Vizsga 2021.05.25. 10:00-10:50 (Online)

 Határidő máj 25, 10:50
 Pont 15
 Kérdések 15

 Elérhető máj 25, 10:05 - máj 25, 11:00 körülbelül 1 óra
 Időkorlát 45 perc

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	40 perc	8 az összesen elérhető 15 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen kvíz eredménye: 8 az összesen elérhető 15 pontból

Beadva ekkor: máj 25, 10:50

Ez a próbálkozás ennyi időt vett igénybe: 40 perc

1. kérdés	1 / 1 pont
Az alábbi számok közül melyiket NEM tartalmazza a gépi számhalmaz? (A) [01101 0] (B) [01101 -1] (C) [10101 -2] (D) Egyiket sem.	z <i>M</i> (6, -1, 5)
○ C	
D	
○ A	
ОВ	

2. kérdés 1 / 1 pont

Ha az e szám értékét a 3-al közelítjük, melyik a jó abszolút hibakorlát az alábbiak közül?

- (A) $\Delta_3 = 0.15$.
- (B) $\Delta_3 = 0.3$.
- (C) $\Delta_3 = 0.05$.
- (D) Egyik sem.
- A
- O C
- O D

B

3. kérdés 1 / 1 pont

Egy városban csak észak-déli, kelet-nyugati irányú utcákon közlekedhetünk. A fenti ábrán a kék vonal egy olyan megengedett útvonalat szemléltet, melyen el lehet jutni A-ból B-be. A zöld vonal nem egy valós útvonal, mert átlós utak nincsenek. Ha az A és B pontokat kétdimenziós vektorokkal adjuk meg, akkor a kékkel jelölt útvonal hossza melyik távolságnak felel meg?

- (A) $||A B||_2$.
- (B) $||A B||_1$.
- (C) $||A B||_{\infty}$.
- (D) $||A B||_F$.

B			
O D			
○ C			
О A			

Helytelen

4. kérdés 0 / 1 pont

Tekintsük az Ax = b lineáris egyenletrendszert. Mikor érdemes használni az LU felbontást?

- (A) Ha ki akarjuk számolni A sajátértékeit.
- (B) A főelemkiválasztásos GE hatékony kiszámításához.
- (C) Ha több különböző jobb oldali *b* vektorra akarjuk kiszámolni az egyenletrendszer megoldását.
- (D) Igazából semmire nem jó, csak a vizsgára kell...

○ C		
O D		
B		
О A		

5. kérdés	1 / 1 pont
pu/courses/16051/guizzes/54077	

Melyik ábra szerinti távolságok négyzetösszegét minimalizálja az előadáson tanult legkisebb négyezetes egyenesillesztés?

- (A) A bal oldali ábrán lévő távolságokat.
- (B) A jobb oldali ábrán lévő távolságokat.
- (C) Mindkettőt.
- (D) Egyiket sem.

A			
ОС			
ОВ			
O D			

Helytelen

6. kérdés 0 / 1 pont

Az alábbi, P értékeire vonatkozó Horner-algoritmusból adódó táblázat alapján mi lesz P'(1)+P''(1) értéke?

a _i	1	-9	23	-15
ξ_i	1	1	-8	15
$a_i^{(1)}$	1	-8	15	0
ξ_i	1	1	-7	
$a_{i}^{(2)}$	1	-7	8	
ξ_i	1	1		
$a_{i}^{(3)}$	1	-6		

- **(A)** 2
- **(B)** -2
- **(C)** 0
- (D) -4

O D		
ОВ		
ОС		
A		

7. kérdés	1 / 1 pont
1. Kerues	•

Tekintsük az (x_i, y_i) , i = 0, ..., n alappontokra illeszkedő interpolációs polinom Lagrange-alakját $L_n(x)$ és a Newton-alakját $N_n(x)$. Melyik állítás igaz az alábbiak közül?

- (A) $\exists x \in \mathbb{R} : L_n(x) \neq N_n(x)$
- (B) $\forall x \in \mathbb{R} : L_n(x) = N_n(x)$
- (C) $\forall x \in \mathbb{R} : L_n(x) = N_n(x) + N_{n-1}(x)$
- (D) Mindegyik igaz.
- O D
- O C
- B
- A

Helytelen

8. kérdés 0 / 1 pont

Legyenek a φ_i : $[a;b] \to [a;b]$ (i=1,2) függvények kontrakciók az [a;b] intervallumon a $q_1=1/4$ és a $q_2=1/2$ kontrakciós együtthatókkal. Melyik φ fügvénnyel definiált fixpont-iteráció lesz a gyorsabb?

- (A) φ_1 kétszer gyorsabb, mint φ_2
- (B) φ_2 kétszer gyorsabb, mint φ_1
- (C) Mindkettő ugyanolyan gyors.
- (D) Egyik sem gyors.

B			
O C			
O D			
○ A			

9. kérdés	1 / 1 pont
hu/courses/16051/guizzes/54077	ı

Legyen $x \in \mathbb{R}^n$. Ekkor

(A)
$$||x||_p \le ||x||_q$$
, ha $p \ge q \ge 1$.

(B)
$$||x||_p \le ||x||_q$$
, ha $p \le q \ge 1$.

(C)
$$||x||_p \ge ||x||_q$$
, ha $p \le q \ge 1$.

(D)
$$||x||_p \ge ||x||_q$$
, ha $p \ge q \ge 1$.

- O D
- O C
- A
- ОВ

10. kérdés 1/1 pont

Legyenek az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix sajátértékei: $\lambda_1, \lambda_2, \ldots, \lambda_n$. Ha tudjuk, hogy minden $i = 1, \ldots, n$ esetén $\lambda_i > 0$, akkor mit lehet mondani A egy tetszőleges Schur-komplementerének $[A|A_{11}]$ sajátértékeiről?

- (A) $[A|A_{11}]$ -nak csak negatív sajátértékei vannak.
- (B) $[A|A_{11}]$ -nak csak pozitív sajátértékei vannak.
- (C) $[A|A_{11}]$ -nak pozitív és negatív sajátértékei is vannak.
- (D) $[A|A_{11}]$ -nak lesz nulla sajátértéke.

_ A			
O D			
0 c			
B			

Helytelen

11. kérdés

0 / 1 pont

Az $\int_{-1}^{1} x^3 - x + 1 \, dx$ integrál értékét Simpson-formulával közelítjük. Mekkora az eredmény hibája?

- **(A)** 0
- (B) $\frac{1}{4}$
- (C) $\frac{1}{2}$
- (D) 1
- B
- C

ОА			
O D			

Helytelen

12. kérdés 0 / 1 pont

Az f függvényt a [-1,1] intervallumon az L_n Lagrange-interpolációs polinomjával közelítjük. Mit érünk el azzal, ha az x_0, x_1, \ldots, x_n alappontokat az n+1-ed fokú Csebisev polinom gyökeinek választjuk?

- (A) minimalizáljuk a pontos $||f L_n||_{\infty}$ hibát
- (B) minimalizáljuk a pontos $||f L_n||_2$ hibát
- (C) minimalizáljuk a pontos $\|f-L_n\|_{\infty}$ hiba becslését
- (D) minimalizáljuk a pontos $||f L_n||_2$ hiba becslését

O D			
O C			
ОВ			
A			

13. kérdés	1 / 1 pont

$$A = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array} \right]$$

A fenti mátrixxal felírt Ax = b lineáris egyenletrendszert melyik tanult módszerrel oldhatjuk meg a legkevesebb művelettel?

- (A) Gauss-eliminációval.
- (B) LU felbontással.
- (C) Progonka módszerrel.
- (D) Minegyik ugyanannyi műveletet igényel.

ОВ			
O A			
C			
○ D			

Helytelen

14. kérdés

0 / 1 pont

A monoton konvergencia tétel a fenti $f \in C^2[0;2]$ függvényre garantálja-e az x_0 -ból indított Newton-módszer konvergenciáját?

- (A) A tétel alapján nem lehet eldönteni.
- (B) Konvergens.
- (C) Nem konvergens.
- (D) Egyik sem.

○ C			
O D			
O A			
B			

Helytelen

15. kérdés

0 / 1 pont

Melyik összefüggés nem helyes az $S_m(f)$ (m páros) összetett Simpson formulára vonatkozóan?

(A)

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 \sum_{k=1}^{m-1} f(x_k) + f(x_m) - 2 \sum_{k=1}^{\frac{m}{2}} f(x_{2k}) \right)$$

(B)

$$S_m(f) = \frac{h}{3} \left(f(x_0) + 4 \sum_{k=1}^{\frac{m}{2}} f(x_{2k-1}) + f(x_m) + 2 \sum_{k=1}^{\frac{m}{2}-1} f(x_{2k}) \right)$$

(C)
$$S_m(f) = \frac{4 \cdot T_{2m}(f) + T_m(f)}{3}$$

- _ C
- A

B

Kvízeredmény: 8 az összesen elérhető 15 pontból