Introduction to Model Training in Machine Learning

Understanding the Basics of Data Preparation, Model Training, and Evaluation

Sammie Omranian

Summer 2024

Model Training

- Data Preparation
- Model Selection
- Model Training
- Model Evaluation
- Hyperparameter Tuning

Data Preparation

Data preparation is a crucial step in the machine learning pipeline that significantly impacts the performance of the model.

- Data Collection
 - Data Sources: Databases, APIs, CSV files
- Data Cleaning
 - Cleaning steps such as Handling missing values, Removing duplicates, Addressing outliers
- Feature Engineering
 - Creating relevant features and transforming existing ones can reveal hidden patterns in the data, leading to better model performance. Like normalization and scaling.
- Data Splitting
 - Training, Testing, and Validation sets

Data Preparation - Importance of data preparation

Example:

Steps:

- •Handle Missing Values: Fill missing age with the mean, missing income with the median.
- •Standardize Date Format: Convert all dates to YYYY-MM-DD format.
- •Remove Duplicates: Ensure no duplicate rows are present.

Before cleaning

D	1 ID Name 2			JoinDate
	3 1 John 4 2 Alice	28 34	55000 72000 62000	12/01/2015 15-03-2016 2017/05/20 2018.07.10

After cleaning

0	1 ID Name Age Income JoinDate 2	
	3 1 John 28 55000 2015-12-01 4 2 Alice 31 72000 2016-03-15 5 3 Bob 34 62000 2017-05-20 6 4 Charlie 29 61000 2018-07-10 7	•

Model Selection

Model selection is the process of choosing the most appropriate machine learning algorithm for your specific problem. The
choice of model impacts the performance, accuracy, and interpretability of your results.

- Factors to Consider
 - Type of Problem:
 - Regression: Predicting a continuous output (e.g., house prices).
 - Classification: Predicting a categorical output (e.g., spam detection).
 - · Size of Data:
 - Small Datasets: Simpler models like Linear Regression or Decision Trees may suffice.
 - Large Datasets: More complex models like Neural Networks or Ensemble Methods may be necessary.

Model Selection

Feature Types:

- Numerical: Algorithms like Linear Regression, Ridge, and Lasso work well.
- Categorical: Algorithms like Decision Trees and Random Forests handle categorical data effectively.

Model Interpretability:

- High: Linear Regression, Decision Trees.
- Low: Neural Networks, Ensemble Methods.

Computational Resources:

- Limited: Simpler models with less computational requirements (e.g., Logistic Regression).
- Abundant: Complex models that require significant computational power (e.g., Deep Learning).

Model Training

- Model training is the process where a machine learning algorithm learns to make predictions or decisions based on data.
- Model Training Process
 - 1. Feeding Data:
 - The training data, which consists of input features and corresponding target values, is fed into the machine learning algorithm.
 - Example: In supervised learning, the data is split into input variables (X) and output variable (y).

2. Adjusting Weights:

- The model makes predictions and adjusts the weights (parameters) based on the difference between the predicted values and the actual target values.
- Example: In Linear Regression, the weights (coefficients) are adjusted to minimize the difference between the predicted and actual values.

Model Training

3. Minimizing Loss Function:

- The loss function measures the difference between the predicted and actual values. The goal of training is to minimize this loss function.
- Common Loss Functions:
 - Mean Squared Error (MSE): Commonly used for regression problems.
 - Cross-Entropy Loss: Commonly used for classification problems.
- Example: In Gradient Descent, the algorithm iteratively adjusts the weights to find the minimum value of the loss (cost) function.

Model Training - Overfitting and Underfitting

- Overfitting:
- When a model learns the training data too well, including the noise and outliers, leading to poor generalization on new data.
- How to detect it? High accuracy on training data but low accuracy on testing data.
- Solutions:
 - Simplify the Model: Reduce the complexity of the model like reducing the number of features (Feature Selection), or use simpler algorithms.
 - Regularization: Techniques like Lasso (L1) and Ridge (L2) regularization add a penalty for larger coefficients.
 - Cross-Validation: Use cross-validation techniques to ensure the model generalizes well.

Model Training - Overfitting and Underfitting

- Underfitting:
- When a model is too simple to capture the underlying patterns in the data, leading to poor performance on both training and testing data.
- How to detect it? Low accuracy on both training and testing data.
- Solutions:
 - Increase Model Complexity: Use a more complex model that can capture the underlying patterns.
 - Feature Engineering: Create new features or transform existing ones to provide more information to the model.

Model Evaluation

- Model Evaluation Metrics
 - Regression Metrics: MAE, MSE, RMSE, R-squared
 - Classification Metrics: Accuracy, Precision, Recall, F1-score
- Regression Metrics
 - 1. Mean Absolute Error (MAE)
 - The average of the absolute differences between the predicted values and the actual values.
 - Formula

$$MSE = \sum_{i=1}^{n} \frac{|y_i - y_i'|}{n}$$

MAE measures the average magnitude of the errors in a set of predictions.

Model Evaluation

2. Mean Squared Error (MSE)

The average of the squared differences between the predicted values and the actual values.

Formula

$$MSE = \sum_{i=1}^{n} \frac{(y_i - y_i')^2}{n}$$

3. Root Mean Squared Error (RMSE)

The square root of the average of the squared differences between the predicted values and the actual values.

Formula

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{\left(y_i - y_i'\right)^2}{n}}$$

Model Evaluation

3. R-squared (R²)

The proportion of the variance in the dependent variable that is predictable from the independent variables.

Formula

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y'_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

 \mathbb{R}^2 indicates how well the model fits the data; values range from 0 to 1, with 1 indicating perfect fit.

We will talk about classification metrics when introducing classification problems.

Hyperparameter Tuning

- Hyperparameters: Parameters that are set before the learning process begins and are not learned from the data.
 Examples include the learning rate for training a neural network, the number of trees in a random forest, or the regularization parameter in a regression model.
- Hyperparameter Tuning: The process of finding the optimal set of hyperparameters that yield the best performance
 of the model on the validation data.
- Importance:
 - Model Performance: Hyperparameters can significantly impact the performance of machine learning models.
 Proper tuning can lead to substantial improvements in accuracy and generalization.
 - Prevent Overfitting/Underfitting: Properly tuned hyperparameters help in balancing the complexity of the model, avoiding both overfitting and underfitting.
 - Model Efficiency: Optimal hyperparameters can also reduce training time and computational cost.

Hyperparameter Tuning

Grid Search:

- An exhaustive search method that tries every possible combination of hyperparameters within the specified parameter grid.
- Process: Define a grid of hyperparameter values and train the model on each combination, evaluating performance using cross-validation.
- Pros: Comprehensive, finds the best combination of hyperparameters within the specified grid.
- Cons: Computationally expensive, especially with large grids and complex models.