Appunti di Geometria e Algebra Lineare

Algebra lineare e Geometria (prof. Borghesi) -CdL Informatica Unimib - 23/24

Federico Zotti

Indice

1	Insi	emi	4		
	1.1	Sottoinsieme	4		
	1.2	Unione disgiunta	4		
	1.3	Complemento	4		
	1.4	Prodotto cartesiano	4		
		1.4.1 Prodotto cartesiano di tre insiemi	5		
2	Fun	zioni	5		
	2.1	Notazione	5		
3	Can	трі	7		
4	Spa	zi vettoriali	7		
	4.1	Sottospazi vettoriali	10		
	4.2	Vettori linearmente dipendenti	13		
5	Basi	İ	14		
6	Matrici				
	6.1	Operazione di trasposizione	19		
	6.2	Prodotto di matrici	19		
7	Sist	emi di equazioni lineari	20		
	7.1	Rango di matrici	22		
	7.2	Risolvere un sistema di equazioni lineari	23		
		7.2.1 Esempio	24		
8	Il de	eterminante	25		
	8.1	Formula di Laplace	26		
	8.2	Trasformazioni elementari con determinante	28		
	8.3	Proprietà supplementari del determinante	28		

	8.4	Relazioni tra determinante e sistemi di eq. lineari	28
9	Matr	ici invertibili	29
	9.1	Matrici inverse e trasformazioni elementari	30
	9.2	Relazioni fra invertibilità, determinante e rango	30
10	Appl	icazioni lineari (omomorfismi)	31
	10.1	Espressione di omomorfismi	34
		10.1.1 In coordinate	34
		10.1.2 Parametrica	34
		10.1.3 Vantaggi e svantaggi	35
		10.1.4 Esempi	36
	10.2	Matrice associata ad un omomorfismo	37
		10.2.1 Primo punto	37
		10.2.2 Secondo punto	38
	10.3	Formula per il cambiamento di basi	39
	10.4	Teorema della composizione di omomorfismi	40
11	Prod	otti interni	41
	11.1	Prodotto scalare (euclideo)	43
	11.2	Prodotto vettoriale	44
12	Geor	netria analitica	46
	12.1	Vettore applicato	46
	12.2	Rette in \mathbb{R}^2	47
		12.2.1 In forma parametrica	47
		12.2.2 In coordinate	48
	12.3	Rette in \mathbb{R}^3	48
		12.3.1 In forma parametrica	48
		12.3.2 In coordinate	49

Appunti di Geometria e Algebra Lineare	23 maggio 202	.024
12.4 Piani in \mathbb{R}^3	4	9
12.4.1 In forma parametrica	4	9

49

1 Insiemi

Tutto uguale a fondamenti.

1.1 Sottoinsieme

- c indica un sottoinsieme (quello che precedentemente era definito come ⊆)
- ⊊ indica un sottoinsieme proprio (quello che precedentemente era definito come
 ⊂)

1.2 Unione disgiunta

$$A = \{ a, b, c \}$$

$$B = \{ x, b, z \}$$

$$A \coprod B = \{ a, b_A, c, x, b_B, z \}$$

Gli elementi doppi vengono considerati due volte.

1.3 Complemento

$$B \setminus A = \{ x \in B : x \notin A \}$$

1.4 Prodotto cartesiano

$$A \times B = \{ (x, y) : x \in A, y \in B \}$$

 $B \times A = \{ (x, y) : x \in B, y \in A \}$

> Notare che le coppie vengono denotate da parentesi tonde, e non angolate.

Oss: supponendo $x_0 \neq y_0$, si noti che $(x_0, y_0) \neq (y_0, x_0)$.

1.4.1 Prodotto cartesiano di tre insiemi

$$A = \{ 1, 2, 3 \}$$
$$B = \{ 4, 5, 6 \}$$
$$C = \{ 8, 9 \}$$

$$A \times B = \{ (1,4), (1,5), (1,6), (2,4), (2,5), \dots \}$$

$$(A \times B) \times C = \{ ((1,4),8), ((1,4),9), ((1,5),8), ((1,5),9), \dots \}$$

$$A \times (B \times C) = \{ (1,(4,8)), (1,(4,9)), (1,(5,8)), (1,(5,9)), \dots \}$$

$$A \times B \times C = \{ (1,4,8), (1,4,9), (1,5,8), (1,5,9), \dots \}$$

2 Funzioni

Una funzione è una corrispondenza tra un elemento di un insieme ad un elemento di un altro insieme.

Notare che le funzioni non vengono considerate insiemi, a differenza di fondamenti.

Due funzioni $f:A\to B,g:C\to D$ sono uguali (f=g) sse

1.
$$A = C, B = D$$

2.
$$f(x) = g(x), \forall x \in A$$

f(x) viene chiamata immagine di x tramite $f \in g(x)$ immagine di x tramite g.

2.1 Notazione

$$f:A\to B$$

- A è il **dominio** di f
- $B \stackrel{.}{e}$ il **codominio** di f

• Sia $S \subset A$, allora f(S) è l'**immagine di** S **tramite** f

$$f(S) = \{ b \in B : \exists a \in S \operatorname{con} f(a) = b \}$$

Ovvero f(S) è l'insieme che contiene tutte le immagini degli elementi di S tramite f. Se si restringe il dominio di f da A ad S, si crea una nuova funzione $f|_{S}$.

Attenzione: ⊂ è solo un'inclusione insiemistica. (Più avanti verranno introdotti gli spazi vettoriali).

L'immagine di f=f(A). Non bisogna confondere l'immagine di una funzione con il suo codominio, perché il codominio potrebbe essere più grande della sua immagine.

• Sia $R \subset B$, allora $f^{-1}(R)$ è la controimmagine di R tramite f

$$f^{-1}(R) = \{ a \in A : f(a) \in R \}$$

- f è iniettiva se $a_1 \neq a_2 \in A$, allora $f(a_1) \neq f(a_2)$
- f è suriettiva se $\forall b \in B, \exists a_b \in A : f(a_b) = b (Imm(f) := f(A) \text{ deve}$ essere uguale a B)

Oss: affinché $f: A \rightarrow B$ sia una funzione deve avvenire:

- 1. $\forall x \in A, \exists f(x) \in B$
- 2. f(x) è un solo elemento di B
- f è biiettiva (o biunivoca) se è sia iniettiva che suriettiva
- Siano $f:A\to B,g:B\to D$ due funzioni, $(g\circ f)(x)=g(f(x))$ (composizione)

3 Campi

Def: un **campo** è un insieme dotato di due operazioni (+, ·). Deve avere tre proprietà:

- 1. (K, +) è un gruppo abeliano
 - $+: K \times K \to K$ (l'operazione non esce dal gruppo)
 - a + (b + c) = (a + b) + c $\forall a, b, c \in K$ (proprietà associativa)
 - a + 0 = 0 + a = a $\forall a \in K$ (esistenza del neutro)
 - $\forall a \in K \quad \exists -a \in K \text{ t.c. } -a+a=a+(-a)=0 \text{ (esistenza dell'opposto)}$
 - a + b = b + a $\forall a, b \in K$ (proprietà commutativa)
- 2. $(K \setminus \{0\}, \cdot)$ è un gruppo abeliano
 - \cdot : $K \times K \rightarrow K$ (l'operazione non esce dal gruppo)
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ $\forall a, b, c \in K$ (proprietà associativa)
 - $a \cdot 1 = 1 \cdot a = a$ $\forall a \in K$ (esistenza del neutro)
 - $\forall a \in K \setminus \{0\}$ $\exists a^{-1} = \frac{1}{a} \in K \setminus \{0\} \text{ t.c. } a \cdot a^{-1} = a^{-1} \cdot a = 1$ (esistenza dell'opposto)
 - $a \cdot b = b \cdot a$ $\forall a, b \in K$ (proprietà commutativa)
- 3. Il prodotto è distributivo rispetto alla somma: $a \cdot (b + c) = (a \cdot b) + (a \cdot b)$
 - c) $\forall a, b, c \in K$

4 Spazi vettoriali

Siano V un **insieme** e K un **campo** (per es. \mathbb{Q} , \mathbb{R}).

Attenzione a non confondere i due insiemi. Anche se sono lo stesso o uno è sottoinsieme dell'altro, rimangono due insiemi distinti.

Gli elementi di Vsi chiamano **vettori**, mentre gli elementi di K si chiamano **scalari**.

Def: Vè uno **spazio vettoriale su un campo** K se esistono due operazioni su V:

1. "+" :
$$V \times V \to V$$
 $(\vec{v_1}, \vec{v_2}) \mapsto \vec{v_1} + \vec{v_2}$

Con proprietà:

- $(\vec{v}_1 + \vec{v}_2) + \vec{v}_3 = \vec{v}_1 + (\vec{v}_2 + \vec{v}_3)$ (associatività)
- $\exists \vec{0} \in V : \vec{0} + \vec{v} = \vec{v} + \vec{0} = \vec{v} \quad \forall \vec{v} \in V$ (esistenza dell'elemento neutro)
- $\forall \vec{v} \in V, \exists \vec{w} \in V : \vec{v} + \vec{w} = \vec{w} + \vec{v} = \vec{0}$ (esistenza degli opposti)
- $\vec{v}_1 + \vec{v}_2 = \vec{v}_2 + \vec{v}_1, \forall \vec{v}_1, \vec{v}_2 \in V(commutatività)$

Ciò vuol dire che (V, +) è un gruppo abeliano.

2. "·":
$$K \times V \to V$$
 $(\alpha, \vec{v}) \mapsto \alpha \cdot \vec{v}$ (prodotto per scalare)

Attenzione: l'operazione $\vec{v} \cdot \alpha$ non è definita.

Con proprietà:

- $(\lambda_1 + \lambda_2) \cdot_{\vec{V}} \vec{v} = \lambda_1 \cdot_{\vec{V}} \vec{v} + \lambda_2 \cdot_{\vec{V}} \vec{v} \quad \forall \lambda_1, \lambda_2 \in K, \vec{v} \in V(distributivit\grave{a})$
- $\bullet \ \lambda \mathop{\cdot}_V (\vec{v}_1 + \vec{v}_2) = \lambda \mathop{\cdot}_V \vec{v}_1 + \lambda \mathop{\cdot}_V \vec{v}_2 \quad \forall \, \lambda \in K, \vec{v}_1, \vec{v}_2 \in V$
- $\bullet \ (\lambda_1 \underset{K}{\cdot} \lambda_2) \underset{V}{\cdot} \vec{v} = \lambda_1 \underset{V}{\cdot} (\lambda_2 \underset{V}{\cdot} \vec{v}) \quad \forall \, \lambda_1, \lambda_2 \in K, \vec{v} \in V$
- $1_{K_{V}} \vec{v} = \vec{v} \quad \forall \vec{v} \in V$

Oss: V (come ogni altro spazio vettoriale) non ha un suo prodotto interno, cioè non esiste un vettore " $\vec{v}_1 \cdot \vec{v}_2$ ".

Queste proprietà ne implicano altre (corollari). Si può dimostrare che, se Vè uno spazio vettoriale su K, allora:

- $0 : \vec{v} = \vec{0} \forall \vec{v} \in V$
- $\lambda \cdot \vec{0} = \vec{0}$ $\forall \lambda \in K$
- -1 $\dot{\vec{v}} = -\vec{v}$ $\forall \vec{v} \in V$ (in questo caso $-1 \in K$ è l'elemento opposto dell'identità moltiplicativa del campo K)

Es 1:

$$V = \mathbb{R}^n = \mathbb{R} \times \dots \times \mathbb{R}$$
$$K = \mathbb{R}$$

Dotiamo \mathbb{R}^n di una struttura di spazio vettoriale su K.

La somma è definita come:

$$+ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

$$\left((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \right) \mapsto (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

- $\vec{0}=(0,0,\ldots,0)$ (vettore nullo, elemento neutro additivo) $\vec{v}=(x_1,x_2,\ldots,x_n)$ $-\vec{v}=(-x_1,-x_2,\ldots,-x_n)$

La moltiplicazione per scalare è definita come:

$$: K \times \mathbb{R}^n \to \mathbb{R}^n$$

$$\left(\alpha, \left(x_1, x_2, \dots, x_n \right) \right) \mapsto \left(\alpha \cdot x_1, \alpha x_2, \dots, \alpha x_n \right)$$

Es 2:

$$\begin{split} V &= \mathbb{R}_{[x]} = \{ \text{ polinomi in } x \text{ a coeff reali } \} \\ &= \{ \ \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_h x^h \ : \ \lambda_i \in \mathbb{R}, h \in \mathbb{N} \ \} \\ &= \left\{ \sum_{i=0}^h \lambda_i x^i \ : \ \lambda_i \in \mathbb{R}, h \in \mathbb{N} \right\} \end{split}$$

• Dati p(x), q(x) polinomi in x:

$$p(x) + q(x) = \sum_{i=0}^{h} \alpha_i x^i + \sum_{j=0}^{l} \beta_j x^j$$
$$= \sum_{u=0}^{\max(l,h)} (\alpha_u + \beta_u) \cdot x^u$$

• $0(x) = 0 \in \mathbb{R}$ (polinomio nullo, di grado 0)

•
$$-p(x) = \sum_{i=0}^{h} -\alpha_i \cdot x^i$$

•
$$-p(x) = \sum_{i=0}^{h} -\alpha_i \cdot x^i$$

• $\lambda \cdot p(x) = \sum_{i=0}^{h} \lambda \cdot \alpha_i \cdot x^i$

Es 3:

Sia $V = \{ \text{ funzioni} : I = [a, b] \rightarrow \mathbb{R} \}$. Dotiamo V di una struttura di spaziovettoriale su \mathbb{R} .

La somma è definita come

$$+:V\times V\to V$$

$$\left(f:I\to\mathbb{R},g:I\to\mathbb{R}\right)\mapsto "f+g":I\to\mathbb{R}$$

In questo caso f + g è definito come

$$x \mapsto f(x) + g(x)$$

Il prodotto viene definito come

$$: \mathbb{R} \times V \to V$$

$$(\lambda, f : I \to \mathbb{R}) \mapsto "f \cdot g" : I \to \mathbb{R}$$

$$x \mapsto \lambda \cdot f(x)$$

4.1 Sottospazi vettoriali

Def: sia V uno spazio vettoriale su K, e $W \subset V$. Diremo che Wè un **sottospazio vettoriale di** *V* se:

1.
$$\vec{w}_1 + \vec{w}_2 \in W \quad \forall \vec{w}_1, \vec{w}_2 \in W$$

2.
$$\lambda \underset{V}{\cdot} \vec{w} \in W \quad \forall \lambda \in K, \vec{w} \in W$$

In tal caso denoteremo la relazione tra We Vcome W < V.

Oss: se W < V, allora Wè lui stesso uno spazio vettoriale.

Sia $\lambda=0$. Per la proprietà 2., $\lambda\underset{V}{\cdot}\vec{w}\in W$, ma in questo caso $0\underset{V}{\cdot}\vec{w}=\vec{0}\notin W$. Dunque W non può essere un sottospazio vettoriale di V.

 x_0

Ciò non vuol dire che non si possa mettere una struttura di uno spazio vettoriale su W, ma essa non sarà quella ereditata da V.

Per la proprietà $2.\ \lambda \cdot \vec{p} \in W \quad \forall \ \lambda \in \mathbb{R}. \ \mathrm{Sia} \ \lambda = 2, \ \lambda \cdot \vec{p} \ \mathrm{diventa} \ 2 \cdot \vec{p} = (2x_0, 2y_0).$

Si può notare che $2 \cdot \vec{p} \notin W$.

Dunque W non è un sottospazio vettoriale di V.

Es 3:
$$V = \mathbb{R}^2 \ni \vec{p} = (x_0, y_0)$$

$$y$$

$$y_0$$

$$\vec{p}$$

$$y_0$$

$$x_0$$

$$x$$

Wè un sottospazio vettoriale di $V=\mathbb{R}^2$ perché vengono soddisfatte le due condizioni:

- 1. $\alpha_1 \cdot \vec{p} + \alpha_2 \cdot \vec{p} \stackrel{?}{\in} W$. Questo si può riscrivere raccogliendo come $(\alpha_1 + \alpha_2) \cdot \vec{p} \in W$ ed è dimostrato perché la somma di scalari è uno scalare
- 2. Verificata banalmente

Oss: in alternativa alle due proprietà del sottospazio vettoriale (dalla definizione), possiamo controllare che $W \subset V$, con V sp. vett. su campo K, sia un sottospazio vett. verificando che $\forall \alpha, \beta \in K, \ \forall \vec{w}_1, \vec{w}_2 \in W$ si abbia $\alpha \vec{w}_1 + \beta \vec{w}_2 \in W$.

Quali sono tutti i sottospazi di \mathbb{R}^2 ?

- { $\vec{0}$ }
- { $\alpha \cdot \vec{p}, \alpha \in \mathbb{R}$ } (rette passanti per l'origine)
- \mathbb{R}^2

Oss: ogni sp. vett. Vammette almeno due sottosp. vett. cioè $\{\vec{0}\}$ e Vstesso.

Domanda cruciale: dato $S \subset V$ (sottoinsieme di uno spazio vettoriale), esiste il "più piccolo sottospazio vettoriale di V che contiene S"? La risposta è sì.

Def: $\langle S \rangle < V$ denoterà il più piccolo sottospazio di V che contiene S. Esso si chiama **sottospazio vettoriale generato da** S.

Si dimostra che

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} \lambda_{i} z_{i} : \lambda_{i} \in \mathbb{R}, z_{i} \in S, n \in \mathbb{N} \right\}$$

Quindi $\langle S \rangle$ è l'insieme delle combinazioni lineari dei vettori $\{ z_1, z_2, \ldots, z_n \}$ con i coefficienti $\{ \lambda_1, \lambda_2, \ldots, \lambda_n \}$ per ogni $n \in \mathbb{N}$ e tutti i vettori in S.

| Oss: $S \subset \langle S \rangle$

4.2 Vettori linearmente dipendenti

Def: sia S < V spazio vettoriale.

I vettori di S sono detti **linearmente dipendenti** se $\exists \vec{w} \in S$ e vettori $\vec{z}_1, \dots, \vec{z}_h \in S$ con $\lambda_1, \dots, \lambda_h$ tali che $\vec{w} = \sum_{i=1}^h \lambda_i z_i$.

S sono linearmente indipendenti se non sono dipendenti.

Se W < V, allora $\langle W \rangle = W$.

Lemma: $S \subset V$ sp. vett.. Allora S è un insieme di vettori **linearmente indipendenti** se e solo se

$$\sum_{i=1}^{n} \lambda_{i} \vec{z}_{i} = \vec{0} \implies \mathbb{R} \ni \lambda_{i} = 0, \forall i$$

Ciò deve valere $\forall\,n\in\mathbb{N}\;\mathrm{e}\;\{\;\vec{z}_i\;\}\subset S\;(\{\;z_i\;\}\neq\{\;\vec{0}\;\}).$

Dim:

$$A \implies B$$

$$\neg A \longleftarrow \neg B$$

 $S\subset V$ è un insieme di vettori lin. indip.. Vogliamo dimostrare che, se $\{\vec{z}_i\}\subset S$ e $\sum_{i=1}^n\lambda_i\vec{z}_i=\vec{0}$, allora $\lambda_i=0, \forall\, i$.

Supponiamo che $\exists \lambda_h \neq 0 : \sum_{i=1}^n \lambda_i \vec{z}_i = \vec{0}$.

$$\begin{split} \lambda_h \vec{z}_h &= -\sum_{j \neq h} x_j \vec{z}_j \\ \lambda_h^{-1} \lambda_h \vec{z}_h &= \lambda_h^{-1} \cdot \sum_{j \neq h} \lambda_j \vec{z}_j \\ \vec{z}_h &= \sum_{j \neq h} (-\lambda_h^{-1} \lambda_j) \cdot \vec{z}_j \end{split}$$

Questo implica che S è un insieme di vettori linearmente dipendenti.

$$B \Longrightarrow A$$
$$\neg B \Longleftarrow \neg A$$

Supponiamo che $\sum_{i=1}^n \lambda_i \vec{z}_i = \vec{0} \implies \lambda_i = 0 \ \forall i$, dimostriamo che S è un insieme di vettori linearmente indipendenti.

Supponiamo che S sia un insieme di vettori lin. dip. $\implies \exists \, \vec{z}_c \in S \, \mathrm{e} \, \vec{z}_1, \ldots, \vec{z}_n \subset S$ tali che $\vec{z}_c = \sum_{j=1}^m \lambda_j \vec{z}_j, \quad \vec{z}_j \neq \vec{z}_c \, \forall \, j.$

$$\vec{0} = -\vec{z}_c + \sum_{i=1}^m \lambda_j \vec{z}_j$$

Tale combinazione lineare mi nega B.

5 Basi

Sia W < V. Per comunicare uno spazio vettoriale ci sono due modi:

- 1. Siccome $W \subset V, W = \{ \dots \}$
- 2. Sfrutto il fatto che W < Ve quindi $\exists S \subset V : \langle S \rangle = W$

Per il punto 2. bisogna "ottimizzare" S. Ovvero trovare il più piccolo S che genera W. La minimalità è equivalente a $W \neq \langle S - \vec{v} \rangle, \ \forall \ \vec{v} \in S$.

Def: sia V uno spazio vettoriale. Un insieme ordinato $B=\{\vec{v}_1,\ldots,\vec{v}_n\}$ di vettori di V si dice **base di** V se ogni vettore \vec{v} di V si scrive in uno e un solo modo come

combinazione lineare

$$\vec{v} = \sum_{i=1}^{n} a_i \cdot \vec{v}_i$$

con $\vec{v}_i \in B$.

Gli scalari a vengono chiamate coordinate.

Teo: le seguenti affermazioni sono equivalenti:

- 1. $S = \{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \} \subset V$ è una base di V
- 2. S è un **sistema di generatori** per $V(\operatorname{cioè}\langle S\rangle = V)$ e i vettori di S sono linearmente indipendenti
- 3. $\langle S \rangle = V e \, \forall \vec{v} \in V, \, \exists ! \, \sum_{i=1}^n \lambda_i \vec{v}_i = \vec{v}, \quad \{ \, \vec{v}_i \, \} \subset S$
- 4. S è un insieme minimale di generatori di V
- 5. S è un insieme massimale di vettori linearmente indipendenti di V

Corollario: ogni spazio vettoriale che ammette un sistema finito di generatori ammette una base.

Es 1:
$$V = \mathbb{R}^n \ni (x_1, x_2, \dots, x_n), x_i \in \mathbb{R}$$
.

Base canonica:

$$\{\,(1,0,\ldots,0),(0,1,0,\ldots,0), \ldots, \\ \text{n volte},(0,0,\ldots,0,1)\,\}$$

Verifichiamo che è una base usando il punto 3. del teorema.

Sia
$$\vec{v}=(x_1,\ldots,x_n)\in\mathbb{R}^n$$
, verifichiamo che $\vec{v}\in\langle S\rangle$, cioè che $\exists~\lambda_1,\ldots,\lambda_n\in\mathbb{R}~:$ $\vec{v}=\sum_{i=1}^n\lambda_i\cdot(0,\ldots,1,\ldots,0).$

$$(x_1, \dots, x_n) = \sum_{i=1}^n \lambda_i \cdot (0, \dots, 1, \dots, 0)$$
$$= \sum_{i=1}^n (0, \dots, 0, \lambda_i, 0, \dots, 0)$$
$$= (\lambda_1, \lambda_2, \dots, \lambda_n)$$

L'eguaglianza è verificata se $\lambda_i = x_i, \forall i$.

In conclusione $\{\vec{e}_i = (0, \dots, 1, \dots, 0)\}$ sono generatori per \mathbb{R}^n , ma anche una base.

Es 2: $V = \mathbb{R}[x] \ni \sum_{i=0}^{n} a_i x^i, \quad n \in \mathbb{N}.$

 $\sum_{i=0}^n a_i x^i$ è combinazione lineare di $\{1,x,x^2,\ldots,x^n\}$ con coefficienti $\{a_0,a_1,a_2,\ldots,a_n\}$.

Un insieme di generatori di $\mathbb{R}[x]$ è $\{1, x, x^2, \dots\} = \{x^i, i \in \mathbb{N}\}$, che è anche una base.

Teorema di estensione ad una base: *V* spazio vettoriale.

Siano $I=\{\vec{v}_1,\ldots,\vec{v}_h\}$ vettori linearmente indipendenti $\subset V$ e $G=\{\vec{w}_1,\ldots,\vec{w}_m\}$ generatori di V.

Allora $\exists G' \subset G : I \cup G'$ è una base di V.

Teo: con le notazione del teo precedente

$$\#(I) \le \#(G)$$

Corollario: supponiamo che *V* ammetta un sistema di generatori finito. Allora ogni base di *V* ha lo stesso numero di elementi.

Def: sia Vsp. vett. che ammette un sistema di generatori finito. La **dimensione** di Vè il numero di vettori di una sua base qualunque (hanno tutte lo stesso numero di elementi).

Corollario: $\dim(V) = n \implies n$ vettori linearmente indipendenti di V sono anche generatori. Questo implica anche che n generatori di V sono linearmente indipendenti.

Esercizio:

$$S = \{ (1,0,2), (0,1,-1), (1,2,0) \} \subset \mathbb{R}^3$$

Ottenere una base da S.

Notazione: V sp. vett. e W, Z < V.

- $W \cap Z < V$
- $W \cup Z \subset V$ (solo sottoinsieme)
- $\langle W \cup Z \rangle = W + Z$ (abuso di simbologia, si usa solo a denotare l'unione)

Teorema di Grassmann: sia V sp. vett. di dim. finita. Allora, conta la notazione precedente:

$$\dim(W+Z) = \dim(W) + \dim(Z) - \dim(W \cap Z)$$

6 Matrici

Per rappresentare i coefficienti di un sistema di equazioni lineari è possibile utilizzare una matrice.

$$\begin{cases} x + 2y - z = 2 \\ -y + z = 3 \end{cases} \longrightarrow \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & -1 & 1 & 3 \end{pmatrix}$$

Def: una matrice $k \times n$ (righe per colonne) è un elemento di $\mathbb{R}^n \times ... \times \mathbb{R}^n$ oppure $\mathbb{R}^k \times ... \times \mathbb{R}^k$ (che equivale a $\mathbb{R}^{k \cdot n}$).

In entrambi i casi le matrici sono elementi di uno spazio vettoriale. Tali spazi vettoriali sono gli insiemi di matrici $k \times n$, k fissato e n fissato.

L'addizione tra matrici è definita come

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}}_{A=(a_{ij})} + \underbrace{\begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kn} \end{pmatrix}}_{B=(b_{ij})} = \underbrace{\begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \dots & a_{kn} + b_{kn} \end{pmatrix}}_{A+B=(a_{ij}+b_{ij})}$$

La moltiplicazione tra scalare e matrice come

$$\lambda \cdot (a_{ij}) = (\lambda \cdot a_{ij})$$

Sia $M(k, n) = \{ \text{ matrici reali } k \times n \}$ sp. vett.. La sua base canonica è

$$\left\{ \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \right\}$$

e la sua dimensione è $k \cdot n$.

6.1 Operazione di trasposizione

Def: l'operazione di trasposizione è una funzione $M(k,n) \to M(n,k)$ che associa una matrice con la sua "specchiata" rispetto alla diagonale:

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}}_{A} \mapsto \underbrace{\begin{pmatrix} a_{11} & a_{21} & \dots & a_{k1} \\ a_{12} & a_{22} & \dots & a_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{kn} \end{pmatrix}}_{A', T(A)}$$

Abuso di notazione:

$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + (-1, 3, 2) = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix} = (0, 5, 2)$$

6.2 Prodotto di matrici

In questo caso non vale l'abuso di notazione sopra definito.

 $A \cdot B$ è definita quando A è $k \times n$ e B è $n \times h$. In tal caso $A \cdot B$ è $k \times h$.

Def:
$$A \cdot B = (c_{ij})$$
 (con $A = (a_{cd})$ e $B = (b_{xy})$) dove $c_{ij} = \sum_{u=1}^{n} a_{iu} \cdot b_{uj}$.

#todo-uni Fare il disegnino dell'operazione...

Il prodotto di matrici non è commutativo, anche se è definito.

Oss: consideriamo M(n,n). $M(n,n)(+,\cdot)$ non è un campo (il \cdot non è commutativo), non è un corpo (perché non esistono gli inversi di tutte le matrici $\neq \vec{0}$). Identità moltiplicativa è la seguente matrice

$$Id_{n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Def: $B \in M(n, n)$ è invertibile se e solo se $\exists C \in M(n, n) : C \cdot B = B \cdot C = Id_n$.

7 Sistemi di equazioni lineari

Un equazione lineare è una serie di simboli

$$a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n = b$$
 $b, a_i \in \mathbb{R}$

Un sistema di equazioni è

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2 \\ \vdots & \vdots \\ a_{k1} \cdot x_1 + a_{k2} \cdot x_2 + \dots + a_{kn} \cdot x_n = b_k \end{cases}$$

con b e a fissati e x variabili.

Ad un sistema di equazioni si possono associare due matrici:

Matrice completa:

$$A|\vec{b} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{k1} & c_{k2} & \dots & a_{kn} & b_n \end{pmatrix}$$

• Matrice incompleta: A stessa

Riscriviamo A in "forma matriciale":

$$A \cdot \vec{x} = \vec{b}$$
 dove $\vec{x} = (x_1, x_2, \dots, x_n)$

Oss: supponiamo che A sia una matrice invertibile. Questo implica che A sia quadrata.

Moltiplicando a sinistra entrambi i membri per A^{-1} otteniamo $A^{-1} \cdot A \cdot \vec{x} = A^{-1} \cdot \vec{b} \iff Id_m \cdot \vec{x} = A^{-1} \cdot \vec{b} \iff \vec{x} = A^{-1} \cdot \vec{b}.$

Concludiamo che $A^{-1} \cdot \vec{b}$ è l'unica soluzione del sistema.

Proposizione: sia $A \cdot \vec{x} = \vec{b}$ un sistema di equazioni lineari. Se A è invertibile esso ammette come unica soluzione $A^{-1} \cdot \vec{b}$.

Teorema di Rouchè-Capelli:

- 1. Il sistema $A \cdot \vec{x} = \vec{b}$ ammette almeno una soluzione se e solo se rango(A) = rango $(A|\vec{b})$.
- 2. Supponiamo che il sistema ammetta soluzioni, allora l'insieme V di tutte le soluzioni è

$$V = \vec{c} + W = \{ \vec{c} + \vec{w} : \vec{w} \in W \}$$

dove \vec{c} è una soluzione qualsiasi di $A \cdot \vec{x} = \vec{b}$ e W è il sottospazio vettoriale di \mathbb{R}^n , con n il numero di incognite di A (colonne), dato dalle soluzioni del sistema $A \cdot \vec{x} = \vec{0}$.

In oltre $dim(W) = n - rango(A) = n - rango(A|\vec{b})$.

7.1 Rango di matrici

Def: sia A una matrice in M(n, k).

Il **rango di** *A* è indifferentemente:

- La dimensione di ⟨ vettori riga di A⟩
- Il massimo numero di righe linearmente indipendenti di A
- La dimensione di \langle vettori colonna di $A \rangle$
- Il massimo numero di colonne linearmente indipendenti di A

Inoltre

$$Rg(A) \le min \{ n, k \}$$

Il rango di una matrice è un modo per misurare la "quantità di informazioni" contenute nella matrice.

Def: una matrice $A \in M(n,k)$ è detta **a scala** se il numero di zeri a sinistra nell'*n*-esima riga \vec{r}_i è strettamente maggiore del numero di zeri a sinistra della riga \vec{r}_{i-1} , $\forall i \geq 2$.

Se il numero di zeri è già al massimo *(una riga solo di zeri)*, allora "strettamente" non vale più.

Secondo un teorema è possibile portare ogni matrice in forma a scala tramite un numero finito di trasformazioni elementari sulle righe, cioè:

- 1. Scambio di posizione di due righe $(\vec{r}_i \leftrightarrow \vec{r}_j)$
- 2. Moltiplicazione di una riga per uno scalare non nullo $(\vec{r}_i \rightarrow \lambda \vec{r}_i)$
- 3. Rimpiazzamento di una riga con la somma tra quella stessa riga e un'altra riga moltiplicata per un qualsiasi scalare $(\vec{r}_i \to \vec{r}_i + \lambda \vec{r}_j)$

Oss: se una matrice è a scala, il suo rango coincide al numero di righe non (identicamente) nulle.

Oss: siccome si opera sulle righe, i rapporti di linearità tra le colonne vengono mantenuti. Più precisamente, siano $\{\vec{a}_i\}$ le colonne di A e T(A) una trasformazione elementare di A sulle righe (con $(T(A))_i$ l'i-esima colonna di T(A)), allora:

$$\sum_{i=1}^{n} \lambda_i \vec{a}_i = \vec{0} \iff \sum_{i=1}^{n} \lambda_i (T(A))_i = \vec{0}$$

Proposizione: sia T una trasformazione elementare sulle righe. Allora, $T(A) = T(Id_n \cdot) \cdot A$, dove n è il numero di righe di A.

Lo stesso vale per le colonne: $S(A) = A \cdot S(Id_k)$.

7.2 Risolvere un sistema di equazioni lineari

Supponiamo di:

- 1. Stabilire se $A\vec{x} = \vec{b}$ ammette soluzioni
- 2. Eventualmente determinarle

Passaggio A:

Tramite il teorema di Rouchè-Capelli possiamo fare valutazioni su Rg(A) e $Rg(A|\vec{b})$. Agiamo con trasformazioni elementari sulle righe su $A|\vec{b}$. Si noti che, se Tè una trasf. el. sulle righe,

$$T(B_1|B_2|...|B_h) = (T(B_1)|T(B_2)|...|T(B_h))$$

In particolare, $T(A|\vec{b}) = (T(A)|T(\vec{b}))$.

Passaggio B:

Teo: le soluzioni di $A\vec{x} = \vec{b}$ sono le stesse di $T(A) \cdot \vec{x} = T(\vec{b})$, se T è un'operazione el. sulle righe.

7.2.1 Esempio

Esempio:

Con le colonne della matrice che corrispondono ai coeff. di x, y, z, w.

Dunque dopo aver trasformato la matrice a scala determiniamo che

$$Rg(A) = Rg(A|\vec{b}) = 3$$

Secondo R-C esistono soluzioni e se Vè l'insieme delle soluzioni,

$$V = \vec{c} + W$$

$$e \dim(W) = n - Rg(A) = 4 - 3 = 1.$$

Creiamo il sistema associato alla matrice a scala:

$$\begin{cases} x - z + w = 1 & \longrightarrow x = -1 - z \\ y + z - w = 0 & \longrightarrow y = 2 + z \\ 2z - w = -2 & \longrightarrow w = 2 + 2z \end{cases}$$

Le soluzioni diventano

$$\implies V = \{ (x, y, z, w) \in \mathbb{R}^4 : x = -1 - z, y = 2 + x, w = 2 + 2z \}$$
$$= \{ (-1 - z, 2 + x, z, 2 + 2z) \in \mathbb{R}^4 : z \in \mathbb{R} \}$$

Come vediamo quindi che $V = \vec{c} + W$, dove \vec{c} è una soluzione del sistema e W è un sottospazio vettoriale di \mathbb{R}^4 ?

Separiamo la parte **omogenea** da quella **non omogenea** (che ha costanti):

$$V = \{ (-1, 2, 0, 2) + (-z, z, z, 2z) \in \mathbb{R}^4 : z \in \mathbb{R} \}$$

Si noti che

$$\underbrace{\left\{ \left. (-z, z, z, 2z) : z \in \mathbb{R} \right. \right\}}_{\langle (-1, 1, 1, 2) \rangle} < \mathbb{R}^4$$

Chiamiamo $\langle (-1, 1, 1, 2) \rangle = We(-1, 2, 0, 2) = \vec{c}$. Quindi $V = \vec{c} + W$.

8 Il determinante

Come oggetto matematico è una funzione

$$\mathsf{det}_n: M(n,n) \to \mathbb{R}$$

M(n,n) lo vediamo come una $\mathbb{R}^n \times \mathbb{R}^n \times {}^{n \text{ volte}} \times \mathbb{R}^n$ dove vivono le colonne di A. A viene considerato come una matrice composta da tanti vettori colonna

$$A = (\vec{c}_1 | \vec{c}_2 | \dots | \vec{c}_n)$$

Il determinante soddisfa 4 proprietà:

1. Proprietà di linearità rispetto alla somma

$$\det(\vec{c}_1,\ldots,\vec{a}+\vec{b},\vec{c}_{i+1},\ldots,\vec{c}_n) = \det(\vec{c}_1,\ldots,\vec{a},\ldots,\vec{c}_n) + \det(\vec{c}_1,\ldots,\vec{b},\ldots,\vec{c}_n) \quad \forall i=1,\ldots,n$$

2. Proprietà di linearità rispetto alla moltiplicazione per scalare

$$\det(\vec{c}_1,\ldots,\lambda \cdot \vec{c},\vec{c}_{i+1},\ldots,\vec{c}_n) = \lambda \cdot \det(\vec{c}_1,\ldots,\vec{c},\vec{c}_{i+1},\ldots,\vec{c}_n) \quad \forall i=1,\ldots,n \quad \forall \ \lambda \in \mathbb{R}$$

3. Proprietà di alternanza

$$\det(\vec{c}_1, \dots, \vec{c}, \vec{c}_n, \dots, \vec{c}_n) = 0$$
uguali

4. Proprietà della base canonica

$$\det(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n) = 1$$
base canonica

Teo: esiste un'unica funzione che soddisfa le proprietà 1.,2.,3.,4..

Oss: la proprietà 3. è equivalente a

$$3. \iff \det(\vec{c}_1,\ldots,\vec{c}_i,\vec{c}_{i+1},\ldots,\vec{c}_n) = -\det(\vec{c}_1,\ldots,\vec{c}_{i+1},\vec{c}_i,\ldots,\vec{c}_n)$$

$$\iff \det(\vec{c}_1,\ldots,\vec{c}_i,\ldots,\vec{c}_j,\ldots,\vec{c}_n) = -\det(\vec{c}_1,\ldots,\vec{c}_j,\ldots,\vec{c}_i,\ldots,\vec{c}_n)$$

$$\iff \det(\vec{c}_1,\ldots,\vec{c},\ldots,\vec{c},\ldots,\vec{c},\ldots,\vec{c},\ldots,\vec{c}_n) = 0$$

Esempio:

$$\det_{2} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

8.1 Formula di Laplace

Sia $A=(a_{ij})$ una matrice $n\times n$. Denotiamo con A_{ij} (complemento algebrico di a_{ij}) la sottomatrice che otteniamo eliminando l'i-esima riga e j-esima colonna da A.

Teo:

Sviluppo lungo l'i-esima riga:

$$\det_n(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \cdot \det(A_i j)$$

Sviluppo lungo la *j*-esima colonna:

$$\det_n(A) = \sum_{i=1}^n (-1)^{i+j} a_{ij} \cdot \det(A_i j)$$

Esempio:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 2 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$

Scegliamo la prima riga perché ha più zeri (come la seconda).

$$\det(A) = \underbrace{(-1)^{1+1} \cdot 1 \cdot \det(A_{11})}_{j=2}$$

$$+ \underbrace{(-1)^{1+2} \cdot 0 \cdot \det(A_{11})}_{j=3}$$

$$+ \underbrace{(-1)^{1+3} \cdot a_{1}3 \cdot \det(A_{13})}_{=0}$$

$$= -2$$

Corollario:

$$\det(A) = \det(A^t)$$

dove A^t è la matrice trasposta di A.

8.2 Trasformazioni elementari con determinante

In che modo le trasformazioni elementari influenzano il determinante?

- 1. Permutazione di due righe: $r_1 \leftrightarrow r_2 \implies \det(T(A)) = -\det(A)$ (cambio di segno)
- 2. Moltiplicazione di una riga per $\lambda \neq 0$: $r_1 \rightarrow \lambda r_1 \implies \det(T(A)) = \lambda \cdot \det(A)$ (determinante per lambda)
- 3. Somma di una riga con un multiplo di un'altra: $r_1 \rightarrow r_1 + \lambda r_2 \implies \det(T(A)) = \det(A)$ (determinante non cambia)

8.3 Proprietà supplementari del determinante

Sebbene $det(A + B) \neq det(A) + det(B)$, in generale, il det si comporta bene nei confronti del prodotto di matrici.

Teorema di Binet:

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

Corollario: sia A invertibile, allora $\det(A^{-1}) = \frac{1}{\det(A)}$. In particolare $\det(A) \neq 0$.

8.4 Relazioni tra determinante e sistemi di eq. lineari

Sia A una matrice $n \times n$.

Formula di Cramer:

- 1. Il sistema $A\vec{x} = \vec{b}$ ammette un'unica soluzione $\iff \det(A) \neq 0$
- 2. In tal caso, l'unica soluzione (c_1, c_2, \dots, c_n) è data da

$$c_{i} = \frac{\det(A_{1}|A_{2}|\dots|\vec{b}|A_{i+1}|\dots|A_{n})}{\det(A)}$$

 $\operatorname{con} A_j$ la j-esima colonna di A.

9 Matrici invertibili

Sia A una matrice quadrata.

A è invertibile $\iff \exists A^{-1} : A^{-1} \cdot A = A \cdot A^{-1} = Id.$

Teo:

- 1. $A \in \text{invertibile} \iff \det(A) \neq 0$
- 2. In tal caso, $A^{-1} = (x_{ij})$ è data da

$$x_{ij} = (-1)^{i+j} \frac{\det(A_{ji})}{\det(A)}$$

dove A_{ji} è la sottomatrice ottenuta da A togliendo la j-esima riga e la i-esima colonna (complemento algebrico di a_{ji}).

Concretamente, per calcolare A^{-1} :

- 1. Traspongo $A \rightarrow A^t$
- 2. Calcolo la matrice dei complementi algebrici

$$\begin{pmatrix}
\det((A^t)_{11}) & \det((A^t)_{12}) & \dots & \det((A^t)_{1n}) \\
\det((A^t)_{21}) & \det((A^t)_{22}) & \dots & \det((A^t)_{2n}) \\
\vdots & \vdots & \ddots & \vdots \\
\det((A^t)_{n1}) & \det((A^t)_{n2}) & \dots & \det((A^t)_{nn})
\end{pmatrix}$$

- 3. Aggiusto i segni moltiplicando i coeff. per $(-1)^{i+j}$
- 4. Divido tutta la matrice per det(A)

9.1 Matrici inverse e trasformazioni elementari

Un altro metodo per calcolare l'inversa è il seguente.

Ricordiamo che, se Tè una trasf. el. sulle righe, $T(A) = T(Id) \cdot A$.

Proposizione: sia *A* quadrata.

A è invertibile se e solo se esistono una serie di trasf. el.

$$T_k(T_{k-1}(\cdots(T_2(T_1(A)))))=Id.$$

Infatti poniamo $C_i := T_i(Id)$.

Allora, $C_k \cdot C_{k-1} \cdot \ldots \cdot C_2 \cdot C_1 \cdot A = Id$. Quindi $C_k \cdot C_{k-1} \cdot \ldots \cdot C_1 = A^{-1}$.

9.2 Relazioni fra invertibilità, determinante e rango

Sia A una matrice qualunque. Il rango di A è il massimo numeri di righe lin. indip. di A e il massimo numero di colonne lin. indip. di A.

Inoltre il rango di A è anche il **massimo ordine dei "minori" non nulli di** A.

Digressione: una sottomatrice di A è una matrice ottenuta eliminando righe e colonne da A.

Def: un minore di A è il determinante di una sottomatrice quadrata di A.

Def: l'ordine di un minore di A è l'ordine della sottomatrice il cui determinante è tale minore.

Nel caso che *A* sia quadrata inoltre:

Teo: $det(A) \neq 0 \iff A$ è invertibile $\iff A$ ha rango massimo possibile uguale all'ordine di A.

10 Applicazioni lineari (omomorfismi)

Le funzioni insiemistiche non sono adatte per studiare spazi vettoriali. È necessario considerare un sottoinsieme di tali funzioni che rispettino certe proprietà.

Def: siano $V \in W$ spazi vett. e $f: V \to W$ una funzione insiemistica.

Diremo che f è una funzione (o applicazione) lineare o omomorfismo se valgono le seguenti proprietà:

1.
$$f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$$
 , $\forall \vec{v}_1, \vec{v}_2 \in V$

1.
$$f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$$
 , $\forall \vec{v}_1, \vec{v}_2 \in V$
2. $f(\lambda \cdot \vec{v}) = \lambda \cdot f(\vec{v})$, $\forall \vec{v} \in V, \lambda \in K$

Corollario: $f: V \to W$ lineare.

- $f(\vec{0}_{V}) = \vec{0}_{W}$
- $f(\vec{v}) = -f(\vec{v})$
- Se U < V, allora f(U) < W
- Se H < W, allora $f^{-1}(H) < V$
- Sia $\{\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_n\} \subset U < V$ sistema di generatori per U. Allora $\{f(\vec{u}_1), f(\vec{u}_2), \dots, f(\vec{u}_n)\}$ sono un sistema di generatori per f(U) < W.
- $f\left(\sum_{i=1}^n \lambda_i \cdot \vec{v}_i\right) = \sum_{i=1}^n \lambda_i \cdot f(\vec{v}_i)$ (fè completamente determinata dall'immagine di un sistema di generatori del dominio)

Oss: se $\{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_m\}$ è un sistema di generatori per H < W, non è detto che $|f^{-1}(H) < V$ sia generato da $f^{-1}(S_H)$.

Es:

$$f: \mathbb{R} \to \mathbb{R}$$

Le funzioni lineari sono tutte e sole quelle del tipo $f(x) = \lambda \cdot x, \lambda \in \mathbb{R}$

Nel caso di $\mathbb R$ la sua base è un qualsiasi vettore di dimensione 1 diverso dal vettore nullo $(\vec{0})$.

Es:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

Se definiamo un omomorfismo nel seguente modo:

$$\begin{split} (x_1,x_2) \mapsto f(x_1,x_2) \\ (1,0) \mapsto \vec{0} \\ (0,1) \mapsto \vec{0} \\ \alpha \cdot (1,0) + \beta \cdot (0,1) \mapsto \alpha \cdot f(1,0) + \beta \cdot f(0,1) &= \alpha \cdot \vec{0} + \beta \cdot \vec{0} = \vec{0} \end{split}$$

questo viene chiamato omomorfismo nullo.

Se invece definiamo un'altra funzione lineare come:

$$(x_1, x_2) \mapsto f(x_1, x_2)$$

$$(1, 0) \mapsto \overrightarrow{31}$$

$$(0, 1) \mapsto \overline{-\log 5}$$

$$\alpha \cdot (1, 0) + \beta \cdot (0, 1) \mapsto \alpha \cdot f(1, 0) + \beta \cdot f(0, 1)$$

Dunque

$$\left(-2,\sqrt{5}\right)\mapsto -2\cdot 31+\sqrt{5}\cdot (-\log 5)$$

Es:

$$\begin{split} f &: \mathbb{R}^2 \to \mathbb{R}^2 \\ &(x_1, x_2) \mapsto \left(f_1(x_1, x_2), f_2(x_1, x_2) \right) \end{split}$$

dove

$$f_1: \mathbb{R}^2 \to \mathbb{R}$$

$$f_2: \mathbb{R}^2 \to \mathbb{R}$$

Definiamo un omomorfismo nel seguente modo:

$$(2,1)\mapsto f(2,1)$$

$$(0,1) \mapsto f(0,1)$$

$$\alpha \cdot (2,1) + \beta \cdot (0,1) \mapsto \alpha \cdot f(2,1) + \beta \cdot f(0,1)$$

Oss: in generale se A è una matrice $n \times k$, la funzione

$$f_A: \mathbb{R}^{k \times 1} \to \mathbb{R}^{n \times 1}$$

 $\vec{v} = (v_1, v_2, \dots, v_k) \mapsto A \cdot \vec{v}$ (vettore colonna di lunghezza n)

è sempre lineare.

Teorema (di Grassmann 2): sia $f: V \to W$ lineare. Allora

$$\dim(V) = \dim(f(V)) + \dim(N(f))$$

dove N(f) è il **nucleo di** f (kernel), cioè $f^{-1}(\vec{0}_W)$.

Corollario: sia $\dim(W) = \dim(V)$ finita, $f: V \to W$ lineare. Allora

$$f$$
 è iniettiva \iff f è suriettiva \iff f è biiettiva

Per dimostrarlo si usa

$$f$$
è iniettiva $\iff N(f) = \{ \vec{0}_V \}$

10.1 Espressione di omomorfismi

10.1.1 In coordinate

Nel caso di sottospazi vettoriali:

$$V = \mathbb{R}^{n} > U$$

$$U = \left\{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} : \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = 0 \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = 0 \\ \vdots \\ a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kn}x_{n} = 0 \end{cases} \right\}$$

Nel caso di omomorfismi invece:

$$f: \mathbb{R}^n \to \mathbb{R}^k$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_k(x_1, \dots, x_n) \end{pmatrix}$$

con

$$f_i: \mathbb{R}^n \to \mathbb{R} \text{ (lineari)}$$

$$f_i(x_1, \dots, x_n) = \sum_{j=1}^n \alpha_j \cdot x_j$$

10.1.2 Parametrica

Nel caso di spazi vettoriali:

$$\begin{split} &V(\text{sp. vett. qualsiasi}) \\ &U = \langle \{ \ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \dots \} \rangle \quad \text{(base)} \\ &= \left\{ \sum_{i=1}^h \alpha_i \cdot \vec{v}_i \ : \ \alpha_i \in \mathbb{R}, h \in \mathbb{N} \right\} \end{split}$$

Nel caso di omomorfismi invece:

$$f: V \to W, \qquad \dim(V) = n$$
 base di $V \begin{cases} \vec{v}_1 & \to f(\vec{v}_1) \\ & \vdots \\ \vec{v}_n & \to f(\vec{v}_n) \end{cases}$

 $f(\vec{v})$ è calcolata scrivendo $\vec{v} = \sum_{i=1}^n \lambda_i \cdot \vec{v}_i$ e poi $f(\vec{v}) = \sum_{i=1}^n \lambda_i \cdot f(\vec{v}_i)$.

10.1.3 Vantaggi e svantaggi

Coordinate

- Vantaggi: posso stabilire facilmente se tanti vettori appartengono a ${\cal U}$ e calcolare le immagini di tanti vettori
- Svantaggi: può essere usata solo in spazi vettoriali euclidei \mathbb{R}^n e è difficile trovare subito l'espressione in coordinate

Parametrica

- Vantaggi: opposto degli svantaggi dell'espressione in coordinate
- Svantaggi: per stabilire se un vettore appartiene a U oppure calcolarne l'immagine, dobbiamo risolvere un sistema di equazioni lineari

10.1.4 Esempi

Es: simmetria assiale. $s_l: \mathbb{R}^2 \to \mathbb{R}^2$ lineare.

Determiniamo s_l in forma "parametrica": scegliamo una base $\{\vec{v}_1, \vec{v}_2\}$ di cui possiamo calcolare facilmente le immagini $s_l(\vec{v}_1)$ e $s_l(\vec{v}_2)$.

$$s_l(\vec{v}_1) = \vec{v}_1$$

$$s_l(\vec{v}_2) = -\vec{v}_2$$

In questo caso l'asse di simmetria è definito come

$$l = \left\{ (x, y) \in \mathbb{R}^2 : \begin{cases} a_{11}x + a_{12}y = 0 \\ a_{21}x + a_{22}y = 0 \end{cases} \land \operatorname{rg} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = 1 \right\}$$

Es: rotazione antioraria attorno all'origine per un angolo α .

In questo caso come base opportuna possiamo scegliere la base canonica { \vec{e}_1,\vec{e}_2 }. Infatti

$$r_{\alpha}(1,0) = (\cos \alpha, \sin \alpha)$$

$$r_{\alpha}(0,1) = (-\sin \alpha, \cos \alpha)$$

Sia $\vec{v} = (x, y)$ un vettore qualunque di \mathbb{R}^2 . Voglio calcolare $r_{\alpha}(x, y)$:

$$(x,y) = \lambda_1 \cdot \vec{e}_1 + \lambda_2 \cdot \vec{e}_2 = x \cdot \vec{e}_1 + y \cdot e_2$$

$$r_{\alpha}(x, y) = \lambda_{1} \cdot r_{\alpha}(\vec{e}_{1}) + \lambda_{2} \cdot r_{\alpha}(\vec{e}_{2})$$

$$= x \cdot (\cos \alpha, \sin \alpha) + y \cdot (-\sin \alpha, \cos \alpha)$$

$$= (x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha)$$

10.2 Matrice associata ad un omomorfismo

10.2.1 Primo punto

Sia $f: V^n \to W^k$ lineare.

Siano $(\vec{v}_j)_{j=1,\dots,n}$ e $(\vec{w}_i)_{i=1,\dots,k}$ due basi ordinate di V^n e W^k rispettivamente.

$$f: V^n \to W^k$$

$$\vec{v}_1 \mapsto f(\vec{v}_1) = \sum_{i=1}^k a_{i1} \cdot \vec{w}_i$$

$$\vec{v}_2 \mapsto f(\vec{v}_2) = \sum_{i=1}^k a_{i2} \cdot \vec{w}_i$$

$$\dots \mapsto \dots$$

$$\vec{v}_n \mapsto f(\vec{v}_n) = \sum_{i=1}^k a_{in} \cdot \vec{w}_i$$

Def: $A_f\left((\vec{v}_j)_{j=1,\dots,k},(\vec{w}_i)_{i=1,\dots,k}\right)$ è la matrice associata ad f e alla scelta di basi ordinate (\vec{v}_j) e (\vec{w}_i) e viene definita come

$$A_f\left((\vec{v}_j)_{j=1,\dots,k},(\vec{w}_i)_{i=1,\dots,k}\right) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}$$

Dove ogni colonna si riferisce ai coeff. di ogni riga delle sommatorie sopra.

10.2.2 Secondo punto

Dalla matrice $A_f\left(\left(\vec{v}_j\right),\left(\vec{w}_i\right)\right)$ mi posso ricostruire la funzione. Infatti, sia $\vec{v}\in V^n$ e supponiamo di avere $A_f,\left(\vec{v}_j\right)_j$ e $(\vec{w}_i)_i$. Voglio determinare $f(\vec{v})$ in funzione di questi dati.

$$f(\vec{v}) = f\left(\sum_{j=1}^{n} \alpha_j \cdot \vec{v}_j\right)$$

$$= \sum_{j=1}^{n} \alpha_j \cdot f(\vec{v}_j)$$

$$= \sum_{j=1}^{n} \alpha_j \left(\sum_{i=1}^{k} a_{ij} \cdot \vec{w}_i\right)$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{k} \alpha_j \cdot a_{ij} \cdot \vec{w}_i$$

$$= \sum_{i=1}^{k} \beta_i \cdot \vec{w}_i$$

dove

$$\beta_i = \sum_{j=1}^n \alpha_j \cdot a_{ij} = i \text{-esimo coeff di } A_f \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}$$

Oss fondamentale: $V^n = \mathbb{R}^n$, $W^k = \mathbb{R}^k$, $(\vec{v}_j) = (\vec{e}_j)$, $(\vec{w}_i) = (\vec{e}_i)$ basi canoniche, $f: \mathbb{R}^n \to \mathbb{R}^k$ lineare.

Supponiamo di avere A_f . Sia $\vec{v} = (x_1, x_2, \dots, x_n)$.

$$f(\vec{v}) = f\left(\sum_{j=1}^{n} x_{j} \cdot \vec{e}_{j}\right)$$

$$= \sum_{j=1}^{n} x_{j} \cdot f(\vec{e}_{j})$$

$$= \sum_{j=1}^{n} x_{j} \left(\sum_{i=1}^{k} a_{ij} \cdot \vec{e}_{i}\right)$$

$$= \sum_{i=1}^{n} \beta_{i} \cdot \vec{e}_{i} \quad \text{dove } \beta_{i} = A_{f} \cdot \underbrace{(x_{1}, x_{2}, \dots, x_{n})}_{\vec{v}}$$

$$= (\beta_{1}, \beta_{2}, \dots, \beta_{k})$$

$$= A_{f} \cdot \vec{v}$$

$$= \begin{pmatrix} \sum_{j=1}^{n} a_{1j} \cdot x_{j} \\ \sum_{j=1}^{n} a_{2j} \cdot x_{j} \\ \vdots \\ \sum_{i=1}^{n} a_{kj} \cdot x_{j} \end{pmatrix}$$
è l'espressione in coordinate di f

Guardare il video 9.7 (simmetria assiale in \mathbb{R}^2) e 9.8 (rotazione antioraria in \mathbb{R}^2) sul canale *Animated Math*.

10.3 Formula per il cambiamento di basi

Teo: $f:V^n\to W^k$ lineare. V^n avrà due basi: $(\vec{v}_j)_j$ e $(\vec{v}_j')_j$; e W^k anche: $(\vec{w}_i)_i$ e $(\vec{w}_i')_i$.

Allora

$$A_f\left((\vec{v}_i')_j, (\vec{w}_i')_i\right) = Q^{-1} \cdot A_f\left((\vec{v}_j)_j, (\vec{w}_i)_i\right) \cdot P$$

$$\mathsf{dove}\,P = (p_{hj})\,\mathsf{e}\,Q = (q_{si})\,\mathsf{con}\,\vec{v}_j' = \sum_{h=1}^n p_{hj}\cdot\vec{v}_h\,\mathsf{e}\,\vec{w}_i' = \sum_{s=1}^k q_{si}\cdot\vec{w}_s.$$

10.4 Teorema della composizione di omomorfismi

Teo: $V \stackrel{f}{\rightarrow} W \stackrel{g}{\rightarrow} U$ sono omomorfismi (dunque $V \stackrel{g \circ f}{\rightarrow} U$).

Le basi ordinate sono $(\vec{v}_s)_s, (\vec{w}_i)_i, (\vec{u}_i)_i$.

$$A_{g \circ f}\left((\vec{v}_s)_s, (\vec{u}_i)_i\right) = A_{g \circ f}\left((\vec{w}_j)_j, (\vec{u}_i)_i\right) \cdot A_{g \circ f}\left((\vec{v}_s)_s, (\vec{w}_j)_j\right)$$

Corollario: $V \xrightarrow{f} W \xrightarrow{f^{-1}} V$ omomorfismo.

Le basi ordinate sono $(\vec{v}_s)_s, (\vec{w}_j)_j, (\vec{v}_i)_i$.

Si ha che $f^{-1} \circ f = id_V$.

Dunque

$$A_{f^{-1}}\left((\vec{w}_j)_j,(\vec{v}_i)_i\right) = A_f^{-1}\left((\vec{v}_s)_s,(\vec{w}_j)_j\right)$$

11 Prodotti interni

Def: un **prodotto interno** in uno spazio vettoriale V è una funzione

$$V \times V \rightarrow K$$

$$(\vec{v}_1, \vec{v}_2) \mapsto \vec{v}_1 \cdot \vec{v}_2 = \langle \vec{v}_1, \vec{v}_2 \rangle$$

con *K* campo degli scalari.

Notare che in questo caso $\langle \vec{v}_1, \vec{v}_2 \rangle$ non è il sottospazio vett. generato da $\{\,\vec{v}_1, \vec{v}_2\,\}$, ma è il prodotto interno.

Questa funzione deve soddisfare le seguenti proprietà:

- 1. $\langle \vec{v}, \vec{w} \rangle = \langle \vec{w}, \vec{v} \rangle \quad \forall \vec{v}, \vec{w} \in V$
- 2. $\langle \alpha \vec{v}_1 + \beta \vec{v}_2, \vec{w} \rangle = \alpha \cdot \langle \vec{v}_1, \vec{w} \rangle + \beta \cdot \langle \vec{v}_2, \vec{w} \rangle \quad \forall \alpha, \beta \in K \ \forall \vec{v}_1, \vec{v}_2, \vec{w} \in V$ (bilinearità)
- 3. $\langle \vec{v}, \vec{v} \rangle > 0$ se $\vec{v} \neq 0$

Oss:

- $\langle \vec{0}, \vec{w} \rangle = 0$ (per bilinearità)
- $\langle -\vec{v}, \vec{w} \rangle = -\langle \vec{v}, \vec{w} \rangle$ (per bilinearità)
- Sia $(\vec{v}_i)_{i=1,\ldots,n} \subset V^n$ una base ordinata.

$$\langle \vec{v}, \vec{w} \rangle = \langle \sum_{i=1}^n \alpha_i \cdot \vec{v}_i, \sum_{j=1}^n \beta_j \cdot \vec{v}_j \rangle = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \beta_j \langle \vec{v}_i, \vec{v}_j \rangle.$$

Quindi, in analogia con gli omomorfismi, un prodotto interno è completamente determinato dalla sua azione su (coppie di) vettori di una base.

In particolare, se chiamo $P = \left(\langle \vec{v}_i, \vec{v}_j \rangle \right)_{i,j}$, ho che

$$\langle \vec{v}, \vec{w} \rangle = (\alpha_1, \alpha_2, \dots, \alpha_n) \cdot P \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

Def: la **norma** o **lunghezza** di $\vec{v} \in V$ rispetto a \langle , \rangle è definita come il numero $||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$.

La **distanza** di \vec{v} da \vec{w} è $||\vec{w} - \vec{v}||$.

Def: sia $(V, \langle \ , \ \rangle)$ uno spazio vettoriale con prodotto interno. Allora $\vec{v}, \vec{w} \in V$ sono detti **ortogonali** se $\langle \vec{v}, \vec{w} \rangle = 0$.

 \vec{v} e $\vec{w} \in V$ sono detti **ortonormali** se sono ortogonali e hanno lunghezza = 1.

Oss: dato \vec{v} t.c. $\vec{0} \neq \vec{v} \in (V, \langle , \rangle)$ possiamo associare il suo **versore** definito come $\frac{1}{||\vec{v}||} \cdot \vec{v} = \mathcal{V}_{\vec{v}}$. Infatti, $||\mathcal{V}_{\vec{v}}|| = \sqrt{\langle \mathcal{V}_{\vec{v}}, \mathcal{V}_{\vec{v}} \rangle} = \cdots = 1$.

Fatto estremamente importante: sia $\{\vec{e}_i\}_{i=1,...,n}\subset \left(V^n,\langle\;,\;\rangle\right)$ una base ortonormale. Allora, $\forall \vec{v}\in V^n, \vec{v}=\sum_{i=1}^n\lambda_i\cdot\vec{e}_i.$

$$\langle \vec{v}, \vec{e}_i \rangle = \left\langle \sum_{j=1}^n \lambda_j \cdot \vec{e}_j, \vec{e}_i \right\rangle = \sum_{j=1}^n \lambda_j \cdot \langle \vec{e}_j, \vec{e}_i \rangle = \lambda_i$$

Teo: sia (V, \langle , \rangle) , allora in V esiste una base ortonormale $\{ \vec{e}_i \}$.

11.1 Prodotto scalare (euclideo)

Def: il prodotto scalare euclideo è definito come

$$\mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} \mapsto (x_{1}, \dots, x_{n}) \cdot \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \sum_{i=1}^{n} x_{i} \cdot y_{i}$$

 $con V = \mathbb{R}^n$.

Proprietà fondamentale:

$$\langle \vec{v}, \vec{w} \rangle = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos \theta$$

dove θ è l'angolo tra la semiretta da $\vec{0}$ per \vec{v} e la semiretta da $\vec{0}$ per \vec{w} . Per convenzione, $\theta \in [0,\pi]$.

Oss:

1.

$$\frac{\langle \vec{v}, \vec{w} \rangle}{||\vec{v}|| \cdot ||\vec{w}||} = \cos \theta \implies \theta = \arccos \left(\frac{\langle \vec{v}, \vec{w} \rangle}{||\vec{v}|| \cdot ||\vec{w}||} \right)$$

2.

Se
$$||\vec{w}|| = 1 \implies \langle \vec{v}, \vec{w} \rangle \cdot \cos \theta$$

11.2 Prodotto vettoriale

Il **prodotto vettoriale** è una funzione

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

$$(\vec{v}, \vec{w}) \mapsto \vec{v} \wedge \vec{w} = \vec{v} \times \vec{w}$$

Il prodotto vettoriale è definito solo in \mathbb{R}^3 !

Def: siano \vec{v} , $\vec{w} \in \mathbb{R}^3$. Il **prodotto vettoriale** $\vec{v} \wedge \vec{w} \in \mathbb{R}^3$ è definito dall'espressione:

$$\vec{v} = (x_1, x_2, x_3)$$

 $\vec{w} = (y_1, y_2, y_3)$

$$\vec{v} \wedge \vec{w} = \det \begin{pmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

$$= \vec{e}_1 \cdot \det \dots$$

$$= \vec{e}_1(x_2y_3 - x_3y_2) - \vec{e}_2(x_1y_3 - x_3y_1) + \vec{e}_3(x_1y_2 - x_2y_1)$$

$$= (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$$

Proprietà:

- 1. $\vec{v} \wedge \vec{w} = -\vec{w} \wedge \vec{v}$
- 2. $\left(\sum_{i=1}^{n} \lambda_i \vec{v}_i\right) \wedge \vec{w} = \sum_{i=1}^{n} \lambda_i \cdot (\vec{v} \wedge \vec{w})$
- 3. $\langle \vec{v}, \vec{v} \wedge \vec{w} \rangle = \langle \vec{w}, \vec{v} \wedge \vec{w} \rangle = 0$
- 4. $\vec{v} \wedge \vec{w} = \vec{0} \iff \vec{v} = \alpha \cdot \vec{w} \text{ oppure } \vec{w} = \beta \cdot \vec{v} \quad \text{per } \alpha, \beta \in \mathbb{R}$
- 5. $||\vec{v} \wedge \vec{w}|| = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin \theta$ dove θ è l'angolo "tra \vec{v} e \vec{w} " \Longrightarrow $||\vec{v} \wedge \vec{w}|| =$ area parallelogramma con vertici $\vec{0}, \vec{v}, \vec{w}, \vec{v} + \vec{w}$

Oss: il \wedge non è associativo, cioè non è sempre vero che $(\vec{v} \wedge \vec{w}) \wedge \vec{z} = \vec{v} \wedge (\vec{w} \wedge \vec{z})$.

12 Geometria analitica

12.1 Vettore applicato

Supponiamo di voler calcolare l'area della regione R all'interno del parallelogramma di vertici $\vec{a}, \vec{v}, \vec{w}, \vec{z}$.

 $||\vec{c}_1 \wedge \vec{c}_2||$ è l'area della regione delimitata dal parallelogramma di vertici $\vec{0}, \vec{c}_1, \vec{c}_2, \vec{c}_1 + \vec{c}_2$.

Per applicare l'algebra lineare si può traslare il parallelogramma in modo che un suo vertice vada in $\vec{0}$. Per esempio $\vec{a} \to \vec{0}$.

Def: un **vettore applicato** in \mathbb{R}^n è una coppia $(\vec{v}_1, \vec{v}_2) \in \mathbb{R}^n \times \mathbb{R}^n$.

Spesso si disegna come una freccia:

Oss: non si può fare il prodotto vettoriale di due vettori "applicati".

Idea: usare il prodotto vettoriale su dei vettori veri e propri associati a vettori "applicati".

Def: il **vettore associato** al vettore applicato $(\vec{v}_1, \vec{v}_2) \in \mathbb{R}^n \times \mathbb{R}^n$ è $\vec{v}_2 - \vec{v}_1 \in \mathbb{R}^n$.

Geometricamente corrisponde a:

Tornando al problema di prima, è possibile traslare il parallelogramma utilizzando i vettori associati $(\vec{v} - \vec{a})$ e $(\vec{w} - \vec{a})$.

$$||(\vec{v}-\vec{a})\wedge(\vec{w}-\vec{a})||$$

12.2 Rette in \mathbb{R}^2

12.2.1 In forma parametrica

È possibile esprimere una retta in forma parametrica.

 $l \stackrel{\text{parametrica}}{\longrightarrow} \text{corrisponde}$ a vedere l come un traslato di un sottospazio vettoriale di dim = 1.

Traslazione:

$$\mathbb{R}^2 \to \mathbb{R}^2$$
$$(x, y) \mapsto (x, y) + \vec{p}$$

Dunque

$$\begin{split} l &= l_0 + \vec{p} \\ &= \{\; \lambda \cdot \vec{v} + \vec{p} \; \colon \lambda \in \mathbb{R} \; \} \end{split}$$

 $\operatorname{con} l_0 = \langle \vec{v} \rangle$ dove $\vec{p} \in \mathbb{R}^2$ e \vec{v} è una base di l_0 .

Se
$$\vec{v} = (v_1, v_2)$$
 e $\vec{p} = (p_1, p_2)$, allora

$$l = \{ \lambda(v_1, v_2) + (p_1, p_2) : \lambda \in \mathbb{R} \}$$
$$= \{ (\lambda v_1 + p_1, \lambda v_2 + p_2) \}$$

Questo permette di determinare se un punto appartiene alla retta tramite un semplice sistema di due equazioni:

$$(x,y) \in l \iff \begin{cases} \lambda v_1 + p_1 = x \\ \lambda v_2 + p_2 = y \end{cases}$$
 ha soluzione

Per "comunicare" una retta è abbastanza utilizzare la seguente notazione:

$$\begin{cases} x(\lambda) = \lambda v_1 + p_1 \\ y(\lambda) = \lambda v_2 + p_2 \end{cases} \quad \lambda \in \mathbb{R}$$

Le notazioni sono equivalenti.

12.2.2 In coordinate

$$l = \{ (x, y) \in \mathbb{R}^2 : a_1 x + a_2 y = b \text{ con } a_1 \neq 0 \lor a_2 \neq 0 \}$$

12.3 Rette in \mathbb{R}^3

12.3.1 In forma parametrica

$$\begin{split} l &= l_0 + \vec{p} = \langle \vec{v} \rangle + \vec{p} \\ &= \{ \ \lambda \cdot \vec{v} + \vec{p} \ : \ \lambda \in \mathbb{R} \ \} \\ &= \{ \ (\lambda v_1 + p_1, \lambda v_2 + p_2, \lambda v_3 + p_3) \ : \ \lambda \in \mathbb{R} \ \} \end{split}$$

con la notazione equivalente

$$\begin{cases} x(\lambda) = \lambda v_1 + p_1 \\ y(\lambda) = \lambda v_1 + p_1 \\ z(\lambda) = \lambda v_1 + p_1 \end{cases} \quad \lambda \in \mathbb{R}$$

12.3.2 In coordinate

$$l = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \end{cases} \quad \text{tale che } rg \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = 2 \right\}$$

12.4 Piani in \mathbb{R}^3

12.4.1 In forma parametrica

$$\begin{split} H &= H_0 + \vec{p} = \langle \vec{v}, \vec{w} \rangle + \vec{p} \\ &= \{ \ \alpha \vec{v} + \beta \vec{w} + \vec{p} \ : \ \alpha, \beta \in \mathbb{R} \ \} \\ &= \{ \ (\alpha v_1 + \beta w_1 + p_1, \alpha v_2 + \beta w_2 + p_2, \alpha v_3 + \beta w_3 + p_3) \ : \ \alpha, \beta \in \mathbb{R} \ \} \end{split}$$

con la notazione equivalente

$$\begin{cases} x = \alpha v_1 + \beta w_1 + p_1 \\ y = \alpha v_2 + \beta w_2 + p_2 \\ z = \alpha v_3 + \beta w_3 + p_3 \end{cases} \qquad \alpha, \beta \in \mathbb{R}$$

12.4.2 In coordinate

$$H = \{(x, y, z) \in \mathbb{R} : ax + by + cz = d \quad \text{con } a \neq 0 \lor b \neq 0 \lor c \neq 0\}$$

Oss

1.
$$H_0 = \{ (x, y, z) \in \mathbb{R} : ax + by + cz = 0 \}$$

2. Il vettore (a,b,c) è ortogonale a H, ad H_0 e ad ogni $\vec{v} \in H_0$