CS2034B / DH2144B

Data Analytics: Principles and Tools

Week 3
Statistics,

Data Preparation & Transformation

Statistics: Basics

Assigned Readings / Tasks

zyBooks Chapter 5 Statistics Basics

Optional:

- Pearson Product-Moment Correlation
- CORREL function

Measures of Center in Excel

Name	Description	Equation	Excel Function
Mean / Average	The central value of a discrete set of numbers: specifically, the sum of the values divided by the number of values.	$ar{x} = rac{1}{n} \left(\sum_{i=1}^n x_i ight) = rac{x_1 + x_2 + \cdots + x_n}{n}$	AVERAGE(number1, [number2],)
Median	The value separating the higher half from the lower half of a data sample. That is the number in the middle of a set of numbers.	{(n + 1) ÷ 2} th value in an ordered set of odd length. {(n÷2)} th value + {(n÷2+1)} th value 2 in an ordered set of even length.	MEDIAN(number1, [number2],)
Mode	The value that appears most often in a set of numbers.	N/A	MODE(number1,[nu mber2],)

Measures of Center in Excel

-12

-11

-10

-10

Example 1:

4	Α	В	С	D	Е	F	G	Н
1	London	Ontario W	eather			Mea	sures of Ce	enter
2	Date	High (C)	Low (C)				High	Low
3	22-Jan-19	-4	-9			Average:		
4	22-Jan-18	8	1			Median:		
5	22-Jan-17	6	2			Mode:		
	-16	-5	-10					
	-15	-2	-9					

Find the Mean (Average), Median and Mode of the high and low temperatures using Excel Functions

	7113	-08	-1	-10			
15	22-Jan	-07	-4	-8			
16	22-Jan	-06	2	-5			
17	22-Jan	-05	-12	-19			
18	22-Jan	-04	2	-19			
19	22-Jan	-03	-12	-16			
20	22-Jan	-02	22	8			
21							

Measures of Center in Excel

Example 1:

4	Α		В	С	D	E		F	G	Н	
1	Londo	on (Ontario W	eather				Measures of Center			
2	Date		High (C)	Low (C)					High	Low	
3	22-Jan-:	19	-4	-9			Aver	age:	-2.0	-9.6	
4	22-Jan-:	18	8	1			Med	ian:	-2.5	-9.5	
5	22-Jan-:	17	6	2			Mod	e:	2	-9	
6	22-Jan-:	16	-5	-10							
7	22-Jan-:	15	-2	-9							
8	22-Jan-	14	-14	-24							
9	22-Jan	12	-12	-17							
10	22-Jan		F			G			Н		
11	22-Jan				Measu	res of Ce	nter				
12	22-Jan					High			Low		
13	22-Jan	۸۷	erage:		-AV/ER/	AGE(B3:B	20)	-^1/	ERAGE(C	3.030)	
14	22-Jan					•					
15	22-Jan		edian:			N(B3:B2	0)		DIAN(C3		
16	22-Jan	M	ode:		=MODE	(B3:B20)		=MC	DDE(C3:C	20)	
17	22-Jan-	05	-12	-19							
18	22-Jan-	04	2	-19							
19	22-Jan-	03	-12	-16							
e ₂₀	22-Jan-	02	22	8							

Measures of Spread

WEAS	ires or Shr	eau	
Name	Description	Equation	Excel Function
Maximum	The largest value in the data set.	N/A	MAX(num1, [num2],)
Minimum	The smallest value in the data set.	N/A	MIN(num1, [num2],)
Range	The difference between the largest and smallest values in the data set.	=Max(X) - Min(X) where X is the dataset	N/A
Mean Absolute Deviation	The average distance from the average.	$\frac{1}{n}\sum_{i=1}^n x_i-m(X) .$	AVEDEV(num1, [num2],)
Median Absolute Deviation	The median distance from the median.	$ ext{MAD} = ext{median}(X_i - ilde{X})$ $ ilde{X} = ext{median}(X)$	N/A
Variance	How far a set of numbers is spread out from their average.	$\frac{\sum_{i=1}^{n} (d_i - mean)^2}{n-1}$	VAR.S(num1,[num2],) VAR.P(num1,[num2],)
Standard Deviation	The the square root of the variance. Measure used to quantify the amount of variation in a data set.	$\sqrt{variance(X)}$	STDEV.S(num1,[num2],) STDEV.P(num1,[num2],)

Measures of Spread Example 2 Part 1:

Find the Maximum, Minimum and Range of the Highs.

- 4	Α	В	С	D	Е	F	G	Н	1
1		ario Weather				'	-		•
					Abs Difference			Measures of Center	
2	Date	High (C)		from Mean	from Median	Mean Squared			
3	22-Jan-19	-4						Average:	-2.0
4	22-Jan-18	8						Median:	-2.5
5	22-Jan-17	6						Mode:	2
6	22-Jan-16	-5							
7	22-Jan-15	-2							
8	22-Jan-14	-14						Measures of Spread	
9	22-Jan-13	-13						Maximum:	
10	22-Jan-12	2						Minimum:	
11	22-Jan-11	-10						Range	
12	22-Jan-10	2							
13	22-Jan-09	-3						Mean Absolute Deviation	
14	22-Jan-08	-1						Median Absolute Deviation	
15	22-Jan-07	-4							
16	22-Jan-06	2						Variance:	
17	22-Jan-05	-12						Standard Deviation:	
18	22-Jan-04	2							
19	22-Jan-03	-12							
20	22-Jan-02	22							
24									

Measures of Spread Example 2 Part 1:

Find the Maximum, Minimum and Range of the Highs.

- 4	Α	В	С	D		Е	F	G	н	1
1		ario Weather		D		L	F	· ·	П	1
				Abs Difference			Difference from		Measures of Center	
2	Date	High (C)		from Mean	tror	n Median	Mean Squared		_	
3	22-Jan-19	-4							Average:	-2.0
4	22-Jan-18	8							Median:	-2.5
5	22-Jan-17	6							Mode:	2
6	22-Jan-16	-5								
7	22-Jan-15	-2								
8	22-Jan-14	-14							Measures of Spread	
9	22-Jan-13	-13							Maximum:	22.0
10	22-Jan-12	2						A	Minimum:	-14.0
11	22-Jan-11	-10							Range	36.0
12	22-Jan-10	2								
13			-	_	-	_			Mean Absolute Deviation	
14				Measures	of :	Spread			/ledian Absolute Deviation	
15				Maximu	m.	-NAAV	/pa.pan\			
16				IVIAXIIIIU		-IVIAA	(65.620)		Variance:	
17				Minimu	m:	=MIN/	B3:B20)		Standard Deviation:	
18						,	•			
19				Ran	ge	=19-110)			
20	22 7011 02								-	
24										

Measures of Spread Example 2 Part 2:

Find the absolute differences and use them to find the Mean and Median Absolute Deviations. Don't use AVEDEV.

				C D C TIGO					
4	Α	В	С	D	E	F	G	Н	1
1	London Ont	ario Weather							
2	Date	High (C)		Abs Difference from Mean	Abs Difference from Median	Difference from Mean Squared		Measures of Center	
3	22-Jan-19	-4	Н			mean squareu		Average:	-2.0
4	22-Jan-18	8	Н					Median:	-2.5
5	22-Jan-17	6	Н					Mode:	2
6	22-Jan-16	-5	П						
7	22-Jan-15	-2							
8	22-Jan-14	-14						Measures of Spread	
9	22-Jan-13	-13						Maximum:	22.0
10	22-Jan-12	2						Minimum:	-14.0
11	22-Jan-11	-10						Range	36.0
12	22-Jan-10	2							
13	22-Jan-09	-3						Mean Absolute Deviation	
14	22-Jan-08	-1						Median Absolute Deviation	
15	22-Jan-07	-4	Ш						
16	22-Jan-06	2						Variance:	
17	22-Jan-05	-12						Standard Deviation:	
18	22-Jan-04	2							
19	22-Jan-03	-12							
20	22-Jan-02	22							
24									

Measures of Spread Example 2 Part 2:

Find the absolute differences and use them to find the Mean and Median Absolute Deviations. Don't use AVEDEV.

4	Α	В	С	D	E	F		G	Н		I
1	London Ont	tario Weather									
						Difference	from		Measure	es of Center	
2	Date	High (C)		Abs Difference from Mean	Abs Difference from Median	Mean Squ	ıared		Wicusary	es or center	
3	22-Jan-19	-4		=ABS(B3-\$I\$3)	=ABS(B3-\$I\$4)					Average:	-2.0
4	22-Jan-18	8		=ABS(B4-\$I\$3)	=ABS(B4-\$I\$4)					Median:	-2.5
5	22-Jan-17	6		=ABS(B5-\$I\$3)	=ABS(B5-\$I\$4)					Mode:	2
6	22-Jan-16	-5		=ABS(B6-\$I\$3)	=ABS(B6-\$I\$4)						
7	22-Jan-15	-2		=ABS(B7-\$I\$3)	=ABS(B7-\$I\$4)						
8	22-Jan-14	-14		=ABS(B8-\$I\$3)	=ABS(B8-\$I\$4)				Measure	es of Spread	
9	22-Jan-13	-13		=ABS(B9-\$I\$3)	=ABS(B9-\$I\$4)					Maximum:	22.0
10	22-Jan-12	2		=ABS(B10-\$I\$3)	=ABS(B10-\$I\$4)					Minimum:	-14.0
11	22-Jan-11	-10		=ABS(B11-\$I\$3)	=ABS(B11-\$I\$4)					Range	36.0
12	22-Jan-10	2		=ABS(B12-\$I\$3)	=ABS(B12-\$I\$4)						
13	22-Jan-09	-3		=ABS(B13-\$I\$3)	=ABS(B13-\$I\$4)		Mea	n Ab	solute Deviation	=AVERAGE	(D3:D20)
14	22-Jan-08	-1		=ABS(B14-\$I\$3)	=ABS(B14-\$I\$4)		Media	n Ab	solute Deviation	=MEDIAN(E3:E20)
15	22-Jan-07	-4		=ABS(B15-\$I\$3)	=ABS(B15-\$I\$4)						
16	22-Jan-06	2		=ABS(B16-\$I\$3)	=ABS(B16-\$I\$4)					Variance:	
17	22-Jan-05	-12		=ABS(B17-\$I\$3)	=ABS(B17-\$I\$4)				Standard	Deviation:	
18	22-Jan-04	2		=ABS(B18-\$I\$3)	=ABS(B18-\$I\$4)						
19	22-Jan-03	-12		=ABS(B19-\$I\$3)	=ABS(B19-\$I\$4)						
20	22-Jan-02	22		=ABS(B20-\$I\$3)	=ABS(B20-\$I\$4)						
24											

Measures of Spread Example 2 Part 3:

Find the variance and standard deviation without using VAR.S or STDEV.S.

\square	Α	В	С	D	E	F	G	Н	1
1	London Ont	tario Weather							
				Abs Difference	Abs Difference	Difference from		Measures of Center	
2	Date	High (C)		from Mean	from Median	Mean Squared		Wedsures of Center	
3	22-Jan-19	-4		2	2			Average:	-2.0
4	22-Jan-18	8		10	11			Median:	-2.5
5	22-Jan-17	6		8	9			Mode:	2
6	22-Jan-16	-5		3	3				
7	22-Jan-15	-2		0	1				
8	22-Jan-14	-14		12	12			Measures of Spread	
9	22-Jan-13	-13		11	11			Maximum:	22.0
10	22-Jan-12	2		4	5			Minimum:	-14.0
11	22-Jan-11	-10		8	8			Range	36.0
12	22-Jan-10	2		4	5				
13	22-Jan-09	-3		1	1			Mean Absolute Deviation	6.6
14	22-Jan-08	-1		1	2			Median Absolute Deviation	4.5
15	22-Jan-07	-4		2	2				
16	22-Jan-06	2		4	5			Variance:	
17	22-Jan-05	-12		10	10			Standard Deviation:	
18	22-Jan-04	2		4	5				
19	22-Jan-03	-12		10	10				
20	22-Jan-02	22		24	25				

Measures of Spread Example 2 Part 3:

Find the variance and standard deviation without using VAR.S or STDEV.S.

\square	Α	В	С	D	E	F	G	Н	1
1	London Ont	ario Weather							
				Abs Difference	Abs Difference	Difference from		Measures of Center	
2	Date	High (C)		from Mean	from Median	Mean Squared		Wiedsures of Center	
3	22-Jan-19	-4		2	2	=D3^2		Average:	-2.0
4	22-Jan-18	8		10	11	=D4^2		Median:	-2.5
5	22-Jan-17	6		8	9	=D5^2		Mode:	2
6	22-Jan-16	-5		3	3	=D6^2			
7	22-Jan-15	-2		0	1	=D7^2			
8	22-Jan-14	-14		12	12	=D8^2		Measures of Spread	
9	22-Jan-13	-13		11	11	=D9^2		Maximum:	22.0
10	22-Jan-12	2		4	5	=D10^2		Minimum:	-14.0
11	22-Jan-11	-10		8	8	=D11^2		Range	36.0
12	22-Jan-10	2		4	5	=D12^2			
13	22-Jan-09	-3		1	1	=D13^2		Mean Absolute Deviation	6.6
14	22-Jan-08	-1		1	2	=D14^2		Median Absolute Deviation	4.5
15	22-Jan-07	-4		2	2	=D15^2			
16	22-Jan-06	2		4		Va	rian	ce: =SUM(F3:F20)/(COUNT(F3	:F20)-1)
17	22-Jan-05	-12		10		Standard Dev	iatio	on: =SQRT(I16)	
18	22-Jan-04	2		4	5	=D18^2			
19	22-Jan-03	-12		10	10	=D19^2			
20	22-Jan-02	22		24	25	=D20^2			

Measures of Spread Example 2 Part 3:

Find the variance and standard deviation without using VAR.S or STDEV.S.

A	Α	В	С	D	E	F	G	Н	I I
1	London Ont	ario Weather							
2	Date High (C)			Abs Difference from Mean	Abs Difference from Median	Difference from Mean Squared		Measures of Ce	nter
3	22-Jan-19	-4		2	2	4		Average:	-2.0
4	22-Jan-18	8		10	11	100		Median:	-2.5
5	22-Jan-17	6		8	9	64		Mode:	2
6	22-Jan-16	-5		3	3	9			
7	22-Jan-15	-2		0	1	0			
8	22-Jan-14	-14		12	12	144		Measures of Spi	read
9	22-Jan-13	-13		11	11	121		Maximum:	22.0
10	22-Jan-12	2		4	5	16		Minimum:	-14.0
11	22-Jan-11	-10		8	8	64		Range	36.0
12	22-Jan-10	2		4	5	16			
13	22-Jan-09	-3		1	1	1		Mean Absolute Deviation	6.6
14	22-Jan-08	-1		1	2	1		Median Absolute Deviation	4.5
15	22-Jan-07	-4		2	2	4			
16	22-Jan-06	2		4	5	16		Variance:	79.5
17	22-Jan-05	-12		10	10	100		Standard Deviation:	8.9
18	22-Jan-04	2		4	5	16			
19	22-Jan-03	-12		10	10	100			
20	22-Jan-02	22		24	25	576			

• A probability mass function (pmf) assigns the probability that a discrete random variable is exactly equal to some value.

Example:

Alice, a teaching assistant for CS2034, has been keeping track of how many students attend her office hours. She has found the following pmf for the number of students attending her hours each week:

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17

What is the likely hood of Alice having 5 students attend in a given week?

• A probability mass function (pmf) assigns the probability that a discrete random variable is exactly equal to some value.

Example:

Alice, a teaching assistant for CS2034, has been keeping track of how many students attend her office hours. She has found the following pmf for the number of students attending her hours each week:

13%

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17

What is the likely hood of Alice having 5 students attend in a given week?

• The cumulative distribution function (cdf) is the probability that for any number y, the observed value of the random variable will be at most y or $p(x \le y)$.

Example:

The following table now also contains the **cdf** for the values Alice calculated.

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
F(x)	0.25	0.70	0.83	1.00

What is the likely hood of Alice having 0 to 2 (inclusive) students attend her office hours in a given week?

• The cumulative distribution function (cdf) is the probability that for any number y, the observed value of the random variable will be at most y or $p(x \le y)$.

Example:

The following table now also contains the **cdf** for the values Alice calculated.

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
F(x)	0.25	0.70	0.83	1.00

70%

What is the likely hood of Alice having 0 to 2 (inclusive) students attend her office hours in a given week?

Expected Value

• The expected value (μ) is the sum of the possible values of X multiplied by the probability of the value.

Example:

How many students can Alice expect to attend her office hours each week?

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17

Expected value (μ) =

Expected Value

• The expected value (μ) is the sum of the possible values of X multiplied by the probability of the value.

Example:

How many students can Alice expect to attend her office hours each week?

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17

Expected value (
$$\mu$$
) = 0.25*0 + 0.45*2 + 0.13*5 + 0.17*10 = 3.25

• The variance of a discrete random variable, X, is a measure of the spread of a distribution. The variance is calculated using the following equation:

$$\sigma^2 = V(X) = \sum (x - \mu)^2 * p(x).$$

 The standard deviation is a measure of the spread in the units of the original random variable. The standard deviation is the square root of the variance.

$$\sqrt{\sigma^2}$$

Example:

Find the variance and standard deviation of the number of students in the last example.

Expected value (
$$\mu$$
) = 3.25

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
x-µ				
(x-μ) ²				
p(x)*(x-μ) ²				

Variance =

Example:

Find the variance and standard deviation of the number of students in the last example.

Expected value (
$$\mu$$
) = 3.25

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
x-μ	-3.25	-1.25	1.75	6.75
(x-μ) ²				
p(x)*(x-μ) ²				

Variance =

Example:

Find the variance and standard deviation of the number of students in the last example.

Expected value (
$$\mu$$
) = 3.25

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
x-µ	-3.25	-1.25	1.75	6.75
(x-μ) ²	10.56	1.56	3.06	45.56
p(x)*(x-μ) ²				

Variance =

Example:

Find the variance and standard deviation of the number of students in the last example.

Expected value (μ) = 3.25

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
x-µ	-3.25	-1.25	1.75	6.75
(x-μ) ²	10.56	1.56	3.06	45.56
p(x)*(x-μ) ²	2.64	0.70	0.40	7.75

Variance =

Example:

Find the variance and standard deviation of the number of students in the last example.

Expected value (
$$\mu$$
) = 3.25

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
x-µ	-3.25	-1.25	1.75	6.75
(x-μ) ²	10.56	1.56	3.06	45.56
p(x)*(x-μ) ²	2.64	0.70	0.40	7.75

Example:

Find the variance and standard deviation of the number of students in the last example.

Expected value (
$$\mu$$
) = 3.25

x = # Students	0	2	5	10
p(x)	0.25	0.45	0.13	0.17
x-µ	-3.25	-1.25	1.75	6.75
(x-μ) ²	10.56	1.56	3.06	45.56
p(x)*(x-μ) ²	2.64	0.70	0.40	7.75

Standard Deviation =
$$\sqrt{11.49}$$
 = 3.39

Excel Example

Example 3:

Redo the calculations we just did in Excel including finding the cdf values. Don't hardcode any values, the results should change if the original data changes.

4	Α	В	С	D	Е	F	G	Н
1	x = # Students	0	2	5	10		Expected Value (u):	=B2*B1+C2*C1+D2*D1+E2*
2	p(x)	0.25	0.45	0.13	=1-0.83		Variance:	=SUM(B7:E7)
3	F(x)	=B2	=B3+C2	=C3+D2	=D3+E2		Standard Deviation:	=SQRT(H2)
4								
5	x - u:	=B1-\$H\$1	=C1-\$H\$1	=D1-\$H\$1	=E1-\$H\$1			
5	(x - u)^2:	=B5^2	=C5^2	=D5^2	=E5^2			
7	p(x)*(x-u)^2:	=B2*B6	=C2*C6	=D2*D6	=E2*E6			
0								

4	А	В	С	D	Е	F	G	Н
1	x = # Students	0	2	5	10	,	Expected Value (u):	3.25
2	p(x)	0.25	0.45	0.13	0.17	,	Variance:	11.49
3	F(x)	0.25	0.7	0.83	1		Standard Deviation:	3.39
4								
5	x - u:	-3.25	-1.25	1.75	6.75			
6	(x - u)^2:	10.56	1.56	3.06	45.56			
7	p(x)*(x-u)^2:	2.64	0.70	0.40	7.75			
			,	· · · · · · · · · · · · · · · · · · ·				

Binomial Distribution

- The binomial distribution models how many times an event occurs in a certain number of trials, with the assumption that the probability of the event is the same for each trial.
- The binomial probability can be found using the equation:

$$\binom{n}{k} p^k (1-p)^{n-k}$$

where \mathbf{n} is the number of trials, \mathbf{k} is the number of successes, and \mathbf{p} is the probability of success.

In Excel we can use the <u>BINOM.DIST</u> function:

BINOM.DIST(k, n, p, cumulative)

where **cumulative** is TRUE or FALSE and controls if BINOM.DIST returns the **pmf** (FALSE) or **cdf** (TRUE).

Binomial Distribution

Example 4:

If we flip a fair coin 6 times, what are the odds of getting heads 0 times, 1 time, 2 times, etc.?

4	А	В	С	D	Е	F	G	Н
1	Attempts:	6						
2	Probability of Heads:	0.5						
3								
4	x = #of heads	0	1	2	3	4	5	6
5	p(x)							
6								

Use the Excel BINOM.DIST function to solve this.

Binomial Distribution

Example 4:

If we flip a fair coin 6 times, what are the odds of getting heads 0 times, 1 time, 2 times, etc.?

_	**								
1	Attempts:	=COUNT(B4	=COUNT(B4:H4)-1						
2	Probability of Heads:	0.5	0.5						
3									
4	x = #of heads	0	0			1			
5	p(x)	=BINOM.DIS	ST(B4,\$B\$1,\$I	B\$2,FALSE)	=BINOM.DIS	T(C4,\$B\$1,\$B	\$2,FALSE)	=BINOM.DIST	
6									
4	Α	В	С	D	Е	F	G	Н	
1	Attempts:	6							
2	Probability of Heads:	0.5							
3									
4	x = #of heads	0	1	2	3	4	5	6	
5	p(x)	0.02	0.09	0.23	0.31	0.23	0.09	0.02	

- What if we want to know how many times we have to attempt a trial before success?
- Negative Binomial Distribution models the number of failures in a sequence of trials before a success occurs.
- In Excel we can use the NEGBINOM.DIST function:

NEGBINOM.DIST(f, s, p, cumulative)

where **f** is the number of failures, **s** is the number of successes, **p** is the probability of success and cumulative is the same TRUE/FALSE value as used in BINOM.DIST.

Example 5:

Bob is a "Hardcore Gamer" and wants to know how many monsters he has to defeat to get an rare item in his game. Each monster has a 5% chance to drop the item when slain.

How many monsters must Bob defeat to have a 90% chance of obtaining the item?

4	A	В	3	С	D	Е
1	Probability of Epic Loot:		0.05		90% Chance:	
2						
3	x = # Monsters Slain	F(x)				
4	1					
5	2					
6	3					
7	4					
8	5					
9	6					
10	7					
11	8					
12	0					

Example 5:

Bob is a "Hardcore Gamer" and wants to know how many monsters he has to defeat to get an rare item in his game. Each monster has a 5% chance to drop the item when slain.

How many monsters must Bob defeat to have a 90% chance of obtaining the item?

4	А	В	С	D	E
1	Probability of Epic Loot:	0.05		90% Chance:	=INDEX(A4:A153,MATCH(0.9,B4:B153,1))
2					
3	x = # Monsters Slain	F(x)			
4	1	=NEGBINOM.DIST(A4-1,1,\$B\$1,TRUE)			
5	2	=NEGBINOM.DIST(A5-1,1,\$B\$1,TRUE)			
6	3	=NEGBINOM.DIST(A6-1,1,\$B\$1,TRUE)			
7	4	=NEGBINOM.DIST(A7-1,1,\$B\$1,TRUE)			
8	5	=NEGBINOM.DIST(A8-1,1,\$B\$1,TRUE)			
9	6	=NEGBINOM.DIST(A9-1,1,\$B\$1,TRUE)			
10	7	=NEGBINOM.DIST(A10-1,1,\$B\$1,TRUE)			
11	8	=NEGBINOM.DIST(A11-1,1,\$B\$1,TRUE)			
12	٥	NECDINOM DICT/A12.1.1 CDC1 TDUE			

Example 5:

Bob is a "Hardcore Gamer" and wants to know how many monsters he has to defeat to get an rare item in his game. Each monster has a 5% chance to drop the item when slain.

How many monsters must Bob defeat to have a 90% chance of obtaining the item?

	А	В	C	D	E
1	Probability of Epic Loot:	0.	.05	90% Chance:	44
2					
3	x = # Monsters Slain	F(x)			
4	1	0.	.05		
5	2	0.	10		
6	3	0.	14		
7	4	0.	19		
8	5	0.	.23		
9	6	0.	26		
10	7	0.	.30		
11	8	0.	.34		
12	q	0	37		

Many Other Distributions

Don't need to know them all but should know about Binomial,
 Negative Binomial, Normal and Uniform.

- How can we determine how correlated (the strength of their connection) two variables are?
- Could just graph it and "eyeball" it.
- Better to use something less subjective like the Pearson Product-Moment Correlation.
- This is the CORREL function in Excel:

CORREL(array1, array2)

- Value between -1 and 1.
- -1 being a perfect negative correlation, 0 being no correlation at all, 1 being a perfect correlation.
- Basically attempts to draw a line of best fit through the data.
- Only works for linear correlations.

Example 6:

Is there a correlation between average global temperatures in January and the time (year)? Is it getting hotter or colder in January each year?

\square	Α	В
1	Year	Average Global January Temperature (C)
2	1880	-0.28
3	1881	-0.14
4	1882	0.15
5	1883	-0.31
6	1884	-0.15
7	1885	-0.58
8	1886	-0.41
9	1887	-0.72
10	1888	-0.37
11	1889	-0.11
12	1890	-0.43
13	1891	-0.41
14	1892	-0.27
15	1893	-0.78
16	1894	-0.52
17	1895	-0.43
18	1896	-0.24
19	1897	-0.13
20	1898	-0.02
21	1899	-0.18
22	1900	-0.36
23	1901	-0.23

Example 6:

We could try "eyeballing" it with a graph:

Example 6:

Better to try CORREL.

Correlation:	=CORREL(A2:A140,B2:B140)

Example 6:

- Does this mean it is getting hotter each year?
- Not necessarily. Finding a correlation is just a starting point. We need to create and test our hypothesis.
- More about testing hypotheses in zyBook Chapter 5 Statistics Basics.

Do Correlations Imply Causation?

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US

tylervigen.com

Do Correlations Imply Causation?

Per capita consumption of mozzarella cheese

correlates with

Civil engineering doctorates awarded

Data Preparation & Transformation

Data Preparation

- Data scientists call it data wrangling, data munging, data janitor work.
- According to interviews and expert estimates, data scientists spend from 50% to 80% of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets.
- Article: <u>For Big-Data Scientists</u>, <u>'Janitor Work' Is Key</u> Hurdle to Insights

Data Preparation

Situation

- Start with a text file, or
- Cut and paste from a web page or document

Problems

- Data incomplete, or irregular format
- Paste tries to put data all into one cell
- The file would take too long to edit by hand

Data Preparation

Example From Lab 2:

Want to copy data from article on Cambridge University wine spending to Excel

Assigned Readings / Tasks

- Introduction to Regular expressions using Atom
- RegexOne: https://regexone.com
- <u>Tab-separated values (Wikipedia)</u>