

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number: Registration number:

ECO Platform reference number:

Issue date: Valid to: BEWI Denmark A/S

The Norwegian EPD Foundation
The Norwegian EPD Foundation

NEPD-3209-1848-EN NEPD-3209-1848-EN

05.11.2021 05.11.2026

G80

EPS Insulation boards

BEWI Denmark A/S

www.epd-norge.no

General information Product Owner of the declaration G80 BEWI Denmark A/S Contact person: Sune Jorn Nielsen Phone: +45 7979 8211 e-mail: styrolit@bewi.com Manufacturer **Program operator** The Norwegian EPD Foundation BEWI Denmark A/S Post Box 5250 Majorstuen, 0303 Oslo, Norway Adress: Kidnakken 13, 4930 Maribo +45 7979 8211 Phone: (+47) 23 08 80 00 Phone: post@epd-norge.no e-mail: e-mail: styrolit@bewi.com **Declaration number** Place of production NEPD-3209-1848-EN Maribo, Denmark **ECO Platform reference number** Management system **Product Category Rules** Organisation number EN 15804:2012 + A1:2013 serves as core PCR BEWI Denmark A/S NPCR 012:2018 Part B for Thermal insulation products CVR: 31867304 Statement of liability Issue date The owner of the declaration shall be liable for the 05.11.2021 underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Valid to 05.11.2026 **Declared unit** Year of study 2021 Comparability Declared unit (cradle-to-gate with options: A1-A3, A4, C1-C4, D) 1 m² EPS insulation board with 38 mm thickness at R=1 m² EPD of construction products may not be comparable if they K/W, transportation to site, waste handling and recovery. not comply with EN 15804 and seen in a building context. The EPD has been worked out by **Functional unit** Michael M. Jenssen, Asplan Viak AS Michael M. Jenson Verification The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010 external internal Approved Third party verifier: Jane Anderson Jane Anderson, ConstructionLCA Ltd

Independent verifier approved by EPD Norway

Managing Director of EPD-Norway

Product

Product variation and calculation of averages

The insulation board is provided in several dimensions and thicknesses. Please use the conversion table below for other sizes than the declared unit.

No variation between sites; single production site declared.

Product description

Expanded polystyrene (EPS) is a common material used for thermal insulation of buildings, including floors, walls and ceilings. It is a polymer foam, consisting of air-filled polystyrene cells. As 98% of the material is air, EPS provides good insulating properties at a low weight. Other characteristics of the material include low moisture absorption, long service life and high compressive strength.

EPS is manufactured through permeating polystyrene beads with pentane, allowing the beads to expand when exposed to steam. This addition of a so-called blowing agent adds 4% - 6% w/w. The expanded polystyrene (EPS) beads are then fed into a block molding machine, where steam and pressure forms large blocks of EPS. The amount of EPS going into the mould determines the density of the block, where pressure class 80 provides a density at 80 kN/m², which is approximately 15 kg/m³. After moulding, the remaining blowing agent, pentane, is aired out and the blocks are cut into the desired shape.

Weight per declared unit is approximately 0,57 kg given a density of 15 kg/cubic meter with a thickness of 38 mm.

Technical data

EPS insulation boards are CE certified according to EN 13163
600 mm x 1200 mm, 1200 mm x 1200 mm
10 mm - 200 mm
0,038 W/mK
80 kN/m ² (declared unit), see conversion factors for other values
<5 vol%
F

Conversion factors

EPS insulation is provided in different densities and thicknesses depending on the intended use. The relationships between density and weight, and between weight and environmental impacts are linear. Results for various densities and thicknesses can be converted based on the following factors (factor * environmental impact):

	Thickness [mm]								
Compressive strength [kN/m²]	38	50	100						
60	0.8	1.1	2.1						
80	1.0	1.3	2.6						
100	1.7	2.2	4.4						
250	2.3	3.1	6.1						

Product specification

Raw material consumption	kg	%		
Polystyrene	0.57	96%		
Pentane	0.02	4%		

Market

Denmark

Reference service life, product

60 years

Reference service life, building

60 years

LCA: Calculation rules

Declared unit

1 m² EPS insulation board with 38 mm thickness at R=1 m² K/W, transportation to site, waste handling and recovery.

System boundary

Modules are declared according to NPCR 012 Part B. Declared units include A1-A3, A4, C1-C4, and D and are shown in *Figure 1*. Gray boxes denote modules not declared.

Figure 1: System boundaries

Data quality

General requirements and guidelines concerning the use of generic and specific data and the quality of those are as described in EN 15804: 2012+A1:2013, clause 6.3.6 and 6.3.7., including ISO14044:2006, 4.2.3.6. The data is representative according to temporal, geographical and technological requirements. Databases used have been ecoinvent v3.6 (2019). Upstream data for polystyrene from Plastics Europe (2015). Calculations have been carried out using Simapro v9.

Temporal:

Data for use in module A3 is supplied by the EPD owner and consists of recorded and calculated amounts of specific material and energy consumption. Specific data has been collected for 2020. Generic data has been created or updated within the last 10 years. Any exceptions are documented in the LCA-report.

Geographical:

The product included in this EPD is manufactured in Denmark and is representative for the Danish market. Best available proximations are used where Denmark-specific data are unavailable.

Technological:

Data represents technology in use.

Allocation

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Cut-off criteria

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1% energy, mass, impact) are not included. This cut-off rule does not apply for hazardous materials and substances.

Benefits and loads beyond the system boundary (Module D)

The scenario for Module D follows the conservative scenario provided in NPCR 012 Part B. EPS insulation recovered at the end of life is incinerated with energy recovery and substitutes Danish elecitricty and district heat mixes.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle		Fuel/Energy consumption	Value (l/t)
Truck	4.8 %	104 m ³ jumbo trailer	100	0.19 l/tkm	19.3

The scenario for transportation to building site assumes a typical distance of 100 km. EPS is a bulky product, resulting in a capasity utilization per mass at 4,8 %, with the lorry fully loaded.

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	
Collected as mixed construction waste	kg	
Reuse	kg	
Recycling	kg	
Energy recovery (C3)	kg	0.57
Incineration ashes to landfill (C4)	kg	0.004

Benefits and loads beyond system boundaries (D)

	Unit	Value
Substitution of electricity	MJ	1.50
Substitution of district heating	MJ	12.20

Due to a lack of reliable data for the removal of EPS insulation from buildings, C1 is assumed to not require energy or material inputs. The scenario for end-of-life treatment of collected EPS follows the default conservative scenario provided in NPCR 012 Part B, which is municipal incineration with energy recovery (C3). Ashes and solids after incineration is landfilled (C4). Recovered energy from C3 is assumed to substitute electricity and district heating (D).

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle		Fuel/Energy consumption	Value (l/t)
Truck	4.3%	90 m ³ box trailer	83	0.19 l/tkm	15.6

The scenario for transportation to waste processing is assumed to be 83 km (Raadal et al., 2009). Insulation is assumed compressed at the waste handling facility. A standard box trailer with a 90 m³ cubic capacity is assumed.

LCA: Results

Syste	System boundaries (X=included, MND= module not declared, MNR=module not relevant)															
Pro	duct st	age	Assem	nby stage		Use stage							End of life stage			Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

Environme	Environmental impact										
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D			
GWP	kg CO ₂ -eqv	1.77E+00	3.56E-02	0.00E+00	3.16E-02	1.81E+00	3.53E-05	-1.34E-01			
ODP	kg CFC11-eqv	8.99E-08	8.16E-09	0.00E+00	7.62E-09	1.25E-09	1.58E-11	-4.50E-09			
POCP	kg C ₂ H ₄ -eqv	9.51E-03	3.69E-06	0.00E+00	2.95E-06	2.68E-04	3.08E-07	-1.76E-05			
AP	kg SO ₂ -eqv	4.97E-03	9.74E-05	0.00E+00	6.00E-05	2.19E-04	2.77E-07	-3.92E-04			
EP	kg PO ₄ 3eqv	4.84E-04	1.87E-05	0.00E+00	9.29E-06	1.67E-06	1.95E-07	-7.85E-05			
ADPM	kg Sb-eqv	1.66E-06	1.11E-07	0.00E+00	9.48E-08	7.47E-08	5.83E-10	-5.60E-07			
ADPE	MJ	5.39E+01	5.08E-01	0.00E+00	4.75E-01	1.38E-01	1.07E-03	-1.77E+00			

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource	use								
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D	
RPEE	MJ	1.05E+00	2.14E-03	0.00E+00	1.92E-03	4.62E-03	2.49E-05	-1.48E+00	
RPEM	MJ	0.00E+00							
TPE	MJ	1.05E+00	2.14E-03	0.00E+00	1.92E-03	4.62E-03	2.49E-05	-1.48E+00	
NRPE	MJ	2.92E+01	5.08E-01	0.00E+00	4.75E-01	1.38E-01	1.07E-03	-1.77E+00	
NRPM	MJ	2.47E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TRPE	MJ	5.39E+01	5.08E-01	0.00E+00	4.75E-01	1.38E-01	1.07E-03	-1.77E+00	
SM	kg	0.00E+00							
RSF	MJ	0.00E+00							
NRSF	MJ	0.00E+00							
W	m^3	9.17E-03	1.47E-05	0.00E+00	1.29E-05	5.40E-04	1.18E-06	-5.65E-03	

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste										
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D		
HW	kg	7.27E-04	1.24E-05	0.00E+00	1.13E-05	1.70E-02	2.53E-06	-1.55E-04		
NHW	kg	6.53E-02	7.21E-03	0.00E+00	6.01E-03	9.56E-03	3.68E-03	-1.04E-02		
RW	kg	4.03E-05	3.63E-06	0.00E+00	3.39E-06	3.11E-07	7.16E-09	-5.57E-06		

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life	End of life - Output flow										
Parameter	Unit	A1-A3	A4	C1	C2	C3	C4	D			
CR	kg	0.00E+00									
MR	kg	0.00E+00									
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.70E-01	0.00E+00	0.00E+00			
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.50E+00	0.00E+00	0.00E+00			
ETE	MJ	3.70E-01	0.00E+00	0.00E+00	0.00E+00	1.22E+01	0.00E+00	0.00E+00			

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$

Specific requirements of program operator

Greenhouse gas emission from the use of electricity in the manufacturing phase

Danish production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Data source	Amount	Unit
Ecoinvent v3.6	0.322	kg CO ₂ -eqv/kWh

Dangerous substances

V	The product contains no substances given by the REACH Candidate list or the Norwegian priority list
	The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.

☐ The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.

☐ The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Indoor environment

No tests have been carried out on the product concerning indoor climate - Not relevant.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Jenssen, M.M. (2021)	LCA report: EPS insulation, for BEWI Denmark A/S
NPCR 012:2018	Part B for Thermal insulation products
Raadal et al. (2009)	Klimaregnskap for avfallshåndtering. Fase I og II: Glassemballasje, metallemballasje, papir, papp, plastemballasje, våtorganisk avfall, treavfall og restavfall fra husholdninger. ISBN: 82-8035-073-X.

	Publisher/Program operator	Phone:	+47 23 08 80 00
epd-norge.no The Norwegian EPD Foundation	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	Norway	web	epd-norge.no
BEW	Owner of the declaration	Phone:	+45 7979 8211
	BEWI Denmark A/S	Fax	
	Adress: Kidnakken 13, 4930 Maribo	e-mail:	styrolit@bewi.com
	Norway	web	bewi.com
	Author of the Life Cycle Assessment	Phone:	+47 41 79 94 17
asplan 🌈 🔪 🥒	Michael M. Jenssen	Fax	
viak	Asplan Viak AS	e-mail:	asplanviak@asplanviak.no
	Abels gate 9, 7030 Trondheim, Norway	web	asplanviak.no