1 Notion d'ensemble.

Intuitivement, un ensemble est une collection d'objets.

Le plus souvent, les objets d'un ensemble, appelés éléments, ont une propriété commune.

Exemple 1.1.

- Un cercle de centre O et de rayon r est l'ensemble des points équidistants de O de r.
- Les entiers relatifs multiples de 2 forment l'ensemble des nombres pairs.
- Les fonctions définies sur $\mathbb R$ à acroissement proportionnel forment l'ensemble des fonctions affines.
- etc.

Théoriquement (notation : E désigne un ensemble).

Un ensemble est vide ou bien contient des éléments.

Un ensemble est un méta-objet : $(E \notin E)$ est toujours vraie.

Un ensemble à un élément ne se confond pas avec cet élément $\forall x \in E \ (x \neq \{x\})$.

L'ensemble de tous les ensembles n'existe pas.

2 Descriptions et désignation d'un ensemble.

Exemple 2.1. Les racines cubiques de l'unité dans $\mathbb C$:

En extension : $\left\{1, e^{i2\pi/3}, e^{-i2\pi/3}\right\}$ Par remplacement : $\left\{e^{ik2\pi/3}/k \in \{0, 1, 2\}\right\}$

En compréhension : $\{z \in \mathbb{C} / z^3 = 1\}$

 $t:\left\{e^{ik2\pi/3}/k\in\{0,1,2\}\right\}$ Par un nom symbolique : U_3 .

$$U_3 = \left\{ z \in \mathbb{C} / z^3 = 1 \right\} = \left\{ 1, \ e^{i2\pi/3}, \ e^{-i2\pi/3} \right\} = \left\{ e^{ik2\pi/3}/k \in \{0, 1, 2\} \right\}$$

Remarque 2.1. Lors d'une description en extension, chaque élément n'est cité qu'une fois $(\{a, a\} = \{a\})$ et l'ordre d'écriture n'importe pas $(\{a, b\} = \{b, a\})$.

3 Ensemble des parties d'un ensemble.

Définition 3.1. Soit E, un ensemble.

A est une partie de E si et seulement si tout élément de A est élément de E.

Vocabulaire et notations.

- On dit que A est inclus dans E ou encore que A est un sous-ensemble de E. On note : $A \subset E$.
- $\mathscr{P}(E)$ désigne l'ensemble des parties de $E:\mathscr{P}(E)=\{A/A\subset E\}$. A retenir $:(A\subset E)\Leftrightarrow (A\in\mathscr{P}(E))$. A est un ensemble et est aussi un élément de $\mathscr{P}(E)$.
- -E est la partie pleine de E et \emptyset est la partie vide de E; E et \emptyset sont les parties propres de E.
- Un singleton est un ensemble à un élément. \triangle Ne pas confondre les ensembles $\{0\}$ et \emptyset .
- Une paire est un ensemble à deux éléments. Exemple : {0,1}.

Exemple 3.1. si
$$E = \{a, b, c\}$$
 alors $\mathscr{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, E\}$

Définition 3.2. Soit E un ensemble non vide et A une partie non propre de E.

E est dit fini si et seulement si il existe un entier naturel n, non nul, tel qu'il existe une bijection définie de E dans [1, n].

Théorème 3.1. Soient E un ensemble et n un entier naturel.

Si E est fini tel que $\operatorname{card}(E) = n$ alors $\mathscr{P}(E)$ est fini et $\operatorname{card}(E) = 2^n$.

Preuve par récurrence sur n, le nombre d'éléments de E.

Exercice 3.1. Application à la modélisation d'une expérience aléatoire.

On lance deux dés ordinaires. On observe les couples de nombres de points à chaque lancer.

- 1. Ecrire l'univers, U, en compréhension. pour complacement
- 2. Quel est le cardinal de $\mathcal{P}(U)$?
- 3. Ecrire en extension l'événement A : «la somme des nombres est 7».
- 4. Que peut-on dire de A par rapport à U? de A par rapport à $\mathscr{P}(U)$?

4 Opérateurs fondamentaux.

Nous avons vu les opérateurs logiques fondamentaux notés $non,\ et,\ ou,\ \Rightarrow.$

Nous voyons à présent les opérateurs ensemblistes fondamentaux notés $\bar{\ }$, \cap , \cup , \times .

Un opérateur ensembliste crée un nouvel ensemble en opérant sur un ou deux ensembles.

Soient E, F deux ensembles ; soient A, B deux parties de E.

Complémentaire d'un ensemble(notation $\overline{}$) : $\overline{A} = \{x \in E/(x \notin A)\}$

Intersection de deux ensembles(notation \cap) : $A \cap B = \{x \in E / (x \in A) \text{ et } (x \in B)\}$

Les parties A et B sont dites disjointes si et seulement si leur intersection est vide.

Union de deux ensembles(notation \cup) : $A \cup B = \{x \in E / (x \in A) \text{ ou } (x \in B)\}$

Produit cartésien deux ensembles(notation \times) : $E \times F = \{(x,y)/(x \in E) \text{ et } (y \in F)\}$

Exercice 4.1. $A = \{x \in \mathbb{R}/\cos(x) = \frac{1}{2}\}$ et $B = \mathbb{R}_+$, deux parties de \mathbb{R} . Décrirc les ensembles \overline{A} et $A \cap B$

Définition 4.1. Soient A_1, A_2, \dots, A_n n parties de E.

 A_1, A_2, \dots, A_n forment une **partition** de E si et seulement :

$$((\forall j, k \in \{1, 2, \dots, n\} (i \neq j) \Rightarrow (A_j \cap A_k = \emptyset)) \text{ et } (\bigcup_{k=1}^n A_k = E))$$

Exemple 4.1. $\forall r \in \{0, 1, 2\}$ $A_r = \{3k + r, k \in \mathbb{Z}\}$. On a : $\mathbb{Z} = A_0 \cup A_1 \cup A_2$.

Remarque 4.1. $\forall E \ E \times \emptyset = \emptyset \times E = \emptyset$.

Pour toutes parties A, B de $E, A \cap B$ et $A \cap \overline{B}$ forment une partition de A.

5 Propriétés des opérateurs fondamentaux.

Théorème 5.1. Propriétés de l'intersection.

L'intersection est associative : $\forall A, B, C \in \mathcal{P}(E)(A \cap (B \cap C)) = ((A \cap B) \cap C)$.

L'intersection est **commutative** : $\forall A, B \in \mathcal{P}(E)(A \cap B) = (B \cap A)$.

L'intersection est distributive sur l'union : $\forall A, B, C \in \mathscr{P}(E)(A \cap (B \cup C)) = ((A \cap B) \cup (A \cap C))$,

La partie pleine est **neutre pour** l'intersection : $\forall A \in \mathscr{P}(E)(A \cap E) = A$.

La partie vide est absorbante pour l'intersection : $\forall A \in \mathscr{P}(E)(A \cap \emptyset) = \emptyset$.

Critère d'inclusion : $\forall A, B \in \mathcal{P}(E)(A \subset B) \Leftrightarrow ((A \cap B) = A)$.

Théorème 5.2. Propriétés de l'union.

L'union est associative : $\forall A, B, C \in \mathscr{P}(E)(A \cup (B \cup C)) = ((A \cup B) \cup C)$.

L'union est **commutative** : $\forall A, B \in \mathcal{P}(E)(A \cup B) = (B \cup A)$.

L'union est distributive sur l'intersection : $\forall A, B, C \in \mathscr{P}(E)(A \cup (B \cap C)) = ((A \cup B) \cap (A \cup C)).$

La partie pleine est absorbante pour l'union : $\forall A \in \mathscr{P}(E)(A \cup E) = E$.

La partie vide est **neutre pour** l'union : $\forall A \in \mathscr{P}(E)(A \cup \emptyset) = A$.

Critère d'inclusion : $\forall A, B \in \mathcal{P}(E)(A \subset B) \Leftrightarrow ((A \cup B) = B)$.

Théorème 5.3. Loi de Morgan. $\forall A, B \in \mathscr{P}(E)\overline{(A \cup B)} = (\overline{A} \cap \overline{B}).$ $\forall A, B \in \mathscr{P}(E)\overline{(A \cap B)} = (\overline{A} \cup \overline{B}).$

6 Méthodes de comparaison de deux ensembles.

Soient A, B deux parties de E. Méthodes pour montrer : $A \subset B$.

Méthode 1 : soit $x \in A$. Montrer que $x \in B$.

Méthode 2 : montrer que $A \cap B = A$.

Méthode 3 : montrer que $A \cup B = B$.

Méthode 4 : montrer que $\overline{B} \subset \overline{A}$.

Méthode pour montrer : A = B. Méthode de la double inclusion : montrer que $(B \subset A)$ et $(A \subset B)$. Méthode des fonctions indicatrices : montrer l'égalité des applications (cours suivant).

7 Opérateurs dérivés.

```
Différence(notation \): \forall A, B \in \mathscr{P}(E) \ A \setminus B = \{x \in E / ((x \in A) \text{ et } (x \notin B))\}.
Différence symétrique(notation \Delta): \forall A, B \in \mathscr{P}(E) \ A\Delta B = \{x \in E / ((x \in (A \cup B) \text{ et } (x \notin (A \cap B)))\}.
```

Exercice 7.1. Montrer $\forall A, B \in \mathscr{P}(E)$ $(A \Delta B) = (A \setminus B) \cup (B \setminus A)$.

8 Exercices à préparer.

1. Exercice: reconnaître {0}.

Parmi les ensembles d'entiers suivants, lesquels sont égaux au singleton {0}, lesquels sont différents et pourquoi ?

- (a) $\{n \in \mathbb{N}, n \leq 1\}$: vrai- faux.
- (b) $\{n \in \mathbb{N}, n < 1\}$: vrai- faux.
- (c) $\{n \in \mathbb{N}, (n \le 1) \text{ et } (2|n)\}$: vrai- faux.
- (d) $\{n \in \mathbb{N}, 1+n > 0\}$: vrai- faux.
- (e) $\{n \in \mathbb{N}, 1+n=1\}$: vrai-faux.
- (f) $\{n \in \mathbb{N}, \forall m \in \mathbb{N}, n \leq m\}$: vrai- faux.
- (g) $\{n \in \mathbb{N}, \forall m \in \mathbb{N}, n < m\}$: vrai- faux.
- (h) $\{n \in \mathbb{N}, \forall m \in \mathbb{N}, n|m\}$: vrai- faux.
- (i) $\{n \in \mathbb{N}, \forall m \in \mathbb{N}, m|n\}$: vrai- faux.

2. Exercice : ensemble des parties d'un ensemble.

On donne les ensembles suivants : $A = \{0, 1, 2, 3\}$ $B = \{0, 1\}$ $C = \emptyset$.

- (a) Errire $\mathscr{P}(A)$, $\mathscr{P}(B)$, $\mathscr{P}(C)$ en extension.
- (b) Ecrire $A \times B$ comme union de deux produits cartésiens.
- (c) Déterminer le nombre de diviseurs positifs de 40.

3. Exercice.

Soit n, p, deux entiers naturels distincts et supérieurs ou égaux à 2.

L'ensemble $n\mathbb{Z}$ est défini ainsi : $n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}.$

L'ensemble E est défini ainsi : $E = \{a + b, (a, b) \in 51\mathbb{Z} \times 9\mathbb{Z}\}.$

- (a) Montrer que 3 appartient à E.
- (b) L'ensemble $51\mathbb{Z} \cup 9\mathbb{Z}$ est-il égal à E?
- (c) Montrer que E est égal à \mathbb{Z} .
- (d) Décrire l'ensemble $51\mathbb{Z} \cap 9\mathbb{Z}$ en compréhension.

4. Exercice : le complémentaire d'un ensemble.

Soient E un ensemble et A, B, C, des parties de E.

- (a) Montrer que : $[(A \cup B = A \cup C) \text{ et } (A \cap B = A \cap C)] \Rightarrow (B = C)$.
- (b) Montrer que : $(A \cup B = E) \Rightarrow (\overline{A} \subset B)$.
- (c) Déduire que $: [(A \cup B = E) \text{ et } A \cap B = \emptyset] \Rightarrow (B = \overline{A}).$

5. Exercice: ensemble fini ou infini.

On considère les ensembles $E = \left\{ x \in [0, 1] \mid \exists n \in \mathbb{N}, x < \frac{1}{n+1} \right\}$ et $F = \left\{ x \in [0, 1] \mid \forall n \in \mathbb{N}, x < \frac{1}{n+1} \right\}$.

- (a) L'ensemble E est-il vide, fini ou bien infini ?
- (b) L'ensemble F est-il vide, fini ou bien infini ?