Reliability Estimation in Series Systems: Maximum Likelihood Techniques for Right-Censored and Masked Failure Data

Alex Towell

Introduction

- Estimating reliability of individual components from system-level data is challenging
- Failure times and causes often unobserved
- ▶ Developed likelihood framework to leverage observational data
- Simulation studies assess accuracy under small samples and significant masking

Series System Model

- Components in series configuration
- Lifetimes iid Weibull
- Derived system:
 - Reliability function: Product of components
 - Probability density: Function of component densities
 - Hazard function: Sum of component hazards

Likelihood Model

- ► Right censoring: Unobserved lifetimes
- Masked causes: Candidate sets
- Assumptions on candidate sets:
 - Condition 1: Contains failed component
 - ► Condition 2: Equal failure probability within candidate set
 - ► Condition 3: Independent of parameters
- Likelihood contributions:
 - ▶ Right censoring: System reliability $\prod_i R_i(t; \theta_i)$
 - ► Masked causes: $\prod_{l} R_{l}(t; \theta_{j}) \sum_{j} h_{j}(t; \theta_{j})$

Estimation Methodology

- Maximum Likelihood Estimation
 - Asymptotic normality and efficiency
 - Small sample issues
- Bootstrap Confidence Intervals
 - ► Approximates sampling distribution
 - Bias correction
 - Acceleration
 - Flexibility for small samples

Simulation Studies

- Assessed accuracy and precision of MLE
- Metrics:
 - Bias
 - Coverage probability
 - Confidence interval width
- Key scenarios:
 - Varying sample size
 - Censoring level
 - Masking probability
 - Component parameters

Conclusion

- Provided likelihood framework for limited data
- MLE accurate under small samples and masking
- Bootstrap Cls well-calibrated
- Shape parameters sensitive, scales more robust