Optimal Ambulance Dispatch

Project Overview

Points of Discussion

Introduction
Dataset Generation
Simulation
Results
Analysis
Limitations
Conclusion

Introduction

Faster Response
Times

Decreased Mortality
Rate

More people saved

Probability Density

Darker = more probable

Probability Density Darker = more probable

Data similar to actual population density of PH (2015 Census)

Sample Image

100 images used for training

SVD/QR Placement

Using similar algorithm to HW2 QR sensor placement, sensors = ambulance

Algo:

U,S,Vh = np.linalg.svd(Xtrain_s,full_matrices=False)

Psi= U[:,:r] Q,R,P = qr(Psi.T,pivoting=True)

Random Placement

Place ambulances in random coordinates

Algo:

Pr = np.random.choice(np.arange(1,m*n,1),p-1)

Current Placement

Fashioned from approximate positions of actual hospitals in the map.

K-means Clustering

Dispatches ambulances by separating data into clusters where most instances occur

Algo:

km = KMeans(n_clusters=99)
km.fit(pCk_temp)

temp = km.cluster_centers_

Results

SVD	Random	Current	K-means.
9555.331437	2001.342716	6955-385938	1012 16759
10993.27386	2514.076358	6891.927964	1013.735466
12002.52284	2691.507629	7714.924189	1924 95594
10577.85203	2502.131559	7520 086074	1790.894369
9263.456919	2651.679279	7056.64702	1793.295087
10939 77763	2404.817376	7488.288432	1897,3651
10034.76484	2372.525741	6850-206744	1623,41463
11181, 12534	2234,171086	7414.025989	1797 223484
10804 17014	2743.297637	7424.291943	1964.062648
10107.20307	2519.555203	7323-232945	1910.250067
10545.04781	2101.010462	7623.234609	1790,894369
10045.34391	2611.17452	7050 542923	1771.537971
10001.31293	2523.545601	7125-959537	1752,101373
10033.53121	2209.009012	7703.329915	1013.090009
10621.12312	2215.912344	7090.557641	1075,444903
11002,90902	2799.120909	7401.235591	1906.840654
10923,54566	2710.129032	7904.778911	1888 230275
10662 12145	2391.123083	6098.104223	1790.894369
11201.12988	2407.556743	6812.104049	1721.537871
10032-00737	2479.560321	7012.43511	1702,133062

Assumes all incidents occurs simultaneously and ambulances can cater to multiple incidents at once

Since only the euclidean distance is computed, all incidences are computed all at once and multiple sensors can be the nearest sensor from the incident

Roads and Traffic is ignored

Euclidean Distance could not take into account roads and the traffic which affect actual ambulance efficiency

Accurate data is needed

Ambulances can be dispatched properly when incident occurences are accurate

CONCLUSION