

3D Reconstruction from Multiple View Images

Image Processing and Computer Vision

3D Reconstruction from Multiple View Images

- Review of 3D Reconstruction techniques
- Projective Geometry
- Volumetric Scene Modelling
 - Shape from Silhouette
 - Voxel Colouring
- Embedded Voxel Colouring
- Stereo Matching
 - Improving Speed
 - Improving Quality
- 4D Reconstruction from Image Sequences

3D Reconstruction from Images

Aim: Recover the lost third dimension – Depth – from images alone

Sparse Reconstruction

Dense Reconstruction: Feature Correspondence Problem

Stereo Matching

Epipolar Geometry

2.5D Sketch

$$z = f(x, y)$$

Stereo Matching

3D Reconstruction from Multiple Views

Projective Coordinates

$$(x, y, w) \rightarrow \left(\frac{x}{w}, \frac{y}{w}\right)$$

$$(x, y, z, w) \rightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)$$

Epipolar Constraint:

$$p'^T \mathbf{F} p = 0$$

F is a 3x3 Matrix

Calibration = estimate F

Calibration is to find relationship:

$$(x, y, z, w) \leftrightarrow (x, y, w)$$

computing the Projection Matrix

Step 1: Compute Extrinsic Transformation

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = R \begin{pmatrix} x_w \\ y_w \\ z_w \\ w_w \end{pmatrix} + T$$

$$\begin{bmatrix} R & T \\ 0^T & 1 \end{bmatrix}$$

$$\begin{bmatrix} R & T \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} R & T \\ v^T & v \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Euclidean

Projective

Step 2: Compute Projective Matrix

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix}$$

$$A = \begin{bmatrix} f_x & s & C_x \\ 0 & f_y & C_y \\ 0 & 0 & 1 \end{bmatrix}$$

Step 3: Add in Intrinsic Transformation

$$p_i = A P_i V v_m$$

 $A P_i = Projection Matrix, P$

$$P = A [R | -RT]$$

$$P\begin{bmatrix} x_w \\ y_w \\ z_w \\ w_w \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix}$$

$$p_i = A P_i V v_m$$

- Estimating the 12 parameters of the Projection Matrix is a non-trivial task
- If you are given the Projection Matrices = A P_i
- Design V matrix to compute 3D coordinate of each voxel
- Obtain the Region of Interest in world coordinates

Volumetric Modelling

- Project the frustum of each silhouette and compute intersections
- Back-Project each voxel into all images and CARVE away nondinosaur voxels

- Sensitive to Segmentation Errors (eg. Table extraction)
- Reconstruction by geometric intersection → Visual Hull

Shape from Photo-Consistency

Inconsistent voxels are carved

- Metric:
 - difference measure
 - variance
 - probability density function
 - histogram

Space Carving or Voxel Colouring

• S. Seitz and C. Dyer, "Photorealistic Scene Reconstruction by Voxel Coloring", IJCV, Vol. 35, No. 2, 1999, pp. 151-173.

Occlusion Modelling

- Voxel Colouring
 - Ordinal Visibility Constraint near to far traversal ordering
 - Camera location restricted
- Space Carving
 - Iterated voxel colouring
- Generalized Voxel Coloring
 - Arbitrary camera placement
 - Single sweep

Embedded Voxel Colouring

 C. Leung, B. Appleton, C. Sun, "Embedded Voxel Colouring", Digital Image Computing: Techniques and Applications, Vol. 2, pp. 623-632, December.

- Properties of Carving
 - · Water-Tight Surface Model
 - Monotonicity Carving Order
 - Causality

Water-Tight Surface Model

- Many voxels to many pixels relationship
- Water-Tight Voxels
- Water-Tight Pixels

Monotonic Carving Order

 Consider two carvings, S_A and S_B, computed at thresholds A and B. *Monotonicity of carving* dictates:

$$A \leq B \longrightarrow S_A \subseteq S_B$$

Therefore these sets may be embedded into a function!

$$S_A = \{ \mathbf{x} | f(\mathbf{x}) \le A \}$$

- Compute f in a single sweep
- All carvings may be obtained by thresholding

Causality

- Monotonic Carving Order + Water-tightness → Causality
- Under a water-tight surface model, only surface voxels get carved
- Every new surface voxel must have a neighbour who has been carved
- Every voxel has a neighbour of equal or higher consistency threshold
- No local maxima in the function f

Volumetric Modelling

Results

Image Processing and Computer Vision

Brian Lovell

Embedded Voxel Colouring

Embed carvings for all possible consistency threshold into one volume

Results

- Embedded VC:
 - 36 images (720x576)
 - 350x350x350 volume
 - 53 minutes (450MHz Ultra Sparc II)

Generalised VC:

(Culbertson et al.)

- 17 images (800x600)
- 167x121x101 volume
- 40 minutes (440MHz HP J5000)

Stereo Matching

Multiscale

Image Processing and Computer Vision

Brian Lovell

Summing window of size 4 - 7 additions of a window size of 4

[23 22 16 12 8 10 15]

Box Filtering

[3 7 4 9 2 1 0 5 4 6]

Compute Accumulated Sum -

Take Differences to obtain same result

Smoothness Constraint

Greedy

Iterated Dynamic Programming

Dynamic Programming

Stereo Reconstruction using Iterated Dynamic

IDP

Stereo Reconstruction using Iterated Dynamic Programming and Quadtree Subregioning

Image	Size	Scales	Disparity range	Window size	Time (seconds)
	512×480	3	-30, 0	5×5	3.28
	284×216	1	-30, 0	3×3	1.1
	512×512	3	-25, 20	9×9	5.9

Stereo-Temporal Reconstruction

(3.5D Reconstruction)

Without Temporal Coherence

With Temporal Coherence

Stereo-Temporal Reconstruction

Without Temporal

With Temporal

Without Temporal

With Temporal

 3×3 window, $K_2 > K_1$

 5×5 window, $K_2 \approx K_1$

3D Dynamic Scene Reconstruction from Multiple View Image Sequences

(4D Reconstruction)

3D Reconstruction from Multiple View Images

