1. Doppelintegrale

Bei Funktionen mit einer Variablen gibt $\int_a^b f(x) dx$ den Flächeninhalt (mit Vorzeichen) zwischen dem Schaubild von f und dem Intervall [a,b] auf der x-Achse an. [a,b] ist dabei das Integrationsintervall.

Nun sei durch z = f(x,y) eine Funktion mit zwei Variablen gegeben und A sei ein Bereich innerhalb der Definitionsmenge von f. Dann ist durch das Doppel-Integral $\iint_A f(x,y) dA$ das Volumen (mit Vorzeichen) des Körpers zwischen der Grundfläche A und dem Schaubild von f bestimmt.

Beispiel 1: $f(x,y)=1-\frac{x}{3}-\frac{y}{2}$ mit $x,y\in\mathbb{R}$. Das Schaubild von f ist eine Ebene mit den Spurpunkten (3,0,0), (0,2,0) und (0,0,1). Zusammen mit dem Ursprung bestimmen diese vier Punkte eine Pyramide. (Siehe Bild) Ihre Grundfläche mit den drei Eckpunkten $(0\,|\,0)$, $(3\,|\,0)$ und $(0\,|\,2)$ der xy-Ebene hat den Flächeninhalt $A=\frac{1}{2}\cdot 3\cdot 2=3$ und die Höhe h=1. Dann folgt für das Pyramiden-

volumen $V = \frac{1}{3} \cdot A \cdot h = \frac{1}{3} \cdot 3 \cdot 1 = 1$.

Dieses Volumen lässt sich auch mit Hilfe des Integrals $V = \int\limits_V dV = \iint\limits_A f(x,y) \, dA$

berechnen. Dabei stellt $dV = f(x,y) \cdot dA = \left(1 - \frac{x}{3} - \frac{y}{2}\right) \cdot dx \cdot dy$ das Volumen einer Säule mit der kleinen rechteckigen Grundfläche $dA = dx \cdot dy$ und der jeweiligen Höhe $f(x,y) = 1 - \frac{x}{3} - \frac{y}{2}$ dar. Die Frage ist nun, wie man geschickt alle diese kleinen Volu-

mina dV addiert, so dass schließlich alle Flächenelemente dA der gesamten Dreiecksfläche miterfasst sind.

Die Gerade durch die beiden Punkte (3|0) und (0|2) der Grundfläche A hat die Gleichung $y = 2 - \frac{2}{3}x$.

1. Möglichkeit: Man zerlegt die Dreiecksfläche A in Streifen parallel zur y-Achse mit dem unteren Ende y=0 und dem oberen Ende $y=2-\frac{2}{3}x$. Dann gibt $\int\limits_{y=0}^{2-\frac{2}{3}x}f(x,y)dy\,dx$ das Volumen über dem Streifen der Breite dx an der Stelle x an. Durch eine weitere Integration (Summation) von x=0 bis x=3 erhält man das gesamte Pyramidenvolumen:

$$\begin{split} V &= \iint_A f(x,y) \, dA = \int\limits_{x=0}^3 \int\limits_{y=0}^{2-\frac{2}{3}x} f(x,y) \, dy \, dx = \int\limits_{x=0}^3 \int\limits_{y=0}^{2-\frac{2}{3}x} \left(1 - \frac{x}{3} - \frac{y}{2}\right) dy \, dx = \int\limits_{x=0}^3 \left[y - \frac{x \cdot y}{3} - \frac{y^2}{4} \right]_{y=0}^{2-\frac{2}{3}x} \, dx = \\ &= \int\limits_{x=0}^3 \left(2 - \frac{2}{3} x - \frac{x \cdot (2 - \frac{2}{3} x)}{3} - \frac{(2 - \frac{2}{3} x)^2}{4} \right) dx = \int\limits_{x=0}^3 \left(1 - \frac{2}{3} x + \frac{1}{9} x^2 \right) dx = \left[x - \frac{1}{3} x^2 + \frac{1}{27} x^3 \right]_0^3 = 3 - 3 + 1 = 1 \, . \end{split}$$

2. Möglichkeit: Löst man $y=2-\frac{2}{3}x$ nach x auf, so folgt $x=3-\frac{3}{2}y$. Man zerlegt A in Streifen parallel zur x-Achse (von x=0 bis $x=3-\frac{3}{2}y$). Dann ergibt sich $V=\iint_{S} f(x,y) \, dA = \int_{0}^{2} \int_{0}^{3-\frac{3}{2}y} \left(1-\frac{x}{3}-\frac{y}{2}\right) dx \, dy = \int_{0}^{2} \left[x-\frac{x^{2}}{6}-\frac{x\cdot y}{2}\right]^{3-\frac{3}{2}y} \, dy =$

$$= \int\limits_{y=0}^{2} \left(3 - \frac{3}{2}y - \frac{(3 - \frac{3}{2}y)^2}{6} - \frac{(3 - \frac{3}{2}y) \cdot y}{2}\right) dy = = \int\limits_{y=0}^{2} \left(\frac{3}{2} - \frac{3}{2}y + \frac{3}{8}y^2\right) dy = \left[\frac{3}{2}y - \frac{3}{4}y^2 + \frac{1}{8}y^3\right]_0^2 = 3 - 3 + 1 = 1.$$

Beispiel 2: Das Parallelogramm A sei begrenzt durch die Geraden x=-1, x=2, y=x-2 und y=x+1, siehe Skizze. Gesucht ist das Integral $\iint f(x,y) \, dA = \iint f(x,y) \, dy \, dx$.

und y = x + 1, siehe Skizze. Gesucht ist das Integral $\iint_A f(x, y) dA = \iint_A f(x, y) dy dx$.

a. Wir zerlegen A in senkrechte Streifen der Breite dx, die unten bei y = x - 2 beginnen

und oben bei y=x+1 enden. Dann folgt $\iint_A f(x,y) \, dy \, dx = \int\limits_{x=-1}^2 \int\limits_{y=x-2}^{x+1} f(x,y) \, dy \, dx$. Als Beispiel wählen wir f(x,y)=1. Dann wird durch $\iint f(x,y) \, dy \, dx$ das Volumen des

Parallelflachs über dem Parallelgramm A und der Höhe h=1 bestimmt. Dieser Zahlenwert stimmt dann wegen h=1 mit dem Inhalt der Parallelogrammfläche überein:

$$A = \int_{x=-1}^{2} \int_{y=x-2}^{x+1} 1 \, dy \, dx = \int_{x=-1}^{2} \left[y \right]_{y=x-2}^{x+1} dx = \int_{x=-1}^{2} 3 \, dx = \left[3x \right]_{-1}^{2} = 9 \text{ . Das gleiche Ergebnis erhält man mit Hilfe}$$

der Formel für den Inhalt der Parallelogrammfläche $A=g\cdot h=3\cdot 3=9$; $g=Grundseite, h=H\"{o}he.$

b. Zerlegt man ungeschickterweise die Parallelogrammfläche A in waagerechte Streifen der Breite dy , so reichen die Streifen im unteren Dreieck von x=-1 bis x=y+2, während die oberen Streifen von x=y-1 bis x=2 gehen. Somit benötigen wir zwei getrennte Integrale, eines für das untere und eines für das obere Derieck.

Teil unter der x-Achse:

$$A_1 = \int\limits_{y=-3}^0 \int\limits_{x=-1}^{y+2} 1 \, dx \, dy = \int\limits_{y=-3}^0 \left[x\right]_{x=-1}^{x=y+2} \, dy = \int\limits_{y=-3}^0 (y+3) \, dy = \left[\frac{1}{2}y^2 + 3y\right]_{y=-3}^{y=0} = 0 - \left(\frac{9}{2} - 9\right) = \frac{9}{2}$$

Teil über der x-Achse:

Tell uber der x-Achse:

$$A_2 = \int_{y=0}^{3} \int_{x=y-1}^{2} 1 dx dy = \int_{y=0}^{3} \left[x \right]_{x=y-1}^{x=2} dy = \int_{y=0}^{3} (3-y) dy = \left[3y - \frac{1}{2}y^2 \right]_{y=0}^{y=3} = \left(9 - \frac{9}{2} \right) - 0 = \frac{9}{2}$$

Somit folgt insgesamt wieder A=9.

c. Der Schwerpunkt

Für den Fall von **zwei Massen** m_1 und

 $m_2 \ \ \text{liegt ihr Schwerpunkt S auf ihrer Verbindungsstrecke, und es gilt das Hebelgesetz} \quad m_1 \cdot r_1 = m_2 \cdot r_2 \ .$ Wenn die beiden Massen auf der x-Achse die Koordinaten $\ x_1$ und $\ x_2$ besitzen, dann liefert das Hebelgesetz $m_1 \cdot (x_S - x_1) = m_2 \cdot (x_2 - x_S) \ .$ Ausmultipliziert $\ m_1 \cdot x_S - m_1 \cdot x_1 = m_2 \cdot x_2 - m_2 \cdot x_S$, dann

$$(m_1+m_2)\cdot x_S = m_1\cdot x_1 + m_2\cdot x_2 \;,\;\; d.h. \quad x_S = \frac{1}{m}\cdot \left(m_1\cdot x_1 + m_2\cdot x_2\right) \quad mit \;\; m = m_1 + m_2 \;.$$

Auf der x-Achse liege nun ein **Stab** der Länge ℓ und der Masse m. Um seinen Schwerpunkt S zu bestimmen, wird er in n kleine Stücke der gleichen Masse Δm unterteilt. Ihre x-Koordinaten seien x_1, x_2, \ldots, x_n . Der

 $\text{Schwerpunkt hat dann die } x\text{-}Koordinate \ \ x_S = \frac{1}{m} \cdot \left(x_1 \cdot \Delta m + x_2 \cdot \Delta m + \ ... + x_n \cdot \Delta m \right).$

Für $n \to \infty$ folgt daraus $x_S = \frac{1}{m} \cdot \int_m x \, dm$.

Spezialfall: Der Stab sei homogen mit der konstanten Liniendichte $\rho = \frac{m}{\ell}$ der Einheit kg/m. Dann gilt

$$x_S = \frac{1}{m} \cdot \int\limits_m x \, dm = \frac{1}{\rho \cdot \ell} \cdot \int\limits_{x_1}^{x_2} x \cdot \rho \, dx = \frac{1}{\ell} \cdot \int\limits_{x_1}^{x_2} x \, dx = \frac{1}{\ell} \cdot \left[\frac{1}{2} x^2 \right]_{x_1}^{x_2} = \frac{1}{2\ell} \cdot \left(x_2^2 - x_1^2 \right) = \frac{1}{2\ell} \cdot \left(x_2 - x_1 \right) \left(x_2 + x_1 \right) = \frac{x_1 + x_2}{2},$$

denn $\ell = x_2 - x_1$. Der Schwerpunkt liegt wie erwartet in der Mitte des Stabes.

Wir betrachten nun ein **Flächenstück** vom Inhalt A, das in der xy-Ebene liegt. Dann gilt für die y-Koordinate des Schwerpunkts S die analoge Formel $y_S = \frac{1}{m} \cdot \int\limits_{-\infty}^{\infty} y \, dm$.

Spezialfall: Das Flächenstück sei **homogen** mit der konstanten Flächendichte $\rho = \frac{m}{A}$ der Einheit kg/m².

$$\text{Dann gilt} \quad x_S = \frac{1}{m} \cdot \int\limits_m x \, dm = \frac{1}{\rho \cdot A} \cdot \int\limits_A x \cdot \rho \, dA = \frac{1}{A} \cdot \int\limits_A x \, dA \text{ . Analog mit } y_S \, .$$

$$\text{Allgemein gelten die Formeln} \qquad \boxed{ x_S = \frac{1}{A} \iint_A x \ dA \ \ \text{und} \ \ y_S = \frac{1}{A} \iint_A y \ dA } \ .$$

Für obige Parallelogrammfläche folgt dann

$$\begin{split} x_s \cdot A &= \iint\limits_A x \; dA = \int\limits_{x=-1}^2 \int\limits_{y=x-2}^{x+1} x \; dy \; dx = \int\limits_{x=-1}^2 \left[xy \right]_{y=x-2}^{x+1} dx = \int\limits_{x=-1}^2 3x \, dx = \left[\frac{3}{2} x^2 \right]_{-1}^2 = \frac{9}{2} \text{, so dass } x_s = \frac{1}{2} \text{.} \\ y_s \cdot A &= \iint\limits_A y \, dA = \int\limits_{x=-1}^2 \int\limits_{y=x-2}^{x+1} y \, dy \, dx = \int\limits_{x=-1}^2 \left[\frac{1}{2} y^2 \right]_{y=x-2}^{x+1} dx = \int\limits_{x=-1}^2 (3x-1,5) \, dx = \left[1,5x^2-1,5x \right]_{-1}^2 = 0 \text{, so dass } y_s = 0 \text{, also } S \left(\frac{1}{2} \middle/ 0 \right) \text{.} \end{split}$$

Beispiel 3: Das Parallelogramm A wird begrenzt durch die vier Geraden y=-2, y=1, y=x+1 und y=x-2. Über dieser Fläche A soll nun ein Dach der Form $f(x,y)=x^2+y^2+1$ errichtet und das Volumen V der Konstruktion bestimmt werden. Zur Berechnung von $V=\iint f(x,y)\,dA$ empfiehlt sich die Zerlegung in

waagerechte Streifen, die von der linken Geraden x = y - 1 bis zur rechten Geraden x = y + 2 reichen.

Somit ergibt sich
$$\iint\limits_A f(x,y)\,dy\,dx = \int\limits_{y=-2}^1 \int\limits_{x=y-1}^{y+2} f(x,y)\,dx\,dy$$
. Dann folgt

$$\int\limits_{y=-2}^{1}\int\limits_{x=y-1}^{y+2}(x^2+y^2+1)\,dx\,dy = \int\limits_{y=-2}^{1}\biggl[\frac{1}{3}x^3+xy^2+x\biggr]_{x=y-1}^{y+2}\,dy = \int\limits_{y=-2}^{1}(6y^2+3y+6)\,dy = \biggl[2y^3+\frac{3}{2}y^2+6y\biggr]_{-2}^{1} = \frac{63}{2}\,.$$

Wählt man dagegen die andere Integrationsreihenfolge mit senkrechten Streifen, so muss die Parallelogrammfläche in einen Teil links und einen Teil rechts der y-Achse zerlegt werden.

Für das linke Dreieck gilt

$$\int_{x=-3}^{0} \int_{y=-2}^{x+1} (x^2 + y^2 + 1) dy dx = \int_{x=-3}^{0} \left[x^2 y + \frac{1}{3} y^3 + y \right]_{y=-2}^{y=x+1} dx = \int_{x=-3}^{0} \left(\frac{4}{3} x^3 + 4 x^2 + 2 x + 6 \right) dx = 18.$$

Für das rechte Dreieck gilt
$$\int_{x=-3}^{3} \int_{x=-3}^{1} (x^2 + y^2 + 1) dy dx = \int_{x=-3}^{3} \left(-\frac{4}{3} x^3 + 5 x^2 - 5 x + 6 \right) dx = \frac{27}{3}$$

Für das rechte Dreieck gilt $\int\limits_{x=0}^{3} \int\limits_{y=x-2}^{1} (x^2+y^2+1) \, dy \, dx = \int\limits_{x=0}^{3} \left(-\frac{4}{3} \, x^3 + 5 x^2 - 5 x + 6 \right) \! dx = \frac{27}{2} \, . \quad \text{Zusammen}$

$$18 + \frac{27}{2} = \frac{63}{2} \ .$$

Beispiel 4: Der Bereich A sei ein Kreis oder ein Kreisausschnitt um den Ursprung $(0\,|\,0)$. Dann verwendet man vorteilhaft die **Polarkoordinaten** r und ϕ . Für diese gilt $\boxed{x=r\cdot\cos\phi}$ und $y=r\cdot\sin\phi$. Die Fläche A wird dann zerlegt in kleine Flächenstücke dA, wie in der Skizze farblich dargestellt. Sie werden als kleine Rechtecke vom Inhalt $\boxed{dA=dr\cdot r\ d\phi=r\ dr\ d\phi}$ interpretiert. Dabei ist dr die radiale Strecke und $r\ d\phi$ der kleine Kreisbogen. ϕ wird dabei im Bogenmaß gemessen.

a. Um beispielsweise die Fläche eines Kreises vom Radius R zu berechnen, wählt man $f(r, \phi) = 1$, denn dann stimmt der Zahlenwert des Zylindervolumens mit dem Zahlenwert der Grundfläche überein.

$$\int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} 1r \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \left[\frac{1}{2}r^2\right]^R d\phi = \int\limits_{\phi=0}^{2\pi} \frac{1}{2}R^2 \, d\phi = \left[\frac{1}{2}R^2\phi\right]^{2\pi} = \frac{1}{2}R^2 \cdot 2\pi = \pi R^2 \ \, \text{oder}$$

$$\int\limits_{r=0}^{R} \int\limits_{\phi=0}^{2\pi} 1 \, r \, d\phi \, dr = \int\limits_{r=0}^{R} \left[r \cdot \phi \right]_{\phi=0}^{2\pi} \! d\phi = 2\pi \int\limits_{r=0}^{R} r \, dr = 2\pi \Bigg[\frac{1}{2} \, r^2 \Bigg]_{\phi=0}^{2\pi} = 2\pi \cdot \frac{1}{2} \, R^2 = \pi R^2 \; .$$

Mit rechtwinkligen Koordinaten ist die Berechnung schwieriger. Mit der Kreisgleichung $x^2 + y^2 = r^2$ folgt

$$\int\limits_{x=-R}^{R}\int\limits_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}}1\,dy\,dx = \int\limits_{x=-R}^{R}\left[y\right]\int\limits_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}}dx = \int\limits_{x=-R}^{R}2\sqrt{R^2-x^2}\,dx = \left[x\sqrt{R^2-x^2}+R^2\cdot\arctan\frac{x}{\sqrt{R^2-x^2}}\right]_{-R}^{R} = \int\limits_{x=-R}^{R}\left[x\sqrt{R^2-x^2}+R^2\cdot\arctan\frac{x}{\sqrt{R^2-x^2}}\right]_{-R}^{R} = \int\limits_{x=-R}^{R}\left[x\sqrt{R^2-x^2}+R^2\cdot\arctan\frac{x}{\sqrt{R^2-x^2}}\right]_{-R}^{R}$$

$$=R^2 \cdot \arctan(\infty) - R^2 \cdot \arctan(-\infty) = R^2 \cdot \frac{\pi}{2} - R^2 \cdot \left(-\frac{\pi}{2}\right) = \pi R^2. \quad \text{Zur Erinnerung: } \arctan'(x) = \frac{1}{1+x^2}.$$

b. In der xy-Ebene sei A die Kreisfläche um den Ursprung (0|0) und dem Radius R. Auf A ist die Funktion f mit $f(r, \varphi) = e^{-r}$ definiert. Dann wird das Volumen V(R) zwischen dem Schaubild von f und dem Kreis A gleich

$$V(R) = \iint\limits_A f(r,\phi) \ dA = \int\limits_{r=0}^R \int\limits_{\phi=0}^{2\pi} e^{-r} \ r \ d\phi \ dr = 2\pi \int\limits_{r=0}^R e^{-r} \ r \ dr = 2\pi \cdot \left[(-1-r) \, e^{-r} \, \right]_{r=0}^R = 0$$

 $=2\pi(1-(1+R)e^{-R})$. Das zweite Integral erhält man durch partielle Integration.

Außerdem ist $\lim_{R \to \infty} V(R) = 2\pi$.

2. Dreifachintegrale

Durch w = f(x, y, z) ist eine Funktion mit drei Variablen gegeben. Wir betrachten nun das Integral $\iiint f(x,y,z) \, dV$, wobei V das Volumen eines dreidimensionalen Körpers darstellt.

Beispiel 1: Gegeben ist ein Quader der Kantenlängen a, b, c.

a. Das Volumen dieses Quaders lässt sich als Summe der kleinen Volumenelemente |dV = dx dy dz| bestimmen:

$$V = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \int\limits_{z=0}^{c} dV = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \int\limits_{z=0}^{c} dz \, dy \, dx = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \left[z\right]_{z=0}^{c} dy \, dx = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} c \, dy \, dx = \int\limits_{x=0}^{a} \left[cy\right]_{y=0}^{b} \, dx = \int\limits_{x=0}^{a} bc \, dx = abc \ .$$

Zusatz: Dieses Volumen ließe sich auch mit nur zwei Integralen berechnen: c dy dx ist der kleine Quader.

$$V = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} c \, dy \, dx = \int\limits_{x=0}^{a} \left[cy \right]_{y=0}^{b} \, dx = \int\limits_{x=0}^{a} bc \, dx = abc \ .$$

b. Auf dem Quader sei zum Beispiel die Funktion f durch $f(x, y, z) = x \cdot y \cdot z$ definiert. Dann gilt

$$\int\limits_{x=0}^{a}\int\limits_{y=0}^{b}\int\limits_{z=0}^{c}xyz\;dz\,dy\,dx = \int\limits_{x=0}^{a}\int\limits_{y=0}^{b}\left[\frac{1}{2}xyz^{2}\right]_{x=0}^{c}dy\,dx = \int\limits_{x=0}^{a}\int\limits_{y=0}^{b}\frac{1}{2}xyc^{2}\,dy\,dx = \ ... \ = \frac{1}{8}a^{2}b^{2}c^{2}\,.$$

c. Zur Berechnung des Schwerpunktes eines Quaders bildet man.

$$x_S \cdot V = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \int\limits_{z=0}^{c} x \ dz \, dy \, dx = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \left[xz \right]_{z=0}^{c} \ dy \ dx = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} xc \, dy \ dx = \int\limits_{x=0}^{a} xbc \ dx = \left[\frac{1}{2} x^2 bc \right]_{x=0}^{a} = \frac{1}{2} a^2 bc \ .$$

$$\text{Analog folgt } y_S \cdot V = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \int\limits_{z=0}^{c} y \ dz \, dy \, dx = \frac{1}{2} a b^2 c \quad \text{und} \quad z_S \cdot V = \int\limits_{x=0}^{a} \int\limits_{y=0}^{b} \int\limits_{z=0}^{c} z \ dz \, dy \, dx = \frac{1}{2} a b c^2 \ .$$

Wie erwartet wird der Schwerpunkt $S\left(\frac{a}{2} / \frac{b}{2} / \frac{c}{2}\right)$.

Beispiel 2: Wir betrachten jetzt Rotationskörper bei Rotation um die z-Achse.

Zum Beispiel rotiert die Fläche zwischen dem Schaubild der Funktion $z=f(x)=(x-1)^2$ für $0 \le x \le 1$ und der x-Achse um die z-Achse. Um über dieses Volumen zu integrieren, verwendet man die sogenannten **Zylinderkoordinaten** r, ϕ und z, für die $x=r\cdot\cos(\phi)$, $y=r\cdot\sin(\phi)$ und z=z gilt. Das kleine Volumenelement dV hat dann die Form $\boxed{dV=r\,d\phi\,dr\,dz}$. Allgemein gilt für Rotationskörper dieser Art:

$$\begin{split} V &= \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} dV = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} dz \ r \ dr \ d\phi \\ x_S &= \frac{1}{V} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} x \ dz \ r \ dr \ d\phi = \frac{1}{V} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} r \ cos(\phi) \ dz \ r \ dr \ d\phi = 0 \\ y_S &= \frac{1}{V} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} y \ dz \ r \ dr \ d\phi = \frac{1}{V} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} r \ sin(\phi) \ dz \ r \ dr \ d\phi = 0 \\ z_S &= \frac{1}{V} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=r_{min}}^{r=r_{max}} \int\limits_{z=z_{min}(y,x)}^{z_{max}(y,x)} z \ dz \ r \ dr \ d\phi \end{split}$$

a. Wir bestimmen das Volumen V. Dabei läuft r von 0 bis 1 und z von 0 bis $f(r) = (r-1)^2$.

$$V = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} \int\limits_{z=0}^{(r-1)^2} r \, dz \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} \left[z\right]_{z=0}^{(r-1)^2} r \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^2 \, r \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \left[\frac{1}{4}r^4 - \frac{2}{3}r^3 + \frac{1}{2}r^2\right]_{r=0}^{1} \, d\phi = \frac{1}{12} \cdot 2\pi = \frac{\pi}{6}$$

oder: Aus $z = (r-1)^2$ folgt $r = 1 \pm \sqrt{z}$. Da r < 1 sein muss, gilt $r = 1 - \sqrt{z}$. Und damit

$$V = \int_{\phi=0}^{2\pi} \int_{z=0}^{1} \int_{r=0}^{1-\sqrt{z}} r \, dr \, dz \, d\phi = \int_{\phi=0}^{2\pi} \int_{z=0}^{1} \left[\frac{1}{2} r^2 \right]_{r=0}^{1-\sqrt{z}} \, dz \, d\phi = \int_{\phi=0}^{2\pi} \int_{z=0}^{1} \frac{1}{2} (1-\sqrt{z})^2 \, dz \, d\phi = \int_{\phi=0}^{2\pi} \left[\frac{1}{2} z - \frac{2}{3} z^{3/2} + \frac{1}{4} z^2 \right]_{z=0}^{1} \, d\phi = \frac{1}{12} \cdot 2\pi = \frac{\pi}{6}$$

oder: Mit nur zwei Integralen: $\int_{\phi=0}^{2\pi} \int_{r=0}^{1} (r-1)^2 \ r \ dr \ d\phi = \int_{\phi=0}^{2\pi} \left[\frac{1}{4} r^4 - \frac{2}{3} r^3 + \frac{1}{2} r^2 \right]_{r=0}^{1} \ d\phi = \frac{1}{12} \cdot 2\pi = \frac{\pi}{6} \ .$ Dabei ist

 $(r-1)^2$ r dr d φ der kleine Quader.

b. Zur Berechnung des Schwerpunkts $S(x_S / y_S / z_S)$ bildet man

$$\begin{split} x_S \cdot V &= \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} \int\limits_{z=0}^{(r-1)^2} x \, r \, dz \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} \int\limits_{z=0}^{(r-1)^2} r \cos(\phi) \, r \, dz \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{1} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{r=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) (r-1)^2 \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{2\pi} r^2 \cos(\phi) \, d$$

Wegen der Rotationssymmetrie zur y-Achse war das Ergebnis $x_s = 0$ zu erwarten.

Aus dem gleichen Grund gilt

$$y_{_{S}} \cdot V = \int\limits_{_{\phi = 0}}^{2\pi} \int\limits_{_{r = 0}}^{1} \int\limits_{_{z = 0}}^{_{(r - 1)^{2}}} y\, r\, dz\, dr\, d\phi = \int\limits_{_{\phi = 0}}^{2\pi} \int\limits_{_{r = 0}}^{1} \int\limits_{_{z = 0}}^{_{(r - 1)^{2}}} r\, sin(\phi)\, r\, dz\, dr\, d\phi = 0 \,, \, also \quad y_{_{S}} = 0 \,.$$

$$z_{s} \cdot V = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} \int\limits_{z=0}^{(r-1)^{2}} z \, r \, dz \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} \left[\frac{1}{2} z^{2} \right]_{z=0}^{(r-1)^{2}} r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{1} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi = \frac{1}{2} \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, dr \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^{2\pi} (r-1)^{4} \, r \, d\phi + \int\limits_{\phi=0}^{2\pi} \left[\int\limits_{\phi=0}^$$

$$= \int\limits_{\phi=0}^{2\pi} \left[\frac{1}{12} r^6 - \frac{2}{5} r^5 + \frac{3}{4} r^4 - \frac{2}{3} r^3 + \frac{1}{4} r^2 \right]_{r=0}^1 d\phi = 2\pi \frac{1}{60} = \frac{\pi}{30} \, .$$

Und damit $z_s = \frac{\pi/30}{\pi/6} = \frac{1}{5} = 0.2$. Der Schwerpunkt ist folglich S(0|0|0.2).

Beispiel 3: Der Bereich sei nun eine Kugel vom Radius R. Dazu benötigen wir die Kugelkordinaten r, ϑ und φ . Dabei sind r und φ die bekannten Polarkoordinaten mit $0 \le \varphi \le 2\pi$ und ϑ ist der Winkel, gemessen zur z-Achse mit $0 \le \vartheta \le \pi$. Wir zerlegen die Kugel in kleine Volumenelemente, siehe Skizze der Uni Karlsruhe. Radial besitzt dieses Volumenelement die Länge dr, senkrecht zur xy-Ebene die Länge r d ϑ . Die dritte Seite parallel zur xy-Ebene besitzt die gleiche Länge wie ihre senkrechte Projektion in die xy-Ebene. Diese hat den Abstand $r \cdot \sin \vartheta$ vom Ursprung und besitzt den Mittelpunktswinkel d φ , so dass die Länge $r \cdot \sin \vartheta$ d φ resul-

tiert. Insgesamt folgt das Volumenelement zu $dV = r^2 \sin \theta dr d\theta d\phi$.

Als Beispiel berechnen wir das Volumen V einer Kugel vom Radius R:

$$V = \int\limits_{\varphi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} \int\limits_{r=0}^{R} 1 \; r^2 \sin \theta \, dr \, d\theta \, d\phi = \int\limits_{\varphi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} \left[\frac{1}{3} r^3 \right]_{r=0}^{R} \sin \theta \, d\theta \, d\phi = \int\limits_{\varphi=0}^{2\pi} \left[-\frac{1}{3} R^3 \cos \theta \right]_{\theta=0}^{\pi} d\phi = \int\limits_{\varphi=0}^{2\pi} \frac{2}{3} R^3 d\phi = \frac{4}{3} \pi R^3 \; .$$

Zusatz: Umrechnung von Kugelkoordinaten in rechtwinklige Koordinaten. Es sei r_9 die Projektion von r auf die xy-Ebene. (Abbildung Wikipedia)

$$x = r_9 \cdot \cos \varphi = r \cdot \sin \vartheta \cdot \cos \varphi$$
, $y = r_9 \cdot \sin \varphi = r \cdot \sin \vartheta \cdot \sin \varphi$, $z = r \cdot \cos \vartheta$.

$$\label{eq:Umgekehrt:} Umgekehrt: \quad r = \sqrt{x^2 + y^2 + z^2} \; , \; \cos \vartheta = \frac{z}{r} \; , \; \cos \varphi = \frac{x}{r \cdot \sin \vartheta} \; , \; \sin \varphi = \frac{y}{r \cdot \sin \vartheta} \; .$$

Beispiel: Schwerpunkt S einer Kugel vom Radius R um den Ursprung

Anwendung: Das Trägheitsmoment J eines starren Körpers

Die kinetische Energie (Bewegungsenergie) einer punktförmigen Masse m, die sich mit der Geschwindigkeit v bewegt, beträgt $E = \frac{1}{2} m \, v^2$.

Speziell, wenn die Masse m mit der Geschwindigkeit v auf einem Kreis vom Radius r umläuft, dann lässt sich v umformen in $v=\frac{2\pi r}{T}=r\frac{2\pi}{T}=r\,\omega$ mit der Umlaufdauer T und der Winkelgeschwindigkeit $\omega=\frac{2\pi}{T}$, so dass $E=\frac{1}{2}m\,v^2=\frac{1}{2}m\,r^2\omega^2$.

Falls ein starrer Körper aus mehreren Punktmassen m_i , i=1..n, besteht, dann haben alle diese Punktmassen die gleiche Umlaufzeit T und folglich die gleiche Winkelgeschwindigkeit $\omega=\frac{2\pi}{T}$. Wenn r_i den Abstand von m_i zur Drehachse bezeichnet, dann beträgt die gesamte kinetische Energie des Körpers

$$E = \sum_{i=1}^n \tfrac{1}{2} \, m_i \, \, v_i^{\, 2} = \sum_{i=1}^n \tfrac{1}{2} \, m_i \, \, r_i^{\, 2} \, \omega^2 = \tfrac{1}{2} \Biggl(\sum_{i=1}^n \, m_i \, \, r_i^{\, 2} \Biggr) \omega^2 = \tfrac{1}{2} \, J \, \omega^2 \quad \text{mit dem Trägheitsmoment} \quad J = \sum_{i=1}^n \, m_i \, \, r_i^{\, 2} \, \, . \label{eq:energy}$$

Um das Trägheitsmoment eines zusammenhängenden Körpers zu bestimmen, wird seine Masse m in kleine Massen dm zerlegt und deren Trägheitsmomente aufsummiert: $J=\int r^2\,dm\,.$

Wenn man annimmt, dass der Körper eine einheitliche Dichte ρ besitzt, dann gilt wegen $m=\rho\cdot V$ auch $dm=\rho\,dV$, so dass $J=\int\limits_m r^2\,dm=\int\limits_V r^2\,\rho\;dV=\rho\int\limits_V r^2\,dV$.

Und mit diesem Integral $\int_{V}^{\infty} r^2 dV$ wollen wir uns nun beschäftigen.

Beispiel 1: Ein homogener Zylinder vom Radius R und der Höhe h rotiert um seine Achse.

Wir zerlegen den Zylinder in kleine achsenparallele Hohlzylinder der Dicke dr und der Höhe h. Thre Querschnittsfläche beträgt $dA = \pi (r + dr / 2)^2 - \pi (r - dr / 2)^2 dh = 2\pi r dr$, sodass sich

$$dV = 2\pi r \, dr \, h \, ergibt. \ \, Und \, somit \ \, \int\limits_{V} r^2 \, dV = \int\limits_{r=0}^{R} r^2 \, 2\pi \, r \, h \, dr = 2\pi h \int\limits_{r=0}^{R} r^3 \, dr = \frac{1}{2}\pi \, R^4 h \, \, .$$

Mit der Dichte ρ folgt dass das Trägheitsmoment zu

$$J = \rho \int\limits_V r^2 \, dV = \rho \cdot \frac{1}{2} \, \pi \, R^4 \, h = \frac{1}{2} \rho \cdot \pi \, R^2 \, h \cdot R^2 = \frac{1}{2} \rho \cdot V \cdot R^2 = \frac{1}{2} m \cdot R^2 \, .$$

Wir legen den Ursprung in den Mittelpunkt des Quaders und die Koordinatenachsen parallel zu den Quaderkanten. Mit dV = dx dy dz wird

$$\int_{V} r^{2} dV = \int_{z=-h/2}^{h/2} \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} (x^{2} + y^{2}) dx dy dz = h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} (x^{2} + y^{2}) dx dy = h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} x^{2} dx dy + h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} y^{2} dx dy = b h \int_{x=-a/2}^{a/2} x^{2} dx + a h \int_{y=-b/2}^{b/2} y^{2} dy = b h \frac{1}{12} a^{3} + a h \frac{1}{12} b^{3} = h \int_{y=-b/2}^{a/2} x^{2} dx dy + h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} x^{2} dx dy + h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} x^{2} dx dy = b h \int_{y=-b/2}^{a/2} x^{2} dx dy + h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} x^{2} dx dy + h \int_{y=-b/2}^{b/2} x^{2}$$

$$h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} x^2 dx dy + h \int_{y=-b/2}^{b/2} \int_{x=-a/2}^{a/2} y^2 dx dy = b h \int_{x=-a/2}^{a/2} x^2 dx + a h \int_{y=-b/2}^{b/2} y^2 dy = b h \frac{1}{12} a^3 + a h \frac{1}{12} b^3 = 0$$

$$\frac{1}{12} a \, b \, h \Big(a^2 + b^2 \Big) = \frac{1}{12} \, V \cdot \Big(a^2 + b^2 \Big) \, . \ \ Und \ somit \ \ J = \frac{1}{12} \, \rho \, V \cdot \Big(a^2 + b^2 \Big) = \frac{1}{12} \, m \cdot \Big(a^2 + b^2 \Big) \, .$$

$$\text{umformen in } \frac{1}{3} a^3 b \, h + \frac{1}{12} a \, b^3 \, h = \frac{1}{12} a \, b \, h \left(a^2 + b^2 \right) + a \, b \, h \cdot \left(\frac{a}{2} \right)^2 \, , \, \text{so dass } \, J = \frac{1}{12} \, m \cdot \left(a^2 + b^2 \right) + m \cdot \left(\frac{a}{2} \right)^2 \, .$$

Dies stimmt mit dem Satz von Steiner überein: Es sei J_S das Trägheitsmoment eines Körpers der Masse m bezüglich einer Rotationsachse durch den Schwerpunkt S und J sei das Trägheitsmoment bezüglich einer dazu parallelen Rotationsachse im Abstand d, dann gilt $J = J_S + m d^2$. Im Beispiel 2b ist d = a/2.

Mit Hilfe der Kugelkoordinaten gilt $dV = r^2 \sin \theta$ dr $d\theta$ d ϕ mit $0 \le r \le R$, $0 \le \theta \le \pi$ und $0 \le \phi \le 2\pi$. Dabei bezeichnet r den Abstand des Volumenelements $\,dV$ vom Ursprung. Dagegen bedeutet r im Integral $\,\int r^2\,dV\,\,$ den

Abstand von dV zur Drehachse. Aus der Skizze im Abschnitt "Kugelkoordinaten" erkennt man, dass der Abstand des Volumenelements dV gerade r sin 9 beträgt. Somit lautet unser Integral

$$\int\limits_{V} (r \sin 9)^2 \, dV = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} (r \sin 9)^2 \, r^2 \sin 9 \, \, dr \, \, d\phi \, \, d9 = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, \, d9 = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, \, dr \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, dr \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, dr \, d\phi \, d\theta = \int\limits_{9=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} r^4 \, (\sin 9)^3 \, dr \, d\phi \, d\theta = \int\limits_{\phi=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{R} r^4 \, (\sin 9)^3 \, dr \, d\phi \, d\theta = \int\limits_{\phi=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{R} r^4 \, (\sin 9)^3 \, dr \, d\phi \, d\theta = \int\limits_{\phi=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \int\limits_{\phi=0}^{\pi} \int$$

$$\frac{1}{5}R^{5}\int\limits_{9=0}^{\pi}\int\limits_{0=0}^{2\pi}(\sin 9)^{3}\,d\phi\,d\theta = \frac{2\pi}{5}R^{5}\int\limits_{9=0}^{\pi}(\sin 9)^{3}\,d\theta = \frac{2\pi}{5}R^{5}\left[-\frac{1}{3}(\sin 9)^{2}\cos 9 - \frac{2}{3}\cos 9\right]_{9=0}^{9=\pi} = \frac{2\pi}{5}R^{5}\cdot\frac{4}{3} = \frac{2}{5}R^{2}\cdot\frac{4}{3}\pi R^{3} = \frac{2\pi}{5}R^{2}\cdot\frac{4}{3}\pi R^{3} = \frac{2\pi}{5}R^{3}\cdot\frac{4}{3}\pi R^{3} = \frac$$

$$\frac{2}{5}R^2 \cdot V$$
 . Und somit beträgt das Trägheitsmoment $J = \rho \cdot \frac{2}{5}R^2 \cdot V = \frac{2}{5}mR^2$.

3.a.1. Das Kurvenintegral 1. Art im Reellen

Gegeben sei eine stetige Funktion z = f(x, y) der Definitionsmenge D in der xy-Ebene. In D sei eine **Kurve C** gegeben. Siehe nebenstehende Grafiken der

TU Dresden.

Im ersten Schaubild ist die Parabel C: $y = 4x \cdot (1-x)$ dargestellt. Das zweite Schaubild zeigt die Ebene, die zur Funktion f(x,y) = 1-x gehört. Im dritten Schaubild ist jeder Punkt (x/y) der Kurve C mit dem darüber liegenden Punkt (x/y) des Schaubilds von f verbunden, so dass insgesamt eine (gekrümmte) Fläche im Raum entsteht. Und den Inhalt A dieser Fläche wollen wir bestimmen.

Nun wird die Kurve C in n gleich lange kleine Stücke Δs zerlegt und dadurch die Fläche A in senkrechte Streifen vom jeweiligen Flächeninhalt $\Delta A_i = f(x_i, y_i) \cdot \Delta s$ unterteilt. Dann stellt $\sum_{i=1}^n f(x_i, y_i) \cdot \Delta s$ die Summe dieser Flächeninhalte dar.

Führt man den Grenzwert $n \to \infty$ aus, so erhält man als Flächeninhalt das **Kurvenintegral 1. Art** $\int_C f(x,y) ds$.

Dazu muss die **Kurve C in Parameterform** $\begin{cases} x = x(t) \\ y = y(t) \end{cases} \text{ mit } a \leq t \leq b \text{ gegeben sein.}$

Nach Pythagoras ist
$$\Delta s = \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2} = \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2} \cdot \Delta t$$
. Für $\Delta t \to 0$ folgt daraus $ds = \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \cdot dt$, so dass
$$\int\limits_C f(x,y) \, ds = \int\limits_{t=a}^{t=b} f(x(t),y(t)) \cdot \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \, dt \qquad \text{gilt.}$$

Beispiel 1: Für die obige Skizze gibt die TU Dresden an: f(x,y) = 1-x und C: $\begin{cases} x(t) = t \\ y(t) = 4t \cdot (1-t) = 4t - 4t^2 \end{cases}$

für $0 \le t \le 1$. Somit beträgt der Flächeninhalt A des abgebildeten "Vorhangs"

$$A = \int_{0}^{1} f(x(t), y(t)) \cdot \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt = \int_{0}^{1} (1 - t) \cdot \sqrt{1^{2} + (4 - 8t)^{2}} dt \text{ . Dieses Integral löst mein PC zu}$$

$$\left[\frac{1}{32} \ln \left(8t - 4 + \sqrt{1 + (8t - 4)^{2}} \right) - \frac{1}{192} \left(64t^{2} - 112t + 41 \right) \cdot \sqrt{64t^{2} - 64t + 17} \right]_{0}^{1} \approx 1,16170$$

Beispiel 2: Berechnung der Länge einer Kurve (Bogenlänge) in der xy-Ebene. Wenn "die Höhe" f(x,y) = 1 gewählt wird, dann stimmen die Zahlenwerte des Flächeninhalts und der Bogenlänge überein.

a. Der Umfang U eines Kreises vom Radius r.

Die Parameterform eines Kreises um den Ursprung vom Radius r lautet $\begin{cases} x(t) = r \cdot cos(t) \\ y(t) = r \cdot sin(t) \end{cases}$ für $0 \le t \le 2\pi$. Es

$$U = \int_{0}^{2\pi} 1 \cdot \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt = \int_{0}^{2\pi} \sqrt{\left(-r \cdot \sin(t)\right)^{2} + \left(r \cdot \cos(t)\right)^{2}} dt = \int_{0}^{2\pi} r \cdot \sqrt{\left(\sin(t)\right)^{2} + \left(\cos(t)\right)^{2}} dt = r \int_{0}^{2\pi} dt = 2\pi r.$$

b. Die Länge L einer Spirale, die gegeben ist durch $\begin{cases} x(t) = t \cdot \cos(t) \\ y(t) = t \cdot \sin(t) \end{cases}$

Für zwei Windungen ist $0 \le t \le 4\pi$, siehe Schaubild. Dann gilt

$$L = \int_{0}^{4\pi} \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt = \int_{0}^{4\pi} \sqrt{\left(\cos(t) - t \cdot \sin(t)\right)^{2} + \left(\sin(t) + t \cdot \cos(t)\right)^{2}} dt =$$

$$\begin{split} &= \int\limits_0^{4\pi} \sqrt{\cos^2(t) - 2t \cdot \sin(t) \cos(t) + t^2 \sin^2(t) + \sin^2(t) + 2t \cdot \sin(t) \cos(t) + t^2 \cos^2(t)} \ dt = \int\limits_0^{4\pi} \sqrt{1 + t^2} \ dt = \\ &= \frac{1}{2} \bigg[t \sqrt{1 + t^2} + \ln \Big(t + \sqrt{1 + t^2} \Big) \bigg]_0^{4\pi} = 2\pi \sqrt{1 + 16\pi^2} + \frac{1}{2} \ln \Big(4\pi + \sqrt{1 + 16\pi^2} \Big) \approx 80,819 \ . \end{split}$$

Beispiel 3: In der Ebene \mathbb{R}^2 ist die Funktion $f(x,y) = \frac{1}{3}x^2 + \frac{1}{2}x \cdot y$ definiert.

a. Die Punkte (0/0) und (3/4) sind auf der Geraden $y = \frac{4}{3}x$ durch den Weg C:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 3t \\ 4t \end{pmatrix}$$
, $0 \le t \le 1$, verbunden. Dann ist

$$\int_{0}^{1} f(x(t), y(t)) \cdot \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt = \int_{0}^{1} (3t^{2} + 6t^{2}) \cdot 5 dt = 5 \cdot \left[3t^{3}\right]_{t=0}^{1} = 15.$$

b. Die Punkte (0/0) und (3/4) sind wieder auf der Geraden $y = \frac{4}{3}x$ durch den gleichen Weg

C:
$$\binom{x(t)}{y(t)} = \binom{3t^2}{4t^2}$$
, $0 \le t \le 1$, verbunden, nur ist die Parametrisierung geändert.

Dann ist $\int_C f\left(x(t),y(t)\right)\cdot\sqrt{\dot{x}(t)^2+\dot{y}(t)^2}\ dt = \int_0^1 (3t^4+6t^4)\cdot 10t\ dt = 10\int_0^1 9t^5\ dt = 15\left[t^6\right]_{t=0}^1 = 15\ , \ das\ gleiche\ Ergebnis\ wie\ a.,\ da\ es\ sich\ um\ die\ gleiche\ Strecke\ handelt.$

c. Die Punkte (0/0) und (3/4) sind wieder auf der Geraden $y = \frac{4}{3}x$ durch den gleichen Weg

C:
$$\binom{x(t)}{y(t)} = \binom{3 \cdot \sin(\frac{\pi}{2}t)}{4 \cdot \sin(\frac{\pi}{2}t)}$$
, $0 \le t \le 1$, verbunden, nur ist die Parametrisierung erneut geändert. Dann folgt

$$\int_{C} f\left(x(t), y(t)\right) \cdot \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} dt = \int_{0}^{1} (3\sin^{2}(\frac{\pi}{2}t) + 6\sin^{2}(\frac{\pi}{2}t) \cdot 5 \cdot \frac{\pi}{2}\cos(\frac{\pi}{2}t) dt = \frac{45\pi}{2} \int_{0}^{1} \sin^{2}(\frac{\pi}{2}t) \cdot \cos(\frac{\pi}{2}t) dt = \frac{45\pi}{2} \cdot \left[\frac{2}{3\pi}\sin^{3}(\frac{\pi}{2}t)\right]^{1} = 15 \cdot (1-0) = 15.$$

Satz: Das Kurvenintegral 1. Art ist unabhängig von der Parametrisierung des Weges C. Dabei muss es sich um den gleichen Weg handeln. Andere Wege können ein anderes Ergebnis liefern.

d. Die Punkte (0/0) und (3/4) werden durch zwei Wege $C_1: \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 3t \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 10 \\ 7.5 \end{pmatrix}$

 $C_2: \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 3 \\ 4t \end{pmatrix}$, jeweils für $0 \le t \le 1$, verbunden. Dann ist

$$\int\limits_{C} f\left(x(t),y(t)\right) \cdot \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \ dt = \int\limits_{0}^{1} 3t^2 \cdot 3 \ dt + \int\limits_{0}^{1} (3+6t) \cdot 4 \ dt == 3 \cdot \left[t^3\right]_{t=0}^{1} + 4 \cdot \left[3t + 3t^2\right]_{t=0}^{1} = 3 + 24 = 27 \ ,$$
 ein anderes Ergebnis.

Beispiel 4a: Die Länge L einer Schraubenlinie vom Radius r und der Ganghöhe h.

$$C\colon \begin{cases} x(t) = r \cdot \cos(t) \\ y(t) = r \cdot \sin(t) & \text{für } 0 \le t \le 4\pi \text{ erhält man zwei Windungen; siehe Bild.} \\ z(t) = a \cdot t \end{cases}$$

Dabei ist $h = 2\pi \cdot a$. Dann gilt

$$L = \int\limits_{C} 1 ds = \int\limits_{0}^{4\pi} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2 + \dot{z}(t)^2} \ dt = \int\limits_{0}^{4\pi} \sqrt{r^2 \cdot sin^2(t) + r^2 \cdot cos^2(t) + a^2} \ dt = \int\limits_{0}^{4\pi} \sqrt{r^2 + a^2} \ dt = 4\pi \cdot \sqrt{r^2 + a^2} \ .$$

Speziell für h = 0 folgt a = 0, also $L = 4\pi r$, der doppelte Kreisumfang.

Zusatz: Eine Windung dieser Schraubenlinie werde auf den Mantel eines Zylinders vom Radius r gezeichnet. Danach wird der Mantel parallel zur Zylinderachse aufgeschnitten und zu einem Rechteck der Länge $2\pi r$ und Höhe h ausgebreitet. Die Schraubenlinie ist dann genau eine Diagonale dieses Rechtecks, deren Länge sich nach Pythagoras $\sqrt{(2\pi r)^2 + h^2} = \sqrt{(2\pi r)^2 + (2\pi a)^2} = 2\pi \cdot \sqrt{r^2 + a^2}$ berechnen lässt.

Beispiel 4b: Es sein nun $f(x, y, z) = x^2 + y^2 + z^2$ und C eine Schraubenlinie mit 2 Windungen, die gegeben ist

$$\begin{split} & \text{Dann folgt} & \int\limits_{C} f\left(x,y,z\right) ds = \int\limits_{0}^{4\pi} f\left(x(t),y(t),z(t)\right) \cdot \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2} + \dot{z}(t)^{2}} \, dt = \int\limits_{0}^{4\pi} \left(r^{2} + a^{2} \cdot t^{2}\right) \sqrt{r^{2} + a^{2}} \, \, dt = \\ & = \sqrt{r^{2} + a^{2}} \cdot \left[r^{2} \cdot t + \frac{1}{3}a^{2} \cdot t^{3}\right]_{0}^{4\pi} = 4\pi \sqrt{a^{2} + r^{2}} \cdot \left(r^{2} + \frac{16}{3}a^{2}\pi^{2}\right). \end{split}$$

 $0 \le t \le 1$. Welche Länge L besitzt diese Kurve?

$$Mit \ sinh(x) = \frac{e^x - e^{-x}}{2} \quad und \quad cosh(x) = \frac{e^x + e^{-x}}{2} \quad folgt \ sinh'(x) = cosh(x) \ und$$

 $\cosh'(x) = \sinh(x) \text{. Außerdem folgt } \cosh^2(x) - \sinh^2(x) = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = \frac{4}{4} = 1 \text{, vergleichbar mit } \cos^2(x) + \sin^2(x) = 1 \text{.}$

Mit
$$\dot{x}(t) = \cosh(2t) + t \sinh(2t) \cdot 2 - \frac{1}{2} \cosh(2t) \cdot 2 = 2t \cdot \sinh(2t)$$
 und $\dot{y}(t) = 2t$ folgt

$$L = \int\limits_{C} 1 \, ds = \int\limits_{0}^{1} \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2}} \, dt = \int\limits_{0}^{1} \sqrt{4t^{2} \cdot \sinh^{2}(2t) + 4t^{2}} \, dt = \int\limits_{0}^{1} 2t \sqrt{\sinh^{2}(2t) + 1} \, dt = \int\limits_{0}^{1} 2t \cdot \underbrace{\cosh(2t)}_{f} dt = \int\limits_{0}^{1} 2t \cdot \underbrace{\cosh($$

$$\left[\underbrace{\frac{1}{2} \sinh(2t) \cdot 2t}_{F} \underbrace{\int_{0}^{1} \frac{1}{2} \sinh(2t) \cdot 2 dt}_{g'} = \left[t \cdot \sinh(2t) - \frac{1}{2} \cosh(2t)\right]_{0}^{1} = \sinh(2) - \frac{1}{2} \cos(2) + \frac{1}{2} = \frac{1}{2} + \frac{1}{4} e^{2} - \frac{3}{4} e^{-2} \approx 2,246.$$

Beispiel 6: Es sei $f(x,y) = x^2 + x \cdot y^2$ mit $-2 \le x \le 2$, $-2 \le y \le 2$. Auf dem Schaubild z = f(x,y) ist eine Kurve gegeben durch

$$\begin{cases} x(t) = t \\ y(t) = t/2 & \text{mit } -2 \le t \le 2. \end{cases}$$

$$z(t) = f(x, y) = t^2 + t \cdot (t/2)^2 = t^2 + t^3/4$$

a. Die Länge der Kurve ist $\int\limits_{-2}^2 1 \cdot \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2 + \dot{z}(t)^2} \, dt =$

$$\frac{1}{4}\int\limits_{-2}^2 \sqrt{9t^4+48t^3+64t^2+20}\,dt$$
 , was sich mit einem CAS berechnen lässt.

b. Durch
$$\int_{-2}^{2} f(x(t), y(t)) \cdot \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2} + \dot{z}(t)^{2}} dt =$$

$$\frac{1}{16} \int_{-2}^{2} (t^{3} + 4t^{2}) \cdot \sqrt{9t^{4} + 48t^{3} + 64t^{2} + 20} dt \text{ ist der Flächeninhalt ge-}$$

3.a.2. Das Kurvenintegral 1. Art im Komplexen

 $\text{Beim Kurvenintegral 1. Art gilt } \int\limits_{C} f(x,y) \, ds = \int\limits_{t=a}^{t=b} f(x(t),y(t)) \cdot \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \, dt \text{ . Dabei ist } C \colon \begin{cases} x = x(t) \\ y = y(t) \end{cases} \text{ mit }$

 $a \le t \le b$ eine in Parameterform gegebene Kurve des \mathbb{R}^2 und $f: D \to \mathbb{R}$ mit $D \subset \mathbb{R}^2$ eine stetige Funktion. Beim komplexen Kurvenintegral $\int\limits_C f(z) dz$ liegt die Kurve C: z = z(t) mit $a \le t \le b$ in der komplexen Zahlen-

ebene $\mathbb C$ und $f:D\!\to\!\mathbb C$ mit $D\!\subset\!\mathbb C$ ist eine stetige Funktion.

Zur Herleitung der Formel für $\int_C f(z) dz$ denkt man sich die Kurve C in n kleine Abschnitte Δz_i zerlegt. Dann gilt

$$\sum_{i=1}^n f(z_i) \cdot \Delta z_i = \sum_{i=1}^n f(z_i) \cdot \frac{\Delta z_i}{\Delta t} \cdot dt \; . \; \text{Und f\"{u}r} \; \; n \to \infty \; \text{erh\"{a}lt man} \; \boxed{ \int\limits_C f(z) \, dz = \int\limits_{t=a}^{t=b} f(z) \cdot \dot{z}(t) \, dt } \; . \; \text{Dabei ist } \; \dot{z}(t) \; \; \text{die Abstraction} \; .$$

leitung der Kurve z = z(t) nach dem Parameter t.

Beispiel 1:

 $\label{eq:Zunächst} \text{Zunächst reell: Der Weg führe von } A(1/2) \text{ nach } B(4/6) \text{ auf der Geraden } C: \begin{cases} x(t) = 1 + 3t \\ y(t) = 2 + 4t \end{cases} \text{ mit } 0 \leq t \leq 1 \text{ . Australian Australian$

ßerdem sei f(x,y) = 1 für alle $(x,y) \in \mathbb{R}^2$. Dann folgt

$$\int\limits_C f(x,y)\,ds = \int\limits_{t=a}^{t=b} f(x(t),y(t)) \cdot \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}\,dt = \int\limits_{t=0}^{t=1} 1 \cdot \sqrt{3^2 + 4^2}\,dt = \int\limits_{t=0}^{t=1} 5\,dt = 5 \ .$$

Nun komplex: Der Weg führt von $z_a=1+2i$ nach $z_b=4+6i$ auf der Geraden z(t)=1+2i+t(3+4i) mit $0 \le t \le 1$. Außerdem sei wieder f(z)=1 für alle $z \in \mathbb{C}$. Dann folgt

$$\int\limits_{C} f(z) \, dz = \int\limits_{t=a}^{t=b} f(z) \cdot \dot{z}(t) \, dt \ = \int\limits_{t=0}^{t=l} 1 \cdot \dot{z}(t) \, dt = \int\limits_{t=0}^{t=l} \left(3 + 4i \right) dt = 3 + 4i \; .$$

Interpretation der beiden Ergebnisse:

Beim reellen Kurvenintegral wird der Integrationsweg durch n+1 Punkte $A=P_0$, P_1 , P_2 , ..., $P_n=B$ in n Stücke zerlegt, so dass $\int\limits_C f(x,y) ds = \int\limits_C 1 ds = \int\limits_C ds \triangleq \left|P_0 P_1\right| + \left|P_1 P_2\right| + ... + \left|P_{n-1} P_n\right| = \left|P_0 P_n\right| = 5 \text{ gerade die Länge der Strecke von A nach B ergibt.}$

Beim komplexen Kurvenintegral wird der Integrationsweg in der Gaußschen Zahlenebene ebenfalls durch n+1 Punkte $z_a=z_0,\ z_1,\ z_2,\dots,\ z_n=z_b$ in n Stücke zerlegt, so dass

$$\int_{C} f(z) dz = \int_{C} dz \stackrel{\triangle}{=} (z_1 - z_a) + (z_2 - z_1) + (z_3 - z_2) + ... + (z_b - z_{n-1}) = z_b - z_a = 4 + 6i - (1 + 2i) = 3 + 4i.$$

Und für den Betrag gilt $|3+4i| = \sqrt{3^2+4^2} = 5$ wie beim reellen Kurvenintegral.

Beispiel 2: Die Funktion $f(z)=z^n$ für $z\in\mathbb{C}$ und $n\in\mathbb{Z}$, werde auf dem Kreis vom Radius r mit r>0 um den Ursprung integriert. Die einfachste Parameterdarstellung dieses Kreises ist $z(t)=r\cdot \left(\cos(t)+i\sin(t)\right)=r\cdot e^{it}$ für $0\leq t\leq 2\pi$.

 $\label{eq:cosine} \text{Im Schaubild ist } z_n = r \cdot e^{i \cdot n \cdot \pi/4} = r \cdot \left(\cos(n \cdot \pi/4) + i \cdot \sin(n \cdot \pi/4) \right) \text{ für } n = 0,1,\dots,7 \;.$

$$z_0 = r \cdot e^{i \cdot 0} = r \cdot (\cos(0) + i\sin(0)) = 1$$
,

$$z_1 = r \cdot e^{i \cdot \pi/4} = r \cdot \left(\cos(\pi/4) + i\sin(\pi/4)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_2 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_3 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_4 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_5 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_7 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_7 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right), \quad z_7 = r \cdot e^{i \cdot \pi/2} = r \cdot \left(\cos(\pi/2) + i\sin(\pi/2)\right) = r \cdot \left(\frac{1}{2}\sqrt{2} + i \cdot \frac{1}{2}\sqrt{2}\right)$$

usw.

$$Es \ folgt \quad \int\limits_C f(z) \, dz = \int\limits_{t=0}^{2\pi} \left(r \cdot e^{i\,t} \, \right)^n \cdot r \cdot i \cdot e^{i\,t} \ dt = r^{n+l} \cdot i \int\limits_{t=0}^{2\pi} e^{(n+l)i\,t} \ dt \ .$$

$$F \ddot{u} r \ n = -1 \ folgt \ \int\limits_{C} f(z) \, dz = r^0 \cdot i \int\limits_{t=0}^{2\pi} e^0 \, dt = i \int\limits_{t=0}^{2\pi} 1 \, dt = 2\pi i \; .$$

$$\text{F\"{u}r } n \neq -1 \text{ folgt } \int\limits_{C} f(z) \, dz = r^{n+1} \cdot i \int\limits_{t=0}^{2\pi} e^{(n+1)it} \, dt = \frac{r^{n+1}}{n+1} \cdot \left[e^{(n+1)it} \right]_{t=0}^{t=2\pi} = \frac{r^{n+1}}{n+1} \cdot \left(e^{(n+1)2\pi i} - e^0 \right) = \frac{r^{n+1}}{n+1} \cdot (1-1) = 0 \; .$$

Beispiel 3: Die Funktion $f(z) = \sin(z)$ für $z \in \mathbb{C}$ werde auf der Geraden $C: z = t \cdot i$ für $0 \le t \le 1$ integriert.

Aus der Eulerschen Formel $e^{iz} = \cos(z) + i \cdot \sin(z)$ für $z \in \mathbb{C}$ und entsprechend $e^{-iz} = \cos(z) - i \cdot \sin(z)$

folgt
$$\sin(z) = \frac{1}{2i} (e^{iz} - e^{-iz})$$
 und $\cos(z) = \frac{1}{2} (e^{iz} + e^{-iz})$.

Beispiel α : $\sin(\pi/2) = \frac{1}{2i} \left(e^{i\pi/2} - e^{-i\pi/2} \right) = \frac{1}{2i} \left(\cos(\pi/2) + i\sin(\pi/2) - \cos(-\pi/2) - i\sin(-\pi/2) \right) = \sin(\pi/2)$ wie erwartet.

$$\begin{split} & \text{Beispiel } \beta \text{: } \sin(2+3i) = \frac{1}{2i} \Big(e^{i(2+3i)} - e^{-i(2+3i)} \Big) = \frac{1}{2i} \Big(e^{-3+2i} - e^{3-2i} \Big) = \frac{1}{2i} \Big(e^{-3} \, e^{2i} - e^{3} \, e^{-2i} \Big) = \\ & = \frac{1}{2i} \Big(e^{-3} \, \Big(\cos(2) + i \sin(2) + e^{3} \, \Big(\cos(-2) + i \sin(-2) \Big) \Big) = \frac{1}{2} \Big(e^{-3} + e^{3} \, \Big) \sin(2) - \frac{1}{2} i \Big(e^{-3} - e^{-3} \, \Big) \cos(2) \approx 9,1545 - 4,1689i \; . \end{split}$$

Lustige Folgerung: $\sin(x+iy) = \sin(x) \cdot \cosh(y) + i\cos(x) \cdot \sinh(y)$.

Im Reellen: $\sin(x + y) = \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y)$

Analog folgt $cos(x+iy) = cos(x) \cdot cosh(y) + i sin(x) \cdot sinh(y)$.

Im Reellen: $cos(x + y) = cos(x) \cdot cos(y) + sin(x) \cdot sin(y)$

$$\int\limits_C f(z) \, dz = \int\limits_{t=a}^{t=b} f(z) \cdot \dot{z}(t) \, dt = \int\limits_{t=0}^{t=1} \frac{1}{2i} \Big(e^{-t} - e^t \Big) \cdot i \, dt = \frac{1}{2} \Big[-e^{-t} - e^t \Big]_{t=0}^{t=1} = \frac{1}{2} \Big(-e^{-1} - e + 2 \Big) = 1 - \left(e + \frac{1}{e} \right) \approx -0,543 \; .$$

Heinz Göbel 15.11.2022 Seite 12 von 29

Beispiel 4 a: Die Funktion $f(z) = Im(z) + i \cdot Re(z)$ für $z \in \mathbb{C}$ werde auf dem gezeichneten Quadrat von A, B, C, D zurück nach A integriert. Die Wege sind $C_1: z = t \,, \quad C_2: 1 + i \cdot t \,\,, \quad C_3: z = 1 - t + i \,, \quad C_4: i \cdot (1 - t) \ \, \text{jeweils für} \ \, 0 \leq t \leq 1 \,\,.$

$$I_1 = \int\limits_{C_1} f(z) \, dz = \int\limits_{t=0}^1 f(z) \, \dot{z}(t) \, dt = \int\limits_{t=0}^1 f(t) \cdot 1 \, dt = \int\limits_{t=0}^1 i \cdot t \, dt = \frac{1}{2} i \; .$$

$$I_2 = \int\limits_{C_2} f(z) \, dz = \int\limits_{t=0}^1 f(z) \, \dot{z}(t) \, dt = \int\limits_{t=0}^1 f(1+t \cdot i) \cdot i \, dt = \int\limits_{t=0}^1 (t+i) \cdot i \, dt = \, -1 + \frac{1}{2} i \; .$$

$$I_3 = \int\limits_{C_3} f(z) dz = \int\limits_{t=0}^1 f(z) \dot{z}(t) dt = \int\limits_{t=0}^1 f(1-t+i) \cdot (-1) dt = \int\limits_{t=0}^1 \left(1+(1-t) \cdot i\right) \cdot (-1) dt = -1 - \frac{1}{2} i \; .$$

$$I_4 = \int_{C_4} f(z) dz = \int_{t=0}^{1} f(z) \dot{z}(t) dt = \int_{t=0}^{1} f(i \cdot (1-t)) \cdot (-i) dt = \int_{t=0}^{1} (1-t) \cdot (-i) dt = -\frac{1}{2}i.$$

Und die Summe $\oint f(z) dz = I_1 + I_2 + I_3 + I_4 = -2$ ist ungleich Null.

Daraus folgt z.B. die Wegabhängigkeit dieses komplexen Integrals:

Aus $I_1 + I_2 + I_3 = -I_4 - 2 \neq -I_4$ folgt, dass das Integral $A \rightarrow B \rightarrow C \rightarrow D$ einen anderen Wert ergibt als das Integral $A \rightarrow B \rightarrow C \rightarrow D$

Oder aus $I_1 + I_2 = -I_3 - I_4 - 2 \neq -I_3 - I_4$ folgt, dass das Integral $A \rightarrow B \rightarrow C$ einen anderen Wert ergibt als das Integral $A \rightarrow D \rightarrow C$.

Beispiel 4 b: Die Funktion $f(z) = z^2$ für $z \in \mathbb{C}$ werde auf dem gleichen Quadrat von A über B, C, D zurück $\text{nach A integriert. Die Wege sind } C_1: z=t, \quad C_2: 1+i\cdot t \,, \quad C_3: z=1-t+i \,, \quad C_4: i\cdot (1-t) \text{ jeweils für } 0 \leq t \leq 1 \,.$

$$I_1 = \int\limits_{C_1} f(z) \, dz = \int\limits_{t=0}^1 z^2 \, \dot{z}(t) \, dt = \int\limits_{t=0}^1 t^2 \cdot 1 \, dt = \frac{1}{3} \, .$$

$$I_2 = \int_{C_2} f(z) dz = \int_{t=0}^1 f(z) \dot{z}(t) dt = \int_{t=0}^1 f(1+t \cdot i) \cdot i dt = \int_{t=0}^1 (1+t \cdot i)^2 \cdot i dt = \left[\frac{1}{3} (1+t \cdot i)^3 \right]_{t=0}^{t=1} = -1 + \frac{2}{3}i.$$

$$\begin{split} & I_3 = \int\limits_{C_3} f(z) \, dz = \int\limits_{t=0}^1 f(z) \, \dot{z}(t) \, dt = \int\limits_{t=0}^1 f(1-t+i) \cdot (-1) \, dt = \int\limits_{t=0}^1 \left(1-t-i\right)^2 \cdot (-1) \, dt = \frac{1}{3} \Big[(1-t-i)^3 \Big]_{t=0}^{t=1} = \frac{2}{3} - i \, . \\ & I_4 = \int\limits_{C_4} f(z) \, dz = \int\limits_{t=0}^1 f(z) \, \dot{z}(t) \, dt = \int\limits_{t=0}^1 f\left(i \cdot (1-t)\right) \cdot (-i) \, dt = \int\limits_{t=0}^1 -(1-t)^2 \cdot (-i) \, dt = \frac{1}{3} i \, . \end{split}$$

$$I_4 = \int\limits_{C_4} f(z) \, dz = \int\limits_{t=0}^1 f(z) \, \dot{z}(t) \, dt = \int\limits_{t=0}^1 f \left(i \cdot (1-t) \right) \cdot (-i) \, dt = \int\limits_{t=0}^1 - (1-t)^2 \cdot (-i) \, dt = \frac{1}{3} i$$

Und jetzt ist die Summe $\oint f(z) dz = I_1 + I_2 + I_3 + I_4 = 0$, d.h. das Integral ist wegunabhängig.

Satz: Es sei $f:D\to\mathbb{C}$ mit $D\subseteq\mathbb{C}$ eine komplexwertige Funktion mit f(x+iy)=u(x,y)+iv(x,y). Die Definitionsmenge D sei einfach zusammenhängend, d.h. mit jeder geschlossenen Kurve C in D gehört auch ihr Inneres

$$zu \ D. \ Dann \ gilt: \ \oint\limits_{C} f(z) \, dz = 0 \ \Leftrightarrow \begin{cases} \frac{\partial u(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial y} \\ \frac{\partial u(x,y)}{\partial y} = -\frac{\partial v(x,y)}{\partial x} \end{cases}, \ die \ sog. \ Cauchy-Riemannschen-Differentialglei-$$

chungen; abgekürzt $| u_x = v_y \text{ und } u_y = -v_x |$. (Ohne Beweis)

Zu Beispiel 4a: $f(z) = Im(z) + i \cdot Re(z)$, d.h. $f(x+iy) = y + i \cdot x$, so dass u(x,y) = y und v(x,y) = x. Es gilt zwar $u_x = v_y = 0$, aber $u_y = v_x = 1$, statt $u_y = -v_x$. Die Wegabhängigkeit des Integrals war zu erwarten.

Zu Beispiel 4b:
$$f(z) = z^2$$
, d.h. $f(x+iy) = (x+i\cdot y)^2 = x^2 + 2i\,x\,y - y^2$, so dass $u(x,y) = x^2 - y^2$ und $v(x,y) = 2x\,y$. Und es gilt $u_x = v_y = 2x$ und $u_y = -2y = -v_x$, also die Wegunabhängigkeit des Integrals.

3.b. Das Kurvenintegral 2. Art

Beim Kurvenintegral 1. Art ist der Integrand f(x, y) ein Skalar, beim Kurvenintegral 2. Art ist er ein Vektor

$$\vec{F}(x,y) = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix} \text{ bzw. } \vec{F}(x,y,z) = \begin{pmatrix} F_x(x,y,z) \\ F_y(x,y,z) \\ F_z(x,y,z) \end{pmatrix}.$$

Definition: Es sei B eine Teilmenge des \mathbb{R}^n . Eine Abbildung $F: B \to \mathbb{R}^n$ heißt ein **Vektorfeld**.

Beispiel 1: Im <u>Gravitationsfeld</u> bilden die Kraftvektoren \vec{F} auf eine Masse m ein Vektorfeld. Die vom Gravitationsfeld verrichtete Arbeit W längs eines Weges C beträgt dann $W = \int_C \vec{F} \cdot d\vec{s}$. Dabei ist $\vec{F} \cdot d\vec{s}$ das Skalarprodukt des Kraftvektors \vec{F} und dem kleinen Wegstück $d\vec{s}$.

Beispiel 2: Im <u>elektrischen Feld</u> bilden die Feldvektoren \vec{E} ein Vektorfeld. $U = \int_C \vec{E} \cdot d\vec{s}$ stellt die elektrische Spannung zwischen den Endpunkten des Weges C dar.

Wegen $U = \frac{W}{q}$ und $\vec{E} = \frac{\vec{F}}{q}$ mit der Ladung q ist das Beispiel 2 eigentlich mit Beispiel 1 identisch.

$$\text{Allgemein gilt für } n=2 \text{ mit der Kurve } \begin{pmatrix} x=x(t) \\ y=y(t) \end{pmatrix} \text{ und } \vec{F}(x,y) = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix}$$

$$\boxed{W = \int\limits_C \vec{F} \cdot d\vec{s} = \int\limits_C F_x(x,y) \, dx + F_y(x,y) \, dy = \int\limits_C \left(F_x(x(t),y(t)) \cdot \dot{x}(t) + F_y(x(t),y(t)) \cdot \dot{y}(t)\right) dt}$$

Beispiel 1: Im \mathbb{R}^2 sei $\vec{F}(x,y) = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix} = \begin{pmatrix} 2y \\ x-y \end{pmatrix}$ und C ein Weg, der die beiden Punkte (0/0) und (1/1) verbindet.

a. $C: \begin{pmatrix} x=t \\ y=t \end{pmatrix}$ mit $0 \le t \le 1$. C ist ein Geradenstück (y=x) zwischen (0/0) und (1/1). Dann beträgt die von der Kraft \vec{F} verrichtete Arbeit W:

$$W = \int_{C} \vec{F} \cdot d\vec{s} = \int_{C} F_{x} dx + F_{y} dy = \int_{C} (F_{x} \cdot \dot{x} + F_{y} \cdot \dot{y}) dt =$$

$$= \int_{0}^{1} (2t \cdot 1 + (t - t) \cdot 1) dt = \int_{0}^{1} 2t dt = 1.$$

von der Kraft F verrichtete Arbeit W:

$$W = \int\limits_{C} \vec{F} \bullet \, d\vec{s} = \int\limits_{C} F_{x} \, dx + F_{y} \, dy = \int\limits_{C} \left(F_{x} \cdot \dot{x} + F_{y} \cdot \dot{y} \right) dt = \int\limits_{0}^{1} \left(2t^{2} \cdot 1 + (t - t^{2}) \cdot 2t \right) dt = \int\limits_{0}^{1} \left(4t^{2} - 2t^{3} \right) \, dt = \frac{5}{6} \, .$$

Folgerung: Das Kurvenintegral 2. Art kann vom gewählten Weg abhängen.

c. Wir wählen den Weg $(0/0) \xrightarrow{C_1} (0/1) \xrightarrow{C_2} (1/1)$ mit $C_1: \begin{pmatrix} x=0 \\ y=t \end{pmatrix}$ und $C_2: \begin{pmatrix} x=t \\ y=1 \end{pmatrix}$, wobei jeweils $0 \le t \le 1$ gilt.

$$W_1 = \int\limits_C \vec{F} \bullet \, d\vec{s} = \int\limits_C F_x \, dx + F_y \, dy = \int\limits_C \Big(F_x \cdot \dot{x} + F_y \cdot \dot{y} \Big) dt = \int\limits_0^1 \Big(2t \cdot 0 + (0-t) \cdot 1 \Big) dt = \int\limits_0^1 \Big(-t \Big) \, dt = -\frac{1}{2} \, .$$

Positive Arbeit W bedeutet, dass die Kraft \vec{F} den Körper befördert. Dies ist z.B. der Fall, wenn \vec{F} und $d\vec{s}$ in die gleiche Richtung zeigen. Bei **negativer Arbeit** muss gegen das Kraftfeld \vec{F} Arbeit verrichtet werden.

$$W_2 = \int\limits_C \vec{F} \bullet d\vec{s} = \int\limits_C F_x \ dx + F_y \ dy = \int\limits_C \Big(F_x \cdot \dot{x} + F_y \cdot \dot{y} \Big) dt = \int\limits_0^1 \Big(2 \cdot 1 + (t-1) \cdot 0 \Big) dt = \int\limits_0^1 2 \ dt = 2 \ .$$

Insgesamt folgt für die Gesamtarbeit $W = W_1 + W_2 = -\frac{1}{2} + 2 = \frac{3}{2}$.

Beispiel 2: Im \mathbb{R}^3 sei $\vec{F}(x,y,z) = \begin{pmatrix} y \\ -x \\ z \end{pmatrix}$ und C ein Weg, der die beiden Punkte

(1/0/0) und $(1/0/2\pi a)$ verbindet.

In der Zeichnung ist a = 1 gewählt. Die durchgezogene Linie ist die Schraubenlinie, die gestrichelte Linie ist der direkte Weg.

$$C_1: \begin{pmatrix} x = \cos(t) \\ y = \sin(t) \\ z = a \cdot t \end{pmatrix} \text{ mit } 0 \le t \le 2\pi \text{ verbindet die beiden Punkte über eine Schrau-}$$

benlinie,
$$C_2$$
: $\begin{pmatrix} x=1\\y=0\\z=2\pi\cdot a\cdot t \end{pmatrix}$ mit $0\leq t\leq 1$ direkt auf einer Strecke. Dann ist

$$\begin{split} W_1 &= \int\limits_C \vec{F} \bullet d\vec{s} = \int\limits_C y \, dx - x \, dy + z \, dz = \int\limits_C \left(y \cdot \dot{x}(t) - x \cdot \dot{y}(t) + z \cdot \dot{z}(t) \right) dt = \int\limits_0^{2\pi} \left(\sin(t) \cdot (-\sin(t)) - \cos(t) \cdot \cos(t) + a \cdot t \cdot a \right) dt = \\ &= \int\limits_0^{2\pi} \left(a^2 t - 1 \right) dt = 2\pi^2 \cdot a^2 - 2\pi \,. \end{split}$$

$$\begin{split} W_2 &= \int\limits_C \vec{F} \cdot d\vec{s} = \int\limits_C y \, dx - x \, dy + z \, dz = \int\limits_C \left(y \cdot \dot{x}(t) - x \cdot \dot{y}(t) + z \cdot \dot{z}(t) \right) dt = \int\limits_0^1 \left(0 \cdot 0 - 1 \cdot 0 + 2\pi \cdot a \cdot t \cdot 2\pi \cdot a \right) \, dt = \\ &= 4\pi^2 \cdot a^2 \int\limits_0^1 t \, dt = 2\pi^2 \cdot a^2 \, . \end{split}$$

Satz: Wenn sich das Vektorfeld $\vec{F}(x, y, z)$ als Gradient eines skalaren Feldes V(x, y, z) darstellen lässt, dann ist das Kurvenintegral 2. Art **unabhängig vom Weg**. V(x, y, z) heißt auch das **Potential**.

Beweis: Es sei
$$\vec{F}(x,y,z) = \begin{pmatrix} F_x(x,y,z) \\ F_y(x,y,z) \\ F_z(x,y,z) \end{pmatrix} = \operatorname{grad} \left(V(x,y,z) \right) = \begin{pmatrix} \frac{\partial}{\partial x} V(x,y,z) \\ \frac{\partial}{\partial y} V(x,y,z) \\ \frac{\partial}{\partial z} V(x,y,z) \end{pmatrix}$$
. Dann gilt

$$\begin{split} &\int\limits_{C}\vec{F}\bullet d\vec{s} = \int\limits_{C}F_{x}\left(x,y,z\right)dx + F_{y}(x,y,z)dy + F_{z}(x,y,z)dz = \int\limits_{C}\frac{\partial}{\partial x}V(x,y,z)dx + \frac{\partial}{\partial y}V(x,y,z)dy + \frac{\partial}{\partial z}V(x,y,z)dz = \\ &= \int\limits_{t=a}^{t=b}dV\Big(x(t),y(t),z(t)\Big) = V\Big(x(b),y(b),z(b)\Big) - V\Big(x(a),y(a),z(a)\Big)\,. \end{split}$$

Definition: Kraftfelder $\vec{F}(x,y,z)$, die sich als Gradient eines Skalarfeldes V(x,y,z) darstellen lassen, d.h. $\vec{F}(x,y,z) = grad(V(x,y,z))$, nennt man auch **wirbelfrei** bzw. **konservativ**.

Beispiel 3: Mit $V(x, y) = x^2y$ folgt $\vec{F}(x, y) = {2xy \choose x^2} = grad(x^2y)$. Die Kurve verlaufe von (0/0) nach (1/1).

Kurve $\,C_{_1}:\,\begin{pmatrix} x=t\\y=t\end{pmatrix}\,\,\text{für}\,\,\,0\leq t\leq 1\,,\,\,\,\text{auf der Geraden}\,\,\,y=x\,,$

Kurve
$$C_2: \begin{pmatrix} x = t^3 \\ y = \sqrt{t} \end{pmatrix}$$
 für $0 \le t \le 1$, auf der Kurve $y = x^{1/6}$,

siehe Schaubild.

$$W_2 = \int\limits_{C_2} \vec{F} \cdot d\vec{s} = \int\limits_{C_2} 2xy \, dx + x^2 \, dy = \int\limits_{t=0}^1 \left(2t^3 \sqrt{t} \cdot 3t^2 + t^6 \cdot \frac{1}{2\sqrt{t}} \right) dt = \int\limits_0^1 \left(\frac{13}{2} t^{11/2} \right) dt = 1 \text{ , das gleiche Ergebnis.}$$

Zusatz 1: Wählt man den entgegengesetzten Weg von (1/1) nach (0/0), so sind in den Integralen die Grenzen 0 und 1 zu vertauschen, so dass man jeweils W = -1 erhält.

Zusatz 2: Wählt man einen geschlossenen Weg z.B. von (0/0) über (1/1) wieder zurück nach (0/0), so ergibt sich die Gesamtarbeit W = 0.

Satz: Ein Kraftfeld $\vec{F}(x, y, z)$ ist wirbelfrei, wenn für jede geschlossene Kurve C das Integral $\oint_C \vec{F} \cdot d\vec{s} = 0$ ist.

Der Kreis beim Integral soll anzeigen, dass die Kurve C geschlossen ist.

Die Frage, unter welcher Bedingung sich ein zwei- oder dreidimensionales Vektorfeld $\tilde{F}(x,y,z)$ als Gradient eines skalaren Potentialfeldes V(x,y,z) darstellen lässt, beantwortet der folgende Satz.

Satz: Auf einem zwei- oder dreidimensionalen einfach zusammenhängendem Gebiet G (d.h. mit jeder geschlossenen Kurve C in G gehört auch ihr Inneres zu G) besitzt ein Vektorfeld genau dann ein skalares Potentialfeld, wenn die **Rotation** des Vektorfeldes der **Nullvektor** ist. (Ohne Beweis)

 $\textbf{Def.:} \ \ \textbf{Die Rotation} \ \ \textbf{eines Vektorfeldes} \ \ \vec{F} \ \textbf{ist das Vektorprodukt} \quad \ \textbf{rot}(\vec{F}) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_z}{\partial x} \end{pmatrix}.$

Im zweidimensionalen Fall $\vec{F} = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix}$ schreibt man $\vec{F} = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \\ 0 \end{pmatrix}$, so dass

$$rot(\vec{F}) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\partial 0}{\partial y} - \frac{\partial F_y(x,y)}{\partial z} \\ \frac{\partial F_x(x,y)}{\partial z} - \frac{\partial 0}{\partial x} \\ \frac{\partial F_y(x,y)}{\partial x} - \frac{\partial F_x(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{\partial F_y(x,y)}{\partial x} - \frac{\partial F_x(x,y)}{\partial y} \end{pmatrix}. \text{ Und das soll der Nullvektor } \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ sein, } \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

damit ein skalares Potentialfeld existiert, d.h. es muss gelten:

$$\boxed{ \frac{\partial F_y(x,y)}{\partial x} = \frac{\partial F_x(x,y)}{\partial y} } \ .$$

Heinz Göbel 15.11.2022 Seite 16 von 29

Zu Beispiel 1: $\vec{F}(x,y) = \begin{pmatrix} F_x(x,y) \\ F_y(x,y) \end{pmatrix} = \begin{pmatrix} 2y \\ x-y \end{pmatrix}$.

Die beiden partiellen Ableitungen $\frac{\partial F_y(x,y)}{\partial x} = \frac{\partial (x-y)}{\partial x} = 1$ und $\frac{\partial F_x(x,y)}{\partial y} = \frac{\partial 2y}{\partial y} = 2$ sind verschieden. Somit gibt es kein skalares Vektorfeld und die Integrale können wegabhängig sein.

$$\textbf{Zu Beispiel 2:} \quad \vec{F}(x,y,z) = \begin{pmatrix} y \\ -x \\ z \end{pmatrix}. \text{ Dann ist} \quad rot(\vec{F}) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial z} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \text{ Somit}$$

gibt es kein skalares Vektorfeld und die Integrale können wegabhängig sein

Zu Beispiel 3: $\vec{F}(x,y) = \begin{pmatrix} 2xy \\ x^2 \end{pmatrix}$. Die beiden Ergebnisse $\frac{\partial F_y(x,y)}{\partial x} = \frac{\partial x^2}{\partial x} = 2x$ und $\frac{\partial F_x(x,y)}{\partial y} = \frac{\partial 2xy}{\partial y} = 2x$ sind identisch, so dass die Integrale wegunabhängig sind.

Problem: Gegeben sei ein wirbelfreies Kraftfeld $\vec{F}(x,y,z)$. Wie findet man ein zugehöriges Potential V(x,y,z)?

Beispiel 1: Das Kraftfeld
$$\vec{F}(x,y) = \begin{pmatrix} 3y^2 - 4 \\ 6xy + 8 \end{pmatrix}$$
 ist wegen $\frac{\partial F_y(x,y)}{\partial x} = 6y = \frac{\partial F_x(x,y)}{\partial y}$ wirbelfrei.

Erste Möglichkeit:

Aus
$$\frac{\partial V(x,y)}{\partial x} = F_x(x,y) = 3y^2 - 4$$
 folgt $V(x,y) = 3xy^2 - 4x + f(y)$ mit einer Funktion f, die nicht von x abhängt.
Aus $\frac{\partial V(x,y)}{\partial y} = F_y(x,y) = 6xy + 8$ folgt $V(x,y) = 3xy^2 + 8y + g(x)$ mit einer von y unabhängigen Funktion g.

Daraus folgt $V(x,y)=3xy^2-4x+8y+c$ mit einer beliebigen Konstanten $c\in\mathbb{R}$.

Zweite Möglichkeit: Man wählt einen (möglichst einfachen) Weg C z.B. von (0/0) nach (x_0/y_0) und erhält $V(x_0,y_0) = \int_C \vec{F} \cdot d\vec{s}$.

$$Mit \ C: \begin{pmatrix} x = t \cdot x_0 \\ y = t \cdot y_0 \end{pmatrix} \ f\"{u}r \quad 0 \le t \le 1 \ \ folgt$$

$$\begin{split} V(x_0,y_0) &= \int\limits_C \vec{F} \bullet d\vec{s} = \int\limits_C F_x \, dx + F_y \, dy = \int\limits_C \Big(F_x \cdot \dot{x} + F_y \cdot \dot{y} \Big) dt = \int\limits_{t=0}^1 \Big((3y^2 - 4) \cdot \dot{x} + (6xy + 8) \cdot \dot{y} \Big) dt = \int\limits_{t=0}^1 \Big((3t^2y_0^2 - 4) \cdot x_0 + (6t^2x_0y_0 + 8) \cdot y_0 \Big) dt = \Big[x_0y_0^2t^3 - 4x_0t + 2x_0y_0^2t^3 + 8y_0t \Big]_{t=0}^1 = 3x_0y_0^2 - 4x_0 + 8y_0 \quad \text{wie oben.} \end{split}$$

Beispiel 2: Das Kraftfeld
$$\vec{F}(x, y, z) = \begin{pmatrix} 4xy \\ 2x^2 - 6yz \\ -3y^2 \end{pmatrix}$$
 ist wegen

$$rot(\vec{F}) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} = \begin{pmatrix} -6y - (-6y) \\ 0 - 0 \\ 4x - 4x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ wirbelfrei.}$$

Erste Möglichkeit:

Aus
$$\frac{\partial V(x,y,z)}{\partial x} = 4xy$$
 folgt $V(x,y,z) = 2x^2y + f(y,z)$.

$$\label{eq:aus} \text{Aus} \quad \frac{\partial V(x,y,z)}{\partial v} = 2x^2 - 6yz \;\; \text{folgt} \;\; V(x,y,z) = 2x^2y - 3y^2z + g(x,z) \;.$$

Aus
$$\frac{\partial V(x,y,z)}{\partial z} = -3y^2$$
 folgt $V(x,y,z) = -3y^2z + h(x,y)$.

Der Vergleich liefert $V(x, y, z) = 2x^2y - 3y^2z + c$.

 $\underline{\text{Zweite M\"{o}glichkeit}}\text{: Mit dem Weg C vom "sch\"{o}nen" Punkt }(0/0/0) \quad \text{zum allgemeinen Punkt }(x_0/y_0/z_0)\text{.}$

$$\label{eq:mit_constraints} \text{Mit } C: \begin{pmatrix} x = t \cdot x_0 \\ y = t \cdot y_0 \\ z = t \cdot z_0 \end{pmatrix} \text{ mit } 0 \leq t \leq 1 \text{ folgt}$$

$$V(x_0, y_0) = \int_C \vec{F} \cdot d\vec{s} = \int_C F_x dx + F_y dy + F_z dz = \int_C (F_x \cdot \dot{x} + F_y \cdot \dot{y} + F_z \cdot \dot{z}) dt = \int_{t=0}^1 (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2x^2 - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy - 6yz) \cdot \dot{y} - 3y^2 \cdot \dot{z}) dt = \int_C (4xy \cdot \dot{x} + (2xy -$$

$$\int\limits_{t=0}^{1} \left(4x_0^2y_0t^2 + (2x_0^2t^2 - 6y_0z_0t^2) \cdot y_0 - 3y_0^2z_0t^2\right) dt = \int\limits_{t=0}^{1} \left(6x_0^2y_0t^2 - 9y_0^2z_0t^2\right) dt = 2x_0^2y_0 - 3y_0^2z_0 \; .$$

Beispiel 3: Das zweidimensionale Kraftfeld sei
$$\vec{F}(x, y) = \begin{pmatrix} -\frac{y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \end{pmatrix}$$

$$f \ddot{u} r (x/y) \in \mathbb{R}^2 \setminus \{(0/0)\}.$$

$$\frac{\partial F_{x}(x,y)}{\partial y} = -\frac{1 \cdot (x^{2} + y^{2}) - y \cdot 2y}{\left(x^{2} + y^{2}\right)^{2}} = \frac{y^{2} - x^{2}}{\left(x^{2} + y^{2}\right)^{2}} \quad und$$

$$\frac{\partial F_y(x,y)}{\partial x} = \frac{1 \cdot (x^2 + y^2) - x \cdot 2x}{\left(x^2 + y^2\right)^2} = \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2} \quad \text{sind gleich}.$$

Sollten dann nicht die Kurvenintegrale wegunabhängig sein, bzw. sollte dann ein geschlossenes Integral nicht den Wert 0 haben?

Wir wählen einen Kreis vom Radius 1 um den Ursprung: $C: \begin{pmatrix} x = cos(t) \\ y = sin(t) \end{pmatrix}$ für $0 \le t \le 2\pi$. Dann gilt

$$W = \oint_{C} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \left(-\frac{\sin(t)}{\cos^{2}(t) + \sin^{2}(t)} \cdot \left(-\sin(t) \right) + \frac{\cos(t)}{\cos^{2}(t) + \sin^{2}(t)} \cdot \cos(t) \right) dt = \int_{0}^{2\pi} \frac{\sin^{2}(t) + \cos^{2}(t)}{\cos^{2}(t) + \sin^{2}(t)} dt = \int_{0}^{2\pi} dt = 2\pi$$

und nicht Null. Die Ursache ist, dass die Definitionsmenge $D = \mathbb{R}^2 \setminus \{(0/0)\}$ nicht einfach zusammenhängend ist. Denn eine Schleife, die den Ursprung enthält, wird ihn auch beim Zusammenziehen innerhalb D weiterhin enthalten, so dass die Schleife nicht zu einem einzigen Punkt von D zusammengezogen werden kann.

Man erkennt auch am Schaubild, dass das Feld nicht wirbelfrei ist und einen Körper um den Ursprung treibt.

Da obiges Integral $W = \oint_C \vec{F} \cdot d\vec{s}$ ungleich Null ist, kann unser Kraftfeld kein Potential V(x,y) besitzen.

$$Da \ \frac{\partial F_x(x,y)}{\partial y} = \frac{\partial F_y(x,y)}{\partial x} \ gilt, \ ist \ es \ verlockend, \ nach \ einem \ Potential \ V(x,y) \ von \ \vec{F}(x,y) \ zu \ suchen.$$

Heinz Göbel 15.11.2022 Seite 18 von 29

$$\begin{split} &\text{Aus } \frac{\partial V(x,y)}{\partial x} = F_x(x,y) = -\frac{y}{x^2+y^2} \text{ folgt } V_1(x,y) = -\arctan\bigg(\frac{x}{y}\bigg) + f_1(y) \text{ . Hinweis: } \arctan'(x) = \frac{1}{1+x^2} \text{ .} \\ &\text{Aus } \frac{\partial V(x,y)}{\partial y} = F_y(x,y) = \frac{x}{x^2+y^2} \text{ folgt } V_2(x,y) = \arctan\bigg(\frac{y}{x}\bigg) + f_2(x) \text{ .} \end{split}$$

$$\text{Es gilt } \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \pi/2 & \text{für } \quad x>0 \\ -\pi/2 & \text{für } \quad x<0 \end{cases}, \text{ d.h. } -\arctan(x) = \arctan\left(\frac{1}{x}\right) - \begin{cases} \pi/2 & \text{für } \quad x>0 \\ -\pi/2 & \text{für } \quad x<0 \end{cases}.$$

Somit lässt sich das erste Ergebnis $V_1(x,y)$ umformen zu

$$V_1(x,y) = -\arctan\!\left(\frac{x}{y}\right) + f_1(y) = \arctan\!\left(\frac{y}{x}\right) + f_1(y) - \begin{cases} \pi/2 & \text{für } x/y > 0 \\ -\pi/2 & \text{für } x/y < 0 \end{cases}.$$

$$Man \; kann \; \; f_1(y) = f_2(x) = 0 \; \; setzen \; und \; erhält \; \; V_1(x,y) = -\arctan\bigg(\frac{x}{y}\bigg) = \arctan\bigg(\frac{y}{x}\bigg) - \begin{cases} \pi/2 & \text{für } x \, / \, y > 0 \\ -\pi/2 & \text{für } x \, / \, y < 0 \end{cases}$$

und $V_2(x,y) = \arctan\left(\frac{y}{x}\right)$. Somit besitzt $\vec{F}(x,y)$ wirklich kein Potential V(x,y).

4.a. Das Oberflächenintegral 1. Art

Es sei D eine messbare Teilmenge des \mathbb{R}^2 und $f:D\to\mathbb{R}^3$ eine Funktion. Durch f ist über D eine Fläche $A=\left\{(x,y,z)\in\mathbb{R}^3\,/\,z=f(x,y)\right\}\,$ definiert.

Dazu wird die Definitionsmenge D in kleine Rechtecke der Seitenlängen dx und dy zerlegt, siehe Schaubild mit 20 solcher Rechtecke. Diese Zerlegung wird auf die Fläche A übertragen, so dass auf A kleine gekrümmte Parallelogramme entstehen. Bei infinitesimal kleinen dx und dy können diese Parallelogramme als eben betrachtet werden, so dass sie jeweils in ihrer Tangentialebene

 $\text{sich } dz = z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \cdot dx + \frac{\partial f}{\partial y}(x_0, y_0) \cdot dy \text{ . Die Seite parallel zur } x - \text{Achse, also mit } dy = 0 \text{ , ist}$

Daraus ergibt sich der Flächeninhalt dO dieses kleinen Parallelogramms zu

$$dO = \begin{vmatrix} dx \\ 0 \\ \frac{\partial f}{\partial x} \cdot dx \end{vmatrix} \times \begin{pmatrix} 0 \\ dy \\ \frac{\partial f}{\partial y} \cdot dy \end{vmatrix} = \begin{vmatrix} -\frac{\partial f}{\partial x} \cdot dx \cdot dy \\ -\frac{\partial f}{\partial y} \cdot dx \cdot dy \\ dx \cdot dy \end{vmatrix} = \begin{vmatrix} -\frac{\partial f}{\partial x} \\ -\frac{\partial f}{\partial y} \\ 1 \end{vmatrix} dx \cdot dy = \begin{vmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ -1 \end{vmatrix} dx \cdot dy = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \ dx \ dy \ .$$

Der ganz rechts auftretende Vektor ist gerade ein Normalenvektor der Tangentialebene T.

Und somit ergibt sich das Oberflächenelement zu $dO = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx dy$ und der gesamte Oberflä-

cheninhalt O der durch z = f(x,y) mit $(x,y) \in D$ gegebenen Fläche zu $O = \iint_D \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \ dx \ dy$.

Beispiel 1: Wir berechnen den Oberflächeninhalt des obigen Rotationsparaboloids $f(x,y) = 4 - x^2 - y^2$ mit

$$D = \left\{ (x,y) \in \mathbb{R}^2 \ / \ x^2 + y^2 \le 4 \right\}. \ \text{Wegen} \ \frac{\partial f}{\partial x} f(x,y) = -2x \ \text{und} \ \frac{\partial f}{\partial y} f(x,y) = -2y \ \text{folgt}$$

fen, so dass
$$O = \int_{x=-2}^{2} \int_{y=-\sqrt{4-x^2}}^{y=-\sqrt{4-x^2}} \sqrt{1+4x^2+4y^2} dx dy$$
, oh je!

Wir führen Polarkoordinaten ein: $x = r \cdot cos(\phi)$, $y = r \cdot sin(\phi)$ und $dA = r dr d\phi$. Dann wird

$$O = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{2} \sqrt{1 + 4r^2 \cdot sin^2(\phi) + 4r^2 \cdot cos^2(\phi)} \ r \, dr \, d\phi = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{2} \sqrt{1 + 4r^2} \ r \, dr \, d\phi \ . \ Mit \ der \ Substitution \ u = 1 + 4r^2 \ ,$$

$$\text{und } \frac{du}{dr} = 8r \text{ , also } \text{ folgt } O = \frac{1}{8} \int_{\phi=0}^{2\pi} \int_{u=1}^{17} \sqrt{u} \ du \ d\phi = \frac{1}{8} \int_{\phi=0}^{2\pi} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{u=1}^{17} d\phi = \frac{1}{12} \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi} d\phi = \frac{1}{6} \pi \cdot \left(\sqrt{17} - 1 \right) \cdot \int_{0}^{2\pi}$$

Beispiel 2: Die Ebene E: x + 2y + 4z = 8 bildet mit den drei Koordinatenachsen ein Dreieck. Dieses Dreieck bestehe aus einem Blech der Flächendichte $\rho(x, y, z) = x + 2x + z$ in g / cm^2 , x, y, z in cm. Welche Masse m besitzt dieses Blech?

Die Fläche ist gegeben durch $z = f(x, y) = 2 - \frac{1}{4}x - \frac{1}{2}y$.

$$\begin{split} m &= \iint_D \rho(x,y,z) \cdot dO = \iint_D \rho(x,y,z) \cdot \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \ dx \ dy \\ &= \int_{x=0}^8 \int_{y=0}^{4-\frac{1}{2}x} (x + 2y + z) \cdot \sqrt{1 + \left(-\frac{1}{4}\right)^2 + \left(-\frac{1}{2}\right)^2} \ dy \ dx \\ &= \int_{x=0}^8 \int_{y=0}^{4-\frac{1}{2}x} \left(2 + \frac{3}{4}x + \frac{3}{2}y\right) \cdot \sqrt{\frac{21}{16}} \ dy \ dx \\ &= \frac{\sqrt{21}}{4} \int_{x=0}^8 \left[2y + \frac{3}{4}xy + \frac{3}{4}y^2\right]_{y=0}^{4-x/2} \ dx \\ &= \frac{\sqrt{21}}{64} \int_{x=0}^8 \left(320 - 16x - 3x^2\right) dx \\ &= 24\sqrt{21} \ , \\ &\text{so dass m etwa } 110 \ g \ \text{ beträgt.} \end{split}$$

4.b. Das Oberflächenintegral 2. Art (Das Flussintegral)

Beim Oberflächenintegral 1. Art ist der Integrand f(x,y) ein Skalar, beim Oberflächenintegral 2. Art ist der In-

tegrand ein Vektor
$$\vec{v}(x,y,z) = \begin{pmatrix} v_x(x,y,z) \\ v_y(x,y,z) \\ v_z(x,y,z) \end{pmatrix}$$
. Das Vektorfeld \vec{v} gibt z.B. an, welche Geschwindigkeit \vec{v} eine

Flüssigkeit oder ein Gas am Ort (x, y, z) besitzt.

Beim Flussintegral wird nun berechnet, welches Volumen der betreffenden Flüssigkeit (des Gases) pro Zeiteinheit durch eine gegebene Oberfläche O fließt. Die Einheit dieses Flusses $\,\Phi\,$ ist $\,m^3\,/\,s$.

Zur Bestimmung des Flusses Φ durch die Fläche O wird diese in infinitesimal kleine Oberflächenelemente dO zerlegt und jeweils der Fluss d Φ durch dO bestimmt.

Spezialfall 1: \vec{v} steht senkrecht auf dO . In der Zeit Δt legt die Flüssigkeit den Weg $v \cdot \Delta t$ zurück, so dass in dieser Zeit das Flüssigkeitsvolumen $v \cdot \Delta t \cdot dO$ durch die Fläche dO fließt. Der Fluss d Φ durch dO beträgt somit

$$d\Phi = \frac{v \cdot \Delta t \cdot dO}{\Delta t} = v \cdot dO \text{ in der Einheit } \frac{m}{s} \cdot m^2 = m^3 / s .$$

 $\underline{Spezialfall\ 2} : \ \vec{v}\ ist\ parallel\ zu\ dO\ .\ In\ diesem\ Fall\ fließt\ keine\ Flüssigkeit\ durch\ das\ Flächenelement\ dO\ ,\ so\ dass\ der\ Fluss\ durch\ dO\ gleich\ Null\ ist.$

Dieser Fluss hängt also von der Richtung ab, mit der die Flüssigkeit auf das Oberflächenelement dO trifft. Um diesen betreffenden Winkel festzulegen, versieht man dO mit einer Richtung: dO soll senkrecht stehen auf dO.

In Spezialfall 1 sind \vec{v} und $d\vec{O}$ parallel, in Spezialfall 2 schließen \vec{v} und $d\vec{O}$ den Winkel $\alpha=90^\circ$ ein. Allgemeiner Fall (siehe Skizze): Der Geschwindigkeitsvektor \vec{v} wird in zwei Komponenten zerlegt: Eine Komponente parallel zu $d\vec{O}$ und eine senkrecht zu $d\vec{O}$. Die Komponente senkrecht zu $d\vec{O}$ liefert keinen Beitrag zum Fluss durch dO.

Die Komponente parallel zu $d\vec{O}$, liefert den gesamten Fluss durch dO und er beträgt $d\Phi = \left(v \cdot cos(\alpha)\right) \cdot dO = v \cdot dO \cdot cos(\alpha) = \vec{v} \cdot d\vec{O} \text{ , gerade das Skalarprodukt von } \vec{v} \text{ und } d\vec{O} \text{ ; dabei ist } \alpha \text{ der Winkel zwischen den beiden Vektoren } \vec{v} \text{ und } d\vec{O} \text{ .}$

Für $0^{\circ} < \alpha < 90^{\circ}$ ist $d\Phi > 0$, für $\alpha = 90^{\circ}$ ist $d\Phi = 0$, für $90^{\circ} < \alpha < 180^{\circ}$ ist $d\Phi < 0$.

Wenn \vec{n} einen Normalenvektor von dO bezeichnet, der in Richtung von d \vec{O} zeigt, dann gilt d $\vec{O} = \frac{\vec{n}}{|\vec{n}|} dO$.

Vom Oberflächenintegral 1. Art wissen wir, dass $dO = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx dy$ gilt, wenn z = f(x, y) die Oberfläche beschreibt.

 $\text{Von der Tangentialebene } T: z = \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0) + f(x_0, y_0) \text{ des Schaubilds}$

$$z = f(x, y) \text{ kennen wir einen Normalenvektor } \vec{n} = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \\ -1 \end{pmatrix}.$$

$$\text{Daraus folgt } \ d\vec{O} = \frac{1}{\mid \vec{n} \mid} \vec{n} \ dO = \frac{1}{\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}} \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \\ -1 \end{pmatrix} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \ dx \ dy = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \\ -1 \end{pmatrix} dx \ dy \ .$$

Insgesamt ergibt sich der Fluss durch O zu $\Phi = \iint\limits_{O} \vec{v} \cdot d\vec{O} = \iint\limits_{O} \vec{v} \cdot \vec{n} \, dx \, dy \quad \text{mit} \ \vec{n} = \pm \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \\ -1 \end{pmatrix}. \ Dabei \ ist$

die Oberfläche O durch die Gleichung z = f(x, y) gegeben.

Vereinbarung: Bei geschlossenen Flächen O soll $d\vec{O}$ und damit auch \vec{n} stets nach außen zeigen. Danach richtet sich das Vorzeichen beim Normalenvektor \vec{n} .

Falls die Oberfläche durch y = g(x,z) gegeben ist, gilt entsprechend $\vec{n} = \pm \begin{pmatrix} \frac{\partial g}{\partial x}(x_0,y_0) \\ -1 \\ \frac{\partial g}{\partial z}(x_0,y_0) \end{pmatrix}$

Falls die Oberfläche durch x = h(y,z) gegeben ist, gilt entsprechend $\vec{n} = \pm \begin{bmatrix} -1 \\ \frac{\partial h}{\partial y}(x_0,y_0) \\ \frac{\partial h}{\partial z}(x_0,y_0) \end{bmatrix}$

Beispiel 1: Gegeben ist die dreiseitige Pyramide mit den Eckpunkten (0/0/0), (8/0/0), (0/4/0) und (0/0/2). Diese Pyramide sei durchflossen von einer Flüssigkeit mit der Geschwindigkeitsver-

teilung
$$\vec{v} = \begin{pmatrix} x + y \\ z \\ y + z \end{pmatrix}$$
. Dabei sind die Koordinaten in m und die Ge-

schwindigkeitskomponenten in m/s zu verstehen. Wie groß ist der Fluss Φ durch diese Pyramide?

1. Die Bodenfläche durch die drei Punkte (0/0/0), (8/0/0), (0/4/0) hat die Gleichung z = f(x, y) = 0.

Folglich lautet der Normalenvektor $\vec{n} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ und er zeigt schon nach außen. Somit beträgt der Fluss

$$\Phi_1 = \iint\limits_O \bar{v} \bullet \vec{n} \, dx \, dy = \int\limits_{x=0}^8 \int\limits_{y=0}^{4-x/2} -y \, dy \, dx = \int\limits_{x=0}^8 -\frac{1}{2} \bigg(4-\frac{x}{2}\bigg)^2 \, dx = -\frac{64}{3} \, . \, \text{Das negative Vorzeichen zeigt, dass der}$$

Fluss entgegen dem Normalenvektor, also durch die Ebene in die Pyramide hinein geht.

2. Die Vorderfläche durch die drei Punkte (0/0/0), (8/0/0), (0/0/2) hat die Gleichung y = g(x, z) = 0. Es

$$\text{folgt } \vec{n} = \begin{pmatrix} \frac{\partial g}{\partial x}(x_0, y_0) \\ -1 \\ \frac{\partial g}{\partial z}(x_0, y_0) \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \text{ und er zeigt sogar aus der Pyramide heraus. Der Fluss beträgt}$$

$$\Phi_2 = \iint\limits_{O} \bar{v} \cdot \vec{n} \, dx \, dy = \int\limits_{x=0}^{8} \int\limits_{z=0}^{2-x/4} -z \, dz \, dx = \int\limits_{x=0}^{8} -\frac{1}{2} \left(2 - \frac{x}{4}\right)^2 \, dx = -\frac{16}{3} \, .$$

3. Die Rückfläche durch die drei Punkte (0/0/0), (0/4/0), (0/0/2) hat die Gleichung x = h(y,z) = 0. Es

$$\text{folgt } \vec{n} = \begin{pmatrix} -1 \\ \frac{\partial h}{\partial y}(x_0, y_0) \\ \frac{\partial h}{\partial z}(x_0, y_0) \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \text{ und er zeigt sogar aus der Pyramide heraus. Der Fluss beträgt}$$

$$\Phi_3 = \iint\limits_{O} \vec{v} \cdot \vec{n} \, dx \, dy = \int\limits_{y=0}^{4} \int\limits_{z=0}^{2-y/2} -y \, dz \, dy = \int\limits_{y=0}^{4} -y \left(2 - \frac{y}{2}\right) dy = -\frac{16}{3} \, .$$

4. Die schiefe Fläche durch die drei Punkte (8/0/0), (0/4/0), (0/0/2) hat die Gleichung

$$z = f(x,y) = 2 - \frac{x}{4} - \frac{y}{2} \text{. Es folgt} \quad \vec{n} = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \\ -1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \\ -\frac{1}{2} \\ -1 \end{pmatrix} \text{. Dieser Vektor zeigt nach innen, also müssen wir}$$

$$\vec{n} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 1 \end{pmatrix} \text{ verwenden. Es folgt } \vec{v} \cdot \vec{n} = \begin{pmatrix} x+y \\ z \\ y+z \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} x+y \\ 2-\frac{x}{4}-\frac{y}{2} \\ y+2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} x+y \\ 2-\frac{x}{4}-\frac{y}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 2-\frac{x}{4}-\frac{y}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = 3 - \frac{x}{8} + \frac{y}{2} .$$

$$\Phi_4 = \iint\limits_{O} \vec{v} \cdot \vec{n} \, dx \, dy = \int\limits_{x=0}^{8} \int\limits_{y=0}^{4-x/2} \left(3 - \frac{x}{8} + \frac{y}{2}\right) dy \, dx = \int\limits_{x=0}^{8} \left(\frac{1}{8}x^2 - 3x + 16\right) dx = \frac{160}{3}.$$

Der Gesamtfluss beträgt $\Phi = \oiint_0 \bar{v} \cdot \bar{n} \, dx \, dy = -\frac{64}{3} - \frac{16}{3} - \frac{16}{3} + \frac{160}{3} = \frac{64}{3}$. Das positive Vorzeichen bedeutet, dass mehr Flüssigkeit austritt als eintritt, nämlich $\frac{64}{3}$ m³/s, so dass wir in der Pyramide eine "Quelle" haben.

Zusatz: Nach dem **Integralsatz von Gauß** gilt $\bigoplus_{O} \vec{v} \cdot \vec{n} \, dO = \iiint_{V} div(\vec{v}) \, dV$. (Ohne Beweis)

In Worten: Der Fluss durch eine geschlossene Oberfläche O ist gleich dem Volumenintegral der Divergenz über das von der Oberfläche O eingeschlossene Volumen V.

Dabei ist für den Vektor $\vec{v}(x,y,z) = \begin{pmatrix} v_x(x,y,z) \\ v_y(x,y,z) \\ v_z(x,y,z) \end{pmatrix}$ die Divergenz ein Skalar und definiert durch das Skalarpro-

 $\frac{\partial v_x}{\partial x}(x,y,z) \text{ gibt an, wie sich die Geschwindigkeitskomponente } v_x \text{ in x-Richtung "andert. Die Einheit ist } \frac{m}{s} / m \text{ .}$ Entsprechend für y und z. Man sagt: Wenn div(\vec{v}) > 0, dann besteht an der Stelle (x, y, z) eine "Quelle", bei

Entsprechend für y und z. Man sagt: Wenn $\operatorname{div}(\vec{v}) > 0$, dann besteht an der Stelle (x, y, z) eine "Quelle $\operatorname{div}(\vec{v}) < 0$ eine "Senke", bei $\operatorname{div}(\vec{v}) = 0$ ist der Vektor \vec{v} an der Stelle (x, y, z) "quellenfrei".

Zurück zu unserem Beispiel 1: Es gilt $\operatorname{div}(\vec{v}) = \operatorname{div}\begin{pmatrix} x+y\\z\\y+z \end{pmatrix} = 1+0+1=2$, also ergibt sich nach Gauß

Beispiel 2: Gegeben ist das Paraboloid $z = f(x, y) = 4 - x^2 - y^2$ mit $x^2 + y^2 \le 4$ samt dem Boden $x^2 + y^2 \le 4$ in der xy-Ebene. Diese Fläche sei durchflossen von der

Flüssigkeit mit der Geschwindigkeitsverteilung $\vec{v} = \begin{pmatrix} y \\ -z \end{pmatrix}$. Dabei sind die Koordina-

ten in m und die Geschwindigkeitskomponenten in m/s zu verstehen. Wie groß ist der Fluss Φ durch diesen Körper?

1. Fluss durch das Paraboloid . Ein Normalenvektor ist $\vec{n} = \begin{vmatrix} \frac{\partial \mathbf{1}}{\partial x}(x,y,z) \\ \frac{\partial \mathbf{f}}{\partial y}(x,y,z) \\ -1 \end{vmatrix} = \begin{pmatrix} -2x \\ -2y \\ -1 \end{pmatrix}.$

Dieser Vektor zeigt nach innen, also verwenden wir $\vec{n} = \begin{pmatrix} 2x \\ 2y \\ 1 \end{pmatrix}$, der nach außen zeigt. Damit folgt

 $\vec{v} \cdot \vec{n} = \begin{pmatrix} y \\ -z \\ x \end{pmatrix} \cdot \begin{pmatrix} 2x \\ 2y \\ 1 \end{pmatrix} = 2xy - 2yz + x = 2xy - 2y(2 - x^2 - y^2) + x \text{ . Für das Integral verwenden wir wegen der Rota-}$

tionssymmetrie Polarkoordinaten $x = r\cos(\varphi)$, $y = r\sin(\varphi)$ und $dA = rd\varphi dr$: Dann folgt

$$\begin{split} \vec{v} \bullet \vec{n} &= 2r^2 \cos(\phi) \sin(\phi) - 2r \sin(\phi) \cdot \underbrace{\left(2 - r^2 \cos^2(\phi) - r^2 \sin^2(\phi)\right)}_{=2 - r^2} + r \cos(\phi) \text{ und} \\ \Phi_1 &= \int\limits_{r=0}^2 \int\limits_{\phi=0}^{2\pi} \left(2r^2 \cos(\phi) \sin(\phi) - 2r (2 - r^2) \sin(\phi) + r \cos(\phi)\right) r \, d\phi \, dr = \end{split}$$

$$\Phi_1 = \int\limits_{r=0}^{2} \int\limits_{\phi=0}^{2\pi} \Big(2r^2 \cos(\phi) \sin(\phi) - 2r (2-r^2) \sin(\phi) + r \cos(\phi) \Big) r \, d\phi \, dr = 0$$

 $\int\limits_{r=0}^{2} \left[r^2 \sin^2(\phi) + 2r(2-r^2) \, \cos(\phi) + r \sin(\phi) \right]_{\phi=0}^{2\pi} r \, dr = \int\limits_{r=0}^{2} 0 \cdot r \, dr = 0 \; . \; \text{Der Mantel ist quellenfrei: Es fließt genau so}$ viel Flüssigkeit rein wir raus.

2. Fluss durch den Bodenkreis $x^2 + y^2 \le 4$ und z = 0. Mit $\vec{n} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ folgt $\vec{v} \cdot \vec{n} = \begin{pmatrix} y \\ -z \\ y \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = -x$.

$$\Phi_2 = \iint\limits_{O} \bar{v} \bullet \vec{n} \, dx \, dy = \iint\limits_{O} (-x) \, dx \, dy = \int\limits_{r=0}^2 \int\limits_{\phi=0}^{2\pi} \left(-r \cos(\phi) \right) r \, d\phi \, dr = \int\limits_{r=0}^2 \left[-r^2 \sin(\phi) \right]_{\phi=0}^{2\pi} \, dr = \int\limits_{r=0}^2 0 \, dr = 0 \ .$$

Folglich ist auch der Gesamtfluss $\Phi = \Phi_1 + \Phi_2 = 0$. d.h. es handelt sich um Quellenfreiheit.

Zusatz: Nach dem Integralsatz von Gauß folgt erfreulicherweise

$$\Phi = \bigoplus_{O} \vec{v} \cdot \vec{n} \, dx \, dy = \iiint_{V} div(\vec{v}) \, dV = \iiint_{V} \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z} \right) dV = \iiint_{V} (0 + 0 + 0) \, dV = 0 \, .$$

Zusatz zum Kurvenintegral 2. Art (Arbeitsintegral):

Der Integralsatz von Stokes (Sir George Gabriel Stokes, Irischer Mathematiker 1819 –

$$\left[\oint_{C} \vec{F} \cdot d\vec{s} = \iint_{A} rot(\vec{F}) \cdot d\vec{O} \right]$$
(Ohne Beweis)

Die Orientierung von dO wird durch die Umlaufsrichtung der Kurve C bestimmt:

Rechte-Hand-Regel: Wenn der rechte Zeigefinger in Umlaufsrichtung von C und zugleich der Mittelfinger in die Fläche A hinein zeigt, dann zeigt der Daumen in Richtung von $d\vec{O}$.

Korkenzieher-Regel: Wenn man einen (rechtsgängigen) Korkenzieher im Umlaufsrichtung der Kurve C dreht, so bewegt er sich in Richtung von $d\vec{O}$.

Beispiel 1: Im \mathbb{R}^3 sei $\vec{F}(x,y,z) = \begin{pmatrix} z \\ x \\ y \end{pmatrix}$ und C der geschlossene Weg $(1/1/0) \rightarrow$

 $(0/1/0) \rightarrow (0/0/1) \rightarrow (1/0/1) \rightarrow (1/1/0)$, der von oben gesehen im Gegenuhrzeigersinn durchlaufen wird. Somit zeigt d \vec{O} immer nach rechts oben.

1. Weg
$$(1/1/0) \rightarrow (0/1/0)$$
: C_1 :
$$\begin{pmatrix} x = 1 - t \\ y = 1 \\ z = 0 \end{pmatrix}$$
 mit $0 \le t \le 1$. Dann wird

$$W_{_{1}} = \int\limits_{C_{_{1}}} \vec{F} \bullet d\vec{s} = \int\limits_{C_{_{1}}} \Bigl(F_{_{x}} \cdot \dot{x}(t) + F_{_{y}} \cdot \dot{y}(t) + F_{_{z}} \cdot \dot{z}(t) \Bigr) \, dt = \int\limits_{0}^{1} \Bigl(0 \cdot (-1) + (1-t) \cdot 0 + 1 \cdot 0 \Bigr) dt = 0 \ .$$

Diese Arbeit ist null, da die Kraftvektoren $\begin{pmatrix} z \\ x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1-t \\ 1 \end{pmatrix}$ orthogonal zum Wegvektor $\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$ stehen.

2. Weg
$$(0/1/0) \rightarrow (0/0/1)$$
: C_2 : $\begin{pmatrix} x = 0 \\ y = 1 - t \\ z = t \end{pmatrix}$ mit $0 \le t \le 1$. Dann wird

$$W_2 = \int\limits_{C_2} \vec{F} \bullet d\vec{s} = \int\limits_{C_2} \Big(F_x \cdot \dot{x}(t) + F_y \cdot \dot{y}(t) + F_z \cdot \dot{z}(t) \Big) \, dt = \int\limits_0^1 \Big(t \cdot 0 + 0 \cdot (-1) + (1-t) \cdot 1 \Big) dt = \int\limits_0^1 (1-t) \, dt = \frac{1}{2} \, .$$

3. Weg
$$(0/0/1) \rightarrow (1/0/1)$$
: C_3 : $\begin{pmatrix} x = t \\ y = 0 \\ z = 1 \end{pmatrix}$ mit $0 \le t \le 1$. Dann wird

$$W_{3} = \int_{C_{3}} \vec{F} \cdot d\vec{s} = \int_{C_{3}} \left(F_{x} \cdot \dot{x}(t) + F_{y} \cdot \dot{y}(t) + F_{z} \cdot \dot{z}(t) \right) dt = \int_{0}^{1} \left(1 \cdot 1 + t \cdot 0 + 0 \cdot 0 \right) dt = \int_{0}^{1} 1 dt = 1.$$

4. Weg
$$(1/0/1) \to (1/1/0)$$
: C_4 : $\begin{pmatrix} x = 1 \\ y = t \\ z = 1 - t \end{pmatrix}$ mit $0 \le t \le 1$. Dann wird

$$W_4 = \int\limits_{C_4} \vec{F} \bullet d\vec{s} = \int\limits_{C_4} \Big(F_x \cdot \dot{x}(t) + F_y \cdot \dot{y}(t) + F_z \cdot \dot{z}(t) \Big) \, dt = \int\limits_0^1 \Big((1-t) \cdot 0 + 1 \cdot 1 + t \cdot (-1) \Big) dt = \int\limits_0^1 (1-t) \, dt = \frac{1}{2} \, .$$

Somit beträgt die gesamte Arbeit $W = W_1 + W_2 + W_3 + W_4 = 2$.

Nun zum Flussintegral $\iint_{\Lambda} rot(\vec{F}) \cdot d\vec{O}$:

Es gilt
$$rot(\vec{F}) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} z \\ x \\ y \end{pmatrix} = \begin{pmatrix} 1 - 0 \\ 1 - 0 \\ 1 - 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Unsere Ebene hat die Gleichung $z = f(x, y) = 1 - y$, so dass

$$\begin{split} d\vec{O} = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0,y_0) \\ \frac{\partial f}{\partial y}(x_0,y_0) \\ -1 \end{pmatrix} dx \, dy = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} dx \, dy \; . \; \text{Nach den obigen Regeln muss aber} \; d\vec{O} \; \; \text{nach rechts zeigen, folglich gilt} \\ \end{split}$$

$$d\vec{O} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} dx \ dy \ . \ Somit \ folgt \qquad \iint_A rot(\vec{F}) \bullet d\vec{O} = \iint_A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} dx \ dy = \iint_A 2 \ dx \ dy = \iint_{x=0}^1 \int_{x=0}^1 2 \ dx \ dy = 2 \ wie \ oben.$$

Dabei ist A das Bodenquadrat mit den Eckpunkten (0,0), (1,0), (1/1) und (0,1).

Beispiel 2: Es sei $C: x^2 + y^2 = R^2$ eine Kreislinie in der xy-Ebene und $\vec{F}(x,y,z) = \begin{pmatrix} z \\ 2x - z \\ 2y \end{pmatrix}$ ein Vektorfeld.

An fünf Oberflächen, welche durch die Kreislinie C berandet werden, wird der Satz von Stokes erläutert.

Zunächst zum Arbeitsintegral $W = \oint_C \vec{F} \cdot d\vec{s}$:

Für den Kreisrand C verwenden wir Polarkoordinaten $x=r\cdot\cos(\phi)=R\cdot\cos(\phi)$, $y=r\cdot\sin(\phi)=R\cdot\sin(\phi)$ und z=0. Dann wird der Kreis im Uhrzeigersinn durchlaufen. Das Arbeitsintegral folgt zu

$$\begin{split} W = & \oint\limits_C \vec{F} \cdot \vec{ds} = \int\limits_C \left(F_x \cdot \dot{x}(t) + F_y \cdot \dot{y}(t) + F_z \cdot \dot{z}(t) \right) dt = \int\limits_0^{2\pi} \left(0 \cdot (-R \cdot \sin(\phi)) + 2R \cdot \cos(\phi) \cdot R \cdot \cos(\phi) + 2R \cdot \sin(\phi) \cdot 0 \right) d\phi = \\ 2R^2 \cdot \int\limits_0^{2\pi} \cos^2(\phi) d\phi = & 2R^2 \cdot \frac{1}{2} \left[\phi + \sin(\phi) \cdot \cos(\phi) \right]_0^{2\pi} = 2\pi R^2 \; . \end{split}$$

Nun zum Flussintegral $\iint_A rot(\vec{F}) \cdot d\vec{O}$ für fünf verschiedene Oberflächen O:

Es ist
$$rot(\vec{F}) = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} z \\ 2x - z \\ 2y \end{pmatrix} = \begin{pmatrix} 2+1 \\ 1-0 \\ 2-0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}.$$

C im Uhrzeigersinn durchlaufen, muss d \vec{O} nach oben zeigen, so dass d \vec{O} == $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ dx dy .

Mit Polarkoordinaten folgt
$$\iint_A rot(\vec{F}) \bullet d\vec{O} = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^R \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} r \, dr \, d\phi = \int\limits_{r=0}^R \int\limits_{\phi=0}^{2\pi} 2r \, d\phi \, dr = \int\limits_{r=0}^R 4\pi r \, dr = 2\pi R^2 \,, \text{ wie oben beim Arbeitsintegral.}$$

2 Zum Rotationsparaboloid $z = f(x, y) = R^2 - x^2 - y^2$ mit $z \ge 0$, ohne Bodenkreis. Es

$$\label{eq:folgt} \begin{array}{ll} folgt & d\vec{O} = \begin{pmatrix} \dfrac{\partial f}{\partial x}(x,y) \\ \dfrac{\partial f}{\partial y}(x,y) \\ -1 \end{pmatrix} dx \, dy = \begin{pmatrix} -2x \\ -2y \\ -1 \end{pmatrix} dx \, dy \, . \, Da \, \, d\vec{O} \, \, \, nach \, außen \, zeigen \, muss, \, verwenden \, wir \, dy \, . \, \\ \end{array}$$

$$d\vec{O} = \begin{pmatrix} 2x \\ 2y \\ 1 \end{pmatrix} dx \ dy \ . \ \ \text{Mit den Polarkoordinaten} \ \ x = r \cdot cos(\phi) \ \ und \ \ y = r \cdot sin(\phi) \ \ folgt \ \ d\vec{O} = \begin{pmatrix} 2r \cdot cos(\phi) \\ 2r \cdot sin(\phi) \\ 1 \end{pmatrix} r \ dr \ d\phi.$$

$$Damit\ folgt\ \iint\limits_{A}rot(\vec{F})\bullet d\vec{O}\ = \int\limits_{\phi=0}^{2\pi}\int\limits_{r=0}^{R} \begin{pmatrix} 3\\1\\2 \end{pmatrix} \cdot \begin{pmatrix} 2r \cdot cos(\phi)\\2r \cdot sin(\phi)\\1 \end{pmatrix} r\ dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(6r^2\cos(\phi) + 2r^2\sin(\phi) + 2r\right) dr\ d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}$$

$$\int\limits_{r=0}^{R} \left(6r^2 \int\limits_{\frac{\phi=0}{=0}}^{2\pi} cos(\phi) \, d\phi + 2r^2 \int\limits_{\frac{\phi=0}{=0}}^{2\pi} sin(\phi) \, d\phi + \int\limits_{\phi=0}^{2\pi} 2r \, d\phi \right) dr = \int\limits_{r=0}^{R} 4\pi \, r \, dr = 2\pi R^2 \; , \; \text{wie oben.}$$

 $\mbox{\bf \textcircled{3} Zur Halbkugelfläche} \ \, x^2+y^2+z^2=R^2 \ \, mit \ \, z\geq 0 \, , \, ohne \, \, Boden.$

Aus
$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$
 folgt

$$d\vec{O} = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \\ -1 \end{pmatrix} dx \, dy = \begin{pmatrix} \frac{-x}{\sqrt{R^2 - x^2 - y^2}} \\ \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \\ -1 \end{pmatrix} dx \, dy \, . \, \text{Mit den Polarkoordinaten}$$

$$x = r \cdot cos(\phi) \ \ und \ \ y = r \cdot sin(\phi) \ \ folgt \ \ d\vec{O} = \begin{pmatrix} \dfrac{-r \cdot cos(\phi)}{\sqrt{R^2 - r^2}} \\ \dfrac{-r \cdot sin(\phi)}{\sqrt{R^2 - r^2}} \\ -1 \end{pmatrix} r \ dr \ d\phi \ . \ Da \ \ d\vec{O} \ \ nach \ außen \ zeigen \ muss, \ verwenden$$

$$\label{eq:wir_dot} \mbox{wir } \mbox{d} \vec{O} = \left(\begin{array}{c} \frac{r \cdot \cos(\phi)}{\sqrt{R^2 - r^2}} \\ \\ \frac{r \cdot \sin(\phi)}{\sqrt{R^2 - r^2}} \\ \\ 1 \end{array} \right) r \, \mbox{d} r \, \mbox{d} \phi \; .$$

$$Damit\ folgt\ \iint\limits_{A} rot(\vec{F}) \bullet d\vec{O} = \int\limits_{\phi=0}^{2\pi} \int\limits_{r=0}^{R} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \cdot \left(\frac{r \cdot cos(\phi)}{\sqrt{R^2 - r^2}} \right) r\ dr\ d\phi = \int\limits_{r=0}^{R} \int\limits_{\phi=0}^{2\pi} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{R} \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{R} \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = \int\limits_{Q=0}^{R} \left(\frac{3r^2 \cdot cos(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + \frac{r^2 \cdot sin(\phi)}{\sqrt{R^2 - r^2}} + 2r \right) d\phi dr = 0$$

$$\int_{r=0}^{R} \left(\frac{3r^2}{\sqrt{R^2-r^2}} \underbrace{\int_{\phi=0}^{2\pi} cos(\phi) \, d\phi}_{=0} + \frac{r^2}{\sqrt{R^2-r^2}} \underbrace{\int_{\phi=0}^{2\pi} sin(\phi) \, d\phi}_{=0} + \int_{\phi=0}^{2\pi} 2r \, d\phi \right) dr = \int_{r=0}^{R} 4\pi \, r \, dr = 2\pi R^2 \; , \; \text{wie oben.}$$

② Zum Kegelmantel vom Radius R und der Höhe H: Nach dem Strah-

lensatz gilt
$$\frac{z}{R-r}=\frac{H}{R}$$
 . Daraus folgt $z=f(x,y)=\frac{H}{R}\cdot(R-r)$ mit $r=\sqrt{x^2+y^2}$.

$$\text{Somit gilt } \ d\vec{O} = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \\ -1 \end{pmatrix} dx \ dy = \begin{pmatrix} -\frac{H}{R}\frac{x}{\sqrt{x^2 + y^2}} \\ -\frac{H}{R}\frac{y}{\sqrt{x^2 + y^2}} \\ -1 \end{pmatrix} dx \ dy \ .$$

 $\mbox{Mit den Polarkoordinaten} \ \, x = r \cdot cos(\phi) \ \, \mbox{und} \ \, y = r \cdot sin(\phi) \ \, \mbox{folgt} \, d\vec{O} = \begin{pmatrix} -\frac{H}{R} \frac{r \cos(\phi)}{r} \\ -\frac{H}{R} \frac{r \sin(\phi)}{r} \\ -1 \end{pmatrix} r \, dr \, d\phi \; . \label{eq:matter}$

Da dÖ nach außen zeigen soll, müssen wir den Gegenvektor verwenden. Es folgt

$$\iint\limits_{A}rot(\vec{F})\bullet d\vec{O} = \int\limits_{\phi=0}^{2\pi}\int\limits_{r=0}^{R} \begin{pmatrix} 3\\1\\2 \end{pmatrix} \cdot \begin{pmatrix} \frac{H}{R}cos(\phi)\\ \frac{H}{R}sin(\phi)\\1 \end{pmatrix} r\,dr\,d\phi = \int\limits_{r=0}^{R}\int\limits_{\phi=0}^{2\pi} \left(3\frac{H}{R}rcos(\phi) + \frac{H}{R}rsin(\phi) + 2r\right)d\phi dr = \int\limits_{R}rcos(\phi) + \frac{H}{R}rsin(\phi) + \frac{H}{R}rsin(\phi)$$

$$\int_{r=0}^{R} 4\pi r \, dr = 2\pi R^2 \text{ , wie oben.}$$

⑤ Zum Zylindermantel vom Radius R und der Höhe H samt Deckfläche, ohne Grundfläche.

 α . Zum Zylindermantel: Man verwendet Zylinderkoordinaten $x=R\cos(\phi)$, $y=R\sin(\phi)$, z. Ein Normalenvektor \vec{n} muss in jedem Punkt P(x/y/z) des Mantels radial nach außen zei-

$$\text{gen: } \vec{n} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} R\cos(\phi) \\ R\sin(\phi) \\ 0 \end{pmatrix} = R \cdot \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ 0 \end{pmatrix}. \text{ Für dO ergibt sich } dO = R\,d\phi \cdot dz \text{ , so dass }$$

$$d\vec{O} = \frac{\vec{n}}{|\vec{n}|} d\vec{O} = \begin{pmatrix} cos(\phi) \\ sin(\phi) \\ 0 \end{pmatrix} R d\phi dz \text{ gilt. Es folgt}$$

$$\iint\limits_{A} rot(\vec{F}) \bullet d\vec{O} = \int\limits_{\phi=0}^{2\pi} \int\limits_{z=0}^{H} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} cos(\phi) \\ sin(\phi) \\ 0 \end{pmatrix} R \ dr \ dz = \int\limits_{z=0}^{H} \int\limits_{\phi=0}^{2\pi} \left(3 cos(\phi) + sin(\phi) \right) R \ d\phi \ dz = \int\limits_{z=0}^{H} 0 \ dz = 0 \ .$$

 β . Zur Deckfläche z = H: Man verwendet Polarkoordinaten $x = R\cos(\phi)$, $y = R\sin(\phi)$. Dann folgt mit

$$\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ und } dO = r \, dr \, d\phi \ \text{ der Vektor } \ d\vec{O} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} r \, dr \, d\phi \ \text{ das Integral}$$

$$\iint_{A} rot(\vec{F}) \bullet d\vec{O} = \int_{\phi=0}^{2\pi} \int_{r=0}^{R} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} r \, dr \, d\phi = \int_{r=0}^{R} \int_{\phi=0}^{2\pi} 2r \, d\phi \, dz = \int_{r=0}^{R} 4\pi r \, dr = 2\pi R^2 \quad , \text{ wie oben.}$$

WUNDERSCHÖN!!!