BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS SECOND SEMESTER 2021-22 COURSE HANDOUT (PART-II)

Date: 15-01-2022

In addition to Part I (General Handout for all the courses appended to the time table), this portion gives further specific details regarding the course.

Course No.	EEE F416
Course Title	Digital Communications
Instructor-in-charge	Balasubramanian M
Course Description	This course covers the topics on digital communications and basics of information theory. Theoretical explanation of various source and channel coding algorithms and transmission of information through channels along with different modulation mechanisms are also included.
Scope and Objective	The objective of the course is to impart knowledge of the basic tools for the design of digital communication system and to provide methods and procedures suitable for a variety of modulation techniques to transmit information over channels. The course also provides basic understanding of information theory and wireless communications including emerging trends in these fields.

Text Books:

T1: John G. Proakis, and M. Salehi, "Digital Communications," 5th Edition, McGraw Hill.

T2: Ranjan Bose, "Information Theory, Coding and Cryptography," 3rd Edition, McGraw Hill.

T3: B. Sklar and P. K. Ray, "Digital Communications: Fundamentals and Applications," 2nd Edition, Pearson.

Reference Books:

R1: Robert G. Gallager, "Principles of Digital Communication," Cambridge University Press.

R2: David Tse, and Pramod Viswanath, "Fundamentals of Wireless Communication," Cambridge University Press.

R3: B. \vec{P} . Lathi, "Modern Digital and Analog Communications Systems," 3^{rd} Edition, Oxford University Press.

R4: Simon Haykin, "Digital Communication Systems," Wiley.

R5: I. Glover and P. Grant, "Digital Communications," 3rd Edition, Pearson.

Course Plan

Lect.	Learning Objectives	Topics to be covered	Chapter in
No.			the Text Book
1	Introduction and	Introduction to digital communication and	T1 :6.1 to 6.3
	modelling and	information theory. Mathematical models	T2 :1.1 to 1.3
	characterization of	for information sources, logarithmic	T3 : 13
	information sources	measure of information, concept of entropy	
2-3	Algorithms for source Huffman coding, Shannon-Fano-Elias		T1 : 6.3-2
	coding and analog	Coding, Arithmetic Coding, Lempel-Ziv	T2 : 1.6 to 1.10
	output sources	Algorithm, Run-length coding	T3 : 13
4-18	Information	Pulse Amplitude Modulation, Digital Phase	T1 : 3
	transmission through	Modulation: PSK, BPSK, QPSK, OQPSK,	T3 : 4
	AWGN channels using	DPSK, Quadrature Amplitude Modulation,	
	digital modulation	Frequency Shift Keying: Modulation and	
	methods and BER	Demodulation Schemes.	
	estimation;		
19-29	Digital communication	Characterization of band-limited channels,	T1: 9
	through band limited	Signal design, ISI and Nyquist Criterion,	T1 :10
	Gaussian noise channels	Optimum Receiver, Linear Equalization,	T3 : 16
		Adaptive Equalization	
30-31	Channel coding and	Error Correcting Codes, Linear Block	T1 : 7
	decoding	Codes, Parity Check Code, Hamming Code,	T2 : 3, 4
		Cyclic Code	T3 : 6
32-35	Wireless	Characterization of fading multipath	T1 : 13
	communication	channels, Statistical Models, Linear	T3 : 15
	channels: its	Modulation Schemes, Constant Envelope	
	characterization and	Modulations, Combined linear and constant	
	modulation schemes for	envelope modulation schemes, Modulation	
	such channels	performance.	
36-40	Emerging trends	MIMO Systems: Analysis	T1 : 15

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Assignment(s)/ Quiz(s) (2 Nos.)	-	30%	15/03 9.00am to10.30am	Open Book
Mid Semester Examination	90 Minutes	30%	To be announced	Closed Book
Comprehensive Exam	120 minutes	40%	17/05 FN	Closed Book
Total		100%		

Notices: All notices will be uploaded in CMS for the respective course.

Make-up Policy: There will be make-up only for the Mid-Semester and End-Semester examination subject to prior approval taken from the IC.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE