Homework Assignment 1 Selected Solutions

- 3. Let S and T be two sets, and $f: S \to T$ a function between them.
 - (a) Show that f is bijective if and only if there exists a function $g: T \to S$ so that $g \circ f = \mathrm{id}_S$ and $f \circ g = \mathrm{id}_T$.

Proof. Righthand Direction:

Suppose f is bijective (that is, injective and surjective). We construct the inverse g. To describe g we say what it does to an element $t \in T$. Since f is surjective, there is some $s \in S$ so that f(s) = t. Furthermore, since f is injective, s is unique (if f(s') = t then s = s'). We define g(t) = s.

Applying f to both sides of the equation shows f(g(t)) = g(s) = t by our choice of s, so that $f \circ g = \mathrm{id}_T$. In turn applying f shows f(g(s)) = g(t) = s by the definition of g, so that $g \circ f = \mathrm{id}_S$. (Note to grader: They should show that $f \circ g$ and $g \circ f$ are the identity, but it is ok to use words, or even just say it is immediate by the definition of g if they define g correctly).

Lefthand Direction:

Assume there is an inverse g. We must show f is injective and surjective. For injectivity note if f(x) = f(y), then g(f(x)) = g(f(y)), so that

$$x = id_T(x) = g(f(x)) = g(f(y)) = id_T(y) = y.$$

For surjectivity, fix $t \in T$. Then:

$$t = \mathrm{id}_T(t) = q(f(t)).$$

so that it is in the image of f.

(b) The function g constructed above is called the *inverse* of f and is sometimes denoted f^{-1} . Show that this terminology is justified by proving that g is *unique*. That is, show that if some other h served as an inverse for f then g.

Proof. Assume there is some other h so that $h \circ f = \mathrm{id}_T$ and $f \circ h = \mathrm{id}_S$. We must show h = g. Note first that:

$$g \circ f = \mathrm{id}_T = h \circ f$$
.

Now compose both sides of the equation above with g to so that $g \circ f \circ g = h \circ f \circ g$. But then:

$$q = q \circ id_S = q \circ f \circ q = h \circ f \circ q = h \circ id_S = h.$$

- 4. Show that equivalence relations are partitions are equivalent. Explicitly, let S be a set, construct a natural bijection between the partitions on S and the equivalence relations on S in the following way.
 - (a) Let \sim be an equivalence relation. Show that the equivalence classes of \sim form a partition of S.

Proof. We must show the three conditions of partition hold.

- (i) Let \overline{a} be the equivalence class of a. Then it is nonempty because in particular it contains a (using that $a \sim a$ by reflexivity).
- (ii) Fix $a \in S$. Then again by reflexivity $a \in \overline{a}$ so it is in some equivalence class. In particular, the union of the equivalence classes is all of S.
- (iii) We must show that distinct equivalence classes of empty intersection. We first prove a helper result.

Lemma 1. If $a \sim b$ then $\overline{a} = \overline{b}$.

Proof. Suppose $c \in \overline{a}$. This means $c \sim a$. By transitivity $c \sim b$, and since \sim is symmetric $b \sim c$. Therefore $c \in \overline{b}$ and so $\overline{a} \subseteq \overline{b}$. The reverse containment is identical.

We will show the contrapositive, that is we will assume \overline{a} and \overline{b} have nonempty intersection, and deduce that they are equal. Suppose c lies in their intersection. Then $c \sim a$ and $c \sim b$. Since \sim is symmetric and transitive $a \sim b$, and so by the Lemma $\overline{a} = \overline{b}$

(b) Conversely, let X_i be a partition of S. Show that the relation \sim given by the rule

$$x \sim y$$
 if $x, y \in X_i$ for the same i

is an equivalence relation for S.

Proof. We must show that the equivalence relation is reflexive, symmetric, and transitive.

- (i) Fix any a. a is in some X_i since the X_i cover S so $a \sim a$. This shows reflexivity.
- (ii) Fix a and b. If $a \sim b$ the $a, b \in X_i$ for the same i, but containment does not depend on order, so $b, a \in X_i$ as well. Thus $b \sim a$ showing that \sim is symmetric.
- (iii) Suppose $a \sim b$ and $b \sim c$. By the first assumption $a, b \in X_i$, and by the second $b, c \in X_j$. In particular $b \in X_i \cap X_j$, and since these sets form a partition i = j. In particular, $a, c \in X_i$ and $a \sim c$. This show transitivity and completes the proof.

6. Fix a nonzero integer $m \in \mathbb{Z}$. Show that congruence modulo m forms an equivalence relation on \mathbb{Z} .

Proof. We must show the relation is reflexive, symmetric, and transitive.

- (i) Since $a a = 0 = 0 \cdot m$ we have that m | (a a) so that $a \equiv a \pmod{m}$.
- (ii) Suppose $a \equiv b \pmod{m}$. Then $m \mid (b-a)$. Therefore $m \mid (a-b)$ (indeed, if b-a=km then a-b=-km), and so $b \equiv a \pmod{m}$.
- (iii) Suppose $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then $m \mid (b-a)$ and $m \mid (c-b)$. We've show that if m divides 2 things it divides their sum, so m divides (b-a) + (c-b) = (c-a), and in particular $a \equiv b \pmod{m}$.

7. Let a and b be integers. Show that $a^2 + b^2$ does not have a remainder of 3 when divided by four. (Hint: First show that the squares of elements in $\mathbb{Z}/4\mathbb{Z}$ are just $\overline{0}$ and $\overline{1}$.)

Proof. The congruence classes in $\mathbb{Z}/4\mathbb{Z}$ are $\overline{0}, \overline{1}, \overline{2}, \overline{3}$. Their squares are

$$\overline{1}^2 = \overline{1}$$

$$\overline{2}^2 = \overline{4} = \overline{0}$$

$$\overline{3}^2 = \overline{9} = \overline{1}$$

Therefore, modulo 4, $a^2 + b^2$ is one of:

$$\begin{array}{ll} \overline{0} + \overline{0} = & \overline{0} \\ \overline{0} + \overline{1} = & \overline{1} \\ \overline{1} + \overline{0} = & \overline{1} \\ \overline{1} + \overline{1} = & \overline{2} \end{array}$$

none of which are $\overline{3}$.

8. Let p be a prime number. Show that the product of two nonzero elements in $\mathbb{Z}/p\mathbb{Z}$ is again nonzero.

Proof. Recall that $\overline{a}\mathbb{Z}/m\mathbb{Z}$ is 0 if and only if m|a. We will show the contrapositive. Fix \overline{a} and \overline{b} in $\mathbb{Z}/p\mathbb{Z}$. If $\overline{ab}=0$ then p|ab. Since p is prime, this means that p|a or p|b. Therefore $\overline{a}=0$ or $\overline{b}=0$.