```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.ensemble import RandomForestRegressor
```

In [2]: data= pd.read_csv("Position_Salaries.csv")
 data.head(10)

Out[2]:

	Position	Level	Salary
0	Business Analyst	1	45000
1	Junior Consultant	2	50000
2	Senior Consultant	3	60000
3	Manager	4	80000
4	Country Manager	5	110000
5	Region Manager	6	150000
6	Partner	7	200000
7	Senior Partner	8	300000
8	C-level	9	500000
9	CEO	10	1000000

In [3]: real_x= data.iloc[:,1:2].values
real_y= data.iloc[:,2].values

```
In [4]: reg=RandomForestRegressor(n_estimators=100,random_state=0)
    reg.fit(real_x,real_y)

Out[4]: RandomForestRegressor(random_state=0)

In [5]: y_pred=reg.predict([[6]])
    y_pred

Out[5]: array([142600.])

In [6]: x_grid=np.arange(min(real_x),max(real_x),0.01)
    x_grid=x_grid.reshape((len(x_grid),1))

In [7]: plt.scatter(real_x,real_y,color="blue")
    plt.plot(x_grid, reg.predict(x_grid),color="green")
    plt.title("decision tree")
    plt.xlabel("pos level")
    plt.ylabel("salary")
    plt.show()
```

