

CSC Beam-Halo Alignment

Jim Pivarski
Aysen Tatarinov
Vadim Khotilovich
Alexei Safonov

Texas A&M University

7 May, 2010

- ▶ Method to align all rings, not just complete ones
- Ring-radius corrections
- New constants
- Error analysis

3/24

- We can't rely on reading out data from all CSC edges
- ▶ Old procedure relied on complete rings for a full set of equations
- ▶ That left only 4 alignable rings— not acceptable

----- relative positions measured by beam-halo tracks

chamber position

- Residuals relate chambers i and i + 1: for N chambers, that's N equations
- lackbox Rotation angle of whole ring cannot be determined, so really only N-1 independent equations
- ► Last constraint is closure:

$$\frac{1}{N}\sum_{i}^{N}r_{i}$$
 should be zero

Mathematical framework

relative positions measured
by beam-halo tracks
chamber position

Jim Pivarski 5/24

- If one constraint is missing, we could fill in the information by assuming closure
- Problem: closure became non-zero when the field was turned on (will revisit later in this talk)
- Another problem: many rings had more than one missing constraint— system is underdetermined
- However, in complete rings we find that photogrammetry (PG) is still accurate: can use PG as a new constraint

Mathematical framework

Jim Pivarski 6/24

- New framework to combine beam-halo and PG on an equal footing:
 - generalize equations to relate any i and j
 - ► PG measurements relate each chamber *i* with an external frame, a new chamber-like object
- Even with gaps in beam-halo and PG, the system is always constrained or overconstrained (graph is fully connected)

Mathematical framework

Jim Pivarski 7/24

- New framework to combine beam-halo and PG on an equal footing:
 - generalize equations to relate any i and j
 - PG measurements relate each chamber i with an external frame, a new chamber-like object
- Even with gaps in beam-halo and PG, the system is always constrained or overconstrained (graph is fully connected)
- Potential extension (not in this talk): SLMs also relate groups of chambers to frames; I made new software flexible enough to possibly include it

Radius corrections

Jim Pivarski

- Closure constraint in 2008 $\vec{B} = 0$ data uncovered detector width issue
- ► Shape of individual chambers has not changed (in reality and software)
- $lackbox{ New data with full } \vec{B}$ has non-zero closure, independent of momentum
- Non-zero closure is equivalent to either incorrect detector widths or incorrect ring radius
- Disk bending does change ring radius, since chamber centers are displaced in z from the disk: rotation is around a point outside the chamber

- Oleg did a back-of-the-envelope calculation and predicted that including this effect would account for half of the observed discrepancy
- ▶ Putting these numbers into the full reconstruction (accounting for the fact that even- and odd-numbered chambers have different length posts) yields Oleg's prediction

	2008 (no \vec{B})	2010 (full \vec{B})	corrected 2010
ME+3/1		$+298 \ mm$	$+$ 100 \pm 9 μ m
ME-2/1	$-$ 40 \pm 23 μ m		
ME - 3/1	$-$ 20 \pm 28 μ m	$+486 \ mm$	$+$ 278 \pm 9 μ m
ME - 3/2		$+572~\mathrm{mm}$	$+$ 446 \pm 27 μ m
ME-4/1		+440 mm	$+267\pm10~\mu{ m m}$

► We can calculate approximate closure of incomplete rings by averaging the residuals we do see:

$$c = rac{1}{N_{ ext{visible}}} \sum_{i}^{N_{ ext{visible}}} r_i pprox rac{1}{N} \sum_{i}^{N} r_i \qquad \Delta ext{radius} = rac{c imes N}{2\pi}$$

 Pattern has a compelling symmetry/antisymmetry: strongly suggests a real effect (for which we don't have a complete model)

- If we apply the observed closures as measurements of ring radii, we can move on to align $r\phi$ and ϕ_z of all CSCs (except ME1/3)
- Let's look at some of the $r\phi$ alignment results, given the new radii

▶ Pure PG is not very far from pure beam-halo, but now we can align them in a combined fit (demonstrated by varying weights)

New constants

Jim Pivarski

- ▶ Another example: this ring has incomplete PG
- ▶ Pure PG has no information about this chamber (set to ideal), but even strongly-weighted PG yields a reasonable value for the missing chamber because it is "filled in" by beam-halo data

New constants

Jim Pivarski

13/24

- ► This ring has incomplete beam-halo; system of equations cannot be solved without external information
- Even weakly-weighted PG yields a reasonable value for the missing overlap

New constants

► An outer ring (low beam-halo statistics) with several missing chambers in a row: the relative positions of these are entirely determined by PG

▶ Also works for ϕ_z rotation angle

- lacktriangle Two alignment parameters, $r\phi$ and ϕ_z , in addition to ring radii
 - third possible parameter, ϕ_y , is imprecise when measured with beam-halo (ideal geometry is more accurate, so leave as ideal)

- Dashed lines indicate missing connections
- We can align the disconnected sections, but these sections will later need to be positioned relative to the tracker using globalMuons
- ME1/1 geometry is very nearly ideal

- What is the uncertainty in chamber positions?
- ...a complicated question because chamber uncertainties are highly correlated by the system of equations
- ▶ However, the equations can be represented as a matrix, and that matrix can be diagonalized to identify a basis of linearly-independent combinations of alignment parameters
- ▶ These are "modes": modes with small uncertainties are strong modes, modes with large uncertanties are weak modes
- There are as many modes as there are chambers in the alignment

Jim Pivarski 18/24

► Uncertainty in each mode (mm) for ME+4/1 with a plot of the mode as normalized eigenfunction versus chamber number

- First mode is uncertainty in the position of the whole ring, proportional to an arbitrary constant λ (set to a large number)
- ▶ Whole ring position (relative to tracker) requires external globalMuons

Jim Pivarski 19/24

► Uncertainty in each mode (mm) for ME+4/1, this time wtih PG constraint: "PGFrame" is last point, right edge of plot window

- ► A bigger example: ME+2/2
- ▶ The largest meaningful uncertainty is 0.26 mm

- ▶ The special case: ME+1/1
- The first 6 modes are proportional to λ , indicating separate sections

Jim Pivarski 22/24

- Remember that ME1/1 has break-points with missing data (no PG and missing chambers for beam-halo)
- These modes describe arbitrary positions of each of the sections relative to the others: just a reminder that we'll need to align the sections as rigid bodies later

Jim Pivarski 23/24

▶ Statistical uncertainties are in the range of a few hundred microns

ring	largest mode (mm)	sum in quadrature (mm)
ME+1/1	0.29	0.54
ME+1/2	0.20	0.60
ME+2/1	0.14	0.23
ME+2/2	0.26	0.76
ME + 3/1	0.11	0.19
ME + 3/2	0.24	0.70
ME+4/1	0.12	0.21
ME-1/1	0.47	0.79
ME-1/2	0.15	0.51
ME-2/1	0.13	0.21
ME-2/2	0.15	0.69
ME - 3/1	0.09	0.18
ME - 3/2	0.19	0.67
ME-4/1	0.10	0.18

- ▶ Missing chambers forced a re-formulation of beam-halo alignment
- ▶ Complete rings reveal that PG is still valid; use PG as a constraint
- Need to interpret non-zero closure as radial corrections, but they form a suggestive pattern in the two endcaps
- Beam-halo + PG combination has the right limits as weight of PG constraint is varied
- Statistical uncertainty in the result can be calculated by decomposing into modes (a few hundred microns)
- ▶ ME1/1 ring is incomplete, only aligned in sections
- Whole rings (and ME1/1 sections) will need to be aligned relative to the tracker with globalMuons; work on this using CRAFT-10 cosmics is underway, following same procedure as CRAFT-09