Fast Superpixels for Video Analysis

Fabio Drucker and John MacCormick (Dickinson College, Pennsylvania)

1. Background

 Instead of analyzing video using tens of thousands of pixels in each frame, would like to restrict analysis to about 1000 superpixels in each frame:

60,000 pixels

1200 superpixels

- Popular existing superpixel algorithms use 2D, region-based approaches that are too slow for real-time video analysis
- In fact, superpixels can be computed using 1D dynamic programming approaches that are much faster
 - Seam carving (Avidan & Shamir 2007), superpixel lattices
 (Moore et. al 2008), and PathFinder (this poster) are all examples of the 1D dynamic programming approach

2. Main result

our 1D approach is:

- 3% less accurate
- 30-40 times faster

. . . than fastest known2D approach

Therefore, 1D superpixel approaches should be attractive for video analysis

3. PathFinder: example of a 1D approach to superpixels

- 1. Compute edge strengths from a cheap Sobel-like operator
- 2. Build approximately-vertical paths that follow strong edges. While more paths are needed:
 - 2.1 Choose a seed point at a strong edge, not near an existing path
 - 2.2 Grow the approximately vertical path with maximum total edge strength from seed
 - very cheap via dynamic programming
 - restrict path to deviate from vertical by at most 45°
- 3. Repeat step 2 for horizontal paths
- 4. The resulting deformed grid defines the boundaries of the superpixels

1 path

5 paths

15 paths

30 paths

4. Results:

- Compare with the fastest known 2D approach: "Efficient Graph-Based Image Segmentation" (EGBIS), Felzenszwalb & Huttenlocher 2004.
- Assess accuracy using "mean accuracy" of Moore et. al 2008, which compares with human segmentations
- PathFinder is about 3% less accurate:

PathFinder

EGBIS

• PathFinder is 30-40 times faster:

