

Logic Building Assignment: 18

1. Accept N numbers from user and accept one another number as NO , check whether NO is present or not.

Input: N : 6 NO: 66 Elements: 85 66 3 66 93 88 Output: **TRUE** Input: 6 N : NO: 12 Elements: 85 11 3 11 15 111 Output: **FALSE** Program Layout: #include<stdio.h> #define TRUE 1 #define FALSE 0 typedef int BOOL; BOOL Check(int Arr[], int iLength, int iNo) // Logic int main() { int iSize = 0,iRet = 0,iCnt = 0, iValue = 0; int *p = NULL; BOOL bRet = FALSE; printf("Enter number of elements"); scanf("%d",&iSize);


```
printf("Enter the number");
scanf("%d",&iValue);
p = (int *)malloc(iSize * sizeof(int));
if(p == NULL)
     printf("Unable to allocate memory");
     return -1;
}
printf("Enter %d elements ",iLength);
for(iCnt = 0;iCnt<iLength; iCnt++)</pre>
     printf("Enter element : %d",iCnt+1);
     scanf("%d",&p[iCnt]);
}
bRet = Check(p, iSize,iValue);
if(bRet == TRUE)
{
     printf("Number is present");
else
{
     printf("Number is not present");
}
free(p);
return 0;
```

2. Accept N numbers from user and accept one another number as NO , return index of first occurrence of that NO.

Input: N: 6

NO: 66

Elements: 85 66 3 66 93 88

Output: 1

}


```
Input:
                      6
           N :
                      12
           NO:
           Elements: 85
                            11
                                 3
                                       15
                                             11
                                                  111
Output:
           -1
Program Layout:
#include<stdio.h>
int FirstOcc(int Arr[], int iLength, int iNo)
     // Logic
int main()
     int iSize = 0,iRet = 0,iCnt = 0, iValue = 0,iRet = 0;
     int *p = NULL;
     printf("Enter number of elements");
     scanf("%d",&iSize);
     printf("Enter the number");
     scanf("%d",&iValue);
     p = (int *)malloc(iSize * sizeof(int));
     if(p == NULL)
     {
           printf("Unable to allocate memory");
           return -1;
     }
     printf("Enter %d elements ",iLength);
     for(iCnt = 0;iCnt<iLength; iCnt++)</pre>
     {
           printf("Enter element : %d",iCnt+1);
           scanf("%d",&p[iCnt]);
     }
     iRet = FirstOcc(p, iSize,iValue);
     if(iRet == -1)
```



```
{
    printf("There is no such number");
}
else
{
    printf("First occurrence of number is %d",iRet);
}

free(p);
return 0;
}
```

3. Accept N numbers from user and accept one another number as NO , return index of last occurrence of that NO.

Input: N: 6

NO: 66

Elements: 85 66 3 66 93 88

Output: 3

Input: N: 6

NO: 93

Elements: 85 66 3 66 93 88

Output: 4

Input: N: 6

NO: 12

Elements: 85 11 3 15 11 111

Output: -1

Program Layout:


```
#include<stdio.h>
int LastOcc(int Arr[], int iLength, int iNo)
     // Logic
int main()
{
     int iSize = 0,iRet = 0,iCnt = 0, iValue = 0,iRet = 0;
     int *p = NULL;
     printf("Enter number of elements");
     scanf("%d",&iSize);
     printf("Enter the number");
     scanf("%d",&iValue);
     p = (int *)malloc(iSize * sizeof(int));
     if(p = NULL)
     {
           printf("Unable to allocate memory");
           return -1;
     }
     printf("Enter %d elements ",iLength);
     for(iCnt = 0;iCnt<iLength; iCnt++)</pre>
     {
           printf("Enter element : %d",iCnt+1);
           scanf("%d",&p[iCnt]);
     }
     iRet = LastOcc(p, iSize,iValue);
     if(iRet == -1)
     {
           printf("There is no such number");
     }
     else
     {
           printf("Last occurrence of number is %d",iRet);
     }
```



```
free(p);
      return 0;
}
```

4. Accept N numbers from user and accept Range, Display all elements from that range

Input: 6 N :

> Start: 60

> End: 90

Elements: 85 66 76 93 88 3

Output: 66 76 88

Input: 6 N:

> Start: 30

End: 50

Elements: 85 66 3 76 93 88

Output:

```
#include<stdio.h>
```

Program Layout:

```
void Range(int Arr[], int iLength, int iStart, int iEnd)
     // Logic
int main()
     int iSize = 0,iRet = 0,iCnt = 0, iValue1 = 0,iValue1 = 0;
     int *p = NULL;
     printf("Enter number of elements");
     scanf("%d",&iSize);
     printf("Enter the starting point");
```



```
scanf("%d",&iValue1);
     printf("Enter the ending point");
     scanf("%d",&iValue2);
     p = (int *)malloc(iSize * sizeof(int));
     if(p == NULL)
           printf("Unable to allocate memory");
           return -1;
     }
     printf("Enter %d elements ",iLength);
     for(iCnt = 0;iCnt<iLength; iCnt++)</pre>
     {
           printf("Enter element : %d",iCnt+1);
           scanf("%d",&p[iCnt]);
     }
     iRet = Range(p, iSize,iValue1, iValue2);
     free(p);
     return 0;
}
```

5. Accept N numbers from user and return product of all odd elements.

Input: N: 6

Elements: 15 66 3 70 10 88

Output: 45

Input: N: 6

Elements: 44 66 72 70 10 88

Output: 0

Program Layout:


```
#include<stdio.h>
int Product(int Arr[], int iLength)
     // Logic
int main()
     int iSize = 0,iRet = 0,iCnt = 0,iRet = 0;
     int *p = NULL;
     printf("Enter number of elements");
     scanf("%d",&iSize);
     p = (int *)malloc(iSize * sizeof(int));
     if(p == NULL)
     {
           printf("Unable to allocate memory");
           return -1;
     }
     printf("Enter %d elements ",iLength);
     for(iCnt = 0;iCnt<iLength; iCnt++)</pre>
     {
           printf("Enter element : %d",iCnt+1);
           scanf("%d",&p[iCnt]);
     }
     iRet = Product(p, iSize);
     printf("Product is %d",iRet);
     free(p);
     return 0;
}
```