Problem analysis of Greedy Algorithm (2)

YAO ZHAO

Nesting boxes

- A **d-dimensional** box with dimensions $(x_1, x_2, ..., x_d)$ **nests** within another box with dimensions $(y_1, y_2, ..., y_d)$ if there exists a permutation π on $\{1, 2, ..., d\}$ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2, ..., x_{\pi(d)} < y_d$.
- ▶ (1) Argue that the nesting relation is transitive.
- ▶ (2) Describe an efficient method to determine whether one *d*-dimensional box nests inside another.
- (3) Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, ... B_n\}$. Give an efficient algorithm to find the longest sequence $\langle B_{i1}, B_{i2}, ... B_{ik} \rangle$ of boxes such that B_{ij} nests within B_{ij+1} for j=1,2,...k-1. Express the running time of your algorithm in terms of n and d.

Question 1: Argue that the nesting relation is transitive

Suppose that box $\mathbf{x}=(x_1,x_2,...,x_d)$ nests with box $\mathbf{y}=(y_1,y_2,...,y_d)$ and box y nests with box $\mathbf{z}=(z_1,z_2,...,z_d)$ Then there exist permutations π and σ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2,...,x_{\pi(d)} < y_d$ and $y_{\sigma(1)} < z_1, y_{\sigma(2)} < z_2,...,y_{\sigma(d)} < z_d$. This implies $x_{\pi(\sigma(1))} < z_1, x_{\pi(\sigma(2))} < z_2,...,x_{\pi(\sigma(d))} < z_d$, so x nests with z and the nesting relation is transitive.

Sample:

Question 2: Describe an efficient method to determine whether one d-dimensional box nests inside another

▶ Box x nests inside box y if and only if the increasing sequence of dimensions of x is component-wise strictly less than the increasing sequence of dimensions of y. Thus, it will suffice to sort both sequences of dimensions and compare them. Sorting both length d sequences is done in $O(d \log d)$, and comparing their elements is done in O(d), so the total time is $O(d \log d)$.

Question 2:proof

Pf. Box x nests inside box y if and only if the increasing sequence of dimensions of x is component-wise strictly less than the increasing sequence of dimensions of y.

the increasing sequence dimensions of x is component-wise strictly less than the increasing sequence of dimensions of y.

By the definition of Nesting Box x nests inside box y

of

be

of

the increasing sequence dimensions of xmust Box x nests inside box ycomponent-wise strictly less than the increasing sequence dimensions of y.

▶ Claim. the increasing sequence of dimensions of x must be component-wise strictly less than the increasing sequence of dimensions of y if Box x nests inside box y.

Pf. (by induction)

- ▶ Base: let dimension = 1, if Box x nests inside box y, $x_1 < y_1$
- Induction: Suppose that dimension = d, if Box x nests inside box y, there is an increasing permutations π for x and an increasing permutations σ for y, satisfy $x_{\pi(1)} < y_{\sigma(1)}, x_{\pi(2)} < y_{\sigma(2)}, ..., x_{\pi(d)} < y_{\sigma(d)}$
- When dimension =d+1, if Box x nests inside box y, according the definition, there exist permutations λ :
- $x_{\lambda(1)} < y_1, x_{\lambda(2)} < y_2, \dots, x_{\lambda(d)} < y_{d}, x_{\lambda(d+1)} < y_{d+1}$ -----(1)

Observe(1), the first d terms, $x_{\lambda(1)} < y_1, x_{\lambda(2)} < y_2, ..., x_{\lambda(d)} < y_d$. The first d terms satisfy the nested relationship of d dimensions, so for the first d terms, there will exist permutations π , σ

- $x_{\pi(1)} \le x_{\pi(2)} \le \dots \le x_{\pi(d)}$ -----(2)
- $y_{\sigma(1)} \le y_{\sigma(2)} \le ... \le y_{\sigma(d)}$ -----(3)
- $x_{\pi(1)} < y_{\sigma(1)}, x_{\pi(2)} < y_{\sigma(2)}, \dots, x_{\pi(d)} < y_{\sigma(d)}$ -----(4)

▶ Pf. (continue)

 $x_{\lambda(d+1)}$ is inserted into Formula (2) (let the insertion position be j), thereby having a new permutation π' such that the x sequence remains increasing.

Then insert y_{d+1} into Formula (3) (let the insertion position be k), a new permutation σ' is created so that y sequence remains increasing.

$$x_{\lambda(d+1)} = x_{\pi'(j)} < y_{d+1} = y_{\sigma'(k)}$$
 (5)

There are 3 cases:

- $\begin{aligned} & \quad \text{$j < k$: $x_{\pi'(1)} < y_{\sigma'(1)}, x_{\pi'(2)} < y_{\sigma'(2)}, \dots x_{\pi'(j)} < x_{\pi'(j+1)} < y_{\sigma'(j)}, x_{\pi'(j+1)} < x_{\pi'(j+2)} < y_{\sigma'(j+1)}, \\ & \quad \dots x_{\pi'(k-1)} < x_{\pi'(k)} < y_{\sigma'(k)}, \quad x_{\pi'(k)} < y_{\pi'(k-1)} < y_{\sigma'(k)}, x_{\pi'(k+1)} < y_{\sigma'(k+1)}, x_{\pi'(d+1)} < y_{\sigma'(d+1)} \end{aligned} \\ & \quad \text{So, for any $1 \le i \le d+1$, $$x_{\pi'(i)} < y_{\sigma'(i)}$, the claim is true.}$
- j = k:

the insertion position: we have $x_{\lambda(d+1)} < y_{d+1}$ (see formula(1)), so $x_{\lambda(d+1)} = x_{\pi'(j)} < y_{d+1} = y_{\sigma'(k)}$ (Formula(5)) = $y_{\sigma'(j)}$ (j=k)

The other positions hasn't changed, for any $1 \le i \le d+1$, $x_{\pi'(i)} < y_{\sigma'(i)}$, the claim is true.

So, for any $1 \le i \le d+1$, $x_{\pi'(i)} < y_{\sigma'(i)}$, the claim is true.

Sample:

	1	2	3	4			
X	21	23	25	27			
У	31	33	35	37			
	1	2	3	4			
Χ	21	23	25	27			
У	31	33	35	37			
	1	2	3	4			
Χ	21	23	25	27			
У	31	33	35	37			

Question 3: Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, \dots B_n\}$. Give an efficient algorithm to find the longest sequence $\langle B_{i1}, B_{i2}, \dots B_{ik} \rangle$ of boxes such that B_{ij} nests within B_{ij+1} for $j=1,2,\dots k-1$. Express the running time of your algorithm in terms of n and d.

We will create a nesting-graph G with vertices $B_1, B_2, ... B_n$ as follows. For each pair of boxes B_i, B_j , we decide if one nests inside the other. If B_i nests in B_j , draw an arrow from B_i to B_j . If B_j nests in B_i , draw an arrow from B_j to B_i . If neither nests, draw no arrow. To determine the arrows efficiently, after sorting each list of dimensions in $O(nd \log d)$ we compare all pairs of boxes using the algorithm from part (2) in $O(n^2d)$. By part (1), the resulted graph is acyclic, which allows us to easily find the longest chain in it in $O(n^2)$ in a bottom-up manner. This chain is our answer. Thus, the total time is $O(nd * max(\log d, n))$.

Sample:

8 boxes

Node 1

1 2 5 10 20 30

Node 2

3 7 9 11 15 23

Node 3

4 14 24 34 40 50

Node 4

9 10 11 12 13 14

Create a nesting-graph

We will create a nesting-graph G with vertices $B_1, B_2, ... B_n$ as follows. For each pair of boxes B_i, B_j , we decide if one nests inside the other. If B_i nests in B_j , draw an arrow from B_i to B_j . If B_j nests in B_i , draw an arrow from B_i to B_i . If neither nests, draw no arrow.

Find the longest chain in the DAG in $\mathcal{O}(n^2)$ in a bottom-up manner

	1	2	3	4	5	6	7	8
1	0	0	1	0	1	1	0	1
2	0	0	1	0	1	1	0	1
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0
7	1	1	1	1	1	1	0	1
8	0	0	0	0	0	0	0	0

the longest chain:4

The following are the possible chain: $7 \rightarrow 1 \rightarrow 5 \rightarrow 8$ or $7 \rightarrow 1 \rightarrow 5 \rightarrow 6$ or $7 \rightarrow 2 \rightarrow 5 \rightarrow 6$ or $7 \rightarrow 2 \rightarrow 5 \rightarrow 8$