Beginning Activities for Section 9.1

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (Equivalent Sets, Part 1)

As is indicated in the definition of equivalent sets, one of the fundamental tools for "comparing the sizes of sets" is the concept of a function. In particular, we need to thoroughly understand the concepts of injections, surjections, and bijections.

- **1.** (a) The function f is an injection provided that for all $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.
 - (b) The function f is not an injection provided that there exist $x, y \in A$, such that $x \neq y$ and $f(x) \neq f(y)$.
 - (c) The function f is a surjection provided that for all $y \in B$, there exists an $x \in A$ such that f(x) = y.
 - (d) The function f is not a surjection provided that there exists a $y \in B$ such that for all $x \in A$ $f(x) \neq y$.
 - (e) The function f is a bijection provided that f is an injection and f is a surjection.
- **2.** (a) There are several bijections that can be used to prove that $A \approx B$. One is: $f: A \to B$ where f(1) = a, f(2) = b, and f(3) = c.
 - (b) The set C is not equivalent to B. For any function $f:C\to B$, the range of the f contains at most two elements. This means that f cannot be a surjection and hence cannot be a bijection.
 - (c) The following function shows that $X = \{1, 2, 3, ..., 10\}$ is equivalent $Y = \{57, 58, 59, ..., 66\}$. $f: X \to Y$ by f(x) = x + 56, for all $x \in X$.
- **3.** Let $f: \mathbb{N} \to D^+$ by f(x) = 2x + 1, for all $x \in \mathbb{N}$.

Let $x, t \in \mathbb{N}$ and assume that f(x) = f(t). Then, 2x - 1 = 2t - 1 and hence, x = t. Therefore, f is an injection.

To prove that f is a surjection, let $y \in D^+$. Since y is odd, y + 1 is an even natural number, and hence $\frac{y+1}{2} \in \mathbb{N}$. Also,

$$f\left(\frac{y+1}{2}\right) = 2\left(\frac{y+1}{2}\right) - 1 = y.$$

Therefore, f is a surjection and hence f is a bijection. Thus, $\mathbb{N} \approx D^+$.

4. Let $g : \mathbb{R} \to \mathbb{R}^+$ by $g(x) = e^x$ for all $x \in \mathbb{R}$. If $a, b \in R$ and g(a) = g(b), then $e^a = e^b$. Taking the natural logarithm of both sides of this equation yields

$$\ln\left(e^{a}\right) = \ln\left(e^{b}\right)$$
$$a = b$$

Therefore, g is an injection. To prove that g is a surjection, let $y \in \mathbb{R}^+$. Then, $\ln y \in R$ and

$$g(\ln y) = e^{\ln y}$$
$$= y$$

Hence, g is a surjection. This proves that g is a bijection and hence, $\mathbb{R} \approx \mathbb{R}^+$.

Beginning Activities for Section 9.1

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (Equivalent Sets, Part 2)

Theorem 9.1 Let A, B, and C be sets.

- (a) For each set A, $A \approx A$.
- (**b**) For all sets A and B, if $A \approx B$, then $B \approx A$.
- (c) For all sets A, B, and C, if $A \approx B$ and $B \approx C$, then $A \approx C$.

Proof. Let A be a set. The identity mapping I_A on the set A is a bijection. Therefore, $A \approx A$. (Recall that $I_A(x) = x$ for all $x \in A$.)

Now, assume that A and B are sets and that $A \approx B$. Then, there exists a bijection $f: A \to B$. Hence, by Exercise (9) in Section 6.5, $f^{-1}: B \to A$ is a bijection. Therefore, $B \approx A$.

Now, assume that A, B, and C are sets and that $A \approx B$ and $B \approx C$. Then, there exist bijections $f: A \to B$ and $g: B \to C$. By Theorem 6.20 in Section 6.4, $g \circ f: A \to C$ is a bijection. Therefore, $A \approx C$.

Proof of Exercise 9 from Section 6.5

Proof. Let A and B be sets and assume $A \approx B$. So there exists a bijection $f: A \ to B$ and hence, the inverse function $f^{-1}: B \to A$ is defined.

Now assume that $b_1, b_2 \in B$ and $f^{-1}(b_1) = f^{-1}(b_2)$. We can then apply the function f to both sides of this equation and obtain

$$f(f^{-1}(b_1)) = f(f^{-1}(b_1))$$

 $b_1 = b_2,$

This proves that for all $b_1, b_2 \in B$, if $f^{-1}(b_1) = f^{-1}(b_2)$, then $b_1 = b_2$. Hence, f^{-1} is an injection.

Now, let $a \in A$ and let f(a) = b, where $b \in B$. This means that $f^{-1}(b) = a$, and hence, f^{-1} is a surjection. Since f^{-1} is both an injection and a surjection, we conclude that $f^{-1}: B \to A$ is a bijection, and hence, $B \approx A$.

