Otto Heinonen – Erasmus

Advanced-Topics-in-Database-Systems project

Link to Github: https://github.com/othei99/Advanced-Topics-in-Database-Systems.git

Codes can find in github files by questions. Executing code you need to use Jupyterlab opened from Amazon SageMaker AI notebook and there group 52. If wanted to use code without open notebook via AWS, you need be sure you have access to AWS S3.

Questions/Queries & Answers

Query 1

Sort, in descending order, the age groups of victims in incidents involving any form of "aggravated assault" (i.e., include this term in the relevant description). Consider the following age groups:

Children: < 18, Young adults: 18 – 24, Adults: 25 – 64, Elderly: >64

Answer:

DataFrame API result:

```
+-----+

| Age Group| Count|
+-----+

| Adults (25-64)|121093|
|Young adults (18-24)| 33605|
| Children (<18)| 15928|
| Elderly (>64)| 5985|
+-----+

DataFrame API took: 7.17 seconds
```

RDD API result:

Adults (25-64): 121093

Young adults (18-24): 33605

Children (<18): 15928

Elderly (>64): 5985

RDD API took: 19.73 seconds

Question 1

Implement Query 1 using the DataFrame and RDD APIs. Run both implementations with 4

Spark executors. Is there a performance difference between the two APIs? Justify your answer.

(20%)

Answer:

There is a significant performance difference between the two APIs. In this case, the

DataFrame API performed much faster (7.17 seconds) compared to the RDD API (19.73

seconds). In most cases, the DataFrame API utilizes Spark's Catalyst optimizer and Tungsten

execution engine to implement advanced query optimizations, generate efficient execution

plans, and better memory management. All these work together to minimize unnecessary

computations and lower execution times.

By contrast, RDD API is at an even lower level of abstraction and thus does not benefit from

any of these optimizations. Directly processes data, but requires manually handling most

operations, which tends to be inefficient for comparatively large datasets or complex

transformations.

Therefore, DataFrame API generally performs better in terms of performance, scalability, and

usability within Spark applications. The RDD API is usually very useful for low-level operations

or in cases where there is a need for extremely fine granularity. However, this set of functions

is lagging in terms of execution speed in general for data-processing tasks.

Query 2

Find, for each year, the 3 Police Departments with the highest percentage of closed cases. Print the year, the names (locations) of the departments, their percentages as well as their ranking. The results are given in ascending order by year and ranking (see example below).

year	precinct	closed_case_rate	#
2010	West Valley	30.57974335472044	1
2010	N Hollywood	29.23808669119627	2
2010	Mission	27.58372669119627	3

Answer:

DataFrame API result:

```
Top 3 for Year 2010:
|Year|precinct|closed_case_rate
|2010|Rampart |32.84713448949121 |1
|2010|Olympic |31.515289821999087|2
|2010|Harbor |29.36028339237341 |3
                                               Top 3 for Year 2018:
Top 3 for Year 2011:
|Year|precinct|closed_case_rate
                                               |Year|precinct|closed_case_rate |#
|2011|Olympic |35.040060090135206|1
                                                |2018|Foothill|30.731346958877126|1
|2011|Rampart |32.4964471814306
                                                |2018|Mission |30.727023319615913|2
              28.51336246316431
                                                |2018|Van Nuys|28.905206942590123|3
|2011|Harbor
                                               Top 3 for Year 2019:
Top 3 for Year 2012:
|Year|precinct|closed_case_rate |#
                                               |Year|precinct
                                                                 |closed_case_rate |#
|2012|Olympic |34.29708533302119 |1
                                                |2019|Mission
                                                                 |30.727411112319235|1
                                                2019|West Valley|30.57974335472044 |2
|2012|Rampart |32.46000463714352 |2
                                               |2019|N Hollywood|29.23808669119627 |3
|2012|Harbor |29.509585848956675|3
                                               Top 3 for Year 2020:
Top 3 for Year 2013:
                                               |Year|precinct
                                                                 Iclosed case rate
                                  I# |
                                                                                     1#
|Year|precinct|closed case rate
|2013|Olympic |33.58217940999398 |1
                                                |2020|West Valley|30.771131982204647|1
|2013|Rampart |32.1060382916053
                                               12020 | Mission
                                                                 130.14974649215894 12
|2013|Harbor |29.723638951488557|3
                                                                 129.69348659003831513
                                               12020 | Harbor
Top 3 for Year 2014:
                                               Top 3 for Year 2021:
|Year|precinct
                 |closed_case_rate
                                     |#
                                               |Year|precinct
                                                                 |closed_case_rate
                                                                                     |#
                 |32.0215235281705
                                                |2021|Mission
                                                                 |30.318115590092276|1
                                                |2021|West Valley|28.971087440009363|2
|2014|West Valley|31.49754809505847 |2
|2014|Mission
                 |31.224939855653567|3
                                               |2021|Foothill
                                                                 |27.993757094211126|3
Top 3 for Year 2015:
                                               Top 3 for Year 2022:
|Year|precinct|closed_case_rate |#
                                                |Year|precinct
                                                                 |closed_case_rate
                                                |2022|West Valley|26.536367172306498|1
|2015|Van Nuys|32.265140677157845|1
|2015|Mission |30.463762673676303|2
                                                2022 | Harbor
                                                                 |26.337538060026098|2
|2015|Foothill|30.353001803658852|3
                                                |2022|Topanga
                                                                 |26.234013317831096|3
Top 3 for Year 2016:
                                               Top 3 for Year 2023:
                 |closed_case_rate |#
                                               |Year|precinct|closed_case_rate |#
|Year|precinct
                                                |2023|Foothill|26.76076020122974 |1
                 |32.194518462124094|1
|2016|Van Nuys
|2016|West Valley|31.40146437042384 |2
                                                |2023|Topanga |26.538022616453986|2
|2016|Foothill
                                               |2023|Mission |25.662731120516817|3
                 129.90864722813164513
Top 3 for Year 2017:
                                               Top 3 for Year 2024:
                                               |Year|precinct
                                                                 Iclosed case rate |#
|Year|precinct|closed_case_rate |#
                                               |2024|N Hollywood|19.598528961078763|1
|2017|Van Nuys|32.0554272517321 |1
|2017|Mission |31.055387158996968|2
                                                |2024|Foothill |18.620882188721385|2
                                               |2024|77th Street|17.586318167150694|3
|2017|Foothill|30.469700657094183|3
```

DataFrame API took : 29.74 seconds

```
Top 3 for Year 2010:
|Year|precinct|closed case rate
|2010|Rampart |32.84713448949121 |1
|2010|Olympic |31.515289821999087|2
|2010|Harbor |29.36028339237341 |3
Top 3 for Year 2011:
|Year|precinct|closed_case_rate |#
|2011|Olympic |35.040060090135206|1
|2011|Rampart |32.4964471814306 |2
|2011|Harbor |28.51336246316431 |3
Top 3 for Year 2012:
|Year|precinct|closed_case_rate |#
|2012|Olympic |34.29708533302119 |1
|2012|Rampart |32.46000463714352
|2012|Harbor |29.509585848956675|3
Top 3 for Year 2013:
|Year|precinct|closed case rate
                                    |# |
|2013|Olympic |33.58217940999398 |1
|2013|Rampart |32.1060382916053
|2013|Harbor | |29.723638951488557|3
Top 3 for Year 2014:
                   |closed_case_rate
                                        |#
|Year|precinct
                  |32.0215235281705 |1
|2014|Van Nuys
|2014|West Valley|31.49754809505847 |2
                   |31.224939855653567|3
|2014|Mission
Top 3 for Year 2015:
|Year|precinct|closed_case_rate |# |
|2015|Van Nuys|32.265140677157845|1
|2015|Mission |30.463762673676303|2
|2015|Foothill|30.353001803658852|3
Top 3 for Year 2016:
|Year|precinct
                   |closed_case_rate
|2016|Van Nuys
                   |32.194518462124094|1
|2016|West Valley|31.40146437042384 |2
2016 Foothill
                  29.908647228131645|3
Top 3 for Year 2017:
|Year|precinct|closed_case_rate |# |
|2017|Van Nuys|32.0554272517321 |1
|2017|Mission |31.055387158996968|2
|2017|Foothill|30.469700657094183|3
```

SQL API took: 26.65 seconds

++	+
2018 Foothill 30.	731346958877126 1
2018 Mission 30.	
2018 Van Nuys 28.	905206942590123 3
++	+
Top 3 for Year 201	.9:
Year precinct	closed_case_rate #
2019 Mission	30.727411112319235 1
	30.727411112319235 1 30.57974335472044 2
2019 N Hollywood	
2015 N 110 CCywood	29.23000009119027 3
, , , , , , , , , , , , , , , , , , , ,	•
Top 3 for Year 202	20:
Year precinct	closed_case_rate #
2020 West Valley	30.771131982204647 1
	30.14974649215894 2
	29.693486590038315 3
+	
Top 3 for Year 202	21:
++	
Year precinct	closed_case_rate #
2021 Mission	30.318115590092276 1
	28.971087440009363 2
	27.993757094211126 3
++	
Top 3 for Year 202	22:
++	
+	closed_case_rate #
	26.536367172306498 1
	26.337538060026098 2
2022 Topanga	26.234013317831096 3
++	
Top 3 for Year 202	23:
Year precinct clo	sed_case_rate #
12022 Footh i 11 26	76076020122074 1
2023 Foothill 26.	76076020122974 1
	52902261645209612
	538022616453986 2 662731120516817 3
	538022616453986 2 662731120516817 3
	662731120516817 3
2023 Mission 25. ++	662731120516817 3
2023 Mission 25.	662731120516817 3
2023 Mission 25.	662731120516817 3
2023 Mission 25.	662731120516817 3
2023 Mission 25.	662731120516817 3

Top 3 for Year 2018:

|Year|precinct|closed_case_rate

Question 2

a) Implement Query 2 using the DataFrame and SQL APIs. Report and compare the

execution times between the two implementations.

Answer:

DataFrame API applies PySpark's transformation methods including groupBy, filter, withColumn, which chains explicitly the operations and took 29.74 seconds to complete, whereas SQL API implements operations using Spark's SQL engine with SQL-style queries, which was finished in 26.65 seconds.

The SQL API benefits from Spark's catalyst optimizer in a much better way: the SQL statements are optimized for far better execution plans. The DataFrame API needs to invoke explicit method calls in Python, which may result in minor overhead, whereas the SQL API's declarative way will be better able to optimize the query pipeline.

In brief, for performance-critical scenarios where data processing can be expressed with SQL, usage of the SQL API is definitely the best choice. If it require programmatic flexibility or interaction with custom Python logic then DataFrame API will be best option.

b) Write Spark code that converts the main data set to parquet file format and stores a single .parquet file in your team's S3 bucket. Choose one of the two implementations of subquery a) (DataFrame or SQL) and compare the execution times of your application when the data is imported as .csv and as .parquet.

Answer:

DataFrame writed successfully to S3: s3://groups-bucket-dblab-905418150721/group52/main_data_set.parquet

```
Top 3 for Year 2010:
|Year|precinct|closed_case_rate
|2010|Rampart |32.84713448949121 |1
|2010|Olympic |31.515289821999087|2
|2010|Harbor |29.36028339237341 |3
Top 3 for Year 2011:
|Year|precinct|closed_case_rate |#
|2011|Olympic |35.040060090135206|1
|2011|Rampart |32.4964471814306 |2
|2011|Harbor |28.51336246316431 |3
Top 3 for Year 2012:
|Year|precinct|closed_case_rate |#
|2012|Olympic |34.29708533302119 |1
|2012|Rampart |32.46000463714352
|2012|Harbor |29.509585848956675|3
Top 3 for Year 2013:
|Year|precinct|closed_case_rate
                                    |# |
|2013|Olympic |33.58217940999398 |1
|2013|Rampart |32.1060382916053
|2013|Harbor
               29.723638951488557|3
Top 3 for Year 2014:
                  |closed_case_rate
                                       |#
|Year|precinct
                  |32.0215235281705 |1
|2014|Van Nuys
|2014|West Valley|31.49754809505847 |2
                  |31.224939855653567|3
|2014|Mission
Top 3 for Year 2015:
|Year|precinct|closed_case_rate |# |
|2015|Van Nuys|32.265140677157845|1
|2015|Mission |30.463762673676303|2
|2015|Foothill|30.353001803658852|3
Top 3 for Year 2016:
|Year|precinct
                  |closed_case_rate
|2016|Van Nuys
                  |32.194518462124094|1
|2016|West Valley|31.40146437042384 |2
2016 Foothill
                  29.908647228131645
Top 3 for Year 2017:
|Year|precinct|closed_case_rate |# |
|2017|Van Nuys|32.0554272517321 |1
|2017|Mission |31.055387158996968|2
|2017|Foothill|30.469700657094183|3
```

Top 3 for Year 2018:
++
Year precinct closed_case_rate
2018 Foothill 30.731346958877126 1
2018 Mission 30.727023319615913 2
2018 Van Nuys 28.905206942590123 3
++
Top 3 for Year 2019:
Year precinct closed_case_rate #
2019 Mission 30.727411112319235 1
2019 West Valley 30.57974335472044 2
2019 N Hollywood 29.23808669119627 3
Top 3 for Year 2020:
++
Year precinct
2020 West Valley 30.771131982204647 1
2020 Mission 30.14974649215894 2
2020 Harbor 29.693486590038315 3
Top 3 for Year 2021:
Year precinct closed_case_rate #
2021 Mission 30.318115590092276 1
2021 West Valley 28.971087440009363 2
2021 Foothill 27.993757094211126 3
++
Top 3 for Year 2022:
Year precinct closed_case_rate #
2022 West Valley 26.536367172306498 1
2022 Harbor 26.337538060026098 2
2022 Topanga 26.234013317831096 3
Top 3 for Year 2023:
++
+
2023 Topanga 26.538022616453986 2
2023 Mission 25.662731120516817 3
++
Top 3 for Year 2024:
Year precinct closed_case_rate #
2024 N Hollywood 19.598528961078763 1
2024 Foothill 18.620882188721385 2
2024 77th Street 17.586318167150694 3
++

Execution time: 11.19 seconds

I used the DataFrame API in the context of this dataset. For executing the .csv version, it took about 29.74 seconds: reading two .csv files separately, merging them, and finally performing

aggregations and calculations. Reading and parsing time for the .csv format significantly contributed to the total time. Execution time for using the .parquet format stood at 11.19 seconds. Parquet is a columnar format highly optimized and performs well with Spark in reading more data and efficiently processing it. It doesn't have the heavy parsing overhead of the .csv and enjoys columnar compression.

The improvement comes mainly because of the way Parquet handles columnar data access, which is effective for the analytical workload of this application. The use of the .parquet file format in Spark processing tasks is recommended for better performance and scalability while using big datasets.

Query 3

Using the 2010 Census population data and the 2015 Census household income data, calculate the following for each area of Los Angeles: The average annual income per person and the ratio of total crimes per person. The results should be summarized in a table.

Answer:

90094	1136	15464	0.024890190336749635	\$104367.0	\$19.10084187408492
90230	1452	131766	0.014229049927595543	\$74823.0	\$2.3554429263992946
90293	435	12132	0.03585558852621167	\$82055.0	\$6.763517969007583
90292	514	21576	0.023822766036336672	\$100507.0	\$4.658277715980719
90291	2457	28341	0.08669418863131152	\$80111.0	\$2.826682191877492
90405	47	27186	0.001728831015964099	\$77948.0	\$2.8672110645185023
90045	3299	39480	0.0835612968591692	\$75684.0	\$1.9170212765957446
90066	1755	55277	0.031749190440870524	\$68132.0	\$1.232556035964325
90401	19	6722	0.002826539720321333	\$62703.0	\$9.328027372805712
90245	7	16654	4.2031944277651017E-4	\$85727.0	\$5.147532124414555
90266	5	35135	1.4230823964707557E-4	\$143527.0	\$4.085014942365163
90008	3015	32327	0.09326569121786742	\$36564.0	\$1.1310669100133015
90043	2802	44789	0.0625600035723057	\$38180.0	\$0.8524414476768849
90056	27	7827	0.0034495975469528554	\$84099.0	\$10.74472978152549
90301	102	36568	0.002789323999124918	\$37424.0	\$1.0234084445416758
90250	2	93193	2.146083933342633E-5	\$46172.0	\$0.4954449368514803
90278	1	40071	2.4955703626063736E-5	\$107010.0	\$2.6705098450250806
90304	11	28210	3.899326479971641E-4	\$36412.0	\$1.2907479617157036
90302	31	29415	0.0010538840727519973	\$41426.0	\$1.4083290838007818
90254	[2	19506	1.0253255408592229E-4	\$111187.0	\$5.70014354557572

Question 3

Implement Query 3 using DataFrame or SQL API. Use hint & explain methods to find out which join strategies the catalyst optimizer uses. Experiment by forcing Spark to use different

strategies (between BROADCAST, MERGE, SHUFFLE_HASH, SHUFFLE_REPLICATE_NL) and comment on the results you observe. Which of the available Spark join strategies is (are) the most appropriate and why?

Answer:

BROADCAST Strategy

```
# Use BROADCAST join to combine crime data and income data
combined_df = crime_ratio_df.join(
    broadcast(tulo_df.select("zip", "estimated_median_income (2015)")),
    "zip",
    "inner"
)
```

```
zip (LA)|crimes (2010)|population (2010)|crimes_per_person (2010)|estimated_income (2015)|average_annual_per_person|
                       |5464
|90094
                                          |0.024890190336749635
                                                                    |$104367.0
                                                                                             |$19.10084187408492
90266
         |5
                       |35135
                                          |1.4230823964707557E-4
                                                                    |$143527.0
                                                                                             |$4.085014942365163
                                          10.014229049927595543
                                                                                             |$2.3554429263992946
         1452
190230
                       131766
                                                                    |$74823.0
         |435
                                                                                             |$6.763517969007583
190293
                                          10.03585558852621167
                                                                    1$82055.0
                       12132
190292
         |514
                                          |0.023822766036336672
                                                                    |$100507.0
                                                                                             |$4.658277715980719
                       |21576
                                                                    $80111.0
                                                                                             $2.826682191877492
90291
                       28341
                                          |0.08669418863131152
         12457
90405
         47
                       27186
                                          |0.001728831015964099
                                                                    |$77948.0
                                                                                             |$2.8672110645185023
90034
         2234
                       57964
                                          0.038541163480781175
                                                                    |$58004.0
                                                                                             |$1.0006900835001036
90045
                       39480
                                          0.0835612968591692
                                                                    $75684.0
                                                                                             $1.9170212765957446
         3299
90066
         1755
                        .
|55277
                                          0.031749190440870524
                                                                    $68132.0
                                                                                             $1.232556035964325
                                                                    |$62703.0
                                                                                             $9.328027372805712
90401
         |19
                        6722
                                          0.002826539720321333
90245
                        16654
                                          |4.2031944277651017E-4
                                                                    $85727.0
                                                                                             $5.147532124414555
90008
         3015
                        32327
                                          0.09326569121786742
                                                                    $36564.0
                                                                                             $1.1310669100133015
         2802
90043
                        44789
                                          0.0625600035723057
                                                                    $38180.0
                                                                                             $0.8524414476768849
                                          0.0034495975469528554
90056
         |27
                        7827
                                                                    |$84099.0
                                                                                             |$10.74472978152549
190047
         |3114
                                          0.06406616467102827
                        148606
                                                                    1$39269.0
                                                                                             1$0.8079043739456034
                                                                                             |$1.0234084445416758
190301
         102
                       136568
                                          |0.002789323999124918
                                                                    |$37424.0
                                                                                             $0.4954449368514803
190250
                       193193
                                          12.146083933342633E-5
         12
                                                                    |$46172.0
         11
                                          13.899326479971641E-4
                                                                                             |$1.2907479617157036
190304
                       128210
                                                                    1$36412.0
90303
                                                                                             |$1.5155485941320292
                       126176
                                          17.640586797066015E-5
         12
                                                                    |$39671.0
only showing top 20 rows
BROADCAST Join Time: 14.191836595535278 seconds
```

MERGE Strategy

```
# Use a MERGE join to combine crime data and census population data
crime_ratio_df = crime_counts.join(
    aggregated_population.hint("merge"),
    "zip",
    "inner"
)
```

90001	794	57110	0.013902994221677465	\$33887.0	\$0.593363684118368
90002	2492	51223	0.04865002049860414	\$30413.0	\$0.5937371883724109
90003	6132	66266	0.0925361422147104	\$30805.0	\$0.46486886185977727
90004	2991	62180	0.04810228369250563	\$40612.0	\$0.6531360566098424
90005	1700	37681	0.04511557548897322	\$31142.0	\$0.8264642658103554
90006	2891	59185	0.0488468361916026	\$31521.0	\$0.5325842696629214
90007	2798	40920	0.06837732160312805	\$22304.0	\$0.5450635386119257
90008	3015	32327	0.09326569121786742	\$36564.0	\$1.1310669100133015
90010	733	3800	0.19289473684210526	\$45786.0	\$12.048947368421052
90011	5288	103892	0.05089901051091518	\$30251.0	\$0.291177376506372
90012	1680	31103	0.054014082242870465	\$31576.0	\$1.0152075362505224
90013	2059	11772	0.17490655793408086	\$19887.0	\$1.6893476044852191
90014	858	7005	0.12248394004282655	\$23642.0	\$3.3750178443968593
90015	2607	18986	0.1373117033603708	\$29684.0	\$1.5634678183924997
90016	2912	47596	0.06118161190015968	\$38330.0	\$0.8053197747709891
90017	1984	23768	0.0834735779198923	\$22754.0	\$0.9573375967687647
90018	2649	49310	0.05372135469478807	\$33864.0	\$0.6867572500506997
90019	3100	64458	0.048093332092215085	\$46571.0	\$0.722501473827919
90020	1216	38967	0.031205892165165398	\$38849.0	\$0.9969717966484462
90021	1306	3951	0.33054922804353326	\$12813.0	\$3.242976461655277

SHUFFLE_HASH Strategy

```
# Use SHUFFLE_HASH join to combine crime and population data
crime_ratio_df = crime_counts.join(
    aggregated_population.hint("shuffle_hash"),
    "zip",
    "inner"
)
```

90008	3015	32327	0.09326569121786742	\$36564.0	\$1.1310669100133015
90064	11426	125403	0.056135102153288985	\$87283.0	\$3.4359327638467896
90062	12395	132821	0.07297157307821212	\$34588.0	\$1.053837482099875
90011	15288	103892	0.05089901051091518	\$30251.0	\$0.291177376506372
90021	1306	13951	0.33054922804353326	\$12813.0	\$3.242976461655277
90405	47	127186	0.001728831015964099	\$77948.0	\$2.8672110645185023
90007	2798	40920	0.06837732160312805	\$22304.0	\$0.5450635386119257
90034	2234	57964	0.038541163480781175	\$58004.0	\$1.0006900835001036
90037	4458	62276	0.07158455905966986	\$27179.0	\$0.43642815852013617
90066	1755	55277	0.031749190440870524	\$68132.0	\$1.232556035964325
90401	19	6722	0.002826539720321333	\$62703.0	\$9.328027372805712
90403	1	24525	4.077471967380224E-5	\$78151.0	\$3.186585117227319
90016	2912	47596	0.06118161190015968	\$38330.0	\$0.8053197747709891
90232	78	15149	0.00514885470988184	\$77004.0	\$5.083107795894119
90404	15	21360	7.022471910112359E-4	\$66623.0	\$3.1190543071161048
90018	2649	49310	0.05372135469478807	\$33864.0	\$0.6867572500506997
90248	334	9947	0.033577963204986426	\$53306.0	\$5.359002714386247
90044	4563	89779	0.050824803127680195	\$29206.0	\$0.3253099277113802
90745	25	57251	4.3667359522104416E-4	\$71443.0	\$1.2478908665350823
90061	1775	26872	0.06605388508484668	\$33731.0	\$1.255247097350402

```
# Use SHUFFLE_REPLICATE_NL join to combine crime and population data
crime_ratio_df = crime_counts.join(
    aggregated_population.hint("shuffle_replicate_nl"),
    "zip",
    "inner"
)
```

90094	136	5464	0.024890190336749635	\$104367.0	\$19.10084187408492	
90293	435	12132	0.03585558852621167	\$82055.0	\$6.763517969007583	
90292	514	21576	0.023822766036336672	\$100507.0	\$4.658277715980719	
90291	2457	28341	0.08669418863131152	\$80111.0	\$2.826682191877492	
90405	47	27186	0.001728831015964099	\$77948.0	\$2.8672110645185023	
90045	3299	39480	0.0835612968591692	\$75684.0	\$1.9170212765957446	
90066	1755	55277	0.031749190440870524	\$68132.0	\$1.232556035964325	
90401	19	6722	0.002826539720321333	\$62703.0	\$9.328027372805712	
90266	5	35135	1.4230823964707557E-4	\$143527.0	\$4.085014942365163	
90008	3015	32327	0.09326569121786742	\$36564.0	\$1.1310669100133015	
90043	2802	44789	0.0625600035723057	\$38180.0	\$0.8524414476768849	
90056	27	7827	0.0034495975469528554	\$84099.0	\$10.74472978152549	
90230	452	31766	0.014229049927595543	\$74823.0	\$2.3554429263992946	
90301	102	36568	0.002789323999124918	\$37424.0	\$1.0234084445416758	
90250	2	93193	2.146083933342633E-5	\$46172.0	\$0.4954449368514803	
90278	1	40071	2.4955703626063736E-5	\$107010.0	\$2.6705098450250806	
90304	11	28210	3.899326479971641E-4	\$36412.0	\$1.2907479617157036	
90302	31	29415	0.0010538840727519973	\$41426.0	\$1.4083290838007818	
90254	2	19506	1.0253255408592229E-4	\$111187.0	\$5.70014354557572	
90245	7	16654	4.2031944277651017E-4	\$85727.0	\$5.147532124414555	

Question 3

Implement Query 3 using DataFrame or SQL API. Use hint & explain methods to find out which join strategies the catalyst optimizer uses. Experiment by forcing Spark to use different strategies (between BROADCAST, MERGE, SHUFFLE_HASH, SHUFFLE_REPLICATE_NL) and comment on the results you observe. Which of the available Spark join strategies is (are) the most appropriate and why?

Answer:

Based on the time of execution for joining these datasets, SHUFFLE_REPLICATE_NL and SHUFFLE_HASH are probably the two best joining methods for that dataset and workload. The time of 12.39 seconds for SHUFFLE_REPLICATE_NL demonstrates that replication of smaller datasets across partitions becomes highly effective in this case. It is particularly effective when the one dataset is relatively small compared to the other, enabling replication without imposing heavy overheads on memory space or through the network. For example, SHUFFLE_HASH also performed exceptionally well in 13.01 seconds, taking advantage of hash-

based partitioning to evenly distribute the data across the cluster. The approach is most needed when the join keys are evenly distributed, thus minimizing shuffle cost and skew.

Broadcast Join's time is 14.19 seconds, which also reflects a very good performance with the small-to-fit memory broadcast dataset, thus making it feasible for a dramatically reduced dataset against another during in-memory joins. MERGE Join completed in 14.37 seconds and was still worth considering as long as the datasets were sorted on the join keys since it avoided most of the shuffle and memory overhead. Finally, the Last but not least: Standard Join took 15.45 seconds, the slowest one among all joins, stressing the absence of optimizations such as broadcasting, shuffling, or merging, thus making it unfit for bigger datasets.

In sum, the time parameter of 12.39 seconds makes SHUFFLE_REPLICATE_NL the most appropriate strategy with superior performance to efficiently handling the workload. SHUFFLE_HASH, at 13.01 seconds, is a very strong secondary choice, especially with those dataset characteristics that match well with hash-based partitioning methods. Broadcast Join at 14.1 can be considered where there are smaller datasets or memory constraint situations.

Query 4

Find the racial profile of registered crime victims (Vict Descent) in Los Angeles for the year 2015 in the 3 areas with the highest per capita income. Do the same for the 3 areas with the lowest income. Use the mapping of the descent codes to the full description from the Race and Ethnicity codes dataset. The results should be printed in two separate tables from highest to lowest number of victims per racial group (see example result below).

Victim Descent	#
White	413
Black	274
Unknown	132
Hispanic/Latin/Mexican	12

Answer:

1 core/2 GB memory

```
Top 3 High-Income Areas Racial Profile:
|Victim Descent
                       |832|
                       183
Other
|Hispanic/Latin/Mexican|86 |
only showing top 3 rows
Bottom 3 Low-Income Areas Racial Profile:
|Victim Descent
                       |#
|Hispanic/Latin/Mexican|1687|
|Black
                       |1567|
|White
                       |1028|
only showing top 3 rows
Execution Time with 1 Core, 2GB Memory: 121.2 seconds
```

2 cores/4GB memory

4 cores/8GB memory

```
Top 3 High-Income Areas Racial Profile:
|Victim Descent
                       |# |
|White
                       |832|
0ther
                       183
|Hispanic/Latin/Mexican|86 |
only showing top 3 rows
Bottom 3 Low-Income Areas Racial Profile:
|Victim Descent
|Hispanic/Latin/Mexican|1687|
                       1567
Black
White
                       |1028|
only showing top 3 rows
Execution Time with 4 Cores, 8GB Memory: 152.32 seconds
```

Question 4

Implement Query 4 using the DataFrame or SQL API. Execute your implementation by scaling the total computational resources you will use: Specifically, you are asked to execute your implementation with 2 executors with the following configurations:

- 1 core/2 GB memory
- 2 cores/4GB memory
- 4 cores/8GB memory

Comment on the results. (20%)

Answer:

Efficiency was proven by the fact that the configuration of a single-core machine with 2GB of memory had the fastest execution time of 121.2 seconds, after which the increased execution time, when measured with additional resources of 2 cores and 4GB, ran to 155.25 seconds. Apparently, the overhead created by any additional processes involves dealing with coordination of tasks or task utilization. Using even 4 cores with 8GB further reduces execution time to only 152.32 seconds but never approaches the efficiency of the first configuration.

This indicates that the workload does not scale as well with more resources. Some, or all of these reasons, might include small input data, insufficient parallelizable tasks, or serious bottlenecks in I/O such as reading from the S3. Thus, the configuration of 1 core and 2GB of memory has been found most useful for this workload.

Query 5

Calculate, for each police station, the number of crimes that took place closest to it, as well as its average distance from the locations where the specific incidents occurred. The results should be displayed sorted by number of incidents, in descending order (see example below).

division	average_distance	#
77TH STREET	2.208	7045
RAMPART	2.009	4595
FOOTHILL	3.597	3047
PACIFIC	2.739	2132

Answer:

2 executors × 4 cores/8GB memory

Loading widget		
	average_distance	
HOLLYWOOD		+ 213080
VAN NUYS	3.19	211457
WILSHIRE	2.929	198150
SOUTHWEST	2.402	186742
OLYMPIC	1.925	180463
NORTH HOLLYWOOD	2.907	171159
77TH STREET	1.846	167323
PACIFIC	4.174	157468
CENTRAL	1.099	154474
SOUTHEAST	2.688	151999
RAMPART	1.64	149675
TOPANGA	3.611	147167
WEST VALLEY	3.225	130933
HARBOR	3.862	126749
FOOTHILL	4.593	122515
WEST LOS ANGELES	3.322	121074
HOLLENBECK	2.94	119329
NEWTON	1.769	109078
MISSION	3.9	109009
NORTHEAST	4.35	105687
	+	+
only showing top	20 rows	
Execution Time (2	Executors x 4 Co	res/8GB

4 executors × 2 cores/4GB memory

```
|division
                     |average_distance|#
                                          |213080|
|211457|
|198150|
|186742|
|HOLLYWOOD
                     2.275
                     |3.19
|2.929
VAN NUYS
|WILSHIRE
                     |2.402
|1.925
SOUTHWEST
                                          |180463|
|171159|
|167323|
|157468|
|OLYMPIC
|NORTH HOLLYWOOD |2.907
|77TH STREET |1.846
|77TH STREET
|PACIFIC
                     |4.174
|1.099
                                           |154474|
|151999|
CENTRAL
SOUTHEAST
                     2.688
                                           |149675|
|147167|
RAMPART
                     1.64
|TOPANGA
                     |3.611
|WEST VALLEY
                     3.225
                                           |130933|
HARBOR
                                           126749
F00THILL
                     4.593
                                           122515
|WEST LOS ANGELES|3.322
|HOLLENBECK |2.94
                                           |121074|
                     |2.94
|1.769
                                           119329
NEWTON
                                           109078
MISSION
                     3.9
                                           109009
NORTHEAST
                     4.35
                                           105687
only showing top 20 rows
Execution Time (4 Executors x 2 Cores/4GB Memory): 40.30 seconds
```

8 executors × 1 core/2 GB memory

division	average_distance	#
HOLLYWOOD	2.275	213080
VAN NUYS	3.19	211457
WILSHIRE	2.929	198150
SOUTHWEST	2.402	186742
OLYMPIC	1.925	180463
NORTH HOLLYWOOD	2.907	171159
77TH STREET	1.846	167323
PACIFIC	4.174	157468
CENTRAL	1.099	154474
SOUTHEAST	2.688	151999
RAMPART	1.64	149675
TOPANGA	3.611	147167
WEST VALLEY	3.225	130933
HARBOR	3.862	126749
FOOTHILL	4.593	122515
WEST LOS ANGELES	3.322	121074
HOLLENBECK	2.94	119329
NEWTON	1.769	109078
MISSION	3.9	109009
NORTHEAST	4.35	105687
+		+
only showing top	20 rows	
Execution Time (8		

Question 5

Implement Query 5 using the DataFrame or SQL API. Execute your implementation using a total of 8 cores and 16GB of memory with the following configurations:

- 2 executors × 4 cores/8GB memory
- 4 executors × 2 cores/4GB memory
- 8 executors × 1 core/2 GB memory

Comment on the results. (20%)

Answer:

The best run time was 29.73 seconds when set to 8 executors of 1 core and 2GB's memory. In this setup, increased parallelism was efficient in spreading the work across a higher number of executors despite limited resources per executor.

The configuration of two executors with four cores and 8GB of memory delivered an average execution time of 37.16 seconds. Although much resource was given to each executor, it could not beat the result achieved by the 8-executor combination, possibly owing to lesser-efficient parallelism.

It was the 4-executor system that actually exhibited the slowest performance at 40.30 seconds. It had 2 cores, and each of the 4 executors had 4GB of memory. Although there was a balance between the parallelism and resource allocation, this was not as efficient in terms of resource allocation compared to the other setups.

So it appears that, under this workload and dataset, increasing the number of smaller executors maximises performance.