Logic exercises 4 (equivalences, natural deduction; thanks to Krysia Broda)

Hand in solutions for questions marked (PMT) to the SAO by Mon 6 Nov 2017.

Natural deduction proofs can be constructed and printed using Pandora (https://www.doc.ic.ac.uk/pandora/newpandora/). You don't have to do this, but please try the program.

- 1. (from 2001 exam)
 - (a) Use propositional equivalences to show that the formulas $(p \to r) \land (q \to r)$ and $p \lor q \to r$ are logically equivalent. In each step of your argument, state the rule you use.
 - (b) Write down a formula in disjunctive normal form that is logically equivalent to $(p \to r) \land (q \to r)$.
 - (c) Write down a formula in conjunctive normal form that is logically equivalent to $p \lor q \to r$.
- 2. Show the following, using natural deduction. Do not use equivalences to rewrite any formulas.

Try the ND exercises on sheet 3 first! I advise you always start by thinking up a direct argument to show that LHS \models RHS. Then convert your ideas into a ND proof. The earlier parts may help later, as may the NDs in Exercises 3, so keep an eye open. The lemma $A \lor \neg A$, for suitably-chosen A, is also useful if the direct argument was by cases.

- (a) $p, p \to q \vdash p \land q$ The comma is to separate the two formulas p and $p \to q!$
- (b) $q \to r \vdash (p \to q) \to (p \to r)$
- (c) $p, q \lor r \vdash (p \land q) \lor (p \land r)$
- (d) $\neg p, p \lor q \vdash q$ Hint: Use the rule $\bot E$.
- (e) $\neg \neg A \vdash A$. Note: use the lemma $A \lor \neg A$, but NOT the rules $\neg \neg$ or PC.
- (f) $\neg (p \lor q) \vdash \neg p \land \neg q$
- (g) **(PMT)** $p \rightarrow q \vdash \neg q \rightarrow \neg p$
- (h) $\neg p \rightarrow \neg q \vdash q \rightarrow p$ (similar to (2g), but not quite the same)
- (i) $\neg(\neg p \lor q) \vdash p \land \neg q$
- (j) $\neg p \land \neg q \vdash \neg (p \lor q)$
- (k) **(PMT)** $\neg(\neg p \land \neg q) \vdash p \lor q$. Hint: use the lemma, or earlier questions.
- (1) $\neg p \vdash p \rightarrow q$
- (m) **(PMT)** $\vdash (p \rightarrow q) \lor (q \rightarrow p)$.
- (n) $p \to q$, $\neg q \vdash \neg p$
- (o) $p \lor q \vdash \neg(\neg p \land \neg q)$
- (p) $p \to q \vdash \neg p \lor q$
- (q) $p \land \neg q \vdash \neg (p \rightarrow q)$
- (r) $\neg (p \rightarrow q) \vdash \neg q$
- (s) $\neg (p \rightarrow q) \vdash p$.
- 3. Challenge: use equivalences to prove that $(p \to q) \land (\neg p \to r)$ and $(p \land q) \lor (\neg p \land r)$ are logically equivalent (both formulas express 'if p then q else r'). In each step of your argument, state the equivalence you use.

Logic exercises 4 solutions

Questions marked (PMT) are for discussion in pmt in the week 6–10 Nov 2017.

- 1. (a) $(p \to r) \land (q \to r)$ is equivalent to: $(\neg p \lor r) \land (\neg q \lor r)$ (using $p \to q$ equivalent to $\neg p \lor q$), $(\neg p \land \neg q) \lor r$ (using distributivity of \land over \lor), $\neg (p \lor q) \lor r$ (using De Morgan law), $p \lor q \to r$ (using $p \to q$ equivalent to $\neg p \lor q$ again).
 - (b) The proof shows that $(p \to r) \land (q \to r)$ is equivalent to $(\neg p \land \neg q) \lor r$ which is in DNF.
 - (c) The proof shows that $p \vee q \to r$ is equivalent to $(\neg p \vee r) \wedge (\neg q \vee r)$ and in CNF.
- 2. Natural deduction solutions (of course there are often other ways):
 - (a) We have p and $p \to q$. So we get q; and as we have p already, we get $p \wedge q$.

$$\begin{array}{cccc} 1 & p & \text{given} \\ 2 & p \rightarrow q & \text{given} \\ 3 & q & \rightarrow E(1,2) \\ 4 & p \wedge q & \wedge I(1,3) \end{array}$$

(b) $q \to r \vdash (p \to q) \to (p \to r)$. Strategy: assume $q \to r$; to prove $(p \to q) \to (p \to r)$, assume $p \to q$ and prove $p \to r$. To do this, further assume p, and prove r. Now we have $p, p \to q, q \to r$, and we get r by following the \to .

1	$q \to r$	given
2	$p \to q$	ass
3	p	ass
$\ 4$	q	$\rightarrow E(3,2)$
$\parallel 5$	r	$\rightarrow E(4,1)$
6	$p \rightarrow r$	$\rightarrow I(3,5)$
7	$(p \rightarrow q)$ -	$\rightarrow (p \rightarrow r) \rightarrow I(2,6)$

(c) $p, q \lor r \vdash (p \land q) \lor (p \land r)$. This is an obvious argument by cases: it says if you have p and $q \lor r$ then you have $p \land q$ or $p \land r$. Assuming p, if we have q then we have $p \land q$ and hence $(p \land q) \lor (p \land \neg q)$, while if not, we have r, so $p \land r$ and $(p \land q) \lor (p \land r)$ again.

(d) $\neg p, p \lor q \vdash q$ Hint: Use the rule $\bot E$.

Strategy: show q from the assumptions $\neg p$ and $p \lor q$. We are given $p \lor q$, so we have p or q. p is impossible since we're given $\neg p$. So we get q, as required.

We showed p's impossible by proving \perp (line 4).

Line 5 follows: can prove anything from \bot . You can mentally justify this by: "all situations satisfying $\neg p$ and p vacuously satisfy q" (since there are no such situations). But the formal justification is $\bot E$. You must stick to the ND rules.

(e) $\neg \neg A \vdash A$ without the rules $\neg \neg$ or PC. Similar to part 2d:

(f) $\neg (p \lor q) \vdash \neg p \land \neg q$. Strategy: assume $\neg (p \lor q)$ and show $\neg p \land \neg q$. Try to do this by showing $\neg p$ and $\neg q$. But if we had p, we'd have $p \lor q$, which we don't. So we must have $\neg p$. We show $\neg q$ similarly.

(g) **(PMT)** $p \to q \vdash \neg q \to \neg p$. Strategy: assume $p \to q$ and show $\neg q \to \neg p$. Do this by further assuming $\neg q$, and showing $\neg p$. To show $\neg p$, observe that if we had p instead, we'd get q, which we don't have.

$$\begin{array}{c|ccc}
1 & p \rightarrow q & \text{given} \\
\hline
2 & \neg q & \text{ass} \\
3 & p & \text{ass} \\
4 & q & \rightarrow E(3,1) \\
5 & \bot & \neg E(4,2) \\
6 & \neg p & \neg I(3,5)
\end{array}$$

$$7 & \neg q \rightarrow \neg p & \rightarrow I(2,6)$$

(h) $\neg p \rightarrow \neg q \vdash q \rightarrow p$

Similar to preceding Q. It is OK to replace line 6 on the left by the 2 lines $6a \neg \neg p \neg I(3,5)$ and $6b p \neg \neg (6a)$. The RH variant proof uses the lemma $p \lor \neg p$ and shows that under the assumptions 1, 2, the case $\neg p$ is impossible (line 8).

(i) $\neg(\neg p \lor q) \vdash p \land \neg q$. Strategy: assume $\neg(\neg p \lor q)$ and show $p \land \neg q$. To do this, show p and show $\neg q$. To show p, observe if we had $\neg p$ instead then we'd have $\neg p \lor q$, which we don't. To show $\neg q$, observe if we had q instead then we'd have $\neg p \lor q$, which we don't. (The first is PC, the second, $\neg I$.)

$\neg(\neg p \lor q)$	given
$\neg p$	ass
$\neg p \lor q$	$\vee I(2)$
_	$\neg E(3,1)$
)	PC(2,4)
\overline{q}	ass
$\neg p \lor q$	$\vee I(6)$
<u></u>	$\neg E(7,1)$
$\neg q$	$\neg I(6,8)$
$q \land \neg q$	$\wedge I(5,9)$
	$ \begin{array}{c} \neg p \\ \neg p \lor q \\ \bot \\ \neg p \\ \neg q \\ \bot \\ \neg q \end{array} $

(j) $\neg p \land \neg q \vdash \neg (p \lor q)$. Strategy: assume $\neg p \land \neg q$ and show $\neg (p \lor q)$. To show this, consider what would happen if we had $p \lor q$ instead. If we had p, it'd contradict the $\neg p$ got from $\neg p \land \neg q$, and if we had q, it'd similarly contradict $\neg q$. This is an overall contradiction.

(k) **(PMT)** $\neg(\neg p \land \neg q) \vdash p \lor q$. Assume $\neg(\neg p \land \neg q)$ and try to show $p \lor q$. If $\neg(\neg p \land \neg q)$, then one of $\neg p, \neg q$ must fail, but we can't tell which. This is a sign that we should try arguing by cases. Here, p, q are symmetric, so may as well choose p and divide into the two cases 'p true' and 'p false'. We do this using the Lemma

 $p \vee \neg p$. We consider each case in turn. If we have p, then certainly we have $p \vee q$. If not, then we have $\neg p$. To get $p \vee q$, we want q. If we had $\neg q$ instead, we'd get $\neg p \wedge \neg q$, which we know we don't have. So we do have q. (The last step is PC.)

1	$\neg(\neg$	$p \wedge \neg q)$			given
2	$p \vee \cdot$	$\neg p$			lemma
3	p	ass 5	5	$\neg p$	ass
			6	$\neg q$	ass
			7	$\neg p \wedge \neg q$	$\wedge I(5,6)$
			8	\perp	$\neg E(1,7)$
		9)	\overline{q}	PC(6, 8)
4	$p\vee q$	$\vee I(3)$	10	$p \lor q$	$\vee I(9)$
11	$p \vee q$	\overline{q}		$\vee E(2$	$\overline{,3,4,5,10}$

Lemma $q \lor \neg q$ also works. You can also do it without the Lemma as follows, if you did question 2f correctly (thanks to Harry Moore (2004) for this answer):

There's another solution that's a bit like the proof of the Lemma itself:

(1) $\neg p \vdash p \to q$. A direct argument could go 'if $\neg p$ then $p \to q$ by semantics of \to .' But for ND it's a better tactic to think of \to in terms of if-then. Assume we have $\neg p$; to show $p \to q$, assume p as well, and show q. But we can't have p and $\neg p$. So vacuously we get q (or anything else for that matter). This step will derive \bot from $p, \neg p$ and then use $\bot E$ to get what we want.

$$\begin{array}{cccc}
1 & \neg p & \text{given} \\
2 & p & \text{ass} \\
3 & \bot & \neg E(1,2) \\
4 & q & \bot E(3)
\end{array}$$

$$5 & p \to q & \to I(2,4)$$

(m) **(PMT)** $\vdash (p \to q) \lor (q \to p)$. Strategy: we observe $\not\vdash p \to q$. This and the symmetry suggests as in ex 2k that we should consider cases: p or $\neg p$. If p, it's easy to show $q \to p$ (assume q, try and show p, think hard, realise we've got p already!). So we get $(p \to q) \lor (q \to p)$. Alternatively, if $\neg p$, we can get $p \to q$ by (2l) and then again $(p \to q) \lor (q \to p)$.

lemma
ass
ass
$\neg E(8,7)$
f. part 21)
$\rightarrow I(8,10)$
$\forall I(11)$
1, 2, 6, 7, 12)

(n) $p \to q, \neg q \vdash \neg p$ Strategy: assume $p \to q$ and $\neg q$, show $\neg p$. But if p held, we'd get q, impossible.

$$\begin{array}{cccc} 1 & p \rightarrow q & \text{given} \\ 2 & \neg q & \text{given} \\ \hline 3 & p & \text{ass} \\ 4 & q & \rightarrow E(1,3) \\ 5 & \bot & \neg E(4,2) \\ \hline 6 & \neg p & \neg I(3,5) \\ \end{array}$$

(o) $p \lor q \vdash \neg(\neg p \land \neg q)$. Strategy: assume $p \lor q$ and show $\neg(\neg p \land \neg q)$. If we had $\neg p \land \neg q$ instead, this'd contradict $p \lor q$ (check each case).

1	$p \setminus$	$^{\prime}q$		given
2	$\neg p$	$0 \land \neg q$		ass
3	p	ass 6	\overline{q}	ass
4	$\neg p$	$\wedge E(2)$ 7	$\neg q$	$\wedge E(2)$
5	\perp	$\neg E(3,4)$ 8	\perp	$\neg E(6,7)$
9	1		$\vee E(1$	$\overline{1, 3, 5, 6, 8)}$
10	7($\neg p \wedge \neg q)$		$\neg I(2,9)$

Or, making the main moves in the other order,

1	$p \lor q$				given
2	p	ass	7	q	ass
3	$\neg p \wedge \neg q$	ass	8	$\neg p \wedge \neg q$	ass
$\ 4$	$\neg p$	$\wedge E(3)$	9	$\neg q$	$\wedge E(8)$
5	\perp	$\neg E(2,4)$	10	\perp	$\neg E(7,9)$
6	$\neg(\neg p \land \neg q)$	$\neg I(3,5)$	11	$\neg(\neg p \land \neg q)$	$\neg I(8, 10)$
$\overline{12}$	$\neg(\neg p \land \neg q)$	<u>'</u>)		$\vee E($	$\overline{1, 2, 6, 7, 11}$

(p) $p \to q \vdash \neg p \lor q$. Again, we could have $\neg p \lor q$ either because $\neg p$ or because q. The assumption $p \to q$ doesn't tell us which. So we should divide into cases: say, p or

 $\neg p$. If $p, p \to q$ gives us q, so $\neg p \lor q$. Alternatively, if $\neg p$ then we get $\neg p \lor q$ free. (Cases q or $\neg q$ also work but take longer.)

(q) $p \land \neg q \vdash \neg (p \to q)$. Strategy: assume $p \land \neg q$ and try for $\neg (p \to q)$. If we had $p \to q$ instead, then as $p \land \neg q$ gives us p, we'd get q. But $p \land \neg q$ also gives $\neg q$, impossible. So we do have $\neg (p \to q)$.

1	$p \land \neg q$	given
2	$p \rightarrow q$	ass
3	p	$\wedge E(1)$
4	q	$\rightarrow E(3,2)$
5	$\neg q$	$\wedge E(1)$
6	\perp	$\neg E(5,4)$
7	$\neg (p \to q)$	$\neg I(2,6)$

(r) $\neg (p \to q) \vdash \neg q$. Strategy: assume $\neg (p \to q)$ and try for $\neg q$. If we had q, then it's easy to show $p \to q$ (see part (2m)). But we assumed $\neg (p \to q)$, so we must have $\neg q$.

1	$\neg(p \to q)$	given
2	q	ass
3	p	ass
$\ 4$	q	$\checkmark(2)$
$\overline{5}$	$p \rightarrow q$	$\overline{\longrightarrow} I(3,4)$
6	\perp	$\neg E(1,5)$
7	$\neg q$	$\neg I(2,6)$

(s) $\neg(p \to q) \vdash p$. Strategy: if we had $\neg p$, we'd have $p \to q$, because assuming p we'd get a contradiction (\bot) , from which anything follows. But we're given $\neg(p \to q)$. This is an overall contradiction. So we have p as required.

1 -	$(p \to q)$	giver
$2 \neg p$)	ass
3 p		ass
$\parallel 4 \perp$		$\neg E(2,3)$
5 q		$\perp E(4)$
6 p	$\rightarrow q$	$\rightarrow I(3,5)$
7		$\neg E(1,6)$
$\overline{8}$ p		PC(2,7)

3. This is quite hard: you have to think. Being lax about uses of associativity:

$$\begin{array}{l} (p \rightarrow q) \wedge (\neg p \rightarrow r) \\ \equiv (\neg p \vee q) \wedge (\neg \neg p \vee r) \\ \equiv (\neg p \vee q) \wedge (p \vee r) \\ \equiv (\neg p \wedge p) \vee (\neg p \wedge r) \vee (q \wedge p) \vee (q \wedge r) \\ \equiv (\neg p \wedge p) \vee (\neg p \wedge r) \vee (q \wedge p) \vee (q \wedge r) \\ \equiv (\neg p \wedge r) \vee (q \wedge p) \vee (q \wedge r) \\ \equiv (\neg p \wedge r) \vee (q \wedge p) \vee (q \wedge r) \\ \equiv (p \wedge q) \vee (\neg p \wedge r) \vee (q \wedge r) \\ \text{take a breath, we're half-way there} \\ \equiv (p \wedge q) \vee (\neg p \wedge r) \vee (p \wedge q \wedge r) \\ \equiv (p \wedge q) \vee (\neg p \wedge r) \vee ((p \vee \neg p) \wedge q \wedge r) \\ \equiv (p \wedge q) \vee (\neg p \wedge r) \vee (p \wedge q \wedge r) \vee (\neg p \wedge q \wedge r) \\ \equiv (p \wedge q) \vee (p \wedge q \wedge r) \vee (\neg p \wedge r) \vee (\neg p \wedge q \wedge r) \\ \equiv (p \wedge q) \vee (p \wedge q \wedge r) \vee (\neg p \wedge r) \vee (\neg p \wedge q \wedge r) \\ \equiv (p \wedge q) \vee (p \wedge q \wedge r) \vee (\neg p \wedge r) \vee (\neg p \wedge r \wedge q) \\ \equiv (p \wedge q) \vee (p \wedge q \wedge r) \vee (\neg p \wedge r) \vee (\neg p \wedge r \wedge q) \\ \equiv (p \wedge q) \vee (\neg p \wedge r) \end{array}$$

Alternatively, first we show (†) if $p \wedge A \equiv p \wedge B$ and $\neg p \wedge A \equiv \neg p \wedge C$, then $A \equiv p \wedge B \vee \neg p \wedge C$:

$$\begin{array}{rcl} p \wedge B \vee \neg p \wedge C & \equiv & p \wedge A \vee \neg p \wedge A & \text{given} \\ & \equiv & (p \vee \neg p) \wedge A & \text{distributivity} \\ & \equiv & \top \wedge A & X \vee \neg X \equiv \top \\ & \equiv & A & \text{standard equivalence.} \end{array}$$

Now, again suppressing some uses of associativity,

$$\begin{array}{lll} p \wedge (p \rightarrow q) \wedge (\neg p \rightarrow r) & \equiv & p \wedge (\neg p \vee q) \wedge (\neg \neg p \vee r) & A \rightarrow B \equiv \neg A \vee B \ (\times 2) \\ & \equiv & p \wedge (\neg p \vee q) \wedge (p \vee r) & \neg \neg A \equiv A \\ & \equiv & p \wedge (p \vee r) \wedge (\neg p \vee q) & \text{commutativity of } \wedge \\ & \equiv & p \wedge (\neg p \vee q) & \text{absorption} \\ & \equiv & p \wedge \neg p \vee p \wedge q & \text{distributivity} \\ & \equiv & \bot \vee p \wedge q & A \wedge \neg A \equiv \bot \\ & \equiv & p \wedge q & \bot \vee A \equiv A \end{array}$$

and

By (†) we obtain $(p \to q) \land (\neg p \to r) \equiv p \land q \lor \neg p \land r$ as required.

You might try to show that $(p \to q) \land (\neg p \to r) \vdash (p \land q) \lor (\neg p \land r)$ and vice versa — $(p \land q) \lor (\neg p \land r) \vdash (p \to q) \land (\neg p \to r)$ — in natural deduction.