Towards Post-training Alignment for Large Speech Models

Speaker: Hu Yuchen (NTU 4th-year Ph.D. Student)

Date: Sep 30, 2024

Background: Large Speech Models

WhisperSeamlessM4TCanaryVALL-EVoiceCraftCosyVoiceSpeechGPTQwen-AudioSALMONN

How to **efficiently** align them to specific scenarios?

Background

Pretraining & SFT:

$$\mathcal{L}(x,y) = \sum_{l=1}^{L} -\log \mathcal{P}_{\theta}(y_l|y_{l-1},\cdots,y_1,x)$$
 Learn a distribution --> uncertain

Post-training:

Outline

Speech-to-Text Understanding

- Motivation
- Method
- Results on ASR & AST
- Conclusion & Discussion

Text-to-Speech Synthesis

- Motivation
- Method: UNO
- Experimental Results
- Extension: RIO
- Conclusion & Discussion

Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models

Yuchen Hu^{1*}, Chen Chen^{1*}, Chao-Han Huck Yang², Chengwei Qin¹, Pin-Yu Chen³, Eng Siong Chng¹, Chao Zhang⁴

¹ Nanyang Technological University ² NVIDIA Research ³ IBM Research ⁴ Tsinghua University

Motivation

To deploy an ASR system in a practical scenario:

A very convenient approach is:

UnlabeledSpeech

Unsupervised Domain Adaptation

6

Motivation

Source Domain Target Domain (Unlabeled)

Human's UDA solution:

- "Unsupervised" is for adaptation process, but the learning schedule is semi-supervised.
- Considering the exhibited ability of large speech model:
 Can we skip the source-domain data for target domain adaptation? → Source-free UDA

Method (Self-training --> Post-training)

1) Pseudo Labeling:

2) Informed Finetuning:

Candidate 1: Confidence Score

Experimental observation: decoding performance on CHiME-4 test-real

Confidence score is unreliable!

Candidate 2: Self-Attention Matrix

<|transcribe|>

Attentive score:

$$A_l = \sum_{j=4}^{l} W_{l,j} + \sum_{i=l+1}^{L} W_{i,l},$$

The importance of *l*-th token in whole utterance^[8]

Correct/Wrong

Is A_i more **reliable** than C_i ?

Confidence Score Attentive Score

Is A_i stable for guide finetuning?

Conclusion: attentive score is **more reliable** but **less stable** than confidence score.

STAR: Integrate A and C for each token

Criteria: - If A-C conflict, then follow A:

$$\mathcal{S}_l^{ ext{conf}} = [\sigma(\mathcal{A}_l^2/\mathcal{C}_l - \lambda) + \sigma(\mathcal{C}_l^2/\mathcal{A}_l - \lambda)] * \mathcal{A}_l$$

- If A-C consistent, then calibrate A using C:

$$S_l^{\text{cons}} = \left[\sigma(\lambda - \mathcal{A}_l^2/\mathcal{C}_l) * \sigma(\lambda - \mathcal{C}_l^2/\mathcal{A}_l) \right] *$$
$$\mathcal{A}_l * e^{(\mathcal{C}_l - \mathcal{A}_l)/\tau}.$$

Quick validation:

Confusion Matrix

Effectiveness on Various Domains

STAR = Self-TAught Recognizer

Testing S	cenario	Whisper (frozen)		Whisper (self-train.)	$oxed{\mathrm{UTT}_{\mathrm{filter}}}$	$\mid ext{TOK}, \ \mathcal{C}_l$	weight \mathcal{A}_l	STAR (ours)		Whisper (real label)
				Backgroi	ınd Noise				П	
	test-real	6.8	Ι	6.9	6.4	6.5	6.2	$6.0_{-11.8\%}$	П	5.2
CHEME 4	test-simu	9.9		10.1	9.7	9.8	9.5	$9.4_{-5.1\%}$		8.7
CHiME-4	dev-real	4.6		4.5	4.3	4.3	4.1	$3.9_{-15.2\%}$		3.2
	dev-simu	7.0		7.0	6.6	6.7	6.6	$6.4_{-8.6\%}$		5.9
	babble	40.2	Ι	37.6	35.0	33.5	31.3	30.2_24.9%	Ī	27.2
LS-FreeSound	airport	15.6		15.5	15.2	15.3	15.0	$14.8_{-5.1\%}$		14.5
	car	2.9		3.0	2.8	2.8	2.6	$2.5_{-13.8\%}$		2.4
RATS	radio	46.9	Ι	47.2	46.0	45.5	44.9	44.6_4.9%	Ī	38.6
			Ì	Speaker	Accents			'	Ü	
	African	6.0	Ι	5.8	5.5	5.4	5.0	4.8_20.0%	П	4.6
CommonVoice	Australian	5.8		5.7	5.6	5.5	5.2	$5.1_{-12.1\%}$		4.3
Collinion voice	Indian	6.6		6.5	6.3	6.4	6.1	$6.0_{-9.1\%}$	Î	5.7
	Singaporean	6.5		6.2	5.8	5.8	5.4	$5.1_{-21.5\%}$		4.9
			Ì	Specific S	Scenarios			,	ĺ	
TED-LIUM 3	TED talks	5.2	Ι	4.9	4.7	4.8	4.3	$4.1_{-21.2\%}$	П	3.6
SwitchBoard	telephone	20.8		20.5	19.8	19.3	18.6	$18.1_{-13.0\%}$	Î	15.3
LRS2	BBC talks	8.5		8.3	7.6	7.9	7.4	7.0_17.6%		5.6
ATIS	airline info.	3.6		3.5	3.3	3.3	3.2	$2.9_{-19.4\%}$		2.0
CORAAL	interview	21.5		21.3	20.8	20.7	20.4	$20.1_{-6.5\%}$		17.9

Whisper zero-shot

Previous Semi-ASR

Ours

Real-label training

Analysis

STAR can avoid forgetting:

Model	LS- babble	FreeSound airport	d car	RATS Communication Communi			onVoice in sg		TED-3	SWBD	ATIS
Frozen	40.2	15.6	2.9	46.9	6.0	5.8 5.9 5.8	6.6	6.5	5.2	13.3	3.6
Self-train.	38.2	16.6	2.9	47.3	6.4		6.7	6.3	5.3	13.7	3.4
STAR	33.3	15.7	2.8	46.1	6.1		6.7	5.6	5.0	13.5	2.9

Train on CHiME-4 and test on OOD

STAR enjoys high data efficiency:

Generalization

- Other models

Model	Baseline	Self-train.	STAR	Real
Whisper-V3-1.5B	6.8	6.9	$ 6.0_{-11.8\%}$	5.2
Whisper-Med-0.8B	8.9	8.8	$8.0_{-10.1\%}$	7.1
OWSM-V3.1-1.0B	8.4	8.1	$7.5_{-10.7\%}$	6.5
Canary-1.0B	8.2	8.0	$7.2_{-12.2\%}$	6.4
Parakeet-TDT-1.1B	8.0	7.8	$7.0_{-12.5\%}$	6.2

- Other task (Speech Translation on FLEURS)

$X \to En$	Baseline	Self-train.	STAR	Real	
Ar	21.9	22.1	$ 23.3_{+1.4} $	24.5	
De	33.7	34.0	$35.9_{+2.2}$	36.5	
Es	23.9	24.1	$24.8_{\pm 0.9}$	26.4	
Fa	16.6	16.3	$17.6_{+1.0}$	19.0	
Hi	22.4	22.5	$23.4_{\pm 1.0}$	24.4	
Zh	16.3	16.3	$17.1_{+0.8}$	17.9	

Ablation Study

- Different whisper sizes

Model Size	# Param.	Baseline	STAR	Real
large-v3 large-v2 large	1,550 M	6.8 7.7 7.5	$ \begin{vmatrix} 6.0_{-11.8\%} \\ 6.9_{-10.4\%} \\ 7.0_{-6.7\%} \end{vmatrix} $	$\begin{array}{ c c } 5.2 \\ 6.0 \\ 6.8 \end{array}$
medium.en small.en base.en	769 M 244 M 74 M	8.9 12.7 32.4	$ \begin{vmatrix} 8.0_{-10.1\%} \\ 10.6_{-16.5\%} \\ 17.7_{-45.4\%} \end{vmatrix} $	7.1 9.0 16.1

- Different training methods

Approach	# Param.*	Baseline	STAR	Real					
Regular Finetuning									
Full	1550 M		$6.0_{-11.8\%}$	5.2					
Enc-only	635 M	6.8	$6.3_{-7.4\%}$	5.0					
Dec-only	907 M		$6.1_{-10.3\%}$	4.4					
	Parameter-Efficient Finetuning								
LoRA	16 M	6.8	$6.0_{-11.8\%}$	5.1					
Reprogram.	0.4 M	0.8	$6.7_{-1.5\%}$	6.7					

Iterative Post-training

Model	Togt got			# Iter	ations			Real
Model	Test set	0	1	2	3	4	5 5.7 7.8 10.3 17.0 8.9 3.8 6.3 4.7	label
large-v3		6.8	6.0	5.9	5.7	5.7	5.7	$\overline{}$
medium.en	test-real	8.9	8.0	7.9	7.9	7.8	7.8	7.1
small.en		12.7	10.6	10.3	10.3	10.3	10.3	9.0
base.en		34.4	17.7	17.2	17.2	17.0	17.0	16.1
	test-simu	9.9	9.4	9.3	9.0	8.9	8.9	8.7
	dev-real	4.6	3.9	3.9	3.8	3.8	3.8	3.2
	dev-simu	7.0	6.4	6.4	6.4	6.3	6.3	5.9
large-v3	af	6.0	4.8	4.8	4.7	4.7	4.7	4.6
	au	5.8	5.1	5.0	4.6	4.5	4.5	4.3
	in	6.6	6.0	5.8	5.8	5.8	5.8	5.7
	sg	6.5	5.1	5.1	5.1	5.1	5.1	4.9

- Almost no more improvements after 3 iterations

Conclusion & Discussion

Easy-to-use:

- A pretrained Model + 1-hour *unlabeled* speech
- **13.5%** relative WER reduction across **14** target domains (noise, accent, etc.)

Generalization:

- Other models: SeamlessM4T, OWSM, Canary
- Other task: Speech Translation

Anti-forgetting:

Avoid common catastrophic forgetting in domain adaptation

Discussion

- Large models' attention matrix can present their uncertainty
- Self-improvement is possible in large speech foundation Model

Enhancing Zero-shot Text-to-Speech Synthesis with Human Feedback

Chen Chen^{1*}, Yuchen Hu^{1*}, Wen Wu², Helin Wang³, Eng Siong Chng¹, Chao Zhang⁴

Nanyang Technological University ² University of Cambridge
 Johns Hopkins University ⁴ Tsinghua University

Zero-shot TTS

Zero-shot TTS: speak a sentence with *cloned voice*

Current open-sourced TTS model is not robust enough:

- Objective Intelligibility: missing words, wrong words, repetition
- Subjective Naturalness: unnatural prosody, tones (human preference)

RLHF is What We Need

- Align LLM's generation with human preference

PPO vs. DPO

- **PPO**^[1] (**OpenAI**): most popular RLHF algorithm, make ChatGPT a success
- DPO^[2] (Stanford): direct preference optimization without reward model

Reward model in TTS: MOSNet --> Not fine-grained enough

^[1] Schulman, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

^[2] Rafailov, et al. "Direct preference optimization: Your language model is secretly a reward model." NeurIPS 2023.

DPO in TTS?

Zero-shot TTS: speak a sentence with *cloned voice*

Target Text

Reference
Speech

Speech

I have a dream.

Reference
Speech

Speech

Speech

"I have a dream."

Question: If we want to use **DPO**, how to sample binary data?

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}, \pi_{\text{ref}}) = \mathbb{E}\left[-\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_{\theta}(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right)\right]$$

Our backbone^[3] lacks diversity: w and I are not distinctive enough

DPO in TTS?

Question: If we want to use **DPO**, how to sample binary data?

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}, \pi_{\text{ref}}) = \mathbb{E}\left[-\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_{\theta}(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right)\right]$$

Our backbone^[3] lacks diversity: w and I are not distinctive enough

Solutions:

- 1. Ground-truth as pos, generated as neg (SpeechAlign^[4])
- 2. Use StyleTTS to produce diversity
- 3. Change infer hyper-params: top-k, top-p, τ

Our Method

- Sampling and annotating with MOS evaluators (human or NN)
- Incorporate MOS's uncertainty to reweight training samples
- Encourage TTS model to synthesize **good** speech and avoid **bad** speech

Our Method

Encourage TTS model to synthesize good speech and avoid bad speech

$$egin{aligned} \mathcal{L}_{ ext{TTS}}(\pi_{ heta}, \pi_{ ext{ref}}) &= \mathbb{E}_{t,p,s \sim \mathcal{P}_{ ext{pos}} \cup \mathcal{P}_{ ext{neg}}} (1 - V_{ ext{TTS}}(t,p,s;u)). \ V_{ ext{TTS}}(t,p,s;u) &= egin{cases} \sigma(u^{-1} \cdot R(t,p,s) - Z_{ ext{ref}}), & ext{if } (t,p,s;u) \sim \mathcal{P}_{ ext{pos}} \ \sigma(Z_{ ext{ref}} - u^{-1} \cdot R(t,p,s)), & ext{if } (t,p,s;u) \sim \mathcal{P}_{ ext{neg}} \end{cases} \ R(t,p,s) &= \log rac{\pi_{ heta}(s|t,p)}{\pi_{ ext{ref}}(s|t,p)} \end{aligned}$$

Objective Evaluation

Model	Label	WER↓ (%)	SIM↑ (0,1)	I-CNF	$\frac{\text{MOS} \uparrow by}{EDL}$	MOSNet
VoiceCraft (baseline)	-	8.4	0.84	3.51	3.55	3.65
SpeechAlign-DPO SpeechAlign-ODPO PPO-SDP UNO-ICNF UNO-EDL	/ / / / / /	7.2 6.9 7.7 2.6 2.4	0.91 0.90 0.88 0.91 0.92	$ \begin{vmatrix} 3.70_{+0.19} \\ 3.73_{+0.21} \\ 3.65_{+0.14} \\ \mathbf{3.93_{+0.42}} \\ 3.88_{+0.37} \end{vmatrix} $	$\begin{matrix} 3.72_{+0.17} \\ 3.76_{+0.24} \\ 3.69_{+0.14} \\ 3.90_{+0.35} \\ \textbf{3.91}_{+0.36} \end{matrix}$	$3.86_{+0.21} \\ 3.90_{+0.25} \\ 3.85_{+0.20} \\ 4.31_{+0.66} \\ 4.28_{+0.63}$
GroundTruth (upper-bound)	-	2.0	-	4.15	4.19	4.52

- ICNF/EDL: which model to annotate training data
- ICNF/EDL: which model to do evaluation
- MOSNet: external evaluation

Training data: 400 utterances (200 pos, 200 neg)

Subjective Evaluation

Table 2: Results on human evaluation.

Model	MOS by				
Model	Human	MOSNet			
VoiceCraft	3.38	3.57			
UNO-ICNF	4.06	4.20			
UNO-Human	3.98	4.13			
GroundTruth	4.55	4.46			

Figure 3: Result of A/B test. "VC" and "GT" denote the "VoiceCraft" and "GroundTruth".

- Human: human annotated training data
- Human: human evaluation

Demos

- **Objective Intelligibility:** missing words

"If a layman in giving baptism pour the water before saying the words is the child baptized"

Subjective Naturalness: unnatural rhythm and tones

"Not only this but on the table I found a small ball of black dough or clay with specks of something which looks like sawdust in it"

Visualization

- Align better to the ground-truth speech
- Remove some bad cases

Scalability

	EmotionTTS-Valence						EmotionTTS-Arousal $\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ar{ar{v}}$	$ar{m}$	$ar{v}^{\mathcal{P}_{\scriptscriptstyle{\mathbf{I}}}}$	neg $ar{m}$	Valen before	ce † after	$ig egin{array}{c} \mathcal{P}_{\scriptscriptstyle 1} \ ar{a} \end{array}$	$ar{m}$	$ar{a}^{\mathcal{P}_{\mathbf{i}}}$	neg $ar{m}$	Arous before	al † after
0.65	4.08	0.36	4.04	0.55	0.67	0.69	4.05	0.48	4.20	0.62	0.71

- We can also use RLHF to improve emotion TTS

Figure 4: WER and MOS Results on 830M models.

- VoiceCraft-830M is already very good
- Our improvements are limited

RLHF on Larger TTS Model

VoiceCraft-830M synthesizes abundant good and non-distinctive speech:

- Are they really good?
- Does TTS model understand what he is speaking?

Reverse Inference Optimization

Let TTS model itself perceives the synthesized speech:

Bayes' formula:
$$\begin{split} P(\mathbf{Y}|\mathbf{T}_{\mathrm{Y}},\mathbf{T}_{\mathrm{X}},\mathbf{X}) &= \frac{P(\mathbf{X}|\mathbf{T}_{\mathrm{X}},\mathbf{T}_{\mathrm{Y}},\mathbf{Y})\,P(\mathbf{Y}|\mathbf{T}_{\mathrm{Y}},\mathbf{T}_{\mathrm{X}})}{P(\mathbf{X}|\mathbf{T}_{\mathrm{X}},\mathbf{T}_{\mathrm{Y}})} \\ &= \frac{P(\mathbf{Y}|\mathbf{T}_{\mathrm{Y}})}{P(\mathbf{X}|\mathbf{T}_{\mathrm{X}})}P(\mathbf{X}|\mathbf{T}_{\mathrm{X}},\mathbf{T}_{\mathrm{Y}},\mathbf{Y}) \end{split}$$

Empirical Observation

Ratio of bad reverse inference

MOS vs. Bad reverse inference

Model	/ X	11
VoiceCraft-330M	3.79	3.90
VoiceCraft-830M	4.24	4.32

(✓ : good generation, MOS > 3)

- Bad reverse inference results correspond to low TTS robustness
- Human/MOSNet cannot perceive subtle differences in speech, but TTS model can

Evaluation on Longer Test Samples

Model	WER↓	SIM↑	, ,			ıse Ratio↓
Wiodei	(%)	(0,1)	MOSNet	Human	$MOS \leq 3$	%WER > 20
VoiceCraft	35.3	0.79	3.36	3.22	27%	51%
RIO-DPO	11.3	0.92	$4.11_{\pm 0.75}$	-	5%	17%
RIO-ODPO	9.2	0.93	$4.15_{\pm 0.79}$	-	5%	15%
UNO-null	6.8	0.93	$4.20_{\pm 0.84}$	-	4%	11%
RIO (ours)	3.4	0.96	$4.40_{+1.04}$	$4.18_{\pm 0.96}$	1 %	$oldsymbol{4}\%$
Ground-Truth	1.3	-	4.48	4.54	0%	0%

Results on 330M models

Figure 4: MOS and WER Results on 830M models.

Performance on Large TTS Model

Figure 4: MOS and WER Results on 830M models.

Figure 3: Results of A/B test. "VC" and "GT" denote the "VoiceCraft" and "Ground-Truth".

- High-level sampling can push the limit of RLHF on large TTS models

Analysis

MOS distribution

Ratio of good reverse inference in good zero-shot samples

Model	Baseline	RIO
VoiceCraft-330M	54%	85%
VoiceCraft-830M	80%	97%

- Better MOS distribution: higher mean and lower variance
- More good reverse inference results after post-training --> better robustness

Conclusion & Discussion

RLHF Post-training in TTS

- Improve subjective naturalness and expressiveness
- Correct many objective issues

Annotating is important in RLHF-TTS:

- Positive samples: Good enough, i.e., natural, expressive, correct

Negative samples: Cover as many error types as possible

Discussion:

- For general speech perception: Model > Human
- TTS model can **not** understand what it predict, similar to Whisper/Qwen-Audio
- Future: Speech/text understanding/generation are unified in one single model

Summary

Pretraining & SFT:

$$\mathcal{L}(x,y) = \sum_{l=1}^{L} -\log \mathcal{P}_{\theta}(y_l|y_{l-1},\cdots,y_1,x)$$
 Learn a distribution --> uncertain

Post-training:

- Appropriate annotating can help efficiently improve the performance!

Thank you! & QA

Appendix: LLM Hallucination

- Non-Hallucinations: describes the food (e.g., bananas, nuts, oatmeal) inside the bowel
- Hallucinations: imagines the items on the table that is outside the image

NOTE: Hallucinations starts with "In addition to ..."

Appendix: LLM Hallucination

Figure 2. A case of relationship between hallucinations and knowledge aggregation patterns. Hallucinations are highlighted.

Figure 3. Hallucinations often start within the first 10 tokens after knowledge aggregation patterns.

- Hallucinations are usually triggered by specific tokens (e.g., "additionally");
- We can observe a "knowledge aggregation pattern" in self-attention map along with the beginning of hallucinations → An insightful finding!

Appendix: LLM Hallucination

Figure 2. A case of relationship between hallucinations and knowledge aggregation patterns. Hallucinations are highlighted.

All hallucinations are highly related to the starting token "additionally" but unrelated to previous normal tokens!