# 기상환경 데이터를 활용한 서울시 미세먼지 예측

11조 UTU 박경빈 이우재 허재혁 강아름

# 목차

- 1. 프로젝트 기획 배경 및 목표
- 2. 데이터 수집
- 3. 데이터 전처리
- 4. 예측 모델
- 5. 결론 및 기대효과
- 6. 개발 후기 및 느낀 점
- 7. Q&A

# 구성원



박경빈(팀장) 모델링 & 시각화



강아름 모델링 & 시각화



이우재 전처리 & 모델링



허재혁 전처리 & 모델링

# 프로젝트 기획 배경 및 목표



공기청정기 보유율 2006년 15% 수준, 고농도 미세먼지 재난 상황을 겪었던 2019년 상반기 40%대 진입, 2020년 50% 돌파



# 데이터 수집





# 데이터 전처리

#### 데이터 병합

| lation code | Date       | 802            | CO           | 03             | NO2           | PM10        | PM25        | Тетр | Prec | WS  | Humi | Pres   | cbwd |
|-------------|------------|----------------|--------------|----------------|---------------|-------------|-------------|------|------|-----|------|--------|------|
| 111121      | 2018-01-01 | 0.004833333333 | 0.5541666667 | 0.01458333333  | 0.02929166667 | 32.66666667 | 17.79166667 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111122      | 2018-01-01 | 0.005416866687 | 0.5416866667 | 0.011375       | 0.03975       | 49.54166667 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111123      | 2018-01-01 | 0.007208333333 | 0.6041666667 | 0.01529166667  | 0.03025       | 34.375      | 17.33333333 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111124      | 2018-01-01 | 0.006333333333 | 0.4333333333 | 0.01154166667  | 0.03416666667 | 37.125      | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111125      | 2018-01-01 | 0.003666667    | 0.495833333  | 0.020B3333333  | 0.02870833333 | 36.20833333 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111131      | 2018-01-01 | 0.004791666667 | 0.3416866667 | 0.01116666667  | 0.0293333333  | 39.08333333 | 18.33333333 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111141      | 2018-01-01 | 0.005416666667 | 0.6708333333 | 0.012          | 0.0375        | 41.58333333 | 21.70833333 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111142      | 2018-01-01 | 0.0055         | 0.495833333  | 0.009291666667 | 0.03291666667 | 48          | 22.875      | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111143      | 2018-01-01 | 0.005          | 0.65         | 0.007833333333 | 0.03408333333 | 48.29166667 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111151      | 2018-01-01 | 0.006625       | 0.7208333333 | 0.009833333333 | 0.03725       | 48.25       | 22.66666667 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111152      | 2018-01-01 | 0.006375       | 0.5791666667 | 0.01279166667  | 0.032125      | 46          | 20.58333333 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111154      | 2018-01-01 | 0.008208333333 | 0.6086956522 | 0.009375       | 0.041375      | 43.33333333 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111161      | 2018-01-01 | 0.006958333333 | 0.7083333333 | 0.009625       | 0.04070833333 | 43.04166667 | 19          | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111162      | 2018-01-01 | 0.006416666667 | 0.7791666667 | 0.00675        | 0.050375      | 56.16666667 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111171      | 2018-01-01 | 0.005583333333 | 0.625        | 0.01554166667  | 0.03016666667 | 44.75       | 21.82608696 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111181      | 2018-01-01 | 0.003208333333 | 0.65         | 0.013875       | 0.01691666667 | 40.875      | 21.16666667 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111191      | 2018-01-01 | 0.003666667    | 0.495833333  | 0.02083333333  | 0.02870833333 | 36.20833333 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111201      | 2018-01-01 | 0.005583333333 | 0.6375       | 0.01116666667  | 0.03445833333 | 39.20833333 | 20.95833333 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111202      | 2018-01-01 | 0.00775        | 0.983333333  | 0.005375       | 0.04541666667 | 58.43478261 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111212      | 2018-01-01 | 0.004375       | 0.6958333333 | 0.01120833333  | 0.03775       | 36.20833333 | 13.41666667 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111213      | 2018-01-01 | 0.006291666667 | 0.6416666667 | 0.006875       | 0.04545833333 | 50.58333333 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111221      | 2018-01-01 | 0.007375       | 0.6333333333 | 0.0075         | 0.02520833333 | 47.875      | 28.25       | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111231      | 2018-01-01 | 0.007333333333 | 0.7083333333 | 0.01016866667  | 0.030625      | 47.83333333 | 24.04166667 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111232      | 2018-01-01 | 0.006169666667 | 0.6291666667 | 0.006333333333 | 0.05041666667 | 51.45833333 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111241      | 2018-01-01 | 0.0045         | 0.5541666667 | 0.01183333333  | 0.03625       | 40.16666667 | 18.75       | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111242      | 2018-01-01 | 0.005333333333 | 0.7375       | 0.004916866667 | 0.05168666667 | 48.91666667 | 19.89974937 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111251      | 2018-01-01 | 0.007625       | 0.4791666667 | 0.007916866667 | 0.03716666667 | 38.33333333 | 23.75       | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111261      | 2018-01-01 | 0.006168866667 | 0.6333333333 | 0.009208333333 | 0.034375      | 34.41666667 | 22.33333333 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |
| 111262      | 2018-01-01 | 0.005375       | 0.5791666667 | 0.01016666667  | 0.03129166667 | 49.42857143 | 24.04166667 | -1.3 | 0    | 1.4 | 39.1 | 1016.8 | 290  |

• 미세먼지 & 기상 데이터 병합

#### 파이썬 활용 전처리

```
airdata.head()
   Station code
                    Date
                             SO2
                                       co
                                               03
                                                       NO2
                                                               PM10
                                                                         PM25
        111121 2018-01-01 0.004833 0.554167 0.014583 0.029292 32.666667 17.791667
        111121 2018-01-02 0.004625 0.783333 0.012208 0.036292 32.125000 19.666667
        111121 2018-01-03 0.004583 0.491667 0.017833 0.020625 29.583333 17.583333
        111121 2018-01-04 0.004625 0.662500 0.008792 0.036042 38.708333 23.833333
        111121 2018-01-05 0.005083 0.766667 0.006292 0.044083 47.875000 32.708333
airdata.isnull().sum()
Station code
Date
502
                 917
co
                 961
03
NO2
                 880
PM10
                1267
PM25
dtype: int64
median1=airdata.502.median()
airdata.502.fillna(median1,inplace=True)
median2=airdata.CO.median()
median3=airdata.03.median()
median4=airdata.NO2.median()
median5=airdata.PM10.median()
airdata.CO.fillna(median2,inplace=True)
airdata.03.fillna(median3,inplace=True)
airdata.NO2.fillna(median4,inplace=True)
airdata.PM10.fillna(median5,inplace=True)
airdata.PM25.fillna(median6,inplace=True)
```

- 결측치 제거
- 데이터 스케일링

# 예측모델 - 선형 회귀

#### 선형 회귀 모델 생성

```
PM10: 정확도 = 0.168 → 매우 떨어짐
from sklearn.model_selection import train_test_split
# 목표 변수: 'SO2', 'CO', 'O3', 'NO2', 'PM10', 'PM25'
x = df_dust[['Temp', 'Prec', 'WS', 'Humi', 'Pres', 'cbwd']]
y = df dust[['PM10']]
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2)
# 모델 생성
# from sklearn.linear_model import LinearRegression
mlr1 = LinearRegression()
mlr1.fit(x_train, y_train)
LinearRegression()
# 회귀계수 확인
       PM25 : 정확도 = 0.153 → 매우 떨어짐
       z = df_dust[['PM25']]
       x_train, x_test, z_train, z_test = train_test_split(x, z, train_size=0.8, test_size=0.2)
       # 모델 생성
round(n mlr2 = LinearRegression()
       mlr2.fit(x_train, z_train)
0.168
       LinearRegression()
       # 회귀계수 확인
       print(mlr2.coef_)
       [[-0.50676889 -0.2239161 -6.40522696 0.13947856 -0.1758375
                                                               0.01852609]]
       # 삼수 확인
       print(mlr2.intercept_)
       [208.19247258]
       round(mlr2.score(x_train, z_train), 3)
       0.153
```

#### 시각화 PM10 0.4 0.2 0.0 0.2 1.0 Temp 1.0 0.6 0.6 0.4 0.2 0.0 Humi 1.0 0.8 0.6 0.6 0.4 PM10 0.2 Prec

# 예측모델 - 결정 트리



- 특정 기준에 따라 데이터 구분
- 자식 노드의 불순도가 낮도록 설정
- Leaf Node/Terminal Node의 복잡성 낮추는
   것이 목표

#### 모델 생성 MimMaxScaler - PM10 [13]: x = data[['Temp', 'Prec', 'WS', 'Humi', 'Pres', 'cbwd']] trans=MinMaxScaler() X=trans.fit transform(x) y = data['PM10'] x\_train, x\_test, y\_train, y\_test = train\_test\_split(X, y, train\_size=0.8, test\_size=0.2) [14]: estimator = DecisionTreeRegressor(max\_depth=5) estimator.fit(x\_train,y\_train) [14]: DecisionTreeRegressor(max\_depth=5) [15]: mse= mean\_squared\_error(y\_test,y\_pred) r2 = r2\_score(y\_test,y\_pred) print('MSE : ',mse) print('R2 Score : ', r2) MSE : 1062.688248208727 R2 Score: -0.9681880238461189 [18]: scores=[] for depth in range(1,25): estimator = DecisionTreeDegressor/may denth\_denth estimator.fit y\_pred=estima 22 RMSE r2 = r2 score print('depth 20 scores.append scores=pd.DataFra 18 scores.plot() depth = 1 R2 Sco 16 depth = 2 R2 Sco depth = 3 R2 Sc0 14 12 10 8 15 5 10 20

# 예측모델



# 예측모델 - Random Forest

#### Random Forest 랜덤 포레스트



# 예측모델

#### Random Forest 랜덤 포레스트

• 배깅을 적용한 결정트리의 앙상블

- 포레스트의 크기 T
  - : 트리의 개수를 결정

- 최대 허용 깊이 D
  - : 하나의 트리에서 루트 노드부터

종단 노드까지 노드 수를 결정

#### Extra Trees 엑스트라 트리

- Extremely Randomized Trees
- 비복원 추출

분할(Split)시 최적의
 항목(Feature)을 찾는 랜덤
 포레스트와 달리 랜덤지정

• 랜덤 포레스트 보다 빠른 속도



#### 랜덤 포레스트 모델



#### 엑스트라 트리 모델

# MinMaxScaler - PM 10 # 기名, さらき、善生、台上、川기台、巻き x = data[['Temp', 'Prec', 'WS', 'Humi', 'Pres', 'cbwd']] trans=MinMaxScaler() X=trans.fit\_transform(x) y=data['PM10'] x\_train, x\_test, y\_train, y\_test = train\_test\_split(X, y, train\_size=0.8, test\_size=0.2) etr=ExtraTreesRegressor() etr.fit(x\_train,y\_train) ExtraTre MinMaxScaler - PM 2.5 round(et x = data[['Temp', 'Prec', 'WS', 'Humi', 'Pres', 'cbwd']] trans=MinMaxScaler() X=trans.fit\_transform(x)

```
trans=MinMaxScaler()
X=trans.fit_transform(x)
y_pred=e
r2=r2_sc
print('R
R2: 0.91

ExtraTreesRegressor()
etr.fit(x_train,y_train)

ExtraTreesRegressor()
round(etr.score(x_train, y_train),3)
0.882

round(etr.score(x_test,y_test),3)
```

0.87

R2: 0.870

y\_pred=etr.predict(x\_test)
r2=r2\_score(y\_test,y\_pred)
print('R2: %.3f'%r2)

# 예측모델



# 예측모델



# 예측모델 - 시계열 모델

#### ARIMA

자기 회귀 모델(Auto Regressive),
 이동 평균 모델(Moving Average),
 차분(Integrated)을 합친 모델

 적절한 매개 변수 조합을 찾는 것이 관건(pmdarima)

#### **Prophet**

계절성이 강하고 데이터가 많을수록
 적합

 이상치와 결측치에 대한 영향을 적게 받음

# 예측모델 - 시계열 모델

#### ARIMA 모델



```
1차 차분
diff 1-datal.diff(periods-1).iloc[1:]
diff 1.plot()
plot acf(diff 1)
plot_pacf(diff_1)
plt.show()
                                              - PM10
 100
 -25
 -50
 -75
   2018-01-022018-07-212019-02-062019-08-252020-03-122020-09-28
                       Autocorrelation
  1.0
 0.8
 0.6
 0.4
 0.2
                     Partial Autocorrelation
 1.0
 0.8
 0.6
 0.4
 0.2
 -0.2
```

```
p=range(0,3)
d=range(1,2)
q=range(0,3)
pdq=list(itertools.product(p,d,q))
for i in pdq:
   model - ARIMA(data1,order-i)
    model fit-model.fit()
    aic.append(round(model fit.aic,2))
pd.DataFrame({'(p,d,q)': pdq, 'AIC': aic[:9]})
  (p,d,q)
0 (0.1.0) 9338.98
1 (0, 1, 1) 9330.16
2 (0, 1, 2) 9139.52
3 (1, 1, 0) 9336.49
4 (1, 1, 1) 9138.17
5 (1, 1, 2) 9098.98
6 (2, 1, 0) 9248.62
7 (2.1.1) 9105.88
8 (2, 1, 2) 9100.08
model = ARIMA(data1, order=(1,1,2))
model fit = model.fit(trend='nc', full_output=True, disp=True)
print(model_fit.summary())
                              ARIMA Model Results
Model:
                       ARIMA(1, 1, 2) Log Likelihood
                                                                        4544.589
                              css-mle S.D. of innovations
                                                                         15.343
                     Fri, 16 Jul 2021 AIC
                                                                        9097.018
Time:
                             11:43:40 BIC
                                                                        9117.012
Sample:
                           01-02-2018 HQIC
                                                                        9104.584
                          - 12-31-2020
                           std err
                                                    P> | z |
                                                                           0.975]
ar.L1.D.PM10
                 0.3657
                              0.050
                                                                             0.465
ma.L1.D.PM10
                -8.6897
                             0.051
                                       -11.867
                                                    0.000
                                                                -0.718
                                                                            -0.589
                                                                            -0.236
                                     Roots
                                                     Modulus
AR.1
                2.7343
                                  +0.0000j
                                                                         0.0000
MA.1
                1.0503
                                  +0.0000
                                                      1.0503
                                                                         0.0000
                -2.9287
                                  +0.00007
                                                      2.9287
                                                                         0.5000
```

# **예측모델** - ARIMA 시각화



# 예측모델 - 시계열 모델

#### Prophet 모델

PM10 **PM25** PM10=data.groupby('Date').mean() PM25=data.groupby('Date').mean() PM10.drop(['Station code','S02','C0','03','N02','PM25','Temp','Prec','WS','Humi','Pres',' PM25.drop(['Station code','S02','C0','03','N02','PM10','Temp','Prec','WS','Humi','Pres',' PM25.drop(['Station code','S02','C0','03','N02','PM25','Temp','Prec','WS','Humi','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PR25','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp','Temp','PM25','Temp','PM25','Temp','PM25','Temp','PM25','Temp', PM10.reset index(inplace=True) PM25.reset\_index(inplace=True) PM10.columns=['ds','y'] PM25.columns=['ds','y'] prophet = Prophet(seasonality\_mode='multiplicative', prophet = Prophet(seasonality\_mode='multiplicative', vearly\_seasonality=True. vearly seasonality=True, weekly\_seasonality=True, daily\_seasonality=True, weekly seasonality=True, daily seasonality=True, changepoint\_prior\_scale=0.5) prophet.fit(PM10) changepoint prior scale=0.5) prophet.fit(PM25) INFO:numexpr.utils:NumExpr defaulting to 2 threads. <fbprophet.forecaster.Prophet at 0x7f4180957dd0> future\_data = prophet.make\_future\_dataframe(periods=60, freq='d') forecast data = prophet.predict(future data) future\_data = prophet.make\_future\_dataframe(periods=60, freq='d') forecast\_data[['ds', 'yhat', 'yhat\_lower', 'yhat\_upper']].tail(5) forecast\_data = prophet.predict(future\_data) forecast\_data[['ds', 'yhat', 'yhat\_lower', 'yhat\_upper']].tail(5) y test=tset.PM25[:60] x test=forecast data[['yhat']][-60:] yhat yhat\_lower yhat\_upper **1151** 2021-02-25 60.091501 32,402469 88.673747 mae = mean\_absolute\_error(x\_test,y\_test) **1152** 2021-02-26 64.004163 35.387356 96,324936 mse = mean squared error(x test,y test) print('MAE: %.3f' % mae) **1153** 2021-02-27 65.218504 35.531412 95,552216 print('MSE: %.3f' % mse) **1154** 2021-02-28 60.783802 32.584014 92.368172 **1155** 2021-03-01 65.651140 37.626611 97.208619 fig1 = prophet.plot(forecast data,xlabel='Date',ylabel='PM25')

# 예측모델 - 시계열 모델



# 예측모델 - RMSE

| 이름                | RMSE   |  |  |  |  |
|-------------------|--------|--|--|--|--|
| Linear Regression | 21.106 |  |  |  |  |
| Decision Tree     | 6.986  |  |  |  |  |
| Random Forest     | 7.037  |  |  |  |  |
| Extra Tree        | 7.057  |  |  |  |  |
| ARIMA             | 14.463 |  |  |  |  |
| Prophet           | 23.934 |  |  |  |  |

# 결론 및 기대효과

- 국내 대기 분석을 통한 미세먼지 예측 가능
- 외부 요소 병합시 더 높은 예측률 기대

- 미세먼지 예보를 통해 배출저감 정책 및 조치의 정확성·효과성 향상 및 그에 따른 국민 생활 환경, 삶의 질 향상 기대 가능
- 일시적으로 악화된 기상 여건에 의해 언제든지 고농도 미세먼지
   사례 발생 가능하므로 더욱 강화된 배출 감축 목표 설정 필요

# 개발 후기 및 느낀 점



교육 때 따라서 하는 데이터 전처리와 다르게, 직접 데이터를 수집해서 전처리하고 모델링을 해보니 느낌이 매우 달랐다. 데이터를 보며 새로운 인사이트를 얻어내는 것에 흥미를 느낄 수 있었고, 데이터 사이언스라는 분야가 매력적인 분야라고 느꼈다. 전체적인 과정을 경험할 수 있는 의미 있는 시간이었다.

박경빈





강아름



이우재

정제된 데이터셋만 보다가 결측치가 많은 데이터를 직접 정제하고 쓸 수 있도록 만드는 과정이 쉽지는 않았다. 그렇지만 이런 과정을 직접 해보고 함께 분석도 하면서 인사이트를 도출해보니 생각보다 흥미로운 시간이었다.

> 교육 과정에서 배운 이론을 실제로 적용해서 내 손으로 직접 데이터를 전처리, 분석하는 과정에서 많이 배울 수 있었다. 데이터 사이언스 분야는 프로그래밍도 프로그래밍이지만, 모델들에 대한 이해와 모델을 통해 얻을 수 있는 결과를 어떻게 해석하는 지가 매우 중요하다고 느꼈다



허재혁



# 감사합니다