Anéis

Prof. Eanes Torres Pereira

Anéis

Roteiro

- 1. Anéis
- 2. Tipos de Anéis
- 3. Homomorfismos e Isomorfismos
- 4. Ideais

Anéis - Definição

▶ Definição. Um conjunto não vazio R forma um anel com respeito às operações binárias adição (+) e multiplicação (\cdot) se, para valores arbitrários $a, b, c \in R$, as seguintes propriedades forem atendidas:

$$P_1$$
: $(a+b)+c=a+(b+c)$

$$P_2$$
: $a + b = b + a$

$$P_3$$
: Existe $z \in \mathbb{R}$ tal que $a + z = a$.

$$P_4$$
: Para cada $a \in \mathbb{R}$ existe $-a \in \mathbb{R}$ tal que $a + (-a) = z$.

$$P_5$$
: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

$$P_6$$
: $a(b+c) = a \cdot b + a \cdot c$

$$P_7$$
: $(b+c)a = ba+c \cdot a$

Anéis

- ▶ Exemplo 1. O conjunto $S = \{x + y\sqrt[3]{3} + z\sqrt[3]{9} : x, y, z \in Q\}$ é um anel em relação à adição e multiplicação em R.
- ▶ Para provar isso, primeiro mostramos que S é fechado em relação a essas operações. Temos, para $a + b\sqrt[3]{3} + c\sqrt[3]{9}$, $d + e\sqrt[3]{3} + f\sqrt[3]{9} \in S$:

$$(a+b\sqrt[3]{3}+c\sqrt[3]{9})+(d+e\sqrt[3]{3}+f\sqrt[3]{9})=(a+d)+(b+e)\sqrt[3]{3}+(c+f)\sqrt[3]{9}\in S$$

► e

$$(a+b\sqrt[3]{3}+c\sqrt[3]{9})(d+e\sqrt[3]{3}+f\sqrt[3]{9}) = (ad+3bf+3ce)+(ae+bd+3cf)\sqrt[3]{3}+(af+be+cd)\sqrt[3]{9} \in S$$

◆ロ → ◆部 → ◆ き → ◆ き → り へ ○

Continuação do Exemplo

- ► Em seguida, notamos que as propriedades P_1 , P_2 P_5 , P_6 e P_7 são satisfeitas já que S é um subconjunto do anel R.
- $0 = 0 + 0\sqrt[3]{3} + 0\sqrt[3]{9}$ satisfaz P_3 .
- ▶ Para cada $x + y\sqrt[3]{3} + z\sqrt[3]{9} \in S$ existe $-x y\sqrt[3]{3} z\sqrt[3]{9} \in S$, que satisfaz P_4 .
- ▶ Portanto, *S* satisfaz todas as propriedades de um anel.

Anéis

▶ Exemplo 2. O conjunto $S = \{a, b\}$ com adição e multiplicação definidas pelas tabelas abaixo é um anel?

+	а	b
а	а	b
b	b	а

Anéis

. г....

▶ Exemplo 2. O conjunto $S = \{a, b\}$ com adição e multiplicação definidas pelas tabelas abaixo é um anel?

+	а	b
а	а	b
b	b	а

- ► Resposta: sim.
- ▶ Exercício 1. O conjunto $T = \{a, b, c, d\}$ com adição e multiplicação definidas pelas tabelas abaixo é um anel? Prove.

	а	b	С	d	
а	а	а	а	а	
b	а	b	а	a b	
С	а	С	а	С	
d	a a a a	d_{\square}	, a _{∢ t}	d,	(≥)

Propriedades dos Anéis

- 1. Todo anel é um grupo aditivo abeliano.
- 2. Existe um único elemento identidade aditivo z (o zero do anel).
- 3. Cada elemento tem um único *inverso* aditivo (o *negativo* daquele elemento).
- 4. A Lei de Cancelamento funciona para a adição.
- 5. -(-a) = a, -(a+b) = (-a) + (-b), para todo a, b do anel.
- 6. $a \cdot z = z \cdot a = z$
- 7. a(-b) = -(ab) = (-a)b

Subanéis

- ▶ Definição. Seja R um anel. Um subconjunto S não-vazio do conjunto R, que é um anel com respeito às operações binárias em R, é chamado de subanel de R.
- **Exemplo 3**. No Exemplo 1, S é um subanel de R.
- ▶ Exercício 2. No Exercício 1, $T_1 = \{a\}$ e $T_2 = \{a, b\}$ são subanéis de T. Por que $T_3 = \{a, b, c\}$ não é um subanel de T?
- ▶ Definição. Os subanéis {z} e R de um anel R são chamados impróprios; outros subanéis, se existirem, de R são chamados próprios.
- ► **Teorema 1**. Seja R um anel e *S* um subconjunto próprio do conjunto R. Então *S* é um subanel de R se, e somente se:
 - (a) S é fechado com respeito às operações do anel.
 - (b) para cada $a \in S$, temos $-a \in S$.

Roteiro

- 1. Anéis
- 2. Tipos de Anéis
- 3. Homomorfismos e Isomorfismos
- 4. Ideais

Subanéis

- ▶ **Definição**. Um anel para o qual a multiplicação é comutativa é chamado de uma *anel comutativo*.
- ► Exemplo 4. O anel do Exemplo 2 é comutativo.
- ► Exercício 3. O anel do Exercício 1 é comutativo? Prove.

Subanéis

- ► **Definição**. Um anel para o qual a multiplicação é comutativa é chamado de uma *anel comutativo*.
- ► Exemplo 4. O anel do Exemplo 2 é comutativo.
- ► Exercício 3. O anel do Exercício 1 é comutativo? Prove. Resposta: não.
- ➤ **Definição**. Um anel que possui um elemento identidade multiplicativo (*elemento unidade*) é chamado de *anel com elemento identidade* ou *anel com unidade*.
- ► Exemplo 5. O elemento unidade do anel do Exemplo 1 é 1.
- ► Exercício 4 O anel do Exercício 1 tem unidade?

Subanéis

► **Definição**. Um anel para o qual a multiplicação é comutativa é chamado de uma *anel comutativo*.

- ► Exemplo 4. O anel do Exemplo 2 é comutativo.
- ► Exercício 3. O anel do Exercício 1 é comutativo? Prove. Resposta: não.
- ► **Definição**. Um anel que possui um elemento identidade multiplicativo (*elemento unidade*) é chamado de *anel com elemento identidade* ou *anel com unidade*.
- ► Exemplo 5. O elemento unidade do anel do Exemplo 1 é 1.
- Exercício 4 O anel do Exercício 1 tem unidade? Resposta: não.
- ▶ Inversos multiplicativos, quando existem, são únicos.
- ► Exercício 5. O anel do Exercício 2 da lista 8 é comutativo? Ele tem unidade?

Subanéis

► **Definição**. Um anel para o qual a multiplicação é comutativa é chamado de uma *anel comutativo*.

- ► Exemplo 4. O anel do Exemplo 2 é comutativo.
- ► Exercício 3. O anel do Exercício 1 é comutativo? Prove. Resposta: não.
- ► **Definição**. Um anel que possui um elemento identidade multiplicativo (*elemento unidade*) é chamado de *anel com elemento identidade* ou *anel com unidade*.
- ► Exemplo 5. O elemento unidade do anel do Exemplo 1 é 1.
- ► Exercício 4 O anel do Exercício 1 tem unidade? Resposta: não.
- ► Inversos multiplicativos, quando existem, são únicos.
- ► Exercício 5. O anel do Exercício 2 da lista 8 é comutativo? Ele tem unidade?

Resposta: não.

Característica

- ▶ Definição. Seja R um anel com elemento zero z e suponha que existe um inteiro positivo n tal que na = a + a + a + ... + a = z para todo a ∈ R. O menor inteiro positivo n que satisfaz essa equação é chamado de característica de R. Se tal inteiro não existe, diz-se que R tem característica zero.
- ▶ Exemplo 6. No anel do Exercício 2 da lista 8 temos que a + a = b + b = ... = h + h = a. Portanto a é o zero do anel e a característica do anel é 2.
- ► Exercício 6. Qual é o zero e a característica do anel da Questão 3 da lista 8?

Característica

- ▶ Definição. Seja R um anel com elemento zero z e suponha que existe um inteiro positivo n tal que na = a + a + a + ... + a = z para todo a ∈ R. O menor inteiro positivo n que satisfaz essa equação é chamado de característica de R. Se tal inteiro não existe, diz-se que R tem característica zero.
- ▶ Exemplo 6. No anel do Exercício 2 da lista 8 temos que a + a = b + b = ... = h + h = a. Portanto a é o zero do anel e a característica do anel é 2.
- ► Exercício 6. Qual é o zero e a característica do anel da Questão 3 da lista 8?

Resposta: zero: a, característica: 4.

Divisores de Zero

- ▶ **Definição**. Seja R um anel com elemento zero z. Um elemento $a \neq z$ de R é chamado de *divisor de zero* se existe um elemento $b \neq z$ de R tal que $a \cdot b = z$ ou $b \cdot a = z$.
- Exercício 7. Determine todos os divisores de zero do anel da questão 3 da lista 8.

Roteiro

Anéis

- 1. Anéis
- 2. Tipos de Anéis
- 3. Homomorfismos e Isomorfismos
- 4. Ideais

Homomorfismos e Isomorfismos

- Um homomorfismo de um grupo aditivo de um anel R no grupo aditivo de um anel R' que também preserva a segunda operação, multiplicação, é chamado de homomorfismo de R em R'.
- ► Um homomorfismo bijetivo é um isomorfismo.
- **Exemplo 7**. Considere o anel $R = \{a, b, c, d\}$ com adição e multiplicação definidas nas tabelas abaixo.

•	а	b	С	d
а	а	а	а	а
b	а	b	С	d
С	а	С	d	b
d	а	d	b	С

Exemplo 7 - Continuação

▶ e os anéis $R' = \{p, q, r, s\}$ com adição e multiplicação definidas pelas tabelas abaixo.

+	р	q	r	S	
р	r	S	р	q	
q	S	r	q	p	
r	р	q	r	S	
S	q	р	S	r	

•	р	q	r	S
р	S	p	r	q
q	р	q	r	S
r	r	r	r	r
S	q	S	r	p

▶ O mapeamento

$$a \iff r, b \iff q, c \iff s, d \iff p$$

- ▶ Leva R em R' e R' em R e ao mesmo tempo preserva todas as operações binárias.
- ► Portanto, R e R' são anéis isomórficos.

Homomorfismos e Isomorfismos

- ► Teorema 2. Em qualquer isomorfismo de uma anel R em um anel R':
 - (a) Se z é o zero de R e z' é o zero de R', temos $z \iff z'$.
 - (b) Se R \iff R': $a \iff a$, então $-a \iff -a'$.
 - (c) Se u é a unidade de R e u' é a unidade de R', temos $u \iff u'$.
 - (d) Se R é um anel comutativo, então R^\prime também é um anel comutativo.

Roteiro

- 1. Anéis
- 2. Tipos de Anéis
- 3. Homomorfismos e Isomorfismos
- 4. Ideais

Ideais

- ▶ **Definição**. Seja R um anel com elemento zero z. Um subgrupo S de R, tendo a propriedade $r \cdot x \in S$ ($x \cdot r \in S$) para todo $x \in S$ e $r \in R$, é chamado *ideal* à *esquerda* (ou à direita) em R.
- {z} e R são ambos ideais à esquerda e à direita em R; eles são chamados de ideais impróprios à esquerda (à direita) em R. Todos os outros ideais em R, se existirem, são chamados de ideais próprios.
- ▶ Definição.Um subgrupo I de R que é tanto um ideal à esquerda quanto um ideal à direita de R, isto é, para todo x ∈ I e r ∈ R r · x ∈ I e x · r ∈ I, é chamado de ideal (subanel invariante) em R.
- ▶ **Definição**. Para todo anel R, os ideais {z} e R são chamados de *ideais impróprios* em R; quaisquer outros ideais em R são chamados de *ideais próprios*.

Ideais

- ► Um anel que não possui ideais próprios é chamado de *anel simples*.
- Exemplo 10. Para o anel S da questão 2 da lista 8, {a, b, c, d} é um ideal próprio à direita em S, mas não é um ideal à esquerda. Os ideais próprios em S são: {a, c}, {a, e}, {a, g} e {a, c, e, g}.
- ▶ Teorema 3. Se p é um elemento arbitrário de um anel comutativo R, então $P = \{p \cdot r : r \in R\}$ é um ideal em R.
- ▶ Exemplo 11. No Exemplo 10, cada elemento x do ideal à esquerda $\{a, c, e, g\}$ tem a propriedade de ser um elemento de S para o qual $r \cdot x = a$, o elemento zero de S, para todo $r \in S$.

- ▶ Teorema 4. Seja R um anel com elemento zero z; então: $T = \{x : x \in \mathbb{R}, r \cdot x = z \text{ (ou } x \cdot r = z) \text{ para todo } r \in \mathbb{R}\}$ é um ideal à esquerda (ou à direita) em \mathbb{R} .
- ► Teorema 5. A interseção de qualquer coleção de ideais em um anel é um ideal no anel.
- ► Definição. Seja R um anel e K um ideal à direita em R com a seguinte propriedade:
 - $K = \{a \cdot r : r \in R, a \text{ é algum elemento fixo de } K\}.$ Chamaremos K de *ideal principal à direita* em R e diremos que ele é gerado pelo elemento a de K. Os ideais principais à esquerda e os ideais principais são definidos de modo análogo.
- ▶ Exemplo 12. No anel S da questão 2 da lista 8, o subanel $\{a,g\}$ é um ideal principal à direita em S gerado pelo elemento g. Como $r \cdot g = a$ para todo $r \in S$, $\{a,g\}$ não é um ideal principal à esquerda e, portanto, não é um ideal principal de S.

Anéis

▶ Exercício 8. No anel comutativo S da questão 3 da lista 8, o ideal $\{a, b, e, f\}$ em S é um ideal principal. Ele pode ser gerado por quais elementos?

Anéis

► Exercício 8. No anel comutativo *S* da questão 3 da lista 8, o ideal {*a, b, e, f*} em *S* é um ideal principal. Ele pode ser gerado por quais elementos?

Resposta: b ou f.

Referências

Anéis

► Theory and Problems in Abstract Algebra - Frank Ayres e Lloyd R. Jaisingh