

Data Science Challenge

Tire Identification

Table of contents

- Challenge
- Timeline
- Dataset
- Deliverables
- Evaluation
- Useful information

2

Data Science Challenge

> **The goal** is to create an image recognition engine that, given an image of a tire sidewall, allows the automatic reading of character information (markings).

Data Science Challenge

✓ Use case: to develop an Optical Character Recognition (OCR) of serial tire identification number (serial number) on Commercial Specialty Tires (CST).

How to create AI using image recognition

Timeline of Hackathon

Analysis of image recognition dataset

Prepare training and test sets to develop a robust model

Sidewall markings recognition using image algorithms to detect the serial number of the CST tires

Submit final predictions for a new test set that will be provided by the end of the competition (Sunday morning)

Dataset

- Training set (80%)
 - We have 295 images of Commercial Vehicle Tires (CVT), cropped in the serial number region. The annotations are in COCO format.
 - labels_train.json: 295 train set annotations
- Testing set (20%)
 - The test data will be made available for 15 minutes on Sunday morning. The teams have 15 minutes to run the inference and submit the predictions in the expected csv format.
 - labels test.json: 74 test set annotations

b0cdae.png

serialno_0d82763c106927bb80e295a114b3a4a5ab serialno_0da7d4272d4c48883ea83dd29012c2fdcb serialno_0e43e794c02977b48eef46a95558bf2023 1e44c6.png

serialno_1b328ed0bf6439fda46d6767e4991f8938b serialno_1bb904039d49bbfb48822627068bd8b9c1

serialno_1c82c649ce1c99cc786c4ebe81e57cf6520

serialno 2a89accb20b6bad5759da6ddd2b32a952c serialno 2b86a49d84b080a90773c6b32b6f64a4e4 serialno 2e6d221df343fc5ca05ee89c6790c350a6c serialno 2fcd2864495b01dbdde5059c2bc29cfe0e serialno 3a7db1dad930ea1ac9eb3e668371622df a6b1ed.png


```
"id": 1295,
"image id": 104,
"category_id": 3,
"area": 12144.0,
"bbox": [
   423.0,
   824.0,
   88.0,
   138.0
"iscrowd": 0,
"attributes": {
   "batch cvat": "empty",
   "train test": "train",
   "brand": "TBD",
   "orientation": null
```

```
"id": 1296,
"image id": 104,
"category id": 7,
"area": 11288.0,
"bbox": [
   510.0.
   820.0.
   83.0,
   136.0
"iscrowd": 0,
"attributes": {
    "batch_cvat": "empty",
   "train test": "train",
   "brand": "TBD",
    "orientation": null
```

Data vizualization

A script will be provided to launch Voxel FiftyOne app for data vizualization at

https://github.com/NIAEFEUP/datattack

Evaluation Procedure

• The **Levenshtein distance** is a string metric for measuring the difference between two strings. It is calculated as the <u>minimum number of single-character edits</u> necessary to transform one string into another.

Participants should provide a csv file for the test set in the following format:

image_name	string_1	string_2	string_1_prediction	string_2_prediction	ls_distance_1	ls_distance_2	ls_distance_avg
0 serialno_e2801d5c6408262ec75a0e661496172467fc38bc.png	6133548541		8574212507	665909561	9		9
1 serialno_97b3a0c993f6bc08652f407bcd60541025701fce.png	6133548541		4066669589	575421672	9		9
2 serialno_5da8c43b37c67d37a65f642147bcfe6c03f055a3.png	6134202576		9392758237	103903242	8		8
3 serialno_43c2644a27af2cabed686ca012cd095fcf2d843e.png	6133548574		3197478441	630975254	8		8
4 serialno_f83f17ad7fd0380e2a8d0adb305bdcffb5f8bc62.png	6129844192		3395393632	765739039	9		9
5 serialno_99b455d0fadbd7d167d30a3a5d8a6e622ff8a2cf.png	6115535543		7384826006	424932615	10		10
6 serialno_aed1f6ea4a289e521db611cd320cbbca593ac940.png	6115535543		5985077972	402980042	9		9
7 serialno_ab6980a9fb988cb771af75faff1e73a030099b81.png	6130769635		8596189794	378800657	9		9
8 serialno_6725e617ca16792ab0c5c7d1e4389bb88f2a5595.png	6129419586		4602774453	435419566	8		8
9 serialno_14774fd83267809bcab241c40258b2d79a8a2683.png	3701427804		1938758491	516087145	10		10
0 serialno_b980b255720ec18f407eab6ef21aa8047dcc34c4.png	3702044013		2271915740	295396260	9		9
1 serialno 3a761604a2e64b0882792c639cb486b9185f3d8c.png	6136309131	372672052	9848306324	835473601	8	10	9

A script for exporting predictions in this format, given a directory of test images, is given at https://github.com/NIAEFEUP/datattack

Evaluation Criteria

- Teams will also be evaluated with additional criteria:
 - Pitch for the presentation
 - Technical solution approach and performance
 - New collected and annotated data
 - Acquire more CST tire images (how many images were acquired and annotated) and evaluate how the model works for these new images.
- Participants are expected to submit a zip folder with the name [TEAM_NAME].zip
 - New_data: containing additional images collected and annotations in COCO format
 - Code: containing all the scripts used for the solution
 - Pitch presentation slides
- Do NOT distribute the data & DELETE it after the challenge

10

Useful information

- Use Google Colab to develop and train the model (GPU available for free):
 - https://colab.research.google.com/?utm_source=scs-index
- Create a new google account for the team, as it will make it easy to work together with Colab and to mount the drive folder with the dataset on the Colab
- Use the Discord channel to Q&A about the challenge:
 - https://discord.com/channels/968655877529796688/968655877529796691
- Use ImgLab to annotate the new acquired dataset
 - https://imglab.in/
- You can use Voxel FiftyOne to see the dataset and annotations:
 - https://voxel51.com/

12