Feuille d'exercices : vecteur directeur et équation cartésienne

[Raisonner.]

Dans chaque cas, déterminer en justifiant si le point A appartient à la droite d.

1.
$$d: x+4y-20=0$$
 et A(-4;9)

2.
$$d: 2x-3y-1=0$$
 et A(12; 5)

3.
$$d: \frac{-2}{3}x + 2y - \frac{2}{3} = 0$$
 et $A(1; \frac{2}{3})$

4.
$$d: \frac{-4}{5}x - \frac{1}{2}y - 1 = 0$$
 et $A(\frac{1}{2}; 3)$

45 [Calculer.]

Calculer l'ordonnée du point A pour qu'il appartienne à la droite d:

1. A a pour abscisse
$$-5$$
 et d a pour équation $3x-y-2=0$.

2. A a pour abscisse
$$\frac{1}{2}$$
 et d a pour équation $7x+y-1=0$.

3. A a pour abscisse
$$\frac{4}{3}$$
 et d a pour équation $\frac{1}{2}x + \frac{1}{3}y + \frac{1}{4} = 0$.

46 [Calculer.]

Calculer l'abscisse du point A pour qu'il appartienne à la droite d:

1. A a pour ordonnée
$$\frac{-3}{2}$$
 et d a pour équation $3x-y-2=0$.

2. A a pour ordonnée
$$\frac{1}{2}$$
 et $d: -7x - y + 1 = 0$.

[Calculer.]

Calculer l'abscisse du point A pour qu'il appartienne à la droite d:

1. A a pour ordonnée 4 et
$$d$$
 a pour équation
$$\frac{1}{3}x + \frac{2}{5}y - 1 = 0.$$

2. A a pour ordonnée
$$\sqrt{2}$$
 et d a pour équation
$$\frac{3}{\sqrt{2}}x + 5y - \sqrt{2} = 0$$
.

48 [Chercher.] O-O-O

Soit d une droite passant par le point A et de vecteur directeur \vec{u} .

Dans chacun des cas suivants, déterminer une équation cartésienne de la droite d:

1. A(0; 0) et
$$\vec{u} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

2. A(1;2) et
$$\vec{u} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

[Représenter.]

Représenter dans le repère chacune des droites suivantes dont on donne une équation cartésienne :

1.
$$d_1: x+y+1=0$$

4.
$$d_{a}: 3x-2y+3=0$$

2.
$$d_2: 2x - y - 2 = 0$$
 5. $d_5: 2x + 3y - 4 = 0$

5.
$$d_{s}: 2x+3y-4=0$$

3.
$$d_3: -x+2y+3=0$$

49 [Calculer.]

Dans chacun des cas suivants, déterminer une équation cartésienne de la droite (AB) :

2.
$$A(2;1)$$
 et $B(-1;6)$

3.
$$A(\frac{2}{3}; -\frac{1}{2})$$
 et $B(-\frac{1}{3}; \frac{3}{2})$

4.
$$A(-\sqrt{2}; -2\sqrt{3})$$
 et $B(3\sqrt{2}; \sqrt{3})$

50 [Calculer.]

Dans chacun des cas suivants, déterminer une équation cartésienne de la droite d parallèle à la droite (AB) et passant par le point C:

1.
$$A(1;0)$$
, $B(0;1)$ et $C(3;-2)$

2.
$$A(1;-3)$$
, $B(2;1)$ et $C(1;1)$

3.
$$A(-2;-2)$$
, $B(1;-5)$ et $C(-6;2)$

4.
$$A(-5; 1)$$
, $B(-1; -1)$ et $C(-2; -2)$

52 VRAI / FAUX [Raisonner.]

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse en justifiant la réponse.

1. « L'ensemble des points du plan de coordonnées (x; y) tels que 2x(y+1)-(x+1)(2y+1)=2 est une droite. »

2. « Le vecteur $\overrightarrow{v} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ est un vecteur directeur de la droite d d'équation cartésienne 6x+9y-1=0.»

3. « Les droites d'équation cartésienne 4x + 8y - 3 = 0et -5x+10y+7=0 sont parallèles. »

Soit $(0; \vec{i}, \vec{j})$ un repère orthonormé du plan.

On considère les points A(1;2), B(3;1) et C(-2;3).

1. Calculer la longueur AB arrondie au dixième.

2. Faire une figure avec les données de l'énoncé puis :

· construire le point C', image du point C par la translation de vecteur \overrightarrow{AB} ;

• placer le point M tel que $\overrightarrow{OM} = \overrightarrow{AB}$;

• tracer la droite d de vecteur directeur \overrightarrow{AB} passant

3. Citer un second vecteur directeur de la droite d et lire ses coordonnées.

4. Déterminer une équation cartésienne de la droite d.

5. Démontrer que la droite d' de vecteur directeur \overrightarrow{AB} passant par C' est parallèle à d.

6. Déterminer l'équation réduite de la droite d'.