Quasi-Newton methods with application to penalty and barrier problems

August Borna 19981022-0070 Björn Elwin 19960406-2811 Daniel Larsson 19980523-2551

November 2022

1 Introduction

Minimizing functions can sometimes be a tedious procedure, which is why there is a need for numerical algorithms to find optimal points. In this two different algorithms were used, the DFP Quasi-Newton and the BFGS Quasi-Newton, where DFP is short for Davidon-Fletcher-Powell and BFGS short for Broyden-Fletcher-Goldfarb-Shanno. The difference between these methods is how we update a matrix D, where the matrix D is part of how a descent directions is computed.

2 Who has done what

All group members have participated in all parts of the project, however some division of labor was done to ensure time optimization. Daniel was more responsible for derivative approximation, Björn took care of the algorithm for updating the D-matrix, and August for the general Quasi-Newton. The report was also split up a bit, but all group members are aware and in agreement of everything written.

3 The optimal point(s) and the optimal function value for each problem.

Function $f(\mathbf{x})$	$\overline{\mathbf{x}}$	$f(\overline{\mathbf{x}})$
Rosenbrock, i.e. $100 * (x_2 - x_1^2)^2 + (1 - x_1)^2$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	0
$e^{x_1 x_2 x_3 x_4 x_5} \text{ subject to } \begin{cases} x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 10 \\ x_2 x_3 = 5x_4 x_5 \\ x_1^3 + x_3^3 = -1 \end{cases}$	$\begin{bmatrix} -1.7172\\ 1.8272\\ 1.5957\\ -0.7636\\ -0.7636 \end{bmatrix}$	0.0539498

Table 1: Functions f(x), point \overline{x} minimizing the function and its corresponding functionvalue $f(\overline{x})$.

4 A motivation for your choices of line search method(s) and stop criterion.

Armijo's Rule was chosen for line search since it finds a suitable lambda whilst avoiding the use of second derivatives. The only inputs needed are a function and a starting point. Another reason for the choice of line search was that no initial interval is needed when starting the line search, thus avoiding the issue of a bad initial interval. For the stopping criterion two conditions were used. The first one being when we are close to a stationary point and the second one when the relative distance moved in the last step is small. These were done by checking if the norm of the gradient is less than a tolerance and the norm of the distance between two points divided by the norm of the first point, respectively. The conditions can be seen below;

$$||\nabla f(x_k)|| \le \epsilon \tag{1}$$

$$\frac{||x_{k+1} - x_k||}{||x_k||} \le \epsilon \tag{2}$$

The first condition was chosen initially by its own but in some cases the second condition was needed since the distance moved was very small and the number of iterations could be decreased by adding it.

5 A short discussion on the consistency in the program behaviour and how you have tested it.

Consistency of the program was tested by choosing many different starting points for the different functions. The global minima is found for the Rosenbrock function for most starting points, but the number of iterations needed to find the minima differs depending on the starting point. With restart the minima is always found but without restart convergence is not achieved for some starting points. A local minima is always found when analysing the exponential function of table 3, here the number of iterations also differs on the starting point, when starting at some points, ex. the point given in the project description x = [-2, 2, 2, -1, -1] the global minima shown in table 3 is found.

6 A table for each problem and a short discussion on how the convergence and the solution are affected by different initial points for a given tolerance.

In table 6 below the results for the Rosenbrock function can be seen. As can be seen in general using restart results in faster convergence. For the starting points when we do not achieve convergence one could see that the step size quickly becomes zero and we therefore get stuck without being at a minima. For the ones were we get convergence one could see that in general the BFGS method achieves faster convergence.

starting point	tolerance	algorithm	restart	convergence iterations
[200; 200]	1e-6	DFP	yes	34
[200; 200]	1e-6	BFGS	yes	26
[200; 200]	1e-6	DFP	no	did not converge
[200; 200]	1e-6	BFGS	no	70
[200; 10]	1e-6	DFP	yes	84
[200; 10]	1e-6	BFGS	yes	82
[200; 10]	1e-6	DFP	no	4116
[200; 10]	1e-6	BFGS	no	56
[1000; 1000]	1e-6	DFP	yes	908
[1000; 1000]	1e-6	BFGS	yes	904
[1000; 1000]	1e-6	DFP	no	did not converge
[1000; 1000]	1e-6	BFGS	no	did not converge

Table 2: Convergence results for the Rosenbrock function for different starting points and methods.

starting point	tolerance	algorithm	restart	iter	f(x)
[-2;2;2;-1;-1]	1e-6	DFP	yes	25	0.053
[-2;2;2;-1;-1]	1e-6	BFGS	yes	25	0.053
[-2;2;2;-1;-1]	1e-6	DFP	no	20	0.053
[-2;2;2;-1;-1]	1e-6	BFGS	no	15	0.053
[1;1;1;1;1]	1e-6	DFP	yes	50	0.053
[1;1;1;1;1]	1e-6	BFGS	yes	50	0.053
[1;1;1;1;1]	1e-6	DFP	no	35	0.479
[1;1;1;1;1]	1e-6	BFGS	no	35	0.053
[-1;-1;-1;-1;-1]	1e-6	DFP	yes	30	0.413
[-1;-1;-1;-1;-1]	1e-6	BFGS	yes	25	0.413
[-1;-1;-1;-1;-1]	1e-6	DFP	no	95	0.413
[-1;-1;-1;-1;-1]	1e-6	BFGS	no	30	0.413

Table 3: Convergence results for the second problem described in 3, for different starting points and methods.

7 A comparison of the two quasi-Newton methods with/without restart.

Using the restart parameter lets the program re-estimate the D matrix after every n (=number of dimension) iterations which helps the function converge faster, (in most cases). Without the restart parameter convergence may be very slow with short steps for each estimation, but can be fast when the hessian is quadratic since a quadratic function theoretically should converge after n iterations using a Quasi-Newton method).

8 A strategy of choosing initial points and the sequence of penalty parameter values in problem (pen).

When choosing initial points, one must take into consideration local minima. If we choose a poor initial point, the algorithm might converge to a local minimum instead of a global one, and thus not finding an optimal point. This can be seen in table 6, where the algorithm fails to find a global minimum for some starting points or configurations. The penalty parameter is also a selection of value where one must tread carefully. If chosen too big, or too small, convergence might fail. This is why a more adaptive approach is taken. To start off, a small μ is used, and it is then increased as the algorithm works it's way towards the minimum. We found that one set of values that worked well was; $\mu = [10^0, 10^1, 10^2, 10^3]$. These values can possibly be refined to further increase performance, however,

9 A printout of a minimization with all information (starting point, tolerance, method, etc.).

1	iteration	x	stepsize	f(x)	norm(grad)	ls ite	rs
	lambda						
2	1	-1.938,	0.53971	5.559	63.55161684	13	
	0.00770						
3		1.784					
4		1.599					
5		-0.800					
6	0	-0.800	0 22455	4 250	10 10070511	4.0	
7	2	-1.679,	0.33155	1.356	13.49079541	13	
	0.00770						
8		1.667 1.541					
9		-0.687					
10		-0.687					
11	2		0.09082	1 040	12.21039211	7	
12	3 0.08779	-1.681,	0.09062	1.240	12.21039211	,	
13	0.00778	1.746					
13		1.543					
15		-0.655					
16		-0.655					
17	4	-1.500,	0.69135	0 447	8.85622787	1	1.000000
18	-	2.335	0.00100	0.447	0.00022101	-	1.00000
19		1.281					
20		-0.778					
21		-0.778					
22	5	-1.649,	0.47834	0.119	4.02478307	2	0.666667
23	-	1.933				_	
24		1.492					
25		-0.759					
26		-0.759					
27	6	-1.638,	0.03102	0.075	2.60580534	13	0.007707
28		1.943					
29		1.517					
30		-0.765					
31		-0.765					
32	7	-1.648,	0.01860	0.060	1.36676254	12	0.011561
33		1.953					
34		1.524					
35		-0.773					
36		-0.773					
37	8	-1.647,	0.00310	0.060	1.31373179	9	0.039018
38		1.951					
39		1.523					
40		-0.774					
41		-0.774					
42	9	-1.657,	0.01657	0.055	0.07526376	1	1.000000
43		1.939					
44		1.525					
45		-0.771					

46		-0.771				
47	10	-1.707,	0.11845	0.054 0.20602142	5	5.062500
48		1.850				
49		1.585				
50		-0.769				
51		-0.769				
52	11	-1.707,	0.00357	0.053 0.12287229	11	0.017342
53		1.849				
54		1.583				
55		-0.767				
56		-0.767				
57	12	-1.706,	0.00031	0.053 0.08642855	14	0.005138
58		1.848				
59		1.583				
60		-0.767				
61		-0.767				
62	13	-1.707,	0.00039	0.053 0.08359886	9	0.039018
63		1.849				
64		1.584				
65		-0.767				
66		-0.767				
67	14	-1.710,	0.00671	0.053 0.04444516	2	1.500000
68		1.844				
69		1.587				
70		-0.768				
71		-0.768				
72	15	-1.711,	0.00484	0.053 0.02652498	3	2.250000
73		1.840				
74		1.589				
75		-0.767				
76		-0.767				
77	16	-1.711,	0.00031	0.053 0.01958879	12	0.011561
78		1.840				
79		1.590				
80		-0.767				
81		-0.767				
82	17	-1.712,	0.00011	0.053 0.00474627	13	0.007707
83		1.840				
84		1.590				
85		-0.767				
86		-0.767				
87	18	-1.712,	0.00026	0.053 0.00833185	7	0.087791
88		1.840				
89		1.590				
90		-0.767				
91		-0.767				
92	19	-1.720,	0.01887	0.053 0.02552195	6	7.593750
93		1.826				
94		1.599				
95		-0.766				
96		-0.766				
97	20	-1.717,	0.00595	0.053 0.00202424	2	1.500000
98		1.830				
99		1.596				
100		-0.767				
101		-0.767				
102	21	-1.717,	0.00004	0.053 0.00204201	11	0.017342

```
1.830
103
104
                 1.596
                -0.767
105
                -0.767
106
                             0.00001
                                         0.053 0.00107597
                                                                 13
                                                                       0.007707
       22
                -1.717,
107
                1.830
108
109
                 1.596
                -0.767
111
                -0.767
                -1.717,
                             0.00014
                                         0.053 0.00257203
                                                                       0.296296
112
       23
                 1.830
113
                 1.596
114
                -0.767
115
116
                -0.767
                             0.00210
                                        0.053 0.00454123
       24
                -1.718,
                                                                       5.062500
117
                 1.828
118
119
                 1.597
                -0.767
120
121
                -0.767
                -1.718,
                             0.00018
                                         0.053 0.00058376
                                                                       2.250000
122
123
                1.828
                1.597
124
                -0.767
125
126
                -0.767
127 >>
```

10 Appendix

Armijo's rule line search function

```
function [lambda, ls_iters ] = armijo(f, epsilon, alpha,deriv0)
      delta = sqrt(eps);
      %first = (f(delta/2) - f(-delta/2))/delta; %derivative at the
      point lambda = 0
      t = 0(x) f(0) + epsilon * x * deriv0;
6
      lambda = 1;
8
      ls_iters = 1;
10
11
      while ~((f(lambda) <= t(lambda)) && (f(alpha * lambda) >= t(
      alpha * lambda)))
          if f(lambda) > t(lambda)
12
               lambda = lambda / alpha;
13
           elseif (f(alpha * lambda) < t(alpha * lambda))</pre>
14
               lambda = alpha * lambda;
15
16
           ls_iters = ls_iters + 1;
17
18
       end
19
       if f(lambda)>f(0)
20
21
           lambda=0;
22
      if isnan(f(lambda)) || f(lambda)>f(0)
23
```

```
error('Bad job of the line search!')
end
end
```

Nonlinearmin

```
1 function [x,no_its,normg] = nonlinearmin(f,x0,method,tol,restart,
      printout)
2 %clc
3 if printout
    fprintf('iteration \t\t x \t
                                        stepsize \t f(x) \t
                                                                  norm(grad
       ) \t\t ls iters\tlambda \n');
5 end
6 dim=length(x0);
8 %ls_iters=0;
9 no_its = 1;
10 \text{ yk}=\text{x0};
11 x = x0;
normg = norm(grad(f,x0));
13 D=eye(dim);
ygranit = yk - 20000000*tol;
while(normg > tol && abs(f(yk)-f(ygranit))/abs(f(ygranit)) > tol*10
       if restart
16
17
           D=eye(dim);
18
19
       for i=1:dim
20
21
           gradientyk = grad(f,yk);
           d=-D*gradientyk;
22
           F=@(lambda) f(yk+lambda*d);
23
           deriv0 = gradientyk'*d;
24
           [lambda, Is_iters]=armijo(F,0.2,2,deriv0);
25
           %ls_iters=ls_iters+temp_iters;
26
27
           yk1=yk+lambda*d;
28
30
           stepsize = norm(yk1-yk);
           gradientyk1 = grad(f,yk1);
31
           D=updateD(D,lambda,d,method,gradientyk,gradientyk1);
32
           ygranit = yk;
33
34
           yk = yk1;
           normg = norm(gradientyk1);
35
36
           if printout
37
                fprintf('%5.0f %12.3f, %12.5f %12.8f %12.8f %6.0f
38
       \mbox{\ensuremath{\%}16.6f\ensuremath{\mbox{\ensuremath{\mbox{\sc f}}\ensuremath{\mbox{\sc h}}}} , normg , ls_iters ,lambda)
                for j=2:dim
                    fprintf('%5.0f %12.3f %12.5f %12.8f %12.8f %6.0f
40
       %16.6f\n','',yk1(j),'','','','','');
               end
41
42
43
           end
44
```

```
15
46
47
48
49
50
51
end
52
x=yk1;
53
54
end
```

Update D

```
function D1 = updateD(D,lambda,d,method,gradyk,gradyk1)

p = lambda * d;
q = gradyk1 - gradyk;

if method == "DFP"
    D1 = D + (p*p')/(p'*q) - D*q*q'*D/(q'*D*q);
end

if method == "BFGS"
    D1 = D + (1+q'*D*q/(p'*q))*(p*p')/(p'*q) - (p*q'*D + D*q*p')/(p'*q);
end

end

end
```