Notes for GRE Physics

汪巍*

2019-11

^{*}Copyright © Wei Wang 2019. All rights reserved.

Preface

For test takers of GRE Physics, there are few materials to prepare. I took the test on Oct. 26, 2019 in Shanghai and got a full mark 990 (95%). Therefore, I plan to organize my notes based on Jeff's version...

江麓

Wei Wang

Nov. 2019 at Tongji University

目录

1	Classic Mechanics	1
	1.1 General Knowledge	1
	1.2 Mechnical Wave	1
	1.3 Analytical Mechanics	2
2	Electrodynamics	3
	2.1 Maxwell Equations	3
	2.2 Electromagnetic Wave	4
3	Electronics	6
	3.1 General Knowledge	6
4	Thermodynamics and Statistical Physics	7
	4.1 General Knowledge	7
	4.2 Carnot Cycle	8
	4.3 Electronic Density of States	9
5	Optics	10
	5.1 General Knowledge	10
	5.2 Interference and Diffraction	10
	5.3 Crystal Optics	12
6	Astrophysics and Relativity	13
	6.1 Astrophysics	13
	6.2 Relativity	13
	6.3 Cherenkov Radiation	14
7	Quantum Mechanics	15
	7.1 General Knowledge	15
	7.2 Stationary Schrödinger Equation	15
	7.3 Angular Momentum	16
	7.4 Other Knowledge	17
8	Solid State Physics	18
	8.1 General Knowledge	18

9	Particle Physics	19
	9.1 General Knowledge	19
10	Atomic Physics and Nuclear Physics	20
	10.1 Atomic Physics	20
	10.2 Nuclear Physics	20
11	Mathematics and Ohters	22
	11.1 Mathematics Knowledge	22
	11.2 Other Knowledge	22

1 Classic Mechanics

- 1. 保守力: $\nabla \times \vec{F} = 0 \Rightarrow \vec{F} = -\nabla U$.
- 2. 抛体: Projectile.
- 3. 弹簧串联: $\frac{1}{k_t} = \frac{1}{k_1} + \frac{1}{k_2}$; 并联: $k_t = k_1 + k_2$;

- 4. 冲量: impulse.
- 5. 转动惯量: the moment of inertia; 支点: fulcrum; 单摆: pendulum $\Rightarrow \omega = \sqrt{\frac{g}{l}}$.
- 6. centripetal: 向心的; centrifugal: 离心.
- 7. 科里奥利力: $\vec{F}_c = -2m\vec{\omega} \times \vec{v}$
- 8. 夭体: $E = \frac{1}{2}mv^2 + V(r) = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + V(r)$, 而 $L = mr^2\dot{\theta}$, 故 $E = \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + V(r) = \frac{1}{2}m\dot{r}^2 + V_{eff}$
- 9. 伯努利方程: $\frac{1}{2}\rho v^2 + \rho g h + P = C$; 不可压缩流体: $v_i A_i = C$; 斯托克斯定律 (球体): $F_{drag} = -6\pi \mu R v_s$, μ 为黏度系数, v_s 为下落最终速度.
- 10. 波在弦中传播速度: $v = \sqrt{\frac{T}{\mu}}$, T 为弦中张力, μ 为弦线密度;
- 11. 球面波强度: $I = \frac{P_s}{4\pi r^2} \propto \frac{1}{r^2}$; 声强级: $\beta = 10\log\frac{I}{I_0}(\mathrm{dB}), I_0 为 10^{-12}$; 理想气体中声波传播速度: $v = \sqrt{\frac{\gamma RT}{M}} \propto \sqrt{T}$, 如图1所示.

图 1: 理想气体中声波传播速度.

- 12. 允许的频率数 = 系统的自由度
- 13. 两端开口管: $L = n\frac{\lambda}{2}$;
 一端开口管: $L = \frac{2n+1}{4}\lambda$

harmonics: $n = Round\left(\frac{f_2}{f_1}\right)$; beats= $n \times f_1 - f_2$.

- 14. 火箭运动: $m\frac{\mathrm{d}v}{\mathrm{d}t} + u\frac{\mathrm{d}m}{\mathrm{d}t} = 0$, u 为相对速度。
- 15. 分析力学:

拉格朗日函数: $L(q, \dot{q}, t) = T - U$.

action 作用函数: $S = \int L dt$.

哈密顿原理: actual path 满足 $\delta \int L dt = 0$, 即 actual 作用函数 S 是极值。

拉格朗日方程:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0, \quad \text{广义动量: } p = \frac{\partial L}{\partial \dot{q}},$$

类似于牛顿第二定律: $ma = \frac{\mathrm{d}p}{\mathrm{d}t} = F$.

哈密顿量: $H(q, p, t) = \sum_{i} p_i \dot{q}_i - L$.

正则方程:

$$\dot{q} = \frac{\partial H}{\partial p}, \ \dot{p} = -\frac{\partial H}{\partial a}, \ \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t},$$

其中第二个式子应用了拉格朗日方程和广义动量的定义:

$$\frac{\partial H}{\partial q} = -\frac{\partial L}{\partial q} = -\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) = -\dot{p}.$$

2 Electrodynamics

- 1. 毕奥·萨伐尔定律: $B = \frac{\mu_0}{4\pi} \int \frac{I \times \hat{r}}{r^2} dl = \frac{\mu_0}{4\pi} \int \frac{J \times \hat{r}}{r^2} dV$.
- 2. Maxwell 方程组:

$$\begin{cases} \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}; \\ \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}; \\ \nabla \cdot \vec{B} = 0; \\ \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Rightarrow \text{ 位移电流: } \vec{J}_D = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \frac{\partial \vec{D}}{\partial t}. \end{cases}$$

3. 极化强度: $\vec{P} = \frac{\sum \vec{p_i}}{\Delta V}$, 由位移矢量:

- 4. 磁化强度: $\vec{M} = \frac{\sum \vec{m_i}}{\Delta V}$, 磁场强度和磁感应强度的关系: $\vec{B} = \mu \vec{H} = (1 + \chi_M)\mu_0 \vec{H} = \mu_0 \vec{H} + \mu_0 \vec{M}$.
- 5. 在介质中:

東缚电荷: $\rho_P = -\nabla \cdot \vec{P} \Rightarrow \sigma_P = -(P_2 - P_1);$ 净电荷: $\rho_P + \rho_f = \varepsilon_0 \nabla \cdot \vec{E} \Rightarrow \sigma_P + \sigma_f = \varepsilon_0 (E_2 - E_1);$ 自由电荷: $\rho_f = \nabla \cdot \vec{D} \Rightarrow \sigma_f = D_2 - D_1.$

6. 在介质中:

故: 总电流 = 自由电流 + 诱导电流 + 位移电流,即 $\frac{1}{\mu_0}\nabla \times \vec{B} = \vec{J}_f + \vec{J}_M + \vec{J}_P + \vec{J}_D$.

7. 介质中的 Maxwell 方程组:

$$\begin{cases} \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}; \\ \nabla \cdot \vec{D} = \rho_f; \\ \nabla \cdot \vec{B} = 0; \\ \nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}. \end{cases}$$

diamagnetic 抗磁性	$\mu < \mu_0$) 没有不成对电子,磁场减弱 (Lenz's Law)				
	$\chi_M < 0$					
paramagnetic	$\mu > \mu_0$					
	$\chi_M > 0$	不成对电子有相同的自旋,增强磁场				
ferromagnetic	$\mu \gg \mu_0$					
iciiomagnene	$\chi_M \gg 0$					

表 1: 几种磁性之间的区别

- 8. 坡印廷矢量: $\vec{S} = \vec{E} \times \vec{H}$. 欧姆定律微观形式: $\vec{J} = \sigma \vec{E}$.
- 9. 电磁场的变值关系:

$$\begin{cases} \vec{e}_n \times (\vec{E}_2 - \vec{E}_1) = 0; \\ \vec{e}_n \times (\vec{H}_2 - \vec{H}_1) = \vec{\alpha}; \\ \vec{e}_n \cdot (\vec{D}_2 - \vec{D}_1) = \sigma_f; \\ \vec{e}_n \cdot (\vec{B}_2 - \vec{B}_1) = 0. \end{cases}$$

- 10. 电磁场能量密度: $\frac{\mathrm{d}\omega}{\mathrm{d}t} = \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}$, 故在真空中: $\omega = \frac{1}{2}(\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2)$, 在介质中: $\omega = \frac{1}{2}(\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B})$, 注意光速 $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$.
- 11. 矢势: 由麦克斯韦方程组中 $\nabla \cdot \vec{B} = 0 \Rightarrow \vec{B} = \nabla \times \vec{A}$, 则 $\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla U \frac{\partial A}{\partial t}$.
- 12. 电磁波压力:

全吸收: $P_r = \frac{I}{c}$; 全反射: $P_r = \frac{2I}{c}$.

- 13. 电磁波中 $\vec{B} = \frac{1}{c}\vec{k} \times \vec{E} \Rightarrow B = \frac{E}{c}$.
- 14. 电容器: $C = \frac{Q}{U}$, $E = \frac{1}{2}QU = \frac{1}{2}CU^2$.
- 15. 偶极子电场: $E = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3}$,

电偶极子在电场中的能量和磁矩在磁场中的能量: $U=-\vec{p}\cdot\vec{E},\ U=-\vec{\mu}\cdot\vec{B}.$

- 16. 螺线管 (solenoid) 内磁场: $B = \mu_0 nI$ (安培环路定理), 理想螺线管外无磁场。
- 17. valence band 价带; conduction band 导带.
- 18. 超导: BCS theory: 库珀对 → bosonic state.
 迈斯纳 Meissner effect: 超导态时 expel any magnetic field.
- 19. 电磁波的趋肤效应: $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$.

3 Electronics

1. Metal:

Semiconductor:

- 2. Capacitor: $q = c\varepsilon(1 e^{-\frac{t}{\tau_c}})$, 其中 $\tau_C = RC$, 容抗 $X_C = \frac{1}{\omega C} \propto \frac{1}{\omega}$.
- 3. Inductor: 由 $\Phi = LI$ 定义, $\varepsilon = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -L\frac{\mathrm{d}i}{\mathrm{d}t}$, 感抗 $X_L = \omega L \propto \omega$, 能量 $U = \frac{1}{2}LI^2$, $\tau_L = R/L$.
- 5. LC 回路频率: $\omega = \frac{1}{\sqrt{LC}}$; RLC 回路频率: $\omega' = \sqrt{\omega^2 \left(\frac{R}{2L}\right)^2}$; 总阻抗: $Z = R + i\omega L + \frac{1}{i\omega C}$, 故 $|Z| = \sqrt{R^2 + \left(\omega L \frac{1}{\omega C}\right)^2}$; 则共振频率: $\omega_{resonant} = \frac{1}{\sqrt{LC}}$.
- 6. Thevenin 戴维南.
- 7. 门电路:

异或:输入端 A 和 B 相同为 0, A 和 B 不同则为 1.

4 Thermodynamics and Statistical Physics

- 1. 能均分定理: 平均动能 $E = \frac{\nu}{2} N k_B T$, ν 为自由度.
- 2. 理想气体: $pV = nRT = Nk_BT$. (注意 $nR = Nk_B$) 麦克斯韦速率分布: $n(v) = Av^2e^{-mv^2/2k_BT}$, 推出:

最可几速度:
$$v_{mode} = \sqrt{\frac{2RT}{M}};$$
均方根速度: $v_{rms} = \sqrt{\frac{3RT}{M}};$ 平均速度: $v_{avg} = \sqrt{\frac{8RT}{\pi M}};$

其中: $v_{mode} < v_{avg} < v_{rms}$.

平均自由程:
$$\lambda = \frac{1}{\sigma n} = \frac{1}{\sqrt{2\pi}d^2n}$$
, $(\sigma \text{ 为碰撞截面积})$ 则弛豫时间 $\tau = \frac{\lambda}{v}$, 利用能均分定理 $\frac{1}{2}mv^2 = \frac{\nu}{2}k_BT$, 故 $\tau = \frac{\sqrt{m\lambda}}{\sqrt{\nu k_BT}}$

 $3. C_P - C_V = nR;$

Isothermal: 等温; Isobaric: 等压;

Isochoric: 等容; adiabatic: 绝热 $\Rightarrow pV^{\gamma} = C$, $(\gamma = \frac{C_P}{C_V} > 1$, 故绝热线比等温线更陡).

4. Partition Function 配分函数: $Z = \sum_{s} g_{s} e^{-\beta \varepsilon_{s}} \ (\beta = \frac{1}{k_{B}T})$, 其中 g_{s} 为简并度;

多系统:
$$Z = \prod_{i=1}^{N} \zeta_i$$
; (ζ_i) 为每个子系统的配分函数)

故能量期望值为
$$\langle E \rangle = \frac{1}{Z} \sum_{s} \varepsilon_{s} e^{-\beta \varepsilon_{s}} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial \ln Z}{\partial \beta}.$$

每个态的概率 $P(s) = \frac{e^{-\beta \varepsilon s}}{Z}$, 注意近似: 当 $X \gg 1$, $\ln X! \approx X(\ln X - 1)$. 三种分布:

玻尔兹曼分布:
$$n(\varepsilon_s) = \frac{g_s}{e^{(\varepsilon_s - \mu)\beta}} \Rightarrow a_l = \frac{\omega_l}{e^{(\varepsilon_l - \mu)\beta}};$$

费米分布: $n(\varepsilon_s) = \frac{g_s}{e^{(\varepsilon_s - \mu)\beta} + 1} \Rightarrow a_l = \frac{\omega_l}{e^{(\varepsilon_l - \mu)\beta} + 1};$
波色分布: $n(\varepsilon_s) = \frac{g_s}{e^{(\varepsilon_s - \mu)\beta} - 1} \Rightarrow a_l = \frac{\omega_l}{e^{(\varepsilon_l - \mu)\beta} - 1};$

在经典极限条件 $\frac{a_l}{\omega_l} \ll 1$ 下,费米分布和波色分布都近似为玻尔兹曼分布.

5. Entropy:
$$S = k_B \ln \Omega$$
, $\partial S = \frac{\partial Q}{T}$, 故 $\Delta S = \int_{T_1}^{T_2} \frac{\mathrm{d}Q}{T}$; $\mathrm{d}S \geqslant \frac{\mathrm{d}Q}{T}$, 故 $\mathrm{d}U \leqslant T\mathrm{d}S - p\mathrm{d}V$, 且绝热过程 $\mathrm{d}s \geqslant 0$.

由热力学基本方程: $dU = dQ - pdV = TdS - pdV + \mu dN$, 故 $\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{VV}$; 除此之外,熵和配分函数之间的关系: $S = \frac{\partial}{\partial T} (k_B T \ln Z)$.

- 6. 活塞: piston.
- 7. 卡诺循环:

对外做功
$$\Rightarrow \eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{T_2}{T_1};$$

制冷
$$\Rightarrow \eta = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2};$$

8. $\not \cong \text{Enthalpy: } H = E + pV, \, dH = TdS + Vdp;$

自由能 Helmholtz Free Energy: F = E - TS, dF = -SdT - pdV;

吉布斯自由能 Gibbs Free Energy: G = E - TS + pV, dG = -SdT + Vdp.

配分函数: $Z = e^{-\beta F}$;

由 $dU \leq TdS - pdV$ 可知: 等温等容: $dF \leq 0$; 等温等压: $dG \leq 0$.

9. 黑体辐射: $P = \sigma T^4$:

维恩位移定律:
$$\lambda_{max} \cdot T = Constant;$$
 普朗克分布: $I(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{k_BT}-1}}.$

10. 相图:

Critical 临界点: 气液之间无区别点;

Triple 三相电:气液固三相并存.

相变潜热: $L = T(S^{(2)} - S^{(1)})$; 体积突变: $\Delta V = V^{(2)} - V^{(1)}$.

一级相变:存在L和 ΔV ;二级相变(连续相变):无相变潜热和体积突变.

12. 三维电子态密度 电子能量: $\varepsilon = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$, 每个量子态在 k 空间占据体积为 $\frac{(2\pi)^3}{V}$, 故态密度 $N(E) = \frac{4\pi k^2 \cdot \mathrm{d}k}{(2\pi)^3/V \cdot \mathrm{d}\varepsilon}$;

若考虑电子自旋 $\times 2$,则 $N(E) = \frac{2V}{(2\pi)^3} \frac{4\pi km}{\hbar^2} \propto \sqrt{E}$.

5 Optics

1. 光速:
$$v = \frac{1}{\sqrt{\mu \varepsilon}}$$
.

2. 不确定度原理:
$$\Delta E \Delta \tau \approx \hbar \Rightarrow \Delta \tau \Delta \nu \approx 1$$
,
相速度: $v_p = \frac{\omega}{k}$, 群速度: $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k}$,
折射率: $n = \frac{c}{v} = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} \approx \sqrt{\frac{\varepsilon}{\varepsilon_0}}$.

3. 球面反射:
$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f} = \frac{2}{r}$$
, 放大率 magnification: $m = -\frac{s'}{s}$. 球面折射: $\frac{n'}{s'} - \frac{n}{s} = \frac{n'-n}{r}$.
薄透镜有: $\frac{1}{f'} = (n_0 - 1)(\frac{1}{r_1} - \frac{1}{r_2})$, (n_0) 为透镜折射率),
$$\frac{n'}{s'} - \frac{n}{s} = \frac{n_0 - n}{r_1} + \frac{n' - n_0}{r_2}, \\ \frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}.$$

4. 瑞利 Rayleigh 判据(中央最大与第一极小重叠)像可分辨:
$$\theta_R = 1.22 \frac{\lambda}{d} = 0.61 \frac{\lambda}{r}$$
, 故艾里斑半径: $r = \theta_R f = (1.22 \frac{\lambda}{D}) f$.

5. 多普勒效应:
$$\frac{1}{\lambda_s}(v \pm v_s) = \frac{1}{\lambda_D}(v \pm v_D)$$
.

最大:
$$d\sin\theta = m\lambda$$
, $(d 为 双 鋒 间 距)$;
最小: $d\sin\theta = (m + \frac{1}{2})\lambda$.
 $y_m = \frac{m\lambda L}{d}$, $(L 为 鋒 屏 间 距)$.

最大:
$$a \sin \theta = (m + \frac{1}{2})\lambda$$
, $(a 为鋒宽)$.
最小: $a \sin \theta = m\lambda$.

8. 求成像最 sharp 时照相机的小孔半径: 即只有第一主极大在缝宽内
$$y \approx a = D \cdot \theta$$
, 而 $a \cdot \sin \theta \approx a \cdot \theta = \lambda$, 故 $a = \sqrt{\lambda D}$.

9. 光栅 (gratting) 衍射: 最大值
$$d\sin\theta = k\lambda$$
, 光栅常数 $d = a + b$.

- 10. 布拉格衍射: $2d\sin\theta = k\lambda$.
- 11. 空气中薄膜 (第一次反射有半波损失): $2nd = (m + \frac{1}{2})\lambda$.
- 12. 迈克尔逊干涉仪:

插入折射率为
$$n$$
 厚度为 L 的板: $N = \frac{2L}{\lambda}$, $N' = \frac{2Ln}{\lambda}$,

故:
$$N'-N=\frac{2L}{\lambda}(n-1);$$

单纯移动镜面:
$$\Delta N = \frac{2L}{\lambda}$$
.

13. 牛顿环:

$$2d=(m+\frac{1}{2})\lambda,\ d=R-\sqrt{R^2-r^2}\approx\frac{r^2}{2R},$$
 故 $r=\sqrt{R(m+\frac{1}{2})\lambda}.$

- 14. 通过偏振片: $I = \frac{I_0}{2}$; 马吕斯定律: $I = I_0 \cos^2 \theta$.
- 15. 斯涅耳定律: $n_1 \sin \theta_1 = n_2 \sin \theta_2$; 布鲁斯特角: $\theta = \arctan\left(\frac{n_2}{n_1}\right)$, 布鲁斯特角时反射光和折射光的偏振方向如右图所示.

- 16. 干涉光强 $I = A_1^2 + A_2^2 + 2A_1A_2\cos\delta$.
- 17. 光栅性能参数: <1> 角色散本领: $D_{\theta} = \frac{\delta \theta}{\delta \lambda} = \frac{K}{d\cos\theta} \Leftarrow (d\sin\theta = K\lambda$ 求导). <2> 线色散本领: $D_{l} = \frac{\delta l}{\delta \lambda} = D_{\theta} \cdot f = \frac{Kf}{d\cos\theta}$. <3> 色分辨本领: $R=\frac{\lambda}{\Delta\lambda}$, 由 $d\sin\theta = K(\lambda + \Delta\lambda)$ 和第一极小 $d\sin\theta = (K + \frac{1}{N})\lambda$, 得到 $R = KN = \frac{Nd\sin\theta}{\lambda}$, 其中 Nd 为光栅宽度, 所以使用光栅时最好全照亮.

<4> 色散范围 (自由光谱范围):

$$K(\lambda + \Delta \lambda) = (K+1)\lambda \Rightarrow \Delta \lambda = \frac{\lambda}{K} = \frac{\lambda^2}{d \sin \theta}.$$

18. 晶体光学:

光轴: 不发生双折射.

主平面: 光线和光轴确定的平面.

o 光垂直于主平面, e 光平行于主平面.

正晶体: $v_o > v_e$, $n_o < n_e$. (石英)

负晶体: $v_o < v_e, n_o > n_e$. (方解石)

较快光的光矢量振动的方向 → 快轴.

较慢光的光矢量振动的方向 → 慢轴.

20. 散射强度: $I_{\theta} \propto \frac{1}{\lambda^4}$. 分子小: 瑞利散射 (分子散射); 分子大: 米氏散射 (延德尔散射).

Astrophysics and Relativity 6

18. 晶体光学: 1. Parsec: 秒差距 = 3.26 光年.

 $1^{\circ} = 60'$ arcminute 角分 = 3600'' arcsecond 角秒.

宇宙背景辐射: $\lambda T = C \Rightarrow T = \frac{C}{\lambda} \propto \frac{1}{r} (\lambda \propto r, r)$ 为宇宙半径)

- 2. 红移量: $z = \frac{\lambda_{ob} \lambda_{em}}{\lambda_{cm}}$, 当 $v \ll c$ 时, 有 $z \approx \frac{v}{c} = \beta$.
- 3. 哈勃定律: $v = H_0 D \Rightarrow \frac{1}{H_0}$ 给出宇宙年龄.
- 4. 黑洞: Schwarzschid 半径 $\frac{1}{2}mc^2 \frac{GMn}{r} = 0 \Rightarrow r = \frac{2GM}{c^2}$.
- 5. 洛伦兹变换: $\beta = \frac{v}{c}$, $\gamma = \frac{1}{\sqrt{1 \frac{v^2}{c^2}}} \approx 1 + \frac{1}{2} \frac{v^2}{c^2} \Rightarrow \frac{1}{\gamma} = 1 \frac{1}{2} \frac{v^2}{c^2}$. 四维坐标 (x_1, x_2, x_3, ict) .

坐标变换:

$$\begin{cases} x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}, \\ y' = y, \ z' = z, \\ t' = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}}. \end{cases}$$

速度变换:

$$\begin{cases} u_{x} = \frac{u'_{x} + v}{1 + \frac{vu'_{x}}{c^{2}}}, \ u_{y} = \frac{u'_{y}\sqrt{1 - \frac{v^{2}}{c^{2}}}}{1 + \frac{vu'_{x}}{c^{2}}}, \ u_{z} = \frac{u'_{z}\sqrt{1 - \frac{v^{2}}{c^{2}}}}{1 + \frac{vu'_{x}}{c^{2}}}; \\ u'_{x} = \frac{u_{x} - v}{1 - \frac{vu_{x}}{c^{2}}}, \ u'_{y} = \frac{u_{y}\sqrt{1 - \frac{v^{2}}{c^{2}}}}{1 - \frac{vu_{x}}{c^{2}}}, \ u'_{z} = \frac{u_{z}\sqrt{1 - \frac{v^{2}}{c^{2}}}}{1 + \frac{vu_{x}}{c^{2}}}; \end{cases}$$

6. 间隔: $s^2 = c^2 \Delta t^2 - (\Delta x)^2$

$$<1> s^2 = 0$$
, 类光;

 $<2> s^2 > 0$, 类时, 可用低于光速的作用来连接;

$$<3> s^2 < 0$$
, 类空, 无因果关系,
$$E = mc^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0 c^2}{\sqrt{1 - \frac{p^2 c^2}{E^2}}}$$

$$\Rightarrow E^2 = p^2 c^2 + m_0^2 c^4.$$

对于光子有
$$p = \frac{h}{\lambda} = \frac{h\nu}{c} = \frac{E}{c}$$
.

- 7. 相对论多普勒效应: $f' = \sqrt{\frac{1 \pm \beta}{1 \mp \beta}} f(注意是 \beta, 不是 \beta^2)$ 横向多普勒效应: $f' = \sqrt{1 \frac{v^2}{c^2}} f(红移)$.
- 8. 电磁场:

$$E'_x = E_x, \ E'_y = \gamma(E_y - vB_z), \ E'_z = \gamma(E_z + vB_y);$$

 $B'_x = B_x, \ B'_y = \gamma(B_y + \frac{v}{c^2}E_z), \ B'_z = \gamma(B_z - \frac{v}{c^2}B_y).$

9. 切连科夫辐射:

当介质中光速小于带电粒子速度 v 时即 $\frac{c}{n} < v$, 就会产生光子震波, 如下图所示, 辐射角度满足 $\cos\theta = \frac{c}{nv} = \frac{1}{n\beta}$, 其中 $\beta = \frac{v}{c}$.

图 2: 切连科夫辐射

7 Quantum Mechanics

1. 对易: [AB,C] = A[B,C] + [A,C]B; 标准差: $\sigma = \sqrt{\langle j^2 \rangle - \langle j \rangle^2}$. 泡利矩阵:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\vec{S} = \frac{\hbar}{2}\sigma.$$

- 2. 含时薛定谔方程 $i\hbar \frac{\partial H}{\partial t} = \hat{H}\Psi, \Psi(t) = \Psi(0)e^{-\frac{iHt}{\hbar}}.$ 定态薛定谔方程 $\hat{H}\Psi = E\Psi \Rightarrow -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi + V\Psi = E\Psi.$ 可观测量 Q 的期望值 $\langle \hat{Q} \rangle = \langle \Psi | \hat{Q}\Psi \rangle = \int \Psi^* \hat{Q}\Psi \mathrm{d}x.$
- 3. 动量对应算符 $p \to \frac{\hbar}{i} \frac{\partial}{\partial x}$ 或者 $p \to -i\hbar \nabla$. $[\hat{x}, \hat{p}] = i\hbar.$ 球谐函数 $Y_l^m = \Theta(\theta) e^{im\phi}, \ Y_0^0 = \frac{1}{2} \sqrt{\frac{1}{\pi}}.$ 若波函数为 $\cos m\phi = \frac{e^{im\phi} + e^{-im\phi}}{2} \Rightarrow$ 本征值为 $m\hbar$ 和 $-m\hbar$.
- 4. 标准边界条件:

$$\left\{ \begin{array}{l} \varPsi(x) 连续; \\ \frac{\mathrm{d}\varPsi}{\mathrm{d}x} 在 势能不为无穷大处连续; \end{array} \right.$$

普朗克长度
$$l_p = \sqrt{\frac{\hbar G}{c^3}} \approx 10^{-35} m$$
.
概率流: $\vec{J} = \frac{\hbar}{2mi} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$.

5. 单态: $|0 \ 0\rangle = \frac{1}{\sqrt{2}} \uparrow \downarrow -\frac{1}{\sqrt{2}} \downarrow \uparrow$. 三重态:

$$\begin{cases} |1 \ 1\rangle = \uparrow \uparrow \\ |1 \ 0\rangle = \frac{1}{\sqrt{2}} \uparrow \downarrow + \frac{1}{\sqrt{2}} \downarrow \uparrow \\ |1 \ -1\rangle = \downarrow \downarrow \end{cases}$$

6. 无穷深势阱:

在
$$0 \leqslant x \leqslant a$$
, 波函数 $\Psi_n(x) = \sqrt{\frac{2}{a}}\sin(\frac{n\pi}{a}x)$, $n = 1, 2, 3...$, 有 $n - 1$ 个节点,

能量
$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$
.

7. 谐振子:

能量
$$E_n = \hbar\omega(n + \frac{1}{2}),$$

波函数 $\Psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\xi^2/2}, \xi = \sqrt{\frac{m\omega}{\hbar}}x, \Psi_n$ 的奇偶性同 n .

8. δ 函数势 $V = -\alpha \delta(x)$.

考虑東缚态
$$E<0\Rightarrow x<0, -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi=E\Psi$$
,即 $\frac{\partial^2}{\partial x^2}\Psi=\kappa^2\Psi$, $\kappa=\frac{\sqrt{-2mE}}{\hbar}$,故 $\Psi(x)=Ae^{-\kappa x}+Be^{\kappa x}$. $(x\to-\infty$ 需收敛,故 $A=0)$ 同理 $\Psi(x)=Fe^{-\kappa x}$ $(x>0)$.

同理
$$\Psi(x) = Fe^{-\kappa x} (x > 0)$$

边界条件
$$x=0$$
 时有 $B=F$

且
$$-\frac{\hbar^2}{2m} \int_{-\varepsilon}^{\varepsilon} \frac{\partial^2 \Psi}{\partial x^2} dx + \int_{-\varepsilon}^{\varepsilon} V(x) \Psi dx = \int_{-\varepsilon}^{\varepsilon} E \Psi(x) dx, (积分薛定谔方程)$$

$$\Delta \left(\frac{\partial \Psi}{\partial x}\right) = \frac{2m}{\hbar^2} \int_{-\varepsilon}^{\varepsilon} V(x) \Psi(x) dx = -\frac{2m\alpha}{\hbar^2} \Psi(0).$$

故
$$\Delta \left(\frac{\partial \Psi}{\partial x} \right) = 2B\kappa = -\frac{2m\alpha}{\hbar^2} B \Rightarrow \kappa = \frac{m\alpha}{\hbar^2},$$

故
$$\Psi(x) = \frac{\sqrt{m\alpha}}{\hbar} e^{-m\alpha|x|/\hbar^2}, E = -\frac{m\alpha^2}{2\hbar^2},$$
可见只有一个束缚态解.

有限深势阱至少有1个束缚态解.

共振透射 $T=1 \Rightarrow k'b=n\pi$.

图 3: 边界反射与透射

9. 一阶微扰
$$E_n^{(1)} = \langle \Psi_n^{(0)} | H' | \Psi_n^{(0)} \rangle$$
.

一 阶 波 函 数
$$\Psi_n^{(1)} = \sum_{m \neq n} \frac{\langle \Psi_m^{(0)} | H' | \Psi_m^{(0)} \rangle}{E_n^0 - E_m^0} \Psi_m^0.$$

二阶微扰
$$E_n^{(2)} = \sum_{m \neq n} \frac{|\langle \Psi_m^{(0)} | H' | \Psi_m^{(0)} \rangle|^2}{E_n^0 - E_m^0} = \langle \Psi_n^{(1)} | H' | \Psi_n^{(1)} \rangle.$$

变分法: $\langle \Psi | H | \Psi \rangle \leqslant E_g$,

试探函数一般可取
$$\Psi(x) = Ae^{-bx^2}$$
 或氢原子基态波函数 $\Psi_{100} = \frac{1}{\sqrt{\pi a^3}}e^{-r/a}$.

10. 不确定原理:

$$\sigma_A^2 \sigma_B^2 \leqslant (\frac{1}{2i} \langle [A, B] \rangle)^2.$$
如 $\sigma_x \sigma_p \leqslant \frac{\hbar}{2}, \, \sigma_E \sigma_t \leqslant \frac{\hbar}{2}.$
气体密度 $\rho \uparrow, \, \sigma_t \downarrow, \, \sigma_E \uparrow, \,$ 故谱线越宽.

11. 角动量: $L^2\Psi = l(l+1)\hbar^2\Psi$, $L_z\Psi = m\hbar\Psi$.

对易:
$$[r_i, r_j] = [p_i, r_j] = 0$$
, $[r_i, p_j] = i\hbar \delta_{ij}$, $[L_x, L_y] = i\hbar L_z$, $[L^2, L_i] = 0 \Rightarrow [L^2, \vec{L}] = 0$.

$$\diamondsuit L_{\pm} = L_x \pm iL_y, \ \emptyset \ [L_z, L_{\pm}] = \hbar L_{\pm}, \ [L^2, L_{\pm}] = 0.$$

$$\mathbb{E} L_{\pm} f_l^m = \hbar \sqrt{l(l+1) - m(m \pm 1)} f_l^{m \pm 1}.$$

12. 氢原子: $E_n = -E_1(\frac{Z^2}{n^2}\frac{\mu}{\mu_e}), E_1 = \frac{q^4}{8\hbar^2\varepsilon_0^2} = 12.6eV.$

一般情况
$$\mu \approx \mu_e \approx m_e$$
, 对于 positronium, $\mu = \frac{m_e^2}{m_e + m_e} = \frac{1}{2}m_e$.

轨道电子速度
$$v_n = \frac{\alpha c}{n}$$
, 其中 α 为精细结构常数 $\frac{1}{137}$.

轨道半径
$$r_n \approx a_0 \left(\frac{m_e^n n^2}{\mu_1 Z}\right)$$
, 其中 $a_0 \approx 0.53 \mathring{A}$.

基态波函数
$$\Psi_{100} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$
, 第一激发态 $\propto (1 - \frac{r}{2a}) e^{-r/2a}$.

13. 磁矩
$$\mu = -\frac{e}{2m}L$$
, 自旋 $\mu_s = -\frac{ge}{2m}S$, 朗德因子 $g = 2$, 旋磁比 $\gamma = \frac{\mu_s}{S} = -\frac{ge}{2m}$.

- 14. Stern-Gerlach 实验: Ag 原子 $5s^1$ 电子 $|\Psi\rangle = \frac{1}{\sqrt{2}} \uparrow \downarrow -\frac{1}{\sqrt{2}} \downarrow \uparrow$ 经过磁场分裂为两束.
- 15. 弗兰克-赫兹实验: 非弹性碰撞才会吸收电子能量.

16. 康普顿散射:
$$\Delta \lambda = \frac{h}{mc} (1 - \cos \phi)$$
. (务必记住此公式)

17. 精细结构 split with j: <1> 相对论修正; <2> 自旋-轨道耦合.

18. 横截面微分
$$D(\theta) = \frac{d\sigma}{d\Omega}$$
, 其中 $d\Omega = \sin\theta d\theta d\phi$.

19. 更多请参看量子力学笔记部分...

8 Solid State Physics

1.
$$V = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)$$
.
倒格子: $\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$, $\vec{b}_1 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$, $\vec{b}_1 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$.

2. 自由电子气:
$$E_F = \frac{\hbar^2 k_F^2}{2m}$$
, $k_F = (3\rho\pi^2)^{\frac{1}{3}}$, ρ 为电子数密度.

推导: 在
$$T=0$$
 时, 费米分布 $f_0(E)=\begin{cases} 1, E\leqslant E_F\\ 0, E>E_F \end{cases}$,
态密度 $N(E)=\frac{V}{2\pi^2}\left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}}E^{\frac{1}{2}}$
$$N=\int_0^\infty f_0(E)\cdot N(E)\mathrm{d}E=\frac{V}{2\pi^2}\left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}}\times\int_0^{E_F}E^{\frac{1}{2}}\mathrm{d}E.$$

$$N = \int_{0}^{\infty} f_{0}(E) \cdot N(E) dE = \frac{V}{2\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{2} \times \int_{0}^{\infty} E^{\frac{1}{2}} dE$$

可得 $E_{F} = \frac{\hbar^{2}}{2m} \left(\frac{3\pi^{2}N}{V}\right)^{\frac{2}{3}}$, 故 $k_{F} = \left(\frac{3\pi^{2}N}{V}\right)^{\frac{1}{3}}$.

3. 有效质量:
$$\frac{\mathrm{d}^2 E}{\mathrm{d}k^2} = \frac{\hbar^2}{m}$$
, 故 $m^* = \frac{\hbar^2}{\left(\frac{\mathrm{d}^2 E}{\mathrm{d}k^2}\right)}$.

Particle Physics 9

1. J/Ψ meson 介子: 由一个 charm quark 和一个 anti charm quark 组成.

Deutron: 氘核.

自旋: 光子 photon= 1, 电子 $=\frac{1}{2}$, 质子 proton= $\frac{1}{2}$.

2.

hadron 强子
$$\left\{\begin{array}{l} \text{meson } \text{介子 (boson): a quark and an antiquark.} \\ \text{baryon 重子 (fermion): 3 quarks}(\frac{1}{3}). \\ \text{baryon number } B(\pm 1). \end{array}\right.$$

lepton 轻子 $\begin{cases} \text{ 电子 electron}(e^{-}) \text{ 和电子中微子 electron neutrino}(\nu_{e}), \\ \mu\text{子 muon}(\mu^{-}) \text{ 和}\mu\text{子中微子 muon neutrino}(\nu_{\mu}), \\ \tau\text{子 tau}(\tau) \text{ 和}\tau\text{子中微子 tau neutrino}(\nu_{\tau}). \end{cases}$

轻子数守恒: lepton number L conservation.

- 3. 汤川秀树预言的介子是 π 介子,不是 μ 子.

4. μ 子衰变: $\mu^{-} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu}$, $\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$. α 衰变: ${}^{A}N \to {}^{A-4}L + {}^{4}He$. β 衰变: β^{-} : $N \to O + e^{-} + \bar{\nu}_{e}$ $(n \to p + e^{-} + \bar{\nu}_{e})$,

 $\beta^+: N \to O + e^+ + \nu_e \ (p \to n + e^+ + \nu_e).$

 β - 衰变更普遍,因为中子数量更多.

10 Atomic Physics and Nuclear Physics

- 1. ${}^{2S+1}L_J$, 锂 Lithium, 钠 Sodium.
- 2. 选择定则: $\Delta m_l = \pm 1, 0$; $\Delta l = \pm 1$; $\Delta j = 0, \pm 1$; $\Delta m_s = 0$. 洪特法则: $<1>S\uparrow$, $E\downarrow$; $<2>L\uparrow$, $E\downarrow$; <3> 如果壳层少于半满, J=|L-S|, $E\downarrow$, 如果壳层多于半满, J=L+S, $E\downarrow$.
- 3. 塞曼效应: $U = -\vec{\mu} \cdot \vec{B} = -\frac{ge}{2m} \vec{J} \cdot \vec{B}$. 玻尔磁子: $\mu_B = \gamma \hbar = \frac{e\hbar}{2m}$. $h\nu' = h\nu + (m_2 g_2 - m_1 g_1) \mu_B B$, 正常塞曼效应 S = 0, $g_1 = g_2 = 1$, $\Delta m = 0, \pm 1$, 故: $h\nu' = h\nu + \begin{pmatrix} \mu_B B \\ 0 \\ -\mu_B B \end{pmatrix}$ $\sigma^+ \dot{E}$ 旋 π 线偏振 $\sigma^- \dot{A}$ 旋 π 手方向只能看到 σ^\pm 2条 垂直B方向可以看到3条
- 3. 斯塔克效应 (E): $U = \vec{p} \cdot \vec{E} = -qEr\cos\theta$.
- 4. X 射线 (exicite inner electrons of element near the nuclear) \rightarrow Auger transition 俄歇跃迁. 考虑 shielding 作用: $E=13.6eV(\frac{3}{4})(Z-1)^2$.
- 5. 激光 (受激发射): 发射光子与入射光子有相同的 ω 、 ϕ 和偏振方向...

条件: 1. 相干 coherent.

- 2. 单色 monochromatic.
- 3. minimal divergence.
- 4. high intensity.

6. 几种常用激光:

Diod Laser: active medium is semiconducting. (p-n 结) Gas Laser: active medium is free gas. (电流 $\xrightarrow{\begin{subarray}{c} \&\xi \end{subarray}}$ atoms)

- 7. Nucleus is most likely to emit electrons in the direction opposite to the magnetic field.
- 8. $r \approx r_0 A^{\frac{1}{3}}$, $r_0 \approx 1.2 fm$, 结合能: $E_B = \sum_i m_i c^2 Mc^2$, 核子 nucleon.
- 10. 单位 $Gray=\frac{Energy}{Unit\ mass}$,即 $1Gy=\frac{1J}{1kg}$. 韧致辐射 Bremsstrahlung: 对电荷 $P=\frac{q^2a^2}{6\pi\varepsilon_0c^3}\propto q^2\propto a^2$; 对电偶极子 $P=\frac{\omega^4}{12\pi\varepsilon_0c^3}p^2$.
- 11. 卢瑟福散射: $\frac{1}{2}mv^2 = k\frac{2e^2}{r}$.

11 Mathematics and Ohters

1.
$$\sum n^2 = \frac{n(n+1)(2n+1)}{6}.$$

2. Fourier Series:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}),$$
 其中 $a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos(\frac{n\pi t}{L}) dt, b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin(\frac{n\pi t}{L}) dt.$ 傅里叶变换: $f(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt.$

图 4: Poisson Distribution.

5. 不确定度:

$$<1> x = a + b + \cdots \Rightarrow dx = da + db + \cdots \Rightarrow (\delta x)^2 = (\delta a)^2 + (\delta b)^2 + \cdots;$$
 $<2> x = a \cdot b \cdots \Rightarrow \frac{dx}{x} = \frac{da}{a} + \frac{db}{b} + \cdots \Rightarrow (\frac{\delta x}{x})^2 = (\frac{\delta a}{a})^2 + (\frac{\delta b}{b})^2 + \cdots.$
 N 次测量得到的值和不确定度分别为 x_i 和 σ_i ,则每次的权重 $\omega_i = \frac{1}{\sigma_i^2}$,
则 $x_{avg} = \frac{\sum \omega_i x_i}{\sum \omega_i}$, $\sigma_{avg} = \frac{1}{\sqrt{\sum \omega_i}}$.
若多次测量均有 $\omega_i = \omega$,则 $x_{avg} = \frac{\sum x_i}{N}$, $\sigma_{avg} = \frac{\sigma}{\sqrt{N}}$.

6. 原子核横截面积 $\pi(10^{-14})^2m^2=10^{-28}m^2$; 空气分子碰撞横截面积 $\sigma=10^{-18}m^2$; 空气粒子数密度 $n=10^{25}m^{-3}$; 空气分子平均自由程 $l_p=\frac{1}{\sigma n}=10^{-7}m$.