

AMERICAN INTERNATIONAL UNIVERSITY – BANGLADESH Faculty of Engineering

Course/Lab Name: Data Communication

Semester: Spring 2023-24 | Term: Mid | Assignment-1

Ouestion Mapping with Course Outcomes:

Item	COs	POIs	K	P	A	Marks	Obtained Marks
All Problems	CO3	P.c.3.C5	K5	•		30	
					Total:	30	

Student Information:

Student Name: MOST. SAYMA KHATUN Student ID: 22-47035-1

Section: H Department: CSE

Instructions for submission:

1. Use this page as a cover page.

2. Take pictures of your written answer and paste under each problem given below.

3. Give the file name using the middle 5 digits of your student ID.

For instance: if your ID is 20-40708-3 your file name will be 40708.pdf

4. Upload the pdf file to MS Teams portal.

5. The submission will not be considered if the instructions are not followed.

Answer the following Questions:

Problem 01: Why baseline wandering, DC component and lack of synchronization is a problem in digital data to digital signal representation, explain with necessary figures.

Answer to the question no- 01

Baseline Handening: In a digital signal, the necessive calculates a punning avenage of the necessed signal power, this avenage is called the baseline. A long string of os on 15 can cause a drift in the baseline and make it difficult for the necessiver to decode correctly.

Problem: Baseline wandering can lead to difficulties in accurately detecting the actual signal levels, as it may cause confusion between signal variations and the slow driff in the baseline.

A good line coding needs to skip baseline wandering.

De component: In a digital signal when the voltage level is constant, spectrum aneales a low frequency near by a called be component.

Problem: The presence of a DC component can lead to issues such as difficulties in clock recovery and potential distortion of the signal during transmission.

Lack of Synchronization: For the receiver end to successfully recover the signal, synchronization is important. A lack of synchronization indicates that the time of the transmitter and receiver are not exactly in line.

Problem: Without proper synchronization, the neceiver may sample the signal at the wrong instants, leading to misundenstand data and potential errors.

Problem 02: Draw the graph of the NRZ-L for the bit stream 01010111, assuming that the last signal level has been positive.

Answer:

Problem 03: Repeat problem 02 for NRZ-I.

Problem 04: Repeat problem 02 for Manchester and Differential Manchester. **Answer:**

Problem 05: Encode digital bit stream 01001101 using AMI and Pseudoternary. **Answer:**

Problem 06: Encode digital bit stream 0011001100110011 by using 2B1Q by assuming last signal level was positive and consider the voltage level for each bit stream pair according to following table:

	Previous level positive	Previous level negative
Bit stream pair	Next level	Next level
00	+2	-2
01	+4	-4
10	-2	2
11	-4	4

Answer:

Problem 08: Determine the combination of data element and signal element in 8B6T line coding method. Write the possible use cases of remaining signal element in 8B6T.

Answer:

Answer to the question no-8

SBGT:

 $2^8 = 256$ different data patterns and $3^6 = 729$ different signal patterns.

There are 729-256=473 redundant signal elements that provide synchronization, error detection and correctly.

Problem 09: Sketch the line coding sequence using 8B6T for following data and signal pattern:

Data pattern in Hexa Decimal/binary	Signal pattern
2A (00101010)	+ 0 + - 0 -
6D (01101101)	++0+
6C (01101100)	0+++

Answer to the question no-09

$$2A(00101010) = +0+-0 6D(01101101) = ++0+- 6C(01101100) = 0++--+$$

Problem 10: Encode digital bit steam 01101011 by using MLT-3 (**Note:** Assume last level was at 0 voltage and last non-zero pulse was negative).

LT-3:	•	
Nelli		
Next bit	Cunnent level	Transmission
0		No change
7	Not 0	0
1	0	opposition of last no

The end