习题 6.2 (P9)

1. 已知向量 \vec{a} 和 \vec{b} 的夹角 $\theta = 60^{\circ}$,且 $|\vec{a}| = 5$, $|\vec{b}| = 8$,计算 $|\vec{a} + \vec{b}|$ 和 $|\vec{a} - \vec{b}|$. 解: 如图,由余弦定理得

$$|\vec{a} + \vec{b}| = \sqrt{5^2 + 8^2 - 2 \times 5 \times 8 \times \cos 120^{\circ}} = \sqrt{129}$$

 $|\vec{a} - \vec{b}| = \sqrt{5^2 + 8^2 - 2 \times 5 \times 8 \times \cos 60^{\circ}} = 7$

2. 试用向量证明: 如果平面上一个四边形的对角线互相平分,则它是平行四边形.

证明: 如图,设对角线相交于M,则

$$\overrightarrow{AM} = \overrightarrow{MC}$$
, $\overrightarrow{BM} = \overrightarrow{MD}$

故 $\overrightarrow{AD} = \overrightarrow{AM} + \overrightarrow{MD} = \overrightarrow{MC} + \overrightarrow{BM} = \overrightarrow{BC}$ 即该四边形是平行四边形.

3. 正六边形ABCDEF (字母按逆时针方向排列),设 $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AE} = \vec{b}$ 试用向

量 \vec{a} 、 \vec{b} 表示向量 \overrightarrow{AC} 、 \overrightarrow{AD} 、 \overrightarrow{AF} 和 \overrightarrow{CB} .

解: 如图

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{BG} + \overrightarrow{GC}$$
$$= \overrightarrow{a} + \frac{1}{2}\overrightarrow{b} + \frac{1}{2}\overrightarrow{a} = \frac{3}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{AF} = \overrightarrow{AH} + \overrightarrow{HF} = \frac{1}{2}\overrightarrow{b} - \frac{1}{2}\overrightarrow{a}$$

$$\overrightarrow{CB} = \overrightarrow{CG} + \overrightarrow{GB} = -\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b}$$

4. 设向量 $\overrightarrow{AB}=8\overrightarrow{i}+9\overrightarrow{j}-12\overrightarrow{k}$, 其中点A的坐标为(2,-1,7)、求点B的坐标.

解: 设点B的坐标为(x, y, z),故

$$\overrightarrow{AB} = (x-2)\overrightarrow{i} + (y+1)\overrightarrow{j} + (z-7)\overrightarrow{k} = 8\overrightarrow{i} + 9\overrightarrow{j} - 12\overrightarrow{k}$$

即 x-2=8, y+1=9, z-7=-12, 解得: x=10, y=8, z=-5,

故点B的坐标为(10,8,-5).

5. 求平行于向量 $\vec{a} = 6\vec{i} + 7\vec{j} - 6\vec{k}$ 的单位向量.

解:
$$|\vec{a}| = \sqrt{6^2 + 7^2 + (-6)^2} = 11$$
,

故所求的单位向量 $\vec{b} = \pm \vec{a}^0 = \pm \left(\frac{6}{11}\vec{i} + \frac{7}{11}\vec{j} - \frac{6}{11}\vec{k}\right)$

6. 已知向量 $\vec{a}=\left\{1,-2,3\right\}$, $\vec{b}=\left\{-4,5,8\right\}$, $\vec{c}=\left\{-2,1,0\right\}$,求向量 \vec{d} ,使 $\vec{a}+\vec{b}+\vec{c}+\vec{d}$ 是零向量.

解: 因
$$\vec{a} + \vec{b} + \vec{c} + \vec{d} = \vec{0}$$
,所以 $\vec{d} = -\vec{a} - \vec{b} - \vec{c} = \{5, -4, -11\}$

7. 证明: 三点
$$A(1,0,-1)$$
, $B(3,4,5)$, $C(0,-2,-4)$ 共线

证明:
$$\overrightarrow{AB} = \{2,4,6\}, \overrightarrow{BC} = \{-3,-6,-9\}$$

$$\therefore$$
 $\overrightarrow{AB} = -\frac{2}{3}\overrightarrow{BC}$, 故三点共线

8. 设向量 $\vec{m} = 3\vec{i} + 5\vec{j} + 8\vec{k}$, $\vec{n} = 2\vec{i} - 4\vec{j} - 7\vec{k}$, $\vec{p} = 5\vec{i} + \vec{j} - 4\vec{k}$, 求向量 $\vec{a} = 4\vec{m} + 3\vec{n} - \vec{p}$ 在x轴上的投影.

解:
$$\vec{a} = 4\vec{m} + 3\vec{n} - \vec{p} = 13\vec{i} + 7\vec{j} + 15\vec{k}$$

故向量 \vec{a} 在 x 轴上的投影为 13.

9. 设点A(3,2,-1),B(5,-4,7),C(-1,1,2),求 $\Delta\!ABC$ 的由点C向AB

边所引的中线的长度.

 \mathbf{M} : 设点 \mathbf{A} 、 \mathbf{B} 的中点为 $\mathbf{M}(x, y, z)$,

则
$$x = \frac{3+5}{2} = 4$$
, $y = \frac{-4+2}{2} = -1$, $z = \frac{-1+7}{2} = 3$

$$||CM|| = \sqrt{(4+1)^2 + (-1-1)^2 + (3-2)^2} = \sqrt{30}$$

10. 设点 A 、 B 、 M 在同一直线上, A(1,2,3) , B(-1,2,3) , 且

$$AM:MB=-rac{3}{2}$$
,求点 M 的坐标.

解: 因A(1,2,3),B(-1,2,3),且点A、B、M 在同一直线上,所以设点M的

坐标为
$$(x,2,3)$$
,由于 $AM:MB=-rac{3}{2}$,所以有 $rac{x-1}{-1-x}=-rac{3}{2}$,

解得: x = -5, 故所求点 M 的坐标为 (-5, 2, 3)

11. 已知点 $M(4,\sqrt{2},1)$, N(3,0,2), 计算向量 \overrightarrow{MN} 的模、方向余弦和方向角.

$$\overrightarrow{MN} = (3-4)\overrightarrow{i} + (0-\sqrt{2})\overrightarrow{j} + (2-1)\overrightarrow{k} = -\overrightarrow{i} - \sqrt{2}\overrightarrow{j} + \overrightarrow{k}$$

$$|\overrightarrow{MN}| = \sqrt{(-1)^2 + (-\sqrt{2})^2 + 1^2} = 2$$

$$\overrightarrow{MN}^{0} = -\frac{1}{2}\overrightarrow{i} - \frac{\sqrt{2}}{2}\overrightarrow{j} + \frac{1}{2}\overrightarrow{k}$$

12. 设一向量与 \boldsymbol{x} 轴和 \boldsymbol{y} 轴的夹角相等,与 \boldsymbol{z} 轴的夹角是前者的两倍,求此向量的方向角.

解: 由题意得:
$$\alpha = \beta$$
, $\gamma = 2\alpha$,

因为
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

所以
$$2\cos^2\alpha + \cos^22\alpha = 1$$
, 即 $2\cos^2\alpha + (2\cos^2\alpha - 1)^2 = 1$,

解得:
$$\alpha = \frac{\pi}{2}$$
 或 $\alpha = \frac{\pi}{4}$

故所求向量的方向角为 $\alpha = \frac{\pi}{2}$, $\beta = \frac{\pi}{2}$, $\gamma = \pi$;

或
$$\alpha = \frac{\pi}{4}$$
, $\beta = \frac{\pi}{4}$, $\gamma = \frac{\pi}{2}$.

13. 设向量 \vec{a} 与单位向量 \vec{j} 成 60° 角,与单位向量 \vec{k} 成 120° 角,且 $\left|\vec{a}\right|=5\sqrt{2}$,求向量 \vec{a} .

解:设向量 $ar{a}$ 的方向角为 $oldsymbol{lpha}$ 、 60° 、 120° ,则有

$$\cos^2 \alpha + \cos^2 60^\circ + \cos^2 120^\circ = 1$$
, $\mbox{quotient} \cos^2 \alpha = \frac{1}{2}$

解得:
$$\cos \alpha = \pm \frac{\sqrt{2}}{2}$$

所以
$$\vec{a} = |\vec{a}|\vec{a}^0 = 5\sqrt{2} \left\{ \pm \frac{\sqrt{2}}{2}, \frac{1}{2}, -\frac{1}{2} \right\} = \left\{ \pm 5, \frac{5\sqrt{2}}{2}, -\frac{5\sqrt{2}}{2} \right\}$$

14. 向量 \vec{a} 平行于两向量 \vec{b} = $\left\{7,-4,-4\right\}$ 和 \vec{c} = $\left\{-2,-1,2\right\}$ 夹角的平分线,且 $\left|\vec{a}\right|=5\sqrt{6}$,求 \vec{a} .

解: 因为
$$\left| \vec{b} \right| = 9$$
, $\left| \vec{c} \right| = 3$,

所以
$$\vec{b}^0 = \left\{ \frac{7}{9}, -\frac{4}{9}, -\frac{4}{9} \right\}, \quad \vec{c}^0 = \left\{ -\frac{2}{3}, -\frac{1}{3}, \frac{2}{3} \right\}$$

$$\vec{b}^0 + \vec{c}^0 = \left\{ \frac{1}{9}, -\frac{7}{9}, \frac{2}{9} \right\},$$

$$\mathbf{Z} \quad \left| \vec{b}^0 + \vec{c}^0 \right| = \frac{\sqrt{6}}{3}, \quad \text{所以} \quad \vec{b}^0 + \vec{c}^0 = \frac{\sqrt{6}}{3} \left\{ \frac{1}{3\sqrt{6}}, -\frac{7}{3\sqrt{6}}, \frac{2}{3\sqrt{6}} \right\},$$

$$\vec{b}\vec{a} = \pm 5\sqrt{6} \left\{ \frac{1}{3\sqrt{6}}, -\frac{7}{3\sqrt{6}}, \frac{2}{3\sqrt{6}} \right\} = \pm \left\{ \frac{5}{3}, -\frac{35}{3}, \frac{10}{3} \right\}$$