Interception système pour la capture et le rejeu de traces

Marion Guthmuller

LORIA - Équipe AlGorille

Stage de deuxième année ESIAL 2009-2010

Encadrants : Martin Quinson Lucas Nussbaum

- 1 Institution d'accueil et équipe de recherche
- 2 Présentation du sujet
- Travail réalisé
- 4 Conclusion

Le LORIA (Laboratoire Lorrain de Recherche en Informatique et ses Applications)

- une unité mixte de recherche du CNRS, de l'INRIA, de l'INPL, de l'UHP Nancy 1 et de l'Université Nancy 2;
- avec des locaux partagés avec l'INRIA Nancy Grand Est
- regroupant 150 chercheurs et enseignants-chercheurs, un tiers de doctorants et post-doctorants et des ingénieurs;
- autour de 5 thématiques :
 - Traitement automatique des langues et des connaissances
 - Fiabilité et sécurité des systèmes informatiques
 - Image et géométrie
 - Perception, action et cognition
 - Informatique et science du vivant

L'équipe AlGorille (Algorithmes pour la Grille)

- Domaine d'application : Réseaux, systèmes et services et calcul distribué
- Thème principal de recherche : calul distribué et applications à très haute performance
- Directeur de Recherche : Jens GUSTEDT
- 4 chercheurs permanents, 2 ingénieurs, 1 Post-Doc et 6 étudiants en thèse

- Institution d'accueil et équipe de recherche
- 2 Présentation du sujet
- 3 Travail réalisé
- 4 Conclusion

Contexte : évaluation des applications distribuées

Application distribuée: architecture logicielle permettant l'exécution d'un programme sur plusieurs ordinateurs communiquant entre eux via des réseaux locaux ou Internet, pour mettre en commun des ressources (ex: BitTorrent, SETI@Home, applications HPC)

Évaluation: 3 techniques

- Exécution sur plate-forme réelle (expérience in situ) : PlanetLab, Grid'5000
 - © exécution directe de l'application étudiée
 - © mise en oeuvre lourde et reproduction difficile
- Simulation : mise en oeuvre d'un modèle de l'application et de modèles théoriques pour l'environnement
 - © rapide et facile, reproductibilité parfaite
 - © application réelle inutilisable (à reprogrammer)
- Émulation : substitution de l'environnement par un logiciel
 - © environnement contrôlé, utilisation de l'application réelle

Objectif final à long terme : émuler avec SimGrid

SimGrid: outil pour la simulation d'applications distribuées hétérogènes en environnements distribués → faciliter la recherche dans le domaine de la programmation des applications distribuées et parallèles sur des plate-formes de calcul distribué.

Le projet **Simterpose**:

- Fournir un émulateur simple et accessible basé sur SimGrid
- Réalisation :
 - Intercepter les actions de l'application
 - Utiliser SimGrid pour déterminer la réaction de l'environnement aux actions de l'application

Le projet **Simterpose**

- 1 Institution d'accueil et équipe de recherche
- 2 Présentation du sujet
- 3 Travail réalisé
 - Vue d'ensemble
 - Interception des actions de l'application
 - Extraction des actions de l'application
 - Identification des processus communiquants
- 4 Conclusion

Ma mission : vue d'ensemble

Étudier les moyens d'intercepter les actions de l'application

Actions sur lesquelles l'environnement a un impact

- Communications: write/read, open/close et sockets
- Calculs

(semaines 1 à 4)

Ma mission : vue d'ensemble

Étudier les moyens d'intercepter les actions de l'application

Actions sur lesquelles l'environnement a un impact

- Communications : write/read, open/close et sockets
- Calculs

(semaines 1 à 4)

Extraction de la trace d'une application avec ptrace

Objectif : rejeu avec SimGrid

(semaines 5 à 10)

Niveaux d'interception

Différentes approches d'interception

- Valgrind : outil de programmation pour le profilage de code
 - © Surcoût important, complexité dans son utilisation
- DynInst: API permettant l'insertion de code pendant l'exécution
 - © Coût assez faible
 - ② API bas niveau, niveau d'abstraction élevé → complexe
- LD_PRELOAD : édition de liens dynamiques (IId)
 - © Faible coût, facilité d'utilisation
 - © Surcharge les fonctions des bibliothèques mais pas des appels système
- Ptrace : appel système permettant à un processus de tracer les appels système d'autres processus
 - © bas niveau, coût moyen
 - © portabilité, complexité d'implémentation
- Uprobes : interface alternative à ptrace()
 - bas niveau, coût faible?
 - © en développement donc peu de documentation

Extraction des actions de l'application

- Sélection des appels systèmes à intercepter : write/read, open/close, fork/clone et tous les appels liés aux sockets
- Interception et récupération de toutes les informations liées à l'appel : valeur de retour, arguments,
- Identification des périodes de calcul
- Suivi de la création de processus (fork(), clone())

```
...
[24402] getsockopt(4, SOL_SOCKET, SO_REUSEADDR, 1) = 0
[24402] bind(4, {sa_family=AF_INET, sin_port=htons(2226), sin_addr=inet_addr(" 0.0.0.0")}, 16) = 0
[24419] connect(4, {sa_family=AF_INET, sin_port=htons(2226), sin_addr=inet_addr("127.0.0.1")}, 16) = 0
[24402] accept(4, {sa_family=AF_INET, sin_port=htons(56842), sin_addr=inet_addr("127.0.0.1")}, 16) = 5
...
[24419] exit_group(0) called
```

Identification des processus communiquants

Lecture des informations sur les sockets : Récupération pour chaque socket du couple (IP,port) local et du couple (IP,port) distant

- à chaque interception
- récupération du numéro de socket associé au file descriptor
- lecture du fichier /proc/net/protocol où protocol=tcp, udp, raw, ...
- enregistrement dans une structure

Identification du processus destinataire : Relier les sockets qui ont des paires de couples (IP,port) inversement identiques.

- à chaque appel lié aux sockets
- parcours de la liste des sockets en cours dans l'application et comparaison des 2 couples (IP,port) locaux et distants.

Résultat de trace dans l'interception système d'un Client/Serveur simple

syscall		wall_time cp local_addr:port param	t r	emote_addr:port	pid \	
return 23:15:18:938060 (v) fork	6976	19234	12000	0	12000	6977
23:15:18:944354	6976	25537	16000	6303	4000	0911
(v)fork						6978
23:15:21:957648	6976	3038838	16000	3013301	0	
(v)fork						6989
23:15:21:969823				0		in
		127.0.0.1: 2226		127.0.0.1:34024		
23:15:21:970159	6989	12697	0	0	0	in
		127.0.0.1:34024		127.0.0.1: 2226		
23:15:21:970356			0	198 127.0.0.1: 2226	0	out
		127.0.0.1:34024		127.0.0.1: 2226	6977	
512 (4 23:15:21:970471	6077	. , 512)	0	652	0	0.11+
		127.0.0.1: 2226				out
512 (5				121.0.0.1:34024	0909	
23:15:21:970594			0	238	0	in
		127.0.0.1:34024		127.0.0.1: 2226		
23:15:21:970791	6977	3032963		323		
		127.0.0.1: 2226		127.0.0.1:34024		
23:15:21:970966				173		
send		127.0.0.1: 2226	1	127.0.0.1:34024	6989	
512 (5	, "	.", 512)				
23:15:21:971104	6989	13643		510		out
recv		127.0.0.1:34024		127.0.0.1: 2226	6977	
512 (4	, "	.", 512)				

- 4 Conclusion

Bilan

Professionnel:

- Objectif principal atteint : interception des actions ayant un impact sur l'environnement de l'application
- Approfondissement des connaissances en Réseaux et systèmes
- Découverte du monde de la recherche et d'un projet de plusieurs années
- Confrontation avec une organisation particulière : pas de planning prévisionnel possible

Personnel:

Envie de continuer dans la recherche

Bilan

Professionnel:

- Objectif principal atteint : interception des actions ayant un impact sur l'environnement de l'application
- Approfondissement des connaissances en Réseaux et systèmes
- Découverte du monde de la recherche et d'un projet de plusieurs années
- Confrontation avec une organisation particulière : pas de planning prévisionnel possible

Personnel:

Envie de continuer dans la recherche

Perspectives:

- Rejouer la trace avec SimGrid
- Étudier une émulation online
- Projet SimGlite : étude du middleware de grille Glite

Bilan

Professionnel:

- Objectif principal atteint : interception des actions ayant un impact sur l'environnement de l'application
- Approfondissement des connaissances en Réseaux et systèmes
- Découverte du monde de la recherche et d'un projet de plusieurs années
- Confrontation avec une organisation particulière : pas de planning prévisionnel possible

Personnel:

• Envie de continuer dans la recherche

Perspectives:

- Rejouer la trace avec SimGrid
- Étudier une émulation online
- Projet **SimGlite** : étude du middleware de grille Glite

Questions?