WHAT IS CLAIMED IS:

1	1. A method for optimizing buffers in an integrated circuit design		
2	comprising:		
3	identifying paths and nodes within the integrated circuit design;		
4	determining node overlap within the integrated circuit design;		
5	calculating possible solutions for addressing timing violations within the		
6	integrated circuit design;		
7	choosing a solution for addressing timing violations;		
8	inserting buffers at particular nodes of the integrated circuit design; and,		
9	repeating the calculating possible solutions, the choosing a solution and the		
10	inserting buffers at particular nodes to address timing violations within		
11	the integrated circuit design.		
1	2. The method for optimizing buffers in an integrated circuit design of		
2	claim 1 wherein		
3	the repeating continues until a previous maximum number of violations have		
4	been addressed.		
1	3. The method for optimizing buffers in an integrated circuit design of		
2	claim 2 wherein		
3	after the repeating, there are orphan timing violations remaining to be		
4	addressed; and, further comprising		
5	inserting buffers at particular locations to address the orphan timing violations		
1	4. The method for optimizing buffers in an integrated circuit design of		
2	claim 1 wherein		
3	the choosing a solution is based upon fixing a plurality of timing violations		
4	based upon various input criteria.		

1	5.	The method for optimizing buffers in an integrated circuit design of		
2	claim 4 wherein			
3	the var	rious input criteria include a median approach, the median approach		
4		including calculating a nominal number of fixes from the calculating		
5		possible solutions and then selecting an approach which fixes more		
6		than the nominal number of fixes.		
1	6.	The method for optimizing buffers in an integrated circuit design of		
2	claim 4 where	zin		
3	the var	rious input criteria include an acquisitive approach, the acquisitive		
4		approach including determining which solution from the calculating		
5		possible solutions fixes a greatest number of timing violations and then		
6		selecting the approach which fixes the greatest number of timing		
7		violations.		
1	7.	The method for optimizing buffers in an integrated circuit design of		
2	claim 1 furthe	er comprising:		
3	identif	Tying buffers from a list of potential buffers available to insert into the		
4		integrated circuit design; and		
5	choosi	ing a subset of the buffers from the list as buffers for inserting at the		
6		particular nodes of the integrated circuit.		
1	8.	The method for optimizing buffers in an integrated circuit design of		
2	claim 7 where	ein:		
3	factors	s used in choosing a subset of the buffers from the list as buffers include		
4		a first order delay characteristic of the buffer, a maximum time slack		
5		characteristic of the buffer, and a drive strength characteristic of the		
6		buffer.		
1	9.	A apparatus for optimizing buffers in an integrated circuit design		
2	comprising:			
3	means	for identifying paths and nodes within the integrated circuit design;		

4	means for determining node overlap within the integrated circuit design;		
5	means for calculating possible solutions for addressing timing violations		
6	within the integrated circuit design;		
7	means for choosing a solution for addressing timing violations;		
8	means for inserting buffers at particular nodes of the integrated circuit design;		
9	and,		
10	means for repeating the calculating possible solutions, the choosing a solution		
11	and the inserting buffers at particular nodes to address timing		
12	violations within the integrated circuit design.		
1	10. The apparatus for optimizing buffers in an integrated circuit design of		
2	claim 9 wherein		
3	the repeating continues until a previous maximum number of violations have		
4	been addressed.		
1	11. The apparatus for optimizing buffers in an integrated circuit design of		
2	claim 10 wherein		
3	after the repeating, there are orphan timing violations remaining to be		
4	addressed; and, further comprising		
5	means for inserting buffers at particular locations to address the orphan timing		
6	violations.		
1	12. The apparatus for optimizing buffers in an integrated circuit design of		
2	claim 9 wherein		
3	the choosing a solution is based upon fixing a plurality of timing violations		
4	based upon various input criteria.		
1	13. The apparatus for optimizing buffers in an integrated circuit design of		
2	claim 12 wherein		
3	the various input criteria include a median approach, the median approach		
4	including calculating a nominal number of fixes from the calculating		
5	possible solutions and then selecting an approach which fixes more		
6	than the nominal number of fixes.		

l	14. T	he apparatus for optimizing buffers in an integrated circuit design of		
2	claim 12 wherein			
3	the vario	us input criteria include an acquisitive approach, the acquisitive		
4	a	pproach including determining which solution from the calculating		
5	p	ossible solutions fixes a greatest number of timing violations and then		
6	Se	electing the approach which fixes the greatest number of timing		
7	V	iolations.		
1	15. T	The apparatus for optimizing buffers in an integrated circuit design of		
2	claim 9 further of	comprising:		
3	means fo	or identifying buffers from a list of potential buffers available to insert		
4	iı	nto the integrated circuit design; and		
5	means fo	or choosing a subset of the buffers from the list as buffers for inserting		
6	a	t the particular nodes of the integrated circuit.		
1	16. T	The apparatus for optimizing buffers in an integrated circuit design of		
2	claim 15 wherei	n:		
3	factors u	sed in choosing a subset of the buffers from the list as buffers include		
4	a	first order delay characteristic of the buffer, a maximum time slack		
5	c	haracteristic of the buffer, and a drive strength characteristic of the		
6	b	ouffer.		
1	17. A	A system for optimizing buffers in an integrated circuit design		
2	comprising:			
3	an identi	ifying module, the identifying module identifying paths and nodes		
4	v	vithin the integrated circuit design;		
5	a determ	nining module, the determining module determining node overlap		
6	v	vithin the integrated circuit design;		
7	a calcula	ating module, the calculating module calculating possible solutions for		
8	а	addressing timing violations within the integrated circuit design;		
9	a choosi	ng module, the choosing module choosing a solution for addressing		
10	t	iming violations;		

11	an ins	serting module, the inserting module inserting buffers at particular nodes
12		of the integrated circuit design; and,
13	a repe	eating module, the repeating module repeating the calculating possible
14		solutions, the choosing a solution and the inserting buffers at particular
15		nodes to address timing violations within the integrated circuit design.
1	18.	The system for optimizing buffers in an integrated circuit design of
2	claim 17 whe	erein
3	the repeating continues until a previous maximum number of violations have	
4		been addressed.
1	19.	The system for optimizing buffers in an integrated circuit design of
2	claim 18 whe	
3	after t	the repeating, there are orphan timing violations remaining to be
4		addressed; and, further comprising
5	an orp	ohan inserting module, the orphan inserting module inserting buffers at
6		particular locations to address the orphan timing violations.
1	20.	The system for optimizing buffers in an integrated circuit design of
2	claim 18 whe	erein
3	the ch	noosing a solution is based upon fixing a plurality of timing violations
4		based upon various input criteria.
1	21.	The system for optimizing buffers in an integrated circuit design of
2	claim 20 whe	
3	the va	arious input criteria include a median approach, the median approach
4		including calculating a nominal number of fixes from the calculating
5		possible solutions and then selecting an approach which fixes more
6		than the nominal number of fixes.

1	22.	The system for optimizing outlers in an integrated circuit design of
2	claim 20 whe	rein
3	the va	rious input criteria include an acquisitive approach, the acquisitive
4		approach including determining which solution from the calculating
5		possible solutions fixes a greatest number of timing violations and then
6		selecting the approach which fixes the greatest number of timing
7		violations.
1	23.	The system for optimizing buffers in an integrated circuit design of
2	claim 9 furthe	er comprising:
3	an ide	ntifying module, the identifying module identifying buffers from a list of
4		potential buffers available to insert into the integrated circuit design;
5		and
6	a subs	et choosing module, the subset choosing module choosing a subset of
7		the buffers from the list as buffers for inserting at the particular nodes
8		of the integrated circuit.
1	24.	The system for optimizing buffers in an integrated circuit design of
2	claim 23 whe	rein:
3	factors	s used in choosing a subset of the buffers from the list as buffers include
4		a first order delay characteristic of the buffer, a maximum time slack
5		characteristic of the buffer, and a drive strength characteristic of the
6		buffer.