Tracking Indoors

Location of what?

- Objects
 - Static, Moveable, or Mobile
 - Frequency of movement: door, desk, laptop
 - Dumb or Networked
- People
 - Waldo asks "Where am i?"
 - System asks "where's Waldo?"
- Services
 - applications, resources, sensors, actuators
 - where is a device, web site, app

Tracking technology

- Some examples:
 - 802.11; Bluetooth (Intel, HP, ..),
 RFID
 - ParcTab (Xerox)
 - Active Badge (Cambridge ATT)
 - BATs (Cambridge ATT)
 - Crickets (MIT)
- Cameras

Tangential Note: Larry's conjecture • Any sensing service in pervasive computing only

- needs:
 - some cameras
 - lots of computing power
 - some clever algorithms
- Any sensing service in pervasive computing
 - can be done cheaper with application-specific hardware!
 - E.g: Location tracking & recognition

Cambridge ATT's BAT

Cambridge ATT's BAT

Cambridge ATT's BAT

BAT Details

- Ultrasound transmitters
 - 5 cm x 3 cm x 3 cm; 35 grams
 - unique id (48 bit)
 - temp id (10 bit) -- reduces power
 - button (just one)
 - rf transceiver
- Receivers in ceiling
- Base station
 - periodically queries, then bats respond
 - query time, recv time, room temp
 - 330 m/s + .6*temp; >2 receivers ==>
 location

More on BATs

- Deployment
 - 50 staff members, 200 BATS, 750 Receivers, 3 Radio cells, 10,000 sq ft office space
- 20 ms per bat enables 50 BATs / sec
- Smart scheduling reduces BAT's power
 - while at rest, reduce frequency of query
 - detect activity at PC to deduce "rest"
- Convert BAT location to object location
- Centralized Datebase
 - less latency than distributed query
 - better filtering and error detection

Feedback of Locationservice

- Human-centric view of location information
- Cuteness reduces concern over privacy

Programming Model?

 Analogous to window-system. BAT enters workstation space, causes an event call-back

Application: Follow-me Desktop

Spatial monitoring application that moves users' desktops around with them. The application registers with the Spatial Monitor:

- (A) As the user (pjs) approaches the display
- (B) Or moves away from it
- (C) The spatial monitor sends a positive or negative containment event to the application that transfers or removes the desktop to or from the screen.

Figure by MIT OCW.

How well does it work?

Figure by MIT OCW.

Better Trackers

- Bayesian filtering on sensory data
- Predict where person will be in future.
 - position and speed over near past
 - behavior (avg speed) over long term

Uses

- Filter bad sensory data
- Likely place to find someone
 - Predict which sensors to monitor

A few details of Bayesian Filtering

Bayes filters estimate posterior distribution over the state x_t of a dynamical system conditioned on all sensor information collected so far:

To compute the likelihood of an observation z given a position x on the graph, we have to integrate over all 3d positions projected onto x:

See "Voronoi tracking ..." Liao, et al.

Universal Location Framework

Stack: Sensor, Measure, Fusion, Application

Location API (preliminary)

What: timestamp, position, uncertainty

When: Automatic (push), Manual (pull), Periodic

802.11 base station location

Calibrated database of signal characteristics

3 to 30 meter accuracy

Division of Labor

- Determining the location of object
- Associating name with location
 - Object (or person) has name
 - Object has a location
 - physical or virtual (instantiation of program on some machine)
- Need scalable solution to connect them
 - RFIDs demand scalability

