

Classification of Viral Pathogens Based on Multiple Genomic Signatures

Anoushka Bhat¹, Esha Ananth², Rishov Chatterjee³, Srisairam Achuthan³ PhD, Samir Courdy³

¹Diamond Bar High School, Diamond Bar, CA

²Portola High School, Irvine, CA

³Research Informatics Division, Center for Informatics, City of Hope, CA

Introduction

- Taxonomic classification : finding the identity of a certain virus¹
- For unknown, potentially harmful pathogens, classification can help uncover patterns from closest known pathogens
- 10 taxonomic levels for viral genome, each has
 1 or more sublevels

Adapted From: https://talk.ictvonline.org/

Objective: Sars-Cov2 Sequence Classification

• Simplify classification and prevent data leakage by creating a new feature to classify Sars-Cov-2 sequences into a sublevel at each of the 9 out of 10 taxonomic levels³.

Taxonomic Level	Sublevels	Taxonomic Level	Sublevels
Realm	Duplodnaviria, Monodnaviria, <mark>Riboviria</mark> , Varidnaviria	Suborder	Arnidovirineae, <mark>Cornidovirineae</mark> , Mesnidovirineae, Monidovirineae, Nanidovirineae, Ronidovirineae, Tornidovirineae
Kingdom	Orthornavirae, Pararnavirae	Family*	Coronaviridae
Phylum	Duplornaviricota, Kitrinoviricota, Lenarviricota, Negarnaviricota, <mark>Pisuviricota</mark>	Subfamily	Orthocoronavirinae, Torovirinae, Coronavirinae
Class	Duplopiviricetes , <mark>Pisoniviricetes,</mark> Stelpaviricetes	Genus	Alphacoronavirus, <mark>Betacoronavirus</mark> , Deltacoronavirus, Gammacoronavirus
Order	Nidovirales, Picornavirales, Sobelivirales	Subgenus	Embecovirus, Merbecovirus, Nobecovirus, Sarbecovirus

Features used for the Machine Learning (ML) Model

Discrete Fourier Transform² (DFT)

$$F_i(k) = \sum_{j=0}^{p-1} f(S_i(j)) \cdot e^{(-2\pi i/p)kj}$$

- Finds the digital frequencies associated with numbers in a finite numeric sequence
- Prior study used the average magnitude of the Discrete Fourier transform for feature creation.

Shannon's Entropy

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Finds the measure of the intrinsic uncertainty embedded within a sequence
- Based on the concept that all systems have a tendency towards disorder

[2] Randhawa G, Soltysiak M, Roz HE, de Souza CPE, Hill KA, Kari L, Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study, PLOS One, 2020

Conversion Rules for Genomic Digitization

Illustration with the chosen conversion rule²: Purine Pyrimidine (PP)

CAGGTCAT.... = 10001101....

[2] Randhawa G, Soltysiak M, Roz HE, de Souza CPE, Hill KA, Kari L, Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study, PLOS One,2020

Conversion Rule	A	Т	С	G
Purine Pyrimidine (PP)	0	1	1	0
EIIP	0.13	0.14	0.15	0.08
Just A	1	0	0	0
Paired Numeric	1	1	-1	-1
Real	1.5	-1.5	0.5	-0.5
Integer 1	1	0	2	3
Integer 2	2	1	3	4
Just C	0	0	1	0
Just T	0	1	0	0
Just G	0	0	0	1

Processing the Data for Machine Learning

Raw vs. Processed Data for Genus level

Sublevel_Seq#	Sequence	
Betacoronavirus_1	ATCGCGAGA	
Betacoronavirus_2	ATCGGGTCG	
Alphacoronavirus_1	GATGCTGTA	
Alphacoronavirus_2	GAGTCTCTA	
Gammacoronavirus_1	AGGCCAAAT	
Gammacoronavirus_2	AGGTCAAAT	
Deltacoronavirus_1	CCGGTAATA	
Deltacoronavirus_2	CAGGTAAAC	

Sublevel	Magtropy Value	
Betacoronavirus	111.59	
Betacoronavirus	110.72	
Alphacoronavirus	103.75	
Alphacoronavirus	102.98	
Gammacoronavirus	95.88	
Gammacoronavirus	90.74	
Deltacoronavirus	121.78	
Deltacoronavirus	125.87	

Machine Learning Overview

Machine Learning Workflow

Sequences used for data

50 genomic sequences chosen at random from each sublevel

Classification Type:

Multi-class problem

One vs. rest ML technique

Results with Purine Pyrimidine Conversion Rule

• 87.3% mean classification accuracy

 2.5% accuracy in Phylum level with entropy alone, 100% with Magtropy

 Consistently best performing Classifiers: Extreme Gradient Boost, Decision Tree

Discussion

- Though DFT and Shannon's Entropy applied as distinct features in the ML model did not correctly classify Sars-Cov-2, combining them yielded a feature with substantially greater predictive power.
- Removing the subgenus and realm taxonomic levels increases mean classification accuracy to 95.5%
- Magtropy can be applied to further genomic classification studies.
- The methods developed are general enough to be applicable to genomic sequences from any organism.

Acknowledgements

A special thanks to the City of Hope Center for Informatics for supporting the bioinformatics summer internship program.

- Thank you to Mrs. Gallardo and the Brahma Tech Academy for constantly challenging me to put my best foot forward and believing in me.
- Thank you to Diamond Bar High School and Mr. Kevin Patterson for continuous guidance and support throughout the high school years.
- Thank you to my parents for encouraging me in all my endeavors!