Dokumenten- und Topicmodelle

Aufbau von Textkorpora

- Korpus C enthält Menge von D Dokumenten
- jedes Dokument enthält Menge von N_i Wörtern
- gesamter Korpus enthält Vokabular von V voneinander verschiedenen Wörtern
- Länge des Korpus ist N

Ziel

Welche Informationen k\u00f6nnen extrahiert werden?

- Clustering von Wörtern anhand Bedeutung(Semantik)
- Identifizierung von Synonymien und Polysemien
- Themenzuordnung von Dokumenten
- ...?

Weiteres Ziel aller Modelle: Dimensionsreduktion

- Einfach ist nur auszählen von Wörtern
- Dimension hierbei: V (aber: V sehr groß, oft >> 1000000)
- Wie reduzierbar?

Wiederholung tf-idf

- Zähle Auftreten von Termen in Dokument
- Vergleiche Auftreten von Term in Dokument mit inversem Auftreten von Term in anderen Dokumenten
- Ergebnis: Term-Dokumentmatrix mit tf-idf Werten der Terme im Vokabular
- Reduktion von Dokumenten(unbestimmte Größe) auf Liste von Werten fixer Länge

Bag-of-word assumption

- Reihenfolge der Wörter wird nicht berücksichtigt
- Ein Dokument entspricht einem "Sack" voller Wörter
- Für jedes Wort wird Frequenz gespeichert
- Annahme:
 - Information über Art und Anzahl von Wörtern reichen aus um Rückschlüsse auf die Struktur von Text zu ziehen
 - Grundlage: de Finettis Theorem
 - Annahme der Austauschbarkeit:
 - Austauschbare Zufallsvariablen folgen einer vermischten Verteilung (mixture distribution), meist unendlich

Dokumentenmodelle

LSA - Latent Semantic Analysis

- Form der linearen Faktorisierung
- Grundlage bildet eine Wort-Dokument Kookkurentenmatrix
- diese wird per Singulärwertzerlegung in drei Matrizen zerlegt
- alle bis auf n höchsten Singulärwerte werden auf 0 gesetzt
- ursprüngliche Matrix wird rekonstruiert (hat nun geringeren Rang)

LSA

Vorteil:

- Keine Eins/Null Entscheidungen mehr
- Dimensionsreduktion auf n Dimensionen ("semantische Kategorien")

Nachteil:

- Schlechtes zugrunde liegendes statistisches Modell → schlechte Begründung
 - Gemeinsame Verteilung von Wörtern und Dokumenten folgt nicht Gausssondern Poissonverteilung
- Kein Vorwissen über n
- Polysemie
 - Jedes Wort wird genau einer semantischen Bedeutung zugeordnet (gleicher Datenpunkt im semantischen Raum)
 - d.h. Ergebnis ist Durchschnitt aller verschiedenen Bedeutungen eines Wortes (als Vektor)

LSA

geometrische Interpretation

- Reduzierte Dimensionen spannen "semantischen Raum"
- in Wortmatrix U
 - Winkel zwischen Wortvektoren (Cosinus-Maß) entspricht ihrer semantischen Ähnlichkeit
 - Möglichkeit semantisches Clustern
- ähnlich für Dokumentmatrix V
 - Clustering von ähnlichen Dokumenten

LSA – Beispiel

Example of text data: Titles of Some Technical Memos

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user perceived response time to error measurement
- m1: The generation of random, binary, ordered trees
- **m2:** The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

LSA – Beispiel, Termfrequenzmatrix

	c 1	c 2	c3	c 4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	i
minors	0	0	0	0	0	0	0	1	1

LSA - Beispiel, SVD

0.22 0.20 0.24 0.40 0.64 0.27 0.27 0.30 0.21 0.01 0.04	-0.11 -0.07 0.04 0.06 -0.17 0.11 -0.14 0.27 0.49 0.62 0.45	0.29 0.14 -0.16 -0.34 0.36 -0.43 -0.43 0.33 -0.18 0.23 0.22 0.14	-0.41 -0.55 -0.59 0.10 0.33 0.07 0.07 0.19 -0.03 0.03 0.00 -0.01	-0.11 0.28 -0.11 0.33 -0.16 0.08 0.08 0.11 -0.54 0.59 -0.07 -0.30	-0.34 0.50 -0.25 0.38 -0.21 -0.17 -0.17 0.27 0.08 -0.39 0.11 0.28	0.52 -0.07 -0.30 0.00 -0.17 0.28 0.28 0.03 -0.47 -0.29 0.16 0.34	-0.06 -0.01 0.06 0.00 0.03 -0.02 -0.02 -0.02 -0.04 0.25 -0.68	-0.41 -0.11 0.49 0.01 0.27 -0.05 -0.05 -0.17 -0.58 -0.23 0.23 0.18
3.34	2.54	2.35	1.64	1.50	1.31	0.85	0.56	0.36
0.20 -0.06 0.11 -0.95 0.05 -0.08 0.18 -0.01 -0.06	0.61 0.17 -0.50 -0.03 -0.21 -0.26 -0.43 0.05 0.24	0.46 -0.13 0.21 0.04 0.38 0.72 -0.24 0.01	0.54 -0.23 0.57 0.27 -0.21 -0.37 0.26 -0.02 -0.08	0.28 0.11 -0.51 0.15 0.33 0.03 0.67 -0.06 -0.26	0.00 0.19 0.10 0.02 0.39 -0.30 -0.34 0.45 -0.62	0.01 0.44 0.19 0.02 0.35 -0.21 -0.1\$ -0.76 0.02	0.02 0.62 0.25 0.01 0.15 0.00 0.25 0.45 0.52	0.08 0.53 0.08 -0.03 -0.60 0.36 0.04 -0.07 -0.45

LSA – Beispiel, rekonstruierte Matrix mit geringerem Rang

	c 1	c 2	c3	c 4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

Einschub: Latente Variablen

- Theoretische Konstrukte, abhängig vom Modell
- Sind nicht direkt messbar
- Können von messbaren Variablen (Observablen) ausgehend bestimmt werden

pLSI - probabilistic Latent Semantic Indexing

- Stammt nicht aus der linearen Algebra (wie LSA)
- Geht von vermischten Verteilungen und einem Modell der latenten Klassen aus
- Basiert auf Aspect-Model
 - Ordnet jeder Beobachtung (Term) eine latente Variable (Klasse) zu
 - Gemeinsame Wkt' über Dokumente und Terme wird definiert:

Annahme: d und w sind statistisch unabhängig voneinander

pLSI

Ähnlichkeit zu LSA

- Definiere 3 Matrizen:
- Gemeinsames Wahrscheinlichkeitsmodell P gegeben durch

Beobachtung

- Äußere Produkte zwischen Zeilen von U und V zeigen bedingte Unabhängigkeit
- K Faktoren entsprechen Mischkomponenten aus Aspect-Model
- Mischanteile ersetzen Singulärwerte

pLSI

Unterschied zu LSA

- Funktion zum Bestimmen der optimalen Annäherung bei LSA: L₂- oder Frobeniusnorm
- entspricht der Annahme eines Gaussrauschen auf Termanzahlen
- pLSI nutzt Likelihood-Funktion zur expliziten Maximierung der Vorhersagequalit\u00e4t des Modells
 - entspricht Minimierung der Kullback-Leibler Distanz zwischen tatsächlicher und approiximierter Wahrscheinlichkeitsverteilung

Einschub Kullback-Leibler Distanz

- Maß für die Verschiedenheit zweier Wahrscheinlichkeitsverteilungen
- Basiert auf Informationstheorie
 - Misst angenommene Anzahl extra bits um eine Information in einem auf Q basierenden Code zu kodieren statt in einem P basierenden
 - Definition:

pLSI

Würdigung

- Approximation in P ist für jedes Wort eine wohldefinierte Wahrscheinlichkeitsverteilung
- Faktoren haben klare probabilistische Bedeutung
- LSA arbeitet nicht mit Wahrscheinlichkeiten, sogar negative Werte möglich
- Keine offensichtliche Interpretation der Richtung im semantischen Raum von LSA, in pLSA ist Richtung interpretierbar als multinomiale Wortverteilung
- da probabilistisches Modell: Möglichkeiten der Modellselektion,
 Herausfinden von optimalen K(Anzahl der latenten Klassen)

pLSI – geometrische Deutung

- K Klassenspezifische Multinomialverteilungen werden im M-1 dimensionalen Simplex über alle möglichen Mult. dargestellt
- Bilden K-1 dim. Sub-simplex
- P(w|d) geg. durch
- konvexkomb. P(w|z)

Topicmodelle

Topicmodelle

- Basieren auf der Idee, Dokumente seien Gemisch(Mixture) von Topics und Topics ein Gemisch von Wörtern
- definieren generatives Modell
- Generativer Prozess wird zur Inferenz umgedreht
- Vorteil gegenüber räumlicher Repräsentation:
 - Jedes Topic einzeln interpretierbar
 - Bietet Wahrscheinlichkeitsverteilung über Wörter, damit kohärente
 Cluster von semantisch ähnlichen Wörtern

Generative Modelle

- basiert auf einfachen Samplingregeln
- beschreibt, wie Dokumente auf Basis eines latenten Parameters generiert werden können
- Ziel beim Anpassen des Modells: "besten" Satz von latenten Parametern finden, der gefundene Daten erklärt

LDA – Latent Dirichlet Allocation

Ausgehend von Bag-of-words Ansatz und latenten Variablen

- Ein Dokument ist eine Mischung von Topics (latent)
- Ein Topic ist eine Mischung aus Wörtern (obervable)

Notation

- P(z) ist eine Verteilung über Topics z in einem Dokument
- P(w|z) ist eine Verteilung über Wörter w für ein Topic z
- P(z_i = j) ist die Wkt' das für i-tes Wort Topic j gezogen wird
- $P(w_i|z_i = j)$ ist Wkt' von Wort w_i im Topic j
- Es ergibt sich eine Verteilung über alle Wörter eines Dokuments

LDA – Generativer Prozess

Für jedes Dokument d:

- Wählen der Topicverteilungen $\theta \sim Dir(\alpha)$
- Wählen der Wortverteilungen φ ~ Dir(β)

Für jedes Wort w_n der N_d Wörter im Dokument d

- Wählen von topic z_n ~Multinomial(θ_d)
- Wählen von w_n aus P(w_n|φ_{zn})

LDA

Notation

- Wir schreiben $\varphi^{(j)} = P(w|z=j)$ und $\theta^{(d)} = P(z)$
- Diese beschreiben, welche Topics für ein Dokument bzw. welche Wörter für ein Topic wichtig (eigentlich: wahrscheinlich) sind
- Beides multinomiale Verteilungen
- Im Gegensatz zu pLSI: Annahme zur Generierung von θ
 - A priori Verteilung ist Dirichletverteilung

- Dirichlet ist sogenannte conjugate prior f
 ür die Multinomialverteilung
 - Mathematisch sinnvoll, bessere Berechenbarkeit

LDA

- Da ohne Beobachtung, symmetrisches alpha
- Alpha < 1, für Verteilungen die nur wenige Topics bevorzugen (Sparsity – Dünnbesetztheit)

LDA – statistische Inferenz

- Iterativ mittels Markov Chain Monte Carlo Methode
 - Abschätzen der posteriori Verteilung über Topiczuordnung z
- Speziell Gibbs-Sampling
 - für jedes Wort wird die Topiczuordnung berechnet, abhängig von allen anderen Zuordnungen
 - Hochdimensionale Verteilung wird durch wiederholtes Ziehen von niedrigdimensionalen Variablen simuliert
 - Von Verteilung über z ausgehend werden φ und θ approximiert
 - Nur zwei Matritzen benötigt

$$P(z_{i} = j \mid \mathbf{z}_{-i}, w_{i}, d_{i}, \cdot) \propto \frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_{i}j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha}$$

LDA – statistische Inferenz

Approximerung

$$\phi'_{i}^{(j)} = \frac{C_{ij}^{WT} + \beta}{\sum_{k=1}^{W} C_{kj}^{WT} + W\beta}$$

$$\theta'^{(d)}_{j} = \frac{C_{dj}^{DT} + \alpha}{\sum_{k=1}^{T} C_{dk}^{DT} + T\alpha}$$

Beispiel:

$$\phi_{MONEY}^{(1)} = \phi_{LOAN}^{(1)} = \phi_{BANK}^{(1)} = 1/3$$

$$\phi_{RIVER}^{(2)} = \phi_{STREAM}^{(2)} = \phi_{BANK}^{(2)} = 1/3$$

Ergebnis der Inferenz

$$\phi'^{(1)}_{MONEY} = .32, \quad \phi'^{(1)}_{LOAN} = .29, \quad \phi'^{(1)}_{BANK} = .39$$

 $\phi'^{(2)}_{RIVER} = .25, \quad \phi'^{(2)}_{STREAM} = .4, \quad \phi'^{(2)}_{BANK} = .35$

Nur 16 Dokumente, gute Werte dafür

LDA – Beispiel

Generierte Dokumente

	River	Stream	Bank	Money	Loan
1			0000	●000●0	•••••
2			00000	000000	●00●
			0000000	00000	000
4 5 6			•••••	•0	000000
6			00000000	000	00
<i>(</i>	0		0000	••••	00000
8	•	00●	000000	0000	•••
10	•0	600	00000		
11	○●	000	000000	000	•
12	000	000000	\bullet	0	
13	000	000	•000		0
14 15	00	••••••			
16	••••	000 0000	••••	 	

LDA – Beispiel

Inferierte Topiczuordnung

LDA – Anwendungen

Disambiguierung von Polysemien

Topic 77

word	prob.
word	
MUSIC	.090
DANCE	.034
SONG	.033
PLAY	.030
SING	.026
SINGING	.026
BAND	.026
PLAYED	.023
SANG	.022
SONGS	.021
DANCING	.020
PIANO	.017
PLAYING	.016
RHYTHM	.015
ALBERT	.013
MUSICAL	.013

Topic 82

word	prob.
LITERATURE	.031
POEM	.028
POETRY	.027
POET	.020
PLAYS	.019
POEMS	.019
PLAY	.015
LITERARY	.013
WRITERS	.013
DRAMA	.012
WROTE	.012
POETS	.011
WRITER	.011
SHAKESPEARE	.010
WRITTEN	.009
STAGE	.009

Topic 166

word	prob.
PLAY	.136
BALL	.129
GAME	.065
PLAYING	.042
HIT	.032
PLAYED	.031
BASEBALL	.027
GAMES	.025
BAT	.019
RUN	.019
THROW	.016
BALLS	.015
TENNIS	.011
HOME	.010
CATCH	.010
FIELD	.010

LDA – Anwendungen

- Dokumentenclustering
- Semantisches Clustering von Begriffen
 - Auffinden von Synonymen
- TDT Topicdetection and Tracking
- Weitere?

LDA - Probleme

- Hauptprobleme sind das korrekte Festlegen von K (Dimension der Topics) sowie der Hyperparameter
 - Hierarchischer Dirichletprozess
 - Dynamisches Abschätzen der Anzahl von Topics
 - In jeder Iteration kann neues Topic hinzukommen oder wegfallen
 - Stellt sicher, das immer aus derselben (unbekannten) Menge von Topics gezogen wird
 - Sampling der Hyperparameter in jeder (oder jeder n-ten Iteration des Gibbs-Samplers)
 - Hyperparameter werden an Daten angepasst

LDA – Weiterentwicklungen

- Author-Topic model
 - Zusätzlich wird die Metainformation Autor miteinbezogen
 - Inferieren einer Autor-spezifischen Topicverteilung
 - Möglichkeit Themenprofile von Autoren zu erstellen
- Zusammenhang Autor-Themen-Profile und Abstand in sozialem Netzwerk
 - Autorennetzwerk durch Hyperlinkstruktur gegeben
 - Geringerer Abstand geht einher mit größere Ähnlichkeit der Themenprofile

Zusammenfassung

Zusammenfassung

LSA /LSI

- "einfachstes" Modell
- Lineare Algebra, kein Bezug zu linguistischen Erkenntnissen

pLSA/pLSI

- Weiterentwicklung von LSA
- Probabilistisches Modell

LDA

- Volles generatives Modell
- Beste Vorhersageeigenschaften von vorgestellten Modellen

Quellen

- Blei, Ng, Jordan: Latent Dirichlet Allocation, Journal of Machine Learning Research, 3, 993-1022, 2003
- Griffiths, Steyvers: Finding Scientific Topics, Proceedings of the National Academy of Science, 101, 5228-5235, 2004
- Griffiths, Steyvers: Probabilistic Topic Models, In: Landauer et. al.: Latent Semantic Analysis: A Road to Meaning, Laurence Erlbaum, 2005
- Hofmann: Probabilistic Latent Semantic Indexing, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999
- Landauer, Foltz, Laham: Introduction to Latent Semantic Analysis, Discource Processes, 25, 259-284, 1998