Семинар №8

Достаточные статистики

Пусть X – наблюдение с неизвестным распределением $P \in \{P_{\theta}\}_{\theta \in \Theta}$.

Определение. Статистика S(X) — достаточная для семейства распределений $\{P_{\theta}\}$, если условное распределение $P_{\theta}(X) \in B|S(X) = x$) не зависит от θ .

Условия регулярности.

- 1. Будем считать, что семейство распределений $\{P_{\theta}\}$ доминируемо (т.е. состоит либо только из дискретных распределений, либо только из абсолютно непрерывных).
- 2. Примем $p_{\theta}(x)$ равным $P_{\theta}(X=x)$ в дискретном случае и равным плотности в абсолютно непрерывном случае.

Задача 1. Пусть X_1, \ldots, X_n – выборка из распределения $Bern(\theta)$. Докажите, что $\sum_{i=1}^n X_i$ – достаточная статистика.

<u>Решение.</u> Распишем условное распределение значений случайных величин из выборки при условии, что $\sum_{i=1}^{n} X_i = s$:

$$P(X_1 = x_1, \dots, X_n = x_n | S(X) = s) = \frac{P(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = s)}{\sum_{i=1}^n X_i = s} = I\{\sum_{i=1}^n x_i = s\} \frac{\theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}}{C_n^s \theta^s (1 - \theta)^{n - s}} = \frac{1}{C_n^s} I\{\sum_{i=1}^n x_i = s\}.$$

Видим, что условное распределение не зависит от θ , значит, статистика $\sum_{i=1}^{n} X_i$ является достаточной для семейства распределений $Bern(\theta)$.

Теорема 1. (Критерий факторизации Неймана-Фишера.) Пусть $\{P_{\theta}, \theta \in \Theta\}$ – доминируемое семейство распределений с обобщённой плотностью $p_{\theta}(x)$, X – наблюдение (выборка) из неизвестного распределения $P \in \{P_{\theta}, \theta \in \Theta\}$. Тогда

$$S(X)$$
 — достаточная $\iff p_{\theta}(X) = \psi(S(X), \theta)h(X),$

ede функция h(x) не зависит от параметра θ .

Задача 2. Пусть X_1, \ldots, X_n – выборка из $N(a, \sigma^2)$, $\theta = (a, \sigma^2)$. Найти достаточную статистику. Решение. Распишем правдоподобие для выборки из $N(a, \sigma^2)$.

$$p_{\theta}(X_1, \dots, X_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum (X_i - a)^2\right\} =$$
$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum X_i^2 + \frac{a}{\sigma^2} \sum X_i - \frac{na^2}{2\sigma^2}\right\}.$$

Видим, что h(X) = 1, потому что в выражении правдоподобия нет функций от выборки, которые отделимы от параметров. Тогда $S(X) = (\sum X_i, \sum X_i^2)$.

Теорема 2. (Колмогоров-Блэкуэлл-Рао, об улучшении несмещённых оценок.) Пусть $\widetilde{\theta}$ – несмещённая оценка $\tau(\theta)$, S(X) – достаточная статистика. Тогда $\theta^* = E_{\theta}(\widetilde{\theta}|S(X))$ – несме-

Пусть θ — несмещенная оценка $\tau(\theta)$, S(X) — достаточная статистика. Гогда θ = $E_{\theta}(\theta|S(X))$ — несмещённая оценка, и для любого $\theta \in \Theta$ $D_{\theta}\theta^* \leq D_{\theta}\widetilde{\theta}$, причём если равенство достигается при всех $\theta \in \Theta$, то статистика $\widetilde{\theta}$ является S(X) -измеримой.

1

Замечание 1. Если $\tau(\theta) \in \mathbb{R}^k$, где k > 1, то выражение $D_{\theta}\theta^* \leq D_{\theta}\widetilde{\theta}$ означает, что матрица $D_{\theta}\widetilde{\theta} - D_{\theta}\theta^*$ неотрицательно определена.

<u>Определение.</u> θ^* – оптимальная оценка $\tau(\theta)$, если θ^* – несмещённая оценка $\tau(\theta)$ с равномерно наименьшей дисперсией в классе несмещённых оценок (т.е. её дисперсию с помощью теоремы Блэкуэлла-Рао уже нельзя уменьшить).

Определение. S(X) — полная для $\{P_{\theta}, \theta \in \Theta\}$, если для всех функций f(x) таких, что $\forall \theta \in \Theta$ выполнено $E_{\theta}f(S(X))=0$, следует f(S(X))=0 P_{θ} -п.н. для всех $\theta \in \Theta$.

Теорема 3. (Леман-Шефаре)

Пусть S(X) – полная достаточная статистика, $\widetilde{\theta}$ – несмещённая оценка $\tau(\theta)$, тогда $\theta^* = E_{\theta}(\widetilde{\theta}|S(X))$ – оптимальная оценка $\tau(\theta)$.

<u>Определение.</u> Семейство $\{P_{\theta}, \theta \in \Theta\}$ называется экспоненциальным, если плотность распределения P_{θ} имеет вид

$$p_{\theta}(x) = h(x) \exp \left(\sum_{i=1}^{k} a_i(\theta) u_i(x) + v(\theta) \right).$$

Теорема 4. (Об экспоненциальных семействах.)

Пусть $\theta \in \Theta \subset \mathbb{R}^k$ и все значения вектора $(a_1(\theta), \dots, a_k(\theta))$ образуют k-мерный параллелепипед, тогда $S(X) = (u_1(x), \dots, u_k(x))$ – полная достаточная статистика.

Замечание 2. Условие теоремы будет выполнено, если множество Θ "телесно" – содержит свои "внутренние" точки (т.е. если некая окрестность без точки лежит в Θ , то и сама точка лежит в Θ) и функции $a_1(\theta), \ldots, a_k(\theta)$ линейно независимы.

Задача 3. Доказать, что статистика $\sum_{i=1}^{n} X_i$ является полной для семейства распределений $Bern(\theta), \ \theta \in (0;1).$

<u>Решение.</u> Итак, нужно доказать, что если для всех $\theta \in (0;1)$ и какой-то функции f(x) выполнено $E_{\theta}f\left(\sum X_{i}\right)=0$, то отсюда следует, что f(x)=0 для всех x – значений $\sum X_{i}$. Так как X_{i} – бернуллиевские и независимые, то $\sum X_{i} \sim Bin(n,\theta)$. Распишем матожидание $E_{\theta}f\left(\sum X_{i}\right)$:

$$E_{\theta}f\left(\sum X_i\right) = \sum_{k=0}^n f(k)C_n^k \theta^k (1-\theta)^{n-k}.$$

Мы получили в правой части многочлен не более чем n— ной степени от θ , он имеет не более чем n корней на отрезке (0,1). Но этот многочлен равен 0 для всех $\theta \in (0,1)$, т.е. все θ из интервала (0,1) являются его корнями — противоречие. Значит, все f(k) = 0 для $k = 0, \ldots, n$. Значит, статистика $\sum X_i$ — полная. \square

Следствие 1. (Из теоремы 3.) Пусть $\varphi(x)$ — решение уравнения несмещённости $E_{\theta}\varphi(S(X)) = \tau(\theta)$ $\forall \theta \in \Theta, \ \textit{где } S(X) \$ — полная достаточная статистика, а $\tau(\theta)$ — тот параметр, который мы оцениваем. Тогда $\varphi(S(X))$ — оптимальная оценка $\tau(\theta)$.

Задача 4. Пусть $X_1, \dots X_n$ — выборка из $R[0,\theta]$. Найти оптимальную оценку для θ .

<u>Решение.</u> Так как для выборки из равномерного закона правдоподобие $p(X,\theta) = \frac{1}{\theta^n} I\{X_{(n)} \leq \theta\}$, то по критерию факторизации (теорема 1) $X_{(n)}$ – достаточная (действительно, $\psi(S(X),\theta) = \frac{1}{\theta^n} I\{X_{(n)} \leq \theta\}$, а h(X) = 1). Проверим, что эта статистика – полная.

$$E_{\theta}f(X_{(n)}) = \int_{0}^{\theta} f(x)n\frac{x^{n-1}}{\theta^n}dx = 0 \ \forall \theta > 0 \Longrightarrow \int_{0}^{\theta} f(x)x^{n-1}dx = 0 \ \forall \theta > 0.$$

Так как это выполнено для любого $\theta>0$, то сама подынтегральная функция равна 0 (кто не верит, возьмите производную по θ от $G(\theta)=\int\limits_0^\theta f(x)x^{n-1}dx,\ G(\theta)$ дифференцируема по теореме Ньютона-Лейбница и $G'(\theta)$ должна равняться 0, так как $G(\theta)\equiv 0$). Т.е. $f(x)x^n=0\ \forall x>0$, значит, $f(x)\equiv 0$ и $X_{(n)}$ – достаточная.

Итак, мы знаем, что $X_{(n)}$ – полная достаточная статистика, значит, оптимальная оценка есть $\varphi(X_{(n)})$. Решим уравнение несмещённости и найдём φ . Мы уже знаем, что $E_{\theta}X_{(n)}=\frac{n}{n+1}\theta$, отсюда, $E_{\theta}\left(\frac{n+1}{n}X_{(n)}\right)=\theta$, т.е. $\varphi(x)=\frac{n+1}{n}x$ и $\frac{n+1}{n}X_{(n)}$ – оптимальная. \square