

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Poly[[aqua{ μ_4 -2-[(carboxymethyl)sulfan-yl]nicotinato- κ^4O :O':O'':Comper(II)] trihydrate]

Wei-Qi Li

Jinhua Radio and Television University, Zhejiang 321022, People's Republic of

Correspondence e-mail: lwq8113@163.com

Received 27 March 2013; accepted 8 April 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.032; wR factor = 0.085; data-to-parameter ratio = 17.3.

In the polymeric title complex, $\{[Cu(C_8H_5NO_4S)(H_2O)] \cdot 3H_2O\}_n$, the Cu^{II} cation is coordinated by one water molecule and four carboxylate O atoms from four 2-[(carboxymethyl)sulfanyl]nicotinate anions in a distorted square-pyramidal geometry. The 2-[(carboxymethyl)sulfanyl]nicotinate anion bridges four Cu^{II} cations, forming a two-dimensional polymeric complex parallel to the bc plane. In the crystal, $O-H\cdots O$, $O-H\cdots N$ and $O-H\cdots S$ hydrogen bonds link the complex molecules and lattice water molecules into a three-dimensional supramolecular architecture.

Related literature

For background to the 2-[(carboxymethyl)sulfanyl]nicotinato ligand, see: Wang & Feng (2010). For related compounds, see: Jiang *et al.* (2012). For metal complexes with 2-mercaptonanicotinate ligands, see: Humphrey *et al.* (2006); Sun *et al.* (2011).

Experimental

Crystal data

[Cu(C₈H₅NO₄S)(H₂O)]·3H₂O $M_r = 346.82$ Monoclinic, $P2_1/c$ a = 9.940 (7) Å b = 16.639 (9) Å c = 7.876 (4) Å $\beta = 96.28 \text{ (5)}^{\circ}$ $V = 1294.8 \text{ (13) } \text{Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 1.88 \text{ mm}^{-1}$ T = 296 K

 $0.25 \times 0.09 \times 0.06 \text{ mm}$

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.812$, $T_{\max} = 0.892$

20324 measured reflections 2973 independent reflections 2331 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.042973 reflections

172 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.37 \ {\rm e \ \AA^{-3}}$ $\Delta \rho_{\rm min} = -0.32 \ {\rm e \ \AA^{-3}}$

Table 1 Selected bond lengths (Å).

Cu1-O1			1.958 (2)	Cu1-O	4 ⁱⁱⁱ		1.9836	5 (19)
Cu1-O2 ⁱ Cu1-O3 ⁱⁱ			1.9682 (19) 1.9687 (19)	Cu1-O	1W		2.171	(2)
Symmetry	codes:	(i)	$-r \pm 2 - v \pm 1$	1·	(ii)	r_v_1	7 <u>1</u> .	(iii)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) $x, -y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+2, y+\frac{1}{2}, -z+\frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1W-H1WA\cdots O4W^{iv}$	0.82	1.93	2.747 (4)	174
$O1W-H1WB\cdots O2W^{iii}$	0.84	2.11	2.899 (4)	156
$O2W-H2WA\cdots O3W^{v}$	0.83	2.05	2.843 (5)	157
$O2W-H2WB\cdots O4$	0.84	2.26	2.911 (4)	135
$O2W-H2WB\cdots N1$	0.84	2.56	3.253 (4)	141
$O3W-H3WA\cdots O3^{vi}$	0.82	2.40	3.110 (4)	146
$O3W-H3WB\cdots O2W$	0.83	2.00	2.803 (5)	165
$O4W-H4WB\cdot\cdot\cdot S1^{vi}$	0.85	2.62	3.356 (4)	146

Symmetry codes: (iii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) x + 1, y, z; (v) -x + 1, -y, -z + 1; (vi) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The work was supported by the Zhejiang province education department scientific research project (No. Y201119396).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5692).

References

Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA

Humphrey, S. M., Alberola, A., Gómez Garcíab, C. J. & Wood, P. T. (2006). Chem. Commun. pp. 1607–1609.

Jiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2012). *Inorg. Chim. Acta*, **383**, 38–45. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Sun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. pp. 746–748.

Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.

Acta Cryst. (2013). E69, m268 [doi:10.1107/S1600536813009604]

Poly[[aqua{ μ_4 -2-[(carboxymethyl)sulfanyl]nicotinato- κ^4O :O':O'':Copper(II)] trihydrate]

Wei-Qi Li

Comment

2-Carboxymethylsulfanylnicotinic acid is prepared from 2-mercaptonanicotinic acid (Wang & Feng, 2010). 2-Mercaptonanicotinic acid is a multifunctional ligand, and some complexes containing 2-mercaptonanicotinate ligand have been previously investigated (Humphrey *et al.*, 2006; Sun *et al.*, 2011).

The 2-carboxymethylsulfanylnicotinic acid is an interesting ligand because of its potential versatile coordinate behavior. Recently, only three metal compounds have been reported about 2-carboxymethylsulfanyl nicotinic acid (Jiang *et al.*, 2012). Herein, we report the synthesis and structure of the title compound.

A perspective view of (I) is presented in Fig.1. The asymmetric unit consists of one Cu^{II} ion, one ($C_8H_5NO_4S$)²⁻ ligands, one coordinated water molecule, and three lattice water molecules. As shown in Fig. 2, each pair of Cu²⁺ ion is μ -linked by four carboxylic groups of the individual ($C_8H_5NO_4S$)²⁻ ligands with Cu···Cu distances of 2.6524 (15) Å. The ($C_8H_5NO_4S$)²⁻ ligands bridge adjacent dinuclear units in a head-to-tail fashion to form a two-dimensional layer on the *bc* plane, and further linked into the three-dimensional architecture by O—H···O/N/S hydrogen bonds (Fig.3).

Experimental

2-Carboxymethylsulfanyl nicotinic acid (1.0 mmol) in H_2O (10 ml) was stirred under basic condition in which $NH_3.H_2O$ was needed to keep pH value of 11. $CuCl_2.2H_2O$ was added and stirred for 2 h. The resulting solution was placed for 2 days, and the crystals were filtered off, giving blue crystals of the title compound for X-ray analysis.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93 Å and aliphatic C—H 0.97 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$]. The oxygen-bound H-atoms was located in a difference Fourier maps and refined with the O—H distance restrained to 0.83 (2) Å and $U_{iso}(H) = 1.2 U_{eq}(O)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008.

Acta Cryst. (2013). E69, m268 Sup-1

Figure 1 A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability. Symmetry codes: (A) -x + 2, -y + 1, -z + 1.

Figure 2
A view of the two-dimensional layer structure of (I).

Acta Cryst. (2013). E**69**, m268

Figure 3 three-dimensional supramolecular architecture of (I). Dashed lines indicate hydrogen bonds.

Poly[[aqua{ μ_4 -2-[(carboxymethyl)sulfanyl]nicotinato- κ^4O :O':O'':Copper(II)] trihydrate]

Constal	1 .
mietal	data

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$

F(000) = 708
$D_{\rm x} = 1.779 \; {\rm Mg \; m^{-3}}$
Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Cell parameters from 3501 reflections
$\theta = 2.1-27.6^{\circ}$
$\mu = 1.88 \text{ mm}^{-1}$
T = 296 K
Plate, blue
$0.25 \times 0.09 \times 0.06 \text{ mm}$
20324 measured reflections
2973 independent reflections
2331 reflections with $I > 2\sigma(I)$
$R_{\rm int}=0.054$
$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
$h = -11 \rightarrow 12$
$k = -21 \rightarrow 21$
$l = -10 \rightarrow 10$
S = 1.04

Acta Cryst. (2013). E69, m268 Sup-3

2973 reflections

172 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.2317P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.37$ e Å⁻³ $\Delta\rho_{\rm min} = -0.32$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	1.10928 (3)	0.455426 (15)	0.48878 (4)	0.02469 (11)
S1	0.96122 (7)	0.21713 (3)	0.44052 (8)	0.03032 (16)
O1	0.97500 (18)	0.37850 (10)	0.3866 (2)	0.0338 (4)
O1W	1.2932 (2)	0.39085 (12)	0.4498 (3)	0.0473 (5)
H1WA	1.2787	0.3469	0.4037	0.057*
H1WB	1.3419	0.4141	0.3845	0.057*
O2	0.7893 (2)	0.45444 (10)	0.3972 (3)	0.0369 (4)
O3	1.0779 (2)	0.08898 (11)	0.2128 (2)	0.0374 (4)
O4	0.89346 (19)	0.01319 (10)	0.2319(2)	0.0328 (4)
N1	0.7301(2)	0.17934 (12)	0.2526(3)	0.0341 (5)
C1	0.5606(3)	0.27286 (16)	0.1366 (4)	0.0398 (7)
H1A	0.4768	0.2817	0.0745	0.048*
C2	0.7636 (3)	0.32137 (14)	0.2965 (3)	0.0267 (5)
C3	0.6384(3)	0.33602 (16)	0.2060 (4)	0.0348 (6)
H3A	0.6068	0.3885	0.1919	0.042*
C4	0.6114(3)	0.19624 (16)	0.1627 (4)	0.0393 (7)
H4A	0.5600	0.1536	0.1147	0.047*
C5	0.8059(3)	0.24081 (14)	0.3179(3)	0.0260 (5)
C6	0.8489 (3)	0.38985 (13)	0.3664 (3)	0.0268 (5)
C7	0.9514(3)	0.10887 (14)	0.4500(3)	0.0319 (6)
H7A	1.0178	0.0897	0.5403	0.038*
H7B	0.8626	0.0938	0.4794	0.038*
C8	0.9757 (3)	0.06765 (14)	0.2838 (3)	0.0286 (5)
O2W	0.6123 (3)	-0.00071 (16)	0.2997 (4)	0.0759 (8)
H2WA	0.6385	-0.0244	0.3907	0.091*
H2WB	0.6774	0.0299	0.2886	0.091*
O3W	0.3765 (3)	0.07734 (18)	0.3764 (4)	0.0831 (9)
H3WA	0.3048	0.0589	0.3329	0.100*
H3WB	0.4364	0.0491	0.3424	0.100*
O4W	0.2538 (3)	0.24845 (18)	0.2749 (5)	0.1001 (11)
H4WA	0.2766	0.2280	0.1881	0.120*

Acta Cryst. (2013). E69, m268 Sup-4

H4WB	0.1699		362	0.2691	0.120*		
Atomic a	lisplacement parai	meters (Ų)					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cu1	0.02945 (19)	0.01710 (15)	0.02766 (18)	0.00031 (11)	0.00377 (12)	0.00057 (11)	
S1	0.0364 (4)	0.0231 (3)	0.0307 (4)	0.0012(3)	0.0001(3)	-0.0052 (2)	
O1	0.0335 (11)	0.0208 (8)	0.0472 (12)	-0.0032(7)	0.0043 (9)	-0.0036(7)	
O1W	0.0429 (12)	0.0403 (11)	0.0603 (14)	0.0085 (9)	0.0123 (10)	-0.0024(9)	
O2	0.0382 (11)	0.0238 (9)	0.0469 (12)	0.0011 (8)	-0.0026(9)	-0.0080(8)	
Э3	0.0434 (12)	0.0363 (10)	0.0337 (10)	-0.0079(9)	0.0093 (9)	-0.0118 (8)	
D4	0.0412 (11)	0.0248 (8)	0.0330 (10)	-0.0010 (8)	0.0066 (8)	-0.0051 (7)	
N1	0.0417 (14)	0.0242 (10)	0.0357 (13)	-0.0065(9)	0.0016 (10)	-0.0041(9)	
C1	0.0335 (16)	0.0393 (15)	0.0444 (17)	-0.0048 (12)	-0.0052(13)	-0.0017 (12)	
C2	0.0320 (14)	0.0234 (12)	0.0254 (13)	-0.0021 (10)	0.0056 (10)	-0.0014 (9)	
C3	0.0357 (16)	0.0275 (13)	0.0410 (16)	-0.0008 (11)	0.0027 (12)	0.0011 (11)	
C4	0.0424 (17)	0.0338 (14)	0.0403 (16)	-0.0121 (12)	-0.0012 (13)	-0.0045 (12)	
C5	0.0308 (14)	0.0242 (11)	0.0238 (12)	-0.0016 (10)	0.0066 (10)	-0.0016 (9)	
C6	0.0398 (16)	0.0188 (11)	0.0221 (12)	-0.0042 (10)	0.0039 (11)	0.0023 (9)	
C 7	0.0499 (17)	0.0225 (12)	0.0234 (13)	0.0016 (11)	0.0039 (12)	-0.0010 (9)	
C8	0.0388 (15)	0.0202 (11)	0.0263 (13)	0.0065 (10)	0.0015 (11)	-0.0008(9)	
O2W	0.0679 (18)	0.0680 (17)	0.097(2)	-0.0153 (14)	0.0337 (15)	-0.0023 (15)	
O3W	0.0590 (18)	0.0867 (19)	0.098 (2)	-0.0033 (15)	-0.0178 (15)	-0.0172 (17)	
O4W	0.069 (2)	0.090(2)	0.150(3)	-0.0265 (17)	0.048 (2)	-0.055 (2)	
Cu1—O		1.958 (2	,	N1—C5		40 (3)	
Cu1—O		1.9682 (19)		C1—C4		79 (4)	
Cu1—O		1.9687 (19)		C1—C3		82 (4)	
Cu1—O		1.9836 (19)		C1—H1A		300	
Cu1—O		2.171 (2)		C2—C3		86 (4)	
Cu1—C	u1 ⁱ	2.6524 (15)		C2—C5	1.410 (3)		
S1—C5		1.773 (3	/	C2—C6			
S1—C7		1.806 (3)		C3—H3A	0.9300		
O1—C6		1.261 (3)		C4—H4A		0.9300	
O1W—H1WA		0.8228		C7—C8	1.521 (3)		
O1W—H1WB		0.8384		C7—H7A	0.9700		
O2—C6		1.263 (3	·	C7—H7B	0.9700		
O2—Cu1 ⁱ		1.9682 (19)		O2W—H2WA	0.8345		
O3—C8		1.263 (3		D2W—H2WB	0.8359		
O3—Cu1iv		1.9687 (19)		O3W—H3WA	0.8165		
O4—C8		1.258 (3		O3W—H3WB	0.8253		
O4—Cu1 ^v		1.9836 (19)		O4W—H4WA	0.8176		
N1—C4		1.337 (4	ł) (O4W—H4WB	0.8	547	
		167.93 (8)		C3—C2—C5	117.9 (2)		
O1—Cu			` '		119.9 (2)		
O1—Cu	1—О3 ^{іі}	87.44 (9	0)	C3—C2—C6		1 1	
O1—Cu O2 ⁱ —Cu			() ()	C3—C2—C6 C5—C2—C6 C1—C3—C2	123	9.9 (2) 2.2 (2) 0.1 (2)	

Acta Cryst. (2013). E**69**, m268

O2 ⁱ —Cu1—O4 ⁱⁱⁱ	89.31 (9)	C1—C3—H3A	119.9
O3 ⁱⁱ —Cu1—O4 ⁱⁱⁱ	168.14 (8)	C2—C3—H3A	119.9
O1—Cu1—O1W	99.49 (9)	N1—C4—C1	124.1 (3)
O2 ⁱ —Cu1—O1W	92.56 (9)	N1—C4—H4A	117.9
O3 ⁱⁱ —Cu1—O1W	99.18 (9)	C1—C4—H4A	117.9
O4 ⁱⁱⁱ —Cu1—O1W	92.69 (9)	N1—C5—C2	122.1 (2)
O1—Cu1—Cu1 ⁱ	82.33 (7)	N1—C5—S1	117.35 (19)
O2 ⁱ —Cu1—Cu1 ⁱ	85.74 (7)	C2—C5—S1	120.48 (19)
O3 ⁱⁱ —Cu1—Cu1 ⁱ	86.50 (7)	O1—C6—O2	125.7 (2)
O4 ⁱⁱⁱ —Cu1—Cu1 ⁱ	81.64 (7)	O1—C6—C2	116.7 (2)
O1W—Cu1—Cu1 ⁱ	174.09 (6)	O2—C6—C2	117.5 (2)
C5—S1—C7	101.32 (12)	C8—C7—S1	113.56 (17)
C6—O1—Cu1	125.29 (16)	C8—C7—H7A	108.9
Cu1—O1W—H1WA	113.2	S1—C7—H7A	108.9
Cu1—O1W—H1WB	114.3	C8—C7—H7B	108.9
H1WA—O1W—H1WB	103.0	S1—C7—H7B	108.9
C6—O2—Cu1 ⁱ	120.56 (18)	H7A—C7—H7B	107.7
C8—O3—Cu1 ^{iv}	120.36 (16)	O4—C8—O3	125.7 (2)
C8—O4—Cu1 ^v	125.43 (17)	O4—C8—C7	116.5 (2)
C4—N1—C5	118.0 (2)	O3—C8—C7	117.8 (2)
C4—C1—C3	117.6 (3)	H2WA—O2W—H2WB	101.8
C4—C1—H1A	121.2	H3WA—O3W—H3WB	106.2
C3—C1—H1A	121.2	H4WA—O4W—H4WB	102.4

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, -y+1/2, z+1/2; (iii) -x+2, y+1/2, -z+1/2; (iv) x, -y+1/2, z-1/2; (v) -x+2, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>WA</i> ···O4 <i>W</i> ^{vi}	0.82	1.93	2.747 (4)	174
O1 <i>W</i> —H1 <i>WB</i> ···O2 <i>W</i> ⁱⁱⁱ	0.84	2.11	2.899 (4)	156
O2 <i>W</i> —H2 <i>WA</i> ···O3 <i>W</i> vii	0.83	2.05	2.843 (5)	157
O2 <i>W</i> —H2 <i>WB</i> ···O4	0.84	2.26	2.911 (4)	135
O2 <i>W</i> —H2 <i>WB</i> ···N1	0.84	2.56	3.253 (4)	141
O3 <i>W</i> —H3 <i>WA</i> ···O3 ^{viii}	0.82	2.40	3.110 (4)	146
O3 <i>W</i> —H3 <i>WB</i> ···O2 <i>W</i>	0.83	2.00	2.803 (5)	165
O4 <i>W</i> —H4 <i>WB</i> ···S1 ^{viii}	0.85	2.62	3.356 (4)	146

Symmetry codes: (iii) -x+2, y+1/2, -z+1/2; (vi) x+1, y, z; (vii) -x+1, -y, -z+1; (viii) x-1, y, z.

Acta Cryst. (2013). E69, m268 Sup-6