

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Bioinspirada

LABORATORIO 12 ALGORITMO DE CÉLULA DENDRÍTICA

Docente: Edward Hinojosa Cárdenas

04 de Agosto del 2020

1 COMPETENCIA DEL CURSO

Conoce, comprende e implementa algoritmos dentro de la familia de algoritmos de Sistemas Inmunes Artificiales para resolver problemas de optimización complejos.

2 COMPETENCIA DEL LABORATORIO

Implementa el Algoritmo de Célula Dendrítica para resolver problemas de optimización complejos.

3 CONCEPTOS BÁSICOS

3.1 Algoritmo de Célula Dendrítica

Algorithm 1 DC life cycle

- 1: InitializeDC
- 2: //The DC is in the tissue
- 3: while CSM output signal < Migration Threshold do
- get antigen;
- 5: store antigen;
- get current values for input signals;
- update cumulative output signals;
- 8: end while
- 9: //The DC enters the lymph node
- 10: if semi-mature output signal > mature output signal then
- 11: set cell state as semi-mature;
- 12: else
- 13: set cell state as mature;
- 14: end if
- 15: //The DC dies and communicates the information collected
- 16: kill cell

UNSA-EPCC/CB 2

4 EQUIPOS Y MATERIALES

- Un computador.
- · Material del curso.
- Bibliografía del curso [1] [2].

5 EJERCICIOS

1. Implemente el Algoritmo de Célula Dendrítica para clasificar la Base de Datos UCI Wisconsin Breast Cancer (sin valores faltantes):

Breast Cancer Wisconsin (Original) Data Set Download: Data Folder. Data Set Description

Abstract: Original Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	699	Area:	Life
Attribute Characteristics:	Integer	Number of Attributes:	10	Date Donated	1992-07-15
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	613615

- Todos los parámetros los puede definir Ud.
- Detalle los parámetros utilizados.
- Pueden ser los mismos parámetros vistos en clase.

6 ENTREGABLES

Al finalizar el estudiante deberá:

- 1. Generar un archivo .txt con el resultado obtenido al ejecutar la implementación en cada uno de los ejercicios.
- 2. Generar una imagen que muestre los resultados obtenidos.
- 3. Compactar el(los) código(s) fuente junto al(los) archivo(s) .txt en un archivo .zip. Subir el archivo compactado al aula virtual (teniendo del día domingo 16/08 hasta las 23:55pm) con el nombre:

 $Laboratorio_XX_Apellido Paterno_Apellido Materno_Primer Nombre_UNSA_EPCC_CB.zip$

UNSA-EPCC/CB 3

7 RÚBRICA DE EVALUACIÓN

Criterios	Muy Bueno	Bueno	Regular	Malo
	Resuelve todos los	Resuelve todos los	Resuelve todos los	
Resolución	ejercicios sin errores	ejercicios con pocos	ejercicios con varios	No resuelve todos los
del	mostrando cada uno	errores mostrando	errores y mostrando	ejercicios o no
Laboratorio	de los puntos	casi o todos todos los	todos o pocos de los	entrega el laboratorio.
Laboratorio	solicitados. Puntaje:	puntos solicitados.	puntos solicitados.	Puntaje: 0 puntos
	20 puntos	Puntaje: 14 puntos	Puntaje: 7 puntos	

• IMPORTANTE En caso de copia o plagio o similares todos los alumnos implicados tendrán sanción en toda la evaluación del curso.

BIBLIOGRAFÍA

- [1] BRABAZON, A.; O'NEILL, M.; MCGARRAGHY, S. **Natural Computing Algorithms**. 1st. Edition: Springer Publishing Company, Incorporated, 2015. ISBN 3662436302.
- [2] CASTRO, L. de. **Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications**. 1st. Edtion: Chapman & Hall/CRC, 2006. ISBN 9781584886433.