Kapitel 3

Relationale Anfragen

Bestandteile von DB-Sprachen

DB-Sprache =

- **DDL** ("Data Definition Language") oder SDL ("Schema Definition Language")
- und **DML** ("Data Manipulation Language")

DML =

- Änderungen (Updates) häufig einfach → Kapitel 4
- und **Anfragen (Queries)** häufig komplex → *dieses Kapitel*

Klassifikation von Anfragesprachen

- (a) **deskriptiv:** Die auszuwählenden Objekte werden als Gesamtheit beschrieben. (Was?)
- (b) **prozedural:** Das Ergebnis wird durch eine Folge von Operationen konstruiert. (Wie?)
 - (b1) Operationen auf Objektmengen, z.B. Relationen
 - (b2) Operationen auf einzelnen Objekten, z.B. Tupel/Records

Beispiele:

- zu (b1): Relationenalgebra
- zu (a): Relationenkalküle
- zu (a/b1): **SQL** (basiert auf Relationenalgebra und -kalkül)
- zu (b2): programmiersprachliche Schnittstellen

3.1 Relationenalgebra

= Menge R aller endlichen Relationen (mit ihren Schemata) zusammen mit Operationen

$$\omega : \Re [\times ... \times \Re] [\times \text{weitere Parameter}] \to \Re$$

Aus diesen lassen sich Anfragen zusammensetzen:

z.B. "alle Ausleihen?" (im jeweils aktuellen DB-Zustand):

(AUSLEIHE_ALT — RÜCKGABE_HEUTE) ∪ AUSLEIHE_HEUTE

Grundoperationen

Gegeben seien endliche Relationen R und S mit zugehörigen Schemata $(A_1: D_1, ..., A_n: D_n)$ bzw. $(B_1: D'_1, ..., B_m: D'_m)$.

1. Vereinigung R \cup S

Voraussetzung: Schema(R) = Schema(S) = $(A_1, ..., A_n)$

Ergebnis: Schema $(A_1, ..., A_n)$

Relation $\{t \mid t \in R \lor t \in S\}$

2. Differenz R - S

Voraussetzung und Ergebnis-Schema wie oben

Ergebnis: $\{t: (A_1, ..., A_n) \mid t \in R \land \neg t \in S\}$

Die logischen Symbole bedeuten: ∧ "und", ∨ "oder", ¬ "nicht",

- \Rightarrow "impliziert" bzw. "wenn...,dann...", \Leftrightarrow "äquivalent" bzw. "genau dann...,wenn...",
- \exists "es gibt", \forall "für alle".

Grundoperationen (Forts.)

3. (Einfache) Selektion σ_{φ} (R) filtert Zeilen aus einer Tabelle:

Vorauss.: φ ist eine "atomare Selektionsformel" $\theta(\alpha_1, ..., \alpha_n)$, d.h.: $\alpha_1, ..., \alpha_n$ sind "Attributterme" aus Datentyp-Konstanten, R-Attributnamen und Datentyp-Operationen, z.B. ((A + 10) * 0.1) θ ist ein Datentyp-Prädikat, etwa ein Vergleichsoperator wie =, \neq , <.

Ergebnis: Relation $\sigma_{\varphi}(R) := \{ r \mid (r \in R) \land r \text{ erfüllt } \varphi \}$ mit unverändertem Schema

Grundoperationen (Forts.)

4. **Projektion** $\pi_{\overline{A}}(R)$ filtert Spalten aus einer Tabelle, ggfs. mit Umbenennung und tupelweisen Berechnungen:

Vorauss.:
$$\overline{A} = (\alpha_1 \ C_1, ..., \alpha_k \ C_k)$$

mit Attributtermen α_i und Aliasnamen C_i
(C_i kann entfallen, wenn α_i ein Attributname A ist, d. h. $C_i \equiv A$.)

Definition: Zu einem Tupel $r = (r_1, ..., r_n)$ bezeichne $\pi_{\alpha}(r)$ die Anwendung eines Attributterms α auf r,

z. B.
$$\pi_{A_3}(r) = r_3$$
, $\pi_{A_5+1}(r) = r_5 + 1$.

Ergebnis: $\pi_{\overline{A}}(R) := \{ t: (C_1, \dots, C_k) \mid \exists (r \in R) \ t = (\pi_{\alpha_1}(r), \dots, \pi_{\alpha_k}(r) \}$ mit Schema (C_1, \dots, C_k)

Grundoperationen (Forts.): Beispielanfragen an die Bibliotheks-DB

(a) Welche Bücher sind nach 2001 erschienen?

```
\sigma_{\text{Jahr}>2001} (BUCH)
```

- (b) Gegeben sei eine zusätzliche Relation

 TAGUNGSBERICHT(DokNr,...,Tagungsjahr,Erscheinungsjahr).

 Welche Tagungsberichte sind bereits im Tagungsjahr erschienen?

 Ottagungsjahr=Erscheinungsjahr (TAGUNGSBERICHT)
- (c) Namen und um 1 erhöhte Semesterzahlen aller Studenten?

 $\pi_{SName, Semester+1 Sem}$ (STUDENT)

Grundoperationen (Forts.)

5. (Kartesisches) Produkt $R \times S$

bildet alle Kombinationen von Tupeln aus R und S:

Vorauss.:
$$\{A_1, ..., A_n\} \cap \{B_1, ..., B_m\} = \emptyset$$
 (ggfs. Attribute vorher umbenennen, z. B. R.A und S.A)

Definition: Zu Tupeln
$$r = (r_1, ..., r_n)$$
 und $s = (s_1, ..., s_m)$ sei $r \cdot s := (r_1, ..., r_n, s_1, ..., s_m)$ deren Konkatenation.

Ergebnis:
$$R \times S := \{ t: (A_1, \dots, A_n, B_1, \dots, B_m) \mid \exists (r \in R, s \in S) \ t = r \cdot s \}$$
 mit Schema $(A_1, \dots, A_n, B_1, \dots, B_m)$

Beispiel:
 R

$$A_1$$
 A_2
 S
 B
 R × S
 A_1
 A_2
 B

 1
 2
 3
 1
 2
 3

 5
 6
 4
 1
 2
 4

 5
 6
 3

 5
 6
 4

Bsp.anfrage (d): Welche Studenten können welche Bücher ausleihen?
STUDENT × BUCH

Abgeleitete Operationen

6. **Durchschnitt** $R \cap S$

Ergebnis: $R \cap S := \{t \mid t \in R \land t \in S\}$

Ableitung aus Grundoperationen: $R \cap S = R - (R - S)$

7. Verallgemeinerte Selektion σ_{φ} (R)

 φ ist eine "Selektionsformel", d. h. eine Boolesche Verknüpfung von atomaren Selektionsformeln, also eine Zusammensetzung solcher Formeln mit den logischen Operatoren $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$ und üblicher Klammersetzung.

Ableitungen:
$$\sigma_{\varphi_1 \vee \varphi_2}(R) = \sigma_{\varphi_1}(R) \cup \sigma_{\varphi_2}(R)$$

$$\sigma_{\varphi_1 \wedge \varphi_2}(R) = \sigma_{\varphi_1}(R) \cap \sigma_{\varphi_2}(R) = \sigma_{\varphi_1}(\sigma_{\varphi_2}(R))$$

$$\sigma_{\neg \varphi}(R) = R - \sigma_{\varphi}(R) \quad \text{usw.}$$

Beispielanfragen:

- (e₁) Welche Informatik-Studenten sind noch nicht im 6. Semester? σ_{Fach='Informatik'∧ Semester<6} (STUDENT)
- (e₂) *Alle Studenten, aber Philosophen erst ab 3. Semester?* σ_{Fach='Philosophie' ⇒ Semester>2} (STUDENT)

8. **Verbund (Join)** R
$$\bowtie_{A_i \theta B_j} S$$
 oder R $\bowtie_{A_i \theta B_j} S$ ("Equiverbund", falls $\theta \equiv 0$)

Vorauss.: θ Vergleichsoperator, A_i/B_j Attribut(term) von R bzw. S

Definition:
$$R \bowtie_{A_i \theta B_j} S := \{ r \cdot s \mid (r \in R) \land (s \in S) \land (r.A_i \theta s.B_j) \}$$

Ableitung:
$$R \bowtie_{A_i \theta B_j} S = \sigma_{A_i \theta B_j} (R \times S)$$
 (ggfs. nach Umbenennung von Attributen)

• *Notation:*

Um umbenennende Projektionen einzusparen, darf zu jedem Relationenoperand R ein **Alias** beliebigen Namens, z.B. X, vergeben werden. — Schreibweise: (R X)

Auf zugehörige Attribute A_i kann man sich dann mit $X.A_i$ beziehen:

Ableitung: $(R X) = \pi_{A_1 X.A_1, ..., A_n X.A_n}(R)$

Abgeleitete Operationen (Verbund, Forts.): Beispielanfragen

(f) Autoren und bibliographische Angaben zu allen Büchern?

(g) Gegeben seien die Relationen

ANKUNFT(Zugnr, Zeit, Gleis) und ABFAHRT(Zugnr, Zeit, Gleis).

Ermittle alle Umsteigemöglichkeiten (am gleichen Tag mit mind. 5 Minuten Umsteigezeit):

$$(ANKUNFT ANK) \underset{ANK.Zeit+5 \leq ABF.Zeit}{\triangleright} (ABFAHRT ABF)$$

Ermittle alle echten Umsteigemöglichkeiten:

$$(\mathsf{ANKUNFT}\;\mathsf{ANK})\;\underset{\land\;\mathsf{ANK}.\mathsf{Zugnr}\;\neq\;\mathsf{ABF}.\mathsf{Zugnr}}{\land\;\mathsf{ANK}.\mathsf{Zugnr}\;\neq\;\mathsf{ABF}.\mathsf{Zugnr}}\;(\mathsf{ABFAHRT}\;\mathsf{ABF})$$

9. Verallgemeinerter Verbund (Join) R \bowtie_{o} S

Die Joinbedingung φ darf auch mehrere, \land -verknüpfte Vergleiche zwischen je einem Attribut(term) von R und S enthalten.

10. Natürlicher Verbund R \bowtie S oder R \bowtie (namensgleiche Atribute)

Definition:
$$R \bowtie S := \{ t \text{ mit den Attributen } \{A_1, \ldots, A_n\} \cup \{B_1, \ldots, B_m\} \mid \pi_{A_1, \ldots, A_n}(t) \in R \land \pi_{B_1, \ldots, B_m}(t) \in S \}$$

Ableitung: Equiverbund über namensgleiche Attribute und anschl. Entfernung doppelter Attribute

 Beispiel:
 R
 A
 B
 C
 D
 R
 S
 A
 B
 C
 D
 R
 S
 A
 B
 C
 D
 R
 S
 A
 B
 C
 D
 B
 C
 D
 R
 S
 A
 B
 C
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 A
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 B
 C
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D

Bsp.anfr.: Was liefert ANKUNFT ⋈ ABFAHRT ? – *Alle Kurzstops von Zügen!* Im Spezialfall identischer Schemata stimmen natürlicher Verbund und Durchschnitt überein.

Relationenalgebra als Anfragesprache

Relationale Operationen(namen) lassen sich zu **Termen** τ über Relationen(namen) und konstanten Relationen zusammensetzen, z.B.

$$\tau = \pi_{\mathsf{C}} \left(\sigma_{\mathsf{A}=\mathsf{a}} \left(\mathsf{R} \bowtie \mathsf{S} \right) \right)$$

→ prozedurale Anfragesprache

Beispielanfrage:

(h) Welche Titel haben die Bücher von Ullman?

$$\pi_{(B.Titel\ Titel)}$$
 ($\sigma_{A.AName='Ullman'}$
($\sigma_{B.DokNr=A.DokNr}$ (BUCH B × AUTOREN A))

 $= \pi_{\mathsf{Titel}} \ (\sigma_{\mathsf{AName}='\mathsf{Ullman'}} \ (\mathsf{BUCH} \bowtie \mathsf{AUTOREN}))$

in SQL:

select B.Titel Titel from BUCH B, AUTOREN A where B.DokNr = A.DokNrA.AName = 'Ullman' and

select Titel from BUCH natural join AUTOREN where AName = 'Ullman'

eigentlich effizienteste Variante, da frühestmögliche Selektion; $= \pi_{\mathsf{Titel}} \; (\mathsf{BUCH} \bowtie \sigma_{\mathsf{AName}='\mathsf{Ullman'}} \; (\mathsf{AUTOREN}))$ diese sollte aber der DBMS-Anfrageoptimierer selber finden

Relationenalgebra als Anfragesprache (Forts.): weitere Beispiele

(i1) Welche Studenten "lesen" welche Autoren?

$$\pi_{\mathsf{AName},\mathsf{SName}}$$
 ((AUTOREN \bowtie AUSLEIHE) \bowtie STUDENT)

(i2) Welche Autoren liest der Student N.Neugierig?

```
\pi_{\mathsf{AName}} \left( \sigma_{\mathsf{SName}='\mathsf{N}.\mathsf{Neugierig'}} \left( \left( \mathsf{AUTOREN} \bowtie \mathsf{AUSLEIHE} \right) \bowtie \mathsf{STUDENT} \right) \right)
```

(j) Welche Bücher betreffen die Schlagworte "PR" und "DBS"?

BUCH
$$\bowtie$$
 (π_{DokNr} ($\sigma_{\mathsf{Schlagw}='\mathsf{PR'}}$ (DESKRIPTOREN))
 $\cap \pi_{\mathsf{DokNr}}$ ($\sigma_{\mathsf{Schlagw}='\mathsf{DBS'}}$ (DESKRIPTOREN)))

(k) Welche Bücher wurden nicht ausgeliehen?

```
BUCH – (\pi_{DokNr,Titel,Verlag,Ort,Jahr}(BUCH) AUSLEIHE))
```

Konventionen:

- Operationen: möglichst wenige verwenden, insbes. Joins statt Produkte
- Klammern: soweit nicht durch Op. (σ,π) erzwungen, nur nötig soweit Term eindeutig parsebar
- Äquivalente Alternativen: beliebig, (noch) ohne Rücksicht auf Laufzeitoptimierung

Weitere abgeleitete Operationen der Relationenalgebra

11. **Semijoin**
$$R \bowtie_{\varphi} S := \pi_{Attribute(R)} (R \bowtie_{\varphi} S)$$

liefert alle R-Tupel, die mind. einen Join-Partner bzgl. φ in S haben (analog für den rechten Operanden definierbar)

(k1) Welche Bücher wurden ausgeliehen?

12. **Anti**[-Semi]**join**
$$R \bowtie_{\varphi} S := R - (R \bowtie_{\varphi} S)$$

→ alle R-Tupel, zu denen kein Join-Partner in S existiert ("R-Singles")

(k2) Welche Bücher wurden nicht ausgeliehen?

Weitere abgeleitete Operationen (Forts.)

13. Left Outer Join R
$$\Longrightarrow_{\varphi}$$
 S := $R \bowtie_{\varphi} S$ $\cup (R \overline{\bowtie_{\varphi}} S) \times \{(\bot, ..., \bot)\}$

→ enthält ausser den Join-"Paaren" die "Singles" links (in R), jeweils passend(!) mit Nullwerten aufgefüllt

Right Outer Join ⋈ analog

(Full) Outer Join R
$$\Longrightarrow_{\varphi}$$
 S:= R $\Longrightarrow_{\varphi}$ S \cup R \bowtie_{φ} S

(l) Gesamtübersicht über alle Bücher, Ausleihen und Studenten?

B.DokNr	B.Titel		A.DokNr	A.MatrNr	A.Datum	S.MatrNr	S.SName	
B8501	Datenbanksysteme		B8501	3141593	11.10.2013	3141593	K. Klug	
B8501	Datenbanksysteme		B8501	2718300	18.10.2014	2718300	N. Neugierig	
D8333	Betriebssysteme		\perp	\perp	\perp	\perp	\perp	丄
上	T	\perp	\perp	1	1	1618034	W. Weise	

Gesetze der Relationen-Algebra: Verträglichkeit mit Selektionen

R, R₁ und R₂ seien beliebige Relationen. In den folgenden Gleichungen seien auch die Selektionsformeln und Attributlisten beliebig, aber immer so gewählt, dass beide Seiten der Gleichung definiert sind. Attributreihenfolgen sind teilweise vernachlässigt.

(i)
$$\sigma_{\varphi}(\pi_{\overline{A}}(R)) = \pi_{\overline{A}}(\sigma_{\varphi}(R))$$

(ii)
$$\sigma_{\varphi}(R_1 \cup R_2) = \sigma_{\varphi}(R_1) \cup \sigma_{\varphi}(R_2)$$

(iii)
$$\sigma_{\varphi}(R_1 - R_2) = \sigma_{\varphi}(R_1) - \sigma_{\varphi}(R_2)$$

(iv)
$$\sigma_{\varphi}(R_1 \times R_2) = \sigma_{\varphi_0}(\sigma_{\varphi_1}(R_1) \times \sigma_{\varphi_2}(R_2))$$

falls $\varphi = \varphi_0 \wedge \varphi_1 \wedge \varphi_2$, $\varphi_{1/2}$ nur mit $R_{1/2}$ -Attributen

(iv)' wie (iv) für \bowtie statt \times

(v)
$$\sigma_{\varphi \wedge \psi}(R_1 \times R_2) = \sigma_{\varphi}(R_1 \bowtie_{\psi} R_2)$$
 (für eine Joinbedingung ψ)

(vi)
$$\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_1 \wedge \varphi_2}(R)$$

(vii)
$$\sigma_{\varphi_1}(R) \cap \sigma_{\varphi_2}(R) = \sigma_{\varphi_1 \wedge \varphi_2}(R)$$
 (analog für $\cup, -$)

(viii)
$$\sigma_{\text{true}}(R) = R$$
 $\sigma_{\text{false}}(R) = \emptyset$ $\sigma_{\varphi}(\emptyset) = \emptyset$

Gesetze der Relationen-Algebra (Exemplarische Beweise)

zu (ii)
$$\sigma_{\phi}(R_1 \cup R_2) = \sigma_{\phi}(R_1) \cup \sigma_{\phi}(R_2)$$
:

Die Aussage gilt, weil für beliebige Tupel t nach den Definitionen von σ/\cup gilt:

 $t \in \sigma_{\phi}(R_1 \cup R_2)$

gdw. $t \in (R_1 \cup R_2) \wedge t$ erfüllt ϕ

gdw. $(t \in R_1 \vee t \in R_2) \wedge t$ erfüllt ϕ

gdw. $(t \in R_1 \wedge t \text{ erfüllt } \phi) \vee (t \in R_2 \wedge t \text{ erfüllt } \phi)$

gdw. $t \in \sigma_{\phi}(R_1) \cup \sigma_{\phi}(R_2)$

zu (iv) $\sigma_{\phi}(R_1 \times R_2) = \sigma_{\phi_0}(\sigma_{\phi_1}(R_1) \times \sigma_{\phi_2}(R_2))$: $(\phi \equiv \phi_0 \wedge \phi_1 \wedge \phi_2 \text{ wie oben})$
 $t \in \sigma_{\phi}(R_1 \times R_2)$

gdw. $t \in (R_1 \times R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1 \times R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1 \times R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

gdw. $t \in (R_1, s \in R_2) \wedge t \text{ erfüllt } \phi$

Gesetze der Relationen-Algebra: Verträglichkeit mit Projektionen

$$\begin{array}{ll} \text{(i) } \pi_{\overline{A}}\left(R\right) = R & \text{falls \overline{A}} = \{\text{Attribute von R}\} \\ \text{(ii) } \pi_{\overline{A}}\left(\pi_{\overline{B}}\left(R\right)\right) = \pi_{\overline{A}}\left(R\right) & \text{falls \overline{A}} \subseteq \overline{B} \\ \text{(iii) } \pi_{\overline{A}}\left(\sigma_{\varphi}(R)\right) = \pi_{\overline{A}}\left(\sigma_{\varphi}(\pi_{\overline{A} \cup \overline{F}}\left(R\right)\right)) & \text{wobei \overline{F}} = \{\text{Attribute in φ}\} \\ \text{(iv) } \pi_{\overline{A}}\left(R_1 \cup R_2\right) = \pi_{\overline{A}}\left(R_1\right) \cup \pi_{\overline{A}}\left(R_2\right) & \text{(gilt nicht f\"{u}r-!)} \\ \text{(v) } \pi_{\overline{A}}\left(R_1 \times R_2\right) = \pi_{\overline{A}_1}\left(R_1\right) \times \pi_{\overline{A}_2}\left(R_2\right) & \text{wobei \overline{A}_i} = \overline{A} \cap \{\text{Attribute von R}_i\} \neq \varnothing \\ \text{(vi) } \pi_{\overline{A}}\left(R_1 \times R_2\right) = \pi_{\overline{A}_1}\left(R_1\right) & \text{falls \overline{A}} = \overline{A}_1 \text{ und } R_2 \neq \varnothing \text{(!)} \end{array}$$

$$\begin{aligned} \text{(vii)} \ \pi_{\overline{A}} \left(R_1 \, & \swarrow_{\psi} \, R_2 \right) &= \pi_{\overline{A}} \left(\pi_{\overline{A}_1}(R_1) \, & \swarrow_{\psi} \, \pi_{\overline{A}_2}(R_2) \right) \\ \text{wobei} \ \overline{A}_i &= \left(\overline{A} \cup \{ \text{Attribute in } \psi \} \right) \cap \{ \text{Attribute von } R_i \}) \end{aligned}$$

$$(\text{viii}) \; \pi_{\overline{A}} \left(R_1 \; \bowtie \; R_2 \right) = \pi_{\overline{A}} \left(R_1 \; \bowtie \; R_2 \right) \qquad \qquad \text{falls $\overline{A} \subseteq \{ \text{Attribute von } R_1 \} }$$

Weitere Gesetze der Relationen-Algebra:

Einige Kommutativ-, Assoziativ- u.a. Regeln für binäre Operationen

(i) vgl. Mengenlehre:

$$\begin{split} R_1 & \cup R_2 = R_2 \cup R_1 \\ (R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3) = (R_1 \cup R_3) \cup R_2 \\ R \cup R = R, \quad R \cup \varnothing = R \end{split}$$

- (ii) $(R_1 \times R_2) \times R_3 = R_1 \times (R_2 \times R_3)$, $R \times \emptyset = \emptyset$ Seien $\overline{A}_i := \{Attribute von R_i\}$, $A_i \in \overline{A}_i$, $B_i \in \overline{A}_i$.
- (iii) $R_1 \times R_2 = \pi_{\overline{A}_1, \overline{A}_2}(R_2 \times R_1)$, $(R_1 \times R_2) \times R_3 = \pi_{\overline{A}_1, \overline{A}_2, \overline{A}_3}((R_1 \times R_3) \times R_2)$ (Die Projektionen korrigieren nur die Reihenfolge der Attribute!)

(ii)'
$$R_1 \underset{A_1=B_2}{\triangleright} (R_2 \underset{A_2=A_3}{\triangleright} R_3) = (R_1 \underset{A_1=B_2}{\triangleright} R_2) \underset{A_2=A_3}{\triangleright} R_3$$

(iii)'
$$R_1 \underset{A_1=B_3}{\triangleright} (R_2 \underset{A_2=A_3}{\triangleright} R_3) = \pi_{\overline{A}_1,\overline{A}_2,\overline{A}_3} ((R_1 \underset{A_1=B_3}{\triangleright} R_3) \underset{A_3=A_2}{\triangleright} R_2)$$

z. B.
$$\pi_{A_1}(\sigma_{A_1=A_3}(R_1 \times (R_2 \times R_3))) = \pi_{A_1}(\sigma_{A_1=A_3}(R_1 \times R_3) \times R_2)$$

= $\pi_{A_1}((R_1 \bowtie_{A_1=A_3} R_3) \times R_2)$

Regeln für das <u>Rechnen mit Nullwerten</u>:

in Attributtermen und atomaren Selektionsformeln:

Operationen und Vergleiche mit Nullwert(\bot)-Argument liefern \bot ; z. B. $\bot + 3$, $\bot < 3$, und auch $\bot = 3$, $\bot \neq 3$.

(Deshalb braucht man spezielle Abfragen auf Nullwerte (Attribut[term] "is null"), die true/false liefern.)

Sel.formeln: Logische Verknüpfungen werden dreiwertig interpretiert:

\wedge	true	\perp	false	V	true	\perp	false	\neg	
				true					
\perp		\perp	false	⊥ false	true	\perp	丄	\perp	上
false	false	false	false	false	true	\perp	false	false	true

Selektionsergebnisse: Ergibt sich bei der Auswertung einer Selektionsformel φ für ein Tupel insgesamt der "Wahrheitswert" \bot , so wird das Tupel nicht ausgegeben¹.

 $^{^{-1}}$ Vorgriff auf SQL: where \perp entspricht where false