

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
1. Abend	Konzept Objekt- orientiertes pro- grammieren an- hand von G- Blocks verstehen und eine einfa- che Steuerung implementieren	Vorstellung (Wer bin ich? Problem-Based Learning) EVA – Prinzip (Sensoren – Verarbeitung – Aktoren) Installieren der Entwicklungsumgebung Aufgabe 1 (GoAndReturn) 2 s gerade aus Sound abspielen Pixelgrafik anzeigen (Bild- 180° kehren 2 s zurück Verwendetes Material: Sequenz von Objekten, statische Properties Die 4 verschiedenen Motorklassen und ihre Properties Bildschirm-Klasse (Bild-Bearbeiten, Pixelgrafik) Sound-Klasse (Ton-Bearbeiten, MP3 konvertieren) Timer-Klasse	Probieren, Vormachen, Nachmachen mit theoretischen kurzen Einschüben Verschiedene Varianten selber austesten	20° 15° 15° 120°	

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
2. Abend	Ablaufstrukturen im Programm ge- zielt und richtig verwenden	 Aufgabe 2 (Sirene) Wechsel zwischen C# and G# (0.5s Intervall) Synchrones Blinken (rot) mit dem Tonwechsel Solange Taster gedrückt ON sonst OFF Verwendetes Material: Sound-Klasse (Ton abspeilen) LED-Klasse Timer-Klasse mit Taster Event Loop Block Multithreading 	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	60'	
		 Aufgabe 3 (Staubsauger Roboter) Fahrzeug so programmieren, dass es Hindernissen ausweicht Smiley traurig, wenn Taster gedrückt sonst lachend Wenn Smiley traurig, Fz gerade aus, sonst Motoren stopp Anstelle Taster, Distanz-Sensor verwenden Anstelle stoppen, ausweichen Wettkampf in Arena Verwendetes Material: Verzweigung innerhalb Infinit-Loop (Grundstruktur für Steuerung) Verzweigung durch Touch- und Distanz-Sensor steuern 	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	140'	

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
3. Abend	Property-Binding	Aufgabe 4 (Bremskurve)	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	60'	Übungen lineare Funktion
		DatentypesLineare Funktion (Math. Herleitung)			

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
4. Abend	Eigener Block (Klasse) kreieren	Aufgabe 4a (Bremskurve, CHIP-tuning) Das Programm so erweitern, dass die Parameter (Steigung, y-Achsenabschnitt) aus den beiden Stützpunkten vom Steuerungsprogramm berechnet werden.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	90'	
		Eigener Block LineareFunktion kreieren und in Applikation verwenden und testen		110'	
		Verwendetes Material: Variablen definieren / schreiben / lesen Datentypes Eigeneblocks Interface design Implementation			

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
5. Abend	Re-Use des eigenen Blocks	Aufgabe 5 (Gaspedal und Lenkrad) Das Fahrzeug über eine kabelgebundene RC steuern. Dabei werden zwei Drehregler verwendet. Die jeweiligen Drehwinkel werden mit LinearenFunktion-Objekten in Steuerung und Leistung umgerechnet. Mit Mittlerer-Taste kann Not-Stop (Leistung und Steuerung 0%) gemacht werden. Weiter sollen die Parameter auf der Anzeige angezeigt werden. Falls Rückwärts gefahren wird, Warnhupe und Warnblinker ON Verwendetes Material: Motoren als Drehregler Stein-Tasten Klasse Text-Ausgabe String-Conncationation	Probieren, Vormachen, Nachmachen mit theoretischen kurzen Einschüben	200'	

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
6. Abend	Bluetooth (BT) Nachrichten senden (aufbereiten) und empfangen (verarbeiten)	Aufgabe 6 (BT Connection) Pairen Sie zwei EV3 und senden die verschiedenen Stein-Tasten als String zum Empfänger. Der Empfänger zeigt die Strings an.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	60'	
	können	Erweitern Sie das Programm, so dass auch UP, DOWN, vom Empfänger gesagt wird.		40'	
		Senden Sie einen Zahlenwert (vom Drehregler, Lagesensor,) und zeigen Sie diesen Wert auf der Empfangsseite an.		40'	
		Erweitern Sie das Programm so, dass 2 Zahlenwerte und die Steintaste gesendet werden können und auf der Empfängerseite angezeigt werden.		60'	
		Verwendetes Material: • Bluetooth Meldungen senden und empfangen • Case-Switch Statement			

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
7. Abend	Anwendung im Team (Schnitt- stellen) entwi- ckeln können	Aufgabe 7 (RC-Car) Splitten Sie das Programm von Aufgabe 5 in zwei Teile: a) Fz empfängt Lenkung und Leistung über BT b) Eine Remote-Conrol (RC) sendet die Leistung und Lenkungsdaten via BT an Fz. Die Parameter werden über zwei Drehregler an der RC berechnet (mit lin. Funktion für die Empfindlichkeit). Die Lekung und Leistungsdaten werden auf dem Display der RC angezeigt. Testen und Debugen, Refactoring, Cleancode	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	100'	
		 Erweitern Sie beide Teile wie folgt: a) Fz verhindert selbst dass es irgendwo nach vorne einschiessen kann. b) RC kann die Parameter ebenfalls über Lagesensoren berechnen und senden. Die Schnittstelle darf nicht ändern (Das Fz merkt nicht, von welchen Sensoren die Lenkung und Leistung kommen) Testen und Debugen, Refactoring, Cleancode Verwendetes Material: Test-Driven approach Cleancode Regeln Schnittstellenvertrag SW Entwicklung im Team 		100'	

Abend	Lernziel	Thema / Inhalt	Methode	Zeitbedarf	Hausaufgaben
8. Abend	Anwendung im Team (Schnitt- stellen) entwi- ckeln können	Aufgabe 8 (Linienfolger digital) Programmieren Sie das Fz so, dass es einer zweifarbigen Linie (F1-Strecke Monza) folgen kann. Sobald das Fz die Startlinie überfährt, beginnt die Zeit zu laufen (wird angezeigt auf dem Display) und stoppet sobald die Ziellinie überfahren wird.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	200'	
		Verwendetes Material: Farb-Sensor Timer-Block (Stop-Uhr)			
9. Abend	Anwendung im Team (Schnitt- stellen) entwi- ckeln können	Aufgabe 9 (Linienfolger analog) Programmieren Sie das Fz so, dass es einer einfarbigen Linie (F1-Strecke Monza) folgen kann. Sobald das Fz die Startlinie überfährt, beginnt die Zeit zu laufen (wird angezeigt auf dem Display) und stoppet sobald die Ziellinie überfahren wird.	Probieren, Vorma- chen, Nachma- chen mit theoreti- schen kurzen Ein- schüben	200'	
		Verwendetes Material: Helligkeits-Sensor			

Bemerkungen:

- Jeder Abend dauert 4 Lektionen.
- Der Unterrichtsplan kann bei Bedarf dem vorhandenen Wissen der Klasse angepasst werden.
- Die Studierenden lösen die Übungen auf ihren privaten Notebooks (Entwicklungsumgebung für Windows wird zur Verfügung gestellt).
- Aufgabe 7 wird im 2-er Team bearbeitet und als Leistungsnachweis abgegeben. Darüber wird mit dem Dozenten ein Fachgespräch geführt und bewertet (Erfahrungsnote).
- Die Modullernzielkontrolle (MLZ) findet am 8. Abend in Form einer Moodle Prüfung (Open Books) statt.