QCM N° 1: Test

Pour tous les QCM, il y a au moins une réponse juste

EXERCICE 1. Le QQ-plot suivant peut être le QQ- EXERCICE 4. Soit Z une variable distribuée suiplot de :

 \square Deux échantillons suivant des lois $\mathcal{U}(0,1)$

- \square Un échantillon suivant une loi $\mathcal{U}(-4,4)$ et un échantillon suivant une loi $\mathcal{N}(20,4)$
- \square Un échantillon suivant une loi $\mathcal{N}(0,1)$ et un échantillon suivant une loi $\mathcal{N}(10,2)$
- \square Deux échantillons suivant des lois $\mathcal{N}(20,4)$

Exercice 2. Soit Z une variable distribuée suivant une loi normale centrée réduite, et Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$.

$$\mathbb{P}(-0.155 < Z < 1.60) =$$

- $\Box \Phi(-0.155) \Phi(1.6)$
- $\Box -\Phi(-0.155) + \Phi(1.6)$
- $\Box \Phi(1.6) 1 \Phi(0.155)$
- $\Box \Phi(1.6) + \Phi(0.155) 1$

EXERCICE 3. Soit $X \sim \mathcal{N}(15, 3^2)$ et $\Phi_{\mu, \sigma}$ la fonction de répartition d'une loi $\mathcal{N}(\mu, \sigma^2)$

$$\mathbb{P}(|X| < 45) =$$

- $\square 2\Phi_{15,3^2}(45) 1$
- $\Box 2\Phi_{0,1}(2.8) 1$
- $\Box \Phi_{0,1}(10) \Phi_{0,1}(-10)$
- $\Box \Phi_{0,1}(10) 1 \Phi_{0,1}(20)$

vant une loi normale centrée réduite, et Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$.

$$\mathbb{P}(Z > -1 \text{ et } Z < 2) =$$

- \square 0
- $\Box \Phi(2) + \Phi(1) 1$
- $\sqcap (1 \Phi(-1)) + \Phi(2)$

EXERCICE 5. Soit $X \sim \mathcal{N}(0,1)$, Φ sa fonction de répartition, $p \in \mathbb{R}$ et q un quantile.

Quelle(s) affirmation(s) est(sont) impossibles:

- $\Box \Phi(p) \simeq -1.96$
- $\Box \Phi(0.19) \simeq 0.385$
- $\Box \Phi^{-1}(q) \simeq -0.25$
- $\Box \Phi(p) \simeq 2.27$

Exercice 6. Soit Z une variable distribuée suivant une loi normale centrée réduite, et b solution de l'équation $\mathbb{P}(Z < b) = 0.75$. Alors b est aussi solution de l'équation :

- $\square \ \mathbb{P}(Z > b) = 0.75$
- $\square \mathbb{P}(Z > b) = -0.75$
- $\square \mathbb{P}(Z < b) = 0.25$
- $\square \ \mathbb{P}(Z > b) = 0.25$

EXERCICE 7. Soient x_1, \ldots, x_n quelques observations. Pour des raisons de commodités, on a changé les unités menant à de nouvelles observations

$$y_i = ax_i + b, \qquad i = 1, \dots, n.$$

Quelle(s) réponse(s) est(sont) exacte(s)?

- $\Box \bar{y}_n = |a|\bar{x}_n$
- $\Box \ \bar{y}_n = a^2 \bar{x}_n + b$
- $\Box \sigma_y^2 = |a|\sigma_x^2$
- $\square \ \sigma_x = \frac{1}{|a|} \sigma_y$

EXERCICE 8. En reprenant les notations du cours, quelle(s) réponse(s) est(sont) exacte(s)?

- $\square \bar{x}_n$ est aléatoire
- $\square x_{i_1}$ est aléatoire
- \square n est aléatoire
- \square x_1 est aléatoire

EXERCICE 9.

Table 1 – Distribution du nombre d'heures passées devant un écran par semaine.

Nb d'heures.	Nb. de personnes (%)
0-5	8
5 - 10	26
10 - 25	40
25 – 30	22
30-60	4
Total	100

Que peut-on dire des quantiles approchés?

- $\square Q1 \in [5; 10]$
- $\square Q3 = 24.3$
- \square Med = 16
- ☐ Aucune des réponse n'est exacte

EXERCICE 10. Concernant l'image ci-dessous :

Si l'on considère que l'estimateur représenté par les points noirs est à faible biais et à variance faible sur la cible 1 que peut-on dire sur les autres cibles?

- ☐ L'estimateur de la cible 2 est à fort biais et à forte variance
- ☐ L'estimateur de la cible 3 est à faible biais et à forte variance
- ☐ L'estimateur de la cible 4 est à faible biais et à forte variance
- ☐ L'estimateur de la cible 2 est à faible biais et à forte variance

EXERCICE 11. On considère une population de 7 individus. On s'intéresse à un tirage aléatoire simple

de 4 individus. Le nombre d'échantillons possible est égal à :

- \square $\binom{7}{3}$
- □ 70
- $\Box \frac{7!}{3!}$
- \square $\binom{7}{4}$

EXERCICE 12. Soient x_1, \ldots, x_n des variables aléatoires indépendantes, distribuées suivant la même loi, d'espérance μ et de variance σ^2 ; Alors, si n est grand $(n \ge 30)$, la variable

$$Z = \frac{\bar{x}_n - \mu}{\sigma / \sqrt{n}}$$

suit approximativement une loi:

- $\square \mathcal{N}(\mu, \sigma)$
- $\square \mathcal{N}(0,1)$
- $\square \ \mathcal{U}(0,1)$
- $\square \ \mathcal{U}(\mu, \sigma)$

EXERCICE 13. Considérons l'intervalle de confiance suivant de la moyenne empirique \bar{x}_n :

$$\left[\bar{x}_n - \frac{\sigma}{\sqrt{n}}, \bar{x}_n + \frac{\sigma}{\sqrt{n}}\right]$$

Sachant que $\Phi(1) \simeq 0.84$, cela nous donne un intervalle de confiance de \bar{x}_n au niveau :

- □ 84%
- \square 32%
- □ 68%
- □ 95%

EXERCICE 14. A propos de la variance de la moyenne empirique, en supposant que les x_{i_k} sont indépendants, $\mathbb{V}ar(\bar{x}_n) =$

- $\square \operatorname{Var}(x_{i_1})$
- $\square \operatorname{Var}(x_{i_1})/n$
- $\square \operatorname{Var}(x_{i_1})/n^2$
- ☐ Aucune des réponse n'est exacte

EXERCICE 15. L'écart quadratique moyen d'un estimateur \hat{x}_n d'un paramètre μ est donné par : $\mathbb{E}(\hat{x}_n - \mu)^2 =$

- $\square \operatorname{Var}(\hat{x}_n) + \mathbb{B}(\hat{x}_n)^2$
- $\square \operatorname{Var}(\hat{x}_n) \mathbb{B}(\hat{x}_n)^2$
- $\square \operatorname{Var}(\hat{x}_n)^2 \mathbb{B}(\hat{x}_n)$
- $\square \operatorname{Var}(\hat{x}_n)^2 + \mathbb{B}(\hat{x}_n)$