Квиз #4

19 декабря 2020 г.

В каждом вопросе выберите все верные ответы.

Рассмотрим выборку независимых одинаково распределённых случайных величин $X_1, X_2, ..., X_N$ из нормального распределения $\mathcal{N}(\mu, 9)$. Предположим, что априорное распределение μ является нормальным $\mathcal{N}(0, 4)$.

1. На основе условия задачи можно сделать вывод, что

A.
$$f(X) = \prod_{i} ce^{-\frac{(X_i - \mu)^2}{9}}$$
.

B.
$$f(\mu) = \prod_i ce^{-\frac{(-\mu)^2}{8}}$$
.

C.
$$f(X|\mu) = \prod_{i} ce^{-\frac{(X_i - \mu)^2}{9}}$$

D.
$$f(\mu|X) = ce^{-\frac{(-X_i)^2}{18}}$$
.

- Е. Нет верного ответа.
- 2. Для простоты далее рассмотрим только наблюдение X_{99} . Оказалось, что $X_{99}=5$. Апостериорное распределение параметра μ задаётся как

A.
$$f(\mu|X_{99}) = Ce^{-\frac{(5-\mu)^2}{9} - \frac{(\mu)^2}{18}}$$

B.
$$f(X_{99}|\mu) = Ce^{\frac{(-\mu)^2}{4} + \frac{(\mu-5)^2}{8}}$$
.

C.
$$f(\mu|X_{99}) = Ce^{-\frac{(-\mu)^2}{8} - \frac{(5-\mu)^2}{18}}$$

D.
$$f(X_{99}|\mu) = Ce^{-\frac{\mu^2}{9} + \frac{(5-\mu)^2}{18}}$$
.

- Е. Нет верного ответа.
- 3. Апостериорное распределение μ с точностью до константы является
 - А. Стандартным нормальным.
 - В. Нормальным, имеющим бесконечную дисперсию.
 - С. Вырожденным.
 - D. Распределением Снедекора.
 - Е. Нет верного ответа.
- 4. Константа C
 - А. Может быть рассчитана путём угадывания вида апостериорного распределения.
 - В. Никогда не вычисляется аналитически.
 - С. Равна $-4/\sqrt{9\pi}$.
 - D. Равна значению максимума априорной плотности.
 - Е. Нет верного ответа.
- 5. Выражение $\mathbb{P}(\mu \in (c,d)|X_{99}) = 0.95$

- А. Не имеет смысла в байесовском подходе.
- В. Всегда совпадает с частотным аналогом.
- С. Эквивалентно выражению $\mathbb{P}(\mu \in (c,d)|X_{99}) > 0.95$.
- D. Может быть рассчитано, только если μ случайная величина.
- Е. Нет верного ответа.
- 6. Точечная байесовская оценка μ
 - А. Может быть средним, модой или дисперсией апостериорного распределения.
 - В. Не вычисляется аналитически.
 - С. Не существует, если максимум второй производной правдоподобия равен 0 хотя бы в одной точке.
 - D. Вычисляется на основе апостериорного распределения.
 - Е. Нет верного ответа.

Далее будем рассуждать в терминах частотного подхода и считать, что μ – константа.

- 7. Пусть тестируется гипотеза $H_0: \mu = -1$ против $H_1: \mu < -1$. Тогда
 - A. Геометрически p-value является наклоном плотности.
 - B. Если p-value окажется близким к 0.99, то нулевая гипотеза не будет отвергнута на уровне значимости 0.97.
 - С. При использовании LM-теста p-value обязательно окажется близким к 0.
 - D. Если при использовании Z-теста p-value окажется 0.99, то H_0 будет отвергнута на любом разумном уровне значимости.
 - Е. Нет верного ответа.
- 8. Пусть тестируется гипотеза $H_0: \mu = 1$ против $H_1: \mu \neq 1$. Тогда
 - А. p-value приблизительно равно 0.01.
 - В. Если p-value окажется равным 0.000, то нулевая гипотеза не будет отвергнута на уровне значимости 1%.
 - С. Для проверки гипотезы достаточно рассчитать лишь p-value / 2.
 - D. Если p-value окажется равным 0.01, то нулевая гипотеза не отвергается на уровне значимости 99%.
 - Е. Нет верного ответа.

При тестировании трёх видов лекарств против плацебо ($H_{0,i}:p_i=p_{plac}$) оказалось, что соответствующие p-value равны 0.000, 0.99, 0.15.

- 1. На основании условия задачи можно сделать вывод, что на уровне значимости 5%
 - А. Только одно лекарство статистически отлично от плацебо.
 - В. Первое лекарство статистически неотличимо от плацебо на уровне значимости 5%.
 - С. Все лекарства статистически неотличимы от плацебо.
 - D. Только первые два лекарства статистически неотличимы от плацебо.
 - Е. Нет верного ответа.
- 2. При проведении множественного тестирования методом Бонферрони на уровне значимости 5%
 - А. Только первое лекарство статистически неотличимо от плацебо.
 - В. Только второе лекарство статистически отлично от плацебо.
 - С. Пороговое значение для отвержения гипотезы следует принять равным $\alpha/2$.
 - D. Не существует разумного уровня значимости, при котором третье лекарство было бы отлично от плацебо.

- Е. Нет верного ответа.
- 3. При проведении множественного тестирования методом Бенджамини-Хохберга на уровне значимости 5%
 - А. Невозможно сказать, статистически отлично ли первое лекарство от плацебо.
 - В. Второе лекарство окажется статистически отличным от плацебо.
 - С. Пороговое значение равно 50%.
 - D. Результаты будут отличны от результатов метода Бонферрони.
 - Е. Нет верного ответа.
- 4. При проведении множественного тестирования методов Бенджамини-Хохберга на уровне значимости 5%
 - А. Ровно два лекарства статистически неотличимы от плацебо.
 - В. Ровно одно лекарство статистически неотличимо от плацебо.
 - С. Все три лекарства статистически неотличимы от плацебо.
 - D. Все три лекарства статистически отличны от плацебо.
 - Е. Нет верного ответа.