ICCL Summer School, TU Dresden Dresden, 1-3 September 2010

### Neural-Symbolic Cognitive Reasoning

Artur d'Avila Garcez
City University London
aag@soi.city.ac.uk

#### Motivation

The need for:

learning from changes in the environment reasoning about commonsense knowledge

- The need for robustness: controlling the accumulation of errors in uncertain environments
- Integrating reasoning and learning:

Symbolic systems too brittle (commonsense cannot be axiomatized)

Neural networks too complex (modularity, legacy systems,
explanation)

 Combining the logical nature of reasoning and the statistical nature of learning

#### Outline

- Overview of Neural-Symbolic Cognitive Model
- Backpropagation:
  - worked example
  - evaluation: cross-validation/ embracing uncertainty
- CILP translation algorithm, extraction, applications
- Nonclassical CILP: modal, temporal, etc.
- Fibring networks (specializations)
- Relational / first-order CILP (propositionalization)
- Abductive reasoning, attention, emotions, creativity, etc.

## Neuroymbolic Computation is... ...interdisciplinary

Cognitive Science

Logic

**Machine Learning** 

**Probability Theory** 

Computer Science

**Neural Computation** 

Neuroscience

...related to SRL and ILP but underpinned by neural computation

#### IET/BCS Turing lecture 2010 (Chris Bishop)

1960s-1980s: Expert Systems (hand-crafted rules) "Within a generation... the problem of creating 'artificial intelligence' will largely be solved" Marvin Minsky 1967

1990's-present: Neural networks, Support vector machines (difficult to include domain knowledge)

New AI: Bayesian learning, probabilistic graphical models, efficient inference

#### One Algorithm for Learning and Reasoning

high-level symbolic representations (abstraction, recursion, relations)

translations

low level, efficient neural structures (with the same, simple architecture throughout)

## **Neural-Symbolic Learning Systems**



# Connectionist Inductive Logic Programming (CILP) System

A Neural-Symbolic System for Integrated Reasoning and Learning

Knowledge Insertion, Revision (Learning), Extraction

(based on Towell and Shavik, Knowledge-Based Artificial Neural Networks. Artificial Intelligence, 70:119-165, 1994)

 Real Applications: DNA Sequence Analysis, Power Systems Fault Diagnosis

(using backpropagation with background knowledge; test set performance is comparable to backpropagation; test set performance on smaller training sets is comparable to KBANN; training set performance is superior than backpropagation and KBANN)

## **CILP Translation Algorithm**



 $r_2: A \leftarrow E,F;$ 

 $r_3$ : B  $\leftarrow$ 



based on Holldobler and Kalinke's translation, but extended to sigmoid neurons (backprop) and hetero-associative networks

Holldobler and Kalinke, Towards a Massively Parallel Computational Model for Logic Programming. ECAI Workshop Combining Symbolic and Connectionist Processing, 1994.

### **CILP Extraction Algorithm**



<u>challenge</u>: efficient extraction of sound, comprehensible symbolic knowledge from large-scale neural networks

#### **Publications**

Garcez, Zaverucha. The CILP System. Applied Intelligence 11:59-77, 1999.

Garcez, Broda, Gabbay. Knowledge Extraction from Neural Nets. Artificial Intelligence 125:153-205, 2001.

Garcez, Broda, Gabbay. Neural-Symbolic Learning Systems. Springer, 2002.

#### **CILP** extensions

- Non-Classical Reasoning
- Modal, Temporal, Epistemic, Intuitionistic, Abductive Reasoning, Value-based Argumentation.
- New potential applications including temporal logic learning, model checking, software engineering (requirements evolution), etc.

## Connectionist Modal Logic (CML)

CILP network ensembles, modularity for learning, accessibility relations, disjunctive information



#### Semantics of and ◊

A proposition is necessary ( ) in a world if it is true in all worlds which are possible in relation to that world.

A proposition is possible (◊) in a world if it is true in at least one world which is possible in relation to that same world.

## Representing and ◊



## **CML Translation Algorithm**

Translates modal programs into ensembles of CILP networks, i.e. clauses  $W_i$ :  $ML_1,...,ML_n \rightarrow MA$  and relations  $R(W_a,W_b)$  between worlds  $W_a$  and  $W_b$ , with M in  $\{ \ , \diamondsuit \}$ .

Theorem: For any modal program *P* there exists an ensemble of simple neural networks *N* such that *N* computes *P*.

## Learning in CML

We have applied CML to a benchmark distributed knowledge representation problem: the muddy children puzzle

(children are playing in a garden; some have mud on their faces, some don't; they can see if the others are muddy, but not themselves; a caretaker asks: do you know if you're muddy? At least one of you is)

Learning with modal background knowledge offers better accuracy than learning by examples only (93% vs. 84% test set accuracy)

## Connectionist Temporal Reasoning

A full solution to the muddy children puzzle can only be given by a two-dimensional network ensemble



Short-term and long-term memory

#### **Publications**

Garcez, Gabbay, Ray, Woods. Abductive Reasoning in Neural-Symbolic Learning Systems. Topoi 26:37-49, 2007.

Garcez, Lamb, Gabbay. Connectionist Modal Logic. TCS, 371: 34-53, 2007.

Garcez, Lamb, Gabbay. Connectionist Computations of Intuitionistic Reasoning. TCS, 358:34-55, 2006.

Garcez, Lamb. Connectionist Model for Epistemic and Temporal Reasoning. Neural Computation, 18:1711-1738, July 2006.

## Combining (Fibring) Networks



Fibred networks approximate any polynomial function in unbounded domains

#### Relational Learning

Inputs presented to P and Q at the same time trigger the learning process in the meta-level



Experiments on the east-west trains dataset show an improvement from 62% (flat, propositional network) to 80% (metalevel network) on test set performance (leaving one out cross-validation)

# FOL ANN (propositionalisation)



## Cognitive Model: Fibred Network Ensembles



#### **Publications**

Garcez, Lamb, Gabbay. Neural-Symbolic Cognitive Reasoning. Springer, 2009.

Lamb, Borges, Garcez. Connectionist Model for Temporal Synchronisation and Learning. AAAI 2007, July 2007.

Borges, Garcez, Lamb. Integrating Model Verification and Self-Adaptation. ASE 2010, September 2010.

Garcez, Gabbay. Fibring Neural Networks. AAAI 2004, July 2004.

#### **Current Work**

- First Order Logic Learning: encoding vs. propositionalisation
- Neural Networks for Normative Systems: obligations, permissions, contrary to duty
- Adding domain knowledge to deep belief networks: higher order logic
- Neural Networks for Abductive Reasoning: creativity, emotions, attention
- Application in software engineering: model checking + adaptation
- Application in simulation environments: driving test, war games, robocup

## Conclusion: Why Neurons and Symbols

To study the statistical nature of learning and the logical nature of reasoning.

To provide a unifying foundation for robust learning and efficient reasoning.

To develop effective computational systems for integrated reasoning and learning.