Chapitre 4 : Successions d'épreuves indépendantes

George Alexandru Uzunov

Table des matières

	Représenter une succession d'epreuves 1.1 Rappel sur l'arbre pondeéré					
2	Loi de Bernoulli	3				
3	Loi Binomiale 3.1 Schema de Bernoulli	3				
4	Application de la loi binomiale	3				

1 Représenter une succession d'epreuves

1.1 Rappel sur l'arbre pondeéré

FIGURE 1 - Représentation d'un arbre pondéré

1.2 Successions d'épreuves indépendantes

<u>Définition</u> Dans une succession d'épreuves, lorsque l'issue d'une épreuve ne dépend pas des épreuves précédentes, on dit qu'elle est indépendante.

Propriétés Lorsqu'on répète n fois de façon indépendante une éxpérience aléatoire dont les issues sont A_1,A_2,\ldots,A_n pour lesquelles les probabilités sont $P(A_1),P(A_2),\ldots,P(A_n)$, alors la probabilité d'obtenir la suite d'issues A_1 jusqu'à A_n est le produit de leur probabilités.

Exemple Soit un dé à quatre faces équilibré. Si ce dé est numéroté de 1 à 4 :

	x	1	2	3	4	
1	P(x)	$^{1}/_{4}$	$^{1}/_{4}$	$^{1}/_{4}$	$^{1/_{4}}$	

De même, soient un jeton A et deux jetons B placés dans un sac. Si, successivement nous lançons le dé puis nous tirons un jeton, les issues sont les suivantes.

FIGURE 2 -

Ceci donne la loi de probabilité suivante :

Issues	(1;A)	(1;B)	(2;A)	(2;B)	(3;A)	(3;B)	(4;A)	(4;B)
Probabilité de chaque issue	1/12	1/6	1/12	1/6	1/12	1/6	1/12	1/6

2 Loi de Bernoulli

<u>Définition</u> Une épreuve de Bernoulli est une éxperience aléatoire qui admet exactement deux issues possibles (succès 'S', échec 'E)

$$\begin{array}{c|cccc} k & \mathbf{0} & \mathbf{1} \\ P(X=k) & 1-p & p \end{array}$$

FIGURE 3 – Loi de Bernoulli de paramètre p

Propriétés

$$E(X) = 0(1-p) + 1 \times p = p$$
$$V(X) = p - p^2 = p(1-p)$$
$$\sigma(X) = \sqrt{p(1-p)}$$

3 Loi Binomiale

3.1 Schema de Bernoulli

<u>Définition</u> On apelle Schema de Bernoulli d'ordre n la répétition de n épreuves de Bernoulli identiques et indépendantes.

3.2 Etude d'un exemple

Soit un schéma de Bernoulli d'ordre 3.

Soit X la variable aléatoire modelisant le nombre (k) de succès. On a : $X(\Omega) = 0; 1; 2; 3$

3

3.3 Coefficients binomiaux

4 Application de la loi binomiale