Universidade de São Paulo

Instituto de Física de São Carlos

Exercício 1 (SEL0602)

Luís Filipe Silva Forti - 14592348

1. Resolução Analítica

Imagem 1: Circuito utilizado para o exercício

Para os cálculos, foi usado NN = 48 (V). Ao colocar o fio-terra na parte inferior do circuito, obtém-se as seguintes relações via LKC:

- N1, N3 e N4 formam um supernó, portanto:
 - \circ -6 + N1/1 + N3/4 + (N4-N2)/1 1.5V_X = 0 -6 + N1/1 + N3/4 + (N4-N2)/1 - 1.5 (N2-N5) = 0
 - As relações no supernó são dadas por:
 - N1 N3 = NN = 48
 - N4 N3 = $4*i_X = 4*(-N1/1)$
- No nó 2:
 - \circ (N2-N4)/1 + (N2-N5)/5 + 6 = 0
- No nó 5:
 - \circ (N5-N2)/5 + N5/2 = 0
- Em relação aos valores procurados:
 - V_x = N2 N5
 - \circ V_Y = N3
 - \circ i_x = N1/1

Ao realizar o sistema, os valores obtidos são:

- N1 = -8,64407 (V)
- N2 = -24,5593 (V)
- N3 = -56,6441 (V)
- N4 = -22,0678 (V)
- N5 = -7,01695 (V)
- $V_x = -17,5425 (V)$
- $V_Y = -56,6441 (V)$
- $i_X = 8,64407 (A)$

2. Simulação no PSPICE

Imagem 2: circuito utilizado no PSPICE

Imagem 3: tensões em cada nó calculadas pelo PSPICE

Imagem 4: correntes calculadas pelo PSPICE

NODE		VOLTAGE	NC	DE	VOLTAGE	NODE		VOLTAGE	NODE		VOLTAGE	
(N1)	-8.6441	(N2)	-24.5590	(N3)	-56.6440	(N4)	-22.0680	
(N5)	-7.0169	(N6)	0.0000							

Imagem 5: resultados no arquivo .out gerado pelo PSPICE. O nó 6 é onde está localizado o fio-terra

Por meio do PSPICE, foram calculados os valores das tensões nos nós (imagem 3 e 5). É perceptível que os resultados analíticos e simulados foram compatíveis, com uma margem de erro desconsideravelmente pequena. Infelizmente não foi possível fazer o programa apresentar as tensões nos resistores (, então é necessário calculá-las como descrito na parte analítica.

- V_X = N2 N5
- V_Y = N3

Assim, obtém-se V_x como -17,5421 (V), V_y como -56,6440 (V) e i_x como 8,644 (A) (imagem 4). Comparando com os resultados analíticos, mantém-se a confirmação dos resultados, tendo pouquíssima variação.

3. Conclusões

Ambos os casos se provaram capazes de calcular o circuito, mas o PSPICE acaba por ser mais prático e eficiente, sendo mais indicado para circuitos maiores, onde a análise e as equações demandariam muito tempo e trabalho.