Contrôle S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (9 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.
- 3. Déterminez, en valeur absolue, le plus petit et le plus grand nombre du format IEEE754 double précision à mantisse **dénormalisée**. Exprimez le résultat sous la forme 2^n pour le plus petit et $(1 2^{n1}) \times 2^{n2}$ pour le plus grand où n, n1 et n2 sont des entiers relatifs. Sur le <u>document réponse</u>, vous préciserez en base 10 les valeurs numériques de n, de n1 et de n2.

Exercice 2 (3 points)

Soit le montage ci-dessous :

- 1. Complétez la table de vérité présente sur le document réponse.
- 2. Quel est le nom de ce circuit?

Exercice 3 (1 point)

Sur le <u>document réponse</u>, donnez le schéma de câblage d'un diviseur de fréquence par deux avec uniquement une bascule RS maître-esclave.

Contrôle S2 – Corrigé

Exercice 4 (7 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

Figure 3

Contrôle S2 – Corrigé 2/4

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	E	М
257	0	10000111	0000001000000000000000
78,1875	0	10000101	0011100011000000000000
0,109375	0	01111011	11000000000000000000000

2.

Représentation IEEE 754	Représentation associée
2A48 0000 0000 0000 ₁₆	3 × 2 ⁻³⁴⁸
FFF0 0000 0000 000F ₁₆	NaN
000B C000 0000 0000 ₁₆	47 × 2 ⁻¹⁰²⁸
4000 0000 0000 000016	1× 2¹

3.

n	n1	n2
-1074	-52	-1022

Exercice 2

A	В	Q
0	0	1
0	1	1
1	0	0
1	1	q

	_		
Nom	du	circ	nit

Bascule RS asynchrone active à l'état bas

Exercice 3

Contrôle S2 – Corrigé 3/4

Exercice 4

Figure 1

Figure 2

Figure 3

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.

Contrôle S2 – Corrigé