

US012386138B2

(12) United States Patent Liu et al.

(10) Patent No.: US 12,386,138 B2

(45) **Date of Patent:** Aug. 12, 2025

(54) OPTICAL LENS ASSEMBLY AND ELECTRONIC DEVICE

(71) Applicant: LARGAN PRECISION CO., LTD.,

Taichung (TW)

(72) Inventors: Ssu-Hsin Liu, Taichung (TW);

Chen-Wei Fan, Taichung (TW); Ming-Ta Chou, Taichung (TW); Chien-Pang Chang, Taichung (TW); Wen-Yu Tsai, Taichung (TW)

(73) Assignee: LARGAN PRECISION CO., LTD.,

Taichung (TW)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 489 days.

(21) Appl. No.: 18/049,696

(22) Filed: Oct. 26, 2022

(65) **Prior Publication Data**

US 2023/0143018 A1 May 11, 2023

Related U.S. Application Data

- (60) Provisional application No. 63/275,966, filed on Nov. 5, 2021.
- (51) Int. Cl. G02B 7/02 (2021.01) H04N 23/55 (2023.01)
- (52) U.S. Cl. CPC *G02B 7/021* (2013.01); *H04N 23/55* (2023.01)

(58) Field of Classification Search

CPC . G02B 5/22; G02B 5/003; G02B 7/02; G02B 7/021; G02B 7/022; G02B 7/023; G02B 7/025; G02B 7/026; H04N 23/55

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,950,236 8,691,351 9,638,832 11,327,299 2004/0114248 2019/0227202 2020/0088969	B2 B1 B2 A1 A1	4/2014 5/2017 5/2022 6/2004 7/2019	Hokazono et al. Asakura et al. Su Lai et al. Hokazono et al. Nagahama et al. Nagahama et al.
2020/0174167		6/2020	

FOREIGN PATENT DOCUMENTS

CN	1502048 A	6/2004
CN	106773454 A	5/2017
	(Conti	nued)

Primary Examiner — Ephrem Z Mebrahtu (74) Attorney, Agent, or Firm — McClure, Qualey & Rodack, LLP

(57) ABSTRACT

An optical lens assembly includes a lens barrel and an optical lens group. The lens barrel includes a light entering hole, which is configured for allowing a light to enter the lens barrel. The lens barrel accommodates the optical lens group, and an optical axis passes through the optical lens group. The optical lens group includes a plurality of lens elements and at least one light blocking sheet. The light blocking sheet is an opaque sheet-shaped element and surrounds the optical axis to form a light passing hole. The light blocking sheet includes an object-side surface and an image-side surface, and the object-side surface is located more adjacent to the light entering hole than the image-side surface thereto. A first film layer is disposed on the object-side surface.

18 Claims, 23 Drawing Sheets

US 12,386,138 B2 Page 2

(56) **References Cited**

U.S. PATENT DOCUMENTS

2020/0272030	A1	8/2020	Tsai	
2021/0072487	A1*	3/2021	Cheng	G03B 30/00
2021/0165136	A1	6/2021	Tsai et al.	

FOREIGN PATENT DOCUMENTS

CN	107305259 A	10/2017
CN	109791231 A	5/2019
CN	209028384 U	6/2019
CN	210119624 U	2/2020
TW	567338 B	12/2003
TW	201339628 A	10/2013
TW	201901193 A	1/2019
TW	I676852 B	11/2019
TW	I707169 B	10/2020
WO	2013088836 A1	6/2013

^{*} cited by examiner

<u>100</u>

Fig. 1A

Fig. 1B

Fig. 1C

Fig. 1D

Fig. 1E

Fig. 1F

Fig. 1G

F1g. 1H

Fig. 2A

Fig. 2B

Fig. 2D

Fig. 2E

<u>250</u>

Fig. 2F

Fig. 3A

Fig. 3B

Fig. 3C

Fig. 3D

<u>340</u>

Fig. 3E

Fig. 3F

Fig. 3G

Fig. 3H

Fig. 4*A*

9

OPTICAL LENS ASSEMBLY AND ELECTRONIC DEVICE

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 63/275,966, filed Nov. 5, 2021, which is herein incorporated by reference.

BACKGROUND

Technical Field

The present disclosure relates to an optical lens assembly and an electronic device. More particularly, the present disclosure relates to a compact optical lens assembly that is applicable to electronic devices.

Description of Related Art

In recent years, portable electronic devices have developed rapidly. For example, intelligent electronic devices and tablets have been filled in the lives of modern people, and optical lens assemblies thereof mounted on portable elec- 25 tronic devices have also prospered. However, as technology advances, the requirements of the appearance quality of the electronic devices and the optical lens assemblies thereof are becoming higher and higher. Therefore, an electronic device with an optical lens assembly, which can balance the appear- 30 ance recognition and the image quality, needs to be developed.

SUMMARY

According to one aspect of the present disclosure, an optical lens assembly includes a lens barrel and an optical lens group. The lens barrel includes a light entering hole, which is configured for allowing a light to enter the lens barrel. The lens barrel accommodates the optical lens group, 40 applicable to the optical lens assembly in FIG. 2A. and an optical axis passes through the optical lens group. The optical lens group includes a plurality of lens elements and at least one light blocking sheet. The light blocking sheet is an opaque sheet-shaped element and surrounds the optical axis to form a light passing hole. The light blocking sheet 45 includes an object-side surface and an image-side surface, and the object-side surface is located more adjacent to the light entering hole than the image-side surface thereto. A first film layer is disposed on the object-side surface. A reflected light is obtained from the first film layer irradiated 50 by a standard illuminant D65, a color index of the reflected light is defined according to a CIE 1976 L*a*b* color space, the color index is CI, the reflected light has a maximum reflectivity in a spectrum in a wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength correspond- 55 of the optical lens assembly in FIG. 3A. ing to the maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is a high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the high reflectivity section is a second reflectivity section, an average reflectivity in the high 60 reflectivity section is R_{high} , an average reflectivity in the second reflectivity section is R2, the following conditions are satisfied: $CI = \{(L^*) \times [(a^*)^2 + (b^*)^2]\}^{1/2}$; $8 \le CI \le 41$; and $1.8 \le R_{high}/R_2 \le 6.2$.

According to another aspect of the present disclosure, an 65 electronic device includes the optical lens assembly according to the foregoing aspect.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:

FIG. 1A is a three-dimensional view of an optical lens assembly according to the 1st embodiment of the present

FIG. 1B is a top view of the optical lens assembly in FIG. 10 1A.

FIG. 10 is a partially cross-sectional view of the optical lens assembly in

FIG. 1A.

FIG. 1D is a top view of a first light blocking sheet of the optical lens assembly in FIG. 1A.

FIG. 1E is a top view of a second light blocking sheet of the optical lens assembly in FIG. 1A.

FIG. 1F is a cross-sectional view along line 1F-1F in FIG. 1E.

FIG. 1G is a schematic view of reflectivity of the first light blocking sheet and the second light blocking sheet of the optical lens assembly in FIG. 1A.

FIG. 1H is a schematic view of the reflectivity of the first light blocking sheet of the optical lens assembly in FIG. 1A.

FIG. 1I is a schematic view of the reflectivity of the second light blocking sheet of the optical lens assembly in FIG. 1A.

FIG. 2A is a three-dimensional view of an optical lens assembly according to the 2nd embodiment of the present disclosure.

FIG. 2B is a top view of the optical lens assembly in FIG. 2A.

FIG. 2C is a partially cross-sectional view of the optical lens assembly in

FIG. 2A.

FIG. 2D is a top view of a light blocking sheet of the optical lens assembly in FIG. 2A.

FIG. **2**E is a cross-sectional view along line **2**E-**2**E in FIG.

FIG. 2F is a top view of a light blocking sheet that can be

FIG. 3A is a three-dimensional view of an optical lens assembly according to the 3rd embodiment of the present disclosure.

FIG. 3B is a top view of the optical lens assembly in FIG.

FIG. 3C is a partially cross-sectional view of the optical lens assembly in

FIG. 3A.

FIG. 3D is a top view of a lens barrel of the optical lens assembly in FIG. 3A.

FIG. 3E is a top view of a first light blocking sheet of the optical lens assembly in FIG. 3A.

FIG. 3F is a top view of a second light blocking sheet of the optical lens assembly in FIG. 3A.

FIG. 3G is a three-dimensional view of a first lens element

FIG. 3H is a schematic view of reflectivity of the first lens element in FIG. 3G.

FIG. 4A is a three-dimensional view of an electronic device according to the 4th embodiment of the present disclosure.

FIG. 4B is a block diagram of the electronic device in FIG. 4A.

DETAILED DESCRIPTION

According to one aspect of the present disclosure, an optical lens assembly is provided. The optical lens assembly

includes a lens barrel and an optical lens group. The lens barrel includes a light entering hole, which is configured for allowing a light to enter the lens barrel, i.e., the light enters the lens barrel via the light entering hole. The lens barrel accommodates the optical lens group, and an optical axis passes through the optical lens group. The optical lens group includes a plurality of lens elements and at least one light blocking sheet. The light blocking sheet is an opaque sheet-shaped element and surrounds the optical axis to form a light passing hole. The light blocking sheet includes an 10 object-side surface and an image-side surface, and the object-side surface is located more adjacent to the light entering hole than the image-side surface thereto. A first film layer is disposed on the object-side surface. A reflected light is obtained (i.e., reflected) from (one point on) the first film 15 layer irradiated by a standard illuminant D65, a color index of the reflected light is defined according to a CIE 1976 L*a*b* color space, the color index is CI, the reflected light has a maximum reflectivity in a spectrum in a wavelength range of 380 nm to 780 nm, a wavelength range of a 20 wavelength corresponding to the maximum reflectivity minus 50 nm to the wavelength corresponding to the maximum reflectivity plus 50 nm is a high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the high reflectivity section is a 25 second reflectivity section, an average reflectivity in the high reflectivity section is R_{high} , an average reflectivity in the second reflectivity section is R₂, the following conditions are satisfied: $CI = \{(L^*) \times [(a^*)^2 + (b^*)^2]\}^{1/2}$; $8 \le CI \le 41$; and $1.8 \le R_{high}/R_2 \le 6.2$. Therefore, the color index satisfying the 30 aforementioned conditions is favorable for the light blocking sheet to have colors other than gray-scale tones, which can improve the appearance recognition of the optical lens assembly, so that the appearance of the optical lens assembly achieves a unique visual experience. Among the wavelength 35 band of visible light, only part of the wavelength band having a high average reflectivity is advantageous in preventing the light blocking sheet from the stray light to affect the image quality. The first film layer may be formed by high color of the reflected light from the first film layer can be adjusted by controlling the thicknesses of high and low refractive index layers. Moreover, the surface of the light blocking sheet has a specific wavelength band distribution with high and low reflectivity (about blue of cool color 45 tone), and maintains the coordinates of a specific color space. The coating with the specific high and low reflectivity distribution can also be applied to the lens barrel and the lens element, while maintaining the coordinates of the specific color space. Furthermore, the following conditions may be 50 satisfied by the aforementioned optical lens assembly: 11 \leq CI \leq 28; and 2.2 R_{high}/R₂ \leq 4.8.

Moreover, a color is defined with three values of L*a*b* according to the CIE 1976 L*a*b* color space, L* represents the perceived brightness (L*=0 for black, and L*=100 55 for white), a* represents green and red (a*=-128 for green, and a*=127 for red), and b* represents blue and yellow $(b^*=-128 \text{ for blue, and } b^*=127 \text{ for yellow)}$. The object under test is placed on the carrying platform of the reflectivity measuring instrument, the standard illuminant D65 is 60 vertically incident on the first film layer at an incident angle of 0 degrees, a measurement is performed at a position of a reflection angle of 0 degrees with a maximum field of view (FOV) of 2 degrees, and a reflectivity and the values of L*a*b* of the reflected light can be measured. In addition, 65 the wavelength range of the wavelength corresponding to the maximum reflectivity minus 50 nm to the wavelength

thereto plus 50 nm is the high reflectivity section. However, if a lower limit or an upper limit of the wavelength range of the wavelength corresponding to the maximum reflectivity minus and plus 50 nm is smaller than 380 nm or greater than 780 nm, the lower limit of the high reflectivity section is set as 380 nm or the upper limit of the high reflectivity section is set as 780 nm.

Furthermore, the outline of the light passing hole observed at the optical axis may be a circular shape or any shape (e.g., the outline of the light passing hole is formed by a plurality of arc shapes connected, as shown in FIG. 2F), but is not limited thereto. In addition, a diameter of the light passing hole may gradually increase from the image side surface to the object side surface.

In detail, when the wavelength corresponding to the maximum reflectivity is λ_{RMax} , the following condition may be satisfied: 380 nm≤\(\lambda\)580 nm. Therefore, controlling the wavelength corresponding to the maximum reflectivity is favorable for avoiding the wavelength band that results in more stray light, and thereby improving the image quality.

When the maximum reflectivity is RMax, the following condition may be satisfied: $0.5\% \le R_{max} \le 4\%$. Therefore, controlling the maximum reflectivity of the first film layer is favorable for the first film layer to have color and luster and reduce the stray light, so as to improve the image quality.

When an average reflectivity of the reflected light in the wavelength range of 380 nm to 780 nm is R_{3878} , the following condition may be satisfied: 0.1%≤R₃₈₇₈≤2%. Therefore, the visible light band of the overall reflected light maintaining a low reflectivity is advantages in preventing the image quality from being affected by the stray light.

A difference appears between two color indexes of any two points, respectively, on the first film layer. When an absolute value of the difference is $|\Delta CI|$, the following condition may be satisfied: 0≤|ΔCI|≤4.7. Therefore, a smaller difference between the color indexes of the first film layer indicates a more uniform distribution of color and luster and a better appearance quality.

The first film layer may be disposed from the light passing and low refractive index layers alternately stacked, and the 40 hole along a direction being away from the optical axis, and a coverage area of the first film layer is smaller than an area of the object-side surface. Therefore, the first film layer not completely covering the object-side surface of the light blocking sheet is beneficial to mass production.

> A number of the at least one light blocking sheet may be at least two, and the first film layer is disposed on the object-side surface of each of the light blocking sheets. Diameters of the light passing holes of the at least two light blocking sheets, respectively, may be different, and the diameter of the light passing hole of one of the at least two light blocking sheets closer to an object side is greater than the diameter of the light passing hole of the other of the at least two light blocking sheets. Therefore, the two light blocking sheets can be observed from the outside the lens barrel at the same time. Colors of the first film layers of the two light-blocking sheets may be the same, so that the appearance of the optical lens assembly is consistent. Alternately, the colors of the first film layers of the two lightblocking sheets may be slightly different, so that the optical lens assembly has a gradient effect in the visual appearance, but is not limited thereto.

> When a thickness in a direction along the optical axis of the light blocking sheet is Ts, the following condition may be satisfied: 7 µm<Ts<50 µm. In detail, the light blocking sheet may include a base layer and two covering layers, an object-side surface of the base layer is in physical contact with one of the covering layers, an object-side surface of the

one of the covering layers is in physical contact with the first film layer, and an image side surface of the base layer is in physical contact with the other of the covering layers. Alternately, the light blocking sheet may include a base layer and a covering layer, an object-side surface of the base layer is in physical contact with the first film layer, and an image side surface of the base layer is in physical contact with the covering layer. A material of the base layer can be plastic, e.g., PI or PET, and the material of the base layer can be metal, e.g., free-cutting brass or copper alloy, but is not 10 limited thereto.

When a diameter of the light entering hole is φb , and a diameter of the light passing hole is φs , the following condition may be satisfied: $\varphi s < \varphi b$. Furthermore, the following condition may be satisfied: $0.31 \le (\varphi b - \varphi s)/\varphi b \le 0.95$. Therefore, when any of the aforementioned conditions is satisfied, there is a higher proportion that the light blocking sheet can be observed by the naked eyes from the outside of the lens barrel, so as to improve the appearance consistency of the optical lens assembly.

When a maximum field of view of the optical lens assembly is FOV, the following condition may be satisfied: 93 degrees≤FOV≤175 degrees. Therefore, for the optical lens assembly satisfying the aforementioned condition, the light blocking sheet is favorable for significantly improving 25 the appearance of the optical lens assembly.

In a direction along the optical axis, when a distance between a most object-side end of the lens barrel and a most image-side end of the lens barrel is Db, and a distance between the most object-side end of the lens barrel and the 30 first film layer is Ds, the following condition may be satisfied: 0.05≤Ds/Db≤0.41. Therefore, the light blocking sheet disposed close to the light entering hole of the lens barrel is beneficial to observe the light blocking sheet from the outside of the lens barrel.

An object-side portion of the lens barrel may include a top wall surrounding the optical axis to form the light entering hole, and a second film layer is disposed on the top wall. Another reflected light is obtained from the second film layer irradiated by the standard illuminant D65, another 40 color index of the another reflected light is defined according to the CIE 1976 L*a*b* color space, the another color index is CI2, the another reflected light has another maximum reflectivity in another spectrum in the wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength 45 corresponding to the another maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is another high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the another high reflectivity section is another second reflectivity sec- 50 tion, an average reflectivity in the another high reflectivity section is R2_{high}, an average reflectivity in the another second reflectivity section is R22, and the following conditions may be satisfied: CI2= $\{(L^*)\times[(a^*)^2+(b^*)^2]\}^{1/2}$, $11\le CI2\le 41$; and $1.8\le R2_{high}/R2_2\le 6.2$. Therefore, the top 55 wall of the lens barrel with the second film layer disposed thereon is favorable for having a sense of visual extension of the color and luster so as to improve the appearance consistency of the optical lens assembly.

One of the lens elements may be disposed on an object 60 side of the light blocking sheet, and the one of the lens elements includes an optical effective region and a peripheral region. The optical effective region is configured for being passed through by the light. The peripheral region is located farther from the optical axis than the optical effective 65 region therefrom, and a third film layer is disposed on at least one of a peripheral object-side surface and a peripheral

6

image-side surface of the peripheral region. Further another reflected light is obtained from the third film layer irradiated by the standard illuminant D65, further another color index of the further another reflected light is defined according to the CIE 1976 L*a*b* color space, the further another color index is CI3, and the following conditions may be satisfied: CI3={(L*)×[(a*)²+(b*)]}¹²; and 11≤CI3≤75. Therefore, the peripheral region of the lens element with the third film layer disposed thereon is favorable for improving the appearance consistency of the optical lens assembly. In addition, the optical effective region of the lens element may have another third film layer disposed thereon. Furthermore, a material of the lens element enables the third film layer to present a brighter color and luster, and thereby the higher color index CI3 is obtained.

Continuing from the previous paragraph, the further another reflected light is obtained from the third film layer irradiated by the standard illuminant D65, the further another reflected light has further another maximum reflectivity in further another spectrum in the wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength corresponding to the further another maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is further another high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the further another high reflectivity section is further another second reflectivity section, an average reflectivity in the further another high reflectivity section is $R3_{high}$, an average reflectivity in the further another second reflectivity section is R32, and the following conditions are satisfied: 2.5 R3_{high}/R3₂≤34. Therefore, it is favorable for improving the appearance consistency of the optical lens assembly.

According to another aspect of the present disclosure, an electronic device is provided. The electronic device includes the aforementioned optical lens assembly. Therefore, the optical lens assembly of the present disclosure is favorable for improving the appearance and the visual experience of the electronic device, and can be applied to the electronic devices such as smart phones (with dual lens assemblies or multiple lens assemblies), tablet computers, portable video recorders, wearable devices, etc., but is not limited thereto. Furthermore, the light blocking sheet in the present disclosure is favorable for applying in an ultra-wide-angle lens assembly to have a better effect, but is not limited thereto.

Each of the aforementioned features can be utilized in various combinations for achieving the corresponding effects. According to the aforementioned aspects, specific embodiments are provided, and illustrated via figures.

1st Embodiment

FIG. 1A is a three-dimensional view observed from an object side of an optical lens assembly 100 according to the 1st embodiment of the present disclosure, FIG. 1B is a top view observed from the object side of the optical lens assembly 100 in FIG. 1A, and FIG. 10 is a partially cross-sectional view of the optical lens assembly 100 in FIG. 1A to FIG. 10, the optical lens assembly 100 includes a lens barrel 110 and an optical lens group 130. The lens barrel 110 includes a light entering hole 111, which is configured for allowing a light to enter the lens barrel 110. The lens barrel 110 accommodates the optical lens group 130, and an optical axis z passes through the optical lens group 130 includes a first lens element 171, a second lens element 172, a third lens element 173, a fourth lens

element 174, a fifth lens element 175 and a sixth lens element 176 in order from the object side (i.e., a left side in FIG. 10) to an image side (i.e., a right side in FIG. 10) along the optical axis z. A total number of lens elements in the optical lens group 130 is six. The reference numerals of the 5 transparent lens elements such as the first lens element 171, etc. are omitted in FIG. 1A and FIG. 1B. Partial surface shapes of the lens elements are omitted in FIG. 10. It should be understood that the total number and the surface shapes of the lens elements in the optical lens assembly of the 10 present disclosure are not limited thereto. A number of the light blocking sheet of the optical lens group 130 is at least two, and the optical lens group 130 specifically further includes annular optical elements such as a first light blocking sheet 140, a second light blocking sheet 150, another 15 light blocking sheet, a spacer, a retainer, etc. The first light blocking sheet 140 is disposed and connected between the first lens element 171 and the second lens element 172, and the second light blocking sheet 150 is disposed and connected between the second lens element 172 and third lens 20

FIG. 1D is a top view of the first light blocking sheet 140 of the optical lens assembly 100 in FIG. 1A, and FIG. 1E is a top view of the second light blocking sheet 150 of the optical lens assembly 100 in FIG. 1A. With reference to FIG. 25 10 to FIG. 1E, the first light blocking sheet 140 is an opaque sheet-shaped element and surrounds the optical axis z to form a light passing hole 141. The first light blocking sheet 140 includes an object-side surface 145 and an image-side surface 146, and the object-side surface 145 is located more 30 adjacent to the light entering hole 111 than the image-side surface 146 thereto. A first film layer 149 is disposed on the object-side surface 145. The second light blocking sheet 150 is an opaque sheet-shaped element and surrounds the optical axis z to form a light passing hole 151. The second light 35 blocking sheet 150 includes an object-side surface 155 and an image-side surface 156, and the object-side surface 155 is located more adjacent to the light entering hole 111 than the image-side surface 156 thereto. A first film layer 159 is disposed on the object-side surface 155. Furthermore, it 40 should be understood that the dotted parts in the related drawings of the present disclosure are only intended to clearly represent the areas covered by the film layers, and not intended to represent the actual colors or color shades of the film layers.

The first film layer 149 is disposed from the light passing hole 141 along a direction being away from the optical axis z, and a coverage area of the first film layer 149 is smaller than an area of the object-side surface 145. The first film layer 159 is disposed from the light passing hole 151 along 50 the direction being away from the optical axis z, and a coverage area of the first film layer 159 is smaller than an area of the object-side surface 155.

Diameters of the light passing holes **141**, **151** of the first light blocking sheet **140** and the second light blocking sheet **150**, respectively, are different. The diameter of the light passing hole **141** of the first light blocking sheet **140** closer to the object side is greater than the diameter of the light passing hole **151** of the second light blocking sheet **150**.

In detail, with reference to the following Table 1.1, Table 1.1 lists the reflectivity values of the first film layers **149**, the first light blocking sheet **140** and the second light blocking sheet **150**, respectively, of the optical lens assembly **100** in the 1st embodiment of the present disclosure. In Table 1.1, the unit of the reflectivity value is %, the maximal reference to the following Table 1.1, Table 1.1 lists the reflectivity values of the first film layers **149**, the passing hole **151** of the second light blocking sheet **150**.

FIG. 1F is a cross-sectional view along line 1F-1F in FIG. 60 1E (not drawn with an actual scale). With reference to FIG. 1F, the second light blocking sheet 150 specifically includes a base layer 162 and two covering layers 161, 163. An object-side surface of the base layer 162 is in physical contact with the covering layer 161, an image side surface 65 of the base layer 162 is in physical contact with the covering layer 163, and the first film layer 159 is disposed on an

8

object-side surface of the covering layer 161. In addition, the structure of the first light blocking sheet 140 may be the same as the structure of the second light blocking sheet 150 described in this paragraph.

FIG. 1G is a schematic view of reflectivity of the first light blocking sheet 140 and the second light blocking sheet 150 of the optical lens assembly 100 in FIG. 1A, FIG. 1H is a schematic view of the reflectivity of the first light blocking sheet 140 of the optical lens assembly 100 in FIG. 1A, FIG. 1I is a schematic view of the reflectivity of the second light blocking sheet 150 of the optical lens assembly 100 in FIG. 1A, the first film layer 149 is disposed on the object-side surface 145 of the first light blocking sheet 140, and the first film layer 159 is disposed on the object-side surface 155 of the second light blocking sheet 150. With reference to FIG. 1G to FIG. 1I and further to Table 1.1, Table 1.2, Table 1.3 and Table 1.4 as the following, Table 1.1 to Table 1.4 list parameter values of the optical lens assembly 100 and the first film layers 149, 159 of the first light blocking sheet 140 and the second light blocking sheet 150, respectively, thereof in the 1st embodiment of the present disclosure. In Table 1.1 to Table 1.4, the term "A" indicates the wavelength, the term "W/o film layer" indicates the first light blocking sheet 140 without (or not yet having) the first film layer 149 or the second light blocking sheet 150 without (or not yet having) the first film layer 159, the terms "No. 1" and "No. 2" indicate the first light blocking sheet 140 having one of the different first film layers 149 of No. 1 and No. 2 and the second light blocking sheet 150 having one of the different film layers 159 of No. 1 and No. 2, the term "0 deg." indicates that a measurement point of 0 degrees is measured on the first film layer 149 of the first light blocking sheet 140 or on the first film layer 159 of the second light blocking sheet 150, the term "180 deg." indicates that a measurement point of 180 degrees is measured on the first film layer 149 of the first light blocking sheet 140 or on the first film layer 159 of the second light blocking sheet 150, and the measurement point of 180 degrees is rotated with 180 degrees from the measurement point of 0 degrees with respect to the optical axis z (i.e., a central axis of the first light blocking sheet 140 or the second light blocking sheet 150). In addition, it is noted that the parameter values of the first film layers 149, 159 of the first light blocking sheet 140 and the second light blocking sheet 150, respectively, in Table 1.1 to Table 1.3 may be also applicable to the optical lens assembly 300 of the 3rd embodiment, and any one of the first film layers 149, 159 of the first light blocking sheet 140 and the second light blocking sheet 150, respectively, in Table 1.1 to Table 1.3 may be also applicable to any of a first film layer, a second film layer and a third film layer of an optical lens assembly in each embodiment of the present

In detail, with reference to the following Table 1.1, Table 1.1 lists the reflectivity values of the first film layers 149, 159 of the first light blocking sheet 140 and the second light blocking sheet 150, respectively, of the optical lens assembly 100 in the 1st embodiment of the present disclosure. In Table 1.1, the unit of the reflectivity value is %, the maximum reflectivity of each the first film layer in Table 1.1 is marked by the symbol "#" in the right side of the reflectivity value, and wavelengths corresponding to all the maximum reflectivity of the first film layers in Table 1.1 are in a wavelength range of 437 nm to 446 nm. The relationship diagrams between the wavelengths and the corresponding reflectivity values listed in Table 1.1 are shown in FIG. 1G to FIG. 1I.

With reference to the following Table 1.2 and Table 1.3, a reflected light is obtained from one of the first film layers 149, 159 irradiated by a standard illuminant D65, a color index of the reflected light is defined according to a CIE 1976 L*a*b* color space, the color index is CI, the reflected light has a maximum reflectivity in a spectrum in a wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength corresponding to the maximum reflectivity minus 50 nm to the wavelength corresponding to the maximum reflectivity plus 50 nm is a high reflectivity section, and a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the high reflectivity section is a second reflectivity section. An average reflectivity in the high reflectivity section is R_{high} , an average reflectivity in $_{15}$ the second reflectivity section is R2, the wavelength corresponding to the maximum reflectivity is λ_{RMax} , the maximum reflectivity is R_{Max} , and an average reflectivity of the reflected light in the wavelength range of 380 nm to 780 nm is R₃₈₇₈. A difference appears between two color indexes of two points, respectively, on one of the first film layers 149,

159, and an absolute value of the difference is $|\Delta \text{CI}|$. The following Table 1.2 and Table 1.3 list the parameter values according to the aforementioned definitions of the optical lens assembly 100 in the 1st embodiment.

With reference to the following Table 1.4, a maximum field of view of the optical lens assembly 100 is FOV. In a direction along the optical axis z, a distance between a most object-side end 115 of the lens barrel 110 and a most image-side end 116 of the lens barrel 110 is Db, a distance between the most object-side end 115 of the lens barrel 110 and the first film layer 149 is Ds1, and a distance between the most object-side end 115 of the lens barrel 110 and the first film layer 159 is Ds2. A diameter of the light entering hole 111 is φb, a diameter of the light passing hole 141 is φs1, and a diameter of the light passing hole 151 is φs2. A thickness in the direction along the optical axis z of the first light blocking sheet 140 is Ts1, and a thickness in the direction along the optical axis z of the second light blocking sheet 150 is Ts2. The following Table 1.4 lists the parameter values according to the aforementioned definitions of the optical lens assembly 100 in the 1st embodiment.

TABLE 1.1

λ (nm)	W/o film layer	1st light blocking sheet- No. 1- 0 deg.	1st light blocking sheet- No. 1- 180 deg.	1st light blocking sheet- No. 2- 0 deg.	1st light blocking sheet- No. 2- 180 deg.	2nd light blocking sheet- No. 1- 0 deg.	2nd light blocking sheet- No. 1- 180 deg.	2nd light blocking sheet- No. 2- 0 deg.	2nd light blocking sheet- No. 2- 180 deg.
380	4.4778	0.5773	0.5121	0.5215	0.5027	0.7355	0.5680	0.6703	0.5680
381	4.3826	0.5591	0.4703	0.5636	0.4703	0.6661	0.5124	0.6148	0.6103
382	4.4438	0.4810	0.5125	0.5125	0.4959	0.6087	0.4810	0.5440	0.5291
383	4.4978	0.5080	0.5080	0.4806	0.5173	0.6533	0.4806	0.5353	0.5260
384	4.4716	0.4725	0.5089	0.5029	0.4784	0.5692	0.5029	0.5149	0.5089
385	4.3868	0.5450	0.5450	0.5106	0.5450	0.6527	0.5106	0.5450	0.5404
386	4.4192	0.5420	0.5009	0.5283	0.5283	0.5650	0.5283	0.5146	0.4778
387	4.4608	0.5314	0.4712	0.5403	0.5186	0.5314	0.5403	0.5057	0.4929
388	4.4228	0.4894	0.4568	0.5221	0.5184	0.5184	0.5221	0.4894	0.4605
389	4.4394	0.5144	0.5144	0.5490	0.5706	0.5187	0.5706	0.5619	0.5447
390	4.4230	0.4889	0.5004	0.5464	0.5521	0.5177	0.5292	0.4831	0.5292
391	4.4369	0.5176	0.5270	0.5543	0.5910	0.5449	0.5722	0.4912	0.5185
392	4.4336	0.5646	0.5410	0.5669	0.6164	0.5432	0.5927	0.5129	0.5151
393	4.4346	0.5718	0.5593	0.5921	0.6166	0.5634	0.6573	0.5186	0.5634
394	4.4409	0.6048	0.5546	0.6148	0.6282	0.5580	0.6681	0.5546	0.5780
395	4.4245	0.6000	0.5626	0.6222	0.6222	0.5556	0.6959	0.5778	0.5848
396	4.4218	0.5751	0.5926	0.6365	0.6365	0.5526	0.7204	0.5939	0.6339
397	4.4191	0.5928	0.5640	0.6337	0.6582	0.5724	0.7071	0.5764	0.6049
398	4.4254	0.5957	0.6065	0.6439	0.6831	0.5939	0.7616	0.5957	0.6457
399	4.4329	0.6316	0.6316	0.6615	0.7127	0.6103	0.7883	0.6182	0.6694
400	4.4297	0.6707	0.6531	0.6888	0.7258	0.6695	0.8336	0.6349	0.6718
401	4.4130	0.6989	0.6718	0.7281	0.7513	0.6718	0.8679	0.6853	0.7203
402	4.4156	0.7001	0.6758	0.7434	0.7427	0.6839	0.8947	0.6920	0.7258
403	4.4046	0.7030	0.6901	0.7555	0.7477	0.6944	0.9190	0.7107	0.7555
404	4.4023	0.7100	0.6786	0.7574	0.7730	0.6943	0.8995	0.7258	0.7731
405	4.4002	0.7161	0.7123	0.7659	0.7813	0.7315	0.9459	0.7353	0.8081
406	4.4055	0.7467	0.7470	0.7909	0.8206	0.7615	0.9760	0.7688	0.8279
407	4.4101	0.7771	0.7695	0.8167	0.8268	0.7914	1.0061	0.7805	0.8487
408	4.3940	0.8016	0.8013	0.8295	0.8560	0.8154	1.0367	0.8019	0.8704
409	4.4051	0.8176	0.8004	0.8541	0.8385	0.8273	1.0557	0.8347	0.8788
410	4.4026	0.8314	0.8054	0.8643	0.8564	0.8453	1.0728	0.8573	0.9092
411	4.3902	0.8349	0.7999	0.8626	0.8673	0.8600	1.0857	0.8798	0.9300
412	4.3978	0.8293	0.8165	0.8768	0.8658	0.8774	1.1080	0.8779	0.9266
413	4.3919	0.8482	0.8318	0.8754	0.8836	0.8908	1.1067	0.8954	0.9462
414 415	4.3881 4.3908	0.8638 0.8860	0.8510 0.8729	0.8916 0.9081	0.8916 0.9171	0.9144 0.9482	1.1313 1.1669	0.9094 0.9301	0.9665 0.9853
416		0.8956	0.8729	0.9370	0.9171				
	4.3887					0.9602	1.1770	0.9594	1.0032
417	4.3865	0.9030	0.8787	0.9308	0.9169	0.9655	1.1948	0.9620	1.0072
418	4.3785	0.9032	0.8788	0.9318	0.9092	0.9699	1.1987	0.9741	1.0164
419	4.3725	0.9169	0.8973	0.9449	0.9267	1.0023	1.2115	0.9940	1.0348
420	4.3727	0.9153	0.8894	0.9441	0.9345	1.0037	1.2053	0.9921	1.0507
421	4.3877	0.9326	0.9192	0.9573	0.9479	1.0287	1.2249	1.0040	1.0661
422	4.3800	0.9520	0.9267	0.9647	0.9612	1.0511	1.2429	1.0216	1.0708
423	4.3824	0.9686	0.9352	0.9853	0.9620	1.0680	1.2554	1.0400	1.0925
424	4.3717	0.9656	0.9394	0.9789	0.9493	1.0719	1.2646	1.0391	1.0840
425	4.3657	0.9692	0.9435	1.0054	0.9574	1.0806	1.2723	1.0601	1.1082
426	4.3693	0.9733	0.9426	1.0039	0.9619	1.0881	1.2763	1.0737	1.1212

TABLE 1.1-continued

				TADLL	1.1-contil	lucu			
	W/o	1st light blocking sheet-	1st light blocking sheet-	1st light blocking sheet-	1st light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-
λ (nm)	film layer	No. 1- 0 deg.	No. 1- 180 deg.	No. 2- 0 deg.	No. 2- 180 deg.	No. 1- 0 deg.	No. 1- 180 deg.	No. 2- 0 deg.	No. 2- 180 deg.
427	4.3676	0.9772	0.9440	0.9955	0.9689	1.1008	1.2833	1.0701	1.1199
428	4.3741	0.9713	0.9536	1.0083	0.9631	1.1090	1.2807	1.0832	1.1322
429 430	4.3691 4.3628	0.9921 1.0005	0.9679 0.9766	1.0116 1.02 44	0.9841 0.9926	1.1245 1.1359	1.2906 1.3004	1.0923 1.0987	1.1407 1.1518
431	4.3686	1.0054	0.9743	1.0218	0.9828	1.1399	1.3062	1.1077	1.1411
432	4.3598	1.0085	0.9693	1.0356	0.9821	1.1404	1.3130	1.1105	1.1561
433	4.3583	1.0087	0.9732	1.0301	0.9801	1.1434	1.3077	1.1166	1.1590
434 435	4.3568 4.3628	1.0035 1.0081	0.9780 0.9776	1.0313 1.0311	0.9881 0.9780	1.1555 1.1546	1.3097 1.3012	1.1192 1.1235	1.1601 1.1693
436	4.3601	1.0081	0.9880	1.0355	0.9940	1.1540	1.3075	1.1272	1.1715
437	4.3596	1.0151	0.9894	1.0426	0.9964#	1.1749	1.3119	1.1340	1.1720
438	4.3664	1.0293 #	1.0022 #	1.0445	0.9903	1.1778	1.3143 #	1.1409	1.1788
439 440	4.3504 4.3502	1.0255 1.0241	0.9883 0.9966	1.0551 # 1.0466	0.9875 0.9789	1.1833 1.1819	1.3117 1.3097	1.1386 1.1486 #	1.1763 1.1819
441	4.3547	1.0252	0.9873	1.0476	0.9803	1.1823	1.3060	1.1444	1.1823
442	4.3480	1.0205	0.9907	1.0535	0.9811	1.1876	1.3014	1.1417	1.1823
443	4.3518	1.0175	0.9878	1.0330	0.9731	1.1811	1.2925	1.1363	1.1737
444 445	4.3490 4.3454	1.0159 1.0200	0.9937 0.9944	1.0422 1.0382	0.9789 0.9796	1.1919 1.1894	1.2939 1.2886	1.1327 1.1340	1.1829 # 1.1782
446	4.3373	1.0189	0.9895	1.0408	0.9749	1.1928 #	1.2901	1.1361	1.1748
447	4.3464	1.0226	0.9934	1.0374	0.9645	1.1908	1.2786	1.1395	1.1689
448 449	4.3437	1.0106	0.9798	1.0363	0.9636	1.1834	1.2801	1.1286	1.1632
450	4.3403 4.3321	1.0039 0.9986	0.9748 0.9718	1.0288 1.0240	0.9566 0.9469	1.1805 1.1749	1.2600 1.2486	1.1267 1.1155	1.1591 1.1567
451	4.3412	0.9942	0.9726	1.0298	0.9581	1.1870	1.2515	1.1157	1.1516
452	4.3401	0.9962	0.9803	1.0138	0.9519	1.1826	1.2465	1.1207	1.1491
453 454	4.3353 4.3356	0.9974 0.9974	0.9763 0.9713	1.0222	0.9481 0.9434	1.1878	1.2443 1.2350	1.1171 1.1129	1.1384 1.1320
455	4.33361	0.9974	0.9713	1.0184 1.0146	0.9434	1.1861 1.1744	1.2330	1.1129	1.1326
456	4.3243	0.9768	0.9493	1.0060	0.9184	1.1656	1.2120	1.1021	1.1227
457	4.3334	0.9721	0.9449	0.9959	0.9211	1.1624	1.2032	1.0978	1.1216
458 459	4.3371 4.3240	0.9573 0.9682	0.9354 0.9417	0.9808 0.9815	0.9135 0.9086	1.1541 1.1539	1.1945 1.1805	1.0784 1.0810	1.1053 1.1075
460	4.3325	0.9521	0.9417	0.9813	0.9086	1.1339	1.1733	1.0701	1.1073
461	4.3279	0.9610	0.9351	0.9739	0.9029	1.1513	1.1771	1.0738	1.0900
462	4.3280	0.9527	0.9257	0.9718	0.8907	1.1436	1.1642	1.0657	1.0800
463 464	4.3250 4.3220	0.9388 0.9279	0.9137 0.9004	0.9638 0.9525	0.8763 0.8742	1.1266 1.1170	1.1578 1.1384	1.0577 1.0478	1.0703 1.0647
465	4.3162	0.9279	0.8957	0.9323	0.8656	1.1178	1.1249	1.0405	1.0556
466	4.3194	0.9127	0.8905	0.9333	0.8564	1.1079	1.1107	1.0279	1.0502
467	4.3252	0.9056	0.8881	0.9287	0.8589	1.1030	1.1029	1.0217	1.0391
468 469	4.3206 4.3167	0.9034 0.9037	0.8792 0.8760	0.9163 0.9174	0.8409 0.8398	1.0965 1.0921	1.0924 1.0893	1.0170 1.0145	1.0325 1.0256
470	4.3121	0.8926	0.8655	0.9076	0.8276	1.0809	1.0755	1.0051	1.0159
471	4.3137	0.8733	0.8520	0.8943	0.8151	1.0639	1.0584	1.0053	1.0108
472 473	4.3145	0.8680	0.8437 0.8375	0.8849	0.8113	1.0589	1.0486	0.9895 0.9806	1.0036 0.9907
474	4.3137 4.3115	0.8576 0.8524	0.8373	0.8751 0.8747	0.7997 0.7975	1.0489 1.0507	1.0309 1.0225	0.9800	0.9907
475	4.3173	0.8480	0.8289	0.8576	0.7861	1.0432	1.0099	0.9625	0.9766
476	4.3112	0.8375	0.8190	0.8501	0.7760	1.0274	0.9950	0.9566	0.9626
477 478	4.3072 4.3072	0.8307 0.8229	0.8103 0.8011	0.8421 0.8326	0.7677 0.7549	1.0152 1.0021	0.9861 0.9724	0.9456 0.9365	0.9522 0.9409
479	4.3067	0.8083	0.7875	0.8252	0.7488	0.9956	0.9655	0.9274	0.9318
480	4.3052	0.7993	0.7887	0.8105	0.7391	0.9863	0.9480	0.9137	0.9232
481 482	4.3016	0.7908 0.7884	0.7769 0.7736	0.8010 0.7908	0.7288	0.9731	0.9352	0.9012	0.9133
482	4.3046 4.3011	0.7884	0.7736	0.7861	0.7237 0.7176	0.9701 0.9574	0.9319 0.9157	0.8945 0.8850	0.9031 0.8960
484	4.3033	0.7683	0.7572	0.7768	0.7053	0.9511	0.9137	0.8778	0.8815
485	4.2999	0.7617	0.7489	0.7686	0.6965	0.9388	0.9040	0.8696	0.8732
486 487	4.3055 4.2991	0.7480 0.7422	0.7367 0.7287	0.7600 0.7493	0.6867 0.6805	0.9271 0.9176	0.8940 0.8833	0.8587 0.8489	0.8650 0.8527
487	4.2991	0.7422	0.7287	0.7493	0.6709	0.9176	0.8833	0.8489	0.8327
489	4.2994	0.7247	0.7159	0.7309	0.6634	0.9001	0.8622	0.8312	0.8359
490	4.2978	0.7137	0.7087	0.7221	0.6573	0.8892	0.8480	0.8165	0.8249
491 492	4.2943 4.2969	0.7150 0.7010	0.7026 0.6918	0.7154 0.7053	0.6462 0.6356	0.8816 0.8708	0.8465 0.8288	0.8126 0.8023	0.8159 0.8085
492	4.2931	0.7010	0.6813	0.7033	0.6260	0.8600	0.8288	0.8023	0.8083
494	4.2908	0.6790	0.6697	0.6843	0.6144	0.8483	0.8042	0.7813	0.7842
495	4.2946	0.6747	0.6636	0.6802	0.6144	0.8416	0.7928	0.7750	0.7783
496 497	4.2906 4.2925	0.6619 0.6563	0.6544 0.6500	0.6638 0.6563	0.6019 0.5958	0.8306 0.8261	0.7819 0.7718	0.7584 0.7526	0.7659 0.7565
498	4.2913	0.6500	0.6429	0.6478	0.5886	0.8152	0.7653	0.7442	0.7491
499	4.2871	0.6426	0.6367	0.6448	0.5792	0.8106	0.7557	0.7373	0.7371
500	4.2892	0.6354	0.6250	0.6345	0.5718	0.7979	0.7472	0.7291	0.7274

TABLE 1.1-continued

				IADLE	1.1-conu	nucu			
	W/o	1st light blocking sheet-	1st light blocking sheet-	1st light blocking sheet-	1st light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-
λ (nm)	film layer	No. 1- 0 deg.	No. 1- 180 deg.	No. 2- 0 deg.	No. 2- 180 deg.	No. 1- 0 deg.	No. 1- 180 deg.	No. 2- 0 deg.	No. 2- 180 deg.
501	4.2867	0.6250	0.6171	0.6261	0.5615	0.7877	0.7376	0.7199	0.7184
502	4.2834	0.6147	0.6069	0.6168	0.5566	0.7769	0.7259	0.7106	0.7102
503	4.2846	0.6060	0.5985	0.6034	0.5432	0.7658	0.7146	0.7002	0.6980
504 505	4.2850 4.2856	0.6011 0.5934	0.5932 0.5860	0.5971 0.5883	0.5410 0.5329	0.7593 0.7529	0.7047 0.6967	0.6913 0.6817	0.6913 0.6817
506	4.2815	0.5868	0.5796	0.5819	0.5238	0.7458	0.6889	0.6733	0.6733
507	4.2821	0.5822	0.5712	0.5736	0.5174	0.7371	0.6790	0.6673	0.6652
508	4.2804	0.5721	0.5626	0.5677	0.5106	0.7281	0.6732	0.6578	0.6571
509 510	4.2795 4.2802	0.5622 0.5565	0.5540 0.5484	0.5604 0.5512	0.5019 0.4956	0.7177 0.7089	0.6626 0.6540	0.6505 0.6431	0.6484 0.6428
511	4.2796	0.5448	0.5387	0.5404	0.4864	0.7006	0.6385	0.6302	0.6324
512	4.2773	0.5408	0.5353	0.5339	0.4815	0.6940	0.6333	0.6252	0.6292
513 514	4.2751 4.2758	0.5335 0.5300	0.5267 0.5208	0.5267 0.5224	0.4740 0.4691	0.6855	0.6256 0.6195	0.6163	0.6191 0.6116
515	4.2722	0.5300	0.5208	0.5224	0.4587	0.6801 0.6690	0.6193	0.6113 0.6010	0.6030
516	4.2768	0.5127	0.5025	0.5063	0.4520	0.6621	0.6021	0.5957	0.5969
517	4.2744	0.5048	0.4961	0.4987	0.4452	0.6508	0.5942	0.5889	0.5889
518	4.2757 4.2735	0.4954 0.4901	0.4893 0.4828	0.4911 0.4812	0.4390 0.4334	0.6434 0.6371	0.5860 0.5747	0.5807 0.5743	0.5807 0.5762
519 520	4.2744	0.4846	0.4828	0.4774	0.4334	0.6313	0.5697	0.5668	0.5679
521	4.2733	0.4789	0.4724	0.4706	0.4234	0.6249	0.5619	0.5601	0.5601
522	4.2691	0.4708	0.4638	0.4635	0.4130	0.6143	0.5552	0.5535	0.5535
523 524	4.2711 4.2704	0.4665 0.4593	0.4564 0.4511	0.4582 0.4528	0.4106 0.4033	0.6081 0.5999	0.5473 0.5410	0.5458 0.5410	0.5455 0.5399
525	4.2694	0.4515	0.4311	0.4461	0.3971	0.5939	0.5323	0.5334	0.5344
526	4.2683	0.4413	0.4347	0.4364	0.3902	0.5866	0.5212	0.5228	0.5245
527	4.2686	0.4390	0.4323	0.4321	0.3885	0.5803	0.5160	0.5197	0.5212
528 529	4.2675 4.2665	0.4328 0.4277	0.4255 0.4205	0.4245 0.4205	0.3806 0.3750	0.5745 0.5680	0.5076 0.5028	0.5130 0.5071	0.5123 0.5065
530	4.2644	0.4214	0.4134	0.4149	0.3706	0.5604	0.4965	0.5000	0.4971
531	4.2666	0.4154	0.4087	0.4103	0.3652	0.5532	0.4915	0.4961	0.4961
532	4.2655	0.4076	0.4008	0.4024	0.3584	0.5452	0.4838	0.4882	0.4876
533 534	4.2646 4.2640	0.4015 0.3960	0.3947 0.3923	0.3973 0.3926	0.3536 0.3499	0.5381 0.5322	0.4770 0.4746	0.4814 0.4778	0.4808 0.4778
535	4.2633	0.3927	0.3866	0.3853	0.3471	0.5277	0.4671	0.4700	0.4716
536	4.2631	0.3868	0.3815	0.3821	0.3415	0.5202	0.4633	0.4643	0.4659
537 538	4.2622 4.2595	0.3827 0.3758	0.3755 0.3709	0.3781 0.3726	0.3367 0.3295	0.5124 0.5066	0.4599 0.4531	0.4589 0.4529	0.4594 0.4529
539	4.2574	0.3738	0.3641	0.3720	0.3256	0.4965	0.4331	0.4329	0.4329
540	4.2593	0.3639	0.3587	0.3623	0.3222	0.4918	0.4425	0.4434	0.4425
541	4.2575	0.3568	0.3536	0.3572	0.3171	0.4852	0.4360	0.4370	0.4380
542 543	4.2590 4.2573	0.3540 0.3487	0.3497 0.3467	0.3528 0.3469	0.3159 0.3092	0.4818 0.4759	0.4303 0.4245	0.4318 0.4269	0.4360 0.4273
544	4.2567	0.3464	0.3418	0.3439	0.3064	0.4709	0.4215	0.4212	0.4236
545	4.2562	0.3424	0.3378	0.3418	0.3035	0.4660	0.4166	0.4181	0.4186
546 547	4.2552 4.2533	0.3384 0.3294	0.3325	0.3357	0.3005	0.4586	0.4127	0.4128 0.4079	0.4156 0.4083
548	4.2535	0.3294	0.3261 0.3226	0.3307 0.3272	0.2931 0.2916	0.4519 0.4469	0.4051 0.4006	0.4079	0.4052
549	4.2531	0.3216	0.3191	0.3227	0.2889	0.4410	0.3955	0.3986	0.4011
550	4.2515	0.3196	0.3165	0.3209	0.2860	0.4391	0.3906	0.3950	0.3967
551 552	4.2531 4.2490	0.3146 0.3131	0.3115 0.3100	0.3160 0.3131	0.2832 0.2781	0.4330 0.4293	0.3867 0.3834	0.3896 0.3849	0.3926 0.3865
553	4.2494	0.3090	0.3058	0.3108	0.2756	0.4248	0.3797	0.3831	0.3828
554	4.2489	0.3047	0.3003	0.3078	0.2732	0.4206	0.3765	0.3785	0.3796
555 556	4.2511	0.2993 0.2961	0.2960 0.2919	0.3010 0.2993	0.2692	0.4128	0.3685	0.3731	0.3718
557	4.2473 4.2462	0.2961	0.2919	0.2993	0.2659 0.2648	0.4108 0.4076	0.3643 0.3588	0.3680 0.3636	0.3696 0.3652
558	4.2436	0.2883	0.2867	0.2918	0.2626	0.4043	0.3571	0.3593	0.3609
559	4.2462	0.2877	0.2860	0.2908	0.2587	0.4024	0.3539	0.3557	0.3557
560 561	4.2436 4.2427	0.2839 0.2806	0.2807 0.2782	0.2865 0.2856	0.2574 0.2546	0.3974 0.3936	0.3486 0.3471	0.3530 0.3504	0.3530 0.3495
562	4.2427	0.2774	0.2762	0.2836	0.2514	0.3930	0.3471	0.3448	0.3457
563	4.2410	0.2715	0.2699	0.2781	0.2500	0.3825	0.3378	0.3410	0.3443
564	4.2410	0.2678	0.2674	0.2732	0.2449	0.3773	0.3336	0.3344	0.3365
565 566	4.2400 4.2415	0.2677 0.2652	0.2660 0.2647	0.2719 0.2706	0.2460 0.2433	0.3756 0.3727	0.3305 0.3286	0.3330 0.3303	0.3363 0.3324
567	4.2373	0.2632	0.2615	0.2682	0.2445	0.3694	0.3273	0.3273	0.3306
568	4.2380	0.2601	0.2584	0.2669	0.2376	0.3635	0.3219	0.3236	0.3249
569 570	4.2370 4.2361	0.2560 0.2529	0.2543 0.2512	0.2636 0.2602	0.2365 0.2349	0.3589	0.3198 0.3160	0.3207 0.3172	0.3215 0.3189
570 571	4.2335	0.2529	0.2512	0.2602	0.2349	0.3516 0.3473	0.3099	0.3172	0.3189
572	4.2359	0.2441	0.2444	0.2527	0.2287	0.3437	0.3070	0.3087	0.3107
573	4.2348	0.2444	0.2461	0.2538	0.2296	0.3437	0.3063	0.3072	0.3099
574	4.2329	0.2448	0.2453	0.2516	0.2286	0.3435	0.3053	0.3053	0.3070

TABLE 1.1-continued

				IADLE	1.1-conti	iiucu			
	W/o	1st light blocking sheet-	1st light blocking sheet-	1st light blocking sheet-	1st light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-	2nd light blocking sheet-
λ (nm)	film layer	No. 1- 0 deg.	No. 1- 180 deg.	No. 2- 0 deg.	No. 2- 180 deg.	No. 1- 0 deg.	No. 1- 180 deg.	No. 2- 0 deg.	No. 2- 180 deg.
575	4.2344	0.2411	0.2411	0.2495	0.2254	0.3382	0.3015	0.3015	0.3049
576 577	4.2321 4.2308	0.2398 0.2360	0.2381 0.2343	0.2487 0.2457	0.2242 0.2211	0.3361 0.3296	0.2983 0.2946	0.3001 0.2956	0.3006 0.2977
578	4.2291	0.2335	0.2340	0.2433	0.2185	0.3273	0.2932	0.2943	0.2966
579 580	4.2288 4.2286	0.2316 0.2315	0.2318 0.2300	0.2420 0.2406	0.2205 0.2183	0.3240 0.3234	0.2907 0.2858	0.2924 0.2875	0.2959 0.2940
581	4.2288	0.2313	0.2263	0.2364	0.2158	0.3234	0.2822	0.2846	0.2880
582	4.2272	0.2246	0.2253	0.2342	0.2126	0.3126	0.2789	0.2813	0.2848
583 584	4.2272 4.2266	0.2265 0.2237	0.2280 0.2237	0.2387 0.2344	0.2170 0.2118	0.3174 0.3086	0.2837 0.2802	0.2855 0.2803	0.2890 0.2839
585	4.2270	0.2184	0.2178	0.2307	0.2101	0.3035	0.2735	0.2765	0.2800
586 587	4.2256 4.2246	0.2209 0.2118	0.2202 0.2146	0.2335 0.2240	0.2122 0.2048	0.3065 0.2942	0.2769 0.2663	0.2792 0.2677	0.2839 0.2744
588	4.2240	0.2116	0.2140	0.2226	0.2048	0.2942	0.2642	0.2659	0.2744
589	4.2236	0.2138	0.2168	0.2259	0.2069	0.2953	0.2664	0.2676	0.2740
590 591	4.2213 4.2196	0.2131 0.2113	0.2148 0.2116	0.2243 0.2229	0.2053 0.2040	0.2933 0.2889	0.2648 0.2638	0.2657 0.2641	0.2699 0.2662
592	4.2216	0.2100	0.2100	0.2220	0.2015	0.2868	0.2597	0.2613	0.2647
593 594	4.2189 4.2179	0.2055 0.2041	0.2059 0.2058	0.2191 0.2176	0.1996 0.1999	0.2806 0.2783	0.2576 0.2556	0.2576 0.2547	0.2615 0.2598
595	4.2179	0.2041	0.2057	0.2176	0.1999	0.2787	0.2548	0.2547	0.2594
596	4.2209	0.2020	0.2036	0.2137	0.1970	0.2737	0.2504	0.2504	0.2554
597 598	4.2157 4.2172	0.2010 0.2000	0.2043 0.2026	0.2143 0.2133	0.1986 0.1959	0.2744 0.2694	0.2504 0.2488	0.2483 0.2447	0.2520 0.2488
599	4.2139	0.2009	0.2014	0.2129	0.1952	0.2676	0.2467	0.2441	0.2474
600 601	4.2167	0.1969	0.1969	0.2115	0.1935	0.2640	0.2443	0.2411	0.2443
602	4.2121 4.2135	0.1971 0.1937	0.1955 0.1949	0.2088 0.2074	0.1935 0.1909	0.2591 0.2569	0.2398 0.2383	0.2395 0.2359	0.2437 0.2397
603	4.2120	0.1933	0.1970	0.2078	0.1922	0.2558	0.2375	0.2343	0.2396
604 605	4.2115 4.2112	0.1919 0.1953	0.1936 0.1966	0.2049 0.2084	0.1918 0.1926	0.2531 0.2533	0.2339 0.2354	0.2307 0.2324	0.2355 0.2367
606	4.2106	0.1928	0.1928	0.2065	0.1915	0.2498	0.2320	0.2311	0.2327
607 608	4.2113 4.2082	0.1908 0.1888	0.1908 0.1902	0.2055 0.2031	0.1886 0.1872	0.2457 0.2424	0.2278 0.2263	0.2278 0.2263	0.2294 0.2293
609	4.2082	0.1885	0.1889	0.2041	0.1872	0.2424	0.2230	0.2246	0.2293
610	4.2071	0.1865	0.1890	0.2014	0.1875	0.2400	0.2214	0.2224	0.2240
611 612	4.2075 4.2070	0.1877 0.1879	0.1892 0.1894	0.2005 0.2013	0.1886 0.1881	0.2378 0.2391	0.2185 0.2180	0.2214 0.2200	0.2219 0.2200
613	4.2088	0.1864	0.1879	0.2012	0.1876	0.2344	0.2149	0.2179	0.2176
614 615	4.2039 4.2044	0.1856 0.1847	0.1871 0.1853	0.2000 0.2000	0.1852 0.1844	0.2332 0.2309	0.2139 0.2126	0.2173 0.2162	0.2149 0.2138
616	4.2032	0.1835	0.1823	0.2005	0.1844	0.2286	0.2087	0.2129	0.2111
617	4.2038	0.1818	0.1846	0.1965	0.1834	0.2252	0.2076	0.2134	0.2106
618 619	4.2011 4.2029	0.1819 0.1821	0.1842 0.1855	0.1986 0.1976	0.1847 0.1849	0.2262 0.2268	0.2052 0.2054	0.2109 0.2102	0.2095 0.2088
620	4.2022	0.1823	0.1851	0.1977	0.1851	0.2250	0.2048	0.2090	0.2076
621 622	4.2019 4.2004	0.1826 0.1822	0.1840 0.1836	0.1965 0.1964	0.1826 0.1822	0.2243 0.2209	0.2035 0.2029	0.2077 0.2067	0.2049 0.2043
623	4.1995	0.1801	0.1807	0.1959	0.1815	0.2179	0.2000	0.2042	0.2021
624	4.1997	0.1791	0.1812	0.1955 0.1946	0.1818	0.2170	0.2003	0.2037	0.2010
625 626	4.1999 4.1987	0.1782 0.1792	0.1796 0.1826	0.1946	0.1823 0.1833	0.2136 0.2162	0.1946 0.1972	0.2000 0.2013	0.1986 0.1992
627	4.1983	0.1797	0.1823	0.1952	0.1837	0.2141	0.1958	0.1986	0.1973
628 629	4.1967 4.1966	0.1802 0.1789	0.1823 0.1816	0.1954 0.1950	0.1823 0.1829	0.2133 0.2112	0.1957 0.1964	0.1971 0.1977	0.1954 0.1950
630	4.1951	0.1793	0.1810	0.1947	0.1813	0.2099	0.1947	0.1957	0.1931
631	4.1957	0.1777	0.1804	0.1940	0.1811	0.2073	0.1933	0.1952	0.1919
632 633	4.1953 4.1948	0.1765 0.1769	0.1792 0.1809	0.1922 0.1918	$0.1810 \\ 0.1810$	0.2050 0.2064	0.1899 0.1903	0.1939 0.1918	0.1908 0.1892
634	4.1942	0.1768	0.1811	0.1927	0.1822	0.2039	0.1891	0.1902	0.1889
635 636	4.1926 4.1931	0.1781 0.1787	0.1823 0.1831	0.1928 0.1934	0.1823 0.1822	0.2046 0.2046	0.1898 0.1898	0.1904 0.1903	0.1879 0.1863
637	4.1907	0.1799	0.1816	0.1947	0.1827	0.2019	0.1895	0.1883	0.1867
638	4.1900	0.1762	0.1812	0.1935	0.1802	0.1998	0.1881	0.1881	0.1841
639 640	4.1896 4.1891	0.1765 0.1752	0.1797 0.1809	0.1927 0.1922	0.1811 0.1814	0.1967 0.1963	0.1878 0.1864	0.1873 0.1851	0.1833 0.1819
641	4.1887	0.1757	0.1813	0.1921	0.1824	0.1961	0.1853	0.1852	0.1813
642 643	4.1876 4.1900	0.1766 0.1785	0.1818 0.1840	0.1915 0.1939	0.1820 0.1844	0.1966 0.1966	0.1846 0.1862	0.1820 0.1839	0.1805 0.1812
644	4.1877	0.1788	0.1829	0.1944	0.1832	0.1939	0.1859	0.1839	0.1799
645	4.1873	0.1783	0.1831	0.1933	0.1810	0.1929	0.1849	0.1821	0.1783
646 647	4.1879 4.1862	0.1769 0.1758	0.1799 0.1808	0.1934 0.1918	0.1813 0.1822	0.1894 0.1886	0.1839 0.1827	0.1811 0.1794	0.1757 0.1758
648	4.1851	0.1762	0.1811	0.1914	0.1825	0.1880	0.1811	0.1782	0.1746

TABLE 1.1-continued

				IADLE	1.1-conu	nucu			
		1st light blocking	1st light blocking	1st light blocking	1st light blocking	2nd light blocking	2nd light blocking	2nd light blocking	2nd light blocking
	W/o	sheet-							
λ	film	No. 1-	No. 1-	No. 2-	No. 2-	No. 1-	No. 1-	No. 2-	No. 2-
(nm)	layer	0 deg.	180 deg.						
649	4.1863	0.1763	0.1841	0.1916	0.1844	0.1877	0.1808	0.1766	0.1747
650	4.1838	0.1794	0.1837	0.1933	0.1850	0.1878	0.1822	0.1766	0.1725
651	4.1856	0.1776	0.1834	0.1926	0.1842	0.1866	0.1806	0.1758	0.1722
652 653	4.1842 4.1838	0.1790 0.1783	0.1841 0.1831	0.1945 0.1940	0.1854 0.1853	0.1860 0.1831	0.1805 0.1811	0.1762 0.1755	0.1714 0.1702
654	4.1834	0.1768	0.1851	0.1936	0.1838	0.1810	0.1796	0.1740	0.1702
655	4.1820	0.1770	0.1829	0.1928	0.1854	0.1794	0.1780	0.1741	0.1696
656	4.1819	0.1777	0.1841	0.1939	0.1862	0.1791	0.1770	0.1714	0.1693
657	4.1808	0.1785	0.1830	0.1929	0.1859	0.1799	0.1760	0.1708	0.1679
658 659	4.1818 4.1822	0.1810 0.1811	0.1880 0.1871	0.1937 0.1952	0.1881 0.1882	0.1797 0.1794	0.1769 0.1772	0.1726 0.1716	0.1698 0.1663
660	4.1796	0.1815	0.1866	0.1955	0.1879	0.1774	0.1774	0.1718	0.1669
661	4.1792	0.1782	0.1860	0.1942	0.1868	0.1746	0.1746	0.1700	0.1654
662	4.1802	0.1816	0.1861	0.1971	0.1901	0.1775	0.1775	0.1720	0.1678
663	4.1787	0.1780	0.1861	0.1934	0.1880	0.1724	0.1726	0.1673	0.1656
664 665	4.1788 4.1767	0.1796 0.1812	0.1878 0.1891	0.1944 0.1951	0.1902 0.1919	0.1734 0.1742	0.1742 0.1742	0.1694 0.1695	0.1672 0.1662
666	4.1759	0.1828	0.1911	0.1968	0.1915	0.1746	0.1759	0.1678	0.1662
667	4.1783	0.1820	0.1889	0.1948	0.1892	0.1720	0.1736	0.1690	0.1650
668	4.1779	0.1831	0.1901	0.1965	0.1915	0.1708	0.1747	0.1689	0.1655
669	4.1757 4.1756	0.1832	0.1892	0.1966 0.1945	0.1915 0.1913	0.1692 0.1666	0.1739	0.1688 0.1676	0.1646
670 671	4.1767	0.1817 0.1818	0.1898 0.1889	0.1943	0.1913	0.1688	0.1707 0.1730	0.1675	0.1647 0.1636
672	4.1758	0.1832	0.1916	0.1954	0.1949	0.1689	0.1726	0.1675	0.1651
673	4.1746	0.1833	0.1925	0.1964	0.1950	0.1682	0.1718	0.1676	0.1651
674	4.1754	0.1856	0.1918	0.1982	0.1968	0.1689	0.1731	0.1677	0.1639
675 676	4.1740 4.1744	0.1859	0.1942 0.1922	0.1985	0.1968	0.1664 0.1656	0.1747 0.1740	0.1679	0.1648 0.1633
677	4.1731	0.1852 0.1843	0.1922	0.1983 0.1975	0.1945 0.1963	0.1636	0.1740	0.1684 0.1683	0.1633
678	4.1716	0.1840	0.1924	0.1966	0.1955	0.1644	0.1716	0.1663	0.1632
679	4.1737	0.1853	0.1964	0.1980	0.1980	0.1657	0.1727	0.1683	0.1656
680	4.1720	0.1857	0.1942	0.1975	0.1989	0.1652	0.1718	0.1656	0.1642
681 682	4.1724 4.1727	0.1882 0.1879	0.1966 0.1963	0.1988 0.1992	0.2002	0.1671 0.1659	0.1743 0.1732	0.1670 0.1667	0.1648 0.1639
683	4.1723	0.1879	0.1965	0.1992	0.1984 0.2007	0.1653	0.1752	0.1654	0.1639
684	4.1716	0.1878	0.1963	0.2005	0.1995	0.1645	0.1740	0.1666	0.1658
685	4.1709	0.1884	0.1969	0.2004	0.2004	0.1650	0.1742	0.1664	0.1650
686	4.1702	0.1868	0.1985	0.1992	0.2013	0.1644	0.1733	0.1651	0.1641
687 688	4.1723 4.1709	0.1901 0.1909	0.1973 0.2006	0.2001 0.2009	0.2043 0.2030	0.1646 0.1665	0.1731 0.1728	0.1660 0.1676	0.1660 0.1668
689	4.1702	0.1909	0.2000	0.2009	0.2054	0.1663	0.1728	0.1676	0.1677
690	4.1684	0.1918	0.2007	0.2027	0.2052	0.1658	0.1757	0.1666	0.1662
691	4.1708	0.1931	0.2016	0.2031	0.2046	0.1662	0.1761	0.1689	0.1675
692	4.1666	0.1910	0.1984	0.2021	0.2049	0.1646	0.1760	0.1669	0.1655
693 694	4.1667 4.1675	0.1929 0.1931	0.2021 0.2030	0.2029 0.2030	0.2063 0.2082	0.1651 0.1666	0.1758 0.1756	0.1688 0.1690	0.1680 0.1700
695	4.1667	0.1931	0.2036	0.2036	0.2082	0.1668	0.1780	0.1684	0.1700
696	4.1665	0.1963	0.2060	0.2057	0.2126	0.1693	0.1792	0.1707	0.1716
697	4.1668	0.1967	0.2058	0.2050	0.2100	0.1686	0.1784	0.1700	0.1697
698	4.1674	0.1975	0.2064	0.2073	0.2107	0.1693	0.1792	0.1717	0.1712
699 700	4.1643 4.1671	0.1958 0.1977	0.2042 0.2061	0.2056 0.2075	0.2109 0.2121	0.1664 0.1682	0.1788 0.1809	0.1692 0.1726	0.1703 0.1714
701	4.1642	0.1977	0.2051	0.2073	0.2121	0.1669	0.1795	0.1725	0.1714
702	4.1647	0.1976	0.2083	0.2074	0.2139	0.1685	0.1811	0.1724	0.1719
703	4.1626	0.1975	0.2088	0.2074	0.2156	0.1695	0.1809	0.1735	0.1723
704	4.1660	0.2002	0.2114	0.2088	0.2158	0.1708	0.1834	0.1737	0.1748
705 706	4.1637 4.1626	0.2000 0.2003	0.2108 0.2102	0.2094 0.2104	0.2164 0.2174	0.1701 0.1703	0.1832 0.1852	0.1743 0.1753	0.1729 0.1739
707	4.1623	0.2003	0.2102	0.2104	0.2174	0.1703	0.1863	0.1753	0.1759
708	4.1620	0.2008	0.2107	0.2105	0.2190	0.1699	0.1867	0.1768	0.1767
709	4.1608	0.2009	0.2121	0.2097	0.2190	0.1708	0.1858	0.1760	0.1755
710	4.1635	0.2019	0.2139	0.2110	0.2214	0.1722	0.1878	0.1780	0.1778
711 712	4.1615 4.1622	0.2039 0.2045	0.2154 0.2158	0.2123 0.2130	0.2222 0.2215	0.1729 0.1736	0.1898 0.1905	0.1777 0.1792	0.1785 0.1778
712	4.1622	0.2043	0.2157	0.2130	0.2213	0.1747	0.1903	0.1792	0.1778
714	4.1609	0.2061	0.2167	0.2153	0.2231	0.1756	0.1941	0.1813	0.1813
715	4.1621	0.2049	0.2159	0.2145	0.2241	0.1747	0.1946	0.1815	0.1818
716	4.1582	0.2050	0.2150	0.2150	0.2235	0.1737	0.1950	0.1808	0.1808
717 718	4.1614 4.1582	0.2062 0.2073	0.2190 0.2195	0.2158 0.2159	0.2269 0.2273	0.1748 0.1759	0.1962 0.1973	0.1816 0.1823	0.1844 0.1845
718 719	4.1582	0.2073	0.2193	0.2139	0.2273	0.1789	0.1973	0.1823	0.1843
720	4.1570	0.2083	0.2212	0.2169	0.2269	0.1781	0.1982	0.1838	0.1867
721	4.1577	0.2125	0.2211	0.2197	0.2297	0.1797	0.2038	0.1855	0.1861
722	4.1575	0.2111	0.2204	0.2189	0.2290	0.1794	0.2031	0.1864	0.1880

TABLE 1.1-continued

				TI TOLL	1.1-conti	naca			
		1st light	1st light	1st light	1st light	2nd light	2nd light	2nd light	2nd light
		blocking							
	W/o	sheet-							
λ	film	No. 1-	No. 1-	No. 2-	No. 2-	No. 1-	No. 1-	No. 2-	No. 2-
(nm)	layer	0 deg.	180 deg.						
723	4.1568	0.2106	0.2217	0.2203	0.2304	0.1799	0.2044	0.1885	0.1895
724	4.1583	0.2097	0.2213	0.2185	0.2313	0.1794	0.2026	0.1880	0.1895
725	4.1591	0.2111	0.2244	0.2210	0.2331	0.1810	0.2077	0.1882	0.1923
726	4.1564	0.2126	0.2265	0.2207	0.2334	0.1824	0.2068	0.1890	0.1925
727	4.1561	0.2143	0.2264	0.2216	0.2337	0.1834	0.2095	0.1901	0.1926
728	4.1571	0.2162	0.2292	0.2248	0.2339	0.1870	0.2132	0.1930	0.1957
729	4.1557	0.2163	0.2269	0.2239	0.2356	0.1861	0.2138	0.1949	0.1951
730	4.1566	0.2140	0.2265	0.2242	0.2358	0.1858	0.2140	0.1945	0.1965
731	4.1554	0.2132	0.2258	0.2234	0.2351	0.1850	0.2151	0.1947	0.1967
732	4.1571	0.2144	0.2276	0.2234	0.2363	0.1867	0.2161	0.1944	0.1984
733 734	4.1546	0.2156	0.2288	0.2242	0.2387	0.1903	0.2184	0.1975	0.1995
735	4.1559 4.1546	0.2181 0.2194	0.2309 0.2320	0.2260 0.2282	0.2393 0.2397	0.1913 0.1935	0.2201 0.2223	0.1971 0.1993	0.2020 0.2040
736	4.1561	0.2194	0.2320	0.2282	0.2403	0.1933	0.2223	0.2005	0.2039
737	4.1545	0.2178	0.2323	0.2282	0.2384	0.1942	0.2266	0.2004	0.2032
738	4.1538	0.2182	0.2309	0.2295	0.2392	0.1946	0.2270	0.2030	0.2049
739	4.1541	0.2195	0.2334	0.2289	0.2416	0.1951	0.2275	0.2033	0.2062
740	4.1551	0.2209	0.2342	0.2310	0.2454	0.1994	0.2319	0.2059	0.2100
741	4.1521	0.2204	0.2337	0.2307	0.2441	0.1984	0.2309	0.2041	0.2086
742	4.1547	0.2231	0.2364	0.2324	0.2455	0.2030	0.2360	0.2068	0.2112
743	4.1529	0.2248	0.2374	0.2344	0.2465	0.2041	0.2375	0.2093	0.2130
744	4.1505	0.2258	0.2388	0.2370	0.2473	0.2053	0.2403	0.2097	0.2150
745	4.1522	0.2238	0.2358	0.2343	0.2477	0.2044	0.2417	0.2119	0.2149
746	4.1508	0.2258	0.2385	0.2366	0.2479	0.2071	0.2445	0.2120	0.2164
747	4.1516	0.2249	0.2384	0.2346	0.2481	0.2062	0.2444	0.2114	0.2166
748	4.1491	0.2250	0.2416	0.2359	0.2495	0.2096	0.2454	0.2141	0.2190
749 750	4.1540	0.2276	0.2427	0.2382	0.2518	0.2126	0.2487	0.2141	0.2216
751	4.1503 4.1507	0.2297 0.2311	0.2433 0.2447	0.2391 0.2417	0.2516 0.2540	0.2150 0.2168	0.2504 0.2554	0.2161 0.2175	0.2213 0.2243
752	4.1493	0.2311	0.2420	0.2400	0.2518	0.2174	0.2570	0.2179	0.2239
753	4.1514	0.2301	0.2438	0.2422	0.2515	0.2180	0.2576	0.2209	0.2255
754	4.1487	0.2307	0.2448	0.2417	0.2552	0.2200	0.2598	0.2216	0.2280
755	4.1496	0.2320	0.2467	0.2436	0.2565	0.2219	0.2618	0.2228	0.2305
756	4.1496	0.2326	0.2474	0.2433	0.2571	0.2244	0.2633	0.2233	0.2310
757	4.1476	0.2355	0.2495	0.2449	0.2587	0.2292	0.2677	0.2263	0.2325
758	4.1486	0.2355	0.2505	0.2461	0.2582	0.2293	0.2693	0.2262	0.2350
759	4.1471	0.2373	0.2497	0.2478	0.2586	0.2317	0.2723	0.2286	0.2360
760	4.1479	0.2360	0.2494	0.2484	0.2583	0.2323	0.2738	0.2292	0.2376
761	4.1452	0.2362	0.2502	0.2500	0.2607	0.2345	0.2776	0.2314	0.2405
762	4.1484	0.2357	0.2509	0.2493	0.2606	0.2341	0.2762	0.2337	0.2405
763 764	4.1452	0.2381 0.2395	0.2523	0.2496	0.2625	0.2371	0.2793	0.2340 0.2354	0.2444
765	4.1479 4.1456	0.2393	0.2548 0.2573	0.2491 0.2536	0.2629 0.2654	0.2395 0.2445	0.2817 0.2854	0.2354	0.2448 0.2492
766	4.1436	0.2419	0.2573	0.2538	0.2634	0.2443	0.2834	0.2398	0.2492
767	4.1439	0.2427	0.2575	0.2553	0.2654	0.2456	0.2913	0.2428	0.2506
768	4.1442	0.2429	0.2562	0.2554	0.2640	0.2476	0.2914	0.2437	0.2523
769	4.1459	0.2430	0.2571	0.2556	0.2650	0.2489	0.2928	0.2446	0.2540
770	4.1438	0.2431	0.2572	0.2541	0.2681	0.2494	0.2948	0.2431	0.2571
771	4.1428	0.2458	0.2611	0.2583	0.2696	0.2549	0.2966	0.2486	0.2589
772	4.1456	0.2467	0.2615	0.2592	0.2711	0.2559	0.2993	0.2489	0.2617
773	4.1455	0.2495	0.2631	0.2600	0.2720	0.2594	0.3023	0.2506	0.2636
774	4.1416	0.2493	0.2647	0.2615	0.2713	0.2615	0.3040	0.2535	0.2648
775	4.1439	0.2506	0.2634	0.2618	0.2726	0.2618	0.3088	0.2543	0.2681
776	4.1431	0.2491	0.2632	0.2622	0.2711	0.2622	0.3088	0.2569	0.2679
777	4.1418	0.2503	0.2644	0.2626	0.2723	0.2635	0.3099	0.2581	0.2700
778	4.1415	0.2510	0.2664	0.2645	0.2742	0.2673	0.3132	0.2588	0.2739
779	4.1444	0.2531	0.2673	0.2642	0.2751	0.2674	0.3144	0.2610	0.2751
780	4.1437	0.2551	0.2716	0.2689	0.2771	0.2736	0.3180	0.2641	0.2783

TABLE 1.2

	W/o film layer	1st light blocking sheet- No. 1- 0 deg.	1st light blocking sheet- No. 1- 180 deg.	1st light blocking sheet- No. 2- 0 deg.	1st light blocking sheet- No. 2- 180 deg.	2nd light blocking sheet- No. 1- 0 deg.	2nd light blocking sheet- No. 1- 180 deg.	2nd light blocking sheet- No. 2- 0 deg.	2nd light blocking sheet- No. 2- 180 deg.
R _{Max} (%)	N/A	1.0293	1.0022	1.0551	0.9964	1.1928	1.3143	1.1486	1.1829
λ_{RMax} (nm)	N/A	438	438	439	437	446	438	440	444
R_{high} (%)	N/A	0.86	0.84	0.89	0.85	1.01	1.08	0.95	0.99
R ₂ (%)	N/A	0.28	0.28	0.29	0.27	0.32	0.31	0.30	0.30

TABLE 1.2-continued

	W/o film layer	1st light blocking sheet- No. 1- 0 deg.	1st light blocking sheet- No. 1- 180 deg.	1st light blocking sheet- No. 2- 0 deg.	1st light blocking sheet- No. 2- 180 deg.	2nd light blocking sheet- No. 1- 0 deg.	2nd light blocking sheet- No. 1- 180 deg.	2nd light blocking sheet- No. 2- 0 deg.	2nd light blocking sheet- No. 2- 180 deg.
R _{high} /R ₂	N/A	3.10	2.99	3.11	3.10	3.17	3.45	3.14	3.31
R ₃₈₇₈ (%)	4.25	0.43	0.42	0.44	0.42	0.49	0.51	0.47	0.47

TABLE 1.3

Measurement items	L*	a*	b*	CI = $\{(L^*) \times [(a^*)^2 + (b^*)^2]\}^1/2$	ΙΔΟΙΙ
W/o film layer	7.80	3.10	-0.47	8.76	
1st light blocking	4.17	-0.24	-9.51	19.42	2.07
sheet-No. 1-0 deg.					
1st light blocking	3.81	1.03	-10.96	21.49	
sheet-No. 1-180 deg.					
1st light blocking	3.78	0.21	-9.41	18.29	0.75
sheet-No. 2-0 deg.					
1st light blocking	3.79	0.41	-9.77	19.04	
sheet-No. 2-180 deg.					
2nd light blocking	3.17	0.58	-8.85	15.80	0.60
sheet-No. 1-0 deg.					
2nd light blocking	3.14	0.55	-8.56	15.20	
sheet-No. 1-180 deg.					
2nd light blocking	3.21	0.89	-9.08	16.35	1.50
sheet-No. 2-0 deg.	2.00	4.40	0.61	4405	
2nd light blocking	2.90	1.13	-8.64	14.85	
sheet-No. 2-180 deg.					

TABLE 1.4

FOV (deg.)	120	φs2 (mm)	1.22
Db (mm)	6.21	Ts1 (µm)	23
Ds1 (mm)	1.14	Ts2 (µm)	16
Ds2 (mm)	1.82	Ds1/Db	0.18
φb (mm)	4.54	Ds2/Db	0.29
φs1 (mm)	2.64		

2nd Embodiment

FIG. 2A is a three-dimensional view observed from an object side of an optical lens assembly 200 according to the 45 2nd embodiment of the present disclosure, FIG. 2B is a top view observed from the object side of the optical lens assembly 200 in FIG. 2A, and FIG. 2C is a partially cross-sectional view of the optical lens assembly 200 in FIG. 2A. With reference to FIG. 2A to FIG. 2C, the optical lens 50 assembly 200 includes a lens barrel 210 and an optical lens group 230. The lens barrel 210 includes a light entering hole 211, which is configured for allowing a light to enter the lens barrel 210. The lens barrel 210 accommodates the optical lens group 230, and an optical axis z passes through the 55 optical lens group 230 (as shown in FIG. 2C). The optical lens group 230 includes a first lens element 271, a second lens element 272, a third lens element 273, a fourth lens element 274, a fifth lens element 275 and a sixth lens element 276 in order from the object side (i.e., a left side in 60 FIG. 2C) to an image side (i.e., a right side in FIG. 2C) along the optical axis z. A total number of lens elements in the optical lens group 230 is six. The reference numerals of the transparent lens elements such as the first lens element 271, etc. are omitted in FIG. 2A and FIG. 2B. Partial surface 65 shapes of the lens elements are omitted in FIG. 2C. A number of the light blocking sheet of the optical lens group

230 is at least one, and the optical lens group 230 specifically further includes annular optical elements such as a light blocking sheet 240, another light blocking sheet, a spacer, a retainer, etc. The light blocking sheet 240 is disposed and connected between the first lens element 271 and the second lens element 272.

FIG. 2D is a top view of the light blocking sheet 240 of the optical lens assembly 200 in FIG. 2A. With reference to FIG. 2C and FIG. 2D, the light blocking sheet 240 is an opaque sheet-shaped element and surrounds the optical axis z to form a light passing hole 241, which is in a circular shape. The light blocking sheet 240 includes an object-side surface 245 and an image-side surface 246, and the object-side surface 245 is located more adjacent to the light entering hole 211 than the image-side surface 246 thereto. A first film layer 249 is disposed on the object-side surface 245. The first film layer 249 is disposed from the light passing hole 241 along a direction being away from the optical axis z, and a coverage area of the first film layer 249 is smaller than an area of the object-side surface 245.

FIG. 2E is a cross-sectional view along line 2E-2E in FIG.
2D (not drawn with an actual scale). With reference to FIG.
2E, the light blocking sheet 240 specifically includes a base
layer 262 and a covering layer 263, the first film layer 249 is disposed on and in physical contact with an object-side surface of the base layer 262, and an image side surface of the base layer 262 is in physical contact with the covering layer 263.

FIG. 2F is a top view of a light blocking sheet 250 that can be applicable to the optical lens assembly 200 in FIG. 2A, and an object-side surface 255 of the light blocking sheet 250 is observed in FIG. 2F. With reference to FIG. 2F, the light blocking sheet 240 of the optical lens group 230 may be replaced by the light blocking sheet 250, and the light blocking sheet 250 may be disposed and connected between the first lens element 271 and the second lens element 272. The light blocking sheet 250 is an opaque sheet-shaped element and surrounds the optical axis z to form a light passing hole 251, which is in a circular shape. An annular wall forming the light passing hole 251 includes a plurality of arc-shaped convex portions, and each of the arc-shaped convex portions protrudes toward the optical axis z, and the arc-shaped convex portions are connected in sequence. A shape of a light passing hole of a light blocking sheet of an optical lens assembly according to the present disclosure can be in any shape, and is not limited thereto.

With reference to the following Table 2, a maximum field of view of the optical lens assembly 200 is FOV. In a direction along the optical axis z, a distance between a most object-side end 215 of the lens barrel 210 and a most image-side end 216 of the lens barrel 210 is Db, and a distance between the most object-side end 215 of the lens barrel 210 and the first film layer 249 is Ds. A diameter of the light entering hole 211 is qb, a diameter of the light passing hole 241 is qs, and a thickness in the direction along the optical axis z of the light blocking sheet 240 is Ts. The

following Table 2 lists the parameter values according to the aforementioned definitions of the optical lens assembly 200 in the 2nd embodiment. In addition, regarding other details of the light blocking sheet 240 in the 2nd embodiment, the contents of the first light blocking sheet 140 and the second light blocking sheet 150 in the 1st embodiment can be referred, but the light blocking sheet 240 is not limited thereto

TABLE 2

FOV (deg.)	117.3	φs (mm)	1.29
Db (mm)	5.2	Ts (µm)	23
Ds (mm)	0.9798	Ds/Db	0.19
φb (mm)	2.9		

3rd Embodiment

FIG. 3A is a three-dimensional view observed from an 20 object side of an optical lens assembly 300 according to the 3rd embodiment of the present disclosure, FIG. 3B is a top view observed from the object side of the optical lens assembly 300 in FIG. 3A, and FIG. 3C is a partially cross-sectional view of the optical lens assembly 300 in FIG. 25 3A. With reference to FIG. 3A to FIG. 3C, the optical lens assembly 300 includes a lens barrel 310 and an optical lens group 330. The lens barrel 310 includes a light entering hole 311, which is configured for allowing a light to enter the lens barrel 310. The lens barrel 310 accommodates the optical 30 lens group 330, and an optical axis z passes through the optical lens group 330 (as shown in FIG. 3C). The optical lens group 330 includes a first lens element 371, a second lens element 372, a third lens element 373, a fourth lens element 374, a fifth lens element 375 and a sixth lens 35 element 376 in order from the object side (i.e., a left side in FIG. 3C) to an image side (i.e., a right side in FIG. 3C) along the optical axis z. A total number of lens elements in the optical lens group 330 is six. The reference numerals of the transparent lens elements such as the first lens element 371, 40 etc. are omitted in FIG. 3A and FIG. 3B. Partial surface shapes of the lens elements are omitted in FIG. 3C. A number of the light blocking sheet of the optical lens group 330 is at least two, and the optical lens group 330 specifically further includes annular optical elements such as a first 45 light blocking sheet 340, a second light blocking sheet 350, another light blocking sheet, a spacer, a retainer, etc. The first light blocking sheet 340 is disposed and connected between the first lens element 371 and the second lens element 372, and the second light blocking sheet 350 is 50 disposed and connected between the second lens element 372 and third lens element 373.

FIG. 3D is a top view of the lens barrel 310 of the optical lens assembly 300 in FIG. 3A. With reference to FIG. 3A to FIG. 3D, an object-side portion 313 of the lens barrel 310 55 may include a top wall 314 surrounding the optical axis z to form the light entering hole 311, and a second film layer 319 is disposed on an outer surface facing the object side of the top wall 314.

A reflected light is obtained from the second film layer 60 **319** irradiated by the standard illuminant D65, a color index of the reflected light is defined according to the CIE 1976 L*a*b* color space, the color index is CI2, the reflected light has a maximum reflectivity in a spectrum in the wavelength range of 380 nm to 780 nm, a wavelength range of a 65 wavelength corresponding to the maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is a high

reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the high reflectivity section is a second reflectivity section, an aver-

age reflectivity in the high reflectivity section is $R2_{high}$, an average reflectivity in the second reflectivity section is $R2_2$, and the following conditions are satisfied: $CI2=\{(L^*)\times [(a^*)^2+(b^*)^2]\}^{1/2}$, $11\leq CI2\leq 41$; and $1.8\leq R2_{high}/R2_2\leq 6.2$.

24

FIG. 3E is a top view of the first light blocking sheet 340 of the optical lens assembly 300 in FIG. 3A, and FIG. 3F is 10 a top view of the second light blocking sheet 350 of the optical lens assembly 300 in FIG. 3A. With reference to FIG. 3C, FIG. 3E and FIG. 3F, the first light blocking sheet 340 is an opaque sheet-shaped element and surrounds the optical axis z to form a light passing hole 341. The first light blocking sheet 340 includes an object-side surface 345 and an image-side surface 346, and the object-side surface 345 is located more adjacent to the light entering hole 311 than the image-side surface 346 thereto. A first film layer 349 is disposed on the object-side surface 345. The second light blocking sheet 350 is an opaque sheet-shaped element and surrounds the optical axis z to form a light passing hole 351. The second light blocking sheet 350 includes an object-side surface 355 and an image-side surface 356, and the objectside surface 355 is located more adjacent to the light entering hole 311 than the image-side surface 356 thereto. A first film layer 359 is disposed on the object-side surface 355.

The first film layer 349 is disposed from the light passing hole 341 along a direction being away from the optical axis z, and a coverage area of the first film layer 349 is smaller than an area of the object-side surface 345. The first film layer 359 is disposed from the light passing hole 351 along the direction being away from the optical axis z, and a coverage area of the first film layer 359 is smaller than an area of the object-side surface 355.

Diameters of the light passing holes 341, 351 of the first light blocking sheet 340 and the second light blocking sheet 350, respectively, are different. The diameter of the light passing hole 341 of the first light blocking sheet 340 closer to the object side is greater than the diameter of the light passing hole 351 of the second light blocking sheet 350. Regarding other details of the first light blocking sheet 340 and the second light blocking sheet 350 in the 3rd embodiment, the contents of the first light blocking sheet 140 and the second light blocking sheet 150 in the 1st embodiment can be referred, but the first light blocking sheet 340 and the second light blocking sheet 350 are not limited thereto.

FIG. 3G is a three-dimensional view observed from the image side of the first lens element 371 of the optical lens assembly 300 in FIG. 3A. With reference to FIG. 3C and FIG. 3G, the first lens element 371 is disposed on an object side of the first light blocking sheet 340 and the second light blocking sheet 350. The first lens element 371 includes an optical effective region 383 and a peripheral region 384. The optical effective region 383 is configured for being passed through by the light. The peripheral region 384 is located farther from the optical axis z than the optical effective region 383 therefrom, and a third film layer 389 is disposed on at least one of a peripheral object-side surface 385 and a peripheral image-side surface 386 (at least the peripheral image-side surface 386, specifically) of the peripheral region 384.

FIG. 3H is a schematic view of reflectivity of the first lens element 371 in FIG. 3G, the third film layer 389 is disposed on the peripheral image-side surface 386 of the first lens element 371, and third film layers may be disposed on an optical effective object-side surface and an optical effective

image-side surface (reference numerals omitted), respectively, of the optical effective region 383 of the first lens element 371. With reference to FIG. 3H and further to Table 3.1. Table 3.2. Table 3.3 and Table 3.4 as the following. Table 3.1 to Table 3.4 list parameter values of the optical lens assembly 300 and the third film layer 389 of the first lens element 371 thereof in the 3rd embodiment of the present disclosure.

In detail, with reference to the following Table 3.1, Table 3.1 lists the reflectivity values of the third film layer 389 of the peripheral image-side surface 386 and the third film layer of the optical effective object-side surface of the first lens element 371 of the optical lens assembly 300 in the 3rd embodiment of the present disclosure. In Table 3.1, the unit $_{15}$ of the reflectivity value is %. The relationship diagram between the wavelengths and the corresponding reflectivity values listed in Table 3.1 is shown in FIG. 3H.

With reference to the following Table 3.2 and Table 3.3, another reflected light is obtained from the third film layer 389 irradiated by the standard illuminant D65, another color index of the another reflected light is defined according to the CIE 1976 L*a*b* color space, the another color index is CI3, the another reflected light has another maximum reflectivity in another spectrum in the wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength corresponding to the another maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is another high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the another high reflectivity section is another second reflectivity section, an average reflectivity in the another high reflectivity section is R3_{high}, an average reflectivity in the another second reflectivity section is R3₂, the wavelength corresponding to the another maximum reflectivity is λ_{RMax} , the another maximum reflectivity is R_{Max} , and an average reflectivity of the another reflected light in the wavelength range of 380 nm to 780 nm is R_{3878} . The following Table 3.2 and Table 3.3 list the parameter values according to the aforementioned definitions of the optical lens assembly 300 in the 3rd embodi-

With reference to the following Table 3.4, a maximum field of view of the optical lens assembly 300 is FOV. In a direction along the optical axis z, a distance between a most object-side end 315 of the lens barrel 310 and a most image-side end 316 of the lens barrel 310 is Db, a distance between the most object-side end 315 of the lens barrel 310 and the first film layer 349 is Ds1, and a distance between the most object-side end 315 of the lens barrel 310 and the first film layer 359 is Ds2. A diameter of the light entering hole 311 is φ b, a diameter of the light passing hole 341 is φ s1, and a diameter of the light passing hole **351** is φ S2. A thickness in the direction along the optical axis z of the first light blocking sheet 340 is Ts1, and a thickness in the direction along the optical axis z of the second light blocking sheet 350 is Ts2. The following Table 3.4 lists the parameter values according to the aforementioned definitions of the optical lens assembly 300 in the 1st embodiment.

TABLE 3.1

		TABLE 3.1		60
	Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surface	
Ī	380	22.8855	24.9187	
	381	21.4447	24.4597	
	382	20.4477	23.7284	65
	383	19.1480	22.9525	

TABLE 3.1-continued

Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surfac
384	18.0618	21.8881
385	17.0734	21.4246
386	16.0328	20.8750
387	15.0127	20.1195
388	14.1026	19.4997
389	13.1253	18.7424
390	12.1780	17.9810
391	11.3753	17.2883
392	10.5274	16.5558
393	9.7866	15.9688
394	9.0401	15.2542
395	8.3521	14.6754
396	7.6550	13.9682
397	7.0576	13.3030
398	6.5004	12.6523
399	5.9813	12.0081
400	5.5252	11.5072
401	5.0935	10.9106
402	4.6776	10.4070
403	4.2876	9.8733
404	3.9525	9.3069
405		
	3.6269	8.7913 8.3005
406	3.3530	8.3095
407	3.1225	7.8481
408	2.9209	7.4307
409	2.7302	7.0076
410	2.5666	6.5921
411	2.4255	6.2186
412	2.2858	5.8507
413	2.2110	5.4716
414	2.1438	5.1371
415	2.0678	4.8215
416	2.0489	4.5278
417	2.0102	4.2656
418	1.9864	3.9956
419	1.9869	3.7413
420	1.9880	3.4996
421	2.0070	3.2712
422	2.0359	3.0681
423	2.0811	2.8706
424	2.1106	2.6983
425	2.1597	2.5224
426	2.2067	2.3647
427	2.2538	2.2148
428	2.3172	2.0660
429	2.3711	1.9463
430	2.4389	1.8250
431	2.5098	1.7127
432	2.5653	1.6112
433	2.6322	1.5173
434	2.6906	1.4305
435	2.7527	1.3558
436	2.8104	1.2828
437	2.8768	
		1.2097
438 439	2.9470 2.9996	1.1492 1.1066
440	3.0684	1.0516
441	3.1116	1.0149
442	3.1670	0.9606
443	3.2064	0.9308
444	3.2620	0.9010
445	3.3125	0.8715
446	3.3527	0.8562
447	3.3832	0.8303
448	3.4229	0.8100
449	3.4519	0.7914
450	3.4811	0.7715
451	3.4993	0.7704
452	3.5343	0.7554
453	3.5584	0.7501
453 454	3.5834	0.7301
455		
	3.5870	0.7481
456	3.5962	0.7320
457	3.6013	0.7314
		0.7308
458	3.6105	0.7308
	3.6105 3.6184	0.7227

28
TABLE 3.1-continued

	TABLE 3.1-conti	nued			TABLE 3.1-conti	nued
Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surface		Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surface
461	3.6163	0.7290	5	538	0.7480	0.4568
462	3.6116	0.7338		539	0.7235	0.4487
463	3.6039	0.7389		540	0.6967	0.4399
464	3.5902	0.7337		541	0.6716	0.4337
465	3.5708	0.7383		542	0.6493	0.4282
466	3.5578	0.7362		543	0.6267	0.4184
467	3.5393	0.7430	10	544	0.6054	0.4130
468 469	3.5249 3.5106	0.7422 0.7506		545 546	0.5846 0.5640	0.4068
470	3.4904	0.7510		547	0.5421	0.4002 0.3928
471	3.4493	0.7491		548	0.5237	0.3850
472	3.4273	0.7593		549	0.5043	0.3798
473	3.3955	0.7588		550	0.4887	0.3726
474	3.3657	0.7589	15	551	0.4710	0.3640
475	3.3377	0.7603		552	0.4566	0.3596
476	3.3043	0.7657		553	0.4408	0.3532
477	3.2676	0.7668		554	0.4230	0.3469
478	3.2304	0.7675		555	0.4101	0.3402
479	3.1919	0.7665		556	0.3933	0.3333
480	3.1508	0.7690	20	557	0.3803	0.3278
481	3.1096	0.7696		558	0.3682	0.3211
482	3.0737	0.7724		559	0.3555	0.3164
483	3.0283	0.7624		560	0.3436	0.3098
484	2.9933	0.7688		561	0.3315	0.3041
485	2.9441	0.7700		562	0.3201	0.2985
486	2.8990	0.7658	25	563	0.3094	0.2940
487	2.8602	0.7673		564	0.2987	0.2850
488	2.8070	0.7621		565	0.2888	0.2787
489	2.7584	0.7604		566	0.2797	0.2733
490	2.7129	0.7595		567	0.2724	0.2691
491	2.6706	0.7548		568	0.2623	0.2661
492	2.6225	0.7572	30	569	0.2548	0.2580
493	2.5720	0.7523	50	570	0.2467	0.2524
494	2.5233	0.7494		571	0.2363	0.2450
495	2.4734	0.7424		572	0.2328	0.2398
496	2.4247	0.7408		573	0.2251	0.2353
497	2.3752	0.7342		574	0.2183	0.2303
498	2.3268	0.7311	35	575	0.2147	0.2261
499	2.2853	0.7281	33	576	0.2060	0.2204
500	2.2315	0.7238		577	0.2014	0.2160
501	2.1815	0.7186		578	0.1958	0.2106
502	2.1338	0.7106		579	0.1894	0.2044
503	2.0822	0.7067		580	0.1870	0.1987
504	2.0370	0.7007	40	581	0.1813	0.1945
505	1.9901	0.6934	40	582	0.1795	0.1926
506	1.9436	0.6908		583	0.1759	0.1865
507	1.9002	0.6841		584	0.1737	0.1825
508	1.8498	0.6791		585	0.1686	0.1782
509	1.8026	0.6700		586	0.1624	0.1708
510	1.7557	0.6600		587	0.1590	0.1652
511	1.7120	0.6586	45	588	0.1562	0.1598
512	1.6682	0.6489		589	0.1563	0.1582
513	1.6256	0.6429		590	0.1543	0.1534
514	1.5827	0.6369		591	0.1491	0.1487
515	1.5403	0.6288		592	0.1499	0.1453
516	1.4963	0.6219		593	0.1443	0.1398
517	1.4545	0.6137	50	594	0.1425	0.1362
518	1.4126	0.6054		595	0.1420	0.1330
519	1.3745	0.5978		596	0.1385	0.1274
520	1.3315	0.5910		597	0.1410	0.1240
521	1.2942	0.5836		598	0.1396	0.1197
522	1.2571	0.5772		599	0.1382	0.1158
523	1.2186	0.5707	55	600	0.1346	0.1111
524	1.1830	0.5621		601	0.1346	0.1079
525	1.1447	0.5534		602	0.1317	0.1030
526	1.1103	0.5467		603	0.1319	0.0995
527	1.0772	0.5379		604	0.1337	0.0965
528	1.0439	0.5328		605	0.1295	0.0924
529	1.0123	0.5232	60	606	0.1313	0.0886
530	0.9793	0.5156	0.0	607	0.1297	0.0862
531	0.9480	0.5084		608	0.1279	0.0823
532	0.9171	0.5025		609	0.1277	0.0778
533	0.8857	0.4933		610	0.1252	0.0739
	0.9560	0.4851		611	0.1250	0.0713
534	0.8560					
535	0.8273	0.4777		612	0.1271	0.0676
			65	612 613 614	0.1271 0.1253 0.1261	0.0676 0.0663 0.0638

TABLE 3.1-continued

30
TABLE 3.1-continued

Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical		337141-		
		effective object-side surface		Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surfac
	0.1240	0.0606	5	692	0.0429	0.1988
616	0.1228	0.0564		693	0.0427	0.2070
617	0.1216	0.0512		694	0.0430	0.2163
618	0.1210	0.0498		695	0.0425	0.2273
619	0.1224	0.0483		696	0.0445	0.2360
620	0.1227	0.0451		697	0.0426	0.2455
621	0.1204	0.0438	10	698	0.0432	0.2557
622	0.1200	0.0400		699	0.0460	0.2667
623	0.1195	0.0386		700	0.0411	0.2770
624 625	0.1192 0.1163	0.0354 0.0336		701 702	0.0430 0.0438	0.2867 0.2969
626	0.1182	0.0315		703	0.0438	0.3079
627	0.1168	0.0281		704	0.0464	0.3209
628	0.1166	0.0281	15	705	0.0477	0.3313
629	0.1164	0.0254		706	0.0477	0.3431
630	0.1146	0.0236		707	0.0466	0.3555
631	0.1140	0.0220		708	0.0491	0.3657
632	0.1138	0.0194		709	0.0487	0.3793
633	0.1121	0.0186		710	0.0507	0.3935
634	0.1121	0.0173	20	711	0.0530	0.4065
635	0.1122	0.0167		712	0.0538	0.4193
636	0.1114	0.0169		713	0.0576	0.4327
637	0.1087	0.0149		714	0.0589	0.4466
638	0.1074	0.0145		715	0.0590	0.4621
639	0.1077	0.0129		716	0.0613	0.4744
640	0.1063	0.0121	25	717	0.0618	0.4881
641	0.1041	0.0109		718	0.0650	0.5028
642	0.1039	0.0121		719	0.0684	0.5188
643	0.1035	0.0121		720	0.0717	0.5356
644	0.1031	0.0122		721	0.0751	0.5496
645	0.1034	0.0122		722	0.0764	0.5651
646	0.0986	0.0110	30	723	0.0785	0.5807
647	0.0980	0.0119		724	0.0795	0.5974
648	0.0957	0.0125		725	0.0847	0.6153
649	0.0955	0.0127		726	0.0902	0.6294
650	0.0970	0.0139		727	0.0939	0.6467
651	0.0947	0.0153		728	0.0958	0.6667
652	0.0935	0.0161	35	729	0.1008	0.6829
653	0.0923	0.0167		730	0.1039	0.7004
654	0.0883	0.0182		731	0.1068	0.7186
655	0.0880	0.0189		732	0.1118	0.7353
656	0.0849	0.0210		733	0.1174	0.7537
657	0.0838	0.0231		734	0.1211	0.7707
658	0.0828	0.0238	40	735	0.1268	0.7917
659	0.0846	0.0269		736	0.1308	0.8103
660	0.0819	0.0299		737	0.1370	0.8313
661	0.0777	0.0312		738	0.1416	0.8508
662	0.0782	0.0347		739	0.1474	0.8703
663	0.0735	0.0357		740	0.1536	0.8908
664 665	0.0750 0.0745	0.0391 0.0428	45	741 742	0.1584 0.1660	0.9103 0.9319
666	0.0743	0.0459	73	742	0.1722	0.9539
667	0.0710	0.0494		743 744		0.9339
668	0.0689	0.0541		745	0.1775 0.1835	0.9967
669	0.0671	0.0575		746	0.1897	1.0176
670	0.0643	0.0610		747	0.1949	1.0396
671	0.0652	0.0645	50	748	0.2035	1.0608
672	0.0633	0.0685	50	7 4 9	0.2108	1.0837
673	0.0625	0.0737		750	0.2204	1.1066
674	0.0627	0.0801		751	0.2286	1.1297
675	0.0602	0.0831		752	0.2358	1.1556
676	0.0593	0.0905		753	0.2420	1.1755
677	0.0575	0.0949		754	0.2516	1.1995
678	0.0541	0.1002	55	755	0.2600	1.2231
679	0.0560	0.1044		756	0.2682	1.2473
680	0.0534	0.1120		757	0.2767	1.2730
681	0.0533	0.1120		758	0.2871	1.2949
682	0.0531	0.1237		759	0.2974	1.3226
683	0.0510	0.1316		760	0.3059	1.3482
684	0.0512	0.1385	60	761	0.3135	1.3739
685	0.0475	0.1454		762	0.3242	1.3989
	0.0468	0.1511		763	0.3316	1.4223
		0.1603		764	0.3428	1.4481
686	0.0454					22
686 687	0.0454 0.0469			765	0.3519	1,4742
686 687 688	0.0469	0.1664		765 766	0.3519 0.3665	1.4742 1.5030
686 687			65	765 766 767	0.3519 0.3665 0.3764	1.4742 1.5030 1.5281

31
TABLE 3.1-continued

Wavelength (nm)	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surface
769	0.3970	1.5806
770	0.4054	1.6076
771	0.4209	1.6349
772	0.4312	1.6623
773	0.4426	1.6894
774	0.4561	1.7193
775	0.4680	1.7461
776	0.4792	1.7768
777	0.4908	1.8044
778	0.5023	1.8322
779	0.5179	1.8608
780	0.5302	1.8896

TABLE 3.2

	1st lens element-peripheral image-side surface	1st lens element-optical effective object-side surface
R _{Max} (%)	22.8855	24.9187
λ_{RMax} (nm)	380	380
R3 _{high} (%)	6.88	10.56
R3 ₂ (%)	0.90	0.52
$R3_{high}/R3_2$	7.61	20.17
R ₃₈₇₈ (%)	1.66	1.80

TABLE 3.3

Measurement items	L*	a*	b*	CI3 = $\{(L^*) \times [(a^*)^2 + (b^*)^2]\}^{1/2}$
1st lens element- peripheral image- side surface	6.76	1.46	-23.62	61.51
1st lens element- optical effective object-side surface	3.27	1.10	-12.84	23.30

TABLE 3.4

FOV (deg.)	157.8	φs2 (mm)	1.15		
Db (mm)	4.87	Ts1 (µm)	40		
Ds1 (mm)	1.01	Ts2 (µm)	23		
Ds2 (mm)	1.36	Ds1/Db	0.21		
φb (mm)	4.92	Ds2/Db	0.28		
φs1 (mm)	1.9				

4th Embodiment

FIG. 4A is a three-dimensional view of an electronic device 40 according to the 4th embodiment of the present disclosure, and FIG. 4B is a block diagram of the electronic device 40 in FIG. 4A. With reference to FIG. 4A and FIG. 4B, the electronic device 40 includes at least one optical lens assembly 400, which includes a lens barrel 410 and an optical lens group 430. The optical lens assembly 400 may be the aforementioned optical lens assembly 100 of the 1st embodiment, the aforementioned optical lens assembly 200 of the 2nd embodiment, the aforementioned optical lens assembly 300 of the 3rd embodiment, or another optical lens assembly according to present disclosure.

Specifically, the electronic device **40** is a smart phone and includes four optical lens assemblies **400**. From a left side to a right side in FIG. **4A**, the four optical lens assemblies **400** 65 may be an ultra-wide-angle lens assembly (e.g., the maximum field of view in a range of 93 degrees to 175 degrees),

32

a wide-angle main lens assembly (e.g., the maximum field of view in a range of 65 degrees to 90 degrees), a telephoto lens assembly (e.g., the maximum field of view in a range of 20 degrees to 50 degrees) and an ultra telephoto lens assembly (e.g., the maximum field of view in a range of 5 degrees to 20 degrees) in order, and the maximum field of view of each of the optical lens assemblies 400 is not limited thereto. The four optical lens assemblies 400 are disposed in an inner space 43 of the electronic device 40, and the light enters the four optical lens assemblies 400 via four light entering holes on a lens cover 42 of a housing 41 of the electronic device 40. It should be understood that FIG. 4A is only an exploded schematic view of the lens cover 42 and the inner space 43, and does not mean that the lens cover 42 is separated from the electronic device 40 during a user's operation.

In addition, the electronic device **40** can further include but not be limited to a control unit, a storage unit, a random access memory, a read-only memory, or a combination thereof.

Furthermore, the user activates the capturing mode via the user interface 45 of the electronic device 40. At this moment, the imaging light of the optical lens group 430 is converged on the image sensor 460, and the electronic signal associated with image is output to an image signal processor (ISP) 44.

To meet a specification of a camera of the electronic device 40, the electronic device 40 can further include an optical anti-shake mechanism 490, which can be an optical image stabilization (01S). Furthermore, the electronic device 40 can further include at least one auxiliary optical element (its reference numeral is omitted) and at least one sensing element 46. According to the 4th embodiment, the auxiliary optical elements are a flash module 47 and a 35 focusing assisting module 48. The flash module 47 can be configured to compensate a color temperature, and the focusing assisting module 48 can be an infrared distance measurement component, a laser focus module, etc. The sensing element 46 can have functions for sensing physical 40 momentum and kinetic energy, such as an accelerator, a gyroscope, a Hall Effect Element, to sense shaking or iitters applied by hands of the user or external environments. Accordingly, the optical lens assembly 400 of the electronic device 40 equipped with an auto-focusing mechanism and the optical anti-shake mechanism 490 can be enhanced to achieve the superior image quality. Furthermore, the electronic device 40 according to the present disclosure can have a capturing function with multiple modes, such as taking optimized selfies, high dynamic range (HDR) under a low light condition, 4K resolution recording, etc. Furthermore, the users can visually see the captured image through the user interface 45 (i.e., the display screen, the touch screen) and manually operate the view finding range on the user interface 45 to achieve the autofocus function of what you see is what you get.

The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. It is to be noted that Tables show different data of the different embodiments; however, the data of the different embodiments are obtained from experiments. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated. The embodiments depicted above and the appended drawings are exemplary and are not intended to be exhaustive or to limit

the scope of the present disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings.

What is claimed is:

- 1. An optical lens assembly, comprising:
- a lens barrel comprising a light entering hole, which is configured for allowing a light to enter the lens barrel; and
- an optical lens group, wherein the lens barrel accommodates the optical lens group, and an optical axis passes through the optical lens group;

wherein the optical lens group comprises:

- a plurality of lens elements; and
- at least one light blocking sheet being an opaque sheetshaped element and surrounding the optical axis to form a light passing hole, wherein the light blocking sheet comprises an object-side surface and an imageside surface, the object-side surface is located more adjacent to the light entering hole than the image-side surface thereto, and a first film layer is disposed on the object-side surface;
- wherein a reflected light is obtained from the first film layer irradiated by a standard illuminant D65, a color index of the reflected light is defined according to a CIE 1976 L*a*b* color space, the color index is CI, the reflected light has a maximum reflectivity in a spectrum in a wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength corresponding to the maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is a high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the high reflectivity section is a second reflectivity section, an average reflectivity in the high reflectivity section is R_{high}, an average reflectivity in the second reflectivity section is R₂, and the following conditions are satisfied:

 ${\rm CI=}\big\{(L^*)\times[(a^*)^2+(b^*)^2]\big\}^{1/2};$

8≤CI≤41; and

 $1.8 \le R_{high} R_2 \le 6.2$.

2. The optical lens assembly of claim **1**, wherein the color index is CI, the average reflectivity in the high reflectivity section is R_{high} , the average reflectivity in the second reflectivity section is R_2 , and the following conditions are satisfied:

11≤CI≤28; and

 $2.2 \le R_{high}/R_2 \le 4.8.$

3. The optical lens assembly of claim 1, wherein the wavelength corresponding to the maximum reflectivity is λ_{RMax} , and the following condition is satisfied:

380 nm≤λ_{RMax}≤580 nm.

4. The optical lens assembly of claim **3**, wherein the maximum reflectivity is R_{Max} , and the following condition is satisfied:

 $0.5\% \le R_{max} \le 4\%$.

5. The optical lens assembly of claim 1, wherein an average reflectivity of the reflected light in the wavelength range of 380 nm to 780 nm is R_{3878} , and the following condition is satisfied:

 $0.1\% \le R_{3878} \le 2\%$

34

6. The optical lens assembly of claim 1, wherein a difference appears between two color indexes of any two points, respectively, on the first film layer, an absolute value of the difference is $|\Delta CI|$, and the following condition is satisfied:

 $0{\leq}|\Delta{\rm CI}|{\leq}4.7.$

- 7. The optical lens assembly of claim 1, wherein the first film layer is disposed from the light passing hole along a direction being away from the optical axis, and a coverage area of the first film layer is smaller than an area of the object-side surface.
- 8. The optical lens assembly of claim 1, wherein a number of the at least one light blocking sheet is at least two, and the first film layer is disposed on the object-side surface of each of the light blocking sheets.
- 9. The optical lens assembly of claim 8, wherein diameters of the light passing holes of the at least two light blocking sheets, respectively, are different, and the diameter of the light passing hole of one of the at least two light blocking sheets closer to an object side is greater than the diameter of the light passing hole of the other of the at least two light blocking sheets.
- 10. The optical lens assembly of claim 1, wherein a thickness in a direction along the optical axis of the light blocking sheet is Ts, and the following condition is satisfied:

7 μm<Ts<50 μm.

11. The optical lens assembly of claim 1, wherein a diameter of the light entering hole is φb , a diameter of the light passing hole is φs , and the following condition is satisfied:

 $\varphi s < \varphi b$.

12. The optical lens assembly of claim 11, wherein the diameter of the light entering hole is φ b, the diameter of the light passing hole is φ s, and the following condition is satisfied:

 $0.31 \le (\varphi b - \varphi s)/\varphi b \le 0.95$.

13. The optical lens assembly of claim 12, wherein a maximum field of view of the optical lens assembly is FOV, and the following condition is satisfied:

93 degrees≤FOV≤175 degrees.

45 14. The optical lens assembly of claim 12, wherein in a direction along the optical axis, a distance between a most object-side end of the lens barrel and a most image-side end of the lens barrel is Db, a distance between the most object-side end of the lens barrel and the first film layer is 50 Ds, and the following condition is satisfied:

0.05≤Ds/Db≤0.41.

55

60

- **15**. The optical lens assembly of claim **1**, wherein an object-side portion of the lens barrel comprises:
 - a top wall surrounding the optical axis to form the light entering hole, wherein a second film layer is disposed on the top wall;
 - wherein another reflected light is obtained from the second film layer irradiated by the standard illuminant D65, another color index of the another reflected light is defined according to the CIE 1976 L*a*b* color space, the another color index is CI2, the another reflected light has another maximum reflectivity in another spectrum in the wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength corresponding to the another maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is another

high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the another high reflectivity section is another second reflectivity section, an average reflectivity in the another high reflectivity section is $R2_{high}$, an average 5 reflectivity in the another second reflectivity section is $R2_{2}$, and the following conditions are satisfied:

CI2=
$$\{(L^*)\times[(a^*)^2+(b^*)^2]\}^{1/2}$$
;

11≤CI2≤41; and

 $1.8 \le R2_{high}/R2_2 \le 6.2$.

16. The optical lens assembly of claim **1**, wherein one of the lens elements is disposed on an object side of the light 15 blocking sheet, and the one of the lens elements comprises: an optical effective region configured for being passed

through by the light; and

a peripheral region located farther from the optical axis than the optical effective region therefrom, wherein a 20 third film layer is disposed on at least one of a peripheral object-side surface and a peripheral image-side surface of the peripheral region;

wherein further another reflected light is obtained from the third film layer irradiated by the standard illuminant D65, further another color index of the further another 36

reflected light is defined according to the CIE 1976 L*a*b* color space, the further another color index is CI3, and the following conditions are satisfied:

CI3=
$$\{(L^*)\times[(a^*)^2+(d^*)^2]\}^{1/2}$$
; and

11≤CI3≤75.

17. The optical lens assembly of claim 16, wherein the further another reflected light has further another maximum reflectivity in further another spectrum in the wavelength range of 380 nm to 780 nm, a wavelength range of a wavelength corresponding to the further another maximum reflectivity minus 50 nm to the wavelength thereto plus 50 nm is further another high reflectivity section, a wavelength range remained in a wavelength range of 380 nm to 780 nm excluding the further another high reflectivity section is further another second reflectivity section, an average reflectivity in the further another high reflectivity section is $R3_{high}$, an average reflectivity in the further another second reflectivity section is $R3_{high}$, an average reflectivity in the further another second reflectivity section is $R3_{2}$, and the following condition is satisfied:

$$2.5R3_{high}/R3_{2 \le 34}$$
.

18. An electronic device, comprising: the optical lens assembly of claim **1**.

* * * * *