F.Y.B.Sc. (Comp. Science) Semester - I Regular Semester-End Examination Session: Nov. 2022

Subject : Semiconductor Devices and

Basic Electronic Systems

Time: 2 Hrs. Total Marks 35

Instructions: (1) All questions are compulsory.

- (2) Draw labelled diagrams wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Use of non-programmable calculator is allowed.

Q.1 Attempt any Five of the following.

(1*5=5)

Subject Code: USCSEL-111

- (a) Calculate resolution of 4 bit DAC.
- (b) Draw symbols at light emitting diode and photodiode.
- (c) If transistor has $\beta = 50$ and $I_B = 25\mu A$, find collector current I_C and forward current gain α .
- (d) State the majority and minority current carriers in N-type semiconductor.
- (e) State atleast two points of comparison between BIT and MOSFET.
- (f) What is Q point of a transistor?
- (g) Name the fastest ADC.

Q.2 Attempt any Five of the following.

(3*5=15)

- (a) Explain MOSFET as a switch.
- (b) Compare half wave rectifier, full wave rectifier and Bridge rectifier.
- (c) Explain characteristics of DE-MOSFET.
- (d) Explain following terms w.r.t. zener regulator:
 - (1) Line regulation
 - (2) Load regulation
- (e) What is the need of DAC? State different types of DAC.
- (f) State any five parameters of ADC.
- (g) Draw diagram of crystal oscillator. Find series frequency for $R = 1k\Omega$, $C = 0.22 \mu F$.

Q.3 Attempt any three of the following.

(5*3=15)

- (a) With the help of circuit diagram, explain working of R 2R ladder.
- (b) Draw diagram of A stable multi vibrator using IC 555. Calculate the output frequency if $R_A = 1 \text{ k}\Omega$, $R_B = 100 \text{ k}\Omega$, $C = 0.1 \mu\text{F}$.
- (c) Explain working of n-channel. E only MOSFET with neat diagram.
- (d) Draw output characteristics of transistor in CE configuration and explain all regions.
- (e) For a four bit resistive ladder, find the following:
 - (1) Weight assigned to the LSB and MSB.
 - (2) Analog output voltage for digital input of 1011. (assume logic $O = OV \quad log r$ c1 = 10V.

