

02.1-DeepLearning-General Guidance

- 1. Framework of ML
 - 1.1 訓練資料與測試資料
 - 1.2 訓練的過程
- 2. General Guide
 - 2.1 訓練資料上的 Loss
 - 2.1.1 Model Bias
 - 2.1.2 Optimization
 - 2.1.3 如何區分兩種情況?
 - 2.2 測試資料上的 Loss
 - 2.2.1 Overfitting
 - 2.3 不要加過大的彈性 ⇒ Model bias
 - 2.4 Bias-Complexity Trade-off
 - 2.5 Cross Validation
 - 2.6 N-fold Cross Validation
 - 2.7 Mismatch

1. Framework of ML

1.1 訓練資料與測試資料

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$

Testing data: $\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$

1.2 訓練的過程

- 1. 寫出一個有未知參數的 function,參數用 heta 來表示
- 2. 確定損失函數,判斷 function 的參數 θ 好不好
- 3. optimization,得到使損失函數最小的參數 $heta^*$

2. General Guide

2.1 訓練資料上的 Loss

2.1.1 Model Bias

• The model is too simple. $f_{\theta^1}(x) \qquad y = f_{\theta}(x)$ find a needle in a haystack but there is no needle too small ... $f_{\theta^*}(x)$

所有的 function 集合起來得到一個 function 的 set。但是這個 function 的 set 太小了,沒有包含任何一個 function 可以讓 loss 變低 ⇒ 可以讓 loss 變低的 function 不在 model 可以描述的範圍內

⇒ **解決方法:重新設計一個 Model**,一個更複雜的、更有彈性的、有未知參數的、需要更多 features 的 function

2.1.2 Optimization

 Large loss not always imply model bias. There is another possibility ...

可能會卡在 local minima(局部極小值/鞍點)的地方,沒有辦法找到真的可以讓 loss 很低的參數

2.1.3 如何區分兩種情況?

- Start from shallower networks (or other models), which are easier to train.
 看到一個從來沒有做過的問題,可以先跑一些比較小、比較淺的 network,或甚至用一些不是 deep learning 的方法 ⇒ 比較容易做 optimize,較不會有optimization 失敗的問題
- If deeper networks do not obtain smaller loss on training data, then there is optimization issue.

如果發現深的 model 跟淺的 model 比起來,**深的 model 明明彈性比較大**,但 loss **卻沒有辦法比淺的 model 壓得更低**,那就代表 optimization **有問題**

2.2 測試資料上的 Loss

2.2.1 Overfitting

training 的 loss 小,testing 的 loss大,有可能是 overfitting。如果你的 model 它 的**自由度很大**的話,它會**產生非常奇怪的曲線**,導致訓練集上的結果好,但是測試集上的 loss 很大

解決:

1. 增加訓練集

雖然你的 model 它的彈性可能很大,但是因為數據樣本非常非常的多,它就可以限制 住

Data Augmentation:用一些對於問題的理解,從已有的數據中創造出新的數據(注意合理性)

Data augmentation (you can do that in HWs)

2. 限制模型,使之不要有那麼大的彈性

- 給比較少的參數(比如神經元的數目);模型共用參數 (03-CNN)
- 使用比較少的 features
- · Early Stopping
- Regularization
- Dropout

2.3 不要加過大的彈性 ⇒ Model bias

2.4 Bias-Complexity Trade-off

Bias-Complexity Trade-off

所謂比較複雜,是它可以**包含的 function 比較多,它的參數比較多,這個就是一個比較複雜的 model**

隨著 model 越來越複雜,**training 的 loss 可以越來越低,**當 model 越來越複雜的時候,剛開始 **testing 的 loss 會跟著下降**;但是當複雜的程度超過某一個程度以後,**testing 的 loss 就突然暴增**

2.5 Cross Validation

- 1. 把 training 的資料分成兩部分,一部分叫作 training set,一部分是 validation set
- 2. 在 validation set 上面去衡量它們的分數,根據 validation set 上面的分數去挑選結果,不要管在 public testing set 上的結果以避免 overfiting

2.6 N-fold Cross Validation

N-fold Cross Validation 就是先把訓練集切成 N 等份,切完以後拿其中一份當作 Validation Set,另外 N-1 份當 training set,重覆 N 次

把多個模型在這三個 setting 下通通跑過一次,把 N 種狀況的結果都平均起來,看看誰的結果最好;最後再把選出來的 model(這裡是 Model 1),再拿全部的 training set(public) 訓練 Model 1,訓練完畢後,再用在 testing set(private) 上面

2.7 Mismatch

訓練集跟測試集的分佈是不一樣的,依照對數據本身的理解來判斷

 Your training and testing data have different distributions. Be aware of how data is generated.

Most HWs do not have this problem, except HW11

##