Learning Morphological Patterns with Neural Networks

Xiaomeng Ma

CUNY Graduate Center

Introduction

- English verb inflections have rule-governed items and exceptions: e.g. for V;PST
 - ▶ regular rule: + ed
 - ▶ double spell rule: prefer preferred
 - back ablaut rule: sing sang
 - vowel shortening rule: bleed bled, lead led
 - **>** ..
 - exceptions: go went, do did
- Learning Premise
 - 1. neural networks learn from printed data
 - 2. Not human learns from auditory data

Introduction

- Neural Networks can learn English inflection patterns (e.g. Kirov and Cotterell, 2018; Corkery et al., 2019; Calderone et al., 2021).
 Especially, character level transformer achieved good performance on morphology transductions (Wu et al., 2020).
- Remaining Questions:
 - 1. What kind(s) of patterns does the model learn?
 - 2. How much input does the model need to learn a pattern?
- Replication Wu et al. (2020)'s transformer model to answer these questions.

Dataset

■ CoNLL-SIGMORPHON Shared Task 2017

- 1. root(e.g. tar), inflection(e.g. tarred), type(e.g. V;PST)
- 2. training: english-train-high (10,000)
- 3. validating: english-dev (1,000)
- 4. testing: english-uncovered-text(1,000)

Added Columns:

- diff: Character level string differences: str(root) str(string)
 e.g. 'speak' 'speaking' = '-ing', 'take' 'took' = 'ake-ook'
- 2. rule: e.g. 'double spell', '+s'..
- 3. reg: Regular and Irregular

■ Example Data

root	infl	type	diff	rule	reg
show	shows	V;3;GS;PRS	-s	+s	Regular
hug	hugged	V;PST	-ged	double spell	Irregula

Dataset Description

Table 1: Summary of training tokens for each type

Experiment 2

Туре	Rule	Training tokens	Regular tokens	Regular %
V;3;SG;PRS	+s	2025	1842	91
V;PST	+ed	2016	817	41
V;V.PTCP;PRS	+ing	1959	949	48
V;V.PTCP;PST	+ed	1992	788	40
V;NFIN	Ø	2008	2008	100
Total		10,000	6394	64

Data Description

Table 2: Summary of tokens for different rules

Experiment 2

V;NFIN	2008 no change						
V;V.PTCP;PST	+d 862	+ed 788	double spell 154	y-ied 66	special 111		
V;V.PTCP;PRS	+ing 949	-e+ing 831	double spell 166	special 13			
V;PST	+d 856	+ed 817	double spell 135	y-ied 79	special 109		
V;3;SG;PRS	+s 1842	+es 103	y-ies 74	special 6			

Data Description

Introduction

00000000

Table 3: Summary of character-level differences of different types

Туре	Patterns	Patterns	Example
	Types	Token >3	Patterns
V;3;SG;PRS	7	3	-zes, -ses
V;PST	59	30	-ged, -ted
V;V.PTCP;PRS	20	13	ie-ying,-ling
V;V.PTCP;PST	62	32	-en, i-u
V;NFIN	Ø	32 -	en, r u

Patterns

Introduction

0000000

- 3 levels of patterns:
 - a) regular; b) rule-based patterns; c) character-level patterns

Past tense inflection as an example. Somewhat like exemplar abstraction process

■ What kind of patterns can the model learn?

- 1. character-level patterns:
 - Accuracy and pattern tokens should have a strong positive correlation
 - ► The model is not able to generalize patterns
- 2. rule-based patterns:
 - ► Are those rules the same as existing linguistic rules?
 - ▶ Does the model generate some new rules?
- 3. regular vs irregulars:
 - ► High accuracy on regular items, extremely low accuracy on irregular items
 - ▶ Model can only learn the regular rule (e.g. '+ed', '+ing') and won't produce other patterns

Model Details

- Model 1. All inflections transformation
 - 1. Training token: 10,000
 - Input: root + type, e.g. 'diy+V;3;SG;PRS', 'hug+V;PST'
 - 3. Ouput: inflection, e.g. 'diys'; 'hugged'
- Model 2. Each inflection's transformation
 - 1. Training tokens: \sim 2000 for each inflection
 - 2. Input: root, e.g 'hug'
 - 3. Output:inflection, e.g. for V;PST: 'hugged'

Model Details

- Differences between Model 1 and 2:
 - Model 1 sees some patterns across different tags in the training data, e.g. '+ed' exists for both V;PST and V;V.PTCP;PST
 - 2. Model 2 only sees the patterns in one type of inflection
- Shared Features:
 - 1. character-level tokenization
 - 2. embedding dimension: 32, latent space: 128
 - 3. attention heads: 4
 - 4. total parameters: 76,784
- Models are trained on GoogleColab using TensorFlow

Model Architecture

Transformer-based Encoder-Decoder model

picture credit: Lena Voita NLP Course

Table 4: Summary of regular and irregular items accuracy

	Model 1	l Accuracy		Model 2 Accuracy			
Туре	Total	Regular	Irregular	Total	Regular	Irregular	
V;PST	0.91	0.95	0.86	0.87	0.94	0.81	
V;V.PTCP;PST	0.84	0.95	0.76	0.83	0.96	0.73	
V;V.PTCP;PRS	0.90	0.89	0.91	0.92	0.98	0.86	
V;3;SG;PRS	0.95	0.96	0.92	0.88	0.91	0.64	
V;NFIN	0.97	0.97	Nan	0.98	0.98	Nan	
Overall	0.930	0.995	0.869				

- Model 1 generally has better accuracy in Irregulars
- The relatively high accuracy in irregulars suggest that the model learned more than general level of regularity

Results: Accuracy

Table 5: Summary of 3;SG;PRS accuracy

Experiment 2

V;3;SC	١	∕lode	Model 1						
rule	diff	✓	Х	Acc	1	X	Acc	train tokens	train ratios
+es	-es	10	7	0.59	16	1	0.94	103	5.09%
+s	-s	168	17	0.91	181	4	0.98	1842	90.96%
special	-ses	0	1	0.00	0	1	0	0	0.00%
y-ies	y-ies	6	1	0.86	7	1	0.88	74	3.65%

- Model 1 and 2 share the same patterns (since none of the differences is found in other types of inflection)
- Model 1 has better performance than Model 2
- It looks like the more patterns the model saw, the higher accuracy

Results: Accuracy

Table 6: Summary of V.PTCP;PRS Accuracy

V;V.PTCP;PRS		Model 2			Mod	lel 1			
rule	diff	✓	Х	Acc	1	х	Acc	train tokens	train ratios
regular	-ing	99	2	0.98	92	9	0.91	949	48.44%
e-ing	e-ing	84	0	1.00	84	0	1.00	831	42.42%
double spell	Ø	3	13	0.19	10	6	0.63	155	7.91%
	-bing	1	2	0.33	3	0	1.00	13	0.66%
	-ging	0	1	0.00	1	0	1.00	17	0.87%
	-ling	0	3	0.00	3	0	1.00	29	1.48%
	-ming	0	2	0.00	0	2	0.00	12	0.61%
	-ning	0	1	0.00	0	1	0.00	16	0.82%
	-ping	1	1	0.50	2	0	1.00	30	1.53%
	-ting	1	3	0.25	1	3	0.25	38	1.94%
special	e-ting	0	1	0.00	0	1	0.00	0	0.00%
Spearman	Acc-ratio	0.72	*		0.38	}			
Correlation	√-token	0.77	*		0.81	*			
	X -token	0.05	5		0.27				

Results: Basic Level Accuracy

V;V.PTCP;PST		Model 2						Model 1				
	1166				each		Ι,		total			
rule	diff	1	Х	Acc	train tokens	ratio	/	Х	Acc	train tokens	ratio	
regular	-ed	79	3	0.96	788	39.56%	78	4	0.95	1605	16.05%	
+d	-d	73	7	0.91	862	43.27%	77	3	0.96	1718	17.18%	
y-ied	y-ied	6	0	1.00	66	3.31%	5	1	0.83	145	1.45%	
double spell	Ø	2	8	0.20	104	5.22%	4	6	0.4	198	1.98%	
	-bed	1	1	0.50	9	0.45%	1	1	0.5	16	0.16%	
	-fed	0	1	0.00	0	0.00%	0	1	0	0	0.00%	
	-led	0	2	0.00	27	1.36%	1	1	0.5	47	0.47%	
	-ned	0	1	0.00	8	0.40%	0	1	0	20	0.20%	
	-ped	0	1	0.00	28	1.41%	1	0	1	54	0.54%	
	-red	1	1	0.50	12	0.60%	1	1	0.5	18	0.18%	
	-ted	0	1	0.00	20	1.00%	0	1	0	43	0.43%	
d-t	d-t	0	2	0.00	3	0.15%	0	2	0	7	0.07%	
+n	-n	0	1	0.00	19	0.95%	0	1	0	19	0.19%	
no change	-	0	2	0.00	11	0.55%	0	2	0	2035	20.35%	
special	ad-d	0	1	0.00	2	0.10%	0	1	0	4	0.04%	
special	eak-oken	0	1	0.00	1	0.05%	0	1	0	1	0.01%	
special	ear-orn	0	1	0.00	0	0.00%	0	1	0	0	0.00%	
special	ear-orne	0	1	0.00	0	0.00%	0	1	0	0	0.00%	
special	ep-pt	0	1	0.00	2	0.10%	0	1	0	2	0.02%	
special	ink-ought	0	1	0.00	2	0.10%	0	1	0	4	0.04%	
special	y-id	0	1	0.00	4	0.20%	0	1	0	10	0.10%	
Correlation	Acc-ratio	0.6**					0.64	**				
	√-token	0.61*	*				0.67	***				
	X -token	0.34					0.46	*				

Results: Accuracy

V;PST				Mod	el 2				Mode	el 1	
rule	diff	/	х	Acc	each train token	ratio	/	х	Acc	total train token	ratio
regular	-ed	98	6	0.94	817	40.53%	99	5	0.95	1605	16.05%
y-ied	y-ied	8	0	1.00	79	3.92%	8	0	1.00	145	1.45%
+d	-d	86	3	0.97	856	42.46%	89	0	1.00	1718	0.43%
double spell	Ø	1	10	0.09	93	4.61%	5	6	0.45	195	17.18%
	-bed	0	1	0.00	7	0.35%	1	0	1.00	16	1.95%
	-ded	1	0	1.00	9	0.45%	1	0	1.00	20	0.16%
	-ged	0	1	0.00	18	0.89%	1	0	1.00	40	0.20%
	-ked	0	1	0.00	4	0.20%	1	0	1.00	9	0.40%
	-led	0	5	0.00	20	0.99%	0	5	0.00	47	0.09%
	-ned	0	1	0.00	12	0.60%	1	0	1.00	20	0.47%
	-ted	0	1	0.00	23	1.14%	0	1	0.00	43	0.20%
no change	-	0	3	0.00	14	0.69%	0	3	0.00	2035	20.35%
special	a-o	0	1	0.00	1	0.05%	0	1	0.00	1	0.01%
special	e-o	0	1	0.00	2	0.10%	0	1	0.00	2	0.02%
special	ed-d	0	1	0.00	7	0.35%	1	0	1.00	8	0.08%
special	ee-aw	0	1	0.00	1	0.05%	0	1	0.00	1	0.01%
special	i-o	0	2	0.00	12	0.60%	0	2	0.00	15	0.15%
special	ind-ound	0	1	0.00	2	0.10%	0	1	0.00	4	0.04%
Correlation	Acc-ratio	0.53*					0.23				
	√-token	0.60*					0.52*	*			
	X -token	0.39					0.21				

Interim Results

- What type of patterns did the model learn?
 - 1. The learned patterns are more detailed than regular and more general than character-level patterns.
 - Not all linguistic rule-based patterns learned: e.g. double spell rule that appears in V;V.PTCP;PRS (3/16), V;V.PTCP;PST(2/10), V;PST(1/11)
 - 3. If not linguistic rules, what rules did model use to generate patterns?
- The relationship between train tokens and accuracy:
 - Generally, there is a strong positive correlation between accuracy and train ratio and correct tokens with train tokens.
 - 2. Model is also able to learn with few train tokens, e.g. y-ies/y-ied has high accuracy with only \sim 60-80 train tokens

Error Pattern Analysis

- Evaluating generation errors (Gorman et al., 2019):
 - Error Types
 - 1. Target errors: consists of cases where the gold data is incorrect
 - 2. Silly errors: 'bizarre' errors which defy purely linguistic characterization (e.g. 'membled' for 'mailed')
 - 3. Allomorphy errors: misapplication of existing allomorphic patterns
 - Spelling errors: forms that do not follow orthographic conventions but are otherwise correct
 - ▶ Tasks
 - Evaluating models: 2 Encoder-Decoder models: A.UE-LMU-I and B.CLUZH-7 (top 2 systems)
 - Dataset: 52 languages (including English) in CoNLLL-SIGMORPHON 2017 Shared Task dataset
 - ► Results for English

Error	Target	Silly		Allo	morphy	Spelling		
Model		Α	В	Α	В	Α	В	
English	3	0	0	18	18	7	11	

■ Spelling errors: 0

■ Target errors: 3

■ Silly errors:

pattern	type	M.1	M.2	Example
'eeeee/iiiii'	V;V.PTCP;PST, V;PST,	7	10	weteeeeee
altering letter	V;V.PTCP;PST V.PST V;3;SG;PRS	2	6	rrquisitions
total		9	16	

■ Allormorphy errors:

pattern	type	M.1	M.2	Example
	V;V.PTCP;PST;			
no change	V;PST;	2	13	opt, dis
	V;3;SG;PRS			
i	V;V.PTCP;PST;	1	5	overjoied;
y-i	V;PST	ı	5	stereotiped
+ed	V;V.PTCP;PST	2	2	miscomed
+d	V;PST	3	1	enwrited
+5	V;3;SG;PRS	1	0	dis-diss
total		9	21	

Error Analysis

■ Creative Pattern Errors:

Pattern	M.1	M.2	Example
V;V.PTCP;PRS			
double last letter + ng	8	1	slumppng
+nng	1	9	bownng
+iing	8	14	swimiing
V;V.PTCP;PST & V;PST			
double last letter + d	12	10	dieselld, drooppd
w+nd	2	1	vownd
+eed	5	7	renoveleed, unhateed
V;3;SG;PRS			
delete -c/d			flood - flooos,
double letter before -c/d	0	14	rind - rinns,
+s or +es			overpunch - overpunnhes
-th +e	3	0	outworthe
-ch +ss	0	2	bachss

Conclusion

- Comparing to previous models, Model 1 and Model 2 made more silly errors. Model 1 made less allomorphy errors.
- Model 1 and 2 also made creative pattern errors. Most of them associated with double spelling rule in English.
- Model 1 and 2 learned some existing linguistic patterns as well as creating new non-linguistic patterns.

■ How many input does the model need to learn a pattern?

- 1. Pattern token sensitive: is sensitive to the absolute number of pattern tokens regardless of pattern ratio.
 - e.g. A pattern can be learned based on 5 regular items out of total 10 items. It can also be learned based on 5 out of 15 or 20 total items.

Experiment 2

- Pattern ratio sensitive: is sensitive to the ratio of patterns in total items.
 - e.g. A pattern can be learned when patterns ratio is over 50%. If there are 10 items, 5 regular items are needed. If there are 100 items, 50 regular items are needed.
- 3. Interaction of pattern token and ratio

- Since Model 1 and 2 mostly failed to learn double spell rule, more double spell inflections were added to V;PST and V:V.PTCP:PRS types
- Added data are from CELEX database
- Enhanced 20: adding 20 items for each character-level pattern. e.g. 20 '-ked', 20 '-bed', 20 '-ling', 20 '-ming'...
- Enhanced 50: adding 50 items for each character-level pattern
- Regular pattern tokens remain the same, but ratio drops
- Double spell pattern tokens and ratio increase

Data Description

	V;PST	V;V.PTCP;PRS
Model 2		
Regular Token	817	949
Train Token	2016	1959
Regular %	40.53%	48.44%
double spell	134	166
double spell%	6.65%	8.47%
Enhanced 20		
Training	2182	2146
Regular %	37.44%	44.22%
double spell	301	353
double spell%	13.79%	16.45%
Enhanced 50		
Training	2346	2318
Regular %	34.83%	40.94%
double spell	465	525
double spell%	19.82%	22.65%

■ Enhanced 20 and Enhanced 50 are trained on the same model as Model 2

References

Results: V;PST Accuracy

■ double spell: ↑, regular: ↓, -d: –

Model 2

Model 2						
pattern	diff	/	Х	Acc	train token	train ratio
regular	-ed	98	6	0.94	817	40.53%
-d	-d	86	3	0.97	856	42.46%
double spell		1	10	0.09	93	4.61%
	-bed	0	1	0.00	7	0.35%
	-ded	1	0	1.00	9	0.45%
	-ged	0	1	0.00	18	0.89%
	-ked	0	1	0.00	4	0.20%
	-led	0	5	0.00	20	0.99%
	-ned	0	1	0.00	12	0.60%
	-ted	0	1	0.00	23	1.14%
Enhance 20						
pattern	diff	✓	Х	Acc	train token	train ratio
regular	-ed	72	32	0.69	817	37.44%
-d	-d	87	2	0.98	856	39.23%
double spell		4	7	0.36	77	3.53%
	-ged	1	0	1.00	38	1.74%
	-ked	1	0	1.00	7	0.32%
	-ned	1	0	1.00	32	1.47%
Enhance 50						
pattern	diff	✓	Х	Acc	train token	train ratio
regular	-ed	43	61	0.41	817	34.83%
-d	-d	85	4	0.96	856	36.49%
double spell		3	8	0.27	157	6.69%
	-ded	0	1	0.00	9	0.38%
	-ged	1	0	1.00	68	2.90%
	-ked	1	0	1.00	7	0.30%
	-ted	1	0	1.00	73	3.11%

References

Results: V; V.PTCP; PRS Accuracy

■ double spell: -, regular: \downarrow , e-ing: -

Model 2						
rule	diff	√	Х	Acc	train tokens	train ratios
regular	-ing	99	2	0.98	949	48.44%
e-ing	e-ing	84	0	1.00	831	42.42%
double spell		3	13	0.19	155	7.91%
	-bing	1	2	0.33	13	0.66%
	-ging	0	1	0.00	17	0.87%
	-ling	0	3	0.00	29	1.48%
	-ming	0	2	0.00	12	0.61%
	-ning	0	1	0.00	16	0.82%
	-ping	1	1	0.50	30	1.53%
	-ting	1	3	0.25	38	1.94%
special	e-ting	0	1	0.00	0	0.00%
Enhance 20						
rule	diff	✓	Х	Acc	train tokens	train ratios
regular	-ing	52	49	0.51	949	44.22%
e-ing	e-ing	81	3	0.96	831	38.72%
double spell		3	13	0.19	175	8.15%
	-bing	0	3	0.00	33	1.54%
	-ling	1	2	0.33	29	1.35%
	-ming	1	1	0.50	12	0.56%
Enhance 50						
rule	diff	✓	Х	Acc	train tokens	train ratios
regular	-ing	53	48	0.52	949	40.94%
e-ing	e-ing	79	5	0.94	831	35.85%
double spell		3	13	0.19	334	14.41%
	-bing	3	0	1.00	58	2.50%
	-ling	2	1	0.67	70	3.02%
			4	0.50	00	4 / 40/
	-ming	1	1	0.50	38	1.64%
	-ming -ping	1 1	1	0.50	38 80	3.45%

Interim Results

- Evidence for Pattern Token sensitive:
 - With increased double spell patterns, double spell accuracy increases in V;PST
 - -d and -e+ing patterns remains about the same
- Evidence for Pattern Ratio sensitive:
 - Regular accuracy pattern tokens remained the same, but accuracy dropped significantly
 - ▶ Double spell accuracy remains the same for V;V.PTCP;PRS
- It's likely to be the interaction of pattern token and ratio

Error Analysis

	Enhanced 20	Enhanced 50	Model 2
V;V.PTCP;PRS			
double last letter + ng	49	48	1
+iing	1	4	14
triple last letter + ng	16	5	Ø
V;PST			
double last letter + d	19	46	10
+eed	1	0	7
triple last letter + d	6	7	Ø

- 1. +iing and +eed reduced, but double spell +ng/+d significantly increased
- 2. New pattern: Triple spell, e.g. whitennng, yodellld
- 3. It seems like the model has trouble processing vowels in patterns

Conclusion

- By increasing double spell patterns in training data, the double spell rule was not enhanced.
- The creative double spell last letter '+ng'/'+d' rule got significantly enhanced.
- Even created a new pattern: triple spell
- The double spell accuracy slightly increased or remained the same, but the regular accuracy dropped drastically.
- The '-d' and '-e+ing' pattern remained the same.
- These evidence suggest model might have trouble processing vowel in patterns.

- What kind(s) of patterns did model learn?
 - 1. Some existing linguistic patterns
 - The model creates robust new patterns. Increasing training pattern tokens enhanced the new patterns but not necessarily the targeted linguistic pattern.
- How many input does the model need to learn a pattern?
 - 1. The model is sensitive to both pattern token and pattern ratio.
 - 2. Increasing pattern tokens do enhance pattern learning, but not necessarily the target pattern.
- More questions:
 - 1. How did the model come up with triple spell rule?
 - 2. Why did the model have trouble processing vowel in patterns?

References

- Calderone, B., Hathout, N., and Bonami, O. (2021). Not quite there yet: Combining analogical patterns and encoder-decoder networks for cognitively plausible inflection. *arXiv preprint arXiv:2108.03968*.
- Corkery, M., Matusevych, Y., and Goldwater, S. (2019). Are we there yet? encoder-decoder neural networks as cognitive models of english past tense inflection. *arXiv preprint arXiv:1906.01280*.
- Gorman, K., McCarthy, A. D., Cotterell, R., Vylomova, E., Silfverberg, M., Markowska, M., et al. (2019). Weird inflects but ok: Making sense of morphological generation errors. In CoNLL 2019-23rd Conference on Computational Natural Language Learning, Proceedings of the Conference. The Association for Computational Linguistics.
- Kirov, C. and Cotterell, R. (2018). Recurrent neural networks in linguistic theory: Revisiting pinker and prince (1988) and the past tense debate. Transactions of the Association for Computational Linguistics, 6:651–665.
- Wu, S., Cotterell, R., and Hulden, M. (2020). Applying the transformer to character-level transduction. *arXiv preprint arXiv:*2005.10213.