

0 • • • • • • • • • • • • • • • • • • •	
EXERCICE II	
II-1- Interférences constructives :	II-2- Interférences constructives :
II-3- Différence : $\delta = EB + BF$	
II-4-	(cocher la réponse exacte)
	$\delta = 2d \sin(\theta)$ $\delta = \frac{2\sin(\theta)}{d}$

- II-5-Relation: $\delta = n \lambda$ avec n entier
- Distance : $d = \frac{\lambda}{2\sin(\theta)} = \frac{0,154}{2*\sin(25,9)} = 0,176 \ nm$ II-6-
- Démonstration : $f = \frac{c}{\lambda} = 1,95 .10^{18} Hz$ II-7-

EXERCICE III

III-1- Coordonnées du vecteur vitesse : (cocher la réponse exacte pour chaque coordonnées)

- $\square v_z(t) = At^2 + Bt + C$
- $\square v_z(t) = -At^2 + Bt + C$

- $\square \ v_{x}(t) = Bt + C$
- $\square v_{v}(t) = Bt + C$
- $\square v_z(t) = Bt + C$

- $\square v_{x}(t) = -Bt + C$ $\mathbf{X} v_{x}(t) = 0$
- $\boxtimes v_{v}(t) = -Bt + C$
- $\square v_z(t) = -Bt + C$ $\mathbf{X} v_z(t) = 0$

- $\square v_{v}(t) = 0$

- **III-2-** Vecteur accélération : $a_x = 0$
- $a_{v} = -B$

 $a_z = 0$

 $\overrightarrow{R_{\perp}} + \overrightarrow{R_{//}} + \overrightarrow{P} = m \overrightarrow{a}$ III-3-Relation:

III-4-Tracé des forces:

III-5-

Expression littérale : $R_{//} = m B$

Application numérique : $R_{//} = 2100 \text{ N}$

Expression littérale : $\mathbf{R}_{I} = \mathbf{m} \mathbf{g}$

Application numérique : $R_{\perp} = 6900 \text{ N}$

- III-6-Mouvement: Circulaire uniforme
- **III-7-** Direction et sens de $\overrightarrow{R_{//}}$ selon : $\Box \overrightarrow{t}$ $\Box -\overrightarrow{t}$ $\mathbf{X}\vec{n}$ $\Box - \vec{n}$ (cocher la réponse exacte)

Expression littérale : $R_{//} = \frac{mV_3^2}{r}$

III-8- Trajectoire possible

(cocher la ou les réponses exactes)

- Aucune
 - Toutes les trajectoires de rayons supérieurs à 16,0 m
 - Toutes les trajectoires de rayons inférieurs à 16,0 m
 - X Toutes les trajectoires de rayons supérieurs à 8,0 m
 - Toutes les trajectoires de rayons inférieurs à 8,0 m

Document réponses Physique-Chimie EXERCICE I

EXERCICE II

EXERCICE III

III-1- $\Delta E_{pp} = -mgh$ III-2- $\Delta E_c = \frac{1}{2} m V_E^2$ Appl. Num. : $V_E = 30 \text{ m.s}^{-1}$ III-4- Exp. Litt. : P = mg Appl. Num. : P = 500 N

Echelle: 1 carreau pour 100 N

- III-6- Relation: $\overrightarrow{P} + \overrightarrow{R} = m \overrightarrow{a}$
- III-7- $a_x(t) = \frac{R_x}{m}$ $a_z(t) = \left(\frac{R_z}{m} g\right)$
- III-8- $v_{x}(t) = \frac{R_{x}}{m}t + V_{E}$ $v_{z}(t) = \left(\frac{R_{z}}{m} g\right)t$
- **III-9-** Expressions littérales

$$x(t) = \frac{R_x}{2m}t^2 + V_E t \qquad z(t) = \frac{1}{2}\left(\frac{R_z}{m} - g\right)t^2$$

III-10- Appl. Num.:

$$x(2s) = 36 \text{ m}$$
 $z(2s) = -18 \text{ m}$

III-11- ☑ Avant le point K ☐ exactement en K ☐ après le point (cocher la réponse exacte)