Zadanie 9

Zdefiniuj klasę **Segment** reprezentującą odcinek [A, B] na osi liczbowej

```
class Segment {
    double A,B;
public:
    Segment(double A, double B) : A(A), B(B) { }
    // ...
};
```

Następnie zdefiniuj odpowiednie metody i funkcje, tak, aby dla odcinka seg i liczby d typu double

- wartością wyrażenia d*seg lub seg*d był odcinek powstały z seg przez przeskalowanie w stosunku d (tzn. współrzędne końca i początku tego odcinka mają być równe d*A i d*B, gdzie A i B to współrzędne początku i końca odcinka seg);
- wartością wyrażenia seg/d był odcinek powstały z seg przez przeskalowanie w stosunku $\frac{1}{d}$ (odcinek seg "podzielony" przez d);
- wartością wyrażenia seg+d lub d+seg był odcinek seg przesunięty o d w prawo;
- wartością wyrażenia seg-d był odcinek seg przesunięty o d w lewo;
- wartością wyrażenia seg1+seg2 był najmniejszy odcinek zawierający odcinki seg1 i seg2;
- wartością wyrażenia seg(d) było true wtedy, gdy d należy do odcinka seg i false w przeciwnym przypadku.

Wszystkie te operacje nie powinny modyfikować swoich argumentów — powinny zwracać nowe obiekty.

Przeciąż też operator **operator** << tak, aby następująca funkcja **main**

x=3.5: false

Termin: do 10 czerwca (włącznie)

Rozwiązania, w postaci **jednego** pliku źródłowego zawierającego treść programu, proszę wrzucać w systemie EDU do katalogu "Foldery zadań / Zadanie_XX", gdzie 'XX' jest numerem zadania.

Nazwą pliku powinno być nazwisko z dużej litery (bez polskich znaków); rozszerzeniem musi być '.cpp', czyli np. Malinowska.cpp.