COMP3411/9414: Artificial Intelligence

6b. Evolutionary Robotics

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Evolutionary Robotics 2

Charles Darwin

- Darwin's theory of Natural Selection was largely inspired by what he observed on a visit to the Galapagos Islands
 - ▶ different species of finches from different islands
 - unusual adaptations such as the marine iguana
 - breeding habits of turtles
- Darwin was influenced by:
 - ► Charles Lyell's "Principles of Geology"
 - ► Thomas Malthus's "Essay on Population"
 - ▶ his grandfather Erasmus Darwin
 - ▶ his other grandfather, Josiah Wedgwood

COMP3411/9414 19t1 Evolutionary Robotics 1

Outline

- Darwinian Evolution
- Evolutionary Computation
- Simulated Hockey
- Evolutionary Robotics

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1

Evolutionary Robotics

3

Human Genome

- human genome consists of 3 billion DNA base pairs
- each base pair can be one of four nucleotides
 - ► A (Adenine)
 - ► G (Guanine)
 - C (Cytosine)
 - ► T (Thymine)

UNSW

- approximately 30,000 "genes", each coding for a specific protein
- 97% of genome does not code for proteins
 - ▶ once thought to be useless "junk" DNA
 - ▶ now thought to serve some other function(s)

UNSW © Alan Blair, 2013-19

© Alan Blair, 2013-19

COMP3411/9414 19t1 Evolutionary Robotics 4 COMP3411/9414 19t1 Evolutionary Robotics

Evolutionary Computation

- use principles of natural selection to evolve a computational mechanism which performs well at a specified task.
- start with randomly initialized population
- repeated cycles of:
 - evaluation
 - selection
 - ► reproduction + mutation
- any computational paradigm can be used, with appropriately defined reproduction and mutation operators

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Evolutionary Robotics 6

Continuous Parameters (ES)

- reproduction = just copying
- mutation = add random noise to each weight (or parameter), from a Gaussian distribution with specified standard deviation
 - > sometimes, the standard deviation evolves as well

Evolutionary Computation Paradigms

- Bit Strings (Holland "Genetic Algorithm")
- S-expression trees (Koza "Genetic Programming")
- set of continuous parameters (Swefel "Evolutionary Strategy")
- Lindenmeyer system (e.g. Sims "Evolving Virtual Creatures")

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Evolutionary Robotics

Case Study - Simulated Hockey

UNSW

Shock Physics

- rectangular rink with rounded corners
- near-frictionless playing surface
- "spring" method of collision handling
- frictionless puck (never acquires any spin)

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1

Evolutionary Robotics

Evolutionary Robotics

10

COMP3411/9414 19t1

Evolutionary Robotics

© Alan Blair, 2013-19

Shock Sensors

- 6 Braitenberg-style sensors equally spaced around the vehicle
- each sensor has an angular range of 90° with an overlap of 30° between neighbouring sensors

Shock Actuators

a skate at each end of the vehicle with which it can push on the rink in two independent directions

UNSW

11

Shock Inputs

- each of the 6 sensors responds to three different stimuli
 - ▶ ball / puck
 - own goal
 - opponent goal
- 3 additional inputs specify the current velocity of the vehicle
- \blacksquare total of $3 \times 6 + 3 = 21$ inputs

Shock Agent

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1

Evolutionary Robotics

14

COMP3411/9414 19t1

Evolutionary Robotics

© Alan Blair, 2013-19

Shock Task

- each game begins with a random "game initial condition"
 - ► random position for puck
 - > random position and orientation for player
- each game ends with
 - $ightharpoonup +1 ext{ if puck}
 ightharpoonup ext{enemy goal}$
 - ▶ -1 if puck \rightarrow own goal
 - ▶ 0 if time limit expires

Shock Agent

- Perceptron with 21 inputs and 4 outputs
- total of $4 \times (21+1) = 88$ weights
- our "genome" (for Evolutionary Computation) consists of a vector of these 88 parameters
- mutation = add Gaussian random noise to each parameter, with standard deviation 0.05

UNSW

15

Evolutionary Algorithm

- mutant ← champ + Gaussian noise
- champ and mutant play up to 5 games with same game initial conditions
- if mutant does "better" than champ,
 - $champ \leftarrow (1 \alpha) * champ + \alpha * mutant$
- "better" means the mutant must score higher than the champ in the first game, and at least as high as the champ in each subsequent game

Evolved Behavior

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1

Evolutionary Robotics

Evolutionary Robotics

18

obolics

Evolutionary/Variational Methods

- initialize mean $\mu = \{\mu_i\}_{1 \le i \le m}$ and standard deviation $\sigma = \{\sigma_i\}_{1 \le i \le m}$
- \blacksquare for each trial, collect k samples from a Gaussian distribution

$$\theta_i = \mu_i + \eta_i \sigma_i$$
 where $\eta_i \sim \mathcal{N}(0,1)$

- sometimes include "mirrored" samples $\overline{\theta}_i = \mu_i \eta_i \sigma_i$
- evaluate each sample θ to compute score or "fitness" $F(\theta)$
- update mean μ by $\mu \leftarrow \mu + \alpha(F(\theta) \overline{F})(\theta \mu)$
 - $ightharpoonup \alpha = \text{learning rate}, \overline{F} = \text{baseline}$
- \blacksquare sometimes, σ is updated as well

Wins and Losses

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1

Evolutionary Robotics

19

OpenAl Evolution Strategies

- **E**volutionary Strategy with fixed σ
- since only μ is updated, computation can be distributed across many processors
- applied to Atari Pong, MuJoCo humanoid walking
- competitive with Deep Q-Learning on these tasks

COMP3411/9414 19t1 Evolutionary Robotics 20 COMP3411/9414 19t1

Evolutionary Robotics

- Aibo walk learning
- Humanoid walk learning
- Evolving body as well as controller
- Simulation to Reality

COMP3411/9414 19t1

UNSW © Alan Blair, 2013-19

Guroo – Humanoid Walk Learning

Evolutionary Robotics

Learning done in simulator(s), then tested on actual robot.

Aibo Walk Learning (Hornby)

Learning done on actual robot.

UNSW

COMP3411/9414 19t1

Evolutionary Robotics

Evolutionary Robotics

23

© Alan Blair, 2013-19

Evolving Virtual Creatures (Sims)

- Body evolves as a Lindenmeyer system
- Controller evolves as a neural network

© Alan Blair, 2013-19

22

UNSW

Golem (Lipson)

■ Evolved in simulation, tested in reality.

Evolved Antenna

One example of the use of Evolutionary Algorithms for a real world application is the antenna that was evolved by Hornby et al in 2006 for NASA's Space Technology 5 (ST5) mission.

UNSW © Alan Blair, 2013-19 © Alan Blair, 2013-19