Segunda entrega Estadística. Grupo m3

- 1. Sean $(X_1, X_2, ..., X_{n_1})$ e $(Y_1, Y_2, ..., Y_{n_2})$ dos muestras aleatorias simples de dos poblaciones independientes con distribuciones respectivas $Exp(\lambda_1)$ y $Exp(\lambda_2)$. Hallar un intervalo de confianza al nivel 1α para el cociente λ_1/λ_2 .
- 2. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de una población con función de densidad

$$f_{\theta}(x) = \frac{2}{\theta^2}(\theta - x)$$
 $0 < x < \theta$.

Hallar una cantidad pivotal basada en el estadístico $T=X_{(n)}$ y utilizarla para encontrar un intervalo de confianza con probabilidad de colas iguales para θ al nivel de confianza $1-\alpha$.

- 3. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \theta x^{\theta-1} I_{(0,1)}(x)$, con $\theta > 0$. Encontrar un intervalo de confianza de longitud mínima para θ , al nivel de confianza 1α .
- 4. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X = U^{\beta}$, donde $U \sim U(0, 1)$ y $\beta > 0$ es un parámetro desconocido. Obtener un intervalo de confianza al nivel de confianza 1α basado en el ECUMV para β .
- 5. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \theta \exp\{-\theta x\}I_{(0,\infty)}(x)$, $\theta > 0$. Construir un intervalo de confianza de longitud mínima al nivel de confianza 1α para la media de la población.
- 6. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = e^{-(x-\theta)}I_{(\theta,\infty)}(x)$, $\theta > 0$. Encontrar el intervalo Bayesiano de máxima densidad a posteriori al nivel 1α , si la distribución a priori es

$$\pi(\theta) = e^{-\theta} I_{(0,\infty)}(\theta).$$