Examenul de bacalaureat național 2014 Proba E. d)

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Varianta 10

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \mathrm{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\mathrm{J}}{\mathrm{mol} \ \mathrm{K}}$. Între parametrii

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Temperatura unei cantități constante de gaz ideal monoatomic:
- a. creşte într-o destindere izotermă
- b. crește într-o destindere adiabatică
- c. scade într-o destindere izotermă
- d. scade într-o destindere adiabatică

(3p)

(3p)

- 2. Căldura schimbată de un gaz ideal cu mediul exterior, într-un proces izocor, se poate exprima prin relaţia:
- **a.** $Q = p\Delta V$
- **b.** $Q = \nu C_n \Delta T$
- **c.** $Q = v C_v \Delta T$
- **d.** Q = 0
- 3. Unitatea de măsură în SI pentru căldura specifică este:

a.
$$\frac{\mathsf{J}}{\mathsf{kg}\cdot\mathsf{K}}$$

b.
$$\frac{J}{\text{mol} \cdot K}$$

c.
$$\frac{J}{K}$$

d.
$$\frac{J \cdot kg}{K}$$
 (3p)

4. Două corpuri cu mase egale, având temperaturi diferite, sunt puse în contact termic. Căldurile specifice ale celor două corpuri sunt în relația $c_1 = 3c_2$, iar între temperaturile inițiale ale celor două corpuri există relația $T_2 = 3 \cdot T_1$. Temperatura finală T a sistemului după stabilirea echilibrului termic, se exprimă ca:

a.
$$T = 2.5 \cdot T_1$$

b.
$$T = 1.5 \cdot T_1$$

c.
$$T = T_1$$

d.
$$T = 0.5 \cdot T_1$$

5. Trei cantități egale din același gaz, considerat ideal, sunt închise etanș în trei vase de p_{A} sticlă având volumele V_1, V_2 și respectiv V_3 . În figura alăturată este reprezentată, pentru fiecare vas, dependența presiunii gazului de temperatura acestuia. Relația dintre volumele V_1 , V_2 şi V_3 este:

- **a.** $V_1 < V_2 < V_3$
- **b.** $V_2 < V_1 < V_3$
- **c.** $V_1 = V_2 = V_3$
- **d.** $V_3 < V_2 < V_1$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Într-o butelie având volumul $V = 3 \, \text{L}$ se află metan ($\mu = 16 \, \text{g/mol}$), considerat gaz ideal, la presiunea $p_1 = 1,662 \cdot 10^5 \,\mathrm{Pa}$ şi temperatura $T_1 = 300 \,\mathrm{K}$. În butelie se introduce o cantitate suplimentară de metan, astfel încât presiunea crește la $p_2 = 1.6p_1$, iar temperatura sistemului crește la $T_2 = 320$ K. Determinați:

- a. cantitatea de gaz din butelie în starea initială;
- b. numărul de molecule de gaz din butelie în starea finală;
- c. densitatea gazului în starea finală;
- **d.** temperatura T_3 la care trebuie răcit gazul pentru ca presiunea acestuia să ajungă din nou la valoarea iniţială, p_1 .

III. Rezolvaţi următoarea problemă:

O cantitate dată de gaz ideal biatomic, având căldura molară izocoră $C_v = 2.5R$, parcurge ciclul $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ reprezentat în coordonate V - T în figura alăturată. În starea iniţială gazul ocupă volumul $V_1 = 2 \cdot 10^{-3} \, \text{m}^3$ şi se află la presiunea $p_1 = 10^5 \,\text{Pa}$. Se cunoaște $\ln 2 \cong 0.7$.

- **a.** Reprezentați ciclul în coordonate p-V.
- **b.** Calculați variația energiei interne în procesul $1 \rightarrow 2$.
- c. Calculati căldura cedată de gaz în decursul transformării ciclice.
- **d.** Determinați lucrul mecanic efectuat de gaz în transformarea $2 \rightarrow 3$.