CSE 321b: Computer Organization (II) Third Year, Computer & Systems Engineering

Solution to Assignment #3

1. Apply Booth's algorithm to multiply -8 (multiplicand) by +5 (multiplier).

<u>A</u>	\mathbf{Q}	<u>Q-1</u>	$\mathbf{\underline{M}}$	
0000	010 <mark>1</mark>	O	1000	Initial values
1000	0101	0		$A \leftarrow A - M$
1100	001 <mark>0</mark>	1		Shift
0100	0010	1		$A \leftarrow A + M$
0010	$000\frac{1}{1}$	O		Shift
1010	0001	0		$A \leftarrow A - M$
1101	0000	1		Shift
0101	0000	1		$A \leftarrow A + M$
0010	1000	0		Shift

2. Show steps to divide +27 (dividend) by -4 (divisor) using non-restoring division algorithm.

<u>A</u>	\mathbf{Q}	$\underline{\mathbf{M}}$	
000000	011011	111100	Initial values
000000	011011	000100	Take absolute of Q & M
000000	11011?		Shift
111100			Subtract
<mark>1</mark> 11100	11011 0		$Q_0 \leftarrow 0$
111001	10110?		Shift
<mark>1</mark> 11101			Add
<mark>1</mark> 11101	10110 0		$Q_0 \leftarrow 0$
<u>1</u> 11011	01100?		Shift
<mark>1</mark> 11111			Add
<mark>1</mark> 11111	01100 0		$Q_0 \leftarrow 0$
<u>1</u> 11110	11000?		Shift
00010			Add
<mark>0</mark> 00010	11000 1		$Q_0 \leftarrow 1$
000101	10001?		Shift
00001			Subtract
<mark>0</mark> 00001	10001 1		$Q_0 \leftarrow 1$
000011	00011?		Shift
<mark>1</mark> 11111			Subtract
<mark>1</mark> 11111	00011 0		$Q_0 \leftarrow 0$
000011	000110		Add
000011	111010		Adjust signs of A & Q

3. Suppose the IEEE 754 Standard has a binary14 format ...

- (a) Convert the following numbers to their binary14 counterparts:
 - i. -11.375

$$-11.375 = -2^{3.508} = -1.421875 * 2^3 \rightarrow 1 \ 1000010 \ 011011$$

ii. -3.3882 * 10⁻²¹

$$-3.3882 * 10^{-21} = -2^{-67.99997} = 0.0156253 * 2^{-62} \rightarrow 1 0000000 000001$$

- (b) Perform the following calculations ...
 - i. $1\ 0000011\ 101101\ +\ 0\ 0000000\ 101111$
 - (1) Check for special cases
 - No special cases
 - (2) Transform subtraction to addition and negate second number
 - Not needed
 - (3) Align
 - First number (normal): unbiased exponent = 3-b, significand = 1.10110100
 - Second number (subnormal): unbiased exponent = 1-b, significand = 0.101111100
 - Second number has a smaller exponent
 - Add 2 to its exponent and shift its fraction to the right 2 positions!!
 - Exponent of second number = 0000011
 - Significand of second number = 0.00101111
 - (4) Add significands (taking signs into consideration)
 - Significand of result = -1.10110100 + 0.00101111 = -1.10000101 (no overflow!)
 - Fraction of result = 10000101
 - Sign bit of result = I
 - (5) Normalize
 - Not needed
 - Exponent of result = 0000011
 - (6) Round
 - Candidate fractions are 100001 and 100010
 - Guard bits = 01
 - Since result is negative and we use rounding down ==> pick larger candidate
 - Fraction of result = 100010

Result = 1 0000011 100010

- ii. 0 0001111 011011 1 1100001 101001
 - (1) Check for special cases
 - No special cases
 - (2) Transform subtraction to addition and negate second number
 - Change "_" ==> "+"
 - Sign of second number = 0

(3) Align

- First number has a smaller exponent
- Add 82 to its exponent and shift its fraction to the right 82 positions!!
- Exponent of first number = 1100001
- Significand of first number = 0.00000000
- Result equals second number!

Result = 0 1100001 101001