

Development Center

Strategic Environmental Research and Development Program

Development of Environmental Health Criteria for Insensitive Munitions: Aquatic Ecotoxicological Exposures Using 2,4-Dinitroanisole

Alan J. Kennedy, Christopher D. Lounds, Nicolas L. Melby, Jennifer G. Laird, Bob Winstead, Sandra M. Brasfield, and Mark S. Johnson

March 2013

Development of Environmental Health Criteria for Insensitive Munitions: Aquatic Ecotoxicological Exposures Using 2,4-Dinitroanisole

Alan J. Kennedy, Jennifer G. Laird, and Sandra M. Brasfield

Environmental Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Rd. Vicksburg, MS 39180-6199

Christopher D. Lounds and Nicolas L. Melby

Badger Technical Services 12500 San Pedro Avenue, Suite 450 San Antonio, TX 78216

Bob Winstead

BAE SYSTEMS Ordnance Systems, Inc. Holston Army Ammunition Plant 4509 West Stone Drive Kingsport, TN 37660

Mark S. Johnson

U.S. Army Institute of Public Health (MCHB-IP-THE Toxicology) Aberdeen Proving Ground, MD

Final report

Approved for public release; distribution is unlimited.

Abstract

Insensitive munition formulation (IMX)-101 consists of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). While general aquatic ecotoxicological information is available for two of the IMX constituents (NTO and NQ), such data are not known to be available for DNAN. Thus, acute and chronic aquatic toxicity bioassays were conducted using standard fish (*Pimephales promelas*) and invertebrate (Ceriodaphnia dubia) models. Chemical analysis of test water indicated that DNAN concentrations were relatively stable during the bioassays. Acute toxicity was similar for the two species tested, with 48-hr lethal median concentrations (LC50) ranging from 37 to 42 mg/L DNAN. Chronic toxicity tests indicated that fish survival (7-day LC50 = 10 mg/L) was significantly more sensitive to DNAN relative to the invertebrate (no significant impact on survival at 24 mg/L). However, the reproduction endpoint for the invertebrate was significantly more sensitive to DNAN than survival. When assessing the most sensitive chronic endpoints, the two test species indicated similar chronic toxicity, with lowest observable adverse impacts ranging from 10 to 12 mg/L DNAN and median effects on sublethal endpoints (growth, reproduction) ranging from 11 to 15 mg/L DNAN. Chronic no-effect concentrations ranged from approximately 6 to 8 mg/L DNAN.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Ab	ostract	ii
Fig	gures and Tables	iv
Pre	eface	v
1	Introduction	1
2	Methods	2
	DNAN preparation	2
	Acute toxicity testing	2
	Chronic toxicity testing	3
	Reference toxicity testing	3
	Statistical analysis	4
	Analytical chemistry	4
3	Results	6
	Acute toxicity testing	6
	Chronic toxicity testing	7
4	Discussion	12
	Acute toxicity testing	12
	Chronic toxicity testing	12
Re	eferences	15
Ар	ppendix A: Water quality parameters	17
Аp	ppendix B: Statistical Analysis	21
Ар	pendix C: Laboratory Bioassay Bench Sheets	26
Аp	pendix D. Analytical reports	27
Re	eport Documentation Page	

Figures and Tables

Figures

Figure 1. 48-hr dose response curves for <i>Pimephales promelas</i> and <i>Ceriodaphnia dubia</i> exposed to DNAN in definitive acute bioassay testing	9
Figure 2. Comparison of toxicity reference values for 2-4 dinitroanisole (DNAN) generated in the current report to toxicity reference values for other traditional munitions	13
Tables	
Table 1. Nominal 2,4 dinitroanisole (DNAN) concentrations and survival for the acute (48-hr) range-finding <i>Pimephales promelas</i> and <i>Ceriodaphnia dubia</i> bioassays	6
Table 2. Nominal and measured 2,4 dinitroanisole (DNAN) concentrations and survival for the definitive acute (48-hr) <i>Pimephales promelas</i> and <i>Ceriodaphnia dubia</i> bioassays	7
Table 3. Toxicity reference values for <i>Pimephales promelas</i> and <i>Ceriodaphnia dubia</i> exposed to 2,4-dinitroanisole	8
Table 4. Results from the 7-day <i>Pimephales promelas</i> chronic toxicity test (a), and the three-brood <i>Ceriodaphnia dubia</i> chronic toxicity test (b). NA = Not available due to complete mortality	10
Table 5. Nominal and measured 2,4 dinitroanisole (DNAN) concentrations provided as means (± one standard deviation from the mean) for the chronic <i>Pimephales promelas</i> (a), and <i>Ceriodaphnia dubia</i> (b), bioassays.	11
Table A1. Water quality parameters for the 48-hr <i>Pimephales promelas</i> range-finder bioassay exposed to 2,4-dinitroanisole (DNAN).	17
Table A2. Water quality parameters for the 48-hr Ceriodaphnia dubia range-finder bioassay	17
Table A3. Water quality parameters for the definitive, acute (48-hr) <i>Pimephales promelas</i> bioassay	18
Table A4. Water quality parameters for the definitive, acute (48-hr) Ceriodaphnia dubia bioassay	18
Table A5. Water quality parameters for the chronic (7-day) <i>Pimephales promelas</i> bioassay for in-water (a) and out-water (b) samples.	19
Table A6. Water quality parameters for the chronic (7-day) Ceriodaphnia dubia bioassay for in-water (a) and out-water (b) samples.	20

Preface

This study was conducted for the Strategic Environmental Research and Development Program (SERDP) under Project Number ER 2223, "Development of Environmental Health Criteria for Insensitive Munitions (IMX-101-104)." The principal investigator was Dr. Mark Johnson, U.S. Army Institute of Public Health (AIPH, MCHB-IP-THE Toxicology), Aberdeen Proving Ground, MD.

The work was performed by the Environmental Risk Assessment Branch (EP-R) of the Environmental Processes and Engineering Division (EP), U.S. Army Engineer Research and Development Center – Environmental Laboratory (ERDC-EL). At the time of publication, Buddy Goatcher was Chief, CEERD-EP-R; Warren Lorentz was Chief, CEERD-EP; and Dr. Elizabeth Ferguson was the Technical Director for Military Environmental Engineering and Science. The Deputy Director of ERDC-EL was Dr. Jack Davis and the Director was Dr. Beth Fleming.

COL Kevin J. Wilson was the Commander of ERDC, and Dr. Jeffery P. Holland was the Director.

1 Introduction

An effective environmental management strategy for wastewater discharges is dependent on accurate risk assessment to minimize potential consequences of anthropogenic impacts on ecosystem health. The environmental impacts of munitions and explosives of concern are difficult to predict due to the limited information available and rapid degradation to toxic products. Insensitive munition (IMX)-101 was recently approved as the main fill ingredient in M795 155-mm artillery munitions with over 20,000 lb¹ manufactured (Fung et al. 2009). This relatively new IM mixture consists of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ).

Given its current production, use and stability (Bausinger and Preuss 2009), DNAN has the potential to be classified as an environmental contaminant upon release during manufacturing, testing, training, and use. While some aquatic ecotoxicology information exists for the other IMX-101 constituents NTO (S&ME 2007; Haley et al. 2009; Sayers 2009a,b) and NQ (van der Schalie 1985), there is currently no known information on the aquatic ecotoxicology of DNAN. Consequently, the aquatic ecotoxicology of DNAN is the focus of this report.

This document provides a brief status report on the acute and chronic bioassays conducted at the U.S. Army Engineer Research and Development Center (ERDC) to generate aquatic toxicity reference values specific to DNAN.

-

¹ Equivalent to 9,072 kg.

2 Methods

DNAN preparation

DNAN was acquired from Holston Army Ammunition Plant (Bob Winstead, BAE Systems, Kingsport, Tennessee, USA). DNAN solutions were prepared by 48-hr magnetic stirring in the dark. Alternative methods were evaluated involving solvent carriers (acetonitrile, methanol)¹ but were not employed since these carriers induced unacceptable sublethal toxicity to *Ceriodaphnia dubia*. Solubilized DNAN in less toxic solvent carriers (acetone, ethanol) led to re-crystallization upon spiking into moderately hard reconstituted water (MHRW). Dissolution of DNAN by bath sonication into MHRW was successful but was not used due to the resulting yellow coloration of the test medium. The yellow coloration may suggest presence of DNAN degradation compounds, such as dinitrophenol. Breakdown compounds with -OH and -NO₂ functional groups (e.g., dinitrophenol) were previously predicted in the alkaline hydrolysis of DNAN (Hill et al. 2012, Koutsospyros et al. 2012).

Acute toxicity testing

Acute (48-hr) toxicity tests employed the larval fish *Pimephales promelas* and the water flea Ceriodaphnia dubia. All P. promelas were obtained from Aquatic Biosystems (Fort Collins, Colorado, USA) while C. dubia were obtained from ERDC in-house cultures (originally ECTesting, Superior, Wisconsin, USA). Tests were conducted in accordance with standard guidance (U.S. Environmental Protection Agency (USEPA) 2002a). Initially, 48-hr DNAN range-finding toxicity tests (concentrations: 5, replicates: 3) were conducted for both *P. promelas* and *C. dubia*. MHRW, used as the diluent and control water, was formulated according to USEPA (2002a) to hardness and alkalinity levels of 80 and 60 mg/L as CaCO₃, respectively. Organisms were initially exposed to a nominal concentration range of 0-100 mg/L DNAN in MHRW, using a 90% dilution series (100, 10, 1, 0.1, 0.01%). Based on range-finding results, definitive acute toxicity tests were conducted (concentrations: 5, replicates: 4) for both test species in the nominal concentration range of 0–100 mg/L DNAN, using a 50% dilution series (100, 50, 25, 13, 6%). The measurement endpoint was survival after 48-hr exposure. Analytical samples from the acute definitive bioassays were

¹ Solvent carriers were spiked into water without employing methodology to evaporate the carrier.

submitted to the U.S. Army Institute of Public Health (AIPH), Laboratory Sciences Portfolio (POC: Mr. David F. Morrow).

Chronic toxicity testing

Chronic (7-day) toxicity tests employed *P. promelas* and *C. dubia* in accordance with USEPA (2002b). Nominal concentrations ranged from o-25 mg/L, selected based on the results of the definitive acute tests, using a 50% dilution series (100, 50, 25, 13, 6, 3%). Both chronic test methods involved daily, static water renewals (80% renewal for P. promelas, 100% renewal for C. dubia) using a fresh DNAN solution, prepared as described previously. The *P. promelas* test method used < 24-hr-old larval fish and a twice-daily feeding ration of Artemia sp. naulpii. The fish test involved six concentrations and a control (MHRW), consisting of five replicates each (concentrations: 6, replicates: 5). Survival, biomass, and growth (dry weight basis) were assessed following 7 days of exposure. The C. dubia bioassay is a three-brood test; thus, the duration can potentially range from 6 to 8 days. According to guidance, C. dubia bioassays can be terminated once 60% of the controls have three broods of neonates. However, it was ensured that 100% of the controls had a third brood prior to termination. The C. dubia test involved six concentrations and a control, consisting of ten replicates each (concentrations: 6, replicates: 10). A daily feeding ration of 1:1 Pseudokirchneriella subcapitata (formerly Selenastrum capricornutum) and YCT (yeast, cereal leaves, and trout chow fish food) was supplied. Measurement endpoints for the C. dubia test were survival and reproduction. For both chronic tests, in-water and out-water samples were collected and submitted in three batches to (AIPH) to ensure that the 7-day sample holding time was not exceeded.

Reference toxicity testing

The selected reference toxicant for *P. promelas* and *C. dubia* was potassium chloride (KCl). Reagent grade KCl was weighed and completely dissolved in MHRW. Five triplicated concentrations were prepared (100, 50, 25, 12.5, 6.25%) with the number of organisms in each replicate previously described. The 100% concentration was 2.7 g/L for *Pimephales promelas* and 1.0 g/L for *Ceriodaphnia dubia*. Test endpoints measured were the same as previously described in the acute and chronic testing sections.

Statistical analysis

Survival data were arcsine square-root transformed prior to statistical analysis. Data normality (Kolmogorov–Smirnov test), homogeneity (Levene's test), and treatment differences were compared to the reference (one way ANOVA and Dunn's or Dunnett's Methods) and statistical significance was determined at $\alpha = 0.05$ using SigmaStat software (SPSS, Chicago, Illinois, USA). When normality was not achieved, the nonparametric Kruskal-Wallis one-way ANOVA on ranks was applied. The lethal median concentration producing 50% mortality (LC50) and inhibition concentrations (IC50, IC25) for sublethal endpoints were determined by the trimmed Spearman–Karber method (Toxcalc®, Version 5.0, Tidepool Scientific Software, McKinleyville, California). The LC50 and IC25 values are presented with 95% confidence limits in parentheses. No observable effect concentrations (NOEC) and lowest observable effect concentrations (LOEC) were also calculated using ToxCalc v5.0 and confirmed by one-way ANOVA and Dunn's or Dunnett's Methods. Maximum allowable concentrations (MATC), also known as the chronic value (ChV), were calculated as the geometric mean of the NOEC and LOEC. The acute-to-chronic ratio (ACR) was calculated as the 48-hr LC50 divided by the MATC.

Analytical chemistry

Water samples (40 mL) were collected by ERDC-EL and sent to the Army Institute of Public Health (AIPH) for analysis. The samples were maintained at 4 °C in dark conditions at all times. A 10-mL water aliquot was extracted from each sample using 2 mL of isoamyl acetate while shaking on a flatbed shaker for 1 hr. After separation, the isoamy acetate layer was placed in an auto-sampler vial and stored at 4 °C until analysis. All samples were extracted the day after receipt, with one exception; six samples collected on 1 February 2012 associated with the acute toxicity tests were one day beyond the 7-day holding time. This is not expected to have any impact on the results. DNAN (Lot # BAE10H281-008) used for calibration and quantification was obtained from BAE Systems (Ordnance Systems, 4509 West Stone Drive, Kingsport, TN 37660). DNAN used for quality control samples (LCS-LCS Duplicate) was obtained from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, 63103). The standards used to calibrate the analytical analysis system were extracted with the same water volume (10 mL) as the samples to compensate for potential differences in extraction efficiency. The samples were diluted as necessary to bring the sample concentrations within the range of the instrument calibration. Analysis was

performed using an Agilent 6890 gas chromatography (GC) fitted with an electron capture detector (ECD; Santa Clara, CA). A J&W DB-17 column was used for the primary analytical column and DB-1 was used for confirmation. The samples were reported in units of ug/mL. Laboratory control samples (LCS) and duplicates (LCSD) were analyzed with test samples and percent recoveries were within the current acceptable limit.

3 Results

Acute toxicity testing

Acceptability criteria for control survival ($\geq 90\%$) and water quality (Appendix A; Tables A1-A4) were met for all bioassays. Acute reference toxicity tests (KCl) for P. promelas and C. dubia resulted in 48-hr LC50 values of 0.78 (95% confidence limits: 0.69 – 0.87) and 0.68 (0.62–0.74) g KCl/L, respectively. This indicates comparable sensitivity to the historic ranges in control charts (\pm 2 S.D. from the mean) for P. promelas (0.56 – 1.01 g KCl/L) and C. dubia (0.20–0.76 g KCl/L). Range finding tests at 10 mg/L DNAN (nominal) resulted in similar survival for both test species relative to the control. However, complete mortality was observed at 100 mg/L (nominal) DNAN (Tables 1 and 2). In the definitive acute (48-hr) toxicity testing, the concentration of DNAN during the exposure period remained relatively stable (Table 2), and all DNAN acute toxicity endpoints were based on measured concentrations (Table 3). Survival response curves for P. promelas and C. dubia were within the same dose range (Figure 1). The 48-hr LC50 trended lower for *P. promelas* (37[33-41]) relative to *C.* dubia (42 [37 – 47]), suggesting slightly greater acute sensitivity to DNAN. Further, mortality in the fish was observed relatively sooner (within 2 hr of exposure) compared to C. dubia (within 24 to 48 hr). After 48 hr, however, the 95% confidence intervals for the two test species overlapped, indicating statistically similar sensitivity to DNAN.

Table 1. Nominal 2,4 dinitroanisole (DNAN) concentrations and survival for the acute (48-hr) range-finding *Pimephales promelas* and *Ceriodaphnia dubia* bioassays. Concentrations were not measured, as range-finding bioassays served only to determine appropriate exposure concentrations for definitive acute testing. Asterisks denote statistically significant reductions relative to the control.

15.22.00						
Nominal (mg/L)	48-hr Pimephales promelas survival	48-hr Ceriodaphnia dubia survival				
Control	100 ± 0	100 ± 0				
0.01	100 ± 0	87 ± 23				
0.1	100 ± 0	93 ± 12				
1	100 ± 0	100 ± 0				
10	100 ± 0	100 ± 0				
100	0 ± 0*	0 ± 0*				

Table 2. Nominal and measured 2,4 dinitroanisole (DNAN) concentrations and survival for the definitive acute (48-hr) *Pimephales promelas* (a) and *Ceriodaphnia dubia* (b) bioassays. Asterisks denote statistically significant reductions relative to the control.

Nominal (mg/L)	Measured Test Initiation (mg/L)	Measured Test Termination (mg/L)	Mean Survival (± 1 S.D.)
		(a)	
0	<0.01	<0.01	100 ± 0
6	7.1	6.6	100 ± 0
12	13	14	100 ± 0
25	28	28	75 ± 6*
50	74	74	0 ± 0*
100	120	120	0 ± 0*
		(b)	
0	<0.01	<0.01	90 ± 20
6	7.1	7.2	95 ± 10
12	13	14	80 ± 0
25	28	28	95 ± 10
50	74	68	0 ± 0*
100	120	120	0 ± 0*

Chronic toxicity testing

Acceptability criteria for control survival (≥ 80%; Table 4) and water quality (Appendix A; Tables A-5 and A-6) were met for bioassays testing both species. The sublethal endpoints for *P. promelas* (> 0.25 mg dry mass) and C. dubia (three broads of \geq 15 neonates) also met control acceptability criteria. Chronic reference toxicity testing results were consistent for both species during the testing period (Appendix B; Table B2). The concentration of DNAN during the chronic exposures remained relatively stable (Table 5), and all DNAN chronic toxicity endpoints were based on measured concentrations averaged over the duration of the testing (Table 3). The C. dubia test was terminated after 6 days, since all individuals in the control achieved third brood (Table 4). As expected, the chronic bioassays provided more sensitive endpoints relative to the acute tests (Tables 3 and 4). The chronic C. dubia survival (LC50 > 24.2 mg/L) endpoint was substantially less sensitive than the *P. promelas* survival (LC50 = 10.0 [8.8 – 11.2] mg/L) endpoint (Table 3). However, the sublethal endpoints for both organisms were more similar in sensitivity, with chronic DNAN toxicity falling in the range of 8-15 mg/L (Table 3).

Table 3. Toxicity reference values for *Pimephales promelas* and *Ceriodaphnia dubia* exposed to 2,4-dinitroanisole. The no observable effect concentration (NOEC), lowest observable effect concentration (LOEC), maximum allowable concentration (MATC)¹, median lethal concentration (LC50), and acute-to-chronic ratio (ACR) are provided. Ninety-five percent confidence intervals for LC50 values are indicated in parentheses. The combined measure provides the most sensitive value among the tested endpoints (e.g., survival vs. growth/reproduction).

	Exposure			DNAN
Species	Duration	Measure	Endpoint	(mg/L)
		Survival	NOEC	13
	24-h	Survival	LOEC	28
		Survival	LC50	41 (37 - 45)
		Survival	NOEC	13
	48-h	Survival	LOEC	28
		Survival	LC50	37 (33 - 41)
		Survival	NOEC	5.8
Pimephales promelas		Survival	LOEC	11.6
		Survival	LC50	10.0 (8.8 - 11.2)
		Growth	NOEC	11.6
	7-d	Growth	LOEC	24.6
		Combined	MATC / ChV	8.2
		Combined	IC25	10.4 (8.2 - 14.3)
		Combined	IC50	15.1 (12.3 - 17.7)
		Combined	ACR = 4.5	
		Survival	NOEC	74
	24	Survival	LOEC	120
		Survival	LC50	82 (72 - 93)
		Survival	NOEC	28
	48	Survival	LOEC	74
		Survival	LC50	42 (37 - 47)
		Survival	NOEC	24.2
Ceriodaphnia dubia		Survival	LOEC	>24.2
		Survival	LC50	>24.2
		Reproduction	NOEC	6.2
	6-d	Reproduction	LOEC	12.2
		Combined	MATC / ChV	8.7
		Combined	IC25	8.2 (7.4 - 8.7)
		Combined	IC50	10.6 (10.0 - 11.2)
		Combined	ACR = 4.8	

¹ Also known as chronic value (ChV).

Figure 1. 48-hr dose response curves for *Pimephales promelas* and *Ceriodaphnia dubia* exposed to DNAN in definitive acute bioassay testing. Note that concentration data are plotted on a log10 scale.

Table 4. Results from the 7-day *Pimephales promelas* chronic toxicity test (a), and the three-brood *Ceriodaphnia dubia* chronic toxicity test (b). NA = Not available due to complete mortality.

(a)

Mean Measured Concentration mg/L (± 1 S.D.)	Mean Survival (± 1 S.D.)	Mean Biomass (mg) (± 1 S.D.)	Mean Growth (mg) (± 1 S.D.)
Control (0.2 ± 0.7)	98 ± 4%	0.421 ± 0.044	0.291 ± 0.044
0.7 ± 0.2	100 ± 0%	0.418 ± 0.034	0.288 ± 0.034
1.4 ± 0.5	96 ± 5%	0.454 ± 0.059	0.324 ± 0.059
2.5 ± 1.0	98 ± 4%	0.436 ± 0.074	0.306 ± 0.074
5.8 ± 1.7	90 ± 12%	0.452 ± 0.064	0.322 ± 0.064
11.6 ± 3.6	38 ± 4%*	0.300 ± 0.077*	0.170 ± 0.077*
24.6 ± 1.8	0 ± 0%*	NA	NA

(b)

Mean Measured Concentration mg/L (± 1 S.D.)	Mean Survival (± 1 S.D.)	Mean Total Reproduction (± 1 S.D.)	Mean Total Neonates/survivor (± 1 S.D.)
Control (0.0 ± 0.0)	90 ± 32%	34.8 ± 13.0	38.7 ± 4.7
0.7 ± 0.1	100 ± 0%	38.4 ± 4.6	38.4 ± 4.6
1.5 ± 0.3	100 ± 0%	38.3 ± 3.9	38.3 ± 3.9
3.1 ± 1.8	100 ± 0%	39.7 ± 5.5	39.7 ± 5.5
6.2 ± 0.5	100 ± 0%	36.2 ± 2.9	36.2 ± 2.9
12.2 ± 1.2	100 ± 0%	12.8 ± 4.6*	12.8 ± 4.6*
24.2 ± 2.0	90 ± 32%	0.2 ± 0.4*	0.1 ± 0.3*

Table 5. Nominal and measured 2,4 dinitroanisole (DNAN) concentrations provided as means (± one standard deviation from the mean) for the chronic *Pimephales promelas* (a), and *Ceriodaphnia dubia* (b), bioassays. In-water is defined as the freshly prepared DNAN water used in water exchanges while out-water is defined as the 24-hr-old water sampled prior to water renewal.

Nominal (mg/L)	Measured In-water Mean (mg/L)	Measured Out-water Mean (mg/L)	Overall Mean (in- and out-water) (mg/L)
		(a)	
0	0.2 ± 0.7	0.4 ± 1.1	0.2 ± 0.7
0.8	0.7 ± 0.2	0.7 ± 0.1	0.7 ± 0.2
1.6	1.3 ± 0.6	1.4 ± 0.2	1.4 ± 0.5
3.1	2.3 ± 1.4	2.8 ± 0.2	2.5 ± 1.0
6.3	5.6 ± 2.0	5.9 ± 0.6	5.8 ± 1.7
12.5	11.0 ± 3.6	12.2 ± 2.4	11.6 ± 3.6
25.0	24.0 ± 1.9	25.3 ± 1.7	24.6 ± 1.8
		(b)	
0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
0.8	0.7 ± 0.2	0.7 ± 0.1	0.7 ± 0.1
1.6	1.5 ± 0.4	1.5 ± 0.2	1.5 ± 0.3
3.1	2.6 ± 1.3	3.6 ± 2.1	3.1 ± 1.8
6.3	6.4 ± 0.4	6.1 ± 0.6	6.2 ± 0.5
12.5	12.3 ± 0.8	12.0 ± 1.5	12.2 ± 1.2
25.0	24.0 ± 1.9	24.4 ± 2.3	24.2 ± 2.0

4 Discussion

Acute toxicity testing

The 48-hr acute toxicity of DNAN ranged from 37 to 42 mg/L for the two species tested (Table 3). These results place DNAN into the toxicity category of slightly toxic (Figure 2a). The cited toxicity categories were distributed by the U.S. Fish and Wildlife Service (USFWS 1984) to serve as general guidance to compare the toxicity of various chemicals and are non-regulatory. In comparison, data acquired from Talmage et al. (1999) and the USEPA's ECOTOX database (http://cfpub.epa.gov/ecotox/; queried May 2012) for other traditional munitions fall into the more toxic categories of highly toxic and moderately toxic. Also, 2,4-dinitrophenol and royal demolition explosive (RDX) are classified as slightly toxic; the acute toxicity of DNAN was less than literature-reported toxicity ranges for 2,4-dinitrophenol, RDX, dinitrobenzene, trinitrotoluene (TNT), and lead (Figure 2a).

Chronic toxicity testing

The chronic toxicity of DNAN ranged from 8.2 to 10.0 mg/L, using the most sensitive effect endpoint obtained for each of the two species tested (Table 3). The median value of all chronic toxicity effect endpoints (Table 3) places DNAN into the toxicity category of moderately toxic (USFWS 1984; Figure 2b), although most of the DNAN data distribution is in the slightly toxic category. In comparison, data acquired from Talmage et al. (1999) and the USEPA's ECOTOX database (http://cfpub.epa.gov/ecotox/; queried May 2012) for other traditional munitions fall into the more toxic categories of super toxic and highly toxic, while 2,4-dinitrophenol and RDX are also classified as moderately toxic. The chronic toxicity of DNAN was less than the literature-reported toxicity ranges for 2,4-dinitrophenol, RDX, dinitrobenzene, trinitrotoluene (TNT), and lead (Figure 2b).

Figure 2. Comparison of toxicity reference values for 2-4 dinitroanisole (DNAN) generated in the current report to toxicity reference values for other traditional munitions (silver was included as a reference toxicant). Acute toxicity is provided in panel a, while chronic toxicity is provided in panel b. All summarized toxicity reference values are effect endpoints (e.g., LC50, IC50, LOEC, etc.) for fish, *Daphnia* and *Ceriodaphnia* species obtained from Talmage et al. (1999) and the USEPA ECOTOX database (http://cfpub.epa.gov/ecotox/). Box margins represent the 25th and 75th percentiles of the data distribution, error bars represent 10th and 90th percentiles of the data distribution (single points represent outlier data in the top and bottom 10% of the data distribution), and lines within the boxes represent the median toxicity reference value. General toxicity severity ranges (USFWS 1984) are indicated in a red font across the top of the figure. Note that the x-axis is plotted on a log10 scale. 2,4-DNP = 2,4 dinitrophenol, RDX = royal demolition explosive, DNB = dinitrobenzene, TNT = trinitrotoluene, TNB = trinitrobenzene, Pb = lead. (continued)

Figure 2. (concluded).

References

Bausinger, T., and J. Pruess. 2009. Stability of nitroaromatic specialty explosives in reversed-phase liquid chromatographic systems. *J. of Haz. Mat.* 162:1578-1582.

- Dodd, D.E., McDougal, J.N. 2002. *Recommendation of an occupational exposure level for PAX-21*. AFRL-HE-WP-TR-2001-0103, 2002.
- Fung, V., C. Teague, A. Wilson, C. Robinson, and P. Vinh. 2009. Development of a production scale process for the manufacture of IMX-101 at HSAAP. Presentation made at: 2009 Insensitive Munitions and Energetic Materials Technology Symposium, Tucson, AZ, 11-14 May 2009. http://www.dtic.mil-ndia/2009insensitive/2009insensitive.html (accessed 03 Mar 2010).
- Haley, M., R. Kuperman, and R. Checkai. 2009. *Aquatic Toxicity of 3-Nitro-1,2,4-Triazol-5-One*. Public Report ECBC-TR-726. U.S. Army Research, Development and Engineering Command.
- Hill, F. C., L. K. Sviatenko, L. Gorb, S. I. Okovytyy, G. S. Blaustein, and J. Leszczynski. 2012. DFT M06-2X investigation of alkaline hydrolysis of nitroaromatic compounds. *Chemosphere* 88: 635-643.
- Koutsospyros, A., J. Pavlov, J. Fawcett, D. Strickland, B. Smolinski, and W. Braida. 2012. Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. *Journal of Hazardous Materials* 219-220: 75-81.
- Sayers, L. E. 2009a. Nitrotriazolone (NTO, CAS No. 932-64-9) Acute toxicity to water fleas (Daphnia magna) under flow-through conditions, following OPPTS Draft Guideline 850.1010. Springborn Smithers Study No. 13949.6107, Report to BAE Systems, 1 December 2009.
- Sayers, L. E. 2009b. Nitrotriazolone (NTO, CAS No. 932-64-9) Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss) under flow-through conditions, following OPPTS Draft Guidance 850.1075. Springborn Smithers Study No. 13949.6108, Report to BAE Systems, 2 November 2009.
- S&ME. 2007. *Biomonitoring retest report BAE Systems, Kingsport, TN*. S&ME Project No. 1434-07-537. Report to BAE Systems, 22 October 2007.
- Talmage, S. S., D. M. Opresko, C. J. Maxwell, C. J. Welsh, F. M. Cretella, P. H. Reno, and F. B. Daniel. 1999. Nitroaromatic munition compounds: Environmental effects and screening values. *Rev Environ Contam Toxicol*. 161:1-156.
- U.S. Environmental Protection Agency. 2002a. *Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th ed.* EPA-821-R-02-012. Washington, DC: Office of Water.
- U.S. Environmental Protection Agency. 2002b. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th ed.. EPA-821-R-02-013. Washington, DC: Office of Water.

U.S. Fish and Wildlife Service. 1984. *Acute-toxicity rating scales*. Research Information Bulletin No. 84-78.

van der Schalie, W. H. 1985. *The toxicity of nitroguanidine and photoyzed nitroguanidine to freshwater aquatic organisms*. Technical Report 8404.
Frederick, MD: US Army Medican Bioengineering Research and Development Laboratory, Fort Detrick.

Appendix A: Water quality parameters

Table A1. Water quality parameters for the 48-hr *Pimephales promelas* range-finder bioassay exposed to 2,4-dinitroanisole (DNAN). Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Nominal DNAN Treatment (%)	Nominal DNAN Concentration (mg/L)	Temperature (° C)	pH (SU)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)
Control	0	24.0 ± 0.6 (23.1 - 24.5)	7.05 ± 0.35 (6.85 - 7.58)	7.8 ± 0.2 (7.6 - 8)	284 ± 1 (283 - 285)
0.01%	0.01	24.1 ± 0.5 (23.3 - 24.4)	7.15 ± 0.42 (6.86 - 7.77)	7.7 ± 0.1 (7.6 - 7.8)	284 ± 1 (283 - 286)
0.1%	0.1	23.9 ± 0.4 (23.2 - 24.1)	7.27 ± 0.39 (7.05 - 7.85)	7.6 ± 0 (7.6 - 7.7)	286 ± 3 (283 - 290)
1%	1	23.8 ± 0.5 (23.1 - 24.1)	7.35 ± 0.37 (7.15 - 7.9)	7.7 ± 0.1 (7.6 - 7.8)	285 ± 2 (282 - 286)
10%	10	23.6 ± 0.6 (22.8 - 23.9)	7.38 ± 0.38 (7.17 - 7.95)	7.7 ± 0 (7.7 - 7.8)	286 ± 1 (285 - 287)
100%	100	23.6 ± 0.6 (22.6 - 23.9)	7.43 ± 0.38 (7.2 - 7.99)	7.8 ± 0 (7.7 - 7.8)	301 ± 2 (298 - 303)

Table A2. Water quality parameters for the 48-hr *Ceriodaphnia dubia* range-finder bioassay. Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Nominal Treatment (%)	Nominal Concentration (mg/L)	Temperature (° C)	pH (SU)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)
Control	0	23.5 ± 0.6 (22.9 - 24.1)	7.1 ± 0.33 (6.86 - 7.58)	8.1 ± 0.4 (7.6 - 8.3)	299 ± 21 (283 - 330)
0.01%	0.01	24 ± 0.4 (23.3 - 24.2)	7.4 ± 0.25 (7.26 - 7.77)	8.1 ± 0.3 (7.6 - 8.3)	291 ± 5 (286 - 298)
0.1%	0.1	23.8 ± 0.4 (23.2 - 24.1)	7.43 ± 0.28 (7.27 - 7.85)	8.1 ± 0.3 (7.7 - 8.2)	292 ± 4 (286 - 295)
1%	1	23.7 ± 0.4 (23.1 - 23.9)	7.49 ± 0.28 (7.32 - 7.9)	8.1 ± 0.2 (7.8 - 8.2)	297 ± 8 (286 - 303)
10%	10	23.6 ± 0.5 (22.8 - 23.9)	7.56 ± 0.26 (7.42 - 7.95)	8.1 ± 0.2 (7.8 - 8.2)	292 ± 3 (287 - 294)
100%	100	23.5 ± 0.6 (22.6 - 23.8)	7.6 ± 0.26 (7.46 - 7.99)	8.1 ± 0.2 (7.7 - 8.2)	307 ± 5 (300 - 311)

Table A3. Water quality parameters for the definitive, acute (48-hr) *Pimephales promelas* bioassay. Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Nominal Treatment (%)	Nominal Concentration (mg/L)	Temperature (° C)	pH (SU)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)
Control	0	23.9 ± 0.6 (23.5 - 24.4)	8.09 ± 0.24 (7.92 - 8.26)	7.5 ± 0.2 (7.4 - 7.7)	278 ± 4 (275 - 281)
6%	6.3	24.0 ± 0.7 (23.6 - 24.5)	8.05 ± 0.20 (7.91 - 8.19)	7.6 ± 0.5 (7.3 – 8.0)	280 ± 4 (277 - 282)
13%	12.5	23.9 ± 0.7 (23.4 - 24.4)	8.07 ± 0.18 (7.94 - 8.19)	7.7 ± 0.4 (7.5 – 8.0)	284 ± 10 (277 - 291)
25%	25.0	24.0 ± 0.6 (23.5 - 24.39)	8.08 ± 0.13 (7.98 - 8.17)	7.8 ± 0.3 (7.6 - 8.0)	285 ± 8 (279 - 290)
50%	50.0	24.0 ± 0.6 (23.6 - 24.4)	8.03 ± 0.14 (7.93 - 8.13)	7.7 ± 0.5 (7.3 - 8.0)	288 ± 8 (282 - 293)
100%	100.0	24.1 ± 0.4 (23.8 - 24.3)	8.03 ± 0.10 (7.96 - 8.1)	7.7 ± 0.3 (7.5 - 7.9)	303 ± 21 (288 - 318)

Table A4. Water quality parameters for the definitive, acute (48-hr) *Ceriodaphnia dubia* bioassay. Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Nominal Treatment (%)	Nominal Concentration (mg/L)	Temperature (° C)	pH (SU)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)
Control	0	23.1 ± 0.6 (22.7 - 23.5)	8.17 ± 0.13 (8.08 - 8.26)	8.2 ± 0.7 (7.7 - 8.6)	280 ± 7 (275 - 285)
6%	6.3	23.2 ± 0.5 (22.9 - 23.6)	8.18 ± 0.01 (8.17 - 8.19)	8.2 ± 0.4 (8.0 - 8.5)	283 ± 8 (277 - 288)
13%	12.5	23.2 ± 0.3 (23.0 - 23.4)	8.20 ± 0.01 (8.19 - 8.20)	8.2 ± 0.3 (8.0 - 8.4)	282 ± 7 (277 - 287)
25%	25.0	23.2 ± 0.4 (22.9 - 23.5)	8.18 ± 0.01 (8.17 - 8.19)	8.2 ± 0.2 (8.0 - 8.3)	285 ± 8 (279 - 290)
50%	50.0	23.3 ± 0.5 (22.9 - 23.6)	8.15 ± 0.03 (8.13 - 8.17)	8.1 ± 0.2 (8.0 - 8.3)	288 ± 8 (282 - 294)
100%	100.0	23.2 ± 0.8 (22.7 - 23.8)	8.14 ± 0.06 (8.10 - 8.18)	8.1 ± 0.2 (7.9 - 8.3)	294 ± 8 (288 - 299)

Table A5. Water quality parameters for the chronic (7-day) *Pimephales promelas* bioassay for in-water (a) and out-water (b) samples. Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Nominal Treatment (%)	Nominal Concentration (mg/L)	Temperature (° C)	pH (SU)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)
		(a)			
Control	0	23.9 ± 0.4 (23.5 - 24.5)	7.98 ± 0.17 (7.70 - 8.18)	7.3 ± 0.5 (6.6 - 8.0)	274 ± 20 (252 - 311)
6%	1.6	23.9 ± 0.3 (23.6 - 24.5)	7.99 ± 0.12 (7.82 - 8.15)	7.4 ± 0.5 (6.6 – 8.0)	275 ± 17 (257 - 302)
13%	3.1	23.9 ± 0.3 (23.6 - 24.4)	7.99 ± 0.11 (7.84 - 8.17)	7.6 ± 0.3 (7.0 - 7.9)	273 ± 18 (252 - 302)
25%	6.3	23.9 ± 0.3 (23.6 - 24.4)	7.99 ± 0.1 (7.87 - 8.16)	7.6 ± 0.3 (7.1 - 7.9)	273 ± 18 (253 - 301)
50%	12.5	23.9 ± 0.3 (23.6 - 24.4)	7.98 ± 0.09 (7.88 - 8.14)	7.6 ± 0.2 (7.2 - 7.9)	273 ± 16 (254 - 302)
100%	25.0	23.9 ± 0.3 (23.5 - 24.4)	8.01 ± 0.09 (7.88 - 8.14)	7.7 ± 0.2 (7.3 – 8.0)	272 ± 17 (255 - 304)
		(b)		•	
Control	0	24.0 ± 0.3 (23.6 - 24.6)	7.72 ± 0.10 (7.58 - 7.88)	6.0 ± 0.6 (5.1 - 6.9)	287 ± 25 (261 - 329)
6%	1.6	24.0 ± 0.3 (23.6 - 24.6)	7.65 ± 0.11 (7.52 - 7.83)	6.2 ± 0.5 (5.4 - 6.9)	287 ± 25 (264 - 330)
13%	3.1	24.0 ± 0.3 (23.5 - 24.6)	7.66 ± 0.13 (7.50 - 7.80)	6.2 ± 0.5 (5.4 - 6.8)	287 ± 24 (263 - 329)
25%	6.3	24.0 ± 0.4 (23.4 - 24.5)	7.64 ± 0.13 (7.49 - 7.79)	6.1 ± 0.5 (5.5 - 6.7)	286 ± 25 (262 - 329)
50%	12.5	24.0 ± 0.4 (23.3 - 24.5)	7.62 ± 0.12 (7.47 - 7.79)	6.3 ± 0.5 (5.4 - 6.8)	287 ± 24 (263 - 328)
100%	25.0	23.9 ± 0.4 (23.2 - 24.5)	7.62 ± 0.13 (7.48 - 7.78)	6.1 ± 0.5 (5.6 - 6.8)	288 ± 25 (267 - 328)

Table A6. Water quality parameters for the chronic (7-day) *Ceriodaphnia dubia* bioassay for in-water (a) and out-water (b) samples. Means and one standard deviation from the mean are indicated, with the minimum and maximum range of the data provided in parentheses.

Nominal	Nominal			Dissolved	
Treatment (%)	Concentration (mg/L)	Temperature (° C)	pH (SU)	Oxygen (mg/L)	Conductivity (µS/cm)
(/-/	(8/ -/	(a)	, , , , , , , , , , , , , , , , , , ,	(··· a / - /	(µe) em)
Control	0	23.9 ± 0.4 (23.5 - 24.5)	7.98 ± 0.17 (7.70 - 8.18)	7.3 ± 0.5 (6.6 – 8.0)	274 ± 20 (252 - 311)
6%	1.6	23.9 ± 0.3 (23.6 - 24.5)	7.99 ± 0.12 (7.82 - 8.15)	7.4 ± 0.5 (6.6 - 8.0)	275 ± 17 (257 - 302)
13%	3.1	23.9 ± 0.3 (23.6 - 24.4)	7.99 ± 0.11 (7.84 - 8.17)	7.6 ± 0.3 (7.0 - 7.9)	273 ± 18 (252 - 302)
25%	6.3	23.9 ± 0.3 (23.6 - 24.4)	7.99 ± 0.1 (7.87 - 8.16)	7.6 ± 0.3 (7.1 - 7.9)	273 ± 18 (253 - 301)
50%	12.5	23.9 ± 0.3 (23.6 - 24.4)	7.98 ± 0.09 (7.88 - 8.14)	7.6 ± 0.2 (7.2 - 7.9)	273 ± 16 (254 - 302)
100%	25.0	23.9 ± 0.3 (23.5 - 24.4)	8.01 ± 0.09 (7.88 - 8.14)	7.7 ± 0.2 (7.3 – 8.0)	272 ± 17 (255 - 304)
		(b)			
Control	0	24.1 ± 0.2 (23.9 - 24.3)	8.01 ± 0.09 (7.94 - 8.14)	7.3 ± 0.7 (6.3 - 7.9)	284 ± 21 (262 - 312)
6%	1.6	24.3 ± 0.2 (24.0 - 24.6)	7.99 ± 0.05 (7.90 - 8.03)	7.3 ± 0.5 (6.6 - 7.8)	289 ± 25 (257 - 317)
13%	3.1	24.2 ± 0.3 (23.7 - 24.6)	7.97 ± 0.06 (7.90 - 8.05)	7.3 ± 0.5 (6.5 - 7.9)	288 ± 24 (257 - 316)
25%	6.3	24.2 ± 0.3 (23.8 - 24.6)	7.95 ± 0.07 (7.84 - 8.02)	7.4 ± 0.6 (6.5 - 8.0)	290 ± 24 (260 - 317)
50%	12.5	24.2 ± 0.3 (23.8 - 24.6)	7.92 ± 0.07 (7.81 - 7.99)	7.3 ± 0.6 (6.3 - 7.9)	288 ± 26 (255 - 317)
100%	25.0	24.1 ± 0.2 (23.8 - 24.4)	7.90 ± 0.07 (7.78 - 7.98)	7.4 ± 0.6 (6.5 - 7.9)	289 ± 26 (257 - 315)

Appendix B: Statistical Analysis

Start Date: 2					Acute Fish	Test-48 H	Survival				
Staff Date. 2	2/1/2012	1	Test ID:	1			Sample ID:		DNAN		
End Date: 2	2/3/2012	L	.ab ID:				Sample Type:				
Sample Date			Protocol:	EPAA 91-EPA	A Acute		Test Species:		PP-Pimephales pron	nelas	
Comments:											
Conc-ug/L	1	2	3	4							
0.1	1.0000	1.0000	1.0000	1.0000							
7.1	1.0000	1.0000	1.0000	1.0000							
13	1.0000	1.0000	1.0000	1.0000							
28	0.8000	0.7000	0.8000	0.7000							
74	0.0000	0.0000	0.0000	0.0000							
120	0.0000	0.0000	0.0000	0.0000							
				Transform	Arcein Squ	are Root		Rank	1-Tailed		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		
0.1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	4				
7.1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	4	18.00	10.00		
13	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	4	18.00	10.00		
*28	0.7500	0.7500	1.0492	0.9912	1.1071	6.383	4	10.00	10.00		
*74	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	4	10.00	10.00		
*120	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	4	10.00	10.00		
Auxillary Tee							Statistic		Critical	Skew	Kurt
Shapiro-Wilk's				n (p <= 0.01)			0.5762328		0.884	6.572E-15	4.0324675
Equality of va											
Hypothesis 1			NOEC	LOEC	ChV	TU					
Steel's Many-	One Rank Te	est	13	28	19.078784						
					Acufe Fish	Test-48 H	Survival				
Start Date: 2	2/1/2012	-	Test ID:	1	A0010 1 101	11000 4011	Sample ID:		DNAN		
End Date: 2			Lab ID:				Sample Type:		51664		
Sample Date				EPAA 91-EP/	A Acute		Test Species:		PP-Pimephales pron	nelas	
Comments:											
Conc-ug/L											
	1	2	3	4							
0.1	1.0000	1.0000	3 1.0000	4 1.0000							
0.1 7.1											
	1.0000	1.0000	1.0000	1.0000							
7.1	1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000							
7.1 13	1.0000 1.0000 1.0000 0.8000	1.0000 1.0000 1.0000 0.7000	1.0000 1.0000 1.0000 0.8000	1.0000 1.0000 1.0000 0.7000							
7.1 13 28	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000							
7.1 13 28 74	1.0000 1.0000 1.0000 0.8000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000							
7.1 13 28 74	1.0000 1.0000 1.0000 0.8000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000	: Arcein Squ	are Root				Number	Total
7.1 13 28 74	1.0000 1.0000 1.0000 0.8000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000	: Arcsin Squ Max	are Root	N N			Number Resp	Total Number
7.1 13 28 74 120	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000			N 4				
7.1 13 28 74 120	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform	Max	0.000 0.000	4			Resp 0 0	Number 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.0000 1.0000	1.0000 1.0000 0.7000 0.0000 0.0000 0.0000 N-Mean 1.0000 1.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.4120	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 1.4120	Max 1,4120	0.000 0.000 0.000	4			Resp 0 0 0 0	40 40 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 0.0000 Mean 1.4120 1.4120	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120	Max 1.4120 1.4120	0.000 0.000	4			Resp 0 0	Number 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.0492 0.1588	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 1.4120 0.9912 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588	0.000 0.000 0.000 0.000 6.383 0.000	4 4 4 4			Resp 0 0 0 0 10 40	40 40 40 40 40 40
7.1 13 28 74 120 Cone-ug/L 0.1 7.1 13 28	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 0.0000 Mean 1.0000 1.0000 0.7500	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7500	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 1.4120 0.9912	Max 1.4120 1.4120 1.4120 1.1071	0.000 0.000 0.000 6.383	4 4 4 4			Resp 0 0 0 10	40 40 40 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.0492 0.1588	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 1.4120 0.9912 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588	0.000 0.000 0.000 0.000 6.383 0.000	4 4 4 4 4			Resp 0 0 0 0 10 40	40 40 40 40 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.0492 0.1588	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 1.4120 0.9912 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588	0.000 0.000 0.000 0.000 6.383 0.000	4 4 4 4		Critical	Resp 0 0 0 0 10 40	40 40 40 40 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk'	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.0000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588	0.000 0.000 0.000 0.000 6.383 0.000	4 4 4 4 4		Critical 0.884	Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.0000 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588	0.000 0.000 0.000 0.000 6.383 0.000	4 4 4 4 4 5tatistic			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk'	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 Mean 1.0000 1.0000 1.0000 0.0500 0.0000 0.0000 0.5 Test indicar	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 N-Mean 1.0000 1.0000 0.7000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk'	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.0000 0.0000	1.0000 1.0000 0.7000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.588 0.1588 0.1588	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk' Equality of va	1.0000 1.0000 0.8000 0.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.7500 0.0000	1.0000 1.0000 0.7000 0.0000 0.0000 1.0000 1.0000 1.0000 0.7500 1.0000 0.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,0000 1,0000 0,8000 0,0000 0,0000 1,4120 1,4120 1,4420 1,0492 0,1588 0,1588 0,1588 Cal distribution	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk's Equality of va	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000	1.0000 1.0000 0.7000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.588 0.1588 0.1588	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk' Equality of va	1.0000 1.0000 0.8000 0.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.7500 0.0000	1.0000 1.0000 0.7000 0.0000 0.0000 1.0000 1.0000 1.0000 0.7500 1.0000 0.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,0000 1,0000 0,8000 0,0000 0,0000 1,4120 1,4120 1,4420 1,0492 0,1588 0,1588 0,1588 Cal distribution	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Cone-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk' Equality of va Trim Level 0.0% 5.0% 10.0% 20.0%	1.0000 1.0000 0.8000 0.8000 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 1.0000 1.0000 0.7500 1.0000 0.7500 0.0000 0.0000 0.0000 0.0000 32.514 32.539 32.245 30.140	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4120 1.0492 0.1588 0.1588 0.1588 CL 41.257 42.566 44.216 49.356	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt
7.1 13 28 74 120 Conc-ug/L 0.1 7.1 13 28 74 120 Auxiliary Tee Shapiro-Wilk's Equality of va Trim Level 0.0% 5.0% 10.0%	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.0000	1.0000 1.0000 1.0000 0.7000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 32.514 32.539 32.245	1.0000 1.0000 1.0000 0.8000 0.0000 0.0000 1.4120 1.4120 1.4120 1.4122 0.1588 0.1588 0.1588 CL 41.257 42.566 44.216	1.0000 1.0000 0.7000 0.7000 0.0000 0.0000 Transform Min 1.4120 1.4120 0.9912 0.1588 0.1588	Max 1.4120 1.4120 1.4120 1.1071 0.1588 0.1588	0.000 0.000 0.000 0.000 6.383 0.000 0.000	4 4 4 4 4 4 5tatistic 0.5762328			Resp 0 0 0 0 10 40 40 Skew	40 40 40 40 40 40 40 Kurt

					ACUTO FIS	h Test-48 H	Survival					
Start Date:	2/1/2012		Test ID:	1			Sample ID:		DNAN			
End Date:	2/3/2012		Lab ID:				Sample Type	2				
Sample Date			Protocol:	EPAA 91-EP	A Acute		Test Species		CD-Cerloda;	ohnia dubia		
Comments:												
Conc-ug/L	1	2	3	4								
0.1	0.6000	1.0000	1.0000	1.0000								
7.1	0.8000	1.0000	1.0000	1.0000								
13	0.8000	0.8000	0.8000	0.8000								
28	1.0000	0.8000	1.0000	1.0000								
74	0.0000	0.0000	0.0000	0.0000								
120	0.0000	0.0000	0.0000	0.0000								
				Transform	: Arcein Sq	uare Root		Rank	1-Talled			
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical			
Conc-ug/L 0.1	Mean 0.9000	N-Mean 1.0000	Mean 1.2305	Min 0.8861	Max 1.3453	CV% 18.660		Sum	Critical			
								Sum 18.50	Critical 10.00			
0.1	0.9000	1.0000	1.2305	0.8861	1.3453	18.660	4					
0.1 7.1	0.9000 0.9500	1.0000 1.0556	1.2305 1.2857	0.8861 1.1071	1.3453 1.3453	18.660 9.261	4	18.50	10.00			
0.1 7.1 13	0.9000 0.9500 0.8000	1.0000 1.0556 0.8889	1.2305 1.2857 1.1071	0.8861 1.1071 1.1071	1.3453 1.3453 1.1071	18.660 9.261 0.000	4 4 4	18.50 14.00	10.00 10.00			
0.1 7.1 13 28	0.9000 0.9500 0.8000 0.9500	1.0000 1.0556 0.8889 1.0556	1.2305 1.2857 1.1071 1.2857	0.8861 1.1071 1.1071 1.1071	1.3453 1.3453 1.1071 1.3453	18.660 9.261 0.000 9.261	4 4 4	18.50 14.00 18.50	10.00 10.00 10.00			
0.1 7.1 13 28 *74	0.9000 0.9500 0.8000 0.9500 0.0000	1.0000 1.0556 0.8889 1.0556 0.0000	1.2305 1.2857 1.1071 1.2857 0.2255	0.8861 1.1071 1.1071 1.1071 0.2255	1.3453 1.3453 1.1071 1.3453 0.2255	18.660 9.261 0.000 9.261 0.000	4 4 4 4	18.50 14.00 18.50 10.00	10.00 10.00 10.00 10.00			
0.1 7.1 13 28 *74	0.9000 0.9500 0.8000 0.9500 0.0000 0.0000	1.0000 1.0556 0.8889 1.0556 0.0000	1.2305 1.2857 1.1071 1.2857 0.2255	0.8861 1.1071 1.1071 1.1071 0.2255	1.3453 1.3453 1.1071 1.3453 0.2255	18.660 9.261 0.000 9.261 0.000	4 4 4 4	18.50 14.00 18.50 10.00	10.00 10.00 10.00 10.00		Skew	Kurt
0.1 7.1 13 28 "74 "120 Auxiliary Te	0.9000 0.9500 0.8000 0.9500 0.0000 0.0000	1.0000 1.0556 0.8889 1.0556 0.0000 0.0000	1.2305 1.2857 1.1071 1.2857 0.2255 0.2255	0.8861 1.1071 1.1071 1.1071 0.2255 0.2255	1.3453 1.3453 1.1071 1.3453 0.2255 0.2255	18.660 9.261 0.000 9.261 0.000	4 4 4 4 4 4	18.50 14.00 18.50 10.00	10.00 10.00 10.00 10.00 10.00		Skew -2.025649	Kurt 4.996213
0.1 7.1 13 28 "74 "120 Auxiliary Te Shapiro-Will Equality of v	0.9000 0.9500 0.8000 0.9500 0.0000 0.0000 sets	1.0000 1.0556 0.8889 1.0556 0.0000 0.0000 stes non-nom	1.2305 1.2857 1.1071 1.2857 0.2255 0.2255	0.8861 1.1071 1.1071 1.1071 0.2255 0.2255	1.3453 1.3453 1.1071 1.3453 0.2255 0.2255	18.660 9.261 0.000 9.261 0.000	4 4 4 4 4 5 tatistic	18.50 14.00 18.50 10.00	10.00 10.00 10.00 10.00 10.00			
0.1 7.1 13 28 "74 "120 Auxiliary Te Shapiro-Will Equality of v	0.9000 0.9500 0.8000 0.9500 0.0000 0.0000	1.0000 1.0556 0.8889 1.0556 0.0000 0.0000 stes non-nom	1.2305 1.2857 1.1071 1.2857 0.2255 0.2255	0.8861 1.1071 1.1071 1.1071 0.2255 0.2255	1.3453 1.3453 1.1071 1.3453 0.2255 0.2255	18.660 9.261 0.000 9.261 0.000	4 4 4 4 4 5 tatistic	18.50 14.00 18.50 10.00	10.00 10.00 10.00 10.00 10.00			
0.1 7.1 13 28 "74 "120 Auxiliary Te Shapiro-Wili Equality of v Hypothesis	0.9000 0.9500 0.8000 0.9500 0.0000 0.0000 sets	1.0000 1.0556 0.8889 1.0556 0.0000 0.0000 sites non-nom of be confirm	1.2305 1.2857 1.1071 1.2857 0.2255 0.2255 nal distributio	0.8861 1.1071 1.1071 1.1071 0.2255 0.2255	1.3453 1.3453 1.1071 1.3453 0.2255 0.2255	18.660 9.261 0.000 9.261 0.000 0.000	4 4 4 4 4 5 tatistic	18.50 14.00 18.50 10.00	10.00 10.00 10.00 10.00 10.00			

				Acute Fish Te	est-48 Hr Survival			
Start Date: 2/	1/2012	Te	est ID:	1	Sample ID:	DNAN		
End Date: 2/	3/2012	La	ab ID:		Sample Type:			
Sample Dati		Pr	rotocol:	EPAA 91-EPA Acute	Test Species:	CD-Cerlodaphnia dubia		
Comments:								
Conc-ug/L	1	2	3	4				
0.1	0.6000	1.0000	1.0000	1.0000				
7.1	0.8000	1.0000	1.0000	1.0000				
13	0.8000	0.8000	0.8000	0.8000				
28	1.0000	0.8000	1.0000	1.0000				
74	0.0000	0.0000	0.0000	0.0000				
120	0.0000	0.0000	0.0000	0.0000				
				Transform: Arcein Square	Post		Number	Total

				Transform:	: Arcein Squ	iare Root			Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N		Resp	Number
0.1	0.9000	1.0000	1.2305	0.8861	1.3453	18.660	4		2	20
7.1	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4		1	20
13	0.8000	0.8889	1.1071	1.1071	1.1071	0.000	4		4	20
28	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4		1	20
74	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4		20	20
120	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4		20	20
Auxillary Tee	ts						Statistic	Critical	Skew	Kurt
Shapiro-Wilk's	s Test Indica	tes non-nom	al distribution	n (p <= 0.01)			0.7342137	0.884	-2.025649	4.998213

Equality of val	nance cannot	De confirme	1						
				Trimme	ed Spearmar	-Karber			
Trim Level	EC50	95% (CL.						
0.0%	41.848	37.414	46.808						
5.0%	44.116	39.571	49.183						
10.0%	44.273	41.907	46.772						
20.0%	44.273	41.907	46.772						
Auto-D 0%	41.848	37 414	46.808						

				Larval Flat	n Growth and S	urvival Test-7 Day Surviv	al .
Start Date: 3/	23/2012	Te	est ID:	1		Sample ID:	DNAN
End Date: 3/	30/2012	Lä	ab ID:	ERDC		Sample Type:	
Sample Date		Pr	rotocol:	EPAF 94-EPA	Freshwater	Test Species:	PP-PImephales promelas
Comments:							
Conc-mg/L	1	2	3	4	5		
0.1934786	1.0000	1.0000	0.9000	1.0000	1.0000		
0.67	1.0000	1.0000	1.0000	1.0000	1.0000		
1.375	0.9000	1.0000	1.0000	1.0000	1.0000		
2.5469231	1.0000	1.0000	0.9000	1.0000	1.0000		
5.7642857	0.7000	1.0000	0.9000	0.9000	1.0000		
11.607143	0.4000	0.3000	0.4000		0.4000		
24.555556	0.0000	0.0000	0.0000		0.0000		

				Not			Fisher's	1-Talled	
Conc-mg/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	
0.1934786	1.0000	1.0000	0	5	5	5			
0.67	1.0000	1.0000	0	5	5	5	1.0000	0.0500	
1.375	1.0000	1.0000	0	5	5	5	1.0000	0.0500	
2.5469231	1.0000	1.0000	0	5	5	5	1.0000	0.0500	
5.7642857	1.0000	1.0000	0	5	5	5	1.0000	0.0500	
1428571429	0.0000	0.0000	5	0	5	5	0.0040	0.0500	
555555556	0.0000	0.0000	5	0	5	5	0.0040	0.0500	

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	5.7642857	11.607143	8.1796631		

				Larval Fish	n Growth and Su	ırvival Test-7 Day Bloma	88
Start Date: 3/	23/2012	Te	est ID:	1		Sample ID:	DNAN
End Date: 3/	30/2012	Li	ab ID:			Sample Type:	
Sample Date		P	rotocol: I	EPAF 94-EPA	Freshwater	Test Species:	PP-Pimephales promelas
Comments:							
Conc-mg/L	1	2	3	4	5		
0.1934786	0.4022	0.3958	0.4949	0.3838	0.4302		
0.67	0.4294	0.3702	0.4186	0.4626	0.4078		
1.375	0.3882	0.4258	0.4692	0.5462	0.4402		
2.5469231	0.3952	0.4114	0.4920	0.5320	0.3518		
5.7642857	0.5391	0.4894	0.4460	0.3902	0.3944		
11.607143	0.2115	0.4207	0.3095	0.2695	0.2875		
24 555556	0.0000	0.0000	0.0000	0.0000	0.0000		

				Transfor	m: Untranef	ormed		Rank	1-Talled
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical
0.1934786	0.4214	1.0000	0.4214	0.3838	0.4949	10.557	5		
0.67	0.4177	0.9913	0.4177	0.3702	0.4626	8.037	5	28.00	16.00
1.375	0.4539	1.0772	0.4539	0.3882	0.5462	13.054	5	32.00	16.00
2.5469231	0.4365	1.0358	0.4365	0.3518	0.5320	16.879	5	28.00	16.00
5.7642857	0.4518	1.0723	0.4518	0.3902	0.5391	14.069	5	30.00	16.00
11.607143	0.2997	0.7113	0.2997	0.2115	0.4207	25.610	5	18.00	16.00
555555556	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	5	15.00	16.00

Auxillary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test Indicates norma	distribution (p	> 0.01)			0.9494278	0.91	0.5891798	0.0808855
Equality of variance cannot be confi	rmed							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	11.607143	24.555556	16.882531					

				Larval Flat	h Growth and	Survival Test-7 Day Blomass	
Start Date:	3/23/2012	T	est ID:	1		Sample ID:	DNAN
End Date:	3/30/2012	L	ab ID:			Sample Type:	
Sample Dat	1	P	rotocol:	EPAF 94-EPA	Freshwater	Test Species:	PP-Pimephales promeias
Comments:							
Conc-mg/L	. 1	2	3	4	5		
0.1934786	0.4022	0.3958	0.4949	0.3838	0.4302		
0.67	0.4294	0.3702	0.4186	0.4626	0.4078		
1.375	0.3882	0.4258	0.4692	0.5462	0.4402		
2.5469231	0.3952	0.4114	0.4920	0.5320	0.3518		
5.7642857	0.5391	0.4894	0.4460	0.3902	0.3944		
11.607143	0.2115	0.4207	0.3095	0.2695	0.2875		
24.555556	0.0000	0.0000	0.0000	0.0000	0.0000		

				Transfor	m: Untransf	ormed		lsoti	onic
Conc-mg/I	Mean	N-Mean	Mean	Min	Max	CV%	N	Mean	N-Mean
0.1934786	0.4214	1.0000	0.4214	0.3838	0.4949	10.557	5	0.4363	1.0000
0.67	0.4177	0.9913	0.4177	0.3702	0.4626	8.037	5	0.4363	1.0000
1.375	0.4539	1.0772	0.4539	0.3882	0.5462	13.054	5	0.4363	1.0000
2.5469231	0.4365	1.0358	0.4365	0.3518	0.5320	16.879	5	0.4363	1.0000
5.7642857	0.4518	1.0723	0.4518	0.3902	0.5391	14.069	5	0.4363	1.0000
11.607143	0.2997	0.7113	0.2997	0.2115	0.4207	25.610	5	0.2997	0.6870
24.555556	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	5	0.0000	0.0000

Auxillary Teets	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test Indicates normal distribution (p > 0.01)	0.9494278	0.91	0.5891798 0.0808855

Equality of variance cannot be confirmed

				Ц	inear interpolatio	n (200 Resamples)
Point	mg/L	SD	95% CL(Exp)	Skew	
IC05	6.698	1.381	0.000	8.015	-1.6947	
IC10	7.631	0.941	5.293	10.339	2.4481	
IC15	8.565	1.031	6.394	12.545	1.7874	1.0
IC20	9.498	1.130	7.420	13.584	1.3112	0.9
IC25	10.432	1.158	8.243	14.274	0.9380	0.8
IC40	13.248	1.143	10.093	16.334	0.2062	4
IC50	15.132	0.998	12.263	17.705	-0.0848	0.7
						ne -

				Ceriodaphnia 9	Survival and	Reproducti	on Test-Rep	roduction			
Start Date: 3/	23/2012	1	Γest ID:	1		S	ample ID:	D	NAN		
End Date: 3/	30/2012	L	.ab ID:	ERDC		S	ample Type:				
Sample Date		F	Protocol:	EPAF 94-EPA I	Freshwater	Te	est Species:	C	D-Ceriodaph	nia dubia	
Comments:											
Conc-mg/L	1	2	3	4	5	6	7	8	9	10	
0.00124	39.000	40.000	30.000	0.000	41.000	39.000	32.000	43.000	44.000	40.000	
0.7316667	32.000	37.000	33.000	42.000	37.000	36.000	40.000	48.000	39.000	40.000	
1.4866667	39.000	43.000	32.000	38.000	42.000	43.000	32.000	38.000	38.000	38.000	
3.12	43.000	36.000	34.000	31.000	34.000	45.000	40.000	46.000	43.000	45.000	
6.2	35.000	43.000	38.000	35.000	38.000	35.000	34.000	34.000	33.000	37.000	
12.166667	16.000	4.000	6.000	15.000	16.000	10.000	18.000	14.000	14.000	15.000	
24.2	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	

		_		Transfor	m: Untransf		Rank	1-Tailed		
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
0.00124	34.800	1.0000	34.800	0.000	44.000	37.364	10			
0.7316667	38.400	1.1034	38.400	32.000	48.000	11.978	10	103.50	74.00	
1.4866667	38.300	1.1006	38.300	32.000	43.000	10.228	10	101.00	74.00	
3.12	39.700	1.1408	39.700	31.000	46.000	13.850	10	119.00	74.00	
6.2	36.200	1.0402	36.200	33.000	43.000	8.111	10	90.50	74.00	
5666666667	12.800	0.3678	12.800	4.000	18.000	36.047	10	65.00	74.00	
*24.2	0.100	0.0029	0.100	0.000	1.000	316.228	10	60.50	74.00	

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates non-ne	ormal distribut	ion (p <= 0.01)		1.2781303	1.035	-2.996103	16.868357
Bartlett's Test indicates unequal var	iances (p = 2.	51E-13)			71.030075	16.811893		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	6.2	12.166667	8.6852365					

				Ceriodaphnia :	Survival and	Reproducti	on Test-Rep	roduction		
Start Date:	3/23/2012	Te	est ID:	1		S	ample ID:	D	NAN	
End Date:	3/30/2012	La	ab ID:	ERDC		S	ample Type:			
Sample Dat	E	P	rotocol:	EPAF 94-EPA	Freshwater	Te	est Species:	С	D-Ceriodaph	nia dubia
Comments:										
Conc-mg/L	. 1	2	3	4	5	6	7	8	9	10
0.00124	39.000	40.000	30.000	0.000	41.000	39.000	32.000	43.000	44.000	40.000
0.7316667	32.000	37.000	33.000	42.000	37.000	36.000	40.000	48.000	39.000	40.000
1.4866667	39.000	43.000	32.000	38.000	42.000	43.000	32.000	38.000	38.000	38.000
3.12	43.000	36.000	34.000	31.000	34.000	45.000	40.000	46.000	43.000	45.000
6.2	35.000	43.000	38.000	35.000	38.000	35.000	34.000	34.000	33.000	37.000
12.166667	16.000	4.000	6.000	15.000	16.000	10.000	18.000	14.000	14.000	15.000
24.2	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000

		_		Transform: Untransformed				_ Isoto	onic
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Mean	N-Mean
0.00124	34.800	1.0000	34.800	0.000	44.000	37.364	10	37.800	1.0000
0.7316667	38.400	1.1034	38.400	32.000	48.000	11.978	10	37.800	1.0000
1.4866667	38.300	1.1006	38.300	32.000	43.000	10.228	10	37.800	1.0000
3.12	39.700	1.1408	39.700	31.000	46.000	13.850	10	37.800	1.0000
6.2	36.200	1.0402	36.200	33.000	43.000	8.111	10	36.200	0.9577
12.166667	12.800	0.3678	12.800	4.000	18.000	36.047	10	12.800	0.3386
24.2	0.100	0.0029	0.100	0.000	1.000	316.228	10	0.100	0.0026

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates non-normal distribution (p <= 0.01)	1.2781303	1.035	-2.996103	16.868357
Bartlett's Test indicates unequal variances (p = 2.51E-13)	71.030075	16.811893		
Linear Interpo	lation (200 Resamples)			

				LI	near inter
Point	mg/L	SD	95% C	L	Skew
IC05	6.274	1.519	0.701	6.687	-1.8852
IC10	6.756	0.572	5.027	7.174	-1.9862
IC15	7.238	0.348	6.391	7.670	-0.6433
IC20	7.720	0.328	6.952	8.160	-0.5450
IC25	8.202	0.313	7.440	8.650	-0.4736
IC40	9.647	0.292	9.023	10.141	-0.1795
IC50	10.611	0.300	9.998	11.193	-0.0049

Appendix C: Laboratory Bioassay Bench Sheets

Laboratory bioassay bench test sheets for the work documented in this report can be obtained by contacting:

Alan Kennedy CEERD-EP-R U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

601-634-3344

Alan.J.Kennedy@usace.army.mil

Appendix D. Analytical reports

Analytical reports for the work documented in this report can be obtained by contacting:

Alan Kennedy CEERD-EP-R U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

601-634-3344

Alan.J.Kennedy@usace.army.mil

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
March 2013	Final report	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER	
Development of Environmental Hea	alth Criteria for Insensitive Munitions: Aquatic	
Ecotoxicological Exposures Using 2	5b. GRANT NUMBER	
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)	5d. PROJECT NUMBER	
Alan I Kennedy Christopher D. Lo	ounds, Nicolas L. Melby, Jennifer G. Laird,	
Bob Winstead, Sandra M. Brasfield	5e. TASK NUMBER	
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME	8. PERFORMING ORGANIZATION REPORT	
THE ENGLISH ON SAME AT STATE OF TAME	(S) AND ADDITION(ES)	NUMBER
See reverse		
		ERDC/EL TR-13-2
9. SPONSORING / MONITORING AGENC	10. SPONSOR/MONITOR'S ACRONYM(S)	
U.S. Army Corps of Engineers		
Washington, DC 20314-1000		11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12 DISTRIBUTION / AVAIL ARILITY STAT	EMENT	

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Insensitive munition formulation (IMX)-101 consists of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). While general aquatic ecotoxicological information is available for two of the IMX constituents (NTO and NQ), such data are not known to be available for DNAN. Thus, acute and chronic aquatic toxicity bioassays were conducted using standard fish (Pimephales promelas) and invertebrate (Ceriodaphnia dubia) models. Chemical analysis of test water indicated that DNAN concentrations were relatively stable during the bioassays. Acute toxicity was similar for the two species tested, with 48-hr lethal median concentrations (LC50) ranging from 37 to 42 mg/L DNAN. Chronic toxicity tests indicated that fish survival (7-day LC50 = 10 mg/L) was significantly more sensitive to DNAN relative to the invertebrate (no significant impact on survival at 24 mg/L). However, the reproduction endpoint for the invertebrate was significantly more sensitive to DNAN than survival. When assessing the most sensitive chronic endpoints, the two test species indicated similar chronic toxicity, with lowest observable adverse impacts ranging from 10 to 12 mg/L DNAN and median effects on sublethal endpoints (growth, reproduction) ranging from 11 to 15 mg/L DNAN. Chronic no-effect concentrations ranged from approximately 6 to 8 mg/L DNAN.

15. SUBJECT TERMS Aquatic ecotoxicolo		ogical exposures			
2,4 Dinitroanisole Chronic toxicity test		sting			
Acute toxicity testing	3	Insensitive munition	ns		
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED		34	area code)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) (concluded)

Environmental Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Rd. Vicksburg, MS 39180-6199

Badger Technical Services 12500 San Pedro Avenue, Suite 450 San Antonio, TX 78216

BAE SYSTEMS Ordnance Systems, Inc. Holston Army Ammunition Plant 4509 West Stone Drive Kingsport, TN 37660

U.S. Army Institute of Public Health (MCHB-IP-THE Toxicology) Aberdeen Proving Ground, MD