Лабораторная работа № 14 МАСШАТАБИРУЕМАЯ ВЕКТОРНАЯ ГРАФИКА

Цель работы: изучить способы вставки SVG-изображения на web-страницу, принципы создания svg-фигур и svg-контуров; познакомиться с правилами применения трансформации, градиентной заливки и анимации к svg-фигурам.

Теоретические сведения для выполнения работы

Использование SVG

Масштабируемая векторная графика (Scalable Vector Graphics, SVG) представляет собой вид графики, который создается с помощью математического описания геометрических примитивов (линий, кругов, эллипсов, прямоугольников, кривых), которые образуют изображение. Изображения SVG описываются тестовыми файлами с применением языка XML и предназначены для описание двухмерной векторной или смешанной векторно-растровой графики.

К преимуществам SVG-изображений относится:

- 1. Отсутствие потери качества при масштабировании.
- 2. Могут создаваться и редактироваться в любом текстовом редакторе.
- 3. Совместимость со стандартами консорциума W3C: DOM и XSL.
- 4. Размеры их файлов являются небольшими по сравнению с любым другим типом файлов изображений.
 - 5. Можно добавлять несколько гиперссылок.
- 6. Поддержка скриптов и анимации в SVG позволяют создавать динамичную и интерактивную графику.

Преимущественно .svg используют в дизайне иконок, логотипов и элементов пользовательского интерфейса для веб-сайтов, а также можно создавать графики и диаграммы, простую инфографику, масштабируемые дорожные карты, легкие игры вроде судоку или кроссвордов.

Существуют следующие способы использования svg в веббразерах: 1. Вставка SVG-файла в HTML-документ с помощью тегов img, embed, object и iframe.

```
<img src="example.svg">
    <embed src="example.svg" type="image/svg+xml">
    <object data="example.svg" type="image/svg+xml"></object>
    <iframe src="example.svg" width="200" height="300"
    style="border: none"></iframe>
```

14.1 Способы вставки файла с расширением svg

2. Вставка кода в HTML-документ в элементе <svg>...</svg>:

Рис. 14.2 Вставка векторной графики с помощью тега <svg>

- 3. подключение в PHP-документ с помощью функции include: <? include("example.svg"); ?>.
- 4. Использование SVG-файла в качестве фонового изображения в CSS: *background: url(example.svg)*.

Контейнер SVG имеет бесконечные размеры. Viewport и viewBox — это две прямоугольные области просмотра, которые ограничены конечными значениями высоты и ширины, указанными в атрибутах width и height. Область видимости viewport принимает значения атрибутов высоты и ширины, а viewBox дает возможность отобразить без искажений или трансформировать SVG. < svgwidth="400" конкретный фрагмент Например, *height="400"* viewBox="0"800 800" version="1.1" xmlns="//www.w3.org/2000/svg"> определяет пользовательскую область просмотра *viewport* равной 400×400 рх. Первые два значения атрибута ViewBox min-х и min-у определяют начало системы координат пользовательской области просмотра, последующие два значения ее ширину и высоту и одновременно масштабирование изображения. В примере пользовательская область занимает прямоугольный фрагмент размером 800×800 рх, то есть область видимости *viewport* и дополнительно по 400рх справа и снизу. Таким образом, масштаб видимости SVG-изображения уменьшается.

Так как *viewport* является предком для *viewBox*, то начало системы координат *viewBox*, по умолчанию, также как и системы координат *viewport* находится в левом верхнем углу (0,0) и положительное направление оси «Х» – будет вправо, а оси «Y» – вниз.

Основные элементы SVG

К основным элементам, которые могут быть созданы являются прямая линия, ломанная линия, многоугольник, прямоугольник, круг, эллипс, сложная траектория. Соответствующие им теги представлены в таблице 14.1

Основные геометрические элементы svg

Таблица 14.1

Элементы SVG	Атрибуты
line (прямая линия)	x1 — координата начальной точки линии по оси X;
	у1 — координата начальной точки линии по оси Y;
	x2 — координата конечной точки линии по оси X;
	у2 — координата конечной точки линии по оси Ү
polyline (ломанная	points — координаты ломанной линии парами x,y че-
линия)	рез пробел
polygon (много-	points — координаты ломанной линии парами x,y че-
угольник)	рез пробел
rect (прямоуголь-	х — координата левой верхней точки прямоугольника
ник)	по оси Х;
	у — Координата левой верхней точки прямоугольника
	по оси Y;
	width — ширина прямоугольника;
	height — высота прямоугольника;
	rx — радиус закругления углов прямоугольника по
	оси Х;
	ry — радиус закругления углов прямоугольника по
	оси Y;
circle (круг)	сх — координата центра круга по оси Х;
	су — координата центра круга по оси Y;
	r — радиус круга;
ellipse (эллипс)	сх — координата центра эллипса по оси X;
	су — координата центра эллипса по оси Y;
	rx — радиус эллипса по оси X;
	ry — радиус эллипса по оси Y;

Создание сложной траектории осуществляются тегом < path >, который позволяет создавать произвольные фигуры. Форма фигу-

ры задается атрибутом *d*, значение которого — это набор специальных команд. Эти команды могут быть и в верхнем, и в нижнем регистре. Верхний регистр указывает на то, что применяется абсолютное позиционирование, а нижний — относительное. Список команд и их значений представлены в таблице 14.2, а пример на рис. 14.3.

Таблица 14.2 Значения элемента <path>

эначения элемента грант		
Команды тега <path></path>	Значение команды	
М, m — начальная точка	mx, my — координаты точки	
L, 1 — отрезок прямой	lx, ly — координаты от текущей точки линии к	
	указанной	
H, h — горизонтальная	hx — координата, до которой создается линия по	
линия	оси Х	
V, v — вертикальная ли-	vy — координата до которой создается линия по	
ния	оси Ү	
А, а — дуга эллипса	rx,ry — радиусы дуги эллипса;	
	x-axis-rotation — угол поворота дуги относитель-	
	но оси Х;	
	large-arc-flag – если (=1), то строится большая	
	части дуги, если (=0) – меньшая;	
	sweep-flag – если (=1), то дуга строится по часо-	
	вой стрелке, если (=0) – против часовой стрелке;	
	х,у – координаты конечной точки дуги	
С, с — кубическая кривая	х1,у1 – координаты первой контрольной точки;	
Безье	х2,у2 – координаты второй контрольной точки;	
	х,у – координаты конечной точки кривой.	
S, s — гладкая кубическая	х2,у2 – координаты второй контрольной точки;	
кривая Безье	х,у – координаты конечной точки кривой.	
	Первая контрольная точка является зеркальным	
	отражением второй контрольной точки	
Q, q — квадратичная кри-	x1,y1 – координаты контрольной точки;	
вая Безье	х,у – координаты конечной точки кривой.	
T, t — гладкая квадратич-	х,у – координаты конечной точки кривой.	
ная кривая Безье	Контрольная точка этой команды является зер-	
	кальным отражением контрольной точки преды-	
	дущей команды.	
Z, z — замыкание траекто-	не имеет значений	
рии		

Сложные SVG фигуры можно нарисовать в векторных редакторах Adobe Illustrator, CorelDRAW, Inkscape (рекомендуемый сво-

бодный редактор SVG-графики) и сохранить в формате svg. Далее полученный документ открывается в Блокноте, FrontPage или любом другом редакторе, в окне которого будет представлен автоматически корректно созданный код. Данный код можно скопировать и вставить в HTML-документ.

Рис. 14.3 Пример создания сложной траектории

К общим атрибутам, которые могут быть во всех элементах, относятся:

- 1. *stroke* цвет линии;
- 2. *stroke-width* толщина линии;
- 3. *stroke-linecap* стиль концов линии. Возможные значения атрибута: round по форме круга; square по форме квадрата;
- 4. *stroke-dasharray* чередование штрихов и пробелов в пунктирной линии;
 - 5. fill цвет заливки (none без заливки);
 - 6. *fill-opacity* прозрачность заливки (от 0 до 1);
- 7. *fill-rule* правило заливки. Возможные значения атрибута: nonzero сплошная заливка; evenodd внутренняя часть фигуры не заливается.
 - 8. *style* стиль элемента;
 - 9. *class* класс элемента.

Преобразования задаются в атрибуте *transform*. Можно указать несколько пребразований через пробел. Виды трансформации:

- − rotate(rotate-angle [cx cy]) − поворот;
- scale(sx [sy]) масштабирование;
- translate(tx [ty]) перенос;
- skewX(skew-angle) наклон по оси X;
- skewY(skew-angle) наклон по оси Y.

Для хранения повторно используемого содержимого используется тег < defs>. Содержимое этом теге является скрытым и будет использовано только при обращении к нему по id. В теге можно хранить, например, градиентную заливку (linearGradient, radialGradient) и применить ее к отдельным фигурам. Также можно хранить любые элементы SVG: pattern, marker, path, gradient, основные элементы SVG.

```
<defs>
    linearGradient id = "MyGradient">
        <stop offset = "30%" stop-color = "red"/>
        <stop offset = "70%" stop-color = "yellow"/>
        </linearGradient>
        </defs>
        <rect x = "0" y = "0" width = "150" height="150" fill = "url(#MyGradient)"/>
```

Рис. 14.4 Использование тега <defs>

Для объединения нескольких фигур в группу для последующих действий над ней, как над одним целым используется парный тег $\langle g \rangle$. Группе так же может быть присвоен уникальный *id* для повторного использования. Несколько групп могут быть объединены в одну.

Рис. 14.5 Пример использования тега <g>

Для создания копий SVG-фигур и их размещения на странице, а также добавления различных преобразований используется тег <use>, указывается id контура и прописываются его координаты, например, <use xlink:href="#myCircle" x="10" fill="blue"/>.

Анимация SVG

SMIL (the Synchronized Multimedia Integration Language) – язык разметки на основе XML, с помощью которого осуществляется анимация. Каждой отдельной геометрической svg-фигуре можно присвоить анимации SMIL. Для этого используется непарный тег <animate>, который анимирует отдельные свойства, Свойства прописываются с указанием анимированного свойства в атрибуте attributeName. В примере на рис. 14.анимируется свойство cx, расположение по оси X изменяется от 100 до 300рх за 5 секунд.

```
<circle cy="70" r="50" fill="red">
<animate attributeName="cx" from="100" to="300"dur="5s"/>
</circle>
```

Рис. 14.6 Пример использования анимации svg-фигуры

Можно задавать сразу несколько анимаций, и они будут выполняться одновременно. В теге < апімаte> можно ссылаться на анимируемый объект через его id с помощью атрибута xlink:href:

Для создания анимации трансформаций предназначен тег < animate Transform>, вид трансформации указывается в атрибуте type: < animate Transform xlink: href= "#mygroup" attribute Name= "transform" attribute Type= "XML" type= "rotate" from= "0, 60 four= "5four= "5four= "5four= "5four= "5four= "5four= "6four= "7four= "6four= "6four=

Для обработки событий запуска анимации можно воспользоваться с атрибутами *begin* и *end*, например *begin*="mouseover" для начала анимации при наведении на элемент, *end*="mouseout" для завершения анимации при отводе курсора мыши.

Работа с текстом

Текст в элементе SVG определяется с помощью тега <text>. К специфическим атрибутам, используемыми для работы с текстом относятся:

- 1. x и y координаты расположения текста на экране: <text x="0" y="20">Text</text>
- $2. \ dx$ и dy размещение текстовых областей относительно текущей позиции;
- 3. *text-anchor* выравнивание текстовой строки относительно точки (x, y). Может принимать значения *start*, *middle*, *end*;
 - 4. *rotate* поворот текста на заданный угол;
 - 5. *textLength* устанавливает ширину строки;
- 6. lengthAdjust сжатие и растягивание текста, используется вместе с атрибутом textLength. Может принимать значения spacing и spacingAndGlyphs.

Тег $\langle span \rangle$ в SVG аналогичен тегу $\langle span \rangle$. Используется при необходимости применить стиль к определенной содержимого. Для ссылки на существующий текст можно воспользоваться тегом $\langle tref \rangle$.

С помощью тега < textPath> осуществляется отображение текста вдоль направляющей линии. Пример использования < textPath> представлен на рис. 14.7

Рис. 14.7 Пример использования тега < textPath>

Текст в SVG может быть стилизован с помощью свойств CSS, которые могут быть установлены как атрибуты.

Задания к лабораторной работе № 14

Задание 1 Создайте новый документ, в котором разместите текст вдоль произвольной кривой. Данный текст разместите по

центру, выделите произвольным цветом. Размер шрифта должен составлять 36рх.

Задание 2 Создайте в документе задания 1 элементы представленные на рис. 14.8

Рис. 14.8 Элементы для задания 2

Задание 3 Сделайте элемент, представленный на рис. 14.9 используя графический редактор для работы с векторной графикой. Используя только тег *<path>* создайте несколько дополнительных фигур в виде украшений. К дополнительным фигурам можно применить различные анимации.

Рис. 14.9 Пример фигуры для задания 3

Задание 4 Откройте svgicon.html файл из папки labs. Используйте любой svg-код иконки из файла и поместите в <defs>. Создайте 5 копий иконок и разместите их на странице. Примените к элементам различные трансформации.

Задание 5 Сделав предварительно копию документа с элементами из задания 2 анимировать для них следующие свойства:

Задание 5.1 Изменение для треугольника желтой заливки на линейную градиентную заливку от зеленого к оранжевому.

Задание 5.2 Для эллипса сделать изменение заливки цветом при щелчке мыши на нем.

Задание 5.3 Для квадрата сделать анимацию появления контура вокруг него.

Задание 5.4 Для треугольника при наведении мыши изменение цвет контура.

Задание 6 В копии задания 1 лабораторной работы № 2 внизу страницы создать четыре svg-фигуры в виде кругов радиуса 45рх. Каждый из них должен быть содержать гиперссылку на задания из лаб. раб. № 2. Для копии документа измените ранее созданные CSS-стили, устаревшие атрибуты на SCSS.

Контрольные вопросы

- 1. Дайте понятие SVG. Как расшифровывается аббревиатура?
- 2. Какие премущества SVG перед остальными форматами?
- 3. Как использовать SVG в HTML?
- 4. Каким образом создать прямую линию и ломанную линию?
- 5. Каким образом создать прямоугольник и многоугольник?
- 6. Каким образом создать круг и эллипс?
- 7. Для чего предназначен тег <path>? Что означают значения в теге <path>?
 - 8. Какие атрибуты относятся к общим?
 - 9. Как создать заливку svg-фигуры?
 - 10. Как изменить цвет и размер ширины контура svg-фигуры?
 - 11. Каким образом трансформировать svg-фигуру?
 - 12. Для чего используется тег <use>?
- 13. Каким образом использовать графические редакторы для создания svg?
 - 14. Каким образом создать текст в svg?
 - 15. Для чего используется тег < defs > ?
 - 16. Каким образом создать градиентную заливку?
 - 17. Каким образом создать анимацию?
- 18. Какие атрибуты могут быть использованы при создании анимации?
 - 19. Для чего используется viewBox?
 - 20. Для чего используется тег < g > ?
- 21. Создайте логотип компании Apple и браузера Google Chrome используя только тег <path>.