

Стационарни синусоидални режими еднофазни електрически вериги

дисциплина "Електротехника и електроника " – FBME27 ОКС "Бакалавър" от Учебните планове на специалности от МФ, МТФ, ЕМФ и ФТ

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Стационарни синусоидални режими еднофазни електрически вериги

- 1. Променливотокови електрически величини- особености, характеристики
- 2. Синусоидални ел.величини. Основни параметри. Ефективна стойност. Начини за изобразяване.
- 3. Идеални елементи при стационарен синусоидален режим.Смисъл на фазовите съотношения и видовете мощности.
- 4. Реални елементи при стационарен синусоидален режим. Видове заместващ<mark>и схеми. Основни зависимости и режими. Ролята на фактора на мощността и начини за подобряването му (в пример).</mark>
- 5. Идеални елементи, захранвани от периодични несинусоидални източници (напр. правоъгълни захранващи напрежения и токове,понятия за интегратор,диференциатор и филтри)
- 6 Честотни характеристики, филтри.

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Синусоидални ел.величини. Основни параметри. Ефективна стойност. Индуктиране на синусоидално напрежение.

Рамка от проводник се върти с постоянна скорост $\omega = d\alpha/dt$ в магнитно поле с магнитна индукция В . Магнитният поток,който рамката обхваща е променлив:

$$\Phi(\alpha) = Blbsin\alpha(t) = BAsin\alpha(t)$$

при
$$d\alpha = \omega dt$$
 и $\alpha(t) = \omega t + \alpha_0$

 $A \sin \alpha$: проекцият<mark>а на A по направление</mark> на B

На изводите се получава индуктирано напрежение:

$$u(t) = \frac{d\Phi(\alpha)}{dt} = BA\omega\cos(\omega t + \alpha_0) = U_m\cos(\omega t + \alpha_0)$$

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Синусоидални ел.величини. Основни параметри.

За производството на електрическа енергия се използват трифазни синхронни генератори, при които се върти магнитното поле (роторът е постояннотоков електромагнит), а намотките, в които се индуктира напрежение, са неподвижни.

$$u(t) = U_m \sin(\omega t + \varphi)$$
 $i(t) = I_m \sin(\omega t + \varphi)$

 $U_{\scriptscriptstyle m}$ - Амплитуда на напрежението

 $I_{\scriptscriptstyle m}$ — Амплитуда на то<mark>ка</mark>

Ф Кръгова честота

 φ Начален фазов ъгъл

 $\omega t + \varphi$ Ъгъл на изменение

където: $\omega = \frac{2\pi}{T} = 2\pi f, [rad/s]$

Стандартната стойност на честотата е $f = 50 \ Hz$, съответно периодът е $T = 0.02 \ sec$.

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Електрическа верига с идеален резистор

Идеален резистор (нагревател) СЪС съпротивление R е включен към източник на синусоидално напрежение . $u(t) = U_m \sin(\omega t + \varphi)$

протича ток

$$i(t) = \frac{u(t)}{R} = \frac{U_m}{R} \sin(\omega t + \varphi)$$

В съпротивлението R еленергията се преобразува в топлина. Потребената мощност

$$p(t) = u(t)i(t) = \frac{u^{2}(t)}{R} = \frac{U_{m}^{2}}{R} \sin^{2}(\omega t + \varphi)$$

$$p(t) = \frac{U_m^2}{2R} \left(1 - \cos 2(\omega t + \varphi) \right)$$

По дефиниция е средната стойност $P = \frac{U_m^2}{2R}$, [W] на моментната мощност p(t)

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Синусоидални ел.величини. Основни параметри. Ефективна стойност.

Аритметичната средна стойност на една периодична величина , в случая P(t) е:

$$P_{cp} = P = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{T} \int_{0}^{T} \frac{U_{m}^{2}}{2R} (1 - \cos 2(\omega t + \varphi))dt$$

$$P = \frac{U_m^2}{2R}$$

 ${\it P}$: активна мощност

Нагревател със съпротивление R , влючен към променливо напрежение консумира такава

мощност, каквато би Uконсумирал и при постоянно натрежение $P = \frac{m}{2R} = \frac{1}{R} = \frac{U_m}{R}$ (един и същ ефект) $U = \frac{U_m}{\sqrt{2}}$

U ефективна стойност на синусоидално напрежение $u(t) = \sqrt{2}U\sin(\omega t + \varphi)$.

Дефиниция на ефективна стойност на променлива величина a(t):

Средно квадратична стойност

$$A_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt}$$

Например: за напрежение

$$U = \sqrt{\frac{1}{T}} \int_{0}^{T} u^{2}(t) dt$$

Аналогично за ток

$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt}$$

При стандартно

напрежение: U = 230~V максималната стойност е $U_m = \sqrt{2}U = 230\sqrt{2} = 325[V]$

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Намотка с индуктивност L при синусоидален променлив ток

Връзка между ток и напрежение при наличие на индуктивност:

$$u(t) = L \frac{di(t)}{dt}$$
 при $i(t) = I_m \sin(\omega t + \beta)$ то $u(t) = U_m \sin(\omega t + \alpha)$

$$u(t) = U_m \sin(\omega t + \alpha) = \omega L I_m \cos(\omega t + \beta) = \omega L I_m \sin(\omega t + \frac{\pi}{2} + \beta)$$

Законът на Ом свързва максималните стойности:

$$U_{m} = \omega L I_{m} \qquad \alpha = \beta + \frac{\pi}{2} \qquad \varphi_{L} = \alpha - \beta = \frac{\pi}{2}$$

При еднаква честота ефективната стойност на напрежението е пропорционална на ефективната стойност на тока(това не е така за u(t) и i(t)).

Ъгълът на дефазиране $\varphi_L = \pi/2 = 90^\circ$ означава, че токът изостава от напрежението

Величината ωL е съпротивление :

$$X_L = \omega L$$
 Индуктивно реактивно съпротивление

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Активна и реактивна мощност при идеален индуктивен елемент

Моментната стойност на мощността:

$$p(t) = u(t)i(t) = U_m \sin(\omega t + \alpha) I_m \sin(\omega t + \beta) = -2UI\sin(\omega t + \alpha) \cos(\omega t + \alpha)$$

$$p(t) = -UI\sin 2(\omega t + \alpha) = -\omega LI^{2}\sin 2(\omega t + \alpha) = -\frac{U^{2}}{\omega L}\sin 2(\omega t + \alpha)$$

$$U_{\scriptscriptstyle m} = \sqrt{2}U; \quad I_{\scriptscriptstyle m} = \sqrt{2}I \qquad U_{\scriptscriptstyle m}, I_{\scriptscriptstyle m} \quad :$$
 максимални стойности U,I : ефективни стойности

Активната мощност е равна на нула! (не се консумира активна електроенергия)

$$P = \overline{p}(t) = -\omega L I^{2} \frac{1}{T} \int_{0}^{T} \sin 2(\omega t + \alpha) dt = 0$$

→ реактивна индуктивна мощност

$$Q_L = U_L I_L = \frac{U^2}{X_I} = I^2 X_L > 0$$
 $[Q_L] = [U][I] = V \cdot A = VAr$

Между източника и магнитното поле на идеалния индуктивен елемент се установява обратимо колебание на енергия.

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Идеален капацитивен елемент. Капацитивно реактивно съпротивление

$$i(t) = C \frac{d u(t)}{dt}$$

$$u(t) = \frac{1}{C} \int i(t)dt$$

Токът е пропорционален на изменението на напрежението т.е. връзката между напрежението и тока е

интегрална

Ако напрежението $u(t) = U_m \sin(\omega t + \alpha)$ след диференциране намираме тока $i(t) = I_m \sin(\omega t + \beta)$

$$i(t) = I_m \sin(\omega t + \beta) = \omega C U_m \cos(\omega t + \alpha) = \omega C U_m \sin(\omega t + \frac{\pi}{2} + \alpha)$$

$$I_m = \omega C U_m$$
 $\beta = \alpha + \frac{\pi}{2}$ $\varphi_C = \alpha - \beta = -\frac{\pi}{2}$

Наличието на к<mark>онденза</mark>тор предизвиква закъснение на напрежението спрямо тока. Фазовата разлика е отрицателна и при идеален кондензатор е 90 градуса.

Напрежението изостава по фаза от тока!

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Идеален капацитивен елемент. Капацитивно съпротивление. Реактивна мощност на капацитивен елемент

$$X_C=rac{1}{\omega C}$$
 , $\left[\Omega
ight]$ Реактивно капацитивно съпротивление $B_C=rac{1}{X_C}=\omega C$, $\left[S
ight]$, $\left[Siemens
ight]$ Реактивна капацитивна проводимост

Капацитивното съпротивление намалява с нарастването на честотата

$$f \to 0$$
 ; $X_C \to \infty$ $f \to \infty$; $X_C \to 0$

Законът на Ом свързва само максималните и ефективните стойности чрез капацитивното съпротивление.

$$I_{\text{max}} = \omega C U_{\text{max}}$$
$$U = X_C I$$

 $\omega = 2\pi f$

Наличието на капацитет в ел.верига предизвиква закъснение на напрежението спрямо тока. Фазовата разлика φ_C между напрежението и тока е отрицателна и при идеален капацитивен елемент е - $\varphi_C = -\pi/2$ Напрежението изостава по фаза от тока!

ПРОЕКТ ВG051РО001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Активна и реактивна мощност при идеален капацитивен елемент

Моментната стойност на мощността:

$$p(t) = u(t)i(t) = U_m \sin(\omega t + \alpha) I_m \sin(\omega t + \beta) = 2U I \sin(\omega t + \alpha) \cos(\omega t + \alpha)$$

$$p(t) = U I \sin 2(\omega t + \alpha) = \frac{1}{\omega C} I^2 \sin 2(\omega t + \alpha) = \omega C U^2 \sin 2(\omega t + \alpha)$$

$$P = \overline{p}(t) = -\omega C U^{2} \frac{1}{T} \int_{0}^{T} \sin 2(\omega t + \alpha) dt = 0$$

Активната мощност е равна на нула! (кондензаторът не консумира активна електроенергия)

→ реактивна капацитивна мощност

$$Q_C = U_C I_C = \frac{U^2}{X_C} = I^2 X_C$$
 $[Q_C] = [U][I] = V \cdot A = VAr$

При капацитивен елемент се създава обратимо (беззагубно) колебание на електрическа енергия, създаване и разпадане на електрическо поле.

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Анализ на ел.верига чрез тригонометрични функции и преобразувания -- последователна заместваща схема

$$i(t) = I_m \sin(\omega t + \beta)$$

$$u_R(t) = R I_m \sin(\omega t + \beta)$$

$$u_L(t) = \omega L I_m \sin(\omega t + \beta + \frac{\pi}{2})$$

$$u_C(t) = \frac{1}{\omega C} I_m \sin(\omega t + \beta - \frac{\pi}{2})$$

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Съгласно втори закон на Кирхоф сумата на моментните стойности е

$$u = u_R + u_L + u_C$$

Моментната стойност на общото напрежение е

$$u(t) = I_m \left[R \sin(\omega t + \beta) + \omega L \sin(\omega t + \beta + \frac{\pi}{2}) + \frac{1}{\omega C} \sin(\omega t + \beta - \frac{\pi}{2}) \right]$$

$$u(t) = I_m \left[R \sin(\omega t + \beta) + (\omega L - \frac{1}{\omega C}) \sin(\omega t + \beta + \frac{\pi}{2}) \right]$$

$$=I_{m}\left[R\sin(\omega t+\beta)+(\omega L-\frac{1}{\omega C})\cos(\omega t+\beta)\right]$$

Реактивното съпротивление

$$X = X_L - X_C = \omega L - \frac{1}{\omega C}$$

следователно:

$$u(t) = I_m \left[R \sin(\omega t + \beta) + X \cos(\omega t + \beta) \right]$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

От дефиницията за ефективната стойност на общото напрежение и след сложни тригонометрични преобразувания може да се получи:

$$U = \sqrt{2} I \sqrt{\frac{1}{T} \int_{0}^{T} \left[R \sin(\omega t + \beta) + X \cos(\omega t + \beta) \right]^{2} dt}$$

След интегрирането:

$$U = \sqrt{2} I \sqrt{\frac{1}{T} \left[R^2 \frac{T}{2} + X^2 \frac{T}{2} \right]} = I \sqrt{R^2 + X^2} = I \cdot z$$

$$U = I\sqrt{R^2 + X^2} = I \cdot z$$

В общия случай може просто да се използват правилата в правоъгълен триъгълник.

$$z = \sqrt{R^2 + X^2}$$

Ъгълът
$$\varphi = arctg \frac{X}{R}$$

Импеданс на цялата верига

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

$$Z = \sqrt{R^2 + X^2}$$

Триъгълник на съпротивленията

$$U = \sqrt{I^2 R^2 + I^2 X^2}$$

$$U = \sqrt{U_R^2 + U_X^2}$$

Триъгълник на напреженията

 U_R

S

$$S = U \cdot I = \sqrt{(I^2 R)^2 + (I^2 X)^2}$$

$$S = \sqrt{P^2 + Q^2}$$

Триъгълник на мощностите

Q

Пълна (верижна) мощност на цялата верига S, [VA]

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Пресмятане с комплексни числа

дефиниция:

$$\underline{z} = a + jb = Re\{\underline{z}\} + jIm\{\underline{z}\}$$

(в следващите формули комплексните числа са

отбелязване с долна черта, например

$$j = \sqrt{-1}; \quad j^2 = -1$$

$$a = Re\{z\}$$

 $a = Re\{z\}$ а е реалната част на комплексното число

 $b = Im\{\underline{z}\}$ b е имагинерната част на комплексното число \underline{z} .

На \underline{z} комплексно спрегнатото число \underline{z}^* се получава, като вместо j се Замести с -j: $\underline{z}^* = a - jb$; $Re\{\underline{z}^*\} = Re\{\underline{z}\}$; $Im\{\underline{z}^*\} = -Im\{\underline{z}\}$

Събиране и изваждане на комплексни числа:

$$\underline{z}_1 = a_1 + jb_1; \quad \underline{z}_2 = a_2 + jb_2$$

$$\underline{z}_1 \pm \underline{z}_2 = (a_1 + jb_1) \pm (a_2 + jb_2) = (a_1 \pm a_2) + j(b_1 \pm b_2)$$

$$\underline{z} + \underline{z}^* = 2a = 2Re\{\underline{z}\}$$

$$\underline{z} - \underline{z}^* = 2jb = 2j \operatorname{Im}\{\underline{z}\}$$

$$Re\{\underline{z}\} = \frac{1}{2}(\underline{z} + \underline{z}^*)$$

$$Im\{\underline{z}\} = \frac{1}{2i}(\underline{z} - \underline{z}^*)$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Умножение, деление, модул на комплексно число.

Умножение на комплексни числа:

$$\underline{z}_1 = a_1 + j b_1; \quad \underline{z}_2 = a_2 + j b_2$$

$$\underline{z} = \underline{z}_1 \underline{z}_2 = (a_1 + jb_1)(a_2 + jb_2) = a_1 a_2 + j^2 b_1 b_2 + j(a_1 b_2 + a_2 b_1)$$

$$\underline{z} = \underline{z}_1 \underline{z}_2 = a_1 a_2 - b_1 b_2 + j(a_1 b_2 + a_2 b_1)$$

Например:

$$\underline{z}\underline{z}^* = (a+jb)(a-jb) = a^2 - j^2b^2 + j(ab-ab) = a^2 + b^2$$

Деление на комплексни числа:

$$\underline{z} = \frac{\underline{z}_1}{\underline{z}_2} = \frac{a_1 + jb_1}{a_2 + jb_2} = \frac{a_1 + jb_1}{a_2 + jb_2} \cdot \frac{a_2 - jb_2}{a_2 - jb_2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + j\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}$$

Дефиниция: модулът на комплексно число \underline{z} е :

$$|\underline{z}| = \sqrt{\underline{z}\underline{z}^*} = \sqrt{a^2 + b^2} = \sqrt{Re^2\{\underline{z}\} + Im^2\{\underline{z}\}} = |\underline{z}^*|$$

Например:
$$\frac{1}{\underline{z}} = \frac{1}{\underline{z}} \frac{\underline{z}^*}{\underline{z}^*} = \frac{\underline{z}^*}{|\underline{z}|^2}; \qquad \frac{1}{a+jb} = \frac{a-jb}{a^2+b^2}$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Представяне в комплексната равнина

Представяме $a=Re\ \{\ \underline{z}\ \}$ и $b=Im\ \{\ \underline{z}\ \}$ като координати x и y в декартова координатна система.

Точката
$$P(x, y) = P(a, b)$$
 е за $\underline{z} = a + jb$, а $P(a, -b)$ съответно за $\underline{z}^* = a - jb$.

В полярна координатна система точката P се представя с координати r и ъгъл φ .

r е разстояние<mark>то от на</mark>чалото на координатната система до точката P.

$$r = |\underline{z}| = \sqrt{\underline{z}\underline{z}^*} = \sqrt{a^2 + b^2} = \sqrt{Re^2\{\underline{z}\} + Im^2\{\underline{z}\}}$$

 φ е ъгълът,който отсечката $r=|\underline{z}|$ сключва с остта $x=Re\ \{\ \underline{z}\ \}$; (ъгълът е положителен, тъй като се приема за условно положителна посока противоположно на часовниковата .

$$tan\varphi = \frac{b}{a} = \frac{Im\{\underline{z}\}}{Re\{\underline{z}\}}; \quad \varphi = arctan \frac{Im\{\underline{z}\}}{Re\{\underline{z}\}}$$

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

Европейски социален фонд

Синусоидално напрежение в комплексната равнина

$$\underline{u} = U_m e^{j(\omega t + \alpha)}$$

При t = 0:

- в система с координати Re, Im.
- \underline{u} е завъртяна на ъгъл α .

Променливата във времето величина \underline{u} се представя като вектор в координатна система Re`, Im`, която се върти с ъглова скорост ω обратно на часовниковата стрелка, респективно на ъгъл ωt

За опростяване на диаграмите, тъй като обикновено се интересуваме от ъгъла на дефазиране между напрежение и ток,се използва само координатна система с оси Re и Im, началният фазов ъгъл α е постоянен, а често се приема за нула.

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Ел. Верига с идеални параметри R, L и C Активно съпротивление R

Комплексните стойности са:

$$\underline{u} = U_m e^{j(\omega t + \alpha)}$$

$$\underline{i} = I_m e^{j(\omega t + \beta)}$$

При активно съпротивление токът и напрежението са пропорционални :

$$\underline{u} = R\underline{i}$$
 pecn. $\underline{i} = \frac{\underline{u}}{R}$ \longrightarrow $\alpha = \beta$

Векторът на тока съвпада по посока с вектора на напрежение то. Ъгълът на дефазиране е $\varphi = \alpha - \beta = 0$.

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Ел. Верига с идеални параметри R, L и C Индуктивно съпротивление

Диференциалното уравнение при наличие на

индуктивност: $u(t) = L \frac{d \, i(t)}{dt}$ заместваме $i = I_m e^{j(\omega t + \beta)}$ и търсим $\underline{u} = U_m \, e^{j(\omega t + \alpha)}$

Комплексните стойности на тока и напрежението са:

$$\underline{u} = j\omega L I_m e^{j(\omega t + \beta)} \qquad \qquad \underline{u} = j\omega L \underline{i} \qquad \underline{u} = \frac{1}{j\omega L} \underline{u}$$

За комплексното индуктивно съпротивление:

$$\underline{Z} = \frac{\underline{u}}{i} = j\omega L$$

За началният фазов ъгъл на напрежението α използваме $j = e^{j\pi/2}$

$$\underline{u} = e^{j\pi/2} \omega L I_m e^{j(\omega t + \beta)} = \omega L I_m e^{j(\omega t + \beta + \pi/2)} = U_m e^{j(\omega t + \alpha)}$$

началният фазов ъгъл на напрежението α е с 90° по-голям от този на тока

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Ел. Верига с идеални параметри R, L и C Капацитивно реактивно съпротивление

Диференциалното уравнение при наличие на

запацитет:
$$i(t) = C \frac{d \, u(t)}{dt}$$
 заместваме $\underline{u} = U_{\scriptscriptstyle m} \, e^{j(\omega t + \alpha)}$ и търсим $\underline{i} = I_{\scriptscriptstyle m} \, e^{j(\omega t + \beta)}$

$$u = U_m e^{j(\omega t + \alpha)}$$

$$\underline{i} = I_m e^{j(\omega t + \beta)}$$

Комплексните стойности на тока и напрежението са:

$$\underline{i} = j\omega C U_m e^{j(\omega t + \alpha)}$$
 \Longrightarrow $\underline{i} = j\omega C \underline{u}$ pecn. $\underline{u} = \frac{1}{j\omega C} \underline{i}$

Re

За комплексното капацитивно съпротивление:

$$\underline{Z} = \frac{\underline{u}}{\underline{i}} = \frac{1}{j\omega C} = j \frac{-1}{\omega C}$$

За началният фазов ъгъл на напрежението α използваме $j = e^{j\pi/2}$

$$\underline{i} = e^{j\pi/2}\omega CU_m e^{j(\omega t + \alpha)} = \omega CU_m e^{j(\omega t + \alpha + \pi/2)} = I_m e^{j(\omega t + \beta)}$$

началният фазов ъгъл на напрежението α е с 90° по-малък от този на тока

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Ел. Верига с идеални параметри R, L и C, пълно комплексно съпротивление при последователно свързване

Напрежението на веригата е: $\underline{u} = \underline{u}_R + \underline{u}_L + \underline{u}_C$

$$\underline{u} = R\underline{i} + j\omega L\underline{i} + \frac{1}{j\omega C}\underline{i} = R\underline{i} + j\omega L\underline{i} - j\frac{1}{\omega C}\underline{i}$$

$$\underline{u} = \left(R + j\omega L - j\frac{1}{\omega C}\right)\underline{i} = \left(R + j(\omega L - \frac{1}{\omega C})\right)\underline{i} = (R + jX)\underline{i}$$

Пълното комплексно съпротивление (Импеданс) Z:

$$\underline{Z} = R + j(\omega L - \frac{1}{\omega C}) = R + jX = Ze^{j\varphi} = Z\cos\varphi + jZ\sin\varphi$$

$$|\underline{Z}|^2 = \underline{Z} \cdot \underline{Z}^* = R^2 + X^2$$

$$Z = \sqrt{R^2 + X^2}$$

$$Z = \sqrt{R^2 + X^2}$$

За ъгълът на дефазиране φ между напрежението и тока

$$tan\varphi = \frac{X}{R}$$

$$\varphi = arctan \frac{X}{R}$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Мощности в променливотокова верига

$$i(t) = I_m \sin(\omega t)$$

$$u(t) = U_m \sin(\omega t + \varphi)$$

Моментна мощност:

$$p(t) = u(t) \cdot i(t) = U_m I_m \sin(\omega t) \sin(\omega t + \varphi)$$

$$p(t) = U_m I_m \sin(\omega t) (\sin\omega t \cos\varphi + \cos\omega t \sin\varphi)$$

$$p(t) = U_m I_m \cos\varphi \sin^2 \omega t + U_m I_m \sin\varphi \sin\omega t \cos\omega t$$

$$p(t) = \frac{U_m I_m}{2} \cos\varphi (1 - \cos 2\omega t) + \frac{U_m I_m}{2} \sin\varphi \sin 2\omega t$$

Активна мощност:

$P = \frac{1}{T} \int_{0}^{T} P(t)dt = \frac{U_{m}I_{m}}{2} \cos\varphi = UI\cos\varphi$

Активна е тази мощност, която в нагревателите се превръща в топлинна, а в елмашините- в механична мощност на вала

Реактивна мощност:

$$Q = \frac{U_m I_m}{2} \sin \varphi = U I \sin \varphi$$

Пълна мощност на веригата:

$$S = \frac{U_m I_m}{2} = U I = \sqrt{P^2 + Q^2}$$

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Резонансни явления.

Резонанс на напреженията.

Последователно свързани:

Елементи с параметри L, C и R_S (при малки загуби $R_S = 0$)

$$\underline{Z} = R_S + j\omega L + \frac{1}{j\omega C}$$

дефиниция: резонансна честота

Качествен фактор на последователен контур

$$Q_S = \frac{1}{R_S} \sqrt{\frac{L}{C}}$$

Резонанс на токовете

Паралелно свързани:

Елементи с параметри L, C и R_P (възможно е $R_P \rightarrow \infty$, $I/R_P \rightarrow 0$)

$$\underline{Z} = \frac{1}{\frac{1}{R_P} + j\omega C + \frac{1}{j\omega L}}$$

 $\omega_0 = \frac{1}{\sqrt{IC}}$ при $Im \{ Z(\omega_0) \} = 0.$

Качествен фактор на паралелен контур

$$Q_P = R_P \sqrt{\frac{C}{L}}$$

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Инвестира във вашето бъдеще!

Резонансни явления.

Резонанс на напреженията.

Резонанс на токовете

Последователно свързани:

Паралелно свързани:

$$\underline{Z} = R_S [1 + jQ_S(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})]$$

$$\underline{Z} = \frac{R_P}{1 + jQ_P(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$$

$$\underline{Z} = |\underline{Z}| e^{j\varphi} = \text{Re}\{\underline{Z}\} + j \text{Im}\{\underline{Z}\}$$

$$\frac{|\underline{Z}|}{R_S} = \left[1 + Q_S^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2\right]^{\frac{1}{2}}$$

$$\frac{|\underline{Z}|}{R_P} = \left[1 + Q_P^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2\right]^{-\frac{1}{2}}$$

$$\varphi = \operatorname{arctan} Q_{S}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})$$

$$\varphi = -\operatorname{arctan} Q_P(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Резонансни явления.

Резонанс на напреженията.

Резонанс на токовете

$$Re\{\underline{Z}_S\} = R_S = konst$$

$$Re\{\underline{Z}_{P}\} = \frac{R_{P}}{1 + Q_{P}^{2}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2}} - R_{P}Q_{P}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})$$

$$Im\{\underline{Z}_{P}\} = \frac{1 + Q_{P}^{2}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2}}{1 + Q_{P}^{2}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2}}$$

$$Im\{\underline{Z}_S\} = \sqrt{\frac{L}{C}} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)$$

$$\frac{npu \omega}{\omega} = \omega_0 \frac{ce}{no} \frac{no}{no} y u a e a$$

$$Im\{\underline{Z}_{P}\} = \frac{\sqrt{L/C}}{(\frac{\omega_{0}}{\omega} - \frac{\omega}{\omega_{0}})} f \ddot{u} r R_{P} \to \infty$$

най-голям ток

$$|\underline{Z}_{S}(\omega_{0})| \rightarrow min; \qquad |\underline{I}(\omega_{0})| \rightarrow max$$

$$Im\{\underline{Z}_S(\omega_0)\}=0$$

$$\varphi_{S}(\omega_{0}) = 0$$
, $(\mp \frac{\pi}{2} npu R_{S} = 0)$

най-малък ток

$$|\underline{Z}_P(\omega_0)| \rightarrow max; \quad |I(\omega_0)| \rightarrow min$$

$$Im\{Z_P(\omega_0)\}=0$$
 für $R_P<\infty$

$$Im\{\underline{Z}_P(\omega_0)\} = \pm \infty \text{ für } R_P \to \infty$$

$$\varphi_P(\omega_0) = 0, \ (\pm \frac{\pi}{2} \ npu \ R_P \to \infty)$$

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Изменения на токовете и импедансите в зависимост от нормираната честота $\frac{\omega}{\omega_0}$

Последователно свързани:

Паралелно свързани:

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Последователно свързани:

Паралелно свързани:

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Ел. Вериги при периодични несинусоидални режими.

периодични Несинусоидални режими настъпват електрически В вериги, захранвани от специални генератори Такива несинусоидални напрежения източници с правоъгълна, трионообразна, триъгълна и друга форма на напрежението се използват много често в автоматиката, изчислителната техника, комуникационната техника и автомобилната електроника.

Периодичните несинусоидални величини могат да бъдат представени:

- а) графично с помощта на временни характеристики
- б) аналитично чрез разлагане в ред на Фурие
- в) спектрално чрез амплитудночестотни и фазочестотни спектри

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Ел. Вериги при периодични несинусоидални режими. Разлагане в ред Фурие. Спектрално представяне.

Математически всяка периодична несинусоидална функция, която отговаря на условията на Дирихле, може да бъде представена в ред на Фурие

$$u(t) = u(t + kT); \quad k = 0, \pm 1, \pm 2, ...; \quad T : \Pi e p u o \partial$$

Една периодична функция, например функцията u(t) която в интервала 0 < t < T има краен брой прекъсвания и екстремуми (това условие в техниката винаги е изпълнено), може да се представи като сума от постоянна съставка и променливи съставки (хармонични) с по-големи честоти :

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t); \quad \omega = \frac{2\pi}{T}$$

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\omega t - \varphi_n); \quad A_n = \sqrt{a_n^2 + b_n^2}; \quad \varphi_n = \arctan\frac{b_n}{a_n}$$

Коефициентите a_0 , a_n , b_n се определят от:

$$\frac{a_0}{2} = \frac{1}{T} \int_0^T u(t)dt; \quad a_n = \frac{2}{T} \int_0^T u(t) cosn\omega t dt; \quad b_n = \frac{2}{T} \int_0^T u(t) sinn\omega t dt$$

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

Амплитуден спектър $A_n(n\omega)$, от дискретни линии при кратните честоти $n\omega$, наричат линеен спектър

Ел. Вериги при периодични несинусоидални режими. Разлагане в ред Фурие. Спектрално представяне.

Всяка периодична функция, ток или напрежение се представя като наслагване на постоянна съставка $a_0/2$ (средна стойност), основен хармоник (n=1), чийто период е равен на периода на несинусоидалната функция, и висши хармоници ($n=2,3,\ldots$), чиито честоти са кратни на тази на основния хармоник.

примери: наслагване на хармонични трептения с

различни честоти:

Отношение на честотите 1 : 2 Отношение на честотите 1 : 3

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Примери (1)

Правоъгълно напрежение:

 $0 < t < \frac{T}{2}$

$$u(t) = U_m$$
 3a

$$u(t) = -U_m \qquad \qquad 3a \qquad \qquad \frac{T}{2} < t < T$$

$$u(t) = \frac{4}{\pi} U_m (\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \dots)$$

Триъгълно напрежение:

$$u(t) = U_m \frac{4t}{T}$$

$$-\frac{T}{4} \le t \le \frac{T}{4}$$

$$u(t) = U_m(2 - \frac{4t}{T})$$

$$\frac{T}{4} \le t \le \frac{3T}{4}$$

$$u(t) = \frac{8U_m}{\pi^2} (\sin \omega t - \frac{1}{3^2} \sin 3\omega t + \frac{1}{5^2} \sin 5\omega t - \dots)$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Примери (2)

Трионообразно напрежение:

$$u(t) = U_m(\frac{2t}{T} - 1) \qquad 3a \qquad 0 \le t \le T$$

$$u(t) = \frac{2}{\pi} U_m \left(-\sin \omega t - \frac{1}{2} \sin 2\omega t - \frac{1}{3} \sin 3\omega t + \ldots\right)$$

Еднополупериодно изправено напрежение:

$$u(t) = \hat{u}\sin(2\pi\frac{t}{T}) \qquad 3a \qquad 0 \le t \le \frac{T}{2}$$

$$u(t) = 0 \qquad 3a \qquad \frac{T}{2} \le t \le T$$

$$u(t) = \frac{U_m}{\pi} (1 + \frac{\pi}{2} \sin \omega t - \frac{2}{1 \cdot 3} \cos 2\omega t - \frac{2}{3 \cdot 5} \cos 4\omega t - \dots)$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Филтрите са устройства, които се включват между източника и консуматора с цел да се подобри формата на несинусоидалните ток и напрежение.(да изпъкне определена част от спектъра им).

Пропускащ лентов

Изчислява се отношението $\underline{u}_2/\underline{u}_1$ чрез филттерсните съпротивления \underline{Z}_1 и \underline{Z}_2 :

$$\frac{\underline{u}_2}{\underline{u}_1} = \frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} = \frac{1/\underline{Z}_1}{1/\underline{Z}_1 + 1/\underline{Z}_2}$$

$$\frac{1}{\underline{Z}_2} = \frac{1}{\underline{Z}_C} + \frac{1}{\underline{Z}_L} = j\omega C + \frac{1}{j\omega L}$$

$$\underline{u}_1 = \frac{1/R}{1/R + j\omega C + \frac{1}{j\omega L}} = \frac{1}{1 + jR\sqrt{\frac{C}{L}}(\omega\sqrt{LC} - \frac{1}{\omega\sqrt{LC}})} = \frac{1}{1 + jQ(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})}$$

$$\omega_r = \frac{1}{\sqrt{LC}} \quad \text{резонансна честота}$$

$$Q = R\sqrt{\frac{C}{L}} \quad \kappa \text{ачествен } \phi \text{актор}$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Пропускащ лентов филтър

$$\frac{\underline{u}_2}{\underline{u}_1} = \left| \frac{\underline{u}_2}{\underline{u}_1} \right| e^{j\varphi(\omega)} = \frac{U_{m_2}(\omega)}{U_{m_1}} e^{j\varphi(\omega)}$$

се представя чрез:

Амплитудно-честотна характеристика:

$$\left|\frac{\underline{u}_2}{\underline{u}_1}\right| = \frac{U_{m_2}(\omega)}{U_{m_1}}$$

$$\left|\frac{\underline{u}_2}{\underline{u}_1}\right| = \frac{U_{m2}(\omega)}{U_{m1}} = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right)^2}}$$

Фазо-<mark>често</mark>тна характеристика:

$$arphi(\omega)$$
: фазовъгълна $\dfrac{\underline{u}_2}{\underline{u}_1}$

$$\varphi(\omega) = -\arctan Q(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Амплитудно-честотна характеристика:

Фазо-честотна характер<mark>ис</mark>тика:

 ω е кръговата честота на входния сигнал $u_1(t)$.

за
$$\omega = \omega_r$$
 , $\underline{u}_2 = \underline{u}_l$, $U_{m2} = U_{ml}$; $j = 0$; също и при $\omega \approx \omega_r$, $\underline{u}_2 \approx \underline{u}_l$, $U_{m2} \approx U_{ml}$. А за $\omega >$, >> ω_r както и за $\omega <$, << ω_r , $U_{m2} <$, << U_{ml} .

Пропускащ лентов филтър:

Само входните сигнали с една тясна честотна лента около резонансната честота ω_r се пропускат като изходен сигнал.

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Приложение на вериги с елементи R, L и C Електрически филтри. Преграден лентов филтър

Определяме $\underline{u}_2/\underline{u}_1$ чрез комплексните съпротивления \underline{Z}_1 und \underline{Z}_2 :

$$\frac{1}{\underline{Z}_{1}} = j\omega C + \frac{1}{j\omega L}; \qquad \frac{1}{\underline{Z}_{2}} = \frac{1}{R}$$

$$\frac{\underline{u}_{2}}{\underline{u}_{1}} = \frac{\frac{1}{\underline{Z}_{1}}}{\frac{1}{\underline{Z}_{1}} + \frac{1}{\underline{Z}_{2}}} = \frac{j\omega C + \frac{1}{j\omega L}}{\frac{1}{R} + j\omega C + \frac{1}{j\omega L}} = \frac{jQ(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})}{1 + jQ(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})}$$

Преграден лентов филтър

Амплитудно-ч<mark>естотна</mark> характеристика:

$$\left|\frac{\underline{u}_{2}}{\underline{u}_{1}}\right| = \frac{U_{m2}(\omega)}{U_{m1}} = \frac{\left|Q(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})\right|}{\sqrt{1 + Q^{2}(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})^{2}}}$$

Фазо-честотна характеристика:

$$\varphi(\omega) = \frac{\pi}{2} sign(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}) - arctanQ(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Приложение на вериги с елементи R, L и C Електрически филтри. Преграден лентов филтър

Амплитудно-честотна характеристика:

за $\omega = \omega_r$, $_2 = 0$, а също при $\omega \approx \omega_r$ тогава $\hat{u}_2 << \hat{u}_1$.

Но при $\omega >$, $>> \omega_r$ а така също при $\omega <$, $<< \omega_r$ то $\hat{u}_2 \approx \hat{u}_1$.

Преграден лентов филтър:

Само входни сигнали с честоти в областта около резонансната честота ω_r ще бъдат потискани, спирани,ще липсват в изходния сигнал.

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Приложение на вериги с елементи R, L и C Електрически филтри, нискочестотен пропускателен филтър.

Определяме $\underline{u_2}/\underline{u_1}$ чрез комплексните съпротивления $\underline{Z_1}$ und $\underline{Z_2}$:

$$\frac{1}{\underline{Z}_{1}} = \frac{1}{j\omega L}; \qquad \frac{1}{\underline{Z}_{2}} = \frac{1}{R} + j\omega C$$

$$\frac{\underline{u}_{2}}{\underline{u}_{1}} = \frac{\frac{1}{Z_{1}}}{\frac{1}{Z_{1}} + \frac{1}{Z_{2}}} = \frac{\frac{1}{j\omega L}}{\frac{1}{R} + j\omega C + \frac{1}{j\omega L}} = \frac{-jQ\frac{\omega_{r}}{\omega}}{1 + jQ(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})}$$

нискочестотен пропускателен филтър

Амплитудно-честотна характеристика:

$$\left|\frac{\underline{u}_{2}}{\underline{u}_{1}}\right| = \frac{U_{m2}(\omega)}{U_{m1}} = \frac{Q\frac{\omega_{r}}{\omega}}{\sqrt{1 + Q^{2}(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})^{2}}}$$

Фазо-честотна характеристика:

$$\varphi(\omega) = -\frac{\pi}{2} - \arctan Q(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Инвестира във вашето бъдеще!

Приложение на вериги с елементи R, L и C Електрически филтри, нискочестотен пропускателен филтър.

Амплитудно-честотна характеристика:

$$\lim_{\omega \to \infty} \left| \frac{\underline{u}_2}{\underline{u}_1} \right| = \frac{\omega_r^2}{\omega^2}$$

$$Q <= 1$$
: за $\omega < \omega_r$, $U_{m2} \approx U_{m1}$, за $\omega > \omega_r$, U_{m2} намалява с нарастване на ω , $U_{m2} <$, $<< U_{m1}$.

Нискочестотен пропускателен филтър:

Входни сигнали с $\omega < \omega_r$ се предават на изхода, а входни сигнали с $\omega > \omega_r$, с високи честоти се подтискат.

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Високочестотен пропускателен филтър

Определяме $\underline{u}_2/\underline{u}_I$ чрез комплексните съпротивления \underline{Z}_I und \underline{Z}_2 :

$$\frac{1}{\underline{Z}_1} = j\omega C;$$

$$\frac{1}{\underline{Z}_2} = \frac{1}{R} + \frac{1}{j\omega L}$$

$$\frac{\underline{u}_{2}}{\underline{u}_{1}} = \frac{\frac{1}{Z_{1}}}{\frac{1}{Z_{1}} + \frac{1}{Z_{2}}} = \frac{j\omega C}{\frac{1}{R} + j\omega C + \frac{1}{j\omega L}} = \frac{jQ\frac{\omega}{\omega_{r}}}{1 + jQ(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})}$$

Амплитудно-че<mark>ст</mark>отн<mark>а х</mark>арактеристика:

$$\left|\frac{\underline{u}_{2}}{\underline{u}_{1}}\right| = \frac{U_{m2}(\omega)}{U_{m1}} = \frac{Q\frac{\omega}{\omega_{r}}}{\sqrt{1 + Q^{2}(\frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega})^{2}}}$$

Високочестотен пропускателен филтър

Фазо-честотна характеристика:

$$\varphi(\omega) = \frac{\pi}{2} - \arctan Q(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})$$

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Приложение на вериги с елементи R, L и C Електрически филтри. Високочестотен пропускателен филтър

Амплитудно-честотна характеристика:

$$\lim_{\omega \to 0} \left| \frac{\underline{u}_2}{\underline{u}_1} \right| = \frac{\omega^2}{\omega_r^2}$$

Високочестотен пропускателен филтър

Сигнали с ниски честоти, $\omega < \omega_r$, не се пропускат, а сигнали с високи честоти, $\omega > \omega_r$, преминават на изхода.

ΠΡΟΕΚΤ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

RC- нискочестотен пропускателен филтър:

$$\frac{1}{\underline{Z}_1} = \frac{1}{R}; \qquad \frac{1}{\underline{Z}_2} = j\omega C$$

$$\frac{\underline{u}_2}{\underline{u}_1} = \frac{\frac{1}{R}}{\frac{1}{R} + j\omega C} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + j\frac{\omega}{\omega_0}}; \quad \omega_0 = \frac{1}{RC}$$

RC- нискочестотен пропускателен филтър

Амплитудно-честотна характеристика:

$$\left|\frac{\underline{u}_2}{\underline{u}_1}\right| = \frac{U_{m_2}(\omega)}{U_{m_1}} = \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_0})^2}}$$

$$\omega <, \ll \omega_0 \qquad (\frac{\omega}{\omega_0})^2 <, \ll 1 \qquad U_{m2} \approx U_{m1}$$

$$U_{m2} \approx U_{m1}$$

Фазо-честотна характеристика:

$$\varphi(\omega) = -\arctan\frac{\omega}{\omega_0}$$
 $\varphi(\omega_0) = -\frac{\pi}{4}$

$$\omega = \omega_0$$
 (граничначестота) $U_{m2} \approx U_{m1}/\sqrt{2}$

$$U_{m2} \approx U_{m1} / \sqrt{2}$$

$$\omega >, \gg \omega_0 \qquad (\frac{\omega}{\omega_0})^2 >, \gg 1 \qquad U_{m_2} \approx U_{m_1} \frac{\omega_0}{\omega}$$

$$U_{m2} \approx U_{m1} \frac{\omega_0}{\omega}$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

RC-високочестотен пропускателен филтър:

$$\frac{1}{\underline{Z}_1} = j\omega C; \qquad \frac{1}{\underline{Z}_2} = \frac{1}{R}$$

$$\frac{\underline{u}_{2}}{\underline{u}_{1}} = \frac{j\omega C}{\frac{1}{R} + j\omega C} = \frac{j\omega RC}{1 + j\omega RC} = \frac{j\frac{\omega}{\omega_{0}}}{1 + j\frac{\omega}{\omega_{0}}}; \quad \omega_{0} = \frac{1}{RC}$$

RC-високочестотен

пропускателен

филтър

Амплитудно-честотна характеристика:

$$\left|\frac{\underline{u}_{2}}{\underline{u}_{1}}\right| = \frac{U_{m2}(\omega)}{U_{m1}} = \frac{\frac{\omega}{\omega_{0}}}{\sqrt{1 + (\frac{\omega}{\omega})^{2}}}$$

$$\omega <, \ll \omega_0 \qquad (\frac{\omega}{\omega_0})^2 <, \ll 1 \qquad U_{m2} \approx U_{m1} \frac{\omega}{\omega_0}$$

$$U_{m2} \approx U_{m1} \frac{\omega}{\omega}$$

Фазо-честотна характеристика:

$$\omega = \omega_0$$

(граничначестота) $U_{m2} \approx U_{m1}/\sqrt{2}$

$$U_{m2} \approx U_{m1} / \sqrt{2}$$

$$\varphi(\omega) = \frac{\pi}{2} - \arctan\frac{\omega}{\omega_0}$$
 $\varphi(\omega_0) = \frac{\pi}{4}$

$$\varphi(\omega_0) = \frac{\pi}{4}$$

$$\omega >$$
, >> ω_0

$$\omega >, \gg \omega_0 \qquad (\frac{\omega}{\omega_0})^2 >, \gg 1$$

$$U_{m2} \approx U_{m1}$$

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Входният сигнал $u_1(t)$ ce СЪСТОИ наслагване на два сигнала:

$$u_1(t) = x_{m1} \sin \omega_1 t + y_{m1} \sin 10 \omega_1 t$$

Изходния сигнал $u_2(t)$ има форма:

$$u_2(t) = \hat{x}_2 \sin(\omega_1 t + \alpha) + \hat{y}_2 \sin(10\omega_1 t + \beta)$$

амплитудите \hat{x}_2, \hat{y}_2 се определят взависимост от филтрите според амплитудночестотните характеристики

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

 $3\pi/2$

Литература: Основна:

- 1. Einführung in die Elektrotechnik für Studierende der Wirtschaftswissenschaften und für Chemieingenieure. Vorlesung an der Universität Karlsruhe. Teil 1, kap.4, Dr. Ing. Albert Krügel, 2002
- 2. Сборник примери и задачи по основи на електротехниката и електрониката под ред. Д.Цанов, Л.Павлов и др., изд. Техника 1993г. София. Стр.64-106.
- 3. Основи на електротехниката и електрониката. (Учебник за неелектротехническите специалности) "Д.Цветков, Л.Павлов и др. Стр.192-275, изд. Техника 1989г. София.

Допълни<mark>телна:</mark>

4.Lehr-und Übungsbuch Elektrotechnik. S.Altmann, D.Schlayer s.356 -360, Fachbuchverlag Leipzig-Köln1995

URL:

- 1.http://www.kosmos.ch/Technik/PFC_dt.pdf
- 2.http://resursi.e-
- edu.bg/zmon/action/goToTheme;jsessionid=4DED6484AFD59EA5D99B1A 436022AE20?id=Prog11.1110.core3.theme2
- 3.http://elearning-phys.uni-sofia.bg/~gchrista/Lekcii/VypBIOL-31-EM-Treptenia.pdf

Европейски социален фонд

ПРОЕКТ BG051PO001--4 3 04-0042