MDS Capstone

FaultSENS

Geophysical Data + Computer Vision

Alysen, Kun, Nicole, Sid + Rio Tinto Exploration (RTX)

Table of Contents

- 01 Introduction
- Data Science
 Techniques
- 03 Timeline

Our partner

RioTinto

What is a Fault?

Reverse

Strike Slip

Normal

What is the Problem Statement?

"Can we use geophysical datasets and computer vision / ML to MAP FAULTS?"

Why does it Matter?

- REDUCE significantly the TIME required for fault analysis.
- SCALE this efficiency across various locations.
- Obtain QUANTIFIABLE measurements.

What are we trying to achieve?

- WHICH specific FEATURES enhance prediction accuracy the most?
- WHERE are the faults located?

Data Science Techniques

Workflow

Exploration

= ??

Augmentation & Splitting

Input Channels (Raster Layers)

Rasters with fault lines overlaid

Train Valid Geospatial Split

Modelling - Baseline

Random Forest Classifier (RF)

Modelling - Baseline

Convolutional Neural Network (CNN)

Target Models

Region-based CNN (R-CNN)

Target Models

UNet Classifier Encoder Decoder

Evaluation Metrics

Precision

% correct predictions

Recall

True positive rate

loU

Overlap b/w bounding box and ground truth

mAP

Precision values at various IoU thresholds [0, 1]

Timeline

Timeline

Thank You!

Questions?

References

- From GIS to Remote Sensing: Random Forest Classification using the Semi-Automatic Classification Plugin (fromgistors.blogspot.com)
- Random Forest for Image Classification Using OpenCV -MachineLearningMastery.com
- A Gentle Introduction to Object Recognition With Deep Learning - MachineLearningMastery.com
- Plate Tectonics and Earthquakes | Google Slides & PPT (slidesgo.com)