Water Enhancement Project

Aqua Partners

Stakeholders & Objective

Main Stakeholder: Mr. Gerson Lwenge, Minister of Water and Irrigation,
Government of Tanzania

Problematic: Improving the water pump system in Tanzania by identifying the optimal features of installment

Approach: Utilisation of classification algorithms to predict if new water pumps will be functional

Premise

- Country Population: 58 million people

Water Access: 25 million people lack access to a safe water source and 40 million lack access to improved sanitation

<u>Economy:</u> 6-7% of GDP growth, one of the fastest growing in Africa. Water access is key to sustain the growth and improve people's lives

Data details

- Approx. 60,000 water pumps installed
- Target: functional/non-functional assessment
- 29 binary & continuous features
- Example:
 - Date of installation
 - Water quality
 - Region
 - Installing
 - Organisation
 - Source type
 - Nearest water bassin
 - Length of operation (feature engineered)

Model Process

- Measure Metric:

Accuracy

- Rationale:

Accuracy will enable us to assess the quality of our model for predicting the status of water pumps

- Validation format:

- Five-fold Stratified random sampling

- <u>Initial Model Eval:</u>

- Best performing: Decision Tree adjusted using GridSearch CV
- Most constant across train/validation: Logistic Regression
- Prevalence

Model interpretation & Results

- Baseline Model (Train/Val):
 - Decision Tree: 0.96 / 0.78
 - Logistic Regression: 0.78 / 0.77
- Secondary Models (Train/Val/Test):
 - Random Forests: 0.77 / 0.76
 - Support Vector Machines: 0.61 / 0.60
 - K-nearest neighbors: 0.71 / 0.69
 - Ensemble methods:
 - Decision Tree with parameter optimization: 0.90 / 0.86 / 0.88
 - Threshold of 0.45

Feature Importance

