

⑩ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A) 平3-180350

⑬ Int.Cl.*

B 41 J 2/045
2/055

識別記号

庁内整理番号

⑭ 公開 平成3年(1991)8月6日

7513-2C B 41 J 3/04 103 A
審査請求 未請求 請求項の数 1 (全3頁)

⑮ 発明の名称 インクジェットヘッド

⑯ 特願 平1-319258

⑰ 出願 平1(1989)12月8日

⑱ 発明者 片倉 孝浩 長野県飯能市大和3丁目3番5号 セイコーエプソン株式会社内

⑲ 出願人 セイコーエプソン株式 東京都新宿区西新宿2丁目4番1号
会社

⑳ 代理人 弁理士 鈴木 喜三郎 外1名

明細書

1. 発明の名称

インクジェットヘッド

2. 特許請求の範囲

複数個のノズル開口部にある間隔をもって対向してインク中に該ノズル開口部と1対1に配置された圧電変換器を備え、該圧電変換器をインク中で動作させ前記ノズル開口近傍のインクの圧力を高めて前記ノズル開口部よりインク滴を吐出させるオーナーミンド型インクジェットヘッドにおいて、

前記圧電変換器は圧電効果により振動運動を行う、圧電素子と少なくとも1層以上からなる金属薄層との複層構造であり、該圧電変換器は互いに平行に配置された支持基板に固定された棒状の片持ち梁構造であり、梁の固定部分においては前記金属薄層は棒と垂直方向に棒状に分割形成されていることを特徴とするインクジェットヘッド。

3. 発明の詳細な説明

(産業上の利用分野)

本発明はインクジェット記録に係わるもので、特にインク中において圧電発生器を駆動させ、ノズル開口よりインクを吐出させて印字を行なうインクジェットヘッドに関する。

(従来の技術)

この種の印字機構は特公昭60-8953等により公知である。この構造では、圧電運動を発生させる圧電変換器が棒状に形成されて棒の歯のように平行に配置された両持ち梁状振動子または片持ち梁状振動子であり、振動子の片面には金属薄層が形成された複層構造であり、複数の相並列した棒が棒の背部を介して結合されていた。

(発明が解決しようとする課題)

しかし前述の従来技術における片持ち梁構造では、圧電変換器の固定部分においても金属薄層が均一の厚さで形成されていたため、固定部分においても振動する力が働き、隣接圧電変換器に影響を与える、良好な印字品質が得られないという欠点

特開平3-180350(2)

があった。さらに、固定部分における接合部に過大な応力が加わり、接合部の変形あるいは圧電変換器の剥離、ノズル基板の変形等が発生するという問題もあった。

(課題を解決するための手段)

本発明によれば、複数個のノズル開口部にある間隔をもって対向してインク中に該ノズル開口部と1対1に配置された圧電変換器を備え、該圧電変換器をインク中で動作させ前記ノズル開口近傍のインクの圧力を高めて前記ノズル開口部よりインク滴を吐出させるオンディマンド型インクジェットヘッドにおいて、前記圧電変換器は圧電効果により駆動運動を行う、圧電素子と少なくとも1周以上からなる金属層との積層構造であり、該圧電変換器は互いに平行に配置された支持基板に固定された棒状の片持ち梁構造であり、該の固定部分においては前記金属層は梁と垂直方向に絶状に分割形成されていることを特徴とする。

(作用)

発明の前記の構成によれば、片持ち梁構造であ

る棒状の圧電セラミック11と、棒状の圧電セラミック11を固定する支持基板12と、圧電セラミック11の両面に形成された電極13と、電極13上のノズルプレート側の面に形成された金属層14及び固定部分においては棒と垂直に分割形成された金属層14'からなる圧電変換器15と、圧電変換器15と対向して配置されたノズル開口16を有するノズルプレート17と、圧電変換器に動作電気信号を伝えるFPC18とによって構成されている。この圧電変換器15は、電圧印加により変位してノズル開口16近傍のインクの圧力を高めてノズル開口16よりインク滴を吐出させる。金属層14は、圧電セラミック11の圧電特性である横伸縮駆動をたわみ駆動に変換させる機能を持っている。

金属層14及び14'は熱膨張が圧電セラミック11の熱膨張と近似する材料であるインバー鋼を用いた。この構成により、圧電変換器15とノズルプレート17との間隙寸法は温度依存性を持たず、ほぼ一定している。本実施例においては、

る圧電変換器の固定部分では、金属層が分割されているため駆動運動の振幅を非常に小さくすることができます。隔壁圧電変換器どうしが影響しあうことなく、また固定部分に加わる応力も非常に小さくなることから、圧電変換器やノズル基板、接合部等の変形あるいは剥離といった問題も発生しない、高印字品質かつ高信頼性のインクジェットヘッドを提供することが可能となる。

(実施例)

次に、本発明の実施例を図面に基づいて説明する。

第1図は本発明の印字記録装置の構成を示す実施例である。ガイド軸6、7によって室内されて記録媒体1の幅方向(10方向)に移動するキャリッジ8に搭載されたインクジェットヘッド8と記録媒体1を移動させる紙送りローラー2、3とプラテン4とによって構成されている。

第2図は本発明のインクジェットヘッドの圧電変換器およびノズルプレートの部分の1実施例を示す図であり、複数本の互いに平行に配置された

固定部分における絶状の金属層14'は幅0.2mm、隙間0.2mmの寸法とした。

支持基板12にはストライプ状に導体がバーニングされており、FPC18とはんだ20により接合されている。圧電変換器15と支持基板12との結合部材には導電性物質21が分散されているため、圧電変換器15にはFPC18からの動作電気信号が伝達される。本実施例においては、結合部材は導電性の粒子が分散されたポリイミド樹脂を用いたが、これに限るものではなくはんだ付けやろう付け等を用いても同様の効果があり、使用するインクあるいは使用濃度等を考慮して選択する。

支持基板12に固定された圧電変換器15はダイシング等により絶状に分割されたのち、圧電変換器15の金属層14及び14'を研磨により各々の絶状圧電変換器の平面出しを行い、固定部分の金属層14'とノズルプレート17とを接合する。固定部分の金属層14'は絶状圧電変換器15と垂直方向に絶状に形成されているため、接合

特開平3-180350(3)

材は第2図に示す様に金属性の隙間に流れ、ノズルプレート17と固定部の金属性14'はギャップ材19を介して密着し、ノズル部での圧電変換器15とノズルプレート17との間隙を一定に制御することが可能となる。

(発明の効果)

以上述べたように本発明によれば、圧電変換器の固定部分での応力を非常に小さくすることができます。長期信頼性に優れ、隣接圧電変換器の巡回を受けず、かつ複数本平行に配列された板状の圧電変換器とノズルとの間隙を、ノズル開口部において一定にさせることができ、インク吐出速度、インク吐出量、インク吐出位置の安定した印字品質の優れたインクジェットヘッドを安価に供給することができる。

4. 図面の簡単な説明

第1図は本発明の印字記録装置の1実施例を示す図、第2図は本実施例のインクジェットヘッドのインクジェット部を示す断面図である。

2, 3 … 紙送りローラー
4 … ブラテン
6, 7 … ガイド輪
8 … キャリッジ
9 … インクジェットヘッド
11 … 圧電セラミック
12 … 支持基板
13 … 圧電セラミック上の電極
14 … 金属性
15 … 圧電変換器
16 … ノズル開口
17 … ノズルプレート
18 … FPC
19 … ギャップ材

以上

出版人 セイコーエプソン株式会社

代理人 弁理士 鈴木 浩三郎 他1名

1: 記録紙体
9: インクジェットヘッド

14, 14': 金属層

第1図

第2図

THIS PAGE BLANK (USPT