

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination

March - 2018

Max. Marks: 30 Class: SE(Comp. and IT) Course Code: BS41

Duration: 1.5 Hrs Semester: IV Branch: Comp, IT

Name of the Course: Applied Mathematics-II

Instructions:

(1) All questions are compulsory.

(2) Assume suitable data if necessary.

Q No		т	
Q.1		Max Marks	CO
	Define and verify Cayley Hamilton's theorem for matrix A and hence find A^{-1} and A^4 where $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$	06	C01
	or		
	If $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ then prove that $3 \tan A = A \tan 3$	06	C01
Q.2	Find the Singular value Decomposition of $\begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$	06	CO1
Q.3	A random variable X is defined by $f(x) = kx^2(1-x^3)$, $0 \le x \le 1$, a.a.	COI
	Find 1) k 2) P $(0 \le x \le 1/2)$ 3) mean 4) variance.	06	CO3
2.4	Show that in a Poisson distribution via		
	mean is 2/e times the standard deviation.	06	CO4
.5	Calculate Karl Pearson's coefficient of correlation for the		
	following bivariate series. X: 28 45 40 38 35 33 40 32 36 33 Y: 23 34 33 34 30 26 28 31 36 35	06	CO2