Sunday 27th of October 8:30 to 12:00

Time	Description	Discussant
[15 min]	(0) Introductions and administrivia	Trikalinos
[25 min]	(1) DES as a composition of point processes	Alarid-Escudero
[30 min]	(2) NHPPPs – key properties	Trikalinos
[30 min]	(3) Sampling from NHPPPs	Sereda
[15 min]	Break	
[80 min]	 (4) Guided exercise: Implement a simple cancer natural history DES for one person The many-person case Packaging 	[All] Chrysanthopoulou Sereda/Alarid-Escudero Trikalinos
[10 min]	(5) Advanced Topic Teaser on self-excitatory processes: point processes that are not NHPPPs and when you may need them	Trikalinos
[15 min]	General Q & A	All

Section 1: Big picture

Individual-level discrete-time simulation models usually require sampling of which event happens each cycle.

Individual-level **discrete-event simulation** (**DES**) models usually require sampling times at which specific transitions or events could occur.

Individual-level **discrete-time simulation** models usually require sampling of which event happens each cycle.

Time checks in fixed

Individual-level **discrete-event simulation** (**DES**) models usually require sampling times at which specific transitions or events could occur.

One individual at a time

-> inefficient in high-level languages like R or Python

One **event** at a time

-> efficient in high-level languages like R or Python

Graphical notation

The time horizon of the simulation

• Stop the simulation at 110

Graphical notation

We are interested in the interval from 40 to 110

- Spawn cancer-free at 40
- Stop the simulation at 110

All our cancer-related events may occur in the shaded window.

Graphical notation: Type of events

1. Exactly one event

2. At most one event

3. Zero, one, or more events

Simulation window

Graphical notation: Exactly one event

Some events shall happen **exactly once** in the interval of interest.

We use black color for such processes.

Example:

death from all causes

Graphical notation: At most one event

Some events shall happen at most once in the interval of interest.

Note, color red.

Example:

 Death from cardiovascular disease (CVD) occurred at age 78

Graphical notation: At most one event

Some events shall happen at most once in the interval of interest.

Note, color red.

Example:

No death throughout the at-risk interval

Graphical notation: Zero, one, or more events

Some events may happen zero, one or more times in the interval of interest.

Note, color blue.

Example:

 Occurrence of lesions at 55 and 68 years

Graphical notation: Chained events (in series)

For chained processes, the next one starts once the preceding one realizes an event.

Example:

Clinical cancer diagnosis
 happens at 80, but the process
 starts only after cancer has
 emerged at 62

imagine simulating the first row first, etc.

Graphical notation: Competing events (parallel)

Competing event processes run parallel to each other.

Example:

- Death from CVD at 100, death from non-CVD causes at 68
- The age of all cause death is the earliest occurring event, if any (no guaranteed death in interval)

A simple DES model

A DES model comprises the black, red, and blue processes, connected in series or in parallel, with proper accounting of start and stop ages.

• What does the modeler assume in this example?

Another simple DES model

• What does the modeler assume in this example?

The two examples side by side

Cancer death: what at-risk interval was chosen?

What would a model with multiple tumors look like?

A model with multiple tumors

Many architectures are possible.

What are the risk intervals for each event process?

The building blocks of a DES

Events that happen exactly once

Events that happen 0 or 1 times

Events that happen 0, 1, ... times

Cancer of the Bladder in R Analytic Simulator

(COBRAS) model Nodal involvement (N) = 0, 1, 2Normal Metastasis (M) = 0, 1Tis T2 T1 T3 Ta-lg Ta-hg T4 preclinical preclinical preclinical preclinical preclinical preclinical preclinical Ta-lg Ta-hg Tis T2 T3 T1 T4 clinical clinical clinical clinical clinical clinical clinical

NMIBC | MIBC

Next ... Section 2: Theory

Sunday 27th of October 8:30 to 12:00

Time	Description	Discussant
[15 min]	(0) Introductions and administrivia	Trikalinos
[25 min]	(1) DES as a composition of point processes	Alarid-Escudero
[30 min]	(2) NHPPPs – key properties	Trikalinos
[30 min]	(3) Sampling from NHPPPs	Sereda
[15 min]	Break	
[80 min]	 (4) Guided exercise: Implement a simple cancer natural history DES for one person The many-person case Packaging 	[All] Chrysanthopoulou Sereda/Alarid-Escudero Trikalinos
[10 min]	(5) Advanced Topic Teaser on self-excitatory processes: point processes that are not NHPPPs and when you may need them	Trikalinos
[15 min]	General Q & A	All