POMA

A user-friendly web-based workflow for metabolomics and proteomics data analysis

BioC2021 virtual conference

Pol Castellano-Escuder University of Barcelona Aug 6, 2021

Outline

- 1) Scope of the package
- 2) POMA workflow (with examples)
- 3) POMAShiny
- 4) Summary
- 5) Future work...

Scope of POMA

POMA package focuses on <u>statistical analysis</u> of metabolomics and proteomics data

- 1) Directly from sheet (xlsx, csv, etc.) XX
- 2) Extracting quantitative data from Bioconductor objects (MSnSet, SummarizedExperiment, etc.) X
- 3) Using Bioconductor objects directly (++ reproducibility and interoperability) 🗸

POMA workflow: 1) Data formatting

The input format required in all POMA functions in a MSnbase::MSnSet object

Target or "phenotype data"

Features or "concentration data"

x1_methyladenosine 🖣	x1_methylhistamine 🖣	x2_aminoadipate 🖣	x2_deoxyuridine 🛊	x3_nitro_tyros
390953.972	34627.336	141257.364	13115.813	92919
567984.436	52845.928	528024.686	14327.696	8453
558842.755	31507.343	188272.302	12756.865	82712
476949	29397	107076.092	10539	84197
398317	38877	158299.071	11689	89298
411224	25493	136600.498	12425	90133
412250.639	44478.185	235936.477	15692.631	89317
414501.111	27448.735	419826.634	15743.581	83879
416166	34757	351043.702	8418	91736
384549	26494	124681.876	9693	70050

POMA workflow: 2) Preprocessing

All POMA preprocessing methods return a preprocessed MSnSet object

2.1) Missing value imputation

2.2) Normalization

```
msnset_object %>%
  PomaNorm(method = "log_pareto") # log Pareto scaling (default)
```

POMA workflow: 2) Preprocessing

2.3) Outlier detection and cleaning

Detection:

```
msnset_object %>%
   PomaOutliers(do = "analyze")
```

Output:

Clean:

```
msnset_object %>%
   PomaOutliers(do = "clean")
```

Output:

A clean MSnSet object (without sample outliers)

POMA workflow: 2) Preprocessing

Preprocessing output:

```
MSnSet (storageMode: lockedEnvironment)
assayData: 113 features, 208 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: sample 109 sample 11 ... sample 99 (208 total)
  varLabels: Group age at consent ... alcohol consumption (5 total)
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:
- - - Processing information - - -
Imputed (knn): Mon Dec 14 22:07:24 2020
Normalised (log pareto): Mon Dec 14 22:07:25 2020
Outliers removed (euclidean and median): Mon Dec 14 22:07:25 2020
 MSnbase version: 2.16.0
```

POMA workflow: 3) EDA

Include several flexible visualization options such as boxplots, density plots, heatmaps, etc.

Boxplot examples:

Display samples:

Display features:

```
clean_object %>%
  PomaBoxplots(group = "features")
```


POMA workflow: 3) EDA

Boxplot examples:

Display features of interest:

Statistical methods covered by POMA:

- Univariate analysis: T-test, ANOVA, ANCOVA, Wilcoxon test, and Kruskal Wallis
- Multivariate analysis: PCA, PLS-DA, and sPLS-DA
- **Cluster analysis:** *k*-means (clusters projected in a MDS plot)
- Limma: Both designs with and without covariates (from limma Bioconductor package)
- Correlation analysis: Pairwise correlations, correlogram, network correlations and Gaussian Graphical Models
- Regularization methods: LASSO, Ridge, and Elasticnet (allow train/test split)
- Random forest: Classical Random forest algorithm (allow train/test split)
- Rank products: From RankProd Bioconductor package
- Odds ratios: Based on a logistic regression model (two-group analysis)

All POMA functions are focused on <u>simplifying and compacting</u> the analyses, grouping different methodologies of the same class within a single function instead of maintaining many "single purpose" functions

Univariate analysis: 1 function, 4 methods

```
clean_object %>%

# parametric methods
PomaUnivariate(method = "ttest")

PomaUnivariate(method = "anova")

# non-parametric methods
PomaUnivariate(method = "mann")

PomaUnivariate(method = "kruskal")
```

Multivariate analysis: 1 function, 3 methods

```
clean_object %>%

PomaMultivariate(method = "pca")

PomaMultivariate(method = "plsda")

PomaMultivariate(method = "splsda")
```


poma predictive features allow users to split data into random *train* and *test* sets in order to perform an **external cross-validation** (CV)

LASSO for **feature selection**: All data used to create the model and no *test* set created

Ridge regression for **predictive modeling**: External CV using the 20% of the data as *test* set

Random forest for **predictive modeling**: External CV using the 20% of the data as *test* set

1	2	3	class.error
10	7	0	0.4118
2	5	4	0.5455
0	12	4	0.7500

"Top-down" example: From raw data to *limma* model adjusted for covariates

```
raw_MSnSet_data %>%
  PomaImpute(method = "knn") %>%
  PomaNorm(method = "log_pareto") %>%
  PomaOutliers(do = "clean") %>%
  PomaLimma(contrast = "CRC-Polyp", covariates = TRUE)
```

	logFC	AveExpr	t	P.Value	adj.P.Val	В
lysine	-0.2669858	0.0132740	-5.561896	1.0e-07	0.0000093	7.611024
linolenic_acid	-0.3703412	-0.0038798	-5.367994	2.0e-07	0.0000121	6.701319
glyceraldehyde	0.3143264	0.0020721	5.127753	7.0e-07	0.0000254	5.607997
dimethylglycine	-0.3455135	0.0181250	-5.045950	1.0e-06	0.0000279	5.244478
methionine	-0.2224866	0.0160721	-4.693964	4.9e-06	0.0001103	3.732799

POMAShiny

- https://github.com/pcastellanoescuder/POMAShiny

Summary

- POMA provides a robust, reproducible, and user-friendly workflow for the statistical analysis of metabolomics and proteomics data
- POMA allows users to include different covariates in the analysis
- POMA also provides its own interactive Shiny version called POMAShiny
- POMA is an open source tool and everybody is welcome to contribute!

Future work...

- Implementation of more functions and methods focusing mainly on **predictive** and **multivariate** approaches
- Migrate from the MSnbase::MSnSet structures to the SummarizedExperiment ones in order to extend the package to other omics and make the package more interoperable with the Bioconductor environment

Thank you all and welcome to contribute!

Statistics and Bioinformatics Research Group and Biomarkers and Nutritional & Food Metabolomics Research Group from University of Barcelona

Slides available at https://github.com/pcastellanoescuder/POMA_slides_BioC2021

💌 polcaes@gmail.com

pcastellanoescuder.github.io

梦 @polcastellano_

University of Barcelona