0.1 基本定理

常见的反例: $f(x) = x^m \sin \frac{1}{x^n}$.

定理 0.1 (Leibniz 公式)

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x)g^{(k)}(x).$$

例题 0.1 设 f(x) 定义在 [0,1] 中且 $\lim_{x\to 0^+} f\left(x\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)\right)=0$,证明: $\lim_{x\to 0^+} f(x)=0$. **笔记** 将极限定义中的 ε , δ 适当地替换成 $\frac{1}{n}, \frac{1}{N}$ 往往更方便我们分析问题和书写过程. 证明 用 $\{x\}$ 表示 x 的小数部分,则 $x\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)=x\left\{\frac{1}{x}\right\}$.

对任意 $\varepsilon > 0$, 依据极限定义, 存在 $\delta > 0$ 使得任意 $x \in (0, \delta)$ 都有 $\left| f\left(x\left\{ \frac{1}{r} \right\} \right) \right| < \varepsilon$. 取充分大的正整数 N 使得 $\frac{1}{N} < \delta$, 则任意 $x \in \left(\frac{1}{N+1}, \frac{1}{N}\right)$ 都有 $\left|f\left(x\left\{\frac{1}{x}\right\}\right)\right| < \varepsilon$. 考虑函数 $x\left\{\frac{1}{r}\right\}$ 在区间 $\left(\frac{1}{N+1},\frac{1}{N}\right)$ 中的值域, 也就是连续函数

$$g(u)=\frac{u-[u]}{u}=\frac{u-N}{u}, u\in (N,N+1)$$

的值域, 考虑端点处的极限可知 g(u) 的值域是 $\left(0,\frac{1}{N+1}\right)$, 且严格单调递增. 所以对任意 $y\in\left(0,\frac{1}{N+1}\right)$, 都存在 $x \in \left(\frac{1}{N+1}, \frac{1}{N}\right) \subset (0, \delta) \notin \left\{\frac{1}{r} = g^{-1}(y) \in (N, N+1), \mid \mathbb{P} \mid y = g(\frac{1}{r}) = x \left\{\frac{1}{r}\right\}, \mid \psi \mid f(y) \mid = \left|f\left(x\left\{\frac{1}{r}\right\}\right)\right| < \varepsilon.$ 也就是说,任意 $\varepsilon > 0$,存在正整数 N,使得任意 $y \in \left(0, \frac{1}{N+1}\right)$,都有 $|f(y)| < \varepsilon$,结论得证.

例题 0.2

证明