Bài Tập (Các phép toán số học cho số nguyên)

---oOo---

Các bài tập chương này được trích dẫn và dịch lại từ:

Computer Organization and Design: The Hardware/Software Interface, Patterson, D. A., and J. L. Hennessy, Morgan Kaufman, Third Edition, 2011.

Bảng 1:

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥ 0

Bài số 1
Cho bảng sau với các số được viết trong hệ nhi phân

	A	В
a.	01000101	01011010
b.	01100110	00101100
c.	11001000	01100111
d.	11110111	11101101

- 1. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **có dấu** dùng bù hai. Tính A + B
 - a) 10011111 overflow (số âm dù là tổng 2 số nguyên dương)
 - b) 10010010 overflow (số âm dù là tổng 2 số nguyên dương)
 - c) 00101111
 - d) 11100100
- 2. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **có dấu** dùng bù hai. Tính A B
- a) 11101011
- b) 00111010
- c) 01000001 overflow (số dương dù là hiệu 2 số nguyên âm)
- d) 00001010
- 3. Giả sử A và B là số dùng 8 bit lưu trữ, theo dạng số **không dấu**. Tính A + B (chỉ tính cho c và d)

- a) 10011111
- b) 10010010
- c) 1 001011111 **overflow**
- d) 1 11100100 **overflow**

Bài số 2

Cho các số như bảng sau:

a	50(8)	23(8)
b	66(8)	04(8)
c	110110 ₍₂₎	101100 ₍₂₎
d	30 ₍₈₎	07 ₍₈₎

1. Giả sử số biểu diễn theo kiểu **không dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 1 (sử dụng cho hàng a, b trong bảng trên)

Hình 1.

a)

$$A = 50_{(8)} = 101000$$

$$B = 23_{(8)} = 010011$$

Vòng lặp	Step	Multiplier	Multipliand	Product
0	Initial values	01 0011	0000 0010 1000	0000 0000 0000
1	1.1a: 1 -> Prod =	01 0011	0000 0010 1000	0000 0010 1000
	Pro + Mcand			
	2: Shift left	01 0011	0000 0101 0000	0000 0010 1000
	Multiplicand			
	3: Shift right	00 1001	0000 0101 0000	0000 0111 1000
	Multiplier			

2	1.1a: 1 -> Prod =	00 1001	0000 0101 0000	0000 0111 1000
	Pro + Mcand			
	2: Shift left	00 1001	0000 1010 0000	0000 0111 1000
	Multiplicand			
	3: Shift right	00 0100	0000 1010 0000	0000 0111 1000
	Multiplier Multiplier	00 0100	0000 1010 0000	0000 0111 1000
	1	00 0100	0000 1010 0000	0000 0111 1000
3	1: 0 -> No operation			
	2: Shift left	00 0100	0001 0100 0000	0000 0111 1000
	Multiplicand			
	3: Shift right	<mark>00 0010</mark>	0001 0100 0000	0000 0111 1000
	Multiplier			
4	1: 0 -> No operation	00 0010	0001 0100 0000	0000 0111 1000
	2: Shift left	00 0010	0010 1000 0000	0000 0111 1000
	Multiplicand			
	3: Shift right	00 0001	0010 1000 0000	0000 0111 1000
	Multiplier			
5	1.1a: 1 -> Prod =	00 0001	0010 1000 0000	0010 1111 1000
	Pro + Mcand	000001	00101000000	001011111000
	2: Shift left	00 0001	0101 0000 0000	0010 1111 1000
	Multiplicand	00 0001	0101 0000 0000	0010 1111 1000
	3: Shift right	00 0000	0101 0000 0000	0010 1111 1000
		00 0000	0101 0000 0000	0010 1111 1000
	Multiplier	00.000	04.04.0000.0000	00404444000
<mark>6</mark>	1: 0 -> No operation	00 0000	0101 0000 0000	0010 1111 1000
	2: Shift left	<mark>00 0000</mark>	1010 0000 0000	0010 1111 1000
	Multiplicand			
	3: Shift right	00 0000	1010 0000 0000	0010 1111 1000
	Multiplier			
		<u> </u>	l .	

 \Box A x B = 0010 1111 1000 = 1370 (8)

b)

 $A = 66_{(8)} = 110110$

 $B = 04_{(8)} = 000100$

Vòng lặp	Step	Multiplier	Multipliand	Product
0	Initial values	00 0100	0000 0011 0110	0000 0000 0000
1	1: 0 -> No operation	00 0100	0000 0011 0110	0000 0000 0000

İ			T	T
	2: Shift left	<mark>00 0100</mark>	0000 0110 1100	<mark>0000 0000 0000</mark>
	Multiplicand			
	3: Shift right	00 0010	0000 0110 1100	0000 0000 0000
	Multiplier			
2	1: 0 -> No operation	00 0010	0000 0110 1100	0000 0000 0000
	2: Shift left	00 0010	0000 1101 1000	0000 0000 0000
	Multiplicand			
	3: Shift right	00 0001	0000 1101 1000	0000 0000 0000
	Multiplier			
3	1.1a: 1 -> Prod =	00 0001	0000 1101 1000	0000 1101 1000
_	Pro + Mcand			
	2: Shift left	00 0001	0001 1011 0000	0000 1101 1000
	Multiplicand	00 0001	000110110000	0000 1101 1000
	3: Shift right	00 0000	0001 1011 0000	0000 1101 1000
	Multiplier			
4	1: 0 -> No operation	00 0000	0001 1011 0000	0000 1101 1000
	2: Shift left	00 0000	0011 0110 0000	0000 1101 1000
	Multiplicand			
	3: Shift right	00 0000	0011 0110 0000	0000 1101 1000
	Multiplier			
<mark>5</mark>	1: 0 -> No operation	00 0000	0011 0110 0000	0000 1101 1000
	2: Shift left	00 0000	0110 1100 0000	0000 1101 1000
	Multiplicand			
	3: Shift right	00 0000	0110 1100 0000	0000 1101 1000
	Multiplier			
<mark>6</mark>	1: 0 -> No operation	00 0000	0110 1100 0000	0000 1101 1000
_	2: Shift left	00 0000	1101 1000 0000	0000 1101 1000
	Multiplicand			
	3: Shift right	00 0000	1101 1000 0000	0000 1101 1000
1				
	Multiplier			

 $[\]square$ A x B = 0000 1101 1000= 330₍₈₎

2. Giả sử số biểu diễn theo kiểu **có dấu 6 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 1 (sử dụng cho hàng c, d trong bảng trên)

$$A = 50_{(8)} = 101000$$

$B = 23_{(8)} = 010011$

Buóc	Action	Multiplicand	Product/Multiplier
O	Initial	101 000	000 000 010 011
1	Prod = Prod + Multiplicand	101 000	101 000 010 011
	Shift right Prod/Mcand	101 000	010 100 001 001
2	Prod = Prod + Multiplicand	101 000	111 100 001 001
	Shift right Prod/Mcand	101 000	011 110 000 100
<mark>3</mark>	Không làm gì	101 000	011 110 000 100
	Shift right Prod/Mcand	101 000	001 111 000 010
<mark>4</mark>	Không làm gì	101 000	001 111 000 010
	Shift right Prod/Mcand	101 000	000 111 100 001
<mark>5</mark>	Prod = Prod + Multiplicand	101 000	101 111 100 001
	Shift right Prod/Mcand	101 000	010 111 110 000
<mark>6</mark>	Không làm gì	101 000	010 111 110 000
	Shift right Prod/Mcand	101 000	001 011 111 000

 $[\]Box$ A x B = 001 011 111 000= 1370 (8)

b/

$A = 66_{(8)} = 110110$

$B = 04_{(8)} = 000100$

Bước	Action	Multiplicand	Product/Multiplier
0	Initial	110 110	000 000 000 100
1	Không làm gì	110 110	000 000 000 100
	Shift right Prod/Mcand	110 110	000 000 000 010
2	Không làm gì	110 110	000 000 000 010
	Shift right Prod/Mcand	110 110	000 000 000 001
3	Prod = Prod + Multiplicand	110 110	110 110 000 001
	Shift right Prod/Mcand	110 110	011 011 000 000
<mark>4</mark>	Không làm gì	110 110	011 011 000 000
	Shift right Prod/Mcand	110 110	001 101 100 000
<u>5</u>	Không làm gì	110 110	001 101 100 000
	Shift right Prod/Mcand	110 110	000 110 110 000

<u>6</u>	Không làm gì	110 110	000 110 110 000
	Shift right Prod/Mcand	110 110	000 011 011 000

 \Box A x B = 000 011 011 000= 330 (8)

Bài số 3

1. Cho A =
$$50_{(16)}$$

B = $23_{(16)}$

Giả sử số biểu diễn theo kiểu **không dấu 8 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

2.
$$A = 66_{(16)}$$

 $B = 04_{(16)}$

Giả sử số biểu diễn theo kiểu **không dấu 8 bit**, tính toán phép nhân A và B theo cấu trúc phần cứng như hình 2

KHÔNG CÓ HÌNH 2

Bài số 4

Thực hiện phép chia không dấu A/B theo cấu trúc phần cứng như hình, biết máy tính dùng 6 bit biểu diễn các số.

	A	В
a.	40(8)	21 ₍₈₎
b.	25(8)	44 ₍₈₎

Lưu ý: câu b, khi thực hiện A/B, dùng 6 bit, chạy theo giải thuật chia sẽ không đúng; nếu dùng lớn hơn 6 bit thì đúng. Sinh viên trả lời các câu hỏi sau:

- Vì sao lại không đúng? Gợi ý các giải pháp để giải quyết trường hợp này
- Thực hiện lại câu b lần lượt với hai trường hợp sau:
 - \circ **B** = 34₍₈₎
 - \circ B = 44₍₈₎ và A, B dùng số 8 bit để biểu diễn

a)

Bài 4

a/

$$A = 40_{(8)} = 100000 = 32_{(10)}$$

$$B = 21_{(8)} = 010001 = 17_{(10)}$$

Vòng lặp	Action	Quotient	Divisor	Remainder
0	Initial values	000 000	010 001 000 000	000 000 100 000
1	R = R - D	000 000	010 001 000 000	101 111 100 000
	R < 0, R = R + D,	000 000	010 001 000 000	000 000 100 000
	Shift left D, $Q_0 = 0$			

	Shift Div right	000 000	001 000 100 000	000 000 100 000
2	R = R - D	000 000	001 000 100 000	111 000 000 000
	R < 0, R = R + D, Shift left D, $Q_0 = 0$	000 000	001 000 100 000	000 000 100 000
	Shift Div right	000 000	000 100 010 000	000 000 100 000
3	R = R - D	000 000	000 100 010 000	111 100 010 000
	R < 0, $R = R + D$, Shift left D, $Q_0 = 0$	000 000	000 100 010 000	000 000 100 000
	Shift Div right	000 000	000 010 001 000	000 000 100 000
4	R = R - D	000 000	000 010 001 000	111 110 011 000
	R < 0, R = R + D, Shift left D, $Q_0 = 0$	000 000	000 010 001 000	000 000 100 000
	Shift Div right	000 000	000 001 000 100	000 000 100 000
5	R = R - D	000 000	000 001 000 100	111 111 011 100
	R < 0, $R = R + D$, Shift left D, $Q_0 = 0$	000 000	000 001 000 100	000 000 100 000
	Shift Div right	000 000	000 000 100 010	000 000 100 000
6	R = R - D	000 000	000 000 100 010	111 111 111 110
	R < 0, $R = R + D$, Shift left D, $Q_0 = 0$	000 000	000 000 100 010	000 000 100 000
	Shift Div right	000 000	000 000 010 001	000 000 100 000
7	R = R - D	000 000	000 000 010 001	000 000 001 111
	R > 0, Shift left D, $Q_0 = 1$	000 001	000 000 010 001	000 000 001 111
	Shift Div right	000 001	000 000 001 000	000 000 001 111

 $A/B = 000\ 001 = 1\ _{(10)}\ du\ 000\ 000\ 001\ 000\ = 15\ _{(10)}$

b/Em chưa nghĩ ra cách làm ạ 😩