Shortest Path Algorithms

Jaehyun Park

CS 97SI Stanford University

June 29, 2015

Shortest Path Problem

- ▶ Input: a weighted graph G = (V, E)
 - The edges can be directed or not
 - Sometimes, we allow negative edge weights
 - Note: use BFS for unweighted graphs
- ▶ Output: the path between two given nodes *u* and *v* that minimizes the total weight (or cost, length)
 - Sometimes, we want to compute all-pair shortest paths
 - Sometimes, we want to compute shortest paths from \boldsymbol{u} to all other nodes

Outline

Floyd-Warshall Algorithm

Dijkstra's Algorithm

Floyd-Warshall Algorithm

- ightharpoonup Given a directed weighted graph G
- $lackbox{ Outputs a matrix } D$ where d_{ij} is the shortest distance from node i to j
- Can detect a negative-weight cycle
- ▶ Runs in $\Theta(n^3)$ time
- Extremely easy to code
 - Coding time less than a few minutes

Floyd-Warshall Pseudocode

- ▶ Initialize D as the given cost matrix
- ▶ For k = 1, ..., n:
 - For all i and j:
 - $d_{ij} := \min(d_{ij}, d_{ik} + d_{kj})$
- ▶ If $d_{ij} + d_{ji} < 0$ for some i and j, then the graph has a negative weight cycle
- Done!
 - But how does this work?

How Does Floyd-Warshall Work?

- ▶ Define f(i, j, k) as the shortest distance from i to j, using nodes $1, \ldots, k$ as intermediate nodes
 - f(i, j, n) is the shortest distance from i to j
 - f(i, j, 0) = cost(i, j)
- lacktriangle The optimal path for f(i,j,k) may or may not have k as an intermediate node
 - If it does, f(i, j, k) = f(i, k, k 1) + f(k, j, k 1)
 - Otherwise, f(i, j, k) = f(i, j, k 1)
- ▶ Therefore, f(i, j, k) is the minimum of the two quantities above

How Does Floyd-Warshall Work?

- We have the following recurrences and base cases
 - f(i, j, 0) = cost(i, j)
 - $f(i,j,k) = \min(f(i,k,k-1) + f(k,j,k-1), f(i,j,k-1))$
- From the values of $f(\cdot,\cdot,k-1)$, we can calculate $f(\cdot,\cdot,k)$
 - It turns out that we don't need a separate matrix for each k;
 overwriting the existing values is fine
- ► That's how we get Floyd-Warshall algorithm

Outline

Floyd-Warshall Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

- lacktriangle Given a directed weighted graph G and a source s
 - Important: The edge weights have to be nonnegative!
- $lackbox{Outputs a vector } d$ where d_i is the shortest distance from s to node i
- ► Time complexity depends on the implementation:
 - Can be $O(n^2 + m)$, $O(m \log n)$, or $O(m + n \log n)$
- Very similar to Prim's algorithm
- ▶ Intuition: Find the closest node to s, and then the second closest one, then the third, etc.

Dijkstra's Algorithm

- Maintain a set of nodes S, the shortest distances to which are decided
- ▶ Also maintain a vector d, the shortest distance estimate from s
- ▶ Initially, $S := \{s\}$, and $d_v := cost(s, v)$
- Repeat until S = V:
 - Find $v \notin S$ with the smallest d_v , and add it to S
 - For each edge $v \rightarrow u$ of cost c:
 - $d_u := \min(d_u, d_v + c)$

Outline

Floyd-Warshall Algorithm

Dijkstra's Algorithm

- ightharpoonup Given a directed weighted graph G and a source s
- $lackbox{Outputs a vector } d$ where d_i is the shortest distance from s to node i
- Can detect a negative-weight cycle
- ▶ Runs in $\Theta(nm)$ time
- Extremely easy to code
 - Coding time less than a few minutes

Bellman-Ford Pseudocode

- ▶ Initialize $d_s := 0$ and $d_v := \infty$ for all $v \neq s$
- ▶ For k = 1, ..., n 1:
 - For each edge $u \rightarrow v$ of cost c:
 - $d_v := \min(d_v, d_u + c)$
- ▶ For each edge $u \rightarrow v$ of cost c:
 - If $d_v > d_u + c$:
 - Then the graph contains a negative-weight cycle

Why Does Bellman-Ford Work?

- ▶ A shortest path can have at most n-1 edges
- ▶ At the *k*th iteration, all shortest paths using *k* or less edges are computed
- ▶ After n-1 iterations, all distances must be final; for every edge $u \to v$ of cost c, $d_v \le d_u + c$ holds
 - Unless there is a negative-weight cycle
 - This is how the negative-weight cycle detection works

System of Difference Constraints

- ▶ Given m inequalities of the form $x_i x_j \le c$
- ▶ Want to find real numbers x_1, \ldots, x_n that satisfy all the given inequalities

- Seemingly this has nothing to do with shortest paths
 - But it can be solved using Bellman-Ford

Graph Construction

- ▶ Create node i for every variable x_i
- lacktriangle Make an imaginary source node s
- Create zero-cost edges from s to all other nodes
- ▶ Rewrite the given inequalities as $x_i \le x_j + c$
 - For each of these constraint, make an edge from j to i with cost c

ightharpoonup Now we run Bellman-Ford using s as the source

What Happens?

- ► For every edge $j \rightarrow i$ with cost c, the shortest distance dvector will satisfy $d_i \leq d_j + c$
 - Setting $x_i = d_i$ gives a solution!
- ▶ What if there is a negative-weight cycle?
 - Assume that $1 \rightarrow 2 \rightarrow \cdots \rightarrow 1$ is a negative-weight cycle
 - From our construction, the given constraints contain $x_2 \le x_1 + c_1$, $x_3 \le x_2 + c_2$, etc.
 - Adding all of them gives $0 \le \text{(something negative)}$
 - i.e., the given constraints were impossible to satisfy

System of Difference Constraints

- ▶ It turns out that our solution minimizes the span of the variables: $\max x_i \min x_i$
- ▶ We won't prove it
- ▶ This is a big hint on POJ 3169!