

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Duration: 3 Hours

End Semester Examination Synoptic

April/May 2018

Max. Marks: 100 Class: SE

Semester: IV

Course Code: CE43/IT44Branch: Computer/IT Name of the Course: Operating System Synoptic

Question No.		Max.
Q.1 (a)	Explain multiprogramming operating system with neat diagram. Multiprogramming OS: 1. The problem is that I/O devices are slow compared to the processor. 2. The process execution contain cpu phase and i/o phase. When i/o phase of a process starts cpu is idle. 3. Solution is When one job needs to wait for I/O, the processor can switch to the other job, which is likely not waiting for I/O. The approach is known as multiprogramming, or multitasking Program A Run Wait Run Wait Program C Wait Run Wait Run Wait Combined Run	Mark 05
	Write any 4 advantages and one disadvantage of layered architecture of Operating system. Advantages: 1.Layered architecture has all the advantages of modular design. In modular design, the system is divided into several modules and each module is designed independently. Each layer can be designed, coded and tested independently. Layered approach simplifies the design, specification and implementation of an O.S. Drawback: The OS function must be carefully assigned to various layers because a layer can make use only of the functionality provided by the layer beneath it. Points: for advantages for disadvantages for disadvantages	05

For the process parameters in the table below, find average waiting time and average turnaround time for FCFS and SJF preemptive scheduling algorithms.

Process	Arrival Time	Burst Time
P1	0	5
P2	1	3
P3	2	8

Correct Gantt chart of both algorithms:-1 mark each, so total 2 marks Turnaround time and waiting time for each process ½ mark, waiting time/turnaroundtime of each process ½ mark.

FCFS Gantt chart:-

P1	P2 .	P3
5	8	16

Waiting time for P1 = 0

Waiting time for P2 = 4

Waiting time for P3 = 6

Average waiting time = 10/3=3.33

Tat for P1 = 5

Tat for P2=7

Tat for P3=14

Average TAT =5+7+14/3=26/3=8.66

Preemptive SJF Gantt chart:-

P1	P2		P1		P3	
	1	4		8	16	

Waiting time for P1 = 3

Waiting time for P2 = 0

Waiting time for P3 = 6

Average waiting time =9/3=3

Tat for P1 = 8

Tat for P2=3

Tat for P3=14

Average TAT =8+3+14=25/3=8.3

OR

Assume the following processes arrive for execution at the time indicated and the length of CPU burst time given in ms.

ob	Burst Time	Priority	Arrival Time
P1	19	3	0
P2	10	2	2
P3	7	1	4

For the process parameters in the table above, find average waiting time and average turnaround time for non-preemptive and preemptive priority scheduling algorithm for time slice 5. Lower number indicates high priority.

Correct Gantt chart of both algorithms:-1 mark each , so total 2 marks Turnaround time/waiting time for each process $\frac{1}{2}$ mark and average waiting time/average turnaroundtime $\frac{1}{2}$ mark so for each algorithm there will be 4 marks. Total 2 algorithms, so 8 marks.

	P1	P2	ority Gar	ill chart:							
	2	PZ	P3	P2	P1						
		4	11	19	36						
	TEN INCH		111								
	Waiting	time fo	or P1 =17								
	Waiting	time fo	or P2 =09								
	Waiting	time fo	or P3 =0								
	Turnaro	waitin	g time = 3 e for p1=	36/3=12	ms						
	Turnaro	and tim	e for p1=	36							
	Turnarou	and tim	e for p3=	7							
	Average	turnare	and time	/ =36±17	+7=60/3=20						
			and time	-30+17	+7-60/3=20						
	Non-Pree	emptive	Priority	Gantt ch	art-						
	P1	P3	P2	Curre of	art.						
	19	26	36								
	Waiting t	ime for	P1 = 0								
	Waiting time for P2 = 24										
	Waiting time for P3 = 15 Average waiting time = 24+15=39/3=13 ms										
	Average v	vaiting	time = 24	+15=39/	3=13 ms						
	Turnarour	nd time	for $pl=1$	9							
	Turnarour	id time	for $p2=3$	4							
	Turnaroun	utime	for p3=22	2							
2.2 (b)	Differenti	arnarou	nd time =	19+34+	22=75/3=25						
(-)	1 mark for	each n	ween user	level th	read and kernel level thread for 5 different point	ts. 05					
).2 (c)	Explain m	ultileve	l feedbas	le qui	-1 11						
	Need of m	ultileve	l feedbac	k queue	scheduling with neat diagram.	05					
			1 IVVUUAL	am 1 m	- I marv						

7.

	Processes		Allo	cation				Max		
		A	В	C	D	A	В	С	D	11
	P0	4	0	0	1	6	0	1	2	
	P1	1	1	0	0	2	7	5	0	11
	P2	1	2	5	4	2	3	5	6	1
	P3	0	6	3	3	1	6	5	3	1
	P4	0	2	1	2	1	6	5	6	1
		tomb							10	1
		ailable								
	A B	C	D							
	3 2	1	1							
(h)	P2 1 1 1 P3 1 0 P4 1 4 4 3) YES, system Safe Sequence Total resource Need 2 marks Safe sequence Safe sequence	= 10 +1 = 11 ix: C I 1 1 5 0 0 2 2 0 4 4 m is in sa : P0, P2, 2 marks 1 mark calculation	fe state P3, P4, P1							
(b)	Describe deadle Correct descrip	tion – 4 r	narks, dia	gram 1 n	nark. DR					05
	Explain Test example.(pseud Explanation- 2 Correct Pseudo	marks code with	h no logic	al errors	- 3 marks				em with	
(c)	State dining ph	ilozophor	's probl	em. Solv	ve by wr g Monito	iting nse	udo cod	e and ex	plain the	10

	4 marks for description of pseudo code					
	OR State sleeping barber problem. Solve by writing pseudo code using semaphores and explain the same. problem definition- 2 4 marks for pseudo code.					
	4 marks for description of pseudo code.					
Q.4 (a)	A paging system has the C.H.					
Q.4 (a)	A paging system has the following parameters: 2^31 bytes of physical memory; page size of 2^10 bytes; 2^16 pages of logical address space 1. How many bits are in a logical address? =10+16 2. How many bytes are in a frame? (?)=2^10 3. How many bits are in the physical address specifying the frame? =31-10=21 4. How many entries in the page table? =no of pages=2^16 5. How many bits in each page table entry? Assume each page table entry contains valid/invalid bit.=page frame+ V/I bit=22	05				
	Each question 1 mark.					
	OR If cost of accessing main memory is 100 ns and TLB hit ratio is 90%. What is the cost of accessing the TLB if the effective memory access time is 119ms? 2 marks for formula- EAT=(1-p)*ma+p* page fault service time 119=0.9(x+100)+0.1(x+100+100) 119=0.9x+90+0.1X+20					
	119=x+110					
	x=9ns					
	2 marks for substituting correct values at correct places 1 mark for answer					
Q.4 (b)						
2.1 (0)	Explain memory allocation techniques with neat diagram and example Contiguous-6 marks					
	Non contiguous-4 marks					
Q.4 (c)	Given page reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6, Calculate total	5				
	number of pagerauits using optimal page replacement policy using 4 frames	5				
	Total page fault I mark					
	4 mark showing insertion and deletion of page					
	1 2 3 4 2 1 5 6 2 1					
1	2 3 4 2 5 6 2 1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2					
	1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2					
	1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2					
	1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Q.5 (a)	Given the following queue: 95, 180, 34, 119, 11, 123, 62, 64 with the read-write head initially at the track 50 and the tail track being at 199. Calculate total head movement and average seek length using FCFS and C-SCAN disk scheduling algorithm when head is moving towards decreasing track number. 1/2 Mark for diagram, 1/2 for each request calculation so for 8 request 4 marks, total head movement: 1/2mark. So for each algorithm – 5 marks total. So 5*2=10 A. FCFS – 644/8=80.5 B. C-SCAN-326/8=40.75	10
Q.5 (b)	Compare sequential and index sequential file organization methods with neat diagram. Each method working 2 marks, advantage, disadvantage and diagram 1 mark each. OR What is record blocking? Explain three methods of record blocking with neat diagram. What is record blocking-1 mark Each method of record blocking 3 marks.	10
Q.5 (c)	Explain any five objectives of file management system. Each objective 1 mark	5