Notes for MATH 3210: Foundation of Analysis I

Jing Guo

August 23, 2017

Contents

1	Bas	ic Top	\mathbf{ology}															1
	1.1	Metric	c Space															1
	1.2	Open	Sets														 	2
		1.2.1	Metric	Spac	es X													2
		1.2.2	Topolo	gical	Spac	es												2
2	Compact Sets											2						

1 **Basic Topology**

Metric (distance function) of x_0 and x: $d(x_0, x) = |x - x_0|$

1.1 **Metric Space**

Metric space X

$$d: M \times M \to \mathbf{R}$$
 (1)

- 1. $d(x_0, x_1) \ge 0$ where $x_0, x_1 \in X$
- 2. $d(x_0, x_1) \iff x_0 = x_1$
- 3. $d(x_0, x_1) = d(x_1, x_0)$ (irrespective of order)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangular inequity)

Euclidean metric on \mathbf{R}^2 : $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Discrete metric: $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ Open ball of radius ϵ : $B_{\epsilon}(x_0) = B(x_0, \epsilon) = \{ y \in M \mid d(x_0, y) < \epsilon \}$

1.2 Open Sets

1.2.1 Metric Spaces X

 $U \subset X$ is open if for any $x \in U$ there exists $\epsilon > 0$ such that $B(x, \epsilon) \subset U$ Open interval is open set; closed interval is not open set.

1.2.2 Topological Spaces

Let U be a family of all sets, X be a set. U is a **topology** on X if

- 1. \emptyset (Empty set) is always open; X is open.
- 2. ...
- 3. ...

Finite case:

Infinite case: There is no minimum. $\left(-\frac{1}{n}, \frac{1}{n}\right)$ then $n \to 0$, hence not open set.

2 Compact Sets