

Representation is simple for 2D-land...

Unified representation across applications, tools, and sensors

Meanwhile in 3D-land

$$f(\mathbf{u}) = \mathbf{p} \in \mathbb{R}^3$$

and many more ...

Meanwhile in 3D-land

It depends on applications, input, requirements

Reconstruction / Editing / Animation

$$\{\mathbf{p} \mid f(\mathbf{p}) = 0\}$$

$$\{\mathbf{p} \mid f(\mathbf{p}) = 0\}$$
 $f(\mathbf{u}) = \mathbf{p} \in \mathbb{R}^3$

Meanwhile in 3D-land

$$\{\mathbf{p} \mid f(\mathbf{p}) = 0\}$$

Limitations and Benefits

many more ...

$$\{\mathbf{p} \mid f(\mathbf{p}) = 0\}$$
 $f(\mathbf{u}) = \mathbf{p} \in \mathbb{R}^3$

Basic 3D representations

2.5D — ex. Depth Maps

2.5D Representations

- Depth-map = Per-pixel depth or disparity value (H x W x 1)
- Normal map = per-pixel normal values (H x W x 3)
- Output is aligned with the input
- 2.5D = Not suitable to look around (no large baseline)
- Can think of each pixel as a colored 3D point

2.5D — Representing the Visible

Does not capture the 'full' 3D structure

Properties associated to the visible image pixels in the input view

Easy way to obtain — Monocular Depth

- Predicted from a single image!
- Usually learn from many many image-depth pairs
- Predicts relative depth

$$(s,t) = \arg\min_{s,t} \sum_{i=1}^{M} (s\mathbf{d}_i + t - \mathbf{d}_i^*)^2$$

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. TPAMI 2022.

Even for sharp structures

Depth Pro: Sharp Monocular Metric Depth in Less Than a Second. ArXiv 2024.

How to render?

Treat it as Colored 3D Points

All monocular depth works can't produce perfect depth But still useful for some applications

3D Photo: View synthesis from single image

3D Photo: View synthesis from single image

3D Photo via inpainting missing regions

Niklaus et al. ToG 2019

Shih et al. CVPR 2020

Inpaint RGB and D & Repeat → Infinite Nature Perpetual View Generation

Recall: Depth -> 3D Point

- Lift the 2D plane to 3D
- Inverse the projection process (the last class)

Point Clouds (PCL)

A basic point cloud = $\{(x_i, y_i, z_i), i \in [1, n]\}$ Can have other attributes (color, normal, ...)

Obtained from

- Depth images / Lidar
- Single Image (with deep learning)
- Multiple RGB Images
- Scanner outputs
- Converted from a 3D mesh

$$\{\mathbf p_1,\mathbf p_2,\cdots,\mathbf p_N\}$$

 $\{\mathbf{p}_1,\mathbf{p}_2,\cdots,\mathbf{p}_N\}$ Unordered set of points

x1,y1,z1

Often represented as a NX3 array, but ordering does **not** matter (unlike images)

Need processing/generation methods that are permutation invariant (e.g. fully connected layer will not work)

 $\{\mathbf{p}_1,\mathbf{p}_2,\cdots,\mathbf{p}_N\}$ Unordered set of points No explicit 'connectivity' information

 $\{\mathbf{p}_1,\mathbf{p}_2,\cdots,\mathbf{p}_N\}$ Unordered set of points No explicit 'connectivity' information

(So it's more efficient to add edges (connectivity))

Neural Rendering Point Clouds

Setup: View-synthesis from available views Memorize one specific scene

Neural Point Based Graphics, Aliev et al. ECCV 2020

Neural Rendering Point Clouds

Nearest available view

Pointcloud w/ color rendered

After neural rendering

Neural Point Based Graphics, Aliev et al. ECCV 2020

Neural Processing Point Clouds

Qi et al, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", CVPR 2017 Qi et al, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space", NeurIPS 2017

Meshes: Connected Point Clouds

- Point clouds are order-less set of points
- Permutation invariant
- Meshes vertices are ordered and connected

Polygon Meshes

- A mesh is a set of vertices with faces that defines the topology
- Mesh = {Vertices, Faces}
 - Vertices: N x 3
 - Faces: F x {3, 4, ...} specifying the edges of a polygon
 - Triangle faces most common but tetrahedrons (tets) are also.
- Surface is explicitly modeled by the faces
- Most common modeling representation

Topology: Genus

Makes it hard to *directly* predict meshes of arbitrary objects from images

Informally, the number of holes or handles

Meshes can represent arbitrary topology.

BUT two surfaces with different genuses are not homeomorphic (can't be transformed without cutting / gluing)

Meshes are great for texturing

Every single vertex has a UV coordinate

- Defined by UV mapping : $(x,y,z) \rightarrow (u,v)$
- "texture coordinates"

Benefit of UV texturing: Continuous Color

Barycentric coordinates to get UV Coordinates

$$\mathbf{P} = w_A \times \mathbf{A} + w_B \times \mathbf{B} + w_C \times \mathbf{C}$$

$$w_A = \frac{\Delta PBC}{\Delta ABC} = \frac{}{}$$

$$w_B = \frac{\Delta PCA}{\Delta ABC} = \frac{}{}$$

$$w_C = \frac{\Delta PAB}{\Delta ABC} = \frac{}{}$$

inside condition

$$0 \leq w_A, w_B, w_C \leq 1 \qquad w_A + w_B + w_C = 1$$

Texturing Process

- Precompute the UV mapping
- Sample X many points on each triangle
- Figure out their UV coordinates (compute once)
- Get a UV image
- Sample the UV image

Easy For Rendering

Good For Deformation

- For: shape/character editing, sculpting, modelling
- Problem: Deform some 3D representation given some target

Good For Animation

Very Easy For Using

GUI Software

MeshLab

Coding Library

Surface Representations

Surface Representations

Volume Representations

Volumetric Representations

So far we talked about points, lines, and surfaces Volumetric representations model the entire space Can be explicit & implicit

Voxels

Discretize a 3-D space with some resolution: D x D x D

What is stored at each value can be:

- 1 or 0 (occupancy)
- Signed distance
- Color/attributes

Was the easiest to get adopted into Deep Learning because of its proximity to pixels.

Simple, but very memory expensive!!

Oct-tree (八叉树)

OctNet: Learning Deep 3D Representations at High Resolutions, Riegler et al. CVPR2017 Hierarchical Surface Prediction for 3D Object Reconstruction Häne, 3DV 2017

Volume for Surfaces

- You can use volumes to represent Surfaces
- the zero-crossing of a continuous function is the surface


```
\{\mathbf{p} \mid f(\mathbf{p}) = 0\}
```

Can be anything — an analytic function, or a neural network, or a voxel

Implicit Volume

Instead of explicitly outputting a discretized volume D³, learn a function:

$$f_{\theta}: \mathbb{R}^3 \times \mathcal{X} \to [0, 1]$$

Output can be an occupancy {0, 1} or a real valued signed distance.

X is some N-dim image embedding

This f is often just a simple 3~8 layer MLP. $f(x,y,z, observation) = \mathbb{R}$

DeepSDF, CVPR'19, OccupancyNet, CVPR'19, Learning Implicit Fields for Generative Shape Modeling, CVPR'19

Rendering Volumes

Rendering Volumes

Given color and density (r,g,b,σ) , we calculate the color of every camera ray using:

NeRF: Combining VolRendering with DeepLearning

Advantage: Very Realistic Rendering

Summary

Volumetrics

合适的才是最好的

2.5D / Image Based Rendering

(f) Can make pretty images

- (f) Capture higher order lighting effects
- (A) Robust off-the-shelf models (MiDas, VIT..)
- X often not suitable for large baseline/360 view

Explicit

Implicit

Easy to train with VolRend

- (f) Topology free (editing)
- (f) PhotoRealistic Rendering
- X No surface*
- X Hard to texture
- **X** Exp: Memory intensive*
- X Imp: Expensive to render

Point clouds

- Better memory
- Topology free
- X No surface
- X Can't print it
- Need to splat / holes
- Easy to get stuck in diffrend

Meshes

- Better memory
- **Explicit surface**
- Great for texture/light
- Great for deformation
- Most common in 3D
- artists/graphics
- X Topology sensitive
- Easy to get stuck in diffrend

谢姚观看!