Empirical-evidence Equilibria in Stochastic Games

Nicolas Dudebout

Context

Multiagent problems

- stock market
- group of robots

Context

Multiagent problems

- stock market
- group of robots

- predictive
- prescriptive

Context

Multiagent problems

- stock market
- group of robots

- predictive
- prescriptive

- Game-theoretic approach
 - selfish agents
 - different solution concepts

Empirical-evidence Equilibrium (EEE)

Motivation

Definition

Existence

Comparison

Characterization

Predictive Use

Prescriptive Use

Graphical convention

Graphical convention

Graphical convention

$$\max_{\sigma} \mathbb{E}_{\sigma} \left[\sum_{t=0}^{\infty} \delta^{t} \cdot u(x^{t}, a^{t}) \right]$$

$$\sigma \xrightarrow{x} x^{+} \sim f(x, a)$$

Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP)

$u_1(x_1,a_1,a_2),\delta_1$

$$u(x,a),\delta$$

Recap

- Multiagent problems
- Game-theoretic approach

- Multiagent problems
- Game-theoretic approach
- Nash equilibrium in stochastic game \iff unknown POMDPs

POMDP intractable MDP solved

0100010001001010010110111010...

0100010001001010010110111010...

 $\mathbb{P}[0], \mathbb{P}[1]$

0100010001001010010110111010...

$$\mathbb{P}[0], \mathbb{P}[1]$$

$$\mu \qquad \qquad \mu[s] = \mathbb{P}[s]$$

Two Systems

Real System: ${f R}$

Mockup System: M

Real System: ${f R}$

Mockup System: M

Real System: ${f R}$

Mockup System: **M**

$$\mu[s^+] = \mathbb{P}[s^+]$$

13

$$\mu[s^+] = \mathbb{P}[s^+]$$
$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+]$$

1.

$$\mu[s^+] = \mathbb{P}[s^+]$$
$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+]$$

1.

$$\mu[s^+] = \mathbb{P}[s^+]$$

$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+]$$

$$= \sum_{w^+, w, x, a} \nu(w^+)[s^+] \cdot \pi[w, x] \cdot \sigma(x)[a] \cdot n(w, x, a)[w^+]$$

10

$$\mu[s^+] = \mathbb{P}[s^+]$$

$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+]$$

$$= \sum_{w^+, w, x, a} \nu(w^+)[s^+] \cdot \pi[w, x] \cdot \sigma(x)[a] \cdot n(w, x, a)[w^+]$$

10

0101010101010101010101010101...

0101010101010101010101010101...

 $\mathbb{P}[00], \mathbb{P}[01], \mathbb{P}[11], \mathbb{P}[10]$

0101010101010101010101010101...

$$\mathbb{P}[00], \mathbb{P}[01], \mathbb{P}[11], \mathbb{P}[10] \iff \mathbb{P}[0 \mid 0], \mathbb{P}[1 \mid 0], \mathbb{P}[0 \mid 1], \mathbb{P}[1 \mid 1]$$

0101010101010101010101010101...

$$\mathbb{P}[00], \mathbb{P}[01], \mathbb{P}[11], \mathbb{P}[10] \iff \mathbb{P}[0 \,|\, 0], \mathbb{P}[1 \,|\, 0], \mathbb{P}[0 \,|\, 1], \mathbb{P}[1 \,|\, 1]$$

0101010101010101010101010101...

 $\mathbb{P}[00], \mathbb{P}[01], \mathbb{P}[11], \mathbb{P}[10] \iff \mathbb{P}[0 \,|\, 0], \mathbb{P}[1 \,|\, 0], \mathbb{P}[0 \,|\, 1], \mathbb{P}[1 \,|\, 1]$

Real System: ${f R}$

Real System: ${f R}$

Mockup System: M

Real System: ${f R}$

Mockup System: M

Real System: ${f R}$

Mockup System: M

Real System: **R**

Mockup System: M

Real System: ${f R}$

Mockup System: M

Real System: **R**

Mockup System: **M**

Real System: ${f R}$

Mockup System: M

$$\mu(z)[s^+] = \mathbb{P}[s^+ \mid z]$$
$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+ \mid Z^t = z]$$

16

Recap

Start with one agent

Arbitrarily fix a model m^k

Split hard problem:

- Markov chain ${f R}$ \Longrightarrow consistent predictor μ
- MDP \mathbf{M} \Longrightarrow optimal strategy σ

EEEs are fixed points of:

Stochastic Game

18

Stochastic Game

Stochastic Game

$$u_1(x_1, a_1, s_1^+), \delta_1$$

Empirical-evidence Equilibrium

 m^{k_1} and m^{k_2} fixed

 $(\mu_1,\sigma_1,\mu_2,\sigma_2)$ is an empirical-evidence equilibrium (EEE)if:

- μ_1 is consistent with ${\bf R}$
- μ_2 is consistent with ${f R}$

- σ_1 is optimal for \mathbf{M}_1
- σ_2 is optimal for \mathbf{M}_2

Empirical-evidence Equilibrium

 m^{k_1} and m^{k_2} fixed

 $(\mu_1, \sigma_1, \mu_2, \sigma_2)$ is an ε empirical-evidence equilibrium (ε EEE)if:

- μ_1 is consistent with \mathbf{R}
- μ_2 is consistent with ${f R}$

- σ_1 is ε optimal for \mathbf{M}_1
- σ_2 is arepsilon optimal for \mathbf{M}_2

EEE vs Nash

- optimization complexity fixed by agent not opponents
- always implementable
- · each agent knows when at equilibrium
- less intrinsic to the problem

Existence of ε EEEs

Theorem

For any m^{k_1} and m^{k_2} , there exists an arepsilon EEE.

Existence of ε EEEs

Theorem

For any m^{k_1} and m^{k_2} , there exists an ε EEE.

Proof.

- ε and Gibbs distribution $\implies \mu_i \mapsto \sigma_i$ is a function
- $\mu \mapsto \mu$ is a continuous function
- set of predictors is compact and convex
- Brouwer's fixed point theorem

Theorem

For any m^{k_1} and m^{k_2} , there exists a EEE.

Theorem

For any m^{k_1} and m^{k_2} , there exists a EEE.

Proof.

- $\mu \mapsto \mu$ is a closed-graph correspondence
- set of predictors is compact and convex
- Kakutani's fixed point theorem

Characterization of EEEs New

Theorem

Exogenous EEEs in perfect-monitoring repeated games yield correlated equilibria of the underlying one-shot game.

Repeated game:

Stochastic game without a state

Correlated equilibrium:

Nash equilibrium with common source of randomness

Recap

- multiagent EEE identical to single agent
- each agent arbitrarily picks a model m^k
- EEEs always exist
- EEEs induce correlated equilibria in repeated games

Asset Management Example

```
State holdings x_i \in \llbracket 0, M \rrbracket Action sell one, hold, or buy one a_i \in \{-1, 0, 1\} Signal price p \in \{\text{Low}, \text{High}\} Dynamic x_i^+ = x_i + a_i Stage cost p \cdot a_i Nature market trend w \in \{\text{Bull}, \text{Bear}\} Model depth 0
```

Iterative Process

$$\mbox{Update Rule} \quad \mu_i^{r+1} = (1-\alpha^r)\mu_i^r + \alpha^r(\tilde{\mu}_i - \mu_i^r)$$

26

Theoretical Predictor

$$\mbox{Update Rule} \quad \mu_i^{r+1} = (1-\alpha)\mu_i^r + \alpha(\tilde{\mu}_i - \mu_i^r)$$

27

Empirical Predictor

Update Rule
$$\mu_i^{r+1} = (1-\alpha^r)\mu_i^r + \alpha^r \left(\tilde{\mu}_i^T - \mu_i^r\right) \\ \alpha^r \text{ non-summable, square-summable}$$

Hawk-dove Game

Repeated game

	h	d
Η	-1, -1	6,0
D	0,6	3, 3

Nash equilibria (H, d) and (D, h)

Want correlated equilibrium alternating between the two

Hawk-dove Game

Depth-2 models

Strategies:	Associated predictors:
$\sigma_1(d, h) = 0.999 \mathrm{H} + 0.001 \mathrm{D}$	$\mu_1(d, h) = 0.996 d + 0.004 h$
$\sigma_1(h, d) = 0.999 D + 0.001 H$	$\mu_1(h, d) = 0.996 h + 0.004 d$
$\sigma_1(h,h) = 0.5H + 0.5D$	$\mu_1(h,h) = 0.5 h + 0.5 d$
$\sigma_1(d, d) = 0.5H + 0.5D$	$\mu_1(d, d) = 0.5 h + 0.5 d$

Strategy approximately optimal as δ close enough to one

Generalizes to any convex combination of pure Nash equilibria

Recap

Predictive given models and adaptation rule a EEE emerges
Prescriptive implement desired outcome as a EEE

Extensions

- n agents
- endogenous models $z^+ \sim m(z, x, a, s)$

Empirical-evidence Equilibrium (EEE)

Motivation intractable problem

Definition split into Markov chain and consistent MDPs
Existence fixed-point theorems
Comparison lower computational requirements
Characterization correlated equilibrium in repeated game
Predictive Use model to understand stock price
Prescriptive Use desired outcome encoded as EEE

Publications

- N. Dudebout and J. S. Shamma, "Empirical Evidence Equilibria in Stochastic Games," in 51st IEEE Conference on Decision and Control, Dec. 2012, pp. 5780–5785
- N. Dudebout and J. S. Shamma, "Exogenous Empirical-evidence Equilibria in Perfect-monitoring Repeated Games Yield Correlated Equilibria," in 53rd IEEE Conference on Decision and Control, Submitted
- N. Dudebout and J. S. Shamma, "Empirical-evidence Equilibrium," in Games and Economic Behavior, In Preparation

Endogenous Model

Real System: ${f R}$

Mockup System: ${\bf M}$

Brouwer's Fixed-point Theorem

Kakutani's Fixed-point Theorem

Consistency Formula

$$\mu(z)[s^{+}] = \sum_{w^{+}} \nu(w^{+})[s^{+}] \frac{\sum_{w,x,a} \pi_{\sigma}[w,x,z] \cdot \sigma(z)[a] \cdot n(w,x,a)[w^{+}]}{\sum_{w,x} \pi_{\sigma}[w,x,z]}$$

Consistency

Strong Consistency

$$\mu(z)\left[s^{+}\right] = \lim_{t \to \infty} \mathbb{P}\left[S^{t+1} = s^{+} \mid Z^{t} = z\right]$$

Weak Consistency New 3

$$\mu(z)[s^+] = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{P}[S^{t+1} = s^+ \mid Z^t = z]$$

$$\lim_{t\to\infty}\mathbb{P}\big[Z^t=z\big]>0 \implies \mu(z)\big[s^+\big]=\lim_{t\to\infty}\mathbb{P}\big[S^{t+1}=s^+\,\big|\,Z^t=z\big]$$

Learning Result

Theorem

Suppose the theoretical learning dynamic has a Lyapunov function. For a large enough observation window, the empirical learning dynamic converges.

Proof.

- ODE method for stochastic approximation
- Lyapunov stability of perturbed systems