31. BigData – definice, dělení podle struktury a původu, charakteristika, aplikace. Analýza velkých dat – jednotlivé kroky, typy, výhody a výzvy

## . BigData – definice.

Definice:

Soubory dat, jejichž velikost je mimo schopnosti zachycovat, spravovat a zpracovávat data běžně používanými softwarovými prostředky v rozumném čase.

- vychází ze dvou základních předpokladů
  - existuje stálý (rostoucí) a rychlý přísun nových dat
    - v roce 2017 proteklo internetem 1.5 ZB (10<sup>21</sup>) dat
    - pro rok 2022 je odhad 4.8 ZB
    - inovace ve způsobu zpracování
  - cloud computing
    - propůjčení výpočetních serverů
    - umožňuje provádět výpočty kdekoliv a odkudkoliv
  - Umožňuje dynamickou a škálovatelnou analýzu dat

## ÉRA BIG DATA



## dělení podle struktury

### strukturovaná data

- informace formátované a převedené do definovaného datového modelu
- uložené v definovaných polích umožňujících snadný přístup a čtení
- strojová, lidská i organizační data
- snadno analyzovatelná
- např. relační databáze relace, atributy

### nestrukturovaná data

- data v nezpracované podobě, nemají žádný specifický formát
- obtížné na zpracování kvůli komplexnosti a složitosti
- flexibilní, mnoho podob
  - social media příspěvky, chaty, satelitní snímky, prezentace…
- ukládána a analyzována v datových skladech

### částečně strukturovaná data

- na pomezí mezi strukturovanými a nestrukturovanými daty
- příkladem může být digitální fotografie
  - samotný obraz nemá pevně definovanou strukturu
  - obsahuje ale strukturované atributy typu datum a místo pořízení snímku, ID zařízení, ...



## dělení podle původu

## tři hlavní zdroje dat

- stroje
  - senzory sbírající data v reálném čase v průmyslu, automobilech, ...
  - environmentální senzory
  - zařízení sledující zdravotní stav
- lidi
  - social media
  - články, blogy, ...
- organizace
  - transakce v databázích

# STROJOVÁ DATA

- největší zdroj big data
  - velký hadronový urychlovač generuje 40 TB dat každou vteřinu experimentů
  - Boeing 787 produkuje 0,5 TB dat během každého letu
- chytrá zařízení
  - zařízení schopná měřit a produkovat big data (pomocí senzorů)
  - proč chytrá?
    - schopnost připojení k dalším zařízením / sítím
    - autonomní sběr a analýza dat
    - mají povědomí o prostředí
    - internet věcí (internet of things)
    - např. chytré hodinky
      - měření teploty, tepu, kvality spánku, nachozené vzdálenosti, počtu schodů, atd.

      - co když jich každý bude mít víc?

## STROJOVÁ DATA

- zpracování v reálném čase
  - vztahy se zákazníky
  - detekce podvodů
  - monitorování systému
  - okamžitá analýza a reakce
- zpracování se přesouvá za daty
  - In-Situ
- potřeba škálovatelných výpočetních systémů
- - vzdálený monitoring a ovládání průmyslových procesů

# LIDSKÁ DATA

Microsoft **Azure** 

턫 amazon

- lidé vytváří obrovské množství dat na internetu každý den
  - Facebook, Twitter, LinkedIn
  - Instagram, YouTube
  - blogy, komentáře
  - vyhledávání
  - textové zprávy, emaily
  - osobní dokumenty
  - většina dat je textových a nestrukturovaných
    - složité zpracování
    - nelze použít předdefinované datové modely (NE relační databáze)
    - komplikace
      - množství formátů
      - množství dat a jejích rychlý růst
      - potvrzení je časově náročné (sběr, uložení, těžba, čištění a zpracování)









- zpracování několik základních open source frameworků
- nástroje pro zpracování a analýzu jsou vyvíjeny od nuly
  - většina založena na Hadoop
    - zpracování velkého množství dat v distribuovaném výpočetním prostředí
  - často potřeba zpracování dat v reálném čase
    - aktualizace na social media
    - tržní data
    - Apache Storm, Spark, Flink



- ukládání dat
  - NoSQL databáze
  - ukládání dat typicky na výpočetním cloudu
- zpracování po vrstvách
  - těžba a uložení, předzpracování, analýza



neo4i



hadooo

## ORGANIZAČNÍ DATA

- důvěryhodná a užitečná data
- liší se výrazně organizace od organizace
  - transakce, kreditní karty, bankovnictví, akcie, zdravotní záznamy, senzory, atd.
- současné a budoucí použití ale i analýza minulosti
  - > predikce prodejů / úspěchů na základě dat a dění ve světě
- vysoce strukturovaná data
  - datový model
  - transakce, referenční tabulky, vazby + metadata doplňující kontext
  - ukládána v relačních databázích (+ SQL)
- riziko
  - datová sila

# ORGANIZAČNÍ DATA

- hlavní užitek spočívá v kombinaci s ostatními big daty
  - efektivita provozu
  - zvýšené prodeje
  - vylepšený marketing
- Walmart 💢
- zlepšená bezpečnost
- vyšší zákaznická spokojenost
- příklad: UPS, Walmart
- firmy dnes mohutně investují do big data
  - výsledky ve všech sektorech
  - prvotní firmy získaly náskok nad svými konkurenty





### charakteristika

- 3 základní V's
  - objem (volume)
    - množství dat generovaných každou vteřinu
  - různorodost (variety)
    - neustále rostoucí počet forem dat
  - rychlost (velocity)
    - rychlost generování dat
    - rychlost přesouvání dat z jednoho bodu do druhého

# CHARAKTERISTIKA BIG DATA

- další často uváděná V's
  - věrohodnost (veracity)
    - · zaujatost, šum, abnormality v datech
    - nejistota v pravdivost a věrohodnost dat
  - valence (valence)
    - propojovatelnost dat formou grafů

## a nezapomenout na

- hodnotu (value)
  - srdce a lepidlo všech ostatních V's
  - jak z dat získat jejich pravou hodnotu?



https://suryagutta.medium.com/the-5-vs-of-big-data-2758bfcc51d

## Volume (objem)

- zpracování a ukládání velkého objemu dat přináší výzvy
  - škálování
    - horizontální / vertikální / kombinace
    - zajištění kapacity úložiště a výkonu na zpracování dat
  - dostupnost
    - přístup k datům a možnost jejich zpracování
  - bandwidth a výkon
    - přístup k datům v potřebný okamžik

## cílem firem je analýza dat

- zlepšení poskytovaného produktu / služby
- náskok před konkurencí

## Volume



#### Variety (různorodost)

- rostoucí různorodost forem dat
  - textová data, obrazová data, síťová data, geografické mapy, simulace, ...
- různá různorodost
  - strukturovaná různorodost
    - rozdíl ve struktuře dat (EKG vs. novinový článek)
  - nosičová různorodost
    - forma, ve které jsou data získána (audio nahrávka vs. text)
  - sémantická různorodost
    - jak data interpretovat
  - různorodost dostupnosti
    - data generovaná v reálném čase (senzory) nebo uložená (záznamy)
    - dostupná neustále (kamery) nebo jen příležitostně (sondy, satelity)
- hybridní data např. emaily

### Velocity (rychlost)

- rostoucí rychlost vytváření big data
  - z různých zdrojů se liší (aktualizace jednou za den vs. každou sekundu)
- rostoucí rychlost ukládání a analýzy big data (zpracování)
- cílem je zpracování v reálném čase
  - vytvoření reklamy na základě uživatelské historie a zobrazení při hledání
  - pomalá reakce vede ke ztrátě příležitosti
  - např. kempování zajímá mě dnešní počasí, ne počasí, které bylo před rokem
  - např. neštěstí okamžitý zásah záchranných složek
- potřeba zvážit rychlost vytváření i rychlost zpracování dat
  - zpracování může čekat na data
  - data mohou čekat na zpracování
  - rovnováha

### Veracity (věrohodnost)

- odpovídá kvalitě dat
- big data jsou často zašuměná, nejistá nebo nepřesná
  - analýza big data může být jen tak dobrá jako vstupní data
  - hlavní problém u nestrukturovaných dat
- kvalita big data závisí na
  - přesnosti dat
  - spolehlivosti zdroje
  - způsobu vygenerování dat
  - analýze kontextu

 potřeba monitorovat posbíraná data, jejich původ a jak byly dříve analyzovány (× Google Flu Trends)

#### Variety







#### Valence

- propojení dat
  - přímé spojení
    - město stát
    - zaměstnanec zaměstnání
  - nepřímé spojení
    - dva vědci jsou propojeni, protože jsou oba fyzici
- poměr množství propojených dat ku možnému počtu propojení
- postupně se časem zvyšuje
  - může vést ke vzniku nových vzorů skupin -> změna
  - potřeba komplexnější analýzy
  - potřeba modelovat a analyzovat valenci
  - detekce skupin, událostí

### Value (hodnota)

- srdce a lepidlo všech ostatních V's
- pravá hodnota dat
  - resp. potenciální hodnota dat z pohledu informací, které obsahují
    - jak ji získat?
  - big data ztrácí význam, pokud nenesou hodnotu pro toho, kdo je analyzuje

#### Value



#### aplikace

- Cílený marketing
- Doporučovací systémy
- Analýza sentimentu"
  - založená na hodnocení / komentářích uživatelů
    - pozitivní / negativní (NLP)
    - analýza zboží na základě všech recenzí
      - negativní
      - nedoporučovat
    - analýza uživatele na základě jeho recenzí
      - návrh zboží
    - mínění veřejnosti o firmě
      - je potřeba něco změnit?
    - reakce veřejnosti na nastalou událost
      - je potřeba reakce?
    - reakce veřejnosti na nově uvedený produkt
      - je o něj zájem?
- Mobilní reklamy (primárně z GPS)
- Chování skupiny
- Biomedicína
- Big city města

## Analýza velkých dat – jednotlivé kroky, typy, výhody a výzvy

Analytická řešení získávají přehledy a predikují výsledky analýzou datových sad. Aby však bylo možné data úspěšně analyzovat, musí být nejprve uložena, uspořádána a vyčištěna řadou aplikací v integrovaném procesu postupné přípravy:

- **Shromažďování.** Data, která mají strukturovanou, částečně strukturovanou a nestrukturovanou podobu, jsou shromažďována z různých zdrojů z webu, mobilních zařízeních a cloudu. Pak jsou uložena do úložiště datového jezera nebo datového skladu v rámci přípravy na zpracování.
- **Zpracování.** Ve fázi zpracování se uložená data ověřují, řadí a filtrují, což je připravuje pro další použití a zlepšuje výkon dotazů.
- **Čištění.** Po zpracování se data vyčistí. Konflikty, redundance, neplatná nebo neúplná pole a chyby formátování v datové sadě se opraví a vyčistí.
- **Analýza.** Data jsou teď připravená k analýze. Analýza velkých objemů dat se provádí pomocí nástrojů a technologií, jako je dolování dat, umělá inteligence, prediktivní analýza, strojové učení a statistická analýza, které pomáhají definovat a predikovat vzorce a chování v datech.