Методические указания к выполнению расчётно-графической работы по теме

«Производная и дифференциал»

Описание работы

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета и его защите (порядок см. ниже). Сформированные команды сами выбирают себе номер от 1 до 8 так, чтобы у каждой команды он был уникальный.

Требования

К выполнению заданий – в работе должны быть:

- 1) поставлены требуемые задачи;
- 2) представлены в логической последовательности основные этапы исследования или решения;
- 3) указаны используемые теоретические положения и методы;
- 4) получены точные численные результаты и построены требуемые графические изображения.

К содержанию отчета — отчет выполняется в электронном виде (текстовый документ или презентация; для презентации в MS Power Point используется шаблон Университета ИТМО: ИСУ → полезные ссылки → корпоративная стилистика → презентации (внизу страницы)). должен содержать:

- 1) титульный лист/слайд (название дисциплины, учебный год, название РГР, ФИ исполнителей, номера групп, ФИ преподавателя, ФИ ментора (если у преподавателя есть ментор), дата, место выполнения);
- 2) условия всех заданий (условие каждого задания перед его решением);
- 3) основные этапы решения (исследования) каждой задачи, его теоретическое обоснование, численные результаты;
- 4) графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/, Geogebra: https://www.geogebra.org/ или других);
- 5) выводы;
- 6) оценочный лист (вклад каждого исполнителя оценивается всей командой по шкале от 0 до 100% баллов).

К оформлению отчета:

- 1) Страницы и слайды следует пронумеровать (на титульной странице/слайде номер не ставится).
- 2) Текст представляется полностью в цифровом виде. Не допускается вставка фото или сканов текста, а также скриншотов электронного текста.
- 3) Все формулы набираются в редакторе формул. Не допускается набор формул текстом (например, $f(x)=3*x^2$), а также вставка фото или сканов формул, однако допускается вставка скриншотов электронных формул (если ни один редактор формул не доступен). Про редакторы формул:
 - а. в MS Office есть встроенный редактор формул;
 - b. в MS Office также есть скачиваемая надстройка MathType для набора формул;
 - с. Google-документы и Open Office имеют встроенные редакторы формул;
 - d. в LaTeX встроен набор формул;
 - e. можно воспользоваться бесплатным сервисом набора формул https://editor.codecogs.com/ и скачать формулу в виде изображения;
 - f. или воспользоваться математическим пакетом (MathCAD, Wolfram Mathematica и др.) или сайтом Wolfram Alpha и сделать оттуда скриншоты формул.

Защита работ

Порядок защиты РГР определяется преподавателем практики.

Задание 1. Дифференциал

Дана задача. Проведите исследование:

- 1) Составьте математическую модель задачи: введите обозначения, выпишите данные, составьте уравнение (систему уравнений), содержащее неизвестное.
- 2) Решите задачу аналитически, применяя понятие дифференциала и приближая точное изменение её линейной частью.
- 3) Сделайте графическую иллюстрацию к решению задачи. Обратите внимание, чтобы график отражал данные физически корректно. Сравните его с аналитическим решением.
- 4) Запишите ответ.

4.

5.

№ команды	Задача
1.	На сколько изменится объём шара, если его радиус изменится на величину ΔR ? С какой относительной погрешностью допустимо измерить радиус шара, чтобы его объём можно было определить с точностью до одного процента?
2.	Вычислите приближённо площадь кругового кольца с внутренним радиусом R и шириной ΔR .
3.	Толстостенный цилиндр (т.е. фигура образованная двумя концентрическими цилиндрами одинаковой длины) имеет прецизионную длину $L=15$ см. Внешний радиус $R=5$ см, а средний внутренний $r=1$ см, при этом внутренние стенки имеют равномерную конусность, т.е. их угол с секущей плоскостью симметрии составляет $(90\pm1)^{\circ}$. Вычислите абсолютную и относительную погрешности при вычислении объема фигуры.

Нахождение периода колебания математического маятника при рассмотрении больших отклонений груза от начальной точки становится трудной в вычислительном плане задачей. Для больших отклонений период становится зависимым от угла начального положения маятника относительно нижней точки и во втором порядке может быть выражен как:

$$T(\theta) = \frac{T_0}{\sqrt{\cos(\theta/2)}},$$

где $T_0 = \pi \sqrt{l/g}$ — период малых колебаний математического маятника, l=10 см — длина маятника, g=981 см/с 2 — ускорение свободного падения, $\theta=(10\pm1)^{\rm o}$ — угол начального положения маятника относительно нижней точки.

Найдите абсолютную и относительную погрешности при экспериментальном измерении периода маятника с заданными параметрами. Объясните поведение $T(\theta)$ при $\theta \to \pi$.

Нахождение периода колебания математического маятника при рассмотрении больших отклонений груза от начальной точки становится трудной в вычислительном плане задачей. Для больших отклонений период становится зависимым от угла начального положения маятника относительно нижней точки и во втором порядке может быть выражен как:

$$T(\theta) = T_0 \left(\frac{\sin \theta}{\theta}\right)^{-3/8},$$

где $T_0=\pi\sqrt{l/g}$ — период малых колебаний математического маятника, l=15 см — длина маятника, g=981 см/с 2 — ускорение свободного падения, $\theta=(7\pm1)^{\rm o}$ — угол начального положения маятника относительно нижней точки.

Найдите абсолютную и относительную погрешности при экспериментальном измерении периода маятника с заданными параметрами. Объясните поведение $T(\theta)$ при $\theta \to \pi$.

- Ток I определяется по тангенс-гальванометру по формуле $I = c \cdot \operatorname{tg} \varphi$. Пусть $d\varphi$ ошибка, допущенная при отсчёте угла φ . Найдите абсолютную и относительную погрешности при определении I. При каком φ относительная погрешность будет минимальной?
- По данному расстоянию d светящейся точки от оптического центра двояковыпуклого стекла может быть вычислено расстояние f её изображения 7. согласно формуле 1/d+1/f=1/F, где F постоянная для данного стекла и данного сорта лучей. Как влияет погрешность в измерении d на погрешность в вычислении f?
- 8. Длина телеграфного провода $s=2b\bigg(1+\frac{2f^2}{3b^2}\bigg)$, где 2b расстояние между когда провод от нагревания увеличится на ds?

Задание 2. Наибольшее и наименьшее значения функции

Дана задача. Проведите исследование:

- 1) Составьте математическую модель задачи: введите обозначения, выпишите данные, составьте уравнение (систему уравнений), содержащее неизвестное.
- 2) Решите задачу аналитически, применяя необходимое и достаточное условия экстремума.
- 3) Сделайте графическую иллюстрацию к решению задачи. Сверьтесь с аналитическим решением.
- 4) Запишите ответ.

№ команды	Задача				
1.	Проектируется канал оросительной системы с прямоугольным сечением, равным 6,5 кв. метров. При каких линейных размерах сечения на облицовку стенок канала пойдет наименьшее количество материала?				
2.	Из куска металла, ограниченного линиями $y=x$, $x=12$, $y=0$ требуется выпилить деталь прямоугольной формы с наибольшей площадью.				
3.	Расходы на топливо для топки парохода пропорциональны кубу его скорости. Известно, что при скорости в 10 км/ч расходы на топливо составляют 30 руб. в час, остальные же расходы (не зависящие от скорости) составляют 480 руб. в час. При какой скорости парохода общая сумма расходов на 1 км пути будет наименьшей? Какова будет при этом общая сумма расходов в час?				
4.	По результатам агрономического опыта была установлена квадратичная зависимость между среднесуточной температурой, при которой выращивалась пшеница нового сорта, и ее урожайностью. Результаты опыта представлены в таблице. Найдите оптимальную температуру, которая обеспечит максимальный урожай.				
	Температура, °С	14	16	22	
	Урожайность, кг/м ²	0,91	1,06	0,88	
5.	Тело представляет собой прямой круговой цилиндр, завершённый сверху полушаром. При каких линейных размерах это тело будет иметь наименьшую полную поверхность, если его объем равен V?				
6.	Предположим, что эпидемия распространяется среди населения по квадратичному закону. Статистика числа заболевших приведена в таблице. Найдите скорость изменения числа заболевших и в какое время эпидемия пойдет на спад.				
	Время, недели	0	5	10	
	Число заболевших	0	5250	9000	
	Три пункта A , B и C расположены не на одной прямой; $\angle ABC = 60^{\circ}$. Из точки A				

- Три пункта A, B и C расположены не на одной прямой; $\angle ABC = 60^\circ$. Из точки A выходит автомобиль, одновременно из точки B поезд. Автомобиль движется по направлению к B со скоростью 80 км/ч, поезд по направлению к C со скоростью 50 км/ч. В какой момент времени (от начала движения) расстояние между поездом и автомобилем будет наименьшим, если AB = 200 км?
- От канала шириной 2 м под прямым углом отходит канал шириной 4 м. Стенки 8. каналов прямолинейные. Найдите наибольшую длину бревна l, которое можно сплавлять по этим каналам из одного в другой.

Задание 3. Исследование функции

Даны функции f(x) и g(x). Проведите поочерёдно их полные исследования:

- 1) Найдите область определения функции.
- 2) Проверьте, является ли функция чётной (нечётной), а также периодической, и укажите, как эти свойства влияют на вид графика функции.
- 3) Исследуйте функцию на нулевые значения и найдите промежутки ее знакопостоянства.
- 4) Исследуйте функцию с помощью первой производной: найдите интервалы монотонности и экстремумы функции.
- 5) Исследуйте функцию с помощью второй производной: найдите интервалы выпуклости (вогнутости) и точки перегиба функции.
- 6) Проверьте наличие вертикальных, горизонтальных и наклонных асимптот графика функции.
- 7) Найдите точки пересечения графика с координатными осями и (при необходимости) найдите значения функции в некоторых дополнительных точках.
- 8) Постройте эскиз графика на основе проделанного исследования (от руки на листе бумаги скан листа бумаги в хорошем качестве нужно вставить в отчёт). Отметьте на графике все результаты исследования: формулу функции, асимптоты и их уравнения, экстремумы и точки экстремума, перегибы и точки перегиба, точки пересечения графика с координатными осями.

№ команды	f(x)	g(x)
1.	$f(x) = \frac{x^3 + 4}{x^2}$	$g(x) = 5x \cdot \sqrt[3]{\left(x-1\right)^2}$
2.	$f(x) = \frac{4x^3}{\left(1 - 2x\right)^2}$	$g(x) = 2x - \sin\frac{x}{2}$
3.	$f(x) = \frac{x+1}{x^2 + 2x - 3}$	$g(x) = \sqrt[3]{1 - \cos x}$
4.	$f(x) = \left(\frac{x+2}{x-3}\right)^3$	$g(x) = \ln(\sin x) + \sin x$
5.	$f(x) = \frac{\left(x^2 - 5\right)x}{5 - 3x^2}$	$g(x) = \sqrt[3]{(x+1)(x-3)^2}$
6.	$f(x) = \frac{2x^3 - 3x + 1}{x^3}$	$g(x) = \sqrt[3]{8 - x^3}$
7.	$f(x) = \frac{x^2 + 2x - 7}{x^2 + 2x - 3}$	$g(x) = \frac{(x+2)^{2/3}}{x-1}$
8.	$f(x) = \frac{2x^3 - 5x^2 + 14x - 6}{4x^2}$	$g(x) = \frac{1}{2} e^{\sqrt{2}\cos x}$