Lab 05

Simple Vs Low Compliance Cascode Current Mirror

Part 1: Sizing Chart

• Given Parameters in this Lab:

MOSFET Length L	1um
Supply Voltage <i>V</i> _{ds}	1.8V
Drain Current I_D	20uA
Real MOSFET Overdrive Voltage V*	0.2V

Schematic used in sizing

• Determine NMOS Width Value (Wn):

Vov & V* versus Vgs sweep

From previous graphs we find at $V_Q^*=200mV \rightarrow V_{gsQ}=611.713mV$ and $V_{ovQ}=207.3102mV$.

From previous graph at $V_{gs} = 611.713 mV$, we have $I_{dX} = 46.5303 uA$, $g_{mX} = 465.137 uS$ and $g_{dsX} = 3.6668 uS$.

Using cross multiplication as $I_d \propto W$, we find that W=4.23um.

Also $g_m = 196.7529 uS$, and $g_{ds} = 1.551 nS$ @ W=4.23um.

• Determine PMOS Width Value (Wp):

From previous graphs we find at $V_Q^* = 200mV \rightarrow V_{gsQ} = 607.2124mV$ and $V_{ovQ} = 196.18mV$.

 I_D , g_m and g_{ds} versus V_{gs}

From previous graph at $V_{gs}=607.2124mV$, we have $I_{dX}=11.914uA$, $g_{mX}=119.083uS$ and $g_{dsX}=11.914uA$, $g_{mX}=119.083uS$ 914.35nS.

Using cross multiplication as $I_d \propto W$, we find that W=16.787um. Also $g_m = 200uS$, and $g_{ds} = 1.535uS$ @ W=16.787um.

Part 2: Current Mirror

Wide sense current mirror schematic on cadence

Simple cascode current mirror schematic on cadence

WS & simple current mirrors symbols for testbench

Simple cascode current mirror Mosfets OP parameters

Wide sense cascode current mirror MOSFETs OP parameters

- As shown in previous figures that all MOSFETs region equal 2 which mean that it operates in saturation region.
- From OP parameters shown in previous figures it's clear that results of Vgs, gm and gds are nearly to values calculated in part1.

output current versus Vout sweep for WS & simple current mirrors

- As shown from previous analysis that wide sense current mirror is more stable (constant current value) with voltage variations despite simple current mirror which changed with Vout variations.
- Because at this certain point voltage difference between Vdd and Vout provides the same Vds to MOSFET as VDS of magic battery which give perfect mirroring.

- Rout of wide sense CM is more than that of simple CM because output of wide sense CM is cascaded which give high impedance while simple CM is only a single transistor so its output impedance not boosted.
- No, Rout doesn't changed with VOUT given that MOSFET operates in saturation, and Rout in this case is function in channel length which is constant value.

Analytical calculations for Rout simple & WS CMs