#### UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

## CAIO MACEDO KAÍQUE MEDEIROS LIMA IAN BATISTA FORNAZIERO

MEMORIAL DESCRITIVO Algoritmos em Grafos

> SANTA HELENA 2025/2

# CAIO MACEDO KAÍQUE MEDEIROS LIMA IAN BATISTA FORNAZIERO

## MEMORIAL DESCRITIVO Algoritmos em Grafos

**Descriptive Memorial - Graph Algorithms** 

Trabalho de Conclusão de Disciplina de Graduação apresentado como requisito para conclusão da disciplina de Algoritmos em Grafos do Curso de Bacharelado em Ciência da Computação da Universidade Tecnológica Federal do Paraná

Docente: Dra. Leiliane Pereira de Rezende

SANTA HELENA 2025/2

## LISTA DE ALGORITMOS

## LISTA DE FIGURAS

## LISTAGEM DE CÓDIGOS FONTE

## LISTA DE ABREVIATURAS E SIGLAS

# Siglas

ACID Atomicidade, Consistência, Isolamento e Durabilidade

## SUMÁRIO

| 1   | INTRODUÇÃO                     | 7  |
|-----|--------------------------------|----|
| 1.1 | Descrição do Problema          | 7  |
| 1.2 | Estrutura do Trabalho          | 7  |
| 2   | Representações de um Grafo     | 10 |
| 2.1 | Matemática                     | 10 |
| 2.2 | Geométrica                     | 11 |
| 2.3 | Matriz de Adjacência           | 12 |
| 2.4 | Lista de Adjacência            | 12 |
| 2.5 | Matriz de Incidência           | 12 |
| 2.6 | Considerações de Eficiência    | 12 |
| 3   | Definições em um Grafo         | 13 |
| 3.1 | Terminologias                  | 13 |
| 3.2 | Tipos de Grafos                | 13 |
| 4   | Operações                      | 14 |
| 4.1 | União                          | 14 |
| 4.2 | Intersecção                    | 15 |
| 4.3 | Soma                           | 16 |
| 4.4 | Decomposição                   | 17 |
| 4.5 | Remoção                        | 17 |
| 4.6 | Fusão de vértices              |    |
| 4.7 | Contração                      | 17 |
| 5   | Buscas                         | 18 |
| 5.1 | Busca em Largura               | 18 |
| 5.2 | Busca em Profundidade          | 18 |
| 5.3 | Componentes Fortemente Conexos | 18 |
| 5.4 | Considerações de Eficiência    | 18 |
| 6   | CAMINHO MÍNIMO                 | 19 |
| 7   | ARVORE DE COBERTURA MÍNIMA     | 20 |
| 8   | GRAFOS EULERIANOS              | 21 |
| 9   | GRAFOS HAMILTONIANOS           | 22 |

| REFERÊNCIAS |                       |    |  |  |
|-------------|-----------------------|----|--|--|
| 12          | COLORAÇÃO DE VÉRTICES | 25 |  |  |
| 11          | PLANARIDADE           | 24 |  |  |
| 10          | EMPARELHAMENTO        | 23 |  |  |

#### 1 INTRODUÇÃO

A estrutura de dados grafos é aplicada em diversas áreas do conhecimento, as quais podem ser esquematizadas via um conjunto de conexões entre pares de objetos. A descrição do problema a ser trabalhado em todo o documento é dada na Seção 1.1. A composição do restante do documento é descrita na Seção 1.2.

#### 1.1 Descrição do Problema

O problema a ser modelado diz respeito a logística de transporte de uma empresa qualquer, que utiliza veículos automotivos como caminhões e carros. Esse meio de transporte tem como caracteristica a alta emissão de gases de efeito estufa (GEEs), que colaboram a degradação do meio ambiente. Nesse contexto, para amenizar o problema, deseja-se encontrar a melhor rota de um ponto a outro de forma sustentável. Por exemplo, se a empresa deseja realizar uma entrega de um ponto de distribuição a outro, a escolha da rota modelada por meio dos grafos levará em a emissão de GEEs do veículo, de acordo com o combustível utilizado e o consumo por quilometro. A melhor rota será aquela que possui o mínimo de emissão possível. Dessa forma, os impactos ao meio ambiente são minimizados, evitando a intensificação do aquecimento global. É importante destacar que, o caminho com menos emissão de GEEs pode também ser a rota mais econômica. A equação que define a emissão de GEEs por Litro é dada por:

$$EF_{CO2,L} = \rho \times fc \times OF \times \frac{44}{12} \tag{1.1}$$

Onde.

- O ρ é a densidade do combustível
- o fc é a fração mássica de carbono no combustível (kgC/kgcombustvel)
- OF é o fator de oxidação ( $\approx 0.99-10$ ; a fração do carbono efetivamente oxidada a  $CO_2$ )
- $\frac{44}{12}$  converte  $C \to CO_2$  (massa molar).

A emissão total é dada pela multiplicação de emissão por litro e os litros.

#### 1.2 Estrutura do Trabalho

A estrutura de dados grafo pode ser representada por diferentes meios, seja ela na visão computacional ou não. O capítulo 2 apresenta tanto as representações não computacionais quanto as computacionais mais usadas nos algoritmos em grafos.

No contexto da estrutura de dados grafo, diversas são as terminologias e tipagens existentes e, na sua grande maioria, independentes se o grafo é ou não orientado. No Capítulo 3, as principais terminologias e tipos que o grafo apresentado no Capítulo 1 contempla são descritos.

Para facilitar ou solucionar alguns problemas modelados por meio da estrutura de grafos, algumas operações matemática nos seus conjuntos de vértices e arestas são necessárias. As principais operações são exemplificadas no Capítulo 4.

A busca é umas das técnicas mais aplicadas na solução de problemas algorítmicos em grafos considerados eficientes. O Capítulo 5 apresenta tanto a busca em largura quanto a busca em profundidade, bem como uma aplicação das duas para obter os componentes fortemente conexos de um grafo.

Dentre as subestruturas de grafo que oferecem solução para problemas aplicados, os caminhos se destacam especialmente pelo potencial associado aos problemas de trânsito, transporte, localização em sistemas discretos, dentre outros. Quando a definição de distância é associada aos caminhos, surgem os problemas de caminho mínimo. O Capítulo 6 apresenta o cálculo do caminho mínimo tanto para grafos não valorados quanto para valorados.

Problemas de interligação (comunicações, redes de luz, água, esgotos, etc.) podem ser solucionados pela obtenção da árvore de cobertura de peso mínimo quando existe o interesse em se proceder à interligação de todos os pontos atendidos com o consumo mínimo de meios. O Capítulo 7 apresenta os dois algoritmos mais conhecidos na literatura para a obtenção de uma árvore de cobertura de peso mínimo.

A modelagem e solução de um problema de ciclos por Leonard Euler, durante o século XVIII, é responsável por definir os fundamentos da teoria dos grafos. O teorema definido por Euler demostra se é possível ou não, a partir de algum ponto do grafo, percorrer todas as arestas uma única vez e voltar ao ponto de partida. No Capítulo 8, o grafo apresentado geometricamente na Figura 2.1 é verificado se satisfaz ou não o teorema de Euler. Caso, sim, o grafo é dito Euleriano. Caso contrário, uma eulerização é aplicada para obter um ciclo com o menor número de arestas/arcos repetidos.

Problemas de roteamento como comunicação, logística, e, com ligeiras modificações, perfuração de placas de circuito impresso, entre outros, têm com a mesma premissa: a partir de algum ponto, percorrer todos os outros uma única vez e voltar ao ponto de partida. Semelhante ao problema de grafos eulerianos, este problema, nomeado de ciclo hamiltoniano, não conhece uma condição necessária e suficiente que seja trivial para verificar a existência ou não deste ciclo. O Capítulo 9 aplica o teorema mais importante, o teorema de Dirac, o teorema de Ore que é usado para deduzí-lo, além do teorema de Bondy e Chvátal no grafo estudado. Adicionalmente, mostra a (in)existência de um ciclo hamiltoniano também no grafo estudado.

O Capítulo 10 apresenta as principais definições do problema de emparelhamento.

Este problema pode ser aplicado em problemas de atribuição de pessoal, de casamentos, de construção de amostras, entre outros. A ideia geral é formar o maior conjunto de pares de vértices adjacentes somente entre si.

A planaridade de um projeto é questão importante em diversas situações práticas, como circuitos, cartografia, malhas de transporte terrestre e aéreo, construção de viadutos, entre outros. O Capítulo 11 verifica a planaridade do grafo estudado.

Problemas de competição/conflito por algum recurso, como a resolução de quebracabeças de Sudoku, podem ser solucionados pelo problema de coloração de grafos. O Capítulo 12 apresenta a aplicação de um algoritmo guloso para uma solução e, por meio do conceito das cadeias de Kempe, verifica se existe outra solução com um número cromático menor.

#### 2 Representações de um Grafo

Um grafo pode ser representado por diferentes meios, seja ele na visão computacional ou não. Considerando a visão não computacional, o grafo pode ser representado tanto matematicamente quanto geometricamente. O primeiro modo é descrito na Seção 2.1 e o segundo na Seção 2.2, ambos considerando a descrição do grafo dado no Capítulo 1.

A representação por meio da visão computacional pode ser dada por três meios: matriz de adjacência, lista de adjacência e matriz de incidência. A descrição de cada um destes meios é dada, respectivamente, nas Seções 2.3, 2.4, e 2.5. As considerações acerca da eficiência computacional, tanto em relação ao tempo de processamento quanto ao espaço usado de memória, são dadas na Seção 2.6.

#### 2.1 Matemática

A representação matemática do nosso problema é:

```
\begin{split} G_1 &= \{V_1, A_1\} \\ V_1 &= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\} \\ A_1 &= \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}, a_{18}, a_{19}, a_{20}, a_{21}, a_{22}\} \\ \mathsf{onde}, \end{split}
```

```
a_1 = (1,2); a_2 = (1,3); a_3 = (1,4); a_4 = (2,6); a_5 = (3,11); a_6 = (4,7); a_7 = (4,5);

a_8 = (5,8); a_9 = (6,9); a_{10} = (6,10); a_{11} = (10,11); a_{12} = (7,11); a_{13} = (7,12);

a_{14} = (8,12); a_{15} = (11,12); a_{16} = (9,13); a_{17} = (13,10); a_{18} = (11,15); a_{19} = (12,15);

a_{20} = (13,14); a_{21} = (14,15); a_{22} = (15,16).
```

Cada vértice representa uma localidade na região da cidade de santa helena sendo elas:

- 1: Santa Helena
- 2: Entre Rios do Oeste
- 3: Diamante D'oeste
- 4: Missal
- 5: Itaipulândia
- 6: São José das Palmeiras
- 7: Ramilândia
- 8: Medianeira

- 9: Ouro Verde do Oeste
- 10: São Pedro do Iguaçu
- 11: Vera Cruz do Oeste
- 12: Matelândia
- 13: Toledo
- 14: Cascavel
- 15: Santa Tereza do Oeste
- 16:Lindoeste

#### 2.2 Geométrica

Figura 2.1: Representação Geométrica do Grafo



Criação própria

Fonte:

#### 2.3 Matriz de Adjacência

A matriz de Adjacência do nosso problema é:

| _                 |   |   |   |   |   |   |   |   |   |   |   |   |   |   | _ |
|-------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0                 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1                 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1                 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0                 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0                 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $\Gamma_{\Omega}$ | U | U | U | U | U | U | U | U | U | U | U | U | U | 1 | U |

## 2.4 Lista de Adjacência

A lista de Adjacência do nosso problema é:

#### 2.5 Matriz de Incidência

A matriz de Incidência do nosso problema é:

#### 2.6 Considerações de Eficiência

#### 3 Definições em um Grafo

Como a estrutura de dados grafo é uma estrutura heterogenia, definições são necessárias para compreender partes ou o todo da estrutura. Na Seção 3.1, as principais terminologias, considerando o grafo representado graficamente na Figura ??, são apresentadas. Enquanto, na Seção 3.2, todos os tipos os quais o grafo estudado contempla são apresentados.

#### 3.1 Terminologias

#### 3.2 Tipos de Grafos

#### 4 Operações

A estrutura de dados grafos permitem algumas operações matemáticas nos seus conjuntos de vértices e arestas de modo a facilitar a execução de alguns algoritmos. As principais operações são: união, intersecção, soma, decomposição, remoção, fusão e contração. Cada uma delas são exemplificadas, respectivamente, nas Seções 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 e 4.7.

#### 4.1 União

A união de dois grafos, sendo eles  $G_1 = (V_1, A_1)$  e  $G_2 = (V_2, A_2)$ , é dada por:

$$G_1 \cup G_2 = (V_1 \cup V_2, A_1 \cup A_2)$$

Esta é uma operação que apenas une os vértices e arestas dos grafos envolvidos, não adicionando nenhuma outra parte. Temos como exemplo a adição do  $Sub\_Grafo1$  ao grafo  $Sub\_Grafo2$ . Onde  $Sub\_Grafo1 = (V_1, V_2, V_3, V_6, V_{10}, V_{11}, a_1, a_2, a_4, a_5, a_{10}, a_{11})$  e  $Sub\_Grafo2 = (V_6, V_9, V_{10}, V_{11}, V_{13}, V_{14}, V_{15}, A_9, A_{10}, A_{11}, A_{16}, A_{17}, A_{18}, A_{20}, A_{21})$ .



Figura 4.1: Sub-Grafos

A aplicação da operação de união resultaria em  $Sub\_Grafo1 \cup Sub\_Grafo2$ , representando graficamente se dá na figura seguinte:



Figura 4.2: União dos Sub-Grafos

#### 4.2 Intersecção

A intersecção de dois grafos, sendo eles  $G_1=(V_1,A_1)$  e  $G_2=(V_2,A_2)$ , gera um terceiro grafo, esse que é apenas o conjunto onde os dois grafos se encontram, ou seja, os vértices e arestas que são comuns aos dois grafos. Quando os grafos intersectam e resultam em nulos ou vazios  $V_3=0$ . A intersecção é dada por:

$$G_3 = G_1 \cap G_2 = (V_1 \cap V_2, A_1 \cap A_2)$$

Sendo  $G_3$  a intersecção de  $G_1$  e  $G_2$ ,  $G_3$  é um subgrafo de ambos os grafos originais. Aplicando a operação de intersecção nos sub-grafos da seção 4.1, temos:



Figura 4.3: Intersecção dos Sub-Grafos da figura 4.1

#### 4.3 Soma

A soma de dois grafos é dividida entre dois tipos, a soma e soma direta. A soma junta os vértices e arestas dos dois grafos, criando uma conexão intercomplexa. A soma dos grafos resulta em um novo, como  $G_3 = G_1 + G_2$  A fórmula é dada por:

$$G_3 = G_1 + G_2 = (V_1 \cup V_2, A_1 \cup A_2 \cup \{ \forall vi \in V_1, \forall vj \in V_2, \exists (vi, vj) \})$$



Figura 4.4: Soma dos Sub-Grafos da figura 4.1

Seguindo o exemplo, utilizando as fig 4.1 novamente, podemos observar as novas arestas serem criadas, se diferindo da soma direta, a qual é uma forma de combinar dois grafos baseados em multiplicação estrutural. O conjunto de vértices resultante do produto cartesiano dos conjuntos de vértices dos grafos originais, sendo todos pares ordenados, onde o primeiro elemento pertence a  $V_1$  e o segundo a  $V_2$ .

$$V_3 = V_1 \times V_2 = \{(u, v) : u \in V_1, v \in V_2\}$$

O conjunto de arestas se baseia na regra da adjacência, uma aresta entre dois vértices (u,v) e  $(u_1,v_1)$  em  $V_3$  se e somente se eles são adjacentes em  $G_1$  e  $G_2$ . Traduzindo para a fórmula:

$$G_3 = G_1 + G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{u, v\} : u \in V_1, v \in V_2\}).$$



Figura 4.5: Soma Direta dos Sub-Grafos da figura 4.1

- 4.4 Decomposição
- 4.5 Remoção
- 4.6 Fusão de vértices
- 4.7 Contração

#### 5 Buscas

A busca é umas das técnicas mais aplicadas na solução de problemas algorítmicos em grafos considerados eficientes. As duas técnicas de busca em grafos, a dfs e a bfs, são apresentadas, respectivamente, nas Seções 5.1 e 5.2.

A Seção 5.3 apresenta uma aplicação das duas buscas para obter os componentes fortemente conexos de um grafo. As considerações acerca da eficiência computacional, tanto em relação ao tempo de processamento quanto ao espaço usado de memória pelas buscas, são dadas na Seção 2.6.

- 5.1 Busca em Largura
- 5.2 Busca em Profundidade
- **5.3 Componentes Fortemente Conexos**
- 5.4 Considerações de Eficiência

## 6 CAMINHO MÍNIMO

## 7 ARVORE DE COBERTURA MÍNIMA

#### **8 GRAFOS EULERIANOS**

#### 9 GRAFOS HAMILTONIANOS

#### 10 EMPARELHAMENTO

#### 11 PLANARIDADE

12 COLORAÇÃO DE VÉRTICES

## **REFERÊNCIAS**

• ...