Assignment – Caches

due date: June 14th 11:59pm

1. [40 points]

A small 16-bit address space special-purpose processor may be equipped with one of two tiny direct-mapped caches, C1 or C2, each of which has a total capacity of 64 bytes. C1 has a blocksize of 4 bytes (which corresponds to the size of an integer on this system) while C2 has a blocksize of 16 bytes.

- (a) What are the cache parameters (m, C, B, E, S, t, s, b) for C1 and C2?
- (b) Consider that the following sequence of addresses are read, (where the size of the data path equals the blocksize): BA00, BA04, AA08, BA05, AA14, AA11, AA13, AA38, AA09, AA0B, BA04, AA2B, BA05, BA06, AA09, AA11.

For each cache option, specify which references are hits and which are misses, and show the final data content of the cache.

2. [40 points]

Given a cache with parameters little m = 32, little b = 8, little s = 8 and E = 4. Assume that:

sizeof(element)	= 8 bytes		
@x[256]	= AAAA0000		
@y[256]	= AABB0000		
@a[512]	= AAAA8000		
@b[512]	= AABB8000		
value1 and value2 are in registers			

- (a) Fully describe the cache in terms of the cache parameters discussed in class.
- (b) What is the hit rate for each of x, y, a and b?
- (c) What is the overall hit rate?
- (d) What are the cache contents after 1 iteration of the "i" loop?
- (e) What are the cache contents after the completion of the "i" loop?

3. [20 points]

Which of the following cache hierarchies will provide better AMAT?

Hierarchy A	hit time (cycles)	hit rate	Hierarchy B	hit time (cycles)	hit rate
L1 cache	2	25%	L1 cache	2	50%
L2 cache	10	80%	L2 cache	5	65%
L3 cache	80	95%	L3 cache	20	80%
Main memory	500		Main memory	500	

(b)

* BA = 1011 1010 00

* AA = 1010 1010 00

C_1	tag	set	ask	get	м/н
1	ВА	0	0	[0-3]	M
2	BA	1	0	[0-3]	M
3	AA	2	٥	[0-3]	M
4	BA	1	1	[0-3]	Н
5	AA	5	0	[0-3]	М
6	AA	4	1	[0-3]	М
7	AA	4	3	[0-3]	Н
8	AA	14	0	[0-3]	М
9	AA	า์	1	[0-3]	Н
10	AA	2	3	[0-3]	Н
1(BA	1	0	[0-3]	Н
12	AA	10	3	[0-3]	м
13	BA	1	1	[0-3]	H
14	BA	1	2	[0-3]	Н
15	AΑ	2	1	[0-3]	Н
16	ΑA	4	1	[0-3]	H
			l		

C2	tag	set	ask	get	M/H
1	BA	0	0	[0-15]	М
2	BA	٥	4	[0-5]	Н
3	AΑ	0	8	[0-15]	Μ
4	ВА	0	5	[0-15]	Μ
5	ΑA	1	4	[0-15]	М
6	AA	1	1	[0-15]	Н
7	AA	1	3	[0-15]	Н
8	AA	3	8	[0-15]	Μ
9	AA	0	q	[0-15]	Μ
10	AA	0	(1	[0-15]	Н
1(BA	٥	4	[0-15]	м
12	AΑ	2	11	[0-15]	м
13	ВА	0	S	[0-15]	Н
14	BA	0	6	[0-15]	Н
15	AΑ	0	9	[0-15]	M
16	AΑ	1	1	[0-15]	H

• C'	Łag	block
Set o	BA	[0-3]
Set 1	₿A	[0-3]
Set 2	ΑÁ	[0-3]
Set 4	ΑA	[0-3]
Set 5	ΑA	[0-3]
Set 10	AA	[0-3]
Set 14	AΑ	[0-3]

2. (a) m C B E S t 5 b
32 262144 256 4 256 16 8 8

- (b) χ, y, a, b Hit rate: $\frac{31}{32} = 96.875\%$
- (c) overall Hit rate: $1 \frac{6}{192} = \frac{186}{192} = 96.875\%$

(d)

tag block

Set 0 { AAAA 7[0~31]

AABB 4[0~31]

tag block
Set 128 { AAAA a[0~31]
AABB b[0~31]

(e)

· Hierarchy A

AMAT =
$$2 + (1 - 0.25) \times (10 + (1 - 0.8) \times (80 + (1 - 0.95) \times (500)))$$

= 25.25

· Hierarchy B

AMAT =
$$2 + (1 - 0.5) \times (5 + (1 - 0.65) \times (20 + (1 - 0.8) \times (500)))$$

= 25.5

So, Hierarchy A provide better AMAT than Hierarchy B.