Appendix Table A-14. Verify the result by using the general equation for finding enthalpies of reaction from enthalpies of formation.

a.
$$C_2H_6(g) + O_2(g) \longrightarrow$$

b. $C_6H_6(l) + O_2(g) \longrightarrow$

18. The enthalpy of formation of ethanol, C_2H_5OH , is -277.0 kJ/mol at 298.15 K. Calculate the enthalpy of combustion of one mole of ethanol, assuming that the products are $CO_2(g)$ and $H_2O(l)$. (Hint: See Sample Problem C.)

Driving Force of Reactions

SECTION 2 REVIEW

- **19.** Would entropy increase or decrease for changes in state in which the reactant is a gas or liquid and the product is a solid? What sign would the entropy change have?
- **20.** How does an increase in temperature affect the entropy of a system?
- **21.** What combination of ΔH and ΔS values always produces a negative free-energy change?
- **22.** Explain the relationship between temperature and the tendency for reactions to occur spontaneously.

PRACTICE PROBLEMS

- **23.** A reaction has $\Delta H = -356$ kJ and $\Delta S = -36$ J/K. Calculate ΔG at 25°C to confirm that the reaction is spontaneous.
- **24.** A reaction has $\Delta H = 98$ kJ and $\Delta S = 292$ J/K. Investigate the spontaneity of the reaction at room temperature. Would increasing the temperature have any effect on the spontaneity of the reaction?
- **25.** A reaction has $\Delta H = -76$ kJ and $\Delta S = -117$ J/K. Calculate ΔG for the reaction at 298.15 K. Is the reaction spontaneous?
- **26.** The gas-phase reaction of H_2 with CO_2 to produce H_2O and CO has $\Delta H = 11$ kJ and $\Delta S = 41$ J/K. Is the reaction spontaneous at 298.15 K? What is ΔG ?
- **27.** Based on the following values, compute ΔG values for each reaction and predict whether the

reaction will occur spontaneously. (Hint: See Sample Problem D.)

- a. $\Delta H = +125 \text{ kJ}, T = 293 \text{ K},$ $\Delta S = 0.0350 \text{ kJ/K}$
- b. $\Delta H = -85.2 \text{ kJ}, T = 127^{\circ}\text{C},$ $\Delta S = 0.125 \text{ kJ/K}$
- c. $\Delta H = -275 \text{kJ}, T = 773 \text{ K},$ $\Delta S = 0.450 \text{ kJ/K}$
- **28.** The ΔS^{θ} for the reaction shown, at 298.15 K, is 0.003 00 kJ/(mol•K). Calculate the ΔG^{θ} for this reaction, and determine whether it will occur spontaneously at 298.15 K.

$$C(s) + O_2(g) \longrightarrow CO_2(g) + 393.51 \text{ kJ}$$

MIXED REVIEW

- **29.** When graphite reacts with hydrogen at 300 K, ΔH is -74.8 kJ and ΔS is -0.0809 kJ/K. Will this reaction occur spontaneously?
- **30.** How might you change reaction conditions to induce an endothermic reaction that does not occur naturally?
- **31.** The diagram below represents an interpretation of Hess's law for the following reaction.

$$\operatorname{Sn}(s) + 2\operatorname{Cl}_2(g) \longrightarrow \operatorname{SnCl}_4(l)$$

Use the diagram to determine ΔH for each step and the net reaction.

$$Sn(s) + Cl_2(g) \longrightarrow SnCl_2(s)$$
 $\Delta H = ?$
 $SnCl_2(l) + Cl_2(g) \longrightarrow SnCl_4(s)$ $\Delta H = ?$
 $Sn(s) + 2Cl_2(g) \longrightarrow SnCl_4(l)$ $\Delta H = ?$

32. The standard enthalpy of formation for sulfur dioxide gas is -296.8 kJ/mol. Calculate the amount of energy given off in kJ when 30.0 g of $SO_2(g)$ is formed from its elements.