Interfejs Audio-SDM

1. Wymagania funkcjonalne

Projekt zakłada stworzenie bloku cyfrowego, który realizuje funkcje przetwarzania sygnałów audio na dwóch niezależnych interfejsach. Moduł ten będzie wyposażony w interfejsy wejściowe i wyjściowe:

- audio (16-bit, 44.1 kHz)
- SDM (1-bit, 2.8224 MHz)

Kluczowymi komponentami są:

- 1. modulator Delta-Sigma pierwszego rzędu, który przekształca dane z interfejsu audio na strumień danych SDM,
- 2. decymator, który przekształca dane SDM na format audio za pomocą szeregowo zaimplementowanego filtra grzebieniowego wraz z filtrem dolnoprzepustowym FIR 17 rzędu.

Zaawansowane funkcje bloku obejmują konfigurowalną strukturę modulatora Sigma-Delta (zmienny rząd i liczba bitów wyjściowych), obsługę asynchronicznych zegarów na interfejsach oraz implementację dolnoprzepustowego filtru IIR z możliwością wyboru różnych struktur. Moduł zaprojektowany będzie z myślą o wysokiej precyzji przetwarzania sygnału oraz elastyczności w dostosowaniu do różnych zastosowań.

2. Moduł najwyższego poziomu hierarchii

Moduł najwyższego poziomu hierarchii zawiera 2 niezależne interfejsy wejściowe i wyjściowe:

- interfejs audio (clk: 44.1KHz, dane 16-bitowe, sygnał Data Valid)
- interfejs SDM (taktowanie: 2,8224 MHz, dane 1-bitowe, sygnał Data Valid)

Moduł posiada dwa istotne parametry konfiguracyjne, które pozwalają na dostosowanie jego działania do różnych zastosowań:

- 1. **DAC_ORDER** parametr określający rząd modulatora, który wpływa na charakterystykę przetwarzania sygnału.
 - Modulatory mogą mieć różne rzędy, co oznacza różny stopień zaawansowania w kształtowaniu szumu kwantyzacji. Wyższe rzędy modulatora pozwalają na uzyskanie lepszej jakości sygnału wyjściowego poprzez bardziej efektywne przesunięcie szumu do wyższych częstotliwości.
 - W zależności od wartości parametru, moduł będzie implementował odpowiednią strukturę modulatora, dostosowując liczbę użytych integratorów i sprzężeń zwrotnych.
- 2. **ADC_TYPE** parametr określający typ filtra decymacyjnego stosowanego po modulatorze.
 - ADC_TYPE == 0 wykorzystywany jest filtr uśredniający (moving average filter).
 - Filtr ten działa na zasadzie sumowania wartości próbek w określonym oknie czasowym i obliczania ich średniej.
 - Jest to proste rozwiązanie, które efektywnie tłumi wysokoczęstotliwościowe zakłócenia, ale może mieć ograniczoną skuteczność w bardziej wymagających zastosowaniach.
 - ADC_TYPE == 1 zastosowany jest filtr oparty na kombinacji filtru grzebieniowego (CIC) oraz filtru FIR.
 - Filtr grzebieniowy (CIC Cascaded Integrator-Comb) jest często stosowany w konwersji sigma-delta i pozwala na skuteczne zmniejszenie częstotliwości próbkowania bez konieczności stosowania współczynników mnożenia.
 - Filtr FIR (Finite Impulse Response) pełni rolę filtra wygładzającego i kompensującego zniekształcenia wprowadzone przez CIC.

Wybór między tymi dwiema opcjami zależy od wymagań dotyczących jakości przetwarzanego sygnału oraz zasobów sprzętowych dostępnych w implementacji.

Rysunek 0-1: Schemat modułu na najwyższym poziomie hierarchii

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DAC_ORDER	-	Wybór rzędu modulatora (1 albo 2)
ADC_TYPE	-	Wybór filtra decymacyjnego: filtr uśredniający (0), filtr grzebieniowy + FIR (1)
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
audio_in	16-bit	Wejście audio w formacie fixed point Q15 taktowane 44.1kHz
valid_in_dac	1-bit	Sygnał walidacyjny danych wejściowych audio.
sdm_out	1-bit	Wyjście Sigma-Delta taktowane 2.8224MHz
valid_out_dac	1-bit	Sygnał walidacyjny danych wyjściowych SDM
sdm_in	1-bit	Wejście Sigma-Delta taktowane 2.8224MHz
valid_in_adc	1-bit	Sygnał walidacyjny danych wejściowych SDM
audio_out	16-bit	Wyjście audio w formacie fixed point Q15 taktowane 44.1kHz
valid_out_adc	1-bit	Sygnał walidacyjny danych wyjściowych audio.

3. Modulator Delta-Sigma I rzędu

Moduł modulatora sigma-delta pierwszego rzędu został opisany według schematu przedstawionego na Rys. 2.

Rysunek 2: Schemat blokowy modulatora Sigma-Delta pierwszego rzędu

Układ po syntezie przedstawiono na Rys. 3

Rysunek 3: Schemat modulatora SDM pierwszego rzędu po syntezie

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DAC_BW	16	Szerokość bitowa modulatora sigma-delta
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
din	16-bit	Wejście audio w formacie fixed point Q15 taktowane 44.1kHz
valid_in	1-bit	Sygnał walidacyjny danych wejściowych audio.
dout	1-bit	Wyjście Sigma-Delta taktowane 2.8224MHz
valid_out	1-bit	Sygnał walidacyjny danych wyjściowych SDM

4. Modulator Delta-Sigma II rzędu

Moduł modulatora sigma-delta pierwszego rzędu został opisany według schematu przedstawionego na Rys. 4.

Rysunek 4: Schemat blokowy modulatora Sigma-Delta drugiego rzędu

Układ po syntezie przedstawiono na Rys. 5.

Rysunek 5: Schemat modulatora SDM drugiego rzędu po syntezie

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DAC_BW	16	Szerokość bitowa modulatora sigma-delta
OSR	6	Wartość nadpróbkowania w formacie 2^N (N=6)
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
din	16-bit	Wejście audio w formacie fixed point Q15 taktowane 44.1kHz
valid_in	1-bit	Sygnał walidacyjny danych wejściowych audio.
dout	1-bit	Wyjście Sigma-Delta taktowane 2.8224MHz
valid_out	1-bit	Sygnał walidacyjny danych wyjściowych SDM

5. Demodulator Sigma-Delta

Ogólna postać demodulatora wygląda następująco:

- 1. Mapowanie wartości sygnału SDM na format fixed point Q15
 - a) Stan niski sygnału sigma-delta odpowiada wartości audio ok. -1 (w formacie Q15 przypisano wartość 0x8001)
 - b) Stan wysoki sygnału sigma-delta odpowiada wartości audio ok. 1 (w formacie Q15 przypisano wartość 0x7FFF)
- 2. Filtracja sygnału filtrem dolnoprzepustowym
- 3. Decymacja 64-krotna

Moduł ten jest szkieletem realizacji według wyżej wymienionego ogólnego schematu konwersji sygnału SDM do postaci Audio.

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
din	1-bit	Wejście Sigma-Delta taktowane 2.8224MHz
valid_in	1-bit	Sygnał walidacyjny danych wejściowych SDM
dout	16-bit	Wyjście audio w formacie fixed point Q15 taktowane 44.1kHz
valid_out	1-bit	Sygnał walidacyjny danych wyjściowych audio

6. Filtr uśredniający

Najprostszym sposobem na efektywną filtrację sygnału SDM jest wykorzystanie filtra uśredniającego. Filtr ten oblicza średnią z poprzednich próbek. Zauważono, że do najefektywniejszej realizacji wystarczy wykorzystać filtry z wejściem aktywującym sygnał zegarowy i z sygnałem informującym o gotowym wyniku co 2 cykle zegara – wtedy poza obliczeniem średniej z aktualnej i poprzedniej próbki jednocześnie dwukrotnie decymowany jest sygnał. Kaskadowe połączenie 6 takich filtrów (Rys. 7) pozwala uzyskać średnią z 64 próbek oraz zakładaną 64-krotną decymację sygnału.

Schemat opisanego układu po syntezie przedstawiono na Rys. 6

Rysunek 6: Schemat filtra uśredniającego 2 próbki po syntezie

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
data_in	16-bit	Wejście sygnału w formacie fixed point Q15
се	1-bit	Wejście aktywujące sygnał zegarowy
avg	16-bit	Wyjście sygnału w formacie fixed point Q15
rdy	1-bit	Wyjście informujące o gotowym wyniku co 2 aktywny cykl sygnału zegarowego

Rysunek 7: Kaskadowe połączenie filtrów uśredniających

7. Filtr grzebieniowy z decymacją

Filtr, który działa według schematu na Rys. 8 jest pierwszym etapem filtracji według artykułu, który decymuje sygnał 16-krotnie.

Rysunek 8: Schemat działania modułu decymacji

Schemat układu przedstawiono na Rys. 9

Rysunek 9: Schemat filtru grzebieniowego z decymacją

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DECIMATION_FACTOR	-	Współczynnik decymacji (16)
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
din	16-bit	Wyjście w formacie fixed point Q15
valid_in	1-bit	Sygnał walidacyjny danych wejściowych
dout	16-bit	Wyjście zdecymowane w formacie fixed point Q15
valid_out	1-bit	Sygnał walidacyjny danych wyjściowych

8. Filtr z decymacją

Filtr o skończonej odpowiedzi impulsowej stanowi drugi etap filtracji sygnału SDM w celu konwersji do sygnału audio. Sygnał jest najpierw filtrowany, a następnie decymowany. Filtr decymuje sygnał 4-krotnie.

Schemat układu przedstawiono na Rys. 10

Rysunek 10: Schemat filtru FIR z decymacją

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
COEFF_WIDTH	-	Liczba bitów współczynników (16 bitów)
DATA_WIDTH	-	Liczba bitów danych (16 bitów)
TAPS	-	Liczba współczynników (17)
DECIMATION_FACTOR	-	Współczynnik decymacji (4)
clk	Hz	Sygnał zegarowy układu (taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ (aktywny stan niski)
din	16-bit	Wyjście w formacie fixed point Q15
valid_in	1-bit	Sygnał walidacyjny danych wejściowych
dout	16-bit	Wyjście zdecymowane w formacie fixed point Q15
valid_out	1-bit	Sygnał walidacyjny danych wyjściowych

9. Implementacja demodulatora

W projekcie wykorzystano 2 rodzaje demodulatorów SDM:

- 1. sdm_adc_avg
- 2. sdm_adc_art

Oba moduły mają podobne wejścia i wyjścia, ale różnią się podejściem do przetwarzania danych z wejściowego sygnału SDM (Sigma-Delta Modulation). Oto główne różnice:

1. Struktura filtracji

- o **Sdm_adc_avg** Filtracja kaskadowa za pomocą średnich ruchomych
 - Moduł sdm_adc_avg składa się z łańcucha sześciu kaskadowych filtrów uśredniających (avg_filter).
 - Każdy filtr bierze dane z poprzedniego stopnia i wykonuje kolejne uśrednienie.
 - Dane przechodzą przez coraz większe okna uśredniające, co skutecznie tłumi zakłócenia o wysokiej częstotliwości.
 - Sygnał valid_in steruje propagacją danych przez kolejne etapy filtracji.
- Sdm_adc_art Kombinacja filtru splotowego (CIC/FIR)
 - sdm_adc_art stosuje dwustopniową filtrację, która składa się z:
 - Filtru CIC (Comb-Integrate-Comb) (comb_decimator) jest to filtr decymacyjny, który skutecznie redukuje częstotliwość próbkowania.
 - Filtru FIR (fir_decimator) który dalej koryguje pasmo przepustowe |i poprawia charakterystykę sygnału.

2. Typ filtracji

- sdm_adc_avg wykorzystuje proste uśrednianie kaskadowe, co daje efekt wygładzania sygnału, ale ma ograniczoną precyzję w porównaniu do bardziej zaawansowanych filtrów splotowych.
- sdm_adc_art stosuje zaawansowaną filtrację CIC oraz FIR, które są bardziej wydajne w kontekście usuwania aliasingu i dostosowywania pasma sygnału.

3. Wydajność obliczeniowa i zastosowanie

Cecha	sdm_adc_avg	sdm_adc_art
Metoda Filtracji	Średnia ruchoma	Kombinacja CIC + FIR
Liczba etapów filtracji	6 filtrów kaskadowych	2 etapy filtracji
Wpływ na sygnał	Wygładzanie, ograniczona precyzja	Lepsza redukcja aliasingu/większa precyzja
Złożoność obliczeń	Niższa (proste operacje)	Wyższa (CIC + FIR wymagają więcej operacji)
Potencjalne zastosowanie	Wolniejsze systemy, proste ADC	Szybsze systemy, bardziej precyzyjne ADC

Podsumowanie

- **sdm_adc_avg** to prostsza implementacja, która wykorzystuje uśrednianie ruchome do redukcji szumów i wygładzania sygnału. Może być stosowana tam, gdzie nie jest wymagana bardzo wysoka precyzja.
- **sdm_adc_art** to bardziej zaawansowana wersja, która wykorzystuje filtr CIC do pierwszego etapu redukcji aliasingu i filtr FIR do dalszej korekty pasma. Jest bardziej precyzyjna, ale również bardziej wymagająca obliczeniowo.