Supplementary Table S1. SFV prevalence and viral load according to the location of data collection to *Leontopithecus rosalia*.

Collection point	Group	Animals	Prevalence (%)	Mean proviral load*
Afetiva	Afetiva 1	2	50%%	2.05
Afetiva	Afetiva 2/ AF2	12	25%	2.19
Afetiva	Afetiva 3/ AF3	2	0%	N/A**
Afetiva	UR	4	0%	N/A
Afetiva	FP	5	20%	2.33
Afetiva	FP3	1	0%	N/A
Andorinha	CH2	3	100%	4.22
Tamarins	Sidney 3	1	100%	3.49
Tamarins	TM2	4	25,00%	4.12
Igarapé	IG	8	62%	2.81
Igarapé	ph2	4	25%	1.88
Moriá Mount	Ronaldo Machado (RM)	2	40%	6.63
Nova Esperança	GM2	3	0%	N/A
Nova Esperança	GM3	7	29%	3.02
Nova Esperança	GM4	2	100%	3.05
Nova Esperança	GM5	4	0%	N/A
Nova Esperança	GM7	3	0%	N/A
Rio vermelho	M6	1	100%	2.51
Rio vermelho	Mistura fina	3	0%	N/A
Rio vermelho	RV	4	25%	2.96
Rio vermelho	RT	1	0%	N/A
Ribeirão	ZN	2	0%	N/A
Santa Helena	FN	2	100%	2.65
Santa Helena	JA	5	20%	4.34
Santa Helena	JN	2	100%	4.30
Santa Helena	JR	4	0%	N/A

Santa Helena 1	SH	1	0%	N/A
Santa Helena 1	SS2	3	67%	4.56
Sítio Quelinho	q1	2	100%	3.91
Tertulio	JD	2	50%	3.93

*Mean

viral load (log₁₀) per 10⁶ cells

Supplementary Table S2. SFV sequences used to characterize the novel SFVlro.

Accession	Host	Host genus	Annotation	Animal status
NC_039027.1	Ateles sp.	Ateles	Atelidae	Captive
NC_039030.1	Callithrix	Callithrix	Callitrichidae	Captive
NC_039031.1	Sapajus xanthosternos	Sapajus	Cebidae	Captive
LC487610.1	Macaca fuscata	Macaca	Cercopithecidae	Captive
LC487611.1	Macaca fuscata yakui	Macaca	Cercopithecidae	Captive
LC487615.1	Macaca fuscata	Macaca	Cercopithecidae	Captive
LC487619.1	Macaca mulatta	Macaca	Cercopithecidae	Captive
LC487620.1	Macaca cyclopis	Macaca	Cercopithecidae	Captive
LC487623.1	Macaca fuscata yakui	Macaca	Cercopithecidae	Captive
LC487624.1	Macaca fuscata yakui	Macaca	Cercopithecidae	Captive
LC487626.1	Macaca fuscata yakui	Macaca	Cercopithecidae	Captive
MN178627.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MN178628.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MN178629.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MN178630.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MN178631.1	Leontopithecus	Leontopithecus	Callitrichidae	Captive

^{**} N/A = not available

chrysomelas

MN178632.1	Leontopithecus chrysomelas	Leontopithecus Callitrichidae		Captive
MN178633.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MN178635.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MN178636.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
MH368762.1	Brachyteles arachnoides	Brachyteles	Atelidae	Captive
KR528435.1	Sapajus xanthosternos	Sapajus	Cebidae	Captive
KR528436.1	Sapajus nigritus robustus	Sapajus	Cebidae	Captive
KR528438.1	Cacajao ınelanocephalus	Cacajao	Pitheciidae	Captive
KR528439.1	Sapajus nigritus robustus	Sapajus	Cebidae	Captive
KR528442.1	Alouatta guariba	Alouatta	Atelidae	Captive
KR528443.1	Leontopithecus chrysomelas	Leontopithecus	Callitrichidae	Captive
KR528444.1	Callithrix geoffroyi	Callithrix	Callitrichidae	Captive
KR528445.1	Chiropotes sp.	Chiropotes	Pitheciidae	Captive
KR528447.1	Alouatta belzebul	Alouatta	Atelidae	Captive
KR902438.1	Ateles chamek	Ateles	Atelidae	Free living
KR902443.1	Ateles geoffroyi	Ateles	Atelidae	Captive
KR902444.1	Ateles geoffroyi	Ateles	Atelidae	Captive
KR902448.1	Ateles geoffroyi	Ateles	Atelidae	Captive
KR902451.1	Ateles hybridus	Ateles	Atelidae	Captive
KR902454.1	Alouatta sara	Alouatta	Atelidae	Captive
KR902456.1	Alouatta seniculus	Alouatta	Atelidae	Captive
KR902458.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902459.1	Sapajus apella	Sapajus	Cebidae	Captive

KR902460.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902461.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902464.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902465.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902466.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902470.1	Sapajus apella	Sapajus	Cebidae	Captive
KR902473.1	Callithrix jacchus	Callithrix	Callitrichidae	Captive
KR902481.1	Pithecia pithecia	Pithecia	Pitheciidae	Captive
KR902483.1	Pithecia pithecia	Pithecia	Pitheciidae	Captive
KR902490.1	Callithrix jacchus	Callithrix	Callitrichidae	Captive
KC283230.1	Macaca fascicularis	Macaca	Cercopithecidae	Free living
KC283231.1	Macaca fascicularis	Macaca	Cercopithecidae	Free living
KC283234.1	Macaca fascicularis	Macaca	Cercopithecidae	Free living
KC283236.1	Macaca fascicularis	Macaca	Cercopithecidae	Free living
KC196056.1	Macaca mulatta	Macaca	Cercopithecidae	Captive
KC196057.1	Macaca mulatta	Macaca	Cercopithecidae	Captive
KC196058.1	Macaca mulatta	Macaca	Cercopithecidae	Captive
KC196059.1	Macaca mulatta	Macaca	Cercopithecidae	Captive
KC331074.1	Alouatta seniculus	Alouatta	Atelidae	Captive
KC331075.1	Sapajus albifrons	Sapajus	Cebidae	Captive
KC331077.1	Sapajus apella	Sapajus	Cebidae	Captive
KC331078.1	Sapajus apella	Sapajus	Cebidae	Captive
KC331079.1	Sapajus apella	Sapajus	Cebidae	Captive
KC331080.1	Sapajus apella	Sapajus	Cebidae	Captive
KC331081.1	Sapajus xanthosternos	Sapajus	Cebidae	Captive
KC331082.1	Alouatta guariba	Alouatta	Atelidae	Captive
JF746869.1	Macaca mulatta	Macaca	Cercopithecidae	Captive
EU527595.1	Pan paniscus	Pan	Hominidae	Free living
DQ354074.1	Macaca tonkeana	Macaca	Cercopithecidae	Captive

DQ354080.1	Macaca tonkeana	Macaca	Cercopithecidae	Captive
AY686195.1	Pan paniscus	Pan	Hominidae	Captive
AY686198.1	Macaca arctoides	Macaca	Cercopithecidae	Captive
AJ627527.1	Pongo pygmaeus pygmaeus	Pongo	Hominidae	N/A*
AJ627528.1	Pongo pyginaeus pyginaeus	Pongo	Hominidae	N/A
AJ627531.1	Pongo pygmaeus pygmaeus	Pongo	Hominidae	N/A
AJ627533.1	Pongo pygmaeus pygmaeus	Pongo	Hominidae	N/A
AJ627534.1	Pongo pygmaeus pygmaeus	Pongo	Hominidae	N/A
AJ627536.1	Pongo pygmaeus pygmaeus	Pongo	Hominidae	N/A
AJ627543.1	Pongo abelii	Pongo	Hominidae	Captive
AJ627544.1	Pongo abelii	Pongo	Hominidae	Free living
AJ627547.1	Pongo abelii	Pongo	Hominidae	Captive
AJ627550.1	Pan paniscus	Pan	Hominidae	N/A
AJ627551.1	Pan paniscus	Pan	Hominidae	N/A
AY278785.1	Cercocebus torquatus	Cercocebus	Cercopithecidae	Human sample
AY195689.1	Pongo рудінаеиs	Pongo	Hominidae	Human sample
AJ556783.1	Pongo pygmaeus pygmaeus	Pongo	Hominidae	Captive
AF516486.1	Hylobates pileatus	Hylobates	Hylobatidae	Captive
AF516487.1	Nomascus leucogenys	Nomascus	Hylobatidae	Captive
AF049086.1	Pongo pygmaeus	Pongo	Hominidae	Free living
X83298.1	Ateles sp.	Ateles	Atelidae	N/A
KR528446.1	Leontopithecus rosalia	Leontopithecus	Callitrichidae	Captive
PP960560.1	Leontopithecus rosalia	Leontopithecus	This Study	Free living
NC_039023.1	Otolemur	Otolemur	Outgroup	Captive

crassicaudatus panganiensis

 $N/A^* = Not available$

Supplementary Table S3. Likelihood mapping plots values of used aligned.

Region	Percentage	Interpretation
Corner 1	22.4%	Strong signal for topology A
Corner 2	20%	Strong signal for topology B
Corner 3	20.7%	Strong signal for topology C
Edge 1	1.8%	Partial support between A/B
Edge 2	2.2%	Partial support between B/C
Edge 3	2.1%	Partial support between C/A
Center	30.8%	Unresolved quartets (ambiguity)

Supplementary Table S4. Test of substitution saturation performed in all sites. Two-tailed t-tests are used. Percentage of invariant sites were calculated by building an UPGMA tree under the GTR model, with value of P(invariant) of 0,08403.

	Iss	Sy	m	Asym		
NumOTU		Iss.c	p-value	Iss.c	p-value	Conclusion
4	0.451	0.756	< 0.0001	0.565	< 0.0001	Little saturation
8	0.452	0.729	< 0.0001	0.634	0.0001	Little saturation
14	0.477	0.648	0,0004	0.456	0.6568	Little saturation*
32	0.489	0.688	0,0001	0.369	0.016	Little saturation

^{*}For NumOTU 14 under asymmetrical topology (Iss.c = 0.456*), Iss was not significantly lower (p = 0.6568).

Supplementary Table S5. Node dates and confidence intervals of major clades of SFV inferred in this study.

Major SFV Splits	Million Years Ago 95% confidence interval [Lower–Upper]
SFV Leontopithecus rosalia	0.0836 [0.0362 - 0.1931]
SFV Sapajus Strain 1	0.0032 [0 - 0.03588]
SFV Leontopithecus chrysomelas Strain 1	0.0844 [0.021 - 0.3396]
SFV Sapajus Strain 1 & SFV Leontopithecus rosalia	0.7071 [0.3015-1.6858]
SFV Sapajus Strain 1 & SFV Leontopithecus chrysomelas Strain 1	1.1471 [0.5472-2.4046]
SFV Sapajus Strain 2	1.9051 [0.904-3.5752]
SFV Sapajus Strain 1 & 2	3.79 [2.137-6.3811]
SFV Callitrichidae & SFV Cebidae	4.2332 [2.807 - 6.3811]
SFV Sapajus Strain 3	0.2395 [0.1319 - 0.4348]
SFV Sapajus Strain 3 & SFV Leontopithecus chrysomelas Strain 2 & SFV Callithrix	3.652 [2.106 - 6.343]
SFV Callithrix	2.6395 [1.12694 - 5.4884]
SFV Leontopithecus chrysomelas Strain 2	0.0654 [0.0032 - 0.6261]
SFV Leontopithecus chrysomelas Strain 2 & SFV Sapajus nigritus robustus KR528439.1	2.4733 [1.1895 - 5.1426]
SFV Atelidae	12.1589 [9.0628 - 16.3127]
SFV Platyrrhini & Catarrhini*	39.6367 [38.4684 - 40.65]
SFV Platyrrhini	24.5659 [21.8374 - 27.6354]
SFV Catarrhini*	29.1632 [29.1632 - 30.6852]
SFV Macaca*	6.0542 [5.5918 - 6.1425]
SFV Pongo*	1.8633 [1.6461 - 1.8633]
SFV Pan*	8.024 [7.4887 - 8.705]
SFV Pongo & SFV Pan*	20.8554 [19.6804 - 21.8844]
SFV Pongo & SFV Pan & SFV Pongo	21.3642 [19.6804 - 25.6621]

^{*} Calibration points

Supplementary Figure S1. Likelihood mapping plots of used aligned.

Supplementary Figure S2 - GUIDANCE2 alignment confidence.

Supplementary Figure S3 - Complete timescale phylogenetic tree generated by RelTime-ML. Estimated host divergence dates were used to calibrate internal nodes of the viral tree. The node labels are colored according to the host family used in the dataset. The sequence generated in the current study is marked with a golden star. The x-axis summarizes the geological time scale of the timetree: Oligocene (Ol), Miocene (Mio), Plioceno (Pli) and Pleistocene (Ple).

