

Integrálszámítás II

Matematika G1 – Integrálszámítás Utoljára frissítve: 2024. november 04.

11.1. Elméleti Áttekintő

A **parciális integrálás** módszerének bevezetéséhez írjuk fel két függvény szorzatának deriváltját:

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x).$$

Integráljuk x szerint az egyenlet mindkét oldalát:

$$\int (f(x) \cdot g(x))' dx = \int f'(x) \cdot g(x) dx + \int f(x) \cdot g'(x) dx.$$

Az integrálás és a deriválás műveletei egymás inverzei, így az egyenlet bal oldala az alábbi alakot ölti:

$$f(x) \cdot g(x) = \int f'(x) \cdot g(x) \, dx + \int f(x) \cdot g'(x) \, dx$$

Rendezzük át az egyenletet:

$$\int f(x) \cdot g'(x) dx = f(x)g(x) - \int f'(x) \cdot g(x) dx.$$

Amennyiben bevezetjük az f(x) = u, g(x) = v, du = u dx, dv = v dx jelöléseket, akkor megkapjuk a parciális integrálás egy másik gyakran használt alakját:

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

A parciális integrálás módszerét az alábbi esetekben érdemes alkalmazni:

• polinom és trigonometrikus/exponenciális függvény szorzatának integrálása:

$$\int x \sin x \, dx, \qquad \int x \cos x \, dx, \qquad \int x \, e^x \, dx,$$

• exponenciális és trigonometrikus függvények szorzatának integrálása:

$$\int e^x \sin x \, \mathrm{d}x, \qquad \int e^x \cos x \, \mathrm{d}x,$$

- · logaritmus függvények integrálása,
- egyéb esetek, ahol egy szorzatfüggvényt kell integrálni.

Egy racionális törtfüggvény polinomok hányadosaként áll elő. Általános alakja:

$$R(x) = \frac{P(x)}{Q(x)}.$$

Amennyiben a nevező fokszáma kisebb, mint a számlálóé, vagyis deg $P(x) \ge \deg Q(x)$, akkor a **polinomosztás** módszeréhez kell folyamodnunk, mely elvégzése után a törtfüggvény az alábbi alakot ölti:

$$R(x) = T(x) + \frac{S(x)}{Q(x)},$$

hol T(x) egy újabb polinom, S(x) fokszáma pedig már kisebb, mint Q(x) fokszáma.

Ezután **parciális törtekké** bontjuk a S(x)/Q(x) hányadost, majd ezeket, illetve a T(x) polinomot integráljuk.

Amennyiben a nevező fokszáma nagyobb, mint a számláló fokszáma, vagyis deg P(x) < deg Q(x), akkor polinomosztás nélkül tudjuk parciális törtekké bontani a függvényt.

A parciális törtekre való bontáshoz az **algebra alaptételét** használjuk fel, miszerint bármely valós együtthatós polinom felbontható első és másodrendű kifejezések szorzatára, vagyis

$$p(x) = A \cdot \underbrace{\prod (x - a_i)}_{\text{valós gyökök}} \cdot \underbrace{\prod (x^2 + p_i x + q_i)}_{\text{komplex gyökök}}.$$

Valós gyökök esetén a_i maga a polinom gyöke, míg komplex gyökök esetén

$$x^{2} + p_{i}x + q_{i} = (x - z_{i})(x - \overline{z}_{i}) = x^{2} - 2\operatorname{Re}(z_{i})x + |z_{i}|^{2}.$$

Vegyük például a $p(x)=x^5-13x^4+73x^3-193x^2+232x-100$ polinomot, melynek gyökei: $x_1=1,\,x_2=2,\,x_3=2,\,x_4=4+3i,\,x_5=4-3i.$ Ekkor a polinom felbontható:

$$p(x) = \underbrace{(x-1)}_{x_1} \cdot \underbrace{(x-2)^2}_{x_2, x_3} \cdot \underbrace{(x^2 - 6x + 25)}_{x_4, x_5}.$$

Hozzuk R(x) = T(x) + S(x)/Q(x) alakra (deg $S < \deg Q$) az R(x) = P(x)/Q(x) függvényt, ahol $P(x) = x^3 - 12x^2 - 42$ és Q(x) = x - 3. Végezzük el a polinomosztást:

$$x^{2} \cdot (x-3) \rightarrow \underbrace{ \begin{array}{c} (x^{3} -12x^{2} +0x -42) \div (x-3) = x^{2} -9x -27. \\ -(x^{3} -3x^{2} +0x +0x) \\ \hline -9x^{2} +0x -42 \\ -9x \cdot (x-3) \rightarrow \underbrace{ \begin{array}{c} -(-9x^{2} +27x +0) \\ \hline -27x -42 \\ \hline -27 \cdot (x-3) \rightarrow \end{array}}_{-123}$$

Az eredmény tehát:

$$R(x) = x^2 - 9x - 27 - \frac{123}{x - 3}.$$

Félszöges tangens helyettesítés:

Amennyiben trigonometrikus ($\sin x$, $\cos x$) függvényekből álló racionális törtfüggvényeket szeretnénk integrálni, akkor az alábbi helyettesítés alkalmazásával közönséges, t-től függő racionális törtfüggvényeket kapunk:

$$t = \tan \frac{x}{2} \rightarrow dx = \frac{2 dt}{1 + t^2}.$$

Ilyen esetben a $\sin x$ és $\cos x$ trigonometrikus függvényeket a következő módon helyettesítjük:

$$\sin x = \frac{2t}{1+t^2}$$
 és $\cos x = \frac{1-t^2}{1+t^2}$.

Egy ilyen integrál általános alakja:

$$\int R(\sin x; \cos x) \, \mathrm{d}x = \int R\left(\frac{2t}{1+t^2}; \frac{1-t^2}{1+t^2}\right) \frac{2 \, \mathrm{d}t}{1+t^2}.$$

Félszöges tangens helyettesítés levezetése:

Használjuk az alábbi trigonometrikus azonosságokat:

$$\sin x = 2\sin(x/2)\cos(x/2),$$

$$\cos x = \cos^2(x/2) - \sin^2(x/2),$$

$$1 = \cos^2(x/2) + \sin^2(x/2).$$

Ezek alapján a $\sin x$ és $\cos x$ trigonometrikus függvényeket a következő módon helyettesíthetjük:

$$\sin x = \frac{\sin x}{1} = \frac{2\sin(x/2)\cos(x/2)}{\cos^2(x/2) + \sin^2(x/2)} \stackrel{*}{=} \frac{2\tan(x/2)}{1 + \tan^2(x/2)} = \frac{2t}{1 + t^2}, \qquad \left(* : \cdot \frac{1/\cos^2(1/x)}{1/\cos^2(1/x)} \right)$$

$$\cos x = \frac{\cos x}{1} = \frac{\cos^2(x/2) - \sin^2(x/2)}{\cos^2(x/2) + \sin^2(x/2)} \stackrel{*}{=} \frac{1 - \tan^2(x/2)}{1 + \tan^2(x/2)} = \frac{1 - t^2}{1 + t^2}. \qquad \left(* : \cdot \frac{1/\cos^2(1/x)}{1/\cos^2(1/x)} \right)$$

Végül pedig $t = \tan(x/2)$ alapján:

$$x = 2 \arctan t$$
 \rightarrow $\frac{dx}{dt} = \frac{2}{1+t^2}$ \rightarrow $dx = \frac{2 dt}{1+t^2}$

A koszekáns integrálása:

$$\int \csc x \, dx = \int \frac{1}{\sin x} \, dx = \int \frac{1 + t^2}{2t} \frac{2 \, dt}{1 + t^2} = \int \frac{dt}{t} = \ln|t| + C = \ln\left|\tan\frac{x}{2}\right| + C$$

(-1;0) t x/2 1 cos x ξ

[Félszöges tangens helyettesítés geometriai levezetése] (-1; 0)

A k egységkör egyenlete a $\xi \eta$ koordinátarendszerben:

$$k: \xi^2 + \eta^2 = 1.$$

Az e egyenes átmegy a (-1; 0) ponton, meredeksége pedig t. Egyenlete:

$$e: \eta = t(\xi + 1).$$

Helyettesítsük be az egyenes egyenletét a kör egyenletébe:

$$\xi^2 + (t(\xi+1))^2 = 1$$

Fejezzük ki a ξ , majd η koordinátákat a t függvényében!

$$0 = \xi^2 + t^2(\xi + 1)^2 - 1 = \xi^2 + t^2\xi^2 + 2t^2\xi + t^2 - 1 = (1 + t^2)\xi^2 + 2t^2\xi + t^2 - 1$$

Használjuk a másodfokú egyenlet megoldóképletét!

$$\xi_{12} = \frac{-2t^2 \pm \sqrt{4t^4 - 4(1+t^2)(t^2-1)}}{2(1+t^2)} = \frac{-t^2 \pm \sqrt{(t^4 - (t^4-1))}}{1+t^2} = \frac{\pm 1 - t^2}{1+t^2}$$

Az egyenlet egyik megoldásából visszakaphatjuk a (-1;0) pontot:

$$\xi_1 = \frac{-1 - t^2}{1 + t^2} = -1 \quad \to \quad \eta_1 = t(\xi_1 + 1) = t(-1 + 1) = 0.$$

A másik megoldásból pedig a $(\xi_2; \eta_2)$ pontot:

$$\xi_2 = \frac{1-t^2}{1+t^2} \quad \to \quad \eta_2 = t(\xi_2+1) = t\left(\frac{1-t^2}{1+t^2}+1\right) = t\left(\frac{1-t^2+1+t^2}{1+t^2}\right) = \frac{2t}{1+t^2}.$$

A kék háromszög alapján:

$$\tan \frac{x}{2} = \frac{t}{1} \rightarrow t = \tan \frac{x}{2}.$$

A piros háromszög alapján:

$$\sin x = \eta_2 = \frac{2t}{1+t^2}, \qquad \cos x = \xi_2 = \frac{1-t^2}{1+t^2}.$$

A két háromszög bejelölt szögeinek aránya kerületi és középponti szögek tételéből következik, amely kimondja, hogy adott körben adott ívhez tartozó kerületi szög mindig fele az ívhez tartozó középponti szögnek.

Félszöges tangens hiperbolikusz helyettesítés:

A trigonometrikus függvényekhez nagyon hasonló ez az eset is, viszont itt hiperbolikus $(\sinh x, \cosh x)$ függvényekből álló racionális törtfüggvényeket szeretnénk integrálni. A helyettesítés:

$$u = \tanh \frac{x}{2} \rightarrow dx = \frac{2 du}{1 - u^2}$$

Ilyen esetben a $\sinh x$ és $\cosh x$ hiperbolikus függvényeket a következő módon helyettesítjük:

$$sinh x = \frac{2u}{1 - u^2}$$
 és $cosh x = \frac{1 + u^2}{1 - u^2}$.

Egy ilyen integrál általános alakja:

$$\int R(\sinh x; \cosh x) \, dx = \int R\left(\frac{2u}{1-u^2}; \frac{1+u^2}{1-u^2}\right) \frac{2 \, du}{1-u^2}.$$

Félszöges tangens hiperbolikusz helyettesítés levezetése:

Használjuk az alábbi hiperbolikus azonosságokat:

$$\sinh x = 2\sinh(x/2)\cosh(x/2),$$

$$\cosh x = \cosh^{2}(x/2) + \sinh^{2}(x/2),$$

$$1 = \cosh^{2}(x/2) - \sinh^{2}(x/2).$$

Ezek alapján a $\sinh x$ és $\cosh x$ hiperbolikus függvényeket a következő módon helyettesíthetjük:

$$\sinh x = \frac{\sinh x}{1} = \frac{2\sinh(x/2)\cosh(x/2)}{\cosh^2(x/2) - \sinh^2(x/2)} = \frac{2\tanh(x/2)}{1 - \tanh^2(x/2)} = \frac{2u}{1 - u^2},$$

$$\cosh x = \frac{\cosh x}{1} = \frac{\cosh^2(x/2) + \sinh^2(x/2)}{\cosh^2(x/2) - \sinh^2(x/2)} = \frac{1 + \tanh^2(x/2)}{1 - \tanh^2(x/2)} = \frac{1 + u^2}{1 - u^2}.$$

Végül pedig $u = \tanh(x/2)$ alapján:

$$x = 2 \operatorname{artanh} u \rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{2}{1 - u^2} \rightarrow \mathrm{d}x = \frac{2 \, \mathrm{d}u}{1 - u^2}$$

A koszekáns hiperbolikusz integrálása:

$$\int \operatorname{csch} x \, \mathrm{d}x = \int \frac{1}{\sinh x} \, \mathrm{d}x = \int \frac{1 - u^2}{2u} \frac{2 \, \mathrm{d}u}{1 - u^2} = \int \frac{\mathrm{d}u}{u} = \ln|u| + C = \ln\left|\tanh\frac{x}{2}\right| + C$$

[Félszöges tangens hiperbolikusz helyettesítés geometriai levezetése] $\frac{(-1;0)}{1} u$

Az egységhiperbola egyenlete a $\xi \eta$ koordinátarendszerben:

$$h: \xi^2 - \eta^2 = 1.$$

Az e egyenes átmegy a (-1; 0) ponton, meredeksége pedig u. Egyenlete:

$$e: \eta = u(\xi + 1).$$

Helyettesítsük be az egyenes egyenletét a hiperbola egyenletébe:

$$\xi^2 - (u(\xi+1))^2 = 1.$$

Fejezzük ki a ξ , majd η koordinátákat a u függvényében!

$$0 = \xi^2 - u^2(\xi + 1)^2 - 1 = \xi^2 - u^2\xi^2 - 2u^2\xi - u^2 - 1 = (1 - u^2)\xi^2 - 2u^2\xi - u^2 - 1$$

Használjuk a másodfokú egyenlet megoldóképletét!

$$\xi_{12} = \frac{2u^2 \pm \sqrt{4u^4 + 4(1 - u^2)(u^2 + 1)}}{2(1 - u^2)} = \frac{u^2 \pm \sqrt{(u^4 + (1 - u^4))}}{1 - u^2} = \frac{\pm 1 + u^2}{1 - u^2}$$

Az egyenlet egyik megoldásából visszakaphatjuk a (-1;0) pontot:

$$\xi_1 = \frac{-1 + u^2}{1 - u^2} = -1 \quad \to \quad \eta_1 = u(\xi_1 + 1) = u(-1 + 1) = 0.$$

A másik megoldásból pedig a $(\xi_2; \eta_2)$ pontot:

$$\xi_2 = \frac{1+u^2}{1-u^2} \rightarrow \eta_2 = u(\xi_2+1) = u\left(\frac{1+u^2}{1-u^2}+1\right) = u\left(\frac{1+u^2+1-u^2}{1-u^2}\right) = \frac{2u}{1-u^2}.$$

Hasonló háromszögek alapján:

$$u = \frac{\sinh x}{1 + \cosh x} = \tanh \frac{x}{2}.$$

Az egységhiperbola parametrikus egyenlete alapján:

$$\cosh x = \xi_2 = \frac{1+u^2}{1-u^2}$$
 és $\sinh x = \eta_2 = \frac{2u}{1-u^2}$.

$$\tanh \frac{x}{2} = \frac{e^{x/2} - e^{-x/2}}{e^{x/2} + e^{-x/2}} \cdot \frac{e^{x/2} + e^{-x/2}}{e^{x/2} + e^{-x/2}} = \frac{e^x - e^{-x}}{2 + e^x + e^{-x}} = \frac{(e^x - e^{-x})/2}{1 + (e^x + e^{-x})/2} = \frac{\sinh x}{1 + \cosh x}$$

Speciális helyettesítések összefoglaló:

• $R(\sin x; \cos x)$

$$t = \tan \frac{x}{2}$$
 $dx = \frac{2 dt}{1 + t^2}$ $\sin x = \frac{2t}{1 + t^2}$ $\cos x = \frac{1 - t^2}{1 + t^2}$

• $R(\sinh x; \cosh x)$

$$u = \tanh \frac{x}{2}$$
 $dx = \frac{2 du}{1 - u^2}$ $\sinh x = \frac{2u}{1 - u^2}$ $\cosh x = \frac{1 + u^2}{1 - u^2}$

• $R(e^x; e^{2x}; \dots)$

$$t = e^x$$
 $dx = \frac{dt}{t}$

• $R(x; \sqrt{1-x^2})$

$$x = \sin t$$
 $t = \arcsin x$ $dx = \sqrt{1 - x^2} \cdot dt$

$$1 = \cos^2 t + \sin^2 t$$

• $R(x; \sqrt{x^2 + 1})$

$$x = \sinh t$$
 $t = \operatorname{arsinh} x$ $dx = \sqrt{x^2 + 1} \cdot dt$

$$1 = \cosh^2 t - \sinh^2 t$$

• $R(x^{a/c}; x^{b/c}; \dots)$

$$x = t^c \quad dx = cx^{1-1/c} dt$$

A $t = \tan(x/2)$ és $u = \tanh(x/2)$ helyettesítésekhez tartozó levezetéseket nem szükséges fejből tudni, csupán a megértés érdekében szerepelnek az elméleti áttekintőben.

11.2. Feladatok

1. Határozza meg az alábbi integrálok értékét! (Ajánlott módszer: parciális integrálás.)

a)
$$\int x \cos x \, \mathrm{d}x$$

b)
$$\int (x^2 - 1) \sin 3x \, dx$$

c)
$$\int \ln x \, dx$$

d)
$$\int x \arctan x \, dx$$

e)
$$\int e^x \sin x \, dx$$

f)
$$\int \sin^2 x \, \mathrm{d}x$$

g)
$$\int e^{\arccos x} dx$$

2. Integrálja az alábbi racionális törtfüggvényeket!

a)
$$\int \frac{x^3 - 9x^2 + 27x - 26}{x^2 - 7x + 12} \, \mathrm{d}x$$

b)
$$\int \frac{x^3 - 2x^2 + 4}{x^3(x - 2)^2} \, \mathrm{d}x$$

$$c) \int \frac{3x-2}{x^2+4x+8} \, \mathrm{d}x$$

3. Határozza meg az alábbi integrálok értékét! (Ajánlott módszer: helyettesítéses integrálás.)

a)
$$\int \frac{1}{5 + 3\cos x} \, \mathrm{d}x$$

b)
$$\int \frac{1}{1 + \cosh x + 2 \sinh x}$$

c)
$$\int \sqrt{\frac{x}{1-x}} \, \mathrm{d}x$$

$$d) \int \frac{1}{\sqrt{x}(1+\sqrt[3]{x})}$$

$$e) \int \frac{e^x + 2}{e^x + e^{2x}} \, \mathrm{d}x$$