

Problema B **Bateria Anti-aérea**

Arquivo fonte: bateria.{ c | cpp | java | py } Autor: Prof. Dr. Alex Marino (Fatec Ourinhos)

Joãozinho, o conselheiro científico e militar dos Esbornianos, foi convocado para mais uma missão de alta importância. O exército dos Sneakys está utilizando um perigoso canhão de prótons, posicionado em um ponto estratégico no campo de batalha, que pode destruir completamente a **unidade de controle de bateria anti-aérea móvel**, uma estrutura circular crucial para a defesa do espaço aéreo dos Esbornianos.

Se o canhão dos Sneakys estiver mirando exatamente no centro da unidade de controle, é **impossível escapar** da destruição. No entanto, graças à ajuda de Munarinho, amigo de Joãozinho, foi desenvolvido um sistema de scramble que desorienta o radar e a mira do canhão dos Sneakys. Com isso, a unidade de controle pode se mover para escapar do disparo, desde que o canhão não mire exatamente no centro da unidade.

O objetivo é, dado a posição do canhão, o ângulo de disparo e a posição da unidade de defesa, determinar:

- 1. Se a unidade será atingida fatalmente (quando o canhão estiver mirando exatamente no centro).
- 2. Se a unidade não será atingida.
- 3. Quando possível escapar, calcular o **menor deslocamento necessário** para que a unidade de controle evite o disparo.

Sua tarefa é ajudar Joãozinho a garantir a segurança da unidade de controle, verificando se ela será atingida ou não e calculando o deslocamento mínimo, se possível.

Entrada

A entrada contém os seguintes valores:

- x_k, y_k : Coordenadas do canhão.
- θ : Ângulo do canhão em relação ao eixo X, dado em graus.
- x_c, y_c : Coordenadas do centro da unidade de controle circular.
- r: Raio da unidade de controle circular.

Saída

Imprima:

- "Atingido Fatalmente" se o canhão estiver mirando exatamente no centro da unidade de controle.
- "Nao Atingido" se a unidade de controle não estiver na trajetória do projétil.
- "Atingido" se a unidade estiver na trajetória do disparo, e também imprima a menor distância que o centro da unidade deve se mover para não ser atingido.

Restrições

- $0 \le x_k, y_k, x_c, y_c \le 10000$
- $1 \le r \le 100$
- $0 \le \theta < 360$
- Tolerância para comparação de ponto flutuante : 10^{-6}

Exemplo de Entrada 1

Exemplo de Saída 1

590.00	489.00	70.64	590.00	489.00	98.64	Atingido	Fatalmente	
0 3 0 • 0 0	100.00	70.01	550.00	100.00	J O • O 1	1101119140	1 acaimence	

Exemplo de Entrada 2

Exemplo de Saída 2

981.00	285.00	238.54	1015.82	281.81	37.13	Atingido
						5.76

Exemplo de Entrada 3

Exemplo de Saída 3

131.00 206.00	162.88 763.00	484.00 7.74	Não Atingido