信息论

信号传输与处理的理论基础

MIMO通信基础:关于时空编码更深入的分析

MIMO財空编码(9)

(7) 线性时空码的平均译码差错概率的普适上界:同SISO的相似与不同

```
* P_e^{\text{MIMO}} < C|\Omega| exp(-(1/2)SNR \cdot min_{U \in \Omega \setminus O} tr(HUU^{\dagger}H^{\dagger}))
* C是一个常数,信噪比SNR = P/\sigma^2。
* 注:对SISO二元对称信道BSC(p),线性分组编码的ML译码平均差错概率
P_e^{\text{SISO}} \leq \sum_{j \geq d_{\min}} A_j p^j (1-p)^{n-j}
* A_j是Hamming范数(非零比特的个数)为j的码字数目,n是码字位数,
p = \text{比特差错概率 (由信道噪声和解调算法共同决定)} \propto exp(-\beta SNR), \beta
* 信道传输增益和解调体制共同决定的工作参数,代入上式得
P_e^{\text{SISO}} \leq 2^k exp(-\beta d_{\min} SNR)
* k = 每个码字中的原始信息位数,因此2^k = 码字数量。
```

注意 P_o SISO的上界和 P_o MIMO的上界的类似与差别,特别是<u>在时空编码</u>

情形起着最小Hamming距离 d_{min} 作用的量是 D_{min} = $min_{U \in \Omega \setminus O} tr(HUU^{\mathsf{T}}H^{\mathsf{T}})$ 。

MIMO財空编码(10)

(8) 线性时空码的平均译码差错概率的普适上界:基本推论

```
* P_e^{\text{MIMO}} < C/\Omega/exp(-(1/2)SNR \cdot min_{X \in \Omega \setminus O} tr(HXX^TH^T))
```

- * 因为 P_e^{MIMO} 随 $D_{min} = min_{X \in \Omega \setminus O} tr(HXX^TH^T)$ 的增加而指数
- *下降,因此时空编码方案的设计(其他条件相同的情况下)应使 D_{min} 尽可能大。
- * 对 D_{min} 的进一步分析:注意到码字X=(x(1),...,x(L))故
- * $tr(\boldsymbol{H}\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{H}^{\mathrm{T}}) = \sum_{t=1}^{L} tr(\boldsymbol{H}\boldsymbol{x}(t)\boldsymbol{x}(t)^{\mathrm{T}}\boldsymbol{H}^{\mathrm{T}}) = \sum_{t=1}^{L} \boldsymbol{x}(t)^{\mathrm{T}}\boldsymbol{H}^{\mathrm{T}}\boldsymbol{H}\boldsymbol{x}(t)$
- * 再注意到 H^TH 是对称且正定矩阵,因此有对角分解 $\sum_{k=1}^r \lambda_k^2 v_k v_k^T, \lambda_k$ 是H的
- * 奇异值,r=H的秩 \leq 发射天线的数量M,进而

$$tr(\boldsymbol{H}\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{H}^{\mathrm{T}}) = \sum_{k} \lambda_{k}^{2} \sum_{t=1}^{L} |\boldsymbol{x}(t)^{\mathrm{T}}\boldsymbol{v}_{k}|^{2}$$

因此各时空码字x(t)应尽可能靠近特征方向 $v_1,...,v_r$ 。

MIMO財空编码(11)

(9) 线性时空码的平均译码差错概率的普适上界:更实用的界

```
P_e^{\text{MIMO}} < C/\Omega/\exp(-(1/2)SNR\cdot D_{min}), D_{min} = min_{X \in \Omega \setminus O}tr(HXX^{T}H^{T}) 基本不等式: 若A是对称正定矩阵,则恒成立 det(I+A) \leq exp(trA), det(I-A) \leq exp(-trA)
```

【习题】证明以上不等式。提示:对A应用对角分解,以上不等式归结为对 $\lambda>0$ 恒有 $1+\lambda \le e^{\lambda}$ 和 $1-\lambda \le e^{-\lambda}$ 。

进而(请导出)有新的界

$$P_e^{\text{ MIMO}} < C/\Omega/max_{X \in \Omega \setminus 0} det(I_N - (1/2)SNR \cdot HXX^TH^T)$$

因此,线性时空编码的设计应尽可能使矩阵 $\mathbf{M}=\mathbf{I}_N-(1/2)SNR\cdot HXX^TH^T$) 的特征值尽可能地小,即矩阵 HXX^TH^T 的特征值 η_1,\ldots,η_N 尽可能地大,特别是非零的尽可能多,这时 P_e MIMO $< C/\Omega/max_{\mathfrak{p}}$ $\Pi_{k=1}^r(1-\frac{1}{2}\eta_k(X)SNR)$ 。特别是,编码方案应寻求使 HXX^TH^T 的最小非零特征值 η_* 尽可能大,因为:

$$P_e^{\text{MIMO}} < C/\Omega/max_{\# \otimes \Theta \rightleftharpoons X} (1-(1/2)\eta_*(X)\text{SNR})^r$$

同时寻求秩下尽可能大。上述不等式是在设计时空编码时最为实用的界。

MIMO射空编码(12)

典型时空编码结构: 串行空分复用编码

Data words $\mathbf{u}(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)$	Code words $x(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$
0001	0001 011
0010	0010 110
0011	0011 101
0100	0100 111
0101	0101 100
0110	0110 001
0111	0111 010
1000	1000 101
1001	1001 110
1010	1010 011
1011	1011 000
1100	1100 010
1101	1101 001
1110	1110 100
1111	1111 111

MIMO財空编码(13)

典型时空编码结构:并行空分复用编码

x = (111100010110100...)

MIMO財空编码(14)

典型时空编码结构:循环对角编码

MIMO財空编码(15)

典型时空译码结构: V-BLAST接收机

