MIDTERM

Midterm!

- Hour long exam.
- 105 possible points
 - 5 bonus points
- Allowed: Cheatsheet, calculator, pen
- Not Allowed: anything else!

Midterm Question

- Short Question:
 - **True/False:** "the decision boundary of perceptron and dual perceptron with RBF kernel are similar"
 - How would you../what would be the result of doing:
 - Reducing the size of a decision tree/changing learning rate.
- Short answers (I-2 sentences), consisting of answer (e.g., true/false) and a short explanation
- Avoid guessing. We really just care about the explanation

Midterm Question

- Calculation Questions:
 - Simulate an algorithm run on some data (small set)
 - Understand the principle behind the algorithm's performance

- Bring a calculator, mostly so you don't waste time.
- If you did the HW you should be fine.
- Make sure answers to questions are consistent with the algorithm "run"

Midterm Questions

- Algorithmic Questions:
 - Adapt the algorithms we have seen to work better in a given setting (little data, high dimensional data, level of noise, etc.)
 - Adapt the algorithms we have seen to new scenarios (come up with new algorithms)
 - We have seen algorithms for learning monotone conjunctions, computing kernels etc. *How can these algorithms be changed?*
 - Analyze algorithms performance

Midterm Questions

- Theoretical Question:
 - Combinatorial questions (counting) and the connection to relevant to ML concepts
 - Show that an algorithm is a mistake bound algorithm
 - Understand the difference between hypothesis classes

 Make sure to review the definitions and understand them!

Midterm Topics

- KNN
- Decision Trees
- Learning Boolean Functions
- Winnow
- Perceptron
- Multi-class classification
- Gradient Descent (as far as we'll get today)
- Mistake Bounds analysis, Perceptron convergence
- Performance evaluation, cross-validations, overfitting and underfitting.
- Connections between concepts (how does DT control overfitting?)

- **Explain**. What is one similarity and one difference between..
 - Winnow and Perceptron
- Pick an option and <u>explain</u>.
 - Overfitting is more likely in Decision trees or Perceptron.
- **True or False.** A dual perceptron with a linear kernel has the same expressive power as a primal perceptron.
- **True or False**: the size of the hypothesis space (e.g., 3ⁿ for conjunctions, 2ⁿ for Boolean Functions) is a good indicator for the expressiveness of the space

Example Question

 How would you represent an OR and AND function using a linear threshold function?

 Would a perceptron be able to learn these functions?

Example Question

place points and label them s.t perceptron will always have zero training error and non-zero leave-one-out validation error

Example Question

place points and label them s.t perceptron will always have zero training error and non-zero leave-one-out validation error

Example Questions

• What will be the result of decision tree learning vs. multi-class perceptron on this dataset?

Example Questions

• What will be the result of decision tree learning vs. multi-class perceptron on this dataset?

Example Questions

• What will be the result of decision tree learning vs. multi-class perceptron on this dataset?

