Co-ordinate Geometry

Father of Co-ordinate Geometry: Rene Descartes

Locus:

- If (x,y) = (a,b) then
 X-coordinate = a
 Y-coordinate = b
- 2) Equation of Circle having Centre C(h,k), Radius r and point on Circumference P(x,y) is

$$r = \sqrt{(x-h)^2 + (y-k)^2}$$

3) Distance d between two points i.e A(x₁,y₁) and B(x₂,y₂) is AB = d = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

Section Formula:

- ## The coordinates of the point P(x,y) which devides the line segment joining the points $A(x_1,y_1)$ and $B(x_2,y_2)$ in the ratio $m_1:m_2$ are
- 4) Internally:

(x,y) =
$$\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} , \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right)$$

This is known as Section formula.

5) Externally:

(x,y) =
$$\left(\frac{m_1 x_2 - m_2 x_1}{m_1 - m_2} , \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2} \right)$$

6) If ratio is 1:1 then

$$(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

This is known as Mid-Point Formula.

Equation of Straight Line:

- 7) Equation of line Parallel to X-axis is y=b.
- 8) Equation of line Parallel to Y-axis is x=a.

 Where a and b are distance covered in unit.

Slope Intercept Form:

- 9) Slope (m) = $\tan \theta$ here, $\theta \rightarrow$ angle with +ve X-axis.
- 10) Slope (m) = $\frac{y_2 y_1}{x_2 x_1}$
- 11) Equation of straight line where 'm' is the slope and 'c' is the y-intercept is y=mx+c
- 12) Equation of straight line where 'a' is the x-intercept and 'b'

is the y-intercept is
$$\frac{x}{a} + \frac{y}{b} = 1$$

13) Equation of a line having perpendicular distance from a point to the line is 'p' and ' α ' is the angle made by the perpendicular line with positive X-axis is $x\cos\alpha + y\sin\alpha = p$

In a equation ax+by+c = 0

14) Slope (m) =
$$\frac{-a}{b}$$

15) X-intercept (A) =
$$\frac{-c}{a}$$

16) Y-intercept (B) =
$$\frac{-c}{b}$$

##Conversion in Normal Form

17)
$$x\cos\alpha + y\sin\alpha - p = \frac{\pm (ax + by + c)}{\sqrt{a^2 + b^2}}$$

18)
$$\cos \alpha = \frac{a}{\pm \sqrt{a^2 + b^2}}$$

19) Sin
$$\alpha = \frac{b}{\pm \sqrt{a^2 + b^2}}$$

20) p =
$$\frac{c}{\pm \sqrt{a^2 + b^2}}$$

- 21) Equation of a line having slope 'm' and passes through a point $A(x_1,y_1)$ is $y-y_1=m(x-x_1)$
- 22) Equation of a line passes through the points $A(x_1,y_1)$ and

B(x₂,y₂) is y-y₁ =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 (x-x₁)

Perpendicular Distance from a Point to a Line:

23) Distance d from a point $A(x_1,y_1)$ to a line ax+by+c=0 is

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

Area of Triangle and Quadrilateral using co-ordinates:

24) $A(x_1,y_1)$, $B(x_2,y_2)$ and $C(x_3,y_3)$ are the three vertices of a Triangle ABC then, Area of Triangle is

$$= \frac{1}{2} |x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3|$$

25) $A(x_1,y_1)$, $B(x_2,y_2)$ and $C(x_3,y_3)$ are the three vertices of a Triangle ABC then, Area of Triangle is

$$= \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{vmatrix}$$

26) $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$ and $D(x_4,y_4)$ are the four vertices of a Quadrilateral ABCD then, Area of Quadrilateral is

$$= \frac{1}{2} |x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_4 - x_4 y_3 + x_4 y_1 - y_4 x_1|$$

4

27) $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$ and $D(x_4,y_4)$ are the four vertices of a Quadrilateral ABCD then, Area of Quadrilateral is

$$= \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{vmatrix}$$

28) Condition of Collinear:

Points $A(x_1,y_1)$, $B(x_2,y_2)$ and $C(x_3,y_3)$ are collinear if and only if Area of ABC = 0

Thank You!!!