# ForestClaw: Parallel, adaptive mesh refinement for Cartesian block structured meshes

**Goal**: Improve performance of codes used in natural hazards modeling (tsunamis, storm surges, flooding, debris flows, avalanches, earthquakes and so on).

**Solution method**: Explicit finite volume methods on structured Cartesian blocks. **Patches are dynamically created and destroyed** to follow the solution features of interest.



GPU approach: Improve performance of kernels used to update the solution on a Cartesian patch.

## **Approaches**

#### First approach:

- Allocate memory on the GPU; copy solution to the GPU; call kernel and update the solution; copy solution back from GPU; deallocate memory
  - -- Really **slow** (too many **cudaMalloc**'s)

#### Second approach:

- 1. Allocate memory only once when patch is created
  - -- Significant improvement in speed

| Test     | WALLTIME | ADVANCE | AMR   | GHOSTFILL | MEMCOPY | ALLOCATE | STEPS       |
|----------|----------|---------|-------|-----------|---------|----------|-------------|
| T1 (gpu) | 964.406  | 940.189 | 3.981 | 17.141    | 135.628 | 655.382  | 2.38554e+06 |
| T2 (gpu) | 286.727  | 260.483 | 4.958 | 17.676    | 127.956 | 1.357    | 2.38554e+06 |

### Current approach: (20x speed up in ADVANCE)

| Test                       | WALLTIME                     | ADVANCE                     | GFILL                   | B4STEP2                 | STEP2                    | TOTAL STEPS                |
|----------------------------|------------------------------|-----------------------------|-------------------------|-------------------------|--------------------------|----------------------------|
| T1 (gpu) T2 (cpu) T3 (gpu) | 140.612<br>170.595<br>15.263 | 137.670<br>167.298<br>9.941 | 4.691<br>4.616<br>4.798 | 128.616<br>128.629<br>0 | 8.936<br>38.601<br>9.866 | 709636<br>709636<br>707802 |
|                            |                              |                             |                         |                         |                          |                            |