《生物实验设计》 第六章 方差分析

王超

广东药科大学

Email: wangchao@gdpu.edu.cn

2022-09-29

第六章 方差分析

方差分析

- 样本平均数的假设检验适用于样本与总体或者两个样本之间的差 异显著性检验
- 实际研究中, 常需要 3 个及 3 个以上样本平均数进行比较
 - 如果两两相互比较,随着样本平均数个数增加而剧增
 - ullet n 个样本平均数需要比较的次数为 C_n^2
- 导致:
 - 检验过程繁琐
 - 无统一的试验误差,误差估计的精确性和检验的灵敏性低
 - 推断的可靠性降低

方差分析

- 方差分析 ANOVA
 - 将所有处理的观测值作为一个整体,一次比较就对所有各组间样本 平均数是否有差异做出判断
 - 差异不显著,则认为他们是相同的
 - 差异显著,进一步比较是哪一组数据与其他数据不同
- 方差分析的用途
 - 多个样本平均数的比较
 - 分析多个因素间的交互作用
 - 回归方程的假设检验
 - 方差的同质性检验

第一节 假设检验的原理与方法 一、假设检验的概念

- 试验数据往往存在一定的差异,这种差异可能
 - 由于随机误差产生
 - 由于试验处理所引起
- 试验处理的效应往往和随机误差混淆,不容易分开
- 通过概率的计算和假设检验作出正确判断

第一节 假设检验的原理与方法 一、假设检验的概念

假设检验

 根据总体的理论分布和小概率原理,对未知或不完全知道的总体 提出两种彼此对立的假设,然后由样本的实际结果,经过一定的 计算,作出在一定概率意义上应该接受的那种假设的推断

如果:

- 抽样结果使小概率事件发生
 - 则拒绝假设
- 抽样结果没有使小概率事件发生
 - 则接受假设

小概率事件: 概率 ≤ 0.05 或 ≤ 0.01 的事件为小概率事件

- 提出假设
- ② 确定显著水平
- 计算统计数与相应的概率
- 推断是否接受假设

(一) 提出假设

- 对总体提出假设,一般是两个彼此对立的假设
 - 无效假设或零假设 H₀:
 - 处理的效应跟总体参数之间没有真实的差异,试验结果中的差异是误差 所致,即处理"无效"
 - 备择假设 H_A:
 - 处理结果中的差异是由于总体参数不同所引起的,即处理"有效"
 - 无效假设与备择假设是对立事件:接受 H_0 则否定 H_A ,接受 H_A 则否定 H_0
- H₀ 随研究内容的不同而不同:
 - H₀ 必须有意义
 - 根据 H₀ 可以算出因抽样误差而获得样本结果的概率

(一) 提出假设

以样本平均数的假设为例:

- 对一个样本平均数的假设(样本与总体)
 - ullet 假设平均数为 $ar{x}$ 的样本来自于一组具有 μ 的总体,提出:
 - $H_0: \mu = \mu_0$
 - $H_A: \mu \neq \mu_0$
- 对两个样本平均数相比较的假设(样本与样本)
 - 假设两个样本平均数 \bar{x}_1 和 \bar{x}_2 分别来自具有平均数 μ_1 和 μ_2 的两个总体,提出:
 - $H_0: \mu_1 = \mu_2$
 - $H_A: \mu_1 \neq \mu_2$
- 可从假设的总体中推论其平均数的随机抽样分布,从而可以算出 其一个样本平均数指定值出现的概率,这样就可以根据样本与总 体的关系,作为假设检验的理论依据

(一) 提出假设

- \bar{x} 和 μ_0 之间的差值是由抽样误差还是药物治疗造成的?

(二)确定显著水平

- 确定一个否定 H₀ 的概率标准,显著水平 α
- 人为规定的小概率界限
- 常用 $\alpha = 0.05$ 和 $\alpha = 0.01$
- 根据研究需要调整

```
qnorm(0.025, mean = 0, sd = 1)
## [1] -1.959964
qnorm(0.005, mean = 0, sd = 1)
## [1] -2.575829
```

(三) 计算统计数与相应的概率

在 $H_0: \mu = \mu_0$ 的前提下,

$$u = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{136 - 126}{\sqrt{40}} = 1.58$$

- 在 N(126,40) 的总体中,以 n=6 进行随机抽样,得到平均值 $\bar{x}=136$ 与 126 相差 10 以上的概率是 P(|u|>1.58)=2*0.05705=0.1141
- 假设检验所计算的是超过实得差异得概率
- 概率的大小是推断 H₀ 是否正确的依据

[1] 0.05705343

(四) 推断是否接受假设

- 小概率原理: 小概率事件在单次抽样试验中几乎是不可能发生的
- 如果概率大于显著水平则不认为是小概率事件,应该接受 H₀
- 差异显著水平 (0.05 或 0.01)
- 差异显著水平的标记方法(* 或 **)
- 概率值为 0.1141, 大于 0.05 的显著水平, 所以接受 H₀
- 所以在治疗前后血红蛋白含量没有显著差异,差值应归于误差导致的

果蝇翅膀大小、细胞大小和细胞数量的倍数变化以及成年翼的大小比例差异(*p < 0.05, **p < 0.01, ***p < 0.001)

Matsushita, R., Nishimura, T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Commun Biol 3, 170 (2020).

假设检验的步骤概括为:

- lacktriangle 对样本所属总体提出无效假设 H_0 和备择假设 H_A
- ② 确定检验的显著水平 α
- 在 H₀ 正确的前提下, 计算抽样分布的统计数或相应的概率值
- 根据小概率原理,进行差异是否显著的判断并得出结论

第一节 概率基础知识 三、双尾检验和单尾检验

在标准正态分布下,样本平均数的抽样分布

- 区间 $[\mu u_{\alpha}\sigma_{\bar{x}}, \mu + u_{\alpha}\sigma_{\bar{x}}]$, 其中 u_{α} 根据 u 分布查表或者计算获得
- 对于一定的 α ,落在区间的 \bar{x} 有 $1-\alpha$,落在区间外的是 α
- $1-\alpha$ 相当于接受 H_0 的区域-接受区
- α 相当于否定 H_0 的区域-否定区

2.58

第一节 概率基础知识 三、双尾检验和单尾检验

否定区被接受区隔开, 分为左尾和右尾两个:

• 临界点是 $\mu \pm u_{\alpha}\sigma_{\bar{x}}$

第一节 概率基础知识 三、双尾检验和单尾检验

- 具有两个否定区的检验称为双尾检验
 - 这时候备择假设有两种可能, $\mu>\mu_0$ $\mu<\mu_0$,落入左尾或者右尾否定区
- 某些情况下,双尾检验不符合实际
 - 已知处理后产生的效应并提出无效假设 $H_0: \mu \leq \mu_0$,备择假设 $H_A: \mu > \mu_0$

第一节 概率基础知识 四、假设检验中的两类错误