Theorem 1 (Brouwer fixed point theorem) Let $f: B^n \to B^n$ be a continuous function on the unit ball $B^n := \{x \in R^n : ||x|| \le 1\}$. Then f has at least one fixed point, thus there exists $x \in B^n$ with f(x) = x.

Theorem 2 (Brouwer invariance of domain theorem) Let U be an open subset of \mathbb{R}^n and let $f:U\to\mathbb{R}^n$ be a continuous injective map. Then f(U) is also open.

Corollary 3 (Topological invariance of dimension) If n > m and U is a non-empty open subset of \mathbb{R}^n , then there is no continuous injective mapping from U to \mathbb{R}^m . In particular, \mathbb{R}^n and \mathbb{R}^m are not homeomorphic.