

Time Series

Fundamentals

Stationary Process

- Stationary process is that stochastic (probabilistic) process whose joint probability distribution does not change when shifted in time.
- In our context of time series, it is that time series whose mean and variance do not change over time.
- White Noise Model is the simplest example of Stationary series.
- For weak stationarity, covariance of y_t and y_s is constant for all |t-s|=h, for all h. e.g. $Cov(y_3,y_7)=Cov(y_{22},y_{26})$

Stationary and Non-Stationary

Stationary

White Noise Model (WN Model)

- WN Model is a simple example of stationary process
- A weak White Noise has
 - A fixed constant mean
 - A fixed constant variance
 - No correlation of any time point value with any time point value

Random Walk (RW) Model

- RW Model is a simple example of non-stationary time series
- A random walk series has
 - No specific mean and variance
 - Strong dependence over time
- Changes or increments in RW series are white noise
- Random Walk Recursion: Today's value = Yesterday's Value + Noise
- In other words, $y_t = y_{t-1} + \in_t$, where \in_t is white noise with mean zero
- RW Model has only one parameter i.e. variance of the white noise σ_ϵ^2

Example of RW Model

How to find Stationarity?

- Dickey-Fuller(ADF) Test can be used to test the stationarity of any time series
- Consider the expression of auto-regressive model

$$y_t = \beta y_{t-1} + \epsilon_t$$

Dickey–Fuller test checks whether the eta in the expression above is 1 or less than 1

*H*0: β = 1 (the time series is non-stationary)

HA: β < 1 (the time series is stationary)

Dickey-Fuller Test in Python

- statsmodels.tsa.stattools.adfuller is a Dicky-Fuller test and returns test statistics and p-value for the test of the null hypothesis.
- If the p-value is less than 0.05, the time series is stationary.

What can be done for stationarity?

• We can difference the time series

value	diff 1st	2nd	3rd		
23					
44	21				
89	45	24			
157	68	23	-1		
350	193	125	102		
890	540	347	222		
1706	816	276	-71		
value					
1000					
0					
	1 2	3 4 5	6 7		

value	diff 1st	
45		
55	10	
67	12	
78	11	
88	10	
100	12	
105	5	

Autocorrelation

What is Autocorrelation?

- Autocorrelation is correlation between the elements of a series and others from the same series separated from them by a given interval.
- Lag 1 Autocorrelation: Correlation of today's value with yesterday's value
- Lag 2 Autocorrelation: Correlation between today's and day before yesterday's values
- Lag k Autocorrelation: Correlation between Day 1 with Day k values

Auto-correlation(ACF) Formula

• Let y_t be value of time series at time t. The ACF between the series y_t and y_{t-h} correlation can be expressed as

 $\frac{Covariance(y_t, y_{t-h})}{Variance(y_t)}$

Calculating acf

• We observe that, the correlation goes on decreasing with the increase in the lag. This is not the case with every time series.

Autoregressive Models

AR Process

Autoregressive Model

- In this model, we consider that today's observation is regressed on yesterday's observation or any of the previous day's observation.
- Model:

```
Today's\ Value = Constant + Slope * Yesterday's\ Value + Noise
```

- Software may use mean centered version of this model as $(Today's\ Value Mean) = Slope * (Yesterday's\ Value Mean) + Noise$
- By notations, $y_t \mu = \phi(y_{t-1} \mu) + \epsilon_t$, where ϵ_t is a white noise with mean 0 with variance σ_ϵ^2 and ϕ and μ are the slope and mean respectively

$$y_t - \mu = \phi(y_{t-1} - \mu) + \epsilon_t$$

- If slope $\phi=0$ then $y_t=\mu+\epsilon_t$ and y_t will be white noise with mean μ and variance σ^2_ϵ
- If slope $\phi \neq 0$ then the process of $\{y_t\}$ is autocorrelated
- Large value of Ø implies greater dependency of current values with previous values
- Negative value of Ø implies oscillatory time series
- If $\mu=0$ and slope $\phi=1$, then $y_t=y_{t-1}+\epsilon_t$, which is a random walk process

Simple Moving Average Model

MA Process

Simple Moving Average Model

- Simple MA model:
 - Today's Value = Mean + Noise + Slope * (Yesterday's Noise)
- In mathematical notations,

$$y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

Where

 μ : Mean of the series

 θ : Slope

 ϵ_t : Error or Noise at time t which has mean 0 and some variance σ_{ϵ}^2

• At $\theta=0$, the model will be a white noise with mean μ and variance σ_{ϵ}^2

Simple Moving Average Model

$$y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

- If θ is non-zero then y_t depends on both ϵ_t and ϵ_{t-1} and the process is auto correlated
- Larger values of θ imply greater autocorrelation
- Negative values of θ imply oscillatory time series

Questions?