ZINC-RICH PHASES OF THE RARE-EARTH-ZINC ALLOYS

A. IANDELLI AND A. PALENZONA

Institute of Physical Chemistry, University of Genoa, Genoa (Italy)
(Received September 17th, 1966)

SUMMARY

The crystal structures of the intermetallic compounds in the composition range 89--100% at.% zinc have been investigated for the rare earth (RE)–Zn systems. Five crystal structure types have been found, corresponding to the formulae: REZn₁₃, REZn₁₂, REZn₁₁ and RE₂Zn₁₇. The existence of the different structures appears to be closely related to the dimensions of the RE atoms. Eu and Yb behave as divalent elements.

INTRODUCTION

In the present work, the zinc-rich side of all RE–Zn systems (89–100 at. % Zn) has been studied, mainly structurally, in order to define the composition and the structure of the existing phases and to examine the variations resulting from the differences in the atomic dimensions of the RE metals, and from the different valencies of Eu and Yb. Some zinc compounds of Sr, Ca, Th and U have been examined for comparison.

EXPERIMENTAL

The RE metals were obtained from the Michigan Co., the Nuclear Co., the Lindsay Co., and the Gallard Schlesinger Co. of the U.S.A. and had a purity of 99.4–99.6%; Ca and Sr supplied by the Fluka Soc., Switzerland, had a purity of 99.5%, while U (99.7%) and Th (99.9%) were obtained from the Koch-Light Laboratories Ltd., England.

With the exception of those phases having the composition M_2Zn_{17} , nearly all the remaining compounds decomposed before melting, losing zinc until reaching the composition M_2Zn_{17} . Consequently, in preparing the compounds richest in zinc, prolonged heating of the two metals at low temperatures to complete the reaction appeared to be the most convenient procedure, especially in view of the high reaction rate between zinc and the other metals, even at temperatures as low as 400°C .

Thorium powder, turnings of the RE metals and Ca, Sr and U, prepared under inert-gas atmosphere, were mixed with filings of zinc in various stoichiometric ratios, pressed, and heated either in glass vessels *in vacuo* for low temperatures (up to 600°C),

or in tantalum containers, closed under argon, for higher temperatures. The time of heating was sufficient to ensure complete reaction. The intermediate and final products of reaction were examined by X-ray diffraction ($CuK\alpha$ or $FeK\alpha$ radiation). In the majority of those cases in which it was impossible to obtain single crystals (MZn_{13} , MZn_{12} , MZn_{11} phases), the powder method was employed.

As the reactions were performed in sealed vessels it was assumed that there were no losses and that the constituent proportions were unchanged after reacting.

RESULTS

X-ray examination of the samples showed the existence of five structure types corresponding to four compositions, which are discussed below.

Irrespective of the initial composition, the first reaction products obtained at low temperature (400°-450°C) corresponded to the compounds richest in zinc existing for a given element at this temperature. These compounds have the formulae: MZn₁₃ for Sr, Ca, La, Eu, Yb; MZn₁₂ for Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; MZn₁₁ for Ce, Pr, Nd, and M₂Zn₁₇ for Th and U.

MZn₁₃ phases

These phases were prepared by prolonged heating of stoichiometric quantities of the two metals between 450° and 600°C *in vacuo*. In many cases, after the first reaction the samples were again pressed and reheated. The NaZn₁₃ structure type¹ was found for SrZn₁₃, EuZn₁₃, CaZn₁₃ (already known) and also for LaZn₁₃ and YbZn₁₃. For the other RE metals, mixtures of zinc with the phases REZn₁₁ or REZn₁₂ were obtained. The phases REZn₁₃ seem therefore, to exist only for the compounds of RE with La, Eu, Yb.

TABLE I LATTICE CONSTANTS (Å) OF MZn₁₃ PHASES (NaZn₁₃ TYPE)

	SrZn ₁₃	$EuZn_{13}$	CaZn ₁₃	$YbZn_{13}$	LaZn ₁₃
This work (+0.005 Å)	12.238	12,216	12.185	12.172	12.096
Other values	12.2403	12.2164	12.1553	_	From 12.096 to 12.079 ⁵

The MZn_{13} compounds are not all stable with increasing temperature. $SrZn_{13}$ and $EuZn_{13}$ could be melted without decomposition, but $LaZn_{13}$ and $YbZn_{13}$ decomposed respectively to $LaZn_{11}+Zn$ and $YbZn_{11}+Zn$ between 650° and 750°C. In one phase diagram of the La-Zn system², relating to a pressure of 10 atm, only $LaZn_{13}$ appears; for this composition two arrests were observed at 710°C and 844°C and these are now interpreted as corresponding to two peritectic points, the first for $LaZn_{13}$, the second for $LaZn_{11}$.

Lattice constant values are reported in Table I, together with the values obtained by other authors.

MZn₁₂ phases

The REZn₁₂ phases only are formed by the elements from Sm to Lu, with the

exceptions of Eu, Yb, Ca and Sr, by heating the two metals for several days at 450°-500°C.

Their crystal structures are of the ThMn₁₂ type¹; Table II gives the structural data. The corresponding space group is the tetragonal I4/mmm and the positions are: 2 RE in 2(a), 8 Zn in 8(f), 8 Zn in 8(i), and 8 Zn in 8(j). The last two positions contain two parameters (x and x' respectively) to be determined; these have been carried out from the reflection intensities on the powder photographs of TmZn₁₂. Geometrical

TABLE II LATTICE CONSTANTS (Å) OF REZn₁₂ Phases (ThMn₁₂ Type)

Compound	This wor	k	Other values		
	а	c	a	c	
	±0.003	±0.002			
$SmZn_{12}$	8.927	5.215			
GdZn ₁₂	8.898	5.210	-		
$TbZn_{12}$	8.884	5,200	8.856	5.1996	
$DyZn_{12}$	8.877	5.198	8.872	5.2046	
HoZn ₁₂	8.868	5.195			
ErZn ₁₂	8.863	5.193	8.850	5.195	
$TmZn_{12}$	8.852	5.190			
LuZn ₁₂	8.848	5.186	administration.		

TABLE III $observed \ and \ calculated \ intensities \ for \ TmZn_{12} \ (ThMn_{12} \ \ type)$

hkl	Icalc.	Iobs.	hkl	Icalc.	Iobs.	hkl	Icale.	$I_{obs.}$
110	1.1		303	12.0	10	552	***	
101	0.7	_	600	2.9		712	19.7	20
200	0.01	-	512	10.8	10	404	35.8	35
211	9.7	10	323 611)	32.0	30	613 642	3.9 42.1	
310	4.6	5	620	14.1	15	651	•	40
002	13.7	15	413	1.8		800∫	24.7	25
301	28.6	30	442	2.5	2	334	4.7	
112	1.0		54I	1.9		424	15.9	15
202	48.0	50	532	15.9	15	543	2.6	
321 400	100.0	100	004 602)	15.7	15	741) 811)	14.0	15
330	3.4	2	631	75.2	75	820)	-4	-3
222	21.0	25	114	0.5		732	0.6	
411) 420)	15.4	15	550) 710	8.2	10	633 660	55.0 25.6	55 20
312	5.4	5	204	0.04	_	514	18.7	15
510	7.2	5	433)			105	0.5	-
103	0.3	 -	503	9.3	10	750	0.5	
402	1.4		622)			703	4.4	
431) 501)	9.0	10	701 \ 640 \	2.1		802 831	4. 1 86.7	 85
332	4.6	5	224	1.4		215	7.1	
213	3.1	2	523	2.7	5	444	23.1	25
422	9.5	10	721	8.9	10	723	26.9	30
521	7.7	10	314	3.7	5	822	35.7	35
440) 530	9.3	10	730	0.2		840 534	34·4 63.2	35 60

considerations lead to x values from 0.350 to 0.356 and of x' values from 0.290 to 0.296. The calculations were carried out on an IBM 1620 computer for nine pairs of values and the best agreement was obtained for x = 0.353 and x' = 0.293. The observed and calculated intensities are reported in Table III.

Figure 1 shows three sections of the unit cell, at heights of z=0, $z=\frac{1}{2}$, $z=\frac{1}{4}$; $\frac{3}{4}$. Each RE atom is surrounded by 4 Zn (i) at 3.13 Å, 8 Zn (j) at 3.18 Å and 8 Zn (f) at 3.39 Å. The Zn atoms have inter-atomic distances varying from 2.60 to 2.90 Å. Taking the values of the atomic radii of Tm and Zn with co-ordination numbers 8 and 12⁷, the calculated distances are 3.05–3.12 Å (Tm–Zn) and 2.68–2.74 Å (Zn–Zn).

Fig. 1. $ThMn_{12}$ type; sections of the unit cell.

MZn₁₁ phases

Samples having the composition MZn₁₁ were similarly prepared at temperatures up to 600°C. CaZn₁₁, LaZn₁₁, PrZn₁₁, NdZn₁₁, EuZn₁₁ and YbZn₁₁ (not SrZn₁₁) appear as homogeneous phases with the crystal structure of BaCd₁₁ type⁸: for all other RE metals, X-ray patterns corresponding to the REZn₁₂ phases were obtained. The phase diagram of the Ca–Zn system published by Messing *et al.*⁹, shows the presence of the compound CaZn₁₃, which decomposes at 669°C, and of the compound CaZn₁₁ having a melting point of 724°C, with which the present results are in agreement.

TABLE IV LATTICE CONSTANTS (Å) OF MZn₁₁ phases (BaCd₁₁ type)

Compound	This wor	k	Other value	s
	a	c	a	c
	±0.004	±0.003		
EuZn ₁₁	10.719	6.874	10.72	6.8776
$CaZn_{11}$	10.699	6.830	<u> </u>	_ ``
$YbZn_{11}$	10.637	6.822	10.66	6.8386
LaZn ₁₁	10.686	6.881	10.68	6.878
CeZn ₁₁			(10.66	(6.868
CeZn ₁₁	_	_	10.662	6.85510
$PrZn_{11}$	10.626	6.835	10.65	6.858
$NdZn_{11}$	10.608	6.828	10.64	6.8426

Table IV reports our lattice constant values for these phases together with those already known, and others published in the course of this work.

M₂Zn₁₇ phases

These phases can be formed by the decomposition of the zinc-rich RE–Zn alloys and by direct reaction. They can be melted in closed containers under argon without decomposition. Attempts to prepare Sr_2Zn_{17} , Ca_2Zn_{17} and Eu_2Zn_{17} were unsuccessful, mixtures of MZn_5 with MZn_{11} or MZn_{13} being obtained. In the systems La–Zn and Ce–Zn referred to by GSCHNEIDNER², his suggestion that the compositions REZn₈ or REZn₉ must be replaced by RE₂Zn₁₇ is then justified.

Each of the preceeding phases, MZn_{13} , MZn_{12} , MZn_{11} , and M_2Zn_{17} shows a very restricted homogeneity range. Different preparations always gave identical X-ray photographs and their denomination as "compounds" thus appears to be justified. In the course of this investigation the recent work of Velekis *et al.*⁵, was kindly brought to our notice by the authors. By means of a recording effusion balance and by X-ray diffraction they have examined the systems of zinc with La, Ce, Pr, Nd and Y. Their results are in complete agreement with ours and show the existence of the phases: $REZn_{13}$ for La; $REZn_{11}$ for La, Ce, Pr, Nd; $REZn_{12}$ for Y, and RE_2Zn_{17} for all of the RE systems examined.

The crystal structure determination of the RE₂Zn₁₇ compounds was performed on single crystals of Ho₂Zn₁₇, obtained from a melted sample. After some difficulties, due to the ease of twinning, a single crystal was found which showed rhombohedral symmetry, with lattice constants referred to hexagonal axes: $a \cong 8.97$ and $c \cong 13.15$ Å and with 3 formula units per unit cell. The possible space groups were: R_3m ; R_3m , and a discussion of the different possible positions suggested the already known structure of the Th₂Zn₁₇ type¹², (R_3m) . Powder photographs of a sample of Th₂Zn₁₇ showed complete similarity with those of all RE₂Zn₁₇ compounds. The atomic positions, in the space group R_3m are¹³:

```
6 Ho in 6(c): ooz ... with z=\frac{1}{3}
6 Zn in 6(c): ooz' ... with z'=0.097
9 Zn in 9(d): \frac{1}{2}\frac{1}{2}0 ...
18 Zn in 18(f): xoo ... with x=\frac{1}{3}
18 Zn in 18(h): x'\overline{x}'z ... with x'=\frac{1}{6} and z=\frac{1}{2}
```

A first calculation of the intensities for a powder photograph of Gd_2Zn_{17} with the preceeding values gave results that were not wholly satisfactory. As the distances between zinc atoms in 18(f) were greater than the sum of the atomic radii, the intensities were recalculated with various x values, giving, for x=0.30, results which are in good agreement with the observed ones, as shown in Table V. This divergence from $x=\frac{1}{3}=0.333$ produces an approach of zinc atoms at distances of 2.70 Å to form hexagons around the couples of zinc in 6(c). Table VI contains the lattice constant values.

This structure may be considered as formed by atomic layers of four types, as in the following graph (Fig. 2), with the stacking sequence: ADBDCDA...

Another crystal form has been observed by Velekis *et al.*⁵ for some RE₂Zn₁₇ compounds prepared at about 500°C (U₂Zn₁₇ type), and also by Kuz'MA *et al.*⁶ (Th₂Ni₁₇ type¹¹). These two structure types are closely related to Th₂Zn₁₇, as they

TABLE V
OBSERVED AND CALCULATED INTENSITIES FOR Gd₂Zn₁₇ (Th₂Zn₁₇ Type)

hkl	Icalc.	Iobs.	hkl	Icalc.	$I_{obs.}$	hkl	Icalc.	I_{obs}
101	0.04		330	5.5	5	508	1.0	_
102	0.2		325	4.2	5	3.1.10	0.4)	
110	0.2		421	0.1		440	21.5}	20
003	O.I		009	0.3		517	2.0)	
201	0.6		422	0.4		614	0.4	20
202	1.7	_	218	1.0		606	42.8	30
113	12.0	10	333	21.2		2.1.11	0.4	
104	1.2	2	317	0.1	20	701	1.0)	
11:	0.4		504	1.3	_	419	19.5	20
212	1.6		511	0.6)	_	702	0.5	_
300	20.9	20	119	6.5	6	428	1.0	
204	2.8)		512	1.2	2	0.0.12	14.0	13
105	1.9	5	407	0.01	_	4.0.10	0.7	_
220	36.1		424	1.2)		443	5.0	5
303	63.9	100	416	1.2	5	526	1.4	_
)°3 214	3.4		505	1.9	3	615	1.0	
006	21.6	25	318	0.1		621	1.2	
205	3.6		600	28.0)		622	2.3)	-
11	0.2		1.0.10	0.1	25	518		_
		_		1.6	25	•	2.5	5
12	0.01		327	1		1.1.12	0.01	
23	19.9	20	514	2.4	5	3.2.10	0.3	_
16	3.1	5	425	2.1	_	437	0.1	_
15	4.71	ŭ	431	0.7	30	704	0.1	_
OI	0.6	_	309	31.6∫	Ü	339	42.1	40
102	0.1		432	0.3	2	3.1.11	0.01	-
07	0.2		408	0.0₁∫		710	3.0	2
14	0.5		2.0.10	0.02		624	5.6	5
2 I	0.9	2	520	0.5	_	705	0.01	
22	1.9		603	0.3		4.0.11	0.2	_
10	0.7		336	2.4	5	438	0.2	20
:07	0.9		515	3.6∫	3	3.0.12	21.4∫	
104	0.01		229	4.5	5	5.0.10	0.2	_
306	7.4 }	8	328	1.8	-	713	33.3	
315	1.2		2.1.10	$O.O_1$		617	0.2	25
:08	0.2		523	9.0	T-0	1.0.13	0.02)	
13	11.3		507	0.9	10	446	53.3)	
17	1.1	13	434	0.0_{1}		625	11.1	70
24	3.2		611	0.1		54Ĭ	1.5	
26	18.0	20	1.0.11	$O.O_2$		3.2.11	2.6	
105	0.1		612	0.01		542	4.31	
OI	0.4		427	0.8		2.2.12	77.7	70
02	0.7		435	0.1	_	4.2.10	0.01	
:08	0.7	2	2.0.11	0.3		2.0.13	1.1	

are formed by the same layers as in Fig. 2, but with different stacking sequences; the U_2Zn_{17} type corresponding to ADBDCDADCDBDA..., the Th_2Ni_{17} to BDCDB..., both with hexagonal symmetry. The U_2Zn_{17} type was reported by Makarov and Vinogradov^{12,14}, but a detailed study by Vold and Peterson¹⁵ showed for U_2Zn_{17} the existence of a rhombohedral modification (β) (Th_2Zn_{17} type), and of a hexagonal one, (α), but of the Th_2Ni_{17} type.

We have examined this structure type for samples of RE metals and zinc, reacted for 5 days at 500° C in proportions corresponding to the composition RE₂Zn₁₇ and for comparison, we have prepared U₂Zn₁₇ similarly. All these products give

TABLE VI LATTICE CONSTANTS (Å) OF RE2Zn₁₇ Phases (Th2Zn₁₇ Type)

Compound	hexagonal	axes	Ref.
	а	С	
	±0.004	± 0.005	
La_2Zn_{17}	9.131	13.334	
Ce_2Zn_{17}	9.088	13.290	
Pr_2Zn_{17}	9.066	13.274	
Nd_2Zn_{17}	9.052	13.236	
Sm_2Zn_{17}	9.017	13.211	
Gd_2Zn_{17}	8.994	13.169	
$\mathrm{Tb_2Zn_{17}}$	8.977	13.161	
$\mathrm{Dy_2Zn_{17}}$	8.967	13.139	
Ho_2Zn_{17}	8.956	13.133	
Er_2Zn_{17}	8.942	13.118	
Tm_2Zn_{17}	8.937	13.110	
Yb_2Zn_{17}	9.040	13.216	
$L_{11_2}Zn_{17}$	8.920	13.096	
Th_2Zn_{17}	(9.060	(13.234	this work
1 1122/1117	(9.03	13.20	I 2
II 7	8.983	13.161	this work
U_2Zn_{17}	8.978	13.160	15

Fig. 2. Atomic layers in the M_2Zn_{17} structures. Large circles are M atoms, small circles zinc atoms. Double circles represent pairs of zinc atoms above and below the plane of the others.

similar X-ray powder photographs, little different from those of the Th₂Zn₁₇ type. For Eu, Yb, La only REZn₁₁ and REZn₁₃ phases are formed.

The powder photographs of this low temperature form could be indexed as a hexagonal cell corresponding to Th_2Ni_{17} type, and the structure was determined by calculating the reflection intensities of α -Dy₂Zn₁₇ using the original values¹¹ of the parameters. This first calculation did not give good agreement. Following the same dimensional considerations employed in determining the structure of the β form, the intensities were recalculated with the same change in the positions of a part of the zinc atoms. A better, but not wholly satisfactory result was obtained; somewhat surprisingly the agreement in the two cases was better for the reflections with h-k=3n; for the others it was possible to observe on the powder photographs only five very faint reflections, while from the calculated intensities about twenty-five weak, but again detectable, reflections must be present.

TABLE VII $observed \ and \ calculated \ intensities \ for \ Dy_2Zn_{17} \ (Th_2Ni_{17} \ type)$

hkl	Icalc.	Iobs.	hkl	Icalc.	Iobs.
110	0.2	_	520	0.5	
002	0.1		602	0.2	
II2	11.6	10	334	2.6	3
300	20.1	20	226	4.9	3
220	35.5	100	522	10.8	10
302	64.5	100	440	23.7	20
004	21.6	20	604	47.3	45
222	18.0	25	416	20.5	18
114	2.9	3	008	16.1	15
410	0.8		442	4.8	6
304	6.6	6	524	1.4	
412	13.0	12	118	O. I	
224	18.5	20	336	45.4	50
330	5.8	6	710	3.7	
006	0.3		308	28.7	30
332	23.0	25	712	42.9	40
116	6.6	6	444	62.7	60
414	1.1				
600	29.7	30			
306	33.4	30			

TABLE VIII
LATTICE CONSTANTS (Å) OF RE₂Zn₁₇ Phases (Th₂Zn₁₇ Type)

Compound	This wor	·k	Other values		Ref.
	а	c	а	c	
	±0.004	±0.004			
Ce_2Zn_{17}	9.088	8.856		_	
Pr_2Zn_{17}	9.063	8.847	_		
Nd_2Zn_{17}	9.042	8.838			
Sm_2Zn_{17}	9.010	8.807	8.979	8.876	6
Gd_2Zn_{17}	8.994	8.779	8.987	8.828	6
Tb_2Zn_{17}	8.978	8.768	8.984	8.770	6
Dy_2Zn_{17}	8.956	8.776	8.980	8.8or	6
Ho_2Zn_{17}	8.949	8.758	8.963	8.747	6
Er_2Zn_{17}	8.947	8.745	_	_	
Tm_2Zn_{17}	8.935	8.752	8.939	8.736	6
Lu_2Zn_{17}	8.925	8.738		_	
Th_2Zn_{17}	9.032	8.929		—	
U_2Zn_{17}	8.974	8.804	8.962	8.809	15

This disagreement may be explained, as for the hexagonal form of $\rm U_2Zn_{17}^{15}$, by assuming stacking faults of the layers A, B, C of Fig. 2, corresponding to sequences BDCDB..., ADBDA..., ADCDA... If so, the reflections with h-k=3n are unaffected while the others are lowered and enlarged. In Table VII only the observed and calculated intensities for the reflections of the first kind are reported and only those with l=2n, as for l odd, have about zero intensity. With the following values of the positions and of the parameters, in the space group $P6_3/mmc$, a reasonable agreement may be observed:

```
2 Dy in 2(b): 00\frac{1}{4} ...

2 Dy in 2(d): \frac{1}{3}\frac{2}{3}\frac{3}{4} ...

4 Zn in 4(f): \frac{1}{3}\frac{2}{3}z ... with z=0.11

6 Zn in 6(g): \frac{1}{2}00 ...

12 Zn in 12(k): x,2x,0 ... with x=\frac{1}{6}

12 Zn in 12(j): x,y,\frac{1}{4} ... with x=0.033, y=\frac{2}{3}
```

Table VIII contains the lattice constant values for $\alpha\text{-RE}_2Zn_{17}$ compounds. Here, and also in Table VI, the values for U_2Zn_{17} and Th_2Zn_{17} are reported. For U_2Zn_{17} , contrary to Vold and Peterson¹⁵, we were only able to obtain the α -form by reaction of the two metals for 15 days at 550°C, while the β -form appeared in melted samples (about 1100°C), as in the case of the RE₂Zn₁₇ compounds. For Th, the hexagonal α -form (not yet known) was obtained at low temperature (540°C) for compositions having zinc a little in excess of the composition Th_2Zn_{17} .

For all M_2Zn_{17} compounds examined, the α -form appears to be a polytypic rather than a polymorphic modification. While the β -form can always be obtained from the α -form by heating, it seems impossible to revert from β to α : a sample of β -Ho₂Zn₁₇ gave an identical powder photograph after annealing for 10 days at 500°C. Furthermore, the α -form seems to be stabilised by a little excess zinc, as in the case of Th₂Zn₁₇. For Dy, samples obtained by reaction at 500°C for one month, having the compositions DyZn₈, Dy₂Zn₁₇, and DyZn₉, showed that the first had the rhombohedral structure whereas the two latter were hexagonal.

DISCUSSION

The five structure types found for the compounds richest in zinc are characterised by the formation of a network of zinc atoms containing a certain number of nearly spherical holes in which the RE, or other atoms, may be arranged. The diameter and the number of the holes vary according to the structure, and the whole is stabilised through the introduction of M atoms in the corresponding positions. Hence the structure and the formula change if the dimensions of the M atoms become too large or too small.

In the proposed scheme (Fig. 3), where the various types are reported for the M atoms arranged in order of decreasing atomic radius, it is apparent that the ranges of existence for the various structure types are closely related to the dimensions of the M atoms.

Fig. 3. Existence ranges for the examined zinc compounds.

The number of zinc atoms surrounding each M atom is: 24 for $NaZn_{13}$ type; 8+10 (+4) for $BaCd_{11}$ type; 12+8 for $ThMn_{12}$ type, and 6+12 for all M_2Zn_{17} types. The two values correspond to increasing M–Zn distances, which may be much greater than the sum of the atomic radii (e.g. in $NaZn_{13}$ type). This makes it difficult to define a "coordination number" for M atoms and to discuss the different structures more quantitatively. A criterion of stability for a certain structure based on the atomic size is not sufficient. For the Th–Zn system, various attempts to prepare phases richer in zinc than Th_2Zn_{17} were unsuccessful, although the radius of Th is the same as

Fig. 4. Lattice constants of α-RE₂Zn₁₇ compounds vs. RE trivalent ionic radii.

Fig. 5. Lattice constants of β -RE₂Zn₁₇ compounds vs. RE trivalent ionic radii.

J. Less-Common Metals, 12 (1967) 333-343

that of Nd or Sm and the formation of ThZn₁₁ or ThZn₁₂ should thus be dimensionally possible.

For the various compounds of trivalent RE examined, the decrease of lattice dimensions from La to Lu, as for other series, follows those of the trivalent ionic radii; this can be seen for the most complete series of REZn₁₂ and RE₂Zn₁₇ compounds. In Figs. 4 and 5 the lattice constants vs. the values of the trivalent ionic radii for α - and β -RE₂Zn₁₇ are shown and a regular linear variation is observed. For REZn₁₂ compounds two straight lines should again result, but with very little slope.

In Fig. 3, Eu and Yb are placed between Sr, Ca and La, taking the values of the atomic radii which correspond to divalent elements. Their divalency has been confirmed by magnetic measurements on EuZn₁₃, YbZn₁₃, EuZn₁₁, YbZn₁₁ and Yb₂Zn₁₇, the values of magnetic susceptibilities and the moments corresponding to Eu²⁺ and Yb²⁺. This behaviour of Eu and Yb is observed in many other intermetallic compounds; the existence of Eu³⁺ and of Yb³⁺ appears to be the exception.

ACKNOWLEDGEMENT

The authors are indebted to Drs. M. Fornasini and F. Merlo for their help in measuring and calculating X-ray photographs. The research reported herein has been sponsored by the Italian Consiglio Nazionale delle Ricerche, and by the Office of the Chief of Research and Development, U.S. Department of the Army, through its European Research Office.

REFERENCES

- I W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, London, 1958.
- 2 K. A. GSCHNEIDNER, JR., Rare Earth Alloys, Van Nostrand, New York, 1961.
- 3 J. A. A. KETELAAR, J. Chem. Phys., 5 (1937) 668.
- 4 A. IANDELLI AND A. PALENZONA, Rend. Accad. Lincei, 37 (1964) 165.
- 5 E. VELEKIS, I. JOHNSON AND H. M. FEDER, Trans. AIME, in the press.
- 6 Y. B. KUZ'MA, P. I. KRIPYAKEVICH AND D. P. FRANKEVICH, Izv. Akad. Nauk SSSR, Neorgan. Materially, 1 (1965) 1547.
- 7 F. LAVES, Trans. Am. Soc. Metals, 48 A (1956) 124.
- 8 M. J. SANDERSON AND N. C. BAENZIGER, Acta Cryst., 6 (1953) 627.
- 9 A. F. Messing, M. D. Adams and R. K. Steunenberg, Trans. Quart. Am. Soc. Metals, 56 (1963) 345.
- 10 G. OLCESE, Rend. Accad. Lincei, 35 (1963) 48.
- 11 J. V. FLORIO, N. C. BAENZIGER AND R. E. RUNDLE, Acta Cryst., 9 (1956) 367.
- 12 E. S. MAKAROV AND S. I. VINOGRADOV, Kristallographiya, 1 (1956) 634.
- 13 International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, England, 1952.
- 14 R. M. STANTON, P. F. WOERNER, C. L. VOLD, J. A. KINGSTON AND J. F. SMITH, Ames Labs. Rept. ISC-1047, 1958.
- 15 C. L. VOLD, D. T. PETERSON, Ames Labs. Rept. IS-246, 1961.