Solving Maxwell's equations numerically using a Yee Grid

Yee Grid

- Introduced by Kane Yee in 1966
- The curl equations are replaced by finite difference in both time and space in a staggered grid. (Both \vec{E} and \vec{H} fields)

- Divergence equations are satisfied by the grid placement
- For 2D simulations based on the direction of polarization there are two modes. TE and TM mode

Maxwell's equation

1.
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$$

2.
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

3.
$$\nabla \cdot \vec{B} = 0$$

4.
$$\nabla \times \vec{B} = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Using finite difference for the curl equations update equations will give the following form,

$$H_{y}(x+1/2,t+1) = H_{y}(x+1/2,t) - \left(\frac{\Delta t}{\mu}\right) \frac{[E_{z}(x+1,t) - E_{z}(x,t)]}{\Delta x}$$

$$E_{z}(x,t+1) = E_{z}(x,t) + \left(\frac{\Delta t}{\epsilon}\right) \frac{[H_{y}(x+\frac{1}{2},t) - H_{y}(x-1/2,t)]}{\Delta x}$$

Simulation 1

The Electric field component of a simulation of a plane wave propagating from medium 1 (n=2, shown in gray) to medium 2(n=1). A, B,C shows simulations with angle 0° , 20° , 45° . The critical angle is 30°

Simulation 2 - lens

• A plano-convex lens made from a higher refractive index medium

Results and Discussion

- Implemented the FDTD algorithm for 1D and 2D (TM mode) to model constructed devices
- Confirmed known optical properties
 - Refraction from different media
 - Plano-convex lens
- One of the main advantages in the popularity of this method is the ability to derive the frequency response using a single simulations