SEMAINE 18

SÉRIES de FOURIER

EXERCICE 1:

En considérant la fonction $f: \mathbb{R} \to \mathbb{C}$, 1-périodique, telle que

$$\forall x \in [0, 1] \qquad f(x) = e^{2i\pi x^2} ,$$

calculer les intégrales de Fresnel :

$$I = \int_{-\infty}^{+\infty} \cos u^2 du$$
 et $J = \int_{-\infty}^{+\infty} \sin u^2 du$.

Soit $(c_n)_{n \in \mathbb{Z}}$ la famille des coefficients de Fourier de f. On a

$$c_n = \int_0^1 f(x) e^{-2i\pi nx} dx = \int_0^1 e^{2i\pi(x^2 - nx)} dx$$

$$= \int_0^1 e^{2i\pi \left[\left(x - \frac{n}{2} \right)^2 - \frac{n^2}{4} \right]} dx = e^{-i\pi \frac{n^2}{2}} \int_0^1 e^{2i\pi \left(x - \frac{n}{2} \right)^2} dx$$

$$= e^{-i\pi \frac{n^2}{2}} \int_{-\frac{n}{2}}^{-\frac{n}{2} + 1} e^{2i\pi t^2} dt$$

(écriture du trinôme sous forme canonique, puis translation de la variable $t=x-\frac{n}{2}$). On distingue alors selon la parité de n: pour tout $p \in \mathbf{Z}$, on a

$$c_{2p} = \int_{-p}^{-p+1} e^{2i\pi t^2} dt$$
 et $c_{2p+1} = -i \int_{-p+\frac{1}{2}}^{-p+\frac{3}{2}} e^{2i\pi t^2} dt$.

La fonction f est continue, 1-périodique, et de classe \mathcal{C}^1 par morceaux sur \mathbb{R} , la famille $(c_n)_{n\in \mathbb{Z}}$ des coefficients de Fourier de f est donc sommable et la série de Fourier de f converge normalement vers f:

$$\forall x \in \mathbb{R}$$
 $f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{2i\pi nx}$

et, en particulier, $f(0) = 1 = \sum_{n = -\infty}^{+\infty} c_n$.

Pour tout
$$P \in \mathbb{N}^*$$
, on a $\sum_{p=-P}^{P} c_{2p} = \sum_{p=-P}^{P} \int_{-p}^{-p+1} e^{2i\pi t^2} dt = \int_{-P}^{P+1} e^{2i\pi t^2} dt$. (*)

Or, l'intégrale $K=\int_{-\infty}^{+\infty}e^{2i\pi t^2}\,dt$ est semi-convergente : en effet, le changement de variable

 $t=\sqrt{u}$ ramène le problème de la convergence de l'intégrale $\int_1^{+\infty}e^{2i\pi t^2}\,dt$ à celle de

l'intégrale $\int_1^{+\infty} \frac{e^{2i\pi u}}{\sqrt{u}} du$ et

$$\int_{1}^{U} \frac{e^{2i\pi u}}{\sqrt{u}} du = \left[\frac{e^{2i\pi u}}{2i\pi\sqrt{u}} \right]_{1}^{U} + \frac{1}{4i\pi} \int_{1}^{U} \frac{e^{2i\pi u}}{u\sqrt{u}} du ,$$

cette dernière intégrale étant absolument convergente en $+\infty$ (selon les termes du programme, la fonction $u\mapsto \frac{e^{2i\pi u}}{u\sqrt{u}}$ est intégrable sur $[1,+\infty[)$.

En faisant tendre P vers $+\infty$ dans (*), on obtient donc $\sum_{p=-\infty}^{+\infty} c_{2p} = K$.

De la même façon, on obtient $\sum_{p=-\infty}^{+\infty} c_{2p+1} = -i \sum_{p=-\infty}^{+\infty} \int_{-p+\frac{1}{2}}^{-p+\frac{3}{2}} e^{2i\pi t^2} dt = -iK$.

Finalement, $1 = \sum_{n \in \mathbb{Z}} c_n = \sum_{p = -\infty}^{+\infty} c_{2p} + \sum_{p = -\infty}^{+\infty} c_{2p+1} = (1 - i)K$, donc $K = \frac{1}{1 - i} = \frac{1 + i}{2}$. En

posant $u = t\sqrt{2\pi}$, on obtient

$$K = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{iu^2} du = \frac{I + iJ}{\sqrt{2\pi}} = \frac{1+i}{2}$$
,

donc

$$I = J = \sqrt{\frac{\pi}{2}} \ .$$

EXERCICE 2:

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue par morceaux et 2π -périodique. On note $(c_n)_{n \in \mathbb{Z}}$ les coefficients de Fourier de f. Pour tout $f \in]0,1[$, on pose

$$F_r(t) = \sum_{n=-\infty}^{+\infty} r^{|n|} c_n e^{int}.$$

1. Montrer que, si f est continue au point $t \in \mathbb{R}$, alors

$$f(t) = \lim_{r \to 1^{-}} F_r(t) .$$

- **2.** Montrer que, si f est continue sur \mathbb{R} , alors la convergence de la famille de fonctions (F_r) vers f lorsque $r \to 1^-$ est uniforme sur \mathbb{R} .
- 3. En déduire le second théorème de Weierstrass.

On a $c_n = \frac{1}{2\pi} \int_0^{2\pi} f(u) e^{-inu} du$. On a $|c_n| \le ||f||_{\infty}$ pour tout $n \in \mathbf{Z}$ donc, pour tout $r \in]0,1[$, $F_r(t)$ est défini comme somme d'une série normalement convergente de fonctions de t. Alors

$$F_r(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} \int_0^{2\pi} r^{|n|} f(u) e^{in(t-u)} du = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=-\infty}^{+\infty} r^{|n|} f(u) e^{in(t-u)} du$$

car la série de fonctions $u \mapsto r^{|n|} f(u) e^{in(t-u)}$ converge normalement sur $[0, 2\pi]$.

Donc
$$F_r(t) = \int_0^{2\pi} f(u) P_r(t-u) du$$
 en posant, pour tout x réel et tout $r \in]0,1[$,

$$P_r(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} r^{|n|} e^{inx} = \frac{1}{2\pi} \left(\sum_{n=0}^{+\infty} r^n e^{inx} + \sum_{n=0}^{+\infty} r^n e^{-inx} - 1 \right)$$
$$= \frac{1}{2\pi} \left(\frac{1}{1 - re^{ix}} + \frac{1}{1 - re^{-ix}} - 1 \right) = \frac{1}{2\pi} \frac{1 - r^2}{1 - 2r \cos x + r^2}.$$

La famille de fonctions $(P_r)_{0 < r < 1}$, appelée **noyau de Poisson**, est une **approximation de l'unité** 2π -**périodique** lorsque $r \to 1^-$ (*cf.* semaine 13, exercice 4), ce qui signifie que ce sont des fonctions continues et 2π -périodiques sur \mathbb{R} vérifiant

(1) :
$$\forall r \in]0,1[\forall x \in \mathbb{R} \quad P_r(x) \ge 0 ;$$

(2) :
$$\forall r \in]0,1[$$
 $\int_0^{2\pi} P_r(t) dt = 1$;

(3) : pour tout $\alpha \in]0, \pi[$, la famille de fonctions (P_r) converge uniformément vers la fonction nulle sur $[\alpha, 2\pi - \alpha]$ lorsque $r \to 1^-$.

La propriété (1) est immédiate.

La propriété (2) se déduit de la relation $F_r(t) = \int_0^{2\pi} f(u) P_r(t-u) du$ en considérant f = 1.

La propriété (3) est conséquence de l'encadrement $0 \le P_r(x) \le P_r(\alpha)$ valable si $x \in [\alpha, 2\pi - \alpha]$ et du fait que, pour tout $\alpha \notin 2\pi$ **Z** fixé, $\lim_{r \to 1^-} P_r(\alpha) = 0$.

1. Soit $t \in \mathbb{R}$ un point de continuité de f. Donnons-nous $\varepsilon > 0$ et associons-lui un $\alpha > 0$ tel que $|u| \le \alpha \Longrightarrow |f(t-u) - f(t)| \le \frac{\varepsilon}{2}$. Alors, en faisant un changement de variable et en utilisant le fait que l'intégrale d'une fonction c.p.m. et 2π -périodique est la même sur tout segment de longueur 2π , on obtient

$$F_r(t) = \int_0^{2\pi} f(u) P_r(t-u) du = \int_0^{2\pi} f(t-u) P_r(u) du$$
$$= f(t) + \int_0^{2\pi} (f(t-u) - f(t)) P_r(u) du,$$

donc

$$|F_r(t) - f(t)| \leq \left| \int_{-\alpha}^{\alpha} \left(f(t - u) - f(t) \right) P_r(u) du \right| + \left| \int_{[-\pi, -\alpha] \cup [\alpha, \pi]} \left(f(t - u) - f(t) \right) P_r(u) du \right|$$

$$\leq \frac{\varepsilon}{2} \int_{-\alpha}^{\alpha} P_r(u) du + \frac{1}{\pi} \frac{1 - r^2}{1 - 2r \cos \alpha + r^2} \int_{-\pi}^{\pi} |f(u)| du$$

$$\leq \frac{\varepsilon}{2} + C \frac{1 - r^2}{1 - 2r \cos \alpha + r^2} ,$$

où C est une constante positive. De $\lim_{r\to 1^-}\frac{1-r^2}{1-2r\cos\alpha+r^2}=0$, on tire la conclusion (le deuxième terme peut être rendu inférieur à $\frac{\varepsilon}{2}$ pour r suffisamment proche de 1).

En un point de discontinuité de f, on a $\lim_{r\to 1^-} F_r(t) = \frac{f(t^+) + f(t^-)}{2}$.

- 2. La fonction f étant périodique et continue sur \mathbb{R} , elle est uniformément continue sur \mathbb{R} . Dans la démonstration de la question précédente, une fois donné ε , on peut lui associer $\alpha>0$ indépendamment du point t, et la même majoration de $|F_r(t)-f(t)|$ montre la convergence uniforme sur \mathbb{R} .
- 3. Soit $f: \mathbb{R} \to \mathbb{C}$, continue et 2π -périodique. Soit $\varepsilon > 0$. D'après la question 2., on peut trouver $r_0 \in]0,1[$ tel que $\|f-F_{r_0}\|_{\infty} \leq \frac{\varepsilon}{2}$. Par ailleurs, en posant $F_{r_0}^{[N]}(t) = \sum_{n=-N}^{N} r_0^{[n]} c_n e^{int}$ pour tout $N \in \mathbb{N}$, alors $(F_{r_0}^{[N]})_{N \in \mathbb{N}}$ est une suite de polynômes trigonométriques convergeant normalement sur \mathbb{R} vers la fonction F_{r_0} . On aura donc $\|F_{r_0}^{[N]} F_{r_0}\|_{\infty} \leq \frac{\varepsilon}{2}$ pour N assez grand, donc f est limite uniforme sur \mathbb{R} d'une suite de polynômes trigonométriques.

EXERCICE 3:

Formule sommatoire de Poisson

Soit $f: \mathbb{R} \to \mathbb{C}$, de classe \mathcal{C}^1 . On suppose qu'il existe un réel $\alpha > 1$ tel que, au voisinage de $-\infty$ et de $+\infty$, on ait

$$f(t) = O\left(\frac{1}{|t|^{\alpha}}\right)$$
 et $f'(t) = O\left(\frac{1}{|t|^{\alpha}}\right)$.

La transformée de Fourier de f est la fonction \widehat{f} définie sur \mathbb{R} par $\widehat{f}(\lambda) = \int_{-\infty}^{+\infty} f(t) e^{-i\lambda t} dt$.

Soit ω un réel strictement positif. On pose $T=\frac{2\pi}{\omega}.$ Pour tout réel t, on pose

$$F_T(t) = \sum_{n = -\infty}^{+\infty} f(t + nT)$$

 $(F_T \text{ est la } T\text{-p\'eriodis\'ee de } f).$

- a. Montrer que F_T est T-périodique et de classe \mathcal{C}^1 sur \mathbb{R} et exprimer ses coefficients de Fourier à l'aide de la transformée de Fourier \widehat{f} de f.
- **b.** Montrer la relation (formule sommatoire de Poisson)

$$\sum_{n=-\infty}^{+\infty} \widehat{f}(n\omega) = T \cdot \sum_{n=-\infty}^{+\infty} f(nT) .$$

c. Application. Soit a > 0. Calculer $S_a = \sum_{n = -\infty}^{+\infty} \frac{1}{n^2 + a^2}$.

Retrouver la relation $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

a. La fonction $t \mapsto t^{\alpha} f(t)$ est bornée sur \mathbb{R} car elle est continue et bornée au voisinage de $-\infty$ et $+\infty$: on a $\forall t \in \mathbb{R}$ $|t^{\alpha} f(t)| \leq k$ (k > 0).

et
$$+\infty$$
: on a $\forall t \in \mathbb{R}$ $|t^{\alpha} f(t)| \le k$ $(k > 0)$.
Soit $A > 0$. Pour $|n| > \frac{A}{T}$ et $|t| \le A$, on a $|t + nT| \ge |nT| - |t| \ge |n|T - A$,

d'où $|f(t+nT)| \leq \frac{k}{(|n|T-A)^{\alpha}}$. Cela garantit la convergence normale sur [-A,A] de la série $\sum_{n\in \mathbb{Z}} f(t+nT)$. La fonction F_T est donc définie et continue sur \mathbb{R} . Sa périodicité est

immédiate.

La série des dérivées est aussi normalement convergente sur tout segment de \mathbb{R} , donc F_T est de classe \mathcal{C}^1 .

Calculons les coefficients de Fourier de F_T :

$$c_n(F_T) = \frac{1}{T} \int_0^T F_T(t) e^{-in\omega t} dt = \frac{1}{T} \int_0^T \left(\sum_{k=-\infty}^{+\infty} f(t+kT) \right) e^{-in\omega t} dt$$

$$= \frac{1}{T} \sum_{k=-\infty}^{+\infty} \int_0^T f(t+kT) e^{-in\omega t} dt$$

$$= \frac{1}{T} \sum_{k=-\infty}^{+\infty} \int_{kT}^{(k+1)T} f(t) e^{-in\omega t} dt$$

$$= \frac{1}{T} \int_{-\infty}^{+\infty} f(t) e^{-in\omega t} dt = \frac{1}{T} \widehat{f}(n\omega)$$

(la convergence normale de la série sur [0,T] permet d'intégrer terme à terme).

Remarque. Cette relation permet de faire le lien entre les notions de série de Fourier et d'intégrale (ou transformée) de Fourier.

b. La fonction F_T est de classe \mathcal{C}^1 ; elle est donc somme de sa série de Fourier :

$$\forall t \in \mathbb{R} \qquad F_T(t) = \sum_{n = -\infty}^{+\infty} f(t + nT) = \sum_{n = -\infty}^{+\infty} c_n(F_T) e^{in\omega t} = \frac{1}{T} \sum_{n = -\infty}^{+\infty} \widehat{f}(n\omega) e^{in\omega t}.$$

Pour t = 0, on obtient la relation demandée.

c. Soit la fonction $f: t \mapsto e^{-a|t|}$. Choisissons $\omega = 1$, soit $T = 2\pi$. La fonction f est continue sur \mathbb{R} ; elle n'est pas tout à fait de classe \mathcal{C}^1 (non dérivable en zéro) mais on voit facilement que la 2π -périodisée $F_{2\pi}$ est continue et de classe \mathcal{C}^1 par morceaux sur \mathbb{R} (les points où la dérivée n'est pas définie étant les $2n\pi$, $n \in \mathbb{Z}$), ce qui suffit pour affirmer qu'elle est somme de sa série de Fourier. Les hypothèses de décroissance à l'infini de f et de f' sont bien vérifiées.

Nous laissons le lecteur vérifier que la transformée de Fourier de f est $\hat{f}: \lambda \mapsto \frac{2a}{\lambda^2 + a^2}$. La formule de Poisson donne alors

$$\sum_{n=-\infty}^{+\infty} \widehat{f}(n) = 2a \, S_a = 2\pi \, \sum_{n=-\infty}^{+\infty} f(2n\pi) = 2\pi \, \sum_{n=-\infty}^{+\infty} e^{-2\pi a|n|} \,,$$

soit

$$S_a = \frac{\pi}{a} \left[1 + \frac{2e^{-2\pi a}}{1 - e^{-2\pi a}} \right] = \frac{\pi}{a \operatorname{th} \pi a} .$$

Pour $a \ge 0$, posons $s(a) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + a^2}$. La fonction $a \mapsto s(a)$ est continue sur \mathbb{R}_+ comme somme d'une série normalement convergente de fonctions continues. Or, le calcul ci-dessus montre que, pour a > 0, on a

$$s(a) = \frac{1}{2} \left(S_a - \frac{1}{a^2} \right) = \frac{1}{2} \left(\frac{\pi}{a \, \text{th} \, \pi a} - \frac{1}{a^2} \right) .$$

À l'aide d'un développement limité à l'ordre trois de la fonction th, on obtient facilement $s(0) = \lim_{a \to 0} s(a) = \frac{\pi^2}{6}.$

EXERCICE 4:

Phénomène de Gibbs

Soit f la fonction de \mathbb{R} vers \mathbb{R} , 2π -périodique, telle que $\begin{cases} f = -1 & \text{sur} & [-\pi, 0[\\ f = +1 & \text{sur} & [0, \pi[\\ \end{cases}] \end{cases}$.

- 1. Déterminer les coefficients de Fourier $(b_n)_{n\in\mathbb{N}}$ de f.
- ${\bf 2.}$ Soit f_n la somme partielle d'indice n de la série de Fourier de f :

$$\forall x \in \mathbb{R}$$
 $f_n(x) = \sum_{k=0}^{n-1} b_{2k+1} \sin(2k+1)x$.

Rechercher les extremums relatifs de f_n sur $[0, \pi]$.

- **3.** Soit M_n le maximum global de f_n . En quel point de $\left[0,\frac{\pi}{2}\right]$ est-il atteint?
- **4.** Exprimer le nombre $l = \lim_{n \to +\infty} M_n$ sous la forme d'une intégrale, et aussi comme somme d'une série.
- 1. La fonction f est impaire, donc les coefficients a_n sont nuls. Ensuite,

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} \sin nx \, dx = \frac{2}{n\pi} (1 - (-1)^n) \,,$$

donc $b_{2k} = 0$ et $b_{2k+1} = \frac{4}{\pi(2k+1)}$.

2. On a $f_n(x) = \frac{4}{\pi} \sum_{k=0}^{n-1} \frac{\sin(2k+1)x}{2k+1}$, donc $f'_n(x) = \frac{4}{\pi} \sum_{k=0}^{n-1} \cos(2k+1)x$. Un calcul classique,

laissé au lecteur courageux, donne $f_n'(x) = \frac{2 \sin 2nx}{\pi \sin x}$ pour $x \notin \pi \mathbf{Z}$, prolongé par continuité (puisque la fonction f_n est de classe C^{∞}) en les points de la forme $k\pi$ $(k \in \mathbf{Z})$ par $f_n'(2k\pi) = \frac{4n}{\pi}$ et $f_n'((2k+1)\pi) = -\frac{4n}{\pi}$.

- La dérivée f'_n s'annule donc, dans $[0,\pi]$, en les points $x_k = \frac{k\pi}{2n}$ $(1 \le k \le 2n-1)$. On peut préciser que $f'_n > 0$ sur les intervalles $]x_{2p}, x_{2p+1}[$ $(0 \le p \le n-1)$ et $f'_n < 0$ sur les intervalles $]x_{2p+1}, x_{2p+2}[$ $(0 \le p \le n-1)$, donc la fonction f_n admet
 - un maximum relatif en chaque x_{2p+1} $(0 \le p \le n-1)$;
 - un minimum relatif en chaque x_{2p} $(1 \le p \le n-1)$.
- **3.** Étudions les maximums relatifs de f_n sur $\left[0,\frac{\pi}{2}\right]$: posons $\mu_p = f_n(x_{2p+1}) = f_n\left(\frac{(2p+1)\pi}{2n}\right)$

pour $0 \le p \le E\left(\frac{n-1}{2}\right)$. Pour $1 \le p \le E\left(\frac{n-1}{2}\right)$, on a

$$\mu_p - \mu_{p-1} = \int_{\frac{(2p+1)\pi}{2n}}^{\frac{(2p+1)\pi}{2n}} f'_n(x) dx$$

$$= \frac{2}{\pi} \int_{\frac{(2p-1)\pi}{2n}}^{\frac{2p\pi}{2n}} \frac{\sin 2nx}{\sin x} dx + \frac{2}{\pi} \int_{\frac{2p\pi}{2n}}^{\frac{(2p+1)\pi}{2n}} \frac{\sin 2nx}{\sin x} dx$$

$$= \frac{2}{\pi} \int_{\frac{2p\pi}{2n}}^{\frac{(2p+1)\pi}{2n}} \sin 2nx \left(\frac{1}{\sin x} - \frac{1}{\sin \left(x - \frac{\pi}{2n} \right)} \right) dx$$

en faisant une translation de la variable dans la deuxième intégrale. Or, sur $\left|\frac{2p\pi}{2n}, \frac{(2p+1)\pi}{2n}\right|$, on a $\sin 2nx \ge 0$ et la fonction sinus est positive et croissante sur $\left[0, \frac{\pi}{2}\right]$, donc $\mu_p - \mu_{p-1} \le 0$. On a donc

$$M_n = \mu_1 = f_n \left(\frac{\pi}{2n} \right) .$$

4. On a $M_n = \int_0^{\frac{\pi}{2n}} f'_n(x) dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2n}} \frac{\sin 2nx}{\sin x} dx = \int_0^{\pi} g_n(t) dt$, avec, pour tout $t \in]0,\pi]$,

 $g_n(t) = \frac{\sin t}{\pi n \sin \frac{t}{2\pi}}$. Pour tout $t \in]0,\pi]$, on a $\lim_{n \to \infty} g_n(t) = \frac{2}{\pi} \frac{\sin t}{t}$ (convergence simple). Par

ailleurs, la concavité de la fonction sinus sur $\left[0, \frac{\pi}{2}\right]$ donne $\sin u \ge \frac{2u}{\pi}$ pour $u \in \left[0, \frac{\pi}{2}\right]$; on a donc la condition de domination

$$\forall t \in]0,\pi]$$
 $0 \le g_n(t) \le \frac{\sin t}{t}$,

la fonction $t\mapsto \frac{\sin t}{t}$ étant intégrable sur $]0,\pi]$. Le théorème de convergence dominée s'applique et $l=\lim_{n\to+\infty}M_n=\frac{2}{\pi}\int_0^\pi\frac{\sin t}{t}\,dt$.

On peut remarquer que la suite (M_n) est décroissante car $n \sin \frac{t}{2n} = \frac{1}{2} \int_0^t \cos \frac{u}{2n} du$ et, la fonction cosinus étant décroissante sur $[0,\pi]$, la suite $\left(n \sin \frac{t}{2n}\right)_{n \in \mathbb{N}^*}$ est croissante pour tout t fixé dans $[0,\pi]$.

On peut aussi développer en série entière : $\frac{\sin t}{t} = \sum_{k=0}^{+\infty} (-1)^k \frac{t^{2k}}{(2k+1)!}$ avec un rayon de convergence infini, d'où la convergence normale sur $[0,\pi]$ qui permet d'intégrer terme à terme :

$$l = \frac{2}{\pi} \sum_{k=0}^{+\infty} (-1)^k \frac{\pi^{2k+1}}{(2k+1) \times (2k+1)!} .$$

La série de Fourier de f converge simplement vers la régularisée \tilde{f} de f par le théorème de Dirichlet et, cette fonction \tilde{f} étant discontinue, la convergence ne peut être uniforme. Une calculatrice, ou MAPLE, donne $l \simeq 1,18$, donc l > 1, ce qui met en évidence ce phénomène.

EXERCICE 5:

Inégalité isopérimétrique

1. Soit $f: \mathbb{R} \to \mathbb{C}$, 1-périodique, de classe \mathcal{C}^1 , telle que $\int_0^1 f(t) \, dt = 0$. Prouver l'inégalité

$$4\pi^2 \int_{[0,1]} |f|^2 \le \int_{[0,1]} |f'|^2$$
.

2. Soit Γ un arc fermé régulier de classe \mathcal{C}^1 dans le plan euclidien orienté identifié à \mathbb{C} . Notons l sa longueur, et \mathcal{A} l'aire de la partie bornée du plan délimitée par Γ .

Prouver l'inégalité

$$l^2 > 4\pi \mathcal{A}$$

et étudier les cas d'égalité.

Si Γ est paramétrée par $t\mapsto \big(x(t),y(t)\big)$, avec $t\in [0,1]$, la formule de Green-Riemann donne

$$\mathcal{A} = \frac{1}{2} \left| \int_{\Gamma} x \, dy - y \, dx \right| = \frac{1}{2} \left| \int_{0}^{1} \left(x(t) \, y'(t) - y(t) \, x'(t) \right) dt \right| = \frac{1}{2} \left| \operatorname{Im} \left(\int_{0}^{1} \overline{f(t)} \, f'(t) \, dt \right) \right|$$

1. Soient $(c_n)_{n \in \mathbb{Z}}$ les coefficients de Fourier de f. La relation de Parseval donne

$$\int_0^1 |f|^2 = \sum_{n=-\infty}^{+\infty} |c_n|^2 .$$

Notons $(c'_n)_{n\in\mathbb{Z}}$ les coefficients de Fourier de f'. Une classique intégration par parties donne $c'_n=2i\pi n\,c_n$. Par ce même val, nous arrivons à

$$\int_0^1 |f'|^2 = \sum_{n=-\infty}^{+\infty} |c'_n|^2 = 4\pi^2 \sum_{n=-\infty}^{+\infty} n^2 |c_n|^2.$$

Or, $|c_n|^2 \le n^2 |c_n|^2$ pour tout $n \in \mathbf{Z}^*$ et c'est vrai aussi pour n = 0 puisque $c_0 = \int_0^1 f = 0$. On obtient donc $4\pi^2 \int_0^1 |f|^2 \le \int_0^1 |f'|^2$, soit encore $2\pi \|f\|_2 \le \|f'\|_2$.

2. Sur un arc régulier de classe \mathcal{C}^1 , l'abscisse curviligne est un paramétrage admissible ("représentation normale" d'un arc). Si l'arc est fermé de longueur l, on peut aussi choisir un paramétrage $f: \mathbb{R} \to \mathbb{C}$, 1-périodique, de classe \mathcal{C}^1 "uniforme" ("à vitesse constante"), c'est-à-dire tel que |f'(t)| = l pour tout $t \in \mathbb{R}$. Alors $\tau \mapsto f\left(\frac{\tau}{l}\right)$ est un paramétrage normal sur Γ . Enfin, quitte à faire une translation, on peut supposer que $\int_0^1 f = 0$: en effet, l'intégrale $\int_0^1 f$ est l'affixe du centre d'inertie de la courbe Γ , assimilée à un fil homogène.

L'aire de la région intérieure à la courbe est alors

$$\mathcal{A} = \frac{1}{2} \left| \operatorname{Im} \left(\int_0^1 \overline{f(t)} \, f'(t) \, dt \right) \right| \le \frac{1}{2} \left| \int_0^1 \overline{f} \, f' \right| \le \frac{1}{2} \left(\int_0^1 |f|^2 \right)^{\frac{1}{2}} \left(\int_0^1 |f'|^2 \right)^{\frac{1}{2}}$$

par l'inégalité de Cauchy-Schwarz. De la première question, on déduit $A \leq \frac{1}{2} \frac{1}{2\pi} \int_0^1 |f'|^2$, soit $A \leq \frac{l^2}{4\pi}$.

S'il y a égalité, alors :

- $\left| \operatorname{Im} \left(\int_0^1 \overline{f(t)} f'(t) dt \right) \right| = \left| \int_0^1 \overline{f} f' \right|$, soit $\int_0^1 \overline{f} f' \in i \mathbb{R}$;
- les fonctions f et f' sont liées $(f' = \lambda f \text{ avec } \lambda \in \mathbb{C})$; alors $\int_0^1 \overline{f} f' = \lambda \int_0^1 |f|^2$; la première condition entraı̂ne alors $\lambda \in i\mathbb{R}$.

Posons donc $\lambda = i\omega$ avec $\omega \in \mathbb{R}^*$, on a $f' = i\omega f$ donc $f(t) = a\,e^{i\omega t}$ avec $a \in \mathbb{C}^*$, |a| = l. La courbe est alors un cercle (de centre O si l'on impose toujours $\int_0^1 f = 0$).

Réciproquement, il est immédiat que tout cercle vérifie l'égalité.