Tarea 04

Matemáticas para las Ciencias Aplicadas II Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 7 de mayo de 2024

1.

Verifique que la función $z=\ln\left[e^x+e^y\right]$ es una solución de las ecuaciones diferenciales:

 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$

Primero calculamos las derivadas parciales de primer orden necesarias:

Para $\frac{\partial z}{\partial x}$

$$\frac{\partial z}{\partial x} = \frac{1}{e^x + e^y} \cdot \frac{\partial}{\partial x} (e^x + e^y)$$
$$= \frac{1}{e^x + e^y} \cdot e^x$$
$$= \frac{e^x}{e^x + e^y}$$

Para $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{1}{e^x + e^y} \cdot \frac{\partial}{\partial y} (e^x + e^y)$$
$$= \frac{1}{e^x + e^y} \cdot e^y$$
$$= \frac{e^y}{e^x + e^y}$$

Así,
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{e^x}{e^x + e^y} + \frac{e^y}{e^x + e^y}$$
$$= \frac{e^x + e^y}{e^x + e^y}$$
$$= 1$$

 $\therefore z = \ln \left[e^x + e^y \right]$ satisface la ecuación $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.

Primero, a partir de $\frac{\partial z}{\partial x} = \frac{e^x}{e^x + e^y}$ y $\frac{\partial z}{\partial y} = \frac{e^y}{e^x + e^y}$, calculamos las derivadas parciales de segundo orden necesarias:

Para $\frac{\partial^2 z}{\partial^2 x}$

$$\frac{\partial^2 z}{\partial^2 x} = \frac{\partial}{\partial x} \left(\frac{e^x}{e^x + e^y} \right)$$

$$= \frac{[(e^x + e^y) \cdot e^x] - [e^x \cdot e^x]}{(e^x + e^y)^2}$$

$$= \frac{e^{2x} + e^{x+y} - e^{2x}}{(e^x + e^y)^2}$$

$$= \frac{e^{x+y}}{(e^x + e^y)^2}$$

Para $\frac{\partial^2 z}{\partial^2 y}$

$$\frac{\partial^2 z}{\partial^2 y} = \frac{\partial}{\partial y} \left(\frac{e^y}{e^x + e^y} \right)$$

$$= \frac{\left[(e^x + e^y) \cdot e^y \right] - \left[e^y \cdot e^y \right]}{(e^x + e^y)^2}$$

$$= \frac{e^{x+y} + e^{2y} - e^{2y}}{(e^x + e^y)^2}$$

$$= \frac{e^{x+y}}{(e^x + e^y)^2}$$

Para $\frac{\partial^2 z}{\partial x \partial y}$

$$\begin{split} \frac{\partial^2 z}{\partial x \partial y} &= \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) \\ &= \frac{\partial}{\partial x} \left(\frac{e^y}{e^x + e^y} \right) \\ &= \frac{\left[(e^x + e^y) \cdot 0 \right] - (e^y \cdot e^x)}{(e^x + e^y)^2} \\ &= -\frac{e^{x+y}}{(e^x + e^y)^2} \end{split}$$

Así,
$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2$$
$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = \left[\frac{e^{x+y}}{(e^x + e^y)^2} \cdot \frac{e^{x+y}}{(e^x + e^y)^2}\right] - \left[-\frac{e^{x+y}}{(e^x + e^y)^2}\right]^2$$
$$= \frac{(e^{x+y})^2}{(e^{x+y})^4} - \frac{(e^{x+y})^2}{(e^{x+y})^4}$$
$$= 0$$

$$\therefore z = \ln\left[e^x + e^y\right] \text{ satisface la ecuación } \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$$

2.

La energía cinética de un cuerpo de masa m y velocidad v es $K=\frac{1}{2}mv^2$. Demuestre que $K=\frac{\partial K}{\partial m}\frac{\partial^2 K}{\partial v^2}$.

Primero calculamos las derivadas parciales de primer orden necesarias: Para $\frac{\partial K}{\partial m}$

$$\begin{split} \frac{\partial K}{\partial m} &= \frac{1}{2} \left(\frac{\partial}{\partial m} m v^2 \right) \\ &= \frac{1}{2} v^2 \end{split}$$

Para $\frac{\partial K}{\partial v}$

$$\frac{\partial K}{\partial v} = \frac{1}{2} \left(\frac{\partial}{\partial v} m v^2 \right)$$
$$= \frac{1}{2} \cdot 2vm$$
$$= vm$$

Ahora, calculamos la derivada parcial de segundo orden necesaria: Para $\frac{\partial K}{\partial v^2}$

$$\frac{\partial K}{\partial v^2} = \frac{\partial K}{\partial v} (vm)$$
$$= m$$

Así, $\frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2}$

$$\frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2} = \frac{1}{2} v^2 \cdot m$$
$$= \frac{1}{2} m v^2$$
$$= K$$

 $\therefore K = \frac{1}{2}mv^2$ satisface la ecuación $K = \frac{\partial K}{\partial m} \frac{\partial^2 K}{\partial v^2}$.

3.

Determine una ecuación del plano tangente a la función $z=xe^{xy}$ en el punto $(x_0,y_0)=(5,0).$

Sea $z = xe^{xy}$. Entonces

$$f_x(x,y) = x \frac{\partial}{\partial x} e^{xy} + e^{xy} \frac{\partial}{\partial x} x$$

$$= xye^{xy} + e^{xy}$$

$$= (xy+1)e^{xy}$$

$$f_x(5,0) = (5 \cdot 0 + 1)e^{5 \cdot 0}$$

$$= 1 \cdot e^0$$

$$= 1$$

$$f_y(x,y) = x \frac{\partial}{\partial y} e^{xy} + e^{xy} \frac{\partial}{\partial y} x$$

$$= x^2 e^{xy} + 0$$

$$= x^2 e^{xy}$$

$$f_y(5,0) = 5^2 \cdot e^{5 \cdot 0}$$

$$= 5^2 \cdot e^0$$

$$= 25 \cdot 1$$

$$= 25$$

Dado que x=5 y y=0, se tiene que $z=5\cdot e^{5\cdot 0}=5\cdot e^0=5$ Entonces, da la ecuación del plano tangente en (5,0,5) como

$$z - 5 = 1(x - 5) + 25(y - 0)$$

o bien,

$$z = x + 25y$$

4.

Compruebe que la aproximación lineal en (0, 0).

$$\frac{2x+3}{4y+1} \approx 2x - 12y + 3$$

Sea $f(x,y) = \frac{2x+3}{4y+1}$. Tenemos que las derivadas parciales son

$$f_x(x,y) = \frac{\left[(4y+1) \cdot \frac{\partial}{\partial x} (2x+3) \right] - \left[(2x+3) \frac{\partial}{\partial x} (4y+1) \right]}{(4y+1)^2}$$

$$= \frac{2(4y+1)-0}{(4y+1)^2}$$

$$= \frac{2(4y+1)}{(4y+1)(4y+1)}$$

$$= \frac{2}{4y+1}$$

$$f_x(0,0) = 2$$

$$f_y(x,y) = \frac{\left[(4y+1) \cdot \frac{\partial}{\partial y} (2x+3) \right] - \left[(2x+3) \frac{\partial}{\partial y} (4y+1) \right]}{(4y+1)^2}$$

$$= \frac{0-4(2x+3)}{(4y+1)^2}$$

$$= \frac{-8x-12}{(4y+1)^2}$$

$$f_y(0,0) = -12$$

Tanto f_x como f_y son continuas y existen cerca de (0,0), de modo que f es diferenciable en (0,0). La linealización es

$$L(x,y) = f(0,0) + 2(x-0) + (-12)(y-0)$$

= 2x - 12y + 3

5.

Utilice la **regla de la cadena** para calcular $\frac{\partial z}{\partial s}$ y $\frac{\partial z}{\partial t}.$ Dado que

$$z = \sin \theta \cos \phi, \ \theta = st^2, \ \phi = s^2t$$

Primero calculamos las derivadas parciales de primer orden necesarias:

$$\frac{\partial z}{\partial \theta} = \frac{\partial}{\partial \theta} (\sin \theta \cos \phi)$$

$$= \left(\sin \theta \cdot \frac{\partial}{\partial \theta} \cos \phi \right) + \left(\cos \phi \cdot \frac{\partial}{\partial \theta} \sin \theta \right)$$

$$= 0 + \cos \phi \cos \theta$$

$$= \cos \theta \cos \phi$$

$$\frac{\partial z}{\partial \phi} = \frac{\partial}{\partial \phi} \sin \theta \cos \phi$$

$$= \left(\sin \theta \cdot \frac{\partial}{\partial \phi} \cos \phi \right) + \left(\cos \phi \cdot \frac{\partial}{\partial \phi} \sin \theta \right)$$

$$= (\sin \theta \cdot - \sin \phi) + 0$$

$$= -\sin \theta \sin \phi$$

$$\frac{\partial \theta}{\partial s} = \frac{\partial}{\partial s} s t^2$$

$$= \left(s \cdot \frac{\partial}{\partial s} t^2 \right) + \left(t^2 \cdot \frac{\partial}{\partial s} s \right)$$

$$= 0 + t^2$$

$$= t^2$$

$$\frac{\partial \phi}{\partial s} = \frac{\partial}{\partial s} s^2 t$$

$$= \left(s^2 \cdot \frac{\partial}{\partial s} t \right) + \left(t \cdot \frac{\partial}{\partial s} s^2 \right)$$

$$= 0 + 2st$$

$$= 2st$$

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial t} s t^2$$

$$= \left(s \cdot \frac{\partial}{\partial t} t^2 \right) + \left(t^2 \cdot \frac{\partial}{\partial t} s \right)$$

$$= 2ts + 0$$

$$= 2st$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial t} s^2 t$$

$$= \left(s^2 \cdot \frac{\partial}{\partial t} t \right) + \left(t \cdot \frac{\partial}{\partial t} s^2 \right)$$

$$= s^2 + 0$$

$$= s^2$$

Al aplicar el caso 2 de la regla de la cadena, obtenemos

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial s} + \frac{\partial z}{\partial \phi} \frac{\partial \phi}{\partial s} \\ &= (\cos \theta \cos \phi \cdot t^2) + (-\sin \theta \sin \phi \cdot 2st) \\ &= t^2 \cos \theta \cos \phi - 2st \sin \theta \sin \phi \\ \frac{\partial z}{\partial t} &= \frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial t} + \frac{\partial z}{\partial \phi} \frac{\partial \phi}{\partial t} \\ &= (\cos \theta \cos \phi \cdot 2st) + (-\sin \theta \sin \phi \cdot s^2) \\ &= 2st \cos \theta \cos \phi - s^2 \sin \theta \sin \phi \end{split}$$

6.

Sea $z=x^4+x^2y$, con x=s+2tu, $y=stu^2$, utilice la **regla de la cadena** para calcular: $\frac{\partial z}{\partial s} \frac{\partial z}{\partial t} \frac{\partial z}{\partial u}$, donde s=4 t=2, u=1.

7.

Sea
$$f(x, y, z) = x^2yz - xyz^3$$
, $P(2, -1, 1)$, $\hat{u} = (0, \frac{4}{5}, \frac{-3}{5})$:

• Determine el **gradiente** de la función escalar f(x, y, z).

- Evalúe el **gradiente** en el punto P.
- Encuentre la razón de cambio de f(x, y, z) en el punto P en la dirección del vector \hat{u} .

8.

Determine la máxima **razón de cambio** de $f(x,y) = 4y\sqrt{x}$ en el punto P(4,1) y la dirección en la cuál se presenta.

9.

Sea $f(x,y) = x^2 + xy + y^2 + y$. Calcule los valores **máximo** y **mínimo** locales, y punto(s) silla de la función.

10.

Sea $f(x,y)=x^2+y^22x,$ donde D es la región triángular cerrada con vértices $A(2,O),\,B(O,2),\,C(0,-2).$

Determine los valores máximos absolutos, valores mínimos absolutos de f(x, y) sobre el conjunto D.

11.

Encuentre tres números positivos cuya suma es 100 y cuyo producto es un máximo.

12.

Utilizando multiplicadores de Lagrange, encuentre los valores máximo y mínimo de la función sujeta a la restricción(es) dadas.

- $f(x,y) = x^2 + y^2$, sujeto a la restricción xy = 1.
- f(x,y) = xyz, sujeto a la restricción $x^2 + 2y^2 + 3z^2 = 6$.