

SÍLABO PROCESO DE MANUFACTURA

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERÍA INDUSTRIAL

CICLO: VII CURSO DE VERANO 2017

I. CÓDIGO DEL CURSO : 090140

II. CRÉDITOS :04

III.REQUISITOS : 090136 Ingeniería de Procesos

: 090260 Resistencia de Materiales I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

En el curso se desarrollan los fundamentos de las tecnologías más comunes de producción de bienes, demandando del alumno la aplicación de estos fundamentos al diseño y selección de procesos, la determinación de la capacidad de producción y el establecimiento de condiciones limitantes. El curso tiene carácter teórico, complementándose con prácticas de taller.

El curso comprende las unidades temáticas siguientes:

Unidad I: Panorama general de los procesos de manufactura. Unidad II. Fundición de metales. Unidad III: Conformado de metales por Deformación Plástica. Unidad IV: Mecanizado de metales. Unidad V: Procesamiento de polímeros. Unidad VI: Procesamiento de partículas. Unidad VII: Soldadura.

VI. FUENTES DE CONSULTA:

Bibliográficas

- · Groover, M. (2007). Fundamentos de Manufactura Moderna, procesos y sistemas. 3ª ed. México.McGraw-Hill Interamericana.
- Groover M. (2010) Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. Fourth edition John Wiley and Sons,
- Doyle, L. (1998). Materiales y Procesos de Manufactura para ingenieros. 3ª México. Prentice Hall Hispanoamericana.
- · Alting, L. (1990). Procesos para Ingeniería de Manufactura. México . Alfaomega..
- · Kalpakjian, S., Schmid, S. (2002). Manufactura, Ingeniería y Tecnología. México.
- · Pearson Educación.
- Wlodawer, R. (1966). Directional Solidification of Steel Castings. London. Pergamon.
- Flimm, J. (1966). Fabricaciones Metálicas sin arranque de viruta. Urmo. Bilbao.
- · Horwitz, H. (1990). Soldadura: aplicaciones. México. Alfaomega.
- Boston, O. (1958). Metal Processing. John Wiley & Sons. New York, Cap.XX
- · Bralla, J. (1986). Handbook of product design for manufacturing. McGraw-Hill. New York.
- Farag, M. (1989). Selection of Materials and Manufacturing Process for Engineering Design.
 Prentice Hall International (UK) Ltd.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PANORAMA GENERAL DE LOS PROCESOS DE MANUFACTURA

OBJETIVOS DE APRENDIZAJE:

- Relacionar los procesos de manufactura con el ejercicio de la ingeniería industrial.
- Identificar los atributos físicos y geométricos de un componente.
- Establecer la relación entre los atributos de un componente y los procesos de manufactura.

PRIMERA SEMANA

Primera sesión:

Prueba de entrada. Introducción general al curso. La Ingeniería Industrial y los Procesos de Manufactura. Clasificación de las industrias manufactureras. El Sistema Legal de Unidades de Medida del Perú. Unidades y conversiones. Especificación del producto, atributos del componente

Segunda sesión:

Consideraciones económicas en la manufactura. Componentes del tiempo y del costo de manufactura

UNIDAD II: FUNDICIÓN DE METALES

OBJETIVOS DE APRENDIZAJE:

- Identificar los fenómenos de fusión y solidificación de metales y su relación con las propiedades de producto.
- Identificar las etapas de obtención de un producto por fundición.
- Evaluar los requerimientos de alimentación de una pieza fundida.
- Analizar los principales defectos de una pieza fundida, sus causas y las medidas preventivas.

SEGUNDA SEMANA

Primera sesión:

Fundición de metales, características del proceso, etapas y operaciones. Procedimientos de fusión y colada. Calor requerido para la fusión. Hornos de fusión, tipos. Rendimiento térmico del horno.

Segunda sesión:

Procedimientos de colada, tipos. Sistema de conductos de colada. Tiempo de llenado del molde.

TERCERA SEMANA

Primera sesión:

Solidificación de las fundiciones, estructura de colada. Tiempo de solidificación, relación de Chvorinov. Contracción de las fundiciones.

Segunda sesión:

Alimentación de las fundiciones. Diseño del mazarotado de una pieza fundida.

CUARTA SEMANA

Primera sesión:

Principales método de fundición en moldes desechables y en moldes permanentes.

Segunda sesión:

Consideraciones para el diseño de piezas fundidas.

UNIDAD III: CONFORMADO DE METALES POR DEFORMACIÓN PLÁSTICA

OBJETIVOS DE APRENDIZAJE:

- Identificar los principios involucrados en la deformación plástica de los metales.
- Identificar los principales procesos de conformado de metales por deformación plástica: forja, laminación, extrusión y trefilado.
- Evaluar los requerimientos de fuerza y energía para lograr una deformación plástica dada.
- Identificar las características y aplicaciones del trabajo en frío de la chapa metálica.
- Evaluar los requerimientos de fuerza y energía necesarios para el corte, doblado y embutición de la chapa metálica.

QUINTA SEMANA

Primera sesión:

Conformado de metales por deformación plástica. Trabajo ideal de deformación plástica. Influencia de la fricción y la deformación no homogénea. Trabajo real, eficiencia de conformado.

Segunda sesión:

Trabajo de los metales en frío y en caliente. Principales procesos de conformado volumétrico.

Forjado, tipos. Análisis del recalcado de cilindros. Fuerza y trabajo requeridos por la forja.

Principales operaciones de forjado. Máquinas empleadas en la forja.

SEXTA SEMANA

Primera sesión:

Laminado. Análisis del laminado plano y de forma. Fuerza y potencia requeridos para el laminado.

Principales productos de la laminación. Equipo para laminado.

Segunda sesión:

Extrusión, características y tipos. Análisis de la extrusión. Fuerza y potencia requerida en las operaciones de extrusión de metales. Trefilado y estirado. Análisis del trefilado de alambres. Fuerza y potencia requeridas para el trefilado y estirado.

SÉPTIMA SEMANA

Primera sesión:

Trabajo de chapa metálica, características y principales operaciones: corte, doblado y embutición.

Segunda sesión:

Requerimientos de fuerza y energía para el trabajo de chapa metálica. Equipo empleado para el trabajo de chapa metálica.

OCTAVA SEMANA

Examen Parcial

UNIDAD IV: MECANIZADO DE METALES

OBJETIVOS DE APRENDIZAJE:

- Identificar el proceso de arranque de viruta y los principios en que se basa el proceso de corte.
- Identificar las principales operaciones de mecanizado en máquinas-herramienta: torneado, fresado, taladrado, cepillado y brochado.
- Seleccionar las condiciones de operación para ejecutar un trabajo de mecanizado convencional.
- Identificar los principales materiales en las herramientas de corte.
- Aplicar la relación de Taylor para determinar el tiempo de vida de una herramienta.
- Determinar el costo de realizar un trabajo de mecanizado.
- Identificar las principales operaciones de mecanizado con abrasivos.

NOVENA SEMANA

Primera sesión:

Mecanizado de metales. Corte ortogonal y corte oblicuo. Fuerza y potencia de corte.

Segunda sesión:

Materiales para herramientas de corte. Desgaste y vida de las herramientas de corte, relación de Taylor. Fluidos de corte.

DÉCIMA SEMANA

Primera sesión:

Principales operaciones de mecanizado en máquinas-herramientas convencionales: torneado, condiciones de corte en las operaciones de torneado.

Segunda sesión:

Fresado periférico y frontal. Condiciones de corte en las operaciones de fresado. Taladrado. Condiciones de corte en las operaciones de taladrado. Cepillado, operaciones de cepillado. Brochado, características y operaciones.

UNDÉCIMA SEMANA

Primera sesión:

Selección condiciones de corte óptimas. Consideraciones para el diseño del producto en el mecanizado.

Segunda sesión:

Mecanizado con abrasivos. Principales procesos con abrasivos. Mecanizado no convencional, principales procesos.

UNIDAD V: PROCESAMIENTO DE POLÍMEROS

OBJETIVOS DE APRENDIZAJE:

- Identificar la naturaleza de los polímeros, su estructura y sus propiedades
- Relacionar la estructura con las propiedades de los polímeros
- Identificar los principios involucrados en la transformación de los polímeros
- Identificar los principales procesos de obtención de artículos plásticos.

DUODÉCIMA SEMANA

Primera sesión:

Polímeros, tipos, características y propiedades.

Segunda sesión:

Principales procesos para la elaboración de productos poliméricos. Consideraciones para el diseño de productos poliméricos.

UNIDAD VI: PROCESAMIENTO DE PARTÍCULAS

OBJETIVOS DE APRENDIZAJE:

- Identificar la estructura y propiedades de los materiales cerámicos.
- Identificar las características y propiedades de los materiales en forma de partículas.
- Identificar las etapas de fabricación de componentes aglomerados.
- Determinar las características de un componente aglomerado en función de su constitución y forma de fabricación.

DECIMOTERCERA SEMANA

Primera sesión:

Procesamiento de partículas. Características y propiedades de los polvos metálicos y cerámicos.

Segunda sesión:

Principales operaciones de manufactura para la obtención de productos a partir de partículas metálicas y cerámicas.

UNIDAD VII: SOLDADURA

OBJETIVOS DE APRENDIZAJE:

- Identificar el proceso de soldadura
- Identificar los principios de la unión por fusión
- Estimar los componentes del costo de una unión soldada
- Identificar los procesos de soldadura fuerte y soldadura blanda

DECIMOCUARTA SEMANA

Primera sesión:

Soldadura, tipos de uniones soldadas. Principales técnicas de soldadura por fusión y en estado sólido.

Segunda sesión:

Exposiciones.- Presentación del trabajo de curso

DECIMOQUINTA SEMANA

Primera sesión:

Estimados de soldadura. Soldadura fuerte y soldadura blanda. Unión con adhesivos.

Segunda sesión:

Exposiciones.- Presentación del trabajo de curso

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con qué se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, ecran y proyector de multimedia.

Materiales: Prototipos de piezas obtenidos por los procesos materia del curso.

XI. EVALUACIÓN

El Promedio Final (PF) se obtiene del modo siguiente:

PF = (PE+EP+EF) / 3

PE = (P1 + P2 + T1 + PL)/4

LC = (X1+X2+X3)/3

Donde:

PE = Promedio de evaluaciones

EP = Examen parcial (escrito)

EF = Examen Final (escrito)

T1 = Trabajo de investigación (escrito)

PL = Promedio de Laboratorio (LC)

P1...P2 = Práctica 1

X1...X3 = Notas de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Industrial, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica				
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería				
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos				
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas				
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario				
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería				
(f)	Comprensión de lo que es la responsabilidad ética y profesional				
(g)	Habilidad para comunicarse con efectividad				
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global				
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida				
(j)	Conocimiento de los principales temas contemporáneos				
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería				

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		1	3	3

b) Sesiones por semana: Dos sesiones.

c) **Duración**: 7 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Carlos Muñoz Inga

XV. FECHA

La Molina, enero de 2017.