ROS SLAM

WeGo & WeCAR

목 차

- 1. **SLAM Introduction**
- 2. SLAM Package
- 3. SLAM Demo

- SLAM은 Simultaneous Localization And Mapping의 줄임말
- 한글로 동시적 위치 추정 및 지도 작성이다.
- 간단하게, 새롭게 무인도를 탐험하면서 지도를 생성하는 것 == SLAM

- SLAM의 문제
- 지도를 실제와 유사하게 만든다고 한다면 연속된 공간에서 무한히 많은 차원으로 존재할 수 있으므로 지도 생성이 굉장히 어려워진다.
- Grid Map과 같은 형태를 사용할 때도 수 많은 변수로 설명이 가능하며, 이를 통해 위치에 대한 확률을 계산하는 것이 매우 어렵다.
- 지도가 존재할 때 Localization만을 수행하는 것은 어렵지 않으며, Localization이 성공할 수 있을 때 지도를 생성하는 것도 어렵지 않지만, 이 둘을 동시에 해결하기는 어렵다. → Chicken & Egg Problem

- SLAM의 문제의 난이도를 결정하는 요소들
- 생성하려는 지도의 크기
- 당연하겠지만 주변 환경 센싱 및 자기 위치 추정을 위한 센서의 노이즈
- 주변 환경의 반복성 및 인식 모호성 → 복도, 숲 등에서 쉽지 않음

- 실내 이동 데이터를 오도메트리 정보를 이용하여 Mapping한 결과 (a)
- (a)의 결과를 이용하여 Mapping 알고리즘을통해서 처리한 결과 (b)

- SLAM을 위한 대표적인 센서는 Camera, Lidar
- 두 센서는 특성이 다르며, 사용하는 방식 또한 매우 다르다.

- Lidar SLAM
- http://www.youtube.com/watch?v=DMOdpHLhtX0
- http://www.youtube.com/watch?v=7uCxLUs9fwQ

- Visual SLAM
- http://www.youtube.com/watch?v=luBGKxgaxS0
- http://www.youtube.com/watch?v=-5XxXRABXJs

Grid Map

- 공간을 Cell로 나누어서 표현하며, 이 공간 구조는 고정되어 있음
- 각 Cell은 Occupied Space와 Free Space로 구분된다.
- Non-Parametric Model 파라미터의 개수가 정해져있지 않음
- Feature map이 아닌 전체 센서 데이터를 모두 저장하는 방식
- 위의 이유로 인해 상당히 많은 Memory를 사용
- Feature map이 아니므로 Feature Detector에 의존 하지 않음

- Occupancy Grid Mapping
 - 로봇의 t = 0 ~ T 까지의 모든 포즈(x)와 모든 측정값(z)가 주어져있을 때, 이를 기반으로
 아래의 식을 계산하는 방식

$$p(m|z_{1:t},x_{1:t})$$

- t = 0 ~ T까지의 제어값(u)는 모두 포즈(x)에 포함되어 있기 때문에 사용하지 않는다.
- 지도를 Grid Map을 이용하므로, 지도는 각 셀의 집합으로 되어있다.
- 이를 이용하여 Grid Cell을 하나씩 채워나가는 과정

- SLAM
 - SLAM은 Occupancy Grid Mapping과 Localization을 동시에 진행
 - 초기 위치를 특정 값(CO, O)과 같은 값)으로 정하고, 센서 데이터, 제어 데이터, 현재 위치 등의 데이터를 활용하여 지도 생성 및 위치 추정을 동시에 진행
 - http://www.youtube.com/watch?v=DMOdpHLhtX0

- SLAM
- 1990 ~ 2000 Extended Kalman Filter 기반의 SLAM(pose-ekf-slam)
- 2000 ~ 2007 Particle Filter 기반의 SLAM (GMapping)
- 2007 ~ 현재 Maximum A Posteriori Estimation 기반의 SLAM (Cartographer)
- http://www.youtube.com/watch?v=vCVS9WAffi4
- http://www.youtube.com/watch?v=-hXEYh00_XA

O2 SLAM Package

- Gmapping
 - laser-based SLAM, create a 2-D occupancy grid map and pose data
- Published Topics
 - /map_metadata (nav_msgs/MapMetaData) Map Meta Data Type Map
 - /map (nav_msgs/OccupancyGrid) OccupancyGrid Map Data
 - ~entropy (std_msgs/Float64) Entropy of the distribution over the robot's pose
- Subscribed Topics
 - /scan (sensor_msgs/LaserScan) Lidar LaserScan Data
 - tf (tf/tfMessage) Transform necessary to relate frames for laser, base, and odometry

Parameters(Default)

- ~throttle_scans(1) Process 1 out of every this many scans (set it to higher number to skip more)
- ~base_frame(base_link) The frame attached to the mobile base.
- ~map_frame (map) The frame attached to the map
- ~odom_frame (odom) The frame attached to the odometry system
- ~map_update_interval (5.0) How long between updates to the map. Lowering this number updates
 the occupancy grid more often, at the expense of greater computational load.
- ~maxUrange (80.0) The maximum usable range of the laser. A beam is cropped to this value.
- ~sigma (0.05) The sigma used by the greedy endpoint matching
- ~kernelSize (1) The kernel in which to look for a correspondence
- ~Istep (0.05) The optimization step in translation
- ~astep (0.05) The optimization step in rotation
- ~iterations (5) The number of iterations of the scanmatcher
- ~Isigma (0.075) The sigma of a beam used for likelihood computation
- ~ogain (3.0) Gain to be used while evaluating the likelihood, for smoothing the resampling effects
- ~Iskip (0) Number of beams to skip in each scan. Take only every (n+1)th laser ray for computing
- ~minimumScore (0.0) Minimum score for considering the outcome of the scan matching good. Can
 avoid jumping pose estimates in large open spaces when using laser scanners with limited range.

Parameters(Default)

- ~srr (0.1) Odometry error in translation as a function of translation (rho/rho)
- ~srt (0.2) Odometry error in translation as a function of rotation (rho/theta)
- ~str (0.1) Odometry error in rotation as a function of translation (theta/rho)
- ~stt (0.2) Odometry error in rotation as a function of rotation (theta/theta)
- ~linearUpdate (1.0) Process a scan each time the robot translates this far
- ~angularUpdate (0.5) Process a scan each time the robot rotates this far
- ~temporalUpdate (-1.0) Process a scan if the last scan processed is older than update time in seconds. A value less than zero will turn time based updates off.
- ~resampleThreshold (0.5) The Nelf based resampling threshold
- ~particles (30) Number of particles in the filter
- ~xmin (-100.0) initial map size (in meters)
- ~ymin (-100.0) initial map size (in meters)
- ~xmax (100.0) initial map size (in meters)
- ~ymax (100.0) initial map size (in meters)
- ~delta (0.05) Resolution of the map (in meters per occupancy grid block)

- Parameters(Default)
 - ~Ilsamplerange (0.01) Translational sampling range for the likelihood
 - ~Ilsamplestep (0.01) Translational sampling step for the likelihood
 - ~lasamplerange (0.005) Angular sampling range for the likelihood
 - ~lasamplestep (0.005) Angular sampling step for the likelihood
 - ~transform_publish_period (0.05) How long (in seconds) between transform publication.
 - ~occ_thresh (0.25) Threshold on gmapping's occupancy values. Cells with greater occupancy are considered occupied
 - ~maxRange The maximum range of the sensor. If regions with no obstacles within the range of the sensor should appear as free space in the map, set maxUrange (maximum range of the real sensor (= maxRange
- http://wiki.ros.org/gmapping
- \$ rosrun gmapping slam_gmapping

- Hector mapping
 - Lidar Only SLAM using LaserScan Data
- Published Topics
 - /map_metadata (nav_msgs/MapMetaData) Map Meta Data Type Map
 - /map (nav_msgs/OccupancyGrid) OccupancyGrid Map Data
 - /slam_out_pose (geometry_msgs/PoseStamped) Estimated Robot Pose
 without Covariance
 - /poseupdate (geometry_msgs/PoseWithCovarianceStamped) Estimated
 Robot Pose with Gaussian Covariance
- Subscribed Topics
 - /scan (sensor_msgs/LaserScan) Lidar LaserScan Data
 - /syscommand (std_msgs/String) When Publish Message "reset". Map and Robot Pose are reset

Parameters(Default)

- ~base_frame (base_link) The name of the base frame of the robot
- ~map_frame (map_link) The name of map frame
- ~odom_frame (odom) The name of odom frame
- ~map_resolution (0.025) The map resolution (meter), the length of one cell
- ~map_size (1024) The Size of Map (1024 * 1024 Cells)
- ~map_start_x (0.5) Location of the Origin of Map X(0.0 ~ 1.0)
- ~map_start_y (0.5) Location of the Origin of Map Y(0.0 ~ 1.0)
- ~map_update_distance_thresh (0.4) Threshold for performing map updates (meter)
- ~map_update_angle_thresh (0.9) Threshold for performing map updates (radian)
- ~map_pub_period (2.0) The map publish period (second)
- ~map_multi_res_levels (3) The number of map multi-resolution grid levels

Parameters(Default)

- ~update_factor_free (0.4) updates of free cells in the range [0.0, 1.0]. A value of 0.5 means no change.
- ~update_factor_occupied (0.9) updates of occupied cells in the range [0.0, 1.0]. A value of 0.5 means
 no change.
- ~laser_min_dist (0.4) The minimum distance [m] for laser scan endpoints to be used by the system.
- ~laser_max_dist (30.0) The maximum distance [m] for laser scan endpoints to be used by the system.
- ~laser_z_min_value (-1.0) The minimum height [m] relative to the laser scanner frame for laser
 scan endpoints to be used by the system. Scan endpoints lower than this value are ignored.
- ~laser_z_max_value (1.0) The maximum height [m] relative to the laser scanner frame for laser
 scan endpoints to be used by the system. Scan endpoints higher than this value are ignored.
- ~pub_map_odom_transform (true) Determine if the map-)odom transform should be published by the system.
- ~output_timing (false) Output timing information for processing of every laser scan via ROS_INFO.

Parameters(Default)

- ~scan_subscriber_queue_size (5) The queue size of the scan subscriber. This should be set
 to high values (for example 50) if log-files are played back to hector_mapping at faster than
 realtime speeds.
- ~pub_map_scanmatch_transform (true) Determines if the scanmatcher to map transform should be published to tf. The frame name is determined by the 'tf_map_scanmatch_transform_frame_name' parameter.
- ~tf_map_scanmatch_transform_frame_name (scanmatcher_frame) The frame name when publishing the scanmatcher to map transform as described in the preceding parameter.

http://wiki.ros.org/hector_mapping

\$ roslaunch hector_slam_launch tutorial.launch

Gmapping

- EKF, Particle Filter, Maximum A Posteriori Estimation방법 중 Particle Filter를 기반으로 한 SLAM알고리즘
- Input 플랫폼의 움직임에 해당하는 정보인 Odometry, 2D LiDAR의 거리 데이터
- Odometry 정보를 사용하므로, 위치가 과도하게 튀는 현상은 없음
- Odometry 정보에 대한 의존도가 높으므로. Odometry 데이터가 오차가 심할 경우. 제대로 Mapping이 되지 않거나. Mapping 중간에 지도가 틀어질 수 있음
- Odometry에 오차가 있을 경우에도 주변 환경이 특징이 많아. Map Sensor Data 사이의 Matching이 잘 되는 경우에 우수하게 동작함

- Gmapping
- Gmapping ROS Wiki http://wiki.ros.org/gmapping
- Gmapping Github https://github.com/ros-perception/slam_gmapping

- Related Papers
 - Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling –
 http://www.informatik.uni-freiburg.de/~stachnis/pdf/grisetti05icra.pdf
 - Improved Techniques for Grid Mapping with Rao Blackwellized Particle Filters
 - http://www.informatik.uni-freiburg.de/~stachnis/pdf/grisetti07tro.pdf

Gmapping

- \$ roslaunch wecar teleop.launch
- \$ roslaunch wecar gmapping_wecar.launch
- 지도 작성이 종료된 후
- \$ roscd wecar/map
- \$ rosrun map_server map_saver -f "FILENAME"
- 위 명령어로 지도 저장 가능

- hector mapping Lidar Only SLAM using LaserScan Data
 - EKF, Particle Filter, Maximum A Posteriori Estimation방법 중 Maximum A Posteriori Estimation을 기반으로 한 SLAM알고리즘이지만, 최근에 G20 등의 라이브러리를 사용하는 방식과는 차이가 있는 최적화 방법을 사용
 - Input 2D LiDAR의 거리 데이터
 - Hector SLAM 알고리즘은 LiDAR의 정보만을 사용하여, Mapping 및 Localization이 가능하며, 따라서 Hand-Held Mapping이 가능하다는 특징이 있음
 - LiDAR의 정보만을 사용하므로. Feature가 부족한 개활지 및 복도 등의 환경에서는 위치를 제대로 잡지 못하는 문제가 발생

- hector mapping Lidar Only SLAM using LaserScan Data
- Hector SLAM ROS Wiki http://wiki.ros.org/hector_slam
- Hector SLAM Github –
 https://github.com/tu-darmstadt-ros-pkg/hector_slam

- Related Papers
 - A Flexible and Scalable SLAM System with Full 3D Motion Estimation –
 https://ieeexplore.ieee.org/document/9336995

- hector mapping Lidar Only SLAM using LaserScan Data
 - \$ roslaunch wecar teleop.launch
 - \$ roslaunch wecar hector_mapping_wecar.launch
 - 지도 작성이 종료된 후
 - \$ roscd wecar/map
 - \$ rosrun map_server map_saver -f "FILENAME"
 - 위 명령어로 지도 저장 가능

Tel. 031 – 229 – 3553

Fax. 031 - 229 - 3554

제플 문의: go.sales@wego-robotics.com

71 == go.support@wego-robotics.com