#### Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Marjan Ghazvininejad Omer Levy Yinhan Liu Luke Zettlemoyer

#### Autoregressive vs non-autoregressive

Авторегрессивный подход O(n)

Неавторегрессивный подход О(1)



### Conditional Masked Language Model

**Определение:** предсказывает набор Y<sub>mask</sub>, зная исходный текст X и Y<sub>obs</sub>.

- Полученные токены независимы
- Предсказывает вероятности Р(y|X, Yobs) для каждого у из Ymask
- Модель должна знать длину  $N = |Y_{obs}| + |Y_{mask}|$



#### Архитектура

Авторы убирают ограничение декодера на просмотр будущих токенов





### Multimodality problem



#### Multimodality problem







Danke

Danke schön

Vielen Dank

Неверные переводы

Danke Dank

Vielen schön

Токены предсказания не зависят друг от друга

#### Решение проблемы

Запустим алгоритм несколько раз на каждом шаге будем предсказывать токены в которых алгоритм был наименее уверен на предыдущем шаге

$$Y_{mask}^{(t)} = \arg\min_{i}(p_i, n)$$
$$Y_{obs}^{(t)} = Y \setminus Y_{mask}^{(t)}$$

Замаскированные токены

$$y_i^{(t)} = \arg\max_{w} P(y_i = w | X, Y_{obs}^{(t)})$$
  
 $p_i^{(t)} = \max_{w} P(y_i = w | X, Y_{obs}^{(t)})$ 

Остальные токены

$$y_i^{(t)} = y_i^{(t-1)}$$
 $p_i^{(t)} = p_i^{(t-1)}$ 

Т - количество итераций t - номер итерации

$$n = N \cdot \frac{T-t}{T}$$



#### Обучение модели

- Трансформер без ограничения на просмотр токенов справа
- Маскируем k ~ Unif(1, N) токенов
- Предсказываем замаскированные токены
- Предсказываем длину последовательности



#### Предсказание длины последовательности

- добавим токен длины к энкодеру
- токен длины энкодера моделирует распределение длин последовательностей
- можем взять І наиболее вероятных длин энкодера
- предсказать для них перевод
- взять лучший перевод

$$\frac{1}{N} \sum \log p_i^{(T)}$$

| Length     | WMT'14 EN-DE |       | WMT'16 EN-RO |       |  |
|------------|--------------|-------|--------------|-------|--|
| Candidates | BLEU         | LP    | BLEU         | LP    |  |
| $\ell = 1$ | 26.56        | 16.1% | 32.75        | 13.8% |  |
| $\ell=2$   | 27.03        | 30.6% | 33.06        | 26.1% |  |
| $\ell = 3$ | 27.09        | 43.1% | 33.11        | 39.6% |  |
| $\ell=4$   | 27.09        | 53.1% | 32.13        | 49.2% |  |
| $\ell = 5$ | 27.03        | 62.2% | 33.08        | 57.5% |  |
| $\ell = 6$ | 26.91        | 69.5% | 32.91        | 64.3% |  |
| $\ell=7$   | 26.71        | 75.5% | 32.75        | 70.4% |  |
| $\ell = 8$ | 26.59        | 80.3% | 32.50        | 74.6% |  |
| $\ell = 9$ | 26.42        | 83.8% | 32.09        | 78.3% |  |
| Gold       | 27.27        |       | 33.20        | _     |  |

#### Итоговый алгоритм

#### Инициализация

- предсказываем длину
- присваиваем всем таргетам значение <mask>
- предсказываем все токены

#### Итерация

- маскируем наименее уверенные токены
- предсказываем их

| t | Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen . |
|---|-------------------------------------------------------------------------------|
| 0 |                                                                               |
| 1 | The departure of the French combat completed completed on 20 November .       |
| 2 | The departure of French combat troops was completed on 20 November .          |
| 3 | The withdrawal of French combat troops was completed on November 20th .       |

# Количество итераций

| <b>Iterations</b> | WMT'1           | 4 EN-DE | E WMT' | WMT'16 EN-RO |  |  |
|-------------------|-----------------|---------|--------|--------------|--|--|
|                   | BLEU            | Reps    | BLEU   | Reps         |  |  |
| T = 1             | 18.05           | 16.72%  | 27.32  | 9.34%        |  |  |
| T = 2             | 22.91           | 5.40%   | 31.08  | 2.82%        |  |  |
| T = 3             | 24.99           | 2.03%   | 32.19  | 1.26%        |  |  |
| T=4               | 25.94           | 1.07%   | 32.53  | 0.87%        |  |  |
| T = 5             | 26.30           | 0.72%   | 32.62  | 0.61%        |  |  |
|                   |                 |         |        |              |  |  |
|                   | T               | =4      | T = 10 | T = N        |  |  |
| $1 \le N <$       | (10 2           | 21.8    | 22.4   | 22.4         |  |  |
| $10 \le N <$      | $< 20 \qquad 2$ | 24.6    | 25.9   | 26.0         |  |  |
| $20 \le N \le$    | < 30            | 24.9    | 26.7   | 27.1         |  |  |
| $30 \leq N <$     | < 40            | 24.9    | 26.7   | 27.6         |  |  |
| $40 \le N$        |                 | 25.0    | 27.5   | 28.1         |  |  |

### Distillation

| <b>Iterations</b> | WMT'14 EN-DE |       | WMT'16 EN-RO |       |  |
|-------------------|--------------|-------|--------------|-------|--|
|                   | Raw          | Dist  | Raw          | Dist  |  |
| T=1               | 10.64        | 18.05 | 21.22        | 27.32 |  |
| T=4               | 22.25        | 25.94 | 31.40        | 32.53 |  |
| T = 10            | 24.61        | 27.03 | 32.86        | 33.08 |  |

## Результаты

| Model                                    | Dimensions<br>(Model/Hidden) | Iterations | WM<br>EN-DE | T'14<br>DE-EN | WM<br>EN-RO | T'16<br>RO-EN |
|------------------------------------------|------------------------------|------------|-------------|---------------|-------------|---------------|
| NAT w/ Fertility (Gu et al., 2018)       | 512/512                      | 1          | 19.17       | 23.20         | 29.79       | 31.44         |
| CTC Loss (Libovický and Helcl, 2018)     | 512/4096                     | 1          | 17.68       | 19.80         | 19.93       | 24.71         |
| Iterative Refinement (Lee et al., 2018)  | 512/512                      | 1          | 13.91       | 16.77         | 24.45       | 25.73         |
|                                          | 512/512                      | 10         | 21.61       | 25.48         | 29.32       | 30.19         |
| (Dynamic #Iterations)                    | 512/512                      | ?          | 21.54       | 25.43         | 29.66       | 30.30         |
| Small CMLM with Mask-Predict             | 512/512                      | 1          | 15.06       | 19.26         | 20.12       | 20.36         |
|                                          | 512/512                      | 4          | 24.17       | 28.55         | 30.00       | 30.43         |
|                                          | 512/512                      | 10         | 25.51       | 29.47         | 31.65       | 32.27         |
| Base CMLM with Mask-Predict              | 512/2048                     | 1          | 18.05       | 21.83         | 27.32       | 28.20         |
|                                          | 512/2048                     | 4          | 25.94       | 29.90         | 32.53       | 33.23         |
|                                          | 512/2048                     | 10         | 27.03       | 30.53         | 33.08       | 33.31         |
| Base Transformer (Vaswani et al., 2017)  | 512/2048                     | N          | 27.30       |               | <u> </u>    |               |
| Base Transformer (Our Implementation)    | 512/2048                     | N          | 27.74       | 31.09         | 34.28       | 33.99         |
| Base Transformer (+Distillation)         | 512/2048                     | N          | 27.86       | 31.07         |             |               |
| Large Transformer (Vaswani et al., 2017) | 1024/4096                    | N          | 28.40       |               |             |               |
| Large Transformer (Our Implementation)   | 1024/4096                    | N          | 28.60       | 31.71         | ——          |               |

## Результаты



#### Источники

- 1. Non-Autoregressive Neural Machine Translation <a href="https://arxiv.org/pdf/1711.02281.pdf">https://arxiv.org/pdf/1711.02281.pdf</a>
- 2. Attention Is All You Need <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a>
- 3. Mask-Predict: Parallel Decoding of Conditional Masked Language Models <a href="https://arxiv.org/pdf/1904.09324.pdf">https://arxiv.org/pdf/1904.09324.pdf</a>

#### Вопросы

- 1. В чем заключается Multimodality problem, приведите пример?
- 2. Какие токены маскируются на і-ой итерации алгоритма?
- 3. Приведите схему Parallel Decoding of Conditional Masked Language Models.