Q. 1 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ a. Show that the vectors are linearly independent. **b.** Find the unique scalars c_1, c_2, c_3 such that the $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ can be written as $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$ Determine whether the given sets of vectors are linearly dependent or independent? Q. 2 $\begin{bmatrix} 2 \\ 2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 10 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} 8 \\ 8 \\ 9 \\ 9 \end{bmatrix}$ Show that $H = \left\{ \begin{bmatrix} a-b+c \\ 2a-b \\ a-b-5c \\ 2a-c \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$ is a subspace of \mathbb{R}^4 . Q. 3 O. 4 Let U and W are subspaces of a vector space V.Sum of U and W is defined as $U + W = \{u + w \in V : u \in U \text{ and } w \in W\}$. Show that U + W is a subspace of V. $S = \{(0,0,1,1),(0,0,0,1),(0,1,1,1),(1,1,1,1)\}$ check whether that S is linearly dependent Q. 5 or independent? Let vectors $\mathbf{u} = (\lambda, 1, 0)$, $\mathbf{v} = (1, \lambda, 1)$ and $\mathbf{w} = (0, 1, \lambda) \in \mathbb{R}^3$ find all real values of λ for **Q.** 6 which u,v,w are linearly dependent? Determine the values of a such that the matrices $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & -4 \\ a & -2 \end{bmatrix}$ are linearly independent. For which values of t is each set linearly independent? **Q.** 7 1) $S = \{(t,0,0), (0,1,0), (0,0,1)\}$ 2) $S = \{(t, t, t), (t, 1, 0), (t, 0, 1)\}$ Q. 8 Determine whether columns of matrix A are linearly independent $A = \begin{vmatrix} 1 & 2 & -1 \end{vmatrix}$ Consider the polynomials $P_1=1+x^2$ and $P_2=1-x^2$. Are $\{P_1,P_2\}$ they linearly Q. 9 independent in P_3 ? Why or why not? Find the matrix A such that the given set is Col(A)**Q.10** $\left\{ \begin{bmatrix} 2s+t \\ r-s+2t \\ 3r+s \\ 2r-s-t \end{bmatrix} : r, s, t \text{ real} \right\} : r, s, t \text{ real}$ $: b-c \\ 2b+3d \\ b+3c-3d \\ c+d : b, c, d \text{ real}$

vector spaces : ratorial ratelies Exercise									
Q. 11	Find a basis for the space spanned by {	$ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \begin{bmatrix} 6 \\ -1 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} $							

- Q. 12 a) If the null space of 5×6 matrix A is 4-dimensional, what is the dimension of column space of A?
 - b) A is 6×8 , what is the smallest possible dimension of Nul(A)?
 - c) If a 6×3 matrix A has rank 3, What is the dimension of Nul(A), dim Row(A), and $rank(A^T)$?

$$S = \left\{ \begin{bmatrix} c \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ c \\ -1 \end{bmatrix} \right\}$$

where $c \in \mathbb{R}$.

- (a) Find the value/s of c such that S is a linearly dependent set.
- (b) Express the vector

$$\begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix}$$

as a linear combination of the vectors in S where a_1 and a_2 are scalars.

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \qquad \mathbf{v}_{2} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{3} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \qquad \text{and} \qquad \mathbf{v}_{4} = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$$

- a. Show that S = {v₁, v₂, v₃, v₄} is linearly dependent.
- **b.** Show that $T = \{v_1, v_2, v_3\}$ is linearly independent.
- c. Show that v₄ can be written as a linear combination of v₁, v₂, and v₃.

Q. 15 Find bases for the four fundamental subspaces of the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Q.16 Find k such that i) Null space of A is subsapce of R^k and ii) column space of A is

	<u>1</u>					
		1	2	-1	5	
sub		3	1	-1	1	
	subsapce of R^k , where $A =$	7	6	5	2	
		1	2	-3	1	
		2	0	1	3	
						Τ

Q.17

Let
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$
, $u = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$. Determine if u is in $Nul(A)$.

Could u be in col(A)? Determine if v is in col(A). Could v be in Nul(A)?

Q.18

The matrices below are row equivalent.

- Find rank A and dim Nul A
- 2. Find bases for Col A and Row A.
- 3. What is the next step to perform to find a basis for Nul A?
- **4.** How many pivot columns are in a row echelon form of A^T ?

Q. 19

The two matrices A and B are row-equivalent.

$$A = \begin{bmatrix} 2 & -4 & 0 & 1 & 7 & 11 \\ 1 & -2 & -1 & 1 & 9 & 12 \\ -1 & 2 & 1 & 3 & -5 & 16 \\ 4 & -8 & 1 & -1 & 6 & -2 \end{bmatrix},$$

$$B = \begin{bmatrix} 1 & -2 & 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 0 & -5 & -3 \\ 0 & 0 & 0 & 1 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- i) Find rank of A.
- ii) Find a basis for a row space of A.
- iii) Find a basis for a column space of A. iv) Find a basis for a Null space of A.
- v) Is the last column of A is in the span of the first three columns?

Q. 20

Find a basis and dimension of the solution space of the following.

$$x_1 - 3x_2 + x_3 + x_4 = 0$$
; $2x_1 + x_2 - x_3 + 2x_4 = 0$; $x_1 + 4x_2 - 2x_3 + x_4 = 0$; $5x_1 - 8x_2 + 2x_3 + 5x_4 = 0$. Find a basis and dimension of the solution space of the following.

Q. 21

$$x_1 + 4x_2 + 2x_4 - x_5 = 0, 3x_1 + 12x_2 + x_3 + 5x_4 + 5x_5 = 0, 2x_1 + 8x_2 + x_3 + 3x_4 + 2x_5 = 0$$

 $5x_1 + 20x_2 + 2x_3 + 8x_4 + 8x_5 = 0$

Q. 22

Determine if the following statements true or falls, and justify your answers.

- a) A linearly independent set in a subspace H is a basis for H.
- b) The columns of a nonsingular matrix forms a basis for Col(A).

- c) The null space of an $m \times n$ matrix A is a subsapce of \mathbb{R}^m .
- d) col(A) is a set of vectors that can be written as AX for some X.
- e) A plane in R³ is two dimensional subspace of R³.
- f) The dimension of vector space P_3 (set of all polynomials at most of degree 3, is 3.
- g) If the 4×5 matrix A has 4 pivote columns, then $col(A) = R^4$.
- h) If the 6×3 matrix A rank 3, then dimension of Null(A) = 0.

Q.23 State True or False with justification

- i) A set containing zero vector is linearly independent.
- ii) A basis is a spanning set that is as large as possible
- iii) A basis is a linearly independent set that is as large as possible.
- iv) The additive inverse of a vectors is not unique
- v) A subspace is also a vector space

vi)
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$$
 is a subspace of \mathbb{R}^2

- vii) All polynomials of the form $p(t) = a + t^2$, where $a \in \mathbb{R}$ is a subspace of \mathbb{P}_2 .
- viii) If the columns of an $m \times n$ matrix A span \mathbb{R}^m , then the equation AX = b is consistent for each $b \in \mathbb{R}^m$.
- ix) Suppose a 4×7 matrix has four pivot columns. Then $\dim(Null A) = 3$.
- x) A single vector by itself is linearly dependent.