Grundlagen: Informationstechnologie in Bibliotheken

Sven Koesling

ETH-Bibliothek

Herbst 2017

1 / 56

Kursus / Übersicht

15.12.2017: Internettechnologien I, Datenbanktechnologien I

- IntT I: Dokumentformen, Skriptsprachen, Ajax, responsive Web
- DBT I: Datenbanktypen, Technologien, Einstieg SQL

Dokumentformen

■ Warum nicht Word, Pages, ...?

1. Dokumentgrößen

	dokument.doc	28 KB
	dokument.docx	12 KB
HTML	dokument.html	4 KB

die Dokumentauszeichnung am Beispiel "Pages"

```
-clidocument advanctio-"http://downlaper.apple.com/namespace/sfo advanct-"http://downlaper.apple.com/namespace/sfo advanct-"http://www.diserg2001/09.5chess-instances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances/advances
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (noch 12 mal soviel...)
```

der Dokumentinhalt am Beispiel "Pages"

der eigentliche Text

```
et organisacement with him.

The state of th
frage
profit a fulfamilia or happen profit and the com-
comment of a fulfamilia of the Charles to Africa (In-
ternal Charles)
       or in angles "personage, explaints" i
hopes of only ter "Melliness terbigles I" -
les has belown Resport segre Julius veller Anches
```

2. frei verfügbares Format

Ein proprietäres Format wie .doc wird laufend verändert, wobei diese Veränderungen nicht dokumentiert werden. Wer das Dokument lesen will, muss die Software zum Lesen kaufen (können...).

Dokumentformen

- Warum nicht Word, Pages, ...?
- html

eine einfache Seite

...sieht so aus:

Der Hase und der Baum

Kapitel 1: Der Hase

Meister Lampe hoppelt über ein Feld.

Kapitel2: In der Werkstatt

Herr K. bestellt eine Knautschzone.

...mit Umlauten:

```
<html>
 <head>
 <meta charset="utf-8" />
   <title>Der Hase und der Baum</title>
  </head>
 <body>
   <h1>Der Hase und der Baum</h1>
   <h2>Kapitel 1: Der Hase</h2>
   Meister Lampe hoppelt über ein Feld.
   <h2>Kapitel2: In der Werkstatt</h2>
   Herr K. bestellt eine Knautschzone.
  </body>
</html>
```

...sieht so aus:

Der Hase und der Baum

Kapitel 1: Der Hase

Meister Lampe hoppelt über ein Feld.

Kapitel2: In der Werkstatt

Herr K. bestellt eine Knautschzone.

Dokumentformen

- Warum nicht Word, Pages, ...?
- html
- pdf

Eigenschaften von pdf

■ proprietär, aber offen gelegt

Eigenschaften von pdf

- proprietär, aber offen gelegt
- Papiergrösse, Layout und Inhalt festgelegt

Eigenschaften von pdf

- proprietär, aber offen gelegt
- Papiergrösse, Layout und Inhalt festgelegt
- Text als Text, Bild als Bild enthalten

14 / 56

Wieder die Dokumentgrösse:

Django 2.0: Neue Version des Python-Webframeworks
Oliver Diedrich

Django 2.0 gibt die Unterstützung für Python 2 endgültig auf. Das URL-Routing lässt sich jetzt auch ohne reguläre Ausdrücke aufsetzen.

Emsthafte Webentwicklung bedeutet hestzutage in der Regel den Einsätz eines Webframeworks, das dem Entwickler viele Routinetätigkeiten abnimmt. In der Python-Welt ist Django, benannt nach dem Jazz-Gitarristen Django Reinhardt, seit zehn Jahren das Webframework der Wahl. Konkurrenten wir Flask konnten bislang nur Nischen besetzen.

Django setzt konsequent das Model-View-Controller-Konzept um, kapselt Datenbankzugriffe über eine objektrelationale Abbildung und generiert automatisch eine Oberfläche zur Verwaltung von Datenbank und Benutzem. Das Framework enthält eine leistungsfähige Template-Sprache und bieter eine flexible URL-Konfiguration.

Die frisch erschienene Version 2.0 ist trotz des großen Versionssprungs weitgehend rückwürzkompatibel zur Vorversion 1.11 – mit einer Ausnahmer Django 2 arbeitet nur noch mit Python 3.4, 3.5 und 3.6 zusammen. Wer noch Python 2.7 matzt, muss bei Django 1.11 bleibens, das als LTS-Version noch bis Apati 2020 Sicherheits- und kritische Bugfürse erhalten soll. Django 1.10 har mit dem Erscheine den neuen Wersion das Ende des Supports erreichte. als Bild: 178.8 kB als PDF: 67.7 kB

Fazit: Welche Form wofür?

Textverarbeitung: Alles zum Weiterverarbeiten

html: Inhalt geht über Form

PDF: Form soll erhalten bleiben

alles Quatsch?

Theorem

Im Web liest doch niemand mehr. Da sollte man nur knappe Infos unterbringen.

http is stateless

...some web applications may have to track the user's progress from page to page...Solutions for these cases include:

- the use of HTTP cookies.
- server side sessions.
- hidden variables (when the current page contains a form), and
- URL-rewriting using URI-encoded parameters, e.g., /index.php?session_id=some_unique_session_code.

(wikipedia)

privacy?

You have zero privacy anyway. Get over it. (Scott McNealy, Sun Microsystems, 1999)

Das erste Programm

	Т						Data			_						Working Variables					Variable	
	١.					14.1	14.5	149	9V4	9V5	*76	e.v.y	\circ_{V_0}	04.9	c.A.10	*V11	**V12	*V13	$^{1}V_{21}$	1V22	1V23	0V24
1	Mice		Indication of		0	0	0	0	0	0		0		0	0	0	0	0	0		0	
ě	ă	Variables seted	Voriables receiving	change in the	Statement of Results		0	0	0	0	0	0		0	0		0		1.6	1.4	1.1	0
1 5	77	upon	results	Variable		,		4	0	0	0	0		0	0		0		Bits a fract.	8 to 0	B ta	0
Number of Operation	233					Ė	1	m	ů	ů	ů	ů	ů	ľů	ľ	l ė	Ů	l ů	81	R _S	R ₅	B ₇
-	×					Ŀ	Ľ	Ľ	ш	Ш	ш	ш	ш	ш	Ш	Ш			87	10	113	807
1	×	$^{1}\mathbf{v}_{2}\times ^{1}\mathbf{v}_{3}$	1 _{V4} , 1 _{V5} , 1 _{V4}		- an		2		24	2+	2 e											
2	-	$^{1}V_{4} - ^{1}V_{1}$	PV4	$\begin{cases} {}^{1}V_{4} & = {}^{2}V_{4} \\ {}^{1}V_{1} & = {}^{1}V_{1} \end{cases}$	- 2n - 1	-1			2n - 1													
3	+	$^{1}\mathbf{v}_{5}+^{1}\mathbf{v}_{1}$	PV5	{ 'vs = 2vs }	= 2m + 1	1				2n + 1												
4	0	$^2\mathrm{V}_5 + ^2\mathrm{V}_4$	1 _{V11}	$\begin{cases} 2V_5 & = & 0V_5 \\ 2V_4 & = & 0V_4 \end{cases}$	= 2n-1 2n-1				0	0						2n-1 7n-1						
5	1	$^{1}v_{11}+^{1}v_{2} \\$	PV13	$\begin{cases} v_{11} & = & v_{11} \\ v_{2} & = & v_{2} \end{cases}$	- 1 - 20-1		2									6-801						
4	-	$o_{V_{13}} - v_{V_{13}}$	1v13	Pv ₁₁ - °v ₁₁ Pv ₁₂ - °v ₁₃	$=-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0\cdot\cdot\cdot\cdot\cdot$													$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} - \Lambda_0$				
7	-	${}^3\mathbf{V}_3={}^3\mathbf{V}_1$	1v10	$\begin{cases} \begin{pmatrix} v_0 & - & \langle v_0 \rangle \\ \langle v_1 & - & \langle v_1 \rangle \end{pmatrix}$	= n - 1(= 3)										n-1							
8	+	${}^{1}V_{\gamma}+{}^{0}V_{\gamma}$	1v ₇	$ \begin{bmatrix} {}^{1}V_{2} & - & {}^{1}V_{2} \\ {}^{0}V_{7} & - & {}^{1}V_{7} \end{bmatrix} $	= 2+0=2		2					2										
9		$^{1}V_{6} + ^{1}V_{7} \\$	*v ₁₁	$\begin{cases} v_6 & = & v_6 \\ v_{11} & = & v_{11} \end{cases}$	- 2n - A ₃						2+	2				$\frac{2a}{2} - A_1$						
30	×	$^{1}V_{21}\times ^{2}V_{11}$	1v11	V21 - V21 VV0 - VV1	$=$ $\mathbb{S}_1 \cdot \frac{2n}{2} = \mathbb{S}_1 A_1 \cdot \dots \cdot \dots \cdot \dots$											$\frac{2a}{2} = A_1$	$\mathbf{B}_1\cdot \mathbf{\tilde{q}}=\mathbf{B}_1\mathbf{A}_1$		151			
11		$^{1}V_{12} + ^{1}V_{13}$	PV13	V ₁₂ = OV ₁₂ V ₁₃ = OV ₁₂	$=-\tfrac{1}{2}\cdot\tfrac{2n+1}{2n+1}+\aleph_1\cdot\tfrac{2n}{2}\ldots\ldots\ldots$												0	$\left\{-\frac{1}{2}\cdot\frac{2m-1}{2k+1}+\aleph_1\cdot\frac{2n}{2}\right\}$				
12	-	${}^{1}V_{10} - {}^{1}V_{1} \\$	PV10	$ \begin{cases} ^{1}V_{29} & = & ^{2}V_{10} \\ ^{1}V_{1} & = & ^{1}V_{1} \end{cases} $	- n - 2(= 2)	1									n – 2							
33	r I-	${}^{1}V_{6}-{}^{1}V_{1} \\$	2V ₀	{ 'V ₀ = "V ₀ }	= 2n - 1						2n-1											
34	+	$^{1}V_{1}+^{1}V_{7} \\$	2Vy	$\begin{cases} {}^{1}V_{1} & = & {}^{1}V_{1} \\ {}^{1}V_{7} & = & {}^{2}V_{7} \end{cases}$	= 2 + 1 = 3	1						3										
35	ŀ	$^2V_6 + ^2V_7$	1 V 9	$\begin{cases} ^{2}V_{0} & = & ^{2}V_{0} \\ ^{2}V_{7} & = & ^{2}V_{7} \end{cases}$	= 2n-1						2n - 1	3	$\frac{3a-1}{2}$									
36	(×	$^{1}\mathrm{V}_{9}^{3}\mathrm{V}_{11}$	4v11	(v _s = °v _s)	$=\frac{2n}{2}\cdot\frac{2m-1}{3}\dots$											$\tfrac{2n}{2} \cdot \tfrac{2n-1}{3}$						
17	rl-	$^{2}V_{6} - ^{1}V_{1}$	⁵ V ₆	$\left\{ \begin{bmatrix} 2V_0 & - & 2V_0 \\ 1V_1 & - & 1V_1 \end{bmatrix} \right\}$	= 2n - 2	1					2n - 2											
18 {		$^{1}\mathrm{V}_{1}+^{2}\mathrm{V}_{7}$	Pry	$\left\{ \begin{bmatrix} v_{v_1} & v_{v_2} \\ v_{v_1} & v_{v_1} \end{bmatrix} \right\}$	- 3 + 1 - 4	1						4										
39	ŀ	${}^3\mathrm{V}_6 + {}^3\mathrm{V}_7$	1v9	$\begin{bmatrix} \begin{smallmatrix} a_{V_0} & - & a_{V_0} \\ a_{V_0} & - & a_{V_0} \end{bmatrix}$	= 24-2						2n - 2	4		$\frac{2n-2}{4}$								
20	U×.	$^{1}V_{9}\times ^{4}V_{31}$	6v11	(v ₉ = °v ₉)	$= \tfrac{2n}{2} \cdot \tfrac{2m-1}{3} \cdot \tfrac{2m-2}{4} = \Lambda_3 \cdot \cdot \cdot \cdot \cdot \cdot$									0		$\left\{ \frac{2n}{2}\cdot\frac{2n-1}{2}\cdot\frac{2n-2}{4}\right\} = A_0$						
21	×	$^{1}V_{22} \times ^{5}V_{13}$	e _{V13}	(1V22 = 1V22) (2V11 = 2V12)	$= \mathbb{B}_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = \mathbb{B}_5 \mathbb{A}_5$												BaAa			В6		
22	+	$^{2}V_{12} + ^{2}V_{13}$	*v ₁₃	{2V ₁₂ = 2V ₁₂ 2V ₁₃ = 2V ₁₃	= A ₀ + B ₁ A ₁ + B ₅ A ₅												0	$(A_8+B_1A_1+B_3A_3)$				
23	-	$^{2}V_{10} - ^{1}V_{1}$	*v10	$\begin{cases} {}^{2}V_{39} & = & {}^{9}V_{10} \\ {}^{1}V_{1} & = & {}^{1}V_{1} \end{cases}$	= n - 3(= 1)	1									n – 3							
							Here	follows	a repeti	tion of	Operatio	no thirt	es to t	menty-th	ree							
24	+	$v_{13} + v_{Y_{24}}$	1 _{V24}	$\begin{cases} {}^{1}V_{13} & = & {}^{0}V_{13} \\ {}^{0}V_{24} & = & {}^{1}V_{24} \end{cases}$	- By																	$_{\rm By}$
	1			$\begin{cases} v_1 = v_1 \\ v_2 = v_2 \end{cases}$	= n + 1 = 4 + 1 = 5																	
25	+	1V ₁ + 1V ₉	1V2	$\begin{cases} $	by a Variable-card. by a Variable-card.	1		n+1			0	0										
	1			C 11 = 17																		

Spielereien in Perl und Ruby

Die Aufgabe lautet, ein Programm zu schreiben, das die Zahlen von 1-100 hoch zählt und

- bei Zahlen, die durch drei teilbar sind, "Fizz" ausgibt,
- bei Zahlen, die durch fünf teilbar sind, "Buzz" ausgib und
- bei Zahlen, die durch **beides** teilbar sind, "FizzBuzz" ausgibt.

Ansatz in Perl

```
#! /usr/bin/perl
for my $zahl (1 .. 100){
 if ($zahl % 15 == 0) {
    print "Fizz Buzz\n";
 elsif ($zahl % 5 == 0) {
    print "Buzz\n";
 elsif ($zahl % 3 == 0) {
    print "Fizz\n";
 else {
   print "$zahl\n";
```

Ansatz in Ruby

```
#! /usr/bin/ruby
(1..100).each do |z|
  if z.modulo(15) == 0
    puts "FizzBuzz :-)"
  elsif z.modulo(5) == 0
    puts "Buzz"
  elsif z.modulo(3) == 0
    puts "Fizz"
  else
    puts z
  end
end
```

25 / 56

Ein Programm

Das folgende Ruby-Skript (Auszug) dient zum Durchsuchen von tar-files:

```
Dir.foreach('./') do | litem|
  next unless item =~ /.tgz$/ or item =~ /tar.gz$/
  puts "=====
                                                   ==========\ndurchsuche #{item}:"
  cmd = "tar tzf #{item}"
  ergebnis = %x[ \#\{cmd\}]
  ergebnis.each line do [file]
   suchstring.each do Isl
     if file =~ /#{s}/
       puts "#{file.chomp} gefunden."
       print "Soll die Datei extrahiert werden? [j/N] : "
       antwort = STDIN.gets
       if antwort =~ /[jJyY]/
         puts "OK. ich extrahiere #{file.chomp} aus #{item}."
          if File.exist?(file.chomp)
            ts = Time.now.to i
           %x[/bin/tar --transform 's/$/#{ts}-/' -xzf #{item} #{file}]
          else
           %x[/bin/tar xzf #{item} #{file}]
          end
      end
     end
   end
  end
end
```

Ajax

Interaktion mit dem User durch:

Asynchronous JavaScript And XML

Wo wird was ausgeführt?

?

DOM

was kann wo manipuliert werden?

DOM und Klassen

Schauen wir uns das mal im Quelltext an.

ein Benutzer mit verifizierter EMail-Adresse:

...und einer mit einer unbekannten EMail-Adresse:

```
<span class="unknown"><span class="glyphicon glyphicon-question-sign"
</div>
```

30 / 56

Responsive Web

So soll es nicht sein!

Der Hase und der Baum

Kapitel 1: Der Hase

Meister Lampe hoppelt über ein Feld.

Kapitel2: In der Werkstatt

Herr K. bestellt eine Knautschzone.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, labore et dolore magna aliqua. Ut enim ad minim veniam laboris nisi ut aliquip ex ea commodo consequat. Duis au voluptate velit esse cillum dolore eu fugiat nulla pariatur. proident, sunt in culpa qui officia deserunt mollit anim id

So soll es sein:

Der Hase und der Baum

Kapitel 1: Der Hase

Meister Lampe hoppelt über ein Feld.

Kapitel2: In der Werkstatt

Herr K. bestellt eine Knautschzone.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate vellt esse cillum dolore eu fugiat nulla pariatur. Excepteur sint ocaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

32 / 56

Warum Datenbanken?

■ geringer Speicherplatzbedarf

Warum Datenbanken?

- geringer Speicherplatzbedarf
- gleichzeitiger Zugriff durch viele Nutzer

■ K/V- Stores

- K/V- Stores
- relationale Datenbanken

- K/V- Stores
- relationale Datenbanken
- Spaltenorientierte Datenbanken

- K/V- Stores
- relationale Datenbanken
- Spaltenorientierte Datenbanken
- Dokumentorientierte Datenbanken

- K/V- Stores
- relationale Datenbanken
- Spaltenorientierte Datenbanken
- Dokumentorientierte Datenbanken
- Graphendatenbanken

K/V- Stores

K/V- Stores sind — wie der Name schon sagt — schlichte Schlüssel / Wert- Speicher. Sie sind bei minimalem Speicherplatzbedarf sehr schnell, was sie für das Caching von Werten prädestiniert.

Eine Kundentabelle

id	Nachname	Vorname	Strasse	Stadt
1	Muster	Hans	Hauptstrasse	Zürich
2	Meier	Heinrich	Hauptstrasse	Zürich
3	Müller	Hubert	Hauptstrasse	Zürich
4	Schulze	Herbert	Hauptstrasse	Zürich

Tabelle der Strassen

Strasse
Hauptstrasse
Nebenstrasse
Seitenstrasse

Tabelle der Städte

id	Stadt
1	Zürich
2	Basel
3	Bern

Tabelle mit Relationen

id	Nachname	Vorname	$Strassen_ID$	$Stadt_{ID}$
1	Muster	Hans	1	1
2	Meier	Heinrich	1	1
3	Müller	Hubert	1	1
4	Schulze	Herbert	1	1

Normalisierung

Eine relationale Datenbank dahingehend zu optimieren, dass es möglichst wenig Redundanzen gibt, nennt man "normalisieren". Es gibt fünf Normalformen.

Normalisierung: Speicherplatzbedarf

```
-rw-rw-r-- 1 sk sk 37K Dez 9 16:32 testdaten_full.csv
-rw-rw-r-- 1 sk sk 20K Dez 9 17:02 testdaten_normalisiert.csv
```

Relationen in der DB von Aleph

Felder nicht atomar

```
select substr(z103_rec_key,6,9) || 'EHO60'
from eho60.z103
where substr(z103_lkr_text_n,1,3) = 'E04'
and z103_lkr_library = 'EBI01'
and substr(z103_rec_key,1,5) = 'EHO60'
;
```

relationale Datenbanken feste Feldgrösse

Das Feld für Inventarnummern darf in Aleph nicht mehr als 20 Zeichen haben.

und wieder: Kodierung von Text

UTF8-Codierungszeichen zaehlen einzeln, auch wenn daraus ein einziges Unicode-Zeichen entsteht.

Ein Beispiel dafuer ist das "Ä", das im Inventarnummernfeld zwei VARCHAR2 Zeichen aufbraucht, weil es aus 0xc3 und 0x84 besteht.

Ich habe nicht geschaut, ob es noch weitere solche Fälle gibt. [Mathias Weyland]

45 / 56

Quasi-Monopole

Abbildung: http://houseofbrick.com/the-oracle-parking-garage/

dokumentorientierte Datenbanken

```
{ "_id": 1,
  "Vorname": "Sven",
  "Nachname": "Koesling",
  "email": "sven.koesling@library.ethz.ch"
}
```

ein weiteres Dokument in derselben collection

```
{ "_id": 2,
  "Vorname": "Harry",
  "Nachname": "Hirsch",
  "email": "hh@lustich.com"
  "Beruf": "Reporter"
}
```

noch ein Dokument in derselben collection

```
{ "_id": 3,
  "Vorname": "Martha",
  "Nachname": "Graham",
  "Beruf": ["Tänzerin", "Choreographin"]
}
```

und noch ein weiteres Dokument in derselben collection

```
{ "_id": 4,
  "Vorname": "Niemand",
  "Nachname": "Nixda",
  "email": "nn@none.org"
  "Hund": {
        "Name": "Nero",
        "Geschlecht": "male"
    }
}
```


ein paar Knoten

Knoten und Beziehungen

Knoten, Beziehungen und Attribute

Abbildung: Suche nach "Landquart" in einem aktuellen Bibliothekskatalog (420.000 Dokumente): 1072 Treffer – ohne Facetten: completed in 2845ms

>	Ž	Ihr Bibliothek Suche	skonto Neustart Hilfe Ergebnisliste Suchverlauf	Ih		eilkataloge BGR ndere Kataloge
		Auswahl anzei In Ihre Literatu		rmenge	Suche modifizieren Filtern	
rg	ebn	isse				
		nwort= Landquart"; Sortiert na	ch: Jahr, dann Autor		Gehe zu # ■ Vorige Seite	Nächste Seite 🖪
		Autor	Titel	Jahr	Bestand / davon ausgeliehen	Photo
1		Gantenbein, Köbi	Das Tor zu Graubünden	2010	bestalid / davoir adsgellerieli	FIIOLO
2	ļ	Radio- und Fernsehgesellschaft der Deutschen und der Rätoromanischen Schweiz (Zürich)	[am Bündner Ländlerkapellen-Treffen in Landquart] [Ton]	2009	CHUR-Kantonsbibliothek(2/ 0)	
3	P	Schmid, Christian	Die Bahn fährt durch den Unterschnitt	2009		
4	P	Uffer, Rita	Luzia Vonmoos-Simonett, Igis [Ton]	2009	CHUR-Kantonsbibliothek(1/ 0)	
5	P	Vischer, Daniel	Der Bündner Theologe Lucius Pol und die Landquartkorrektion	2009	CHUR-Kantonsbibliothek(1/ 0) CHUR-Staatsarchiv(1/ 0)	
<u>6</u>	P	ÖKK (Landquart)	ÖKK dossier per aziende	2009		
<u>Z</u>	P	ÖKK (Landquart)	ÖKK Dossier für Unternehmen	2009	CHUR-Kantonsbibliothek	
8	P		Alles, was in der Ostschweiz gehegt und gepflegt wird. [Bildmaterial]	2009		
9	ļ	Brunold-Bigler, Ursula	Arbeiterschaft und Kapuziner	2008	CHUR-Kantonsbibliothek(2/ 0) CHUR-Staatsarchiv(1/ 0) CHUR-Theologische Hochschule(1/ 0)	
10		Herrmann, Arno	Eine Kirche, die redet	2008	CHUR-Staatsarchiv(1/ 0)	

Grundlagen: Informationstechnologie

Abbildung: Die gleiche Suche mit einem Indexer: 1.700 Treffer mit drei Facetten: completed in 792ms

