#### 第5章 触发器 Flip-Flop (FF)

· 组合逻辑电路:

基本单元 — 逻辑门 — 无记忆功能

数字系统中, 信息 — 处理/存储

── 记忆器件或记忆电路

• 时序逻辑电路:

基本单元 — FF — 记忆

#### 触发器定义:

能储存一位二进制信息的基本单元。记忆元件

#### §5.1 电平触发的触发器 Level Triggered Latch

#### § 5.1.1 与非门构成的基本RS-FF

基本RS (Reset-Set) 触发器是一种电平触发的触发器,其电路结构是各种触发器中最简单的一种,同时也是其他复杂电路结构的一个组成部分。通常将这类简单结构的触发器成为锁存器 (Latch)。

#### 1. 与非门构成的基本RS-FF

#### (1) 电路



Note: 
$$\begin{cases} \overline{S} \sim Q \\ \overline{R} \sim \overline{Q} \end{cases}$$

#### 两个与非门交叉耦合

输入:  $\overline{S}$  Set 置位端

 $\overline{R}$  Reset 复位端

输出:  $Q=1, \overline{Q}=0$  "1" 态

 $Q=0, \overline{Q}=1$  "0" 态

定义: 触发器的状态为 Q

#### 符号





- (2) 工作原理 (State ~ Input)
- ①  $\overline{S} = 0$ ,  $\overline{R} = 1$   $G_1$  锁住 Q=1,  $\overline{Q}=0$  Set (置1)

如果  $\overline{S}$  转成 1, 因为  $\overline{Q} = 0$ ,  $G_1$  锁住, Q = 1

 $\overline{S} = \overline{R} = 1$  保持原状态: No-change (NC)

触发器保持其目前的状态 (记忆功能)

$$\overline{S} = 1, \overline{R} = 0$$

#### **G**<sub>2</sub> 锁住

$$\bar{Q}=1$$
,  $Q=0$  Reset (置0)

#### 如果 转换成 1,

$$Q = 0$$
,  $G_2$  锁住

$$\bar{S} = \bar{R} = 1$$

$$\bar{S} = \bar{R} = 1$$
  
保持  $Q = 0$ 



| <u> </u> | S | _<br><b>R</b> | Q  | $ar{Q}$ | FF 状态                      |                |
|----------|---|---------------|----|---------|----------------------------|----------------|
|          | 0 | •             |    |         |                            |                |
|          | 0 | 1             | 1  | 0       | <b>Set</b> (1)             | <b>S</b> : 置1端 |
|          | 1 | 0             | 0  | 1       | Reset (0)                  | -<br>R: 置0端    |
|          | 1 | 1             | NC | NC      | Set (1) Reset (0) No-Chang | ge 保持          |

$$\mathbf{3} \stackrel{\overline{}}{=} \overline{R} = 0, \qquad Q = \overline{Q} = 1,$$

#### 强制为逻辑高电平

当  $\overline{R},\overline{S}$  同时从 0变到1

#### 此时要看逻辑门的延迟时间 $t_{pd}$ :



都是稳定状态,但不知是哪种。在 $\overline{S}$   $\overline{R}$  同时从0变到1时,状态不定。

#### 2. RS-FF的功能描述

#### 状态和变量

 $Q^{n+1}$  下一时刻稳定状态  $Q^n$  目前的稳定状态 输入变量 (对RS-FF为  $\overline{S}$   $\overline{R}$  )

描述逻辑关系 的方法包括:

状态转移真值表(状态表) Truth Table 状态方程(特征方程) State/Characteristics Table 状态转移图和激励表 State Diagram and Transition Table

波形图(时序图)Waveform (Timing Diagram)

#### 基本 RS-FF功能描述

#### (1) 功能表

#### 真值表

| $\overline{R}$ | $\overline{S}$ | $Q^n$ | $Q^{n+1}$ |
|----------------|----------------|-------|-----------|
| 0              | 0              | 0     | Ф         |
| 0              | 0              | 1     | Φ         |
| 0              | 1              | 0     | 0         |
| 0              | 1              | 1     | 0         |
| 1              | 0              | 0     | 1         |
| 1              | 0              | 1     | 1         |
| 1              | 1              | 0     | 0         |
| 1              | 1              | 1     | 1         |





#### (2) 状态方程 (特征方程)

| $\overline{R}$ | $\overline{S}$ | $Q^n$ | $Q^{n+1}$ |
|----------------|----------------|-------|-----------|
| 0              | 0              | 0     | Ф<br>Ф    |
| 0              | 0              | 1     | Φ         |
| 0              | 1              | 0     | 0         |
| 0              | 1              | 1     | 0         |
| 1              | 0              | 0     | 1         |
| 1              | 0              | 1     | 1         |
| 1              | 1              | 0     | 0         |
| 1              | 1              | 1     | 1         |



#### 状态方程 (特征方程)

$$\begin{cases} Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n \\ \overline{S} + \overline{R} = 1 \end{cases}$$

注意:  $将 \overline{R}$  和  $\overline{S}$  看作整体输入信号

符号上面的横线表示低电平有效

不同时为0

#### (3) 状态图与状态表

组合电路:真值表 - 输入与输出关系

时序电路:状态图—状态转换及转换条件

#### 状态图 用图形表示输出状态转换的条件和规律



#### 激励表

列出已知状态转换和所需要的输入条件的表称为激励表。 激励表是以现态  $Q^n$  和次态  $Q^{n+1}$  为变量,以对应的输入  $\overline{R}$   $\overline{S}$  为函数的关系表。

表示在什么样的激励下,才能使现态  $Q^n$  转换到次态  $Q^{n+1}$ 。

$$Q^n \longrightarrow Q^{n+1}$$

| $\overline{R}$ | $\overline{\overline{S}}$ | $Q^n$ | $Q^{n+1}$ $\Phi$ |
|----------------|---------------------------|-------|------------------|
| 0              | 0                         | 0     | Φ                |
| 0              | 0                         | 1     | Φ                |
| 0              | 1                         | 0     | 0                |
| 0              | 1                         | 1     | 0                |
| 1              | 0                         | 0     | 1                |
| 1              | 0                         | 1     | 1                |
| 1              | 1                         | 0     | 0                |
| 1              | 1                         | 1     | 1                |

#### 基本 RS-FF转换表

| 输出转换                      | FF 输入                         |  |  |
|---------------------------|-------------------------------|--|--|
| $Q^n \rightarrow Q^{n+1}$ | $\overline{R}$ $\overline{S}$ |  |  |
| 0 0                       | Ф 1                           |  |  |
| 0 1                       | 1 0                           |  |  |
| 1 0                       | 0 1                           |  |  |
| 1 1                       | 1 Ф                           |  |  |

#### (4) 时序图 (波形图)

输出波形要对应输入波形。

对应输入画出基本RS - FF输出波形

(初始状态 Q=0)







#### 3. 基本 RS-FF特点

有记忆功能,结构简单,输出信号不受外加信号控制,直接影响于 $\overline{R}$ 、 $\overline{S}$ 。

- (1) 输入信号直接加在输出门上,所以输入信号在全部作用时间里都将全部改变Q、Q的状态。因此,也把R、S称为直接复位端(置0端)和直接置位端(置1端)。
- (2) 状态转换时刻由R、S确定,没有统一的控制信号(时钟, CLK)控制触发器的转换时刻,因此是异步时序电路。
- (3) 由于有输入条件的限制,因此使用的比较少,但是它 是其他各类复杂触发器的基础。

#### §5.1.2 时钟 FF (同步 FF)

Gated FF (Synchronous FF)

在数字系统中,为协调各部分动作,需要某些FF在同一时刻动作。引入一同步信号,使这些 FF 只有在同步信号到达时才按输入信号改变状态。同步信号被称时钟脉冲信号。

时钟触发器(Gated-Latch)的状态只允许在时钟脉冲CLK=1时发生改变。从触发方式上,时钟触发器和基本RS触发器都属于电平触发的触发器(Level Triggered Latch)。

CLK 信号: Clock

CLK 为周期性矩形脉冲波形



#### 1. 时钟 RS-FF (Gated RS-FF)





在基本RS-FF加  $G_3$ 、 $G_4$ ,只有当 CLK=1, $G_3$ 和  $G_4$  开门。 当CLK=0, $G_3$ 和  $G_4$ 锁住。

讨论 CLK=1时情况

#### 定义:

 $Q^n$  CLK 到来之前 — 原状态  $Q^{n+1}$  CLK 到来之后 — 新状态,次态 对每一个CLK,都有 $Q^n$ , $Q^{n+1}$ 

| $\overline{S} \overline{R}$ | $Q$ $\bar{Q}$ | FF state       |
|-----------------------------|---------------|----------------|
| 0 0                         | 1 1           | <br>S R 0→1不定  |
| 0 1                         | 1 0           | <b>Set</b> (1) |
| 1 0                         | 0 1           | Reset (0)      |
| 1 1                         | NC NC         | 保持             |

#### 时钟 RS-FF 真值表

| SRQ <sup>n</sup> | $Q^{n+1}$                                                 | 描述                                                |
|------------------|-----------------------------------------------------------|---------------------------------------------------|
| 0 0 0            | 0                                                         | S=R=0                                             |
| 0 0 1            | 1                                                         | $Q^{n+1}=Q^n$                                     |
| 0 1 0            | 0                                                         |                                                   |
| 0 1 1            | 0                                                         | R≠S                                               |
| 1 0 0            | 150                                                       | $Q^{n+1}=S$                                       |
| 1 0 1            | 1                                                         | J                                                 |
| 1 1 0            | $ \mathbf{\phi} $                                         | R=S=1,                                            |
| 1 1 1            | $\left \begin{array}{c} \mathbf{\phi} \end{array}\right $ | $Q = \overline{Q} = 1$ $S R 1 \rightarrow 0 \phi$ |



$$\bullet S=R=0$$
 FF 保持  $Q^{n+1}=Q^n$ 

$$S=0, R=1$$
 $G_3=1, G_4=0$ 
 $Q^{n+1}=0$ 

•
$$S=1, R=0$$
  
 $G_3=0, G_4=1$   $Q^{n+1}=1$ 

$$\circ S=1, R=1, Q=\overline{Q}=1,$$
  $S$ 和  $R$   $1\rightarrow 0, Q$  不确定

#### 输出与输入之间关系







#### 同步RS-FF特征方程

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ S \cdot R = 0 \end{cases}$$
 (不同时为1)

#### 缺点:

不确定状态

#### 2. 时钟D-FF (Gated D-FF)



# $\begin{array}{c|cccc} \hline Q & \overline{Q} & \downarrow & \downarrow \\ \hline Q & \overline{Q} & \downarrow \\ \hline D & CLK & D & CLK \end{array}$

control

在 S 和 R 之间加一个非门, 使  $S \neq R$ 

S=D,  $R=\bar{D}$  无状态不定

#### 工作原理:

**CLK** = 0, FF 保持

*CLK* =1, FF 工作

$$\begin{cases} D=1, (S=1, R=0) & Q^{n+1}=1 \\ D=0, (S=0, R=1) & Q^{n+1}=0 \end{cases}$$

#### 同步 D-FF 状态方程:

$$Q^{n+1} = D$$

#### 3. 时钟 JK-FF (Gated JK-FF)



#### 加两条反馈线到输入端

$$S = J\overline{Q}^n$$
,  $R = KQ^n$ 

 $Q, \overline{Q}$  不同时为1, R S不同时 $1 \rightarrow 0$ , 无状态不定

## 两输入: *J*, *K CLK* = 0, FF 停 *CLK* = 1, FF 工作

| JKQ <sup>n</sup> | $Q^{n+1}$ | 描述                              |
|------------------|-----------|---------------------------------|
| 0 0 0            | 0         | ] <i>J=K</i> =0                 |
| 0 0 1            | 1         | $\int J=K=0$ $\int Q^{n+1}=Q^n$ |
| 0 1 0            | 0         | )                               |
| 0 1 1            | 0         | ∫ <i>J≠K</i>                    |
| 1 0 0            | 1         | $\int Q^{n+1} = J$              |
| 1 0 1            | 1         | J                               |
| 1 1 0            | 1         | <i>J=K</i> =1_                  |
| 1 1 1            | 0         | $\int Q^{n+1} = \overline{Q}^n$ |

#### JK-FF 特征方程



#### 从 RS-FF:

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$





#### 状态表

| $\int \! J$ | K | $Q^{\rm n}$ | $Q^{n+1}$ |
|-------------|---|-------------|-----------|
| 0           | 0 | 0           | 0         |
| 0           | 0 | 1           | 1         |
| 0           | 1 | 0           | 0         |
| 0           | 1 | 1           | 0         |
| 1           | 0 | 0           | 1         |
| 1           | 0 | 1           | 1         |
| 1           | 1 | 0           | do        |
| 1           | 1 | 1           | 0         |

#### JK-FF 激励表

| 输出转换                      | FF 输入          |   |
|---------------------------|----------------|---|
| $Q^n \rightarrow Q^{n+1}$ | $oldsymbol{J}$ | K |
| 0 0                       | 0              | Ф |
| 0 1                       | 1              | Φ |
| 1 0,099                   | Φ              | 1 |
| 1:01                      | Φ              | 0 |



#### 4. 时钟T-FF

$$J = K = T$$

$$Q \qquad \overline{Q}$$

$$J \qquad CLK \qquad K$$

$$T \qquad CLK$$

#### T-FF状态方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$
 
$$\begin{cases} T = 0, \ Q^{n+1} = Q^n \ \text{保持} \end{cases}$$
  $T = 1, \ Q^{n+1} = \overline{Q}^n \ \text{翻转}$ 

#### 5. 同步触发器的特点

触发器由统一的时钟信号控制工作 ,所以时钟触发器是同步时序逻辑电路 ,也称同步触发器。时钟触发器采用时 钟脉冲信号的高电平完成触发电路的控



制。因此在整个时钟高电平*CLK*=1期间,输入信号都可以影响触发器的状态输出。所以,从触发方式上,时钟触发器也属于电平触发。在*CLK*=1期间,门G<sub>3</sub>、G<sub>4</sub>开启,如果R、S在*CLK*=1期间多次变化,Q也将随之多次变化,即输出状态不是按照时钟节拍变化。

在 CLK=1期间,FF处于触发状态,  $Q^{n+1}$  随着输入信号 R, S, D, J, K, T 的变化而变化,出现空翻现象。

一个 CLK 周期内,Q 端只能变化一次,变化一次以上称为触发器的空翻。



这一缺点限制了此类触发器的应用范围,同时 触发器的抗干扰能力较差。

#### §5.2 脉冲触发的触发器

§5.2.1 主从RS-FF (Master-Slave RS-FF)

为了克服 FF 的空翻,提高触发器可靠性,希望其状态在每个时钟周期只变化一次。为此,在时钟RS触发器基础上设计了主从RS触发器(Master-Slave RS Flip-Flop)。



两个相同的同步RS-FF 相连,两个CLK之间加一 个非门(一个 FF 工作, 另 一个停止)。

从触发器的状态 Q 为整个触发器的状态。

主触发器的状态为Q'

CLK=0, 主-FF停, Q'保持  $\overline{CLK}$ =1, 从FF开门,

 $\}$ :Q'保持 :Q保持

 $\frac{CLK=1}{CLK}=0$ , 从 FF 关门  $\stackrel{\cdot}{\sim}$  Q 保持

∴在 CLK=0 和 CLK=1期间, Q 保持

在 CLK 从 1 到 0 (CLK 下降沿)的时刻, 主FF内的信息传送到 Q

∴主从结构 RS-FF 是在CLK 下降沿 触发的FF



#### Q 是CLK 有效边沿到达之前的最后信息



#### § 5.2.2 主从 JK-FF



在主从RS-FF上引出两条反馈 线构成主从 JK-FF。

主从 JK-FF 是合格产品,无空翻,无状态不定

#### 功能描述

主从 JK-FF 在 CLK 下降沿触发。在  $\overline{S}_D = \overline{R}_D = 1$  条件下, CLK 下降沿到来之前,

若 
$$J=K=0$$
  $CLK$   $Q^{n+1}=Q^n$  若  $J\neq K$   $CLK$   $Q^{n+1}=J$   $Q^{n+1}=J$ 

不用考虑 Q'  $Q^n$  为有效边沿前的最后信息

#### 练习



#### § 5.2.3 触发器的直接输入



直接置位输入 (Set 1) 
$$\overline{S}_D$$
 强制 直接复位输入 (Set 0)  $\overline{R}_D$ 

$$\overline{R}_D = 0$$
,  $\overline{S}_D = 1$ ,  $Q = 0$   
 $\overline{S}_D = 0$ ,  $\overline{R}_D = 1$ ,  $Q = 1$ 

### 异步输入强制触发器的状态,绝对优先,与 J, K, CLK 等信号无关。

| $\overline{S}_D \overline{R}_D$ | $CLK J K Q^n$ | $Q^{n+1}$                             |
|---------------------------------|---------------|---------------------------------------|
| 0 0                             |               | 不允许                                   |
| 0 1                             | φφφφ          |                                       |
| 1 0                             | φφφφ          | $0$ $\overline{R}_D$ 直接置 $0$ (清 $0$ ) |
| 1 1                             |               | FF 工作                                 |

$$\begin{cases} \mathbf{Q}^{\mathbf{n+1}} = \mathbf{J}\mathbf{Q}^{\mathbf{n}} + \mathbf{K}\mathbf{Q}^{\mathbf{n}} \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

$$Q, J, \overline{S}_{\mathrm{D}} \rightarrow$$
 同一侧  $\overline{Q}, K, \overline{R}_{\mathrm{D}} \rightarrow$  同一侧





无 $\bar{S}_D$ , $\bar{R}_D$ 波形时, $\bar{S}_D = \bar{R}_D = 1$