

				Sub	ject	Co	de: l	KAS	<u> 201</u>
Roll No:									

Printed Page: 1 of 1

BTECH (SEM II) THEORY EXAMINATION 2021-22 PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTI	ON-A Attempt All of the following Questions in brief	Marks(10X2=20)	CO		
Q1(a)	Q1(a) State Einstein's postulates of special theory of relativity.				
Q1(b)	Q1(b) Show that the rest mass of a photon is zero.				
Q1(c)					
Q1(d)	Define skin depth.				
Q1(e)	What is black body radiation?				
Q1(f)	What is wave-particle duality?				
Q1(g)	What are coherent sources?				
Q1(h)	Differentiate Fresnel's and Fraunhofer's diffraction.				
Q1(i)	What do you mean by attenuation and dispersion in optical fiber?		5		
Q1(j)	What are the main components of laser?		5		

SECT	ION-B	Attempt ANY Three of the following Questions	Marks(3X10=30)	CO
Q2(a)	What is leng	gth contraction? Derive the necessary expression for it. Show the	hat $x^2+y^2+z^2-c^2t^2$ is	1
	invariant un	der Lorentz transformation.		
Q2(b)	What is displacement current? For a medium, conductivity $\sigma = 58 \times 10^6$ seimen/m, $\epsilon_r = 1$. Find out			
	the conduct	ion and displacement current densities if the magnitude of elec-	ctric field intensity is given	
	by $E = 150 s$	sin (10 ¹⁰ t) Volt/m.		
Q2(c)		Broglie hypothesis? Find the least energy of an electron move		3
	infinitely hi	gh potential box of width 1×10 ⁻¹⁰ m. (Mass of electron is 9.1>	$\times 10^{-31} \text{ kg and } h = 6.63 \times 10^{-1}$	
	34 J-s)			
Q2(d)	Explain inte	rference in thin films and prove that reflection and transmission	on are complementary with	4
	each other.			
Q2(e)	Derive the e	expressions for acceptance angle and numerical aperture of an o	optical fiber.	5

	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	By using Lorentz transformation equations, derive time dilation. Show that time dilation is a real			
	effect.			
Q3(b)	Discuss and derive the relativistic velocity addition theorem. Show that it is consistent with Einstein's			
	second post	ulate. Show that $E^2 - P^2 C^2 = m_0^2 c^4$, Where P is the mome	ntum.	

SECTION-C Attempt ANY ONE following Question		Marks (1X10=10)	CO	
Q4(a)	Derive electromagnetic wave equation in free space and prove that electromagnetic waves travel with			2
	speed of light in free space.			
Q4(b)	Derive the Poynting or work-energy theorem for the flow of energy in an electromagnetic field. Also		2	
	give the phy	rsical interpretation		

SECTI	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q5(a)	Give the p	hysical significance of wave function. Derive Schrodinger'	s time independent wave	3	
	equation.				
Q5(b)	Define Com	Define Compton effect and derive an expression for the Compton shift ($\Delta\lambda$).			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q6(a)	Explain and describe the formation of Newton's rings in reflected light. Prove that in reflected the				
	diameters of dark rings are proportional to the square roots of natural numbers.				
Q6(b)	Discuss sin	gle slit Fraunhofer's diffraction and show that the relative	e intensities of successive	4	
	maximum a	re nearly 1: 1/22 : 1/62 : 1/121:		ļ	

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	With the help of diagram classify and describe various types of optical fibers based on modes and		5	
	core refractive index.			
Q7(b)	Draw a neat diagram of He-Ne laser and explain the construction and working of it.		5	