

第五章 方程求根的数值解

/* Solutions of Nonlinear Equations */

S HUST

引入

Chapter 5 Solutions of equations in one varible

在科学与工程计算中经常需求解方程f(x)=0的根

- ① 当 $f(x)=a_nx^n+a_{n-1}x^{n-1}+.....a_1x+a_0$ 时 n=1,2,3,4时,可用求根公式求解 $n \ge 5$ 时,不能用公式表示方程的根
- ② 对于一般的非线性方程f(x)=0, x∈R. 只能求出其近似值, 我们探讨其数值解法——逐步逼近法
- 1.初始近似根x₀

(x_k收敛于真解x*)

S HUST

5.1 根的隔离和二分法

Chapter 5 Solutions of equations in one varible

为了确定初始近似根 x_0 ,必须知道f(x)=0 的根的大致范围。若f(x)=0 在(a,b) 内有一个根,称(a,b)为f(x)=0 的有根区间若f(x)=0 在(a,b)只有一个根,称(a,b)为f(x)=0 的隔根区间当(a,b) 为隔根区间时,可取 $x_0 \in (a,b)$

Def: 根的隔离——求f(x)=0的隔根区间的过程。

根的隔离的依据

Th5.1 设函数f(x)在[a,b]上连续,且有f(a)f(b)<0,则方程 f(x)=0 在[a,b]内至少有一个根.

注: ① [a,b]为有根区间

② 当 f(x) 满足Th5.1 的条件且在[a,b] 上单调时, f(x)在[a,b]内只有一根. 即 (a,b)为隔根区间.

SHUST

根的隔离的方法

Chapter 5 Solutions of equations in one varible

2

图象法:作出 y=f(x)的草图,由曲线y=f(x)与x轴的交点的大致位置来确定隔根区间.

例 隔根区间: (-1,0),(0,1),(1,2) 区间端点上函数值f(x) 异号

逐步搜索法

已知: [a,b]为 f(x)=0的有根区间, 且[a,b] 较大,

求一个缩小的有根区间

☑取步长h=(b-a)/n

- Ø从 x_0 =a出发以h 为步长向右搜索直至找到第一个点 x_k =a+kh 满足 $f(a)f(x_k) ≤ 0$,则得缩小得有根区间[x_{k-1},x_k]
- ☑取初始近似根为x_{k-1}或x_k,其误差限为h

THUST

Algorithm

step 1: $x_0 = a$, h = (b-a)/n

step 2: If $(f(x_0)f(x_0+h) \le 0)$ 输出(x₀,x₀+h)

Else $x_0 = x_0 + h$, goto step 2

例 求方程 $f(x)=x^3-x-1=0$ 的有根区间。

解: ∵ f(0)=-1<0, f(+∞)>0 ∴ (0,+∞)为有根区间 从x=0 出发, 步长h=0.5向右计算, 则

1.0 1.5 2.0 得缩小的有根区间为(1.0, 1.5) f(x) -可取初始近似根x₀=1.0或x₀=1.5

小结:当h很小时,得到很小的有根区间,

取 $x^* \in (x_0, x_0 + h)$,从而可算得任意精度的近似根, 但h越小计算量越大,利用此法求近似根仍不十分理想。

TRUHT

5.1.2 二分法/* Bisection Method */ Chapter 5 Solutions of equations in one varible

equations in one varible

思想: 将有根区间 [a,b]逐次减半(二分), 使有根区间缩小直 到误差容许范围内, 然后取区间中点为真根x* 的近似值。

设f(x)=0的有根区间为[a,b]且f(a)f(b)<0

(1) 取 $x_0 = (a+b)/2$

If $f(x_0)=0$, 则 x_0 为 f(x)=0的根;

else if $f(a)f(x_0) < 0$,则 $[a,x_0]$ 为有根区间; 记 $a_1=a$, $b_1=x_0=(a+b)/2$

else $f(x_0)f(b) < 0$,则 $[x_0,b]$ 为有根区间,记 $a_1 = x_0 = (a+b)/2$, $b_1 = b$

- ∴ 得缩小的有根区间[a₁,b₁]且b₁-a₁=(b-a)/2, [a,b]包含[a₁,b₁]
- (2) 将[a_1 , b_1] 二等分,其中点 x_1 =(a_1 + b_1)/2,计算 $f(x_1)$,重复(1), 或 $f(x_1)=0$ 则 $x^*=x_1$,或得有根区间 $[a_2,b_2]$ 且 $b_2-a_2=(b_1-a_1)/2$
- (3)反复进行,则得到有根区间套

HUST

•

Chapter 5 Solutions of equations in one varible

$$[a,b] \supset [a_1,b_1] \supset [a_2,b_2] \supset ... \supset [a_k,b_k]... \ni X^*$$

 $b_k - a_k = \frac{1}{2} (b_{k-1} - a_{k-1}) = ... = \frac{1}{2^k} (b-a)$

记 $[a_k,b_k]$ 的中点为 $x_k=(a_k+b_k)/2$ 并作为根的近似值

从而有近似根序列 x_0 -, x_1 , x_2 ,....., x_k ,.....

$$\mathbf{Q} \lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} \frac{b - a}{2^k} = 0 \quad \text{i. } \forall k, \ x^* \in [a_k, b_k] \qquad \therefore \lim_{k \to \infty} x_k = x^*$$

二分法是收敛的

将有限次二分的结果x_k作为根的近似值,其误差为多少呢?

$$\mathbf{Q}$$
x*, $\mathbf{x}_k \in [a_k, b_k]$, $\mathbf{x}_k = \frac{a_k + b_k}{2}$ $\therefore |\mathbf{x}^* - \mathbf{x}_k| \le \frac{1}{2} (b_k - a_k) = b_{k+1} - a_{k+1}$ 从而误差估计式 $|\mathbf{x}^* - \mathbf{x}_k| \le \frac{b - a}{2^{k+1}}$

FHUST

Chapter 5 Solutions of equations in one varible

$$|x^*-x_k| \le |b_{k+1} - a_{k+1}| = \frac{b-a}{2^{k+1}}$$

于是用二分法解f(x)=0,使误差不超过 ϵ 的终止准则:

(1) 先验估计
$$|x^*-x_k| \le \frac{b-a}{2^{k+1}} < \varepsilon \Rightarrow k > \frac{\ln(b-a) - \ln \varepsilon}{\ln 2} - 1$$

(2) 后验估计
$$b_{k+1}-a_{k+1} < \epsilon$$

Algorithm

Step1. 输入a, b, ε,δ

Step2. X=(a+b)/2

Step3. if $(|f(x)| < \delta$ 或b-x< ϵ) 输出x stopelse if (f(a)f(x) < 0) b=x

Step4. Goto Step2

ST HUST

例题

Chapter 5 Solutions of equations in one varible

例 5.2 求方程 $f(x)=x^3-x-1$ 在区间(1,1.5)内的根,要求精确到小数 点后的第二位,(ε=10-2/2).用四位小数计算.

解: ① a=1,b=1.5 且f(a)<0, f(b)>0

精度要求为 ε=10-2/2=0.005 由误差估计式|x*-x_ν|≤(b-a)/2^{k+1} 得0.5/2k+1<0.005 从而 2k+1>100 取k=6 即可

2
$$x_0 = \frac{1}{2}(a+b) = 1.25$$
 $f(x_0) < 0$

$$Q f(x_0) f(b) < 0 : \Leftrightarrow a_1 = x_0 = 1.25, b_1 = b = 1.5$$

新的有根区间 (a_1,b_1) 取 $x_1=\frac{1}{2}(a_1+b_1)=1.375$, $f(x_1)>0$ $f(a_1)f(x_1)<0$ ∴a₂=a₁=1.25, b₂=x₁=1.375 从而得有根区间(a₂₁b₂)

FHUST

二分法分析

Chapter 5 Solutions of equations in one varible

- ①简单;收敛性有保证
- ② 对f(x) 要求不高(只要连续即可).

HW: p.152 #1 $f(x)=x^3-x^2-1$ $x \in [1,2]$

- ①无法求复根及偶重根
- ②收敛慢

注:用二分法求根,最好先给出f(x)草图以确定根的大概位置。 或用搜索程序,将[a,b]分为若干小区间,对每一个满足条件 $f(a_k): f(b_k) < 0$ 的区间调用二分法程序,可求[a,b]内的多个根。

5.2 迭代法

Chapter 5 Solutions of equations in one varible

思想: 先给出f(x)=0的一个初始近似根 x_0 ,再反复使用某一公 式校正这个初始根,使之逐步精确化,直到满足精度要求为止。

如何构造迭代格式? ——不动点迭代法/* Fixed-Point Iteration */

从 x_0 出发, 计算 $x_1 = g(x_0)$, $x_2 = g(x_1)$, ..., $x_{k+1} = g(x_k)$, ... 若 $\{x_k\}_{k=0}^{\mathbb{Y}}$ 收敛,即存在 x^* 使得 $\lim_{k \to \mathbb{Y}} x_k = x^*$,且 g 连续,则 由 $\lim_{k \otimes \frac{1}{2}} x_{k+1} = \lim_{k \otimes \frac{1}{2}} g(x_k)$, 得 $x^* = g(x^*)$, 即 x^* 是 g 的不动点, 也就是f(x)=0的根。

迭代法的几何解释

Chapter 5 Solutions of equations in one varible

x=g(x) 的解即为曲线y=g(x) 与直线y=x 的交点p*

初始值 \mathbf{x}_0 得 $\mathbf{y} = \mathbf{g}(\mathbf{x})$ 上点 $\mathbf{p}_0(\mathbf{x}_{0'}\mathbf{g}(\mathbf{x}_{0}))$

$$...p_1(x_1,g(x_1))$$
 $x_1=g(x_0)$
 $...p_2(x_2,g(x_2))$ $x_2=g(x_1)$

...
$$p_2(x_2,g(x_2))$$
 $x_2=g(x_1)$

...
$$p_{k+1}(x_{k+1},g(x_{k+1}))$$
 $x_{k+1}=g(x_k)$

当由 $x_{k+1} = g(x_k)$ 所决定的点列 $x_{1}, x_{2}, ..., x_{k}, ...$ 收敛到 x^* . 则点p₁,p₂,.....p_k,.....逐步逼近交点p*.

Oh yeah? Who tells you that the method is convergent?

What's the problem?

例: 求 x³-x-1=0 在x=1.5 附近的一个根 (用六位有效数字近似)

解 I: $x^3-x-1=0$ 等价于 $x=\sqrt[3]{x+1}$ 取 $g(x)=\sqrt[3]{x+1}$ 取 $x_0=1.5$ 则

$$x_1 = \sqrt[3]{1.5 + 1} = 1.35721$$

$$x_7 = \sqrt[3]{x_6 + 1} = 1.32472$$

$$x_2 = \sqrt[3]{1.35721 + 1} = 1.33086$$
 $x_8 = \sqrt[3]{x_7 + 1} = 1.32472 = x_7$

$$x_8 = \sqrt[3]{x_7 + 1} = 1.32472 = x_7$$

$$\Rightarrow$$
 x* ≈ 1.32472

II: $x^3-x-1=0$ 等价于 $x=x^3-1$; $g(x)=x^3-1$

迭代格式为 X_{k+1}=X_k³-1 (k=0,1,2,...)

取 x_0 =1.5 则 x_1 =1.5³-1=2.375, x_2 = x_1 ³-1=12.3976

序列{xょ} 发散

注:(1)必须适当选取 x_0 及g(x)才能使迭代公式所求的序列 $\{x_k\}$ 收敛 (2) $\{x_k\}$ 收敛时,k 次迭代的结果的误差 $\epsilon_k = x_k - x^* =$?

迭代法收敛性分析

Chapter 5 Solutions of equations in one varible

「f(x)=0óx=g(x), 从而有迭代格x_{k+1}=g(x_k) k=0,1,2,.....

Th5.3 设迭代函数 g(x) 在[a,b] 上具有连续的一阶导数,且当

- (1) x \in [a,b] 时,a \leq g(x) \leq b;
- (2) 存在正数L<1, 对 x ∈ [a,b] 有|g'(x)| ≤L<1成立,

则 x=g(x) 在 [a,b] 上有唯一解 x^* ,且对任意的初始近似值 $x_0 \in [a,b]$ 迭代过程 $x_{k+1}=g(x_k)(k=0,1,2,....)$ 数组 $\lim_{k\to\infty} x_k = x^*$

证明: ① x*的存在性

作 h(x)=x-g(x),则h(x)在[a,b]上连续 而 $h(a)=a-g(a) \leq 0$ $h(b)=b-g(b)\geq 0$

若 x^{\triangle} \in [a,b],且 x^{\triangle} = $g(x^{\triangle})$,则 x^* - x^{\triangle} = $g(x^*)$ - $g(x^{\triangle})$ 那么 x^* - x^{\triangle} = $g'(\xi)(x^*$ - $x^{\triangle})$, ξ 在 x^* 与 x^{\triangle} 之间且 ξ \in [a,b] 则(x^* - x^{\triangle})(1- $g'(\xi)$)=0,而| $g'(\xi)$ | \leq L<1 x^* = x^{\triangle}

SHUST

(a) 24t

Chapter 5 Solutions of equations in one varible

ü

③ 迭代过程的收敛性

 $:: x^* - x_{k+1} = g(x^*) - g(x_k) = g'(\xi)(x^* - x_k),$ 由条件(1)知 $x_k \in [a,b], 则\xi \in [a,b]$

$$\begin{split} \therefore |\mathbf{x}^* - \mathbf{x}_{k+1}| &= |g'(\xi)| |\mathbf{x}^* - \mathbf{x}_k| \\ &\leq L |\mathbf{x}^* - \mathbf{x}_k| \leq L^2 |\mathbf{x}^* - \mathbf{x}_{k-1}| \leq \dots \\ &\leq L^{k+1} |\mathbf{x}^* - \mathbf{x}_0| \to 0, \quad (\because 0 \leq L < 1) \end{split}$$

$$\therefore \lim_{k \to \infty} x_k = x^*$$

说明

- ☑ Th中条件(1) 迭代序列{x_k} 均在[a,b] 内
- Ø条件(2)保证xょ与x*间的距离随k增加而减少并最终趋于0
- Ø 对x³-x-1=0 的两种格式分析

$$g(x) = \sqrt[3]{x+1}$$
 $g(x) = x^3 - 1$ $[a,b] = [1,2]$

SHUST

Tn5.4 在 Th5.3的条件下,有如下误差估计式

$$|x^*-x_k| \le \frac{|x_{k+1}-x_k|}{1-L}$$
 后验估计

$$\mathbf{Q}|\mathbf{X}^* - \mathbf{X}_k| \leq \frac{L^k}{1-L} |\mathbf{X}_1 - \mathbf{X}_0| \leq \varepsilon$$

$$\therefore k > [\ln \frac{\varepsilon(1-L)}{|x_1-x_0|} \div \ln L]$$

$$\leq L|x_k-x_{k-1}|$$

 $\leq L^2|x_{k-1}-x_{k-2}|$

|x*-x_κ|≤½|X_{κ+1}-x_κ|≤ε 若L不接近于1

实用方法: |x_{k+1}-x_k|<ε

Algorithm: Fixed-Point Iteration

Chapter 5 Solutions of equations in one varible

Find a solution to x = g(x) given an initial approximation x_0 .

Input: initial approximation x_0 ; tolerance TOL; max. num. of iterations N_{max} .

Output: approximate solution x or message of failure.

Step 1 Set
$$i = 1$$
;

Step 2 While ($i \, f \, N_{max}$) do steps 3-6

Step 3 Set
$$x = g(x_0)$$
; /* compute x_i */

Step 4 If $|x - x_0| < TOL$ then Output (x); /* successful */ STOP:

Step 5 Set
$$i ++$$
;
Step 6 Set $x_0 = x$;
/* update x_0 */

当
$$x$$
很大时,此处
可改为 $\left|\frac{x-x_0}{x}\right| < TOL$

Step 7 Output (The method failed after N_{max} iterations); /* unsuccessful */ STOP.

例 5.3 求方程 $x=e^{-x}$ 在 $x_0=0.5$ 附近的近似根,要求精确到小数后三位.

解: 此时f(x)=x-e-x=0 f(0.5)<0 f(0.6)>0

∴ [0.5,0.6] 为f(x)=0 的有根区间

取g(x)=e^{-x}; 从而迭代格式 $x_{k+1}=e^{-x_k}$ $k=0,1,2,\cdots$ 判定收敛性:

当 $x \in [0.5,0.6]$, $|g'(x)| = |-e^{-x}| = e^{-x} \le e^{-0.5} \approx 0.607 < 1$

∴ 迭代格式收敛取x₀=0.5,精度要求ε=10⁻³/2=0.0005迭代,结果见p129表

S HUST

	Chapter 5 Sol equations in on			
k	x_k	$x_k - x_{k-1}$		
0	0.5			
1	0.60653	0.10653		
2	0.54524	- 0.06129		
3	0.57970	0.03446		
4	0.56007	- 0.01963		
5	0.57117	0.0110		
. 6	0.56486	- 0.00631		
7	0.56844	0.00358		
8	0.56641	-0.00203		
9	0.56756	0.00115		
10	0.56691	-0.00065		

注: 定理条件非必要条件,可将[a,b]缩小,定义局部收敛性。

TRUHT

局部收敛性

Chapter 5 Solutions of equations in one varible

Th5.3 的迭代收敛条件之一: $x \in [a,b]$, $|g'(x)| \le L < 1$ 在 [a,b] 较大时,其该条件不易满足,考虑局部收敛性 ——

Def: 若在 x^* 的某邻域 \triangle : $|x-x^*| \le \delta$,迭代过程对任意的初始值 $x_0 \in \triangle$ 均收敛,则称其具有<mark>局部收敛性</mark>。

Th5.5 设g(x)在x=g(x) 的根 x^* 邻近有连续的一阶导数,且 $|g'(x^*)| < 1$,则迭代过程 $x_{k+1} = g(x_k)$ 具有局部收敛性.

SHUST

局部收敛性

Chapter 5 Solutions of equations in one varible

Th5.5 设g(x)在x=g(x) 的根 x^* 邻近有连续的一阶导数,且 $|g'(x^*)| < 1$,则迭代过程 $x_{k+1} = g(x_k)$ 具有局部收敛性.

分析: 在△:|x-x*|≤δ即[x*-δ, x*+δ]应用Th5.3来证明.

证 ∵|g'(x*)|<1且g'(x) 在x*的邻近连续

∴ 存在充分小的邻域 \triangle : $|x-x^*| ≤ δ$ 使

x ∈ △时, |g'(x)| ≤L<1 (L为常数)

而 $g(x)-g(x^*)=g'(ξ)(x-x^*)$

又 $x \in \triangle$ 时 $\xi \in \triangle$,有 $|g'(\xi)| \le L < 1$.

- ∴ $|g(x)-x^*|=|g(x)-g(x^*)| \le L|x-x^*|<|x-x^*| \le \delta$,即g(x) ∈ △
- ∴ g(x)在x*的 δ 邻域△内满足Th5.3收敛条件(1) (2);
- $∴ X_{k+1} = g(X_k)$ 对任意 $X_0 ∈ \triangle$ 收敛,即具有局部收敛性。

SHUST

例5.4 求x³-2x-5=0 在x₀=2 附近的实根。

解: 由 $x^3-2x-5=0$ 得 $x=\sqrt[3]{2x+5} \Rightarrow q(x)=\sqrt[3]{2x+5}$

$$\begin{cases} x_{k+1} = g(x_k) = \sqrt[3]{2x_k + 5} & g'(x) = \frac{2}{3}(2x+5)^{\frac{2}{3}} \\ x_0 = 2 & \end{cases}$$

- ∵ g'(x₀)<1/6 且g'(x)在x₀=2邻近连续</p>
- : 迭代格式 $x_{k+1}=g(x_k)$ 在 $x_0=2$ 的邻域内具有局部收敛性

 $x_1 = \sqrt[3]{2x_0 + 5} = 2.0800838$

x*=2.0945514815

 $x_2 = 2.0923507, x_3 = 2.0942170,$

误差逐步减小,减小速度为6-k

 $x_4 = 2.0945006, x_5 = 2.0945438,$

 $x_6 = 2.0945503$,

注: 构造 $x = \frac{1}{2}(x^3 - 5)$ $g(x) = \frac{1}{2}(x^3 - 5)$ $g'(x) = \frac{3}{2}x^2$ g'(2) = 6 > 1

如取 $x_0 = 2$ $x_1 = 1.5, x_2 = -0.125, x_3 = -2.500,$

则 = -10.312, x_5 = -551.2,L, 是发散序列。

迭代法在实时系统设计中的应用 Chapter 5 Solutions of equations in one varible

equations in one varible

假定实时系统由N个实时任务构成集合 $\Gamma = \{t_1, t_2, ..., t_N\}$

$$\Gamma = \{t_i = \langle C_i, T_i, D_i, p_i \rangle \mid i=1, ..., N\}$$

$$R_i \leq D_i$$
, $i=1$, 2, ..., N

$$R_{i} = C_{i} + \sum_{j \in \Gamma, p_{j} > p_{i}} \left[\frac{R_{i}}{T_{j}} \right] C_{j}$$

$$R_i^{(n+1)} = C_i + \sum_{j \in \Gamma, p_j > p_i} \left[\frac{R_i^{(n)}}{T_j} \right] C_j$$

取迭代初值 $R_i^{(0)} = 0$

如果
$$R_i^{(n+1)} = R_i^{(n)}$$
 表明迭代收敛, $R_i = R_i^{(n+1)}$

如果
$$R_i^{(n+1)} > D_i$$
 表明任务 t_i 是不可调度的.

THUST

5.3.1 迭代过程的收敛速度

Chapter 5 Solutions of equations in one varible

迭代格式 $x_{k+1} = g(x_k)$ 的收敛速度依赖于什么? $|x^*-x_k| \le \frac{L^k}{1-L} |x_1-x_0|$

若|g'(x)| ≤L<1:

当 L≈0 时 收敛快,

当 L≈1 时 收敛慢,

而 L>1 时, 不收敛(发散)

收敛速度用收敛阶来衡量

Def5.2 迭代序列 $\{x_k\}$ 收敛于f(x)=0 的根 x^* (x_k à x^*),记第k 步迭代的误差为 $e_k = x_k-x^*$ (k=0,1,2,.....),若有某个实数 $p \ge 1$ 和非零常数C 使 $\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C$ ($k \ne 0$)则称 $\{x_k\}$ 是 p阶收敛的。

注: p的大小反映收敛速度的快慢,p越大,收敛越快

p=1 — 线性收敛; p=2 — 平方收敛

p>1 —— 超线性收敛

SHUST

Chapter 5 Solutions of equations in one varible

- Th5.6 对于迭代过程 x_{k+1} = $g(x_k)$,如果迭代函数g(x)在根x*的邻近有连续二阶导数,且 $|g'(x^*)| < 1$
 - (1) 当g'(x*) ≠0 时,迭代过程线性收敛
 - (2) 当g'(x*) = 0 而g"(x*) ≠ 0 时, 迭代过程平方收敛

分析: 用泰勒公式证

$$(1) \frac{e_{k+1}}{e_k} \longrightarrow g'(x^*) \qquad (2) \frac{e_{k+1}}{e_k^2} \longrightarrow \frac{g'(x^*)}{2}$$

注: 推广的结论Th5.7

注:构造迭代函数的一般方法 $x=x+\lambda(x)f(x),\quad g(x)=x+\lambda(x)f(x)$ 由 $|g'(x)|\leq L<1$ 一选 $\lambda(x)$

S HUST

5.3.2 迭代过程的加速

Chapter 5 Solutions of equations in one varible

对于收敛的迭代过程,若收敛速度太慢,需改进以加速收敛.
/* accelerating convergence */

迭代公式的加工:对于迭代公式 \mathbf{x}_{k+1} = $\mathbf{g}(\mathbf{x}_k)$ \mathbf{k} =0,1,2,...... 若 $\mathbf{g}'(\mathbf{x})$ 在求根范围内改变不大,取 $\mathbf{g}'(\mathbf{x}) \approx \mathbf{a}$ 当 $|\mathbf{g}'(\mathbf{x})| \approx |\mathbf{a}| \leq L < 1$

(1) x_k 为 x^* 的近似值,迭代一次得 $x_{k+1} = g(x_k)$

$$\therefore x^* - x_{k+1} = g(x^*) - g(x_k) = g'(\xi)(x^* - x_k) \approx a(x^* - x_k)$$

$$\therefore (1-a)x^* - x_{k+1}^- \approx -ax_k^- \Rightarrow (1-a)x^* - x_{k+1}^- + ax_{k+1}^- \approx ax_{k+1}^- - ax_k^-$$

$$\therefore (1-a)(x^* - x_{k+1}) \approx a(x_{k+1} - x_k) \implies x^* - x_{k+1} \approx \frac{a}{1-a}(x_{k+1} - x_k)$$

(2) 将以上误差补偿给 x_{k+1} 得更精确的近似根 $x_{k+1} = x_{k+1} + \frac{a}{1-a}(x_{k+1} - x_k)$

从而得迭代加速公式

迭代
$$x_{k+1} = g(x_k)$$

改进 $x_{k+1} = x_{k+1} + \frac{a}{1-a}(x_{k+1} - x_k)$

S HUST

Chapter 5 Solutions of equations in one varible

例 用加速收敛的方法求 $x=e^{-x}$ 在x=0.5 附近的一个根,要求精度为 $\varepsilon=10^{-5}$

分析: 例5.3曾算过此题,用简单迭代法迭代10次才达到精度10⁻³ 那么用改进的公式迭代多少次满足精度要求10⁻⁵?

解: g(x)=e-x且g'(x)= - e-x,在x=0.5 附近有 g'(x) ≈-0.6

从而加速公式为
$$\begin{cases} x_{k+1}^{-} = e^{-x_{k}} \\ x_{k+1} = x_{k+1}^{-} - \frac{0.6}{1.6} (x_{k+1}^{-} - x_{k}) \end{cases}$$

取x₀ =0.5, 迭代结果为

k	0	1	2	3	4
\mathbf{x}_{k}	0.5	0.56658	0.56713	0.56714	0.56714
\tilde{x}_k		0.60653	0.56746	0.56715	0.56715