SS 2013

Diskrete Wahrscheinlichkeitstheorie

Javier Esparza

Fakultät für Informatik TU München

http://www7.in.tum.de/um/courses/dwt/ss13

Sommersemester 2013

Teil VI

Markov-Ketten

Markov-Ketten modellieren mehrstufige Experimente mit unendlich vielen Stufen.

Der Ausgang einer Stufe bestimmt welches Experiment in der nächsten Stufe ausgeführt wird.

Erinnerung: Markov-Diagramme

Definition 173

Ein (verallgemeinertes) Markov-Diagramm $D=(Q,T,\delta)$ besteht aus

- ullet einer (nicht notwendigerweise endlichen) Menge Q von Zuständen,
- ullet einer Menge $T\subseteq Q imes Q$ von Transitionen, und
- einer W'keitsfunktion $\delta \colon T \to (0,1]$, die Folgendes erfüllt für jeden Zustand q:

$$\sum_{(q,q')\in T} \delta(q,q') = 1 .$$

Definition einer Markov-Kette

Definition 174

Eine W'keitsverteilung oder Verteilung für ein Markov-Diagramm mit Zustandsmange Q ist eine Funktion $v\colon Q\to [0,1]$ mit der Eigenschaft

$$\sum_{q\in Q}v(q)=1\;.$$

Definition 175

Eine Markov-Kette ist ein Tuple $M=(Q,T,\delta,\pi_0)$, wobei:

- (Q, T, δ) ist ein Markov-Diagramm und
- $\pi_0: Q \to [0,1]$ ist die Anfangsverteilung.

Eine Markov-Kette ist endlich bzw. abzählbar, wenn Q endlich bzw. abzählbar ist.

Die ménàge a trois von Armand, Bertrand und Cécile I

Fragen von Armand an Denis, der sich in W'keitstheorie auskennt:

- Heute Morgen (Donnerstag) ist Cécile zu Bertrand gegangen.
 Mit welcher W'keit wird sie den Sonntag mit mir verbringen?
- Wenn Cécile mich verlässt, wie lange dauert es im Schnitt, bis Sie zurückkommt?
- Wenn diese Situation für immer so weiter geht, wieviel Prozent der Tage wird Cécile mit mir verbringen?

Wir untersuchen Methoden, um diese Fragen zu beantworten.

W'keitsraum einer Markov-Kette I

Definition 176

Ein Pfad einer Markov-Kette $M=(Q,T,\delta,\mathcal{Q}_0)$ ist eine endliche oder unendliche Sequenz $\sigma=q_0\,q_1\ldots q_k\ldots$ von Zuständen mit $k\geq 0$ und $(q_i,q_{i+1})\in T$ für alle $q_i\,q_{i+1}$ in σ .

 Π bzw. Π_{ω} bezeichnen die Menge aller endlichen bzw. unendlichen Pfaden von M.

 $\sigma(k)$ bezeichnet den Zustand q_k , d.h. $\sigma = \sigma(0) \sigma(1) \dots \sigma(k) \dots$

Die Konkatenation von $\sigma \in \Pi$ und $\sigma' \in \Pi \cup \Pi_{\omega}$ wird mit $\sigma \cdot \sigma'$ oder $\sigma \sigma'$ bezeichnet.

Sei $\sigma \in \Pi$ ein endlicher Pfad. Die von σ generierte Zylindermenge $Cyl(\sigma)$ ist die Menge aller unendlichen Pfaden $\sigma' \in \Pi_{\omega}$ mit σ als Präfix.

W'keitsraum einer Markov-Kette II

Definition 177

Der W'keitsraum einer abzählbaren Markov-Kette M mit Anfangsverteilung Q_0 ist die Triple $(\Omega, \mathcal{A}, \Pr)$ mit

- $\bullet \Omega = \Pi_{\omega}$.
- A enthält die von den Zylindermengen generierten Borel'sche Mengen, d.h.:
 - $Cyl(\sigma) \in \mathcal{A}$ für jedes $\sigma \in \Pi$.
 - Wenn $A \in \mathcal{A}$, dann $\Omega \setminus A \in \mathcal{A}$.
 - Wenn $A_1, A_2, \ldots \in \mathcal{A}$, dann $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.
- Die W'keitsfunktion Pr ist die einzige Funktion, die

$$\Pr\left[Cyl(q_0q_1\dots q_n)\right] = \mathcal{Q}_0(q_0) \cdot \prod_{i=0}^{n-1} \delta(q_i,q_{i+1})$$
 und die Kolmogorov-Axiome erfüllt.

Zufallsvariablen einer Markov-Kette

Definition 178

Sei $M=(Q,T,\delta,\mathcal{Q}_0)$ eine abzählbare Markov-Kette.

Für jedes $t \in \mathbb{N}_0$ bezeichnet X_t die Zufallsvariable $X_t \colon \Omega o Q$ mit

$$X_t(\sigma) = \sigma(t)$$
.

- X_t gibt den Zustand der Kette zum Zeitpunkt t.
- X_t ist wohldefiniert: Man kann leicht zeigen, dass für jeden Zustand $q \in Q$ die Menge " $X_t = q$ " Borel ist.
- Für alle $t \geq 0$ gilt:

$$\Pr[X_{t+1} = q' \mid X_t = q] = \delta(q, q')$$

$$\Pr[X_{t+1} = q_{t+1} \mid X_t = q_t, \dots, X_0 = q_0] = \delta(q, q').$$

25. Übergangswahrscheinlichkeiten

Übergangsw'keiten I: Ubergangsmatrix

Definition 179

Sei $M=(Q,T,\delta,\mathcal{Q}_0)$ eine endliche Markov-Kette mit $Q=\{q_1,\ldots,q_n\}.$

Die $n \times n$ Matrix $P = (p_{ij})_{0 \le i,j \le n}$ mit

$$p_{ij} = \delta(q_i, q_j) = \Pr[X_{t+1} = q_j \mid X_t = q_i]$$

ist die Übergangsmatrix von M.

Beispiel 180

Die Matrix der Armand-Bertrand-Cécile-Kette (mit $q_1 :=$ Armand und $q_2 :=$ Bertrand) ist:

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix}$$

Übergangsw'keiten II: Berechnung

Sei
$$\mathcal{Q}_t = (\Pr[X_t = q_1], \dots \Pr[X_t = q_n])$$

Es gilt
$$\Pr[X_0 = q_k] = \mathcal{Q}_0(q_k)$$

$$\Pr[X_{t+1} = q_k] = \sum_{i=1}^n \Pr[X_{t+1} = q_k \mid X_t = q_i] \cdot \Pr[X_t = q_i]$$

$$= \sum_{i=1}^n p_{ik} \cdot \Pr[X_t = q_i]$$
also
$$(\mathcal{Q}_{t+1})_k = \sum_{i=1}^n p_{ik} \cdot (\mathcal{Q}_t)_i$$

und in Matrixschreibweise

$$Q_{t+1} = Q_t \cdot P$$

Übergangsw'keiten III: Berechnung

Mit der Matrixschreibweise erhalten wir für alle $t, k \in \mathbb{N}$

$$Q_t = Q_0 \cdot P^t$$
 $Q_{t+k} = Q_t \cdot P^k$

Beispiel 181 (Erste Frage von Armand)

Heute Morgen (Donnerstag) ist Cécile zu Bertrand gegangen. Mit welcher W'keit wird sie den Sonntag mit mir verbringen?

Modellierung: Sei
$$\mathcal{Q}_0 = (0,1)$$
.
Gesucht wird $\mathcal{Q}_3(q_1) = \Pr[X_3 = q_1]$.

$$Q_3 = Q_0 \cdot P^3 = (0,1) \cdot \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix}^3 = (0.219, 0.781)$$

Die W'keit beträgt somit 0.219.

Übergangsw'keiten IV: Exponentiation von Matrizen

Wenn P diagonalisierbar ist, so existiert eine Diagonalmatrix D und eine invertierbare Matrix B mit

$$P = B \cdot D \cdot B^{-1}$$

und somit

$$P^k = B \cdot D^k \cdot B^{-1}$$

wobei D^k sehr leicht zu berechnen ist. Die Diagonale von D enthält die Eigenwerte von P, d.h., die λ -Lösungen der Gleichung

$$P \cdot v = \lambda v$$

Die Spalten von B sind die Eigenvektoren von P, d.h., die v-Lösungen derselben Gleichung.

Übergangsw'keiten IV: Berechnung von D und B

Beispiel 182

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix}$$

Eigenwerte: Nullstellen des charakteristischen Polynoms

$$|P - \lambda \cdot I| = \begin{vmatrix} 0.8 - \lambda & 0.2 \\ 0.1 & 0.9 - \lambda \end{vmatrix} = \lambda^2 - 1.7\lambda + 0.7$$

Wir erhalten: $\lambda_1 = 0.7$ und $\lambda_2 = 1$.

Dazugehörige Eigenvektoren:

$$u_1 = \begin{pmatrix} -2\\1 \end{pmatrix} \text{ und } \nu_2 = \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Übergangsw'keiten V: Berechnung von D und B

Damit gilt

$$D = \begin{pmatrix} 0.7 & 0 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$B^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Es ergibt sich z.B.

$$P^{10} = \begin{pmatrix} -2 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0.7^{10} & 0\\ 0 & 1^{10} \end{pmatrix} \begin{pmatrix} -\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \approx \begin{pmatrix} 0.352 & 0.648\\ 0.324 & 0.676 \end{pmatrix}$$

Wir berechnen die W'keit, dass Cécile am 10. Juli bei Armand bzw. Bertrand ist, wenn sie den 1. Juli bei Bertrand verbringt:

$$Q_{10} = (0,1) \cdot \begin{pmatrix} 0.352 & 0.648 \\ 0.324 & 0.676 \end{pmatrix} = (0.324, 0.676)$$

26. Ankunftsw'keiten und Übergangszeiten

Ankunftsw'keiten und Übergangszeiten

Wir untersuchen Fragestellungen auf, die sich auf zwei bestimmte Zustände q_i und q_j beziehen:

- Wie wahrscheinlich ist es, von q_i irgendwann nach q_j zu kommen?
- Wie viele Schritte benötigt die Kette im Mittel, um von q_i nach q_j zu gelangen?

Bemerkung: Die zweite Frage wurde schon im Wesentlichen im Abschnitt "Markov-Diagramme" betrachtet.

Übergangszeiten

Definition 183

Sei T_i die Zufallsvariable

$$T_j(\sigma) := \left\{ \begin{array}{ll} \min\{n \geq 0 \mid X_n(\sigma) = q_j\} & \text{wenn Menge nichtleer} \\ \infty & \text{sonst} \end{array} \right.$$

Die bedingte Zufallsvariable

$$T_{ij} := T_j \mid "X_0 = q_i"$$

nennen wir die Übergangszeit (engl. hitting time) von q_i nach q_j .

 T_{ij} zählt die Anzahl der Schritte, die für den Weg von q_i nach q_j benötigt werden.

Notation: $h_{ij} := \mathbb{E}[T_{ij}]$ (falls der bedingte Erwartungswert existiert).

Rückkehrzeiten

Im Fall $q_i = q_j$ gilt $T_{ii} = 0$ weil "die Kette schon in q_i ist".

Wir untersuchen auch, wie lange es dauert, bis Zustand q_i zu einem späteren Zeitpunkt wieder besucht wird.

Definition 184

Sei T'_j die Zufallsvariable

$$T_j'(\sigma) := \left\{ \begin{array}{ll} \min\{\frac{n}{2} \geq 1 \mid X_n(\sigma) = q_j\} & \text{wenn Menge nichtleer} \\ \infty & \text{sonst} \end{array} \right.$$

Die bedingte Zufallsvariable

$$T_i := T'_i \mid , X_0 = q_i$$

ist die Rückkehrzeit (engl. recurrence time) von q_i .

Notation: $h_i := \mathbb{E}[T_i]$ (falls der bedingte Erwartungswert existiert).

Ankunfts- und Rückkehrw'keiten

Definition 185

Die Ankunftsw'keit f_{ij} , vom Zustand q_i nach beliebig vielen Schritten in den Zustand q_j zu gelangen ist definiert durch

$$f_{ij} := \Pr[T_j < \infty \mid X_0 = q_i].$$

Die Rückkehrw'keit f_i , vom Zustand q_i nach beliebig vielen Schritten (mindestens 1) zurück zum Zustand q_i zu kehren ist definiert durch

$$f_i := \Pr[T_i < \infty \mid X_0 = q_i].$$

Ein Beispiel

Beispiel 186
$$1,0 \underbrace{0,5}_{0,5} \underbrace{0,5}_{0,5}$$

$$0,5$$

Für alle $\sigma \in \Pi_{\omega}$ gilt

$$T_0(\sigma) = 1 \qquad T_{01}(\sigma) = T_{02}(\sigma) = T_{03}(\sigma) = \infty$$

$$T_{10}(\sigma) = \begin{cases} 1 & \text{falls } X_1(\sigma) = 0 \\ \infty & \text{falls } X_1(\sigma) = 2 \end{cases}$$

Es gilt auch

$$f_{10}=0.5\;,\;f_{32}=1\;,\;f_{2}=1\;\;\;{\rm und}\;\;\;h_{10}=\infty\;,\;h_{32}=2$$

Berechnung von f_{ij} und h_{ij} I

Lemma 187

Für die erwarteten Übergangs-/Rückkehrzeiten gilt

$$h_{ij}=1+\sum_{k
eq j}p_{ik}h_{kj}$$
 für alle $q_i,q_j\in Q,q_i
eq q_j$
$$h_j=1+\sum_{k
eq j}p_{jk}h_{kj}$$
 für alle $q_j\in Q$

sofern die Erwartungswerte h_{ij} und h_{kj} existieren.

Für die Ankunfts-/Rückkehrwahrscheinlichkeiten gilt analog

$$f_{ij}=p_{ij}+\sum_{k
eq j}p_{ik}f_{kj}$$
 für alle $q_i,q_j\in Q,q_i
eq q_j$
$$f_j=p_{jj}+\sum_{k
eq j}p_{jk}f_{kj}$$
 für alle $q_j\in Q$

Berechnung von f_{ij} und h_{ij} II

Beweis für f_{ij} :

Sei $q_i \neq q_j$. Es gilt

$$\Pr[T_{ij} < \infty \mid X_1 = q_k] = \Pr[T_{kj} < \infty] \quad \text{für } q_k \neq q_j$$

$$\Pr[T_{ij} < \infty \mid X_1 = q_j] = 1$$

und damit

$$f_{ij} = \Pr[T_{ij} < \infty] = \sum_{q_k \in Q} \Pr[T_{ij} < \infty \mid X_1 = q_k] \cdot p_{ik}$$
$$= p_{ij} + \sum_{k \neq j} \Pr[T_{kj} < \infty] \cdot p_{ik} = p_{ij} + \sum_{k \neq j} p_{ik} f_{kj}$$

Die Ableitung für f_j ist analog.

Berechnung von f_{ij} und h_{ij} III

Beweis für h_{ij} :

Sei $q_i \neq q_j$. Es gilt

$$\begin{array}{lcl} \mathbb{E}[T_{ij} \mid X_1 = q_k] & = & 1 + \mathbb{E}[T_{kj}] & \text{für } q_k \neq q_j \\ \mathbb{E}[T_{ij} \mid X_1 = q_j] & = & 1 \end{array}$$

und damit

$$h_{ij} = \mathbb{E}[T_{ij}] = \sum_{q_k \in Q} \mathbb{E}[T_{ij} \mid X_1 = q_k] \cdot p_{ik}$$
$$= p_{ij} + \sum_{k \neq j} (1 + \mathbb{E}[T_{kj}]) \cdot p_{ik} = 1 + \sum_{k \neq j} h_{kj} \cdot p_{ik}$$

Die Ableitung für h_j analog.

Berechnung von f_{ij} und h_{ij} IV

Beispiel 188

Für die Übergangszeiten für die Zustände 2 und 3 erhalten wir die Gleichungen

$$\begin{array}{rclcrcl} h_{23} & = & 1 & & h_2 & = & 1 + h_{32} \\ h_{32} & = & 1 + \frac{1}{2} \, h_{32} & & h_3 & = & 1 + \frac{1}{2} \, h_{23} \end{array}$$

mit Lösung

$$h_{23} = 1$$
 $h_{32} = 2$ $h_2 = 3$ $h_3 = 1.5$

Berechnung von f_{ij} und h_{ij} V

Beispiel 189 (Zweite Frage von Armand)

Wenn Cécile mich verlässt, wie lange dauert es im Schnitt, bis sie zurückkommt?

Armand interessiert sich für h_{21} für die Kette mit

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix}$$

Wir erhalten das Gleichungssystem

$$h_{12} = 1 + p_{11} h_{12} = 1 + 0.8 h_{12}$$
 $h_{1} = 1 + p_{12} h_{21} = 1 + 0.2 h_{21}$ $h_{21} = 1 + p_{22} h_{21} = 1 + 0.9 h_{21}$ $h_{2} = 1 + p_{21} h_{12} = 1 + 0.1 h_{12}$

mit Lösung

$$h_{12} = 5$$
 $h_{21} = 10$ $h_1 = 3$ $h_2 = 1.5$

Das Gamblers Ruin Problem I

Beispiel 190

Cécile entscheidet, Armand und Bertrand sollen Poker spielen, bis einer von ihnen bankrott ist. Sie zieht dann endgültig beim Gewinner ein.

Armand und Bertrand verfügen jeweils über Kapital a und m-a.

In jeder Pokerrunde setzen beide jeweils eine Geldeinheit.

Armand gewinnt jedes Spiel mit W'keit p und Bertrand mit W'keit q:=1-p.

Frage 1: Mit welcher W'keit zieht Cécile bei Armand ein?

Frage 2: Wieviele Runden müssen im Schnitt gespielt werden?

Das Gamblers Ruin Problem II

Frage 1: Mit welcher W'keit zieht Cécile bei Armand ein?

Wir modellieren das Spiel durch die Markov-Kette

Die Zustände modellieren das aktuelle Kapital von Armand.

Die W'keit, mit der Armand Bertrand in den Ruin treibt is $f_{a,m}$.

Wir erhalten

$$\begin{array}{rcl} f_{0,m} & = & 0 \\ f_{i,m} & = & p \cdot f_{i+1,m} + q \cdot f_{i-1,m} & \text{ für } 1 \leq i < m-1 \\ f_{m-1,m} & = & p + q \cdot f_{m-2,m} \\ f_{m,m} & = & 1 \end{array}$$

Das Gamblers Ruin Problem III

Die Gleichungen können umgeschrieben werden zu

$$\begin{array}{rcl} f_{0,m} & = & 0 \\ f_{1,m} & = & \xi \\ f_{i+1,m} & = & (1/p) \cdot f_{i,m} - (q/p) \cdot f_{i-1,m} & \text{ für } 1 \leq i < m \end{array}$$

mit ξ so gewählt, dass $f_{m,m} = 1$ erfüllt ist.

Es ergibt sich für $p \neq 1/2$ (Fall p = 1/2 analog):

$$f_{i,m} = \frac{p \cdot \xi}{2p - 1} \cdot \left(1 - \left(\frac{1 - p}{p}\right)^i\right) \qquad \xi = \frac{2p - 1}{p \cdot \left(1 - \left(\frac{1 - p}{p}\right)^m\right)}$$

und insgesamt

$$f_{a,m} = \frac{1 - \left(\frac{1-p}{p}\right)^a}{1 - \left(\frac{1-p}{p}\right)^m}$$

Das Gamblers Ruin Problem IV

Frage 2: Wieviele Runden müssen im Schnitt gespielt werden? Wir betrachten die Zufallsvariable

$$U_i :=$$
 "Anzahl der Schritte von q_i nach q_0 oder q_m " Mit $d_i := \mathbb{E}[U_i]$ gilt
$$d_0 = 0$$

$$d_i = q \cdot d_{i-1} + p \cdot d_{i+1} + 1 \quad \text{für } 1 \leq i < m$$

$$d_m = 0$$

Der Speziallfall p = q = 1/2 ist besonders einfach:

$$d_i = i \cdot (m-i)$$
 für alle $i = 0, \dots, m$

womit unabhängig vom Startzustand das Spiel im Mittel nach höchstens m^2 Schritten beendet ist.

27. Stationäre Verteilung

Stationäre Verteilung I: Motivation

Die Übergangsmatrix der ABC-Kette erfüllt für alle $t \in \mathbb{N}$:

$$P^{t} = B \cdot D^{t} \cdot B^{-1} = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0.7^{t} & 0 \\ 0 & 1^{t} \end{pmatrix} \cdot \begin{pmatrix} -1/3 & 1/3 \\ 1/3 & 2/3 \end{pmatrix}$$

Für $t \to \infty$ erhalten wir

$$\lim_{t \to \infty} P^t = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1/3 & 1/3 \\ 1/3 & 2/3 \end{pmatrix} = \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix}$$

und so gilt für eine beliebige Anfangsverteilung $\mathcal{Q}_0 = (a,1-a)$

$$\lim_{t \to \infty} Q_t = \lim_{t \to \infty} Q_0 \cdot P^t = (a, 1 - a) \cdot \begin{pmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{pmatrix} = \begin{pmatrix} \frac{1}{3}, \frac{2}{3} \end{pmatrix}$$

Stationäre Verteilung II: Motivation

Das System konvergiert also unabhängig von der Anfangsverteilung in die feste Verteilung $\pi=(1/3\,,\,2/3).$

Intuitive Antwort auf Armands dritte Frage:

Die Verteilung der Zeit, die Cécile bei Armand und Bertrand verbringt, konvergiert gegen: 1/3 der Zeit bei Armand, 2/3 bei Bertrand.

Offene Punkte:

- (1) Konvergiert jede Kette in eine feste Verteilung unabhängig von der Anfangsverteilung?
- (2) Wenn so, wie kann diese Verteilung berechnet werden?
- (3) Stimmt die intuitive Antwort auf Armands dritte Frage? Wie kann die Frage überhaupt formalisiert werden?

Stationäre Verteilung III: Motivation

Wenn eine Kette immer in eine Verteilung π konvergiert, dann muss sie mit π als Anfangsverteilung "in π bleiben".

Wir erwarten also

$$\pi \cdot P = \pi$$

d.h., π soll Eigenvektor von P zum Eigenwert 1 sein (bezüglich Multiplikation von links).

In der Tat gilt:

$$\pi \cdot P = (1/3, 2/3) \cdot \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix} = (1/3, 2/3) = \pi.$$

Stationäre Verteilung IV: Definition

Definition 191

Sei P die Übergangsmatrix einer Markov-Kette. Einen Zustandsvektor π mit $\pi=\pi\cdot P$ nennen wir stationäre Verteilung der Markov-Kette.

Umformulierung der Frage (a): Besitzen alle Markov-Ketten die Eigenschaft, dass sie unabhängig von der Anfangsverteilung in eine bestimmte stationäre Verteilung konvergieren?

Nein!

Diese Kette hat unendlich viele zwei stationäre Verteilungen:

$$(a, 0, 1 - a)$$
 für alle $a \in [0, 1]$

Stationäre Verteilung V: Irreduzible Ketten

Definition 192

Eine Markov-Kette heißt irreduzibel, wenn es für alle Zustandspaare q_i, q_j eine Zahl $n \in \mathbb{N}$ gibt, so dass $(P^n)_{ij} > 0$.

Wir bezeichen
$$p_{ij}^{(n)} := (P^n)_{ij}$$
.

Äquivalente Definition: Eine Markov-Kette heißt irreduzibel, wenn ihr Markov-Diagramm stark zusammenhängend ist.

Lemma 193

Für irreduzible endliche Markov-Ketten gilt für alle Zustände $q_i,q_j\in Q$:

- (a) $f_{ij} = \Pr[T_{ij} < \infty] = 1$, und
- (b) der Erwartungswert $h_{ij} = \mathbb{E}[T_{ij}]$ existiert.

Stationäre Verteilung VI: Irreduzible Ketten

Beweis:

Zu (b): Sei $q_k \in Q$ beliebig. Es gibt n_k mit $p_{kj}^{(n_k)} > 0$.

Sei
$$n := \max_{k} \{n_k\}$$
 und $p := \min_{k} \{p_{kj}^{(n_k)}\}.$

Wir unterteilen die Zeit in Phasen zu n Schritten.

Wir nennen eine Phase erfolgreich, wenn während dieser Phase ein Besuch bei q_i stattfindet.

Die Anzahl von Phasen bis zur ersten erfolgreichen Phase können wir durch eine geometrische Verteilung mit Parameter $\,p\,$ abschätzen.

Die erwartete Anzahl von Phasen ist somit höchstens 1/p.

Es folgt
$$h_{ij} \leq (1/p) n$$
 und $f_{ij} = \Pr[T_{ij} < \infty] = 1$.

Stationäre Verteilung VII: Irreduzible Ketten

Satz 194

Eine irreduzible endliche Markov-Kette besitzt eine eindeutige stationäre Verteilung π und es gilt $\pi(q_j) = 1/h_j$ für alle $q_j \in Q$.

Beweis:

(a) Z.z.: Es gibt einen Vektor $\pi \neq 0$ mit $\pi = \pi \cdot P$.

Sei $e := (1, ..., 1)^T$ und sei I die Einheitsmatrix.

Es gilt Pe=e. (Einträge einer Zeile von P addieren sich zu 1).

Daraus folgt 0 = Pe - e = (P - I)e. Damit ist die Matrix P - I singulär.

Es gibt also $\pi \neq 0$ mit $(P^T - I) \cdot \pi = 0$.

Stationäre Verteilung VIII: Irreduzible Ketten

(b) Z.z.: Wenn $\pi=\pi\cdot P$ für $\pi\neq 0$, dann $\pi(q_j)=1/h_j$ für alle $q_j\in Q$.

Wir betrachten zwei Fälle:

Fall 1.
$$\sum_{q_i \in Q} \pi(q_i) \neq 0.$$

O.B.d.A. sei $\sum_{q_i \in Q} \pi(q_i) = 1$.

Für jeden Zustand $q_j \in Q$ gilt (Lemma 193 und 187)

$$\begin{array}{lcl} \pi(q_i)h_{ij} & = & \pi(q_i) \left(1 + \sum_{k \neq j} p_{ik}h_{kj}\right) & \text{für } q_i \neq q_j \\ \\ \pi(q_j)h_j & = & \pi(q_j) \left(1 + \sum_{k \neq j} p_{jk}h_{kj}\right) \end{array}$$

Stationäre Verteilung IX: Irreduzible Ketten

Addition der Gleichungen ergibt

$$\pi(q_j)h_j + \sum_{q_i \neq q_j} \pi(q_i)h_{ij} = \sum_{q_i \in Q} \pi(q_i) + \sum_{q_i \in Q} \sum_{q_k \neq q_j} \pi(q_i)p_{ik}h_{kj}$$

Mit $\sum_{q_i \in Q} \pi(q_i) = 1$ folgt

$$\pi(q_{j})h_{j} + \sum_{q_{i} \neq q_{j}} \pi(q_{i})h_{ij} = 1 + \sum_{q_{i} \in Q} \sum_{q_{k} \neq q_{j}} \pi(q_{i})p_{ik}h_{kj}
= 1 + \sum_{q_{k} \neq q_{j}} h_{kj} \sum_{q_{i} \in Q} \pi(q_{i})p_{ik}
= 1 + \sum_{q_{k} \neq q_{j}} h_{kj}\pi(q_{k})$$

und so $\pi(q_i)h_i = 1$.

Stationäre Verteilung X: Irreduzible Ketten

Fall 2.
$$\sum_{q_i \in Q} \pi(q_i) = 0.$$

Dieselbe Rechnung ergibt nun

$$\pi(q_j)h_j + \sum_{q_i \neq q_j} \pi(q_i)h_{ij} = 0 + \sum_{q_i \in Q} \sum_{q_k \neq q_j} \pi(q_i)p_{ik}h_{kj}$$
$$= \sum_{q_k \neq q_j} h_{kj}\pi(q_k)$$

Es folgt $\pi(q_j) = 0$ für alle $q_j \in Q$, im Widerspruch zu $\pi \neq 0$. Dieser Fall ist also eigentlich nicht möglich.

Stationäre Verteilung XI: Aperiodische Ketten

Auch wenn eine Markov-Kette eine eindeutige stationäre Verteilung besitzt, so muss sie nicht für jede Anfangsverteilung in diese Verteilung konvergieren.

Beispiel:

Als Anfangsverteilung nehmen wir $\pi_0 = (1,0)$ an. Es gilt:

$$\pi_t = \begin{cases} (1,0) & \text{falls } t \text{ gerade,} \\ (0,1) & \text{sonst.} \end{cases}$$

Die Kette pendelt also zwischen den beiden Vektoren (1,0) und (0,1) hin und her.

Die eindeutige stationäre Verteilung ist (1/2, 1/2).

Stationäre Verteilung XII: Aperiodische Ketten

Definition 195

Die Periode eines Zustands q_j ist die größte Zahl $\xi \in \mathbb{N}$, so dass gilt:

$$\{n \in \mathbb{N}_0 \mid p_{jj}^{(n)} > 0\} \subseteq \{i \cdot \xi \mid i \in \mathbb{N}_0\}$$

Ein Zustand mit Periode $\xi = 1$ heißt aperiodisch.

Eine Markov-Kette ist aperiodisch, wenn alle Zustände aperiodisch sind.

Stationäre Verteilung XIII: Aperiodische Ketten

Lemma 196

Ein Zustand $q_i \in Q$ ist genau dann aperiodisch, wenn es ein $n_0 \in \mathbb{N}$ gibt mit $p_{ii}^{(n)} > 0$ für alle $n \geq n_0$.

Beweis:

- (\Rightarrow) Aus $p_{ii}^{(n_0)} > 0$ und $p_{ii}^{(n_0+1)} > 0$ folgt $\xi = 1$.
- (\Leftarrow) Wenn q_i aperiodisch ist, dann gibt es teilerfremde $a,b\in\mathbb{N}$ mit $p_{ii}^{(a)}>0$ und $p_{ii}^{(b)}>0$.

Ein bekannter Fakt der elementaren Zahlentheorie besagt: Da $a,b\in\mathbb{N}$ teilerfremd gibt es $n_0\in\mathbb{N}$, so dass für alle $n\geq n_0$ es nichtnegative Zahlen $x,y\in\mathbb{N}_0$ gibt mit n=xa+yb.

Es folgt $p_{ii}^{(n)} > 0$ für alle $n \ge n_0$ und wir sind fertig.

Stationäre Verteilung XIV: Aperiodische Ketten

 $p_{ii}^{(n)}>0$ gilt genau dann, wenn das Markov-Diagramm einen Pfad von q_i nach q_i der Länge n hat.

Es folgt: Wenn q_i eine Schleife hat (d.h. $p_{ii}>0$ gilt), dann ist q_i aperiodisch.

Damit kann eine Kette folgendermaßen durch eine aperiodische Kette "simuliert" werden:

- Füge an jedem Zustand eine Schleife an mit W'keit 1/2.
- Halbiere die W'keiten an allen übrigen Kanten.

Bei irreduziblen Ketten genügt es, eine einzige Schleife einzuführen.

Stationäre Verteilung XV: Ergodische Ketten

Definition 197

Irreduzible, aperiodische Markov-Ketten nennt man ergodisch.

Satz 198 (Fundamentalsatz für ergodische Markov-Ketten)

Für jede ergodische endliche Markov-Kette $M=(Q,T,\delta,\mathcal{Q}_0)$ gilt

$$\lim_{n\to\infty} \mathcal{Q}_n = \pi,$$

wobei π die eindeutige stationäre Verteilung von M bezeichnet.

Bemerkung: π ist unabhängig von der Anfangsverteilung!

Stationäre Verteilung XVI: Ergodische Ketten

Beweis:

(Skizze.) Wir zeigen, dass für beliebige q_i, q_k gilt

$$\lim_{n\to\infty} p_{ik}^{(n)} = \pi_k.$$

Daraus folgt die Behauptung, da

$$\pi_n(q_k) = \sum_{q_i \in Q} \mathcal{Q}_0(q_i) \cdot p_{ik}^{(n)} \to \pi(q_k) \cdot \sum_{q_i \in Q} \mathcal{Q}_0(q_i) = \pi(q_k).$$

Wir betrachten das "Produkt" zweier Kopien der Kette mit Zuständen (q_i,q_j) und Übergangsw'keiten

$$\delta((q_i, q_j), (q_{i'}, q_{j'})) = p_{ii'} \cdot p_{jj'}$$

Diese Produktkette ist ebenfalls ergodisch.

Stationäre Verteilung XVII: Ergodische Ketten

Sei H die Zufallsvariable, die die kleinste Zeit angibt, an die sich die Kette in einen Zustand der Gestalt (q,q) befindet.

Aus Lemma 193 und der Endlichkeit der Markov-Kette folgt

$$\Pr[H < \infty] = 1$$
 und $\mathbb{E}[H] < \infty$

unabhängig von der Anfangsverteilung.

Seien X_t, Y_t Zufallsvariablen, die den Zustand der ersten bzw. der zweiten Komponente angeben.

Für ein festes t gilt $\Pr[X_t = q \mid t \geq H] = \Pr[Y_t = q \mid t \geq H]$ und somit auch

$$\Pr[X_t = q, t \ge H] = \Pr[Y_t = q, t \ge H].$$

Stationäre Verteilung XVIII: Ergodische Ketten

Wir wählen ein $q_i \in Q$ und setzen für die Anfangsverteilung \mathcal{Q}_0 der Produktkette

$$Q_0(q, q') = \begin{cases} \pi(q') & \text{wenn } q = q_i \\ 0 & \text{sonst} \end{cases}$$

Intuition: die erste Komponente startet im Zustand q_i , die zweite startet (und bleibt) in der stationären Verteilung π .

Wir erhalten für alle $q_k \in Q$ und $n \ge 1$

$$\begin{aligned} |p_{ik}^{(n)} - \pi(q_k)| &= |\Pr[X_n = q_k] - \Pr[Y_n = q_k]| \\ &= |\Pr[X_n = q_k, n \ge H] + \Pr[X_n = q_k, n < H] \\ &- \Pr[Y_n = q_k, n \ge H] - \Pr[Y_n = q_k, n < H]| \end{aligned}$$

Stationäre Verteilung XIX: Ergodische Ketten

Mit
$$\Pr[X_t = q, t \ge H] = \Pr[Y_t = q, t \ge H]$$
 gilt

$$|p_{ik}^{(n)} - \pi(q_k)| = |\Pr[X_n = q_k, n < H] - \Pr[Y_n = q_k, n < H]|$$

und wegen $|\Pr[A \cap B] - \Pr[A \cap C]| \le \Pr[A]$ folgt

$$|p_{ik}^{(n)} - \pi(q_k)| \le \Pr[n < H]$$

Da $\Pr[H < \infty] = 1$, gilt $\lim_{n \to \infty} \Pr[n < H] = 0$, d.h.

$$\lim_{n \to \infty} p_{ik}^{(n)} = \pi(q_k)$$

für alle $q_i, q_k \in Q$.

Stationäre Verteilung XX: Ergodische Ketten

Sei $q \in Q$ und $k \ge 0$. Seien X_q^k und B_q die Zufallsvariablen mit

$$\begin{array}{lcl} X_q^k(\sigma) & = & \left\{ \begin{array}{ll} 1 & \text{falls } \sigma(k) = q \\ 0 & \text{sonst} \end{array} \right. \\ \\ B_q(\sigma) & = & \left\{ \begin{array}{ll} \lim\limits_{n \to \infty} \frac{X_q^0 + \dots + X_q^n}{n} & \text{wenn der Grenzwert} \\ \bot & \text{sonst} \end{array} \right. \end{array}$$

Satz 199 (Ergodischer Satz (ohne Beweis))

Für jeden Zustand q einer ergodischen endlichen Kette mit stationärer Verteilung π gilt

$$\Pr[B_q = \pi(q)] = 1 .$$

Stationäre Verteilung XXI: Ergodische Ketten

Beispiel 200 (Armands dritte Frage)

Wenn unsere ménàge a trois für immer so weiter geht, wieviel Prozent der Tage wird Cécile mit mir verbringen?

Armand fragt nach der Verteilung von B_{q_1} .

Der ergodische Satz zeigt, dass B_{q_1} den Wert 1/3 mit W'keit 1 nimmt.

Cécile wird "auf langer Sicht" mit W'keit 1 ein drittel der Tage mit Armand verbringen.