

SISTEMAS DE BANCO DE DADOS 1

AULA 8

Álgebra Relacional

Vandor Roberto Vilardi Rissoli

APRESENTAÇÃO

- Álgebra Relacional
 - Operadores de Conjuntos
 - Operadores Relacionais
- Funções Agregadas ao Modelo Relacional
- Referências

Operadores de Conjuntos

Estes operadores se aplicam as duas relações que obedeçam à "COMPATIBILIDADE DE UNIÃO", ou seja, ambas as relações devem <u>apresentar</u> como esquema <u>atributos</u> que <u>pertençam</u> respectivamente aos <u>mesmos domínios</u>.

a) <u>União (∪):</u> o resultado da união de duas relações consiste no conjunto de todas as tuplas que pertençam a ambas as relações.

Exemplo:

- Seja A = conjunto de tuplas dos fornecedores do estado de SP B = conjunto dos fornecedores da peça P_1
- A união B $(A \cup B)$ = conjunto de tuplas dos fornecedores de SP ou que fornecem a peça P_1 (ou ambos)

b) <u>Interseção</u> (<u>\(\cap\)</u>): o resultado da interseção de duas relações consiste no conjunto de todas as tuplas que aparecem ao mesmo tempo nas duas relações.

Exemplo:

Seja A = conjunto de tuplas dos fornecedores do estado de SP B = conjunto dos fornecedores da peça P_1

A interseção B $(A \cap B)$ = conjunto de tuplas dos fornecedores de SP e que forneçam a peça P_1 (estão em ambos)

c) <u>Diferença (-):</u> a diferença em duas relações (R e S por exemplo) consiste no conjunto de tuplas que aparecem na relação R, mas não aparecem na relação S.

Exemplo:

Seja A = conjunto de tuplas dos fornecedores do estado de SP B = conjunto dos fornecedores da peça P_1

A minus B (A-B) = conjunto de tuplas dos fornecedores de SP e não fornecem a peça P_1 (está em A mas não está em B)

B minus A (B-A) = conjunto de tuplas dos fornecedores que fornecer a peça P_1 e que não são de SP (está em B mas não está em A)

Resultados diferentes

d) **Produto Cartesiano** (X): aplica-se as duas relações que **NÃO** precisam ser "**compatíveis de união**", resultando em uma relação que apresenta tuplas formadas pela combinação dos atributos pertencentes a ambas as relações.

Exemplo:

Seja A = conjunto de todos os códigos dos fornecedores de SP B = conjunto de todos os códigos de peças

A cartesiano B (AXB) = conjunto de todos os possíveis pares de códigos de fornecedores com os códigos de todas as peças

→ Estas operações algébricas funcionam da mesma forma para qualquer SGBD Relacional (lógica matemática).

Exercício de Fixação

1) Sejam as seguintes relações existentes em um banco

de dados:

 $FORNECEDOR (F) \rightarrow$

#	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	35	Mecânica Jair	22	50,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00
5	89	Rápido	10	35,00

PECAS (P)

#	idPeca	dsPeca	cor	peso
1	07	Mola estreita	Prata	10 gr.
2	10	Correia lisa	Preto	0,5 gr.
3	22	Amortecedor	Preto	2000 gr.
4	35	Tambor	Azul	500 gr.

NOVOS_FORNECIMENTOS (G)

Seja uma nova relação representando os novos fornecedores:

#	codigo	nome	idPeca	valor
1	57	Thorque	35	45,00
2	90	Solução Final	10	50,00

Exercício de Fixação (continuação)

Construa as **relações** resultantes das operações algébricas abaixo, além da expressão algébrica correta:

- a) União (de F com G) (sem indicação é para toda **tupla**)
- b) Interseção (de F com G) (para o mesmo fornecedor)
- c) Diferença em relação ao fornecedor (de F com G e também de G com F)
- d) Produto cartesiano (de P com G)

Observação: entende-se

F = FORNECEDOR

P = PECAS

G = NOVOS_FORNECIMENTOS

Exercício de Fixação (solução)

a) União de F com G

(analisando toda tupla)

 $(\mathbf{F} \cup \mathbf{G}) =$

	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	35	Mecânica Jair	22	50,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00
5	89	Rápido	10	35,00
6	57	Thorque	35	45,00
7	90	Solução Final	10	50,00

Observe a solução do primeiro item (a) deste exercício e resolva os outros itens fornecendo a <u>expressão algébrica</u> e o resultado correspondente como na <u>representação</u> acima.

Exercício de Fixação (continua a solução)

b) Interseção de F com G

(para mesmo fornecedor)

$$(\mathbf{F} \cap \mathbf{G}) =$$

_		codigo	nome	idPeca	valor
	1	57	Thorque	22	47,00
	2	57	Thorque	35	45,00

c) Diferença de F com G

(em relação ao fornecedor)

$$(\mathbf{F} - \mathbf{G}) =$$

	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	35	Mecânica Jair	22	50,00
3	44	Eletrons	07	99,00
4	89	Rápido	10	35,00

Diferença de G com F

(em relação ao fornecedor)

$$(G - F) =$$

	codigo	nome	idPeca	valor
1	90	Solução Final	10	50,00

Exercício de Fixação (continua a solução)

d) Produto cartesiano de P com G

 $(\mathbf{P} \times \mathbf{G}) =$

	idPeca	dsPeca	cor	peso	codigo	nome	idPeca	valor
1	07	Mola estreita	Prata	10 gr.	57	Thorque	35	45,00
2	07	Mola estreita	Prata	10 gr.	90	Solução Final	10	50,00
3	10	Correia lisa	Preto	0,5 gr.	57	Thorque	35	45,00
4	10	Correia lisa	Preto	0,5 gr.	90	Solução Final	10	50,00
5	22	Amortecedor	Preto	2000 gr.	57	Thorque	35	45,00
6	22	Amortecedor	Preto	2000 gr.	90	Solução Final	10	50,00
7	35	Tambor	Azul	500 gr.	57	Thorque	35	45,00
8	35	Tambor	Azul	500 gr.	90	Solução Final	10	50,00

Operadores Relacionais

1) Operação de Seleção (SELECT): quando aplicado resulta em uma relação contendo tuplas com os mesmos atributos da relação que satisfazem a uma determinada condição de seleção. É um operador unário, sendo executado sobre apenas uma relação, uma tupla de cada vez.

σ [<condição de seleção>] (<nome da relação>)

Em geral, pode-se usar os operadores relacionais (\neq , =, <, \leq , >, \geq) na operação de seleção, além da condição ser composta por mais que um predicado condicional, interligados pelos conectivos E ($^{\wedge}$) e OU (\vee) lógicos.

Exemplo: para a relação **FORNECEDOR** a seguir tem-se:

FORNECEDOR

#	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	35	Mecânica Jair	22	50,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00
5	44	Eletrons	35	52,00

a) σ [codigo = 44] (FORNECEDOR)

	codigo	nome	idPeca	valor
1	44	Eletrons	07	99,00
2	44	Eletrons	35	52,00

b) σ [codigo = 35] (FORNECEDOR)

	codigo	nome	idPeca	valor
1	35	Mecânica Jair	22	50,00

c) σ [codigo = 89] (FORNECEDOR)

	codigo	nome	idPeca	valor
0				

Note que a opção <u>c</u> NÃO recupera NENHUM dado, mas ela não está errada, somente não existem dados que atendam a condição (produz um resultado **vazio**).

2) <u>Operação de Projeção</u> (PROJECT): seleciona atributos de uma relação de acordo com a lista de atributos disponíveis. Os atributos são exibidos na mesma ordem que aparecem na lista. Seu resultado é uma relação que não pode existir repetições nas tuplas produzidas

π < lista de atributos > (< nome da relação >)

Exemplo: para a mesma relação do exemplo anterior (FORNECEDOR) o resultado da nome idPeca

projeção seguinte seria:

 π nome, idPeca (FORNECEDOR)

.		
	nome	idPeca
1	Altar	10
2	Mecânica Jair	22
3	Eletrons	07
4	Thorque	22
5	Eletrons	35

Uma operação relacional sempre resulta em uma outra relação que pode ser usada na elaboração de consultas

mais complexas.

FORNECEDOR

#	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	57	Thorque	35	45,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00

 π codigo, valor (σ [nome = "Thorque"] (FORNECEDOR))

	codigo	valor
1	57	45,00
2	57	47,00

→ Observe que ao invés de declarar uma relação como argumento na operação de projeção, inseriu-se uma expressão que evoluirá para uma relação.

3) <u>Operação de Junção</u> (JOIN): é utilizada para combinar tuplas relacionadas de duas relações (operação binária) em uma tupla simples. Esta combinação é realizada de acordo com uma condição indicada.

Θ [<condição>] (<nome das relações>)

Exemplo: para as relações à seguir observe a junção efetuada entre **PECAS** e **NOVOS_FORNECIMENTOS**

PECAS

#	idPeca	dsPeca	cor	peso
1	07	Mola estreita	Prata	10 gr.
2	10	Correia lisa	Preto	0,5 gr.
3	22	Amortecedor	Preto	2000 gr.
4	35	Tambor	Azul	500 gr.

NOVOS_FORNECIMENTOS

#	codigo	nome	idPeca	valor
1	57	Thorque	35	45,00
2	90	Solução Final	10	50,00

(PECAS, NOVOS_FORNECIMENTOS)

	idPeca	dsPeca	cor	peso	codigo	nome	idPeca	valor
1	10	Correia lisa	Preto	0,5 gr.	90	Solução Final	10	50,00
2	35	Tambor	Azul	500 gr.	57	Thorque	35	45,00

Funções Agregadas

- a) Funções Agregadas: consistem em funções que podem ser aplicadas a valores numéricos. Elas são: Average (média aritmética), Count (contador), Sum (soma), Maximum (maior), Minimum (menor) entre outras.
- → Existem outras operações que formam a álgebra relacional, porém essas que estão representadas neste material serão utilizadas no decorrer desta disciplina.

Exercício de Fixação

- 2) Usando as 6 relações a seguir, escreva a **expressão em álgebra** relacional que representa o item da solicitação e elabore as **relações resultantes** das seguintes operações:
 - a) União de B com Y
 - b) Interseção de B com Y
 - c) Diferença de B com Y e de Y com B
 - d) Produto cartesiano de B com Y

BANCO (Y)

#	codigo	nome
1	001	Brasil
2	350	Real

BANCOS (B)

#	codigo	nome
1	001	Brasil
2	104	C.E.F.
3	341	Itaú

Exercício de Fixação

... continuando o exercício 2:

- e) Projeção de idAgencia, cidade e estado da Agência
- f) Seleção dos clientes de "Brasília"
- g) Junção da Conta com a Agência
- h) Projeção de *agência*, *tipoConta* e *cidade* sobre a seleção das contas com *saldo* não negativo
- i) Projeção do *nome*, *saldo*, *estado* sobre a seleção do *estado* diferente de "DF" sobre a junção de Cliente com a Conta
- j) Projeção de *nome*, *foneReside*, *conta* e *saldo* dos clientes com saldo negativo e que sejam do "DF"

Exercício de Fixação (relações do exercício 2) AGENCIA (A)

#	idAgencia	rua	numero	compl	bairro	cidade	unFed	banco
1	5101	W 3	505	Cnj. 3	A.Norte	Brasília	DF	001
2	930	L 2	407	Bloco A	A.Sul	Brasília	DF	001
3	4146	Q.S.	07	Lote 1	Águas Claras	Taguatinga	DF	341

CONTA (C)

#	conta	tipoConta	saldo	agencia
1	59431	Poupança	1000,00	4146
2	47856	Corrente	- 50,00	930
3	30124	Corrente	200,00	4146

CLIENTE (L)

#	cpf	nomeCliente	foneReside	cidadeReside	estado
1	100	João Castro	4563760	Brasília	DF
2	200	José Sechi	3576721	Brasília	DF
3	300	Ana Morais	3787289	Taguatinga	DF
4	400	Maria Alves	4684592	Luziânia	GO

CONTA_CLIENTE (CC)

#	nConta	nCpf
1	59431	100
2	47856	200
3	30124	300
4	47856	400

Exercício de Fixação (expressões de solução)

```
a) B \cup Y =
                                    b) B \cap Y =
\mathbf{c}) B - Y =
    Y - B =
                                    \mathbf{d}) B \mathbf{x} Y =
e) \pi idAgencia, cidade, unFed (A) =
f) σ [cidadeReside = "Brasília"] (L) =
g) \Theta [agencia = idAgencia] (C, A) =
h) \pi agencia ,tipoConta, cidade (\sigma [saldo \geq 0] (C)) =
i) \pi nomeCliente, estado, saldo (\sigma [estado \neq "DF"] (
     \Theta [conta = nConta] (C, (\Theta [cpf = nCpf] (L,CC))) =
j) \pi nomeCliente, foneReside, conta, saldo (
     \sigma [saldo < 0 ^ estado = "DF"] (
     \Theta [cpf = nCpf] (L, (\Theta [conta = nConta] (C,CC))) =
```

Referência de Criação e Apoio ao Estudo

Material para Consulta e Apoio ao Conteúdo

- ELMASRI, R. e NAVATHE, S. B., Fundamentals of Database Systems, Addison-Wesley, 3rd edition, 2000
 - Capítulo 7
- SILBERSCHATZ, A. & KORTH, H. F., Sistemas de Banco de Dados - livro
 - Capítulo 3
- Universidade de Brasília (UnB Gama)
 - ➤ https://sae.unb.br/cae/conteudo/unbfga/ (escolha a disciplina **Sistemas de Banco de Dados 1**)

