

درس: التعداد درس را

I. تمهید

المسائل التي نريد حلها:

مثال 1:

صندوق يحتوي على 5 كرات مرقمة من 1 إلى 5 .نسحب كرتين من الصندوق على الشكل التالي .

الحالة 1: السحب للكرتين يكون بالتتابع وبإرجاع الكرة الأولى المسحوبة إلى الصندوق. (السحب بالتتابع و بإحلال طوله 2)

الحالة 2: السحب للكرتين يكون بالتتابع وبدون أرجاع الكرة الأولى المسحوبة إلى الصندوق. (السحب بالتتابع وبدون بإحلال طوله 2)

الحالة 3: السحب للكرتين يكون دفعة واحدة (أي في نفس الوقت أو أيضا في آن واحد) (السحب بتآني طوله 2)

1. ما هو عدد السحبات الممكنة ؟ (في كل حالة)

2. ما هو عدد السحبات حيث الكرتين تحملان رقم زوجي ؟ مجموع الرقمين يكون أصغر من 4 ؟...... (في كل حالة) .

مثال 2 :

A و B و D و C و قط من المستوى حيث كل 3 نقط من بين هذه النقط غير مستقيمية .

1. ما هو عدد المتجهات التي يمكن إنشاؤها و طرفيها نقطتين من بين هذه النقط تبعا للحالتين ؟

<u>أ _</u> نقطتين.

<u>ب _</u> نقطتین مختلفتین .

ج - A و B و C و E تمثل الحروف الأولى ل 5 متسابقين في العدوي الريفي . نهتم بالرتب المحصل عليها من طرفهم بعد انتهاء السباق مع العلم أن أي رتبة لا تحتل إلا من طرف متسابق واحد و واحد فقط .

.2

 $\frac{1}{1}$ ما هو عدد المستقيمات التي يمكن إنشاؤها و المارة من نقطتين مختلفتين من بين هذه النقط $\frac{1}{1}$ ما هو عدد المثلثات التي يمكن رسمها حيث رؤوسه هي هذه النقط $\frac{1}{1}$

<u>02.</u> الهدف من الدرس:

ير الهدف من الدرس هو إعطاء الأدوات و المنهجية و المبرهنات لكي يكون الجواب واضح و صحيح و بكل سرعة .

ر لكن هذه المبرهنات خاصة بدروس المتعلقة " بالمجموعات والتطبيقات "و لتطبيق هذه الدروس يجب تريض المسالة المطروحة علينا أي بتأويل ألفاظ النص إلى ألفاظ: المجموعات – الأجزاء – الأزواج - المتلوثات – و بصفة عامة p – uplets - التطبيقات – التطبيقات – التطبيقات الشمولية – التطبيقات التقابلية

II. مجموعة منتهية - رئيسي مجموعة:

01. تعریف:

. مجموعة و \mathbf{n} عدد صحيح طبيعي غير منعدم \mathbf{E}

اذا كان عدد عناصر المجموعة ${f E}$ هو ${f n}$ عنصر نقول إن المجموعة ${f E}$ هي مجموعة منتهية .

. card $\mathbf{E} = \mathbf{n}$. و نرمز له ب \mathbf{E} العدد \mathbf{n}

<u>02.</u>أمثلة:

مجموعة منتهية و $E=\{a,b,c,f\}$. فهي غير منتهية و \mathbb{R} أو \mathbb{R} أو \mathbb{R} أو \mathbb{R} أو \mathbb{R} أو منتهية.

Ensembles équipotents: مجموعتان متقادرتان متقادرتان

<u>ا</u>۔ تعریف:

 ${f A}$ و ${f B}$ مجموعتان منتهيتان. إذا وجد تطبيق تقابلي بين ${f A}$ و ${f B}$ نقول إن المجموعتان ${f A}$ و ${f B}$

2- خاصية:

 $\operatorname{card} \mathbf{A} = \operatorname{card} \mathbf{B}$ و \mathbf{A} مجموعتان منتهیتان. \mathbf{A} و \mathbf{B} متقادرتان إذا وفقط إذا كان

درس : التعداد

(cardB = n و cardA = p و مجموعتان منتهيتان حيث: (A و A مجموعتان منتهيتان حيث (معموعات المنتهية و رئيسي: (A

- $\operatorname{card} A \cap B = \operatorname{card} A + \operatorname{card} B$. لدينا : $\operatorname{A} \cap B = \varnothing$ و A
 - بصفة عامة: cardA∩B = cardA + cardB cardA∩B
 - 2- رئيسي الجداء الديكارتي:
- $. cardA \times B = cardA \times cardB$ و ardB = n و ardA = p دينا: $ardA \times B = cardA \times cardB$ و $ardA \times B = cardA \times cardB$

.card $E_1 \times E_2 \times \cdots E_p = cardE_1 \times cardE_2 \times \cdots \times cardE_p$ و غير فارغة لدينا: $E_1 \times E_2 \times \cdots \times E_p = cardE_1 \times cardE_2 \times \cdots \times cardE_p$ عجموعات منتهية و غير فارغة لدينا:

 $cardE^p = (cardE)^p$ الذن: $E_1 = E_2 = \cdots = E_p = E$

: E في A جزء A في 3-

 $card\overline{A} = cardE - cardA$: $C_E^A = \overline{A} = E \setminus A$

درس: التعداد درس رق

رقم الوحدات ---

رقم العشرات ؎ 🥻

عليها هي : 43

الأعداد المحصل

شجرة الإمكانيات

من بين الأعداد 3 و 4 و 5

53

لكتابة الأعداد المتكونة من عددين مختلفين

III. الميدأ الأساسى للتعداد:

01. تمهيد:

لنعتبر الأرقام التالية: 3 و 4 و5

نبحث عن عدد الأعداد التي يتم تكوينها من رقمين مختلفين من بين الأرقام السابقة .

طريقة " عفوية " : يمكن أن نجد الأعداد التالية :

13- 33 - 43 - 53 - 45 - 54 اذن هناك 6 أعداد

طريقة أخرى:

لدينا كل عدد متكون من رقمين يكتب على شكل ba

رقم a يمثل الوحدات ؛ رقم b يمثل العشرات

- الاختيار الأول يكون لرقم الوحدات a عدد الكيفيات لاختياره هو 3.
- الاختيار الثاني يكون لرقم العشرات b عدد الكيفيات لاختياره هو 2.
 - 2×3 عدد الأعداد هي

وهذه الكيفيات يمكن تمثيلها على الشكل التالي ويسمى شجرة الإمكانيات.

- . Premier choix الاختيار الأول:
- عدد الكيفيات : nombres des manières.
 - arbre des cas: شجرة الإمكانيات
 - **02**مبدأ الجداء

 $\left(p \in \left\{1,2,3,....\right\}\right)$ ישדע וביעון p וביעון ישדע ישדע ישדע ישדע וביעון

- إذا كان الاختيار الأول يتم ب: n₁ كيفية مختلفة.
- إذا كان الاختيار الثاني يتم ب: n2 كيفية مختلفة.
- إذا كان الاختيار الثالث يتم ب: n3 كيفية مختلفة
 -
- إذا كان الاختيار الذي رقمه p يتم ب : np كيفية مختلفة.

 $\mathbf{n}_1 \times \mathbf{n}_2 \times \mathbf{n}_3 \times ... \times \mathbf{n}_p$ فإن عدد الكيفيات التي يتم بها ال \mathbf{p} الختيارات هو

<u> 03.</u>مثال

نرمى نردا (له 6 وجوه) مرتين متتاليتين.

كل نتيجة متكونة من نتيجة الرمية الأولى ثم من بعد ذلك نتيجة الرمية الثانية تسمى نتيجة ممكنة أو إمكانية

- 1. حدد عدد النتائج الممكنة.
- الرمية الأولى تعطي 6 اختيارات (6 نتائج أو 6 حالات).
- الرمية الثانية تعطى 6 اختيارات (6 نتائج أو 6 حالات).
 - $6 \times 6 = 36$ عدد النتائج الممكنة بعد رميتين هو
- . حدد عدد النتائج الممكنة حيث في الرمية الأولى نحصل على عدد زوجي .
 - في الرمية الأولى هناك 3 اختيارات (نتائج ممكنة).
 - في الرمية الثانية هناك 6 اختيارات (نتائج ممكنة).
 - $3 \times 6 = 18$ ومنه : عدد النتائج الممكنة هو

(وغير فارغتين ${f E}$) ${f F}$ عدد التطبيقات من مجموعة ${f E}$ نحو مجموعة ${f E}$

. نشاط:

درس رقم

درس : التعداد

و ${\bf CardA}={\bf n}$ مجموعتان منتهیتان وغیر فارغتین. نرید تحدید عدد التطبیقات من مجموعة ${\bf A}$ نحو مجموعة ${\bf B}$ مع ${\bf cardA}={\bf n}$ و ${\bf CardA}={\bf n}$ نصع ${\bf A}=\{a_1,a_2,\cdots,a_n\}$ و ${\bf CardB}={\bf p}$

- B من A له p اختيار كصورة من a₁
- ناخذ a, من A له p اختيار كصورة من B .
-
- . B من A له \mathbf{p} اختيار كصورة من \mathbf{a}_n

ومنه : عدد التطبیقات من A نحو B هو : $n \times n \times \dots \times n = n^n = (cardB)^{cardA}$

$$\underbrace{\mathbf{p} \times \mathbf{p} \times \cdots \times \mathbf{p}}_{\mathbf{p}} = \mathbf{p}^{\mathbf{n}} = \left(\mathbf{cardB}\right)^{\mathbf{cardA}}$$

 $\left(\mathrm{cardB}\right)^{\mathrm{cardA}}$: هو \mathbf{B} مجموعتان منتهیتان وغیر فارغتین عدد التطبیقات من \mathbf{A} نحو

-----نرمی نردا مرتین متتالیتین .

كُل نتَّيجة متكونة من نتيجة الرمية الأولى ثم من بعد ذلك نتيجة الرمية الثانية تسمى نتيجة ممكنة أو إمكانية 3. حدد عدد النتائج الممكنة.

- الرمية الأولى تعطى 6 اختيارات (6 نتائج أو 6 حالات).
- الرمية الثانية تعطي 6 اختيارات (6 نتائج أو 6 حالات).
 - $6 \times 6 = 36$ عدد النتائج الممكنة بعد رميتين هو

4. حدد عدد النتائج الممكنة حيث في الرمية الأولى نحصل على عدد زوجي.

- في الرمية الأولى هناك 3 اختيارات (نتائج ممكنة).
- في الرمية الثانية هناك 6 اختيارات (نتائج ممكنة).
 - ومنه: عدد النتائج الممكنة هو $18 = 6 \times 6$

طريقة ثانية:

. $\mathbf{B} = \{1, 2, 3, 4, 5, 6\}$ و $\mathbf{A} = \{\mathbf{L}_1, \mathbf{L}_2\}$ نعتبر المجموعتين

مع \mathbf{L}_1 القذفة الأولى \mathbf{L}_2 القذفة الثانية.

عندما نقذف النرد في المرة الأولى يعطي مثلا 5 و القذفة الثانية تعطي 3.

هذه النتيجة المحصل عليها بعد الرميتين تمثل التطبيق التالي.

و منه كل نتيجة محصل عليها بعد القذفتين تمثل تطبيق من ${\bf A}$ نحو ${\bf B}$.

. $(cardB)^{cardA} = 6^2 = 36$: غدد النتائج المحصل عليها هو

.2 مثال 2:

حدد عدد النتائج الممكنة . (أعط الجواب)

جواب: عند رمينًا للقطعة النقود ثلاث مرات متتالية لدينا:

D

الجائزة الأولى

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس: التعداد درس را

- الرمية الأولى تعطى: نتيجتين مختلفتين
- ولكل نتيجة للرمية الأولى هناك نتيجتين للرمية الثانية.
- و لكل نتيجة للرمية الثانية هناك نتيجتين للرمية الثالثة.

إذن سيكون عدد نتائج بعد الرمية الثالثة هو $2\!=\!2\! imes\!2\! imes\!2$

🖵 ملحوظة: هذه التجربة يمكن تمثيلها في التمثيل التالي يسمى شجرة الإمكانيات.

الجائزة الثانية

V. الترتيبات بدون تكرار:

01. ترتيبة (مثال):

سباق في العدو الريفي جرى بين 4 عدائين A و B و C و D

بعد انتهاء السباق كان توزيع جانزتين فقط كالتالي 60 000 dh للرتبة الأولى و 10 000 dh للرتبة الثانية المحصل عليها من طرف العدانين مع العلم أن أي رتبة لا يمكن أن يحتلها أكثر من عداء .

أعط حالة لتوزيع الجائزتين على العدائين الأربعة.

- [- جواب:
- نعظی حالة:

توزيع الجائزة الأولى على العداء f D و الجائزة الثانية على f B نمثلها باختصار ب f D أو باختصار ب f D . وهذه النتيجة ليست f D

كالنتيجة BD المحصل عليها بعد انتهاء السباق.

2_ مفردات:

كل نتيجة محصل عليه بعد انتهاء السباق تسمى تريبة بدون تكرار لعنصرين من بين 4 عناصر

<u>3-</u> تعریف:

 $\left(n\in\left\{ 1,2,3,....
ight\}
ight)$ لتكن مجموعة تحتوي على n عنصر مع

 $1 \! \leq \! p \! \leq \! n$ ليكن p عددا صحيحا طبيعيا حيث p

کل ترتیبة ل p عنصر مختار من بین n عنصر یسمی ترتیبة بدون تکرار ل p عنصر من بین n عنصر .

4_ ملحوظة:

- سحب كرتين (أو 3 كرات ..) بالتتابع وبدون إحلال (أي بدون إرجاج الكرة المسحوبة إلى الصندوق) يحتوي على $_{\rm n}$ كرة. كل سحبة تمثل ترتيبة ل $_{\rm n}$ كرة من بين $_{\rm n}$ (أو 3 من بين $_{\rm n}$).
 - العدد : $n : 1 \times 2 \times 3 \times 4 \times \cdots \times n$ ويقرأ : $n : 1 \times 2 \times 3 \times 4 \times \cdots \times n$ ويقرأ : $n : n \in \mathbb{N}^*$
 - ع مثال: 3!=1×2×3=6
 - · نضع: 1=!1 و 1=!0.

<u>02.</u>عدد الترتيبات:

<u>-</u> خاصية:

عدد الترتيبات : ل p عنصر من بين p عنصر (مع $p \le n$) هو العدد الصحيح الظبيعي الذي نرمز له بالرمز p عنصر من بين p عنصر العدد المحيح العدد الصحيح الطبيعي الذي نرمز له بالرمز p

$$\mathbf{A}_{n}^{p} = \underbrace{n \times (n-1)(n-2) \times \cdots \times (n-p+1)}_{p} = \frac{n!}{(n-p)!}$$

2- أمثلة:

 $A_5^3 = 5 \times 4 \times 3 = 60$ (هناك 3 عوامل). نحسب : $A_5^2 = 3 \times 2 = 6$

زر الآلة الحاسبة

n Pr

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس: التعداد درس رقم

5R

مثال 2:

يحتوي كيس على 5 كرات حمراء و2 من اللون الأخضر. نسحب عشوانيا وبتتابع وبدون إحلال كرتين من الصندوق (أي بدون إرجاع الكرة الأولى إلى الصندوق).

- ما هو عدد السحبات الممكنة
- 2- ما هو عدد السحبات التي تكون فيها الكرتين من اللون الأحمر
 - جواب:
 - الطريقة الأولى:
 -] عدد السحبات الممكنة
 - الكرة الأولى المسحوبة لها 7 اختيارات
- الكرة الثانية المسحوبة لها 6 اختيارات (لإن الكرة الأولى تبقى خارج الصندوق) إذن عدد السحبات الممكنة هو $20=6\times7$
 - الطريق الثانية:

كل سحبة لكرتين بتتابع و بدون إحلال من بين 7 كرات يمثل ترتيبة ل2 من بين 7 ؛ إذن عدد السحبات هو عدد الترتيبات ل2 من بين 7.

$$A_7^2 = \frac{7!}{(7-2)!} = \frac{7!}{5!} = 7 \times 6 = 42$$
: each section of the section A_7

- 2) عدد السحبات التي تكون فيها الكرتين من اللون الأحمر
 - الكرة الأولى المسحوبة حمراء لها 5 اختيارات.
- الكرة الثانية المسحوبة حمراء لها 4 اختيارات (لإن الكرة الأولى المسحوبة كانت حمراء)

 $5 \times 4 = 20$ إذن عدد السحبات الممكنة الكرتين من اللون أحمر 4 = 20

2V

00

ملحوظة: يمكن استعمال شجرة الإمكانات.

3- ملاحظات:

$$\mathbf{A}_{n}^{n} = \mathbf{n} \times (\mathbf{n} - 1) \times (\mathbf{n} - 2) \times \dots \times 2 \times 1 = \mathbf{n}!$$
 $\mathbf{A}_{n}^{0} = \frac{\mathbf{n}!}{(\mathbf{n} - 0)!} = 1$ $\mathbf{A}_{n}^{1} = \frac{\mathbf{n}!}{(\mathbf{n} - 1)!} = \mathbf{n}$

VI. التبديلات:

حالة خاصة بالنسبة لترتيبات: ترتيب n عنصر من بين n عنصر.

<u>__</u> نشاط:

سباق في العدو الريفي جرى بين $f{A}$ عدائين : $f{A}$ و $f{C}$ و $f{C}$.

نهتم بالرتب المحصل عليه من طرف العدانين بعد انتهاء السباق مع العلم أن أي رتبة لا يمكن أن يحتلها أكثر من عداء .

لنأخذ النتيجتين التاليتين: DABC ثم CBDA ماذا حدث لرتب المتسابقين الأربعة بالنسبة للنتيجتين ؟

<u>2-</u> تعریف:

با معنصر من بين n عنصر (أي p=n) هذه الترتيبة تسمى تبديلة ل n عنصر n

3- خاصية:

 $n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$ عنصر هو العدد n! مع $n = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$ عدد تبديلات ل

4_ مثال:

سباق في العدو الريفي جرى بين 4 عدائين \mathbf{A} و \mathbf{B} و \mathbf{D} .

ما هي النتائج المحصل عليها بعد انتهاء السباق مع العلم أن أي رتبة لا يمكن أن يحتلها أكثر من عداء .

جواب:

كل نتيجة نحصل عليها بعد السباق تمثل تبديلة ل 4.

 $4!=1 \times 2 \times 3 \times 4 = 24$ إذن عدد النتائج المحصل عليها بعد إجراء السباق هي عدد التبديلات ل 4. ومنه عدد النتائج هو

درس : التعداد

VII التأليفات :

[] تأليفة:

[۔ مثال:

 ${f E}=\{a,b,c,d\}$. نبحث عن عدد الأجزاء التي تحتوي على عنصرين من ${f E}=\{a,b,c,d\}$

 $\{a,c\}$ الأجزاء هي: $\{a,b\}$ و $\{a,c\}$ و $\{a,d\}$ و $\{b,c\}$ و $\{c,d\}$ إذن هناك $\{a,c\}$ أجزاء ،

مفردات: كل جزء يسمى تأليفة لعنصرين من بين أربعة عناصر

- الجزء $\{a,b\} = \{a,b\}$ إذن الترتيب غير مهم في التأليفة.
- لسحب كرتين (أو 3 كرات ...) و في أن واحد من الصندوق (أي دفعة واحدة) يحتوي على n كرة. كل سحبة تمثل تأليفة ل 2 من بين n (أو 3 من بين n

 $(n \in \{1,2,3,...\})$ عنصر مع $n \in \{1,2,3,...\}$ تتكن $n \in \{1,2,3,...\}$

يسمى تأليفة ل \mathbf{p} عنصر $\mathbf{p} \leq \mathbf{n}$ يسمى تأليفة ل \mathbf{p} عنصر من بين \mathbf{p} عنصر.

عدد التأليفات:

_ خاصية:

عدد التأليفات ل $p \in \{0,1,2,3,....\}$ عنصر من بين $p = \{0,1,2,3,....\}$

$$\mathbf{C}_{n}^{p} = \frac{\mathbf{A}_{n}^{p}}{p!} = \frac{n!}{(n-p) \times p!} = \frac{\overbrace{n \times (n-1) \times (n-2) \times \cdots \times (n-p+1)}^{p}}{1 \times 2 \times 3 \times \cdots \times p}$$

زر الآلة الحاسبة

$$C_7^3 = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = 35$$
 $C_n^p = \frac{n!}{(n-p)! \times p!}$: مثال :

$$C_n^0 = 1$$
 و $C_n^0 = 1$ و $C_n^1 = n$

- \cdot \mathbf{V} مثال : يحتوي كيس على 4 كرات حمراء \mathbf{R} و 3 كرات من اللون الأخضر \mathbf{V}
 - نسحب عشوائيا و في آن واحد ثلاث كرات من الصندوق.
 - ما هو عدد السحبات الممكنة
 - ما هو عدد السحبات حيث الكرات كلها حمراء.
- ما هو عدد السحبات حيث نحصل على كرة واحدة فقط حمراء من بين الكرات 3 المسحوبة.

 - $.C_4^1 \times C_3^2 = 4 \times 3$ (3. $C_4^3 = 4$ (2. $C_7^3 = 35$ -1

حدانية نيوتن: BINOMES DE NEWTON

- $0 \le p \le n$ و $p \ge n$ حيث $p \le n$.
- $.\,C_n^1=C_n^{n-1}=n\,$ و $.\,C_n^0=C_n^{n}=1$ و $.\,C_n^p=C_n^{n-p}$ تماثلية: $.\,C_n^1=C_n^{n-1}=n$ مثال: عدد كيفية اختيار ممثلين لقسم متكون ن 40 تلميذ يساوي عدد كيفية اختيار 38 تلميذ من بين 40 تلميذ.
 - $0 \le p \le n-1$ علاقة باسكال: relation de Pascal علاقة باسكال (بين على ذلك بالترجع)

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية درس: التعداد درس رقم

مثلث باسكال : triangle de Pascal .

		uriangie de Pascar : OEMA												<u> </u>
p	0	1	2	3	4	5	6	•••	p	p+1	••••	n-1	n	n+1
0	1													
1	1	1												
2	1	2	1											
3	1	3	3	1										
4	1	4(+		4	1									
5	1	5	10	10	5	1								
6	1	6	15	20	15	6	1							
:								1						
p									1					
p+1										1				
:											1			
n-1										1		1		
n									C_n^p	C_n^{p+1}			1	
n+1										C_{n+1}^{p+1}				1

 $orall n\in \mathbb{N}^*: \left(a+b
ight)^n=\sum_{i=0}^{i=n}C_n^ia^{n-i}b^i$ يكن a و b من a لدينا:

— أحسب: (1+1) بطريقتين مختلفتين:

 $.2^{n} = (1+1)^{n} = \sum_{i=0}^{i=n} C_{n}^{i} 1^{n-i} 1^{i} = \sum_{i=0}^{i=n} C_{n}^{i} = C_{n}^{0} + C_{n}^{1} +C_{n}^{n}$: لاينا

 $\sum_{i=n}^{i=n} C_n^i = C_n^0 + C_n^1 +C_n^n = 2^n$: ومنه

درس رقم

درس : التعداد

- عدد الأجزاء التي لها 0 عنصر هو C_n^0 ؛ عدد الأجزاء التي لها 1 عنصر هو C_n^1 عنصر هو $C_n^1+C_n^1+C_n^2+.....+C_n^1=(1+1)^n=2^n$ هو $C_n^0+C_n^1+C_n^2+....+C_n^2=(1+1)^n=2^n$ هو $C_n^0+C_n^1+C_n^2+....+C_n^2=(1+1)^n=2^n$ برهان لحدانية نيوتن : نستدل على ذلك بالترجع :
 - = نتحقق بأن العلاقة صحيحة ل= = = = .

$$n=1$$
 لاينا $\sum_{i=0}^{i=1} C_n^i a^{1-i} b^i = C_1^0 a^{1-0} b^0 + C_1^1 a^{1-1} b^1 = 1 a + 1 b = a + b = \left(a+b\right)^1$ الدينا

(معطيات الترجع)
$$n\in\mathbb{N}^*$$
 مع $\left(a+b\right)^n=\sum_{i=0}^{i=n}C_n^ia^{n-i}b^i$ الترجع : n معطيات الترجع) فقترض ان العلاقة صحيحة إلى الرتبة n

؛ لدينا:
$$\left(a+b\right)^{n+1}=\sum_{i=n+1}^{i=n+1}C_{n+1}^{i}a^{n+1-i}b^{i}$$
 ؛ لدينا: • $n+1$ أي نبين أن العلاقة صحيحة للرتبة $n+1$

$$\begin{split} &\left(a+b\right)^{n+1} = \left(a+b\right)^n \left(a+b\right) \\ &= \sum_{i=0}^{i=n} C_n^i a^{n-i} b^i \left(a+b\right) \\ &= a \sum_{i=0}^{i=n} C_n^i a^{n-i} b^i + b \sum_{i=0}^{i=n} C_n^i a^{n-i} b^i \\ &= \sum_{i=0}^{i=n} C_n^i a^{n-i+1} b^i + \sum_{i=0}^{i=n} C_n^i a^{n-i} b^{i+1} \\ &= \sum_{i=0}^{0} C_n^i a^{n-i+1} b^i + \sum_{i=0}^{i=n} C_n^i a^{n-i+1} b^i + \sum_{i=0}^{i=n-1} C_n^i a^{n-i} b^{i+1} + C_n^n a^{n-n} b^{n+1} \\ &= a^{n+1} b^{n+1} + \sum_{i=1}^{i=n} C_n^i a^{n-i+1} b^i + \sum_{i=0}^{i=n-1} C_n^i a^{n-i} b^{i+1} + b^{n+1} \\ &= a^{n+1} + \sum_{i=1}^{i=n} C_n^i a^{n-i+1} b^i + \sum_{i=0}^{i=n} C_n^{i-1} a^{n-i+1} b^{i+1} + b^{n+1} \quad ; \quad (i=j-1) \\ &= a^{n+1} + \sum_{k=1}^{k=n} C_n^k a^{n-k+1} b^k + \sum_{k=1}^{k=n} C_n^{i-1} a^{n-k+1} b^k + b^{n+1} \quad ; \quad (j=k) \\ &= a^{n+1} + \sum_{k=1}^{k=n} C_n^k a^{(n+1)-k} b^k + \sum_{k=1}^{k=n} C_n^{k-1} a^{(n+1)-k} b^k + b^{n+1} \\ &= a^{n+1} + \sum_{k=1}^{k=n} \left(C_n^k + C_n^{k-1} \right) a^{(n+1)-k} b^k + b^{n+1} \\ &= a^{n+1} + \sum_{k=1}^{k=n} \left(C_n^k + C_n^{k-1} \right) a^{(n+1)-k} b^k + b^{n+1} \\ &= C_{n+1}^0 a^{n+1} b^0 + \sum_{k=1}^{k=n} \left(C_n^k + C_n^{k-1} \right) a^{n-k+1} b^i + C_{n+1}^{n+1} a^0 b^{n+1} \\ &= C_{n+1}^0 a^{n+1} b^0 + \sum_{k=1}^{k=n} C_{n+1}^k a^{n-k+1} b^k + C_{n+1}^{n+1} a^0 b^{n+1} \quad ; \quad \left(C_n^{k-1} + C_n^k = C_{n+1}^k \right) \\ &= \sum_{k=0}^{k=n+1} C_{n+1}^k a^{n-k+1} b^k = \sum_{j=0}^{j=n+1} C_{n+1}^j a^{n-j+1} b^j \end{split}$$

 \mathbb{R} من \mathbf{b} من \mathbf{a} مع $\forall \mathbf{n} \in \mathbb{N}^*: \left(\mathbf{a} + \mathbf{b}\right)^{\mathrm{n}} = \sum_{i=0}^{\mathrm{n}=\mathrm{n}} \mathrm{C}^i_{\mathrm{n}} \mathbf{a}^{\mathrm{n}-i} \mathbf{b}^i$ عن \mathbf{b} من \mathbf{a}