Alphabet Soup of WGS Analysis: MLST and SNP

Heather Blankenship, PhD Candidate Michigan State University, Bioinformatics Intern Michigan Department of Health and Human Services

WGS Pipeline

Choosing a Method

- MLST- Multi Locus Sequencing Typing
- SNP- SingleNucleotidePolymorphism

WGS Methods

MLST

CliffNotes version of a book

▶ cgMLST

 Compare abridged versions of a book with other versions and only focus on the chapters that are the same in all of them

Compare two books on a chapter by chapter basis

Edition I

SNP analysis

Compare two books character by character

The dog and cat watched the bird sing.

The hog and cat matched the bird song.

MLST

Traditional MLST

- ∼6-7 housekeeping genes
- Allelic variation for each gene is identified
- Sequence Type (ST) assigned based on allelic profile
- Databases are internationally available
- Suitable for examining differences at the population level
- ▶ Allele: one or more alternative forms of a gene
- Locus: gene or region of the gene that is being extracted and compared

wgMLST (whole genome)

- Compare genomes of interest gene by gene
- Database comprises genes from the genus/species of interest and represents a diverse genetic background within the genus/species
 - Does not have to be the full gene included in the database
 - A new allele is only added as it is encountered
- STANDARDIZED!

	Gene A	-
Allele I	ATGTAGCGCTAGCC	
Allele 2	ATGTAGCCCTAGCC	SNP
Allele 3	ATGTAGATGGCTAGCC	SNP + insertion

cgMLST (core genome)

- Similar to wgMLST, compares on a gene by gene basis
- What genes/portions of genes are common to all within the species
 - Results in a smaller databases
- Still STANDARDIZED

- wgMLST or cgMLST
 - wgMLST higher resolution
 - ▶ cgMLST more stability

Allele codes/profiles

MLST

```
Sequence A – 4 . 4 . 5 . 6 . 10 . 1 . 5 – ST30
Sequence B – 4 . 6 . 5 . 6 . 10 . 1 . 5 – ST35
Sequence C – I . 4 . 5 . 6 . 10 . I . I – ST4
```

The allele codes/profiles do not change regardless of the isolates that are added to an analysis

wg/cgMLST

Allows comparison with other labs/states/outbreaks etc

Benefits/Disadvantages of MLST methods

Disadvantage

- A lot of upfront development to develop and continually curate the databases
- SNPs, insertions, deletions are all treated the same, an allele may have multiple evolutionary events but it is not evident by looking at the allele number
- Comparison is based on the allele numbers and not the genetic sequences
- Requires genome assembly
- Does not include non-coding regions

Advantage

- Provides high enough differentiation of strains
- Allele call is stable
- Low computational power
- Standardized data

Best for surveillance

SNP typing - Basics

- Map reads against a reference genome
- ▶ Identify SNPs between reference and reads
 - Quality, Coverage, Frequency
- Build phylogenetic tree based on concatenated SNPs

hqSNP (high quality)

- ▶ Takes into account the quality, coverage and frequency of the SNPs
- Quality: reads are filtered to ensure they pass a certain threshold

Reads are cleaned to minimize the amount of erroneous data and improve average quality by removing read duplicates, reads with high frequency of ambiguous bases and adapter dimers

hqSNP

- ▶ Coverage: how many reads do we have at a particular nucleotide
- ▶ Frequency: how many of the reads support the new SNP

Lyve-Set (hqSNP) Process

Pre-Processing

- Phage discovery/masking
- Manual identification of troublesome regions
- Read cleaning
- Mapping –SMALT
 - ▶ 95% read identity
 - Unambiguous mapping
- ► SNP calling VarScan
 - ▶ 75% consensus
 - ▶ I0X depth
- Phylogeny inferring RAxML
 - Removal of clustered SNPs
 - Ascertainment bias model
 - Maximum likelihood

SNP typing

- Allows for every nucleotide in the genome to be analyzed
- Very dependent upon the reference genome that is chosen
- ▶ All mobile elements (ie phages) are masked and not included in the analysis

SNP visualization

Benefits/Disadvantages of SNP methods

Disadvantage

- Computationally intensive
- Reliant on the reference not standardized
- Time and computationally intensive
- Not stable and relies on the genomes present

Advantage

- Does not require assembly of the genomes
- Very high discriminative power
- ▶ Each mutation is taken into account
- Non-coding regions are utilized
- Adaptable for all organisms

Best for high discriminatory power and outbreak investigation

Utilization of WGS Analysis

- Analysis will give us phylogenetic trees = <u>hypothesis</u>
- Strains that are genetically related based on analysis
 MAY share an epidemiological association
 - What defines a cluster?
 - Are cutoffs absolute?
 - Does WGS "match" mean association?

QUESTIONS?

- blankenshiph@michigan.gov
- selheime@msu.edu

