SBML Model Report

Model name: "Markevich2004_MAPK-_phosphoRandomElementary"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Nicolas Le Novre¹ at May 23rd 2005 at 4:11 p.m. and last time modified at May 15th 2012 at 9:42 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	16
events	0	constraints	0
reactions	17	function definitions	0
global parameters	27	unit definitions	1
rules	0	initial assignments	0

Model Notes

The model corresponds to the schema 3 of Markevich et al 2004, as described in the figure 2 and the supplementary table S2. Phosphorylations follow distributive random kinetics, while dephosphorylations follow an ordered mechanism. The phosphorylations are modeled with three elementary reactions:

$$E+S <=>ES->E+P$$

¹EMBL-EBI, lenov@ebi.ac.uk

The dephosphorylations are modeled with five elementary reactions:

E+S <=>ES->EP <=>E+P

The model reproduces figure 5 in the main article.

The model is further described in:

Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Markevich NI, Hoek JB, Kholodenko BN. J Cell Biol. 2004 Feb 2;164(3):353-9.

PMID: 14744999; DOI: 10.1083/jcb.200308060

Abstract:

Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, a cycle where multisite phosphorylations are performed by different kinases, but dephosphorylation reactions are catalyzed by the same phosphatase, can also exhibit bistability and hysteresis. Hence, bistability induced by multisite covalent modification may be a widespread mechanism of the control of protein activity.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2010 The BioModels.net Team. For more information see the terms of use .

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nanomole (default)

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell		3	1	litre	Z	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 16 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
M	ERK	cell	$nmol \cdot l^{-1}$		\Box
MpY	ERK-PY	cell	$\operatorname{nmol} \cdot 1^{-1}$		\Box
MpT	ERK-PT	cell	$nmol \cdot l^{-1}$		
Мрр	ERK-PP	cell	$nmol \cdot l^{-1}$		
MEK	MEK	cell	$nmol \cdot l^{-1}$		\Box
MKP3	MKP3	cell	$nmol \cdot l^{-1}$		
MpY_MEK	ERK-PY_MEK	cell	$nmol \cdot l^{-1}$		
MpT_MEK	ERK-PT_MEK	cell	$nmol \cdot l^{-1}$		
M_MEK_Y	ERK_MEK_Y	cell	$\operatorname{nmol} \cdot 1^{-1}$		
M_MEK_T	ERK_MEK_T	cell	$nmol \cdot l^{-1}$		
Mpp_MKP3	ERK-PP_MKP3	cell	$nmol \cdot l^{-1}$		
MpY_MKP3	ERK-PY_MKP3	cell	$nmol \cdot l^{-1}$		
MpT_MKP3_Y	ERK-PT_MKP3_Y	cell	$nmol \cdot l^{-1}$		
MpT_MKP3_T	ERK-PT_MKP3_T	cell	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
M_MKP3_T	ERK_MKP3_T	cell	$nmol \cdot l^{-1}$		\Box
M_MKP3_Y	ERK_MKP3_Y	cell	$\operatorname{nmol} \cdot 1^{-1}$	\Box	

5 Parameters

This model contains 27 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	0.005		Ø
$k_{-}1$	$k_{-}1$	1.000		
k2	k2	1.080		\checkmark
k3	k3	0.025		\checkmark
k_3	$k_{-}3$	1.000		\checkmark
k4	k4	0.007		\checkmark
k5	k5	0.050		$\overline{\mathbf{Z}}$
$k_{-}5$	k_5	1.000		$\overline{\mathscr{L}}$
k6	k6	0.008		$\overline{\checkmark}$
k7	k7	0.005		$\overline{\mathbf{Z}}$
$k_{-}7$	$k_{-}7$	1.000		$\overline{\mathbf{Z}}$
k8	k8	0.450		$\overline{\mathscr{L}}$
h1	h1	0.045		$\overline{\mathbf{Z}}$
$h_{-}1$	$h_{-}1$	1.000		$\overline{\mathbf{Z}}$
h2	h2	0.092		$\overline{\mathbf{Z}}$
h3	h3	1.000		$\overline{\checkmark}$
h_3	h_3	0.010		$\overline{\checkmark}$
h4	h4	0.010		\checkmark
h_4	h_4	1.000		$\overline{\mathscr{L}}$
h5	h5	0.500		
h6	h6	0.086		$\overline{\mathbf{Z}}$
$h_{-}6$	h_6	0.001		$\overline{\mathbf{Z}}$
h7	h7	0.010		$\overline{\mathscr{L}}$
$h_{-}7$	$h_{-}7$	1.000		$\overline{\mathscr{L}}$
h8	h8	0.470		$\overline{\checkmark}$
h9	h9	0.140		\checkmark
$h_{-}9$	$h_{-}9$	0.002		

6 Reactions

This model contains 17 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
1	reaction- _0000001	binding ERK and MEK	$M + MEK \Longrightarrow M_MEK_Y$	
2	reaction- _0000002	tyr phosphorylation of ERK	$M_MEK_Y \longrightarrow MpY + MEK$	
3	reaction- _0000003	binding ERK-PY and MEK	$MpY + MEK \Longrightarrow MpY_MEK$	
4	reaction- _000004	thr phosphorylation of ERK	$MpY_MEK \longrightarrow Mpp + MEK$	
5	reaction- _0000005	binding ERK and MEK	$M + MEK \Longrightarrow M_MEK_T$	
6	reaction- _000006	thr phosphorylation of ERK	$M_MEK_T \longrightarrow MpT + MEK$	
7	reaction- _0000007	binding ERK-PT and MEK	$MpT + MEK \Longrightarrow MpT_MEK$	
8	reaction- _000008	tyr phosphorylation of ERK	$MpT_MEK \longrightarrow Mpp + MEK$	
9	reaction- _0000009	binding ERK-PP and MKP3	$Mpp + MKP3 \Longrightarrow Mpp_MKP3$	
10	reaction- _0000010	dephosphorylation of tyr on ERK-PP	$Mpp_MKP3 \longrightarrow MpT_MKP3_Y$	
11	reaction- _0000011	dissociation ERK-PT and MKP3	$MpT_MKP3_Y \Longrightarrow MpT + MKP3$	

No	Id	Name	Reaction Equation	SBO
12	reaction- _0000012	dephosphorylation of ERK-PT	$MpT_MKP3_T \longrightarrow M_MKP3_T$	
13	reaction- _0000013	binding ERK-PT and MKP3	$MpT + MKP3 \Longrightarrow MpT_MKP3_T$	
14	reaction- _0000014	dephosphorylation of ERK-PY	$MpY_MKP3 \longrightarrow M_MKP3_Y$	
15	reaction- _000015	dissociation ERK and MKP3	$M_MKP3_T \Longrightarrow M + MKP3$	
16	reaction- _000017	binding ERK-PY and MKP3	$MpY + MKP3 \Longrightarrow MpY_MKP3$	
17	reaction- _0000019	Dissociation ERK and MKP3	$M_MKP3_Y \rightleftharpoons M+MKP3$	

6.1 Reaction reaction_0000001

This is a reversible reaction of two reactants forming one product.

Name binding ERK and MEK

Reaction equation

$$M + MEK \Longrightarrow M_MEK_Y$$
 (1)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
М	ERK	
MEK	MEK	

Product

Table 7: Properties of each product.

Id	Name	SBO
M_MEK_Y	ERK_MEK_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{M}] \cdot [\text{MEK}] - \text{k_1} \cdot [\text{M_MEK_Y}])$$
 (2)

6.2 Reaction reaction_0000002

This is an irreversible reaction of one reactant forming two products.

Name tyr phosphorylation of ERK

Reaction equation

$$M_MEK_Y \longrightarrow MpY + MEK$$
 (3)

Table 8: Properties of each reactant.

	· I · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
M_MEK_Y	ERK_MEK_Y	

Products

Table 9: Properties of each product.

Id	Name	SBO
MpY MEK	ERK-PY MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cell}) \cdot \text{k2} \cdot [\text{M_MEK_Y}] \tag{4}$$

6.3 Reaction reaction_0000003

This is a reversible reaction of two reactants forming one product.

Name binding ERK-PY and MEK

Reaction equation

$$MpY + MEK \Longrightarrow MpY_MEK \tag{5}$$

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
МрҮ	ERK-PY	
MEK	MEK	

Product

Table 11: Properties of each product

14616 11:1	reperties or each p	or oudet.
Id	Name	SBO
MpY_MEK	ERK-PY_MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot (\text{k3} \cdot [\text{MpY}] \cdot [\text{MEK}] - \text{k}_3 \cdot [\text{MpY}_{\text{MEK}}])$$
 (6)

6.4 Reaction reaction_0000004

This is an irreversible reaction of one reactant forming two products.

Name thr phosphorylation of ERK

Reaction equation

$$MpY_MEK \longrightarrow Mpp + MEK$$
 (7)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
MpY_MEK	ERK-PY_MEK	

Products

Table 13: Properties of each product.

Id	Name	SBO
Mpp MEK	ERK-PP MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{cell}\right) \cdot \text{k4} \cdot [\text{MpY_MEK}] \tag{8}$$

6.5 Reaction reaction_0000005

This is a reversible reaction of two reactants forming one product.

Name binding ERK and MEK

Reaction equation

$$M + MEK \Longrightarrow M_MEK_T$$
 (9)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
М	ERK	
MEK	MEK	

Product

Table 15: Properties of each product.

Id	Name	SBO
M_MEK_T	ERK_MEK_T	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{cell}) \cdot (\text{k5} \cdot [\text{M}] \cdot [\text{MEK}] - \text{k_5} \cdot [\text{M_MEK_T}])$$
 (10)

6.6 Reaction reaction_0000006

This is an irreversible reaction of one reactant forming two products.

Name thr phosphorylation of ERK

Reaction equation

$$M_MEK_T \longrightarrow MpT + MEK$$
 (11)

Table 16: Properties of each reactant.

Id	Name	SBO
M_MEK_T	ERK_MEK_T	

Products

Table 17: Properties of each product.

Id	Name	SBO
MpT MEK	ERK-PT MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cell}) \cdot \text{k6} \cdot [\text{M_MEK_T}]$$
 (12)

6.7 Reaction reaction_0000007

This is a reversible reaction of two reactants forming one product.

Name binding ERK-PT and MEK

Reaction equation

$$MpT + MEK \Longrightarrow MpT_MEK$$
 (13)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
МрТ	ERK-PT	
MEK	MEK	

Product

Table 19: Properties of each product.

14010 17.1	roperties of each	product.
Id	Name	SBO
MpT_MEK	ERK-PT_MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cell}) \cdot (\text{k7} \cdot [\text{MpT}] \cdot [\text{MEK}] - \text{k_7} \cdot [\text{MpT_MEK}])$$
 (14)

6.8 Reaction reaction_0000008

This is an irreversible reaction of one reactant forming two products.

Name tyr phosphorylation of ERK

Reaction equation

$$MpT_MEK \longrightarrow Mpp + MEK$$
 (15)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
MpT_MEK	ERK-PT_MEK	

Products

Table 21: Properties of each product.

Id	Name	SBO
Мрр	ERK-PP	
MEK	MEK	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{cell}) \cdot \text{k8} \cdot [\text{MpT_MEK}]$$
 (16)

6.9 Reaction reaction_0000009

This is a reversible reaction of two reactants forming one product.

Name binding ERK-PP and MKP3

Reaction equation

$$Mpp + MKP3 \rightleftharpoons Mpp_MKP3 \tag{17}$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
Mpp MKP3	ERK-PP MKP3	

Product

Table 23: Properties of each product.

Id	Name	SBO
Mpp_MKP3	ERK-PP_MKP3	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{cell}) \cdot (\text{h1} \cdot [\text{Mpp}] \cdot [\text{MKP3}] - \text{h_1} \cdot [\text{Mpp_MKP3}])$$
 (18)

6.10 Reaction reaction_0000010

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of tyr on ERK-PP

Reaction equation

$$Mpp_MKP3 \longrightarrow MpT_MKP3_Y \tag{19}$$

Table 24. Properties of each reactain.		
Id	Name	SBO
Mpp_MKP3	ERK-PP_MKP3	

Product

Table 25: Properties of each product.

Id	Name	SBO
MpT_MKP3_Y	ERK-PT_MKP3_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{cell}) \cdot \text{h2} \cdot [\text{Mpp_MKP3}] \tag{20}$$

6.11 Reaction reaction_0000011

This is a reversible reaction of one reactant forming two products.

Name dissociation ERK-PT and MKP3

Reaction equation

$$MpT_MKP3_Y \Longrightarrow MpT + MKP3 \tag{21}$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
MpT_MKP3_Y	ERK-PT_MKP3_Y	

Products

Table 27: Properties of each product.

Id	Name	SBO
МрТ	ERK-PT	
MKP3	MKP3	

Id	Name	SBO

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = vol(cell) \cdot (h3 \cdot [MpT_MKP3_Y] - h_3 \cdot [MpT] \cdot [MKP3])$$
 (22)

6.12 Reaction reaction_0000012

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of ERK-PT

Reaction equation

$$MpT_MKP3_T \longrightarrow M_MKP3_T$$
 (23)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
MpT_MKP3_T	ERK-PT_MKP3_T	

Product

Table 29: Properties of each product.

Id	Name	SBO
M_MKP3_T	ERK_MKP3_T	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{cell}) \cdot \text{h5} \cdot [\text{MpT_MKP3_T}]$$
 (24)

6.13 Reaction reaction_0000013

This is a reversible reaction of two reactants forming one product.

Name binding ERK-PT and MKP3

Reaction equation

$$MpT + MKP3 \Longrightarrow MpT_MKP3_T$$
 (25)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
МрТ	ERK-PT	
MKP3	MKP3	

Product

Table 31: Properties of each product.

Id	Name	SBO
MpT_MKP3_T	ERK-PT_MKP3_T	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h4} \cdot [\text{MpT}] \cdot [\text{MKP3}] - \text{h_4} \cdot [\text{MpT_MKP3_T}]\right) \tag{26}$$

6.14 Reaction reaction_0000014

This is an irreversible reaction of one reactant forming one product.

Name dephosphorylation of ERK-PY

Reaction equation

$$MpY_MKP3 \longrightarrow M_MKP3_Y$$
 (27)

Table 32: Properties of each reactant.

Id	Name	SBO
MpY_MKP3	ERK-PY_MKP3	

Product

Table 33: Properties of each product

14010 33.11	operates or each p	Toduct.
Id	Name	SBO
M_MKP3_Y	ERK_MKP3_Y	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{cell}) \cdot \text{h8} \cdot [\text{MpY_MKP3}]$$
 (28)

6.15 Reaction reaction_0000015

This is a reversible reaction of one reactant forming two products.

Name dissociation ERK and MKP3

Reaction equation

$$M_MKP3_T \rightleftharpoons M + MKP3$$
 (29)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
M_MKP3_T	ERK_MKP3_T	

Products

Table 35: Properties of each product.

Id	Name	SBO
M	ERK	
MKP3	MKP3	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{cell}\right) \cdot \left(\text{h6} \cdot \left[\text{M_MKP3_T}\right] - \text{h_6} \cdot \left[\text{M}\right] \cdot \left[\text{MKP3}\right]\right) \tag{30}$$

6.16 Reaction reaction_0000017

This is a reversible reaction of two reactants forming one product.

Name binding ERK-PY and MKP3

Reaction equation

$$MpY + MKP3 \Longrightarrow MpY MKP3$$
 (31)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
МрҮ	ERK-PY	
MKP3	MKP3	

Product

Table 37: Properties of each product.

Id	Name	SBO
MpY_MKP3	ERK-PY_MKP3	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cell}) \cdot (\text{h7} \cdot [\text{MpY}] \cdot [\text{MKP3}] - \text{h_7} \cdot [\text{MpY_MKP3}])$$
(32)

6.17 Reaction reaction_0000019

This is a reversible reaction of one reactant forming two products.

Name Dissociation ERK and MKP3

Reaction equation

$$M_MKP3_Y \rightleftharpoons M + MKP3 \tag{33}$$

Table 38: Properties of each reactant.

Tuble 50: Troperties of each reactant.		
Id	Name	SBO
M_MKP3_Y	ERK_MKP3_Y	

Products

Table 39: Properties of each product.

Id	Name	SBO
M	ERK	
МКРЗ	MKP3	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{cell}) \cdot (\text{h9} \cdot [\text{M_MKP3_Y}] - \text{h_9} \cdot [\text{M}] \cdot [\text{MKP3}])$$
(34)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species M

Name ERK

Initial concentration $800 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000001, reaction_0000005 and as a product in reaction_0000015, reaction_0000019).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = |v_{15}| + |v_{17}| - |v_{1}| - |v_{5}| \tag{35}$$

7.2 Species MpY

Name ERK-PY

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000003, reaction_0000017 and as a product in reaction_0000002).

$$\frac{d}{dt}MpY = |v_2| - |v_3| - |v_{16}| \tag{36}$$

7.3 Species MpT

Name ERK-PT

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000007, reaction_0000013 and as a product in reaction_0000006, reaction_0000011).

$$\frac{d}{dt}MpT = |v_6| + |v_{11}| - |v_7| - |v_{13}|$$
(37)

7.4 Species Mpp

Name ERK-PP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000009 and as a product in reaction_0000004, reaction_0000008).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mpp} = |v_4| + |v_8| - |v_9| \tag{38}$$

7.5 Species MEK

Name MEK

Initial concentration 180 nmol·l⁻¹

This species takes part in eight reactions (as a reactant in reaction_0000001, reaction_0000003, reaction_0000005, reaction_0000007 and as a product in reaction_0000002, reaction_0000004, reaction_0000006, reaction_0000008).

$$\frac{d}{dt}MEK = v_2 + v_4 + v_6 + v_8 - v_1 - v_3 - v_5 - v_7$$
(39)

7.6 Species MKP3

Name MKP3

Initial concentration $100 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in reaction_0000009, reaction_0000013, reaction_0000017 and as a product in reaction_0000011, reaction_0000015, reaction_0000019).

$$\frac{d}{dt}MKP3 = |v_{11}| + |v_{15}| + |v_{17}| - |v_{9}| - |v_{13}| - |v_{16}|$$
(40)

7.7 Species MpY_MEK

Name ERK-PY_MEK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000004 and as a product in reaction_0000003).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpY}_{-}\mathrm{MEK} = v_3 - v_4 \tag{41}$$

7.8 Species MpT_MEK

Name ERK-PT_MEK

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000008 and as a product in reaction_0000007).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpT}_{-}\mathrm{MEK} = v_7 - v_8 \tag{42}$$

7.9 Species M_MEK_Y

Name ERK_MEK_Y

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000002 and as a product in reaction_0000001).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{M}_{-}\mathrm{MEK}_{-}\mathrm{Y} = v_{1} - v_{2} \tag{43}$$

7.10 Species M_MEK_T

Name ERK_MEK_T

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000006 and as a product in reaction_0000005).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{M}_{-}\mathrm{MEK}_{-}\mathrm{T} = v_{5} - v_{6} \tag{44}$$

7.11 Species Mpp_MKP3

Name ERK-PP_MKP3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000010 and as a product in reaction_0000009).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mpp}_{\mathrm{M}}\mathrm{KP3} = v_9 - v_{10} \tag{45}$$

7.12 Species MpY_MKP3

Name ERK-PY_MKP3

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000014 and as a product in reaction_0000017).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpY}_{-}\mathrm{MKP3} = |v_{16}| - |v_{14}| \tag{46}$$

7.13 Species MpT_MKP3_Y

Name ERK-PT_MKP3_Y

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000011 and as a product in reaction_0000010).

$$\frac{d}{dt}MpT_{-}MKP3_{-}Y = |v_{10}| - |v_{11}|$$
 (47)

7.14 Species MpT_MKP3_T

Name ERK-PT_MKP3_T

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000012 and as a product in reaction_0000013).

$$\frac{d}{dt}MpT_MKP3_T = |v_{13}| - |v_{12}|$$
 (48)

7.15 Species M_MKP3_T

Name ERK_MKP3_T

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000015 and as a product in reaction_0000012).

$$\frac{d}{dt}M_{-}MKP3_{-}T = v_{12} - v_{15}$$
 (49)

7.16 Species M_MKP3_Y

Name ERK_MKP3_Y

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_0000019 and as a product in reaction_0000014).

$$\frac{d}{dt}M_{-}MKP3_{-}Y = v_{14} - v_{17}$$
 (50)

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany