GIẢI TÍCH (CƠ BẢN)

Tài liệu ôn thi cao học năm 2005

Phiên bản đã chỉnh sửa

PGS TS. Lê Hoàn Hóa

Ngày 15 tháng 12 năm 2004

KHÔNG GIAN MÊTRIC

1 Bất đẳng thức Holder – Bất đẳng Minkovski

Cho p>1,q>1 thỏa mãn $\frac{1}{q}+\frac{1}{q}=1$, sau đây là bất đẳng thức Holder và bất đẳng thức Minkovski cho ba trường hợp.

1.1 Tổng hữu hạn

Cho $x_i, y_i, i = 1, 2, ..., n$ là số thực hoặc phức.

$$\sum_{i=1}^{n} |x_i y_i| \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}$$
 (Bất đẳng thức Holder)
$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$$
 (Bất đẳng thức Minkovski)

1.2 Chuổi số

Cho $x_i, y_i, i \in \mathbb{N}$ là các số thực hay phức

$$\sum_{i=1}^{\infty} |x_i y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{1/q}$$
$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{1/p}$$

1.3 Tích phân

Cho $x, y \colon [a, b] \to \mathbb{R}$ khả tích

$$\int_{a}^{b} |x(t)y(t)| dt \leqslant \left(\int_{a}^{b} |x(t)|^{p} dt\right)^{1/p} \left(\int_{a}^{b} |y(t)|^{q} dt\right)^{1/q}$$

$$\left(\int_{a}^{b} |x(t) + y(t)|^{p} dt\right)^{1/p} \leqslant \left(\int_{a}^{b} |x(t)|^{p} dt\right)^{1/p} + \left(\int_{a}^{b} |y(t)|^{p} dt\right)^{1/p}$$

2 Dinh nghĩa

Cho $X \neq \emptyset$, mêtric d trên X là ánh xạ d: $X \times X \to \mathbb{R}$ thỏa mãn:

- $\bullet \ d(x,y) = d(y,x)$
- $d(x,y) \geqslant 0, d(x,y) = 0 \Leftrightarrow x = y$
- $d(x,z) \leq d(x,y) + d(y,z), \forall x,y,z \in X$ (Bất đẳng thức tam giác)

d(x,y) là khoảng cách giữa hai phần tử x,y. Cặp (X,d) là không gian mêtric.

Ví dụ: i) Trên \mathbb{R}^n hoặc \mathbb{C}^n , $x=(x_1,x_2,\ldots,x_n),y=(y_1,y_2,\ldots,y_n)$, đặt

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$$

$$d_2(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2} \quad \text{(khoảng cách Euclide)}$$

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}, \ p > 1$$

Khi đó d_1, d_2, d_p là các mêtric.

ii) Với $p \geqslant 1$, đặt $X = \{x = (x_n)_n : \sum_{i=1}^{\infty} |x_n|^p < +\infty \}$. Với $x = (x_n)_n, y = (y_n)_n$ đặt

$$d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}$$

Khi đó (X, d) là không gian mêtric.

iii) Cho X là tập hợp các dãy số thực bị chặn. Với $x=(x_n)_n, y=(y_n)_n$ thuộc X ta đặt

$$d(x,y) = \sup\{|x_n - y_n| : n \in \mathbb{N}\}\$$

Khi đó (X, d) là không gian mêtric.

Thật vậy, dễ dàng thấy rằng: $d(x,y) = d(y,x), d(x,y) \ge 0$ và $d(x,y) = 0 \Leftrightarrow x_n = y_n, \forall n \in \mathbb{N} \Leftrightarrow x = y$. Kiểm tra bất đẳng thức tam giác: Với mọi n ta có

$$|x_n - z_n| = |x_n - y_n + y_n - z_n| \le |x_n - y_n| + |y_n - z_n| \le d(x, y) + d(y, z)$$

Suy ra

$$d(x,z) = \sup\{|x_n - z_n| : n \in \mathbb{N}\} \leqslant d(x,y) + d(y,z)$$

Vậy d là mêtric trên X.

iv) Đặt X là tập hợp các hàm số thực liên tục trên [a,b]. Với $x,y\in X,$ đặt:

$$d_0(x,y) = \max\{|x(t) - y(t)| : t \in [a,b]\}$$

$$d_1(x,y) = \int_a^b |x(t) - y(t)| dt$$

$$d_2(x,y) = \left(\int_a^b |x(t) - y(t)|^2 dt\right)^{1/2}$$

$$d_p(x,y) = \left(\int_a^b |x(t) - y(t)|^p dt\right)^{1/p}, \ p > 1$$

Khi đó d_0, d_1, d_2, d_p là các mêtric trên X.

Thật vậy, dễ kiểm tra d_2, d_p thỏa mãn bất đẳng thức tam giác
(dùng bất đẳng thức Minkovski).

Ta kiểm tra d_0 thỏa mãn bất dẳng thức tam giác. Với mọi $t \in [a, b]$, ta có:

$$|x(t) - z(t)| = |x(t) - y(t) + y(t) - z(t)| \le |x(t) - y(t)| + |y(t) - z(t)| \le d_0(x, y) + d_0(y, z)$$

Suy ra:

$$d_0(x,z) = \max\{|x(t) - z(t)| : t \in [a,b]\} \le d_0(x,y) + d_0(y,z)$$

Cụ thể, cho $[a,b]=[0,2],\,x(t)=t,y(t)=t^2,$ ta tính

$$d_0(x,y) = \max\{|t - t^2|, t \in [0,2]\}$$

Đặt

$$\varphi(t) = |t - t^2| = \begin{cases} t - t^2 & t \in [0, 1] \\ t^2 - t & t \in [1, 2] \end{cases}$$
$$\varphi'(t) = \begin{cases} 1 - 2t & t \in [0, 1] \\ 2t - 1 & t \in [1, 2] \end{cases}$$

Do đó $\max \varphi[0,1] = \frac{1}{4}, \max \varphi[1,2] = 3$ Vậy $d_0(x,y) = 3$

Ta cũng tính được

$$d_1(x,y) = \int_0^2 |t - t^2| dt = \int_0^1 (t - t^2) dt + \int_1^2 (t^2 - t) dt = 1$$
$$d_2(x,y) = \left(\int_0^2 (t - t^2)^2 dt\right)^{1/2} = \frac{4}{\sqrt{15}}$$

v) Cho (X,d) là không gian mêtric. Với $x,y\in X,$ đặt

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}, d_2(x,y) = \operatorname{arctg} d(x,y), d_3(x,y) = \ln(1 + d(x,y))$$

Khi đó d_1, d_2, d_3 là các mêtric trên X.

Ta kiểm tra d_1, d_2, d_3 thỏa mãn bất đẳng thức tam giác. Xét các hàm số

$$\varphi_1(t) = \frac{t}{1+t}, \varphi_2(t) = \operatorname{arctg} t, \varphi_3(t) = \ln(1+t), t \geqslant 0$$

Ta có

$$\varphi_1'(t) = \frac{1}{(1+t)^2} > 0, \varphi_2'(t) = \frac{1}{1+t^2} > 0, \varphi_3'(t) = \frac{1}{1+t} > 0, t \geqslant 0$$

Suy ra $\varphi_1, \varphi_2, \varphi_3$ là hàm tăng. Dẫn đến, với mọi $x, y, z \in X$ ta có

$$d_1(x,z) = \frac{d(x,z)}{1+d(x,z)} \leqslant \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$
$$\leqslant \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} \leqslant d_1(x,y) + d_1(y,z)$$

$$d_2(x,z) = \operatorname{arctg} d(x,z) \leqslant \operatorname{arctg} \left[d(x,y) + d(y,z) \right]$$

$$\leqslant \operatorname{arctg} d(x,y) + \operatorname{arctg} d(y,z) \leqslant d_2(x,y) + d_2(y,z)$$

$$(\text{Do } \operatorname{tg}(a+b) = \frac{\operatorname{tg} a + \operatorname{tg} b}{1 - \operatorname{tg} a \operatorname{tg} b} \geqslant \operatorname{tg} a + \operatorname{tg} b \text{ v\'oi } 0 \leqslant a + b < \frac{\pi}{2}).$$

$$d_3(x,z) = \ln\left[1 + d(x,z)\right] \leqslant \ln\left[1 + d(x,y) + d(y,z)\right]$$

$$\leqslant \ln\left[(1 + d(x,y))(1 + d(y,z))\right] \leqslant \ln(1 + d(x,y)) + \ln(1 + d(y,z))$$

$$\leqslant d_3(x,y) + d_3(y,z)$$

3 Tập mở-Tập đóng

3.1 Định nghĩa:

Cho (X,d) là không gian mêtric, $x_0 \in X$ và $r \ge 0$. Đặt $B(x_0,r) = \{x \in X : d(x_0,x) < r\}$ là quả cầu mở tâm x_0 bán kính r. Tập $D \subset X$ được gọi là tập mở nếu với mọi $x \in D$, có r > 0 sao cho $B(x,r) \subset D$.

Tập $A \subset X$ được gọi là tập đóng nếu $X \setminus A$ là tập mở.

3.2 Tính chất của tập mở:

- (i) Tập rỗng \emptyset và X là tập mở.
- (ii) Quả cầu mở là tập mở.
- (iii) Nếu $(D_i)_{i\in I}$ là họ các tập mở thì $\bigcup_{i\in I} D_i$ là tập mở.
- (iv) Nếu D_1, D_2, \dots, D_n là các tập mở thì $\bigcap_{i=1}^n D_i$ là tập mở.

3.3 Tính chất của tập đóng:

- (i) Tập rỗng \emptyset và X là tập đóng.
- (ii) Quả cầu đóng là tập đóng.
- (iii) Nếu $(D_i)_{i\in I}$ là họ các tập đóng thì $\bigcap_{i\in I} D_i$ là tập đóng.
- (iv) Nếu D_1, D_2, \dots, D_n là các tập đóng thì $\bigcup_{i=1}^n D_i$ là tập đóng.

3.4 Điểm biên:

Cho $D \subset X$, điểm $x_0 \in X$ được gọi là điểm biên của D nếu với mọi r > 0 thì

$$B(x_0, r) \cap D \neq \emptyset$$
 và $B(x_0, r) \cap (X \setminus D) \neq \emptyset$

Nếu x_0 là điểm biên của D thì x_0 cũng là điểm biên của $X \setminus D$. Tập hợp tất cả các điểm biên của D gọi là biên của D, ký hiệu ∂D .

Ta có: $\partial D = \partial (X \setminus D), \ \partial X = \emptyset.$

Nếu D là tập mở và $x \in D$ thì $x \notin \partial D$ và ngược lại nếu $x \in \partial D$ thì $x \notin D$. Vậy ta có:

$$D$$
 là tập mở $\Leftrightarrow D$ không chứa điểm biên của D

$$A$$
 là tập đóng $\Leftrightarrow \partial A \subset A$

Cho D là tập con bất kỳ của X. Đặt

- $\stackrel{\circ}{D} = D \setminus \partial D$ là tập mở lớn nhất chứa trong $D, \stackrel{\circ}{D}$ được gọi là phần trong của D. Ta cũng ký hiệu $\stackrel{\circ}{D} = \operatorname{Int} D$.
- $\overline{D} = D \cup \partial D$ là tập đóng bé nhất chứa D, \overline{D} được gọi là bao đóng của D.

Bài tập

- 1) Cho (X, d) là không gian mêtric, A và B là tập con của X.
- (a) Chứng minh: $\operatorname{Int}(A \cap B) = \overset{\circ}{A} \cap \overset{\circ}{B}$ và $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (b) Giả sử B là tập mở, $A \cap B \neq \emptyset$. Chứng minh $\overline{A} \cap B \neq \emptyset$.
- (c) Tìm hai tập mở A,B trong X sao cho các tập $A\cap \overline{B}, \overline{A}\cap B, \overline{A}\cap \overline{B}, \overline{A}\cap \overline{B}$ đều khác nhau trong trường hợp
 - (i) $X = \mathbb{R}, d(x, y) = |x y|.$
 - (ii) $X = \mathbb{R}^2, d(x, y) = \left[(x_1 y_1)^2 + (x_2 y_2)^2 \right]^{1/2}$ với $x = (x_1.x_2), y = (y_1, y_2).$

Giải: a) Do $A \cap B \subset A, A \cap B \subset B$ nên $\operatorname{Int}(A \cap B) \subset \overset{o}{A}$ và $\operatorname{Int}(A \cap B) \subset \overset{o}{B}$. Suy ra $\operatorname{Int}(A \cap B) \subset \overset{o}{A} \cap \overset{o}{B}$.

Ngược lại, do $\overset{o}{A}\cap \overset{o}{B}$ là tập mở chứa trong $A\cap B$ nên $\overset{o}{A}\cap \overset{o}{B}\subset {\rm Int}(A\cap B)$

Vậy $\operatorname{Int}(A \cap B) = \overset{\circ}{A} \cap \overset{\circ}{B}.$

Tương tự, do $A \subset A \cup B$ và $B \subset A \cup B$ nên $\overline{A} \subset \overline{A \cup B}$ và $\overline{B} \subset \overline{A \cup B}$. Suy ra $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Ngược lại, do $A \cup B \subset \overline{A} \cup \overline{B}$ và $\overline{A} \cup \overline{B}$ là tập đóng nên $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

 $V_{\overline{A}} \cup \overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}.$

- b) Do $A\cap B=\emptyset$ bà B là tập mở nên $X\setminus B$ là tập đóng và $A\subset X\setminus B$. Suy ra $\overline{A}\subset X\setminus B$ hay $\overline{A}\cap B=\emptyset$.
 - c) i) Trường hợp $X=\mathbb{R}, d(x,y)=|x-y|$. Chọn $A=(0,2)\cup(3,4)$ và B=(1,3). Khi đó

$$\overline{A} = [0,2] \cup [3,4] \,,\, \overline{B} = [1,3]$$
 và $A \cap B = (1,2)$

Suy ra

$$\overline{A}\cap B=\left(1,2\right],\,A\cap\overline{B}=\left[1,2\right),\,\overline{A}\cap\overline{B}=\left[1,2\right]\cup\left\{3\right\},\,\overline{A\cap B}=\left[1,2\right]$$

ii) Trường hợp $X = \mathbb{R}^2$. Chọn

$$A = \left\{ x^2 + y^2 < 4 \right\} \cup \left\{ 9 < x^2 + y^2 < 16 \right\} \text{ và } B = \left\{ 1 < x^2 + y^2 < 9 \right\}$$

Khi đó

$$\overline{A} = \left\{ x^2 + y^2 \leqslant 4 \right\} \cup \left\{ 9 \leqslant x^2 + y^2 \leqslant 16 \right\}$$

$$\overline{B} = \left\{ 1 \leqslant x^2 + y^2 \leqslant 9 \right\} \text{ và } A \cap B = \left\{ 1 < x^2 + y^2 < 4 \right\}$$

Suy ra

$$\overline{A} \cap B = \left\{1 < x^2 + y^2 \leqslant 4\right\}, A \cap \overline{B} = \left\{1 \leqslant x^2 + y^2 < 4\right\}$$
$$\overline{A \cap B} = \left\{1 \leqslant x^2 + y^2 \leqslant 4\right\}, \overline{A} \cap \overline{B} = \left\{1 \leqslant x^2 + y^2 \leqslant 4\right\} \cup \left\{x^2 + y^2 = 9\right\}$$

2) Cho X là tập hợp các hàm số thực liên tục trên [a,b] với mêtric $d(x,y) = \max\{|x(t)-y(t)|: t \in [a,b]\}$. Cho $a \le \alpha \le \beta \le b$, đặt

$$D = \{x \in X : x(t) > 0, t \in [\alpha, \beta]\}\$$

$$A = \{x \in X : x(t) \ge 0, t \in [\alpha, \beta]\}\$$

Chứng minh D là tập mở, A là tập đóng.

Giải: Với $x\in D,$ đặt $m=\min\{x(t):t\in [\alpha,\beta]\}$ thì m>0. Với $y\in B(x,\frac{m}{2}),$ do:

$$d(x,y) = \max\{|x(t) - y(t)| : t \in [a,b]\} < \frac{m}{2}$$

Suy ra

$$y(t) \geqslant x(t) - |x(t) - y(t)| \geqslant \frac{m}{2} > 0, \forall t \in [\alpha, \beta]$$

Dẫn đến: $B(x, \frac{m}{2}) \subset D$. Vậy D là tập mở.

Tương tự, ta cũng có tập $U=\{x\in X: x(t)<0, t\in [\alpha,\beta]\}$. Đặc biệt, khi $\alpha=\beta=t$ ta có

$$U_t = \{ x \in X : x(t) < 0 \}$$

là tập mở. Suy ra $A_t = \{x \in X : x(t) \ge 0\}$ là tập đóng. Do $A = \bigcap_{\alpha \le t \le \beta} A_t$ nên A là tập đóng.

4 Sự hội tụ

4.1 Định nghĩa

Cho (X,d) là không gian mêtric, $(x_n)_n$ là dãy trong X và $x \in X$. Ta nói:

Dãy
$$(x_n)_n$$
 hội tụ về $x \Leftrightarrow \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \geqslant n_0 \Rightarrow d(x_n, x) < \varepsilon$
 $\Leftrightarrow \lim_{n \to \infty} d(x_n, x) = 0$

Ta có các quan hệ sau:

- A là tập đóng \Leftrightarrow Với mọi dãy $(x_n)_n$ trong A, $\lim_{n\to\infty} x_n = x$ thì $x \in A$.
- $x \in \partial A \Leftrightarrow \text{C\'o d\~ay}(x_n)_n$ trong A và dãy $(y_n)_n$ trong $X \setminus A$ sao cho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = x$.
- $x \in \overline{A} \Leftrightarrow \text{C\'o d\~ay } (x_n)_n \text{ trong } A \text{ sao cho } \lim_{n \to \infty} x_n = x.$

Bài tập

1) Cho (X,d) là không gian mêtric. Với $x,y \in X$ đặt

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}, d_2(x,y) = \operatorname{arctg} d(x,y), d_3(x,y) = \ln(1 + d(x,y))$$

Chứng minh:

$$\lim_{n \to \infty} x_n = x \text{ trong } (X, d) \Leftrightarrow \lim_{n \to \infty} x_n = x \text{ trong } (X, d_i), i = 1, 2, 3.$$

Hướng dẫn:

$$d(x,y) = \frac{d_1(x,y)}{1 - d_1(x,y)}, d(x,y) = \operatorname{tg} d_2(x,y), d(x,y) = e^{d_3(x,y)} - 1$$

2) Cho X là tập hợp các hàm số thực liên tục trên [0,1]. Với $x,y \in X$ đặt

$$d_1(x,y) = \int_0^1 |x(t) - y(t)| dt, d_2(x,y) = \max\{|x(t) - y(t)| : t \in [0,1]\}$$

- a) Chứng minh: Nếu $\lim_{n\to\infty} x_n = x$ trong (X, d_2) thì $\lim_{n\to\infty} x_n = x$ trong (X, d_1) .
- b) Cho $x_n(t) = t^n t^{2n}$. Tính $d_1(0, x_n), d_2(0, x_n)$. Suy ra: $\lim_{n \to \infty} x_n = 0$ trong (X, d_1) nhưng $(x_n)_n$ không hội tụ về 0 trong (X, d_2) .

Hướng dẫn:

a)
$$d_1(x, x_n) = \int_0^1 |x(t) - x_n(t)| dt \le d_2(x, x_n).$$

b)
$$d_1(0,x_n) = \frac{1}{n+1} - \frac{1}{2n+1}, d_2(0,x_n) = \max\{t^n(1-t^n) : t \in [0,1]\} = \frac{1}{4}.$$

3) Cho $(X,d_X),(Y,d_Y)$ là không gian mêtric. Đặt $Z=X\times Y,$ với $z_1=(x_1,y_1),z_2=(x_2,y_2),$ đặt

$$d(z_1, z_2) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

- Chứng minh d là mêtric trên Z.
- Cho $z_n = (x_n, y_n)$ và z = (x, y) trong Z. Chứng minh

$$\lim_{n \to \infty} z_n = z \text{ trong } (Z, d) \Leftrightarrow \begin{cases} \lim_{n \to \infty} x_n = x \text{ trong } (X, d_X) \\ \lim_{n \to \infty} y_n = y \text{ trong } (Y, d_Y) \end{cases}$$

(Z,d) là không gian mêtric tích của hai không gian mêtric (X,d_X) và (Y,d_Y) .