Тюряев Илья Константинович

May 13, 2023

Задача 1

Мы знаем, что $\frac{W}{2}+c\cdot T=W$, где c - константа, характеризующая скорость роста от $\frac{W}{2}$ до W (рост линейный, потому как медленный старт мы игнорируем). Средняя пропускная способность $X=\frac{3}{4}W$ - факт с лекции.

Получили: $T = \frac{1}{2c}W = \frac{4}{6c}X$ - функция от средней пропускной способности

Задача 2

1)
$$4\frac{S}{R} > \frac{S}{R} + RTT > 2\frac{S}{R}$$

Процесс передачи: сначала идёт первое рукопожатие за RTT, далее запрос объекта за $\frac{1}{2}RTT$, далее сервер отправляет один сегмент размера S за $\frac{S}{R}+\frac{1}{2}RTT$ и ждёт подтверждения - $\frac{1}{2}RTT$. Далее выгружает один сегмент $\frac{S}{R}$, а затем в один момент происходит его отправка и получение подтверждения RTT и выгрузка второго $\frac{S}{R}$. Как только было получено первое подтверждение сервер уже начал следующий этап с размером окна 4. Давайте заметим, что, если к тому моменту, когда сервер закончит с текущим этапом, ему уже придёт хотя бы одно подтверждение, он сможет начать без простоя выгружать и отправлять сегменты следующего этапа. Отсюда можно сделать вывод, что, если такое гарантируется для всех этапов, начиная с текущего, то суммарное время ожидания - $n\frac{S}{R}+\frac{1}{2}RTT$, где n - суммарное количество сегментов, которое нужно ещё отправить, где первое слагаемое - мы без простоя выгружаем сегменты, второе - для самого последнего сегмента нужно учесть время ожидания его доставки на клиент.

Вернёмся к нашему случаю: $RTT > \frac{S}{R}$ (из условия), значит после выгрузки второго сегмента, мы будем ждать $RTT - \frac{S}{R}$, и только потом начнём этап с размером окна 4. Там будет аналогичная ситуация - отправили сегмент, а затем у нас одновременные события: отправка и получение подтверждения на него, выгрузка трёх других сегментов. $RTT < 3\frac{S}{R}$ (из условия), значит, как обсуждалось выше, вся оставшееся задержка - $4\frac{S}{R} + 8\frac{S}{R} + \frac{1}{2}RTT$.

Суммарно:
$$RTT + \frac{1}{2}RTT + \frac{S}{R} + RTT + 2\frac{S}{R} + (RTT - \frac{S}{R}) + 4\frac{S}{R} + 8\frac{S}{R} + \frac{1}{2}RTT = 4RTT + 14\frac{S}{R}$$
 2) $\frac{S}{R} + RTT > 4\frac{S}{R}$.

Раз RTT стал только больше по сравнению с первым пунктом, то рассуждения до этапа с размером окна 4 сохраняются. Далее будет задержка $RTT-3\frac{S}{R}$ (это понятно из рассуждений выше). Далее остаётся всего один этап, поэтому никакой дополнительной задержки ("между этапами") быть не может.

Суммарно:
$$RTT + \frac{1}{2}RTT + \frac{S}{R} + RTT + 2\frac{S}{R} + (RTT - \frac{S}{R}) + 4\frac{S}{R} + (RTT - 3\frac{S}{R}) + 8\frac{S}{R} + \frac{1}{2}RTT = 5RTT + 11\frac{S}{R}$$

3) $RTT < \frac{S}{R}$.

В этом случае RTT настолько мал, что после этапа с размером окна 2, не будет дополнительной задержки, потому как выгрузка одного сегмента уже занимает дольше отправки и получения ответа на него

Суммарно:
$$RTT + \frac{1}{2}RTT + \frac{S}{R} + RTT + 2\frac{S}{R} + 4\frac{S}{R} + 8\frac{S}{R} + \frac{1}{2}RTT = 3RTT + 15\frac{S}{R}$$