In [76]: # import libaries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

In [544]: x=pd.read_csv(r"C:\Users\user\Downloads\20_states - 20_states.csv")

Out[544]:

	id	name	country_id	country_code	country_name	state_code	type	latitude
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.485103
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.624151
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.533157
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.052337
5076	1957	Midlands Province	247	ZW	Zimbabwe	MI	NaN	-19.055201

5077 rows × 9 columns

```
In [545]: x=x.head(10)
```

Out[545]:

id	name	country_id	country_code	country_name	state_code	type	latitude	lon
0 3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	70.8
1 3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	63.7
2 3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	68.7
3 3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	3.66
4 3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	67.8
5 3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	66.0
6 3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	62.2
7 3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	64.9
8 3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	68.4
9 3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	64.9

In [546]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype			
0	id	10 non-null	int64			
1	name	10 non-null	object			
2	country_id	10 non-null	int64			
3	country_code	10 non-null	object			
4	country_name	10 non-null	object			
5	state_code	10 non-null	object			
6	type	0 non-null	object			
7	latitude	10 non-null	float64			
8	longitude	10 non-null	float64			
<pre>dtypes: float64(2), int64(2), object(5)</pre>						

memory usage: 848.0+ bytes

```
In [547]:
```

```
dtype='object')
```

31-07-2023, 16:54 2 of 8

In [556]: d=x[['id', 'name', 'country_id', 'country_code', 'country_name','latitude']]

Out[556]:

	id	name	country_id	country_code	country_name	latitude
0	3901	Badakhshan	1	AF	Afghanistan	36.734772
1	3871	Badghis	1	AF	Afghanistan	35.167134
2	3875	Baghlan	1	AF	Afghanistan	36.178903
3	3884	Balkh	1	AF	Afghanistan	36.755060
4	3872	Bamyan	1	AF	Afghanistan	34.810007
5	3892	Daykundi	1	AF	Afghanistan	33.669495
6	3899	Farah	1	AF	Afghanistan	32.495328
7	3889	Faryab	1	AF	Afghanistan	36.079561
8	3870	Ghazni	1	AF	Afghanistan	33.545059
9	3888	Ghōr	1	AF	Afghanistan	34.099578

In [557]:

Out[557]:

	id	country_id	latitude	longitude
count	10.000000	10.0	10.000000	10.000000
mean	3884.100000	1.0	34.953490	66.458391
std	11.589746	0.0	1.477933	2.579742
min	3870.000000	1.0	32.495328	62.262663
25%	3872.750000	1.0	33.777016	64.905955
50%	3886.000000	1.0	34.988570	66.471945
75%	3891.250000	1.0	36.154067	68.268350
max	3901.000000	1.0	36.755060	70.811995

In [558]:

Out[558]: <seaborn.axisgrid.PairGrid at 0x190d485f280>

In [566]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[566]: <AxesSubplot:xlabel='latitude', ylabel='Density'>

In [571]:

In [572]:

Out[572]: <AxesSubplot:>

In [573]: x=x1[['latitude']]

```
In [574]: # to split my dataset into traning and test date
           from sklearn.model_selection import train_test_split
In [575]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
Out[575]: LinearRegression()
In [576]:
           0.0
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [577]:
Out[577]:
                   Co-efficient
            latitude
                          1.0
In [578]: prediction=lr.predict(x_test)
Out[578]: <matplotlib.collections.PathCollection at 0x190d50c2e20>
            34.8
            34.6
            34.4
            34.2
            34.0
            33.8
            33.6
                  33.6
                         33.8
                               34.0
                                      34.2
                                             34.4
                                                   34.6
                                                          34.8
In [579]: -
Out[579]: 1.0
In [580]: L
Out[580]: 1.0
In [581]:
```

```
In [582]: rr=Ridge(alpha=10)
      rr.fit(x_train,y_train)
Out[582]: 0.1342672818462809
In [583]: la=Lasso(alpha=10)
Out[583]: Lasso(alpha=10)
In [584]:
Out[584]: -4.89668396754229
In [585]: from sklearn.linear_model import ElasticNet
Out[585]: ElasticNet()
In [586]:
Out[586]: array([0.64282594])
In [587]:
Out[587]: array([34.98401204, 34.52732979, 34.17087066])
In [588]:
Out[588]: 12.607236922971538
In [589]:
Out[589]: 0.24774049394817754
In [591]:
      Mean Absolute Error 0.0
In [592]:
      Mean Squared Error 0.0
In [593]:
      Root Mean Squared Error 0.0
In [594]:
In [595]: filename="prediction"
      pickle.dump(lr,open(filename,'wb'))
```

```
In [596]: import pandas as pd
In [597]: filename="prediction"
In [600]: real=[[22],[10]]
In [601]:
Out[601]: array([22., 10.])
In []:
```

8 of 8