Predicting Telcom Customer Retention Using Machine Learning

Bruno Xie

Introduction

Founded in 1972, with over 40 years of experience in the design and development of high-performance network communications solutions

- Covers network segments: transport, connectivity, and distributed network applications
- Provides services: phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies

Our Goal

Retention management is extremely important as the costs of acquiring new customers are higher than keeping the existing customers

Our goal is help Telco retain customers by predicting users' behaviors

We will run several models including logistic regression, random forest, and boosting to study which factors will impact customer churn

Data Overview

• Source: Kaggle

• **Summary: 7043** Telco customers

Customer Behavior: churn

- Services: phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies
- Customer Account Information: how long they've been a customer, contract, payment method, paperless billing, monthly charges, and total charges
- Demographic Info: gender, age range, and if they have partners and dependents

Data Exploration

Which type of customers are more likely to churn?

Services						
Internet Service	DSL	Fiber optic		No		
Phone Service	Yes		No			

Services						
Multiple Lines	Yes	Yes No				
Online Security	Yes	No	No internet service			
Online Backup	Yes	No	No internet service			
Device Protection	Yes	No	No internet service			
Tech Support	Yes	No	No internet service			
Streaming TV	Yes	No	No internet service			
Streaming Movie	Yes	No	No internet service			

Data Exploration

Which type of customers are more likely to churn?

Customer Account Information							
Contract	Month-to- month		One	ne year		Two years	
Paperless Billing	Yes			No			
Payment Method	Eletronic check		lailed heck	_		Credit card	
Monthly Charges	High Low)W			
Total Charges	Hi	High Low			w		
Tenure	Long		Short				

Demographic Info					
Gender	Female	Male			
Senior Citizen	Yes	No			
Partner	Yes	No			
Dependents	Yes	No			

Data Cleaning

- Dropped irrelevant variable *customer ID*
- Standardized continuous variables monthly charges, total charges, tenure
- Transformed categorical variables into separated variables with dummy values
- Split 50% data into training set, 25% into validation set, 25% into test set

Summary of Results

	Original Data (Unbalanced)			Up-sampling Data (balanced)				
	Deviance	Accuracy (Confusio n Matrix)	AUC	Deviance	Accuracy (Confusio n Matrix)	AUC		
I. Model selection & tuning parameters (based on the validation set)								
Logistic Regressio n	1482.23	0.8066	0.8399	1757.64	0.7457	0.8380		
Lasso min lambda	1484.34	0.7986	0.8318	1755.59	0.7486	0.8383		
Lasso 1sd lambda	1489.19	0.7878	0.8257	1758.97	0.7474	0.8348		
Random Forest	1503.71	0.8009	0.8334	1606.40	0.7867	0.8238		
Boosted Tree	2540.59	0.6752	0.5109	1681.13	0.7537	0.8309		
II. Results comparison (based on the test set)								
Logistic Regression	1447.27	0.7981	0.8489	1689.83	0.7497	0.8487		
Random Forest	1446.06	0.7986	0.8550	1495.32	0.7901	0.8486		
Boosted Tree	1490.41	0.7838	0.8493	1574.47	0.7662	0.8528		

Logistic Regression – Unbalanced Data

- Regular logistic regression
- Lasso model with λ that minimizes cross-validated error
- Lasso model with λ in which the error is within 1 se of the minimum
- ➤ similar predictive powers in terms of deviance, accuracy, and AUC

Random Forest – Unbalanced Data

Parameter search:

- number of trees
- number of variables to possibly split at in each node
- minimal node size to tune the parameters

- ➤ number of trees = 1000
- number of variables to split = 5
- > minimal node size = 5

Boosting – Unbalanced Data

Parameter search:

- learning rate
- maximum depth of trees

- ➤ learning rate = 0.01
- \triangleright maximum depth of trees = 1

Logistic Regression – Balanced Data

- Regular logistic regression
- Lasso model with λ that minimizes cross-validated error
- Lasso model with λ in which the error is within 1 se of the minimum
- similar predictive powers in terms of deviance, accuracy, and AUC

Compared to unbalanced data, the performance is worse off

Random Forest – Balanced Data

Parameter search:

- number of trees
- number of variables to possibly split at in each node
- minimal node size to tune the parameters

- ➤ number of trees = 1000
- number of variables to split = 5
- minimal node size = 20

Boosting – Balanced Data

Parameter search:

- learning rate
- maximum depth of trees

- ➤ learning rate = 0.3
- maximum depth of trees = 5
- Compared to unbalanced data, the performance of boosting trees improves substantially

Results – Unbalanced & Balanced Data

Random Forest is optimal for both

Results – Unbalanced & Balanced Data

Random Forest is optimal for both

A potential problem is, while the model is doing generally well in predicting users who stay, it doesn't predict well in users who churn

Confusion Matrix and Statistics

Confusion Matrix and Statistics

Reference

Prediction No Yes

No 1165 246

Yes 108 239

Reference

Prediction No Yes

No 1087 183

Yes 186 302

Accuracy : 0.7986

95% CI : (0.7791, 0.8172

No Information Rate: 0.7241

P-Value [Acc > NIR] : 3.318e-13

Accuracy : 0.7901

95% CI: (0.7703, 0.8089)

No Information Rate: 0.7241

P-Value [Acc > NIR] : 1.198e-10

Conclusions and Improvements

- Best-performing model: random forest
- 80% accuracy overall

- Issue faced: unbalanced dataset
- Using up-sampling but not successfully solving the issue
- Future improvement: focusing on better dealing with class imbalance

