# PH 716 Applied Survival Analysis

Part V: Cox Proportional Hazards Model

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Feb/18 22:53:17

# Assumptions for Cox proportional hazards (PH) model

- Observed  $\widetilde{T}_i = \widetilde{t}_i$  and  $\Delta_i = \delta_i$  (event indicator)
- $T_i$  are independent across i, given  $x_{i1}, \ldots, x_{ip}$
- The independent and non-informative censoring
- $\lambda_{T_i}(t) = h(t \mid x_{i1}, \dots, x_{ip}) = h_0(t) \exp(\sum_{j=1}^p x_{ij}\beta_j)$ , or equiv.  $\ln \lambda_{T_i}(t) = \ln h_0(t) + \sum_{j=1}^p x_{ij}\beta_j$ 
  - $-h_0(t)$  (the baseline hazard): obtained when all covariates are zeros and left unspecified
    - \* A semi-parametric generalized linear model: nonparmetric baseline hazard + paramatric
  - Proportional hazards: the HR between any two individuals, say  $\lambda_{T_{i_1}}(t)/\lambda_{T_{i_2}}(t)=\exp(\sum_{j=1}^p x_{i_1j}\beta_j-\sum_{j=1}^p x_{i_2j}\beta_j)$ , is constant over time No intercept  $\beta_0$

  - Interpretation of  $\beta_i$ : exp( $\beta_i$ ) is the HR associated with one-unit change in the jth covariate, fixing everything else

### Weibull regression as a special case of Cox PH model

• Recall the Weibull regression:  $\ln T_i = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j + \sigma\varepsilon_i$  with  $\varepsilon_i \stackrel{\text{iid}}{\sim} F_{\varepsilon_i}(\epsilon) = 1 - \exp(-\exp\epsilon)$ 

$$-S_{T_i}(t) = \exp[-\{t/\exp(\beta_0 + \sum_{j=1}^p x_{ij}\beta_j)\}^{1/\sigma}] \Rightarrow \lambda_{T_i}(t) = (1/\sigma)t^{1/\sigma - 1}\exp\{(-\beta_0 - \sum_{j=1}^p x_{ij}\beta_j)/\sigma\}$$

- $\lambda_{T_i}(t) = h_0(t) \exp(\sum_{j=1}^p x_{ij}\beta_j^*)$  if  $h_0(t) = (1/\sigma)t^{1/\sigma-1} \exp(-\beta_0/\sigma)$  and  $\beta_j^* = -\beta_j/\sigma$ ,  $j = 1, \ldots, p$
- The only continuous-time model that is both a Cox PH and an AFT model

#### Partial likelihood (assuming no tied failure time)

- The observed-data likelihood  $L(\beta, h_0) = \prod_i \lambda_{T_i}(\tilde{t}_i)^{\delta_i} S_{T_i}(\tilde{t}_i)$  relying on both  $\beta = [\beta_1, \dots, \beta_j]^{\top}$  and unspecified  $h_0(\cdot)$
- Further assumptions
  - K and only K distinct, ordered failure times, say  $t_1 < \cdots < t_K$
  - No tied failure time: for each k, there is one and only one individual, say subject  $i_k$ , who fails at  $t_k$
  - Risk set  $\mathcal{R}(t) = \{i : \widetilde{T}_i \geq t\}$ : the set of individuals who are known to survive just prior to time t
- Rephrase  $L(\beta, h_0)$ :

$$L(\boldsymbol{\beta}, h_0) = \prod_{i=1}^n \lambda_{T_i}(\tilde{t}_i)^{\delta_i} S_{T_i}(\tilde{t}_i) = \prod_{i=1}^n \left\{ \frac{\lambda_{T_i}(\tilde{t}_i)}{\sum_{\ell \in \mathcal{R}(\tilde{t}_i)} \lambda_{T_\ell}(\tilde{t}_i)} \right\}^{\delta_i} \times \left\{ \sum_{\ell \in \mathcal{R}(\tilde{t}_i)} \lambda_{T_\ell}(\tilde{t}_i) \right\}^{\delta_i} \times S_{T_i}(\tilde{t}_i)$$

• Take the partial likelihood (i.e., the first term of the above  $L(\beta, h_0)$ )

$$pL(\boldsymbol{\beta}) = \prod_{i=1}^n \left\{ \frac{\lambda_{T_i}(\tilde{t}_i)}{\sum_{k \in \mathcal{R}(\tilde{t}_i)} \lambda_{T_k}(\tilde{t}_i)} \right\}^{\delta_i} = \prod_{i=1}^n \left\{ \frac{\exp(\sum_{j=1}^p x_{ij}\beta_j)}{\sum_{\ell \in \mathcal{R}(\tilde{t}_i)} \exp(\sum_{j=1}^p x_{\ell j}\beta_j)} \right\}^{\delta_i} = \prod_{k=1}^K \frac{\exp(\sum_{j=1}^p x_{kj}\beta_j)}{\sum_{\ell \in \mathcal{R}(t_k)} \exp(\sum_{j=1}^p x_{\ell j}\beta_j)}$$

as a surrogate of  $L(\beta, h_0)$  in estimating  $\beta$ 

- Cox (1972) argued that  $L_{\text{partial}}(\beta)$  contained almost all the information about  $\beta$
- Extensive evidence, both theoretical and numerical, supported this argument in the past few decades
- Log-partial likelihood

$$p\ell(\boldsymbol{\beta}) = \ln pL(\boldsymbol{\beta}) = \sum_{k=1}^{K} \left\{ \sum_{j=1}^{p} x_{kj} \beta_j - \ln \sum_{\ell \in \mathcal{R}(\tilde{t}_k)} \exp \left( \sum_{j=1}^{p} x_{\ell j} \beta_j \right) \right\}$$

• Another look at  $pL(\beta)$ :

$$pL(\beta) = \prod_{k=1}^{K} \frac{\Pr(\text{subject } i_k \text{ fails at time } t_k \mid \text{it is at risk at } t_k)}{\Pr(\text{there is one and only one failure at time } t_k \mid \text{it is at risk at } t_k)}$$

# Ex. 5.1 The calculation of partial likelihood

| $\overline{i}$ | $\tilde{t}_i$ | $\delta_i$ | $x_i$ |
|----------------|---------------|------------|-------|
| 1              | 9             | 1          | 4     |
| 2              | 8             | 0          | 5     |
| 3              | 6             | 1          | 7     |
| 4              | 10            | 1          | 3     |

• Key point: follow the following definition (no need to reorder failure times) and fill in the table

$$pL(\beta) = \prod_{i=1}^{n} \left\{ \frac{\exp(\sum_{j=1}^{p} x_{ij}\beta_{j})}{\sum_{\ell \in \mathcal{R}(\tilde{t}_{i})} \exp(\sum_{j=1}^{p} x_{\ell j}\beta_{j})} \right\}^{\delta_{i}}$$

| i | $	ilde{t}_i$ | $\delta_i$ | $x_i$ | $\mathcal{R}(\tilde{t}_i)$ | $\left\{\frac{\exp(x_k\beta)}{\sum_{\ell\in\mathcal{R}(t_k)}\exp(x_\ell\beta)}\right\}^{\delta_i}$ |
|---|--------------|------------|-------|----------------------------|----------------------------------------------------------------------------------------------------|
| 1 | 9            | 1          | 4     |                            |                                                                                                    |
| 2 | 8            | 0          | 5     |                            |                                                                                                    |
| 3 | 6            | 1          | 7     |                            |                                                                                                    |
| 4 | 10           | 1          | 3     |                            |                                                                                                    |

#### Ex. 5.2 The calculation of partial likelihood: comparison of two groups

• Covariate  $x_i$  indicating the group label

| i      | $	ilde{t}_i$ | $\delta_i$ | $x_i$  | $\mathcal{R}(	ilde{t}_i)$ | $\frac{\exp(x_k\beta)}{\sum_{\ell\in\mathcal{R}(t_k)}\exp(x_\ell\beta)}$ |
|--------|--------------|------------|--------|---------------------------|--------------------------------------------------------------------------|
| 1<br>2 | 4<br>7       | 0<br>1     | 0<br>0 |                           |                                                                          |

| i  | $	ilde{t}_i$ | $\delta_i$ | $x_i$ | $\mathcal{R}(	ilde{t}_i)$ | $\frac{\exp(x_k\beta)}{\sum_{\ell\in\mathcal{R}(t_k)}\exp(x_\ell\beta)}$ |
|----|--------------|------------|-------|---------------------------|--------------------------------------------------------------------------|
| 3  | 8            | 0          | 0     |                           |                                                                          |
| 4  | 9            | 1          | 0     |                           |                                                                          |
| 5  | 10           | 0          | 0     |                           |                                                                          |
| 6  | 3            | 1          | 1     |                           |                                                                          |
| 7  | 5            | 1          | 1     |                           |                                                                          |
| 8  | 5            | 0          | 1     |                           |                                                                          |
| 9  | 6            | 1          | 1     |                           |                                                                          |
| 10 | 8            | 0          | 1     |                           |                                                                          |

```
library(survival)
data = data.frame(
    tte = c(4,7,8,9,10,3,5,5,6,8),
    delta = c(0,1,0,1,0,1,1,0,1,0),
    x = c(0,0,0,0,0,1,1,1,1,1)
)
fit = coxph(Surv(tte,delta)~x+x2, data = data)
fit1 = coxph(Surv(tte,delta)~x2, data = data)
anova(fit, fit1)
summary(fit)
```

- $\exp(\beta)$  is the HR of group = 1 against group = 0, fixing everything else (if any). It implies that the hazard in group 1 is  $\exp(\beta) \times 100\%$  that in group 0.
- Is there any difference between the survival of the two groups? There are at least four *p*-values. Which one shall we refer to?
- What are meanings of other digits in the output?
- What if there are more covariates?

# Ex. 5.3. Leukemia data (with tied event/failure times)

```
survival::leukemia
```

# Partial likelihood (Cox's modification)

- Assumptions
  - K and only K distinct, ordered failure times, say  $t_1 < \cdots < t_K$
  - $-d_k$  failures at time  $t_k$ : there are  $d_k$  individuals, say subject  $i_{k,1},\ldots,i_{k,d_k}$ , who fail at  $t_k$
  - Risk set  $\mathcal{R}(t) = \{i : \widetilde{T}_i \geq t\}$ : the set of individuals who are known to survive just prior to time t
- Accordingly

$$pL(\beta) = \prod_{k=1}^{K} \frac{\Pr(\text{subjects } i_{k,1}, \dots, i_{k,d_k} \text{ fail at time } t_k \mid \text{they are at risk at } t_k)}{\Pr(\text{there are } d_k \text{ failures at time } t_k \mid \text{they are at risk at } t_k)} = \prod_{k=1}^{K} \frac{\exp(\sum_j \sum_{i \in R_0} x_{ij}\beta_j)}{\sum_{k \in S(k)} \exp(\sum_j \sum_{i \in R} x_{ij}\beta_j)}$$

- $-\mathcal{S}(k)$ : the set of all possible combinations of  $d_k$  individuals that can be drawn from  $\mathcal{R}(\tilde{t}_k)$ 
  - \* If  $R \in \mathcal{S}(k)$ , then R is a set of  $d_k$  individuals who are at risk at  $t_k$ .
    - · Specifically,  $D(t_k) = \{i_{k,1}, \dots, i_{k,d_k}\} \in \mathcal{S}(k)$  denotes the set of all the  $d_k$  individuals who fail at time  $t_k$
- Labeled as exact by survival::coxph

## Partial likelihood (Breslow's approximation)

- Keeping the assumptions for the Cox's modification
- Substitute  $\{\sum_{\ell \in \mathcal{R}(t_k)} \exp(\sum_{j=1}^p x_{\ell j} \beta_j)\}^{d_k}$  for the denominator of Cox's modification

$$pL(\boldsymbol{\beta}) = \prod_{k=1}^{K} \frac{\exp(\sum_{j} \sum_{i \in D(t_k)} x_{ij} \beta_j)}{\{\sum_{\ell \in \mathcal{R}(t_k)} \exp(\sum_{j=1}^{p} x_{\ell j} \beta_j)\}^{d_k}}$$

## Partial likelihood (Efron's approximation)

- Keeping the assumptions for the Cox's modification
- Substitute  $\{\sum_{\ell \in \mathcal{R}(t_k)} \exp(\sum_{j=1}^p x_{\ell j} \beta_j)\}^{d_k}$  for the denominator of Cox's modification

$$pL(\beta) = \prod_{k=1}^{K} \frac{\exp(\sum_{j} \sum_{i \in D(t_k)} x_{ij} \beta_j)}{\prod_{m=1}^{d_k} \{\sum_{\ell \in \mathcal{R}(t_k)} \exp(\sum_{j=1}^{p} x_{\ell j} \beta_j) - \frac{m-1}{d_k} \sum_{i \in D(t_k)} \exp(\sum_{j} x_{ij} \beta_j)\}}$$

• Default tie-handling method by survival::coxph

### Summary of handling ties

- With no ties, all approximation options give exactly the same results
- With only a few ties, all approximations yield pretty much the same results
- With many ties (relative to the number at risk), both of Breslow's and Efron's approximations yield coefficients  $\beta$  that are biased toward 0.
- Computing time of Cox's method is substantially longer than that of approximate methods. But it is not a big issue with today's hardwares.
- The Efron's approximation almost always works better than the Breslow's method, without consuming more time.

### Revisit Ex. 5.3. Leukemia data (with tied event/failure times)

```
library(survival)
data = survival::leukemia
fit1 = coxph(Surv(time,status)~x, data = data)
fit2 = coxph(Surv(time,status)~x, data = data, ties = 'efron')
fit3 = coxph(Surv(time,status)~x, data = data, ties = 'breslow')
fit4 = coxph(Surv(time,status)~x, data = data, ties = 'exact')
c(coef(fit1), coef(fit2), coef(fit3), coef(fit4))
```

#### CIs and hypothesis tests for HRs

- Suppose the HR of interest is the one associated with the one-unit increase of the jth covairate, i.e.,  $\exp(\beta_j)$
- $\operatorname{var}\{\exp(\hat{\beta}_j)\} \approx \exp(2\hat{\beta}_j)\operatorname{var}(\hat{\beta}_j)$  (delta method)
  - Hence  $\operatorname{se}(\exp(\hat{\beta}_j)) \approx \exp(\hat{\beta}_j)\operatorname{se}(\hat{\beta}_j)$
- 95% CI for  $\exp(\beta_i)$ 
  - $-\exp(\hat{\beta}_j) \pm \Phi^{-1}(.975) \times \operatorname{se}(\exp(\hat{\beta}_j))$

```
* \Phi^{-1}(.975) (\approx 1.96): the .975 quantile of N(0,1)
-\exp(\hat{\beta}_i \pm \Phi^{-1}(.975) \times \operatorname{se}(\hat{\beta}_i)) (preferred; why?)
```

- Hypothesis test for  $H_0: \exp(\beta_j) = 1$  (i.e.,  $\beta_j = 0$ ) vs.  $H_1:$  otherwise.
  - Wald test statistic:  $\hat{\beta}_j/\text{se}(\hat{\beta}_j) \approx N(0,1)$  under  $H_0$ \* Equivalent to checking whether  $\exp(\hat{\beta}_i \pm \Phi^{-1}(.975) \times \operatorname{se}(\hat{\beta}_i))$  covers 1
- LRT to compare two nested models
  - Model 1 nested to Model 2
    - \* Model 1:  $h(t \mid x_{i1}, \dots, x_{ip}) = h_0(t) \exp(\sum_{j=1}^p x_{ij}\beta_j)$
  - \* Model 2:  $h(t \mid x_{i1}, \dots, x_{ip}, x_{i,q+1}, \dots, x_{i,p+q}) = h_0(t) \exp(\sum_{j=1}^{p+q} x_{ij} \beta_j)$   $H_0$ : Model 1 is correct (i.e.,  $\beta_{p+1} = \dots = \beta_q = 0$ ) vs.  $H_1$ : Model 2 is correct Test statistic:  $2(\ln L_{\text{Model}2} \ln L_{\text{Model}1}) \approx \chi^2(q)$  under  $H_0$

# Ex. 5.4. Nursing home data

- Variables:
  - ID: Patient ID
  - lstay: Length of stay of a resident (in days)
  - age: Age of a resident
  - trt: Nursing home assignment (1: receive treatment, 0: control)
  - gender: Gender (1:male, 0:female)
  - marstat: Marital status (1: married, 0: not married)
  - hlstat: Health status (2: second best, 5: worst)
  - cens: Censoring indicator (1:censored, 0: discharged)

```
options(digits=4)
library(survival)
data = read.csv("NursingHome.csv")
data$event <- 1-data$cens
fit1 <- coxph(Surv(lstay, event) ~ trt + age + gender + marstat + hlstat, data=data)
summary(fit1)
# Testing if trt is necessary against the full model
fit2 <- coxph(Surv(lstay, event) ~ age + gender + marstat + hlstat, data=data)
anova(fit1, fit2)
summary(fit2)
# Testing if trt, age and marstat are necessary against the full model
fit3 <- coxph(Surv(lstay,event) ~ gender + hlstat, data=data)</pre>
anova(fit1, fit3)
summary(fit3)
```