Figure 4

Brittany A. Petros

2024-03-02

Set up the workspace.

```
rm(list=ls(all.names=TRUE))
setwd("/Users/bpetros/Desktop/PHIS")
libs <- c("cowplot", "ggplot2", "ggsignif", "lubridate", "scales", "tidyverse")
invisible(lapply(libs, function(x) suppressPackageStartupMessages(library(x, character.only = TRUE))))
options(stringsAsFactors=FALSE, scipen = 999)</pre>
```

Read in the cleaned input files.

```
# read in cleaned pt data
pt <- read.csv("cleaned/rsv_patient.csv")
pt$Date = ymd(pt$Discharge_Date)</pre>
```

This function takes a df with column "Admit_Age_In_Days" (integer) as input. It creates a column "Age_Group" that labels rows as belonging to one of the following age groups: 0-3 months, 3-6 months, 6-12 months, 1-2 years, 2-4 years, and >= 5 years.

```
add_age_group <- function(df) {
    df$Age_Group <- cut(
        df$Admit_Age_In_Days,
        breaks = c(0, 90, 180, 365, 730, 1460, Inf),
        labels = c("0-3 months", "3-6 months", "6-12 months", "1-2 years", "2-4 years", "5-17 years"),
        right = FALSE)
    return(df)}</pre>
```

This function takes as input a df with columns "col_name" (integer), "Age_Group" (character), and "phase" (character), with each row representing one patient encounter. It determines the proportion of patients for which col_name equals 1 (i.e., the outcome was experienced) for each Age_Group in each phase. It identifies differences in the proportion of patients of a particular Age_Group experiencing the outcome across phases using the two-proportion z-test. Finally, it plots the proportion of patients in each Age_Group and in each phase experiencing the outcome, with ylabel (character) labeling the y-axis and ypos_signif (numeric) providing the y-coordinates for significance bars.

```
success = sum({{col_name}}),
            std_error = sqrt(proportion * (1 - proportion) / n()),
            .groups = 'drop') %>%
  group_by(phase) %>%
 mutate(x_pos = as.numeric(factor(Age_Group)) + as.numeric(factor(phase)) * 1)
# calc p-vals for difference in outcome proportion across phases
pvals <- prop %>%
 filter(phase == "Pre-Pandemic") %>%
  group_by(Age_Group, .add = TRUE) %>%
  group_split() %>%
 map_dbl(~{
    group1 <- filter(prop, Age_Group == .x$Age_Group, phase == "Pre-Pandemic")$proportion
    group2 <- filter(prop, Age_Group == .x$Age_Group, phase == "Post-Emergence")$proportion
   test_result <- prop.test(c(sum(group1 * .x$tot), sum(group2 * .x$tot)), c(sum(.x$tot), sum(.x$tot)
   test_result$p.value})
prop <- merge(data.frame(Age_Group = unique(prop$Age_Group), p_value = pvals),</pre>
                 prop, by = "Age_Group")
prop$phase = factor(prop$phase, levels = c("Pre-Pandemic", "Post-Emergence"))
# calc percent decrease in outcome proportion from pre-pandemic to post-emergence phase
prct <- prop %>%
  select(Age_Group, phase, proportion) %>%
 pivot_wider(names_from = phase, values_from = proportion) %>%
 mutate(percent_decrease = ((`Pre-Pandemic` - `Post-Emergence`) / `Pre-Pandemic`) * 100) %>%
  select(Age_Group, percent_decrease) %>%
 mutate(Age_Group = factor(Age_Group, levels = c("0-3 months", "3-6 months", "6-12 months",
                                           "1-2 years", "2-4 years", "5-17 years"))) %>%
 arrange(Age_Group)
# plot the results
fig <- ggplot(prop, aes(x = x_pos, y = proportion, color = phase)) +</pre>
  geom_point(position = position_dodge(width = 1), size = 2) +
  geom_errorbar(aes(ymin = proportion - 1.96 * std_error,
                    ymax = proportion + 1.96 * std_error),
                position = position_dodge(width = 1), width = 0.3) +
  coord_cartesian(ylim = c(floor(min(prop$proportion)*10)/10, ceiling(max(prop$proportion)*10)/10)) +
  scale_y_continuous(breaks = seq(from = floor(min(prop$proportion)*10)/10,
                                  to = ceiling(max(prop$proportion)*10)/10, by = 0.1)) +
  scale_color_manual(values = c("black", "darkmagenta"), labels = c("Pre-Pandemic", "Post-Emergence")
  scale_x_continuous(breaks = unique(prop$x_pos), labels = unique(prop$Age_Group)) +
 labs(x = "Age Group", y = ylabel, color = "") +
 theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position = "top") +
  geom_signif(y_position = ypos_signif,
              xmin = sort(unique(prop$x_pos) - 0.25),
              xmax = sort(unique(prop$x_pos) + 0.25),
              annotation = c("***", "***", "***", "***", "***"),
              tip_length = 0.01, size = 0.6)
# return data and figure
return(list(prct = prct, plot = fig))}
```

Add columns "Age_Group" and "phase" to the pt df.

```
# add age groups to pt df
pt = add_age_group(pt)

#add phase to pt df
pt = pt %>% filter(Date < as.Date("2020-04-01") | Date >= as.Date("2021-04-01"))
pt$phase = ifelse(pt$Date < as.Date("2020-04-01"), "Pre-Pandemic", "Post-Emergence")</pre>
```

Calculate the proportion of ED patients requiring hospitalization in each phase and in each age group (Figure 4A).

```
# filter for pts seen in the ED and create ed_admit column
ed_prop = pt %>%
 filter(ED_entry == 1) %>%
  mutate(ed_admit = ifelse(ED_Dispo == "ED_Admission", 1, 0))
# run calc_age_prop function
ed_results = calc_age_prop(ed_prop, ed_admit, "Proportion of ED\n Patients Admitted",
                           c(0.62, 0.47, 0.46, 0.49, 0.56, 0.65))
ed_results$prct
## # A tibble: 6 x 2
   Age_Group percent_decrease
##
     <fct>
                           <dbl>
## 1 0-3 months
                            7.61
## 2 3-6 months
                            8.36
## 3 6-12 months
                           16.4
## 4 1-2 years
                           25.6
## 5 2-4 years
                           38.5
## 6 5-17 years
                           46.1
```

ed_results\$plot

Calculate the proportion of inpatients requiring intensive care in each phase and in each age group (Figure 4B).

```
# filter for inpatients and create icu column
icu_prop = pt %>%
  filter(Patient_Type_Title != "ED Visit") %>%
  mutate(icu = ifelse(ICU_Flag == "Y" | NICU_Flag == "Y", 1, 0))
# run calc_age_prop function
icu_results = calc_age_prop(icu_prop, icu, "Proportion of Inpatients\n Admitted to ICU or NICU",
                           c(0.395, 0.33, 0.30, 0.305, 0.31, 0.365))
icu_results$prct
## # A tibble: 6 x 2
##
     Age_Group
                 percent_decrease
##
     <fct>
                            <dbl>
## 1 0-3 months
                             2.86
## 2 3-6 months
                            11.4
## 3 6-12 months
                            16.4
## 4 1-2 years
                            19.5
## 5 2-4 years
                            23.0
                            25.2
## 6 5-17 years
fig4b = icu_results$plot + scale_y_continuous(breaks = seq(from = 0.2, 0.4, by = 0.05))
```

Scale for y is already present.

Adding another scale for y, which will replace the existing scale.

fig4b

Calculate the proportion of inpatients requiring mechanical ventilation in each phase and in each age group (Figure 4C).

```
## # A tibble: 6 x 2
##
     Age_Group
                 percent_decrease
     <fct>
##
                             <dbl>
                              17.0
## 1 0-3 months
## 2 3-6 months
                              40.0
## 3 6-12 months
                              43.0
## 4 1-2 years
                              46.2
## 5 2-4 years
                              52.9
## 6 5-17 years
                              46.7
```

```
fig4c = mv_results$plot + scale_y_continuous(breaks = seq(from = 0, 0.2, by = 0.05))
```

Scale for y is already present.

Adding another scale for y, which will replace the existing scale.

fig4c

Generate Figure 4.

```
fig4 <- plot_grid(ed_results$plot, fig4b, fig4c, ncol = 1, labels = c("A", "B", "C"))
ggsave("figs/fig4.pdf", plot = fig4, width = 4, height = 12)</pre>
```