PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-055575

(43)Date of publication of application: 26.02.1999

(51)Int.CI.

HO4N 5/335 HO1L 27/148

(21)Application number : 09-211597

(71)Applicant: SONY CORP

(22)Date of filing:

06.08.1997

(72)Inventor:

KATOU NAOKI

(54) CCD SOLID-STATE IMAGE PICKUP DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the S/N for photographing at a low illuminance.

SOLUTION: The solid-state image pickup device 1 is provided with a horizontal transfer register 3 that transfers charges resulting from photoelectric conversion in the unit of pixels, a floating diffusion FD that receives charges transferred from the horizontal transfer register 3 and converts it into a voltage, a reset drain RD that discharges the charge transferred to the floating diffusion FD, and a timing generating section 4 that sends a signal to discharge a charge to the reset RD every time the floating diffusion FD receives charges of N (N≥2) pixels.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-55575

(43)公開日 平成11年(1999) 2月26日

(51) Int.Cl.⁶

酸別記号

FΙ

H04N 5/335 H01L 27/148 H 0 4 N 5/335

F

H01L 27/14

В

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号

特願平9-211597

(71)出願人 000002185

ソニー株式会社

(22)出願日

平成9年(1997)8月6日

東京都品川区北品川6丁目7番35号

(72)発明者 加藤 奈沖

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 船橋 國則

(54) 【発明の名称】 固体撮像装置

(57)【要約】

【課題】 低照度時撮影においてSN比を向上させると と。

【解決手段】 本発明の固体撮像装置 1 は、光電変換して得た電荷を画素単位で転送する水平転送レジスタ 3 を転送してきた電荷を受けて電圧に変換するフローティングディフュージョンF D と、フローティングディフュージョンF D に転送された電荷を排出するリセットドレインR D と、フローティングディフュージョンF D で N (N≥2) 画素の電荷を受ける毎にリセットR Dへその電荷を排出するための信号を送るタイミング発生部 4 とを備えている。

【特許請求の範囲】

【請求項1】 光電変換して得た電荷を画素単位で転送 する電荷転送手段と、

前記電荷転送手段を転送してきた電荷を受けて電圧に変 換する電荷電圧変換手段と、

前記電荷電圧変換手段に転送された電荷を排出する電荷 排出手段と、

前記電荷電圧変換手段でN(N≥2)画素の電荷を受け る毎に前記電荷排出手段へその電荷を排出するための信 号を送る信号発生手段とを備えていることを特徴とする 固体攝像装置。

【請求項2】 前記信号発生手段は、前記光電変換して 得た電荷の電荷量に応じて前記N(N≧2)画素におけ る画素数を選択することを特徴とする請求項1記載の固 体撮像装置。

【請求項3】 前記信号発生手段は、前記電荷排出手段 へ送るN(N≥2)画素の電荷を受ける毎にその電荷を 排出するための信号として、同じピッチでタイミングの 異なるものを所定の電荷転送単位で交互に発生すること を特徴とする請求項1記載の固体撮像装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光電変換して得た 電荷を転送して所定の電圧に変換する固体撮像装置に関 する。

[0002]

【従来の技術】従来の固体撮像装置におけるCCD(Ch arge Coupled Device)水平転送レジスタは、N型基板 のP型ウェル領域に形成されたN型チャネル領域と、こ のN型チャネル領域上の絶縁層を介して形成されたポリ シリコンから成る1層目電極および2層目電極とから構 成されている。

【0003】また、N型チャネル領域の2層目電極の下 方には、2層目電極を形成する前にP型不純物イオンを 注入することで他の部分よりポテンシャルを浅くしたN 領域が形成されている。

【0004】このような構成から成る固体撮像装置の水 平転送レジスタにおいて電荷の転送を行うには、隣接す る1層目電極と2層目電極とを1組として、1つおきの 組に水平転送信号Hφ1を印加し、他の1つおきの組に 40 水平転送信号H φ 2 を印加して所定方向への電荷転送を 行っている。

【0005】図5は水平転送信号Hφ1、Hφ2のタイ ミングチャート、図6は図5におけるt1~t3の各タ イミングにおけるポテンシャルプロファイルを示す図で ある。すなわち、tlos 4にのタイミングでは $H \phi 1$ がLowレベル、Ho2がHighレベル、リセットゲートパル スRGゆがLowレベルとなっており、水平転送レジス タではH φ 1 に対応する部分からH φ 2 に対応する部分 へ電荷が転送され、最終段ではHolに対応する部分か 50 おける実施の形態を図に基づいて説明する。図1は本実

らフローティングディフュージョンF Dへ電荷が転送さ れる。

【0006】t2のタイミングではHolがHighレ ベル、H φ 2 が L o w レベル、リセットゲートパルス R GoがHighレベルとなり、リセットゲートのポテン シャルが深くなってフローティングディフュージョンF DからリセットドレインR Dへと電荷が排出される。

[0007]また、t3のタイミングでは $H\phi1$ がHighレベル、H φ 2 が L o w レベル、リセットゲートパ ルスRGゆがLowレベルとなって、リセットゲートの ポテンシャルが浅くなり、H φ 2 に対応する部分からH φ1に対応する部分へ電荷の転送が行われる。

【0008】水平転送レジスタの最終段と隣接する位置 に設けられた水平転送出力ゲートHOGのゲート電極 は、例えば接地などのDCレベルに接続されている。上 記のような動作により、電荷は水平転送レジスタから 1 ビットごとに水平転送出力ゲートHOGを通ってフロー ティングディフュージョンFDに転送される。

【0009】フローティングディフュージョンFDで 20 は、転送されてきた電荷の電荷量に応じた電圧を出力す る。また、このフローティングディフュージョンFDの 電位は、1ビットごとにリセットゲートクロックRGo によってリセットドレインRD電位にリセットされる。 [0010]

【発明が解決しようとする課題】しかしながら、このよ うな固体撮像装置では、1画素ごとの電荷を1ビットご とに転送し、出力信号の読み出しを行っていることか ら、各画素の信号を混在させることなく出力することは 可能であるものの、低照度の被写体を撮影するときなど 小信号時にはSN(信号-ノイズ)比が低下してノイズ 成分の増加を招くという問題が生じている。

[0011]

【課題を解決するための手段】本発明はこのような課題 を解決するために成された固体撮像装置である。すなわ ち、本発明の固体撮像装置は、光電変換して得た電荷を 画素単位で転送する電荷転送手段と、電荷転送手段を転 送してきた電荷を受けて電圧に変換する電荷電圧変換手 段と、電荷電圧変換手段に転送された電荷を排出する電 荷排出手段と、電荷電圧変換手段でN(N≥2)画素の 電荷を受ける毎に電荷排出手段へその電荷を排出するた めの信号を送る信号発生手段とを備えている。

【0012】本発明では、信号発生手段から電荷排出手 段へ送る電荷排出のための信号を、電荷電圧変換手段で N(N≥2)画素の電荷を受ける毎に送っていることか ら、電荷電圧変換手段においてN(N≥2)画素分の電 荷を加算することができ、その加算後の電荷量に応じた 電圧への変換を行うようになる。

[0013]

【発明の実施の形態】以下に、本発明の固体撮像装置に

施形態における固体撮像装置を説明する構成図、図2は 水平転送レジスタ部の構造を示す模式断面図である。

【0014】図1に示すように、本実施形態における固 体撮像装置 1 は、マトリクス状に配置された複数の受光 部Sで光電変換して得た電荷を図中縦方向に転送する垂 直転送レジスタ2と、垂直転送レジスタ2で転送された 電荷を図中横方向に転送する水平転送レジスタ3と、水 平転送レジスタ3の最終段に隣接して配置される水平転 送出力ゲートHOGと、転送された電荷を電圧に変換す るフローティングディフュージョンF Dと、フローティ ングディフュージョンF Dの電位をリセットゲート電極 RGに印加されるリセットゲートクロックRGゆによっ て排出するリセットドレインRDとを備えている。

【0015】また、固体撮像装置1には、垂直転送レジ スタ2や水平転送レジスタ3に与える電荷転送のための 信号およびリセットゲートクロックRGのを生成するタ イミング発生部4が接続されている。なお、タイミング 発生部4は固体撮像装置1に内蔵されていても、外部に 接続されていてもよい。

【0016】 このタイミング発生部5からは垂直転送レ 20 ジスタ2へ与えられる例えば4相の垂直転送信号Vφ1 ~V φ 4 、水平転送レジスタ3へ与えられる2相の水平 転送信号Hφ1、Hφ2およびリセットゲートRGへ与 えられるリセットゲートクロックRGφが出力される。 【0017】図2に示すように、この固体撮像装置のC CD水平転送レジスタ部は、N型基板10のP型ウェル 領域11に形成されたN型チャネル領域12と、このN 型チャネル領域12上の絶縁層13を介して形成された ポリシリコンから成る1層目電極D1および2層目電極 D2と、N型チャネル領域12の2層目電極D2の下方 30 に設けられているN- 領域12aとから構成されてい る。

【0018】図1に示すタイミング発生部5で生成され る2相の水平転送信号Hφ1、Hφ2は、隣接する1層 目電極D1と2層目電極D2とを1組として、1つおき の組に交互に印加され、これによって電荷が順次転送さ れることになる。

【0019】図3は水平転送信号Hφ1、Hφ2、リセ ットゲートクロックRGのおよび出力波形のタイミング チャート、図4は図3における11~16の各タイミン 40 グにおけるボテンシャルプロファイルを示す図である。 【0020】すなわち、t1のタイミングではHφ1が Lowレベル、Ho2がHighレベル、リセットゲー トパルスRGφがLowレベルとなっており、水平転送 レジスタではHφ1に対応する部分からHφ2に対応す る部分へ電荷が転送され、最終段ではHølに対応する 部分から水平転送出力ゲートHOGを通ってフローティ ングディフュージョンFDへ電荷が転送される。

[0021] t2のタイミングでは $H\phi1$ が $High \nu$

G o が Highレベルとなり、リセットゲートのポテン シャルが深くなってフローティングディフュージョンF DからリセットドレインR Dへと電荷が排出される。

【0022】また、t3のタイミングではHø1がHi ghレベル、H φ 2 がL o w レベル、リセットゲートパ ルスRG oがLowレベルとなって、リセットゲートの ポテンシャルが浅くなり、Hφ2に対応する部分からH φ1 に対応する部分へ電荷の転送が行われる。

【0023】次に、t4のタイミングでは、Hφ1がL owレベル、 $H\phi2$ がHighレベルとなることで、水 平転送レジスタではHøl に対応する部分からHø2 に 対応する部分へ電荷が転送され、最終段では電荷がHo 1に対応する部分から水平転送出力ゲートHOGを通っ てフローティングディフュージョンF Dへ転送される。 【0024】次いで、t4からt5までのタイミングに おいて、HolがLowレベル~Highレベル、Ho 2がHighレベル~Lowレベルへと変化して、Ho 2に対応する部分からHφ1に対応する部分への電荷の 転送が行われる。

【0025】そして、t6のタイミングでは、Hø1が Lowレベル、Hφ2がHighレベルとなり、水平転 送レジスタではHφ1に対応する部分からHφ2に対応 する部分へ電荷が転送され、最終段ではHφlに対応す る部分からフローティングディフュージョンF Dへ電荷 が転送される。この際、リセットゲートパルスRGゆは Lowレベルのままとなっていることから、先にフロー ティングディフュージョンFDへ転送された電荷と、と の電荷とが加算される状態となる。

【0026】つまり、このタイミングで2画素の電荷が 加算され、フローティングディフュージョンFDからは 加算された電荷量に応じた電圧が出力されることにな る。

【0027】このt1~t6のタイミングを繰り返し行 うことで、1ビットごとの電荷の転送と、2画素ごと加 算した信号の出力とを行うことができるようになる。す なわち、従来のタイミング (図5参照) と比べ、リセッ トゲートバルスRG φの発生タイミングを2画素転送に 1度の割合で発生させることによりフローティングディ フュージョンF Dで2画素の電荷を加算した出力を得る ことができる。

【0028】例えば低照度の撮影を行う場合、1ビット の電荷量が少ないことから、本実施形態のタイミングで 2 画素を加算して出力を得ることで、SN比を大きくす ることが可能となる。

【0029】また、本実施形態におけるタイミング発生 部4(図1参照)は、外部から入力されるモード切り換 え信号によって通常照度時の撮像と低照度時の撮像とで 発生するタイミングを切り換えるようにしている。

【0030】すなわち、通常照度時では従来と同様なタ ベル、Ho2がLowレベル、リセットゲートパルスR 50 イミング(図5参照)によって1ビットごとの転送およ

· · · •

び出力を繰り返し行うようにし、低照度時ではモード切 り換え信号によってリセットゲートパルスRGφを2画 素に1度の割合で出力して2画素電荷の加算を行ってS N比の大きな出力を得るようにする。

【0031】とれによって、低照度時でもノイズの少な い信号出力を得ることができるようになる。

【0032】なお、上記実施形態においては、主として 2画素の電荷をフローティングディフュージョンFDで 加算して出力を得る動作を説明したが、タイミング発生 ングを、例えば3画素に1度の割合にすることで3画素 の電荷を加算した出力を得ることが可能となる。つま り、タイミング発生部4から出力するリセットゲートバ ルスRG Φのタイミングによって、2 画素以上の電荷を 加算した出力を容易に得ることが可能となる。

【0033】さらに、タイミング発生部4から出力する リセットゲートパルスRGφのタイミングにより、例え ば2画素の電荷を加算する際の組み合わせを切り換える ことができるようになる。

【0034】すなわち、固体撮像装置1のフィールド毎 20 に転送される電荷において、奇数フィールドの電荷を転 送する場合と、偶数フィールドの電荷を転送する場合と で、同じピッチ (例えば、2画素転送に1度) のリセッ トゲートパルスRG Φ の発生タイミングを、1 画素分ず らすように交互に発生させることで、奇数フィールドで は例えば1画素目+2画素目、3画素目+4画素目、… という加算を行い、偶数フィールドでは例えば2画素目 +3画素目、4画素目+5画素目、…という加算を行う*

【図1】

* ことができるようになる。

[0035]

【発明の効果】以上説明したように、本発明の固体摄像 装置によれば次のような効果がある。すなわち、電荷排 出手段へ送る信号を変更するのみで、電荷転送方法を変 えることなく2画素以上の電荷を加算することができ、 SN比および感度向上を実現できるようになる。また、 この電荷排出手段へ送る信号のみで任意の解像度および 感度(SN比)の組み合わせを選択することが可能とな 部4から出力するリセットゲートパルスRG Φのタイミ 10 る。これにより、通常撮像時でも低照度時でも最適な撮 影を行うことが可能となる。

6

【図面の簡単な説明】

【図1】本実施形態における固体撮像装置を説明する構 成図である。

【図2】水平転送レジスタ部の構造を示す模式断面図で ある。

【図3】各信号のタイミングチャートである。

【図4】各タイミングにおけるポテンシャルプロファイ ルを示す図である。

【図5】従来例における各信号のタイミングチャートで ある。

【図6】従来例の各タイミングにおけるポテンシャルプ ロファイルを示す図である。

【符号の説明】

1…固体撮像装置、2…垂直転送レジスタ、3…水平転 送レジスタ、4…タイミング発生部、HOG…水平転送 出力ゲート、FD…フローティングディフュージョン、 RG…リセットゲート、RD…リセットドレイン

【図2】

DI D2 DI D2 DI D2

P型ウェル領域

N型チ

ヤネル領域

RD RG FD HOG HOI HO2

