Poster ID: TUE-AM-324

Bridging the Gap between Model Explanations in Partially Annotated Multi-label Classification

Youngwook Kim, Jae Myung Kim, Jieun Jeong, Cordelia Schmid, Zeynep Akata, Jungwoo Lee

[a]: full annotation

[b]: partial annotation

[c]: single positive label

Durand et al., Learning a Deep ConvNet for Multi-label Classification with Partial Labels, CVPR 2019. Cole et al., Multi-Label Learning from Single Positive Labels, CVPR 2021.

[a]: full annotation

[b]: partial annotation

[c]: single positive label

Durand et al., Learning a Deep ConvNet for Multi-label Classification with Partial Labels, CVPR 2019. Cole et al., Multi-Label Learning from Single Positive Labels, CVPR 2021.

Partially annotated multi-label classification

Baseline approach:

Assuming unannotated labels as Negative labels (AN)

person horse cat dog truck	1 1 0 0 0	$\left(\begin{array}{c}1\\0\end{array}\right)$		1 0 0 0 0
	[a]	[b]	,	

Partially annotated multi-label classification

Baseline approach:

Assuming unannotated labels as Negative labels (AN)

Drawback:

Introducing label noise (i.e., false negative)

person horse cat dog truck	$\left(\begin{array}{c}1\\1\\0\\0\\0\end{array}\right)$	$\left(\begin{array}{c}1\\0\\0\\0\\0\end{array}\right)$	
	[a]	[b]	[c]

Analysis on model explanation

Q. How false negative labels affect model explanation?

Model 1: Train ResNet-50 with **full annotation**

Model 2: Train ResNet-50 with partial annotation

Class Activation Map (CAM)

Zhou et al., Learning deep features for discriminative localization, CVPR 2016.

Analysis on model explanation

Analysis on model explanation

1) Modify CNN classification network architecture

Zhang et al., Adversarial Complementary Learning for Weakly Supervised Object Localization, CVPR 2018.

2) Apply BoostLU on CAM element-wisely

2) Apply BoostLU on CAM element-wisely

BoostLU(x) =
$$max(x, \alpha x)$$
, set $\alpha = 5$

Several scenarios for BoostLU application

- i) Apply only in **inference phase**
 - => Performance improves without additional training

BoostLU	Performance		
in inference	VOC	COCO	
	86.10	64.58	
✓	87.31	66.27	

Several scenarios for BoostLU application

ii) Apply also in training phase with large loss modification scheme => Performance improves further!

BoostLU	BoostLU	LL-R	Performance	
in inference	in training	in training	VOC	COCO
			86.10	64.58
√			87.31	66.27
√	✓	✓	89.27	72.82

Kim et al., Large Loss Matters in Weakly Supervised Multi-Label Classification, CVPR 2022.

Experiment results

1) single positive label setting

Methods	VOC	COCO	NUS	CUB
Full Label	89.42	76.78	52.08	30.90
AN	85.89	64.92	42.27	18.31
LS [30]	87.90	67.15	43.77	16.26
ASL [33]	87.76	68.78	46.93	18.81
ROLE [11]	87.77	67.04	41.63	13.66
ROLE + LI [11]	88.26	69.12	45.98	14.86
EM [50]	89.09	70.70	47.15	20.85
EM + APL [50]	89.19	70.87	47.59	21.84
LL-R [21]	88.27	70.70	48.76	19.56
+ BoostLU (Ours)	89.29	72.89	49.59	19.80
LL-Ct [21]	87.79	70.29	48.08	19.06
+ BoostLU (Ours)	88.61	71.78	48.37	19.25
LL-Cp [21]	87.44	70.27	47.92	19.21
+ BoostLU (Ours)	87.81	71.41	48.61	19.34

2) Openimages v3

Methods	Group 1	Group 2	Group 3	Group 4	Group 5	All Classes
CNN-RNN [39]	68.76	69.70	74.18	78.52	84.61	75.16
Curriculum Labeling [13]	70.37	71.32	76.23	80.54	86.81	77.05
IMCL [17]	70.95	72.59	77.64	81.83	87.34	78.07
P-ASL [2]	73.19	78.61	85.11	87.70	90.61	83.03
LL-R [21]	77.76	79.07	81.94	84.51	89.36	82.53
+ BoostLU (Ours)	79.28	80.81	83.32	85.63	90.27	83.86
LL-Ct [21]	77.76	79.18	81.97	84.46	89.51	82.58
+ BoostLU (Ours)	79.43	80.75	83.41	85.70	90.41	83.94
LL-Cp [21]	77.49	79.22	81.89	84.51	89.18	82.46
+ BoostLU (Ours)	79.53	81.04	83.40	85.85	90.39	84.04

Experiment results

3) Qualitative results

Thank you!

