Минимальное расстояние редактирования Лекция 2

Елена Тутубалина

Казанский федеральный университет

15 февраля 2018 г.

Схожесть двух строк

- Исправление ошибок написания
 - Пользователь напечатал "жраф"
 Какие слова наиболее похожи?
 - жираф
 - ▶ граф
 - ▶ жрав
 - **...**

 ► Также применяется для оценивания методов машинного перевода и распознавание речи

Расстояние редактирования

- Минимальное расстояние редактирования между двумя строками
- это минимальное число операций:
 - вставка (в)
 - удаление (y)
 - ▶ замена (з)
- ▶ необходимых для преобразования одной строки в другую.

Выравнивание двух строк

Две строки и их выравнивание:

Выравнивание двух строк

- Если каждая операция стоит 1 балл (расстояние Левенштейна)
 - ▶ То расстояние равно б
- ► Если каждая замена стоит 2 (Levenshtein)
 - ▶ То расстояние равно 8

Другие применения расстояния редактирования в NLP

 Оценивание качества машинного перевода или распознавания речи

Spokesman	confirms		senior	government	adviser	was	shot
Spokesman	said	the	senior		adviser	was	shot
	3	В		У			

- Распознавание именованных сущностей и разрешение кореференции
 - ► IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

Как вычислять МРР?

 Ищем путь (последовательность операций) из начальной строки в конечную:

Начальное состояние : исходное слово Операции : вставка, удаление, замена

Цель : конечное слово

Цена пути : то, что мы собираемся минимизировать.

Вычисление минимального расстояния как зачада поиска

- Пространство цепочек редактирования огромно!
 - ▶ Не можем позволить себе искать "наивно"
 - Множество цепочек приводит к одному и тому же состоянию
 - Не имеет смысла запоминать их все
 - Только самый короткий (дешёвый).

Формальное определение - 1

- Для двух строк
 - ▶ X длины n
 - ▶ Y длины m
- ▶ Определим D(*i,j*)
 - ▶ как расстояние между X[1..i] и Y[1..j]
 - ightharpoonup т.е., между первыми i символами X и первыми j символами Y
 - ▶ Таким образом, искомое расстояние редактирования между X и Y: D(n,m)

Динамическое программирование для подсчета МРР

- ▶ Динамическое программирование: табличный подсчёт D(n,m)
- ▶ Решаем проблему, комбинируя решения подпроблем.
- ▶ "Снизу-вверх"
 - ightharpoonup считаем D(i,j) для малых i,j
 - и подсчитываем последующие D(i,j) на основе уже вычисленных значений
 - lacktriangledow т.е., вычисляем D(i,j) для всех $i \ (0 < i < n)$ и $j \ (0 < j < m)$

Формальная запись алгоритма

Инициализация

$$D(i,0) = i$$
$$D(0,j) = j$$

Рекурсия:

для каждого
$$i=1...M$$
 для каждого $j=1...N$

$$D(i,j) = min = egin{cases} D(i-1,j)+1, \ D(i,j-1)+1, \ D(i-1,j-1)+2; \ 0; egin{cases} \text{if } X(i)
eq Y(j) \ \text{if } X(i) = Y(j) \end{cases}$$

▶ Остановка: D(N, M) – искомое расстояние

The Edit Distance Table

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	C	U	Т		О	Ν

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
ı	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Ε	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
ı	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

Computing alignments

- Edit distance isn't sufficient
 - ▶ We often need to *align* each character of the two strings to each other
- We do this by keeping a "backtrace"
- ▶ Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance

n	9	↓ 8	<u>/</u> ←↓9	∠←↓ 10	∠ - ↓ 11	∠ - ↓ 12	↓ 11	↓ 10	↓9	∠8	
0	8	↓ 7	∠←↓ 8	∠←↓ 9	∠ ← ↓ 10	∠←↓ 11	↓ 10	↓9	∠8	← 9	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠←↓ 9	∠←↓ 10	↓9	∠ 8	← 9	← 10	
t	6	↓ 5	∠←↓ 6	∠-↓7	∠-↓8	∠←↓ 9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ 5	∠←↓ 6	∠-↓7	∠ ⊢ ↓8	∠ - ↓9	∠←↓ 10	∠←↓ 11	∠ ↓ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	←↓ 8	∠←↓ 9	∠←↓ 10	↓9	
t	3	∠ - ↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠7	←↓ 8	∠←↓ 9	↓ 8	
n	2	∠←↓ 3	∠←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠7	
i	1	∠←↓2	∠←↓ 3	∠ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	x	e	С	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

- Base conditions: Termination: D(i,0) = i D(0,j) = j D(N,M) is distance
- ► Recurrence Relation:

For each
$$i = 1...M$$

For each $i = 1...N$

$$D(i,j) = min = egin{cases} D(i-1,j)+1, & ext{deletion} \ D(i,j-1)+1, & ext{insertion} \ D(i-1,j-1)+2; & ext{0}; \ \begin{cases} ext{if } X(i)
eq Y(j) \end{cases} ext{ substitution}$$

Result of Backtrace

► Two strings and their *alignment*:

Performance

```
Time: O(nm)
```

▶ Space: O(nm)

ightharpoonup Backtrace: O(n+m)

Weighted Edit Distance

- Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertion are more likely than others

Weighted Min Edit Distance

Initialization:

$$D(0,0) = 0$$

 $D(i,0) = D(i-1,0) + del[x(i)];$ $1 < i \le N$
 $D(0,j) = D(0,j-1) + ins[y(j)];$ $1 < j \le M$

Recurrence Relation:

$$D(i,j) = min = \begin{cases} D(i-1,j) + del[x(i)], \\ D(i,j-1) + ins[y(j)], \\ D(i-1,j-1) + sub[x(i),y(j)]; \end{cases}$$

► Termination: D(N, M) is distance

Ссылки

- https://web.stanford.edu/ jurafsky/slp3/2.pdf
- https://www.youtube.com/ playlist?list=PL6397E4B26D00A269
- https://compscicenter.ru/courses/introduction-nlp/2017autumn/classes/

Задание 2

- ► Подсчитать (на бумаге) расстояние для пар drive и brief, drive и divers.
- Запрограммировать вычисление минимального расстояния и сравнить с подсчетами на бумаге.
- ▶ Добавить в реализацию вывод Backtrace.