INTRODUCTORY APPLIED MACHINE LEARNING

Yan-Fu Kuo

Dept. of Bio-industrial Mechatronics Engineering

National Taiwan University

Today:

- Principal component analysis
- Principal component regression
- Partial least squares regression

Outline

- Goals
- Variance and covariance
- Representing data set by a point, a line, or multiple lines
- Algebraic interpretation
- Properties of principal component analysis (PCA)
- PCA clustering
- Principal component regression (PCR)
- Biased PCR
- Partial least squares regression (PLSR)

Goals

- After this, you should be able to:
 - Calculate principal components (PC) for a set of data
 - Recognize conditions under which principal component analysis (PCA) or partial least squares discriminant analysis (PLSDA) may be useful
 - Perform principal component regression (PCR) and partial least squares regression (PLSR)
 - Select appropriate principal components for your regression model

What Is Principal Component Analysis?

- Principal component analysis
 (PCA) is a mathematical procedure
 that converts a set of possibly
 correlated variables x_i into a set of
 uncorrelated variables
- The new variables are called principal components (PC) z_i
- The numbers of the original variables and PCs are the same
- The PCs may help in data analysis, model development, and etc.

Why PCA? 1. Multicollinearity

- In multivariate analysis, the variables can be correlated to each other
- For example, the data of height, weight, sex, age, and race from a population

- The correlated data can be redundant and can reduce the accuracy of machine learning model
- Instead, use the uncorrelated PCs as the attributes of machine learning models

Why PCA? 2. Dimension Reduction

Not all the PCs are important

- Feature extraction only keeping a few key feature PCs
- The first PCs from PCA are associated with the largest variance and are usually regarded as key features
- PCA can be used as a clustering tool

History of Principal Component Analysis

Invented by Pearson (1901) and Hotelling (1933)

- Since 1970 actually used (high performance computer)
- Also named as discrete Karhunen–Loève transform (KLT), proper orthogonal decomposition (POD), and Hotelling transform
- Applications: compression, pattern recognition, spectral image data analysis

Statistical Background

- Variance a measure of how far a set of numbers are spread out from each other
- Let $x_i \in \Re$, i = 1 ... N, denote a variable
- The variance of x_i is: $var(x_i) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \bar{x})^2$
- Variance operates on 1 dimension, independently of the other dimensions
- Example:

Data set 1 = [0, 8, 12, 20], Mean = 10, Variance = 69.33

Data set 2 = [8, 9, 11, 12], Mean = 10, Variance = 3.33

Statistical Background (Cont'd)

- Covariance a measure of how much <u>two variables</u> change together
- Suppose there exists two random variables x_{1i} , $x_{2i} \in \Re$, i = 1 ... N, the covariance between x_{1i} and x_{2i} is:

$$cov(x_{1i}, x_{2i}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{1i} - \bar{x}_1)(x_{2i} - \bar{x}_2) \in \Re$$

- Positive/negative covariance higher than average values of one variable tend to be paired with higher/lower than average values of the other variable
- Zero covariance the two random variables are independent

Statistical Background (Cont'd)

- Covariance matrix a matrix whose element in the i, j position is the covariance between the ith and jth elements of a random vector $\mathbf{x}_i = [x_{1i} \dots x_{Mi}]^T \in \Re^M$
- The covariance matrix of the sample matrix X (i = 1 ... N) of the random vector is:

$$cov(\mathbf{X}) = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i - \overline{\mathbf{x}})^{\mathrm{T}} = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^{\mathrm{T}}]$$

$$= \begin{bmatrix} cov(x_{1i}, x_{1i}) & \dots & cov(x_{1i}, x_{Mi}) \\ \vdots & \ddots & \vdots \\ cov(x_{Mi}, x_{1i}) & \dots & cov(x_{Mi}, x_{Mi}) \end{bmatrix} \in \Re^{M \times M}$$

• The matrix cov(X) is positive-semidefinite and symmetric

The Goal of PCA – Feature Reduction

- We wish to the underlying variance-covariance structure of a large set of variables through a few linear combinations of these variables
- Suppose we have $x_i \in \mathbb{R}^M$, i = 1 ... N, sample points in a M-dimensional space
- How does one represent the data set by a point, a line, or multiple lines?

Representing A Data Set with A Point

• If one would like to represent these data set by one point x_0 , what should it be?

The mean
$$\overline{x} \equiv \frac{1}{N} \sum_{i=1}^{N} x_i$$
 ?

- How does one prove it mathematically?
- Problem statement: find x_0 such that the cost function

$$s(\mathbf{x}_0) \equiv \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{x}_0||^2$$

is minimized

Solution

$$s(x_0) = \sum_{i=1}^{N} \|x_i - x_0\|^2 = \sum_{i=1}^{N} \|(x_i - \overline{x}) + (\overline{x} - x_0)\|^2$$

$$= \sum_{i=1}^{N} \|(x_i - \overline{x})\|^2 + 2\sum_{i=1}^{N} (x_i - \overline{x})^{\mathrm{T}} (\overline{x} - x_0) + \sum_{i=1}^{N} \|(\overline{x} - x_0)\|^2$$

$$= \sum_{i=1}^{N} \|(x_i - \overline{x})\|^2 + 2\left(\sum_{i=1}^{N} (x_i - \overline{x})\right)^{\mathrm{T}} (\overline{x} - x_0) + N\|(\overline{x} - x_0)\|^2$$

$$= \sum_{i=1}^{N} \|(x_i - \overline{x})\|^2 + N\|(\overline{x} - x_0)\|^2$$

Representing A Dataset with A Line

- The line passes through \overline{x}
- Suppose the unit vector of the line is $e \in \mathbb{R}^M$, $||e||^2 = 1$
- For each point x_i , there is a point x_i' on the line that is the projection of x_i to the line
- Every point on the line can be represented as $x'_i = \overline{x} + \alpha_i e$, where $\alpha_i \in \Re$

Problem Statement

Find e such that the cost function

$$s(\alpha_1, ..., \alpha_N, e) \equiv \sum_{i=1}^N ||x_i' - x_i||^2 = \sum_{i=1}^N ||\overline{x} + \alpha_i e - x_i||^2$$

is minimized

- We want to prove that \underline{e} is the eigenvector of cov(X)
- Recall that cov(X) is the covariance matrix

Solving the Optimization Problem

$$s(\alpha_1, ..., \alpha_N, \mathbf{e}) = \sum_{i=1}^N ||\overline{x} + \alpha_i \mathbf{e} - \mathbf{x}_i||^2 = \sum_{i=1}^N ||\alpha_i \mathbf{e} - (\mathbf{x}_i - \overline{\mathbf{x}})||^2$$
$$= \sum_{i=1}^N \alpha_i^2 ||\mathbf{e}||^2 - 2 \sum_{i=1}^N \alpha_i \mathbf{e}^{\mathrm{T}} (\mathbf{x}_i - \overline{\mathbf{x}}) + \sum_{i=1}^N ||\mathbf{x}_i - \overline{\mathbf{x}}||^2$$

• Differentiate s against α_i

$$\frac{\partial s(\alpha_1, \dots, \alpha_N, \boldsymbol{e})}{\partial \alpha_i} = 2\alpha_i - 2\boldsymbol{e}^{\mathrm{T}}(\boldsymbol{x}_i - \overline{\boldsymbol{x}})$$

• The minimal of s shows up when $\alpha_i = e^{T}(x_i - \overline{x})$

Problem Reformulation

$$\begin{split} s(\alpha_1,\ldots,\alpha_N,\pmb{e}) &= -\sum_{i=1}^N \pmb{e}^\mathrm{T} (\pmb{x}_i - \overline{\pmb{x}}) (\pmb{x}_i - \overline{\pmb{x}})^\mathrm{T} \pmb{e} + \sum_{i=1}^N \lVert \pmb{x}_i - \overline{\pmb{x}}\rVert^2 \\ &= -\pmb{e}^\mathrm{T} \pmb{S} \pmb{e} + \sum_{i=1}^N \lVert \pmb{x}_i - \overline{\pmb{x}}\rVert^2 \\ \text{where } \pmb{S} &= \sum_{i=1}^N (\pmb{x}_i - \overline{\pmb{x}}) (\pmb{x}_i - \overline{\pmb{x}})^\mathrm{T} \end{split}$$

 Note that the scatter matrix looks very similar to the covariance matrix:

$$cov(\mathbf{X}) = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i - \overline{\mathbf{x}})^{\mathrm{T}} = (N-1)\mathbf{S}$$

Solving the Problem with Lagrangian

- Minimizing $s(\alpha_1, ..., \alpha_N, e)$ is equivalent to maximizing $e^T Se$ subject to the constraint $||e||^2 1 = 0$
- Using Lagrange multiplier to solve the problem:

Let
$$\lambda \in \Re$$

$$L = e^{\mathrm{T}} S e - \lambda (e^{\mathrm{T}} e - 1)$$

Differentiate L against e:

$$\frac{\partial L}{\partial e} = 2Se - 2\lambda e = 0$$
$$Se - \lambda e = 0$$

• *e* is the eigenvector of *S* corresponding to the <u>largest</u> <u>eigenvalue</u>

Algebraic Interpretation

- PC space is a rotated orthogonal coordinate system
- The origin is the mean of the data points
- Eigenvectors show the direction of axes
- Eigenvalues are positive and show the significance of the corresponding axis

What Are Principal Components?

• A principal component (PC) z_i are linear transformation of the original variables, i.e.,

$$\mathbf{z}_i = (z_{i1}, z_{i2}) = (\mathbf{e}_1^T \mathbf{x}_i, \mathbf{e}_2^T \mathbf{x}_i)$$

where the coefficients w_{ij} are computed as projection of the principal component z_i on to the basis vectors x_i

Example

```
% generate data
Data = mvnrnd([5, 5], [1 1.2; 1.2 2], 100);
figure (1); plot (Data (:, 1), Data (:, 2), '+');
xlim([0 10]); ylim([0 10]);
xlabel('x 1'); ylabel('x 2');
% center the data
for i = 1:size(Data, 1)
    Data(i, :) = Data(i, :) - mean(Data);
end
DataCov = cov(Data); %covariance matrix
[PC, variances, explained] = pcacov(DataCov); %eigen
% plot principal components
set(gcf, 'Color', [1, 1, 1]);
hold on; plot(PC(1,1)*[-5 5]+5, PC(2,1)*[-5 5]+5, '-r');
```

Example Figure

Representing A Dataset with Multiple Lines

• Project the data set on a *d*-dimensional plane of the form:

$$\mathbf{x}_i = \overline{\mathbf{x}} + \alpha_{i1}\mathbf{e}_1 + \dots + \alpha_{id}\mathbf{e}_d$$

where $\Re \ni d \ll M$

Cost function to be minimized:

$$s(\alpha_1, \dots, \alpha_N, \boldsymbol{e}_1, \dots, \boldsymbol{e}_d) \equiv \sum_{i=1}^N \left\| \overline{\boldsymbol{x}} + \sum_{j=1}^d \alpha_{ij} \boldsymbol{e}_j - \boldsymbol{x}_i \right\|^2,$$

where the vectors $e_1, ..., e_d$ are d eigenvectors corresponding to d largest eigenvalues of the scatter matrix

PCA through Singular Value Decomposition

- In practice PCA is conducted via singular value decomposition (SVD)
- SVD: it is always possible to decompose any matrix X into

$$X = E\Sigma F^{\mathrm{T}}$$

$$\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & \\ e_1 & \cdots & e_M \\ & & & \end{vmatrix} \begin{bmatrix} \sigma_1 & \varnothing \\ \varnothing & \sigma_M \\ \varnothing & \varnothing \end{bmatrix} \begin{bmatrix} -f_1 - \\ -f_N - \end{bmatrix}$$

$$M \times N \qquad M \times M \qquad M \times N \qquad N \times N$$

where E and F are orthogonal matrices, i.e., $E^{T}E = I$ and $F^{T}F = I$

Geometric Explanation of SVD

PCA through SVD

- The SVD of X: $X = E\Sigma F^{\mathrm{T}}$
- Suppose X is <u>centered</u>, the covariance matrix cov(X) can be written as:

$$cov(X) = XX^{\mathrm{T}} = (E\Sigma F^{\mathrm{T}})(F\Sigma E^{\mathrm{T}}) = E\Sigma^{2}E^{\mathrm{T}}$$

 Note that cov(X) is a real symmetric matrix, which can be factored into

$$cov(X) = Q\Lambda Q^{\mathrm{T}}$$

with orthonormal eigenvectors in $oldsymbol{Q}$ and eigenvalues in $oldsymbol{\Lambda}$

• This gives that $E\Sigma^2 E^{\mathrm{T}} = cov(X) = Q\Lambda Q^{\mathrm{T}}$

PCA through SVD (Cont'd)

- The eigenvectors of cov(X) are the columns of E
- The eigenvalues of cov(X) are the diagonal elements of $\Lambda = \Sigma^2$
- The PC matrix Z is defined as

$$Z = E^{\mathrm{T}}X = \begin{bmatrix} -e_1 - \\ \vdots \\ -e_M - \end{bmatrix} \begin{bmatrix} X \end{bmatrix}$$

Correlation between Principal Components

- The PCs are pairwise uncorrelated
- Recall that the PC matrix is $Z = E^{T}X$
- Vectors in the PC matrix Z is <u>orthogonal</u>, i.e., covariance matrix of Z is diagonal
- Proof:

$$cov(\mathbf{Z}) = \frac{1}{N-1}\mathbf{Z}\mathbf{Z}^{\mathrm{T}} = \frac{1}{N-1}\mathbf{E}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{E}$$

$$= \frac{1}{N-1} \boldsymbol{E}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{\Sigma}^{2} \boldsymbol{E}^{\mathrm{T}} \boldsymbol{E} = \frac{1}{N-1} \boldsymbol{\Sigma}^{2}$$

Sorting Variance of PCs

 The PCs have a variance equal to their corresponding eigenvalue

$$cov(\mathbf{z}_i) = \lambda_i = \sigma_i^2$$
, where $i = 1 \dots M$

- Small $\lambda_i \Leftrightarrow$ small variance \Leftrightarrow data change little along the eigenvector \boldsymbol{e}_i
- The eigenvalues are usually sorted in an ascending order, i.e., $\lambda_1 \geq \cdots \geq \lambda_M \geq 0$
- The percentage variance explained by each PC is given by

$$\frac{\lambda_i}{\sum \lambda_i} = \frac{\sigma_i^2}{\sum \sigma_i^2}$$

PC to Be Included

- Typically the first m eigenvectors corresponding to the m largest eigenvalues are retained
- Enough PCs to have a cumulative variance explained by the PCs that is larger than 60-90%
- Scree plot:

Axis	Variance	Cumulative
1	61.2%	61.2%
2	18.0%	79.2%
3	4.7%	83.9%
4	4.0%	87.9%
5	3.2%	91.1%
6	2.9%	94.0%
7	2.0%	96.0%
8	1.7%	97.7%
9	1.4%	99.1%
10	0.9%	100.0%

Dimensionality Reduction through PCA

Assume information is additive

$$X = X_S + X_N = E_S \Sigma_S (F_S)^{\mathrm{T}} + E_N \Sigma_N (F_N)^{\mathrm{T}}$$

$$\left[egin{array}{c} X \end{array}
ight] = \left[egin{array}{c} ert \ e_1 & \cdots \ 0 \ ert \end{array}
ight] \left[egin{array}{c} \sigma_1 & arphi \ arphi & \ddots \ arphi \end{array}
ight] \left[egin{array}{c} -f_1 - \ 0 \end{array}
ight] \ + \left[egin{array}{c} ert \ 0 & \cdots \ e_M \ ert \end{array}
ight] \left[egin{array}{c} 0 & arphi \ arphi & \ddots \ \sigma_M \ arphi \end{array}
ight] \left[egin{array}{c} -0 & - \ -f_N \end{array}
ight]
ight]$$

- Reserve PC with high variance and disregard the rest
- Common application area: compression, noise reduction

Using PCA in Divisive Clustering

- 1. Calculate the eigenvalues and eigenvectors
- Choose the eigenvector with the highest eigenvalue of the covariance matrix
- 3. Try each points along the principal axis as the dividing point and select the one with the largest margin
- 4. Determine the separating

PCA Clustering Example

Data

Point	x_{1i}	x_{2i}	$x_{1i} - \bar{x}_1$	$x_{1i} - \bar{x}_1$
1	1	1	-3.17	-2.83
2	2	1	-2.17	-2.83
3	4	5	-0.17	1.17
4	5	5	0.83	1.17
5	5	6	0.83	2.17
6	8	5	3.83	1.17

PCA Clustering Example (Cont'd)

- Covariance matrix: $cov(X) = \begin{pmatrix} 5.14 & 3.69 \\ 3.69 & 4.14 \end{pmatrix}$
- Eigenvalues λ : $cov(X) \lambda \cdot I_2 = \begin{pmatrix} 5.13 \lambda & 3.69 \\ 3.69 & 4.13 \lambda \end{pmatrix}$ $\lambda_1 = 8.367$ and $\lambda_2 = 0.911$
- Eigenvectors e_1 and e_2 :

$$\begin{pmatrix} 5.14 & 3.69 \\ 3.69 & 4.14 \end{pmatrix} \boldsymbol{e}_1 = 8.36 \boldsymbol{e}_1 \text{ and } \begin{pmatrix} 5.14 & 3.69 \\ 3.69 & 4.14 \end{pmatrix} \boldsymbol{e}_2 = 0.91 \boldsymbol{e}_2$$

 $\boldsymbol{e}_1 = (-0.75, -0.66)^{\mathrm{T}} \text{ and } \boldsymbol{e}_2 = (0.66, -0.75)^{\mathrm{T}}$

PCA Clustering Example (Cont'd)

- Projections on the selected eigenvector
- Try the median of each pair of adjacent points as the dividing point
- Choose the one gives the largest margin as the separating hyperplane

Summary of PCA

- A method for identifying the important "directions" in the data
- Maps data into a (reduced) coordinate system that is given by those "directions"
- The new variables are called PCs
- Practically implemented by using SVD
- One of the most common feature reduction techniques
- <u>Unsupervised</u> in a sense that it does not consider the output class/value of an instance
- What about using PCs as explanatory variables for regression?

Multiple Regression vs. Principal Component Regression

Multiple regression

 Principal component regression (PCR)

Review of Multiple Regression Model

Multiple regression model:

$$y = f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M = \beta x$$

where $\beta = [\beta_0, \dots, \beta_M]$ and $x = [1, x_1, \dots, x_M]^T$

Suppose N observation is made, i.e.,

$$\boldsymbol{X} = \begin{bmatrix} 1 & \cdots & 1 \\ x_{11} & \cdots & x_{N1} \\ \vdots & \ddots & \vdots \\ x_{1M} & \cdots & x_{NM} \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} y_1 & \cdots & y_N \end{bmatrix}$$

• The regression model coefficients: $\beta = yX^{T}(XX^{T})^{-1}$

Problem with Multiple Regression – Multicollinearity

- The situation where the explanatory variables are highly inter-correlated is referred to as <u>multicollinearity</u>
- When the explanatory variables are highly correlated, it becomes difficult to disentangle the separate effects of each of the explanatory variables on the response variable
- In the other words, the inverse of $(XX^T)^{-1}$ may be changed dramatically once there is noise in the data, and hence the regression model coefficients are marginally unstable

Principal Component Regression

- Regress the response variable y using Z rather than X
- Reformulate the model: $y = \beta' Z$
- Because the PC matrix Z is orthogonal, β' can be directly calculated following the least-squares, i.e.,

$$\boldsymbol{\beta}' = \boldsymbol{y} \boldsymbol{Z}^{\mathrm{T}} (\boldsymbol{Z} \boldsymbol{Z}^{\mathrm{T}})^{-1}$$

Matching the models

$$y = \beta' Z = \beta' E^{\mathrm{T}} X = \beta X = y$$

the regression model coefficients are $\beta = \beta' E^{T}$

Biased Principal Component Regression

- Assume the signal and the noise are additive
- Decompose the explanatory variable matrix into a signal matrix and a noise matrix:

$$X = X_S + X_N = E_S \Sigma_S (F_S)^{\mathrm{T}} + E_N \Sigma_N (F_N)^{\mathrm{T}}$$

- Regress the response variable y using the signal matrix X_S only
- How to select PCs to be retained in the signal matrix X_S ?

Architecture of Principal Component Regression

Problem of PCR

 PCs are created from the covariance matrix of the explanatory variables (hence unsupervised)

• What if we consider the relationship between x_i and y_i while creating the new latent variables?

Partial Least Squares Regression (PLSR)

- Partial least squares regression (PLSR) is similar to PCR except in how the component scores are computed
- In PLSR, the weights reflect the covariance structure between the explanatory and response variables
- Denote t and u as the PLSR latent variables

PLSR Formulation

- Let $T \in \mathbb{R}^{N \times H}$ denote the latent variable (also called scores) matrix of X, and $U \in \mathbb{R}^{N \times H}$ denote the latent variable matrix of Y
- The X and Y can be expressed as

$$X = TP^{T} + E$$
 with $T^{T}T = I$
 $Y = UC^{T} + F = TBC^{T} + F$

where $P \in \mathbb{R}^{H \times M}$ and $C \in \mathbb{R}^{L \times H}$ are the loading matrices, and $E \in \mathbb{R}^{N \times M}$ and $F \in \mathbb{R}^{N \times L}$ are the random errors of X and Y, respectively

PLSR Formulation (Cont'd)

- The matrices T and U are identified column by column
- Let vector t be a column in T, and vector u be the corresponding column in U
- Objective: find a pair of t = Xw and u = Yc such that the covariance between t and u is maximized, i.e.,

$$\max t^{T}u$$

with the constraints that $\mathbf{w}^{\mathrm{T}}\mathbf{w} = 1$ and $\mathbf{t}^{\mathrm{T}}\mathbf{t} = 1$

 SIMPLS is one of the most common algorithm to solve this optimization problem

SIMPLS Algorithm

- Initialize u with random values, and let E = X, F = Y
- Run these four steps until t is converged
 - 1. $w = E^{T}u/|EX^{T}u|$ (estimate X weights)
 - 2. $t = E^{T}w/|E^{T}w|$ (estimate X factor scores)
 - 3. $c = F^{T}t/|F^{T}t|$ (estimate Y weights)
 - 4. u = Fc (estimate Y scores)
- Record w, t, c and u
- Let $p = E^{\mathrm{T}}t$, $b = t^{\mathrm{T}}u$, $E = E tp^{\mathrm{T}}$, and $F = F b(t^{\mathrm{T}}c)$
- The t, u, w, c, and p are stored in the corresponding matrices, and the b is stored as a diagonal element of B
- Calculate the next pair of t and u

PLSR Model

The response variables are predicted using the formula

$$\widehat{Y} = TBC^{\mathrm{T}} = X(P^{\mathrm{T}+})BC^{\mathrm{T}}$$

where P^{T+} is the Moore-Penrose pseudo-inverse of P^{T}

 If all the latent variables of X are used, this regression is equivalent to PCR

Why PLS?

- Similar to PCR, PLSR can handle strong collinear data and under-determined problems
- The regression is performed based on the relationship between the explanatory and response variables (hence supervised)

Partial Least Squares Discriminant Analysis

- In partial least squares discriminant analysis (PLSDA), the entries of the response variable matrix *Y* are binary
- Comparison to PCA
 - PLSDA is a supervised classification technique while PCA is an unsupervised clustering technique
 - PLSDA enhances the separation between groups of observations by rotating newly defined components (e.g., scores) such that a maximum separation among classes is obtained

Reference

- T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning*
- Hervé Abdi, "Partial least square regression"