Lecture 1 : Sequences

Notation: Natural numbers IN = {1,2,3,...}

Real numbers IR

Definition A sequence is an infinite sequence of reals $a_n \in \mathbb{R}$, where $n \in \mathbb{N}$.

There are many different notations: $(a_n)_{n\in\mathbb{N}} = (a_n)_{n=1}^{\infty}$ $= (a_1, a_2, a_3, ...)$

For our purposes it is convenient to interpret a sequence as a function:

f: IN - R, f(n) = an, n=1,2,3, ...

This means that it is possible to visualise the sequence on a graph of a function.

Notice that indexing can start with any integer if so desired.

Sequences are natural, they are produced for instance by observations (idealised) or algorithms.

Example Fibonacci

fo = 0, f1 = 1, fn+2 = fn + fn+1

This was originally a simple population model.

Limit of a Sequence

Definition A sequence (an) converges to a limit $\alpha \in \mathbb{R}$, if $|\alpha_n - \alpha| \longrightarrow 0$.

Formel: (E,S) - version

For every $\varepsilon > 0$ there exists an index $n = n(\varepsilon)$, such that : $|\alpha_n - \alpha| < \varepsilon$ for every $n \ge n(\varepsilon)$.

We write: lim an = a.

Example $\lim_{n\to\infty}\frac{1}{n^2}=0$

It follows immediately: $\left|\frac{1}{n^2} - 0\right| = \frac{1}{n^2} \angle E$, if $n > \frac{1}{\sqrt{E}}$.

We can now choose $n(\epsilon)$ as the next integer following $\frac{1}{\sqrt{\epsilon}}$, that is, $n(\epsilon) = \lceil \frac{1}{\sqrt{\epsilon}} \rceil$, where $\lceil \cdot \rceil$ is the ceiling - function

With this construction E>0 can be taken to be arbitrarily small.

Existence of e

Axiom of Real Numbers: Every increasing and bounded (from above) sequence converges.

In other words: If ann ≥ an and an £ M (constant), for all new, then the limit exists

$$a = \lim_{n \to \infty} a_n$$
.

Euler's number,
$$e$$
: $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = ?$

Our task is to show that the limit exists.

$$(1+\frac{1}{n})^{n} = \sum_{k=0}^{n} \frac{n!}{k! (n-k)! n^{k}}$$

$$= \sum_{k=0}^{n} \frac{n!}{k! (n-k)! n^{k}}$$

$$= \sum_{k=0}^{n} \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}{k! n \cdot n \cdot \dots \cdot n}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)$$

Increasing, since $\left(1+\frac{1}{n+1}\right)^{n+1} > \left(1+\frac{1}{n}\right)^n$.

Condider

$$\frac{(n+1) \cdot n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{(n+1)^k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k}$$

=> (n+1) nk - (n+1)k > 0 always.

Let us denote:

$$M_n = \left(1 + \frac{1}{n}\right)^n$$
 $M_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$

We should be able to show that unas / un 21.

$$\frac{u_{n+1}}{u_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \left(\frac{1 + \frac{1}{n+1}}{1 + \frac{1}{n}}\right)^n \left(1 + \frac{1}{n+1}\right)$$

$$(*) = \frac{n(n+2)}{(n+1)^2} = 1 - \frac{1}{(n+1)^2}$$

Insert and use Bernoulli: For all -1 < X ER, (1+x) 2 1+nx.

$$\geq \left(1 - \frac{n}{(n+1)^2}\right) \left(1 + \frac{1}{n+1}\right) = 1 + \frac{1}{(n+1)^3} \geq 1$$

This is just one way to show this property. We shall return to this later.

Therefore, the limit exists:
$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
.

Functions

Definition Function f is a mapping from a domain to its range.

f: A -> B

Domain: A Range: B

Often: fa = {f(a) | a ∈ A } CB is the image.

Here we focus on functions of a single real variable; AGR

Let us extend the discussion on sequences to functions.

Definition Continuity

Let ACR; f: A→R

The function f is continuous at point $a \in A$, if:

Always when $a_n \in A$ and $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} f(a_n) = f(a)$.

If f is continuous at every point a EA, then we say that f is continuous on the set A.

Given the definition above, it is clear that the concept of a limit of a function merits some further attention.

Let $f: A \to \mathbb{R}$ and $X_o \in \mathbb{R}$ such that a sequence (an) exists, where $a_n \in A \setminus \{x_o\}$ for all n and further $\lim_{n \to \infty} a_n = X_o$. Is this overly complicated? Let A be an open interval and X_o its end point. A function can have a limit $\lim_{x \to X_o} f(x)$ even if the value $f(X_o)$ is defined.

Definition Limit

Let f be an above. The limit exists, if $\lim_{n\to\infty} f(a_n) = L \text{ always when } a_n \in A \setminus \{x_o\}$ and $\lim_{n\to\infty} a_n = x_o$.

Notation: $\lim_{x\to x_0} f(x) = L$, where L is the limit.

Two important limits in this course are the derivative and the definite integral.

Comment on the abstract definitions: Why are we stating "obvious" facts in such a complicated way?

Good question!

When the analysis moves to higher dimensions the geometric complexity increases dramatically and there abstract definitions become absolutely necessary.