

Teoria dos Circuitos e Fundamentos de Electrónica

Mestrado em Engenharia Física Tecnológica (MEFT) Mestrado em Engenharia Biomédica (MEBiom)

Soluções da Colectânea de Problemas

- 1 Teoria dos Circuitos
- 2 Circuitos com Amplificadores Operacionais
- 3 Circuitos com Díodos
- 4 Circuitos com Transístores de Junção Bipolar

Fernando Gonçalves
Teresa Mendes de Almeida

DEEC - Área Científica de Electrónica

Dezembro de 2007

PARTE 1 - Teoria dos Circuitos

1.1 a)
$$R_{18} = R_{12} + R_{34} + R_{56} + R_{78}$$

b)
$$R_{15} = (R_{12} + R_{34}) // (R_{87} + R_{65})$$

c)
$$R_{12} = R_{12} // (R_{34} + R_{56} + R_{78})$$

d)
$$R_{14} = R_{12} // R_{34} // R_{56} // R_{78}$$

1.2
$$I_1 = 2 A$$

b)
$$I_4 = -4 A$$
; $V_2 = 50 V$

c)
$$R_1 = 4 \Omega$$
; $R_2 = 6.25 \Omega$

1.4 a)
$$R_1 = 19 \Omega$$
; $R_2 = 2{,}22 \Omega$

b)
$$P = -280 W$$

1.5 a)
$$V_{IN} = -26 \text{ V}; V_S = 6 \text{ V}$$

b)
$$P = -320 W$$

1.6
$$R_4 = 8.2 \Omega$$

1.7 a)
$$V_S = 300 \text{ V}$$

b)
$$V_S = 120 \text{ V}$$

c)
$$I_0 = 0.333 \text{ A}$$

1.8 a)
$$R_1 = 6 \Omega$$

b)
$$I_{V1} = 0.625 A$$

$$I_{x} = -1.14 A$$

1.10 a)
$$V_{OC} = -22.5 \text{ V}$$
; $I_{SC} = -2.4 \text{ A}$; $R_{TH} = 9.375 \Omega$

1.11
$$V_{TH} = 10 \text{ V}; R_{TH} = 16 \Omega$$

1.12 a)
$$V_{TH} = 32 \text{ V}$$
; $I_N = 8 \text{ A}$; $R_{TH} = R_N = 4 \Omega$

b)
$$V_{TH} = 48,571 \text{ V}; I_N = 15 \text{ A}; R_{TH} = R_N = 3,238 \Omega$$

1.13 a)
$$V_{TH} = \frac{R_2}{R_1 + R_2 - \alpha} V_S$$
; $I_N = \frac{V_S}{R_1}$; $R_{TH} = R_N = \frac{R_1 R_2}{R_1 + R_2 - \alpha}$

b) Quando
$$\alpha > R_1 + R_2 \Rightarrow R_{TH}$$
 negativa

1.14 a)
$$V_S = 5 V$$
; $V_1 = V_2 = 1 V$; $V_3 = 0.5 V$

b)
$$V_{TH} = 0.5 \text{ V}; R_{TH} = 625 \Omega$$

c)
$$R_X = 625 \Omega$$

1.15 a)
$$V_{TH} = V_S \frac{R_3}{R_1 + R_3} + I_S [R_2 + (R_1 // R_3)]; R_{TH} = R_2 + (R_1 // R_3)$$

b)
$$R_{TH} = R_L // [R_2 + (R_1 // R_3)]; V_{TH} = \frac{V_S R_L R_3 + I_S [R_L (R_1 R_2 + R_1 R_3 + R_2 R_3)]}{R_L R_1 + R_L R_3 + R_1 R_2 + R_1 R_3 + R_2 R_3}$$

1.16 a)
$$V_{TH} = 2 V$$
; $R_{TH} = 1 k\Omega$

b)
$$I = 1 \text{ mA}$$

1.17 a)
$$V_{AB} = -0.5 \text{ V}$$

b)
$$I_{CC} = -1 \text{ mA}$$

c)
$$I_N = -1 \text{ mA}; R_N = 500 \Omega$$

1.18 a)
$$V_{TH} = 1 \text{ V}$$
; $R_{TH} = 2 \text{ k}\Omega$

b)
$$I_N = 0.5 \text{ mA}$$
; $R_N = R_{TH} = 2 \text{ k}\Omega$

c)
$$R_5 = 2 k\Omega$$

1.19
$$V_A = V_1 = 28 \text{ V}; V_B = 10 \text{ V}; V_C = 20 \text{ V}$$

 $I_{R1} = -1 \text{ A}; I_{R2} = 3 \text{ A}; I_{R3} = -2 \text{ A}; I_{R4} = 5 \text{ A}; I_{R5} = -1 \text{ A}; I_{V1} = 4 \text{ A}$

1.20 a)
$$V_X = -2,0909 \text{ V}; I_Y = -4,364 \text{ A}$$
 b) $V_{TH} = -2,333 \text{ V}; I_N = -0,875 \text{ A}; R_{TH} = R_N = 2,666 \Omega$

1.21
$$V_X = 171,64 \text{ V}; V_Y = -17,44 \text{ V}$$

1.24 a)
$$t = 1 \text{ s: } v_c = 3,6789 \text{ V; } i = 3,6789 \text{ } \mu \text{A}$$

 $t = 2 \text{ s: } v_c = 1,353 \text{ V; } i = 1,353 \text{ } \mu \text{A}$
 $v_C(t) = 10e^{-t} \text{ (V); } i(t) = 10e^{-t} \text{ } (\mu \text{A})$

b)
$$t = 693,3 \text{ ms}$$

c) R = 621,3 k
$$\Omega$$

1.25 a)
$$t = 0.5\tau$$
: $v_c = 3.94$ V; $v_R = 6.06$ V; $i = 6.06$ mA $t = \tau$: $v_c = 6.32$ V; $v_R = 3.68$ V; $i = 3.68$ mA $t = 2\tau$: $v_c = 8.64$ V; $v_R = 1.36$ V; $i = 1.36$ mA $t = 3\tau$: $v_c = 9.50$ V; $v_R = 0.50$ V; $i = 0.50$ mA $t = 4\tau$: $v_c = 9.81$ V; $v_R = 0.19$ V; $i = 0.19$ mA $t = 5\tau$: $v_c = 9.93$ V; $v_R = 0.07$ V; $i = 0.07$ mA $v_C(t) = 10(1 - e^{-10^6 t})$ (V); $v_R(t) = 10e^{-10^6 t}$ (V); $i(t) = 10e^{-10^6 t}$ (mA)

b)
$$t = 2.1927 \mu s$$

1.26
$$v_{c}(t) = \begin{cases} 1 & ,t \leq 0 \\ 5 - 4e^{-10^{4}t} & ,0 \leq t \leq 150 \ \mu s \end{cases} [V]$$

$$v_{R}(t) = \begin{cases} 0 & ,t \leq 0 \\ 4e^{-10^{4}t} & ,0 \leq t \leq 150 \ \mu s \end{cases} [V]$$

$$v_{R}(t) = \begin{cases} 0 & ,t \leq 0 \\ 4e^{-10^{4}t} & ,0 \leq t \leq 150 \ \mu s \end{cases} [V]$$

$$v_{R}(t) = \begin{cases} 0 & ,t \leq 0 \\ 4e^{-10^{4}t} & ,t \geq 150 \ \mu s \end{cases} [V]$$

1.27
$$V_{C \text{ máx}} = 2,5 \text{ V}; V_{C \text{ min}} = 1,5 \text{ V}$$

1.28 a)
$$\tau = RC = 1 \text{ s}$$

b)
$$V_{C}(t) = e^{-t} [V]$$

c)
$$V_C(1 \text{ s}) = 0.368 \text{ V}; V_C(4 \text{ s}) = 0.018 \text{ V}$$

d)
$$V_{R}(t) = V_{C}(t) = e^{-t}$$

e) R >> 1 $\Omega \Rightarrow \tau$ maior \Rightarrow descida mais lenta R << 1 $\Omega \Rightarrow \tau$ menor \Rightarrow descida mais rápida

$$\begin{aligned} \textbf{1.29} & V_C(t) = \begin{cases} 1 - (1 - V_C(t_n)) e^{-(t - t_n)} & \text{quando } V_S = 1 \, V \\ -1 - (-1 - V_C(t_n)) e^{-(t - t_n)} & \text{quando } V_S = -1 \, V \end{cases} \\ V_R(t) = \begin{cases} (1 - V_C(t_n)) e^{-(t - t_n)} & \text{quando } V_S = 1 \, V \\ -(1 + V_C(t_n)) e^{-(t - t_n)} & \text{quando } V_S = -1 \, V \end{cases}$$

$$V_{R}(t) = \begin{cases} (1 - V_{C}(t_{n}))e^{-(t-t_{n})} & \text{quando } V_{S} = 1 \text{ V} \\ -(1 + V_{C}(t_{n}))e^{-(t-t_{n})} & \text{quando } V_{S} = -1 \text{ V} \end{cases}$$

t_n representa o tempo no início de cada troço

1.30 Para o circuito da figura (a):
$$Z = \frac{C_1 + C_2 + C_3}{j\omega C_1(C_2 + C_3)}$$

Para o circuito da figura (b):
$$Z = j\omega \left(L_1 + \frac{L_2L_3}{L_2 + L_3}\right)$$

1.31
$$\left| \frac{V_{OUT}}{V_{IN}} \right| = \frac{\omega C_1 R_1}{\sqrt{(1 - \omega^2 C_1 C_2 R_1 R_2)^2 + \omega^2 (C_1 R_1 + C_2 R_1 + C_2 R_2)^2}}$$

1.32 a)
$$\frac{V_O}{V_S} = \frac{1}{1 + j\omega RC}$$

b)
$$\left| \frac{V_0}{V_S} \right| = \frac{1}{\sqrt{1 + \omega^2 C^2 R^2}}$$
; freq = 159 Hz

1.33 a)
$$\frac{V_O}{I_S} = \frac{j\omega LR}{R + j\omega L}$$

b)
$$\left| \frac{V_0}{I_S} \right| = \frac{\omega RL}{\sqrt{R^2 + \omega^2 L^2}}$$
; freq = 112,5 Hz

1.34
$$V_{ab} = \frac{j\omega C_2 R_1 R_2}{1 + j\omega C_2 (R_1 + R_2)} I_S$$
$$Z = \frac{R_2 + j\omega C_2 R_1 R_2}{1 + j\omega C_2 (R_1 + R_2)}$$

1.35 Para o circuito da figura (a):
$$Z = j \left[\omega L_1 - \frac{1}{\omega C_1} \frac{1 - \omega^2 C_2 L_2}{1 + \frac{C_2}{C_1} - \omega^2 C_2 L_2} \right]$$
Para o circuito da figura (b):
$$Z = j \left[\frac{\omega L_1 \left(1 - \omega^2 L_2 C_2 \right)}{1 - \omega^2 C_2 (L_1 + L_2)} - \frac{1}{\omega C_1} \right]$$

1.36
$$Z = \frac{R_1(C_1 + C_2)}{C_1 + C_2 + j\omega C_1 C_2 R_1}$$
$$V_{ab} = \frac{R_1 C_2}{C_1 + C_2 + j\omega C_1 C_2 R_1} I_S + \frac{j\omega C_1 C_2 R_1}{C_1 + C_2 + j\omega C_1 C_2 R_1} V_S$$

PARTE 2 - Circuitos com Amplificadores Operacionais

2.1
$$V_S = -1 V$$

$$V_{in} \sim V_{out}$$

2.3
$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1} \left(1 + \frac{R_3}{R_2} + \frac{R_3}{R_4} \right)$$

2.5 a)
$$V_{out} = \frac{R_3 + R_4}{R_3} \frac{R_2}{R_1 + R_2} V_1$$

b)
$$V_{out} = -\frac{R_4}{R_3} V_2$$

c)
$$V_{out} = \frac{R_3 + R_4}{R_3} \frac{R_2}{R_1 + R_2} V_1 - \frac{R_4}{R_3} V_2$$

d)
$$R_2 = 2R_1 e R_4 = 2R_3$$

2.6 a)
$$V_{out} = -R_3 \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

b)
$$V_{out} = \frac{(R_1//R_2) + R_3}{R_1//R_2} V_3$$

c)
$$V_{out} = -R_3 \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right) + \frac{(R_1//R_2) + R_3}{R_1//R_2} V_3$$

d)
$$R_1 = R_2 = R_3$$

2.7 a)
$$V_{out} = \frac{R_3 + R_4}{R_3(R_1 + R_2)} (R_2 V_1 + R_1 V_2) - \frac{R_4}{R_3} V_3$$

b)
$$R_2 = 5 \text{ k}\Omega$$
; $R_4 = 40 \text{ k}\Omega$

c)
$$R_1 = R_2 e R_4 = 3R_3$$

$$\textbf{2.8} \qquad \textbf{a)} \ \ V_{out} = -\frac{R_3}{R_1} V_1 - \frac{R_3}{R_2} V_2 + \frac{R_5}{R_4 + R_5} \Biggl(1 + \frac{R_3}{R_1 /\!/ R_2} \Biggr) V_3$$

b)
$$R_1 = R_2 = R_3 e R_4 = 8R_5$$

2.9 a) Para
$$V_1$$
: $V_{out} = \frac{R_3 + R}{R_3} \frac{R_2}{R_1 + R_2} V_1$

Para V₂:
$$V_{out} = \frac{R_3 + R}{R_3} \frac{R_1}{R_1 + R_2} V_2$$

Para V₃:
$$V_{out} = -\frac{R}{R_2}V_3$$

b)
$$V_{out} = \frac{R_3 + R}{R_3(R_1 + R_2)} (R_2 V_1 + R_1 V_2) - \frac{R}{R_3} V_3$$

c)
$$R_2 = 2 k\Omega$$
; $R_3 = 1 k\Omega$

d)
$$V_{max} = 12 \text{ V}$$

2.10 a)
$$G_c = 0$$
; $G_d = 1$; RRMC = ∞

b)
$$G_c = 0.0099$$
; $G_d = 0.985$; RRMC = 99.5

c) Se
$$R_4$$
 sofrer um desvio equivalente ao de R_2 (-1 %) e R_3 um desvio equivalente ao de R_1 (+1 %), o ganho de modo comum volta a ser nulo.

PARTE 3 - Circuitos com Díodos

3.1 a)
$$R_2 = 4 k\Omega$$

b)
$$V_0 = -0.822 \text{ V}$$

c)
$$V_0 = 0 \text{ V}$$

3.2 a)
$$V_O = -0.45 \text{ V}$$

b)
$$V_{TH} = -0.45 \text{ V}; R_{TH} = 0.909 \text{ k}\Omega$$

c)
$$R_2 < 612 \Omega$$

3.3 a)
$$V_O = 5 \text{ V}$$

b)
$$V_0 = 1 \ V$$

c)
$$V_0 = 0.81 \text{ V}$$

3.4 a)
$$I_{R3} = 3,75 \text{ mA}$$

a)
$$I_{R3} = 3,75 \text{ mA}$$

b) $V_{D2} = -7,5 \text{ V}$

3.5 a)
$$R_L < 60,63 \Omega$$

b)
$$R_1 > 39,84 \Omega$$

3.6 **a)**
$$V_{out} = \begin{cases} 10 & para \ V_{in} < 10 \ V \\ V_{in} & para \ V_{in} \ge 10 \ V \end{cases}$$

b)
$$I_{R1} = \begin{cases} 0 & \text{para } V_{in} < 10 \text{ V} \\ \frac{V_{in} - 10}{R_1} & \text{para } V_{in} \ge 10 \text{ V} \end{cases}$$

c)
$$V_{out} = \begin{cases} 9.3 & \text{para } V_{in} < 10 \text{ V} \\ V_{in} - 0.7 & \text{para } V_{in} \ge 10 \text{ V} \end{cases}$$

3.7 **a)**
$$V_{out} = \begin{cases} \frac{V_{in}-2.8}{5} & para -3 \ V < V_{in} \le -0.7 \ V \\ V_{in} & para -0.7 \ V \le V_{in} < 3 \ V \end{cases}$$

b)
$$-286,7 \text{ V} < V_{in} < 26,7 \text{ V}$$

3.8 a)

b)

c)

3.9

3.10 a) Rectificador de meia-onda negativo

b)

c) O condensador descarrega mais rapidamente ⇒ maior oscilação da onda de saída

3.11

3.12 a)

b)

c)

$$\textbf{a)} \ \ V_{in1} = 5,875 \ \ V; \ \ V_{in2} = -4,625 \ \ V$$

$$\textbf{b)} \ \ \ V_{out} = \begin{cases} -3,7 & \text{para } V_{in} < -4,625 \ \ V \\ 0,8V_{in} & \text{para } -4,625 \ \ V \leq V_{in} < 5,875 \ \ V \\ 4,7 & \text{para } V_{in} \geq 5,875 \ \ V \end{cases}$$

c)
$$I_{D1max} = 2,06 \text{ mA}; I_{D2max} = 2,68 \text{ mA}$$

$$\textbf{3.14} \quad \textbf{a)} \ V_{out} = \begin{cases} V_{in} & \text{para } V_{in} < 3.7 \ V \\ 1.85 + \frac{V_{in}}{2} & \text{para } 3.7 \ V \le V_{in} < 7.7 \ V \\ 5.7 & \text{para } V_{in} \ge 7.7 \ V \end{cases}$$

b)

c)
$$I_{inMax} = 4.3 \text{ mA}$$

3.15 a)

b)
$$I_{R1max} = 1,15 \text{ mA}$$

$$\textbf{3.16} \quad \textbf{a)} \ \ V_{out} = \begin{cases} -0.7 & \text{para } V_{in} < -0.7 \ V \\ V_{in} & \text{para } -0.7 \ V \leq V_{in} < 0.7 \ V \\ \frac{V_{in}}{2} + 0.35 & \text{para } 0.7 \ V \leq V_{in} < 2.1 \ V \\ \frac{V_{in}}{3} + 0.7 & \text{para } 2.1 \ V \leq V_{in} < 15.9 \ V \\ 6 & \text{para } V_{in} \geq 15.9 \ V \end{cases}$$

b)
$$P_{zmax} = 144,6 \text{ mW}$$

$$\textbf{3.17} \qquad \textbf{V}_2 = \begin{cases} -0.9 \ \textbf{V}_1 - 0.63 & \text{para } \textbf{V}_1 < -0.7 \ \textbf{V} \\ 0 & \text{para } -0.7 \ \textbf{V} \leq \textbf{V}_1 \leq 0.7 \ \textbf{V} \\ 0.9 \ \textbf{V}_1 - 0.63 & \text{para } \textbf{V}_1 > 0.7 \ \textbf{V} \end{cases}$$

$$\textbf{3.18} \quad \textbf{a)} \ \ V_{out} = \begin{cases} 0.9478 \ V_{in} + 3.066 & para \ V_{in} < -3.235 \ V \\ 0 & para - 3.235 \ V \leq V_{in} \leq 3.235 \ V \\ 0.9478 \ V_{in} - 3.066 & para \ V_{in} > 3.235 \ V \end{cases}$$

para
$$V_{in} < -3,235 \text{ V}$$

para $-3,235 \text{ V} \le V_{in} \le 3,235 \text{ V}$
para $V_{in} > 3,235 \text{ V}$

$$\textbf{b)} \ \ V_{out} = \begin{cases} V_{in} + 0.7 & para \ V_{in} < -0.7 \ V \\ 0 & para - 0.7 \ V \leq V_{in} \leq 3.235 \ V \\ 0.9478 \ V_{in} - 3.066 & para \ V_{in} > 3.235 \ V \end{cases}$$

$$para~V_{in}<-0.7~V$$

$$para~-0.7~V\leq V_{in}\leq 3.235~V$$

$$para~V_{in}>3.235~V$$

3.19 a)
$$V_A = \begin{cases} -2.7 & \text{para } V_{\text{in}} < -2.7 \text{ V} \\ V_{\text{in}} & \text{para } V_{\text{in}} \ge -2.7 \text{ V} \end{cases}$$

b)
$$V_{out} = \begin{cases} \frac{V_A + V_R}{2} & \text{para } V_A < 3.4 \text{ V} \\ 2.7 & \text{para } V_A \ge 3.4 \text{ V} \end{cases}$$

c)
$$V_{out} = 1.33 \text{ V}$$

e)
$$P_{zmax} = 9.9 \text{ mW}$$

$$\textbf{3.20} \quad \textbf{a)} \ \ V_{out} = \begin{cases} 0 & \text{para } V_{in} < 0.7 \ V \\ \hline R_1 + R_D \\ 5 & \text{para } V_{in} > 5.75 \ V \end{cases}$$

b)

- c) R₁: Evita que o nó de saída fique em alta-impedância quando os díodos estão cortados
 - R₂: Polariza o díodo Zener

3.21 a)
$$R_1 = 5 \text{ k}\Omega$$
; $R_2 = R_3 = 1,25 \text{ k}\Omega$

b) Em ambos os casos o erro é de 0,3 mA

PARTE 4 – Circuitos com Transístores de Junção Bipolar

4.1 a)
$$I_C = 9.2 \text{ mA}$$

b)
$$V_{CE} = 1.5 \text{ V}$$

4.2 a)
$$R_C = 3 k\Omega$$
; $R_B = 565 k\Omega$

b)
$$I_C = 0.8 \text{ mA}$$
; $V_{CE} = 9.6 \text{ V}$

4.4
$$I_B = 0.1 \text{ mA}$$
; $I_C = 3 \text{ mA}$; $V_o = 2 \text{ V}$

4.5
$$I_C = 1,29 \text{ mA}$$
; $V_{CE} = 13,96 \text{ V}$
Se R_2 estiver desligada, o transístor fica saturado

4.6
$$I_C = 5,64 \text{ mA}; V_{CE} = -3,54 \text{ V}$$

4.7 a)
$$R_1 = 106,45 \text{ k}\Omega$$

b)
$$I_C = \frac{V_{CC} - V_{BEON}}{(R_C + R_E)\frac{\beta + 1}{\beta} + \frac{R_1}{\beta}} = 3,11 \text{ mA}$$

4.8
$$V_2$$
- V_1 = -7,85 V; limites de validade: 8,05 V < V_1 < 15,5 V

4.9 a)
$$I_{C1} = 501 \text{ mA}$$
; $V_{CE1} = 2.5 \text{ V}$

b)
$$I_{C1}(mA) = \begin{cases} \beta I_{in} & \text{para } I_{in} < 48 \,\mu\text{A} \\ \frac{I_{in}}{\beta} + 24 & \text{para } I_{in} \ge 48 \,\mu\text{A} \end{cases}$$

c)
$$R_1 = 20 \Omega$$

4.10 a)
$$I_C = 277 \mu A$$
 (corrente I_B foi desprezada)

b)
$$V_{CE} = 4,75 \text{ V}$$

4.11 a)
$$I_C = 758 \, \mu A$$

b)
$$V_{CE} = 2.91 \text{ V}$$

c)
$$V_E = -0.94 \text{ V}$$

d)
$$V_{BC} = -2.31 \text{ V}$$

- e) O condensador evita que o ponto de funcionamento em repouso do transístor seja afectado pela tensão de entrada, V_{in} .
- **4.12 a)** $I_C = 2.71 \text{ mA}$; $V_{CE} = 4.037 \text{ V}$
 - **b)** $I_C = 2,68 \text{ mA}$; $V_{CE} = 4,093 \text{ V}$
 - c) Redução de 50% do ganho conduziu a pequenas variações de I_C e V_{CE}
- **4.13 a)** $R_E = 4.95 \text{ k}\Omega$
 - **b)** Sem R_L: R_B = 500 k Ω ; Com R_L: R_B = 84 k Ω
- **4.14** a) $I_C = 4 \text{ mA}$; $V_{CE} = 2,575 \text{ V}$
 - **b)** $R_{in} = 6.57 \text{ k}\Omega$
 - **c)** G = 1
- **4.15 a)** $R_E = 2 k\Omega$
 - **b)** $R_1 = 20 \text{ k}\Omega$
 - **c)** $R_{C} = 1,01 \text{ k}\Omega$
 - **d)** C = 88 nF
- **4.16** a) $I_E = 5 \text{ mA}$
 - **b)** $R_2 = 255 \text{ k}\Omega$
 - **c)** $R_B = 75.5 \text{ k}\Omega$
 - **d)** C = 1.8 nF
- **4.17 a)** $I_C = 406 \mu A$; $V_{CE} = 7.3 \text{ V}$
 - **b)** $R_B = 60.6 \text{ k}\Omega$
 - **c)** $R_{in} = 35,7 \text{ k}\Omega$
 - **d)** G = -10
- **4.18** a) $R_1 = 83.2 \text{ k}\Omega$; $R_2 = 16.8 \text{ k}\Omega$; $R_C = 2.196 \text{ k}\Omega$
 - **b)** $R_{in} = 8,66 \text{ k}\Omega; R_{out} = 113 \Omega$
 - c) G = -7.22
 - **d)** $R_1 = 61,6 \text{ k}\Omega$; $R_2 = 38,4 \text{ k}\Omega$; $R_C = R_E = 1,24 \text{ k}\Omega$
- **4.19** a) $R_2 = 5{,}023 \text{ k}\Omega$; $R_C = 2{,}495 \text{ k}\Omega$
 - **b)** $v_E(t) = -3.99 + 0.5 \sin(\omega t)$
 - $v_{\rm C}(t) = 0.01 2.495 \sin(\omega t)$
 - $v_c(t)$ e $v_e(t)$ estão em oposição de fase ($\Delta \phi = 180^\circ$)

- **4.20** $I_{C2} = 1.3 \text{ mA}$
- **4.21** $R_1 = 1,38 \text{ k}\Omega; R_2 = 0,92 \text{ k}\Omega$
- **4.22** a) $I_{C2} = I_{C3} = 1 \text{ mA}$
 - **b)** $P_{RC1} = 2.7 \text{ mW}$; $P_{RC2} = 5 \text{ mW}$; $P_{RC3} = 10 \text{ mW}$

$$\textbf{4.23} \quad \textbf{a)} \ \ V_{out} = \begin{cases} 10 & \text{para } V_{in} < -50 \, \text{mV} \\ \\ V_{CC} - R_{C1} \left(\frac{V_{in}}{2r_E} + \frac{I_{EE}}{2} \right) & \text{para } -50 \, \text{mV} \leq V_{in} \leq 50 \, \text{mV} \\ \\ 8 & \text{para } V_{in} > 50 \, \text{mV} \end{cases}$$

- **b)** $G_d = -20$
- **c)** $G_c = -0.0005$
- **d)** RRMC = 40.000

4.24 a)
$$I_{C1} = I_{C2} = 1$$
 mA; $r_E = 25 \Omega$

- **b)** $G_c = 0$
- **c)** $G_d = 100$

O resultado da alínea c) aplica-se para $V_{in} \in [-50 \text{ mV}; 50 \text{ mV}]$

4.25 a

$$V_{\text{out}} = \begin{cases} V_{\text{CC}} - R_{\text{C2}} I_{\text{EE}} = 8 & \text{para } V_{\text{in}} < -(r_{\text{E}} + R_{\text{E}}) I_{\text{EE}} \\ V_{\text{CC}} - R_{\text{C2}} \left(\frac{I_{\text{EE}}}{2} - \frac{V_{\text{in}}}{2(r_{\text{E}} + R_{\text{E}})} \right) & \text{para } -(r_{\text{E}} + R_{\text{E}}) I_{\text{EE}} \le V_{\text{in}} \le (r_{\text{E}} + R_{\text{E}}) I_{\text{EE}} \\ V_{\text{CC}} = 10 & \text{para } V_{\text{in}} > (r_{\text{E}} + R_{\text{E}}) I_{\text{EE}} \end{cases}$$

- **b)** $G_d = 4$
- **c)** $G_c = -0.0005$
- d) A anulação de R_{E1} e R_{E2} provoca uma diminuição da zona de funcionamento linear do par diferencial (zona com declive \neq 0). Com R_{E1} e R_{E2} essa região tinha uma largura de $2(r_E+R_E)I_{EE}=0,5$ V, passando a ter uma largura de $2r_EI_{EE}=0,1$ V se R_{E1} e R_{E2} forem anuladas.
- **4.26** a) $G_c = -0.001$
 - **b)** $G_d = -20$
 - **c)** RRMC = 20.000

- **4.27 a)** $V_X = -1,156 \text{ V}$
 - **b)** $V_{O12} = R_{C2} \left(\frac{I_{EE}}{2} \frac{V_1}{2R_E} \right) = 5 5V_1$

- **c)** $G_d = -5$ **d)**

