

July 11–15, 2022
Indian Institute of Science, Bangalore

Modified U-Net Based Covid-19 Lesion Segmentation Using CT Scans

Gopika Gopan K Pavan Sudeesh Peruru Neelam Sinha

Covid-19 Lesions — CT Scans

- Lesions Detection & Segmentation –
 Extend and Severity of the disease
- Manual Segmentation of lesion CT Tedious

- Objective Automated
 Segmentation of lesions in CT slices
 - 2D framework Less computational complexity

Base framework of U-Net framework

Base framework of U-Net framework

Spatial-channel attention modules (contextual relationships)

- Mechanism infused at different stages of the decoder after concatenation of transposed convolution output with cropped features from encoder part
- Have an effective localization by enabling the network to learn channel and spatial interdependencies of the concatenated feature map

Base framework of U-Net framework

Spatial-channel attention modules (contextual relationships)

- Mechanism infused at different stages of the decoder after concatenation of transposed convolution output with cropped features from encoder part
- Have an effective localization by enabling the network to learn channel and spatial interdependencies of the concatenated feature map

Atrous Spatial Pyramid Pooling modules (a wider receptive field)

• After the bottleneck layer and before the final output layer to provide a wider receptive field leading to improved localization of lesions

Base framework of U-Net framework

Spatial-channel attention modules (contextual relationships)

- Mechanism infused at different stages of the decoder after concatenation of transposed convolution output with cropped features from encoder part
- Have an effective localization by enabling the network to learn channel and spatial interdependencies of the concatenated feature map

Atrous Spatial Pyramid Pooling modules (a wider receptive field)

 After the bottleneck layer and before the final output layer to provide a wider receptive field leading to improved localization of lesions

Deep Supervision (lesion focus, less error propagation)

- At different stages of decoder path
- Helps prevent error propagation from lower layers of decoders to higher layers and help in tuning the lower layers of decoder to focus on the lesions

Overall Loss function

Focal Tversky loss

- Overall Loss = 0.5* D1 + 0.2* D2 + 0.2*D3 + 0.1*D4
- D1 TL of Final output (Out1) of the model
- D2 FTL of Out2
- D3 FTL of Out3
- D4 FTL of Out4

COVID-19 CT Lung and Infection Segmentation Dataset

- Two data → .nii
 - 1) Coronacases -512*512 (160~250 slices)
 - 2) Radiopedia 630*630 (60~160 slices)
- Labels: a) right lung, left lung
 - b) infection

MOSMED CT-Scan data (Russian database)

- MOSMED data → .nii format, 1100 subjects
 - CT-0 : Normal CT scan of 254 subjects
 - CT-1: 684 positive subjects with Ground Glass Opacity (GGO), <25% involvement of lung parenchyma (50 subjects annotated for lesions)
 - CT-2: 125 positive subjects with GGO, 25% 50% involvement of lung parenchyma
 - CT-3: 45 positive subjects with GGO and consolidation, 50%-75% involvement of lung parenchyma
 - CT-4: 2 positive subjects with GGO, Consolidation and reticular changes, >75% involvement of lung parenchyma

Literature Results on Mosmed data

- Challenges too small lesions, easily missed by most algorithms
- Limited works test on Mosmed data due to its difficult to segment lesions

Literature	Method	Dice Score
Bressem, et al	3D U-Net + pretrained encoder Resnet18	0.40
Lizzi, et al	3D U-Net + active contour lung segmentation	0.42
Zhang, et al	CoSinGAN	0.47

- Augmentation:
 - Horizontal and vertical flip
 - Rotation 90 (Clockwise/anti-clockwise)

Abalation Studies

Network	Mean Dice Score
Unet + Attn	0.52
Unet+Attn+ASPP	0.54
Unet + Attn+DS	0.55
Ours (Unet+Attn+ASPP+DS)	0.57

Weights in Loss Function

• 0.5 * D1 + 0.2 * D2 + 0.2 * D3 + 0.1 * D4 → Dice Score of 0.57

• 0.25 * D1 + 0.25 * D2 + 0.25 * D3 + 0.25 * D4 → Dice Score of 0.51

• 0.9 * D1 + 0.05* D2 + 0.03* D3 + 0.02* D4 → Dice Score of 0.55

Comparison with other works

Literature	Method	Dice Score
Bressem, et al	3D U-Net + pretrained encoder Resnet18	0.40
Lizzi, et al	3D U-Net + active contour lung segmentation	0.42
Zhang, et al	CoSinGAN	0.47
Proposed	U-Net + Attention+ASPP + Deep Supervision	0.57

Conclusion

- Work presents a U-Net based segmentation framework incorporating Spatial-Channel Attention to extract rich contextual information and Atrous Spatial Pyramid Pooling to provide a wider receptive field to enhance localization of lesions.
- Deep Supervision is used to tune the decoder to focus on the lesions.
- Mean Dice score of $0.57 \rightarrow$ effectiveness of the framework in segmenting hard ROIs of Mosmed data.
- The framework needs to be analyzed further using patch based and volumetric segmentation to improve the overall performance.

Thank You

