MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 1 Morning: Basic Exercises

Coxeter groups

1. a) Let (W, S) be a Coxeter system and $w \in W$. Using the exchange condition, prove the descent property, that

$$\{s \in S \mid \ell(ws) < \ell(w)\} = \{s \in S \mid w \text{ has a rex ending in } s\}.$$

This set is called the *right descent set* of w.

b) Let $W = S_4$, the symmetric group on $\{1, 2, 3, 4\}$. Then W has the structure of a Coxeter group with $S = \{s_1, s_2, s_3\}$ where s_i denotes the transposition (i, i + 1). Show that $w = s_1 s_2 s_1 s_3 s_2 s_1$ is a reduced expression. What is the right descent set of w? For each element s of the right descent set, find the reflection which should be removed from this expression to obtain a reduced expression for ws (cf. the exchange condition).

Remark. Using Matsumoto's theorem and the descent property, if $t_1t_2 \cdots t_ds$ is **not** reduced, but $t_1t_2 \cdots t_d$ is reduced, then one can apply braid relations to $t_1t_2 \cdots t_d$ to get the simple reflection s at the end. In practice, finding a sequence of braid relations which bring s to the end will help you figure out which reflection to remove for the exchange condition.

The weak right Bruhat graph of a Coxeter group W is the graded graph whose vertices are the elements $w \in W$, each assigned a height equal to $\ell(w)$. There is an edge between w and v if w = vs for some $s \in S$.

The reduced expression graph or rex graph for a fixed element $w \in W$ is the graph Γ_w whose vertices are the reduced expressions for w. There is an edge between two reduced expressions if they differ by a single application of a braid relation (it helps to label the edge with the number m_{st} associated to this braid relation).

- **2.** a) Draw the weak right Bruhat graph for S_4 .
 - b) Draw the rex graph for the longest element of W in types $A_1 \times A_1 \times A_1$ and $A_1 \times A_2$. Verify that there are no cycles in the rex graph for any other elements of W.
 - c) Draw the rex graph for the longest element of S_4 .
 - d) What cycles appear? Do any cycles appear for other elements of S_4 .
 - e) If you're feeling ambitious, draw the rex graph for the longest elements in type B_3 and H_3 . You may identify two vertices if they are connected by an edge with $m_{st} = 2$, to save space.
- **3.** Let (W, S) be a Coxeter group of rank n. Its Coxeter complex is a simplicial complex constructed as follows:
 - There is an (n-1)-simplex labeled by w for each $w \in W$. The n faces of this (n-1)-simplex are labeled by the simple reflections s.
 - Whenever w = sv, glue the simplices w and v along the face s. (Technically, one should fix the orientations when gluing faces. If $\ell(w) = \ell(v) + 1$, then glue the outward face of s in v to the inward face of s in w.)

Draw the Coxeter complex for the following Coxeter groups: $I_2(m)$ for m finite, $I_2(\infty)$, A_3 (the barycentric subdivision of a tetrahedron), B_3 , $\widetilde{A_2}$, $\widetilde{B_2}$.

Quantum numbers

- **4.** Suppose that W is a dihedral group, with $S = \{s,t\}$ and $m = m_{s,t}$. Instead of writing $a_{s,t} = -2\cos(\frac{\pi}{m_{s,t}})$, let us just write $a_{s,t} = -(q+q^{-1})$. After all, when $q = e^{\frac{\pi i}{m_{s,t}}}$, the two formula agree. This will allow us to write formulae which work simultaneously for all dihedral groups, using quantum numbers.
 - a) Consider the quantum number

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \dots + q^{3-n} + q^{1-n}.$$

One has [1] = 1 and [0] = 0. Find a formula for [2][n] in terms of quantum numbers.

- b) The statement that q^2 is a primitive m-th root of unity is equivalent to what statement about quantum numbers? The statement that q is a primitive 2m-th root of unity is equivalent to what statement about quantum numbers? What about when q is a primitive m-th root of unity for m odd? Compare [m-k] and [k]. Compare [m+k] and [m-k].
- c) Compute the matrix for the action of $(st)^k$ on the 2-dimensional space spanned by α_s and α_t , in terms of quantum numbers. When does (st) have finite order m? When m = 2k+1 is the order of (st), what is $(st)^k(\alpha_s)$?
- d) Assume that q is a primitive 2m-th root of unity. The positive roots for the dihedral group are the elements in the W-orbit of the simple roots $\{\alpha_s, \alpha_t\}$, which have the form $a\alpha_s + b\alpha_t$ for $a, b \geq 0$. Find a simple enumeration of these roots as linear combinations of α_s and α_t .