Deep Learning for NLP - Focus on Medical Applications

Representation Learning and Convolutional Networks

1. What did we do wrong in the Tweets Classification Task

- Fully Connected Networks
 - Linear layers
- Word2Vec
 - Learns word representations
- Classifying words
- Sentence representations
 - Averaging is not the best solution
 - Significant information loss
 - Works when order of words is not important
 - Disease mention

2. Representation learning

- Language Modeling
- Words to sentences
- Images to vectors

2. Representation Learning - Images

- The network has to learn everything
 - Background
 - Position
 - What is important what not
 - Colors/Shades

3. Convolutional Networks

- We need something a bit biased towards detecting features in images
 - o Eges, Shapes, Parts
- One conv-block consists of:
 - Convolution + Activation = Conv Layer

- We are learning the weights of the filters/kernels
- Detecting vertical edges (see colab on edge detection)

10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		
. 🔳							

	-5(1)	-< ()	
0	30 30	30	0
0	30	30	0

^{*}Example taken from the Deep Learning course by Andrew Ng.

^{*}Example taken from the Deep Learning course by Andrew Ng.

- We are learning the weights of the filters/kernels
- Detecting vertical edges

- 1							1								
	10	10	10	0	0	0									
	10	10	10	0	0	0		1		1	1	0	30	30	0
	10	10	10	0	0	0		1	0	-1	_ [0	30	30	0
	10	10	10	0	0	0	*	1	0	-1	=	0	30	30	0
	10	10	10	0	0	0		1	0	-1	J	0	30	30	0
	10	10	10	0	0	0			ш					\mathbf{T}	
							-						_	_	
	6 × 6				3	3 x	3			4	x 4				

^{*}Example taken from the Deep Learning course by Andrew Ng.

- stride = 1
- padding
- dilation

2 x 2

 3×3

4 x 4

- stride = 2
- padding
- dilation

stride

padding

dilation

Input Kernel Output -1

Padding = 1

- stride (usually 1)
- padding (usually no padding)
- dilation (not easy to explain, but skipping pixels)

Convolution layer

3. Convolutional Networks - Max pooling

^{*}Example taken from the Deep Learning course by Andrew Ng.

4. ConvNets applied to Text

4. ConvNets Interpretability - Class Activation Map

4. ConvNets - Problems

- Not made for text classification
- Very good for finding short patterns
- No long dependencies, or sequential reading of text
- Loss of semantics

Summary

- What is Representation Learning
- How are fully connected networks used
- What did we do wrong
- Convolutional Networks (CNNs)
 - How do they work
 - Training a CNN
 - Advantages
 - Problems
 - Interpretability