CLAIMS

- 1. (Amended) An electrode assembly for a micro-optics solar concentrator, the apparatus comprising:
- a) an array of micro-mirrors rotatably disposed in a substrate;
- b) electric dipoles in said rotatable micro-mirrors;
- c) said apparatus having a plurality of addressable elements;
- d) two bus bars connected to opposite poles of a voltage source;
- e) at least two sets of opposing rung electrodes which <u>interlace</u> orthogonally <u>within each plane</u>, and criss-cross each other and are separated by dielectrics;
- f) said rung electrodes electrically connected to at least two of said bus bars for electric field group coupling to said induced electric dipoles by means of said voltage source; and
- g) microprocessor means for selectively addressing each pair of said bus bars.
- 2. (Original) The apparatus of claim 1, wherein there are at least three independent voltage sources connected to at least three pairs of rung electrodes.
- 3. (Original) The apparatus of claim 1, wherein said array of micromirrors are disposed between a top transparent electrode opposite a bottom electrode connected to an independent voltage source
- 4. (Original) The apparatus of claim 1, wherein said array of micromirrors are disposed between a top grid electrode opposite a bottom electrode connected to an independent voltage source.
- 5. (Original) The apparatus of claim 1, wherein said electric dipoles are induced in each of said micro-mirrors by said electric field.

- 6. (Amended) The apparatus of claim 1, wherein an electret is placed adjacent to each micro-mirror so that its permanent electric dipole is parallel to said induced electric dipole.
- 7. (Original) The apparatus of claim 1, wherein a group of said micromirrors are given the same alignment.
- 8. (Original) A method of aligning groups of an array of rotatable minimirrors in a light modulating apparatus comprising the steps of:

 a) selectively inducing an electric dipole in each of said rotatable mini-mirrors;
- b) producing a grid array of independently orientable electric fields for coupling to the induced electric dipoles by means of sets of orthogonally criss-crossing opposing rung electrodes; and
- c) selectively aligning at least one of said rotatable mini-mirrors by means of said electric fields.
- 9. (Original) The method of claim 8 further comprising the step of applying at least three independent voltages to at least three pairs of rung electrodes.
- 10. (Original) The method of claim 8 further comprising the step of placing an electret adjacent to each mini-mirror so that its permanent electric dipole is parallel to said induced electric dipole.
- 11. (Original) The method of claim 8 further comprising the step of energizing a top transparent electrode opposite a bottom electrode connected to an independent voltage source, between which electrodes are disposed in said array of micro-mirrors.
- 12. (Original) The method of claim 8 further comprising the step of energizing a top grid electrode opposite a bottom electrode connected to an independent voltage source, between which electrodes are disposed in said array of micro-mirrors.

- 13. (Original) The method of claim 8 further comprising the step of giving said mini-mirrors the same alignment as a group.
 - 14. (Amended) Apparatus for focussing and directing reflected light comprising:
- a) an array of micro-mirrors rotatably disposed in a substrate;
- b) electric dipoles in said rotatable micro-mirrors;
- c) said apparatus having a plurality of addressable elements;
- d) two bus bars connected to opposite poles of a voltage source;
- e) at least two sets of orthogonally criss-crossing rung electrodes electrically connected to at least two of said bus bars for electric field group coupling to said induced electric dipoles; and
- f) <u>microprocessor</u> means for selectively addressing each pair of said bus bars; and
- g) means for selectively establishing independent voltage differences between each pair of said bus bars by means of said voltage source.
- 15. (Original) The apparatus of claim 14, wherein there are at least three independent voltage sources connected to at least three pairs of rung electrodes.
- 16. (Original) The apparatus of claim 14, wherein said array of micromirrors are disposed between a top transparent electrode opposite a bottom electrode connected to an independent voltage source
- 17. (Original) The apparatus of claim 14, wherein said array of micromirrors are disposed between a top grid electrode opposite a bottom electrode connected to an independent voltage source.
- 18. (Original) The apparatus of claim 14, wherein said electric dipoles are induced in each of said micro-mirrors by said electric field.
- 19. (Original) The apparatus of claim 14, wherein an electret is placed adjacent to each micro-mirror so that its permanent electric dipole is parallel to said induced electric dipole.
- 20. (Amended) The apparatus of claim 114, wherein a group of said micromirrors are given the same alignment a small optical concavity.

CLAIMS

- (Amended) An electrode assembly for a micro-optics solar concentrator, the apparatus comprising:
- a) an array of micro-mirrors rotatably disposed in a substrate;
- b) electric dipoles in said rotatable micro-mirrors;
- c) said apparatus having a plurality of addressable elements; -----
- d) two bus bars connected to opposite poles of a voltage source;
- e) at least two sets of opposing rung electrodes which interlace orthogonally within each plane, and criss-cross each other and are separated by dielectrics;
- f) said rung electrodes electrically connected to at least two of said bus bars for electric field group coupling to said electric dipoles by means of said voltage source; and
- g) microprocessor means for selectively addressing each pair of said bus bars.
- 2. (Original) The apparatus of claim 1, wherein there are at least three independent voltage sources connected to at least three pairs of rung electrodes.
- 3. (Original) The apparatus of claim 1, wherein said array of micromirrors are disposed between a top transparent electrode opposite a bottom electrode connected to an independent voltage source
- 4. (Original) The apparatus of claim 1, wherein said array of micromirrors are disposed between a top grid electrode opposite a bottom electrode connected to an independent voltage source.
- 5. (Original) The apparatus of claim 1, wherein said electric dipoles are induced in each of said micro-mirrors by said electric field.
- 6. (Amended) The apparatus of claim 1, wherein an electret is placed adjacent to each micro-mirror so that its permanent electric dipole is parallel to said electric dipole.

- 7. (Original) The apparatus of claim 1, wherein a group of said micromirrors are given the same alignment.
- 8. (Original) A method of aligning groups of an array of rotatable minimirrors in a light modulating apparatus comprising the steps of:
- a) selectively inducing an electric dipole in each of said rotatable mini-mirrors;
- b) producing a grid array of independently orientable electric fields for coupling to the induced electric dipoles by means of sets of orthogonally criss-crossing opposing rung electrodes; and
- c) selectively aligning at least one of said rotatable mini-mirrors by means of said electric fields.
- 9. (Original) The method of claim 8 further comprising the step of applying at least three independent voltages to at least three pairs of rung electrodes.
- 10. (Original) The method of claim 8 further comprising the step of placing an electret adjacent to each mini-mirror so that its permanent electric dipole is parallel to said induced electric dipole.
- 11. (Original) The method of claim 8 further comprising the step of energizing a top transparent electrode opposite a bottom electrode connected to an independent voltage source, between which electrodes are disposed in said array of micro-mirrors.
- 12. (Original) The method of claim 8 further comprising the step of energizing a top grid electrode opposite a bottom electrode connected to an independent voltage source, between which electrodes are disposed in said array of micro-mirrors.
- 13. (Original) The method of claim 8 further comprising the step of giving said mini-mirrors the same alignment as a group.

- 14. (Amended) Apparatus for focussing and directing reflected light comprising:
- a) an array of micro-mirrors rotatably disposed in a substrate;
- b) electric dipoles in said rotatable micro-mirrors;
- c) said apparatus having a plurality of addressable elements;
- d) two bus bars connected to opposite poles of a voltage source;
- e) at least two sets of orthogonally criss-crossing rung electrodes electrically connected to at least two of said bus bars for electric field group coupling to said electric dipoles; and
- f) microprocessor means for selectively addressing each pair of said bus bars; and
- g) means for selectively establishing independent voltage differences between each pair of said bus bars by means of said voltage source.
- 15. (Original) The apparatus of claim 14, wherein there are at least three independent voltage sources connected to at least three pairs of rung electrodes.
- 16. (Original) The apparatus of claim 14, wherein said array of micromirrors are disposed between a top transparent electrode opposite a bottom electrode connected to an independent voltage source
- 17. (Original) The apparatus of claim 14, wherein said array of micromirrors are disposed between a top grid electrode opposite a bottom electrode connected to an independent voltage source.
- 18. (Original) The apparatus of claim 14, wherein said electric dipoles are induced in each of said micro-mirrors by said electric field.
- 19. (Original) The apparatus of claim 14, wherein an electret is placed adjacent to each micro-mirror so that its permanent electric dipole is parallel to said induced electric dipole.
- 20. (Amended) The apparatus of claim 114, wherein a group of said micromirrors are given a small optical concavity.

Respectfully submitted,

mario Fabinowitz

Mario Rabinowitz and Felipe Garcia applicants

Please address correspondence to:

Mario Rabinowitz 715 Lakemead Way Redwood City, CA 94062

Ph. & FAX 650, 368-4466; e-mail: Mario715@earthlink.net

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.