Paralel Bilgisayarlar Projesi

SATisfiability NP-Tam (NP-Complete) Problemi

Polinom problemler: işlenen elemanın bir polinomu ile sınırlandırılırsa polinom fonksiyonlardır. Örnek: Bublesort algoritması O(n^2) dir.

Non-Polinomial problemler: Çözümü Polinom zamanda bulunamayan ama en kötü ihtimalle üssel olarak çözülebilen problemlerdir.

NP-Tam problemler:

Graf Algoritmalari: Klik(clique), graf örtüsü (vertex cover).

Optimizasyon: Gezen satıcı problem.

Devre optimizasyonu:

Tanımlar:

Değişken (önerme): cevabı evet veya hayır olan ifade.

Güneş dünyadan büyüktür: evet

Hava bulutludur: evet/hayır

Χ

Operatörler/İşlemler

1- a'nın değili: NOT(a) = -a, ~a, ¬ a, a'

2- VEYA işlemi: |, +,

3- VE işlemi: &, .,

4- XOR işlemi: ⊕

5- ...

Literal: bir önermeyi/değişkeni veya tersini göstermektedir.

a bir önerme ise, a'nın değili: NOT(a) = -a, ~a, ¬ a, a'

a: dogru ise -a yanlıştır,

-a: dogru ise a yanlıştır.

Cümle: birden fazla literalin VEYA işlemi ile gruplanması;

$$(a VEYA b VEYA c) = (a | b | c) = (a, b, c)$$

Conjunction Normal form: Birden fazla cümlenin AND işlemiyle bağlanması;

Not: Her Boolean ifade CNF formda ifade edilebilir.

$$G = (a, b, c)$$

$$F = (a, b, c) (a, b, -c) (a, -b, c)$$

SAT Probleminin Tanımı

SAT probleminin aytıntısı için bkz. stringfixer.com, frWiki.

SAT probleminin tanımı: CNF formda verilen bir fonksiyonun çözümü var ise bir tanesini türet. Yok ise cevabı "yok" cevabını ver. Bu işlemi bütün problemler için polinom zamanda türeten bir algoritma bulunursa P=NP yoksa P!=NP'dir.

Aşağıdaki formülde "a" seçilirse bütün cümleler 1 üretir.

Dosya format

Dimacs dosya formatında problemler, CNF (3CNF) olarak verilmiştir.

```
c Yorum satırı (comment)
c 3 değişken ve 4 cümle var
p cnf 3 4
1 2 3 0 Yani (1, 2, 3)
1 2 -3 0
1 -2 3 0
```

Sizden DIMACS formatında hazırlanan 10 tane 3-SAT problemin çözümü istenmektedir.

Proje Kuralları:

- Gruplar min: 2, max:4 kişi (fazla veya az üyeli gruplara %15 kesinti yapılır)
- Raporun ilk sayfasında grup üyelerinin numara ve isimleri açık bir şekilde (1/2 öğretim bilgisi dâhil) yazılmalıdır.
- Her gruptan bir arkadaş, grubun hazırladığı raporu (pdf formatında) ve program kodlarını (ve exe dosyasını) iki dosya olarak sisteme (Moodle) yükleyecektir.
 - Dosya isimleri grupta bulunan bir arkadaşın bilgisi ile (no_ad_soyad.pdf),
 - o (kodlar+exe) dosyaları grupta bulunan bir arkadaşın (no ad soyad.zip)
 - Videolar drive'dan (Google, onedrive vb.) paylaşılacaksa erişim izni verilmeli...
- Proje sonuçları raporda (video +15p) olarak açıklanmalıdır.
- Rapor minimum 10 sayfa olmalıdır.
- Projede elde edilen sonuçlar analitik bir şekilde açıklanmalıdır (Sadece ekran görüntüsü olmasın).
- Raporlar ciddi bir şekilde yazılmalıdır.
- Proje dosyaları mailden kabul edilmemektedir.
- Raporu düzgün olmayan grubun projeden 0 alır. Raporlara ek süre verilir ve geç yükleyen grubun notu %15 kesilir.
- Raporda size verilen 10 tane CNF dosyasının çözümü istenmektedir. Çözümü bulunmayan problemler tabloda (UNSAT) olarak kodlanmalıdır. Eğer problem SAT ise (varsa) ilk 20 değişkenin değeri tablo halinde verilmelidir.

Örnek tablo:

No	Pr1	Pr2	Pr3	Pr4	 Pr10
1	1	1		UNSAT	-1
2	-2	2			-2
3	3	-3			
4	4	-4			
•••					
20					

- Hazırladığınız paralel uygulamada yük dağılımını ne şekilde düzenlediğinizi açıklayınız.
- Hazırlanan uygulamalarda elde edilen hızlanma/verimlilik değerlerini çıkartınız. Grafik ve tablolarla sonuçları karşılaştırınız.

Programlama Platformlari:

•	Java/Python/ Diğer	%25
•	Web teknolojileri: PHP/Django	%35
•	OpenMP/pThread	%30
•	MPI/CUDA	%35
•	OpenCL	%40
•	Hadoop/Apache Spark	%45
•	Android/	%45

Nasıl yaparsınız?

- (%20) Öncelikle kaba kuvvet yöntemi ile seri bir şekilde çözün.
 - Bu durumda bütün değişken değerleri test edilir (2ⁿ).
 - Kombinasyonlardan birisi problemi sağlar ise bu kombinasyon çözüm olarak yazılır.
 - Hiçbir geçerli atama yoksa UNSAT (çözüm yoktur) yazılır.
 - n > 20 problemler zor olabilir.
- (%30) Paralel çözüm-1: Seri işlemin paralel yapılması.
 - Bütün kombinasyonlar multi-tread ile test edilir (2ⁿ/p). p tane thread varsa...
 - Kombinasyonlardan birisi problemi sağlar ise bu kombinasyon çözüm olarak yazılır program sonlandırılır.
 - Hiçbir geçerli atama yoksa UNSAT (çözüm yoktur) yazılır.
- (%50) Paralel çözüm-2: Resolution işlemi (DPLL algoritması) ile
 - Resolution((a, b, c)(a, b, -c)) = (a, b)
 - Resolution((a, b, c) (-a, b, d)) = (b, c, d)
 - Resolution((a, b, c) (-c, d, e)) = (a, b, c, d) şeklinde türer
 - Resolution((a, b, c) (-a, -b, e)) = HATA
 - Maksimum 6'lı cümle yaparsınız...
 - (a, b, c) (-c, d, e) (-e, f, g) = (a, b, d, f, g) 5 li cümle...
 - (a, b, c) (-c, d, e) (-e, f, g) (-g, h, i) = (a, b, d, f, h, i) 6 lı cümle...

Başarılar...