0

("pictures") group (dihedral group order 12 symmetries of hexagon) 9 e G y = g x } G·x = { y & x | orbit of x ("mecklace")

Stabilizer of x

Stab (W) = } = } g \ G \ Subgroup of G

G.x · | 5+ab_(x) = | G (3) Fact. Imparticular, the size of an orbit is a factor of IGI. what is the size of Gx? 出G×シャ → # G×=12

x = 0 0 · vot fix x

50,51,52,59,54,55

• #G×= 12

How many orbits are there?

Burnside's Lemma

F(g) = # { x + x 1 9 x = x }

Proof

ΣF(g) geG $x \in X$

How many times does it get counted in this sum?

X · X

It will be compted in F(g)if y = x

Total contribution of x to

J F(g) geg

is $\{g \in G \mid g \times = X\} = S+ab_{\varepsilon}^{(x)}$

Each x + x contributes (Stabe (x))

to the sum.

Σ F(g) = # orbits. | G|
9+G

(xe) contributes

(xe) (x)

all y in the orbit
of x contribute the
same amount

same (y) 1 = \frac{1}{4} \text{G} x

Gy =Gx

Total contribution of orbit is

1 Stab G (x) | . # G x = | G |

Total sum | G | . # orbits

= \(\mathbb{F}(g)\)
= 9 \(\mathbb{G} \)

How do we compute F(g)?

say g = r3 what is F(g)?

If we have m colors then

$$= (\lambda_3) = \frac{w_3}{w \cdot w \cdot w}$$

$$4^{\frac{3}{1}}$$
, $x^{3} = (14)(25)(36)$
 $5^{\frac{1}{1}}$ 6 $x^{3} = (14)(25)(36)$

In general $F(g) = m m \binom{g}{g}$

$$\ell(g) := \# \text{ cy cles in } g$$

$$\frac{\text{Rength of } g}{\text{F}(g)} = m$$

$$S_0$$
 3 2 / $S_0 = (35)(26)$
4 5 6 / $2(g)$ 1'mcludes
the 1-cycles.

$$F(s_0) = m^4$$

cy de indicator

$$Z_{G}(x_{1}, x_{2}, ...) = \frac{1}{|G|} \sum_{g \in G} x_{1}^{\kappa_{1}g} x_{2}^{\kappa_{2}g}$$

For
$$g = 50$$
 $S_0 = (35)(26)$

$$K_1(s_0) = 2$$
 $K_2(s_0) = 2$
 $K_3(s_0) = 0$
 \vdots

Formal way to keep track of the cycle decomposition of all ge G.

For us counting as orbits with m colors

If Xi = m hen

 $X_{1}^{(3)} X_{2}^{(3)} = M_{2}^{(3)+K_{2}(3)+\cdots}$ $= M_{2}^{(3)} X_{2}^{(3)} = M_{2}^{(3)}$

 $Z_G(m, m, m, ...) = \frac{1}{|G|} \sum_{g \in G} m^{(g)}$

= # orbits.

Cycle indicator for rotations of hexagons (no flips allowed)

G= {1, r, r², r³, * r, r²}

$$\frac{1}{6} \left(\frac{x_1^6 + x_1^6 + x_2^2 + x_2^3}{4 + x_3^2 + x_4^2} + \frac{x_6^4 + x_2^2 + x_2^3}{4 + x_3^2 + x_4^2} \right)$$

$$Z = \frac{1}{6} \left(x_1^6 + 2 x_6 + 2 x_3^2 + x_2^3 \right)$$

$$m = 2$$

$$\frac{1}{6} \left(2^6 + 2 \times 2 + 2 \times 2^2 + 2^3 \right)$$

$$= \frac{1}{6} \left(69 + 9 + 8 + 8 \right) = \frac{89}{6} = 19$$

3	2	1	(=	(12342)
Ч	5			
,	7	1	×5	
•	7	(12345)	Xs	
•	2	(43224)	XS	
•	43	(14)	×r	}
_	4	(54321)	×J)
•	7	(×; +	₩ 4 × ₅)

Harch 29,2007

$$\frac{1}{10} \left(\frac{m^5 + 4m + 5m^3}{10} \right)$$

$$3^{5} + 4 \times 3 + 5 \times 3^{3}$$

$$= \frac{1}{2}(243 + 12 + 135)$$

$$= \frac{70}{10} = 39$$

Finite group of rotations in R3

axi's of rotation poles of the no tation

9 = { poles of rotations,

Finite number of poles in B.

Gacts on P

It beb, 3 e G

then g.P

hP=P

b for some h∈ G h ≠ 1.

To see that JP is a pole I need to find a rotation in G that fixes gP.

I.e. r ∈ G S.t. r(gP)=gP

(

$$g^{-1}(gP) = P$$
 $hg^{-1}(gP) = hP = P$
 $ghg^{-1}(gP) = gP$

Found r & G -> g P is a pole

N:= # orbits of G acting on D.

$$N = \frac{1}{|G|} \sum_{g \in G} F(g)$$

by Burnside.

$$F(g) = \begin{cases} \# & 9 \\ 2 \end{cases}$$

$$N = \frac{1}{|G|} (\#8 + 2(|G|-1))$$

Assume |G|>1, I.e. There is some non-identity rotation $g \in G$. It fixes two point. Hence $\# P \geqslant 2$.

The $\geqslant 0 \Rightarrow N \geqslant 2$.

If N=2 then #P=2 I.e. we have only have two poles all rotations share same axis → 1, r, r³, ..., r^{m-1} I.e. symmer rotations of fixing

Say N≥3. #P>2 P2 P3

P, P2, P3, ..., PN are poles one per or bit.

G Pi = 1 Gil = 1 Gl

$$\# GP_i = \frac{1GI}{1GiI}$$

161 (G) (G)

$$\frac{\# \mathcal{G}}{|G|} = \frac{1}{|G_1|} + \frac{1}{|G_2|} + \cdots + \frac{1}{|G_N|}$$

$$N = \frac{\# B}{1GI} + 2(1 - \frac{1}{1GI})$$

(from before).

$$(I) \qquad N = \underbrace{1 + 1 + \dots + 1}_{N \text{ himes}}$$

$$(\Xi) - (\Xi)$$

$$N - \# \mathcal{P} = (1 - \frac{1}{|G_1|}) + (1 - \frac{1}{|G_2|})$$

$$+ \dots + (1 - \frac{1}{|G_2|})$$

Finally:

$$\sum_{i=1}^{N} \left(1 - \frac{1}{(G_{i})}\right) = 2\left(1 - \frac{1}{|G|}\right)$$

(16/>1 - 16/>2)

durithe the

rhs < 2

Gi = Stabe Pi

16,1 >2 since Pi is the

pole of some non-trivial rotation

gi e Gi.

サンク (4

we know N>2

N=2 deal+ with already

3 N=3

G, G2, G3

mi= IGil

M1 & M2 & M3

 $\frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} = 1 + \frac{2}{1G1}$

か: >2 , 161>2

We can't have Mi >3

other wise

 $\frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} = \frac{3}{3} + \frac{1}{3} + \frac{1}{3} = 1$

2h5 51 rhs > 1

but

$$\frac{1}{2} + \frac{1}{m_2} + \frac{1}{m_3} = 1 + \frac{2}{161}$$

$$\frac{1}{n_2} + \frac{1}{m_3} + = \frac{1}{2} + \frac{2}{161}$$

ignegragnen

Arsnanz.

If n2 = 2 n3 could be

any thing. m3 = m

- 161=2m

- G = Da dihedral

<u></u>	MI	142	1 3	1
Dm	2	2	n	Dihedral n-gon Tetrahedron
Au	2	3	3	1
Su	2	3	4	Cube/octahedron
A ₅	2	3	5	Icosahedron/ Dodecahedron

*