Week 6: Tree Ensembles Assignment – Random Forest & XGBoost for Portfolio Optimization

A comprehensive analysis of tree ensemble models for semiconductor portfolio optimization, focusing on maximizing risk-adjusted returns through Sharpe and Sortino ratios across ten major **semiconductor** stocks.

The Challenge

Portfolio Composition

Ten semiconductor stocks: INTC, NVDA, AMD, QCOM, TXN, MU, AVGO, AMAT, ASML, TSM

Objective

Maximize risk-adjusted performance through Sharpe and Sortino ratios, with emphasis on downside risk management

Prediction Horizon

10-day returns to balance noise reduction with tactical rebalancing practicality

Data Scope

2,444 observations spanning a decade: 1,955 training samples, 489 test samples

Three Models Compared

Random Forest

150 trees with max depth 6, minimum 30 samples for splitting. Bagging approach for robust generalization against financial noise.

Gradient Boosting

150 iterations, learning rate 0.05, max depth 4. Sequential boosting with 0.8 subsample ratio for gradual pattern learning.

XGBoost

L1 (0.5) and L2 (1.0) regularization, 0.8 column/row subsampling. Advanced regularization to combat overfitting.

Comprehensive Feature Engineering

01

Market Microstructure (Week 5 core - 21 features)

HMact indicators for all 10 stocks, VRSpike volatility regime metrics, and Herd_t behavioral index 02

Momentum Signals (3 features)

Multi-horizon momentum at 5, 10, and 20 days capturing tactical and strategic trends

03

Volatility Measures (3 features)

20-day and 60-day standard deviations plus critical 20-day downside volatility for Sortino optimization

04

Cross-Sectional Features (3 features)

Return dispersion, max-min spread, and 20-day average pairwise correlations

05

Stock Aggregates (4 features)

Average momentum and volatility across all stocks for bottom-up portfolio perspective

Total: 34 engineered features across five categories, substantially exceeding the 15-feature minimum requirement.

Model Performance Results

Random Forest: Best Generalization

Only positive Test R² (0.0053), lowest train-test gap (0.29), MSE: 0.004162, MAE: 0.050798

G. Boosting: Severe Overfitting

Train-test gap of 0.78 indicates memorization without generalization, MSE: 0.004488

XGBoost: Moderate Overfitting

Despite regularization, train-test gap of 0.66 persists, MSE: 0.004343

Why Random Forest Wins

Only Positive Test R²

Achieves genuine out-of-sample predictive power with R^2 = 0.0053, a result comparable to or exceeding standard benchmarks for financial return prediction models in the academic literature (where even R^2 values as low as 0.002–0.01 are considered statistically and economically significant).

Superior Generalization

Lowest train-test performance gap and smallest variance across 5fold cross-validation, indicating stability across market regimes

Inherent Robustness

Bagging architecture naturally resistant to financial time series noise compared to sequential boosting methods

Feature Importance (Built-in): The Power Players

8.1%

NVDA_HMact

Dominant predictor capturing Nvidia's sector leadership and institutional order flow

6.2%

Avg Correlation

20-day rolling correlation measuring portfolio diversification dynamics

5.8%

ASML_HMact

Upstream supply chain indicator from lithography equipment monopolist

5.4%

Downside Vol

20-day downside volatility critical for Sortino ratio optimization

4.4%

MU_HMact

Trading activity from Micron, a key indicator for global memory demand cycles and supply chain turning points

Top 5 features account for ~30% of total predictive power despite representing only ~15% of feature set, demonstrating strong concentration in market leaders and risk measures.

SHAP Analysis: True Causal Impact

Top 5 SHAP Features

- 1. NVDA_HMact (0.00236)
- **2. ASML_HMact** (0.00185)
- 3. AVGO_HMact (0.00185)
- **4.** TSM_VRSpike (0.00178)
- 5. MU_VRSpike (0.00172)

Collectively account for 36.48% of total SHAP importance

Key Insights

Volatility regime features (VRSpike) rank higher in SHAP than built-in importance, revealing strong causal impact through complex interactions.

High correlation (r=0.827) between built-in and SHAP methods validates genuine predictive patterns, not algorithmic artifacts.

Market microstructure dominates: trading activity in sector leaders supersedes traditional momentum metrics.

Comparison: Built-in vs SHAP Feature Importance (Top 20)

SHAP-based Feature Importance

Non-Linear Patterns Discovered

These non-monotonic relationships cannot be captured by linear models, justifying the tree-based ensemble approach.

SHAP Dependence Plots - Top 5 Features (Non-linear Relationships)

Financial Validation & Implementation

Theoretical Alignment

Results align with market microstructure theory (order flow information), regimeswitching models, and behavioral finance predictions of panic-driven overshooting.

Supply Chain Economics

ASML upstream signals propagate through TSM foundry to NVDA downstream, embedding input-output production network dynamics.

Practical Application

10-day horizon aligns with institutional rebalancing frequencies. Test R^2 of 0.53% is commercially exploitable for portfolio construction.

Recommended Strategy

Deploy Random Forest predictions as expected return estimates in portfolio optimization framework, targeting Sortino ratio maximization through downside volatility features. Combine with conservative position sizing for risk-adjusted performance in semiconductor sector portfolios.

Thank You