```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('temperatures.csv')
```

df



|     | YEAR | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | ост   | NOV   | DEC   |
|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0   | 1901 | 22.40 | 24.14 | 29.07 | 31.91 | 33.41 | 33.18 | 31.21 | 30.39 | 30.47 | 29.97 | 27.31 | 24.49 |
| 1   | 1902 | 24.93 | 26.58 | 29.77 | 31.78 | 33.73 | 32.91 | 30.92 | 30.73 | 29.80 | 29.12 | 26.31 | 24.04 |
| 2   | 1903 | 23.44 | 25.03 | 27.83 | 31.39 | 32.91 | 33.00 | 31.34 | 29.98 | 29.85 | 29.04 | 26.08 | 23.65 |
| 3   | 1904 | 22.50 | 24.73 | 28.21 | 32.02 | 32.64 | 32.07 | 30.36 | 30.09 | 30.04 | 29.20 | 26.36 | 23.63 |
| 4   | 1905 | 22.00 | 22.83 | 26.68 | 30.01 | 33.32 | 33.25 | 31.44 | 30.68 | 30.12 | 30.67 | 27.52 | 23.82 |
|     |      |       |       |       |       |       |       |       |       |       |       |       |       |
| 112 | 2013 | 24.56 | 26.59 | 30.62 | 32.66 | 34.46 | 32.44 | 31.07 | 30.76 | 31.04 | 30.27 | 27.83 | 25.37 |
| 113 | 2014 | 23.83 | 25.97 | 28.95 | 32.74 | 33.77 | 34.15 | 31.85 | 31.32 | 30.68 | 30.29 | 28.05 | 25.08 |
| 114 | 2015 | 24.58 | 26.89 | 29.07 | 31.87 | 34.09 | 32.48 | 31.88 | 31.52 | 31.55 | 31.04 | 28.10 | 25.67 |
| 115 | 2016 | 26.94 | 29.72 | 32.62 | 35.38 | 35.72 | 34.03 | 31.64 | 31.79 | 31.66 | 31.98 | 30.11 | 28.01 |
| 116 | 2017 | 26.45 | 29.46 | 31.60 | 34.95 | 35.84 | 33.82 | 31.88 | 31.72 | 32.22 | 32.29 | 29.60 | 27.18 |
| 4   |      |       |       |       |       |       |       |       |       |       |       |       | •     |

df.head()

|   | YEAR | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | ост   | NOV   | DEC   | ANNUAL | JAN-FEB | MAR-MAY | JUN-SEP | OCT-DEC |
|---|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|---------|---------|---------|
| 0 | 1901 | 22.40 | 24.14 | 29.07 | 31.91 | 33.41 | 33.18 | 31.21 | 30.39 | 30.47 | 29.97 | 27.31 | 24.49 | 28.96  | 23.27   | 31.46   | 31.27   | 27.25   |
| 1 | 1902 | 24.93 | 26.58 | 29.77 | 31.78 | 33.73 | 32.91 | 30.92 | 30.73 | 29.80 | 29.12 | 26.31 | 24.04 | 29.22  | 25.75   | 31.76   | 31.09   | 26.49   |
| 2 | 1903 | 23.44 | 25.03 | 27.83 | 31.39 | 32.91 | 33.00 | 31.34 | 29.98 | 29.85 | 29.04 | 26.08 | 23.65 | 28.47  | 24.24   | 30.71   | 30.92   | 26.26   |
| 3 | 1904 | 22.50 | 24.73 | 28.21 | 32.02 | 32.64 | 32.07 | 30.36 | 30.09 | 30.04 | 29.20 | 26.36 | 23.63 | 28.49  | 23.62   | 30.95   | 30.66   | 26.40   |
| 4 | 1905 | 22.00 | 22.83 | 26.68 | 30.01 | 33.32 | 33.25 | 31.44 | 30.68 | 30.12 | 30.67 | 27.52 | 23.82 | 28.30  | 22.25   | 30.00   | 31.33   | 26.57   |

```
x = df['YEAR']
y= df['ANNUAL']
plt.figure(figsize=(16,9))
plt.title('temperature plot of india')
plt.xlabel('Year')
plt.ylabel('annual average Temperature')
plt.scatter(x,y)
```

<matplotlib.collections.PathCollection at 0x7c2d8a2785e0>

## temperature plot of india

```
31.5
         31.0
         30.5
      average Temperature
         30.0
      E
x.shape
     (117,)
x = x.values
     array([1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911,
            1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922,
            1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933,
            1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944,
            1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955,
            1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966,
            1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977,
            1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988,
            1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
            2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
            2011, 2012, 2013, 2014, 2015, 2016, 2017])
x = x.reshape(117,1)
x.shape
     (117, 1)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x,y)
      ▼ LinearRegression
      LinearRegression()
regressor.coef_
     array([0.01312158])
regressor.intercept_
     3.4761897126187016
```

```
regressor.predit(2024)
```

```
AttributeError
                                               Traceback (most recent call last)
     <ipython-input-20-f4ecb24de878> in <cell line: 1>()
     ---> 1 regressor.predit(2024)
     AttributeError: 'LinearRegression' object has no attribute 'predit'
      SEARCH STACK OVERFLOW
regressor.predict([[2024]])
     array([30.03427031])
regressor.predict([[2074]])
     array([30.69034937])
predicted = regressor.predict(x)
import numpy as np
#mean absolute error
np.mean(abs(y - predicted))
     0.22535284978630413
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y, predicted)
     0.22535284978630413
from sklearn.metrics import mean_squared_error
mean_squared_error(y, predicted)
     0.10960795229110352
from sklearn.metrics import r2_score
r2_score(y, predicted)
     0.6418078912783682
sns.regplot(x='YEAR' , y='ANNUAL', data=df)
     <Axes: xlabel='YEAR', ylabel='ANNUAL'>
         31.5
         31.0
         30.5
     ANNUAL
         30.0
         29.5
         29.0
         28.5
         28.0
              1900
                        1920
                                   1940
                                             1960
                                                        1980
                                                                  2000
                                                                            2020
                                             YEAR
```