Generalized Logarithmic Derivative = Surface Green Function 7/ [J.E. Inglesfield, J. Phys. C 14, 3795 (181)]	8/03
 Preliminary: Green's theorem (Gaup's theorem) S Jdr V. 20 = Jdr20 V volume element Sw.face element	(1)
This is just a telescopic technique: $d\sigma = \frac{dx}{dx} \qquad d\sigma = \frac{dx}{dydz}$ $x_{min} = x_0 x_1 \qquad x_N = x_{max}$ $\sum_{i=1}^{N} \frac{\partial}{\partial x} V_{x}(x_i) dxdydz$	
$\begin{aligned} &= \sum_{i=1}^{N} \left[\mathcal{V}_{x}(x_{i}) - \mathcal{V}_{x}(x_{i-1}) \right] dy dz \\ &= \left[-\mathcal{V}_{x}(x_{0}) + \mathcal{V}_{x}(x_{1}) - \mathcal{V}_{y}(x_{1}) + \mathcal{V}_{y}(x_{2}) - \dots - \mathcal{V}_{z}(x_{N-1}) + \mathcal{V}_{x}(x_{N}) \right] dy dz \\ &= \left[\mathcal{V}_{x}(x_{N}) - \mathcal{V}_{x}(x_{0}) \right] dy dz \\ &= \left[\mathcal{V}_{x}(x_{N}) - \mathcal{V}_{x}(x_{0}) \right] dy dz \\ &= \mathcal{V}_{x}(x_{max}) \left(+ dy dz \right) + \mathcal{V}_{x}(x_{min}) \left(- dy dz \right) \end{aligned}$	
(Green's theorem) Note, for scalar fields $u \notin v$, $\nabla \cdot (u \nabla v - v \nabla u) = u \nabla^2 v - v \nabla^2 u$ $\int_{\nabla v} dz \times Eq.(2)$ $\int_{\nabla v} dz \nabla \cdot (u \nabla v - v \nabla u) = \int_{\nabla v} dz (u \nabla^2 v - v \nabla^2 u)$	(2)
Applying Gaup's theorem to the l.h.s., $ \int d\sigma \cdot (u\nabla v - v\nabla u) = \int_{V} d\tau (u\nabla^{2}v - v\nabla^{2}u) $ Or, using the surface-normal derivative, $ \int d^{2}r_{s}(u\frac{\partial}{\partial m_{s}}v - v\frac{\partial}{\partial m_{s}}u) = \int d^{3}r(u\nabla^{2}v - v\nabla^{2}u) $	(3) (4)

Generalized logarithmic derivative $\left[-\frac{\dot{h}^2}{2m}\nabla_{\Gamma}^2 + V(ir) - \varepsilon\right] \psi(ir) = 0 \quad \text{if } \varepsilon I$ (5) $[-\frac{\hbar^2}{2m}\nabla_{r'}^2 + V(ir) - \epsilon]G(ir,ir';\epsilon) = \delta(ir-ir') \quad \text{ir, ir'} \in \mathbb{I}$ (6)cluster I I T ~ environment [3r'G(1r,1r'; E) × Eg. (5) -] 3r' 4(1r') × Eg. (6) ∫d³r G(1,1,1,ε) (- π² ν²) ψ(1) + [V(1) ε] G(1,1,ε) ψ(1) $-\psi(\mathbf{i}\mathbf{r}')\left(-\frac{\hbar^{2}}{2m}\nabla_{\mathbf{i}\mathbf{r}'}^{2}\right)G(\mathbf{i}\mathbf{r},\mathbf{i}\mathbf{r}';\epsilon)-[\nabla(\mathbf{i}\mathbf{n}-\epsilon)^{2}\psi(\mathbf{i}\mathbf{r}')G(\mathbf{i}\mathbf{r},\mathbf{i}\mathbf{r}';\epsilon)]=-\int_{\underline{u}}d^{3}\mathbf{r}'\psi(\mathbf{i}\mathbf{r}')\delta(\mathbf{i}\mathbf{r}-\mathbf{i}\mathbf{r}')$ $\frac{\hbar^2}{2m} d^3r' \nabla_{ir'} \cdot \left[G(ir, ir'; \epsilon) \nabla_{ir'} \psi(ir') - \psi(ir') \nabla_{ir'} G(ir, ir'; \epsilon) \right] = -\psi(ir)$ Using Green's theorem, $+\frac{\hbar^2}{2m} \int d^2r_s \left[G(r_s, r_s; \varepsilon) \frac{\partial \psi(r_s)}{\partial r_s} - \psi(r_s) \frac{\partial}{\partial r_s} G(r_s, r_s; \varepsilon) \right] = -\psi(r)$ * Here, we have defined the surface-normal derivative, "out-going from region I". If we define G(Ir, Ir; E) with the boundary condition that $\partial G/\partial N_s = 0$ on S, then $\Psi(ir) = -\frac{\hbar^2}{2m} d^2r_s G(ir, ir_s; \varepsilon) \frac{\partial \Psi(ir_s)}{\partial n_s}$ (7) Putting Ir on S, $\psi(ir_s) = \frac{\hbar^2 \int_{\mathcal{C}} d^2r_s \cdot G(ir_s, ir_s'; \epsilon)}{2m_c} \frac{\partial \psi(ir_s')}{\partial n_c}$ (8) Inverting Eq.(8), $\frac{\partial \Psi(ir_s)}{\partial r_s} = -\frac{2m}{\hbar^2} \int_{S} d^2r_s G^{-1}(ir_s, ir_s'; \varepsilon) \Psi(ir_{s'}) \qquad (9)$

Since Eq.(9) connects the wave function value and its derivative on the boundary surface, G^{-1} is a generalization of the logarithmic derivative, $L(E) = (dR/dr)/R(r)|_{r=r_c}$.

Note the inverse Green's function is expressed in terms of the energy eigenstates as

$$G^{-1}(ir,ir'; \varepsilon) = \sum_{n} \langle ir|n \rangle (\varepsilon - \varepsilon_n) \langle n|ir' \rangle$$
 (10)

$$= \sum_{n} \psi_{n}(ir) \left(\varepsilon - \varepsilon_{n} \right) \psi_{n}^{*}(ir') \tag{11}$$

$$E = \int dir_{\perp} \int_{-\Delta}^{\Delta} dx \, \phi^{*}(x, ir_{\perp}) \left(-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} \right) \phi(x, ir_{\perp})$$

$$= -\frac{\hbar^2}{2m} \int d\mathbf{r}_{\perp} \int_{-\Delta}^{\Delta} d\mathbf{r}_{\perp} \left\{ \frac{\partial}{\partial \mathbf{x}} \left[\phi^*(\mathbf{x}, \mathbf{r}_{\perp}) \frac{\partial}{\partial \mathbf{x}} \phi(\mathbf{x}, \mathbf{r}_{\perp}) \frac{\partial}{\partial \mathbf{x}} \phi(\mathbf{x}, \mathbf{r}_{\perp}) \frac{\partial}{\partial \mathbf{x}} \phi(\mathbf{x}, \mathbf{r}_{\perp}) \frac{\partial}{\partial \mathbf{x}} \phi(\mathbf{x}, \mathbf{r}_{\perp}) \right\} \right\}$$

$$=-\frac{\hbar^2}{2m}\int\!d\mathbf{r}_{\perp}\left\{\left[\phi^*(\mathbf{x},\mathbf{r}_{\perp})\frac{\partial}{\partial\mathbf{x}}\phi(\mathbf{x},\mathbf{r}_{\perp})\right]^{\Delta}_{-\Delta}-\left[\int^{\Delta}_{-\Delta}d\mathbf{x}\frac{\partial}{\partial\mathbf{x}}\phi^*(\mathbf{x},\mathbf{r}_{\perp})\frac{\partial}{\partial\mathbf{x}}\phi(\mathbf{x},\mathbf{r}_{\perp})\right\}$$

$$\phi^*(x,ir_1) \left[\frac{\partial}{\partial x} \phi(x,ir_1) \right]_{x=0}^{x+0} \qquad O(\triangle)$$

$$= -\frac{\hbar^2}{2m} \int_{S} d^2 r_S \, \varphi^*(ir_S) \left[\frac{\partial}{\partial r_S} \varphi_+(ir_S) - \frac{\partial}{\partial r_S} \varphi_-(ir_S) \right] \tag{1}$$

(Bottomline) Discontinuity in the first derivative of a wave function has a finite contribution to the energy through the kinetic energy.