## NAS: NETWORK THEORMS

## @ Superposition Theorms

In any linear relistive network, the voltage accross or thre current through any resistor or source may be calculated by adding algebraically all the individual voltages or currents caused by the seperate independent sources arting alone, with all other independent voltage sources replaced by short circuits and all other independent current sources replaced by open circuits.



## 3 Therewin's theorem

#### Steps

- (i) Find thevenin's resistance

  Puts by removing all voltage

  Sources and open circuling

  current Sources. (don't

  consider the load resistor Ri
- (ii) find therenins voltage by pulugging in the voltages, i.e measure the open circuit voltage V4.
- eurrent through load resistor RL

#### \* Norton's theom

#### steps

- (i) short the load resistor
- (ii) Measure the Short circuit currents, its the Norton current (I)
- reststance, i.e Norton Reisslance (RN)
- (iv) Now, redraw the circuit, with RN parallel with In



- er) Now, calculate boad current I. uring current divider rule.
- Maximum power transfer theorm Consider the general network,

NA [L] (Load)

Let resistor in NA be 2s

and load resistor is Re

ease1); 25 is non-complex (pure)
R( 13 non-complex (pure)

i.e 2s=Rs

O For maximum power transfer

$$\mathbb{R}_{L} = \mathbb{R}_{S}$$

$$\mathbb{P}_{\text{max}} = \frac{V^{2}}{4 R_{L}}$$

- case 1: 7 s is complex and RE

  is pure load

  i.e 7 s = Rs + j x s
  - © For maximum power transfer

    R<sub>L</sub> = √R<sub>s</sub><sup>2</sup>+ X<sub>s</sub><sup>2</sup>
    i.e R<sub>L</sub>=12s)
- Pmax = V2

  4 \[ \int\_{\text{Rs}^2 + \text{Xs}^2} \]

case 3 : 2, is complex and
Refs complex.

i.e 25 > Re+jXs RL = R1+jX1

O For maximum power transfer

$$R_{L} = \frac{2}{5}$$
i.e  $R_{L} + jX_{L} = R_{S} + jX_{S}$ 

$$R_{D} = R_{S}$$

$$X_{L} = -X_{S}$$

$$P_{\text{max}} = \frac{V^2}{4 \sqrt{R_c^2 + X_s^2}}.$$

# (2) Reciprocity theory

- "In a linear network, if the position of the excetation and response are interchanged, their ratio remain unchanged"
- -> conditions in order to apply this
- i) The circuit must have a single
- lis Initial conditions are assumed to be Jero or absent in the circuit
- (ii) Dependent sources are excluded even if they are linear
- civ) when the position of source and response are interchanged, their directions should be marked some as in the original circuit.

returned to the second of the second of the second

## Millman's theorm 11: 211

- Applicable for multiple voltage source connected in parallel.
- It is used to convert multiple voltage source in parablel into a single voltage source.

#### steps

- 1) Convert all voltage source into current source I = V/R
- (i) Combina these current sources (I)
- (Reg)
- (iv) convert resulting current source indo voltage source, series with Req (Teg Reg = Veg)

### Tellegen's theorem

"In any electrical network which satisfies Kirchoff's laws, the summation of instantaneous power in all the branches is equal to zero"

Note @ Power is the if wrrent is coming out of the terminal

O Power is -ve of when the tree terminal i

have the the one the the first

$$W_{R} = \frac{R I_{m}^{2}}{2} \left( t - \frac{\sin 2\omega t}{2\omega} \right)$$

$$P_{R} = \frac{R I_{m}^{2}}{2} \left( 1 - \frac{\cos 2\omega t}{2\omega} \right)$$

$$W_{L} = \frac{L^{2}m}{4} (1 - \omega \times 2\omega t)$$

$$P_{L} = \frac{L^{2}m^{2}}{2} \omega \sin 2\omega t$$

$$W_c = \frac{CV_m^2}{4} (1-w_1)$$
 $V = \frac{V_m \sin wt}{4}$ 
 $V_c = \frac{CV_m^2}{4} (1-w_1)$ 
 $V = \frac{V_m \sin wt}{4}$ 

## [ For non-sinusoidal but periodic

## @ Additional points.

$$\therefore \ \ \frac{2}{I} = \frac{V_m}{I_m} \frac{10v^{-0}i}{1}$$

$$\Rightarrow \left[\frac{2}{I} + \frac{1}{I}\right] \frac{1}{I} \frac{1}$$

=> phasor power or apparant power (s)

# NAS: Two Port Networks

#### \* TABLE-1

## -> Two port parameters

| 111                          | Fu               | nctions               |                                                                                  |        |               |     |
|------------------------------|------------------|-----------------------|----------------------------------------------------------------------------------|--------|---------------|-----|
| Name                         | Express<br>(Dep) | Internu of<br>(Judep) | Equations                                                                        |        |               | 1 ' |
| ) 2-parameters               | V1, V2           | T,, T2                | V, = 2,1, + 2,2 I2                                                               | 1. P   | 1.2.3<br>11/4 |     |
| (open-circuist<br>impedence) | 101              | d th                  | V2 - 221 I1 + 222 I2                                                             |        | , §           | ,   |
| 2) y- parameters             | , 15             |                       | თ 'u ₩ ± V V                                                                     | ¥ /% 1 | F.3           |     |
| Ishort-circuit               | $I_1, I_2$       | $V_1$ , $V_2$         | $P_1 = Y_{11}V_1 + Y_{12}V_2$                                                    |        |               |     |
| (mpedence)                   | 1 (1)            | Ta a                  | I <sub>2</sub> - Y <sub>21</sub> V <sub>1</sub> + Y <sub>22</sub> V <sub>2</sub> |        |               |     |
| 3) T - parameters            | ٧,,T,            | V2,12                 | V1 = AV2 - BI2                                                                   |        |               |     |
| and a mile                   | 1 1              | g 'A                  | $T_1 = cV_2 - DT_2$                                                              | 5 Å    |               |     |
| 4) Inverse T-<br>parameters  | V, 12            | V,, T,                | $V_2 = A'V_1 - B'T_1$                                                            |        |               |     |
| <b>21</b>                    | 1,14             |                       | $\underline{T}_2 = c' V_1 - D'_{\underline{T}},$                                 |        |               |     |
| 5) H-parameters              | V,, I2           | $I_1, V_2$            | $V_1 = h_{11} I_1 + h_{12} V_2$                                                  |        | 7 A           |     |
| 24 44                        | 1                | n A                   | $I_2 = h_{21}I_1 + h_{22}V_2$                                                    |        |               | [ ] |
| 6) Irwense H-                | I,, V2           | $V_1, \Sigma_2$       | I, = 9, 1/, + 9,2 1/2                                                            |        |               |     |
| panameters                   | e 21+            | t. 15                 | $V_1 = g_2, V_1 + g_{22} I_2$                                                    |        |               |     |

#### \* TABLE -2

=> Conditions for Passive Networks and Electrical Symmetry.

| Parameter | Condition for Passive Ntk.        | Condition for Electrical Symmetry |
|-----------|-----------------------------------|-----------------------------------|
| 7.        | Z <sub>12</sub> = Z <sub>21</sub> | Z <sub>11</sub> = Z <sub>22</sub> |
| y         | Y12 = Y20                         | Y11 = Y22                         |
| τ.        | 4T = AD - BC = 1                  | A = D                             |
| τ٦        | 47-12 A'D'-13'C'=1                | A' = D'                           |
|           |                                   | St.<br>Tana<br>Carte of the       |
| Н         | h,2 = - h21                       | 1 4 + h 11 h 22 - h 1 h 12 = 1    |
| H-1       | 9122-921                          | 19-91192-921912 2 1               |

Scanned by CamScanner

| *TABLE - 3 : PARAMETER CONVERSION TABLE |                  |                  |                                   |              |         |          |           |                 |                      |                                          |                 |                                                   |
|-----------------------------------------|------------------|------------------|-----------------------------------|--------------|---------|----------|-----------|-----------------|----------------------|------------------------------------------|-----------------|---------------------------------------------------|
| [2]                                     |                  | (YJ              |                                   | [1           | [T]     |          | [T"]      |                 | [H]                  |                                          | 47              |                                                   |
| [Æ]                                     | \$"              | 712              | <u>Y22</u>                        | -412         | 40      | 470      | ם כ       | 1               | AH<br>H <sub>2</sub> | H12<br>H22                               |                 | -G12<br>Gu                                        |
|                                         | 3,21             | 222              | - Ya1<br>AY                       | Yu AY        | 110     | ٥١٥      | ATT       | A               | -H21<br>H>2          | 1<br>H22                                 | 6721<br>6711    | 44<br>Gu                                          |
|                                         | 200              | -2 <sub>12</sub> | ٧,,                               | 412          | DIB     | ATB      | A'        | -1              | Hu                   | -H12<br>H 11                             | 44              | G <sub>12</sub> G <sub>22</sub> T G <sub>22</sub> |
| [X]                                     | -201             | 211              | 421                               | 422          | -1<br>B | AB       | -4T'      | <u>B</u> ,      | H <sub>21</sub>      | <u>H"</u>                                | - 421<br>422    | <u>1</u><br>G.s                                   |
|                                         | ₹21<br>₹11       | 42               | -422                              | -1<br>Y01    | A       | ß        | D' 4.7 '  | B1              | -4H                  | - Hn<br>H21                              | 1 6721          | 922                                               |
| [T]                                     | 1 2 2 1          | 722              | - 47<br>721                       | - Y11<br>Y21 | c       | D        | <u>c'</u> | ATI             | -H22                 | -1<br>H <sub>21</sub>                    | 911             | 49                                                |
| [ <b>T</b> -1]                          | 2,2              | 7 Z              | - <u>Y11</u><br>Y12               | 7 712        | DAT     | 13<br>47 | A¹        | Β <b>'</b>      | 1<br>H12             | H <sub>11</sub><br>H <sub>12</sub><br>AH | -A9             | -922<br>-922<br>-922                              |
| ני.                                     | 1 212            | 2112             | - <u>A4</u><br>Y12                | 7 722<br>Y12 | C<br>4+ | 4 4 4 7  | c'        | D'              | H <sub>22</sub>      | 4H<br>H <sub>12</sub>                    | - 911<br>G12    | Giz                                               |
|                                         | 42               | Z12              | 1/20                              | - Y12<br>Y11 | BD      | 47       | B'        | 1/1             | Hin                  | H,2                                      | 922             | 4 12                                              |
| [H]                                     | -2 <sub>21</sub> | 1 2,2            | 421                               | ΔΥ<br>Υ.,    | -1      | o D      | AT'       | <u>c'</u><br>A' | Hai                  | H <sub>22</sub>                          | -G21            | 46                                                |
| 0,42                                    | 1 20             | -212             | 44                                | Y12<br>Y22   | CA      | -4T      | cl,       | - <u>1</u>      | H2.2                 | -H12                                     | Gu              | G12                                               |
| भि                                      | 521              | 45               | -Y <sub>01</sub> Y <sub>2.2</sub> | 1<br>Y22     | 1 A     | A<br>A   | 4T'       | D'              | - <u>H</u> ,,        | # 11<br>4 H                              | G <sub>21</sub> | 46<br>612<br>622                                  |

\* Important points.

O'T' Equivalent of 2-parameters.



$$\xi_{11} = \xi_{0} + \xi_{0}$$
 $\xi_{12} = \xi_{0} + \xi_{0}$ 
 $\xi_{12} = \xi_{0}$ 

221 = Zc

0 'TT' Equivalent of Y-parameters



$$Y_{11} = Y_A + Y_C$$
 $Y_{22} = Y_B + Y_C$ 
 $Y_{11} = -Y_C$ 
 $Y_{21} = -Y_C$ 

O Cascade connected two networks



Equivalent parameter matrix

$$\begin{bmatrix} A & B \\ c & D \end{bmatrix} = \begin{bmatrix} A_a & B_a \\ C_a & D_a \end{bmatrix} \begin{bmatrix} A_b & B_b \\ C_b & D_b \end{bmatrix}$$

@ Parallel connected two networks



Equivalent parameter matrix

O series connected two networks



$$\begin{bmatrix} 211 & 212 \\ 221 & 222 \end{bmatrix} = \begin{bmatrix} 211a + 211b & 221a + 221b \\ 212a + 212b & 222a + 22b \end{bmatrix}$$

1 Input series and output parallel two networks.



Equivalent parameter nodrix

Ĭ.C.