

2025, 16 Capa b	ilities: It would have consciousness, self-awareness, and true understanding—no	et just simulating inteli
Exam	ples : Purely theoretical at this point— no current system is truly Strong AI.	
1	think, reason, and adapt like a human	
	l timik, reason, and adapt like a numan I hypothetical and under research	
Jul	i nypointitear and under research	
TUR.	ING TEST	
When	speaking about AGI we need to have some way to tell if we have created a truly inte	lligent system. <mark>Alan T</mark>
of inte	lligence. The test compares a given system to something inherently intelligent - a re	eal human being, and
progra	m, we use a human interrogator. So, if a human being is unable to distinguish betw	veen a real person and
intelli _?	gent.	
<u>Diffe</u>	<u>rent_Approaches to AI</u>	
There	are two possible approaches to this problem:	
	Top-down Approach (Symbolic Reasoning)	
∆ ton-	down approach models the way a person reasons to solve a problem. It involves extracting	A bottom-up approach
knowle	elop a way to model reasoning inside a computer.	units called neurons. Ea of neurons to solve use
-There	are also some other possible approaches to intelligence:	
An Em	ergent, Synergetic or multi-agent approach are based on the fact that complex inte	lligent behaviour can l
	ling to evolutionary cybernetics, intelligence can emerge from more simple, reactiv	
<u>An Ev</u>	<mark>olutionary approach, or genetic algorithm</mark> is an optimization process based on the p	rinciples of evolution
	<u>p-down approach</u> , we try to model our reasoning. Because we can follow our thoug	hts when we reason, v
	called <u>symbolic reasoning.</u> tend to have some rules in their head that guide their decision making processes. <mark>I</mark>	For example when a c
_	and thus there might be some inflammation going on inside the body. By applying a	-
diagno		
This a	oproach relies heavily on knowledge representation and reasoning. Extracting know	vledge from a human
would	not know exactly why he or she is coming up with a particular diagnosis. Sometime	es the solution just con
	nining the age of a person from a photograph, cannot be at all reduced to manipula	ting knowledge.
	<u>1-Up Approach</u>	
	ately, we can try to model the simplest elements inside our brain – a neuron. We ca problems by giving it examples. This process is similar to how a newborn child learn	
<mark>Machi</mark>	ne Learning (ML)	
How it Types.	works: Learns from data and patterns, not from hard-coded rules.	
	vised learning – Learns from labeled examples (e.g., spam vs. not spam)	

Unsupervised learning – Finds patterns in unlabeled data Reinforcement learning – Learns through trial and error (like training a dog) Very powerful and flexible Needs lots of data A Brief History of AI How did AI start? In the 1950s, scientists wanted computers to think like people. They used **rules** and **logic** to build programs. One big success was **expert systems** — programs that gave advice like a doctor or engineer. BUT it was hard: Writing all the rules was slow. Keeping the computer's knowledge updated was too much work. So, people lost interest. This was called the AI Winter in the 1970s. ₩ What changed? Computers became cheaper and faster. We got **lots of data** (thanks to the internet). Scientists started using **neural networks** — a way for computers to **learn from examples**. Neural networks became really good at: Recognizing images (computer vision). Understanding speech. 🛂 Chess – A Cool Example **Old method**: Computers guessed lots of moves and picked the best one using logic (search and rules). Better method: Computers learned from past human games (case-based reasoning). Today: AI learns by playing with itself and improving over time using neural networks + reinforcement learni That's how programs like AlphaZero can beat world champions! 🔽 Other games AI learned to play: **Go** (AlphaGo beat a world champ!) Poker StarCraft II Dota 2 66666666666666 AI FOR BEGINNER PART-2 / SYMBOLIC AI Knowledge Representation and Expert Systems-

What is Knowledge?

- Knowledge is what we know and understand about the world.
- It's not just information we see or hear it's what we learn and connect in our minds.
- For example, you read a book (data), understand the meaning (information), and then remember and use it in re

DIKW Pyramid (From Data to Wisdom)

- 1. Data Just raw facts.
 - 🗾 Example: The word "computer" printed in a book.
 - ▶ It's just text doesn't mean anything until someone reads it.
- 2. Information When we understand what the data means.
 - Example: You read "computer" and know it' s a machine.
 - ➤ Now the word has meaning.
- 3. Knowledge When we connect information to what we already know.
 - 🔗 Example: You learn how a computer works, what it's used for, and where to buy one.
 - ▶ It becomes part of your personal understanding of the world.
- 4. Wisdom Knowing how and when to use your knowledge.
 - 🤔 Example: You decide when using a computer is helpful or why someone might not need one.
 - ► It's smart decision-making based on knowledge.

WISDOM

KNOWLEDGE

INFORMATION

DATA

Classifying Computer Knowledge Representations------

Network Representations (Semantic Networks)

- Think of a mind map or a web of ideas.
- In our brain, we connect ideas like:

"Python \rightarrow is a \rightarrow programming language"

• A semantic network does the same thing on a computer — it shows concepts (nodes) and relationships (arrows of

🧠 Example:

[Python] — is —> [Untyped Language]

[Python] — invented by —> [Guido van Rossum]

[Python] — block syntax —> [Indentation]

Object-Attribute-Value Triplets

Another way to store this network in a computer is to break each connection into 3 parts:

Object – Attribute – Value

📋 Example:

Object	Attribute	Value
Python	is	Untyped-Language
Python	invented-by	Guido van Rossum
Python	block-syntax	indentation
Untyped-Language	doesn't have	type definitions

This is easy for a computer to store, search, and connect.

Hierarchical Representations – Like a Family Tree

- We humans think in hierarchies big categories with smaller ones inside.
- Example:
 - 🐤 Canary is a Bird
 - ờ Bird is an Animal
- From this, we know:
- · All birds (including canaries) have wings.
- So if something is a bird, it inherits bird properties.
 - Frame Representation Like a Form or Template
- · A frame is like a profile or a form that describes an object.
- It has slots, like fields in a form.
- Each slot holds values, default values, or even rules.
 - Kample: Frame for Python (programming language)

Slot	Value	Default Value	Range or Notes
Name	Python		
Is-A	Untyped-Language		(category it belongs to)
Variable Case		CamelCase	(default case style)
Program Length			5–5000 lines
Block Syntax	Indent		(uses indentation)

- 🛃 This is like saying:
- · Python is an untyped language.
- If we don't know the case style, we assume it's CamelCase by default.
- Most Python programs are between 5 to 5000 lines.
- It uses indentation for blocks.

Procedural Representations – "Knowledge as Actions"

- In this type, knowledge is stored as a set of actions or steps to take when something happens.
- · It's like if-this-happens \rightarrow then-do-this.
 - 📑 1. Production Rules IF-THEN Statements
- These are simple rules that help us make decisions.
- · Example (Doctor's Rule):
 - 👉 IF a patient has high fever OR high C-reactive protein
 - THEN they probably have inflammation
- Once we know one part is true, we can use it to conclude something else.

)1/07/2	2025, 16:29	OneNote
	2. Algorithms – Step-by-Step Pr	rocedures
	Algorithms are a set of fixed step	os to solve a problem.
	Like a recipe in cooking:	
•	Step 1: Boil water	
٠	Step 2: Add pasta	
•	Step 3: Cook for 10 minutes	
	PBut in AI, algorithms aren't	used much as direct knowledge – they're more for programming, not for unde
	3. Logic – Representing Univ	versal Knowledge
•	Logic is a formal way to represe	ent facts and reasoning.
•	It started with Aristotle, who trie	ied to describe how humans think using rules.
	Types of Logic Used in AI:	
	► Predicate Logic	
•	Used to describe facts like:	
	👉 "All birds can fly" or "Socrates	
•	It's very powerful, but too compl	lex for computers to handle fully.
	So we use simpler parts, like .	Horn clauses (used in Prolog).
	> Description Logic	
•	Used to describe hierarchies and	d relationships between objects.
•	Commonly used in the Semantic	Web to define and connect knowledge online.