Modeling Wildlife Populations: Insights from a Predator-Prey Simulation Study

Nicholas Bigelow

2023-03-17

Motivation

- Reintroduction of wolves has shifted ecosystem dynamics.
- Studying the population dynamics between elk and wolves in the Yellowstone ecosystem can provide valuable insights.
- Conclusions made can help inform conservation and management strategies for other ecosystems.
- Forecasts can help ensure populations are behaving as expected.

Dynamics of the Yellowstone Ecosystem

- Species of interest: Elk and Wolves
- Specifically northern range herds

Data

- Obtained from National Park Service Website
 - Elk data: https://www.nps.gov/yell/learn/nature/elk.htm
 - Wolf data: https://www.nps.gov/yell/learn/nature/upload/FINAL-FOR-APPROVAL-WOLF-REPORT-2020_508R.pdf

Lotka-Volterra Equations

Lotka-Volterra Equations: Introduction

- Nonlinear differential equations which describe the fluctuating population dynamics of predator and prey
- Extension of Logistic Growth Model
- $\mathbf{x}(t)$ represents the population size of prey at time t
- lack y(t) represents the population size of predators at time t

Lotka-Volterra Equations: Prey equation

- Prey equation: $\frac{dx}{dt} = \alpha x \beta xy$
 - Represents the instantaneous growth rate
 - x is the population of prey (elk)
 - y is the population of predators (wolves)
 - lacktriangle Where lpha is the exponential growth rate of the prey
 - Where β is the predation rate.
- Assumptions
 - The prey population has an unlimited supply of resources.
 - Exponential growth in absence of predators. No carrying capacity.

Elk Populations in the Absense of predators

Lotka-Volterra Equations: Predator equation

- Predator equation: $\frac{dy}{dt} = -\gamma y + \delta xy$
 - Represents the instantaneous growth rate
 - x is the population of prey (elk).
 - y is the population of predators (wolves).
 - \blacksquare Where γ is the shrinkage rate of the predator population.
 - \blacksquare Where δ is the predator growth rate as a factor of the product of populations.
- Assumptions
 - The food supply of the predator population depends entirely on the size of the prey population.
 - The rate of predation on the prey is assumed to be proportional to the rate at which the predators and the prey meet.

Parameter Estimation

Potential Approaches

$$\frac{dx}{dt} = \alpha x - \beta xy$$

$$\frac{dx}{dt} = -\gamma y + \delta xy$$

- Need to estimate: $\alpha, \beta, \gamma, \delta$
- Nonlinear Least Squares
- 2 Bayesian Approximation

Bayesian Approximation: Quick Example

- Example
 - Likelihood: $p(y_1, ..., y_n | \lambda) \sim \text{Poisson}(\lambda)$
 - Prior: $p(\lambda) \sim \text{Gamma}(\alpha_0, \beta_0)$
 - Posterior: $p(\lambda|y_1,..,y_n) = \frac{p(y_1,...,y_n|\lambda)*p(\lambda)}{p(y_1,...,y_n)}$
- Our case
 - $p(\alpha,\beta,\gamma,\delta|y_{[1,k]},...,y_{[n,k]})$

Bayesian Approximation: Likelihood & Priors

- Likelihood:
 - $y_{n,k} \sim \text{lognormal}(log(z_{n,k}), \sigma_k)$
- Priors
 - \bullet $\alpha, \gamma \sim \text{Beta}(1,1)$
 - lacksquare $eta, \delta \sim \mathsf{Beta}(1,5)$

Prior Predictive Checks

Posterior Convergence Check

Checking Model Fit: Elk

Checking Model Fit: Wolves

Forecasts & Inference

Estimated Parameters

	Estimate	S.E.	Lower 95% CI	Upper 95% CI
α	0.192	0.053	0.101	0.31
eta	0.004	0.001	0.002	0.007
γ	0.276	0.051	0.188	0.387
δ	0	0	0	0
$\sigma_{\it elk}$	0.18	0.032	0.128	0.253
σ_{wolves}	0.29	0.051	0.212	0.405

Parameter Estimation: Visualization

Joint Relationship

Forecasts: Elk

Forecasts: Wolves

Conclusions

- Expect the elk population to peak in 2027 2029.
- Expect the wolf population to peak in 2031 2033.
- Expect the intrinsic growth rate of elk to be between 0.10 to 0.32
 - Estimated to be 0.20.
- Positive β coefficient.
- Expected intrinsic shrinkage rate of wolves to be between 0.18 to 0.38
 - Estimated to be 0.27.
- $\delta < \beta$

Limitations & Considerations

- Limited to only elk & wolf populations.
- How would our estimates vary if we used uninformative priors?
- Instead of considering elk_missing as a random variable we could condition it on the number of wolves.
- Instead of the continuous lognormal likelihood we could try the discrete possion likelihood.