Probability Distribution

JP Monteagudo

2023-09-14

Distribution Name	LaTeX Formula	Real-Life Example
Continuous		
Distributions	2 (2 2)	
Normal (Gaussian)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	Heights of individuals in a population
Uniform	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$ $f(x) = \frac{1}{b-a}$ $f(x) = \lambda e^{-\lambda x}$	Random numbers between a and b
Exponential	$f(x) = \lambda e^{-\lambda x}$	Time between arrivals in a Poisson process
Chi-Squared	$f(x) = \frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$	Testing goodness of fit, error analysis
Cauchy	$f(x) = \frac{1}{\pi(1+x^2)}$	Electrical conductivity in physics experiments
Log-Normal	$f(x) = \frac{1}{2\sigma^{2}} e^{-\frac{(\ln(x) - \mu)^{2}}{2\sigma^{2}}}$	Stock prices, income distribution
Gamma	$f(x) = \frac{x \theta \sqrt{2\pi}}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}$	Waiting times, reliability analysis
Weibull	$f(x) = \frac{k}{x} \left(\frac{x}{x}\right)^{k-1} e^{-(x/\lambda)^k}$	Failure times of mechanical components
Beta	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}}$ $f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}$ $f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$ $f(x) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	Probability of success in binomial distribution
Triangular	$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{if } a \le x \le c\\ \frac{2(b-x)}{(b-a)(b-c)} & \text{if } c \le x \le b\\ 0 & \text{otherwise} \end{cases}$	Estimating uncertainty in project durations
Discrete Distributions	· ·	
Binomial	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$	Number of successes in a fixed number of trials
Poisson	$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$	Number of events in a fixed interval of time
Geometric	$P(X = k) = (1 - p)^{k-1}p$	Number of trials needed for the first success
Bernoulli	$P(X = x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$ $P(X = k) = \frac{\binom{k}{k} \binom{N - K}{n - k}}{\binom{N}{n}}$	Success/failure in a single trial
Hypergeometric	$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$	Defective items in a sample without replacement