Thread-Weighted Projections from a Spindle-Torus Base: A Measured Bundle Framework

August 19, 2025

Abstract

We develop a framework in which a nonnegative density $\lambda \in L^1(B)$ on a two-dimensional spindle-torus base B weights local fiber data in a measured bundle $\pi : E \to B$. A transport kernel K projects fiber functions to functions on a target space, with a Gaussian factor enforcing locality around an embedding $X : B \to \mathbb{R}^3$. On a periodic T^3 domain, we prove stationarity of the induced covariance and derive a spectral transfer law predicting a turnover at the fundamental mode and a Gaussian roll-off. We further incorporate a U(1) connection from the Hopf fibration, equipping the transport with a gauge-consistent phase and quantized invariants.

Scope and contributions. We (i) formalize a measurable density on a spindle-torus base, (ii) define a locality-preserving transport kernel that projects fiber data to the target space, (iii) prove stationarity and provide an analytic power spectrum with a fundamental-mode turnover and Gaussian roll-off on T^3 , and (iv) show how a Hopf U(1) connection endows the construction with a gauge-consistent phase and quantized invariants.

1 Introduction

Ideas in integral geometry suggest that functions on higher-dimensional spaces can be induced from lower-dimensional substrates via projections. Here we formulate a mathematically explicit version in which data resides on a two-dimensional spindle-torus base B and is transported to functions on a three-dimensional space by a thread-weighted projection (TWP).

The central element is a measured bundle $\pi: E \to B$ whose fibers store local data and a nonnegative density $\lambda \in L^1(B)$, called threads, that weights contributions from base points. A locality-preserving transport kernel K (minimal form: a Gaussian centered on the embedded base $X(B) \subset \mathbb{R}^3$) pushes forward fiber functions to induced functions Φ .

On a toroidal domain T^3 we prove that, under normalization, the induced covariance is stationary (depends only on separations) and the power spectrum obeys a transfer law exhibiting a turnover at the fundamental mode and Gaussian roll-off at high k. We then introduce a Hopf lift: a U(1) connection inherited from the Hopf fibration induces a gauge-consistent phase in the transport, yielding quantized invariants.

Related perspectives. Our construction intersects kernel-based integral geometry, statistical processes on manifolds, and topological invariants. The emphasis is on a clean pipeline from base data to induced statistics with structure supporting numerical exploration.

Assumptions and limitations. We treat (i) the target geometry as fixed, (ii) threads as a static density on B, and (iii) transport as kinematic without dynamics.

2 Geometry of the base and measured bundle

2.1 Spindle-torus base and embedding

Let B be a spindle-torus surface embedded in \mathbb{R}^3 by a smooth map $X: B \to \mathbb{R}^3$. Concretely, one may view B as the surface of revolution obtained by rotating a circle of radius r > 0 centered at distance $a \in (0, r)$ from the axis, yielding the spindle member of the torus family. The detailed parameterization will not be needed; we use only that B is compact, orientable away from the self-intersection locus, and admits a Borel measure ν_B induced by the surface element.

2.2 Measured fiber bundle and threads

Definition 1 (Measured bundle and threads). Let $\pi: E \to B$ be a measurable fiber bundle with typical fiber F and fiber measure ν_F . A thread density is a function $\lambda \in L^1_+(B,\nu_B) \cap L^2(B,\nu_B)$, $\lambda \geq 0$, which we normalize by $\int_B \lambda \, d\nu_B = \Lambda > 0$. A fiber function is a measurable map $\phi: E \to \mathbb{C}$ with finite second moment $\int_E |\phi|^2 \, d\nu_E < \infty$, where $d\nu_E := d\nu_F \, d\nu_B$.

The density λ encodes where the information lives on B; large λ indicates many or stronger threads. We assume either deterministic ϕ or a mean-zero random fiber function with known two-point function.

3 Thread-weighted projection (TWP) and minimal locality

3.1 Transport kernel

Let $x \in M \subset \mathbb{R}^3$ denote a target point (in this paper M will be either \mathbb{R}^3 or a 3-torus T^3). We define a transport kernel $K: M \times B \times F \to \mathbb{C}$ of the form

$$K(x \mid b, f) = G_{\Sigma}(b) (x - X(b)) U(b, f; x),$$

where G_{Σ} is a Gaussian with covariance $\Sigma(b) \in \mathbb{R}^{3\times 3}$ positive-definite, and U is a bounded modulation factor. The minimal kernel takes $U \equiv 1$ and $\Sigma(b) = \sigma^2 I$.

Definition 2 (Thread-weighted projection). Given λ , ϕ , K, define the induced function

$$\Phi(x) = \int_B \int_F K(x \mid b, f) \,\phi(b, f) \,\lambda(b) \,d\nu_F(f) \,d\nu_B(b).$$

Proposition 1 (Well-posedness). Assume $\nu_F(F) = 1$ (finite fiber measure), $U \in L^{\infty}$, and $\sup_b \|G_{\Sigma}(b)\|_{L^1(\mathbb{R}^3)} < \infty$. If $\phi \in L^2(E, \nu_E)$ and $\lambda \in L^1(B) \cap L^2(B)$, then $\Phi \in L^2(M)$ and the map $(\phi, \lambda) \mapsto \Phi$ is continuous.

Proof. By Cauchy–Schwarz on the fiber and $\nu_F(F) = 1$,

$$\int_{F} |\phi(b, f)| \, d\nu_{F} \le \left(\int_{F} |\phi(b, f)|^{2} \, d\nu_{F} \right)^{1/2}.$$

With U bounded and $||G_{\Sigma}(b)||_{L^1}$ uniformly bounded, Fubini and Minkowski yield

$$\|\Phi\|_{L^2(M)} \le C \int_B \lambda(b) \, a(b) \, d\nu_B, \quad a(b) := \left(\int_F |\phi(b, f)|^2 \, d\nu_F\right)^{1/2}.$$

Since $a \in L^2(B)$ and $\lambda \in L^2(B)$, Hölder gives $\int_B \lambda a \le \|\lambda\|_{L^2} \|a\|_{L^2} < \infty$, which yields finiteness and continuity.

3.2 Normalization on T^3 and periodized kernels

On $M = T^3 = [0, L)^3$ we periodize G_{Σ} :

$$G_{\Sigma}^{(T)}(\chi) = \sum_{n \in \mathbb{Z}^3} G_{\Sigma}(\chi + nL), \quad \chi \in T^3,$$

and impose the normalization

$$\int_{T^3} G_{\Sigma}^{(T)}(\chi) \, d^3 \chi = 1.$$

4 Stationarity and the spectral transfer law on T^3

Assume ϕ is a mean-zero, second-order process on E with covariance

$$C_{\phi}((b, f), (b', f')) = \mathbb{E}[\phi(b, f) \overline{\phi(b', f')}].$$

Random-translation stationarity model

Let T be a random translation, uniformly distributed on T^3 and independent of ϕ . Define the translated embedding $X_T(b) := (X(b) + T) \mod L$ and the corresponding field Φ_T by replacing X with X_T in the definition of Φ . All expectations below are taken over both ϕ and T.

Proposition 2 (Stationarity on T^3). Under the minimal periodized kernel ($U \equiv 1$ with the above normalization), with the random-translation model, and if C_{ϕ} depends only on base separation along B (invariant under isometries of B), then the covariance

$$C_{\Phi}(x,y) := \mathbb{E}\left[\Phi_T(x)\,\overline{\Phi_T(y)}\right]$$

depends only on $\Delta := x - y \in T^3$.

Proof. By construction, T is uniform and independent, so $(x, y) \mapsto (x + T, y + T)$ yields the same distribution for Φ_T . Averaging over T enforces translation invariance, and the residual dependence is on Δ .

Let $\hat{f}(k)$ denote the discrete Fourier transform on T^3 for $k \in (2\pi/L)\mathbb{Z}^3$, and define the power spectrum $P_{\Phi}(k) = \mathbb{E}[|\hat{\Phi}_T(k)|^2]$.

Proposition 3 (Spectral transfer law). Under the stationarity proposition and with $\Sigma(b) \equiv \sigma^2 I$,

$$P_{\Phi}(k) = \left| \widehat{G}_{\sigma}^{(T)}(k) \right|^2 P_{\psi}(k), \qquad \widehat{G}_{\sigma}^{(T)}(k) = e^{-\frac{1}{2}\sigma^2 ||k||^2},$$

where $P_{\psi}(k)$ is the spectrum of the fiber-aggregated source obtained after the random translation.

Proof. Fourier transforming the projection and using convolution on T^3 yields $\hat{\Phi}_T(k) = \widehat{G}_{\sigma}^{(T)}(k) \hat{\Psi}_T(k)$ for a stationary source Ψ_T . Taking expectations gives the result.

[Turnover and Gaussian roll-off] On T^3 the lowest nonzero wavenumber is $k_f = 2\pi/L$. If $P_{\psi}(k)$ is finite at k_f , then $P_{\Phi}(k)$ turns over at k_f and decays as $\exp(-\sigma^2 ||k||^2)$ at large ||k||.

5 Anisotropic kernels and director fields

Threads can carry directional structure. Let $n: B \to S^2$ be a measurable director field and

$$\Sigma(b) = \sigma_{\parallel}^2 \, n(b) \, n(b)^{\top} + \sigma_{\perp}^2 \, \left(I - n(b) \, n(b)^{\top} \right), \quad \sigma_{\parallel}, \sigma_{\perp} > 0.$$

Then $G_{\Sigma}(b)$ elongates transport along n(b).

Proposition 4 (Anisotropic spectral imprint). Assume n is slowly varying on the G_{Σ} support, $U \equiv 1$, and the random-translation stationarity model holds on T^3 . Then to leading order the spectrum acquires an angular dependence

$$P_{\Phi}(k) \approx \exp\left(-\frac{1}{2}|k|^2 \left[\sigma_{\perp}^2 + (\sigma_{\parallel}^2 - \sigma_{\perp}^2) E_B[(\hat{k} \cdot n)^2]\right]\right) P_{\psi}(k),$$

where E_B denotes an average over B with weight $\lambda d\nu_B$ and $\hat{k} = k/\|k\|$.

6 Hopf lift: U(1) connection, invariants, and phase structure

Let $\pi_H: S^3 \to S^2$ be the Hopf map with connection A and curvature F = dA. Pull back along a map $h: B \to S^2$ to obtain $A_h = h^*A$ with quantized Chern number $\frac{1}{2\pi} \int_B h^*F \in \mathbb{Z}$.

6.1 Phase-modulated transport

Definition 3 (Tubular extension for phase). Let \mathcal{N} be a tubular neighborhood of X(B) in \mathbb{R}^3 and let $\rho: \mathcal{N} \to B$ be a smooth retraction. Define an extension $A^{\text{ext}} := \rho^* A_h$ on \mathcal{N} . For x near X(B) choose a short curve $\gamma(b,x) \subset \mathcal{N}$ and set

$$U(b, f; x) = \exp(iq \Theta(b; x)), \qquad \Theta(b; x) := \int_{\gamma(b, x)} A^{\text{ext}},$$

with $q \in \mathbb{Z}$. Gauge choices affect Θ by a boundary term; observables depend on F_h .

6.2 Vector-valued output and helical spectra

To allow a helical decomposition, define a vector kernel using a frame $e(b) \in \mathbb{R}^{3\times 3}$ (for example, built from tangent and normal directions of X(B)):

$$K_i(x \mid b, f) = G_{\Sigma}(x - X(b)) U(b; x) e_i(b).$$

This gives $\Phi: T^3 \to \mathbb{C}^3$.

Proposition 5 (Helical decomposition). Assume the random-translation stationarity model on T^3 and the vector kernel above. In the isotropic limit of G_{Σ} one has

$$\langle \hat{\Phi}_i(k) \, \overline{\hat{\Phi}_j(k)} \rangle = P_S(k) \, \Pi_{ij}^{(S)}(k) + i \, P_H(k) \, \Pi_{ij}^{(H)}(k),$$

where $\Pi_{ij}^{(S)}(k) = \delta_{ij} - \hat{k}_i \hat{k}_j$ and $\Pi_{ij}^{(H)}(k) = \epsilon_{ij\ell} \hat{k}_\ell$. One has $P_H(k) \neq 0$ when $q \neq 0$ and F_h is not identically zero (for example, nonzero Chern number).

Remark 1. Parity-odd power scales with curvature. At leading order in the phase, P_H depends on a λ -weighted functional of F_h , for example $\int_B \lambda F_h$. For a closed B, $\frac{1}{2\pi} \int_B F_h$ is an integer.

Scope note. We keep the vector-output construction abstract and do not fix a specific frame or tubular retraction; this avoids path- and gauge-dependent implementation choices and keeps the focus on the scalar TWP results and their spectral consequences.

7 Numerical pipeline and computational features

7.1 Minimal simulation loop

- 1. Sample ϕ on E with a chosen fiber covariance.
- 2. Sample or prescribe λ on B; optionally, a director field n and map $h: B \to S^2$ for Hopf phase.
- 3. Assemble K using $G_{\Sigma}(b)$ and U.
- 4. Compute Φ via the projection. On T^3 use FFTs and the spectral law when the isotropic assumptions hold, otherwise apply the correct angle dependent multiplier.
- 5. Measure $P_{\Phi}(k)$, anisotropy, and (if vector outputs) the helical spectra.

7.2 Computable features

- Turnover scale: $k_f = 2\pi/L$ sets the first extremum.
- High-k damping: Gaussian roll-off $\sim e^{-\sigma^2 ||k||^2}$ (with angular modification for anisotropy).
- Anisotropy: Angular modulation governed by $\sigma_{\parallel}/\sigma_{\perp}$ and the distribution of n.
- Phase structure: Controlled by q and the curvature F_h through $P_H(k)$.

8 Extensions: identifiability and inverse problems

Proposition 6 (Identifiability via linearized statistics (informal)). Assume the random-translation stationarity model on T^3 , a factorized fiber covariance $C_{\phi}((b, f), (b', f')) = \delta(b - b') C_F(f, f')$ independent of λ , and known K with U bounded. Let \mathcal{F} map a band-limited λ to a chosen statistic S (for example, P_{Φ} , cross-spectra with known probes, or the bispectrum). If the Fréchet derivative $D\mathcal{F}(\lambda_0)$ has smallest singular value $s_{\min} > 0$ on that band, then the estimation error for λ from noisy S is $O(s_{\min}^{-1} \times noise)$. Using only P_{Φ} generically leaves phase unidentifiable; bispectrum or cross-spectra can restore it under mild non-Gaussianity or probing.

Remark 2. A precise statement requires specifying the class of ϕ and the measurement noise model.

9 Conclusion

We presented a measured-bundle construction in which a nonnegative thread density on a spindle-torus base weights local fiber data transported to induced functions by a locality-preserving kernel. On T^3 this yields a stationary process with an analytic spectral transfer law exhibiting a fundamental-mode turnover and Gaussian high-k damping. A Hopf lift adds a gauge-consistent phase with quantized invariants and allows helical spectra for vector outputs.

Open questions include generalizations to other base manifolds, alternative kernel forms, and a full inverse analysis under realistic noise and source models.

A Spindle-torus parameterization (optional)

A convenient implicit equation for a torus family in \mathbb{R}^3 is

$$(\sqrt{x^2 + y^2} - a)^2 + z^2 = r^2,$$

with 0 < a < r corresponding to the spindle member. Local charts avoiding the self-intersection suffice for measure-theoretic constructions.

B Periodized Gaussian on T^3

Let $G_{\sigma}(\chi) = (2\pi\sigma^2)^{-3/2} \exp(-\|\chi\|^2/2\sigma^2)$ on \mathbb{R}^3 . The periodization

$$G_{\sigma}^{(T)}(\chi) = \sum_{n \in \mathbb{Z}^3} G_{\sigma}(\chi + nL)$$

satisfies $\int_{T^3} G_{\sigma}^{(T)}(\chi) d^3\chi = 1$ and has discrete Fourier transform $\widehat{G}_{\sigma}^{(T)}(k) = e^{-\frac{1}{2}\sigma^2 \|k\|^2}$ for $k \in (2\pi/L)\mathbb{Z}^3$.

C Helical projectors

For vector functions, define the transverse projector $\Pi_{ij}^{\perp}=\delta_{ij}-\hat{k}_i\hat{k}_j$ and the helical projectors

$$\Pi_{ij}^{(H)}(k) = \epsilon_{ij\ell} \, \hat{k}_{\ell}, \quad \Pi_{ij}^{(S)}(k) = \Pi_{ij}^{\perp}.$$

Then a general statistically isotropic covariance has the form $P_S(k) \Pi^{(S)} + i P_H(k) \Pi^{(H)}$.

References

- [1] H. Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104 (1931), 637–665.
- [2] R. J. Adler, J. E. Taylor, Random Fields and Geometry, Springer, 2007.
- [3] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2008.