Национальный исследовательский университет «МЭИ» Институт радиотехники и электроники им. В.А. Котельникова

ОТЧЁТ

по лабораторной работе №1 «ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ» по дисциплине «Формирование радиосигналов»

Группа: ЭР-11-21

Бригада: 3

Выполнили: Зименко Д.А.

Проверил: Плутешко А.В.

Дата: 16.03.2025 г.

Оценка:

Москва

ХОД РАБОТЫ

1. Измерение характеристик фазового детектора (ФД)

Подадим колебание от внешнего генератора на вход опорной частоты. Форма напряжения: синусоидальная. Частота 8 МГц. Средний уровень 1.6 В. Размах от минимума до максимума 3.0 В.

Настроили средний уровень так, чтобы величина +Duty была $50 \pm 2\%$. Подобрали $f_{\rm on}$ так, чтобы частота биений на выходе ФД была в диапазоне от 40 до 60 к Γ ц, и построим осциллограмму $E_{\Phi Д}(t)$.

Рис.1 – Осциллограмма выходного напряжения ФД

2. Измерение характеристик ГУН

Установим частоту 8 МГц. Замкнём кольцо ФАПЧ. Изменяя опорную частоту с шагом ± 100 кГц, заполнили таблицу 1. Для измерения $E_{\rm упр}$ использовали мультиметр. В таблицу вносили только значения, соответствующие режиму синхронизма.

$f_{ m on}$, М Γ ц	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9
$f_{\Gamma m YH}$, М Γ ц	115.2	116.8	118.4	120	121.6	123.2	124.8	126.4
$E_{ m ynp}$, В	1.44	1.79	2.12	2.44	2.75	3.05	3.33	3.61

Таблица 1 – Характеристика управления частотой ГУН

$f_{ m on}$, М Γ ц	8	8.1	8.2
$f_{\Gamma m YH}$, М Γ ц	128	129.6	131.2
$E_{ m ynp}$, В	3.89	4.16	4.43

Таблица 1 (продолжение) – Характеристика управления частотой ГУН

3. Измерение полосы захвата

Рассчитаем $K_{\Gamma \rm YH}$ по двум точкам характеристики в окрестности $E_{\rm ynp} = 2.5~{\rm B}$:

$$K_{\Gamma \text{YH}} = \frac{f_{\Gamma \text{YH2}} - f_{\Gamma \text{YH1}}}{E_{\text{ynp2}} - E_{\text{ynp1}}}$$

$$K_{\Gamma \text{YH}} = \frac{(121.6 - 118.4) \cdot 10^6 \ \Gamma \text{H}}{2.75 \ \text{B} - 2.12 \ \text{B}} = 5.08 \frac{\text{M} \Gamma \text{H}}{\text{B}}$$

Включили ЧМ модуляцию. Форма модуляции: треугольная. Частота модуляции 500 Гц. Установим центральную частоту и девиацию так, чтобы

частота менялась в пределах от $f_{\text{опмин}} - \left(E_{\text{упр мин}} + 0.1\right) \cdot \frac{K_{\Gamma \text{УН}}}{16}$ до $f_{\text{опмакс}} + \left(5.1 - E_{\text{упр макс}}\right) \cdot \frac{K_{\Gamma \text{УН}}}{16}.$ $f_{\text{опмин}} - \left(E_{\text{упр мин}} + 0.1\right) \cdot \frac{K_{\Gamma \text{УН}}}{16} = 7.2 \cdot 10^6 \, \Gamma \text{Ц} - \left(1.44 \, \text{B} + 0.1\right) \cdot \frac{5.08 \cdot 10^6 \, \frac{\Gamma \text{Ц}}{B}}{16} = 6.71 \, \text{М} \Gamma \text{Ц}$ $f_{\text{опмакс}} + \left(5.1 - E_{\text{упр макс}}\right) \cdot \frac{K_{\Gamma \text{УН}}}{16} = 8.2 \cdot 10^6 \, \Gamma \text{Ц} + \left(5.1 - 4.43 \, \text{B}\right) \cdot \frac{5.08 \cdot 10^6 \, \frac{\Gamma \text{Ц}}{B}}{16} = 8.41 \, \text{М} \Gamma \text{Ц}$

Сохраним осциллограммы $E_{\Phi \text{Д}}(t)$ в 4 и 6 положениях переключателей.

4. Измерение переходных процессов по частоте

Настроим ЧМ модуляцию. Форма модуляции: меандр. Частота модуляции 5 кГц. Девиацию выберем:

$$\frac{K_{\Gamma \text{УH}}}{16} \cdot 0.5 \text{ [B]} = 159 \text{ кГц}$$

Меняя положения переключателей в поле RC-ФИЛЬТР сохраним осциллограммы $E_{\Phi \Pi}(t)$ и $E_{\rm ynp}(t)$.

5. Измерение переходных процессов по фазе

Выключим выход внешнего генератора и выключим модуляцию. Настроили внешний генератор. Форма напряжения: меандр. Частота 5 кГц. Средний уровень 1.75 В. Размах от минимума до максимума 3.5 В. В качестве опорного колебания выбрали от внутреннего опорного генератора 8 МГц.

6. Заполнение таблицы, используя дифференциальные параметры характеристик в точках, соответствующих $E_{\Phi \text{Д}} = E_{\text{упр}} = 2.5 \text{ B}$

$$K_{\Gamma \text{YH}} = \frac{f_{\Gamma \text{YH2}} - f_{\Gamma \text{YH1}}}{E_{\text{ymp2}} - E_{\text{ymp1}}}$$

$$K_{\Gamma \text{YH}} = \frac{(121.6 - 118.4) \cdot 10^6 \,\Gamma \text{H}}{2.75 \,\text{B} - 2.12 \,\text{B}} = 5.08 \frac{\text{M} \Gamma \text{H}}{\text{B}}$$

Значения $K_{\Phi \Breve{\pi}}$ и $T_{\Phi \Breve{\Pi} \Pi \Breve{\Pi}}$ определим по формулам:

$$K_{\Phi \Pi} = \frac{E_{\Pi}}{\pi} = \frac{5 \text{ B}}{\pi} = 1.59 \frac{\text{B}}{\text{рад}}$$

$$T_{\Phi \Lambda \Pi \Psi} = \frac{P}{2 \cdot \pi \cdot K_{\Gamma V H} \cdot K_{\Phi \Pi}},$$

где Р – делитель частоты в кольце ФАПЧ.

$$T_{\Phi \Lambda \Pi^{
m H}} = rac{16}{2 \cdot \pi \cdot 1.59 \cdot 10^6 rac{\Gamma
m H}{
m B} \cdot 5.08 rac{
m B}{
m pag}} = 0.315 \,
m mkc$$

$K_{\Phi Д}$, $\frac{B}{рад}$	$K_{\Gamma YH}$, $\frac{M\Gamma \mu}{B}$	$ ext{T}_{\Phi ext{A}\Pi ext{ ext{Ψ}}}$, мкс
1.59	5.08	0.315

Таблица 1 – Величины, определяющие поведение кольца ФАПЧ

7. Оценка величины γ для конфигураций кольца ФАПЧ

Рассчитаем значения постоянной времени цепи для 4 и 6 положения переключателей соответственной и сведём их в таблицу 2:

$$au_{\Phi ext{H}^{\prime} ext{4}} = R_1 \cdot C_4 = 300 \ ext{Om} \cdot 2200 \cdot 10^{-12} \ \Phi = 0.66 \ ext{мкс}$$
 $au_{\Phi ext{H}^{\prime} ext{6}} = R_1 \cdot C_6 = 300 \ ext{Om} \cdot 6800 \cdot 10^{-12} \ \Phi = 2.04 \ ext{мкc}$

Положение переключателя	R ₁ , Ом	С, пФ	$ au_{\Phi ext{HY4}}$, мкс
4	300	2200	0.66
6	300	6800	2.04

Таблица 2 — Номиналы элементов RC-фильтра и рассчитанные τ

Рис.2 – Осциллограмма выходного напряжения ФД при 4-ом положении переключателя

Рис.3 – Осциллограмма выходного напряжения ФД при 6-ом положении переключателя

Полосой синхронизма называют область отклонений частот сигнала, соответствующей режиму слежения, если система вначале находилась в этой области

Полосой захвата называют область отклонений частот сигнала, соответствующей режиму слежения, если система вначале находилась вне этой области

По рисункам 4 и 5 определим значения полосы захвата и полосы синхронизма для 4 и 6 положений переключателей соответственно:

$$\gamma = \frac{\Pi_{\text{3ax}}}{\Pi_{\text{CWH}}} = \frac{(1.77 - 1.6) * 10^{-6}}{(2 - 1.77) * 10^{-6}} = 0.66$$

$$\gamma = \frac{\Pi_{\text{3ax}}}{\Pi_{\text{CMH}}} = \frac{(1.86 - 1.71) * 10^{-6}}{(2 - 1.86) * 10^{-6}} = 0.33$$

Рис.4 — Оценка величины γ для выходного напряжения Φ Д при 4-ом положении переключателя

Рис.5 — Оценка величины γ для выходного напряжения Φ Д при 6-ом положении переключателя

Для определения теоретического относительного (нормированного) значения полосы захвата γ от нормированной постоянной времени ФНЧ τ , приведённому в описании лабораторной работы, рассчитаем значение τ для 4 и 6 положения переключателей:

$$au = rac{ au_{\Phi ext{H} ext{4}4}}{T_{\Phi ext{A} ext{II} ext{Y}}} = rac{0.66 \ ext{mkc}}{0.315 \ ext{mkc}} = 2.09$$

$$au = \frac{ au_{\Phi H \Psi 6}}{T_{\Phi A \Pi \Psi}} = \frac{2.04 \text{ MKC}}{0.315 \text{ MKC}} = 6.48$$

По графику зависимости нормированной полосы захвата γ от нормированной постоянной времени ФНЧ τ определим γ по полученным выше τ для 4 и 6 переключателей и сведём в таблицу 3.

Положение	Рассчитанное значение	Теоретическое		
переключателя	γ	значение ү		
4	0.67	0.57		
6	0.33	0.34		

Таблица 3 – Сравнение теоретических и рассчитанных значений γ

- 8. Построение временных зависимостей переходных процессов $E_{\Phi \Pi}(t)$ и $E_{\rm ynp}(t)$ для всех исследованных в эксперименте конфигураций
- 1) Измерение переходных процессов по частоте

Рис.6 — Осциллограмма $E_{\Phi \Pi}(t)(\ensuremath{\mathit{верхний}})$ и $E_{\text{упр}}(t)(\ensuremath{\mathit{нижний}})$ для 2-го положения переключателя(отзеркаленные)

Рис.7 — Осциллограмма $E_{\Phi \Breve{\pi}}(t)(\Breve{sepxhu}\Breve{u})$ и $E_{
m ynp}(t)(\Breve{hu}\Breve{w})$ для 3-го положения переключателя

Рис.8 — Осциллограмма $E_{\Phi \Breve{\pi}}(t)(\Breve{sepxhu}\Breve{u})$ и $E_{
m ynp}(t)(\Breve{hu}\Breve{u})$ для 4-го положения переключателя

2) Измерение переходных процессов по фазе

Рис.9 — Осциллограмма $E_{\Phi \mbox{\scriptsize Д}}(t)$ (верхний) и $E_{\mbox{\scriptsize упр}}(t)$ (нижний) для 6-го положения переключателя

Выводы

При расчете переходных процессов начальные условия для решения дифференциальных уравнений и установившийся режим определялись с погрешностью что также могло привести к недостаточно точному соответствию расчета и эксперимента.

При определении экспериментального значения величины γ были использованы маркеры, которые могли быть установлены недостаточно точно на осциллограммах $E_{\Phi \text{Д}}(t)$, что может являться причиной несоответствия расчетных и экспериментальных значений.

Также вследствие нагревания элементов платы при проведении лабораторной работы, получаемые результаты измерений могут отличаться от ожидаемых.

ПРИЛОЖЕНИЕ

A)

Рисунок A1 — переходные процессы при скачке опорной частоты на $+375~\mathrm{k\Gamma}$ ц

Рисунок А2 – переходные процессы при скачке опорной частоты на -375 кГц