

《运筹学基础》【计算题汇总】-丁大乔

第二章

- 1、某企业要对其生产的某种产品的售价进行预测,已知市场上同类商品的售价分别为 125 元,127 元,135 元,138 元,140 元。
- (1) 试用简单滑动平均预测法进行价格预测。
- (2) 若设定同类产品权数如下表,试用加权滑动平均预测法进行价格预测。

售价(元)	125	127	135	138	140
权	1	1	3	3	5

(1)
$$\frac{(125+127+135+138+140)}{5} = 133 (\overline{\pi})$$
(2)
$$\frac{(125\times1+127\times1+135\times3+138\times3+140\times5)}{1+1+3+3+5} = 136.2 (\overline{\pi})$$

【注意细节】题目中有单位,答案也需要有单位。

2、某木材公司销售房架构件,其中某种配件的销售数据如下表。试计算:3个月的简单滑动平均预测值(计算结果直接填在表中相应空格)。

月份	实际销售额 (元)	3 个月滑动平均预测值
1	10	
2	12	
3	13	
4	16	
5	19	
6	23	

月份	实际销售额 (元)	3 个月滑动平均预测值
1:	10	
2	12	
3	13	
4	16	$\frac{10+12+13}{3} \approx 11.67$
5	19	$\frac{12+13+16}{3} \approx 13.67$
6	23	$\frac{13+16+19}{2} = 16.00$

【注意】123 月滑动预测 4 月,234 月滑动预测 5 月,345 月滑动预测 6 月。

- 3、设某商品第 t 期实际价格为 500 元,用指数平滑法得到第 t 期预测价格为 480 元,第 t+1 期预测价格为 488 元。
- (1)试确定平滑系数。
- (2) 若商品价格是看涨的,选取的平滑系数是否合理?应如何选取平滑系数?

$$(1) F_{t+1} = \alpha x_t + (1 - \alpha) F_t$$

即 $488 = \alpha \times 500 + (1 - \alpha) \times 480$
即 $488 = 480 + 20\alpha$
即 $8 = 20\alpha$
所以 $\alpha = 0.4$

(2)不合理,因为当商品的价格看涨或看跌时,平滑系数的值应该取大于1的值。

第三章

- 4、某企业面临三种方案可以选择, 五年内的损益表如下表(单位: 万元)所示。
- (1)用最大最大决策标准进行决策。
- (2)用最大最小决策标准进行决策。
- (1)根据最大最大决策标准:

扩建: max{50,25,-25,-45}=50

新建: max{70,30,-40,-80}=70

转包: max{30,15,-1,-10}=30

max{50,70,30}=70,所以应该选择新建。

(2)根据最大最小决策标准:

扩建: min{50, 25, -25, -45}=-45

新建: min{70,30,-40,-80}=-80

转包: min{30,15,-1,-10}=-10

max{-45,-80,-10}=-10,所以应该选择转包。

然 _{状 态 需} 损 益 值 (万 元) 高 中 低 失败 选 方 扩建 50 25 -25 -45 新建 70 30 -40 -80 转包 30 15 -10 -1

5、某公司拟对新产品生产批量作出决策,现有三种备选方案,未来市场对该产品的需求也有三种可能的自然状态,收益如下表。试以最小最大遗憾值决策标准作出最优生产决策。

销售状态 收益值 备选方案	销路好 <i>N</i> ₁	销路一般 <i>N</i> ₂	销路较差 <i>N</i> ₃
S_1 (大型生产线)	200	100	-50
S ₂ (中型生产线)	120	80	10
S ₃ (小型生产线)	60	40	40

先求出每个方案的遗憾值表:

销售状态 遗憾值 备选方案	销路好 <i>N</i> ₁	销路一般 <i>N</i> ₂	销路较差 <i>N</i> ₃
S ₁ (大型生产线)	0	0	90
S ₂ (中型生产线)	80	20	30
S_3 (小型生产线)	140	60	0

再选出各个方案的最大遗憾值: 90; 80; 140; 最后,单个方案的最大遗憾值中最小的为 80,所以 S_2 可作为备选方案。

【注意】确定遗憾值是按列进行,每一列有一个最佳收益,用最佳收益做减法即可得到遗憾值。

- 6、某单位搞农业开发。设想三种方案,有三种自然状态, 其收益预测如下表。根据折衷主义决策标准进行决策时:
- (1) 折衷系数 $\alpha=0.6$ 时的最优方案是哪种?
- (2)折衷系数α在什么范围内取值时, S1 为最优方案?

收益 自然状态 可选方案	较好 E ₁	一般 E ₂	较差 E,
Sı	20	12	8
Sz	16	16	10
S ₃	12	12	12

$$(1) cv_1 = 0.6 \times 20 + 0.4 \times 8 = 15.2$$

$$cv_2 = 0.6 \times 16 + 0.4 \times 10 = 13.6$$

$$cv_3 = 0.6 \times 12 + 0.4 \times 12 = 12$$

max{15.2, 13.6, 12}=15.2, 对应的方案是 S1, 所以应该选择方案 S1

$$(2) cv_1 = 20\alpha + 8(1 - \alpha) = 12\alpha + 8$$

$$cv_2 = 16\alpha + 10(1 - \alpha) = 6\alpha + 10$$

$$cv_3=12\alpha+12(1-\alpha)=12$$

S1 为最优方案,需满足 $12\alpha + 8 > 6\alpha + 10$,即 $\alpha > \frac{1}{3}$,并且 $12\alpha + 8 > 12$,即 $\alpha > \frac{1}{3}$,所以当 $\alpha > \frac{1}{3}$ 时,S1 为最优方案

7、某企业计划生产某款净水器, 拟定的价格有 A1、A2、A3 三个方 案,预计进入市场后可能的销售状 态有3种,收益值如下表,试以最 大期望收益值决策标准作出该款净 水器价格的决策选择。(单位:万元)

松蓝柳状	伯路好 θ_1	销路一般 0:	销路差 θ ₁
价格方案	後半 B ₁₁ 0.3	₩ B ₃ :0.5	概率 B ₁ :0.2
较高价格出售 A	1200	800	600
中等价格出售 A	1000	1000	800
较低价格出售 A	900	900	900

方案 A1 的期望收益: 1200 × 0.3 + 800 × 0.5 + 600 × 0.2 = 880 (万元)

方案 A2 的期望收益: $1000 \times 0.3 + 1000 \times 0.5 + 800 \times 0.2 = 960$ (万元)

方案 A3 的期望收益:900×0.3+900×0.5+900×0.2=900(万元)

max{880,960,900}=960, 所以选择方案 A2 可以获得最大期望收益,即企业应该选择中等价格出售。

【注意】期望收益就是用概率作为权重来计算每一个方案收益的加权平均数。

第四章

【注意公式】:

经济订货量为
$$: N_{\mu} = \sqrt{\frac{2NP}{C}}$$

最佳订货次数 =
$$\frac{N}{N_{"}}$$
 最优订

最佳订货次数 =
$$\frac{N}{N_{\mu}}$$
 最优订货间隔期 = $\frac{365}{$ 最佳订货次数

平均存货量 =
$$\frac{1}{2}N_{\mu}$$

平均存货量 =
$$\frac{1}{2}N_{\mu}$$
 平均存货额 = $\frac{1}{2}N_{\mu} \times$ **单价**

保管费用 = 平均库存量×每一库存台套的年保管费用

N——年需要量

P----- 一次订货费用

C——每一库存台套的年保管费用

注:若题干中已知条件是:每台套存货的单价、年保管费用率,则

C =每台套存货的单价×年保管费用率

8、某设备公司每年按单价 25 元购入 54 000 套配件。单位库存维持费为每套 6 元,每次订货费为 20 元。试求该公司 最佳订货批量和全年最佳订货次数。

最佳订货量为:
$$\sqrt{\frac{2 \times 54000 \times 20}{6}} = 600 \left(26 \right)$$

最佳*订货次数为*:54000 ÷ 600 = 90 (次)

【注意】题目中可能会有干扰项,比如这个题当中的"单价25元"。注意带单位。

9、某公司需要外购某零部件,年需求4800件,单价为40元,每个零部件存贮一年费用为该零部件价格的25%,每次订货费用为375元,试求最佳订货批量和最优订货间隔期(结果保留整数)

最佳订货量为:
$$\sqrt{\frac{2 \times 4800 \times 375}{40 \times 25\%}} = 600 (#)$$

最佳*订货次数为*: $4800 \div 600 = 8(次)$

最优订货间隔期 = 365 ÷ 8 ≈ 46 (天)

【注意】题目说"结果保留整数",就四舍五入保留整数。题目没有说明,就四舍五入保留两位小数。

10、某厂将从某轴承厂订购轴承台套,按进厂价格估计,全年共计为 100 000 元,每个轴承台套进厂价格为 500 元/套。根据会计部门测算,每订购一次的订购费用为 250 元,全年库存保管费用约占平均存货额的 12.5%。试求该厂最佳采购批量、全年订货与库存保管的费用总金额。

最佳订货量为:
$$\sqrt{\frac{2 \times (100000 \div 500) \times 250}{500 \times 12.5\%}} = 40$$
 (台套)

订货次数为: $(100000 \div 500) \div 40 = 5(次)$,年订货费用为: $5 \times 250 = 1250(元)$

年R管费用为: $\frac{1}{2} \times 40 \times 500 \times 12.5\% = 1250 (元)$, 全年订货与库存保管的费用总金额为2500元

第五章

11、某公司利用两种原料 A、B 生产甲、乙两种产品(吨),各产品所需的原料数,原料限量及单位产品所获利润如下表。企业目标是追求利润的最大化,试写出该线性规划问题的数学模型,并用图解法求出最优解和最大利润。

原料消耗定额	甲	乙	资源供应量
原料 A	2	4	8
原料 B	4	3	11
产品利润(万元/吨)	5	6	

设生产 x_1 吨甲产品, x_2 吨乙产品时,总利润为f万元则线性规划模型为:

$$\max \quad f = 5x_1 + 6x_2$$

$$\begin{cases} 2x_1 + 4x_2 \le 8\\ 4x_1 + 3x_2 \le 1\\ x_1 \ge 0 \ , \ x_2 \ge 0 \end{cases}$$

可行域如图所示。

点 A(0,2) , 当 $x_1 = 0$, $x_2 = 2$ 时 , f = 12

点 D(11/4,0), 当 $x_1 = 11/4$, $x_2 = 0$ 时, f = 55/4

点 E(2,1), 当 $x_1 = 2$, $x_2 = 1$ 时, f = 16

所以, 当 $x_1 = 2$, $x_2 = 1$ 时, f 取最大值 16

即: 当生产2吨甲产品、1吨乙产品时,可以获得最大利润16万元。

12、某设备公司计划期内安排 A、B 两种产品生产,有关资源消耗及可获利润如下表,该公司希望生产安排的利润最大化。写出该线性规划问题的数学模型,

产品	$A(X_1)$	B (X ₂)	资源供应量
关键材料1	9	4	360kg
关键材料 2	4	5	200kg
设备工时	3	10	300 工时
预计获利	7	12	

用图解法求出最优解。

设生产 x_1 吨 A 产品, x_2 吨 B 产品时,总利润为f万元则线性规划模型为:

$$\max \quad f = 7x_1 + 12x_2$$

$$\begin{cases} 9x_1 + 4x_2 \le 360 \\ 4x_1 + 5x_2 \le 200 \\ 3x_1 + 10x_2 \le 300 \\ x_1 \ge 0 , x_2 \ge 0 \end{cases}$$

可行域如图所示。

解方程组 ${9x_1 + 4x_2 = 360 \atop 4x_1 + 5x_2 = 200}$,得到可行域的一个顶点坐标:(34.48 , 12.42)

解方程组 ${4x_1 + 5x_2 = 200 \atop 3x_1 + 10x_2 = 300}$,得到可行域的一个顶点坐标:(20 , 24)

可行域的另外两个顶点坐标:(0,30)(40,0),把可行域的四个顶点坐标代入目标函数得:

当 $x_1 = 20$, $x_2 = 24$ 时, f **取最大值** 428

即: 当生产20吨A产品、24吨B产品时,可以获得最大利润428万元。

【注意】偶尔会考到这种有三个约束条件的题,此时画图要画准确一点,方便看出可行解区的顶点是哪两条线的交点。

13、某设备公司计划期内安排 A、B 两种产品生产,有关资源消耗及可获利润如下表,该公司希望生产安排的利润最

大化。试建立线性规划问题的标准形式,以原点为基础求基础可行解,并建立初始单纯形表。

产品	A (X ₁)	B (X ₂)	资源供应量
关键材料1	9	4	360kg
关键材料 2	4	5	200kg
设备工时	3	10	300 工时
预计获利	7	12	

$$\max Z = 7X_1 + 12X_2 + 0 \cdot S_1 + 0 \cdot S_2 + 0 \cdot S_3$$

$$\begin{cases}
9X_1 + 4X_2 + S_1 = 360 \\
4X_1 + 5X_2 + S_2 = 200 \\
3X_1 + 10X_2 + S_3 = 300 \\
X_1 \ge 0, X_2 \ge 0 \\
S_1 \ge 0, S_2 \ge 0, S_3 \ge 0
\end{cases}$$

以原点为基础求出基础可行解: $令X_1 = X_2 = 0$, 得基础可行解 $(X_1, X_2, S_1, S_2, S_3) = (0, 0, 360, 200, 300)$

		<i>X</i> ₁	<i>X</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	
基变量	C_j						
<i>S</i> ₁	0						
<i>S</i> ₂	0						
<i>S</i> ₃	0						
	Z_j	0	0	0	0	0	0
	$C_j - Z_j$						

【注意】初始单纯形表的第一行是目标函数中的几个变量;第一列是基变量(除 X1、X2 以外的其他变量),第二列是 Cj 列、倒数第二行是 Zj 行,这两个都是 0。最后一行是 Cj - Zj , 因为 Zj 是 0 , 所以最后一行和 Cj 行相同。其他几行即目标函数、约束条件的系数抄下来即可。

		<i>X</i> ₁	<i>X</i> ₂	S ₁	S ₂	S ₃	
基变量	C_j	7	12	0	0	0	Z
<i>S</i> ₁	0	9	4	1	0	0	360
S ₂	0	4	5	0	1	0	200
S ₃	0	3	10	0	0	1	300
	Z_j	0	0	0	0	0	0
	$C_j - Z_j$	7	12	0	0	0	Z

第六章

14、已知某商品由产地 A、B、C 生产,并运往甲乙丙销地出售,产量、销量及单位运价如下表,试用西北角法求其最

销地 单位运价 (元) 产地	甲	乙	丙	产量 (吨)
A	3	4	5	200
В	4	5	3	600
С	5	3	4	200
销量 (吨)	300	300	400	

	甲	Z	丙	产量
Α	3	4	5	200
В	4	5	3	600
С	5	3	4	200
销量	300	300	400	

	E	P	7	2	Ī	5	产量
Α		3		4		5	200
_ ^	200						200
В		4		5		3	600
D	100		300		200		600
С		5		3		4	200
					200		200
销量	30	00	30	00	40	00	

初运输方案及相应的总运输费用。

初始调运方案如图。

总运输费用为:200×3+100×4+300×5+200×3+200×4=3900(元)

【注意】先在草稿纸上画出第一个图,答题卡上只需要第二个图。西北角法是先满足第一列、再满足下一列。

- 15、下表给出了求解总运费最小的运输问题的一个方案。
- (1)判断该方案是否是最优方案?若不是,确定调整格和调整路线。
- (2)写出改进方案(只进行一次改进)

	A	В	C	D	供应量
	6	2	3	7	
X	300	150	80		530
	4	5	2	10	
Y			120	350	470
需求量	300	150	200	350	1 000

(1) 不是最优方案。

XD 格的改进路线和改进指数:

$$L_{XD} = +XD - YD + YC - XC$$

$$I_{XD} = +7 - 10 + 2 - 3 = -4$$

YA 格的改进路线和改进指数:

$$L_{YA} = +YA - XA + XC - YC$$

$$I_{YA} = = +4 - 6 + 3 - 2 = -1$$

YB 格的改进路线和改进指数:

 $L_{YB} = +YB - XB + XC - YC$

 $I_{YB} = = +5 - 2 + 3 - 2 = 4$

选择 XD 格为调整格, 调整路线为 $L_{XD} = +XD - YD + YC - XC$

(2)调整运量确定为:80,改进方案如下图。

	A	В	С	D	供应量
X	300 6	150 2	3	80 7	530
Y	4	5	200 2	270 10	470
需求量	300	150	200	350	1000

【注意】从某一个空格出发找改进路线,不能改变其它空格的运量。选择改进指数最小的空格作为调整格,调整运量确定为改进路线上负号格的最小运量。

16、某公司下属 3 个工厂(甲厂、乙厂、丙厂)生产同类产品,供应不同地区的 3 个城市(A 城、B 城、C 城),各工厂生产能力、各城市的需求量及工厂到不同城市的单位运费如下表。试建立供需平衡的运输表,并以西北角法求其最初的运输方案。

下属工厂	生产能力 生产能力		到各城市的单位运费(元/台)			
下周上)	(台/月)	A 城	B 城	C 城		
甲厂	6000	8	6	7		
乙厂	4000	4	3	5		
丙厂	10000	7	4	6		
各城市需求	量(台/月)	5000	7000	7000		

运输图如图所示:

て見	到	生产能力			
下属 工厂	A 城	B城	C 城	虚拟城市	(台/
1./					月)
甲厂	8	6	7	0	6000
乙厂	4	3	5	0	4000
丙厂	7	4	6	0	10000
各城市的需求量 (台/月)	5000	7000	7000	1000	20000

【注意】初始运输方案必须每一行、每一列都是平衡的,不平衡就虚设一列、或虚设一行,运费为0即可。

以西北角法求其初始运输方案:

下层	到	到各城市的单位运费(元/台)			生产能力
下属工厂	A 城	B城	C 城	虚拟城市	(台/
1./					月)
甲厂	5000 8	1000 6	7	0	6000
乙厂	4	4000 3	5	0	4000
丙厂	7	2000 4	7000 6	1000 0	10000
各城市的需求量 (台/月)	5000	7000	7000	1000	20000

第七章

- 17、设有某设备需进行一次大修,其各项活动的明细表如下表:
- (1) 试编绘该设备大修理的网络图。
- (2)如果缩短活动 E 的工期,问是否会影响整个网络的工期?请说明理由。

活动名称	紧前活动	工作时间(天)
A	8_8	2
В	_	3
C	A	1
D	В	2
E	A	5
F	CED	7
G	С	4

(2)该网络的关键线路为 A—E—F,活动 E是关键活动,所以缩短活动 E的工期,会影响整个网络的工期。

【注意】有多个紧前活动就引入虚活动,编号从前往后 13579 即可,"删除虚活动"、"结点编号"都不是扣分点。

18、某工程有 7 道工序,工序衔接与有关时间数据如下表。试绘制网络图,并在图上标出各结点时间参数,指明关键线路、总工期以及 A,B,C,D 四项活动的最早开始时间。

工序名称	A	В	C	D	E	F	G
紧前工序			AB	AB	В	С	DE
工序时间	2	4	5	4	3	2	4

第 10 页

关键路线 B-D-G;

总工期12天。

四项活动最早开始时间如下表:

工序名称	A	В	С	D
最早开始	0	0	4	4

【注意】计算结点时间:"早大晚小"——计算最早时间:从前往后,前一个点加上作业时间(如果有多个,取大)

计算最迟时间:从后往前,后一个点减去作业时间(如果有多个,取小)

计算活动时间:最早开始时间等于箭尾结点的最早时间(再加上作业时间就得到最早完成时间) 最晚结束时间等于箭

头结点的最晚时间(再减去作业时间就得到最晚开始时间)。

第八章

19、已知连接 5 个城市的光纤电缆设计图如下图所示。图中线边的数字表示拟建光纤电缆的长度(单位:百公里),现在要在这 5 个城市间铺设光纤电缆,要求光纤电缆的总长度最小,试画出铺设方案并求最小的光纤电缆总长度。

最小长度为 1+2+2+1=6 (百公里)

20、某人开车要从甲地自驾游到乙地,中间可穿行的市镇与行车道网络如下图所示,试画出从甲地到乙地的最短路线并求最短路长。

最短路线:1+2+1+2=6

第九章

21、某地区有甲、乙、丙三厂家销售洗衣粉,经调查,8月份买甲、乙、丙三厂家洗衣粉的用户分别占30%、20%和50%,9月份里,甲厂家的老顾客中只有70%仍保留,而有10%和20%的顾客将分别转向乙、丙厂家;乙厂家也只能保住原有顾客的70%,而有10%和20%的顾客将分别转向甲、丙厂家;丙厂家保住原有顾客的88%,而有8%和4%的顾客将分别转向甲、乙厂家。假定这种趋势一直保持不变。

- (1)转移概率矩阵。
- (2)9月份各厂家分别拥有的市场份额。

(1)转移概率矩阵为:
$$\begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.7 & 0.2 \\ 0.08 & 0.04 & 0.88 \end{bmatrix}$$

$$\begin{array}{cccc} \text{(2)} & (0.3, 0.2, 0.5) \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.7 & 0.2 \\ 0.08 & 0.04 & 0.88 \end{bmatrix} = (0.27, 0.19, 0.54)$$

所以9月份甲、乙、丙三厂家的市场份额为:27%、19%、54%

22、已知甲、乙、丙三家快递公司同时为本地提供快递服务,已知今年初它们分别占有本地市场份额的 40%、40%、20%,根据调查,今后甲公司保有其顾客的 70%,丧失 10%给乙,丧失 20%给丙,乙公司保有其顾客的 60%,丧失 20%给甲,丧失 20%给丙,丙公司保有其顾客的 80%,丧失 10%给甲,丧失 10%给乙,试求在平衡时各家的占有率各是多少?

转移概率矩阵为:

$$\begin{pmatrix} 0.70 & 0.10 & 0.20 \\ 0.20 & 0.60 & 0.20 \\ 0.10 & 0.10 & 0.80 \end{pmatrix}$$

$$\begin{pmatrix} x_1, & x_2, & x_3 \end{pmatrix} \begin{pmatrix} 0.70 & 0.10 & 0.20 \\ 0.20 & 0.60 & 0.20 \\ 0.10 & 0.10 & 0.80 \end{pmatrix} = \begin{pmatrix} x_1, & x_2, & x_3 \end{pmatrix}$$

$$\begin{pmatrix} 0.7x_1 + 0.2x_2 + 0.1x_3 = x_1 \\ 0.1x_1 + 0.6x_2 + 0.1x_3 = x_2 \\ 0.2x_1 + 0.2x_2 + 0.8x_3 = x_3 \\ x_1 + x_2 + x_3 = 1 \end{pmatrix}$$

求得: $(x_1, x_2, x_3) = (0.30, 0.20, 0.50)$

【注意】解 3 个未知数的方程:通过方程的加减法消去 2 个未知数。

第十章

【注意公式】:

利润(S) = 企业销售收入(I) - 总成本(C)

总销售收入(I) = 产品价格(M)×销售量(Q)

总成本(C) = 固定费用(F) + 变动费用(V)

总变动费用(V) = 单件产品可变费用(V') × 总销售量(0)

1、正常情况下销售量的计算:

$$Q = \frac{F + V + S}{M}$$

2、盈亏平衡的计算——盈亏平衡时,利润为0:【考的最多】

$$Q_0 = \frac{F}{M - V'}$$

3、边际收益的计算:

边际收益 =
$$M - V'$$
 边际收益 $\overline{\varphi} = \frac{$ 边际收益 $\overline{\varphi} = \frac{$ $\overline{\psi} = \frac{}{}$ $\overline{\psi} = \frac{}{}$ $\underline{\psi} = \frac{}{}$

4、生产能力百分率的计算——盈亏平衡点销售量 Q_0 与总生产能力之比:

【注意】公式较多,注意重点:大多数题目考的都是盈亏平衡点的数量 Q_0

- 23、已知某产品的每件销售价格 M=15 元/件,总固定成本 F=5 万元,总可变成本 V=1 万元。
- (1) 盈亏平衡点处的边际贡献。
- (2)希望利润 S=1.5 万元时的边际贡献。

(1)盈亏平衡点利润为
$$0$$
 ,所以销售量 $Q_0 = \frac{F+V+S}{M} = \frac{50000+10000+0}{15} = 4000$ (件)单个产品的可变成本 $V' = \frac{V}{Q} = \frac{10000}{4000} = 2.5$ (元)
边际贡献为: $M-V' = 15-2.5 = 12.5$ (元)
(2)利润为 1.5 万元时,销售量 $Q = \frac{F+V+S}{M} = \frac{50000+10000+15000}{15} = 5000$ (件)单个产品的可变成本 $V' = \frac{V}{Q} = \frac{10000}{5000} = 2$ (元)
边际贡献为: $M-V' = 15-2 = 13$ (元)

24、一企业生产某产品的单件可变成本为50元,售价90元,每年固定成本为80万元,求企业盈亏平衡点处的产量及盈亏平衡点时的总可变成本。

盈亏平衡点处的产量为:

$$Q_0 = \frac{F}{M - V'} = \frac{800000}{90 - 50} = 20000 \text{ (44)}$$

盈亏平衡点处的总可变成本为:

$$V = Q_0 V' = 20000 \times 50 = 1000000$$
 (元)

第十一章

25、已知某品牌的汽车在某地过去50天内销售记录如下表所示,试求每种可能的销售量值的概率,并求出累计概率。

汽车销售量	达到这个销售量的天数
0	2
1	5
2	9
3 :	13
4	10
5	6
6	3
7	2
求和	50

汽车销售量	达到这个销售量的天数	该销售量的概率	该销售量的累计概率
0	2	0.04	0. 04
1	5	0.10	0. 14
2	9	0.18	0. 32
3	13	0. 26	0. 58
4	10	0. 20	0. 78
5	6	0.12	0. 90
6	3	0.06	0. 96
7	2	0.04	1. 00
求和	50		

26、某公司对过去一年中某种配件的顾客需求管理统计如下表,试计算并在表中填写出累计概率分布和随机数分布。

需求(单位)	频率	累计概率分布	随机数分布
0	2		
1	8		
2	22		
3	34		
4	18		
5	9		
6	7		

需求 (单位)	频率	累积概率分布	随机数分布
0	2	0.02	00-01
1	8	0.10	02-09
2	22	0.32	10-31
3	34	0.66	32-65
4	18	0.84	66-83
5	9	0.93	84-92
6	7	1	93-99

【注意】概率最好写成小数,而不写成百分比。随机数从 00 开始到 99 结束。