# Project Development Phase Model Performance Test

| Date          | 10 NOvember 2022                            |
|---------------|---------------------------------------------|
| Team ID       | PNT2022TMID36002                            |
| Project Name  | Project – Early Detection of Chronic Kidney |
|               | Disease using Machine Learning              |
| Maximum Marks | 10 Marks                                    |

# **Model Performance Testing:**

Project team shall fill the following information in model performance testing template.

| S.No. | Parameter              | Values                                                                                                                                                                                                                                                                               | Screenshots                                                                                                                                                                                                                                                                                                                                                       |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Model Summary          | {'C': 1.0, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 100, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False} | logreg.get_params()  {'C': 1.0,     'class_weight': None,     'dual': False,     'fit_intercept': True,     'intercept_scaling': 1,     'l1_ratio': None,     'max_iter': 100,     'multi_class': 'auto',     'n_jobs': None,     'penalty': 'l2',     'random_state': None,     'solver': 'lbfgs',     'tol': 0.0001,     'verbose': 0,     'warm_start': False} |
| 2.    | Accuracy and<br>Scores | <b>Training Accuracy:</b> 95.83333333333334 %                                                                                                                                                                                                                                        | Training Accuracy:  #accuracy from sklearn.metrics import accuracy_score log_acc_train=accuracy_score(y_test, y_pred_log) print('Training accuracy: ',(log_acc_train)'100,"%"  Training accuracy: 95.833333333333334 %                                                                                                                                            |
|       |                        | <b>Training Score:</b> 98.92857142857143 %                                                                                                                                                                                                                                           | Training Score:  [49] #training score     train_score=logreg.score(x_train,y_train)     print('Training Score: ',(train_score)*180,"%")  Training Score: 98.92857142857143 %                                                                                                                                                                                      |
|       |                        | <b>Testing Score:</b> 95.83333333333333                                                                                                                                                                                                                                              | Testing Score:  #testing score test_score=logreg.score(x_test,y_test) print('Testing Score: ',(test_score)*100,"%")  Testing Score: 95.8333333333334 %                                                                                                                                                                                                            |

# 3. Metrics

# **Classification Report:**

It contains the precision, recall, F1-score, and support of the logistic regression model

### **Regression Metrics:**

**-> MAE:** 0.041666666666666664

-> MSE: 0.2041241452319315

-> **RMSE:** 0.45180100180492244

#### **Classification Report:**

| 0 | <pre>print("Classification Report:\n", clsrep_log)</pre> |                      |        |          |         |  |
|---|----------------------------------------------------------|----------------------|--------|----------|---------|--|
|   | Classification                                           | Report:<br>precision | recall | f1-score | support |  |
|   | 9                                                        | 0.99                 | 0.95   | 0.97     | 78      |  |
|   | 1                                                        | 0.91                 | 0.98   | 0.94     | 42      |  |
|   | accuracy                                                 |                      |        | 0.96     | 120     |  |
|   | macro avg                                                | 0.95                 | 0.96   | 0.95     | 120     |  |
|   | weighted avg                                             | 0.96                 | 0.96   | 0.96     | 120     |  |

#### **Regression Metrics:**

#### **Confusion Matrix**

### **Confusion Matrix:**



### **ROC Curve:**

A graph to show the performance of a classification model at all classification thresholds.

#### **ROC Curve:**



### 4. Tune the Model

### **Hyperparameter Tuning:**

Tuning the hyperparameters of logistic regression using GridSearchCV.

