CSC165 - Problem Set 2

Junaid Arshad, Sadeed Ahmed, & Frederick Meneses

March 4, 2022

1 Number Theory

(a) The following proof will reference the following predicates and facts regarding properties of the greatest common divisor (taken from Worksheet 6 & 7):

$$LinComb(a, b, c): \exists p, q \in \mathbb{Z}, c = pa + qb, \text{ where } a, b, c \in \mathbb{Z}$$
 (1)

$$\forall n, p \in \mathbb{Z}, Prime(p) \land p \nmid n \Rightarrow gcd(p, n) = 1 \tag{2}$$

$$\forall n, m \in \mathbb{N}, \exists r, s, \in \mathbb{Z}, rn + sm = \gcd(n, m)$$
(3)

The following is a proof that $\forall n \in \mathbb{Z}, qcd(7n+1, 15n+2) = 1$:

Proof. Let $n \in \mathbb{Z}$. By fact (1), we can re-write 7n+1 and 15n+2 as a linear combinations of the form pa+qb=c for some $p,q \in \mathbb{Z}$ where $a,b \in \mathbb{Z}$. $7n+1=c_1$ and $15n+2=c_2$ for some $c_1,c_2 \in \mathbb{Z}$. In particular, $c_1 = \gcd(7,1)$ and $c_2 = \gcd(2,15)$. By fact (2) and our choices of a and b, we can conclude $\gcd(2,15)=1$ and $\gcd(7,1)=1$. By fact (3), it suffices to show that there exists integers r,s such that, $r\gcd(7,1)+s\gcd(2,15)=\gcd(\gcd(7,1),\gcd(2,15))=\gcd(1,1)=1$.

(b) The following is a proof that there exists only 1 prime in the form of $n^3 - 1$, or that:

$$\exists p \in \mathbb{N}, (Prime(p) \land (\exists n \in \mathbb{Z}, p = n^3 - 1)) \land (\forall q \in \mathbb{N}, (Prime(q) \land (\exists m \in \mathbb{Z}, q = m^3 - 1) \Rightarrow p = q)$$

Consider the definition of a Prime Number:

$$Prime(n): n > 1 \land (\forall d \in \mathbb{N}, d | n \Rightarrow d = 1 \lor d = n), \text{ where } n \in \mathbb{N}$$
 (4)

Proof.

We will prove the first part of the statement first i.e., $\exists p \in \mathbb{N}, (Prime(p) \land (\exists n \in \mathbb{Z}, p = n^3 - 1))$

- Let p = 7
- WTS: $(Prime(p) \land (\exists n \in \mathbb{Z}, p = n^3 1)$
- Prime(7) is True since 7 > 1 and the only number that divide 7 are 1 and itself.

• Let n=2

$$n^3 - 1 = (2^3 - 1) = 7 = p$$

We want to show p is a prime number such that $p = n^3 - 1$, where $n \in \mathbb{Z}$.

We know by the definition of a Prime Number that p must be greater than 1, and only be divisible by itself or 1. Since n^3-1 can be re-written in its factored form as: $(n-1)(n^2+n+1)$, either (n-1) or (n^2+n+1) must be equal to 1. Also, since the resulting value must be greater than 1, it follows that the other must equal p, such that p>1. We will prove this by setting each term to 1 and examining the other term and resulting value to verify if it is a prime number.

Case 1. $(n^2 + n + 1) = 1$ only when n = 0 or n = -1, but if we substitute either of these values of n into the term (n-1), the resulting value is negative. Since prime numbers cannot be negative, it is clear that $(n^2 + n + 1)$ cannot be 1.

Case 2. (n-1) = 1 if and only if n = 2. When n = 2, the term $(n^2 + n + 1)$ evaluates to 7, which is a prime number. Additionally, $n^3 - 1$ will evaluate to 7 in this case.

Next, we will prove that this is the only prime number which can take the form of $n^3 - 1$. From the definition of a Prime Number (1) we also know that the only numbers that can divide a Prime Number are 1 and the prime number itself. From **Case 1**, we have seen that the only other values of $n \in \mathbb{Z}$ which evaluate one factor of $n^3 - 1$ do not produce prime numbers. From **Case 2**, we have seen the only value of $n \in \mathbb{Z}$ which produces a prime number. Thus, any other values produces from $n^3 - 1$ must not be prime as they will not be divisible by themselves or 1.

2 Floors and Ceilings

The following facts are referenced in this section:

$$\forall x \in \mathbb{R}, 0 \le x - |x| < 1 \tag{1}$$

$$\forall x \in \mathbb{R}, 0 \le \lceil x \rceil - x < 1 \tag{2}$$

(a) We will use **proof by cases** to show that:

$$\forall x \in \mathbb{Z}, \left| \frac{x+1}{2} \right| = \left\lceil \frac{x}{2} \right\rceil \tag{3}$$

Proof. Let x be an arbitrary integer. In order to prove (3), we will examine the cases when x is even and when x is odd.

Case 1 (Even). If x is an even integer, 2 must divide x, or $Even(x): x=2k, k \in \mathbb{Z}$. We will evaluate each term in $\lfloor \frac{x+1}{2} \rfloor = \lceil \frac{x}{2} \rceil$ with 2k substituted for x below:

$$\left\lfloor \frac{x+1}{2} \right\rfloor = \left\lfloor \frac{(2k)+1}{2} \right\rfloor$$
$$= \left\lfloor k + \frac{1}{2} \right\rfloor$$
$$= k$$

$$\left\lceil \frac{x}{2} \right\rceil = \left\lceil \frac{2k}{2} \right\rceil$$
$$= \lceil k \rceil$$
$$= k$$

Thus, $\forall x \in \mathbb{Z}$, Even(x), (3) holds.

Case 2 (Odd). If x is an odd integer, $Odd(x): x=2k-1, k\in\mathbb{Z}$ must be true. We will evaluate each term in $\lfloor \frac{x+1}{2} \rfloor = \lceil \frac{x}{2} \rceil$ with 2k substituted for x below:

$$\left\lfloor \frac{x+1}{2} \right\rfloor = \left\lfloor \frac{(2k-1)+1}{2} \right\rfloor$$
$$= \left\lfloor k \right\rfloor$$
$$= k$$

$$\left\lceil \frac{x}{2} \right\rceil = \left\lceil \frac{2k-1}{2} \right\rceil$$
$$= \left\lceil k - \frac{1}{2} \right\rceil$$
$$= k$$

Thus, $\forall x \in \mathbb{Z}, Odd(x)$, (3) holds.

From Case 1 and Case 2, we have shown that regardless of whether x is even or odd, (3) holds.

(b) Proof and Disproof:

i The following is a proof that $\forall x, y \in \mathbb{R}, x \leq y \Rightarrow \lceil x \rceil \leq \lceil y \rceil$:

Proof. Let $x, y \in \mathbb{R}$. Assume that $x \leq y$. We will prove that $\lceil x \rceil \leq \lceil y \rceil$. From (2), we know the following:

$$x \le \lceil x \rceil < x+1$$
 (using our assumption $x \le y$)

Thus, $\lceil x \rceil < y$.

Similarly, from (2) we also know that $y \leq \lceil y \rceil$. Thus, $y + 1 \leq \lceil y \rceil + 1$.

$$\lceil x \rceil < y + 1 \le \lceil y \rceil + 1$$

$$\lceil x \rceil < \lceil y \rceil + 1$$

$$\leftrightarrow \lceil x \rceil \le \lceil y \rceil$$

ii The following is a disproof that $\forall x, y \in \mathbb{R}, \lceil x \rceil \leq \lceil y \rceil \Rightarrow x \leq y$:

Proof. Statement to disprove:

$$\forall x, y \in \mathbb{R}, \lceil x \rceil \le \lceil y \rceil \Rightarrow x \le y \tag{4}$$

We will disprove this statement by proving its negation. The negation of (4) is:

$$\exists x, y \in \mathbb{R}, \lceil x \rceil \le \lceil y \rceil \land x > y \tag{5}$$

Let $x = \frac{2}{3}$ and $y = \frac{1}{3}$. Thus, x > y holds.

Thus, $\lceil x \rceil \leq \lceil y \rceil$ holds, proving (5) and consequently disproving (4).

3 Induction

(a) The following is a proof that $3|2^{2n+1}+1$ for all natural numbers n:

Let
$$P(n): \exists k \in \mathbb{Z}, 2^{2n+1}+1=3k$$
, where $n \in \mathbb{N}$

Proof. We will prove this by induction. Let $n \in \mathbb{N}$,

Base Case: (n=0)

Let k = 1, then

$$2^{2(0)+1} + 1 = 3(1)$$
$$2 + 1 = 3$$
$$3 = 3$$

Inductive Step:

Let $q \in \mathbb{N}$. Assume $P(q) : \exists k_0 \in \mathbb{Z}, 2^{2q+1} + 1 = 3k_0$.

WTS: P(q+1): $\exists k_1 \in \mathbb{Z}, 2^{2(q+1)+1} + 1 = 3k_1$.

Let $k_1 = 2^{2q+1} + k_0$.

We will prove $2^{2(q+1)+1} + 1 = 3k_1$

$$2^{2(q+1)+1} + 1 = 2^{2} \cdot 2^{2q+1} + 1$$

$$= 3 \cdot 2^{2q+1} + 2^{2q+1} + 1$$

$$= 3 \cdot 2^{2q+1} + 3k_{0}$$

$$= 3(2^{2q+1} + k_{0})$$

$$= 3k_{1}$$
(I.H)

(b) The following is a proof that $\forall n \in \mathbb{Z}^+$,

$$\frac{1}{2} \times \frac{3}{4} \times \dots \times \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n}}$$

The product above may also be represented as

$$\prod_{i=1}^{n} \frac{2i-1}{2i}$$

We will prove a more stronger statement that the one given above i.e.,

We know that:

$$\sqrt{3n+1} > \sqrt{3n}$$

From which we can conclude:

$$\frac{1}{\sqrt{3n+1}} \leq \frac{1}{\sqrt{3n}}$$

We will prove the following statement using induction:

$$\forall n \in \mathbb{Z}^+, \prod_{i=1}^n \frac{2i-1}{2i} \le \frac{1}{\sqrt{3n+1}}$$

Proof. Let $n \in \mathbb{Z}^+$

Let
$$P(n): \prod_{i=1}^{n} \frac{2i-1}{2i} \le \frac{1}{\sqrt{3n+1}}$$

Base Case: Let (n = 1)

$$P(1): \prod_{i=1}^{1} \frac{2i-1}{2i} = \frac{1}{2}$$

$$\leq \frac{1}{\sqrt{3(1)+1}} = \frac{1}{2}$$

therefore, the base case holds.

Inductive step: Let $k \in \mathbb{Z}^+$. Assume

$$P(k): \prod_{i=1}^{k} \frac{2i-1}{2i} \le \frac{1}{\sqrt{3k+1}}$$

We will prove $P(k) \Rightarrow P(k+1)$ is True.

$$P(k+1): \prod_{i=1}^{k+1} \frac{2i-1}{2i} \le \frac{1}{\sqrt{3(k+1)+1}} = \frac{1}{\sqrt{3k+4}}$$

We know $k \ge 1$ implies $k \ge 0$

$$k \ge 0$$
$$20k - 19k \ge 0$$
$$20k \ge 19k$$

Adding $12k^3 + 28k^2 + 4$ to both sides of the inequality preserves the inequality since $k \ge 1$

$$12k^{3} + 28k^{2} + 20k + 4 \ge 12k^{3} + 28k^{2} + 19k + 4$$

$$(3k+1)(2k+2)^{2} \ge (3k+4)(2k+1)^{2}$$
 (by factoring each side)
$$\frac{1}{3k+4} \ge \frac{(2k+1)^{2}}{(2k+2)^{2}} \cdot \frac{1}{3k+1}$$

Taking square root of both sides preserves the inequality since both sides are ≥ 0

$$\frac{1}{\sqrt{3(k+1)+1}} \ge \frac{(2k+1)^2}{(2k+2)^2} \cdot \frac{1}{\sqrt{3k+1}}$$

$$\ge \frac{(2k+1)^2}{(2k+2)^2} \cdot \prod_{i=1}^k \frac{2i-1}{2i} \qquad \text{(Using Induction Hypothesis)}$$

$$\ge \frac{(2(k+1)-1)^2}{(2(k+1))^2} \cdot \prod_{i=1}^k \frac{2i-1}{2i}$$

$$\ge \prod_{i=1}^{k+1} \frac{2i-1}{2i} \qquad \text{(combining the terms into a single product)}$$

Therefore P(k+1) is True, which makes our inductive step and by extension

$$P(n): \prod_{i=1}^{n} \frac{2i-1}{2i} \le \frac{1}{\sqrt{3n+1}}$$

True which implies that

$$\prod_{i=1}^{n} \frac{2i-1}{2i} \le \frac{1}{\sqrt{3n}}$$

is also True since

$$\frac{1}{\sqrt{3n+1}} \le \frac{1}{\sqrt{3n}}$$

4 Working with Functions

The following definitions will be referenced in this section:

$$\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$
 (one-to-one)
 $\forall b \in B, \exists \in A, f(a) = b$ (onto)
 $\forall a \in A, (g \circ f)(a) = g(f(a))$ (composition)

(a) Working with functions.

i The following is the proof that $g_1: \mathbb{Z} \to \mathbb{Z}; g_1(x) = x - 4$ is both one-to-one and onto:

Proof. First, we will prove that $g_1(x)$ is one-to-one, or that:

$$\forall p, q \in \mathbb{Z}, g_1(p) = g_1(q) \Rightarrow p = q$$

Let $p, q \in \mathbb{Z}$. Assume $g_1(p) = g_1(q)$. We want to prove that p = q.

$$g_1(p) = g_1(q)$$

$$p - 4 = q - 4$$

$$p = q$$
(add 4 to both sides)

Next, we will prove that g_1 is onto, or that:

$$\forall b \in \mathbb{Z}, \exists a \in \mathbb{Z}, g_1(a) = b$$

Let $b \in \mathbb{Z}$. Let a = b + 4.

$$b = g_1(a)$$

= $a - 4$
= $(b + 4) - 4$
= b

ii The following is the proof that $g_2 : \mathbb{R} \to \mathbb{R}; g_2(x) = |x| + x$ is neither one-to-one not onto: **Proof that** $g_2(x) = |x| + x$ is not one-to-one

Proof. WTS:
$$\exists p, q \in \mathbb{R}, g_2(p) = g_2(q) \land p \neq q$$

let
$$p = -1$$
 and $q = -2$
 $p \neq q$ is True
 $g_2(p) = g_2(q)$
 $|-1| + (-1) = |-2| + (-2)$
 $0 = 0$
thus $g_2(p) = g_2(q)$ is also True.

Proof that $g_2(x) = |x| + x$ is not onto

Proof. WTS: $\exists b \in \mathbb{R}, \forall a \in \mathbb{R}, g_2(a) \neq b$

- Let b = -1
- Let $a \in \mathbb{R}$
- WTS: $g_2(a) \neq b$
- We will split the proof into two cases, namely a > 0 and $a \le 0$

Case 1. a > 0

$$g_2(a) = |a| + a$$

 $> 0 \neq -1$ (since both $|a|$ and $a > 0$)

Case 2. $a \leq 0$

$$g_2(a) = |a| + a$$

In this case, since $a \le 0$, we know $|a| \ge 0$ and that -a = |a| (since $a \le 0$). Moreover, by using the fact that |a| = -a, we can conclude:

$$g_2(a) = |a| + a = -a + a$$

= $0 \neq -1$

(b) The following are definitions and proofs for the two functions:

$$f_1, f_2: \mathbb{Z} \to \mathbb{Z}^+ \tag{1}$$

such that:

i) f_2 is onto but not one-to-one.

Definition: $f_2(x) = |x|$

Proof. First, we will prove that f_2 is onto i.e., $\forall b \in \mathbb{Z}^+, \exists a \in \mathbb{Z}, f_2(a) = b$. Let $b \in \mathbb{Z}^+$. Let a = b. We want to prove that $f_2(a) = b$.

$$f_2(a) = |a|$$

$$= a$$

$$= b$$

Next, we will prove that $f_2(x)$ is **not** one-to-one i.e., $\exists p, q \in \mathbb{Z}, f_2(p) = f_2(q) \land p \neq q$. Let p = 3 and q = -3.

Proof.

$$f_2(p)=|3|=3=|-3|=f_2(q)$$
 so $f_2(p)=f_2(q)$ is True
$$3\neq -3$$
 $p\neq q$ is also True

ii) f_1 is one-to-one but not onto:

Definition: $f_1(x) = e^x + 2$

We will first prove that $f_1(x)$ is not onto i.e., $\exists b \in \mathbb{Z}^+, \forall a \in \mathbb{Z}, f_1(a) \neq b$

Proof.:

• Let b = 1

• Let $a \in \mathbb{Z}$

• WTS: $f_1(a) \neq 1$.

• We will split the proof into two cases, namely a > 0 and $a \le 0$

Case 1. a > 0

In this case, $e^a > 1$ and $e^a + 2 > 3 \neq 1$

Case 2.

$$a \le 0$$

$$0 < e^a \le 1 \Rightarrow 2 < e^a + 2 \le 3$$

$$e^a + 2 \ne 1$$

Since in both cases, the least value of $f_1(a)$ is $\neq 1$, we can conclude that $\forall a \in \mathbb{Z}, f_1(a) \neq 1$

Next, we will prove that $f_1(a)$ is one-to-one

Proof. WTS: $\forall p, q \in \mathbb{Z}, f_1(p) = f_1(q) \Rightarrow p = q$

• let $p, q \in \mathbb{Z}$

• Assume $f_1(p) = f_1(q)$

• WTS: p = q

$$f_1(p) = f_2(q)$$
 $e^p + 2 = e^q + 2$
 $e^p = e^q$ (subtracting 2 from both sides)
 $\ln(e^p) = \ln(e^q)$ (Taking ln of both sides)
 $p \cdot \ln(e) = q \cdot \ln(e)$
 $p = q$ (dividing both sides by $\ln(e)$)

- (c) Let $f: A \to B$ and $q: B \to C$ be arbitrary functions.
 - i The following is a proof that if $g \circ f$ is one-to-one, then f is also one-to-one:

Proof. WTS:

$$(\forall a_1, a_2 \in A, (g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow (f(a_1) = f(a_2)) \Rightarrow (\forall p, q \in A, f(p) = f(q) \Rightarrow p = q)$$

- Assume $g \circ f$ is one-to-one i.e., $(\forall a_1, a_2 \in A, (g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow (f(a_1) = f(a_2))$
- let $p, q \in A$
- Assume f(p) = f(q)
- WTS: p = q

$$g(f(p)) = g(f(q))$$

 $(g \circ f)(p) = (g \circ f)(q)$ (By definition of composite functions)

• Using our assumption that $q \circ f$ is one-to-one, we can conclude that:

$$p = q$$

ii The following is a proof that if $g \circ f$ is onto, then f is also onto:

Proof. WTS:

$$(\forall c \in C, \exists a \in A, (g \circ f)(a) = c) \Rightarrow (\forall c \in C, \exists b \in B, g(b) = c)$$

- Assume that $g \circ f$ is onto i.e., $(\forall c \in C, \exists a \in A, (g \circ f)(a) = c)$
- Let $c \in C$
- Let b = f(a). Since $f(a) \in B$ according to the choice domain and co-domain of function f
- WTS: $q(b) = c_2$

$$g(b) = g(f(a))$$

= $(g \circ f)(a)$ (From the definition of function composition)
= c (using assumption that $g \circ f$ is onto)

iii The following is a proof that if $g \circ f$ is one-to-one and onto, then f is also both one-to-one and onto:

• We will prove that the given statement is false by proving its negation which states that:

$$\exists f: A \to B \text{ and } g: B \to C,$$

$$(\forall a_1, a_2 \in A, (g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow a_1 = a_2) \land (\forall c_1 \in C, \exists a \in A, (g \circ f)(a) = c_1)$$

$$\land \qquad \qquad ((\exists p, q \in A, f(p) = f(q) \Rightarrow p = q) \lor (\exists b \in B, \forall a_3 \in A, f(a_3) \neq b)$$

$$\lor \qquad \qquad (\exists p_1, q_1 \in B, g(p_1) = g(q_1) \land p_1 \neq q_1) \lor (\exists c_2 \in C, \forall b_1 \in B, g(b_10 \neq c_2))$$

Proof.

• Let A = [1, 2, 3]

• Let B = [4, 5, 6, 7]

• Let C = [8, 9, 10]

We define $f:A\to B, g:B\to C$, and $g\circ f:A\to C$ using the following table of values where $a\in A,b\in B$

b	g(b)
4	8
5	8
6	9
7	10

a	f(a)
1	5
2	6
3	7

a	g(f(a))
1	8
2	9
3	10

At this point, we will prove that $g \circ f$ is both one-to-one and onto and that g is not one-to-one.

Proof that $g \circ f$ is one-to-one i.e., $(\forall a_1, a_2 \in A, (g \circ f) (a_1) = (g \circ f) (a_2) \rightarrow a_1 = a_2)$:

Let $a_1, a_2 \in A$

Assume $(g \circ f)(a_1) = (g \circ f)(a_2)$.

WTS: $a_1 = a_2$

Since $(g \circ f)(a_1)$ can take on only 3 values, we will split the proof into 3 cases based on these values.

Case 1. Let $(g \circ f)(a_1) = (g \circ f)(a_2) = 8$

From our definition of $(g \circ f)$, this value is only possible when $a_1 = a_2 = 1$

Case 2. Let $(g \circ f)(a_1) = (g \circ f)(a_2) = 9$

From our definition of $(g \circ f)$, this value is only possible when $a_1 = a_2 = 2$

Case 3. Let $(g \circ f)(a_1) = (g \circ f)(a_2) = 10$

From our definition of $(g \circ f)$, this value is only possible when $a_1 = a_2 = 3$

Proof that $g \circ f$ is onto i.e., $(\forall c_1 \in c, \exists a \in A, (g \circ f)(a) = c_1) : \text{Let } c_1 \in C$ Let $a = c_1 - 7$.

From our definition of $g \circ f$ in the table above, we can see that for any c_1 we pick from the set C, we can choose on a which is 7 less than our chosen c_1

Since c_1 can take on only 3 values, we will split the proof into 3 cases based on these values.

Case 1. Let $c_1 = 8$.

Let
$$a = c_1 - 7 = 1$$

WTS: $(g \circ f)(a) = c_1$
 $(g \circ f)(a) = (g \circ f)(1)$
 $= 8$
 $= c_1$

Case 2. Let $c_1 = 9$

Let
$$a = c_1 - 7 = 2$$

WTS:
$$(g \circ f)(a) = c_1$$

 $(g \circ f)(a) = (g \circ f)(2)$
 $= 9$
 $= c_1$

Case 3. Let $c_1 = 10$.

Let
$$c_1 = 10$$

Let $a = c_1 - 7 = 3$
WTS: $(g \circ f)(a) = c_1$
 $(g \circ f)(a) = (g \circ f)(3)$
 $= 10$
 $= c_1$

Proof that g is not one-to-one i.e., $(\exists p_1, q, \in B, g(p_1) = g(q_1) \land p_1 \neq q_1)$ Let $p_1 = 4$ and let $q_1 = 5$.

WTS:
$$g(p_1) = g(q_1) \land p_1 \neq q$$

 $4 \neq 5 \leftrightarrow p_1 \neq q_1$
 $g(p_1) = g(4) = 8 = g(5) = g(q_1)$