最終頁に続く

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平11-277924

(43)公開日 平成11年(1999)10月12日

(51) Int.Cl.6

識別記号

FΙ

B41M 7/02

B41M 7/02

審査請求 有 請求項の数3 OL (全 6 頁)

ンキ製造株式会社内 (74)代理人 弁理士 鈴江 武彦 (外5名)

(71) 出願人 000003193 (21)出願番号 ♦顧平10-81870 凸版印刷株式会社 東京都台東区台東1丁目5番1号 (22)出願日 平成10年(1998) 3月27日 (71) 出頭人 000222118 東洋インキ製造株式会社 東京都中央区京橋2丁目3番13号 (72) 発明者 高橋 勝 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 (72)発明者 板倉 基孝 東京都中央区京橋二丁目3番13号 東洋イ

(54) 【発明の名称】 撥水性オーパープリント層を有する印刷物

(57)【要約】

【課題】撥水性と耐光性に優れたオーバープリントニス 層を備えた印刷物を提供する。

【解決手段】基材シートと、該基材シートの一部に設け られ、概念駆動型の認知が可能な情報を構成する印刷イ ンキ皮膜と、該印刷インキ皮膜を含む印刷面を被覆して 設けられた透明オーバープリント層とを備え、該透明オ ーバープリント層が、フッ素樹脂粒子と紫外線吸収剤と を含有するオーバープリントニス組成物から構成される ことを特徴とする。

【特許請求の範囲】

【請求項1】 基材シートと、該基材シートの一部に設けられ、概念駆動型の認知が可能な情報を構成する印刷インキ皮膜と、該印刷インキ皮膜を含む印刷面を被覆して設けられた透明オーバープリント層とを備え、該透明オーバープリント層が、フッ素樹脂粒子と紫外線吸収剤とを含有するオーバープリントニス組成物から構成されていることを特徴とする撥水性オーバープリント層を有する印刷物。

1

【請求項2】 前記フッ素樹脂粒子が、該オーバープリントニス組成物の固形分を基準として、20ないし400重量%の割合で含有され、前記紫外線吸収剤が、該オーバープリントニス組成物の固形分を基準として、1重量%以上含有されていることを特徴とする請求項1記載の印刷物。

【請求項3】 前記フッ素樹脂粒子の体積平均粒径が、 0. 1ないし10μmであることを特徴とする請求項1 または2記載の印刷物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オーバープリント層を有する印刷物に係り、特には、撥水性と耐光性に優れたオーバープリント層を有する印刷物に関する。

[0002]

【従来の技術】一般に、印刷物の光沢を向上させ、また印刷物の皮膜を保護するために、印刷面をオーバープリントニス(以下、「OPニス」ということもある。)で被覆することが行われている。すなわち、印刷インキ各色(黄、紅、藍、墨等)を基材シートに印刷した後、その印刷物上に透明なOPニスを印刷している。しかし、従来のOPニスでは、印刷物にコーヒー、ジュース等の飲料物がこぼれたりすると、表面に汚れが付着し、印刷物にべた付きがなお残ったりした。また、従来のOPニスは、撥水性や耐光性が不十分であるため、ポスター等におけるように、長期間屋外環境に置かれ、あるいは風雨にさらされると、印刷物の皮膜が侵されることがある。さらに、通常のOPニスは熱や引っ掻き傷に対しても必ずしも十分な耐性を有していない。

【0003】これらの対策として、従来、OPニスにポリエチレンワックスやシリーコン系の添加剤を配合することが行われているが、必ずしも満足し得る結果は得られていない。

[0004]

【発明が解決しようとする課題】従って、本発明の課題は、撥水性と耐光性に優れたOPニス層により保護された印刷物を提供することを課題とする。

[0005]

【課題を解決するための手段】上記課題を解決するために、本発明によれば、基材シートと、該基材シートの一部に設けられ、概念駆動型の認知が可能な情報を構成す 50

る印刷インキ皮膜と、該印刷インキ皮膜を含む印刷面を 被覆して設けられた透明オーバープリント層とを備え、 該透明オーバープリント層が、フッ素樹脂粒子と紫外線 吸収剤とを含有するオーバープリントニス組成物から構 成されていることを特徴とする撥水性オーバープリント 層を有する印刷物が提供される。

2

【0006】本発明において、フッ素樹脂粒子は、オーバープリントニス組成物の固形分を基準として、20ないし400重量%の割合で含有され、紫外線吸収剤は、オーバープリントニス組成物の固形分を基準として、1重量%以上含有されていることが好ましい。また、本発明において、フッ素樹脂粒子の体積平均粒径は、0.1ないし10μmであることが好ましい。

[0007]

【発明の実施の形態】本発明の印刷物の印刷面に設けら れるOPニス組成物は、OPニスにフッ素樹脂粒子と紫 外線吸収剤とを含有することを特徴とする。本発明の〇 Pニス組成物において、フッ素樹脂は、撥水性を付与す るものとして作用し、耐摩耗性をも付与し得る。フッ素 樹脂は、粒子の形態で本発明のOPニス組成物に含めら れている。本発明に使用されるフッ素樹脂としては、O Pニスの溶剤に溶解せず、粒子として均一に分散し得る ものが望ましい。具体的には、ポリテトラフルオロエチ レン樹脂(以下、「PTFE」と略すことがある。)、 ポリクロロトリフルオロエチレン樹脂、ポリヘキサフル オロプロピレン樹脂、エチレン-フルオロエチレン共重 合樹脂、テトラフルオロエチレンーヘキサフルオロプロ ピレン共重合樹脂、ポリパーフルオロアルコキシ樹脂等 を使用することができる。中でも、PTFEが特に好ま 30 しい。

【0008】本発明において、フッ素樹脂粒子の粒径 は、当該分野でよく知られているレーザー回折法、コー ルターカウンター法等により得られる体積平均粒径で表 される。本発明において、フッ素樹脂粒子は、体積平均 粒径が0. 1ないし10μmであることが好ましい。フ ッ素樹脂粒子は、これらの粒径範囲で特に優れた撥水性 を示す。フッ素樹脂粒子の体積平均粒子は、2~5 μm であることがより好ましい。フッ素樹脂粒子の体積平均 粒径が2μm以上であれば、フッ素樹脂粒子がOPニス 皮膜の中に埋没することなくOPニス皮膜上へ突出し、 耐摩擦性をより向上させるものとなり、他方、体積平均 粒径が5μm以下である場合は、フッ素樹脂粒子のOP ニスへの分散性がより高く、流動性も一層向上し、フッ 素樹脂粒子が印刷機の版やブランケットへ堆積すること がほとんどなくなる。使用する全フッ素樹脂粒子の45 重量%以上の粒子が2~4μ mの体積平均粒径を有する ことが特に好ましい。

【0009】また、フッ素樹脂粒子は、全OPニス組成物の固形分(フッ素樹脂粒子を除く。本明細書において同じ。)を基準として20~400重量%の割合でOP

1.7

ニス組成物に配合される。フッ素樹脂粒子の含有量が固形分に対して20重量%より少ないと、撥水性、拭き取り性、耐摩擦性が十分に得られず、他方フッ素樹脂粒子の含有量が固形分に対して400重量%より多いと、耐パイリング性、レベリング性が不十分となる。フッ素樹脂粒子は、上記固形分に対して20~120重量%の割合でOPニス組成物に添加されることがさらに好ましい。

【0010】本発明において、OPニス組成物の上記固形分は、本発明のOPニス組成物に含まれる常温(20 10℃)で固体の成分であり、より具体的には、ビヒクルとして配合される各種樹脂、乾性油によって構成されるものであって、溶媒成分や以後詳述する紫外線吸収剤を除くものである。

【0011】本発明のOPニス組成物に配合される紫外 線吸収剤は、OPニス組成物に耐光性を付与するもので あり、ベンゾトリアゾール系の紫外線吸収剤を好ましく 使用することができる。そのようなベンゾトリアゾール 系紫外線吸収剤の例を挙げると、2-(5-メチルー2 ーヒドロキシフェニル)ベンゾトリアゾール、2-[2 ーヒドロキシー3, 5ービス (α, αージメチルベンジ ル) フェニル] -2H-ベンゾトリアゾール、2-(3, 5-t-ブチル-2-ヒドロキシフェニル) ベン ゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル) ベンゾトリアゾール、2-(3, 5-ジーtーブチルー2-ヒドロキシフェニル) **-5-クロロベンソトリアゾール、2-(3,5-ジー** t-アミル-2-ヒドロキシフェニル) ベンゾトリアゾ ール、2-(2'-ヒドロキシ-5'-t-オクチルフ ェニル) ベンゾトリアゾール、メチルー3ー[3-t-ブチルー5ー(2Hーベンゾトリアゾールー2ーイル) -4-ヒドロキシフェニル] プロピネートとポリエチレ ングリコール(分子量約300)との縮合物、ヒドロキ シフェニルベンソトリアゾール誘導体等である。これら 紫外線吸収剤は、いずれも市販されている。

【0012】紫外線吸収剤は、オーバープリントニス組成物の固形分を基準として、1重量%以上、好ましくは1~100重量%の割合で添加する。紫外線吸収剤の添加量が1重量%未満であると、十分な耐光性が得られないおそれがある。紫外線吸収剤は、20重量%以下の割合で添加することがさらに好ましい。

【0013】本発明のOPニス組成物は、オフセット印刷方式、グラビア印刷方式もしくはシルクスクリーン方式等で塗工することができる。塗工されたOPニス組成物は、乾燥後実質的に無色透明の皮膜を形成する。

【0014】オフセット印刷方式で塗工する場合、本発明のOPニス組成物は、フッ素樹脂粒子と紫外線吸収剤を除き、ロジン変性フェノール樹脂、石油樹脂、アルキッド樹脂、またはこれら乾性油変性樹脂等の樹脂20~80重量%、あまに油、桐油、大豆油等の乾性油0~8

○重量%、ノルマルパラフィン、イソパラフィン、アロマチックハイドロカーボン、ナフテン、αーオレフィンまたはこれらの混合物等の溶剤○~80重量%、ドライヤー、乾燥抑制剤等の添加剤1~5重量%からなる(フッ素樹脂粒子と紫外線吸収剤を除き、合計100重量%)ことが好ましい。より好ましくは、樹脂1重量部に対して乾性油0.3~4重量部を配合する。

【0015】グラビア印刷方式で塗工する場合、本発明 のOPニス組成物は、フッ素樹脂粒子と紫外線吸収剤を 除き、アクリル系樹脂、塩化ビニルー酢酸ビニル共重合 樹脂、ポリエステル樹脂、ウレタン樹脂、塩素化ポリオ レフィン樹脂、塩化ゴム樹脂、エチレン一酢酸ビニル共 重合樹脂、ポリアミド樹脂およびセルロース樹脂からな る群の中から選ばれる少なくとも1種の樹脂20~50 重量%、およびトルエン、酢酸エチル、酢酸イソブチ ル、メチルエチルケトン、メチルイソブチルケトン等の 溶剤50~80重量%からなる(フッ素樹脂粒子と紫外 線吸収剤を除き、合計100重量%)ことが好ましい。 【0016】本発明の印刷物は、概念駆動型の認知が可 能な情報を構成する印刷インキ皮膜が基材シートの少な くとも一部に形成されているものである。基材シートと しては、シート状で、印刷インキ受容性を有するもので あれば任意のシートが利用できるが、中でも、パルプを 主成分とする紙、合成樹脂を主成分とするプラスチック フィルム、あるいは合成樹脂を主成分としてその印刷イ ンキ受容性を改善させた合成紙等が好ましく利用でき -る。------

【0017】パルプを主成分とする紙としては、例えば、更紙、中質紙、上質紙等が利用できる。合成紙としては、例えば、無孔質のプラスチックフィルムの片面または両面に印刷インキ受容性の塗料を塗布しその塗布膜を形成して、印刷インキ受容性を改善させたものが利用できる。このようなプラスチックフィルムとしては、例えば、ポリ塩化ビニルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエステルフィルム等が例示でき、また印刷インキ受容性塗料としては、マット剤を含有するものが使用できる。マット剤としては、シリカ、炭酸カルシウム、硫酸バリウム等が使用できる。

【0018】さらに、合成紙として、プラスチックフィルムを発泡させて微細な孔を多数設け、この微細孔によって印刷インキ受容性を改善させたもの、溶剤溶解性の微粉末を混合して製膜したプラスチックフィルムから微粉末を溶剤により溶解除去し、こうして除去された微粉末存在部位を微細な孔として、この微細孔によって印刷インキ受容性を改善させたもの、あるいは微粉末を混合して製膜したプラスチックフィルムを延伸し、この延伸によって微粉末とプラスチックとの間に微細な亀裂を生じせしめ、この微細な亀裂によって印刷インキ受容性を改善させたもの等が適用できる。

【0019】なお、粘土質の材料を合成樹脂バインダー中に分散させた塗被層を表面に備える基材シートも使用することができる。このような粘土質の材料としては、タルク、クレー、カオリン等が例示でき、合成樹脂バインダーとしては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニルー酢酸ビニル共重合体等の各種合成樹脂が利用できる。なお、合成樹脂バインダーとしてポリオレフィンを利用する場合には、塗被層表面のポリオレフィンに酸化処理を施して、本発明のOPニスとの密着性を増大させることが望ましい。酸化処理としては、コロナ放電処理、火炎処理、オゾン処理等が利用できる。なお、上記塗被層は、その表面が平坦に構成されていることが望ましい。

【0020】このような塗被層は、オーバープリント層が形成される面側に設けられていればよく、必ずしも基材シートの両面に設けられている必要はない。基材シート上に形成される印刷インキ皮膜としては、周知の印刷技術に係るものが適用できる。例えば、シルクスクリーン印刷による印刷インキ皮膜、オフセット印刷による印刷インキ皮膜、凸版印刷による印刷インキ皮膜、グラビア印刷による印刷インキ皮膜、グラビアオフセット印刷による印刷インキ皮膜等であり、一色に限らず、多色の印刷インキで刷り重ねられた多層構造の印刷インキ皮膜であってよい。

【0021】このような印刷インキ皮膜は、基材シート全面に設けられる必要はなく、その一部に、概念駆動型の認知が可能な可視情報を構成する形状に設けられればよい。ここで、概念駆動型の認知が可能な可視情報とは、可視情報観察者の持つ既存の知識に基づいて上記情報が認知されるもので、もっぱら刺激駆動型の知覚に頼る可視情報(例えば、木目模様等の装飾模様等)と異なり、その印刷インキ皮膜の形状が意味を有し、この意味を認知することができるものをいい、主に、文字、記号(例えば、電話や郵便を意味する記号、天気図において使用される晴天や雨天を意味する記号、著作権や商標権を示す記号、地図において使用される鉄道の記号や等高線、芸能人等著名人の写真等)、あるいは建築物の間取り図に用いられる各種の符号や線等であり、通常、上記印刷物の価値を化体する。

【0022】本発明のOPニス組成物は、上記印刷方式により、印刷インキ皮膜を含む印刷面を被覆するように適用される。通常、OPニス層の厚さは、印刷方法によっても異なるが、O.5ないし1.5μm程度である。【0023】なお、本発明において、フッ素樹脂粒子の代わりに、ポリオレフィン粒子またはシリカ粒子を用い

てもよい。ポリオレフィン粒子としては、低密度ポリエチレン粒子、高密度ポリエチレン粒子、中密度ポリエチレン粒子、ポリプロピレン粒子、ポリブテン粒子、ポリステン粒子、あるいはそれらの共重合体から構成される粒子を用いることができ、また実害のない範囲でオレフィン以外の微量のモノマーをオレフィンモノマーに対して共重合させた共重合体粒子を用いることもできる。これらの中でも、ポリエチレン粒子が好ましい。平均体積粒径は、1~30μmが好適である。またシリカ粒子は、平均体積粒子が1~40μmであるものが好適である。

[0024]

【実施例】次に実施例により本発明を説明する。なお、 以下の例中、「%」は、重量基準である。

実施例1~9、比較例1~5

樹脂は固形であるため、使い易くするために溶剤、乾性油で溶解した。すなわち、ロジン変性フェノール樹脂40%、桐油40%および3号ソルベント(日本石油化学(株)製溶剤)20%を攪拌付き4つロフラスコに仕込み、180℃で1時間かけ溶解し、くみ出しワニス(以下、ワニスAという)を調製した。

【0025】ワニスAに、フッ素樹脂粒子として体積平均粒径3.9μmのPTFE粒子((株)セイシン企業製FTワックスFT-301)と紫外線吸収剤として2-(3,5-t-ブチルー2-ヒドロキシフェニル)ベンゾトリアゾールを下記表1に示す比率で混合し、三本ロールで十分に分散練肉した後、ナフテン酸コバルトドライヤー0.3重量%、ナフテン酸マンガンドライヤー0.3%および乾燥抑制剤1重量%を混合した(表1には、ドライヤーおよび乾燥抑制剤の量は省略されている)。

【0026】色インキとしてTKハイエコー黄(C. I. ピグメントNo. 12)を文字状に下刷りしたコート紙に各OPニスを塗布し、耐光性試験により、下刷り黄色インキが80%退色した時間で耐光性を評価した。【0027】また、各OPニス0.3ccを展色機(RIテスター)にてコート紙に印刷し常温で24時間放置後撥水性試験を以下のようにして行った。市販のコーヒーを印刷物に1滴垂らし、1分間後、布で拭き取った時の印刷物のべと付き度合いを以下の5段階基準で評価した。

【0028】5:優れる;4:良好;3:普通;2:や や劣る;1:劣る。

結果を表1に併記する。

[0029]

【表1】

	7=3A		紫外線吸収剂		PTFE粒子		-4.10.44	
	合計	固形分	合計	対国形	合計	対固形	耐光性 (時間)	機水性
	(96)	(96)	(%)	分(%)	(96)	分(%)	(PAIRI)	
対照	OPニスなし						13	1
実施例 1	80.70	84.56	0.7	1.08	17	26.33	18	5
実施例 2	76.4	61.12	5.0	8.19	17	27.81	19	5
実施例 3	61.40	49.12	20.0	40.70	17	34.61	20	5
突施例 4	77.70	62.16	0.7	1.12	20	32.19	18	5
実施例	73.40	58.72	5.0	8.51	20	34.06	21	5
実施例 6	58.40	46.72	20.0	42.80	20	42.81	23	5
実施例 7	67.80	54.24	0.6	1.10	30	55.31	18	5
実施例 8	63.40	50.72	5.0	9.86	30	59.15	22	5
実施例 9	48.40	38.72	20.0	51.70	30	77.48	24	5
比較例 1	98,40	78.72	0	0	0	0	16	1
比較例 2	68.40	54.72	0	0	30	54.80	17	5
比較例	97.60	78.08	0.8	1.02	0	0	17	1
比較例	93.40	74.72	5.0	6.69	0	•	16	1
比較例 6	78.40	67.72	20.0	31.89	0	0	19	1

[0030]

【発明の効果】以上述べたように、本発明によれば、撥*

* 水性と耐光性に優れたオーバープリントニス層を備えた 印刷物が提供される。

【手続補正書】

【提出日】平成11年2月8日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 基材シートと、該基材シートの一部に設けられ、概念駆動型の認知が可能な情報を構成する印刷インキ皮膜と、該印刷インキ皮膜を含む印刷面を被覆して設けられた透明オーバープリント層とを備え、該透明オーバープリント層が、フッ素樹脂粒子を、該オーバープリントニス組成物の固形分を基準として、20ないし

400重量%の割合で含有し、紫外線吸収剤を、該オーバープリントニス組成物の固形分を基準として、1重量%以上の割合で含有するオーバープリントニス組成物から構成されていることを特徴とする撥水性オーバープリント層を有する印刷物。

【請求項2】 前記フッ素樹脂粒子の体積平均粒径が、 0. 1ないし10μmであり、前記透明オーバープリントニスの膜厚が0. 5ないし1. 5μmであることを特徴とする請求項1または2に記載の印刷物。

【請求項3】 前記フッ素樹脂粒子が、2ないし5μm の体積平均粒径を有し、かつ透明オーバープリント層から突出した形態にある請求項1または2に記載の印刷物。

フロントページの続き

(72)発明者 長谷川 秀樹 東京都中央区京橋二丁目3番13号 東洋イ ンキ製造株式会社内