| Register Number |  |  |  |  |  |
|-----------------|--|--|--|--|--|

## Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

# Department of Computer Science and Engineering

# Continuous Assessment Test – II Answer Key

| Degree & Branch                        | BE & Computer Science and Engineering |       |           |                   | Semester    | VII     |
|----------------------------------------|---------------------------------------|-------|-----------|-------------------|-------------|---------|
| Subject Code & Name                    | UCS1701- Distributed Systems          |       |           |                   | Regulation: | 2018    |
| Academic Year                          | 2022-2023<br>ODD                      | Batch | 2019-2023 | Date              | 14-10-2022  | FN / AN |
| Time: 08:15 – 09:45<br>AM (90 Minutes) | Answer All Questions                  |       |           | Maximum: 50 Marks |             |         |

## $Part - A (6 \times 2 = 12 Marks)$

| KL2 | 1. Explain any two performance parameters of distributed mutex exclusion. Ans: Synchronization Delay, Response Time, Message Complexity.                                                                                                                             | CO3 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| KL1 | <ol> <li>Define idle token.</li> <li>Ans: A process having token and executing outside critical section.</li> </ol>                                                                                                                                                  | CO3 |
| KL2 | 3. Outline the message complexity of two non-token-based D-MUTEX algorithms.  Ans: Lamport's DMutex – 3(N-1)  Ricart Agrawala's DMutex – 2(N-1)                                                                                                                      | CO3 |
| KL2 | 4. Outline the difference between starvation and deadlocks.<br>Starvation: Process waiting indefinitely to access the shared resource.<br>Deadlock: Process waiting in the queue for some other process to release the resources which is also waiting in the queue. | CO3 |
| KL3 | 5. Identify the maximum number of malicious processes when the total number of processes is 12 for the Byzantine agreement problem in the synchronous environment.  Ans: 3; n>3*f                                                                                    | CO4 |
| KL1 | <ol> <li>List any two applications of Byzantine consensus.</li> <li>Agreement</li> <li>Distributed Databases.</li> </ol>                                                                                                                                             | CO4 |

#### $Part - B (3 \times 6 = 18 Marks)$

| KL2 | 7. Illustrate the effect of Byzantine Consensus for Asynchronous non-malicious      |     |  |  |
|-----|-------------------------------------------------------------------------------------|-----|--|--|
|     | environment in which the source sends the commands as $1 \rightarrow 0$ .           |     |  |  |
|     | Ans: In Asynchronous environment, the message delay doesn't have any time limit     |     |  |  |
|     | and so when some process receives 0 after 1, there will be some processes receiving |     |  |  |
|     | 1 which could be difficult to arrive at a consensus.                                |     |  |  |
| KL3 | 8. Consider 4 cohorts and 1 source in synchronous environment. Apply Byzantine      |     |  |  |
|     | consensus for the following cases and illustrate the result.                        |     |  |  |
|     | i. Two of the cohorts are malicious.                                                | CO4 |  |  |
|     | ii. Only the source is malicious.                                                   |     |  |  |



8. Demonstrate the limitations of Path -Pushing algorithm with an example.

 $majority(u, v, w) = \bot$ 

CO3

p4 decides on majority(v, v, w) = v

KL2



#### $Part - C (2 \times 10 = 20 Marks)$

|     | ,                                                                                                                                                                                   |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 10. Apply the Lamport's non-token based distributed mutual exclusion algorithm for the scenario in which the order of request for critical section is as follows.                   |     |
| KL3 | P1 → (P2    P3) → P4                                                                                                                                                                | CO3 |
|     | There will ne request, reply and release messages. So, $3(N-1)$ messages. CS will be given to the process in the order $P1 \rightarrow P2 \rightarrow P3 \rightarrow P4$            |     |
|     | (OR)                                                                                                                                                                                |     |
|     | 11. Apply the Ricart Agrawala's distributed mutual exclusion algorithm for the scenario in which the order of request for critical section is as follows.                           |     |
| KL3 | P3 → (P1    P2) → P3  A request deferred array is mainintaind at each process and P1 will defeer the reply to P2 until CS acess is achieved by P1.                                  | CO3 |
|     | There will be request and reply messages. So, $2(N-1)$ messages. CS will be given to the process in the order $P3 \rightarrow P1 \rightarrow P2 \rightarrow P3$                     |     |
|     | 12. Apply the token based distributed mutual exclusion algorithm for the scenario in which the order of request for critical section is as follows.                                 |     |
| KL3 | $P1 \rightarrow P2 \rightarrow (P3 \parallel P4)$<br>Note: Initially the token is held by process P3                                                                                | CO3 |
|     | Token will be sent in the order $P1 \rightarrow P2 \rightarrow P3 \rightarrow P4$                                                                                                   |     |
|     | (OR)                                                                                                                                                                                |     |
| KL3 | 13. Apply Edge chasing algorithm for the given scenario and identify the presence of deadlocks. Justify the fact "Edge Chasing Algorithm will not identify any phantom deadloccks". | CO3 |



At S1:

Probe (1,2,4)

Probe (1,3,6)

At S2:

Probe (1,5,13)

At S3:

Probe (1,7,8)

At S4:

Probe (1,9,10)

At S5:

Probe (1,11,1)

Probe (1,13,1)

i=k

So deadlock

As the probe messages are very small, phantom deadlocks will not occur.