

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 3 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование алгоритма имитации отжига»

Вариант 10

Выполнила: Минькова А.А., студентка группы ИУ8-31

Проверила: Коннова Н.С., доцент каф. ИУ8

Цель работы

Изучение метода имитации отжига для поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

Условие задачи

На интервале [-2; 4] задана унимодальная функция одного переменного $f(x) = (1-x)^2 + \exp(x)$. Используя метод имитации отжига осуществить поиск минимума f(x). При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом $\sin(5x)$, т.е. мультимодальной функции $f(x)^* \sin(5x)$.

Графики заданных функций

Рисунок 1- график f(x)

Рисунок 2- график $f(x)*\sin(5x)$

Результат работы программы

Variant 10 Function 1:

N	1	Т	1	х	1	f(x)	1
1	1	10000	1	-0.238306	1	2.32136	1
2	1	9500	1	2.79206	1	19.5261	1
3	1	9025	1	-1.59247	1	6.92433	1
4	1	8573.75	1	1.3356	1	3.91493	1
5	1	8145.06	1	1.51203	1	4.79809	1
6	1	7737.81	1	2.1204	1	9.58976	1
7	1	7350.92	1	3.21926	1	29.9348	1
8	1	6983.37		-0.357284	1	2.54179	1
9	1	6634.2	1	1.12745	1	3.10401	1
1	0	6302.49	1	-1.94224	1	8.80019	1
1	1	5987.37	1	0.192163	1	1.86447	1
1	2	5688		1.67697	1	5.80759	1
1	3	5403.6	1	-0.774745	1	3.61054	1
1	4	5133.42	1	-1.14067	1	4.90207	1
1	5	4876.75	1	2.72282	1	18.1913	1
1	6	4632.91		1.98306	1	8.23139	1
1	7	4401.27	1	-0.631244	1	3.19289	1
1	8 I	4181.2	1	-1.32211	1	5.65876	1
1	9	3972.14	1	3.76078	1	50.6037	1
2	0	3773.54	1	-1.36275	1	5.83853	1
2	1	3584.86	1	-1.70502	1	7.49889	1
2	2	3405.62	1	1.99858	1	8.37575	1
2	3	3235.34	1	3.93936	1	60.0255	1
2	4	3073.57		0.184764	1	1.86754	1
2	5	2919.89		3.32532	1	33.215	1

```
| 243 | 0.0406549 | 0.0667769 | 1.93996
| 244 | 0.0386221 | 0.0667769 | 1.93996
| 245 | 0.036691 | 0.0667769 | 1.93996
| 246 | 0.0348565 | 0.0667769 | 1.93996
| 247 | 0.0331136 | 0.0667769 | 1.93996
| 248 | 0.031458 | 0.0667769 | 1.93996
| 249 | 0.0298851 | 0.0667769 | 1.93996
| 250 | 0.0283908 | 0.0667769 | 1.93996
| 251 | 0.0269713 | 0.217037
                             1.85542
| 252 | 0.0256227 | 0.217037
                             1.85542
| 253 | 0.0243416 | 0.420486
                             1.85854
| 254 | 0.0231245 | 0.420486
                             1.85854
| 255 | 0.0219683 | 0.420486
                             1.85854
| 256 | 0.0208699 | 0.420486
                             1.85854
                             1.85854
| 257 | 0.0198264 | 0.420486
| 258 | 0.018835 | 0.420486
                             1.85854
| 259 | 0.0178933 | 0.420486
                             1.85854
| 260 | 0.0169986 | 0.420486
                             1.85854
| 261 | 0.0161487 | 0.420486
                             1.85854
| 262 | 0.0153413 | 0.420486
                             1.85854
| 263 | 0.0145742 | 0.420486
                             1.85854
| 264 | 0.0138455 | 0.420486
                             1.85854
| 265 | 0.0131532 | 0.420486
                             1.85854
| 266 | 0.0124956 | 0.420486
                             1.85854
| 267 | 0.0118708 | 0.420486
                             1.85854
| 268 | 0.0112772 | 0.420486
                            1.85854
| 269 | 0.0107134 | 0.420486
                             1.85854
| 270 | 0.0101777 | 0.420486 | 1.85854
```

Result: Xmin = 0.420486, Fmin = 1.85854

Function 2:

l N	ΙT	Ιx	f(x)
1	10000	-0.229392	-2.10235
2	9500	-1.73168	-5.29782
3	9025	1.58363	5.2025
4	8573.75	-1.60705	-6.88254
5	8145.06	2.29829	-10.2403
6	7737.81	-0.615278	-0.205213
7	7350.92	-1.83812	-1.90611
8	6983.37	0.756802	-1.31246
9	6634.2	3.12718	1.96804
10	6302.49	2.17361	-10.0847
11	5987.37	3.78861	4.85108
12	5688	2.73225	16.3271
13	5403.6	0.761473	-1.35783
14	5133.42	0.0709889	0.673053
15	4876.75	-1.40972	-4.19245
16	4632.91	0.754432	-1.28928
17	4401.27	-0.164419	-1.61478
18	4181.2	2.61649	8.04364
19	3972.14	2.70522	14.6323
20	3773.54	2.42947	-5.45063
21	3584.86	2.0551	-6.70624
22	3405.62	-1.96867	3.63865
23	3235.34	3.19734	-8.06003
24	3073.57	1.64614	5.21141
25	2919.89	3.64843	-25.9284
26	2773.9	-0.896143	3.89654

```
| 245 | 0.036691 | 3.48757 | -38.4032
                           -38.4149
| 246 | 0.0348565 | 3.48978
| 247 | 0.0331136 | 3.48978 | -38.4149
| 248 | 0.031458 | 3.48978
                           -38.4149
| 249 | 0.0298851 | 3.48978
                           | -38.4149
| 250 | 0.0283908 | 3.48978
                           -38.4149
| 251 | 0.0269713 | 3.48978
                           -38.4149
| 252 | 0.0256227 | 3.48978
                           -38.4149
| 253 | 0.0243416 | 3.48978
                           -38.4149
| 254 | 0.0231245 | 3.48978
                           -38.4149
| 255 | 0.0219683 | 3.48978
                           -38.4149
| 256 | 0.0208699 | 3.48978
                           -38.4149
| 257 | 0.0198264 | 3.48978
                           -38.4149
                           -38.4149
| 258 | 0.018835 | 3.48978
| 259 | 0.0178933 | 3.48978 | -38.4149
| 260 | 0.0169986 | 3.48978
                           -38.4149
| 261 | 0.0161487 | 3.48978
                           -38.4149
| 262 | 0.0153413 | 3.48978
                           -38.4149
| 263 | 0.0145742 | 3.48978
                           | -38.4149
| 264 | 0.0138455 | 3.48978
                           -38.4149
| 265 | 0.0131532 | 3.48978
                           -38.4149
| 266 | 0.0124956 | 3.48978
                           -38.4149
| 267 | 0.0118708 | 3.48978
                           -38.4149
| 268 | 0.0112772 | 3.48978 | -38.4149
| 269 | 0.0107134 | 3.48978
                           -38.4149
| 270 | 0.0101777 | 3.48978
                            -38.4149
```

Result: Xmin = 3.48978, Fmin = -38.4149

Выводы

В результате проделанной работы был исследован метод имитации отжига. Он является эффективным алгоритмом случайного поиска глобального минимума, в чем мы убедились на примере данной унимодальной и мультимодальной функции одного переменного. Метод эффективно работает для обеих функций.

Ответ на контрольный вопрос

В чем состоит сущность метода имитации отжига? Какова область применимости данного метода?

Метод имитации отжига основан на том, что локальное (субоптимальное) решение, найденное в процессе решения задачи оптимизации, также можно рассматривать как дефектное решение. Улучшить это решение (приблизиться к глобальному оптимуму) можно путём его случайных флюктуаций, амплитуда которых уменьшается с ростом номера итераций. Принципиальным в алгоритме SA является то, что, в отличие от большинства других стохастических алгоритмов поисковой оптимизации, он допускает шаги, приводящие к увеличению значений фитнес-функции. Метод имитации отжига применяется для решения разных оптимизационных задач — финансовых, компьютерной графики, комбинаторных, и т.д., используется в нейронных сетях.

Приложение. Исходный код программы

```
#include
<cmath>
           #include <ctime>
           #include <iomanip>
           #include <iostream>
           using std::cout;
           double randomInRange(const double a, const double b)
               return a + rand() * 1./RAND_MAX * (b - a);
           }
           void printTableHead()
               cout << std::left << std::string(47, '-') << '\n'</pre>
                    << "| " << std::setw(4) << "N"
                    << "| " << std::setw(10) << "T"
                    << "| " << std::setw(11) << "x"
                    << "| " << std::setw(13) << "f(x)" << "|\n"
                    << std::string(47, '-') << '\n';
           }
           void printLine(const int iteration, const double T, const double value, const double
           functionValue)
           {
               cout << "| " << std::setw(4) << iteration</pre>
                    << "| " << std::setw(10) << T
                    << "| " << std::setw(11) << value
                    << "| " << std::setw(13) << functionValue << "|\n";</pre>
           }
           template<class Function>
           auto SAMethod(const double a, const double b, Function func)
           {
               printTableHead();
               const double T_min = .01;
               double T_i = 10000.;
               double x i = randomInRange(a,b);
               int i = 0;
               while (T_i > T_min) {
                   ++i;
                   double x_new = randomInRange(a, b);
                   double delta_f = func(x_new) - func(x_i);
                   if (delta_f <= 0) {</pre>
```

```
x_i = x_new;
        } else {
            double randomProb = randomInRange(0, 1);
            double probability = exp(-delta_f/T_i);
            if (randomProb < probability) {</pre>
                x_i = x_new;
            }
        }
        printLine(i, T_i, x_i, func(x_i));
        T_i *= .95;
    }
    cout << std::string(47, '-') << '\n';</pre>
    return std::pair{x_i, func(x_i)};
}
double MyFunction(const double x)
    return pow((1-x),2)+exp(x);
}
double MyFunctionSin(const double x) {
    return MyFunction(x) * sin(5*x);
}
const double A = -2;
const double B = 4.;
int main()
{
    cout << "Variant 10\nFunction 1:" <<std::endl;</pre>
    srand(time(nullptr));
    auto result_1 = SAMethod(A, B, MyFunction);
    cout << "Result: Xmin = " << result_1.first</pre>
         << ", Fmin = " << result_1.second << '\n';
    cout << "\nFunction 2:"<<std::endl;</pre>
    auto result_2 = SAMethod(A, B, MyFunctionSin);
    cout << "Result: Xmin = " << result_2.first</pre>
         << ", Fmin = " << result_2.second << '\n';
    return 0;
}
```