First-Order Logic, 2019 Fall

- First-Order Logic, 2019 Fall
 - Week 1-2
 - Week 3
 - Week 5
 - Week 6
 - Week 7
 - Week 8
 - Week 9

Week 1-2

- Formal Language
- Meta & Obeject Language
- Truth Value
- Semantics of Propositional Logic

Lewis实质蕴涵,与自然语言中"如果...那么"的区别

Semantics:

• 赋值: V(p) = 1• 赋值满足: $V \models \phi$ • 语义后承: $\Sigma \Vdash \phi$

Theorem 1 对任意公式 ϕ : ∅ $\Vdash \phi$ iff ϕ 是有效的。

Theorem 2 $\{\sigma_1, \cdots, \sigma_n\} \Vdash \phi$ iff $(\sigma_1 \to (\sigma_2 \to \cdots \to (\sigma_n \to \phi) \cdots))$ 是有效的。

Formal Proof

- Truth Assignment Function Theory Semantics
- Calculus Syntax
- semantically equivalent: 若 $\phi \models \alpha \exists \alpha \models \phi$ · 记为 $\phi \dashv \vdash \alpha$.
- 二元逻辑 n 元真值函数个数: 2^{2^n} ,以此类推, m 元逻辑 n 元真值函数个数: m^{m^n} .

Literal(字节):

- prop & neg prop;
- ⊥,¬⊥

CNF (Conjunctive Normal Form) & **DNF** (Disjunctive Normal Form)

Notation $\bigvee \Sigma, \ \bigwedge \Phi$ $\bigvee \{\alpha\} := \alpha$ $\bigwedge \varnothing := \neg \bot$ $\bigvee \varnothing := \bot$

lpha realizes g:

- ullet g: n-ary truth function with arguments x_1,\cdots,x_n ;
- $A = \{P_1, \cdots, P_n\};$
- $\bullet \ \, \text{wff} \, \alpha \, \text{with} \, \Phi(\alpha) = A.$

If for every $(z_1,\cdots,z_n)\in\{0,1\}^n$, we have $g(z_1,\cdots,z_n)=1$ iff $\{P_i\in A\mid z_i=1\}\models \alpha$.

Note: 也可用 λ 表达式来写真值函数

Some conclusions about realization:

- 1. If α , β are realized by the same g, then $\alpha \dashv \vdash \beta$;
- 2. Every truth function g can be realized by a wff in DNF.

Proof of 1:

Suppose a truth valuation U, note:

$$y_i^u = egin{cases} 1, & P_i \in U \ 0, & P_i
otin U \end{cases}$$

 $V \models lpha ext{ iff } V \cap A \models lpha ext{ iff } \{P_i \in A \mid y_i^v = 1\} \models lpha ext{ iff } g(y_1^v, \cdots, y_n^v) = 1.$

Proof of 2:

1. g = 0, let α be $\bot \land P_1 \land \cdots \land P_n$;

2. $g \neq 0$, then there exists a non-empty set $S \subseteq \{0,1\}^n$ s.t. for every $y_1, \cdots, y_n \in \{0,1\}, (y_1, \cdots, y_n) \in S$ iff $g(y_1, \cdots, y_n) = 1$. Obviously S is finite. Enumerate S as $\{(x_{11}, \cdots, x_{1n}), \cdots, (x_{k1}, \cdots x_{kn})\}$, let $\alpha := \gamma_1 \vee \cdots \vee \gamma_k$, $\gamma_k := \beta_{i1} \wedge \cdots \wedge \beta_{in}$.

$$eta_{ij} = egin{cases} P_j, & x_{ij} = 1 \
eg P_j, & x_{ij} = 0 \end{cases}$$

Then it is sufficient to check α realizes g.

Note $A = \{P_1, \cdots P_n\}, s = (y_1, \cdots, y_n) \in \{0, 1\}^n$, let $V_s = \{P_h \in A \mid y_h = 1\}$.

 (\Rightarrow) : Suppose g(s)=1, then $s\in S$, $s=(y_1,\cdots,y_n)=(x_{i1},\cdots,x_{in})$.

For any $j \in \{1, \cdots, n\}$:

Case 1. $x_{ij}=1$, then $y_j=1$, so $P_j\in V_s$, then $V_s\models eta_{ij}$;

Case 2. $x_{ij}=0$, then also $V_s\models eta_{ij}$.

In both cases, we have $V_s\models eta_{ij}$. For j is coincident, then $V_s\models \gamma_j$, which makes $V_s\models lpha$.

 (\Leftarrow) : Suppose g(s) = 0, then $s \notin S$.

For any $i\in\{1,\cdots,k\}$, there is a $j\in\{1,\cdots,n\}$ s.t. $x_{ij}
eq y_j$.

Case 1. $x_{ij}=0, y_j=1$, then $P_j\in V_s$, so $V_s\nvDash eta_{ij}$;

Case 2. $x_{ij}=1, y_j=0$,then $P_j\notin V_s$, so $V_s\nvDash \beta_{ij}$.

In both cases, we have $V_s \nvDash \beta_{ij}$, then $V_s \nvDash \gamma_i$. For i is coincident, then $V_s \nvDash \alpha$.

Calculus:

• 归结演算

• Hilbert 演算

Define a type. (Backus-Naur Form)

$$\phi := \bot \mid p \mid \phi \to \phi.$$

Classical Propositional Calculus (3 Axioms Schemes and MP Rule):

- 1. $\alpha \rightarrow (\beta \rightarrow \alpha)$;
- 2. $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$;
- 3. $((\beta \to \bot) \to (\alpha \to \bot)) \to (\alpha \to \beta)$;
- 4. If $\alpha \to \beta$, α , then β .

Notation. $\vdash \alpha$ means α is *provable* or *have a proof*.

Call α an inner theorem.

Example.

Abbrev. write $\phi
ightarrow \phi$ as $(\phi \phi)$

Prove: $\vdash \phi
ightarrow \phi$

- 1. $\vdash (\phi(\phi\phi)\phi)((\phi(\phi\phi))(\phi\phi))$
- 2. $\vdash (\phi(\phi\phi)\phi)$
- 3. $\vdash (\phi(\phi\phi))(\phi\phi)$
- $4. \vdash \phi(\phi\phi)$
- 5. $\vdash \phi \phi$

Week 5

- Derivation
- Deduction Theorem
- Lindenbaum Lemma

<u>Derivation:</u> a finite tree of formulas from Γ to ϕ , each leaf is either an axiom or a wff in Γ ; each node is from the earlier nodes by the application of MP.

- $\Sigma \vdash \phi, \vdash \phi$;
- If $\Gamma \vdash \phi$, then ϕ is called a *syntactical consequence* of Γ

Deduction Theorem

Suppose α, β, Σ , then $\Sigma \vdash \alpha \rightarrow \beta$ iff $\Sigma \cup \{\alpha\} \vdash \beta$.

Proof: Omitted.

Consistent Set:

 Σ is said to be consistent, if $\Sigma \nvdash \bot$.

Two Consequences:

- for any α , $\{\alpha, \neg \alpha\}$ is not consistent;
- Σ is consistent iff $\Sigma \nvdash \alpha$ for some α .

Proof:

 (\Rightarrow) : By definition;

(⇐): Suppose $\Sigma \vdash \bot$.

For any arbitary α , $\vdash ((\alpha \to \bot) \to (\bot \to \bot)) \to (\bot \to \alpha)$, since $\vdash (\bot \to \bot)$ and $\vdash (\bot \to \bot) \to ((\alpha \to \bot) \to (\bot \to \bot))$.

Then by an application of MP, we have $\vdash \bot \to \alpha$.

Since $\Sigma \vdash \bot \to \alpha$ and $\Sigma \vdash \bot$, by MP, we have $\Sigma \vdash \alpha$.

Maximal Consistent Set (MCS):

If $\Sigma \nvdash \bot$, and for every $\Delta \supsetneq \Sigma$, we have $\Delta \vdash \bot$, then Σ is said to be a MCS.

Lindenbaum Lemma(in a countable language):

If $\Sigma \nvdash \bot$, then there is a MCS $\Delta \supseteq \Sigma$.

Claims about Δ :

- 1. $\Sigma\subseteq\Delta$;
- 2. For every $i\in\mathcal{N}$, $\Gamma_i\subseteq\Gamma_{i+1}$;
- 3. For every $i \in \mathcal{N}$, $\Gamma_i \nvdash \bot$;
- 4. Δ ⊬ ⊥;
- 5. For every ϕ , either $\phi \in \Delta$ or $\phi \to \bot \in \Delta$;
- 6. For every ϕ , $\phi \in \Delta$ iff $\Delta \vdash \phi$;
- 7. Δ is a MCS.

Week 6

- Completeness: for a definite propositional calculus
- Modal Logic
- Intuitionistic Logic

- Complements on IPC
- Natural Deduction
- FOL Language

Symbols:

- quantifiers: \forall , \exists ;
- equality symbol: =;
- predicate symbol: P, R, \cdots ;

- individual variables: v, x, y, \cdots ;
- constants: a, b, c, \cdots ;
- function symbol: f, g, \cdots ;
- prop connectives;
- (,)

Term:

$$t ::= c|x|f^{(n)}\underbrace{t\cdots t}_n$$

Wff:

$$\phi ::= \equiv tt|P^{(n)}\underbrace{t\cdots t}_n|\bot|\phi o \phi| \forall x\phi$$

Polish Notation:(An Example)

$$\forall u \to \exists y \in u \exists x \land \in xu \forall z \to \in zx \lnot \in zu$$

Some Concepts:

- ground term;
- binding force;
- range;
- free/bound occurrences of variables:
 - \circ a variable is bounded/free in lpha if x has a bounded/free occurrence in lpha.
 - $\circ \ \mathcal{BV}(\alpha), \mathcal{FV}(\alpha);$
 - $\circ~\mathcal{FV}(lpha)=\emptyset$, lpha is called a **sentence** or a **closed formula**.

Substitution:

1. Term: S_t^x

$$egin{cases} c^x_t := c; \ x^x_t := t; \ y^x_t := y; \ f^{(n)}t_1 \cdots t_n = f^{(n)}(t_1)^x_t \cdots (t_n)^x_t. \end{cases}$$

2. Formula: ϕ_t^x

$$egin{cases} (\equiv s_1 s_2)_t^x := \equiv (s_1)_t^x (s_2)_t^x; \ P^{(n)} s_1 \cdots s_n := P^{(n)} (s_1)_t^x \cdots (s_n)_t^x \ (ot)_t^x := ot; \ (ot lpha eta)_t^x := ot (lpha)_t^x (eta)_t^x; \ (orall x lpha)_t^x := orall x lpha; \ (orall x lpha)_t^x := orall x lpha; \ (orall y lpha)_t^x := orall y (lpha)_t^x. \end{cases}$$

- Model(Structure) in FOL
- Vlidity

Define a FOL model $\mathfrak{A}=(|\mathfrak{A}|,(\cdot)^{\mathfrak{A}})$, in which:

- $|\mathfrak{A}| \neq \emptyset$; $(\cdot)^{\mathfrak{A}}$

Interpretation:

- For every $c \in CON$: $c^{\mathfrak{A}} \in |\mathfrak{A}|$;
- ullet For every $f\in \mathrm{Fct}^{(n)}$: $f^{\mathfrak{A}}: |\mathfrak{A}|^n o |\mathfrak{A}|$, which must be a total function;
- For every $P \in \operatorname{Pre}^{(n)}: P^{\mathfrak{A}} \subseteq |\mathfrak{A}|^n$.

Assignment(on a model):

Define an assignment $s: \mathrm{Var} \to |\mathfrak{A}|$, by which we have: $(\cdot)^{\mathfrak{A}}_s: \mathrm{Tm} \to |\mathfrak{A}|$. Specifically:

- $c_e^{\mathfrak{A}} := c^{\mathfrak{A}}$;
- $x_{\mathfrak{s}}^{\mathfrak{A}} := s(x);$
- $f(t_1\cdots t_n)_s^{\mathfrak{A}}:=f^{\mathfrak{A}}((t_1)_s^{\mathfrak{A}},\cdots,(t_1)_s^{\mathfrak{A}}).$

Revision on an assignment:

For any assignment s on \mathfrak{A} , $x \in \mathrm{Var}$, $d \in |\mathfrak{A}|$, define a revision on an assignment s(x|d): $\operatorname{Var} \to |\mathfrak{A}|$:

$$s(x|d)(y) = egin{cases} d & x = y; \ s(y) & x
eq y. \end{cases}$$

Some concepts:

- Valid;
- · Satisfiable:
- Semantical Consequence: e.g. $\Theta \Vdash \phi$.

Say $\mathfrak A$ and s satisfies a formula ϕ , write $\models_{\mathfrak A} \phi[s]$, if at least one of the following holds:

- 1. ϕ is of the form $t_1=t_2$, and $(t_1)^{\mathfrak{A}}_s=(t_2)^{\mathfrak{A}}_s$;
- 2. ϕ is of the form $Pt_1\cdots t_n$, and $\langle (t_1)_s^{\mathfrak{A}},\cdots,(t_n)_s^{\mathfrak{A}}
 angle \in P^{\mathfrak{A}};$
- 3. ϕ is of the form lpha oeta, and `` $ot\succeq_{\mathfrak A} \alpha[s]$ or $ot\vDash_{\mathfrak A} \beta[s]$ " holds;
- 4. ϕ is of the form $\forall x \alpha$, and for every $d \in |\mathfrak{A}|, \vDash_{\mathfrak{A}} \alpha[s(x|d)]$.

Note that \exists is defined as $\neg \forall \neg$ since:

$$\forall x \alpha \rightarrow \neg \exists x \neg \alpha$$

is valid.

Remark: Suppose σ a **closed-formula**, if $\vDash_{\mathfrak{A}} \sigma[s]$, then $\vDash_{\mathfrak{A}} \sigma$, which means the satisfiction has nothing to do with the choice of assignment on the model. We just say \mathfrak{A} is a **model** of σ .

Notation: Define the set of free variables in a formula as \mathcal{FV} , say $\mathcal{FV}(\phi) = \{x_1, \cdots, x_n\}$, then that ϕ is satisfied under some assignment s on $\mathfrak A$ just means

$$\models_{\mathfrak{A}} \phi \llbracket s(x_1), \cdots, s(x_n) \rrbracket$$

holds.

Some Facts:

Fact 1:

For every $t \in \mathrm{Tm}$, every model $\mathfrak M$ and every assignment s,s' on $\mathfrak M$:

If
$$s(x)=s'(x)$$
 holds for every $x\in \mathcal{V}ar(t)$, then $t_s^{\mathfrak{A}}=t_s^{\mathfrak{A}}$.

Fact 2:

If
$$s(x)=s'(x)$$
 holds for every $x\in \mathcal{PV}(\phi)$, then $dash_{\mathfrak{A}} \ \phi[s]$ iff $dash_{\mathfrak{A}} \ \phi[s']$.

Fact 3:

$$(t^x_{t'})^{\mathfrak{A}}_s = (t)^{\mathfrak{A}}_{s(x|(t')^{\mathfrak{A}}_s)}$$

Definition: Term t is free(substituable) for variable x, if one of the following holds:

- ϕ is atomic;
- $x \notin \mathcal{FV}(\phi)$;
- ϕ is of $\alpha \to \beta$, t is free for x in both α and β ;
- ϕ is $\forall y \alpha, y \notin \mathcal{V}ar(t)$, and t is free for x in α .

Fact 4 (Substitution Lemma):

If t is free for x in α , then:

$$dash_{\mathfrak{A}} \; \alpha[s(x|t_s^{\mathfrak{A}})] \quad \mathrm{iff} \quad dash_{\mathfrak{A}} \; \alpha_t^x[s]$$

.

Proof:

1.
$$\vDash_{\mathfrak{A}} t_1 \equiv t_2[s(x|t_s^{\mathfrak{A}})]$$

2.
$$\vDash_{\mathfrak{A}} Q\overline{r}[s(x|t_s^{\mathfrak{A}})]$$

4.
$$dash _{\mathfrak{A}}$$
 $eta o heta [s(x|t_{s}^{\mathfrak{A}})];$

5.
$$\vDash_{\mathfrak{A}} \forall x \beta [s(x|t_s^{\mathfrak{A}})];$$

6.
$$y \notin \{x\}$$
, and $\vDash_{\mathfrak{A}} \forall y \beta[s(x|t_s^{\mathfrak{A}})]$.

Fact 5:

If t is free for x in a wff lpha, then $\forall x lpha
ightarrow lpha_t^x$ is valid.

Definable Set:

$$\{\langle e_1, \cdots, e_n \rangle \in |\mathfrak{A}|^n \mid \vDash_{\mathfrak{A}} \phi \llbracket e_1, \cdots, e_n \rrbracket \}$$

Examples: $\mathfrak{A}=(\mathbb{N},<)$

•
$$[x < x]^{\mathfrak{A}} = \emptyset$$

•
$$[\exists y(y < x)]^{\mathfrak{A}} = \{(a)|a \in \mathbb{N}\}$$

Note that there are uncountable relations on \mathbb{N} , but only countable of them are definable.

Homomorphism:(P94)

Remark:

- 1. Replace \Rightarrow in homo definition of relations with \Leftrightarrow , then h is said to be a **Strong Homo**;
- 2. Let a strong homo h be injective, then h is said to be an ${\bf Embedding}$;
- 3. Let an embedding h be surjective, then h is said to be an **Isomorphism**;
- 4. Let the range of an isomorphism h be $|\mathfrak{A}|$, then h is said to be an **Automorphism**;
- 5. Self-embedding.