The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Iowa State University

November 21, 2014

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Simulated data

The contenders
edgeR
ShrinkBayes

The problem

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Mock heterosis data

		Parent (1)				Pare	nt (2))	ı	Hybrid (3)			Tr	uth	
HPH (Feature 1	3	4	2	1	0	0	1	0	700	900	825	860		1
HPH (Feature 2	0	1	1	0	2	7	5	18	50	501	400	90		1
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123		0
LPH (Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7		1
														-	
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465		0

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

The workflow

imulated data

he contenders

dgeR

hrinkBayes

avSeq

The problem

The workflow

Simulated data

The contender

edgeR ShrinkBayes bavSeq

The contest

ROC (receiver operating characteristic) curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

The workflow

Simulated data

The contenders edgeR ShrinkBayes

Simulation workflow

- Simulate 30 datasets:
 - 10 datasets with 4 samples (libraries, columns, etc.) per group
 - ▶ 10 with 8 per group
 - ▶ 10 with 16 per group
- For each simulated dataset, test for heterosis with
 - empirical Bayes with STAN (Eric's method)
 - ▶ edgeR
 - baySeq
 - ▶ ShrinkBayes
- ► Compare methods with ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

i ne problem

The workflow

Simulated data

The contenders
edgeR
ShrinkBayes

Simulated data

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Simulated data

Apply edgeR to real data to get simulation parameters

Normalization factors

Main effects and dispersions

Parent (1)	Parent (2)	Hybrid (3)	Dispersion
$\mu_{1,1}$	$\mu_{1,2}$	$\mu_{1,3}$	ψ_1
$\mu_{2,1}$	$\mu_{2,2}$	$\mu_{2,3}$	ψ_2
$\mu_{27888,1}$	$\mu_{27888,2}$	$\mu_{27888,3}$	ψ_{27888}

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

I he problem

THE WOLKHOW

Simulated data

The contenders edgeR ShrinkBayes

Generating the data

▶ Does feature *f* truly have heterosis?

truth_f =
$$I(\mu_{f,3} > \max(\mu_{f,1}, \mu_{f,2}))$$
 or $\mu_{f,3} < \min(\mu_{f,1}, \mu_{f,2})$

► For a dataset with 4 libraries per group,

$$y_{f,i} \stackrel{\text{iid}}{\sim} NB \left(\exp \left(c_i + \mu_{f,t(i)} \right), \ \psi_f \right)$$

- \blacktriangleright t(i) is the group of library i.
- ▶ Resimulate to increase the number of libraries per group.
- Remove extremely low-count features.
- ► Take a random subset of 25000 features from the remaining ones.

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Simulated data

The contenders
edgeR
ShrinkBayes

Mock example data with 4 samples per treatment group

		Parent (1)				Pare	Parent (2)			Hybrid (3)			Truth	
HPH (Feature 1	3	4	2	1	0	0	1	0	700	900	825	860	1
HPH (Feature 2	0	1	1	0	2	7	5	18	50	501	400	90	1
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123	0
LPH (Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7	1
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465	0

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

....

Simulated data

he contenders

dgeR

BrinkBayes

avSea

The problem

The workflow

Simulated data

The contenders

edgeR ShrinkBaye: bavSeq

The contest

ROC (receiver operating characteristic) curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

THE WORKHOW

Simulated data

The contenders

eager ShrinkBayes bavSeq

The contest

ROC (receiver operating

edgeR

• Fit a loglinear model to estimate main effects $\mu_{f,t}$

- Feature f = 1, ..., 25000
- ▶ Treatment group t = 1 (parent), 2 (parent), 3 (hybrid)
- Likelihood ratio tests to get p-values $p_{f,1}$, $p_{f,2}$

$$H_{0,1}: \mu_{f,3} = \mu_{f,1}$$
 $H_{a,1}: \mu_{f,3} \neq \mu_{f,1}$
 $H_{0,2}: \mu_{f,3} = \mu_{f,2}$ $H_{a,2}: \mu_{f,3} \neq \mu_{f,2}$

Final p-value:

$$p_{f,\text{edgeR}} = \begin{cases} p_{f,1}/2 & \widehat{\mu}_{f,3} < \widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,1} \geq \widehat{\mu}_{f,2} \\ p_{f,2}/2 & \widehat{\mu}_{f,3} < \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,1} \text{ or } \widehat{\mu}_{f,3} > \widehat{\mu}_{f,2} \geq \widehat{\mu}_{f,1} \\ 1 & \widehat{\mu}_{f,1} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,2} \text{ or } \widehat{\mu}_{f,2} \leq \widehat{\mu}_{f,3} \leq \widehat{\mu}_{f,1} \end{cases}$$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

I he problem

.

simulated data

The contenders
edgeR
ShrinkBayes

- ▶ Built on inla (integrated nested Laplace approximation).
- empirical Bayes with a zero-inflated NB likelihood and normal priors.
- ▶ I reparameterize

$$\begin{split} \phi_f &= \frac{\mu_{f,1} + \mu_{f,2}}{2} \qquad \text{(parental mean)} \\ \alpha_f &= \frac{\mu_{f,2} - \mu_{f,1}}{2} \qquad \text{(half parental difference)} \\ \delta_f &= \mu_{f,3} - \frac{\mu_{f,1} + \mu_{f,2}}{2} \qquad \text{(hybrid effect)} \end{split}$$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

The contenders
edgeR
ShrinkBayes

 $\alpha_f = \text{ half parental difference}$ $\delta_f = \text{ hybrid effect}$

Use contrasts to calculate final posterior probabilities of heterosis:

$$p_{f,\mathtt{ShrinkBayes}} = \begin{cases} 0 & \left| \widehat{\delta}_f \right| < \left| \widehat{\alpha}_f \right|, \, \mathsf{o.w.:} \\ P(\delta_f + \alpha_f > 0 \mid \mathsf{data}) & \widehat{\delta}_f > -\widehat{\alpha}_f \\ P(\delta_f - \alpha_f > 0 \mid \mathsf{data}) & \widehat{\delta}_f > \widehat{\alpha}_f \\ P(\delta_f - \alpha_f < 0 \mid \mathsf{data}) & \widehat{\delta}_f < \widehat{\alpha}_f \\ P(\delta_f + \alpha_f < 0 \mid \mathsf{data}) & \widehat{\delta}_f < -\widehat{\alpha}_f \end{cases}$$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

Simulated data

The contenders
edgeR
ShrinkBayes

- ▶ Estimate main effects $\mu_{f,t}$ using edgeR.
- Calculate the posterior probability that each feature satisfies:

Model	Constraint
M_1	All $\mu_{f,t}$'s equal
M_2	$\mu_{f,1} = \mu_{f,2}$
M_3	$\mu_{f,1} = \mu_{f,3}$
M_4	$\mu_{f,2} = \mu_{f,3}$ All $\mu_{f,t}$'s distinct
M_5	All $\mu_{f,t}$'s distinct

Final posterior probabilities of heterosis:

$$p_{f, \text{baySeq}} = \begin{cases} 0 & \widehat{\mu}_{f, 1} \leq \widehat{\mu}_{f, 3} \leq \widehat{\mu}_{f, 2} \text{ or} \\ \widehat{\mu}_{f, 2} \leq \widehat{\mu}_{f, 3} \leq \widehat{\mu}_{f, 1} \end{cases}$$

$$P(M_2 \mid \text{data}) + P(M_5 \mid \text{data}) \quad \text{otherwise}$$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

i ne problem

ominulated data

edgeR ShrinkBayes baySeq

The problem

The workflow

Simulated data

The contender

edgeR ShrinkBayes baySeq

The contest

ROC (receiver operating characteristic) curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

THE WORKHOW

Simulated data

The contenders
edgeR
ShrinkBayes

The contest

ROC (receiver operating characteristic) curve: The results

- \triangleright N_{true} heterosis features, N_{false} null features.
- Results of testing each feature for heterosis (25000 columns here):

rank	0.802	0.935	0.539	0.001		0.500	0.603
truth	0	0	1	1		1	0

Sort table by p-value (or other binary classifier)

rank	0.000	0.001	0.005	0.006		0.901	1.000
truth	1	1	0	1		0	0

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

i ne problem

oimulated data

The contenders
edgeR
ShrinkBayes

▶ In practice, we would declare the lowest-p-value features to have heterosis.

rank	0.000	0.001	0.005	0.006	 0.901	1.000
truth	1	1	0	1	 0	0

▶ With 2 heterosis genes and 1 null gene,

$$FPR = \frac{1}{N_{false}}$$
 $TPR = \frac{2}{N_{true}}$

Repeat for multiple cutoffs to get multiple (FPR, TPR) pairs.

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric

.....

The problem

C'andread date

The contenders
edgeR
ShrinkBayes

Example ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

....

Simulated data

edgeR ShrinkBayes

Areas under ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Areas under ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

The problem

THE WOLKHOW

Simulated data

The contenders
edgeR
ShrinkBayes
baySeg