L (Cromwall). Supp. $0 \leq \phi(t) \leq c + L \int_0^t \phi(\tau) d\tau, \ c, L > 0, \ \phi - \text{continuous. Then } \phi(t) \leq c e^{Lt}.$

Nonlinear systems

Def. Pt $x^* = 0$ is stable if $\forall \epsilon > 0$ and $\forall t_0 \geq 0$, $\exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon$, $\forall t \geq t_0$.

 $\begin{array}{ll} \textbf{Def.} \ \ \text{Point} \ x^* = 0 \ \text{is unif. stable if} \ \forall \epsilon > 0 \\ \exists \delta > 0, \ \text{s.t} \ \forall t_0 \geq 0, \ \text{from} \ ||x_0|| < \delta \ \text{follows} \\ ||x(t)|| < \epsilon, \ \forall t \geq t_0. \end{array}$

Def. Point $x^* = 0$ asympt. stable if it is stable and $\forall t_0 \geq 0 \ \exists c > 0$, s.t from $||x_0|| < c$ follows $\lim_{t \to \infty} ||x(t)|| \to 0$.

Def. Point $x^* = 0$ unif. asympt. stable if it is unif. stable and $\exists c > 0$, s.t $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $\lim_{t \to \infty} ||x(t)|| \to 0$.

Def. Convergence: $\forall \eta > 0 \ \forall t_0 \ge 0, \exists T > 0$ such that $\forall t > t_0 + T$ follows $||x(t)|| < \eta$.

Def. Unif. convergence: $\forall \eta > 0 \ \exists T > 0$ such that $\forall t_0 \geq 0$ and $\forall t \geq t_0 + T$ follows $||x(t)|| < \eta$.

Def. Pt $x^* = 0$ is glob. unif. asympt. stable if it is unif. stable with $\delta \to \infty$ for $\epsilon \to \infty$ and $\forall c, \eta \quad \exists T > 0$ s.t. $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $||x(t)|| < \eta$, $\forall t \geq t_0 + T$.

Th. Let $f:[0,\infty)\times D\to R^n$ is contin. and let $x^*=0$ be EP. If there is a diff. $V:[0,\infty)\times D\to R$ with:

- $W_1(x) \le V(t, x) \le W_2(x)$, $\forall t \ge 0, \ x \in D$
- $\dot{V}(t,x) \le 0, \forall t \ge 0, x \in D$

where $W_1, W_2: D \to R$ contin. and posit. def., then $x^* = 0$ is unif. stable. If $\dot{V}(t, x) \le -W_3(x)$, $\forall t \ge 0$, $x \in D$ with $W_2: D \to R$ contin. and pos. def. the $x^* = 0$

 $W_3:D\to R$ contin. and pos. def., the $x^*=0$ is unif. asympt. stable.

If $D = R^n$ and W_1 is radialy unbounded then $X^* = 0$ is glob. unif. asympt. stable.

 $\begin{array}{ll} \mathbf{L.} \ \ \mathrm{EP} \ x^* = 0 \ \mathrm{of} \ \dot{x}(t) = f(t,x(t)) \ \mathrm{is \ unif.} \\ \mathrm{stable \ iff} \ \exists \alpha \in K \ \mathrm{and} \ c > 0 \ \mathrm{s.t.} \ \ \forall t \geq t_0, \\ \forall ||x(t_0)|| < c \ \mathrm{and} \ ||x(t)|| \leq \alpha (||x(t_0)||). \end{array}$

L. EP $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is unif asympt stable iff $\exists \beta \in KL$ and c > 0 s.t. $\forall t \geq t_0, \ \forall ||x(t_0)|| < c$ and $||x(t)|| \leq \beta(||x(t_0)||, t - t_0)$.

System with inputs

Def. System is ISS if $\exists \beta \in KL, \ \gamma \in K \text{ s.t.}$ $\forall x_0 \in R^n, \ \forall t \geq 0 \text{ follows}$ $||x(t)|| \leq \beta(||x_0||, t) + \gamma(\sup_{\tau \in [0, t]} ||u(\tau)||).$

Th. Suppose that there exists a cont. diff. func. $V: R^n \to R$ and $\alpha_1, \alpha_2 \in K_\infty$ and $\alpha_3, \rho \in K$ s.t. $\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$, $\forall x \in R^n$ and $\frac{\partial V}{\partial x} f(x, u) \le -\alpha_3(||x||)$, $\forall x: ||x|| \ge \rho(||u||)$. Then is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$

Th. Assume: f is glob. Lipschitz; x = 0 is a glob. exp. stable EP for $\dot{x} = f(x, 0)$ Then ISS.

Th (Artstein). There exists $k: \mathbb{R}^n \to \mathbb{R}^m$ which is cont. on $\mathbb{R}^n \setminus \{0\}$ s.t. $x^* = 0$ is glob. asympt. stable EP for $\dot{x} = f(x) + G(x)k(x)$ iff there exists a CLF.

Sontag's formula"

Fix
$$c \geq 0$$
, $a(x) := L_f V(x)$, $b(x) := (L_G V(x))^T$

$$-cb(x) - \frac{a(x) + \sqrt{a(x)^2 + (b(x)^T b(x))^2}}{b(x)^T b(x)} b(x)^T$$

$$0, b(x) = 0$$

Backstepping

Integrator backstepping

$$\begin{split} \dot{x}_1 &= f_1(x_1) + g_1(x_1)x_2 \\ \dot{x}_2 &= u \\ u &= (-\frac{\partial V_1}{\partial e_1}g_1(e_1) + \dot{\alpha}_1) - k_2e_2, \ k_2 > 0 \\ x_1 &= f_1(x_1) + g_1(x_1)x_2 \\ \dot{x}_2 &= f_2(x_1, x_2) + g_2(x_1, x_2)u \\ u &= \alpha_2(x_1, x_2) = \frac{1}{g_2(x_1, x_2)}(-\frac{\partial V_1}{\partial x_1}g_1(x_1) + \dot{\alpha}_1 \\ &- k_2(x_2 - \alpha_1(x_1)) - f_2(x_1, x_2)) \\ \alpha_i(x_1, \dots x_i) &= \frac{1}{g_i}(\dot{\alpha}_{i-1} - \frac{\partial V_{i-1}}{\partial e_{i-1}}g_{i-1} \\ -k_i(x_i - \alpha_{i-1}) - f_i) \end{split}$$

Systems with inputs and outputs

Two-step approach:

- 1. Bring x(t) to $S:=\{x\in\mathbb{R}^n|S(x)=0\}$ in finite time
- 2. Have x(t) going to zero asymptotically (on S)

$$V(X) = \frac{1}{2}s(x)^2$$

$$u = -\frac{1}{L_g s(x)} (L_f s(x) + \hat{u} sgn(s(x))), \ \hat{u} > 0$$
$$\dot{x} = f(x) + g(x)\sigma(x) + g(x)u$$

If
$$|\sigma(x)| \le \beta(x)$$

$$u = -\frac{L_f s(x)}{L_g s(x)} - \frac{1}{L_g s(x)} (\hat{u} + \beta(x)) |L_g s(x)| sgn(s(x))$$

Def (dissipativity).

$$S(x(t)) \le S(x_0) + \int_0^t s(u(\tau), y(\tau)) d\tau$$
 (1) **Th.** Consider $\dot{x} = f(x, u), y = h(x, u)$.

Introduce "available storage" $S_a(x)$

$$sup_{u:[0,T]\to\mathbb{R}^m,T\geq0,x(0)=0}(-\int_0^T s(u(\tau),y(\tau)))$$

Th. System is dissipative w.r.t. the supply rate s iff $S_a(x) < \infty$ for all $x \in \mathbb{R}^n$ If $S_a(x) < \infty$ for all $x \in \mathbb{R}^n$, then S_a is a storage function and $S(x) \geq S_a(x) \ \forall x \in \mathbb{R}^n$ for all storage functions S.

If system is dissipative then x = 0 is asympt. stable.

$$\dot{x} = f(x, u), \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

$$y = h(x), \ y \in \mathbb{R}^m$$
(2)

Def. System is passive if it is dissipative w.r.t. supply rate $s(u, y) = u^T y$

Def. System is zero-state observable (ZSO) if (for u(t)=0) y(t)=0 for all $t\geq 0 \Rightarrow x(t)=0$ for all $t\geq 0$

Th. Let system (2) be i) passive in differentiable storage set ii)ZSO. Then the feedback u = -Py, P > 0 renders the origin asymptotically stable.

Th. Feedback interconnection with $u \equiv 0$. H_1 and H_2 are ZSO and dissipative with S_1 , S_2 w.r.t.

$$s_i(u_i, y_i) = u_i^T y_i - \rho_i y_i^T y_i - \nu_i u_i^T u_i, \ i = 1, 2,$$

The origin $(x_1,x_2)=(0,0)$ for interconnection is asymptotically stable if $\nu_1+\rho_2>0$ and $\nu_2+\rho_1>0$.

If is satisfied with $v_i=0$: "output - feedback passive". If $(\ref{eq:condition})$ satisfied with $p_i=0$: "input - feadforward passive".

Input/Output Methods

Def. Lp-spaces, $p \in [1, \infty]$. $Lp[0, \infty) = \{\Phi : [0, \infty) \rightarrow \mathbb{R}^m, measurable | \int_0^\infty ||\Phi(t)||^p dt < \infty\}$

(Cauchy-Schwarz inequality) $|<\phi_1,\phi_2>_{L_2}|\leq \|\phi_1\|_{L_2}\|\phi_2\|_{L_2}$

Def. H is finite-gain L_p stable if there exist γ , $\beta \geq 0$ s.t.

$$||(H(u))_T||_{L_p} \le \gamma ||u_T||_{L_p} + \beta$$

Def. A map $H: L_p^e \mapsto L_p^e$ is causal if $(H(u))_T = (H(u_T))_T$ for all $u \in L_p^e$ and $T \ge 0$.

Th. Consider $\dot{x}=f(x,u),\ y=h(x,u).$ Suppose the system is ISS and there exist $\alpha_1,\alpha_2\in K$ and $\eta\geq 0$ s.t. $\|h(x,u)\|\leq \alpha_1(\|x\|)+\alpha_2(\|u\|)+\eta.$ Then for each $x_0\in\mathbb{R}^n$, the system is L_∞ - stable.

$$x = Ax + Bu$$
 $u, y \in \mathbb{R} \to SISO$
 $y = Cx + Du$ $A...Hurwitz$ (3)

L. The L_2 gain of (3) is

$$\gamma = \sup_{w \in \mathbb{R}} \sqrt{G(-jw)G(jw)}$$

where $G(s) = C(sI - A)^{-1}B + D$

$$\dot{x} = f(x) + g(x)u$$

$$u = h(x)$$
(4)

Recall. System has L_2 gain less or equal γ if it is dissipative w.r.t. supply rate $s(u,y) = \frac{1}{2}\gamma^2||u||_2^2 - \frac{1}{2}||y||_2^2$

Th. Suppose that H_1 and H_2 are finite-gain L_p stable (with gains γ_1 , γ_2). Then the feedback interconnection is finite-gain L_p stable if $\gamma_1\gamma_2<1$.

$$\begin{split} \mathbf{Def.} & \ H: L_p^e \to L_p^e \ \text{is} \\ & \ passive \ \text{if there exist} \ B \in \mathbb{R} \ \text{s.t.} \ \forall u \in L_p^e, \\ & \forall T \geq 0, < u_T, y^T > \geq -B \\ & \ output\text{-strictly passive} \ \text{if there exists} \ B \in \mathbb{R} \\ & \ \text{and} \ \epsilon > 0 \ \text{s.t.} \ \forall u \in L_p^e, \ \forall T \geq 0 \ \text{follows} \\ & \ < u_T, y^T > \geq -B + \epsilon ||y_T||_{L_2}^2 \end{split}$$

L. Let $H: L_p^e \to L_p^e$ be output strictly passive with excess ϵ . Then H has L_2 -gain $\leq \frac{1}{\epsilon}$.

Th. Suppose exist ϵ_i , δ_i , β_i ; i = 1, 2 s.t.

$$\langle (e_i)_T, (H_i(e_i))_T \rangle \ge \epsilon_i ||(H_i(e_i))_T||^2 + \delta_i ||(e_i)_T||^2 - \beta_i$$

for all $T \geq 0$, $e_i \in L_2^e$, i = 1, 2. If $\epsilon_1 + \delta_2 > 0$ and $\epsilon_2 + \delta_1 > 0$ then the feedback interconnection has finite L_2 -gain from $(u_1, u_2) \to (y_1, y_2)$.