Teorema de aproximación de Weierstrass

• Sea f(x) definida y continua en [a,b]. Para cada $\epsilon>0$ existe un polinomio P(x) en [a,b] tal que

$$|f(x) - P(x)| < \epsilon \quad \forall x \in [a, b]$$

 Esto significa que siempre podemos encontrar un polinomio tal que su error al representar una función, sea tan pequeño como se desee.

Construcción de polinomios interpoladores

• Hay un teorema, sobre el que volveremos enseguida, que dice que dados x_k $(k=0,1,\ldots n)$ un conjunto de n+1 números reales distintos, y n+1 números asociados a los anteriores y_k $(k=0,1,\ldots n)$, existe un único polinomio de grado $\leq n$ tal que

$$P_n(x_k) = y_k \qquad k = 0, 1, \dots n$$

- Ese teorema asegura existencia y unicidad de un polinomio que pase por n+1 puntos.
- El polinomio puede escribirse de distintas formas. Si se escribe en la forma:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

se ve que hay n+1 coeficientes incógnitas: a_i $i=0,\ldots n$

• Si se evalúa el polinomio en los n+1 puntos puede escribirse

$$P_n(x_k) = y_k$$
 para $k = 0, \dots n$

que es un sistema de n + 1 ecuaciones con n + 1 incógnitas de donde pueden calcularse los a_i .

- Esta forma de construir $P_n(x)$ no es práctica, ya que involucra resolver un sistema de n+1 ecuaciones con una matriz llena. (Aunque, si los n+1 puntos son distintos, el sistema tiene solución)
- Este procedimiento, se inscribe dentro de otro más amplio denominado de Coeficientes indeterminados, en los que el polinomio se escribe:

$$P(x) = \sum_{k=0}^{n} c_k \, \phi_k(x)$$

donde $\phi_k(x)$ son polinomios de grado $\leq n$ y los c_k se obtiene del sistema de ecuaciones que resulta de hacer $P_n(x_k) = y_k$ para todo k

Interpolación por polinomios de Lagrange

- Una forma muy usada de construir polinomios interpolantes es utilizando los polinomios de Lagrange
- En este caso el polinomio se escribe:

$$P(x) = \sum_{k=0}^{n} f(x_k) \ \phi_k(x)$$

donde los $\phi_k(x)$ son polinomios de grado n.

- Los coeficientes en este caso son los $y_k = f(x_k)$, datos del problema, y la construcción de los polinomios $\phi_k(x)$ es muy sencilla.
- Se introducirá con un ejemplo.

• Ejemplo:

Sea hallar un polinomio que pase por dos puntos: (x_0, y_0) y (x_1, y_1) . Puede escribirse:

$$P(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$
$$P(x) = L_0(x) y_0 + L_1(x) y_1$$

donde se ha definido

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

Se puede observar que $L_0(x_0)=1$ y $L_0(x_1)=0$ y que $L_1(x_0)=0$ y $L_1(x_1)=1$

• Ejemplo:

• Esto puede generalizarse, y para un polinomio que pase por n+1 puntos $x_0, x_1, \ldots x_n$

$$P_n(x) = L_{n,0}(x) y_0 + L_{n,1}(x) y_1 + \ldots + L_{n,n}(x) y_n$$

donde se construirán los $L_{n,k}(x)$ de modo que $L_{n,k}(x_k)=1$ y $L_{n,k}(x_j)=0$ para $k\neq j$

Puede observarse que esto se verifica si:

$$L_{n,k}(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}$$

- Es un polinomio de grado n. Se denomina polinomio de Lagrange
- Puede escribirse:

$$L_{n,k}(x) = \prod_{\substack{i=0, \ i \neq k}}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

Interpolación por polinomios de Lagrange

Teorema:

Si $x_0, x_1, \ldots x_n$ son números distintos, y si f(x) está dada por sus valores $f(x_0), f(x_1), \ldots f(x_n)$, entonces <u>existe</u> un <u>único</u> polinomio de grado n, tal que

$$f(x_k) = P(x_k)$$
 para $k = 0, 1, ... n$

Ese polinomio está dado por

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x)$$

donde

$$L_{n,k}(x) = \prod_{\substack{i=0;\ i\neq k}}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

• Ejemplo:

Sea $f(x) = \frac{1}{x}$. Supóngase que se conoce la función en 3 puntos

$$\begin{array}{c|ccc}
x & y \\
\hline
x_0 = 2 & y_0 = 0.5 \\
x_1 = 2.5 & y_1 = 0.4 \\
x_2 = 4 & y_2 = 0.25
\end{array}$$

Se construye un polinomio de grado 2 (que pasa por tres puntos)

$$P_2(x) = L_{2,0}(x) y_0 + L_{2,1}(x) y_1 + L_{2,2}(x) y_2$$

$$L_{2,0}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-2.5)(x-4)}{(2-2.5)(2-4)} = x^2 - 6.5x + 10$$

Ejemplo (continuación):
 Análogamente

$$L_{2,1}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = \frac{1}{3}(-4x^2+24x-32)$$

$$L_{2,2}(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 2)(x - 2.5)}{(4 - 2)(4 - 2.5)} = \frac{1}{3}(x^2 - 4.5x + 5)$$

Y el polinomio:

$$P_2(x) = 0.05x^2 - 0.425x + 1.15$$

Por ejemplo, para x = 3:

$$f(3) = \frac{1}{3} = 0.333\dots$$

$$P_2(3) = 0.325$$

Interpolación por polinomios de Lagrange

Teorema:

Si $x_0, x_1, \ldots x_n$ son números distintos en [a,b], y si $f(x) \in C^{n+1}[a,b]$ entonces, para cada $x \in [a,b]$, existe un número $\xi(x) \in [a,b]$ tal que

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

donde P(x) es el polinomio interpolante definido por el teorema anterior.

Así, el error en la aproximación es

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

(Como referencia; el polinomio de Taylor tiene un error dado por $\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}$)

Interpolación por diferencias divididas

Un polinomio

$$P_n(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

se puede representar también como:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

 Puede verse que esta es la forma anidada de escribir el polinomio:

$$P_n(x) = a_0 + (x - x_0) [a_1 + (x - x_1) [a_2 + a_3(x - x_2) + \dots + a_n(x - x_{n-1})] \dots]$$

Interpolación por diferencias divididas

- Los coeficientes a_i se pueden obtener a partir de los valores de la función conocidos en los n+1 puntos: $f(x_i)$ $i=0,1,\ldots n$
- Puede verse que evaluando el polinomio en x_0 , todos los términos se anulan excepto el primero. Al evaluarlo en x_1 se anulan todos excepto los dos primeros, y así el sistema de ecuaciones tiene una matriz triangular.
- Particularizando para $x = x_0$:

$$P_n(x_0) = f(x_0) = a_0$$

• Particularizando para $x = x_1$:

$$P_n(x_1) = f(x_1) = a_0 + a_1(x_1 - x_0)$$

de donde

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Notación:

Diferencia dividida cero de una función con respecto a x_i:

$$f[x_i] = f(x_i)$$

• Primera diferencia dividida de una función con respecto a x_i y x_{i+1} :

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

 Segundas diferencias divididas de una función con respecto a x_i, x_{i+1} y x_{i+2}:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

- ...
- k-esima diferencias divididas de una función con respecto a x_i, x_{i+1}...x_{i+k}:

$$f[x_i, x_{i+1}, \dots x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

• Con esta notación, los coeficientes a_i del polinomio:

$$a_0 = f(x_0) = f[x_0]$$

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_0, x_1]$$

• Puede verse que, análogamente:

$$a_2 = f[x_0, x_1, x_2]$$

Y el coeficiente k:

$$a_k = f[x_0, x_1, x_2, \dots x_k]$$

• El polinomio se escribe:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Esta es la fórmula en diferencias divididas de Newton

<u>Ejemplo</u>:Escribir un polinomio que represente a la función $f(x) = \frac{1}{x}$ en los puntos: (2, 2.5, 4)

$$\begin{array}{c|ccccc}
x_i & f[x_i] & f[x_i, x_{i+1}] & f[x_i, x_{i+1}, x_{i+2}] \\
\hline
2 & 0.5 & & & \\
& & -0.2 & & \\
2.5 & 0.4 & & 0.05 & \\
& & & -0.1 & & \\
4 & 0.25 & & & \\
\end{array}$$

$$P(x) = 0.5 - 0.2(x - 2) + 0.05(x - 2)(x - 2.5) = 1.15 - 0.425x + 0.05x^{2}$$

Algoritmo para interpolación por diferencias divididas

Para obtener la fórmula en diferencias divididas interpolantes de New-<u>Entrada</u>: $x_0, x_1 \dots x_n$ y los valores $f(x_0), f(x_1) \dots f(x_n)$, estos últimos en al primer columna de la matriz O. Salida: Las diferencias divididas f[...], en la diagonal de QPaso 1) Para i = 1, 2, ... n hacer { Para j = 2, ... i hacer{ $Q_{i,j} \leftarrow \frac{Q_{i,j-1}-Q_{i-1,j-1}}{x_i-x_{i-j}}$ Paso 2) Salida: $(Q_{0.0}, Q_{1.1}, Q_{2.2}, \dots Q_{n.n})$ de modo que

$$P(x) = \sum_{i=0}^{n} Q_{i,i} \prod_{j=0}^{i-1} (x - x_j)$$

ton: