

Numerical Simulations of Dusty Colliding Wind Binaries

Submitted in accordance with the requirements for the degree of $Doctor\ of\ Philosophy$

July, 2021

This thesis is dedicated to my Mum, without her help these past 26 years, there's no way I would have written this.

I'll pay you back I promise!

Acknowledgements

Thanks everyone.

Abstract

Contents

1	Introduction and Motivation	1
2	Background	3
3	Numerical Simulation	4
4	Paper 1	5
5	Paper 2	6
6	Final Notes and Thoughts	7
\mathbf{R}_{i}	eferences	8

LIST OF FIGURES

LIST OF TABLES

Abbreviations

CWB Colliding Wind Binary

WC WR Carbon Phase

 WCd Dust forming WC star

WN WR Nitrogen Phase

WO WR Oxygen Phase

WR Wolf-Rayet

Common Symbols

 η Wind momentum ratio

 χ Cooling parameter

 $\Lambda(T)$ Cooling function

a Grain radius

z Dust-to-gas mass ratio

 ${\rm M}_{\odot}$ Solar mass $1.988 \times 10^{33}~{\rm g}$

 L_{\odot} Solar Luminosity $3.828 \times 10^{33} \ {\rm erg \, s^{-1}}$

CHAPTER 1

Introduction and Motivation

Lamberts et al. [2012]

Background

Numerical Simulation

Paper 1

Paper 2

Final Notes and Thoughts

REFERENCES

Lamberts, A., Dubus, G., Fromang, S., and Lesur, G. (2012). Colliding wind binaries and γ -ray binaries: Relativistic version of the RAMSES code. pages 406–409.