t-Test für Erwartungswert ju einer Wormalverta'lung Sem X1, X2,..., Xn ~ N(µ, 62) st. u. / und 62 unbekannt Dann lantit un Test z. N. & für du Hypothern

a) $\{\leq\}$ b) $H: \mu\{\geq\}$ μ_0 vs. $k: \mu\{\leq\}$ μ_0 c) $\{\leq\}$ $\{\perp\}$ Lehne H z.N. & ab, falls

al $\mu_0 \leq X - \frac{S}{\ln t} t_{n-1; 1-\alpha}$ unter exercise d. $(1-2\alpha)-k7$ fix μ b) $\mu_0 \geq X + \frac{1}{\ln t} t_{n-1; 1-\alpha}$ obser " $\mu_0 \neq [X \pm \frac{1}{\ln t} t_{n-1; 1-\alpha}]$ $(1-\alpha)-k7$ his μ over μ ove Aquivalent dazu sind. Lehne H 7. N. a ab, falls this $T(X_{n,-},X_{n}):=\frac{X-\mu_{0}}{S}$ gett: a) $> t_{n-1}, 1-\alpha$ b) $T(X_{1,-}, X_{n}) < -t_{n-1}, 1-\alpha$ c) $< -t_{n-1}, 1-\frac{\alpha}{2}$ oder $T(X_{1,-}, X_{n}) > t_{n-1}, 1-\frac{\alpha}{2}$ bow. Fin (c) |T(X1, Xn)| > tn-1;1-2 Benus du Agnivalen 7 Fix (a): $\mu_{o} < \chi - \frac{s}{h} t_{n-1;1-\alpha} + \frac{s}{h} t_{n-1;1-\alpha} - \mu_{o}$ $\frac{S}{f_n}t_{n-1/1-\alpha} < \frac{S}{f_n}$ $t_{n-1; 1-2} \leq \frac{\chi - \mu_0}{5} = : \tau(\chi_{1, \gamma} \chi_n)$ KJ und Tests für Pavameter der einfachen lincaren Regression Sein $s_1, s_2, ..., s_n \sim N(0, s^2)$ st. u. und $Y_i = m X_i^2 + b + s_i^2$ Typellige Fehler = s^2 unbekannt bow. $Y_i = m x_i + b + s_i^2$ cleteminustisch

und \hat{m} , \hat{b} du Kleinste-Quadrate-Schätze füs m, b(Least Squares (LS))

unbekannt