Assignment Project Exam Help Computer Graphics

Add Welchar powcoder 2021 Term 3 Lecture 5

What did we learn last week?

2D Graphics

- OpenGL Pipelfne Assignment Project Exam Help
- Textures
- Transforms https://powcoder.com
- Some ideas on how a 2D game could be made Add WeChat powcoder

What are we covering today?

3D Graphics

- We are entering the gradinnent Project Exam Help
- 2D to 3D . . . what changes? https://powcoder.com
- 3D Objects
- Coordinate Spaces
 Making a (virtual) Camera WeChat powcoder

2D to 3D

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What are our current capabilities?

In our 2D Graphics

- Shapes made Of triangles ent Project Exam Help

Textures on objects https://powcoder.com

Add WeChat powcoder

Capabilities in 3D

What are we wanting to do in 3D?

Shapes made of triangles ent Project Exam Pelr

Add WeChat pov

Going to 3D

We've been teaching you 3D graphics all along!

- Only minor modifications needed Project Exam Help
- Coordinates start to use z
- Triangles are always the powcoder com
- ... but multiple triangles can make 3D objects Textures work with vers exactly as they do moder
- Transforms are going to add a dimension

3D Transforms

Our Transform Matrices are adding a dimension

- Our Vectors are now (x,y,z,w) Project Exam Help
- Our Matrices are now 4 x 4 https://powcoder.com

Add WeChat powcoder

Scale

Reasonably simple expansion into 3D

Assignment Project Exam Help

			_	Scale x	0	0	0
Scale x	0	htt	os://powco	der.c	om		
				0	Scale y	0	0
0	Scale y	%d	d WeChat	powe	coder		
	0	4		0	0	Scale z	0
0	U	1					
			J	0	0	0	1

Translate

Reasonably simple also!

Assignment Project Exam Help

		1	//	1	0	0	Tx
1	0	attp	os://powcod	er.co	om		
			_	0	1	0	Ту
0	1	TA d	d WeChat p	OWC	odei	•	
		7 10	a Weenat p	ŏ	0	1	Tz
0	0	1					
				0	0	0	1

Rotate

 $\cos\theta$

cina

Gets more interesting here

• In 3D rotation Assignment Project Exam Help

 In 2D we were basically rotating around the Z axis https://powcoder.com

-sinθ 0 Add W

51110	COSO	U
0	0	1

•	cosθ	-sinθ	0	0
7	eCha	at po	WCC	der
	0	0	1	0
	0	0	0	1

This row leaves the Z coordinate unaffected by the transform

This column stops the Z coordinate from affecting any others

Rotate around other axes

We can similarly rotate around the X or Y axes Assignment Project Exam Help

1	0	° h	ottps	://powcoder.	cosθ COM	0	sinθ	0
0	cosθ	-sinθ	o Add	WeChat pow	o zcod	1 er	0	0
0	sinθ	cosθ	0		-sinθ	0	cosθ	0
0	0	0	1		0	0	0	1

Rotate around X

Rotate around Y

3D Objects

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Making 3D Objects

Meshes of vertices

We've already seelignings like Pectangles Exam Helmade up of two triangles
 In 3D triangles can forther power der com

 In 3D triangles can form the outer surface of an object

Vertices can form surfaces that wrap energy oder around an object

Inside vs Outside

The idea of a surface implies an inside and outside

- Triangles now Assignment Project Exam Help
- Vertices go from being points in space to being positions on a surface These are important presented that we ill be looking at in detail later . . .

Add WeChat powcoder

Coordinate Spaces

Each object actually exists in its own local coordinate spaceAssignment Project Exam Help 4 This means each object actually has its own https://powcoder.com local origin (0,0,0) ... which is a point in space in the **world**Coordinates Add WeChat powcoder coordinates And its own **local** x,y and z axes **→** >< ... which are vectors in the **world** space

What is a transform?

We've seen them already, but what do they represent?

- A Transform Matrix is actually the licat origin and axer of an object in relation to the world space.
 When we're applying a Pansibrm, we're actually shifting an object
- When we're applying a transform, we're actually shifting an object between two coordinate systems. Add WeChat powcoder

Deconstructing the Transform

The Identity Matrix is the World Transform

Deconstructing a Scale Transform

What happens in the scale transform?

The X axis has

The object's Xaxis is twice as "long jas the been doubled point on the long jas the been doubled point of the long jas the

world's X axis

This is in effect what type the oder.com

object

Add WeChat powcoder

2	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Deconstructing a Translate Transform

What happens in the translate transform?

• The object has arroughnent, Project Exam He

• This means that its vertices are now positioned relative to that point powcoder.com

Add WeChat powcoder

elp	0	0	5
0	1	0	6
0	0	1	2
0	0	0	1

The origin of the object has moved

Composing Multiple Transforms

Multiple Transforms together

- Retain all information Assignment Project, Exam Help
- Build up a set of axes and origin for an object
 The final transform takes an object from toward space
- It's also known as the **model matrix**Add WeChat powcoder

Break Time

The Matrix (1999)

• Speaking of important illus with eight Example

The Matrix was rendered in Sydney by Animal Logic
 https://powcoder.com/

 One of the Silicon Graphics Onyx machines used in the Matrix is in the lobby of the PRIVC building (donated by Marc Chee and others from iCinema in 2012)

Image credit: Warner Bros Entertainment

Cameras and Viewpoints

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Cameras as Objects in a Scene

They exist in their own coordinate space

- So a camera will saignment Project Exam Help
- But it's not a 3D model, and has no vertices!
- It's more of a viewpoint hat pays coder compace
- OpenGL will treat the camera as if its Z axis points from your screen to your eyes

 Add WeChat powcoder
- Using the camera transform will put all the vertices into the camera's perspective!

Making a Camera Transform

How do we make our camera?

Build up the transforment Project Exam Help

Image credit: learnopengl.com

Camera Position

Placing the camera in a position

•	Placing something ignment Project Ex	ath]	Help	0	Рх
			1	0	Ру
•	Let's use (0,1,2) as an example powcoder.c Our camera is along and just above the Add WeChat powcoder.c	0	0	1	Pz
	Z axis Add weCnat power	code	0	0	1

Camera Direction

Start building the three axes of our camera's coordinate space

- The first vector goes from where the camera shocking
- It's directly on the line the camera is docking, but aimed at the camera
- (Camera Location) (What we're looking at)
 In this example, we can keep it simple: powcoder
- \bullet (0,1,2) (0,0,0) = (0,1,2)

Vectors ... Directions with Length?

We're going to want to be careful with all our vectors

- Vectors can represent points of Project Exam Help
- If they represent a direction and not a distance . . . Then we should always normalize them:
- Normalize roughly means: "Make a vector length 1" We do this by dividing a vector by its own length 1"
- (0,1,2) normalized is $(0, 1/\sqrt{5}, 2/\sqrt{5})$

The World's Up Vector

We have an assumption of gravity

- Humans tend to expect the tamera tend to expect the tamera to stay up right Help
- So there's always an idea of up and down in a virtual world We can keep this simple in most worlds by using the Y axis:
- (0,1,0)
- Is this an acceptable axis to ac

Why have the Up Vector?

The World's Up vector can't be trusted as an axis

- To make a set Assignment Project Exam Help
- That means they're all 90 degrees from each other
 There's no guarantee the work of the wor
- Camera Direction vector (in fact it's incredibly and well-entry). Chat powcoder
- But we'll use it to make one of our axes . . .

The Right Vector

Not the wrong vector.

- One of the axes in target Project Exam Helpe right
- Like going across the surface of a screen from left to right How do we create a veror that s right angle to two other vectors?
- **Cross Product!**
- Up x Camera Direction de Right Chat powcoder
- (remember that cross product order is important . . . right hand rule)
- $(0,1,0) \times (0,1,2) = (2,0,0)$
- We'd normalize this to (1,0,0)

Camera's Up Vector (or the Up Axis)

The third axis is easy to make

- If we have two vectors, we can make a third that's orthogonal
- **Cross Product**
- Camera Direction x Rights: //powcoder.com

Three Axes make a transform

Making a Transform	Rx	Ry	Rz	0
Use the vectors to make a matrix	kam	Heli)	
The Dight Vestor	Ux	Uy	Uz	0
• The Right Vector https://powcoder.co	n			
• The (camera's) Up https://powcoder.o	Dx	Dy	Dz	0
The Camera Direction	1			
 The Camera Direction This gives us all our rotation and hat pow 	code	er o	0	1
scaling, but isn't yet using our position				

Combine the Camera Position with Orientation

Multiplying the two matrices together

- The resulting transferm is known as the Exam Help
- This moves the world relative to the camera https://powcoder.com

Rx	Ry	$\mathbf{A}^{Rz}\mathbf{d}\mathbf{d}$	we we	Chat p	1 OW C	ode	0	Px
Ux	Uy	Uz	0		0	1	0	Ру
Dx	Dy	Dz	0		0	0	1	Pz
0	0	0	1		0	0	0	1

Will we need to do all this maths?

Thanks again GLM

- The GL Maths Assignment Project Exam Help LookAt matrix
- glm:lookAt (position, target, up)
 This function allows us position, target, up)
 This function allows us position, target, up) LookAt matrix for us Add WeChat powcoder

What did we learn today?

2D to 3D

- A lot of what we know still applies light Exam Help
- Some 3D Transforms
- Objects as meshes https://powcoder.com
- Transforms as their own coordinate spaces

 Making a Camera Look transform powcoder