Основы визуализации данных в Python

библиотеки matplotlib и seaborn

Python для анализа данных

Визуализация Данных

это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению.

Очень важный инструмент в рамках <u>EDA</u>, который облегчает определение распределений, поиск аномалий, зависимостей, первичное выдвижение гипотез и пр.

Квартет Энскомба

Квартет был составлен в 1973 году английским математиком Ф. Дж. Энскомбом для иллюстрации важности применения визуализации для статистического анализа и влияния выбросов на свойства набора данных.

l		II		III		IV	
х	У	х	у	х	у	х	у
10,0	8,04	10,0	9,14	10,0	7,46	8,0	6,58
8,0	6,95	8,0	8,14	8,0	6,77	8,0	5,76
13,0	7,58	13,0	8,74	13,0	12,74	8,0	7,71
9,0	8,81	9,0	8,77	9,0	7,11	8,0	8,84
11,0	8,33	11,0	9,26	11,0	7,81	8,0	8,47
14,0	9,96	14,0	8,10	14,0	8,84	8,0	7,04
6,0	7,24	6,0	6,13	6,0	6,08	8,0	5,25
4,0	4,26	4,0	3,10	4,0	5,39	19,0	12,50
12,0	10,84	12,0	9,13	12,0	8,15	8,0	5,56
7,0	4,82	7,0	7,26	7,0	6,42	8,0	7,91
5,0	5,68	5,0	4,74	5,0	5,73	8,0	6,89

Характеристика	Значение
Среднее значение переменной $oldsymbol{x}$	9.0
Дисперсия переменной $oldsymbol{x}$	10,0
Среднее значение переменной $oldsymbol{y}$	7,5
Дисперсия переменной $oldsymbol{y}$	3,75
Корреляция между переменными $oldsymbol{x}$ и $oldsymbol{y}$	0,816
Прямая линейной регрессии	y = 3 + 0.5x
Коэффициент детерминации линейной регрессии	0,67

Квартет Энскомба

Не смотря на то, что статистические свойства данных идентичны, их графики существенно отличаются.

В первом наборе мы четко видим прямую взаимосвязь между х и у.

Во втором наборе мы можем сказать, что линейной зависимости в данных нет.

В третьем наборе мы видим функциональную зависимость и наличие одного выброса, который сильно искажает статистики.

В четвертом наборе х является константой, но присутствует выброс, который также влияет на все статистики.

Библиотеки Python для визуализации

Библиотека matplotlib

Matplotlib - одна из самых популярных библиотек Python для визуализации данных.

Импорт: import matplotlib.pyplot as plt

Документация: https://matplotlib.org/contents.html

Metod.plot() в pandas основан на matplotlib. Если мы работаем с датафреймами, то это, как правило, более удобный вариант, чем использование matplotlib самой по себе. Мы сконцентрируемся на этом варианте.

Документация:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.html

Библиотека seaborn

Seaborn - популярная библиотека готовых шаблонов для статистической визуализации, написанная на основе matplotlib.

Имеет выразительный высокоуровневый интерфейс (построение большинства простых графиков происходит в одну строчку кода), а встроенные в нее стили более приятны.

Импорт: import seaborn as sns (библиотека названа в честь <u>Сэмюела Нормана</u> <u>Сиборна</u> (S.N.S) - героя сериала <u>The West Wing</u>, который очень любил автор библиотеки).

Документация: https://seaborn.pydata.org/tutorial.html

Устройство графика

Синтаксис

```
import matplotlib.pyplot as plt
plt.figure(figsize = (10,7))

plt.plot(x, y)

plt.title("Мой график")
plt.xlabel('Год')
plt.ylabel('Выручка')

plt.show()
```


Какие типы визуализации вы знаете?

Mетод .plot() в pandas

Аргумент kind, позволяет задать тип графика. Исчерпывающий список типов визуализации:

```
bar - столбчатая диаграмма;
barh - горизонтальная столбчатая диаграмма;
hist - гистограмма;
box - "ящик с усами";
kde - ядерная оценка плотности;
area - диаграмма с областями накопления;
pie - круговая диаграмма
scatter - точечная диаграмма;
```


График

Line chart

-один из наиболее часто используемых типов визуализаций.

Отлично подходит, если:

- набор данных непрерывен;
- количество значений больше 20;
- необходимо выявить тенденцию.

Area chart

аналогична графику, но пространство между осью X и линией графика заполняется цветом или рисунком.

Лучше всего подходит для отображения изменений в составе комплексной величины с течением времени.

Если категорий больше 3-5, то ее использование вряд ли будет оправдано.

Гистограмма

Histogram

используется в статистике для представления распределения величины.

По горизонтальной оси откладывается диапазон наблюдаемых значений, разбитый на определенное число (обычно 10-15) интервалов, а по вертикальной - вероятность или частота ее попадания в каждый интервал.

По форме гистограммы аналитик может оценить, какому статистическому закону распределения подчиняется величина.

Scores by group and gender 34 35 Men 30 30 27 25 25 25 20 15 10 G2 G3 G4 G5

Столбчатая диаграмма

Bar chart

идеально подходит для сравнения показателей.

Горизонтальные столбчатые диаграммы обычно используют, когда нужно сравнить показатели между собой.

А вертикальные вариант хорошо подходит для демонстрации изменения показателя в разные периоды.

! Не путать с гистограммой

Круговая диаграмма

Pie chart

худшая диаграмма на свете распространенный способ показать структуру набора данных (какую часть от общего количества составляют отдельные значения).

Круговые диаграммы не предназначены для сравнения отдельных категорий друг с другом.

По возможности избегайте их. Мы хорошо воспринимаем длины и размеры, но углы и площади нам воспринимать и сравнивать тяжело.

Ящик с усами, диаграмма размаха Вох plot

используется в описательной статистике, компактно изображает распределение величин. Одна из немногих визуализаций, позволяющая показать выбросы.

Ящик с усами и гистограмма

Точечная диаграмма

Scatter Plot / диаграмма рассеяния

Каждому наблюдению соответствует точка, координаты которой равны значениям двух параметров этого наблюдения.

Используются для изучения взаимосвязи между двумя переменными. Также помогают выявлять выбросы.

Стилизация таблиц

Когда построение визуализации неоправданно, можно стилизовать табличную структуру при помощи встроенных инструментов pandas, добавив нужные акценты для лучшего ее восприятия.

Документация:

https://pandas.pydata.org/pandas-docs/s
t_able/user_guide/style.html

	Α	В	С	D	E
0	1.000000	1.329212	nan	-0.316280	-0.990810
1	2.000000	-1 .0708 1 6	-1.438713	0.564417	0.295722
2	3.000000	-1.626404	0.219565	0.678805	1 .88 9 273
3	4.000000	0.961538	0.104011	nan	0.850229
4	5.000000	1.453425	1 .057737	0.165562	0.515018
5	6.000000	-1.336936	0.562861	1.392855	-0.063328
6	7.000000	0.121668	1.207603	-0.002040	1.627796
7	8.000000	0. <mark>354493</mark>	1.037528	-0.385684	0.519818
8	9.000000	1.686583	-1.325963	1.428984	-2.089354
9	10.000000	-0.129820	0.631523	-0.586538	0.290720

Тепловая карта

Heat Map

- 600

- 500

400

- 300

- 200

- это матричное представление данных, в котором каждое значение отображается при помощи определенного цвета.

Хорошо показывают связи нескольких переменных между собой.

Как выбирать тип визуализации?

Различных визуализаций очень много, как выбрать подходящую?

Источники, которые помогают выбрать тип

визуализации

<u>DataVizCatalogue</u> <u>ExtremePresentation</u>

А так делать не нужно:

https://t.me/awfulcharts

Основы визуализации данных в Python

Юлия Пономарева

Python для анализа данных

