

Notion de dimension

Dimension linéaire

Dimension topologique

Dimension fractale

Dimension linéaire

- nb de coordonnées nécessaires pour situer un point dans l'espace
- Exemple :
 - [0,1] = 1 coordonnée => dimension = 1
 - $[0,1]^2 = 2$ coordonnées => dimension = 2
- Pb : courbe de Peano
 - => une seule coordonnée suffit pour localiser un point de [0,1]²

Dimension topologique

D_T(Y)= sup {n tq ∃ 1 voisinage V ⊂ Y avec V homéomorphe à un voisinage de ℝⁿ}

Mais alors, l'ensemble de Cantor?

Dimension fractale

Rq: N(r) = 1/r

Dimension fractale

$$r=1/2$$
 $N(r)=4=(1/2^2)$

$$r=1/4$$
 $N(r)=16=(1/4^2)$

 $RQ: N(r) = 1/r^2$

Dimension fractale

- Nous observons la propriété suivante
- $N(r) r^d = 1$ (1)
- Avec d = dimension de l'objet
- (1) peut être vu comme une reformulation de la dimension
- (1) peut encore être explicité sous la forme

$$D = \frac{\ln(N(r))}{\ln\left(\frac{1}{r}\right)}$$

Dimension fractale : définition

$$D_{F}(Y) = \lim_{\epsilon \to 0} \left[\sup \frac{\ln(N(\epsilon, Y))}{\ln(\frac{1}{\epsilon})} \right]$$

 $N(\varepsilon, Y)$ = nb de boules de diamètre ε nécessaires pour recouvrir Y

Dimension fractale = dimension de recouvrement

Remarque

- Pour un objet « classique »

Cas de Cantor

$$D_F = \frac{\ln(2)}{\ln(3)} = \frac{\ln(4)}{\ln(9)} = 0,63$$

$$D_F = \frac{\ln(4)}{\ln(3)} = \frac{\ln(16)}{\ln(9)} = 1,26$$

Exemple

Propriétés

- La dimension fractale est :
 - une dimension non entière
 - Une dimension de recouvrement
 - Quantifie la capacité d'un objet à remplir l'espace dans lequel il est plongé.
 - On peut avoir des courbes de dimension > 2
- $D_{\mathsf{F}}(\mathsf{Y}) \geq D_{\mathsf{T}}(\mathsf{Y})$

Définition 1 d'une fractale

• Mandelbrot 1983 Un objet Y est une fractale si: $D_F(Y) > D_T(Y)$

Notion géométrique

- La dimension fractale est une notion de recouvrement
- « On voit » d'après la définition qu'une construction récursive est nécessaire
- Mais l'association à des propriétés géométriques n'est pas immédiate
- => On définit une notion plus restrictive mais plus commode d'un point de vue modélisation géométrique

Définition 2 d'une fractale

- Invariance par changement d'échelle
 - Un objet Y est dit invariant par changement d'échelle si
 - ∃ N transformations T_i,...,T_N telles que

$$Y = \bigcup_{i=1}^{N} T_i(Y)$$

Où chaque T_i est un homéomorphisme contractant

Exemple 2 : Les « Julia »

- $F_c(Z) = Z^2 + C$
- En inversant F_c

$$T_1(Z) = \sqrt{Z - c}$$

$$T_2(Z) = -\sqrt{Z-c}$$

$$J_c = T_1(J_c) \cup T_2(J_c)$$

Les IFS: Iterated Function Systems

- Hutchinson 1981 Barnsley 1988
 - Formalisme basé sur l'invariance par changement d'échelle
 - IFS = I = ensemble des transformations traduisant l'invariance par changement d'échelle

$$Y = \bigcup_{i=1}^{N} T_i(Y) \qquad \qquad I = \{\mathsf{T}_i, ..., \mathsf{T}_N \}$$

à I on associe un opérateur T

$$T: C(\mathfrak{R}^n) \to C(\mathfrak{R}^n)$$

$$Y \mapsto T(Y) = \bigcup_{i=1}^{N} T_i(Y)$$

Les IFS: Iterated Function Systems

 On montre qu'il existe un unique objet appelé Fractale (F) tel que

$$F = \bigcup_{i=1}^{N} T_i(F)$$

$$T = \bigcup_{i=1}^{N} T_i$$
 = opérateur de Hutchinson

est contractant dans l'espace des compacts non-vide muni de la distance de Hausdorff (d_H)

Parallèle entre 1 fonction et 1 IFS

- Contexte=
- Ensemble des points de R
- Fonction contractante F
 - $F(x) = \frac{1}{2}x + \frac{1}{2}$
 - Point fixe = 1
 - $F(1) = \frac{1}{2} \times 1 + \frac{1}{2} = 1$
- Pour obtenir le point fixe
 - $F^n(x)$ -> point fixe $(n->\infty)$
 - \blacksquare \forall X

- Contexte =
- Ensemble des compacts de R
- IFS = I = $\{T_1, T_2\}$
 - $T_1(x) = \frac{1}{2} x$
 - $T_2(x) = \frac{1}{2}x + \frac{1}{2}$
 - Point fixe = [0,1]
 - $T([0,1]) = T_1([0,1]) \cup T_2([0,1])$
 - $T_1([0,1])=[0,\frac{1}{2}]$
 - $T_2([0,1])=[\frac{1}{2};1]$
- Pour obtenir le point fixe
 - $T^n(O)$ -> point fixe $(n->\infty)$
 - ∀ O

Visualisation

- O un compact Tⁿ(O) tend vers F
- \bullet O = {x} où x \in Rⁿ
- La Fractale est l'attracteur associé à I noté A(I)