블록 장난감 제조 공정 최적화 AI 경진대회

DACON | LG AI 해커톤

팀명_ 대왕이

팀원_ 손주호

목차

01 문제소개 및 분석방향

02 탐색적 자료분석

모델 소개

04 독창성 & 확장성

01 대회문제 및 분석방향

AI 활용 블록 장난감 제조 공정 최적화

- 1. 어린이날 전후로 늘어난 블록 장난감 수요
- 2. 적기/적량 생산을 위한 공정 설계 알고리즘 개발

분석방향

02 탐색적 자료분석

탐색적 자료분석

stock - 4월1일 기준 재고

자르기 ID: BLK_1 ~ 4

order - BLK1~4의 일별 수요

cut_yield - 자르기공정 월별 양품률

탐색적 자료분석 - stock, order

stock

- 4월1일 기준 재고

	PRT_1	PRT_2	PRT_3	PRT_4	MOL_1	MOL_2	MOL_3	MOL_4	BLK_1	BLK_2	BLK_3	BLK_4
2020-04-01	0	258	0	0	1086	0	0	0	61158	87279	0	0

생산

order

- BLK1~4의 일별 수요

time	BLK_1	BLK_2	BLK_3	BLK_4
2020-06-16	31874	0	62911	0
2020-06-17	21250	0	31456	41395
2020-06-18	21250	0	31456	41395
2020-06-19	42499	0	62911	41395
2020-06-20	42499	0	41941	41395
2020-06-21	42499	0	41941	41395
2020-06-22	42499	0	41941	62092
2020-06-23	42499	0	62911	0
2020-06-24	21250	0	31456	62092
2020-06-25	21250	0	31456	62092
2020-06-26	42499	0	62911	62092
2020-06-27	42499	0	41941	62092
2020-06-28	42499	0	41941	62092
2020-06-29	42499	0	41941	31046
2020-06-30	42499	0	62911	0

탐색적 자료분석 - max_count, change_time, cut_yield

max_count

- "성형" 공정
- 일별 최대 투입 개수

	개수		
4.1 ~ 4.14	0		
4.15 ~ 4.30	140.590741		
5.1 ~ 5.31	140.805556		
6.1 ~ 6.30	141.018518		

change_time

- "성형" 공정
- 변경 소요 시간

	시간
MOL_1 ↔ MOL_2	6
MOL_3 ↔ MOL_4	6
etc	13

cut_yield - "자르기" 공정

- 월별 양품률

	20년 4월	20년 5월	20년 6월
BLK_1	85.1	85.1	85.1
BLK_2	90.1	90.1	90.1
BLK_3	71.0	74.2	75.9
BLK_4	70.0	73.2	74.9

03 모델 소개

$$W_{2nd}$$

$$= [W_a \ W_b]$$

모델 소개 - 속도

분석 환경

CPU: Intel(R) Xeon(R) CPU E5-2630

(2.30GHz, 24core)

Memory: 65,943,312kb (64GB)

pandas = 1.0.5 numpy = 1.18.5 matplotlib = 3.2.2 python = 3.8.3

	Hyper parameter
세대당 유전자 수	50
베스트 유전자 수	5
자식 유전자 생성 수	5
돌연변이 비율	50%
세대 수	160

	시간	점수
훈련: 3개월	7,247초 (2시간)	-
예측	5초	87.96103

점수 =
$$50F(p, 10N) + 20F(q, 10N) + \frac{20F(c,M)}{(1+0.1c_n)} + \frac{20F(s,M)}{(1+0.1s_n)}$$
, which $F(x,a) = \begin{cases} 1 - \frac{x}{a} (if \ x < a) \\ 0 (else) \end{cases}$

모델 소개 - 현업적용가능성

3개월 단위의 주문 수량을 파악

모델의 학습에 2시간 소요되므로, 빠르게 다음 분기의 공정 설계 가능

공정 최적화

예측한 수량대로 라인별 블록 생산

모델 소개 - 모델 재사용

분기별 n세대 유전자 보관

n 세대

genome genome genome genome

비슷한 추이를 보이는 분기

사용했던 유전자의 재사용

기존 유전자 + 새로운 input으로 학습

학습 EPOCH(반복 회수) 감소, 효율성 제고

04 독창성 & 확장성

독창성

66

77

Simulator

$$\hat{y}$$
 = 생성 BLK 개수 y = 필요 BLK 개수

score (cost function)

$$= \sum |y - \hat{y}| * 5 \text{ (if } y - \hat{y} > 0: 부족)$$

+
$$\sum |y - \hat{y}| * 2 \text{ (if } y - \hat{y} < 0: 초과)$$

SAE(Sum of Absolute Errors)를 사용하되, 부족분의 잔차가 덜생기도록 가중치 부여

확장성 - Spectral Library

Genome

Simulator

score (cost function) $= \sum |y - \hat{y}| * 5 \text{ (if } y - \hat{y} > 0 \text{: under peak)}$ + $\sum |y - \hat{y}| * 2 \text{ (if } y - \hat{y} < 0 \text{: over peak)}$

Top 5 predictions

Thank You