Best practices in the analysis of RNA-seq and ChIP-seq data

27th – 31st, July 2015 University of Cambridge, Cambridge, UK

Quality assessment of NGS data

Ines de Santiago

CRUK Cambridge Research Institute

Ines.desantiago@cruk.cam.ac.uk

Quality control analysis

All sequencing platform have errors

Quality control

- It is important to check the quality of your sequenced reads!
- FASTQC: free program that reports quality profile of reads
- Pre-processing
 - Trim reads
 - exclude low quality reads
 - contaminations

Checking read quality with FASTQC

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

1. Run FASQC

fastqc sample.fastq

2. Open output file

sample_fastq.html

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Kmer Content

FASTQC: Report

- 1) Basic statistics
- 2) Per base sequence quality
- 3) Per tile sequence quality
- 4) Per sequence quality scores
- 5) Per base sequence content
- 6) Per sequence GC content
- 7) Per base N content
- 8) Sequence Length Distribution
- 9) Sequence duplication levels
- 10) Over-represented sequences
- 11) Adapter/Kmer content

Measure	Value	
Filename	sample.fastq	
File type	Conventional base calls	
Encoding	Illumina 1.5	
Total Sequences	9053	
Sequences flagged as poor quality	0	
Sequence length	36	
%GC	50	

Poor quality at the end of reads

Good Illumina data:

Per base sequence quality

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

(3) FASTQC: Per tile sequence quality

(3) FASTQC: Per tile sequence quality

Overclustering:

(3) FASTQC: Per tile sequence quality

Tile fail:

GSE41187: Genome-wide analysis of FNR and s70 in E. coli under aerobic and anaerobic growth conditions: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41187

(4) FASTQC: Per sequence quality scores

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Biased sequence composition (adapters?)

Unavoidable – RNA-Seq

Unavoidable – RRBS

Devoided of cytosines because the library was treated with sodium bisulphite (which will have converted most of the C to T)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/RRBS_fastqc.html#M4

(6) FASTQC: Per sequence GC content

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

(7) FASTQC: Per base N content

http://cbio.mskcc.org/~lianos/files/scott/2011-11-21/qc/

(8) FASTQC: Sequence Length Distribution

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Kmer Content

Sequence fragments of uniform length (36bp)

Reads of variable length:

http://cbio.mskcc.org/~lianos/files/scott/2011-11-21/qc/Bcnr2_ATCACG_L001_R1_001_fastqc/fastqc_report.html#M2

- PCR duplicates during sample preparation
- Optical duplicates: read the same cluster twice in the sequencer
- High duplication can lead to problems in downstream analysis (e.g. skew allele frequencies)

http://bioinformatics.org.au/ws14/wp-content/uploads/ws14/sites/5/2014/07/Felicity-Newell_presentation.pdf

Very diverse library

http://proteo.me.uk/2013/09/a-new-way-to-look-at-duplication-in-fastqc-v0-11/

A good RNA-Seq library (although dup levels > 50%)

http://proteo.me.uk/2013/09/a-new-way-to-look-at-duplication-in-fastqc-v0-11/

PCR duplication

http://proteo.me.uk/2013/09/a-new-way-to-look-at-duplication-in-fastqc-v0-11/

(10) FASTQC: Over-represented sequences

Good dataset

Overrepresented sequences

No overrepresented sequences

Bad datasets:

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
A GAGAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	23247	0.13860048153338028	No Hit
A GAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAG	19048	0.1135657062093099	No Hit
$\tt GAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG$	18343	0.10936243957357056	No Hit
AAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGAGAAGA	17345	0.10341228339985724	No Hit

Back to summary

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACA	28971	28.971000000000004	TruSeq Adapter, Index 5 (100% over 36bp)
GCTAACAAATACCCGACTAAATCAGTCAAGTAAATA	392	0.392	No Hit
${\tt GTTAGCTATTTACTTGACTGATTTAGTCGGGTATTT}$	356	0.356	No Hit
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACACC}$	108	0.108	TruSeq Adapter, Index 1 (97% over 36bp)
${\tt GATCGGAAGAGCACACGTCTGAACTCCAGTCACACG}$	107	0.107	TruSeq Adapter, Index 15 (97% over 36bp)

http://www.slideshare.net/suryasaha/sequencing-quality-filtering?related=1

http://www.slideshare.net/suryasaha/sequencing-quality-filtering?related=1

AAAA k-mer that you're seeing at around 21 base pairs are arrested transcripts caused by cyclohexamide treatment.

http://seqanswers.com/forums/showthread.php?t=18447

AAAA k-mer that you're seeing at around 21 base pairs are arrested transcripts caused by cyclohexamide treatment.

http://seqanswers.com/forums/showthread.php?t=18447

"Random" hexamer primer in RNA-seq libraries (not that random afterall)

http://seqanswers.com/forums/showthread.php?t=44770&highlight=kmer+fastq http://seqanswers.com/forums/showthread.php?t=16669

"Random" hexamer primer in RNA-seq libraries (not that random afterall)

Published online 14 April 2010

Nucleic Acids Research, 2010, Vol. 38, No. 12 e131 doi:10.1093/nar/gkq224

Biases in Illumina transcriptome sequencing caused by random hexamer priming

Kasper D. Hansen^{1,*}, Steven E. Brenner² and Sandrine Dudoit^{1,3}

¹Division of Biostatistics, School of Public Health, UC Berkeley, 101 Haviland Hall, Berkeley, CA 94720-7358,

²Department of Plant and Microbial Biology, UC Berkeley, 461 Koshland Hall, Berkeley, CA 94720-3102 and

³Department of Statistics, UC Berkeley, 367 Evans Hall, Berkeley, CA 94720-3860, USA

Hands on exercise:

Fastqc_sweave.pdf

Examples of FASTQC runs and preprocessing