EXP 2: Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.

AIM:

To run a basic Word Count MapReduce program.

Procedure:

Step 1: Create Data File:

Create a file named "word_count_data.txt" and populate it with text data that you wish to analyse.

Login with your hadoop user.

nano word count.txt

nano mapper.py

Output: Type the below content in word count.txt

Step 2: Mapper Logic - mapper.py:

Create a file named "mapper.py" to implement the logic for the mapper. The mapper will read input data from STDIN, split lines into words, and output each word with its count.

```
# Copy and paste the mapper.py code

#!/usr/bin/env python3
# import sys because we need to read and write data to STDIN and STDOUT
#!/usr/bin/python3
import sys
for line in sys.stdin:
   line = line.strip() # remove leading and trailing whitespace
   words = line.split() # split the line into words
```

print('%s\t%s' % (word, 1))

for word in words:

Step 3: Reducer Logic - reducer.py:

Create a file named "reducer.py" to implement the logic for the reducer. The reducer will aggregate the occurrences of each word and generate the final output.

nano reducer.py
Copy and paste the reducer.py code

reducer.py

```
#!/usr/bin/python3 from operator import itemgetter import sys current word =
```

```
None current count = 0 word =
None for line in sys.stdin:
line = line.strip()
                     word,
count = line.split('\t', 1)
                           try:
    count = int(count)
except ValueError:
continue
current word == word:
current count += count
else:
    if current word:
       print( '%s\t%s' % (current word, current count))
                           current word = word if
current count = count
                            print( '%s\t%s' %
current word == word:
(current word, current count))
```

Step 4: Prepare Hadoop Environment:

Start the Hadoop daemons and create a directory in HDFS to store your data.

```
start-all.sh hdfsdfs -mkdir /word_count_in_python hdfsdfs -copyFromLocal /path/to/word_count.txt/word_count_in_python
```

Step 6: Make Python Files Executable:

Give executable permissions to your mapper.py and reducer.py files. chmod 777 mapper.py reducer.py

Step 7: Run Word Count using Hadoop Streaming:

Download the latest hadoop-streaming jar file and place it in a location you can easily access.

Then run the Word Count program using Hadoop Streaming.

```
hadoop jar /path/to/hadoop-streaming-3.3.6.jar \
input /word_count_in_python/word_count_data.txt \
-output /word_count_in_python/new_output \
-mapper /path/to/mapper.py \
-reducer /path/to/reducer.py
```

Step 8: Check Output:

Check the output of the Word Count program in the specified HDFS output directory.

hdfs dfs -cat /word_count_in_python/new_output/part-00000

Result:

Thus, the program for basic Word Count Map Reduce has been executed successfully.