Herramientas de Teledetección Cuantitativa Clase 4

Francisco Nemiña

imagenes/logosopi.pngmagenes/2mpimagenes/conae.png

Esquema de presentación

Clasificaciones temáticas

Escenas del capítulo anterior Nueva idea

Clustering

Introducción k-means Problemas isodata

Consideraciones finales

Tecnicas pos-clasificación

Práctica

Motivación

Mapas temáticos

Queremos cambiar de información espectral a categorías. Seguimos reduciendo la dimensionalidad de la imagen con otras técnicas.

imagenes/imagen.png

Imagen de la zona de interés en combinación RGB.

imagenes/cluster.png

Clustering en $R^{2.1}$

¹Wikimedia Commons. SLINK Gaussian data. 2011.

imagenes/im_class.png

Mapa temático de la zona de interés.

¿Cómo?

Realizando clasificaciones en el espacio vectorial de la imagen. Estos algoritmos se van a basar en los valores individuales de cada vector (píxel)

imagenes/timeline.png

Línea de tiempo de distintos métodos de clasificación.²

²http://gisgeography.com. Image Classification Techniques in Remote Sensing.

Esquema de presentación

Clasificaciones temáticas

Escenas del capítulo anterior Nueva idea

Clustering

Introducción k-means Problemas

isodata

Consideraciones finales

Tecnicas pos-clasificación

Práctica

Distancia

Para poder trabajar cómodos en el espacio vectorial vamos a tener que definir la distancia entre dos vectores

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^p)^{1/p}$$

Taxisita

Cuando p = 1 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|)$$

Euclídea

Cuando p = 2 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^2)^{1/2}$$

Criterio habitual

Encontrar clases c_i que minimice

$$SSE = \sum_{c_i} \sum_{x \in c_i} (x - x_i)^2$$

donde x_i es el promedio de todos los valores de cada clase.

Una solución

Si $c_i = x_i$ esto da cero y es mínimo. Entonces tiene al menos una solución.

Otras soluciones

Tenemos que encontrar N categorías c_i que minimicen esto.

Cuentas

Esto son MUCHAS cuentas y tomaría mucho tiempo. Tenemos que buscar otra manera más eficiente de hacerlo.

Ejemplo en 1-D

Edades.

imagenes/byn.png

Imagen a clasificar.³

³Andrei Pandre. Cluster Analysis: see it 1st.

imagenes/step1.png

Proceso paso a paso.4

⁴Andrei Pandre. Cluster Analysis: see it 1st.

imagenes/step2.png

Proceso paso a paso.⁵

⁵Andrei Pandre. Cluster Analysis: see it 1st.

imagenes/step.png

Proceso paso a paso.6

⁶Andrei Pandre. Cluster Analysis: see it 1st.

Descripción del algoritmo

- 1. Selecciono N clases iniciales
- 2. Asigno los píxeles a estas clases
- 3. Calculo los centroides de las clases clasificadas
- 4. Repito 2 4 con los nuevos centroides hasta converger

imagenes/sse.png

Y que pasa con la función de SSE a minimizar.⁷

⁷John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Problemas

imagenes/minimo.png

Mínimo local vs. mínimo global en 1-D.8

Problemas

Seleccion inicial de clases

Lo que determina a que mínimo converge es la selección inicial de clases. Además no siempre me garantizo generar N clases, puedo generar menos de las deseadas.

Como elijo las medias iniciales

- De forma estocástica
- Con algún criterio estadístico

isodata

Diferencias con respecto a kmeans

El algoritmo es básicamente el mismo, pero implementa tres condiciones adicionales.

- ▶ Eliminar cluster si no son estadísticamente relevantes.
- ► Fusionar cluster si espectralmente son similares.
- Partir clusters que son muy alargados.

isodata

imagenes/isodata.png

Clasificación no supervisada por isodata.9

Esquema de presentación

Clasificaciones temáticas

Escenas del capítulo anterior Nueva idea

Clustering

Introducción k-means Problemas

Consideraciones finales Tecnicas pos-clasificación

Práctica

Filtrado

Nos va a permitir reducir algunos mitigar una limitación común en la clasificación como es la existencia de parches de escasa superficie. Suavizan las clasificaciones.

imagenes/filter.png

Ejemplo de filtrado por mayoría. 10

Fusión

Nos permite convertir las clases de clasificación generadas por algun algoritmo en clases temáticas.

imagenes/im_class.png

Imagen con clases fusionadas.

```
imagenes/im_fus.png
```

Imagen con clases fusionadas.

imagenes/im_filter.png

Imagen con clases fusionadas.

Esquema de presentación

Clasificaciones temáticas

Escenas del capítulo anterior Nueva idea

Clustering

Introducción k-means Problemas isodata

Consideraciones finales

Tecnicas pos-clasificación

Práctica

Práctica

Actividades prácticas de la cuarta clase

- 1. Abrir imágenes Landsat 8 y digitalizar coberturas de interés.
- 2. Clasifique la imagen por el método k-means con 7 clases.
- 3. Clasifique la imagen por el método k-means con 70 clases.
- 4. Utilizar la herramienta de estadísticas globales para estimar las áreas correspondientes a cada uso y cobertura.