Hardware Security Support in General Purpose Processors

Mihai Christodorescu

mihai@cs.wisc.edu

Hao Wang

hbwang@cs.wisc.edu

University of Wisconsin, Madison

Overview

- Concepts
- Architecture
- Performance
- Conclusions
- Future Directions

- Copy and tamper-resistant software
- Computation privacy

- Copy and tamper-resistant software
- Computation privacy

∠ How?

- Software solutions
- Hardware solutions
 - Adding security features to microprocessors

∠ Goals:

- Copy and tamper-resistant software
- Computation privacy

∠ How?

- Software solutions
- Hardware solutions
 - Adding security features to microprocessors
- Really? Yes!
 - Intel claims billion-transistor in five years

Our Vision

- Secure processor
 - General purpose CPU with Crypto support
- Two approaches
 - Secure Co-Processor (Michigan)
 - Integrated Secure Processor
 - Processor is the only trusted component
 - XOM : eXecute Only Memory (Stanford)
 - Encrypt code and data

Insecure Main Memory Secure Processor

Insecure Main Memory Secure Processor

Insecure Main Memory

XOM – Execution

XOM Benefits

XOM Benefits

- Encrypted Program Memory
 - No "hijacking"
 - Secure core dumps!

XOM Benefits

- Encrypted Program Memory
 - No "hijacking"
 - Secure core dumps!
- Encrypted Executable on Disk
 - No viruses
 - No binary modification (e.g. cracks)
 - No evil reverse engineering

Crypto Hardware – AES

- AES: Advanced Encryption Standard
 - Replaces DES (at last!)
 - Uses Rijndael
- AES specifications
 - Block cipher
 - Fixed block size: 128 bit
 - Variable key size (128, 192, 256-bit)

Simulated Hardware

Pentium 4 + AES encryption

A Better Looking Picture

Copyright 2001 Intel

Simulated Hardware

Fixed simulation parameters:

- Cache associativity: 4-way D1, 8-way L2
- Cache block size: 64 B D1, 256 B L2

Simulated Hardware

Variable simulation parameters:

Memory bus width: 8 B, 16 B

∠ L2 cache size: 256 K, 512K

Crypto key size: 128, 192, 256 bits

Fixed simulation parameters:

Cache associativity: 4-way D1, 8-way L2

Cache block size: 64 B D1, 256 B L2

Simulation Study

- As little interference with the execution engine as possible
- SimpleScalar Out-of-Order simulator
 - Better at hiding latency
 - Cache size effect on performance
 - L2 miss now includes crypto latency
 - L1 should not matter that much
 - Memory bandwidth effect

Performance Measurements

Benchmark	Slowdown
go [null]	2.997%
go [9stone21]	2.037%
ijpeg [penguin]	0.796%
ijpeg [specmun]	0.814%
ijpeg [vigo]	0.791%

Performance Measurements

Benchmark	Speedup
go [2stone21]	4.23%
compress [test.in]	8.77%
perl [primes.pl]	0.70%

Crypto-8:
8 bytes memory
Bus width

Crypto-16:
16 bytes Memory
Bus width

Performance Measurements

Benchmark	Speedup
go [2stone21]	0.51%
compress [test.in]	19.86%
perl [primes.pl]	0.07%

Secure Processor

Benchmark	Speedup
go [2stone21]	0.37%
compress [test.in]	14.31%
perl [primes.pl]	0.05%

Base Processor

Analysis

- Adding Crypto Hardware = Slower Memory
- Memory bus width has an impact on total latency
 - Effective Latency =
 TI + (Size(C)/MemBusBand 1)* Mem. Int. Lat.
 + Crypto Latency
 - TI is the base initial memory latency
 - Size(C) is the cipher block size

Conclusions

- Feasible and desirable!
- Some overhead
 - Increases memory latency
 - Solution: hide the latency
 - wider memory bus
 - bigger cache
 - Requires extra hardware
 - For encryption/decryption
 - For storing keys
 - Not a big problem

Future Directions

- Problems
 - ∠ I/O
 - Multiprocessors
 - Shared libraries (DLLs, .so)
- Increase efficiency
 - Partial program encryption
- Increase security
 - Per-user-process encryption

References

- David Lie et al. "Architectural Support for Copy and Tamper Resistant Software", ASPLOS-IX 2000
- XOM Project
 - http://www.stanford.edu/~davidlie/xom.htm
- FIPS-197: AES
 - http://csrc.nist.gov/encryption/aes
- Intel Developer's Website (P4 data facts)
 - http://developer.intel.com
- Rambus (information on memory latency)
 - http://www.rambus.com
- and much more