PHYSICS 2APHY and 2BPHY

Formulae and constants sheet

Physics 2A/2B: Formulae and constants sheet

Forces and motion

Mean velocity $v_{av} = \frac{s}{t} = \frac{v + u}{2}$

Equations of motion $a = \frac{\Delta v}{\Delta t}$; $s = ut + \frac{1}{2}at^2$; $v^2 = u^2 + 2as$; v = u + at

Force F = ma

Weight force F = mg

Momentum p = mv

Change in momentum (impulse) $F\Delta t = mv - mu$

Kinetic energy $E_k = \frac{1}{2} mv^2$

Gravitational potential energy $E_p = mgh$

Work done $W = Fs = \Delta E$

Power $P = \frac{W}{t} = \frac{\Delta E}{t} = Fv_a$

Particles

Energy of photon E = hf

Activity $A = \frac{\Delta N}{\Delta t}$

Half-life $A = A_0 \left(\frac{1}{2} \right)^n$

Absorbed radiation dose absorbed dose $=\frac{E}{m}$

Dose equivalent dose equivalent =absorbed dose x quality factor

Mass-energy relationship $E = mc^2$

Change of temperature $Q = mc\Delta T$

Change of state Q = mL

Absolute zero of temperature $0 \text{ K} = -273 ^{\circ} \text{C}$

Electricity and magnetism

Electric current $I = \frac{q}{t}$

Electric field $E = \frac{F}{q} = \frac{V}{d}$

Work and energy W = qV = VIt

Ohm's law V = IR

Resistances in series $R_T = R_1 + R_2 + ...$

Resistances in parallel $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Power $P=VI=I^2R=\frac{V^2}{R}$

Physical constants

 $= 3.00 \times 10^8 \text{ m s}^{-1}$ Speed of light in vacuum or air......c $= -1.60 \times 10^{-19} \text{ C}$ Electron charge.....e $= 1.60 \times 10^{-19} \text{ J}$ Electron volt......1 eV $= 1.66 \times 10^{-27} \text{ kg}$ $= 9.11 \times 10^{-31} \text{ kg}$ $= 1.67 \times 10^{-27} \text{ kg}$ Mass of proton..... m_p $= 1.68 \times 10^{-27} \text{ kg}$ Mass of alpha..... m_{α} $= 6.65 \times 10^{-27} \text{ kg}$ = 931 MeV Mass-energy equivalent.....1 u

Physical data

Mean acceleration due to gravity on Earth...... = 9.80 m s^{-2}

Quality factors

Approximate quality factor for alpha radiation...... $QF_{\alpha}=20$ Approximate quality factor for beta radiation...... $QF_{\beta}=1$ Approximate quality factor for gamma radiation...... $QF_{\gamma}=1$ Approximate quality factor for slow neutrons...... $QF_{sn}=3$ Approximate quality factor for fast neutrons..... $QF_{fn}=10$

Prefixes of the metric system

Factor	Prefix	Symbol	Factor	Prefix	Symbol
1012	tera	T	10 ⁻³	milli	m
10^9	giga	G	10 ⁻⁶	micro	μ
10^6	mega	M	10-9	nano	n
10^{3}	kilo	k	10 ⁻¹²	pico	p

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The following expressions apply to the triangle ABC as shown:

The following expressions apply to the rightangled triangle ABC as shown:

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.

2. Gamma rays and X-rays occupy a common region.