Mathematische Methoder der Physik I Übungsserie 12

Dr. Agnes Sambale agnes.sambale@uni-jena.de

Aufgabe 1 Wegintegrale berechnen

Berechnen Sie das Kurvenintegral für das Vektorfeld ${\cal F}$ und die im Folgenden gegebenen Kurven.

$$F \colon \mathbb{R}^2 \to \mathbb{R}^2 \ , \qquad F(x,y) \coloneqq (x^2 + y^2)\vec{\imath} + 4xy\vec{\jmath}$$

- (i) $2y = x^2$
- (ii) y = x
- (iii) test

Aufgabe 2 Konservative Vektorfelder

- (a) Überprüfen Sie, welche der folgenden Vektorfelder $F\colon \mathbb{R}^3 \to \mathbb{R}^3$ konservativ sind.
 - (i) $F(x, y, z) := q(v \times B)$
 - (ii) $F(x, y, z) := 2y^2 z^3 \vec{i} + 4xyz^3 \vec{j} + 6xy^2 z^2 \vec{k}$
 - (iii) $F(x, y, z) := 2(y + x)\vec{i} + 2x\vec{j}$
 - (iv) $F(x, y, z) := x^2 \cos y\vec{\imath} + 2x \sin y\vec{\jmath} + z^2\vec{k}$
- (b) Berechnen Sie das Wegintegral für das folgende Vektorfeld F und den Weg $C=C_1+C_2.$

$$F \colon \mathbb{R}^2 \to \mathbb{R}^2 \ , \qquad F(x,y) = 2(y+x)\vec{\imath} + 2x\vec{\jmath}$$

 C_1 verläuft vom Punkt (0,0) zum Punkt (1,1) und erfüllt $y=x^2$. C_2 verläuft vom Punkt (1,1) zum Punkt (0,0) und erfüllt $y=x^4$. Vergleichen Sie das Ergebnis mit Ihren Erwartungen und begründen Sie es.

Version: 28. Mai 2018

Wintersemester 17/18

Aufgabe 3 Magnetfeld eines Leiters

Gegeben sei das folgende Vektorfeld.

$$F \colon \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \ , \qquad F(x,y) \coloneqq \frac{-y\vec{\imath}}{x^2 + y^2} + \frac{x\vec{\jmath}}{x^2 + y^2}$$

- (a) Prüfen Sie, ob die Integrationsbedingungen erfüllt sind.
- (b) Berechnen Sie das Kurvenintegral für die beiden folgenden Integrationswege und skizzieren Sie die zugehörigen Kurven.

(i)
$$r: [0,\pi] \to \mathbb{R}^2$$
, $r(\varphi) := \vec{\imath} \cos \varphi + \vec{\jmath} \sin \varphi$

(ii)
$$r: [0, \pi] \to \mathbb{R}^2$$
, $r(\varphi) := \vec{\imath} \cos \varphi - \vec{\jmath} \sin \varphi$

(c) Vergleichen Sie die Integrationswege und finden Sie heraus, ob das Vektorfeld konservativ ist.