Analyse des séries temporelles avec 😱

4 - Lissage exponentiel

ALAIN QUARTIER-LA-TENTE

Objectifs de cette séquence

Présenter les méthodes basiques de prévision d'une série temporelle ainsi que le lissage exponentiel

Questions de positionnement

Quelles sont les modèles de prévision les plus simples ?

Comment évaluer la qualité d'un modèle de prévision ?

Quelles sont les propriétés que doivent suivre les erreurs de prévision ?

Qu'est-ce que le lissage exponentiel ?

Sommaire

- 1. Modèles de prévision simples
- 1.1 Exemples
- 2. Modèles exponentiels
- 3. Résidus et qualité des prévisions
- 4. Conclusion

Comment prévoir ces séries ? (1)

Comment prévoir ces séries ? (2)

Comment prévoir ces séries ? (3)

1. Moyenne de valeurs passées (forecast::meanf() ou fable::MEAN()):

$$\hat{y}_{t+h|T} = \bar{y} = \frac{1}{T} \sum_{i=1}^{T} y_t$$

1. Moyenne de valeurs passées (forecast::meanf() ou fable::MEAN()):

$$\hat{y}_{t+h|T} = \bar{y} = \frac{1}{T} \sum_{i=1}^{T} y_t$$

2. Dernière valeur connue (forecast::naive() ou fable::NAIVE()):

$$\hat{y}_{t+h|T} = y_T$$

Hypothèse du marché efficient

1. Moyenne de valeurs passées (forecast::meanf() ou fable::MEAN()):

$$\hat{y}_{t+h|T} = \bar{y} = \frac{1}{T} \sum_{i=1}^{T} y_t$$

2. Dernière valeur connue (forecast::naive() ou fable::NAIVE()):

$$\hat{y}_{t+h|T} = y_T$$

Hypothèse du marché efficient

3. Dernière valeur connue à la saison précédente (forecast::snaive() ou fable::SNAIVE()):

$$\hat{y}_{t+h|T} = y_{T+h-m(k+1)}$$
 avec $|(h-1)/m|$

1. Moyenne de valeurs passées (forecast::meanf() ou fable::MEAN()):

$$\hat{y}_{t+h|T} = \bar{y} = \frac{1}{T} \sum_{i=1}^{T} y_t$$

2. Dernière valeur connue (forecast::naive() ou fable::NAIVE()):

$$\hat{y}_{t+h|T} = y_T$$

Hypothèse du marché efficient

3. Dernière valeur connue à la saison précédente (forecast::snaive() ou fable::SNAIVE()):

$$\hat{y}_{t+h|T} = y_{T+h-m(k+1)}$$
 avec $\lfloor (h-1)/m \rfloor$

Il y a également d'autres combinaisons possibles (drift...), voir https://otexts.com/fpp3/simple-methods.html

Retour sur les exemples (1)

```
y = window(diff(EuStockMarkets[,"CAC"]), start = 1998)
autoplot(y, y = "Variation dans les prix",
         main = "Variations quotidiennes du cours\nde clôture du CAC 40") +
 autolayer(meanf(y, h=10), PI=FALSE, series="Moyenne") +
 autolayer(naive(y, h=10), PI=FALSE, series="Naïve") +
 guides(colour=guide_legend(title="Prévisions"))
```

Variations quotidiennes du cours

Time

Prévisions Movenne Naïve

Retour sur les exemples (2)

Prévisions

Moyenne Naïve

Retour sur les exemples (3)

Sommaire

- 1. Modèles de prévision simples
- 2. Modèles exponentiels
- 3. Résidus et qualité des prévisions
- 4. Conclusion

Méthode entre prévision naïve et moyenne lorsqu'il n'y a pas de tendance ni de saisonnalité claire

Méthode entre prévision naïve et moyenne lorsqu'il n'y a pas de tendance ni de saisonnalité claire

Idée : un poids décroissant est associée aux valeurs passées

$$\hat{y}_{T+1|T} = \alpha y_t + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \dots$$

Méthode entre prévision naïve et moyenne lorsqu'il n'y a pas de tendance ni de saisonnalité claire

Idée : un poids décroissant est associée aux valeurs passées

$$\hat{y}_{T+1|T} = \alpha y_t + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \dots$$

Peut s'écrire sous forme espace-état :

$$\begin{cases} \hat{y}_{T+h|T} &= I_t \\ I_t &= \alpha y_t + (1-\alpha)I_{t-1} \end{cases} \iff \begin{cases} y_t &= I_{t-1} + \varepsilon_t \\ I_t &= I_{t-1} + \alpha \varepsilon_t \end{cases}$$

 l_t représente le niveau de la série.

Méthode entre prévision naïve et moyenne lorsqu'il n'y a pas de tendance ni de saisonnalité claire

Idée : un poids décroissant est associée aux valeurs passées

$$\hat{y}_{T+1|T} = \alpha y_t + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \dots$$

Peut s'écrire sous forme espace-état :

$$\begin{cases} \hat{y}_{T+h|T} &= l_t \\ l_t &= \alpha y_t + (1-\alpha)l_{t-1} \end{cases} \iff \begin{cases} y_t &= l_{t-1} + \varepsilon_t \\ l_t &= l_{t-1} + \alpha \varepsilon_t \end{cases}$$

 l_t représente le niveau de la série.

Paramètres à estimer : I_0 et α par minimisation des erreurs de prévision :

$$SSE = \sum_{t=1}^{T} e_t^2 = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$

Cours de clôture du CAC 40

mod2

```
ETS(A,N,N)
Call:
 ets(y = y, model = "ANN")
  Smoothing parameters:
    alpha = 0.9999
  Initial states:
   1 = 2857.9761
  sigma: 45.4825
    AIC AICC BIC
```

2161.198 2161.343 2170.587

Concentration atmosphérique annuelle en CO2 à Mauna Loa

Lissage exponentiel double : Holt (1957)

Le SES peut être étendu pour ajouter une prévision de la tendance :

$$\begin{cases} \hat{y}_{T+h|T} &= l_{t} + hb_{t} \\ l_{t} &= \alpha y_{t} + (1-\alpha)(l_{t-1} + b_{t-1}) \\ b_{t} &= \beta^{*}(l_{t} - l_{t-1}) + (1-\beta^{*})b_{t-1} \end{cases} \iff \begin{cases} y_{t} &= l_{t-1} + b_{t-1} + \varepsilon_{t} \\ l_{t} &= l_{t-1} + b_{t-1} + \alpha \varepsilon_{t} \\ b_{t} &= b_{t-1} + \beta \varepsilon_{t} \end{cases}$$

Lissage exponentiel double: Holt (1957)

Le SES peut être étendu pour ajouter une prévision de la tendance :

$$\begin{cases} \hat{y}_{T+h|T} &= l_t + hb_t \\ l_t &= \alpha y_t + (1-\alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1-\beta^*)b_{t-1} \end{cases} \iff \begin{cases} y_t &= l_{t-1} + b_{t-1} + \varepsilon_t \\ l_t &= l_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t \end{cases}$$

On a encore $l_t = \alpha y_t + (1 - \alpha)\hat{y}_{t|t-1}$.

Damped trend/tendance amortie : Gardner & McKenzie (1985)

La méthode de Holt prévoit une tendance croissante de manière indéfinie : tend à sur-estimer les prévisions sur horizon longue.

Amortir la tendance avec le temps

$$\begin{cases} \hat{y}_{T+h|T} &= l_t + (\phi + \phi^2 + \dots + \phi^h)b_t \\ l_t &= \alpha y_t + (1-\alpha)(l_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1-\beta^*)\phi b_{t-1} \end{cases} \iff \begin{cases} y_t &= l_{t-1} + \phi b_{t-1} + \varepsilon_t \\ l_t &= l_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t \\ b_t &= \phi b_{t-1} + \beta \varepsilon_t \end{cases}$$

```
mod <- holt(aggregate(co2), h = 12)</pre>
mod_damped <- holt(aggregate(co2), damped = TRUE, h = 12)</pre>
mod2 <- ets(aggregate(co2), model = "AAN") # autre option</pre>
autoplot(aggregate(co2)) + autolayer(mod, PI = FALSE, series = "Holt") +
    autolayer(mod damped, PI = FALSE, series = "Holt Damped trend") +
    autolayer(fitted(mod), series = "Fitted") +
    labs(y = "ppm",
         title = "Concentration atmosphérique annuelle en CO2 à Mauna Loa")
```

Concentration atmosphérique annuelle en CO2 à Mauna Loa


```
mod2
```

```
ETS(A,A,N)
Call:
 ets(y = aggregate(co2), model = "AAN")
  Smoothing parameters:
   alpha = 0.9999
   beta = 0.1785
  Initial states:
   1 = 3779.61
   b = 10.2955
  sigma: 5.8373
     ATC ATCC BTC
286.2718 288.0900 294.5896
```

```
mod \leftarrow holt(co2, h = 12)
mod damped <- holt(co2, damped = TRUE, h = 12)
autoplot(co2) + autolayer(mod, PI = FALSE, series = "Holt") +
    autolayer(mod damped, PI = FALSE, series = "Holt Damped trend
    autolayer(fitted(mod), series = "Fitted") +
    labs(y = "ppm",
         title = "Concentration atmosphérique annuelle en CO2 à
```


Holt Damped trend

Holt-Winter

On ajoute une composante saisonnière!

$$\begin{cases} \hat{y}_{T+h|T} &= l_t + hb_t + s_{t+h-m(k+1)} \\ l_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - l_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{cases} \iff \begin{cases} y_t &= l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t \\ l_t &= l_{t-1} + b_{t-1} + \alpha\varepsilon_t \\ b_t &= b_{t-1} + \beta\varepsilon_t \\ s_t &= s_{t-m} + \gamma\varepsilon_t \end{cases}$$

Holt-Winter

On ajoute une composante saisonnière!

$$\begin{cases} \hat{y}_{T+h|T} &= l_t + hb_t + s_{t+h-m(k+1)} \\ l_t &= \alpha(y_t - s_{t-m}) + (1-\alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t - l_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m} \end{cases} \iff \begin{cases} y_t &= l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t \\ l_t &= l_{t-1} + b_{t-1} + \alpha\varepsilon_t \\ b_t &= b_{t-1} + \beta\varepsilon_t \\ s_t &= s_{t-m} + \gamma\varepsilon_t \end{cases}$$

On peut aussi réécrire

$$s_t = \gamma^* (y_t - I_t) + (1 - \gamma^*) s_{t-m}$$

Holt-Winter

On ajoute une composante saisonnière!

$$\begin{cases} \hat{y}_{T+h|T} &= l_t + hb_t + s_{t+h-m(k+1)} \\ l_t &= \alpha(y_t - s_{t-m}) + (1-\alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t - l_{t-1} - b_{t-1}) + (1-\gamma)s_{t-m} \end{cases} \iff \begin{cases} y_t &= l_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t \\ l_t &= l_{t-1} + b_{t-1} + \alpha\varepsilon_t \\ b_t &= b_{t-1} + \beta\varepsilon_t \\ s_t &= s_{t-m} + \gamma\varepsilon_t \end{cases}$$

On peut aussi réécrire

$$s_t = \gamma^* (y_t - I_t) + (1 - \gamma^*) s_{t-m}$$

Même idée avec tendance amortie

Concentration atmosphérique mensuelle en CO2 à Mauna Loa

series Fitted

Fitted

Holt-Winter

```
mod2
```

```
ETS(A,A,A)
Call:
 ets(y = co2, model = "AAA")
  Smoothing parameters:
    alpha = 0.5785
    beta = 0.0061
    gamma = 0.1373
  Initial states:
    1 = 315.3303
    b = 0.0801
    s = -0.8174 - 1.836 - 3.024 - 2.7715 - 1.2671 0.7784
           2.1746 2.702 2.1571 1.1912 0.6693 0.0433
  sigma: 0.294
     ATC ATCC BTC
1749.350 1750.710 1819.874
```

Et maintenant?

Passagers aériens

Saisonnalité multiplicative

$$\begin{cases} \hat{y}_{T+h|T} &= (l_t + hb_t) + s_{t+h-m(k+1)} \\ l_t &= \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^* (l_t - l_{t-1}) + (1 - \beta^*) b_{t-1} \\ s_t &= \gamma \frac{y_t}{l_{t-1} + b_{t-1}} + (1 - \gamma) s_{t-m} \end{cases}$$

$$\iff \begin{cases} y_t &= (l_{t-1} + b_{t-1}) s_{t-m} + \varepsilon_t \\ l_t &= l_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t / s_{t-m} \\ s_t &= s_{t-m} + \gamma \varepsilon_t / (l_{t-1} + b_{t-1}) \end{cases}$$

Saisonnalité multiplicative

$$\begin{cases} \hat{y}_{T+h|T} &= (l_t + hb_t) + s_{t+h-m(k+1)} \\ l_t &= \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^* (l_t - l_{t-1}) + (1 - \beta^*) b_{t-1} \\ s_t &= \gamma \frac{y_t}{l_{t-1} + b_{t-1}} + (1 - \gamma) s_{t-m} \end{cases}$$

$$\iff \begin{cases} y_t &= (l_{t-1} + b_{t-1}) s_{t-m} + \varepsilon_t \\ l_t &= l_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t / s_{t-m} \\ s_t &= s_{t-m} + \gamma \varepsilon_t / (l_{t-1} + b_{t-1}) \end{cases}$$

L'erreur aussi peut être multiplicative !

Taxonomie des modèles ETS

Notations Générales

Taxonomie des modèles ETS

Notations Générales

- Erreur : Additive ("A") ou multiplicative ("M")
- Tendance: Sans tendance ("N"), additive ("A"), multiplicative ("M") ou amortie ("Ad" ou "Md")
- Saisonnalité : Sans saisonnalité ("N"), additive ("A") ou multiplicative ("M")

"Z" pour une sélection automatique

Erreurs additives

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1}s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
Α	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1})s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$
	$y_t = \ell_{t-1}b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1}b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1}b_{t-1}s_{t-m} + \varepsilon_t$
M	$\ell_t = \ell_{t-1} b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1}b_{t-1} + \alpha\varepsilon_t/s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1} + \beta \varepsilon_t / (s_{t-m} \ell_{t-1})$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} b_{t-1})$
	$y_t = \ell_{t-1} b_{t-1}^{\phi} + \varepsilon_t$	$y_t = \ell_{t-1}b_{t-1}^{\phi} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} b_{t-1}^{\phi} s_{t-m} + \varepsilon_t$
M_d	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha \varepsilon_t / s_{t-m}$
-u	$b_t = b_{t-1}^{\phi} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1}^{t-1} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1}^{\phi} + \beta \varepsilon_t / (s_{t-m} \ell_{t-1})$
	$\sigma_t = \sigma_{t-1} + \rho \epsilon_t / \epsilon_{t-1}$	1-1	1-1
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} b_{t-1}^{\varphi})$

Source: Hyndman, R.J., & Athanasopoulos, G. (2018)

Erreurs multiplicatives

Trend	Seasonal		
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$ $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\epsilon_t = \epsilon_{t-1}(1 + \alpha \epsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$ $s_t = s_{t-m} + \gamma(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$ $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
A	$\begin{split} y_t &= (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \end{split}$	$\begin{split} y_t &= (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \\ b_t &= b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \\ s_t &= s_{t-m} + \gamma(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t \end{split}$	$\begin{split} y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1}) (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{split}$
A _d	$\begin{aligned} y_t &= (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t) \\ b_t &= \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t \\ b_t &= \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t \\ s_t &= s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + \phi b_{t-1}) (1 + \alpha \varepsilon_t) \\ b_t &= \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{aligned}$
М	$\begin{aligned} y_t &= \ell_{t-1}b_{t-1}(1+\varepsilon_t) \\ \ell_t &= \ell_{t-1}b_{t-1}(1+\alpha\varepsilon_t) \\ b_t &= b_{t-1}(1+\beta\varepsilon_t) \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} b_{t-1} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} b_{t-1} + \alpha (\ell_{t-1} b_{t-1} + s_{t-m}) \varepsilon_t \\ b_t &= b_{t-1} + \beta (\ell_{t-1} b_{t-1} + s_{t-m}) \varepsilon_t / \ell_{t-1} \\ s_t &= s_{t-m} + \gamma (\ell_{t-1} b_{t-1} + s_{t-m}) \varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= \ell_{t-1} b_{t-1} s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} b_{t-1} (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} (1 + \beta \varepsilon_t) \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{aligned}$
M _d	$\begin{aligned} y_t &= \ell_{t-1} b_{t-1}^{\phi} (1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} b_{t-1}^{\phi} (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1}^{\phi} (1 + \beta \varepsilon_t) \end{aligned}$	$\begin{split} y_t &= (\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})(1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1}b_{t-1}^{\phi} + \alpha(\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})\varepsilon_t \\ b_t &= b_{t-1}^{\phi} + \beta(\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})\varepsilon_t \ell_{t-1} \\ s_t &= s_{t-m}^{\phi} + \gamma(\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})\varepsilon_t \ell_{t-1} \\ s_t &= s_{t-m} + \gamma(\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})\varepsilon_t \end{split}$	$\begin{aligned} y_t &= \ell_{t-1} b_{t-1}^{\phi} s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} b_{t-1}^{\phi} (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1}^{\phi} (1 + \beta \varepsilon_t) \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{aligned}$

Source: Hyndman, R.J., & Athanasopoulos, G. (2018)

Sous R

```
Pour les objets ts : forecast::ets() avec paramètre damped = TRUE ou
damped = TRUE.
Pour les objets tsibble : fable::ETS() avec fonctions error(), trend()
et season()
library(fable)
as tsibble(USAccDeaths) %>%
  model(ETS(value ~ season("A")))
# A mable: 1 x 1
  `ETS(value ~ season("A"))`
                        <model>
                  \langle ETS(A,N,A) \rangle
```

Sommaire

- 1. Modèles de prévision simples
- 2. Modèles exponentiels
- 3. Résidus et qualité des prévisions
- 3.1 Analyse des résidus
- 3.2 Analyse des prévisions
- 3.3 Critères d'information
- 4. Conclusion

Analyse des résidus

On distingue deux types de prévisions :

- Prévisions in-sample, dans l'échantillon, fitted values : paramètres estimés sur l'ensemble des données
- Prévisions *out-of-sample*, hors échantillon : on reproduit le processus de prévision $\hat{y}_{t+h|t}$ permet de vérifier les problèmes de sur-ajustement

Prévisions in-sample

Résidus : $e_t = y_t - \hat{y}_t$

Hypothèses:

- (e_t) non corrélés (sinon il reste de l'information qui auraient dû être prise en compte dans la prévision)
- (e_t) de moyenne nulle : sinon prévisions biaisées

Prévisions in-sample

Résidus : $e_t = y_t - \hat{y}_t$

Hypothèses:

- (e_t) non corrélés (sinon il reste de l'information qui auraient dû être prise en compte dans la prévision)
- (e_t) de moyenne nulle : sinon prévisions biaisées

Hypothèses utiles pour la construction d'intervalles de confiance

- (e_t) ont une variance constante
- (e_t) suivent une loi normale

Nombre de décès de maladies pulmonaires au Royaume-Uni


```
gghistogram(resid(snaive(ldeaths)), add.normal = TRUE) +
labs(title = "Résidus SNAIVE")
```



```
ggAcf(resid(snaive(ldeaths)), add.normal = TRUE) +
    labs(title = "Résidus SNAIVE")
    Résidus SNAIVE
  0.4 -
  0.2 -
  0.0 -
 -0.2
 -0.4
 -0.6 -
                                                                   18
                                               Lag
```

ACF et tests Portemanteau (Box.test())

L'ACF est un outils graphique simple pour vérifier ont les mêmes propriétés qu'un bruit blanc.

Il existe également des tests d'autocorrélation :

Box-Pierce

$$Q = T \sum_{k=1}^{p} \hat{\rho}(k)^2$$

• Ljung-Box (marche mieux sur petits échantillons)

$$Q^* = T(T+1) \sum_{k=1}^{p} (T-k)^{-1} \hat{\rho}(k)^2$$

Paramètre p à choisir. Recommandation : p=10 pour séries non saisonnières, p=2m sinon.

Sous (H_0) ces quantités suivent $\chi^2(p-K)$ avec K nb de paramètres dans le modèle

forecast::checkresiduals(snaive(ldeaths))

Ljung-Box test

data: Residuals from Seasonal naive method Q* = 45.922, df = 14, p-value = 2.887e-05

Model df: 0. Total lags used: 14

Périodogramme cumulatif

On peut aussi analyser les résidus avec le périodogramme cumulatif : proche d'une ligne droite pour un bruit blanc

```
par(mfrow = c(1,2))
cpgram(ldeaths)
cpgram(resid(snaive(ldeaths)))
```

Series: Ideaths

fraguancy

Series: resid(snaive(Ideaths))

franıa

frequency

Mesure de la qualité de la prévisions

Plusieurs critères :

$$MAE = moy(|e_{T+h}|)$$
 $MSE = moy(e_{T+h}^2)$ $RMSE = \sqrt{moy(e_{T+h}^2)}$ $MAPE = 100 mean(|e_{T+h}|/|y_{T+h}|)$

Les 3 premiers critères dépend de l'échelle mais pas le MAPE (mais valable si $y_t\gg 0$)

Mesure de la qualité de la prévisions

Plusieurs critères :

$$\begin{aligned} \textit{MAE} &= \textit{moy}(|e_{T+h}|) \quad \textit{MSE} &= \textit{moy}(e_{T+h}^2) \\ \textit{RMSE} &= \sqrt{\textit{moy}(e_{T+h}^2)} \quad \textit{MAPE} &= 100 \textit{mean}(|e_{T+h}|/|y_{T+h}|) \end{aligned}$$

Les 3 premiers critères dépend de l'échelle mais pas le MAPE (mais valable si $y_t\gg 0$)

MASE proposé par Hyndman and Koehler (IJF, 2006) :

$$\mathit{MASE} = \mathit{moy}(|e_{T+h}|/Q)$$
 avec Q une mesure stable de l'échelle de y_t

$$\begin{cases} Q = \frac{1}{T-1} \sum_{t=2}^{T} |y_t - y_{t-1}| & \text{s\'erie non saisonni\`ere} \\ Q = \frac{1}{T-m} \sum_{t=m+1}^{T} |y_t - y_{t-m}| & \text{s\'erie saisonni\`ere} \end{cases}$$

Prévisions en temps-réel : prévisions dynamiques en réactualisant les coefficients à chaque date.

leave-h-out cross-validation

Prévisions en temps-réel : prévisions dynamiques en réactualisant les coefficients à chaque date.

leave-h-out cross-validation

On peut ensuite comparer les erreurs en utilisant un critère (e.g. RMSE) et un test (forecast::dm.test()).

Exemple LOOCV (h = 1), modèle trimestriel :

2000T1
:
•
2021T4

Prévisions en temps-réel : prévisions dynamiques en réactualisant les coefficients à chaque date.

leave-h-out cross-validation

On peut ensuite comparer les erreurs en utilisant un critère (e.g. RMSE) et un test (forecast::dm.test()).

Exemple LOOCV (h = 1), modèle trimestriel :

Prévisions en temps-réel : prévisions dynamiques en réactualisant les coefficients à chaque date.

leave-h-out cross-validation

On peut ensuite comparer les erreurs en utilisant un critère (e.g. RMSE) et un test (forecast::dm.test()).

Exemple LOOCV (h = 1), modèle trimestriel :

Prévisions en temps-réel : prévisions dynamiques en réactualisant les coefficients à chaque date.

leave-h-out cross-validation

On peut ensuite comparer les erreurs en utilisant un critère (e.g. RMSE) et un test (forecast::dm.test()).

Exemple LOOCV (h = 1), modèle trimestriel :

Prévisions en temps-réel : prévisions dynamiques en réactualisant les coefficients à chaque date.

leave-h-out cross-validation

On peut ensuite comparer les erreurs en utilisant un critère (e.g. RMSE) et un test (forecast::dm.test()).

Exemple LOOCV (h = 1), modèle trimestriel :

Les modèles sont parfois sélectionnés en utilisant des critères d'information (AIC, BIC, HQ) qui sont des vraisemblances pénalisées. Retenir :

Il faut les minimiser

- II faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)

- Il faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)
- AICc effectue une correction lorsqu'il y a peu de données

- Il faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)
- AICc effectue une correction lorsqu'il y a peu de données
- Minimiser l'AIC est asymptotiquement équivalent à minimiser le LOOCV

- Il faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)
- AICc effectue une correction lorsqu'il y a peu de données
- Minimiser l'AIC est asymptotiquement équivalent à minimiser le LOOCV
- Minimiser le BIC est asymptotiquement équivalent à minimiser le L-v-OCV avec $v = T[1 1/(\log(T) 1)]$ et à sélection le *true model*

- II faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)
- AICc effectue une correction lorsqu'il y a peu de données
- Minimiser l'AIC est asymptotiquement équivalent à minimiser le LOOCV
- Minimiser le BIC est asymptotiquement équivalent à minimiser le L-v-OCV avec $v = T[1-1/(\log(T)-1)]$ et à sélection le $true\ model$
- L'AIC a tendance à sur-ajuster le modèle et le BIC à le sous-ajuster

- II faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)
- AICc effectue une correction lorsqu'il y a peu de données
- Minimiser l'AIC est asymptotiquement équivalent à minimiser le LOOCV
- Minimiser le BIC est asymptotiquement équivalent à minimiser le L-v-OCV avec $v = T[1-1/(\log(T)-1)]$ et à sélection le $true\ model$
- L'AIC a tendance à sur-ajuster le modèle et le BIC à le sous-ajuster
- \bar{R}^2 a tendance à sélectionner trop de variables

Les modèles sont parfois sélectionnés en utilisant des critères d'information (AIC, BIC, HQ) qui sont des vraisemblances pénalisées. Retenir :

- Il faut les minimiser
- Ils sont définis à une constante additive/multiplicative près (qui peut changer en fonction des logiciels)
- AICc effectue une correction lorsqu'il y a peu de données
- Minimiser l'AIC est asymptotiquement équivalent à minimiser le LOOCV
- Minimiser le BIC est asymptotiquement équivalent à minimiser le L-v-OCV avec $v=T[1-1/(\log(T)-1)]$ et à sélection le $true\ model$
- L'AIC a tendance à sur-ajuster le modèle et le BIC à le sous-ajuster
- \bar{R}^2 a tendance à sélectionner trop de variables
- Ne comparer les modèles avec critères d'information que s'ils sont

calculés sur les mêmes données (ordre de différenciation ARIMA et ARIMA vs ETS)

Sommaire

- 1. Modèles de prévision simples
- 2. Modèles exponentiels
- 3. Résidus et qualité des prévisions
- 4. Conclusion

Conclusions

- Dans beaucoup de cas les meilleurs modèles de prévision seront les plus simples : dernière valeur, valeur moyenne, valeur de la période précédente, etc.
- Le lissage exponentiel basé sur la description de la tendance et de la saisonnalité de la série
- La sélection d'un modèle peut se faire par un critère d'information ou par minimisation d'une statistique de validation croisée
- Les erreurs de prévision doivent être non corrélés et être de moyenne nulle. Pour la construction d'intervalles de confiance il faut en plus une variance constante et une loi normale

Bibliographie

Hyndman, R.J., & Athanasopoulos, G. (2018) *Forecasting: principles and practice*, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on oct. 2023.

Hyndman, R.J., & Athanasopoulos, G. (2021) *Forecasting: principles and practice*, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on oct. 2023.