1. MEĐUISPIT IZ NUMERI ČKE MATEMATIKE

30.03.2009.

- 1. (4 boda)
 - a) (2 boda) Odredite vrijednost najvećeg pozitivnog normaliziranog IEEE floating point broja jednostruke preciznosti.
 - b) (2 boda) Dokažite da vrijedi sljedeća tvrdnja

$$\left(1 + \frac{1}{n}\right)^n = e + O\left(\frac{1}{n}\right) \quad n \to \infty.$$

UPUTA: Koristiti
$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, \forall n \ge 2.$$

2. (4 boda) Gaussovom metodom eliminacija s parcijalnim pivotiranjem riješite sustav Ax = b i nađite matrice P, L i U tako da je PA = LU ako je:

$$A = \begin{bmatrix} 2 & 1 & 5 & 0 \\ 1 & 2 & 1 & 3 \\ 4 & 2 & 0 & 1 \\ 1 & 5 & 2 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 6 \\ -3 \\ 1 \\ -3 \end{bmatrix}.$$

- 3. (4 boda) Neka je $A \in \mathbb{R}^{n \times n}$ simetrična matrica.
 - a) (2 boda) Dokažite da je $\sigma(A) \subset \mathbb{R}$, gdje je $\sigma(A)$ spektar matrice A..
 - b) (2 boda) Dokažite da su svojstveni vektori matrice A koji pripadaju različitim svojstvenim vrijednostima međusobno ortogonalni.
- 4. (4 boda) Zadana je matrica

$$A = \begin{bmatrix} 1 & -1 & 2 & -2 \\ -1 & 10 & -5 & -4 \\ 2 & -5 & \alpha & 3 \\ -2 & -4 & 3 & 10 \end{bmatrix}, \ \alpha \in \mathbb{R}.$$

- a) (3 boda) Za koje vrijednosti $\alpha \in \mathbb{R}$ postoji rastav Choleskog matrice A_{α} ?
- b) (1 bod) Izračunajte rastav Choleskog za zadanu matricu i $\alpha=30.$

Okrenite!

- 5. (9 bodova) U sljedećem zadatku zaokruži Točno odnosno Netočno. Svaki točan odgovor nosi 1 bod, netočan -1, a neodgovoren 0 bodova. Ipak, ukupan broj bodova postignut na ovom zadatku je ≥ 0 .
 - 1. Pozitivno definitne matrice su regularne. Točno. Netočno.
 - 2. Neka su zadana dva realna broja egzaktno prikaziva u računalu. Rezultat proizvoljne aritmetične operacije nad tim brojevima je uvijek također egzaktno prikaziv u računalu. Točno. Netočno.
 - 3. Neka je $A \in \mathbb{R}^{n \times n}$ regularna matrica. Tada je matrica $A^T A$ simetrična pozitivno definitna. Točno. Netočno.
 - 4. Neka je $A \in \mathbb{R}^{n \times n}$, $n \ge 2$ i $\det(A) > 0$. Tada je matrica A pozitivno definitna. Točno. Netočno.
 - 5. Neka je f(n)=7n+8, te g(n)=7n. Tada je $f(n)=\mathrm{o}(g),\ n\to\infty$. Točno. Netočno.
 - 6. Matrica $A \in \mathbb{R}^{n \times n}$ koja ima n linearno nezavisnih svojstvenih vektora može se dijagonalizirati. Točno. Netočno.
 - 7. Svaka matrica $A \in \mathbb{R}^{n \times n}$ koja ima nulu na glavnoj dijagonali je singularna. Točno. Netočno.
 - 8. Determinanta svake permutacijske matrice $P \in \mathbb{R}^{n \times n}, n \geq 2$ jednaka je 1. Točno. Netočno.
 - 9. Sustav Ax = b, gdje je $A \in \mathbb{R}^{n \times n}$ regularna matrica i $b \in \mathbb{R}^n$, $n \geq 2$ rješavamo Gaussovom metodom eliminacija. Broj potrebnih aritmetičkih operacija za rješavanje pripadnih trokutastih sustava Ly = b i Ux = y veći je od broja operacija potrebnih za LU faktorizaciju. Točno. Netočno.

Napomena: Vrijeme pisanja je 90 minuta.

Dozvoljena je upotreba džepnog kalkulatora (koji nije HP).