Задача

Главной задачей данной работы является создание потокового кроссбара NxM. Данное устройство имеет N входных портов, и М выходных, его целью является обеспечение связи между любыми входными и выходными портами.

При разработке кроссбара было выделено три основных подмодуля

- Коммутационная сеть отвечает непосредственно за соединение входных портов с выходными
- Планировщик данный модуль создает управляющие сигналы для коммутационной сети и вычисляет выходные управляющие сигналы для кроссбара
- Round robin реализует round robin арбитр для каждой выходной очереди

Конфигурационные параметры

T DATA WIDTH

S_DATA_COUNT

M_DATA_COUNT

T_ID_WIDTH log2(S_DATA_COUNT)

T_DEST_WIDTH log2(M_DATA_COUNT)

разрядность входных, выходных данных количество master устройств количество slave устройств для обозначения номера master

для обозначения номера slave

Порты ввода

S_data_i [T_DATA_WIDTH] [S_DATA_COUNT] матрица входных данных

S dest i [T DEST WIDTH] [S DATA COUNT] каждый мастер выбирает на какого slave передавать данные

S_last_i [S_DATA_COUNT]

массив master, если стоит 1, то данный байт последний

S valid i [S DATA COUNT]

массив master, если стоит 1, то запрос на передачу пакета

M_ready_i [M_DATA_COUNT]

массив разрешения на передачи от slave, аналогично s_valid_i

Порты вывода

- M_data_o [T_DATA_WIDTH] [M_DATA_COUNT] матрица выходных данных
- M_id_o [T_ID_WIDTH] [M_DATA_COUNT] Сигнал для slave какой мастер передает информацию
- M_last_o [M_DATA_COUNT] массив флагов последнего фрагмента от master
- M_valid_o [M_DATA_COUNT]

m_ready_i

S_ready_o [S_DATA_COUNT]

s_valid_i

Общая схема кроссбара

Основные модули

Коммутационная сеть

- Входные сигналы
 - o S_data_i Массив входных данных
 - о Grant массив управляющих сигналов
- Выходные сигналы
 - о M_data_o массив выходных данных

Коммутационная сеть реализует передачу данных с входных портов на выходные. Данная сеть связывает каждый входной порт с каждым выходным. Выбор на какой именно порт будут переданы данные определяется управляющими сигналами grant. Сигнал grant представляет собой шину, размером S_DATA_COUNT * M_DATA_COUNT, каждый бит шины подключен к своей точке соединения входного и выходного порта, если бит равен одному, то данные с входа передаются на выход, иначе передача блокируется. Данные сигналы гарантируют что на один выходной порт будут передаваться данные только с одного входного.

Планировщик

• Входные сигналы

- o S_valid_i массив master, если стоит 1, то данные master посылает запрос на передачу пакета
- o S_dest_i каждый мастер выбирает на какого slave передавать данные, выставляя его номер в двоичном виде
- о M_ready_i массив разрешения на передачи от slave, если установлена единица, то данный slave готов к передаче данных.
- S_last_i массив master, если установлена единица, то это флаг завершения транзакции от i-го master

• Промежуточные значения

- Request_mask данный провод по сути является битовой маской для каждого выходного порта данных. Если і-й вход готов к передаче и порт, к которому он обращается также готов передавать данные, то устанавливается единица. Иначе устанавливается ноль.
- о Last_mask данный провод так же является битовой маской для каждого выходного порта данных. Если на і-й позиции входного сигнала s_last_i установлена единица, то устанавливается единица. Иначе устанавливается ноль.

• Выходные сигналы

request_mask_i

- M_valid_о массив slave, если на i-й позиции установлена единица, то это значит, что данный выходной порт готов к приему входных данных
- S_ready_o массив master, если на i-й позиции установлена единица, то это значит, что данный входной порт запрашивает передачу входных данных у выходного порта
- M_last_o массив slave, если на і-й позиции установлена единица, то это является символом конца передачи данных
- o Grant o матрица управляющих сигналов, которые подаются на коммутационную сеть
- M_id_o массив slave, на каждой позиции передаются номера входного порта, который передает данные на i-й выходной

Данный модуль реализует основную логику работы кроссбара. Блок комбинационной логики на каждом такте формирует новые значения m_valid_o, s_ready_o, request_mask, last_mask. Сигналы request_mask, last_mask далее передаются на модули round robin, количество которых, равно количеству выходных портов. По окончании вычислений данные модули формируют выходную матрицу управляющих сигналов grant, а так же сигналы m_last_o и m_id_o.

clk rst s_last_i FSM reg state m_id_o

grant

Round-robin

- Входные сигналы
 - o S_last_i входная шина, которая показывает, какие входные порты могут передавать данные на данную выходной порт
 - o Request_mask_i входная шина, которая показывает, какие входные порты выставили флаг завершения передачи для данного выходного.
- Промежуточные значения
 - Reg state [T_ID___WIDTH] регитр, который хранит состояние конечного автомата, значение регистра номер входного порта, с которым установлена связь
- Выходные значения
 - о M last о пришел ли сигнал о завершении передачи данных с порта передачи
 - о M_id_о с какого порта передаются данные (его номер)
 - o Grant массив управляющих сигналов, если i-й входной порт передает данные, то на i-й позиции массива устанавливается единица, которая разрешает передачу данных на выходной порт

Данный модуль реализует логику арбитра round-robin. На каждом такте он будет вычислять текущее состояние автомата и вычислив его формировать выходные сигналы. При сбросе кроссбара (сигнал rst) регистр, который хранит текущее состояние конечного автомата, будет сброшен.

Переход из оного состояние в следующее осуществляется при условии, что закончена текущая транзакция (выставлен сигнал last), тогда автомат переходит в следующее состояние. Также текущее значение может приходить из вне, в случае, когда установлена связь с новым входным портом.

От действующего состояния будут перебираться входные порты так, что если первый встречный порт готов к передаче, то он захватит линию передачи и в сигнал state установится его номер, как только передача будет закончена, то к текущему состоянию прибавиться единица и перебор готовых портов пойдет с него. Тем самым обеспечивается приоритетный доступ (по индексу) без голодания.

Трюки и решения

- При разработке данного модуля пришлось чуть изменить интерфейс, а именно в verilog не поддерживается в качестве интерфейса массив сигналов, поэтому вместо двумерных массивов используются одномерные массивы того же размера.
- Модуль реализован по классической схеме data path, control unit