MATH 602 HOMEWORK 2

HIDENORI SHINOHARA

Lemma 0.1. Let $R \subset S$ be integral domains and suppose S is integral over R. Then for every $s \in S$, there exists a monic polynomial with coefficients in R and a nonzero constant term that s satisfies.

Proof. Choose $a_{n-1}, \dots, a_0 \in R$ such that $s^n + a_{n-1}s^{n-1} + \dots + a_1s^1 + a_0 = 0$. If $a_0 = 0$, then $s(s^{n-1} + a_{n-1}s^{n-2} + \dots + a_1) = 0$. Since we are dealing with integral domains, this implies $s^{n-1} + a_{n-1}s^{n-2} + \dots + a_1 = 0$. By repeating this process, we obtain a monic polynomial with coefficients in R and a nonzero constant term that s satisfies.

Exercise. (Problem 1) We will assume that the problem meant to say "su with $s \in S \setminus \{0\}$ " because it would be trivial otherwise. Choose $a_{n-1}, \dots, a_0 \in R$ such that $u^n + a_{n-1}u^{n-1} + \dots + a_1u^1 + a_0 = 0$ with $a_0 \neq 0$. This is possible by Lemma 0.1 that we showed above.

Then $u(a_1 + a_2u + \cdots + a_{n-1}u^{n-2} + u^{n-1}) = -a_0 \in R$. Since $a_0 \neq 0$, $a_1 + a_2u + \cdots + a_{n-1}u^{n-2} + u^{n-1}$ is a nonzero element in S. Hence, we showed that some multiple of u lives in R.

Exercise. (Problem 2) Let $R = \mathbb{Z}$ and $S = 2\mathbb{Z}$. $R \setminus S$ is not even an ideal because $0 \notin R \setminus S$. Thus $R \setminus S$ is not a prime ideal.

Exercise. (Problem 3) Let $x+J \in S/J$. Then $x \in S$, so $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0$ for some $a_0, \dots, a_{n-1} \in R$. Then $(x+J)^n + (a_{n-1}+J)(x+J)^{n-1} + \cdots + (a_1+J)(x+J) + (a_0+J) = 0$, and each a_i+J is the image of $a_i+R\cap J$ under the inclusion map $R/(R\cap J) \to S/J$. Therefore, every element in S/J is integral over $R/(R\cap J)$.

Exercise. (Problem 4) Let $p \in \operatorname{Spec}(R)$ such that $I \subset p$. Define $p/I = \{x+I \mid x \in p\} \subset R/I$. By the third isomorphism theorem of rings, p/I is an ideal of R/I. Let $x+I, y+I \in R/I$ and suppose $(x+I)(y+I) \in p/I$. Then xy+I=z+I for some $z \in p$. Thus $xy-z \in I \subset p$ and $z \in p$. Thus $xy \in p$, so $x \in p$ or $y \in p$. This implies $x+I \in p/I$ or $y+I \in p/I$, so $p/I \in \operatorname{Spec}(R/I)$.

On the other hand, let $A/I \subset \operatorname{Spec}(R/I)$ be given. By the third isomorphism theorem of rings, every ideal of R/I must be of the form A/I where A is an ideal of R that contains I. Let $x, y \in R$ and suppose $xy \in A$. Then $xy + I \in A/I$, so $(x + I)(y + I) \in A/I$. Without loss of generality, $x + I \in A/I$. Then x + I = a + I for some $a \in A$. Thus $x - a \in I \subset A$ and $a \in A$, so $x \in A$. Therefore, A is a prime ideal of R containing I.

Exercise. (Problem 5) By the second isomorphism of rings, $R \cap q$ is an ideal in R. Let $x, y \in R$. Suppose $xy \in R \cap q$. Then $xy \in q$, so $x \in q$ or $y \in q$. Without loss of generality, $x \in q$. Then $x \in R \cap q$. Thus $R \cap q$ is a prime ideal of R.

Exercise. (Problem 6) Suppose R is a field. Let $x \in S$ and $x \neq 0$. By Lemma 0.1, we can choose $a_{n-1}, \dots, a_0 \in R$ with $a_0 \neq 0$ such that $x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0$. This implies $x((x^{n-1} + a_{n-1}x^{n-1} + \dots + a_1)/-a_0) = 1$, so x is a unit in S.

Suppose S is a field. Let $x \in R$ and $x \neq 0$. Then $1/x \in S$. Thus $(1/x)^n + a_{n-1}(1/x)^{n-1} + \cdots + a_1(1/x) + a_0 = 0$ for some $a_{n-1}, \cdots, a_0 \in R$ with $a_0 \neq 0$. This implies $1 + x(a_{n-1} + a_{n-2}x + \cdots + a_1x^{n-2} + a_0x^{n-1}) = 0$, so $-(a_{n-1} + a_{n-2}x + \cdots + a_1x^{n-2} + a_0x^{n-1}) = 1/x$. Clearly, $a_{n-1} + a_{n-2}x + \cdots + a_1x^{n-2} + a_0x^{n-1} \in R$, so $1/x \in R$, and thus R is a field.

Exercise. (Problem 8) It is clear that $0, 1 \in \overline{R}$. It suffices to show that \overline{R} is closed under multiplication and addition. Let $x, y \in \overline{R}$. Then R[x] is a finitely generated R-module because x is integral over R by Proposition 5.1 [Atiyah]. Since y is integral over R[x]. Thus (R[x])[y] is a finitely generated R[x]-module. Then R[x, y] = (R[x])[y] is a finitely generated R-module. In other words, R[x, y] is a ring that is a finitely generated R-module. Since $R[xy] \subset R[x, y]$ and $R[x + y] \subset R[x, y]$, xy, x + y are integral over R by Proposition 5.1 [Atiyah]. Therefore, \overline{R} is a subring of R.