Machine Listening for Music and Sound Analysis

Lecture 1 – Audio Representations

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

Learning Objectives

- Sound categories
- Music representations
- Audio representations
- Audio signal decomposition
- Audio features

Sound Categories Environmental Sounds

- Sound sources
 - Nature, climate, humans, machines
- Sound characteristics
 - Structured or unstructured, stationary or non-stationary, repetitive or without any predictable nature
- Sound duration
 - From very short (gun shot, door knock, shouts) to very long and almost stationary (running machines, wind, rain)

Sound Categories Music signals

- Sound sources
 - Music instruments
 - Sound production mechanisms (brass, wind, string, percussive)
 - Singing Voice
- Sound characteristics
 - Mostly well structured along
 - Frequency (pitch, overtone relationships, harmony)
 - Time (onset, rhythm, structure)

Music Representations Recording & Notation

Music recording (waveform)

Music notation (score)

Music Representations MIDI

Sequence of note events (MIDI)

Figure 1.13 from [Müller, FMP, Springer 2015]

Time (Ticks)	Message	Channel	Note Number	Velocity
60	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	67	100
0	NOTE ON	1	55	100
0	NOTE ON	2	43	100
55	NOTE OFF	1	67	0
0	NOTE OFF	1	55	0
0	NOTE OFF	2	43	0
5	NOTE ON	1	63	100
0	NOTE ON	2	51	100
0	NOTE ON	2	39	100
240	NOTE OFF	1	63	0
0	NOTE OFF	2	51	0
0	NOTE OFF	2	39	0

Music Representations MusicXML

Sequence of note events (MusicXML)

Audio Representations

Short-term (frame-by-frame) analysis of audio signals

x(n) digital audio signal

w(n) windowing function

Q hopsize

K windowsize / blocksize

Audio Representations Short-term Fourier Transform (STFT)

- Short-term Fourier Transform (STFT)
 - Discrete Fourier Transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, k = 0, 1, \dots, N-1$$

- Instead of full signal, short (overlapping) windowed segments are used
- Linearly-spaced frequency axis & fixed resolution
- Trade-off between
 - Frequency resolution (separate close frequency components)
 - Time resolution

Audio Representations Short-term Fourier Transform (STFT)

Example: Sinosoid signal, two frequencies

Audio Representations Short-term Fourier Transform (STFT)

Example: C major scale, fundamental frequency & overtones

Audio Representations Constant-Q Transform (CQT)

Bank of filters with geometrically spaced center frequencies

$$f_k = f_0 \cdot 2^{k/b}$$

k - Filter index

b - Number of filters per octave

Filter bandwidth (for adjacent filters)

$$\Delta_k = f_{k+1} - f_k = f_k \left(2^{\frac{1}{b}} - 1 \right)$$

- Increasing time resolution towards higher frequencies
- Resembles human auditory perception

Audio Representations Constant-Q Transform (CQT)

Constant frequency-to-resolution ratio

$$Q = \frac{f_k}{\Delta_k} = \frac{1}{2^{\frac{1}{b}-1}}$$

Correspondence to musical note frequencies

$$f_m[\mathrm{Hz}] = 440 \cdot 2^{\frac{m-69}{12}}$$

 m – MIDI pitch
 A4 (440 Hz) – reference pitch

Audio Representations Constant-Q Transform (CQT)

Example signal (CQT vs. STFT)

Audio RepresentationsMel Spectrogram

Mel frequency scale (Stevens et al., 1937)

$$f[\text{Mel}] = 2595 \cdot \log_{10}(1 + \frac{f[\text{Hz}]}{700})$$

- Describes perceived pitch of sinosoidal frequencies
- Mel spectrogram
 - Time-frequency representation sampled around
 - Equally spaced times
 - Frequency points along the mel-scale

- Instrument mixture (STFT magnitude spectrogram)
 - Bass + melody (saxophone) + drums

Bass

Harmonic structure, stable tones

- Melody (saxophone)
 - Harmonic components (melody)

- Drums
- Percussive components (noise-like, inharmonic spectra)

- Instrument mixture (magnitude STFT)
 - All components add up to the mix signal

Audio Features Motivation

- Compact representation of audio signal for machine learning applications
- Capture different properties at different semantic levels
 - Timbre perceived sound, instrumentation
 - Rhythm tempo, meter
 - Melody/Tonality pitches, harmonies
 - Structure repetitions

Audio Features

Categorization

	Timbre	Rhythm	Tonality
Low-level (Q~10 ms)	 Zero Crossing Rate (ZCR) Linear Predictive Coding (LPC) Spectral centroid / flatness 		
Mid-level (Q ~ 2.5s)	 Mel-frequency Cepstral Coefficients (MFCC) Octave-based Spectral Contrast (OSC) Loudness 	TempogramLog-lagAutocorrelation(ACF)	ChromagramEnhancedPitch ClassProfiles (EPCP)
High-level	- Instrumentation	TempoTime signatureRhythm patterns	KeyScalesChords

Audio Features Timbre

Timbre

- Timbre distinguishes musical sounds that have the same pitch (fundamental frequency) and loudness
- Affected by different acoustic phenomena such as
 - Spectral structure / envelope of overtones
 - Noise-like components
 - Formants (speech)
 - Inharmonicity (inharmonic relationship between overtones)
 - Variations over time: frequency (vibrato) or loudness (tremolo)

Audio Features Timbre

- Timbre
 - When looking at musical instruments, we need to consider
 - Instrument construction
 - Sound production principles
 - Membranophones, chordophones, aerophones, electrophones
 - Human performance
 - Playing techniques, expressivity, dynamics, style
- How do design features to quantify these acoustic phenomena?

Audio FeaturesLow-level Audio Features

- Spectral Centroid (SC):
 - Center of mass in the magnitude spectrogram
 - Low-pitched vs. highpitched sounds
- Spectral Flatness Measure (SFM)
 - Measure of flatness
 - Harmonic sounds (sparse energy distribution) vs. percussive sounds (wideband energy distribution)

Audio Features

Timbre Mid-level Audio Features: MFCC

- Convolutive excitation * filter model
 - Excitation: vibration of vocal folds
 - Filter: resonance of the vocal tract

- FFT magnitude spectrum
 - Multiplicative excitation · filter model
- Logarithm of magnitude spectrum
 - Additive excitation + filter model
- Separation into
 - Smooth spectral envelope
 - Fine-structured excitation spectrum via "liftering" → commonly done via Discrete Cosine Transform (and inverse)

Audio FeaturesTimbre Mid-level Audio Features: MFCC

Example

Audio FeaturesRhythmic Mid-level Audio Features

- Rhythmic properties important for audio classification
- Audio Spectral Energy (ASE)
 - Weighted sum of energy slope in single bands
 - Find Periodicities via auto-correlation Function (ACF) on resulting detection function

Audio FeaturesTonal Mid-level Audio Features

Chromagram

Summary

- Sound categories
- Music representations
- Audio representations
- Audio signal decomposition
- Audio features

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

