1º Trabalho de Inteligência Computacional II

HUGO DINIZ REBELO Programa de Engenharia de Sistemas e Computação COPPE/UFRJ Rio de Janeiro - RJ, 18 de Setembro de 2016

Sumário

1	Introdução	3
	1.1 Organização do Trabalho	3
2	O trabalho	3
	2.1 Objetivo	3
	2.2 Definições	4
3	Resultados	4
4	Conclusão	5
\mathbf{R}_{0}	eferências Bibliográficas	6

1 Introdução

O presente trabalho visa a reprodução das figuras que formam a capa do livro Learning From Data, que tem o objetivo de demonstrar o impacto do Ruido e a complexidade da função alvo em relação a quantidade de amostras(Dados).

1.1 Organização do Trabalho

Este trabalho foi organizado da seguinte forma:

- Capitulo 2: Será visto como foi a Metodologia do trabalho;
- Capitulo 3: Será visto os resultados.
- Capitulo 4: Uma Breve Conclusão do que foi feito.

2 O trabalho

Nesta Seção veremos como foi desenvolvido o trabalho que gera as figuras que formam a capa do livro Learning From Data.

2.1 Objetivo

Implementar um sistema capaz de gerar as figuras apresentadas na capa do livro Learning From Data com as definições no Exercise 4.2 (página 123) Problem 4.3 (página 154) e Problem 4.4 (página 155).

Figura 1: Figuras alvo. [1]

2.2**Definições**

A função Alvo é definida por $f(x) = \sum_{q=0}^{Q_f} a_q L_q(x)$ é o q-ésimo polinômio de Legendre aplicado no ponto x e a_q , sendo elas obtidas atavés de uma distribuição normal e reescalado de forma que $\mathbb{E}_{a,x}(f^2) = 1$. Para que isto fosse possível foi aplicada a normalização $a = \frac{1}{100}$

Gera-se um Conjunto de Dados $D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$ no qual os valores x são gerados a partir de uma distribuição uniforme no intervalo [-1,1]. Os valores de y são definidos como $y=f(x)+\sigma\epsilon_n$. Os valores de ϵ_n também são obtidos a partir de uma distruibuição normal.

Utilizando dois conjuntos de Hipoteses, H_2 e H_10 , usa-se o modelo de regressão linear para encontrar as hipoteses, de forma que os pesos \boldsymbol{w} de cada hipotese é obtido a partir de $w = X^{\dagger} * y$ em que X^{\dagger} é a pseudo-inversa de X.

Calcula-se então a medida do overffiting entre E_{out10} e E_{out2} e calculando um E_{out} qualquer da seguinte forma: $\sum_{i=0}^{max(d+1,Q_f)} \frac{(w_i-a_i)^2}{2*i+1}$ onde d+1 é o grau da hipotese considerada. Além disso considera-se que $w_i = 0$ se i > d + 1 e $a_i = 0$, se $i > Q_f$

Os valores utilizados para N foi de (20, 25, ..., 120), do Q_f foi de (1, 2, ..., 100)e do σ foi de (0.0, 0.05, 0.1, ..., 2.0). Esse experimento tem que ser refeito um K vezes sendo calculada a media, quanto maior o K menos "ruido" a imagem terá.

3 Resultados

Nesta seção explicitaremos como foi feito o experimento e os resultados das figuras. e ao final faremos uma faremos uma breve comparação com as figuras do livro.

O Experimento foi desenvolvido em Julia 0.45 e executados em 3 maquinas distintas, sendo a 1º um AMD FX 6100 8GB de ram com S.O Ubuntu 16.04, a 2ª um I5-3210M com 6GB de ram utilizando Ubuntu 16.04, a 3ª I5-3330 com 8GB de ram com S.O Ubuntu 14.04. Cada figura foi executada 387.000 vezes nessas 3 maquinas. A cada mil execuções o código salvava uma copia do resultado em um .csv.

Figura 2: Figuras 1. [1]

Figura 3: Figuras 2. [1]

Apesar da inferioridade no numero de execuções, já que o livro fez em torno de 10 milhões e essas figuras apenas 387 mil vezes, percebemos um ruido baixo comparado a figura original. Na faixa horizontal das figuras 1 e 2, foram utilizados valores no intervalo de 20 a 40, que não foram considerados nas figuras originais, causando um pequeno diferença nas imagens.

4 Conclusão

O presente trabalho visou a implementação de um sistema que gere as figuras que formam a capa do livro Learning From Data, que tem o objetivo

de demonstrar o impacto do Ruido e a complexidade da função alvo em relação a quantidade de amostras(Dados). Como podemos perceber através da implementação e dos experimentos, a figura demonstrou um alto grau de fidelidade a imagem original apesar de um numero de execuções abaixo do original.

Referências Bibliográficas

[1] ABU-MOSTAFA, Y. S., MAGDON-ISMAIL, M., E LIN, H.-T. Learning from data, vol. 4. AMLBook Singapore, 2012.