Wearable and Implantable Technology

Accelerometry Data

.....

An NHANES

Analysis and Feature Extraction

Scalar Features Functiona Features

lass Project

Special Topics: Biostatistical Methods for Wearable Computing

Analyzing "macro" scale accelerometry data: NHANES

Andrew Leroux

October 3, 2019

Roadmap

Wearable and Implantable Technology

Accelerometry Data Resolution

NHANES

An NHANES

Analysis and Feature Extraction Scalar Features Functional

lass Project

Last class

- Introduced accelerometry broadly
 - Described what is being measured
 - Presented some ways of visualizating the data
- Provided an example of raw (sub-second level) accelerometry data

Today

- Recap wearables, focusing on accelerometry
- Describe data and motivate dimensionality reduction (raw data to aggregated data)
- Describe the NHANES study
- Walk through some example analyses using NHANES accelerometry data

Wearable and Implantable Technology

Wearable and Implantable Technology

Accelerometry
Data
Resolution

NHANES

An NHANES

Analysis and Feature Extraction Scalar Features

- Wearable and implantable devices are smart electronic devices that can be worn on the body as implants or accessories
- Emerging technology (increasing variety of sensors and signals measured)
- Growing popularity in health research and consumer tech

Wearable and Implantable Technology: Statistical Methods

Wearable and Implantable Technology

Accelerometry Data Resolution

NHANES

An NHANES data nackage

Analysis and Feature Extraction Scalar Features Functional

- High dimensional time series data
 - Signal processing
 - Functional data analysis
 - Feature extraction
- Methodological challenges specific to wearables
 - Study protocol (device location, battery life, convenience, comfort)
 - Wear vs non-wear (complex missing data patterns)
- Computational challenges
 - Data storage
 - Data analysis

NHANES accelerometry: Reproducing these Analyses

Wearable and Implantable Technology

Accelerometry Data

NHANES

An NHANES

Analysis and Feature Extraction Scalar Features

lass Project

 All analyses presented here can be replicated using the "wearables_shortcourse_week1.R script located at https://github.com/andrew-leroux/wearables_special_ topics_course

- Steps:
 - Download or clone
 - Open R project ("data science accelerometry.Rproj")
 - Open R script "wearables_shortcourse_week1.R" in the "code" directory
 - Run code

Why Accelerometry?

Wearable and Implantable Technology

Accelerometry Data

Resolution

.

data package

Analysis and
Feature
Extraction
Scalar
Features
Functional
Features

- Physical activity is <u>the</u> modifiable risk factor
 - Mortality
 - Morbidity
 - Pain
 - "Aging"
- Objective vs. self-reported PA
 - Recall bias
 - Subjective assessment of intensity
 - Questionairre format
 - "MET" equivalents

Accelerometry: Data Reduction

Wearable and Implantable Technology

Accelerometr Data Resolution

data package Analysis and

Feature
Extraction
Scalar
Features
Functional
Features

- Raw accelerometry data are enormous
- A tri-axial accelerometer recording at 50hz for 7 days generates 90, 720, 000 data points per subject
- Can we reduce the data?
 - Ollapse the three channels (x,y,z) into a single time series
 - 2 Summarize within an epoch (1s, 5s, 1min, ...)
 - "Activity count"
 - Activity index
 Vector magnitud
 - Vector magnitude
 - Mean amplitude deviation
- Choices for data redution depend on study goals

Micro- vs Macro-Scale Accelerometry Data

Wearable and Implantable Technology

Data Resolution

NHANES

An NHANES

Analysis and

Scalar Features

National Health and Nutrition Examination Survey (NHANES)

Wearable and Implantable Technology

Accelerometry Data_.

NHANES

An NHANES

Analysis and Feature Extraction Scalar Features Functional

- Complex, multistage probability sample of the non-institutionalized US population
- Ongoing cross-sectional study conducted in 2-year "waves"
- 2003-2004 and 2005-2006 waves collected accelerometry data
- Oversamples certain groups
 - African Americans, Mexican Americans
 - Low income White Americans
 - Adolescents (12-19 years old)
 - Older adults (60+)
- All participants assigned a "weight" indicating the number of people in the US population they "represent"

NHANES Sampling Procedure

Wearable and Implantable Technology

Accelerometry Data

NHANES

data package

Analysis and Feature

Extraction

Features Functiona

NHANES 2003-2006 Data

Wearable and Implantable Technology

Accelerometry Data

NHANE

An NHANES

Analysis and
Feature
Extraction
Scalar
Features
Functional
Features

lass Project

Accelerometry data

- Acceleration summarized into minute-level "activity counts"
- Up to 7 days of data for each participant
- Study protocol: remove the device at bedtime
- NHANES collects a lot of data on participants
 - https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/ Default.aspx?BeginYear=2003
 - https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/ Default.aspx?BeginYear=2005

NHANES accelerometry: data structure

Wearable an Implantable Technology

Accelerometry Data

NHANES

An NHANES

data package

Feature Extraction Scalar Features Functional

lass Brainst

- Accelerometry data downloadble from NHANES is in long format
- Very large file sizes (\approx 2.5 GB)

SEQN	PAXSTAT	PAXCAL	PAXDAY	PAXN	PAXHOUR	PAXMINUT	PAXINTEN	PAXSTEP
31128	1	1	1	1	0	0	166	4
31128	1	1	1	2	0	1	27	0
31128	1	1	1	3	0	2	0	0
:	:	:	:	:	:			:

NHANES accelerometry: proposed data strucutre

Wearable and Implantable Technology

Accelerometry Data Resolution

An NHANES

data package

Feature
Extraction
Scalar
Features

reatures Class Proiec

- Wide format instead of long format $(\approx 60 \text{ MB})$
- 7 rows per participant, descending cronologoical order

	Unique Identifier		Quality Flags		NHANES wave	NES wave Activity Counts		unts	_	
	SEQN	PAXDAY	PAXCAL	PAXSTAT	SDDSRVYR	MIN1	MIN2	MIN3		MIN1440
ſ	31128	1	1	1	4	166	27	0		0
(a) {	31128	2	1	1	4	0	0	0		0
(")	÷	÷	÷	:	4		:	:	:	:
(31128	7	1	1	4	0	0	0		0
	:	:	:	:	4	:	:	:	:	:
ſ	31193	2	2	1	4	0	0	0		1921
(b)	31193	3	2	1	4	335	2598	2185		46
l	31193	4	2	1	4	0	0	0		0
	÷	:	÷	:	4		÷	:	:	:
(-) J	31880	2	2	2	4	32767	32767	32767		32767
(c){	31880	3	2	2	4	32767	32767	32767		32767
	÷	÷	:	:	4	÷	:	:	:	÷
(a)	32008	5	1	2	4	0	0	0		0
$^{(d)}$	32008	6	1	2	4	NA	NA	NA	•••	NA

¹Leroux A, Di J, Smirnova E, et al. Organizing and Analyzing the Activity Data in NHANES. Statistics in Biosciences. 2019. doi:10.1007/s12561-018-09229-9 occiones.

NHANES accelerometry: rnhanesdata package

Wearable and Implantable Technology

Accelerometry

NHANE

An NHANES

Feature
Extraction
Scalar
Features
Functional

(1) Processed data						
processed physical activity data	"PAXINTEN_C.rda" and "PAXINTEN_D.rda"					
wear/non-wear flags data	"Flags_C.rda" and "Flags_D.rda"					
covariates data	"Covariate_C.rda" and "Covariate_D.rda"					
mortality data	"Mortality_2011_C.rda" and "Mortality_2011_D.rda"					
(2) Data processing functions						
NHANES activity processing code	"process_accel()"					
NHANES wear/non-wear flag code	"process_flags()"					
NHANES mortality	"process_mort()"					
NHANES data merging	"process_covar()"					
(3) Helper functions						
Calculate survey weights on subsets	"reweight_accel()"					
Identify "good" days of accelerometry data	"exclude_accel()"					
(4) Raw data						
NHANES covariate data	"ALQ_C.XPT", "ALQ_D.XPT",					
	"BMX_C.XPT", "BMX_D.XPT",					
NHANES linked mortality data	"NHANES_2005_2006_MORT_2011_PUBLIC.dat" "NHANES_2003_2004_MORT_2011_PUBLIC.dat"					

¹Leroux A, Di J, Smirnova E, et al. Organizing and Analyzing the Activity Data in NHANES. Statistics in Biosciences. 2019. do.1007/s12561-018-09229-9. Q

Macro Scale Accelerometry Data: Compliant Participant

Wearable an Implantable Technology

Accelerometry Data

An NHANES data package

Analysis and Feature Extraction

Scalar Features Functional

Macro Scale Accelerometry Data: Compliant vs Non-Compliant Participant

Wearable an Implantable Technology

Accelerometry

Data

NHANE

An NHANES data package

Analysis and Feature Extraction

Scalar Features Functional Features

NHANES accelerometry: Analysis Procedure

Wearable and Implantable Technology

Accelerometry Data

NHANES

An NHANES

Analysis and Feature Extraction

Scalar Features Functional Features

- Load and merge any relevant data by unique identifier (SEQN)
- Apply exclusion criteria
 - Data quality: 1) device calibration (PAXCAL); and 2) NHANES supplied flag (PAXSTAT)
 - ullet Adherence to wear-time protocol. Most studies use ≥ 10 hours.
 - \bullet Sufficient number of days of data. Most studies use ≥ 3 days of data with ≥ 10 hours of wear.
 - Other criteria: missing data, etc.
- Calculate features of interest
- Incorporate survey design? Survey weights?
- Regresison, machine learning, etc.

Macro Scale Accelerometry Data: Features and Dimensionality Reduction

Wearable and Implantable Technology

Accelerometry

NHANES

An NHANES

Analysis and Feature

Extraction

Scalar

Features Functional Features

Class Proie

NHANES accelerometry: Features

Wearable and Implantable Technology

Accelerometry Data

NHANES

An NHANES

Analysis and Feature Extraction

Scalar Features Functional

- Analyzing activity profiles falls under "Functional Data Analysis"
- Current standard: calculate single summaries of the data
 - Volume of activity²
 - Time spent in sedentary/light/moderate/vigorous behaviours.
 Require population-specific studies to determine thresholds.
 - Average daily total activity count (TAC). A proxy for total volume of moderate/vigorous activity
 - Average daily total log activity count (TLAC). A proxy for total volume of low/light activity
 - Patterns of activity
 - Fragmentation measures³
 - Timing of physical activity (activity profiles)

 $^{^3}$ Varma VR, Dey D, Leroux A, et al. Total volume of physical activity: TAC, TLAC or TAC(λ). Prev Med. 2017;106:233-235.

³Di, J., Leroux, A., Urbanek, J., et al. Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study. bioRxiv: 182337.

Predicting 5-year mortality in NHANES

Wearable and Implantable Technology

Accelerometry Data

NHANE

An NHANES

Analysis and Feature

Scalar Features Functional

lass Proiect

 See vignette "5-year mortality prediction in NHANES with Lab Measurements" in the *rnhanesdata* package

```
browseVignettes(package="rnhanesdata")
```

 Assesses the predictive value of scalar accelerometry features compared to standard predictors of mortality

Accelerometry as Functional Data

Wearable and Implantable Technology

Accelerometry

An NHANES

Analysis and Feature Extraction Scalar Features Functional Features

- Fundamentaly, we think of data as "functional" data when there is some (underlying) smooth process which we measure
 - child growth (height and weight)
 - heart rate + other biosignals
 - neuroimaging
- Physical activity is inherently a "continuous" process
- In regression analyses, functional data can either be the outcome of interest or a predictor
- In this course we'll discuss 2 methods
 - Function-on-function regression (FoFR)
 - Scalar-on-function regression (SoFR)

Physical Activity and Employment

Wearable and Implantable Technology

Accelerometry Data

MITANES

n NHANES

Analysis and Feature Extraction Scalar Features Functional Features

- Scientific question: How do patterns of low/light activity vary by employment status among 30-55 year olds? Do these patterns differ by Race? By gender?
- Non-model based approach: group people into employment, race, and gender categories, take average at each time of the day

Physical Activity and Employment

Wearable and Implantable Technology

Accelerometry Data

NUANE

An NHANES

data package

Feature
Extraction
Scalar
Features
Functional
Features

Class Prois

Physical Activity and Aging

Wearable and Implantable Technology

Accelerometry Data

NHANES

An NHANES

data package

Analysis and Feature Extraction Scalar Features Functional Features

lass Project

 Scientific question: How do patterns of low/light activity change with age? Do these patterns differ between weekends and weekdays? By gender?

Physical Activity and Aging

Wearable and Implantable Technology

Accelerometry Data

NHANE

An NHANES

Analysis and Feature Extraction Scalar

Features Functional Features

- Scientific question: How do patterns of low/light activity change with age? Do these patterns differ between weekends and weekdays? By gender?
- i = 1, ..., N subject, $j = 1, ..., J_i$ day, t = 1, ..., 1440 minute of the day
- Let M_i be the indicator that subject i is male, and D_{ij} be the indicator that day j for subject i is a weekend

$$\begin{split} \log(1 + \mathsf{AC}_{ij}(t)) &= f_{\mathbf{0}}(t) + f_{\mathbf{1}}(t, \mathsf{Age}_i) M_i D_{ij} + f_{\mathbf{2}}(t, \mathsf{Age}_i) M_i (1 - D_{ij}) + \\ & f_{\mathbf{3}}(t, \mathsf{Age}_i) (1 - M_i) D_{ij} + f_{\mathbf{4}}(t, \mathsf{Age}_i) (1 - M_i) (1 - D_{ij}) + \epsilon_{ij}(t) \\ & \epsilon_i(t) \sim \mathit{N}(0, \sigma^2) \end{split}$$

- PA modelled as smooth function of age and time of day separately for each gender and weekday vs weekend
- Ignores within subject correlation

Physical Activity and aging

Wearable and Implantable Technology

Accelerometry Data

NHANE

An NHANES

data package

Feature
Extraction
Scalar
Features
Functional

Features Class Projec

Functional regression in R

Wearable and Implantable Technology

Accelerometry Data

NHANE

An NHANES lata package

Feature
Extraction
Scalar
Features
Functional
Features

Class Proied

- In R, the main software package designed specifically for fitting functional regression models is the refund package⁴
- Basically, refund contains wrapper functions for the gam()/bam() functions in the mgcv package⁵⁶
- Reduces user burden: data transformations, numeric integration, extracting estimated functional coefficients, and dealing with identifiability constraints.

https://CRAN.R-project.org/package=refund

⁶Wood, SN (2017). Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC.

⁶Goldsmith J, Scheipl F, Huang L, et al. (2018). refund: Regression with Functional Data. R package version 0.1-17.

Class Project Ideas

Wearable and Implantable Technology

Accelerometry Data Baselution

NHANES

An NHANES lata nackage

Analysis and Feature Extraction Scalar Features Functional

Class Project

Missing data

- (Medium/Easy) Look in depth at missing data patterns (within a day, across days, by age, etc.)
- (Hard) Impute missing activity data at the minute level
- Functional Regression [I have ideas for each of these]
 - (Hard) Propose and estimate a functional transition model
 - (Hard/Medium) Model time dependent fragmentation
 - (Hard/Medium) Model PA profiles using models for zero inflated count data
- (Medium) Try to beat TAC as a predictor of 5-year mortality
- (Medium) Develop a Shiny application for impressive visualization of the data
- (Medium) Assess the weekend vs. weekday effect of PA on an outcome
- (Medium/Easy) Associate "adjusted" fPCA scores with mortality (patterns unaccounted for by age-, sex- specfic average activity)