TAKE-HOME CLASS QUIZ: DUE OCTOBER 12: SEQUENCES AND MISCELLANEA

MATH 153, SECTION 59 (VIPUL NAIK)

Vou	name (print clearly in capital letters):
YO	U ARE FREE TO DISCUSS ALL QUESTIONS, BUT PLEASE MAKE SURE TO ENTER ANSWER CHOICES THAT YOU PERSONALLY ENDORSE
(1)	 Consider the sequence a_n = 2a_{n-1} - α, with a₁ = β, for α, β real numbers. What can we say about this sequence for sure? (A) (a_n) is eventually increasing for all values of α, β. (B) (a_n) is eventually decreasing for all values of α, β. (C) (a_n) is eventually constant for all values of α, β. (D) (a_n) is either increasing or decreasing, and which case occurs depends on the values of α and β. (E) (a_n) is increasing, decreasing, or constant, and which case occurs depends on the values of α and β.
	Your answer:
(2)	 This is a generalization of the preceding question. Suppose f is a continuous increasing function on R. Define a sequence recursively by a_n = f(a_{n-1}), with a₁ chosen separately. What can we say about this sequence for sure? (A) (a_n) is eventually increasing regardless of the choice of a₁. (B) (a_n) is eventually decreasing regardless of the choice of a₁. (C) (a_n) is eventually constant regardless of the choice of a₁. (D) (a_n) is either increasing or decreasing, and which case occurs depends on the value of a₁ and the nature of f. (E) (a_n) is increasing, decreasing, or constant, and which case occurs depends on the value of a₁ and the nature of f.
	Your answer:
(3)	For a function $f: \mathbb{R} \to \mathbb{R}$ and a particular element $a \in \mathbb{R}$, define $g: \mathbb{N} \to \mathbb{R}$ by $g(n) = f(f(\dots(f(a))\dots))$ with the f occurring $n-1$ times. Thus, $g(1)=a, g(2)=f(a)$, and so on. Choose the right expression for g for each of these choices of f . $f(x) := x + \pi.$ (A) $g(n) := a + n\pi.$ (B) $g(n) := a + n\pi - 1.$ (C) $g(n) := a + n(\pi - 1).$ (D) $g(n) := a + \pi(n - 1).$ (E) $g(n) := \pi + n(a - 1).$
	Your answer:
(4)	$f(x) := mx, m \neq 0.$ (a) $g(n) := mna.$ (b) $g(n) := m^n a.$ (c) $g(n) := n^m a.$ (d) $g(n) := m^{n-1} a.$ (e) $g(n) := n^{m-1} a.$

	Your answer:
(5)	$f(x) := x^{2}.$ (A) $g(n) := a^{2^{n}} - 1.$ (B) $g(n) := a^{2^{n}-1}.$ (C) $g(n) := a^{2^{n-1}}.$ (D) $g(n) := a^{2^{n-1}}.$ (E) $g(n) := (a^{2^{n}})^{-1}.$
	Your answer:
(6)	One of these sequences can not be obtained using the procedure described in the previous questions (i.e., iterated application of a function). Identify this sequence. Only the first five terms of the sequence are presented: (A) $1,2,3,3,3$ (B) $1,2,3,2,3$ (C) $1,2,3,2,3$ (D) $1,2,3,4,5$ (E) $1,2,3,4,3$
	Your answer:
(7)	 Suppose f: R → R is a function. Identify which of these definitions is not correct for lim f(x) = L, where c and L are both finite real numbers. (A) For every ε > 0, there exists δ > 0 such that if x ∈ (c - δ, c + δ) \ {c}, then f(x) ∈ (L - ε, L + ε). (B) For every ε₁ > 0 and ε₂ > 0, there exist δ₁ > 0 and δ₂ > 0 such that if x ∈ (c - δ₁, c + δ₂) \ {c}, then f(x) ∈ (L - ε₁, L + ε₂). (C) For every ε₁ > 0 and ε₂ > 0, there exists δ > 0 such that if x ∈ (c - δ, c + δ) \ {c}, then f(x) ∈ (L - ε₁, L + ε₂). (D) For every ε > 0, there exist δ₁ > 0 and δ₂ > 0 such that if x ∈ (c - δ₁, c + δ₂) \ {c}, then f(x) ∈ (L - ε, L + ε). (E) None of these, i.e., all definitions are correct.
	Your answer:
(8)	 In the usual ε − δ definition of limit for a given limit lim f(x) = L, if a given value δ > 0 works for a given value ε > 0, then which of the following is true? (A) Every smaller positive value of δ works for the same ε. Also, the given value of δ works for every smaller positive value of ε. (B) Every smaller positive value of δ works for the same ε. Also, the given value of δ works for every larger value of ε. (C) Every larger value of δ works for the same ε. Also, the given value of δ works for every smaller positive value of ε. (D) Every larger value of δ works for the same ε. Also, the given value of δ works for every larger value of ε. (E) None of the above statements need always be true.
	Your answer:
(9)	In the usual $\varepsilon - \delta$ definition of limit, we find that the value $\delta = 0.2$ for $\varepsilon = 0.7$ for a function f at 0, and the value $\delta = 0.5$ works for $\varepsilon = 1.6$ for a function g at 0. What value of δ definitely works for $\varepsilon = 2.3$ for the function $f + g$ at 0? (A) 0.2 (B) 0.3

(C) 0.5
(D) 0.7
(E) 0.9
Your answer:
The sum of limits theorem states that $\lim_{x\to c} [f($
defined. One of the choices below gives an example of the choices of the choice
finite but the right side makes no sense. Identi

- (10) The sum of limits theorem states that $\lim_{x\to c} [f(x)+g(x)] = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$ if the right side is defined. One of the choices below gives an example where the left side of the equality is defined and finite but the right side makes no sense. Identify the correct choice.
 - (A) f(x) := 1/x, g(x) := -1/(x+1), c = 0.
 - (B) f(x) := 1/x, g(x) := (x-1)/x, c = 0.
 - (C) $f(x) := \arcsin x, g(x) := \arccos x, c = 1/2.$
 - (D) f(x) := 1/x, g(x) = x, c = 0.
 - (E) $f(x) := \tan x, g(x) := \cot x, c = 0.$

Your answer: ____

- (11) Suppose $g: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{x\to 0} g(x)/x = A$ for some constant $A \neq 0$. What is $\lim_{x\to 0} g(g(x))/x$?
 - (A) 0
 - (B) A
 - (C) A^2
 - (D) g(A)
 - (E) g(A)/A

Your answer: _____

- (12) Suppose $g: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{x\to 0} g(x)/x^2 = A$ for some constant $A \neq 0$.

 What is $\lim_{x\to 0} g(g(x))/x^4$?
 - (A) A
 - (B) A^2
 - (C) A^3
 - (D) $A^2g(A)$
 - (E) $g(A)/A^2$

Your answer: _____