2019 EGMO #4

Tristan Shin

10 Apr 2019

Let ABC be a triangle with incentre I. The circle through B tangent to AI at I meets side AB again at P. The circle through C tangent to AI at I meets side AC again at Q. Prove that PQ is tangent to the incircle of ABC.

Let r, r_A, I_A be the inradius, A-exadius, and A-excenter of $\triangle ABC$.

By Power of a Point, $AP \cdot AB = AI^2$ and $AQ \cdot AC = AI^2$. Let $P' \in AC$ and $Q' \in AB$ be the reflections of P and Q over AI; clearly PQ is tangent to the incircle of $\triangle ABC$ if and only if P'Q' is.

Since $\frac{AQ'}{AP'} = \frac{AQ}{AP} = \frac{AB}{AC}$, $Q'P' \parallel BC$. Then $\triangle AQ'P' \sim \triangle ABC$ with ratio $\frac{AQ'}{AB} = \frac{AI^2}{AB \cdot AC}$. Then the A-exadius of $\triangle AQ'P'$ is

$$\frac{AI^2}{AB \cdot AC} \cdot r_A = \frac{AI^2}{AB \cdot AC} \cdot \frac{AI_A}{AI} \cdot r = \frac{AI \cdot AI_A}{AB \cdot AC} \cdot r = r$$

so the A-excircle of $\triangle AQ'P'$ is the incircle of $\triangle ABC$ (there is a unique circle with radius r tangent to rays \overrightarrow{AB} and \overrightarrow{AC}). It follows that Q'P' is tangent to the incircle of $\triangle ABC$, so PQ is tangent to the incircle of $\triangle ABC$.