Graph Sparsification

- Sporse Graphs:

 Graphs with less # of edges

 => less space to store the graphs

 => less processing time
- IDEA; Given an undirected weighted graph

 G=(V,E, w), where |V|=n, |E|=n,

 the goal is to output the graph

 H, a subgraph of G with fewer

 edges, where H may be rewelshted,

 while preserving "interesting quantities"

Interesting quantities:

e.g. extremal (min, max) cuts,
eigenvalues, random malk proporties.
(typically captured by graph Laplacian)

Graph Sparsification w.r.t. cuts I

For simplicity, let's assume we are given an undiredal unweighted graph G. The goal is to approximate G by a sparse graph while preserving the cut size for all possible cuts with small errors.

- More precisely, a cut (S, \bar{S}) is a partition of V into two subsets $S, \bar{S} > V \setminus S$. Let $E(S, \bar{S})$ denote the set of edges crossing the cut (S, \bar{S}) in G, i.e., $E(S, \bar{S}) = \{u, v \circ E(G) \mid u \in S \text{ and } v \notin S\}$. The capacity (or size) of the cut (S, \bar{S}) is denoted by $|E(S, \bar{S})|$. If G is weighted by a weight function $w: E \to \mathbb{R}$, then $|E(S, \bar{S})| = Z |u(E)|$ $|E(S, \bar{S})| = Z |u(E)|$

Foal: Construct a graph H=(V,E'), where $E'\subset E$ and |E'|<<|E|, and H is potentially remeight by a function $W:E'\to R$ s.t. $\forall U\subseteq V$

$$|E_{H}(U,\overline{U})| = (1 \pm E) |E(U,\overline{U})|$$

for a small fixed $E > 0$. Such a graph H is call a "cut sparsifier" of G

Cut Sparsifier of a Complete Graph

```
- Given a complete graph G=Kn, how
  can we construct a cut sparsifier H of Kn?
 (not that [E(Kn) = O(n2).)
. Sub sampling: Consider the following proces:
    - Sample (keep) every edge independenty
      with some probability p. Then,
          \mathbb{E}[|E(H)|] = p|E(K_n)|, and
      \forall u \in V(K_n), \mathbb{E}[|E_{H}(u, \tilde{u})|] = P[E_{K_n}(u, \tilde{u})|
   - Let's assign neight 1 to each edge
     of H so that
     YUEV (Kn), E[[EH(U, V)] = P/1 [EK (U, V)]
  - So in expectation, cuts are preserved!!
     Let's analyze how likely the cut capacity
     is close to its expectation,
 Theorem [Chernoff-Hefseling Concentration Bound]
  Let X = \sum_{i \in [n]} X_i, where each X_i \in [0,1] is an indicator random variable, and (X_i):
   i & [n]) are independently distributed. Then,
       0 ¥ +>0 , Pr [ | X - | E[ x ] | > + | ≤ e<sup>-x+</sup>,
       · 40< 6<1, Pr { X < (1-1) E[X] { < e }
       · Y · < e < 1 , Pr f x > (1+E) [ [x] ] { e - e E[x] }

    ∀ t > 2 · [x], Pr{x>t] < 2 · t.</li>
```

Analysis of Subsampling

- To simplify the analysis, we consider H in the unweighted version. For a subset $U \subseteq V$, let q = |U|, $C_H = |E_H(U, \bar{U})|$ and $C_L = |E_L(u, \bar{u})| \nearrow g_{2}^{n}$, thus $|E[C_L]| = |PC_L| \nearrow pqn$. Using the concentration bound from above, $|F(C_L)| = |F(C_L)| = |F(C_L)|$
- Suppose we want the RHS to be at most $1/n^{dV}$ for some fixed d>1 (say d=5)

 Then, we should set $p \ge 6 \frac{d \log n}{s^2n}$

 $-\frac{\varepsilon^{2}pqn}{6} < e^{\frac{\varepsilon^{4}(\cancel{pd}\log n)}{6}} qn - dq \log n - dq \frac{1}{ndq}$

- Note that a similar bound applies to deviation in the other direction, we get $\Pr \left\{ C_{H} \notin (1 \pm \varepsilon) \mid E[c] \right\} \leq \frac{2}{n^{d}}$

- Also, note that the failure probability above is for a single cut. The probability for any cut to fail is obtained by the following analysis.

Priany cut fails { Priany cut fails independently y

$$= \sum_{1 \leq q \leq N} (\# \text{ of cut of size } q),$$

$$1 \leq q \leq N \quad \text{Pr} \{ \text{ cut of size } q \text{ fails } \}$$

$$\leq \sum_{1 \leq q \leq N} (n), \frac{2}{n^{dq}}$$

$$\theta(n^{q})$$

$$\leq \sum_{1 < q < N} n^{d} \cdot \frac{2}{n^{d} \cdot n^{d}} \leq \frac{2n}{n^{d}} \cdot \frac{2}{n^{d-1}}$$

- The subsampling will fail with probability
 at most 2/nd-1, if p > 6 d logn

 En
- If we set d=5 then, the downsampling will success with high probability

 (i.e., the success probability is at least 1-2/n4),

 and the graph sparsifier H will

 have p(E(Kn)) = (6×51logn D(n²) = O(nlogn)

 = n

 = E[|E[H]]] = ô(n)
- Clearly, the sub sampling of H takes time O(m).

Theorem 1: There exists a randomized construction of a cut sparsition of a complete graph K_n in time O(m), where $|E(H)| = \widetilde{O}(n)$, with high probability of SUCCESS,