Constructions With Sets

December 3, 2023

- 000D This chapter contains some material relating to constructions with sets. Notably, it contains:
 - 1. Explicit descriptions of the major types of co/limits in Sets, including in particular pushouts and coequalisers (see Definitions 2.3.1.1 and 2.4.1.1 and Remarks 2.3.1.2 and 2.4.1.2);
 - 2. A discussion of powersets as decategorifications of categories of presheaves (Remarks 4.1.1.2 and 4.2.1.2);
 - 3. A lengthy discussion of the adjoint triple

$$f_* \dashv f^{-1} \dashv f_! \colon \mathcal{P}(A) \stackrel{\rightleftharpoons}{\to} \mathcal{P}(B)$$

of functors (morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a map of sets $f \colon A \to B$, along with a discussion of the properties of f_* , f^{-1} , and $f_!$.

Contents

1	Limits of Sets			
	1.1	Products of Families of Sets	2	
	1.2	Binary Products of Sets	2	
		Pullbacks		
	1.4	Equalisers	7	
2	Colimits of Sets			
4	COL	imits of sets	9	
4		Coproducts of Families of Sets		
4	2.1 2.2	Coproducts of Families of Sets Binary Coproducts	9	
4	2.1 2.2	Coproducts of Families of Sets	9	
4	2.1 2.2 2.3	Coproducts of Families of Sets Binary Coproducts	9 9 11	

	3	Operations With Sets	15
		3.1 The Empty Set	15
		3.2 Singleton Sets	15
		3.3 Pairings of Sets	16
		3.4 Unions of Families	16
			16
			18
		U.	18
		3.8 Differences	
		1	24
			25
		3.11 Ordered Pairs	29
	4	Powersets	30
		4.1 Characteristic Functions	30
		4.2 Powersets	34
		4.3 Direct Images	39
		4.4 Inverse Images	44
		4.5 Direct Images With Compact Support	47
	A	Other Chapters	55
000E	1	Limits of Sets	
000F	1.	1 Products of Families of Sets	
	Le	et $\{A_i\}_{i\in I}$ be a family of sets.	
000G	D	efinition 1.1.1.1. The product ¹ of $\{A_i\}_{i\in I}$ is the set $\prod_{i\in I} A_i$ defined	by
		$\prod_{i \in I} A_i \stackrel{\text{def}}{=} \left\{ f \in Sets \bigg(I, \bigcup_{i \in I} A_i \bigg) \; \middle \; \begin{array}{l} \text{for each } i \in I, \text{ we} \\ \text{have } f(i) \in A_i \end{array} \right\}.$	

000H 1.2 Binary Products of Sets

Let A and B be sets.

¹Further Terminology: Also called the Cartesian product of $\{A_i\}_{i\in I}$.

Definition 1.2.1.1. The **product² of** A **and** B is the set $A \times B$ defined by

$$\begin{split} A \times B &\stackrel{\text{def}}{=} \prod_{z \in \{A,B\}} z \\ &\stackrel{\text{def}}{=} \{f \in \mathsf{Sets}(\{0,1\}, A \cup B) \mid \text{we have } f(0) \in A \text{ and } f(1) \in B\} \\ &\cong \{\{\{a\}, \{a,b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid \text{we have } a \in A \text{ and } b \in B\}. \end{split}$$

- **000K** Proposition 1.2.1.2. Let A, B, C, and X be sets.
- **000L** 1. Functoriality. The assignments $A, B, (A, B) \mapsto A \times B$ define functors

$$\begin{split} A\times -_2 \colon \mathsf{Sets} &\to \mathsf{Sets}, \\ -_1 \times B \colon \mathsf{Sets} &\to \mathsf{Sets}, \\ -_1 \times -_2 \colon \mathsf{Sets} \times \mathsf{Sets} &\to \mathsf{Sets}, \end{split}$$

where -1×-2 is the functor where

- Action on Objects. For each $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$, we have $[-1 \times -2](A, B) \stackrel{\text{def}}{=} A \times B;$
- Action on Morphisms. For each $(A,B),(X,Y)\in \mathrm{Obj}(\mathsf{Sets}),$ the action on Hom-sets

$$\times_{(A,B),(X,Y)}$$
: $\mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \times B, X \times Y)$ of \times at $((A,B),(X,Y))$ is defined by sending (f,g) to the function $f \times g \colon A \times B \to X \times Y$

defined by

$$[f \times g](a,b) \stackrel{\text{def}}{=} (f(a),g(b))$$

for each $(a, b) \in A \times B$;

and where $A \times -$ and $- \times B$ are the partial functors of $-_1 \times -_2$ at $A, B \in \text{Obj}(\mathsf{Sets})$.

² Further Terminology: Also called the Cartesian product of A and B or the binary Cartesian product of A and B, for emphasis.

This can also be thought of as the $(\mathbb{E}_{-1}, \mathbb{E}_{-1})$ -tensor product of A and B.

000M 2. Adjointness. We have adjunctions

$$(A \times - \dashv \mathsf{Sets}(A, -)) \colon \ \ \underbrace{\mathsf{Sets}}_{\mathsf{Sets}(A, -)}^{A \times -} \mathsf{Sets},$$

$$(- \times B \dashv \mathsf{Sets}(B, -)) \colon \ \ \underbrace{\mathsf{Sets}}_{\mathsf{Sets}(B, -)}^{- \times B} \mathsf{Sets},$$

witnessed by bijections

$$\mathsf{Sets}(A \times B, C) \cong \mathsf{Sets}(A, \mathsf{Sets}(B, C)),$$

$$\mathsf{Sets}(A \times B, C) \cong \mathsf{Sets}(B, \mathsf{Sets}(A, C)),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000N 3. Associativity. We have an isomorphism of sets

$$(A \times B) \times C \cong A \times (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000P 4. Unitality. We have isomorphisms of sets

$$\operatorname{pt} \times A \cong A,$$

 $A \times \operatorname{pt} \cong A,$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

000Q 5. Commutativity. We have an isomorphism of sets

$$A \times B \cong B \times A$$
.

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

6. Annihilation With the Empty Set. We have isomorphisms of sets 000R

$$A \times \emptyset \cong \emptyset,$$

$$\emptyset \times A \cong \emptyset$$
,

natural in $A \in \text{Obj}(\mathsf{Sets})$.

7. Distributivity Over Unions. We have isomorphisms of sets

$$A \times (B \cup C) = (A \times B) \cup (A \times C),$$

$$(A \cup B) \times C = (A \times C) \cup (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

8. Distributivity Over Intersections. We have isomorphisms of sets

$$A \times (B \cap C) = (A \times B) \cap (A \times C),$$

$$(A \cap B) \times C = (A \times C) \cap (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

9. Distributivity Over Differences. We have isomorphisms of sets

$$A \times (B \setminus C) = (A \times B) \setminus (A \times C),$$

$$(A \setminus B) \times C = (A \times C) \setminus (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000V 10. Distributivity Over Symmetric Differences. We have isomorphisms of sets

$$A \times (B \triangle C) = (A \times B) \triangle (A \times C),$$

$$(A \triangle B) \times C = (A \times C) \triangle (B \times C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

000W 11. Symmetric Monoidality. The triple $(Sets, \times, pt)$ is a symmetric monoidal category.

000X 12. Symmetric Bimonoidality. The quintuple (Sets, \coprod , \emptyset , \times , pt) is a symmetric bimonoidal category.

Proof. Item 1, Functoriality: Omitted.

Item 2, Adjointness: Omitted.

Item 3, Associativity: Clear.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Annihilation With the Empty Set: Clear.

Item 7, Distributivity Over Unions: Omitted.

Item 8, Distributivity Over Intersections: Omitted.

Item 9, Distributivity Over Differences: Omitted.

Item 10, Distributivity Over Symmetric Differences: Omitted.

Item 11, Symmetric Monoidality: Omitted.

Item 12, Symmetric Bimonoidality: Omitted.

1.3 Pullbacks 6

000Y 1.3 Pullbacks

Let A, B, and C be sets and let $f: A \to C$ and $g: B \to C$ be functions.

OOOZ Definition 1.3.1.1. The pullback of A and B over C along f and g^3 is the set $A \times_C B$ defined by

$$A \times_C B \stackrel{\text{def}}{=} \{(a, b) \in A \times B \mid f(a) = g(b)\}.$$

- **Example 1.3.1.2.** Here are some examples of pullbacks of sets.
- 0011 1. Unions via Intersections. Let $A, B \subset X$. We have a bijection of sets

$$A \cap B \cong A \times_{A \cup B} B$$
.

- **Proposition 1.3.1.3.** Let A, B, C, and X be sets.
- 0013 1. Associativity. We have an isomorphism of sets

$$(A \times_X B) \times_X C \cong A \times_X (B \times_X C),$$

natural in $A, B, C, X \in \text{Obj}(\mathsf{Sets})$.

0014 2. Unitality. We have isomorphisms of sets

$$X \times_X A \cong A$$
,

$$A \times_X X \cong A$$
,

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

0015 3. Commutativity. We have an isomorphism of sets

$$A \times_X B \cong B \times_X A$$
,

natural in $A, B, X \in \text{Obj}(\mathsf{Sets})$.

4. Annihilation With the Empty Set. We have isomorphisms of sets

$$A \times_X \emptyset \cong \emptyset,$$

$$\emptyset \times_X A \cong \emptyset$$
,

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

³Further Terminology: Also called the fibre product of A and B over C along f

0017 5. Symmetric Monoidality. The triple $(\mathsf{Sets}, \times_X, X)$ is a symmetric monoidal category.

Proof. Item 1, Associativity: Clear.

Item 2, Unitality: Clear.

Item 3, Commutativity: Clear.

Item 4, Annihilation With the Empty Set: Clear.

Item 5, Symmetric Monoidality: Omitted.

0018 1.4 Equalisers

Let A and B be sets and let $f, g: A \Rightarrow B$ be functions.

Definition 1.4.1.1. The equaliser of f and g is the set $\mathrm{Eq}(f,g)$ defined by

$$\mathrm{Eq}(f,g) \stackrel{\mathrm{def}}{=} \{ a \in A \mid f(a) = g(a) \}.$$

- 001A Proposition 1.4.1.2. Let A, B, and C be sets.
- 001B 1. Associativity. We have an isomorphism of sets⁴

$$\underbrace{\mathrm{Eq}(f \circ \mathrm{eq}(g,h), g \circ \mathrm{eq}(g,h))}_{=\mathrm{Eq}(f \circ \mathrm{eq}(g,h), h \circ \mathrm{eq}(g,h))} \cong \underbrace{\mathrm{Eq}(f,g,h)}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))} = \underbrace{\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}_{=\mathrm{Eq}(g \circ \mathrm{eq}(f,g), h \circ \mathrm{eq}(f,g))}$$

and g.

⁴That is: the following constructions give the same result:

1. Take the equaliser of (f, g, h), i.e. the limit of the diagram

$$A \xrightarrow{f \atop g \atop h} B$$

in Sets.

2. First take the equaliser of f and g, forming a diagram

$$\operatorname{Eq}(f,g) \stackrel{\operatorname{eq}(f,g)}{\hookrightarrow} A \stackrel{f}{\underset{q}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\operatorname{Eq}(f,g) \stackrel{\operatorname{eq}(f,g)}{\hookrightarrow} A \stackrel{f}{\underset{h}{\Longrightarrow}} B,$$

obtaining a subset

$$\mathrm{Eq}(f\circ\mathrm{eq}(f,g),h\circ\mathrm{eq}(f,g))=\mathrm{Eq}(g\circ\mathrm{eq}(f,g),h\circ\mathrm{eq}(f,g))$$
 of $\mathrm{Eq}(f,g).$

1.4 Equalisers

8

where Eq(f, g, h) is the limit of the diagram

$$A \xrightarrow{f \atop g \xrightarrow{b}} B$$

in Sets.

001C 4. Unitality. We have an isomorphism of sets

$$\operatorname{Eq}(f, f) \cong A$$
.

001D 5. Commutativity. We have an isomorphism of sets

$$\operatorname{Eq}(f,g) \cong \operatorname{Eq}(g,f).$$

001E 6. Interaction With Composition. Let

$$A \stackrel{f}{\underset{q}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C$$

be functions. We have an inclusion of sets

$$\operatorname{Eq}(h \circ f \circ \operatorname{eq}(f, g), k \circ g \circ \operatorname{eq}(f, g)) \subset \operatorname{Eq}(h \circ f, k \circ g),$$

where Eq $(h \circ f \circ eq(f,g), k \circ g \circ eq(f,g))$ is the equaliser of the composition

$$\operatorname{Eq}(f,g) \overset{\operatorname{eq}(f,g)}{\hookrightarrow} A \overset{f}{\underset{g}{\Longrightarrow}} B \overset{h}{\underset{k}{\Longrightarrow}} C.$$

Proof. Item 1, Associativity: Clear.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Interaction With Composition: Omitted.

3. First take the equaliser of g and h, forming a diagram

$$\mathrm{Eq}(g,h) \overset{\mathrm{eq}(g,h)}{\hookrightarrow} A \overset{g}{\underset{h}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\mathrm{Eq}(g,h) \overset{\mathrm{eq}(g,h)}{\hookrightarrow} A \overset{f}{\overset{g}{\rightrightarrows}} B,$$

001F 2 Colimits of Sets

001G 2.1 Coproducts of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

Definition 2.1.1.1. The disjoint union of the family $\{A_i\}_{i\in I}$ is the set $\coprod_{i\in I} A_i$ defined by

$$\coprod_{i \in I} A_i \stackrel{\text{def}}{=} \bigcup_{i \in I} \left\{ (x, i) \in \left(\bigcup_{i \in I} A_i \right) \times I \mid x \in A_i \right\}.$$

001J 2.2 Binary Coproducts

Let A and B be sets.

Definition 2.2.1.1. The **coproduct**⁵ **of** A **and** B is the set $A \coprod B$ defined by

$$A \coprod B \stackrel{\text{def}}{=} \coprod_{z \in \{A, B\}} z$$

$$\stackrel{\text{def}}{=} \{(a, 0) \mid a \in A\} \cup \{(b, 1) \mid b \in B\}.$$

- **OO1L** Proposition 2.2.1.2. Let A, B, C, and X be sets.
- 001M 1. Functoriality. The assignment $A, B, (A, B) \mapsto A \coprod B$ defines functors

$$A \coprod -_2 \colon \mathsf{Sets} \to \mathsf{Sets},$$

$$-_1 \coprod B \colon \mathsf{Sets} \to \mathsf{Sets},$$

$$-_1 \coprod -_2 \colon \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets},$$

where $-1 \coprod -2$ is the functor where

• Action on Objects. For each $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$, we have

$$[-1\coprod -2](A,B) \stackrel{\text{def}}{=} A \coprod B;$$

obtaining a subset

$$\mathrm{Eq}(f\circ\mathrm{eq}(g,h),g\circ\mathrm{eq}(g,h))=\mathrm{Eq}(f\circ\mathrm{eq}(g,h),h\circ\mathrm{eq}(g,h))$$
 of $\mathrm{Eq}(g,h).$

⁵Further Terminology: Also called the **disjoint union of** A **and** B, or the **binary**

• Action on Morphisms. For each $(A,B),(X,Y)\in \mathrm{Obj}(\mathsf{Sets}),$ the action on Hom-sets

$$\coprod_{(A,B),(X,Y)} \colon \mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \coprod B, X \coprod Y)$$

of \coprod at ((A, B), (X, Y)) is defined by sending (f, g) to the function

$$f \coprod g \colon A \coprod B \to X \coprod Y$$

defined by

$$[f \coprod g](x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B \end{cases}$$

for each $x \in A \coprod B$;

and where $A \coprod -$ and $- \coprod B$ are the partial functors of $-_1 \coprod -_2$ at $A, B \in \text{Obj}(\mathsf{Sets})$.

001N 2. Associativity. We have an isomorphism of sets

$$(A \coprod B) \coprod C \cong A \coprod (B \coprod C),$$

natural in $A, B, C \in \text{Obj}(\mathsf{Sets})$.

001P 3. Unitality. We have isomorphisms of sets

$$A \coprod \emptyset \cong A,$$
$$\emptyset \coprod A \cong A,$$

natural in $A \in \text{Obj}(\mathsf{Sets})$.

001Q 4. Commutativity. We have an isomorphism of sets

$$A \coprod B \cong B \coprod A$$
,

natural in $A, B \in \text{Obj}(\mathsf{Sets})$.

001R 5. Symmetric Monoidality. The triple $(\mathsf{Sets}, \coprod, \emptyset)$ is a symmetric monoidal category.

Proof. Item 1, Functoriality: Omitted.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted.

2.3 Pushouts 11

001S 2.3 Pushouts

Let A, B, and C be sets and let $f: C \to A$ and $g: C \to B$ be functions.

001T Definition 2.3.1.1. The pushout of A and B over C along f and g^6 is the set $A \coprod_C B$ defined by

$$A \coprod_C B \stackrel{\text{def}}{=} A \coprod_C B/\sim_C$$

where \sim_C is the equivalence relation on $A \coprod B$ generated by $f(c) \sim_C g(c)$.

- **Remark 2.3.1.2.** In detail, the relation \sim of Definition 2.3.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:
 - We have $a, b \in A$ and a = b;
 - We have $a, b \in B$ and a = b;
 - There exist $x_1, \ldots, x_n \in A \coprod B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - 1. There exists $c \in C$ such that x = f(c) and y = g(c).
 - 2. There exists $c \in C$ such that x = g(c) and y = f(c).

That is: we require the following condition to be satisfied:

- (*) There exist $x_1, \ldots, x_n \in A \coprod B$ satisfying the following conditions:
 - 1. There exists $c_0 \in C$ satisfying one of the following conditions:
 - (a) We have $a = f(c_0)$ and $x_1 = g(c_0)$.
 - (b) We have $a = g(c_0)$ and $x_1 = f(c_0)$.
 - 2. For each $1 \le i \le n-1$, there exists $c_i \in C$ satisfying one of the following conditions:
 - (a) We have $x_i = f(c_i)$ and $x_{i+1} = g(c_i)$.
 - (b) We have $x_i = g(c_i)$ and $x_{i+1} = f(c_i)$.
 - 3. There exists $c_n \in C$ satisfying one of the following conditions:
 - (a) We have $x_n = f(c_n)$ and $b = g(c_n)$.
 - (b) We have $x_n = g(c_n)$ and $b = f(c_n)$.
- **OOIV** Example 2.3.1.3. Here are some examples of pushouts of sets.

disjoint union of A and B, for emphasis.

⁶ Further Terminology: Also called the fibre coproduct of A and B over C along f and g.

2.3 Pushouts 12

001W 1. Wedge Sums of Pointed Sets. The wedge sum of two pointed sets of ?? is an example of a pushout of sets.

001X 2. Intersections via Unions. Let $A, B \subset X$. We have a bijection of sets

$$A \cup B \cong A \coprod_{A \cap B} B$$
.

- **OO1Y** Proposition 2.3.1.4. Let A, B, C, and X be sets.
- 001Z 1. Associativity. We have an isomorphism of sets

$$(A \coprod_X B) \coprod_X C \cong A \coprod_X (B \coprod_X C),$$

natural in $A, B, C, X \in \text{Obj}(\mathsf{Sets})$.

0020 2. Unitality. We have isomorphisms of sets

$$\emptyset \coprod_X A \cong A,$$

$$A \coprod_X \emptyset \cong A,$$

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

3. Commutativity. We have an isomorphism of sets

$$A \coprod_X B \cong B \coprod_X A$$
,

natural in $A, B, X \in \text{Obj}(\mathsf{Sets})$.

4. Annihilation With the Empty Set. We have isomorphisms of sets

$$A \coprod_X \emptyset \cong \emptyset,$$

$$\emptyset \coprod_X A \cong \emptyset,$$

natural in $A, X \in \text{Obj}(\mathsf{Sets})$.

0023 5. Symmetric Monoidality. The triple (Sets, \coprod_X , \emptyset) is a symmetric monoidal category.

Proof. Item 1, Associativity: Clear.

Item 2, Unitality: Clear.

Item 3, Commutativity: Clear.

Item 4, Annihilation With the Empty Set: Clear.

Item 5, Symmetric Monoidality: Omitted.

0024 2.4 Coequalisers

Let A and B be sets and let $f, g: A \Rightarrow B$ be functions.

Definition 2.4.1.1. The **coequaliser of** f **and** g is the set CoEq(f,g) defined by

$$\operatorname{CoEq}(f,g) \stackrel{\text{def}}{=} B/\sim,$$

where \sim is the equivalence relation on B generated by $f(a) \sim g(a)$.

- 0026 **Remark 2.4.1.2.** In detail, the relation \sim of Definition 2.4.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:
 - We have a = b;
 - There exist $x_1, \ldots, x_n \in B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - 1. There exists $z \in A$ such that x = f(z) and y = g(z).
 - 2. There exists $z \in A$ such that x = g(z) and y = f(z).

That is: we require the following condition to be satisfied:

- (*) There exist $x_1, \ldots, x_n \in B$ satisfying the following conditions:
 - 1. There exists $z_0 \in A$ satisfying one of the following conditions:
 - (a) We have $a = f(z_0)$ and $x_1 = g(z_0)$.
 - (b) We have $a = g(z_0)$ and $x_1 = f(z_0)$.
 - 2. For each $1 \le i \le n-1$, there exists $z_i \in A$ satisfying one of the following conditions:
 - (a) We have $x_i = f(z_i)$ and $x_{i+1} = g(z_i)$.
 - (b) We have $x_i = g(z_i)$ and $x_{i+1} = f(z_i)$.
 - 3. There exists $z_n \in A$ satisfying one of the following conditions:
 - (a) We have $x_n = f(z_n)$ and $b = g(z_n)$.
 - (b) We have $x_n = g(z_n)$ and $b = f(z_n)$.
- **Example 2.4.1.3.** Here are some examples of coequalisers of sets.
- 0028 1. Quotients by Equivalence Relations. Let R be an equivalence relation on a set X. We have a bijection of sets

$$X/\sim_R \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \overset{\operatorname{pr}_1}{\underset{\operatorname{pr}_2}{\rightrightarrows}} X\right).$$

- **0029** Proposition 2.4.1.4. Let A, B, and C be sets.
- 002A 1. Associativity. We have an isomorphism of sets⁷

$$\underbrace{\mathrm{CoEq}(\mathrm{coeq}(f,g) \circ f, \mathrm{coeq}(f,g) \circ h)}_{=\mathrm{CoEq}(\mathrm{coeq}(f,g) \circ g, \mathrm{coeq}(f,g) \circ h)} \cong \underbrace{\mathrm{CoEq}(\mathrm{coeq}(g,h) \circ f, \mathrm{coeq}(g,h) \circ g, \mathrm{coeq}(g,h) \circ g, \mathrm{coeq}(g,h) \circ f, \mathrm{coeq}(g,h) \circ g, \mathrm{coeq}(g,h)$$

where CoEq(f, g, h) is the colimit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets.

⁷That is: the following constructions give the same result:

1. Take the coequaliser of (f,g,h), i.e. the colimit of the diagram

$$A \xrightarrow{\frac{f}{-g}} B$$

in Sets.

2. First take the coequaliser of f and g, forming a diagram

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(f,g)}{\twoheadrightarrow} \operatorname{CoEq}(f,g)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{h}{\Longrightarrow}} B \stackrel{\text{coeq}(f,g)}{\twoheadrightarrow} \text{CoEq}(f,g),$$

obtaining a quotient

$$\label{eq:coeq} \text{CoEq}(\text{coeq}(f,g) \circ f, \text{coeq}(f,g) \circ h) = \text{CoEq}(\text{coeq}(f,g) \circ g, \text{coeq}(f,g) \circ h)$$
 of $\text{CoEq}(f,g)$

3. First take the coequaliser of g and h, forming a diagram

$$A \stackrel{g}{\underset{h}{\Longrightarrow}} B \stackrel{\text{coeq}(g,h)}{\twoheadrightarrow} \text{CoEq}(g,h)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(g,h)}{\twoheadrightarrow} \operatorname{CoEq}(g,h),$$

obtaining a quotient

$$\label{eq:coeq} \begin{aligned} \text{CoEq}(\text{coeq}(g,h)\circ f, \text{coeq}(g,h)\circ g) &= \text{CoEq}(\text{coeq}(g,h)\circ f, \text{coeq}(g,h)\circ h) \\ \text{of } \text{CoEq}(g,h). \end{aligned}$$

002B 4. Unitality. We have an isomorphism of sets

$$CoEq(f, f) \cong B$$
.

002C 5. Commutativity. We have an isomorphism of sets

$$CoEq(f, g) \cong CoEq(g, f).$$

6. Interaction With Composition. Let

$$A \underset{g}{\overset{f}{\Longrightarrow}} B \underset{k}{\overset{h}{\Longrightarrow}} C$$

be functions. We have a surjection

$$CoEq(h \circ f, k \circ g) \twoheadrightarrow CoEq(coeq(h, k) \circ h \circ f, coeq(h, k) \circ k \circ g)$$

exhibiting $\operatorname{CoEq}(\operatorname{coeq}(h,k) \circ h \circ f, \operatorname{coeq}(h,k) \circ k \circ g)$ as a quotient of $\operatorname{CoEq}(h \circ f, k \circ g)$ by the relation generated by declaring $h(y) \sim k(y)$ for each $y \in B$.

Proof. Item 1, Associativity: Omitted.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Interaction With Composition: Omitted.

002E 3 Operations With Sets

- 002F 3.1 The Empty Set
- **Definition 3.1.1.1.** The **empty set** is the set \emptyset defined by

$$\emptyset \stackrel{\text{def}}{=} \{ x \in X \mid x \neq x \},\$$

where A is the set in the set existence axiom, ?? of ??.

002H 3.2 Singleton Sets

Let X be a set.

O02J Definition 3.2.1.1. The singleton set containing X is the set $\{X\}$ defined by

$$\{X\}\stackrel{\mathrm{def}}{=} \{X,X\},$$

where $\{X, X\}$ is the pairing of X with itself (Definition 3.3.1.1).

002K 3.3 Pairings of Sets

Let X and Y be sets.

Definition 3.3.1.1. The pairing of X and Y is the set $\{X,Y\}$ defined by

$$\{X,Y\} \stackrel{\text{def}}{=} \{x \in A \mid x = X \text{ or } x = Y\},$$

where A is the set in the axiom of pairing, ?? of ??.

002M 3.4 Unions of Families

Let $\{A_i\}_{i\in I}$ be a family of sets.

Definition 3.4.1.1. The union of the family $\{A_i\}_{i\in I}$ is the set $\bigcup_{i\in I} A_i$ defined by

$$\bigcup_{i \in I} A_i \stackrel{\text{def}}{=} \{ x \in F \mid \text{there exists some } i \in I \text{ such that } x \in A_i \},$$

where F is the set in the axiom of union, ?? of ??.

002P 3.5 Binary Unions

Let A and B be sets.

Definition 3.5.1.1. The union⁸ of A and B is the set $A \cup B$ defined by

$$A \cup B \stackrel{\text{def}}{=} \bigcup_{z \in \{A,B\}} z.$$

- 002R Proposition 3.5.1.2. Let X be a set.
- 002S 1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cup V$ define functors

$$U \cup -: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$- \cup V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$-_1 \cup -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset),$$

where $-_1 \cup -_2$ is the functor where

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \cup -_2](U, V) \stackrel{\text{def}}{=} U \cup V;$$

⁸ Further Terminology: Also called the **binary union of** A **and** B, for emphasis.

• Action on Morphisms. For each pair of morphisms

$$\iota_U \colon U \hookrightarrow U',$$

 $\iota_V \colon V \hookrightarrow V'$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \cup \iota_V \colon U \cup V \hookrightarrow U' \cup V'$$

of (ι_U, ι_V) by \cup is the inclusion

$$U \cup V \subset U' \cup V'$$

i.e. where we have

(*) If
$$U \subset U'$$
 and $V \subset V'$, then $U \cup V \subset U' \cup V'$;

and where $U \cup -$ and $- \cup V$ are the partial functors of $-_1 \cup -_2$ at $U, V \in \mathcal{P}(X)$.

OO2T 2. Via Intersections and Symmetric Differences. We have an equality of sets

$$U \cup V = (U \triangle V) \triangle (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

002U 3. Associativity. We have an equality of sets

$$(U \cup V) \cup W = U \cup (V \cup W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

002V 4. Unitality. We have equalities of sets

$$U \cup \emptyset = U$$
,

$$\emptyset \cup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

602W 5. Commutativity. We have an equality of sets

$$U \cup V = V \cup U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6. *Idempotency*. We have an equality of sets

$$U \cup U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

7. Distributivity Over Intersections. We have equalities of sets

$$U \cup (V \cap W) = (U \cup V) \cap (U \cup W),$$

$$(U \cap V) \cup W = (U \cup W) \cap (V \cup W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

Proof. Item 1, Functoriality: Omitted.

Item 2, Via Intersections and Symmetric Differences: Omitted.

Item 3, Associativity: Clear.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Idempotency: Clear.

Item 7, Distributivity Over Intersections: Omitted.

Item 8, Interaction With Powersets and Semirings: This follows from Items 3

to 6 and Items 3 to 5, 7 and 8 of Proposition 3.7.1.2.

0030 3.6 Intersections of Families

Let \mathcal{F} be a family of sets.

0031 **Definition 3.6.1.1.** The intersection of a family \mathcal{F} of sets is the set $\bigcap_{X \in \mathcal{F}} X$ defined by

$$\bigcap_{X\in\mathcal{F}}X\stackrel{\text{def}}{=} \bigg\{z\in\bigcup_{X\in\mathcal{F}}X\ \bigg|\ \text{for each }X\in\mathcal{F},\ \text{we have }z\in X\bigg\}.$$

0032 3.7 Binary Intersections

Let X and Y be sets.

Definition 3.7.1.1. The **intersection**⁹ **of** X **and** Y is the set $X \cap Y$ defined by

$$X \cap Y \stackrel{\text{def}}{=} \bigcap_{z \in \{X,Y\}} z.$$

0034 Proposition 3.7.1.2. Let X be a set.

0035 1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cap V$ define functors

$$U \cap -: (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$

$$- \cap V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$

$$-_1 \cap -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset),$$

where $-_1 \cap -_2$ is the functor where

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \cap -_2](U, V) \stackrel{\text{def}}{=} U \cap V;$$

• Action on Morphisms. For each pair of morphisms

$$\iota_U \colon U \hookrightarrow U',$$

 $\iota_V \colon V \hookrightarrow V'$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \cap \iota_V \colon U \cap V \hookrightarrow U' \cap V'$$

of (ι_U, ι_V) by \cap is the inclusion

$$U \cap V \subset U' \cap V'$$

i.e. where we have

(*) If
$$U \subset U'$$
 and $V \subset V'$, then $U \cap V \subset U' \cap V'$;

and where $U \cap -$ and $- \cap V$ are the partial functors of $-_1 \cap -_2$ at $U, V \in \mathcal{P}(X)$.

⁹ Further Terminology: Also called the **binary intersection of** X **and** Y, for emphasis.

0036 2. Adjointness. We have adjunctions

$$(U \cap - \dashv \mathbf{Hom}_{\mathcal{P}(X)}(U, -)) : \quad \mathcal{P}(X) \underbrace{\perp}_{\mathbf{Hom}_{\mathcal{P}(X)}(U, -)} \mathcal{P}(X),$$

$$(- \cap V \dashv \mathbf{Hom}_{\mathcal{P}(X)}(V, -)) : \quad \mathcal{P}(X) \underbrace{\perp}_{\mathbf{L}} \mathcal{P}(X),$$

where

$$\mathbf{Hom}_{\mathcal{P}(X)}(-_1, -_2) \colon \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

is the bifunctor defined by¹⁰

$$\mathbf{Hom}_{\mathcal{P}(X)}(U,V) \stackrel{\text{def}}{=} (X \setminus U) \cup V$$

witnessed by bijections

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, \operatorname{\mathbf{Hom}}_{\mathcal{P}(X)}(V, W)),$$

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(V, \operatorname{\mathbf{Hom}}_{\mathcal{P}(X)}(U, W)),$$

natural in $U, V, W \in \mathcal{P}(X)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $U \cap V \subset W$.
 - ii. We have $U \subset \mathbf{Hom}_{\mathcal{P}(X)}(V, W)$.
 - iii. We have $U \subset (X \setminus V) \cup W$.
- (b) The following conditions are equivalent:
 - i. We have $V \cap U \subset W$.
 - ii. We have $V \subset \mathbf{Hom}_{\mathcal{P}(X)}(U, W)$.
 - iii. We have $V \subset (X \setminus U) \cup W$.
- 0037 3. Associativity. We have an equality of sets

$$(U \cap V) \cap W = U \cap (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

¹⁰ Intuition: Since intersections are the products in $\mathcal{P}(X)$, the left adjoint $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$ works as a function type $U \to V$.

0038 4. Unitality. Let X be a set and let $U \in \mathcal{P}(X)$. We have equalities of sets

$$X \cap U = U,$$

$$U \cap X = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

0039 5. Commutativity. We have an equality of sets

$$U \cap V = V \cap U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

6. *Idempotency*. We have an equality of sets

$$U \cap U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

003B 7. Distributivity Over Unions. We have equalities of sets

$$U \cap (V \cup W) = (U \cap V) \cup (U \cap W),$$

$$(U \cup V) \cap W = (U \cap W) \cup (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

8. Annihilation With the Empty Set. We have an equality of sets

$$\emptyset \cap X = \emptyset,$$
$$X \cap \emptyset = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

- 9. Interaction With Powersets and Monoids With Zero. The quadruple $((\mathcal{P}(X),\emptyset),\cap,X)$ is a commutative monoid with zero.
- 003E 10. Interaction With Powersets and Semirings. The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

Now, under the Curry–Howard correspondence, the function type $U \to V$ corresponds to implication $U \Longrightarrow V$, which is logically equivalent to the statement $\neg U \lor V$, which in turn corresponds to the set $U^{\mathsf{c}} \lor V \stackrel{\mathrm{def}}{=} (X \setminus U) \cup V$.

3.8 Differences 22

Proof. Item 1, Functoriality: Omitted.

Item 2, Adjointness: See [MSE 267469].

Item 3, Associativity: Clear.

Item 4, Unitality: Clear.

Item 5, Commutativity: Clear.

Item 6, Idempotency: Clear.

Item 7, Distributivity Over Unions: Omitted.

Item 8, Annihilation With the Empty Set: Clear.

Item 9, Interaction With Powersets and Monoids With Zero: This follows from Items 3 to 5 and 8.

Item 10, Interaction With Powersets and Semirings: This follows from Items 3 to 6 and Items 3 to 5, 7 and 8 of Proposition 3.7.1.2. □

003F 3.8 Differences

Let X and Y be sets.

Definition 3.8.1.1. The **difference of** X **and** Y is the set $X \setminus Y$ defined by

$$X \setminus Y \stackrel{\text{def}}{=} \{ a \in X \mid a \notin Y \}.$$

- **OO3H** Proposition 3.8.1.2. Let X be a set.
- 003J 1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cap V$ define functors

$$U \setminus -: (\mathcal{P}(X), \supset) \to (\mathcal{P}(X), \subset),$$
$$- \setminus V : (\mathcal{P}(X), \subset) \to (\mathcal{P}(X), \subset),$$
$$-_1 \setminus -_2 : (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \supset) \to (\mathcal{P}(X), \subset),$$

where $-1 \setminus -2$ is the functor where

• Action on Objects. For each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(X)$, we have

$$[-_1 \setminus -_2](U,V) \stackrel{\mathrm{def}}{=} U \setminus V;$$

• Action on Morphisms. For each pair of morphisms

$$\iota_A \colon A \hookrightarrow B,$$

 $\iota_U \colon U \hookrightarrow V$

of $\mathcal{P}(X) \times \mathcal{P}(X)$, the image

$$\iota_U \setminus \iota_V \colon A \setminus V \hookrightarrow B \setminus U$$

3.8 Differences 23

of (ι_U, ι_V) by \ is the inclusion

$$A \setminus V \subset B \setminus U$$

i.e. where we have

$$(\star)$$
 If $A \subset B$ and $U \subset V$, then $A \setminus V \subset B \setminus U$;

and where $U \setminus -$ and $- \setminus V$ are the partial functors of $-_1 \setminus -_2$ at $U, V \in \mathcal{P}(X)$.

003K 2. De Morgan's Laws. We have equalities of sets

$$X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V),$$

$$X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

3. Interaction With Unions I. We have equalities of sets

$$(U \setminus V) \cup W = (U \cup W) \setminus (V \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

4. Interaction With Unions II. We have equalities of sets

$$(U \cup V) \setminus W = (U \setminus W) \cup (V \setminus W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

003N 5. Interaction With Intersections. We have equalities of sets

$$(U \setminus V) \cap W = (U \cap W) \setminus V$$
$$= U \cap (W \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

6. Triple Differences. We have

$$U \setminus (V \setminus W) = (U \cap W) \cup (U \setminus V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

003Q 7. Left Annihilation. We have

$$\emptyset \setminus U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

003R 8. Right Unitality. We have

$$U \setminus \emptyset = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

9. Invertibility. We have

$$U \setminus U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

003T 10. Interaction With Containment. The following conditions are equivalent:

- (a) We have $V \setminus U \subset W$.
- (b) We have $V \setminus W \subset U$.

Proof. Item 1, Functoriality: Omitted.

Item 2, De Morgan's Laws: Omitted.

Item 3, Interaction With Unions I: Omitted.

Item 4, Interaction With Unions II: Omitted.

Item 5, Interaction With Intersections: Omitted.

Item 6, Triple Differences: Omitted.

Item 7, Left Annihilation: Clear.

Item 8, Right Unitality: Clear.

Item 9, Invertibility: Clear.

Item 10, Interaction With Containment: Omitted.

003U 3.9 Complements

Let X be a set and let $U \in \mathcal{P}(X)$.

OO3V Definition 3.9.1.1. The complement of U is the set U^{c} defined by

$$U^{\mathsf{c}} \stackrel{\text{def}}{=} X \setminus U$$

$$\stackrel{\text{def}}{=} \{ a \in X \mid a \not\in U \}.$$

- **003W** Proposition 3.9.1.2. Let X be a set.
- 003X 1. Functoriality. The assignment $U \mapsto U^{c}$ defines a functor

$$(-)^{\mathsf{c}} \colon \mathcal{P}(X)^{\mathsf{op}} \to \mathcal{P}(X),$$

where

• Action on Objects. For each $U \in \mathcal{P}(X)$, we have

$$[(-)^{\mathsf{c}}](U) \stackrel{\text{def}}{=} U^{\mathsf{c}};$$

• Action on Morphisms. For each morphism $\iota_U : U \hookrightarrow V$ of $\mathcal{P}(X)$, the image

$$\iota_U^{\mathsf{c}} \colon V^{\mathsf{c}} \hookrightarrow U^{\mathsf{c}}$$

of ι_U by $(-)^c$ is the inclusion

$$V^{\mathsf{c}} \subset U^{\mathsf{c}}$$

i.e. where we have

$$(\star)$$
 If $U \subset V$, then $V^{\mathsf{c}} \subset U^{\mathsf{c}}$.

2. De Morgan's Laws. We have equalities of sets 003Y

$$(U \cup V)^{c} = U^{c} \cap V^{c},$$

$$(U \cap V)^{c} = U^{c} \cup V^{c}$$

$$(U \cap V)^{\mathsf{c}} = U^{\mathsf{c}} \cup V^{\mathsf{c}}$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

3. Involutority. We have 003Z

$$(U^{\mathsf{c}})^{\mathsf{c}} = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

Proof. Item 1, Functoriality: Clear.

Item 2, De Morgan's Laws: Omitted.

Item 3, Involutority: Clear.

3.10 Symmetric Differences 0040

Let A and B be sets.

Definition 3.10.1.1. The symmetric difference of A and B is the set 0041 $A \triangle B$ defined by

$$A \triangle B \stackrel{\text{def}}{=} (A \setminus B) \cup (B \setminus A).$$

- **Proposition 3.10.1.2.** Let X be a set. 0042
- 1. Lack of Functoriality. The assignment $(U, V) \mapsto U \triangle V$ does not 0043 define a functor

$$-1 \triangle -2: (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset).$$

0044 2. Via Unions and Intersections. We have 11

$$U \triangle V = (U \cup V) \setminus (U \cap V)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

0045 3. Associativity. We have 12

$$(U \triangle V) \triangle W = U \triangle (V \triangle W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

0046 4. Unitality. We have

$$U \triangle \emptyset = U$$
,

$$\emptyset \triangle U = U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

0047 5. *Invertibility*. We have

$$U \triangle U = \emptyset$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U \in \mathcal{P}(X)$.

6. Commutativity. We have

$$U \triangle V = V \triangle U$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

0049 7. "Transitivity". We have

$$(U \triangle V) \triangle (V \triangle W) = U \triangle W$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

$$\bigcirc U \triangle V = \bigcirc U \cup V \setminus \bigcirc U \cap V$$

 $^{12} {\it Illustration}$:

 $[\]overline{\ \ }^{11}Illustration:$

004A 8. The Triangle Inequality for Symmetric Differences. We have

$$U \bigtriangleup W \subset U \bigtriangleup V \cup V \bigtriangleup W$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

9. Distributivity Over Intersections. We have

$$U \cap (V \triangle W) = (U \cap V) \triangle (U \cap W),$$

$$(U \triangle V) \cap W = (U \cap W) \triangle (V \cap W)$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V, W \in \mathcal{P}(X)$.

004C 10. Interaction With Indicator Functions. We have

$$\chi_{U \triangle V} \equiv \chi_U + \chi_V \mod 2$$

for each $X \in \text{Obj}(\mathsf{Sets})$ and each $U, V \in \mathcal{P}(X)$.

004D 11. Bijectivity. Given $A, B \subset \mathcal{P}(X)$, the maps

$$A \triangle -: \mathcal{P}(X) \to \mathcal{P}(X),$$

 $- \triangle B: \mathcal{P}(X) \to \mathcal{P}(X)$

are bijections with inverses given by

$$(A \triangle -)^{-1} = - \cup (A \cap -),$$

$$(- \triangle B)^{-1} = - \cup (B \cap -).$$

Moreover, the map

$$C \mapsto C \triangle (A \triangle B)$$

is a bijection of $\mathcal{P}(X)$ onto itself sending A to B and B to A.

004E 12. Interaction With Powersets and Groups I. The quadruple $(\mathcal{P}(X), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(X)})$

is an abelian group. 13,14,15

- 004F 13. Interaction With Powersets and Groups II. Every element of $\mathcal{P}(X)$ has order 2 with respect to \triangle , and thus $\mathcal{P}(X)$ is a Boolean group (i.e. an abelian 2-group).
- 004G 14. Interaction With Powersets and Vector Spaces I. The pair $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ consisting of
 - The group $\mathcal{P}(X)$ of Item 12;
 - The map $\alpha_{\mathcal{P}(X)} \colon \mathbb{F}_2 \times \mathcal{P}(X) \to \mathcal{P}(X)$ defined by

$$0 \cdot U \stackrel{\text{def}}{=} \emptyset,$$
$$1 \cdot U \stackrel{\text{def}}{=} U;$$

is an \mathbb{F}_2 -vector space.

- 004H 15. Interaction With Powersets and Vector Spaces II. If X is finite, then:
 - (a) The set of singletons sets on the elements of X forms a basis for the \mathbb{F}_2 -vector space $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ of Item 14.
 - (b) We have

$$\dim(\mathcal{P}(X)) = \#\mathcal{P}(X).$$

004J 16. Interaction With Powersets and Rings. The quintuple $(\mathcal{P}(X), \triangle, \cap, \emptyset, X)$ is a commutative ring. 16

$$(\mathcal{P}(\emptyset), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\emptyset)}) \cong \mathrm{pt}.$$

¹⁴ Example: When X = pt, we have an isomorphism of groups between $\mathcal{P}(pt)$ and $\mathbb{Z}_{/2}$:

$$(\mathcal{P}(\mathrm{pt}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\mathrm{pt})}) \cong \mathbb{Z}_{/2}.$$

¹⁵ Example: When $X = \{0, 1\}$, we have an isomorphism of groups between $\mathcal{P}(\{0, 1\})$ and $\mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$:

$$\left(\mathcal{P}(\{0,1\}), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(\{0,1\})}\right) \cong \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}.$$

Warning: The analogous statement replacing intersections by unions (i.e. that the quintuple $(\mathcal{P}(X), \triangle, \cup, \emptyset, X)$ is a ring) is false, however. See [Pro23b] for a proof.

¹³ Example: When $X = \emptyset$, we have an isomorphism of groups between $\mathcal{P}(\emptyset)$ and the trivial group:

Proof. Item 1, Lack of Functoriality: Omitted.

Item 2, Via Unions and Intersections: Omitted.

Item 3, Associativity: Omitted.

Item 4, Unitality: Clear.

Item 5, Invertibility: Clear.

Item 6, Commutativity: Clear.

Item 7, "Transitivity": We have

$$(U \triangle V) \triangle (V \triangle W) = U \triangle (V \triangle (V \triangle W))$$
 (by Item 3)

$$= U \triangle ((V \triangle V) \triangle W)$$
 (by Item 3)

$$=U\bigtriangleup(\emptyset\bigtriangleup W) \qquad \qquad \text{(by Item 5)}$$

$$=U \triangle W$$
 (by Item 4)

Item 8, The Triangle Inequality for Symmetric Differences: This follows from Items 2 and 7.

Item 9, Distributivity Over Intersections: Omitted.

Item 10, Interaction With Indicator Functions: Clear.

Item 11, Bijectivity: Clear.

Item 12, Interaction With Powersets and Groups I: This follows from Items 3 to 6.

Item 13, Interaction With Powersets and Groups II: This follows from Item 5.

Item 14, Interaction With Powersets and Vector Spaces I: Clear.

Item 15, Interaction With Powersets and Vector Spaces II: Omitted.

Item 16, Interaction With Powersets and Rings: This follows from Items 9 and 12 and Items 8 and 9 of Proposition 3.7.1.2.¹⁷

004K 3.11 Ordered Pairs

Let A and B be sets.

Definition 3.11.1.1. The **ordered pair associated to** A **and** B is the set (A, B) defined by

$$(A,B) \stackrel{\text{def}}{=} \{ \{A\}, \{A,B\} \}.$$

OO4M Proposition 3.11.1.2. Let A and B be sets.

004N 1. Uniqueness. Let A, B, C, and D be sets. The following conditions are equivalent:

¹⁷Reference: [Pro23a].

- (a) We have (A, B) = (C, D).
- (b) We have A = C and B = D.

Proof. Item 1, Uniqueness: See [Cie97, Theorem 1.2.3].

004P 4 Powersets

0040 4.1 Characteristic Functions

Let X be a set.

- **OO4R** Definition 4.1.1.1. Let $U \subset X$ and let $x \in X$.
- 004S 1. The characteristic function of U^{18} is the function U^{19}

$$\chi_U \colon X \to \{\mathsf{t},\mathsf{f}\}$$

defined by

$$\chi_U(x) \stackrel{\mathrm{def}}{=} \begin{cases} \mathsf{true} & \text{if } x \in U, \\ \mathsf{false} & \text{if } x \not\in U \end{cases}$$

for each $x \in X$.

004T 2. The characteristic function of x is the function x

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

defined by

$$\chi_x \stackrel{\text{def}}{=} \chi_{\{x\}},$$

i.e. by

$$\chi_x(y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $y \in X$.

 $^{^{18}}$ Further Terminology: Also called the **indicator function of** U.

¹⁹ Further Notation: Also written $\chi_X(U,-)$ or $\chi_X(-,U)$.

²⁰ Further Notation: Also written χ_x , $\chi_X(x,-)$, or $\chi_X(-,x)$.

3. The characteristic relation on X^{21} is the relation²² 004U

$$\chi_X(-1,-2)\colon X\times X\to \{\mathsf{t},\mathsf{f}\}$$

on X defined by 23

$$\chi_X(x,y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $x, y \in X$.

4. The characteristic embedding ²⁴ of X into $\mathcal{P}(X)$ is the function 004V

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

defined by

$$\chi_{(-)}(x) \stackrel{\mathrm{def}}{=} \chi_x$$

for each $x \in X$.

Remark 4.1.1.2. The definitions in Definition 4.1.1.1 are decategorifications of co/presheaves, representable co/presheaves, Hom profunctors, and the Yoneda embedding:²⁵

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y),$$

for each $x, y \in X$.

²⁵These statements can be made precise by using the embeddings

$$(-)_{\mathsf{disc}} \colon \mathsf{Sets} \hookrightarrow \mathsf{Cats},$$

 $(-)_{\mathsf{disc}} \colon \{\mathsf{t},\mathsf{f}\}_{\mathsf{disc}} \hookrightarrow \mathsf{Sets}$

of sets into categories and of classical truth values into sets. For instance, in this approach the characteristic function

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

of an element x of X, defined by

$$\chi_x(y) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } x = y, \\ \mathsf{false} & \text{if } x \neq y \end{cases}$$

 $^{^{21}}$ Further Terminology: Also called the **identity relation on** X.

²² Further Notation: Also written χ_{-2}^{-1} , or \sim_{id} in the context of relations. ²³ As a subset of $X \times X$, the relation χ_X corresponds to the diagonal $\Delta_X \subset X \times X$ of X.

 $^{^{24}\}mathrm{The}$ name "characteristic embedding " comes from the fact that there is an analogue of fully faithfulness for $\chi_{(-)}$: given a set X, we have

1. A function

$$f: X \to \{\mathsf{t},\mathsf{f}\}$$

is a decategorification of a presheaf

$$\mathcal{F} \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets}$$
,

with the characteristic functions χ_U of the subsets of X being the primordial examples (and, in fact, all examples) of these.

2. The characteristic function

$$\chi_x \colon X \to \{\mathsf{t},\mathsf{f}\}$$

of an element x of X is a decategorification of the representable presheaf

$$h_X \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets}$$

of an *object* x of a category C.

3. The characteristic relation

$$\chi_X(-1,-2) \colon X \times X \to \{\mathsf{t},\mathsf{f}\}$$

of X is a decategorification of the Hom profunctor

$$\operatorname{Hom}_{\mathcal{C}}(-_1, -_2) \colon \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathsf{Sets}$$

of a category C.

4. The characteristic embedding

$$\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$$

of X into $\mathcal{P}(X)$ is a decategorification of the Yoneda embedding

$$\sharp\colon \mathcal{C}^{\mathsf{op}}\hookrightarrow\mathsf{PSh}(\mathcal{C})$$

of a category C into PSh(C).

for each $y \in X$, is recovered as the representable presheaf

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(-,x)\colon X_{\operatorname{disc}} \to \operatorname{\mathsf{Sets}}$$

- 5. There is also a direct parallel between unions and colimits:
 - An element of $\mathcal{P}(X)$ is a union of elements of X, viewed as one-point subsets $\{x\} \in \mathcal{P}(A)$;
 - An object of $\mathsf{PSh}(C)$ is a colimit of objects of C, viewed as representable presheaves $h_X \in \mathsf{Obj}(\mathsf{PSh}(C))$.
- **OO4X** Proposition 4.1.1.3. Let $f: A \to B$ be a function. We have an inclusion

$$\begin{array}{cccc} & & A\times A \xrightarrow{\chi_A(-_1,-_2)} \{\mathsf{true},\mathsf{false}\} \\ \chi_B\circ (f\times f)\subset \chi_A, & & f\times f \downarrow & & & \downarrow \mathsf{id}_{\{\mathsf{true},\mathsf{false}\}} \\ & & & B\times B \xrightarrow{\chi_B(-_1,-_2)} \{\mathsf{true},\mathsf{false}\}. \end{array}$$

Proof. The inclusion $\chi_B(f(a), f(b)) \subset \chi_A(a, b)$ is equivalent to the statement "if a = b, then f(a) = f(b)", which is true.

Proposition 4.1.1.4. Let X be a set and let $U \subset X$ be a subset of X. We have

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_U) = \chi_U(x)$$

for each $x \in X$, giving an equality of functions

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_{(-)}, \chi_U) = \chi_U.$$

Proof. Clear. \Box

Corollary 4.1.1.5. The characteristic embedding is fully faithful, i.e., we have

$$\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y)$$

for each $x, y \in X$.

Proof. This follows from Proposition 4.1.1.4.

of the corresponding object x of X_{disc} , defined on objects by

$$\operatorname{Hom}_{X_{\operatorname{disc}}}(y,x) \stackrel{\text{def}}{=} \begin{cases} \operatorname{pt} & \text{if } x = y, \\ \emptyset & \text{if } x \neq y \end{cases}$$

for each $y \in \text{Obj}(X_{\mathsf{disc}})$.

4.2 Powersets 34

0050 4.2 Powersets

Let X be a set.

Definition 4.2.1.1. The **powerset of** X is the set $\mathcal{P}(X)$ defined by

$$\mathcal{P}(X) \stackrel{\text{def}}{=} \{ U \in P \mid U \subset X \},\$$

where P is the set in the axiom of powerset, ?? of ??.

- **Remark 4.2.1.2.** The powerset of a set is a decategorification of the category of presheaves of a category: while ²⁶
 - The powerset of a set X is equivalently (Item 6 of Proposition 4.2.1.3) the set

$$Sets(X, \{t, f\})$$

of functions from X to the set $\{t, f\}$ of classical truth values;

• The category of presheaves on a category C is the category

$$\mathsf{Fun}(\mathcal{C}^\mathsf{op},\mathsf{Sets})$$

of functors from C^{op} to the category Sets of sets .

- 0053 Proposition 4.2.1.3. Let X be a set.
- 0054 1. Functoriality. The assignment $X \mapsto \mathcal{P}(X)$ defines functors

$$\mathcal{P}_* \colon \mathsf{Sets} \to \mathsf{Sets},$$
 $\mathcal{P}^{-1} \colon \mathsf{Sets}^\mathsf{op} \to \mathsf{Sets},$
 $\mathcal{P}_! \colon \mathsf{Sets} \to \mathsf{Sets}$

where

• A category is enriched over the category

$$\mathsf{Sets} \stackrel{\mathrm{def}}{=} \mathsf{Cats}_0$$

of sets (i.e. "0-categories"), with presheaves taking values on it;

• A set is enriched over the set

$$\{t, f\} \stackrel{\mathrm{def}}{=} \mathsf{Cats}_{-1}$$

of classical truth values (i.e. "(-1)-categories"), with characteristic functions taking values on it.

 $^{^{26}\}mathrm{This}$ parallel is based on the following comparison:

4.2 Powersets 35

• Action on Objects. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$\mathcal{P}_*(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$$

 $\mathcal{P}^{-1}(A) \stackrel{\text{def}}{=} \mathcal{P}(A),$
 $\mathcal{P}_!(A) \stackrel{\text{def}}{=} \mathcal{P}(A);$

• Action on Morphisms. For each morphism $f:A\to B$ of Sets, the images

$$\mathcal{P}_*(f) \colon \mathcal{P}(A) \to \mathcal{P}(B),$$

 $\mathcal{P}^{-1}(f) \colon \mathcal{P}(B) \to \mathcal{P}(A),$
 $\mathcal{P}_!(f) \colon \mathcal{P}(A) \to \mathcal{P}(B)$

of f by \mathcal{P}_* , \mathcal{P}^{-1} , and $\mathcal{P}_!$ are defined by

$$\mathcal{P}_*(f) \stackrel{\text{def}}{=} f_*,$$
 $\mathcal{P}^{-1}(f) \stackrel{\text{def}}{=} f^{-1},$
 $\mathcal{P}_!(f) \stackrel{\text{def}}{=} f_!,$

as in Definitions 4.3.1.1, 4.4.1.1 and 4.5.1.1.

0055 2. Adjointness I. We have an adjunction

$$(\mathcal{P}^{-1}\dashv\mathcal{P}^{-1,\mathsf{op}})$$
: Sets $\overset{\mathcal{P}^{-1}}{\underset{\mathcal{P}^{-1,\mathsf{op}}}{\smile}}$ Sets,

witnessed by a bijection

$$\underbrace{\mathsf{Sets}^{\mathsf{op}}(\mathcal{P}(X),Y)}_{\overset{\mathrm{def}}{=}\mathsf{Sets}(Y,\mathcal{P}(X))} \cong \mathsf{Sets}(X,\mathcal{P}(Y)),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $Y \in \text{Obj}(\mathsf{Sets}^\mathsf{op})$.

0056 3. Adjointness II. We have an adjunction

$$(\operatorname{Gr}\dashv \mathcal{P}_*)\colon \quad \mathsf{Sets} \underbrace{\overset{\operatorname{Gr}}{\underset{\mathcal{P}_*}{\longleftarrow}}} \operatorname{Rel},$$

witnessed by a bijection of sets

$$Rel(Gr(A), B) \cong Sets(A, \mathcal{P}(B))$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and $B \in \text{Obj}(\mathsf{Rel})$, where Gr is the graph functor of Relations, Item 1 of Proposition 3.1.1.2.

4.2 Powersets 36

4. Symmetric Strong Monoidality With Respect to Coproducts. The powerset functor \mathcal{P}_* of Item 1 has a symmetric strong monoidal structure

$$\left(\mathcal{P}_*,\mathcal{P}_*^{\coprod},\mathcal{P}_{*\mid \mathbb{F}}^{\coprod}\right)\colon (\mathsf{Sets}, \coprod, \emptyset) \to (\mathsf{Sets}, \times, \mathrm{pt})$$

being equipped with isomorphisms

$$\mathcal{P}^{\coprod}_{*|X,Y} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \xrightarrow{\cong} \mathcal{P}(X \coprod Y),$$
$$\mathcal{P}^{\coprod}_{*|\mathbb{H}} \colon \operatorname{pt} \xrightarrow{\equiv} \mathcal{P}(\emptyset),$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$.

0058 5. Symmetric Lax Monoidality With Respect to Products. The powerset functor \mathcal{P}_* of Item 1 has a symmetric lax monoidal structure

$$\left(\mathcal{P}_*,\mathcal{P}_*^{\otimes},\mathcal{P}_{*\mid \mathbb{H}}^{\otimes}\right) \colon (\mathsf{Sets},\times,\mathrm{pt}) \to (\mathsf{Sets},\times,\mathrm{pt})$$

being equipped with isomorphisms

$$\begin{split} \mathcal{P}_{*|X,Y}^{\otimes} \colon \mathcal{P}(X) \times \mathcal{P}(Y) &\to \mathcal{P}(X \times Y), \\ \mathcal{P}_{*|\mathbb{H}^{c}}^{\otimes} \colon \operatorname{pt} &\stackrel{=}{\to} \mathcal{P}(\emptyset), \end{split}$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$, where $\mathcal{P}_{*|X,Y}^{\otimes}$ is given by

$$\mathcal{P}_{*|X,Y}^{\otimes}(U,V) \stackrel{\text{\tiny def}}{=} U \times V$$

for each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$.

0059 6. Powersets as Sets of Functions. The assignment $U \mapsto \chi_U$ defines a bijection²⁷

$$\chi_{(-)} \colon \mathcal{P}(X) \xrightarrow{\cong} \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\}),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

$$\mathsf{PSh}(\mathcal{C}) \overset{\mathrm{eq.}}{\cong} \mathsf{DFib}(\mathcal{C})$$

of Fibred Categories, ?? of ??, with $\chi_{(-)}$ being a decategorified version of the category of elements construction of Fibred Categories, ??.

See also ?? of ??.

 $^{^{27}}$ This bijection is a decategorified form of the equivalence

4.2 Powersets 37

005A 7. Powersets as Sets of Relations. We have bijections

$$\mathcal{P}(X) \cong \text{Rel}(\text{pt}, X),$$

 $\mathcal{P}(X) \cong \text{Rel}(X, \text{pt}),$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

- 005B 8. As a Free Cocompletion: Universal Property. The pair $(\mathcal{P}(X), \chi_{(-)})$ consisting of
 - The powerset $\mathcal{P}(X)$ of X;
 - The characteristic embedding $\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$ of X into $\mathcal{P}(X)$;

satisfies the following universal property:

- (\star) Given another pair (Y, f) consisting of
 - A cocomplete poset (Y, \preceq) ;
 - A function $f: X \to Y$;

there exists a unique cocontinuous morphism of posets $(\mathcal{P}(X), \subset) \xrightarrow{\exists !} (Y, \preceq)$ making the diagram

commute.

9. As a Free Cocompletion: Adjointness. We have an adjunction²⁸

$$(\chi_{(-)}$$
 寸 忘): Sets $\underbrace{\bot}_{$ 忘 Pos $^{\text{cocomp.}}$,

witnessed by a bijection

$$\mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X),\subset),(Y,\preceq)) \cong \mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, \preceq) \in \text{Obj}(\mathsf{Pos})$, where

²⁸In this sense, $\mathcal{P}(A)$ is the free cocompletion of A. (Note that, despite its name, however,

4.2 Powersets 38

• We have a natural map

$$\chi_X^* : \mathsf{Pos}^{\mathsf{cocomp.}}((\mathcal{P}(X), \subset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

defined by

$$\chi_X^*(f) \stackrel{\text{def}}{=} f \circ \chi_X,$$

i.e. by sending a cocontinuous morphism of posets $f: \mathcal{P}(X) \to Y$ to the composition

$$X \stackrel{\chi_X}{\hookrightarrow} \mathcal{P}(X) \stackrel{f}{\longrightarrow} Y;$$

• We have a natural map

$$\operatorname{Lan}_{XX} : \operatorname{\mathsf{Sets}}(X,Y) \to \operatorname{\mathsf{Pos}}^{\operatorname{\mathsf{cocomp.}}}((\mathcal{P}(X),\subset),(Y,\preceq))$$

computed by

$$[\operatorname{Lan}_{\chi_X}(f)](U) \cong \int_{x \in X}^{x \in X} \chi_{\mathcal{P}(X)}(\chi_x, U) \odot f(x)$$

$$\cong \int_{x \in X}^{x \in X} \chi_U(x) \odot f(x) \qquad \text{(by Proposition 4.1.1.4)}$$

$$\cong \bigvee_{x \in X} (\chi_U(x) \odot f(x))$$

for each $U \in \mathcal{P}(X)$, where:

- $-\bigvee$ is the join in (Y, \preceq) ;
- We have

$$\mathsf{true} \odot f(x) \stackrel{\mathrm{def}}{=} f(x),$$
$$\mathsf{false} \odot f(x) \stackrel{\mathrm{def}}{=} \varnothing_Y,$$

where \varnothing_Y is the minimal element of (Y, \preceq) .

Proof. Item 1, Functoriality: This follows from Items 3 and 4 of Proposition 4.3.1.4, Items 3 and 4 of Proposition 4.4.1.4, and Items 3 and 4 of Proposition 4.5.1.6.

Item 2, Adjointness I: Omitted.

Item 3, Adjointness II: Omitted.

Item 4, Symmetric Strong Monoidality With Respect to Coproducts: Omitted.

Item 5, Symmetric Lax Monoidality With Respect to Products: Omitted.

Item 6, Powersets as Sets of Functions: Omitted.

Item 7, Powersets as Sets of Relations: Omitted.

Item 8, As a Free Cocompletion: Universal Property: This is a rephrasing of ??.

Item 9, As a Free Cocompletion: Adjointness: Omitted.

005D 4.3 Direct Images

Let A and B be sets and let $f: A \to B$ be a function.

OOSE Definition 4.3.1.1. The direct image function associated to f is the function 29

$$f_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by 30,31

$$f_*(U) \stackrel{\text{def}}{=} f(U)$$

$$\stackrel{\text{def}}{=} \left\{ b \in B \mid \text{there exists some } a \in \right\}$$

$$= \left\{ f(a) \in B \mid a \in U \right\}$$

for each $U \in \mathcal{P}(A)$.

005F Remark 4.3.1.2. Identifying subsets of A with functions from A to $\{\text{true}, \text{false}\}$ via Item 6 of Proposition 4.2.1.3, we see that the direct image function associated to f is equivalently the function

$$f_* \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

- We have $b \in \exists_f(U)$.
- There exists some $a \in U$ such that f(a) = b.

$$f_*(U) = B \setminus f_!(A \setminus U);$$

see Item 7 of Proposition 4.3.1.3.

this is not an idempotent operation, as we have $\mathcal{P}(\mathcal{P}(A)) \neq \mathcal{P}(A)$.)

²⁹ Further Notation: Also written $\exists_f \colon \mathcal{P}(A) \to \mathcal{P}(B)$. This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

³⁰ Further Terminology: The set f(U) is called the **direct image of** U **by** f.

 $^{^{31}}$ We also have

defined by

$$f_*(\chi_U) \stackrel{\text{def}}{=} \operatorname{Lan}_f(\chi_U)$$

$$= \operatorname{colim}\left(\left(f \stackrel{\rightarrow}{\times} (\underline{-_1})\right) \stackrel{\text{pr}}{\twoheadrightarrow} A \xrightarrow{\chi_U} \{\mathsf{t},\mathsf{f}\}\right)$$

$$= \operatorname{colim}_{\substack{a \in A \\ f(a) = -_1}} (\chi_U(a))$$

$$= \bigvee_{\substack{a \in A \\ f(a) = -_1}} (\chi_U(a)).$$

So, in other words, we have

$$\begin{split} [f_*(\chi_U)](b) &= \bigvee_{\substack{a \in A \\ f(a) = b}} (\chi_U(a)) \\ &= \begin{cases} \text{true} & \text{if there exists some } a \in A \text{ such} \\ & \text{that } f(a) = b \text{ and } a \in U, \\ \text{false} & \text{otherwise} \end{cases} \\ &= \begin{cases} \text{true} & \text{if there exists some } a \in U \\ & \text{such that } f(a) = b, \\ \text{false} & \text{otherwise} \end{cases} \end{split}$$

for each $b \in B$.

OUTSILE : Proposition 4.3.1.3. Let $f: A \to B$ be a function.

005H 1. Functoriality. The assignment $U \mapsto f_*(U)$ defines a functor

$$f_* \colon (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[f_*](U) \stackrel{\mathrm{def}}{=} f_*(U);$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:

$$(\star)$$
 If $U \subset V$, then $f_*(U) \subset f_*(V)$.

005J 2. Triple Adjointness. We have a triple adjunction

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$.
 - ii. We have $U \subset f^{-1}(V)$.
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.

005K 3. Preservation of Colimits. We have an equality of sets

$$f_*\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$f_*(U) \cup f_*(V) = f_*(U \cup V),$$

 $f_*(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(A)$.

4. Oplax Preservation of Limits. We have an inclusion of sets

$$f_*\left(\bigcap_{i\in I}U_i\right)\subset\bigcap_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$f_*(U \cap V) \subset f_*(U) \cap f_*(V),$$

 $f_*(A) \subset B,$

natural in $U, V \in \mathcal{P}(A)$.

5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

$$\left(f_*,f_*^{\otimes},f_{*|\mathbb{F}}^{\otimes}\right)\colon (\mathcal{P}(A),\cup,\emptyset)\to (\mathcal{P}(B),\cup,\emptyset),$$

being equipped with equalities

$$f_{*|U,V}^{\otimes} \colon f_{*}(U) \cup f_{*}(V) \stackrel{=}{\to} f_{*}(U \cup V),$$
$$f_{*|\mathcal{V}}^{\otimes} \colon \emptyset \stackrel{=}{\to} \emptyset,$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|\mathscr{V}}^{\otimes}) \colon (\mathscr{P}(A), \cap, A) \to (\mathscr{P}(B), \cap, B),$$

being equipped with inclusions

$$f_{*|U,V}^{\otimes} \colon f_*(U \cap V) \hookrightarrow f_*(U) \cap f_*(V),$$
$$f_{*|\mathcal{V}}^{\otimes} \colon f_*(A) \hookrightarrow B,$$

natural in $U, V \in \mathcal{P}(A)$.

005P 7. Relation to Direct Images With Compact Support. We have

$$f_*(U) = B \setminus f_!(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Kan Extensions, ?? of ??.

Item 3, Preservation of Colimits: This follows from Item 2 and Categories, ?? of ??.

Item 4, Oplax Preservation of Limits: Omitted.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Oplax Monoidality With Respect to Intersections: This follows from ??.

Item 7, Relation to Direct Images With Compact Support: Applying ?? of ?? to $A \setminus U$, we have

$$f_!(A \setminus U) = B \setminus f_*(A \setminus (A \setminus U))$$

= $B \setminus f_*(U)$.

Taking complements, we then obtain

$$f_*(U) = B \setminus (B \setminus f_*(U)),$$

= B \ f_!(A \ U),

which finishes the proof.

005Q Proposition 4.3.1.4. Let $f: A \to B$ be a function.

005R 1. Functionality I. The assignment $f \mapsto f_*$ defines a function

$$(-)_{*|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)).$$

005S 2. Functionality II. The assignment $f \mapsto f_*$ defines a function

$$(-)_{*|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$$

3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$(\mathrm{id}_A)_* = \mathrm{id}_{\mathcal{P}(A)};$$

4. Interaction With Composition. For each pair of composable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* \qquad g_*$$

$$\mathcal{P}(C)$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Kan Extensions, ?? of ??.

Item 4, Interaction With Composition: This follows from Kan Extensions, ?? of ??. □

005V 4.4 Inverse Images

Let A and B be sets and let $f: A \to B$ be a function.

OO5W Definition 4.4.1.1. The inverse image function associated to f is the function³²

$$f^{-1} \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by³³

$$f^{-1}(V) \stackrel{\text{def}}{=} \{a \in A \mid \text{we have } f(a) \in V\}$$

for each $V \in \mathcal{P}(B)$.

Remark 4.4.1.2. Identifying subsets of B with functions from B to $\{\text{true}, \text{false}\}$ via Item 6 of Proposition 4.2.1.3, we see that the inverse image function associated to f is equivalently the function

$$f^* \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by

$$f^*(\chi_V) \stackrel{\text{def}}{=} \chi_V \circ f$$

for each $\chi_V \in \mathcal{P}(B)$, where $\chi_V \circ f$ is the composition

$$A \xrightarrow{f} B \xrightarrow{\chi_V} \{\mathsf{true}, \mathsf{false}\}$$

in Sets.

- **005Y** Proposition 4.4.1.3. Let $f: A \to B$ be a function.
- 005Z 1. Functoriality. The assignment $V \mapsto f^{-1}(V)$ defines a functor

$$f^{-1}: (\mathcal{P}(B), \subset) \to (\mathcal{P}(A), \subset)$$

where

• Action on Objects. For each $V \in \mathcal{P}(B)$, we have

$$[f^{-1}](V) \stackrel{\text{def}}{=} f^{-1}(V);$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(B)$:

$$(\star) \ \text{ If } U \subset V \text{, then } f^{-1}(U) \subset f^{-1}(V).$$

 $[\]overline{}^{32}$ Further Notation: Also written $f^* \colon \mathcal{P}(B) \to \mathcal{P}(A)$.

³³ Further Terminology: The set $f^{-1}(V)$ is called the **inverse image of** V by f.

2. Triple Adjointness. We have a triple adjunction

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$;
 - ii. We have $U \subset f^{-1}(V)$;
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.

3. Preservation of Colimits. We have an equality of sets

$$f^{-1}\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V),$$

$$f^{-1}(\emptyset) = \emptyset,$$

natural in $U, V \in \mathcal{P}(B)$.

4. Preservation of Limits. We have an equality of sets

$$f^{-1}\left(\bigcap_{i\in I} U_i\right) = \bigcap_{i\in I} f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(B)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V),$$

 $f^{-1}(B) = A,$

natural in $U, V \in \mathcal{P}(B)$.

5. Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure

$$\left(f^{-1},f^{-1,\otimes},f_{\mathbb{K}}^{-1,\otimes}\right)\colon (\mathcal{P}(B),\cup,\emptyset)\to (\mathcal{P}(A),\cup,\emptyset),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cup f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cup V),$$
$$f_{\bowtie}^{-1,\otimes} \colon \emptyset \stackrel{=}{\to} f^{-1}(\emptyset),$$

natural in $U, V \in \mathcal{P}(B)$.

6. Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of Item 1 has a symmetric strict monoidal structure

$$(f^{-1}, f^{-1, \otimes}, f_{\not \vdash}^{-1, \otimes}) : (\mathcal{P}(B), \cap, B) \to (\mathcal{P}(A), \cap, A),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cap f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cap V),$$
$$f_{\mathbb{K}}^{-1,\otimes} \colon A \stackrel{=}{\to} f^{-1}(B),$$

natural in $U, V \in \mathcal{P}(B)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Kan Extensions, ?? of ??.

Item 3, Preservation of Colimits: This follows from *Item 2* and *Categories*, ?? of ??.

Item 4, Preservation of Limits: This follows from *Item 2* and *Categories*, ?? of ??.

Item 5, Symmetric Strict Monoidality With Respect to Unions: This follows from Item 3.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4. □

Proposition 4.4.1.4. Let $f: A \to B$ be a function.

0066 1. Functionality I. The assignment $f \mapsto f^{-1}$ defines a function

$$(-)_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(B),\mathcal{P}(A)).$$

0067 2. Functionality II. The assignment $f \mapsto f^{-1}$ defines a function

$$(-)^{-1}_{A,B}$$
: Sets $(A,B) \to \mathsf{Pos}((\mathcal{P}(B),\subset),(\mathcal{P}(A),\subset)).$

3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$id_A^{-1} = id_{\mathcal{P}(A)};$$

4. Interaction With Composition. For each pair of composable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}, \qquad \begin{array}{c} \mathcal{P}(C) \stackrel{g^{-1}}{\longrightarrow} \mathcal{P}(B) \\ \\ (g \circ f)^{-1} \end{array} \downarrow_{f^{-1}} \\ \mathcal{P}(A).$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

0068

Item 3, Interaction With Identities: This follows from Categories, ?? of ??.

Item 4, Interaction With Composition: This follows from Categories, ?? of ??. □

006A 4.5 Direct Images With Compact Support

Let A and B be sets and let $f: A \to B$ be a function.

OO6B Definition 4.5.1.1. The direct image with compact support function associated to f is the function³⁴

$$f_! \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

³⁴ Further Notation: Also written $\forall_f \colon \mathcal{P}(A) \to \mathcal{P}(B)$. This notation comes from the fact that the following statements are equivalent, where $b \in B$ and $U \in \mathcal{P}(A)$:

[•] We have $b \in \forall_f(U)$.

defined by 35,36

$$f_!(U) \stackrel{\text{def}}{=} \left\{ b \in B \mid \text{for each } a \in A, \text{ if we have} \\ f(a) = b, \text{ then } a \in U \right\}$$

= $\left\{ b \in B \mid \text{we have } f^{-1}(b) \subset U \right\}$

for each $U \in \mathcal{P}(A)$.

Remark 4.5.1.2. Identifying subsets of A with functions from A to $\{\text{true}, \text{false}\}$ via Item 6 of Proposition 4.2.1.3, we see that the direct image with compact support function associated to f is equivalently the function

$$f_! : \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$f_{!}(\chi_{U}) \stackrel{\text{def}}{=} \operatorname{Ran}_{f}(\chi_{U})$$

$$= \lim \left(\left(\underbrace{(-_{1})}_{\times} \stackrel{\rightarrow}{\times} f \right) \stackrel{\text{pr}}{\twoheadrightarrow} A \xrightarrow{\chi_{U}} \left\{ \text{true}, \text{false} \right\} \right)$$

$$= \lim_{\substack{a \in A \\ f(a) = -_{1}}} (\chi_{U}(a))$$

$$= \bigwedge_{\substack{a \in A \\ f(a) = -_{1}}} (\chi_{U}(a)).$$

So, in other words, we have

$$\begin{split} [f_!(\chi_U)](b) &= \bigwedge_{\substack{a \in A \\ f(a) = b}} (\chi_U(a)) \\ &= \begin{cases} \text{true} & \text{if, for each } a \in A \text{ such that} \\ & f(a) = b, \text{ we have } a \in U, \end{cases} \\ &= \begin{cases} \text{true} & \text{if } f^{-1}(b) \subset U \\ \text{false} & \text{otherwise} \end{cases} \end{split}$$

for each $b \in B$.

• For each $a \in A$, if b = f(a), then $a \in U$.

³⁶We also have

$$f_!(U) = B \setminus f_*(A \setminus U);$$

³⁵Further Terminology: The set $f_!(U)$ is called the **direct image with compact support of** U by f.

- **Definition 4.5.1.3.** Let U be a subset of A. 37,38
 - 1. The image part of the direct image with compact support $f_!(U)$ of U is the set $f_{!,\text{im}}(U)$ defined by

$$f_{!,\text{im}}(U) \stackrel{\text{def}}{=} f_{!}(U) \cap \text{Im}(f)$$

$$= \left\{ b \in B \mid \text{we have } f^{-1}(b) \subset \atop U \text{ and } f^{-1}(b) \neq \emptyset \right\}.$$

2. The complement part of the direct image with compact support $f_!(U)$ of U is the set $f_{!,cp}(U)$ defined by

$$f_{!,cp}(U) \stackrel{\text{def}}{=} f_!(U) \cap (B \setminus \text{Im}(f))$$

$$= B \setminus \text{Im}(f)$$

$$= \left\{ b \in B \mid \text{we have } f^{-1}(b) \subset \right\}$$

$$= \left\{ b \in B \mid f^{-1}(b) = \emptyset \right\}.$$

- **Example 4.5.1.4.** Here are some examples of direct images with compact support.
 - 1. The Multiplication by Two Map on the Natural Numbers. Consider the function $f: \mathbb{N} \to \mathbb{N}$ given by

$$f(n) \stackrel{\text{def}}{=} 2n$$

see Item 7 of Proposition 4.5.1.5.

³⁷Note that we have

$$f_{!}(U) = f_{!,im}(U) \cup f_{!,cp}(U),$$

as

$$\begin{split} f_!(U) &= f_!(U) \cap B \\ &= f_!(U) \cap (\operatorname{Im}(f) \cup (B \setminus \operatorname{Im}(f))) \\ &= (f_!(U) \cap \operatorname{Im}(f)) \cup (f_!(U) \cap (B \setminus \operatorname{Im}(f))) \\ &\stackrel{\text{def}}{=} f_{!,\operatorname{im}}(U) \cup f_{!,\operatorname{cp}}(U). \end{split}$$

³⁸In terms of the meet computation of $f_!(U)$ of Remark 4.5.1.2, namely

$$f_!(\chi_U) = \bigwedge_{\substack{a \in A \\ f(a) = -1}} (\chi_U(a)),$$

we see that $f_{1,\text{im}}$ corresponds to meets indexed over nonempty sets, while $f_{1,\text{cp}}$ corresponds

for each $n \in \mathbb{N}$. Since f is injective, we have

$$f_{!,\text{im}}(U) = f_*(U)$$

 $f_{!,\text{cp}}(U) = \{\text{odd natural numbers}\}$

for any $U \subset \mathbb{N}$.

2. Parabolas. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) \stackrel{\text{def}}{=} x^2$$

for each $x \in \mathbb{R}$. We have

$$f_{!,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}$. Moreover, since $f^{-1}(x) = \{-\sqrt{x}, \sqrt{x}\}$, we have e.g.:

$$\begin{split} f_{!,\mathrm{im}}([0,1]) &= \{0\}, \\ f_{!,\mathrm{im}}([-1,1]) &= [0,1], \\ f_{!,\mathrm{im}}([1,2]) &= \emptyset, \\ f_{!,\mathrm{im}}([-2,-1] \cup [1,2]) &= [1,4]. \end{split}$$

3. Circles. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) \stackrel{\text{def}}{=} x^2 + y^2$$

for each $(x,y) \in \mathbb{R}^2$. We have

$$f_{!,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}^2$, and since

$$f^{-1}(r) = \begin{cases} \text{a circle of radius } r \text{ about the origin} & \text{if } r > 0, \\ \{(0,0)\} & \text{if } r = 0, \\ \emptyset & \text{if } r < 0, \end{cases}$$

we have e.g.:

$$\begin{split} f_{!,\mathrm{im}}([-1,1]\times[-1,1]) &= [0,1],\\ f_{!,\mathrm{im}}(([-1,1]\times[-1,1])\setminus[-1,1]\times\{0\}) &= \emptyset. \end{split}$$

QUALIFY Proposition 4.5.1.5. Let $f: A \to B$ be a function.

0066 1. Functoriality. The assignment $U \mapsto f_!(U)$ defines a functor

$$f_! : (\mathcal{P}(A), \subset) \to (\mathcal{P}(B), \subset)$$

where

• Action on Objects. For each $U \in \mathcal{P}(A)$, we have

$$[f_!](U) \stackrel{\mathrm{def}}{=} f_!(U);$$

• Action on Morphisms. For each $U, V \in \mathcal{P}(A)$:

$$(\star)$$
 If $U \subset V$, then $f_!(U) \subset f_!(V)$.

006H 2. Triple Adjointness. We have a triple adjunction

$$(f_* \dashv f^{-1} \dashv f_!)$$
: $\mathcal{P}(A) \leftarrow f^{-1} - \mathcal{P}(B)$,

witnessed by bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(B)}(f_*(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(A)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(A)}(U, f_!(V)),$

natural in $U \in \mathcal{P}(A)$ and $V \in \mathcal{P}(B)$ and (respectively) $V \in \mathcal{P}(A)$ and $U \in \mathcal{P}(B)$, i.e. where:

- (a) The following conditions are equivalent:
 - i. We have $f_*(U) \subset V$;
 - ii. We have $U \subset f^{-1}(V)$;
- (b) The following conditions are equivalent:
 - i. We have $f^{-1}(U) \subset V$.
 - ii. We have $U \subset f_!(V)$.

to meets indexed over the empty set.

3. Lax Preservation of Colimits. We have an inclusion of sets

$$\bigcup_{i\in I} f_!(U_i) \subset f_!\left(\bigcup_{i\in I} U_i\right),\,$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(A)^{\times I}$. In particular, we have inclusions

$$f_!(U) \cup f_!(V) \hookrightarrow f_!(U \cup V),$$

 $\emptyset \hookrightarrow f_!(\emptyset),$

natural in $U, V \in \mathcal{P}(A)$.

006K 4. Preservation of Limits. We have an equality of sets

$$f_! \left(\bigcap_{i \in I} U_i \right) = \bigcap_{i \in I} f_!(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(A)^{\times I}$. In particular, we have equalities

$$f^{-1}(U \cap V) = f_!(U) \cap f^{-1}(V),$$

 $f_!(A) = B,$

natural in $U, V \in \mathcal{P}(A)$.

006L 5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure

$$\Big(f_!,f_!^\otimes,f_{!\mid\!\mu\!\vdash}^\otimes\Big)\colon (\mathcal{P}(A),\cup,\emptyset)\to (\mathcal{P}(B),\cup,\emptyset),$$

being equipped with inclusions

$$f_{!|U,V}^{\otimes} \colon f_{!}(U) \cup f_{!}(V) \hookrightarrow f_{!}(U \cup V),$$
$$f_{!|V}^{\otimes} \colon \emptyset \hookrightarrow f_{!}(\emptyset),$$

natural in $U, V \in \mathcal{P}(A)$.

6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure

$$(f_!, f_!^{\otimes}, f_{!|\mathscr{V}}^{\otimes}) \colon (\mathcal{P}(A), \cap, A) \to (\mathcal{P}(B), \cap, B),$$

being equipped with equalities

$$\begin{split} f^{\otimes}_{!|U,V} \colon f_{!}(U \cap V) &\stackrel{=}{\to} f_{!}(U) \cap f_{!}(V), \\ f^{\otimes}_{!|\mathscr{V}} \colon f_{!}(A) &\stackrel{=}{\to} B, \end{split}$$

natural in $U, V \in \mathcal{P}(A)$.

7. Relation to Direct Images. We have

$$f_!(U) = B \setminus f_*(A \setminus U)$$

for each $U \in \mathcal{P}(A)$.

006P 8. Interaction With Injections. If f is injective, then we have

$$f_{!,\text{im}}(U) = f_*(U),$$

$$f_{!,\text{cp}}(U) = B \setminus \text{Im}(f),$$

$$f_!(U) = f_{!,\text{im}}(U) \cup f_{!,\text{cp}}(U)$$

$$= f_*(U) \cup (B \setminus \text{Im}(f))$$

for each $U \in \mathcal{P}(A)$.

9. Interaction With Surjections. If f is surjective, then we have

$$f_{!,\text{im}}(U) \subset f_*(U),$$

 $f_{!,\text{cp}}(U) = \emptyset,$
 $f_{!}(U) \subset f_*(U)$

for each $U \in \mathcal{P}(A)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Triple Adjointness: This follows from Kan Extensions, ?? of ??.

Item 3, Lax Preservation of Colimits: Omitted.

Item 4, Preservation of Limits: Omitted. This follows from *Item 2* and Categories, ?? of ??.

Item 5, Symmetric Lax Monoidality With Respect to Unions: This follows from ??.

Item 6, Symmetric Strict Monoidality With Respect to Intersections: This follows from Item 4.

Item 7, Relation to Direct Images: We claim that $f_!(U) = B \setminus f_*(A \setminus U)$.

• The First Implication. We claim that

$$f_!(U) \subset B \setminus f_*(A \setminus U).$$

Let $b \in f_!(U)$. We need to show that $b \notin f_*(A \setminus U)$, i.e. that there is no $a \in A \setminus U$ such that f(a) = b.

This is indeed the case, as otherwise we would have $a \in f^{-1}(b)$ and $a \notin U$, contradicting $f^{-1}(b) \subset U$ (which holds since $b \in f_!(U)$).

Thus $b \in B \setminus f_*(A \setminus U)$.

• The Second Implication. We claim that

$$B \setminus f_*(A \setminus U) \subset f_!(U)$$
.

Let $b \in B \setminus f_*(A \setminus U)$. We need to show that $b \in f_!(U)$, i.e. that $f^{-1}(b) \subset U$.

Since $b \notin f_*(A \setminus U)$, there exists no $a \in A \setminus U$ such that b = f(a), and hence $f^{-1}(b) \subset U$.

Thus $b \in f_!(U)$.

This finishes the proof of Item 7.

Item 8, Interaction With Injections: Clear.

Item 9, Interaction With Surjections: Clear.

006R Proposition 4.5.1.6. Let $f: A \to B$ be a function.

006S 1. Functionality I. The assignment $f \mapsto f_!$ defines a function

$$(-)_{\parallel A \parallel B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)).$$

006T 2. Functionality II. The assignment $f \mapsto f_!$ defines a function

$$(-)_{\parallel A \parallel B} : \mathsf{Sets}(A,B) \to \mathsf{Pos}((\mathcal{P}(A),\subset),(\mathcal{P}(B),\subset)).$$

3. Interaction With Identities. For each $A \in \text{Obj}(\mathsf{Sets})$, we have

$$(\mathrm{id}_A)_! = \mathrm{id}_{\mathcal{P}(A)};$$

4. Interaction With Composition. For each pair of composable functions $f: A \to B$ and $g: B \to C$, we have

$$(g \circ f)_! = g_! \circ f_!, \qquad \begin{array}{c} \mathcal{P}(A) \xrightarrow{f_!} \mathcal{P}(B) \\ & \downarrow g_! \\ & \mathcal{P}(C). \end{array}$$

Proof. Item 1, Functionality I: Clear.

Item 2, Functionality II: Clear.

Item 3, Interaction With Identities: This follows from Kan Extensions, ?? of ??.

Item 4, Interaction With Composition: This follows from Kan Extensions, ?? of ??. □

Appendices

A Other Chapters

\mathbf{Set}	${f Theory}$
----------------	--------------

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Indexed and Fibred Sets
- 6. Relations
- 7. Spans
- 8. Posets

Category Theory

- 9. Categories
- 10. Constructions With Categories
- 11. Kan Extensions

Bicategories

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

14. Internal Categories

Cyclic Stuff

15. The Cycle Category

Cubical Stuff

16. The Cube Category

Globular Stuff

17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

23. Groups

24. Constructions With Groups	33. Measurable Spaces
Hyper Algebra	34. Measures and Integration
25. Hypermonoids	Probability Theory
26. Hypergroups	34. Probability Theory
27. Hypersemirings and Hyperrings	Stochastic Analysis
28. Quantales	35. Stochastic Processes, Martin-
Near-Rings	gales, and Brownian Motion
29. Near-Semirings	36. Itô Calculus
30. Near-Rings	37. Stochastic Differential Equations
Real Analysis	Differential Geometry
31. Real Analysis in One Variable	38. Topological and Smooth Mani-
32. Real Analysis in Several Variables	folds Schemes

39. Schemes

Measure Theory