Schedule

1.	20.02	Introduction
2.	27.02	Project I plan
3.	05.03	Tutorial hours
4.	12.03	Tutorial hours
5.	19.03	Tutorial hours
6.	26.03	Project I deadline
7.	09.04	Project II plan
8.	16.04	Tutorial hours
9.	23.04	Tutorial hours
10.	07.05	Project II deadline
11.	14.05	Project III plan
12.	21.05	Tutorial hours
13.	28.05	Tutorial hours
14.	04.06	Tutorial hours
15.	11.06	Project III deadline

General comments for each project

- any programming language is allowed
- you can utilize code from external sources (books, articles, blogs) provided that: reference is cited in the report and some modifications to the original solution are applied (not just copy-paste)
- plan: short (1-2 pages) document which briefly describes planned architectures, experiments etc. (can be sent by e-mail)
- source code: with short readme how to run the model, set parameters etc.
- report: the most important part; all results (also failures) should be described in details; run experiments multiple times (at least 5) and present min, max, avg, std dev; justify used parameters (present tuning process); provide conclusions; high accuracy is only small part of final grade - more important is well presented experimental process

Reports

The report should include:

- description of the research problem, understandable to the person who did not see the content of the task
- instruction of the application (containing information on how to reproduce results)
- theoretical introduction
- description of the conducted experiments
- statistically processed results (presented clearly)
- conclusions, presumed reasons for successes/failures and further research proposals

Reports

Some additional remarks:

- if the experiment is not described in the report it is regarded as not conducted
- take care of reproducibility by initializing a random number generator with a constant seed
- the report is an official document, so please keep it formal (table of contents, bibliography, captions under figures, tables, etc.)
- results should be commented
- to obtain statistically significant results, each experiment ought to be repeated multiple times (when possible)
- in addition to the mean, standard deviation should also be calculated (in some scenarios worse mean with low variance may be a more desirable result than a better mean with high variance)

Project II - recurrent neural networks

Topic: Speech commands classification with recurrent neural networks

Dataset: Speech Commands Dataset

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/data

Project II - recurrent neural networks

- test and compare different network architectures (one of them should be Transformer, another one Long short-term memory (LSTM))
- investigate influence of parameters change on the obtained results
- present confusion matrix (with appropriate discussion)
- in case of accuracy or efficiency problem a subset of classes can be selected and tested (e.g. only "yes" and "no" commands)
- please pay special attention on "silence" and "unknown" classes test different approaches (e.g. separate network for their recognition)

Project II - recurrent neural networks

Useful resources:

- https://www.kaggle.com/davids1992/speech-representation-and-data-exploration
- https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837
- https://www.coursera.org/lecture/nlp-sequence-models/recurrent-neural-network-model- ftkzt
- https://pathmind.com/wiki/lstm
- https://towardsdatascience.com/transformers-141e32e69591