PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-068296

(43)Date of publication of application: 16.03.2001

(51)Int.CI.

H05G 2/00

(21)Application number: 11-287385

(71)Applicant: INSTITUTE OF TSUKUBA LIAISON

CO LTD

(22)Date of filing:

07.10.1999

(72)Inventor: KONDO KIMIO

MIURA NAGASUKE

(30)Priority

Priority number: 11180932

Priority date: 25.06.1999

Priority country: JP

(54) LASER STIMULATED X-RAY GENERATOR AND METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To generate a debris-free, high-luminance soft X-ray source, to improve X-ray conversion efficiency, and to reduce the cost with a simple and small structure by condensing and radiating ultrashort high-output laser pulses to a cluster generated by the gas injection into a vacuum chamber to stimulate it, and guiding the generated X-rays from the vacuum chamber.

SOLUTION: Ultrashort high-output laser pulses 6 are radiated through a laser pulse entrance window 7 and a condensing optical system 8 to a rare gas cluster 5 generated when rare gas 2 is injected into a high-vacuum chamber 4 by a pulse gas jet device 3, and the generated soft X-rays 10 are guided to a soft X-ray exposing device 11. The rare gas cluster 5 is made debris-free by this radiation, and the cluster 5 is expanded by being heated and has such a short amplitude that the density is not reduced locally. The wavelength of the excited laser from a high-output laser

device 9 less expensive than an orbit radiation light device is in an ultraviolet-ray range, thereby the oscillation frequency of the electric field in a high-intensity optical electric field is increased, and the X-ray conversion efficiency is improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2001-68296

(P2001-68296A)(43)公開日 平成13年3月16日(2001.3.16)

(51) Int. Cl. 7

識別記号

FI

テーマコート (参考)

H05G 2/00

H05G 1/00

K 4C092

審査請求 未請求 請求項の数5 OL (全9頁)

(21)出願番号

特願平11-287385

(22)出願日

平成11年10月7日(1999.10.7)

(31)優先権主張番号 特願平11-180932

(32)優先日

平成11年6月25日(1999.6.25)

(33)優先権主張国

日本(JP)

(71)出願人 599088841

株式会社筑波リエゾン研究所

茨城県つくば市高野169番地1

(72) 発明者 近藤 公伯

茨城県つくば市並木 2-303-103

(72) 発明者 三浦 永祐

茨城県つくば市竹園3丁目5番302棟308号

(74)代理人 100110179

弁理士 光田 敦

Fターム(参考) 4C092 AA06 AA07 AA14 AB21 AC09

(54)【発明の名称】レーザー励起 X 線発生装置及び方法

(57)【要約】

【課題】 デブリーフリーで高輝度軟X線源を作 り出すことができ、X線変換効率がすぐれた構造が簡 単、小型で低コストのレーザー励起X線発生装置及び方 法を提供する。

【解決手段】 パルスガスジェット装置3で、高真空 チャンバー4に希ガス2を噴出することによって希ガス クラスター5を発生させる、髙出力レーザー装置9で希 ガスクラスター5に超短パルス高出力レーザー6を集光 して照射し、軟X線10を発生する。

【特許請求の範囲】

【請求項1】 真空中にガスを噴出し、該ガスにレー ザー光を照射してX線を発生させるレーザー励起X線発 生装置であって、

直空室と、

上記真空室に上記ガスを噴出することによってクラスタ ーを発生させる装置と、

上記クラスターに超短パルス高出力レーザーを集光して 照射し、上記クラスターを励起してX線を発生するため のレーザー装置と、

上記X線を上記真空室から導出する導出部とを有するこ とを特徴とするレーザー励起X線発生装置。

【請求項2】 上記超短パルスは、該超短パルスを上 記クラスターに照射した場合、該クラスターが加熱され 膨張が始まり局所的な密度が低下しない程度に短い振幅 を有することを特徴とする請求項1記載のレーザー励起 X線発生装置。

【請求項3】 上記超短パルス高出力レーザの各パル スは、上記クラスターのうち夫々異なるクラスターを照 射することを特徴とする請求項1又は2記載のレーザー 20 励起X線発生装置。

真空中にガスを噴出し、該ガスにレー 【請求項4】 ザー光を照射してX線を発生させるレーザー励起X線の 発生方法であって、

上記真空中に上記ガスを噴出することによってクラスタ ーを発生させ、

上記クラスターに、レーザー装置によって、超短パルス 高出力レーザーを集光して照射し、上記クラスターを励 起してX線を発生し、

上記X線を上記真空中から導出することを特徴とするレ 30 ーザー励起X線の発生方法。

【:請求項5】 上記超短パルスとして、該超短パルス を上記クラスターに照射した場合、該クラスターが加熱 され膨張が始まり局所的な密度が低下しない程度に短い 振幅のパルスを利用することを特徴とする請求項4記載 のレーザー励起X線の発生方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レーザー励起X線 発生装置及び方法に関し、例えば、半導体メモリーの製 40 造に使用されるリソグラフィー露光、物性研究、バイオ テクノロジー分野における生体観測、ガン治療等の医療 分野等各種の技術分野で利用されるレーザー励起X線発 生装置及び方法に関する。

[0002]

【従来の技術】例えば、近年の半導体メモリー等はきわ めて高集積度化されているが、このようなメモリーの製 造においては、X線リソグラフィー露光光源として1Gbi tを越えたあたりからX線を用いる必要がある。我が国 では、X線リソグラフィーの露光光源に軌道放射光装置 50 ものの、髙繰り返しレーザーを用いた場合のターゲット

(SOR光) を用いることが考えられている (例えば五明 由夫、"次世代リソグラフィのコスト比較検討"第59 回応用物理学会学術講演会 広島大学 15a-B-1参 照)。しかしながらSORは規模が大きくコストも大きく なるため未だに問題がある。

【0003】これに対し、高出力レーザーパルスで高温 高密度プラズマを作り出し (レーザープラズマ)、ここ から発生するX線をリソグラフィーに利用するという動 きがある (例えば、R. C. Spitzer, et. al. J. Vac. S 10 ci. Technol. B11, 2986 (1993)参照)。高出力レーザ 一装置自身はSOR光装置に比べ桁違いに安価であり、且 つ最近の技術開発により平均出力の高いものがコンパク トな装置(卓上サイズ)として実用化されている。

【0004】また、固体ターゲットを高出力レーザーで 集光照射したときに生成されるレーザープラズマのX線 源としての特性は、レーザー核融合研究の進歩により解 明されている (例えば、T. Mochizuki, et. al., Phys. Rev. A33, 525 (1986)参照)。瞬間出力がある程度大 きく(レーザープラズマが生成できる程度)、且つ平均 出力の大きな装置があれば固体ターゲットを照射するこ とで平均出力の大きなX線源が可能となる。

【0005】しかしながら実際にX線源としてこのよう なレーザープラズマを使用する場合、強力なレーザーで 照射された固体ターゲットからは高い運動エネルギーを 持ったデブリー(欠片)が発生し、レーザーの集光光学 系やX線光学系に大きなダメージを与えるため実用化の 際に大きな問題となっていた。

【0006】このことに対しいくつかの試みがなされて いる。例えば、ターゲットとしてテープ状の固体を使用 し、テープを回転させることで常にフレッシュな面をレ ーザーが照射できるように工夫している(例えば、I. C. E. Turcu, et. al., Rev. Sci. Instrum., 67, 3245 (1996)、特開平11-87090号公報参照)。また、 Heガスをレーザー照射部に吹き付けて上記のデブリーを 抑えている。このような方法で平均出力IWのX線発生を 波長1nmの領域で行っている。しかしながらテープター ゲットそのものは高速回転すれば補充の必要があること や、Heを吹き付けてデブリーの影響を低減することはで きても、完全に消すことは困難であると考えられる。

【0007】この他にターゲットに液滴を用いたり(例 えば、L. Rymell, et. al., Opt. Comm., 103, 105 (19 93) 参照)、Xeクライオ(Xeガスを固化させたもの)を 利用して (例えば、A. Shimoura, et. al., Appl. Phy s. Lett., 72, 164 (1998)参照)、デブリーフリーを目 指している例があるが、前者は液滴を構成する原子が原 子番号の大きな原子でないことからレーザーエネルギー からX線への変換効率が低い。また実際にX線発生量を 絶対量計測しているわけではない。

【0008】また後者は高いX線変換率を達成している

供給に問題を残している上に、希ガスの氷をターゲットにしているから、レーザー照射の結果生成されるデブリーは素性の悪いものではないが、大きな運動エネルギーを持ったデブリーが飛んでくることに依然変わりはないと考えられるので問題がある。このことは前者に関しても同じである。

【0009】デブリーフリーにするためにガス状ターゲットを利用してX線を発生させているものもあるが(例えば、G. D. Kubiak, et. al., OSA TOPS Extreme Ultraviolet Lithography, 1996 vol.4 p66、特開平10-221499号公報参照)、肝心のX線発生量の評価が曖昧であり、通常のレーザー装置を用いてガスターゲットと相互作用させてもレーザーエネルギーをガスが十分に吸収する理由がないので、実際にX線発生量を大きく取ることは困難であるものと考えられる。

[0010]

【発明が解決しようとする課題】上記従来の、高出力レーザーを用いたX線源装置においては、固体状のターゲットを照射したときに高いX線変換率が期待できるが、その際発生するデブリーが問題になる。また、X線リソ 20 グラフィーに際して使用されるX線光学素子は高価なものが多いと考えられる。さらに装置の長寿命化の観点から、レーザー集光光学素子やX線光学素子のデブリーによる損傷は極力避けなければならないという問題であった。

【0011】本発明は、上記のような従来の問題点を解決することを目的とするものであり、従来のレーザー光励起によるX線発生装置及び方法に比べて、デブリーがきわめて小さい状態で(本明細書中ではこれを「デブリーフリー」という。)の高輝度軟X線源を作り出し、X30線変換効率がすぐれ、しかも装置の構造が簡単、小型で低コストなレーザー励起X線発生装置及び方法を実現することである。

【0012】さらに、本発明は、本発明に係るレーザー励起X線発生装置において、高出力のX線を得るために、レーザーの各パルスを夫々異なるガスクラスターに照射する手段を実現しようとするものである。

[0013]

【課題を解決するための手段】本発明は、上記課題を解決するために、真空中にガスを噴出し、該ガスにレーザ 40 一光を照射してX線を発生させるレーザー励起X線発生装置であって、真空室と、上記真空室に上記ガスを噴出することによってクラスターを発生させる装置と、上記クラスターに超短パルス高出力レーザーを集光して照射し、上記クラスターを励起してX線を発生するためのレーザー装置と、上記X線を上記真空室から導出する導出部とを有することを特徴とするレーザー励起X線発生装置を提供する。

【0014】さらに、本発明は、上記課題を解決するために、真空中にガスを噴出し、該ガスにレーザー光を照

射してX線を発生させるレーザー励起X線の発生方法であって、上記真空中に上記ガスを噴出することによってクラスターを発生させ、上記クラスターに、レーザー装置によって、超短パルス高出力レーザーを集光して照射し、上記クラスターを励起してX線を発生し、上記X線を上記真空中から導出することを特徴とするレーザー励起X線の発生方法を提供する。

【0015】上記超短パルスは、該超短パルスを上記クラスターに照射した場合、該クラスターが加熱され膨張 が始まり局所的な密度が低下しない程度に短い振幅を有することを特徴とする。

【0016】上記超短パルス高出力レーザの各パルスは、上記クラスターのうち夫々異なるクラスターを照射することにより、全てフレッシュなクラスターを照射し、より高出力のX線を得ることができるようにしてもよい。

[0017]

(3)

【発明の実施の形態】発明に係るレーザー励起 X 線装置 及び方法の実施の形態を実施例に基づいて図面を参照して説明する。図1は、本発明に係るレーザー励起 X 線装置及び方法の実施例を示す。この実施例に係るレーザー励起 X 線装置では、希ガスボンベ1 から希ガス 2 がパルスガスジェット装置 3 に供給され、高真空チャンバー 4 内に噴出する際に希ガスクラスター 5 が生成される。

【0018】この希ガスクラスター5をターゲットとして、レーザーパルスを照射することでデブリーフリーにした。レーザーパルスは入射窓7を通して高真空チャンバー4に導かれ、高真空チャンバー4内にある集光光学系8によりクラスター部に集光される。

【0019】ところで、従来技術のように希ガスをターゲットとしてレーザーで照射しプラズマを作った場合、プラズマの電子密度は高々10²⁰ cm⁻³ 程度であり、レーザー光線(例えば波長248nm)に対する遮断密度の1.8x10²² cm⁻³ に比べ極めて低い。従って、レーザー光はガスジェットをほとんど透過し、レーザーエネルギーはプラズマに吸収されない。この結果、X線へのエネルギー変換効率は極めて低いものとなるのが従来の常識である。

【0020】本発明は、このように従来常識とされていた問題を解決するために、希ガスを真空中に噴出して希ガスクラスターとし、しかもこの希ガスクラスターをターゲットとして超短レーザーパルスを照射し励起するものであり、これに使用する超短レーザーパルスは、この超短パルスを希ガスクラスターに照射した場合、希ガスクラスターが加熱され、膨張が始まり、局所的なその密度が低下しない程度に短い振幅を有するものであり、即ちX線を発光するプラズマの流体運動が無視できる程度に短いパルス幅を有する超短パルス高出力レーザーパルス6を用いる。これにより、励起レーザーパルスの瞬間出力も大きくする。

めに、真空中にガスを噴出し、該ガスにレーザー光を照 50 【0021】この点についてさらに詳細に説明する。真

空中に噴出される超音速ガスジェットは急激な断熱膨張を伴うため凝縮すると考えられており(0. F. Hagena, Rev. Sci. Instrum., 63, 2374(1992)参照)、例えば希ガスとしてXeガスを考えた場合、Xeガスジェットはクラスタージェットになっている。例えば背圧5気圧程度では本実験条件下では原子数10°個のクラスターができると見積もられる。固体Xeの原子間距離が4.4オングストロームであることから、生成されるクラスターの直径は55 nm程度ということになる。一方、励起に使用するレーザーの波長は248 nmであり、固体密度プラズマのレー 10 ザー光に対する表皮深さと同程度もしくはそれ以下の大きさということになる。

【0022】このことは高出力レーザーが作り出す高強度光電場が局所的な密度が固体密度程度であるXeクラスターを構成する全ての原子に作用することを示す。通常の固体物質では遮蔽効果のため電磁波は中まで進入することができないが、クラスターはサイズが小さいので、全ての原子に電磁波が作用することが可能となる。この結果、クラスターの局所加熱現象が起き、あるいはクウィバー(Quiver)電子を介在にした多光子的なエネルギ 20ーカップリングが発生し、局所密度は高いが平均密度が極めて低いXeクラスタープラズマに超短パルス高出力レーザーのエネルギーが吸収されることになる。

【0023】また、本発明では励起レーザーを紫外線領域の波長のものとしているが、このことは励起レーザー波長をできるだけ短く、即ち、レーザーが作り出す高強度光電場における電界の振動周波数をできるだけ高くすることを意味する。これにより、電界振動とほぼ同位相で高速振動するクラスタープラズマ中の電子(Quiver電子)の振動周波数を高めて、X線発生効率を高くするこ 30とができる。

【0024】特に、本発明では、励起レーザーに紫外線の超短パルス高出力レーザー装置9を用い、上記の通りターゲットに希ガスクラスターを用いることで希ガスクラスターと高強度光電場のコヒーレントな相互作用、あるいはクラスターにおけるマイクロ高密度プラズマにおける異常エネルギー吸収現象を利用して、希薄なクラスターガスターゲットにレーザーエネルギーをほとんど吸収させた。

【0025】要するに本発明では、励起レーザーに紫外 40線を使用し、レーザー光とクラスターの相互作用が効率よく行われるため、例えばXeクラスタージェットの場合、クラスター発生に使用するパルスガスジェット装置の背圧が5気圧程度と低い圧力でレーザー光を十分吸収させることができる。このことは、実用化された場合の真空ポンプやガス回収装置の負担を著しく抑えることができる。

【0026】軟X線発生の変換効率の把握においては、 ルス列生成時に夫々のパルスの方向を、各反射鏡、ハー吸収されたエネルギーの大部分は軟X線10に変換され フミラーの反射角度を適宜調節することで、わずかづてるものと考え、軟X線発生量の絶対量評価を行い、使用 50 ずらして、各パルスがすべて最終段増幅器を通過でき、

しているレーザーパルスのエネルギーがどの程度軟X線に変換したかを見積もった。これにより、軟X線発光の 具体的な平均出力を得た。

【0027】そして、この軟X線は、高真空チャンバー4から導出部(本実施例の場合は高真空チャンバー4導出用の開口)により、隣接する軟X線露光装置11に導かれ、例えば、半導体露光等に利用する。なお高真空チャンバー4は真空ポンプ12により真空引きされた状態で使用するが、高真空チャンバー4に入射された希ガスをガス回収装置13で回収し、連続運転による高真空チャンバー4内の真空度の悪化を防ぐと同時に再利用ができる。

【0028】ところで、Xeクラスターはガスであり、本発明における条件下のクラスターの大きさは50nm程度と小さく、これが光学素子にダメージを与えることはないと思われる。また、クラスターにおけるエネルギー吸収については、透過エネルギー量計測により評価したところ、希ガスとしてXeガスを使用した場合、パルスガスジェット装置の背圧を5気圧程度にすればクラスターを透過する成分がなくなることが実験的に確かめられた。

【0029】なお、励起レーザーは、上配の通り紫外線 領域の超短パルス高出力レーザーであるが、現在使用し ているもので最高性能時に平均出力0.5Wが可能である。 また世界最高性能のものは平均出力7Wである。従って、 エネルギー変換効率が高ければ十分明るいX線源が作れ る。実際にX線の発生量を絶対量評価し、具体的にどの 程度X線発生があるか見積もることができた。

【0030】本発明の特徴的な構成は以上の通りであるが、本発明を利用して高出力の X線を得る場合には、励起用超短パルス紫外線レーザーそのものの高平均出力化が必要である。従来の常識ならば、超短パルス高出力紫外線レーザーは、超短パルス紫外線種(たね)パルスを大口径放電エキシマレーザー増幅器に入射し、最終出力を得るが、エキシマレーザーの取り出し可能エネルギー持続時間はおよそ数十ナノ秒に対して、種パルスのパルス幅がわずか数百フェムト秒であるため、エキシマ増幅器で発生する取り出し可能エネルギーを全て取り出すことはできない。

【0031】そこで、本発明において高出力のX線を得る場合には、超短パルス高出力レーザーを発生するためのレーザー装置として、図7に示すように、種パルス発生用の超短パルス紫外線レーザー装置を用意し、発生した種パルスを反射鏡及びハーフミラー群から成る光学的遅延生成部を用いて、最終出力用の大口径エキシマレーザー増幅器の放電時間(利得持続時間)内にマルチパルス(複数のパルス)を有するパルス列としてこの大口径エキシマレーザー増幅器に入射させる。しかも、上記パルス列生成時に夫々のパルスの方向を、各反射鏡、ハーフミラーの反射角度を適宜調節することで、わずかづつずらして、各パルスがすべて最終時増幅界を通過でき

かつガスクラスターの照射時にそれぞれ異なるガスクラ スターに照射されるようにする。要するに、増幅後各パ ルスが異なる角度で、ガスクラスターの異なる領域に照 射されるようにして、夫々異なるガスクラスターに照射 される。

【0032】この結果、増幅器として用いたエキシマレ ーザーのエネルギーを超短パルスとしてほとんど取り出 すことができ、しかも各パルスが夫々異なるガスクラス ターに照射されることで、各パルスが全てフレッシュな ガスクラスターを照射するようにし、より高出力のX線 10 が得られ、きわめて相乗的、画期的な効果が生じる。

【0033】要するに、本発明において、種パルスを、 光学的遅延生成部等の手段により、エキシマレーザー増 幅器の放電時間(利得持続時間)内にマルチパルスを有 するパルス列とし、しかも上記マルチパルスの夫々が互 いに方向がずれたものとして、エキシマレーザー増幅器 に入射させるような構成とすれば、エキシマレーザー増 幅器の取り出し可能エネルギーが十分取り出せるととも に、超短パルス紫外線レーザーの各パルスが夫々異なる 全てフレッシュなガスクラスターに照射され、より高出 20 力のX線を得ることができる、というきわめて相乗的な 効果を奏する。

【0034】このように、高出力のX線を得る場合に は、上記のようにマルチパルスを有するパルス列を利用 する。この場合、上記のように一台の種パルス発生用の 超短パルス紫外線レーザー装置と光学的遅延生成部を用 いてパルス列を生成してもよいが、複数台の種パルス発 生用の超短パルス紫外線レーザー装置で発生した複数の 種パルスを大口径エキシマレーザー増幅器に経時的に次 々と入射させる構成としてもよい。又、これらの組み合 30 わせ、即ち複数台の種パルス発生用の超短パルス紫外線 レーザー装置から発生した種パルスを、夫々光学的遅延 生成部によりマルチパルスを有するパルス列とするとと もに、これらのパルス列を、適宜、経時的に組み合わせ て大口径エキシマレーザー増幅器に次々と入射させるよ うな構成としてもよい。

【0035】 (実験例) 本発明者は、本発明に係るレー ザー励起X線発生装置及び方法について、具体的に、

(1) レーザーエネルギーの吸収計測、及び(2) 軟X 線分光計測に関し以下のような実験例を実施しその効果 40 -20 nmの波長領域を積分すればトータルで0.18mJ/sr/pu を確認した。以下、この実験例を図面を参照して説明す る。

【0036】(1)レーザーエネルギー吸収計測 図2は、Xeクラスタージェットの噴出密度の計測結果を 示す。クラスタージェットはパルスガスジェット装置を 用いて作られるが、クラスタージェットの平均原子数密 度はジャマン干渉計測により実測した。パルスガスジェ ット装置の背圧に比例して噴出されるXeの平均原子数密 度が制御できる。

【0037】例えば、背圧が10気圧の場合、X線発生に 50 ーフリーレーザー励起軟X線ランプが作れる。

使用される位置のXeの平均原子数密度は高々2x101°cm-3 であり、レーザーによるイオン化を考慮しても高々~10 2°cm-3程度と見積もれる。これに対し、励起用に使用し ているエキシマレーザーに対する遮断電子数密度は1.8x 10²² cm⁻³ である。従って、レーザーパルスでXe原子がイ オン化されプラズマが発生しても、ガスジェットターゲ

【0038】これに対し、図3に示すレーザーの透過エ ネルギー計測実験の結果、図4に示すように背圧5気圧 程度にすればガスジェットターゲットの後ろに抜けてく るレーザーエネルギーがほとんどなくなった。なお、こ のとき使用したレーザーは波長248nm、出力エネルギー2 OmJ/pulse、パルス幅350fsの10HzのKrFエキシマレーザ ーである。

【0039】(2)軟X線分光計測

ットをレーザーは透過できることになる。

吸収されたエネルギーは、その後様々なエネルギー形態 を取ると考えられるが、従来のレーザープラズマでは励 起レーザーに紫外線を用いれば、相当な割合でそのエネ ルギーが軟X線に変換されるということが分かっている (R. Kodama, et. al., Appl. Phys. Lett., 50, 720 (1987))。Xeクラスターにおいてもかなりの割合で軟X 線に変換されるはずであると推測し、Xeクラスタープラ ズマから放出される軟X線の分光計測を実施した。

【0040】このポイントはX線発生量の絶対量をでき るだけ正確に計り取ることである。図5に示すように、 フリースタンド型の金薄膜透過型回折格子を分光素子と して使用した。透過型であるからX線の回折効率の評価 が単純であり、金薄膜に対する軟X線の透過率がゼロで あるから回折効率に波長依存性を考えなくて良い。検出 器には背面照射型CCDカメラを使用した。

【0041】クロスチェックのため軟X線専用のフィル ム(Kodak Type101)を使用した。このフィルムは保護膜 がないため軟X線に対する感度が高く、且つ分光感度が 素直である(三浦永祐 他、レーザー研究 21, 1011 (1 993)参照)。背面照射型CCDに関してはCCD素子のメーカ ーが提供した絶対分光感度及び文献(大貫大輔 他、レ ーザー研究26,700(1998)参照)考慮した。

【0042】この結果図6に示すスペクトルを得ること ができた。この軟X線はXeのN殻遷移輻射群であり、0.5 1seであることが分かった。発生X線は等方的放出され ると考えられるので、このときに使用されたレーザーエ ネルギー20mJ/pulseから見積もったX線への変換効率は およそ10%となる。

【0043】使用しているレーザーは10Hzであるから平 均出力20mWの軟X線源が実現できたことになる。また、 世界最高性能の紫外線超短パルス高出力レーザーは平均 出力が7Wである(Y. Nabekawa, et. al., Opt. Lett., 21, 647 (1996). 参照)。これを使用すればおよそ1Wのデブリ

[0044]

【発明の効果】本発明に係るレーザー励起X線発生装置 及び方法は、以上のような構成であるから、従来のレー ザー光励起によるX線発生装置及び方法に比べて、デブ リーフリーで高輝度軟X線源を作り出すことができ、ま た励起レーザーパワーの1割程度が軟X線に変換され、 きわめてX線変換効率がすぐれており、しかも装置の構 造が簡単、小型で低コストというきわめて有用な効果を 奏する。

【0045】本発明において、超短パルス紫外線レーザ 10 ーザー装置を説明する図である。 ーの各パルスを夫々異なる全てフレッシュなガスクラス ターに照射するようにすれば、より高出力のX線を得る ことができる。

【0046】さらに、本発明に係るレーザー励起X線発 生装置及び方法は、X線リソグラフィー露光技術をはじ め、物性研究、バイオインダストリー技術、医療・治療 技術等各種の用途に利用可能という点で汎用性も優れて いる。

【図面の簡単な説明】

【図1】本発明に係るレーザー励起 X 線発生装置の実施 20 例を示す図である。

【図2】本発明の実験におけるXeクラスタージェットの 噴出密度の計測結果を示すグラフである。

【図3】本発明の実験におけるレーザーの透過エネルギ

一計測手法を示す図である。

【図4】 本発明の実験におけるレーザーの透過エネルギ 一計測結果を示すグラフである。

【図5】本発明の実験におけるX線発生量の計測使用し た分光素子であるフリースタンド型の金薄膜透過型回折 格子を示す図である。

【図6】本発明の実験におけるXeクラスタープラズマか ら放出される軟X線の分光計測の結果を示す図である。 【図7】本発明において、高出力のX線を得る場合のレ

【符号の説明】

- 希ガスボンベ
- 2 希ガス
- パルスガスジェット装置 3
- 髙真空チャンバー (真空室) 4
- 希ガスクラスター (クラスター) 5
- 超短パルス高出力レーザーパルス 6
- レーザーパルスの入射窓
- 8 集光光学系
- 9 高出力レーザー装置 (レーザー装置)
- 10 . 軟X線
- 1 1 軟X線露光装置
- 12 真空ポンプ
- 13 ガス回収装置

【図1】

【図2】

【図7】

【図3】

【図4】

【図5】

