Employee Salary Prediction System

Meet The Query Troop

IT22109712 - Fonseka W S M IT22071934 - Rajana H T R

1T22071316 - Shahaam M

IT22891204 - Wickramaratne IT22918192 - Rathnayake S A J S de Z

<u>Background</u>

- · Salary prediction is essential for fair compensation and workforce planning.
- Analyzing data on factors such as age and education allows us to predict salary outcomes.
- Accurate predictions enable effective compensation strategies and inform employee expectations.
- Data-driven insights support informed decisions for both employers and employees in the evolving job market.

Technologies

Sci-kit Learn

NumPy

Matplotlib

Pandas

Flask

HTML

Bootstrap

Target & Business Goal

Target

 To create a precise predictive analytics model for forecasting salary outcomes based on employee attributes.

Business Goal

 To enhance compensation strategies and improve employee satisfaction, contributing to talent retention and overall business growth.

Data preprocessing

Handling Null Values

1)find null values

```
df.isnull().sum()
age
workclass
                  1836
fnlwgt
education
education num
marital_status
occupation
                  1843
relationship
race
sex
capital gain
capital_loss
hours_per_week
native_country
                   584
income
dtype: int64
```

2) Filing missed values with mode

```
111]: for i in ["workclass", "occupation", "native country"]:
          df[i].fillna(df[i].mode()[0], inplace=True)
113]: df.isnull().sum()
113]: age
      workclass
      fnlwgt
      education
      education num
      marital status
      occupation
      relationship
      race
      sex
      capital gain
      capital loss
      hours per week
      native country
      income
      dtype: int64
```


Handling Outliers

Data Transform

• We grouped the following features into unique categories to reduce the number of unique entries in the dataset: education, work class, marital status, occupation, race, relationship, and native country.

```
In [77]: # Strip Leading/trailing spaces from the 'education' column
         df['education'] = df['education'].str.strip()
         # Apply the function to group certain education levels under 'Othe
         def add education(inpt):
             if inpt in ['10th', '7th-8th', 'Prof-school', '9th', '12th',
                 return 'Other'
             else:
                 return inpt
         # Apply the function
         df['education'] = df['education'].apply(add_education)
         # Check the value counts
         print(df['education'].value counts())
         education
         HS-grad
                         10501
         Some-college
                          7291
         Bachelors
                          5355
         Other
                          4067
                          1723
         Masters
         Assoc-voc
                          1382
         11th
                          1175
                          1067
         Assoc-acdm
         Name: count, dtype: int64
```

```
In [79]: df['workclass'].value counts()
Out[79]: workclass
         Private
                              22696
         Self-emp-not-inc
                               2541
         Local-gov
                               2093
         State-gov
                               1298
         Self-emp-inc
                               1116
         Federal-gov
                                960
         Without-pay
                                 14
         Never-worked
         Name: count, dtype: int64
```


Encoding Categorical Features

lf.l	.head()									
	age	hours_per_week	workclass_Government	workclass_Other	workclass_Private	workclass_Self Employeed	education_11th	education_Assoc- acdm	education_Assoc- voc	edi
0	39	40	True	False	False	False	False	False	False	
1	50	13	False	False	False	True	False	False	False	
2	38	40	False	False	True	False	False	False	False	
3	53	40	False	False	True	False	True	False	False	
4	28	40	False	False	True	False	False	False	False	

Correlation Matrix

Balance the Dataset

Model Implementation

Model Implementation

- 1. We used five different models here to predict the customer churn or not.
- Linear Regression
- Random Forest Decision Tree
- Classification
- Naïve Bayes Classification
- Support Vector Classification
- 2. The Random Forest Model was selected as the most effective in terms of predictive performance.

Improving the Accuracy

Improving best model by hyperparameter tuning

Final Product Employee Salary Prediction System

<u>Challenges</u>

- Poor data quality can result in inaccurate salary predictions.
- Certain groups may be underrepresented, causing class imbalance.
- Electing the right machine learning model is essential for accurate predictions.

Solutions

- Clean and validate data for accuracy.
- Apply SMOTE to balance classes.
- Experiment with models like logistic regression and random forests.
- Select the model with the best performance.

Further implementations and developing goals

- 1. Modify the system to position it as a marketable product.
- 2. Develop a product tailored to the Sri Lankan job market.
- 3. Ensure the system addresses the unique dynamics of rapid salary fluctuations in various sectors.

THANK YOU!