

# Lecture 10 – Image segmentation III Regions

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

# Agenda



- Crescimento de regiões
- Divisão e fusão de regiões



# CRESCIMENTO DE REGIÕES



- f(x, y) é a imagem de entrada;
- S(x, y) é uma imagem contendo sementes:
  - $\boldsymbol{S}$  é uma imagem binária com o mesmo tamanho da imagem  $\boldsymbol{f}$ .
  - Os pixels com valor 1 indicam as sementes e os 0s as demais localizações;
- **Q** denota **alguma propriedade** a ser aplicada em cada posição **(x, y)**.



- f(x, y) é a imagem de entrada;
- S(x, y) é uma imagem contendo sementes:
  - **S** é uma imagem binária com o mesmo tamanho da imagem f.
  - Os pixels com valor 1 indicam as sementes e os 0s as demais localizações;
- **Q** denota **alguma propriedade** a ser aplicada em cada posição (x, y).









- Algoritmo básico de crescimento da regiões (baseado em conectividade-8):
  - Reduzir cada componente conectado em S(x, y) a um único pixel (erosão morfológica).
    - Rotular todos os pixels, r = [1, 2, 3, ... N].
  - Para cada semente r, gerar uma imagem  $f_r$  em que:
    - $f_r(x, y) = r$ , se o pixel da imagem de entrada satisfaz Q;
    - $f_r(x, y) = 0$ , caso contrário.
  - A imagem de saída g é formada anexando a cada semente em S todos os pixels rotulados com o número r em  $f_r$  que estão 8-conectados a essa semente.
    - Em caso de conflito atribuir ao menor rótulo. "O primeiro leva tudo".



• (A) Imagem original f(x, y) com tamanho 5 x 5, profundidade de 3 bits (L = 8) e duas sementes.

| (   |   |   |   |     |       | _ |
|-----|---|---|---|-----|-------|---|
| (A) | 7 | 0 | 5 | 6   | 5     |   |
|     | 5 | 1 | 5 | 7   | 7     |   |
|     | 0 | 3 | 6 | 5   | 6     |   |
|     | 2 | 1 | 7 | 7   | 6     |   |
|     | 0 | 1 | 5 | 6   | 1     |   |
|     | 7 |   |   | f(x | (, y) | _ |
| ,   | 7 |   |   |     |       |   |



• (B) Imagem com as sementes S(x, y). As sementes já foram reduzidas a um único pixel e rotuladas.





- (C) Imagem com as diferenças absolutas entre o pixel sob a semente com rótulo 1 e os demais pixels.
  - Propriedade Q: diferença absoluta entre os pixels (T).



| (0) |                |   |      |      |    | _ |
|-----|----------------|---|------|------|----|---|
| (C) | 6              | 1 | 4    | 5    | 4  |   |
|     | 4              | 0 | 4    | 6    | 6  |   |
|     | 1              | 2 | 5    | 4    | 5  |   |
|     | 1              | 0 | 6    | 6    | 5  |   |
|     | 1              | 0 | 4    | 5    | 0  |   |
|     | T <sub>1</sub> | = | f(x, | y) - | -1 |   |





- (D) Imagem com as diferenças absolutas entre o pixel sob a semente com rótulo 2 e os demais pixels.
  - Propriedade Q: diferença absoluta entre os pixels (T).



| (0) |                |   |      |      |    |   |
|-----|----------------|---|------|------|----|---|
| (C) | 6              | 1 | 4    | 5    | 4  |   |
|     | 4              | 0 | 4    | 6    | 6  |   |
|     | 1              | 2 | 5    | 4    | 5  |   |
|     | 1              | 0 | 6    | 6    | 5  |   |
|     | 1              | 0 | 4    | 5    | 0  |   |
| •   | T <sub>1</sub> | = | f(x, | y) - | -1 | , |



|       |                  |                          |                                  |                                          | _                                   |
|-------|------------------|--------------------------|----------------------------------|------------------------------------------|-------------------------------------|
| 0     | 7                | 2                        | 1                                | 2                                        |                                     |
| 2     | 6                | 2                        | 0                                | 0                                        |                                     |
| 7     | 4                | 1                        | 2                                | 1                                        |                                     |
| 5     | 6                | 0                        | 0                                | 1                                        |                                     |
| 7     | 6                | 2                        | 1                                | 6                                        |                                     |
| $T_2$ | =                | f(x,                     | y) -                             | - 7                                      | •                                   |
|       | 2<br>7<br>5<br>7 | 2 6<br>7 4<br>5 6<br>7 6 | 2 6 2<br>7 4 1<br>5 6 0<br>7 6 2 | 2 6 2 0<br>7 4 1 2<br>5 6 0 0<br>7 6 2 1 | 2 6 2 0 0<br>7 4 1 2 1<br>5 6 0 0 1 |



- (E) Segmentação da imagem f considerando Q = T < 3.
  - Pixels em T<sub>1</sub> que satisfazem Q e possuem um caminho 8-conectado à semente.

|     |   |   |   |     |       | _ |
|-----|---|---|---|-----|-------|---|
| (A) | 7 | 0 | 5 | 6   | 5     |   |
|     | 5 | 1 | 5 | 7   | 7     |   |
|     | 0 | 3 | 6 | 5   | 6     |   |
|     | 2 | 1 | 7 | 7   | 6     |   |
|     | 0 | 1 | 5 | 6   | 1     |   |
|     | 7 |   |   | f(x | (, y) | _ |

| (0) |                |   |      |      |     |   |
|-----|----------------|---|------|------|-----|---|
| (C) | 6              | 1 | 4    | 5    | 4   |   |
|     | 4              | 0 | 4    | 6    | 6   |   |
|     | 1              | 2 | 5    | 4    | 5   |   |
|     | 1              | 0 | 6    | 6    | 5   |   |
|     | 1              | 0 | 4    | 5    | 0   |   |
| •   | T <sub>1</sub> | = | f(x, | y) - | - 1 | • |

|   |   |   |     |       | <b>1</b> - |       |   |      |      |     |  |
|---|---|---|-----|-------|-----------------------------------------------------------------------------------------|-------|---|------|------|-----|--|
| 0 | 0 | 0 | 0   | 0     | (D)                                                                                     | 0     | 7 | 2    | 1    | 2   |  |
| 0 | 0 | 0 | 2   | 0     |                                                                                         | 2     | 6 | 2    | 0    | 0   |  |
| 0 | 0 | 0 | 0   | 0     |                                                                                         | 7     | 4 | 1    | 2    | 1   |  |
| 0 | 1 | 0 | 0   | 0     |                                                                                         | 5     | 6 | 0    | 0    | 1   |  |
| 0 | 0 | 0 | 0   | 0     |                                                                                         | 7     | 6 | 2    | 1    | 6   |  |
|   |   |   | S(x | (, y) |                                                                                         | $T_2$ | = | f(x, | y) - | - 7 |  |

| <b>(</b> D) |   |   |   |                |     | _ |
|-------------|---|---|---|----------------|-----|---|
| (D)         | 0 | 1 | 0 | 0              | 0   |   |
|             | 0 | 1 | 0 | 2              | 0   |   |
|             | 1 | 1 | 0 | 0              | 0   |   |
|             | 1 | 1 | 0 | 0              | 0   |   |
|             | 1 | 1 | 0 | 0              | 0   |   |
|             | 7 |   |   | T <sub>1</sub> | < 3 | • |
| ,           | • |   |   |                |     |   |



- (E) Segmentação da imagem f considerando Q = T < 3.
  - Pixels em T<sub>2</sub> que satisfazem Q e possuem um caminho 8-conectado à semente.





| (5) |   |   |   |     |       | _ |
|-----|---|---|---|-----|-------|---|
| (B) | 0 | 0 | 0 | 0   | 0     |   |
|     | 0 | 0 | 0 | 2   | 0     |   |
|     | 0 | 0 | 0 | 0   | 0     |   |
|     | 0 | 1 | 0 | 0   | 0     |   |
|     | 0 | 0 | 0 | 0   | 0     |   |
|     | 7 |   |   | S(x | (, y) |   |
| ,   | 7 |   |   |     |       |   |

| <b>/</b> -> |       |   |      |      |     |  |
|-------------|-------|---|------|------|-----|--|
| (D)         | 0     | 7 | 2    | 1    | 2   |  |
|             | 2     | 6 | 2    | 0    | 0   |  |
|             | 7     | 4 | 1    | 2    | 1   |  |
|             | 5     | 6 | 0    | 0    | 1   |  |
|             | 7     | 6 | 2    | 1    | 6   |  |
|             | $T_2$ | = | f(x, | у) - | - 7 |  |

| (5) |   |   |   |                |     |   |
|-----|---|---|---|----------------|-----|---|
| (D) | 0 | 1 | 0 | 0              | 0   |   |
|     | 0 | 1 | 0 | 2              | 0   |   |
|     | 1 | 1 | 0 | 0              | 0   |   |
|     | 1 | 1 | 0 | 0              | 0   |   |
|     | 1 | 1 | 0 | 0              | 0   |   |
|     |   |   |   | T <sub>1</sub> | < 3 | • |





• (F) Segmentação da imagem f considerando Q = T < 3.



0 0

(B)

0



| (D) | 0     | 7 | 2    | 1    | 2   |  |
|-----|-------|---|------|------|-----|--|
|     | 2     | 6 | 2    | 0    | 0   |  |
|     | 7     | 4 | 1    | 2    | 1   |  |
|     | 5     | 6 | 0    | 0    | 1   |  |
|     | 7     | 6 | 2    | 1    | 6   |  |
|     | $T_2$ | = | f(x, | y) - | - 7 |  |

| /   |   |   |   |                |     |  |
|-----|---|---|---|----------------|-----|--|
| (D) | 0 | 1 | 0 | 0              | 0   |  |
|     | 0 | 1 | 0 | 2              | 0   |  |
|     | 1 | 1 | 0 | 0              | 0   |  |
|     | 1 | 1 | 0 | 0              | 0   |  |
|     | 1 | 1 | 0 | 0              | 0   |  |
|     |   |   |   | T <sub>1</sub> | < 3 |  |
| ,   | 7 |   |   |                |     |  |



| <b>/</b> -\ |   |   |   |   |     | _ |
|-------------|---|---|---|---|-----|---|
| (F)         | 0 | 1 | 2 | 2 | 2   |   |
|             | 0 | 1 | 2 | 2 | 2   |   |
|             | 1 | 1 | 2 | 2 | 2   |   |
|             | 1 | 1 | 2 | 2 | 2   |   |
|             | 1 | 1 | 2 | 2 | 0   |   |
|             |   |   |   | Т | < 3 | _ |

S(x, y)



- (G) Segmentação da imagem f considerando Q = T < 5.
  - Pixels em T<sub>1</sub> que satisfazem Q e possuem um caminho 8-conectado à semente.

| / <b>^ </b> |   |   |   |     |       | _ |
|-------------|---|---|---|-----|-------|---|
| (A)         | 7 | 0 | 5 | 6   | 5     |   |
|             | 5 | 1 | 5 | 7   | 7     |   |
|             | 0 | 3 | 6 | 5   | 6     |   |
|             | 2 | 1 | 7 | 7   | 6     |   |
|             | 0 | 1 | 5 | 6   | 1     |   |
|             | 7 |   |   | f(> | (, y) | • |

| (0) |                |   |      |      |    |  |
|-----|----------------|---|------|------|----|--|
| (C) | 6              | 1 | 4    | 5    | 4  |  |
|     | 4              | 0 | 4    | 6    | 6  |  |
|     | 1              | 2 | 5    | 4    | 5  |  |
|     | 1              | 0 | 6    | 6    | 5  |  |
|     | 1              | 0 | 4    | 5    | 0  |  |
| •   | T <sub>1</sub> | = | f(x, | у) - | -1 |  |

| (5) |   |   |   |     |       | _ |
|-----|---|---|---|-----|-------|---|
| (B) | 0 | 0 | 0 | 0   | 0     |   |
|     | 0 | 0 | 0 | 2   | 0     |   |
|     | 0 | 0 | 0 | 0   | 0     |   |
|     | 0 | 1 | 0 | 0   | 0     |   |
|     | 0 | 0 | 0 | 0   | 0     |   |
|     | 7 |   |   | S(x | (, y) | • |
| ,   | 7 |   |   |     |       |   |

| <b>/</b> D\ |       |   |      |      |     |  |
|-------------|-------|---|------|------|-----|--|
| (D)         | 0     | 7 | 2    | 1    | 2   |  |
|             | 2     | 6 | 2    | 0    | 0   |  |
|             | 7     | 4 | 1    | 2    | 1   |  |
|             | 5     | 6 | 0    | 0    | 1   |  |
|             | 7     | 6 | 2    | 1    | 6   |  |
| _           | $T_2$ | = | f(x, | y) - | - 7 |  |
| `           | •     |   |      |      |     |  |

| (0) |   |   |   |                |     | _ |
|-----|---|---|---|----------------|-----|---|
| (G) | 0 | 1 | 1 | 0              | 0   |   |
|     | 1 | 1 | 1 | 2              | 0   |   |
|     | 1 | 1 | 0 | 1              | 0   |   |
|     | 1 | 1 | 0 | 0              | 0   |   |
|     | 1 | 1 | 1 | 0              | 0   |   |
|     | 7 |   |   | T <sub>1</sub> | < 5 | • |
|     |   |   |   |                |     |   |



- (H) Segmentação da imagem f considerando Q = T < 5.</li>
  - Pixels em T<sub>2</sub> que satisfazem Q e possuem um caminho 8-conectado à semente.



| (0) |       |   |      |      |    |   |
|-----|-------|---|------|------|----|---|
| (C) | 6     | 1 | 4    | 5    | 4  |   |
|     | 4     | 0 | 4    | 6    | 6  |   |
|     | 1     | 2 | 5    | 4    | 5  |   |
|     | 1     | 0 | 6    | 6    | 5  |   |
|     | 1     | 0 | 4    | 5    | 0  |   |
| _   | $T_1$ | = | f(x, | y) - | -1 | • |

| <b>/</b> -> |   |   |   |     |       | _ |
|-------------|---|---|---|-----|-------|---|
| (B)         | 0 | 0 | 0 | 0   | 0     |   |
|             | 0 | 0 | 0 | 2   | 0     |   |
|             | 0 | 0 | 0 | 0   | 0     |   |
|             | 0 | 1 | 0 | 0   | 0     |   |
|             | 0 | 0 | 0 | 0   | 0     |   |
|             | 7 |   |   | S() | (, y) |   |
| ,           | 7 |   |   |     |       |   |

| 0     | 7                | 2                        | 1                                | 2                                        |                                     |
|-------|------------------|--------------------------|----------------------------------|------------------------------------------|-------------------------------------|
| 2     | 6                | 2                        | 0                                | 0                                        |                                     |
| 7     | 4                | 1                        | 2                                | 1                                        |                                     |
| 5     | 6                | 0                        | 0                                | 1                                        |                                     |
| 7     | 6                | 2                        | 1                                | 6                                        |                                     |
| $T_2$ | =                | f(x,                     | у) -                             | - 7                                      |                                     |
|       | 2<br>7<br>5<br>7 | 2 6<br>7 4<br>5 6<br>7 6 | 2 6 2<br>7 4 1<br>5 6 0<br>7 6 2 | 2 6 2 0<br>7 4 1 2<br>5 6 0 0<br>7 6 2 1 | 2 6 2 0 0<br>7 4 1 2 1<br>5 6 0 0 1 |

| (0) |   |   |   |                |     |   |
|-----|---|---|---|----------------|-----|---|
| (G) | 0 | 1 | 1 | 0              | 0   |   |
|     | 1 | 1 | 1 | 2              | 0   |   |
|     | 1 | 1 | 0 | 1              | 0   |   |
|     | 1 | 1 | 0 | 0              | 0   |   |
|     | 1 | 1 | 1 | 0              | 0   |   |
|     | 7 |   |   | T <sub>1</sub> | < 5 | • |





- (I) Segmentação da imagem f considerando Q = T < 5.
  - Em caso de conflito, o pixel é atribuído a região com o menor rótulo de forma arbitrária.



(B)

| 101 |                |   |      |      |    | _ |
|-----|----------------|---|------|------|----|---|
| (C) | 6              | 1 | 4    | 5    | 4  |   |
|     | 4              | 0 | 4    | 6    | 6  |   |
|     | 1              | 2 | 5    | 4    | 5  |   |
|     | 1              | 0 | 6    | 6    | 5  |   |
|     | 1              | 0 | 4    | 5    | 0  |   |
| _   | T <sub>1</sub> | = | f(x, | y) - | -1 |   |

| (D) | 0     | 7 | 2    | 1    | 2   | <b>-</b> |
|-----|-------|---|------|------|-----|----------|
|     | 2     | 6 | 2    | 0    | 0   |          |
|     | 7     | 4 | 1    | 2    | 1   |          |
|     | 5     | 6 | 0    | 0    | 1   |          |
|     | 7     | 6 | 2    | 1    | 6   |          |
| _   | $T_2$ | = | f(x, | у) - | - 7 |          |

| 101 |   |   |   |                |     | _ |
|-----|---|---|---|----------------|-----|---|
| (G) | 0 | 1 | 1 | 0              | 0   | • |
|     | 1 | 1 | 1 | 2              | 0   |   |
|     | 1 | 1 | 0 | 1              | 0   |   |
|     | 1 | 1 | 0 | 0              | 0   |   |
|     | 1 | 1 | 1 | 0              | 0   |   |
|     | 7 |   |   | T <sub>1</sub> | < 5 | • |
| •   | • |   |   |                |     |   |



| (1) | 0 | 1 | 1 | 2 | 2   |  |
|-----|---|---|---|---|-----|--|
|     | 1 | 1 | 1 | 2 | 2   |  |
|     | 1 | 1 | 2 | 1 | 2   |  |
|     | 1 | 1 | 2 | 2 | 2   |  |
|     | 1 | 1 | 1 | 2 | 0   |  |
| _   |   |   |   | Т | < 5 |  |

S(x, y)



• (J) Segmentação da imagem f considerando Q = T < 5.



0 0

(B)

0









| . \ |   |   |   |   |     | _ |
|-----|---|---|---|---|-----|---|
| I)  | 0 | 1 | 1 | 2 | 2   |   |
|     | 1 | 1 | 1 | 2 | 2   |   |
|     | 1 | 1 | 2 | 1 | 2   |   |
|     | 1 | 1 | 2 | 2 | 2   |   |
|     | 1 | 1 | 1 | 2 | 0   |   |
| •   | 7 |   |   | Т | < 5 |   |
| ,   | • |   |   |   |     |   |



S(x, y)



- (K) Segmentação da imagem f considerando Q = T < 8.
  - Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

|     |   |   |   |     |       | _ |
|-----|---|---|---|-----|-------|---|
| (A) | 7 | 0 | 5 | 6   | 5     |   |
|     | 5 | 1 | 5 | 7   | 7     |   |
|     | 0 | 3 | 6 | 5   | 6     |   |
|     | 2 | 1 | 7 | 7   | 6     |   |
|     | 0 | 1 | 5 | 6   | 1     |   |
|     | 7 |   |   | f(x | (, y) |   |

| (0) |                |   |      |      |     |  |
|-----|----------------|---|------|------|-----|--|
| (C) | 6              | 1 | 4    | 5    | 4   |  |
|     | 4              | 0 | 4    | 6    | 6   |  |
|     | 1              | 2 | 5    | 4    | 5   |  |
|     | 1              | 0 | 6    | 6    | 5   |  |
|     | 1              | 0 | 4    | 5    | 0   |  |
| _   | T <sub>1</sub> | = | f(x, | y) - | - 1 |  |

| <b>(</b> D) |   |   |   |     |       | _ |
|-------------|---|---|---|-----|-------|---|
| (B)         | 0 | 0 | 0 | 0   | 0     |   |
|             | 0 | 0 | 0 | 2   | 0     |   |
|             | 0 | 0 | 0 | 0   | 0     |   |
|             | 0 | 1 | 0 | 0   | 0     |   |
|             | 0 | 0 | 0 | 0   | 0     |   |
|             | 7 |   |   | S(x | (, y) | • |
| ,           | , |   |   |     |       |   |

| <b>/</b> D\ |                |   |      |      |     | _ |
|-------------|----------------|---|------|------|-----|---|
| (D)         | 0              | 7 | 2    | 1    | 2   |   |
|             | 2              | 6 | 2    | 0    | 0   |   |
|             | 7              | 4 | 1    | 2    | 1   |   |
|             | 5              | 6 | 0    | 0    | 1   |   |
|             | 7              | 6 | 2    | 1    | 6   |   |
|             | T <sub>2</sub> | = | f(x, | у) - | - 7 | • |

| (K)  | 4 | 4 | 4 | 1              | 4   | <b>—</b> |
|------|---|---|---|----------------|-----|----------|
| (,,) | 1 | 1 | 1 | 1              | 1   |          |
|      | 1 | 1 | 1 | 2              | 1   |          |
|      | 1 | 1 | 1 | 1              | 1   |          |
|      | 1 | 1 | 1 | 1              | 1   |          |
|      | 1 | 1 | 1 | 1              | 1   |          |
| •    | 7 |   |   | T <sub>1</sub> | < 8 | •        |



- (L) Segmentação da imagem f considerando Q = T < 8.</li>
  - Pixels em T<sub>2</sub> que satisfazem Q e possuem um caminho 8-conectado à semente.





| <b>(</b> -) |   |   |   |     |       | _ |
|-------------|---|---|---|-----|-------|---|
| (B)         | 0 | 0 | 0 | 0   | 0     |   |
|             | 0 | 0 | 0 | 2   | 0     |   |
|             | 0 | 0 | 0 | 0   | 0     |   |
|             | 0 | 1 | 0 | 0   | 0     |   |
|             | 0 | 0 | 0 | 0   | 0     |   |
|             | 7 |   |   | S() | (, y) |   |
|             |   |   |   |     |       |   |



| (12) |   |   |   |                |     | _ |
|------|---|---|---|----------------|-----|---|
| (K)  | 1 | 1 | 1 | 1              | 1   |   |
|      | 1 | 1 | 1 | 2              | 1   |   |
|      | 1 | 1 | 1 | 1              | 1   |   |
|      | 1 | 1 | 1 | 1              | 1   |   |
|      | 1 | 1 | 1 | 1              | 1   |   |
|      | 7 |   |   | T <sub>1</sub> | < 8 | - |





- (M) Segmentação da imagem f considerando Q = T < 8.
  - Em caso de conflito, o pixel é atribuído a região com o menor rótulo de forma arbitrária.



(B)

| ۱۵۱ |                |   |      |      |    | _ |
|-----|----------------|---|------|------|----|---|
| (C) | 6              | 1 | 4    | 5    | 4  |   |
|     | 4              | 0 | 4    | 6    | 6  |   |
|     | 1              | 2 | 5    | 4    | 5  |   |
|     | 1              | 0 | 6    | 6    | 5  |   |
|     | 1              | 0 | 4    | 5    | 0  |   |
| •   | T <sub>1</sub> | = | f(x, | y) - | -1 |   |



| /1/\ |   |   |   |       |     | _ |
|------|---|---|---|-------|-----|---|
| (K)  | 1 | 1 | 1 | 1     | 1   | • |
|      | 1 | 1 | 1 | 2     | 1   |   |
|      | 1 | 1 | 1 | 1     | 1   |   |
|      | 1 | 1 | 1 | 1     | 1   |   |
|      | 1 | 1 | 1 | 1     | 1   |   |
|      |   |   |   | $T_1$ | < 8 | 1 |
| •    |   |   |   |       |     |   |







- (N) Segmentação da imagem f considerando Q = T < 8.</li>
  - Com T < 8, todos os pixels atribuídos à semente 1.</li>



| / <b>(</b> ) |       |   |      |      |     |  |
|--------------|-------|---|------|------|-----|--|
| (C)          | 6     | 1 | 4    | 5    | 4   |  |
|              | 4     | 0 | 4    | 6    | 6   |  |
|              | 1     | 2 | 5    | 4    | 5   |  |
|              | 1     | 0 | 6    | 6    | 5   |  |
|              | 1     | 0 | 4    | 5    | 0   |  |
|              | $T_1$ | = | f(x, | y) - | - 1 |  |





| I |          | 1   | 1 | 1   | 1              | 1     |          | (171) | 1 | 1 | 1 | 1   | 1   |
|---|----------|-----|---|-----|----------------|-------|----------|-------|---|---|---|-----|-----|
|   |          | 1   | 1 | 1   | 2              | 1     |          |       | 1 | 1 | 1 | 2   | 1   |
|   |          | 1   | 1 | 1   | 1              | 1     |          |       | 1 | 1 | 1 | 1   | 1   |
|   |          | 1   | 1 | 1   | 1              | 1     |          |       | 1 | 1 | 1 | 1   | 1   |
|   |          | 1   | 1 | 1   | 1              | 1     |          |       | 1 | 1 | 1 | 1   | 1   |
|   |          |     |   |     | T <sub>1</sub> | < 8   |          |       |   |   |   | Т   | < 8 |
|   | <b>\</b> |     |   |     | _              |       |          |       | • |   |   |     |     |
|   |          |     |   |     | _              |       |          |       | • |   |   |     |     |
|   | (L)      | 2   | 2 | 2   | 2              | 2     | <b>→</b> | (N)   | 1 | 1 | 1 | 1   | 1   |
|   | (L)      | 2 2 | 2 | 2 2 |                |       | <b>→</b> | (N)   | 1 | 1 | 1 | 1 2 | 1   |
|   | (L)      |     |   |     | 2              | 2     | <b>→</b> | (N)   | _ | + | _ |     |     |
|   | (L)      | 2   | 2 | 2   | 2              | 2 2   | <b>→</b> | (N)   | 1 | 1 | 1 | 2   | 1   |
|   | (L)      | 2   | 2 | 2   | 2 2 2          | 2 2 2 | <b>→</b> | (N)   | 1 | 1 | 1 | 2   | 1   |

 $T_2 < 8$ 

T < 8



Segmentações da imagem f considerando (G) Q = T < 3; (J) Q = T < 5; (N) Q = T < 8.</li>



(B)

0



| (5) |       |   |      |      |     | _ |
|-----|-------|---|------|------|-----|---|
| (D) | 0     | 7 | 2    | 1    | 2   |   |
|     | 2     | 6 | 2    | 0    | 0   |   |
|     | 7     | 4 | 1    | 2    | 1   |   |
|     | 5     | 6 | 0    | 0    | 1   |   |
|     | 7     | 6 | 2    | 1    | 6   |   |
|     | $T_2$ | = | f(x, | y) - | - 7 | • |

| (0) |   |   |   |   |     | _ |
|-----|---|---|---|---|-----|---|
| (G) | 0 | 1 | 2 | 2 | 2   |   |
|     | 0 | 1 | 2 | 2 | 2   |   |
|     | 1 | 1 | 2 | 2 | 2   |   |
|     | 1 | 1 | 2 | 2 | 2   |   |
|     | 1 | 1 | 2 | 2 | 0   |   |
|     |   |   |   | Т | < 3 |   |
| •   | 7 |   |   |   |     |   |



| / N I \ |   |   |   |   |     | _ |
|---------|---|---|---|---|-----|---|
| (N)     | 1 | 1 | 1 | 1 | 1   |   |
|         | 1 | 1 | 1 | 2 | 1   |   |
|         | 1 | 1 | 1 | 1 | 1   |   |
|         | 1 | 1 | 1 | 1 | 1   |   |
|         | 1 | 1 | 1 | 1 | 1   |   |
| •       |   |   |   | T | < 8 |   |

S(x, y)



# DIVISÃO E FUSÃO DE REGIÕES



- Algoritmo de divisão e fusão de regiões.
  - 1. Dividir em quatro quadrantes qualquer região R<sub>i</sub> em que Q(R<sub>i</sub>)=Falso.
  - 2. Quando não for possível dividir um região, fundir as regiões adjacentes  $R_j$  e  $R_k$  em que  $Q(R_j \cup R_k)$  = Verdade.
  - 3. Parar quando a fusão não for mais possível.







| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 



 $\mu$ =1.88  $\sigma$ =2.24

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 



 $\mu$ =1.88  $\sigma$ =2.24

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 1 | 1 | 2 | 2 |
| 1 | 1 | 2 | 2 |
| 3 | 3 | 2 | 2 |

| 0 | 0 | 6 | 4 |
|---|---|---|---|
| 0 | 0 | 3 | 6 |
| 0 | 1 | 2 | 1 |
| 0 | 0 | 0 | 0 |

| 0 | 0 | 2 | 0 |
|---|---|---|---|
| 0 | 0 | 4 | 0 |
| 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 2 |



 $\mu$ =1.88  $\sigma$ =2.24

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 

μ=2.81 σ=2.48

 $\mu = 1.44$ 

 $\sigma = 2.09$ 

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

μ=1.38 σ=0.99

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 1 | 1 | 2 | 2 |
| 1 | 1 | 2 | 2 |
| 3 | 3 | 2 | 2 |

μ=1.88 σ=2.69

| 0 | 0 | 2 | 0 |
|---|---|---|---|
| 0 | 0 | 4 | 0 |
| 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 2 |



 $\mu$ =1.88  $\sigma$ =2.24

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 

 $\mu$ =2.81  $\sigma$ =2.48

 $\mu$ =1.44  $\sigma$ =2.09

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

μ=1.88 σ=2.69

3

 $\mu$ =1.38

 $\sigma$ =0.99

| 0 | 0 | 6 | 4 |
|---|---|---|---|
| 0 | 0 | 3 | 6 |
| 0 | 1 | 2 | 1 |
| 0 | 0 | 0 | 0 |

| 0 | 0 | 2 | 0 |  |  |
|---|---|---|---|--|--|
| 0 | 0 | 4 | 0 |  |  |
| 7 | 7 | 1 | 7 |  |  |
| 0 | 0 | 0 | 2 |  |  |



 $\mu$ =1.88  $\sigma$ =2.24

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 

| u=2.81             |  |
|--------------------|--|
| <sub>5</sub> =2.48 |  |

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

 $\mu = 1.44$ 

 $\mu$ =1.88

0

 $\mu$ =1.38  $\sigma$ =0.99

| 0-2.09 |   |   |   |  |
|--------|---|---|---|--|
| 0      | 0 | 2 | 0 |  |
| 0      | 0 | 4 | 0 |  |
| 7      | 7 | 1 | 7 |  |
| 0      | 0 | 0 | 2 |  |

| 0 | 0 |  |
|---|---|--|
| 0 | 5 |  |

| 0 | 5 | 5 | 5 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |

| 0 | 0 |
|---|---|
| 0 | 0 |

| 6 | 4 |
|---|---|
| 3 | 6 |
|   |   |

| 0 | 0 |  |
|---|---|--|
| 0 | 0 |  |

| 2 | 0 |
|---|---|
| 4 | 0 |

| 0 | 1 |
|---|---|
| 0 | 0 |

| 2 | 1 |
|---|---|
| 0 | 0 |

| 7 | 7 |
|---|---|
| 0 | 0 |



 $\mu$ =1.50

 $\sigma = 1.66$ 

0

0

2

 $\mu = 1.88$  $\sigma = 2.24$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 e \sigma > 1.0$ 

| μ=2.83          | L |
|-----------------|---|
| $\sigma = 2.48$ | 3 |

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

 $\mu = 1.38$  $\sigma = 0.99$ 

 $\mu = 1.88$ 

 $\mu = 1.44$  $\sigma = 2.09$ 

| 0 | 0 | 6 | 4 |
|---|---|---|---|
| 0 | 0 | 3 | 6 |
| 0 | 1 | 2 | 1 |
| 0 | 0 | 0 | 0 |

|   | μ=1<br>σ=2 |   |
|---|------------|---|
|   | 0          | 0 |
|   | 0          | 5 |
| · | μ=2<br>σ=2 |   |
|   | 0          | 5 |
|   | 0          | 5 |
| · | μ=0<br>σ=0 |   |
|   | 0          | 0 |
|   | 0          | 0 |
|   | μ=0<br>σ=0 |   |
|   |            |   |

$$\begin{array}{c|cccc} \mu=4.75 \\ \sigma=1.30 \\ \hline 6 & 4 \\ \hline 3 & 6 \\ \mu=0.75 \\ \sigma=0.83 \\ \hline 2 & 1 \\ \hline 0 & 0 \\ \\ \end{array}$$



0



 $\mu$ =1.88  $\sigma = 2.24$ 

|   |   |   |   |   |   |   | - |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 

| น=2.81          |  |
|-----------------|--|
| $\sigma = 2.48$ |  |

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

0

 $\mu$ =1.38  $\sigma = 0.99$ 

| σ=2.69 |   |   |   |  |  |
|--------|---|---|---|--|--|
| 0      | 0 | 2 | 0 |  |  |
| 0      | 0 | 4 | 0 |  |  |
| 7      | 7 | 1 | 7 |  |  |
| 0      | 0 | 0 | 2 |  |  |

|            | _            |
|------------|--------------|
| 0          | 0            |
| 0          | 5            |
|            |              |
| 0          | 5            |
| 0          | 5            |
| μ=0<br>σ=0 |              |
| 0          | 0            |
| 0          | 0            |
|            | ) ) E        |
| μ=0<br>σ=0 | ).25<br>).43 |
| •          |              |

| 0                              | 0 |  | 0            | 0 |  |
|--------------------------------|---|--|--------------|---|--|
| 0                              | 5 |  | 5            | 5 |  |
|                                |   |  | μ=5.<br>σ=0. |   |  |
| 0                              | 5 |  | 5            | 5 |  |
| 0                              | 5 |  | 5            | 5 |  |
| μ=0.00<br>σ=0.00               |   |  |              |   |  |
| 0                              | 0 |  | 6            | 4 |  |
| 0                              | 0 |  | 3            | 6 |  |
| μ=0.25 μ=0.75<br>σ=0.43 σ=0.83 |   |  |              |   |  |
| 0                              | 1 |  | 2            | 1 |  |
| 0                              | 0 |  | 0            | 0 |  |

|   | 0.00 |   | _ |
|---|------|---|---|
| 0 | 0    | 2 | 0 |
| 0 | 0    | 4 | 0 |
|   |      |   |   |
| 7 | 7    | 1 | 7 |
| 0 | 0    | 0 | 2 |
|   |      |   |   |



 $\mu$ =1.88  $\sigma = 2.24$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 e \sigma > 1.0$ 

| u=2.81             |  |
|--------------------|--|
| <sub>5</sub> =2.48 |  |

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

 $\mu$ =1.38  $\sigma = 0.99$ 

 $\mu = 1.88$ 

 $\mu = 1.44$  $\sigma = 2.09$ 

| 0 | 0 | 6 | 4 |
|---|---|---|---|
| 0 | 0 | 3 | 6 |
| 0 | 1 | 2 | 1 |
| 0 | 0 | 0 | 0 |

| σ=2.69 |   |   |   |  |  |
|--------|---|---|---|--|--|
| 0      | 0 | 2 | 0 |  |  |
| 0      | 0 | 4 | 0 |  |  |
| 7      | 7 | 1 | 7 |  |  |
| 0      | 0 | 0 | 2 |  |  |

| 0 | 0 |
|---|---|
| 0 | 5 |
| U | 5 |

| 0 | 5  | 5            |    |
|---|----|--------------|----|
|   |    | μ=5.<br>σ=0. | .C |
|   |    | σ=0.         | C  |
| 0 | 5  | 5            |    |
| 0 | 5  | 5            |    |
| ∩ | ΛΛ | -            |    |

| • | μ=0.00<br>σ=0.00 |   |  |
|---|------------------|---|--|
|   | 0                | 0 |  |
|   | 0                | 0 |  |

| 0          | 0 |
|------------|---|
| 0          | 0 |
| μ=0<br>σ=0 |   |
| 0          | 1 |
|            |   |

| 6            | 4 |  |
|--------------|---|--|
| 3            | 6 |  |
| μ=0.<br>σ=0. |   |  |
| 2            | 1 |  |

| μ=0.00<br>σ=0.00 |   |  |  |  |
|------------------|---|--|--|--|
| 0                | 0 |  |  |  |
| 0                | 0 |  |  |  |
|                  |   |  |  |  |
|                  |   |  |  |  |
| 7                | 7 |  |  |  |
| 7                | 7 |  |  |  |
| 7                | 7 |  |  |  |



 $\mu$ =1.88  $\sigma = 2.24$ 

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 1 | 1 | 2 | 2 |
| 0 | 5 | 5 | 5 | 3 | 3 | 2 | 2 |
| 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 |
| 0 | 0 | 3 | 6 | 0 | 0 | 4 | 0 |
| 0 | 1 | 2 | 1 | 7 | 7 | 1 | 7 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Q:  $\mu > 2.5 \text{ e } \sigma > 1.0$ 

| u=2.81        |  |
|---------------|--|
| $\tau = 2.48$ |  |

 $\mu = 1.44$ 

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |
| 0 | 5 | 5 | 5 |

0

 $\mu$ =1.38  $\sigma$ =0.99

| 0 | 0 | 6 | 4 |
|---|---|---|---|
| 0 | 0 | 3 | 6 |
| 0 | 1 | 2 | 1 |
| 0 | 0 | 0 | 0 |



| 0          | 0   |   |
|------------|-----|---|
| 0          | 5   |   |
|            |     |   |
| 0          | 5   |   |
| 0          | 5   |   |
| μ=0<br>σ=0 |     |   |
| 0          | 0   |   |
| 0          | 0   |   |
| μ=0        |     | _ |
| σ=0        | .43 |   |
| 0          | 1   |   |
|            |     |   |

| 0                | 0 |   | 0          | 0 |   |  |
|------------------|---|---|------------|---|---|--|
| 0                | 5 |   | 5          | 5 |   |  |
|                  |   |   | μ=5<br>σ=0 |   |   |  |
| 0                | 5 |   | 5          | 5 |   |  |
| 0                | 5 |   | 5          | 5 |   |  |
| 1=0.00<br>σ=0.00 |   |   |            |   |   |  |
| 0                | 0 |   | 6          | 4 |   |  |
| 0                | 0 |   | 3          | 6 |   |  |
| ι=0<br>5=0       |   | • | μ=0<br>σ=0 |   | • |  |
| 0                | 1 |   | 2          | 1 |   |  |
| 0                | 0 |   | 0          | 0 |   |  |
|                  |   | - |            |   |   |  |



| 0<br>0 |   |   |
|--------|---|---|
| 0      | 2 | 0 |
| 0      | 4 | 0 |
|        |   |   |
| 7      | 1 | 7 |
| 0      | 0 | 2 |
|        |   |   |

# Bibliography



- GONZALEZ, R.C.; WOODS, R.E. **Digital Image Processing**. 3rd ed. Pearson, 2007.
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
  - (in Brazilian Portuguese)
  - Available on the author's website (for personal use only)
  - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
  - (in Brazilian Portuguese)
  - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf



```
@misc{mari_im_proc_2023,
author = {João Fernando Mari},
title = {Image segmentation III - Regions},
year = {2023},
publisher = {GitHub},
journal = {Introduction to digital image processing - UFV},
howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

#### THE END