Prunality of the GHOSTDAG Protocol

Michael Sutton, Shai Wyborski

July 2020

1 Introduction

This document details a set of rules miners in the GHOSTDAG [1] protocol must follow in order to support secure pruning of the DAG.

2 Notation and Rules

Parameters:

- ϕ Finality depth
 - k PHANTOM parameter
 - ℓ Merge bound
- $\pi = 2\phi + 4\ell k + 2k + 2$ Pruning depth

Definition 1. Some notations:

- • $\overline{P}ast, \overline{F}uture, \overline{C}hain$ are the inclusive counterparts of Past, Future, Chain
- $B.Subtree = \{C: B \in C.Chain\}$
- $B.MergeSet = B.Past \setminus B.SelectedParent.\overline{P}ast$
- A block B is said to be a merging block of block Y, if $Y \in B.MergeSet$.

Definition 2. For any integer n and any block B let

$$B_n = \operatorname{argmax}_{C \in B.Chain} \{ w(C) < w(B) - n \};$$

We name some useful blocks:

- The block at $depth \ n$ is $Virtual_n$
- The finality block is $F = Virtual_{\phi}$
- The pruning block is $P = Virtual_{\pi}$

Corollary 1. For any integer n and any block B

$$w(B) - n - k - 1 \le w(B_n) < w(B) - n;$$

Proof. The second inequality follows directly from Definition 2. The first follows from maximality of B_n . Assume $w(B_n) < w(B) - n - k - 1$. Since each chain block can add at most k + 1 blue blocks, their must exist a block $C \in B.Chain$ where $C.SelectedParent = B_n$, and which satisfies w(C) < w(B) - n. Contradicting maximality of B_n .

Corollary 2. For any block B and any integers m, n s.t. m > n

$$w(B_m) < w(B_n) + n + k + 1 - m;$$

Proof. This is a direct result of applying Corollary 1 over B, m and obtaining $w(B_m) < w(B) - m$, applying the same corollary over B, n and obtaining $w(B) - n - k - 1 \le w(B_n)$, and combining the inequalities.

Definition 3 (Pruning invalidation rules). A block B is considered invalid if one of the following holds:

(R-I) (Objective finality)

 $\exists Y \in B.MergeSet \cap B_{\phi}.Anticone :$

 $Y.Future \cap B.Blues \cap B_{\phi}.Subtree = \emptyset$

(R-II) (Bounded merge)

 $|B.MergeSet| > \ell$

(R-III) (Blood exile)

 $\exists C \in B.Parents : C \text{ is invalid}$

Assumption 1. There is no 51% attacker and ϕ was chosen so that (malicious or organic) splits of depth ϕ have negligible probability. We consider them as impossible.

3 Main Proposition

Proposition 1. If when B was discovered it held that $B \notin P.Future$ then B will never be in the past of Virtual.

Figure 1: Illustration of induction variables.

Proof. Let Y be a block which, when it was discovered, was not in P.Future. Assume that at some future point in time Y was in Virtual.Past. Let $X \in Virtual.Past$ be minimal such that $F \in X.Chain$ and $Y \in X.Past$, such an X must exist by hypothesis and Assumption 1 (though it may not be unique).

We now define a sequence of merging blocks $X = X^0, \dots, X^m$, in the following way:

- Given X^{i-1} , select a block $B^i \in Y.Future \cap X^{i-1}.Blues \cap X_{\phi}^{i-1}.Subtree$. Such a block must exist by induction hypothesis.
- Select X^i to be a block $\in B^i.\overline{C}hain$ s.t. $Y \in X^i.MergeSet$. Such a block must be unique if it exists. See Figure 1 for an illustration.
- If no such merging block exists, set m = i 1 and halt the process. This can only happen if $Y \in B^i.Chain$.

We now define counting measures for the process. Let $w_i = w(X^{i-1}) - w(\max X^{i-1}.Chain \cap B^i.Past)$; and denote $\delta_i = |B^i.Chain \setminus X^i.Chain|$. Note that w_0, δ_0 are undefined and that $\delta_i = 0$ iff $B^i = X^i$. See Figure 1.

Claim 1.

$$\forall i \in [1, \dots, m]: \quad w_i \le 4k + 1$$

Proof. This follows from blueness of B^i and from an argument similar to that of GHOSTDAG's [1] freeloader bound (B^i being a block freeloaded by X^{i-1}). \square

Claim 2.

$$m + \sum_{i=1}^{m} \delta_i < \ell$$

Proof. Let Δ_i denote the set $B^i.\overline{C}hain \setminus X^i.Chain$. It needs to be shown that $\forall i \in [1, ..., m], \Delta_i$ are disjoint subsets of $X.MergeSet \setminus \{Y\}$ which has size $< \ell$ by (R-II).

The subset property follows easily from the fact that all blocks in Δ_i are in $Y.Future \cap X.Past$. Assume that there exists a block $B \in Y.Future \cap X.Past, \notin X.MergeSet$, so $B,Y \in X.SelectedParent.Past$ which contradicts minimality of X. The disjoint property follows directly from the inductive selection process. Noting that $|\Delta_i| = \delta_i + 1$ gives the desired result.

Claim 3.

$$w(X^m) > w(F) - 4\ell k$$

Proof. By definition of w_i we have that $w(X^{i-1}) - w_i < w(B^i)$. Additionally, noting that $X^i \in B^i.\overline{C}hain$ and that each chain block can add at most k+1 blue blocks, we get that $w(B^i) \leq w(X^i) + \delta_i(k+1)$.

Reorganizing terms, we obtain a bound on the score distance between two consecutive merging blocks

$$w(X^{i-1}) - w(X^{i}) < w_i + \delta_i(k+1);$$

Summing up this inequality over $i=1,\ldots,m$ and using Claims 1, 2, we get $w(X^0)-w(X^m)< m4k+\sum_{i=1}^m \delta_i(k+1)\leq 4\ell k$, where the last inequality holds since k>0. The desired result follows since $F\in X^0.Past$, so $w(F)< w(X^0)$.

Claim 4.

$$\forall i \in [0, \dots, m]: P \in X_{\phi}^{i}.Chain$$

Proof. By induction on i.

Basis: For $i=0, X=X^0$, the claim follows immediately since $P, X_{\phi} \in X.Chain$ and $w(X_{\phi}) > w(P)$.

Inductive step: Assume that $P \in X_{\phi}^{i-1}.Chain$. We will now show that $P \in X_{\phi}^{i}.Chain$. By definition of B^{i} we have that $X_{\phi}^{i-1} \in B^{i}.Chain$. The selection process also implies that $X_{\phi}^{i}, X^{i} \in B^{i}.Chain$. Combining with the induction hypothesis we get that $P, X_{\phi}^{i} \in B^{i}.Chain$. Since both blocks share a chain, it remains to show that $w(P) < w(X_{\phi}^{i})$. Following Claim 3 and noting that $X^{m} \in X^{i}.Past$, we get that $w(X^{i}) > w(F) - 4\ell k$. Combining with Corollary 1 over X^{i}, ϕ we have

$$w(X_{\phi}^{i}) > w(F) - 4\ell k - \phi - k - 1.$$

On the other hand, by plugging Virtual, π , ϕ into Corollary 2, we get that

$$w(P) < w(F) - 4\ell k - \phi - k - 1;$$

so
$$w(P) < w(X_{\phi}^{i})$$
.

Conclusion: From Claim 4 it follows that $\forall i \in [0,\ldots,m], Y \in X^i_\phi.$ Anticone. To see this, note that $Y \in X^i_\phi.$ Future would imply that $Y \in P.$ Future, which is a contradiction, and that $Y \in X^i_\phi.$ Past contradicts $Y \in X^i.$ MergeSet. This justifies the induction hypothesis that B^{i+1} must exist $\forall i \in [0,\ldots,m]$, otherwise violating (R-I), (R-III). Specifically, it must be assumed that $B^{m+1} \neq Y$ exists, where by definition $X^m_\phi \in B^{m+1}.$ Chain. However by halting of the process it follows that $Y \in B^{m+1}.$ Chain. Since $Y \in X^m_\phi.$ Anticone, Y, X^m_ϕ cannot share a chain, thus leading to a contradiction.

From this follows that it is secure to implement the following:

Rule 1.

- All blocks in *P.Past* can be pruned, and
- For block B, if it holds that $B \notin P.Future$ and $B \notin Virtual.Past$ (that is, B violates finality rules of Virtual), then B can be discarded

References

[1] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOM and GHOSTDAG: A scalable generalization of nakamoto consensus. Cryptology ePrint Archive, Report 2018/104, 2018. https://eprint.iacr.org/2018/104.