MÉTODOS ESTADÍSTICOS

```
Nombre(s): Equipo 4:

    Diana Zepeda Martínez

         José Juan García Romero
Nº Realizar los ejercicios en Rstudio aplicando la teoría de LDA
      Incluir la descripción de nuevas funciones y una interpretación general.
# BASE DE DATOS anorexia
# Peso de adolescentes que padecen de anorexia, antes y después de
# recibir uno de los tres posibles tratamientos:
# CBT = cognitivo conductual, FT = terapia familiar, Cont = control
data("anorexia")
      Actividad 25.R
                                                                  Console Terminal
                                                                                                Jobs
      🛑 🖈 🔏 🥛 Source on Save 🔍
                                                                  Q R 4.1.3 ~/ ₱
                                                                     # Diana Zepeda Martinez
                                                                 > # José Juan García Romero
          4
                                                                    # Practica 25 - LDA
          6
              library(MASS)
                                                                 > library(MASS)
              data("anorexia")
                                                                 > data("anorexia")
          8
                                                                 > library(ggplot2)
          9
               library(ggplot2)
                                                                     library(ggpubr)
        10
             library(ggpubr)
        11
a) verificar traslape individual con gráfico
         p1 <- ggplot(data = anorexia, aes(x = Prewt, fill = Treat)) +
   geom_histogram(position = "identity", alpha = 0.5)
p2 <- ggplot(data = anorexia, aes(x = Postwt, fill = Treat)) +
   geom_histogram(position = "identity", alpha = 0.5)</pre>
   14
   15
   16
   17
   18
   19
         ggarrange(p1, p2, nrow = 2, common.legend = TRUE)
   20
    > #a) Verificar traslape individual con gráfico
   > p1 <- ggplot(data = anorexia, aes(x = Prewt, fill = Treat)) +
+ geom_histogram(position = "identity", alpha = 0.5)
> p2 <- ggplot(data = anorexia, aes(x = Postwt, fill = Treat)) +
+ geom_histogram(position = "identity", alpha = 0.5)
> ggarrange(p1, p2, nrow = 2, common.legend = TRUE)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
                                                 Treat CBT Cont FT
                                                                       90
                                                             Postwt
```

```
b) Gráfico de correlación
         pairs(x = anorexia[, c("Prewt","Postwt")],
    col = c("firebrick", "green3", "blue")[anorexia$Treat],
    pch = 19)
    23
    24
25
    26
     > #b) Gráfico de correlación
     > pairs(x = anorexia[, c("Prewt","Postwt")],
+ col = c("firebrick", "green3", "blue")[anorexia$Treat],
+ pch = 19)
                                                                                            F 88
                                                                                            - 8
                                                                                             82
                         Prewt
                                                                                             8
                                                                                             22
                                                                                            . 2
     8
     - 82
     8 -
                                                                   Postwt
     8 -
     8 .
                 75
                                85
                                       90
                                               95
c) Generar el modelo Ida
                    27
                    28
                    29 library(MASS)
30 modelo_lda <- lda(Treat~., anorexia)</pre>
                    31
                    32 modelo_lda
                    33
                       > #c) Generar el modelo LDA
                       > library(MASS)
> modelo_lda <- lda(Treat~., anorexia)
> modelo_lda
                       Call:
                       lda(Treat ~ ., data = anorexia)
                       Prior probabilities of groups:
                               CBT
                                           Cont
                       0.4027778 0.3611111 0.2361111
                       Group means:
                                 Prewt
                                            Postwt
                       CBT 82.68966 85.69655
                       Cont 81.55769 81.10769
FT 83.22941 90.49412
                       Coefficients of linear discriminants:
                       LD1 LD2
Prewt 0.01157317 -0.20152472
Postwt -0.13955521 0.03690958
                                                            LD2
                       Proportion of trace:
                       LD1 LD2
0.9961 0.0039
```

```
d) Gráfica de partición para identificar límites de clasificación
 35
     library(klaR)
 36
 37
     partimat(Treat ~., data = anorexia, method = "lda")
 38
 39
 > #d) Gráfica de partición para identicar límites de clasificación
   library(klaR)
    partimat(Treat ~., data = anorexia, method = "lda")
                                    Partition Plot
    92
                                       app. error rate: 0.514
                                        С
    8
                     ^{\rm c} ^{\rm c} ^{\rm c}
                                              С
               С
                                         С
                                                    Æ
                                            С
    85
                                   CCC C
                         С
 Prewt
                               C<sub>C</sub>
                             C
    8
                 Œ
                             С
                                  С
                 С
                  <sub>F</sub>€
                С
                                        CC
    42
                                            С
    2
              75
                          80
                                                90
                                                                      100
                                     85
                                         Postwt
e) Predición de Prewt = 70, Postwt = 90
     40
         42
     43
     44
     45
                                  level = 0.95)
    46
     48
         prediccion$class
     49
     50
51
         prediccion$posterior
     54
```

```
> #d) Gráfica de partición para identicar límites de clasificación
    > library(klaR)
    > partimat(Treat ~., data = anorexia, method = "lda")
    > #e) Predicción de Prewt = 70, Postwt = 90
    > nuevas_observaciones <- data.frame(Prewt = 70, Postwt = 90)
> prediccion <- predict(object = modelo_lda,
+ newdata = nuevas_observaciones,
+ interval = "confidence",
+ level = 0.95)</pre>
    > prediccion$class
   [1] CBT
Levels: CBT Cont FT
    > # Probabilidad de pertenencia a cada clase:
    > prediccion$posterior
    CBT Cont FT
1 0.4053162 0.2186976 0.3759861
f) Predición de Prewt = 80, Postwt = 100
    55
56
57
58
59
         nuevas_observaciones <- data.frame(Prewt = 80, Postwt = 100)</pre>
         prediccion <- predict(object = modelo_lda,</pre>
                                       newdata = nuevas_observaciones,
interval = "confidence")
    60
    63
         prediccion$class
    64
    65
    66
         prediccion$posterior
    67
    68
```

```
#d) Gráfica de partición para identicar límites de clasificación
> library(klaR)
 partimat(Treat ~., data = anorexia, method = "lda")
> #e) Predicción de Prewt = 70, Postwt = 90
  nuevas_observaciones <- data.frame(Prewt = 70, Postwt = 90)</pre>
  prediccion <- predict(object = modelo_lda,</pre>
                          newdata = nuevas_observaciones,
interval = "confidence",
level = 0.95)
  prediccion$class
[1] CBT
Levels: CBT Cont FT
> # Probabilidad de pertenencia a cada clase:
> prediccion$posterior
                   Cont
         CBT
1 0.4053162 0.2186976 0.3759861
> #f) Predición de Prewt = 80, Postwt = 100
 prediccion <- predict(object = modelo_lda,</pre>
                           newdata = nuevas_observaciones,
interval = "confidence")
> prediccion$class
[1] FT
Levels: CBT Cont FT
> # Probabilidad de pertenencia a cada clase:
> prediccion$posterior
                   Cont
        CBT
1 0.3167727 0.06952407 0.6137032
```

f) Descripción de nuevas funciones

Ida: Realiza un análisis discriminante lineal. **ggarrange:** Organiza plots para compararlos.

partimat: Crea una matriz con la clasificación del método LDA.

g) Interpretación general de los resultados

La primera gráfica muestra los puntos muy dispersos.

Con el análisis discriminante lineal, tenemos las probabilidades de CBT=40.27%, Cont=36.11% y FT=23.61%.

Por parte del PREWT y POSTWT, queremos obtener un 70 y 90 respectivamente, el cual nos da una probabilidad de pertenencia de CBT=40.53%, Cont=21.86%, FT=37.59%. Dentro de la predicción de PREWT y POSTWT, con 80 y 100 respectivamente, el cual nos da una probabilidad de pertenencia de CBT=31.67%, Cont=6.95%, FT=61.37%.