Métodos Numéricos Interpolação spline

Ana Maria A. C. Rocha

Departamento de Produção e Sistemas

Universidade do Minho

arocha@dps.uminho.pt

Interpolação segmentada (piecewise)

'spline' é uma função segmentada e é formada por vários polinómios ligados uns aos outros de uma maneira contínua e suave, isto é, existe continuidade na 'spline' nos pontos que unem as partes.

Os pontos $x_1, x_2, x_3, \dots, x_{n-1}$ chamam-se **nós interiores** e x_0 e x_n são os **nós exteriores** ou **fronteiras**.

Interpolação segmentada (piecewise)

Uma função $s_l(x)$ (com l inteiro não negativo) chama-se 'spline' de grau l se possuir as seguintes propriedades:

- (i) s_l é uma função continuamente diferenciável até à ordem l-1:
- (ii) s_I é um polinómio de grau I para

$$x \in [x_i, x_{i+1}], \quad 0 \le i \le n-1$$

Porquê usar splines?

Porquê usar splines?

Polinómio interpolador de grau 10

Porquê usar splines?

Spline linear

Exemplos

'Spline' linear, $s_1(x)$

- Junção de polinómios de grau 1.
- Para cada segmento i a forma do polinómio de grau 1 obtém-se:

$$s_1^i(x) = f_{i-1} + \frac{f_i - f_{i-1}}{x_i - x_{i-1}}(x - x_{i-1})$$

$$i = 1, 2, \ldots, n$$
.

• O segmento i é definido por $[x_{i-1}, x_i]$

Limite superior do erro de truncatura com a aproximação 'spline' linear s_1

- (i) Seja f(x) contínua, com derivadas contínuas até à segunda ordem,
- (ii) sejam os pontos do intervalo [a, b]:

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b,$$

(iii) seja $s_1(x)$ a 'spline' linear composta pelos polinómios de grau $1 \ s_1^i(x)$, $i=1,2,\ldots,n$ para aproximar f(x) em [a,b],

Limite superior do erro de truncatura com a aproximação 'spline' linear s_1

(iv) seja

$$\max_{\xi \in [a,b]} \left| f''(\xi) \right| \le M_2,$$

 M_2 majorante da segunda derivada de f(x) em [a, b]

(v) seja

$$h = \max_{0 \le i \le n-1} (x_{i+1} - x_i)$$

então

$$|f(x)-s_1(x)|\leq \frac{1}{8}h^2M_2$$

Nota: se f(x) não for dada por uma expressão, substitui-se M_2 pela d.d. de 2^a ordem de maior módulo em valor absoluto multiplicada por 2!.

'Spline' cúbica $s_3(x)$

- Junção de polinómios de grau 3.
- Para cada segmento i a forma do polinómio de grau 3 é

$$s_3^i(x) = \frac{M_{i-1}}{6(x_i - x_{i-1})} (x_i - x)^3 + \frac{M_i}{6(x_i - x_{i-1})} (x - x_{i-1})^3 + \left[\frac{f_{i-1}}{x_i - x_{i-1}} - \frac{M_{i-1}(x_i - x_{i-1})}{6} \right] (x_i - x) + \left[\frac{f_i}{x_i - x_{i-1}} - \frac{M_i(x_i - x_{i-1})}{6} \right] (x - x_{i-1})$$

$$i=1,2,\ldots,n, \ f_i\equiv f(x_i) \ M_i\equiv M(x_i)$$
, curvatura da 'spline' em x_i

'Spline' cúbica $s_3(x)$

- $s_3^i(x)$ depende de M_{i-1} e M_i
 - quando i = 1 (1° segmento), precisamos de M_0 e M_1
 - i = 2, precisamos de M_1 e M_2
 - i = 3, precisamos de M_2 e M_3
 - <u>. . . .</u>
 - i = n, precisamos de M_{n-1} e M_n
- é preciso conhecer a priori as n+1 incógnitas

$$M_0, M_1, M_2, \ldots, M_{n-1}, M_n$$

'Spline' cúbica natural

• Os polinómios do 1^o segmento e do n^{esimo} (último) segmento devem ter curvatura nula nos nós da fronteira (x_0, x_n) , ou seja,

$$\begin{cases} s_3^{1\prime\prime}(x_0) = 0 \\ s_3^{\prime\prime\prime}(x_n) = 0 \end{cases} \Leftrightarrow \begin{cases} M_0 = 0 \\ M_n = 0 \end{cases}$$

- Falta calcular $M_1, M_2, \ldots, M_{n-1}$ (n-1) incógnitas)
- através de n-1 equações, **para cada nó interior** i, $i=1,2,\ldots,n-1$:

$$(x_{i} - x_{i-1})M_{i-1} + 2(x_{i+1} - x_{i-1})M_{i} + (x_{i+1} - x_{i})M_{i+1} = \frac{6}{x_{i+1} - x_{i}}(f_{i+1} - f_{i}) - \frac{6}{x_{i} - x_{i-1}}(f_{i} - f_{i-1})$$
(1)

Estas n-1 equações nas n-1 incógnitas $M_1, M_2, \ldots, M_{n-1}$ definem um sistema linear tridiagonal a resolver por EGPP.

'Spline' cúbica completa

- Tem n+1 incógnitas para determinar: $M_0, M_1, M_2, \ldots, M_n$, por isso precisa de n+1 equações.
- As equações (1) para os nós interiores são n-1
- As duas equações restantes (n-1+2=n+1) dizem respeito aos **nós da fronteira** $(x_0 e x_n)$:

$$2(x_1-x_0)M_0+(x_1-x_0)M_1=\frac{6}{x_1-x_0}(f_1-f_0)-6f_0'$$

$$2(x_n - x_{n-1})M_n + (x_n - x_{n-1})M_{n-1} = 6f'_n - \frac{6}{x_n - x_{n-1}}(f_n - f_{n-1})$$

'Spline' cúbica completa

Se não se conhecer a expressão de f(x), para calcular f'(x) $\begin{cases} f'_0 \\ f'_n \end{cases}$ usam-se diferenças divididas de 1^a ordem para aproximar as primeiras derivadas:

$$f'_0 = \frac{f_A - f_0}{A - x_0} e f'_n = \frac{f_n - f_B}{x_n - B}$$

com $x_0 < A$ e $B < x_n$.

- Quanto mais próximo A estiver de x₀, melhor é a aproximação à derivada.
- Quanto mais próximo B estiver de x_n , melhor é a aproximação à derivada.

'Spline' cúbica completa

Neste caso, os pontos para construir a 'spline':

Limite superior do erro de truncatura com a aproximação 'spline' cúbica s₃

- (i) Seja f(x) contínua, com derivadas contínuas até à quarta ordem, em [a, b],
- (ii) sejam os pontos do intervalo [a, b]:

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b,$$

(iii) seja $s_3(x)$ a 'spline' cúbica completa composta pelos polinómios de grau 3, $s_3^i(x)$, $i=1,2,\ldots,n$ (n segmentos) para aproximar f(x) em [a,b],

Limite superior do erro de truncatura em s_3

(iv) seja

$$\max_{\xi \in [a,b]} \left| f^{(iv)}(\xi) \right| \le M_4,$$

 M_4 majorante da quarta derivada de f(x) em [a, b]

(v) seja

$$h = \max_{0 \le i \le n-1} (x_{i+1} - x_i)$$

então

$$|f(x) - s_3(x)| \le \frac{5}{384} h^4 M_4$$

е

$$|f'(x) - s_3'(x)| \le \frac{1}{24}h^3M_4$$

Nota: se não for possível calcular a 4^{2} derivada da função, $f^{(iv)}(x)$, então M_4 é dada pelo majorante da diferença dividida de 4^{a} ordem (maior dd4 em valor absoluto) multiplicada por 4! (max $|dd4| \times 4! \le M_4$).

Exercício 1

Considere um desvio entre duas linhas de caminho de ferro paralelas. O desvio agora deve corresponder a um polinómio de grau três que une os pontos (0,0) e (4,2), como mostra a figura.

Com base nos quatro pontos da tabela

x _i	-1	0	4	5	
$f_i = f(x_i)$	0.4375	0	2	1.5625	

construa a parte da *spline* cúbica natural que descreve a trajetória desenhada e calcule f(2).

Resolução do Exercício 1

i	0	1	2	3
Xi	-1	0	4	5
fi	0.4375	0	2	1.5625
	extremo inferior	ponțo interior	ponțo interior	extremo superior

Como pretendemos determinar uma spline cúbica natural, então a curvatura nos extremos é nula, ou seja, $M_0 = 0$ e $M_3 = 0$ e apenas se constroem as equações para os pontos interiores (i = 1 e i = 2).

- Expressão para o ponto i=1 $(x_1-x_0)M_0+2(x_2-x_0)M_1+(x_2-x_1)M_2=\frac{6}{(x_2-x_1)}(f_2-f_1)-\frac{6}{(x_1-x_0)}(f_1-f_0)$
- Expressão para o ponto i = 2 $(x_2 - x_1)M_1 + 2(x_3 - x_1)M_2 + (x_3 - x_2)M_3 = \frac{6}{(x_3 - x_2)}(f_3 - f_2) - \frac{6}{(x_2 - x_1)}(f_2 - f_1)$

Resolução do Exercício 1 (cont.)

Simplificando as expressões, o sistema resultante é

$$\begin{cases} 10M_1 + 4M_2 = 5.625 \\ 4M_1 + 10M_2 = -5.625 \end{cases}$$

que se resolve por EGPP, e determina-se

$$\begin{cases} M_1 = 0.9375 \\ M_2 = -0.9375 \end{cases}$$

Como queremos estimar o valor de f(2) através de uma *spline* cúbica natural, então verificamos que o ponto 2 encontra-se entre o ponto x=0 e x=4.

Х	-1	0	4	5
f	0.4375	0	2	1.5625

Resolução do Exercício 1 (cont.)

Uma vez que temos um segmento de spline entre cada 2 pontos, então o ponto x=2 localiza-se no 2^o segmento, ou seja no intervalo [0,4].

Seguidamente, constrói-se expressão do segmento i=2 da spline cúbica

$$s_3^{(2)}(x) = \frac{M_1}{6(x_2 - x_1)}(x_2 - x)^3 + \frac{M_2}{6(x_2 - x_1)}(x - x_1)^3 + \left[\frac{f_1}{(x_2 - x_1)} - \frac{M_1(x_2 - x_1)}{6}\right](x_2 - x)$$
$$+ \left[\frac{f_2}{(x_2 - x_1)} - \frac{M_2(x_2 - x_1)}{6}\right](x - x_1)$$

Substituindo valores e simplificando

$$s_3^{(2)}(x) = 0.0390625(4-x)^3 - 0.0390625x^3 - 0.625(4-x) + 1.125x$$

Por fim, calcula-se $f(2) \approx s_3^{(2)}(2) = 1$.

Exercício 2

A seguinte função segmentada $s_3(x)$ no intervalo [0, 3], representa o lucro obtido na venda de um produto sazonal.

No 1° mês de vendas, o lucro é representado por $s_3^1(x)$ e no 2° e 3° meses é descrito por $s_3^2(x)$.

Poderá a função segmentada $s_3(x)$ representar uma *spline* cúbica? Justifique.

$$s_3(x) = \begin{cases} s_3^1(x) = 3x^3 - x^2 + x - 2, & 0 \le x \le 1 \\ s_3^2(x) = 2x^3 + 2x - 3, & 1 \le x \le 3 \end{cases}$$

Resolução do Exercício 2

Para que a função dada seja uma *spline*, no ponto interior (x = 1) deve haver continuidade até à 2^a ordem.

Por isso, devem ser idênticos:

- os valores da função
- os valores da primeira derivada
- os valores da segunda derivada

Ou seja, em x = 1 deve verificar-se

$$s_3^1(1) = s_3^2(1), \ s_3^{1'}(1) = s_3^{2'}(1), \ s_3^{1''}(1) = s_3^{2''}(1)$$

Resolução do Exercício 2 (cont.)

A função tem o mesmo valor para x=1

$$s_3^1(1) = s_3^2(1) \longleftrightarrow 1 = 1 \longleftrightarrow \mathsf{OK}$$

Analisar a continuidade da primeira derivada de $s_3(x)$ no ponto x = 1. A expressão da primeira derivada é dada por:

$$s_3'(x) = \begin{cases} s_3^{1'}(x) = 9x^2 - 2x + 1, & 0 \le x \le 1\\ s_3^{2'}(x) = 6x^2 + 2, & 1 \le x \le 3 \end{cases}$$
$$s_2^{1'}(1) = s_2^{2'}(1) \iff 8 = 8 \iff \mathsf{OK}$$

Resolução do Exercício 2 (cont.)

Analisar a continuidade da segunda derivada de $S_3(x)$. A expressão da segunda derivada é dada por:

$$s_3''(x) = \begin{cases} s_3^{1''}(x) = 18x - 2, & 0 \le x \le 1 \\ s_3^{2''}(x) = 12x, & 1 \le x \le 3 \end{cases}$$
$$s_3^{1''}(1) \neq s_3^{2''}(1) \iff 16 \neq 12$$

A segunda derivada de $s_3(x)$ tem valores diferentes para x=1 em cada um dos segmentos.

Conclui-se que $s_3(x)$ não pode representar uma *spline* cúbica.

Exercício 3

A partir de uma experiência foram obtidos os seguintes valores de y em função da variável t:

ti	-1	-0.96	-0.86	-0.79	0.22	0.5	0.93
Уi	-1	-0.151	0.894	0.986	0.895	0.5	-0.306

Foram calculados dois modelos, $M_1(t)$ baseado numa spline cúbica e $M_2(t)$ baseado num polinómio interpolador de Newton, para aproximar os dados, e que estão representados na figura.

Diga, justificando, a que modelo corresponde cada uma das linhas - a linha contínua e a linha a tracejado.

Resolução do Exercício 3

- M_1 corresponde à linha a cheio, uma vez que é formado por polinómios de grau 3 em cada segmento.
- M₂ é um polinómio interpolador de Newton de grau 6, que corresponde à linha a tracejado.