Interactive Proofs

Prashant Nalini Vasudevan

Mathematical Proof

Sequence of claims leading to theorems from axioms

Theorem:
$$(a + b)^2 = a^2 + 2ab + b^2$$

Proof:

$$(a+b)^2 = (a+b) \cdot (a+b)$$

$$= a \cdot a + a \cdot b + b \cdot a + b \cdot b$$

$$= a^2 + 2ab + b^2$$

Verification: Verify each claim

Other kinds of proofs

Proof by picture

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Sources: Wikipedia, xkcd

What is a Proof?

A proof is anything that convinces me that a statement is true

"verifier" of the proof

An "Interactive" Proof

- If they taste different, can always answer correctly
- If not, some answer will be wrong (with high probability)
- You know whether the glass has Coke or Pepsi, so you can check

Interactive Proofs

Computationally unbounded Prover P

Computationally unbounded Prover P

Accept or Reject

Statement x

Verifier V

Polynomial Time

- Completeness: If statement is true, Verifier should Accept with high probability
- **Soundness:** If statement is false, Verifier should Reject with high probability, even if Prover cheats

Example: Graph Non-Isomorphism

Definition: Two graphs G_0 and G_1 are isomorphic if there is a relabelling of the vertices of G_0 that makes it the same as G_1

 G_0 and G_1 isomorphic by relabelling: $1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 2, 4 \rightarrow 4$

Example: Graph Non-Isomorphism

Definition: Two graphs G_0 and G_1 are isomorphic if there is a relabelling of the vertices of G_0 that makes it the same as G_1

 G_0 and G_1 not isomorphic

Example: Graph Non-Isomorphism

Definition: Two graphs G_0 and G_1 are isomorphic if there is a relabelling of the vertices of G_0 that makes it the same as G_1

Not known how to decide in polynomial time

Easy to prove (G_0, G_1) are isomorphic – just show relabelling

How to prove G_0 and G_1 are *not* isomorphic?

IP for Graph Non-Isomorphism

Completeness: If (G_0, G_1) are non-isomorphic, then $R(G_b)$ is isomorphic to one of G_0 or G_1 , but not both. Prover can thus learn B given $R(G_b)$. So V always accepts.

Soundness: If (G_0, G_1) are isomorphic, then $R(G_b)$ could have been produced either from G_0 or G_1 , so prover learns nothing about b. So V accepts with probability at most $\frac{1}{2}$.

Interactive Proofs

- Fundamentally new notion of what it means to prove something
- Connected to various other concepts in complexity theory
- Potential real-world applications, e.g. delegation of computation

If you cannot distinguish between Coke and Pepsi before the proof, you still cannot after the proof!

Zero-Knowledge: Verifier learns nothing during the proof except the truth of the statement being proven

What did *V* learn in this proof?

If (G_0, G_1) isomorphic: V always receives b' = 0

If (G_0, G_1) non-isomorphic: V receives b' = b, but it already knew b!

[Goldwasser-Micali-Rackoff 85]

Informally: The Verifier learns nothing during the proof except the truth of the statement being proven

Somewhat Formally: Knowing whether the statement is true or not, the Verifier can "simulate" its interaction with the Prover on its own

What V sees in the actual proof: $(R, b, R(G_b), b')$

Simulation:

- 1. Sample R and b
- 2. If (G_0, G_1) are non-isomorphic, output $(R, b, R(G_b), b)$
- 3. Else, output $(R, b, R(G_b), 0)$

Computationally efficient, doesn't need prover!

Only needs to know whether (G_0, G_1) are isomorphic

- Connected to various concepts in cryptography
- Useful when data needs to be protected while allowing certain functionalities, e.g. authentication

Non-Classical Proof Systems

- New notions of what it means to "prove" something
- Vastly more "powerful" than classical mathematical proofs
- Usually involve randomness and/or interaction
- Many other examples:
 - Probabilistically Checkable Proofs,
 - Computationally Sound Interactive Proofs, etc.
- Lots of implications in theoretical computer science and cryptography
- Many practical applications delegation, blockchains, etc.