UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 1

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

Ejercicio 1 Demuestra que el conjunto de todos los x tales que $x \in A$ y $x \notin B$ existe y que es único.

Ejercicio 2 Demuestre que para cualquier conjunto X hay algún $a \notin X$.

Ejercicio 3 Demuestre que $A \subseteq \{A\}$ si y solo si $A = \emptyset$.

Ejercicio 4 Demuestre que si $A \subseteq B$, entonces $P(A) \subseteq P(B)$

Ejercicio 5 Demuestre que $A\subseteq C$ si y solo si $A\cup (B\cap C)=(A\cup B)\cap C$

Ejercicio 6 Si E es un conjunto que contiene a $A \cup B$, entonces:

a) $E \setminus (E \setminus A) = A$

b) $E \backslash \emptyset = E, E \backslash E = \emptyset$.

Ejercicio 7 Para todo conjunto A, B y C se cumple lo siguiente:

- a) $A \triangle \emptyset = A$
- b) $A \triangle A = \emptyset$
- c) Si $A \triangle B = A \triangle C$, entonces B = C

Ejercicio 8 Sea F una familia de conjuntos. Pruebe que $\bigcup F = \emptyset$ si y solo si $F = \emptyset$ o $A \in F$ implica $A = \emptyset$.

Ejercicio 9 Demuestre que la unión y la intersección generalizada satisface la siguiente forma de asociación:

a)
$$\bigcup\{A_{\alpha}|\alpha\in\bigcup I\}=\bigcup_{I\in I}(\bigcup_{\alpha\in I}A_{\alpha})$$

b)
$$\bigcap \{A_{\alpha} | \alpha \in \bigcap I\} = \bigcap_{I \in I} (\bigcap_{\alpha \in I} A_{\alpha})$$

Ejercicio 10 Demuestra lo siguiente:

a) \bigcup_{α} distribuye sobre \cap y \bigcup_{α} distribuye sobre \cup ,

$$[\bigcap_{\alpha \in I} A_\alpha] \cup [\bigcap_{\beta \in J} B_\beta] = \bigcap \{A_\alpha \cup B_\beta | (\alpha,\beta) \in I \times J\}$$

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 1

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:_

b) Si el complemento es tomado respecto a X, entonces

$$X\backslash\bigcap\{A_\alpha|\alpha\in I\}=\bigcup\{X\backslash A_\alpha|\alpha\in I\}$$

c) \bigcup_{α} y \bigcap_{α} distribuyen sobre el producto cartesiano

$$[\bigcap_{\alpha \in I} A_\alpha] \times [\bigcap_{\beta \in J} B_\beta] = \bigcap \{A_\alpha \times B_\beta | (\alpha, \beta) \in I \times J\}$$