

A quick recap on mechanism design

- ► Mechanism Design is inverse game theory
 - ► Game theory: we are given a game and we want to predict what happens
 - Mechanism design: we want to create games that incentivise a given behaviour.

A quick recap on mechanism design

- ► Mechanism Design is inverse game theory
 - ► Game theory: we are given a game and we want to predict what happens
 - Mechanism design: we want to create games that incentivise a given behaviour.

- Desired behaviours
 - ► Game is strategy proof
 - Individual rationality
 - Efficiency
 - Fairness

A quick recap on mechanism design

- ► Mechanism design
 - ► Without money → Matching problems, facility location
 - ► With money → Auctions

Auctions

- \triangleright We are selling a given item x
- ► There are *N* bidders
- \triangleright Bidders have report valuations $v_i(x)$
- ightharpoonup Bidders pay a price $p_i(x)$
- ▶ Bidders have *quasi-linear* utilities $\rightarrow u_i(x) = v_i(x) p_i(x)$

First price auctions

The bidder with the highest reported value gets the item and pays a price equal to their reported valuation.

First price auctions

The bidder with the highest reported value gets the item and pays a price equal to their reported valuation.

$$u_w(x) = v_w(x) - p_w(x) = v_w(x) - v_w(x) = 0$$

First price auctions

The bidder with the highest reported value gets the item and pays a price equal to their reported valuation.

$$u_w(x) = v_w(x) - p_w(x) = v_w(x) - v_w(x) = 0$$

The winner has a utility equal to zero. Therefore, the first price auction gives an incentive to lie and report a lower value in order to pay less.

Second price auctions

The bidder with the highest reported value gets the item and pays a price equal to the second highest reported valuation.

Second price auctions

The bidder with the highest reported value gets the item and pays a price equal to the second highest reported valuation.

 $v_w \rightarrow$ reported valuation of the winner

 $v_s \rightarrow$ reported valuation of the second

$$u_w(x) = v_w(x) - v_s(x) \ge 0$$

Second price auctions

The bidder with the highest reported value gets the item and pays a price equal to the second highest reported valuation.

 $v_w \rightarrow$ reported valuation of the winner

 $v_s \rightarrow$ reported valuation of the second

$$u_w(x) = v_w(x) - v_s(x) \ge 0$$

Theorem: Bidding truthfully, in second price auctions, is a weakly dominant strategy.

Applications of Second Price Auctions

- ► Ebay auctions!
- Online advertisement (through generalised second price auctions)
- ▶ Network routing

Extension to multiple items

- \blacktriangleright m items
- \triangleright n bidders

► We want a mechanism that incentivates people to bid truthfully

VCG Auctions

In general auctions we have two problems:

- ▶ Determining the winner
- ► Charging the winner an appropriate price

By charging the *right* appropriate price, we can ensure that bidding truthfully is a weakly dominant strategy for the bidders.

VCG auctions are one of such mechanisms.

- ► m Items
- \triangleright *n* bidders
- ► Bidders value combinations of items

- ► m Items
- ▶ *n* bidders
- ► Bidders value combinations of items

Example:

$$n = \{A, B, C\}, m = \{a, b\}$$

$$v(A) = \{\{a\} = 2, \{b\} = 2, \{a, b\} = 5\}$$

 $v(B) = \{\{a\} = 5, \{b\} = 0, \{a, b\} = 0\}$
 $v(C) = \{\{a\} = 3, \{b\} = 2, \{a, b\} = 6\}$

 $n = \{A, B, C\}, m = \{a, b\}$

$$v(A) = \{\{a\} = 2, \{b\} = 2, \{a, b\} = 5\}$$

$$v(B) = \{\{a\} = 5, \{b\} = 0, \{a, b\} = 0\}$$

$$v(C) = \{\{a\} = 3, \{b\} = 2, \{a, b\} = 6\}$$

How should we allocate the items?

$$n = \{A, B, C\}, m = \{a, b\}$$

$$v(A) = \{\{a\} = 2, \{b\} = 2, \{a, b\} = 5\}$$

 $v(B) = \{\{a\} = 5, \{b\} = 0, \{a, b\} = 0\}$
 $v(C) = \{\{a\} = 3, \{b\} = 2, \{a, b\} = 6\}$

How should we allocate the items?

Maximise social welfare

 $B \leftarrow a$ and $C \leftarrow b$, for a total welfare of 7

$$v(A) = \{\{a\} = 2, \{b\} = 1, \{a, b\} = 5\}$$

 $v(B) = \{\{a\} = 5, \{b\} = 0, \{a, b\} = 0\}$
 $v(C) = \{\{a\} = 3, \{b\} = 2, \{a, b\} = 6\}$

$$B \leftarrow a$$
 and $C \leftarrow b$

How should we charge B and C?

$$v(A) = \{\{a\} = 2, \{b\} = 1, \{a, b\} = 5\}$$

 $v(B) = \{\{a\} = 5, \{b\} = 0, \{a, b\} = 0\}$
 $v(C) = \{\{a\} = 3, \{b\} = 2, \{a, b\} = 6\}$

$$B \leftarrow a$$
 and $C \leftarrow b$

How should we charge B and C?

Each bidder pays the externality they impose on others

$$p_A = 7 - 7 = 0$$

 $p_B = 6 - 3 = 3$
 $p_C = 6 - 5 = 1$

VCG Mechanism: formalization

- ► m Items
- ▶ *n* bidders
- \blacktriangleright Bidders value combinations of items (Ω)

Optimal allocation: $\omega^* = \arg \max_{\omega \in \Omega} \sum_{i \in N} v_i(\omega)$

Each bidder pays: $p_i(\omega^*) = \max_{\omega \in \Omega} \sum_{j \neq i \in N} v_i(\omega) - \sum_{j \neq i \in N} v_i(\omega^*)$

The optimal allocation problem

Let's consider this formula:

$$\omega^* = \arg\max_{\omega \in \Omega} \sum_{i \in N} v_i(\omega)$$

The optimal allocation problem

Let's consider this formula:

$$\omega^* = \arg\max_{\omega \in \Omega} \sum_{i \in N} v_i(\omega)$$

This is the NP-Hard problem called maximum weighted set packing.