1. a) f(0) is not defined. **b)** f(x) is not defined for x < 0. **c)** f(x) is not well defined because there are two distinct values assigned to each x. **3. a)** Not a function **b)** A function **c)** Not a

tions in parts (a) and (d) 15. a) Onto b) Not onto c) Onto d) Not onto e) Onto 17. a) Depends on whether teach-

- **23.** a) Yes b) No c) Yes d) No **25.** Suppose that f is strictly
- **29.** The function is not one-to-one, so it is not invertible. On the restricted domain, the function is the identity function on the nonnegative real numbers, f(x) = x, so it is its own inverse. **31.** a) $f(S) = \{0, 1, 3\}$ b) $f(S) = \{0, 1, 3, 5, 8\}$

c) $f(S) = \{0, 8, 16, 40\}$ d) $f(S) = \{1, 12, 33, 65\}$ 33. a) Let x and y be distinct elements of A. Because g is one-to-one, g(x) and g(y) are distinct elements of B. Because f is one-to-one, $f(g(x)) = (f \circ g)(x)$ and $f(g(y)) = (f \circ g)(y)$ are distinct elements of C. Hence, $f \circ g$ is one-to-one. b) Let $y \in C$. Because f is onto, y = f(b) for some $b \in B$. Now because g is onto, b = g(x) for some $x \in A$. Hence, $y = f(b) = f(g(x)) = (f \circ g)(x)$. It follows that $f \circ g$ is onto. 35. Let $A = \{a\}$, $B = \{b_1, b_2\}$,

follows that $f \circ g$ is onto. **35.** Let $A = \{a\}, B = \{b_1, b_2\}, C = \{c\}, g(a) = b_1, \text{ and } f(b_1) = f(b_2) = c.$ **37.** No. For

 $(fg)(x) = x^3 + 2x^2 + x + 2$ 41. f is one-to-one because $f(x_1) = f(x_2) \to ax_1 + b = ax_2 + b \to ax_1 = ax_2 \to x_1 = x_2$. f is onto because f((y - b)/a) = y. $f^{-1}(y) = (y - b)/a$.