

ECE 528 – Introduction to Random Processes in ECE Lecture 12: Random Processes

Bijan Jabbari, PhD
Dept. of Electrical and Computer Eng.
George Mason University
Fairfax, VA 22030-4444, USA
bjabbari@gmu.edu
http://cnl.gmu.edu/bjabbari

November 18, 2019

Note

- These slides cover material partially presented in class. They are provided to help students to follow the textbook. The material here are partly taken from the book by A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 3rd edition, whom I am thankful.
- There are many other topics which have been covered in class using the blackboard as step-by-step derivation and detailed discussions were needed.

Family of Random Variables

- In many random experiments, the outcome is a function of time or space.
 - Voltage waveform corresponding to speech utterance
 - Number of customers in queueing system
 - Temperature in a city and demand placed on local electric power utility
- An indexed family of random variables (or even random vectors)

Definition of a Random Process

- Consider a random experiment specified by the outcomes ξ from some sample space S, by the events defined on S, and by the probabilities on these events.
- A random process is defined by the mapping of every outcome $\xi \in S$ to a function of time (or space) according to some rule:

Definition of a Random Process (Cont'd)

$$\{X(t,\xi),t\in I\}$$

 Random process is discrete-time if the index set I is a countable set

$$X(t_k,\xi)$$

Random process is continuous-time

$$X(t,\xi)$$

Different Views of a Random Process

$\{X(t,\xi),t\in I\}$

- A random process can be viewed as a function of two variables t and ξ .
- For fixed values of t and ξ , we simply have a number.

Different Views of a Random Process (Cont'd)

$$\{X(t,\xi),t\in I\}$$

 For a fixed value of ξ, the variation vs. t is simply a function of time, which is called the sample path of the random process.

Different Views of a Random Process (Cont'd)

$$\{X(t,\xi),t\in I\}$$

• For a fixed value of t, the variation vs. ξ is a random variable over the entire ensemble of values ξ .

Example: Binary Random Process

• Let ξ be a number selected at random from the interval S = [0,1] and let $b_1b_2...$ be the binary expansion of :

$$\xi = \sum_{i=1}^{\infty} b_i 2^{-i} \quad \text{where } b_i \in \{0,1\}$$

Example: Binary Random Process (Cont'd)

Find

$$P[X(1,\xi) = 0]$$
 and $P[X(1,\xi) = 0$ and $X(2,\xi) = 1]$

Example 9.3

Find the following probabilities for the random process introduced in Example 9.1: $P[X(1,\zeta)=0]$ and $P[X(1,\zeta)=0$ and $X(2,\zeta)=1$.

The probabilities are obtained by finding the equivalent events in terms of ζ :

$$P[X(1,\zeta) = 0] = P\left[0 \le \zeta < \frac{1}{2}\right] = \frac{1}{2}$$

$$P[X(1,\zeta) = 0 \text{ and } X(2,\zeta) = 1] = P\left[\frac{1}{4} \le \zeta < \frac{1}{2}\right] = \frac{1}{4},$$

since all points in the interval $[0 \le \zeta \le 1]$ begin with $b_1 = 0$ and all points in [1/4, 1/2) begin with $b_1 = 0$ and $b_2 = 1$. Clearly, any sequence of k bits has a corresponding subinterval of length (and hence probability) 2^{-k} .

Example: Sinusoid w Random Amplitude

• Let ξ be selected at random from [-1, 1].

$$X(t,\xi) = \xi \cos(2\pi t) - \infty < t < \infty$$

Example 9.2 Random Sinusoids

Let ζ be selected at random from the interval [-1,1]. Define the continuous-time random process $X(t,\zeta)$ by

$$X(t,\zeta) = \zeta \cos(2\pi t)$$
 $-\infty < t < \infty$.

The realizations of this random process are sinusoids with amplitude ζ , as shown in Fig. 9.2(a). Let ζ be selected at random from the interval $(-\pi, \pi)$ and let $Y(t, \zeta) = \cos(2\pi t + \zeta)$. The realizations of $Y(t, \zeta)$ are phase-shifted versions of $\cos 2\pi t$ as shown in Fig 9.2(b).

Example: Sinusoids w Random Phase

• Let ξ be selected at random $[-\pi, \pi]$. $Y(t, \xi) = \cos(2\pi t + \xi).$

Joint Distribution of Time Samples

• Let $X_1, X_2, ..., X_k$ be the k random variables obtained by sampling the random process $X(t, \xi)$ at times $t_1, t_2, ..., t_k$:

Specifying a Random Process

 A random (stochastic) process is specified by a the collection of kth-order joint cumulative distribution functions for any k and any choice of sampling instants t₁, ..., t_k:

$$F_{X_1,...,X_k}(x_1,x_2,...,x_k) = P[X_1 \le x_1,X_2 \le x_2,...,X_k \le x_k]$$

If the process is discrete-valued, we use the pmf

$$p_{X_1,...,X_k}(x_1,x_2,...,x_k) = P[X_1 = x_1,X_2 = x_2,...,X_k = x_k]$$

If the process is continuous-valued, we use the pdf

$$f_{X_1,\ldots,X_k}(X_1,X_2,\ldots,X_k)$$

Example: Bernoulli Sequences

• Find the joint pmf for X_n , iid Bernoulli random variables with $p = \frac{1}{2}$.

Example 9.5 iid Bernoulli Random Variables

Let X_n be a sequence of independent, identically distributed Bernoulli random variables with p = 1/2. The joint pmf for any k time samples is then

$$P[X_1 = x_1, X_2 = x_2, \dots, X_k = x_k] = P[X_1 = x_1] \dots P[X_k = x_k] = \left(\frac{1}{2}\right)^k$$

where $x_i \in \{0, 1\}$ for all *i*. This binary random process is equivalent to the one discussed in Example 9.1.

Mean and Variance Functions of a Random Process

• Mean $m_X(t)$ of X(t) is defined by:

$$m_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) dx$$

Variance of X(t)

$$VAR[X(t)] = E\left[\left(X(t) - m_X(t)\right)^2\right]$$

Autocorrelation & Autocovariance Functions of a Random Process

Autocorrelation R_x(t₁, t₂)

$$R_X(t_1,t_2) = E[X(t_1),X(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(t_1),X(t_2)}(x,y) dx dy$$

Autocovariance C_x(t₁, t₂) of

$$C_X(t_1, t_2) = E[\{X(t_1) - m_X(t_1)\}\{X(t_2) - m_X(t_2)\}]$$

= $R_X(t_1, t_2) - m_X(t_1)m_X(t_2)$

Note that:

$$VAR[X(t)] = E\left[\left(X(t) - m_X(t)\right)^2\right] = C_X(t,t)$$

Example: Sinusoid with Random Amplitude

Example 9.9 Sinusoid with Random Amplitude

Let $X(t) = A \cos 2\pi t$, where A is some random variable (see Fig. 9.2a). The mean of X(t) is found using Eq. (4.30):

$$m_X(t) = E[A\cos 2\pi t] = E[A]\cos 2\pi t.$$

Note that the mean varies with t. In particular, note that the process is always zero for values of t where $\cos 2\pi t = 0$.

The autocorrelation is

$$R_X(t_1, t_2) = E[A \cos 2\pi t_1 A \cos 2\pi t_2]$$

= $E[A^2] \cos 2\pi t_1 \cos 2\pi t_2$,

and the autocovariance is then

$$C_X(t_1, t_2) = R_X(t_1, t_2) - m_X(t_1)m_X(t_2)$$

$$= \{E[A^2] - E[A]^2\} \cos 2\pi t_1 \cos 2\pi t_2$$

$$= VAR[A] \cos 2\pi t_1 \cos 2\pi t_2.$$

Example: Sinusoid with Random Phase

Example 9.10 Sinusoid with Random Phase

Let $X(t) = \cos(\omega t + \Theta)$, where Θ is uniformly distributed in the interval $(-\pi, \pi)$ (see Fig. 9.2b). The mean of X(t) is found using Eq. (4.30):

$$m_X(t) = E[\cos(\omega t + \Theta)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(\omega t + \theta) d\theta = 0.$$

The autocorrelation and autocovariance are then

$$C_X(t_1, t_2) = R_X(t_1, t_2) = E[\cos(\omega t_1 + \Theta)\cos(\omega t_2 + \Theta)]$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} \{\cos(\omega(t_1 - t_2) + \cos(\omega(t_1 + t_2) + 2\theta))\} d\theta$$

$$= \frac{1}{2} \cos(\omega(t_1 - t_2)),$$

where we used the identity $\cos(a) \cos(b) = 1/2 \cos(a+b) + 1/2 \cos(a-b)$. Note that $m_X(t)$ is a constant and that $C_X(t_1, t_2)$ depends only on $|t_1 - t_2|$. Note as well that the samples at time t_1 and t_2 are uncorrelated if $\omega(t_1 - t_2) = k\pi$ where k is any integer.

Lecture Summary

- A random process is a mapping that assigns a function of time (or space) to each outcome ξ of a random experiment
- Random processes can be viewed as an ensemble of sample functions or as an indexed family of random variables.
- Random processes are specified in terms of the joint distribution of its values for an arbitrary number of arbitrary time instants.
- The mean, variance, correlation, and covariance functions provide partial information about a random process.