$$360=4$$
, $40=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=2$
 $361=$

So(
$$x$$
)= $a_0+b_0(x-1)+c(x-1)^2+d_0(x-1)^3$
So(x)= $b_0+2c_0(x-1)+3d_0(x-1)^2$
So"(x)= $2c_0+6d_0(x-1)$

$$S_{2}(x) = a_{2} + b_{2}(x-2) + c_{2}(x-2)^{2} + d_{2}(x-2)^{3}$$

$$S_{2}'(x) = b_{2} + 2c_{2}(x-2) + 3d_{2}(x-2)^{2}$$

$$S_{2}''(x) = 2c_{2} + 6d_{2}(x-2)$$

See Def. 10, Course 5 (slide 14):

(b)
$$\begin{cases} S_0(x_0) = \varphi(x_0) \\ S_0(x_0) = \varphi(x_0) \end{cases} = \begin{cases} q_0 = \varphi(x) = \frac{1}{2} \\ q_0 + b_0 + c_0 + d_0 = \varphi(x) = 3 \end{cases}$$

$$\begin{cases} S_1(x_0) = \varphi(x_0) \\ S_1(x_0) = \varphi(x_0) \end{cases} = \begin{cases} q_1 = \varphi(x) = \frac{3}{2} \\ q_1 + b_1 + c_1 + d_1 = \varphi(x) = 5 \end{cases}$$

(d)
$$S_0'(x_1) = S_1'(x_1) = 1$$
 $b_0 + 2c_0 + 3d_0 = b_1$

$$(4)$$
 $S_{0}''(\infty) = 0$, $S_{1}''(\times_{1} = 0) =)$ $2\omega = 0 \Rightarrow 0 = 0$
 $2\omega_{1} = 0$ $2\omega_{2} = 0$

(Ex) * Construct a clamped spline
$$S$$
 that passes through the points $(3,2)$, $(3,3)$, $(3,5)$ and has $S'(3)=2$, $S'(3)=4$.

 $(3)=1$, $f_0=2$
 $(3)=2$, $f_1=3$
 $(3)=3$, $f_2=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $(3)=3$
 $($

```
Fox ao, bo, co, do , we have:
   20 + bot cot do = 3
                                     co + do = -1
     bo+200 + 3do = b2
     2co+ 6do = 2c1 1:2
For as, bs, ca, ds, we have: -c1-2d1 = 1 -)
       We need to colve the system:
       Cot do =-1 => co=-1-do
   b2+C2+d2 = 2 1.3
          b1+2c1+3d1=4 /c
-6-2C1 +3C1+3+C1 = 1
S(x) = \begin{cases} 2 + 2(x-1) - \frac{5}{2}(x-1)^{2} + \frac{3}{2}(x-1)^{3}(S_{0}(x)) \\ 3 + \frac{3}{2}(x-2) + 2(x-2)^{3}(S_{1}(x)) \end{cases}
(x-2) + 2(x-2)^{3}(S_{1}(x))
(x-2) + 2(x-2)^{3}(S_{1}(x))
(x-2) + 2(x-2)^{3}(S_{1}(x))
(x-2) + 2(x-2)^{3}(S_{1}(x))
```