

Intel® 64 and IA-32 Architectures Software Developer's Manual

Documentation Changes

June 2015

Notice: The Intel $^{\$}$ 64 and IA-32 architectures may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata are documented in the specification updates.

Document Number: 252046-047

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

Contents

Revision History
Preface
Summary Tables of Changes
Occumentation Changes

Revision History

Revision	Description	Date
-001	Initial release	November 2002
-002	 Added 1-10 Documentation Changes. Removed old Documentation Changes items that already have been incorporated in the published Software Developer's manual 	December 2002
-003	 Added 9 -17 Documentation Changes. Removed Documentation Change #6 - References to bits Gen and Len Deleted. Removed Documentation Change #4 - VIF Information Added to CLI Discussion 	February 2003
-004	Removed Documentation changes 1-17.Added Documentation changes 1-24.	June 2003
-005	Removed Documentation Changes 1-24.Added Documentation Changes 1-15.	September 2003
-006	Added Documentation Changes 16- 34.	November 2003
-007	Updated Documentation changes 14, 16, 17, and 28.Added Documentation Changes 35-45.	January 2004
-008	Removed Documentation Changes 1-45.Added Documentation Changes 1-5.	March 2004
-009	Added Documentation Changes 7-27.	May 2004
-010	Removed Documentation Changes 1-27.Added Documentation Changes 1.	August 2004
-011	Added Documentation Changes 2-28.	November 2004
-012	Removed Documentation Changes 1-28.Added Documentation Changes 1-16.	March 2005
-013	 Updated title. There are no Documentation Changes for this revision of the document. 	July 2005
-014	Added Documentation Changes 1-21.	September 2005
-015	Removed Documentation Changes 1-21.Added Documentation Changes 1-20.	March 9, 2006
-016	Added Documentation changes 21-23.	March 27, 2006
-017	Removed Documentation Changes 1-23.Added Documentation Changes 1-36.	September 2006
-018	Added Documentation Changes 37-42.	October 2006
-019	Removed Documentation Changes 1-42.Added Documentation Changes 1-19.	March 2007
-020	Added Documentation Changes 20-27.	May 2007
-021	Removed Documentation Changes 1-27.Added Documentation Changes 1-6	November 2007
-022	Removed Documentation Changes 1-6Added Documentation Changes 1-6	August 2008
-023	Removed Documentation Changes 1-6Added Documentation Changes 1-21	March 2009

Revision	Description	Date
-024	Removed Documentation Changes 1-21Added Documentation Changes 1-16	June 2009
-025	Removed Documentation Changes 1-16Added Documentation Changes 1-18	September 2009
-026	Removed Documentation Changes 1-18Added Documentation Changes 1-15	December 2009
-027	Removed Documentation Changes 1-15Added Documentation Changes 1-24	March 2010
-028	Removed Documentation Changes 1-24Added Documentation Changes 1-29	June 2010
-029	Removed Documentation Changes 1-29Added Documentation Changes 1-29	September 2010
-030	Removed Documentation Changes 1-29Added Documentation Changes 1-29	January 2011
-031	Removed Documentation Changes 1-29Added Documentation Changes 1-29	April 2011
-032	Removed Documentation Changes 1-29Added Documentation Changes 1-14	May 2011
-033	Removed Documentation Changes 1-14Added Documentation Changes 1-38	October 2011
-034	Removed Documentation Changes 1-38Added Documentation Changes 1-16	December 2011
-035	Removed Documentation Changes 1-16Added Documentation Changes 1-18	March 2012
-036	Removed Documentation Changes 1-18Added Documentation Changes 1-17	May 2012
-037	Removed Documentation Changes 1-17Added Documentation Changes 1-28	August 2012
-038	Removed Documentation Changes 1-28Add Documentation Changes 1-22	January 2013
-039	Removed Documentation Changes 1-22Add Documentation Changes 1-17	June 2013
-040	Removed Documentation Changes 1-17Add Documentation Changes 1-24	September 2013
-041	Removed Documentation Changes 1-24Add Documentation Changes 1-20	February 2014
-042	Removed Documentation Changes 1-20Add Documentation Changes 1-8	February 2014
-043	Removed Documentation Changes 1-8Add Documentation Changes 1-43	June 2014
-044	Removed Documentation Changes 1-43Add Documentation Changes 1-12	September 2014
-045	Removed Documentation Changes 1-12Add Documentation Changes 1-22	January 2015
-046	Removed Documentation Changes 1-22Add Documentation Changes 1-25	April 2015
-047	Removed Documentation Changes 1-25Add Documentation Changes 1-19	June 2015

§

Preface

This document is an update to the specifications contained in the Affected Documents table below. This document is a compilation of device and documentation errata, specification clarifications and changes. It is intended for hardware system manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Document Title	Document Number/ Location
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture	253665
Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference, A-M	253666
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2B: Instruction Set Reference, N-Z	253667
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2C: Instruction Set Reference	326018
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System Programming Guide, Part 1	253668
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2	253669
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3	326019

Nomenclature

Documentation Changes include typos, errors, or omissions from the current published specifications. These will be incorporated in any new release of the specification.

Summary Tables of Changes

The following table indicates documentation changes which apply to the $Intel^{\circledR}$ 64 and IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the document.

Documentation Changes

No.	DOCUMENTATION CHANGES					
1	Updates to Chapter 3, Volume 1					
2	Updates to Chapter 5, Volume 1					
3	Updates to Chapter 13, Volume 1					
4	Updates to Chapter 14, Volume 1					
5	New Chapter 16, Volume 1					
6	Updates to Chapter 2, Volume 2A					
7	Updates to Chapter 3, Volume 2A					
8	Updates to Chapter 4, Volume 2B					
9	Updates to Chapter 2, Volume 3A					
10	Updates to Chapter 9, Volume 3A					
11	Updates to Chapter 16, Volume 3B					
12	Updates to Chapter 17, Volume 3B					
13	Updates to Chapter 18, Volume 3B					
14	Updates to Chapter 19, Volume 3B					
15	Updates to Chapter 20, Volume 3B					
16	Updates to Chapter 24, Volume 3B					
17	Updates to Chapter 26, Volume 3C					
18	Updates to Chapter 35, Volume 3C					
19	Updates to Chapter 36, Volume 3C					

Documentation Changes

1. Updates to Chapter 3, Volume 1

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for storing code, data, and state information. These resources (described briefly in the following paragraphs and shown in Figure 3-1) make up the basic execution environment for an IA-32 processor.

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-mode).

The basic execution environment is used jointly by the application programs and the operating system or executive running on the processor.

- Address space Any task or program running on an IA-32 processor can address a linear address space of up to 4 GBytes (2³² bytes) and a physical address space of up to 64 GBytes (2³⁶ bytes). See Section 3.3.6, "Extended Physical Addressing in Protected Mode," for more information about addressing an address space greater than 4 GBytes.
- Basic program execution registers The eight general-purpose registers, the six segment registers, the EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which to execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte, word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address memory. See Section 3.4, "Basic Program Execution Registers," for more information about these registers.
- x87 FPU registers The eight x87 FPU data registers, the x87 FPU control register, the status register, the x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and the x87 FPU opcode register provide an execution environment for operating on single-precision, double-precision, and double extended-precision floating-point values, word integers, doubleword integers, quadword integers, and binary coded decimal (BCD) values. See Section 8.1, "x87 FPU Execution Environment," for more information about these registers.
- MMX registers The eight MMX registers support execution of single-instruction, multiple-data (SIMD) operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, "The MMX Technology Programming Environment," for more information about these registers.
- XMM registers The eight XMM data registers and the MXCSR register support execution of SIMD operations on 128-bit packed single-precision and double-precision floating-point values and on 128-bit packed byte, word, doubleword, and quadword integers. See Section 10.2, "SSE Programming Environment," for more information about these registers.
- **YMM registers** The YMM data registers support execution of 256-bit SIMD operations on 256-bit packed single-precision and double-precision floating-point values and on 256-bit packed byte, word, doubleword, and guadword integers.
- **Bounds registers** Each of the BND0-BND3 register stores the lower and upper **bounds** (64 bits each) associated with the pointer to a memory buffer. They support execution of the Intel MPX instructions.

• **BNDCFGU** and **BNDSTATUS**— BNDCFGU configures user mode MPX operations on bounds checking. BNDSTATUS provides additional information on the #BR caused by an MPX operation.

Figure 3-1 IA-32 Basic Execution Environment for Non-64-bit Modes

• Stack — To support procedure or subroutine calls and the passing of parameters between procedures or subroutines, a stack and stack management resources are included in the execution environment. The stack (not shown in Figure 3-1) is located in memory. See Section 6.2, "Stacks," for more information about stack structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the following resources as part of its system-level architecture. They provide extensive support for operating-system and system-development software. Except for the I/O ports, the system resources are described in detail in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volumes 3A & 3B.

- I/O ports The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See Chapter 17, "Input/Output," in this volume.
- **Control registers** The five control registers (CR0 through CR4) determine the operating mode of the processor and the characteristics of the currently executing task. See Chapter 2, "System Architecture Overview," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.
- **Memory management registers** The GDTR, IDTR, task register, and LDTR specify the locations of data structures used in protected mode memory management. See Chapter 2, "System Architecture Overview," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.
- **Debug registers** The debug registers (DR0 through DR7) control and allow monitoring of the processor's debugging operations. See in the *Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B.*
- Memory type range registers (MTRRs) The MTRRs are used to assign memory types to regions of memory. See the sections on MTRRs in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volumes 3A & 3B.
- Machine specific registers (MSRs) The processor provides a variety of machine specific registers that are used to control and report on processor performance. Virtually all MSRs handle system related functions and are not accessible to an application program. One exception to this rule is the time-stamp counter. The MSRs are described in Chapter 35, "Model-Specific Registers (MSRs)," of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C.
- Machine check registers The machine check registers consist of a set of control, status, and error-reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 15, "Machine-Check Architecture," of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.
- **Performance monitoring counters** The performance monitoring counters allow processor performance events to be monitored. See Chapter 18, "Performance Monitoring," in the *Intel®* 64 and IA-32 Architectures Software Developer's Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address space, the basic program execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the other program execution resources shown in Figure 3-1:

- x87 FPU registers See Chapter 8, "Programming with the x87 FPU."
- MMX Registers See Chapter 9, "Programming with Intel® MMX™ Technology,"
- XMM registers See Chapter 10, "Programming with Intel® Streaming SIMD Extensions (Intel® SSE)," Chapter 11, "Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2)," and Chapter 12, "Programming with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI."
- YMM registers See Chapter 14, "Programming with AVX, FMA and AVX2".
- **BND registers**, **BNDCFGU**, **BNDSTATUS** See Chapter 13, "Managing State Using the XSAVE Feature Set," and Chapter 16, "Intel[®] MPX".
- Stack implementation and procedure calls See Chapter 6, "Procedure Calls, Interrupts, and Exceptions."

3.2.1 64-Bit Mode Execution Environment

The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs describe the differences that apply.

- Address space A task or program running in 64-bit mode on an IA-32 processor can address linear
 address space of up to 2⁶⁴ bytes (subject to the canonical addressing requirement described in Section
 3.3.7.1) and physical address space of up to 2⁴⁶ bytes. Software can query CPUID for the physical address
 size supported by a processor.
- Basic program execution registers The number of general-purpose registers (GPRs) available is 16. GPRs are 64-bits wide and they support operations on byte, word, doubleword and quadword integers. Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64 bits. The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32 bits of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.
- XMM registers There are 16 XMM data registers for SIMD operations. See Section 10.2, "SSE Programming Environment," for more information about these registers.
- YMM registers There are 16 YMM data registers for SIMD operations. See Chapter 14, "Programming with AVX, FMA and AVX2" for more information about these registers.
- BND registers, BNDCFGU, BNDSTATUS See Chapter 13, "Managing State Using the XSAVE Feature Set," and Chapter 16, "Intel[®] MPX".
- **Stack** The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.
- Control registers Control registers expand to 64 bits. A new control register (the task priority register: CR8 or TPR) has been added. See Chapter 2, "Intel® 64 and IA-32 Architectures," in this volume.
- **Debug registers** Debug registers expand to 64 bits. See Chapter 17, "Debug, Branch Profile, TSC, and Quality of Service," in the *Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.*

• **Descriptor table registers** — The global descriptor table register (GDTR) and interrupt descriptor table register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

Figure 3-2 64-Bit Mode Execution Environment

. . .

3.3.7.1 Canonical Addressing

In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation of IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address must have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in canonical form, the implementation should generate an exception. In most cases, a general-protection exception (#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/POP-related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is #SS.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a canonical fault generates a #GP (instead of an #SS). In 64-bit mode, only FS and GS segment-overrides are applicable in this situation. Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also means that an SS segment-override applied to a "non-stack" register reference is ignored. Such a sequence still produces a #GP for a canonical fault (and not an #SS).

...

2. Updates to Chapter 5, Volume 1

Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

...

Table 5-2 Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set Architecture	Processor Generation Introduction
SSE4.1 Extensions	Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000 series.
SSE4.2 Extensions, CRC32, POPCNT	Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.
AESNI, PCLMULQDQ	Intel Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.
Intel AVX	Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.
F16C, RDRAND, FS/GS base access	3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation Intel Xeon processors, Intel Xeon processor E5 v2 and E7 v2 families.
FMA, AVX2, BMI1, BMI2, INVPCID	Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.
TSX	Intel Xeon processor E7 v3 product family
ADX, RDSEED, CLAC, STAC	Intel Core M processor family; 5th Generation Intel Core processor family.

...

3. Updates to Chapter 13, Volume 1

Change bars show changes to Chapter 13 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

...

The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5, "FXSAVE and FXRSTOR Instructions") by supporting the saving and restoring of processor state in addition to the x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state).

The **XSAVE** feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT, XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are corresponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and XRSTOR can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0. In addition to XCR0, the XSAVES and XRSTORS instructions are controlled also by the IA32_XSS MSR (index DA0H).

The XSAVE feature set organizes the state that manages into **state components**. Operation of the instructions is based on **state-component bitmaps** that have the same format as XCR0 and as the IA32_XSS MSR: each bit corresponds to a state component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for **XSAVE-enabled features** (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how software can enable the XSAVE feature set and XSAVE-enabled features.

The XSAVE feature set allows saving and loading processor state from a region of memory called an **XSAVE** area. Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-managed state component is associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-managed state components.

Section 13.7 through Section 13.12 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and XRSTORS, respectively.

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS

The XSAVE feature set supports the saving and restoring of **state components**, each of which is a discrete set of processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU feature. Such a feature is **XSAVE-supported**. Some XSAVE-supported features use registers in multiple XSAVE-managed state components.

The XSAVE feature set organizes the state components of the XSAVE-supported features using **state-component bitmaps**. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single state component. The following bits are defined in state-component bitmaps:

- Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See Section 13.5.1.
- Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (**SSE state**). See Section 13.5.2.
- Bit 2 corresponds to the state component used for the additional register state used by the Intel[®] Advanced Vector Extensions (AVX state). See Section 13.5.3.

- Bits 4:3 correspond to the two state components used for the additional register state used by Intel[®] Memory Protection Extensions (MPX state):
 - State component 3 is used for the 4 128-bit bounds registers BND0-BND3 (BNDREGS state).
 - State component 4 is used for the 64-bit user-mode MPX configuration register BNDCFGU and the 64-bit MPX status register BNDSTATUS (BNDCSR state).
- Bits 7:5 correspond to the three state components used for the additional register state used by Intel[®]
 Advanced Vector Extensions 512 (AVX-512 state):
 - State component 5 is used for the 8 64-bit opmask registers k0-k7 (opmask state).
 - State component 6 is used for the upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values are denoted ZMM0_H–ZMM15_H (ZMM_Hi256 state).
 - State component 7 is used for the 16 512-bit registers ZMM16-ZMM31 (Hi16_ZMM state).
- Bit 8 corresponds to the state component used for the Intel Processor Trace MSRs (PT state).
- Bit 9 corresponds to the state component used for the protection-key feature's register PKRU (**PKRU state**). See Section 13.5.7.

Bits in the range 62:10 are not currently defined in state-component bitmaps and are reserved for future expansion. As individual state component is defined within bits 62:10, additional sub-sections are updated within Section 13.5 over time. Bit 63 is used for special functionality in some bitmaps and does not correspond to any state component.

The state component corresponding to bit *i* of state-component bitmaps is called **state component** *i*. Thus, x87 state is state component 0; SSE state is state component 1; AVX state is state component 2; MPX state comprises state components 3–4; AVX-512 state comprises state components 5–7; PT state is state component 8; and PKRU state is state component 9.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit operand (in EDX:EAX), called the **instruction mask**, which is the state-component bitmap that specifies the state components on which the instruction operates.

Some state components are **user state components**, and they can be managed by the entire XSAVE feature set. Other state components are **supervisor state components**, and they can be managed only by XSAVES and XRSTORS. All the state components corresponding to bits in the range 9:0 are user state components, except PT state (corresponding to bit 8), which is a supervisor state component.

Extended control register XCR0 contains a state-component bitmap that specifies the user state components that software has enabled the XSAVE feature set to manage. If the bit corresponding to a state component is clear in XCR0, instructions in the XSAVE feature set will not operate on that state component, regardless of the value of the instruction mask.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the supervisor state components that software has enabled XSAVES and XRSTORS to manage (XSAVE, XSAVEC, XSAVEOPT, and XRSTOR cannot manage supervisor state components). If the bit corresponding to a state component is clear in the IA32_XSS MSR, XSAVES and XRSTORS will not operate on that state component, regardless of the value of the instruction mask.

Some XSAVE-supported features can be used only if XCR0 has been configured so that the features' state components can be managed by the XSAVE feature set. (This applies only to features with user state components.) Such state components and features are **XSAVE-enabled**. In general, the processor will not modify (or allow modification of) the registers of a state component of an XSAVE-enabled feature if the bit corresponding to that state component is clear in XCR0. (If software clears such a bit in XCR0, the processor preserves the corresponding state component.) If an XSAVE-enabled feature has not been fully enabled in XCR0, execution of any instruction defined for that feature causes an invalid-opcode exception (#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if $CR4.OSXSAVE[bit\ 18] = 1$. If CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state features and their state components as if all bits in XCR0 were clear; the state components cannot be modified and the features' instructions cannot be executed.

The state components for x87 state, for SSE state, for PT state, and for PKRU state are XSAVE-managed but the corresponding features are not XSAVE-enabled. Processors allow modification of this state, as well as execution of x87 FPU instructions and SSE instructions and use of Intel Processor Trace and protection keys, regardless of the value of CR4.OSXSAVE and XCR0.

13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND XSAVE-SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using the CPUID instruction. The following items provide specific details:

- CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:
 - If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV; the processor provides no further enumeration through CPUID function 0DH (see below).
 - If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.¹
 Further enumeration is provided through CPUID function 0DH.

CR4.OSXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.

- CPUID function 0DH enumerates details of CPU support through a set of sub-functions. Software selects a specific sub-function by the value placed in the ECX register. The following items provide specific details:
 - CPUID function 0DH, sub-function 0.
 - EDX:EAX is a bitmap of all the user state components that can be managed using the XSAVE feature set. A bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap. Every processor that supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).
 - If EAX[i] = 1 (for 1 < i < 32) or EDX[i-32] = 1 (for $32 \le i < 63$), sub-function i enumerates details for state component i (see below).
 - ECX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all the user state components supported by this processor.
 - EBX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all the user state components corresponding to bits currently set in XCR0.
 - CPUID function 0DH, sub-function 1.
 - EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).
 - EAX[1] enumerates support for **compaction extensions** to the XSAVE feature set. The following are supported if this bit is 1:
 - The compacted format of the extended region of XSAVE areas (see Section 13.4.3).
 - The XSAVEC instruction. If EAX[1] = 0, execution of XSAVEC causes a #UD.
 - Execution of the compacted form of XRSTOR (see Section 13.8).
 - EAX[2] enumerates support for execution of XGETBV with ECX = 1. This allows software to determine the state of the init optimization. See Section 13.6.
 - EAX[3] enumerates support for XSAVES, XRSTORS, and the IA32_XSS MSR. If EAX[3] = 0, execution of XSAVES or XRSTORS causes a #UD; an attempt to access the IA32_XSS MSR using RDMSR or

^{1.} If CPUID.1:ECX.XSAVE[bit 26] = 1, XGETBV and XSETBV may be executed with ECX = 0 (to read and write XCRO). Any support for execution of these instructions with other values of ECX is enumerated separately.

WRMSR causes a general-protection exception (#GP). Every processor that supports a supervisor state component sets EAX[3]. Every processor that sets EAX[3] (XSAVES, XRSTORS, IA32_XSS) will also set EAX[1] (the compaction extensions).

- EAX[31:4] are reserved.
- EBX enumerates the size (in bytes) required by the XSAVES instruction for an XSAVE area containing all the state components corresponding to bits currently set in XCR0 | IA32_XSS.
- EDX:ECX is a bitmap of all the supervisor state components that can be managed by XSAVES and XRSTORS. A bit can be set in the IA32_XSS MSR if and only if the corresponding bit is set in this bitmap.

NOTE

In summary, the XSAVE feature set supports state component i ($0 \le i < 63$) if one of the following is true: (1) i < 32 and CPUID.(EAX=0DH,ECX=0):EAX[i] = 1; (2) $i \ge 32$ and CPUID.(EAX=0DH,ECX=1):ECX[i] = 1; or (4) $i \ge 32$ and CPUID.(EAX=0DH,ECX=1):EDX[i-32] = 1. The XSAVE feature set supports user state component i if (1) or (2) holds; if (3) or (4) holds, state component i is a supervisor state component and support is limited to XSAVES and XRSTORS.

- CPUID function 0DH, sub-function i(i > 1). This sub-function enumerates details for state component i. If
 the XSAVE feature set supports state component i (see note above), the following items provide specific
 details:
 - EAX enumerates the size (in bytes) required for state component i.
 - If state component *i* is a user state component, EBX enumerates the offset (in bytes, from the base of the XSAVE area) of the section used for state component *i*. (This offset applies only when the standard format for the extended region of the XSAVE area is being used; see Section 13.4.3.)
 - If state component *i* is a supervisor state component, EBX returns 0.
 - If state component / is a user state component, ECX[0] return 0; if state component / is a supervisor state component, ECX[0] returns 1.
 - The value returned by ECX[1] indicates the alignment of state component *i* when the compacted format of the extended region of an XSAVE area is used (see Section 13.4.3). If ECX[1] returns 0, state component *i* is located immediately following the preceding state component; if ECX[1] returns 1, state component *i* is located on the next 64-byte boundary following the preceding state component.
 - ECX[31:2] and EDX return 0.

If the XSAVE feature set does not support state component *i*, sub-function *i* returns 0 in EAX, EBX, ECX, and EDX.

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES

Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruction). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual bits in XCR0:

- XCR0[0] is associated with x87 state (see Section 13.5.1). XCR0[0] is always 1. It has that value coming out
 of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is
 0.
- XCR0[1] is associated with SSE state (see Section 13.5.2). Software can use the XSAVE feature set to manage SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can execute SSE instructions (these instructions can be executed even if XCR0[1] = 0).
 - XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature set allows software to set XCR0[1].
- XCR0[2] is associated with AVX state (see Section 13.5.3). Software can use the XSAVE feature set to manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if CR4.OSXSAVE = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-opcode exception (#UD).

XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the XSAVE feature set for AVX state but not for SSE state.

As noted in Section 13.1, the processor will preserve AVX state unmodified if software clears XCR0[2]. However, clearing XCR0[2] while AVX state is not in its initial configuration may cause SSE instructions to incur a power and performance penalty. See Section 13.5.3, "Enable the Use Of XSAVE Feature Set And XSAVE State Components" of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A, for how system software can avoid this penalty.

- XCR0[4:3] are associated with MPX state (see Section 13.5.4). Software can use the XSAVE feature set to
 manage MPX state only if XCR0[4:3] = 11b. In addition, software can execute MPX instructions only if
 CR4.OSXSAVE = 1 and XCR0[4:3] = 11b. Otherwise, any execution of an MPX instruction causes an invalidopcode exception (#UD).¹
 - XCR0[4:3] have value 00b coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[4:3] to 11b if and only if CPUID.(EAX=0DH,ECX=0): EAX[4:3] = 11b. In addition, executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[4:3] is neither 00b nor 11b; that is, software can enable the XSAVE feature set for MPX state only if it does so for both state components.
 - As noted in Section 13.1, the processor will preserve MPX state unmodified if software clears XCR0[4:3].
- XCR0[7:5] are associated with AVX-512 state (see Section 13.5.5). Software can use the XSAVE feature set to manage AVX-512 state only if XCR0[7:5] = 111b. In addition, software can execute AVX-512 instructions only if CR4.OSXSAVE = 1 and XCR0[7:5] = 111b. Otherwise, any execution of an AVX-512 instruction causes an invalid-opcode exception (#UD).
 - XCR0[7:5] have value 000b coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[7:5] to 111b if and only if CPUID.(EAX=0DH,ECX=0):EAX[7:5] = 111b. In addition, executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[7:5] is not 000b, and any bit is clear in EAX[2:1] or EAX[7:5]; that is, software can enable the XSAVE feature set for AVX-512 state only if it does so for all three state components, and only if it also does so for AVX state and SSE state. This implies that the value of XCR[7:5] is always either 000b or 111b.

As noted in Section 13.1, the processor will preserve AVX-512 state unmodified if software clears XCR0[7:5]. However, clearing XCR0[7:5] while AVX-512 state is not in its initial configuration may cause SSE and AVX instructions to incur a power and performance penalty. See Section 13.5.3, "Enable the Use Of XSAVE Feature Set And XSAVE State Components" of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A, for how system software can avoid this penalty.

- XCR0[9] is associated with PKRU state (see Section 13.5.7). Software can use the XSAVE feature set to manage PKRU state only if XCR0[9] = 1. The value of XCR0[9] in no way determines whether software can
- 1. If XCR0[3] = 0, executions of CALL, RET, IMP, and Icc do not initialize the bounds registers.

use protection keys or execute other instructions that access PKRU state (these instructions can be executed even if XCR0[9] = 0).

XCR0[9] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[9] if and only if CPUID.(EAX=0DH,ECX=0):EAX[9]=1.

XCR0[63:10] and XCR0[8] are reserved.¹ Executing the XSETBV instruction causes a general-protection fault
(#GP) if ECX = 0 and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are all 0 coming out of
RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the XSAVE feature set regardless of CPL:

- The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been enabled in CR4.
- Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

- 1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.
 - If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.
 - If the bit is 1, the processor supports the XSAVE feature set including the XGETBV instruction and it has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0] is always 1). Software requiring more detailed information can go on to the next step.
- 2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and software can execute AVX instructions. If XCR0[4:3] is 11b, the XSAVE feature set can be used to manage MPX state and software can execute MPX instructions. If XCR0[7:5] is 111b, the XSAVE feature set can be used to manage AVX-512 state and software can execute AVX-512 instructions. If XCR0[9] = 1, the XSAVE feature set can be used to manage PKRU state.

The IA32_XSS MSR (with MSR index DA0H) is zero coming out of RESET. If CR4.OSXSAVE = 1, CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes the 64-bit value in EDX:EAX to the IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to IA32_XSS[63:32]). The following items provide details regarding individual bits in the IA32_XSS MSR:

- IA32_XSS[8] is associated with PT state (see Section 13.5.6). Software can use XSAVES and XRSTORS to manage PT state only if IA32_XSS[8] = 1. The value of IA32_XSS[8] does not determine whether software can use Intel Processor Trace (the feature can be used even if IA32_XSS[8] = 0).
- IA32_XSS[63:9] and IA32_XSS[7:0] are reserved. Executing the WRMSR instruction causes a general-protection fault (#GP) if ECX = DA0H and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are all 0 coming out of RESET.

The IA32_XSS MSR is 0 coming out of RESET.

There is no mechanism by which software operating with CPL > 0 can discover the value of the IA32 XSS MSR.

...

^{1.} Bit 8 corresponds to a supervisor state component. Since bits can be set in XCRO only for user state components, that bit of XCRO must be 0.

^{2.} Bit 9 and bits 7:0 correspond to user state components. Since bits can be set in the IA32_XSS MSR only for supervisor state components, those bits of the MSR must be 0.

13.4.1 Legacy Region of an XSAVE Area

The legacy region of an XSAVE area comprises the 512 bytes starting at the area's base address. It has the same format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the legacy region of an XSAVE area.

Table 13-1 Format of the Legacy Region of an XSAVE Area

15 14	13 12	11 10	9 8	7 6	5	4	3 2	1 0	
Reserved	CS or FPU IP bits 63:32	FPU IP	bits 31:0	FOP	Rsvd.	FTW	FSW	FCW	0
MXCSR_MASK MXC		CSR Reserved FPU DP FPU DP bits 3		bits 31:0	16				
	Reserved				ST0/	MM0			32
	Reserved				ST1/	MM1			48
	Reserved				ST2/	MM2			64
	Reserved				ST3/	MM3			80
	Reserved				ST4/	MM4			96
	Reserved				ST5/	MM5			112
	Reserved				ST6/	MM6			128
	Reserved		ST7/MM7				144		
			XIV	M0					160
			XIV	M1					176
			XIV	M2					192
			XIV	M3					208
			XIV	M4					224
			XIV	M5					240
			XIV	M6					256
			XIV	M7					272
	XMM8						288		
	XMM9					304			
XMM10					320				
XMM11					336				
XMM12						352			
XMM13					368				
XMM14					384				
XMM15					400				

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the legacy region of an XSAVE area.

...

13.5.1 x87 State

Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87 state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state as a user state component in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the x87 state is listed below, along with details of its interactions with the XSAVE feature set:

- Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW), and the x87 FPU Opcode (FOP), respectively.
- Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:
 - For each j, $0 \le j \le 7$, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of byte 4.
 - For each j, $0 \le j \le 7$, XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as follows. If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see below).
- Bytes 15:8 are used as follows:
 - If the instruction has no REX prefix, or if REX.W = 0:
 - Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).
 - If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer Selector (FPU CS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H, and XRSTOR and XRSTORS ignore them.
 - Bytes 15:14 are not used.
 - If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
- Bytes 23:16 are used as follows:
 - If the instruction has no REX prefix, or if REX.W = 0:
 - Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).
 - If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector (FPU DS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H; and XRSTOR and XRSTORS ignore them.
 - Bytes 23:22 are not used.
 - If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
- Bytes 31:24 are used for SSE state (see Section 13.5.2).
- Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but the x87 FPU feature is not XSAVE-enabled. The XSAVE feature set can operate on x87 state only if the feature set is enabled (CR4.OSXSAVE = 1). Software can otherwise use x87 state even if the XSAVE feature set is not enabled.

^{1.} The processor ensures that XCR0[0] is always 1.

13.5.2 SSE State

Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (**SSE state**) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state as a user state component in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is listed below, along with details of its interactions with the XSAVE feature set:

- Bytes 23:0 are used for x87 state (see Section 13.5.1).
- Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults (#GP) in response to attempts to set any of the reserved bits of the MXCSR register.¹

13.5.3 **AVX State**

The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16 256-bit vector registers called YMM0-YMM15. The low 128 bits of each register YMM*i* is identical to the SSE register XMM*i*. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers YMM0-YMM15. These 16 128-bit values are denoted YMM0_H-YMM15_H and are collectively called **AVX state**.

As noted in Section 13.1, the XSAVE feature set manages AVX state as user state component 2. Thus, AVX state is located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=2):EAX enumerates the size (in bytes) required for AVX state.

The XSAVE feature set partitions YMM0_H-YMM15_H in a manner similar to that used for the XMM registers (see Section 13.5.2). Bytes 127:0 of the AVX-state section are used for YMM0_H-YMM7_H. Bytes 255:128 are used for YMM8_H-YMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit mode do not update YMM8_H-YMM15_H. See Section 13.13.

AVX state is XSAVE-managed and the AVX feature is XSAVE-enabled. The XSAVE feature set can operate on AVX state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state (XCR0[2] = 1). AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured to manage AVX state.

13.5.4 MPX State

The register state used by the Intel[®] Memory Protection Extensions (MPX) comprises the 4 128-bit bounds registers BND0-BND3 (**BNDREG state**); and the 64-bit user-mode configuration register BNDCFGU and the 64-bit MPX status register BNDSTATUS (collectively, **BNDCSR state**). Together, these two user state components compose **MPX state**.

As noted in Section 13.1, the XSAVE feature set manages MPX state as state components 3–4. Thus, MPX state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these state components are organized in this region:

BNDREG state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=3):EBX enumerates the offset (in bytes, from the base of the XSAVE area) of the section of the extended region of the XSAVE area used for BNDREG state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in bytes) required for BNDREG state.

^{1.} While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the XMM registers. See Section 13.7 through Section 13.11 for details.

• BNDCSR state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=4):EBX enumerates the offset of the section of the extended region of the XSAVE area used for BNDCSR state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for BNDCSR state.

Both components of MPX state are XSAVE-managed and the MPX feature is XSAVE-enabled. The XSAVE feature set can operate on MPX state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage MPX state (XCR0[4:3] = 11b). MPX instructions cannot be used unless the XSAVE feature set is enabled and has been configured to manage MPX state.

13.5.5 AVX-512 State

The register state used by the Intel[®] Advanced Vector Extensions 512 (AVX-512) comprises the MXCSR register, the 8 64-bit opmask registers k0-k7, and 32 512-bit vector registers called ZMM0-ZMM31. For each i, 0 <= i <= 15, the low 256 bits of register ZMMi is identical to the AVX register YMMi. Thus, the new state register state added by AVX comprises the following user state components:

- The opmask registers, collective called **opmask state**.
- The upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values are denoted ZMM0_H–ZMM15_H and are collectively called **ZMM_Hi256** state.
- The 16 512-bit registers ZMM16–ZMM31, collectively called **Hi16_ZMM** state.

Together, these three state components compose AVX-512 state.

As noted in Section 13.1, the XSAVE feature set manages AVX-512 state as state components 5–7. Thus, AVX-512 state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these state components are organized in this region:

· Opmask state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=5):EBX enumerates the offset (in bytes, from the base of the XSAVE area) of the section of the extended region of the XSAVE area used for opmask state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in bytes) required for opmask state.

ZMM_Hi256 state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=6):EBX enumerates the offset of the section of the extended region of the XSAVE area used for ZMM_Hi256 state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for ZMM_Hi256 state.

The XSAVE feature set partitions ZMM0_H-ZMM15_H in a manner similar to that used for the XMM registers (see Section 13.5.2). Bytes 255:0 of the ZMM_Hi256-state section are used for ZMM0_H-ZMM7_H. Bytes 511:256 are used for ZMM8_H-ZMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify bytes 511:256; executions of XRSTOR and XRSTORS outside 64-bit mode do not update ZMM8_H-ZMM15_H. See Section 13.13.

Hi16_ZMM state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=7):EBX enumerates the offset of the section of the extended region of the XSAVE area used for Hi16_ZMM state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=7):EAX enumerates the size (in bytes) required for Hi16_ZMM state.

The XSAVE feature set accesses Hi16_ZMM state only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify the Hi16_ZMM section; executions of XRSTOR and XRSTORS outside 64-bit mode do not update ZMM16–ZMM31. See Section 13.13.

All three components of AVX-512 state are XSAVE-managed and the AVX-512 feature is XSAVE-enabled. The XSAVE feature set can operate on AVX-512 state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX-512 state (XCR0[7:5] = 111b). AVX-512 instructions cannot be used unless the XSAVE feature set is enabled and has been configured to manage AVX-512 state.

13.5.6 PT State

The register state used by Intel Processor Trace (**PT state**) comprises the following 13 MSRs: IA32_RTIT_CTL, IA32_RTIT_OUTPUT_BASE, IA32_RTIT_OUTPUT_MASK_PTRS, IA32_RTIT_STATUS, IA32_RTIT_CR3_MATCH, IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, and IA32_RTIT_ADDR3_B.¹

As noted in Section 13.1, the XSAVE feature set manages PT state as supervisor state component 8. Thus, PT state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2, CPUID.(EAX=0DH,ECX=8):EAX enumerates the size (in bytes) required for PT state. Each of the MSRs is allocated 8 bytes in the state component, with IA32_RTIT_CTL at byte offset 0, IA32_RTIT_OUTPUT_BASE at byte offset 8, etc. Any locations in the state component at or beyond byte offset 72 are reserved.

PT state is XSAVE-managed but Intel Processor Trace is not XSAVE-enabled. The XSAVE feature set can operate on PT state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage PT state (IA32_XSS[8] = 1). Software can otherwise use Intel Processor Trace and access its MSRs (using RDMSR and WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage PT state.

The following items describe special treatment of PT state by the XSAVES and XRSTORS instructions:

- If XSAVES saves PT state, the instruction clears IA32_RTIT_CTL.TraceEn (bit 0) after saving the value of the IA32_RTIT_CTL MSR and before saving any other PT state. If XSAVES causes a fault or a VM exit, it restores IA32_RTIT_CTL.TraceEn to its original value.
- If XRSTORS would restore (or initialize) PT state and IA32_RTIT_CTL.TraceEn = 1, the instruction causes a general-protection exception (#GP) before modifying PT state.
- If XRSTORS causes an exception or a VM exit, it does so before any modification to IA32_RTIT_CTL.TraceEn (even if it has loaded other PT state).

13.5.7 PKRU State

The register state used by the protection-key feature (**PKRU state**) is the 32-bit PKRU register. As noted in Section 13.1, the XSAVE feature set manages PKRU state as user state component 9. Thus, PKRU state is located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=9):EBX enumerates the offset (in bytes, from the base of the XSAVE area) of the section of the extended region of the XSAVE area used for PKRU state (when the standard format of the extended region is used). CPUID.(EAX=0DH,ECX=9):EAX enumerates the size (in bytes) required for PKRU state. The XSAVE feature set uses bytes 3:0 of the PK-state section for the PKRU register.

PKRU state is XSAVE-managed but the protection-key feature is not XSAVE-enabled. The XSAVE feature set can operate on PKRU state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage PKRU state (XCR0[9] = 1). Software can otherwise use protection keys and access PKRU state even if the XSAVE feature set is not enabled or has not been configured to manage PKRU state.

The value of the PKRU register determines the access right for user-mode linear addresses. (See Section 4.6, "Access Rights," of Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.) The access rights that pertain to an execution of the XRSTOR and XRSTORS instructions are determined by the value of the register before the execution and not by any value that the execution might load into the PKRU register.

Some of these MSRs are not supported by every processor that supports Intel Processor Trace. Software can use the CPUID instruction to discover which are supported; see Section 36.3.1, "Detection of Intel Processor Trace and Capability Enumeration," of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C.

13.6 PROCESSOR TRACKING OF XSAVE-MANAGED STATE

The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimization to reduce the amount of data that they write to memory. They avoid writing data for any state component known to be in its initial configuration (the **init optimization**). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the most recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose configuration is known not to have been modified since then (the **modified optimization**). (XSAVE does not use these optimizations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and XSAVES are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state components that might benefit from those optimizations. Other implementations might not include such hardware; such a processor would always consider each such state component as not in its initial configuration and as modified since the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:

- XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. It is possible for XINUSE[i] to be 1 even when state component i is in its initial configuration. On a processor that does not support the init optimization, XINUSE[i] is always 1 for every value of i.
 - Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0 and the current value of the XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCR0[1] = 1 and MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether a processor supports this use of XGETBV.
- XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If XMODIFIED[i] = 0, state component i is known not to have been modified since the most recent execution of XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. It is possible for XMODIFIED[i] to be 1 even when state component i has not been modified since the most recent execution of XRSTOR or XRSTORS. On a processor that does not support the modified optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of XRSTOR or XRSTORS in a quantity called **XRSTOR_INFO**, a 4-tuple containing the following: (1) the CPL; (2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and (4) the XCOMP_BV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that an execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different application. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

The following items specify the initial configuration each state component (for the purposes of defining the XINUSE bitmap):

- x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; FTW is FFFFH; FPU CS and FPU DS are each 0000H; FPU IP and FPU DP are each 00000000_0000000H; each of ST0-ST7 is 0000_0000000_0000000H.
- SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update XMM8–XMM15. (See Section 13.13.)
- AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H-YMM15_H is 0. Outside 64-bit mode, AVX state is in its initial configuration if each of YMM0_H-YMM7_H is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update YMM8_H-YMM15_H. (See Section 13.13.)
- BNDREG state. BNDREG state is in its initial configuration if the value of each of BND0-BND3 is 0.
- BNDCSR state. BNDCSR state is in its initial configuration if BNDCFGU and BNDCSR each has value 0.

- Opmask state. Opmask state is in its initial configuration if each of the opmask registers k0-k7 is 0.
- ZMM_Hi256 state. In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H-ZMM15_H is 0. Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H-ZMM7_H is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H-ZMM15_H. (See Section 13.13.)
- Hi16_ZMM state. In 64-bit mode, Hi16_ZMM state is in its initial configuration if each of ZMM16-ZMM31 is
 0. Outside 64-bit mode, Hi16_ZMM state is always in its initial configuration. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM31-ZMM31. (See Section 13.13.)
- PT state. PT state is in its initial configuration if each of the 9 MSRs is 0.
- PKRU state. PKRU state is in its initial configuration if the value of the PKRU is 0.

13.7 OPERATION OF XSAVE

The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the **instruction mask**. The logical-AND of XCR0 and the instruction mask is the **requested-feature bitmap** (**RFBM**) of the user state components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:

- If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
- If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
- If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.¹

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 \le i \le 63) as follows:

- If RFBM[/] = 0, XSTATE_BV[/] is not changed.
- If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the processor init optimization and specifies the initial configuration of each state component. The nature of that optimization implies the following:
 - If state component / is in its initial configuration, XINUSE[/] may be either 0 or 1, and XSTATE_BV[/] may be written with either 0 or 1.
 - XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may be written with 0 even if MXCSR does not have its RESET value of 1F80H.
 - If state component i is not in its initial configuration, XINUSE[i] = 1 and XSTATE_BV[i] is written with 1. (As explained in Section 13.6, the initial configurations of some state components may depend on whether the processor is in 64-bit mode.)

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular, it does **not** write to the XCOMP_BV field.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM. State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state component i, $2 \le i \le 62$, is located in the extended region; the XSAVE instruction always uses the standard format for the extended region (see Section 13.4.3).

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

^{1.} If CRO.AM = 1, CPL = 3, and EFLAGS.AC = 1, an alignment-check exception (#AC) may occur instead of #GP.

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.

13.8 OPERATION OF XRSTOR

The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the **instruction mask**. The logical-AND of XCR0 and the instruction mask is the **requested-feature bitmap** (**RFBM**) of the user state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:

- If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
- If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
- If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.¹

After checking for these faults, the XRSTOR instruction reads the XCOMP_BV field in the XSAVE area's XSAVE header (see Section 13.4.2). If XCOMP_BV[63] = 0, the **standard form of XRSTOR** is executed (see Section 13.8.1); otherwise, the **compacted form of XRSTOR** is executed (see Section 13.8.2).²

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

...

13.9 OPERATION OF XSAVEOPT

The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by which it may omit saving state components that are in their initial configuration) and the modified optimization (by which it may omit saving state components that have not been modified since the last execution of XRSTOR); see Section 13.6. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the **instruction mask**. The logical (bitwise) AND of XCR0 and the instruction mask is the **requested-feature bitmap** (**RFBM**) of the user state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:

- If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
- If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
- If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.³

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2) and writes it back to memory, setting XSTATE BV[i] ($0 \le i \le 63$) as follows:

• If RFBM[i] = 0, XSTATE_BV[i] is not changed.

^{1.} If CRO.AM = 1, CPL = 3, and EFLAGS.AC = 1, an alignment-check exception (#AC) may occur instead of #GP.

^{2.} If the processor does not support the compacted form of XRSTOR, it may execute the standard form of XRSTOR without first reading the XCOMP_BV field. A processor supports the compacted form of XRSTOR only if it enumerates CPUID.(EAX=0DH,ECX=1):EAX[1] as 1.

^{3.} If CRO.AM = 1, CPL = 3, and EFLAGS.AC = 1, an alignment-check exception (#AC) may occur instead of #GP.

- If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the processor init optimization and specifies the initial configuration of each state component. The nature of that optimization implies the following:
 - If the state component is in its initial configuration, XINUSE[/] may be either 0 or 1, and XSTATE_BV[/] may be written with either 0 or 1.
 - XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may be written with 0 even if MXCSR does not have its RESET value of 1F80H.
 - If the state component is not in its initial configuration, XSTATE_BV[/] is written with 1.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the processor is in 64-bit mode.)

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular, it does not write to the XCOMP BV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state component i, $2 \le i \le 62$, is located in the extended region; the XSAVEOPT instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:

• Init optimization.

If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for exceptions made for MXCSR.)

Modified optimization.

Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple $\langle w, x, y, z \rangle$ (see Section 13.8.3 and Section 13.12). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the current value of XRSTOR_INFO:

- w = CPL:
- -x=1 if and only if the logical processor is in VMX non-root operation;
- y is the linear address of the XSAVE area being used by XSAVEOPT; and
- z is 00000000_0000000H. (This last item implies that XSAVEOPT does not use the modified optimization
 if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last
 execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not saved to the XSAVE area.

(In practice, the benefit of the modified optimization for state component *i* depends on how the processor is tracking state component *i*; see Section 13.6. Limitations on the tracking ability may result in state component *i* being saved even though is in the same configuration that was loaded by the previous execution of XRSTOR.)

Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the modified optimization when the most recent execution of XRSTOR was by a different application. Because of this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0). The init and modified optimizations do not apply to the MXCSR register and MXCSR MASK.

13.10 OPERATION OF XSAVEC

The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.6). Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to determine whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the **instruction mask**. The logical (bitwise) AND of XCR0 and the instruction mask is the **requested-feature bitmap** (**RFBM**) of the user state components to be saved.

The following conditions cause execution of the XSAVEC instruction to generate a fault:

- If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
- If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
- If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.¹

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header (see Section 13.4.2), setting XSTATE_BV[i] ($0 \le i \le 63$) as follows:²

- If RFBM[/] = 0, XSTATE_BV[/] is written as 0.
- If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the initial configuration of each state component. The nature of that optimization implies the following:
 - If state component / is in its initial configuration, XSTATE_BV[/] may be written with either 0 or 1.
 - If state component / is not in its initial configuration, XSTATE BV[/] is written with 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and MXCSR does not have the value 1F80H, XSAVEC writes XSTATE BV[1] as 1 even if XINUSE[1] = 0.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the processor is in 64-bit mode.)

The XSAVEC instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the XSTATE_BV and XCOMP_BV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in RFBM (subject to the init optimization described below). State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state component i, $2 \le i \le 62$, is located in the extended region; the XSAVEC instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 and MXCSR does not have the value 1F80H, XSAVEC writes saves all of state component 1 (SSE — including the XMM registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether XSAVEC saves MXCSR and MXCSR MASK.

^{1.} If CRO.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

^{2.} Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does **not** read the XSTATE BV field of the XSAVE header.

13.11 OPERATION OF XSAVES

The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS and can thus operate on supervisor state components; and (3) XSAVES uses the modified optimization (see Section 13.6). See Section 13.2 for details of how to determine whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the **instruction mask**. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and IA32_XSS) is the **requested-feature bitmap** (**RFBM**) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:

- If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
- If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
- If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.¹

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header (see Section 13.4.2), setting XSTATE_BV[i] ($0 \le i \le 63$) as follows:

- If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
- If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the initial configuration of each state component. The nature of that optimization implies the following:
 - If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.
 - If state component / is not in its initial configuration, XSTATE BV[/] is written with 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and MXCSR does not have the value 1F80H, XSAVES writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the processor is in 64-bit mode.)

The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to XCOMP_BV[62:0]. The XSAVES instruction does not write any part of the XSAVE header other than the XSTATE_BV and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state component i, $2 \le i \le 62$, is located in the extended region; the XSAVES instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and operation determined by instruction prefixes; in particular, see Section 13.5.6 for some special treatment of PT state by XSAVES. See Section 13.13 for details regarding faults caused by memory accesses.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple $\langle w, x, y, z \rangle$ (see Section 13.8.3 and Section 13.12). Execution of XSAVES uses the modified optimization only if the following all hold:

w = CPL;

^{1.} If CRO.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

- x = 1 if and only if the logical processor is in VMX non-root operation;
- y is the linear address of the XSAVE area being used by XSAVEOPT; and
- z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimization if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not saved to the XSAVE area.

13.12 OPERATION OF XRSTORS

The operation of XRSTORS is similar to that of XRSTOR. Three main differences are (1) XRSTORS can be executed only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCR0 | IA32_XSS and can thus operate on supervisor state components; and (3) XRSTORS has only a compacted form (no standard form; see Section 13.8). See Section 13.2 for details of how to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the **instruction mask**. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and IA32_XSS) is the **requested-feature bitmap** (**RFBM**) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:

- If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
- If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
- If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.¹

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including the XSTATE_BV and XCOMP_BV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold for the values read:

- XCOMP_BV[63] = 0.
- XCOMP_BV sets a bit in the range 62:0 that is not set in XCR0 | IA32_XSS.
- XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.
- Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. XRSTORS updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:

- If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial configuration of each state component. If XSTATE_BV[1] = 0, XRSTORS initializes MXCSR to 1F80H.
 - State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 **even if XCOMP_BV[i]** = **0**. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).
- If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and operation determined by instruction prefixes; in particular, see Section 13.5.6 for some special treatment of PT state by XRSTORS. See Section 13.13 for details regarding faults caused by memory accesses.

^{1.} If CRO.AM = 1, CPL = 3, and EFLAGS.AC = 1, an alignment-check exception (#AC) may occur instead of #GP.

^{2.} Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i] is also 1.

If XRSTORS is restoring a supervisor state component, the instruction causes a general-protection exception (#GP) if it would load any element of that component with an unsupported value (e.g., by setting a reserved bit in an MSR) or if a bit is set in any reserved portion of the state component in the XSAVE area.

State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state component i, $2 \le i \le 62$, is located in the extended region; XRSTORS uses the compacted format for the extended region (see Section 13.4.3).

The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = $XSTATE_BV[/] = 1$. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an illegal value.

If an execution of XRSTORS causes an exception or a VM exit during or after restoring a supervisor state component, each element of that state component may have the value it held before the XRSTORS execution, the value loaded from the XSAVE area, or the element's initial value (as defined in Section 13.6). See Section 13.5.6 for some special treatment of PT state for the case in which XRSTORS causes an exception or a VM exit.

Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimizations (see Section 13.6 and Section 13.8.3). The following items provide details:

- The processor updates its tracking for the init optimization as follows:
 - If RFBM[/] = 0, XINUSE[/] is not changed.
 - If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 0 or 1.
 - If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
- The processor updates its tracking for the modified optimization and records information about the XRSTORS execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:
 - If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.
 - If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.
 - XRSTOR_INFO is set to the 4-tuple $\langle w_{\downarrow}x, y, z \rangle$, where w is the CPL; x is 1 if the logical processor is in VMX non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this implies that z[63] = 1).

. . .

4. Updates to Chapter 14, Volume 1

Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

...

14.4.1 Detection of F16C Instructions

Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:

- The OS has enabled YMM state management support,
- The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28] = 1.
- The processor support 16-bit floating-point conversion instructions via a CPUID feature flag (CPUID.01H:ECX.F16C[bit 29] = 1).

Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 14-3.

Figure 14-3 General Procedural Flow of Application Detection of Float-16

```
INT supports_f16c()
     ; result in eax
     mov eax, 1
     cpuid
     and ecx, 038000000H
     cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
     jne not_supported
     ; processor supports AVX,F16C instructions and XGETBV is enabled by OS
     mov ecx, 0; specify 0 for XCR0 register
    XGETBV; result in EDX:EAX
    and eax, 06H
    cmp eax, 06H; check OS has enabled both XMM and YMM state support
    jne not_supported
    mov eax, 1
    jmp done
    NOT_SUPPORTED:
    mov eax, 0
     done:
}
```

14.5.3 Detection of FMA

Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.

Application Software must identify that hardware supports AVX, after that it must also detect support for FMA by CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:

```
INT supports_fma()
     ; result in eax
     mov eax, 1
     cpuid
     and ecx, 018001000H
     cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
     jne not_supported
     ; processor supports AVX,FMA instructions and XGETBV is enabled by OS
     mov ecx, 0; specify 0 for XCR0 register
     XGETBV; result in EDX:EAX
     and eax, 06H
     cmp eax, 06H; check OS has enabled both XMM and YMM state support
     jne not_supported
     mov eax, 1
     jmp done
     NOT_SUPPORTED:
     mov eax, 0
     done:
}
```

Note that FMA comprises 256-bit and 128-bit SIMD instructions operating on YMM states.

. . .

14.7.1 Detection of AVX2

Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.

Application Software must identify that hardware supports AVX, after that it must also detect support for AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode sequence for detection of AVX2 is:

```
jne not_supported
     ; processor supports AVX instructions and XGETBV is enabled by OS
     mov eax, 7
     mov ecx, 0
     cpuid
     and ebx, 20H
     cmp ebx, 20H; check AVX2 feature flags
     jne not_supported
     mov ecx, 0; specify 0 for XCR0 register
     XGETBV; result in EDX:EAX
     and eax, 06H
     cmp eax, 06H; check OS has enabled both XMM and YMM state support
     jne not_supported
     mov eax, 1
     jmp done
     NOT_SUPPORTED:
     mov eax, 0
     done:
}
```

14.11 EMULATION

Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software. This technique is not supported with AVX instructions.

If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions to #UD. Emulation of F16C, AVX2, and FMA by operating system can be done similarly as with emulating AVX instructions.

• • •

5. New Chapter 16, Volume 1

New chapter added to volume 1: Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

...

CHAPTER 16 INTEL® MEMORY PROTECTION EXTENSIONS

16.1 INTEL® MEMORY PROTECTION EXTENSIONS (INTEL® MPX)

Intel[®] Memory Protection Extensions (Intel[®] MPX) is a new capability introduced into Intel Architecture. Intel MPX can increase the robustness of software when it is used in conjunction with compiler changes to check memory references, for those references whose compile-time normal intentions are usurped at runtime due to buffer overflow or underflow. Two of the most important goals of Intel MPX are to provide this capability at low performance overhead for newly compiled code, and to provide compatibility mechanisms with legacy software components. A direct benefit Intel MPX provides is hardening software against malicious attacks designed to cause or exploit buffer overruns. This chapter describes the software visible interfaces of this extension.

16.2 INTRODUCTION

Intel MPX is designed to allow a system (i.e., the logical processor(s) and the OS software) to run both Intel MPX enabled software and legacy software (written for processors without Intel MPX). When executing software containing a mixture of Intel MPX-unaware code (legacy code) and Intel MPX-enabled code, the legacy code does not benefit from Intel MPX, but it also does not experience any change in functionality or reduction in performance. The performance of Intel MPX-enabled code running on processors that do not support Intel MPX may be similar to the use of embedding NOPs in the instruction stream.

Intel MPX is designed such that an Intel MPX enabled application can link with, call into, or be called from legacy software (libraries, etc.) while maintaining existing application binary interfaces (ABIs). And in most cases, the benefit of Intel MPX requires minimal changes to the source code at the application programming interfaces (APIs) to legacy library/applications. As described later, Intel MPX associates **bounds** with pointers in a novel manner, and the Intel MPX hardware uses **bounds** to check that the pointer based accesses are suitably constrained. Intel MPX enabled software is not required to uniformly or universally utilize the new hardware capabilities over all memory references. Specifically, programmers can selectively use Intel MPX to protect a subset of pointers.

The code enabled for Intel MPX benefits from memory protection against vulnerability such as buffer overrun. Therefore there is a heightened incentive for software vendors to adopt this technology. At the same time, the security benefit of Intel MPX-protection can be implemented according to the business priorities of software vendors. A software vendor can choose to adopt Intel MPX in some modules to realize partial benefit from Intel MPX quickly, and introduce Intel MPX in other modules in phases (e.g. some programmer intervention might be required at the interface to legacy calls). This adaptive property of Intel MPX is designed to give software vendors control on their schedule and modularity of adoption. It also allows a software vendor to secure defense for higher priority or more attack-prone software first; and allows the use of Intel MPX features in one phase of software engineering (e.g., testing) and not in another (e.g., general release) as dictated by business realities.

The initial goal of Intel MPX is twofold: (1) provide means to defend a system against attacks that originate external to some trust perimeter where the trust perimeter subsumes the system memory and integral data repositories, and (2) provide means to pinpoint accidental logic defects in pointer usage, by undergirding memory references with hardware based pointer validation.

As with any instruction set extensions, Intel MPX can be used by application developers beyond detecting buffer overflow, the processor does not limit the use of Intel MPX for buffer overflow detection.

16.3 INTEL MPX PROGRAMMING ENVIRONMENT

Intel MPX introduces new **bounds registers** and new instructions that operate on bounds registers. Intel MPX allows an OS to support user mode software (operating at CPL=3) and supervisor mode software (CPL < 3) to add memory protection capability against buffer overrun. It provides controls to enable Intel MPX extensions for user mode and supervisor mode independently. Intel MPX extensions are designed to allow software to associate bounds with pointers, and allow software to check memory references against the bounds associated with the pointer to prevent out of bound memory access (thus preventing buffer overflow). The bounds registers hold lower

bound and upper bound that can be checked when referencing memory. An out-of-bounds memory reference then causes a #BR exception. Intel MPX also introduces configuration facilities that the OS must manage to support enabling of user-mode (and/or supervisor-mode) software operations using bounds registers.

16.3.1 Detection and Enumeration of Intel MPX Interfaces

Detection of hardware support for processor extended state component is provided by the main CPUID leaf function 0DH with index ECX = 0. Specifically, the return value in EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware support of processor state components.

If CPUID.(EAX=07H, ECX=0H).EBX.MPX [bit 14] = 1 (the processor supports Intel MPX), bits [4:3] of CPUID.(EAX=0DH, ECX=0) enumerates the state components associated with Intel MPX. The two component states of Intel MPX are:

- BNDREGS: CPUID.(EAX=0DH, ECX=0):EAX[3] indicates XCR0.BNDREGS[bit 3] is supported. This bit indicates bound register component of Intel MPX state, comprised of four bounds registers, BND0-BND3 (see Section 16.3.2).
- BNDCSR: CPUID.(EAX=0DH, ECX=0):EAX[4] indicates XCR0.BNDCSR[bit 4] is supported. This bit indicates bounds configuration and status component of Intel MPX comprised of BNDCFGU and BNDSTATUS. OS must enable both BNDCSR and BNDREGS bits in XCR0 to ensure full Intel MPX support to applications.
- The size of the processor state component, enabled by XCR0.BNDREGS, is enumerated by CPUID.(EAX=0DH, ECX=03H).EAX[31:0] and the byte offset of this component relative to the beginning of the XSAVE/XRSTOR area is reported by CPUID.(EAX=0DH, ECX=03H).EBX[31:0].
- The size of the processor state component, enabled by XCR0.BNDCSR, is enumerated by CPUID.(EAX=0DH, ECX=04H).EAX[31:0] and the byte offset of this component relative to the beginning of the XSAVE/XRSTOR area is reported by CPUID.(EAX=0DH, ECX=04H).EBX[31:0].

On processors that support Intel MPX, CPUID.(EAX=0DH, ECX=0):EAX[3] and CPUID.(EAX=0DH, ECX=0):EAX[4] will both be 1. On processors that do not support Intel MPX, CPUID.(EAX=0DH, ECX=0):EAX[3] and CPUID.(EAX=0DH, ECX=0):EAX[4] will both be 0.

The layout of XCR0 for extended processor state components defined in Intel Architecture is shown in Figure 2-8 of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

Enabling Intel MPX requires an OS to manage bits [4:3] of XCR0, see Section 13.5.

16.3.2 Bounds Registers

Intel MPX Architecture defines four new registers, BND0-BND3, which Intel MPX instructions operate on. Each bounds register stores a pair of 64-bit values which are the lower bound (LB) and upper bound (UB) of a buffer, see Figure 16-1.

Figure 16-1 Layout of the Bounds Registers BND0-BND3

The bounds are unsigned effective addresses, and are inclusive. The upper bounds are architecturally represented in 1's complement form. Lower bound = 0, and upper bound = 0 (1's complement of all 1s) will allow access to the entire address space. The bounds are considered as INIT when both lower and upper bounds are 0 (cover the

entire address space). The two Intel MPX instructions which operate on the upper bound (BNDMK and BNDCU) account for the 1's complement representation of the upper bounds.

The instruction set does not impose any conventions on the use of bounds registers. Software has full flexibility associating pointers to bounds registers including sharing them for multiple pointers.

RESET or INIT# will INIT (write zero) to BND0-BND3.

16.3.3 Configuration and Status Registers

Intel MPX defines two configuration and one status registers. The two configuration registers are defined for user mode (CPL 3) and supervisor mode (CPL 0, 1 and 2). The user-mode configuration register BNDCFGU is accessible only with the XSAVE feature set instructions.

The supervisor mode configuration register is an architecture MSR, referred to as IA32_BNDCFGS (MSR 0D90H). Because both configuration registers share a common layout (see Figure 16-2), when describing the common behavior, these configuration registers are often denoted as BNDCFGx, where x can be U or S, for user and supervisor mode respectively.

Figure 16-2 Common Layout of the Bound Configuration Registers BNDCFGU and BNDCFGS

The Enable bit in BNDCFGU enables Intel MPX in user mode (see Figure 16-2), and the Enable bit in BNDCFGS enables Intel MPX in supervisor mode. The BNDPRESERVE bit controls the initialization behavior of CALL/RET/JMP/Jcc instructions which don't have the BND (0xF2) prefix -- see Section 16.5.3.

The reserved area must be zero for BNDCFGS (WRMSR to BNDCFGS will #GP if the reserved bits of BNDCFGS are not all zeros. XRSTOR of BNDCFGU will not fault if reserved bits are non-zero).

The base of bound directory is a 4K page aligned linear address, and is always in canonical form. Any load into BNDCFGx (XRSTOR or WRMSR) ensures that the highest implemented bit of the linear address is sign extended to guarantee the canonicality of this address.

Intel MPX also defines a status register (BNDSTATUS) primarily used to communicate status information for #BR exception. The layout of the status register is shown in Figure 16-3.

Figure 16-3 Layout of the Bound Status Registers BNDSTATUS

The BNDSTATUS register provides two fields to communicate the status of Intel MPX operations:

- EC (bits 1:0): The error code field communicates status information of a bound range exception #BR or operation involving bound directory.
- ABD: (bits 63:2):The address field of a bound directory entry can provide information when operation on the bound directory caused a #BR.

The valid error codes are defined in Table 16-1.

Table 16-1 Error Code Definition of BNDSTATUS

EC	Description	Meaning
00b ¹	No Intel MPX exception	No exception caused by Intel MPX operations.
01b	Bounds violation	#BR caused by BNDCL, BNDCU or BNDCN instructions; ABD is 0.
10b	Invalid BD entry	#BR caused by BNDLDX or BNDSTX instructions, ABD will be set to the linear address of the invalid Bound directory entry
11b	Reserved	Reserved

NOTES:

1. When legacy BOUND instruction cause a #BR with Intel MPX enabled (see Section 16.5.4), EC is written with Zero.

RESET or INIT# will set BNDCFGx and BNDSTATUS registers to zero.

16.3.4 Read and write to IA32 BNDCFGS

The read and write MSR instructions are used to read/write IA32_BNDCFGS (XSAVE state does not include IA32_BNDCFGS, nor does XSAVES/XRSTORS instruction accesses IA32_BNDCFGS). The write MSR instruction to IA32_BNDCFGS checks for canonicality of the addresses being loaded into IA32_BNDCFGS independent of the mode (loads full 64-bit address and performs canonical address check in both 32-bit and 64-bit modes). It will #GP if canonical address reserved bits (must be zero) check fails.

Software can always read/write IA32_BNDCFGS using read/write MSR instruction as long as the processor implements Intel MPX, i.e. CPUID.(EAX=07H, ECX=0H).EBX.MPX = 1. The states of CR4 and XCR0 have no impact on read/write to IA32_BNDCFGS.

16.4 INTEL MPX INSTRUCTION SUMMARY

When Intel MPX is not enabled or not present, all Intel MPX instructions behave as NOP. There are eight Intel MPX instructions, Table 16-2 provides a summary.

A C/C++ compiler can implement intrinsic support for Intel MPX instructions to facilitate pointer operation with capability of checking for valid bounds on pointers. Typically, Intel MPX intrinsics are implemented by compiler via inline code generation where bounds register allocations are handled by the compiler without requiring the programmer to directly manipulate any bounds registers. Therefore no new data type for a bounds register is needed in the syntax of Intel MPX intrinsics.

Table 16-2 Intel MPX Instruction Summary

Intel MPX Instruction	Description
BNDMK b, m	Create LowerBound (LB) and UpperBound (UB) in the bounds register b
BNDCL b, r/m	Checks the address of a memory reference or address in r against the lower bound
BNDCU b, r/m	Checks the address of a memory reference or address in r against the upper bound in 1's complement form
BNDCN b, r/m	Checks the address of a memory reference or address in r against the upper bound not in 1's complement form
BNDMOV b, b/m	Copy/load LB and UB bounds from memory or a bounds register
BNDMOV b/m, b	Store LB and UB bounds in a bounds register to memory or another register
BNDLDX b, mib	Load bounds using address translation using an sib-addressing expression mib
BNDSTX mib, b	Store bounds using address translation using an sib-addressing expression mib

16.4.1 Instruction Encoding

All Intel MPX instructions are NOP on processors that report CPUID. (EAX=07H, ECX=0H). EBX. MPX [bit 14] = 0, or if Intel MPX is not enabled by the operating system (see Section 13.5). Applications can selectively opt-in to use Intel MPX instructions.

All Intel MPX opcodes encoded to operate on BND0-BND3 are valid Intel MPX instructions. All Intel MPX opcodes encoded to operate on bound registers beyond BND3 will #UD if Intel MPX is enabled.

BNDLDX/BNDSTX opcodes require 66H as a mandatory prefix with its operand size tied to the address size attribute of the supported operating modes. Attempt to override operand size attribute with 66H or with REX.W in 64-bit mode is ignored.

16.4.2 Usage and Examples

BNDMK is typically used after memory is allocated for a buffer, e.g., by functions such as malloc, calloc, or when the memory is allocated on the stack. However, many other usages are possible such as when accessing an array member of a structure.

Example 16-1 BNDMK Example Usage in Application and Library Code

int A[100]; //assume the array A is allocated on the stack at 'offset'	// similarly, for a library implementation of dynamic allocated
from RBP.	memory
// the instruction to store starting address of array will be:	int * k = malloc(100);
LEA RAX, [RBP+offset]	// assuming that malloc returns pointer k in RAX and holds (size
// the instruction to create the bounds for array A will be:	- 1) in RCX
BNDMK BNDO, [RAX+399]	// the malloc implementation will execute the following
// Store RAX into BNDO.LB, and ~(RAX+399) into BNDO.UB.	instruction before returning:
, ,	BNDMK BNDO, [RAX+RCX]
	// BNDO.LB stores RAX, and BNDO.UB stores ~(RAX+RCX)

BNDMOV is typically used to copy bounds from one bound register to another when a pointer is copied from one general purpose register to another, or to spill/fill bounds into memory corresponding to a spill/fill of a pointer.

Example 16-2 BNDMOV Example

Spilling or caller save of bound register would use BNDMOV [RBP+ offset], BNDx.

Assuming that the calling convention is that bound of first pointer is passed in BND0, and that bound happens to be in BND3 before the call, the software will add instruction BNDMOV BND0, BND3 prior to the call.

BNDCL/BNDCU/BNDCN are typically used before writing to a buffer but can be used in other instances as well. If there are no bounds violations as a result of bound check instruction, the processor will proceed to execute the next instruction. However, if the bound check fails, it will signal #BR exception (fault).

Typically, the pointer used to write to memory will be compared against lower bound. However, for upper bound check, the software must add the (operand size - 1) to the pointer before upper bound checking.

For example, the software intend to write 32-bit integer in 64-bit mode into a buffer at address specified in RAX, and the bounds are in register BND0, the instruction sequence will be:

BNDCL BND0, [RAX]

BNDCU BND0, [RAX+3]; operand size is 4

MOV Dword ptr [RAX], RBX; RBX has the data to be written to the buffer.

Software may move one of the two bound checks out of a loop if it can determine that memory is accessed strictly in ascending or descending order. For string instructions of the form REP MOVS, the software may choose to do check lower bound against first access and upper bound against last access to memory. However, if software wants to also check for wrap around conditions as part of address computation, it should check for both upper and lower bound for first and last instructions (total of four bound checks).

BNDSTX is used to store the bounds associated with a buffer and the "pointer value" of the pointer to that buffer onto a bound table entry via address translation using a two-level structure, see Section 16.4.3.

For example, the software has a buffer with bounds stored in BNDO, the pointer to the buffer is in ESI, the following sequence will store the "pointer value" (the buffer) and the bounds into a configured bound table entry using address translation from the linear address associated with the base of a SIB-addressing form consisting of a base register and a index register:

MOV ECX, Dword ptr [ESI]; store the pointer value in the index register ECX

MOV EAX, ESI; store the pointer in the base register EAX

BNDSTX Dword ptr [EAX+ECX], BND0; perform address translation from the linear address of the base EAX and store bounds and pointer value ECX onto a bound table entry.

Similarly to retrieve a buffer and its associated bounds from a bound table entry:

MOV EAX, dword ptr [EBX];

BNDLDX BND0, dword ptr [EBX+EAX]; perform address translation from the linear address of the base EBX, and loads bounds and pointer value from a bound table entry

16.4.3 Loading and Storing Bounds using Translation

Intel MPX defines two instructions for load/store of the linear address of a pointer to a buffer, along with the bounds of the buffer into a paging structure of extended bounds. Specifically when storing extended bounds, the processor will perform address translation of the address where the pointer is stored to an address in the Bound Table (BT) to determine the store location of extended bounds. Loading of an extended bounds performs the reverse sequence.

The structure in memory to load/store an extended bound is a 4-tuple consisting of lower bound, upper bound, pointer value and a reserved field (for use by future versions of Intel MPX, software must not use this field). Bound loads and stores access 32-bit or 64-bit operand size according to the operation mode. Thus, a bound table entry is 4*32 bits in 32-bit mode and 4*64 bits in 64-bit mode. The linear address of a bound table is stored in a

Bound Directory (BD) entry. And the linear address of the bound directory is derived from either BNDCFGU or BNDCFGS. Bounds in memory are stored in Bound Tables (BT) as an extended bound, which are accessed via Bound Directory (BD) and address translation performed by BNDLDX/BNDSTX instructions.

Bounds Directory (BD) and Bounds Tables (BT) are stored in application memory and are allocated by the application (in case of kernel use, the structures will be in kernel memory). The bound directory and each instance of bound table are in contiguous linear memory. Figure 16-4 shows the two-level structures for address translation of extended bounds in 64-bit mode. The bound directory contains 8-byte entries and can hold 2^28 entries. The address of the bound directory is located from either BNDCFGx. BNDCFGx contains the linear address in canonical form.

The 64-bit mode address translation mechanism for the two-level structures to access extended bounds consist of:

- A 4-KByte naturally aligned bound directory is located at the linear address specified in bits 63:12 of BNDCFGx (see Figure 16-2). A 64-bit mode bound directory comprises of 2^28 64-bit entries (BDEs). A BDE is selected using the LAp (linear address of pointer to a buffer) to construct an index, comprised of:
 - Bits 30: 3 are from LAp[47:20].
 - Bits 2:0 are 0.

Figure 16-4 Bound Paging Structure and Address Translation in 64-bit Mode

• Each valid BDE contains a valid bit field (bit 0) and a BT address field that points to a bound table. The valid field indicates the BT address field is valid if 1. Each bound table is 8-byte naturally aligned and located at the linear address specified by the BT address field of the BDE. The bound table is located at the linear address of the BT address field shift left by 3 bits for an 8-byte aligned linear address, see Figure 16-5. A 64-bit mode bound table comprises 2^17 bound table entries (BTEs). A BTE is selected using the LAp (linear address of pointer to a buffer) to construct an index, comprised of:

- Bits 21: 5 are from LAp[19:3].
- Bits 4:0 are 0.
- · Each bound table entry is comprised of
 - the lower bound (LB) field is 64-bit wide
 - the upper bound (UB) field is 64-bit wide
 - the pointer value is 64-bit wide
 - reserved field is 64-bit wide, and is reserved for future Intel MPX. Software must not use this field

Figure 16-5 Layout of a Bound Directory Entry

Figure 16-5 shows the format of a bound directory entry for 32-bit and 64-bit modes, which comprised of:

- Valid (V, bit 0): entry is not valid if 0, valid if 1;
- The following bits are not used and not checked
 - 32-bit mode: Bit 1
 - 64-bit mode: Bits 2 and 1
- BT address field (bits 63:3 for 64-bit mode, bits 31:2 for 32-bit mode) is the address of the bound table pointed by this entry.

The BT address field is valid only if V is 1. If V=0, use of this entry by BNDLDX and BNDSTX will cause #BR and set the error code to 10 and copy bits [63:02] of the address of BD entry into BNDSTATUS register

In 64-bit mode, BT Address field specifies Bits 63-3, and Bits 2-0 of BT address are assumed to be zero. Given that the processor treats segment base of DS as zero in this mode, the BT address specified here is the final address used to access BT

In 32-bit and compatibility mode, BT Address field specifies Bits 31-2, and Bits 1-0 of BT address are assumed to be zero. BT address specifies an effective address in DS segment which is always used in this address calculation.

Limit checking of segment descriptor generally applies to address translation of extended bounds. E.g., when DS is a NULL segment, limit checking will signal #GP in 32-bit but 64-bit mode does not perform limit check.

Figure 16-6 shows the 32-bit mode address translation mechanism for the two-level structures of extended bounds.

The 32-bit mode address translation mechanism for the two-level structures to access extended bounds consist of:

- A 4-KByte naturally aligned bound directory is located at the linear address specified in bits 31:12 of BNDCFGx (see Figure 16-2). A 32-bit mode bound directory comprises of 2^20 32-bit entries (BDEs). A BDE is selected using the LAp (linear address of pointer to a buffer) to construct an index, comprised of:
 - Bits 21: 2 are from LAp[31:12].
 - Bits 1:0 are 0.

- Each valid BDE contains a valid bit field (bit 0) and a BT address field that points to a bound table. The valid field indicates the BT address field is valid if 1. Each bound table is 4-byte naturally aligned and located at the linear address specified by the BT address field of the BDE. The bound table is located at the linear address of the BT address field shift left by 2 bits for an 4-byte aligned linear address, see Figure 16-5. A 32-bit mode bound table comprises 2^10 bound table entries (BTEs). A BTE is selected using the LAp (linear address of pointer to a buffer) to construct an index, comprised of:
 - Bits 13:4 are from LAp[11:3].
 - Bits 3:0 are 0.

Figure 16-6 Bound Paging Structure and Address Translation in 32-bit Mode

- Each bound table entry is comprised of
 - the lower bound (LB) field is 32-bit wide
 - the upper bound (UB) field is 32-bit wide
 - the pointer value is 32-bit wide
 - reserved field is 32-bit wide, and is reserved for future Intel MPX. Software must not use this field.

Bounds in memory are associated with the memory address where the pointer is stored, i.e., Ap. Linear address LAp is computed by adding segment base to Ap (note that segment override to these instructions applies to computation of LAp only). The upper 20 bits LAp[31:12] in protected/compatibility modes or upper 28 bits LAp[47:20] in 64-bit mode (IA-32e architecture currently implements 48-bits of virtual address space) are used to index into the bound directory BD. The base address of BD is obtained from BNDCFGx[63:12]. As mentioned in Section 16.3.4, BNDCFGx contains linear address in canonical form. Each valid BD entry points to a bound table

BT. In 32-bit and compatibility mode, this is an effective address in DS segment. In 64-bit mode, this is the final address used for BT access because DS segment base is treated as zero by processor. Bits LAp[11:2] in protected/compatibility modes or bits LAp[19:3] in 64-bit mode are used to index into BT. Each entry in BT contains lower bound, upper bound, pointer value and a reserved field.

16.5 INTERACTIONS WITH INTEL MPX

16.5.1 Intel MPX and Operating Modes

In 64-bit Mode, all Intel MPX instructions use 64-bit operands for bounds and 64 bit addressing, i.e. REX.W & 67H have no effect on data or address size.

XSAVE, XSAVEOPT and XRSTOR load/store 64-bit values in all modes, as these state-management instructions are not Intel MPX instructions.

In compatibility and legacy modes (including 16-bit code segments, real and virtual 8086 modes) all Intel MPX instructions use 32-bit operands for bounds and 32 bit addressing. The upper 32-bits of destination bound register are cleared (consistent with behavior of integer registers)

In 32-bit and compatibility mode, the bounds are 32-bit, and are treated same as 32-bit integer registers. Therefore, when 32-bit bound is updated in a bound register, the upper 32-bits are undefined. When switching from 64-bit, the behavior of content of bounds register will be similar to that of general purpose registers.

Table 16-3 describes the impact of 67H prefix on memory forms of Intel MPX instructions (register-only forms ignore 67H prefix) when Intel MPX is enabled:

Addressing Mode	67H Prefix	Effective Address Size used for Intel MPX instructions when Intel MPX is enabled
64-bit Mode	Υ	64 bit addressing used
64-bit Mode	N	64 bit addressing used
32-bit Mode	Υ	#UD
32-bit Mode	N	32 bit addressing used
16-bit Mode	Υ	32 bit addressing used
16-bit Mode	N	#UD

Table 16-3 Effective Address Size of Intel MPX Instructions with 67H Prefix

16.5.2 Intel MPX Support for Pointer Operations with Branching

Intel MPX provides flexibility in supporting pointer operation across control flow changes. Intel MPX allows

- compatibility with legacy code that may perform pointer operation across control flow changes and are unaware of Intel MPX, along with
- Intel MPX-aware code that adds bounds checking protection to pointer operation across control flow changes.

The interface to provide such flexibility consists of:

- Using a prefix, referred to as BND prefix, to relevant branch instructions: call, ret, imp and icc
- BNDCFGU and BNDCFGS provides the bit field, BNDPRESERVE (bit 1).

The value of BNDPRESERVE in conjunction with the presence/absence the BND prefix with those branching instruction will determine whether the values in BND0-BND3 will be initialized or unchanged.

16.5.3 CALL, RET, JMP and All Jcc

An application compiled to use Intel MPX will use the REPNE (0xF2) prefix (denoted by BND) for all forms of near CALL, near RET, near JMP, short & near Jcc instructions (BND+CALL, BND+RET, BND+JMP, BND+Jcc). See Table 16-4 for specific opcodes. All far CALL, RET and JMP instructions plus short JMP (JMP rel 8, opcode EB) instructions will never cause bound registers to be initialized.

If BNDPRESERVE bit is one, above instructions will NOT INIT the bounds registers when BND prefix is not present for above instructions (legacy behavior). However, If BNDPRESERVE is zero, above instructions will INIT ALL bound registers (BND0-BND3) when BND prefix is not present for above instructions. If BND prefix is present for above instructions, the BND registers will NOT INIT any bound registers (BND0-BND3).

The legacy code will continue to use non-prefixed forms of these instructions, so if BNDPRESERVE is zero, all the bound registers will INIT by legacy code. This allows the legacy function to execute and return to callee with all bound registers initialized (legacy code by definition cannot make or load bounds in bound registers because it does not have Intel MPX instructions). This will eliminate compatibility concerns when legacy function might have changed the pointer in registers but did not update the value of the bounds registers associated with these pointers.

If BNDCFGx.BNDPRESERVE is clear then non-prefixed forms of these instructions will initialize all the bound registers. If this bit is set then non-prefixed and prefixed forms of these instructions will preserve the contents of bound registers as shown in Table 16-4.

Instruction	Branch Instruction Opcodes	BNDPRESERVE = 0	BNDPRESERVE = 1	
CALL	E8, FF/2	Init BND0-BND3	BND0-BND3 unchanged	
BND + CALL	F2 E8, F2 FF/2	BND0-BND3 unchanged	BND0-BND3 unchanged	
RET	C2, C3	Init BND0-BND3	BND0-BND3 unchanged	
BND + RET	F2 C2, F2 C3	BND0-BND3 unchanged	BND0-BND3 unchanged	
JMP	E9, FF/4	Init BND0-BND3	BND0-BND3 unchanged	
BND + JMP	F2 E9, F2 FF/4	BND0-BND3 unchanged	BND0-BND3 unchanged	
Jcc	70 through 7F, OF 80 through OF 8F	Init BND0-BND3	BND0-BND3 unchanged	
BND + Jcc	F2 70 through F2 7F, F2 0F 80 through F2 0F 8F	BND0-BND3 unchanged	BND0-BND3 unchanged	

Table 16-4 Bounds Register INIT Behavior Due to BND Prefix with Branch Instructions

16.5.4 BOUND Instruction and Intel MPX

If Intel MPX in enabled (see Section 13.5) and a #BR was caused due to a BOUND instruction, then BOUND instruction will write zero to the BNDSTATUS register. In all other situations, BOUND instruction will not modify BNDSTATUS. Specifically, the operation of the BOUND instruction can be described as:

ELSE

BNDSTATUS is not modified;

FI;

16.5.5 Programming Considerations

Intel MPX instruction set does not dictate any calling convention, but allows the calling convention extensions to be interoperable with legacy code by making use of the of the bound registers and the bound tables to convey arguments and return values.

16.5.6 Intel MPX and System Manage Mode

Upon delivery of an SMI to a processor supporting Intel MPX, the content of IA32_BNDCFGS is saved to SMM state save map and cleared when entering into SMM. RSM will restore IA32_BNDCFGS from the SMM state save map. Offset 7ED0H in SMM state save map will store the content of IA32_BNDCFGS. RSM will load only bits 47:12 and bits 1-0 from SMRAM: bits 11:2 are forced to 0 regardless of what is in SMM state save map; RSM will sign-extend bit 47 into bits 63:48 regardless of what is in SMM state save map.

The content of IA32_BNDCFGS is cleared after entering into SMM. Thus, Intel MPX is disabled inside an SMM handler until SMM code enables it explicitly. This will prevent the side-effect of INIT-ing bound registers by legacy CALL/RET/JMP/Jcc in SMM code.

16.5.7 Support of Intel MPX in VMCS

A new guest-state field for IA32_BNDCFGS is added to the VMCS. In addition, two new controls are added:

- a VM-exit control called "clear BNDCFGS"
- a VM-entry control called "load BNDCFGS."

VM exits always save IA32_BNDCFGS into BNDCFGS field of VMCS; if "clear BNDCFGS" is 1, VM exits clear IA32_BNDCFGS. If "load BNDCFGS" is 1, VM entry loads IA32_BNDCFGS from VMCS. If loading IA32_BNDCFGS, VM entry should check the value of that register in the guest-state area of the VMCS and cause the VM entry to fail (late) if the value is one that would causes WRMSR to fault if executed in ring 0.

16.5.8 Support of Intel MPX in Intel TSX

For some processor implementations, the following Intel MPX instructions may always cause transactional aborts:

- An Intel TSX transaction abort will occur in case of legacy branch (that causes bounds registers INIT) when at least one bounds register was in a NON-INIT state.
- An Intel TSX transaction abort will occur in case of a BNDLDX & BNDSTX instruction on non-flat segment.

Intel MPX Instructions (including BND prefix + branch instructions) not enumerated above as causing transactional abort when used inside a transaction will typically not cause an Intel TSX transaction to abort.

6. Updates to Chapter 2, Volume 2A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference, A-M.

2.1.1 Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 may be placed in any order relative to each other.

Group 1

- Lock and repeat prefixes:
 - LOCK prefix is encoded using F0H
 - REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and input/output instructions. (F2H is also used as a mandatory prefix for some instructions)

REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output instructions. F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.

- Group 2
 - Segment override prefixes:
 - 2EH—CS segment override (use with any branch instruction is reserved)
 - 36H—SS segment override prefix (use with any branch instruction is reserved)
 - 3EH—DS segment override prefix (use with any branch instruction is reserved)
 - 26H—ES segment override prefix (use with any branch instruction is reserved)
 - 64H—FS segment override prefix (use with any branch instruction is reserved)
 - 65H—GS segment override prefix (use with any branch instruction is reserved)
 - Branch hints:
 - 2EH—Branch not taken (used only with Jcc instructions)
 - 3EH—Branch taken (used only with Jcc instructions)
 - Bound prefix is encoded using F2H if the following conditions are true:
 - CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set,
 - BNDCFGU.EN and/or IA32 BNDCFGS.EN is set,
 - When the F2 prefix precedes a near CALL, a near RET, a near JMP, or a near Jcc instruction (see Chapter 16, "Intel® MPX," of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1).
- Group 3
 - Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some instructions).
- Group 4
 - 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor environment. See "LOCK—Assert LOCK# Signal Prefix" in Chapter 3, "Instruction Set Reference, A-M," for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable behavior.

. . .

2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26 Type 11 Class Exception Conditions

Exception	Real	Virtual-8086	Protected and Compatibility	64-bit	Cause of Exception
Invalid Opcode, #UD	Х	Χ			VEX prefix
			X	Х	VEX prefix: If XCR0[2:1] ≠ '11b'. If CR4.OSXSAVE[bit 18]=0.
	Χ	Χ	Χ	Χ	If preceded by a LOCK prefix (FOH)
			Χ	Χ	If any REX, F2, F3, or 66 prefixes precede a VEX prefix
	Χ	Χ	Χ	Χ	If any corresponding CPUID feature flag is '0'
Device Not Avail- able, #NM	X	Х	Х	X	If CR0.TS[bit 3]=1
Stack, SS(0)			Χ		For an illegal address in the SS segment
				Χ	If a memory address referencing the SS segment is in a non-canonical form
General Protection, #GP(0)			Х		For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
				Χ	If the memory address is in a non-canonical form.
	X	Х			If any part of the operand lies outside the effective address space from 0 to FFFFH
Page Fault #PF (fault-code)		Х	Х	X	For a page fault
SIMD Floating-Point Exception, #XM	X	Х	Х	Х	If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

Table 2-27 Type 12 Class Exception Conditions

Exception	Real	Virtual-8086	Protected and Compatibility	64-bit	Cause of Exception
Invalid Opcode, #UD	Χ	Χ			VEX prefix
			X	X	VEX prefix: If XCR0[2:1] ≠ '11b'. If CR4.0SXSAVE[bit 18]=0.
	Χ	Χ	Χ	Χ	If preceded by a LOCK prefix (F0H)
			Χ	Х	If any REX, F2, F3, or 66 prefixes precede a VEX prefix
	Х	Χ	Χ	NA	If address size attribute is 16 bit
	Х	Х	Χ	Х	If ModR/M.mod = '11b'
	Χ	Х	Х	Χ	If ModR/M.rm ≠ '100b'
	Χ	Χ	Х	Χ	If any corresponding CPUID feature flag is 'O'
	Х	Х	Х	Х	If any vector register is used more than once between the destination register, mask register and the index register in VSIB addressing.
Device Not Available, #NM	Х	Х	Х	Х	If CRO.TS[bit 3]=1
Stack, SS(0)			Χ		For an illegal address in the SS segment
				Χ	If a memory address referencing the SS segment is in a non-canonical form
General Protection, #GP(0)			Х		For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
				Χ	If the memory address is in a non-canonical form.
	Х	Х			If any part of the operand lies outside the effective address space from 0 to FFFFH
Page Fault #PF (fault-code)		Х	Х	Х	For a page fault

. . .

7. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference, A-M.

. . .

3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX prefix)

The "Opcode" column in the table above shows the object code produced for each form of the instruction. When possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of entries other than hexadecimal bytes are as follows:

- **REX.W** Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.
- /digit A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.
- /r Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
- **cb**, **cw**, **cd**, **cp**, **co**, **ct** A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value following the opcode. This value is used to specify a code offset and possibly a new value for the code segment register.
- **ib**, **iw**, **id**, **io** A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed value. All words, doublewords and quadwords are given with the low-order byte first.
- **+rb**, **+rw**, **+rd**, **+ro** Indicated the lower 3 bits of the opcode byte is used to encode the register operand without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low 3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of the opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode[2:0] field encodes the register operand of the instruction. "+ro" is applicable only in 64-bit mode. See Table 3-1 for the codes.
- +i A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign to form a single opcode byte.

Table 3-1 Register Codes Associated With +rb, +rw, +rd, +ro

	byte register			ord register	•	dword register			quadword register (64-Bit Mode only)		
Register	REX.B	Reg Field	Register	REX.B	Reg Field	Register	REX.B	Reg Field	Register	REX.B	Reg Field
AL	None	0	AX	None	0	EAX	None	0	RAX	None	0
CL	None	1	CX	None	1	ECX	None	1	RCX	None	1
DL	None	2	DX	None	2	EDX	None	2	RDX	None	2
BL	None	3	BX	None	3	EBX	None	3	RBX	None	3
AH	Not encodab le (N.E.)	4	SP	None	4	ESP	None	4	N/A	N/A	N/A
CH	N.E.	5	BP	None	5	EBP	None	5	N/A	N/A	N/A
DH	N.E.	6	SI	None	6	ESI	None	6	N/A	N/A	N/A
BH	N.E.	7	DI	None	7	EDI	None	7	N/A	N/A	N/A
SPL	Yes	4	SP	None	4	ESP	None	4	RSP	None	4
BPL	Yes	5	BP	None	5	EBP	None	5	RBP	None	5
SIL	Yes	6	SI	None	6	ESI	None	6	RSI	None	6
DIL	Yes	7	DI	None	7	EDI	None	7	RDI	None	7

Table 3-1 Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word r			ord register	d register dword reg			ter quadword registe (64-Bit Mode only				
Register	REX.B	Reg Field	Register	REX.B	Reg Field	Register	REX.B	Reg Field	Register	REX.B	Reg Field
Registers	Registers R8 - R15 (see below): Available in 64-Bit Mode Only										
R8L	Yes	0	R8W	Yes	0	R8D	Yes	0	R8	Yes	0
R9L	Yes	1	R9W	Yes	1	R9D	Yes	1	R9	Yes	1
R10L	Yes	2	R10W	Yes	2	R10D	Yes	2	R10	Yes	2
R11L	Yes	3	R11W	Yes	3	R11D	Yes	3	R11	Yes	3
R12L	Yes	4	R12W	Yes	4	R12D	Yes	4	R12	Yes	4
R13L	Yes	5	R13W	Yes	5	R13D	Yes	5	R13	Yes	5
R14L	Yes	6	R14W	Yes	6	R14D	Yes	6	R14	Yes	6
R15L	Yes	7	R15W	Yes	7	R15D	Yes	7	R15	Yes	7

...

3.1.1.3 Instruction Column in the Opcode Summary Table

The "Instruction" column gives the syntax of the instruction statement as it would appear in an ASM386 program. The following is a list of the symbols used to represent operands in the instruction statements:

- rel8 A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the end of the instruction.
- rel16, rel32 A relative address within the same code segment as the instruction assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.
- **ptr16:16**, **ptr16:32** A far pointer, typically to a code segment different from that of the instruction. The notation *16:16* indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-bit selector or value destined for the code segment register. The value to the right corresponds to the offset within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.
- **r8** One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one of the byte registers (R8L R15L) available when using REX.R and 64-bit mode.
- **r16** One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers (R8-R15) available when using REX.R and 64-bit mode.
- **r32** One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D R15D) available when using REX.R in 64-bit mode.
- **r64** One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15. These are available when using REX.R and 64-bit mode.
- **imm8** An immediate byte value. The imm8 symbol is a signed number between -128 and +127 inclusive. For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is signextended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the immediate value.
- **imm16** An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

- **imm32** An immediate doubleword value used for instructions whose operand-size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and -2,147,483,648 inclusive.
- **imm64** An immediate quadword value used for instructions whose operand-size attribute is 64 bits. The value allows the use of a number between +9,223,372,036,854,775,807 and -9,223,372,036,854,775,808 inclusive.
- r/m8 A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8L R15L are available using REX.R in 64-bit mode.
- **r/m16** A word general-purpose register or memory operand used for instructions whose operand-size attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the address provided by the effective address computation. Word registers R8W R15W are available using REX.R in 64-bit mode.
- r/m32 A doubleword general-purpose register or memory operand used for instructions whose operandsize attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of memory are found at the address provided by the effective address computation. Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.
- **r/m64** A quadword general-purpose register or memory operand used for instructions whose operand-size attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the address provided by the effective address computation.
- $\mathbf{m} A$ 16-, 32- or 64-bit operand in memory.
- **m8** A byte operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
- **m16** A word operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
- m32 A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
- **m64** A memory quadword operand in memory.
- m128 A memory double quadword operand in memory.
- m16:16, m16:32 & m16:64 A memory operand containing a far pointer composed of two numbers. The number to the left of the colon corresponds to the pointer's segment selector. The number to the right corresponds to its offset.
- m16&32, m16&16, m32&32, m16&64 A memory operand consisting of data item pairs whose sizes are indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR registers.
- moffs8, moffs16, moffs32, moffs64 A simple memory variable (memory offset) of type byte, word, or doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs indicates its size, which is determined by the address-size attribute of the instruction.
- **Sreg** A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4, and GS = 5.
- m32fp, m64fp, m80fp A single-precision, double-precision, and double extended-precision (respectively) floating-point operand in memory. These symbols designate floating-point values that are used as operands for x87 FPU floating-point instructions.

- m16int, m32int, m64int A word, doubleword, and quadword integer (respectively) operand in memory.
 These symbols designate integers that are used as operands for x87 FPU integer instructions.
- **ST or ST(0)** The top element of the FPU register stack.
- **ST(i)** The ith element from the top of the FPU register stack ($i \leftarrow 0$ through 7).
- mm An MMX register. The 64-bit MMX registers are: MM0 through MM7.
- mm/m32 The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. The contents of memory are found at the address provided by the effective address computation.
- mm/m64 An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. The contents of memory are found at the address provided by the effective address computation.
- xmm An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode.
- xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at the address provided by the effective address computation.
- xmm/m64 An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at the address provided by the effective address computation.
- xmm/m128 An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at the address provided by the effective address computation.
- <XMMO>— indicates implied use of the XMMO register.
 - When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second source operand using an XMM register.
 - Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.
- ymm a YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are available in 64-bit mode.
- m256 A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
- ymm/m256 a YMM register or 256-bit memory operand.
- <YMMO>— indicates use of the YMMO register as an implicit argument.
- bnd a 128-bit bounds register. BND0 through BND3.
- **mib** a memory operand using SIB addressing form, where the index register is not used in address calculation, Scale is ignored. Only the base and displacement are used in effective address calculation.
- **SRC1** Denotes the first source operand in the instruction syntax of an instruction encoded with the VEX prefix and having two or more source operands.
- SRC2 Denotes the second source operand in the instruction syntax of an instruction encoded with the VEX prefix and having two or more source operands.
- SRC3 Denotes the third source operand in the instruction syntax of an instruction encoded with the VEX prefix and having three source operands.
- SRC The source in a AVX single-source instruction or the source in a Legacy SSE instruction.
- **DST** the destination in a AVX instruction. In Legacy SSE instructions can be either the destination, first source, or both. This field is encoded by reg_field.

• •

ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

Opcode/ Instruction	Op/ En	64/32bit Mode Support	CPUID Feature Flag	Description
66 OF 38 F6 /r ADCX r32, r/m32	RM	V/V	ADX	Unsigned addition of r32 with CF, r/m32 to r32, writes CF.
66 REX.w 0F 38 F6 /r ADCX r64, r/m64	RM	V/NE	ADX	Unsigned addition of r64 with CF, r/m64 to r64, writes CF.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
RM	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA

...

ADOX — Unsigned Integer Addition of Two Operands with Overflow Flag

Opcode/	Op/	64/32bit	CPUID	Description
Instruction	En	Mode Support	Feature Flag	
F3 0F 38 F6 /r ADOX r32, r/m32	RM	V/V	ADX	Unsigned addition of r32 with OF, r/m32 to r32, writes OF.
F3 REX.w 0F 38 F6 /r ADOX r64, r/m64	RM	V/NE	ADX	Unsigned addition of r64 with OF, r/m64 to r64, writes OF.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
RM	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA

. . .

BNDCL—Check Lower Bound

Opcode/ Instruction	Op/En	64/32 bit Mode Support	CPUID Feature Flag	Description
F3 OF 1A /r BNDCL bnd, r/m32	RM	NE/V	MPX	Generate a #BR if the address in r/m32 is lower than the lower bound in bnd.LB.
F3 OF 1A /r BNDCL bnd, r/m64	RM	V/NE	MPX	Generate a #BR if the address in r/m64 is lower than the lower bound in bnd.LB.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3
RM	ModRM:reg (w)	ModRM:r/m (r)	NA

Description

Compare the address in the second operand with the lower bound in bnd. The second operand can be either a register or memory operand. If the address is lower than the lower bound in bnd.LB, it will set BNDSTATUS to 01H and signal a #BR exception.

This instruction does not cause any memory access, and does not read or write any flags.

Operation

FI;

```
BNDCL BND, reg

IF reg < BND.LB Then

BNDSTATUS ← 01H;

#BR:
```

BNDCL BND, mem

```
TEMP ← LEA(mem);
IF TEMP < BND.LB Then
BNDSTATUS ← 01H;
#BR;
FI;
```

Intel C/C++ Compiler Intrinsic Equivalent

BNDCL void _bnd_chk_ptr_lbounds(const void *q)

Flags Affected

None

Protected Mode Exceptions

#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0. If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions

#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

Virtual-8086 Mode Exceptions

#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

Same exceptions as in protected mode.

BNDCU/BNDCN—Check Upper Bound

Opcode/ Instruction	Op/En	64/32 bit Mode Support	CPUID Feature Flag	Description
F2 OF 1A /r BNDCU bnd, r/m32	RM	NE/V	MPX	Generate a #BR if the address in r/m32 is higher than the upper bound in bnd.UB (bnb.UB in 1's complement form).
F2 OF 1A /r BNDCU bnd, r/m64	RM	V/NE	MPX	Generate a #BR if the address in r/m64 is higher than the upper bound in bnd.UB (bnb.UB in 1's complement form).
F2 OF 1B /r BNDCN bnd, r/m32	RM	NE/V	MPX	Generate a #BR if the address in r/m32 is higher than the upper bound in bnd.UB (bnb.UB not in 1's complement form).
F2 0F 1B /r BNDCN bnd, r/m64	RM	V/NE	MPX	Generate a #BR if the address in r/m64 is higher than the upper bound in bnd.UB (bnb.UB not in 1's complement form).

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3
RM	ModRM:reg (w)	ModRM:r/m (r)	NA

Description

Compare the address in the second operand with the upper bound in bnd. The second operand can be either a register or a memory operand. If the address is higher than the upper bound in bnd.UB, it will set BNDSTATUS to 01H and signal a #BR exception.

BNDCU perform 1's complement operation on the upper bound of bnd first before proceeding with address comparison. BNDCN perform address comparison directly using the upper bound in bnd that is already reverted out of 1's complement form.

This instruction does not cause any memory access, and does not read or write any flags.

Effective address computation of m32/64 has identical behavior to LEA

Operation

#BR;

FI;

```
BNDCU BND, reg

IF reg > NOT(BND.UB) Then
    BNDSTATUS ← 01H;
    #BR;

FI;

BNDCU BND, mem

TEMP ← LEA(mem);

IF TEMP > NOT(BND.UB) Then
    BNDSTATUS ← 01H;
    #BR;

FI;

BNDCN BND, reg

IF reg > BND.UB Then
    BNDSTATUS ← 01H;
```

BNDCN BND, mem

```
TEMP ← LEA(mem);

IF TEMP > BND.UB Then

BNDSTATUS ← 01H;

#BR;

FI;
```

Intel C/C++ Compiler Intrinsic Equivalent

BNDCU .void _bnd_chk_ptr_ubounds(const void *q)

Flags Affected

None

Protected Mode Exceptions

#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0. If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions

#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

Virtual-8086 Mode Exceptions

#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

Same exceptions as in protected mode.

BNDLDX—Load Extended Bounds Using Address Translation

Opcode/ Instruction	Op/En	64/32 bit Mode Support	CPUID Feature Flag	Description
OF 1A /r BNDLDX bnd, mib	RM	V/V	MPX	Load the bounds stored in a bound table entry (BTE) into bnd with address translation using the base of mib and conditional on the index of mib matching the pointer value in the BTE.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3
RM	ModRM:reg (w)	SIB.base (r): Address of pointer SIB.index(r)	NA

Description

BNDLDX uses the linear address constructed from the base register and displacement of the SIB-addressing form of the memory operand (mib) to perform address translation to access a bound table entry and conditionally load the bounds in the BTE to the destination. The destination register is updated with the bounds in the BTE, if the content of the index register of mib matches the pointer value stored in the BTE.

If the pointer value comparison fails, the destination is updated with INIT bounds (lb = 0x0, ub = 0x0) (note: as articulated earlier, the upper bound is represented using 1's complement, therefore, the 0x0 value of upper bound allows for access to full memory).

This instruction does not cause memory access to the linear address of mib nor the effective address referenced by the base, and does not read or write any flags.

Segment overrides apply to the linear address computation with the base of mib, and are used during address translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be linear address. There are no segmentation checks performed on the base of mib.

The base of mib will not be checked for canonical address violation as it does not access memory.

Any encoding of this instruction that does not specify base or index register will treat those registers as zero (constant). The reg-reg form of this instruction will remain a NOP.

The scale field of the SIB byte has no effect on these instructions and is ignored.

The bound register may be partially updated on memory faults. The order in which memory operands are loaded is implementation specific.

Operation

```
base ← mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value ← mib.SIB.index ? mib.SIB.index : 0;
```

32-bit protected mod or compatibility mode

```
A_BDE[31:0] ← (Zero_extend32(base[31:12] << 2) + (BNDCFG[31:12] <<12 );
A_BT[31:0] ← LoadFrom(A_BDE );
IF A_BT[0] equal 0 Then

BNDSTATUS ← A_BDE | 02H;

#BR;
FI;
A_BTE[31:0] ← (Zero_extend32(base[11:2] << 4) + (A_BT[31:2] << 2 );
Temp_lb[31:0] ← LoadFrom(A_BTE);
Temp_ub[31:0] ← LoadFrom(A_BTE + 4);
```

```
Temp_ptr[31:0] \leftarrow LoadFrom(A_BTE + 8);
IF Temp_ptr equal ptr_value Then
   BND.LB ← Temp_lb;
   BND.UB ← Temp_ub;
ELSE
   BND.LB \leftarrow 0;
   BND.UB \leftarrow 0;
FI;
64-bit mode
A_BDE[63:0] \leftarrow (Zero_extend64(base[47:20] << 3) + (BNDCFG[63:20] << 12);
A_BT[63:0] \leftarrow LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then
   BNDSTATUS ← A_BDE | 02H;
   #BR;
FI;
A_BTE[63:0] \leftarrow (Zero_extend64(base[19:3] << 5) + (A_BT[63:3] << 3);
Temp_lb[63:0] \leftarrow LoadFrom(A_BTE);
Temp_ub[63:0] \leftarrow LoadFrom(A_BTE + 8);
Temp_ptr[63:0] \leftarrow LoadFrom(A_BTE + 16);
IF Temp_ptr equal ptr_value Then
   BND.LB ← Temp_lb;
   BND.UB ← Temp_ub;
ELSE
   BND.LB \leftarrow 0;
   BND.UB \leftarrow 0;
FI;
```

Intel C/C++ Compiler Intrinsic Equivalent

BNDLDX: Generated by compiler as needed.

Flags Affected

None

Protected Mode Exceptions

#BR If the bound directory entry is invalid.

#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0. If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

If DS register contains a NULL segment selector.

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#BR If the bound directory entry is invalid.

#UD If ModRM is RIP relative.

If the LOCK prefix is used.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.

#PF(fault code) If a page fault occurs.

BNDMK—Make Bounds

Opcode/ Instruction	Op/En	64/32 bit Mode Support	CPUID Feature Flag	Description
F3 0F 1B /r	RM	NE/V	MPX	Make lower and upper bounds from m32 and store them in bnd.
BNDMK bnd, m32				
F3 0F 1B /r	RM	V/NE	MPX	Make lower and upper bounds from m64 and store them in bnd.
BNDMK bnd, m64				

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3
RM	ModRM:reg (w)	ModRM:r/m (r)	NA

Description

Makes bounds from the second operand and stores the lower and upper bounds in the bound register bnd. The second operand must be a memory operand. The content of the base register from the memory operand is stored in the lower bound bnd.LB. The 1's complement of the effective address of m32/m64 is stored in the upper bound b.UB. Computation of m32/m64 has identical behavior to LEA.

This instruction does not cause any memory access, and does not read or write any flags.

If the instruction did not specify base register, the lower bound will be zero. The reg-reg form of this instruction retains legacy behavior (NOP).

RIP relative instruction in 64-bit will #UD.

Operation

```
BND.LB ← SRCMEM.base;

IF 64-bit mode Then

BND.UB ← NOT(LEA.64_bits(SRCMEM));

ELSE

BND.UB ← Zero_Extend.64_bits(NOT(LEA.32_bits(SRCMEM)));

FI;
```

Intel C/C++ Compiler Intrinsic Equivalent

BNDMKvoid * _bnd_set_ptr_bounds(const void * q, size_t size);

Flags Affected

None

Protected Mode Exceptions

#UD If ModRM is RIP relative.

If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0. If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions

#UD If ModRM is RIP relative.

If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

Virtual-8086 Mode Exceptions

#UD If ModRM is RIP relative.

If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#SS(0) If the memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

Same exceptions as in protected mode.

BNDMOV—Move Bounds

Opcode/ Instruction	Op/En	64/32 bit Mode Support	CPUID Feature Flag	Description
66 0F 1A /r	RM	NE/V	MPX	Move lower and upper bound from bnd2/m64 to bound register
BNDMOV bnd1, bnd2/m64				bnd1.
66 0F 1A /r	RM	V/NE	MPX	Move lower and upper bound from bnd2/m128 to bound register
BNDMOV bnd1, bnd2/m128				bnd1.
66 0F 1B /r	MR	NE/V	MPX	Move lower and upper bound from bnd2 to bnd1/m64.
BNDMOV bnd1/m64, bnd2				
66 0F 1B /r	MR	V/NE	MPX	Move lower and upper bound from bnd2 to bound register bnd1/
BNDMOV bnd1/m128, bnd2				m128.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3
RM	ModRM:reg (w)	ModRM:r/m (r)	NA
MR	ModRM:r/m (w)	ModRM:reg (r)	NA

Description

BNDMOV moves a pair of lower and upper bound values from the source operand (the second operand) to the destination (the first operand). Each operation is 128-bit move. The exceptions are same as the MOV instruction. The memory format for loading/store bounds in 64-bit mode is shown in Figure 2-1.

Figure 2-1. Memory Layout of BNDMOV to/from Memory

This instruction does not change flags.

Operation

BNDMOV register to register

DEST.LB \leftarrow SRC.LB; DEST.UB \leftarrow SRC.UB;

BNDMOV from memory

```
 \begin{tabular}{ll} F 64-bit mode THEN & DEST.LB \leftarrow LOAD\_QWORD(SRC); & DEST.UB \leftarrow LOAD\_QWORD(SRC+8); & ELSE & DEST.LB \leftarrow LOAD\_DWORD\_ZERO\_EXT(SRC); & DEST.UB \leftarrow LOAD\_DWORD\_ZERO\_EXT(SRC+4); & FI; & \end{tabular}
```

BNDMOV to memory

```
IF 64-bit mode THEN
DEST[63:0] \leftarrow SRC.LB;
DEST[127:64] \leftarrow SRC.UB;
ELSE
DEST[31:0] \leftarrow SRC.LB;
DEST[63:32] \leftarrow SRC.UB;
FI;
```

Intel C/C++ Compiler Intrinsic Equivalent

BNDMOV void * _bnd_copy_ptr_bounds(const void *q, const void *r)

Flags Affected

None

Protected Mode Exceptions

#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0. If 67H prefix is used and CS.D=1.

#SS(0) If the memory operand effective address is outside the SS segment limit.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the destination operand points to a non-writable segment

If the DS, ES, FS, or GS segment register contains a NULL segment selector.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If the memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If the memory operand effective address is outside the SS segment limit.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.

#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#SS(0) If the memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.

#PF(fault code) If a page fault occurs.

BNDSTX—Store Extended Bounds Using Address Translation

Opcode/ Instruction	Op/En	64/32 bit Mode Support	CPUID Feature Flag	Description
OF 1B /r BNDSTX mib, bnd	MR	V/V	MPX	Store the bounds in bnd and the pointer value in the index register of mib to a bound table entry (BTE) with address translation using the base of mib.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3
MR	SIB.base (r): Address of pointer SIB.index(r)	ModRM:reg (r)	NA

Description

BNDSTX uses the linear address constructed from the displacement and base register of the SIB-addressing form of the memory operand (mib) to perform address translation to store to a bound table entry. The bounds in the source operand bnd are written to the lower and upper bounds in the BTE. The content of the index register of mib is written to the pointer value field in the BTE.

This instruction does not cause memory access to the linear address of mib nor the effective address referenced by the base, and does not read or write any flags.

Segment overrides apply to the linear address computation with the base of mib, and are used during address translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be linear address. There are no segmentation checks performed on the base of mib.

The base of mib will not be checked for canonical address violation as it does not access memory.

Any encoding of this instruction that does not specify base or index register will treat those registers as zero (constant). The reg-reg form of this instruction will remain a NOP.

The scale field of the SIB byte has no effect on these instructions and is ignored.

The bound register may be partially updated on memory faults. The order in which memory operands are loaded is implementation specific.

Operation

```
base \leftarrow mib.SIB.base ? mib.SIB.base + Disp: 0; \\ ptr\_value \leftarrow mib.SIB.index ? mib.SIB.index : 0; \\
```

32-bit protected mod or compatibility mode

```
A_BDE[31:0] ← (Zero_extend32(base[31:12] << 2) + (BNDCFG[31:12] <<12 );
A_BT[31:0] ← LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then
BNDSTATUS ← A_BDE | 02H;
#BR;
FI;
```

 $A_DEST[31:0] \leftarrow (Zero_extend32(base[11:2] << 4) + (A_BT[31:2] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] << 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2); // address of Bound table entry (A_BT[31:0] <> 2);$

A_DEST[8][31:0] \leftarrow ptr_value;

 $A_DEST[0][31:0] \leftarrow BND.LB;$

 $A_DEST[4][31:0] \leftarrow BND.UB;$

64-bit mode

 $A_BDE[63:0] \leftarrow (Zero_extend64(base[47:20] << 3) + (BNDCFG[63:20] << 12);$

 $A_BT[63:0] \leftarrow LoadFrom(A_BDE);$

IF A_BT[0] equal 0 Then

BNDSTATUS ← A_BDE | 02H;

#BR

FI;

 $A_DEST[63:0] \leftarrow (Zero_extend64(base[19:3] << 5) + (A_BT[63:3] << 3); // address of Bound table entry$

A_DEST[16][63:0] \leftarrow ptr_value; A_DEST[0][63:0] \leftarrow BND.LB; A_DEST[8][63:0] \leftarrow BND.UB;

Intel C/C++ Compiler Intrinsic Equivalent

BNDSTX: _bnd_store_ptr_bounds(const void **ptr_addr, const void *ptr_val);

Flags Affected

None

Protected Mode Exceptions

#BR If the bound directory entry is invalid.

#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 67H prefix is not used and CS.D=0. If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

If DS register contains a NULL segment selector.

If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.

If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#BR If the bound directory entry is invalid.

#UD If ModRM is RIP relative.

If the LOCK prefix is used.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.

If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

...

CPUID—CPU Identification

Opcode	Instruction	Op/ En	64-Bit Mode	Compat/ Leg Mode	Description
OF A2	CPUID	NP	Valid	Valid	Returns processor identification and feature information to the EAX, EBX, ECX, and EDX registers, as determined by input entered in EAX (in some cases, ECX as well).

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
NP	NA	NA	NA	NA

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers. The instruction's output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18 shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX is higher than the maximum input value for basic or extended function for that processor then the data for the highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = OBH (* Returns Extended Topology Enumeration leaf. *)

CPUID.EAX = OCH (* INVALID: Returns the same information as CPUID.EAX = OBH. *)

CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)

CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution guarantees that any modifications to flags, registers, and memory for previous instructions are completed before the next instruction is fetched and executed.

^{1.} On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

See also:

Table 3-17 Information Returned by CPUID Instruction

Initial EAX		Table 5-17 Information Returned by CPOID Instruction		
Value	Information Provided about the Processor			
	Basic CPUID Information			
ОН	EAX EBX ECX EDX	Maximum Input Value for Basic CPUID Information (see Table 3-18) "Genu" "ntel" "inel"		
01H	EAX	Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6)		
	EBX	Bits 07-00: Brand Index Bits 15-08: CLFLUSH line size (Value * 8 = cache line size in bytes) Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. Bits 31-24: Initial APIC ID		
	ECX EDX	Feature Information (see Figure 3-7 and Table 3-19) Feature Information (see Figure 3-8 and Table 3-20) NOTES:		
		 * The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC IDs reserved for addressing different logical processors in a physical package. This field is only valid if CPUID.1.EDX.HTT[bit 28]= 1. 		
02H	EAX EBX ECX EDX	Cache and TLB Information (see Table 3-21) Cache and TLB Information Cache and TLB Information Cache and TLB Information		
03H	EAX EBX ECX	Reserved. Reserved. Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value in this register is reserved.) Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value in this register is reserved.)		
		NOTES: Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.		
	CPUID lea	aves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).		
	Determin	istic Cache Parameters Leaf		
04H		NOTES: Leaf 04H output depends on the initial value in ECX.* See also: "INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-94.		

[&]quot;Serializing Instructions" in Chapter 8, "Multiple-Processor Management," in the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

[&]quot;Caching Translation Information" in Chapter 4, "Paging," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX Value		Information Provided about the Processor
value	50):	
	EAX	Bits 04-00: Cache Type Field 0 = Null - No more caches 1 = Data Cache 2 = Instruction Cache 3 = Unified Cache 4-31 = Reserved
		Bits 07-05: Cache Level (starts at 1) Bit 08: Self Initializing cache level (does not need SW initialization) Bit 09: Fully Associative cache
		Bits 13-10: Reserved Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, *** Bits 31-26: Maximum number of addressable IDs for processor cores in the physical package**, ****, *****
	EBX	Bits 11-00: L = System Coherency Line Size** Bits 21-12: P = Physical Line partitions** Bits 31-22: W = Ways of associativity**
	ECX	Bits 31-00: S = Number of Sets**
	EDX	Bit 0: Write-Back Invalidate/Invalidate 0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this cache. 1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing this cache. Bit 1: Cache Inclusiveness 0 = Cache is not inclusive of lower cache levels. 1 = Cache is inclusive of lower cache levels.
		Bit 2: Complex Cache Indexing 0 = Direct mapped cache. 1 = A complex function is used to index the cache, potentially using all address bits. Bits 31-03: Reserved = 0
		NOTES: * If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-leaf n returns EAX[4:0] as 0.
		** Add one to the return value to get the result. ***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique initial APIC IDs reserved for addressing different logical processors sharing this cache
		**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of bits of the initial APIC ID.
		***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.
	MONITO	R/MWAIT Leaf
05H	EAX	Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity) Bits 31-16: Reserved = 0
	EBX	Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity) Bits 31-16: Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX		Table 3-17 Information Returned by CPOID Instruction (Contd.)
Value		Information Provided about the Processor
	ECX	Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled Bits 31 - 02: Reserved
	EDX	Bits 03 - 00: Number of C0* sub C-states supported using MWAIT Bits 07 - 04: Number of C1* sub C-states supported using MWAIT Bits 11 - 08: Number of C2* sub C-states supported using MWAIT Bits 15 - 12: Number of C3* sub C-states supported using MWAIT Bits 19 - 16: Number of C4* sub C-states supported using MWAIT Bits 23 - 20: Number of C5* sub C-states supported using MWAIT Bits 27 - 24: Number of C6* sub C-states supported using MWAIT Bits 31 - 28: Number of C7* sub C-states supported using MWAIT NOTE: * The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C states.
	Thermal	and Power Management Leaf
06H	EAX	Bit 00: Digital temperature sensor is supported if set Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]). Bit 02: ARAT. APIC-Timer-always-running feature is supported if set. Bit 03: Reserved Bit 04: PLN. Power limit notification controls are supported if set. Bit 05: ECMD. Clock modulation duty cycle extension is supported if set. Bit 06: PTM. Package thermal management is supported if set. Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set. Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set. Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set. Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set. Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set. Bit 12: Reserved. Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are supported if set. Bits 31 - 15: Reserved Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor Bits 31 - 04: Reserved
	ECX	Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The capability to provide a measure of delivered processor performance (since last reset of the counters), as a percentage of the expected processor performance when running at the TSC frequency. Bits 02 - 01: Reserved = 0 Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H). Bits 31 - 04: Reserved = 0
	EDX	Reserved = 0
	Structure	ed Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)
07H		Sub-leaf 0 (Input ECX = 0). *

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX Value		Information Provided about the Processor
value	EAX	Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.
	EBX	Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
		Bit 01: IA32_TSC_ADJUST MSR is supported if 1. Bit 02: Reserved Bit 03: BMI1 Bit 04: HLE Bit 05: AVX2 Bit 06: Reserved Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
		Bit 08: BMI2 Bit 09: Supports Enhanced REP MOVSB/STOSB if 1. Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context identifiers. Bit 11: RTM
		Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1. Bit 13: Deprecates FPU CS and FPU DS values if 1.
		Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1. Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1. Bits 17:16: Reserved Bit 18: RDSEED Bit 19: ADX
		Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1. Bits 24:21: Reserved Bit 25: Intel Processor Trace Bits 31:26: Reserved
	ECX	Bit 00: PREFETCHWT1 Bits 02:01: Reserved Bit 03: PKU. Supports protection keys for user-mode pages if 1. Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instructions) Bits 31:05: Reserved
	EDX	Reserved
		NOTE: * If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n exceeds the value that sub-leaf 0 returns in EAX.
	Direct Ca	che Access Information Leaf
09H	EAX	Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
	EBX	Reserved
	ECX	Reserved
	EDX	Reserved
	Architect	tural Performance Monitoring Leaf
OAH	EAX	Bits 07 - 00: Version ID of architectural performance monitoring Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor Bits 23 - 16: Bit width of general-purpose, performance monitoring counter Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

Table 3-17 Information Returned by CPUID Instruction (Contd.)

	1	Table 3-17 Information Returned by CPUID Instruction (Contd.)
Initial EAX Value		Information Provided about the Processor
	EBX	Bit 00: Core cycle event not available if 1 Bit 01: Instruction retired event not available if 1 Bit 02: Reference cycles event not available if 1 Bit 03: Last-level cache reference event not available if 1 Bit 04: Last-level cache misses event not available if 1 Bit 05: Branch instruction retired event not available if 1 Bit 06: Branch mispredict retired event not available if 1 Bit 07: Reserved = 0
	ECX	Reserved = 0
	EDX	Bits $04 - 00$: Number of fixed-function performance counters (if Version ID > 1) Bits $12-05$: Bit width of fixed-function performance counters (if Version ID > 1) Reserved = 0
	Extende	d Topology Enumeration Leaf
OBH		NOTES: Most of Leaf OBH output depends on the initial value in ECX. The EDX output of leaf OBH is always valid and does not vary with input value in ECX. Output value in ECX[7:0] always equals input value in ECX[7:0]. For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0. If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > n also return 0 in ECX[15:8].
	EAX	Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. All logical processors with the same next level ID share current level. Bits 31-05: Reserved.
	EBX	Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped by Intel**. Bits 31- 16: Reserved.
	ECX	Bits 07 - 00: Level number. Same value in ECX input Bits 15 - 08: Level type***. Bits 31 - 16:: Reserved.
	EDX	Bits 31- 00: x2APIC ID the current logical processor. NOTES:
		* Software should use this field (EAX[4:0]) to enumerate processor topology of the system. ** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software and platform hardware configurations. *** The value of the "level type" field is not related to level numbers in any way, higher "level type" values do not mean higher levels. Level type field has the following encoding: 0: invalid 1: SMT 2: Core 3-255: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX Value	Information Provided about the Processor		
	Process	or Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)	
ODH		NOTES: Leaf ODH main leaf (ECX = 0).	
	EAX	Bits 31-00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if EAX[n] is 1. Bit 00: x87 state Bit 01: SSE state Bit 02: AVX state Bits 04 - 03: MPX state Bits 07 - 05: AVX-512 state Bit 08: Used for IA32_XSS Bit 09: PKRU state Bits 31-10: Reserved	
	EBX	Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by enabled features in XCRO. May be different than ECX if some features at the end of the XSAVE save area are not enabled.	
	ECX	Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCRO.	
	EDX	Bit 31-00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if EDX[n] is 1. Bits 31- 00: Reserved	
	Process	or Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)	
ODH	EAX	Bit 00: XSAVEOPT is available Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set Bit 02: Supports XGETBV with ECX = 1 if set Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set Bits 31-04: Reserved	
	EBX	Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO IA32_XSS.	
	ECX	Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be set to 1 only if ECX[n] is 1. Bits 07-00: Used for XCR0 Bit 08: PT state Bit 09: Used for XCR0 Bits 31-10: Reserved	
	EDX	Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can be set to 1 only if $EDX[n]$ is 1. Bits 31-00: Reserved	
	Process	or Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)	

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX	1	Table 3-17 Information Returned by CPUID Instruction (Contd.)
Value		Information Provided about the Processor
ODH		NOTES:
		Leaf ODH output depends on the initial value in ECX.
		Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the XCRO register or the IA32_XSS MSR.
		* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n ($0 \le n \le 31$) is invalid if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n ($32 \le n \le 63$) is invalid if sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].
	EAX	Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state feature associated with a valid sub-leaf index, n .
	EBX	Bits 31-0: The offset in bytes of this extended state component's save area from the beginning of the XSAVE/XRSTOR area. This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCRO register*.
	ECX	Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear if bit n is instead supported in XCR0. Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
		located on the next 64-byte boundary following the preceding state component (otherwise, it is located immediately following the preceding state component). Bits 31:02 are reserved.
		This field reports 0 if the sub-leaf index, n, is invalid*.
	EDX	This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
	Platform	n QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)
0FH		NOTES:
		Leaf OFH output depends on the initial value in ECX. Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX
	EAX	Reserved.
	EBX	Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.
	ECX	Reserved.
	EDX	Bit 00: Reserved. Bit 01: Supports L3 Cache QoS Monitoring if 1. Bits 31:02: Reserved
	L3 Cach	e QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)
0FH		NOTES:
		Leaf OFH output depends on the initial value in ECX.
	EAX	Reserved.
	EBX	Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).
	ECX	Maximum range (zero-based) of RMID of this resource type.
	EDX	Bit 00: Supports L3 occupancy monitoring if 1. Bits 31:01: Reserved
	Platform	n QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

Table 3-17 Information Returned by CPUID Instruction (Contd.)

	1	Table 3-17 Information Returned by CPUID Instruction (Contd.)
Initial EAX Value		Information Provided about the Processor
10H		NOTES: Leaf 10H output depends on the initial value in ECX. Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX
	EAX	Reserved.
	EBX	Bit 00: Reserved. Bit 01: Supports L3 Cache QoS Enforcement if 1. Bits 31:02: Reserved
	ECX	Reserved.
	EDX	Reserved.
	L3 Cache	QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)
10H		NOTES: Leaf 10H output depends on the initial value in ECX.
	EAX	Bits 4:0: Length of the capacity bit mask for the corresponding ResID. Bits 31:05: Reserved
	EBX	Bits 31-0: Bit-granular map of isolation/contention of allocation units.
	ECX	Bit 00: Reserved. Bit 01: Updates of COS should be infrequent if 1. Bit 02: Code and Data Prioritization Technology supported if 1. Bits 31:03: Reserved
	EDX	Bits 15:0: Highest COS number supported for this ResID. Bits 31:16: Reserved
	Intel Proc	essor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)
14H		NOTES: Leaf 14H main leaf (ECX = 0).
	EAX	Bits 31:0: Reports the maximum number sub-leaves that are supported in leaf 14H.
	EBX	Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH MSR can be accessed. Bits 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode. Bits 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across warm reset. Bits 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets. Bits 31: 04: Reserved
	ECX	Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed. Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS. Bits 02: If 1, Indicates support of Single-Range Output scheme. Bits 03: If 1, Indicates support of output to Trace Transport subsystem. Bit 30:04: Reserved Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base component. Bits 31- 00: Reserved
	EDX	BITS 3 I - UU; Keserved

Initial EAX Value		Information Provided about the Processor
	Intel Prod	cessor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)
14H	EAX	Bits 2:0: Number of configurable Address Ranges for filtering. Bits 15-03: Reserved Bit 31:16: Bitmap of supported MTC period encodings
	EBX	Bits 15-0: Bitmap of supported Cycle Threshold value encodings Bit 31:16: Bitmap of supported Configurable PSB frequency encodings
	ECX	Bits 31-00: Reserved
	EDX	Bits 31- 00: Reserved
	Time Sta	mp Counter/Core Crystal Clock Information-leaf
15H		NOTES: If EBX[31:0] is 0, the TSC/"core crystal clock" ratio is not enumerated. EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency. "TSC frequency" = "core crystal clock frequency" * EBX/EAX. The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.
	EAX	Bits 31:0: An unsigned integer which is the denominator of the TSC/"core crystal clock" ratio.
	EBX	Bits 31-0: An unsigned integer which is the numerator of the TSC/"core crystal clock" ratio.
	ECX	Bits 31:0: Reserved = 0.
	EDX	Bits 31:0: Reserved = 0.
	Processo	or Frequency Information Leaf
16H	EAX EBX ECX EDX	Bits 15:0: Processor Base Frequency (in MHz). Bits 31:16: Reserved = 0 Bits 15:0: Maximum Frequency (in MHz). Bits 31:16: Reserved = 0 Bits 15:0: Bus (Reference) Frequency (in MHz). Bits 31:16: Reserved = 0 Reserved NOTES: * Data is returned from this interface in accordance with the processor's specification and does not reflect actual values. Suitable use of this data includes the display of processor information in like manner to the processor brand string and for determining the appropriate range to use when displaying processor information e.g. frequency history graphs. The returned information should not be used for any other purpose as the returned information does not accurately correlate to information / counters returned by other processor interfaces. While a processor may support the Processor Frequency Information leaf, fields that return a value of zero are not supported.
	Unimplen	mented CPUID Leaf Functions
40000000H - 4FFFFFFH		Invalid. No existing or future CPU will return processor identification or feature information if the initial EAX value is in the range 40000000H to 4FFFFFFH.
	 Extended	d Function CPUID Information
	CALCINGE	c. c. c. c. c. c. myormodon

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX Value		Information Provided about the Processor
80000000H	EAX	Maximum Input Value for Extended Function CPUID Information (see Table 3-18).
	EBX ECX EDX	Reserved Reserved
80000001H	EAX	Extended Processor Signature and Feature Bits.
	EBX	Reserved
	ECX	Bit 00: LAHF/SAHF available in 64-bit mode Bits 04-01 Reserved Bit 05: LZCNT Bits 07-06 Reserved Bit 08: PREFETCHW Bits 31-09 Reserved
	EDX	Bits 10-00: Reserved Bit 11: SYSCALL/SYSRET available in 64-bit mode Bits 19-12: Reserved = 0 Bit 20: Execute Disable Bit available Bits 25-21: Reserved = 0 Bit 26: 1-GByte pages are available if 1 Bit 27: RDTSCP and IA32_TSC_AUX are available if 1 Bits 28: Reserved = 0 Bit 29: Intel ® 64 Architecture available if 1 Bits 31-30: Reserved = 0
8000002H	EAX EBX ECX EDX	Processor Brand String Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued
80000003H	EAX EBX ECX EDX	Processor Brand String Continued
80000004H	EAX EBX ECX EDX	Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued Processor Brand String Continued
8000005H	EAX EBX ECX EDX	Reserved = 0
80000006H	EAX EBX	Reserved = 0 Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX Value		Information Provided about the Processor
	ECX	Bits 07-00: Cache Line size in bytes Bits 11-08: Reserved Bits 15-12: L2 Associativity field * Bits 31-16: Cache size in 1K units Reserved = 0
		NOTES: * L2 associativity field encodings: 00H - Disabled 01H - Direct mapped 02H - 2-way 04H - 4-way 06H - 8-way 08H - 16-way 0FH - Fully associative
8000007H	EAX EBX ECX EDX	Reserved = 0 Reserved = 0 Reserved = 0 Reserved = 0 Bits 07-00: Reserved = 0 Bit 08: Invariant TSC available if 1 Bits 31-09: Reserved = 0
80000008H	EAX	Linear/Physical Address size Bits 07-00: #Physical Address Bits* Bits 15-8: #Linear Address Bits Bits 31-16: Reserved = 0
	EBX ECX EDX	Reserved = 0 Reserved = 0 Reserved = 0
		NOTES: * If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should come from this field.

INPUT EAX = 0: Returns CPUID's Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for returning basic processor information. The value is returned in the EAX register (see Table 3-18) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is "GenuineIntel" and is expressed:

```
EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)
```

EDX \leftarrow 49656e69h (* "inel", with i in the low eight bits of DL *)

ECX \leftarrow 6c65746eh (* "ntel", with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID's Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recognizes for returning extended processor information. The value is returned in the EAX register and is processor specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example: model, family, and processor type for the Intel Xeon processor 5100 series is as follows:

- Model 1111B
- Family 0101B
- Processor Type 00B

See Table 3-18 for available processor type values. Stepping IDs are provided as needed.

Figure 3-6 Version Information Returned by CPUID in EAX

Table 3-18 Processor Type Field

Туре	Encoding
Original OEM Processor	00B
Intel OverDrive Processor	01B
Dual processor (not applicable to Intel486 processors)	10B
Intel reserved	11B

NOTE

See Chapter 17 in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1, for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display using the following rule:

```
IF Family_ID ≠ 0FH
    THEN DisplayFamily = Family_ID;
    ELSE DisplayFamily = Extended_Family_ID + Family_ID;
    (* Right justify and zero-extend 4-bit field. *)
FI;
(* Show DisplayFamily as HEX field. *)
```

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a display using the following rule:

```
IF (Family_ID = 06H or Family_ID = 0FH)
    THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
    (* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
    ELSE DisplayModel = Model_ID;
FI;
(* Show DisplayModel as HEX field. *)
```

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:

- Brand index (low byte of EBX) this number provides an entry into a brand string table that contains brand strings for IA-32 processors. More information about this field is provided later in this section.
- CLFLUSH instruction cache line size (second byte of EBX) this number indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
- Local APIC ID (high byte of EBX) this number is the 8-bit ID that is assigned to the local APIC on the processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.

- Figure 3-7 and Table 3-19 show encodings for ECX.
- Figure 3-8 and Table 3-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID prior to using the feature. Software should not depend on future offerings retaining all features.

Figure 3-7 Feature Information Returned in the ECX Register

Table 3-19 Feature Information Returned in the ECX Register

Bit #	Mnemonic	Description	
0	SSE3	Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology.	
1	PCLMULQDQ	PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.	
2	DTES64	64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.	
3	MONITOR	MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.	
4	DS-CPL	CPL Qualified Debug Store . A value of 1 indicates the processor supports the extensions to the Debug Store feature to allow for branch message storage qualified by CPL.	
5	VMX	Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.	
6	SMX	Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See Chapter 5, "Safer Mode Extensions Reference".	

Table 3-19 Feature Information Returned in the ECX Register (Contd.)

Bit #	Mnemonic	Description		
7	EIST	Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this technology.		
8	TM2	Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.		
9	SSSE3	A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the instruction extensions are not present in the processor.		
10	CNXT-ID	L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or shared mode. A value of 0 indicates this feature is not supported. See definition of the IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.		
11	SDBG	A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.		
12	FMA	A value of 1 indicates the processor supports FMA extensions using YMM state.		
13	CMPXCHG16B	CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the "CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes" section in this chapter for a description.		
14	xTPR Update Control	xTPR Update Control. A value of 1 indicates that the processor supports changing IA32_MISC_ENABLE[bit 23].		
15	PDCM	Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance and debug feature indication MSR IA32_PERF_CAPABILITIES.		
16	Reserved	Reserved		
17	PCID	Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that software may set CR4.PCIDE to 1.		
18	DCA	A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped device.		
19	SSE4.1	A value of 1 indicates that the processor supports SSE4.1.		
20	SSE4.2	A value of 1 indicates that the processor supports SSE4.2.		
21	x2APIC	A value of 1 indicates that the processor supports x2APIC feature.		
22	MOVBE	A value of 1 indicates that the processor supports MOVBE instruction.		
23	POPCNT	A value of 1 indicates that the processor supports the POPCNT instruction.		
24	TSC-Deadline	A value of 1 indicates that the processor's local APIC timer supports one-shot operation using a TSC deadline value.		
25	AESNI	A value of 1 indicates that the processor supports the AESNI instruction extensions.		
26	XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended feature, the XSETBV/XGETBV instructions, and XCRO.			
27	OSXSAVE	A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV instructions to access XCRO and to support processor extended state management using XSAVE/XRSTOR.		
28	AVX	A value of 1 indicates the processor supports the AVX instruction extensions.		
29	F16C	A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.		
30	RDRAND	A value of 1 indicates that processor supports RDRAND instruction.		
31	Not Used	Always returns 0.		

Figure 3-8 Feature Information Returned in the EDX Register

Table 3-20 More on Feature Information Returned in the EDX Register

Bit #	Mnemonic	Description	
0	FPU	Floating Point Unit On-Chip. The processor contains an x87 FPU.	
1	VME	Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.	
2	DE	Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional trapping of accesses to DR4 and DR5.	
3	PSE	Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.	

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit #	Mnemonic	Description	
4	TSC	Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.	
5	MSR	Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are supported. Some of the MSRs are implementation dependent.	
6	PAE	Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 4 Mbyte pages if PAE bit is 1.	
7	MCE	Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the feature. This feature does not define the model-specific implementations of machine-check error logging, reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor version to do model specific processing of the exception, or test for the presence of the Machine Check feature.	
8	CX8	CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly locked and atomic).	
9	APIC	APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some processors permit the APIC to be relocated).	
10	Reserved	Reserved	
11	SEP	SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.	
12	MTRR	Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are supported.	
13	PGE	Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.	
14	MCA	Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.	
15	CMOV	Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported	
16	PAT	Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear address on a 4KB granularity.	
17	PSE-36	36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 40 bits in size.	
18	PSN	Processor Serial Number. The processor supports the 96-bit processor identification number feature and the feature is enabled.	
19	CLFSH	CLFLUSH Instruction. CLFLUSH Instruction is supported.	
20	Reserved	Reserved	
21	DS	Debug Store. The processor supports the ability to write debug information into a memory resident buffer. This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see Chapter 23, "Introduction to Virtual-Machine Extensions," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C).	

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit #	Mnemonic	Description	
22	ACPI	Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that allow processor temperature to be monitored and processor performance to be modulated in predefined duty cycles under software control.	
23	MMX	Intel MMX Technology. The processor supports the Intel MMX technology.	
24	FXSR	FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and restore of the floating point context. Presence of this bit also indicates that CR4.0SFXSR is available for an operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.	
25	SSE	SSE. The processor supports the SSE extensions.	
26	SSE2	SSE2. The processor supports the SSE2 extensions.	
27	SS	Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its own cache structure for transactions issued to the bus.	
28	НТТ	Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is valid for the package.	
29	TM	Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).	
30	Reserved	Reserved	
31	PBE	Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE MSR enables this capability.	

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor's internal TLBs, cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form and fall into the following categories:

- The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this value and not interpret it as an informational descriptor.
- The most significant bit (bit 31) of each register indicates whether the register contains valid information (set to 0) or is reserved (set to 1).
- If a register contains valid information, the information is contained in 1 byte descriptors. There are four types of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-21. Table 3-21 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache, prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general descriptor type (FFH) and not report any byte descriptor of "cache type" via CPUID leaf 2.

Table 3-21 Encoding of CPUID Leaf 2 Descriptors

Value	Туре	Description
00H	General	Null descriptor, this byte contains no information
01H	TLB	Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
02H	TLB	Instruction TLB: 4 MByte pages, fully associative, 2 entries
03H	TLB	Data TLB: 4 KByte pages, 4-way set associative, 64 entries
04H	TLB	Data TLB: 4 MByte pages, 4-way set associative, 8 entries

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value	Туре	Description
05H	TLB	Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
06H	Cache	1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
08H	Cache	1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size
09H	Cache	1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size
OAH	Cache	1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
OBH	TLB	Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
0CH	Cache	1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
ODH	Cache	1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size
0EH	Cache	1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size
1DH	Cache	2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size
21H	Cache	2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size
22H	Cache	3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
23H	Cache	3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
24H	Cache	2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size
25H	Cache	3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
29H	Cache	3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
2CH	Cache	1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
30H	Cache	1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
40H	Cache	No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
41H	Cache	2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
42H	Cache	2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
43H	Cache	2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
44H	Cache	2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
45H	Cache	2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
46H	Cache	3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
47H	Cache	3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
48H	Cache	2nd-level cache: 3MByte, 12-way set associative, 64 byte line size
49H	Cache	3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H);
		2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
4AH	Cache	3rd-level cache: 6MByte, 12-way set associative, 64 byte line size
4BH	Cache	3rd-level cache: 8MByte, 16-way set associative, 64 byte line size
4CH	Cache	3rd-level cache: 12MByte, 12-way set associative, 64 byte line size
4DH	Cache	3rd-level cache: 16MByte, 16-way set associative, 64 byte line size
4EH	Cache	2nd-level cache: 6MByte, 24-way set associative, 64 byte line size
4FH	TLB	Instruction TLB: 4 KByte pages, 32 entries
50H	TLB	Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries
51H	TLB	Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value	Туре	Description	
52H	TLB	Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries	
55H	TLB	Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries	
56H	TLB	Data TLB0: 4 MByte pages, 4-way set associative, 16 entries	
57H	TLB	Data TLB0: 4 KByte pages, 4-way associative, 16 entries	
59H	TLB	Data TLBO: 4 KByte pages, fully associative, 16 entries	
5AH	TLB	Data TLBO: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries	
5BH	TLB	Data TLB: 4 KByte and 4 MByte pages, 64 entries	
5CH	TLB	Data TLB: 4 KByte and 4 MByte pages,128 entries	
5DH	TLB	Data TLB: 4 KByte and 4 MByte pages,256 entries	
60H	Cache	1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size	
61H	TLB	Instruction TLB: 4 KByte pages, fully associative, 48 entries	
63H	TLB	Data TLB: 1 GByte pages, 4-way set associative, 4 entries	
66H	Cache	1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size	
67H	Cache	1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size	
68H	Cache	1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size	
70H	Cache	Trace cache: 12 K-μop, 8-way set associative	
71H	Cache	Trace cache: 16 K-μop, 8-way set associative	
72H	Cache	Trace cache: 32 K-μop, 8-way set associative	
76H	TLB	Instruction TLB: 2M/4M pages, fully associative, 8 entries	
78H	Cache	2nd-level cache: 1 MByte, 4-way set associative, 64byte line size	
79H	Cache	2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector	
7AH	Cache	2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector	
7BH	Cache	2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector	
7CH	Cache	2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector	
7DH	Cache	2nd-level cache: 2 MByte, 8-way set associative, 64byte line size	
7FH	Cache	2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size	
80H	Cache	2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size	
82H	Cache	2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size	
83H	Cache	2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size	
84H	Cache	2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size	
85H	Cache	2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size	
86H	Cache	2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size	
87H	Cache	2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size	
AOH	DTLB	DTLB: 4k pages, fully associative, 32 entries	
ВОН	TLB	Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries	
B1H	TLB	Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries	
B2H	TLB	Instruction TLB: 4KByte pages, 4-way set associative, 64 entries	
ВЗН	TLB	Data TLB: 4 KByte pages, 4-way set associative, 128 entries	

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value	Туре	Description
B4H	TLB	Data TLB1: 4 KByte pages, 4-way associative, 256 entries
B5H	TLB	Instruction TLB: 4KByte pages, 8-way set associative, 64 entries
В6Н	TLB	Instruction TLB: 4KByte pages, 8-way set associative, 128 entries
BAH	TLB	Data TLB1: 4 KByte pages, 4-way associative, 64 entries
COH	TLB	Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries
C1H	STLB	Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
C2H	DTLB	DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries
СЗН	STLB	Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries.
CAH	STLB	Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries
DOH	Cache	3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size
D1H	Cache	3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size
D2H	Cache	3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size
D6H	Cache	3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size
D7H	Cache	3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size
D8H	Cache	3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size
DCH	Cache	3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size
DDH	Cache	3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size
DEH	Cache	3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size
E2H	Cache	3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size
E3H	Cache	3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size
E4H	Cache	3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size
EAH	Cache	3rd-level cache: 12MByte, 24-way set associative, 64 byte line size
EBH	Cache	3rd-level cache: 18MByte, 24-way set associative, 64 byte line size
ECH	Cache	3rd-level cache: 24MByte, 24-way set associative, 64 byte line size
FOH	Prefetch	64-Byte prefetching
F1H	Prefetch	128-Byte prefetching
FFH	General	CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Example 3-1 Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H

EBX OH

EDX 00 7A 70 00H

Which means:

• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.

- The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register contains valid 1-byte descriptors.
- Bytes 1, 2, and 3 of register EAX indicate that the processor has:
 - 50H a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.
 - 5BH a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.
 - 66H an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
- The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
- Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
 - 00H NULL descriptor.
 - 70H Trace cache: 12 K-μop, 8-way set associative.
 - 7AH a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.
 - 00H NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally defined fields reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

```
= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)
= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)
```

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical package. This information is constant for all valid index values. Software can query the raw data reported by executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in Chapter 8, "Multiple-Processor Management," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power management. See Table 3-17.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power management features. See Table 3-17.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum input value for sub-leaves that contain extended feature flags. See Table 3-17.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-17), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabilities. See Table 3-17.

INPUT EAX = OAH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see Table 3-17) is greater than Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover the programming facilities and the architectural performance events available in the processor. The details are described in Chapter 23, "Introduction to Virtual-Machine Extensions," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumeration data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector representation of all processor state extensions that are supported in the processor and storage size requirements of the XSAVE/XRSTOR area. See Table 3-17.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the valid sub-leaves and obtain size and offset information for each processor extended state save area:

```
For i = 2 to 62 // sub-leaf 1 is reserved

IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;

FI:
```

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that software must use to guery QoS monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit

1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns information about available classes of service and range of QoS mask MSRs that software can use to configure each class of services using capability bit masks in the QoS Mask registers, IA32 resourceType Mask n.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor Trace extensions. See Table 3-17.

When CPUID executes with EAX set to 14H and ECX = $n (n > 1 \text{ and less than the number of non-zero bits in CPUID.}(EAX=14H, ECX= 0H).EAX and CPUID.}(EAX=0DH, ECX= 0H).EDX), the processor returns information about packet generation in Intel Processor Trace. See Table 3-17.$

INPUT EAX = 15H: Returns Time Stamp Counter/Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp Counter/Core Crystal Clock. See Table 3-17.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Information. See Table 3-17.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

- 1. Processor brand string method.
- 2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see Section: "Identification of Earlier IA-32 Processors" in Chapter 17 of the *Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1.*

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Figure 3-9 Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 3-22 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Table 3-22 Processor Brand String Returned with Pentium 4 Processor

EAX Input Value	Return Values	ASCII Equivalent
8000002H	EAX = 20202020H	и и
	EBX = 20202020H	" "
	ECX = 20202020H	и п
	EDX = 6E492020H	"nl "
8000003H	EAX = 286C6574H	"(let"
	EBX = 50202952H	"P)R"
	ECX = 69746E65H	"itne"
	EDX = 52286D75H	"R(mu"

Table 3-22 Processor Brand String Returned with Pentium 4 Processor (Contd.)

EAX Input Value	Return Values	ASCII Equivalent
80000004H	EAX = 20342029H	" 4)"
	EBX = 20555043H	" UPC"
	ECX = 30303531H	"0051"
	EDX = 007A484DH	"\0zHM"

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the processor brand string.

Figure 3-10 Algorithm for Extracting Processor Frequency

The Processor Brand Index Method

The brand index method (introduced with Pentium[®] III Xeon[®] processors) provides an entry point into a brand identification table that is maintained in memory by system software and is accessible from system- and user-

level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can then use this index to locate the brand identification string for the processor in the brand identification table. The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand index method is no longer supported. Use brand string method instead.

Table 3-23 shows brand indices that have identification strings associated with them.

Table 3-23 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index	Brand String
00H	This processor does not support the brand identification feature
01H	Intel(R) Celeron(R) processor ¹
02H	Intel(R) Pentium(R) III processor ¹
03H	Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) processor
04H	Intel(R) Pentium(R) III processor
06H	Mobile Intel(R) Pentium(R) III processor-M
07H	Mobile Intel(R) Celeron(R) processor ¹
08H	Intel(R) Pentium(R) 4 processor
09H	Intel(R) Pentium(R) 4 processor
OAH	Intel(R) Celeron(R) processor ¹
OBH	Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP
0CH	Intel(R) Xeon(R) processor MP
0EH	Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor
0FH	Mobile Intel(R) Celeron(R) processor ¹
11H	Mobile Genuine Intel(R) processor
12H	Intel(R) Celeron(R) M processor
13H	Mobile Intel(R) Celeron(R) processor ¹
14H	Intel(R) Celeron(R) processor
15H	Mobile Genuine Intel(R) processor
16H	Intel(R) Pentium(R) M processor
17H	Mobile Intel(R) Celeron(R) processor ¹
18H - 0FFH	RESERVED

NOTES:

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the Intel486 processor.

^{1.} Indicates versions of these processors that were introduced after the Pentium III

Operation

```
IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;
CASE (EAX) OF
   EAX = 0:
        EAX ← Highest basic function input value understood by CPUID;
        EBX ← Vendor identification string;
        EDX \leftarrow Vendor identification string;
        ECX ← Vendor identification string;
   BREAK;
   EAX = 1H:
        EAX[3:0] \leftarrow Stepping ID;
        EAX[7:4] \leftarrow Model;
        EAX[11:8] \leftarrow Family;
        EAX[13:12] \leftarrow Processor type;
        EAX[15:14] \leftarrow Reserved;
        EAX[19:16] \leftarrow Extended Model;
        EAX[27:20] \leftarrow Extended Family;
        EAX[31:28] \leftarrow Reserved;
        EBX[7:0] \leftarrow Brand Index; (* Reserved if the value is zero. *)
        EBX[15:8] \leftarrow CLFLUSH Line Size;
        EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
        EBX[24:31] \leftarrow Initial APIC ID;
        ECX ← Feature flags; (* See Figure 3-7. *)
        EDX ← Feature flags; (* See Figure 3-8. *)
   BREAK;
   EAX = 2H:
        EAX \leftarrow Cache and TLB information;
        EBX \leftarrow Cache and TLB information;
        ECX \leftarrow Cache and TLB information;
        EDX ← Cache and TLB information;
   BREAK;
   EAX = 3H:
        EAX \leftarrow Reserved;
        EBX ← Reserved;
        ECX \leftarrow ProcessorSerialNumber[31:0];
        (* Pentium III processors only, otherwise reserved. *)
        EDX \leftarrow ProcessorSerialNumber[63:32];
        (* Pentium III processors only, otherwise reserved. *
   BREAK
   EAX = 4H:
        EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
        EBX ← Deterministic Cache Parameters Leaf;
        ECX ← Deterministic Cache Parameters Leaf;
        EDX ← Deterministic Cache Parameters Leaf;
   BREAK;
   EAX = 5H:
        EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
        EBX ← MONITOR/MWAIT Leaf;
        ECX ← MONITOR/MWAIT Leaf;
```

```
EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
    EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
    EBX ← Thermal and Power Management Leaf;
    ECX ← Thermal and Power Management Leaf;
    EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:
    EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
    EBX ← Structured Extended Feature Flags Enumeration Leaf;
    ECX ← Structured Extended Feature Flags Enumeration Leaf;
    EDX ← Structured Extended Feature Flags Enumeration Leaf;
BREAK;
EAX = 8H:
    EAX \leftarrow Reserved = 0;
    EBX \leftarrow Reserved = 0;
    ECX \leftarrow Reserved = 0;
    EDX \leftarrow Reserved = 0;
BREAK;
EAX = 9H:
    EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
    EBX ← Direct Cache Access Information Leaf;
    ECX ← Direct Cache Access Information Leaf;
    EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
    EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
    EBX ← Architectural Performance Monitoring Leaf;
    ECX ← Architectural Performance Monitoring Leaf;
    EDX ← Architectural Performance Monitoring Leaf;
    BREAK
EAX = BH:
    EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
    EBX ← Extended Topology Enumeration Leaf;
    ECX ← Extended Topology Enumeration Leaf;
    EDX ← Extended Topology Enumeration Leaf;
BREAK;
EAX = CH:
    EAX \leftarrow Reserved = 0;
    EBX \leftarrow Reserved = 0;
    ECX \leftarrow Reserved = 0;
    EDX \leftarrow Reserved = 0;
BREAK;
EAX = DH:
    EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
    EBX ← Processor Extended State Enumeration Leaf:
    ECX ← Processor Extended State Enumeration Leaf;
    EDX ← Processor Extended State Enumeration Leaf;
BREAK;
```

```
EAX = EH:
       EAX \leftarrow Reserved = 0;
       EBX \leftarrow Reserved = 0;
       ECX \leftarrow Reserved = 0;
       EDX \leftarrow Reserved = 0;
   BREAK;
   EAX = FH:
       EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)
       EBX ← Platform Quality of Service Monitoring Enumeration Leaf;
       ECX ← Platform Quality of Service Monitoring Enumeration Leaf;
       EDX ← Platform Quality of Service Monitoring Enumeration Leaf;
   BREAK;
   EAX = 10H:
       EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17. *)
       EBX ← Platform Quality of Service Enforcement Enumeration Leaf;
       ECX ← Platform Quality of Service Enforcement Enumeration Leaf;
       EDX ← Platform Quality of Service Enforcement Enumeration Leaf;
   BREAK:
       EAX = 14H:
       EAX ← Intel Processor Trace Enumeration Leaf; (* See Table 3-17. *)
       EBX ← Intel Processor Trace Enumeration Leaf;
       ECX ← Intel Processor Trace Enumeration Leaf;
       EDX ← Intel Processor Trace Enumeration Leaf;
   BREAK;
EAX = 15H:
       EAX ← Time Stamp Counter/Core Crystal Clock Information Leaf; (* See Table 3-17. *)
       EBX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
       ECX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
       EDX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
   BREAK;
   EAX = 16H:
       EAX ← Processor Frequency Information Enumeration Leaf; (* See Table 3-17. *)
       EBX ← Processor Frequency Information Enumeration Leaf;
       ECX ← Processor Frequency Information Enumeration Leaf:
       EDX ← Processor Frequency Information Enumeration Leaf;
   BREAK;
BREAK;
   EAX = 80000000H:
       EAX ← Highest extended function input value understood by CPUID;
       EBX ← Reserved:
       ECX \leftarrow Reserved;
       EDX \leftarrow Reserved;
   BREAK;
   EAX = 80000001H:
       EAX \leftarrow Reserved;
       EBX ← Reserved;
       ECX ← Extended Feature Bits (* See Table 3-17.*);
       EDX ← Extended Feature Bits (* See Table 3-17. *);
   BREAK;
   EAX = 80000002H:
```

```
EAX ← Processor Brand String;
        EBX ← Processor Brand String, continued;
        ECX ← Processor Brand String, continued;
        EDX ← Processor Brand String, continued;
   BREAK;
   EAX = 80000003H:
        EAX ← Processor Brand String, continued;
        EBX ← Processor Brand String, continued;
        ECX ← Processor Brand String, continued;
        EDX ← Processor Brand String, continued;
   BREAK;
   EAX = 80000004H:
        EAX ← Processor Brand String, continued;
        EBX ← Processor Brand String, continued;
        ECX ← Processor Brand String, continued;
        EDX ← Processor Brand String, continued;
   BREAK;
   EAX = 80000005H:
        EAX \leftarrow Reserved = 0;
        EBX \leftarrow Reserved = 0;
        ECX \leftarrow Reserved = 0;
        EDX \leftarrow Reserved = 0;
   BREAK;
   EAX = 80000006H:
        EAX \leftarrow Reserved = 0:
        EBX \leftarrow Reserved = 0;
        ECX \leftarrow Cache information;
        EDX \leftarrow Reserved = 0;
   BREAK;
   EAX = 80000007H:
        EAX \leftarrow Reserved = 0;
        EBX \leftarrow Reserved = 0;
        ECX \leftarrow Reserved = 0;
        EDX ← Reserved = Misc Feature Flags;
   BREAK;
   EAX = 80000008H:
        EAX ← Reserved = Physical Address Size Information;
        EBX ← Reserved = Virtual Address Size Information;
        ECX \leftarrow Reserved = 0;
        EDX \leftarrow Reserved = 0;
   BREAK;
   EAX >= 4000000H and EAX <= 4FFFFFFH:
   DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
        (* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
        EAX ← Reserved; (* Information returned for highest basic information leaf. *)
        EBX ← Reserved; (* Information returned for highest basic information leaf. *)
        ECX ← Reserved; (* Information returned for highest basic information leaf. *)
        EDX ← Reserved; (* Information returned for highest basic information leaf. *)
   BREAK;
ESAC;
```

Flags Affected

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an invalid opcode (#UD) exception being generated.

...

ENTER—Make Stack Frame for Procedure Parameters

Opcode	Instruction	Op/ En	64-Bit Mode	Compat/ Leg Mode	Description
C8 iw 00	ENTER imm16, 0	II	Valid	Valid	Create a stack frame for a procedure.
C8 iw 01	ENTER imm16,1	II	Valid	Valid	Create a stack frame with a nested pointer for a procedure.
C8 iw ib	ENTER imm16, imm8	II	Valid	Valid	Create a stack frame with nested pointers for a procedure.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
II	iw	imm8	NA	NA

Description

Creates a stack frame (comprising of space for dynamic storage and 1-32 frame pointer storage) for a procedure. The first operand (imm16) specifies the size of the dynamic storage in the stack frame (that is, the number of bytes of dynamically allocated on the stack for the procedure). The second operand (imm8) gives the lexical nesting level (0 to 31) of the procedure. The nesting level (imm8 mod 32) and the OperandSize attribute determine the size in bytes of the storage space for frame pointers.

The nesting level determines the number of frame pointers that are copied into the "display area" of the new stack frame from the preceding frame. The default size of the frame pointer is the StackAddrSize attribute, but can be overridden using the 66H prefix. Thus, the OperadSize attribute determines the size of each frame pointer that will be copied into the stack frame and the data being transferred from SP/ESP/RSP register into the BP/EBP/RBP register.

The ENTER and companion LEAVE instructions are provided to support block structured languages. The ENTER instruction (when used) is typically the first instruction in a procedure and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at the end of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register onto the stack, copies the current stack pointer from the SP/ESP/RSP register into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the current stack-pointer value minus the value in the size operand. For nesting levels of 1 or greater, the processor pushes additional frame pointers on the stack before adjusting the stack pointer. These additional frame pointers provide the called procedure with access points to other nested frames on the stack. See "Procedure Calls for Block-Structured Languages" in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1, for more information about the actions of the ENTER instruction.

The ENTER instruction causes a page fault whenever a write using the final value of the stack pointer (within the current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded. Use of 66H prefix changes frame pointer operand size to 16 bits.

When the 66H prefix is used and causing the OperandSize attribute to be less than the StackAddrSize, software is responsible for the following:

- The companion LEAVE instruction must also use the 66H prefix,
- The value in the RBP/EBP register prior to executing "66H ENTER" must be within the same 16KByte region of the current stack pointer (RSP/ESP), such that the value of RBP/EBP after "66H ENTER" remains a valid address in the stack. This ensures "66H LEAVE" can restore 16-bits of data from the stack.

Operation

```
AllocSize \leftarrow imm16;
NestingLevel ← imm8 MOD 32;
IF (OperandSize = 64)
   THEN
        Push(RBP); (* RSP decrements by 8 *)
        FrameTemp \leftarrow RSP;
   ELSE IF OperandSize = 32
        THEN
             Push(EBP); (* (E)SP decrements by 4 *)
             FrameTemp \leftarrow ESP; FI;
   ELSE (* OperandSize = 16 *)
             Push(BP); (* RSP or (E)SP decrements by 2 *)
             FrameTemp \leftarrow SP;
FI;
IF NestingLevel = 0
   THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 1)
   THEN FOR i \leftarrow 1 to (NestingLevel - 1)
        DO
             IF (OperandSize = 64)
                  THEN
                       RBP \leftarrow RBP - 8:
                       Push([RBP]); (* Quadword push *)
                  ELSE IF OperandSize = 32
                       THEN
                            IF StackSize = 32
                                 EBP \leftarrow EBP - 4;
                                 Push([EBP]); (* Doubleword push *)
                            ELSE (* StackSize = 16 *)
                                 BP \leftarrow BP - 4;
                                 Push([BP]); (* Doubleword push *)
                            FI;
                       FI:
                  ELSE (* OperandSize = 16 *)
                       IF StackSize = 32
                            THEN
                                 EBP \leftarrow EBP - 2;
```

```
Push([EBP]); (* Word push *)
                            ELSE (* StackSize = 16 *)
                                BP \leftarrow BP - 2;
                                Push([BP]); (* Word push *)
                       FI;
                  FI;
   OD;
FI;
IF (OperandSize = 64) (* nestinglevel 1 *)
    THEN
        Push(FrameTemp); (* Quadword push and RSP decrements by 8 *)
   ELSE IF OperandSize = 32
        THEN
             Push(FrameTemp); FI; (* Doubleword push and (E)SP decrements by 4 *)
   ELSE (* OperandSize = 16 *)
             Push(FrameTemp); (* Word push and RSP|ESP|SP decrements by 2 *)
FI;
CONTINUE:
IF 64-Bit Mode (StackSize = 64)
   THEN
             RBP \leftarrow FrameTemp;
             RSP \leftarrow RSP - AllocSize;
   ELSE IF OperandSize = 32
        THEN
             EBP \leftarrow FrameTemp;
             ESP \leftarrow ESP - AllocSize; FI;
   ELSE (* OperandSize = 16 *)
             BP ← FrameTemp[15:1]; (* Bits 16 and above of applicable RBP/EBP are unmodified *)
             SP \leftarrow SP - AllocSize:
FI;
END;
```

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current

stack segment) would cause a page fault.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS If the new value of the SP or ESP register is outside the stack segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current

stack segment) would cause a page fault.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current

stack segment) would cause a page fault.

#UD If the LOCK prefix is used.

. . .

LZCNT— Count the Number of Leading Zero Bits

Opcode/ Instruction	Op/ En	64/ 32-bit Mode	CPUID Feature Flag	Description
F3 0F BD /r LZCNT r16, r/m16	RM	V/V	LZCNT	Count the number of leading zero bits in r/m16, return result in r16.
F3 OF BD /r LZCNT r32, r/m32	RM	V/V	LZCNT	Count the number of leading zero bits in r/m32, return result in r32.
F3 REX.W 0F BD /r LZCNT r64, r/m64	RM	V/N.E.	LZCNT	Count the number of leading zero bits in r/m64, return result in r64.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
RM	ModRM:reg (w)	ModRM:r/m (r)	NA	NA

. . .

8. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2B: Instruction Set Reference, N-Z.

...

PADDB/PADDW/PADDD—Add Packed Integers

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
0F FC /r ¹	RM	V/V	MMX	Add packed byte integers from mm/m64 and
PADDB mm, mm/m64				mm.
66 OF FC /r	RM	V/V	SSE2	Add packed byte integers from xmm2/m128
PADDB xmm1, xmm2/m128				and xmm1.
0F FD /r ¹	RM	V/V	MMX	Add packed word integers from mm/m64 and
PADDW mm, mm/m64				mm.
66 OF FD /r	RM	V/V	SSE2	Add packed word integers from xmm2/m128
PADDW xmm1, xmm2/m128				and xmm1.
OF FE /r ¹	RM	V/V	MMX	Add packed doubleword integers from mm/
PADDD mm, mm/m64				m64 and mm.
66 OF FE /r	RM	V/V	SSE2	Add packed doubleword integers from xmm2/
PADDD xmm1, xmm2/m128				m128 and xmm1.
VEX.NDS.128.66.0F.WIG FC /r	RVM	V/V	AVX	Add packed byte integers from xmm3/m128
VPADDB xmm1, xmm2, xmm3/m128				and <i>xmm2</i> .
VEX.NDS.128.66.0F.WIG FD /r	RVM	V/V	AVX	Add packed word integers from xmm3/m128
VPADDW xmm1, xmm2, xmm3/m128				and <i>xmm2</i> .
VEX.NDS.128.66.0F.WIG FE /r	RVM	V/V	AVX	Add packed doubleword integers from xmm3/
VPADDD xmm1, xmm2, xmm3/m128				m128 and xmm2.
VEX.NDS.256.66.0F.WIG FC /r	RVM	V/V	AVX2	Add packed byte integers from ymm2, and
VPADDB ymm1, ymm2, ymm3/m256				ymm3/m256 and store in ymm1.
VEX.NDS.256.66.0F.WIG FD /r	RVM	V/V	AVX2	Add packed word integers from ymm2, ymm3/
VPADDW ymm1, ymm2, ymm3/m256				m256 and store in ymm1.
VEX.NDS.256.66.0F.WIG FE /r	RVM	V/V	AVX2	Add packed doubleword integers from ymm2,
VPADDD ymm1, ymm2, ymm3/m256				ymm3/m256 and store in ymm1.

NOTES

^{1.} See note in Section 2.4, "Instruction Exception Specification" in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
RM	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA
RVM	ModRM:reg (w)	VEX.νννν (r)	ModRM:r/m (r)	NA

Description

Performs a SIMD add of the packed integers from the source operand (second operand) and the destination operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with wraparound, as described in the following paragraphs.

Adds the packed byte, word, doubleword, or quadword integers in the first source operand to the second source operand and stores the result in the destination operand. When a result is too large to be represented in the 8/16/32 integer (overflow), the result is wrapped around and the low bits are written to the destination element (that is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two's complement notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of the values operated on.

These instructions can operate on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit operands, the destination operand must be an MMX technology register and the source operand can be either an MMX technology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register.

Operation

PADDB (with 64-bit operands)

DEST[7:0] \leftarrow DEST[7:0] + SRC[7:0]; (* Repeat add operation for 2nd through 7th byte *) DEST[63:56] \leftarrow DEST[63:56] + SRC[63:56];

PADDB (with 128-bit operands)

DEST[7:0] \leftarrow DEST[7:0] + SRC[7:0]; (* Repeat add operation for 2nd through 14th byte *) DEST[127:120] \leftarrow DEST[111:120] + SRC[127:120];

VPADDB (VEX.128 encoded version)

DEST[7:0] \leftarrow SRC1[7:0]+SRC2[7:0]

DEST[15:8] \leftarrow SRC1[15:8]+SRC2[15:8]

DEST[23:16] ← SRC1[23:16]+SRC2[23:16]

DEST[31:24] ← SRC1[31:24]+SRC2[31:24]

DEST[39:32] ← SRC1[39:32]+SRC2[39:32]

DEST[47:40] \leftarrow SRC1[47:40]+SRC2[47:40]

DEST[55:48] ← SRC1[55:48]+SRC2[55:48]

DEST[63:56] \leftarrow SRC1[63:56]+SRC2[63:56]

DEST[71:64] \leftarrow SRC1[71:64]+SRC2[71:64]

DEST[79:72] \leftarrow SRC1[79:72]+SRC2[79:72]

 $\mathsf{DEST}[87:80] \leftarrow \mathsf{SRC1}[87:80] + \mathsf{SRC2}[87:80]$

DEST[95:88] \leftarrow SRC1[95:88]+SRC2[95:88]

DEST[103:96] \leftarrow SRC1[103:96]+SRC2[103:96]

DEST[111:104] \leftarrow SRC1[111:104]+SRC2[111:104]

DEST[119:112] \leftarrow SRC1[119:112]+SRC2[119:112]

DEST[127:120] \leftarrow SRC1[127:120]+SRC2[127:120]

DEST[VLMAX-1:128] \leftarrow 0

VPADDB (VEX.256 encoded instruction)

DEST[7:0] \leftarrow SRC1[7:0] + SRC2[7:0];

(* Repeat add operation for 2nd through 31th byte *)

DEST[255:248] \leftarrow SRC1[255:248] + SRC2[255:248];

PADDW (with 64-bit operands)

 $DEST[15:0] \leftarrow DEST[15:0] + SRC[15:0];$

(* Repeat add operation for 2nd and 3th word *)

 $DEST[63:48] \leftarrow DEST[63:48] + SRC[63:48];$

PADDW (with 128-bit operands)

DEST[15:0] \leftarrow DEST[15:0] + SRC[15:0];

(* Repeat add operation for 2nd through 7th word *)

DEST[127:112] \leftarrow DEST[127:112] + SRC[127:112];

VPADDW (VEX.128 encoded version)

DEST[15:0] \leftarrow SRC1[15:0]+SRC2[15:0]

DEST[31:16] \leftarrow SRC1[31:16]+SRC2[31:16]

DEST[47:32] \leftarrow SRC1[47:32]+SRC2[47:32]

DEST[63:48] \leftarrow SRC1[63:48]+SRC2[63:48]

DEST[79:64] \leftarrow SRC1[79:64]+SRC2[79:64] DEST[95:80] \leftarrow SRC1[95:80]+SRC2[95:80]

DEST[111:96] ← SRC1[111:96]+SRC2[111:96]

DEST[127:112] \leftarrow SRC1[127:112]+SRC2[127:112]

DEST[VLMAX-1:128] \leftarrow 0

VPADDW (VEX.256 encoded instruction)

DEST[15:0] \leftarrow SRC1[15:0] + SRC2[15:0];

(* Repeat add operation for 2nd through 15th word *)

DEST[255:240] \leftarrow SRC1[255:240] + SRC2[255:240];

PADDD (with 64-bit operands)

```
DEST[31:0] \leftarrow DEST[31:0] + SRC[31:0];
DEST[63:32] \leftarrow DEST[63:32] + SRC[63:32];
```

PADDD (with 128-bit operands)

```
DEST[31:0] \leftarrow DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] \leftarrow DEST[127:96] + SRC[127:96];
```

VPADDD (VEX.128 encoded version)

```
DEST[31:0] \leftarrow SRC1[31:0]+SRC2[31:0]
DEST[63:32] \leftarrow SRC1[63:32]+SRC2[63:32]
DEST[95:64] \leftarrow SRC1[95:64]+SRC2[95:64]
DEST[127:96] \leftarrow SRC1[127:96]+SRC2[127:96]
DEST[VLMAX-1:128] \leftarrow 0
```

VPADDD (VEX.256 encoded instruction)

```
DEST[31:0] \leftarrow SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] \leftarrow SRC1[255:224] + SRC2[255:224];
```

Intel C/C++ Compiler Intrinsic Equivalents

```
PADDB:
              __m64 _mm_add_pi8(__m64 m1, __m64 m2)
(V)PADDB:
              m128i mm add epi8 ( m128ia, m128ib)
VPADDB:
              __m256i _mm256_add_epi8 (__m256ia,__m256i b )
              __m64 _mm_add_pi16(__m64 m1, __m64 m2)
PADDW:
              __m128i _mm_add_epi16 ( __m128i a, __m128i b)
(V)PADDW:
VPADDW:
              __m256i _mm256_add_epi16 ( __m256i a, __m256i b)
PADDD:
              __m64 _mm_add_pi32(__m64 m1, __m64 m2)
(V)PADDD:
              __m128i _mm_add_epi32 ( __m128i a, __m128i b)
VPADDD:
              __m256i _mm256_add_epi32 ( __m256i a, __m256i b)
```

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

. . .

PCLMULQDQ - Carry-Less Multiplication Quadword

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
66 OF 3A 44 /r ib PCLMULQDQ xmm1, xmm2/m128, imm8	RMI	V/V	PCLMUL- QDQ	Carry-less multiplication of one quadword of xmm1 by one quadword of xmm2/m128, stores the 128-bit result in xmm1. The immediate is used to determine which quadwords of xmm1 and xmm2/m128 should be used.
VEX.NDS.128.66.0F3A.WIG 44 /r ib VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8	RVMI	V/V	Both PCL- MULQDQ and AVX flags	Carry-less multiplication of one quadword of xmm2 by one quadword of xmm3/m128, stores the 128-bit result in xmm1. The immediate is used to determine which quadwords of xmm2 and xmm3/m128 should be used.

Instruction Operand Encoding

Op/En	Operand 1	Operand2	Operand3	Operand4
RMI	ModRM:reg (r, w)	ModRM:r/m (r)	imm8	NA
RVMI	ModRM:reg (w)	VEX.νννν (r)	ModRM:r/m (r)	imm8

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to use according to Table 4-10, other bits of the immediate byte are ignored.

Table 4-10 PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4]	lmm[0]	PCLMULQDQ Operation			
0	0	CL_MUL(SRC2 ¹ [63:0], SRC1[63:0])			
0	1	CL_MUL(SRC2[63:0], SRC1[127:64])			
1	0	CL_MUL(SRC2[127:64], SRC1[63:0])			
1	1	CL_MUL(SRC2[127:64], SRC1[127:64])			

NOTES:

The first source operand and the destination operand are the same and must be an XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.

SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination operand.

Compilers and assemblers may implement the following pseudo-op syntax to simply programming and emit the required encoding for Imm8.

Table 4-11 Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op	Imm8 Encoding
PCLMULLQLQDQ xmm1, xmm2	0000_0000B
PCLMULHQLQDQ xmm1, xmm2	0000_0001B
PCLMULLQHQDQ xmm1, xmm2	0001_0000B
PCLMULHQHQDQ xmm1, xmm2	0001_0001B

Operation

```
PCLMULQDQ
IF (Imm8[0] = 0)
    THEN
         TEMP1 \leftarrow SRC1 [63:0];
    ELSE
         TEMP1 \leftarrow SRC1 [127:64];
FΙ
IF (Imm8[4] = 0)
    THEN
         TEMP2 \leftarrow SRC2 [63:0];
    ELSE
         TEMP2 ← SRC2 [127:64];
FΙ
For i = 0 to 63 {
    TmpB [ i ] \leftarrow (TEMP1[ 0 ] and TEMP2[ i ]);
   For j = 1 to i {
         TmpB [ i ] \leftarrow TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
    DEST[ i ] \leftarrow TmpB[ i ];
For i = 64 to 126 {
   TmpB [ i ] \leftarrow 0;
   For j = i - 63 to 63 {
         TmpB [ i ] \leftarrow TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
   DEST[i] \leftarrow TmpB[i];
DEST[127] \leftarrow 0;
DEST[VLMAX-1:128] (Unmodified)
```

```
VPCLMULQDQ
IF (Imm8[0] = 0)
   THEN
        TEMP1 \leftarrow SRC1 [63:0];
   ELSE
        TEMP1 ← SRC1 [127:64];
IF (Imm8[4] = 0)
   THEN
        TEMP2 \leftarrow SRC2 [63:0];
   ELSE
        TEMP2 \leftarrow SRC2 [127:64];
FΙ
For i = 0 to 63 {
   TmpB [i] \leftarrow (TEMP1[0] and TEMP2[i]);
   For j = 1 to i {
        TmpB [i] \leftarrow TmpB [i] xor (TEMP1[j] and TEMP2[i-j])
   DEST[i] \leftarrow TmpB[i];
For i = 64 to 126 {
   TmpB[i] \leftarrow 0;
   For j = i - 63 to 63 {
        TmpB [i] \leftarrow TmpB [i] xor (TEMP1[j] and TEMP2[i-j])
   DEST[i] \leftarrow TmpB[i];
DEST[VLMAX-1:127] \leftarrow 0;
Intel C/C++ Compiler Intrinsic Equivalent
(V)PCLMULQDQ:
                      __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)
SIMD Floating-Point Exceptions
None.
Other Exceptions
See Exceptions Type 4.
```

Intel® 64 and IA-32 Architectures Software Developer's Manual Documentation Changes

PMULHRSW — Packed Multiply High with Round and Scale

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
OF 38 OB /r ¹ PMULHRSW <i>mm1</i> , <i>mm2/m64</i>	RM	V/V	SSSE3	Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1.
66 OF 38 OB /r PMULHRSW xmm1, xmm2/m128	RM	V/V	SSSE3	Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.
VEX.NDS.128.66.0F38.WIG 0B /r VPMULHRSW xmm1, xmm2, xmm3/m128	RVM	V/V	AVX	Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.
VEX.NDS.256.66.0F38.WIG 0B /r VPMULHRSW <i>ymm1</i> , <i>ymm2</i> , <i>ymm3/m256</i>	RVM	V/V	AVX2	Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to <i>ymm1</i> .

NOTES:

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
RM	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA
RVM	ModRM:reg (w)	VEX.νννν (r)	ModRM:r/m (r)	NA

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Legacy SSE version: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

^{1.} See note in Section 2.4, "Instruction Exception Specification" in the Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 2A and Section 22.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers" in the Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3A.

Operation

```
PMULHRSW (with 64-bit operands)
   temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >> 14) + 1;
   temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >> 14) + 1;
   temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
   temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
   DEST[15:0] = temp0[16:1];
   DEST[31:16] = temp1[16:1];
   DEST[47:32] = temp2[16:1];
   DEST[63:48] = temp3[16:1];
PMULHRSW (with 128-bit operand)
   temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >> 14) + 1;
   temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
   temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
   temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
   temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
   temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
   temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
   temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
   DEST[15:0] = temp0[16:1];
   DEST[31:16] = temp1[16:1];
   DEST[47:32] = temp2[16:1];
   DEST[63:48] = temp3[16:1];
   DEST[79:64] = temp4[16:1];
   DEST[95:80] = temp5[16:1];
   DEST[111:96] = temp6[16:1];
   DEST[127:112] = temp7[16:1];
VPMULHRSW (VEX.128 encoded version)
temp0[31:0] \leftarrow INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] \leftarrow INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] ← INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] \leftarrow INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] \leftarrow INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] \leftarrow INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] \leftarrow INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] ← INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] \leftarrow temp0[16:1]
DEST[31:16] \leftarrow temp1[16:1]
DEST[47:32] \leftarrow temp2[16:1]
DEST[63:48] \leftarrow temp3[16:1]
DEST[79:64] \leftarrow temp4[16:1]
DEST[95:80] \leftarrow temp5[16:1]
DEST[111:96] \leftarrow temp6[16:1]
DEST[127:112] \leftarrow temp7[16:1]
DEST[VLMAX-1:128] \leftarrow 0
```

VPMULHRSW (VEX.256 encoded version)

```
temp0[31:0] \leftarrow INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] \leftarrow INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] ← INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] \leftarrow INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] \leftarrow INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] \leftarrow INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] \leftarrow INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] \leftarrow INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] \leftarrow INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] \leftarrow INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] \leftarrow INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] \leftarrow INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] \leftarrow INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] ← INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] \leftarrow INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] \leftarrow INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1
```

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW: __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

(V)PMULHRSW: __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

VPMULHRSW: __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

. . .

RDFSBASE/RDGSBASE—Read FS/GS Segment Base

Opcode/ Instruction	Op/ En	64/32- bit Mode	CPUID Fea- ture Flag	Description
F3 OF AE /0 RDFSBASE r32	М	V/I	FSGSBASE	Load the 32-bit destination register with the FS base address.
F3 REX.W OF AE /0 RDFSBASE r64	М	V/I	FSGSBASE	Load the 64-bit destination register with the FS base address.
F3 OF AE /1 RDGSBASE <i>r32</i>	М	V/I	FSGSBASE	Load the 32-bit destination register with the GS base address.
F3 REX.W OF AE /1 RDGSBASE r64	М	V/I	FSGSBASE	Load the 64-bit destination register with the GS base address.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
М	ModRM:r/m (w)	NA	NA	NA

. . .

TZCNT — Count the Number of Trailing Zero Bits

Opcode/ Instruction	Op/ En	64/ 32-bit Mode	CPUID Feature Flag	Description
F3 OF BC /r TZCNT r16, r/m16	RM	V/V	BMI1	Count the number of trailing zero bits in $r/m16$, return result in $r16$.
F3 OF BC /r TZCNT <i>r32, r/m32</i>	RM	V/V	BMI1	Count the number of trailing zero bits in $r/m32$, return result in $r32$.
F3 REX.W OF BC /r TZCNT r64, r/m64	RM	V/N.E.	BMI1	Count the number of trailing zero bits in $r/m64$, return result in $r64$.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
Α	ModRM:reg (w)	ModRM:r/m (r)	NA	NA

...

WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Opcode/ Instruction	Op/ En	64/32- bit Mode	CPUID Fea- ture Flag	Description
F3 OF AE /2 WRFSBASE <i>r32</i>	М	V/I	FSGSBASE	Load the FS base address with the 32-bit value in the source register.
F3 REX.W OF AE /2 WRFSBASE <i>r64</i>	М	V/I	FSGSBASE	Load the FS base address with the 64-bit value in the source register.
F3 OF AE /3 WRGSBASE <i>r32</i>	М	V/I	FSGSBASE	Load the GS base address with the 32-bit value in the source register.
F3 REX.W OF AE /3 WRGSBASE <i>r64</i>	М	V/I	FSGSBASE	Load the GS base address with the 64-bit value in the source register.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
М	ModRM:r/m (r)	NA	NA	NA

. . .

9. Updates to Chapter 2, Volume 3A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System Programming Guide, Part 1.

...

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system flags in the EFLAGS register and several system registers:

- The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling, instruction tracing, and access rights. See also: Section 2.3, "System Flags and Fields in the EFLAGS Register."
- The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-level operations. Other flags in these registers are used to indicate support for specific processor capabilities within the operating system or executive. See also: Section 2.5, "Control Registers" and Section 2.6, "Extended Control Registers (Including XCR0)."
- The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs and systems software. See also: Chapter 17, "Debug, Branch Profile, TSC, and Resource Monitoring Features."
- The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables. See also: Section 2.4, "Memory-Management Registers."
- The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4, "Memory-Management Registers."
- Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions, the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs).

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor families. See also: Section 9.4, "Model-Specific Registers (MSRs)," and Chapter 35, "Model-Specific Registers (MSRs)."

Most systems restrict access to system registers (other than the EFLAGS register) by application programs. Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege level 0). In such a case, application programs would be allowed to modify the system registers.

. . .

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more **extended control registers** (XCRs). Currently, the only such register defined is XCR0. This register specifies the set of processor state components for which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS programs XCR0 to reflect the features for which it provides context management.

Figure 2-8 XCR0

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as CPUID.01H:ECX.OSXSAVE[bit 27].) Software can use CPUID leaf function 0DH to enumerate the bits in XCR0 that the processor supports (see CPUID instruction in $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 2A). Each supported state component is represented by a bit in XCR0. System software enables state components by loading an appropriate bit mask value into XCR0 using the XSETBV instruction.

As each bit in XCR0 (except bit 63) corresponds to a processor state component, XCR0 thus provides support for up to 63 sets of processor state components. Bit 63 of XCR0 is reserved for future expansion and will not represent a processor state component.

Currently, XCR0 defines support for the following state components:

- XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
- XCR0.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMM0-XMM15 in 64-bit mode; otherwise XMM0-XMM7).
- XCR0.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage the upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).
- XCR0.BNDREG (bit 3): If 1, MPX instructions can be executed and the XSAVE feature set can be used to manage the bounds registers BND0-BND3.
- XCR0.BNDCSR (bit 4): If 1, MPX instructions can be executed and the XSAVE feature set can be used to manage the BNDCFGU and BNDSTATUS registers
- XCR0.opmask (bit 5): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to manage the opmask registers k0-k7.
- XCR0.ZMM_Hi256 (bit 6): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMM0-ZMM7).
- XCR0.Hi16_ZMM (bit 7): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).
- XCR0.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

An attempt to use XSETBV to write to XCR0 results in general-protection exceptions (#GP) if it would do any of the following:

- set a bit reserved in XCR0 for a given processor (as determined by the contents of EAX and EDX after executing CPUID with EAX=0DH, ECX= 0H);
- clear XCR0.x87;
- clear XCR0.SSE and set XCR0.AVX;
- clear XCR0.AVX and set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM;
- set either XCR0.BNDREG and XCR0.BNDCSR while not setting the other; or
- set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.

After reset, all bits (except bit 0) in XCRO are cleared to zero; XCRO[0] is set to 1.

...

10. Updates to Chapter 9, Volume 3A

Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System Programming Guide, Part 1.

.....

...

9.11 MICROCODE UPDATE FACILITIES

The P6 family and later processors have the capability to correct errata by loading an Intel-supplied data block into the processor. The data block is called a microcode update. This section describes the mechanisms the BIOS needs to provide in order to use this feature during system initialization. It also describes a specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a processor stepping and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader, is responsible for loading the update on processors during system initialization (Figure 9-7). There are two steps to this process: the first is to incorporate the necessary update data blocks into the BIOS; the second is to load update data blocks into the processor.

• • •

9.11.6 Microcode Update Loader

This section describes an update loader used to load an update into a P6 family or later processors. It also discusses the requirements placed on the BIOS to ensure proper loading. The update loader described contains the minimal instructions needed to load an update. The specific instruction sequence that is required to load an update is dependent upon the loader revision field contained within the update header. This revision is expected to change infrequently (potentially, only when new processor models are introduced).

Example 9--8 below represents the update loader with a loader revision of 00000001H. Note that the microcode update must be aligned on a 16-byte boundary and the size of the microcode update must be 1-KByte granular.

Example 9--8 Assembly Code Example of Simple Microcode Update Loader

```
; MSR to read in ECX
mov
    ecx,79h
xor eax, eax
                         : clear EAX
xor ebx, ebx
                         ; clear EBX
mov ax,cs
                         ; Segment of microcode update
shl eax,4
                        ; Offset of microcode update
mov bx, offset Update
                         ; Linear Address of Update in EAX
add eax,ebx
add eax,48d
                         : Offset of the Update Data within the Update
xor edx,edx
                         ; Zero in EDX
WRMSR
                        ; microcode update trigger
```

The loader shown in Example 9--8 assumes that *update* is the address of a microcode update (header and data) embedded within the code segment of the BIOS. It also assumes that the processor is operating in real mode. The data may reside anywhere in memory, aligned on a 16-byte boundary, that is accessible by the processor within its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must be true:

- In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear address. In protected mode, EAX contains the full 32-bit linear address of the microcode update.
- In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear address. In protected mode, EDX equals zero.
- ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:

- If the update is loaded while the processor is in real mode, then the update data may not cross a segment boundary.
- If the update is loaded while the processor is in real mode, then the update data may not exceed a segment limit.
- If paging is enabled, pages that are currently present must map the update data.
- The microcode update data requires a 16-byte boundary alignment.

...

9.11.7 Update Signature and Verification

The P6 family and later processors provide capabilities to verify the authenticity of a particular update and to identify the current update revision. This section describes the model-specific extensions of processors that support this feature. The update verification method below assumes that the BIOS will only verify an update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values. The semantics of CPUID cause it to deposit an update ID value in the 64-bit model-specific register at address 08BH (IA32_BIOS_SIGN_ID). If no update is present in the processor, the value in the MSR remains unmodified. The BIOS must pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still returns zero after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the revision of the update loaded in the processor. This value, in combination with the CPUID value returned in the EAX register, uniquely identifies a particular update. The signature ID can be directly compared with the update revision field in a microcode update header for verification of a correct load. No consecutive updates released for a given stepping of a

processor may share the same signature. The processor signature returned by CPUID differentiates updates for different steppings.

...

9.11.8 Optional Processor Microcode Update Specifications

This section an interface that an OEM-BIOS may provide to its client system software to manage processor microcode updates. System software may choose to build its own facility to manage microcode updates (e.g. similar to the facility described in Section 9.11.6) or rely on a facility provided by the BIOS to perform microcode updates.

Sections 9.11.8.1-9.11.8.9 describes an extension (Function 0D042H) to the real mode INT 15H service. INT 15H 0D042H function is one of several alternatives that a BIOS may choose to implement microcode update facility and offer to its client application (e.g. an OS). Other alternative microcode update facility that BIOS can choose are dependent on platform-specific capabilities, including the Capsule Update mechanism from the UEFI specification (www.uefi.org). In this discussion, the application is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS. This extension allows an application to read and modify the contents of the microcode update data in NVRAM. The update loader, which is part of the system BIOS, cannot be updated by the interface. All of the functions defined in the specification must be implemented for a system to be considered compliant with the specification. The INT15 functions are accessible only from real mode.

. . .

9.11.8.3 Microcode Update Functions

Table 9-12 defines the processor microcode update functions that implementations of INT 15H 0D042H must support.

Microcode Update Function	Function Number	Description	Required/Optional
Presence test	00H	Returns information about the supported functions.	Required
Write update data	01H	Writes one of the update data areas (slots).	Required
Update control	02H	Globally controls the loading of updates.	Required
Read update data	03H	Reads one of the update data areas (slots).	Required

Table 9-12 Microcode Update Functions

9.11.8.4 INT 15H-based Interface

If an OEM-BIOS is implementing INT 15H 0D042H interface and offer to its client, the BIOS should allow additional microcode updates to be added to system flash.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas for BIOS use during calls to the read and write functions. These RAM scratch pads can be used by the BIOS for any purpose, but only for the duration of the function call. The calling routine places real mode segments pointing to the RAM blocks in the CX, DX and SI registers. Calls to functions in this interface must be made with a minimum of 32 kilobytes of stack available to the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The general return codes and other constant definitions are listed in Section 9.11.8.9, "Return Codes."

The OEM error field (AL) is provided for the OEM to return additional error information specific to the platform. If the BIOS provides no additional information about the error, OEM error must be set to SUCCESS. The OEM error

field is undefined if AH contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it must be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

...

11. Updates to Chapter 16, Volume 3B

Change bars show changes to Chapter 16 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

•••

16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR CODES FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for external bus errors relating to processor family 06H. The references to processor family 06H refers to only IA-32 processors with CPUID signatures listed in Table 16-1.

Table 16-1 CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H

DisplayFamily_DisplayModel	Processor Families/Processor Number Series
06_0EH	Intel Core Duo, Intel Core Solo processors
06_0DH	Intel Pentium M processor
06_09H	Intel Pentium M processor
06_7H, 06_08H, 06_0AH, 06_0BH	Intel Pentium III Xeon Processor, Intel Pentium III Processor
06_03H, 06_05H	Intel Pentium II Xeon Processor, Intel Pentium II Processor
06_01H	Intel Pentium Pro Processor

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors with a general form of *0000 1PPT RRRR IILL* in the MCA error code field. See Chapter 15 for information on the interpretation of compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-2 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	0-15		
Model specific errors	16-18	Reserved	Reserved

Table 16-2 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Туре	Bit No.	Bit Function	Bit Description
Model specific	19-24	Bus queue request	000000 for BQ_DCU_READ_TYPE error
еггогѕ		type	000010 for BQ_IFU_DEMAND_TYPE error
			000011 for BQ_IFU_DEMAND_NC_TYPE error
			000100 for BQ_DCU_RFO_TYPE error
			000101 for BQ_DCU_RFO_LOCK_TYPE error
			000110 for BQ_DCU_ITOM_TYPE error
			001000 for BQ_DCU_WB_TYPE error
			001010 for BQ_DCU_WCEVICT_TYPE error
			001011 for BQ_DCU_WCLINE_TYPE error
			001100 for BQ_DCU_BTM_TYPE error
			001101 for BQ_DCU_INTACK_TYPE error
			001110 for BQ_DCU_INVALL2_TYPE error
			001111 for BQ_DCU_FLUSHL2_TYPE error
			010000 for BQ_DCU_PART_RD_TYPE error
			010010 for BQ_DCU_PART_WR_TYPE error
			010100 for BQ_DCU_SPEC_CYC_TYPE error
			011000 for BQ_DCU_IO_RD_TYPE error
			011001 for BQ_DCU_IO_WR_TYPE error
			011100 for BQ_DCU_LOCK_RD_TYPE error
			011110 for BQ_DCU_SPLOCK_RD_TYPE error
			011101 for BQ_DCU_LOCK_WR_TYPE error
Model specific	27-25	Bus queue error type	000 for BQ_ERR_HARD_TYPE error
errors			001 for BQ_ERR_DOUBLE_TYPE error
			010 for BQ_ERR_AERR2_TYPE error
			100 for BQ_ERR_SINGLE_TYPE error
			101 for BQ_ERR_AERR1_TYPE error
Model specific errors	28	FRC error	1 if FRC error active
	29	BERR	1 if BERR is driven
	30	Internal BINIT	1 if BINIT driven for this processor
	31	Reserved	Reserved
Other information	32-34	Reserved	Reserved
	35	External BINIT	1 if BINIT is received from external bus.
	36	Response parity error	This bit is asserted in IA32_MC <i>i</i> _STATUS if this component has received a parity error on the RS[2:0]# pins for a response transaction. The RS signals are checked by the RSP# external pin.
	37	Bus BINIT	This bit is asserted in IA32_MC <i>i_</i> STATUS if this component has received a hard error response on a split transaction one access that has needed to be split across the 64-bit external bus interface into two accesses).

Table 16-2 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Туре	Bit No.	Bit Function	Bit Description
	38	Timeout BINIT	This bit is asserted in IA32_MC <i>i_</i> STATUS if this component has experienced a ROB time-out, which indicates that no micro-instruction has been retired for a predetermined period of time.
			A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its high order bit. ² The timer is cleared when a micro-instruction retires, an exception is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.
			The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by 128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit is asserted, it cannot be overwritten by another error.
	39-41	Reserved	Reserved
	42	Hard error	This bit is asserted in IA32_MC <i>i_</i> STATUS if this component has initiated a bus transactions which has received a hard error response. While this bit is asserted, it cannot be overwritten.
	43	IERR	This bit is asserted in IA32_MC <i>i_</i> STATUS if this component has experienced a failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot be overwritten.
	44	AERR	This bit is asserted in IA32_MC <i>i_</i> STATUS if this component has initiated 2 failing bus transactions which have failed due to Address Parity Errors AERR asserted). While this bit is asserted, it cannot be overwritten.
	45	UECC	The Uncorrectable ECC error bit is asserted in IA32_MC <i>i_</i> STATUS for uncorrected ECC errors. While this bit is asserted, the ECC syndrome field will not be overwritten.
	46	CECC	The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC errors.
	47-54	ECC syndrome	The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only if the error was a correctable/uncorrectable ECC error and there wasn't a previous valid ECC error syndrome logged in IA32_MCi_STATUS.
			A previous valid ECC error in IA32_MCi_STATUS is indicated by IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After processing an ECC error, machine-check handling software should clear IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.
	55-56	Reserved	Reserved.
Status register validity indicators ¹	57-63		

NOTES

- 1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.
- 2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its high order bit.

. . .

12. Updates to Chapter 17, Volume 3B

Change bars show changes to Chapter 17 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

.....

...

17.15.8 Monitoring Programming Considerations

Figure 17-23 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform resource monitoring.

Figure 17-25 Software Usage of Cache Monitoring Resources

..

17.16 PLATFORM SHARED RESOURCE CONTROL: CACHE ALLOCATION TECHNOLOGY

Future generations of the Intel Xeon processor offer capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms. The programming interface for Cache Allocation Technology and for the more general allocation capabilities are described in the rest of this chapter.

Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or similar system service management agent to specify the amount of cache space into which an application can fill (as a hint to hardware - certain features such as power management may override CAT settings). User-level implementations with minimal OS support are also possible, though not recommended (see Section 3.5 for examples and discussion). The initial implementation focuses on L3 cache allocation, but the technology is designed to scale across multiple cache levels and technology generations.

The CAT mechanisms defined in this document provide the following key features:

- A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types
 that provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID
 provides enumeration support to query more specific CAT capabilities, such as the max allocation bitmask
 size,
- A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of Service via a list of allocation bitmasks,

- Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
- Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a specific Class of Service.

Note that an OS or Hypervisor should not expose Cache Allocation Technology mechanisms to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available for high priority applications based on guidance from the execution environment as shown in Figure 17-26. The architecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for system throughput benefit. This section describes the hardware and software support required in the platform including what is required of the execution environment (i.e. OS/VMM) to support such resource control. Note that in Figure 17-26 the L3 Cache is shown as an example resource.

Figure 17-26 Cache Allocation Technology Allocates More Resource to High Priority Applications

17.16.1 Cache Allocation Technology Architecture

The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted based on the class with which they are associated. Each Class of Service can be configured using bitmasks which represent capacity and indicate the degree of overlap and isolation between classes. For each logical processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to specify a COS when an application, thread or VM is scheduled. Cache allocation for the indicated application/thread/VM is then controlled automatically by the hardware based on the class and the bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where resourceType indicates a resource type (e.g. "L3" for the L3 cache) and n indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:

- An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource types are available which can be controlled,
- For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,
- An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior of different classes of service using the bitmasks available,
- An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an
 executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
 IA32_PQR_ASSOC),

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applications contending for the cache. The bitlength of the capacity mask available generally depends on the configuration of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a processor family as well).

	M7	M6	M5	M4	M3	M2	M1	M0	
coso	Α	А	Α	Α	Α	Α	Α	А	Default Bitmask
COS1	Α	Α	Α	Α	Α	А	А	А	
COS2	Α	А	Α	Α	Α	А	А	А	
:OS3	Α	Α	Α	А	Α	Α	Α	А	
coso	M7	M6 A	M5 A	M4 A	M3 A	M2	M1 A	MO A	Overlapped Bitmas
COS1	, ,	7.	,,	,	A	A	A	A	Overlapped Bitmas
:031 :0S2		1					A	A	
COS3								Α	
	M7	M6	M5	M4	МЗ	M2	M1	MO	
COS0	Α	А	А	Α					Isolated Bitmask
COS1					Α	Α			
coco							Α		
COS2								Α	

Figure 17-27 Examples of Cache Capacity Bitmasks

Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-27. Please note that all (and only) contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). It is generally expected that in way-based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is usually beneficial to its performance.

Figure 17-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the available cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case, which would allow some lower-priority threads share cache space with the highest priority threads. The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility

COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on, though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity, overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of service or is entirely isolated in terms of cache space used.

Figure 17-28 Class of Service and Cache Capacity Bitmasks

Figure 17-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID. From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are selected and associated with different classes of service. For the available Classes of Service the associated CBMs can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the IA32_L3_MASK_n MSRs, where "n" is the Class of Service, starting from zero). In all architectural implementations supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated otherwise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logical-processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor, the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all requests to the CAT-capable resource from that logical processor are tagged with that COS (in other words, the application thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity

based on the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement implementation based on way partitioning.

17.16.2 Code and Data Prioritization (CDP) Technology

Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization of code and data fetches to the L3 cache in a software configurable manner, which can enable workload prioritization and tuning of cache capacity to the characteristics of the workload. CDP extends Cache Allocation Technology (CAT) by providing separate code and data masks per Class of Service (COS).

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor operates in a traditional CAT-only mode. When CDP is enabled,

- the CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see Figure 17-29),
- the range of COS for CAT is re-indexed, with the lower-half of the COS range available for CDP.

Using the CDP feature, virtual isolation between code and data can be configured on the L3 cache if desired, similar to how some processor cache levels provide separate L1 data and L1 instruction caches.

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal system operation, including dynamically enabling or disabling the feature provided that certain software configuration requirements are met (see Section 17.16.4).

An example of the operating mode of CDP is shown in Figure 17-29. Shown at the top are traditional CAT usage models where capacity masks map 1:1 with a COS number to enable control over the cache space which a given COS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations where CDP is enabled, and each COS number maps 1:2 to two masks, one for code and one for data. This enables code and data to be either overlapped or isolated to varying degrees either globally or on a per-COS basis, depending on application and system needs.

Figure 17-29 Code and Data Capacity Bitmasks of CDP

When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system supports 16 CAT-only COS, when CDP is enabled the same MSR interfaces are used, however half of the masks correspond to code, half correspond to data, and the effective number of COS is reduced by half. Code/Data masks are defined per-COS and interleaved in the MSR space as described in subsequent sections.

17.16.3 Enabling Cache Allocation Technology Usage Flow

Figure 17-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable priority-based resource allocation for a CAT-capable resource.

Figure 17-30 Cache Allocation Technology Usage Flow

17.16.3.1 Enumeration and Detection Support of Cache Allocation Technology

Availability of Cache Allocation Technology can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=07H, Set ECX=00H, call CPUID). This function is used to enumerate the extended feature flags supported by the processor. It loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register indicates support for shared resource allocation control in general on the platform. If the value of this bit is set to 1 then it implies that the processor supports control over shared platform resources.

Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports Cache Allocation. Software must use CPUID leaf 10H to enumerate additional details of available resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Allocation Technology include:

- CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide information on available resource types, and CAT capability for each resource type (see Section 17.16.3.2).
- IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive. See Section 17.16.3.3 for details.
- IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a logical processor to an available COS. See Section 17.16.3.4 for details.

17.16.3.2 Cache Allocation Technology: Resource Type and Capability Enumeration

CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:

CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e. by executing CPUID with EAX=10H and ECX=0H. In the initial implementation, L3 CAT is the only resource type available. Each supported resource type is represented by a bit field in CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID). The ResID is also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see Figure 17-31).

Figure 17-31 CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the capacity bitmasks and the number of Classes of Service for a given ResID. Software must query the capability of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1]. CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1), see Figure 17-32. The specific CAT capabilities reported by CPUID.(EAX=10H, ECX=1) are:

Figure 17-32 L3 Cache Allocation Technology and CDP Enumeration

- CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits 31:5 of EAX are reserved.
- CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an

integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other hardware agents in the system. Bits outside the length of the CBM are reserved.

- CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates Code and Data Prioritization Technology is supported (see Section 17.16.4). Other bits of CPUID.(EAX=10H, ECX=1):ECX are reserved.
- CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature may result if COS are migrated frequently. This is aligned with the industry-standard practice of minimizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best performance, minimize thread migration and COS migration across processor logical threads and processor cores.

17.16.3.3 Cache Mask Configuration

After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see Section 17.16.3.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and 'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, ECX=0):EAX[31:1].

A range of MSRs is reserved for Cache Allocation Technology registers of the form IA32_resourceType_MASK_n, from 0C90H through 0D8FH (inclusive), providing support for up to 256 Classes of Service or multiple resource types. In the first implementation the only supported resourceType is 'L3', corresponding to the L3 cache in a platform. All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

. . .

17.16.3.4 Cache Mask Association

After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs to. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and Figure 17-33 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor.

Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_ResID = (CPUID.(EAX=10H, ECX=ResID):EDX[15:0]) will cause a #GP(0). The value of IA32_PQR_ASSOC.COS after power-on is 0.

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP = (CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in turn is set to the default mask in IA32_L3_MASK_0 - which is all "1"s (on reset). This essentially disables the enforcement feature by default or for legacy operating systems and software.

17.16.4 Enumerating and Enabling CDP Technology

CDP is an extension of CAT. The presence of the CDP feature is enumerated via CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] (see Figure 17-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 17-34. The bit field definition of IA32_L3_QOS_CFG are:

- Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs. The maximum allowed value to write into IA32 PQR ASSOC.COS is COS MAX CDP.
- Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

Figure 17-34 Layout of IA32_L3_QOS_CFG

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence. all logical processors are initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP.

Before enabling or disabling CDP, software should write all 1's to all of the CAT/CDP masks to ensure proper behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs). When enabling CDP, software should also ensure that only COS number which are valid in CDP operation is used, otherwise undefined behavior may result. For instance in a case with 16 CAT COS, since COS are reduced by half when CDP is enabled, software should ensure that only COS 0-7 are in use before enabling CDP (along with writing 1's to all mask bits before enabling or disabling CDP).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled, meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should consider resetting all threads to COS[0] before enabling or disabling CDP.

17.16.4.1 Mapping Between CDP Masks and CAT Masks

When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask per COS. The re-mapping is shown in

Table 17-19 Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

Mask MSR	CAT-only Operation	CDP Operation
IA32_L3_QOS_Mask_0	COS0	COS0.Data
IA32_L3_QOS_Mask_1	COS1	COS0.Code
IA32_L3_QOS_Mask_2	COS2	COS1.Data
IA32_L3_QOS_Mask_3	COS3	COS1.Code
IA32_L3_QOS_Mask_4	COS4	COS2.Data
IA32_L3_QOS_Mask_5	COS5	COS2.Code
IA32_L3_QOS_Mask_'2n'	COS'2n'	COS'n'.Data
IA32_L3_QOS_Mask_'2n+1'	COS'2n+1'	COS'n'.Code

One can derive the MSR address for the data mask or code mask for a given COS number 'n' by:

- data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
- code mask address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control over data fill location and one mask enabling control over data placement. A variety of overlapped and isolated mask configurations are possible (see the example in Figure 17-29).

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, with a length of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid masks on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001, 0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0).

17.16.4.2 Disabling CDP

Before enabling or disabling CDP, software should write all 1's to all of the CAT/CDP masks to ensure proper behavior (e.g., the IA32 L3 OOS Mask n set of MSRs).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled, meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should consider resetting all threads to COS[0] before enabling or disabling CDP.

17.16.5 Cache Allocation Technology Programming Considerations

17.16.5.1 Cache Allocation Technology Dynamic Configuration

Both the CAT masks and CQM registers are accessible and modifiable at any time during execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following conditions occur:

- A reserved bit is modified,
- Accessing a QOS mask register outside the supported COS (the max COS number is specified in CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or

 Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H, ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently. This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best performance, minimize thread migration and COS migration across processor logical threads and processor cores.

...

17.16.5.4 Associating Threads with CAT/CDP Classes of Service

Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The same COS concept applies to both CAT and CDP (for instance, COS[5] means the same thing whether CAT or CDP is in use, and the COS has associated resource usage constraint attributes including cache capacity masks). The mapping of COS to mask MSRs does change when CDP is enabled, according to the following guidelines:

- In CAT-only Mode one set of bitmasks in one mask MSR control both code and data.
 - Each COS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
- When CDP is enabled,
 - Two mask sets exist for each COS number, one for code, one for data.
 - Masks for code/data are interleaved in the MSR address space (see Table 17-19).

. . .

13. Updates to Chapter 18, Volume 3B

Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

...

18.10.3 PEBS Data Address Profiling

The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the precise store facility in previous processor generations. The DataLA facility complements the load latency facility by providing a means to profile load and store memory references in the system, leverages the PEBS facility, and provides additional information about sampled loads and stores. Having precise memory reference events with linear address information for both loads and stores provides information to improve data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

Table 18-40 Precise Events That Supports Data Linear Address Profiling

Event Name	Event Name
MEM_UOPS_RETIRED.STLB_MISS_LOADS	MEM_UOPS_RETIRED.STLB_MISS_STORES
MEM_UOPS_RETIRED.LOCK_LOADS	MEM_UOPS_RETIRED.SPLIT_STORES

Table 18-40 Precise Events That Supports Data Linear Address Profiling (Contd.)

Event Name	Event Name
MEM_UOPS_RETIRED.SPLIT_LOADS	MEM_UOPS_RETIRED.ALL_STORES
MEM_UOPS_RETIRED.ALL_LOADS	MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM
MEM_LOAD_UOPS_RETIRED.L1_HIT	MEM_LOAD_UOPS_RETIRED.L2_HIT
MEM_LOAD_UOPS_RETIRED.L3_HIT	MEM_LOAD_UOPS_RETIRED.L1_MISS
MEM_LOAD_UOPS_RETIRED.L2_MISS	MEM_LOAD_UOPS_RETIRED.L3_MISS
MEM_LOAD_UOPS_RETIRED.HIT_LFB	MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT	MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM
UOPS_RETIRED.ALL (if load or store is tagged)	MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture DataLA information.

- Complete the PEBS configuration steps.
- Program the an event listed in Table 18-40 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
- Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets 98H, A0H and A8H, as shown in Table 18-41.

Table 18-41 Layout of Data Linear Address Information In PEBS Record

Field	Offset	Description
Data Linear Address	98H	The linear address of the load or the destination of the store.
Store Status	АОН	 DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise the store missed the data cache. This information is valid only for the following store events: UOPS_RETIRED.ALL (if store is tagged), MEM_UOPS_RETIRED.STLB_MISS_STORES, MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.SPLIT_STORES Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the corresponding store event in Table 18-40.
Reserved	A8H	Always zero.

٠.

18.12 NEXT GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE MONITORING FACILITY

The next generation $Intel^{\circledR}$ $Core^{\intercal}$ processor is based on the Skylake microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using fixed counters and programmable counters/event select MSRS as described in Section 18.2.3.

The core PMU's capability is similar to those described in Section 18.8 through Section 18.8.5, with some differences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to support performance monitoring when the target workload contains instruction streams using Intel[®] Transactional Synchronization Extensions (TSX), see Section 18.10.5. For details of Intel TSX, see Chapter 15, "Programming with Intel[®] Transactional Synchronization Extensions" of Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details are described in Chapter 7 of the "Intel® Software Guard Extensions Programming Reference".

Table 18-48 Core PMU Comparison

		Table 10 40 Cole 1110 Comparison						
	Intel® microarchitecture code name Skylake	Intel® microarchitecture code name Haswell and Broadwell	Comment					
# of Fixed counters per thread	3	3						
# of general-purpose counters per core	8	8						
Counter width (R,W)	R:48, W: 32/48	R:48, W: 32/48	See Section 18.2.4.					
	4 or (8 if a core not shared by two threads)	4 or (8 if a core not shared by two threads)	CPUID enumerates # of counters.					
Architectural Perfmon version	4	3	See Section 18.2.4					
5	 Freeze_Perfmon_on_PMI with streamlined semantics. Freeze_on_LBR with streamlined semantics. Freeze_while_SMM. 	 Freeze_Perfmon_on_PMI with legacy semantics. Freeze_on_LBR with legacy semantics for branch profiling. Freeze_while_SMM. 	See Section 17.4.7. Legacy semantics not supported with version 4 or higher.					
Status Management	 Query via IA32_PERF_GLOBAL_STATUS Reset via IA32_PERF_GLOBAL_STATUS_RESET Set via IA32_PERF_GLOBAL_STATUS_SET 	 Query via IA32_PERF_GLOBAL_STATUS Reset via IA32_PERF_GLOBAL_OVF_CTRL 	See Section 18.2.4.					
Indicators of Overflow/Overhead/Interferen	 Individual counter overflow PEBS buffer overflow ToPA buffer overflow CTR_Frz, LBR_Frz, ASCI 	Individual counter overflow PEBS buffer overflow ToPA buffer overflow (applicable to Broadwell microarchitecture)	See Section 18.2.4.					
	CTR_Frz,LBR_Frz	NA	See Section 18.2.4.1.					
Perfmon Counter In-Use Indicator	Query IA32_PERF_GLOBAL_INUSE	NA	See Section 18.2.4.3.					
Precise Event Based Sampling (PEBS) Events	See Table 18-51.	See Table 18-27.	IA32_PMC4-PMC7 do not support PEBS.					
PEBS for front end events	See Section 18.12.1.4;	no						
		000100	C+ 17 4 0 1					
LBR Record Format Encoding	000101b	000100Ь	Section 17.4.8.1					

Table 18-48 Core PMU Comparison (Contd.)

Вох	Intel® microarchitecture code name Skylake	Intel® microarchitecture code name Haswell and Broadwell	Comment
LBR Entry	From_IP/To_IP/LBR_Info triplet	From_IP/To_IP pair	Section 17.9
LBR Timing	yes	no	Section 17.9.1
Call Stack Profiling	yes, see Section 17.8	yes, see Section 17.8	Use LBR facility
Off-core Response Event	MSR 1A6H and 1A7H; Extended request and response types	MSR 1A6H and 1A7H; Extended request and response types	
Intel TSX support for Perfmon	See Section 18.10.5;	See Section 18.10.5;	

18.12.1 Precise Event Based Sampling (PEBS) Facility

The PEBS facility in the Next Generation Intel Core processor provides a number enhancement relative to PEBS in processors based on Haswell/Broadwell microarchitectures. The key components and differences of PEBS facility relative to Haswell/Broadwell microarchitecture is summarized in Table 18-49.

Table 18-49 PEBS Facility Comparison

Вох	Intel® microarchitecture code name Skylake	Intel® microarchitecture code name Haswell and Broadwell	Comment
Valid IA32_PMCx	PMCO-PMC3	PMCO-PMC3	No PEBS on PMC4-PMC7.
PEBS Buffer Programming	Section 18.7.1.1	Section 18.7.1.1	Unchanged
IA32_PEBS_ENABLE Layout	Figure 18-21	Figure 18-21	
PEBS-EventingIP	yes	yes	
PEBS record format encoding	0011Ь	0010Ь	
PEBS record layout	Table 18-50; enhanced fields at offsets 98H- B8H; and TSC record field at COH.	Table 18-39; enhanced fields at offsets 98H, AOH, A8H, BOH.	
Multi-counter PEBS resolution	PEBS record 90H resolves the eventing counter overflow.	PEBS record 90H reflects IA32_PERF_GLOBAL_STATUS.	
PEBS Events	See Table 18-51.	See Table 18-27.	IA32_PMC4-IA32_PMC7 do not support PEBS.
PEBS-PDIR	yes	yes	IA32_PMC1 only.
PEBS-Load Latency	See Section 18.8.4.2.	See Section 18.8.4.2.	
Data Address Profiling	yes	yes	
FrontEnd event support	FrontEnd_Retried event and MSR_PEBS_FRONTEND	no	IA32_PMC0-PMC3 only

. . .

18.12.1.2 PEBS Events

The list of PEBS events supported for processors based on the $Intel^{\circledR}$ microarchitecture code name Skylake is shown in Table 18-51.

Table 18-51 PEBS Performance Events for the Skylake Microarchitecture

Event Name	Event Select	Sub-event	UMask
INST_RETIRED	СОН	PREC_DIST	01H
		ALL_CYCLES ¹	01H
OTHER_ASSISTS	C1H	ANY	3FH
BR_INST_RETIRED	C4H	CONDITIONAL	01H
		NEAR_CALL	02H
		ALL_BRANCHES	04H
		NEAR_RETURN	08H
		NEAR_TAKEN	20H
		FAR_BRACHES	40H
BR_MISP_RETIRED	C5H	CONDITIONAL	01H
		ALL_BRANCHES	04H
		NEAR_TAKEN	20H
FRONTEND_RETIRED ²	С6Н	CONDITIONAL	01H
HLE_RETIRED	C8H	ABORTED	04H
RTM_RETIRED	C9H	ABORTED	04H
MEM_INST_RETIRED ²	DOH	LOCK_LOADS	21H
		SPLIT_LOADS	41H
		SPLIT_STORES	42H
		ALL_LOADS	81H
		ALL_STORES	82H
MEM_LOAD_RETIRED ³	D1H	L1_HIT	01H
		L2_HIT	02H
		L3_HIT	04H
		L1_MISS	08H
		L2_MISS	10H
		L3_MISS	20H
		HIT_LFB	40H
MEM_LOAD_L3_HIT_RETIRED ²	D2H	XSNP_MISS	01H
		XSNP_HIT	02H
		XSNP_HITM	04H
		XSNP_NONE	08H

NOTES:

- 1. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
- 2. Subevents are specified using MSR_PEBS_FRONTEND, see Section 18.12.2
 - 3. Instruction with at least one load uop experiencing the condition specified in the UMask.

. . .

18.12.1.4 PEBS Facility for Front End Events

In the next generation Intel Core processor, the PEBS facility has been extended to allow capturing PEBS data for some microarchitectural conditions related to front end events. The frontend microarchitectural conditions supported by PEBS requires the following interfaces:

- The IA32_PERFEVTSELx MSR must select "FrontEnd_Retired" (C6H) in the EventSelect field (bits 7:0) and umask = 01H,
- The "FRONTEND_RETIRED" event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported frontend event details, see Table 18-53.
- Program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the "FRONTEND_RETIRED" event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 18-53.

Table 18-53 FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name	EVTSEL	Description		
DSB_MISS	11H	Retired Instructions which experienced decode stream buffer (DSB) miss.		
L1I_MISS	12H	The fetch of retired Instructions which experienced Instruction L1 Cache true miss ¹ . Additional requests to the same cache line as an in-flight L1I cache miss will not be counted.		
L2_MISS	13H	The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the same cache line as an in-flight MLC cache miss will not be counted.		
ITLB_MISS	14H	The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same cache line as an in-flight ITLB miss will not be counted.		
STLB_MISS	15H	The fetch of retired Instructions which experienced STLB true miss. Additional requests to the same cache line as an in-flight STLB miss will not be counted.		
IDQ_READ_BUBBLES	6H	An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the front-end on any cycle where there is no back end stall. Using the threshold and latency fields in MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration.		
		Latency controls the number of cycles and Threshold controls the number of allocation slots that contain bubbles.		
		The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at least FE_TRESHOLD number of bubbles each.		

NOTES:

The layout of MSR_PEBS_FRONTEND is given in Table 18-54.

Table 18-54 MSR_PEBS_FRONTEND Layout

Bit Name	Offset	Description
EVTSEL	7:0	Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 18-53
IDQ_Bubble_Length	19:8	Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when counting IDQ_READ_BUBBLES event

^{1.} A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

Table 18-54 MSR_PEBS_FRONTEND Layout

Bit Name	Offset	Description
IDQ_Bubble_Width	22:20	Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event
Reserved	63:23	Reserved

18.12.1.5 FRONTEND_RETIRED

The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused front-end issues. There are some instances in which the event will, by design, the under-counting scenarios include the following:

- The event counts only retired (non-speculative) Frontend events, i.e. events from just true program execution path are counted.
- The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused front-end misses, the count will be only 1 for that line.
- If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded once. If there were additional misses in the second cacheline, they will not be counted separately.
- If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops will be counted once per that instruction.
- If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be counted once for the fused instruction.
- If a frontend (miss) event occurs outside instruction boundary (e.g. due to processor handling of architectural event), it may be reported for the next instruction to retire.

...

14. Updates to Chapter 19, Volume 3B

Change bars show changes to Chapter 19 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

. . .

This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors. The ability to monitor performance events and the events that can be monitored in these processors are mostly model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitecture:

- Section 19.2 Processors based on Skylake microarchitecture
- Section 19.3 Processors based on Broadwell microarchitecture
- Section 19.4 Processors based on Haswell microarchitecture
- Section 19.4.1 Processors based on Haswell-E microarchitecture
- Section 19.5 Processors based on Ivy Bridge microarchitecture
- Section 19.5.1 Processors based on Ivy Bridge-E microarchitecture
- Section 19.6 Processors based on Sandy Bridge microarchitecture
- Section 19.7 Processors based on Intel[®] microarchitecture code name Nehalem
- Section 19.8 Processors based on Intel[®] microarchitecture code name Westmere

- Section 19.9 Processors based on Enhanced Intel[®] Core[™] microarchitecture
- Section 19.10 Processors based on Intel[®] Core[™] microarchitecture
- Section 19.11 Processors based on the Silvermont microarchitecture
- Section 19.12 Processors based on Intel[®] Atom[™] microarchitecture
- Section 19.13 Intel[®] Core[™] Solo and Intel[®] Core[™] Duo processors
- Section 19.14 Processors based on Intel NetBurst[®] microarchitecture
- Section 19.15 Pentium® M family processors
- Section 19.16 P6 family processors
- Section 19.17 Pentium[®] processors

. . .

19.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core Duo processors. They are also supported on processors based on Intel Core microarchitecture. Table 19-1 lists pre-defined architectural performance events that can be configured using general-purpose performance counters and associated event-select registers.

Table 19-1 Architectural Performance Events

Event Num.	Event Mask Mnemonic	Umask Value	Description	Comment
3CH	UnHalted Core Cycles	00H	Unhalted core cycles	
JULI	on laited core cycles	0011	Offilated core cycles	
3CH	UnHalted Reference Cycles	01H	Unhalted reference cycles	Measures bus cycle ¹
СОН	Instruction Retired	00H	Instruction retired	
2EH	LLC Reference	4FH	Longest latency cache references	
2EH	LLC Misses	41H	Longest latency cache misses	
C4H	Branch Instruction Retired	00H	Branch instruction at retirement	
C5H	Branch Misses Retired	00H	Mispredicted Branch Instruction at retirement	

NOTES:

Fixed-function performance counters count only events defined in Table 19-2.

Table 19-2 Fixed-Function Performance Counter and Pre-defined Performance Events

Fixed-Function Performance Counter	Address	Event Mask Mnemonic	Description
IA32_PERF_FIXED_CTR0	309H	Inst_Retired.Any	This event counts the number of instructions that retire execution. For instructions that consist of multiple microops, this event counts the retirement of the last micro-op of the instruction. The counter continue counting during hardware interrupts, traps, and inside interrupt handlers.

^{1.} Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo processors measures bus clocks.

Table 19-2 Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)

Fixed-Function Performance			
Counter	Address	Event Mask Mnemonic	Description
IA32_PERF_FIXED_CTR1	30AH	CPU_CLK_UNHALTED.THRE AD/CPU_CLK_UNHALTED.C ORE/CPU_CLK_UNHALTED.	The CPU_CLK_UNHALTED.THREAD event counts the number of core cycles while the logical processor is not in a halt state.
		THREAD_ANY	If there is only one logical processor in a processor core, CPU_CLK_UNHALTED.CORE counts the unhalted cycles of the processor core.
			If there are more than one logical processor in a processor core, CPU_CLK_UNHALTED.THREAD_ANY is supported by programming IA32_FIXED_CTR_CTRL[bit 6]AnyThread = 1.
			The core frequency may change from time to time due to transitions associated with Enhanced Intel SpeedStep Technology or TM2. For this reason this event may have a changing ratio with regards to time.
IA32_PERF_FIXED_CTR2	30BH	CPU_CLK_UNHALTED.REF	This event counts the number of reference cycles when the core is not in a halt state and not in a TM stop-clock state. The core enters the halt state when it is running the HLT instruction or the MWAIT instruction.
			This event is not affected by core frequency changes (e.g., P states) but counts at the same frequency as the time stamp counter. This event can approximate elapsed time while the core was not in halt state and not in a TM stopclock state.

19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION INTEL CORE PROCESSOR

The next generation Intel Core processors are based on the Skylake microarchitecture. They support the architectural performance-monitoring events listed in Table 19-1. Fixed counters in the core PMU support the architecture events defined in Table 19-2. Non-architectural performance-monitoring events in the processor core are listed in Table 19-3. The events in Table 19-3 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_4EH and 06_5EH. Table 19-7 lists performance events supporting Intel TSX (see Section 18.10.5) and are applicable to processors based on Skylake microarchitecture. Where Skylake microarchitecture implements TSX-related event semantics that differ from Table 19-7, they are listed inTable 19-4.

The comment column in Table 19-3 uses abbreviated letters to indicate additional conditions applicable to the Event Mask Mnemonic. For event umasks listed in Table 19-3 that do not show "AnyT", users should refrain from programming "AnyThread =1" in IA32_PERF_EVTSELx.

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
03H	02H	LD_BLOCKS.STORE_FORWARD	Loads blocked by overlapping with store buffer that cannot be forwarded.	
03H	08H	LD_BLOCKS.NO_SR	The number of times that split load operations are temporarily blocked because all resources for handling the split accesses are in use.	
07H	01H	LD_BLOCKS_PARTIAL.ADDRESS _ALIAS	False dependencies in MOB due to partial compare on address.	
08H	01H	DTLB_LOAD_MISSES.MISS_CAUS ES_A_WALK	Load misses in all TLB levels that cause a page walk of any page size.	
08H	OEH	DTLB_LOAD_MISSES.WALK_COM PLETED	Load miss in all TLB levels causes a page walk that completes. (All page sizes)	
08H	10H	DTLB_LOAD_MISSES.WALK_PEN DING	Counts 1 per cycle for each PMH that is busy with a page walk for a load.	
08H	10H	DTLB_LOAD_MISSES.WALK_ACTI VE	Cycles when at least one PMH is busy with a walk for a load.	CMSK1
08H	20H	DTLB_LOAD_MISSES.STLB_HIT	Loads that miss the DTLB but hit STLB.	
ODH	01H	INT_MISC.RECOVERY_CYCLES	Core cycles the allocator was stalled due to recovery from earlier machine clear event for this thread (e.g. misprediction or memory order conflict)	
ODH	01H	INT_MISC.RECOVERY_CYCLES_A NY	Core cycles the allocator was stalled due to recovery from earlier machine clear event for any logical thread in this processor core.	AnyT
ODH	80H	INT_MISC.CLEAR_RESTEER_CYC LES	Cycles the issue-stage is waiting for front-end to fetch from resteered path following branch misprediction or machine clear events.	
0EH	01H	UOPS_ISSUED.ANY	The number of Uops issued by the RAT to RS.	
0EH	01H	UOPS_ISSUED.STALL_CYCLES	Cycles when the RAT does not issue uops to RS for the thread.	CMSK1, INV
0EH	02H	UOPS_ISSUED.VECTOR_WIDTH_ MISMATCH	Uops inserted at issue-stage in order to preserve upper bits of vector registers.	
OEH	20H	UOPS_ISSUED.SLOW_LEA	Number of slow LEA or similar uops allocated. Such uop has 3 sources (e.g. 2 sources + immediate) regardless if as a result of LEA instruction or not.	
14H	01H	ARITH.FPU_DIVIDER_ACTIVE	Cycles when divider is busy executing divide or square root operations. Accounts for FP operations including integer divides.	
24H	21H	L2_RQSTS.DEMAND_DATA_RD_ MISS	Demand Data Read requests that missed L2, no rejects.	
24H	22H	L2_RQSTS.RFO_MISS	RFO requests that missed L2,	
24H	24H	L2_RQSTS.CODE_RD_MISS	L2 cache misses when fetching instructions,	
24H	27H	L2_RQSTS.ALL_DEMAND_MISS	Demand requests that missed L2,	
24H	38H	L2_RQSTS.PF_MISS	Requests from the L1/L2/L3 hardware prefetchers or Load software prefetches that miss L2 cache	

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
24H	3FH	L2_RQSTS.MISS	All requests that missed L2,	
24H	41H	L2_RQSTS.DEMAND_DATA_RD_ HIT	Demand Data Read requests that hit L2 cache.	
24H	42H	L2_RQSTS.RFO_HIT	RFO requests that hit L2 cache.	
24H	44H	L2_RQSTS.CODE_RD_HIT	L2 cache hits when fetching instructions,	
24H	D8H	L2_RQSTS.PF_HIT	Prefetches that hit L2.	
24H	E1H	L2_RQSTS.ALL_DEMAND_DATA _RD	All demand data read requests to L2.	
24H	E2H	L2_RQSTS.ALL_RF0	All L RFO requests to L2.	
24H	E4H	L2_RQSTS.ALL_CODE_RD	All L2 code requests.	
24H	E7H	L2_RQSTS.ALL_DEMAND_REFE RENCES	All demand requests to L2.	
24H	F8H	L2_RQSTS.ALL_PF	All requests from the L1/L2/L3 hardware prefetchers or Load software prefetches	
24H	EFH	L2_RQSTS.REFERENCES	All requests to L2.	
2EH	4FH	LONGEST_LAT_CACHE.REFEREN CE	This event counts requests originating from the core that reference a cache line in the L3 cache.	See Table 19-1.
2EH	41H	LONGEST_LAT_CACHE.MISS	This event counts each cache miss condition for references to the L3 cache.	See Table 19-1.
3CH	00H	CPU_CLK_UNHALTED.THREAD_ P	Cycles while the logical processor is not in a halt state.	See Table 19-1.
3CH	00H	CPU_CLK_UNHALTED.THREAD_ P_ANY	Cycles while at least one logical processor is not in a halt state.	AnyT
3CH	01H	CPU_CLK_THREAD_UNHALTED. REF_XCLK	Reference cycles when the logical processor is unhalted (counts at 100 MHz rate)	See Table 19-1.
3CH	01H	CPU_CLK_THREAD_UNHALTED. REF_XCLK_ANY	Reference cycles when at least one logical processor in the processor core is unhalted (counts at 100 MHz rate)	AnyT
3CH	02H	CPU_CLK_THREAD_UNHALTED. ONE_THREAD_ACTIVE	Count XClk pulses when this thread is unhalted and the other thread is halted.	
48H	01H	L1D_PEND_MISS.PENDING	Increments the number of outstanding L1D misses every cycle.	
48H	01H	L1D_PEND_MISS.PENDING_CYCL ES	Cycles with at least one outstanding L1D misses from this logical processor	CMSK1
48H	01H	L1D_PEND_MISS.PENDING_CYCL ES_ANY	Cycles with at least one outstanding L1D misses from any logical processor in this core.	CMSK1, AnyT
48H	02H	L1D_PEND_MISS.FB_FULL	Number of times a request needed a FB entry but there was no entry available for it. That is the FB unavailability was dominant reason for blocking the request. A request includes cacheable/uncacheable demands that is load, store or SW prefetch. HWP are excluded.	
49H	01H	DTLB_STORE_MISSES.MISS_CAU SES_A_WALK	Store misses in all TLB levels that cause page walks	

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
49H	0EH	DTLB_STORE_MISSES.WALK_CO MPLETED	Counts completed page walks in any TLB levels due to store misses (All page sizes).	
49H	10H	DTLB_STORE_MISSES.WALK_PE NDING	Counts 1 per cycle for each PMH that is busy with a page walk for a store.	
49H	10H	DTLB_STORE_MISSES.WALK_AC TIVE	Cycles when at least one PMH is busy with a page walk for a store.	CMSK1
49H	20H	DTLB_STORE_MISSES.STLB_HIT	Store misses that missed DTLB but hit STLB.	
4CH	01H	LOAD_HIT_PRE.HW_PF	Demand load dispatches that hit fill buffer allocated for software prefetch.	
4FH	10H	EPT.WALK_PENDING	Counts 1 per cycle for each PMH that is busy with a EPT walk for any request type.	
51H	01H	L1D.REPLACEMENT	Counts the number of lines brought into the L1 data cache.	
5EH	01H	RS_EVENTS.EMPTY_CYCLES	Cycles the RS is empty for the thread.	
5EH	01H	RS_EVENTS.EMPTY_END	Counts end of periods where the Reservation Station (RS) was empty. Could be useful to precisely locate Frontend Latency Bound issues.	CMSK1, INV
60H	01H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_DATA_RD	Increment each cycle of the number of offcore outstanding Demand Data Read transactions in SQ to uncore.	
60H	01H	OFFCORE_REQUESTS_OUTSTAN DING.CYCLES_WITH_DEMAND_D ATA_RD	Cycles with at least one offcore outstanding Demand Data Read transactions in SQ to uncore.	CMSK1
60H	01H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_DATA_RD_GE_6	Cycles with at least 6 offcore outstanding Demand Data Read transactions in SQ to uncore.	CMSK6
60H	02H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_CODE_RD	Increment each cycle of the number of Offcore outstanding Demand code Read transactions in SQ to uncore.	
60H	02H	OFFCORE_REQUESTS_OUTSTAN DING.CYCLES_WITH_DEMAND_C ODE_RD	Cycles with at least one offcore outstanding Demand code Read transactions in SQ to uncore.	CMSK1
60H	04H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_RFO	Increment each cycle of the number of Offcore outstanding RFO store transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	04H	OFFCORE_REQUESTS_OUTSTAN DING.CYCLES_WITH_DEMAND_R FO	Cycles with at least one offcore outstanding RFO transactions in SQ to uncore.	CMSK1
60H	08H	OFFCORE_REQUESTS_OUTSTAN DING.ALL_DATA_RD	Increment each cycle of the number of Offcore outstanding cacheable data read transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	08H	OFFCORE_REQUESTS_OUTSTAN DING.CYCLES_WITH_DATA_RD	Cycles with at least one offcore outstanding data read transactions in SQ to uncore.	CMSK1

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
60H	10H	OFFCORE_REQUESTS_OUTSTAN DING.L3_MISS_DEMAND_DATA_ RD	Increment each cycle of the number of Offcore outstanding demand data read requests from SQ that missed L3.	
60H	10H	OFFCORE_REQUESTS_OUTSTAN DING.CYCLES_WITH_L3_MISS_D EMAND_DATA_RD	Cycles with at least one offcore outstanding Demand Data Read requests from SQ that missed L3.	CMSK1
60H	10H	OFFCORE_REQUESTS_OUTSTAN DING.L3_MISS_DEMAND_DATA_ RD_GE_6	Cycles with at least one offcore outstanding Demand Data Read requests from SQ that missed L3.	CMSK6
63H	02H	LOCK_CYCLES.CACHE_LOCK_DU RATION	Cycles in which the L1D is locked.	
79H	04H	IDQ.MITE_UOPS	Increment each cycle # of uops delivered to IDQ from MITE path.	
79H	04H	IDQ.MITE_CYCLES	Cycles when uops are being delivered to IDQ from MITE path	CMSK1
79H	08H	IDQ.DSB_UOPS	Increment each cycle. # of uops delivered to IDQ from DSB path.	
79H	08H	IDQ.DSB_CYCLES	Cycles when uops are being delivered to IDQ from DSB path	CMSK1
79H	10H	IDQ.MS_DSB_UOPS	Increment each cycle # of uops delivered to IDQ by DSB when MS_busy.	
79H	18H	IDQ.ALL_DSB_CYCLES_ANY_UO PS	Cycles DSB is delivered at least one uops.	CMSK1
79H	18H	IDQ.ALL_DSB_CYCLES_4_UOPS	Cycles DSB is delivered four uops.	CMSK4
79H	20H	IDQ.MS_MITE_UOPS	Increment each cycle # of uops delivered to IDQ by MITE when MS_busy.	
79H	24H	IDQ.ALL_MITE_CYCLES_ANY_UO PS	Counts cycles MITE is delivered at least one uops.	CMSK1
79H	24H	IDQ.ALL_MITE_CYCLES_4_UOPS	Counts cycles MITE is delivered four uops.	CMSK4
79H	30H	IDQ.MS_UOPS	Increment each cycle # of uops delivered to IDQ while MS is busy.	
79H	30H	IDQ.MS_SWITCHES	Number of switches from DSB or MITE to MS.	EDG
79H	30H	IDQ.MS_CYCLES	Cycles MS is delivered at least one uops.	CMSK1
80H	04H	ICACHE_16B.IFDATA_STALL	Cycles where a code fetch is stalled due to L1 instruction cache miss.	
80H	04H	ICACHE_64B.IFDATA_STALL	Cycles where a code fetch is stalled due to L1 instruction cache tag miss.	
83H	01H	ICACHE_64B.IFTAG_HIT	Instruction fetch tag lookups that hit in the instruction cache (L1I). Counts at 64-byte cache-line granularity.	
83H	02H	ICACHE_64B.IFTAG_MISS	Instruction fetch tag lookups that miss in the instruction cache (L1I). Counts at 64-byte cache-line granularity.	

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
85H	01H	ITLB_MISSES.MISS_CAUSES_A_ WALK	Misses at all ITLB levels that cause page walks	
85H	0EH	ITLB_MISSES.WALK_COMPLETE D	Counts completed page walks in any TLB levels due to code fetch misses (All page sizes).	
85H	10H	ITLB_MISSES.WALK_PENDING	Counts 1 per cycle for each PMH that is busy with a page walk for an instruction fetch request.	
85H	20H	ITLB_MISSES.STLB_HIT	ITLB misses that hit STLB.	
87H	01H	ILD_STALL.LCP	Stalls caused by changing prefix length of the instruction.	
9CH	01H	IDQ_UOPS_NOT_DELIVERED.CO RE	Count issue pipeline slots where no uop was delivered from the frontend to the backend when there is no backend stall.	
9CH	01H	IDQ_UOPS_NOT_DELIVERED.CYC LES_O_UOP_DELIV.CORE	Cycles which 4 issue pipeline slots had no uop delivered from the frontend to the backend when there is no backend stall.	CMSK4
9CH	01H	IDQ_UOPS_NOT_DELIVERED.CYC LES_LE_n_UOP_DELIV.CORE	Cycles which "4-n" issue pipeline slots had no uop delivered from the frontend to the backend when there is no backend stall.	Set CMSK = 4-n, n = 1, 2, 3
9CH	01H	IDQ_UOPS_NOT_DELIVERED.CYC LES_FE_WAS_OK	Cycles which frontend delivered 4 uops or the RAT was stalling FE.	CMSK, INV
A1H	01H	UOPS_DISPATCHED_PORT.PORT _0	Counts the number of cycles in which a uop is dispatched to port 0.	
A1H	02H	UOPS_DISPATCHED_PORT.PORT _1	Counts the number of cycles in which a uop is dispatched to port 1.	
A1H	04H	UOPS_DISPATCHED_PORT.PORT _2	Counts the number of cycles in which a uop is dispatched to port 2.	
A1H	08H	UOPS_DISPATCHED_PORT.PORT _3	Counts the number of cycles in which a uop is dispatched to port 3.	
A1H	10H	UOPS_DISPATCHED_PORT.PORT _4	Counts the number of cycles in which a uop is dispatched to port 4.	
A1H	20H	UOPS_DISPATCHED_PORT.PORT _5	Counts the number of cycles in which a uop is dispatched to port 5.	
A1H	40H	UOPS_DISPATCHED_PORT.PORT _6	Counts the number of cycles in which a uop is dispatched to port 6.	
A1H	80H	UOPS_DISPATCHED_PORT.PORT _7	Counts the number of cycles in which a uop is dispatched to port 7.	
A2H	01H	RESOURCE_STALLS.ANY	Resource-related stall cycles	
A2H	08H	RESOURCE_STALLS.SB	Cycles stalled due to no store buffers available (not including draining form sync).	
АЗН	01H	CYCLE_ACTIVITY.CYCLES_L2_MI SS	Cycles while L2 cache miss demand load is outstanding.	CMSK1
АЗН	02H	CYCLE_ACTIVITY.CYCLES_L3_MI SS	Cycles while L3 cache miss demand load is outstanding.	CMSK2

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
АЗН	04H	CYCLE_ACTIVITY.STALLS_TOTAL	Total execution stalls	CMSK4
АЗН	05H	CYCLE_ACTIVITY.STALLS_L2_MI SS	Execution stalls while L2 cache miss demand load is outstanding.	CMSK5
АЗН	06H	CYCLE_ACTIVITY.STALLS_L3_MI SS	Execution stalls while L3 cache miss demand load is outstanding.	CMSK6
АЗН	08H	CYCLE_ACTIVITY.CYCLES_L1D_M ISS	Cycles while L1 data cache miss demand load is outstanding.	CMSK8
АЗН	OCH	CYCLE_ACTIVITY.STALLS_L1D_M ISS	Execution stalls while L1 data cache miss demand load is outstanding.	CMSK12
АЗН	10H	CYCLE_ACTIVITY.CYCLES_MEM_ ANY	Cycles while memory subsystem has an outstanding load.	CMSK16
АЗН	14H	CYCLE_ACTIVITY.STALLS_MEM_ ANY	Execution stalls while memory subsystem has an outstanding load.	CMSK20
А6Н	01H	EXE_ACTIVITY.EXE_BOUND_O_P ORTS	Cycles for which no uops began execution, the Reservation Station was not empty, the Store Buffer was full and there was no outstanding load.	
A6H	02H	EXE_ACTIVITY.1_PORTS_UTIL	Cycles for which one uop began execution on any port, and the Reservation Station was not empty.	
A6H	04H	EXE_ACTIVITY.2_PORTS_UTIL	Cycles for which two uops began execution, and the Reservation Station was not empty.	
A6H	08H	EXE_ACTIVITY.3_PORTS_UTIL	Cycles for which three uops began execution, and the Reservation Station was not empty.	
A6H	04H	EXE_ACTIVITY.4_PORTS_UTIL	Cycles for which four uops began execution, and the Reservation Station was not empty.	
A8H	01H	LSD.UOPS	Number of uops delivered by the LSD.	
A8H	01H	LSD.CYCLES_ACTIVE	Cycles with at least one uop delivered by the LSD and none from the decoder.	CMSK1
A8H	01H	LSD.CYCLES_4_UOPS	Cycles with 4 uops delivered by the LSD and none from the decoder.	CMSK4
ABH	02H	DSB2MITE_SWITCHES.PENALTY _CYCLES	DSB-to-MITE switch true penalty cycles.	
AEH	01H	ITLB.ITLB_FLUSH	Flushing of the Instruction TLB (ITLB) pages, includes 4k/2M/4M pages.	
ВОН	01H	OFFCORE_REQUESTS.DEMAND_ DATA_RD	Demand data read requests sent to uncore.	
ВОН	02H	OFFCORE_REQUESTS.DEMAND_ CODE_RD	Demand code read requests sent to uncore.	
ВОН	04H	OFFCORE_REQUESTS.DEMAND_ RFO	Demand RFO read requests sent to uncore, including regular RFOs, locks, ItoM.	
ВОН	08H	OFFCORE_REQUESTS.ALL_DATA _RD	Data read requests sent to uncore (demand and prefetch).	
ВОН	10H	OFFCORE_REQUESTS.L3_MISS_ DEMAND_DATA_RD	Demand data read requests that missed L3	

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
вон	80H	OFFCORE_REQUESTS.ALL_REQUESTS	Any memory transaction that reached the SQ.	
B1H	01H	UOPS_EXECUTED.THREAD	Counts the number of uops that begin execution across all ports.	
B1H	01H	UOPS_EXECUTED.STALL_CYCLE S	Cycles which there were no uops began execution.	CMSK, INV
B1H	01H	UOPS_EXECUTED.CYCLES_GE_1 _UOP_EXEC	Cycles which there was al least one uop began execution.	CMSK1
В1Н	01H	UOPS_EXECUTED.CYCLES_GE_2 _UOP_EXEC	Cycles which there were at least two uop began execution.	CMSK2
B1H	01H	UOPS_EXECUTED.CYCLES_GE_3 _UOP_EXEC	Cycles which there were at least three uop began execution.	CMSK3
B1H	01H	UOPS_EXECUTED.CYCLES_GE_4 _UOP_EXEC	Cycles which there were at least four uop began execution.	CMSK4
B1H	02H	UOPS_EXECUTED.CORE	Counts the number of uops from any logical processor in this core that begin execution.	
В1Н	02H	UOPS_EXECUTED.CORE_CYCLES _GE_1	Cycles which there was al least one uop, from any logical processor in this core, began execution.	CMSK1
B1H	02H	UOPS_EXECUTED.CORE_CYCLES _GE_2	Cycles which there were al least two uops, from any logical processor in this core, began execution.	CMSK2
B1H	02H	UOPS_EXECUTED.CORE_CYCLES _GE_3	Cycles which there were al least three uops, from any logical processor in this core, began execution.	CMSK3
B1H	02H	UOPS_EXECUTED.CORE_CYCLES _GE_4	Cycles which there were al least four uops, from any logical processor in this core, began execution.	CMSK4
B1H	02H	UOPS_EXECUTED.CORE_CYCLES _NONE	Cycles which there were no uops from any logical processor in this core that began execution.	CMSK1, INV
B1H	10H	UOPS_EXECUTED.X87	Counts the number of X87 uops that begin execution.	CMSK1, INV
B2H	01H	OFF_CORE_REQUEST_BUFFER.S Q_FULL	Offcore requests buffer cannot take more entries for this core.	
В7Н	01H	OFF_CORE_RESPONSE_0	see Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A6H
BBH	01H	OFF_CORE_RESPONSE_1	See Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A7H
BDH	01H	TLB_FLUSH.DTLB_THREAD	DTLB flush attempts of the thread-specific entries	
BDH	01H	TLB_FLUSH.STLB_ANY	STLB flush attempts	
СОН	00H	INST_RETIRED.ANY_P	Number of instructions at retirement.	See Table 19-1.
СОН	01H	INST_RETIRED.PREC_DIST	Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribution.	PMC1 only;
СОН	01H	INST_RETIRED.TOTAL_CYCLES	Number of cycles using always true condition applied to PEBS instructions retired event.	CMSK10, PS
C1H	3FH	OTHER_ASSISTS.ANY	Number of times a microcode assist is invoked by HW other than FP-assist. Examples include AD (page Access Dirty) and AVX* related assists.	

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

CMSK1, INV CMSK10, INV CMSK1 y s PS
CMSK1 y s PS
s PS
s PS
s PS
PS
1. 5
PS
ed. PS
PS
PS
See Table 19-1.
PS
PS
re PS
PS I
.1 PS
ie PS
ss. PS
iss. PS

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
C6H	01H	FRONTEND_RETIRED.LATENCY_ GE_16	Retired Instructions that are fetched after an interval where the front end delivered no uops for at least 16 cycles. Specify the following fields in MSR_PEBS_FRONTEND: EVTSEL=16H, IDQ_Bubble_Length =16, IDQ_Bubble_Width = 4.	PS
C6H	01H	FRONTEND_RETIRED.LATENCY_ GE_2_BUBBLES_GE_m	Retired Instructions that are fetched after an interval where the front end had 'm' IDQ slots delivered no uops for at least 2 cycles. Specify the following fields in MSR_PEBS_FRONTEND: EVTSEL=16H, IDQ_Bubble_Length = 2, IDQ_Bubble_Width = m	PS, m = 1, 2, 3
С7Н	01H	FP_ARITH_INST_RETIRED.SCAL AR_DOUBLE	Number of double-precision, floating-point, scalar SSE/AVX computational instructions that are retired. Each scalar FMA instruction count as 2.	Software may treat each count as one DP FLOP.
C7H	02H	FP_ARITH_INST_RETIRED.SCAL AR_SINGLE	Number of single-precision, floating-point, scalar SSE/AVX computational instructions that are retired. Each scalar FMA instruction count as 2.	Software may treat each count as one SP FLOP.
C7H	04H	FP_ARITH_INST_RETIRED.128B _PACKED_DOUBLE	Number of double-precision, floating-point, 128-bit SSE/AVX computational instructions that are retired. Each 128-bit FMA or (V)DPPD instruction count as 2.	Software may treat each count as two DP FLOPs.
C7H	08H	FP_ARITH_INST_RETIRED.128B _PACKED_SINGLE	Number of single-precision, floating-point, 128-bit SSE/AVX computational instructions that are retired. Each 128-bit FMA or (V)DPPS instruction count as 2.	Software may treat each count as four SP FLOPs.
C7H	10H	FP_ARITH_INST_RETIRED.256B _PACKED_DOUBLE	Number of double-precision, floating-point, 256-bit SSE/AVX computational instructions that are retired. Each 256-bit FMA instruction count as 2.	Software may treat each count as four DP FLOPs.
C7H	20H	FP_ARITH_INST_RETIRED.256B _PACKED_SINGLE	Number of single-precision, floating-point, 256-bit SSE/AVX computational instructions that are retired. Each 256-bit FMA or VDPPS instruction count as 2.	Software may treat each count as eight SP FLOPs.
CAH	1EH	FP_ASSIST.ANY	Cycles with any input/output SSE* or FP assists.	CMSK1
CBH	01H	HW_INTERRUPTS.RECEIVED	Cycles with any input/output SSE* or FP assists.	
CDH	01H	MEM_TRANS_RETIRED.LOAD_L ATENCY	Randomly sampled loads whose latency is above a user defined threshold. A small fraction of the overall loads are sampled due to randomization.	Specify threshold in MSR 3F6H. PSDLA
D0H	11H	MEM_INST_RETIRED.STLB_MISS _LOADS	Retired load instructions that miss the STLB.	PSDLA
D0H	12H	MEM_INST_RETIRED.STLB_MISS _STORES	Retired store instructions that miss the STLB.	PSDLA
D0H	21H	MEM_INST_RETIRED.LOCK_LOA DS	Retired load instructions with locked access.	PSDLA
DOH	41H	MEM_INST_RETIRED.SPLIT_LOA DS	Number of load instructions retired with cache-line splits that may impact performance.	PSDLA
D0H	42H	MEM_INST_RETIRED.SPLIT_STO RES	Number of store instructions retired with line-split.	PSDLA
DOH	81H	MEM_INST_RETIRED.ALL_LOAD S	All retired load instructions.	PSDLA

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
D0H	82H	MEM_INST_RETIRED.ALL_STOR ES	All retired store instructions.	PSDLA
D1H	01H	MEM_LOAD_RETIRED.L1_HIT	Retired load Instructions with L1 cache hits as data sources.	PSDLA
D1H	02H	MEM_LOAD_RETIRED.L2_HIT	Retired load Instructions with L2 cache hits as data sources.	PSDLA
D1H	04H	MEM_LOAD_RETIRED.L3_HIT	Retired load Instructions with L3 cache hits as data sources.	PSDLA
D1H	08H	MEM_LOAD_RETIRED.L1_MISS	Retired load Instructions missed L1 cache as data sources.	PSDLA
D1H	10H	MEM_LOAD_RETIRED.L2_MISS	Retired load Instructions missed L2. Unknown data source excluded.	PSDLA
D1H	20H	MEM_LOAD_RETIRED.L3_MISS	Retired load Instructions missed L3. Excludes unknown data source.	PSDLA
D1H	40H	MEM_LOAD_RETIRED.HIT_LFB	Retired load Instructions which data sources were load uops missed L1 but hit FB due to preceding miss to the same cache line with data not ready.	PSDLA
D2H	01H	MEM_LOAD_L3_HIT_RETIRED.X SNP_MISS	Retired load Instructions which data sources were L3 hit and cross-core snoop missed in on-pkg core cache.	PSDLA
D2H	02H	MEM_LOAD_L3_HIT_RETIRED.X SNP_HIT	Retired load Instructions which data sources were L3 and cross-core snoop hits in on-pkg core cache.	PSDLA
D2H	04H	MEM_LOAD_L3_HIT_RETIRED.X SNP_HITM	Retired load Instructions which data sources were HitM responses from shared L3.	PSDLA
D2H	08H	MEM_LOAD_L3_HIT_RETIRED.X SNP_NONE	Retired load Instructions which data sources were hits in L3 without snoops required.	PSDLA
E6H	1FH	BACLEARS.ANY	Number of front end re-steers due to BPU misprediction.	
F0H	40H	L2_TRANS.L2_WB	L2 writebacks that access L2 cache.	
F1H	07H	L2_LINES_IN.ALL	L2 cache lines filling L2.	

CMSK1: Counter Mask = 1 required; CMSK4: CounterMask = 4 required; CMSK6: CounterMask = 6 required; CMSK8: CounterMask = 8 required; CMSK10: CounterMask = 10 required; CMSK12: CounterMask = 12 required; CMSK16: CounterMask = 16 required; CMSK20: CounterMask = 20 required.

AnyT: AnyThread = 1 required.

INV: Invert = 1 required. EDG: EDGE = 1 required.

PSDLA: Also supports PEBS and DataLA.

PS: Also supports PEBS.

Table 19-4 Intel TSX Performance Event Addendum in Processors based on Skylake Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
54H	02H	TX_MEM.ABORT_CAPACITY	Number of times a transactional abort was signaled due to a data capacity limitation for transactional reads or writes	

19.3 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M AND FIFTH GENERATION INTEL CORE PROCESSORS

The Intel[®] Core[™] M processors, the 5th generation Intel Core processors and the Intel Xeon processor E3 1200 v4 product family are based on the Broadwell microarchitecture. They support the architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-5. The events in Table 19-5 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_3DH and 06_47H. Table 19-7 lists performance events supporting Intel TSX (see Section 18.10.5) and are available on processors based on Broadwell microarchitecture. Fixed counters in the core PMU support the architecture events defined in Table 19-2.

Non-architectural performance monitoring events that are located in the uncore sub-system are implementation specific between different platforms using processors based on Broadwell microarchitecture and with different DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3DH and 06_47H support uncore performance events listed in Table 19-8.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
03H	02H	LD_BLOCKS.STORE_FORWARD	loads blocked by overlapping with store buffer that cannot be forwarded.	
03H	08H	LD_BLOCKS.NO_SR	The number of times that split load operations are temporarily blocked because all resources for handling the split accesses are in use.	
05H	01H	MISALIGN_MEM_REF.LOADS	Speculative cache-line split load uops dispatched to L1D.	
05H	02H	MISALIGN_MEM_REF.STORES	Speculative cache-line split Store-address uops dispatched to L1D.	
07H	01H	LD_BLOCKS_PARTIAL.ADDRESS _ALIAS	False dependencies in MOB due to partial compare on address.	
08H	01H	DTLB_LOAD_MISSES.MISS_CAUS ES_A_WALK	Load misses in all TLB levels that cause a page walk of any page size.	
08H	02H	DTLB_LOAD_MISSES.WALK_COM PLETED_4K	Completed page walks due to demand load misses that caused 4K page walks in any TLB levels.	
08H	10H	DTLB_LOAD_MISSES.WALK_DUR ATION	Cycle PMH is busy with a walk.	
08H	20H	DTLB_LOAD_MISSES.STLB_HIT_ 4K	Load misses that missed DTLB but hit STLB (4K).	
ODH	03H	INT_MISC.RECOVERY_CYCLES	Cycles waiting to recover after Machine Clears except JEClear. Set Cmask= 1.	Set Edge to count occurrences.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
0EH	01H	UOPS_ISSUED.ANY	Increments each cycle the # of Uops issued by the RAT to RS.	Set Cmask = 1, Inv = 1to count stalled cycles.
			Set Cmask = 1, Inv = 1, Any= 1 to count stalled cycles of this core.	
0EH	10H	UOPS_ISSUED.FLAGS_MERGE	Number of flags-merge uops allocated. Such uops adds delay.	
0EH	20H	UOPS_ISSUED.SLOW_LEA	Number of slow LEA or similar uops allocated. Such uop has 3 sources (e.g. 2 sources + immediate) regardless if as a result of LEA instruction or not.	
0EH	40H	UOPS_ISSUED.SINGLE_MUL	Number of multiply packed/scalar single precision uops allocated.	
14H	01H	ARITH.FPU_DIV_ACTIVE	Cycles when divider is busy executing divide operations	
24H	21H	L2_RQSTS.DEMAND_DATA_RD_ MISS	Demand Data Read requests that missed L2, no rejects.	
24H	41H	L2_RQSTS.DEMAND_DATA_RD_ HIT	Demand Data Read requests that hit L2 cache.	
24H	50H	L2_RQSTS.L2_PF_HIT	Counts all L2 HW prefetcher requests that hit L2.	
24H	30H	L2_RQSTS.L2_PF_MISS	Counts all L2 HW prefetcher requests that missed L2.	
24H	E1H	L2_RQSTS.ALL_DEMAND_DATA _RD	Counts any demand and L1 HW prefetch data load requests to L2.	
24H	E2H	L2_RQSTS.ALL_RF0	Counts all L2 store RFO requests.	
24H	E4H	L2_RQSTS.ALL_CODE_RD	Counts all L2 code requests.	
24H	F8H	L2_RQSTS.ALL_PF	Counts all L2 HW prefetcher requests.	
27H	50H	L2_DEMAND_RQSTS.WB_HIT	Not rejected writebacks that hit L2 cache	
2EH	4FH	LONGEST_LAT_CACHE.REFEREN CE	This event counts requests originating from the core that reference a cache line in the last level cache.	See Table 19-1.
2EH	41H	LONGEST_LAT_CACHE.MISS	This event counts each cache miss condition for references to the last level cache.	See Table 19-1.
3CH	00H	CPU_CLK_UNHALTED.THREAD_ P	Counts the number of thread cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. The core frequency may change from time to time due to power or thermal throttling.	See Table 19-1.
3CH	01H	CPU_CLK_THREAD_UNHALTED. REF_XCLK	Increments at the frequency of XCLK (100 MHz) when not halted.	See Table 19-1.
48H	01H	L1D_PEND_MISS.PENDING	Increments the number of outstanding L1D misses every cycle. Set Cmask = 1 and Edge =1 to count occurrences.	Counter 2 only; Set Cmask = 1 to count cycles.
49H	01H	DTLB_STORE_MISSES.MISS_CAU SES_A_WALK	Miss in all TLB levels causes an page walk of any page size (4K/2M/4M/1G).	

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
49H	02H	DTLB_STORE_MISSES.WALK_CO MPLETED_4K	Completed page walks due to store misses in one or more TLB levels of 4K page structure.	
49H	10H	DTLB_STORE_MISSES.WALK_DU RATION	Cycles PMH is busy with this walk.	
49H	20H	DTLB_STORE_MISSES.STLB_HIT _4K	Store misses that missed DTLB but hit STLB (4K).	
4CH	02H	LOAD_HIT_PRE.HW_PF	Non-SW-prefetch load dispatches that hit fill buffer allocated for H/W prefetch.	
4FH	10H	EPT.WALK_CYCLES	Cycles of Extended Page Table walks	
51H	01H	L1D.REPLACEMENT	Counts the number of lines brought into the L1 data cache.	
58H	04H	MOVE_ELIMINATION.INT_NOT_E LIMINATED	Number of integer Move Elimination candidate uops that were not eliminated.	
58H	08H	MOVE_ELIMINATION.SIMD_NOT_ ELIMINATED	Number of SIMD Move Elimination candidate uops that were not eliminated.	
58H	01H	MOVE_ELIMINATION.INT_ELIMIN ATED	Number of integer Move Elimination candidate uops that were eliminated.	
58H	02H	MOVE_ELIMINATION.SIMD_ELIMI NATED	Number of SIMD Move Elimination candidate uops that were eliminated.	
5CH	01H	CPL_CYCLES.RING0	Unhalted core cycles when the thread is in ring 0.	Use Edge to count transition.
5CH	02H	CPL_CYCLES.RING123	Unhalted core cycles when the thread is not in ring 0.	
5EH	01H	RS_EVENTS.EMPTY_CYCLES	Cycles the RS is empty for the thread.	
60H	01H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_DATA_RD	Offcore outstanding Demand Data Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
60H	02H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_CODE_RD	Offcore outstanding Demand code Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
60H	04H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_RFO	Offcore outstanding RFO store transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
60H	08H	OFFCORE_REQUESTS_OUTSTAN DING.ALL_DATA_RD	Offcore outstanding cacheable data read transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
63H	01H	LOCK_CYCLES.SPLIT_LOCK_UC_ LOCK_DURATION	Cycles in which the L1D and L2 are locked, due to a UC lock or split lock.	
63H	02H	LOCK_CYCLES.CACHE_LOCK_DU RATION	Cycles in which the L1D is locked.	
79H	02H	IDQ.EMPTY	Counts cycles the IDQ is empty.	
79H	04H	IDQ.MITE_UOPS	Increment each cycle # of uops delivered to IDQ from MITE path. Set Cmask = 1 to count cycles.	Can combine Umask 04H and 20H.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
79H	08H	IDQ.DSB_UOPS	Increment each cycle. # of uops delivered to IDQ from DSB path.	Can combine Umask 08H and 10H.
			Set Cmask = 1 to count cycles.	
79H	10H	IDQ.MS_DSB_UOPS	Increment each cycle # of uops delivered to IDQ when MS_busy by DSB. Set Cmask = 1 to count cycles. Add Edge=1 to count # of delivery.	Can combine Umask 04H, 08H.
79H	20H	IDQ.MS_MITE_UOPS	Increment each cycle # of uops delivered to IDQ when MS_busy by MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H.
79H	30H	IDQ.MS_UOPS	Increment each cycle # of uops delivered to IDQ from MS by either DSB or MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H.
79H	18H	IDQ.ALL_DSB_CYCLES_ANY_UO PS	Counts cycles DSB is delivered at least one uops. Set Cmask = 1.	
79H	18H	IDQ.ALL_DSB_CYCLES_4_UOPS	Counts cycles DSB is delivered four uops. Set Cmask = 4.	
79H	24H	IDQ.ALL_MITE_CYCLES_ANY_UO PS	Counts cycles MITE is delivered at least one uops. Set Cmask = 1.	
79H	24H	IDQ.ALL_MITE_CYCLES_4_UOPS	Counts cycles MITE is delivered four uops. Set Cmask = 4.	
79H	ЗСН	IDQ.MITE_ALL_UOPS	# of uops delivered to IDQ from any path.	
80H	02H	ICACHE.MISSES	Number of Instruction Cache, Streaming Buffer and Victim Cache Misses. Includes UC accesses.	
85H	01H	ITLB_MISSES.MISS_CAUSES_A_ WALK	Misses in ITLB that causes a page walk of any page size.	
85H	02H	ITLB_MISSES.WALK_COMPLETE D_4K	Completed page walks due to misses in ITLB 4K page entries.	
85H	10H	ITLB_MISSES.WALK_DURATION	Cycle PMH is busy with a walk.	
85H	20H	ITLB_MISSES.STLB_HIT_4K	ITLB misses that hit STLB (4K).	
87H	01H	ILD_STALL.LCP	Stalls caused by changing prefix length of the instruction.	
88H	01H	BR_INST_EXEC.COND	Qualify conditional near branch instructions executed, but not necessarily retired.	Must combine with umask 40H, 80H.
88H	02H	BR_INST_EXEC.DIRECT_JMP	Qualify all unconditional near branch instructions excluding calls and indirect branches.	Must combine with umask 80H.
88H	04H	BR_INST_EXEC.INDIRECT_JMP_ NON_CALL_RET	Qualify executed indirect near branch instructions that are not calls nor returns.	Must combine with umask 80H.
88H	08H	BR_INST_EXEC.RETURN_NEAR	Qualify indirect near branches that have a return mnemonic.	Must combine with umask 80H.
88H	10H	BR_INST_EXEC.DIRECT_NEAR_C ALL	Qualify unconditional near call branch instructions, excluding non call branch, executed.	Must combine with umask 80H.
L	1		<u> </u>	<u> </u>

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
88H	20H	BR_INST_EXEC.INDIRECT_NEAR _CALL	Qualify indirect near calls, including both register and memory indirect, executed.	Must combine with umask 80H.
88H	40H	BR_INST_EXEC.NONTAKEN	Qualify non-taken near branches executed.	Applicable to umask 01H only.
88H	80H	BR_INST_EXEC.TAKEN	Qualify taken near branches executed. Must combine with 01H,02H, 04H, 08H, 10H, 20H.	
88H	FFH	BR_INST_EXEC.ALL_BRANCHES	Counts all near executed branches (not necessarily retired).	
89H	01H	BR_MISP_EXEC.COND	Qualify conditional near branch instructions mispredicted.	Must combine with umask 40H, 80H.
89H	04H	BR_MISP_EXEC.INDIRECT_JMP_ NON_CALL_RET	Qualify mispredicted indirect near branch instructions that are not calls nor returns.	Must combine with umask 80H.
89H	08H	BR_MISP_EXEC.RETURN_NEAR	Qualify mispredicted indirect near branches that have a return mnemonic.	Must combine with umask 80H.
89H	10H	BR_MISP_EXEC.DIRECT_NEAR_C ALL	Qualify mispredicted unconditional near call branch instructions, excluding non call branch, executed.	Must combine with umask 80H.
89H	20H	BR_MISP_EXEC.INDIRECT_NEAR _CALL	Qualify mispredicted indirect near calls, including both register and memory indirect, executed.	Must combine with umask 80H.
89H	40H	BR_MISP_EXEC.NONTAKEN	Qualify mispredicted non-taken near branches executed.	Applicable to umask 01H only.
89H	80H	BR_MISP_EXEC.TAKEN	Qualify mispredicted taken near branches executed. Must combine with 01H,02H, 04H, 08H, 10H, 20H.	
89H	FFH	BR_MISP_EXEC.ALL_BRANCHES	Counts all near executed branches (not necessarily retired).	
9CH	01H	IDQ_UOPS_NOT_DELIVERED.CO RE	Count issue pipeline slots where no uop was delivered from the frontend to the backend when there is no backend stall.	Use Cmask to qualify uop b/w.
A1H	01H	UOPS_DISPATCHED_PORT.PORT _0	Counts the number of cycles in which a uop is dispatched to port 0.	Set AnyThread to count per core.
A1H	02H	UOPS_DISPATCHED_PORT.PORT _1	Counts the number of cycles in which a uop is dispatched to port 1.	Set AnyThread to count per core.
A1H	04H	UOPS_DISPATCHED_PORT.PORT _2	Counts the number of cycles in which a uop is dispatched to port 2.	Set AnyThread to count per core.
A1H	08H	UOPS_DISPATCHED_PORT.PORT _3	Counts the number of cycles in which a uop is dispatched to port 3.	Set AnyThread to count per core.
A1H	10H	UOPS_DISPATCHED_PORT.PORT _4	Counts the number of cycles in which a uop is dispatched to port 4.	Set AnyThread to count per core.
A1H	20H	UOPS_DISPATCHED_PORT.PORT _5	Counts the number of cycles in which a uop is dispatched to port 5.	Set AnyThread to count per core.
A1H	40H	UOPS_DISPATCHED_PORT.PORT _6	Counts the number of cycles in which a uop is dispatched to port 6.	Set AnyThread to count per core.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
A1H	80H	UOPS_DISPATCHED_PORT.PORT _7	Counts the number of cycles in which a uop is dispatched to port 7.	Set AnyThread to count per core.
A2H	01H	RESOURCE_STALLS.ANY	Cycles Allocation is stalled due to Resource Related reason.	
A2H	04H	RESOURCE_STALLS.RS	Cycles stalled due to no eligible RS entry available.	
A2H	08H	RESOURCE_STALLS.SB	Cycles stalled due to no store buffers available (not including draining form sync).	
A2H	10H	RESOURCE_STALLS.ROB	Cycles stalled due to re-order buffer full.	
A8H	01H	LSD.UOPS	Number of Uops delivered by the LSD.	
ABH	02H	DSB2MITE_SWITCHES.PENALTY _CYCLES	Cycles of delay due to Decode Stream Buffer to MITE switches	
AEH	01H	ITLB.ITLB_FLUSH	Counts the number of ITLB flushes, includes 4k/2M/4M pages.	
ВОН	01H	OFFCORE_REQUESTS.DEMAND_ DATA_RD	Demand data read requests sent to uncore.	Use only when HTT is off.
ВОН	02H	OFFCORE_REQUESTS.DEMAND_ CODE_RD	Demand code read requests sent to uncore.	Use only when HTT is off.
ВОН	04H	OFFCORE_REQUESTS.DEMAND_ RFO	Demand RFO read requests sent to uncore, including regular RFOs, locks, ItoM.	Use only when HTT is off.
ВОН	08H	OFFCORE_REQUESTS.ALL_DATA _RD	Data read requests sent to uncore (demand and prefetch).	Use only when HTT is off.
B1H	01H	UOPS_EXECUTED.THREAD	Counts total number of uops to be executed perlogical-processor each cycle.	Use Cmask to count stall cycles.
B1H	02H	UOPS_EXECUTED.CORE	Counts total number of uops to be executed per-core each cycle.	Do not need to set ANY.
В7Н	01H	OFF_CORE_RESPONSE_0	see Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A6H.
BBH	01H	OFF_CORE_RESPONSE_1	See Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A7H.
BCH	11H	PAGE_WALKER_LOADS.DTLB_L1	Number of DTLB page walker loads that hit in the L1+FB.	
BCH	21H	PAGE_WALKER_LOADS.ITLB_L1	Number of ITLB page walker loads that hit in the L1+FB.	
BCH	12H	PAGE_WALKER_LOADS.DTLB_L2	Number of DTLB page walker loads that hit in the L2.	
BCH	22H	PAGE_WALKER_LOADS.ITLB_L2	Number of ITLB page walker loads that hit in the L2.	
BCH	14H	PAGE_WALKER_LOADS.DTLB_L3	Number of DTLB page walker loads that hit in the L3.	
BCH	24H	PAGE_WALKER_LOADS.ITLB_L3	Number of ITLB page walker loads that hit in the L3.	
BCH	18H	PAGE_WALKER_LOADS.DTLB_M EMORY	Number of DTLB page walker loads from memory.	
СОН	00H	INST_RETIRED.ANY_P	Number of instructions at retirement.	See Table 19-1.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
СОН	01H	INST_RETIRED.PREC_DIST	Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribution.	PMC1 only.
СОН	02H	INST_RETIRED.X87	FP operations retired. X87 FP operations that have no exceptions	
C1H	08H	OTHER_ASSISTS.AVX_TO_SSE	Number of transitions from AVX-256 to legacy SSE when penalty applicable.	
C1H	10H	OTHER_ASSISTS.SSE_TO_AVX	Number of transitions from SSE to AVX-256 when penalty applicable.	
C1H	40H	OTHER_ASSISTS.ANY_WB_ASSI ST	Number of microcode assists invoked by HW upon uop writeback.	
C2H	01H	UOPS_RETIRED.ALL	Counts the number of micro-ops retired, Use cmask=1 and invert to count active cycles or stalled cycles.	Supports PEBS and DataLA, use Any=1 for core granular.
C2H	02H	UOPS_RETIRED.RETIRE_SLOTS	Counts the number of retirement slots used each cycle.	Supports PEBS.
СЗН	01H	MACHINE_CLEARS.CYCLES	Counts cycles while a machine clears. stalled forward progress of a logical processor or a processor core.	
СЗН	02H	MACHINE_CLEARS.MEMORY_OR DERING	Counts the number of machine clears due to memory order conflicts.	
СЗН	04H	MACHINE_CLEARS.SMC	Number of self-modifying-code machine clears detected.	
СЗН	20H	Machine_clears.maskmov	Counts the number of executed AVX masked load operations that refer to an illegal address range with the mask bits set to 0.	
C4H	00H	BR_INST_RETIRED.ALL_BRANC HES	Branch instructions at retirement.	See Table 19-1.
C4H	01H	BR_INST_RETIRED.CONDITIONA	Counts the number of conditional branch instructions retired.	Supports PEBS.
C4H	02H	BR_INST_RETIRED.NEAR_CALL	Direct and indirect near call instructions retired.	Supports PEBS.
C4H	04H	BR_INST_RETIRED.ALL_BRANC HES	Counts the number of branch instructions retired.	Supports PEBS.
C4H	08H	BR_INST_RETIRED.NEAR_RETU RN	Counts the number of near return instructions retired.	Supports PEBS.
C4H	10H	BR_INST_RETIRED.NOT_TAKEN	Counts the number of not taken branch instructions retired.	
C4H	20H	BR_INST_RETIRED.NEAR_TAKE N	Number of near taken branches retired.	Supports PEBS.
C4H	40H	BR_INST_RETIRED.FAR_BRANC H	Number of far branches retired.	
C5H	00H	BR_MISP_RETIRED.ALL_BRANC HES	Mispredicted branch instructions at retirement	See Table 19-1.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
C5H	01H	BR_MISP_RETIRED.CONDITIONA	Mispredicted conditional branch instructions retired.	Supports PEBS.
C5H	04H	BR_MISP_RETIRED.ALL_BRANC HES	Mispredicted macro branch instructions retired.	Supports PEBS.
CAH	02H	FP_ASSIST.X87_OUTPUT	Number of X87 FP assists due to Output values.	
CAH	04H	FP_ASSIST.X87_INPUT	Number of X87 FP assists due to input values.	
CAH	08H	FP_ASSIST.SIMD_OUTPUT	Number of SIMD FP assists due to Output values.	
CAH	10H	FP_ASSIST.SIMD_INPUT	Number of SIMD FP assists due to input values.	
CAH	1EH	FP_ASSIST.ANY	Cycles with any input/output SSE* or FP assists.	
CCH	20H	ROB_MISC_EVENTS.LBR_INSER TS	Count cases of saving new LBR records by hardware.	
CDH	01H	MEM_TRANS_RETIRED.LOAD_L ATENCY	Randomly sampled loads whose latency is above a user defined threshold. A small fraction of the overall loads are sampled due to randomization.	Specify threshold in MSR 3F6H.
D0H	11H	MEM_UOPS_RETIRED.STLB_MIS S_LOADS	Retired load uops that miss the STLB.	Supports PEBS and DataLA.
D0H	12H	MEM_UOPS_RETIRED.STLB_MIS S_STORES	Retired store uops that miss the STLB.	Supports PEBS and DataLA.
D0H	21H	MEM_UOPS_RETIRED.LOCK_LOADS	Retired load uops with locked access.	Supports PEBS and DataLA.
D0H	41H	MEM_UOPS_RETIRED.SPLIT_LO ADS	Retired load uops that split across a cacheline boundary.	Supports PEBS and DataLA.
D0H	42H	MEM_UOPS_RETIRED.SPLIT_ST ORES	Retired store uops that split across a cacheline boundary.	Supports PEBS and DataLA.
D0H	81H	MEM_UOPS_RETIRED.ALL_LOAD S	All retired load uops.	Supports PEBS and DataLA.
D0H	82H	MEM_UOPS_RETIRED.ALL_STOR ES	All retired store uops.	Supports PEBS and DataLA.
D1H	01H	MEM_LOAD_UOPS_RETIRED.L1_ HIT	Retired load uops with L1 cache hits as data sources.	Supports PEBS and DataLA.
D1H	02H	MEM_LOAD_UOPS_RETIRED.L2_ HIT	Retired load uops with L2 cache hits as data sources.	Supports PEBS and DataLA.
D1H	04H	MEM_LOAD_UOPS_RETIRED.L3_ HIT	Retired load uops with L3 cache hits as data sources.	Supports PEBS and DataLA.
D1H	08H	MEM_LOAD_UOPS_RETIRED.L1_ MISS	Retired load uops missed L1 cache as data sources.	Supports PEBS and DataLA.
D1H	10H	MEM_LOAD_UOPS_RETIRED.L2_ MISS	Retired load uops missed L2. Unknown data source excluded.	Supports PEBS and DataLA.
D1H	20H	MEM_LOAD_UOPS_RETIRED.L3_ MISS	Retired load uops missed L3. Excludes unknown data source .	Supports PEBS and DataLA.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell microarchitecture (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
D1H	40H	MEM_LOAD_UOPS_RETIRED.HIT _LFB	Retired load uops which data sources were load uops missed L1 but hit FB due to preceding miss to the same cache line with data not ready.	Supports PEBS and DataLA.
D2H	01H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_MISS	Retired load uops which data sources were L3 hit and cross-core snoop missed in on-pkg core cache.	Supports PEBS and DataLA.
D2H	02H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_HIT	Retired load uops which data sources were L3 and cross-core snoop hits in on-pkg core cache.	Supports PEBS and DataLA.
D2H	04H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_HITM	Retired load uops which data sources were HitM responses from shared L3.	Supports PEBS and DataLA.
D2H	08H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_NONE	Retired load uops which data sources were hits in L3 without snoops required.	Supports PEBS and DataLA.
D3H	01H	MEM_LOAD_UOPS_L3_MISS_RE TIRED.LOCAL_DRAM	Retired load uops which data sources missed L3 but serviced from local dram.	Supports PEBS and DataLA.
F0H	01H	L2_TRANS.DEMAND_DATA_RD	Demand Data Read requests that access L2 cache.	
F0H	02H	L2_TRANS.RFO	RFO requests that access L2 cache.	
F0H	04H	L2_TRANS.CODE_RD	L2 cache accesses when fetching instructions.	
F0H	08H	L2_TRANS.ALL_PF	Any MLC or L3 HW prefetch accessing L2, including rejects.	
F0H	10H	L2_TRANS.L1D_WB	L1D writebacks that access L2 cache.	
F0H	20H	L2_TRANS.L2_FILL	L2 fill requests that access L2 cache.	
F0H	40H	L2_TRANS.L2_WB	L2 writebacks that access L2 cache.	
F0H	80H	L2_TRANS.ALL_REQUESTS	Transactions accessing L2 pipe.	
F1H	01H	L2_LINES_IN.I	L2 cache lines in I state filling L2.	Counting does not cover rejects.
F1H	02H	L2_LINES_IN.S	L2 cache lines in S state filling L2.	Counting does not cover rejects.
F1H	04H	L2_LINES_IN.E	L2 cache lines in E state filling L2.	Counting does not cover rejects.
F1H	07H	L2_LINES_IN.ALL	L2 cache lines filling L2.	Counting does not cover rejects.
F2H	05H	L2_LINES_OUT.DEMAND_CLEAN	Clean L2 cache lines evicted by demand.	
		1	1	1

19.4 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION INTEL® CORE™ PROCESSORS

4th generation Intel[®] Core[™] processors and Intel Xeon processor E3-1200 v3 product family are based on the Haswell microarchitecture. They support the architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-6. The events in Table 19-6 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_3CH, 06_45H and 06_46H. Table 19-7 lists performance events focused on supporting Intel TSX (see Section 18.10.5). Fixed counters in the core PMU support the architecture events defined in Table 19-2.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
03H	02H	LD_BLOCKS.STORE_FORWARD	loads blocked by overlapping with store buffer that cannot be forwarded.	
03H	08H	LD_BLOCKS.NO_SR	The number of times that split load operations are temporarily blocked because all resources for handling the split accesses are in use.	
05H	01H	MISALIGN_MEM_REF.LOADS	Speculative cache-line split load uops dispatched to L1D.	
05H	02H	MISALIGN_MEM_REF.STORES	Speculative cache-line split Store-address uops dispatched to L1D.	
07H	01H	LD_BLOCKS_PARTIAL.ADDRESS _ALIAS	False dependencies in MOB due to partial compare on address.	
08H	01H	DTLB_LOAD_MISSES.MISS_CAUS ES_A_WALK	Misses in all TLB levels that cause a page walk of any page size.	
08H	02H	DTLB_LOAD_MISSES.WALK_COM PLETED_4K	Completed page walks due to demand load misses that caused 4K page walks in any TLB levels.	
08H	04H	DTLB_LOAD_MISSES.WALK_COM PLETED_2M_4M	Completed page walks due to demand load misses that caused 2M/4M page walks in any TLB levels.	
08H	OEH	DTLB_LOAD_MISSES.WALK_COM PLETED	Completed page walks in any TLB of any page size due to demand load misses.	
08H	10H	DTLB_LOAD_MISSES.WALK_DUR ATION	Cycle PMH is busy with a walk.	
08H	20H	DTLB_LOAD_MISSES.STLB_HIT_ 4K	Load misses that missed DTLB but hit STLB (4K).	
08H	40H	DTLB_LOAD_MISSES.STLB_HIT_ 2M	Load misses that missed DTLB but hit STLB (2M).	
08H	60H	DTLB_LOAD_MISSES.STLB_HIT	Number of cache load STLB hits. No page walk.	
08H	80H	DTLB_LOAD_MISSES.PDE_CACH E_MISS	DTLB demand load misses with low part of linear-to- physical address translation missed.	
ODH	03H	INT_MISC.RECOVERY_CYCLES	Cycles waiting to recover after Machine Clears except JEClear. Set Cmask= 1.	Set Edge to count occurrences.
0EH	01H	UOPS_ISSUED.ANY	Increments each cycle the # of Uops issued by the RAT to RS.	Set Cmask = 1, Inv = 1to count stalled cycles.
			Set Cmask = 1, Inv = 1, Any= 1 to count stalled cycles of this core.	
0EH	10H	UOPS_ISSUED.FLAGS_MERGE	Number of flags-merge uops allocated. Such uops adds delay.	
0EH	20H	UOPS_ISSUED.SLOW_LEA	Number of slow LEA or similar uops allocated. Such uop has 3 sources (e.g. 2 sources + immediate) regardless if as a result of LEA instruction or not.	

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
0EH	40H	UOPS_ISSUED.SINGLE_MUL	Number of multiply packed/scalar single precision uops allocated.	
24H	21H	L2_RQSTS.DEMAND_DATA_RD_ MISS	Demand Data Read requests that missed L2, no rejects.	
24H	41H	L2_RQSTS.DEMAND_DATA_RD_ HIT	Demand Data Read requests that hit L2 cache.	
24H	E1H	L2_RQSTS.ALL_DEMAND_DATA _RD	Counts any demand and L1 HW prefetch data load requests to L2.	
24H	42H	L2_RQSTS.RFO_HIT	Counts the number of store RFO requests that hit the L2 cache.	
24H	22H	L2_RQSTS.RFO_MISS	Counts the number of store RFO requests that miss the L2 cache.	
24H	E2H	L2_RQSTS.ALL_RF0	Counts all L2 store RFO requests.	
24H	44H	L2_RQSTS.CODE_RD_HIT	Number of instruction fetches that hit the L2 cache.	
24H	24H	L2_RQSTS.CODE_RD_MISS	Number of instruction fetches that missed the L2 cache.	
24H	27H	L2_RQSTS.ALL_DEMAND_MISS	Demand requests that miss L2 cache.	
24H	E7H	L2_RQSTS.ALL_DEMAND_REFE RENCES	Demand requests to L2 cache.	
24H	E4H	L2_RQSTS.ALL_CODE_RD	Counts all L2 code requests.	
24H	50H	L2_RQSTS.L2_PF_HIT	Counts all L2 HW prefetcher requests that hit L2.	
24H	30H	L2_RQSTS.L2_PF_MISS	Counts all L2 HW prefetcher requests that missed L2.	
24H	F8H	L2_RQSTS.ALL_PF	Counts all L2 HW prefetcher requests.	
24H	3FH	L2_RQSTS.MISS	All requests that missed L2.	
24H	FFH	L2_RQSTS.REFERENCES	All requests to L2 cache.	
27H	50H	L2_DEMAND_RQSTS.WB_HIT	Not rejected writebacks that hit L2 cache.	
2EH	4FH	LONGEST_LAT_CACHE.REFEREN CE	This event counts requests originating from the core that reference a cache line in the last level cache.	See Table 19-1.
2EH	41H	LONGEST_LAT_CACHE.MISS	This event counts each cache miss condition for references to the last level cache.	See Table 19-1.
3CH	00H	CPU_CLK_UNHALTED.THREAD_ P	Counts the number of thread cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. The core frequency may change from time to time due to power or thermal throttling.	See Table 19-1.
3CH	01H	CPU_CLK_THREAD_UNHALTED. REF_XCLK	Increments at the frequency of XCLK (100 MHz) when not halted.	See Table 19-1.
48H	01H	L1D_PEND_MISS.PENDING	Increments the number of outstanding L1D misses every cycle. Set Cmask = 1 and Edge =1 to count occurrences.	Counter 2 only; Set Cmask = 1 to count cycles.

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
49H	01H	DTLB_STORE_MISSES.MISS_CAU SES_A_WALK	Miss in all TLB levels causes an page walk of any page size (4K/2M/4M/1G).	
49H	02H	DTLB_STORE_MISSES.WALK_CO MPLETED_4K	Completed page walks due to store misses in one or more TLB levels of 4K page structure.	
49H	04H	DTLB_STORE_MISSES.WALK_CO MPLETED_2M_4M	Completed page walks due to store misses in one or more TLB levels of 2M/4M page structure.	
49H	0EH	DTLB_STORE_MISSES.WALK_CO MPLETED	Completed page walks due to store miss in any TLB levels of any page size (4K/2M/4M/1G).	
49H	10H	DTLB_STORE_MISSES.WALK_DU RATION	Cycles PMH is busy with this walk.	
49H	20H	DTLB_STORE_MISSES.STLB_HIT _4K	Store misses that missed DTLB but hit STLB (4K).	
49H	40H	DTLB_STORE_MISSES.STLB_HIT _2M	Store misses that missed DTLB but hit STLB (2M).	
49H	60H	DTLB_STORE_MISSES.STLB_HIT	Store operations that miss the first TLB level but hit the second and do not cause page walks.	
49H	80H	DTLB_STORE_MISSES.PDE_CAC HE_MISS	DTLB store misses with low part of linear-to-physical address translation missed.	
4CH	01H	LOAD_HIT_PRE.SW_PF	Non-SW-prefetch load dispatches that hit fill buffer allocated for S/W prefetch.	
4CH	02H	LOAD_HIT_PRE.HW_PF	Non-SW-prefetch load dispatches that hit fill buffer allocated for H/W prefetch.	
51H	01H	L1D.REPLACEMENT	Counts the number of lines brought into the L1 data cache.	
58H	04H	MOVE_ELIMINATION.INT_NOT_E LIMINATED	Number of integer Move Elimination candidate uops that were not eliminated.	
58H	08H	MOVE_ELIMINATION.SIMD_NOT_ ELIMINATED	Number of SIMD Move Elimination candidate uops that were not eliminated.	
58H	01H	MOVE_ELIMINATION.INT_ELIMIN ATED	Number of integer Move Elimination candidate uops that were eliminated.	
58H	02H	MOVE_ELIMINATION.SIMD_ELIMINATED	Number of SIMD Move Elimination candidate uops that were eliminated.	
5CH	01H	CPL_CYCLES.RING0	Unhalted core cycles when the thread is in ring 0.	Use Edge to count transition.
5CH	02H	CPL_CYCLES.RING123	Unhalted core cycles when the thread is not in ring 0.	
5EH	01H	RS_EVENTS.EMPTY_CYCLES	Cycles the RS is empty for the thread.	
60H	01H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_DATA_RD	Offcore outstanding Demand Data Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
60H	02H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_CODE_RD	Offcore outstanding Demand code Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
60H	04H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_RFO	Offcore outstanding RFO store transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
60H	08H	OFFCORE_REQUESTS_OUTSTAN DING.ALL_DATA_RD	Offcore outstanding cacheable data read transactions in SQ to uncore. Set Cmask=1 to count cycles.	Use only when HTT is off.
63H	01H	LOCK_CYCLES.SPLIT_LOCK_UC_ LOCK_DURATION	Cycles in which the L1D and L2 are locked, due to a UC lock or split lock.	
63H	02H	LOCK_CYCLES.CACHE_LOCK_DU RATION	Cycles in which the L1D is locked.	
79H	02H	IDQ.EMPTY	Counts cycles the IDQ is empty.	
79H	04H	IDQ.MITE_UOPS	Increment each cycle # of uops delivered to IDQ from MITE path.	Can combine Umask 04H and 20H.
			Set Cmask = 1 to count cycles.	
79H	08H	IDQ.DSB_UOPS	Increment each cycle. # of uops delivered to IDQ from DSB path.	Can combine Umask 08H and 10H.
			Set Cmask = 1 to count cycles.	
79H	10H	IDQ.MS_DSB_UOPS	Increment each cycle # of uops delivered to IDQ when MS_busy by DSB. Set Cmask = 1 to count cycles. Add Edge=1 to count # of delivery.	Can combine Umask 04H, 08H.
79H	20H	IDQ.MS_MITE_UOPS	Increment each cycle # of uops delivered to IDQ when MS_busy by MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H.
79H	30H	IDQ.MS_UOPS	Increment each cycle # of uops delivered to IDQ from MS by either DSB or MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H.
79H	18H	IDQ.ALL_DSB_CYCLES_ANY_UO PS	Counts cycles DSB is delivered at least one uops. Set Cmask = 1.	
79H	18H	IDQ.ALL_DSB_CYCLES_4_UOPS	Counts cycles DSB is delivered four uops. Set Cmask = 4.	
79H	24H	IDQ.ALL_MITE_CYCLES_ANY_UO PS	Counts cycles MITE is delivered at least one uops. Set Cmask = 1.	
79H	24H	IDQ.ALL_MITE_CYCLES_4_UOPS	Counts cycles MITE is delivered four uops. Set Cmask = 4.	
79H	3CH	IDQ.MITE_ALL_UOPS	# of uops delivered to IDQ from any path.	
80H	02H	ICACHE.MISSES	Number of Instruction Cache, Streaming Buffer and Victim Cache Misses. Includes UC accesses.	
85H	01H	ITLB_MISSES.MISS_CAUSES_A_ WALK	Misses in ITLB that causes a page walk of any page size.	
85H	02H	ITLB_MISSES.WALK_COMPLETE D_4K	Completed page walks due to misses in ITLB 4K page entries.	
85H	04H	ITLB_MISSES.WALK_COMPLETE D_2M_4M	Completed page walks due to misses in ITLB 2M/4M page entries.	
85H	OEH	ITLB_MISSES.WALK_COMPLETE D	Completed page walks in ITLB of any page size.	

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
85H	10H	ITLB_MISSES.WALK_DURATION	Cycle PMH is busy with a walk.	
85H	20H	ITLB_MISSES.STLB_HIT_4K	ITLB misses that hit STLB (4K).	
85H	40H	ITLB_MISSES.STLB_HIT_2M	ITLB misses that hit STLB (2M).	
85H	60H	ITLB_MISSES.STLB_HIT	ITLB misses that hit STLB. No page walk.	
87H	01H	ILD_STALL.LCP	Stalls caused by changing prefix length of the instruction.	
87H	04H	ILD_STALL.IQ_FULL	Stall cycles due to IQ is full.	
88H	01H	BR_INST_EXEC.COND	Qualify conditional near branch instructions executed, but not necessarily retired.	Must combine with umask 40H, 80H.
88H	02H	BR_INST_EXEC.DIRECT_JMP	Qualify all unconditional near branch instructions excluding calls and indirect branches.	Must combine with umask 80H.
88H	04H	BR_INST_EXEC.INDIRECT_JMP_ NON_CALL_RET	Qualify executed indirect near branch instructions that are not calls nor returns.	Must combine with umask 80H.
88H	08H	BR_INST_EXEC.RETURN_NEAR	Qualify indirect near branches that have a return mnemonic.	Must combine with umask 80H.
88H	10H	BR_INST_EXEC.DIRECT_NEAR_C ALL	Qualify unconditional near call branch instructions, excluding non call branch, executed.	Must combine with umask 80H.
88H	20H	BR_INST_EXEC.INDIRECT_NEAR _CALL	Qualify indirect near calls, including both register and memory indirect, executed.	Must combine with umask 80H.
88H	40H	BR_INST_EXEC.NONTAKEN	Qualify non-taken near branches executed.	Applicable to umask 01H only.
88H	80H	BR_INST_EXEC.TAKEN	Qualify taken near branches executed. Must combine with 01H,02H, 04H, 08H, 10H, 20H.	
88H	FFH	BR_INST_EXEC.ALL_BRANCHES	Counts all near executed branches (not necessarily retired).	
89H	01H	BR_MISP_EXEC.COND	Qualify conditional near branch instructions mispredicted.	Must combine with umask 40H, 80H.
89H	04H	BR_MISP_EXEC.INDIRECT_JMP_ NON_CALL_RET	Qualify mispredicted indirect near branch instructions that are not calls nor returns.	Must combine with umask 80H.
89H	08H	BR_MISP_EXEC.RETURN_NEAR	Qualify mispredicted indirect near branches that have a return mnemonic.	Must combine with umask 80H.
89H	10H	BR_MISP_EXEC.DIRECT_NEAR_C ALL	Qualify mispredicted unconditional near call branch instructions, excluding non call branch, executed.	Must combine with umask 80H.
89H	20H	BR_MISP_EXEC.INDIRECT_NEAR _CALL	Qualify mispredicted indirect near calls, including both register and memory indirect, executed.	Must combine with umask 80H.
89H	40H	BR_MISP_EXEC.NONTAKEN	Qualify mispredicted non-taken near branches executed.	Applicable to umask 01H only.
89H	80H	BR_MISP_EXEC.TAKEN	Qualify mispredicted taken near branches executed. Must combine with 01H,02H, 04H, 08H, 10H, 20H.	
89H	FFH	BR_MISP_EXEC.ALL_BRANCHES	Counts all near executed branches (not necessarily retired).	

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
9CH	01H	IDQ_UOPS_NOT_DELIVERED.CO RE	Count issue pipeline slots where no uop was delivered from the frontend to the backend when there is no backend stall.	Use Cmask to qualify uop b/w.
A1H	01H	UOPS_EXECUTED_PORT.PORT_ 0	Cycles which a Uop is dispatched on port 0 in this thread.	Set AnyThread to count per core.
A1H	02H	UOPS_EXECUTED_PORT.PORT_ 1	Cycles which a Uop is dispatched on port 1 in this thread.	Set AnyThread to count per core.
A1H	04H	UOPS_EXECUTED_PORT.PORT_ 2	Cycles which a uop is dispatched on port 2 in this thread.	Set AnyThread to count per core.
A1H	08H	UOPS_EXECUTED_PORT.PORT_ 3	Cycles which a uop is dispatched on port 3 in this thread.	Set AnyThread to count per core.
A1H	10H	UOPS_EXECUTED_PORT.PORT_ 4	Cycles which a uop is dispatched on port 4 in this thread.	Set AnyThread to count per core.
A1H	20H	UOPS_EXECUTED_PORT.PORT_ 5	Cycles which a uop is dispatched on port 5 in this thread.	Set AnyThread to count per core.
A1H	40H	UOPS_EXECUTED_PORT.PORT_ 6	Cycles which a Uop is dispatched on port 6 in this thread.	Set AnyThread to count per core.
A1H	80H	UOPS_EXECUTED_PORT.PORT_ 7	Cycles which a Uop is dispatched on port 7 in this thread	Set AnyThread to count per core.
A2H	01H	RESOURCE_STALLS.ANY	Cycles Allocation is stalled due to Resource Related reason.	
A2H	04H	RESOURCE_STALLS.RS	Cycles stalled due to no eligible RS entry available.	
A2H	08H	RESOURCE_STALLS.SB	Cycles stalled due to no store buffers available (not including draining form sync).	
A2H	10H	RESOURCE_STALLS.ROB	Cycles stalled due to re-order buffer full.	
АЗН	01H	CYCLE_ACTIVITY.CYCLES_L2_PE NDING	Cycles with pending L2 miss loads. Set Cmask=2 to count cycle.	Use only when HTT is off.
АЗН	02H	CYCLE_ACTIVITY.CYCLES_LDM_ PENDING	Cycles with pending memory loads. Set Cmask=2 to count cycle.	
АЗН	05H	CYCLE_ACTIVITY.STALLS_L2_PE NDING	Number of loads missed L2.	Use only when HTT is off.
АЗН	08H	CYCLE_ACTIVITY.CYCLES_L1D_P ENDING	Cycles with pending L1 data cache miss loads. Set Cmask=8 to count cycle.	PMC2 only.
АЗН	OCH	CYCLE_ACTIVITY.STALLS_L1D_P ENDING	Execution stalls due to L1 data cache miss loads. Set Cmask=OCH.	PMC2 only.
A8H	01H	LSD.UOPS	Number of Uops delivered by the LSD.	
AEH	01H	ITLB.ITLB_FLUSH	Counts the number of ITLB flushes, includes 4k/2M/4M pages.	
ВОН	01H	OFFCORE_REQUESTS.DEMAND_ DATA_RD	Demand data read requests sent to uncore.	Use only when HTT is off.
ВОН	02H	OFFCORE_REQUESTS.DEMAND_ CODE_RD	Demand code read requests sent to uncore.	Use only when HTT is off.

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
ВОН	04H	OFFCORE_REQUESTS.DEMAND_ RFO	Demand RFO read requests sent to uncore, including regular RFOs, locks, ItoM.	Use only when HTT is off.
ВОН	08H	OFFCORE_REQUESTS.ALL_DATA _RD	Data read requests sent to uncore (demand and prefetch).	Use only when HTT is off.
B1H	02H	UOPS_EXECUTED.CORE	Counts total number of uops to be executed per-core each cycle.	Do not need to set ANY.
В7Н	01H	OFF_CORE_RESPONSE_0	see Table 18-43 or Table 18-44.	Requires MSR 01A6H.
BBH	01H	OFF_CORE_RESPONSE_1	See Table 18-43 or Table 18-44.	Requires MSR 01A7H.
BCH	11H	PAGE_WALKER_LOADS.DTLB_L1	Number of DTLB page walker loads that hit in the L1+FB.	
BCH	21H	PAGE_WALKER_LOADS.ITLB_L1	Number of ITLB page walker loads that hit in the L1+FB.	
BCH	12H	PAGE_WALKER_LOADS.DTLB_L2	Number of DTLB page walker loads that hit in the L2.	
BCH	22H	PAGE_WALKER_LOADS.ITLB_L2	Number of ITLB page walker loads that hit in the L2.	
BCH	14H	PAGE_WALKER_LOADS.DTLB_L3	Number of DTLB page walker loads that hit in the L3.	
BCH	24H	PAGE_WALKER_LOADS.ITLB_L3	Number of ITLB page walker loads that hit in the L3.	
BCH	18H	PAGE_WALKER_LOADS.DTLB_M EMORY	Number of DTLB page walker loads from memory.	
BCH	28H	PAGE_WALKER_LOADS.ITLB_ME MORY	Number of ITLB page walker loads from memory.	
BDH	01H	TLB_FLUSH.DTLB_THREAD	DTLB flush attempts of the thread-specific entries.	
BDH	20H	TLB_FLUSH.STLB_ANY	Count number of STLB flush attempts.	
СОН	00H	INST_RETIRED.ANY_P	Number of instructions at retirement.	See Table 19-1.
СОН	01H	INST_RETIRED.PREC_DIST	Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribution.	PMC1 only.
C1H	08H	OTHER_ASSISTS.AVX_TO_SSE	Number of transitions from AVX-256 to legacy SSE when penalty applicable.	
C1H	10H	OTHER_ASSISTS.SSE_TO_AVX	Number of transitions from SSE to AVX-256 when penalty applicable.	
C1H	40H	OTHER_ASSISTS.ANY_WB_ASSI ST	Number of microcode assists invoked by HW upon uop writeback.	
C2H	01H	UOPS_RETIRED.ALL	Counts the number of micro-ops retired, Use cmask=1 and invert to count active cycles or stalled cycles.	Supports PEBS and DataLA, use Any=1 for core granular.
C2H	02H	UOPS_RETIRED.RETIRE_SLOTS	Counts the number of retirement slots used each cycle.	Supports PEBS.
СЗН	02H	MACHINE_CLEARS.MEMORY_OR DERING	Counts the number of machine clears due to memory order conflicts.	
СЗН	04H	MACHINE_CLEARS.SMC	Number of self-modifying-code machine clears detected.	

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
СЗН	20H	MACHINE_CLEARS.MASKMOV	Counts the number of executed AVX masked load operations that refer to an illegal address range with the mask bits set to 0.	
C4H	00H	BR_INST_RETIRED.ALL_BRANC HES	Branch instructions at retirement.	See Table 19-1.
C4H	01H	BR_INST_RETIRED.CONDITIONA	Counts the number of conditional branch instructions retired.	Supports PEBS.
C4H	02H	BR_INST_RETIRED.NEAR_CALL	Direct and indirect near call instructions retired.	Supports PEBS.
C4H	04H	BR_INST_RETIRED.ALL_BRANC HES	Counts the number of branch instructions retired.	Supports PEBS.
C4H	08H	BR_INST_RETIRED.NEAR_RETU RN	Counts the number of near return instructions retired.	Supports PEBS.
C4H	10H	BR_INST_RETIRED.NOT_TAKEN	Counts the number of not taken branch instructions retired.	
C4H	20H	BR_INST_RETIRED.NEAR_TAKE N	Number of near taken branches retired.	Supports PEBS.
C4H	40H	BR_INST_RETIRED.FAR_BRANC H	Number of far branches retired.	
C5H	00H	BR_MISP_RETIRED.ALL_BRANC HES	Mispredicted branch instructions at retirement	See Table 19-1.
C5H	01H	BR_MISP_RETIRED.CONDITIONA	Mispredicted conditional branch instructions retired.	Supports PEBS.
C5H	04H	BR_MISP_RETIRED.ALL_BRANC HES	Mispredicted macro branch instructions retired.	Supports PEBS.
C5H	20H	BR_MISP_RETIRED.NEAR_TAKE N	Number of near branch instructions retired that were taken but mispredicted.	
CAH	02H	FP_ASSIST.X87_OUTPUT	Number of X87 FP assists due to Output values.	
CAH	04H	FP_ASSIST.X87_INPUT	Number of X87 FP assists due to input values.	
CAH	08H	FP_ASSIST.SIMD_OUTPUT	Number of SIMD FP assists due to Output values.	
CAH	10H	FP_ASSIST.SIMD_INPUT	Number of SIMD FP assists due to input values.	
CAH	1EH	FP_ASSIST.ANY	Cycles with any input/output SSE* or FP assists.	
CCH	20H	ROB_MISC_EVENTS.LBR_INSER TS	Count cases of saving new LBR records by hardware.	
CDH	01H	MEM_TRANS_RETIRED.LOAD_L ATENCY	Randomly sampled loads whose latency is above a user defined threshold. A small fraction of the overall loads are sampled due to randomization.	Specify threshold in MSR 3F6H.
D0H	11H	MEM_UOPS_RETIRED.STLB_MIS S_LOADS	Retired load uops that miss the STLB.	Supports PEBS and DataLA.
D0H	12H	MEM_UOPS_RETIRED.STLB_MIS S_STORES	Retired store uops that miss the STLB.	Supports PEBS and DataLA.
D0H	21H	MEM_UOPS_RETIRED.LOCK_LOADS	Retired load uops with locked access.	Supports PEBS and DataLA.

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
DOH	41H	MEM_UOPS_RETIRED.SPLIT_LO ADS	Retired load uops that split across a cacheline boundary.	Supports PEBS and DataLA.
DOH	42H	MEM_UOPS_RETIRED.SPLIT_ST ORES	Retired store uops that split across a cacheline boundary.	Supports PEBS and DataLA.
DOH	81H	MEM_UOPS_RETIRED.ALL_LOAD S	All retired load uops.	Supports PEBS and DataLA.
D0H	82H	MEM_UOPS_RETIRED.ALL_STOR ES	All retired store uops.	Supports PEBS and DataLA.
D1H	01H	MEM_LOAD_UOPS_RETIRED.L1_ HIT	Retired load uops with L1 cache hits as data sources.	Supports PEBS and DataLA.
D1H	02H	MEM_LOAD_UOPS_RETIRED.L2_ HIT	Retired load uops with L2 cache hits as data sources.	Supports PEBS and DataLA.
D1H	04H	MEM_LOAD_UOPS_RETIRED.L3_ HIT	Retired load uops with L3 cache hits as data sources.	Supports PEBS and DataLA.
D1H	08H	MEM_LOAD_UOPS_RETIRED.L1_ MISS	Retired load uops missed L1 cache as data sources.	Supports PEBS and DataLA.
D1H	10H	MEM_LOAD_UOPS_RETIRED.L2_ MISS	Retired load uops missed L2. Unknown data source excluded.	Supports PEBS and DataLA.
D1H	20H	MEM_LOAD_UOPS_RETIRED.L3_ MISS	Retired load uops missed L3. Excludes unknown data source .	Supports PEBS and DataLA.
D1H	40H	MEM_LOAD_UOPS_RETIRED.HIT _LFB	Retired load uops which data sources were load uops missed L1 but hit FB due to preceding miss to the same cache line with data not ready.	Supports PEBS and DataLA.
D2H	01H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_MISS	Retired load uops which data sources were L3 hit and cross-core snoop missed in on-pkg core cache.	Supports PEBS and DataLA.
D2H	02H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_HIT	Retired load uops which data sources were L3 and cross-core snoop hits in on-pkg core cache.	Supports PEBS and DataLA.
D2H	04H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_HITM	Retired load uops which data sources were HitM responses from shared L3.	Supports PEBS and DataLA.
D2H	08H	MEM_LOAD_UOPS_L3_HIT_RETI RED.XSNP_NONE	Retired load uops which data sources were hits in L3 without snoops required.	Supports PEBS and DataLA.
D3H	01H	MEM_LOAD_UOPS_L3_MISS_RE TIRED.LOCAL_DRAM	Retired load uops which data sources missed L3 but serviced from local dram.	Supports PEBS and DataLA.
E6H	1FH	BACLEARS.ANY	Number of front end re-steers due to BPU misprediction.	
F0H	01H	L2_TRANS.DEMAND_DATA_RD	Demand Data Read requests that access L2 cache.	
F0H	02H	L2_TRANS.RFO	RFO requests that access L2 cache.	
F0H	04H	L2_TRANS.CODE_RD	L2 cache accesses when fetching instructions.	
F0H	08H	L2_TRANS.ALL_PF	Any MLC or L3 HW prefetch accessing L2, including rejects.	
F0H	10H	L2_TRANS.L1D_WB	L1D writebacks that access L2 cache.	
F0H	20H	L2_TRANS.L2_FILL	L2 fill requests that access L2 cache.	

Table 19-6 Non-Architectural Performance Events In the Processor Core of 4th Generation Intel® Core™ Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
F0H	40H	L2_TRANS.L2_WB	L2 writebacks that access L2 cache.	
F0H	80H	L2_TRANS.ALL_REQUESTS	Transactions accessing L2 pipe.	
F1H	01H	L2_LINES_IN.I	L2 cache lines in I state filling L2.	Counting does not cover rejects.
F1H	02H	L2_LINES_IN.S	L2 cache lines in S state filling L2.	Counting does not cover rejects.
F1H	04H	L2_LINES_IN.E	L2 cache lines in E state filling L2.	Counting does not cover rejects.
F1H	07H	L2_LINES_IN.ALL	L2 cache lines filling L2.	Counting does not cover rejects.
F2H	05H	L2_LINES_OUT.DEMAND_CLEAN	Clean L2 cache lines evicted by demand.	
F2H	06H	L2_LINES_OUT.DEMAND_DIRTY	Dirty L2 cache lines evicted by demand.	

Table 19-7 Intel TSX Performance Events in processors based on Haswell Microarchitecture

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
54H	01H	TX_MEM.ABORT_CONFLICT	Number of times a transactional abort was signaled due to a data conflict on a transactionally accessed address	
54H	02H	TX_MEM.ABORT_CAPACITY_W RITE	Number of times a transactional abort was signaled due to a data capacity limitation for transactional writes	
54H	04H	TX_MEM.ABORT_HLE_STORE_ TO_ELIDED_LOCK	Number of times a HLE transactional region aborted due to a non XRELEASE prefixed instruction writing to an elided lock in the elision buffer	
54H	08H	TX_MEM.ABORT_HLE_ELISION _BUFFER_NOT_EMPTY	Number of times an HLE transactional execution aborted due to NoAllocatedElisionBuffer being non-zero.	
54H	10H	TX_MEM.ABORT_HLE_ELISION _BUFFER_MISMATCH	Number of times an HLE transactional execution aborted due to XRELEASE lock not satisfying the address and value requirements in the elision buffer.	
54H	20H	TX_MEM.ABORT_HLE_ELISION _BUFFER_UNSUPPORTED_ALI GNMENT	Number of times an HLE transactional execution aborted due to an unsupported read alignment from the elision buffer.	
54H	40H	TX_MEM.HLE_ELISION_BUFFE R_FULL	Number of times HLE lock could not be elided due to ElisionBufferAvailable being zero.	
5DH	01H	TX_EXEC.MISC1	Counts the number of times a class of instructions that may cause a transactional abort was executed. Since this is the count of execution, it may not always cause a transactional abort.	
5DH	02H	TX_EXEC.MISC2	Counts the number of times a class of instructions (e.g. vzeroupper) that may cause a transactional abort was executed inside a transactional region.	

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
5DH	04H	TX_EXEC.MISC3	Counts the number of times an instruction execution caused the transactional nest count supported to be exceeded.	
5DH	08H	TX_EXEC.MISC4	Counts the number of times an XBEGIN instruction was executed inside an HLE transactional region.	
5DH	10H	TX_EXEC.MISC5	Counts the number of times an instruction with HLE-XACQUIRE semantic was executed inside an RTM transactional region.	
C8H	01H	HLE_RETIRED.START	Number of times an HLE execution started.	IF HLE is supported.
C8H	02H	HLE_RETIRED.COMMIT	Number of times an HLE execution successfully committed.	
C8H	04H	HLE_RETIRED.ABORTED	Number of times an HLE execution aborted due to any reasons (multiple categories may count as one). Supports PEBS.	
C8H	08H	HLE_RETIRED.ABORTED_MEM	Number of times an HLE execution aborted due to various memory events (e.g. read/write capacity and conflicts).	
C8H	10H	HLE_RETIRED.ABORTED_TIME R	Number of times an HLE execution aborted due to uncommon conditions.	
C8H	20H	HLE_RETIRED.ABORTED_UNFR IENDLY	Number of times an HLE execution aborted due to HLE-unfriendly instructions.	
C8H	40H	HLE_RETIRED.ABORTED_MEM TYPE	Number of times an HLE execution aborted due to incompatible memory type.	
C8H	80H	HLE_RETIRED.ABORTED_EVEN TS	Number of times an HLE execution aborted due to none of the previous 4 categories (e.g. interrupts)	
C9H	01H	RTM_RETIRED.START	Number of times an RTM execution started.	IF RTM is supported.
С9Н	02H	RTM_RETIRED.COMMIT	Number of times an RTM execution successfully committed.	
С9Н	04H	RTM_RETIRED.ABORTED	Number of times an RTM execution aborted due to any reasons (multiple categories may count as one). Supports PEBS.	
С9Н	08H	RTM_RETIRED.ABORTED_MEM	Number of times an RTM execution aborted due to various memory events (e.g. read/write capacity and conflicts).	IF RTM is supported.
C9H	10H	RTM_RETIRED.ABORTED_TIME R	Number of times an RTM execution aborted due to uncommon conditions.	
С9Н	20H	RTM_RETIRED.ABORTED_UNF RIENDLY	Number of times an RTM execution aborted due to HLE-unfriendly instructions.	
C9H	40H	RTM_RETIRED.ABORTED_MEM TYPE	Number of times an RTM execution aborted due to incompatible memory type.	
С9Н	80H	RTM_RETIRED.ABORTED_EVE NTS	Number of times an RTM execution aborted due to none of the previous 4 categories (e.g. interrupt).	

. . .

19.5 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION INTEL® CORE™ PROCESSORS

3rd generation Intel[®] Core[™] processors and Intel Xeon processor E3-1200 v2 product family are based on Intel microarchitecture code name Ivy Bridge. They support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-10. The events in Table 19-10 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_3AH. Fixed counters in the core PMU support the architecture events defined in Table 19-21.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors

Event	Umask		of filter core 17, 13, 13 Processors	
Num.	Value	Event Mask Mnemonic	Description	Comment
03H	02H	LD_BLOCKS.STORE_FORWARD	loads blocked by overlapping with store buffer that cannot be forwarded.	
03H	08H	LD_BLOCKS.NO_SR	The number of times that split load operations are temporarily blocked because all resources for handling the split accesses are in use.	
05H	01H	MISALIGN_MEM_REF.LOADS	Speculative cache-line split load uops dispatched to L1D.	
05H	02H	MISALIGN_MEM_REF.STORES	Speculative cache-line split Store-address uops dispatched to L1D.	
07H	01H	LD_BLOCKS_PARTIAL.ADDRESS_ ALIAS	False dependencies in MOB due to partial compare on address.	
08H	81H	DTLB_LOAD_MISSES.MISS_CAUSE S_A_WALK	Misses in all TLB levels that cause a page walk of any page size from demand loads.	
08H	82H	DTLB_LOAD_MISSES.WALK_COM PLETED	Misses in all TLB levels that caused page walk completed of any size by demand loads.	
08H	84H	DTLB_LOAD_MISSES.WALK_DUR ATION	Cycle PMH is busy with a walk due to demand loads.	
08H	88H	DTLB_LOAD_MISSES.LARGE_PAG E_WALK_DURATION	Page walk for a large page completed for Demand load.	
OEH	01H	UOPS_ISSUED.ANY	Increments each cycle the # of Uops issued by the RAT to RS. Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles of this core.	Set Cmask = 1, Inv = 1 to count stalled cycles.
0EH	10H	UOPS_ISSUED.FLAGS_MERGE	Number of flags-merge uops allocated. Such uops adds delay.	
0EH	20H	UOPS_ISSUED.SLOW_LEA	Number of slow LEA or similar uops allocated. Such uop has 3 sources (e.g. 2 sources + immediate) regardless if as a result of LEA instruction or not.	
0EH	40H	UOPS_ISSUED.SINGLE_MUL	Number of multiply packed/scalar single precision uops allocated.	
10H	01H	FP_COMP_OPS_EXE,X87	Counts number of X87 uops executed.	

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
10H	10H	FP_COMP_OPS_EXE.SSE_FP_PAC KED_DOUBLE	Counts number of SSE* or AVX-128 double precision FP packed uops executed.	
10H	20H	FP_COMP_OPS_EXE.SSE_FP_SCA LAR_SINGLE	Counts number of SSE* or AVX-128 single precision FP scalar uops executed.	
10H	40H	FP_COMP_OPS_EXE.SSE_PACKED SINGLE	Counts number of SSE* or AVX-128 single precision FP packed uops executed.	
10H	80H	FP_COMP_OPS_EXE.SSE_SCALAR _DOUBLE	Counts number of SSE* or AVX-128 double precision FP scalar uops executed.	
11H	01H	SIMD_FP_256.PACKED_SINGLE	Counts 256-bit packed single-precision floating-point instructions.	
11H	02H	SIMD_FP_256.PACKED_DOUBLE	Counts 256-bit packed double-precision floating-point instructions.	
14H	01H	ARITH.FPU_DIV_ACTIVE	Cycles that the divider is active, includes INT and FP. Set 'edge =1, cmask=1' to count the number of divides.	
24H	01H	L2_RQSTS.DEMAND_DATA_RD_H IT	Demand Data Read requests that hit L2 cache.	
24H	03H	L2_RQSTS.ALL_DEMAND_DATA_ RD	Counts any demand and L1 HW prefetch data load requests to L2.	
24H	04H	L2_RQSTS.RFO_HITS	Counts the number of store RFO requests that hit the L2 cache.	
24H	08H	L2_RQSTS.RFO_MISS	Counts the number of store RFO requests that miss the L2 cache.	
24H	0CH	L2_RQSTS.ALL_RF0	Counts all L2 store RFO requests.	
24H	10H	L2_RQSTS.CODE_RD_HIT	Number of instruction fetches that hit the L2 cache.	
24H	20H	L2_RQSTS.CODE_RD_MISS	Number of instruction fetches that missed the L2 cache.	
24H	30H	L2_RQSTS.ALL_CODE_RD	Counts all L2 code requests.	
24H	40H	L2_RQSTS.PF_HIT	Counts all L2 HW prefetcher requests that hit L2.	
24H	80H	L2_RQSTS.PF_MISS	Counts all L2 HW prefetcher requests that missed L2.	
24H	СОН	L2_RQSTS.ALL_PF	Counts all L2 HW prefetcher requests.	
27H	01H	L2_STORE_LOCK_RQSTS.MISS	RFOs that miss cache lines.	
27H	08H	L2_STORE_LOCK_RQSTS.HIT_M	RFOs that hit cache lines in M state.	
27H	0FH	L2_STORE_LOCK_RQSTS.ALL	RFOs that access cache lines in any state.	
28H	01H	L2_L1D_WB_RQSTS.MISS	Not rejected writebacks that missed LLC.	
28H	04H	L2_L1D_WB_RQSTS.HIT_E	Not rejected writebacks from L1D to L2 cache lines in E state.	
28H	08H	L2_L1D_WB_RQSTS.HIT_M	Not rejected writebacks from L1D to L2 cache lines in M state.	

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
28H	OFH	L2_L1D_WB_RQSTS.ALL	Not rejected writebacks from L1D to L2 cache lines in any state.	
2EH	4FH	LONGEST_LAT_CACHE.REFERENC E	This event counts requests originating from the core that reference a cache line in the last level cache.	See Table 19-1
2EH	41H	LONGEST_LAT_CACHE.MISS	This event counts each cache miss condition for references to the last level cache.	See Table 19-1
3CH	00H	CPU_CLK_UNHALTED.THREAD_P	Counts the number of thread cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. The core frequency may change from time to time due to power or thermal throttling.	See Table 19-1.
3CH	01H	CPU_CLK_THREAD_UNHALTED.R EF_XCLK	Increments at the frequency of XCLK (100 MHz) when not halted.	See Table 19-1.
48H	01H	L1D_PEND_MISS.PENDING	Increments the number of outstanding L1D misses every cycle. Set Cmask = 1 and Edge =1 to count occurrences.	PMC2 only; Set Cmask = 1 to count cycles.
49H	01H	DTLB_STORE_MISSES.MISS_CAUS ES_A_WALK	Miss in all TLB levels causes an page walk of any page size (4K/2M/4M/1G).	
49H	02H	DTLB_STORE_MISSES.WALK_CO MPLETED	Miss in all TLB levels causes a page walk that completes of any page size (4K/2M/4M/1G).	
49H	04H	DTLB_STORE_MISSES.WALK_DUR ATION	Cycles PMH is busy with this walk.	
49H	10H	DTLB_STORE_MISSES.STLB_HIT	Store operations that miss the first TLB level but hit the second and do not cause page walks	
4CH	01H	LOAD_HIT_PRE.SW_PF	Non-SW-prefetch load dispatches that hit fill buffer allocated for S/W prefetch.	
4CH	02H	LOAD_HIT_PRE.HW_PF	Non-SW-prefetch load dispatches that hit fill buffer allocated for H/W prefetch.	
51H	01H	L1D.REPLACEMENT	Counts the number of lines brought into the L1 data cache.	
58H	04H	MOVE_ELIMINATION.INT_NOT_ELIMINATED	Number of integer Move Elimination candidate uops that were not eliminated.	
58H	08H	MOVE_ELIMINATION.SIMD_NOT_E LIMINATED	Number of SIMD Move Elimination candidate uops that were not eliminated.	
58H	01H	MOVE_ELIMINATION.INT_ELIMINA TED	Number of integer Move Elimination candidate uops that were eliminated.	
58H	02H	MOVE_ELIMINATION.SIMD_ELIMIN ATED	Number of SIMD Move Elimination candidate uops that were eliminated.	
5CH	01H	CPL_CYCLES.RING0	Unhalted core cycles when the thread is in ring 0.	Use Edge to count transition.
5CH	02H	CPL_CYCLES.RING123	Unhalted core cycles when the thread is not in ring 0.	

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
5EH	01H	RS_EVENTS.EMPTY_CYCLES	Cycles the RS is empty for the thread.	
5FH	04H	DTLB_LOAD_MISSES.STLB_HIT	Counts load operations that missed 1st level DTLB but hit the 2nd level.	
60H	01H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_DATA_RD	Offcore outstanding Demand Data Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	02H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_CODE_RD	Offcore outstanding Demand Code Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	04H	OFFCORE_REQUESTS_OUTSTAN DING.DEMAND_RFO	Offcore outstanding RFO store transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	08H	OFFCORE_REQUESTS_OUTSTAN DING.ALL_DATA_RD	Offcore outstanding cacheable data read transactions in SQ to uncore. Set Cmask=1 to count cycles.	
63H	01H	LOCK_CYCLES.SPLIT_LOCK_UC_L OCK_DURATION	Cycles in which the L1D and L2 are locked, due to a UC lock or split lock.	
63H	02H	LOCK_CYCLES.CACHE_LOCK_DUR ATION	Cycles in which the L1D is locked.	
79H	02H	IDQ.EMPTY	Counts cycles the IDQ is empty.	
79H	04H	IDQ.MITE_UOPS	Increment each cycle # of uops delivered to IDQ from MITE path.	Can combine Umask 04H and 20H.
			Set Cmask = 1 to count cycles.	
79H	08H	IDQ.DSB_UOPS	Increment each cycle. # of uops delivered to IDQ from DSB path. Set Cmask = 1 to count cycles.	Can combine Umask 08H and 10H.
79H	10H	IDQ.MS_DSB_UOPS	Increment each cycle # of uops delivered to IDQ when MS_busy by DSB. Set Cmask = 1 to count cycles. Add Edge=1 to count # of delivery.	Can combine Umask 04H, 08H.
79H	20H	IDQ.MS_MITE_UOPS	Increment each cycle # of uops delivered to IDQ when MS_busy by MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H.
79H	30H	IDQ.MS_UOPS	Increment each cycle # of uops delivered to IDQ from MS by either DSB or MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H.
79H	18H	IDQ.ALL_DSB_CYCLES_ANY_UOP S	Counts cycles DSB is delivered at least one uops. Set Cmask = 1.	
79H	18H	IDQ.ALL_DSB_CYCLES_4_UOPS	Counts cycles DSB is delivered four uops. Set Cmask = 4.	
79H	24H	IDQ.ALL_MITE_CYCLES_ANY_UOP S	Counts cycles MITE is delivered at least one uops. Set Cmask = 1.	
79H	24H	IDQ.ALL_MITE_CYCLES_4_UOPS	Counts cycles MITE is delivered four uops. Set Cmask = 4.	
79H	3CH	IDQ.MITE_ALL_UOPS	# of uops delivered to IDQ from any path.	

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
80H	04H	ICACHE.IFETCH_STALL	Cycles where a code-fetch stalled due to L1 instruction-cache miss or an iTLB miss	
80H	02H	ICACHE.MISSES	Number of Instruction Cache, Streaming Buffer and Victim Cache Misses. Includes UC accesses.	
85H	01H	ITLB_MISSES.MISS_CAUSES_A_W ALK	Misses in all ITLB levels that cause page walks	
85H	02H	ITLB_MISSES.WALK_COMPLETED	Misses in all ITLB levels that cause completed page walks	
85H	04H	ITLB_MISSES.WALK_DURATION	Cycle PMH is busy with a walk.	
85H	10H	ITLB_MISSES.STLB_HIT	Number of cache load STLB hits. No page walk.	
87H	01H	ILD_STALL.LCP	Stalls caused by changing prefix length of the instruction.	
87H	04H	ILD_STALL.IQ_FULL	Stall cycles due to IQ is full.	
88H	01H	BR_INST_EXEC.COND	Qualify conditional near branch instructions executed, but not necessarily retired.	Must combine with umask 40H, 80H.
88H	02H	BR_INST_EXEC.DIRECT_JMP	Qualify all unconditional near branch instructions excluding calls and indirect branches.	Must combine with umask 80H.
88H	04H	BR_INST_EXEC.INDIRECT_JMP_N ON_CALL_RET	Qualify executed indirect near branch instructions that are not calls nor returns.	Must combine with umask 80H.
88H	08H	BR_INST_EXEC.RETURN_NEAR	Qualify indirect near branches that have a return mnemonic.	Must combine with umask 80H.
88H	10H	BR_INST_EXEC.DIRECT_NEAR_C ALL	Qualify unconditional near call branch instructions, excluding non call branch, executed.	Must combine with umask 80H.
88H	20H	BR_INST_EXEC.INDIRECT_NEAR_ CALL	Qualify indirect near calls, including both register and memory indirect, executed.	Must combine with umask 80H.
88H	40H	BR_INST_EXEC.NONTAKEN	Qualify non-taken near branches executed.	Applicable to umask 01H only.
88H	80H	BR_INST_EXEC.TAKEN	Qualify taken near branches executed. Must combine with 01H,02H, 04H, 08H, 10H, 20H.	
88H	FFH	BR_INST_EXEC.ALL_BRANCHES	Counts all near executed branches (not necessarily retired).	
89H	01H	BR_MISP_EXEC.COND	Qualify conditional near branch instructions mispredicted.	Must combine with umask 40H, 80H.
89H	04H	BR_MISP_EXEC.INDIRECT_JMP_N ON_CALL_RET	Qualify mispredicted indirect near branch instructions that are not calls nor returns.	Must combine with umask 80H.
89H	08H	BR_MISP_EXEC.RETURN_NEAR	Qualify mispredicted indirect near branches that have a return mnemonic.	Must combine with umask 80H.
89H	10H	BR_MISP_EXEC.DIRECT_NEAR_C ALL	Qualify mispredicted unconditional near call branch instructions, excluding non call branch, executed.	Must combine with umask 80H.
89H	20H	BR_MISP_EXEC.INDIRECT_NEAR_ CALL	Qualify mispredicted indirect near calls, including both register and memory indirect, executed.	Must combine with umask 80H.

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
89H	40H	BR_MISP_EXEC.NONTAKEN	Qualify mispredicted non-taken near branches executed.	Applicable to umask 01H only.
89H	80H	BR_MISP_EXEC.TAKEN	Qualify mispredicted taken near branches executed. Must combine with 01H,02H, 04H, 08H, 10H, 20H.	
89H	FFH	BR_MISP_EXEC.ALL_BRANCHES	Counts all near executed branches (not necessarily retired).	
9CH	01H	IDQ_UOPS_NOT_DELIVERED.COR E	Count issue pipeline slots where no uop was delivered from the frontend to the backend when there is no backend stall.	Use Cmask to qualify uop b/w.
A1H	01H	UOPS_DISPATCHED_PORT.PORT_ 0	Cycles which a Uop is dispatched on port 0.	
A1H	02H	UOPS_DISPATCHED_PORT.PORT_ 1	Cycles which a Uop is dispatched on port 1	
A1H	OCH	UOPS_DISPATCHED_PORT.PORT_ 2	Cycles which a Uop is dispatched on port 2.	
A1H	30H	UOPS_DISPATCHED_PORT.PORT_ 3	Cycles which a Uop is dispatched on port 3.	
A1H	40H	UOPS_DISPATCHED_PORT.PORT_ 4	Cycles which a Uop is dispatched on port 4.	
A1H	80H	UOPS_DISPATCHED_PORT.PORT_ 5	Cycles which a Uop is dispatched on port 5.	
A2H	01H	RESOURCE_STALLS.ANY	Cycles Allocation is stalled due to Resource Related reason.	
A2H	04H	RESOURCE_STALLS.RS	Cycles stalled due to no eligible RS entry available.	
A2H	08H	RESOURCE_STALLS.SB	Cycles stalled due to no store buffers available (not including draining form sync).	
A2H	10H	RESOURCE_STALLS.ROB	Cycles stalled due to re-order buffer full.	
АЗН	01H	CYCLE_ACTIVITY.CYCLES_L2_PEN DING	Cycles with pending L2 miss loads. Set AnyThread to count per core.	
АЗН	02H	CYCLE_ACTIVITY.CYCLES_LDM_P ENDING	Cycles with pending memory loads. Set AnyThread to count per core.	Restricted to counters 0- 3 when HTT is disabled.
АЗН	04H	CYCLE_ACTIVITY.CYCLES_NO_EX ECUTE	Cycles of dispatch stalls. Set AnyThread to count per core.	Restricted to counters 0- 3 when HTT is disabled.
АЗН	05H	CYCLE_ACTIVITY.STALLS_L2_PEN DING	Number of loads missed L2.	Restricted to counters 0-3 when HTT is disabled.
АЗН	06H	CYCLE_ACTIVITY.STALLS_LDM_P ENDING		Restricted to counters 0-3 when HTT is disabled.
АЗН	08H	CYCLE_ACTIVITY.CYCLES_L1D_PE NDING	Cycles with pending L1 cache miss loads. Set AnyThread to count per core.	PMC2 only.
АЗН	OCH	CYCLE_ACTIVITY.STALLS_L1D_PE NDING	Execution stalls due to L1 data cache miss loads. Set Cmask=OCH.	PMC2 only.
A8H	01H	LSD.UOPS	Number of Uops delivered by the LSD.	

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
ABH	01H	DSB2MITE_SWITCHES.COUNT	Number of DSB to MITE switches.	
ABH	02H	DSB2MITE_SWITCHES.PENALTY_ CYCLES	Cycles DSB to MITE switches caused delay.	
ACH	08H	DSB_FILL.EXCEED_DSB_LINES	DSB Fill encountered > 3 DSB lines.	
AEH	01H	ITLB.ITLB_FLUSH	Counts the number of ITLB flushes, includes 4k/2M/4M pages.	
ВОН	01H	OFFCORE_REQUESTS.DEMAND_D ATA_RD	Demand data read requests sent to uncore.	
ВОН	02H	OFFCORE_REQUESTS.DEMAND_C ODE_RD	Demand code read requests sent to uncore.	
ВОН	04H	OFFCORE_REQUESTS.DEMAND_R FO	Demand RFO read requests sent to uncore, including regular RFOs, locks, ItoM	
ВОН	08H	OFFCORE_REQUESTS.ALL_DATA_ RD	Data read requests sent to uncore (demand and prefetch).	
B1H	01H	UOPS_EXECUTED.THREAD	Counts total number of uops to be executed per- thread each cycle. Set Cmask = 1, INV =1 to count stall cycles.	
B1H	02H	UOPS_EXECUTED.CORE	Counts total number of uops to be executed percore each cycle.	Do not need to set ANY.
В7Н	01H	OFFCORE_RESPONSE_0	See Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A6H.
BBH	01H	OFFCORE_RESPONSE_1	See Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A7H.
BDH	01H	TLB_FLUSH.DTLB_THREAD	DTLB flush attempts of the thread-specific entries.	
BDH	20H	TLB_FLUSH.STLB_ANY	Count number of STLB flush attempts.	
СОН	00H	INST_RETIRED.ANY_P	Number of instructions at retirement.	See Table 19-1.
COH	01H	INST_RETIRED.PREC_DIST	Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribution.	PMC1 only.
C1H	08H	OTHER_ASSISTS.AVX_STORE	Number of assists associated with 256-bit AVX store operations.	
C1H	10H	OTHER_ASSISTS.AVX_TO_SSE	Number of transitions from AVX-256 to legacy SSE when penalty applicable.	
C1H	20H	OTHER_ASSISTS.SSE_TO_AVX	Number of transitions from SSE to AVX-256 when penalty applicable.	
C1H	80H	OTHER_ASSISTS.WB	Number of times microcode assist is invoked by hardware upon uop writeback	
C2H	01H	UOPS_RETIRED.ALL	Counts the number of micro-ops retired, Use cmask=1 and invert to count active cycles or stalled cycles.	Supports PEBS, use Any=1 for core granular.
C2H	02H	UOPS_RETIRED.RETIRE_SLOTS	Counts the number of retirement slots used each cycle.	Supports PEBS.

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
СЗН	02H	MACHINE_CLEARS.MEMORY_ORD ERING	Counts the number of machine clears due to memory order conflicts.	
СЗН	04H	MACHINE_CLEARS.SMC	Number of self-modifying-code machine clears detected.	
СЗН	20H	MACHINE_CLEARS.MASKMOV	Counts the number of executed AVX masked load operations that refer to an illegal address range with the mask bits set to 0.	
C4H	00H	BR_INST_RETIRED.ALL_BRANCH ES	Branch instructions at retirement.	See Table 19-1.
C4H	01H	BR_INST_RETIRED.CONDITIONAL	Counts the number of conditional branch instructions retired.	Supports PEBS.
C4H	02H	BR_INST_RETIRED.NEAR_CALL	Direct and indirect near call instructions retired.	Supports PEBS.
C4H	04H	BR_INST_RETIRED.ALL_BRANCH ES	Counts the number of branch instructions retired.	Supports PEBS.
C4H	08H	BR_INST_RETIRED.NEAR_RETUR N	Counts the number of near return instructions retired.	Supports PEBS.
C4H	10H	BR_INST_RETIRED.NOT_TAKEN	Counts the number of not taken branch instructions retired.	Supports PEBS.
C4H	20H	BR_INST_RETIRED.NEAR_TAKEN	Number of near taken branches retired.	Supports PEBS.
C4H	40H	BR_INST_RETIRED.FAR_BRANCH	Number of far branches retired.	Supports PEBS.
C5H	ООН	BR_MISP_RETIRED.ALL_BRANCH ES	Mispredicted branch instructions at retirement.	See Table 19-1.
C5H	01H	BR_MISP_RETIRED.CONDITIONAL	Mispredicted conditional branch instructions retired.	Supports PEBS.
C5H	04H	BR_MISP_RETIRED.ALL_BRANCH ES	Mispredicted macro branch instructions retired.	Supports PEBS.
C5H	20H	BR_MISP_RETIRED.NEAR_TAKEN	Mispredicted taken branch instructions retired.	Supports PEBS.
CAH	02H	FP_ASSIST.X87_OUTPUT	Number of X87 FP assists due to Output values.	Supports PEBS.
CAH	04H	FP_ASSIST.X87_INPUT	Number of X87 FP assists due to input values.	Supports PEBS.
CAH	08H	FP_ASSIST.SIMD_OUTPUT	Number of SIMD FP assists due to Output values.	Supports PEBS.
CAH	10H	FP_ASSIST.SIMD_INPUT	Number of SIMD FP assists due to input values.	
CAH	1EH	FP_ASSIST.ANY	Cycles with any input/output SSE* or FP assists.	
CCH	20H	ROB_MISC_EVENTS.LBR_INSERT S	Count cases of saving new LBR records by hardware.	
CDH	01H	MEM_TRANS_RETIRED.LOAD_LA TENCY	Randomly sampled loads whose latency is above a user defined threshold. A small fraction of the overall loads are sampled due to randomization.	Specify threshold in MSR 3F6H. PMC 3 only.
CDH	02H	MEM_TRANS_RETIRED.PRECISE_ STORE	Sample stores and collect precise store operation via PEBS record. PMC3 only.	See Section 18.8.4.3.
D0H	11H	MEM_UOPS_RETIRED.STLB_MISS _LOADS	Retired load uops that miss the STLB.	Supports PEBS.

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
D0H	12H	MEM_UOPS_RETIRED.STLB_MISS _STORES	Retired store uops that miss the STLB.	Supports PEBS.
D0H	21H	MEM_UOPS_RETIRED.LOCK_LOA DS	Retired load uops with locked access.	Supports PEBS.
D0H	41H	MEM_UOPS_RETIRED.SPLIT_LOA DS	Retired load uops that split across a cacheline boundary.	Supports PEBS.
D0H	42H	MEM_UOPS_RETIRED.SPLIT_STO RES	Retired store uops that split across a cacheline boundary.	Supports PEBS.
D0H	81H	MEM_UOPS_RETIRED.ALL_LOADS	All retired load uops.	Supports PEBS.
D0H	82H	MEM_UOPS_RETIRED.ALL_STORE S	All retired store uops.	Supports PEBS.
D1H	01H	MEM_LOAD_UOPS_RETIRED.L1_ HIT	Retired load uops with L1 cache hits as data sources.	Supports PEBS.
D1H	02H	MEM_LOAD_UOPS_RETIRED.L2_ HIT	Retired load uops with L2 cache hits as data sources.	Supports PEBS.
D1H	04H	MEM_LOAD_UOPS_RETIRED.LLC_ HIT	Retired load uops whose data source was LLC hit with no snoop required.	Supports PEBS.
D1H	08H	MEM_LOAD_UOPS_RETIRED.L1_ MISS	Retired load uops whose data source followed an L1 miss.	Supports PEBS.
D1H	10H	MEM_LOAD_UOPS_RETIRED.L2_ MISS	Retired load uops that missed L2, excluding unknown sources.	Supports PEBS.
D1H	20H	MEM_LOAD_UOPS_RETIRED.LLC_ MISS	Retired load uops whose data source is LLC miss.	Supports PEBS. Restricted to counters 0- 3 when HTT is disabled.
D1H	40H	MEM_LOAD_UOPS_RETIRED.HIT_ LFB	Retired load uops which data sources were load uops missed L1 but hit FB due to preceding miss to the same cache line with data not ready.	Supports PEBS.
D2H	01H	MEM_LOAD_UOPS_LLC_HIT_RETI RED.XSNP_MISS	Retired load uops whose data source was an on- package core cache LLC hit and cross-core snoop missed.	Supports PEBS.
D2H	02H	MEM_LOAD_UOPS_LLC_HIT_RETI RED.XSNP_HIT	Retired load uops whose data source was an on- package LLC hit and cross-core snoop hits.	Supports PEBS.
D2H	04H	MEM_LOAD_UOPS_LLC_HIT_RETI RED.XSNP_HITM	Retired load uops whose data source was an on- package core cache with HitM responses.	Supports PEBS.
D2H	08H	MEM_LOAD_UOPS_LLC_HIT_RETI RED.XSNP_NONE	Retired load uops whose data source was LLC hit with no snoop required.	Supports PEBS.
D3H	01H	MEM_LOAD_UOPS_LLC_MISS_RE TIRED.LOCAL_DRAM	Retired load uops whose data source was local memory (cross-socket snoop not needed or missed).	Supports PEBS.
E6H	1FH	BACLEARS.ANY	Number of front end re-steers due to BPU misprediction.	
F0H	01H	L2_TRANS.DEMAND_DATA_RD	Demand Data Read requests that access L2 cache.	
F0H	02H	L2_TRANS.RFO	RFO requests that access L2 cache.	

Table 19-10 Non-Architectural Performance Events In the Processor Core of 3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
F0H	04H	L2_TRANS.CODE_RD	L2 cache accesses when fetching instructions.	
F0H	08H	L2_TRANS.ALL_PF	Any MLC or LLC HW prefetch accessing L2, including rejects.	
F0H	10H	L2_TRANS.L1D_WB	L1D writebacks that access L2 cache.	
F0H	20H	L2_TRANS.L2_FILL	L2 fill requests that access L2 cache.	
F0H	40H	L2_TRANS.L2_WB	L2 writebacks that access L2 cache.	
F0H	80H	L2_TRANS.ALL_REQUESTS	Transactions accessing L2 pipe.	
F1H	01H	L2_LINES_IN.I	L2 cache lines in I state filling L2.	Counting does not cover rejects.
F1H	02H	L2_LINES_IN.S	L2 cache lines in S state filling L2.	Counting does not cover rejects.
F1H	04H	L2_LINES_IN.E	L2 cache lines in E state filling L2.	Counting does not cover rejects.
F1H	07H	L2_LINES_IN.ALL	L2 cache lines filling L2.	Counting does not cover rejects.
F2H	01H	L2_LINES_OUT.DEMAND_CLEAN	Clean L2 cache lines evicted by demand.	
F2H	02H	L2_LINES_OUT.DEMAND_DIRTY	Dirty L2 cache lines evicted by demand.	
F2H	04H	L2_LINES_OUT.PF_CLEAN	Clean L2 cache lines evicted by the MLC prefetcher.	
F2H	08H	L2_LINES_OUT.PF_DIRTY	Dirty L2 cache lines evicted by the MLC prefetcher.	
F2H	OAH	L2_LINES_OUT.DIRTY_ALL	Dirty L2 cache lines filling the L2.	Counting does not cover rejects.

19.6 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX PROCESSOR SERIES

2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series, and Intel Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-12, Table 19-13, and Table 19-14. The events in Table 19-12 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_2AH and 06_2DH. The events in Table 19-13 apply to processors with CPUID signature 06_2AH. The events in Table 19-14 apply to processors with CPUID signature 06_2DH. Fixed counters in the core PMU support the architecture events defined in Table 19-2.

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
03H	01H	LD_BLOCKS.DATA_UNKNOWN	blocked loads due to store buffer blocks with unknown data.	
03H	02H	LD_BLOCKS.STORE_FORWARD	loads blocked by overlapping with store buffer that cannot be forwarded.	
03H	08H	LD_BLOCKS.NO_SR	# of Split loads blocked due to resource not available.	
03H	10H	LD_BLOCKS.ALL_BLOCK	Number of cases where any load is blocked but has no DCU miss.	
05H	01H	MISALIGN_MEM_REF.LOADS	Speculative cache-line split load uops dispatched to L1D.	
05H	02H	MISALIGN_MEM_REF.STORES	Speculative cache-line split Store-address uops dispatched to L1D.	
07H	01H	LD_BLOCKS_PARTIAL.ADDRES S_ALIAS	False dependencies in MOB due to partial compare on address.	
07H	08H	LD_BLOCKS_PARTIAL.ALL_STA _BLOCK	The number of times that load operations are temporarily blocked because of older stores, with addresses that are not yet known. A load operation may incur more than one block of this type.	
08H	01H	DTLB_LOAD_MISSES.MISS_CA USES_A_WALK	Misses in all TLB levels that cause a page walk of any page size.	
08H	02H	DTLB_LOAD_MISSES.WALK_CO MPLETED	Misses in all TLB levels that caused page walk completed of any size.	
08H	04H	DTLB_LOAD_MISSES.WALK_DU RATION	Cycle PMH is busy with a walk.	
08H	10H	DTLB_LOAD_MISSES.STLB_HIT	Number of cache load STLB hits. No page walk.	
ODH	03H	INT_MISC.RECOVERY_CYCLES	Cycles waiting to recover after Machine Clears or JEClear. Set Cmask= 1.	Set Edge to count occurrences.
ODH	40H	INT_MISC.RAT_STALL_CYCLES	Cycles RAT external stall is sent to IDQ for this thread.	
0EH	01H	UOPS_ISSUED.ANY	Increments each cycle the # of Uops issued by the RAT to RS.	Set Cmask = 1, Inv = 1to count stalled cycles.
			Set Cmask = 1, Inv = 1, Any= 1 to count stalled cycles of this core.	
10H	01H	FP_COMP_OPS_EXE.X87	Counts number of X87 uops executed.	
10H	10H	FP_COMP_OPS_EXE.SSE_FP_P ACKED_DOUBLE	Counts number of SSE* double precision FP packed uops executed.	
10H	20H	FP_COMP_OPS_EXE.SSE_FP_S CALAR_SINGLE	Counts number of SSE* single precision FP scalar uops executed.	
10H	40H	FP_COMP_OPS_EXE.SSE_PACK ED SINGLE	Counts number of SSE* single precision FP packed uops executed.	
10H	80H	FP_COMP_OPS_EXE.SSE_SCAL AR_DOUBLE	Counts number of SSE* double precision FP scalar uops executed.	

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
11H	01H	SIMD_FP_256.PACKED_SINGLE	Counts 256-bit packed single-precision floating-point instructions.	
11H	02H	SIMD_FP_256.PACKED_DOUBL E	Counts 256-bit packed double-precision floating-point instructions.	
14H	01H	ARITH.FPU_DIV_ACTIVE	Cycles that the divider is active, includes INT and FP. Set 'edge =1, cmask=1' to count the number of divides.	
17H	01H	INSTS_WRITTEN_TO_IQ.INSTS	Counts the number of instructions written into the IQ every cycle.	
24H	01H	L2_RQSTS.DEMAND_DATA_RD _HIT	Demand Data Read requests that hit L2 cache.	
24H	03H	L2_RQSTS.ALL_DEMAND_DAT A_RD	Counts any demand and L1 HW prefetch data load requests to L2.	
24H	04H	L2_RQSTS.RFO_HITS	Counts the number of store RFO requests that hit the L2 cache.	
24H	08H	L2_RQSTS.RFO_MISS	Counts the number of store RFO requests that miss the L2 cache.	
24H	0CH	L2_RQSTS.ALL_RF0	Counts all L2 store RFO requests.	
24H	10H	L2_RQSTS.CODE_RD_HIT	Number of instruction fetches that hit the L2 cache.	
24H	20H	L2_RQSTS.CODE_RD_MISS	Number of instruction fetches that missed the L2 cache.	
24H	30H	L2_RQSTS.ALL_CODE_RD	Counts all L2 code requests.	
24H	40H	L2_RQSTS.PF_HIT	Requests from L2 Hardware prefetcher that hit L2.	
24H	80H	L2_RQSTS.PF_MISS	Requests from L2 Hardware prefetcher that missed L2.	
24H	СОН	L2_RQSTS.ALL_PF	Any requests from L2 Hardware prefetchers.	
27H	01H	L2_STORE_LOCK_RQSTS.MISS	RFOs that miss cache lines.	
27H	04H	L2_STORE_LOCK_RQSTS.HIT_ E	RFOs that hit cache lines in E state.	
27H	08H	L2_STORE_LOCK_RQSTS.HIT_ M	RFOs that hit cache lines in M state.	
27H	0FH	L2_STORE_LOCK_RQSTS.ALL	RFOs that access cache lines in any state.	
28H	01H	L2_L1D_WB_RQSTS.MISS	Not rejected writebacks from L1D to L2 cache lines that missed L2.	
28H	02H	L2_L1D_WB_RQSTS.HIT_S	Not rejected writebacks from L1D to L2 cache lines in S state.	
28H	04H	L2_L1D_WB_RQSTS.HIT_E	Not rejected writebacks from L1D to L2 cache lines in E state.	
28H	08H	L2_L1D_WB_RQSTS.HIT_M	Not rejected writebacks from L1D to L2 cache lines in M state.	
28H	0FH	L2_L1D_WB_RQSTS.ALL	Not rejected writebacks from L1D to L2 cache.	

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
2EH	4FH	LONGEST_LAT_CACHE.REFERE NCE	This event counts requests originating from the core that reference a cache line in the last level cache.	See Table 19-1.
2EH	41H	LONGEST_LAT_CACHE.MISS	This event counts each cache miss condition for references to the last level cache.	See Table 19-1.
3CH	00H	CPU_CLK_UNHALTED.THREAD _P	Counts the number of thread cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. The core frequency may change from time to time due to power or thermal throttling.	See Table 19-1.
3CH	01H	CPU_CLK_THREAD_UNHALTED .REF_XCLK	Increments at the frequency of XCLK (100 MHz) when not halted.	See Table 19-1.
48H	01H	L1D_PEND_MISS.PENDING	Increments the number of outstanding L1D misses every cycle. Set Cmask = 1 and Edge =1 to count occurrences.	PMC2 only; Set Cmask = 1 to count cycles.
49H	01H	DTLB_STORE_MISSES.MISS_CA USES_A_WALK	Miss in all TLB levels causes an page walk of any page size (4K/2M/4M/1G).	
49H	02H	DTLB_STORE_MISSES.WALK_C OMPLETED	Miss in all TLB levels causes a page walk that completes of any page size (4K/2M/4M/1G).	
49H	04H	DTLB_STORE_MISSES.WALK_D URATION	Cycles PMH is busy with this walk.	
49H	10H	DTLB_STORE_MISSES.STLB_HI T	Store operations that miss the first TLB level but hit the second and do not cause page walks.	
4CH	01H	LOAD_HIT_PRE.SW_PF	Not SW-prefetch load dispatches that hit fill buffer allocated for S/W prefetch.	
4CH	02H	LOAD_HIT_PRE.HW_PF	Not SW-prefetch load dispatches that hit fill buffer allocated for H/W prefetch.	
4EH	02H	HW_PRE_REQ.DL1_MISS	Hardware Prefetch requests that miss the L1D cache. A request is being counted each time it access the cache & miss it, including if a block is applicable or if hit the Fill Buffer for example.	This accounts for both L1 streamer and IP-based (IPP) HW prefetchers.
51H	01H	L1D.REPLACEMENT	Counts the number of lines brought into the L1 data cache.	
51H	02H	L1D.ALLOCATED_IN_M	Counts the number of allocations of modified L1D cache lines.	
51H	04H	L1D.EVICTION	Counts the number of modified lines evicted from the L1 data cache due to replacement.	
51H	08H	L1D.ALL_M_REPLACEMENT	Cache lines in M state evicted out of L1D due to Snoop HitM or dirty line replacement.	
59H	20H	PARTIAL_RAT_STALLS.FLAGS_ MERGE_UOP	Increments the number of flags-merge uops in flight each cycle. Set Cmask = 1 to count cycles.	

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
59H	40H	PARTIAL_RAT_STALLS.SLOW_ LEA_WINDOW	Cycles with at least one slow LEA uop allocated.	
59H	80H	PARTIAL_RAT_STALLS.MUL_SI NGLE_UOP	Number of Multiply packed/scalar single precision uops allocated.	
5BH	0CH	RESOURCE_STALLS2.ALL_FL_ EMPTY	Cycles stalled due to free list empty.	PMCO-3 only regardless HTT.
5BH	0FH	RESOURCE_STALLS2.ALL_PRF _CONTROL	Cycles stalled due to control structures full for physical registers.	
5BH	40H	RESOURCE_STALLS2.BOB_FUL L	Cycles Allocator is stalled due Branch Order Buffer.	
5BH	4FH	RESOURCE_STALLS2.000_RS RC	Cycles stalled due to out of order resources full.	
5CH	01H	CPL_CYCLES.RING0	Unhalted core cycles when the thread is in ring 0.	Use Edge to count transition.
5CH	02H	CPL_CYCLES.RING123	Unhalted core cycles when the thread is not in ring 0.	
5EH	01H	RS_EVENTS.EMPTY_CYCLES	Cycles the RS is empty for the thread.	
60H	01H	OFFCORE_REQUESTS_OUTSTA NDING.DEMAND_DATA_RD	Offcore outstanding Demand Data Read transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	04H	OFFCORE_REQUESTS_OUTSTA NDING.DEMAND_RFO	Offcore outstanding RFO store transactions in SQ to uncore. Set Cmask=1 to count cycles.	
60H	08H	OFFCORE_REQUESTS_OUTSTA NDING.ALL_DATA_RD	Offcore outstanding cacheable data read transactions in SQ to uncore. Set Cmask=1 to count cycles.	
63H	01H	LOCK_CYCLES.SPLIT_LOCK_UC _LOCK_DURATION	Cycles in which the L1D and L2 are locked, due to a UC lock or split lock.	
63H	02H	LOCK_CYCLES.CACHE_LOCK_D URATION	Cycles in which the L1D is locked.	
79H	02H	IDQ.EMPTY	Counts cycles the IDQ is empty.	
79H	04H	IDQ.MITE_UOPS	Increment each cycle # of uops delivered to IDQ from MITE path.	Can combine Umask 04H and 20H.
			Set Cmask = 1 to count cycles.	
79H	08H	IDQ.DSB_UOPS	Increment each cycle. # of uops delivered to IDQ from DSB path.	Can combine Umask 08H and 10H.
			Set Cmask = 1 to count cycles.	
79H	10H	IDQ.MS_DSB_UOPS	Increment each cycle # of uops delivered to IDQ when MS busy by DSB. Set Cmask = 1 to count cycles MS is busy. Set Cmask=1 and Edge =1 to count MS activations.	Can combine Umask 08H and 10H.
79H	20H	IDQ.MS_MITE_UOPS	Increment each cycle # of uops delivered to IDQ when MS is busy by MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H and 20H.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
79H	30H	IDQ.MS_UOPS	Increment each cycle # of uops delivered to IDQ from MS by either DSB or MITE. Set Cmask = 1 to count cycles.	Can combine Umask 04H, 08H and 30H.
80H	02H	ICACHE.MISSES	Number of Instruction Cache, Streaming Buffer and Victim Cache Misses. Includes UC accesses.	
85H	01H	ITLB_MISSES.MISS_CAUSES_A _WALK	Misses in all ITLB levels that cause page walks.	
85H	02H	ITLB_MISSES.WALK_COMPLET ED	Misses in all ITLB levels that cause completed page walks.	
85H	04H	ITLB_MISSES.WALK_DURATION	Cycle PMH is busy with a walk.	
85H	10H	ITLB_MISSES.STLB_HIT	Number of cache load STLB hits. No page walk.	
87H	01H	ILD_STALL.LCP	Stalls caused by changing prefix length of the instruction.	
87H	04H	ILD_STALL.IQ_FULL	Stall cycles due to IQ is full.	
88H	41H	BR_INST_EXEC.NONTAKEN_CO NDITIONAL	Not-taken macro conditional branches.	
88H	81H	BR_INST_EXEC.TAKEN_CONDI TIONAL	Taken speculative and retired conditional branches.	
88H	82H	BR_INST_EXEC.TAKEN_DIRECT _JUMP	Taken speculative and retired conditional branches excluding calls and indirects.	
88H	84H	BR_INST_EXEC.TAKEN_INDIRE CT_JUMP_NON_CALL_RET	Taken speculative and retired indirect branches excluding calls and returns.	
88H	88H	BR_INST_EXEC.TAKEN_INDIRE CT_NEAR_RETURN	Taken speculative and retired indirect branches that are returns.	
88H	90H	BR_INST_EXEC.TAKEN_DIRECT _NEAR_CALL	Taken speculative and retired direct near calls.	
88H	AOH	BR_INST_EXEC.TAKEN_INDIRE CT_NEAR_CALL	Taken speculative and retired indirect near calls.	
88H	C1H	BR_INST_EXEC.ALL_CONDITIO	Speculative and retired conditional branches.	
88H	C2H	BR_INST_EXEC.ALL_DIRECT_J UMP	Speculative and retired conditional branches excluding calls and indirects.	
88H	C4H	BR_INST_EXEC.ALL_INDIRECT _JUMP_NON_CALL_RET	Speculative and retired indirect branches excluding calls and returns.	
88H	C8H	BR_INST_EXEC.ALL_INDIRECT _NEAR_RETURN	Speculative and retired indirect branches that are returns.	
88H	DOH	BR_INST_EXEC.ALL_NEAR_CA	Speculative and retired direct near calls.	
88H	FFH	BR_INST_EXEC.ALL_BRANCHE S	Speculative and retired branches.	

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
89H	41H	BR_MISP_EXEC.NONTAKEN_CO NDITIONAL	Not-taken mispredicted macro conditional branches.	
89H	81H	BR_MISP_EXEC.TAKEN_CONDI TIONAL	Taken speculative and retired mispredicted conditional branches.	
89H	84H	BR_MISP_EXEC.TAKEN_INDIRE CT_JUMP_NON_CALL_RET	Taken speculative and retired mispredicted indirect branches excluding calls and returns.	
89H	88H	BR_MISP_EXEC.TAKEN_RETUR N_NEAR	Taken speculative and retired mispredicted indirect branches that are returns.	
89H	90H	BR_MISP_EXEC.TAKEN_DIRECT _NEAR_CALL	Taken speculative and retired mispredicted direct near calls.	
89H	АОН	BR_MISP_EXEC.TAKEN_INDIRE CT_NEAR_CALL	Taken speculative and retired mispredicted indirect near calls.	
89H	C1H	BR_MISP_EXEC.ALL_CONDITIONAL	Speculative and retired mispredicted conditional branches.	
89H	C4H	BR_MISP_EXEC.ALL_INDIRECT _JUMP_NON_CALL_RET	Speculative and retired mispredicted indirect branches excluding calls and returns.	
89H	DOH	BR_MISP_EXEC.ALL_NEAR_CA	Speculative and retired mispredicted direct near calls.	
89H	FFH	BR_MISP_EXEC.ALL_BRANCHE S	Speculative and retired mispredicted branches.	
9CH	01H	IDQ_UOPS_NOT_DELIVERED.C ORE	Count issue pipeline slots where no uop was delivered from the frontend to the backend when there is no backend stall.	Use Cmask to qualify uop b/w.
A1H	01H	UOPS_DISPATCHED_PORT.POR T_0	Cycles which a Uop is dispatched on port 0.	
A1H	02H	UOPS_DISPATCHED_PORT.POR T_1	Cycles which a Uop is dispatched on port 1.	
A1H	OCH	UOPS_DISPATCHED_PORT.POR T_2	Cycles which a Uop is dispatched on port 2.	
A1H	30H	UOPS_DISPATCHED_PORT.POR T_3	Cycles which a Uop is dispatched on port 3.	
A1H	40H	UOPS_DISPATCHED_PORT.POR T_4	Cycles which a Uop is dispatched on port 4.	
A1H	80H	UOPS_DISPATCHED_PORT.POR T_5	Cycles which a Uop is dispatched on port 5.	
A2H	01H	RESOURCE_STALLS.ANY	Cycles Allocation is stalled due to Resource Related reason.	
A2H	02H	RESOURCE_STALLS.LB	Counts the cycles of stall due to lack of load buffers.	
A2H	04H	RESOURCE_STALLS.RS	Cycles stalled due to no eligible RS entry available.	
A2H	08H	RESOURCE_STALLS.SB	Cycles stalled due to no store buffers available (not including draining form sync).	
A2H	10H	RESOURCE_STALLS.ROB	Cycles stalled due to re-order buffer full.	
	1			

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
A2H	20H	RESOURCE_STALLS.FCSW	Cycles stalled due to writing the FPU control word.	
АЗН	02H	CYCLE_ACTIVITY.CYCLES_L1D_ PENDING	Cycles with pending L1 cache miss loads.Set AnyThread to count per core.	PMC2 only.
АЗН	01H	CYCLE_ACTIVITY.CYCLES_L2_P ENDING	Cycles with pending L2 miss loads. Set AnyThread to count per core.	
АЗН	04H	CYCLE_ACTIVITY.CYCLES_NO_ DISPATCH	Cycles of dispatch stalls. Set AnyThread to count per core.	PMCO-3 only.
A8H	01H	LSD.UOPS	Number of Uops delivered by the LSD.	
ABH	01H	DSB2MITE_SWITCHES.COUNT	Number of DSB to MITE switches.	
ABH	02H	DSB2MITE_SWITCHES.PENALT Y_CYCLES	Cycles DSB to MITE switches caused delay.	
ACH	02H	DSB_FILL.OTHER_CANCEL	Cases of cancelling valid DSB fill not because of exceeding way limit.	
ACH	08H	DSB_FILL.EXCEED_DSB_LINES	DSB Fill encountered > 3 DSB lines.	
AEH	01H	ITLB.ITLB_FLUSH	Counts the number of ITLB flushes, includes 4k/2M/4M pages.	
ВОН	01H	OFFCORE_REQUESTS.DEMAND _DATA_RD	Demand data read requests sent to uncore.	
вон	04H	OFFCORE_REQUESTS.DEMAND _RFO	Demand RFO read requests sent to uncore, including regular RFOs, locks, ItoM.	
ВОН	08H	OFFCORE_REQUESTS.ALL_DAT A_RD	Data read requests sent to uncore (demand and prefetch).	
B1H	01H	UOPS_DISPATCHED.THREAD	Counts total number of uops to be dispatched per- thread each cycle. Set Cmask = 1, INV =1 to count stall cycles.	PMCO-3 only regardless HTT.
B1H	02H	UOPS_DISPATCHED.CORE	Counts total number of uops to be dispatched percore each cycle.	Do not need to set ANY.
B2H	01H	OFFCORE_REQUESTS_BUFFER .SQ_FULL	Offcore requests buffer cannot take more entries for this thread core.	
В6Н	01H	AGU_BYPASS_CANCEL.COUNT	Counts executed load operations with all the following traits: 1. addressing of the format [base + offset], 2. the offset is between 1 and 2047, 3. the address specified in the base register is in one page and the address [base+offset] is in another page.	
В7Н	01H	OFF_CORE_RESPONSE_0	see Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A6H.
BBH	01H	OFF_CORE_RESPONSE_1	See Section 18.8.5, "Off-core Response Performance Monitoring".	Requires MSR 01A7H.
BDH	01H	TLB_FLUSH.DTLB_THREAD	DTLB flush attempts of the thread-specific entries.	
BDH	20H	TLB_FLUSH.STLB_ANY	Count number of STLB flush attempts.	
BFH	05H	L1D_BLOCKS.BANK_CONFLICT _CYCLES	Cycles when dispatched loads are cancelled due to L1D bank conflicts with other load ports.	cmask=1.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
СОН	00H	INST_RETIRED.ANY_P	Number of instructions at retirement.	See Table 19-1.
СОН	01H	INST_RETIRED.PREC_DIST	Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribution.	PMC1 only; Must quiesce other PMCs.
C1H	02H	OTHER_ASSISTS.ITLB_MISS_R ETIRED	Instructions that experienced an ITLB miss.	
C1H	08H	OTHER_ASSISTS.AVX_STORE	Number of assists associated with 256-bit AVX store operations.	
C1H	10H	OTHER_ASSISTS.AVX_TO_SSE	Number of transitions from AVX-256 to legacy SSE when penalty applicable.	
C1H	20H	OTHER_ASSISTS.SSE_TO_AVX	Number of transitions from SSE to AVX-256 when penalty applicable.	
C2H	01H	UOPS_RETIRED.ALL	Counts the number of micro-ops retired, Use cmask=1 and invert to count active cycles or stalled cycles.	Supports PEBS.
C2H	02H	UOPS_RETIRED.RETIRE_SLOTS	Counts the number of retirement slots used each cycle.	Supports PEBS.
СЗН	02H	MACHINE_CLEARS.MEMORY_O RDERING	Counts the number of machine clears due to memory order conflicts.	
СЗН	04H	MACHINE_CLEARS.SMC	Counts the number of times that a program writes to a code section.	
СЗН	20H	MACHINE_CLEARS.MASKMOV	Counts the number of executed AVX masked load operations that refer to an illegal address range with the mask bits set to 0.	
C4H	00H	BR_INST_RETIRED.ALL_BRAN CHES	Branch instructions at retirement.	See Table 19-1.
C4H	01H	BR_INST_RETIRED.CONDITION AL	Counts the number of conditional branch instructions retired.	Supports PEBS.
C4H	02H	BR_INST_RETIRED.NEAR_CALL	Direct and indirect near call instructions retired.	Supports PEBS.
C4H	04H	BR_INST_RETIRED.ALL_BRAN CHES	Counts the number of branch instructions retired.	Supports PEBS.
C4H	08H	BR_INST_RETIRED.NEAR_RET URN	Counts the number of near return instructions retired.	Supports PEBS.
C4H	10H	BR_INST_RETIRED.NOT_TAKE	Counts the number of not taken branch instructions retired.	
C4H	20H	BR_INST_RETIRED.NEAR_TAK EN	Number of near taken branches retired.	Supports PEBS.
C4H	40H	BR_INST_RETIRED.FAR_BRAN CH	Number of far branches retired.	
C5H	00H	BR_MISP_RETIRED.ALL_BRAN CHES	Mispredicted branch instructions at retirement.	See Table 19-1.
C5H	01H	BR_MISP_RETIRED.CONDITION AL	Mispredicted conditional branch instructions retired.	Supports PEBS.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
C5H	02H	BR_MISP_RETIRED.NEAR_CAL	Direct and indirect mispredicted near call instructions retired.	Supports PEBS.
C5H	04H	BR_MISP_RETIRED.ALL_BRAN CHES	Mispredicted macro branch instructions retired.	Supports PEBS.
C5H	10H	BR_MISP_RETIRED.NOT_TAKE	Mispredicted not taken branch instructions retired.	Supports PEBS.
C5H	20H	BR_MISP_RETIRED.TAKEN	Mispredicted taken branch instructions retired.	Supports PEBS.
CAH	02H	FP_ASSIST.X87_OUTPUT	Number of X87 assists due to output value.	
CAH	04H	FP_ASSIST.X87_INPUT	Number of X87 assists due to input value.	
CAH	08H	FP_ASSIST.SIMD_OUTPUT	Number of SIMD FP assists due to output values.	
CAH	10H	FP_ASSIST.SIMD_INPUT	Number of SIMD FP assists due to input values.	
CAH	1EH	FP_ASSIST.ANY	Cycles with any input/output SSE* or FP assists.	
CCH	20H	ROB_MISC_EVENTS.LBR_INSE RTS	Count cases of saving new LBR records by hardware.	
CDH	01H	MEM_TRANS_RETIRED.LOAD_ LATENCY	Randomly sampled loads whose latency is above a user defined threshold. A small fraction of the overall loads are sampled due to randomization. PMC3 only.	Specify threshold in MSR 3F6H.
CDH	02H	MEM_TRANS_RETIRED.PRECIS E_STORE	Sample stores and collect precise store operation via PEBS record. PMC3 only.	See Section 18.8.4.3.
D0H	11H	MEM_UOPS_RETIRED.STLB_MI SS_LOADS	Retired load uops that miss the STLB.	Supports PEBS. PMCO-3 only regardless HTT.
D0H	12H	MEM_UOPS_RETIRED.STLB_MI SS_STORES	Retired store uops that miss the STLB.	Supports PEBS. PMCO-3 only regardless HTT.
D0H	21H	MEM_UOPS_RETIRED.LOCK_LO ADS	Retired load uops with locked access.	Supports PEBS. PMCO-3 only regardless HTT.
D0H	41H	MEM_UOPS_RETIRED.SPLIT_L OADS	Retired load uops that split across a cacheline boundary.	Supports PEBS. PMCO-3 only regardless HTT.
D0H	42H	MEM_UOPS_RETIRED.SPLIT_S TORES	Retired store uops that split across a cacheline boundary.	Supports PEBS. PMCO-3 only regardless HTT.
D0H	81H	MEM_UOPS_RETIRED.ALL_LOA DS	All retired load uops.	Supports PEBS. PMCO-3 only regardless HTT.
D0H	82H	MEM_UOPS_RETIRED.ALL_STO RES	All retired store uops.	Supports PEBS. PMCO-3 only regardless HTT.
D1H	01H	MEM_LOAD_UOPS_RETIRED.L 1_HIT	Retired load uops with L1 cache hits as data sources.	Supports PEBS. PMCO-3 only regardless HTT.
D1H	02H	MEM_LOAD_UOPS_RETIRED.L 2_HIT	Retired load uops with L2 cache hits as data sources.	Supports PEBS.
D1H	04H	MEM_LOAD_UOPS_RETIRED.LL C_HIT	Retired load uops which data sources were data hits in LLC without snoops required.	Supports PEBS.
D1H	20H	MEM_LOAD_UOPS_RETIRED.LL C_MISS	Retired load uops which data sources were data missed LLC (excluding unknown data source).	Supports PEBS.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
D1H	40H	MEM_LOAD_UOPS_RETIRED.HI T_LFB	Retired load uops which data sources were load uops missed L1 but hit FB due to preceding miss to the same cache line with data not ready.	Supports PEBS.
D2H	01H	MEM_LOAD_UOPS_LLC_HIT_R ETIRED.XSNP_MISS	Retired load uops whose data source was an on- package core cache LLC hit and cross-core snoop missed.	Supports PEBS.
D2H	02H	MEM_LOAD_UOPS_LLC_HIT_R ETIRED.XSNP_HIT	Retired load uops whose data source was an on- package LLC hit and cross-core snoop hits.	Supports PEBS.
D2H	04H	MEM_LOAD_UOPS_LLC_HIT_R ETIRED.XSNP_HITM	Retired load uops whose data source was an on- package core cache with HitM responses.	Supports PEBS.
D2H	08H	MEM_LOAD_UOPS_LLC_HIT_R ETIRED.XSNP_NONE	Retired load uops whose data source was LLC hit with no snoop required.	Supports PEBS.
E6H	01H	BACLEARS.ANY	Counts the number of times the front end is resteered, mainly when the BPU cannot provide a correct prediction and this is corrected by other branch handling mechanisms at the front end.	
FOH	01H	L2_TRANS.DEMAND_DATA_RD	Demand Data Read requests that access L2 cache.	
F0H	02H	L2_TRANS.RFO	RFO requests that access L2 cache.	
F0H	04H	L2_TRANS.CODE_RD	L2 cache accesses when fetching instructions.	
F0H	08H	L2_TRANS.ALL_PF	L2 or LLC HW prefetches that access L2 cache.	Including rejects.
F0H	10H	L2_TRANS.L1D_WB	L1D writebacks that access L2 cache.	
F0H	20H	L2_TRANS.L2_FILL	L2 fill requests that access L2 cache.	
F0H	40H	L2_TRANS.L2_WB	L2 writebacks that access L2 cache.	
F0H	80H	L2_TRANS.ALL_REQUESTS	Transactions accessing L2 pipe.	
F1H	01H	L2_LINES_IN.I	L2 cache lines in I state filling L2.	Counting does not cover rejects.
F1H	02H	L2_LINES_IN.S	L2 cache lines in S state filling L2.	Counting does not cover rejects.
F1H	04H	L2_LINES_IN.E	L2 cache lines in E state filling L2.	Counting does not cover rejects.
F1H	07H	L2_LINES_IN.ALL	L2 cache lines filling L2.	Counting does not cover rejects.
F2H	01H	L2_LINES_OUT.DEMAND_CLEA	Clean L2 cache lines evicted by demand.	
F2H	02H	L2_LINES_OUT.DEMAND_DIRT Y	Dirty L2 cache lines evicted by demand.	
F2H	04H	L2_LINES_OUT.PF_CLEAN	Clean L2 cache lines evicted by L2 prefetch.	
F2H	08H	L2_LINES_OUT.PF_DIRTY	Dirty L2 cache lines evicted by L2 prefetch.	
F2H	OAH	L2_LINES_OUT.DIRTY_ALL	Dirty L2 cache lines filling the L2.	Counting does not cover rejects.
F4H	10H	SQ_MISC.SPLIT_LOCK	Split locks in SQ.	

...

15. Updates to Chapter 20, Volume 3B

Change bars show changes to Chapter 20 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

...

20.1.4 Interrupt and Exception Handling

When operating in real-address mode, software must provide interrupt and exception-handling facilities that are separate from those provided in protected mode. Even during the early stages of processor initialization when the processor is still in real-address mode, elementary real-address mode interrupt and exception-handling facilities must be provided to insure reliable operation of the processor, or the initialization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar to the way they handle them in protected mode. When a processor receives an interrupt or generates an exception, it uses the vector number of the interrupt or exception as an index into the interrupt table. (In protected mode, the interrupt table is called the **interrupt descriptor table (IDT)**, but in real-address mode, the table is usually called the **interrupt vector table**, or simply the **interrupt table**.) The entry in the interrupt vector table provides a pointer to an interrupt- or exception-handler procedure. (The pointer consists of a segment selector for a code segment and a 16-bit offset into the segment.) The processor performs the following actions to make an implicit call to the selected handler:

- 1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-significant bits of the EIP register are pushed.)
- 2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.
- 3. Clears the IF flag in the EFLAGS register to disable interrupts.
- 4. Clears the TF, RF, and AC flags, in the EFLAGS register.
- 5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the interrupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (see Figure 20-2). Each entry consists of a far pointer to a handler procedure, made up of a segment selector and an offset. The processor scales the interrupt or exception vector by 4 to obtain an offset into the interrupt table. Following reset, the base of the interrupt vector table is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 processor, the base address and limit of the interrupt vector table cannot be changed. In the later IA-32 processors, the base address and limit of the interrupt vector table are contained in the IDTR register and can be changed using the LIDT instruction.

(For backward compatibility to Intel 8086 processors, the default base address and limit of the interrupt vector table should not be changed.)

Figure 20-2 Interrupt Vector Table in Real-Address Mode

Table 20-1 shows the interrupt and exception vectors that can be generated in real-address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 6, "Interrupt and Exception Handling", for a description of the exception conditions.

. . .

16. Updates to Chapter 24, Volume 3B

Change bars show changes to Chapter 24 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

...

24.8.1 VM-Entry Controls

The **VM-entry controls** constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12 lists the controls supported. See Chapter 24 for how these controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12. The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR

Table 24-12 Definitions of VM-Entry Controls

Bit Position(s)	Name	Description
2	Load debug	This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.
	controls	The first processors to support the virtual-machine extensions supported only the 1-setting of this control.
9	IA-32e mode guest	On processors that support Intel 64 architecture, this control determines whether the logical processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of VM entry.
		This control must be 0 on processors that do not support Intel 64 architecture.
10	Entry to SMM	This control determines whether the logical processor is in system-management mode (SMM) after VM entry. This control must be 0 for any VM entry from outside SMM.
11	Deactivate dual- monitor treatment	If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section 34.15.7). This control must be 0 for any VM entry from outside SMM.
13	Load IA32_PERF_GLOBA L_CTRL	This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.
14	Load IA32_PAT	This control determines whether the IA32_PAT MSR is loaded on VM entry.
15	Load IA32_EFER	This control determines whether the IA32_EFER MSR is loaded on VM entry.

NOTES:

IA32_VMX_TRUE_ENTRY_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

• • •

17. Updates to Chapter 26, Volume 3C

Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3.

...

26.2.1.1 VM-Execution Control Fields

VM entries perform the following checks on the VM-execution control fields: 1

- Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.1).
- Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).
- If the "activate secondary controls" primary processor-based VM-execution control is 1, reserved bits in the secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability MSRs to determine which bits are reserved (see Appendix A.3.3).

^{1.} Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the "unrestricted guest" VM-execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the "IA-32e mode guest" VM-entry control (see Section 27.2).

^{1.} If the "activate secondary controls" primary processor-based VM-execution control is 0, VM entry operates as if each secondary processor-based VM-execution control were 0.

If the "activate secondary controls" primary processor-based VM-execution control is 0 (or if the processor does not support the 1-setting of that control), no checks are performed on the secondary processor-based VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution controls were 0.

- The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of values supported (see Appendix A.6).
- If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither address should set any bits beyond the processor's physical-address width.^{1,2}
- If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The address should not set any bits beyond the processor's physical-address width.³
- If the "use TPR shadow" VM-execution control is 1, the virtual-APIC address must satisfy the following checks:
 - Bits 11:0 of the address must be 0.
 - The address should not set any bits beyond the processor's physical-address width.⁴

If all of the above checks are satisfied and the "use TPR shadow" VM-execution control is 1, bytes 3:1 of VTPR (see Section 29.1.1) may be cleared (behavior may be implementation-specific).

The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes control to pass to the instruction following the VM-entry instruction or if it causes processor state to be loaded from the host-state area of the VMCS.

- If the "use TPR shadow" VM-execution control is 1 and the "virtual-interrupt delivery" VM-execution control is 0, bits 31:4 of the TPR threshold VM-execution control field must be 0.5
- The following check is performed if the "use TPR shadow" VM-execution control is 1 and the "virtualize APIC accesses" and "virtual-interrupt delivery" VM-execution controls are both 0: the value of bits 3:0 of the TPR threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section 29.1.1).
- If the "NMI exiting" VM-execution control is 0, the "virtual NMIs" VM-execution control must be 0.
- If the "virtual NMIs" VM-execution control is 0, the "NMI-window exiting" VM-execution control must be 0.
- If the "virtualize APIC-accesses" VM-execution control is 1, the APIC-access address must satisfy the following checks:
 - Bits 11:0 of the address must be 0.
 - The address should not set any bits beyond the processor's physical-address width.⁶
- If the "use TPR shadow" VM-execution control is 0, the following VM-execution controls must also be 0: "virtualize x2APIC mode", "APIC-register virtualization", and "virtual-interrupt delivery". 7
- If the "virtualize x2APIC mode" VM-execution control is 1, the "virtualize APIC accesses" VM-execution control must be 0.

^{1.} Software can determine a processor's physical-address width by executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

^{2.} If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

^{3.} If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

^{4.} If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

^{5. &}quot;Virtual-interrupt delivery" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "virtual-interrupt delivery" VM-execution control were 0. See Section 24.6.2.

^{6.} If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

^{7. &}quot;Virtualize x2APIC mode" and "APIC-register virtualization" are secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

- If the "virtual-interrupt delivery" VM-execution control is 1, the "external-interrupt exiting" VM-execution control must be 1.
- If the "process posted interrupts" VM-execution control is 1, the following must be true:¹
 - The "virtual-interrupt delivery" VM-execution control is 1.
 - The "acknowledge interrupt on exit" VM-exit control is 1.
 - The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).
 - Bits 5:0 of the posted-interrupt descriptor address are all 0.
 - The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address width.²
- If the "enable VPID" VM-execution control is 1, the value of the VPID VM-execution control field must not be 0000H.³
- If the "enable EPT" VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section 24.6.11) must satisfy the following checks:⁴
 - The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).
 - Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see Section 28.2.2.
 - Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty flags for EPT.
 - Reserved bits 11:7 and 63:N (where N is the processor's physical-address width) must all be 0.
- If the "unrestricted guest" VM-execution control is 1, the "enable EPT" VM-execution control must also be 1.5
- If the "enable VM functions" processor-based VM-execution control is 1, reserved bits in the VM-function controls must be clear. Software may consult the VMX capability MSRs to determine which bits are reserved (see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-function controls (see Section 24.6.14):
 - If "EPTP switching" VM-function control is 1, the "enable EPT" VM-execution control must also 1. In addition, the EPTP-list address must satisfy the following checks:
 - Bits 11:0 of the address must be 0.
 - The address must not set any bits beyond the processor's physical-address width.

If the "enable VM functions" processor-based VM-execution control is 0, no checks are performed on the VM-function controls.

^{1. &}quot;Process posted interrupts" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "process posted interrupts" VM-execution control were 0. See Section 24.6.2.

^{2.} If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

^{3. &}quot;Enable VPID" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "enable VPID" VM-execution control were 0. See Section 24.6.2.

^{4. &}quot;Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "enable EPT" VM-execution control were 0. See Section 24.6.2.

^{5. &}quot;Unrestricted guest" and "enable EPT" are both secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

^{6. &}quot;Enable VM functions" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "enable VM functions" VM-execution control were 0. See Section 24.6.2.

- If the "VMCS shadowing" VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses
 must each satisfy the following checks:¹
 - Bits 11:0 of the address must be 0.
 - The address must not set any bits beyond the processor's physical-address width.
- If the "EPT-violation #VE" VM-execution control is 1, the virtualization-exception information address must satisfy the following checks:²
 - Bits 11:0 of the address must be 0.
 - The address must not set any bits beyond the processor's physical-address width.

. . .

26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs

The following checks are performed on fields in the guest-state area corresponding to control registers, debug registers, and MSRs:

- The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The following are exceptions:
 - Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the "unrestricted guest" VM-execution control is 1.³
 - Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are not changed by VM entry; see Section 26.3.2.1.
- If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.4
- The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
- If the "load debug controls" VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors to support the virtual-machine extensions supported only the 1-setting of this control and thus performed this check unconditionally.
- The following checks are performed on processors that support Intel 64 architecture:
 - If the "IA-32e mode guest" VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.⁵
 - If the "IA-32e mode guest" VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE) must each be 0.
 - The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor's physical-address width are 0.6^{7}

^{1. &}quot;VMCS shadowing" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "VMCS shadowing" VM-execution control were 0. See Section 24.6.2.

^{2. &}quot;EPT-violation #VE" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "EPT-violation #VE" VM-execution control were 0. See Section 24.6.2.

^{3. &}quot;Unrestricted guest" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as if the "unrestricted guest" VM-execution control were 0. See Section 24.6.2.

^{4.} If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 unless the "unrestricted guest" VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

^{5.} If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 unless the "unrestricted guest" VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

^{6.} Software can determine a processor's physical-address width by executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

- If the "load debug controls" VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first
 processors to support the virtual-machine extensions supported only the 1-setting of this control and thus
 performed this check unconditionally (if they supported Intel 64 architecture).
- The IA32 SYSENTER ESP field and the IA32 SYSENTER EIP field must each contain a canonical address.
- If the "load IA32_PERF_GLOBAL_CTRL" VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see Figure 18-3).
- If the "load IA32_PAT" VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that could be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).
- If the "load IA32_EFER" VM-entry control is 1, the following checks are performed on the field for the IA32_EFER MSR:
 - Bits reserved in the IA32_EFER MSR must be 0.
 - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the "IA-32e mode guest" VM-entry control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.¹

...

18. Updates to Chapter 35, Volume 3C

Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3.

. . .

This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distinguish between different processor family and/or models, software must use CPUID.01H leaf function to query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID instruction in Chapter 3, "Instruction Set Reference, A-M" in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A). Table 16-1 lists the signature values of DisplayFamily and DisplayModel for various processor families or processor number series.

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel

DisplayFamily_DisplayModel Processor Families/Processor Number Series	
06_57H	Next Generation Intel® Xeon Phi™ Processor Family
06_4EH, 06_5EH	Next Generation Intel Core Processor based on Skylake microarchitecture
06_56H	Next Generation Intel Xeon Processor D Product Family based on Broadwell microarchitecture
06_4FH	Future Generation Intel Xeon processor based on Broadwell microarchitecture

^{7.} Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation information is invalidated.

^{1.} If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, bit 31 in the CRO field must be 1 unless the "unrestricted quest" VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

Table 35-1 CPUID Signature (Contd.) Values of DisplayFamily_DisplayModel (Contd.)

Table 55-1 Crolb Signature (contd.) values of Displayratinity_Displayroder (contd.)	
DisplayFamily_DisplayModel	
06_47H	5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on Broadwell microarchitecture
06_3DH	Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell microarchitecture
06_3FH	Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition
06_3CH, 06_45H, 06_46H	4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on Haswell microarchitecture
06_3EH	Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E microarchitecture
06_3EH	Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2 product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition
06_3AH	3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on lvy Bridge microarchitecture
06_2DH	Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core i7-39xx Processor Extreme Edition
06_2FH	Intel Xeon Processor E7 Family
06_2AH	Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx Series
06_2EH	Intel Xeon processor 7500, 6500 series
06_25H, 06_2CH	Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors
06_1EH, 06_1FH	Intel Core i7 and i5 Processors
06_1AH	Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series
06_1DH	Intel Xeon processor MP 7400 series
06_17H	Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series
06_0FH	Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors
06_0EH	Intel Core Duo, Intel Core Solo processors
06_0DH	Intel Pentium M processor
06_4CH	Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture
06_5DH	Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture
06_5AH	Intel Atom processor Z3500 series
06_4AH	Intel Atom processor Z3400 series
06_37H	Intel Atom processor E3000 series, Z3600 series, Z3700 series
06_4DH	Intel Atom processor C2000 series
06_36H	Intel Atom processor S1000 Series
06_1CH, 06_26H, 06_27H, 06_35H, 06_36H	Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series
0F_06H	Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

Table 35-1 CPUID Signature (Contd.) Values of DisplayFamily_DisplayModel (Contd.)

Table 55-1 Croib Signature (Contu.) Values of Displayranning_Displayrioder (Contu.)	
	Processor Families/Processor Number Series
06_47H	5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on Broadwell microarchitecture
06_3DH	Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell microarchitecture
06_3FH	Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition
06_3CH, 06_45H, 06_46H	4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on Haswell microarchitecture
06_3EH	Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E microarchitecture
06_3EH	Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2 product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition
06_3AH	3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on lvy Bridge microarchitecture
06_2DH	Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core i7-39xx Processor Extreme Edition
06_2FH	Intel Xeon Processor E7 Family
06_2AH	Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx Series
06_2EH	Intel Xeon processor 7500, 6500 series
06_25H, 06_2CH	Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors
06_1EH, 06_1FH	Intel Core i7 and i5 Processors
06_1AH	Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series
06_1DH	Intel Xeon processor MP 7400 series
06_17H	Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series
06_0FH	Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors
06_0EH	Intel Core Duo, Intel Core Solo processors
06_0DH	Intel Pentium M processor
06_4CH	Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture
06_5DH	Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture
06_5AH	Intel Atom processor Z3500 series
06_4AH	Intel Atom processor Z3400 series
06_37H	Intel Atom processor E3000 series, Z3600 series, Z3700 series
06_4DH	Intel Atom processor C2000 series
06_36H	Intel Atom processor S1000 Series
06_1CH, 06_26H, 06_27H, 06_35H, 06_36H	Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series
0F_06H	Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

Table 35-1 CPUID Signature (Contd.) Values of DisplayFamily_DisplayModel (Contd.)

DisplayFamily_DisplayModel	Processor Families/Processor Number Series
0F_03H, 0F_04H	Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors
06_09H	Intel Pentium M processor
0F_02H	Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors
0F_0H, 0F_01H	Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors
06_7H, 06_08H, 06_0AH, 06_0BH	Intel Pentium III Xeon processor, Intel Pentium III processor
06_03H, 06_05H	Intel Pentium II Xeon processor, Intel Pentium II processor
06_01H	Intel Pentium Pro processor
05_01H, 05_02H, 05_04H	Intel Pentium processor, Intel Pentium processor with MMX Technology

35.1 ARCHITECTURAL MSRS

Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these "architectural MSRs" were given the prefix "IA32_". Table 35-2 lists the architectural MSRs, their addresses, their current names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granularity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This information is expressed either as signature values of "DF_DM" (see Table 16-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed as "MAXPHYADDR" in Table 35-2. "MAXPHYADDR" is reported by CPUID.8000 0008H leaf.

MSR address range between 4000000H - 400000FFH is marked as a specially reserved range. All existing and future processors will not implement any features using any MSR in this range.

Table 35-2 IA-32 Architectural MSRs

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
OH	0	IA32_P5_MC_ADDR (P5_MC_ADDR)	See Section 35.20, "MSRs in Pentium Processors."	Pentium Processor (05_01H)
1H	1	IA32_P5_MC_TYPE (P5_MC_TYPE)	See Section 35.20, "MSRs in Pentium Processors."	DF_DM = 05_01H
6H	6	IA32_MONITOR_FILTER_SIZE	See Section 8.10.5, "Monitor/Mwait Address Range Determination."	0F_03H
10H	16	IA32_TIME_STAMP_ COUNTER (TSC)	See Section 17.14, "Time-Stamp Counter."	05_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
17H	23	IA32_PLATFORM_ID (MSR_PLATFORM_ID)	Platform ID (RO) The operating system can use this MSR to determine "slot" information for the processor and the proper microcode update to load.	06_01H
		49:0	Reserved.	
		52:50	Platform Id (RO) Contains information concerning the intended platform for the processor. 52 51 50 0 0 0 Processor Flag 0 0 0 1 Processor Flag 1 0 1 0 Processor Flag 2 0 1 1 Processor Flag 3 1 0 0 Processor Flag 4 1 0 1 Processor Flag 5 1 1 0 Processor Flag 6 1 1 1 Processor Flag 7	
		63:53	Reserved.	
1BH	27	IA32_APIC_BASE (APIC_BASE)		06_01H
		7:0	Reserved	
		8	BSP flag (R/W)	
		9	Reserved	
		10	Enable x2APIC mode	06_1AH
		11	APIC Global Enable (R/W)	
		(MAXPHYADDR - 1):12	APIC Base (R/W)	
		63: MAXPHYADDR	Reserved	
ЗАН	58	IA32_FEATURE_CONTROL	Control Features in Intel 64 Processor (R/W)	If any one enumeration condition for defined bit field holds

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		0	Lock bit (R/WO): (1 = locked). When set, locks this MSR from being written, writes to this bit will result in GP(0). Note: Once the Lock bit is set, the contents of this register cannot be modified. Therefore the lock bit must be set after configuring support for Intel Virtualization Technology and prior to transferring control to an option ROM or the OS. Hence, once the Lock bit is set, the entire IA32_FEATURE_CONTROL contents are preserved across RESET when PWRGOOD is not deasserted.	If any one enumeration condition for defined bit field position greater than bit 0 holds
		1	Enable VMX inside SMX operation (R/WL): This bit enables a system executive to use VMX in conjunction with SMX to support Intel® Trusted Execution Technology. BIOS must set this bit only when the CPUID function 1 returns VMX feature flag and SMX feature flag set (ECX bits 5 and 6 respectively).	If CPUID.01H:ECX[5] = 1 && CPUID.01H:ECX[6] = 1
		2	Enable VMX outside SMX operation (R/WL): This bit enables VMX for system executive that do not require SMX. BIOS must set this bit only when the CPUID function 1 returns VMX feature flag set (ECX bit 5).	If CPUID.01H:ECX[5] = 1
		7:3	Reserved	
		14:8	SENTER Local Function Enables (R/WL): When set, each bit in the field represents an enable control for a corresponding SENTER function. This bit is supported only if CPUID.1:ECX.[bit 6] is set	If CPUID.01H:ECX[6] = 1
		15	SENTER Global Enable (R/WL): This bit must be set to enable SENTER leaf functions. This bit is supported only if CPUID.1:ECX.[bit 6] is set	If CPUID.01H:ECX[6] = 1
		19:16	Reserved	
		20	LMCE On (R/WL): When set, system software can program the MSRs associated with LMCE to configure delivery of some machine check exceptions to a single logical processor.	If IA32_MCG_CAP[27] = 1
		63:21	Reserved	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields (Former MSR Name)		Comment
Hex	Decimal		MSR/Bit Description	
ЗВН	59	IA32_TSC_ADJUST	Per Logical Processor TSC Adjust (R/Write to clear)	If CPUID.(EAX=07H, ECX=0H): EBX[1] = 1
		63:0	THREAD_ADJUST:	
			Local offset value of the IA32_TSC for a logical processor. Reset value is Zero. A write to IA32_TSC will modify the local offset in IA32_TSC_ADJUST and the content of IA32_TSC, but does not affect the internal invariant TSC hardware.	
79H	121	IA32_BIOS_UPDT_TRIG	BIOS Update Trigger (W)	06_01H
		(BIOS_UPDT_TRIG)	Executing a WRMSR instruction to this MSR causes a microcode update to be loaded into the processor. See Section 9.11.6, "Microcode Update Loader."	
			A processor may prevent writing to this MSR when loading guest states on VM entries or saving guest states on VM exits.	
8BH	139	IA32_BIOS_SIGN_ID	BIOS Update Signature (RO)	06_01H
			MSR when loading guest states on VM	
		31:0	Reserved	
		63:32	It is recommended that this field be pre- loaded with 0 prior to executing CPUID.	
			If the field remains 0 following the execution of CPUID; this indicates that no microcode update is loaded. Any non-zero value is the microcode update signature.	
9BH	155	IA32_SMM_MONITOR_CTL	SMM Monitor Configuration (R/W)	If CPUID.01H: ECX[5]=1 CPUID.01H: ECX[6] = 1
		0	Valid (R/W)	
		1	Reserved	
		2	Controls SMI unblocking by VMXOFF (see Section 34.14.4)	If IA32_VMX_MISC[28]
		11:3	Reserved	
		31:12	MSEG Base (R/W)	
		63:32	Reserved	
9EH	158	IA32_SMBASE	Base address of the logical processor's SMRAM image (RO, SMM only)	If IA32_VMX_MISC[15]

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
C1H	193	IA32_PMC0 (PERFCTR0)	General Performance Counter 0 (R/W)	If CPUID.OAH: EAX[15:8] > 0
C2H	194	IA32_PMC1 (PERFCTR1)	General Performance Counter 1 (R/W)	If CPUID.OAH: EAX[15:8] > 1
СЗН	195	IA32_PMC2	General Performance Counter 2 (R/W)	If CPUID.OAH: EAX[15:8] > 2
C4H	196	IA32_PMC3	General Performance Counter 3 (R/W)	If CPUID.OAH: EAX[15:8] > 3
C5H	197	IA32_PMC4	General Performance Counter 4 (R/W)	If CPUID.OAH: EAX[15:8] > 4
С6Н	198	IA32_PMC5	General Performance Counter 5 (R/W)	If CPUID.OAH: EAX[15:8] > 5
С7Н	199	IA32_PMC6	General Performance Counter 6 (R/W)	If CPUID.OAH: EAX[15:8] > 6
C8H	200	IA32_PMC7	General Performance Counter 7 (R/W)	If CPUID.OAH: EAX[15:8] > 7
E7H	231	IA32_MPERF	TSC Frequency Clock Counter (R/Write to clear)	If CPUID.06H: ECX[0] = 1
		63:0	CO_MCNT: CO TSC Frequency Clock Count	
			Increments at fixed interval (relative to TSC freq.) when the logical processor is in CO.	
			Cleared upon overflow / wrap-around of IA32_APERF.	
E8H	232	IA32_APERF	Actual Performance Clock Counter (R/Write to clear)	If CPUID.06H: ECX[0] = 1
		63:0	CO_ACNT: CO Actual Frequency Clock Count	
			Accumulates core clock counts at the coordinated clock frequency, when the logical processor is in CO.	
			Cleared upon overflow / wrap-around of IA32_MPERF.	
FEH	254	IA32_MTRRCAP (MTRRcap)	MTRR Capability (RO) Section 11.11.2.1, "IA32_MTRR_DEF_TYPE MSR."	06_01H
		7:0	VCNT: The number of variable memory type ranges in the processor.	
		8	Fixed range MTRRs are supported when set.	
		9	Reserved.	
		10	WC Supported when set.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		11	SMRR Supported when set.	
		63:12	Reserved.	
174H	372	IA32_SYSENTER_CS	SYSENTER_CS_MSR (R/W)	06_01H
		15:0	CS Selector	
		63:16	Reserved.	
175H	373	IA32_SYSENTER_ESP	SYSENTER_ESP_MSR (R/W)	06_01H
176H	374	IA32_SYSENTER_EIP	SYSENTER_EIP_MSR (R/W)	06_01H
179H	377	IA32_MCG_CAP (MCG_CAP)	Global Machine Check Capability (RO)	06_01H
		7:0	Count: Number of reporting banks.	
		8	MCG_CTL_P: IA32_MCG_CTL is present if this bit is set	
		9	MCG_EXT_P: Extended machine check state registers are present if this bit is set	
		10	MCP_CMCI_P: Support for corrected MC error event is present.	06_01H
		11	MCG_TES_P: Threshold-based error status register are present if this bit is set.	
		15:12	Reserved	
		23:16	MCG_EXT_CNT: Number of extended machine check state registers present.	
		24	MCG_SER_P: The processor supports software error recovery if this bit is set.	
		25	Reserved.	
		26	MCG_ELOG_P: Indicates that the processor allows platform firmware to be invoked when an error is detected so that it may provide additional platform specific information in an ACPI format "Generic Error Data Entry" that augments the data included in machine check bank registers.	06_3EH
		27	MCG_LMCE_P: Indicates that the processor support extended state in IA32_MCG_STATUS and associated MSR necessary to configure Local Machine Check Exception (LMCE).	06_3EH
		63:28	Reserved.	
17AH	378	IA32_MCG_STATUS (MCG_STATUS)	Global Machine Check Status (R/W0)	06_01H
		0	RIPV. Restart IP valid	06_01H
		1	EIPV. Error IP valid	06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		2	MCIP. Machine check in progress	06_01H
		3	LMCE_S.	If IA32_MCG_CAP.LMCE_P[2 7] =1
		63:4	Reserved.	
17BH	379	IA32_MCG_CTL (MCG_CTL)	Global Machine Check Control (R/W)	IfIA32_MCG_CAP.CTL_P[8] =1
180H- 185H	384- 389	Reserved		06_0EH ¹
186H	390	IA32_PERFEVTSEL0 (PERFEVTSEL0)	Performance Event Select Register 0 (R/W)	If CPUID.OAH: EAX[15:8] > 0
		7:0	Event Select: Selects a performance event logic unit.	
		15:8	UMask: Qualifies the microarchitectural condition to detect on the selected event logic.	
		16	USR: Counts while in privilege level is not ring 0.	
		17	OS: Counts while in privilege level is ring 0.	
		18	Edge: Enables edge detection if set.	
		19	PC: enables pin control.	
		20	INT: enables interrupt on counter overflow.	
		21	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	
		22	EN: enables the corresponding performance counter to commence counting when this bit is set.	
		23	INV: invert the CMASK.	
		31:24	CMASK: When CMASK is not zero, the corresponding performance counter increments each cycle if the event count is greater than or equal to the CMASK.	
		63:32	Reserved.	
187H	391	IA32_PERFEVTSEL1 (PERFEVTSEL1)	Performance Event Select Register 1 (R/W)	If CPUID.OAH: EAX[15:8] > 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields (Former MSR Name)	MSR/Bit Description	Comment
Hex	Decimal			
188H	392	IA32_PERFEVTSEL2	Performance Event Select Register 2 (R/W)	If CPUID.OAH: EAX[15:8] > 2
189H	393	IA32_PERFEVTSEL3	Performance Event Select Register 3 (R/W)	If CPUID.OAH: EAX[15:8] > 3
18AH- 197H	394- 407	Reserved		06_0EH ²
198H	408	IA32_PERF_STATUS	(RO)	0F_03H
		15:0	Current performance State Value	
		63:16	Reserved.	
199H	409	IA32_PERF_CTL	(R/W)	0F_03H
		15:0	Target performance State Value	
		31:16	Reserved.	
		32	IDA Engage. (R/W) When set to 1: disengages IDA	06_0FH (Mobile only)
		63:33	Reserved.	
19AH	410	IA32_CLOCK_MODULATION	Clock Modulation Control (R/W) See Section 14.7.3, "Software Controlled Clock Modulation."	OF_OH
		0	Extended On-Demand Clock Modulation Duty Cycle:	If CPUID.06H:EAX[5] = 1
		3:1	On-Demand Clock Modulation Duty Cycle: Specific encoded values for target duty cycle modulation.	
		4	On-Demand Clock Modulation Enable: Set 1 to enable modulation.	
		63:5	Reserved.	
19BH	411	IA32_THERM_INTERRUPT	Thermal Interrupt Control (R/W) Enables and disables the generation of an interrupt on temperature transitions detected with the processor's thermal sensors and thermal monitor. See Section 14.7.2, "Thermal Monitor."	OF_OH
		0	High-Temperature Interrupt Enable	
		1	Low-Temperature Interrupt Enable	
		2	PROCHOT# Interrupt Enable	
		3	FORCEPR# Interrupt Enable	
		4	Critical Temperature Interrupt Enable	
		7:5	Reserved.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		14:8	Threshold #1 Value	
		15	Threshold #1 Interrupt Enable	
		22:16	Threshold #2 Value	
		23	Threshold #2 Interrupt Enable	
		24	Power Limit Notification Enable	If CPUID.06H:EAX[4] = 1
		63:25	Reserved.	
19CH	412	IA32_THERM_STATUS	Thermal Status Information (RO) Contains status information about the processor's thermal sensor and automatic thermal monitoring facilities. See Section 14.7.2, "Thermal Monitor"	OF_OH
		0	Thermal Status (RO):	
		1	Thermal Status Log (R/W):	
		2	PROCHOT # or FORCEPR# event (RO)	
		3	PROCHOT # or FORCEPR# log (R/WC0)	
		4	Critical Temperature Status (RO)	
		5	Critical Temperature Status log (R/WCO)	
		6	Thermal Threshold #1 Status (RO)	If CPUID.01H:ECX[8] = 1
		7	Thermal Threshold #1 log (R/WC0)	If CPUID.01H:ECX[8] = 1
		8	Thermal Threshold #2 Status (RO)	If CPUID.01H:ECX[8] = 1
		9	Thermal Threshold #2 log (R/WC0)	If CPUID.01H:ECX[8] = 1
		10	Power Limitation Status (RO)	If CPUID.06H:EAX[4] = 1
		11	Power Limitation log (R/WCO)	If CPUID.06H:EAX[4] = 1
		12	Current Limit Status (RO)	If CPUID.06H:EAX[7] = 1
		13	Current Limit log (R/WC0)	If CPUID.06H:EAX[7] = 1
		14	Cross Domain Limit Status (RO)	If CPUID.06H:EAX[7] = 1
		15	Cross Domain Limit log (R/WCO)	If CPUID.06H:EAX[7] = 1
		22:16	Digital Readout (RO)	If CPUID.06H:EAX[0] = 1
		26:23	Reserved.	
		30:27	Resolution in Degrees Celsius (RO)	If CPUID.06H:EAX[0] = 1
		31	Reading Valid (R0)	If CPUID.06H:EAX[0] = 1
		63:32	Reserved.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields (Former MSR Name)	MSR/Bit Description	Comment	
Hex	Decimal				
1A0H	416	IA32_MISC_ENABLE	Enable Misc. Processor Features (R/W)		
				Allows a variety of processor functions to be enabled and disabled.	
		0	Fast-Strings Enable	OF_OH	
			When set, the fast-strings feature (for REP MOVS and REP STORS) is enabled (default); when clear, fast-strings are disabled.		
		2:1	Reserved.		
		3	Automatic Thermal Control Circuit Enable (R/W)	OF_OH	
			1 = Setting this bit enables the thermal control circuit (TCC) portion of the Intel Thermal Monitor feature. This allows the processor to automatically reduce power consumption in response to TCC activation.		
			O = Disabled (default). Note: In some products clearing this bit might be ignored in critical thermal conditions, and TM1, TM2 and adaptive thermal throttling will still be activated.		
		6:4	Reserved		
		7	Performance Monitoring Available (R)	OF_OH	
			1 = Performance monitoring enabled0 = Performance monitoring disabled		
		10:8	Reserved.		
		11	Branch Trace Storage Unavailable (RO)	OF_OH	
			1 = Processor doesn't support branch trace storage (BTS) 0 = BTS is supported		
		12	Precise Event Based Sampling (PEBS) Unavailable (RO)	06_0FH	
			1 = PEBS is not supported; 0 = PEBS is supported.		
		15:13	Reserved.		
		16	Enhanced Intel SpeedStep Technology Enable (R/W)	If CPUID.01H: ECX[7] =1	
			0= Enhanced Intel SpeedStep Technology disabled		
			1 = Enhanced Intel SpeedStep Technology enabled		

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		17	Reserved.	
		18	ENABLE MONITOR FSM (R/W)	0F_03H
			When this bit is set to 0, the MONITOR feature flag is not set (CPUID.01H:ECX[bit 3] = 0). This indicates that MONITOR/MWAIT are not supported.	
			Software attempts to execute MONITOR/MWAIT will cause #UD when this bit is 0.	
			When this bit is set to 1 (default), MONITOR/MWAIT are supported (CPUID.01H:ECX[bit 3] = 1).	
			If the SSE3 feature flag ECX[0] is not set (CPUID.01H:ECX[bit 0] = 0), the OS must not attempt to alter this bit. BIOS must leave it in the default state. Writing this bit when the SSE3 feature flag is set to 0 may generate a #GP exception.	
		21:19	Reserved.	
		22	Limit CPUID Maxval (R/W)	0F_03H
			When this bit is set to 1, CPUID.00H returns a maximum value in EAX[7:0] of 3.	
			BIOS should contain a setup question that allows users to specify when the installed OS does not support CPUID functions greater than 3.	
			Before setting this bit, BIOS must execute the CPUID.OH and examine the maximum value returned in EAX[7:0]. If the maximum value is greater than 3, the bit is supported.	
			Otherwise, the bit is not supported. Writing to this bit when the maximum value is greater than 3 may generate a #GP exception.	
			Setting this bit may cause unexpected behavior in software that depends on the availability of CPUID leaves greater than 3.	
		23	xTPR Message Disable (R/W)	if CPUID.01H:ECX[14] = 1
			When set to 1, xTPR messages are disabled. xTPR messages are optional messages that allow the processor to inform the chipset of its priority.	
		33:24	Reserved.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		34	XD Bit Disable (R/W) When set to 1, the Execute Disable Bit feature (XD Bit) is disabled and the XD Bit extended feature flag will be clear (CPUID.80000001H: EDX[20]=0).	if CPUID.80000001H:EDX[2 0] = 1
			When set to a 0 (default), the Execute Disable Bit feature (if available) allows the OS to enable PAE paging and take advantage of data only pages.	
			BIOS must not alter the contents of this bit location, if XD bit is not supported. Writing this bit to 1 when the XD Bit extended feature flag is set to 0 may generate a #GP exception.	
		63:35	Reserved.	
1B0H	432	IA32_ENERGY_PERF_BIAS	Performance Energy Bias Hint (R/W)	if CPUID.6H:ECX[3] = 1
		3:0	Power Policy Preference:	
			O indicates preference to highest performance.	
			15 indicates preference to maximize energy saving.	
		63:4	Reserved.	
1B1H	433	ia32_package_therm_status	Package Thermal Status Information (RO)	If CPUID.06H: EAX[6] = 1
			Contains status information about the package's thermal sensor.	
			See Section 14.8, "Package Level Thermal Management."	
		0	Pkg Thermal Status (RO):	
		1	Pkg Thermal Status Log (R/W):	
		2	Pkg PROCHOT # event (RO)	
		3	Pkg PROCHOT # log (R/WC0)	
		4	Pkg Critical Temperature Status (R0)	
		5	Pkg Critical Temperature Status log (R/WCO)	
		6	Pkg Thermal Threshold #1 Status (RO)	
		7	Pkg Thermal Threshold #1 log (R/WCO)	
		8	Pkg Thermal Threshold #2 Status (RO)	
		9	Pkg Thermal Threshold #1 log (R/WCO)	
		10	Pkg Power Limitation Status (RO)	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		11	Pkg Power Limitation log (R/WC0)	
		15:12	Reserved.	
		22:16	Pkg Digital Readout (RO)	
		63:23	Reserved.	
1B2H	434	IA32_PACKAGE_THERM_INTERRUPT	Pkg Thermal Interrupt Control (R/W)	If CPUID.06H: EAX[6] = 1
			Enables and disables the generation of an interrupt on temperature transitions detected with the package's thermal sensor. See Section 14.8, "Package Level Thermal	
			Management."	
		0	Pkg High-Temperature Interrupt Enable	
		1	Pkg Low-Temperature Interrupt Enable	
		2	Pkg PROCHOT# Interrupt Enable	
		3	Reserved.	
		4	Pkg Overheat Interrupt Enable	
		7:5	Reserved.	
		14:8	Pkg Threshold #1 Value	
		15	Pkg Threshold #1 Interrupt Enable	
		22:16	Pkg Threshold #2 Value	
		23	Pkg Threshold #2 Interrupt Enable	
		24	Pkg Power Limit Notification Enable	
		63:25	Reserved.	
1D9H	473	IA32_DEBUGCTL (MSR_DEBUGCTLA, MSR_DEBUGCTLB)	Trace/Profile Resource Control (R/W)	06_0EH
		0	LBR: Setting this bit to 1 enables the processor to record a running trace of the most recent branches taken by the processor in the LBR stack.	06_01H
		1	BTF: Setting this bit to 1 enables the processor to treat EFLAGS.TF as single-step on branches instead of single-step on instructions.	06_01H
		5:2	Reserved.	
		6	TR: Setting this bit to 1 enables branch trace messages to be sent.	06_0EH
		7	BTS: Setting this bit enables branch trace messages (BTMs) to be logged in a BTS buffer.	06_0EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	2 Architectural PISRS (Contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		8	BTINT: When clear, BTMs are logged in a BTS buffer in circular fashion. When this bit is set, an interrupt is generated by the BTS facility when the BTS buffer is full.	06_0EH
		9	1: BTS_OFF_OS: When set, BTS or BTM is skipped if CPL = 0.	06_0FH
		10	BTS_OFF_USR: When set, BTS or BTM is skipped if CPL > 0.	06_0FH
		11	FREEZE_LBRS_ON_PMI: When set, the LBR stack is frozen on a PMI request.	If CPUID.01H: ECX[15] = 1 && CPUID.0AH: EAX[7:0] > 1
		12	FREEZE_PERFMON_ON_PMI: When set, each ENABLE bit of the global counter control MSR are frozen (address 38FH) on a PMI request	If CPUID.01H: ECX[15] = 1 && CPUID.0AH: EAX[7:0] > 1
		13	ENABLE_UNCORE_PMI: When set, enables the logical processor to receive and generate PMI on behalf of the uncore.	06_1AH
		14	FREEZE_WHILE_SMM: When set, freezes perfmon and trace messages while in SMM.	If IA32_PERF_CAPABILITIES[12] = 1
		15	RTM_DEBUG: When set, enables DR7 debug bit on XBEGIN	If (CPUID.(EAX=07H, ECX=0):EBX[11] = 1)
		63:16	Reserved.	
1F2H	498	IA32_SMRR_PHYSBASE	SMRR Base Address (Writeable only in SMM) Base address of SMM memory range.	If IA32_MTRRCAP.SMRR[11] = 1
		7:0	Type. Specifies memory type of the range.	
		11:8	Reserved.	
		31:12	PhysBase.	
		31.12	SMRR physical Base Address.	
		63:32	Reserved.	
1F3H	499	IA32_SMRR_PHYSMASK	SMRR Range Mask. (Writeable only in SMM)	If IA32_MTRRCAP[SMRR] = 1
			Range Mask of SMM memory range.	
		10:0	Reserved.	
		11	Valid	
			Enable range mask.	
		31:12	PhysMask SMRR address range mask.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister Idress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63:32	Reserved.	
1F8H	504	IA32_PLATFORM_DCA_CAP	DCA Capability (R)	If CPUID.01H: ECX[18] = 1
1F9H	505	IA32_CPU_DCA_CAP	If set, CPU supports Prefetch-Hint type.	If CPUID.01H: ECX[18] = 1
1FAH	506	IA32_DCA_0_CAP	DCA type 0 Status and Control register.	If CPUID.01H: ECX[18] = 1
		0	DCA_ACTIVE: Set by HW when DCA is fuse- enabled and no defeatures are set.	
		2:1	TRANSACTION	
		6:3	DCA_TYPE	
		10:7	DCA_QUEUE_SIZE	
		12:11	Reserved.	
		16:13	DCA_DELAY: Writes will update the register but have no HW side-effect.	
		23:17	Reserved.	
		24	SW_BLOCK: SW can request DCA block by setting this bit.	
		25	Reserved.	
		26	HW_BLOCK: Set when DCA is blocked by HW (e.g. CRO.CD = 1).	
		31:27	Reserved.	
200H	512	IA32_MTRR_PHYSBASE0 (MTRRphysBase0)	See Section 11.11.2.3, "Variable Range MTRRs."	If CPUID.01H: EDX.MTRR[12] =1
201H	513	IA32_MTRR_PHYSMASK0	MTRRphysMask0	If CPUID.01H: EDX.MTRR[12] =1
202H	514	IA32_MTRR_PHYSBASE1	MTRRphysBase1	If CPUID.01H: EDX.MTRR[12] =1
203H	515	IA32_MTRR_PHYSMASK1	MTRRphysMask1	If CPUID.01H: EDX.MTRR[12] =1
204H	516	IA32_MTRR_PHYSBASE2	MTRRphysBase2	If CPUID.01H: EDX.MTRR[12] =1
205H	517	IA32_MTRR_PHYSMASK2	MTRRphysMask2	If CPUID.01H: EDX.MTRR[12] =1
206H	518	IA32_MTRR_PHYSBASE3	MTRRphysBase3	If CPUID.01H: EDX.MTRR[12] =1
207H	519	IA32_MTRR_PHYSMASK3	MTRRphysMask3	If CPUID.01H: EDX.MTRR[12] =1
208H	520	IA32_MTRR_PHYSBASE4	MTRRphysBase4	If CPUID.01H: EDX.MTRR[12] =1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	Table 35-2 IA-32 Architectural MSRs (Contd.) Register Architectural MSR Name and bit Comment				
	gister Idress	Architectural MSR Name and bit fields		Comment	
Hex	Decimal	(Former MSR Name)	MSR/Bit Description		
209H	521	IA32_MTRR_PHYSMASK4	MTRRphysMask4	If CPUID.01H: EDX.MTRR[12] =1	
20AH	522	IA32_MTRR_PHYSBASE5	MTRRphysBase5	If CPUID.01H: EDX.MTRR[12] =1	
20BH	523	IA32_MTRR_PHYSMASK5	MTRRphysMask5	If CPUID.01H: EDX.MTRR[12] =1	
20CH	524	IA32_MTRR_PHYSBASE6	MTRRphysBase6	If CPUID.01H: EDX.MTRR[12] =1	
20DH	525	IA32_MTRR_PHYSMASK6	MTRRphysMask6	If CPUID.01H: EDX.MTRR[12] =1	
20EH	526	IA32_MTRR_PHYSBASE7	MTRRphysBase7	If CPUID.01H: EDX.MTRR[12] =1	
20FH	527	IA32_MTRR_PHYSMASK7	MTRRphysMask7	If CPUID.01H: EDX.MTRR[12] =1	
210H	528	IA32_MTRR_PHYSBASE8	MTRRphysBase8	if IA32_MTRRCAP[7:0] > 8	
211H	529	IA32_MTRR_PHYSMASK8	MTRRphysMask8	if IA32_MTRRCAP[7:0] > 8	
212H	530	IA32_MTRR_PHYSBASE9	MTRRphysBase9	if IA32_MTRRCAP[7:0] > 9	
213H	531	IA32_MTRR_PHYSMASK9	MTRRphysMask9	if IA32_MTRRCAP[7:0] > 9	
250H	592	IA32_MTRR_FIX64K_00000	MTRRfix64K_00000	If CPUID.01H: EDX.MTRR[12] =1	
258H	600	IA32_MTRR_FIX16K_80000	MTRRfix16K_80000	If CPUID.01H: EDX.MTRR[12] =1	
259H	601	IA32_MTRR_FIX16K_A0000	MTRRfix16K_A0000	If CPUID.01H: EDX.MTRR[12] =1	
268H	616	IA32_MTRR_FIX4K_C0000 (MTRRfix4K_C0000)	See Section 11.11.2.2, "Fixed Range MTRRs."	If CPUID.01H: EDX.MTRR[12] =1	
269H	617	IA32_MTRR_FIX4K_C8000	MTRRfix4K_C8000	If CPUID.01H: EDX.MTRR[12] =1	
26AH	618	IA32_MTRR_FIX4K_D0000	MTRRfix4K_D0000	If CPUID.01H: EDX.MTRR[12] =1	
26BH	619	IA32_MTRR_FIX4K_D8000	MTRRfix4K_D8000	If CPUID.01H: EDX.MTRR[12] =1	
26CH	620	IA32_MTRR_FIX4K_E0000	MTRRfix4K_E0000	If CPUID.01H: EDX.MTRR[12] =1	
26DH	621	IA32_MTRR_FIX4K_E8000	MTRRfix4K_E8000	If CPUID.01H: EDX.MTRR[12] =1	
26EH	622	IA32_MTRR_FIX4K_F0000	MTRRfix4K_F0000	If CPUID.01H: EDX.MTRR[12] =1	
26FH	623	IA32_MTRR_FIX4K_F8000	MTRRfix4K_F8000	If CPUID.01H: EDX.MTRR[12] =1	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
277H	631	IA32_PAT	IA32_PAT (R/W)	If CPUID.01H: EDX.MTRR[16] =1
		2:0	PAO	
		7:3	Reserved.	
		10:8	PA1	
		15:11	Reserved.	
		18:16	PA2	
		23:19	Reserved.	
		26:24	PA3	
		31:27	Reserved.	
		34:32	PA4	
		39:35	Reserved.	
		42:40	PA5	
		47:43	Reserved.	
		50:48	PA6	
		55:51	Reserved.	
		58:56	PA7	
		63:59	Reserved.	
280H	640	IA32_MC0_CTL2	(R/W)	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 0
		14:0	Corrected error count threshold.	
		29:15	Reserved.	
		30	CMCI_EN	
		63:31	Reserved.	
281H	641	IA32_MC1_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 1
282H	642	IA32_MC2_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 2
283H	643	IA32_MC3_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 3
284H	644	IA32_MC4_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 4

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	2 Architectural MSRS (Contu.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
285H	645	IA32_MC5_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 5
286H	646	IA32_MC6_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 6
287H	647	IA32_MC7_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 7
288H	648	IA32_MC8_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 8
289H	649	IA32_MC9_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 9
28AH	650	IA32_MC10_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 10
28BH	651	IA32_MC11_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 11
28CH	652	IA32_MC12_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 12
28DH	653	IA32_MC13_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 13
28EH	654	IA32_MC14_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 14
28FH	655	IA32_MC15_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 15
290H	656	IA32_MC16_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 16
291H	657	IA32_MC17_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 17
292H	658	IA32_MC18_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 18

Table 35-2 IA-32 Architectural MSRs (Contd.)

Rec	gister	Architectural MSR Name and bit	2 Architectural MSRS (Conto.)	Comment
	dress	fields		
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
293H	659	IA32_MC19_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 19
294H	660	IA32_MC20_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 20
295H	661	IA32_MC21_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 21
296H	662	IA32_MC22_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 22
297H	663	IA32_MC23_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 23
298H	664	IA32_MC24_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 24
299H	665	IA32_MC25_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 25
29AH	666	IA32_MC26_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 26
29BH	667	IA32_MC27_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 27
29CH	668	IA32_MC28_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 28
29DH	669	IA32_MC29_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 29
29EH	670	IA32_MC30_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 30
29FH	671	IA32_MC31_CTL2	(R/W) same fields as IA32_MC0_CTL2.	If IA32_MCG_CAP[10] = 1 && IA32_MCG_CAP[7:0] > 31
2FFH	767	IA32_MTRR_DEF_TYPE	MTRRdefType (R/W)	If CPUID.01H: EDX.MTRR[12] =1
		2:0	Default Memory Type	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		9:3	Reserved.	
		10	Fixed Range MTRR Enable	
		11	MTRR Enable	
		63:12	Reserved.	
309H	777	IA32_FIXED_CTR0 (MSR_PERF_FIXED_CTR0)	Fixed-Function Performance Counter 0 (R/W): Counts Instr_Retired.Any.	If CPUID.OAH: EDX[4:0] > 0
30AH	778	IA32_FIXED_CTR1 (MSR_PERF_FIXED_CTR1)	Fixed-Function Performance Counter 1 0 (R/W): Counts CPU_CLK_Unhalted.Core	If CPUID.OAH: EDX[4:0] > 1
30BH	779	IA32_FIXED_CTR2 (MSR_PERF_FIXED_CTR2)	Fixed-Function Performance Counter 0 0 (R/W): Counts CPU_CLK_Unhalted.Ref	If CPUID.OAH: EDX[4:0] > 2
345H	837	IA32_PERF_CAPABILITIES	RO	If CPUID.01H: ECX[15] = 1
		5:0	LBR format	
		6	PEBS Trap	
		7	PEBSSaveArchRegs	
		11:8	PEBS Record Format	
		12	1: Freeze while SMM is supported.	
		13	1: Full width of counter writable via IA32_A_PMCx.	
		63:14	Reserved.	
38DH	909	IA32_FIXED_CTR_CTRL	Fixed-Function Performance Counter Control (R/W)	If CPUID.OAH: EAX[7:0] > 1
			Counter increments while the results of ANDing respective enable bit in IA32_PERF_GLOBAL_CTRL with the corresponding OS or USR bits in this MSR is true.	
		0	ENO_OS: Enable Fixed Counter 0 to count while CPL = 0.	
		1	ENO_Usr: Enable Fixed Counter 0 to count while CPL > 0.	
		2	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	If CPUID.0AH: EAX[7:0] > 2
		3	ENO_PMI: Enable PMI when fixed counter 0 overflows.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	Z Architectular risks (conta.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		4	EN1_OS: Enable Fixed Counter 1 to count while CPL = 0.	
		5	EN1_Usr: Enable Fixed Counter 1to count while CPL > 0.	
		6	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	If CPUID.OAH: EAX[7:0] > 2
		7	EN1_PMI: Enable PMI when fixed counter 1 overflows.	
		8	EN2_OS: Enable Fixed Counter 2 to count while CPL = 0.	
		9	EN2_Usr: Enable Fixed Counter 2 to count while CPL > 0.	
		10	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	If CPUID.0AH: EAX[7:0] > 2
		11	EN2_PMI: Enable PMI when fixed counter 2 overflows.	
		63:12	Reserved.	
38EH	910	IA32_PERF_GLOBAL_STATUS	Global Performance Counter Status (RO)	If CPUID.OAH: EAX[7:0] > 0
		0	Ovf_PMC0: Overflow status of IA32_PMC0.	If CPUID.OAH: EAX[15:8] > 0
		1	Ovf_PMC1: Overflow status of IA32_PMC1.	If CPUID.OAH: EAX[15:8] > 1
		2	Ovf_PMC2: Overflow status of IA32_PMC2.	If CPUID.OAH: EAX[15:8] > 2
		3	Ovf_PMC3: Overflow status of IA32_PMC3.	If CPUID.OAH: EAX[15:8] > 3
		31:4	Reserved.	
		32	Ovf_FixedCtr0: Overflow status of IA32_FIXED_CTR0.	If CPUID.OAH: EAX[7:0] > 1
		33	Ovf_FixedCtr1: Overflow status of IA32_FIXED_CTR1.	If CPUID.OAH: EAX[7:0] > 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		34	Ovf_FixedCtr2: Overflow status of IA32_FIXED_CTR2.	If CPUID.OAH: EAX[7:0] > 1
		54:35	Reserved.	
		55	Trace_ToPA_PMI: A PMI occurred due to a ToPA entry memory buffer was completely filled.	If (CPUID.(EAX=07H, ECX=0):EBX[25] = 1) && IA32_RTIT_CTL.ToPA = 1
		57:56	Reserved.	
		58	LBR_Frz: LBRs are frozen due to IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1, The LBR stack overflowed	If CPUID.OAH: EAX[7:0] > 3
		59	CTR_Frz: Performance counters in the core PMU are frozen due to IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI=1, one or more core PMU counters overflowed.	If CPUID.0AH: EAX[7:0] > 3
		60	ASCI: Data in the performance counters in the core PMU may include contributions from the direct or indirect operation intel SGX to protect an enclave.	If CPUID.(EAX=07H, ECX=0):EBX[2] = 1
		61	Ovf_Uncore: Uncore counter overflow status.	If CPUID.OAH: EAX[7:0] > 2
		62	OvfBuf: DS SAVE area Buffer overflow status.	If CPUID.OAH: EAX[7:0] > 0
		63	CondChgd: status bits of this register has changed.	If CPUID.OAH: EAX[7:0] > 0
38FH	911	IA32_PERF_GLOBAL_CTRL	Global Performance Counter Control (R/W) Counter increments while the result of ANDing respective enable bit in this MSR with the corresponding OS or USR bits in the general-purpose or fixed counter control MSR is true.	If CPUID.0AH: EAX[7:0] > 0
		0	EN_PMC0	If CPUID.OAH: EAX[15:8] > 0
		1	EN_PMC1	If CPUID.OAH: EAX[15:8] > 1
		2	EN_PMC2	If CPUID.OAH: EAX[15:8] > 2
		n	EN_PMCn	If CPUID.OAH: EAX[15:8] > n
		31:n+1	Reserved.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		32	EN_FIXED_CTR0	If CPUID.OAH: EDX[4:0] > 0
		33	EN_FIXED_CTR1	If CPUID.OAH: EDX[4:0] > 1
		34	EN_FIXED_CTR2	If CPUID.OAH: EDX[4:0] > 2
		63:35	Reserved.	
390H	912	IA32_PERF_GLOBAL_OVF_CTRL	Global Performance Counter Overflow Control (R/W)	If CPUID.OAH: EAX[7:0] > 0 && CPUID.OAH: EAX[7:0] <= 3
		0	Set 1 to Clear Ovf_PMCO bit.	If CPUID.OAH: EAX[15:8] > 0
		1	Set 1 to Clear Ovf_PMC1 bit.	If CPUID.OAH: EAX[15:8] > 1
		2	Set 1 to Clear Ovf_PMC2 bit.	If CPUID.OAH: EAX[15:8] > 2
		n	Set 1 to Clear Ovf_PMCn bit.	If CPUID.OAH: EAX[15:8] > n
		31:n	Reserved.	
		32	Set 1 to Clear Ovf_FIXED_CTR0 bit.	If CPUID.OAH: EDX[4:0] > 0
		33	Set 1 to Clear Ovf_FIXED_CTR1 bit.	If CPUID.OAH: EDX[4:0] > 1
		34	Set 1 to Clear Ovf_FIXED_CTR2 bit.	If CPUID.0AH: EDX[4:0] > 2
		54:35	Reserved.	
		55	Set 1 to Clear Trace_ToPA_PMI bit.	If (CPUID.(EAX=07H, ECX=0):EBX[25] = 1) && IA32_RTIT_CTL.ToPA = 1
		60:56	Reserved.	
		61	Set 1 to Clear Ovf_Uncore bit.	06_2EH
		62	Set 1 to Clear OvfBuf: bit.	If CPUID.OAH: EAX[7:0] > 0
		63	Set to 1 to clear CondChgd: bit.	If CPUID.0AH: EAX[7:0] > 0
390H	912	IA32_PERF_GLOBAL_STATUS_RESET	Global Performance Counter Overflow Reset Control (R/W)	If CPUID.OAH: EAX[7:0] > 3
		0	Set 1 to Clear Ovf_PMCO bit.	If CPUID.OAH: EAX[15:8] > 0
		1	Set 1 to Clear Ovf_PMC1 bit.	If CPUID.OAH: EAX[15:8] > 1
		2	Set 1 to Clear Ovf_PMC2 bit.	If CPUID.0AH: EAX[15:8] > 2
		n	Set 1 to Clear Ovf_PMCn bit.	If CPUID.OAH: EAX[15:8] > n
		31:n	Reserved.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		32	Set 1 to Clear Ovf_FIXED_CTR0 bit.	If CPUID.OAH: EDX[4:0] > 0
		33	Set 1 to Clear Ovf_FIXED_CTR1 bit.	If CPUID.OAH: EDX[4:0] > 1
		34	Set 1 to Clear Ovf_FIXED_CTR2 bit.	If CPUID.OAH: EDX[4:0] > 2
		54:35	Reserved.	
		55	Set 1 to Clear Trace_ToPA_PMI bit.	If (CPUID.(EAX=07H, ECX=0):EBX[25] = 1) && IA32_RTIT_CTL.ToPA[8] = 1
		57:56	Reserved.	
		58	Set 1 to Clear LBR_Frz bit.	If CPUID.0AH: EAX[7:0] > 3
		59	Set 1 to Clear CTR_Frz bit.	If CPUID.0AH: EAX[7:0] > 3
		58	Set 1 to Clear ASCI bit.	If CPUID.0AH: EAX[7:0] > 3
		61	Set 1 to Clear Ovf_Uncore bit.	06_2EH
		62	Set 1 to Clear OvfBuf: bit.	If CPUID.OAH: EAX[7:0] > 0
		63	Set to 1to clear CondChgd: bit.	If CPUID.OAH: EAX[7:0] > 0
391H	913	IA32_PERF_GLOBAL_STATUS_SET	Global Performance Counter Overflow Set Control (R/W)	If CPUID.OAH: EAX[7:0] > 3
		0	Set 1 to cause Ovf_PMC0 = 1.	If CPUID.OAH: EAX[7:0] > 3
		1	Set 1 to cause Ovf_PMC1 = 1	If CPUID.OAH: EAX[15:8] > 1
		2	Set 1 to cause Ovf_PMC2 = 1	If CPUID.OAH: EAX[15:8] > 2
		n	Set 1 to cause Ovf_PMCn = 1	If CPUID.OAH: EAX[15:8] > n
		31:n	Reserved.	
		32	Set 1 to cause Ovf_FIXED_CTR0 = 1.	If CPUID.0AH: EAX[7:0] > 3
		33	Set 1 to cause Ovf_FIXED_CTR1 = 1.	If CPUID.OAH: EAX[7:0] > 3
		34	Set 1 to cause Ovf_FIXED_CTR2 = 1.	If CPUID.OAH: EAX[7:0] > 3
		54:35	Reserved.	
		55	Set 1 to cause Trace_ToPA_PMI = 1.	If CPUID.OAH: EAX[7:0] > 3
		57:56	Reserved.	
		58	Set 1 to cause LBR_Frz = 1.	If CPUID.OAH: EAX[7:0] > 3
		59	Set 1 to cause CTR_Frz = 1.	If CPUID.OAH: EAX[7:0] > 3
		58	Set 1 to cause ASCI = 1.	If CPUID.OAH: EAX[7:0] > 3
		61	Set 1 to cause Ovf_Uncore = 1.	If CPUID.0AH: EAX[7:0] > 3
		62	Set 1 to cause OvfBuf = 1.	If CPUID.0AH: EAX[7:0] > 3

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	22 Architectural MSRs (Contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63	Reserved	
392H	914	IA32_PERF_GLOBAL_INUSE	Indicator of core perfmon interface is in use (RO)	If CPUID.OAH: EAX[7:0] > 3
		0	IA32_PERFEVTSEL0 in use	
		1	IA32_PERFEVTSEL1 in use	If CPUID.OAH: EAX[15:8] > 1
		2	IA32_PERFEVTSEL2 in use	If CPUID.OAH: EAX[15:8] > 2
		n	IA32_PERFEVTSELn in use	If CPUID.OAH: EAX[15:8] > n
		31:n	Reserved.	
		32	IA32_FIXED_CTR0 in use	
		33	IA32_FIXED_CTR1 in use	
		34	IA32_FIXED_CTR2 in use	
		62:35	Reserved or Model specific.	
		63	PMI in use.	
3F1H	1009	IA32_PEBS_ENABLE	PEBS Control (R/W)	
		0	Enable PEBS on IA32_PMCO.	06_0FH
		3:1	Reserved or Model specific.	
		31:4	Reserved.	
		35:32	Reserved or Model specific.	
		63:36	Reserved.	
400H	1024	IA32_MC0_CTL	MCO_CTL	If IA32_MCG_CAP.CNT >0
401H	1025	IA32_MCO_STATUS	MCO_STATUS	If IA32_MCG_CAP.CNT >0
402H	1026	IA32_MCO_ADDR ¹	MCO_ADDR	If IA32_MCG_CAP.CNT >0
403H	1027	IA32_MC0_MISC	MCO_MISC	If IA32_MCG_CAP.CNT >0
404H	1028	IA32_MC1_CTL	MC1_CTL	If IA32_MCG_CAP.CNT >1
405H	1029	IA32_MC1_STATUS	MC1_STATUS	If IA32_MCG_CAP.CNT >1
406H	1030	IA32_MC1_ADDR ²	MC1_ADDR	If IA32_MCG_CAP.CNT >1
407H	1031	IA32_MC1_MISC	MC1_MISC	If IA32_MCG_CAP.CNT >1
408H	1032	IA32_MC2_CTL	MC2_CTL	If IA32_MCG_CAP.CNT >2
409H	1033	IA32_MC2_STATUS	MC2_STATUS	If IA32_MCG_CAP.CNT >2
40AH	1034	IA32_MC2_ADDR ¹	MC2_ADDR	If IA32_MCG_CAP.CNT >2
40BH	1035	IA32_MC2_MISC	MC2_MISC	If IA32_MCG_CAP.CNT >2
40CH	1036	IA32_MC3_CTL	MC3_CTL	If IA32_MCG_CAP.CNT >3

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
40DH	1037	IA32_MC3_STATUS	MC3_STATUS	If IA32_MCG_CAP.CNT >3
40EH	1038	IA32_MC3_ADDR ¹	MC3_ADDR	If IA32_MCG_CAP.CNT >3
40FH	1039	IA32_MC3_MISC	MC3_MISC	If IA32_MCG_CAP.CNT >3
410H	1040	IA32_MC4_CTL	MC4_CTL	If IA32_MCG_CAP.CNT >4
411H	1041	IA32_MC4_STATUS	MC4_STATUS	If IA32_MCG_CAP.CNT >4
412H	1042	IA32_MC4_ADDR ¹	MC4_ADDR	If IA32_MCG_CAP.CNT >4
413H	1043	IA32_MC4_MISC	MC4_MISC	If IA32_MCG_CAP.CNT >4
414H	1044	IA32_MC5_CTL	MC5_CTL	If IA32_MCG_CAP.CNT >5
415H	1045	IA32_MC5_STATUS	MC5_STATUS	If IA32_MCG_CAP.CNT >5
416H	1046	IA32_MC5_ADDR ¹	MC5_ADDR	If IA32_MCG_CAP.CNT >5
417H	1047	IA32_MC5_MISC	MC5_MISC	If IA32_MCG_CAP.CNT >5
418H	1048	IA32_MC6_CTL	MC6_CTL	If IA32_MCG_CAP.CNT >6
419H	1049	IA32_MC6_STATUS	MC6_STATUS	If IA32_MCG_CAP.CNT >6
41AH	1050	IA32_MC6_ADDR ¹	MC6_ADDR	If IA32_MCG_CAP.CNT >6
41BH	1051	IA32_MC6_MISC	MC6_MISC	If IA32_MCG_CAP.CNT >6
41CH	1052	IA32_MC7_CTL	MC7_CTL	If IA32_MCG_CAP.CNT >7
41DH	1053	IA32_MC7_STATUS	MC7_STATUS	If IA32_MCG_CAP.CNT >7
41EH	1054	IA32_MC7_ADDR ¹	MC7_ADDR	If IA32_MCG_CAP.CNT >7
41FH	1055	IA32_MC7_MISC	MC7_MISC	If IA32_MCG_CAP.CNT >7
420H	1056	IA32_MC8_CTL	MC8_CTL	If IA32_MCG_CAP.CNT >8
421H	1057	IA32_MC8_STATUS	MC8_STATUS	If IA32_MCG_CAP.CNT >8
422H	1058	IA32_MC8_ADDR ¹	MC8_ADDR	If IA32_MCG_CAP.CNT >8
423H	1059	IA32_MC8_MISC	MC8_MISC	If IA32_MCG_CAP.CNT >8
424H	1060	IA32_MC9_CTL	MC9_CTL	If IA32_MCG_CAP.CNT >9
425H	1061	IA32_MC9_STATUS	MC9_STATUS	If IA32_MCG_CAP.CNT >9
426H	1062	IA32_MC9_ADDR ¹	MC9_ADDR	If IA32_MCG_CAP.CNT >9
427H	1063	IA32_MC9_MISC	MC9_MISC	If IA32_MCG_CAP.CNT >9
428H	1064	IA32_MC10_CTL	MC10_CTL	If IA32_MCG_CAP.CNT >10
429H	1065	IA32_MC10_STATUS	MC10_STATUS	If IA32_MCG_CAP.CNT >10
42AH	1066	IA32_MC10_ADDR ¹	MC10_ADDR	If IA32_MCG_CAP.CNT >10
42BH	1067	IA32_MC10_MISC	MC10_MISC	If IA32_MCG_CAP.CNT >10
42CH	1068	IA32_MC11_CTL	MC11_CTL	If IA32_MCG_CAP.CNT >11
42DH	1069	IA32_MC11_STATUS	MC11_STATUS	If IA32_MCG_CAP.CNT >11
42EH	1070	IA32_MC11_ADDR ¹	MC11_ADDR	If IA32_MCG_CAP.CNT >11

Table 35-2 IA-32 Architectural MSRs (Contd.)

	jister Iress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
42FH	1071	IA32_MC11_MISC	MC11_MISC	If IA32_MCG_CAP.CNT >11
430H	1072	IA32_MC12_CTL	MC12_CTL	If IA32_MCG_CAP.CNT >12
431H	1073	IA32_MC12_STATUS	MC12_STATUS	If IA32_MCG_CAP.CNT >12
432H	1074	IA32_MC12_ADDR ¹	MC12_ADDR	If IA32_MCG_CAP.CNT >12
433H	1075	IA32_MC12_MISC	MC12_MISC	If IA32_MCG_CAP.CNT >12
434H	1076	IA32_MC13_CTL	MC13_CTL	If IA32_MCG_CAP.CNT >13
435H	1077	IA32_MC13_STATUS	MC13_STATUS	If IA32_MCG_CAP.CNT >13
436H	1078	IA32_MC13_ADDR ¹	MC13_ADDR	If IA32_MCG_CAP.CNT >13
437H	1079	IA32_MC13_MISC	MC13_MISC	If IA32_MCG_CAP.CNT >13
438H	1080	IA32_MC14_CTL	MC14_CTL	If IA32_MCG_CAP.CNT >14
439H	1081	IA32_MC14_STATUS	MC14_STATUS	If IA32_MCG_CAP.CNT >14
43AH	1082	IA32_MC14_ADDR ¹	MC14_ADDR	If IA32_MCG_CAP.CNT >14
43BH	1083	IA32_MC14_MISC	MC14_MISC	If IA32_MCG_CAP.CNT >14
43CH	1084	IA32_MC15_CTL	MC15_CTL	If IA32_MCG_CAP.CNT >15
43DH	1085	IA32_MC15_STATUS	MC15_STATUS	If IA32_MCG_CAP.CNT >15
43EH	1086	IA32_MC15_ADDR ¹	MC15_ADDR	If IA32_MCG_CAP.CNT >15
43FH	1087	IA32_MC15_MISC	MC15_MISC	If IA32_MCG_CAP.CNT >15
440H	1088	IA32_MC16_CTL	MC16_CTL	If IA32_MCG_CAP.CNT >16
441H	1089	IA32_MC16_STATUS	MC16_STATUS	If IA32_MCG_CAP.CNT >16
442H	1090	IA32_MC16_ADDR ¹	MC16_ADDR	If IA32_MCG_CAP.CNT >16
443H	1091	IA32_MC16_MISC	MC16_MISC	If IA32_MCG_CAP.CNT >16
444H	1092	IA32_MC17_CTL	MC17_CTL	If IA32_MCG_CAP.CNT >17
445H	1093	IA32_MC17_STATUS	MC17_STATUS	If IA32_MCG_CAP.CNT >17
446H	1094	IA32_MC17_ADDR ¹	MC17_ADDR	If IA32_MCG_CAP.CNT >17
447H	1095	IA32_MC17_MISC	MC17_MISC	If IA32_MCG_CAP.CNT >17
448H	1096	IA32_MC18_CTL	MC18_CTL	If IA32_MCG_CAP.CNT >18
449H	1097	IA32_MC18_STATUS	MC18_STATUS	If IA32_MCG_CAP.CNT >18
44AH	1098	IA32_MC18_ADDR ¹	MC18_ADDR	If IA32_MCG_CAP.CNT >18
44BH	1099	IA32_MC18_MISC	MC18_MISC	If IA32_MCG_CAP.CNT >18
44CH	1100	IA32_MC19_CTL	MC19_CTL	If IA32_MCG_CAP.CNT >19
44DH	1101	IA32_MC19_STATUS	MC19_STATUS	If IA32_MCG_CAP.CNT >19
44EH	1102	IA32_MC19_ADDR ¹	MC19_ADDR	If IA32_MCG_CAP.CNT >19
44FH	1103	IA32_MC19_MISC	MC19_MISC	If IA32_MCG_CAP.CNT >19
450H	1104	IA32_MC20_CTL	MC20_CTL	If IA32_MCG_CAP.CNT >20

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
451H	1105	IA32_MC20_STATUS	MC20_STATUS	If IA32_MCG_CAP.CNT >20
452H	1106	IA32_MC20_ADDR ¹	MC20_ADDR	If IA32_MCG_CAP.CNT >20
453H	1107	IA32_MC20_MISC	MC20_MISC	If IA32_MCG_CAP.CNT >20
454H	1108	IA32_MC21_CTL	MC21_CTL	If IA32_MCG_CAP.CNT >21
455H	1109	IA32_MC21_STATUS	MC21_STATUS	If IA32_MCG_CAP.CNT >21
456H	1110	IA32_MC21_ADDR ¹	MC21_ADDR	If IA32_MCG_CAP.CNT >21
457H	1111	IA32_MC21_MISC	MC21_MISC	If IA32_MCG_CAP.CNT >21
458H		IA32_MC22_CTL	MC22_CTL	If IA32_MCG_CAP.CNT >22
459H		IA32_MC22_STATUS	MC22_STATUS	If IA32_MCG_CAP.CNT >22
45AH		IA32_MC22_ADDR ¹	MC22_ADDR	If IA32_MCG_CAP.CNT >22
45BH		IA32_MC22_MISC	MC22_MISC	If IA32_MCG_CAP.CNT >22
45CH		IA32_MC23_CTL	MC23_CTL	If IA32_MCG_CAP.CNT >23
45DH		IA32_MC23_STATUS	MC23_STATUS	If IA32_MCG_CAP.CNT >23
45EH		IA32_MC23_ADDR ¹	MC23_ADDR	If IA32_MCG_CAP.CNT >23
45FH		IA32_MC23_MISC	MC23_MISC	If IA32_MCG_CAP.CNT >23
460H		IA32_MC24_CTL	MC24_CTL	If IA32_MCG_CAP.CNT >24
461H		IA32_MC24_STATUS	MC24_STATUS	If IA32_MCG_CAP.CNT >24
462H		IA32_MC24_ADDR ¹	MC24_ADDR	If IA32_MCG_CAP.CNT >24
463H		IA32_MC24_MISC	MC24_MISC	If IA32_MCG_CAP.CNT >24
464H		IA32_MC25_CTL	MC25_CTL	If IA32_MCG_CAP.CNT >25
465H		IA32_MC25_STATUS	MC25_STATUS	If IA32_MCG_CAP.CNT >25
466H		IA32_MC25_ADDR ¹	MC25_ADDR	If IA32_MCG_CAP.CNT >25
467H		IA32_MC25_MISC	MC25_MISC	If IA32_MCG_CAP.CNT >25
468H		IA32_MC26_CTL	MC26_CTL	If IA32_MCG_CAP.CNT >26
469H		IA32_MC26_STATUS	MC26_STATUS	If IA32_MCG_CAP.CNT >26
46AH		IA32_MC26_ADDR ¹	MC26_ADDR	If IA32_MCG_CAP.CNT >26
46BH		IA32_MC26_MISC	MC26_MISC	If IA32_MCG_CAP.CNT >26
46CH		IA32_MC27_CTL	MC27_CTL	If IA32_MCG_CAP.CNT >27
46DH		IA32_MC27_STATUS	MC27_STATUS	If IA32_MCG_CAP.CNT >27
46EH		IA32_MC27_ADDR ¹	MC27_ADDR	If IA32_MCG_CAP.CNT >27
46FH		IA32_MC27_MISC	MC27_MISC	If IA32_MCG_CAP.CNT >27
470H		IA32_MC28_CTL	MC28_CTL	If IA32_MCG_CAP.CNT >28
471H		IA32_MC28_STATUS	MC28_STATUS	If IA32_MCG_CAP.CNT >28
472H		IA32_MC28_ADDR ¹	MC28_ADDR	If IA32_MCG_CAP.CNT >28

Table 35-2 IA-32 Architectural MSRs (Contd.)

	Register Address		Architectural MSR Name and bit fields		Comment
	Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
ı	473H		IA32_MC28_MISC	MC28_MISC	If IA32_MCG_CAP.CNT >28
	480H	1152	IA32_VMX_BASIC	Reporting Register of Basic VMX Capabilities (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.1, "Basic VMX Information."	
	481H	1153	IA32_VMX_PINBASED_CTLS	Capability Reporting Register of Pin- based VM-execution Controls (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.3.1, "Pin-Based VM- Execution Controls."	
I	482H	1154	IA32_VMX_PROCBASED_CTLS	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.3.2, "Primary Processor- Based VM-Execution Controls."	
L	483H	1155	IA32_VMX_EXIT_CTLS	Capability Reporting Register of VM-exit Controls (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.4, "VM-Exit Controls."	
L	484H	1156	IA32_VMX_ENTRY_CTLS	Capability Reporting Register of VM- entry Controls (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.5, "VM-Entry Controls."	
ı	485H	1157	IA32_VMX_MISC	Reporting Register of Miscellaneous VMX Capabilities (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.6, "Miscellaneous Data."	
L	486H	1158	IA32_VMX_CRO_FIXEDO	Capability Reporting Register of CRO Bits Fixed to 0 (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.7, "VMX-Fixed Bits in CR0."	
L	487H	1159	IA32_VMX_CRO_FIXED1	Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.7, "VMX-Fixed Bits in CRO."	
L	488H	1160	IA32_VMX_CR4_FIXED0	Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.8, "VMX-Fixed Bits in CR4."	
ı	489H	1161	IA32_VMX_CR4_FIXED1	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.8, "VMX-Fixed Bits in CR4."	
L	48AH	1162	IA32_VMX_VMCS_ENUM	Capability Reporting Register of VMCS Field Enumeration (R/O)	If CPUID.01H:ECX.[5] = 1
				See Appendix A.9, "VMCS Enumeration."	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields	2 Architectural PISRS (Contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
48BH	1163	IA32_VMX_PROCBASED_CTLS2	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O)	If (CPUID.01H:ECX.[5] && IA32_VMX_PROCBASED_C TLS[63])
			See Appendix A.3.3, "Secondary Processor- Based VM-Execution Controls."	
48CH	1164	IA32_VMX_EPT_VPID_CAP	Capability Reporting Register of EPT and VPID (R/O)	If (CPUID.01H:ECX.[5] && IA32_VMX_PROCBASED_C
			See Appendix A.10, "VPID and EPT Capabilities."	TLS[63] && (IA32_VMX_PROCBASED_C TLS2[33] IA32_VMX_PROCBASED_C TLS2[37]))
48DH	1165	IA32_VMX_TRUE_PINBASED_CTLS	Capability Reporting Register of Pin- based VM-execution Flex Controls (R/O)	If (CPUID.01H:ECX.[5] = 1 && IA32_VMX_BASIC[55])
			See Appendix A.3.1, "Pin-Based VM- Execution Controls."	
48EH	1166	IA32_VMX_TRUE_PROCBASED_CTLS	Capability Reporting Register of Primary Processor-based VM-execution Flex Controls (R/O)	If(CPUID.01H:ECX.[5] = 1 && IA32_VMX_BASIC[55])
			See Appendix A.3.2, "Primary Processor- Based VM-Execution Controls."	
48FH	1167	IA32_VMX_TRUE_EXIT_CTLS	Capability Reporting Register of VM-exit Flex Controls (R/O)	If(CPUID.01H:ECX.[5] = 1 && IA32_VMX_BASIC[55])
			See Appendix A.4, "VM-Exit Controls."	
490H	1168	IA32_VMX_TRUE_ENTRY_CTLS	Capability Reporting Register of VM- entry Flex Controls (R/O)	If(CPUID.01H:ECX.[5] = 1 && IA32_VMX_BASIC[55])
			See Appendix A.5, "VM-Entry Controls."	
491H	1169	IA32_VMX_VMFUNC	Capability Reporting Register of VM- function Controls (R/O)	If(CPUID.01H:ECX.[5] = 1 && IA32_VMX_BASIC[55])
4C1H	1217	IA32_A_PMC0	Full Width Writable IA32_PMCO Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 0) &&
				IA32_PERF_CAPABILITIES[13] = 1
4C2H	1218	IA32_A_PMC1	Full Width Writable IA32_PMC1 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 1) &&
				IA32_PERF_CAPABILITIES[13] = 1
4C3H	1219	IA32_A_PMC2	Full Width Writable IA32_PMC2 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 2) &&
				IA32_PERF_CAPABILITIES[13] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Po	gister	Architectural MSR Name and bit	32 Architectural MSRs (Contd.)	Comment
	ldress	fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
4C4H	1220	IA32_A_PMC3	Full Width Writable IA32_PMC3 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 3) &&
				IA32_PERF_CAPABILITIES[13] = 1
4C5H	1221	IA32_A_PMC4	Full Width Writable IA32_PMC4 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 4) &&
				IA32_PERF_CAPABILITIES[13] = 1
4C6H	1222	IA32_A_PMC5	Full Width Writable IA32_PMC5 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 5) &&
				IA32_PERF_CAPABILITIES[13] = 1
4C7H	1223	IA32_A_PMC6	Full Width Writable IA32_PMC6 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 6) &&
				IA32_PERF_CAPABILITIES[13] = 1
4C8H	1224	IA32_A_PMC7	Full Width Writable IA32_PMC7 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 7) &&
				IA32_PERF_CAPABILITIES[13] = 1
4D0H	1232	IA32_MCG_EXT_CTL	(R/W)	If IA32_MCG_CAP.LMCE_P =1
		0	LMCE_EN.	
		63:1	Reserved.	
560H	1376	IA32_RTIT_OUTPUT_BASE	Trace Output Base Register (R/W)	If ((CPUID.(EAX=07H, ECX=0):EBX[25] = 1) && ((CPUID.(EAX=14H,ECX=0): ECX[0] = 1) (CPUID.(EAX=14H,ECX=0): ECX[2] = 1)))
		6:0	Reserved	
		MAXPHYADDR ³ -1:7	Base physical address	
		63:MAXPHYADDR	Reserved.	
561H	1377	IA32_RTIT_OUTPUT_MASK_PTRS	Trace Output Mask Pointers Register (R/W)	If ((CPUID.(EAX=07H, ECX=0):EBX[25] = 1) && ((CPUID.(EAX=14H,ECX=0): ECX[0] = 1) (CPUID.(EAX=14H,ECX=0): ECX[2] = 1)))
		6:0	Reserved	
		31:7	MaskOrTableOffset	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63:32	Output Offset.	
570H	1392	IA32_RTIT_CTL	Trace Control Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[25] = 1)
		0	TraceEn	
		1	CYCEn	If (CPUID.(EAX=07H, ECX=0):EBX[1] = 1)
		2	OS	
		3	User	
		5:4	Reserved,	
		6	FabricEn	If (CPUID.(EAX=07H, ECX=0):ECX[3] = 1)
		7	CR3 filter	
		8	ToPA	
		9	MTCEn	If (CPUID.(EAX=07H, ECX=0):EBX[3] = 1)
		10	TSCEn	
		11	DisRETC	
		12	Reserved, MBZ	
		13	BranchEn	
		17:14	MTCFreq	If (CPUID.(EAX=07H, ECX=0):EBX[3] = 1)
		18	Reserved, MBZ	
		22:19	CYCThresh	If (CPUID.(EAX=07H, ECX=0):EBX[1] = 1)
		23	Reserved, MBZ	
		27:24	PSBFreq	If (CPUID.(EAX=07H, ECX=0):EBX[1] = 1)
		31:28	Reserved, MBZ	
		35:32	ADDRO_CFG	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 0)
		39:36	ADDR1_CFG	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 1)
		43:40	ADDR2_CFG	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 2)
		47:44	ADDR3_CFG	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 3)
		63:48	Reserved, MBZ.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	22 Architectulal Pisks (Conta.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
571H	1393	IA32_RTIT_STATUS	Tracing Status Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[25] = 1)
		0	FilterEn, (writes ignored)	If (CPUID.(EAX=07H, ECX=0):EBX[2] = 1)
		1	ContexEn, (writes ignored)	
		2	TriggerEn, (writes ignored)	
		3	Reserved	
		4	Error	
		5	Stopped	
		31:6	Reserved, MBZ	
		48:32	PacketByteCnt	If (CPUID.(EAX=07H, ECX=0):EBX[1] > 3)
		63:49	Reserved.	
572H	1394	IA32_RTIT_CR3_MATCH	Trace Filter CR3 Match Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[25] = 1)
		4:0	Reserved	
		63:5	CR3[63:5] value to match	
580H	1408	IA32_RTIT_ADDRO_A	Region 0 Start Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 0)
		47:0	Virtual Address	
		63:48	SignExt_VA	
581H	1409	IA32_RTIT_ADDRO_B	Region 0 End Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 0)
		47:0	Virtual Address	
		63:48	SignExt_VA	
582H	1410	IA32_RTIT_ADDR1_A	Region 1 Start Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 1)
		47:0	Virtual Address	
		63:48	SignExt_VA	
583H	1411	IA32_RTIT_ADDR1_B	Region 1 End Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 1)
		47:0	Virtual Address	
		63:48	SignExt_VA	
584H	1412	IA32_RTIT_ADDR2_A	Region 2 Start Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 2)
		47:0	Virtual Address	
		63:48	SignExt_VA	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
585H	1413	IA32_RTIT_ADDR2_B	Region 2 End Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 2)
		47:0	Virtual Address	
		63:48	SignExt_VA	
586H	1414	IA32_RTIT_ADDR3_A	Region 3 Start Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 3)
		47:0	Virtual Address	
		63:48	SignExt_VA	
587H	1415	IA32_RTIT_ADDR3_B	Region 3 End Address (R/W)	If (CPUID.(EAX=07H, ECX=1):EAX[2:0] > 3)
		47:0	Virtual Address	
		63:48	SignExt_VA	
600H	1536	IA32_DS_AREA	DS Save Area (R/W)	If(CPUID.01H:EDX.DS[21]
			Points to the linear address of the first byte of the DS buffer management area, which is used to manage the BTS and PEBS buffers.	= 1
			See Section 18.13.4, "Debug Store (DS) Mechanism."	
		63:0	The linear address of the first byte of the DS buffer management area, if IA-32e mode is active.	
		31:0	The linear address of the first byte of the DS buffer management area, if not in IA-32e mode.	
		63:32	Reserved if not in IA-32e mode.	
6E0H	1760	IA32_TSC_DEADLINE	TSC Target of Local APIC's TSC Deadline Mode (R/W)	If CPUID.01H:ECX.[24] = 1
770H	1904	IA32_PM_ENABLE	Enable/disable HWP (R/W)	If CPUID.06H:EAX.[7] = 1
		0	HWP_ENABLE (R/W1-Once).	If CPUID.06H:EAX.[7] = 1
			See Section 14.4.2, "Enabling HWP"	
		63:1	Reserved.	
771H	1905	IA32_HWP_CAPABILITIES	HWP Performance Range Enumeration (RO)	If CPUID.06H:EAX.[7] = 1
		7:0	Highest_Performance	If CPUID.06H:EAX.[7] = 1
			See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		15:8	Guaranteed_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If CPUID.06H:EAX.[7] = 1
		23:16	Most_Efficient_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If CPUID.06H:EAX.[7] = 1
		31:24	Lowest_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If CPUID.06H:EAX.[7] = 1
		63:32	Reserved.	
772H	1906	IA32_HWP_REQUEST_PKG	Power Management Control Hints for All Logical Processors in a Package (R/W)	If CPUID.06H:EAX.[11] = 1
		7:0	Minimum_Performance See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[11] = 1
		15:8	Maximum_Performance See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[11] = 1
		23:16	Desired_Performance See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[11] = 1
		31:24	Energy_Performance_Preference See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[11] = 1 && CPUID.06H:EAX.[10] = 1
		41:32	Activity_Window See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[11] = 1 && CPUID.06H:EAX.[9] = 1
		63:42	Reserved.	
773H	1907	IA32_HWP_INTERRUPT	Control HWP Native Interrupts (R/W)	If CPUID.06H:EAX.[8] = 1
		0	EN_Guaranteed_Performance_Change . See Section 14.4.6, "HWP Notifications"	If CPUID.06H:EAX.[8] = 1
		1	EN_Excursion_Minimum. See Section 14.4.6, "HWP Notifications"	If CPUID.06H:EAX.[8] = 1
		63:2	Reserved.	
774H	1908	IA32_HWP_REQUEST	Power Management Control Hints to a Logical Processor (R/W)	If CPUID.06H:EAX.[7] = 1
		7:0	Minimum_Performance See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[7] = 1
		15:8	Maximum_Performance See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[7] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	2 Architectural FISKS (contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		23:16	Desired_Performance See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[7] = 1
		31:24	Energy_Performance_Preference See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[7] = 1 && CPUID.06H:EAX.[10] = 1
		41:32	Activity_Window See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[7] = 1 && CPUID.06H:EAX.[9] = 1
		42	Package_Control See Section 14.4.4, "Managing HWP"	If CPUID.06H:EAX.[7] = 1 && CPUID.06H:EAX.[11] = 1
		63:43	Reserved.	
777H	1911	IA32_HWP_STATUS	Log bits indicating changes to Guaranteed & excursions to Minimum (R/W)	If CPUID.06H:EAX.[7] = 1
		0	Guaranteed_Performance_Change (R/WCO).	If CPUID.06H:EAX.[7] = 1
			See Section 14.4.5, "HWP Feedback"	
		1	Reserved.	
		2	Excursion_To_Minimum (R/WCO). See Section 14.4.5, "HWP Feedback"	If CPUID.06H:EAX.[7] = 1
		63:3	Reserved.	
802H	2050	IA32_X2APIC_APICID	x2APIC ID Register (R/O) See x2APIC Specification	If CPUID.01H:ECX[21] = 1 && IA32_APIC_BASE.[10] = 1
803H	2051	IA32_X2APIC_VERSION	x2APIC Version Register (R/0)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
808H	2056	IA32_X2APIC_TPR	x2APIC Task Priority Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
80AH	2058	IA32_X2APIC_PPR	x2APIC Processor Priority Register (R/0)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
80BH	2059	IA32_X2APIC_EOI	x2APIC EOI Register (W/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
80DH	2061	IA32_X2APIC_LDR	x2APIC Logical Destination Register (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	Z Architectural PISRS (contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
80FH	2063	IA32_X2APIC_SIVR	x2APIC Spurious Interrupt Vector Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
810H	2064	IA32_X2APIC_ISR0	x2APIC In-Service Register Bits 31:0 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
811H	2065	IA32_X2APIC_ISR1	x2APIC In-Service Register Bits 63:32 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
812H	2066	IA32_X2APIC_ISR2	x2APIC In-Service Register Bits 95:64 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
813H	2067	IA32_X2APIC_ISR3	x2APIC In-Service Register Bits 127:96 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
814H	2068	IA32_X2APIC_ISR4	x2APIC In-Service Register Bits 159:128 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
815H	2069	IA32_X2APIC_ISR5	x2APIC In-Service Register Bits 191:160 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
816H	2070	IA32_X2APIC_ISR6	x2APIC In-Service Register Bits 223:192 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
817H	2071	IA32_X2APIC_ISR7	x2APIC In-Service Register Bits 255:224 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
818H	2072	IA32_X2APIC_TMR0	x2APIC Trigger Mode Register Bits 31:0 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
819H	2073	IA32_X2APIC_TMR1	x2APIC Trigger Mode Register Bits 63:32 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
81AH	2074	IA32_X2APIC_TMR2	x2APIC Trigger Mode Register Bits 95:64 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
81BH	2075	IA32_X2APIC_TMR3	x2APIC Trigger Mode Register Bits 127:96 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
81CH	2076	IA32_X2APIC_TMR4	x2APIC Trigger Mode Register Bits 159:128 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	Z Architectural PISRS (contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
81DH	2077	IA32_X2APIC_TMR5	x2APIC Trigger Mode Register Bits 191:160 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
81EH	2078	IA32_X2APIC_TMR6	x2APIC Trigger Mode Register Bits 223:192 (R/O)	If (CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1)
81FH	2079	IA32_X2APIC_TMR7	x2APIC Trigger Mode Register Bits 255:224 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
820H	2080	IA32_X2APIC_IRRO	x2APIC Interrupt Request Register Bits 31:0 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
821H	2081	IA32_X2APIC_IRR1	x2APIC Interrupt Request Register Bits 63:32 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
822H	2082	IA32_X2APIC_IRR2	x2APIC Interrupt Request Register Bits 95:64 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
823H	2083	IA32_X2APIC_IRR3	x2APIC Interrupt Request Register Bits 127:96 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
824H	2084	IA32_X2APIC_IRR4	x2APIC Interrupt Request Register Bits 159:128 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
825H	2085	IA32_X2APIC_IRR5	x2APIC Interrupt Request Register Bits 191:160 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
826H	2086	IA32_X2APIC_IRR6	x2APIC Interrupt Request Register Bits 223:192 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
827H	2087	IA32_X2APIC_IRR7	x2APIC Interrupt Request Register Bits 255:224 (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
828H	2088	IA32_X2APIC_ESR	x2APIC Error Status Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
82FH	2095	IA32_X2APIC_LVT_CMCI	x2APIC LVT Corrected Machine Check Interrupt Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
830H	2096	IA32_X2APIC_ICR	x2APIC Interrupt Command Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Rei	gister	Architectural MSR Name and bit	2 Architectural MSRs (Contd.)	Comment
	dress	fields		comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
832H	2098	IA32_X2APIC_LVT_TIMER	x2APIC LVT Timer Interrupt Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
833H	2099	IA32_X2APIC_LVT_THERMAL	x2APIC LVT Thermal Sensor Interrupt Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
834H	2100	IA32_X2APIC_LVT_PMI	x2APIC LVT Performance Monitor Interrupt Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
835H	2101	IA32_X2APIC_LVT_LINTO	x2APIC LVT LINTO Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
836H	2102	IA32_X2APIC_LVT_LINT1	x2APIC LVT LINT1 Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
837H	2103	IA32_X2APIC_LVT_ERROR	x2APIC LVT Error Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
838H	2104	IA32_X2APIC_INIT_COUNT	x2APIC Initial Count Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
839H	2105	IA32_X2APIC_CUR_COUNT	x2APIC Current Count Register (R/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
83EH	2110	IA32_X2APIC_DIV_CONF	x2APIC Divide Configuration Register (R/W)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
83FH	2111	IA32_X2APIC_SELF_IPI	x2APIC Self IPI Register (W/O)	If CPUID.01H:ECX.[21] = 1 && IA32_APIC_BASE.[10] = 1
C80H	3200	IA32_DEBUG_INTERFACE	Silicon Debug Feature Control (R/W)	If CPUID.01H:ECX.[11] = 1
		0	Enable (R/W) BIOS set 1 to enable Silicon debug features. Default is 0	If CPUID.01H:ECX.[11] = 1
		29:1	Reserved.	
		30	Lock (R/W): If 1, locks any further change to the MSR. The lock bit is set automatically on the first SMI assertion even if not explicitly set by BIOS. Default is 0.	If CPUID.01H:ECX.[11] = 1
		31	Debug Occurred (R/O) : This "sticky bit" is set by hardware to indicate the status of bit 0. Default is 0.	If CPUID.01H:ECX.[11] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63:32	Reserved.	
C81H	3201	IA32_L3_QOS_CFG	L3 QOS Configuration (R/W)	If (CPUID.(EAX=07H, ECX=1):ECX.[2] = 1)
		0	Enable (R/W) Set 1 to enable L3 CAT masks and COS to operate in Code and Data Prioritization (CDP) mode	
		63:1	Reserved.	
C8DH	3213	IA32_QM_EVTSEL	Monitoring Event Select Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX.[12] = 1)
		7:0	Event ID: ID of a supported monitoring event to report via IA32_QM_CTR.	
		31:8	Reserved.	
		N+31:32	Resource Monitoring ID: ID for monitoring hardware to report monitored data via IA32_QM_CTR.	N = Ceil (Log ₂ (CPUID.(EAX= 0FH, ECX=0H).EBX[31:0] +1))
		63:N+32	Reserved.	
C8EH	3214	IA32_QM_CTR	Monitoring Counter Register (R/0)	If (CPUID.(EAX=07H, ECX=0):EBX.[12] = 1)
		61:0	Resource Monitored Data	
		62	Unavailable: If 1, indicates data for this RMID is not available or not monitored for this resource or RMID.	
		63	Error: If 1, indicates and unsupported RMID or event type was written to IA32_PQR_QM_EVTSEL.	
C8FH	3215	IA32_PQR_ASSOC	Resource Association Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX.[12] = 1)
		N-1:0	Resource Monitoring ID (R/W): ID for monitoring hardware to track internal operation, e.g. memory access.	N = Ceil (Log ₂ (CPUID.(EAX= 0FH, ECX=0H).EBX[31:0] +1))
		31:N	Reserved	
		63:32	COS (R/W). The class of service (COS) to enforce (on writes); returns the current COS when read.	If (CPUID.(EAX=07H, ECX=0):EBX.[15] = 1)
C90H - D8FH		Reserved MSR Address Space for Platform Enforcement Mask Registers	See Section 17.16.3.1, "Enumeration and Detection Support of Cache Allocation Technology"	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields	22 Architectural MSRS (Contd.)	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
C90H	C90H 3216	IA32_L3_MASK_0	L3 CQE Mask for COSO (R/W)	If (CPUID.(EAX=10H, ECX=0H):EBX[1]!= 0)
		31:0	Capacity Bit Mask (R/W)	
		63:32	Reserved.	
C90H+ n	3216+n	IA32_L3_MASK_n	L3 CQE Mask for COSn (R/W)	n = CPUID.(EAX=10H, ECX=1H):EDX[15:0]
		31:0	Capacity Bit Mask (R/W)	
		63:32	Reserved.	
D90H	3472	IA32_BNDCFGS	Supervisor State of MPX Configuration. (R/W)	If (CPUID.(EAX=07H, ECX=0H):EBX[14] = 1)
		0	EN : Enable Intel MPX in supervisor mode	
		1	BNDPRESERVE: Preserve the bounds registers for near branch instructions in the absence of the BND prefix	
		11:2	Reserved, must be 0	
		63:12	Base Address of Bound Directory.	
DAOH	3488	IA32_XSS	Extended Supervisor State Mask (R/W)	If(CPUID.(ODH, 1):EAX.[3] = 1
		7:0	Reserved	
		8	Trace Packet Configuration State (R/W)	
		63:9	Reserved.	
DB0H	3504	IA32_PKG_HDC_CTL	Package Level Enable/disable HDC (R/W)	If CPUID.06H:EAX.[13] = 1
		0	HDC_Pkg_Enable (R/W)	If CPUID.06H:EAX.[13] = 1
			Force HDC idling or wake up HDC-idled logical processors in the package. See Section 14.5.2, "Package level Enabling HDC"	
		63:1	Reserved.	
DB1H	3505	IA32_PM_CTL1	Enable/disable HWP (R/W)	If CPUID.06H:EAX.[13] = 1
		0	HDC_Allow_Block (R/W)	If CPUID.06H:EAX.[13] = 1
			Allow/Block this logical processor for package level HDC control. See Section 14.5.3	
		63:1	Reserved.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	jister Iress	Architectural MSR Name and bit fields		Comment	
Hex	Decimal	(Former MSR Name)	MSR/Bit Description		
DB2H	3506	IA32_THREAD_STALL	Per-Logical_Processor HDC Idle Residency (R/0)	If CPUID.06H:EAX.[13] = 1	
		63:0	Stall_Cycle_Cnt (R/W) Stalled cycles due to HDC forced idle on this	If CPUID.06H:EAX.[13] = 1	
			logical processor. See Section 14.5.4.1		
4000_ 0000H - 4000_ 00FFH		Reserved MSR Address Space	All existing and future processors will not implement MSR in this range.		
C000_ 0080H		IA32_EFER	Extended Feature Enables	If (CPUID.80000001H:EDX.[2 0] CPUID.80000001H:EDX.[2 9])	
		0	SYSCALL Enable: IA32_EFER.SCE (R/W) Enables SYSCALL/SYSRET instructions in 64-bit mode.		
		7:1	Reserved.		
		8	IA-32e Mode Enable: IA32_EFER.LME (R/W)		
			Enables IA-32e mode operation.		
		9	Reserved.		
		10	IA-32e Mode Active: IA32_EFER.LMA (R)		
			Indicates IA-32e mode is active when set.		
		11	Execute Disable Bit Enable: IA32_EFER.NXE (R/W)		
		63:12	Reserved.		
C000_ 0081H		IA32_STAR	System Call Target Address (R/W)	If CPUID.80000001:EDX.[29] = 1	
C000_ 0082H		IA32_LSTAR	IA-32e Mode System Call Target Address (R/W)	If CPUID.80000001:EDX.[29] = 1	
C000_ 0084H		IA32_FMASK	System Call Flag Mask (R/W)	If CPUID.80000001:EDX.[29] = 1	
C000_ 0100H		IA32_FS_BASE	Map of BASE Address of FS (R/W)	If CPUID.80000001:EDX.[29] = 1	

Table 35-2 IA-32 Architectural MSRs (Contd.)

_	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
C000_ 0101H		IA32_GS_BASE	Map of BASE Address of GS (R/W)	If CPUID.80000001:EDX.[29] = 1
C000_ 0102H		IA32_KERNEL_GS_BASE	Swap Target of BASE Address of GS (R/W)	If CPUID.80000001:EDX.[29] = 1
C000_ 0103H		IA32_TSC_AUX	Auxiliary TSC (RW)	If CPUID.8000001H: EDX[27] = 1
		31:0	AUX: Auxiliary signature of TSC	
		63:32	Reserved.	

NOTES:

- 1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.
- 2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section 15.3.2.4 for more information.
- 3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

35.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY

Table 35-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 35-3. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 16-1.

MSRs listed in Table 35-2 and Table 35-3 are also supported by processors based on the Enhanced Intel Core microarchitecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature DisplayFamily_DisplayModel of 06_17H.

The column "Shared/Unique" applies to multi-core processors based on Intel Core microarchitecture. "Unique" means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. "Shared" means the MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture

_	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
ОН	0	IA32_P5_MC_ADDR	Unique	See Section 35.20, "MSRs in Pentium Processors."
1H	1	IA32_P5_MC_TYPE	Unique	See Section 35.20, "MSRs in Pentium Processors."
6H	6	IA32_MONITOR_FILTER_SIZ E	Unique	See Section 8.10.5, "Monitor/Mwait Address Range Determination." and Table 35-2.
10H	16	IA32_TIME_STAMP_COUNT ER	Unique	See Section 17.14, "Time-Stamp Counter," and see Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Add	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
17H	23	IA32_PLATFORM_ID	Shared	Platform ID (R) See Table 35-2.
17H	17H 23	MSR_PLATFORM_ID	Shared	Model Specific Platform ID (R)
		7:0		Reserved.
		12:8		Maximum Qualified Ratio (R)
				The maximum allowed bus ratio.
		49:13		Reserved.
		52:50		See Table 35-2.
		63:53		Reserved.
1BH	27	IA32_APIC_BASE	Unique	See Section 10.4.4, "Local APIC Status and Location." and Table 35-2.
2AH	42	MSR_EBL_CR_POWERON	Shared	Processor Hard Power-On Configuration (R/W)
				Enables and disables processor features; (R) indicates current processor configuration.
		0		Reserved.
		1		Data Error Checking Enable (R/W) 1 = Enabled; 0 = Disabled
				Note: Not all processor implements R/W.
		2		Response Error Checking Enable (R/W) 1 = Enabled; 0 = Disabled
				Note: Not all processor implements R/W.
		3		MCERR# Drive Enable (R/W)
				1 = Enabled; 0 = Disabled
		4		Note: Not all processor implements R/W.
		4		Address Parity Enable (R/W) 1 = Enabled; 0 = Disabled
				Note: Not all processor implements R/W.
		5		Reserved.
		6		Reserved.
		7		BINIT# Driver Enable (R/W)
		-		1 = Enabled; 0 = Disabled
				Note: Not all processor implements R/W.
		8		Output Tri-state Enabled (R/O)
				1 = Enabled; 0 = Disabled

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

		Table 35-3 MSRs in Proce	essors Based	on Intel® Core™ Microarchitecture (Contd.)
Regi Add		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
		9		Execute BIST (R/O)
				1 = Enabled; 0 = Disabled
		10		MCERR# Observation Enabled (R/O)
				1 = Enabled; 0 = Disabled
		11		Intel TXT Capable Chipset. (R/O)
				1 = Present; 0 = Not Present
		12		BINIT# Observation Enabled (R/O)
				1 = Enabled; 0 = Disabled
		13		Reserved.
		14		1 MByte Power on Reset Vector (R/O)
				1 = 1 MByte; 0 = 4 GBytes
		15		Reserved.
		17:16		APIC Cluster ID (R/O)
		18		N/2 Non-Integer Bus Ratio (R/O)
				0 = Integer ratio; 1 = Non-integer ratio
		19		Reserved.
		21: 20		Symmetric Arbitration ID (R/O)
		26:22		Integer Bus Frequency Ratio (R/O)
ЗАН	58	MSR_FEATURE_CONTROL	Unique	Control Features in Intel 64Processor (R/W)
				See Table 35-2.
		3	Unique	SMRR Enable (R/WL)
				When this bit is set and the lock bit is set makes the SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible and writeable while in SMM.
40H	64	MSR_	Unique	Last Branch Record O From IP (R/W)
		LASTBRANCH_O_FROM_IP		One of four pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the source instruction for one of the last four branches, exceptions, or interrupts taken by the processor. See also:
				 Last Branch Record Stack TOS at 1C9H Section 17.12, "Last Branch, Interrupt, and Exception Recording (Pentium M Processors)."
41H	65	MSR_	Unique	Last Branch Record 1 From IP (R/W)
		LASTBRANCH_1_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
42H	66	MSR_	Unique	Last Branch Record 2 From IP (R/W)
		LASTBRANCH_2_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Addı		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
43H	67	MSR_	Unique	Last Branch Record 3 From IP (R/W)
		LASTBRANCH_3_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
60H	96	MSR_	Unique	Last Branch Record O To IP (R/W)
		LASTBRANCH_O_TO_IP		One of four pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the destination instruction for one of the last four branches, exceptions, or interrupts taken by the processor.
61H	61H 97	MSR_	Unique	Last Branch Record 1 To IP (R/W)
		LASTBRANCH_1_TO_IP		See description of MSR_LASTBRANCH_0_T0_IP.
62H	62H 98	MSR_	Unique	Last Branch Record 2 To IP (R/W)
		LASTBRANCH_2_TO_IP		See description of MSR_LASTBRANCH_0_TO_IP.
63H	99	MSR_	Unique	Last Branch Record 3 To IP (R/W)
		LASTBRANCH_3_TO_IP		See description of MSR_LASTBRANCH_0_TO_IP.
79H	121	IA32_BIOS_UPDT_TRIG	Unique	BIOS Update Trigger Register (W)
				See Table 35-2.
8BH	139	IA32_BIOS_SIGN_ID	Unique	BIOS Update Signature ID (RO)
				See Table 35-2.
AOH	160	MSR_SMRR_PHYSBASE	Unique	System Management Mode Base Address register (WO in SMM)
				Model-specific implementation of SMRR-like interface, read visible and write only in SMM.
		11:0		Reserved.
		31:12		PhysBase. SMRR physical Base Address.
		63:32		Reserved.
A1H	161	MSR_SMRR_PHYSMASK	Unique	System Management Mode Physical Address Mask register (WO in SMM)
				Model-specific implementation of SMRR-like interface, read visible and write only in SMM.
		10:0		Reserved.
		11		Valid. Physical address base and range mask are valid.
		31:12		PhysMask. SMRR physical address range mask.
		63:32		Reserved.
C1H	193	IA32_PMC0	Unique	Performance Counter Register
				See Table 35-2.
C2H	194	IA32_PMC1	Unique	Performance Counter Register
				See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
CDH	205	MSR_FSB_FREQ	Shared	Scaleable Bus Speed(RO) This field indicates the intended scaleable bus clock speed for processors based on Intel Core microarchitecture:
	2:0		 101B: 100 MHz (FSB 400) 001B: 133 MHz (FSB 533) 011B: 167 MHz (FSB 667) 010B: 200 MHz (FSB 800) 000B: 267 MHz (FSB 1067) 100B: 333 MHz (FSB 1333) 	
			133.33 MHz should be utilized if performing calculation with System Bus Speed when encoding is 001B.	
			166.67 MHz should be utilized if performing calculation with System Bus Speed when encoding is 011B.	
				266.67 MHz should be utilized if performing calculation with System Bus Speed when encoding is 000B. 333.33 MHz should be utilized if performing calculation with
				System Bus Speed when encoding is 100B.
		63:3		Reserved.
CDH	205	MSR_FSB_FREQ	Shared	Scaleable Bus Speed(RO) This field indicates the intended scaleable bus clock speed for processors based on Enhanced Intel Core microarchitecture:
		2:0		 101B: 100 MHz (FSB 400) 001B: 133 MHz (FSB 533) 011B: 167 MHz (FSB 667) 010B: 200 MHz (FSB 800) 000B: 267 MHz (FSB 1067) 100B: 333 MHz (FSB 1333) 110B: 400 MHz (FSB 1600)
				133.33 MHz should be utilized if performing calculation with System Bus Speed when encoding is 001B. 166.67 MHz should be utilized if performing calculation with
				System Bus Speed when encoding is 011B. 266.67 MHz should be utilized if performing calculation with System Bus Speed when encoding is 110B.
				333.33 MHz should be utilized if performing calculation with System Bus Speed when encoding is 111B.
		63:3		Reserved.
E7H	231	IA32_MPERF	Unique	Maximum Performance Frequency Clock Count (RW) See Table 35-2.
E8H	232	IA32_APERF	Unique	Actual Performance Frequency Clock Count (RW) See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Address		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
FEH	254	IA32_MTRRCAP	Unique	See Table 35-2.
		11	Unique	SMRR Capability Using MSR OAOH and OA1H (R)
11EH	281	MSR_BBL_CR_CTL3	Shared	
		0		L2 Hardware Enabled (RO)
				1 = If the L2 is hardware-enabled
				0 = Indicates if the L2 is hardware-disabled
		7:1		Reserved.
		8		L2 Enabled (R/W)
				1 = L2 cache has been initialized
				0 = Disabled (default) Until this bit is set the processor will not respond to the WBINVD
				instruction or the assertion of the FLUSH# input.
		22:9		Reserved.
		23		L2 Not Present (RO)
				0 = L2 Present
				1 = L2 Not Present
		63:24		Reserved.
174H	372	IA32_SYSENTER_CS	Unique	See Table 35-2.
175H	373	IA32_SYSENTER_ESP	Unique	See Table 35-2.
176H	374	IA32_SYSENTER_EIP	Unique	See Table 35-2.
179H	377	IA32_MCG_CAP	Unique	See Table 35-2.
17AH	378	IA32_MCG_STATUS	Unique	
		0		RIPV
				When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) can be used to restart the program. If cleared, the program cannot be reliably restarted.
		1		EIPV
				When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) is directly associated with the error.
		2		MCIP
				When set, bit indicates that a machine check has been generated. If a second machine check is detected while this bit is still set, the processor enters a shutdown state. Software should write this bit to 0 after processing a machine check exception.
		63:3		Reserved.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Registo Addres Hex	lei		Shared/	
Hov	ss	Register Name	Unique	Bit Description
TICA	Dec			
186H	390	IA32_PERFEVTSEL0	Unique	See Table 35-2.
187H	391	IA32_PERFEVTSEL1	Unique	See Table 35-2.
198H	408	IA32_PERF_STATUS	Shared	See Table 35-2.
198H	408	MSR_PERF_STATUS	Shared	
		15:0		Current Performance State Value.
		30:16		Reserved.
		31		XE Operation (R/O).
				If set, XE operation is enabled. Default is cleared.
		39:32		Reserved.
		44:40		Maximum Bus Ratio (R/O)
				Indicates maximum bus ratio configured for the processor.
		45		Reserved.
		46		Non-Integer Bus Ratio (R/O)
				Indicates non-integer bus ratio is enabled. Applies processors based on Enhanced Intel Core microarchitecture.
		63:47		Reserved.
199H	409	IA32_PERF_CTL	Unique	See Table 35-2.
19AH	410	IA32_CLOCK_MODULATION	Unique	Clock Modulation (R/W)
				See Table 35-2.
				IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.
19BH	411	IA32_THERM_INTERRUPT	Unique	Thermal Interrupt Control (R/W)
				See Table 35-2.
19CH	412	IA32_THERM_STATUS	Unique	Thermal Monitor Status (R/W)
				See Table 35-2.
19DH	413	MSR_THERM2_CTL	Unique	
		15:0		Reserved.
		16		TM_SELECT (R/W)
				Mode of automatic thermal monitor:
				0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the stop-clock duty cycle)
				1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
				If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no effect. Neither TM1 nor TM2 are enabled.
		63:16		Reserved.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Addı		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
1A0H	416	IA32_MISC_ENABLE		Enable Misc. Processor Features (R/W) Allows a variety of processor functions to be enabled and disabled.
		0		Fast-Strings Enable See Table 35-2.
		2:1		Reserved.
		3	Unique	Automatic Thermal Control Circuit Enable (R/W) See Table 35-2.
		6:4		Reserved.
		7	Shared	Performance Monitoring Available (R) See Table 35-2.
		8		Reserved.
		9		Hardware Prefetcher Disable (R/W)
				When set, disables the hardware prefetcher operation on streams of data. When clear (default), enables the prefetch queue.
				Disabling of the hardware prefetcher may impact processor performance.
		10	Shared	FERR# Multiplexing Enable (R/W)
				1 = FERR# asserted by the processor to indicate a pending break event within the processor
				0 = Indicates compatible FERR# signaling behavior This bit must be set to 1 to support XAPIC interrupt model usage.
		11	Shared	Branch Trace Storage Unavailable (RO) See Table 35-2.
		12	Shared	Precise Event Based Sampling Unavailable (RO) See Table 35-2.
		13	Shared	TM2 Enable (R/W)
				When this bit is set (1) and the thermal sensor indicates that the die temperature is at the pre-determined threshold, the Thermal Monitor 2 mechanism is engaged. TM2 will reduce the bus to core ratio and voltage according to the value last written to MSR_THERM2_CTL bits 15:0.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
				When this bit is clear (0, default), the processor does not change the VID signals or the bus to core ratio when the processor enters a thermally managed state.
				The BIOS must enable this feature if the TM2 feature flag (CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this feature is not supported and BIOS must not alter the contents of the TM2 bit location.
				The processor is operating out of specification if both this bit and the TM1 bit are set to 0.
		15:14		Reserved.
		16	Shared	Enhanced Intel SpeedStep Technology Enable (R/W)
				See Table 35-2.
		18	Shared	ENABLE MONITOR FSM (R/W)
				See Table 35-2.
		19	Shared	Adjacent Cache Line Prefetch Disable (R/W)
				When set to 1, the processor fetches the cache line that contains data currently required by the processor. When set to 0, the processor fetches cache lines that comprise a cache line pair (128 bytes).
				Single processor platforms should not set this bit. Server platform should set or clear this bit based on platform performance observed in validation and testing.
				BIOS may contain a setup option that controls the setting of this bit.
		20	Shared	Enhanced Intel SpeedStep Technology Select Lock (R/WO)
				When set, this bit causes the following bits to become read-only:
				 Enhanced Intel SpeedStep Technology Select Lock (this bit), Enhanced Intel SpeedStep Technology Enable bit.
				The bit must be set before an Enhanced Intel SpeedStep Technology transition is requested. This bit is cleared on reset.
		21		Reserved.
		22	Shared	Limit CPUID Maxval (R/W)
				See Table 35-2.
		23	Shared	xTPR Message Disable (R/W)
				See Table 35-2.
		33:24		Reserved.
		34	Unique	XD Bit Disable (R/W)
				See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
		36:35		Reserved.
		37	Unique	DCU Prefetcher Disable (R/W)
				When set to 1, The DCU L1 data cache prefetcher is disabled. The default value after reset is 0. BIOS may write '1' to disable this feature.
				The DCU prefetcher is an L1 data cache prefetcher. When the DCU prefetcher detects multiple loads from the same line done within a time limit, the DCU prefetcher assumes the next line will be required. The next line is prefetched in to the L1 data cache from memory or L2.
		38	Shared	IDA Disable (R/W)
				When set to 1 on processors that support IDA, the Intel Dynamic Acceleration feature (IDA) is disabled and the IDA_Enable feature flag will be clear (CPUID.06H: EAX[1]=0).
				When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] reports the processor's support of IDA is enabled.
				Note: the power-on default value is used by BIOS to detect hardware support of IDA. If power-on default value is 1, IDA is available in the processor. If power-on default value is 0, IDA is not available.
		39	Unique	IP Prefetcher Disable (R/W)
				When set to 1, The IP prefetcher is disabled. The default value after reset is 0. BIOS may write '1' to disable this feature.
				The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher looks for sequential load history to determine whether to prefetch the next expected data into the L1 cache from memory or L2.
		63:40		Reserved.
1C9H	457	MSR_LASTBRANCH_TOS	Unique	Last Branch Record Stack TOS (R/W)
				Contains an index (bits 0-3) that points to the MSR containing the most recent branch record.
				See MSR_LASTBRANCH_0_FROM_IP (at 40H).
1D9H	473	IA32_DEBUGCTL	Unique	Debug Control (R/W)
				See Table 35-2
1DDH	477	MSR_LER_FROM_LIP	Unique	Last Exception Record From Linear IP (R)
				Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Add	ster	Register Name	Shared/ Unique	on Intel® Core™ Microarchitecture (Contd.) Bit Description
Hex	Dec		3	
1DEH	478	MSR_LER_TO_LIP	Unique	Last Exception Record To Linear IP (R)
				This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
200H	512	IA32_MTRR_PHYSBASE0	Unique	See Table 35-2.
201H	513	IA32_MTRR_PHYSMASK0	Unique	See Table 35-2.
202H	514	IA32_MTRR_PHYSBASE1	Unique	See Table 35-2.
203H	515	IA32_MTRR_PHYSMASK1	Unique	See Table 35-2.
204H	516	IA32_MTRR_PHYSBASE2	Unique	See Table 35-2.
205H	517	IA32_MTRR_PHYSMASK2	Unique	See Table 35-2.
206H	518	IA32_MTRR_PHYSBASE3	Unique	See Table 35-2.
207H	519	IA32_MTRR_PHYSMASK3	Unique	See Table 35-2.
208H	520	IA32_MTRR_PHYSBASE4	Unique	See Table 35-2.
209H	521	IA32_MTRR_PHYSMASK4	Unique	See Table 35-2.
20AH	522	IA32_MTRR_PHYSBASE5	Unique	See Table 35-2.
20BH	523	IA32_MTRR_PHYSMASK5	Unique	See Table 35-2.
20CH	524	IA32_MTRR_PHYSBASE6	Unique	See Table 35-2.
20DH	525	IA32_MTRR_PHYSMASK6	Unique	See Table 35-2.
20EH	526	IA32_MTRR_PHYSBASE7	Unique	See Table 35-2.
20FH	527	IA32_MTRR_PHYSMASK7	Unique	See Table 35-2.
250H	592	IA32_MTRR_FIX64K_ 00000	Unique	See Table 35-2.
258H	600	IA32_MTRR_FIX16K_ 80000	Unique	See Table 35-2.
259H	601	IA32_MTRR_FIX16K_ A0000	Unique	See Table 35-2.
268H	616	IA32_MTRR_FIX4K_C0000	Unique	See Table 35-2.
269H	617	IA32_MTRR_FIX4K_C8000	Unique	See Table 35-2.
26AH	618	IA32_MTRR_FIX4K_D0000	Unique	See Table 35-2.
26BH	619	IA32_MTRR_FIX4K_D8000	Unique	See Table 35-2.
26CH	620	IA32_MTRR_FIX4K_E0000	Unique	See Table 35-2.
26DH	621	IA32_MTRR_FIX4K_E8000	Unique	See Table 35-2.
26EH	622	IA32_MTRR_FIX4K_F0000	Unique	See Table 35-2.
26FH	623	IA32_MTRR_FIX4K_F8000	Unique	See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Addi	ister	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
277H	631	IA32_PAT	Unique	See Table 35-2.
2FFH	767	IA32_MTRR_DEF_TYPE	Unique	Default Memory Types (R/W) See Table 35-2.
309H	777	IA32_FIXED_CTR0	Unique	Fixed-Function Performance Counter Register 0 (R/W) See Table 35-2.
309H	777	MSR_PERF_FIXED_CTR0	Unique	Fixed-Function Performance Counter Register 0 (R/W)
30AH	778	IA32_FIXED_CTR1	Unique	Fixed-Function Performance Counter Register 1 (R/W) See Table 35-2.
30AH	778	MSR_PERF_FIXED_CTR1	Unique	Fixed-Function Performance Counter Register 1 (R/W)
30BH	779	IA32_FIXED_CTR2	Unique	Fixed-Function Performance Counter Register 2 (R/W) See Table 35-2.
30BH	779	MSR_PERF_FIXED_CTR2	Unique	Fixed-Function Performance Counter Register 2 (R/W)
345H	837	IA32_PERF_CAPABILITIES	Unique	See Table 35-2. See Section 17.4.1, "IA32_DEBUGCTL MSR."
345H	837	MSR_PERF_CAPABILITIES	Unique	RO. This applies to processors that do not support architectural perfmon version 2.
		5:0		LBR Format. See Table 35-2.
		6		PEBS Record Format.
		7		PEBSSaveArchRegs. See Table 35-2.
		63:8		Reserved.
38DH	909	IA32_FIXED_CTR_CTRL	Unique	Fixed-Function-Counter Control Register (R/W) See Table 35-2.
38DH	909	MSR_PERF_FIXED_CTR_ CTRL	Unique	Fixed-Function-Counter Control Register (R/W)
38EH	910	IA32_PERF_GLOBAL_ STAUS	Unique	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
38EH	910	MSR_PERF_GLOBAL_STAUS	Unique	See Section 18.4.2, "Global Counter Control Facilities."
38FH	911	IA32_PERF_GLOBAL_CTRL	Unique	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
38FH	911	MSR_PERF_GLOBAL_CTRL	Unique	See Section 18.4.2, "Global Counter Control Facilities."
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL	Unique	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
390H	912	MSR_PERF_GLOBAL_OVF_ CTRL	Unique	See Section 18.4.2, "Global Counter Control Facilities."

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Add	ster	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
3F1H	1009	MSR_PEBS_ENABLE	Unique	See Table 35-2. See Section 18.4.4, "Precise Event Based Sampling (PEBS)."
		0		Enable PEBS on IA32_PMC0. (R/W)
400H	1024	IA32_MC0_CTL	Unique	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
401H	1025	IA32_MCO_STATUS	Unique	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
402H	1026	IA32_MCO_ADDR	Unique	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The IA32_MC0_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC0_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
404H	1028	IA32_MC1_CTL	Unique	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
405H	1029	IA32_MC1_STATUS	Unique	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
406H	1030	IA32_MC1_ADDR	Unique	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC1_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
408H	1032	IA32_MC2_CTL	Unique	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
409H	1033	IA32_MC2_STATUS	Unique	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
40AH	1034	IA32_MC2_ADDR	Unique	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC2_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
40CH	1036	MSR_MC4_CTL	Unique	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
40DH	1037	MSR_MC4_STATUS	Unique	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
40EH	1038	MSR_MC4_ADDR	Unique	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC4_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
410H	1040	MSR_MC3_CTL		See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
411H	1041	MSR_MC3_STATUS		See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
412H	1042	MSR_MC3_ADDR	Unique	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC3_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
413H	1043	MSR_MC3_MISC	Unique	
414H	1044	MSR_MC5_CTL	Unique	
415H	1045	MSR_MC5_STATUS	Unique	
416H	1046	MSR_MC5_ADDR	Unique	
417H	1047	MSR_MC5_MISC	Unique	
419H	1045	MSR_MC6_STATUS	Unique	Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 15.3.2.2, "IA32_MCi_STATUS MSRS." and Chapter 23.
480H	1152	IA32_VMX_BASIC	Unique	Reporting Register of Basic VMX Capabilities (R/O)
				See Table 35-2.
				See Appendix A.1, "Basic VMX Information."
481H	1153	IA32_VMX_PINBASED_ CTLS	Unique	Capability Reporting Register of Pin-based VM-execution Controls (R/O)
				See Table 35-2.
				See Appendix A.3, "VM-Execution Controls."
482H	1154	IA32_VMX_PROCBASED_ CTLS	Unique	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)
				See Appendix A.3, "VM-Execution Controls."
483H	1155	IA32_VMX_EXIT_CTLS	Unique	Capability Reporting Register of VM-exit Controls (R/O)
				See Table 35-2.
				See Appendix A.4, "VM-Exit Controls."
484H	1156	IA32_VMX_ENTRY_CTLS	Unique	Capability Reporting Register of VM-entry Controls (R/O)
				See Table 35-2. See Appendix A.5, "VM-Entry Controls."
485H	1157	IV33 //WA WICC	Unique	
4 03П	115/	IA32_VMX_MISC	Orlique	Reporting Register of Miscellaneous VMX Capabilities (R/O) See Table 35-2.
				See Appendix A.6, "Miscellaneous Data."
486H	1158	IA32_VMX_CRO_FIXEDO	Unique	Capability Reporting Register of CRO Bits Fixed to 0 (R/O)
		_		See Table 35-2.
				See Appendix A.7, "VMX-Fixed Bits in CR0."

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi Add		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
487H	1159	IA32_VMX_CR0_FIXED1	Unique	Capability Reporting Register of CR0 Bits Fixed to 1 (R/0) See Table 35-2. See Appendix A.7, "VMX-Fixed Bits in CR0."
488H	1160	IA32_VMX_CR4_FIXED0	Unique	Capability Reporting Register of CR4 Bits Fixed to 0 (R/0) See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
489H	1161	IA32_VMX_CR4_FIXED1	Unique	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
48AH	1162	IA32_VMX_VMCS_ENUM	Unique	Capability Reporting Register of VMCS Field Enumeration (R/O) See Table 35-2. See Appendix A.9, "VMCS Enumeration."
48BH	1163	IA32_VMX_PROCBASED_ CTLS2	Unique	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O) See Appendix A.3, "VM-Execution Controls."
600H	1536	IA32_DS_AREA	Unique	DS Save Area (R/W) See Table 35-2. See Section 18.13.4, "Debug Store (DS) Mechanism."
107CC H		MSR_EMON_L3_CTR_CTL0	Unique	GBUSQ Event Control/Counter Register (R/W) Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107CD H		MSR_EMON_L3_CTR_CTL1	Unique	GBUSQ Event Control/Counter Register (R/W) Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107CE H		MSR_EMON_L3_CTR_CTL2	Unique	GSNPQ Event Control/Counter Register (R/W) Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107CF H		MSR_EMON_L3_CTR_CTL3	Unique	GSNPQ Event Control/Counter Register (R/W) Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107D0 H		MSR_EMON_L3_CTR_CTL4	Unique	FSB Event Control/Counter Register (R/W) Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107D1 H		MSR_EMON_L3_CTR_CTL5	Unique	FSB Event Control/Counter Register (R/W) Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Regi: Addr		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
107D2		MSR_EMON_L3_CTR_CTL6	Unique	FSB Event Control/Counter Register (R/W)
Н				Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107D3		MSR_EMON_L3_CTR_CTL7	Unique	FSB Event Control/Counter Register (R/W)
Н				Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
107D8		MSR_EMON_L3_GL_CTL	Unique	L3/FSB Common Control Register (R/W)
Н				Apply to Intel Xeon processor 7400 series (processor signature 06_1D) only. See Section 17.2.2
C000_		IA32_EFER	Unique	Extended Feature Enables
H0800				See Table 35-2.
C000_		IA32_STAR	Unique	System Call Target Address (R/W)
0081H				See Table 35-2.
C000_		IA32_LSTAR	Unique	IA-32e Mode System Call Target Address (R/W)
0082H				See Table 35-2.
C000_		IA32_FMASK	Unique	System Call Flag Mask (R/W)
0084H				See Table 35-2.
C000_		IA32_FS_BASE	Unique	Map of BASE Address of FS (R/W)
0100H				See Table 35-2.
C000_		IA32_GS_BASE	Unique	Map of BASE Address of GS (R/W)
0101H				See Table 35-2.
C000_ 0102H	_	IA32_KERNEL_GSBASE	Unique	Swap Target of BASE Address of GS (R/W) See Table 35-2.

35.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY

Table 35-4 lists model-specific registers (MSRs) for Intel Atom processor family, architectural MSR addresses are also included in Table 35-4. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H, see Table 16-1.

The column "Shared/Unique" applies to logical processors sharing the same core in processors based on the Intel Atom microarchitecture. "Unique" means each logical processor has a separate MSR, or a bit field in an MSR governs only a logical processor. "Shared" means the MSR or the bit field in an MSR address governs the operation of both logical processors in the same core.

Table 35-4 MSRs in Intel® Atom™ Processor Family

Regi Add	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
OH	0	IA32_P5_MC_ADDR	Shared	See Section 35.20, "MSRs in Pentium Processors."
1H	1	IA32_P5_MC_TYPE	Shared	See Section 35.20, "MSRs in Pentium Processors."
6H	6	IA32_MONITOR_FILTER_ SIZE	Unique	See Section 8.10.5, "Monitor/Mwait Address Range Determination." and Table 35-2
10H	16	IA32_TIME_STAMP_ COUNTER	Unique	See Section 17.14, "Time-Stamp Counter," and see Table 35-2.
17H	23	IA32_PLATFORM_ID	Shared	Platform ID (R) See Table 35-2.
17H	23	MSR_PLATFORM_ID	Shared	Model Specific Platform ID (R)
		7:0		Reserved.
		12:8		Maximum Qualified Ratio (R)
				The maximum allowed bus ratio.
		63:13		Reserved.
1BH	27	IA32_APIC_BASE	Unique	See Section 10.4.4, "Local APIC Status and Location," and Table 35-2.
2AH	42	MSR_EBL_CR_POWERON	Shared	Processor Hard Power-On Configuration (R/W) Enables and disables processor features;
				(R) indicates current processor configuration.
		0		Reserved.
		1		Data Error Checking Enable (R/W) 1 = Enabled; 0 = Disabled Always 0.
		2		Response Error Checking Enable (R/W) 1 = Enabled; 0 = Disabled
				Always 0.
		3		AERR# Drive Enable (R/W)
				1 = Enabled; 0 = Disabled
		4		Always 0.
		4		BERR# Enable for initiator bus requests (R/W)
				1 = Enabled; 0 = Disabled Always 0.
		5		Reserved.
		6		Reserved.
		7		BINIT# Driver Enable (R/W)
		,		1 = Enabled; 0 = Disabled
				Always 0.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Regi Add	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
		8		Reserved.
		9		Execute BIST (R/O)
				1 = Enabled; 0 = Disabled
		10		AERR# Observation Enabled (R/O)
				1 = Enabled; 0 = Disabled
				Always 0.
		11		Reserved.
		12		BINIT# Observation Enabled (R/O)
				1 = Enabled; 0 = Disabled Always 0.
		13		Reserved.
		14		1 MByte Power on Reset Vector (R/O)
		14		1 = 1 MByte; 0 = 4 GBytes
		15		Reserved
		17:16		APIC Cluster ID (R/O)
		17.10		Always 00B.
		19: 18		Reserved.
		21: 20		Symmetric Arbitration ID (R/O)
				Always 00B.
		26:22		Integer Bus Frequency Ratio (R/O)
ЗАН	58	IA32_FEATURE_CONTROL	Unique	Control Features in Intel 64Processor (R/W)
				See Table 35-2.
40H	64	MSR_	Unique	Last Branch Record O From IP (R/W)
		LASTBRANCH_0_FROM_IP		One of eight pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the source instruction for one of the last eight branches, exceptions, or interrupts taken by the processor. See also:
				 Last Branch Record Stack TOS at 1C9H Section 17.12, "Last Branch, Interrupt, and Exception Recording (Pentium M Processors)."
41H	65	MSR_	Unique	Last Branch Record 1 From IP (R/W)
		LASTBRANCH_1_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
42H	66	MSR_	Unique	Last Branch Record 2 From IP (R/W)
		LASTBRANCH_2_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
43H	67	MSR_	Unique	Last Branch Record 3 From IP (R/W)
		LASTBRANCH_3_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
44H	68	MSR_ LASTBRANCH_4_FROM_IP	Unique	Last Branch Record 4 From IP (R/W)
		C G I DIVANCI L4_I ROH_IP		See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec]		
45H	69	MSR_	Unique	Last Branch Record 5 From IP (R/W)
		LASTBRANCH_5_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
46H	70	MSR_	Unique	Last Branch Record 6 From IP (R/W)
		LASTBRANCH_6_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
47H	71	MSR_	Unique	Last Branch Record 7 From IP (R/W)
		LASTBRANCH_7_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
60H	96	MSR_ LASTBRANCH_0_TO_IP	Unique	Last Branch Record 0 To IP (R/W)
		CASTBRANCH_U_TU_IP		One of eight pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the destination instruction for one of the last eight branches, exceptions, or interrupts taken by the processor.
61H	97	MSR_	Unique	Last Branch Record 1 To IP (R/W)
		LASTBRANCH_1_TO_IP		See description of MSR_LASTBRANCH_0_TO_IP.
62H	98	MSR_	Unique	Last Branch Record 2 To IP (R/W)
		LASTBRANCH_2_TO_IP		See description of MSR_LASTBRANCH_0_T0_IP.
63H	99	MSR_	Unique	Last Branch Record 3 To IP (R/W)
		LASTBRANCH_3_TO_IP		See description of MSR_LASTBRANCH_0_TO_IP.
64H	100	MSR_ Lastbranch_4_to_ip	Unique	Last Branch Record 4 To IP (R/W)
	4.04			See description of MSR_LASTBRANCH_0_TO_IP.
65H	101	MSR_ Lastbranch_5_to_ip	Unique	Last Branch Record 5 To IP (R/W)
CCLI	102		Halaus	See description of MSR_LASTBRANCH_0_TO_IP.
66H	102	MSR_ LASTBRANCH_6_TO_IP	Unique	Last Branch Record 6 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
67H	103		Unique	Last Branch Record 7 To IP (R/W)
0/П	103	LASTBRANCH_7_TO_IP	Orlique	See description of MSR_LASTBRANCH_0_T0_IP.
79H	121	IA32_BIOS_UPDT_TRIG	Shared	BIOS Update Trigger Register (W)
7 311	'-'	17.52_B103_01 B1_11(ld	Sildred	See Table 35-2.
8BH	139	IA32_BIOS_SIGN_ID	Unique	BIOS Update Signature ID (RO)
			'	See Table 35-2.
C1H	193	IA32_PMC0	Unique	Performance counter register
				See Table 35-2.
C2H	194	IA32_PMC1	Unique	Performance Counter Register
				See Table 35-2.
CDH	205	MSR_FSB_FREQ	Shared	Scaleable Bus Speed(RO)
				This field indicates the intended scaleable bus clock speed for processors based on Intel Atom microarchitecture:

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
		2:0		 111B: 083 MHz (FSB 333) 101B: 100 MHz (FSB 400) 001B: 133 MHz (FSB 533) 011B: 167 MHz (FSB 667)
				133.33 MHz should be utilized if performing calculation with System Bus Speed when encoding is 001B.
				166.67 MHz should be utilized if performing calculation with System Bus Speed when encoding is 011B.
		63:3		Reserved.
E7H	231	IA32_MPERF	Unique	Maximum Performance Frequency Clock Count (RW) See Table 35-2.
E8H	232	IA32_APERF	Unique	Actual Performance Frequency Clock Count (RW) See Table 35-2.
FEH	254	IA32_MTRRCAP	Shared	Memory Type Range Register (R) See Table 35-2.
11EH	281	MSR_BBL_CR_CTL3	Shared	
		0		L2 Hardware Enabled (RO)
				1 = If the L2 is hardware-enabled
				0 = Indicates if the L2 is hardware-disabled
		7:1		Reserved.
		8		L2 Enabled. (R/W)
				1 = L2 cache has been initialized
				0 = Disabled (default)
				Until this bit is set the processor will not respond to the WBINVD instruction or the assertion of the FLUSH# input.
		22:9		Reserved.
		23		L2 Not Present (RO)
				0 = L2 Present
				1 = L2 Not Present
		63:24		Reserved.
174H	372	IA32_SYSENTER_CS	Unique	See Table 35-2.
175H	373	IA32_SYSENTER_ESP	Unique	See Table 35-2.
176H	374	IA32_SYSENTER_EIP	Unique	See Table 35-2.
179H	377	IA32_MCG_CAP	Unique	See Table 35-2.
17AH	378	IA32_MCG_STATUS	Unique	

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Regi Add		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
		0		RIPV When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) can be used to restart the program. If cleared, the program cannot be reliably restarted
		1		When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) is directly associated with the error.
		2		MCIP When set, bit indicates that a machine check has been generated. If a second machine check is detected while this bit is still set, the processor enters a shutdown state. Software should write this bit to 0 after processing a machine check exception.
		63:3		Reserved.
186H	390	IA32_PERFEVTSEL0	Unique	See Table 35-2.
187H	391	IA32_PERFEVTSEL1	Unique	See Table 35-2.
198H	408	IA32_PERF_STATUS	Shared	See Table 35-2.
198H	408	MSR_PERF_STATUS	Shared	
		15:0		Current Performance State Value.
		39:16		Reserved.
		44:40		Maximum Bus Ratio (R/O) Indicates maximum bus ratio configured for the processor.
		63:45		Reserved.
199H	409	IA32_PERF_CTL	Unique	See Table 35-2.
19AH	410	IA32_CLOCK_MODULATION	Unique	Clock Modulation (R/W) See Table 35-2. IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.
19BH	411	IA32_THERM_INTERRUPT	Unique	Thermal Interrupt Control (R/W) See Table 35-2.
19CH	412	IA32_THERM_STATUS	Unique	Thermal Monitor Status (R/W) See Table 35-2.
19DH	413	MSR_THERM2_CTL	Shared	
		15:0		Reserved.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
		16		TM_SELECT (R/W) Mode of automatic thermal monitor: 0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the stop-clock duty cycle)
				1 = Thermal Monitor 2 (thermally-initiated frequency transitions) If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no effect. Neither TM1 nor TM2 are enabled.
		63:17		Reserved.
1A0H	416	IA32_MISC_ENABLE	Unique	Enable Misc. Processor Features (R/W) Allows a variety of processor functions to be enabled and disabled.
		0		Fast-Strings Enable See Table 35-2.
		2:1		Reserved.
		3	Unique	Automatic Thermal Control Circuit Enable (R/W) See Table 35-2.
		6:4		Reserved.
		7	Shared	Performance Monitoring Available (R) See Table 35-2.
		8		Reserved.
		9		Reserved.
		10	Shared	FERR# Multiplexing Enable (R/W) 1 = FERR# asserted by the processor to indicate a pending break event within the processor 0 = Indicates compatible FERR# signaling behavior This bit must be set to 1 to support XAPIC interrupt model usage.
		11	Shared	Branch Trace Storage Unavailable (RO) See Table 35-2.
		12	Shared	Precise Event Based Sampling Unavailable (RO) See Table 35-2.
		13	Shared	TM2 Enable (R/W) When this bit is set (1) and the thermal sensor indicates that the die temperature is at the pre-determined threshold, the Thermal Monitor 2 mechanism is engaged. TM2 will reduce the bus to core ratio and voltage according to the value last written to MSR_THERM2_CTL bits 15:0.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
				When this bit is clear (0, default), the processor does not change the VID signals or the bus to core ratio when the processor enters a thermally managed state.
				The BIOS must enable this feature if the TM2 feature flag (CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this feature is not supported and BIOS must not alter the contents of the TM2 bit location.
				The processor is operating out of specification if both this bit and the TM1 bit are set to 0.
		15:14		Reserved.
		16	Shared	Enhanced Intel SpeedStep Technology Enable (R/W) See Table 35-2.
		18	Shared	ENABLE MONITOR FSM (R/W)
				See Table 35-2.
		19		Reserved.
		20	Shared	Enhanced Intel SpeedStep Technology Select Lock (R/WO)
				 When set, this bit causes the following bits to become read-only: Enhanced Intel SpeedStep Technology Select Lock (this bit), Enhanced Intel SpeedStep Technology Enable bit.
				The bit must be set before an Enhanced Intel SpeedStep Technology transition is requested. This bit is cleared on reset.
		21		Reserved.
		22	Unique	Limit CPUID Maxval (R/W) See Table 35-2.
		23	Shared	xTPR Message Disable (R/W) See Table 35-2.
		33:24		Reserved.
		34	Unique	XD Bit Disable (R/W)
				See Table 35-2.
		63:35		Reserved.
1C9H	457	MSR_LASTBRANCH_TOS	Unique	Last Branch Record Stack TOS (R/W) Contains an index (bits 0-2) that points to the MSR containing the most recent branch record.
				See MSR_LASTBRANCH_0_FROM_IP (at 40H).
1D9H	473	IA32_DEBUGCTL	Unique	Debug Control (R/W) See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register Address		Register Name	Shared/ Unique	Bit Description
Hex	Dec			
1DDH	477	MSR_LER_FROM_LIP	Unique	Last Exception Record From Linear IP (R) Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
1DEH	478	MSR_LER_TO_LIP	Unique	Last Exception Record To Linear IP (R)
				This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
200H	512	IA32_MTRR_PHYSBASE0	Shared	See Table 35-2.
201H	513	IA32_MTRR_PHYSMASK0	Shared	See Table 35-2.
202H	514	IA32_MTRR_PHYSBASE1	Shared	See Table 35-2.
203H	515	IA32_MTRR_PHYSMASK1	Shared	See Table 35-2.
204H	516	IA32_MTRR_PHYSBASE2	Shared	See Table 35-2.
205H	517	IA32_MTRR_PHYSMASK2	Shared	See Table 35-2.
206H	518	IA32_MTRR_PHYSBASE3	Shared	See Table 35-2.
207H	519	IA32_MTRR_PHYSMASK3	Shared	See Table 35-2.
208H	520	IA32_MTRR_PHYSBASE4	Shared	See Table 35-2.
209H	521	IA32_MTRR_PHYSMASK4	Shared	See Table 35-2.
20AH	522	IA32_MTRR_PHYSBASE5	Shared	See Table 35-2.
20BH	523	IA32_MTRR_PHYSMASK5	Shared	See Table 35-2.
20CH	524	IA32_MTRR_PHYSBASE6	Shared	See Table 35-2.
20DH	525	IA32_MTRR_PHYSMASK6	Shared	See Table 35-2.
20EH	526	IA32_MTRR_PHYSBASE7	Shared	See Table 35-2.
20FH	527	IA32_MTRR_PHYSMASK7	Shared	See Table 35-2.
250H	592	IA32_MTRR_FIX64K_ 00000	Shared	See Table 35-2.
258H	600	IA32_MTRR_FIX16K_ 80000	Shared	See Table 35-2.
259H	601	IA32_MTRR_FIX16K_ A0000	Shared	See Table 35-2.
268H	616	IA32_MTRR_FIX4K_C0000	Shared	See Table 35-2.
269H	617	IA32_MTRR_FIX4K_C8000	Shared	See Table 35-2.
26AH	618	IA32_MTRR_FIX4K_D0000	Shared	See Table 35-2.
26BH	619	IA32_MTRR_FIX4K_D8000	Shared	See Table 35-2.
26CH	620	IA32_MTRR_FIX4K_E0000	Shared	See Table 35-2.
26DH	621	IA32_MTRR_FIX4K_E8000	Shared	See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Regi Add	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
26EH	622	IA32_MTRR_FIX4K_F0000	Shared	See Table 35-2.
26FH	623	IA32_MTRR_FIX4K_F8000	Shared	See Table 35-2.
277H	631	IA32_PAT	Unique	See Table 35-2.
309H	777	IA32_FIXED_CTR0	Unique	Fixed-Function Performance Counter Register 0 (R/W) See Table 35-2.
30AH	778	IA32_FIXED_CTR1	Unique	Fixed-Function Performance Counter Register 1 (R/W) See Table 35-2.
30BH	779	IA32_FIXED_CTR2	Unique	Fixed-Function Performance Counter Register 2 (R/W) See Table 35-2.
345H	837	IA32_PERF_CAPABILITIES	Shared	See Table 35-2. See Section 17.4.1, "IA32_DEBUGCTL MSR."
38DH	909	IA32_FIXED_CTR_CTRL	Unique	Fixed-Function-Counter Control Register (R/W)
				See Table 35-2.
38EH	910	IA32_PERF_GLOBAL_ STAUS	Unique	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
38FH	911	IA32_PERF_GLOBAL_CTRL	Unique	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL	Unique	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
3F1H	1009	MSR_PEBS_ENABLE	Unique	See Table 35-2. See Section 18.4.4, "Precise Event Based Sampling (PEBS)."
		0		Enable PEBS on IA32_PMCO. (R/W)
400H	1024	IA32_MCO_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
401H	1025	IA32_MCO_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
402H	1026	IA32_MCO_ADDR	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The IA32_MCO_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MCO_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
404H	1028	IA32_MC1_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
405H	1029	IA32_MC1_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
408H	1032	IA32_MC2_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
409H	1033	IA32_MC2_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
40AH	1034	IA32_MC2_ADDR	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC2_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
40CH	1036	MSR_MC3_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
40DH	1037	MSR_MC3_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
40EH	1038	MSR_MC3_ADDR	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC3_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
410H	1040	MSR_MC4_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
411H	1041	MSR_MC4_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
412H	1042	MSR_MC4_ADDR	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC4_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
480H	1152	IA32_VMX_BASIC	Unique	Reporting Register of Basic VMX Capabilities (R/O)
				See Table 35-2.
				See Appendix A.1, "Basic VMX Information."
481H	1153	IA32_VMX_PINBASED_ CTLS	Unique	Capability Reporting Register of Pin-based VM-execution Controls (R/O)
				See Table 35-2.
				See Appendix A.3, "VM-Execution Controls."
482H	1154	IA32_VMX_PROCBASED_ CTLS	Unique	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)
				See Appendix A.3, "VM-Execution Controls."
483H	1155	IA32_VMX_EXIT_CTLS	Unique	Capability Reporting Register of VM-exit Controls (R/O)
				See Table 35-2.
				See Appendix A.4, "VM-Exit Controls."
484H	1156	IA32_VMX_ENTRY_CTLS	Unique	Capability Reporting Register of VM-entry Controls (R/O)
				See Table 35-2.
				See Appendix A.5, "VM-Entry Controls."

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
485H	1157	IA32_VMX_MISC	Unique	Reporting Register of Miscellaneous VMX Capabilities (R/O) See Table 35-2. See Appendix A.6, "Miscellaneous Data."
486H	1158	IA32_VMX_CRO_FIXEDO	Unique	Capability Reporting Register of CRO Bits Fixed to 0 (R/O) See Table 35-2. See Appendix A.7, "VMX-Fixed Bits in CRO."
487H	1159	IA32_VMX_CR0_FIXED1	Unique	Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) See Table 35-2. See Appendix A.7, "VMX-Fixed Bits in CR0."
488H	1160	IA32_VMX_CR4_FIXED0	Unique	Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
489H	1161	IA32_VMX_CR4_FIXED1	Unique	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
48AH	1162	IA32_VMX_VMCS_ENUM	Unique	Capability Reporting Register of VMCS Field Enumeration (R/O) See Table 35-2. See Appendix A.9, "VMCS Enumeration."
48BH	1163	IA32_VMX_PROCBASED_ CTLS2	Unique	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O) See Appendix A.3, "VM-Execution Controls."
600H	1536	IA32_DS_AREA	Unique	DS Save Area (R/W) See Table 35-2. See Section 18.13.4, "Debug Store (DS) Mechanism."
0080H		IA32_EFER	Unique	Extended Feature Enables See Table 35-2.
C000_ 0081H		IA32_STAR	Unique	System Call Target Address (R/W) See Table 35-2.
C000_ 0082H		IA32_LSTAR	Unique	IA-32e Mode System Call Target Address (R/W) See Table 35-2.
C000_ 0084H		IA32_FMASK	Unique	System Call Flag Mask (R/W) See Table 35-2.
C000_ 0100H		IA32_FS_BASE	Unique	Map of BASE Address of FS (R/W) See Table 35-2.
C000_ 0101H		IA32_GS_BASE	Unique	Map of BASE Address of GS (R/W) See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Regi Add	ister ress	Register Name	Shared/ Unique	Bit Description
Hex	Dec			
C000_ 0102H		IA32_KERNEL_GSBASE	Unique	Swap Target of BASE Address of GS (R/W) See Table 35-2.

. . .

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH, 06_5AH, and 06_5DH, see Table 16-1.

The column "Scope" lists the core/shared/package granularity of sharing in the Silvermont microarchitecture. "Core" means each processor core has a separate MSR, or a bit field not shared with another processor core. "Shared" means the MSR or the bit field is shared by more than one processor cores in the physical package. "Package" means all processor cores in the physical package share the same MSR or bit interface.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Add	ress	Register Name	Scope	
Hex	Dec			Bit Description
OH	0	IA32_P5_MC_ADDR	Shared	See Section 35.20, "MSRs in Pentium Processors."
1H	1	IA32_P5_MC_TYPE	Shared	See Section 35.20, "MSRs in Pentium Processors."
6H	6	IA32_MONITOR_FILTER_ SIZE	Core	See Section 8.10.5, "Monitor/Mwait Address Range Determination." and Table 35-2
10H	16	IA32_TIME_STAMP_ COUNTER	Core	See Section 17.14, "Time-Stamp Counter," and see Table 35-2.
17H	23	IA32_PLATFORM_ID	Shared	Platform ID (R) See Table 35-2.
17H	23	MSR_PLATFORM_ID	Shared	Model Specific Platform ID (R)
		7:0		Reserved.
		12:8		Maximum Qualified Ratio (R)
				The maximum allowed bus ratio.
		49:13		Reserved.
		52:50		See Table 35-2
		63:33		Reserved.
1BH	27	IA32_APIC_BASE	Core	See Section 10.4.4, "Local APIC Status and Location," and Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addı	ress		Scope	
Hex	Dec 42	Register Name		Bit Description
2AH	42	MSR_EBL_CR_POWERON	Shared	Processor Hard Power-On Configuration (R/W) Enables and disables processor features; (R) indicates current processor configuration.
		0		Reserved.
		1		Data Error Checking Enable (R/W) 1 = Enabled; 0 = Disabled Always 0.
		2		Response Error Checking Enable (R/W) 1 = Enabled; 0 = Disabled Always 0.
		3		AERR# Drive Enable (R/W) 1 = Enabled; 0 = Disabled Always 0.
		4		BERR# Enable for initiator bus requests (R/W) 1 = Enabled; 0 = Disabled Always 0.
		5		Reserved.
		6		Reserved.
		7		BINIT# Driver Enable (R/W) 1 = Enabled; 0 = Disabled Always 0.
		8		Reserved.
		9		Execute BIST (R/0) 1 = Enabled; 0 = Disabled
		10		AERR# Observation Enabled (R/O) 1 = Enabled; 0 = Disabled Always 0.
		11		Reserved.
		12		BINIT# Observation Enabled (R/O) 1 = Enabled; 0 = Disabled Always 0.
		13		Reserved.
		14		1 MByte Power on Reset Vector (R/O) 1 = 1 MByte; 0 = 4 GBytes
		15		Reserved
		17:16		APIC Cluster ID (R/O) Always 00B.
		19: 18		Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addı	ress		Scope	
Hex	Dec	Register Name		Bit Description
		21: 20		Symmetric Arbitration ID (R/O)
				Always 00B.
		26:22		Integer Bus Frequency Ratio (R/O)
34H	52	MSR_SMI_COUNT	Core	SMI Counter (R/O)
		31:0		SMI Count (R/O)
				Running count of SMI events since last RESET.
		63:32		Reserved.
ЗАН	58	IA32_FEATURE_CONTROL	Соге	Control Features in Intel 64Processor (R/W)
				See Table 35-2.
		0		Lock (R/WL)
		1		Reserved
		2		Enable VMX outside SMX operation (R/WL)
40H	64	MSR_ LASTBRANCH_O_FROM_IP	Соге	Last Branch Record O From IP (R/W)
				One of eight pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the source instruction for one of the last eight branches, exceptions, or interrupts taken by the processor. See also:
				 Last Branch Record Stack TOS at 1C9H Section 17.12, "Last Branch, Interrupt, and Exception Recording (Pentium M Processors)."
41H	65	MSR_	Соге	Last Branch Record 1 From IP (R/W)
		LASTBRANCH_1_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
42H	66	MSR_	Core	Last Branch Record 2 From IP (R/W)
		LASTBRANCH_2_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
43H	67	MSR_	Соге	Last Branch Record 3 From IP (R/W)
		LASTBRANCH_3_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
44H	68	MSR_	Соге	Last Branch Record 4 From IP (R/W)
		LASTBRANCH_4_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
45H	69	MSR_	Core	Last Branch Record 5 From IP (R/W)
		LASTBRANCH_5_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
46H	70	MSR_	Core	Last Branch Record 6 From IP (R/W)
		LASTBRANCH_6_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
47H	71	MSR_	Core	Last Branch Record 7 From IP (R/W)
		LASTBRANCH_7_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Add	ress	Register Name	Scope	
Hex	Dec			Bit Description
60H	96	MSR_	Соге	Last Branch Record O To IP (R/W)
		LASTBRANCH_0_TO_IP		One of eight pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the destination instruction for one of the last eight branches, exceptions, or interrupts taken by the processor.
61H	97	MSR_	Core	Last Branch Record 1 To IP (R/W)
		LASTBRANCH_1_TO_IP		See description of MSR_LASTBRANCH_0_TO_IP.
62H	98	MSR_	Core	Last Branch Record 2 To IP (R/W)
		LASTBRANCH_2_TO_IP		See description of MSR_LASTBRANCH_0_T0_IP.
63H	99	MSR_	Core	Last Branch Record 3 To IP (R/W)
		LASTBRANCH_3_TO_IP		See description of MSR_LASTBRANCH_0_T0_IP.
64H	100	MSR_	Core	Last Branch Record 4 To IP (R/W)
		LASTBRANCH_4_TO_IP		See description of MSR_LASTBRANCH_0_T0_IP.
65H	101	MSR_	Соге	Last Branch Record 5 To IP (R/W)
		LASTBRANCH_5_TO_IP		See description of MSR_LASTBRANCH_0_T0_IP.
66H	102	MSR_ LASTBRANCH_6_TO_IP	Core	Last Branch Record 6 To IP (R/W)
	LA			See description of MSR_LASTBRANCH_0_T0_IP.
67H	103	MSR_	Core	Last Branch Record 7 To IP (R/W)
		LASTBRANCH_7_TO_IP		See description of MSR_LASTBRANCH_0_TO_IP.
79H	121	IA32_BIOS_UPDT_TRIG	Соге	BIOS Update Trigger Register (W)
				See Table 35-2.
8BH	139	IA32_BIOS_SIGN_ID	Core	BIOS Update Signature ID (RO)
				See Table 35-2.
C1H	193	IA32_PMC0	Core	Performance counter register
				See Table 35-2.
C2H	194	IA32_PMC1	Core	Performance Counter Register
				See Table 35-2.
CDH	205	MSR_FSB_FREQ	Shared	Scaleable Bus Speed(RO)
				This field indicates the intended scaleable bus clock speed for processors based on Silvermont microarchitecture:
		2:0		 100B: 080.0 MHz 000B: 083.3 MHz 001B: 100.0 MHz 010B: 133.3 MHz 011B: 116.7 MHz
		63:3		Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addı	ress	Register Name	Scope	
Hex	Dec			Bit Description
E2H	226	MSR_PKG_CST_CONFIG_	Shared	C-State Configuration Control (R/W)
		CONTROL		Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
				See http://biosbits.org.
		2:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power). for the package. The default is set as factory-configured package C-state limit.
				The following C-state code name encodings are supported:
				000b: CO (no package C-sate support)
				001b: C1 (Behavior is the same as 000b)
				100b: C4
				110b: C6
				111b: C7 (Silvermont only).
		9:3		Reserved.
		10		I/O MWAIT Redirection Enable (R/W)
				When set, will map IO_read instructions sent to IO register specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions
		14:11		Reserved.
		15		CFG Lock (R/WO)
				When set, lock bits 15:0 of this register until next reset.
		63:16		Reserved.
E4H	228	MSR_PMG_IO_CAPTURE_	Shared	Power Management IO Redirection in C-state (R/W)
		BASE		See http://biosbits.org.
		15:0		LVL_2 Base Address (R/W)
				Specifies the base address visible to software for IO redirection. If IO MWAIT Redirection is enabled, reads to this address will be consumed by the power management logic and decoded to MWAIT instructions. When IO port address redirection is enabled, this is the IO port address reported to the OS/software.
		18:16		C-state Range (R/W)
				Specifies the encoding value of the maximum C-State code name to be included when IO read to MWAIT redirection is enabled by MSR_PKG_CST_CONFIG_CONTROL[bit10]:
				100b - C4 is the max C-State to include
				110b - C6 is the max C-State to include
				111b - C7 is the max C-State to include
		63:19		Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Add	ress	_	Scope	
Hex	Dec	Register Name		Bit Description
E7H	231	IA32_MPERF	Core	Maximum Performance Frequency Clock Count (RW)
				See Table 35-2.
E8H	232	IA32_APERF	Core	Actual Performance Frequency Clock Count (RW)
				See Table 35-2.
FEH	254	IA32_MTRRCAP	Core	Memory Type Range Register (R)
				See Table 35-2.
11EH	281	MSR_BBL_CR_CTL3	Shared	
		0		L2 Hardware Enabled (R0)
				1 = If the L2 is hardware-enabled
				0 = Indicates if the L2 is hardware-disabled
		7:1		Reserved.
		8		L2 Enabled. (R/W)
				1 = L2 cache has been initialized
				0 = Disabled (default)
				Until this bit is set the processor will not respond to the WBINVD instruction or the assertion of the FLUSH# input.
		22:9		Reserved.
		23		L2 Not Present (RO)
				0 = L2 Present
				1 = L2 Not Present
		63:24		Reserved.
174H	372	IA32_SYSENTER_CS	Core	See Table 35-2.
175H	373	IA32_SYSENTER_ESP	Соге	See Table 35-2.
176H	374	IA32_SYSENTER_EIP	Core	See Table 35-2.
179H	377	IA32_MCG_CAP	Core	See Table 35-2.
17AH	378	IA32_MCG_STATUS	Соге	
		0		RIPV
				When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) can be used to restart the program. If cleared, the
				program cannot be reliably restarted
		1		EIPV
				When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) is directly associated with the error.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addr			Scope	ors based off the Silvermont Photoarchitecture
Hex	Dec	Register Name		Bit Description
		2		MCIP
				When set, bit indicates that a machine check has been generated. If a second machine check is detected while this bit is still set, the processor enters a shutdown state. Software should write this bit to 0 after processing a machine check exception.
		63:3		Reserved.
186H	390	IA32_PERFEVTSEL0	Соге	See Table 35-2.
		7:0		Event Select
		15:8		UMask
		16		USR
		17		OS
		18		Edge
		19		PC
		20		INT
		21		Reserved
		22		EN
		23		INV
		31:24		CMASK
		63:32		Reserved.
187H	391	IA32_PERFEVTSEL1	Core	See Table 35-2.
198H	408	IA32_PERF_STATUS	Shared	See Table 35-2.
199H	409	IA32_PERF_CTL	Соге	See Table 35-2.
19AH	410	IA32_CLOCK_MODULATION	Core	Clock Modulation (R/W) See Table 35-2. IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.
19BH	411	IA32_THERM_INTERRUPT	Соге	Thermal Interrupt Control (R/W)
				See Table 35-2.
19CH	412	IA32_THERM_STATUS	Core	Thermal Monitor Status (R/W) See Table 35-2.
1A0H	416	IA32_MISC_ENABLE		Enable Misc. Processor Features (R/W) Allows a variety of processor functions to be enabled and disabled.
		0	Core	Fast-Strings Enable See Table 35-2.
		2:1		Reserved.
		3	Shared	Automatic Thermal Control Circuit Enable (R/W)
				See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addı	ress		Scope	
Hex	Dec	Register Name		Bit Description
		6:4		Reserved.
		7	Core	Performance Monitoring Available (R) See Table 35-2.
		10:8		Reserved.
		11	Core	Branch Trace Storage Unavailable (RO) See Table 35-2.
		12	Core	Precise Event Based Sampling Unavailable (RO) See Table 35-2.
		15:13		Reserved.
		16	Shared	Enhanced Intel SpeedStep Technology Enable (R/W) See Table 35-2.
		18	Core	ENABLE MONITOR FSM (R/W) See Table 35-2.
		21:19		Reserved.
		22	Core	Limit CPUID Maxval (R/W) See Table 35-2.
		23	Shared	xTPR Message Disable (R/W) See Table 35-2.
		33:24		Reserved.
		34	Core	XD Bit Disable (R/W) See Table 35-2.
		37:35		Reserved.
		38	Shared	Turbo Mode Disable (R/W)
				When set to 1 on processors that support Intel Turbo Boost Technology, the turbo mode feature is disabled and the IDA_Enable feature flag will be clear (CPUID.06H: EAX[1]=0).
				When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] reports the processor's support of turbo mode is enabled.
				Note: the power-on default value is used by BIOS to detect hardware support of turbo mode. If power-on default value is 1, turbo mode is available in the processor. If power-on default value is 0, turbo mode is not available.
		63:39		Reserved.
1A2H	418	MSR_ TEMPERATURE_TARGET	Package	
		15:0		Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addı	ress		Scope	
Hex	Dec	Register Name		Bit Description
		23:16		Temperature Target (R) The default thermal throttling or PROCHOT# activation temperature in degree C, The effective temperature for thermal throttling or PROCHOT# activation is "Temperature Target" + "Target Offset"
		29:24		Target Offset (R/W) Specifies an offset in degrees C to adjust the throttling and PROCHOT# activation temperature from the default target specified in TEMPERATURE_TARGET (bits 23:16).
		63:30		Reserved.
1A6H	422	MSR_OFFCORE_RSP_0	Shared	Offcore Response Event Select Register (R/W)
1A7H	423	MSR_OFFCORE_RSP_1	Shared	Offcore Response Event Select Register (R/W)
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode (RW)
		7:0	Package	Maximum Ratio Limit for 1C Maximum turbo ratio limit of 1 core active.
		15:8	Package	Maximum Ratio Limit for 2C Maximum turbo ratio limit of 2 core active.
		23:16	Package	Maximum Ratio Limit for 3C Maximum turbo ratio limit of 3 core active.
		31:24	Package	Maximum Ratio Limit for 4C Maximum turbo ratio limit of 4 core active.
		63:32		Reserved
1B0H	432	IA32_ENERGY_PERF_BIAS	Core	See Table 35-2.
1C9H	457	MSR_LASTBRANCH_TOS	Core	Last Branch Record Stack TOS (R/W) Contains an index (bits 0-2) that points to the MSR containing the most recent branch record. See MSR_LASTBRANCH_O_FROM_IP (at 40H).
1D9H	473	IA32_DEBUGCTL	Core	Debug Control (R/W) See Table 35-2.
1DDH	477	MSR_LER_FROM_LIP	Core	Last Exception Record From Linear IP (R) Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
1DEH	478	MSR_LER_TO_LIP	Core	Last Exception Record To Linear IP (R) This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
1F2H	498	IA32_SMRR_PHYSBASE	Соге	See Table 35-2.
1F3H	499	IA32_SMRR_PHYSMASK	Соге	See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addı	ress		Scope	
Hex	Dec	Register Name		Bit Description
200H	512	IA32_MTRR_PHYSBASE0	Соге	See Table 35-2.
201H	513	IA32_MTRR_PHYSMASK0	Соге	See Table 35-2.
202H	514	IA32_MTRR_PHYSBASE1	Соге	See Table 35-2.
203H	515	IA32_MTRR_PHYSMASK1	Соге	See Table 35-2.
204H	516	IA32_MTRR_PHYSBASE2	Соге	See Table 35-2.
205H	517	IA32_MTRR_PHYSMASK2	Соге	See Table 35-2.
206H	518	IA32_MTRR_PHYSBASE3	Core	See Table 35-2.
207H	519	IA32_MTRR_PHYSMASK3	Соге	See Table 35-2.
208H	520	IA32_MTRR_PHYSBASE4	Core	See Table 35-2.
209H	521	IA32_MTRR_PHYSMASK4	Core	See Table 35-2.
20AH	522	IA32_MTRR_PHYSBASE5	Core	See Table 35-2.
20BH	523	IA32_MTRR_PHYSMASK5	Соге	See Table 35-2.
20CH	524	IA32_MTRR_PHYSBASE6	Соге	See Table 35-2.
20DH	525	IA32_MTRR_PHYSMASK6	Соге	See Table 35-2.
20EH	526	IA32_MTRR_PHYSBASE7	Соге	See Table 35-2.
20FH	527	IA32_MTRR_PHYSMASK7	Core	See Table 35-2.
250H	592	IA32_MTRR_FIX64K_ 00000	Core	See Table 35-2.
258H	600	IA32_MTRR_FIX16K_ 80000	Core	See Table 35-2.
259H	601	IA32_MTRR_FIX16K_ A0000	Core	See Table 35-2.
268H	616	IA32_MTRR_FIX4K_C0000	Соге	See Table 35-2.
269H	617	IA32_MTRR_FIX4K_C8000	Соге	See Table 35-2.
26AH	618	IA32_MTRR_FIX4K_D0000	Соге	See Table 35-2.
26BH	619	IA32_MTRR_FIX4K_D8000	Соге	See Table 35-2.
26CH	620	IA32_MTRR_FIX4K_E0000	Соге	See Table 35-2.
26DH	621	IA32_MTRR_FIX4K_E8000	Core	See Table 35-2.
26EH	622	IA32_MTRR_FIX4K_F0000	Соге	See Table 35-2.
26FH	623	IA32_MTRR_FIX4K_F8000	Core	See Table 35-2.
277H	631	IA32_PAT	Core	See Table 35-2.
2FFH	767	IA32_MTRR_DEF_TYPE	Core	Default Memory Types (R/W) See Table 35-2.
309H	777	IA32_FIXED_CTR0	Core	Fixed-Function Performance Counter Register 0 (R/W) See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Add		le 55-6 Common Maks III	Scope	
Hex	Dec	Register Name		Bit Description
30AH	778	IA32_FIXED_CTR1	Core	Fixed-Function Performance Counter Register 1 (R/W) See Table 35-2.
30BH	779	IA32_FIXED_CTR2	Core	Fixed-Function Performance Counter Register 2 (R/W) See Table 35-2.
345H	837	IA32_PERF_CAPABILITIES	Соге	See Table 35-2. See Section 17.4.1, "IA32_DEBUGCTL MSR."
38DH	909	IA32_FIXED_CTR_CTRL	Core	Fixed-Function-Counter Control Register (R/W) See Table 35-2.
38EH	910	IA32_PERF_GLOBAL_ STAUS	Core	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
38FH	911	IA32_PERF_GLOBAL_CTRL	Core	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL	Core	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
3F1H	1009	MSR_PEBS_ENABLE	Core	See Table 35-2. See Section 18.4.4, "Precise Event Based Sampling (PEBS)."
		0		Enable PEBS on IA32_PMCO. (R/W)
3FAH	1018	MSR_PKG_C6_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		Package C6 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C6 states. Counts at the TSC Frequency.
3FDH	1021	MSR_CORE_C6_RESIDENCY	Core	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		CORE C6 Residency Counter. (R/O)
				Value since last reset that this core is in processor-specific C6 states. Counts at the TSC Frequency.
400H	1024	IA32_MCO_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
401H	1025	IA32_MCO_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
402H	1026	IA32_MCO_ADDR	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
				The IA32_MCO_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MCO_STATUS register is clear.
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
404H	1028	IA32_MC1_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
405H	1029	IA32_MC1_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
408H	1032	IA32_MC2_CTL	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
409H	1033	IA32_MC2_STATUS	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address			Scope	D. D	
Hex	Dec	Register Name		Bit Description	
40AH	1034	IA32_MC2_ADDR	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
				The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC2_STATUS register is clear.	
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.	
40CH	1036	MSR_MC3_CTL	Core	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
40DH	1037	MSR_MC3_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
40EH	1038	MSR_MC3_ADDR	Соге	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
				The MSR_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC3_STATUS register is clear.	
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.	
410H	1040	MSR_MC4_CTL	Core	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
411H	1041	MSR_MC4_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
412H	1042	MSR_MC4_ADDR	Core	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
				The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC4_STATUS register is clear.	
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.	
414H	1044	MSR_MC5_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
415H	1045	MSR_MC5_STATUS	Package	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
416H	1046	MSR_MC5_ADDR	Package	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
				The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC4_STATUS register is clear.	
				When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.	
480H	1152	IA32_VMX_BASIC	Core	Reporting Register of Basic VMX Capabilities (R/O)	
				See Table 35-2.	
				See Appendix A.1, "Basic VMX Information."	
481H	1153	IA32_VMX_PINBASED_ CTLS	Соге	Capability Reporting Register of Pin-based VM-execution Controls (R/O)	
				See Table 35-2.	
				See Appendix A.3, "VM-Execution Controls."	
482H	1154	IA32_VMX_PROCBASED_ CTLS	Core	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)	
				See Appendix A.3, "VM-Execution Controls."	

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Addre	ess		Scope	
Hex	Dec	Register Name		Bit Description
483H	1155	IA32_VMX_EXIT_CTLS	Соге	Capability Reporting Register of VM-exit Controls (R/O)
				See Table 35-2.
				See Appendix A.4, "VM-Exit Controls."
484H	1156	IA32_VMX_ENTRY_CTLS	Core	Capability Reporting Register of VM-entry Controls (R/O)
				See Table 35-2.
				See Appendix A.5, "VM-Entry Controls."
485H	1157	IA32_VMX_MISC	Core	Reporting Register of Miscellaneous VMX Capabilities (R/O)
				See Table 35-2.
				See Appendix A.6, "Miscellaneous Data."
486H	1158	IA32_VMX_CRO_FIXEDO	Core	Capability Reporting Register of CRO Bits Fixed to 0 (R/O)
				See Table 35-2.
			_	See Appendix A.7, "VMX-Fixed Bits in CRO."
487H	1159	IA32_VMX_CRO_FIXED1	Core	Capability Reporting Register of CRO Bits Fixed to 1 (R/O)
				See Table 35-2.
40011	1160	LAGG VANV CDA CIVICDO	6	See Appendix A.7, "VMX-Fixed Bits in CRO."
488H	1160	IA32_VMX_CR4_FIXED0	Core	Capability Reporting Register of CR4 Bits Fixed to 0 (R/0)
				See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
489H	1161	IA32_VMX_CR4_FIXED1	Соге	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)
40311	1101	IA32_VIIA_CR4_FIACDI	Core	See Table 35-2.
				See Appendix A.8, "VMX-Fixed Bits in CR4."
48AH	1162	IA32_VMX_VMCS_ENUM	Соге	Capability Reporting Register of VMCS Field Enumeration (R/O)
10/111	1102	1/132_V11/_V11c3_c1V011	Corc	See Table 35-2.
				See Appendix A.9, "VMCS Enumeration."
48BH	1163	IA32_VMX_PROCBASED_ CTLS2	Core	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O)
		CTC32		See Appendix A.3, "VM-Execution Controls."
48CH	1164	IA32_VMX_EPT_VPID_ENU	Соге	Capability Reporting Register of EPT and VPID (R/O)
10011	1104	M	Corc	See Table 35-2
48DH	1165	IA32_VMX_TRUE_PINBASE	Core	Capability Reporting Register of Pin-based VM-execution Flex
.5511		D_CTLS	35.5	Controls (R/O)
				See Table 35-2
48EH	1166	IA32_VMX_TRUE_PROCBA SED_CTLS	Core	Capability Reporting Register of Primary Processor-based VM-execution Flex Controls (R/O)
				See Table 35-2
48FH	1167	IA32_VMX_TRUE_EXIT_CT	Core	Capability Reporting Register of VM-exit Flex Controls (R/O)
		LS		See Table 35-2

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Add	ress		Scope	
Hex	Dec	Register Name		Bit Description
490H	1168	IA32_VMX_TRUE_ENTRY_C TLS	Core	Capability Reporting Register of VM-entry Flex Controls (R/O) See Table 35-2
491H	1169	IA32_VMX_FMFUNC	Core	Capability Reporting Register of VM-function Controls (R/O) See Table 35-2
4C1H	1217	IA32_A_PMC0	Core	See Table 35-2.
4C2H	1218	IA32_A_PMC1	Core	See Table 35-2.
600H	1536	IA32_DS_AREA	Core	DS Save Area (R/W) See Table 35-2. See Section 18.13.4, "Debug Store (DS) Mechanism."
660H	1632	MSR_CORE_C1_RESIDENCY	Core	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		CORE C1 Residency Counter. (R/O) Value since last reset that this core is in processor-specific C1 states. Counts at the TSC frequency.
6E0H	1760	IA32_TSC_DEADLINE	Core	TSC Target of Local APIC's TSC Deadline Mode (R/W) See Table 35-2
0080H		IA32_EFER	Core	Extended Feature Enables See Table 35-2.
C000_ 0081H		IA32_STAR	Core	System Call Target Address (R/W) See Table 35-2.
C000_ 0082H		IA32_LSTAR	Core	IA-32e Mode System Call Target Address (R/W) See Table 35-2.
C000_ 0084H		IA32_FMASK	Core	System Call Flag Mask (R/W) See Table 35-2.
C000_ 0100H		IA32_FS_BASE	Core	Map of BASE Address of FS (R/W) See Table 35-2.
C000_ 0101H		IA32_GS_BASE	Core	Map of BASE Address of GS (R/W) See Table 35-2.
C000_ 0102H		IA32_KERNEL_GSBASE	Core	Swap Target of BASE Address of GS (R/W) See Table 35-2.
C000_ 0103H		IA32_TSC_AUX	Core	AUXILIARY TSC Signature. (R/W) See Table 35-2

. . .

35.4.1 MSRs In Intel Atom Processors Based on Airmont Microarchitecture

Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. They support MSRs listed in Table 35-6, Table 35-7, and Table 35-10. These processors have a CPUID signature with DisplayFamily_DisplayModel including 06_4CH, see Table 16-1.

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address			Scope	
Hex	Dec	Register Name		Bit Description
CDH	205	MSR_FSB_FREQ	Shared	Scaleable Bus Speed(RO) This field indicates the intended scaleable bus clock speed for processors based on Airmont microarchitecture:
		3:0		 0000B: 083.3 MHz 0001B: 100.0 MHz 0010B: 133.3 MHz 0011B: 116.7 MHz 0100B: 080.0 MHz 0101B: 093.3 MHz 0110B: 090.0 MHz 0111B: 088.9 MHz 10sure00B: 087.5 MHz
		63:5		Reserved.
E2H	226	MSR_PKG_CST_CONFIG_ CONTROL	Shared	C-State Configuration Control (R/W) Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States. See http://biosbits.org.
		2:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power). for the package. The default is set as factory-configured package C-state limit. The following C-state code name encodings are supported: 000b: No limit 001b: C1 010b: C2 110b: C6 111b: C7
		9:3		Reserved.
		10		I/O MWAIT Redirection Enable (R/W) When set, will map IO_read instructions sent to IO register specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions
		14:11		Reserved.
		15		CFG Lock (R/WO) When set, lock bits 15:0 of this register until next reset.
		63:16		Reserved.

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Add	ress	Register Name	Scope	
Hex	Dec			Bit Description
E4H	228	MSR_PMG_IO_CAPTURE_	Shared	Power Management IO Redirection in C-state (R/W)
		BASE		See http://biosbits.org.
		15:0		LVL_2 Base Address (R/W)
				Specifies the base address visible to software for IO redirection. If IO MWAIT Redirection is enabled, reads to this address will be consumed by the power management logic and decoded to MWAIT instructions. When IO port address redirection is enabled, this is the IO port address reported to the OS/software.
		18:16		C-state Range (R/W)
				Specifies the encoding value of the maximum C-State code name to be included when IO read to MWAIT redirection is enabled by MSR_PKG_CST_CONFIG_CONTROL[bit10]: 000b - C3 is the max C-State to include
				001b - Deep Power Down Technology is the max C-State 010b - C7 is the max C-State to include
		63:19		Reserved.
6201	1502		Dackage	
638H	1592	MSR_PPO_POWER_LIMIT	Package	PPO RAPL Power Limit Control (R/W)
		14:0		PPO Power Limit #1. (R/W) See Section 14.9.4, "PPO/PP1 RAPL Domains." and MSR_RAPL_POWER_UNIT in Table 35-7.
		15		Enable Power Limit #1. (R/W)
				See Section 14.9.4, "PPO/PP1 RAPL Domains."
		16		Reserved
		23:17		Time Window for Power Limit #1. (R/W)
				Specifies the time duration over which the average power must remain below PPO_POWER_LIMIT #1(14:0). Supported Encodings:
				0x0: 1 second time duration.
				0x1: 5 second time duration (Default).
				0x2: 10 second time duration.
				0x3: 15 second time duration.
				0x4: 20 second time duration.
				0x5: 25 second time duration.
				0x6: 30 second time duration.
				0x7: 35 second time duration. 0x8: 40 second time duration.
				0x9: 45 second time duration.
				0x4: 50 second time duration.
				0xB-0x7F - reserved.
		63:24		Reserved
		UJ.LT		TKESCI VCG

35.5 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM

Table 35-11 lists model-specific registers (MSRs) that are common for Intel[®] microarchitecture code name Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 16-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table 35-12. Some MSRs listed in these tables are used by BIOS. More information about these MSR can be found at http://biosbits.org.

The column "Scope" represents the package/core/thread scope of individual bit field of an MSR. "Thread" means this bit field must be programmed on each logical processor independently. "Core" means the bit field must be programmed on each processor core independently, logical processors in the same core will be affected by change of this bit on the other logical processor in the same core. "Package" means the bit field must be programmed once for each physical package. Change of a bit filed with a package scope will affect all logical processors in that physical package.

. . .

35.5.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

Intel Xeon Processor 7500 series support MSRs listed in Table 35-11 (except MSR address 1ADH) and additional model-specific registers listed in Table 35-13. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2EH.

...

35.6 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON INTEL® MICROARCHITECTURE CODE NAME WESTMERE)

Intel $^{\$}$ Xeon $^{\$}$ Processor 5600 Series (based on Intel $^{\$}$ microarchitecture code name Westmere) supports the MSR interfaces listed in Table 35-11, Table 35-12, plus additional MSR listed in Table 35-14. These MSRs apply to Intel Core i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table 16-1.

. . .

35.7 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL® MICROARCHITECTURE CODE NAME WESTMERE)

Intel[®] Xeon[®] Processor E7 Family (based on Intel[®] microarchitecture code name Westmere) supports the MSR interfaces listed in Table 35-11 (except MSR address 1ADH), Table 35-12, plus additional MSR listed in Table 35-15. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2FH.

. . .

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-16 lists model-specific registers (MSRs) that are common to Intel[®] processor family based on Intel microarchitecture code name Sandy Bridge. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 16-1. Additional MSRs specific to 06_2AH are listed in Table 35-17.

Table 35-16 MSRs Supported by Intel® Processors based on Intel® microarchitecture code name Sandy Bridge

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
OH	0	IA32_P5_MC_ADDR	Thread	See Section 35.20, "MSRs in Pentium Processors."
1H	1	IA32_P5_MC_TYPE	Thread	See Section 35.20, "MSRs in Pentium Processors."
6H	6	IA32_MONITOR_FILTER_ SIZE	Thread	See Section 8.10.5, "Monitor/Mwait Address Range Determination," and Table 35-2.
10H	16	IA32_TIME_STAMP_ COUNTER	Thread	See Section 17.14, "Time-Stamp Counter," and see Table 35-2.
17H	23	IA32_PLATFORM_ID	Package	Platform ID (R) See Table 35-2.
1BH	27	IA32_APIC_BASE	Thread	See Section 10.4.4, "Local APIC Status and Location," and Table 35-2.
34H	52	MSR_SMI_COUNT	Thread	SMI Counter (R/O)
		31:0		SMI Count (R/O) Count SMIs.
		63:32		Reserved.
ЗАН	58	IA32_FEATURE_CONTROL	Thread	Control Features in Intel 64 Processor (R/W) See Table 35-2.
		0		Lock (R/WL)
		1		Enable VMX inside SMX operation (R/WL)
		2		Enable VMX outside SMX operation (R/WL)
		14:8		SENTER local functions enables (R/WL)
		15		SENTER global functions enable (R/WL)
79H	121	IA32_BIOS_UPDT_TRIG	Core	BIOS Update Trigger Register (W) See Table 35-2.
8BH	139	IA32_BIOS_SIGN_ID	Thread	BIOS Update Signature ID (RO) See Table 35-2.
C1H	193	IA32_PMC0	Thread	Performance Counter Register See Table 35-2.

	ister Iress	Register Name	Scope	Bit Description
Hex	Dec	1		
C2H	194	IA32_PMC1	Thread	Performance Counter Register See Table 35-2.
C3H	195	IA32_PMC2	Thread	Performance Counter Register See Table 35-2.
C4H	196	IA32_PMC3	Thread	Performance Counter Register See Table 35-2.
C5H	197	IA32_PMC4	Core	Performance Counter Register (if core not shared by threads)
C6H	198	IA32_PMC5	Core	Performance Counter Register (if core not shared by threads)
C7H	199	IA32_PMC6	Core	Performance Counter Register (if core not shared by threads)
C8H	200	IA32_PMC7	Core	Performance Counter Register (if core not shared by threads)
CEH	206	MSR_PLATFORM_INFO	Package	See http://biosbits.org.
		7:0		Reserved.
		15:8	Package	Maximum Non-Turbo Ratio (R/O)
				The is the ratio of the frequency that invariant TSC runs at. Frequency = ratio * 100 MHz.
		27:16		Reserved.
		28	Package	Programmable Ratio Limit for Turbo Mode (R/O)
				When set to 1, indicates that Programmable Ratio Limits for Turbo mode is enabled, and when set to 0, indicates Programmable Ratio Limits for Turbo mode is disabled.
		29	Package	Programmable TDP Limit for Turbo Mode (R/O)
				When set to 1, indicates that TDP Limits for Turbo mode are programmable, and when set to 0, indicates TDP Limit for Turbo mode is not programmable.
		39:30		Reserved.
		47:40	Package	Maximum Efficiency Ratio (R/O)
				The is the minimum ratio (maximum efficiency) that the processor can operates, in units of 100MHz.
		63:48		Reserved.
E2H	226	MSR_PKG_CST_CONFIG_ CONTROL	Core	C-State Configuration Control (R/W) Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States. See http://biosbits.org.

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec]		
		2:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power). for the package. The default is set as factory-configured package C-state limit.
				The following C-state code name encodings are supported:
				000b: C0/C1 (no package C-sate support)
				001b: C2
				010b: C6 no retention
				011b: C6 retention
				100b: C7
				101b: C7s
				111: No package C-state limit.
				Note: This field cannot be used to limit package C-state to C3.
		9:3		Reserved.
		10		I/O MWAIT Redirection Enable (R/W)
				When set, will map IO_read instructions sent to IO register specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions
		14:11		Reserved.
		15		CFG Lock (R/WO)
				When set, lock bits 15:0 of this register until next reset.
		24:16		Reserved.
		25		C3 state auto demotion enable (R/W)
				When set, the processor will conditionally demote C6/C7 requests to C3 based on uncore auto-demote information.
		26		C1 state auto demotion enable (R/W)
				When set, the processor will conditionally demote C3/C6/C7 requests to C1 based on uncore auto-demote information.
		27		Enable C3 undemotion (R/W)
				When set, enables undemotion from demoted C3.
		28		Enable C1 undemotion (R/W)
				When set, enables undemotion from demoted C1.
		63:29		Reserved.
E4H	228	MSR_PMG_IO_CAPTURE_ BASE	Core	Power Management IO Redirection in C-state (R/W) See http://biosbits.org.

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
		15:0		LVL_2 Base Address (R/W)
				Specifies the base address visible to software for IO redirection. If IO MWAIT Redirection is enabled, reads to this address will be consumed by the power management logic and decoded to MWAIT instructions. When IO port address redirection is enabled, this is the IO port address reported to the OS/software.
		18:16		C-state Range (R/W)
				Specifies the encoding value of the maximum C-State code name to be included when IO read to MWAIT redirection is enabled by MSR_PKG_CST_CONFIG_CONTROL[bit10]:
				000b - C3 is the max C-State to include
				001b - C6 is the max C-State to include
				010b - C7 is the max C-State to include
		63:19		Reserved.
E7H	231	IA32_MPERF	Thread	Maximum Performance Frequency Clock Count (RW)
COLL	222	LAGO ADEDE	Tt	See Table 35-2.
E8H	232	IA32_APERF	Thread	Actual Performance Frequency Clock Count (RW) See Table 35-2.
FEH	254	IA32_MTRRCAP	Thread	See Table 35-2.
174H	372	IA32_SYSENTER_CS	Thread	See Table 35-2.
175H	373	IA32_SYSENTER_ESP	Thread	See Table 35-2.
176H	374	IA32_SYSENTER_EIP	Thread	See Table 35-2.
179H	377	IA32_MCG_CAP	Thread	See Table 35-2.
17AH	378	IA32_MCG_STATUS	Thread	
		0		RIPV
				When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) can be used to restart the program. If cleared, the program cannot be reliably restarted.
		1		EIPV
				When set, bit indicates that the instruction addressed by the instruction pointer pushed on the stack (when the machine check was generated) is directly associated with the error.
		2		MCIP
				When set, bit indicates that a machine check has been generated. If a second machine check is detected while this bit is still set, the processor enters a shutdown state. Software should write this bit to 0 after processing a machine check exception.
		63:3		Reserved.

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec]		
186H	390	IA32_ PERFEVTSEL0	Thread	See Table 35-2.
187H	391	IA32_ PERFEVTSEL1	Thread	See Table 35-2.
188H	392	IA32_ PERFEVTSEL2	Thread	See Table 35-2.
189H	393	IA32_ PERFEVTSEL3	Thread	See Table 35-2.
18AH	394	IA32_ PERFEVTSEL4	Core	See Table 35-2; If CPUID.OAH:EAX[15:8] = 8
18BH	395	IA32_ PERFEVTSEL5	Core	See Table 35-2; If CPUID.OAH:EAX[15:8] = 8
18CH	396	IA32_ PERFEVTSEL6	Core	See Table 35-2; If CPUID.OAH:EAX[15:8] = 8
18DH	397	IA32_ PERFEVTSEL7	Core	See Table 35-2; If CPUID.OAH:EAX[15:8] = 8
198H	408	IA32_PERF_STATUS	Package	See Table 35-2.
		15:0		Current Performance State Value.
		63:16		Reserved.
198H	408	MSR_PERF_STATUS	Package	
		47:32		Core Voltage (R/O)
				P-state core voltage can be computed by
				MSR_PERF_STATUS[37:32] * (float) 1/(2^13).
199H	409	IA32_PERF_CTL	Thread	See Table 35-2.
19AH	410	IA32_CLOCK_ MODULATION	Thread	Clock Modulation (R/W)
		PIODOLATION		See Table 35-2
				IA32_CLOCK_MODULATION MSR was originally named IA32_THERM_CONTROL MSR.
		3:0		On demand Clock Modulation Duty Cycle (R/W)
				In 6.25% increment
		4		On demand Clock Modulation Enable (R/W)
		63:5		Reserved.
19BH	411	IA32_THERM_INTERRUPT	Core	Thermal Interrupt Control (R/W)
				See Table 35-2.
19CH	412	IA32_THERM_STATUS	Core	Thermal Monitor Status (R/W)
				See Table 35-2.

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
		0		Thermal status (RO) See Table 35-2.
		1		Thermal status log (R/WCO) See Table 35-2.
		2		PROTCHOT # or FORCEPR# status (RO) See Table 35-2.
		3		PROTCHOT # or FORCEPR# log (R/WCO) See Table 35-2.
		4		Critical Temperature status (RO) See Table 35-2.
		5		Critical Temperature status log (R/WCO) See Table 35-2.
		6		Thermal threshold #1 status (RO) See Table 35-2.
		7		Thermal threshold #1 log (R/WC0) See Table 35-2.
		8		Thermal threshold #2 status (RO) See Table 35-2.
		9		Thermal threshold #2 log (R/WC0) See Table 35-2.
		10		Power Limitation status (RO) See Table 35-2.
		11		Power Limitation log (R/WCO) See Table 35-2.
		15:12		Reserved.
		22:16		Digital Readout (RO) See Table 35-2.
		26:23		Reserved.
		30:27		Resolution in degrees Celsius (RO) See Table 35-2.
		31		Reading Valid (RO) See Table 35-2.
		63:32		Reserved.
1A0H	416	IA32_MISC_ENABLE		Enable Misc. Processor Features (R/W) Allows a variety of processor functions to be enabled and disabled.

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		0	Thread	Fast-Strings Enable See Table 35-2
		6:1		Reserved.
		7	Thread	Performance Monitoring Available (R) See Table 35-2.
		10:8		Reserved.
		11	Thread	Branch Trace Storage Unavailable (RO) See Table 35-2.
		12	Thread	Precise Event Based Sampling Unavailable (RO) See Table 35-2.
		15:13		Reserved.
		16	Package	Enhanced Intel SpeedStep Technology Enable (R/W) See Table 35-2.
		18	Thread	ENABLE MONITOR FSM. (R/W) See Table 35-2.
		21:19		Reserved.
		22	Thread	Limit CPUID Maxval (R/W) See Table 35-2.
		23	Thread	xTPR Message Disable (R/W) See Table 35-2.
		33:24		Reserved.
		34	Thread	XD Bit Disable (R/W)
				See Table 35-2.
		37:35		Reserved.
		38	Package	Turbo Mode Disable (R/W)
				When set to 1 on processors that support Intel Turbo Boost Technology, the turbo mode feature is disabled and the IDA_Enable feature flag will be clear (CPUID.06H: EAX[1]=0).
				When set to a 0 on processors that support IDA, CPUID.06H: EAX[1] reports the processor's support of turbo mode is enabled.
				Note: the power-on default value is used by BIOS to detect hardware support of turbo mode. If power-on default value is 1, turbo mode is available in the processor. If power-on default value is 0, turbo mode is not available.
		63:39		Reserved.
1A2H	418	MSR_ TEMPERATURE_TARGET	Unique	
		15:0		Reserved.

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
		23:16		Temperature Target (R) The minimum temperature at which PROCHOT# will be asserted. The value is degree C.
		63:24		Reserved.
1A4H	420	MSR_MISC_FEATURE_ CONTROL		Miscellaneous Feature Control (R/W)
		0	Core	L2 Hardware Prefetcher Disable (R/W) If 1, disables the L2 hardware prefetcher, which fetches additional lines of code or data into the L2 cache.
		1	Core	L2 Adjacent Cache Line Prefetcher Disable (R/W)
				If 1, disables the adjacent cache line prefetcher, which fetches the cache line that comprises a cache line pair (128 bytes).
		2	Core	DCU Hardware Prefetcher Disable (R/W)
				If 1, disables the L1 data cache prefetcher, which fetches the next cache line into L1 data cache.
		3	Core	DCU IP Prefetcher Disable (R/W) If 1, disables the L1 data cache IP prefetcher, which uses sequential load history (based on instruction Pointer of previous loads) to determine whether to prefetch additional lines.
		63:4		Reserved.
1A6H	422	MSR_OFFCORE_RSP_0	Thread	Offcore Response Event Select Register (R/W)
1A7H	422	MSR_OFFCORE_RSP_1	Thread	Offcore Response Event Select Register (R/W)
1AAH	426	MSR_MISC_PWR_MGMT		See http://biosbits.org.
1B0H	432	IA32_ENERGY_PERF_BIAS	Package	See Table 35-2.
1B1H	433	IA32_PACKAGE_THERM_ STATUS	Package	See Table 35-2.
1B2H	434	IA32_PACKAGE_THERM_ INTERRUPT	Package	See Table 35-2.
1C8H	456	MSR_LBR_SELECT	Thread	Last Branch Record Filtering Select Register (R/W) See Section 17.6.2, "Filtering of Last Branch Records."
		0		CPL_EQ_0
		1		CPL_NEQ_0
		2		јсс
		3		NEAR_REL_CALL
		4		NEAR_IND_CALL
		5		NEAR_RET
		6		NEAR_IND_JMP

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		7		NEAR_REL_JMP
		8		FAR_BRANCH
		63:9		Reserved.
1C9H	457	MSR_LASTBRANCH_TOS	Thread	Last Branch Record Stack TOS (R/W) Contains an index (bits 0-3) that points to the MSR containing the most recent branch record. See MSR_LASTBRANCH_O_FROM_IP (at 680H).
1D9H	473	IA32_DEBUGCTL	Thread	Debug Control (R/W)
		0		See Table 35-2.
		0		LBR: Last Branch Record
		1		BTF
		5:2		Reserved.
		6		TR: Branch Trace
		7		BTS: Log Branch Trace Message to BTS buffer
		8		BTINT
		9		BTS_OFF_OS
		10		BTS_OFF_USER
		11		FREEZE_LBR_ON_PMI
		12		FREEZE_PERFMON_ON_PMI
		13		ENABLE_UNCORE_PMI
		14		FREEZE_WHILE_SMM
		63:15		Reserved.
1DDH	477	MSR_LER_FROM_LIP	Thread	Last Exception Record From Linear IP (R)
				Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
1DEH	478	MSR_LER_TO_LIP	Thread	Last Exception Record To Linear IP (R)
				This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled.
1F2H	498	IA32_SMRR_PHYSBASE	Core	See Table 35-2.
1F3H	499	IA32_SMRR_PHYSMASK	Core	See Table 35-2.
1FCH	508	MSR_POWER_CTL	Соге	See http://biosbits.org.
200H	512	IA32_MTRR_PHYSBASE0	Thread	See Table 35-2.

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
201H	513	IA32_MTRR_PHYSMASK0	Thread	See Table 35-2.
202H	514	IA32_MTRR_PHYSBASE1	Thread	See Table 35-2.
203H	515	IA32_MTRR_PHYSMASK1	Thread	See Table 35-2.
204H	516	IA32_MTRR_PHYSBASE2	Thread	See Table 35-2.
205H	517	IA32_MTRR_PHYSMASK2	Thread	See Table 35-2.
206H	518	IA32_MTRR_PHYSBASE3	Thread	See Table 35-2.
207H	519	IA32_MTRR_PHYSMASK3	Thread	See Table 35-2.
208H	520	IA32_MTRR_PHYSBASE4	Thread	See Table 35-2.
209H	521	IA32_MTRR_PHYSMASK4	Thread	See Table 35-2.
20AH	522	IA32_MTRR_PHYSBASE5	Thread	See Table 35-2.
20BH	523	IA32_MTRR_PHYSMASK5	Thread	See Table 35-2.
20CH	524	IA32_MTRR_PHYSBASE6	Thread	See Table 35-2.
20DH	525	IA32_MTRR_PHYSMASK6	Thread	See Table 35-2.
20EH	526	IA32_MTRR_PHYSBASE7	Thread	See Table 35-2.
20FH	527	IA32_MTRR_PHYSMASK7	Thread	See Table 35-2.
210H	528	IA32_MTRR_PHYSBASE8	Thread	See Table 35-2.
211H	529	IA32_MTRR_PHYSMASK8	Thread	See Table 35-2.
212H	530	IA32_MTRR_PHYSBASE9	Thread	See Table 35-2.
213H	531	IA32_MTRR_PHYSMASK9	Thread	See Table 35-2.
250H	592	IA32_MTRR_FIX64K_ 00000	Thread	See Table 35-2.
258H	600	IA32_MTRR_FIX16K_ 80000	Thread	See Table 35-2.
259H	601	IA32_MTRR_FIX16K_ A0000	Thread	See Table 35-2.
268H	616	IA32_MTRR_FIX4K_C0000	Thread	See Table 35-2.
269H	617	IA32_MTRR_FIX4K_C8000	Thread	See Table 35-2.
26AH	618	IA32_MTRR_FIX4K_D0000	Thread	See Table 35-2.
26BH	619	IA32_MTRR_FIX4K_D8000	Thread	See Table 35-2.
26CH	620	IA32_MTRR_FIX4K_E0000	Thread	See Table 35-2.
26DH	621	IA32_MTRR_FIX4K_E8000	Thread	See Table 35-2.
26EH	622	IA32_MTRR_FIX4K_F0000	Thread	See Table 35-2.
26FH	623	IA32_MTRR_FIX4K_F8000	Thread	See Table 35-2.
277H	631	IA32_PAT	Thread	See Table 35-2.

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
280H	640	IA32_MCO_CTL2	Core	See Table 35-2.
281H	641	IA32_MC1_CTL2	Core	See Table 35-2.
282H	642	IA32_MC2_CTL2	Core	See Table 35-2.
283H	643	IA32_MC3_CTL2	Core	See Table 35-2.
284H	644	MSR_MC4_CTL2	Package	Always 0 (CMCI not supported).
2FFH	767	IA32_MTRR_DEF_TYPE	Thread	Default Memory Types (R/W) See Table 35-2.
309H	777	IA32_FIXED_CTR0	Thread	Fixed-Function Performance Counter Register 0 (R/W) See Table 35-2.
30AH	778	IA32_FIXED_CTR1	Thread	Fixed-Function Performance Counter Register 1 (R/W) See Table 35-2.
30BH	779	IA32_FIXED_CTR2	Thread	Fixed-Function Performance Counter Register 2 (R/W) See Table 35-2.
345H	837	IA32_PERF_CAPABILITIES	Thread	See Table 35-2. See Section 17.4.1, "IA32_DEBUGCTL MSR."
		5:0		LBR Format. See Table 35-2.
		6		PEBS Record Format.
		7		PEBSSaveArchRegs. See Table 35-2.
		11:8		PEBS_REC_FORMAT. See Table 35-2.
		12		SMM_FREEZE. See Table 35-2.
		63:13		Reserved.
38DH	909	IA32_FIXED_CTR_CTRL	Thread	Fixed-Function-Counter Control Register (R/W) See Table 35-2.
38EH	910	IA32_PERF_GLOBAL_ STAUS		See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0	Thread	Ovf_PMC0
		1	Thread	Ovf_PMC1
		2	Thread	Ovf_PMC2
		3	Thread	Ovf_PMC3
		4	Core	Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)
		5	Core	Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)
		6	Core	Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)
		7	Core	Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)
		31:8		Reserved.

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
		32	Thread	Ovf_FixedCtr0
		33	Thread	Ovf_FixedCtr1
		34	Thread	Ovf_FixedCtr2
		60:35		Reserved.
		61	Thread	Ovf_Uncore
		62	Thread	Ovf_BufDSSAVE
		63	Thread	CondChgd
38FH	911	IA32_PERF_GLOBAL_CTRL	Thread	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0	Thread	Set 1 to enable PMC0 to count
		1	Thread	Set 1 to enable PMC1 to count
		2	Thread	Set 1 to enable PMC2 to count
		3	Thread	Set 1 to enable PMC3 to count
		4	Core	Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)
		5	Core	Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)
		6	Core	Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)
		7	Core	Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)
		31:8		Reserved.
		32	Thread	Set 1 to enable FixedCtr0 to count
		33	Thread	Set 1 to enable FixedCtr1 to count
		34	Thread	Set 1 to enable FixedCtr2 to count
		63:35		Reserved.
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL		See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0	Thread	Set 1 to clear Ovf_PMCO
		1	Thread	Set 1 to clear Ovf_PMC1
		2	Thread	Set 1 to clear Ovf_PMC2
		3	Thread	Set 1 to clear Ovf_PMC3
		4	Core	Set 1 to clear Ovf_PMC4 (if CPUID.OAH:EAX[15:8] > 4)
		5	Core	Set 1 to clear Ovf_PMC5 (if CPUID.OAH:EAX[15:8] > 5)
		6	Core	Set 1 to clear Ovf_PMC6 (if CPUID.OAH:EAX[15:8] > 6)
		7	Core	Set 1 to clear Ovf_PMC7 (if CPUID.OAH:EAX[15:8] > 7)
		31:8		Reserved.
		32	Thread	Set 1 to clear Ovf_FixedCtrO

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		33	Thread	Set 1 to clear Ovf_FixedCtr1
		34	Thread	Set 1 to clear Ovf_FixedCtr2
		60:35		Reserved.
		61	Thread	Set 1 to clear Ovf_Uncore
		62	Thread	Set 1 to clear Ovf_BufDSSAVE
		63	Thread	Set 1 to clear CondChgd
3F1H	1009	MSR_PEBS_ENABLE	Thread	See Section 18.7.1.1, "Precise Event Based Sampling (PEBS)."
		0		Enable PEBS on IA32_PMCO. (R/W)
		1		Enable PEBS on IA32_PMC1. (R/W)
		2		Enable PEBS on IA32_PMC2. (R/W)
		3		Enable PEBS on IA32_PMC3. (R/W)
		31:4		Reserved.
		32		Enable Load Latency on IA32_PMCO. (R/W)
		33		Enable Load Latency on IA32_PMC1. (R/W)
		34		Enable Load Latency on IA32_PMC2. (R/W)
		35		Enable Load Latency on IA32_PMC3. (R/W)
		62:36		Reserved.
		63		Enable Precise Store. (R/W)
3F6H	1014	MSR_PEBS_LD_LAT	Thread	see See Section 18.7.1.2, "Load Latency Performance Monitoring Facility."
		15:0		Minimum threshold latency value of tagged load operation that will be counted. (R/W)
		63:36		Reserved.
3F8H	1016	MSR_PKG_C3_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		Package C3 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C3 states. Count at the same frequency as the TSC.
3F9H	1017	MSR_PKG_C6_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		Package C6 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C6 states. Count at the same frequency as the TSC.

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
3FAH	1018	MSR_PKG_C7_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		Package C7 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C7 states. Count at the same frequency as the TSC.
3FCH	1020	MSR_CORE_C3_RESIDENCY	Core	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		CORE C3 Residency Counter. (R/O)
				Value since last reset that this core is in processor-specific C3 states. Count at the same frequency as the TSC.
3FDH	1021	MSR_CORE_C6_RESIDENCY	Core	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		CORE C6 Residency Counter. (R/O)
				Value since last reset that this core is in processor-specific C6 states. Count at the same frequency as the TSC.
3FEH	1022	MSR_CORE_C7_RESIDENCY	Core	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		CORE C7 Residency Counter. (R/O)
				Value since last reset that this core is in processor-specific C7 states. Count at the same frequency as the TSC.
400H	1024	IA32_MCO_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
401H	1025	IA32_MCO_STATUS	Соге	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS," and Chapter 16.
402H	1026	IA32_MCO_ADDR	Соге	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
403H	1027	IA32_MCO_MISC	Соге	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
404H	1028	IA32_MC1_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
405H	1029	IA32_MC1_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS," and Chapter 16.
406H	1030	IA32_MC1_ADDR	Соге	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
407H	1031	IA32_MC1_MISC	Соге	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
408H	1032	IA32_MC2_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
409H	1033	IA32_MC2_STATUS	Соге	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS," and Chapter 16.
40AH	1034	IA32_MC2_ADDR	Соге	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
40BH	1035	IA32_MC2_MISC	Соге	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
40CH	1036	IA32_MC3_CTL	Core	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
40DH	1037	IA32_MC3_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS," and Chapter 16.
40EH	1038	IA32_MC3_ADDR	Core	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
40FH	1039	IA32_MC3_MISC	Core	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
410H	1040	MSR_MC4_CTL	Core	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
		0		PCU Hardware Error (R/W)
				When set, enables signaling of PCU hardware detected errors.
		1		PCU Controller Error (R/W)
				When set, enables signaling of PCU controller detected errors
		2		PCU Firmware Error (R/W)
				When set, enables signaling of PCU firmware detected errors
		63:2		Reserved.
411H	1041	IA32_MC4_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS," and Chapter 16.
480H	1152	IA32_VMX_BASIC	Thread	Reporting Register of Basic VMX Capabilities (R/O)
				See Table 35-2.
				See Appendix A.1, "Basic VMX Information."
481H	1153	IA32_VMX_PINBASED_ CTLS	Thread	Capability Reporting Register of Pin-based VM-execution Controls (R/O)
				See Table 35-2.
				See Appendix A.3, "VM-Execution Controls."
482H	1154	IA32_VMX_PROCBASED_ CTLS	Thread	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)
				See Appendix A.3, "VM-Execution Controls."
483H	1155	IA32_VMX_EXIT_CTLS	Thread	Capability Reporting Register of VM-exit Controls (R/O) See Table 35-2.
				See Appendix A.4, "VM-Exit Controls."
484H	1156	IA32_VMX_ENTRY_CTLS	Thread	Capability Reporting Register of VM-entry Controls (R/O)
				See Table 35-2.
				See Appendix A.5, "VM-Entry Controls."
485H	1157	IA32_VMX_MISC	Thread	Reporting Register of Miscellaneous VMX Capabilities (R/O)
				See Table 35-2.
				See Appendix A.6, "Miscellaneous Data."
486H	1158	IA32_VMX_CR0_FIXED0	Thread	Capability Reporting Register of CRO Bits Fixed to 0 (R/O)
				See Table 35-2.
				See Appendix A.7, "VMX-Fixed Bits in CR0."

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
487H	1159	IA32_VMX_CRO_FIXED1	Thread	Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) See Table 35-2. See Appendix A.7, "VMX-Fixed Bits in CR0."
488H	1160	IA32_VMX_CR4_FIXED0	Thread	Capability Reporting Register of CR4 Bits Fixed to 0 (R/0) See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
489H	1161	IA32_VMX_CR4_FIXED1	Thread	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) See Table 35-2. See Appendix A.8, "VMX-Fixed Bits in CR4."
48AH	1162	IA32_VMX_VMCS_ENUM	Thread	Capability Reporting Register of VMCS Field Enumeration (R/O) See Table 35-2. See Appendix A.9, "VMCS Enumeration."
48BH	1163	IA32_VMX_PROCBASED_ CTLS2	Thread	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O) See Appendix A.3, "VM-Execution Controls."
48CH	1164	IA32_VMX_EPT_VPID_ENU M	Thread	Capability Reporting Register of EPT and VPID (R/O) See Table 35-2
48DH	1165	IA32_VMX_TRUE_PINBASE D_CTLS	Thread	Capability Reporting Register of Pin-based VM-execution Flex Controls (R/O) See Table 35-2
48EH	1166	IA32_VMX_TRUE_PROCBAS ED_CTLS	Thread	Capability Reporting Register of Primary Processor-based VM-execution Flex Controls (R/O) See Table 35-2
48FH	1167	IA32_VMX_TRUE_EXIT_CTL S	Thread	Capability Reporting Register of VM-exit Flex Controls (R/O) See Table 35-2
490H	1168	IA32_VMX_TRUE_ENTRY_C TLS	Thread	Capability Reporting Register of VM-entry Flex Controls (R/O) See Table 35-2
4C1H	1217	IA32_A_PMCO	Thread	See Table 35-2.
4C2H	1218	IA32_A_PMC1	Thread	See Table 35-2.
4C3H	1219	IA32_A_PMC2	Thread	See Table 35-2.
4C4H	1220	IA32_A_PMC3	Thread	See Table 35-2.
4C5H	1221	IA32_A_PMC4	Соге	See Table 35-2.
4C6H	1222	IA32_A_PMC5	Соге	See Table 35-2.
4C7H	1223	IA32_A_PMC6	Соге	See Table 35-2.
4C8H	1224	IA32_A_PMC7	Соге	See Table 35-2.

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
600H	1536	IA32_DS_AREA	Thread	DS Save Area (R/W) See Table 35-2. See Section 18.13.4, "Debug Store (DS) Mechanism."
606H	1542	MSR_RAPL_POWER_UNIT	Package	Unit Multipliers used in RAPL Interfaces (R/O) See Section 14.9.1, "RAPL Interfaces."
60AH	1546	MSR_PKGC3_IRTL	Package	Package C3 Interrupt Response Limit (R/W) Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		9:0		Interrupt response time limit (R/W) Specifies the limit that should be used to decide if the package should be put into a package C3 state.
		12:10		Time Unit (R/W) Specifies the encoding value of time unit of the interrupt response time limit. The following time unit encodings are supported: 000b: 1 ns 001b: 32 ns 010b: 1024 ns 011b: 32768 ns 100b: 1048576 ns 101b: 33554432 ns
		14:13		Reserved.
		15		Valid (R/W) Indicates whether the values in bits 12:0 are valid and can be used by the processor for package C-sate management.
		63:16		Reserved.
60BH	1547	MSR_PKGC6_IRTL	Package	Package C6 Interrupt Response Limit (R/W) This MSR defines the budget allocated for the package to exit from C6 to a C0 state, where interrupt request can be delivered to the core and serviced. Additional core-exit latency amy be applicable depending on the actual C-state the core is in. Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		9:0		Interrupt response time limit (R/W) Specifies the limit that should be used to decide if the package should be put into a package C6 state.

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		12:10		Time Unit (R/W) Specifies the encoding value of time unit of the interrupt response time limit. The following time unit encodings are supported:
				000b: 1 ns 001b: 32 ns 010b: 1024 ns 011b: 32768 ns
				100b: 1048576 ns 101b: 33554432 ns
		14:13		Reserved.
		15		Valid (R/W) Indicates whether the values in bits 12:0 are valid and can be used by the processor for package C-sate management.
		63:16		Reserved.
60DH	1549	MSR_PKG_C2_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		63:0		Package C2 Residency Counter. (R/O) Value since last reset that this package is in processor-specific C2
				states. Count at the same frequency as the TSC.
610H	1552	MSR_PKG_POWER_LIMIT	Package	PKG RAPL Power Limit Control (R/W)
				See Section 14.9.3, "Package RAPL Domain."
611H	1553	MSR_PKG_ENERGY_STATUS	Package	PKG Energy Status (R/O)
				See Section 14.9.3, "Package RAPL Domain."
614H	1556	MSR_PKG_POWER_INFO	Package	PKG RAPL Parameters (R/W) See Section 14.9.3, "Package RAPL Domain."
638H	1592	MSR_PPO_POWER_LIMIT	Package	PPO RAPL Power Limit Control (R/W)
				See Section 14.9.4, "PPO/PP1 RAPL Domains."
639H	1593	MSR_PPO_ENERGY_STATUS	Package	PPO Energy Status (R/O)
				See Section 14.9.4, "PPO/PP1 RAPL Domains."
680H	1664	MSR_ LASTBRANCH_0_FROM_IP	Thread	Last Branch Record O From IP (R/W) One of sixteen pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the source instruction. See also:
				 Last Branch Record Stack TOS at 1C9H Section 17.6.1, "LBR Stack."
681H	1665	MSR_ LASTBRANCH_1_FROM_IP	Thread	Last Branch Record 1 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
682H	1666	MSR_ LASTBRANCH_2_FROM_IP	Thread	Last Branch Record 2 From IP (R/W) See description of MSR_LASTBRANCH_O_FROM_IP.
683H	1667	MSR_ LASTBRANCH_3_FROM_IP	Thread	Last Branch Record 3 From IP (R/W) See description of MSR_LASTBRANCH_O_FROM_IP.
684H	1668	MSR_ LASTBRANCH_4_FROM_IP	Thread	Last Branch Record 4 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
685H	1669	MSR_ LASTBRANCH_5_FROM_IP	Thread	Last Branch Record 5 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
686H	1670	MSR_ LASTBRANCH_6_FROM_IP	Thread	Last Branch Record 6 From IP (R/W) See description of MSR_LASTBRANCH_O_FROM_IP.
687H	1671	MSR_ LASTBRANCH_7_FROM_IP	Thread	Last Branch Record 7 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
688H	1672	MSR_ LASTBRANCH_8_FROM_IP	Thread	Last Branch Record 8 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
689H	1673	MSR_ LASTBRANCH_9_FROM_IP	Thread	Last Branch Record 9 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
68AH	1674	MSR_ LASTBRANCH_10_FROM_IP	Thread	Last Branch Record 10 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
68BH	1675	MSR_ LASTBRANCH_11_FROM_IP	Thread	Last Branch Record 11 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
68CH	1676	MSR_ LASTBRANCH_12_FROM_IP	Thread	Last Branch Record 12 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
68DH	1677	MSR_ LASTBRANCH_13_FROM_IP	Thread	Last Branch Record 13 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
68EH	1678	MSR_ LASTBRANCH_14_FROM_IP	Thread	Last Branch Record 14 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
68FH	1679	MSR_ LASTBRANCH_15_FROM_IP	Thread	Last Branch Record 15 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
6C0H	1728	MSR_ LASTBRANCH_O_TO_IP	Thread	Last Branch Record 0 To IP (R/W) One of sixteen pairs of last branch record registers on the last branch record stack. This part of the stack contains pointers to the destination instruction.
6C1H	1729	MSR_ LASTBRANCH_1_TO_IP	Thread	Last Branch Record 1 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6C2H	1730	MSR_ LASTBRANCH_2_TO_IP	Thread	Last Branch Record 2 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
6C3H	1731	MSR_ LASTBRANCH_3_TO_IP	Thread	Last Branch Record 3 To IP (R/W) See description of MSR_LASTBRANCH_O_TO_IP.
6C4H	1732	MSR_ LASTBRANCH_4_TO_IP	Thread	Last Branch Record 4 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6C5H	1733	MSR_ LASTBRANCH_5_TO_IP	Thread	Last Branch Record 5 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6C6H	1734	MSR_ LASTBRANCH_6_TO_IP	Thread	Last Branch Record 6 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6C7H	1735	MSR_ LASTBRANCH_7_TO_IP	Thread	Last Branch Record 7 To IP (R/W) See description of MSR_LASTBRANCH_O_TO_IP.
6C8H	1736	MSR_ LASTBRANCH_8_TO_IP	Thread	Last Branch Record 8 To IP (R/W) See description of MSR_LASTBRANCH_O_TO_IP.
6C9H	1737	MSR_ LASTBRANCH_9_TO_IP	Thread	Last Branch Record 9 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6CAH	1738	MSR_ LASTBRANCH_10_TO_IP	Thread	Last Branch Record 10 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6CBH	1739	MSR_ LASTBRANCH_11_TO_IP	Thread	Last Branch Record 11 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6CCH	1740	MSR_ LASTBRANCH_12_TO_IP	Thread	Last Branch Record 12 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6CDH	1741	MSR_ LASTBRANCH_13_TO_IP	Thread	Last Branch Record 13 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6CEH	1742	MSR_ LASTBRANCH_14_TO_IP	Thread	Last Branch Record 14 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6CFH	1743	MSR_ LASTBRANCH_15_TO_IP	Thread	Last Branch Record 15 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6E0H	1760	IA32_TSC_DEADLINE	Thread	See Table 35-2.
802H- 83FH		X2APIC MSRs	Thread	See Table 35-2.
C000_ 0080H		IA32_EFER	Thread	Extended Feature Enables See Table 35-2.
C000_ 0081H		IA32_STAR	Thread	System Call Target Address (R/W) See Table 35-2.
C000_ 0082H		IA32_LSTAR	Thread	IA-32e Mode System Call Target Address (R/W) See Table 35-2.

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
C000_		IA32_FMASK	Thread	System Call Flag Mask (R/W)
0084H				See Table 35-2.
C000_		IA32_FS_BASE	Thread	Map of BASE Address of FS (R/W)
0100H				See Table 35-2.
C000_		IA32_GS_BASE	Thread	Map of BASE Address of GS (R/W)
0101H				See Table 35-2.
C000_		IA32_KERNEL_GSBASE	Thread	Swap Target of BASE Address of GS (R/W)
0102H				See Table 35-2.
C000_		IA32_TSC_AUX	Thread	AUXILIARY TSC Signature (R/W)
0103H				See Table 35-2 and Section 17.14.2, "IA32_TSC_AUX Register and RDTSCP Support."

. . .

35.8.2 MSRs In Intel[®] Xeon[®] Processor E5 Family (Based on Intel[®] Microarchitecture Code Name Sandy Bridge)

Table 35-18 lists additional model-specific registers (MSRs) that are specific to the Intel[®] Xeon[®] Processor E5 Family (based on Intel[®] microarchitecture code name Sandy Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 35-16 and Table 35-19.

. . .

35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY (BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel[®] Core[™] processor family and Intel[®] Xeon[®] processor E3-1200v2 product family (based on Intel microarchitecture code name Ivy Bridge) supports the MSR interfaces listed in Table 35-16, Table 35-17 and Table 35-20. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06 3AH.

. . .

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON HASWELL MICROARCHITECTURE)

The 4th generation Intel[®] Core[™] processor family and Intel[®] Xeon[®] processor E3-1200v3 product family (based on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H, support the MSR interfaces listed in Table 35-16, Table 35-17, and Table 35-24. For an MSR listed in Table 35-16 that also appears in Table 35-24, Table 35-24 supercede Table 35-16.

The MSRs listed in Table 35-24 also apply to processors based on Haswell-E microarchitecture (see Section 35.11).

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
3BH	59	IA32_TSC_ADJUST	THREAD	Per-Logical-Processor TSC ADJUST (R/W) See Table 35-2.
CEH	206	MSR_PLATFORM_INFO	Package	
		7:0		Reserved.
		15:8	Package	Maximum Non-Turbo Ratio (R/O)
				The is the ratio of the frequency that invariant TSC runs at. Frequency = ratio * 100 MHz.
		27:16		Reserved.
		28	Package	Programmable Ratio Limit for Turbo Mode (R/O)
				When set to 1, indicates that Programmable Ratio Limits for Turbo mode is enabled, and when set to 0, indicates Programmable Ratio Limits for Turbo mode is disabled.
		29	Package	Programmable TDP Limit for Turbo Mode (R/O)
				When set to 1, indicates that TDP Limits for Turbo mode are programmable, and when set to 0, indicates TDP Limit for Turbo mode is not programmable.
		31:30		Reserved.
		32	Package	Low Power Mode Support (LPM) (R/O)
				When set to 1, indicates that LPM is supported, and when set to 0, indicates LPM is not supported.
		34:33	Package	Number of ConfigTDP Levels (R/O)
				00: Only Base TDP level available.
				01: One additional TDP level available.
				02: Two additional TDP level available. 11: Reserved
		39:35		Reserved.
		47:40	Package	Maximum Efficiency Ratio (R/O)
		17.10	rackage	The is the minimum ratio (maximum efficiency) that the processor can operates, in units of 100MHz.
		55:48	Package	Minimum Operating Ratio (R/O)
				Contains the minimum supported
				operating ratio in units of 100 MHz.
		63:56		Reserved.
186H	390	IA32_PERFEVTSEL0	THREAD	Performance Event Select for Counter 0 (R/W)
				Supports all fields described inTable 35-2 and the fields below.

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Regi Add		Register Name	Scope	Bit Description
Hex	Dec]		
		32		IN_TX: see Section 18.10.5.1 When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
187H	391	IA32_PERFEVTSEL1	THREAD	Performance Event Select for Counter 1 (R/W) Supports all fields described inTable 35-2 and the fields below.
		32		IN_TX: see Section 18.10.5.1 When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
188H	392	IA32_PERFEVTSEL2	THREAD	Performance Event Select for Counter 2 (R/W) Supports all fields described inTable 35-2 and the fields below.
		32		IN_TX: see Section 18.10.5.1 When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
		33		IN_TXCP: see Section 18.10.5.1 When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may occur and transactions may continuously abort near overflow conditions. Software should favor using IN_TXCP for counting over sampling. If sampling, software should use large "sample-after" value after clearing the counter configured to use IN_TXCP and also always reset the counter even when no overflow condition was reported.
189H	393	IA32_PERFEVTSEL3	THREAD	Performance Event Select for Counter 3 (R/W) Supports all fields described inTable 35-2 and the fields below.
		32		IN_TX: see Section 18.10.5.1 When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
1D9H	473	IA32_DEBUGCTL	Thread	Debug Control (R/W) See Table 35-2.
		0		LBR: Last Branch Record
		1		BTF
		5:2		Reserved.
		6		TR: Branch Trace
		7		BTS: Log Branch Trace Message to BTS buffer
		8		BTINT
		9		BTS_OFF_OS
		10		BTS_OFF_USER
		11		FREEZE_LBR_ON_PMI
		12		FREEZE_PERFMON_ON_PMI

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		13		ENABLE_UNCORE_PMI
		14		FREEZE_WHILE_SMM
		15		RTM_DEBUG
		63:15		Reserved.
491H	1169	IA32_VMX_VMFUNC	THREAD	Capability Reporting Register of VM-function Controls (R/O)
				See Table 35-2
619H	1561	MSR_DRAM_ENERGY_	Package	DRAM Energy Status (R/O)
		STATUS		See Section 14.9.5, "DRAM RAPL Domain."
61BH	1563	MSRDDRAM_PERF_STATUS	Package	DRAM Performance Throttling Status (R/O) See Section 14.9.5, "DRAM RAPL Domain."
648H	1608	MSR_CONFIG_TDP_ NOMINAL	Package	Base TDP Ratio (R/O)
		7:0		Config_TDP_Base
				Base TDP level ratio to be used for this specific processor (in units of 100 MHz).
		63:8		Reserved.
649H	1609	MSR_CONFIG_TDP_LEVEL1	Package	ConfigTDP Level 1 ratio and power level (R/O)
		14:0		PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.
		15		Reserved
		23:16		Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this specific processor.
		31:24		Reserved
		46:32		PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP Level 1.
		62:47		PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP Level 1.
		63		Reserved.
64AH	1610	MSR_CONFIG_TDP_LEVEL2	Package	ConfigTDP Level 2 ratio and power level (R/O)
		14:0		PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.
		15		Reserved
		23:16		Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this specific processor.
		31:24		Reserved
		46:32		PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP Level 2.
		62:47		PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP Level 2.

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		63		Reserved.
64BH	1611	MSR_CONFIG_TDP_ CONTROL	Package	ConfigTDP Control (R/W)
		1:0		TDP_LEVEL (RW/L)
				System BIOS can program this field.
		30:2		Reserved.
		31		Config_TDP_Lock (RW/L)
				When this bit is set, the content of this register is locked until a reset.
		63:32		Reserved.
64CH	1612	MSR_TURBO_ACTIVATION_ RATIO	Package	ConfigTDP Control (R/W)
		7:0		MAX_NON_TURBO_RATIO (RW/L)
				System BIOS can program this field.
		30:8		Reserved.
		31		TURBO_ACTIVATION_RATIO_Lock (RW/L)
				When this bit is set, the content of this register is locked until a reset.
		63:32		Reserved.
C80H	3200	IA32_DEBUG_FEATURE	Package	Silicon Debug Feature Control (R/W) See Table 35-2.

35.10.1 MSRs in 4th Generation Intel[®] Core[™] Processor Family (based on Haswell Microarchitecture)

Table 35-25 lists model-specific registers (MSRs) that are specific to 4th generation Intel[®] Core[™] processor family and Intel[®] Xeon[®] processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors have a CPUID signature with DisplayFamily_DisplayModel of $06_3CH/06_45H/06_46H$, see Table 16-1.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
E2H	226	MSR_PKG_CST_CONFIG_	Core	C-State Configuration Control (R/W)
		CONTROL		Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-states.
				See http://biosbits.org.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		3:0		Package C-State Limit (R/W) Specifies the lowest processor-specific C-state code name (consuming the least power) for the package. The default is set as factory-configured package C-state limit. The following C-state code name encodings are supported: 0000b: C0/C1 (no package C-state support) 0001b: C2 0010b: C3 0011b: C6 0100b: C7
		0.4		0101b: C7s
		9:4		Reserved
		10		I/O MWAIT Redirection Enable (R/W)
				Reserved CEC Lock (P(I)(0))
		15 24:16		CFG Lock (R/WO) Reserved
		25		
				C3 State Auto Demotion Enable (R/W)
		26 27		C1 State Auto Demotion Enable (R/W)
		28		Enable C3 Undemotion (R/W)
		63:29		Enable C1 Undemotion (R/W) Reserved
17DH	390	MSR_SMM_MCA_CAP	THREAD	Enhanced SMM Capabilities (SMM-RO) Reports SMM capability Enhancement. Accessible only while in SMM.
		57:0		Reserved
		58		SMM_Code_Access_Chk (SMM-RO)
				If set to 1 indicates that the SMM code access restriction is supported and the MSR_SMM_FEATURE_CONTROL is supported.
		59		Long_Flow_Indication (SMM-RO) If set to 1 indicates that the SMM long flow indicator is supported and the MSR_SMM_DELAYED is supported.
		63:60		Reserved
1C8H	456	MSR_LBR_SELECT	Thread	Last Branch Record Filtering Select Register (R/W)
		0		CPL_EQ_0
		1		CPL_NEQ_0
		2		JCC
		3		NEAR_REL_CALL

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		4		NEAR_IND_CALL
		5		NEAR_RET
		6		NEAR_IND_JMP
		7		NEAR_REL_JMP
		8		FAR_BRANCH
		9		EN_CALL_STACK
		63:9		Reserved.
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode
				RO if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 1C
				Maximum turbo ratio limit of 1 core active.
		15:8	Package	Maximum Ratio Limit for 2C
				Maximum turbo ratio limit of 2 core active.
		23:16	Package	Maximum Ratio Limit for 3C
				Maximum turbo ratio limit of 3 core active.
		31:24	Package	Maximum Ratio Limit for 4C
				Maximum turbo ratio limit of 4 core active.
		63:32		Reserved.
391H	913	MSR_UNC_PERF_GLOBAL_ CTRL	Package	Uncore PMU global control
		0		Core 0 select
		1		Core 1 select
		2		Core 2 select
		3		Core 3 select
		18:4		Reserved.
		29		Enable all uncore counters
		30		Enable wake on PMI
		31		Enable Freezing counter when overflow
		63:32		Reserved.
392H	914	MSR_UNC_PERF_GLOBAL_ STATUS	Package	Uncore PMU main status
		0		Fixed counter overflowed
		1		An ARB counter overflowed
		2		Reserved

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

	ister	Register Name	Scope	Bit Description
Hex	Dec	_		
		3		A CBox counter overflowed (on any slice)
		63:4		Reserved.
394H	916	MSR_UNC_PERF_FIXED_ CTRL	Package	Uncore fixed counter control (R/W)
		19:0		Reserved
		20		Enable overflow propagation
		21		Reserved
		22		Enable counting
		63:23		Reserved.
395H	917	MSR_UNC_PERF_FIXED_ CTR	Package	Uncore fixed counter
		47:0		Current count
		63:48		Reserved.
396H	918	MSR_UNC_CBO_CONFIG	Package	Uncore C-Box configuration information (R/O)
		3:0		Encoded number of C-Box, derive value by "-1"
		63:4		Reserved.
3B0H	946	MSR_UNC_ARB_PER_CTR0	Package	Uncore Arb unit, performance counter 0
3B1H	947	MSR_UNC_ARB_PER_CTR1	Package	Uncore Arb unit, performance counter 1
3B2H	944	MSR_UNC_ARB_ PERFEVTSEL0	Package	Uncore Arb unit, counter 0 event select MSR
3B3H	945	MSR_UNC_ARB_ PERFEVTSEL1	Package	Uncore Arb unit, counter 1 event select MSR
391H	913	MSR_UNC_PERF_GLOBAL_ CTRL	Package	Uncore PMU global control
		0		Core O select
		1		Core 1 select
		2		Core 2 select
		3		Core 3 select
		18:4		Reserved.
		29		Enable all uncore counters
		30		Enable wake on PMI
		31		Enable Freezing counter when overflow
		63:32		Reserved.
395H	917	MSR_UNC_PERF_FIXED_ CTR	Package	Uncore fixed counter

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

-	ister Iress	Register Name	Scope	Bit Description
Hex	Dec]		
		47:0		Current count
		63:48		Reserved.
3B3H	945	MSR_UNC_ARB_ PERFEVTSEL1	Package	Uncore Arb unit, counter 1 event select MSR
4E0H	1248	MSR_SMM_FEATURE_CONT	Package	Enhanced SMM Feature Control (SMM-RW)
		ROL		Reports SMM capability Enhancement. Accessible only while in SMM.
		0		Lock (SMM-RWO)
				When set to '1' locks this register from further changes
		1		Reserved
		2		SMM_Code_Chk_En (SMM-RW)
				This control bit is available only if MSR_SMM_MCA_CAP[58] == 1. When set to '0' (default) none of the logical processors are prevented from executing SMM code outside the ranges defined by the SMRR.
				When set to '1' any logical processor in the package that attempts to execute SMM code not within the ranges defined by the SMRR will assert an unrecoverable MCE.
		63:3		Reserved
4E2H	1250	MSR_SMM_DELAYED	Package	SMM Delayed (SMM-RO)
				Reports the interruptible state of all logical processors in the package. Available only while in SMM and MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.
		N-1:0		LOG_PROC_STATE (SMM-RO)
				Each bit represents a logical processor of its state in a long flow of internal operation which delays servicing an interrupt. The corresponding bit will be set at the start of long events such as: Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.
				The bit is automatically cleared at the end of each long event. The reset value of this field is 0.
				Only bit positions below N = CPUID.(EAX=0BH, ECX=PKG_LVL):EBX[15:0] can be updated.
		63:N		Reserved
4E3H	1251	MSR_SMM_BLOCKED	Package	SMM Blocked (SMM-RO)
				Reports the blocked state of all logical processors in the package. Available only while in SMM.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

	ister Iress	Register Name	Scope	Bit Description
Hex	Dec			
		N-1:0		LOG_PROC_STATE (SMM-RO)
				Each bit represents a logical processor of its blocked state to service an SMI. The corresponding bit will be set if the logical processor is in one of the following states: Wait For SIPI or SENTER Sleep.
				The reset value of this field is OFFFH.
				Only bit positions below N = CPUID.(EAX=0BH, ECX=PKG_LVL):EBX[15:0] can be updated.
		63:N		Reserved
640H	1600	MSR_PP1_POWER_LIMIT	Package	PP1 RAPL Power Limit Control (R/W)
				See Section 14.9.4, "PPO/PP1 RAPL Domains."
641H	1601	MSR_PP1_ENERGY_STATU	Package	PP1 Energy Status (R/O)
		S		See Section 14.9.4, "PPO/PP1 RAPL Domains."
642H	1602	MSR_PP1_POLICY	Package	PP1 Balance Policy (R/W)
				See Section 14.9.4, "PPO/PP1 RAPL Domains."
690H	1680	MSR_CORE_PERF_LIMIT_RE	Package	Indicator of Frequency Clipping in Processor Cores (R/W)
		ASONS		(frequency refers to processor core frequency)
		0		PROCHOT Status (R0)
				When set, processor core frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal event.
		3:2		Reserved.
		4		Graphics Driver Status (RO)
				When set, frequency is reduced below the operating system request due to Processor Graphics driver override.
		5		Autonomous Utilization-Based Frequency Control Status (RO)
				When set, frequency is reduced below the operating system request because the processor has detected that utilization is low.
		6		VR Therm Alert Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.
		7		Reserved.
		8		Electrical Design Point Status (R0)
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
		9		Core Power Limiting Status (R0) When set, frequency is reduced below the operating system request due to domain-level power limiting.
		10		Package-Level Power Limiting PL1 Status (R0) When set, frequency is reduced below the operating system request due to package-level power limiting PL1.
		11		Package-Level PL2 Power Limiting Status (R0) When set, frequency is reduced below the operating system request due to package-level power limiting PL2.
		12		Max Turbo Limit Status (R0) When set, frequency is reduced below the operating system request due to multi-core turbo limits.
		13		Turbo Transition Attenuation Status (R0) When set, frequency is reduced below the operating system request due to Turbo transition attenuation. This prevents performance degradation due to frequent operating ratio changes.
		15:14		Reserved
		16		PROCHOT Log When set, indicates that the PROCHOT Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		17		Thermal Log When set, indicates that the Thermal Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		19:18		Reserved.
		20		Graphics Driver Log When set, indicates that the Graphics Driver Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		21		Autonomous Utilization-Based Frequency Control Log When set, indicates that the Autonomous Utilization-Based Frequency Control Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		22		VR Therm Alert Log When set, indicates that the VR Therm Alert Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		23		Reserved.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		24		Electrical Design Point Log
				When set, indicates that the EDP Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		25		Core Power Limiting Log
				When set, indicates that the Core Power Limiting Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		26		Package-Level PL1 Power Limiting Log
				When set, indicates that the Package Level PL1 Power Limiting Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		27		Package-Level PL2 Power Limiting Log
				When set, indicates that the Package Level PL2 Power Limiting Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		28		Max Turbo Limit Log
				When set, indicates that the Max Turbo Limit Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		29		Turbo Transition Attenuation Log
				When set, indicates that the Turbo Transition Attenuation Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		63:30		Reserved.
6B0H	1712	MSR_GRAPHICS_PERF_LIMI	Package	Indicator of Frequency Clipping in the Processor Graphics (R/W)
		T_REASONS		(frequency refers to processor graphics frequency)
		0		PROCHOT Status (R0)
				When set, frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal event.
		3:2		Reserved.
		4		Graphics Driver Status (R0)
				When set, frequency is reduced below the operating system request due to Processor Graphics driver override.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Regi: Addr		Register Name	Scope	Bit Description
Hex	Dec			
		5		Autonomous Utilization-Based Frequency Control Status (R0)
				When set, frequency is reduced below the operating system request because the processor has detected that utilization is low
		6		VR Therm Alert Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.
		7		Reserved.
		8		Electrical Design Point Status (R0)
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).
		9		Graphics Power Limiting Status (R0)
				When set, frequency is reduced below the operating system request due to domain-level power limiting.
		10		Package-Level Power Limiting PL1 Status (R0)
				When set, frequency is reduced below the operating system request due to package-level power limiting PL1.
		11		Package-Level PL2 Power Limiting Status (R0)
				When set, frequency is reduced below the operating system request due to package-level power limiting PL2.
		15:12		Reserved
		16		PROCHOT Log
				When set, indicates that the PROCHOT Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		17		Thermal Log
				When set, indicates that the Thermal Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		19:18		Reserved.
		20		Graphics Driver Log
				When set, indicates that the Graphics Driver Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		21		Autonomous Utilization-Based Frequency Control Log
				When set, indicates that the Autonomous Utilization-Based Frequency Control Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		22		VR Therm Alert Log When set, indicates that the VR Therm Alert Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		23		Reserved.
		24		Electrical Design Point Log When set, indicates that the EDP Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		25		Core Power Limiting Log When set, indicates that the Core Power Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		26		Package-Level PL1 Power Limiting Log When set, indicates that the Package Level PL1 Power Limiting Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		27		Package-Level PL2 Power Limiting Log When set, indicates that the Package Level PL2 Power Limiting Status bit has asserted since the log bit was last cleared.
		28		This log bit will remain set until cleared by software writing 0.
		20		Max Turbo Limit Log When set, indicates that the Max Turbo Limit Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		29		Turbo Transition Attenuation Log When set, indicates that the Turbo Transition Attenuation Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		63:30		Reserved.
6B1H	1713	MSR_RING_PERF_LIMIT_RE ASONS	Package	Indicator of Frequency Clipping in the Ring Interconnect (R/W) (frequency refers to ring interconnect in the uncore)
		0		PROCHOT Status (R0)
				When set, frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (R0) When set, frequency is reduced below the operating system request due to a thermal event.
		5:2		Reserved.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Regi: Addr	ster	Register Name	Scope	Bit Description	
Hex	Dec				
		6		VR Therm Alert Status (R0)	
				When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.	
		7		Reserved.	
		8		Electrical Design Point Status (R0)	
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).	
		9		Reserved.	
		10		Package-Level Power Limiting PL1 Status (R0)	
				When set, frequency is reduced below the operating system request due to package-level power limiting PL1.	
		11		Package-Level PL2 Power Limiting Status (R0)	
				When set, frequency is reduced below the operating system request due to package-level power limiting PL2.	
		15:12		Reserved	
		16		PROCHOT Log	
				When set, indicates that the PROCHOT Status bit has asserted since the log bit was last cleared.	
				This log bit will remain set until cleared by software writing 0.	
		17		Thermal Log	
				When set, indicates that the Thermal Status bit has asserted since the log bit was last cleared.	
				This log bit will remain set until cleared by software writing 0.	
		18:19		Reserved.	
		20		Graphics Driver Log	
				When set, indicates that the Graphics Driver Status bit has asserted since the log bit was last cleared.	
				This log bit will remain set until cleared by software writing 0.	
		21		Autonomous Utilization-Based Frequency Control Log When set, indicates that the Autonomous Utilization-Based Frequency Control Status bit has asserted since the log bit was last cleared.	
				This log bit will remain set until cleared by software writing 0.	
		22		VR Therm Alert Log	
				When set, indicates that the VR Therm Alert Status bit has asserted since the log bit was last cleared.	
				This log bit will remain set until cleared by software writing 0.	
		23		Reserved.	

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Reg	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		24		Electrical Design Point Log When set, indicates that the EDP Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		25		Core Power Limiting Log When set, indicates that the Core Power Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		26		Package-Level PL1 Power Limiting Log When set, indicates that the Package Level PL1 Power Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		27		Package-Level PL2 Power Limiting Log When set, indicates that the Package Level PL2 Power Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		28		Max Turbo Limit Log When set, indicates that the Max Turbo Limit Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		29		Turbo Transition Attenuation Log When set, indicates that the Turbo Transition Attenuation Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		63:30		Reserved.
700H	1792	MSR_UNC_CBO_O_ PERFEVTSELO	Package	Uncore C-Box 0, counter 0 event select MSR
701H	1793	MSR_UNC_CBO_O_ PERFEVTSEL1	Package	Uncore C-Box 0, counter 1 event select MSR
706H	1798	MSR_UNC_CBO_O_PER_ CTRO	Package	Uncore C-Box 0, performance counter 0
707H	1799	MSR_UNC_CBO_O_PER_ CTR1	Package	Uncore C-Box 0, performance counter 1
710H	1808	MSR_UNC_CBO_1_ PERFEVTSELO	Package	Uncore C-Box 1, counter 0 event select MSR
711H	1809	MSR_UNC_CBO_1_ PERFEVTSEL1	Package	Uncore C-Box 1, counter 1 event select MSR
716H	1814	MSR_UNC_CBO_1_PER_ CTR0	Package	Uncore C-Box 1, performance counter 0

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

_	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
717H	1815	MSR_UNC_CBO_1_PER_ CTR1	Package	Uncore C-Box 1, performance counter 1
720H	1824	MSR_UNC_CBO_2_ PERFEVTSEL0	Package	Uncore C-Box 2, counter 0 event select MSR
721H	1824	MSR_UNC_CBO_2_ PERFEVTSEL1	Package	Uncore C-Box 2, counter 1 event select MSR
726H	1830	MSR_UNC_CBO_2_PER_ CTRO	Package	Uncore C-Box 2, performance counter 0
727H	1831	MSR_UNC_CBO_2_PER_ CTR1	Package	Uncore C-Box 2, performance counter 1
730H	1840	MSR_UNC_CBO_3_ PERFEVTSEL0	Package	Uncore C-Box 3, counter 0 event select MSR
731H	1841	MSR_UNC_CBO_3_ PERFEVTSEL1	Package	Uncore C-Box 3, counter 1 event select MSR.
736H	1846	MSR_UNC_CBO_3_PER_ CTRO	Package	Uncore C-Box 3, performance counter 0.
737H	1847	MSR_UNC_CBO_3_PER_ CTR1	Package	Uncore C-Box 3, performance counter 1.
See Ta	ble 35-1	.6, Table 35-17, Table 35-	-20, Table 35-	-24 for other MSR definitions applicable to processors with CPUID

See Table 35-16, Table 35-17, Table 35-20, Table 35-24 for other MSR definitions applicable to processors with CPUID signatures 063CH, 06_46H

. . .

35.11 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY

Intel $^{\$}$ Xeon $^{\$}$ processor E5 v3 family and Intel $^{\$}$ Xeon $^{\$}$ processor E7 v3 family are based on Haswell-E microarchitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in Table 35-16, Table 35-21, Table 35-24, and Table 35-27.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
E2H	226	MSR_PKG_CST_CONFIG_	Соге	C-State Configuration Control (R/W)
		CONTROL		Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-states.
				See http://biosbits.org.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		3:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power) for the package. The default is set as factory-configured package C-state limit. The following C-state code name encodings are supported:
				0000b: C0/C1 (no package C-state support)
				0001b: C2
				0010b: C3
				0011b: C6
				0100b: C7
				0101b: C7s
		9:4		Reserved
		10		I/O MWAIT Redirection Enable (R/W)
		14:11		Reserved
		15		CFG Lock (R/WO)
		24:16		Reserved
		25		C3 State Auto Demotion Enable (R/W)
		26		C1 State Auto Demotion Enable (R/W)
		27		Enable C3 Undemotion (R/W)
		28		Enable C1 Undemotion (R/W)
		63:29		Reserved
17DH	390	MSR_SMM_MCA_CAP	THREAD	Enhanced SMM Capabilities (SMM-RO)
				Reports SMM capability Enhancement. Accessible only while in SMM.
		57:0		Reserved
		58		SMM_Code_Access_Chk (SMM-RO)
				If set to 1 indicates that the SMM code access restriction is supported and a host-space interface available to SMM handler.
		59		Long_Flow_Indication (SMM-RO) If set to 1 indicates that the SMM long flow indicator is supported and a host-space interface available to SMM handler.
		63:60		Reserved
17FH	383	MSR_ERROR_CONTROL	Package	MC Bank Error Configuration (R/W)
		0		Reserved
		1		MemError Log Enable (R/W)
				When set, enables IMC status bank to log additional info in bits 36:32.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

	ister ress	Register Name	Scope	Bit Description
Hex	Dec	1		
		63:2		Reserved.
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode RO if MSR_PLATFORM_INFO.[28] = 0, RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 1C Maximum turbo ratio limit of 1 core active.
		15:8	Package	Maximum Ratio Limit for 2C Maximum turbo ratio limit of 2 core active.
		23:16	Package	Maximum Ratio Limit for 3C Maximum turbo ratio limit of 3 core active.
		31:24	Package	Maximum Ratio Limit for 4C Maximum turbo ratio limit of 4 core active.
		39:32	Package	Maximum Ratio Limit for 5C Maximum turbo ratio limit of 5 core active.
		47:40	Package	Maximum Ratio Limit for 6C Maximum turbo ratio limit of 6 core active.
		55:48	Package	Maximum Ratio Limit for 7C Maximum turbo ratio limit of 7 core active.
		63:56	Package	Maximum Ratio Limit for 8C Maximum turbo ratio limit of 8 core active.
1AEH	430	MSR_TURBO_RATIO_LIMIT1	Package	Maximum Ratio Limit of Turbo Mode RO if MSR_PLATFORM_INFO.[28] = 0, RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 9C Maximum turbo ratio limit of 9 core active.
		15:8	Package	Maximum Ratio Limit for 10C Maximum turbo ratio limit of 10 core active.
		23:16	Package	Maximum Ratio Limit for 11C Maximum turbo ratio limit of 11 core active.
		31:24	Package	Maximum Ratio Limit for 12C Maximum turbo ratio limit of 12 core active.
		39:32	Package	Maximum Ratio Limit for 13C Maximum turbo ratio limit of 13 core active.
		47:40	Package	Maximum Ratio Limit for 14C Maximum turbo ratio limit of 14 core active.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
		55:48	Package	Maximum Ratio Limit for 15C Maximum turbo ratio limit of 15 core active.
		63:56	Package	Maximum Ratio Limit for 16C Maximum turbo ratio limit of 16 core active.
1AFH	431	MSR_TURBO_RATIO_LIMIT2	Package	Maximum Ratio Limit of Turbo Mode RO if MSR_PLATFORM_INFO.[28] = 0, RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 17C Maximum turbo ratio limit of 17 core active.
		15:8	Package	Maximum Ratio Limit for 18C Maximum turbo ratio limit of 18 core active.
		62:16	Package	Reserved
		63	Package	Semaphore for Turbo Ratio Limit Configuration If 1, the processor uses override configuration ¹ specified in MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and MSR_TURBO_RATIO_LIMIT2. If 0, the processor uses factory-set configuration (Default).
414H	1044	MSR_MC5_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
415H	1045	MSR_MC5_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
416H	1046	MSR_MC5_ADDR	Package	Bank MC5 reports MC error from the Intel QPI 0 module.
417H	1047	MSR_MC5_MISC	Package	
418H	1048	MSR_MC6_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
419H	1049	MSR_MC6_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
41AH	1050	MSR_MC6_ADDR	Package	Bank MC6 reports MC error from the integrated I/O module.
41BH	1051	MSR_MC6_MISC	Package	
41CH	1052	MSR_MC7_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
41DH	1053	MSR_MC7_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
41EH	1054	MSR_MC7_ADDR	Package	Bank MC7 reports MC error from the home agent HA 0.
41FH	1055	MSR_MC7_MISC	Package	
420H	1056	MSR_MC8_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
421H	1057	MSR_MC8_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
422H	1058	MSR_MC8_ADDR	Package	Bank MC8 reports MC error from the home agent HA 1.
423H	1059	MSR_MC8_MISC	Package	

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
424H	1060	MSR_MC9_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
425H	1061	MSR_MC9_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.". Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
426H	1062	MSR_MC9_ADDR	Package	
427H	1063	MSR_MC9_MISC	Package	
428H	1064	MSR_MC10_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
429H	1065	MSR_MC10_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
42AH	1066	MSR_MC10_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
42BH	1067	MSR_MC10_MISC	Package	
42CH	1068	MSR_MC11_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
42DH	1069	MSR_MC11_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
42EH	1070	MSR_MC11_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
42FH	1071	MSR_MC11_MISC	Package	
430H	1072	MSR_MC12_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
431H	1073	MSR_MC12_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
432H	1074	MSR_MC12_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
433H	1075	MSR_MC12_MISC	Package	
434H	1076	MSR_MC13_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
435H	1077	MSR_MC13_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
436H	1078	MSR_MC13_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
437H	1079	MSR_MC13_MISC	Package	
438H	1080	MSR_MC14_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
439H	1081	MSR_MC14_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
43AH	1082	MSR_MC14_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
43BH	1083	MSR_MC14_MISC	Package	
43CH	1084	MSR_MC15_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
43DH	1085	MSR_MC15_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
43EH	1086	MSR_MC15_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
43FH	1087	MSR_MC15_MISC	Package	
440H	1088	MSR_MC16_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
441H	1089	MSR_MC16_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
442H	1090	MSR_MC16_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
443H	1091	MSR_MC16_MISC	Package	

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
444H	1092	MSR_MC17_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
445H	1093	MSR_MC17_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.". Bank MC17 reports MC error from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12, CBo15.
446H	1094	MSR_MC17_ADDR	Package	
447H	1095	MSR_MC17_MISC	Package	
448H	1096	MSR_MC18_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
449H	1097	MSR_MC18_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.". Bank MC18 reports MC error from the following pair of CBo/L3
44AH	1098	MSR_MC18_ADDR	Package	Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
44BH	1099	MSR_MC18_MISC	Package	CBo16.
44CH	1100	MSR_MC19_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
44DH	1101	MSR_MC19_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
44EH	1102	MSR_MC19_ADDR	Package	Bank MC19 reports MC error from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
44FH	1103	MSR_MC19_MISC	Package	CBo17.
450H	1104	MSR_MC20_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
451H	1105	MSR_MC20_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
452H	1106	MSR_MC20_ADDR	Package	Bank MC20 reports MC error from the Intel QPI 1 module.
453H	1107	MSR_MC20_MISC	Package	
606H	1542	MSR_RAPL_POWER_UNIT	Package	Unit Multipliers used in RAPL Interfaces (R/O)
		3:0	Package	Power Units
				See Section 14.9.1, "RAPL Interfaces."
		7:4	Package	Reserved
		12:8	Package	Energy Status Units
				Energy related information (in Joules) is based on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by bits 12:8. Default value is 0EH (or 61 micro-joules)
		15:13	Package	Reserved
		19:16	Package	Time Units See Section 14.9.1, "RAPL Interfaces."
		63:20		Reserved
690H	1680	MSR_CORE_PERF_LIMIT_RE	Package	Indicator of Frequency Clipping in Processor Cores (R/W)
		ASONS		(frequency refers to processor core frequency)
		0		PROCHOT Status (R0)
				When set, processor core frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal event.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

	ister Iress	Register Name	Scope	Bit Description	
Hex	Dec				
		2		Power Budget Management Status (R0) When set, frequency is reduced below the operating system request due to PBM limit	
		3		Platform Configuration Services Status (R0) When set, frequency is reduced below the operating system request due to PCS limit	
		4		Reserved.	
		5		Autonomous Utilization-Based Frequency Control Status (R0) When set, frequency is reduced below the operating system request because the processor has detected that utilization is low	
		6		VR Therm Alert Status (R0) When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.	
		7		Reserved.	
		8		Electrical Design Point Status (R0)	
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).	
		9		Reserved.	
		10		Multi-Core Turbo Status (R0) When set, frequency is reduced below the operating system request due to Multi-Core Turbo limits	
		12:11		Reserved.	
		13		Core Frequency P1 Status (R0) When set, frequency is reduced below max non-turbo P1	
		14		Core Max n-core Turbo Frequency Limiting Status (R0) When set, frequency is reduced below max n-core turbo frequency	
		15		Core Frequency Limiting Status (R0) When set, frequency is reduced below the operating system request.	
		16		PROCHOT Log When set, indicates that the PROCHOT Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.	
		17		Thermal Log	
		17		When set, indicates that the Thermal Status bit has asserted since the log bit was last cleared.	
				This log bit will remain set until cleared by software writing 0.	

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

	ister ress	Sco Register Name	Scope	Bit Description
Hex	Dec			
		18		Power Budget Management Log
				When set, indicates that the PBM Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		19		Platform Configuration Services Log
				When set, indicates that the PCS Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		20		Reserved.
		21		Autonomous Utilization-Based Frequency Control Log
				When set, indicates that the AUBFC Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		22		VR Therm Alert Log
				When set, indicates that the VR Therm Alert Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		23		Reserved.
		24		Electrical Design Point Log
				When set, indicates that the EDP Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		25		Reserved.
		26		Multi-Core Turbo Log
				When set, indicates that the Multi-Core Turbo Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		28:27		Reserved.
		29		Core Frequency P1 Log
				When set, indicates that the Core Frequency P1 Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		30		Core Max n-core Turbo Frequency Limiting Log
				When set, indicates that the Core Max n-core Turbo Frequency Limiting Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		31		Core Frequency Limiting Log When set, indicates that the Core Frequency Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		63:32		Reserved.
C8DH	3213	IA32_QM_EVTSEL	THREAD	Monitoring Event Select Register (R/W). if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1
		7:0		EventID (RW) Event encoding: 0x0: no monitoring 0x1: L3 occupancy monitoring all other encoding reserved.
		31:8		Reserved.
		41:32		RMID (RW)
		63:42		Reserved.
C8EH	3214	IA32_QM_CTR	THREAD	Monitoring Counter Register (R/O). if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1
		61:0		Resource Monitored Data
		62		Unavailable : If 1, indicates data for this RMID is not available or not monitored for this resource or RMID.
		63		Error: If 1, indicates and unsupported RMID or event type was written to IA32_PQR_QM_EVTSEL.
C8FH	3215	IA32_PQR_ASSOC	THREAD	Resource Association Register (R/W).
		9:0		RMID
		63: 10		Reserved
See	Table 35	-16, Table 35-21, Table 3		MSR definitions applicable to processors with CPUID signature 6_3FH

NOTES:

35.11.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family

Intel Xeon Processor E5 v3 and E7 v3 family are based on the Haswell-E microarchitecture. The MSR-based uncore PMU interfaces are listed in Table 35-28. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 v3 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3FH.

..

^{1.} An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the factory-set configuration is dependent on features specific to the processor and the platform.

35.12 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL CORE PROCESSORS

The Intel[®] Core[™] M-5xxx processors and 5th generation Intel[®] Core[™] Processors, and Intel[®] Xeon[®] Processor E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel[®] Core[™] M-5xxx processors and 5th generation Intel[®] Core[™] Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel[®] Xeon[®] Processor E3-1200 v4 family and the 5th generation Intel[®] Core[™] Processors have CPUID DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR interfaces listed in Table 35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-25, Table 35-29, and Table 35-30. For an MSR listed in Table 35-30 that also appears in the model-specific tables of prior generations, Table 35-30 supercede prior generation tables.

Table 35-29 lists MSRs that are common to processors based on the Broadwell microarchitectures (including CPUID signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
E2H	226	MSR_PKG_CST_CONFIG_	Core	C-State Configuration Control (R/W)
		CONTROL		Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-states.
				See http://biosbits.org.
		3:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power) for the package. The default is set as factory-configured package C-state limit.
				The following C-state code name encodings are supported:
				0000b: CO/C1 (no package C-state support)
				0001b: C2
				0010b: C3
				0011b: C6
				0100b: C7
				0101b: C7s
		9:4		Reserved
		10		I/O MWAIT Redirection Enable (R/W)
		14:11		Reserved
		15		CFG Lock (R/WO)
		24:16		Reserved
		25		C3 State Auto Demotion Enable (R/W)
		26		C1 State Auto Demotion Enable (R/W)
		27		Enable C3 Undemotion (R/W)
		28		Enable C1 Undemotion (R/W)
		63:29		Reserved

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

	ister ress	Register Name	Scope	Bit Description
Hex	Dec	1		
38EH	910	IA32_PERF_GLOBAL_ STAUS	Thread	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0		Ovf_PMC0
		1		Ovf_PMC1
		2		Ovf_PMC2
		3		Ovf_PMC3
		31:4		Reserved.
		32		0vf_FixedCtr0
		33		0vf_FixedCtr1
		34		0vf_FixedCtr2
		54:35		Reserved.
		55		Trace_ToPA_PMI. See Section 36.2.4.2, "Table of Physical Addresses (ToPA)."
		60:56		Reserved.
		61		Ovf_Uncore
		62		Ovf_BufDSSAVE
		63		CondChgd
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL	Thread	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0		Set 1 to clear Ovf_PMCO
		1		Set 1 to clear Ovf_PMC1
		2		Set 1 to clear Ovf_PMC2
		3		Set 1 to clear Ovf_PMC3
		31:4		Reserved.
		32		Set 1 to clear Ovf_FixedCtr0
		33		Set 1 to clear Ovf_FixedCtr1
		34		Set 1 to clear Ovf_FixedCtr2
		54:35		Reserved.
		55		Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.2, "Table of Physical Addresses (ToPA)."
		60:56		Reserved.
		61		Set 1 to clear Ovf_Uncore
		62		Set 1 to clear Ovf_BufDSSAVE
		63		Set 1 to clear CondChgd
560H	1376	IA32_RTIT_OUTPUT_BASE	THREAD	Trace Output Base Register (R/W)

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

New Dec		ister Iress	Register Name	Scope	Bit Description
MAXPHYADDR ¹ -1:7 Base physical address.	Hex	Dec			
63:MAXPHYADDR Reserved.			6:0		Reserved.
Trace Output Mask Pointers Register (R/W)			MAXPHYADDR ¹ -1:7		Base physical address.
PTRS Reserved.			63:MAXPHYADDR		Reserved.
31:7 MaskOrTableOffset	561H	1377		THREAD	Trace Output Mask Pointers Register (R/W)
1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1392 1393 1392 1393			6:0		Reserved.
Trace Control Register (R/W) Trace En			31:7		MaskOrTableOffset
1			63:32		Output Offset.
1	570H	1392	IA32_RTIT_CTL	Thread	Trace Control Register (R/W)
2 0S			0		TraceEn
3			1		Reserved, MBZ.
6:4 Reserved, MBZ 7			2		OS
Topa; writing 0 will #GP if also setting TraceEn			3		User
8			6:4		Reserved, MBZ
9 Reserved, MBZ			7		CR3 filter
10 TSCEn			8		ToPA; writing 0 will #GP if also setting TraceEn
11			9		Reserved, MBZ
12 Reserved, MBZ 13 Reserved; writing 0 will #GP if also setting TraceEn 63:14 Reserved, MBZ. 571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W) 0 Reserved, writes ignored. 1 ContexEn, writes ignored. 2 TriggerEn, writes ignored. 3 Reserved 4 Error (R/W)			10		TSCEn
13 Reserved; writing 0 will #GP if also setting TraceEn Reserved, MBZ. 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W) Reserved, writes ignored. ContexEn, writes ignored. TriggerEn, writes ignored. Reserved Reserved FriggerEn, writes ignored. Reserved FriggerEn, writes ignored.			11		DisRETC
63:14 Reserved, MBZ. 1393 IA32_RTIT_STATUS Reserved, writes ignored. ContexEn, writes ignored. TriggerEn, writes ignored. Reserved Reserved Error (R/W)			12		Reserved, MBZ
571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W) 0 Reserved, writes ignored. 1 ContexEn, writes ignored. 2 TriggerEn, writes ignored. 3 Reserved 4 Error (R/W)			13		Reserved; writing 0 will #GP if also setting TraceEn
0 Reserved, writes ignored. 1 ContexEn, writes ignored. 2 TriggerEn, writes ignored. 3 Reserved 4 Error (R/W)			63:14		Reserved, MBZ.
1 ContexEn, writes ignored. 2 TriggerEn, writes ignored. 3 Reserved 4 Error (R/W)	571H	1393	IA32_RTIT_STATUS	Thread	Tracing Status Register (R/W)
2 TriggerEn, writes ignored. 3 Reserved 4 Error (R/W)			0		Reserved, writes ignored.
3 Reserved 4 Error (R/W)			1		ContexEn, writes ignored.
4 Error (R/W)			2		TriggerEn, writes ignored.
			3		Reserved
5 Stopped			4		Error (R/W)
Stopped			5		Stopped
63:6 Reserved, MBZ.			63:6		Reserved, MBZ.
572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)	572H	1394	IA32_RTIT_CR3_MATCH	THREAD	Trace Filter CR3 Match Register (R/W)
4:0 Reserved			4:0		Reserved
63:5 CR3[63:5] value to match			63:5		CR3[63:5] value to match

NOTES

^{1.} MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-30 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

Table 35-30 Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

	ister ress	Register Name	Scope	Bit Description
Hex	Dec	_		
E2H	226	MSR_PKG_CST_CONFIG_	Соге	C-State Configuration Control (R/W)
		CONTROL		Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-states.
				See http://biosbits.org.
		3:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power) for the package. The default is set as factory-configured package C-state limit.
				The following C-state code name encodings are supported:
				0000b: CO/C1 (no package C-state support)
				0001b: C2
				0010b: C3
				0011b: C6
				0100b: C7 0101b: C7s
				0110b: C8
				0111b: C9
				1000b: C10
		9:4		Reserved
		10		I/O MWAIT Redirection Enable (R/W)
		14:11		Reserved
		15		CFG Lock (R/WO)
		24:16		Reserved
		25		C3 State Auto Demotion Enable (R/W)
		26		C1 State Auto Demotion Enable (R/W)
		27		Enable C3 Undemotion (R/W)
		28		Enable C1 Undemotion (R/W)
		29		Enable Package C-State Auto-demotion (R/W)
		30		Enable Package C-State Undemotion (R/W)
		63:31		Reserved
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode
				RO if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 1C
				Maximum turbo ratio limit of 1 core active.

Table 35-30 Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

_	ister ress	Register Name	Scope	Bit Description		
Hex	Dec					
		15:8	Package	Maximum Ratio Limit for 2C		
				Maximum turbo ratio limit of 2 core active.		
		23:16	Package	Maximum Ratio Limit for 3C		
				Maximum turbo ratio limit of 3 core active.		
		31:24	Package	Maximum Ratio Limit for 4C		
				Maximum turbo ratio limit of 4 core active.		
		39:32	Package	Maximum Ratio Limit for 5C		
				Maximum turbo ratio limit of 5core active.		
		47:40	Package	Maximum Ratio Limit for 6C		
				Maximum turbo ratio limit of 6core active.		
		63:48		Reserved.		
Coo Tob	as Table 25 16 Table 25 17 Table 25 20 Table 25 24 Table 25 25 Table 25 20 for other MSD definitions applicable					

See Table 35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-25, Table 35-29 for other MSR definitions applicable to processors with CPUID signature 06_3DH

. . .

35.13 MSRS IN FUTURE GENERATION INTEL® XEON® PROCESSORS

The MSRs listed in Table 35-31 are available in future generation of $Intel^{\otimes}$ Xeon $^{\otimes}$ Processor D Product Family (CPUID DisplayFamily DisplayModel = 06 56H). It is based on the Broadwell microarchitecture.

Table 35-31 also applies to future Intel Xeon processors based on the Broadwell microarchitecture (CPUID DisplayFamily_DisplayModel = 06_4FH).

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors

Based on the Broadwell Microarchitecture

Regi Addi		Register Name	Scope	Bit Description
Hex	Dec			
19CH	412	IA32_THERM_STATUS	Соге	Thermal Monitor Status (R/W)
				See Table 35-2.
		0		Thermal status (RO)
				See Table 35-2.
		1		Thermal status log (R/WC0)
				See Table 35-2.
		2		PROTCHOT # or FORCEPR# status (RO)
				See Table 35-2.
		3		PROTCHOT # or FORCEPR# log (R/WCO)
				See Table 35-2.

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors Based on the Broadwell Microarchitecture

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
		4		Critical Temperature status (RO) See Table 35-2.
		5		Critical Temperature status log (R/WC0) See Table 35-2.
		6		Thermal threshold #1 status (RO) See Table 35-2.
		7		Thermal threshold #1 log (R/WCO) See Table 35-2.
		8		Thermal threshold #2 status (RO) See Table 35-2.
		9		Thermal threshold #2 log (R/WCO) See Table 35-2.
		10		Power Limitation status (RO) See Table 35-2.
		11		Power Limitation log (R/WC0) See Table 35-2.
		12		Current Limit status (RO) See Table 35-2.
		13		Current Limit log (R/WCO) See Table 35-2.
		14		Cross Domain Limit status (RO) See Table 35-2.
		15		Cross Domain Limit log (R/WCO) See Table 35-2.
		22:16		Digital Readout (RO) See Table 35-2.
		26:23		Reserved.
		30:27		Resolution in degrees Celsius (RO)
		24		See Table 35-2.
		31		Reading Valid (RO) See Table 35-2.
		63:32		Reserved.
690H	1680	MSR_CORE_PERF_LIMIT_RE ASONS	Package	Indicator of Frequency Clipping in Processor Cores (R/W) (frequency refers to processor core frequency)

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors Based on the Broadwell Microarchitecture

	ister ress	Register Name	Scope	Bit Description
Hex	Dec	1		
		0		PROCHOT Status (R0) When set, processor core frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (R0) When set, frequency is reduced below the operating system request due to a thermal event.
		2		Power Budget Management Status (R0) When set, frequency is reduced below the operating system request due to PBM limit
		3		Platform Configuration Services Status (R0) When set, frequency is reduced below the operating system request due to PCS limit
		4		Reserved.
		5		Autonomous Utilization-Based Frequency Control Status (RO)
				When set, frequency is reduced below the operating system request because the processor has detected that utilization is low
		6		VR Therm Alert Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.
		7		Reserved.
		8		Electrical Design Point Status (R0) When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).
		9		Reserved.
		10		Multi-Core Turbo Status (R0)
				When set, frequency is reduced below the operating system request due to Multi-Core Turbo limits
		12:11		Reserved.
		13		Core Frequency P1 Status (R0)
				When set, frequency is reduced below max non-turbo P1
		14		Core Max n-core Turbo Frequency Limiting Status (R0) When set, frequency is reduced below max n-core turbo frequency
		15		Core Frequency Limiting Status (R0)
				When set, frequency is reduced below the operating system request.

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors Based on the Broadwell Microarchitecture

Regi: Addr		Register Name	Scope	Bit Description
Hex	Dec			
		16		PROCHOT Log
				When set, indicates that the PROCHOT Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		17		Thermal Log
				When set, indicates that the Thermal Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		18		Power Budget Management Log
				When set, indicates that the PBM Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		19		Platform Configuration Services Log
				When set, indicates that the PCS Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		20		Reserved.
		21		Autonomous Utilization-Based Frequency Control Log
				When set, indicates that the AUBFC Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		22		VR Therm Alert Log
				When set, indicates that the VR Therm Alert Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		23		Reserved.
		24		Electrical Design Point Log
				When set, indicates that the EDP Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		25		Reserved.
		26		Multi-Core Turbo Log
				When set, indicates that the Multi-Core Turbo Status bit has asserted since the log bit was last cleared.
				This log bit will remain set until cleared by software writing 0.
		28:27		Reserved.

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors Based on the Broadwell Microarchitecture

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		29		Core Frequency P1 Log When set, indicates that the Core Frequency P1 Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		30		Core Max n-core Turbo Frequency Limiting Log When set, indicates that the Core Max n-core Turbo Frequency Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		31		Core Frequency Limiting Log When set, indicates that the Core Frequency Limiting Status bit has asserted since the log bit was last cleared. This log bit will remain set until cleared by software writing 0.
		63:32		Reserved.
770H	1904	IA32_PM_ENABLE	Package	See Section 14.4.2, "Enabling HWP"
771H	1905	IA32_HWP_CAPABILITIES	Thread	See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"
774H	1908	IA32_HWP_REQUEST	Thread	See Section 14.4.4, "Managing HWP"
		7:0		Minimum Performance (R/W)
		15:8		Maximum Performance (R/W)
		23:16		Desired Performance (R/W)
		63:24		Reserved.
777H	1911	IA32_HWP_STATUS	Thread	See Section 14.4.5, "HWP Feedback"
C8DH	3213	IA32_QM_EVTSEL	THREAD	Monitoring Event Select Register (R/W) if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1
		7:0		EventID (RW) Event encoding: 0x00: no monitoring 0x01: L3 occupancy monitoring 0x02: Total memory bandwidth monitoring 0x03: Local memory bandwidth monitoring All other encoding reserved
		31:8		Reserved.
		41:32		RMID (RW)
		63:42		Reserved.
C8FH	3215	IA32_PQR_ASSOC	THREAD	Resource Association Register (R/W)
		9:0		RMID

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors Based on the Broadwell Microarchitecture

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		31:10		Reserved
		51:32		COS (R/W).
		63: 52		Reserved
C90H	3216	IA32_L3_QOS_MASK_0	Package	L3 Class Of Service Mask - COS 0 (R/W) if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0
		0:19		CBM: Bit vector of available L3 ways for COS 0 enforcement
		63:20		Reserved
C91H	3217	IA32_L3_QOS_MASK_1	Package	L3 Class Of Service Mask - COS 1 (R/W) if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1
		0:19		CBM: Bit vector of available L3 ways for COS 1 enforcement
		63:20		Reserved
C92H	3218	IA32_L3_QOS_MASK_2	Package	L3 Class Of Service Mask - COS 2 (R/W).
				if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2
		0:19		CBM: Bit vector of available L3 ways for COS 2 enforcement
		63:20		Reserved
C93H	3219	IA32_L3_QOS_MASK_3	Package	L3 Class Of Service Mask - COS 3 (R/W).
				if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3
		0:19		CBM: Bit vector of available L3 ways for COS 3 enforcement
		63:20		Reserved
C94H	3220	IA32_L3_QOS_MASK_4	Package	L3 Class Of Service Mask - COS 4 (R/W).
		- 12		if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4
		0:19		CBM: Bit vector of available L3 ways for COS 4 enforcement
		63:20		Reserved
C95H	3221	IA32_L3_QOS_MASK_5	Package	L3 Class Of Service Mask - COS 5 (R/W).
		0.10		if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5
		0:19		CBM: Bit vector of available L3 ways for COS 5 enforcement
COCII	าววา	63:20	Deskage	Reserved
C96H	3222	IA32_L3_QOS_MASK_6	Package	L3 Class Of Service Mask - COS 6 (R/W). if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6
		0:19		CBM: Bit vector of available L3 ways for COS 6 enforcement
		63:20		Reserved
C97H	3223	IA32_L3_QOS_MASK_7	Package	L3 Class Of Service Mask - COS 7 (R/W).
			-3-	if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7
		0:19		CBM: Bit vector of available L3 ways for COS 7 enforcement

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors Based on the Broadwell Microarchitecture

	ister Iress	Register Name	Scope	Bit Description	
Hex	Dec]			
		63:20		Reserved	
C98H	3224	IA32_L3_QOS_MASK_8	Package	L3 Class Of Service Mask - COS 8 (R/W).	
				if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8	
		0:19		CBM: Bit vector of available L3 ways for COS 8 enforcement	
		63:20		Reserved	
C99H	3225	IA32_L3_QOS_MASK_9	Package	L3 Class Of Service Mask - COS 9 (R/W).	
				if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9	
		0:19		CBM: Bit vector of available L3 ways for COS 9 enforcement	
		63:20		Reserved	
СЭАН	3226	IA32_L3_QOS_MASK_10	Package	L3 Class Of Service Mask - COS 10 (R/W). if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=10	
		0:19		CBM: Bit vector of available L3 ways for COS 10 enforcement	
		63:20		Reserved	
C9BH	3227	IA32_L3_QOS_MASK_11	Package	L3 Class Of Service Mask - COS 11 (R/W). if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=11	
		0:19		CBM: Bit vector of available L3 ways for COS 11 enforcement	
		63:20		Reserved	
C9CH	3228	IA32_L3_QOS_MASK_12	Package	L3 Class Of Service Mask - COS 12 (R/W).	
				if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=12	
		0:19		CBM: Bit vector of available L3 ways for COS 12 enforcement	
		63:20		Reserved	
C9DH	3229	IA32_L3_QOS_MASK_13	Package	L3 Class Of Service Mask - COS 13 (R/W). if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=13	
		0:19		CBM: Bit vector of available L3 ways for COS 13 enforcement	
		63:20		Reserved	
C9EH	3230	IA32_L3_QOS_MASK_14	Package	L3 Class Of Service Mask - COS 14 (R/W). if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=14	
		0:19		CBM: Bit vector of available L3 ways for COS 14 enforcement	
		63:20		Reserved	

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors

Based on the Broadwell Microarchitecture

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
C9FH	3231	IA32_L3_QOS_MASK_15	Package	L3 Class Of Service Mask - COS 15 (R/W). if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=15
		0:19		CBM: Bit vector of available L3 ways for COS 15 enforcement
		63:20		Reserved

35.14 MSRS IN NEXT GENERATION INTEL® CORE™ PROCESSORS

The next generation Intel[®] Core[™] processor family is based on the Skylake microarchitecture. They have CPUID DisplayFamily_DisplayModel signatures of 06_4EH and 06_5EH, supports the MSR interfaces listed in Table 35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-30, and Table 35-32. For an MSR listed in Table 35-32 that also appears in the model-specific tables of prior generations, Table 35-32 supercede prior generation tables.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
19CH	412	IA32_THERM_STATUS	Core	Thermal Monitor Status (R/W) See Table 35-2.
		0		Thermal status (RO) See Table 35-2.
		1		Thermal status log (R/WCO) See Table 35-2.
		2		PROTCHOT # or FORCEPR# status (RO) See Table 35-2.
		3		PROTCHOT # or FORCEPR# log (R/WCO) See Table 35-2.
		4		Critical Temperature status (RO) See Table 35-2.
		5		Critical Temperature status log (R/WCO) See Table 35-2.
		6		Thermal threshold #1 status (RO) See Table 35-2.
		7		Thermal threshold #1 log (R/WCO) See Table 35-2.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Regi Add	ster ress	Register Name	Scope	Bit Description
Hex	Dec			
		8		Thermal threshold #2 status (RO) See Table 35-2.
		9		Thermal threshold #2 log (R/WCO) See Table 35-2.
		10		Power Limitation status (RO) See Table 35-2.
		11		Power Limitation log (R/WC0) See Table 35-2.
		12		Current Limit status (RO) See Table 35-2.
		13		Current Limit log (R/WCO) See Table 35-2.
		14		Cross Domain Limit status (RO) See Table 35-2.
		15		Cross Domain Limit log (R/WCO) See Table 35-2.
		22:16		Digital Readout (RO) See Table 35-2.
		26:23		Reserved.
		30:27		Resolution in degrees Celsius (RO) See Table 35-2.
		31		Reading Valid (RO) See Table 35-2.
		63:32		Reserved.
1C9H	457	MSR_LASTBRANCH_TOS	Thread	Last Branch Record Stack TOS (R/W) Contains an index (bits 0-4) that points to the MSR containing the most recent branch record.
38EH	910	IA32_PERF_GLOBAL_ STAUS		See Table 35-2. See Section 18.2.4, "Architectural Performance Monitoring Version 4."
		0	Thread	Ovf_PMC0
		1	Thread	Ovf_PMC1
		2	Thread	Ovf_PMC2
		3	Thread	Ovf_PMC3
		4	Thread	Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)
		5	Thread	Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		6	Thread	Ovf_PMC6 (if CPUID.OAH:EAX[15:8] > 6)
		7	Thread	Ovf_PMC7 (if CPUID.OAH:EAX[15:8] > 7)
		31:8		Reserved.
		32	Thread	Ovf_FixedCtr0
		33	Thread	Ovf_FixedCtr1
		34	Thread	Ovf_FixedCtr2
		54:35		Reserved.
		55	Thread	Trace_ToPA_PMI.
		57:56		Reserved.
		58	Thread	LBR_Frz.
		59	Thread	CTR_Frz.
		60	Thread	ASCI.
		61	Thread	Ovf_Uncore
		62	Thread	Ovf_BufDSSAVE
		63	Thread	CondChgd
390H	912	IA32_PERF_GLOBAL_STAT US_RESET		See Table 35-2. See Section 18.2.4, "Architectural Performance Monitoring Version 4."
		0	Thread	Set 1 to clear Ovf_PMCO
		1	Thread	Set 1 to clear Ovf_PMC1
		2	Thread	Set 1 to clear Ovf_PMC2
		3	Thread	Set 1 to clear Ovf_PMC3
		4	Thread	Set 1 to clear Ovf_PMC4 (if CPUID.OAH:EAX[15:8] > 4)
		5	Thread	Set 1 to clear Ovf_PMC5 (if CPUID.OAH:EAX[15:8] > 5)
		6	Thread	Set 1 to clear Ovf_PMC6 (if CPUID.OAH:EAX[15:8] > 6)
		7	Thread	Set 1 to clear Ovf_PMC7 (if CPUID.OAH:EAX[15:8] > 7)
		31:8		Reserved.
		32	Thread	Set 1 to clear Ovf_FixedCtrO
		33	Thread	Set 1 to clear Ovf_FixedCtr1
		34	Thread	Set 1 to clear Ovf_FixedCtr2
		54:35		Reserved.
		55	Thread	Set 1 to clear Trace_ToPA_PMI.
		57:56		Reserved.
		58	Thread	Set 1 to clear LBR_Frz.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
		59	Thread	Set 1 to clear CTR_Frz.
		60	Thread	Set 1 to clear ASCI.
		61	Thread	Set 1 to clear Ovf_Uncore
		62	Thread	Set 1 to clear Ovf_BufDSSAVE
		63	Thread	Set 1 to clear CondChgd
391H	913	IA32_PERF_GLOBAL_STAT US_SET		See Table 35-2. See Section 18.2.4, "Architectural Performance Monitoring Version 4."
		0	Thread	Set 1 to cause Ovf_PMC0 = 1
		1	Thread	Set 1 to cause Ovf_PMC1 = 1
		2	Thread	Set 1 to cause Ovf_PMC2 = 1
		3	Thread	Set 1 to cause Ovf_PMC3 = 1
		4	Thread	Set 1 to cause Ovf_PMC4=1 (if CPUID.OAH:EAX[15:8] > 4)
		5	Thread	Set 1 to cause Ovf_PMC5=1 (if CPUID.OAH:EAX[15:8] > 5)
		6	Thread	Set 1 to cause Ovf_PMC6=1 (if CPUID.OAH:EAX[15:8] > 6)
		7	Thread	Set 1 to cause Ovf_PMC7=1 (if CPUID.OAH:EAX[15:8] > 7)
		31:8		Reserved.
		32	Thread	Set 1 to cause Ovf_FixedCtr0 = 1
		33	Thread	Set 1 to cause Ovf_FixedCtr1 = 1
		34	Thread	Set 1 to cause Ovf_FixedCtr2 = 1
		54:35		Reserved.
		55	Thread	Set 1 to cause Trace_ToPA_PMI = 1
		57:56		Reserved.
		58	Thread	Set 1 to cause LBR_Frz = 1
		59	Thread	Set 1 to cause CTR_Frz = 1
		60	Thread	Set 1 to cause ASCI = 1
		61	Thread	Set 1 to cause Ovf_Uncore
		62	Thread	Set 1 to cause Ovf_BufDSSAVE
		63		Reserved
392H	913	IA32_PERF_GLOBAL_INUSE		See Table 35-2.
3F7H	1015	MSR_PEBS_FRONTEND	Thread	FrontEnd Precise Event Condition Select (R/W)
		7:0		Event Code Select
		19:8		IDQ_Bubble_Length Specifier
		22:20		IDQ_Bubble_Width Specifier

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Register Address		Register Name	Scope	Bit Description	
Hex	Dec				
		63:23		Reserved	
560H	1376	IA32_RTIT_OUTPUT_BASE	Thread	Trace Output Base Register (R/W). See Table 35-2.	
561H	1377	IA32_RTIT_OUTPUT_MASK _PTRS	Thread	Trace Output Mask Pointers Register (R/W). See Table 35-2.	
570H	1392	IA32_RTIT_CTL	Thread	Trace Control Register (R/W)	
		0		TraceEn	
		1		CYCEn	
		2		OS	
		3		User	
		6:4		Reserved, MBZ	
		7		CR3 filter	
		8		ToPA; writing 0 will #GP if also setting TraceEn	
		9		MTCEn	
		10		TSCEn	
		11		DisRETC	
		12		Reserved, MBZ	
		13		BranchEn	
		17:14		MTCFreq	
		18		Reserved, MBZ	
		22:19		CYCThresh	
		23		Reserved, MBZ	
		27:24		PSBFreq	
		31:28		Reserved, MBZ	
		35:32		ADDRO_CFG	
		39:36		ADDR1_CFG	
		63:40		Reserved, MBZ.	
571H	1393	IA32_RTIT_STATUS	Thread	Tracing Status Register (R/W)	
		0		FilterEn, writes ignored.	
		1		ContexEn, writes ignored.	
		2		TriggerEn, writes ignored.	
		3		Reserved	
		4		Error (R/W)	
		5		Stopped	

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

	ister Iress	Register Name	Scope	Bit Description
Hex	Dec			
		31:6		Reserved. MBZ
		48:32		PacketByteCnt
		63:49		Reserved, MBZ.
572H	1394	IA32_RTIT_CR3_MATCH	THREAD	Trace Filter CR3 Match Register (R/W)
		4:0		Reserved
		63:5		CR3[63:5] value to match
64EH	1615	MSR_PPERF	THREAD	Productive Performance Count. (R/O).
		63:0		Hardware's view of workload scalability. See Section 14.4.5.1
652H	1614	MSR_PKG_HDC_CONFIG	Package	HDC Configuration (R/W).
		2:0		PKG_Cx_Monitor.
				Configures Package Cx state threshold for MSR_PKG_HDC_DEEP_RESIDENCY
		63: 3		Reserved
653H	1615	MSR_CORE_HDC_ RESIDENCY	Core	Core HDC Idle Residency. (R/O).
		63:0		Core_Cx_Duty_Cycle_Cnt.
655H	1617	MSR_PKG_HDC_SHALLOW_ RESIDENCY	Package	Accumulate the cycles the package was in C2 state and at least one logical processor was in forced idle. (R/O).
		63:0		Pkg_C2_Duty_Cycle_Cnt.
656H	1618	MSR_PKG_HDC_DEEP_ RESIDENCY	Package	Package Cx HDC Idle Residency. (R/O).
		63:0		Pkg_Cx_Duty_Cycle_Cnt.
658H	1620	MSR_WEIGHTED_CORE_CO	Package	Core-count Weighted CO Residency. (R/O).
		63:0		Increment at the same rate as the TSC. The increment each cycle is weighted by the number of processor cores in the package that reside in CO. If N cores are simultaneously in CO, then each cycle the counter increments by N.
659H	1621	MSR_ANY_CORE_CO	Package	Any Core CO Residency. (R/O)
		63:0		Increment at the same rate as the TSC. The increment each cycle is one if any processor core in the package is in CO.
65AH	1622	MSR_ANY_GFXE_CO	Package	Any Graphics Engine CO Residency. (R/O)
		63:0		Increment at the same rate as the TSC. The increment each cycle is one if any processor graphic device's compute engines are in CO.
65BH	1623	MSR_CORE_GFXE_OVERLA P_CO	Package	Core and Graphics Engine Overlapped CO Residency. (R/O)

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		63:0		Increment at the same rate as the TSC. The increment each cycle is one if at least one compute engine of the processor graphics is in CO and at least one processor core in the package is also in CO.
690H	1680	MSR_	Thread	Last Branch Record 16 From IP (R/W)
		LASTBRANCH_16_FROM_IP		One of 32 triplets of last branch record registers on the last branch record stack. This part of the stack contains pointers to the source instruction . See also:
				Last Branch Record Stack TOS at 1C9HSection 17.9
691H	1681	MSR_	Thread	Last Branch Record 17 From IP (R/W)
		LASTBRANCH_17_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
692H	1682	MSR_	Thread	Last Branch Record 18 From IP (R/W)
		LASTBRANCH_18_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
693H	1683	MSR_	Thread	Last Branch Record 19From IP (R/W)
		LASTBRANCH_19_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
694H	1684	MSR_	Thread	Last Branch Record 20 From IP (R/W)
		LASTBRANCH_20_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
695H	1685	MSR_	Thread	Last Branch Record 21 From IP (R/W)
		LASTBRANCH_21_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
696H	1686	MSR_	Thread	Last Branch Record 22 From IP (R/W)
		LASTBRANCH_22_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
697H	1687	MSR_ LASTBRANCH_23_FROM_IP	Thread	Last Branch Record 23 From IP (R/W)
				See description of MSR_LASTBRANCH_0_FROM_IP.
698H	1688	MSR_ LASTBRANCH_24_FROM_IP	Thread	Last Branch Record 24 From IP (R/W)
				See description of MSR_LASTBRANCH_0_FROM_IP.
699H	1689	MSR_ LASTBRANCH_25_FROM_IP	Thread	Last Branch Record 25 From IP (R/W)
	4600		-	See description of MSR_LASTBRANCH_0_FROM_IP.
69AH	1690	MSR_ LASTBRANCH_26_FROM_IP	Thread	Last Branch Record 26 From IP (R/W)
CODII	1.601			See description of MSR_LASTBRANCH_0_FROM_IP.
69BH	1691	MSR_ LASTBRANCH_27_FROM_IP	Thread	Last Branch Record 27 From IP (R/W)
COCLI	1602		Throad	See description of MSR_LASTBRANCH_0_FROM_IP.
69CH	1692	MSR_ LASTBRANCH_28_FROM_IP	Thread	Last Branch Record 28 From IP (R/W) See description of MSR_LASTBRANCH_0_FROM_IP.
69DH	1693	MSR_	Thread	Last Branch Record 29 From IP (R/W)
		LASTBRANCH_29_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.
69EH	1694	MSR_	Thread	Last Branch Record 30 From IP (R/W)
		LASTBRANCH_30_FROM_IP		See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
69FH	1695	MSR_ LASTBRANCH_31_FROM_IP	Thread	Last Branch Record 31 From IP (R/W) See description of MSR_LASTBRANCH_O_FROM_IP.
6D0H	1744	MSR_ LASTBRANCH_16_TO_IP	Thread	Last Branch Record 16 To IP (R/W) One of 32 triplets of last branch record registers on the last branch record stack. This part of the stack contains pointers to the destination instruction. See also: Last Branch Record Stack TOS at 1C9H Section 17.9
6D1H	1745	MSR_ LASTBRANCH_17_TO_IP	Thread	Last Branch Record 17 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D2H	1746	MSR_ LASTBRANCH_18_TO_IP	Thread	Last Branch Record 18 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D3H	1747	MSR_ LASTBRANCH_19_TO_IP	Thread	Last Branch Record 19To IP (R/W) See description of MSR_LASTBRANCH_O_TO_IP.
6D4H	1748	MSR_ LASTBRANCH_20_TO_IP	Thread	Last Branch Record 20 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D5H	1749	MSR_ LASTBRANCH_21_TO_IP	Thread	Last Branch Record 21 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D6H	1750	MSR_ LASTBRANCH_22_TO_IP	Thread	Last Branch Record 22 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D7H	1751	MSR_ LASTBRANCH_23_TO_IP	Thread	Last Branch Record 23 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D8H	1752	MSR_ LASTBRANCH_24_TO_IP	Thread	Last Branch Record 24 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6D9H	1753	MSR_ LASTBRANCH_25_TO_IP	Thread	Last Branch Record 25 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6DAH	1754	MSR_ LASTBRANCH_26_TO_IP	Thread	Last Branch Record 26 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6DBH	1755	MSR_ LASTBRANCH_27_TO_IP	Thread	Last Branch Record 27 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6DCH	1756	MSR_ LASTBRANCH_28_TO_IP	Thread	Last Branch Record 28 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6DDH	1757	MSR_ LASTBRANCH_29_TO_IP	Thread	Last Branch Record 29 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
6DEH	1758	MSR_ LASTBRANCH_30_TO_IP	Thread	Last Branch Record 30 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
6DFH	1759	MSR_ LASTBRANCH_31_TO_IP	Thread	Last Branch Record 31 To IP (R/W) See description of MSR_LASTBRANCH_0_TO_IP.
770H	1904	IA32_PM_ENABLE	Package	See Section 14.4.2, "Enabling HWP"
771H	1905	IA32_HWP_CAPABILITIES	Thread	See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"
772H	1906	IA32_HWP_REQUEST_PKG	Package	See Section 14.4.4, "Managing HWP"
773H	1907	IA32_HWP_INTERRUPT	Thread	See Section 14.4.6, "HWP Notifications"
774H	1908	IA32_HWP_REQUEST	Thread	See Section 14.4.4, "Managing HWP"
		7:0		Minimum Performance (R/W).
		15:8		Maximum Performance (R/W).
		23:16		Desired Performance (R/W).
		31:24		Energy/Performance Preference (R/W).
		41:32		Activity Window (R/W).
		42		Package Control (R/W).
		63:43		Reserved.
777H	1911	IA32_HWP_STATUS	Thread	See Section 14.4.5, "HWP Feedback"
DB0H	3504	IA32_PKG_HDC_CTL	Package	See Section 14.5.2, "Package level Enabling HDC"
DB1H	3505	IA32_PM_CTL1	Thread	See Section 14.5.3, "Logical-Processor Level HDC Control"
DB2H	3506	IA32_THREAD_STALL	Thread	See Section 14.5.4.1, "IA32_THREAD_STALL"
DCOH	3520	MSR_LBR_INFO_0	Thread	Last Branch Record O Additional Information (R/W)
				One of 32 triplet of last branch record registers on the last branch record stack. This part of the stack contains flag, TSX-related and elapsed cycle information. See also: Last Branch Record Stack TOS at 1C9H Section 17.6.1, "LBR Stack."
DC1H	3521	MSR_LBR_INFO_1	Thread	Last Branch Record 1 Additional Information (R/W)
				See description of MSR_LBR_INFO_0.
DC2H	3522	MSR_LBR_INFO_2	Thread	Last Branch Record 2 Additional Information (R/W)
				See description of MSR_LBR_INFO_0.
DC3H	3523	MSR_LBR_INFO_3	Thread	Last Branch Record 3 Additional Information (R/W)
				See description of MSR_LBR_INFO_0.
DC4H	3524	MSR_LBR_INFO_4	Thread	Last Branch Record 4 Additional Information (R/W)
				See description of MSR_LBR_INFO_0.
DC5H	3525	MSR_LBR_INFO_5	Thread	Last Branch Record 5 Additional Information (R/W)
				See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
DC6H	3526	MSR_LBR_INFO_6	Thread	Last Branch Record 6 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DC7H	3527	MSR_LBR_INFO_7	Thread	Last Branch Record 7 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DC8H	3528	MSR_LBR_INFO_8	Thread	Last Branch Record 8 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DC9H	3529	MSR_LBR_INFO_9	Thread	Last Branch Record 9 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DCAH	3530	MSR_LBR_INFO_10	Thread	Last Branch Record 10 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DCBH	3531	MSR_LBR_INFO_11	Thread	Last Branch Record 11 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DCCH	3532	MSR_LBR_INFO_12	Thread	Last Branch Record 12 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DCDH	3533	MSR_LBR_INFO_13	Thread	Last Branch Record 13 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DCEH	3534	MSR_LBR_INFO_14	Thread	Last Branch Record 14 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DCFH	3535	MSR_LBR_INFO_15	Thread	Last Branch Record 15 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDOH	3536	MSR_LBR_INFO_16	Thread	Last Branch Record 16 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD1H	3537	MSR_LBR_INFO_17	Thread	Last Branch Record 17 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD2H	3538	MSR_LBR_INFO_18	Thread	Last Branch Record 18 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD3H	3539	MSR_LBR_INFO_19	Thread	Last Branch Record 19 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD4H	3520	MSR_LBR_INFO_20	Thread	Last Branch Record 20 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD5H	3521	MSR_LBR_INFO_21	Thread	Last Branch Record 21 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD6H	3522	MSR_LBR_INFO_22	Thread	Last Branch Record 22 Additional Information (R/W) See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake Microarchitecture

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
DD7H	3523	MSR_LBR_INFO_23	Thread	Last Branch Record 23 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD8H	3524	MSR_LBR_INFO_24	Thread	Last Branch Record 24 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DD9H	3525	MSR_LBR_INFO_25	Thread	Last Branch Record 25 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDAH	3526	MSR_LBR_INFO_26	Thread	Last Branch Record 26 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDBH	3527	MSR_LBR_INFO_27	Thread	Last Branch Record 27 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDCH	3528	MSR_LBR_INFO_28	Thread	Last Branch Record 28 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDDH	3529	MSR_LBR_INFO_29	Thread	Last Branch Record 29 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDEH	3530	MSR_LBR_INFO_30	Thread	Last Branch Record 30 Additional Information (R/W) See description of MSR_LBR_INFO_0.
DDFH	3531	MSR_LBR_INFO_31	Thread	Last Branch Record 31 Additional Information (R/W) See description of MSR_LBR_INFO_0.

. . .

35.15 MSRS IN THE NEXT GENERATION INTEL® XEON PHI™ PROCESSORS

The next generation Intel[®] Xeon Phi[™] processor family, with CPUID DisplayFamily_DisplayModel signature 06_57H, supports the MSR interfaces listed in Table 35-33. These processors are based on the Knights Landing microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as module.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope	
Hex	Dec	Register Name		Bit Description
ОН	0	IA32_P5_MC_ADDR	Module	See Section 35.20, "MSRs in Pentium Processors."
1H	1	IA32_P5_MC_TYPE	Module	See Section 35.20, "MSRs in Pentium Processors."
6H	6	IA32_MONITOR_FILTER_ SIZE	Thread	See Section 8.10.5, "Monitor/Mwait Address Range Determination." and Table 35-2
10H	16	IA32_TIME_STAMP_ COUNTER	Thread	See Section 17.14, "Time-Stamp Counter," and see Table 35-2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope	
Hex	Dec	Register Name		Bit Description
17H	23	IA32_PLATFORM_ID	Package	Platform ID (R) See Table 35-2.
1BH	27	IA32_APIC_BASE	Thread	See Section 10.4.4, "Local APIC Status and Location," and Table 35-2.
34H	52	MSR_SMI_COUNT	Thread	SMI Counter (R/O)
		31:0		SMI Count (R/O)
		63:32		Reserved.
ЗAH	58	IA32_FEATURE_CONTROL	Thread	Control Features in Intel 64Processor (R/W) See Table 35-2.
		0		Lock (R/WL)
		1		Reserved
		2		Enable VMX outside SMX operation (R/WL)
3BH	59	IA32_TSC_ADJUST	THREAD	Per-Logical-Processor TSC ADJUST (R/W) See Table 35-2.
79H	121	IA32_BIOS_UPDT_TRIG	Core	BIOS Update Trigger Register (W) See Table 35-2.
8BH	139	IA32_BIOS_SIGN_ID	THREAD	BIOS Update Signature ID (RO) See Table 35-2.
C1H	193	IA32_PMC0	THREAD	Performance counter register See Table 35-2.
C2H	194	IA32_PMC1	THREAD	Performance Counter Register See Table 35-2.
CEH	206	MSR_PLATFORM_INFO	Package	See http://biosbits.org.
		7:0		Reserved.
		15:8	Package	Maximum Non-Turbo Ratio (R/O)
				The is the ratio of the frequency that invariant TSC runs at. Frequency = ratio * 100 MHz.
		27:16		Reserved.
		28	Package	Programmable Ratio Limit for Turbo Mode (R/O)
				When set to 1, indicates that Programmable Ratio Limits for Turbo mode is enabled, and when set to 0, indicates Programmable Ratio Limits for Turbo mode is disabled.
		29	Package	Programmable TDP Limit for Turbo Mode (R/O)
				When set to 1, indicates that TDP Limits for Turbo mode are programmable, and when set to 0, indicates TDP Limit for Turbo mode is not programmable.
		39:30		Reserved.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope	
Hex	Dec	Register Name		Bit Description
		47:40	Package	Maximum Efficiency Ratio (R/O)
				The is the minimum ratio (maximum efficiency) that the processor can operates, in units of 100MHz.
		63:48		Reserved.
E2H	226	MSR_PKG_CST_CONFIG_ CONTROL	Module	C-State Configuration Control (R/W)
		2:0		Package C-State Limit (R/W)
				The following C-state code name encodings are supported:
				000ь: С0/С1
				001b: C2
				010b: C6 No Retention
				011b: C6 Retention
				111b: No limit
		9:3		Reserved.
		10		I/O MWAIT Redirection Enable (R/W)
		14:11		Reserved.
		15		CFG Lock (R/WO)
		63:16		Reserved.
E4H	228	MSR_PMG_IO_CAPTURE_ BASE	Module	Power Management IO Redirection in C-state (R/W)
		15:0		LVL_2 Base Address (R/W)
		18:16		C-state Range (R/W)
				Specifies the encoding value of the maximum C-State code name to be included when IO read to MWAIT redirection is enabled by MSR_PKG_CST_CONFIG_CONTROL[bit10]:
				100b - C4 is the max C-State to include
				110b - C6 is the max C-State to include
		63:19		Reserved.
E7H	231	IA32_MPERF	Thread	Maximum Performance Frequency Clock Count (RW)
				See Table 35-2.
E8H	232	IA32_APERF	Thread	Actual Performance Frequency Clock Count (RW)
				See Table 35-2.
FEH	254	IA32_MTRRCAP	Соге	Memory Type Range Register (R)
				See Table 35-2.
174H	372	IA32_SYSENTER_CS	Thread	See Table 35-2.
175H	373	IA32_SYSENTER_ESP	Thread	See Table 35-2.
176H	374	IA32_SYSENTER_EIP	Thread	See Table 35-2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope	
Hex	Dec	Register Name		Bit Description
179H	377	IA32_MCG_CAP	Thread	See Table 35-2.
17AH	378	IA32_MCG_STATUS	Thread	See Table 35-2.
186H	390	IA32_PERFEVTSEL0	Thread	Performance Monitoring Event Select Register (R/W) See Table 35-2.
		7:0		Event Select
		15:8		UMask
		16		USR
		17		OS
		18		Edge
		19		PC
		20		INT
		21		AnyThread
		22		EN
		23		INV
		31:24		CMASK
		63:32		Reserved.
187H	391	IA32_PERFEVTSEL1	Thread	See Table 35-2.
198H	408	IA32_PERF_STATUS	Package	See Table 35-2.
199H	409	IA32_PERF_CTL	Thread	See Table 35-2.
19AH	410	IA32_CLOCK_MODULATION	Thread	Clock Modulation (R/W) See Table 35-2.
19BH	411	IA32_THERM_INTERRUPT	Module	Thermal Interrupt Control (R/W) See Table 35-2.
19CH	412	IA32_THERM_STATUS	Module	Thermal Monitor Status (R/W) See Table 35-2.
		0		Thermal status (R0)
		1		Thermal status log (R/WC0)
		2		PROTCHOT # or FORCEPR# status (RO)
		3		PROTCHOT # or FORCEPR# log (R/WC0)
		4		Critical Temperature status (RO)
		5		Critical Temperature status log (R/WCO)
		6		Thermal threshold #1 status (RO)
		7		Thermal threshold #1 log (R/WC0)
		8		Thermal threshold #2 status (RO)

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Addı	ress		Scope		
Hex	Dec	Register Name		Bit Description	
		9		Thermal threshold #2 log (R/WCO)	
		10		Power Limitation status (RO)	
		11		Power Limitation log (R/WC0)	
		15:12		Reserved.	
		22:16		Digital Readout (RO)	
		26:23		Reserved.	
		30:27		Resolution in degrees Celsius (RO)	
		31		Reading Valid (RO)	
		63:32		Reserved.	
1A0H	416	IA32_MISC_ENABLE	Thread	Enable Misc. Processor Features (R/W)	
				Allows a variety of processor functions to be enabled and disabled.	
		0		Fast-Strings Enable	
		2:1		Reserved.	
		3		Automatic Thermal Control Circuit Enable (R/W)	
		6:4		Reserved.	
		7		Performance Monitoring Available (R)	
		10:8		Reserved.	
		11		Branch Trace Storage Unavailable (RO)	
		12		Precise Event Based Sampling Unavailable (RO)	
		15:13		Reserved.	
		16		Enhanced Intel SpeedStep Technology Enable (R/W)	
		18		ENABLE MONITOR FSM (R/W)	
		21:19		Reserved.	
		22		Limit CPUID Maxval (R/W)	
		23		xTPR Message Disable (R/W)	
		33:24		Reserved.	
		34		XD Bit Disable (R/W)	
		37:35		Reserved.	
		38		Turbo Mode Disable (R/W)	
		63:39		Reserved.	
1A2H	418	MSR_ TEMPERATURE_TARGET	Package		
		15:0		Reserved.	
		23:16		Temperature Target (R)	

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Addr	ress		Scope	
Hex	Dec	Register Name		Bit Description
		29:24		Target Offset (R/W)
		63:30		Reserved.
1A6H	422	MSR_OFFCORE_RSP_0	Shared	Offcore Response Event Select Register (R/W)
1A7H	423	MSR_OFFCORE_RSP_1	Shared	Offcore Response Event Select Register (R/W)
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)
		0		Reserved
		7:1	Package	Maximum Number of Cores in Group 0
				Number active processor cores which operates under the maximum ratio limit for group 0.
		15:8	Package	Maximum Ratio Limit for Group 0
				Maximum turbo ratio limit when the number of active cores are not more than the group 0 maximum core count.
		20:16	Package	Number of Incremental Cores Added to Group 1
				Group 1, which includes the specified number of additional cores plus the cores in group 0, operates under the group 1 turbo max ratio limit = "group 0 Max ratio limit" - "group ratio delta for group 1".
		23:21	Package	Group Ratio Delta for Group 1
				An unsigned integer specifying the ratio decrement relative to the Max ratio limit to Group 0.
		28:24	Package	Number of Incremental Cores Added to Group 2
				Group 2, which includes the specified number of additional cores plus all the cores in group 1, operates under the group 2 turbo max ratio limit = "group 1 Max ratio limit" - "group ratio delta for group 2".
		31:29	Package	Group Ratio Delta for Group 2
				An unsigned integer specifying the ratio decrement relative to the Max ratio limit for Group 1.
		36:32	Package	Number of Incremental Cores Added to Group 3
				Group 3, which includes the specified number of additional cores plus all the cores in group 2, operates under the group 3 turbo max ratio limit = "group 2 Max ratio limit" - "group ratio delta for group 3".
		39:37	Package	Group Ratio Delta for Group 3
				An unsigned integer specifying the ratio decrement relative to the Max ratio limit for Group 2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Addı	ress		Scope	yriodei Signature 00_37 H
Hex	Dec	Register Name		Bit Description
		44:40	Package	Number of Incremental Cores Added to Group 4
				Group 4, which includes the specified number of additional cores plus all the cores in group 3, operates under the group 4 turbo max ratio limit = "group 3 Max ratio limit" - "group ratio delta for group 4".
		47:45	Package	Group Ratio Delta for Group 4
				An unsigned integer specifying the ratio decrement relative to the Max ratio limit for Group 3.
		52:48	Package	Number of Incremental Cores Added to Group 5
				Group 5, which includes the specified number of additional cores plus all the cores in group 4, operates under the group 5 turbo max ratio limit = "group 4 Max ratio limit" - "group ratio delta for group 5".
		55:53	Package	Group Ratio Delta for Group 5
				An unsigned integer specifying the ratio decrement relative to the Max ratio limit for Group 4.
		60:56	Package	Number of Incremental Cores Added to Group 6
				Group 6, which includes the specified number of additional cores plus all the cores in group 5, operates under the group 6 turbo max ratio limit = "group 5 Max ratio limit" - "group ratio delta for group 6".
		63:61	Package	Group Ratio Delta for Group 6
				An unsigned integer specifying the ratio decrement relative to the Max ratio limit for Group 5.
1B0H	432	IA32_ENERGY_PERF_BIAS	Thread	See Table 35-2.
1B1H	433	IA32_PACKAGE_THERM_ STATUS	Package	See Table 35-2.
1B2H	434	IA32_PACKAGE_THERM_ INTERRUPT	Package	See Table 35-2.
1C8H	456	MSR_LBR_SELECT	Thread	Last Branch Record Filtering Select Register (R/W)
1C9H	457	MSR_LASTBRANCH_TOS	Thread	Last Branch Record Stack TOS (R/W)
1D9H	473	IA32_DEBUGCTL	Thread	Debug Control (R/W)
				See Table 35-2.
1DDH	477	MSR_LER_FROM_LIP	Thread	Last Exception Record From Linear IP (R)
1DEH	478	MSR_LER_TO_LIP	Thread	Last Exception Record To Linear IP (R)
1F2H	498	IA32_SMRR_PHYSBASE	Core	See Table 35-2.
1F3H	499	IA32_SMRR_PHYSMASK	Core	See Table 35-2.
200H	512	IA32_MTRR_PHYSBASE0	Core	See Table 35-2.
201H	513	IA32_MTRR_PHYSMASK0	Core	See Table 35-2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope Scope		
Hex	Dec	Register Name		Bit Description	
202H	514	IA32_MTRR_PHYSBASE1	Соге	See Table 35-2.	
203H	515	IA32_MTRR_PHYSMASK1	Соге	See Table 35-2.	
204H	516	IA32_MTRR_PHYSBASE2	Соге	See Table 35-2.	
205H	517	IA32_MTRR_PHYSMASK2	Соге	See Table 35-2.	
206H	518	IA32_MTRR_PHYSBASE3	Core	See Table 35-2.	
207H	519	IA32_MTRR_PHYSMASK3	Соге	See Table 35-2.	
208H	520	IA32_MTRR_PHYSBASE4	Core	See Table 35-2.	
209H	521	IA32_MTRR_PHYSMASK4	Core	See Table 35-2.	
20AH	522	IA32_MTRR_PHYSBASE5	Соге	See Table 35-2.	
20BH	523	IA32_MTRR_PHYSMASK5	Соге	See Table 35-2.	
20CH	524	IA32_MTRR_PHYSBASE6	Core	See Table 35-2.	
20DH	525	IA32_MTRR_PHYSMASK6	Core	See Table 35-2.	
20EH	526	IA32_MTRR_PHYSBASE7	Соге	See Table 35-2.	
20FH	527	IA32_MTRR_PHYSMASK7	Core	See Table 35-2.	
250H	592	IA32_MTRR_FIX64K_00000	Core	See Table 35-2.	
258H	600	IA32_MTRR_FIX16K_80000	Соге	See Table 35-2.	
259H	601	IA32_MTRR_FIX16K_A000 0	Core	See Table 35-2.	
268H	616	IA32_MTRR_FIX4K_C0000	Core	See Table 35-2.	
269H	617	IA32_MTRR_FIX4K_C8000	Core	See Table 35-2.	
26AH	618	IA32_MTRR_FIX4K_D0000	Соге	See Table 35-2.	
26BH	619	IA32_MTRR_FIX4K_D8000	Соге	See Table 35-2.	
26CH	620	IA32_MTRR_FIX4K_E0000	Соге	See Table 35-2.	
26DH	621	IA32_MTRR_FIX4K_E8000	Соге	See Table 35-2.	
26EH	622	IA32_MTRR_FIX4K_F0000	Соге	See Table 35-2.	
26FH	623	IA32_MTRR_FIX4K_F8000	Соге	See Table 35-2.	
277H	631	IA32_PAT	Соге	See Table 35-2.	
2FFH	767	IA32_MTRR_DEF_TYPE	Core	Default Memory Types (R/W) See Table 35-2.	
309H	777	IA32_FIXED_CTR0	Thread	Fixed-Function Performance Counter Register 0 (R/W) See Table 35-2.	
30AH	778	IA32_FIXED_CTR1	Thread	Fixed-Function Performance Counter Register 1 (R/W) See Table 35-2.	
30BH	779	IA32_FIXED_CTR2	Thread	Fixed-Function Performance Counter Register 2 (R/W) See Table 35-2.	

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope		
Hex	Dec	Register Name		Bit Description	
345H	837	IA32_PERF_CAPABILITIES	Соге	See Table 35-2. See Section 17.4.1, "IA32_DEBUGCTL MSR."	
38DH	909	IA32_FIXED_CTR_CTRL	Thread	Fixed-Function-Counter Control Register (R/W) See Table 35-2.	
38EH	910	IA32_PERF_GLOBAL_STAUS	Thread	See Table 35-2.	
38FH	911	IA32_PERF_GLOBAL_CTRL	Thread	See Table 35-2.	
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL	Thread	See Table 35-2.	
3F1H	1009	MSR_PEBS_ENABLE	Thread	See Table 35-2.	
3F8H	1016	MSR_PKG_C3_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.	
		63:0		Package C3 Residency Counter. (R/O)	
3F9H	1017	MSR_PKG_C6_RESIDENCY	Package		
		63:0		Package C6 Residency Counter. (R/O)	
3FAH	1018	MSR_PKG_C7_RESIDENCY	Package		
		63:0		Package C7 Residency Counter. (R/O)	
3FCH	1020	MSR_MCO_RESIDENCY	Module	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.	
		63:0		Module CO Residency Counter. (R/O)	
3FDH	1021	MSR_MC6_RESIDENCY	Module		
		63:0		Module C6 Residency Counter. (R/O)	
3FFH	1023	MSR_CORE_C6_RESIDENCY	Core	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.	
		63:0		CORE C6 Residency Counter. (R/O)	
400H	1024	IA32_MC0_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
401H	1025	IA32_MC0_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
402H	1026	IA32_MCO_ADDR	Соге	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
404H	1028	IA32_MC1_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
405H	1029	IA32_MC1_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
408H	1032	IA32_MC2_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
409H	1033	IA32_MC2_STATUS	Соге	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
40AH	1034	IA32_MC2_ADDR	Соге	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
40CH	1036	MSR_MC3_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	
40DH	1037	MSR_MC3_STATUS	Соге	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."	
40EH	1038	MSR_MC3_ADDR	Core	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."	
410H	1040	MSR_MC4_CTL	Соге	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."	

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope	
Hex	Dec	Register Name		Bit Description
411H	1041	MSR_MC4_STATUS	Core	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
412H	1042	MSR_MC4_ADDR	Core	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs." The MSR_MC4_ADDR register is either not implemented or contains no address if the ADDRV flag in the MSR_MC4_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
414H	1044	MSR_MC5_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
415H	1045	MSR_MC5_STATUS	Package	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
416H	1046	MSR_MC5_ADDR	Package	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
480H	1152	IA32_VMX_BASIC	Core	Reporting Register of Basic VMX Capabilities (R/O) See Table 35-2.
481H	1153	IA32_VMX_PINBASED_ CTLS	Core	Capability Reporting Register of Pin-based VM-execution Controls (R/O) See Table 35-2.
482H	1154	IA32_VMX_PROCBASED_ CTLS	Core	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)
483H	1155	IA32_VMX_EXIT_CTLS	Core	Capability Reporting Register of VM-exit Controls (R/O) See Table 35-2.
484H	1156	IA32_VMX_ENTRY_CTLS	Core	Capability Reporting Register of VM-entry Controls (R/O) See Table 35-2.
485H	1157	IA32_VMX_MISC	Core	Reporting Register of Miscellaneous VMX Capabilities (R/O) See Table 35-2.
486H	1158	IA32_VMX_CRO_FIXEDO	Core	Capability Reporting Register of CRO Bits Fixed to 0 (R/O) See Table 35-2.
487H	1159	IA32_VMX_CR0_FIXED1	Core	Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) See Table 35-2.
488H	1160	IA32_VMX_CR4_FIXED0	Core	Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) See Table 35-2.
489H	1161	IA32_VMX_CR4_FIXED1	Core	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) See Table 35-2.
48AH	1162	IA32_VMX_VMCS_ENUM	Core	Capability Reporting Register of VMCS Field Enumeration (R/O) See Table 35-2.
48BH	1163	IA32_VMX_PROCBASED_ CTLS2	Core	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O) See Table 35-2

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope			
Hex	Dec	Register Name		Bit Description		
48CH	1164	IA32_VMX_EPT_VPID_ENU	Соге	Capability Reporting Register of EPT and VPID (R/O)		
		M		See Table 35-2		
48DH	1165	IA32_VMX_TRUE_PINBASE D_CTLS	Core	Capability Reporting Register of Pin-based VM-execution Flex Controls (R/O)		
				See Table 35-2		
48EH	1166	IA32_VMX_TRUE_PROCBAS ED_CTLS	Core	Capability Reporting Register of Primary Processor-based VM-execution Flex Controls (R/O)		
				See Table 35-2		
48FH	1167	IA32_VMX_TRUE_EXIT_CTL	Соге	Capability Reporting Register of VM-exit Flex Controls (R/O)		
		S		See Table 35-2		
490H	1168	IA32_VMX_TRUE_ENTRY_C TLS	Core	Capability Reporting Register of VM-entry Flex Controls (R/O) See Table 35-2		
491H	1169	IA32_VMX_FMFUNC	Соге	Capability Reporting Register of VM-function Controls (R/O)		
				See Table 35-2		
4C1H	1217	IA32_A_PMC0	Thread	See Table 35-2.		
4C2H	1218	IA32_A_PMC1	Thread	See Table 35-2.		
600H	1536	IA32_DS_AREA	Thread	DS Save Area (R/W)		
				See Table 35-2.		
606H	1542	MSR_RAPL_POWER_UNIT	Package	Unit Multipliers used in RAPL Interfaces (R/O)		
		3:0	Package	Power Units		
				See Section 14.9.1, "RAPL Interfaces."		
		7:4	Package	Reserved		
		12:8	Package	Energy Status Units		
				Energy related information (in Joules) is based on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by bits 12:8. Default value is 0EH (or 61 micro-joules)		
		15:13	Package	Reserved		
		19:16	Package	Time Units		
				See Section 14.9.1, "RAPL Interfaces."		
		63:20		Reserved		
60DH	1549	MSR_PKG_C2_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.		
		63:0		Package C2 Residency Counter. (R/O)		
610H	1552	MSR_PKG_POWER_LIMIT	Package	PKG RAPL Power Limit Control (R/W)		
				See Section 14.9.3, "Package RAPL Domain."		
611H	1553	MSR_PKG_ENERGY_STATUS	Package	PKG Energy Status (R/O)		
				See Section 14.9.3, "Package RAPL Domain."		

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Hex De		Scope	Bit Description	
1 1 50	Register Name			
613H 155	5 MSR_PKG_PERF_STATUS	Package	PKG Perf Status (R/O)	
			See Section 14.9.3, "Package RAPL Domain."	
614H 155	6 MSR_PKG_POWER_INFO	Package	PKG RAPL Parameters (R/W) See Section 14.9.3, "Package RAPL Domain."	
618H 156	0 MSR_DRAM_POWER_LIMIT	Package	DRAM RAPL Power Limit Control (R/W)	
			See Section 14.9.5, "DRAM RAPL Domain."	
619H 156		Package	DRAM Energy Status (R/O)	
	STATUS		See Section 14.9.5, "DRAM RAPL Domain."	
61BH 156	3 MSR_DRAM_PERF_STATUS	Package	DRAM Performance Throttling Status (R/O) See Section 14.9.5, "DRAM RAPL Domain."	
61CH 156	4 MSR_DRAM_POWER_INFO	Package	DRAM RAPL Parameters (R/W)	
			See Section 14.9.5, "DRAM RAPL Domain."	
638H 159	2 MSR_PPO_POWER_LIMIT	Package	PPO RAPL Power Limit Control (R/W)	
			See Section 14.9.4, "PPO/PP1 RAPL Domains."	
639H 159	3 MSR_PPO_ENERGY_STATUS	Package	PP0 Energy Status (R/O)	
			See Section 14.9.4, "PPO/PP1 RAPL Domains."	
648H 160		Package	Base TDP Ratio (R/O)	
	NOMINAL		See Table 35-20	
649H 160	9 MSR_CONFIG_TDP_LEVEL1	Package	ConfigTDP Level 1 ratio and power level (R/O). See Table 35-20	
64AH 161	0 MSR_CONFIG_TDP_LEVEL2	Package	ConfigTDP Level 2 ratio and power level (R/O). See Table 35-20	
64BH 161		Package	ConfigTDP Control (R/W)	
	CONTROL		See Table 35-20	
64CH 161		Package	ConfigTDP Control (R/W)	
	RATIO		See Table 35-20	
690H 168		Package	Indicator of Frequency Clipping in Processor Cores (R/W)	
	ASONS		(frequency refers to processor core frequency)	
	0		PROCHOT Status (R0)	
	1		Thermal Status (RO)	
	5:2		Reserved.	
	6		VR Therm Alert Status (R0)	
	7		Reserved.	
	8		Electrical Design Point Status (R0)	
	63:9		Reserved.	
6E0H 176	0 IA32_TSC_DEADLINE	Core	TSC Target of Local APIC's TSC Deadline Mode (R/W) See Table 35-2	
802H 205	0 IA32_X2APIC_APICID	Thread	x2APIC ID register (R/O) See x2APIC Specification.	

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Address			Scope		
Hex	Dec	Register Name		Bit Description	
803H	2051	IA32_X2APIC_VERSION	Thread	x2APIC Version register (R/0)	
808H	2056	IA32_X2APIC_TPR	Thread	x2APIC Task Priority register (R/W)	
HA08	2058	IA32_X2APIC_PPR	Thread	x2APIC Processor Priority register (R/O)	
80BH	2059	IA32_X2APIC_EOI	Thread	x2APIC EOI register (W/O)	
80DH	2061	IA32_X2APIC_LDR	Thread	x2APIC Logical Destination register (R/O)	
80FH	2063	IA32_X2APIC_SIVR	Thread	x2APIC Spurious Interrupt Vector register (R/W)	
810H	2064	IA32_X2APIC_ISR0	Thread	x2APIC In-Service register bits [31:0] (R/0)	
811H	2065	IA32_X2APIC_ISR1	Thread	x2APIC In-Service register bits [63:32] (R/0)	
812H	2066	IA32_X2APIC_ISR2	Thread	x2APIC In-Service register bits [95:64] (R/0)	
813H	2067	IA32_X2APIC_ISR3	Thread	x2APIC In-Service register bits [127:96] (R/0)	
814H	2068	IA32_X2APIC_ISR4	Thread	x2APIC In-Service register bits [159:128] (R/0)	
815H	2069	IA32_X2APIC_ISR5	Thread	x2APIC In-Service register bits [191:160] (R/0)	
816H	2070	IA32_X2APIC_ISR6	Thread	x2APIC In-Service register bits [223:192] (R/0)	
817H	2071	IA32_X2APIC_ISR7	Thread	x2APIC In-Service register bits [255:224] (R/0)	
818H	2072	IA32_X2APIC_TMR0	Thread	x2APIC Trigger Mode register bits [31:0] (R/0)	
819H	2073	IA32_X2APIC_TMR1	Thread	x2APIC Trigger Mode register bits [63:32] (R/O)	
81AH	2074	IA32_X2APIC_TMR2	Thread	x2APIC Trigger Mode register bits [95:64] (R/O)	
81BH	2075	IA32_X2APIC_TMR3	Thread	x2APIC Trigger Mode register bits [127:96] (R/O)	
81CH	2076	IA32_X2APIC_TMR4	Thread	x2APIC Trigger Mode register bits [159:128] (R/O)	
81DH	2077	IA32_X2APIC_TMR5	Thread	x2APIC Trigger Mode register bits [191:160] (R/0)	
81EH	2078	IA32_X2APIC_TMR6	Thread	x2APIC Trigger Mode register bits [223:192] (R/O)	
81FH	2079	IA32_X2APIC_TMR7	Thread	x2APIC Trigger Mode register bits [255:224] (R/O)	
820H	2080	IA32_X2APIC_IRR0	Thread	x2APIC Interrupt Request register bits [31:0] (R/0)	
821H	2081	IA32_X2APIC_IRR1	Thread	x2APIC Interrupt Request register bits [63:32] (R/0)	
822H	2082	IA32_X2APIC_IRR2	Thread	x2APIC Interrupt Request register bits [95:64] (R/0)	
823H	2083	IA32_X2APIC_IRR3	Thread	x2APIC Interrupt Request register bits [127:96] (R/0)	
824H	2084	IA32_X2APIC_IRR4	Thread	x2APIC Interrupt Request register bits [159:128] (R/0)	
825H	2085	IA32_X2APIC_IRR5	Thread	x2APIC Interrupt Request register bits [191:160] (R/0)	
826H	2086	IA32_X2APIC_IRR6	Thread	x2APIC Interrupt Request register bits [223:192] (R/0)	
827H	2087	IA32_X2APIC_IRR7	Thread	x2APIC Interrupt Request register bits [255:224] (R/0)	
828H	2088	IA32_X2APIC_ESR	Thread	x2APIC Error Status register (R/W)	
82FH	2095	IA32_X2APIC_LVT_CMCI	Thread	x2APIC LVT Corrected Machine Check Interrupt register (R/W)	
830H	2096	IA32_X2APIC_ICR	Thread	x2APIC Interrupt Command register (R/W)	
832H	2098	IA32_X2APIC_LVT_TIMER	Thread	x2APIC LVT Timer Interrupt register (R/W)	

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with DisplayFamily_DisplayModel Signature 06_57H

Add	ress		Scope	
Hex	Dec	Register Name		Bit Description
833H	2099	IA32_X2APIC_LVT_THERMA L	Thread	x2APIC LVT Thermal Sensor Interrupt register (R/W)
834H	2100	IA32_X2APIC_LVT_PMI	Thread	x2APIC LVT Performance Monitor register (R/W)
835H	2101	IA32_X2APIC_LVT_LINTO	Thread	x2APIC LVT LINTO register (R/W)
836H	2102	IA32_X2APIC_LVT_LINT1	Thread	x2APIC LVT LINT1 register (R/W)
837H	2103	IA32_X2APIC_LVT_ERROR	Thread	x2APIC LVT Error register (R/W)
838H	2104	IA32_X2APIC_INIT_COUNT	Thread	x2APIC Initial Count register (R/W)
839H	2105	IA32_X2APIC_CUR_COUNT	Thread	x2APIC Current Count register (R/O)
83EH	2110	IA32_X2APIC_DIV_CONF	Thread	x2APIC Divide Configuration register (R/W)
83FH	2111	IA32_X2APIC_SELF_IPI	Thread	x2APIC Self IPI register (W/O)
0080H		IA32_EFER	Thread	Extended Feature Enables See Table 35-2.
C000_ 0081H		IA32_STAR	Thread	System Call Target Address (R/W) See Table 35-2.
C000_ 0082H		IA32_LSTAR	Thread	IA-32e Mode System Call Target Address (R/W) See Table 35-2.
C000_ 0084H		IA32_FMASK	Thread	System Call Flag Mask (R/W) See Table 35-2.
C000_ 0100H		IA32_FS_BASE	Thread	Map of BASE Address of FS (R/W) See Table 35-2.
C000_ 0101H		IA32_GS_BASE	Thread	Map of BASE Address of GS (R/W) See Table 35-2.
C000_ 0102H		IA32_KERNEL_GSBASE	Thread	Swap Target of BASE Address of GS (R/W) See Table 35-2.
C000_ 0103H		IA32_TSC_AUX	Thread	AUXILIARY TSC Signature. (R/W) See Table 35-2

35.16 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS

Table 35-44 lists MSRs (architectural and model-specific) that are defined across processor generations based on Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily encoding of 0FH, see Table 16-1.

- MSRs with an "IA32_" prefix are designated as "architectural." This means that the functions of these MSRs and their addresses remain the same for succeeding families of IA-32 processors.
- MSRs with an "MSR_" prefix are model specific with respect to address functionalities. The column "Model Availability" lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the specified register address. The model encoding value of a processor can be queried using CPUID. See

"CPUID—CPU Identification" in Chapter 3 of the $Intel^{\it @}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 2A.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors

Regi Add		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
OH	0	IA32_P5_MC_ADDR	0, 1, 2, 3, 4, 6	Shared	See Section 35.20, "MSRs in Pentium Processors."
1H	1	IA32_P5_MC_TYPE	0, 1, 2, 3, 4, 6	Shared	See Section 35.20, "MSRs in Pentium Processors."
6H	6	IA32_MONITOR_FILTER_LINE_ SIZE	3, 4, 6	Shared	See Section 8.10.5, "Monitor/Mwait Address Range Determination."
10H	16	IA32_TIME_STAMP_COUNTER	0, 1, 2, 3,	Unique	Time Stamp Counter
			4, 6		See Table 35-2.
					On earlier processors, only the lower 32 bits are writable. On any write to the lower 32 bits, the upper 32 bits are cleared. For processor family OFH, models 3 and 4: all 64 bits are writable.
17H	23	IA32_PLATFORM_ID	0, 1, 2, 3,	Shared	Platform ID (R)
			4, 6		See Table 35-2.
					The operating system can use this MSR to determine "slot" information for the processor and the proper microcode update to load.
1BH	27	IA32_APIC_BASE	0, 1, 2, 3,	Unique	APIC Location and Status (R/W)
			4, 6		See Table 35-2. See Section 10.4.4, "Local APIC Status and Location."
2AH	42	MSR_EBC_HARD_POWERON	0, 1, 2, 3,	Shared	Processor Hard Power-On Configuration
			4, 6		(R/W) Enables and disables processor features;
					(R) indicates current processor configuration.
		0			Output Tri-state Enabled (R)
					Indicates whether tri-state output is enabled (1) or disabled (0) as set by the strapping of SMI#. The value in this bit is written on the deassertion of RESET#; the bit is set to 1 when the address bus signal is asserted.
		1			Execute BIST (R)
					Indicates whether the execution of the BIST is enabled (1) or disabled (0) as set by the strapping of INIT#. The value in this bit is written on the deassertion of RESET#; the bit is set to 1 when the address bus signal is asserted.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi: Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
		2			In Order Queue Depth (R) Indicates whether the in order queue depth for the system bus is 1 (1) or up to 12 (0) as set by the strapping of A7#. The value in this bit is written on the deassertion of RESET#; the bit is set to 1 when the address bus signal is asserted.
		3			MCERR# Observation Disabled (R) Indicates whether MCERR# observation is enabled (0) or disabled (1) as determined by the strapping of A9#. The value in this bit is written on the deassertion of RESET#; the bit is set to 1 when the address bus signal is asserted.
		4			BINIT# Observation Enabled (R) Indicates whether BINIT# observation is enabled (0) or disabled (1) as determined by the strapping of A10#. The value in this bit is written on the deassertion of RESET#; the bit is set to 1 when the address bus signal is asserted.
		6:5			APIC Cluster ID (R) Contains the logical APIC cluster ID value as set by the strapping of A12# and A11#. The logical cluster ID value is written into the field on the deassertion of RESET#; the field is set to 1 when the address bus signal is asserted.
		7			Bus Park Disable (R) Indicates whether bus park is enabled (0) or disabled (1) as set by the strapping of A15#. The value in this bit is written on the deassertion of RESET#; the bit is set to 1 when the address bus signal is asserted.
		11:8			Reserved.
		13:12			Agent ID (R) Contains the logical agent ID value as set by the strapping of BR[3:0]. The logical ID value is written into the field on the deassertion of RESET#; the field is set to 1 when the address bus signal is asserted.
		63:14			Reserved.
2BH	43	MSR_EBC_SOFT_POWERON	0, 1, 2, 3, 4, 6	Shared	Processor Soft Power-On Configuration (R/W) Enables and disables processor features.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
		0			RCNT/SCNT On Request Encoding Enable (R/W) Controls the driving of RCNT/SCNT on the request encoding. Set to enable (1); clear to disabled (0, default).
		1			Data Error Checking Disable (R/W)
					Set to disable system data bus parity checking; clear to enable parity checking.
		2			Response Error Checking Disable (R/W) Set to disable (default); clear to enable.
		3			Address/Request Error Checking Disable (R/W)
					Set to disable (default); clear to enable.
		4			Initiator MCERR# Disable (R/W)
					Set to disable MCERR# driving for initiator bus requests (default); clear to enable.
		5			Internal MCERR# Disable (R/W)
					Set to disable MCERR# driving for initiator internal errors (default); clear to enable.
		6			BINIT# Driver Disable (R/W)
					Set to disable BINIT# driver (default); clear to enable driver.
		63:7			Reserved.
2CH	44	MSR_EBC_FREQUENCY_ID	2,3, 4, 6	Shared	Processor Frequency Configuration
					The bit field layout of this MSR varies according to the MODEL value in the CPUID version information. The following bit field layout applies to Pentium 4 and Xeon Processors with MODEL encoding equal or greater than 2. (R) The field Indicates the current processor
		150			frequency configuration.
		15:0			Reserved.
		18:16			Scalable Bus Speed (R/W) Indicates the intended scalable bus speed: Encoding Scalable Bus Speed 000B 100 MHz (Model 2) 000B 266 MHz (Model 3 or 4) 001B 133 MHz 010B 200 MHz 011B 166 MHz 100B 333 MHz (Model 6)

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

	ister ress	Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
					133.33 MHz should be utilized if performing calculation with System Bus Speed when encoding is 001B. 166.67 MHz should be utilized if performing calculation with System Bus Speed when encoding is 011B.
					266.67 MHz should be utilized if performing calculation with System Bus Speed when encoding is 000B and model encoding = 3 or 4. 333.33 MHz should be utilized if performing calculation with System Bus Speed when encoding is 100B and model encoding = 6. All other values are reserved.
		23:19			
					Reserved.
		31:24			Core Clock Frequency to System Bus Frequency Ratio (R)
					The processor core clock frequency to system bus frequency ratio observed at the de-assertion of the reset pin.
		63:25			Reserved.
2CH	44	MSR_EBC_FREQUENCY_ID	0, 1	Shared	Processor Frequency Configuration (R)
					The bit field layout of this MSR varies according to the MODEL value of the CPUID version information. This bit field layout applies to Pentium 4 and Xeon Processors with MODEL encoding less than 2.
					Indicates current processor frequency configuration.
		20:0			Reserved.
		23:21			Scalable Bus Speed (R/W)
					Indicates the intended scalable bus speed:
					Encoding Scalable Bus Speed 000B 100 MHz
					All others values reserved.
		63:24			Reserved.
3AH	58	IA32_FEATURE_CONTROL	3, 4, 6	Unique	Control Features in IA-32 Processor (R/W)
					See Table 35-2 (If CPUID.01H:ECX.[bit 5])
79H	121	IA32_BIOS_UPDT_TRIG	0, 1, 2, 3, 4, 6	Shared	BIOS Update Trigger Register (W) See Table 35-2.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Add		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
8BH	139	IA32_BIOS_SIGN_ID	0, 1, 2, 3, 4, 6	Unique	BIOS Update Signature ID (R/W) See Table 35-2.
9BH	155	IA32_SMM_MONITOR_CTL	3, 4, 6	Unique	SMM Monitor Configuration (R/W) See Table 35-2.
FEH	254	IA32_MTRRCAP	0, 1, 2, 3, 4, 6	Unique	MTRR Information See Section 11.11.1, "MTRR Feature Identification.".
174H	372	IA32_SYSENTER_CS	0, 1, 2, 3, 4, 6	Unique	CS register target for CPL 0 code (R/W) See Table 35-2. See Section 5.8.7, "Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions."
175H	373	IA32_SYSENTER_ESP	0, 1, 2, 3, 4, 6	Unique	Stack pointer for CPL 0 stack (R/W) See Table 35-2. See Section 5.8.7, "Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions."
176H	374	IA32_SYSENTER_EIP	0, 1, 2, 3, 4, 6	Unique	CPL 0 code entry point (R/W) See Table 35-2. See Section 5.8.7, "Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions."
179H	377	IA32_MCG_CAP	0, 1, 2, 3, 4, 6	Unique	Machine Check Capabilities (R) See Table 35-2. See Section 15.3.1.1, "IA32_MCG_CAP MSR."
17AH	378	IA32_MCG_STATUS	0, 1, 2, 3, 4, 6	Unique	Machine Check Status. (R) See Table 35-2. See Section 15.3.1.2, "IA32_MCG_STATUS MSR."
17BH	379	IA32_MCG_CTL			Machine Check Feature Enable (R/W) See Table 35-2. See Section 15.3.1.3, "IA32_MCG_CTL MSR."
180H	384	MSR_MCG_RAX	0, 1, 2, 3, 4, 6	Unique	Machine Check EAX/RAX Save State See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
181H	385	MSR_MCG_RBX	0, 1, 2, 3, 4, 6	Unique	Machine Check EBX/RBX Save State See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi: Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
182H	386	MSR_MCG_RCX	0, 1, 2, 3,	Unique	Machine Check ECX/RCX Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
183H	387	MSR_MCG_RDX	0, 1, 2, 3,	Unique	Machine Check EDX/RDX Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
184H	388	MSR_MCG_RSI	0, 1, 2, 3,	Unique	Machine Check ESI/RSI Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
185H	389	MSR_MCG_RDI	0, 1, 2, 3,	Unique	Machine Check EDI/RDI Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
186H	390	MSR_MCG_RBP	0, 1, 2, 3,	Unique	Machine Check EBP/RBP Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
187H	391	MSR_MCG_RSP	0, 1, 2, 3,	Unique	Machine Check ESP/RSP Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
188H	392	MSR_MCG_RFLAGS	0, 1, 2, 3, 4, 6	Unique	Machine Check EFLAGS/RFLAG Save State See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
189H	393	MSR_MCG_RIP	0, 1, 2, 3,	Unique	Machine Check EIP/RIP Save State
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Contains register state at time of machine check error. When in non-64-bit modes at the time of the error, bits 63-32 do not contain valid data.
18AH	394	MSR_MCG_MISC	0, 1, 2, 3,	Unique	Machine Check Miscellaneous
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		0			DS
					When set, the bit indicates that a page assist or page fault occurred during DS normal operation. The processors response is to shut down.
					The bit is used as an aid for debugging DS handling code. It is the responsibility of the user (BIOS or operating system) to clear this bit for normal operation.
		63:1			Reserved.
18BH- 18FH	395	MSR_MCG_RESERVED1 - MSR_MCG_RESERVED5			Reserved.
190H	400	MSR_MCG_R8	0, 1, 2, 3,	Unique	Machine Check R8
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
191H	401	MSR_MCG_R9	0, 1, 2, 3,	Unique	Machine Check R9D/R9
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi: Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
192H	402	MSR_MCG_R10	0, 1, 2, 3,	Unique	Machine Check R10
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
193H	403	MSR_MCG_R11	0, 1, 2, 3,	Unique	Machine Check R11
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
194H	404	MSR_MCG_R12	0, 1, 2, 3,	Unique	Machine Check R12
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
195H	405	MSR_MCG_R13	0, 1, 2, 3,	Unique	Machine Check R13
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
196H	406	MSR_MCG_R14	0, 1, 2, 3,	Unique	Machine Check R14
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
197H	407	MSR_MCG_R15	0, 1, 2, 3,	Unique	Machine Check R15
			4, 6		See Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi: Addi		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
		63:0			Registers R8-15 (and the associated state-save MSRs) exist only in Intel 64 processors. These registers contain valid information only when the processor is operating in 64-bit mode at the time of the error.
198H	408	IA32_PERF_STATUS	3, 4, 6	Unique	See Table 35-2. See Section 14.1, "Enhanced Intel Speedstep" Technology."
199H	409	IA32_PERF_CTL	3, 4, 6	Unique	See Table 35-2. See Section 14.1, "Enhanced Intel Speedstep" Technology."
19AH	410	IA32_CLOCK_MODULATION	0, 1, 2, 3,	Unique	Thermal Monitor Control (R/W)
			4, 6		See Table 35-2.
					See Section 14.7.3, "Software Controlled Clock Modulation."
19BH	411	IA32_THERM_INTERRUPT	0, 1, 2, 3,	Unique	Thermal Interrupt Control (R/W)
			4, 6		See Section 14.7.2, "Thermal Monitor," and see Table 35-2.
19CH	412	IA32_THERM_STATUS	0, 1, 2, 3,	Shared	Thermal Monitor Status (R/W)
			4, 6		See Section 14.7.2, "Thermal Monitor," and see Table 35-2.
19DH	413	MSR_THERM2_CTL			Thermal Monitor 2 Control.
			3,	Shared	For Family F, Model 3 processors: When read, specifies the value of the target TM2 transition last written. When set, it sets the next target value for TM2 transition.
			4, 6	Shared	For Family F, Model 4 and Model 6 processors: When read, specifies the value of the target TM2 transition last written. Writes may cause #GP exceptions.
1A0H	416	IA32_MISC_ENABLE	0, 1, 2, 3, 4, 6	Shared	Enable Miscellaneous Processor Features (R/W)
		0			Fast-Strings Enable. See Table 35-2.
		1			Reserved.
		2			x87 FPU Fopcode Compatibility Mode Enable
		3			Thermal Monitor 1 Enable
					See Section 14.7.2, "Thermal Monitor," and see Table 35-2.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
		4			Split-Lock Disable When set, the bit causes an #AC exception to be issued instead of a split-lock cycle. Operating systems that set this bit must align system structures to avoid split-lock scenarios.
					When the bit is clear (default), normal split-locks are issued to the bus.
					This debug feature is specific to the Pentium 4 processor.
		5			Reserved.
ľ		6			Third-Level Cache Disable (R/W)
					When set, the third-level cache is disabled; when clear (default) the third-level cache is enabled. This flag is reserved for processors that do not have a third-level cache.
					Note that the bit controls only the third-level cache; and only if overall caching is enabled through the CD flag of control register CRO, the page-level cache controls, and/or the MTRRs. See Section 11.5.4, "Disabling and Enabling the L3
					Cache."
		7			Performance Monitoring Available (R)
					See Table 35-2.
		8			Suppress Lock Enable
					When set, assertion of LOCK on the bus is suppressed during a Split Lock access. When clear (default), LOCK is not suppressed.
		9			Prefetch Queue Disable
					When set, disables the prefetch queue. When clear (default), enables the prefetch queue.
		10			FERR# Interrupt Reporting Enable (R/W)
					When set, interrupt reporting through the FERR# pin is enabled; when clear, this interrupt reporting function is disabled.
					When this flag is set and the processor is in the stop-clock state (STPCLK# is asserted), asserting the FERR# pin signals to the processor that an interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#, or RESET#) is pending and that the processor should return to normal operation to handle the interrupt.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
					This flag does not affect the normal operation of the FERR# pin (to indicate an unmasked floating- point error) when the STPCLK# pin is not asserted.
		11			Branch Trace Storage Unavailable (BTS_UNAVILABLE) (R)
					See Table 35-2.
					When set, the processor does not support branch trace storage (BTS); when clear, BTS is supported.
		12			PEBS_UNAVILABLE: Precise Event Based Sampling Unavailable (R)
					See Table 35-2.
					When set, the processor does not support precise event-based sampling (PEBS); when clear, PEBS is supported.
		13	3		TM2 Enable (R/W)
					When this bit is set (1) and the thermal sensor indicates that the die temperature is at the predetermined threshold, the Thermal Monitor 2 mechanism is engaged. TM2 will reduce the bus to core ratio and voltage according to the value last written to MSR_THERM2_CTL bits 15:0.
					When this bit is clear (0, default), the processor does not change the VID signals or the bus to core ratio when the processor enters a thermal managed state.
					If the TM2 feature flag (ECX[8]) is not set to 1 after executing CPUID with EAX = 1, then this feature is not supported and BIOS must not alter the contents of this bit location. The processor is operating out of spec if both this bit and the TM1 bit are set to disabled states.
		17:14			Reserved.
		18	3, 4, 6		ENABLE MONITOR FSM (R/W)
					See Table 35-2.
		19			Adjacent Cache Line Prefetch Disable (R/W)
					When set to 1, the processor fetches the cache line of the 128-byte sector containing currently required data. When set to 0, the processor fetches both cache lines in the sector.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi: Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
					Single processor platforms should not set this bit. Server platforms should set or clear this bit based on platform performance observed in validation and testing.
					BIOS may contain a setup option that controls the setting of this bit.
		21:20			Reserved.
		22	3, 4, 6		Limit CPUID MAXVAL (R/W)
					See Table 35-2.
					Setting this can cause unexpected behavior to software that depends on the availability of CPUID leaves greater than 3.
		23		Shared	xTPR Message Disable (R/W)
					See Table 35-2.
		24			L1 Data Cache Context Mode (R/W)
					When set, the L1 data cache is placed in shared mode; when clear (default), the cache is placed in adaptive mode. This bit is only enabled for IA-32 processors that support Intel Hyper-Threading Technology. See Section 11.5.6, "L1 Data Cache Context Mode."
					When L1 is running in adaptive mode and CR3s are identical, data in L1 is shared across logical processors. Otherwise, L1 is not shared and cache use is competitive.
					If the Context ID feature flag (ECX[10]) is set to 0 after executing CPUID with EAX = 1, the ability to switch modes is not supported. BIOS must not alter the contents of IA32_MISC_ENABLE[24].
		33:25			Reserved.
		34		Unique	XD Bit Disable (R/W) See Table 35-2.
		63:35			Reserved.
1A1H	417	MSR_PLATFORM_BRV	3, 4, 6	Shared	Platform Feature Requirements (R)
		17:0			Reserved.
		18			PLATFORM Requirements
					When set to 1, indicates the processor has specific platform requirements. The details of the platform requirements are listed in the respective data sheets of the processor.
		63:19			Reserved.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
1D7H	471	MSR_LER_FROM_LIP	0, 1, 2, 3, 4, 6	Unique	Last Exception Record From Linear IP (R) Contains a pointer to the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled. See Section 17.10.3, "Last Exception Records."
		31:0			From Linear IP Linear address of the last branch instruction.
		63:32			Reserved.
1D7H	471	63:0		Unique	From Linear IP Linear address of the last branch instruction (If IA-32e mode is active).
1D8H	472	MSR_LER_TO_LIP	0, 1, 2, 3, 4, 6	Unique	Last Exception Record To Linear IP (R) This area contains a pointer to the target of the last branch instruction that the processor executed prior to the last exception that was generated or the last interrupt that was handled. See Section 17.10.3, "Last Exception Records."
		31:0			From Linear IP Linear address of the target of the last branch instruction.
		63:32			Reserved.
1D8H	472	63:0		Unique	From Linear IP Linear address of the target of the last branch instruction (If IA-32e mode is active).
1D9H	473	MSR_DEBUGCTLA	0, 1, 2, 3, 4, 6	Unique	Debug Control (R/W) Controls how several debug features are used. Bit definitions are discussed in the referenced section. See Section 17.10.1, "MSR_DEBUGCTLA MSR."
1DAH	474	MSR_LASTBRANCH _TOS	0, 1, 2, 3, 4, 6	Unique	Last Branch Record Stack TOS (R/W) Contains an index (0-3 or 0-15) that points to the top of the last branch record stack (that is, that points the index of the MSR containing the most recent branch record). See Section 17.10.2, "LBR Stack for Processors Based on Intel NetBurst® Microarchitecture"; and addresses 1DBH-1DEH and 680H-68FH.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
1DBH	475	MSR_LASTBRANCH_0	0, 1, 2	Unique	Last Branch Record 0 (R/W) One of four last branch record registers on the last branch record stack. It contains pointers to the source and destination instruction for one of the last four branches, exceptions, or interrupts that the processor took.
					MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 at 1DBH-1DEH are available only on family 0FH, models 0H-02H. They have been replaced by the MSRs at 680H-68FH and 6C0H-6CFH.
					See Section 17.9, "Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Skylake Microarchitecture."
1DDH	477	MSR_LASTBRANCH_2	0, 1, 2	Unique	Last Branch Record 2
					See description of the MSR_LASTBRANCH_0 MSR at 1DBH.
1DEH	478	MSR_LASTBRANCH_3	0, 1, 2	Unique	Last Branch Record 3
					See description of the MSR_LASTBRANCH_0 MSR at 1DBH.
200H	512	IA32_MTRR_PHYSBASE0	0, 1, 2, 3,	Shared	Variable Range Base MTRR
			4, 6		See Section 11.11.2.3, "Variable Range MTRRs."
201H	513	IA32_MTRR_PHYSMASKO	0, 1, 2, 3,	Shared	Variable Range Mask MTRR
			4, 6		See Section 11.11.2.3, "Variable Range MTRRs."
202H	514	IA32_MTRR_PHYSBASE1	0, 1, 2, 3,	Shared	Variable Range Mask MTRR
			4, 6		See Section 11.11.2.3, "Variable Range MTRRs."
203H	515	IA32_MTRR_PHYSMASK1	0, 1, 2, 3,	Shared	Variable Range Mask MTRR
			4, 6		See Section 11.11.2.3, "Variable Range MTRRs."
204H	516	IA32_MTRR_PHYSBASE2	0, 1, 2, 3,	Shared	Variable Range Mask MTRR
			4, 6		See Section 11.11.2.3, "Variable Range MTRRs."
205H	517	IA32_MTRR_PHYSMASK2	0, 1, 2, 3,	Shared	Variable Range Mask MTRR
			4, 6		See Section 11.11.2.3, "Variable Range MTRRs".
206H	518	IA32_MTRR_PHYSBASE3	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
207H	519	IA32_MTRR_PHYSMASK3	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
208H	520	IA32_MTRR_PHYSBASE4	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
	·		1	1	<u> </u>

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register Address		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
209H	521	IA32_MTRR_PHYSMASK4	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
20AH	522	IA32_MTRR_PHYSBASE5	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
20BH	523	IA32_MTRR_PHYSMASK5	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
20CH	524	IA32_MTRR_PHYSBASE6	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
20DH	525	IA32_MTRR_PHYSMASK6	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
20EH	526	IA32_MTRR_PHYSBASE7	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
20FH	527	IA32_MTRR_PHYSMASK7	0, 1, 2, 3, 4, 6	Shared	Variable Range Mask MTRR See Section 11.11.2.3, "Variable Range MTRRs."
250H	592	IA32_MTRR_FIX64K_00000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
258H	600	IA32_MTRR_FIX16K_80000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
259H	601	IA32_MTRR_FIX16K_A0000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
268H	616	IA32_MTRR_FIX4K_C0000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
269H	617	IA32_MTRR_FIX4K_C8000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs".
26AH	618	IA32_MTRR_FIX4K_D0000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs".
26BH	619	IA32_MTRR_FIX4K_D8000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
26CH	620	IA32_MTRR_FIX4K_E0000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
26DH	621	IA32_MTRR_FIX4K_E8000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
26EH	622	IA32_MTRR_FIX4K_F0000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."
26FH	623	IA32_MTRR_FIX4K_F8000	0, 1, 2, 3, 4, 6	Shared	Fixed Range MTRR See Section 11.11.2.2, "Fixed Range MTRRs."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register Address		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
277H	631	IA32_PAT	0, 1, 2, 3,	Unique	Page Attribute Table
			4, 6		See Section 11.11.2.2, "Fixed Range MTRRs."
2FFH	767	IA32_MTRR_DEF_TYPE	0, 1, 2, 3,	Shared	Default Memory Types (R/W)
			4, 6		See Table 35-2.
					See Section 11.11.2.1, "IA32_MTRR_DEF_TYPE MSR."
300H	768	MSR_BPU_COUNTERO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
301H	769	MSR_BPU_COUNTER1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
302H	770	MSR_BPU_COUNTER2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
303H	771	MSR_BPU_COUNTER3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
2041	772	MSR MS COUNTERO	0, 1, 2, 3,	Shared	See Section 18.13.2, "Performance Counters."
304H	///	MSK_MS_COUNTERO	4, 6	Silaied	See Section 16.15.2, Performance Counters.
305H	773	MSR_MS_COUNTER1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
306H	774	MSR_MS_COUNTER2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
307H	775	MSR_MS_COUNTER3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
308H	776	MSR_FLAME_COUNTERO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
309H	777	MSR_FLAME_COUNTER1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
30AH	778	MSR_FLAME_COUNTER2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
30BH	779	MSR_FLAME_COUNTER3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
30CH	780	MSR_IQ_COUNTER0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
30DH	781	MSR_IQ_COUNTER1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
30EH	782	MSR_IQ_COUNTER2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
30FH	783	MSR_IQ_COUNTER3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
310H	784	MSR_IQ_COUNTER4	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
311H	785	MSR_IQ_COUNTER5	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.2, "Performance Counters."
360H	864	MSR_BPU_CCCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
361H	865	MSR_BPU_CCCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
362H	866	MSR_BPU_CCCR2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
363H	867	MSR_BPU_CCCR3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
364H	868	MSR_MS_CCCRO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
365H	869	MSR_MS_CCCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
366H	870	MSR_MS_CCCR2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
367H	871	MSR_MS_CCCR3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
368H	872	MSR_FLAME_CCCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
369H	873	MSR_FLAME_CCCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
36AH	874	MSR_FLAME_CCCR2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
36BH	875	MSR_FLAME_CCCR3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
36CH	876	MSR_IQ_CCCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
36DH	877	MSR_IQ_CCCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
36EH	878	MSR_IQ_CCCR2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
36FH	879	MSR_IQ_CCCR3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
370H	880	MSR_IQ_CCCR4	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
371H	881	MSR_IQ_CCCR5	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.3, "CCCR MSRs."
ЗАОН	928	MSR_BSU_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register Address		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
3A1H	929	MSR_BSU_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A2H	930	MSR_FSB_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A3H	931	MSR_FSB_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A4H	932	MSR_FIRM_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A5H	933	MSR_FIRM_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A6H	934	MSR_FLAME_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
ЗА7Н	935	MSR_FLAME_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A8H	936	MSR_DAC_ESCRO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3A9H	937	MSR_DAC_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
ЗААН	938	MSR_MOB_ESCRO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3ABH	939	MSR_MOB_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3ACH	940	MSR_PMH_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3ADH	941	MSR_PMH_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3AEH	942	MSR_SAAT_ESCRO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3AFH	943	MSR_SAAT_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B0H	944	MSR_U2L_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B1H	945	MSR_U2L_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B2H	946	MSR_BPU_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
звзн	947	MSR_BPU_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B4H	948	MSR_IS_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
3B5H	949	MSR_IS_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B6H	950	MSR_ITLB_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B7H	951	MSR_ITLB_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B8H	952	MSR_CRU_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3B9H	953	MSR_CRU_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
ЗВАН	954	MSR_IQ_ESCR0	0, 1, 2	Shared	See Section 18.13.1, "ESCR MSRs."
					This MSR is not available on later processors. It is only available on processor family OFH, models 01H-02H.
3BBH	955	MSR_IQ_ESCR1	0, 1, 2	Shared	See Section 18.13.1, "ESCR MSRs."
					This MSR is not available on later processors. It is only available on processor family OFH, models 01H-02H.
3BCH	956	MSR_RAT_ESCRO	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3BDH	957	MSR_RAT_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3BEH	958	MSR_SSU_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C0H	960	MSR_MS_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C1H	961	MSR_MS_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C2H	962	MSR_TBPU_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C3H	963	MSR_TBPU_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C4H	964	MSR_TC_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C5H	965	MSR_TC_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C8H	968	MSR_IX_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3C9H	969	MSR_IX_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Add		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
3CAH	970	MSR_ALF_ESCR0	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3CBH	971	MSR_ALF_ESCR1	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3CCH	972	MSR_CRU_ESCR2	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3CDH	973	MSR_CRU_ESCR3	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3E0H	992	MSR_CRU_ESCR4	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3E1H	993	MSR_CRU_ESCR5	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3F0H	1008	MSR_TC_PRECISE_EVENT	0, 1, 2, 3, 4, 6	Shared	See Section 18.13.1, "ESCR MSRs."
3F1H	1009	MSR_PEBS_ENABLE	0, 1, 2, 3,	Shared	Precise Event-Based Sampling (PEBS) (R/W)
			4, 6		Controls the enabling of precise event sampling and replay tagging.
		12:0			See Table 19-31.
		23:13			Reserved.
		24			UOP Tag
					Enables replay tagging when set.
		25			ENABLE_PEBS_MY_THR (R/W)
					Enables PEBS for the target logical processor when set; disables PEBS when clear (default).
					See Section 18.14.3, "IA32_PEBS_ENABLE MSR," for an explanation of the target logical processor.
					This bit is called ENABLE_PEBS in IA-32 processors that do not support Intel Hyper-Threading Technology.
		26			ENABLE_PEBS_OTH_THR (R/W)
					Enables PEBS for the target logical processor when set; disables PEBS when clear (default).
					See Section 18.14.3, "IA32_PEBS_ENABLE MSR," for an explanation of the target logical processor.
					This bit is reserved for IA-32 processors that do not support Intel Hyper-Threading Technology.
		63:27			Reserved.
3F2H	1010	MSR_PEBS_MATRIX_VERT	0, 1, 2, 3, 4, 6	Shared	See Table 19-31.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
400H	1024	IA32_MCO_CTL	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
401H	1025	IA32_MCO_STATUS	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
402H	1026	IA32_MCO_ADDR	0, 1, 2, 3,	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
			4, 6		The IA32_MCO_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MCO_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
403H	1027	IA32_MCO_MISC	0, 1, 2, 3,	Shared	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
			4, 6		The IA32_MCO_MISC MSR is either not implemented or does not contain additional information if the MISCV flag in the IA32_MCO_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
404H	1028	IA32_MC1_CTL	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
405H	1029	IA32_MC1_STATUS	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
406H	1030	IA32_MC1_ADDR	0, 1, 2, 3,	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
			4, 6		The IA32_MC1_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC1_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
407H	1031	IA32_MC1_MISC		Shared	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
					The IA32_MC1_MISC MSR is either not implemented or does not contain additional information if the MISCV flag in the IA32_MC1_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
408H	1032	IA32_MC2_CTL	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
409H	1033	IA32_MC2_STATUS	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Addı		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
40AH	1034	IA32_MC2_ADDR			See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
					The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC2_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
40BH	1035	IA32_MC2_MISC			See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
					The IA32_MC2_MISC MSR is either not implemented or does not contain additional information if the MISCV flag in the IA32_MC2_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
40CH	1036	IA32_MC3_CTL	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
40DH	1037	IA32_MC3_STATUS	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."
40EH	1038	IA32_MC3_ADDR	0, 1, 2, 3,	Shared	See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
			4, 6		The IA32_MC3_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC3_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
40FH	1039	IA32_MC3_MISC	0, 1, 2, 3,	Shared	See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
			4, 6		The IA32_MC3_MISC MSR is either not implemented or does not contain additional information if the MISCV flag in the IA32_MC3_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
410H	1040	IA32_MC4_CTL	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
411H	1041	IA32_MC4_STATUS	0, 1, 2, 3, 4, 6	Shared	See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Add	ister ress	Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
412H	1042	IA32_MC4_ADDR			See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
					The IA32_MC2_ADDR register is either not implemented or contains no address if the ADDRV flag in the IA32_MC4_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
413H	1043	IA32_MC4_MISC			See Section 15.3.2.4, "IA32_MCi_MISC MSRs."
					The IA32_MC2_MISC MSR is either not implemented or does not contain additional information if the MISCV flag in the IA32_MC4_STATUS register is clear.
					When not implemented in the processor, all reads and writes to this MSR will cause a general-protection exception.
480H	1152	IA32_VMX_BASIC	3, 4, 6	Unique	Reporting Register of Basic VMX Capabilities (R/O)
					See Table 35-2.
					See Appendix A.1, "Basic VMX Information."
481H	1153	IA32_VMX_PINBASED_CTLS	3, 4, 6	Unique	Capability Reporting Register of Pin-based VM-execution Controls (R/O)
					See Table 35-2.
					See Appendix A.3, "VM-Execution Controls."
482H	1154	IA32_VMX_PROCBASED_CTLS	3, 4, 6	Unique	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)
					See Appendix A.3, "VM-Execution Controls," and see Table 35-2.
483H	1155	IA32_VMX_EXIT_CTLS	3, 4, 6	Unique	Capability Reporting Register of VM-exit Controls (R/O)
					See Appendix A.4, "VM-Exit Controls," and see Table 35-2.
484H	1156	IA32_VMX_ENTRY_CTLS	3, 4, 6	Unique	Capability Reporting Register of VM-entry Controls (R/O)
					See Appendix A.5, "VM-Entry Controls," and see Table 35-2.
485H	1157	IA32_VMX_MISC	3, 4, 6	Unique	Reporting Register of Miscellaneous VMX Capabilities (R/O)
					See Appendix A.6, "Miscellaneous Data," and see Table 35-2.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Regi Add	ister ress	Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
486H	1158	IA32_VMX_CR0_FIXED0	3, 4, 6	Unique	Capability Reporting Register of CRO Bits Fixed to 0 (R/O)
					See Appendix A.7, "VMX-Fixed Bits in CR0," and see Table 35-2.
487H	1159	IA32_VMX_CRO_FIXED1	3, 4, 6	Unique	Capability Reporting Register of CRO Bits Fixed to 1 (R/O)
					See Appendix A.7, "VMX-Fixed Bits in CR0," and see Table 35-2.
488H	1160	IA32_VMX_CR4_FIXED0	3, 4, 6	Unique	Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)
					See Appendix A.8, "VMX-Fixed Bits in CR4," and see Table 35-2.
489H	1161	IA32_VMX_CR4_FIXED1	3, 4, 6	Unique	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)
					See Appendix A.8, "VMX-Fixed Bits in CR4," and see Table 35-2.
48AH	1162	IA32_VMX_VMCS_ENUM	3, 4, 6	Unique	Capability Reporting Register of VMCS Field Enumeration (R/O)
					See Appendix A.9, "VMCS Enumeration," and see Table 35-2.
48BH	1163	IA32_VMX_PROCBASED_CTLS2	3, 4, 6	Unique	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O)
					See Appendix A.3, "VM-Execution Controls," and see Table 35-2.
600H	1536	IA32_DS_AREA	0, 1, 2, 3,	Unique	DS Save Area (R/W)
			4, 6		See Table 35-2.
					See Section 18.13.4, "Debug Store (DS) Mechanism."
680H	1664	MSR_LASTBRANCH_O_FROM_IP	3, 4, 6	Unique	Last Branch Record 0 (R/W)
					One of 16 pairs of last branch record registers on the last branch record stack (680H-68FH). This part of the stack contains pointers to the source instruction for one of the last 16 branches, exceptions, or interrupts taken by the processor.
					The MSRs at 680H-68FH, 6C0H-6CfH are not available in processor releases before family 0FH, model 03H. These MSRs replace MSRs previously located at 1DBH-1DEH.which performed the same function for early releases.
					See Section 17.9, "Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Skylake Microarchitecture."

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register Address		Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
681H	1665	MSR_LASTBRANCH_1_FROM_IP	3, 4, 6	Unique	Last Branch Record 1
					See description of MSR_LASTBRANCH_0 at 680H.
682H	1666	MSR_LASTBRANCH_2_FROM_IP	3, 4, 6	Unique	Last Branch Record 2
					See description of MSR_LASTBRANCH_0 at 680H.
683H	1667	MSR_LASTBRANCH_3_FROM_IP	3, 4, 6	Unique	Last Branch Record 3
					See description of MSR_LASTBRANCH_0 at 680H.
684H	1668	MSR_LASTBRANCH_4_FROM_IP	3, 4, 6	Unique	Last Branch Record 4
					See description of MSR_LASTBRANCH_0 at 680H.
685H	1669	MSR_LASTBRANCH_5_FROM_IP	3, 4, 6	Unique	Last Branch Record 5
					See description of MSR_LASTBRANCH_0 at 680H.
686H	1670	MSR_LASTBRANCH_6_FROM_IP	3, 4, 6	Unique	Last Branch Record 6
					See description of MSR_LASTBRANCH_0 at 680H.
687H	1671	MSR_LASTBRANCH_7_FROM_IP	3, 4, 6	Unique	Last Branch Record 7
					See description of MSR_LASTBRANCH_0 at 680H.
688H	1672	MSR_LASTBRANCH_8_FROM_IP	3, 4, 6	Unique	Last Branch Record 8
					See description of MSR_LASTBRANCH_0 at 680H.
689H	1673	MSR_LASTBRANCH_9_FROM_IP	3, 4, 6	Unique	Last Branch Record 9
					See description of MSR_LASTBRANCH_0 at 680H.
68AH	1674	MSR_LASTBRANCH_10_FROM_IP	3, 4, 6	Unique	Last Branch Record 10
					See description of MSR_LASTBRANCH_0 at 680H.
68BH	1675	MSR_LASTBRANCH_11_FROM_IP	3, 4, 6	Unique	Last Branch Record 11
					See description of MSR_LASTBRANCH_0 at 680H.
68CH	1676	MSR_LASTBRANCH_12_FROM_IP	3, 4, 6	Unique	Last Branch Record 12
					See description of MSR_LASTBRANCH_0 at 680H.
68DH	1677	MSR_LASTBRANCH_13_FROM_IP	3, 4, 6	Unique	Last Branch Record 13
					See description of MSR_LASTBRANCH_0 at 680H.
68EH	1678	MSR_LASTBRANCH_14_FROM_IP	3, 4, 6	Unique	Last Branch Record 14
					See description of MSR_LASTBRANCH_0 at 680H.
68FH	1679	MSR_LASTBRANCH_15_FROM_IP	3, 4, 6	Unique	Last Branch Record 15
					See description of MSR_LASTBRANCH_0 at 680H.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

	ister Iress	Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
6C0H	1728	MSR_LASTBRANCH_0_TO_IP	3, 4, 6	Unique	Last Branch Record O (R/W)
					One of 16 pairs of last branch record registers on the last branch record stack (6C0H-6CFH). This part of the stack contains pointers to the destination instruction for one of the last 16 branches, exceptions, or interrupts that the processor took.
					See Section 17.9, "Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Skylake Microarchitecture."
6C1H	1729	MSR_LASTBRANCH_1_TO_IP	3, 4, 6	Unique	Last Branch Record 1
					See description of MSR_LASTBRANCH_0 at 6C0H.
6C2H	1730	MSR_LASTBRANCH_2_TO_IP	3, 4, 6	Unique	Last Branch Record 2
					See description of MSR_LASTBRANCH_0 at 6C0H.
6C3H	1731	MSR_LASTBRANCH_3_TO_IP	3, 4, 6	Unique	Last Branch Record 3
					See description of MSR_LASTBRANCH_0 at 6C0H.
6C4H	1732	MSR_LASTBRANCH_4_TO_IP	3, 4, 6	Unique	Last Branch Record 4
					See description of MSR_LASTBRANCH_0 at 6C0H.
6C5H	1733	MSR_LASTBRANCH_5_TO_IP	3, 4, 6	Unique	Last Branch Record 5
					See description of MSR_LASTBRANCH_0 at 6C0H.
6C6H	1734	MSR_LASTBRANCH_6_TO_IP	3, 4, 6	Unique	Last Branch Record 6
					See description of MSR_LASTBRANCH_0 at 6C0H.
6C7H	1735	MSR_LASTBRANCH_7_TO_IP	3, 4, 6	Unique	Last Branch Record 7
					See description of MSR_LASTBRANCH_0 at 6COH.
6C8H	1736	MSR_LASTBRANCH_8_TO_IP	3, 4, 6	Unique	Last Branch Record 8
					See description of MSR_LASTBRANCH_0 at 6COH.
6C9H	1737	MSR_LASTBRANCH_9_TO_IP	3, 4, 6	Unique	Last Branch Record 9
					See description of MSR_LASTBRANCH_0 at 6COH.
6CAH	1738	MSR_LASTBRANCH_10_TO_IP	3, 4, 6	Unique	Last Branch Record 10
					See description of MSR_LASTBRANCH_0 at 6COH.
6CBH	1739	MSR_LASTBRANCH_11_TO_IP	3, 4, 6	Unique	Last Branch Record 11
					See description of MSR_LASTBRANCH_0 at 6COH.
6CCH	1740	MSR_LASTBRANCH_12_TO_IP	3, 4, 6	Unique	Last Branch Record 12
					See description of MSR_LASTBRANCH_0 at 6COH.
6CDH	1741	MSR_LASTBRANCH_13_TO_IP	3, 4, 6	Unique	Last Branch Record 13
					See description of MSR_LASTBRANCH_0 at 6COH.
6CEH	1742	MSR_LASTBRANCH_14_TO_IP	3, 4, 6	Unique	Last Branch Record 14
					See description of MSR_LASTBRANCH_0 at 6C0H.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

_	ister ress	Register Name Fields and Flags	Model Avail-	Shared/ Unique ¹	Bit Description
Hex	Dec		ability		
6CFH	1743	MSR_LASTBRANCH_15_TO_IP	3, 4, 6	Unique	Last Branch Record 15
					See description of MSR_LASTBRANCH_0 at 6C0H.
C000_		IA32_EFER	3, 4, 6	Unique	Extended Feature Enables
0080H					See Table 35-2.
C000_		IA32_STAR	3, 4, 6	Unique	System Call Target Address (R/W)
0081H					See Table 35-2.
C000_		IA32_LSTAR	3, 4, 6	Unique	IA-32e Mode System Call Target Address (R/W)
0082H					See Table 35-2.
C000_		IA32_FMASK	3, 4, 6	Unique	System Call Flag Mask (R/W)
0084H					See Table 35-2.
C000_		IA32_FS_BASE	3, 4, 6	Unique	Map of BASE Address of FS (R/W)
0100H					See Table 35-2.
C000_		IA32_GS_BASE	3, 4, 6	Unique	Map of BASE Address of GS (R/W)
0101H					See Table 35-2.
C000_		IA32_KERNEL_GSBASE	3, 4, 6	Unique	Swap Target of BASE Address of GS (R/W)
0102H					See Table 35-2.

NOTES

. . .

35.19 MSRS IN THE P6 FAMILY PROCESSORS

The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this list have been designated as "architectural" and have had their names changed. See Table 35-2 for a list of the architectural MSRs.

Table 35-39 MSRs in the P6 Family Processors

Register Address		Register Name	Bit Description	
Hex	Dec			
ОН	0	P5_MC_ADDR	See Section 35.20, "MSRs in Pentium Processors."	
1H	1	P5_MC_TYPE	See Section 35.20, "MSRs in Pentium Processors."	
10H	16	TSC	See Section 17.14, "Time-Stamp Counter."	
17H	23	IA32_PLATFORM_ID	Platform ID (R)	
			The operating system can use this MSR to determine "slot" information for the processor and the proper microcode update to load.	

^{1.} For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Add	ister ress	Register Name	Bit Description
Hex	Dec		
		49:0	Reserved.
		52:50	Platform Id (R)
			Contains information concerning the intended platform for the processor. 52 51 50 0 0 0 Processor Flag 0 0 0 1 Processor Flag 1 0 1 0 Processor Flag 2 0 1 1 Processor Flag 3 1 0 0 Processor Flag 4 1 0 1 Processor Flag 5 1 1 0 Processor Flag 6 1 1 1 Processor Flag 7
		56:53	L2 Cache Latency Read.
		59:57	Reserved.
		60	Clock Frequency Ratio Read.
		63:61	Reserved.
1BH	27	APIC_BASE	Section 10.4.4, "Local APIC Status and Location."
		7:0	Reserved.
		8	Boot Strap Processor indicator Bit 1 = BSP
		10:9	Reserved.
		11	APIC Global Enable Bit - Permanent till reset 1 = Enabled 0 = Disabled
		31:12	APIC Base Address.
		63:32	Reserved.
2AH	42	EBL_CR_POWERON	Processor Hard Power-On Configuration (R/W) Enables and disables processor features; (R) indicates current processor configuration.
		0	Reserved. ¹
		1	Data Error Checking Enable (R/W) 1 = Enabled 0 = Disabled
		2	Response Error Checking Enable FRCERR Observation Enable (R/W) 1 = Enabled 0 = Disabled
		3	AERR# Drive Enable (R/W) 1 = Enabled 0 = Disabled

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Addı		Register Name	Bit Description
Hex	Dec		
		4	BERR# Enable for Initiator Bus Requests (R/W)
			1 = Enabled
			0 = Disabled
		5	Reserved.
		6	BERR# Driver Enable for Initiator Internal Errors (R/W)
			1 = Enabled
			0 = Disabled
		7	BINIT# Driver Enable (R/W)
			1 = Enabled
			0 = Disabled
		8	Output Tri-state Enabled (R)
			1 = Enabled
			0 = Disabled
		9	Execute BIST (R)
			1 = Enabled
			0 = Disabled
		10	AERR# Observation Enabled (R)
			1 = Enabled
			0 = Disabled
		11	Reserved.
		12	BINIT# Observation Enabled (R)
			1 = Enabled
			0 = Disabled
		13	In Order Queue Depth (R)
			1 = 1
			0 = 8
		14	1-MByte Power on Reset Vector (R)
			1 = 1MByte
			0 = 4GBytes
		15	FRC Mode Enable (R)
			1 = Enabled 0 = Disabled
		17.16	
		17:16	APIC Cluster ID (R)
		19:18	System Bus Frequency (R)
			00 = 66MHz
			10 = 100Mhz 01 = 133MHz
			11 = Reserved
			1 1 - 1/G2C1 ACA

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register Address		Register Name	Bit Description
Hex	Dec		
		21: 20	Symmetric Arbitration ID (R)
		25:22	Clock Frequency Ratio (R)
		26	Low Power Mode Enable (R/W)
		27	Clock Frequency Ratio
		63:28	Reserved. ¹
33H	51	TEST_CTL	Test Control Register
		29:0	Reserved.
		30	Streaming Buffer Disable
		31	Disable LOCK#
			Assertion for split locked access.
79H	121	BIOS_UPDT_TRIG	BIOS Update Trigger Register.
88H	136	BBL_CR_D0[63:0]	Chunk 0 data register D[63:0]: used to write to and read from the L2
89H	137	BBL_CR_D1[63:0]	Chunk 1 data register D[63:0]: used to write to and read from the L2
8AH	138	BBL_CR_D2[63:0]	Chunk 2 data register D[63:0]: used to write to and read from the L2
8BH	139	BIOS_SIGN/BBL_CR_D3[63:0]	BIOS Update Signature Register or Chunk 3 data register D[63:0]
			Used to write to and read from the L2 depending on the usage model.
C1H	193	PerfCtr0 (PERFCTR0)	
C2H	194	PerfCtr1 (PERFCTR1)	
FEH	254	MTRRcap	
116H	278	BBL_CR_ADDR [63:0]	Address register: used to send specified address (A31-A3) to L2 during cache initialization accesses.
		BBL_CR_ADDR [63:32]	Reserved,
		BBL_CR_ADDR [31:3]	Address bits [35:3]
		BBL_CR_ADDR [2:0]	Reserved Set to 0.
118H	280	BBL_CR_DECC[63:0]	Data ECC register D[7:0]: used to write ECC and read ECC to/from L2
119H	281	BBL_CR_CTL	Control register: used to program L2 commands to be issued via cache configuration accesses mechanism. Also receives L2 lookup response
			Reserved
		BL_CR_CTL[63:22]	Processor number ²
		BBL_CR_CTL[21]	Disable = 1 Enable = 0 Reserved

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Add	ister ress	Register Name	Bit Description
Hex	Dec		
		BBL_CR_CTL[20:19]	User supplied ECC
		BBL_CR_CTL[18]	Reserved
		BBL_CR_CTL[17]	L2 Hit
		BBL_CR_CTL[16]	Reserved
		BBL_CR_CTL[15:14]	State from L2
		BBL_CR_CTL[13:12]	Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00
		DDI	Way from L2
		BBL_CR_CTL[11:10]	Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11
		DD1	Way to L2
		BBL_CR_CTL[9:8]	Reserved
		BBL_CR_CTL[7]	State to L2
		BBL_CR_CTL[6:5]	
		BBL_CR_CTL[4:0]	L2 Command
		01100 01110	Data Read w/ LRU update (RLU) Tag Read w/ Data Read (TRR)
		01111	Tag Inquire (TI)
		00010	L2 Control Register Read (CR)
		00011 010 + MESI encode	L2 Control Register Write (CW) Tag Write w/ Data Read (TWR)
		111 + MESI encode	Tag Write w/ Data Write (TWW)
		100 + MESI encode	Tag Write (TW)
11AH	282	BBL_CR_TRIG	Trigger register: used to initiate a cache configuration accesses access, Write only with Data = 0.
11BH	283	BBL_CR_BUSY	Busy register: indicates when a cache configuration accesses L2 command is in progress. D[0] = 1 = BUSY
11EH	286	BBL_CR_CTL3	Control register 3: used to configure the L2 Cache
		BBL_CR_CTL3[63:26]	Reserved
		BBL_CR_CTL3[25]	Cache bus fraction (read only)
		BBL_CR_CTL3[24]	Reserved
		BBL_CR_CTL3[23]	L2 Hardware Disable (read only)

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Addı		Register Name	Bit Description
Hex	Dec	_	
		BBL_CR_CTL3[22:20] 111 110 101 100 011 010 001 000	L2 Physical Address Range support 64GBytes 32GBytes 16GBytes 8GBytes 4GBytes 2GBytes 1GBytes 1GBytes 512MBytes
		BBL_CR_CTL3[19]	Reserved
		BBL_CR_CTL3[18]	Cache State error checking enable (read/write)
		BBL_CR_CTL3[17:13 00001 00010 00100 01000 10000	Cache size per bank (read/write) 256KBytes 512KBytes 1MByte 2MByte 4MBytes
		BBL_CR_CTL3[12:11] BBL_CR_CTL3[10:9] 00 01 10 11	Number of L2 banks (read only) L2 Associativity (read only) Direct Mapped 2 Way 4 Way Reserved
		BBL_CR_CTL3[8]	L2 Enabled (read/write)
		BBL_CR_CTL3[7]	CRTN Parity Check Enable (read/write)
		BBL_CR_CTL3[6]	Address Parity Check Enable (read/write)
		BBL_CR_CTL3[5]	ECC Check Enable (read/write)
		BBL_CR_CTL3[4:1] BBL_CR_CTL3[0]	L2 Cache Latency (read/write) L2 Configured (read/write)
174H	372	SYSENTER_CS_MSR	CS register target for CPL 0 code
175H	373	SYSENTER_ESP_MSR	Stack pointer for CPL 0 stack
176H	374	SYSENTER_EIP_MSR	CPL 0 code entry point
179H	377	MCG_CAP	
17AH	378	MCG_STATUS	
17BH	379	MCG_CTL	
186H	390	PerfEvtSel0 (EVNTSEL0)	
		7:0	Event Select Refer to Performance Counter section for a list of event encodings.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Add		Register Name	Bit Description
Hex	Dec		
		15:8	UMASK (Unit Mask)
			Unit mask register set to 0 to enable all count options.
		16	USER
			Controls the counting of events at Privilege levels of 1, 2, and 3.
		17	OS
			Controls the counting of events at Privilege level of 0.
		18	E
			Occurrence/Duration Mode Select
			1 = Occurrence
			0 = Duration
		19	PC
			Enabled the signaling of performance counter overflow via BPO pin
		20	INT
			Enables the signaling of counter overflow via input to APIC
			1 = Enable
			0 = Disable
		22	ENABLE
			Enables the counting of performance events in both counters
			1 = Enable 0 = Disable
		22	
		23	INV Inverts the result of the CMASK condition
			1 = Inverted
			0 = Non-Inverted
		31:24	CMASK (Counter Mask).
		31.24	CHASK (Counter Hask).
187H	391	PerfEvtSel1 (EVNTSEL1)	
		7:0	Event Select
			Refer to Performance Counter section for a list of event encodings.
		15:8	UMASK (Unit Mask)
			Unit mask register set to 0 to enable all count options.
		16	USER
			Controls the counting of events at Privilege levels of 1, 2, and 3.
			1 3 3 1 1

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Add	ister ress	Register Name	Bit Description
Hex	Dec		
		17	OS Controls the counting of events at Privilege level of 0
		18	E Occurrence/Duration Mode Select 1 = Occurrence 0 = Duration
		19	PC Enabled the signaling of performance counter overflow via BPO pin.
		20	INT Enables the signaling of counter overflow via input to APIC 1 = Enable 0 = Disable
		23	INV Inverts the result of the CMASK condition 1 = Inverted 0 = Non-Inverted
		31:24	CMASK (Counter Mask)
1D9H	473	DEBUGCTLMSR	
		0	Enable/Disable Last Branch Records
		1	Branch Trap Flag
		2	Performance Monitoring/Break Point Pins
		3	Performance Monitoring/Break Point Pins
		4	Performance Monitoring/Break Point Pins
		5	Performance Monitoring/Break Point Pins
		6	Enable/Disable Execution Trace Messages
		31:7	Reserved
1DBH	475	LASTBRANCHFROMIP	
1DCH	476	LASTBRANCHTOIP	
1DDH	477	LASTINTFROMIP	
1DEH	478	LASTINTTOIP	
1E0H	480	ROB_CR_BKUPTMPDR6	
		1:0	Reserved
		2	Fast String Enable bit. Default is enabled
200H	512	MTRRphysBase0	
201H	513	MTRRphysMask0	

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Addı		Register Name	Bit Description
Hex	Dec		
202H	514	MTRRphysBase1	
203H	515	MTRRphysMask1	
204H	516	MTRRphysBase2	
205H	517	MTRRphysMask2	
206H	518	MTRRphysBase3	
207H	519	MTRRphysMask3	
208H	520	MTRRphysBase4	
209H	521	MTRRphysMask4	
20AH	522	MTRRphysBase5	
20BH	523	MTRRphysMask5	
20CH	524	MTRRphysBase6	
20DH	525	MTRRphysMask6	
20EH	526	MTRRphysBase7	
20FH	527	MTRRphysMask7	
250H	592	MTRRfix64K_00000	
258H	600	MTRRfix16K_80000	
259H	601	MTRRfix16K_A0000	
268H	616	MTRRfix4K_C0000	
269H	617	MTRRfix4K_C8000	
26AH	618	MTRRfix4K_D0000	
26BH	619	MTRRfix4K_D8000	
26CH	620	MTRRfix4K_E0000	
26DH	621	MTRRfix4K_E8000	
26EH	622	MTRRfix4K_F0000	
26FH	623	MTRRfix4K_F8000	
2FFH	767	MTRRdefType	
		2:0	Default memory type
		10	Fixed MTRR enable
		11	MTRR Enable
400H	1024	MCO_CTL	
401H	1025	MCO_STATUS	
		15:0	MC_STATUS_MCACOD
		31:16	MC_STATUS_MSCOD
		57	MC_STATUS_DAM

Table 35-39 MSRs in the P6 Family Processors (Contd.)

	ister Iress	Register Name	Bit Description
Hex	Dec		
		58	MC_STATUS_ADDRV
		59	MC_STATUS_MISCV
		60	MC_STATUS_EN. (Note: For MCO_STATUS only, this bit is hardcoded to 1.)
		61	MC_STATUS_UC
		62	MC_STATUS_0
		63	MC_STATUS_V
402H	1026	MCO_ADDR	
403H	1027	MCO_MISC	Defined in MCA architecture but not implemented in the P6 family processors.
404H	1028	MC1_CTL	
405H	1029	MC1_STATUS	Bit definitions same as MCO_STATUS.
406H	1030	MC1_ADDR	
407H	1031	MC1_MISC	Defined in MCA architecture but not implemented in the P6 family processors.
408H	1032	MC2_CTL	
409H	1033	MC2_STATUS	Bit definitions same as MCO_STATUS.
40AH	1034	MC2_ADDR	
40BH	1035	MC2_MISC	Defined in MCA architecture but not implemented in the P6 family processors.
40CH	1036	MC4_CTL	
40DH	1037	MC4_STATUS	Bit definitions same as MCO_STATUS, except bits 0, 4, 57, and 61 are hardcoded to 1.
40EH	1038	MC4_ADDR	Defined in MCA architecture but not implemented in P6 Family processors.
40FH	1039	MC4_MISC	Defined in MCA architecture but not implemented in the P6 family processors.
410H	1040	MC3_CTL	
411H	1041	MC3_STATUS	Bit definitions same as MCO_STATUS.
412H	1042	MC3_ADDR	
413H	1043	MC3_MISC	Defined in MCA architecture but not implemented in the P6 family processors.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Regi Add	ister ress	Register Name	Bit Description
Hex	Dec		

NOTES

- 1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.
- 2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) to "1". Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled until the processor is reset.
- 3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency selected is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to use bit 11 to implement its own shutdown policy.

...

19. Updates to Chapter 36, Volume 3C

Change bars show changes to Chapter 36 of the $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3.

• • •

36.1 OVERVIEW

Intel[®] Processor Trace (Intel PT) is an extension of Intel[®] Architecture that captures information about software execution using dedicated hardware facilities that cause only minimal performance perturbation to the software being traced. This information is collected in **data packets**. The initial implementations of Intel PT offer **control flow tracing**, which generates a variety of packets to be processed by a software decoder. The packets include timing, program flow information (e.g. branch targets, branch taken/not taken indications) and program-induced mode related information (e.g. Intel TSX state transitions, CR3 changes). These packets may be buffered internally before being sent to the memory subsystem or other output mechanism available in the platform. Debug software can process the trace data and reconstruct the program flow.

36.1.1 Features and Capabilities

Intel PT's control flow trace generates a variety of packets that, when combined with the binaries of a program by a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code regions (basic blocks).

In addition, the packets record other contextual, timing, and bookkeeping information that enables both functional and performance debugging of applications. Intel PT has several control and filtering capabilities available to customize the tracing information collected and to append other processor state and timing information to enable debugging. For example, there are modes that allow packets to be filtered based on the current privilege level (CPL) or the value of CR3.

Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are enumerated by CPUID, see Section 36.3. Details of the MSRs for configuring Intel PT are described in Section 36.2.5.

36.1.1.1 Packet Summary

After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate trace information in the following categories of packets (for more details on the packets, see Section 36.4):

- Packets about basic information on program execution: These include:
 - Packet Stream Boundary (PSB) packets: PSB packets act as 'heartbeats' that are generated at regular
 intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet
 boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for
 when beginning to decode a trace.
 - Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information, along with information from the operating system on the CR3 value of each process, allows the debugger to attribute linear addresses to their correct application source.
 - Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion of the software-visible time-stamp counter.
 - Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.
 - Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow, resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to respond to this situation.
- Packets about control flow information:
 - Taken Not-Taken (TNT) packets: TNT packets track the "direction" of direct conditional branches (taken or not taken).
 - Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and
 other branches or events. These packets can contain the IP, although that IP value may be compressed by
 eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in
 more detail in Section 36.4.2.2.
 - Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and
 exceptions), as well as other cases where the source address cannot be determined from the binary.
 - MODE packets: These packets provide the decoder with important processor execution information so
 that it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of
 formats that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

36.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL

This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it operates.

36.2.1 Change of Flow Instruction (COFI) Tracing

A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this block of code need not be traced, as the processor will execute them from start to end without redirecting code flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow. These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are three categories of COFI:

- Direct transfer COFI.
- · Indirect transfer COFI.
- Far transfer COFI.

The following subsections describe the COFI events that result in trace packet generation. Table 36-1 lists branch instruction by COFI types. For detailed description of specific instructions, see *Intel®* 64 and IA-32 Architectures Software Developer's Manual.

Table 36-1 COFI Type for Branch Instructions

COFI Type	Instructions			
Conditional Branch	JA, JAE, JB, JBE, JC, JCXZ< JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ			
Unconditional Direct Branch	JMP (E9 xx, EB xx), CALL (E8 xx)			
Indirect Branch	JMP (FF /4), CALL (FF /2)			
Near Ret	RET (C3, C2 xx)			
Far Transfers	INT3, INTn, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx), SYSCALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME			

36.2.1.1 Direct Transfer COFI

Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP is embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two subcategories:

Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken - TNT) to indicate the program flow after the instruction.

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the processor will compact several TNT bits into a single packet.

Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative) since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate a TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct jumps that toggle Intel PT enables (see Section 36.2.3).

36.2.1.2 Indirect Transfer COFI

Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or memory contents can vary at any time during execution, there is no way to know the target of the indirect transfer until the register or memory contents are read. As a result, the disassembled code is not sufficient to determine the target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the trace packet for debug software to determine the target address of the COFI. Note that this IP may be a linear or effective address (see Section 36.3.1.1)

An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch. There are two sub-categories:

Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or memory location. Therefore, the processor must generate a packet that includes this target address to allow the decoder to determine the program flow.

Near RET

When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off of the call stack and redirect code flow back to the instruction following the CALL.

A RET instruction simply transfers program flow to the address it popped off the stack. Because a called procedure may change the return address on the stack before executing the RET instruction, debug software can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore, even for near RET, a Target IP Packet may be sent.

RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking the CALL stack. If it is assured that the decoder has seen the corresponding CALL (with "corresponding" defined as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the RET target may be "compressed". In this case, only a single TNT bit of "taken" is generated instead of a Target IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs that correspond to CALLs which have been seen since the last PSB packet may be compressed in a given logical processor. For details, see "Indirect Transfer Compression for Returns (RET)" in Section 36.4.2.2.

36.2.1.3 Far Transfer COFI

All operations that change the instruction pointer and are not near jumps are "far transfers". This includes exceptions, interrupts, traps, TSX aborts, and instructions that do far transfers.

All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and interrupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the event was taken. Table 36-24 indicates exactly which IP will be included in the FUP generated by a far transfer.

36.2.2 Trace Filtering

Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is traced.

...

36.2.2.2 Filtering by CR3

Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states can be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single application without context switching the state of the RTIT MSRs. For the reconstruction of traces from software with multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating system does not provide context-switch support) to separate the output for the different threads (see Section 36.3.5, "Context Switch Consideration").

To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and IA32_RTIT_CTL.CR3Filter is 1, ContextEn is forced to 0, and packets containing architectural states will not be generated. Some other packets can be generated when ContextEn is 0; see Section 36.2.3.3 for details. When CR3 does match IA32_RTIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0 (although it could be 0 due to other filters or modes).

CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value of CR0.PG.

When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

36.2.2.3 Filtering by IP

Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1. Intel PT can be configured to enable the generation of packets containing architectural states only when the processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some packets is blocked.

IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 36.2.5.2), where the digit 'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field configures the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 36.2.5.5). IA32_RTIT_ADDRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing is enabled. Thus each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A. IA32_RTIT_ADDRn_B]. There can be multiple such ranges, software can query CPUID (Section 36.3.1) for the number of ranges supported on a processor.

Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to enable IP filtering (see Section 36.3.1), tracing will commence when a taken branch or event is seen whose target address is in the ADDRn range.

While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See Section 36.2.3.5 for more details on FilterEn.

Note that these address range base and limit values are inclusive, such that the range includes the first and last instruction whose first instruction byte is in the ADDRn range.

Depending upon processor implementation, IP filtering may be based on linear or effective address. This can cause different behavior between implementations if CSbase is not equal to zero or in real mode. See Section 36.3.1.1 for details. Software can query CPUID to determine filters are based on linear or effective address (Section 36.3.1).

Note that some packets, such as MTC (Section 36.3.7) and other timing packets, do not depend on FilterEn. For details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 36.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This is intended for cases where unexpected code is executed, and the user wishes to immediately stop generating packets in order to avoid overwriting previously written packets.

The TraceStop mechanism works much the same way that IP filtering does, and uses the same address comparison logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when a taken branch or event lands in a TraceStop region.

Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate that the condition was hit.

If a TraceStop condition is encountered during buffer overflow (Section 36.3.8), it will not be dropped, but will instead be signaled once the overflow has resolved.

Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal buffers. To ensure that this has occurred, the user should clear TraceEn.

To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing resumed.

Note that the IA32_RTIT_STATUS. Stopped bit can also be set using the ToPA STOP bit. See Section 36.2.4.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of RangeBase, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1 (enable ADDRn range as a FilterEn range).

Table 36-2 IP Filtering Packet Example

Code Flow	Packets
Bar:	TIP.PGE(RangeBase)
jmp RangeBase // jump into filter range	TNT(0)
RangeBase:	TIP.PGD(RangeLimit+1)
jcc Foo // not taken	,
add eax, 1	
Foo:	
<pre>jmp RangeLimit+1 // jump out of filter range</pre>	
RangeLimit:	
nop	
jcc Bar	

IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code executing in the non-overlapping portion of either range will behave as would be expected from that range. Code executing in the overlapping range will get TraceStop behavior.

36.2.3 Packet Generation Enable Controls

Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general, most packets are sent only if Packet Enable (**PacketEn**) is set. PacketEn is an internal state maintained in hardware in response to software configurable enable controls, PacketEn is not visible to software directly. The relationship of PacketEn to the software-visible controls in the configuration MSRs is described in this section.

36.2.3.1 Packet Enable (PacketEn)

When PacketEn is set, the processor is in the mode that Intel PT is monitoring and all packets can be generated to log what is being executed. PacketEn is composed of other states according to this relationship:

```
PacketEn ← TriggerEn AND ContextEn AND FilterEn AND BranchEn
```

These constituent controls are detailed in the following subsections.

PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-keeping packets) may still be sent. See Section 36.2.4 for details of PacketEn and packet generation.

Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX.IPFILT[bit 2] = 0), FilterEn is treated as always set.

36.2.3.2 Trigger Enable (TriggerEn)

Trigger Enable (**TriggerEn**) is the primary indicator that trace packet generation is active. TriggerEn is set when IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:

- TraceEn is cleared by software,
- A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set,
- IA32_RTIT_STATUS.Error is set due to an operational error (see Section 36.3.9).

Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When TriggerEn is clear, tracing is inactive and no packets are generated.

36.2.3.3 Context Enable (ContextEn)

Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then ContextEn will be 0 when the processor is in CPL0.

Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn is defined as follows:

```
ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)
```

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is generated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet Generation Enable (TIP.PGE) packet is generated.

When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no LIPs are exposed. However, some packets, such as MTC and PSB (see Section 36.4.2.16 and Section 36.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when ContextEn is set, see Section 36.4.1.

The processor does not update ContextEn when TriggerEn = 0.

The value of ContextEn will toggle only when TriggerEn = 1.

36.2.3.4 Branch Enable (BranchEn)

This value is based purely on the IA32_RTIT_CTL.BranchEn value. If **BranchEn** is not set, then relevant COFI packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of what software is running.

36.2.3.5 Filter Enable (FilterEn)

Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to watch. Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on configuration and use of IP filtering, see Section 36.2.2.3.

On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as for indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long as they are within context.

When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP, MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see Section 36.4.1.

^{1.} Trace packets generation is disabled in a production enclave, see Section 36.2.6.3. See Intel® Software Guard Extensions Programming Reference about differences between a production enclave and a debug enclave.

After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software (IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and ContextEn=1, and when at least one range is configured for IP filtering.

36.2.4 Trace Output

Intel PT output should be viewed independently from trace content and filtering mechanisms. The options available for trace output can vary across processor generations and platforms.

Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit fields of IA32_RTIT_CTL (see Section 36.2.5.2):

- A single, contiguous region of physical address space.
- A collection of variable-sized regions of physical memory. These regions are linked together by tables of
 pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass
 the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the
 output.
- A platform-specific trace transport subsystem.

Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures that they don't consume precious cache space, but they do not have the serializing aspects associated with uncacheable (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as UC, as this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe performance impact.

There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of cycles after a packet-producing instruction executes. The only way to assure that all packets generated have reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so ensures that all buffered packets are flushed out of the processor.

36.2.4.1 Single Range Output

When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single, contiguous memory (or MMIO if DRAM is not available) range defined by a base address in IA32_RTIT_OUTPUT_BASE (Section 36.2.5.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section 36.2.5.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base address.

This output method is best suited for cases where Intel PT output is either:

- Configured to be directed to a sufficiently large contiguous region of DRAM.
- Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint (e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will intercept these writes and direct them to the proper device. Repeated writes to the same address do not overwrite each other, but are accumulated by the debugger, and hence no data is lost by the circular nature of the buffer.

The processor will determine the address to which to write the next trace packet output byte as follows:

Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 36.3.9) will be signaled, and tracing disabled. Error scenarios with single-range output are:

- Mask value is non-contiguous.
 - IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the most significant bit containing a 1.
- Base address and Mask are mis-aligned, and have overlapping bits set.
 - IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset > 0.
- Illegal Output Offset
 - IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value (IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset).

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section 36.2.4.4.

36.2.4.2 Table of Physical Addresses (ToPA)

When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized. The ToPA mechanism uses a linked list of tables; see Figure 36-1 for an illustrative example. Each entry in the table contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the table may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular array) or to the base of another table. The table size is not fixed, since the link to the next table can exist at any entry.

The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means that a single packet may span the boundary between one output region and the next.

The ToPA mechanism is controlled by three values maintained by the processor:

• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the latest value of proc_trace_table_base.

• proc_trace_table_offset.

This indicates the entry of the current table that is currently in use. (This entry contains the address of the current output region.) When tracing is enabled, the processor loads this value from bits 31:7 (MaskOrTableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to proc_trace_table_offset, but these updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.

This a pointer into the current output region and indicates the location of the next write. When tracing is enabled, the processor loads this value from bits 63:32 (OutputOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates IA32_RTIT_OUTPUT_MASK_PTRS. OutputOffset with changes to proc_trace_output_offset, but these updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the latest value of proc_trace_output_offset.

Figure 36-1 provides an illustration (not to scale) of the table and associated pointers.

Figure 36-1 ToPA Memory Illustration

With the ToPA mechanism, the processor writes packets to the current output region (identified by proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus proc_trace_output_offset = RegionSize-1), proc_trace_table_offset is moved to the next ToPA entry, proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by proc_trace_table_offset.

As packets are written out, each store derives its physical address as follows:

```
trace_store_phys_addr ← Base address from current ToPA table entry +
proc_trace_output_offset
```

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END attribute indicates that the address in the entry does not point to another output region, but rather to another ToPA table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See Section 36.2.4.2 for details on STOP.

When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.

If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum table size will be reached (proc_trace_table_offset = FFFFFFFFH). In this case, the proc_trace_table_offset and proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output region is filled.

It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not

be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This ensures that he output MSR values account for all packets generated to that point, after which the output MSR values will be frozen until tracing resumes. ¹

The processor may cache internally any number of entries from the current table or from tables that it references (directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear TraceEn before modifying the current table (or tables that it references) and only then re-enable packet generation.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit 0] = 1.

If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be used as output.

The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 36-2. The size of the address field is determined by the processor's physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Figure 36-2 Layout of ToPA Table Entry

Table 36-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

Table	26.2	T-DA	T_	C-+	C: - J -
Ianie	30-3	INPA	IANIE	- ntrv	FIRING

ToPA Entry Field	Description
Output Region Base Physical Address	If END=0, this is the base physical address of the output region specified by this entry. Note that all regions must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly aligned, an operational error will be signaled when the entry is reached. If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the current table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE MSR.

^{1.} Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself cause these writes to be globally observed.

Table 36-3 ToPA Table Entry Fields

ToPA Entry Field	Description			
Size	Indicates the size of the associated output region. Encodings are: 0: 4K, 1: 8K,			
STOP	When the output region indicated by this entry is filled, software should disable packet generation. This will be accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).			
INT	When the output region indicated by this entry is filled, signal Perfmon LVT interrupt. Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the interrupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before tracing can be resumed. This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).			
END	If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output region base. If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The Size field is ignored in this case. If the processor supports only a single ToPA output region (see above), END must be set in the second table entry.			

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See Section 36.2.5.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as "ToPA Stop"

No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered.

When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and the IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region.

Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that would produce an operational error if the configuration remained when tracing is re-enabled with IA32 RTIT STATUS. Stopped cleared.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt (PMI) when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that writes to the next region will occur by the time the interrupt is taken.

The following steps should be taken to configure this interrupt:

- 1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in x2APIC mode). See *Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B* for more details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by software.
- 2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.
- 3. Set the interrupt flag by executing STI.
- 4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus, TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distinguished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH). Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H (IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.

Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The IA32_DEBUGCTL.Freeze_Perfmon_on_PMI setting will be applied on ToPA PMI just as on other PMIs, and hence Perfmon counters are frozen.

Assuming the PMI handler wishes to read any buffered packets for persistent output, software should first disable packet generation by clearing TraceEn. This ensures that all buffered packets are written to memory and avoids tracing of the PMI handler. The configuration MSRs can then be used to determine where tracing has stopped. If packet generation is disabled by the handler, it should then be manually re-enabled before the IRET if continued tracing is desired.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.

Due to PMI skid, it is possible, in rare cases, that the wrap will have occurred before the PMI is delivered. Software can avoid this by setting the STOP bit in the ToPA entry (see Table 36-3); this will disable tracing once the region is filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to fill and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS. Stopped indication before tracing can resume.

ToPA Errors

When a malformed ToPA entry is found, an **operation error** results (see Section 36.3.9). A malformed entry can be any of the following:

1. ToPA entry reserved bit violation.

This describes cases where a bit marked as reserved in Section 36.2.4.2 above is set to 1.

2. ToPA alignment violation.

This includes cases where illegal ToPA entry base address bits are set to 1:

- a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.
- b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12] not equal to 0).
- c. ToPA entry base address sets upper physical address bits not supported by the processor.

3. Illegal ToPA Output Offset (if IA32_RTIT_STATUS.Stopped=0).

IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output region size.

4. ToPA rules violations.

These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with illegal field combinations. They include the following:

- a. Setting the STOP or INT bit on an entry with END=1.
- b. Setting the END bit in entry 0 of a ToPA table.
- c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:
 - i) ToPA table entry 1 with END=0.
 - ii) ToPA table entry 1 with base address not matching the table base.

In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the problematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet bytes that are internally buffered when the error is detected may be lost.

Note that operational errors may also be signaled due to attempts to access restricted memory. See Section 36.2.4.4 for details.

A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application buffers, see Section 36.5.

36.2.4.3 Trace Transport Subsystem

When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration options should refer to the specific platform documentation. The FabricEn bit is available to be set if CPUID(EAX=20H,ECX=0):EBX[bit 3] = 1.

36.2.4.4 Restricted Memory Access

Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all memory accesses on behalf of packet output are checked against the SMRR (and PRMRR, if supported in the platform, see *Intel® Software Guard Extensions Programming Reference*) regions. If there is any overlap with these regions, trace data collection will not function properly. Exact processor behavior is implementation-dependent; Table 36-4 summarizes several scenarios.

··-·-·-·-·-·-·-·-·-·-·-·····-·-······					
Scenario	Description				
ToPA output region overlaps with SMRR/PRMRR	Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read from that restricted region will return all 1s. The processor also may signal an error (Section 36.3.9) and disable tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output region is larger than the restricted memory region).				
ToPA table overlaps with SMRR	The processor will signal an error (Section 36.3.9) and disable tracing when the ToPA read pointer (IA32_RTIT_OUTPUT_BASE + (proc_trace_table_offset « 3)) enters the restricted region.				

Table 36-4 Behavior on Restricted Memory Access

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the IA32_APIC_BASE MSR. For details about the APIC, refer to Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of the SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries internally, after checking them against restricted memory ranges. Once cached, the entries will not be checked again, meaning one could potentially route packet output to a newly restricted region. Software can ensure that any cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

36.2.5 Enabling and Configuration MSRs

36.2.5.1 General Considerations

Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are detailed below. Some notes on the configuration MSR behavior:

- If Intel Processor Trace is not supported by the processor (see Section 36.3.1), RDMSR or WRMSR of the IA32_RTIT_* MSRs will cause #GP.
- A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP fault. Packet generation must be disabled before the configuration MSRs can be changed.
 - Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
- All configuration MSRs for Intel PT are duplicated per logical processor
- For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings marked reserved, will cause a #GP fault.
- All configuration MSRs for Intel PT are cleared on a cold RESET.
 - If CPUID.(EAX=14H, ECX=0):EBX.WRSTPRSV[bit 3] = 1, only the TraceEn bit is cleared on warm RESET; though this may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of the trace configuration MSRs are preserved on warm RESET.
- The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to these registers, using VM-exit or VM-entry MSR load list to these MSRs, XRSTORS with requested feature bit map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to IA32_RTIT_CTL.TraceEn by XSAVES (Section 36.3.5.2).

36.2.5.2 IA32_RTIT_CTL MSR

IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions are listed in Table 36-5.

Table 36-5 IA32 RTIT CTL MSR

Position	Bit Name	At Reset	Bit Description
0	TraceEn	0	If 1, enables tracing; else tracing is disabled if 0
			When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers. A further store, fence, or architecturally serializing instruction may be required to ensure that packet data can be observed at the trace endpoint. See Section 36.2.5.3 for details of enabling and disabling packet generation.
			Note that the processor will clear this bit on #SMI (Section) and warm reset. Other MSR bits of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these events.
1	CYCEn	0	0: Disables CYC Packet (see Section 36.4.2.14)
			1: Enables CYC Packet.
			This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.
2	OS	0	0: Packet generation is disabled when CPL = 0.
			1: Packet generation may be enabled when CPL = 0.
3	User	0	0: Packet generation is disabled when CPL > 0.
			1: Packet generation may be enabled when CPL > 0.
5:4	Reserved	0	Must be 0.
6	FabricEn	0	0: Trace output is directed to the memory subsystem, mechanism depends on IA32_RTIT_CTL.ToPA.
			1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored. This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.
7	CR3Filter	0	0: Disables CR3 filtering.
			1: Enables CR3 filtering.

Table 36-5 IA32_RTIT_CTL MSR

= 1 and IA32_RTIT_CTL.FabricEn=0. 1: ToPA output scheme enabled (see Section 36.2.4.2) if CPUID.(EAX=14H, ECX=0):ECX.TOPA bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0. Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0. WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H, ECX=0):ECX.TOPA[bit 0] = 0. 9 MTCEn 0 0: Disables MTC Packet (see Section 36.4.2.16). 1: Enables MTC Packet.	Position	Bit Name	At Reset	Bit Description
bit 0] = 1, and IA32_RTIT_CTL FabricEn=0. Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0. WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H, ECX=0):ECX.TOPA[bit 0] = 0. 9 MTCEn	8	ToPA	0	0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 1 and IA32_RTIT_CTL.FabricEn=0.
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0. WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H, ECX=0):ECX.TOPA[bit 0] = 0. 9 MTCEN 0 0: Disables MTC Packet (see Section 36.4.2.16). 1: Enables MTC Packet. This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 10 TSCEN 0 0: Disable TSC packets. 1: Enable TSC packets. 1: Enable TSC packets. 1: Enable TSC packets (see Section 36.4.2.11). 11 DisRETC 0 0: Enable RET compression. 1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 0: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC), MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1), The following Encodings are defined: 0: 0.1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				1: ToPA output scheme enabled (see Section 36.2.4.2) if CPUID.(EAX=14H, ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.
BCX=0):ECX.TOPA[bit 0] = 0.				
1: Enables MTC Packet. This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 10 TSCEn 0 0: Disable TSC packets. 1: Enable TSC packets (see Section 36.4.2.11). 11 DisRETC 0 0: Enable RET compression. 1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 0: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0: 0: 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				
This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 10 TSCEN 0 0: Disable TSC packets. 1: Enable TSC packets (see Section 36.4.2.11). 11 DisRETC 0 0: Enable RET compression. 1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 0: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 Cyc Dacket threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0; 1; 1, 2; 2, 3; 4, 4; 8, 5; 16, 6; 32, 7; 64, 8; 128, 9; 256, 10; 512, 11; 1024, 12; 2048, 13; 4096, 14; 8192, 15; 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	9	MTCEn	0	0: Disables MTC Packet (see Section 36.4.2.16).
10 TSCEn 0 D: Disable TSC packets. 1: Enable TSC packets (see Section 36.4.2.11). 11 DisRETC 0 O: Enable RET compression. 1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 O: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP,PGE, TIP,PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				1: Enables MTC Packet.
1: Enable TSC packets (see Section 36.4.2.11). 11 DisRETC 0 0: Enable RET compression. 1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 0: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP,PGE, TIP,PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(6), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 19 CycThresh 0 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0.
11 DisRETC 0 0: Enable RET compression. 1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 19 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2 (CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	10	TSCEn	0	0: Disable TSC packets.
1: Disable RET compression (see Section 36.2.1.2). 12 Reserved 0 Must be 0. 13 BranchEn 0 Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(6), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2 ^(CycThresh-1) . The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				1: Enable TSC packets (see Section 36.4.2.11).
12 Reserved 0 Must be 0. 13 BranchEn 0 D: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	11	DisRETC	0	0: Enable RET compression.
13 BranchEn 0 0: Disable COFI-based packets. 1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				1: Disable RET compression (see Section 36.2.1.2).
1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	12	Reserved	0	Must be 0.
Section 36.2.4 for details on BranchEn). 17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	13	BranchEn	0	0: Disable COFI-based packets.
be sent each time the selected CTC bit toggles. The following Encodings are defined: 0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3), 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7), 8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved O Must be 0. CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2 (CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				
8: CTC(a), 9: CTC(b), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15) Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	17:14	MTCFreq	0	Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will be sent each time the selected CTC bit toggles. The following Encodings are defined:
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0. 18 Reserved 0 Must be 0. 22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				8: CTC(8), 9: CTC(9), 10: CTČ(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15: CTC(15)
22:19 CycThresh CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2 ^(CycThresh-1) . The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if				36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then N=0, otherwise N is defined as 2 ^(CycThresh-1) . The following Encodings are defined: 0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64, 8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	18	Reserved	0	Must be 0.
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if	22:19	CycThresh	0	eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then
				8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384 Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
23 Reserved 0 Must be 0.	23	Reserved	0	Must be 0.

Table 36-5 IA32_RTIT_CTL MSR

Position	Bit Name	At Reset	Bit Description		
27:24	PSBFreq	0	Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel PT packet bytes output, so this field allows the user to determine the increment of IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that PSB insertion is not precise, but the average output bytes per PSB should approximate the SW selected period. The following Encodings are defined: 0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K, 8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M Software must use CPUID to query the supported encodings in the processor, see Section 36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if		
31:28	Reserved	0	CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0. Must be 0.		
35:32	ADDRO_CFG	0	Configures the base/limit register pair IA32_RTIT_ADDRO_A/B based on the following encodings:		
			0: ADDRO range unused. 1: The [IA32_RTIT_ADDRO_AIA32_RTIT_ADDRO_B] range defines a FilterEn range. FilterEn will only be set when the IP is within this range, though other FilterEn ranges can additionally be used. See Section 36.2.2.3 for details on IP filtering.		
			2: The [IA32_RTIT_ADDRO_AIA32_RTIT_ADDRO_B] range defines a TraceStop range. TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.		
			315: Reserved (#GP).		
39:36	ADDR1_CFG	0	This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] >= 0. Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following encodings: 0: ADDR1 range unused. 1: The [IA32_RTIT_ADDR1_AIA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn will only be set when the IP is within this range, though other FilterEn ranges can additionally		
			be used. See Section 36.2.2.3 for details on IP filtering. 2: The [IA32_RTIT_ADDR1_AIA32_RTIT_ADDR1_B] range defines a TraceStop range. TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details on TraceStop. 315: Reserved (#GP). This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.		
43:40	ADDR2_CFG	0	Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following encodings: 0: ADDR2 range unused. 1: The [IA32_RTIT_ADDR2_AIA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn will only be set when the IP is within this range, though other FilterEn ranges can additionally be used. See Section 36.2.2.3 for details on IP filtering. 2: The [IA32_RTIT_ADDR2_AIA32_RTIT_ADDR2_B] range defines a TraceStop range. TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details on TraceStop. 315: Reserved (#GP).		
			This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.		

Table 36-5 IA32_RTIT_CTL MSR

Position	Bit Name	At Reset	Bit Description
47:44	ADDR3_CFG	0	Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following encodings:
			0: ADDR3 range unused.
			1: The [IA32_RTIT_ADDR3_AIA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn will only be set when the IP is within this range, though other FilterEn ranges can additionally be used. See Section 36.2.2.3 for details on IP filtering.
			2: The [IA32_RTIT_ADDR3_AIA32_RTIT_ADDR3_B] range defines a TraceStop range. TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details on TraceStop.
			315: Reserved (#GP).
			This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.
59:48	Reserved	0	Reserved only for future trace content enables, or address filtering configuration enables. Must be 0.
63:60	Reserved	0	Must be 0.

36.2.5.3 Enabling and Disabling Packet Generation with TraceEn

When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated. These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A full PSB+ (see Section 36.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be generated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see Section 36.4.2).

In addition to the packets discussed above, if and when PacketEn (Section 36.2.3.1) transitions from 0 to 1 (which may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 36.4.2.3) will be generated.

When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this reason, software should disable packet generation before making modifications to the ToPA tables (or changing the configuration of restricted memory regions). See Section 36.7 for more details of packets that may be generated with modifications to TraceEn.

Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure that the packet data is globally observed. No special packets are generated by disabling packet generation, though a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32 RTIT CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless the same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause a #GP, even if TraceEn remains set.

36.2.5.4 IA32_RTIT_STATUS MSR

The IA32_RTIT_STATUS MSR is readable and writable by software, but some bits (ContextEn, TriggerEn) are read-only and cannot be directly modified. The WRMSR instruction ignores these bits in the source operand (attempts to modify these bits are ignored and do not cause WRMSR to fault).

This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with WRMSR).

Table 36-6 IA32_RTIT_STATUS MSR

Position	Bit Name	At Reset	Bit Description		
0	FilterEn	0	This bit is written by the processor, and indicates that tracing is allowed for the current IP, see Section 36.2.3.5. Writes are ignored.		
1	ContextEn	0	The processor sets this bit to indicate that tracing is allowed for the current context. See Section 36.2.3.3. Writes are ignored.		
2	TriggerEn	0	The processor sets this bit to indicate that tracing is enabled. See Section 36.2.3.2. Writes are ignored.		
3	Reserved	0	Must be 0.		
4	Error	0	The processor sets this bit to indicate that an operational error has been encountered. When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see "ToPA Errors" in Section 36.2.4.2.		
			When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it. It is not recommended that software ever set this bit, except in cases where it is restoring a prior saved state.		
5	Stopped	0	The processor sets this bit to indicate that a ToPA Stop condition has been encountered. When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see "ToPA STOP" in Section 36.2.4.2.		
			When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it. It is not recommended that software ever set this bit, except in cases where it is restoring a prior saved state.		
31:6	Reserved	0	Must be 0.		
48:32	PacketByteCnt	0	This field is written by the processor, and holds a count of packet bytes that have been sent out. The processor also uses this field to determine when the next PSB packet should be inserted. Note that the processor may clear or modify this field at any time while IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.		
			See Section 36.4.2.17 for details.		
63:49	Reserved	0	Must be 0.		

36.2.5.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs

The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding ADDRn_CFG fields in IA32_RTIT_CTL (see Section 36.2.5.2). The number of these register pairs is enumerated by CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].

- Processors that enumerate support for 1 range support:
 - IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
- Processors that enumerate support for 2 ranges support:
 - IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
- Processors that enumerate support for 3 ranges support:
 - IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

IA32 RTIT ADDR2 A, IA32 RTIT ADDR2 B

• Processors that enumerate support for 4 ranges support:

```
IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B
```

Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is properly sign-extended, otherwise a #GP fault will result.

36.2.5.6 IA32_RTIT_CR3_MATCH MSR

The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of this register, see Section 36.2.2.2.

This MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP). IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR causes a #GP.

36.2.5.7 IA32_RTIT_OUTPUT_BASE MSR

This MSR is used to configure the trace output destination, when output is directed to memory (IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address width (MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].

When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled, and those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).

Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when IA32 RTIT CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 36-7 IA32 RTIT OUTPUT BASE MSR

Position	Bit Name	At Reset	Bit Description
6:0	Reserved	0	Must be 0.
MAXPHYADDR-1:7	BasePhysAddr	0	The base physical address. How this address is used depends on the value of IA32_RTIT_CTL.ToPA:
			0: This is the base physical address of a single, contiguous physical output region. This could be mapped to DRAM or to MMIO, depending on the value.
			The base address should be aligned with the size of the region, such that none of the 1s in the mask value(Section 36.2.5.8) overlap with 1s in the base address. If the base is not aligned, an operational error will result (see Section 36.3.9).
			1: The base physical address of the current ToPA table. The address must be 4K aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but an operational error will be signaled once TraceEn is set. See "ToPA Errors" in Section 36.2.4.2 as well as Section 36.3.9.
63:MAXPHYADDR	Reserved	0	Must be 0.

36.2.5.8 IA32 RTIT OUTPUT MASK PTRS MSR

This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See Section 36.2.4.2 for details.

The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).

Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 36-8 IA32 RTIT OUTPUT MASK PTRS MSR

Position	Bit Name	At Reset	Bit Description	
6:0	LowerMask	7FH	Forced to 1, writes are ignored.	
31:7	MaskOrTableO ffset	0	The use of this field depends on the value of IA32_RTIT_CTL.ToPA: 0: This field holds bits 31:7 of the mask value for the single, contiguous physical output region. The size of this field indicates that regions can be of size 128B up to 4GB. This value (combined with the lower 7 bits, which are reserved to 1) will be ANDed with the OutputOffset field to determine the next write address. All 1s in this field should be consecutive and starting at bit 7, otherwise the region will not be contiguous, and an operational error (Section 36.3.9) will be signaled when TraceEn is set. 1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA table entry, which itself is a pointer to the current output region. In this scenario, the lower 7 reserved bits are ignored. This field supports tables up to 256 MBytes in size.	
63:32	OutputOffset	0	The use of this field depends on the value of IA32_RTIT_CTL.ToPA: 0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region. This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address at which the next byte of packet output data will be written. This value must be less than or equal to the MaskOrTableOffset field, otherwise an operational error (Section 36.3.9) will be signaled when TraceEn is set. 1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This value will be added to the output region base field, found in the current ToPA table entry, to form the physical address at which the next byte of trace output data will be written. This value must be less than the ToPA entry size, otherwise an operational error (Section 36.3.9) will be signaled when TraceEn is set.	

36.2.6 Interaction of Intel® Processor Trace and Other Processor Features

36.2.6.1 Intel® Transactional Synchronization Extensions (Intel® TSX)

The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock elision (HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the trace output. Specifically, packets are generated as instructions complete, even for instructions in a transactional region that is later aborted. For this reason, debugging software will need indication of the beginning and end of a transactional region; this will allow software to understand when instructions are part of a transactional region and whether that region has been committed.

To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:

- InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
- TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.

If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 36-9 for details.

TSX Event	Instruction	Packets
Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed transactionally).		MODE(TXAbort=0, InTX=1), FUP(CurrentIP).
Transaction Commit	Either XEND or XRELEASE lock, if transactional execution ends. This happens only on the outermost commit.	MODE(TXAbort=0, InTX=0), FUP(CurrentIP)
Transaction Abort	XABORT or other transactional abort.	MODE(TXAbort=1, InTX=0), FUP(CurrentlP), TIP(TargetlP)
Other	One of the following: Nested XBEGIN or XACQUIRE lock. An outer XACQUIRE lock that doesn't begin a transaction	None. No change to TSX mode bits for these cases.

Table 36-9 TSX Packet Scenarios

The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to be executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.

Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

TSX and IP Filtering

A complication with tracking transactions is handling transactions that start or end outside of the tracing region. Transactions can't span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts. But a transaction can start within the IP filter region and end outside it.

To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will indicate the current transaction status.

System Management Mode (SMM)

(InTX not set).

Non-outermost XEND or XRELEASE lock.

SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace SMM code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace collection. Additionally, packet output from tracing non-SMM code cannot be written into memory space that is either protected by SMRR or used by the SMM handler.

SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of IA32_RTIT_CTL.TraceEn into SMRAM and then clears it, thereby disabling packet generation.

The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

- 1. All internally buffered packet data is flushed before entering SMM (see Section 36.2.5.2).
- 2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-evaluated, based on the values of CPL, CR3, etc., established by RSM.

Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing was disabled or re-enabled. See Table 36.7 for more information about packets entering and leaving SMM.

Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled before the CR3 change; with RSM TraceEn is restored after CR3 is written.

TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that restrict use of Intel PT with LBRs (see Section 36.3.1.2), any RSM that results in enabling of both will cause a shutdown.

Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 36.6.

36.2.6.2 Virtual-Machine Extensions (VMX)

Initial implementations of Intel Processor Trace do not support tracing in VMX operation. This is indicated by IA32_VMX_MISC[bit 14] returns 0. Execution of the VMXON instruction clears TraceEn. An attempt to set IA32_RTIT_CTL.TraceEn using WRMSR in VMX operation causes a general-protection fault (#GP).

For processors that Intel Processor Trace supports tracing in VMX operation, IA32_VMX_MISC[bit 14] reports 1 if TraceEn can be set post-VMXON. Details of tracing post-VMXON is described in Section 36.5.

36.2.6.3 Intel Software Guard Extensions (SGX)

SGX provides an application with ability to instantiate a protective container (an enclave) with confidentiality and integrity (see *Intel® Software Guard Extensions Programming Reference*). On a processor with both Intel PT and SGX enabled, when executing code within a production enclave, no control flow packets are produced by Intel PT. Enclave entry will clear ContextEn, thereby blocking control flow packet generation. A TIP.PGD packet will be generated if PacketEn=1 at the time of the entry.

Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be generated to indicate that tracing is resumed.

During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC, or CBR can still be generated. No IPs or other architectural state will be exposed.

For packet generation examples on enclave entry or exit, see Section 36.7.

Debug Enclaves

SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see *Intel® Software Guard Extensions Programming Reference*. In a debug enclave, Intel PT continues to function normally. Specifically, ContextEn is not impacted by enclave entry or exit. Hence the generation of ContextEn-dependent packets within a debug enclave is allowed.

It should be noted, however, that even when tracing a debug enclave, trace packet output cannot be directed to the Processor Reserved Memory (i.e. physical memory configured by the PRMRR MSRs defining the range of PRM, see *Intel® Software Guard Extensions Programming Reference*). This will produce an operational error, and tracing will be disabled.

36.2.6.4 SENTER/ENTERACCS and ACM

GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruction complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush internally buffered packets. Some packets may be dropped.

When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup. TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value will be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

36.2.6.5 Intel® Memory Protection Extensions (Intel® MPX)

Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets that indicate the source and destination IPs.

36.3 CONFIGURATION AND PROGRAMMING GUIDELINE

36.3.1 Detection of Intel Processor Trace and Capability Enumeration

Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID function 14H is dedicated to enumerate the resource and capability of processors that report CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined variation in capabilities. Table 36-10 describes details of the enumerable capabilities that software must use across generations of processors that support Intel Processor Trace.

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0)		Name	Description Behavior
Register	Bits		
EAX	31:0	Maximum valid sub-leaf Index	Specifies the index of the maximum valid sub-leaf for this CPUID leaf.
EBX	0	CR3 Filtering Support	1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 36.2.5. 0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any access to IA32_RTIT_CR3_MATCH, will #GP fault.
	1	Configurable PSB and Cycle- Accurate Mode Supported	1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to select the preferred PSB frequency (see below for allowed values). (b) IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and will be incremented by the processor when tracing to indicate progress towards the next PSB. If trace packet generation is enabled by setting TraceEn, a PSB will only be generated if PacketByteCnt=0. (c) IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode. See Section 36.2.5.
			O: (a) Any attempt to set IA32_RTIT_CTL.PSBFreq, to set IA32_RTIT_CTL.CYCEn, or write a non-zero value to IA32_RTIT_STATUS.PacketByteCnt any access to IA32_RTIT_CR3_MATCH, will #GP fault. (b) If trace packet generation is enabled by setting TraceEn, a PSB is always generated. (c) Any attempt to set IA32_RTIT_CTL.CYCEn will #GP fault.

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0)		Name	Description Behavior
Register	Bits		
	2	IP Filtering and TraceStop supported, and Preserve Intel PT MSRs across warm reset	1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to configure the corresponding address range MSRs for IP Filtering or IP TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2 inclusive. The number of ADDRn_CFG fields is reported by CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to configure address ranges for IP filtering or IP TraceStop. (c) On warm reset, all Intel PT MSRs will retain their pre-reset values, though IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in Section 36.2.5.
			O: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B, will #GP fault. (c) On warm reset, all Intel PT MSRs will be cleared.
	3	MTC Supported	1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be generated. See Section 36.2.5.
			0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq to a non-zero value will #GP fault.
	31:4	Reserved	
rcy.	0	ToPA Output Supported	1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output scheme (Section 36.2.4.2) IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
ECX			0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs will #GP fault.
	1	ToPA Tables Allow Multiple Output Entries	1: ToPA tables can hold any number of output entries, up to the maximum allowed by the MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
			0: ToPA tables can hold only one output entry, which must be followed by an END=1 entry which points back to the base of the table.
			Further, ToPA PMIs will be delivered before the region is filled. See ToPA PMI in Section 36.2.4.2.
			If there is more than one output entry before the END entry, or if the END entry has the wrong base address, an operational error will be signaled (see "ToPA Errors" in Section 36.2.4.2).
	2	Single-Range Output Supported	1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is supported.
			0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs will #GP fault.
	3	Output to Trace Transport	1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.
		Subsystem Supported	0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to IA32_RTIT_CTL.FabricEn will #GP fault.
	30:4	Reserved	

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0)		Name	Description Behavior
Register	Bits		
	31	IP Payloads are LIP	1: Generated packets which contain IP payloads have LIP values, which include the CS base component.
			0: Generated packets which contain IP payloads have RIP values, which are the offset from CS base.
EDX	31:0	Reserved	

If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are described in the sub-leaves of CPUID leaf 14H.

Table 36-11 CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1)		Name	Description Behavior
Register	Bits		
EAX	2:0	Number of Address Ranges	A non-zero value specifies the number ADDRn_CFG field supported in IA32_RTIT_CTL and the number of register pair IA32_RTIT_ADDRn_A/IA32_RTIT_ADDRn_B supported for IP filtering and IP TraceStop.
	15:3	Reserved	
	31:16	Bitmap of supported MTC Period Encodings	The non-zero bit positions indicate the map of supported encoding values for the IA32_RTIT_CTL.MTCFreq field. This applies only if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 1 (MTC Packet generation is supported), otherwise the MTCFreq field is reserved to 0.
			Each bit position in this field represents 1 encoding value in the 4-bit MTCFreq field (ie, bit 0 is associated with encoding value 0). For each bit:
			1: MTCFreq can be assigned the associated encoding value.
			0: MTCFreq cannot be assigned to the associated encoding value. A write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause #GP fault.
EBX	15:0	Bitmap of supported Cycle Threshold values	The non-zero bit positions indicate the map of supported encoding for the IA32_RTIT_CTL.CycThresh field. This applies only if CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Cycle-Accurate Mode is Supported), otherwise the CycThresh field is reserved to 0. See Section 36.2.5.
			Each bit position in this field represents 1 encoding value in the 4-bit CycThresh field (ie, bit 0 is associated with encoding value 0). For each bit:
			1: CycThresh can be assigned the associated encoding value.
			0: CycThresh cannot be assigned to the associated encoding value. A write to CycThresh with unsupported encoding will cause #GP fault.

Table 36-11 CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1)		Name	Description Behavior
Register	Bits		
	31:16	Bitmap of supported Configurable PSB Frequency encoding	The non-zero bit positions indicate the map of supported encoding for the IA32_RTIT_CTL.PSBFreq field. This applies only if CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Configurable PSB is supported), otherwise the PSBFreq field is reserved to 0. See Section 36.2.5.
			Each bit position in this field represents 1 encoding value in the 4-bit PSBFreq field (ie, bit 0 is associated with encoding value 0). For each bit:
			1: PSBFreq can be assigned the associated encoding value.
			0: PSBFreq cannot be assigned to the associated encoding value. A write to PSBFreq with unsupported encoding will cause #GP fault.
ECX	31:0	Reserved	
EDX	31:0	Reserved	

36.3.1.1 Packet Decoding of RIP versus LIP

FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an IP payload. On some processor generations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the offset and the CS base address (Note that in real mode, the CS base address is the value of CS <<4, while in protected mode the CS base address is the base linear address of the segment indicated by the CS register.). Which IP type is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 36-10).

For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause problems when attempting to link the trace with the associated binaries.

Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence on those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing behavior if the same trace configuration setting is run on processors reporting different IP types, i.e. CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

36.3.1.2 Model Specific Capability Restrictions

Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM, LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will resume. Further, reads of these registers will return 0, and writes will be dropped.

The list of MSRs whose updates/accesses are restricted follows.

- MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
- MSR_LER_FROM_IP, MSR_LER_TO_IP
- MSR LBR SELECT

For processor with CPUID DisplayFamily_DisplayModel signature of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

. . .

36.3.2.1 Enabling Packet Generation

When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other Intel PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault (#GP) if TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears any values that may have persisted from prior trace packet collection contexts. See Section 36.2.5.2 for details of packets generated by setting TraceEn to 1.

If setting TraceEn to 1 causes an operational error (see Section 36.3.9), there may be a delay after the WRMSR completes before the error is signaled in the IA32_RTIT_STATUS MSR.

While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet generation is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.

36.3.2.2 Disabling Packet Generation

After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR (Section 36.2.5.4):

- If the Error bit is set, an operational error was encountered, and the trace is most likely compromised. Software should check the source of the error (by examining the output MSR values), correct the source of the problem, and then attempt to gather the trace again. For details on operational errors, see Section 36.3.9. Software should clear IA32 RTIT STATUS. Error before re-enabling packet generation.
- If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 36.2.2.3) or the ToPA Stop condition (see "ToPA STOP" in Section 36.2.4.2) before packet generation was disabled.

36.3.3 Flushing Trace Output

Packets are first buffered internally and then written out asynchronously. To collect packet output for post-processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see "Disabling Packet Generation" in Section 36.2.5.2).

When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor issues an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next store, or serializing operation. A subsequent read from the same logical processor will see the flushed trace data, while a read from another logical processor should be preceded by a store, fence, or architecturally serializing operation on the tracing logical processor.

When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended. While TraceEn is set, these MSRs may hold stale values.

36.3.4 Warm Reset

The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in IA32_RTIT_STATUS).

36.3.5 Context Switch Consideration

To facilitate construction of instruction execution traces at the granularity of a software process or thread context, software can save and restore the states of the trace configuration MSRs across the process or thread context switch boundary. The principle is the same as saving and restoring the typical architectural processor states across context switches.

36.3.5.1 Manual Trace Configuration Context Switch

The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software must clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for saving trace configuration context manually follows:

- 1. RDMSR IA32_RTIT_CTL, save value to memory.
- 2. WRMSR IA32 RTIT CTL with saved value from RDMSR above and TraceEn cleared.
- 3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed values to memory.

When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

- 1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with WRMSR.
- 2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

36.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS

On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be saved using XSAVES and restored by XRSTORS, in conjunction the bit field associated with supervisory state component in IA32_XSS. See Chapter 13, "Managing State Using the XSAVE Feature Set" of $Intel^{@}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 1.

CPUID leaf 0DH enumerates the capabilities of the XSAVE feature set. Within CPUID leaf 0DH, the sub-functions related to supervisor state management of the trace configuration MSRs are shown in Table 36-12 and Table 36-13.

CPUID.(EAX=0DH,ECX=1)		Name	Description Behavior			
Register	Bit(s)					
ECX	8	Supervisory Trace Configuration State support in IA32_XSS	If 1, IA32_XSS[bit 8] is supported for supervisor state save/restor using XSAVES/XRSTORS for trace configuration MSR states. Otherwise, IA32_XSS[bit 8] is reserved.			
EBX	31:0	Total size of the XSAVE area	Total size of the XSAVE area containing all states enabled by XCR0 IA32_XSS.			

Table 36-12 CPUID Leaf ODH, sub-leaf 1H Enumeration of XSAVE Feature Set

Table 36-13 CPUID Leaf ODH, sub-leaf 8H Enumeration of XSAVE Feature Set

CPUID.(EAX=0DH,ECX=8)		Name	Description Behavior
Register Bit(s)			
EAX	31:0	Size of Trace Configuration State Save Area	The size in bytes of this component's save area in the XSAVE area (from the offset specified in EBX).

Table 36-13 CPUID Leaf ODH, sub-leaf 8H Enumeration of XSAVE Feature Set

CPUID.(EAX=0DH,ECX=8)		Name	Description Behavior				
Register	Bit(s)						
EBX	31:0 Offset of Trace Configuration State Save Area		The offset in bytes of this component's save area from the beginning the XSAVE area.				
ECX	0	Valid	If 1, sub leaf index is valid and maps to IA32_XSS[bit 8]. Otherwise, sub leaf index is invalid.				

The layout of the trace configuration component state in the XSAVE area is shown in Table 36-14.

Table 36-14 Memory Layout of the Trace Configuration State Component

Offset within Component Area	Field	Offset within Component Area	Field	
OH	IA32_RTIT_CTL	08H	IA32_RTIT_OUTPUT_BASE	
10H	IA32_RTIT_OUTPUT_MASK_PTRS	18H	IA32_RTIT_STATUS	
20H	IA32_RTIT_CR3_MATCH	28H	IA32_RTIT_ADDRO_A	
30H	IA32_RTIT_ADDRO_B	38H	IA32_RTIT_ADDR1_A	
40H	IA32_RTIT_ADDR1_B	48H	IA32_RTIT_ADDR2_A	
50H	IA32_RTIT_ADDR2_B	58H	IA32_RTIT_ADDR3_A	
60H	IA32_RTIT_ADDR3_B	68H-End	Reserved	

The IA32_XSS MSR is zero coming out of RESET. Once IA32_XSS[bit 8] is set, system software operating at CPL= 0 can use XSAVES/XRSTORS with the appropriate requested-feature bitmap (RFBM) to manage supervisor state components in the XSAVE map. See Chapter 13, "Managing State Using the XSAVE Feature Set" of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1.

36.3.6 Cycle-Accurate Mode

Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 36.4.2.14) that provide low-level information in the processor core clock domain. This cycle counter data in CYC packets can be used to compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.

To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recommended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last CYC packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC. The CYC-eligible packets are:

• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC

TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount of time spent while tracing is inactive can be inferred from the difference in time between that expected based on the CYC value, and the actual time indicated by the TSC.

Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of the number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-

architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except that they will be sent before the wrap occurs. An illustration is given below.

Example 36-1 An Illustrative CYC Packet Example

Time (cycles)	Instruction Snapshot	Generated Packets	Comment				
Х	call %eax	CYC(?), TIP	?Elapsed cycles from the previous CYC unknown				
x + 2	call %ebx	CYC(2), TIP	1 byte CYC packet; 2 cycles elapsed from the previous CTC				
x + 8	jnz Foo (not taken)	CYC(6)	1 byte CYC packet				
x + 9	ret (compressed)						
x + 12	jnz Bar (taken)						
x + 16	ret (uncompressed)	TNT, CYC(8), TIP	1 byte CYC packet				
x + 4111		CYC(4095)	2 byte CYC packet				
x + 12305		CYC(8194)	3 byte CYC packet				
x + 16332	mov cr3, %ebx	CYC(4027), PIP	2 byte CYC packet				

36.3.6.1 Cycle Counter

The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter is implementation specific.

The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point where clocks are disabled, and resume counting once they are re-enabled.

36.3.6.2 Cycle Packet Semantics

Cycle-accurate mode adheres to the following protocol:

- All packets that precede a CYC packet represent instructions or events that took place before the CYC time.
- All packets that follow a CYC packet represent instructions or events that took place at the same time as, or after, the CYC time.
- The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took place at the same time as the CYC time.

These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly stream. Most packets represent a single instruction or event, and hence the CYC packet that precedes each of those packets represents the retirement time of that instruction or event. In the case of TNT packets, up to 6 conditional branches and/or compressed RETs may be contained in the packet. In this case, the preceding CYC packet provides the retirement time of the first branch in the packet. It is possible that multiple branches retired in the same cycle as that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC packet could be generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would precede both the MTC and the TNT, and apply to both.

Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After any such scenario, a CYC packet followed by TSC packet will be sent. See Section 36.8.3.2 to understand how to interpret the payload values

Multi-packet Instructions or Events

Example 36-2 An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles)	Instruction Snapshot	Generated Packets
х	jnz Foo (not taken)	CYC(?)
x + 2	ret (compressed)	
x + 8	jnz Bar (taken)	
x + 9	jmp %eax	TNT, CYC(9), TIP
x + 12	jnz Bar (not taken)	CYC(3)
x + 32	int3 (task gate)	TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP

36.3.6.3 Cycle Thresholds

Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the expense of precision. This is done by utilizing a cycle threshold (see Section 36.2.5.2).

IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle in which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associated number of cycles have passed since the last CYC packet before sending another. CPUID provides the threshold options for CycThresh, see Section 36.3.1.

Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16 cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be generated before a CYC will be inserted. Table 36-15 illustrates the threshold behavior.

Threshold Time (cycles) Instruction Snapshot 0 16 32 64 imp %eax CYC, TIP CYC. TIP CYC, TIP CYC, TIP x + 9TIP TIP TIP call %ebx CYC, TIP x + 15call %ecx CYC, TIP TIP TIP TIP x + 30 CYC, TIP CYC, TIP TIP TIP jmp %edx x + 38mov cr3, %eax CYC, PIP PIP CYC, PIP PIP x + 46jmp [%eax] CYC, TIP CYC, TIP TIP TIP x + 64call %edx CYC, TIP CYC, TIP TIP CYC,TIP TIP x + 71imp %edx CYC, TIP TIP CYC.TIP

Table 36-15 An Illustrative CYC Packet Example

36.3.7 Decoder Synchronization (PSB+)

The PSB packet (Section 36.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern in the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination can result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace log properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some

timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack, compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any compression state will be reset.

When a PSB packet is generated, it is followed by a PSBEND packet (Section 36.4.2.18). One or more packets may be generated in between those two packets, and these inform the decoder of the current state of the processor. These packets, known collectively as PSB+, should be interpreted as "status only", since they do not imply any change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.

PSB+ can include:

- Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1.
- Timestamp-MTC Align (TMA), if IA32 RTIT CTL.TSCEn=1 && IA32 RTIT CTL.MTCEn=1.
- Paging Info Packet (PIP), if ContextEn=1 and IA32 RTIT CTL.OS=1.
 - Includes non-Root (NR) field, if the "Suppress VMX Indications in Guest Traces" VMCS execution control is cleared.
- VMCS, if post-VMXON and the "Suppress VMX Indications in Guest Traces" VMCS execution control is cleared.
- Core Bus Ratio (CBR).
- MODE.TSX, if ContextEn=1 and BranchEn = 1.
- MODE.Exec, if PacketEn=1.
- Flow Update Packet (FUP), if PacketEn=1.

PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets within PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and their meanings are the same as outside PSB+.

Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason, the OVF packet should also be viewed as terminating PSB+.

36.3.8 Internal Buffer Overflow

In the rare circumstances when new packets need to be generated but the processor's dedicated internal buffers are all full, an "internal buffer overflow" occurs. On such an overflow packet generation ceases (as packets would need to enter the processor's internal buffer) until the overflow resolves. Once resolved, packet generation resumes.

When the buffer overflow is cleared, an OVF packet (Section 36.4.2.16) is generated, and the processor ensures that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that were lost.

If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while PacketEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be generated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon which tracing resumes after the overflow is cleared. Between the OVF and following FUP or TIP.PGE, there may be timing packets. If the overflow resolves while PacketEn=0, other packets that are not dependent on PacketEn may come before the TIP.PGE.

36.3.8.1 Overflow Impact on Enables

The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 36.2.2.3), continue during a buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets,

however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further, IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated. If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be dropped.

36.3.8.2 Overflow Impact on Timing Packets

Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets are lost (and thus the MTC packet 'wraps' its 8-bit CTC value), then the decoder may be unable to properly understand the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle counter wraps.

Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle counter counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk that the cycle counter wrapped during the overflow, which could render this CYC misleading.

. . .

36.4.1 Packet Relationships and Ordering

This section introduces the concept of packet "binding", which involves determining the IP in a binary disassembly at which the change indicated by a given packet applies. Some packets have the associated IP as the payload (FUP, TIP), while for others the decoder need only search for the next instance of a particular instruction (or instructions) to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship between packets, and to use this packet context to determine how to bind the packet.

Section 36.4.2 below provides detailed descriptions of the packets, including how packets bind to IPs in the disassembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are generated in only a few scenarios. Those that require more consideration are typically part of "compound packet events", such as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation (instruction or event). These compound packet events frequently begin with a FUP to indicate the source address (if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destination address (if one is provided). In this scenario, the FUP is said to be "coupled" with the TIP packet.

Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes CR3 or the processor's mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state changes indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of compound packet events is provided in Table 36-16; see Section 36.4.2 for more per-packet details and Section 36.7 for more detailed packet generation examples.

	Table 50 To Compound Lacket Event Summary									
Event Type	Beginning	Middle	End	Comment						
Unconditional , uncompresse d control-flow transfer	FUP or none	Any combination of PIP, VMCS, MODE.Exec, or none	TIP or TIP.PGD	FUP only for asynchronous events. Order of middle packets may vary. PIP/VMCS/MODE only if the operation modifies the state tracked by these respective packets.						
TSX Update	MODE.TSX, and (FUP or none)	None	TIP, TIP.PGD, or none	FUP. TIP/TIP.PGD only for TSX abort cases.						

Table 36-16 Compound Packet Event Summary

Table 36-16 Compound Packet Event Summary

Event Type	Beginning	Middle	End	Comment				
Overflow	OVF	PSB, PSBEND, or	FUP or TIP.PGE	FUP if overflow resolves while ContextEn=1, else TIP.PGE.				
		none						

36.4.2 Packet Definitions

The following description of packet definitions are in tabular format. Figure 36-3 explains how to interpret them. Packet bits listed as "RSVD" are not guaranteed to be 0.

Figure 36-3 Interpreting Tabular Definition of Packet Format

36.4.2.1 Taken/Not-taken (TNT) Packet

Table 36-17 TNT Packet Definition

Name	Taken/Not-taken (TNT) Packet										
Packet Format											
		7 6 5 4 3 2 1 0									
	0	1	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	0	Short TNT	
		oungest. T	he short Ti							that B1 is oldest an contain up	

Table 36-17 TNT Packet Definition

		7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	1	0	Long TNT
	1	1	0	1	0	0	0	1	1	
	2	B ₄₀	B ₄₁	B ₄₂	B ₄₃	B ₄₄	B ₄₅	B ₄₆	B ₄₇	
	3	B ₃₂	B ₃₃	B ₃₄	B ₃₅	B ₃₆	B ₃₇	B ₃₈	B ₃₉	
	4	B ₂₄	B ₂₅	B ₂₆	B ₂₇	B ₂₈	B ₂₉	B ₃₀	B ₃₁	
	5	B ₁₆	B ₁₇	B ₁₈	B ₁₉	B ₂₀	B ₂₁	B ₂₂	B ₂₃	
	6	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	
	7	1	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	
			<u> </u>			<u> </u>				
			nown belov		4	3	2	1	0	ples of these
	0	0	0					•		Short TNT
	U	U	U	1	B ₁	B ₂	B ₃	B ₄	0	SHOLL LIMI
	0	7 0	0	5	0	0	0	1	0	Long TNT
	1	1	0	1	0	0	0	1	1	
	2	B ₂₄	B ₂₅	B ₂₆	B ₂₇	B ₂₈	B ₂₉	B ₃₀	B ₃₁	
	3	B ₁₆	B ₁₇	B ₁₈	B ₁₉	B ₂₀	B ₂₁	B ₂₂	B ₂₃	
	4	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	
	5	1	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	
	6	0	0	0	0	0	0	0	0	
	7	0	0	0	0	0	0	0	0	
Dependencies	PacketEn			Generation Scenario On a conditional branch or compressed RET, if it fills the TNT Also, partial TNTs may be generated at any time, as a result other packets being generated, or certain micro-architectural conditions occurring, before the TNT is full.						
Description	Provides the taken/not-taken results for the last 1–N conditional branches (Jcc, J*CXZ, or LOOP) or compressed R (Section 36.4.2.2). The TNT payload bits should be interpreted as follows: 1 indicates a taken conditional branch, or a compressed RET. 0 indicates a not-taken conditional branch.									
Application	tional bra	nch or RE1	instructio	n. Once a d	ecoder c		NT packet w	ith N valid	payload bit	an upcoming cor s, these bits sho

36.4.2.2 Target IP (TIP) Packet

Т

Table 36-18 IP Packet Definition

Name	Target IP (Target IP (TIP) Packet									
Packet Format											
		7 6 5 4 3 2 1 0									
	0	IPBytes 0 1 1 0 1									
	1	TargetIP[7:0]								
	2	TargetIP[15:8]								
	3	TargetIP[23:16]								
	4	TargetIP[
	5	TargetIP[
	6	TargetIP[47:40]								
Dependencies	PacketEn Generation Scenario			on Sce-	Indirect branch (including un-compressed RET), far branch, interrupt, exception, INIT, SIPI, (VM exit, VM entry,) ¹ TSX abort, (EENTER, EEXIT, ERESUME, AEX) ² .						
Description	Provides th	ne target fo	r some con	trol flow t	ransfers.						
Application	Anytime a	TIP is enco	untered, it i	indicates t	hat control	was transfe	erred to the	e IP provide	ed in the pay	yload.	
	that preced apply to th remains un that occurr	de the TIP. I e upcoming bound, it w ed at the IF	If a TIP is e g indirect br vill bind to t P given in th	ncountere anch, far t he TIP. He ne FUP pay	d and all pre branch, or V re, the TIP p	eceding pac MRESUME. Provides the hat there m	kets have a However, i target of nay be othe	already bee f there was an asynchr er packets, i	n bound, th s a precedin onous even n addition t	on the packets en the TIP will g FUP that t or TSX abort o the FUP, which	

NOTES

- 1. If IA32_VMX_MISC[bit 14] reports 1.
- 2. In a debug enclave.

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the use of IP compression. IP compression is an optional compression technique the processor may choose to employ to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP sent out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant) address bytes, those matching bytes may be suppressed in the current packet. The processor maintains an internal state of the "Last IP" that was encoded in trace packets, thus the decoder will need to keep track of the "Last IP" state in software, to match fidelity with packets generated by hardware. "Last IP" is initialized to zero, hence if the first IP in the trace may be compressed if the upper bytes are zeroes.

The "IPBytes" field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload are provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for a TIP/FUP packet is shown in the table below.

Table 36-19 FUP/TIP IP Reconstruction

IPBytes	Uncompresse	d IP Value								
	63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0		
000b	None, IP is ou	lone, IP is out of context								
001b	Last IP[63:16	Last IP[63:16] IP Payload[15:0]								
010b	Last IP[63:32	<u>'</u>]			IP Payload[31:0]					
011b	IP Payload[47	7] extended	IP Payload[47	7:0]						
100b	Last IP [63:48	3]	IP Payload[47	7:0]						
101b	Reserved									
110b	IP Payload[63	IP Payload[63:0]								
111b	Reserved									

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the IP that follows the PSB with either be un-compressed (011b or 110b, see Table 36-19), or compressed against zero.

At times, "IPbytes" will have a value of 0. As shown above, this does not mean that the IP payload matches the full address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the IP that applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only USR code. In that case, no TargetIP will be included in the packet, since that would expose an instruction point at CPL = 0. When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last IP packet with a non-zero IPBytes field.

On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits (IPBytes \leq 010b).

. . .

36.4.2.3 Deferred TIPs

The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g., FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the other packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will force out the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the bandwidth consumption, and hence the performance impact, incurred by tracing.

Table 36-20 TNT Examples with Deferred TIPs

Code Flow	Packets, Non-Deferred TIPS	Packets, Deferred TIPS
0x1000 cmp %rcx, 0		
0x1004 jnz Foo // not-taken	TNT(050) TID(0,:1200)	
0x1008 jmp %rdx	TNT(0b0), TIP(0x1308)	

Table 36-20 TNT Examples with Deferred TIPs

Code Flow	Packets, Non-Deferred TIPS	Packets, Deferred TIPS
0x1308 cmp %rcx, 1		
0x130c jnz Bar // not-taken		
0x1310 cmp %rcx, 2		
0x1314 jnz Baz // taken		
0x1500 cmp %eax, 7		
0x1504 jg Exit // not-taken	TNT(0b010), TIP(0x1100)	
0x1508 jmp %r15		
0x1100 cmp %rbx, 1		
0x1104 jg Start // not-taken		
0x1108 add %rcx, %eax	TNT(0b0), FUP(0x110c),	
0x110c // an asynchronous Interrupt arrives	TIP(0xcc00)	
INThandler:		TNT(0b00100), TIP(0x1308),
Oxcc00 pop %rdx		TIP(0x1100), FUP(0x110c), TIP(0xcc00)

36.4.2.4 Packet Generation Enable (TIP.PGE)

Table 36-21 TIP.PGE Packet Definition

			Idbic	30-21 11	1.1 40 1 4	CKC C D		"			
Name	Target IP -	Packet Ger	eration Ena	able (TIP.PC	iE)						
Packet Format											
		7	6	5	4	3	2		1	0	
	0	IPBytes			1	0	0		0	1	
	1	TargetIP[7:0]					•			
	2	TargetIP[15:8]								
	3	TargetIP[23:16]								
	4	3 1 3									
	5	3 L 1									
	6	6 TargetIP[47:40]									
					1						_
Dependencies	PacketEn t	ransitions t	o 1		Generation Any branch instruction, control flow transfer, or MOV CR3 that sets PacketEn, a WRMSR that enables packet generation and sets PacketEn.					hat enables	
Description	This can oo are asserte Triggere IA32_R1 FilterEn: IA32_R1 IP payl Context	ndicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins. This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others asserted. Examples: TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR. FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 36.2.2.3. The IP payload will be the target of the branch. ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of									

Table 36-21 TIP.PGE Packet Definition

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

36.4.2.5 Packet Generation Disable (TIP.PGD)

Table 36-22 TIP.PGD Packet Definition

Name	Target IP - F	Packet Gene	eration Dis	able (TIP.P	GD)					
Packet Format										
		7	6	5	4	3	2	1	0	
	0	IPBytes			0	0	0	0	1	
	1	TargetIP[7:0]							
	2	TargetIP[15:8]							
	3	TargetIP[23:16]							
	4	TargetIP[
	5	TargetIP[
	6	TargetIP[47:40]							
Dependencies	PacketEn tr 0			Any branch instruction, control flow transfer, or MOV CR3 that clears PacketEn, a WRMSR that disables packet generation and clears PacketEn.						
Description	TraceEn=0 PacketEn ca TriggerEi IA32_RT "IPBytes FilterEn: in IA32_I The IP suppress type of b Contexte Section field will Note that, ii rupt, etc) or TNI bit will I of the instra	O Scenario PacketEn, a WRMSR that disables packet generation and clears Packe-								

Table 36-22 TIP.PGD Packet Definition

Application	TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn. When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce. In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e., asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether the operation cleared ContextEn. If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload, then the TIP.PGD payload, or the payl branch that would permally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should
	the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should apply to the next branch or MOV CR3 instruction.

36.4.2.6 Flow Update (FUP) Packet

Table 36-23 FUP Packet Definition

Name	Float Update	Float Update (FUP) Packet									
Packet Format											
		7	6	5	4	3	2	1	0		
	0	IPBytes			1	1	1	0	1		
	1	IP[7:0]									
	2	IP[15:8]	-								
	3	IP[23:16]									
	4		IP[31:24]								
	5	IP[39:32]									
	6	IP[47:40]									
Dependencies	TriggerEn & (Typically de BranchEn an see Section :	pends on d FilterEn a	s well,	Generation Scenario	Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM exit ¹ , #MC), XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, (EENTRY, EEXIT, ERESUME, EEE, AEX,) ² , INT 0, INT 3, INT n, a WRMSR that disables packet generation.					Lease, (een-	
Description							ner instruct	ions. Is nev	er sent aloi	ne, always sent	
Application	packets. In TSX cases the case of T Otherwise, F vides the sou	With an associated TIP or MODE packet, and potentially others. UP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other ackets. TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in the case of TSX aborts, see Section 36.4.2.8 for details. Itherwise, FUPs are part of compound packet events (see Section 36.4.1). In these compound cases, the FUP proides the source IP for an instruction or event, while a following TIP (or TIP.PGD) uop will provide any destination IP. Ither packets may be included in the compound event between the FUP and TIP.									

NOTES:

- 1. If IA32_VMX_MISC[bit 14] reports 1.
- 2. If Intel Software Guard Extensions is supported.

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions do not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however, the source address cannot be inferred from the source, and hence a FUP will be sent. Table 36-24 illustrates cases

where FUPs are sent, and which IP can be expected in those cases.

Table 36-24 FUP Cases and IP Payload

Event	Flow Update IP	Comment
External Interrupt, NMI/SMI, Traps, Machine Check (trap-like), INIT/SIPI	Address of next instruction (Next IP) that would have been executed	Functionally, this matches the LBR FROM field value and also the EIP value which is saved onto the stack.
Exceptions/Faults, Machine check (fault-like)	Address of the instruction which took the exception/fault (Current IP)	This matches the similar functionality of LBR FROM field value and also the EIP value which is saved onto the stack.
Software Interrupt	Address of the software interrupt instruction (Current IP)	This matches the similar functionality of LBR FROM field value, but does not match the EIP value which is saved onto the stack (NLIP).
EENTER, EEXIT, ERESUME, Enclave Exiting Event (EEE), AEX ¹	Current IP of the instruction	This matches the LBR FROM field value and also the EIP value which is saved onto the stack.
XACQUIRE	Address of the X* instruction	
XRELEASE, XBEGIN, XEND, XABORT, other transactional abort	Current IP	
#SMI	IP that is saved into SMRAM	
WRMSR that clears TraceEn	Current IP	

NOTES:

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This is consistent with what is pushed on the stack for such faulting cases.

If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on the stack or VMCS.

36.4.2.7 Paging Information (PIP) Packet

Table 36-25 PIP Packet Definition

Name	Paging Information (PIP) Packet
------	---------------------------------

^{1.} Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in *Intel® Software Guard Extensions Programming Reference*.

Table 36-25 PIP Packet Definition

	-										
Packet Format	et Format										
		7	6	5	4	3	2	1	0		
	0	0	0	0	0	0	0	1	0		
	1	0	1	0	0	0	0	1	1		
	2	CR3[11:	5] or 0						RSVD/NR		
	3	CR3[19:	-								
	4	CR3[27:	-								
	5	CR3[35:								_	
	6	CR3[43:	-								
	7	CR3[51:	44]								
										_	
Dependencies	TriggerEn IA32_RTIT		Kten &&		Generation Scenario				T, SIPI, PSB+; reports 1: VM (exit, VM entry.	
Application	The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus included. For other page modes (32-bit and IA-32e paging), these bits are 0. This packet holds the CR3 address value. It will be generated on operations that modify CR3: • MOV CR3 operation • Task Switch • INIT and SIPI • VM exit and VM entry, if VMCS-based controls are clear (see Section 36.5.1) PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these operations, see Section for details. Note that, for some cases of task switch where CR3 is not modified, no PIP will be produced. The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper binaries to the linear addresses that are being traced. The PIP packet contains the new CR3 value when CR3 is written. On processors that IA32_VMX_MISC[bit 14] reports 0, bit 0 of byte 2 is reserved, and no VM exits or VM entries will be seen in the trace since these processors do not allow TraceEn to be set post-VMXON. On processors that IA32_VMX_MISC[bit 14] reports 1, PIPs that are generated in VMX non-root operation can be configured via the VMCS execution control to set the NR bit. The NR bit is clear for PIPs generated in VMX root operation or if the VMCS execution control is configured to suppress VMX indications in Guest Traces.										
Application	The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time. When a PIP is encountered, a decoder should do the following: 1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section 36.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP. 2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the new CR3 to the next (or target) IP. For examples of the packets generated by these flows, see Section 36.7.										

36.4.2.8 MODE Packets

MODE packets keep the decoder informed of various processor modes about which it needs to know in order to properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a header and a mode byte, as shown below.

Table 36-26 General Form of MODE Packets

		7	6	5	4	3	2	1	0
	0	1	0	0	1	1	0	0	1
Ī	1	Leaf ID			Mode				

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 36-27 MODE. Exec Packet Definition

Name	MODE.Exec	Packet									
Packet Format											
		7	6	5	4	3	2	1	0		
	0	1	0	0	1	1	0	0	1		
	1	0	0	0	0	0	0	CS.D	(CS.L & LMA)		
Dependencies	PacketEn		Generation Scenario Far branch, interrupt, exception, (VM exit, VM entry,) ¹ if the mode changes. PSB+, and any scenario that can generate a TIP.PGE, such that the mode may have changed since the last MODE.Exec.								
Description	Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values. Essential for the decoder to properly disassemble the associated binary. CS.D (CS.L & IA32_EFER.LMA) Addressing Mode										
	CS.D	(LS.L 8	k IA32_EF	ER.LMA)	Addressing Mode						
	1	1			N/A						
	0	1		64-bit mode							
	1	0			32-bit mod	de					
	0	0			16-bit mod	de					
	In the form operation t	MODE.Exec is sent at the time of a mode change, if PacketEn=1 at the time, or when tracing resumes, if necessary. In the former case, the MODE.Exec packet is generated along with other packets that result from the far transfer operation that changes the mode. In cases where the mode changes while PacketEn=0, the processor will send out a MODE.Exec along with the TIP.PGE when tracing resumes. The processor may opt to suppress the MODE.Exec when tracing resumes if the mode matches that from the last MODE.Exec packet, if there was no PSB in between.									
Application	MODE.Exect			precedes a	TIP or TIP.P	GE. The mo	de change	applies to 1	the IP address in the payload		

NOTES:

1. If IA32_VMX_MISC[bit 14] reports 1

MODE.TSX Packet

Table 36-28 MODE.TSX Packet Definition

Name	MODE.TSX Packet
------	-----------------

Table 36-28 MODE.TSX Packet Definition

Packet Format													
		7	6	5	4	3	2	1	0				
	0	1	0	0	1	1	0	0	1				
	1	0	0	1	0	0	0	TXAbort	InTX				
Dependencies	TriggerEn a	gerEn and ContextEn Generation Scenario XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if INTX changes, Asynchronous TSX Abort, PSB+											
Description		ndicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction- lly will be "rolled back" if the transaction is aborted.											
	TXAbort	InTX	Impli	cation									
	1	1	N/A										
	0	1	Trans	saction beg	jins, or ex	kecuting trans	sactionally						
	1	0	Trans	saction abo	rted								
	0	0	Trans	saction con	nmitted,	or not execut	ing transac	tionally					
		•	·										
Application	applies to t mode chan MODE.TSX	f PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the mode change will apply to the IP address in the payload of the TIP. MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX generated before TIP.PGE need be applied.											

36.4.2.9 TraceStop Packet

Table 36-29 TraceStop Packet Definition

Name	TraceStop Pa	acket										
Packet Format												
		7 6 5 4 3 2 1 0										
	0	0	0		0	0	0	0	1	0		
	1	1	0		0	0	0	0	1	1		
Dependencies	TriggerEn &	& ContextE	n	Gene Scena	ration ario					egion, MOV CR3 in T in TraceStop IP regi		
Description	ables tracing packet to be The TraceSt	matches a g by setting generated op action a thus trace	Trace IA32 Iso fo pack	eStop 2_RTIT orces F et ger	range while _STATUS.S ilterEn to C neration sho	e ContextEr Stopped, the D. Note that ould still be	n and Trigg ereby clear : TraceStop manually d	erEn are se ing Trigger may not fo	En, and cau orce a flush	top action occurs. T ises a TraceStop of internally buffer 32_RTIT_CTL.Trace	ed	

Table 36-29 TraceStop Packet Definition

Application	If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop
	can be applied at the IP of the TIP.PGD (if any). If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

36.4.2.10 Core:Bus Ratio (CBR) Packet

Table 36-30 CBR Packet Definition

Name	Core:Bus R	atio (CBR)	Packet											
Packet Format														
		7	6	5	4	3	2	1	0					
	0	0 0 0 0 0 1 0												
	1	0	0	0	0	0	0	1	1					
	2	2 Core:Bus Ratio												
	3	Reserve	ed											
		•								<u> </u>				
Dependencies	TriggerEn			Generation Scenario		fter any frec nabling trace			tate wake up, P	SB+, and after				
Description	Indicates t	Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.												
Application	packets (as	All packets following the CBR represent instructions that executed with the new core:bus ratio, while all preceding packets (aside from timing packets) represent instructions that executed with the prior ratio. There is not a precise IP provided, to which to bind the CBR packet.												

36.4.2.11 Timestamp Counter (TSC) Packet

Table 36-31 TSC Packet Definition

Name	Tim	nestamp Co	ounter (TS	C) Packet										
Packet Format														
			7	6 5 4 3 2 1 0										
		0	0	0	0	1	1	0	0	1				
		1	SW TSC[7:0]										
		2	SW TSC[15:8]										
		3	SW TSC[23:16]										
		4	SW TSC[31:24]										
		5	SW TSC[39:32]										
		6	SW TSC[47:40]										
		7	SW TSC[55:48]										

Table 36-31 TSC Packet Definition

Dependencies	IA32_RTIT_CTL.TSCEn && TriggerEn	Sent after any event that causes the processor clocks or Intel PT timing packets (such as MTC or CYC) to stop, This may include P-state changes, wake from C-state, or clock modulation. Also on transition of TraceEn from 0 to 1.							
Description	When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by th RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with other timestamped logs.								
Application	TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state w etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding pack represent instructions that executed before the indicated TSC time, and all subsequent packets represent instructions that executed after it. There is not a precise IP to which to bind the TSC packet.								

36.4.2.12 Mini Time Counter (MTC) Packet

Table 36-32 MTC Packet Definition

					TIC Faci							
Name	Mini time Co	ounter (MTC)	Packet									
Packet Format												
		7	6	5	4	3	2	1	0			
	0	0	1	0	1	1	0	0	1			
	1	1 CTC[N+7:N]										
Dependencies	IA32_RTIT_ TriggerEn	A32_RTIT_CTL.MTCEn && Generation Scenario Periodic, based on the hardware crystal clock counter (CTC) of the processor.										
Description	to the proce processor's Software ca field (see So See Section MTC provide Whenever t range. This sent, by kee truncated b There are c decoder sho mine how in dropped.	essor's crysta maximum no an select the ection 36.2.5 a 36.8.3 for d es 8 bits fron that 8-bit ran allows the de eping track of bits, CTC[N-1:0 ases in which buld be able to many MTC page	al clock co on-Turbo 1 threshold .2) to a su etails on h in the CTC, ge being in ecoder to how man D], are 0 a in MTC pac to recover ckets were	unter by (C frequency to I N, which comported various to use starting wowatched chakeep track by MTC pace to the time ket can be from such e dropped.	TC >> N). by the ratifletermine alue using the MTC lith the bit langes, and of how mikets were of the MT dropped, cases by It is not expending the model.	The frequence of can be done of the MTC the lookup or cayload to expected the MTC packet of the case o	ency of crysetermined of frequency of crysetermined of commeration of track TSC to by MTCFrequent will be seen the help of the second of the s	stal clock is via CPUID.15 by setting the detailed by CPUID ime. It to dictate the selapsed singular walue was. The micro-are yload of the msecutive Merial CPUID.	ne. The 8-bit value is fixed and is related 5H:EBX / CPUID.15H ne IA32_RTIT_CTL.Ne (see Section 36.3.1 he frequency of the the new value of the nece the last TSC pactive decoder can infer chitectural condition next MTC packet, to TC packets should experience in the second of the condition next MTC packet.	to the I:EAX. ITCFreq I). e packet. hat 8-bit icket was er the ins. The ordeter-ever be		
Application	ets represe		ns or ever	its that exe	cuted be	fore the inc	dicated CTC		However, all precedi Il subsequent packe			

36.4.2.13 TSC/MTC Alignment (TMA) Packet

Table 36-33 TMA Packet Definition

Name	TSC/MTC Alig	nment (TM	A) Packet										
Packet Format													
		7 6 5 4 3 2 1 0											
	0	0	0 0 0 0 1 0										
	1	0	1 1 1 0 0 1 1										
	2	CTC[7:0]											
	3	3 CTC[15:8]											
	4	Reserved								0			
	5	FastCour											
	6	Reserved								FC[8]]		
Dependencies	IA32_RTIT_C	TL.MTCEn 8	& &	Gener	ation Sce-		Sent wi	th any TS0	packet.				
	IA32_RTIT_C	TL.TSCEn 8	& TriggerE	n nario									
Description	packets. With	the TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp ounter ticks have passed since the last TSC or MTC packet. See Section 36.8.3.2 for details on how to make this callation.											
Application	TMA is alway value. Thus t						the payl	oad values	are consis	tent with th	ne TSC payload		

36.4.2.14 Cycle Count Packet (CYC) Packet

Table 36-34 Cycle Count Packet Definition

Name	Cycle Count (Cycle Count (CYC) Packet											
Packet Format													
		7 6 5 4 3 2 1 0											
	0	O Cycle Counter[4:0] Exp 1 1											
	1	Cycle Counter[11:5] Exp											
	2	Cycle Coun	ter[18:12	<u>'</u> .]					Ехр				
		(if Exp =	1 in the p	revious by	/te)								
Dependencies	IA32_RTIT_C TriggerEn	TL.CYCEn &&	Genera nario	ition Sce-					n of one CY0 .6 for CYC-el	C packet is igible packets.			

Table 36-34 Cycle Count Packet Definition

Description	The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length format (using a trailing EXP bit field) and a range-capped byte length. If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and 4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0, and so on. CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the number of CYC packets, at the expense of some precision. These settings are configured using the IA32_RTIT_CTL.CycThresh field (see Section 36.2.5.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see Section 36.3.6. When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides the precise cycle time of the packets that follow. In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the processor's internal cycle counter doesn't cause cycle information to be lost. These stand-alone CYC packets do not indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any other CYC-eligible packet is seen. When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next cycle that produces other CYC-eligible packets, or could be sent stand-alone. When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC packet is t
Application	CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next CYC-eligible packet. If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first branch in the TNT packet.

36.4.2.15 VMCS Packet

Table 36-35 VMCS Packet Definition

Name	VMCS Pa	cket											
Packet Format													
		7 6 5 4 3 2 1 0											
	0	0	0	0	0	0	0	1	0				
	1	1	1	0	0	1	0	0	0				
	2	VMCS Base	Address [1	9:12]									
	3	VMCS Base	e Address [2	7:20]									
	4	VMCS Base	e Address [3	5:28]									
	5	VMCS Base	e Address [4	3:36]									
	6	VMCS Base	VMCS Base Address [51:44]										
Dependencies	TriggerEr Also post	n && ContextEn; -VMXON	Generatio	n Scenario					ally on SMM VM Section 36.5).				

Table 36-35 VMCS Packet Definition

Description	The VMCS packet provides an address related to a VMCS pointer for a decoder to determine the transition of code contexts:
	 On a successful VMPTRLD (i.e, a VMPTRLD that doesn't fault, fail, or VM exit), the VMCS packet contains the address of the current working VMCS pointer of the logical processor that will execute a VM guest context.
	 On SMM VM exits, the VMCS packet provides the STM VMCS base address (SMM Transfer VMCS pointer), if VMCS-based controls are clear (see Section 36.5.1). See Section 36.6 on tracing inside and outside STM.
	 On VM entries that return from SMM, the VMCS packet provides the current working VMCS pointer of the guest VM (see Section 36.6), if VMCS-based controls are clear (see Section 36.5.1). Root versus Non-Root operation can be distinguished from the PIP.NR bit. If a VMCS packet is generated before a VMCS has been loaded, or after it has been cleared, the base address value will be all 1s. VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow
	TraceEn to be set post-VMXON.
Application	The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context in situations that CR3 may not be unique. When a VMCS is encountered, a decoder should do the following: If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section 36.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP. Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS base pointer on the next VM entry. For examples of the packets generated by these flows, see Section 36.7.

36.4.2.16 Overflow (OVF) Packet

Table 36-36 OVF Packet Definition

Name	Overflow (O	VF) Packet									
Packet Format											
	7 6			5	4	3	2	1	0		
	0	0	0	0	0	0	0	1	0		
	1	1 1 1			1	0	0	1	1		
Dependencies	TriggerEn			eration nario	On resolution of internal buffer overflow.						
Description	OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See Section 36.3.8.										
Application	cycle counte Software sh ilarly, any IP	Section 36.3.8. When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The cycle counter for the CYC packet will be reset at the time the OVF packet is sent. Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Similarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP packet that preceded the overflow.									

36.4.2.17 Packet Stream Boundary (PSB) Packet

Table 36-37 PSB Packet Definition

Name	Packet Strea	am Bound	ary (PSB) Packet						
Packet Format				<u>- </u>						
		7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	1	0	
	1	1	0	0	0	0	0	1	0	
	2	0	0	0	0	0	0	1	0	
	3	1	0	0	0	0	0	1	0	
	4	0	0	0	0	0	0	1	0	
	5	1	0	0	0	0	0	1	0	
	6	0	0	0	0	0	0	1	0	
	7	1	0	0	0	0	0	1	0	
	8	0	0	0	0	0	0	1	0	
	9	1	0	0	0	0	0	1	0	
	10	0	0	0	0	0	0	1	0	
	11	1	0	0	0	0	0	1	0	
	12	0	0	0	0	0	0	1	0	
	13	1	0	0	0	0	0	1	0	
	14	0	0	0	0	0	0	1	0	
	15	1	0	0	0	0	0	1	0	
Dependencies	TriggerEn	Genera Scenari		when IA32	_RTIT_STA	TUS.Packet	tByteCnt=C), and each	ted while tracing time it crosses t icro-architectura	he software
Description	PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via IA32_RTIT_CTL.PSBFreq (see Section 36.2.5.2). Note, however, that the PSB period is not precise, it simply reflects the average number of output bytes that should pass between PSBs. The processor will make a best effort to insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra PSB packets for some micro-architectural conditions. PSB also serves as the leading packet for a set of "status-only" packets collectively known as PSB+ (Section 36.3.7).									
Application	OVF packet	is encoun	tered. "S	tatus only" i	mplies that	the binding	g and order	ing rules to	", until either a P o which these pa load in the FUP p	ckets nor-

36.4.2.18 PSBEND Packet

Table 36-38 PSBEND Packet Definition

Name	PSBEND Packet									
Packet Format										
		7	6	5		4	3	2	1	0
	0	0	0	0		0	0	0	1	0
	1	0	0	1		0	0	0	1	1
		•	•				•	•	•	
Dependencies	TriggerEn				Genera Scenari		Always fol	lows PSB	packet, se	parated by PSB+ packets
Description	PSBEND is simply a terminator for the series of "status only" (PSB+) packets that follow PSB (Section 36.3.7).									
Application	When a PSB	END packe	et is seen, th	ne de	coder s	hould cea	se to treat	: packets a	s "status o	only".

36.4.2.19 Maintenance (MNT) Packet

Table 36-39 MNT Packet Definition

Name	Tin	Timestamp Counter (TSC) Packet									
Packet Format											
		7 6 5 4 3 2 1 0									
		0 0 0 0 0 0 1 0									
		1 1 0 0 0 1 1 1									
	2 1 0 0 0 1 0 0										
		3	Payload[7:0]								
		4	Payload[15:8]								
		5	Payload[23:16]								
		6	Payload[31:24]								
		7	Payload[39:32]								
		8	Payload[4	7:40]							
		9	Payload[5	5:48]							
		10	Payload[6	3:56]							
						ı					
Dependencies	TriggerEn Generation Sce nario					Implementation specific.					
Description	Th	is packet is	generated	by hardwa	ere, the payl	oad meani	ng is mode	l-specific.			
Application		Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this packet should simply be ignored. It does not bind to any IP.									

36.4.2.20 PAD Packet

Table 36-40 PAD Packet Definition

Name	PAD Packet										
Packet Format											
		7	6	5	4		3	2	1	0	
	0	0	0	0	0		0	0	0	0	İ
										•	•
Dependencies	TriggerEn			Generatio Scenario	on	Implementation specific.					
Description		PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet alignment or for implementation-specific reasons.									
Application	Ignore PAD	packets.									

36.5 TRACING POST-VMXON

On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set post-VMXON. A series of mechanisms exist to allow the VMM to configure tracing based on the desired trace domain, and on the consumer of the trace output. The VMM can configure specific VM execution controls in the VMCS to control what virtualization-specific data are included within the trace packets (see Section 36.5.1 for details). MSR save and load lists can be employed by the VMM to restrict tracing to the desired context (see Section 36.5.2 for details). These configuration options are summarized in Table 36-41. Table 36-41 covers common Intel PT usages while SMIs are handled by the default SMM treatment. Tracing with SMM Transfer Monitor is described in Section 36.6.

Table 36-41 Common Usages of Intel PT and VMX

Target Domain	Output Consumer	Virtualize Output	Configure VMCS Controls	TraceEN Configuration	Save/Restore MSR states of Trace Configuration
System-Wide (VMM + VMs)	Host	NA	Default Setting (no suppression)	WRMSR or XRSTORS by Host	NA
VMM Only	Intel PT Aware VMM	NA	Enable suppression	MSR load list to disable tracing in VM, enable tracing on VM exits	NA
VM Only	Intel PT Aware VMM	NA	Enable suppression	MSR load list to enable tracing in VM, disable tracing on VM exits	NA
Intel PT Aware Guest(s)	Per Guest	VMM adds trace output virtualization	Enable suppression	MSR load list to enable tracing in VM, disable tracing on VM exits	VMM Update guest state on XRSTORS-exiting VM exits

36.5.1 VMX-Specific Packets and VMCS Controls

In all of the usages of VMX and Intel PT, the decoder in the host or VMM context can identify the occurrences of VMX transitions with the aid of VMX-specific packets. Packets relevant to VMX fall into the follow two kinds:

 VMCS Packet: The VMX transitions of individual VM can be distinguished by a decoder using the base address field in a VMCS packet. The base address field stores the VMCS pointer address of a successful VMPTRLD. A VMCS packet is sent on a successful execution of VMPTRLD. See Section 36.4.2.15 for details. NonRoot (NR) bit field in PIP packet: PIP packets are generated with each VM entry/exit. The NR bit in a PIP packet is set when in VMX non-Root operation. Thus a transition of the NR bit from 0 to 1 indicates the occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of a VM exit.

Processors with IA32_VMX_MISC[bit 14]= 1 also provides VMCS controls that a VMM can configure to prevent VMX-specific information from leaking across virtualization boundaries.

Table 36-42 VMCS Controls For Intel Processor Trace

Name	Туре	Bit Position	Value	Behavior
Suppress VMX Indications in	Secondary Processor-Based	19	0	PIPs generated in non-Root operation will set the PIP.NR bit.
Guest Traces	Execution Control			PSB+ in non-Root operation will include the VMCS packet, to ensure that the decoder knows which Guest is currently in use.
			1	PIPs generated in non-Root operation will not set the PIP.NR bit.
				PSB+ in non-Root operation will not include the VMCS packet.
Suppress VMX	VM-exit Control	24	0	PIPs are generated on VM exit, with NonRoot=0.
packets on Exit				On VM exit to SMM, VMCS packets are additionally generated.
			1	No PIP is generated on VM exit, and no VMCS packet is generated on VM exit to SMM.
Suppress VMX packets on	VM-entry Control	17	0	PIPs are generated on VM entry, with NonRoot=1 if the destination of the entry is non-Root operation.
Entry				On VM entry to SMM, VMCS packets are additionally generated.
			1	No PIP is generated on VM entry, and no VMCS packet is generated on VM entry to SMM.

The default setting for the VMCS controls that interacts with Intel PT is to enable all VMX-specific packet information. The scenarios that would use the default setting also do not require the VMM to use MSR load list to manage the configuration of turning-on/off of trace packet generation across VM exits.

If IA32_VMX_MISC[bit 14] reports 0, any attempt to set the VMCS control bits in Table 36-42 will result in a failure on guest entry.

36.5.2 Managing Trace Packet Generation Across VMX Transitions

In tracing scenarios that collect packets for both VMX root and non-root operations, a host executive can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be modified using MSR load list or MSR save list across VMX transitions.

For tracing scenarios that collect only packets within either VMX root or non-root operations, the VMM can use the MSR load list and/or MSR save list to toggle IA32_RTIT_CTL.TraceEn.

36.5.2.1 System-Wide Tracing

When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the VMCS controls in its default setting to allow VMX-specific packets to provide information across VMX transitions. MSR load list is not used across VM exits or VM entries, nor is VM-exit MSR save list.

The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are shown in Table 36-43.

Table 36-43 Packets on VMX Transitions (System-Wide Tracing)

Event	Packets	Description					
VM exit	FUP(GuestIP)	The FUP indicates at which point in the Guest flow the VM exit occurred. This is important, since VM exit can be an asynchronous event. The IP will match that written into the VMCS.					
	PIP(HostCR3, NR=0)	The PIP packet provides the new Host CR3 value, as well as indication that the logical processor is entering VMX Root operation. This allows the decoder to identify the change of executing context from guest to host and load the appropriate set of binaries to continue decode.					
	TIP(HostIP)	The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX Root operation.					
		Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.					
VM entry	PIP(GuestCR3, NR=1)	The PIP packet provides the new Guest CR3 value, as well as indication that the logical processor is entering VMX non-Root operation. This allows the decoder to identify the change of executing context from host to guest and load the appropriate set of binaries to continue decode.					
	TIP(GuestIP)	The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX no Root operation. This should match the IP value read out from the VMCS.					
		Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.					

Since the packet suppression controls are cleared, the VMCS packet will be included in all PSB+ for this usage scenario. Thus the decoder can distinguish the execution context of different VMs. Additionally, it will be generated on VMPTRLD. Thus the decoder can distinguish the execution context of different VMs.

When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to report CPUID.(EAX=07H, ECX=0):EBX[bit 26] with 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Offset

The TSC packets generated while in VMX non-Root operation will include offset applied by the TSC offsetting VMCS control. In this system-wide usage model, the decoder may need to account for the effect of per-VM offsets in the TSC packets generated in non-Root operation and the absence of TSC offset in TSC packets generated in VMX root operation. The VMM can supply these information to the decoder.

36.5.2.2 Host-Only Tracing

When trace packets in VMX non-root operation are not desired, the VMM can use VM-entry MSR load list with IA32_RTIT_CTL.TraceEn=0 to disable trace packet generation in guests, set IA32_RTIT_CTL.TraceEn=1 via VM-exit MSR load list.

When tracing only the Host, the decoder does not need information about the guests, the VMCS controls for suppressing VMX-specific packets can be set to reduce the packets generated. VMCS packets will still be generated on successful VMPTRLD and in PSB+ generated in the Host, but these will be unused by the decoder.

The packets of interests to a decoder when trace packets are collected for host-only tracing are shown in Table 36-44.

Table 36-44 Packets on VMX Transitions (Host-Only Tracing)

Event	Packets	Description
VM exit	TIP.PGE(HostIP)	The TIP.PGE indicates that trace packet generation is enabled and gives the IP of the first instruction to be executed in VMX Root operation.
		Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.
VM entry	TIP.PGD()	The TIP indicates that trace packet generation was disabled. This ensure that all buffered packets are flushed out.

36.5.2.3 Guest-Only Tracing

A VMM can configure trace packet generation while in non-root operation for guests executing normally. This is accomplished by utilizing the MSR load lists across VM exit and VM entry to confine trace packet generation to stay within the guest environment.

For this usage, the VM-entry MSR load list is programmed to turn on trace packet generation. The VM-exit MSR load list is used to clear TraceEn=0 to disable trace packet generation in the host. Further, if it is preferred that the Guest packet stream contain no indication of non-Root execution, the VMM should set 1 to the VMCS controls described in Table 36-42.

36.5.2.4 Virtualization of Guest Output Packet Streams

Each Intel PT aware guest OS can produce one or more output packet streams to destination addresses specified as guest physical address (GPA) using context-switched IA32_RTIT_OUTPUT_BASE within the guest. The processor generates trace packets to the platform physical address specified in IA32_RTIT_OUTPUT_BASE, and those specified in the ToPA tables. Thus, a VMM that supports Intel PT aware guest OS may wish to virtualize the output configurations of IA32_RTIT_OUTPUT_BASE and ToPA for each trace configuration state of all the guests.

36.5.2.5 Emulation of Intel PT Traced State

If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state, and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert or modify the output trace data.

If a VM exit is taken on a guest write to CR3 (including "MOV CR3" as well as task switches), the PIP packet normally generated on the CR3 write will be missing.

To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing it into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the IA32 RTIT CR3 MATCH value, in order to ensure the trace behavior matches the guest's expectation.

Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet values in the guest trace, or use TSC offsetting in place of exiting.

36.5.2.6 Failed VM Entry

The packets generated by a failed VMentry depend both on the VMCS configuration, as well as on the type of failure. The results to expect are summarized in the table below. Note that packets in *italics* may or may not be generated, depending on implementation choice, and the point of failure.

Table 36-45 Packets on a Failed VM Entry

Usage Model	Entry Configuration	Early Failure (fall through to Next IP)	Late Failure (VM exit)
System-Wide	No MSR load list	TIP (NextIP)	PIP(Guest CR3, NR=1), TraceEn 0->1 Packets (See Section 36.2.5.3), PIP(HostCR3, NR=0), TIP(HostIP)
VMM Only	MSR load list disables TraceEn	TIP (NextIP)	TraceEn 0->1 Packets (See Section 36.2.5.3), TIP(HostIP)
VM Only	MSR load list Enables TraceEn	None	None

36.5.2.7 VMX Abort

VMX Abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some packets (FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

36.6 TRACING AND SMM TRANSFER MONITOR (STM)

SMM Transfer Monitor is a VMM that operates inside SMM while in VMX root operation. An STM operates in conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a VM entry to the VM in non-root operation or the executive monitor in VMX root operation.

Intel PT supports tracing in STM similar to tracing support for post-VMXON as described above in Section 36.7. As a result, on a SMM VM exit resulting from #SMI, TraceEn is not saved and then cleared. Software can save the state of the trace configuration MSRs and clear TraceEN using the MSR load/save lists.

36.7 PACKET GENERATION SCENARIOS

Table 36-46 illustrates the packets generated in various scenarios. In the heading row, PacketEn is abbreviated as PktEn, ContextEn as CntxEn. Note that this assumes that TraceEn=1 in IA32_RTIT_CTL, while TriggerEn=1 and Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that do not matter in packet generation are marked "D.C."

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
1a	Normal non-jump operation	0	0	D.C.		None
1b	Normal non-jump operation	1	1	1		None
2a	WRMSR/XRSTORS/RSM that changes TraceEn 0 -> 1, with PacketByteCnt >0	0	0	D.C.	*TSC if TSCEn=1; *TMA if TSCEn=MTCEn=1	TSC?, TMA?, CBR
2b	WRMSR/XRSTORS/RSM that changes TraceEn 0 -> 1, with PacketByteCnt =0	0	0	D.C.	*TSC if TSCEn=1; *TMA if TSCEn=MTCEn=1	PSB, PSBEND (see Section 36.4.2.17)
2d	WRMSR/XRSTORS/RSM that changes TraceEn 0 -> 1, with PacketByteCnt >0	0	1	1	TSC if TSCEn=1; TMA if TSCEn=MTCEn=1	TSC?, TMA?, CBR, MODE.Exec, TIP.PGE(NLIP)

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
2e	WRMSR/XRSTORS/RSM that changes TraceEn 0 -> 1, with PacketByteCnt =0	0	1	1		MODE.Exec, TIP.PGE(NLIP), PSB, PSBEND (see Section 36.4.2.8, 36.4.2.7, 36.4.2.13,36.4.2.15, 36.4.2.17)
За	WRMSR that changes TraceEn 1 -> 0	0	0	D.C.		None
3Ь	WRMSR that changes TraceEn 1 -> 0	1	0	D.C.		FUP(CLIP), TIP.PGD()
5a	MOV to CR3	0	0	0		None
5f	MOV to CR3	0	0	1	TraceStop if executed in a TraceStop region	PIP(NewCR3,NR?), TraceS-top?
5b	MOV to CR3	0	1	1	*PIP.NR=1 if not in root operation, and "Suppress VMX indications" execution control = 0 *MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	PIP(NewCR3, NR?), MODE.Exec?, TIP.PGE(NLIP)
5c	MOV to CR3	1	0	0		TIP.PGD()
5e	MOV to CR3	1	0	1	*PIP.NR=1 if not in root operation, and "Suppress VMX indications" execution control = 0 *TraceStop if executed in a TraceStop region	PIP(NewCR3, NR?), TIP.PGE(NLIP), TraceStop?
5d	MOV to CR3	1	1	1	*PIP.NR=1 if not in root operation, and "Suppress VMX indications" execution control = 0	PIP(NewCR3, NR?)
6a	Unconditional direct near jump	0	0	D.C.		None
6b	Unconditional direct near jump	1	0	1	TraceStop if BLIP is in a TraceStop region	TIP.PGD(BLIP), TraceStop?
6c	Unconditional direct near jump	0	1	1	MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	MODE.Exec?, TIP.PGE(BLIP)
6d	Unconditional direct near jump	1	1	1		None
7a	Conditional taken jump or compressed RET that does not fill up the internal TNT buffer	0	0	D.C.		None
7b	Conditional taken jump or compressed RET	0	1	1	MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	MODE.Exec?, TIP.PGE(BLIP)

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn	PktEn	CntxEn	Other Dependencies	Packets Output
Case	operation	Before	After	After	other bependencies	Packets Output
7e	Conditional taken jump or compressed RET, with empty TNT buffer	1	0	1	TraceStop if BLIP is in a TraceStop region	TIP.PGD(), TraceStop?
7f	Conditional taken jump or compressed RET, with non-empty TNT buffer	1	0	1	TraceStop if BLIP is in a TraceStop region	TNT, TIP.PGD(), TraceStop?
7d	Conditional taken jump or compressed RET that fills up the internal TNT buf- fer	1	1	1		TNT
8a	Conditional non-taken jump	0	0	D.C.		None
8d	Conditional not-taken jump that fills up the internal TNT buffer	1	1	1		TNT
9a	Near indirect jump (JMP, CALL, or uncompressed RET)	0	0	D.C.		None
9b	Near indirect jump (JMP, CALL, or uncompressed RET)	0	1	1	MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	MODE.Exec?, TIP.PGE(BLIP)
9c	Near indirect jump (JMP, CALL, or uncompressed RET)	1	0	1	TraceStop if BLIP is in a TraceStop region	TIP.PGD(BLIP), TraceStop?
9d	Near indirect jump (JMP, CALL, or uncompressed RET)	1	1	1		TIP(BLIP)
10a	Far Branch (CALL/JMP/RET)	0	0	0		None
10f	Far Branch (CALL/JMP/RET)	0	0	1	*PIP if CR3 is updated (i.e., task switch), and OS=1; *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	PIP(new CR3, NR?), TraceS- top?
10b	Far Branch (CALL/JMP/RET)	0	1	1	*PIP if CR3 is updated (i.e., task switch), and OS=1; *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	PIP(new CR3, NR?), MODE.Exec?, TIP.PGE(BLIP)
10c	Far Branch (CALL/JMP/RET)	1	0	0		TIP.PGD()

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
10d	Far Branch (CALL/JMP/RET)	1	0	1	*PIP if CR3 is updated (i.e., task switch), and OS=1; *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	PIP(new CR3, NR?), TIP.PGD(BLIP), TraceStop?
10e	Far Branch (CALL/JMP/RET)	1	1	1	*PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; * MODE.Exec if the opera- tion changes CS.L/D or IA32_EFER.LMA	PIP(NewCR3, NR?)?, MODE.Exec?, TIP(BLIP)
11a	HW Interrupt	0	0	0		None
11f	HW Interrupt	0	0	1	*PIP if CR3 is updated (i.e., task switch), and OS=1; *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	PIP(new CR3, NR?), TraceS- top?
11ь	HW Interrupt	0	1	1	*PIP if CR3 is updated (i.e., task switch), and OS=1; *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; * MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	PIP(new CR3, NR?), MODE.Exec?, TIP.PGE(BLIP)
11c	HW Interrupt	1	0	0		FUP(NLIP), TIP.PGD()
11d	HW Interrupt	1	0	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	FUP(NLIP), PIP(NewCR3, NR?)?, TIP.PGD(BLIP), Trace- Stop

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
11e	HW Interrupt	1	1	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; * MODE.Exec if the operation changes CS.L/D or IA32_EFER.LMA	FUP(NLIP), PIP(NewCR3, NR?)?, MODE.Exec?, TIP(BLIP)
12a	SW Interrupt	0	0	0		None
12f	SW Interrupt	0	0	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	PIP(NewCR3, NR?)?, TraceStop?
12Ь	SW Interrupt	0	1	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	PIP(NewCR3, NR?)?, MODE.Exec?, TIP.PGE(BLIP)
12c	SW Interrupt	1	0	0		FUP(CLIP), TIP.PGD()
12d	SW Interrupt	1	0	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	FUP(CLIP), PIP(NewCR3, NR?)?, TIP.PGD(BLIP), Trace- Stop?
12e	SW Interrupt	1	1	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; * MODE.Exec if the opera- tion changes CS.L/D or IA32_EFER.LMA	FUP(CLIP), PIP(NewCR3, NR?)?, FUP(NLIP), MODE.Exec?, TIP(BLIP)
13a	Exception/Fault	0	0	0		None

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
13f	Exception/Fault	0	0	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	PIP(NewCR3, NR?)?, TraceS-top?
13b	Exception/Fault	0	1	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	PIP(NewCR3, NR?)?, MODE.Exec?, TIP.PGE(BLIP)
13c	Exception/Fault	1	0	0		FUP(CLIP), TIP.PGD()
13d	Exception/Fault	1	0	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; *TraceStop if BLIP is in a TraceStop region	FUP(CLIP), PIP(NewCR3, NR?)?, TIP.PGD(BLIP), Trace- Stop?
13e	Exception/Fault	1	1	1	* PIP if CR3 is updated (i.e., task switch), and OS=1 *PIP.NR=1 if destination is not root operation, and "Suppress VMX indications" execution control = 0; * MODE.Exec if the operation changes CS.L/D or IA32_EFER.LMA	FUP(CLIP), PIP(NewCR3, NR?)?, MODE.Exec?, TIP(BLIP)
14a	SMI (TraceEn cleared)	0	0	D.C.		None
14b	SMI (TraceEn cleared)	1	0	0		FUP(SMRAM,LIP), TIP.PGD()
14f	SMI (TraceEn cleared)	1	0	1		NA
14c	SMI (TraceEn cleared)	1	1	1		NA
15a	RSM, TraceEn restored to 0	0	0	0		None
15b	RSM, TraceEn restored to 1	0	0	D.C.		See WRMSR cases for packets on enable
15c	RSM, TraceEn restored to 1	0	1	1		See WRMSR cases for packets on enable. FUP/TIP.PGE IP is SMRAM.LIP

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
15e	RSM (TraceEn=1, goes to shutdown)	1	0	0		None
15f	RSM (TraceEn=1, goes to shutdown)	1	0	1		None
15d	RSM (TraceEn=1, goes to shutdown)	1	1	1		None
16i	Vmext	0	0	0		None
16a	Vmext	0	0	1	*PIP if OF=1, and "Suppress VMX packets on exit" execu- tion control = 0; *TraceStop if VMCSh.LIP is in a TraceStop region	PIP(HostCR3, NR=0)?, Trace- Stop?
16b	VM exit, MSR list sets TraceEn=1	0	0	0		See WRMSR cases for packets on enable. FUP IP is VMCSh.LIP
16c	VM exit, MSR list sets TraceEn=1	0	1	1		See WRMSR cases for packets on enable. FUP/TIP.PGE IP is VMCSh.LIP
16e	VM exit	0	1	1	*PIP if OF=1, and "Suppress VMX packets on exit" execu- tion control = 0; *MODE.Exec if the value is different, since last TIP.PGD	PIP(HostCR3, NR=0)?, MODE.Exec?, TIP.PGE(VMCSh.LIP)
16f	VM exit, MSR list clears TraceEn=0	1	0	0	*PIP if OF=1, and "Suppress VMX packets on exit" execu- tion control = 0;	FUP(VMCSg.LIP), PIP(HostCR3, NR=0)?, TIP.PGD
16j	VM exit, ContextEN 1->0	1	0	0		FUP(VMCSg.LIP), TIP.PGD
16g	VM exit	1	0	1	*PIP if OF=1, and "Suppress VMX packets on exit" execu- tion control = 0; *TraceStop if VMCSh.LIP is in a TraceStop region	FUP(VMCSg.LIP), PIP(HostCR3, NR=0)?, TIP.PGD(VMCSh.LIP), TraceS- top?
16h	VM exit	1	1	1	*PIP if OF=1, and "Suppress VMX packets on exit" execu- tion control = 0; *MODE.Exec if the value is different, since last TIP.PGD	FUP(VMCSg.LIP), PIP(HostCR3, NR=0)?, MODE.Exec, TIP(VMCSh.LIP)
17a	Vmentry	0	0	0		None
17b	VM entry	0	0	1	*PIP if OF=1, and "Suppress VMX packets on entry" exe- cution control = 0; *TraceStop if VMCSg.LIP is in a TraceStop region	PIP(GuestCR3, NR=1)?, TraceStop?
17c	VM entry, MSR load list sets TraceEn=1	0	0	1	_	See WRMSR cases for packets on enable. FUP IP is VMCSg.LIP

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
17d	VM entry, MSR load list sets TraceEn=1	0	1	1		See WRMSR cases for packets on enable. FUP/TIP.PGE IP is VMCSg.LIP
17f	VM entry, FilterEN 0->1	0	1	1	*PIP if OF=1, and "Suppress VMX packets on entry" exe- cution control = 0; *MODE.Exec if the value is different, since last TIP.PGD	PIP(GuestCR3, NR=1)?, MODE.Exec?, TIP.PGE(VMCSg.LIP)
17j	VM entry, ContextEN 0->1	0	1	1	*MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec, TIP.PGE(VMCSg.LIP)
17g	VM entry, MSR list clears TraceEn=0	1	0	0	*PIP if OF=1, and "Suppress VMX packets on entry" exe- cution control = 0;	PIP(GuestCR3, NR=1)?, TIP.PGD
17h	VM entry	1	0	1	*PIP if OF=1, and "Suppress VMX packets on entry" exe- cution control = 0; *TraceStop if VMCSg.LIP is in a TraceStop region	PIP(GuestCR3, NR=1)?, TIP.PGD(VMCSg.LIP), TraceS- top?
17i	VM entry	1	1	1	*PIP if OF=1, and "Suppress VMX packets on entry" exe- cution control = 0; *MODE.Exec if the value is different, since last TIP.PGD	PIP(GuestCR3, NR=1)?, MODE.Exec, TIP(VMCSg.LIP)
20a	EENTER/ERESUME to non-debug enclave	0	0	0		None
20c	EENTER/ERESUME to non-debug enclave	1	0	0		FUP(CLIP), TIP.PGD()
21a	EEXIT from non-debug enclave	0	0	D.C.		None
21b	EEXIT from non-debug enclave	0	1	1	*MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec?, TIP.PGE(BLIP)
22a	AEX/EEE from non-debug enclave	0	0	D.C.		None
22b	AEX/EEE from non-debug enclave	0	1	1	*MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec?, TIP.PGE(AEP.LIP)
23a	EENTER/ERESUME to debug enclave	0	0	D.C.		None
23b	EENTER/ERESUME to debug enclave	0	1	1	*MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec?, TIP.PGE(BLIP)
23c	EENTER/ERESUME to debug enclave	1	0	0		FUP(CLIP), TIP.PGD()
23d	EENTER/ERESUME to debug enclave	0	0	1	*TraceStop if BLIP is in a TraceStop region	FUP(CLIP), TIP.PGD(BLIP), TraceStop?
23e	EENTER/ERESUME to debug enclave	1	1	1		FUP(CLIP), TIP(BLIP)
24f	EEXIT from debug enclave	0	0	D.C.		None

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn	PktEn	CntxEn	Other Dependencies	Packets Output
case	Орегация	Before	After	After	Other Dependencies	Packets Output
24b	EEXIT from debug enclave	0	1	1	*MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec?, TIP.PGE(BLIP)
24d	EEXIT from debug enclave	1	0	1	*TraceStop if BLIP is in a TraceStop region	FUP(CLIP), TIP.PGD(BLIP), TraceStop?
24e	EEXIT from debug enclave	1	1	1		FUP(CLIP), TIP(BLIP)
25a	AEX/EEE from debug enclave	0	0	D.C.		None
25b	AEX/EEE from debug enclave	0	1	1	*MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec?, TIP.PGE(AEP.LIP)
25d	AEX/EEE from debug enclave	1	0	1	*For AEX, FUP IP could be NLIP, for trap-like events	FUP(CLIP), TIP.PGD(AEP.LIP)
25e	AEX/EEE from debug enclave	1	1	1	*MODE.Exec if the value is different, since last TIP.PGD *For AEX, FUP IP could be NLIP, for trap-like events	FUP(CLIP), MODE.Exec?, TIP(AEP.LIP)
26a	XBEGIN/XACQUIRE	0	0	D.C.		None
26d	XBEGIN/XACQUIRE that does not set InTX	1	1	1		None
26e	XBEGIN/XACQUIRE that sets InTX	1	1	1		MODE(InTX=1, TXAbort=0), FUP(CLIP)
27a	XEND/XRELEASE	0	0	D.C.		None
27d	XEND/XRELEASE that does not clear InTX	1	1	1		None
27e	XEND/XRELEASE that clears InTX	1	1	1		MODE(InTX=0, TXAbort=0), FUP(CLIP)
28a	XABORT(Async XAbort, or other)	0	0	0		None
28e	XABORT(Async XAbort, or other)	0	0	1	*TraceStop if BLIP is in a TraceStop region	MODE(InTX=0, TXAbort=1), TraceStop?
28b	XABORT(Async XAbort, or other)	0	1	1		MODE(InTX=0, TXAbort=1), TIP.PGE(BLIP)
28c	XABORT(Async XAbort, or other)	1	0	1	*TraceStop if BLIP is in a TraceStop region	MODE(InTX=0, TXAbort=1), TIP.PGD (BLIP), TraceStop?
28d	XABORT(Async XAbort, or other)	1	1	1		MODE(InTX=0, TXAbort=1), FUP(CLIP), TIP(BLIP)
30a	INIT (BSP)	0	0	0		None
30b	INIT (BSP)	0	0	1	*TraceStop if RESET.LIP is in a TraceStop region	BIP(0), TraceStop?
30c	INIT (BSP)	0	1	1	* MODE.Exec if the value is different, since last TIP.PGD	MODE.Exec?, PIP(0), TIP.PGE(ResetLIP)
30d	INIT (BSP)	1	0	0		FUP(NLIP), TIP.PGD()

Table 36-46 Packet Generation under Different Enable Conditions

Case	Operation	PktEn Before	PktEn After	CntxEn After	Other Dependencies	Packets Output
30e	INIT (BSP)	1	0	1	* PIP if OS=1 *TraceStop if RESET.LIP is in a TraceStop region	FUP(NLIP), PIP(0), TIP.PGD, TraceStop?
30f	INIT (BSP)	1	1	1	* MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB * PIP if OS=1	FUP(NLIP), PIP(0)?, MODE.Exec?, TIP(ResetLIP)
31a	INIT (AP, goes to wait-for-SIPI)	0	D.C.	D.C.		None
31b	INIT (AP, goes to wait-for-SIPI)	1	D.C.	D.C.	* PIP if OS=1	FUP(NLIP), PIP(0)
32a	SIPI	0	0	0		None
32c	SIPI	0	1	1	* MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	MODE.Exec?, TIP.PGE(SIPI-LIP)
32d	SIPI	1	0	0		TIP.PGD
32e	SIPI	1	0	1	*TraceStop if SIPI LIP is in a TraceStop region	TIP.PGD(SIPILIP); TraceStop?
32f	SIPI	1	1	1	* MODE.Exec if the mode has changed since the last MODE.Exec, or if no MODE.Exec since last PSB	MODE.Exec?, TIP(SIPILIP)
33a	MWAIT (to CO)	D.C.	D.C.	D.C.		None
33b	MWAIT (to higher-numbered C-State, packet sent on wake)	D.C.	D.C.	D.C.	*TSC if TSCEn=1 *TMA if TSCEn=MTCEn=1	TSC?, TMA?, CBR

36.8 SOFTWARE CONSIDERATIONS

36.8.1 Tracing SMM Code

Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described in Section, SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to enable tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follows:

- 1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing. This will allow the non-SMM tracing context to be restored before RSM.
- 2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid possible LIP vs RIP confusion.
- 3. Packet output cannot be directed to SMRR memory, even while tracing in SMM.
- 4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring any other configuration MSRs that were modified.

5. RSM

- Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model, and the packets generated by RSM are undefined.
- For processors on which Intel PT and LBR use are mutually exclusive (see Section 36.3.1.2), any RSM during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

...

36.8.3 Tracking Time

This section describes the relationships of several clock counters whose update frequencies reside in different domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irregularity of the occurrences of various timing packets that store those clock counters.

Intel PT provides time information for three different but related domains:

Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet occurs occasionally and are much less frequent than the frequency of the time stamp counter. The timestamp counter will continue to increment when the processor is in deep C-States, with the exception of processors reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

Core crystal clock

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can calculating CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower than that of the timestamp counter. The periodic MTC packet is generated based on software-selected multiples of the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides elapsed time as measured in processor core clock cycles relative to the last CYC packet.

A decoder can use all or some combination of these packets to track time at different resolutions throughout the trace packets.

36.8.3.1 Time Domain Relationships

The three domains are related by the following formula:

```
TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software Offset;
```

The CoreCrystalClockValue can provide the coarse-grained component of the TSC value. P is a constant ratio derived from CPUID leaf 15H, as described in Section 36.8.3.

The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the max non-turbo (or P1) frequency.

The Software_Offsets component includes all software offsets that are factored into the timestamp value, including IA32_TSC_ADJUST and VMCS-based offsets.

36.8.3.2 Estimating TSC within Intel PT

For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula provided in Section 36.8.3.1 above provides the framework for how such an estimate can be calculated from the various timing packets present in the trace.

The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infrequent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC packets should be enabled.

MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf 15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a means to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock cycles passed is calculated from the 8-bit payloads of respective MTC packets:

 $(CTC_B - CTC_A)$, where $CTC_i = MTC_i[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B.$

The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows the TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the AdjustedProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding core crystal clock value of the TSC packet.

When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can be calculated by subtracting the TMA.CTC value from the time indicated by the MTC_{Next} packet by

 $\mathsf{CTC}_{\mathsf{Delta}}[15:0] = (\mathsf{CTC}_{\mathsf{Next}}[15:0] - \mathsf{TMA}.\mathsf{CTC}[15:0]), \text{ where } \mathsf{CTC}_{\mathsf{Next}} = \mathsf{MTC}_{\mathsf{Payload}} << \mathsf{IA32}_{\mathsf{RTIT}} = \mathsf{CTL}.\mathsf{MTCFreq}.$

The TMA.FastCounter field provides the fractional component of the TSC packet into the next crystal clock cycle.

CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by providing an indication of the time passed between other timing packets (MTCs or TSCs).

When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC values can be used to estimate the adjusted_processor_cycles component of the timestamp value. The accumulated CPU cycles will have to be adjusted to account for the difference in frequency between the processor core clock and the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in the CBR packet, by multiplying the accumulated cycle count value by P1/CBR_{payload}.

A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 36.8.3.3 below for a method to do so using Intel PT packets.

CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction in estimated TSC precision.

36.8.3.3 Calculating Frequency with Intel PT

Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it can be applied to determine the CPU frequency. See Section 36.8.3.1 above for details on the relationship between TSC, MTC, and CYC.

. . .