega)\}) = 1$$

or equivalently

$$P(\{\omega : X_n(\omega) \nrightarrow X(\omega)\}) = 0$$

- ▶ Denoted as $X_n \stackrel{a.s.}{\to} X$ or $X_n \stackrel{w.p.1}{\to} X$ or $X_n \to X_0$ (w.p.1)
- We can also write it as

$$P[X_n \to X] = 1$$

Recap

 \blacktriangleright The sequence X_n converges to X almost surely iff

$$P\left(\bigcap_{N=1}^{\infty} \cup_{k=0}^{\infty} \left[|X_{N+k} - X| \ge \epsilon \right] \right) = 0, \ \forall \epsilon > 0$$

Same as

$$P\left(\bigcap_{N=1}^{\infty} \cup_{k=N}^{\infty} \left[|X_k - X| \ge \epsilon \right] \right) = 0, \ \forall \epsilon > 0$$

Equivalently

$$\lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} [|X_k - X| \ge \epsilon]\right) = 0, \ \forall \epsilon > 0$$

 $X_n \stackrel{P}{\to} X$ iff

$$\lim_{n \to \infty} P[|X_n - X| > \epsilon] = 0, \ \forall \epsilon > 0$$

$$X_n \stackrel{a.s.}{\to} X \implies X_n \stackrel{P}{\to} X$$

Recap: lim sup and lim inf

- \blacktriangleright Let A_1, A_2, \cdots be a sequence of events.
- ▶ We define

$$\lim \sup A_n \triangleq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
$$\lim \inf A_n \triangleq \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

- ▶ If $\limsup A_n = \liminf A_n$ then that is $\lim A_n$. Otherwise the sequence does not have a limit
- ightharpoonup $\lim\sup A_n$ and $\lim\inf A_n$ are events
- ightharpoonup lim $\inf A_n \subset \lim \sup A_n$

Recap

 $\longrightarrow X_n \stackrel{a.s.}{\to} X$ iff

$$P\left(\bigcap_{N=1}^{\infty} \cup_{k=N}^{\infty} [|X_k - X| \ge \epsilon]\right) = 0, \ \forall \epsilon > 0$$

- $\blacktriangleright \text{ Let } A_k^{\epsilon} = [|X_k X| \ge \epsilon].$
- ightharpoonup Hence, $X_n \stackrel{a.s.}{\to} X$ iff

$$P(\lim \sup A_n^{\epsilon}) = 0, \ \forall \epsilon > 0$$

Recall: Borel-Cantelli Lemma

- ▶ **Borel-Cantelli lemma**: Given sequence of events, A_1, A_2, \cdots
 - 1. If $\sum_{i=1}^{\infty} P(A_i) < \infty$, then, $P(\limsup A_n) = 0$
 - 2. If $\sum_{i=1}^{\infty} P(A_i) = \infty$ and A_i are independent, $P(\limsup A_n) = 1$

Proof of Borel-Cantelli Lemma

- **Borel-Cantelli lemma**: Given A_1, A_2, \cdots
 - 1. If $\sum_{i=1}^{\infty} P(A_i) < \infty$, then, $P(\lim \sup A_n) = 0$
 - 2. If $\sum_{i=1}^{\infty} P(A_i) = \infty$ and A_i are independent, $P(\limsup A_n) = 1$

Proof:

- ▶ We will first show: $P(\bigcup_{i=n}^{\infty} A_i) \leq \sum_{i=n}^{\infty} P(A_i), \forall n$
- ▶ We have the result: $P(\bigcup_{i=n}^{N} A_i) \leq \sum_{i=n}^{N} P(A_i), n \leq N$
- ▶ For any n, let $B_N = \bigcup_{i=n}^N A_i$. Then $B_N \subset B_{N+1}$.
- $\blacktriangleright \lim_{N\to\infty} B_N = \bigcup_{k=n}^{\infty} A_k$

$$P(\bigcup_{i=n}^{\infty} A_i) = P(\lim_{N \to \infty} \bigcup_{i=n}^{N} A_i) = \lim_{N \to \infty} P(\bigcup_{i=n}^{N} A_i)$$

$$\leq \lim_{N \to \infty} \sum_{i=n}^{N} P(A_i) = \sum_{i=n}^{\infty} P(A_i)$$

▶ By definition, $\sum_{i=1}^{\infty} P(A_i) < \infty \implies \lim_{i \to \infty} \sum_{i=1}^{\infty} P(A_i) = 0$

$$\sum_{k=1}^{\infty} P(A_k) < \infty, \Rightarrow \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = 0$$

$$\blacktriangleright \text{ Let } \sum_{k=1}^{\infty} P(A_k) = C < \infty$$

▶ It means given any $\epsilon > 0$, $\exists n$

$$\left| \sum_{k=1}^{n} P(A_k) - C \right| < \epsilon \quad \Rightarrow \quad \left| \sum_{k=n}^{\infty} P(A_k) \right| < \epsilon$$

► This implies

$$\lim_{n \to \infty} \sum_{k=0}^{\infty} P(A_k) = 0$$

► Similarly we have

$$\sum_{k=1}^{\infty} P(A_k) = \infty, \Rightarrow \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = \infty$$

By definition,

by definition,
$$\sum_{k=1}^{\infty} P(A_k) < \infty, \Rightarrow \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = 0$$

$$0 \le P(\lim \sup A_n) = P(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k)$$

$$= P\left(\lim_{n \to \infty} \bigcup_{k=n}^{\infty} A_k\right)$$

$$= \lim_{n \to \infty} P(\bigcup_{k=n}^{\infty} A_k)$$

$$\le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k)$$

$$= 0, \quad \text{if} \quad \sum_{k=n}^{\infty} P(A_k) < \infty$$

This completes proof of first part of Borel-Cantelli lemma

► For the second part of the lemma:

$$\begin{split} P\left(\lim\sup A_n\right) &= P\left(\cap_{n=1}^\infty \cup_{k=n}^\infty A_k\right) \\ &= P\left(\lim_{n\to\infty} \cup_{k=n}^\infty A_k\right) \\ &= \lim_{n\to\infty} P\left(\cup_{k=n}^\infty A_k\right) \\ &= \lim_{n\to\infty} \left(1 - P\left(\cap_{k=n}^\infty A_k^c\right)\right) \\ &= \lim_{n\to\infty} \left(1 - \prod_{k=n}^\infty \left(1 - P(A_k)\right)\right) \\ &= \operatorname{because} A_k \text{ are independent} \\ &= 1 - \lim_{n\to\infty} \prod_{n\to\infty}^\infty \left(1 - P(A_k)\right) \end{split}$$

▶ We can compute that limit as follows

$$\lim_{n \to \infty} \prod_{k=n}^{\infty} (1 - P(A_k)) \leq \lim_{n \to \infty} \prod_{k=n}^{\infty} e^{-P(A_k)}, \text{ since } 1 - x \leq e^{-x}$$

$$= \lim_{n \to \infty} e^{-\sum_{k=n}^{\infty} P(A_k)}$$

$$= 0$$

because

$$\sum_{k=1}^{\infty} P(A_k) = \infty \quad \Rightarrow \quad \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) = \infty$$

► This finally gives us

$$P(\lim \sup A_n) = 1 - \lim_{n \to \infty} \prod (1 - P(A_k)) = 1$$

► That completes the proof.

- Given a sequence X_n we want to know whether it converges to X
- $\blacktriangleright \text{ Let } A_k^{\epsilon} = [|X_k X| \ge \epsilon]$
- $\blacktriangleright X_n \stackrel{P}{\to} X$ if

 $\lim_{k\to\infty} P[|X_k-X|\geq \epsilon]=0 \quad \text{ same as } \ \lim_{k\to\infty} P(A_k^\epsilon)=0, \ \ \forall \epsilon>0$

 $\sum P(A_k^{\epsilon}) = \infty \implies P(\limsup A_k) = 1 \implies X_k \stackrel{a.s.}{\not\to} X$

▶ By Borel-Cantelli lemma, if $\forall \epsilon > 0$,

$$\sum_{k=0}^{\infty} P(A_k^{\epsilon}) < \infty \quad \Rightarrow \quad P(\limsup A_k^{\epsilon}) = 0 \quad \Rightarrow \quad X_k \stackrel{a.s.}{\to} X$$

If V ---- :-- ---

If
$$X_k$$
 are ind

Recall Example

ightharpoonup Consider a sequence X_n with

$$P[X_n = 0] = 1 - \frac{1}{n}; \quad P[X_n = 1] = \frac{1}{n}$$

- ▶ Since $\frac{1}{n} \to 0$ as $n \to \infty$, we conclude $X_n \stackrel{P}{\to} 0$.
- ▶ But since, $\sum_{n} \frac{1}{n} = \infty$, Borel-Cantelli is not useful
- ▶ We saw one example of such X_n with $X_k \stackrel{a.s.}{\rightarrow} 0$
- ▶ But, if X_n are independent, then by Borel-Cantelli lemma, they do not converge
- Almost sure convergence is stronger than convergence in probability
- Convergence (to a constant) in probability depends only on distribution of individual X_n .
- Convergence almost surely depends on the joint distribution

Strong Law of Large Numbers

- Let X_n be iid, $EX_n = \mu$, $Var(X_n) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ► We saw weak law of large numbers:

$$\frac{S_n}{n} \stackrel{P}{\to} \mu$$

Strong law of large numbers says:

$$\frac{S_n}{n} \stackrel{a.s.}{\to} \mu$$

- ► This is true for **all** random variables
- ► We prove only a restricted version

- Let $A_n^{\epsilon} = \left[\left| \frac{S_n}{n} \mu \right| > \epsilon \right]$
- ► As we saw, by Chebyshev inequality

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \epsilon\right] \le \frac{\sigma^2}{n\epsilon^2}$$

- ▶ This shows $P(A_n^{\epsilon}) \to 0$ and thus we get weak law
- ▶ To prove strong law using Borel-Cantelli lemma, we need $\sum P(A_n^{\epsilon}) < \infty$
- ▶ Since $\sum_{n} \frac{\sigma^2}{n\epsilon^2} = \infty$, the Chebyshev bound is not useful
- ▶ We need a bound: $P[|\frac{S_n}{n} \mu|] \le c_n$ such that $\sum_n c_n < \infty$.

 \triangleright Let us assume X_i have finite fourth moment

$$\left(\sum_{i=1}^{n} (X_i - \mu)\right)^4 = \sum_{i=1}^{n} (X_i - \mu)^4 + \sum_{i} \sum_{j>i} \frac{4!}{2!2!} (X_i - \mu)^2 (X_j - \mu)^2 + T$$

Where T represent a number of terms such that every term in it contains a factor like $(X_i - \mu)$ Note that $E[(X_i - \mu)(X_j - \mu)^3] = 0$ etc. because X_i are independent.

► Hence we get

$$E\left[\left(\sum_{i=1}^{n} (X_i - \mu)\right)^4\right] = nE[(X_i - \mu)^4] + 3n(n-1)\sigma^4 \le C'n^2$$

Now we can get, using Markov inequality

$$P\left[\left|\frac{S_n}{n} - \mu\right| > \epsilon\right] = P\left[\left|S_n - n\mu\right| > n\epsilon\right]$$

$$= P\left[\left|\sum_{i=1}^n (X_i - \mu)\right| > n\epsilon\right]$$

$$\leq \frac{E\left(\sum_{i=1}^n (X_i - \mu)\right)^4}{(n\epsilon)^4}$$

$$\leq \frac{C'n^2}{n^4\epsilon^4} = \frac{C}{n^2}$$

▶ Since $\sum_{n} \frac{C}{n^2} < \infty$, we get $\frac{S_n}{n} \stackrel{a.s.}{\to} \mu$

► Strong law of large numbers says

$$\frac{S_n}{n} \stackrel{a.s.}{\to} \mu \quad \text{ where } S_n = \sum_{i=1}^n X_i, \ \ X_i \ \ \text{iid}, \ \ EX_i = \mu$$

- \blacktriangleright We proved it assuming finite fourth moment of X_i .
- ► This is only for illustration
- Strong law holds without any such assumptions on moments
- ► Strong law of large numbers says that sample mean converges to the expectation with probability one.

Convergence in probability Vs Almost sure convergence

- $X_n \xrightarrow{P} X_0$ $\Leftrightarrow \lim_{n \to \infty} P[|X_n X_0| > \epsilon] = 0, \ \forall \epsilon > 0$
- $X_n \stackrel{a.s.}{\to} X_0$ $\Leftrightarrow \lim_{n \to \infty} P\left(\bigcup_{k=n}^{\infty} [|X_k - X_0| \ge \epsilon]\right) = 0, \quad \forall \epsilon > 0$
- ► One can intuitively see why convergence almost surely is a much stronger notion of convergence.

Example

 $\Omega = [0, 1]$. Sequence of binary random variables: $X_{nk}, k = 1, \dots, n, n = 1, 2, \dots$, defined by

$$X_{nk}(\omega) = 1 \text{ iff } \frac{k-1}{n} \le \omega < \frac{k}{n}, \ 1 \le k \le n, n = 1, 2, \cdots$$

That is, the sequence is $X_{11}, X_{21}, X_{22}, X_{31}, X_{32}, X_{33}, \cdots$.

- One can show the sequence converges to zero in probability.
- ▶ But, $P[X_{nk} \to 0] = 0!$

Convergence in r^{th} mean

▶ We say that a sequence X_n converges in r^{th} mean to X if $E[|X_n|^r] < \infty$, $\forall n, E[|X|^r] < \infty$ and

$$E[|X_n - X|^r] \to 0$$
 as $n \to \infty$

- ightharpoonup Denoted as $X_n \stackrel{r}{\to} X$
- ► Consider our old example of binary random variables

$$P[X_n = 1] = \frac{1}{n}$$
 $P[X_n = 0] = 1 - \frac{1}{n}$

ightharpoonup All moments of X_n are finite and we have

$$E[|X_n - 0|^2] = \frac{1}{n} \to 0$$

- ightharpoonup Hence $X_n \stackrel{2}{\to} 0$.
- ▶ In this example X_n converges in r^{th} mean for all r

▶ Suppose $X_n \xrightarrow{r} X$. Then, by Markov inequality

$$P[|X_n - X| > \epsilon] \le \frac{E[|X_n - X|^r]}{\epsilon^r} \to 0$$

Hence

$$X_n \xrightarrow{r} X \quad \Rightarrow \quad X_n \xrightarrow{P} X$$

ightharpoonup Consider the sequence X_n with

$$P[X_n = 0] = 1 - \frac{1}{n}; \quad P[X_n = e^n] = \frac{1}{n}$$

We have $P[|X_n - 0| > \epsilon] = \frac{1}{n} \implies X_n \stackrel{P}{\rightarrow} 0$

▶ But, $E|X_n - 0|^r = \frac{e^{rn}}{n}$ and hence X_n does not converge in r^{th} mean.

- In general, neither of convergence almost surely and in r^{th} mean imply the other.
- ▶ We can generate counter examples for this easily.
- ▶ However, if all X_n take values in a bounded interval, then almost sure convergence implies r^{th} mean convergence

ightharpoonup Consider sequence X_n where X_n are independent with

$$P[X_n = 0] = 1 - a_n; \quad P[X_n = c_n] = a_n$$

- ightharpoonup Assume $a_n \to 0$ so that $X_n \stackrel{P}{\to} 0$
- ▶ By Borel-Cantelli lemma

$$X_n \stackrel{a.s.}{\to} 0 \quad \Leftrightarrow \quad \sum a_n < \infty$$

ightharpoonup For convergence in r^{th} mean we need

$$E[|X_n - 0|^r] = (c_n)^r \ a_n \rightarrow 0$$

- ▶ Take $a_n = \frac{1}{n}$ and $c_n = 1$. Then $X_n \xrightarrow{r} 0$ but the sequence does not converge almost surely.
- ► Take $a_n = \frac{1}{n^2}$ and $c_n = e^n$. Then $X_n \stackrel{a.s.}{\to} 0$ but the sequence does not converge in r^{th} mean for any r.

- ightharpoonup Let $X_n \stackrel{r}{\to} X$. Then
 - 1. $E[|X_n|^r] \to E[|X|^r]$
 - 2. $X_n \stackrel{s}{\to} X$, $\forall s < r$
- ▶ The proofs are straight-forward but we omit the proofs

Convergence in distribution

- Let F_n be the df of X_n , $n = 1, 2, \cdots$. Let X be a rv with df F.
- ightharpoonup Sequence X_n is said to converge to X in distribution if

$$F_n(x) \to F(x), \ \forall x \ \text{where } F \text{ is continuous}$$

We denote this as

$$X_n \xrightarrow{d} X$$
, or $X_n \xrightarrow{L} X$, or $F_n \xrightarrow{w} F$

- ➤ This is also known as convergence in law or weak convergence
- Note that here we are essentially talking about convergence of distribution functions.
- Convergence in probability implies convergence in distribution
- ► The converse is not true. (e.g., sequence of iid random variables)

Examples

- $ightharpoonup X_1, X_2, \cdots$ be iid; uniform over (0, 1)
- $N_n = \min(X_1, \cdots, X_n), Y_n = nN_n.$

Does Y_n converge in distribution?

$$P[N_n > a] = (P[X_i > a])^n = (1 - a)^n, \ 0 < a < 1$$

$$P[Y_n > y] = P[N_n > y/n] = \left(1 - \frac{y}{n}\right)^n, \text{ if } n > y$$

 \blacktriangleright Hence for any y

$$\lim_{n \to \infty} P[Y_n > y] = \lim_{n \to \infty} \left(1 - \frac{y}{n}\right)^n = e^{-y}$$

► The sequence converges in distribution to an exponential rv

- ► $X_n \stackrel{d}{\to} X$ $\Leftrightarrow F_n(x) \to F(x), \ \forall x \text{ where } F \text{ is continuous}$
- ▶ This means that the sequence of functions F_n converge point-wise and the limit function is a distribution function.
- ▶ In general, $X_n \stackrel{d}{\to} X$ does not imply that the pdf's or pmf's converge point-wise to the limit pdf or pmf.
- ► However if the sequence of pmf's (or pdf's) converge point-wise and the limit is a pmf (or pdf) then we have $X_n \stackrel{d}{\rightarrow} X$.
- $X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$
- $ightharpoonup X_n \stackrel{d}{\to} k \Rightarrow X_n \stackrel{P}{\to} k$, where k is a constant