Rozwiązania wybranych przykładów z Z00

1. Oblicz następujące wartości

a)
$$\log_4 16 = 2$$
, b) $\log_4 \frac{1}{4} = -1$; c) $\log_4 2 = \frac{1}{2}$; d) $\log_4 (4)^{\sin x} = \sin x$;

c)
$$\log_4 2 = \frac{1}{2}$$
;

$$d) \log_4(4)^{\sin x} = \sin x$$

$$e) 5^{\log_5 77} = 77;$$

e)
$$5^{\log_5 77} = 77$$
; f) $3^{\log_3(x^4+6)} = x^4 + 6$;

$$g) 2^{3 \log_2 7} = 2^{\log_2 7^3} = 7^3$$

g)
$$2^{3\log_2 7} = 2^{\log_2 7^3} = 7^3$$
 lub $2^{3\log_2 7} = (2^{\log_2 7})^3 = (7)^3 = 7^3$

h)
$$5^{x+\log_5 2} = 5^x \cdot 5^{\log_5 2} = 2 \cdot 5^x$$
; i) $7^{-\log_7 x} = \frac{1}{7^{\log_7 x}} = \frac{1}{x}$

i)
$$7^{-\log_7 x} = \frac{1}{7^{\log_7 x}} = \frac{1}{x}$$

$$j) \; \frac{3^{2x}}{3} = 3^{2x-1};$$

$$j) \frac{3^{2x}}{3} = 3^{2x-1}; k) (9^7)^x = 9^{7x} = (9^x)^7.$$

l) która liczba jest większa: $\log_4 5$ or $\log_5 4$?

 $\log_4 5 > 1$ oraz $\log_5 4 = \frac{1}{\log_4 5}$, czyli $\log_5 4 < 1$, zatem $\log_5 4 < \log_4 5$.

2. Rozwiąż następujące równania

a)
$$2^{x}(x^{2} + 6x + 8) = 0 \Leftrightarrow 2^{x} = 0 \lor x^{2} + 6x + 8 = 0$$

 2^x jest zawsze różne od zera, nigdy zero, zatem rozwiązujemy tylko $x^2 + 6x + 8 = 0$.

c)
$$\frac{z^2 - 16}{z^4} = 0 \iff z^2 - 16 = 0 \iff z = -4 \lor z = 4.$$

3. Rozwiąż nierówności:

a)
$$(x-2)(3x+2)(x^2+10) > 0$$
 odp.: $x < -2/3$ lub $x > 2$

 $x < -\frac{2}{3}$ x > 2

c)
$$2^x(x^2 - 6x + 8) \ge 0$$

 2^x jest zawsze większe od zera, nigdy zero, zatem sprawdzamy tylko $x^2 - 6x + 8 \ge 0$.

 $h) \log_5(5-3x) > 1$

Funkcja \log_5 , jest funkcja rosnącą, zatem $\log_5(5-3x)>1=\log_55$

$$\log_5(5 - 3x) > 1 = \log_5 5$$

$$5 - 3x > 5^1$$
 odp.: $x < 0$.

4. Oblicz wartości

$$arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \qquad arccos: [-1,1] \to [0,\pi],$$

$$arctg: (-\infty, \infty) \to \left(-\frac{\pi}{2}, \frac{\pi}{2} \right), \qquad arcctg: (-\infty, \infty) \to (0,\pi)$$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$
; $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$; $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$; $\cos\frac{\pi}{3} = \frac{1}{2}$.

a)
$$\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{3}$$
, $\arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$, $\arctan\left(1 - \frac{\pi}{4}\right) = -\frac{\pi}{6}$

- b) arccos(1.4) nie istnieje
- c) $\arcsin(\sin \pi) = 0$ **uwaga**: $\arcsin(\sin \pi) \neq \pi$, d) $\sin\left(\arcsin\left(\frac{1}{2}\right)\right) = \frac{1}{2}$
- e) $\arcsin\left(\sin\frac{3\pi}{2}\right) = -\frac{\pi}{2}$, **uwaga**: $\arcsin\left(\sin\frac{3\pi}{2}\right) \neq \frac{3\pi}{2}$,
- f) sin(arcsin(-1)) = -1
- **5.** Wyznacz x:
- a) $\arcsin(\sin x) = \frac{\pi}{2}$, $x = \frac{\pi}{2} + 2k\pi$.
- b) $\sin(\arcsin(x)) = -1$, x = -1
- c) $\sin(2x) = 0.56$, $x = \frac{1}{2}\arcsin(0.56) + k\pi$, $x = \frac{\pi}{2} \frac{1}{2}\arcsin(0.56) k\pi$
- **6*.** Wyznacz *x*
- a) $\arcsin(x) > \frac{1}{2}$, \arcsin jest funkcją rosnącą, zatem $x > \sin\frac{1}{2}$, x musi należeć do dziedziny $-1 \le x \le 1$. Zatem $\sin\frac{1}{2} < x \le 1$. Wartość $\sin 0.5 \approx 0.4794$.
- c) $\arccos(x) > 4$, \arccos nigdy nie jest większy niż 4. Nie istnieją rozwiązania.
- **7.** Znajdź dziedziny naturalne następujących funkcji, dodatkowo określ zbiór wartości funkcji z przykładów *a*) ,*c*), *e*);
- $a) f(x) = \sqrt{x}$

 $x\geq 0;\ D_f=\{x\in R\colon x\geq 0\}$. Zbi
ór wartości $f(x)=y\geq 0,\ W_f=\{y\in R\colon y\geq 0\}.$

b)
$$f(t) = \frac{1}{2t^2 + 4t + 5}$$
 $2t^2 + 4t + 5 \neq 0$

$$\Delta = 16 - 40 = -24$$
 zatem $D_f = R$.

c)
$$f(x)=\log_{10}(x^2-1), \qquad x^2-1>0 \iff (x-1)(x+1)>0$$

Dziedzina $x\in(-\infty;-1)\cup(1;+\infty), D_f=\{x\in R: x<-1\ \lor\ x>1\}$
zbiór wartości $y=f(x)\in R,\ W_f=R.$

e)
$$f(x) = 3^{x^2 + x + 1}$$

 $D_f = R$

Aby wyznaczyć zbiór wartości: $y^2+y+1=0$, $\Delta=1-4<0$ najmniejsza wartość jest w punkcie $y_0=-\frac{1}{2}$

$$3^{\frac{1}{4} - \frac{1}{2} + 1} = 3^{\frac{3}{4}} \approx 2.27 \dots$$

Zbiór wartości $f(y) \ge 3^{\frac{3}{4}} \approx 2.27 \dots W_f = \left\{z = f(y) \in \mathbb{R}: z \ge 3^{\frac{3}{4}}\right\}$

9. Wskaż funkcje zewnętrzne i wewnętrzne (uwaga: funkcje mogą być wielokrotnie złożone):

a)
$$(\sin x + 1)^5$$

Kolejność od zewnątrz: t^5 , $t = \sin x + 1$.

b)
$$\sin(x^5 + 1)$$

Kolejność od zewnątrz: $\sin t$, $x^5 + 1$

c)

Kolejność od zewnątrz: wykładnicza 3^t , $t = \sin x$

d)
$$\log_2(tg(x^2-5))$$

Kolejność od zewnatrz: $\log_2(t)$, $t = \tan s$, $s = x^2 - 5$

$$e)$$
 $\sqrt[3]{(\log_{10}(3x^5+3))}$

Kolejność od zewnątrz: $\sqrt[3]{t}$, $t = \log_{10}(s)$, $s = 3x^5 + 3$

$$f) \sin^4(\log_2(x+2))$$

Kolejność od zewnątrz: t^4 , $t = \sin(s)$, $s = \log_2(p)$, p = x + 2.

10. Wyznacz złożenie wskazanych funkcji oraz ich dziedziny

b)
$$f(x) = \frac{x}{2x+1}$$
, $g(x) = 3^x$ $f(g(x))$, $g(f(x))$

$$D_f = R \setminus \{-1/2\}; \quad D_g = R$$

$$D_{f} = R \setminus \{-1/2\}; D_{g} = R$$

$$f(g(x)) = \frac{3^{x}}{2 \cdot 3^{x} + 1} D = R \qquad g(f(x)) = 3\frac{x}{2^{x} + 1} D = R \setminus \{-0,5\}$$

11*. Sprawdź czy podane funkcje są do siebie odwrotne $i.e. f(f^{-1}(x)) = x$ i $f^{-1}(f(x)) = x$.

a)
$$f(x) = \frac{1}{2}(x+1)$$
 $f^{-1}(x) = 2x - 1$, $x \in R$

$$f(f^{-1}(x)) = f(2x - 1) = \frac{1}{2}((2x - 1) + 1) = x$$

$$f^{-1}\left(\frac{1}{2}(x+1)\right) = 2\left(\frac{1}{2}(x+1)\right) - 1 = x$$

c)
$$f(x) = 3^x + 2$$
, $f^{-1}(x) = \log_3(x - 2)$ the inverse exists for $x > 2$

$$f(f^{-1}(x)) = f(\log_3(x-2)) = 3^{(\log_3(x-2))} + 2 = (x-2) + 2 = x$$

$$f^{-1}(f(x)) = f^{-1}(3^x + 2) = \log_3(3^x + 2 - 2) = \log_3(3^x) = x,$$

12*. Naszkicuj wykres pewnej funkcji f takiej, że

a)
$$f: [2,3] \rightarrow [1,2]$$
 nie jest "na" [1,2] i nie jest różnowartościowa

b)
$$f: [2,3] \rightarrow [0,2]$$
 nie jest "na" $[0,2]$ i nie jest różnowartościowa

c)
$$f: [1,2] \rightarrow [1,2]$$
 jest "na" [1,2] i nie jest różnowartościowa

d)
$$f:[2,3] \rightarrow [2,3]$$
 nie jest "na" [2,3] i jest różnowartościowa

e)
$$f: [1, 2] \rightarrow [2, 3]$$
 posiada funkcję odwrotną.

13*. Niech $f: X \to Y$, $f(x) = \cos x$ Podać przykłady takich zbiorów X,Y, że

a) funkcja f jest różnowartościowa i jest typu "na";

$$X = [0, \pi], Y = [-1, 1]$$

b) funkcja f nie jest różnowartościowa i jest typu "na";

e)

$$X = [0, 2\pi], Y = [-1, 1]$$

c) funkcja f jest różnowartościowa i nie jest typu "na";

$$X = [0, \pi], Y = [-2, 1]$$

d) funkcja f nie jest różnowartościowa i nie jest typu "na";

$$X = [= \pi, \pi], Y = [-2,4]$$

14*. Wyznacz funkcje odwrotne do danych oraz podaj ich dziedzinę

$$a) f(x) = 5x + 4$$

d)

Do wyznaczenia dziedziny funkcji odwrotnej, szukamy zbioru wartości funkcji: $W_f = R$.

Szukamy funkcji odwrotnej:

$$y = 5x + 4 \Leftrightarrow y - 4 = 5x \Leftrightarrow x = \frac{y - 4}{5}$$

Funkcją odwrotną jest $f^{-1}(x) = \frac{x-4}{5}$. Dziedziną funkcji odwrotnej jest $D_f = R$.

b)
$$f(x) = \frac{1}{x^2 - 2}$$
 $x^2 - 2 \neq 0$; $x \neq \sqrt{2} \land x \neq -\sqrt{2}$ $D_f = R \setminus \{-\sqrt{2}, \sqrt{2}\}$

Aby wyznaczyć dziedzinę funkcji odwrotnej, możemy i). wyznaczyć zbiór wartości funkcji:

$$x^2 \ge 0 \iff x^2 - 2 \ge -2 \iff \frac{x^2 - 2}{-2} \le 1 \iff$$

1.
$$-\frac{1}{2} \le \frac{1}{x^2 - 2}$$
 i $x^2 - 2 > 0$ 2. $-\frac{1}{2} \ge \frac{1}{x^2 - 2}$ i $x^2 - 2 < 0$

2.
$$-\frac{1}{2} \ge \frac{1}{x^2 - 2}$$
 i $x^2 - 2 < 0$

1.
$$0 \le \frac{1}{r^2 - 2}$$

2.
$$-\frac{1}{2} \ge \frac{1}{x^2 - 2}$$
 i $x^2 - 2 < 0$

$$W_f = \left\{ y \in R \colon y > 0 \quad \text{lub} \quad y < -\frac{1}{2} \right\}.$$

Szukamy funkcji odwrotnej:

$$y = \frac{1}{x^2 - 2} \iff x^2 - 2 = \frac{1}{y}, \quad y \neq 0 \iff x^2 = \frac{1}{y} + 2, \quad y \neq 0, \quad \frac{1}{y} + 2 \ge 0$$
$$\iff x = \sqrt{\frac{1}{y} + 2} \quad \text{lub} \quad x = -\sqrt{\frac{1}{y} + 2}.$$

ii). Możemy w trakcie obliczania y wyznaczyć dziedzinę funkcji odwrotnej (nie jako zbiór wartości *f*)

$$\frac{1}{y} + 2 \ge 0 \quad \Leftrightarrow \quad \frac{1 + 2y}{y} \ge 0 \qquad \Leftrightarrow \quad y(1 + 2y) \ge 0 \quad \Leftrightarrow \quad y \in \left(-\infty, -\frac{1}{2}\right) \cup (0, +\infty)$$

Funkcją odwrotną może być $f^{-1}(x)=\sqrt{\frac{1}{x}+2}$ lub $f^{-1}(x)=-\sqrt{\frac{1}{x}+2}$. Dziedziną jest zbiór wartości W_f , lub są to ograniczenia na y,

$$D_{f^{-1}}\left(-\infty, -\frac{1}{2}\right) \cup (0, +\infty) \quad \Leftrightarrow \quad D_{f^{-1}} = \left\{x \in R : x > 0 \quad \text{lub} \quad x < -\frac{1}{2}\right\}.$$