Alexander Golovnev

Outline

Job Assignment

Bipartite Graphs

Matchings

Hall's Theorem

	Alice	Ben	Chris	Diana
Administrator	+		+	
Programmer		+	+	
Librarian	+	+		
Professor				+

libr

prof

	R# 1	R# 2	R# 3	R# 4	R# 5	R# 6
Aaron	+	+				
Bianca	+	+	+			
Carol				+	+	
Dana		+	+	+		+
Emma				+	+	
Francis				+	+	

(A) (B) (C) (D) (LL) (E)

(1)
(2)
(3)
(4)
(5)
(6)

Outline

Job Assignment

Bipartite Graphs

Matchings

Hall's Theorem

 A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that

- A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that
 - Every edge of G connects a vertex in L to a vertex in R

- A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that
 - Every edge of G connects a vertex in L to a vertex in R
 - I.e., no edge connects two vertices from the same part

- A graph G is Bipartite if its vertices can be partitioned into two disjoint sets L and R such that
 - Every edge of G connects a vertex in L to a vertex in R
 - I.e., no edge connects two vertices from the same part
- L and R are called the parts of G

Bipartite Graphs: Examples

Bipartite Graphs: Characterization

Theorem

A graph is Bipartite if and only if it has no cycles of odd length.

Proof:

Bipartite Graphs: Characterization

Theorem

A graph is Bipartite if and only if it has no cycles of odd length.

Proof:

• Let $G = (L \cup R, E)$ be bipartite. Every edge goes from L to R (or from R to L)

Bipartite Graphs: Characterization

Theorem

A graph is Bipartite if and only if it has no cycles of odd length.

Proof:

- Let $G = (L \cup R, E)$ be bipartite. Every edge goes from L to R (or from R to L)
- To end up in the original vertex, one has to make an even number of steps

• Let's prove the other directions: if there are no cycles of odd length in *G*, then *G* is bipartite

- Let's prove the other directions: if there are no cycles of odd length in *G*, then *G* is bipartite
- If G has several connected components, fix one: C_1 , and a vertex $v \in C_1$, color v red

- Let's prove the other directions: if there are no cycles of odd length in *G*, then *G* is bipartite
- If G has several connected components, fix one: C_1 , and a vertex $v \in C_1$, color v red
- If there is a path from v to u of odd length, color u blue, otherwise: red

 If this partition is bad: there is an edge between two red vertices (or two blue vertices)

Characterization: Proof

- If this partition is bad: there is an edge between two red vertices (or two blue vertices)
- Then there is a cycle of odd length — contradiction!

Characterization: Proof

- If this partition is bad: there is an edge between two red vertices (or two blue vertices)
- Then there is a cycle of odd length — contradiction!
- Repeat for other connected components

Outline

Job Assignment

Bipartite Graphs

Matchings

Hall's Theorem

• A Matching in a graph is a set of edges without common vertices

- A Matching in a graph is a set of edges without common vertices
- A Maximal Matching is a matching which cannot be extended to a larger matching

- A Matching in a graph is a set of edges without common vertices
- A Maximal Matching is a matching which cannot be extended to a larger matching
- A Maximum Matching is a matching of the largest size

- A Matching in a graph is a set of edges without common vertices
- A Maximal Matching is a matching which cannot be extended to a larger matching
- A Maximum Matching is a matching of the largest size
- We often want to find a matching in a bipartite graph which covers all vertices of one side

We want a matching which covers all jobs

We want a matching which covers all jobs

We want a matching which covers all people

We want a matching which covers all people

But it does not exist

Definition

Let G = (V, E) be a graph, and $S \subseteq V$ be a subset of vertices. The Neighborhood N(S) of S is the set of all vertices connected to at least one vertex in S

Definition

Let G = (V, E) be a graph, and $S \subseteq V$ be a subset of vertices. The Neighborhood N(S) of S is the set of all vertices connected to at least one vertex in S

Theorem (Hall, 1935)

In a bipartite graph $G = (L \cup R, E)$, there is a matching which covers all vertices from L if and only if for every subset of vertices $S \subseteq L$,

$$|S| \leq |N(S)|$$
.

Outline

Job Assignment

Bipartite Graphs

Matchings

Hall's Theorem

• In a bipartite graph $G = (L \cup R, E)$, there is a matching which covers all vertices from L if and only if for every subset of vertices $S \subseteq L$,

$$|S| \leq |N(S)|$$
.

• In a bipartite graph $G = (L \cup R, E)$, there is a matching which covers all vertices from L if and only if for every subset of vertices $S \subseteq L$,

$$|S| \leq |N(S)|$$
.

 If there is a matching which covers all vertices of L, then for every S ⊆ L we can take the matched vertices from R

• In a bipartite graph $G = (L \cup R, E)$, there is a matching which covers all vertices from L if and only if for every subset of vertices $S \subseteq L$,

$$|S| \leq |N(S)|$$
.

- If there is a matching which covers all vertices of L, then for every S ⊆ L we can take the matched vertices from R
- There are at least |S| of them, thus, $|N(S)| \ge |S|$

Hall's Theorem

Hall's Theorem

Hall's Theorem

Hall's Theorem

Hall's Theorem

Hall's Theorem

Hall's Theorem: The Other Direction

Hall's Theorem: The Other Direction

Hall's Theorem: The Other Direction

Hall's Theorem: The Other Direction

Hall's Theorem: The Other Direction

• Induction on |L|. Base Case: |L| = 1, $|N(L)| \ge |L| = 1$, so there is a matching of size 1

- Induction on |L|. Base Case: |L| = 1, $|N(L)| \ge |L| = 1$, so there is a matching of size 1
- Induction Hypothesis: The statement holds for all graphs with smaller $|L| \le k$

- Induction on |L|. Base Case: |L| = 1, $|N(L)| \ge |L| = 1$, so there is a matching of size 1
- Induction Hypothesis: The statement holds for all graphs with smaller $|L| \le k$
- Induction Step: Prove the statement for |L| = k + 1

- Induction on |L|. Base Case: |L| = 1, $|N(L)| \ge |L| = 1$, so there is a matching of size 1
- Induction Hypothesis: The statement holds for all graphs with smaller $|L| \le k$
- Induction Step: Prove the statement for |L| = k + 1
- Pick a vertex $v \in L$ and its neighbor $u \in R$

- Induction on |L|. Base Case: |L| = 1, $|N(L)| \ge |L| = 1$, so there is a matching of size 1
- Induction Hypothesis: The statement holds for all graphs with smaller $|L| \le k$
- Induction Step: Prove the statement for |L| = k + 1
- Pick a vertex $v \in L$ and its neighbor $u \in R$
- If there is a matching on L\ {v} and R\ {u}, then we're done!

• If there is no matching on $L \setminus \{v\}$ and $R \setminus \{u\}$, then there is a set $S_1 \subseteq L \setminus \{v\}$ s.t. its neigborhood in $R \setminus \{u\}$ is $< |S_1|$

- If there is no matching on $L \setminus \{v\}$ and $R \setminus \{u\}$, then there is a set $S_1 \subseteq L \setminus \{v\}$ s.t. its neigborhood in $R \setminus \{u\}$ is $< |S_1|$
- Then its neigborhood T_1 in R is of size exactly $|S_1|$

- If there is no matching on L \ {v} and R \ {u}, then there is a set S₁ ⊆ L \ {v} s.t. its neigborhood in R \ {u} is < |S₁|
- Then its neigborhood T_1 in R is of size exactly $|S_1|$
- There is a matching between S_1 and T_1 , remove it

- If there is no matching on L \ {v} and R \ {u}, then there is a set S₁ ⊆ L \ {v} s.t. its neigborhood in R \ {u} is < |S₁|
- Then its neigborhood T_1 in R is of size exactly $|S_1|$
- There is a matching between S_1 and T_1 , remove it
- In the remaining graph, every set $S \subseteq L$ has at least $|S| + |S_1| |T_1| = |S|$ neighbors, there is a matching!