International Journal of Number Theory
© World Scientific Publishing Company

The Korselt Set of a Power of a Prime

Liyuan Wang

School of Mathematics and Statistics, Wuhan University
Wuhan 430072, China
2014202010017@whu.edu.cn

Received (Day Month Year) Accepted (Day Month Year)

A Carmichael number is a composite number n such that n divides $a^{n-1}-1$ for all integers a coprime to n. Korselt discovered that n is a Carmichael number if and only if n is square-free and $p-1\mid n-1$ for each prime divisor p of n. Let $\alpha\in\mathbb{Z}\backslash\{0\}$, a K_{α} -number is defined to be a composite number N, such that $N\neq\alpha$ and $p-\alpha\mid N-\alpha$ for each prime $p\mid N$. The set of all $\alpha\in\mathbb{Z}\backslash\{0\}$ such that N is a K_{α} -number is called the Korselt set of N and we denote this set by $\mathcal{KS}(N)$. In this paper, we investigate some properties of $\mathcal{KS}(N)$ when N is a power of a prime.

Keywords: Korselt's Criterion; Korselt set; Williams numbers; prime number.

Mathematics Subject Classification 2010: 11xxx, 11xxx, 11xxx

1. Introduction

Fermat's little theorem states that if p is a prime, then $a^{p-1} \equiv 1 \pmod{p}$ for each integer a coprime to p. The converse of this theorem is very interesting: If $n \geq 2$ is an integer and $a^{n-1} \equiv 1 \pmod{n}$ for every a coprime to n, does n has to be a prime? Actually, n is not necessarily a prime. In 1910, Carmichael found the first and smallest such number: $561 = 3 \cdot 11 \cdot 17 (\text{see } [5])$, which explains the name "Carmichael number".

Carmichael's method of searching for Carmichael number is based on Korselt's Criterion, which states that n is a Carmichael number if and only if n is square-free and $p-1\mid n-1$ for all prime divisors of n. However, Korselt did not give any example in his paper[8]. Carmichael conjectured in 1912 that there are infinitely many Carmichael numbers, which was not confirmed until 1994 when Alford-Granville-Pomerance published their remarkable paper[1]. Indeed, if C(x) denotes the number of Carmichael number less than or equal to x, in their paper they proved that for sufficiently large x, $C(x) > x^{\frac{2}{7}}$.

Inspired by Korselt's Criterion, O. Echi and R. Pinch introduced the concept of K_{α} -number and Korselt set. In [3], they gave the following definition.

Definition 1.1. Let $N \in \mathbb{N}$ be a composite number and $\alpha \in \mathbb{Z} \setminus \{0\}$.

2 Liyuan Wang

- (1) N is said to be a K_{α} -number, if $N \neq \alpha$ and $p \alpha \mid N \alpha$ for every prime divisor p of N.
- (2) The Korselt set of N, denoted by KS(N), is the set of all $\alpha \in \mathbb{Z} \setminus \{0, N\}$ such that N is a K_{α} -number.

By Definition 1.1 and Korselt's Criterion, Carmichael numbers are precisely K_1 -numbers. Carmichael numbers are interesting since they behave like primes: they satisfy Fermat's little theorem. However, when α takes other values other than one, it seems K_{α} -number no longer possesses such good property as K_1 -number does.

In 1977, H. C. Williams asked (see [9]): Do there exist Carmichael number N that also satisfies: $p+1 \mid N+1$ for all prime divisor p of N. In other words, can we find a composite N such that both $p-1 \mid N-1$ and $p+1 \mid N+1$ hold for each prime $p \mid N$? No such number has been found yet. This question has led the author of [6] to give the following definition.

Definition 1.2. Let $N \in \mathbb{N}$ be a composite number and α be a positive integer.

- (1) N is said to be a W_{α} -number, if $\alpha, -\alpha \in \mathcal{KS}(N)$.
- (2) The Williams set of N, denoted by WS(N), is the set of all positive integers α such that N is a W_{α} -number.
- O. Echi and N. Ghanmi studied KS(N) when N=pq is the product of two different primes [7]. The author of [2] concentrated on the case when N is the square of a prime. He fully described $KS(q^2)$ and proved some interesting propositions about $KS(q^2)$ and $WS(q^2)$.

In this paper, we follow their steps and investigate $\mathcal{KS}(N)$ and $\mathcal{WS}(N)$ when $N=p^l$ is the power of a prime (where $l\geq 3$ is an integer). For $\mathcal{KS}(p^l)$, we mainly discuss the case when l=3. $\mathcal{KS}(q^l)$ and $\mathcal{WS}(q^l)$ will be discussed in Section 2 and Section 3 respectively.

2. The Korselt Set and Weight of q^l

Let $|\mathcal{KS}(q^l)|$ denotes the number of elements in $\mathcal{KS}(q^l)$. The following theorem analyzed $\mathcal{KS}(q^l)$ and $|\mathcal{KS}(q^l)|$.

Theorem 2.1. Let q be a prime number, $\alpha \in \mathbb{Z}$ and $l \geq 3$ be an integer. We denote by $\mathcal{D}^+(q^{l-1}-1)$ the set of all positive divisors of $q^{l-1}-1$; then the following properties hold.

- (1) $\alpha \in \mathcal{KS}(q^l)$ if and only if $\alpha = q + \delta q^{\varepsilon} r$, for some $r \in \mathcal{D}^+(q^{l-1} 1)$, $\delta \in \{-1, 1\}$, $\varepsilon \in \{0, 1\}$, and $(\delta, \varepsilon, r) \notin \{(-1, 1, 1), (1, 1, q^{l-1} 1)\}$.
- (2) $|\mathcal{KS}(q^l)| = 4\tau(q^{l-1}-1)-2$, where $\tau(q^{l-1}-1)$ denotes the number of all positive divisors of $q^{l-1}-1$.

Proof.

- (1) As $q^l \alpha = q^l q + (q \alpha)$, we deduce that $\alpha \in \mathcal{KS}(q^l)$ if and only if $q \alpha$ divides $q^l - q = q(q^{l-1} - 1)$. But, as $\alpha \neq 0$ and $\alpha \neq q^l$, we conclude that $\alpha \in \mathcal{KS}(q^l)$ if and only if $\alpha = q + \delta q^{\varepsilon} r$, for some $r \in \mathcal{D}^+(q^{l-1} - 1)$, $\delta \in \{-1, 1\}$, $\varepsilon \in \{0, 1\}$, and $(\delta, \varepsilon, r) \notin \{(-1, 1, 1), (1, 1, q^{l-1} - 1)\}.$
- (2) If we let $\mathcal{D}(q^l-q)$ be the set of all divisors of q^l-q , then from (1), $\mathcal{KS}(q^l)$ and $\mathcal{D}(q^l-q)\setminus\{-q,q^l-q\}$ are numerically equipotent. Hence

$$|\mathcal{KS}(q^l)| = |\mathcal{D}(q^l - q)| - 2.$$

But $|\mathcal{D}(q^l-q)|=2\tau(q^l-q)$; and as the function τ is multiplicative and $\gcd(q,q^{l-1}-1)=1$, we get $\tau(q^l-q)=\tau(q)\times\tau(q^{l-1}-1)=2\tau(q^{l-1}-1)$.

Therefore,
$$|\mathcal{KS}(q^l)| = 4\tau(q^{l-1} - 1) - 2.$$

Notice that $q \geq 2$ and $l \geq 3$, so $q^{l-1} - 1 > 1$. Thus by the above theorem, $|\mathcal{KS}(q^l)| \ge 4 \cdot 2 - 2 = 6.$

We now ask: given an integer α , does it always belong to $\mathcal{KS}(q^l)$ for some prime q? Obviously, for some α , this is always true (simply let $\alpha = p-1$ and q=p, where p is any prime number). What we really want to know is that can we find an α such that $\alpha \notin \mathcal{KS}(q^l)$ for any prime q and that how many such "strange" α there exist. We first consider the simplest case: l = 3.

Suppose $\alpha \in \mathcal{KS}(q^3)$ for some prime q, which means $q - \alpha \mid q^3 - \alpha$. Notice that

$$q^{3} - \alpha = q^{3} - \alpha^{3} + \alpha^{3} - \alpha$$
$$= (q - \alpha)(q^{2} + q \cdot \alpha + \alpha^{2}) + \alpha^{3} - \alpha.$$
(2.1)

So

$$\alpha \in \mathcal{KS}(q^3)$$
 if and only if $q - \alpha \mid \alpha^3 - \alpha$. (*)

With this, our task is to find α such that there doesn't exist prime q which satisfy $q-\alpha \mid \alpha^3-\alpha$. By condition (*) and a computer program, we found that the first such "strange" α is 21362 and there are only seven such α between 1 and 50000. When we enlarge the scope of α , we can find more. It is natural to conjecture that there are infinitely such α . This question is not as elementary as it seems. We can't give a definite answer to that. However, it is not so hard to partly answer this question. Notice that q is a prime, so that for any q, either $q \mid \alpha$ or $gcd(q, \alpha) = 1$. We only discuss the first case in this paper. Actually, we proved the following theorem.

Theorem 2.2. There exist infinitely many α such that $\alpha \notin \mathcal{KS}(q^3)$ for any prime

In order to prove this theorem, we need Dirichlet's theorem on arithmetic progressions, which is the following lemma. The proof can be found in [10].

Lemma 2.3 (Dirichlet's theorem). For any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is a non-negative integer.

4 Liyuan Wang

Proof of Theorem 2.2. We will prove our theorem by constructing such α . Let p be any odd prime number, so $\gcd(p^2,2)=1$. Thus by Lemma 2.3, there exists an integer n_1 such that $p_1=p^2\cdot n_1+2$ is a prime. Since $p_1-1=p^2\cdot n_1+1$,

$$\gcd(p_1 - 1, p) = \gcd(p^2 \cdot n_1 + 1, p) = 1. \tag{2.2}$$

By Lemma 2.3 again, there are infinitely many primes in the arithmetic progression $(p_1-1)n+p$. So we can find an integer n_2 large enough so that $p_2=(p_1-1)n_2+p$ is a prime and $p_2>p_1^2$.

We claim that $\alpha = p_1p_2$ satisfy our needs. "Infinity" follows from the fact that there are infinitely many choices for both p_1 and p_2 .

If on the contrary, there is a prime q such that $q \mid \alpha$ and $\alpha \in \mathcal{KS}(q^3)$. Since $\alpha = p_1 p_2$, q is either p_1 or p_2 . If $q = p_1$, then $\alpha \in \mathcal{KS}(p_1^3)$. By the condition (*), we have

$$p_1 - \alpha \mid \alpha^3 - \alpha. \tag{2.3}$$

Replace α by p_1p_2 in the above equation, we get

$$p_1 - p_1 p_2 \mid p_1 p_2 (p_1 p_2 - 1)(p_1 p_2 + 1),$$
 (2.4)

or equivalently,

$$p_2 - 1 \mid (p_1 p_2 - 1)(p_1 p_2 + 1).$$
 (2.5)

Since

$$(p_1p_2 - 1)(p_1p_2 + 1) = (p_1p_2 - p_1 + p_1 - 1)(p_1p_2 - p_1 + p_1 + 1)$$
$$= (p_1(p_2 - 1) + p_1 - 1)(p_1(p_2 - 1) + p_1 + 1),$$

(2.5) is equivalent to

$$p_2 - 1 \mid (p_1 - 1)(p_1 + 1) = p_1^2 - 1.$$
 (2.6)

Similarly, if $q = p_2$, then $\alpha \in \mathcal{KS}(p_2^3)$ and we will have

$$p_1 - 1 \mid p_2^2 - 1. \tag{2.7}$$

We next prove that both (2.6) and (2.7) are impossible.

According to our choice, $p_2 > p_1^2$, which implies $p_2 - 1 > p_1^2 - 1$. So (2.6) is impossible.

If (2.7) holds, then

$$0 \equiv p_2^2 - 1 \equiv ((p_1 - 1)n_2 + p)^2 - 1 \equiv p^2 - 1 \pmod{p_1 - 1}.$$
 (2.8)

However

$$p_1 = p^2 n_1 + 2 \implies p_1 - 1 = p^2 n_1 + 1 > p^2 - 1,$$

this contradicts (2.8).

Notice that the above theorem did not answer our question completely. If there are indeed infinitely many "strange" α , to prove that I think we have to provide a

certain form of α and control the number of divisors of $\alpha^3 - \alpha$. This, however, is not an easy task. Besides the conjecture we made before Theorem 2.2, if we consider $\mathcal{KS}(q^l)$ (where $l \geq 3$ is any integer) a conjecture in more general form arises. We simply list that below and leave it to some experts.

Conjecture 2.4. For any integer $l \geq 3$, there exist infinitely many $\alpha \in \mathbb{Z}$ such that no prime q satisfies $q - \alpha \mid \alpha^l - \alpha$.

3. Williams Numbers

As defined in the introduction, a W_{α} -number is a composite number N such that $\alpha, -\alpha \in \mathcal{KS}(N)$. The Williams set of N, denoted by $\mathcal{WS}(N)$, is the set of all $\alpha > 0$ such that N is a W_{α} -number. The author of [2] discussed some propositions of $\mathcal{WS}(N)$ when $N=q^2$. Here, we are concerned with $N=p^l$, for $l\geq 3$. For any prime q, there are only four possible values mod 12, namely $q \equiv 1, 5, 7, \text{ or } 11 \pmod{12}$. Our discussion will split into two cases, we first prove the following proposition.

Proposition 3.1. If q is a prime and $q \equiv 1, 5, or 7 \pmod{12}$ then $WS(q^l) \neq \emptyset$ for any integer $l \geq 3$.

Proof. Since q^l has only one prime factor, we get

$$\alpha \in \mathcal{WS}(q^l) \iff q - \alpha \mid q^l - \alpha, \ q + \alpha \mid q^l + \alpha.$$
 (3.1)

Notice that

$$q^{l} - \alpha = q^{l} - q + q - \alpha,$$

$$q^{l} + \alpha = q^{l} - q + q + \alpha.$$
(3.2)

So

$$\alpha \in \mathcal{WS}(q^l) \iff q - \alpha \mid q^l - q, \ q + \alpha \mid q^l - q.$$
 (3.3)

We next find α such that $q \pm \alpha \mid q^l - q$.

If $q \equiv 1, 5 \pmod{12}$, then $q - 1 \equiv 0 \pmod{4}$. So

$$q^{l} - q = q(q^{l-1} - 1)$$

$$= q(q - 1)(1 + q + \dots + q^{l-2})$$

$$\equiv 0 \pmod{4q}.$$
(3.4)

Thus $q \pm 3q \mid q^l - q$. By (3.3), we get $3q \in \mathcal{WS}(q^l)$. If $q \equiv 7 \pmod{12}$, then $q - 1 \equiv 0 \pmod{3}$. This gives

$$q^{l} - q = q(q^{l-1} - 1)$$

$$= q(q-1)(1 + q + \dots + q^{l-2})$$

$$\equiv 0 \pmod{3q}.$$
(3.5)

By similar arguments, we can see that $\alpha = 2q \in \mathcal{WS}(q^l)$. Thus we have proved that $WS(q^l) \neq \emptyset$, for any $l \geq 3$.

6 Liyuan Wang

Different from the case we discussed in Proposition 3.1, when $q \equiv 11 \pmod{12}$ whether $\mathcal{WS}(q^l) \neq \emptyset$ or not will have a relation with the parity of l. We first let l be odd. In this case, l-1 is even, $q \equiv -1 \pmod{12}$, thus

$$q^{l} - q = q(q^{l-1} - 1)$$

 $\equiv q((-1)^{l-1} - 1)$
 $\equiv 0 \pmod{12q}.$ (3.6)

Combining (3.6) with (3.3) we can see that $2q, 3q \in \mathcal{WS}(q^l)$. We summarize the above statements in the following proposition.

Proposition 3.2. If q is a prime such that $q \equiv 11 \pmod{12}$ and $l \geq 3$ is an odd integer, then $WS(q^l) \neq \emptyset$.

By now, we have already discussed some cases when $\mathcal{WS}(q^l) \neq \emptyset$. With the above two propositions and some further research, we are in a position to provide a necessary and sufficient condition on $\mathcal{WS}(q^l) = \emptyset$. This is shown in the following theorem.

Theorem 3.3. $\mathcal{WS}(q^l) = \emptyset$ if and only if $q \equiv 11 \pmod{12}$, l is even, and for any integer k, $q^{l-1} \not\equiv 1 \pmod{36k^2 - q^2}$, $q^{l-1} \not\equiv 1 \pmod{36k^2 - 1}$.

Proof. We first suppose $WS(q^l) = \emptyset$.

In this case, by Proposition 3.1 and Proposition 3.2, we know that $q \equiv 11 \pmod{12}$ and l is even. It is sufficient to prove that for any integer k both $q^{l-1} \not\equiv 1 \pmod{36k^2 - q^2}$ and $q^{l-1} \not\equiv 1 \pmod{36k^2 - 1}$. We prove this by contradiction.

• Assume there exists $k_0 \in \mathbb{Z}$ such that

$$q^{l-1} \equiv 1 \pmod{36k_0^2 - q^2}$$
.

Since

$$36k_0^2 - q^2 = (6k_0 - q)(6k_0 + q),$$

we have

$$q - 6k_0 \mid q^{l-1} - 1 \text{ and } q + 6k_0 \mid q^{l-1} - 1,$$

which imply $q \pm 6k_0 \mid q(q^{l-1} - 1)$. So $\alpha = 6k_0 \in \mathcal{WS}(q^l)$, a contradiction.

• If there exists $k_1 \in \mathbb{Z}$ such that

$$q^{l-1} \equiv 1 \pmod{36k_1^2 - 1},$$

then

$$1 \pm 6k_1 \mid q^{l-1} - 1,$$

or equivalently,

$$q \pm 6k_1q \mid q^l - q.$$

This leads to $\alpha = 6k_1q \in \mathcal{WS}(q^l)$, a contradiction.

$$q^{l-1} \equiv 1 \pmod{36k^2 - q^2} \tag{3.7}$$

or

$$q^{l-1} \equiv 1 \pmod{36k^2 - 1} \tag{3.8}$$

holds. Let $\alpha \in \mathcal{WS}(q^l)$, by (3.3) we get $q \pm \alpha \mid q^l - q$. Since q is a prime, either $q \mid \alpha$ or $\gcd(q, \alpha) = 1$. We will prove our claim according to these two cases.

If $q \mid \alpha$, we can write $\alpha = rq$ for some integer r. Replace α by rq in $q \pm \alpha \mid q^l - q$, we get $q \pm rq \mid q^l - q$ or equivalently,

$$r-1 \mid q^{l-1} - 1 \text{ and } r+1 \mid q^{l-1} - 1.$$
 (3.9)

Notice that $q \equiv 11 \equiv -1 \pmod{12}$ and l is even, so

$$q^{l-1} - 1 \equiv (-1)^{l-1} - 1 \equiv -1 - 1 \equiv 10 \pmod{12}.$$
 (3.10)

We now show that $6 \mid r$. This can be done by proving $2 \mid r$ and $3 \mid r$. If $2 \nmid r$, then $r \equiv \pm 1 \pmod{4}$. So either $4 \mid r-1$ or $4 \mid r+1$. By (3.9), we always have $4 \mid q^{l-1}-1$, contradicting (3.10). If $3 \nmid r$, then $r \equiv \pm 1 \pmod{3}$. By similar arguments we can prove that $3 \mid q^{l-1}-1$, which also contradicts (3.10).

Since $6 \mid r$ we can write r = 6k and (3.9) will become

$$6k - 1 \mid q^{l-1} - 1 \text{ and } 6k + 1 \mid q^{l-1} - 1.$$

However, gcd(6k-1,6k+1) = gcd(6k-1,2) = 1. So the above statements imply

$$(6k-1)(6k+1) \mid q^{l-1}-1.$$

Thus we have found an integer k such that (3.8) holds.

If $gcd(q, \alpha) = 1$, then $gcd(q \pm \alpha, q) = 1$. So

$$q \pm \alpha \mid q^l - q \iff q \pm \alpha \mid q^{l-1} - 1.$$

Notice that $q \equiv 11 \pmod{12}$ implies $q \equiv 3 \pmod{4}$. So if α is odd, then either $4 \mid q - \alpha$ or $4 \mid q + \alpha$. Any case will imply $4 \mid q^{l-1} - 1$ since $q \pm \alpha \mid q^l - q$. This contradicts (3.10). So α must be even. Thus $q + \alpha$ is odd. Combining this with $\gcd(q,\alpha) = 1$ we will get

$$\gcd(q-\alpha,q+\alpha)=\gcd(2q,q+\alpha)=\gcd(q,q+\alpha)=1.$$

So

$$q - \alpha \mid q^{l-1} - 1, q + \alpha \mid q^{l-1} - 1 \implies q^2 - \alpha^2 \mid q^{l-1} - 1.$$
 (3.11)

If we are able to prove 6 | α , then letting $\alpha = 6k$, (3.11) will become

$$q^2 - 36k^2 \mid q^{l-1} - 1$$
,

namely (3.7) holds. This will complete the proof.

П

$8 \quad Liyuan \ Wang$

To prove $6 \mid \alpha$, it is sufficient to prove $3 \mid \alpha$ since we have already proved that α is even. Notice that $q \equiv -1 \pmod{3}$. If $3 \nmid \alpha$, then $\alpha \equiv \pm 1 \pmod{3}$. So

$$q^2 - \alpha^2 \equiv (-1)^2 - (\pm 1)^2 \equiv 0 \pmod{3}.$$

By (3.11),
$$3 \mid q^{l-1} - 1$$
, contradicting (3.10).

Given a prime q and an integer $l \geq 3$, it will be quite cumbersome to check whether or not $\mathcal{WS}(q^l) = \varnothing$ directly. However, by Theorem 3.3 we only need to check if there is an integer k that satisfies one of the two conditions: $q^{l-1} \equiv 1 \pmod{36k^2 - q^2}$, $q^{l-1} \equiv 1 \pmod{36k^2 - 1}$. Notice that these conditions require $36k^2 - q^2 \leq q^{l-1}$ and $36k^2 - 1 \leq q^{l-1}$. So we only have to test these conditions for a finite number of values for k. For instance, when l = 4, of all the primes 2 < q < 1000 that satisfy $q \equiv 11 \pmod{12}$, there are only ten primes

$$q = 11, 23, 71, 191, 239, 419, 431, 491, 647, 911$$

for which we can find an integer k such that $q^2-36k^2\mid q^{l-1}-1$ or $36k^2-1\mid q^{l-1}-1$ holds. Thus by Theorem 3.3, $\mathcal{WS}(q^l)=\varnothing$ for all primes q<1000 and $q\equiv11\pmod{12}$ except these ten primes.

Acknowledgement

In the process of writing this paper, I get many instructions from Prof. Jianhua Chen, Prof. Jihua Ma and some classmates. My family also give me lots of love and support. I would like to thank them all. In the end, I am eager to express my sincere gratitude to the anonymous referee for reading this paper and putting forward valuable opinions, which assist me in revising my paper.

References

- [1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, *Ann.Math.* **139** (1994) 703–722.
- [2] I. Alrasasi, The Korselt set of the square of a prime, Int. J. Number Theory 10 (2014) 875–884.
- [3] K. Bouallegue, O. Echi and R. Pinch, Korselt numbers and sets, Int. J. Number Theory 6 (2010) 257–269.
- [4] R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910) 232–238.
- [5] R. D. Carmichael, On Composite Numbers P Which Satisfy the Fermat Congruence $a^{P-1} \equiv 1 \mod P$, Amer. Math. Monthly **19** (1912) 22–27.
- [6] O. Echi, Williams numbers, C. R. Math. Acad. Sci. Soc. Roy. Canad. 29 (2007) 41–47.
- [7] O. Echi and N. Ghanmi, The Korselt set of pq, Int. J. Number Theory 8 (2012) 299–309.
- [8] A. Korselt, Problème chinois, L'Intermédiaire des Mathématiciens 6 (1899) 142–143.
- [9] H. C. Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull. 20 (1977) 151–163.
- [10] J. P. Serre, A course in arithmetic, New York: Springer-Verlag (1973) 73–76.