Car Price Prediction using RANDOM FOREST

```
In [1]:
```

```
import pandas as pd
```

Load Dataset from Local Directory

```
In [2]:
```

```
from google.colab import files
uploaded = files.upload()
```

Choose File

No file selected

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving Dataset.csv to Dataset.csv

Load Dataset

```
In [5]:
```

```
dataset = pd.read_csv('Dataset.csv')
dataset = dataset.drop(['car_ID'], axis = 1)
```

Summarize Dataset

In [6]:

3

4

```
print(dataset.shape)
print(dataset.head(5))
(205, 25)
  symboling
                            CarName fueltype ... citympg highwaympg
                                                                    price
                 alfa-romero giulia gas ...
                                                   21
                                                              27 13495.0
0
         3
1
         3
                alfa-romero stelvio
                                                    21
                                                              27 16500.0
                                            . . .
                                        gas
                                                              26 16500.0
2
         1 alfa-romero Quadrifoglio
                                                    19
                                            . . .
                                       gas
```

gas

gas

. . .

. . .

audi 100 ls

audi 1001s

30 13950.0

22 17450.0

24

18

[5 rows x 25 columns]

2

2

Splitting Dataset into X & Y

This X contains Numerical & Text Dataset

```
In [7]:
```

```
Xdata = dataset.drop('price', axis = 'columns')
numericalCols = Xdata.select_dtypes(exclude = ['object']).columns
X = Xdata[numericalCols]
X
```

Out[7]:

	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	compressionratio	horse
0	3	88.6	168.8	64.1	48.8	2548	130	3.47	2.68	9.0	
1	3	88.6	168.8	64.1	48.8	2548	130	3.47	2.68	9.0	
2	1	94.5	171.2	65.5	52.4	2823	152	2.68	3.47	9.0	
•	a	nn o	176 6	66.0	EA 9	0007	100	2 10	2 40	10.0	

	symboling 2	wheelbase	carlength	carwidth	carheight 54.3	curbweight 2824	enginesize	boreratio	stroke 3.40	compressionratio	horse
200	-1	109.1	188.8	68.9	55.5	2952	141	3.78	3.15	9.5	
201	-1	109.1	188.8	68.8	55.5	3049	141	3.78	3.15	8.7	
202	-1	109.1	188.8	68.9	55.5	3012	173	3.58	2.87	8.8	
203	-1	109.1	188.8	68.9	55.5	3217	145	3.01	3.40	23.0	
204	-1	109.1	188.8	68.9	55.5	3062	141	3.78	3.15	9.5	

205 rows × 14 columns

```
4
```

In [8]:

```
Y = dataset['price']
Y
```

Out[8]:

```
0
       13495.0
1
       16500.0
2
      16500.0
3
      13950.0
4
       17450.0
       . . .
200
       16845.0
201
       19045.0
202
       21485.0
203
       22470.0
204
       22625.0
Name: price, Length: 205, dtype: float64
```

Scaling the Independent Variables (Features)

In [11]:

```
from sklearn.preprocessing import scale
cols = X.columns
X = pd.DataFrame(scale(X))
X.columns = cols
X
```

Out[11]:

	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	compressionratio	ho
0	1.743470	-1.690772	-0.426521	0.844782	-2.020417	-0.014566	0.074449	0.519071	1.839377	-0.288349	
1	1.743470	-1.690772	-0.426521	0.844782	-2.020417	-0.014566	0.074449	0.519071	1.839377	-0.288349	
2	0.133509	-0.708596	-0.231513	0.190566	-0.543527	0.514882	0.604046	2.404880	0.685946	-0.288349	
3	0.938490	0.173698	0.207256	0.136542	0.235942	-0.420797	-0.431076	- 0.517266	0.462183	-0.035973	
4	0.938490	0.107110	0.207256	0.230001	0.235942	0.516807	0.218885	- 0.517266	0.462183	-0.540725	
200	-1.476452	1.721873	1.198549	1.398245	0.728239	0.763241	0.339248	1.666445	0.336970	-0.162161	
201	-1.476452	1.721873	1.198549	1.351515	0.728239	0.949992	0.339248	1.666445	0.336970	-0.364062	
202	-1.476452	1.721873	1.198549	1.398245	0.728239	0.878757	1.109571	0.926204	1.232021	-0.338824	

```
        symboling 203
        wheelbase -1.476452
        carlength 1.721873
        carwidth 1.398245
        carheight 0.728239
        curbweight 1.273437
        enginesize 0.435538
        boreratio 0.462183
        stroke 0.462183
        compressionratio 0.462183
        hours

        204
        -1.476452
        1.721873
        1.198549
        1.398245
        0.728239
        0.975021
        0.339248
        1.666445
        0.90075
        -0.162161
```

205 rows × 14 columns

.....**F**

0.336970

Spliting Dataset into Train & Test

```
In [12]:
```

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.20, random_state = 0)
```

Traing using RANDOM FOREST

In [13]:

```
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
model.fit(x_train, y_train)
```

Out[13]:

Evaluating Model

In [15]:

```
ypred = model.predict(x_test)

from sklearn.metrics import r2_score
r2score = r2_score(y_test, ypred)
print("R2Score", r2score*100)
```

R2Score 90.67976965632458