

#### Qualcomm Technologies International, Ltd.



## **ADK 4.3 I<sup>2</sup>S**

### **User Guide**

80-CF421-1 Rev. AA

November 6, 2017

#### Confidential and Proprietary – Qualcomm Technologies International, Ltd.

**NO PUBLIC DISCLOSURE PERMITTED:** Please report postings of this document on public servers or websites to DocCtrlAgent@qualcomm.com.

**Restricted Distribution:** Not to be distributed to anyone who is not an employee of either Qualcomm Technologies International, Ltd. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies International, Ltd.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies International, Ltd. (formerly known as Cambridge Silicon Radio Limited) is a company registered in England and Wales with a registered office at: Churchill House, Cambridge Business Park, Cowley Road, Cambridge, CB4 0WZ, United Kingdom.

Registered Number: 3665875 | VAT number: GB787433096

# **Revision history**

| Revision | Date          | Description                                                                                           |
|----------|---------------|-------------------------------------------------------------------------------------------------------|
| AA       | November 2017 | Initial release. Alternative document number CS-00406801-UG Branched from CS-00301278-UG for ADK 4.3. |

## Contents

| Revision history                                                              | 2          |
|-------------------------------------------------------------------------------|------------|
| 1 I <sup>2</sup> S operation in ADK applications - overview                   | 6          |
| 2 How to configuration I <sup>2</sup> S operation                             | 7          |
| 2.1 User-defined I <sup>2</sup> S configuration                               | 8          |
| 2.2 I <sup>2</sup> S settings                                                 | 8          |
| 2.3 I <sup>2</sup> C control data settings                                    | 9          |
| 2.3.1 External I <sup>2</sup> S device enable PIO                             | 10         |
| 2.3.2 I <sup>2</sup> C raw command data                                       | 11         |
| 2.3.3 I <sup>2</sup> C Initialization commands                                | 12         |
| 2.3.4 I <sup>2</sup> C volume commands                                        | 13         |
| 2.3.5 I <sup>2</sup> C shutdown commands                                      | 15         |
| 3 I <sup>2</sup> C command data format                                        | 16         |
| 3.1 I <sup>2</sup> C packet length                                            | 16         |
| 3.2 I <sup>2</sup> C volume offset data                                       | 16         |
| 3.3 I <sup>2</sup> S packet data                                              | 17         |
| 3.4 SSM2518 example                                                           | 18         |
| 4 I <sup>2</sup> S extra configuration - audio routing                        | 20         |
| 4.1 I <sup>2</sup> S volume control (ADK 4.x only)                            | 21         |
| 4.2 I <sup>2</sup> S input PIOs (ADK 4.x only)                                | 23         |
| 4.2.1 I <sup>2</sup> S output PIOs                                            | 24         |
| 4.3 Soundbar button translation for I <sup>2</sup> S operation (ADK 4.x only) | 25         |
| 4.4 Soundbar input select for I <sup>2</sup> S operation (ADK 4.x only)       | <b>2</b> 6 |
| 4.5 I <sup>2</sup> C PIO mapping (ADK 4.x only)                               | 26         |
| 4.6 Tone playback with I <sup>2</sup> S operation                             | 29         |
| A I <sup>2</sup> S implementation                                             | 30         |
| Document references                                                           | 31         |
| Terms and definitions                                                         | 32         |

# **Tables**

| Table 2-1: Configurable data fields                                      | 8  |
|--------------------------------------------------------------------------|----|
| Table 2-2: Example raw command data for the SSM2518                      | 11 |
| Table 2-3: Configurable data fields for I <sup>2</sup> C volume commands | 13 |
| Table 3-1: Example I <sup>2</sup> C commands                             | 16 |
| Table 3-2: I <sup>2</sup> C set volume data                              | 16 |
| Table 3-3: Set volume command with 8 volume bits                         | 17 |
| Table 3-4: Set volume command with 16 volume bits                        | 17 |
| Table 3-5: Set volume command with 8 volume bits and 16 command bits     | 17 |
| Table 3-6: I <sup>2</sup> C set sample rate command                      | 17 |
| Table 3-7: Set sample rate PS Key data                                   | 17 |
| Table 3-8: Initialization commands                                       | 18 |
| Table 3-9: Shutdown commands                                             | 19 |
| Table 3-10: Set volume commands                                          | 19 |
| Table 4-1: Audio mute and Power on PIO operation                         | 24 |

# **Figures**

| Figure 2-1: Analog devices SSM2518 plugin type                                           | 7  |
|------------------------------------------------------------------------------------------|----|
| Figure 2-2: User-defined plugin type and associated I <sup>2</sup> S configuration items | 8  |
| Figure 2-3: External device enable PIO                                                   | 10 |
| Figure 2-4: Raw command data                                                             | 11 |
| Figure 2-5: I <sup>2</sup> C initialization commands                                     | 12 |
| Figure 2-6: I <sup>2</sup> C volume commands                                             | 14 |
| Figure 2-7: I <sup>2</sup> C shutdown commands                                           | 15 |
| Figure 4-1: Configuring digital output 0                                                 | 20 |
| Figure 4-2: Configuring I <sup>2</sup> S audio on digital output 0                       | 21 |
| Figure 4-3: Volume control setting                                                       | 22 |
| Figure 4-4: Input PIO configuration                                                      | 23 |
| Figure 4-5: Output PIO configuration                                                     | 24 |
| Figure 4-6: Soundbar button translation                                                  | 25 |
| Figure 4-7: Soundbar user event configuration                                            | 26 |
| Figure 4-8: I <sup>2</sup> C SCL PIO mapping                                             | 27 |
| Figure 4-9: I <sup>2</sup> C SDA PIO mapping                                             | 28 |
| Figure 4-10: Configuration of tone playback                                              | 29 |

# 1 I<sup>2</sup>S operation in ADK applications - overview

I<sup>2</sup>S operation can be configured to suit various I<sup>2</sup>S audio devices and allows initialization as well as volume control through the I<sup>2</sup>C interface. Configuration is set using Sink Configuration Tool.

This document provides an example configuration for use with Analog Devices SSM2518 external amplifier device.

NOTE

Settings for the SSM2518 amplifier are used to explicitly show how to configure the sink application from scratch. These settings are also hard-coded in the Sink application and can be enabled by setting **Plugin Type** to **Qualcomm SSM\_2518 I2S Development** > **Board**, see How to configuration I<sup>2</sup>S operation.

## 2 How to configuration I<sup>2</sup>S operation

This section gives an annotated example for the configuration corresponding to the SSM2518 device for illustration purposes. However, if you wish to use this configuration, you can set **Plugin Type** to **Qualcomm SSM\_2518 I2S Development Board** in the Sink Configuration Tool, see Figure 2-1.

NOTE Setting Plugin Type to Qualcomm SSM\_2518 I2S Development Board implements the configuration settings described in:

- User-defined I<sup>2</sup>S configuration
- I<sup>2</sup>S settings
- I<sup>2</sup>C control data settings

It is then not necessary to set any of the other options described in this section.



Figure 2-1 Analog devices SSM2518 plugin type

### 2.1 User-defined I<sup>2</sup>S configuration

To manually configure an external I<sup>2</sup>S amplifier, set the **Plugin Type** to **Qualcomm User-defined I2C control plugin**, see Figure 2-2.



Figure 2-2 User-defined plugin type and associated I<sup>2</sup>S configuration items

### 2.2 I<sup>2</sup>S settings

Table 2-1 describes the various I<sup>2</sup>S configuration items that are available.

Table 2-1 Configurable data fields

| Field                                    | Description                                                                                                           | SSM2518 Value  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|
| Plugin Type                              | Specifies which plugin to use, currently available options are:                                                       | User-defined   |
|                                          | <ul> <li>User-defined using these configuration options</li> <li>SSM 2518 I<sup>2</sup>S development board</li> </ul> |                |
|                                          | ■ Customer developed plugin                                                                                           |                |
| Master or Slave operation                | Whether the Sink application should act as a master or slave on the I <sup>2</sup> C bus.                             | Master         |
|                                          | NOTE This implies the opposite setting for the external I <sup>2</sup> S amplifier.                                   |                |
| Left or Right Justified I <sup>2</sup> S | Specifies the format of the I <sup>2</sup> S audio data                                                               | Left Justified |
| Justified Data Delay by 1 bit            | Specifies the format of the I <sup>2</sup> S audio data                                                               | 1 Bit Delay    |

Table 2-1 Configurable data fields (cont.)

| Field                            | Description                                                                                                                                                                                                                                              | SSM2518 Value |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Bits Per Sample                  | Specifies the number of bits in each sample of the I <sup>2</sup> S audio output data.                                                                                                                                                                   | 16 bits       |
| Audio Output Re-sample Rate [Hz] | Specifies whether the music (A2DP, codecs, USB, wired audio) output needs to be resampled to a fixed rate. A value of 0 indicates that no resampling is performed. Otherwise this value specifies the required output frequency in Hz, for example 48000 | 48000         |
| Voice Re-sample Rate [Hz]        | Specifies whether the voice (cVc, tones, voice prompts) output needs to be resampled to a fixed rate. A value of 0 indicates that no resampling is performed. Otherwise this value specifies the required output frequency in Hz, for example 48000      | 48000         |
| Bit Clock Scaling Factor         | Specifies the scaling factor for the I <sup>2</sup> S bit clock. This overrides the bit clock frequency.                                                                                                                                                 | 256           |
|                                  | For example: 256 x 48000 = 12.28 MHz                                                                                                                                                                                                                     |               |
|                                  | If it is set to zero, the bit clock is calculated as follows for 16 bit 48 kHz audio:                                                                                                                                                                    |               |
|                                  | 16 x 2 (stereo) x 48000 = 1.536 MHz                                                                                                                                                                                                                      |               |
| Audio Input Resolution           | Specifies the number of bits in each sample of the I <sup>2</sup> S audio input data.                                                                                                                                                                    | 16            |

## 2.3 I<sup>2</sup>C control data settings

To use many external I<sup>2</sup>S amplifiers, some commands must be sent over an I<sup>2</sup>C interface to power up and configure the device. Similar commands are also sent to shut down the device and change other settings, such as the volume.

#### 2.3.1 External I<sup>2</sup>S device enable PIO



Figure 2-3 External device enable PIO

Figure 2-3 shows the settings page where an external I<sup>2</sup>S device can be enabled by selecting the appropriate PIO for the external device. When an H13117 reference external amplifier board is used, the External I<sup>2</sup>S device enable PIO must be configured to PIO14 to enable the external amplifier when the sink device wants to use it.

#### 2.3.2 I<sup>2</sup>C raw command data



Figure 2-4 Raw command data

Figure 2-4 shows the settings page where the raw I<sup>2</sup>C commands are entered. Table 2-2 lists some example values. The commands are represented by groups of normally 5 octets, although they are entered as one long continuous stream as they can be longer than 5 octets. A worked example showing how to arrive at these values is given in I<sup>2</sup>C command data format.

**NOTE** The values entered into the configuration tool are decimal, despite being calculated and displayed in this document as hexadecimal.

Table 2-2 Example raw command data for the SSM2518

| Packet Length | Volume Offset | I <sup>2</sup> C ID | I2CData[0] | I2CData[1] |
|---------------|---------------|---------------------|------------|------------|
| 0x03          | 0x00          | 0x68                | 0x00       | 0x04       |
| 0x03          | 0x00          | 0x68                | 0x01       | 0x00       |
| 0x03          | 0x00          | 0x68                | 0x02       | 0x00       |
| 0x03          | 0x00          | 0x68                | 0x03       | 0x00       |
| 0x03          | 0x00          | 0x68                | 0x05       | 0x40       |
| 0x03          | 0x00          | 0x68                | 0x06       | 0x40       |
| 0x03          | 0x00          | 0x68                | 0x07       | 0x00       |
| 0x03          | 0x00          | 0x68                | 0x09       | 0x98       |
| 0x03          | 0x00          | 0x68                | 0x07       | 0x01       |

Table 2-2 Example raw command data for the SSM2518 (cont.)

| Packet Length | Volume Offset | I <sup>2</sup> C ID | I2CData[0] | I2CData[1] |
|---------------|---------------|---------------------|------------|------------|
| 0x03          | 0x01          | 0x68                | 0x05       | 0x40       |
| 0x03          | 0x01          | 0x68                | 0x06       | 0x40       |

#### 2.3.3 I<sup>2</sup>C Initialization commands

Figure 2-5 shows how the number of I<sup>2</sup>C initialization commands is configured. The initialization commands are sent every time the external I<sup>2</sup>S amplifier is turned on. It is assumed that initialization commands begin from offset 0 in the raw command data. The example settings for the SSM2518 use 8 initialization commands, each 5 octets in length, for a total of 40 octets.



Figure 2-5 I<sup>2</sup>C initialization commands

#### 2.3.4 I<sup>2</sup>C volume commands

Figure 2-6 shows how to configure the number of I<sup>2</sup>C Volume commands, and the offset in the raw command data at which they begin. Other parameters include the ability to set the number of bits used to represent the volume, and the minimum and maximum value to send. The volume is scaled automatically to this range. Table 2-3 describes the configurable fields and their example values for the SSM2518.

Table 2-3 Configurable data fields for I<sup>2</sup>C volume commands

| Field                                         | Description                                                                                                                                | SSM2518 Value |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Number of I <sup>2</sup> C Volume<br>Commands | Specifies the number of individual volume commands that are sent to the I <sup>2</sup> S capable device every time a volume change is made | 2             |
| Volume Commands Offset                        | Specifies the offset, in octets, of the first I <sup>2</sup> C volume command in the raw command data                                      | 45            |
| Volume Number of Bits                         | Specifies the number of bits of the volume value in the I <sup>2</sup> C command                                                           | 8             |
| Volume Range Max                              | Specifies the maximum volume that will be sent to the I <sup>2</sup> S device to indicate maximum output level                             | 0             |
| Volume range min                              | Specifies the minimum volume level that will be sent to the I <sup>2</sup> S device to indicate minimum output level                       | 255           |



Figure 2-6 I<sup>2</sup>C volume commands

NOTE  $I^2C$  volume commands are only supported in ADK 4.x. In ADK 6, all volume scaling is performed digitally by the DSP and there is no support for hardware volume control, and the  $I^2C$  volume commands are never sent (even if configured).

#### 2.3.5 I<sup>2</sup>C shutdown commands

Figure 2-7 shows how to configure the number of I<sup>2</sup>C shutdown commands, and the shutdown command offset in the raw command data. For the SSM2518, there is a single 5-octet shutdown command at an offset of 40 in the raw command data.



Figure 2-7 I<sup>2</sup>C shutdown commands

## 3 I<sup>2</sup>C command data format

The raw data structure of the I<sup>2</sup>C commands sent to initialize, configure, and shutdown an external I<sup>2</sup>S amplifier is described in:

- I<sup>2</sup>C packet length
- I<sup>2</sup>C volume offset data
- I<sup>2</sup>S packet data
- SSM2518 example

Table 3-1 shows some example I<sup>2</sup>C commands from the earlier SSM2518 data for reference.

Table 3-1 Example I<sup>2</sup>C commands

| Packet Length | Volume Offset | I <sup>2</sup> C ID | I2CData[0] | I2CData[1] |
|---------------|---------------|---------------------|------------|------------|
| 0x03          | 0x00          | 0x68                | 0x00       | 0x04       |
| 0x03          | 0x00          | 0x68                | 0x01       | 0x00       |
| 0x03          | 0x00          | 0x68                | 0x02       | 0x00       |

### 3.1 I<sup>2</sup>C packet length

This is the length of the packet in octets. For example, an  $I^2C$  initialization command packet of 0x68, 0x00, 0x04 has a packet length of 3.

NOTE

Packet Length and Volume Offset are not included in the Packet Length calculation.

### 3.2 I<sup>2</sup>C volume offset data

This word is only applicable to data packets that set the volume/audio level output for the left/right channels. Its value is ignored for non-volume related packets.

Table 3-2 describes an example I<sup>2</sup>C volume packet.

Table 3-2 I<sup>2</sup>C set volume data

| I <sup>2</sup> C ID | Set Volume Command | Volume Level |
|---------------------|--------------------|--------------|
| 0x68                | 0x05               | 0x??         |

The volume level offset for the example volume packet as described in Table 3-2 would be 1 since the first data byte is always the  $I^2C$  device ID. Data byte[0] is  $0 \times 0.5$  (set volume command). Data byte[1] is the actual volume level.

The volume level is not necessarily 8 bits, its size is configured in the Volume section of the I<sup>2</sup>C control data settings, see I<sup>2</sup>C volume commands. If the volume level size is larger than 1 byte then the volume level offset indicates the start of the data to be replaced with the current sink or subwoofer volume level.

Table 3-3 Set volume command with 8 volume bits

| Packet Length | Volume Offset | I <sup>2</sup> C ID | Set Volume<br>Command | Volume Level |
|---------------|---------------|---------------------|-----------------------|--------------|
| 0x03          | 0x01          | 0x68                | 0x05                  | 0x40         |

Table 3-4 Set volume command with 16 volume bits

| Packet Length | Volume Offset | I <sup>2</sup> C ID | Set Volume<br>Command | Volume<br>Level[0] | Volume Level<br>[1] |
|---------------|---------------|---------------------|-----------------------|--------------------|---------------------|
| 0x04          | 0x01          | 0x68                | 0x05                  | 0xff               | 0xff                |

Table 3-5 Set volume command with 8 volume bits and 16 command bits

| Packet Length | Volume Offset | I <sup>2</sup> C ID | Set Volume<br>Command[0] | Set Volume<br>Command[1] | Volume Level |  |
|---------------|---------------|---------------------|--------------------------|--------------------------|--------------|--|
| 0x04          | 0x02          | 0x69                | 0x01                     | 0x06                     | 0x40         |  |

### 3.3 I<sup>2</sup>S packet data

The packet data is an array of  $I^2C$  command bytes whose length is specified by the Packet Length value. The first octet is always the  $I^2C$  ID, that is, the address of the external chip on the  $I^2C$  bus. This is usually given in the manufacturer's data sheet, though many chips have chip-select lines which allow some control over this address. The remaining octets comprise the data actually sent to the device, often a command-value pair.

Table 3-6 describes an example I<sup>2</sup>C initialization command.

Table 3-6 I<sup>2</sup>C set sample rate command

| I <sup>2</sup> C ID | Set Sample Rate | Automatic Sample Rate Control |
|---------------------|-----------------|-------------------------------|
| 0x68                | 0x01            | 0x01                          |

The complete packet and header information would comprise five words and be as described in Table 3-7.

Table 3-7 Set sample rate PS Key data

| Packet Length | Volume Offset | I <sup>2</sup> C ID | Set Sample Rate | Automatic Sample<br>Rate Control |
|---------------|---------------|---------------------|-----------------|----------------------------------|
| 0x03          | 0x00          | 0x68                | 0x01            | 0x01                             |

### **3.4** SSM2518 example

The raw command data is split into tables of 5 octet chunks, as all the commands used in this example are 5 octets long. The commands are also split into separate tables for initialization, shutdown, and volume commands.

The number of initialization, shutdown, and volume commands are configured using the relevant settings page in the Sink Configuration Tool, see I<sup>2</sup>C control data settings, as are the volume and shutdown command offsets in the command data (initialization commands are assumed to start at offset 0).

Table 3-8 Initialization commands

| Data           | SSM2518 Register Name                | Description                                                                        |
|----------------|--------------------------------------|------------------------------------------------------------------------------------|
| 03 00 68 00 04 | Reset_power_control                  | SPWN = 0 for normal operation                                                      |
|                |                                      | MCS = 0010 256 x fs (Master clock select, value must match Word 10 in PSKEY_USR35) |
|                |                                      | NO_BCLK = 0 for BCLK pin used as bit clock source                                  |
|                |                                      | RESERVED = 0                                                                       |
|                |                                      | S_RST = 0 for normal operation                                                     |
| 03 00 68 01 00 | Edge_clock_control                   | ASR = 0 Automatic detection enabled                                                |
|                |                                      | EDGE = 0 No edge rate control                                                      |
|                |                                      | RESERVED = 0                                                                       |
| 03 00 68 02 00 | Serial_interface_sample_rate_control | FS = 0 (only required if ASR = 1 in register 0x01)                                 |
|                |                                      | SAI = 0 I2S left justified, or right justified stereo depending on SDATA_FMT)      |
|                |                                      | SDATA_FMT = 0 l <sup>2</sup> S standard, data is delayed by one BLCK cycle         |
|                |                                      | RESERVED = 0                                                                       |
| 03 00 68 03 00 | Serial_interface_control             | RESERVED = 0                                                                       |
|                |                                      | BLCK_EDGE = 0 Rising BLCK edge used                                                |
|                |                                      | SLOT_WIDTH = 00 32 BLCK cycles per slot                                            |
|                |                                      | SAI_MSB = 0 MSB first                                                              |
|                |                                      | LRCLK_POL = 0 Rising edge (normal)                                                 |
|                |                                      | LRCLK_MODE = 0 50% duty cycle                                                      |
|                |                                      | BCLK_GEN = 0 Bit clock from BCLK pin is used                                       |
| 03 00 68 05 40 | Left_volume_control                  | Set left volume to 0 dB                                                            |
| 03 00 68 06 40 | Right_volume_control                 | Set right volume to 0 dB                                                           |

Table 3-8 Initialization commands (cont.)

| Data           | SSM2518 Register Name | Description                                          |
|----------------|-----------------------|------------------------------------------------------|
| 03 00 68 07 00 | Volume_mute_control   | M_MUTE = 0 Normal operation                          |
|                |                       | L_MUTE = 0 Normal operation                          |
|                |                       | R_MUTE = 0 Normal operation                          |
|                |                       | VOL_LINK = 0 Normal operation                        |
|                |                       | DEEMP_EN = 0 De-emphasis disabled (normal operation) |
|                |                       | ANA_GAIN = 0 Matched to 3.6 V supply                 |
|                |                       | RESERVED = 0                                         |
|                |                       | AMUTE = Automute enabled                             |
| 03 00 68 09 98 | Power_fault_control   | APWDN_EN = 0 Automatic power down disabled           |
|                |                       | L_PWDN = 0 Normal operation                          |
|                |                       | R_PWDN = 0 Normal operation                          |
|                |                       | DAC_LPM = 1 Low power operation                      |
|                |                       | AMP_LPM = 1 Low power operation                      |
|                |                       | RESERVED = 0                                         |
|                |                       | AR_TIME = 10 40 ms autorecovery delay                |

Table 3-9 Shutdown commands

| Data           | SSM2518 Register Name | Description                                          |
|----------------|-----------------------|------------------------------------------------------|
| 03 00 68 07 01 | Volume_mute_control   | M_MUTE = 1 Master Mute                               |
|                |                       | L_MUTE = 0 Normal operation                          |
|                |                       | R_MUTE = 0 Normal operation                          |
|                |                       | VOL_LINK = 0 Normal operation                        |
|                |                       | DEEMP_EN = 0 De-emphasis disabled (normal operation) |
|                |                       | ANA_GAIN = 0 Matched to 3.6 V supply                 |
|                |                       | RESERVED = 0                                         |
|                |                       | AMUTE = Automute enabled                             |

Table 3-10 Set volume commands

| Data           | SSM2518 Register Name | Description                                  |
|----------------|-----------------------|----------------------------------------------|
| 03 01 68 05 40 | Left_volume_control   | Set left volume command (last byte ignored)  |
| 03 01 68 06 40 | Right_volume_control  | Set right volume command (last byte ignored) |

# 4 I<sup>2</sup>S extra configuration - audio routing

I<sup>2</sup>S output is enabled using the Sink Configuration Tool by modifying **Configuration Set > Audio > Routing > Multi-channel Plugin** so that the **Digital Audio Interface Output 0** is enabled and configured to route the primary DSP output to I<sup>2</sup>S. When enabled, all audio output is redirected to an I<sup>2</sup>S capable device, including tones and voice prompts, see Figure 4-1 and Figure 4-2.

When CSR8670 and CSR8675 run Soundbar application, the Power down mode for the external audio amplifier stage can be managed using configurable PIOs depending on the hardware design.

For the Soundbar application to drive PIOs to switch off the external amplifier when going into Standby mode (that is, Limbo state) and switch it on while powering on, the configuration item **Amplifier Power Down by PIO** must be enabled. For detailed information about this configuration item, refer to the *ADK Sink Application User Guide*.

The PIOs used to generate the correct logic for amplifier Power and Mute signals are then configured as in I<sup>2</sup>S output PIOs.



Figure 4-1 Configuring digital output 0



Figure 4-2 Configuring I<sup>2</sup>S audio on digital output 0

### 4.1 I<sup>2</sup>S volume control (ADK 4.x only)

**Volume Scaling Method** must be configured to **Hardware** for volume control commands to work using the I<sup>2</sup>C interface. This is because the raw I<sup>2</sup>S digital audio contains no volume data. Therefore, I<sup>2</sup>C commands must be sent to the I<sup>2</sup>S amplifier to configure the final output volume.

**Volume Scaling Method** may be configured to **DSP** to use digital gain rather than I<sup>2</sup>C commands to control the I<sup>2</sup>S volume. The **Hybrid** option is not supported for I<sup>2</sup>S outputs.



Figure 4-3 Volume control setting

NOTE

I<sup>2</sup>C volume commands are only supported in ADK 4.x. In ADK 6, all volume scaling is performed digitally by the DSP and there is no support for hardware volume control and the I<sup>2</sup>C volume commands are never sent (even if configured).

### 4.2 I<sup>2</sup>S input PIOs (ADK 4.x only)

To use the I<sup>2</sup>S amplifier with CSR8670, the **SPDIF Input PIO** must be configured to **Disable**. With CSR8675 the **SPDIF Input PIO** may be enabled along with the I<sup>2</sup>S amplifier, provided the **SPDIF Output PIO** is configured as described in I<sup>2</sup>S output PIOs.



Figure 4-4 Input PIO configuration

### 4.2.1 I<sup>2</sup>S output PIOs

To use the  $I^2S$  amplifier with CSR8675, the **SPDIF Output PIO** must be configured to **N/A**, see Figure 4-5.



Figure 4-5 Output PIO configuration

Power up and power down operations for an external amplifier can be managed using PIOs. A Power pin may be available on the external amplifier which provides a hardware shut down option when required, for example, when the system goes into Stand-by mode.

A Mute pin may also be available on some external amplifiers. For the Soundbar application, the Mute pin is also driven by the **Audio Mute** PIO before the **Power On** PIO to minimize pops and clicks during power up and power down events. The **Audio Mute** PIO must be configured to **N/A** when a reference external amplifier board, that is H13117, is in use.

Table 4-1 shows the sequence of PIO activity when **Audio Mute** and **Power On** PIOs are configured to values other than **N/A**.

Table 4-1 Audio mute and Power on PIO operation

| Action                           | Sequence of PIO Activity |                  |                    |
|----------------------------------|--------------------------|------------------|--------------------|
| Action                           | 1 - Audio Mute PIO       | 2 - Power On PIO | 3 - Audio Mute PIO |
| Power Off (Go into Standby Mode) | Goes High                | Goes Low         | Goes Low           |
| Power On                         | Goes High                | Goes High        | Goes Low           |

### 4.3 Soundbar button translation for I<sup>2</sup>S operation (ADK 4.x only)

The default Soundbar configuration requires a change to the button translation table for **Input 10**. This is because the default configuration uses **PIO5**, which is also used by the I2S 1 CLK line.



Figure 4-6 Soundbar button translation

### 4.4 Soundbar input select for I<sup>2</sup>S operation (ADK 4.x only)

To hear streaming audio from a connected AG on the Soundbar the input select must be changed. Press the **SENSE\_3** button to choose **Select Audio Source AG1**, see Figure 4-7.



Figure 4-7 Soundbar user event configuration

### 4.5 I<sup>2</sup>C PIO mapping (ADK 4.x only)

These steps are not required when using ADK 6.x.

When using ADK 4.x, PSTool must be used to configure the **I2C SCL PIO Mapping** and the **I2C SDA PIO Mapping**, see Figure 4-8 and Figure 4-9.



Figure 4-8 I<sup>2</sup>C SCL PIO mapping



Figure 4-9 I<sup>2</sup>C SDA PIO mapping

### 4.6 Tone playback with I<sup>2</sup>S operation

QTIL recommends that resampling is always used with I<sup>2</sup>S. This can be enabled by modifying Configuration Set > Audio > Routing > Audio Plugin Features to enable Force Re-sampling of Tones, see Figure 4-10



Figure 4-10 Configuration of tone playback

# **A** I<sup>2</sup>S implementation

#### Capabilities of I<sup>2</sup>S implementation

I<sup>2</sup>S Master and Slave operation is supported.

#### Limitations of I<sup>2</sup>S implementation

The QTIL I<sup>2</sup>S implementation cannot generate a separate master clock. However, the bit clock scaling can be used to provide a faster bit clock, which can be used as a master clock. The bit clock is generated by dividing down the 48 MHz chip clock so cannot be guaranteed to have a constant mark/space ratio.

## **Document references**

| Document                              | Reference                 |  |
|---------------------------------------|---------------------------|--|
| Analog Devices SSM2518 Data Sheet     | http://www.analog.com     |  |
| ADK Audio Sink Application User Guide | 80-CT439-1/CS-00236868-UG |  |

# Terms and definitions

| Term             | Definition                                                                               |
|------------------|------------------------------------------------------------------------------------------|
| A2DP             | Advanced Audio Distribution Profile                                                      |
| AD               | Analog Devices                                                                           |
| ADK              | Audio or Application Development Kit                                                     |
| Bluetooth        | Set of technologies providing audio and data transfer over short-range radio connections |
| cVc              | Clear Voice Clarity                                                                      |
| I <sup>2</sup> C | Inter-Integrated Circuit (multimaster serial single-ended computer bus)                  |
| I <sup>2</sup> S | Integrated Interchip Sound                                                               |
| ID               | IDentifier                                                                               |
| MSB              | Most Significant Bit                                                                     |
| PIO              | Programmable Input/Output                                                                |
| PS               | Persistent Store                                                                         |
| QTIL             | Qualcomm Technologies International, Ltd.                                                |
| ROM              | Read Only Memory                                                                         |
| SCO              | Synchronous Connection-Oriented                                                          |
| SDA              | Serial Data (line)                                                                       |
| USB              | Universal Serial Bus                                                                     |