Dynamic Programming

presented by Jason TOKO

Outline

- v 1. Introduction
- v 2. Policy Evaluation
- v 3. Policy Improvement
- v 4. Policy Iteration
- v 5. Value Iteration
- v 6. Asynchronous Dynamic Programming

Introduction

Introduction

- DP algorithm is used for planning in an MDP
- v It assumes full knowledge of MDP
- Prediction Problem:
 - υ Input: MDP and policyτ
 - υ Output: value function v_{π}
- v Control Problem:
 - o Input: MDP
 - Output: optimal value function optimal policy π_*

Introduction

- v Key idea of DP:
 - Use value functions to organize and structure the search for good policies
 - v Turn the Bellman equation into update rules

Policy Evaluation

Policy Evaluation

- Policy Evaluation is used to compute for an arbitrary policy
- Dellman expectation equations:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Policy Evaluation

- Direct solution: |S| simultaneous linear equations in |S| unknowns
- Iteration solution: iterative application of Bellman expectation backup (synchronous)

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big]$$

The sequence $\{v_k\}$ can converge to_{π} by $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow ... \rightarrow v_k \rightarrow ... \rightarrow v_{\pi}$

Iterative Policy Evaluation

 $= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big]$

Iterative Policy Evaluation

Iterative policy evaluation

```
Input \pi, the policy to be evaluated

Initialize an array V(s) = 0, for all s \in \mathbb{S}^+

Repeat

\Delta \leftarrow 0

For each s \in \mathbb{S}:

v \leftarrow V(s)

V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]

\Delta \leftarrow \max(\Delta,|v-V(s)|)

until \Delta < \theta (a small positive number)

Output V \approx v_{\pi}
```

Example: Small Gridworld

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- v Nonterminal states 1,...,14
- one terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached.
- Agent follows uniform random policy

Example: Small Gridworld

 v_k for the Random Policy

Greedy Policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	←	\leftrightarrow	\leftrightarrow
1	\leftrightarrow	\leftrightarrow	\leftrightarrow
\leftrightarrow	\leftrightarrow	\longleftrightarrow	1
\leftrightarrow	\Leftrightarrow	\rightarrow	

k = 2

0.0	-1.7	-2.0	-2.0
	-2.0		
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Example: Small Gridworld

7		-
v	_	4
κ	_	-

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

7		100
K	_	α
1		~~

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

- Use value function to help find better policies
- υ How to do $it_{\pi}^{*}(s,a)$

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right].$$

$$v_{\pi}(s)$$

And compare it to

- **v** Policy Improvement Theorem
- o If it is satisfied for all $s \in S$ that $q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$.
- Then we have conclusion for all $s \in S$ that $v_{\pi'}(s) \geq v_{\pi}(s)$.
- v Thus $\pi' \geq \pi$

υ Proof:

```
v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))
              = \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]
               \leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_t = s]
               = \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}_{\pi'}[R_{t+2} + \gamma v_{\pi}(S_{t+2})] \mid S_t = s]
              = \mathbb{E}_{\pi'} [R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2}) \mid S_t = s]
              \leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 v_{\pi}(S_{t+3}) \mid S_t = s]
              \leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \mid S_t = s]
               = v_{\pi'}(s).
```

- v Consider a deterministic policy, a = π(s)
- we can improve the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q_{\pi}(s, a)$$

This improves the value from any state s over one ste_{s}^{-1} $q_{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$

v It therefore in $v_{\pi'}(s) \geq v_{\pi}(s)$ alue function,

If the new greedy policy is as good as the old π pc': $q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$

Then the Bel' $v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s,a)$ ration has been satisfied

$$v_{\pi}(s) = v_{*}(s)$$
 $\pi = \pi_{*}$
and

- v Therefore
- Conclusion: Policy improvement must give us a strictly better policy except when the original policy is already

v If a stochastic policy...

v If there are several actions achieve maximum...

v Example...

- When we combine policy evaluation and policy improvement:
- υ Given a policy π
 - v Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

n Improve the policy by acting greedily with respect to

$$\pi' = \mathsf{greedy}(v_\pi)$$

- De And we repeat this process again and again...
- Then we will get a sequence:

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

- The policy will be strictly improved
- This must converge in a finite number of iterations

Policy iteration (using iterative policy evaluation)

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Example: Jack's Car Rental

Modified Policy Iteration

- f v Does policy evaluation need to converge $tm arphi_\pi$?
- Modification:
- 1 1 Introduce a stopping condition
 - e.g. stop when $\max_{s \in \mathbb{S}} |v_{k+1}(s) v_k(s)|$ is sufficiently small
- 2Stop after k iterations of iterative policy evaluation
 - v If k=1, this is equivalent to value iteration~

o If we combine the policy improvement and onestep policy evaluation, we can get a backup

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s',r} p(s', r | s, a) [r + \gamma v_k(s')],$

For arbitrary v_0 v_k v_k

- Some points:
 - Unlike policy iteration, there is no explicit policy, thus the algorithm only acts on the value space.
 - Intermediate value functions k may not correspond to any policy

 Another way of understanding: turn the Bellman optimal equation into an update rule

$$v_{*}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s', r \mid s, a) \Big[r + \gamma v_{*}(s') \Big]$$

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{k}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s', r \mid s, a) \Big[r + \gamma v_{k}(s') \Big],$$

Bellman optimality backup (synchronous)

Value iteration

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
Repeat
   \Delta \leftarrow 0
   For each s \in S:
         v \leftarrow V(s)
         V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
```

- » Recursive decomposition:
- o If we know the solution to subproblem $g_*(s')$
- Then solution $V_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s') \right]$$

Example: Shortest Path

	0	0	0	0
	0	0	0	0
	0	0	0	0
8		Sec. 103		

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

0	-1	-2	-3		
-1	-2	-3	-4		
-2	-3	-4	-5		
-3	-4	-5	-5		

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

Asynchronous DP

Asynchronous DP

- Synchronous DP backs up all states in parallel
- Asynchronous DP backs up states individually, in any order
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function $\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma v_{old}(s')]$

$$v_{old} \leftarrow v_{new}$$

In-place value iteration only stores one copy of value function $v(s) \leftarrow \max_{a} \sum_{r} p(s',r|s,a)[r+\gamma v(s')]$

In-Place Dynamic Programming

- v For the in-place algorithm:
 - It usually converges faster than the synchronous one since it use new data as soon as they are available
 - The order in which states are backed up has a significant influence on the rate of convergence

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma v(s')] - v(s) \right|$$

- Back up the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup

Real-Time Dynamic Programming

- Let an agent actually experience the MDP~
- Use agent's experience to guide the selection of states $v(S_t) \leftarrow \max_a \sum_{s',r} p(s',r \mid S_t,a)[r + \gamma v(s')]$
- The latest value and policy information can also guide the agent's decision-making

Thank You!

$$\pi_{*}$$

$$\{v_{k}\}$$

$$v_{*}(s')$$

$$v_{0}$$

$$|S|$$

$$k \to \infty$$

$$v_{0} \to v_{1} \to v_{2} \to \dots \to v_{k} \to \dots \to v_{*}$$

$$q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$$

$$v_{\pi}(s) = v_{*}(s)$$

$$\pi' \geq \pi$$

$$\pi = \pi_{*}$$

$$v_{new}(s) \leftarrow \max_{a} \sum_{s',r} p(s', r \mid s, a)[r + \gamma v_{old}(s')]$$

$$v_{old} \leftarrow v_{new}$$

$$v(S_{t}) = \max_{a} \sum_{s',r} p(s', r \mid S_{t}, a)[r + \gamma v(S_{t})]$$

$$\left|\max_{a} \sum_{s',r} p(s', r \mid s, a)[r + \gamma v(s')] - v(s)\right|$$