Package 'kfre'

August 28, 2025

```
Type Package
Title Kidney Failure Risk Equation (KFRE) Tools
Version 0.0.2
Description Implements the Kidney Failure Risk Equation
     (KFRE; Tangri and colleagues (2011) <doi:10.1001/jama.2011.451>;
     Tangri and colleagues (2016) <doi:10.1001/jama.2015.18202>) to compute
     2- and 5-year kidney failure risk using 4-, 6-, and 8-variable models.
     Includes helpers to append risk columns to data frames, classify
     chronic kidney disease (CKD) stages and end-stage renal disease (ESRD)
     outcomes, and evaluate and plot model performance.
License MIT + file LICENSE
URL https://github.com/lshpaner/kfre_r,
     https://lshpaner.github.io/kfre_r/
BugReports https://github.com/lshpaner/kfre_r/issues
Depends R (>= 3.6)
Imports ggplot2, grDevices, R6
Suggests devtools, knitr, readxl, rmarkdown, rprojroot, spelling,
     syglite, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Leonid Shpaner [aut, cre] (ORCID:
     <https://orcid.org/0009-0007-5311-8095>, URL:
     https://www.leonshpaner.com)
Maintainer Leonid Shpaner < lshpaner@ucla.edu>
Repository CRAN
Date/Publication 2025-08-28 07:40:12 UTC
```

2 add_kfre_risk_col

Contents

risk_pred_core	
plot_kfre_metrics	
perform_conversions	7
kfre	7
eval_kfre_metrics	6
class_esrd_outcome	5
class_ckd_stages	4
apply_precision	4
add_kfre_risk_col	2

add_kfre_risk_col

Add KFRE risk columns to a data frame

Description

Adds KFRE risk columns for selected model sizes and horizons using the 4, 6, or 8 variable equations.

Usage

```
add_kfre_risk_col(
  df,
  age_col = NULL,
  sex_col = NULL,
  eGFR_col = NULL,
  uACR\_col = NULL,
  dm_col = NULL,
  htn_col = NULL,
  albumin_col = NULL,
  phosphorous_col = NULL,
 bicarbonate_col = NULL,
  calcium_col = NULL,
  num_vars = 8,
 years = c(2, 5),
  is_north_american = FALSE,
 copy = TRUE,
  precision = NULL
)
```

add_kfre_risk_col 3

Arguments

df	Data frame with predictor columns.			
age_col	Column name for age.			
sex_col	Column name for sex, text or integer accepted.			
eGFR_col	Column name for eGFR, mL/min/1.73 m^2.			
uACR_col	Column name for uACR, mg/g.			
dm_col	Optional column name for diabetes indicator.			
htn_col	Optional column name for hypertension indicator.			
albumin_col	Optional column name for serum albumin, g/dL.			
phosphorous_col				
	Optional column name for serum phosphorus, mg/dL.			
bicarbonate_col				
	Optional column name for bicarbonate, mmol/L.			
calcium_col	Optional column name for calcium, mg/dL.			
num_vars	Integer or vector, one of 4, 6, 8.			
years	Integer or vector, any of 2, 5.			
is_north_american				
	Logical, use North American calibration.			
сору	Logical, if TRUE work on a copy of df.			
precision	Optional integer, digits to round probabilities.			

Value

The input data frame with added kfre_<n>var_<y>year columns.

References

Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., Levin, A., & Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. *JAMA*, 305(15), 1553–1559. doi:10.1001/jama.2011.451

Tangri, N., Grams, M. E., Levey, A. S., et al. (2016). Multinational assessment of the accuracy of the Kidney Failure Risk Equation in people with chronic kidney disease. *JAMA*, 315(2), 164–174. doi:10.1001/jama.2015.18202

Examples

```
df <- data.frame(
   age = 60L, sex = 1L, eGFR = 30, uACR = 500,
   dm = 1L, htn = 0L, albumin = 40,
   phosphorous = 1.1, bicarbonate = 24, calcium = 9.2
)
add_kfre_risk_col(
   df,
   age_col = "age", sex_col = "sex",</pre>
```

4 class_ckd_stages

```
eGFR_col = "eGFR", uACR_col = "uACR",
num_vars = 4, years = 2
)
```

apply_precision

Apply precision (round helper)

Description

Simple wrapper around base round() used by tests and examples.

Usage

```
apply_precision(x, n = NULL)
```

Arguments

x Numeric vector.

n Integer number of digits to keep. If NULL, return x unchanged.

Value

Numeric vector rounded to n.

class_ckd_stages

Label CKD stages or ESRD outcomes.

Description

Label CKD stages or ESRD outcomes.

Usage

```
class_ckd_stages(
   df,
   egfr_col = "eGFR",
   stage_col = NULL,
   combined_stage_col = NULL)
```

Arguments

df Data frame input.

egfr_col Column name for eGFR, mL/min/1.73 m^2. stage_col Output column name for detailed CKD stages. combined_stage_col

Output column for combined stages 3 to 5.

class_esrd_outcome 5

Value

The modified data frame with added label columns.

Examples

```
df <- data.frame(eGFR = c(92, 58, 42, 28, 12))
class_ckd_stages(df, egfr_col = "eGFR")</pre>
```

class_esrd_outcome

Label CKD stages or ESRD outcomes.

Description

Label CKD stages or ESRD outcomes.

Usage

```
class_esrd_outcome(
   df,
   col,
   years,
   duration_col,
   prefix = NULL,
   create_years_col = TRUE
)
```

Arguments

```
df Data frame with an eGFR column.

col Column name with ESRD event indicator, 0 or 1.

years Integer horizon, 2 or 5.

duration_col Column name with follow up time in days.

prefix Optional prefix for the derived outcome column.

create_years_col

Logical, add a <years>_year_outcome column.
```

Value

The modified data frame with added label columns.

6 eval_kfre_metrics

Examples

```
df <- data.frame(
  eGFR = c(90, 45, 25, 10),
  esrd = c(0, 0, 1, 0),
  followup_days = c(365, 800, 500, 1200)
)
class_esrd_outcome(
  df,
  col = "esrd",
  years = 2,
  duration_col = "followup_days"
)</pre>
```

eval_kfre_metrics

Summarize KFRE performance metrics by model size and horizon

Description

Builds a wide table of Precision, Sensitivity, Specificity, AUC, Brier, and Average Precision for specified KFRE variants at 2 and 5 years.

Usage

```
eval_kfre_metrics(df, n_var_list, outcome_years = 2, decimal_places = 6)
```

Arguments

```
df Data frame with truth and probability columns.

n_var_list Integer vector of models to evaluate, any of 4, 6, 8.

outcome_years Integer vector of horizons, any of 2, 5.

decimal_places Integer digits to round displayed values.
```

Value

Data frame of metrics with one column per model-horizon.

kfre 7

kfre

kfre: KFRE Risk Prediction Tools (R)

Description

Implements the Kidney Failure Risk Equation (KFRE; Tangri et al.) to compute 2- and 5-year risk (4-, 6-, and 8-variable models), add risk columns to data frames, classify CKD stages/ESRD outcomes, and evaluate & plot performance.

Key functions

```
risk_pred_core()add_kfre_risk_col()eval_kfre_metrics(), plot_kfre_metrics()class_esrd_outcome(), class_ckd_stages()
```

Author(s)

```
Leonid Shpaner <lshpaner@ucla.edu> (ORCID)
https://github.com/lshpaner/kfre_r
https://www.leonshpaner.com/
```

See Also

```
https://github.com/lshpaner/kfre_r
```

perform_conversions

Perform unit and code conversions used by KFRE helpers.

Description

Perform unit and code conversions used by KFRE helpers.

Usage

```
perform_conversions(
   df,
   reverse = FALSE,
   convert_all = FALSE,
   upcr_col = NULL,
   calcium_col = NULL,
   phosphate_col = NULL,
   albumin_col = NULL
)
```

8 plot_kfre_metrics

Arguments

df	Data frame with source columns to convert.
reverse	Logical, reverse the conversion if TRUE.
convert_all	Logical, convert all known columns if TRUE.
upcr_col	Column name for urine protein creatinine ratio.
calcium_col	Optional column for serum calcium, mg/dL.
phosphate_col	Optional column for serum phosphorus, mg/dL.
albumin_col	Optional column for serum albumin, g/dL.

Value

A data frame with converted columns.

Examples

```
\label{eq:df} \begin{array}{ll} df <-\ data.frame(\\ upcr = c(100,\ 400), & \#\ mg/g\ (or\ g/g\ scaled\ accordingly)\\ albumin = c(40,\ 38), & \#\ g/L\\ phosphorous = c(1.1,\ 1.3), & \#\ mmol/L\\ calcium = c(9.2,\ 8.8) & \#\ mg/dL\\ )\\ perform\_conversions(df) \end{array}
```

plot_kfre_metrics

Plot ROC and Precision Recall curves for KFRE variants

Description

Draws ROC and PR curves for the selected models and horizons. When mode is "both", returns a list of ggplot objects. Otherwise, draws the plots and returns NULL invisibly.

Arguments

df	Data frame containing model probabilities and outcomes
num_vars	Integer vector, KFRE model sizes to plot, any of 4, 6, 8.
fig_size	Numeric length 2, plot device width and height.
mode	Character, "both" to return plots, otherwise draw only.
image_path_png	Optional directory to save PNGs.
image_path_svg	Optional directory to save SVGs.
image_prefix	Optional filename prefix.
bbox_inches	Character, passed through when saving.
plot_type	Character, which plots to render.
save_plots	Logical, save plots to disk if TRUE.

risk_pred_core 9

Value

List of ggplot objects when mode == "both", else NULL.

risk_pred_core

KFRE risk prediction for a single person

Description

Computes the Kidney Failure Risk Equation probability at 2 or 5 years.

Usage

```
risk_pred_core(
  age,
  sex,
  eGFR,
  uACR,
  is_north_american,
  dm = NULL,
  htn = NULL,
  albumin = NULL,
  phosphorous = NULL,
  bicarbonate = NULL,
  calcium = NULL,
  years = 2
)
```

Arguments

age Numeric age in years.

sex Integer sex indicator, 1 for male, 0 for female.

eGFR Estimated glomerular filtration rate, mL/min/1.73 m².

uACR Urine albumin to creatinine ratio, mg/g.

is_north_american

Logical, patient from a North American cohort.

dm Optional integer diabetes indicator, 1 yes, 0 no.

10 upcr_uacr

ntn	Optional integer hypertension indicator, 1 yes, 0 no.
albumin	Optional serum albumin, g/dL, required for 8 variable model.
phosphorous	Optional serum phosphorus, mg/dL, 8 variable model.
bicarbonate	Optional serum bicarbonate, mmol/L, 8 variable model.
calcium	Optional serum calcium, mg/dL, 8 variable model.

years Integer, prediction horizon, 2 or 5.

Value

Numeric probability between 0 and 1.

References

Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., Levin, A., & Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. *JAMA*, 305(15), 1553–1559. doi:10.1001/jama.2011.451

Tangri, N., Grams, M. E., Levey, A. S., et al. (2016). Multinational assessment of the accuracy of the Kidney Failure Risk Equation in people with chronic kidney disease. *JAMA*, 315(2), 164–174. doi:10.1001/jama.2015.18202

Examples

```
risk_pred_core(60, 1, 45, 120, TRUE, dm = 1, htn = 1, years = 2)
```

upcr_uacr

Convert UPCR to UACR with clinical covariates

Description

Implements the equation reported by Sumida et al. for converting urine protein–creatinine ratio to urine albumin–creatinine ratio, with adjustments for sex, diabetes, and hypertension.

Usage

```
upcr_uacr(
   df,
   sex_col,
   diabetes_col,
   hypertension_col,
   upcr_col,
   female_str = "female"
)
```

upcr_uacr 11

Arguments

df A data.frame containing the required columns.

sex_col Column name with sex labels, character. Example: "sex".

diabetes_col Column name with diabetes indicator, 0 or 1, or logical. Example: "diabetes". hypertension_col

Column name with hypertension indicator, 0 or 1, or logical. Example: "hypertension".

upcr_col Column name with UPCR values. Units should match those used to derive the

model in Sumida et al. (mg/g). If your data use different units, convert before

calling.

female_str String that denotes female in sex_col. Default is "female".

Details

The function applies a piecewise log transformation of UPCR with cut points at 50 and 500, and adds covariate adjustments for sex, diabetes, and hypertension, then exponentiates to return UACR. Valid rows require non missing diabetes and hypertension indicators. Sex is mapped to an indicator using female_str.

Value

A numeric vector of UACR values, length nrow(df). Non valid rows return NA_real_.

References

Sumida, K., Nadkarni, G. N., Grams, M. E., Sang, Y., Ballew, S. H., Coresh, J., Matsushita, K., Surapaneni, A., Brunskill, N., Chadban, S. J., Chang, A. R., Cirillo, M., Daratha, K. B., Gansevoort, R. T., Garg, A. X., Iacoviello, L., Kayama, T., Konta, T., Kovesdy, C. P., Lash, J., Lee, B. J., Major, R. W., Metzger, M., Miura, K., Naimark, D. M. J., Nelson, R. G., Sawhney, S., Stempniewicz, N., Tang, M., Townsend, R. R., Traynor, J. P., Valdivielso, J. M., Wetzels, J., Polkinghorne, K. R., and Heerspink, H. J. L. (2020). Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis. *Annals of Internal Medicine*, 173(6), 426-435. doi:10.7326/M200529

Examples

```
df <- data.frame(
   sex = c("female", "male"),
   diabetes = c(1, 0),
   hypertension = c(0, 1),
   upcr = c(100, 400) # mg/g (or same ratio units)
)
upcr_uacr(df, "sex", "diabetes", "hypertension", "upcr")</pre>
```

Index

```
add_kfre_risk_col, 2
add_kfre_risk_col(), 7
apply_precision, 4
class_ckd_stages, 4
class\_ckd\_stages(), 7
class_esrd_outcome, 5
class_esrd_outcome(), 7
eval_kfre_metrics, 6
eval_kfre_metrics(), 7
kfre, 7
kfre-package (kfre), 7
perform_conversions, 7
plot_kfre_metrics, 8
plot_kfre_metrics(), 7
risk_pred_core, 9
risk_pred_core(), 7
upcr_uacr, 10
```