# DECENTRALIZED RESEARCH DEPARTMENT CASE STUDY

DIMITAR JORDANOV, CURTIS MCCORD, LAUREN OLAR & DAWN WALKER

December 9 2015

INF2177 Assignment 3: Aligning Business, Organization, Information, and Systems Architectures

### **CASE STUDY**

DRD is a large department in a public research university:

- \$2 billion in revenue and \$1 billion annually-awarded research funds
- 80,000 students, 1,900 faculty and 14,000 staff [Facts & Figures, 2014]

Essential process areas are teaching and research:

- Supporting ~30 labs performing research across its discipline
- Stewarding large volumes of information
- Using many information systems

### **BUSINESS CONTEXT**

#### **CUSTOMERS**

| Segment  | Customers                                                  |
|----------|------------------------------------------------------------|
| Teaching | University, Faculty, Students                              |
| Research | Researchers, Other Departments & Partners, Granting Bodies |

#### **COMPETITION**

- Competition between institutions against the backdrop of informal and formal collaborations
- For funding is perhaps the strongest, limited and rivalrous nature of grants

### **BUSINESS CONTEXT**

#### INFORMATION MANAGEMENT

- Dense matrix of university-wide policies from many governing bodies, emphasis on research ethics
- Provincial and Federal Regulations (PIPEDA, Digital Privacy Act [S-4], PHIPA)

- 1. Multiple revenue streams
- 2. Reputation and credibility
- 3. Numerous partnerships (inside and outside the university)
- 1. Complex institutional governance
- 2. Difficulty meeting present information security needs
- 3. Aging infrastructure
- 4. Break in communication between requirements and related staff
- 5. Gaps in IT expertise



- 1. Service-oriented alignment
- 2. Momentum for change
- 3. Acknowledgent of need for change
- 4. New infrastructure
- 5. Harmonization with university and other departments
- 6. Convergence with growing information management procedures

- 1. Other universities' departments equivalent to DRD
- 2. Penetration attacks that expose sensitive DRD information
- 3. Scarcity of research funding
- 4. Value shifts related to university education

### ORGANIZATIONAL CONTEXT

#### **OBJECTIVES & STRATEGIES**

- Support the labs that compose DRD, facilitating research publications and meaningful results
- Support faculty members meet Research Ethics requirements for their work
- Strategize to make IT resources more scalable and reliable
- Faculty key stakeholders to get on board for any organizational change

### ORGANIZATIONAL CONTEXT

#### **STRUCTURE**

- Administrative staff hierarchical with clear divisions (Finance, Admin, Tech)
- Faculty managed separately and power is highly decentralized
- Research labs totally controlled by the faculty member in charge: organizational structure, practises and policies, information systems, information management and security



### INFORMATION MANAGEMENT LANDSCAPE

Information processes centered around research data are focused on:

- information transfer
- post-collection processing
- storage and backup
- monitoring and logging network and equipment behaviour

Currently these processes are decided by individual research units, and no unifying architecture, toolkit or application portfolio exists beyond a single Wi-Fi Network.

### **KEY CHALLENGES**

- 1. **Business (Teaching)**: Balancing the need for revenue with the ability to deliver high value to its students
- 2. **Business (Research)**: Remaining responsive to the research needs of external agencies and funders
- 3. Organizational: Transforming a decentralized power structure making organization-wide change difficult, especially given the scarcity of information and IT expertise
- 4. **Information**: Keeping an aging IT infrastructure up to date with key requirements in security, storage and access subject to many stringent regulations

### **KEY OPPORTUNITIES**

- 1. Service-Oriented Alignment: DRD can reposition to offer service and support for other departments, provisioning physical assets as services [Chui et al. 2013]
- 2. Acknowledgement of Need for Change Newly created Operations Coordinator position has mandate to make improvements to existing processes, create new processes focussed on meeting DRD's technology needs
- 3. **Information**: Modernizing IT infrastructure leads to convergence with, and sets the tone for industry wide best practises
- 4. Momentum for Change: institution- and organization-wide push toward improvemed information management

### **SCENARIOS**

- Documentation and Knowledge Management
- Full Neoliberalism and Service Delivery
- University 2.0

### DOCUMENTATION AND KNOWLEDGE MANAGEMENT

#### < 5 YEARS

- Knowledge management practises may help to codify and standardize procedures for infrastructure deployment and procedure
- Collaborative information systems can assist document storage and increase research efficiency
- Information systems documenting equipment and task management can address critical needs within the DRD's IT department

### FULL-NEOLIBERALISM AND SERVICE DELIVERY

#### **5-10 YEARS**

- Service agreements around website, storage, exchange servers, etc. from centralized IT
- Total information and systems architecture alignment with centralized IT
- New requirements and roles within DRD driven by synergy with other business units

### **UNIVERSITY 2.0**

#### **10-15 YEARS**

- Sea change within the university: bringing the Academy to the Net Generation
- Organizational strategic shift toward 'real business': informationalized and transformationalized research product services and data stewardship [Tapscott, 2006]
- Research relationships and partnerships opened and networked [Kotter, 2012]

### PROPOSED IMPROVEMENTS

Proposed improvements iterable, to be implemented over several years and channel momentum to:

- Rearticulate the value-proposition of research activities
- Create a multi-year strategy for organizational change
- Understand performance for data-driven decisions
- Collaborate internally and externally to develop standards that can model best practises
- Modernize IT infrastructure, setting the stage for sustainable and conservative growth



### INFORMATION ARCHITECTURE

- Partner with other departments around managing network security
- Establish an open and collaborative set of best practises for information management
- Create a set of measurable performance indicators (maintenance, problematics, etc)
- Develop a comprehensive inventory information model for tracking tasks

#### INFORMATION MODELS



#### Suggested ERD for Task Management

#### INFORMATION ENTITIES, PROCESSES AND RELATIONSHIPS

Information Architecture is designed to facilitate **OC** and **IT** support of **researchers** in the business crucial *processes* of research and publication, through the standardization of information subprocesses:

- Maintaining Equipment
- Deploying Infrastucture
- Adhering to Information Security Best Practises
- Managing everyday Information Flows

#### **EXPANDED ROLES AND PROCESSES**

| New Process                  | Role Impacted                           |  |
|------------------------------|-----------------------------------------|--|
| IT Management                | OC and Electronics                      |  |
| Network and Asset<br>Mapping | OC                                      |  |
| Support Ticketing            | Faculty/Researchers, OC and Electronics |  |
| Automated Task Flow          | OC and Electronics                      |  |
| Inventory Managements        | OC and Electronics                      |  |
| Backups and Recovery         | OC and Faculty/Researchers              |  |

#### **NEEDS MET**

#### **NEAR-TERM**

- Increased organization and cohesion
- Improved security of research data
- Build internal capacity to identify recurring problems
- Lay groundwork for greater understanding of information and system needs

#### **MEDIUM-TERM**

- Align infrastructure with business needs and regulations
- Create a more collaborative model

### **SYSTEMS ARCHITECTURE**

#### **APPLICATION PORTFOLIO**

| Application Type                           | Service                   | Examples                                  |
|--------------------------------------------|---------------------------|-------------------------------------------|
| Collaborative Software                     | Email,<br>Calendaring     | Horde, OpenX                              |
| Document Management System                 | Research<br>Collaborating | ShareLaTeX, TSpace, Owncloud, Google Docs |
| Network Monitoring System                  | Security<br>Management    | LogicMonitor                              |
| Log Management Tool                        | Logging                   | Logstash                                  |
| Task Management System                     | Job/Issue<br>Tracking     | JIRA                                      |
| Data Visualization Platform                | Performance<br>Analytics  | Kibana + Elasticsearch                    |
| Management Information Systems (Dashboard) | Performance<br>Monitoring | OPNsense                                  |

### **SYSTEMS ARCHITECTURE**

#### **INFRASTRUCTURE PORTFOLIO**

| Infrastructure Type         | Service                          | Examples         |
|-----------------------------|----------------------------------|------------------|
| Mail Server                 | File and Message Relay           | Exchange Server  |
| Firewall                    | Data Retention and Protection    | CSbox, Cisco PIX |
| Network Attached Storage    | File-level computer data storage | NetGear          |
| Data Storage Virtualization | Data Redundancy                  | RAID             |
| Servers                     | Internal Hosting                 | Computers        |

### **INTEROPERABILITY**

- Modular application and infrastructure components
- Focused on systems-level openness (FOSS)
- Use of standards (Protocols, semantics models, formats)



### **ALIGNMENT**

- Shifting focus to bring IT closer to business activities
- Creation of common, organization-wide infrastructure
- Accurate mapping of logical models to physical holdings

### **GROWTH AND EVOLUTION**

- Initial implementation small and focused on critical IT needs, but provides tools for further growth
- Systems and applications can be readily expanded beyond initial scope
- Data-driven decisions lead to better data-driven decisionmaking
- New ambitions for practice contribute to improved workplace culture and DRD achievement

## THANK YOU!

**QUESTIONS?** 

### REFERENCES

[Chui et al., 2013] Chui, M., Manyika, J., Bughin, J., Brown, B., Roberts, R., Danielson, J., and Gupta, S. (2013). Ten it-enabled business trends for the decade ahead. Technical report.

[Facts & Figures, 2014] Facts & Figures (2014). http://www.utoronto.ca/about-uoft/measuring-our-performance/facts-figures-2014

[Kotter, 2012] Kotter, J. (2012) Accelerate! How the most innovative companies capitalize on today's rapid-fire strategic challenges-and still make their numbers. Harvard Business Review 90(11), 43-58.

[Strategyzer AG, 2015] Strategyzer AG. (2015) Business Model Canvas. http://www.businessmodelgeneration.com/canvas/bmc

[Tapscott, 2006] Tapscott, D. (2006) Winning with the Enterprise 2.0. IT&CA Big Idea Series. 62pp. http://dontapscott.com/2011/04/setting-the-record-straight-the-enterprise-2-0/