SOME USEFUL INFORMATIONS

Arithmetic Sequence Size

 $1, 2, 3, 4, 5, 6, \dots, N \le O(N)$

1, 3, 5, 7, , N 1, 4, 7, 10, , N \leq N/2 i.e O(N)

 \leq N/3 i.e. O(N)

1, 1+k, 1+2k, 1+3k, 1+4k, 1+5k,, $N \le N/k$ i.e. O(N) if k is a constant

<u>Arithmetic Series</u> Applications of 1+2+3+4+...+N = $\frac{N(N+1)}{2}$

1+2+3+4+5+6+N-3+ N-2+ N-1+ N $\leq O(N^2)$

 $1+2+3+4+5+6+...(N/2-3)+(N/2-2)+(N/2-1)+N/2 \le O(N^2)$

 $1+2+3+4+5+6+ \dots (N/3-3)+ (N/3-2)+ (N/3-1)+ N/3 \le O(N^2)$

 $1+2+3+4+5+6+ \dots +\sqrt{N} \le O((\sqrt{N})^2) \le O(N)$

1+2+3+4+5+6+ + N² $\leq O(N^4)$

1+2+3+4+5+6+ + N³ $\leq O(N^6)$

 $1+2+3+4+5+6+....+N^k \le O(N^k \times N^k)$

 $1+2^2+3^2+4^2+5^2+6^2+\dots+N^2 < O(N^3)$

 $1+2^3+3^3+4^3+5^3+6^3+ \dots + N^3 \le O(N^4)$

 $1^{k+2^{k+3^{k+4^{k+5^{k+6^{k+...}}}}} + N^{k} \le O(N^{k+1})$

Geometric Sequence Size

N, N/2, N/4, N/8, N/24, N/25, N/26, ...8, 4, 2, 1 \leq \log₂ N N, N/3, N/9, N/27, N/3⁴, N/3⁵, N/3⁶, ..., 3³, 9, 3, 1 <= $\log_3 N$ N, N/5, N/25, N/125, N/5⁴, N/5⁵, N/5⁶, ..., 5³, 5², 5, 1 <= $\log_5 N$

N, N/k, N/k², N/k³, N/k⁴, N/k⁵, N/k⁶, ..., k³, k², k, 1 <= $\log_k N$

O(logN)

Application

 $\sqrt{N} * \sqrt{N} = N$ for(int i=1; i*i<=N; i++) Complexity of this loop is $O(\sqrt{N})$

Sum++:

 $N \times N = N^2$ for(int i=1; i*i<=N*N; i++) Complexity of this loop is O(N)

GEOMETRIC SERIES

N < 1+2+4+8+16+32+... + N/4+N/2+N < 2N

 $N < 1+3+9+3^3+3^4+3^5+...+N/3^2+N/3+N < 2N$

 $N < 1+5+2^5+5^3+5^4+5^5+...+N/5^2+N/5+N < 2N$

For any constant - ratio(multiplication factor greater than 2 the above inequality is valid).