Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Инженерно-технические средства защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

«Поисковой прибор ST 031 Пиранья»

	Выполнил:
бахов М	. А., студент группы N34501
	(подпись)
	Проверил:
	Попов И. Ю., доцент ФБИТ
	(отметка о выполнении)
	(подпись)

Санкт-Петербург 2023 г.

СОДЕРЖАНИЕ

1.1	Teop	Теоретическая часть	
	_	Принцип работы	
		Комплектация прибора	
		тическая часть	
	•	Поиск закладного устройства	

введение

Цель работы — изучить основные принципы работы многофункционального поискового прибора ST 031 «Пиранья».

1 ХОД РАБОТЫ

1.1 Теоретическая часть

1.1.1 Принцип работы

Принцип работы прибора ST 031 «Пиранья» основан на использовании различных физических принципов для обнаружения технических средств негласного получения информации (ТНПА). Прибор состоит из блока управления и индикации, комплекта преобразователей и позволяет работать в нескольких режимах.

Переход в любой из режимов осуществляется автоматически при подключении соответствующего преобразователя. Информация отображается на графическом жидкокристаллическом дисплее с подсветкой, а акустическое управление осуществляется через специальные наушники или встроенный динамик. Управление прибором осуществляется с использованием 16-кнопочной клавиатуры. Прибор обеспечивает возможность сохранения в энергозависимой памяти 99 изображений.

1.1.1.1 Режимы работы

- 1. Высокочастотный детектор-частотомер используется для обнаружения радиоизлучения, которое может быть использовано для передачи информации. Прибор излучает сигнал в заданном диапазоне частот и принимает отраженный сигнал. Если амплитуда отраженного сигнала имеет высокую величину, то это указывает на наличие радиопередатчика в зоне действия прибора.
- 2. Сканирующий анализатор проводных линий используется для обнаружения ТНПА, которые подключены к проводным линиям связи. Прибор поочередно излучает сигнал в различных точках линии и принимает отраженный сигнал. Если амплитуда отраженного сигнала имеет высокую величину, то это указывает на наличие подключения ТНПА к линии.
- 3. Детектор ИК-излучений используется для обнаружения ТНПА, которые используют инфракрасное излучение для передачи информации. Прибор излучает инфракрасный сигнал и принимает отраженный сигнал. Если амплитуда отраженного сигнала имеет высокую величину, то это указывает на наличие инфракрасного передатчика в зоне действия прибора.
- 4. Детектор низкочастотных магнитных полей используется для обнаружения ТНПА, которые используют магнитные поля для передачи информации. Прибор измеряет

- интенсивность магнитного поля в различных точках пространства. Если интенсивность магнитного поля превышает пороговое значение, то это указывает на наличие ТНПА в зоне действия прибора.
- 5. Дифференциальный низкочастотный усилитель используется для усиления низкочастотных сигналов, которые могут быть использованы для передачи информации. Прибор подключается к линии связи и усиливает сигнал, передаваемый по линии. Если усиленный сигнал имеет высокую величину, то это указывает на наличие ТНПА, подключенного к линии.
- 6. Виброакустический приемник используется для обнаружения ТНПА, которые создают вибрации или акустические волны. Прибор подключается к поверхности, на которой может располагаться ТНПА, и улавливает вибрации или акустические волны, создаваемые ТНПА. Если амплитуда вибрации или акустических волн имеет высокую величину, то это указывает на наличие ТНПА в зоне действия прибора.
- 7. Акустический приемник используется для обнаружения акустических сигналов, которые могут быть использованы для передачи информации. Прибор подключается к микрофону и улавливает акустические сигналы, передаваемые по воздуху. Если амплитуда акустических сигналов имеет высокую величину, то это указывает на наличие ТНПА в зоне действия прибора.

1.1.2 Комплектация прибора

- 1. Основной блок центральное устройство, осуществляющее обработку сигналов и управление функциями.
- 2. УВЧ-конвертор компонент, обеспечивающий переход в ультравысокочастотный диапазон.
- 3. Подставка основного блока специальная опора для размещения и фиксации основного блока устройства.
- 4. Широкополосная УВЧ антенна антенна, предназначенная для приема широкого диапазона ультравысокочастотных сигналов.
- 5. Наплечный держатель основного блока удобный держатель для носки основного блока устройства на плече пользователя.
- 6. Комплект щупов и насадок набор специальных зондов и насадок для дополнительных измерений и соединений.
- 7. Адаптер проводных линий устройство для подключения проводных линий.
- 8. Блок питания (2 шт.) два источника питания для подачи энергии устройству.

- 9. Батарея типа АА (8 шт.) восемь элементов питания для работы устройства в автономном режиме.
- 10. Мини-диск с программным обеспечением носитель с программами, необходимыми для полноценной работы прибора.
- 11. Головные телефоны наушники для акустического контроля устройства.
- 12. Инструкция по эксплуатации руководство пользователя, содержащее информацию о настройке и использовании устройства.

Рисунок 1 – ST 031 «Пиранья»

1.2 Практическая часть

1.2.1 Поиск закладного устройства

В рамках проведения практической работы я активировал контрольный выключатель, переведя выключатель POWER в положение ON на устройстве. Далее, определил пределы динамического диапазона ST 031, установив их в положении ": 8... +32dB". Последовательно выполнив необходимые шаги, я активировал звуковой контроль, выбрав режим "TONE".

На встроенный громкоговоритель был выведен звуковой сигнал в виде чередующихся "щелчков". Отметил, что с увеличением уровня сигнала частота "щелчков" увеличивается. С использованием этого акустического контроля мне удалось выделить и определить особое техническое устройство.

ЗАКЛЮЧЕНИЕ

В результате лабораторной работы с прибором ST 031 "Пиранья" были успешно изучены его различные режимы работы, ориентированные на обнаружение технических средств негласного получения информации. Эксперимент с поиском закладного устройства с использованием звукового контроля подтвердил эффективность акустического метода выявления и определения источников сигнала. В целом, лабораторная работа расширила понимание принципов функционирования прибора и его применения в области обнаружения ТНПА.