COMPITO DI CONTROLLI AUTOMATICI

Ingegneria dell'Informazione 1 Settembre 2015

Esercizio 1. [9.5 punti] Dato il sistema a tempo-continuo di funzione di trasferimento

$$G(s) = 10 \frac{\left(1 + 0.01s^2\right)(s+1)}{s^2\left(1 - 0.02s + 0.01s^2\right)(1 + 0.01s)},$$

se ne traccino i diagrammi di Bode e Nyquist. Si studi, inoltre, la stabilità BIBO di $W(s) = \frac{G(s)}{1+G(s)}$ utilizzando il Criterio di Nyquist, e si individui il numero di poli a parte reale positiva di W(s).

Esercizio 2. [10 punti] Data la funzione di trasferimento di un sistema a tempo continuo, lineare e tempo invariante:

$$G(s) = \frac{(s+6)^2}{s(s+1)^2},$$

è richiesto di tracciare i luoghi positivo e negativo, determinando punti doppi (valori approssimati), asintoti, intersezioni con l'asse immaginario, e deducendo quindi per quali valori reali di K il sistema retroazionato è BIBO-stabile.

Esercizio 3. [6 punti] Data

$$G(s) = \frac{10}{(s+1)^2}$$

è richiesto il progetto di due controllori stabilizzanti, $C_1(s)$ e $C_2(s) \in \mathbb{R}(s)$, in modo tale che

- $C_1(s)$ sia proprio e garantisca che il risultante sistema retroazionato sia di tipo 0, con $e_{rp}^{(1)} \simeq 0.01$ al gradino, mentre il sistema in catena aperta abbia $\omega_a \simeq 1$ rad/s, $m_{\phi} \simeq 45^{\circ}$;
- $C_2(s)$ sia un PID (eventualmente un P, PI o PD) e garantisca che il risultante sistema retroazionato sia di tipo 1, con $e_{rp}^{(2)} \simeq 0.001$ alla rampa lineare, mentre il sistema in catena aperta abbia $\omega_a \simeq 100$ rad/s, $m_{\phi} \simeq 90^{\circ}$.

Teoria. [5 punti] Assumendo noto il Teorema dell'Indicatore Logaritmico, si enunci e dimostri il criterio di stabilità di Nyquist nella sua formulazione più restrittiva. Quindi si spieghino, senza dimostrazione, le modifiche da apportare qualora il diagramma di Nyquist vada all'infinito e/o passi per il punto critico s=-1.

SOLUZIONI

Esercizio 1. Diagrammi di Bode:

Il diagramma dei moduli esibisce un picco di antirisonanza infinito (anche se il diagramma in questione lo mostra finito e molto piccolo!) per $\omega=10$ rad/s. Esso scende con pendenza -40 dB/decade da $+\infty$ (per $\omega=0^+$) fino a 20 dB (in corrispondenza di $\omega=1$ rad/s, dove la pendenza cambia e diventa di -20 db/decade), poi scende fino a $-\infty$ (per $\omega=10$ rad/s). Da lì risale e, raggiunto un massimo relativo (che rimane sotto la linea degli 0 dB), ridiscende verso $-\infty$ (diagramma asintotico rettilineo di pendenza prima -20 dB/decade e poi -40 db/decade, a partire da $\omega=100$ rad/s). Invece la fase parte da -180° , sale fino a quasi 0° in $\omega=10$ rad/s, dove una discontinuità la porta quasi a -180° , per poi risalire un po' e portarsi infine a regime al valore di -180° . I diagrammi di Bode sopra riportati sono estremamente scadenti, presumibilmente per problemi numerici. Per

pulsazione [rad/s]

10²

10

10⁰

questa ragione riportiamo di seguito anche i diagrammi reali forniti da Matlab senza gli asintotici, dove l'andamento di modulo e fase sono molto più precisi:

Diagramma di Nyquist e suo particolare:

Essendo N=0 e $n_{G_+}=2$, non si ha stabilità BIBO $(n_{W_+}=2)$.

Esercizio 2. L'equazione dei punti doppi conduce facilmente a

$$(s+1)(s+6)(s^2+17s+6) = 0$$

da cui, oltre alle soluzioni banali s=-1 (per K=0) e s=-6 (per $K=\infty$), si hanno le due soluzioni reali

$$s = -\frac{17 + \sqrt{265}}{2} \simeq -16.64, \quad s = -\frac{17 - \sqrt{265}}{2} \simeq -0.36.$$

Poichè l'unico tratto dell'asse reale che appartiene al luogo positivo è banalmente il semiasse reale negativo (quello positivo appartiene al luogo negativo), entrambi i punti doppi determinati appartengono al luogo positivo. Gli asintoti sono pure i due semiassi reali (uno per ciascun luogo), e per determinare le intersezioni con l'asse immaginario basta imporre

$$j\omega(1+j\omega)^2 + K(6+j\omega)^2 = 0 \implies j\omega(1+12K-\omega^2) + [36K-\omega^2(K+2)] = 0.$$

La parte immaginaria si annulla per $\omega=0$ e per $\omega^2=1+12K$. Sostituendo ciascuna di queste espressioni nella parte reale, si ottiene nel primo caso K=0 (corrispondente a $\omega=0$), e nel secondo $12K^2-11K+2=0$, che porge le soluzioni $K=\frac{1}{4}$ (che corrisponde a $\omega=\pm 2$) e $K=\frac{2}{3}$ (che corrisponde a $\omega=\pm 3$). Quindi determiniamo tre intersezioni, quella banale corrispondente alla partenza di un ramo di entrambi i luoghi dall'origine per K=0, e due ulteriori intersezioni che riguardano il luogo positivo. Concludendo:

• nel luogo negativo, un ramo va semplicemente da s=0 verso $s=+\infty$ muovendosi sull'asse reale, mentre gli altri due rami si muovono con simmetria coniugata nel piano complesso, spostandosi da s=-1 verso s=-6, e senza mai intersecare l'asse immaginario (dall'analisi precedente), quindi abbiamo sempre due poli di W(s) a parte reale negativa ma uno reale positivo, il che preclude la stabilità BIBO;

• nel luogo positivo, due rami si muovono sull'asse reale uno verso l'altro, partendo da s=0 ed s=-1 ed incontrandosi nel punto doppio $s\simeq -0.36$, poi i due rami escono nel piano complesso con simmetria coniugata, e tagliano una prima volta l'asse immaginario in $s=\pm 2j$ per $K=\frac{1}{4}$, poi lo tagliano una seconda volta in $s=\pm 3j$ per $K=\frac{2}{3}$, ed infine si dirigono verso il punto doppio $s\simeq -16.64$, dopodichè i rami si muovono sull'asse reale, uno verso lo zero s=-6 e l'altro verso $s=-\infty$. Infine, il terzo ramo si muove semplicemente sull'asse reale da s=-1 verso s=-6. È chiaro che c'è stabilità BIBO sia per $0< K<\frac{1}{4}$, che per $K>\frac{2}{3}$, visto che solo in tali casi i tre rami sono tutti a sinistra dell'asse immaginario 1.

Nel seguito vediamo il luogo positivo (siccome il valore massimo assunto dalla parte reale è pari a circa 0.02, il luogo appare molto schiacciato sull'asse immaginario e non si riesce a visualizzare l'effettivo doppio attraversamento dell'asse immaginario stesso)

ed il luogo negativo:

¹Parte non richiesta: per essere certi che W(s) sia invece instabile per $\frac{1}{4} \le K \le \frac{2}{3}$, dovremmo essere certi che l'asse immaginario sia effettivamente attraversato, visto che a priori si potrebbe toccare l'asse immaginario con tangente verticale, rimanendo sempre a sinistra di questo. Per ragioni di continuità, è sufficiente analizzare cosa accade in un qualunque valore di K intermedio, ad esempio $K = \frac{1}{2}$. In tal caso si ha

$$W(s) = \frac{(s+6)^2}{s(s+1)^2 + \frac{1}{2}(s+6)^2} = \frac{(s+6)^2}{s^3 + \frac{5}{2}s^2 + 7s + 18}$$

ed applicando Routh al polinomio $s^3 + \frac{5}{2}s^2 + 7s + 18$ si trova la tabella

$$\begin{array}{ccc}
1 & & 7 \\
\frac{5}{2} & & 18 \\
-\frac{1}{5} & & \\
18 & & \\
\end{array}$$

che conferma la presenza di due poli instabili (a parte reale positiva) oltre che di un polo reale negativo.

Esercizio 3. Il primo compensatore richiede $C_1'(s)=10$ per l'errore al gradino, e il diagramma di Bode di 10G(s) evidenzia una pulsazione di attraversamento $\omega_a\simeq 10$ rad/s ed un margine di fase m_{ϕ} , alla pulsazione di attraversamento desiderata, pari a circa 90° .

Serve una rete ritardatrice per diminuire ω_a e diminuire anche m_ϕ . Posizionando il polo due decadi prima di ω_a^{DES} , ed uno zero in ω_a^{DES} (per il requisito sulla fase, ed inducendo una cancellazione zero-polo ammissibile), si ottiene quanto richiesto. Il compensatore finale risulta perciò

$$C_1(s) = 10 \frac{1+s}{1+100s} \implies C_1(s)G(s) = 100 \frac{1}{(1+s)(1+100s)}$$

e la stabilità BIBO è garantita dal criterio di Bode.

Per progettare $C_2(s)$, occorre anzitutto assumere $C_2'(s)=\frac{100}{s}$, e il diagramma di Bode di $\frac{100}{s}G(s)$ evidenzia $\omega_a\simeq 10$ rad/s ed un margine di fase addirittura negativo (quasi -90°).

Posizionando uno zero in modo da indurre una cancellazione zero-polo ammissibile, è facile rendersi conto che l'altro zero deve essere piazzato in s=-10. Quindi una possibile soluzione è

$$C_2(s) = 100 \frac{(1+s)(1+\frac{s}{10})}{s} \Rightarrow C_2(s)G(s) = 1000 \frac{1+\frac{s}{10}}{s(1+s)}.$$

Il criterio di Bode è applicabile e garantisce la stabilità BIBO.

 $\bf Teoria. \;\;$ Si veda il Libro di Testo (II Edizione), pag. 411-413.