Eine Woche, ein Beispiel 7.30. Galois correspondence

This is a continuation of [2023.06.04]. I think maybe it is better to make it a series (since this topic is a bit too fundamental and basic), but I am still not sure if I will keep updating this series. Let us see.

Ex
$$Q(JZ)/Q$$
 is Galois (why?), and $Gal(Q(JZ)/Q) \cong Z/ZZ$

A. $Q(JZ)/Q = Q[T]/(T^2-2)$
 $\phi: Q[T]/(T^2-2) \longrightarrow Q[T]/(T^2-2)$
 $T \longmapsto \phi(T) = ?$

The question reduces to solving the equation

 $X^2-2 = 0$

in $Q[T]/(T^2-2)$
 $(X-T)(X+T) = 0$

Lemma. Let
$$E/F$$
 be field extension, $\phi \in Aut_{F-alg}(E)$, $x \in E$.
If for some $a_i \in F$,
 $a_n x^n + \cdots + a_o = 0$,
then
 $a_n \phi(x)^n + \cdots + a_o = 0$.

Ex. Let $E = \|F_{2}[T]/(T^{2}+T+1)$, then $E/\|F_{2}\|$ is Galois, and $Gal(E/\|F_{2}) \cong \mathbb{Z}/2\mathbb{Z}$. $\forall E \not\cong \mathbb{Z}/4\mathbb{Z}$ as abelian $g_{P}!$

Ex.
$$F:=|F_{\bullet}(T)|$$
, $F(JT)/F$ is not Galois, and $\text{Aut}_{F-alg}(F(JT)) \cong \text{FId}$.
A. $F(JT) = F[S]/(S^2-T)$
 $\phi: F[S]/(S^2-T) \longrightarrow F[S]/(S^2-T)$
 $S \longmapsto \phi(S) = ?$
The question reduces to solving the equation
 $x^2-T=0$ in $F(JT)=F[S]/(S^2-T)$

$$x^{2}-T=0$$
 in $F(JT)=F[S]/(S^{2}-T)$
 $(x-S)(x+S)=0$

ex. Check that S = -S, so $Aut_{F-alg}(F(F)) \cong \mathbb{Z}/2\mathbb{Z}$.

```
Eisenstein Criterion [wiki]
  Thm Let f(\tau) = a_n T^n + \dots + a_n \in \mathbb{Z}[\tau], if
                         ptan, plan-1,...,ao, p2+ao,
 then f(T) \in Q[T] is irreducible.

E.g. 1) f(T) = 3T^4 + 15T^2 + 10 \in Q[T] is irreducible.

2) f(T) = T^2 + T + 2 \in Q[T] is irreducible, since f(T+3) = T^2 + 7T + 14 \in Q[T] is irreducible.

3) f(T) = 2T^5 + 4T^2 - 3 \in Q[T] is irreducible, since T^5 f(\dot{\tau}) = 2 + 4T^3 - 3T^5 \in Q[T] is irreducible.
                          f(T) = g(T)h(T), then
                         f(T+3) = g(T+3)h(T+3)

T^{s}f(\dot{\uparrow}) = T^{s}g(\dot{\uparrow})h(\dot{\uparrow}) = T^{deg}g(\dot{\uparrow}) \cdot T^{deg}f(\dot{\uparrow})
  E.g. \Phi_p(T) := \frac{T^{p-1}}{T-1} = T^{p-1} + \dots + 1 \in \mathbb{Q}[T] is irreducible, since \Phi_p(T+1) = \dots \in \mathbb{Q}[T] is irreducible.
 RMk. A reminder for Gauss's lemma. [wiki: Gauss's lemma]
Def. F(T) = a_n T^n + \cdots + a_n \in \mathbb{Z}[T] is primitive, if gcd(a_n, \dots, a_n) = 1.
Lemma (Primitivity)
                P(T), Q(T) \in \mathbb{Z}[T] primitive \Rightarrow P(T)Q(T) \in \mathbb{Z}[T] primitive.
Lemma (Irreducibility) For F(T) \in \mathbb{Z}[T] nonconstant,
F(T) \in \mathbb{Z}[T] \text{ is irr} \iff \begin{cases} F(T) \in \mathbb{Q}[T] \text{ is irr} \\ F(T) \in \mathbb{Z}[T] \text{ is primitive} \end{cases}
```

Continuation of examples.
$$Q(\S_p) = Q[T]/(\Phi_p(T)) \qquad Gal(Q(\S_p)/Q) \cong (\frac{\mathbb{Z}}{pZ})^{\times}$$

$$Q(\overline{\jmath_{2+f_2}}) = Q[T]/(T^2-1)^2-1) \qquad Gal(Q(\overline{\jmath_{2+f_2}})/Q) \cong \mathbb{Z}/4\mathbb{Z}$$
Suppose char $F = p$, $a \in F$, $x^p - x - a \in F[x]$ irr.
Let $E = F[T]/(T^p - T - a)$, then $Gal(E/F) \cong \mathbb{Z}/pZ$.

We do the rest of examples in Galois correspondence.

Thm (Galois correspondence / Fundamental theorem of Galois theory) Let E/F be any (finite) Galois extension. We have one-to-one correspondence $\{L/F\}$ field extension, $L\subseteq E$ $\}$ $\{H\subseteq Gal(E/F) \text{ closed subgp}\}$ $Gal(E/F) \begin{cases} E \\ I & Gal(E/L) & Subgp \\ L & Spec L & L \\ I & Quotient \\ F & When L/F Galois & Spec F & F & Gal(E/F) \end{cases}$ Eq. $Gal(Q(35,5)/Q) \cong S_3 C[35,355,355]$ <(23)> <(3|>> <(12)> $Q(\mathcal{L}) Q(\mathcal{L}_{i}) Q(\mathcal{L}_{i})$ (gray) Eq. $C_{a}(Q(\Sigma,i)/Q) \cong \mathbb{Z}/_{2\mathbb{Z}} \oplus \mathbb{Z}/_{2\mathbb{Z}}$ $Gal(Q(45,i)/Q) \cong D_4 = \langle a,b | a^4 = b^2 = 1, bab = a^2 \rangle$ $a : i \longrightarrow i$ $b : i \longrightarrow -i$ 452 → i 452 452 +52 $Q(\sqrt[4]{z}, i)$ $Q(\sqrt[4]{z}, i$ Q(z)

$$E.g. \quad G_{\alpha}((\mathcal{Q}(\overline{\Sigma},\overline{S})/\mathcal{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}$$

$$G_{al}(Q(\overline{L},\overline{L},u)/Q) \cong Q_{8}$$
 where $u^{2} = (9-5\overline{L})(2-\overline{L})$ (too technical!)

E.g.
$$Gal(Q(\S_8)/Q) \cong (\mathbb{Z}/8\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

$$a.\S_8 \mapsto \S_8^3 \quad b.\S_8 \mapsto \S_8^4$$

$$Gal(Q(\S_5)/Q) \cong (\mathbb{Z}/5\mathbb{Z})^{\times} \cong \mathbb{Z}/4\mathbb{Z} \quad \text{with intermediate field}$$

$$Q(\S_5) \cap IR = Q(\S_5 + \S_5^{-1}) = Q(J_5)$$

Rmk In general, for
$$p > 3$$
 prime,
 $Q(S_p) \supset Q(S_p) \cap (R \supset Q(S_p + S_p^{-1}))$
 $\Rightarrow Q(S_p) \cap (R \supset Q(S_p + S_p^{-1}))$

Conclusion

Galois extension

Galois inverse problem

Special field

finite

Simple + sep

abelian

Cyclic

Solvable

without intermediate normal field extension

Galois group

Sinite

Sinite many subgps

abelian

Cyclic

Solvable

Solvable

Solvable

Solvable

Semidirect product gp

Sylow p-subgp

For functional fields, we can translate them as (ramified) covers and discuss unramified field extension as well as unramified subgroup. You may see this:

 $https://github.com/ramified/personal_handwritten_collection/blob/main/scattered/\%E4\%BB\%A3\%E6\%95\%Bo\%E5\%9F\%BA\%E6\%9C\%AC\%E7\%BE\%A4.pdf$

Examples

1. Finite field In this section, F/F_p fin extension, $\#F = p^n$.

Prop 1. F^{\times} is a cyclic gp.

Reason. 1) F^{\times} is abelian, $\#F^{\times} = p^n - 1$ \Rightarrow can use classifications of f.g. abelian gp

2) $x^{p^n - 1} - 1 = \mathcal{T}_{e}^{\times}(x - d)$ $\Rightarrow \# v < k < p^n - 1 = v$ $x^{p^n - 1} - 1$ seperable $\Rightarrow \# v < k < p^n - 1 = v$ $x^{p^n - 1} - 1$ seperable $\Rightarrow \# v < k < p^n - 1 = v$ $x^{p^n - 1} - 1$ seperable $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \# v < k < p^n - 1 = v$ $\Rightarrow \#$

Cor. F = 1 (Sp^-1)

Prop 2. $\exists !$ field of size p^n (as abstract field)

To be exact, let $F' := the spliting field of x^{p^n} - x \text{ over } F_p$,

then $\#F' = p^n$ and $F \cong F'$.

Reason. $\#F' = p^n$: $F'' := [x \in F' \mid x^{p^n} = x] \subseteq F' \text{ is a subfield with } \#F'' = p^n$. $X^{p^n} - x \text{ splits over } F'' \stackrel{\text{def of } F'}{=} F' = F'$ $F \cong F' : x^{p^n} - x \text{ splits over } F \stackrel{\text{def of } F'}{=} F' \cong F$

Prop 3. $Ca((F/F_p) \cong \mathbb{Z}/n\mathbb{Z})$ is generated by Frob: $F \longrightarrow F \times \longrightarrow x^p$ Reason: $F^{Frob} = |F_p|$

Prop 4. Fix p prime. For
$$d \in \mathbb{N}_{\geq 1}$$
, let $\mathcal{P}_{d} := \{f(x) \in \mathbb{F}_{p}[x] \mid f \text{ monic ivr. deg } f = d\}$ $\mathbb{N}_{p}(d) := \# \mathcal{P}_{d}$ then

then

i)
$$x^{p^n} - x = \prod_{d \mid n} \prod_{f(\omega) \in P_d} f(x)$$

2)
$$N_p(n) = \frac{1}{n} \sum_{\alpha \in I_n} \mu(d) p^{\frac{n}{d}} = \frac{p^n}{n} + \mathcal{O}\left(\frac{p^{\frac{n}{d}}}{n}\right)$$

1)
$$x^{p^n} - x = \prod_{\alpha \in \mathbb{F}_{p^n}} (x - \alpha) = \prod_{\alpha \in \mathbb{F}_{q^n}} \prod_{f(\alpha) \in \mathcal{P}_{q}} f(x)$$

2) 1)
$$\Rightarrow$$
 $p^n = \sum_{d \mid n} N_p(d)$

$$\stackrel{\text{Midbius}}{\Rightarrow} N_p(n) = \frac{1}{n} \sum_{d \mid n} \mu(d) p^{\frac{n}{d}}$$