HM I + II Zusammenfassung KIT

Andreas Mai

18. August 2016

HM Klausur am 30.08.2016 08:00 - 10:00 HM I 11:00 - 13:00 HM II

Kein Anspruch auf Vollständigkeit ;)

Inhaltsverzeichnis

Fo	olgen und Reihen
1.1	l Allgemein
1.2	2 Monotonie
1.3	B Konvergenz
	1.3.1 Nullfolgenkriterium
	1.3.2 Minorantenkriterium
	1.3.3 Majorantenkriterium
	1.3.4 Cauchykriterium
	1.3.5 Leibnitzkriterium
	1.3.6 Monotoniekriterium
	1.3.7 Wurzelkriterium
	1.3.8 Quotientenkriterium
1.4	4 Koshere Folgen (Cauchy-Folgen)
1.5	5 Häufungspunkt
1.6	6 Konvergenzradius
Int 3.1	
3.2 A b	2 Substitution
4.1	
	4.1.1 Satz von Schwarz
	4.1.2 Beispiel
4.2	
	4.2.1 Beispiel
	4.2.2 Nochn Beispiel
4.3	•
4.4	
	2 2002000000000000000000000000000000000
Di	fferentialgleichungen
5.1	1 Gewöhnliche Differentialgleichungen
	5.1.1 Gewöhnliche Differentialgleichungen erster Ordnung

1 Folgen und Reihen

1.1 Allgemein

- Eine Folge ist eine durchnummerierte Menge von Zahlen. $(s_n)_{n\in\mathbb{N}}, s\in\mathbb{R}$
- Eine Reihe ist die Summe einer Folge. $(s_m)_{m\in\mathbb{N}}, s\in\mathbb{R}$ Eine Reihe ist auch eine Folge! $\sum_{i=1/0}^{n} (s_i), s\in\mathbb{R}$
- Kleinste obere Schranke = Supremum Größte untere Schranke = Infimum

1.2 Monotonie

Zu faul, evtl später: https://youtu.be/Ii0b3L5UWZw

1.3 Konvergenz

- Eine Folge (oder Reihe) ist konvergent, wenn sie gegen einen bestimmten Wert konvergiert.
- Sie ist bestimmt divergent, wenn sie gegen $\pm \infty$ läuft
- Sie ist unbestimmt divergent, wenn sich keine Aussage machen lässt (bsp: 1 und -1 abwechseln).
- Formel: $\forall \varepsilon > 0 : \exists n_0 : \forall n \geq n_0 : |s_n g| < \varepsilon \ (g: Grenze)$

Grenzwert bestimmen

Grad der Funktion:

- $Z\ddot{a}hlergrad < Nennergrad \Rightarrow s_n \to 0$ Beispiel: $s_n = \frac{n}{n^2 + 4} \Rightarrow s_n \to 0$
- $Z\ddot{a}hlergrad = Nennergrad \Rightarrow s_n \rightarrow Bruch$ Beispiel: $s_n = \frac{3n+4}{5n+96} \Rightarrow s_n \rightarrow \frac{3}{5}$
- $Z\ddot{a}hlergrad > Nennergrad \Rightarrow s_n \to \infty \Rightarrow$ bestimmt divergent Beispiel: $s_n = \frac{n^6 7}{n^2 + 4} \Rightarrow s_n \to \infty$

1

Grenzwert beweisen

Durch Formel.

Beispiel

$$s_n = \frac{1}{n}$$

$$s_n = \frac{1}{n}$$

Zählergrad < Nennergrad $\Rightarrow s_n \to 0$
 $|s_n - g| = |\frac{1}{n} - 0| = \frac{1}{n} < \frac{1}{n_0} \le \varepsilon$

Drüber schreiben: Es sei $n_0 > \frac{1}{s}$

1.3.1 Nullfolgenkriterium

$$\lim_{n\to\infty} \neq 0 \Rightarrow \sum_{i=0}^{\infty} \text{divergent}$$

Die Folge der Reihe muss gegen 0 laufen, dass die Reihe konvergent sein kann (nicht umgekehrt!)

1.3.2 Minorantenkriterium

2 Reihen bekannt: $\sum_{n=0}^{\infty} s_n$ und $\sum_{n=0}^{\infty} t_n$ und zweitere divergiert (bestimmt).

Wenn für fast alle n gilt: $s_n \ge t_n \Rightarrow \sum_{n=0}^{\infty} s_n$ divergiert auch (bestimmt)

1.3.3 Majorantenkriterium

2 Reihen bekannt: $\sum_{n=0}^{\infty} s_n$ und $\sum_{n=0}^{\infty} t_n$ und zweitere konvergent

Wenn für fast alle n gilt: $|s_n| \le t_n \Rightarrow \sum_{n=0}^{\infty} s_n$ absolut konvergent, umkehrung gilt nicht!

1.3.4 Cauchykriterium

$$\forall \varepsilon>0 \exists n_0 \forall n,m\geq n_0: |\sum_{i=0}^n s_i - \sum_{i=0}^m s_i| = |\sum_{i=n}^m s_i| < \varepsilon$$
 Wenn Cauchy-Kriterium erfüllt, konvergent ansonsten divergent

1.3.5 Leibnitzkriterium

•
$$\sum_{n=0}^{\infty} (-1)^n f_n$$
 mit $\lim_{n\to\infty} = 0$, $s_n \ge 0$ monoton fallend $s_n \le 0$ monoton steigend

• Wenn Leibnitzkriterium erfüllt, konvergent, Umkehrung gilt nicht!

2

• Grenzwertabschätzung: $s_{2n-1} \leq g \leq s_{2n}$

1.3.6 Monotoniekriterium

TODO

1.3.7 Wurzelkriterium

$$\sqrt[n]{|s_n|} \le C < 1$$
 für fast alle $n \in \mathbb{N} \Leftrightarrow \sum_{n=0}^{\infty} s_n$ absolut konvergent $\sqrt[n]{|s_n|} \ge 1$ für fast alle $n \in \mathbb{N} \Leftrightarrow \sum_{n=0}^{\infty} s_n$ divergent

1.3.8 Quotientenkriterium

$$|\frac{s_{n+1}}{s_n}| \leq C < 1$$
 für fast alle $n \in \mathbb{N} \Leftrightarrow \sum_{n=0}^\infty s_n$ absolut konvergent

1.4 Koshere Folgen (Cauchy-Folgen)

Jede Konvergente Folge ist eine Cauchy Folge und ungekehrt.

Hier steht fast das gleiche wie unter Konvergenz

Sinn: Ab einem Mindestindex n_0 ist der Abstand zwischen 2 Folgegliedern kleiner als ε

Formel

$$\forall \varepsilon > 0 \exists n_0 \forall n, m > n_0 : |s_n - s_m| < \varepsilon$$

1.5 Häufungspunkt

- Ein Häufungspunkt ist ein Punkt in dem sich unendlich viele Folgeglieder anhäufen.
- Ist eine Folge Konvergent, so ist deren Grenze der einzige Häufungspunkt der Folge
- $\limsup_{n\to\infty} s_n$: Limes Superior, Größter Häufungspunkt
- $\bullet \ \liminf_{n \to \infty} s_n$: Limes Infimum, Kleinster Häufungspunkt

1.6 Konvergenzradius

TODO

2 Differenzieren (Ableiten)

3 Integrieren

3.1 Partielle Integration

Verwendung: Integration von Produkten (z.B. $\int x \cdot e^x dx$)

Formel

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

LAPTE

Logarithmisch, Algebraisch/Polynom, Trigonometrisch, Exponential Linke Funktion ableiten $g \to g'$ und rechte integrieren $f' \to f$ (links g, rechts f')

Beispiel

$$\begin{split} & \int x \cdot e^{2x} \, \mathrm{d}x \\ \Rightarrow \text{durch LAPTE: } f'(x) = e^{2x}, g(x) = x \\ \Rightarrow f(x) = \frac{1}{2} e^{2x}, g'(x) = 1 \\ \text{Aus der Formel folgt: } \int x \cdot e^{2x} \, \mathrm{d}x = \frac{1}{2} e^{2x} \cdot x - \int \frac{1}{2} e^{2x} \, \mathrm{d}x = \frac{1}{2} e^{2x} \cdot x - \frac{1}{4} e^{2x} = \frac{1}{4} e^{2x} \cdot (2x-1) \end{split}$$

3.2 Substitution

Verwendung: Keine ahnung, dann wenn mans braucht. denk und rechne!

Formel

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, \mathrm{d}x = \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) \, \mathrm{d}t$$

Beispiel

$$\int_{1}^{2} (x^{2} + 2)^{3} \cdot 2x \, dx$$
Setze $u = x^{2} + 2 \Rightarrow du = 2x \, dx \Rightarrow dx = \frac{du}{2x}$

$$\int (x^{2} + 2)^{3} \cdot 2x \, dx = \int u^{3} \, du = \frac{1}{4} u^{4} = \frac{1}{4} (x^{2} + 2)^{4}$$
Grenzen einfügen:
$$\int_{1}^{2} (x^{2} + 2)^{3} \cdot 2x \, dx = \left[\frac{1}{4} (x^{2} + 2)^{4} \right]_{1}^{2} = \frac{1}{4} (2^{2} + 2)^{4} - \frac{1}{4} (1^{2} + 2)^{4} = \frac{1}{4} 6^{4} - \frac{1}{4} 3^{4}$$

Weiteres Beispiel

$$\int \cos(x^3) \cdot 6x^2 dx$$
Setze $u = x^3 \Rightarrow du = 3x^2 dx \Rightarrow dx = \frac{du}{3x^2}$

$$\int \cos(u) \cdot 6x^2 \cdot \frac{du}{3x^2} = \int \cos(u) \cdot 2 du = 2 \int \cos(u) du = 2\sin(u) = 2\sin(x^3)$$

HM₂

4 Ableiten

4.1 Partielle Ableitung

Jede Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$ hat n Partielle Ableitungen. Dabei wird nach der einen Variable abgeleitet, und die anderen Variablen als Konstanten angesehen.

4.1.1 Satz von Schwarz

Wenn die 2. partiellen Ableitungen stetig sind (fast immer der Fall) dann gilt: $f_{xy} = f_{yx}$ Somit muss nur eine der beiden Ableitungen ausgerechnet werden

4.1.2 Beispiel

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = x^2 + 3xy^3$$

$$f_x(x,y) = 2x + 3y^3$$

$$f_y(x,y) = 9xy^2$$

$$f_{xx}(x,y) = 2$$

$$f_{xy}(x,y) = 9y^2$$

$$f_{yx}(x,y) = 9y^2$$

$$f_{yy}(x,y) = 18xy$$
Satz von Schwarz
$$f_{yy}(x,y) = 18xy$$

4.2 Komplette Ableitung (Jakobi-Matrix)

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$f'(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_m} & \cdots & \frac{\partial f_1}{\partial x_n} \end{pmatrix} = \begin{pmatrix} f_{x_1} & \cdots & f_{x_n} \end{pmatrix}$$

4.2.1 Beispiel

$$f(r,\varphi) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi \end{pmatrix}$$
$$f'(r,\varphi) = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\\sin\varphi & r\cos\varphi \end{pmatrix}$$

4.2.2 Nochn Beispiel

$$f(x,y,z) = \begin{pmatrix} 2x^2 + 5y - 9z \\ xy^2 + z \\ x^4y^6z^8 \end{pmatrix}$$
$$f'(x,y,z) = \begin{pmatrix} 4x & 5 & -9 \\ y^2 & 2xy & 1 \\ 4x^3y^6z^8 & 6x^4y^5z^8 & 8x^4y^6z^7 \end{pmatrix}$$

4.3 Differenzierbarkeit und Stetigkeit

4.4 Richtungsableitung

5 Differentialgleichungen

5.1 Gewöhnliche Differentialgleichungen

Explizite DGL: Nach der Höchsten Ableitung aufgelöst Implizite DGL: Irgendwas = 0 Beispiel:

• Explizit: f'(x) = dr"olf f(x)

• Implizit: f'(x) - dr"olf f(x) = 0

5.1.1 Homogene Gewöhnliche Differentialgleichungen erster Ordnung

Solche können gelöst werden, falls sie die Form f'(x) = a(x) * b(f(x)) aufweisen. (separabel)

Lösungsvorgehen:

$$\frac{f'(x)}{b(f(x))} = a(x) \qquad \text{Explizite DGL durch } b(f(x)) \text{ teilen}$$

$$\int_{x_0}^x \frac{f'(x)}{b(f(x))} \, \mathrm{d}x = \int_{x_0}^x a(x) \, \mathrm{d}x \qquad \text{Integrieren mit Grenzen } x_0 \mathrm{und}x$$

$$\int_{f(x_0)}^{f(x)} \frac{1}{b(u)} \, \mathrm{d}u = \int_{x_0}^x a(x) \, \mathrm{d}x \qquad \text{Substitution von } f(x) \text{ durch } u \text{ auf der Seite von } b(f(x)) \to f'(x) = \frac{du}{dx}$$

$$\Rightarrow \text{Formel für Homogene DGL erster Ordnung: } \int_{f(x_0)}^{f(x)} \frac{1}{b(u)} \, \mathrm{d}u = \int_{x_0}^x a(x) \, \mathrm{d}x$$
Beispiel: $f'(x) = 3x \cdot f(x)$

5.1.2 Inhomogene Gewöhnliche Differentialgleichungen erster Ordnung

7

Haben die Form: $f'(x) = a(x) \cdot f(x) + b(x)$ Das b(x) ßtört"

Variation der Konstanten