Problem 1.

(a) Exercise Set 5.2, Problem 11

$$1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$
, for all integers $n \ge 1$.
Let property $P(n)$ be $\sum_{i=1}^n i^3 = \left[\frac{n(n+1)}{2}\right]^2$.

$$P(1): \left(\sum_{i=1}^{1} i^3 = 1\right) = \left(\left[\frac{n(n+1)}{2}\right]^2 = 1\right)$$
 is true.

Assume
$$P(k): \sum_{i=1}^{k} i^3 = \left[\frac{k(k+1)}{2}\right]^2$$
 for $k \ge 1 \in \mathbb{Z}$ is true.
Prove $P(k+1): \sum_{i=1}^{k+1} i^3 = \left[\frac{(k+1)(k+2)}{2}\right]^2$:
$$\sum_{i=1}^{k+1} i^3 \stackrel{?}{=} \left[\frac{(k+1)(k+2)}{2}\right]^2$$

$$\left(\sum_{i=1}^{k} i^3\right) + (k+1)^3 \stackrel{?}{=} \left[\frac{k^2 + 3k + 2}{2}\right]^2$$

$$\left[\frac{k(k+1)}{2}\right]^2 + k^3 + 3k^2 + 3k + 1 \stackrel{?}{=} \left[\frac{k^2 + 3k + 2}{2}\right]^2$$

$$\left[\frac{k^2 + k}{2}\right]^2 + k^3 + 3k^2 + 3k + 1 \stackrel{?}{=} \left[\frac{k^2 + 3k + 2}{2}\right]^2$$

$$k^4 + 2k^3 + k^2 - 4k^3 + 12k^2 + 12k + 4 + 2k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4k^4 + 2k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4k^4 + 2k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4k^4 + 2k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 2k^2$$

 $\frac{k^4 + 2k^3 + k^2}{4} + \frac{4k^3 + 12k^2 + 12k + 4}{4} \stackrel{?}{=} \frac{k^4 + 3k^3 + 2k^2 + 3k^3 + 9k^2 + 6k + 2k^2 + 6k + 4}{4}$

 $\frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4} = \frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4}$

(b) Exercise Set 5.2, Problem 14

$$\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2, \text{ for all integers } n \ge 0.$$

Let property
$$P(n)$$
 be $\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$.

Basis:

$$P(0): \left(\sum_{i=1}^{1} i \cdot 2^{i} = 2\right) = \left(0 \cdot 2^{2} + 2 = 2\right)$$
 is true.

Inductive hypothesis:

Assume
$$P(k): \sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{k+2} + 2$$
 for $k \ge 0 \in \mathbb{Z}$ is true.

Prove
$$P(k+1)$$
: $\sum_{i=1}^{k+2} i \cdot 2^i = (k+1) \cdot 2^{k+3} + 2$:
$$\sum_{i=1}^{k+2} i \cdot 2^i \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$\left(\sum_{i=1}^{k+1} i \cdot 2^i\right) + (k+2) \cdot 2^{k+2} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$k \cdot 2^{k+2} + 2 + (k+2) \cdot 2^{k+2} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$k \cdot 2^{k+2} + 2 + k \cdot 2^{k+2} + 2^{k+3} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$2k \cdot 2^{k+2} + 2 + 2^{k+3} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$k \cdot 2^{k+3} + 2 + 2^{k+3} \stackrel{?}{=} (k+1) \cdot 2^{k+3} + 2$$

$$(k+1) \cdot 2^{k+3} + 2 = (k+1) \cdot 2^{k+3} + 2$$

$$\prod_{i=0}^{n} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2n+2)!}, \text{ for all integers } n \ge 0.$$

Let property
$$P(n)$$
 be $\prod_{i=0}^{n} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right)$.

Basis:

Basis:
$$P(0): \left(\prod_{i=0}^{0} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2}\right) = \frac{1}{2}\right) = \left(\frac{1}{(0+2)!} = \frac{1}{2}\right)$$
 is true. Inductive Hypothesis:

Assume
$$P(k): \prod_{i=0}^k \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2}\right) = \frac{1}{(2k+2)!}$$
 for $k \ge 0 \in \mathbb{Z}$ is true.

Prove
$$P(k+1)$$
: $\prod_{i=0}^{k+1} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) = \frac{1}{(2(k+1)+2)!}$:

$$\prod_{i=0}^{k+1} \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2} \right) \stackrel{?}{=} \frac{1}{(2(k+1)+2)!}$$

$$\prod_{i=0}^k \left(\frac{1}{2i+1} \cdot \frac{1}{2i+2}\right) \left(\frac{1}{2(k+1)+1} \cdot \frac{1}{2(2k+1)+2}\right) \stackrel{?}{=} \frac{1}{(2k+4)!}$$

$$\frac{1}{(2k+2)!} \left(\frac{1}{2k+3} \cdot \frac{1}{2k+4} \right) \stackrel{?}{=} \frac{1}{(2k+4)!}$$

$$\frac{1}{(2k+2)!(2k+3)(2k+4)} \stackrel{?}{=} \frac{1}{(2k+4)(2k+3)!}$$

$$\frac{1}{(2k+4)(2k+3)(2k+2)!} = \frac{1}{(2k+4)(2k+3)(2k+2)!}$$

Basis and inductive hypothesis proven, therefore original statement is true.

(d) Exercise Set 5.3, Problem 10

 $n^3 - 7n + 3$ is divisible by 3, for each integer $n \ge 0$.

Let property P(n) be $n^3 - 7n + 3$ is divisible by 3.

Basis:

 $P(0): (0^3 - 7 \cdot 0 + 3 = 0)$ is divisible by 3 is true.

Inductive Hypothesis:

Assume $P(k): k^3 - 7k + 3$ is divisible by 3 where $k \ge 0 \in \mathbb{Z}$ is true.

Prove $P(k+1): (k+1)^3 - 7(k+1) + 3$ is divisible by 3:

$$(k+1)^3 - 7(k+1) + 3$$

$$=k^3+3k^2+3k+1-7k-7+3$$

$$= \underbrace{\left(k^3 - 7k + 3\right)}_{} + 3k^2 + 3k + 1 - 7$$

P(k) true, therefore m is a multiple of 3 and m = 3a for some integer a.

$$3a + 3k^2 + 3k - 6$$

$$3(a+k^2+k-2)$$

Expression is a multiple of 3, therefore $(k+1)^3 - 7(k+1) + 3$ is divisible by 3.

(e) Exercise Set 5.3, Problem 17

 $1 + 3n \le 4^n$, for every integer $n \ge 0$.

Let property P(n) be $1 + 3n \le 4^n$.

Basis:

$$P(0): (1+3\cdot 0=1) \le (4^0=1)$$
 is true.

Inductive hypothesis:

Assume $P(k): 1 + 3k \le 4^k$ for $k \ge 0 \in \mathbb{Z}$ is true. Prove $P(k+1): 1 + 3(k+1) \le 4^{k+1}$: $1 + 3(k+1) \stackrel{?}{\le} 4^{k+1}$

$$1 + 3(k+1) \stackrel{?}{\leq} 4^{k+1}$$

$$4+3k \stackrel{?}{\leq} 4^{k+1}$$

$$(1+3k) + 3 \stackrel{?}{\le} 4^{k+1}$$

$$4^k + 3 \stackrel{?}{\le} 4^{k+1}$$

Because P(k) is true.

$$3 \stackrel{?}{\leq} 4^{k+1} - 4^k$$

$$3 \stackrel{?}{\leq} 4^k (4-1)$$

$$3\stackrel{?}{\leq} 3\cdot 4^k$$

$$1 < 4^k$$

 $1 \leq 4^k$ Last inequality holds true for all $k \geq 0 \in \mathbb{Z}$.

(f) Exercise Set 5.3, Problem 21
$$\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$
, for all integers $n \ge 2$.

Let property
$$P(n)$$
 be $\sqrt{n} < \sum_{i=1}^{n} \frac{1}{\sqrt{i}}$.

$$P(2): (\sqrt{2}) < \left(\sum_{i=1}^{2} \frac{1}{\sqrt{i}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = 1 + \frac{\sqrt{2}}{2}\right)$$
 is true.

Assume
$$P(k): \sqrt{k} < \sum_{i=1}^{k} \frac{1}{\sqrt{i}}$$
 for $k \ge 2 \in \mathbb{Z}$ is true.

Prove
$$P(k+1): \sqrt{k+1} < \sum_{i=1}^{k+1} \frac{1}{\sqrt{i}}:$$

$$\sqrt{k+1} \stackrel{?}{<} \sum_{i=1}^{k+1} \frac{1}{\sqrt{i}}$$

$$\sqrt{k+1} \stackrel{?}{<} \sum_{i=1}^k \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}}$$

$$\sqrt{k+1} \stackrel{?}{<} \sqrt{k} + \frac{1}{\sqrt{k+1}}$$

Because P(k) is true.

$$\frac{k+1}{\sqrt{k+1}} \stackrel{?}{<} \frac{\sqrt{k}\sqrt{k+1}+1}{\sqrt{k+1}}$$

$$k+1 \stackrel{?}{<} \sqrt{k}\sqrt{k+1} + 1$$

$$\sqrt{k}\sqrt{k} \stackrel{?}{<} \sqrt{k}\sqrt{k+1}$$

$$k\stackrel{?}{<} k+1$$

(g) Exercise Set 5.3, Problem 22

 $1 + nx \le (1 + x)^n$, for all real numbers x > -1 and integers $n \ge 2$. Let property P(n) be $1 + nx \le (1 + x)^n$ for $x > -1 \in \mathbb{R}$.

Basis:

$$P(2):$$
 $1 + 2x \le (1+x)^2$ is true.
 $\Rightarrow 1 + 2x \le 1 + 2x + x^2$
 $\Rightarrow 0 < x^2$

Inductive hypothesis:

Assume $P(k): 1 + kx \le (1+x)^k$ for $k \ge 2 \in \mathbb{Z}$ and $x > -1 \in \mathbb{R}$ is true.

Prove $P(k+1): 1 + (k+1)x \le (1+x)^{k+1}$:

$$1 + (k+1)x \stackrel{?}{\leq} (1+x)^{k+1}$$

$$1 + kx + x \stackrel{?}{\leq} (1+x)^{k+1}$$

$$(1+x)^k + x \stackrel{?}{\leq} (1+x)^{k+1}$$

$$x \stackrel{?}{\leq} (1+x)^k ((1+x) - 1)$$

$$x \stackrel{?}{\leq} (1+x)^k x$$
Case 1: $x = 0$

Case 1:
$$x = 0$$

Prove $0 \le (1+0)^k \cdot 0$: $0 \le (1+0)^k \cdot 0$
 $0 \le 0$
Proof done

Case 2:
$$x > 0$$
Prove $x < (1 + x)^k x$

$$1 < (1+x)^k : 1 \le (1+x)^k 1 < (1+x)^k : x \le (1+x)^k x Proof done.$$

Case 3: -1 < x < 0

Prove
$$x \le (1+x)^k x$$
:

$$1 > (1+x)^k : 1 \ge (1+x)^k$$

 $1 > (1+x)^k : x \le (1+x)^k x$
Proof done.

 $\overline{P(k+1)}$ is true in all cases.

(h) Exercise Set 5.3, Problem 29

As each of a group of businesspeople arrives at a meeting, each shakes hands with all the other people present. Use mathematical induction to show that if n people come to the meeting then [n(n-1)]/2handshakes occur.

If the set of businesspeople has size n, then the number of handshakes is $\binom{n}{2}$.

For a set of 0 and 1 businesspeople, no handshakes occur.

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n!}{2(n-2)!}$$
Let property $P(n)$ be
$$\begin{cases} 0 = \frac{n(n-1)}{2} & n = 0, n = 1\\ \frac{n!}{2(n-2)!} = \frac{n(n-1)}{2} & n \ge 2 \end{cases}$$
 for non negative integers n .

Pass:

$$P(0): 0 = \left(\frac{0(0-1)}{2} = 0\right)$$
 is true.
 $P(1): 0 = \left(\frac{1(1-1)}{2} = 0\right)$ is true.
 $P(2): \left(\frac{2!}{2(2-2)!} = \frac{2}{2 \cdot 1} = 1\right) = \left(\frac{2(2-1)}{2} = 1\right)$ is true.

Assume
$$P(k): \frac{k!}{2(k-2)!} = \frac{k(k-1)}{2}$$
 for $k \ge 0 \in \mathbb{Z}$ to be true.

Inductive hypothesis:

Assume
$$P(k): \frac{k!}{2(k-2)!} = \frac{k(k-1)}{2}$$
 for $k \ge 0 \in \mathbb{Z}$ to be true.

Prove $P(k+1): \frac{(k+1)!}{2((k+1)-2)!} = \frac{(k+1)((k+1)-1)}{2}:$

$$\frac{(k+1)!}{2((k+1)-2)!} \stackrel{?}{=} \frac{(k+1)((k+1)-1)}{2}$$

$$\frac{(k+1)k!}{2(k-1)!} \stackrel{?}{=} \frac{(k+1)k}{2}$$

$$\frac{(k+1)k(k-1)!}{2(k-1)!} \stackrel{?}{=} \frac{(k+1)k}{2}$$

$$\frac{(k+1)k}{2} = \frac{(k+1)k}{2}$$

(i) Prove that in an n-sided regular polygon, where $n \ge 3$, the number of diagonals is n(n-3)/2.

The number of possible vertex pairs in an *n*-sided regular polygon is $\binom{n}{2}$, and *n* of these vertex pairs are

the edges of the polygon. The number of diagonals is $\binom{n}{2} - n$.

$$\binom{n}{2} - n = \frac{n!}{2!(n-2)!} - n = \frac{n!}{2(n-2)!} - n$$

Let property P(n) be $\frac{n!}{2(n-2)!} - n = \frac{n(n-3)}{2}$.

Basis:
$$P(3): \left(\frac{3!}{2(3-2)!} - 3 = \frac{6}{2} - 3 = 0\right) = \left(\frac{3(3-3)}{2} = 0\right)$$
 is true. Inductive hypothesis:

Assume
$$P(k): \frac{k!}{2(k-2)!} - k = \frac{k(k-3)}{2}$$
 for $k \ge 3$ to be true.

Prove
$$P(k+1)$$
: $\frac{(k+1)!}{2((k+1)-2)!} - (k+1) = \frac{(k+1)((k+1)-3)}{2}$: $\frac{(k+1)!}{2((k+1)-2)!} - (k+1) \stackrel{?}{=} \frac{(k+1)((k+1)-3)}{2}$

$$\frac{(k+1)!}{2((k+1)-2)!} - (k+1) \stackrel{?}{=} \frac{(k+1)((k+1)-3)!}{2}$$

$$\frac{(k+1)k!}{2(k-1)!} - k - 1 \stackrel{?}{=} \frac{(k+1)(k-2)}{2}$$

$$\frac{(k+1)k(k-1)!}{2(k-1)!} - k - 1 \stackrel{?}{=} \frac{(k+1)(k-2)}{2}$$

$$\frac{(k+1)k}{2} - \frac{2k+2}{2} \stackrel{?}{=} \frac{(k+1)(k-2)}{2}$$

$$\frac{k^2 + k - 2k - 2}{2} \stackrel{?}{=} \frac{k^2 - k - 2}{2}$$

$$\frac{k^2 - k - 2}{2} = \frac{k^2 - k - 2}{2}$$

 $\frac{k^2-k-2}{2}=\frac{k^2-k-2}{2}$ Basis and inductive hypothesis proven, therefore original statement is true.

(j) Prove that the number of permutations of the set $\{1, 2, \dots, n\}$ with n elements is n!, for natural number

A set of n = 1 elements has 1! = 1 permutation.

Let property P(n) be $\{1, 2, ..., n\}$ has n! permutations.

Basis:

 $P(1): \{1\}$ has 1! = 1 permutation is true.

Inductive hypothesis:

Assume $P(k): \{1, 2, ..., k\}$ has k! permutations for $k \geq 1$ to be true.

In order to create a permuted set B_p of size k+1, one can insert k+1 into A_p , an arbitrary permutation of set A of k elements.

This action is equivalent to permuting a set of size k + 1.

There are k+1 positions to insert such an element into A_n : k positions before each element and one position after the last element of A_p .

There are k! possible A_p made from A.

(k+1) ways to insert into A_p × (k!) possible A_p = (k+1)k! = (k+1)! ways to create B_p .

Basis and inductive hypothesis proven, therefore original statement is true.

Problem 2.

(a) Exercise Set 5.4, Problem 8

Suppose that h_0, h_1, h_2, \ldots is a sequence defined as follows:

$$h_0 = 1, h_1 = 2, h_2 = 3,$$

 $h_k = h_{k-1} + h_{k-2} + h_{k-3}$ for all integers $k \ge 3$.

(a) Prove that $h_n \leq 3^n$ for all integers $n \geq 0$.

Let property P(n) be $h_n \leq 3^n$ for all integers $n \geq 0$.

Basis:

 $P(0): (h_0 = 1) \le (3^0 = 1)$ is true.

$$P(1): (h = 1 = 2) \le (3^1 = 3)$$
 is true.

$$P(2): (h_2 = 3) \le (3^2 = 9)$$
 is true.

Inductive hypothesis:

Let $k \geq 2$.

Assume $P(i): h_i = h_{i-1} + h_{i-2} + h_{i-3} \le 3^i \text{ for } 0 \le i \le k \text{ and } i \in \mathbb{Z}.$

Prove
$$P(k+1): h_{k+1} = h_k + h_{k-1} + h_{k-2} \le 3^{k+1}$$
:

$$h_{k+1} = h_k + h_{k-1} + h_{k-2}$$

$$\leq 3^k + 3^{k-1} + 3^{k-2}$$
 Because $P(i)$ is true.

$$\leq 3^{k-2} \left(3^2 + 3 + 1 \right)$$

$$\leq 13 \cdot 3^{k-2}$$
 $\leq (3^3 \cdot 3^{k-2} = 3^{k+1})$

$$\leq 3^{k+1}$$

Basis and inductive hypothesis proven, therefore original statement is true.

(b) Suppose that s is any real number such that $s^3 \ge s^2 + s + 1$. (This implies that 2 > s > 1.83.) Prove that $h_n \le s^n$ for all $n \ge 2$.

Let property P(n) be $h_n \leq s^n$ for $n \geq 2 \in \mathbb{Z}$.

Basis:

$$P(2): (h_2 = 2) \le (3.34 < s^2 < 4)$$
 is true.

$$P(3): (h_3 = 6) \le (6.12 < s^3 < 8)$$
 is true.

$$P(4): (h_4 = 11) \le (11.21 < s^4 < 16)$$
 is true.

Inductive hypothesis:

Let $k \geq 4$.

Assume
$$P(i): h_i = h_{i-1} + h_{i-2} + h_{i-3} \le s^i \text{ for } 2 \le i \le k \text{ and } i \in \mathbb{Z}.$$

Prove
$$P(k+1): h_{k+1} = h_k + h_{k-1} + h_{k-2} \le s^{k+1}$$
:

$$h_{k+1} = h_k + h_{k-1} + h_{k-2}$$

$$\leq s^k + s^{k-1} + s^{k-2}$$

$$\leq s^{k-2} (s^2 + s + 1)$$

$$\leq s^{k-2}s^3 \qquad \qquad \text{Because } s^2+s+1 \leq s^3.$$

 $\leq s^{k+1}$

(b) Exercise Set 5.4, Problem 9

Define a sequence a_1, a_2, a_3, \ldots as follows: $a_1 = 1, a_2 = 3, \text{ and } a_k = a_{k-1} + a_{k-2} \text{ for all integers } k \geq 3.$ Use strong mathematical induction to prove that $a_n \leq \left(\frac{7}{4}\right)^n$ for all integers $n \geq 1$.

Let property P(n) be $a_n \leq \left(\frac{7}{4}\right)^n$.

Basis:

$$P(1): 1 \le \frac{7}{4}$$
 is true.

$$P(1): 1 \le \frac{7}{4}$$
 is true.
 $P(2): 3 \le \frac{49}{16}$ is true.

Inductive hypothesis:

Let $k \geq 2$.

Assume
$$P(i): a_i = a_{i-1} + a_{i-2} \le \left(\frac{7}{4}\right)^i$$
 for $1 \le i \le k$ and $i \in \mathbb{Z}$.

Prove
$$P(k+1): a_k + a_{k-1} \le \left(\frac{7}{4}\right)^i$$
:

$$a_{k+1} = a_k + a_{k-1}$$

$$\leq \left(\frac{7}{4}\right)^{k} + \left(\frac{7}{4}\right)^{k-1} \\
\leq \left(\frac{7}{4}\right)^{k-1} \left(1 + \frac{7}{4}\right) \\
\leq \left(\frac{11}{4} \left(\frac{7}{4}\right)^{k-1} = \frac{44}{16} \left(\frac{7}{4}\right)^{k-1}\right) \leq \left(\frac{49}{16} \left(\frac{7}{4}\right)^{k-1} = \left(\frac{7}{4}\right)^{2} \left(\frac{7}{4}\right)^{k-1} = \left(\frac{7}{4}\right)^{k+1}\right) \\
\leq \left(\frac{7}{4}\right)^{k+1}$$

Basis and inductive hypothesis proven, therefore original statement is true.

(c) Exercise Set 5.4, Problem 25(b)

Use mathematical induction to prove that for all integers $n \geq 1$, given any set of 2^n people arranged in a circle and numbered consecutively 1 through 2^n , if one starts from person #1 and goes repeatedly around the circle successively eliminating every second person, eventually only person #1 will remain.

(d) Exercise Set 5.4, Problem 30

It is a fact that every integer n > 1 can be written in the form

$$c_r \cdot 3^r + c_{r-1} \cdot 3^{r-1} + \dots + c_2 \cdot 3^2 + c_1 \cdot 3 + c_0$$

where $c_r = 1$ or 2 and $c_i = 0, 1$, or 2 for all integers i = 0, 1, 2, ..., r - 1. Sketch a proof of this fact.

(e) Exercise Set 5.5, Problem 30

 F_0, F_1, F_2, \ldots is the Fibonacci sequence.

Use mathematical induction to prove that for all integers $n \geq 0$, $F_{n+2}F_n - F_{n+1}^2 = (-1)^n$

(f) Let f be a function on whole numbers satisfying

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 4f(n/2) & \text{if } n > 0 \text{ and even} \\ f(n-1) + 2n - 1 & \text{if } n > 0 \text{ and odd} \end{cases}$$

Problem 3.

- (a) Exercise Set 5.5, Problems 28, 29 $\,$
- (b) Exercise Set 5.6, Problem 2(b,d)
- (c) Exercise Set 5.6, Problems 9, 14, 15