Shift & Add Multiplication Table

Considering an 8-bit shift-and-add unsigned multiplier, as discussed in	ın class	SS
---	----------	----

Let $X = 73_{10}$. What is X in 8-bit binary?	Let Y = 15 ₁₀ . What is Y in 8-bit binary?
What is X*Y in decimal?	What is the product in binary?

Show the **binary** values of the C, A, and Q registers after each ADD and SHIFT below. Do this by hand.

Step	С	A	Q	Desc		
0				Initialization (C=0; A=0; Q=X)		
1 – add				If $Q_0 == 1$. then A=A+M, else A=A+0		
1 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
2 – add				If $Q_0 == 1$. then A=A+M, else A=A+0		
2 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
3 – add				If $Q_0 == 1$. then A=A+M, else A=A+0		
3 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
4 – add				If $Q_0 == 1$. then A=A+M, else A=A+0		
4 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
5 – add				If Q ₀ == 1. then A=A+M, else A=A+0		
5 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
6 – add				If $Q_0 == 1$. then A=A+M, else A=A+0		
6 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
7 – add				If $Q_0 == 1$. then A=A+M, else A=A+0		
7 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		
8 – add				If Q ₀ == 1. then A=A+M, else A=A+0		
8 – shift				Shift Q; Q ₃ =A ₀ ; Shift A; A ₃ =C		

Breakpoints Table (breakpoint at DEC DH)

DH	AH	AL	СН	Desc
08				Initialization
08				End of step 1
07				End of step 2
06				End of step 3
05				End of step 4
04				End of step 5
03				End of step 6
02				End of step 7
01				End of step 8