Unit Assignment: Trigonometric Functions and Graphs

MHF4U

Virtual High School

2021.01.09

Jin Hyung Park

Question 1.

a)
$$f(x) = 3sin(\frac{1}{3}x) + 1$$

• Use the form asin(b(x-c)) + d to find the variables.

$$o \quad a=3, b=\frac{1}{3}, c=0, d=1$$

• Domain:
$$(-\infty, \infty)$$
, $\{x | x \in R\}$

• Range:
$$[-2,4]$$
, $\{y|-2 \le y \le 4\}$

• Find the magnitude of the trig term of the function by taking the absolute value of the coefficient.

- o Find the lower bound of the range.
- The lower bound of the range for sine is found by substituting the negative magnitude of the coefficient into the equation.

$$y = -3 + 1$$

$$\circ$$
 $y = -2$

- Find the upper bound of the range.
- The upper bound of the range for sine is found by substituting the positive magnitude of the coefficient into the equation.

$$\circ$$
 $y = 3 + 1$

$$\circ$$
 $y=4$

- Minimum and Maximum values:
 - o local minimum: $(\frac{9\pi}{2} + 6\pi n, -2)$, when *n* is any integer
 - o local maximum: $(\frac{3\pi}{2} + 6\pi n, 4)$, when *n* is any integer

• Period:
$$\frac{2\pi}{\frac{1}{3}} = 6\pi$$

• Phase Shift: 0 to the right

b)
$$f(x) = -\frac{1}{2}cos(4x - \frac{\pi}{3}) - 3$$

• Use the form acos(b(x-c)) + d to find the variables.

$$0 f(x) = -\frac{1}{2}cos(4(x - \frac{\pi}{12})) - 3$$

$$\circ$$
 $a = -\frac{1}{2}$, $b = 4$, $c = \frac{\pi}{12}$, $d = -3$

- Domain: $(-\infty, \infty)$, $\{x | x \in R\}$
- Range: $\left[-\frac{7}{2}, -\frac{5}{2}\right], \left\{y \mid \frac{-7}{2} \le y \le \frac{-5}{2}\right\}$
 - Find the magnitude of the trig term of the function by taking the absolute value of the coefficient
 - o magnitude = 1
 - o Find the lower bound of the range.
 - The lower bound of the range for cosine is found by substituting the negative magnitude of the coefficient into the equation.

$$y = -1 - \frac{1}{2} - 3$$

$$y = -\frac{9}{2}$$

- o Find the upper bound of the range.
- The upper bound of the range for cosine is found by substituting the positive magnitude of the coefficient into the equation.

$$y = 1 - \frac{1}{2} - 3$$

$$\circ \quad y = -\frac{5}{2}$$

Minimum and Maximum values:

o local minimum: $(\frac{\pi}{12} + \frac{\pi}{2}n, -\frac{7}{2})$, when *n* is any integer

o local maximum: $(\frac{\pi}{3} + \frac{\pi}{2}n, \frac{-5}{2})$, when *n* is any integer

• Period: $\frac{2\pi}{4} = \frac{\pi}{2}$

• Phase Shift: $\frac{\pi}{12}$ to the right

• Amplitude: $\frac{1}{2}$

Question 3.

 $f(x) = a\cos(k(x-d)) + c \text{ or } f(x) = a\sin(k(x-d)) + c$

• Amplitude:

$$\circ \quad \frac{\text{maximum-minimum}}{2} = \frac{1 - (-3)}{2} = 2$$

$$\circ$$
 $a=2$

Axis of curve:

 \circ y = -1 which means that the graph is vertically shifted down by 1

$$\circ$$
 $c = -1$

• Period:

 $\qquad \text{ Half of period: } \tfrac{5\pi}{4} - \tfrac{4\pi}{4} = \pi$

 \circ Period: 2π

 \circ k=1

Phase shift:

 \circ $\;$ The maximum which happens at first located at: $\frac{5\pi}{4}$

 \circ $\;$ We could horizontally shift the graph right by $\frac{5\pi}{4}$

 $\circ \quad d = \frac{5\pi}{4}$

• The graph is $f(x) = 2cos(x - \frac{5\pi}{4}) - 1$

2)

• Amplitude:

$$0 \quad \frac{minimum - maximum}{2} = \frac{0.9 - 0.3}{2} = 0.3$$

o
$$a = 0.3$$

Axis of curve:

 \circ y = 0.6 which means that the graph is vertically shifted up by 0.6

$$\circ$$
 $c = 0.6$

Period:

$$\circ$$
 $\pi - 0 = \pi$

$$\circ$$
 Period = π ,

$$\circ$$
 $k=2$

Phase shift:

• The maximum which happens first located at: 0

• We could not horizontally shift the graph since the value is 0

$$\circ$$
 $d=0$

• The graph is $f(x) = 0.3\cos(2x) + 0.6$

Question 4.

At its highest point, the second hand on a clock is 1.9 m above the ground. At its lowest point, the second hand is 1.6 m above the ground. The second hand starts at its highest point when the clock is started.

a) Let such function to be h(t) = acos(k(t-d)) + c

• Amplitude =
$$0.3/2 = 0.15 m$$

• a = 0.15

- Mid point of the function = (1.9 + 1.6)/2 = 1.75
- c = 1.75
- period = 60s
- $k = \frac{2\pi}{60} = \frac{\pi}{30}$ The second hand starts at the maximum point
- $\bullet \quad d=0$
- $h(t) = 0.15[cos(\frac{\pi}{30}t)] + 1.75$

- $h(10) = 1.75 + 0.15 * cos(\frac{\pi}{3}) = 1.825 m$
- $h(35) = 1.75 + 0.15 * cos(\frac{35\pi}{30}) = 1.620 m$