Class 18: Pertussis mini-project

Melissa Guereca (PID:A16511023)

First we will examine and explore Pertussis case numbers in the US as tracked by the CDC: https://www.cdc.gov/pertussis/surv-reporting/cases-by-year.htmlinstall.packages("datapasta")

We can use the datapasta package to scrape this data form the website into R.

```
cdc <- data.frame(</pre>
                                   year = c(1922L, 1923L, 1924L, 1925L, 1926L,
                                              1927L, 1928L, 1929L, 1930L, 1931L,
                                              1932L, 1933L, 1934L, 1935L, 1936L, 1937L,
                                              1938L, 1939L, 1940L, 1941L, 1942L,
                                              1943L, 1944L, 1945L, 1946L, 1947L, 1948L,
                                              1949L,1950L,1951L,1952L,1953L,1954L,
                                              1955L, 1956L, 1957L, 1958L, 1959L,
                                              1960L, 1961L, 1962L, 1963L, 1964L, 1965L,
                                              1966L, 1967L, 1968L, 1969L, 1970L,
                                              1971L, 1972L, 1973L, 1974L, 1975L, 1976L,
                                              1977L, 1978L, 1979L, 1980L, 1981L,
                                              1982L, 1983L, 1984L, 1985L, 1986L, 1987L,
                                              1988L,1989L,1990L,1991L,1992L,1993L,
                                              1994L, 1995L, 1996L, 1997L, 1998L,
                                              1999L,2000L,2001L,2002L,2003L,2004L,
                                              2005L, 2006L, 2007L, 2008L, 2009L,
                                              2010L, 2011L, 2012L, 2013L, 2014L, 2015L,
                                              2016L, 2017L, 2018L, 2019L, 2020L,
                                              2021L),
         cases = c(107473, 164191, 165418, 152003,
                                              202210, 181411, 161799, 197371, 166914,
                                              172559,215343,179135,265269,180518,
                                              147237,214652,227319,103188,183866,
                                              222202, 191383, 191890, 109873, 133792,
                                              109860, 156517, 74715, 69479, 120718,
                                              68687,45030,37129,60886,62786,
```

```
31732,28295,32148,40005,14809,11468,
17749,17135,13005,6799,7717,9718,
4810,3285,4249,3036,3287,1759,
2402,1738,1010,2177,2063,1623,1730,
1248, 1895, 2463, 2276, 3589, 4195,
2823,3450,4157,4570,2719,4083,6586,
4617,5137,7796,6564,7405,7298,
7867,7580,9771,11647,25827,25616,
15632, 10454, 13278, 16858, 27550, 18719,
48277, 28639, 32971, 20762, 17972,
18975, 15609, 18617, 6124, 2116)
```

)

```
head(cdc)
```

```
year cases
1 1922 107473
2 1923 164191
3 1924 165418
4 1925 152003
5 1926 202210
6 1927 181411
```

I want a plot of cases per year with ggplot

```
library(ggplot2)
ggplot(cdc) +
 aes(year, cases) +
 geom_line() +
  geom_vline( xintercept=1947, col= "blue") +
  geom_vline( xintercept=1992, col= "red") +
  geom_vline( xintercept=2020, col= "orange")
```


Access data from the CMI-PB project

This database (like many modern projects) uses an API to return JSON format data.

We will use the R package jsonlite.

```
library(jsonlite)
  subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)</pre>
  head(subject)
  subject_id infancy_vac biological_sex
                                                       ethnicity race
1
                      wP
                                  Female Not Hispanic or Latino White
2
           2
                                  Female Not Hispanic or Latino White
                       wP
3
           3
                                  Female
                       wP
                                                         Unknown White
           4
4
                                    Male Not Hispanic or Latino Asian
                       wP
5
           5
                       wP
                                    Male Not Hispanic or Latino Asian
           6
                       wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset
1
     1986-01-01
                   2016-09-12 2020_dataset
2
                    2019-01-28 2020_dataset
     1968-01-01
3
     1983-01-01
                    2016-10-10 2020_dataset
```

```
4 1988-01-01 2016-08-29 2020_dataset
5 1991-01-01 2016-08-29 2020_dataset
6 1988-01-01 2016-10-10 2020_dataset
```

Q. How many wP (the older whole-cell vaccine) individuals and aP (newer acellular vaccine) individuals are in this dataset? ANSWER: 60 sP and 58 wP

```
sum(subject$infancy_vac == "wP")
```

[1] 58

```
table(subject$infancy_vac)
```

aP wP 60 58

Q. What is the number od individuals by biological sex and race?

```
table(subject$biological_sex)
```

Female Male 79 39

There are twice as many females as there are males.

```
table(subject$race)
```

American Indian/Alaska Native

1
Asian
32
Black or African American
2
More Than One Race
11

```
Native Hawaiian or Other Pacific Islander
2
Unknown or Not Reported
15
White
55
```

Majority of individuals are white (females).

```
table(subject$race, subject$biological_sex)
```

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	21	11
Black or African American	2	0
More Than One Race	9	2
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	11	4
White	35	20

subject\$year_of_birth

```
[1] "1986-01-01" "1968-01-01" "1983-01-01" "1988-01-01" "1991-01-01"
[6] "1988-01-01" "1981-01-01" "1985-01-01" "1996-01-01" "1982-01-01"
[11] "1986-01-01" "1982-01-01" "1997-01-01" "1993-01-01" "1989-01-01"
[16] "1987-01-01" "1980-01-01" "1997-01-01" "1994-01-01" "1981-01-01"
[21] "1983-01-01" "1985-01-01" "1991-01-01" "1992-01-01" "1988-01-01"
[26] "1983-01-01" "1997-01-01" "1982-01-01" "1997-01-01" "1988-01-01"
[31] "1989-01-01" "1997-01-01" "1990-01-01" "1983-01-01" "1991-01-01"
[36] "1997-01-01" "1998-01-01" "1997-01-01" "1985-01-01" "1994-01-01"
[41] "1985-01-01" "1997-01-01" "1998-01-01" "1998-01-01" "1997-01-01"
[46] "1998-01-01" "1996-01-01" "1998-01-01" "1997-01-01" "1997-01-01"
[51] "1997-01-01" "1998-01-01" "1998-01-01" "1997-01-01" "1997-01-01"
[56] "1997-01-01" "1996-01-01" "1997-01-01" "1997-01-01" "1997-01-01"
[61] "1987-01-01" "1993-01-01" "1995-01-01" "1993-01-01" "1990-01-01"
[66] "1976-01-01" "1972-01-01" "1972-01-01" "1990-01-01" "1998-01-01"
[71] "1998-01-01" "1991-01-01" "1995-01-01" "1995-01-01" "1998-01-01"
[76] "1998-01-01" "1988-01-01" "1993-01-01" "1987-01-01" "1992-01-01"
[81] "1993-01-01" "1998-01-01" "1999-01-01" "1997-01-01" "2000-01-01"
```

```
[86] "1998-01-01" "2000-01-01" "2000-01-01" "1997-01-01" "1999-01-01" [91] "1998-01-01" "2000-01-01" "1996-01-01" "1999-01-01" "1998-01-01" [96] "2000-01-01" "1986-01-01" "1993-01-01" "1999-01-01" "2001-01-01" [101] "2003-01-01" "2003-01-01" "1994-01-01" "1989-01-01" "1994-01-01" [106] "1996-01-01" "1998-01-01" "1995-01-01" "1989-01-01" "1997-01-01" [111] "1996-01-01" "1996-01-01" "1996-01-01" "1990-01-01" "2002-01-01" [116] "2000-01-01" "1994-01-01" "1998-01-01"
```

Side-Note: Working with dates

We can use the lubricate package to ease the pain of doing math with dates.

```
library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
    date, intersect, setdiff, union
  today()
[1] "2024-03-07"
  today() - ymd("2000-01-01")
Time difference of 8832 days
  today() - ymd("2002-9-17")
Time difference of 7842 days
  today() - mdy("9-17-2002")
```

Time difference of 7842 days

So what is the age of everyone on our dataset.

```
time_length( today() - ymd("2000-01-01"), "years")
```

[1] 24.1807

```
subject$age <- time_length(today() - ymd(subject$year_of_birth), "years")

ggplot(subject) +
  aes(age, fill=infancy_vac) +
  geom_histogram()</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggplot(subject) +
  aes(age, fill=infancy_vac) +
```

```
geom_histogram() +
facet_wrap(vars(infancy_vac), nrow=2)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Get more data from CMI-PB

```
specimen <- read_json("https://www.cmi-pb.org/api/specimen", simplifyVector =TRUE)
head(specimen)</pre>
```

	specimen_id	subject_id	actual_	day_relat	tive_t	to_boost
1	1	1				-3
2	2	1				1
3	3	1				3
4	4	1				7
5	5	1				11
6	6	1				32
	nlanned day	relative to	hoost	gnaciman	tuna	wigit

planned_day_relative_to_boost specimen_type visit

```
1
                                   0
                                               Blood
                                                           1
2
                                               Blood
                                                           2
                                   1
3
                                   3
                                               Blood
                                                           3
4
                                   7
                                               Blood
                                                           4
5
                                  14
                                               Blood
                                                           5
6
                                               Blood
                                                           6
                                  30
```

head(subject)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
           2
2
                      wP
                                  Female Not Hispanic or Latino White
3
           3
                      wP
                                  Female
                                                         Unknown White
           4
4
                                    Male Not Hispanic or Latino Asian
                      wP
5
           5
                      wP
                                    Male Not Hispanic or Latino Asian
           6
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset
                                                  age
1
     1986-01-01
                   2016-09-12 2020 dataset 38.17933
                   2019-01-28 2020_dataset 56.18070
2
     1968-01-01
3
                   2016-10-10 2020 dataset 41.18001
     1983-01-01
                   2016-08-29 2020_dataset 36.18070
4
     1988-01-01
                   2016-08-29 2020_dataset 33.18001
5
     1991-01-01
     1988-01-01
                   2016-10-10 2020_dataset 36.18070
```

We need to **join** these two tables (subject and speciment) to make a single new "meta" table with all our metadata. We will use the **dplyr** join functions to do this:

```
library(dplyr)
```

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
meta <- inner_join(subject, specimen)</pre>
Joining with `by = join_by(subject_id)`
  head(meta)
  subject_id infancy_vac biological_sex
                                                        ethnicity race
                       wP
                                   Female Not Hispanic or Latino White
2
                       wP
                                   Female Not Hispanic or Latino White
3
           1
                                   Female Not Hispanic or Latino White
                       wP
4
           1
                       wP
                                   Female Not Hispanic or Latino White
5
           1
                       wP
                                   Female Not Hispanic or Latino White
                                   Female Not Hispanic or Latino White
           1
                       wP
  year_of_birth date_of_boost
                                     dataset
                                                  age specimen_id
     1986-01-01
                    2016-09-12 2020_dataset 38.17933
1
                    2016-09-12 2020_dataset 38.17933
                                                                  2
2
     1986-01-01
                                                                 3
3
     1986-01-01
                    2016-09-12 2020_dataset 38.17933
4
     1986-01-01
                    2016-09-12 2020_dataset 38.17933
                                                                 4
5
     1986-01-01
                    2016-09-12 2020_dataset 38.17933
                                                                 5
6
     1986-01-01
                    2016-09-12 2020_dataset 38.17933
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                                         Blood
2
                              1
                                                              1
                                                                         Blood
3
                              3
                                                              3
                                                                         Blood
                                                              7
4
                              7
                                                                         Blood
5
                             11
                                                             14
                                                                         Blood
6
                             32
                                                             30
                                                                         Blood
  visit
1
      1
2
      2
3
      3
4
      4
5
      5
6
      6
```

now we can read some of the other data from CMI-PB

```
ab_titer <- read_json("https://www.cmi-pb.org/api/v4/plasma_ab_titer", simplifyVector = T)
head(ab_titer)</pre>
```

```
specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
1
            1
                   IgE
                                      FALSE
                                               Total 1110.21154
                                                                       2.493425
            1
2
                                      FALSE
                                               Total 2708.91616
                                                                       2.493425
                   IgE
3
            1
                                       TRUE
                                                  PT
                                                       68.56614
                   IgG
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                       2.602350
5
            1
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
                   IgG
            1
                   IgE
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
   unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
One more inner join() to add all our metadata inmetaon to ourab data table:
  abdata <- inner_join(ab_titer, meta)</pre>
Joining with `by = join_by(specimen_id)`
  head(abdata)
  specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
1
            1
                                      FALSE
                                                                       2.493425
                   IgE
                                               Total 1110.21154
2
            1
                   IgE
                                      FALSE
                                               Total 2708.91616
                                                                       2.493425
3
            1
                                                  PT
                   IgG
                                       TRUE
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                       2.602350
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
5
            1
                   IgG
6
            1
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
                   IgE
   unit lower_limit_of_detection subject_id infancy_vac biological_sex
1 UG/ML
                         2.096133
                                             1
                                                        wP
                                                                    Female
2 IU/ML
                        29.170000
                                             1
                                                        wP
                                                                    Female
3 IU/ML
                         0.530000
                                             1
                                                                    Female
                                                        wP
4 IU/ML
                         6.205949
                                             1
                                                        wΡ
                                                                    Female
5 IU/ML
                         4.679535
                                             1
                                                        wP
                                                                    Female
6 IU/ML
                         2.816431
                                             1
                                                        wΡ
                                                                    Female
                ethnicity race year_of_birth date_of_boost
                                                                    dataset
                                                   2016-09-12 2020_dataset
1 Not Hispanic or Latino White
                                    1986-01-01
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
```

```
3 Not Hispanic or Latino White
                                   1986-01-01
                                                 2016-09-12 2020_dataset
4 Not Hispanic or Latino White
                                                 2016-09-12 2020_dataset
                                   1986-01-01
                                                 2016-09-12 2020_dataset
5 Not Hispanic or Latino White
                                   1986-01-01
6 Not Hispanic or Latino White
                                                 2016-09-12 2020_dataset
                                   1986-01-01
       age actual_day_relative_to_boost planned_day_relative_to_boost
1 38.17933
                                      -3
                                      -3
                                                                      0
2 38.17933
                                      -3
3 38.17933
                                                                      0
4 38.17933
                                      -3
                                                                      0
5 38.17933
                                      -3
                                                                      0
6 38.17933
                                      -3
                                                                      0
  specimen_type visit
          Blood
2
          Blood
3
          Blood
4
          Blood
                    1
5
          Blood
                    1
          Blood
                    1
```

Our first exploratory plot:

```
table(abdata$antigen)
```

ACT	BETV1	DT	FELD1	FHA	FIM2/3	LOLP1	LOS	Measles	AVO
1970	1970	3435	1970	3829	3435	1970	1970	1970	3435
PD1	PRN	PT	PTM	Total	TT				
1970	3829	3829	1970	788	3435				

Why are certain antigens and not others very variable in their detected levels here?

Can you facet or even just color by infancy_vac? Is there some difference?

```
ggplot(abdata) +
  aes(MFI, antigen, col=infancy_vac) +
  geom_boxplot()
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

There are potentially some difference here but in general it is hard to tell with this whole dataset overview...

```
ggplot(abdata) +
  aes(MFI, antigen, col=infancy_vac) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(visit), nrow=2) +
  xlim(0,75) +
  theme_bw()
```

Warning: Removed 16036 rows containing non-finite outside the scale range (`stat_boxplot()`).

table(abdata\$dataset)

```
2020_dataset 2021_dataset 2022_dataset 31520 8085 2170
```

Let's focus in on just the 2023_dataset.

```
abdata.21 <- abdata %>% filter(dataset == "2021_dataset")
table(abdata.21$dataset)
```

2021_dataset 8085

Focus on PT antigen IgG levels.

```
pt.21 <- filter(abdata.21, isotype == "IgG", antigen == "PT")
```

Plot of days (time) relative to boost vs MFI levels

2021 dataset IgG PT Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)

