Assignment 3: Projective Geometry

Computer Vision

National Taiwan University

Fall 2019

Part 1: Estimating Homography

Recap of Homography

Matrix form:

$$egin{bmatrix} v_x \ v_y \ 1 \end{bmatrix} \sim egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix} egin{bmatrix} u_x \ u_y \ 1 \end{bmatrix}$$

Equations:

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + h_{33}}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + h_{33}}$$

Recap of Homography

$$egin{bmatrix} v_x \ v_y \ 1 \end{bmatrix} \sim egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ h_{31} & h_{32} & h_{33} \end{bmatrix} egin{bmatrix} u_x \ u_y \ 1 \end{bmatrix}$$

- Degree of freedom
 - There are 9 numbers in H. Are there 9 DoF?
 - No. Note that we can multiply all h_{ij} by nonzero k without changing the equations:

$$v_{x} = \frac{kh_{11}u_{x} + kh_{12}u_{y} + kh_{13}}{kh_{31}u_{x} + kh_{32}u_{y} + kh_{33}}$$

$$v_{y} = \frac{kh_{21}u_{x} + kh_{22}u_{y} + kh_{23}}{kh_{31}u_{x} + kh_{32}u_{y} + kh_{33}}$$

$$v_{y} = \frac{h_{21}u_{x} + h_{22}u_{y} + h_{23}}{h_{31}u_{x} + kh_{32}u_{y} + kh_{33}}$$

$$v_{y} = \frac{h_{21}u_{x} + h_{22}u_{y} + h_{23}}{h_{31}u_{x} + h_{32}u_{y} + h_{33}}$$

Enforcing 8 DoF

• **Solution 1:** set $h_{33} = 1$

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + 1}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + 1}$$

• Solution 2: impose unit vector constraint

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + h_{33}}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + h_{33}}$$

Subject to

$$h_{11}^2 + \dots + h_{33}^2 = 1$$

Solution 1

• Set
$$h_{33}=1$$

$$v_x=\frac{h_{11}u_x+h_{12}u_y+h_{13}}{h_{31}u_x+h_{32}u_y+1}$$

$$v_y=\frac{h_{21}u_x+h_{22}u_y+h_{23}}{h_{31}u_x+h_{32}u_y+1}$$

Multiply by denominator

$$(h_{31}u_x + h_{32}u_y + 1)v_x = h_{11}u_x + h_{12}u_y + h_{13}$$
$$(h_{31}u_x + h_{32}u_y + 1)v_y = h_{21}u_x + h_{22}u_y + h_{23}$$

Rearrange

$$h_{11}u_x + h_{12}u_y + h_{13} - h_{31}u_xv_x - h_{32}u_yv_x = v_x$$

$$h_{21}u_x + h_{22}u_y + h_{23} - h_{31}u_xv_y - h_{32}u_yv_y = v_y$$

Solution 1 (cont.)

Solve linear system

					$2N \times$	8			8 × 1	$2N \times 1$
Point 1	$\begin{bmatrix} u_{x,1} \\ 0 \end{bmatrix}$	$u_{y,1} \\ 0$	1 0	$0 \\ u_{x,1}$	$0 \\ u_{y,1}$	0 1	$-u_{x,1}v_{x,1} \\ -u_{x,1}v_{y,1}$	$\begin{bmatrix} -u_{y,1}v_{x,1} \\ -u_{y,1}v_{y,1} \end{bmatrix}$	$\begin{bmatrix} h_{11} \\ h_{12} \end{bmatrix}$	$\begin{bmatrix} v_{x,1} \\ v_{y,1} \end{bmatrix}$
Point 2	$\begin{bmatrix} u_{x,2} \\ 0 \end{bmatrix}$	$\begin{array}{c} u_{y,2} \\ 0 \end{array}$	1 0	$\stackrel{\circ}{0}$ $u_{x,2}$	$\overset{{}_{g,-}}{0}$ $u_{y,2}$	0 1	$-u_{x,2}v_{x,2} \\ -u_{x,2}v_{y,2}$	$ \begin{vmatrix} -u_{y,2}v_{x,2} \\ -u_{y,2}v_{y,2} \end{vmatrix} $	$\begin{vmatrix} h_{13} \\ h_{21} \end{vmatrix}$	$\begin{bmatrix} v_{x,2} \ v_{y,2} \end{bmatrix}$
Point 3	$\begin{bmatrix} u_{x,3} \\ 0 \end{bmatrix}$	$u_{y,3}$	1 0	$\stackrel{\circ}{u_{x,3}}$	$\stackrel{\circ}{0}$ $u_{y,3}$	0 1	$-u_{x,3}v_{x,3} \\ -u_{x,3}v_{y,3}$		$\begin{vmatrix} h_{22} \\ h_{23} \end{vmatrix} =$	$\begin{bmatrix} v_{x,3} \\ v_{y,3} \end{bmatrix}$
Point 4	$\begin{bmatrix} u_{x,4} \\ 0 \end{bmatrix}$	$u_{y,4} \\ 0$	1 0	$0 \\ u_{x,4}$	$0 \\ u_{y,4}$	0 1	$-u_{x,4}v_{x,4} \\ -u_{x,4}v_{y,4}$	$\begin{bmatrix} -u_{y,4}v_{x,4} \\ -u_{y,4}v_{y,4} \end{bmatrix}$	$\begin{bmatrix} h_{31} \\ h_{32} \end{bmatrix}$	$\begin{bmatrix} v_{x,4} \\ v_{y,4} \end{bmatrix}$
Additional points										

Solution 1 (cont.)

- What might be wrong with solution 1?
- If h_{33} is actually 0, we can not get the right answer

Solution 2

• A more general solution by confining $h_{11}^2 + ... + h_{33}^2 = 1$

$$v_x = \frac{h_{11}u_x + h_{12}u_y + h_{13}}{h_{31}u_x + h_{32}u_y + h_{33}}$$
$$v_y = \frac{h_{21}u_x + h_{22}u_y + h_{23}}{h_{31}u_x + h_{32}u_y + h_{33}}$$

Multiply by denominator

$$(h_{31}u_x + h_{32}u_y + h_{33})v_x = h_{11}u_x + h_{12}u_y + h_{13}$$
$$(h_{31}u_x + h_{32}u_y + h_{33})v_y = h_{21}u_x + h_{22}u_y + h_{23}$$

Rearrange

$$h_{11}u_x + h_{12}u_y + h_{13} - h_{31}u_xv_x - h_{32}u_yv_x - h_{33}v_x = 0$$

$$h_{21}u_x + h_{22}u_y + h_{23} - h_{31}u_xv_y - h_{32}u_yv_y - h_{33}v_y = 0$$

Solution 2

• Similarly, we have a linear system like this:

- Here, b is all zero, so above equation is a homogeneous system
- Solve:
 - Ah = 0
 - SVD of $A = U\Sigma V^T$
 - Let h be the last column of V.

Input Data

• Canvas:

Input Data

• Material:

Part 2: Unwarp the Screen

Backward Warping

- Why?
 - Prevent holes in output space
- Pixel value at sub-pixel location like (30.21, 22.74)?
 - Bilinear interpolation
 - Nearest neighbor

Part 3: Unwarp the 3D Illusion

• 3D illusion art

Part 3: Unwarp the 3D Illusion

• Input:

Part 3: Unwarp the 3D Illusion

• Ground-truth top view:

Can you unwarp the input image to match the ground-truth top view?

Part 4: Simple AR

• The simplest AR technic: Marker-based AR

Input Data

• A video and a template:

Input Data

- And a handsome guy:
 - We have cropped it into square for you.
 - You are also permitted to use your own image.

Assignment Description

Part 1(4%)

- Implement solution 1 or 2 for estimating homography.
- Map 5 images of different people to the target surfaces (given in main.py). You can use whatever images you like. Include these images in your submission.
- Include the function solve_homography(u, v) in your report.

• Part 2(3%)

- Choose the unwarp region yourself.
- The output image should contain the detectable QR code.
- Include the QR code and the decoded link in your report.

Assignment Description

- Part 3(3%)
 - Unwarp the image to the top view.
 - Can you get the parallel bars from the top view?
 - If not, why? Discuss in your report.
- Part4(5%)
 - Find the pose between the video frames and the template.
 - Hints: feature matching, RANSAC, etc.
 - This part is judged by the stability.

Assignment Description

- For part1 to part3, we offer a template code:
 - You cannot change solve_homography and transform
 - We will run python3 main.py
- For part4, we offer a template code for read video:
 - In this part, we don't constrain the method you use.
 - In the template code, the things you cannot change is "template_path" & "video path".
 - We will run python3 part4.py <path>
 - <path>: path to ar marker.mp4
 - E.g., python3 part4.py ./input/ar_marker.mp4
- Notice:
 - If you are going to use opency's feature tool, your should install "opency-contrib" additionally.
 - As far as we know, version 3.4.2 can be used directly without any postprocessing(we'll review your code with this version too).

Submission

- Code: main.py & part4.py(Python 3.5+)
- Input images for part 1 and part 4
 - Keep them in ./input
- Output images
 - part1.png, part2.png, part3.png
- Output video:
 - Submit it to sftp(see next page for detail)
- A PDF report:
 - containing
 - Your student ID, name
 - Your answers to each part
 - Algorithm to the simple AR
 - Environment settin
 - Naming: ID_report.pdf, e.g., R07654321_report.pdf

Submission

 Compress all above files, excluding part4, in a zip file named StudentID.zip

- Submit to CEIBA
- Deadline: 12/3 11:00 pm

sftp for part 4

• IP and port:

• IP: 140.112.48.127

• Port: 11000

• User name: cv2019

• Password: 9102vc

Platform suggestion:

- Mobaxterm
- FileZilla

Naming:

 Name your output video with your student ID and put it under /CV_HW3, e.g. "/CV_HW3/R07948787.mp4".