No: Nome:

ALGA I - 2010/2011

1^a Chamada - 18 de Janeiro de 2011

Exame A

O Teste que vai realizar é constituído por duas partes.

As respostas às perguntas/alíneas da 1ª Parte devem ser dadas unicamente nos respectivos espaços, não sendo necessário apresentar os cálculos intermédios.

Na resolução da 2ª Parte deve apresentar todos os cálculos e todas as justificações necessárias.

1^a Parte

1. Considere as matrizes reais

$$A = \begin{bmatrix} 2 & -1 & 4 \\ 1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & -3 & 1 \\ -1 & 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 & -1 \\ 1 & 2 \\ -1 & 0 \end{bmatrix}.$$

Determine, caso existam:

(a)
$$det(BC) =$$

$$det(CB) =$$

(b)
$$A^{-1} =$$

(c) Uma decomposição LU de A.

(d) Uma matriz elementar
$$E$$
 tal que $EB = \begin{bmatrix} 1 & -3 & -1 \\ -1 & 0 & 2 \end{bmatrix}$.

2.
$$\det \begin{bmatrix} \alpha & -1 & 1 & 9 \\ 2 & -1 & -1 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 1 & -1 & 1 \end{bmatrix} = \dots$$

3. Seja A uma matriz de ordem 3 tal que det $(A^3) = -27$. Indique:

(a)
$$\det\left(AA^T\right) = \dots$$

$$\det\left(-A\right)^{-1} = \dots$$

(b)
$$\det(AA^{-1}) = \dots$$

$$\det(adjA) = \dots$$

4. Considere o sistema AX = B em que

$$A = \begin{bmatrix} 2 & 1 & k \\ 0 & k+2 & 0 \\ 0 & 0 & k^2+3k+2 \end{bmatrix} e B = \begin{bmatrix} k \\ 0 \\ k+2 \end{bmatrix}, k \in \mathbb{R}.$$

- (a) Após discutir o sistema em função do parâmetro k, complete cada alínea de modo a obter uma afirmação verdadeira:
 - (i) O sistema AX = B é impossível se e só se
 - (ii) O sistema AX=B é possível e indeterminado, com grau de indeterminaçãose e só se
 - (iii) O sistema AX = B é possível e determinado se e só se......
- (b) Para k = -2, o conjunto das soluções do sistema AX = B, é:

......

- (c) O sistema AX = B é sistema de Cramer se e só se
- 5. Considere o espaço vectorial real \mathbb{R}^3 . Indique os valores de t para os quais o vector $(t, t^2, 0)$ é combinação linear do sistema ((1, t, 2), (1, t + 1, 2), (-1, -t, t)).

.....

6. Considere o espaço vectorial real $M_{2\times 2}(\mathbb{R})$. Complete:

7. Indique uma base do subespaço $Q = \langle x^2 + x + 1, 2x^2 + x + 1, x - 1 \rangle$ de $\mathbb{R}_2[x]$.

.....

- 8. Considere a matriz real $A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ -1 & -2 & 1 & -5 \\ 2 & 4 & 0 & 6 \end{bmatrix}$. Indique:
 - (a) Uma base do espaço das linhas de A.

.....

(b) Uma base do espaço das colunas de A.

.....

(c) Uma base do espaço nulo de A.

.....

MO.	Nome
N :	Nome:

- 9. Considere o espaço vectorial real \mathbb{R}^2 e as suas bases $\alpha = ((1,-1),(2,0))$ e $\beta = ((4,-2),(0,1))$.
 - (a) Determine a matriz de mudança da base β para a base α .
 - (b) Determine a matriz das componentes de w = (2, -1) na base α .
- 10. No espaço vectorial real \mathbb{R}^3 , munido do produto interno canónico, considere $F=<(1,2,1),(1,2,-1)> \quad \text{e} \quad G=<(1,0,1),(1,0,-1)>.$ Indique:

(a)
$$dim(F+G) = \dots$$

(b)
$$dim(F \cap G) = \dots$$

- (f) A projecção ortogonal de v = (3, 1, 1) sobre F.
- 11. Considere \mathbb{R}^2 munido do produto interno que satisfaz

$$((x_1, x_2)|(y_1, y_2)) = x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2.$$

Indique:

(a)
$$((1,1)|(0,2)) =$$

(b)
$$||(1,1)|| =$$

Vire s. f. f.

2^a Parte

Na resolução da 2ª Parte deve apresentar todos os cálculos e todas as justificações necessárias.

13. Considere o espaço vectorial real \mathbb{R}^4 e os seus subespaços vectoriais

$$F = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 : a_1 + 2a_2 = a_3 \land a_3 - 2a_4 = 0\}$$

е

$$G = \langle (-1, 1, 1, 0), (-4, 3, 0, 1), (-2, 1, -2, 1) \rangle$$
.

- (a) Determine uma base de F.
- (b) Indique uma base de G e caracterize os vectores de G por meio de condições nas suas coordenadas.
- 14. Seja $n \in \mathbb{N}$, sejam $A_1, A_2 \in M_n(\mathbb{R})$ e seja $B \in M_{n \times 1}(\mathbb{R})$, sendo $B \neq 0$. Mostre que, se os sistemas $A_1X = B$ e $A_2X = B$ são equivalentes e possíveis, então $det(A_1 A_2) = 0$.
- 15. Sejam $m, n, k \in \mathbb{N}$. Seja $A \in M_{m \times n}(\mathbb{R})$ e sejam $Z_1, \ldots, Z_k \in M_{n \times 1}(\mathbb{R})$. Mostre que, se A tem característica n e (Z_1, \ldots, Z_k) é linearmente independente, então também o sistema (AZ_1, \ldots, AZ_k) é linearmente independente.
- 16. Seja V um espaço euclidiano e seja F um subespaço vectorial de V. Defina F^{\perp} (complemento ortogonal de F) e demonstre que F^{\perp} é subespaço vectorial de V.

 \mathbf{FIM}