Lernziele

- Ich kann das Schaltzeichen der Diode auswendig zeichnen und mit allen Angaben korrekt beschriften.
- Ich kann die Funktionsweise der Diode anhand der Kennlinie erklären und die Kennwerte von Strom und Spannung in der Kennlinie eintragen.
- Ich erkenne die Bauformen und Bezeichnung von mindestens drei verschiedenen Dioden.
- Ich kenne das Bezeichnungsschema für Gleichrichter und kann mit Hilfe des Formelbuches aufgrund der Bezeichnung das Schema und umgekehrt erkennen.
- Ich kann die Vor- und Nachteile der einphasigen und dreiphasigen Gleichrichterschaltungen nennen, den Ausgangsspannungsverlauf qualitativ aufzeichnen und Berechnungen mit Hilfe des Formelbuches durchführen.

Ungesteuerte Gleichrichter: Diode

Die Diode ist das Halbleiterbauelement, aus dem Gleichrichterschaltungen aufgebaut werden. Das IEC-Symbol veranschaulicht auch seine Funktionsweise:

Durchlassrichtung: Der Strom kann (fast) ungehindert fliessen.

Sperrrichtung: Der Strom wird (fast) vollständig gesperrt.

Merke: Eine Halbleiterdiode leitet, wenn man
sie in Durchlassrichtung polt, und sie
sperrt den elektrischen
Strom, wenn sie
entgegengesetzt gepolt
ist.

BBB

Ungesteuerte Gleichrichter: Kennlinie von Dioden

Ungesteuerte Gleichrichter: Kennwerte von Dioden

Die allermeisten heute eingesetzten Dioden sind aus Silizium hergestellt. Für Spezialfälle kommen noch Germaniumdioden zu Einsatz.

Kenngröße	Germanium- dioden	Silicium- dioden
Schwellwert der Durchlassspannung $U_{\rm S}$	≈ 0,3 V	≈ 0,7 V
Stromdichte J	0,8 A/mm ²	1,5 A/mm²
maximale Betriebstemperatur ϑ_{\max}	≈ 75°C	≈ 150°C
Wirkungsgrad η	95 %	99%
Spitzen- sperrspannung U_{Rmax}	30 120 V	100 2000 V

Berufs Bildung Ba

Ungesteuerte Gleichrichter: Bauformen von Dioden

Es existieren je nach Leistung zahlreiche Bauformen von Dioden. Man unterscheidet Kleinsignal- bzw. Kleinleistungsdioden und Leistungsdioden.

Kleinleistungsdioden:

Beachte: Ring kennzeichnet die Kathode

Leistungsdioden:

BBB

5 / 13

Ungesteuerte Gleichrichter: Aufbau einer Leistungsdiode

Beispiel des inneren Aufbaus einer Leistungsdiode:

Berufs Bildung Baden

Ungesteuerte Gleichrichter: Normbezeichnung von Gleichrichtern

Dioden werden hauptsächlich zum Aufbau von Gleichrichterschaltungen verwendet. Um die begrenzte Zahl von möglichen Schaltungen unterscheiden zu können wurde ein normiertes Bezeichnungsschema eingeführt:

Übersicht: Gleichrichter					
ungesteuert		teuert	gesteuert	2	Sec
Anzahl der Außenleiter	1	E1U M2U B2U	E1C B2C B2HK B2HZ	groß	Velligkeit des Ausgangsstromes
Anzahl de	3	M3U B6U	M3C B6C	gering	Welligkeit d

Eine Zusammenstellung aller Schaltungen und deren Bezeichnung finden Sie in Ihrem Tabellenbuch.

AutomatikerIn: Elektronik - Analogtechnik

Ungesteuerte Gleichrichter: Einpuls - Einwegschaltung

Die Einpuls-Einwegschaltung E1U (oder M1U) lässt immer eine Halbwelle der Eingangs-spannung zur Last durch und sperrt während der folgenden Halbwelle.

Vorteile:

Nachteile:

a) Versuchsschaltung

b) Oszillogramm

Ungesteuerte Gleichrichter: Zweipuls – Brückenschaltung

Bei der ungesteuerten Zweipuls-Brückenschaltung werden beide Netzalbwellen genutzt.

Vorteile:

Nachteile:

Weitere mögliche Darstellungen der Brückenschaltung

Berufs Bildung Baden

Ungesteuerte Gleichrichter: Bauformen von Gleichrichtern

Vorwiegend Brückenschaltungen von Diodengleichrichtern werden als vorgefertigte Baugruppen angeboten. Auch hier existieren zahlreiche Bauformen:

BBB

Berufs Bildung Baden

10 / 13

Ungesteuerte Gleichrichter: M3U-Schaltung

Werden grosse Ströme gefordert, setzt man Gleichrichterschaltungen ein, die für den Anschluss an Drehstrom geeignet sind.

Berufs Bildung Baden

11 / 13

Ungesteuerte Gleichrichter: B6U-Schaltung

Bei Drehstrom-Gleichrichtern ist die Welligkeit geringer als bei Einphasen-Gleichrichtern

Berufs Bildung Baden

BRB

Ungesteuerte Gleichrichter: Zusammenfassung

In Ihrem Tabellenbuch finden Sie eine ähnliche Tabelle zu den Gleichrichtern:

Tabelle: Kenndaten von ungesteuerten Gleichrichterschaltungen								
Schaltungs- art	Einpuls- Einweg- Schaltung	Zweipuls- Brücken- Schaltung	Dreipuls- Mittelpunkt- Schaltung	Sechspuls- Brücken- Schaltung				
Kurz- bezeichnung	E1U	B2U	M3U	B6U				
Schaltung	N. I. U.	L L L L L L L L L L L L L L L L L L L	L1 Iz L2 Id L3 VI	L1				
Spannungs- verlauf	U _{di} U _{di}	U _d U _f i	U _{di}	u _d Ü _{di}				
$\frac{U_{\text{di}}}{U_1}$	0,45	0,9	0,68	1,35				
Welligkeit w	1,21	0,48	0,18	0,04				
Bauleistungs- faktor $k = \frac{P_T}{P_d}$	3,1	1,23	1,5	1,1				
Zweig- strom I _Z	I_{d}	<u>I_d</u>	$\frac{I_{\rm d}}{3}$	$\frac{I_{\rm d}}{3}$				

 $U_{
m di}$ ideelle Leerlauf-Gleichspannung U_1 Anschlusswechselspannung $P_{
m T}$ Transformatorbauleistung $P_{
m d}$ Gleichstromleistung $U_{
m d}$ Gleichspannung an der Last $I_{
m d}$ Gleichstrom $I_{
m Z}$ Zweigstrom = Strom durch eine Diode