ADC DAC GPIO Board for Raspberry

Patrick Predella 165283, Federico D'Eredità 151646

Indice

1	Intr	roduzione
2	Con	mponentistica
	2.1	Cicuiteria Microchip utilizzata
		2.1.1 ADC - Analog-to-Digital Converter
		Cicuiteria Microchip utilizzata
		2.1.3 GP I/O - General Purpose Input/Output Device
	2.2	Componenti Hardware
		2.2.1 La scheda Piggy-Back e il DCDC Converter
		2.2.2 Il Raspberry
	2.3	Componenti Hardware
3	Rea	dizzazione del Progetto
	3.1	Protezione della componentistica
		3.1.1 Filtri RC
		3.1.2 Protezioni V e I
	3.2	Schema elettrico d'assemblaggio

1 Introduzione

Finalità del progetto è il monitoraggio di misure di temperatura e pressione ambientali mediante sensoristica analogica con la possibilità di comandare attuatori analogici e/o digitali tramite programmazione di un Raspberrt Pi2+. A questo scopo abbiamo deciso di realizzare una scheda composta dai seguenti elementi principali:

- Un convertitore analogico-digitale per il campionamento dei segnali analogici di temperatura e pressione affiancato da una protezione per eventuali sbalzi di tensione;
- Un convertitore digitale-analogico per il controllo di attuatori analogici anch'esso affiancato da una protezione per eventuali sbalzi di tensione;
- Un general purpose input/output per il controllo di attuatori digitali ed il controllo delle operazioni pre-programmate nel Raspberry;
- Scheda PiggyBack (vedasi capitolo 2.2.1) per l'assemblaggio della componentistica;
- Un Raspberry Pi2+ per il controllo delle linee dati, di clock e l'interazione con il GPI/O.

2 Componentistica

- 2.1 Cicuiteria Microchip utilizzata
- 2.1.1 ADC Analog-to-Digital Converter
- 2.1.2 DAC Digital-to-Analog Converter
- 2.1.3 GP I/O General Purpose Input/Output Device
- 2.2 Componenti Hardware
- 2.2.1 La scheda Piggy-Back e il DCDC Converter
- 2.2.2 Il Raspberry
- 2.3 Il linguaggio di programmazione I2C

3 Realizzazione del Progetto

Il progetto è molto semplice. Si tratta di:

- utilizzare il DCDC converter per stabilizzare l'alimentazione dei componenti.
- portare le piste a degli header in modo che siano accessibili al Raspberry
- proteggere le linee in ingresso e in uscita in modo che non si danneggino i componenti

3.1 Protezione della componentistica

Si tratta di rispettare le specifiche di absolute maximum ratings, proteggere le linee in ingresso e in uscita da ingressi **out of range** e **ridurre i rumori**. In particolare un filtro per i rumori nel caso dell'ADC, un filtro per avere un transitorio non nullo nel caso dei GPIO e in tutti e tre i casi una protezione contro ingressi alti e per rientrare negli Absolute Maximum ratings nel caso di collegamento dei pin di output a massa (caso peggiore). (Vedi lo schematico delle parti: RASP_GPIO_DAC_ADC_PARTS.pdf)

3.1.1 Filtri RC

Abbiamo disegnato due filtri RC:

- Filtro ADC.
- Filtro GPIO

Si tratta in entrambi i casi di filtri passa basso con 1 unico polo.

Filtro ADC L'ADC da specifiche si comporta come un passa basso a 5hz. Nel nostro caso vogliamo aggiungere un ulteriore polo in modo da **pre-filtrare** il segnale in ingresso. Scegliamo quindi una frequenza di taglio <5**Hz** (sopra alla quale in ogni caso il segnale non viene campionato correttamente). In particolare scegliamo una resistenza da $100 \text{k}\Omega$ e un condensatore da $1\mu\text{F}$ per avere di conseguenza un taglio a 1.6Hz.

Filtro GPIO Per il GPIO il caso è diverso: ci serve un filtro in modo da evitare false letture dovute a picchi improvvisi e rumore e nel contempo asssicurare una buona reattività nel caso dell'attuazione Dimensioniamo il filtro a partire dalla resistenza che deve soddisfare la massima corrente di drain dal piedino descritta negli Absolute Maximum Ratings. Abbiamo quindi Imax=25mA, Vmax=5V. Rmin deve quindi essere $Rmin=200\Omega$. La dimensioniamo ad $1k\Omega$ e siamo sicuri di essere nei ratings. Scegliamo una $C=1\mu F$ per avere di conseguenza un taglio a 160Hz. La porta ha quindi una $\tau=1ms$ di risposta naturale, che è accettabile nel nostro caso perché nel caso peggiore la commutazione del valore binario avviene intorno ai 2ms.

3.1.2 Protezioni V e I

Ci serve un sistema per impedire alla tensione di salire oltre ad una certa soglia in modo da non danneggiare i microchip. utilizziamo quindi dei diodi zener che scaricano a massa le tensioni in ingresso. Si noti che le usiamo anche nel caso dei DAC per proteggere la porta nel caso in cui venga collegata erroneamente.

Protezione DAC Nel caso del DAC vogliamo proteggere la porta da tensioni troppo alte. Al massimo il DAC da Vout=Vdd=5V. Colleghiamo un diodo Zener con Vz=5.1V in inversa e qualunque tensione maggiore di 5.1 verrà scaricata dal componente. La resistenza viene scelta per rispettare la massima corrente erogata dal pin Imax=25mA. Con V=5V e Imax=25mA, Rmin=200 Ω . La dimensioniamo ad 1k Ω .

Protezione GPIO Pure nel caso del GPIO vogliamo proteggere la porta da tensioni troppo alte. Al massimo il GPIO da Vout=Vdd=5V. Colleghiamo un diodo Zener con Vz=5.1V in inversa e qualunque tensione maggiore di 5.1 verrà scaricata dal componente. La resistenza viene scelta per rispettare la massima corrente erogata dal pin Imax=25mA. Con V=5V e Imax=25mA, Rmin=200 Ω . La dimensioniamo ad 1k Ω .

Protezione ADC Nel caso dell'ADC vogliamo proteggere la porta da tensioni troppo alte. I max ratings sono a 5V, ma qualunque segnale con tensione maggiore di Vref non viene campionato correttamente, infatti abbiamo un fenomeno di clipping a V<-Vref/PGA e a V>Vref/PGA. (con PGA = 1,2,4,8). L'intervallo utile su cui misurare il segnale sono quindi delle tensioni con la tensione -2.048V < V < 2.048V.

Colleghiamo un diodo Zener con Vz=2.2V in inversa e in modo da evitare questo compito al microchip. In questo caso la resistenza viene scelta per rispettare la massima corrente erogata, ma anche per scegliere condensatori più piccoli e quindi meno costosi. La dimensioniamo ad $100k\Omega$. Per usare un C=1 μ F. In ogni caso i segnali che leggeremo trasportano pochissima corrente, quindi possiamo filtrare la corrente massima molto pesantemente.

3.2 Schema elettrico d'assemblaggio