Rank-65546 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65546

General information

Number of lines	8
Number of points	9
Number of singular points	3
Number of Eckardt points	6
Number of double points	0
Number of single points	2
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	38
Type of lines on points	$4, 3^6, 1^2$

Singular Points

The surface has 3 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

$$1: P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1)$$

The 8 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_8 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_8 = \mathbf{Pl}(1, 0, 1, 0, 0, 1)_{23}$$

$$\ell_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \mathbf{Pl}(0,0,0,1,1,0)_{15}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{24} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{24} = \mathbf{Pl}(1,0,1,1,1,1)_{33}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0,1,0,0,1,0)_{11}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{Pl}(1,1,1,0,1,1)_{30}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_{7}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1,1,1,1,0,1)_{28}$$

$$\ell_{7} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(0,1,0,1,1,0)_{17}$$

Rank of lines: (8, 13, 24, 20, 10, 33, 22, 27

Rank of points on Klein quadric: (23, 15, 33, 11, 30, 7, 28, 17)

Eckardt Points

The surface has 6 Eckardt points:

$$0: P_5 = \mathbf{P}(1, 1, 0, 0) = \mathbf{P}(1, 1, 0, 0), T = 12$$

$$1: P_6 = \mathbf{P}(1, 0, 1, 0) = \mathbf{P}(1, 0, 1, 0), T = 12$$

$$2: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0), T = 12$$

$$3: P_{11} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1), T = 12$$

$$4: P_{13} = \mathbf{P}(1, 0, 1, 1) = \mathbf{P}(1, 0, 1, 1), T = 12$$

$$5: P_{14} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1). T = 12$$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 2 single points:

The single points on the surface are:

 $0: P_4 = (1, 1, 1, 1)$ lies on line ℓ_7

1: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_7

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

	01234567
0	01111110
1	10111111
2	11011110
3	11101111
4	11110110
5	11111011
6	11111100
7	$\begin{array}{c} 01234307 \\ 011111110 \\ 10111111 \\ 11011111 \\ 11101111 \\ 11110110 \\ 11111011 \\ 1111100 \\ 01010100 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_5	P_5	P_6	P_6	P_7	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_5	P_5	P_3	P_{11}	P_3	P_{11}	P_3

Line 2 intersects

	Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6
Ī	in point	P_5	P_5	P_{13}	P_{14}	P_{14}	P_{13}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_6	P_3	P_{13}	P_6	P_3	P_{13}	P_3

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_6	P_{11}	P_{14}	P_6	P_{14}	P_{11}

Line 5 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7
in point	P_7	P_3	P_{14}	P_3	P_{14}	P_7	P_3

Line 6 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5
in point	P_7	P_{11}	P_{13}	P_{13}	P_{11}	P_7

Line 7 intersects

Line	ℓ_1	ℓ_3	ℓ_5
in point	P_3	P_3	P_3

3

 $8: P_{14} = (0, 1, 1, 1)$

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_3 = (0,0,0,1) & 4: \, P_7 = (0,1,1,0) \\ 1: \, P_4 = (1,1,1,1) & 5: \, P_8 = (1,1,1,0) \\ 2: \, P_5 = (1,1,0,0) & 6: \, P_{11} = (1,1,0,1) \\ 3: \, P_6 = (1,0,1,0) & 7: \, P_{13} = (1,0,1,1) \end{array}$$

$$\begin{array}{lll} P_4 = (1,1,1,1) & 5: P_8 = (1,1,1,0) \\ P_5 = (1,1,0,0) & 6: P_{11} = (1,1,0,1) \\ P_6 = (1,0,1,0) & 7: P_{13} = (1,0,1,1) \end{array}$$