Exercise 1.3

1. Let $f: \{1,3,4\} \to \{1,2,5\}$ and $g: \{1,2,5\} \to \{1,3\}$ be given by:

$$f = \{(1, 2), (3, 5), (4, 1)\}, \quad g = \{(1, 3), (2, 3), (5, 1)\}$$

Write down $g \circ f$.

2. Let f, g, h be functions from \mathbb{R} to \mathbb{R} . Show that:

$$(f+g)\circ h=f\circ h+g\circ h$$

$$(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$$

- **3.** Find $g \circ f$ and $f \circ g$ if:
- (i) f(x) = |x|, g(x) = |5x 2|
- (ii) $f(x) = 8x^3$, $g(x) = \frac{1}{x^3}$

 - **4.** If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, show that $f \circ f(x) = x$. **5.** Determine whether the following functions have an inverse:
- (i) $f: \{1, 2, 3, 4\} \rightarrow \{10\}$ with $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$
- (ii) $g: \{5,6,7,8\} \rightarrow \{1,2,3,4\}$ with $g= \{(5,4),(6,3),(7,4),(8,2)\}$
- (iii) $h: \{2,3,4,5\} \to \{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$
- **6.** Show that $f:[-1,1]\to\mathbb{R}$, given by $f(x)=\frac{x}{x+2}$, is one-one. Find the inverse of the function $f:[-1,1]\to \mathrm{Range}\ f$. (Hint: For $y\in \mathrm{Range}\ f$, solve $y=\frac{x}{x+2}$ for x, i.e., $x=\frac{2y}{1-y}$)
- 7. Consider $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
- **8.** Consider $f: \mathbb{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where \mathbb{R}_+ is the set of all non-negative real numbers.

9. Consider $f: \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that fis invertible with:

$$f^{-1}(y) = \frac{\sqrt{y+6} - 1}{3}$$

10. Let $f: X \to Y$ be an invertible function. Show that f has a unique inverse. (Hint: Suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $f \circ g_1(y) = 1_Y(y) = f \circ g_2(y)$. Use the one-one property of f.)

11. Consider $f: \{1, 2, 3\} \to \{a, b, c\}$ given by f(1) = a, f(2) = b, f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$.

12. Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $(f^{-1})^{-1} = f$. **13.** If $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (3 - x^3)^{1/3}$, then $f \circ f(x)$ is:

(A)
$$\frac{1}{x^3}$$
 (B) x^3 (C) x (D) $(3-x^3)$

14. Let $f: \mathbb{R} - \left\{-\frac{4}{3}\right\} \to \mathbb{R}$ be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is the map $g: \text{Range } f \to \mathbb{R} - \left\{-\frac{4}{3}\right\}$ given by:

(A)
$$g(y) = \frac{3y}{3-4y}$$
 (B) $g(y) = \frac{4y}{4-3y}$ (C) $g(y) = \frac{4y}{3-4y}$ (D) $g(y) = \frac{3y}{4-3y}$