Задача А. Двоичный поиск (!) (1 балл)

Имя входного файла: binsearch.in Имя выходного файла: binsearch.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан массив из n элементов, упорядоченный в порядке неубывания, и m запросов: найти первое и последнее вхождение числа в массив.

Формат входного файла

В первой строке входного файла содержится одно число n — размер массива ($1 \le n \le 100000$). Во второй строке находится n чисел в порядке неубывания — элементы массива. В третьей строке находится число m — количество запросов. В следующей строке находится m чисел — запросы.

Формат выходного файла

Для каждого запроса выведите в отдельной строке номер первого и последнего вхождения этого числа в массив. Если числа в массиве нет, выведите два раза -1.

Пример

binsearch.in	binsearch.out
5	1 2
1 1 2 2 2	3 5
3	-1 -1
1 2 3	

Примечание

Необходимо написать свой бинарный поиск.

Задача В. Гирлянда (3 балла)

 Имя входного файла:
 garland.in

 Имя выходного файла:
 garland.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Гирлянда состоит из n лампочек на общем проводе. Один её конец закреплён на заданной высоте A мм $(h_1=A)$. Благодаря силе тяжести гирлянда прогибается: высота каждой неконцевой лампы на 1 мм меньше, чем средняя высота ближайших соседей $(h_i = \frac{(h_{i-1} + h_{i+1})}{2} - 1$ для 1 < i < N). Требуется найти минимальную высоту второго конца B $(B=h_n)$ при условии, что лишь одна лампочка может касаться земли, а для остальных выполняется условие $h_i > 0$.

Подсказка: используйте двоичный поиск.

Формат входного файла

В первую строке входного файла содержится два числа n и A ($3 \le n \le 1000, n-$ целое, $10 \le A \le 1000, A-$ вещественное).

Формат выходного файла

Вывести одно вещественное число В с двумя знаками после запятой.

Пример

garland.in	garland.out
8 15	9.75
692 532.81	446113.34

Задача С. Пирамида ли? (1 балл)

Имя входного файла: isheap.in
Имя выходного файла: isheap.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Структуру данных неубывающая пирамида можно реализовать на основе массива.

Для этого должно выполнятся основное свойство неубывающей пирамиды, которое заключается в том, что для каждого $1 \le i \le n$ выполняются условия:

- если $2i \leqslant n$, то $a[i] \leqslant a[2i]$;
- если $2i + 1 \leqslant n$, то $a[i] \leqslant a[2i + 1]$.

Дан массив целых чисел. Определите, является ли он неубывающей пирамидой.

Формат входного файла

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка содержит n целых чисел по модулю не превосходящих $2 \cdot 10^9$.

Формат выходного файла

Выведите «YES», если массив является неубывающей пирамидой, и «NO» в противном случае.

Пример

isheap.in	isheap.out
5	NO
1 0 1 2 0	
5	YES
1 3 2 5 4	

Задача D. Пирамидальная сортировка (2 балла)

Имя входного файла: sort.in
Имя выходного файла: sort.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания с помощью пирамидальной сортировки (heap sort). За решения, основанные на любых других сортировках, баллы ставиться не будут.

Формат входного файла

В первой строке входного файла содержится число n ($1 \le n \le 100000$) — количество элементов в массиве. Во второй строке находятся n целых чисел, по модулю не превосходящих 10^9 .

Формат выходного файла

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

Пример

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1 8 2 1 4 7 3 2 3 6	

Примечание

Необходимо написать свою сортировку кучей.

Задача Е. Цифровая сортировка (2 балла)

Имя входного файла: radixsort.in Имя выходного файла: radixsort.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано n строк, выведите их порядок после k фаз цифровой сортировки.

Формат входного файла

В первой строке входного файла содержится число n — количество строк, m — их длина и k — число фаз цифровой сортировки ($1 \le n \le 1000, \ 1 \le k \le m \le 1000$). В следующих n строках находятся сами строки.

Формат выходного файла

Выведите строки в порядке в котором они будут после k фаз цифровой сортировки.

Пример

radixsort.in	radixsort.out
3 3 1	aba
bbb	baa
aba	bbb
baa	
3 3 2	baa
bbb	aba
aba	bbb
baa	
3 3 3	aba
bbb	baa
aba	bbb
baa	

Примечание

Необходимо написать свою цифровую сортировку.