Définition 2.1 - automate fini déterministe

Un automate fini déterministe \mathcal{A} est défini par un quintuplet $(\Sigma, Q, q_0, F, \delta)$, où :

- 1. Σ est un alphabet fini ;
- 2. Q est un ensemble fini d'états ;
- **3.** $q_0 \in Q$ est l'état initial ;
- **4.** $\mathcal{F} \subset Q$ est un ensemble d'états finaux ;
- **5.** δ est une application d'une partie de $Q \times \Sigma$ dans Q est la fonction de transition.

Il est commun de représenter par un tableau à double entrées, dit table de transition, les valeurs prises par δ .

Définition 2.2 - chemin, étiquette d'un chemin

Un *chemin* dans un automate est une suite finie d'états (q_1, \ldots, q_n) telle qu'il existe a_1, \ldots, a_{n-1} dans Σ , tel que :

$$\forall i \in [1, n], \, \delta(q_i, a_i) = q_{i+1}$$

Assertion que l'on notera :

$$q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \dots \xrightarrow{a_{n-1}} q_n$$

L'étiquette du chemin est alors le mot $a_1 \dots a_{n-1}$.

Définition 2.3 - chemin acceptant

Un chemin (q_1, \ldots, q_n) d'un automate \mathcal{A} est acceptant lorsque q_1 est l'état initial (ou un état initial si AFND) de \mathcal{A} et q_n est un état final de \mathcal{A} .

On dit alors que l'étiquette de (q_1, \ldots, q_n) , qui est un mot, est reconnue par A.

Définition 2.4 - langage reconnu

L'ensemble des mots reconnus par \mathcal{A} un automate fini est noté $\mathcal{L}(\mathcal{A})$ et est appelé langage reconnu par \mathcal{A} .

Définition 2.5 - état accessible

Un état q d'un automate fini \mathcal{A} est dit accessible lorsqu'il existe un chemin de \mathcal{A} de l'état initial (ou d'un état initial) de \mathcal{A} menant à q.

Définition 2.6 - état co-accessible

Un état q d'un automate fini \mathcal{A} est dit co-accessible lorsqu'il existe un chemin de \mathcal{A} reliant q à un état final de \mathcal{A} .

Définition 2.7 - état utile

Un état d'un automate fini est dit utile s'il est accessible et co-accessible.

Définition 2.8 - automate fini émondé

La présence d'états non utiles (non accessibles ou non co-accessibles) n'altère pas le langage reconnu par un automate fini \mathcal{A} .

On dit alors qu'un automate \mathcal{A}' est émondé s'il ne contient que des états utiles.

Définition 2.9 - automate des parties d'un AFND

Soit $\mathcal{A}_{ND} = (\Sigma, Q, I, F, \delta)$ un automate fini non déterministe. On appelle automate des parties de \mathcal{A}_{ND} , noté $\mathcal{A}_{D} = (\Sigma, Q_{D}, q_{0,D}, F_{D}, \delta_{D})$ tel que :

- 1. $Q_{\rm D} = \mathcal{P}(Q)$;
- **2.** $q_{0,D} = I$;
- 3. $F_D = \{P \in Q_D, P \cap F \neq \emptyset\}$, l'ensemble des états de A_D contenant au moins un état final de A_{ND} .
- **4.** $\delta_{\mathrm{D}}: \begin{array}{ccc} Q_{\mathrm{D}} \times \Sigma & \rightarrow & Q_{\mathrm{D}} \\ (P,a) & \mapsto & \{q \in Q, \ \exists p \in P, \ q \in \delta(p,a)\} = \bigcup_{p \in P} \{q \in Q, \ q \in \delta(p,a)\} \end{array}$

Pour $P \in Q_D$ et $a \in \Sigma$, $\delta_D(P, a)$ est l'ensemble des états de Q accessibles en lisant a depuis un élément de P. \mathcal{A}_D est alors un automate fini déterministe.

Définition 2.10 - ϵ -fermeture d'un état d'un ϵ -AFND

Soit $(\Sigma, Q, I, F, \delta)$ un ϵ -AFND. On appelle ϵ -fermeture d'un état q est l'ensemble des états accessibles depuis un chemin dont l'étiquette est le mot vide. On la note ϵ -F(q).

Définition 2.11 - langage local

Soit Σ un alphabet fini et $L \in \Sigma^*$ un langage. On dit que L est local s'il existe $P \in \Sigma$, $S \in \Sigma$ et $F \in \Sigma_2$ telles que :

$$L \setminus \{\epsilon\} = (P\Sigma^* \cap \Sigma^* S) \setminus (\Sigma^* (\Sigma_2 \setminus F) \Sigma^*)$$

Définition 2.11 - langages locaux d'un langage

Soit Σ un alphabet fini et $L \in \Sigma^*$ un langage. On définit les langages locaux de L:

- **1.** $\epsilon (L) = \{\epsilon\} \cap L$;
- **2.** $P(L) = \{a \in \Sigma, \{a\}\Sigma^* \cap L \neq \emptyset\}$;
- **3.** $P(L) = \{a \in \Sigma, \Sigma^*\{a\} \cap L \neq \varnothing\}$;
- **4.** $F(L) = \{ab \in \Sigma_2, \Sigma^*\{ab\}\Sigma^* \cap L \neq \varnothing\}.$

Proposition 2.12 - caractérisation par les langages locaux

Soit Σ un alphabet fini et $L \in \Sigma^*$ un langage. L est local si et seulement si l'égalité suivante est vérifiée :

$$L = \left(\left(P(L)\Sigma^* \cap \Sigma^* S(L) \right) \setminus \left(\Sigma^* \left(\Sigma_2 \setminus F(L) \right) \Sigma^* \right) \right) \cup \epsilon(L)$$

Définition 2.13 - expression régulière linéaire

Une expression régulière dans laquelle chaque lettre apparaît au plus une fois est dite linéaire.

Proposition 2.14 - concernant les expressions régulières linéaires

Tout langage local régulier est dénoté par une expression régulière linéaire.

Définition 2.15 - automate local

Un automate fini déterministe est *local* lorsque seules des transitions de même étiquette arrivent au même état.

Définition 2.16 - automate standard

Un automate fini déterministe est dit standard si aucune transition n'arrive en son état initial.

Proposition 2.17 - concernant les automates locaux standards

Tout langage local régulier est reconnu par un automate local standard.

Définition 2.16 - automate fini généralisé

Un automate fini généralisé \mathcal{A} est d'abord défini par un quintuplet $(\Sigma, Q, q_0, f_0, \delta)$, avec :

- 1. Σ est un alphabet fini ;
- 2. Q est un ensemble fini d'états ;
- **3.** $q_0 \in Q$ est l'état initial ;
- **4.** $q_f \in Q$ est l'état final ;
- 5. δ , la fonction de transition, est une application d'une partie de $Q \times E(\Sigma)$ dans $\mathcal{P}(Q)$. Ici, $E(\Sigma)$ désigne l'ensemble des expressions régulières sur Σ .

Puis:

- 1. dont aucune transition n'arrive en q_0 ;
- **2.** dont aucune transition ne part de q_f .