FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 16. Decidable and undecidable languages

Eunjung Kim

UNRECOGNIZABLE LANGUAGES

CONCRETE EXAMPLE OF UNRECOGNIZABLE LANGUAGE

Let $A_{TM} = \{(M, w) : M \text{ is a TM and } M \text{ accepts } w\}.$

Then $\bar{A}_{TM} := \{0,1\}^* \setminus A_{TM}$ is not Turing-recognizable.

Follows from the undecidability of A_{TM} and the characterization of undecidable languages.

DECISION PROBLEM

Membership test for a language A

Consider a language $A \subseteq \Sigma^*$.

INPUT: a string $w \in \Sigma^*$.

TASK: decide if $w \in A$ or not; that is, output YES ("accept") if $w \in A$, output No ("reject") otherwise.

The language *A* itself is also called a decision problem.

SOLVING A DECISION PROBLEM A

Solving a (decision) problem A means having an algorithm for A, i.e. an algorithm for the membership test for A. By Church-Turing Thesis, this means to have a Turing machine M which decides A, i.e.

$$M(w) = \begin{cases} ext{ACCEPT} & \text{if } w \in A \\ ext{REJECT} & \text{otherwise.} \end{cases}$$

EXAMPLES OF DECISION PROBLEMS

• Decide if a given context-free grammar *G* generates a given string *w*: corresponds to a membership test for the language

```
\{\langle G, w \rangle \mid G \text{ is a CFG that generates } w\}.
```

 Decide if a graph is connected: corresponds to a membership test for the language

$$\{\langle G \rangle \mid G \text{ is connected}\}.$$

 Shortest path problem, as a decision problem: corresponds to a membership test for the language

```
\{\langle G, s, t, L \rangle \mid \text{ there is an } (s, t)\text{-path of length at most } L \text{ in } G\}.
```

 Halting problem, asking if a program (Turing machine) terminates on an input w, corresponds to a membership test for the language

 $\{\langle M.w \rangle \mid \text{a TM } M \text{ terminates on the input } w \}.$

SOLVING A DECISION PROBLEM

For a language A i.e. a decision problem, A is

- decidable if there is an algorithm (= Turing machine) which decides A.
- undecidable if there is no Turing machine which decides A.

• $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

• $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \}$

• $A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates input string } w \}$

•
$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$$

•
$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

• $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates input string } w \}$

• $A_{PDA} = \{ \langle P, w \rangle \mid P \text{ is a pushdown automaton that accepts input string } w \}$; caution

• Any context-free language A.

INHERENTLY LOOPING TM

FIRST UNDECIDABLE LANGUAGE

Consider the language $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w. \}.$

- I We know that A_{TM} is Turing-recognizable; universal Turing machine.
- 2 But it is undecidable.

INHERENTLY LOOPING TM

1 Suppose that A_{TM} is decidable, i.e. there exists TM H such that

$$H(\langle M, w \rangle) = egin{cases} ext{ACCEPT} & ext{if } M ext{ accepts } w \ ext{REJECT} & ext{otherwise} \end{cases}$$

Consider a TM D gets a description $\langle M \rangle$ of an arbitrary TM M as input, and flips the answer of H on the input $\langle M, \langle M \rangle \rangle$, i.e.

$$D(\langle M \rangle) = \begin{cases} \mathsf{ACCEPT} & \text{if } H(\langle M, \langle M \rangle \rangle) = \mathsf{REJECT} \\ \mathsf{REJECT} & \text{if } H(\langle M, \langle M \rangle \rangle) = \mathsf{ACCEPT} \end{cases}$$

3 What if we run TM D on the input $\langle D \rangle$, i.e the description of itself?

INHERENTLY LOOPING TM

Seen from the perspective of the diagonal argument.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	• • • •
M_4	accept	accept	reject	reject	
:					
•	l		-		
		Fig	ure 4.20, S	inser 2012	
		9			

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:		:			•		
D	reject	reject	accept	accept		_ ?	

Figure 4.21, Sipser 2012.

CHARACTERIZING DECIDABILITY

A language $A \subseteq \Sigma^*$ is said to be co-Turing-recognizable if its complement (i.e. $\Sigma^* \setminus A$) is Turing-recognizable.

TURING-RECOGNIZABLE AND CO-TURING-RECOGNIZABLE

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.

CHARACTERIZING DECIDABILITY

A language $A \subseteq \Sigma^*$ is said to be co-Turing-recognizable if its complement (i.e. $\Sigma^* \setminus A$) is Turing-recognizable.

TURING-RECOGNIZABLE AND CO-TURING-RECOGNIZABLE

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable.

- The direction (⇒) is straightforward.
- For the direction (\Leftarrow), let M_1 and M_2 be two TMs recognizing A and \bar{A} . Build a new TM M which runs both M_1 and M_2 simultaneously on $w \in \Sigma^*$ and outputs

$$M(w) = egin{cases} ext{ACCEPT} & ext{if } M_1(w) = ext{ACCEPT} \ ext{REJECT} & ext{if } M_2(w) = ext{ACCEPT} \end{cases}$$

Clearly M decides A.

HALTING PROBLEM IS UNDECIDABLE

Halting problem: $HALT_{TM} = \{(M, w) : M \text{ is TM and } M \text{ halts on } w\}.$

From undecidability of A_{TM} , we derive

 $HALT_{TM}$ is undecidable.

HALTING PROBLEM IS UNDECIDABLE

Halting problem: $HALT_{TM} = \{(M, w) : M \text{ is TM and } M \text{ halts on } w\}.$

From undecidability of A_{TM} , we derive

 $HALT_{TM}$ is undecidable.

Proof: we crucially use that $A_{TM} = \{(M, w) : M \text{ is TM and } M \text{ accepts } w\}$ is undecidable.

HALTING PROBLEM IS UNDECIDABLE

Suppose the contrary; let D be a decider TM for $HALT_{TM}$.

Then, we can build a decider R for A_{TM} that works as follows:

On input (M, w)

- \blacksquare simulate D on (M, w).
- 2 if D accepts (M, w), then simulate M on w and output the answer of M on w as the answer of R.
- \blacksquare if D rejects (M, w) (hence M loops on w), then reject (M, w).