The probabilistic method in group theory

Hong Yi Huang

University of Bristol

SUSTech, 22 April 2021

Outline

- 1 The probabilistic method
- Quantum Contraction of simple groups
- Bases for almost simple primitive groups
- 4 Saxl graphs

The probabilistic method

From Wikipedia:

The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object.

The probabilistic method

From Wikipedia:

The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object.

Theorem (Erdös, 1947).

The Ramsey number R(r,r) grows at least exponentially with r.

The probabilistic method

From Wikipedia:

The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object.

Theorem (Erdös, 1947).

The Ramsey number R(r,r) grows at least exponentially with r.

The probabilistic method describes the existence and the abundance.

Randomly chosen elements in groups

If G is a non-abelian finite group, then

$$\frac{|\{(x,y)\in G\times G\mid xy=yx\}|}{|G|^2}\leq \frac{5}{8}.$$

Randomly chosen elements in groups

If G is a non-abelian finite group, then

$$\frac{|\{(x,y)\in G\times G\mid xy=yx\}|}{|G|^2}\leq \frac{5}{8}.$$

Question.

What if we randomly choose elements satisfying some properties?

Probabilistic methods in group theory

Let G be a finite group. Let E be an event and $\mathbb{P}_{E}(G)$ be the probability of randomly chosen elements satisfying E. Then

There exist elements satisfying
$$E \iff \mathbb{P}_E(G) > 0$$

 $\iff 1 - \mathbb{P}_E(G) < 1.$

Probabilistic methods in group theory

Let G be a finite group. Let E be an event and $\mathbb{P}_{E}(G)$ be the probability of randomly chosen elements satisfying E. Then

There exist elements satisfying
$$E \iff \mathbb{P}_E(G) > 0$$

 $\iff 1 - \mathbb{P}_E(G) < 1.$

Remarks:

- Sometimes it is hard to prove $\mathbb{P}_E(G) > 0$ by direct construction.
- We need to find an upper bound of $1 \mathbb{P}_{E}(G)$ that is easily obtained.
- We usually have good properties if $1 \mathbb{P}_{E}(G) \to 0$.

Probabilistic methods in group theory

Let G be a finite group. Let E be an event and $\mathbb{P}_{E}(G)$ be the probability of randomly chosen elements satisfying E. Then

There exist elements satisfying
$$E\iff \mathbb{P}_E(G)>0$$
 $\iff 1-\mathbb{P}_E(G)<1.$

Remarks:

- Sometimes it is hard to prove $\mathbb{P}_{E}(G) > 0$ by direct construction.
- We need to find an upper bound of $1 \mathbb{P}_{E}(G)$ that is easily obtained.
- We usually have good properties if $1 \mathbb{P}_{E}(G) \to 0$.

Aim.

Find $\widehat{Q}_{E}(G) \geq 1 - \mathbb{P}_{E}(G)$ such that $\widehat{Q}_{E}(G) < 1$.

Outline

- The probabilistic method
- ② Generation of simple groups
- Bases for almost simple primitive groups
- Saxl graphs

Let G be a group. Then G is called 2-**generated** if there exists $x, y \in G$ such that $G = \langle x, y \rangle$.

Let G be a group. Then G is called 2-generated if there exists $x, y \in G$ such that $G = \langle x, y \rangle$.

Problem.

Is every finite simple group 2-generated?

Let G be a group. Then G is called 2-generated if there exists $x,y\in G$ such that $G=\langle x,y\rangle$.

Problem.

Is every finite simple group 2-generated?

Example.

- $A_n = \langle (1,2,3), (1,2,\ldots,n) \rangle$ if n is odd.
- $A_n = \langle (1,2,3), (2,3,\ldots,n) \rangle$ if *n* is even.

Let G be a group and

$$\mathbb{P}(G) := \frac{|\{(x,y) \in G \times G \mid \langle x,y \rangle = G\}|}{|G|^2}$$

be the probability of 2 randomly chosen elements in G generate G.

Let G be a group and

$$\mathbb{P}(G) := \frac{|\{(x,y) \in G \times G \mid \langle x,y \rangle = G\}|}{|G|^2}$$

be the probability of 2 randomly chosen elements in G generate G.

• If $\mathbb{P}(G) > 0$ then G is 2-generated.

Let G be a group and

$$\mathbb{P}(G) := \frac{|\{(x,y) \in G \times G \mid \langle x,y \rangle = G\}|}{|G|^2}$$

be the probability of 2 randomly chosen elements in G generate G.

- If $\mathbb{P}(G) > 0$ then G is 2-generated.
- If $G \neq \langle x, y \rangle$ then $x, y \in H$ for some maximal subgroup H of G.

Let G be a group and

$$\mathbb{P}(G) := \frac{|\{(x,y) \in G \times G \mid \langle x,y \rangle = G\}|}{|G|^2}$$

be the probability of 2 randomly chosen elements in G generate G.

- If $\mathbb{P}(G) > 0$ then G is 2-generated.
- If $G \neq \langle x, y \rangle$ then $x, y \in H$ for some maximal subgroup H of G.

Thus, we have

$$1 - \mathbb{P}(G) \le \sum_{H \text{ maximal}} \frac{|H|^2}{|G|^2}$$

Let G be a group and

$$\mathbb{P}(G) := \frac{|\{(x,y) \in G \times G \mid \langle x,y \rangle = G\}|}{|G|^2}$$

be the probability of 2 randomly chosen elements in G generate G.

- If $\mathbb{P}(G) > 0$ then G is 2-generated.
- If $G \neq \langle x, y \rangle$ then $x, y \in H$ for some maximal subgroup H of G.

Thus, we have

$$1 - \mathbb{P}(G) \le \sum_{H \text{ maximal}} \frac{|H|^2}{|G|^2}$$
$$= \sum_{H \in \mathcal{M}} \frac{|H|^2}{|G|^2} \cdot |G : N_G(H)|$$

Let G be a group and

$$\mathbb{P}(G) := \frac{|\{(x,y) \in G \times G \mid \langle x,y \rangle = G\}|}{|G|^2}$$

be the probability of 2 randomly chosen elements in G generate G.

- If $\mathbb{P}(G) > 0$ then G is 2-generated.
- If $G \neq \langle x, y \rangle$ then $x, y \in H$ for some maximal subgroup H of G.

Thus, we have

$$\begin{aligned} 1 - \mathbb{P}(G) &\leq \sum_{H \text{ maximal}} \frac{|H|^2}{|G|^2} \\ &= \sum_{H \in \mathcal{M}} \frac{|H|^2}{|G|^2} \cdot |G : N_G(H)| \\ &= \sum_{H \in \mathcal{M}} \frac{|H|}{|G|} =: \widehat{Q}(G), \end{aligned}$$

where \mathcal{M} is the set of maximal subgroups in G up to conjugacy.

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Class	Туре
\mathscr{C}_1	P_1
\mathscr{C}_2	$GL_1(13) \wr S_2$
\mathscr{C}_3	$GL_1(13^2)$
\mathscr{C}_6	2^{1+2} . $Sp_2(2)$
	\mathcal{C}_1 \mathcal{C}_2 \mathcal{C}_3

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

Thus,

$$\widehat{Q}(G) = \sum_{H \in \mathcal{M}} \frac{|H|}{|G|} = \frac{72}{1092} + \frac{12}{1092} + \frac{14}{1092} + \frac{12}{1092} = \frac{29}{273} < 1.$$

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

Thus,

$$\widehat{Q}(G) = \sum_{H \in \mathcal{M}} \frac{|H|}{|G|} = \frac{72}{1092} + \frac{12}{1092} + \frac{14}{1092} + \frac{12}{1092} = \frac{29}{273} < 1.$$

Indeed, $\mathbb{P}(G) = 165/182$.

Theorem.

Every finite simple group is 2-generated.

Theorem.

Every finite simple group is 2-generated.

Problem.

Let $G = \langle x, y \rangle$.

- How abundant are such pairs (x, y)?
- What if we restrict |x| and |y|?

Example.

Let $G = L_2(q)$. Then maximal subgroups of G are among the following:

- P parabolic of index q + 1;
- $D_{q\pm 1}$;
- $L_2(q_0)$ or $PGL_2(q_0)$ (subfield subgroups);
- A_4 , S_4 , A_5 .

Example.

Let $G = L_2(q)$. Then maximal subgroups of G are among the following:

- P parabolic of index q + 1;
- $D_{q\pm 1}$;
- $L_2(q_0)$ or $PGL_2(q_0)$ (subfield subgroups);
- A_4 , S_4 , A_5 .

Note that there are at most $\log_2 \log_2 q$ subfields of \mathbb{F}_q . We have

$$\widehat{Q}(G) = (q+1)^{-1} + O(q^{-\frac{3}{2}}\log\log q) = O(q^{-1}).$$

Thus, $\widehat{Q}(G) \to 0$ as $q \to \infty$, and so $\mathbb{P}(G) \to 1$.

Theorem.

Let (G_n) be any sequence of finite simple groups such that $|G_n| \to \infty$ with n. Then $\lim_{n \to \infty} \widehat{Q}(G_n) = 0$ and so $\lim_{n \to \infty} \mathbb{P}(G) = 1$.

Theorem.

Let (G_n) be any sequence of finite simple groups such that $|G_n| \to \infty$ with n. Then $\lim_{n \to \infty} \widehat{Q}(G_n) = 0$ and so $\lim_{n \to \infty} \mathbb{P}(G) = 1$.

Theorem.

We have $\mathbb{P}(G) \geq 53/90$ for every finite simple group G, with the equality if and only if $G = A_6$.

Let G be a finite group. Then G is called (a,b)-generated if $G=\langle x,y\rangle$ for some |x|=a and |y|=b.

Let G be a finite group. Then G is called (a,b)-generated if $G=\langle x,y\rangle$ for some |x|=a and |y|=b.

Example.

- S_n is (2, n)-generated.
- A_n is (3, n)-generated if n is odd, and (3, n-1)-generated if n is even.
- D_{2n} is both (2,2)-generated and (2,n)-generated.
- A (2,2)-generated group is isomorphic to D_{2n} .

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

• G is (a, b)-generated $\iff \mathbb{P}_{a,b}(G) > 0$.

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

- G is (a, b)-generated $\iff \mathbb{P}_{a,b}(G) > 0$.
- If $G \neq \langle x, y \rangle$ then $x, y \in H$ for some maximal subgroup H of G.

Let G be a finite group and $\mathbb{P}_{a,b}(G)$ be the probability of

"G is generated by randomly chosen elements of order a and b".

- G is (a, b)-generated $\iff \mathbb{P}_{a,b}(G) > 0$.
- If $G \neq \langle x, y \rangle$ then $x, y \in H$ for some maximal subgroup H of G.

Thus,

$$1 - \mathbb{P}_{a,b}(G) \leq \sum_{\substack{H \text{ maximal} \\ i_a(G)i_b(G)}} \frac{i_a(H)i_b(H)}{i_a(G)i_b(G)},$$

where $i_m(X)$ denotes the number of elements of order m in X.

(2,3)-generation

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

(2,3)-generation

Example.

Let $G = L_2(13)$. Then maximal subgroups of G up to conjugacy are

Group	Class	Туре
13:6	\mathscr{C}_1	P_1
D_{12}	\mathscr{C}_2	$GL_1(13) \wr S_2$
D_{14}	\mathscr{C}_3	$GL_1(13^2)$
A_4	\mathscr{C}_6	2^{1+2} . $Sp_2(2)$

It follows that

$$\begin{aligned} 1 - \mathbb{P}_{2,3}(G) &\leq \sum_{\substack{H \text{ maximal} \\ 16562}} \frac{i_2(H)i_3(H)}{i_2(G)i_3(G)} \\ &= \frac{338}{16562} \times 14 + \frac{14}{16562} + 0 + \frac{24}{16562} \times 14 \\ &= 45/91 < 1. \end{aligned}$$

(2,3)-generation

Theorem (King, 2017).

Every non-abelian finite simple group is (2, r)-generated for some prime $r \ge 3$.

(2,3)-generation

Theorem (King, 2017).

Every non-abelian finite simple group is (2, r)-generated for some prime $r \ge 3$.

Conjecture.

Let G be a non-abelian finite simple group. Then one of the following cases occurs:

- \bigcirc *G* is (2,3)-generated;
- ② G is (2,5)-generated and G is one of the folloing groups:
 - \bullet $A_6, A_7, A_8;$
 - M₁₁, M₂₂, M₂₃, McL;

 - **1** $L_2(9)$, $L_3(4)$, $L_4(2)$;
 - \bullet U₃(5), U₄(2), U₄(3), U₅(2);
- $G = U_3(3)$ and G is (2,7)-generated.

Outline

- The probabilistic method
- ② Generation of simple groups
- 3 Bases for almost simple primitive groups
- 4 Saxl graphs

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition.

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition.

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition.

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

Images of a base determine the whole group G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition.

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

- Images of a base determine the whole group G.
- If G is transitive and $H = G_{\alpha}$, then b(G) is the minimal cardinality of a subset $S \subseteq G$ such that

$$\bigcap_{x\in\mathcal{S}}H^x=1.$$

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition.

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

- Images of a base determine the whole group G.
- If G is transitive and $H = G_{\alpha}$, then b(G) is the minimal cardinality of a subset $S \subseteq G$ such that

$$\bigcap_{x\in S}H^x=1.$$

• There always exists a base by noting that Ω is a base.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$.

Definition.

A subset Δ of Ω is a **base** for G if $\cap_{\alpha \in \Delta} G_{\alpha} = 1$.

The **base size** of G, denoted by b(G), is the minimal cardinality of a base.

- Images of a base determine the whole group G.
- If G is transitive and $H = G_{\alpha}$, then b(G) is the minimal cardinality of a subset $S \subseteq G$ such that

$$\bigcap_{x\in S}H^x=1.$$

- There always exists a base by noting that Ω is a base.
- $b(G) = 1 \iff G$ has a regular orbit on Ω .

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

•
$$G = A_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 2$.

•
$$G = S_n$$
, $\Omega = \{1, ..., n\}$: $b(G) = n - 1$.

•
$$G = A_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 2$.

•
$$G = D_{2n}$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = 2$.

Example.

- $G = S_n$, $\Omega = \{1, ..., n\}$: b(G) = n 1.
- $G = A_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 2.
- $G = D_{2n}$, $\Omega = \{1, \ldots, n\}$: b(G) = 2.
- G = GL(V), $\Omega = V$:

A subset of Ω is a base iff it contains a basis of V, so $b(G) = \dim V$.

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- $G = A_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 2.
- $G = D_{2n}$, $\Omega = \{1, \ldots, n\}$: b(G) = 2.
- G = GL(V), Ω = V:
 A subset of Ω is a base iff it contains a basis of V, so b(G) = dim V.
- $G = \operatorname{PGL}(V)$, $d = \dim V > 1$, $\Omega = P(V)$: b(G) = d + 1 Indeed, a base size set is $\{\langle v_1 \rangle, \dots, \langle v_d \rangle, \langle v_1 + \dots + v_d \rangle\}$, where v_1, \dots, v_d is a basis of V.

A group is called **almost simple** if

$$soc(G) \cong T \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

A group is called almost simple if

$$soc(G) \cong T \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

A permutation group is called **primitive** if G_{α} is maximal in G.

A group is called almost simple if

$$soc(G) \cong T \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

A permutation group is called **primitive** if G_{α} is maximal in G. Roughly speaking, an almost simple primitive group is called **standard** if

- $soc(G) = A_n$ and G_{α} is primitive on $\{1, \ldots, n\}$, or
- *G* is classical with $G_{\alpha} \cap \operatorname{soc}(G)$ reducible.

A group is called almost simple if

$$soc(G) \cong T \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

A permutation group is called **primitive** if G_{α} is maximal in G. Roughly speaking, an almost simple primitive group is called **standard** if

- $soc(G) = A_n$ and G_{α} is primitive on $\{1, \ldots, n\}$, or
- *G* is classical with $G_{\alpha} \cap \operatorname{soc}(G)$ reducible.

Other almost simple primitive groups are called **non-standard**.

Conjecture.

Let G be a non-standard group. Then $b(G) \le c$ for some constant c.

Conjecture.

Let G be a non-standard group. Then $b(G) \le c$ for some constant c.

For a positive integer c, let

$$\mathbb{P}(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : \bigcap_{i=1}^c G_{\alpha_i} = 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of points in Ω is a base for G.

Conjecture.

Let G be a non-standard group. Then $b(G) \le c$ for some constant c.

For a positive integer c, let

$$\mathbb{P}(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : \bigcap_{i=1}^c G_{\alpha_i} = 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of points in Ω is a base for G.

- $b(G) \le c \iff \mathbb{P}(G,c) > 0$.
- A c-tuple is not a base if and only if it is fixed by some x ∈ G of prime order.
- The probability of a random c-tuple is fixed by x is $fpr(x)^c$, where

$$fpr(x) = \frac{|C_{\Omega}(x)|}{|\Omega|} = \frac{|x^G \cap G_{\alpha}|}{|x^G|}$$

is the **fixed point ratio** of x.

From above, we have

$$\begin{split} 1 - \mathbb{P}(G, c) &\leq \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c \\ &= \sum_{i=1}^m \mathsf{fpr}(x_i)^c |x_i^G| \\ &= \sum_{i=1}^m \left(\frac{|x_i^G \cap G_{\alpha}|}{|x_i^G|} \right)^c \cdot |x_i^G| =: \widehat{Q}(G, c), \end{split}$$

where \mathcal{P} is the set of elements of prime order in G, and $\{x_1,\ldots,x_m\}$ are representatives of \mathcal{P} up to G-conjugacy.

From above, we have

$$\begin{split} 1 - \mathbb{P}(G, c) &\leq \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c \\ &= \sum_{i=1}^m \mathsf{fpr}(x_i)^c |x_i^G| \\ &= \sum_{i=1}^m \left(\frac{|x_i^G \cap G_\alpha|}{|x_i^G|} \right)^c \cdot |x_i^G| =: \widehat{Q}(G, c), \end{split}$$

where \mathcal{P} is the set of elements of prime order in G, and $\{x_1,\ldots,x_m\}$ are representatives of \mathcal{P} up to G-conjugacy.

• $b(G) \le c$ if $\widehat{Q}(G,c) < 1$.

From above, we have

$$\begin{split} 1 - \mathbb{P}(G, c) &\leq \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c \\ &= \sum_{i=1}^m \mathsf{fpr}(x_i)^c |x_i^G| \\ &= \sum_{i=1}^m \left(\frac{|x_i^G \cap G_{\alpha}|}{|x_i^G|} \right)^c \cdot |x_i^G| =: \widehat{Q}(G, c), \end{split}$$

where \mathcal{P} is the set of elements of prime order in G, and $\{x_1,\ldots,x_m\}$ are representatives of \mathcal{P} up to G-conjugacy.

- $b(G) \leq c$ if $\widehat{Q}(G,c) < 1$.
- In particular, $b(G) \le 2$ if

$$|G_{\alpha}|^2 \max_{1 \neq x \in G_{\alpha}} |C_G(x)| = |G_{\alpha}|^2 \max_{\substack{x \in G_{\alpha} \\ |x| \text{ prime}}} |C_G(x)| < |G|.$$

A base-two example

Example.

Suppose $soc(G)=\mathsf{L}_3^\epsilon(q)$ with $q=p\equiv\epsilon\pmod 3$ and $H=G_\alpha$ is of type $3^{1+2}.\,\mathsf{Sp}_2(3).$ Then $|H|\le 432$ and

$$|C_G(x)| \le \frac{|G|}{(q-1)(q^3-1)}$$

for all $x \in G$ of prime order (maximal if $\epsilon = +$ and x is unipotent with Jordan form $[J_2, J_1]$). This gives b(G) = 2 for all q > 23. When $q \le 23$ we can also check using MAGMA that b(G) = 2.

Cameron's conjecture for exceptional groups

Theorem (Liebeck & Saxl, 1991).

Let G be a transitive almost simple exceptional group over \mathbb{F}_q . Then

$$\max_{1\neq x\in G}\operatorname{fpr}(x)\leq \frac{4}{3q}.$$

Cameron's conjecture for exceptional groups

Theorem (Liebeck & Saxl, 1991).

Let G be a transitive almost simple exceptional group over \mathbb{F}_q . Then

$$\max_{1\neq x\in G}\operatorname{fpr}(x)\leq \frac{4}{3q}.$$

If soc(G) exceptional then $|G| < q^{249}$ and so $b(G) \le 500$ since

$$\widehat{Q}(G, 500) = \sum_{i=1}^{m} fpr(x_i)^{500} |x_i^G|$$

$$\leq \left(\frac{4}{3q}\right)^{500} \sum_{i=1}^{m} |x_i^G|$$

$$< \left(\frac{4}{3q}\right)^{500} |G|$$

$$< \left(\frac{4}{3q}\right)^{500} q^{249} < \frac{1}{q}.$$

Theorem (Burness, Liebeck & Shalev, 2009).

Let G be a non-standard group. Then $b(G) \le 7$, with the equality iff $G = M_{24}$ in its natural action.

Theorem (Burness, Liebeck & Shalev, 2009).

Let G be a non-standard group. Then $b(G) \leq 7$, with the equality iff $G = M_{24}$ in its natural action.

Burness 2018: Determined non-standard groups G with b(G) = 6.

Theorem (Burness, Liebeck & Shalev, 2009).

Let G be a non-standard group. Then $b(G) \le 7$, with the equality iff $G = M_{24}$ in its natural action.

Burness 2018: Determined non-standard groups G with b(G) = 6.

Burness 2021: Determined exact base sizes when G_{α} is soluble.

Theorem (Burness, Liebeck & Shalev, 2009).

Let G be a non-standard group. Then $b(G) \le 7$, with the equality iff $G = M_{24}$ in its natural action.

Burness 2018: Determined non-standard groups G with b(G) = 6.

Burness 2021: Determined exact base sizes when G_{α} is soluble.

Problem.

Determine exact base sizes for non-standard groups. In particular, classify those with b(G) = 2.

Problem.

Determine finite primitive groups G with b(G) = 2.

Problem.

Determine finite primitive groups G with b(G) = 2.

• Affine: G = V:H. Then

$$b(G) = 2 \iff V \neq \bigcup_{1 \neq h \in H} C_V(h),$$

where $C_V(h) = \{v : v^h = v\}$ is the 1-eigenspace of h on V, leading

Problem.

Determine pairs (V, H), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

Problem.

Determine finite primitive groups G with b(G) = 2.

• Affine: G = V:H. Then

$$b(G) = 2 \iff V \neq \bigcup_{1 \neq h \in H} C_V(h),$$

where $C_V(h) = \{v : v^h = v\}$ is the 1-eigenspace of h on V, leading

Problem.

Determine pairs (V, H), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

Almost simple: nearly done.

Problem.

Determine finite primitive groups G with b(G) = 2.

• Affine: G = V:H. Then

$$b(G) = 2 \iff V \neq \bigcup_{1 \neq h \in H} C_V(h),$$

where $C_V(h) = \{v : v^h = v\}$ is the 1-eigenspace of h on V, leading

Problem.

Determine pairs (V, H), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

- Almost simple: nearly done.
- Diagonal and twisted wreath: partial results (Fawcett, 2013/21).

Saxl's base-two project

Problem.

Determine finite primitive groups G with b(G) = 2.

• Affine: G = V:H. Then

$$b(G) = 2 \iff V \neq \bigcup_{1 \neq h \in H} C_V(h),$$

where $C_V(h) = \{v : v^h = v\}$ is the 1-eigenspace of h on V, leading

Problem.

Determine pairs (V, H), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

- Almost simple: nearly done.
- Diagonal and twisted wreath: partial results (Fawcett, 2013/21).
- Product type: no result.

Outline

- The probabilistic method
- Generation of simple groups
- Bases for almost simple primitive groups
- Saxl graphs

Saxl graphs

Definition.

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two permutation group.

The **Saxl graph** $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Saxl graphs

Definition.

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two permutation group.

The **Saxl graph** $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example.

• $G = D_8$, $\Omega = \{1, 2, 3, 4\}$: $\Sigma(G) \cong C_4$.

Saxl graphs

Definition.

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two permutation group.

The **Saxl graph** $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example.

• $G = D_8$, $\Omega = \{1, 2, 3, 4\}$: $\Sigma(G) \cong C_4$.

• $G = D_{10}$, $\Omega = \{1, 2, 3, 4, 5\}$: $\Sigma(G) \cong K_5$.

Some further examples

Example.

• Let $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$. Then $\alpha \sim \beta$ iff $\{\alpha, \beta\}$ is linearly independent. Thus, $\Sigma(G)$ is **complete multipartite** with q+1 parts of size q-1. For example, when q=3 we have $\Sigma(G) \cong K_8 - 4K_2$.

Some further examples

Example.

• Let $G = \operatorname{GL}_2(q)$ and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$. Then $\alpha \sim \beta$ iff $\{\alpha, \beta\}$ is linearly independent. Thus, $\Sigma(G)$ is **complete multipartite** with q+1 parts of size q-1. For example, when q=3 we have $\Sigma(G) \cong K_8 - 4K_2$.

• Let $G = \operatorname{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then α and β form a base iff they share a common 1-space. Hence, $\Sigma(G) \cong J(q+1,2)$ is a **Johnson graph**.

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G.

1 $\Sigma(G)$ is G-vertex-transitive.

Proposition.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- $\Sigma(G)$ is connected if G is primitive.

Proposition.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- **2** $\Sigma(G)$ is connected if G is primitive.
- \circ $\Sigma(G)$ is complete if and only if G is Frobenius.

Proposition.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- $\Sigma(G)$ is connected if G is primitive.
- **1** $\Sigma(G)$ is G-arc-semiregular.

Proposition.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- $\Sigma(G)$ is connected if G is primitive.
- **1** $\Sigma(G)$ is G-arc-semiregular.
- \bullet $\Sigma(G)$ is the union of all regular orbital graphs of G.

Proposition.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- **3** $\Sigma(G)$ is complete if and only if G is Frobenius.
- **1** $\Sigma(G)$ is G-arc-semiregular.
- **5** $\Sigma(G)$ is the union of all regular orbital graphs of G.
- **5** $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular suborbits.

Proposition.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- **3** $\Sigma(G)$ is complete if and only if G is Frobenius.
- **3** $\Sigma(G)$ is G-arc-semiregular.
- \bullet $\Sigma(G)$ is the union of all regular orbital graphs of G.
- **o** $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular suborbits.
- If $K \leq G \leq \operatorname{Sym}(\Omega)$, then $\Sigma(G)$ is a subgraph of $\Sigma(K)$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two transitive permutation group with degree n. Let $\operatorname{val}(G)$ be the valency of $\Sigma(G)$. Set

$$Q(G,2):=1-\mathbb{P}(G,2)=\frac{|\{(\alpha,\beta)\in\Omega^2:\,G_{\alpha\beta}\neq 1\}|}{n^2}=1-\frac{\mathsf{val}(G)}{n}.$$

Let $G \leq \operatorname{Sym}(\Omega)$ be a base-two transitive permutation group with degree n. Let $\operatorname{val}(G)$ be the valency of $\Sigma(G)$. Set

$$Q(G,2):=1-\mathbb{P}(G,2)=\frac{|\{(\alpha,\beta)\in\Omega^2:\,G_{\alpha\beta}\neq 1\}|}{n^2}=1-\frac{\mathsf{val}(G)}{n}.$$

Lemma.

If $Q(G,2) < \frac{1}{t} \le \frac{1}{2}$, then $\Sigma(G)$ has all of the following properties:

- Any t vertices in $\Sigma(G)$ has a common neighbour;
- $\Sigma(G)$ has diameter at most 2;
- $\Sigma(G)$ has clique number at least t+1;
- $\Sigma(G)$ is Hamiltonian.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability of a random chosen pairs in Ω do not form a base.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability of a random chosen pairs in Ω do not form a base.

- $Q(G,2) < 1 \implies b(G) \le 2$.
- $Q(G,2) < \frac{1}{t} \implies \Sigma(G)$ satisfies all statements in the above lemma.

Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2}$$

is the probability of a random chosen pairs in Ω do not form a base.

- $Q(G,2) < 1 \implies b(G) \le 2$.
- $Q(G,2) < \frac{1}{t} \implies \Sigma(G)$ satisfies all statements in the above lemma.

We have

$$Q(G,2) \leq \sum_{i=1}^{m} \frac{|x_i \cap H|^2}{|x_i^G|} = \widehat{Q}(G,2),$$

where $H = G_{\alpha}$ and $\{x_1, \dots, x_m\}$ is the set of representatives of G-conjugacy classes of prime-ordered elements in G.

Conjecture (Burness & Giudici, 2020).

Let G be a primitive permutation group. Then $\Sigma(G)$ has diameter ≤ 2 .

Conjecture (Burness & Giudici, 2020).

Let G be a primitive permutation group. Then $\Sigma(G)$ has diameter ≤ 2 .

Note that if $Q(G,2) < \frac{1}{2}$, then the conjecture holds.

Conjecture (Burness & Giudici, 2020).

Let G be a primitive permutation group. Then $\Sigma(G)$ has diameter ≤ 2 .

Note that if $Q(G,2) < \frac{1}{2}$, then the conjecture holds.

Example.

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q+1) and thus

$$Q(G,2)=1-rac{\mathsf{val}(G)}{\mathsf{n}}=1-rac{4(q-1)}{q(q+1)} o 1 ext{ as } q o \infty$$

Conjecture (Burness & Giudici, 2020).

Let G be a primitive permutation group. Then $\Sigma(G)$ has diameter ≤ 2 .

Note that if $Q(G,2) < \frac{1}{2}$, then the conjecture holds.

Example.

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 . Then $\Sigma(G) \cong J(q+1,2)$ has valency 2(q+1) and thus

$$Q(G,2)=1-rac{\mathsf{val}(G)}{n}=1-rac{4(q-1)}{q(q+1)}
ightarrow 1 ext{ as } q
ightarrow \infty$$

but $\Sigma(G) \cong J(q+1,2)$ still satisfies the Burness-Giudici Conjecture.

An evidence

Example.

Suppose $soc(G) = L_3^{\epsilon}(q)$ with $q = p \equiv \epsilon \pmod 3$ and $H = G_{\alpha}$ is of type 3^{1+2} . $Sp_2(3)$. Then $|H| \le 432$ and

$$|C_G(x)| \le \frac{|G|}{(q-1)(q^3-1)}$$

for all $x \in G$ of prime order (maximal if $\epsilon = +$ and x is unipotent with Jordan form $[J_2, J_1]$). This gives $\widehat{Q}(G, 2) < 8q^{-1}$ for all q > 23. When $q \le 23$ we can also check using MAGMA that the conjecture holds.

• All primitive groups with degree $n \le 4095$

- All primitive groups with degree $n \le 4095$
- All non-standard groups with socle A_n

- All primitive groups with degree $n \le 4095$
- All non-standard groups with socle A_n
- "Most" sporadic groups

- All primitive groups with degree $n \le 4095$
- All non-standard groups with socle A_n
- "Most" sporadic groups
- $soc(G) = L_2(q)$ (Chen & Du, 2020)

- All primitive groups with degree $n \le 4095$
- All non-standard groups with socle A_n
- "Most" sporadic groups
- $soc(G) = L_2(q)$ (Chen & Du, 2020)
- All almost simple primitive groups with soluble stabilisers (Burness & H, in progress)

- All primitive groups with degree $n \le 4095$
- All non-standard groups with socle A_n
- "Most" sporadic groups
- $soc(G) = L_2(q)$ (Chen & Du, 2020)
- All almost simple primitive groups with soluble stabilisers (Burness & H, in progress)
- Asymptotic results for many diagonal and twisted wreath type groups (Fawcett, 2013/21)

Clique number: maximal size of complete subgraph.

Clique number: maximal size of complete subgraph.

Theorem (Burness & H, in progress).

Let G be an almost simple primitive group with soluble stabiliser H. Suppose $G_0 \neq L_2(q)$. Then one of the following holds:

- $\Sigma(G)$ has clique number at least 5.
- $G = A_5$ and $H = S_3$, the clique number of $\Sigma(G)$ is 4.

Clique number: maximal size of complete subgraph.

Theorem (Burness & H, in progress).

Let G be an almost simple primitive group with soluble stabiliser H. Suppose $G_0 \neq L_2(q)$. Then one of the following holds:

- $\Sigma(G)$ has clique number at least 5.
- $G = A_5$ and $H = S_3$, the clique number of $\Sigma(G)$ is 4.

Independent number: maximal size of empty subgraph.

Clique number: maximal size of complete subgraph.

Theorem (Burness & H, in progress).

Let G be an almost simple primitive group with soluble stabiliser H. Suppose $G_0 \neq L_2(q)$. Then one of the following holds:

- $\Sigma(G)$ has clique number at least 5.
- $G = A_5$ and $H = S_3$, the clique number of $\Sigma(G)$ is 4.

Independent number: maximal size of empty subgraph.

Theorem (Burness & H, in progress).

Let $\alpha(G)$ be the independence number of $\Sigma(G)$. Then almost simple transitive groups G with $\alpha(G) = 2$ or 3 are known.

Problems

- **Connectedness.** Characterise transitive groups with connected Saxl graph. *G* quasiprimitive?
- Automorphisms.
 - When do we have $G = \operatorname{Aut}(\Sigma(G))$?
 - When is $\Sigma(G)$ Cayley?
- Cycles. Eulerian cycle? Hamiltonian cycle?
- Unique regular suborbit. Can we classify groups with r = 1?
- Other invariants. Chromatic numbers? Spectrum?

Thank you for your attention!

Some references I

- 1. T.C. Burness. *Base sizes for primitive groups with soluble stabilisers*, submitted (2020), arXiv:2006.10510.
- 2. T.C. Burness. *Simple groups, fixed point ratios and applications*. Local representation theory and simple groups, 267–322, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2018.
- 3. T.C. Burness and M. Giudici. *On the Saxl graph of a permutation group*, Math. Proc. Cambridge Philos. Soc. **168** (2020), 219–248.
- 4. T.C. Burness and H.Y. Huang. On the Saxl graph of primitive groups with soluble stabilisers, in preparation.
- T.C. Burness, M.W. Liebeck and A. Shalev. Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc. 98 (2009), 116–162.
- 6. H. Chen and S. Du. *On the Burness-Giudici conjecture*, submitted (2020), arXiv:2008.04233.

Some references II

- 7. J. Chen and H.Y. Huang. *On valency problems of Saxl graphs*, submitted (2020), arXiv:2012.13747.
- 8. J.D. Dixon. *Probabilistic group theory*. C. R. Math. Acad. Sci. Soc. R. Can. **24** (2002), no. 1, 1–15.
- 9. P. Erdös. *Graph theory and probability*. Canadian J. Math. **11** (1959), 34–38.
- 10. P. Erdös. *Graph theory and probability. II.* Canadian J. Math. **13** (1961), 346–352.
- 11. P. Erdös and A. Rényi. *Probabilistic methods in group theory*. J. Analyse Math. **14** (1965), 127–138.
- 12. C.H. Li and H. Zhang. *The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc-transitive graphs*, Proc. Lond. Math. Soc. **103** (2011), 441–472.
- 13. M.W. Liebeck. *Probabilistic and asymptotic aspects of finite simple groups*. Probabilistic group theory, combinatorics, and computing, 1–34, Lecture Notes in Math., 2070, Springer, London, 2013.