

Mutations as the origin of genetic variation

Life starts....

- Likely single haploid genome in single primitive cell
- What would define it as being "alive"? How would we decide it was "alive" rather than "inanimate"?

Life starts....

- Likely single haploid genome in single primitive cell
- Reproduces!
- What it can make is dictated by its genes
 - What if that genetic code never changes?

Life, 3.5 billion years later...

Where does variation come from?

(Theme for lecture)

- What is the source of those "changes in the code"?
 - "A change to the DNA sequence"
 - Mutations are the ultimate source of all genetic variation on the planet!

• A "mutant" is what you call your brother when he's being annoying...

• A "mutant" in the comic world is "an individual who possesses a genetic trait called an X-gene that allows them to naturally develop Superhuman Powers and Abilities..."

• A "mutant" is what you might call someone who has a disfiguration, like extra fingers...

- There's a little bit of truth to all of those
 - (less-so for the X-Men version)
- Again, ultimate source of all variation
 - So, "MUTATIONS HAPPEN"
- One of most common types:
 - Error in replication/ meiosis leading to a change in a base
 - Mom's cells are homozygous for: ATGCCAGCCTGA
 - Her egg that makes the kid is: ATGCCGGCCTGA

- Mutations don't happen preferentially "when we need them"
 - Random when they happen relative to "need"
- Many mutations are "bad":
 - Why?

- Some mutations "don't matter" AAA -> AAG
- Rarely (though it happens), a mutation is "good"

After mutation, the new variant exists in the population

Alleles in gene pool at one gene

Generation 1	Generation 2
--------------	--------------

ATGCCAGCCTGA ATGCCGGCCTGA

ATGCCAGCCTGA Birth of a SNP! ATGCCAGCCTGA

ATGCCAGCCTGA ATGCCAGCCTGA

ATGCCAGCCTGA ATGCCAGCCTGA

Meiotic or mitotic?

ATGCCAGCCTGA ATGCCAGCCTGA ATGCCAGCCTGA

1 allele at base 6

2 alleles, 1 abundant

What happens then?

- ... if ATGCCGGCCTGA causes death of the embryo?
- ... if ATGCCGGCCTGA causes loss of fitness?
- ... if ATGCCGGCCTGA causes no change in fitness?
- ... if ATGCCGGCCTGA causes super-fertility?

After mutation, the new variant may spread in the population

Alleles in gene pool at one gene

Over time, mutation generates a lot of variation in natural populations

 A lot of mutations don't have an effect on fertility or life span

- May still affect a phenotype
- LOTS of genetic variation in human height

Fig 9-1 in Freeman & Herron

Image Credits, Unit 6-1

- Chromosomes, © Alexandr Mitiuc, all rights reserved, <u>www.photoxpress.com</u>
- Green DNA helix, © appler, all rights reserved, www.photoxpress.com
- Siblings fighting, © binagel, all rights reserved, www.photoxpress.com
- "Variant cover to X-Men (v2) #1, by Jim Lee, All Marvel characters and the distinctive likeness(es) thereof are Trademarks & Copyright © 1941–2012 Marvel Characters, Inc. ALL RIGHTS RESERVED, used under the fair use clause for US copyright law."
- Polydactyly, © 2005 Drgnu23, CC by-SA 3.0, en.wikipedia.org.
- Mutant goldfish, © 2009 PhOtOnQuAnTiQuE, CC by-NC-ND 2.0, <u>http://www.flickr.com/photos/photonquantique/</u>