Search Trees

Data Structures and Algorithms

Nanjing University, Fall 2021 郑朝栋

The **Set** Abstract Data Type (ADT)

- The **Set** ADT is used to represent a *set* of elements with (usually distinct) *key* values.
 - Each element has a key field and a data field.
- Operations the **Set** ADT should support:
 - Search(S,k): Find an element in S with key value k.
 - Insert(S,x): Add x to S. (What if element with same key exists?)
 - Remove(S,x): Remove element x from S, assuming x is in
 - Remove(S,k): Remove element with | Exercise k from S.
- If elements are from an ordered university
 - Min(S) and Max(S): Find minimum/maximum element in S.
 - Successor(S,x) or Successor(S,k): Emma female female
 Find smallest element in S that is larger than x.key (or key k).;
 - Predecessor(S,x) or Predecessor(S,k):

Efficient implementation of **OSet**

	Search(S,k)	Insert(S,x)	Remove(S,x)
SimpleArray			
SimpleLinkedList			
SortedArray			
SortedLinkedList			
BinaryHeap			

Data structure implementing all these operations efficiently?

Efficient means within $O(\log n)$ time.

Binary Search Tree (BST)

• A **binary search tree** (**BST**) is a binary tree in which each node stores an element, and satisfies the binary-search-tree property (BST property): for every node x in the tree, if y is in the left subtree of x, then $y. key \le x. key$; if y is in the right subtree of x, then $y. key \ge x. key$.

Binary Search Tree (BST)

• A **binary search tree** (**BST**) is a binary tree in which each node stores an element, and satisfies the binary-search-tree property (BST property): for every node x in the tree, if y is in the left subtree of x, then $y. key \le x. key$; if y is in the right subtree of x, then $y. key \ge x. key$.

• Q: Given a BST T, let S be the set of elements stored in T, what is the sequence of the in-order traversal of T?

65

A: Elements of S in ascending order!

In-order traversal: 13, 20, 32, 41, 50, 65, 91

Search in BST

- Given a BST root x and kele
 key k?
 - If $x \cdot key = k$ then return x
 - If x. key > k then recurse
 - If x. key < k then recurse
- This is tail recursion, and version!

 Example One:

BSTSearch(x,k):

if (x==NULL or x.key==k)
 return x
else if (x.key>k)
 return BSTSearch(x.left,k)
else
 return BSTSearch(x.right,k)

BSTSearchIter(x,k):

while (x!=NULL and x.key!=k)
 if (x.key>k)
 x = x.left
 else
 x = x.right
return x

Search for element with key 50.

Example Two:

Search for element with key 35.

Complexity of **Search** in BST

- Q: Worst-case time complexity of Search operation?
- A: $\Theta(h)$ where h is the height of the BST.
 - How large can *h* be in an *n*-node BST?
 - $\Theta(n)$, when the BST is like a "path".
 - How small can h be in an n-node BST?
 - $\Theta(\log n)$, when the BST is "well balanced".

Height of the BST affects the efficiency of Search

Min and Max in BST

- How to find a minimum element in a BST?
 - Keep going left until a node without left child.
- How to find a maximum element in a BST?
 - Keep going right until a node without right child.
- Time complexity of Min and Max operation?
 - $\Theta(h)$ in the worst-case where h is height.

Successor in BST

- **BSTSuccessor(x):** Find the smallest element in the BST with key value larger than x.key.
- In-order traversal of BST lists the elements in sorted order. Where in the tree does the element following x reside?
- If the right subtree rooted at x is non-empty:
 - The minimum element in BST rooted at x.right is what we want.
- Otherwise:
 - The nearest ancestor

BSTSuccessor(x):

```
if (x.right!=NULL)
  return BSTMin(x.right)
y = x.parent
while (y!=NULL and y.right==x)
x = y
y = y.parent
return y
```

Successor in BST

- Time complexity of BSTSuccessor?
 - $\Theta(h)$ in the worst-case where h is the height.
- BSTPredecessor can be designed and analyzed similarly.

• So far we've seen operations that do not change the BST.

BSTSuccessor(x):

return y

• Search, Min/Ma if (x.right!=NULL)

How about operation y = x.parent

Insert and Reme

```
if (x.right!=NULL)
  return BSTMin(x.right)
  y = x.parent
  while (y!=NULL and y.right==x)
  x = y
  y = y.parent
```

Insert in BST

• **BSTInsert(T,z):** Add z to BST T. Notice, insertion should not break the BST property.

• Just like doing a search in T with key z. key. This search will fail and end at a leaf y. Insert z as left or right child of y.

Why above procedure is correct?

Example:

Insert element with key 36.

Insert in BST

- **BSTInsert(T,z):** Add z to BST T. Notice, insertion should not break the BST property.
- Just like doing a search in T with key z. key. This search will fail and end at a leaf y. Insert z as left or right child of y.
- Q: Time complexity of the **Insert** operation?
- A: $\Theta(h)$ in the worst-case where h is the height of T.

- **BSTRemove(T,z):** Remove element z from T. Notice, removal should not break the BST property.
- Case 1: z has no child.
- Easy, simply remove z from the BST tree.

- **BSTRemove(T,z):** Remove element z from T. Notice, removal should not break the BST property.
- Case 2: z has one single child.

• Elevate subtree rooted at z's single child to take z's position.

 \cdots , \mathbf{z} , A, r, B, q, C, \cdots

- **BSTRemove(T,z):** Remove element z from T. Notice, removal should not break the BST property.
- Case 3: z has two children.
 - Case 3a: z.right.left = NULL
 - Case 3b: $z.right.left \neq NULL$

Replace node z with min value node in subtree rooted at z. right. (z. right guaranteed to be non-empty)

Replace node z with BSTSuccessor(z)

BSTSuccessor(z) can be:

- r if r. left = NULL
- BSTMin(r.left) if $r.left \neq NULL$

 \cdots , A, l, B, z, C, r, D, q, E, \cdots

• **BSTRemove(T,z):** Remove element z from T. Notice, removal should not break the BST property.

• Case 3a: z has two children and z.right.left = NULL.

 \cdots , A, l, B, z, r, D, q, E, \cdots \cdots , A, l, B, r, D, q, E, \cdots

• **BSTRemove(T,z):** Remove element z from T. Notice, removal should not break the BST property.

• Case 3b: z has two children and $z.right.left \neq$

 \cdots , A, l, B, \mathcal{Z} , y, C', $C \setminus C'$, r, D, q, E, \cdots , A, l, B, y, C', $C \setminus C'$, r, D, q, E, \cdots

Remove in By Trst-case time complexity of **Remove**

• BSTRemove(T,z): Remove element z from T. Notice, removal should not break the BST property.

- Case 1: z has no chall
 - Easy, simply remove z from the BST tree.
- Case 2: z has a single \mathfrak{A}
 - Elevate subtree rooted at z's single child to take z's position.
- Case 3a: z has two children and z. $right.left <math>\Theta(1)$ NULL . O(h)

Case 3b: z has two children and

Efficient implementation of **OSet**

	Search(S,k)	Insert(S,x)	Remove(S,x)
SimpleArray	O(n)	O(1)	O(n)
SimpleLinkedList	O(n)	<i>O</i> (1)	<i>O</i> (1)
SortedArray	$O(\log n)$	O(n)	O(n)
SortedLinkedList	O(n)	O(n)	<i>O</i> (1)
BinaryHeap	O(n)	$O(\log n)$	$O(\log n)$
BinarySearchTree	<i>O</i> (<i>h</i>)	<i>O</i> (<i>h</i>)	<i>O</i> (<i>h</i>)

BST also supports other operations of **OSet**, in O(h) time.

But height of a n-node BST varies between $\Theta(\log n)$ and $\Theta($

Height of BST

- Consider a sequence of **Insert** operations given by an adversary, the resulting BST can have height $\Theta(n)$.
 - E.g., insert the elements in increasing order.
- What is the expected height of a randomly built BST?
 - Build the BST from an empty BST with n Insert operations.
 - Each of the n! insertion orders is equally likely to happen.
- The expected height of a randomly built BST is $O(\log n)$.

A randomized BST structure

Treap (Binary-Search-Tree + Heap)

- A Treap is a binary tree in which each node has a key value, and a priority value.
- The key values must satisfy the BST-property:
 - For each node y in left sub-tree of x: $y. key \le x. key$
 - For each node y in right sub-tree of x: $y.key \ge x.key$
- The priority values must satisfy the MinHeapproperty:

• For each descendent y of x: y. priorit y A Treap is not necessarily a complete binary tree. (Thus it is not a BinaryHeap.)

0.48

A randomized BST structure

Treap

- Given a set of n nodes with distinct key values and distinct priority values, a unique Treap is determined.
- Proof by induction on *n*:
 - [Basis]: The claim clearly holds when n = 0.
 - [Hypothesis]: The claim holds when $n \le n' 1$.
 - [Inductive Step]:
 - Given a set of n' nodes, let r be the node with min priority. By MinHeap-property, r has to be the root of the final Treap.
 - Let L be set of nodes with key values less than r. key, and R be set of nodes with key values larger than r. key.
 - By BST-property, in the final Treap, nodes in L must in left sub-tree of r, and nodes in R must in right sub-tree of r.
 - ullet By induction hypothesis, nodes in L lead to a unique Treap, and nodes in R lead to a unique Treap.

Treap

- Q: How do we build a Treap?
- A: Starting from an empty Treap, whenever we are given a node x that needs to be added, we assign a random priority for node x, and insert the node into the Treap.
- Alternative view of an n-node Treap: a BST built with n insertions, in the order of increasing priorities. (Why?)
 - (Only need to worry about BST property if build a Treap in this order.)
- A Treap is like a randomly built BST, regardless of the order of the insert operations! (Since we use random priorities!)
- A Treap has height $O(\log n)$ in expectation. Therefore, all **OSet** operations are efficient in

- **Step 1:** Assign a random priority to the node to be added.
- **Step 2:** Insert the node following BST-property.
- **Step 3:** Fix MinHeap-property (without violating BST-property).

• **Step 1:** Assign a random priority to the node to be added.

• **Step 2:** Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-

property).

• **Step 1:** Assign a random priority to the node to be added.

• **Step 2:** Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-

property).

but preserves BST property.

• **Step 1:** Assign a random priority to the node to be added.

• **Step 2:** Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-

property).

but preserves BST property.

- **Step 1:** Assign a random priority to the node to be added.
- **Step 2:** Insert the node following BST-property.
- **Step 3:** Fix MinHeap-property (without violating BST-property).

Remove in Treap

- Q: Given a pointer to a node, how to remove it?
- A: Just invert the process of insertion!
- **Step 1:** Use rotations to push-down the node till it is a leaf.

Treap

- A probabilistic data structure.
- Like a randomly built BST.
 (Expected height is O(log n), even for adversarial operation sequence.)

• Support **OSet** operations in $O(\log n)$ time, in expectation

Design a data structure supporting OSet operations in $O(\log n)$ time, even in worst
Case?

0.20
30
0.31
54
0.51
76

Reading

- [CLRS] Ch.12
- [Morin] Ch.7 (7.2)

