



## Continuous Assessment Test - II

Programme Name & Branch: B.Tech, Civil Engineering Course Name & Code: Urban Planning, CLE 1016

Class Number: 7407 Slot: A1

Exam Duration: 90 Min Maximum Marks: 50

1. A new pumping plant is to be constructed for a water supply system. Either alternative A or B will provide the required flow capacity. As shown in Table 1, alternative A costs more to construct but lasts longer. Alternative B has a lower initial investment but higher O&M cost and a shorter economic life. Determine the economically optimum plan for a discounting rate of 8% and 12% respectively. [20 M]

Table 1: Cost data for the problem

| Alternative | Initial investment cost (INR) |        | Annual O&M cost (INR) | Salvage value<br>(INR) | Design life (years) |
|-------------|-------------------------------|--------|-----------------------|------------------------|---------------------|
| A           |                               | 525000 | 26000                 | 0                      | 50                  |
| В           | ,                             | 312000 | 48000                 | 50000                  | 25                  |

2. Design a rectangular storm sewer network for the catchment shown in figure below. [20 M]



The details of the catchment are given in the table below:

| Catchment<br>ID | Area (ha) | Slope<br>(m/m) | Length (m) | Character of the surface              |
|-----------------|-----------|----------------|------------|---------------------------------------|
| Cl              | 0.61      | 0.0055         | 276        | Asphaltic                             |
| C2 .            | 2.28      | 0.0013         | 482        | Grass area – fair condition – average |
| C3              | 1.51      | 0.008          | 152        | Cultivated land – flat                |

The return period for the design can be taken as five years. The rainfall intensity can be determined using the following IDF equation:

$$i = \frac{89}{(t_c + 8.5)^{0.754}}$$

Where i is in mm/h and t<sub>c</sub> is in minutes. Assume width of the channel (B) is two times the depth of the channel (y).

3. How does urbanization impact the local water cycle?

[10 M]