1. Solution

The sample size, *n*, is 30. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 30 ceil$	8	34.65
Q2	$\lceil 0.5 imes 30 ceil$	15	35.29
Q3	$\lceil 0.75 \times 30 \rceil$	23	35.62

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 35.62 - 34.65$$

$$= 0.97$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $34.65 - 1.5 \times 0.97$
= 33.195
upper boundary = Q3 + $1.5 \times IQR$
= $35.62 + 1.5 \times 0.97$
= 37.075

We determine the outliers.

outliers =
$${33.18}$$

We identify the ends of the whiskers: 34.13 and 36.72. We plot the boxplot.

2. Solution

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 ceil$	18	63.2
Q2	$\lceil 0.5 \times 72 \rceil$	36	64.03
Q3	$\lceil 0.75 \times 72 \rceil$	54	64.59

We determine the IQR.

$$IQR = Q3 - Q1$$

= 64.59 - 63.2
= 1.39

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $63.2 - 1.5 \times 1.39$
= 61.115
upper boundary = Q3 + $1.5 \times IQR$
= $64.59 + 1.5 \times 1.39$
= 66.675

We determine the outliers.

outliers =
$$\{60.54, 60.67\}$$

We identify the ends of the whiskers: 61.12 and 64.99. We plot the boxplot.

