2. Электрическое поле: напряженность, принцип суперпозиции, поле распределенных зарядов, геометрическая интерпретация.

Напряженность в СИ:

$$[E] = \frac{H}{K\pi} = \frac{B}{M}$$

Для точечного заряда:

Сила, действующая на заряд со стороны электрического поля

$$\vec{F} = q' \cdot \vec{E}(\vec{r})$$

Взаимодействие зарядов по закону Кулона

$$\vec{F} = k \frac{q'q}{r^2} \cdot \frac{\vec{r}}{r}.$$

Заряды одни и те же, пространство тоже, следовательно, от точки зрения сила не зависит:

$$q'\vec{E}(\vec{r}) = k \frac{q'q}{r^2} \cdot \frac{\vec{r}}{r'}$$

или,

$$\vec{E}(\vec{r}) = k \frac{q}{r^2} \cdot \frac{\vec{r}}{r} -$$

напряженность электрического поля точечного заряда.

$$_{\mathsf{q}>0}$$
 $\vec{E} \uparrow \uparrow \vec{r}.$

$$_{q<0}$$
 $\vec{E} \uparrow \downarrow \vec{r}$.

Величина напряжённости поля точечного заряда не зависит от знака заряда, а определяется только расстоянием до искомой точки:

$$E(r) = \left| \vec{E}(r) \right| = \frac{k|q|}{r^2}$$

Принцип суперпозиции: напряжённость поля системы точечных неподвижных зарядов равна векторной сумме напряжённостей полей, которые создавали бы каждый из зарядов в отдельности:

Поле распределённых зарядов:

$$\vec{E}_{\text{CHCT}} = \sum_{i=1}^{N} \vec{E}_i(\vec{r}_i) = \sum_{i=1}^{N} \frac{k |q_i|}{r_i^2} \cdot \frac{\vec{r}_i}{r_i} \quad \Longrightarrow \quad \vec{E} = \int d\vec{E} = \int \frac{kdq}{r^2} \cdot \frac{\vec{r}}{r}.$$

$$\vec{E} = \int \frac{kdq}{r^2} \cdot \frac{\vec{r}}{r} \cdot \frac{\vec{E}}{r} \cdot \frac{\vec$$

Плотность заряда - коэффициент пропорциональности между бесконечно малым объёмом и той частью заряда тела, что попала внутрь него: $dq \sim dV$.

Плотности заряженных тел:

🕹 заряд, распределенный по объему (объемный заряд)

 $\rho=\frac{dq}{dv}$ – объёмная плотность заряда ($\rho=\frac{q}{v}$ – для однородного заряженного

тела (однородно распределённого заряда))

$$[\rho] = \frac{K\pi}{M^3}$$

lacktriangledown заряд, распределенный по поверхности (поверхностный заряд) $(l_1, l_2 \gg l_3)$

$$\sigma = \frac{dq}{dS}$$
 — поверхностная плотность заряда ($\sigma = \frac{q}{S}$ — для однородно распределённого заряда).

$$[\sigma] = \frac{K\pi}{M^2}$$

lacktriangledown заряд, распределенный вдоль линии (линейный заряд) $(l_1\gg l_2,l_3)$

 $\lambda = \frac{dq}{dl}$ — линейная плотность заряда ($\lambda = \frac{q}{L}$ — для однородно

распределённого заряда),

$$[\lambda] = \frac{K\pi}{M}$$

dV, dq

Геометрическая интерпретация: представление электрического поля с помощью силовых линий

1. вектор \vec{E} должен быть направлен по касательной к силовой линии

- 2. густота силовых линий была пропорциональна модулю вектора напряжённости \vec{E}
- 3. Направление от + к -

густота силовых линий =
$$\frac{\text{количество силовых линий}}{dS} \sim |\vec{E}|$$
 \vec{E} \vec{E} \vec{E}

Примеры: силовые линии электрического поля точечных зарядов

уединённый положительный точечный заряд уединённый отрицательный точечный заряд

