Neural Network

A McCulloch Pitts unit

$$y \in \{0,1\}$$

$$\uparrow$$

$$x_1$$

$$x_2$$

 x_1 AND $!x_2$

AND function

NOR function

OR function

NOT function

Perceptron

Algorithm: Perceptron Learning Algorithm

 $P \leftarrow inputs$ with label 1; $N \leftarrow inputs$ with label 0; Initialize w randomly; while !convergence do

Pick random
$$\mathbf{x} \in P \cup N$$
;
if $\mathbf{x} \in P$ and $\sum_{i=0}^{n} w_i * x_i < 0$ then $\mid \mathbf{w} = \mathbf{w} + \mathbf{x}$;
end
if $\mathbf{x} \in N$ and $\sum_{i=0}^{n} w_i * x_i \ge 0$ then $\mid \mathbf{w} = \mathbf{w} - \mathbf{x}$;
end

end

//the algorithm converges when all the inputs are classified correctly

Multi-layer Perceptron (MLP)

Activation function

Name	Input/Output Relation	Icon	MATLAB Function
Hard Limit	$a = 0 n < 0$ $a = 1 n \ge 0$		hardlim
Symmetrical Hard Limit	$a = -1 \qquad n < 0$ $a = +1 \qquad n \ge 0$	F	hardlims
Linear	a = n		purelin
Saturating Linear	$a = 0 n < 0$ $a = n 0 \le n \le 1$ $a = 1 n > 1$		satlin
Symmetric Saturating Linear	$a = -1 n < -1$ $a = n -1 \le n \le 1$ $a = 1 n > 1$	F	satlins
Log-Sigmoid	$a = \frac{1}{1 + e^{-n}}$		logsig
Hyperbolic Tangent Sigmoid	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	F	tansig
Positive Linear	$a = 0 n < 0$ $a = n 0 \le n$		poslin
Competitive	a = 1 neuron with max $na = 0$ all other neurons	C	compet

Table 2.1 Transfer Functions

Which activation function for each network

More information

One to one : dog or cat

many to one: binary classifications

many to many: multiclass classifications

one hot encoding

Mutually Exclusive Classes

Data Point 1	RED	
Data Point 2	GREEN	
Data Point 3	BLUE	-
	•••	
Data Point N	RED	

	RED	GREEN	BLUE
Data Point 1	1	0	0
Data Point 2	0	1	0
Data Point 3	0	0	1
•••		•••	
Data Point N	1	0	0

Sigmoid Function for Non-Exclusive Classes

Sigmoid Function for Non-Exclusive Classes

Softmax activation function

- این تابع فعالساز در طبقهبندیهای چندکلاسه استفاده میشود.
- زمانی که احتیاج داشته باشیم در خروجی احتمال عضویت بیشتر دو کلاس را پیشبینی کنیم، می توانیم به سراغ این تابع برویم.
 - تابع سافت مکس تمامی مقادیر یک بردار با طول K را به بازه ی صفر تا ۱ میبرد، به طوری که جمع تمامی مقادیر این بردار با هم ۱ می شود.
 - این تابع برای نورونهای لایهی خروجی استفاده میشود؛ زیرا در شبکههای عصبی در آخرین لایه (خروجی) به طبقهبندی ورودیها در کلاسهای مختلف نیاز داریم.

which activation function?

- تابع سیگموید در مسائل طبقهبندی معمولاً خیلی خوب عمل می کند.
- توابع سیگموید و تانژانت هایپربولیک، بهدلیل مشکل محوشدگی گرادیان، در بعضی مواقع استفاده نمی شوند.
- تابع فعالساز واحد یک سوشده ی خطی (ReLU/ Rectified Linear Unit) فقط در لایههای نهان استفاده می شود.
 - اگر با مشکل مرگ نورون در شبکه مواجه هستیم، تابع Leaky ReLU

صفر (f(x)= a = max(0.01x, x)) می تواند گزینه ی بسیار خوبی باشد. (وقتی مقدار کمتر از صفر است.)

Loss/cost function

معیاری برای سنجش مناسب بودن مدل از نظر قابلیت و توانایی در پیشگویی مقدارهای جدید است.

- توابع زیان مربوط به الگوریتمهای دستهبندی
 - توابع زیان مربوط به رگرسیون

تابع زیان مسائل رگرسیون

• تابع زیان هوبر یا میانگین خطای قدرمطلق هموار شده

$$L_\delta(y,\hat{y}) = egin{cases} rac{1}{2}(y-\hat{y})^2 & |y-\hat{y}| \leq \delta \ \delta|y-\hat{y}| - rac{1}{2}\delta^2 & |y-\hat{y}| > \delta \end{cases}$$

• تابع زیان Log-Cosh

$$L_{log-cosh}(y,\hat{y}) = \sum_{i=1}^n \log(\cosh(y-\hat{y}))$$

• تابع زیان چندکی (Quantile Loss)

$$L_{\gamma}(y,\hat{y}) = \sum_{i \in \{i; y_i < \hat{y}\}} (1-\gamma)|y_i - \widehat{y_i}| + \sum_{i \in \{i; y_i > \hat{y}_i\}} (\gamma)|y_i - \widehat{y_i}|$$

تابع زیان مسائل دسته بندی

• تابع زیان Hinge

$$loss = \max(0, 1 - (y * y'))$$

 $ext{cross-entropy} = \sum_i p_i \cdot log_2 rac{1}{\hat{p_i}}$ cross-entropy • تابع زیان

gradient decent

$$\nabla f(x_1, x_2, \dots, x_n) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n})$$

 Adam versus other gradient descent algorithms:

pip install tensorflow pip install tensorflow-gpu