

RV Educational Institutions ** RV College of Engineering **

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Q.No	Solutions	Marks
1.	i) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix} \in S_1$ but $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \notin S_1$ (or any other suitable justification), Not a subspace.	1+1
	ii) Justification. Subspace. iv) Justification. Not a subspace.	2+2
	iii) Justification. Subspace. v) Justification. Not a subspace.	2+2
2.a	$t = c_1 u + c_2 v + c_3 w; 2 = c_1 + 2c_2 + 2c_3, 5 = 3c_1 - 2c_2 - c_3, -4 = 2c_1 - 5c_2 + 3c_3, 0 = c_1 + 4c_2 + 6c_3$	
	$\begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ this system reduces to $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & -6 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 2 & 2 \\ 3 & -2 & -1 \\ 2 & -5 & 3 \\ 1 & 4 & 6 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -4 \\ 0 \end{bmatrix} $ this system reduces to $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ -1 \\ 0 \end{bmatrix}$	1+2
	$c_3 = -1$ $c_2 = 1$ and $c_1 = 2$ t = 2u + 1v - 1w	1
	t = 2u + 1v - 1w	1
2.b	Suppose $c_1(1+x-2x^2)+c_2(2+5x-x^2)+c_3(x+x^2)=0$	
	$c_1 + 2c_2 = 0$, $c_1 + 5c_2 + c_3 = 0$, $-2c_1 - c_2 + c_3 = 0$	1
	$\begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} c_1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$	2
	$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 5 & 1 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \det \begin{bmatrix} 1 & 2 & 0 \\ 1 & 5 & 1 \\ -2 & -1 & 1 \end{bmatrix} = 0$	
	Therefore, the above homogeneous system has non-trivial solution.	1
	Hence, the given set of polynomials is a linearly dependent set in P_2	1
3.a	i) $12k^2 + 9k = 1 \Rightarrow k = 0.0982$	2
	ii) $P(X \ge 5) = 0.214$, $P(X < 3) = 0.2946$, $P(2 < X \le 5) = 0.51993$	2
3.b	ii) $E[X] = 3.6789$	2
3.0	$X = \{0, 1, 2, 3\}$ $x = \{0, 1, 2, 3\}$	1
	p(x) $C(5,3) = 10$ $C(5,2)C(2,1) = 20$ $C(5,1)C(2,2) = 5$ 0	2
		1
4.0	CDF 10/35 30/35 35/35=1 1	
4.a	i) $P(X < 1.2) = \int_0^1 x dx + \int_1^{1.2} (2 - x) dx = 0.68$	3
	ii) $P(0.5 < X < 1) = \int_{0.5}^{1} x dx = 0.375$	3
4.b	Probability mass function = $\frac{d(F(x))}{dx} = 8e^{-8x}$	2
	$P(X < 12) = 1 - e^{-1.6}$	2
5.a	i) Marginal distribution of X and Y $\begin{bmatrix} x & 1 & 2 & 3 \\ y & 0.1 & 0.35 & 0.55 \end{bmatrix}$ $\begin{bmatrix} y & 1 & 3 & 5 \\ y & 0.2 & 0.5 & 0.3 \end{bmatrix}$	1+1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1+1
	ii) $P(X > 1, Y \ge 3) = 0.75$, $P(X < 3, Y = 3) = 0.15$.	2
	iii) $Cov(X,Y) = E[XY] - E[X]E[Y] = 7.85 - 2.45 \times 3.2 = 0.01.$	2
5.b	Let $X = \{x \mid x = a + b < 5, (a, b) \in \Omega\} = \{2, 3, 4\}, Y = \{y \mid y = \max(a, b)\} = \{1, 2, 3, 4\}$	
	Joint probability distribution $p(x, y)$ P(X = 2, Y = 1) = P((1,1)) = 1/16	1
	$p(x,y) \mid \frac{x}{2 \mid 3 \mid 4}$	3
	1 1/16 0 0	
	2 0 1/8 1/16	
	y 3 0 0 1/8	