

Queen's Power Group www.queenspowergroup.com

A Novel High Performance Resonant Gate Drive Circuit with Low Circulating Current

Presented and Authored By:

Wilson Eberle

Co-Authors:

Dr. Yan-Fei Liu and Dr. P.C. Sen

Presentation Overview

1. Introduction

- 1. Why you should use resonant gate drive
- 2. Drawbacks of existing techniques
- 2. Proposed Resonant Gate Driver and Operation
- 3. Logic Implementation
- 4. Design Procedure
- 5. Loss Analysis
- 6. Simulation and Experimental Results
- 7. Conclusions

1. Introduction

- Application: low voltage high current DC-DC power supplies
- Trend to increase switching frequency for improvements in:
 - + power density
 - + dynamic performance
- Drawbacks of increased switching frequency:
 - gate loss
 - switching loss

Conventional MOSFET Driver

Techniques for Improvement

Switching Loss Savings

Soft-Switching and Resonant Techniques

- + Well established and generally, have good performance
- Additional components
- Additional conduction loss
- Don't reduce turn-off loss

Another Solution: Decrease switching time!

 Recall, switching loss proportional to rise time and fall time

Techniques for Improvement

Gate Loss Savings Resonant Gate Drive Techniques

- + Many good (~15) circuits proposed since early 1990s, but generally unused
- Existing methods emphasize gate energy savings, but ignore potential switching loss savings

CURRENT SOURCE DRIVERS CAN REDUCE TURN-ON AND TURN-OFF LOSS!

Conventional vs. Resonant Drive Switching Loss Savings

Voltage source RC-type charging limits speed

Constant current source type charging improves speed!

Additional Conventional Driver Loss

Actual driver loss can be much higher than CV² loss... e.g. varies by driver, but typically 15-50%

Resonant Gate Drive Review

Existing techniques suffer from at least one of five problems:1. Circulating current conduction loss [2]

- Peak current dependent on duty cycle [2]

Resonant Gate Drive Review

- 3. Large inductance [2], bulky transformer, or coupled inductor [3]-[7]
- 4. Slow turn-on and/or turn-off [3]-[9]
- 5. Gate not actively clamped high and/or low, so false triggering (Cdv/dt) can result [3]-[7], [9]

Presentation Overview

- 1. Introduction
- 2. Proposed Resonant Gate Driver and Operation
 - Circuit and waveforms
- 3. Logic Implementation
- 4. Design Procedure
- 5. Loss Analysis
- 6. Simulation and Experimental Results
- 7. Conclusions

Proposed Driver Evolution

Switches Can Also Be Used Instead of Diodes

Presentation Overview

- 1. Introduction
- 2. Proposed Resonant Gate Driver and Operation
- 3. Logic Implementation
 - Circuit and waveforms
- 4. Design Procedure
- 5. Loss Analysis
- 6. Simulation and Experimental Results
- 7. Conclusions

Logic Implementation

Implementation can be discrete with Fairchild Ultra High Speed (UHS) gates, or using a CPLD, or ultimately integrated into the driver IC

Presentation Overview

- 1. Introduction
- 2. Proposed Resonant Gate Driver and Operation
- 3. Logic Implementation
- 4. Design Procedure
 - 1. Design steps
- 5. Loss Analysis
- 6. Simulation and Experimental Results
- 7. Conclusions

Design Procedure

Needed For Implementation:

- 1) Resonant Inductance, L_R
- 2) Delay Time, TD1
- 3) Delay Time, TD2

Design Procedure

Assumptions:

- 1) Rds=Rg=0
- 2) Piecewise linear approximation

$$V_{cc} = L_R \frac{i_{LR}(t_1)}{TD1}$$
 (a)

$$\Delta i_{LR} = \frac{V_{cc}}{2} \frac{t_{on}}{L_R} \qquad \textbf{(b)}$$

$$i_{LR}(t_1) = \frac{Q_g}{t_{on}} - \frac{\Delta i_{LR}}{2} \qquad \textbf{(c)}$$

$$i_{LR}(t_1) = \frac{Q_g}{t_{on}} - \frac{\Delta i_{LR}}{2} \qquad \textbf{(c)}$$

Design Procedure

- 1. Choose switches; 20V, 2A pk, low Qg & Rds<250mΩ e.g. Fairchild NDS351AN and FDN352AP
- 2. Set ton; on time
- 3. Set TD1; turn-on pre-charge time
- 4. Calculate Δi_{LR} ; solving (a)-(c)
- 5. Calculate L_R; using (b)

3 Unknowns

in (a)-(c):

$$\Delta i_{LR}$$
, L_R , $i_{LR}(t_1)$

$$V_{cc} = L_R \frac{i_{LR}(t_1)}{TD1} \quad (\mathbf{a})$$

$$\Delta i_{LR} = \frac{V_{cc}}{2} \frac{t_{on}}{L_R} \quad (b)$$

$$i_{LR}(t_1) = \frac{Q_g}{t_{on}} - \frac{\Delta i_{LR}}{2} \quad (\mathbf{c})$$

Presentation Overview

- 1. Introduction
- 2. Proposed Resonant Gate Driver and Operation
- 3. Logic Implementation
- 4. Design Procedure
- 5. Loss Analysis
 - 1. Equations covered in paper
 - 2. Loss components
 - 3. Analysis results
- 6. Simulation and Experimental Results
- 7. Conclusions

Loss Analysis

Straightforward Calculations:

- 1. Conduction loss in Q1-Q4, and Rg during 3 turn-on intervals and 3-turn-off intervals
- 2. Gate loss in Q1-Q4
- 3. CV² output loss in Q2 and Q4 at turn-on (small)
- 4. Turn-off loss in Q2 and Q4 (small)
- 5. Inductor core loss and logic loss (negligible)

Loss Breakdown

Theoretical gate energy recovery at 1MHz

(parameters given in paper using design example)

Impact of Rg

Theoretical gate energy recovery at 1MHz

(parameters given in paper)

Recovery vs. Speed Tradeoff

Theoretical gate energy recovery at 1MHz

(parameters given in paper)

Presentation Overview

- 1. Introduction
- 2. Proposed Resonant Gate Driver and Operation
- 3. Logic Implementation
- 4. Design Procedure
- 5. Loss Analysis
- 6. Simulation and Experimental Results
- 7. Conclusions

SIMETRIX Simulation Results:

1MHz, IRF6618, L_R =800nH, TD1=40ns, ton=100ns

Q1

Q3

 Q_2

Q4

Inductor Current

MOSFET Vgs

Boost Experimental Results:

1MHz, IRF6618 (x2), 10TQ035 Diode, Vin=5V, Vo=10V

Boost Experimental Results:

1MHz, IRF6618 (x2), 10TQ035, Vin=5V, Vo=10V

Presentation Overview

- 1. Introduction
- 2. Proposed Resonant Gate Driver and Operation
- 3. Logic Implementation
- 4. Design Procedure
- 5. Loss Analysis
- 6. Simulation and Experimental Results
- 7. Conclusions

Conclusions

New Resonant Driver Proposed:

- Gate Energy Recovery
- Switching Loss Reduction
- Specific Advantages:
 - Very small inductor (e.g. 100nH @ 1MHz)
 - Peak current independent of duty cycle
 - Low circulating current (discontinuous I_{LR})
 - Quick turn on & off due to inductor pre-charge current during TD1
 - No Cdv/dt false triggering (low impedance)
- 4% efficiency improvement at 5V drive and 6.5% at 12V drive

Thank You For Your Time

Other Resonant Gate Drive Material at: www.queenspowergroup.com and

2.6 (Yesterday) and 21.4 (Tomorrow 8:30am)