

Statistical Natural Language Processing

Lecture 10: Named Entity Recognition

Dr. MomtaziAmirkabir University of Technology

- Named Entity Recognition
- 2 MaxEnt Classification
- 3 Sequential Modeling
- 4 Evaluation

- Named Entity Recognition
- 2 MaxEnt Classification
- 3 Sequential Modeling
- 4 Evaluation

Identify and classify names in text

- Factual information and knowledge are normally expressed by named entities
 - Who, Whom, Where, When, ...
- Question answering systems are looking for named entities to answer users' questions
- Named entity recognition is the core of the information extraction systems

- Finding the important information of an event from an invitation
 - Date, Time, Location, Host, Contact person
 - Finding the main information of a company from its reports
 - Founder, Board members, Headquarters, Profits
 - Finding medical information from medical literature
 - Drugs, Genes, Interaction products
 - Finding the target of sentiments
 - Products, Celebrities

The Los Altos Robotics Board of Directors is having a potluck dinner Friday January 6, 2012 and FRC (MVHS seasons. You are back and it was a

Create New iCal Event... Show This Date in iCal...

and the upcoming Botball agle Strike Robotics) of these dinners three years

Copy

9

- Finding named entities in a text
- Classifying them to the corresponding classes

"Steven Paul Jobs, co-founder of Apple Inc, was born in California."

"Steven Paul Jobs, co-founder of Apple Inc, was born in California."

"Steven Paul Jobs, co-founder of Apple Inc, was born in California."

Named Entity Classes

10

- Person
 - Person names
- Organization
 - Companies, Government, Organizations, Committees, ...
- Location
 - Cities, Countries, Rivers, ...
- Date and time expression
- Measure
 - Percent, Money, Weight, ...
- Religious
- Book title
- Movie title
- Drug name

NER Task

11

Assigning a label to each token of the text

Steven PER Paul PER Jobs PER co-founder of Apple ORG **ORG** Inc was born in LOC California

Steven **B-PER** Paul I-PER Jobs I-PER co-founder of Apple B-ORG Inc I-ORG was born in **B-LOC** California

■ IO vs. IOB Encoding

John PER
Shows O
Mary PER
Hermann PER
Hesse PER
's O
book O
. O

John	B-PER
Shows	O
Mary	B-PER
Hermann	B-PER
Hesse	I-PER
's	O
book	O

- Although IOB is more accurate, most of the systems use IO for the following reasons
 - IO is much faster than IOB
 - □ The above case happens very rarely. Even in such cases achieving correct results with IOB is difficult and unlikely

13

Ambiguity between named entities and common wordsMay

- Ambiguity between named entity types
 - □ Washington (Location or Person)

Outline

14

- Named Entity Recognition
- 2 MaxEnt Classification
- 3 Sequential Modeling
- 4 Evaluation

- A feature f links some observed aspects of data d with a class c that we want to predict
- A feature specifies
 - A matching function of properties of the input data
 - A particular class
- The function returned value is 0 or 1

$$f_i(c,d) \equiv [\Phi(d) \wedge c = c_i]$$

⇒ Each feature picks out a data subset that matches the conditions and suggest a label for it.

Making Features from Data

$$f_i(c,d) \equiv [\Phi(d) \wedge c = c_j]$$

"Steven Paul Jobs, co-founder of Apple Inc, was born in California."

PER

ORG

LOC

Example

$$f_1(c,d) \equiv [w_{-1} = in \land isCapitalized(w) \land c = LOC]$$

$$f_2(c,d) \equiv [w_{-2} = founder \land w_{-1} = of \land isCapitalized(w) \land c = ORG]$$

- Each feature is assigned a positive or negative weight:
 - A positive weight means that the defined matching function is likely to be effective
 - A negative weight means that the defined matching function is likely to be ineffective

Feature Weighting

$$f_i(c,d) \equiv [\Phi(d) \wedge c = c_j]$$

"Steven Paul Jobs, co-founder of Apple Inc, was born in California."

PER

ORG

LOC

Example

1.6
$$f_1(c,d) \equiv [w_{-1} = in \land isCapitalized(w) \land c = LOC]$$

0.7
$$f_2(c,d) \equiv [w_{-2} = founder \land w_{-1} = of \land isCapitalized(w) \land c = ORG]$$

-1.1 $f_3(c,d) \equiv [w_{-1} = by \land isCapitalized(w) \land c = LOC]$

Feature-based Linear Classification

- For each input data item, find the features that matches the data
- 2 Vote for the class associated with that matching function in the feature set based on the feature weights
- 3 Calculate the overall vote for each class

$$vote(c) = \sum \lambda_i f_i(c, d)$$

4 Choose the class with the maximum vote

20

$$\hat{c} = \operatorname{argmax}_{c_j} P(c_j | d, \lambda)$$

$$P(c_{j}|d,\lambda) = \frac{exp\sum_{i}\lambda_{i} \cdot f_{i}(c,d)}{\sum_{c_{j}} exp\sum_{i}\lambda_{i} \cdot f_{i}(c_{j},d)}$$
Normalizes votes

Makes votes

- Defining features $f_i(c, d)$
 - Features are often defined by try-and-error on development set
 - □ They are added during the model development to target errors

- Choosing weighting parameters λ_i
 - Parameters are chosen on the way that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \sum_{i=1}^{n} logP(c_i|d_i)$$

 It is done by using one of the available numerical optimization packages

- Named Entity Recognition
- 2 MaxEnt Classification
- 3 Sequential Modeling

4 Evaluation

- Similar to a normal classification task
 - Feature Selection
 - Algorithm

24

- Many of the NLP techniques should deal with data represented as sequence of items
 - Characters, Words, Phrases, Lines, ...

警察枪杀了那个逃 BIBIBBBBI

 $I_{[PRP]}$ $saw_{[VBP]}$ $the_{[DT]}$ $man_{[NN]}$ $on_{[IN]}$ $the_{[DT]}$ $roof_{[NN]}$.

Steven Paul Jobs, co-founder of Apple Inc, was born in California.

PER PER O O O ORG ORG O O O LOC

- Making a decision based on the
 - Current Observation
 - Surrounding observations
 - Previous decisions

Features

Word the: the \rightarrow DT

Prefixes unbelievable: un- \rightarrow JJ

Suffixes slowly: -ly \rightarrow RB

Capitalization Stefan: $[CAP] \rightarrow NNP$

Word shapes 35-year: $d-x \rightarrow JJ$

Features

Word Germany: Germany
POS tag Washington: NNP
Capitalization Stefan: [CAP]
Punctuation St.: [PUNC]
Lowercased word Book: book
Suffixes Spanish: -ish
Word shapes 1920-2008: dddd-dddd

List lookup

- Extensive list of names are available via various resources
- The name lists include lists of
 - Entities
 - Organisation, government, airline, educational, ...
 - Location, continent, country, state, city, ...
 - Person first name, last name, ...
 - Entity cues
 - Typical words in organization; e.g., "Limited" or "Incorporated"
 - Person title; e.g., "Mister", "Lord"
- The terms "gazetteer", "lexicon" and "dictionary" are often used interchangeably with the term "list"
 - Gazetteer originally referred to a large list of place names but it became a more general terminology in the NER task

Context Words

29

NER

- Sherwood Forest
- Portobello Street
- Mr Smith
- □ Apple Inc
- □ John earns 3000 €
- □ John joined IBM

Learning Model

30

Training

 $T_{n+1} \rightarrow ? \longrightarrow$

$$F_{n+1}$$

$$\longrightarrow$$

$$C_{n+1}$$

- Also known as Conditional Markov Model (CMM)
- The classifier decision is conditioned on the evidence from observations and previous decisions

Conditional Random Field (CRF)

Another alternative for sequence modeling

$$P(c_1^n|d_1^n,\lambda) = \frac{exp\sum_i \lambda_i \cdot f_i(c,d)}{\sum_{c'} exp\sum_i \lambda_i \cdot f_i(c',d)}$$

- A whole-sequence of labels (classes) is conditioned to the whole-sequence of data items rather than a chaining of local models
 - ☐ The space of *c*/'s is now the space of sequences
- Training is slower than MEMM, but
 - CRFs avoid some of the competition biases in MEMM
 - □ In practice usually work much the same as MEMM

Dealing with low frequency words

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

- Named Entity Recognition
- 2 MaxEnt Classification
- 3 Sequential Modeling
- 4 Evaluation

Evaluation is done per entity and not per token

Steven	PER
Paul	PER
Jobs	PER
,	0
co-founder	0
of	0
Apple	ORG
Inc	ORG
,	0
was	0
born	0
in	0
California	LOC
	0

Steven	PER
Paul	PER
Jobs	PER
0000	0
,	O
co-founder	0
of	0
Apple	0
• •	
Inc	0
	0
,	
was	0
born	0
in	0
III	U
California	LOC
	0
<u> </u>	

$$P = \frac{2}{2} = 100\%$$

$$R = \frac{2}{3} = 66\%$$

■ Problem with boundary Errors

Steven Paul Jobs	PER PER PER
,	0
co-founder	0
of	0
Apple	ORG
Inc	ORG
,	0
was	0
born	0
in	0
California	LOC
	0

Steven Paul Jobs , co-founder of Apple	PER PER O O O O LOC
Inc	LOC
,	0
was	0
born	0
in	0
California	LOC
	0

$$P = \frac{1}{3} = 33\%$$

$$R = \frac{1}{3} = 33\%$$

- The boundary error is counted as both fp and fn
- Selecting nothing is even better!!!
- Same problem for wrong entity types

- Exact matching only accept the items whose both entity boundary and type are correct
- Alternative option is accepting items regardless their boundary or types or both
 - Exact match: detected entity has correct type and boundary
 - Type match: detected entity has correct type but wrong boundary
 - Boundary match: detected entity has correct boundary but wrong type

- Speech and Language Processing
 - □ Chapter 6: MaxEnt & HMM
 - □ Chapter 22.1: NER
- Named Entities

