Class 14: RNASeq mini-project

Sarah Mirsaidi Madjdabadi, A16890186

Table of contents

the following publication:

Data Import	2
Tidy counts to match metadata	3
Remove zero count genes	4
Setup DESeq object for analysis	4
Run DESeq analysis	5
Extract the results	5
Add Gene annotation	6
Save my results to a CSV file	8
Result visualization	8
Pathway analysis Gene Ontology (GO) genesets	
Here we will perform a complete RNASeq analysis from counts to pathways and biolinterpretation.	ogical
The data for for hands-on session comes from GEO entry: GSE37704, which is associated	l with

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data Import

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)</pre>
```

head(colData)

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		•				

ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46

ENSG00000278566	0
ENSG00000273547	0
ENSG00000187634	258

Tidy counts to match metadata

Check correspondence between colData rows and countData columns.

```
rownames(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(countData)

[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"

[7] "SRR493371"
```

Remove the troublesome first column so we match the metadata

```
counts <- countData[,-1]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all( rownames(colData) == colnames(counts) )
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

If the rowSums() is zero then a given gene (i.e. row) has no count data and we should exclude these genes from further consideration.

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep, ]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Setup DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

Extract the results

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	dj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03

```
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add Gene annotation

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
                                    "EVIDENCE"
 [6] "ENTREZID"
                    "ENZYME"
                                                    "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                   "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL"
                                                   "PATH"
                                                                   "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
res$symbol <- mapIds(x = org.Hs.eg.db,
       keys = rownames(res),
       keytype = "ENSEMBL",
       column = "SYMBOL")
```

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 7 columns
```

```
baseMean log2FoldChange
                                            lfcSE
                                                                 pvalue
                                                       stat
                              <numeric> <numeric> <numeric>
               <numeric>
                                                              <numeric>
                 29.9136
                              0.1792571 0.3248216
ENSG00000279457
                                                   0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
                              0.0405765 0.2718928 0.149237 8.81366e-01
                 47.2551
ENSG00000187583
ENSG00000187642
                 11.9798
                              0.5428105 0.5215599 1.040744 2.97994e-01
                                symbol
                      padj
                 <numeric> <character>
```

```
ENSG00000279457 6.86555e-01 NA
ENSG00000187634 5.15718e-03 SAMD11
ENSG00000188976 1.76549e-35 NOC2L
ENSG00000187961 1.13413e-07 KLHL17
ENSG00000187583 9.19031e-01 PLEKHN1
ENSG00000187642 4.03379e-01 PERM1
```

```
res$name <- mapIds(x = org.Hs.eg.db,
    keys = rownames(res),
    keytype = "ENSEMBL",
    column = "GENENAME")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
res$entrez <- mapIds(x = org.Hs.eg.db,
    keys = rownames(res),
    keytype = "ENSEMBL",
    column = "ENTREZID")</pre>
```

'select()' returned 1:many mapping between keys and columns

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

```
baseMean log2FoldChange
                                            lfcSE
                                                         stat
                                                                  pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
ENSG00000279457
                 29.9136
                               0.1792571 0.3248216
                                                    0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                    5.534326 3.12428e-08
ENSG00000187583
                 47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                 11.9798
                               0.5428105 0.5215599 1.040744 2.97994e-01
                      padj
                                 symbol
                                                         name
                                                                    entrez
                 <numeric> <character>
                                                   <character> <character>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
                                SAMD11 sterile alpha motif ..
                                                                    148398
                                 NOC2L NOC2 like nucleolar ..
ENSG00000188976 1.76549e-35
                                                                    26155
ENSG00000187961 1.13413e-07
                                KLHL17 kelch like family me..
                                                                   339451
ENSG00000187583 9.19031e-01
                               PLEKHN1 pleckstrin homology ..
                                                                    84069
ENSG00000187642 4.03379e-01
                                  PERM1 PPARGC1 and ESRR ind..
                                                                    84808
```

Save my results to a CSV file

```
write.csv(res, file="results.csv")
```

Result visualization

```
mycols <- rep("gray", nrow(res))
mycols[ res$log2FoldChange <= -2 ] <- "blue"
mycols[ res$log2FoldChange >= 2 ] <- "blue"
mycols[ res$padj >=0.5 ] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col=mycols) +
abline(v=-2, col="red")</pre>
```

integer(0)

```
abline(v=+2, col="red")
abline(h=-log(0.05), col="red")
```



```
library(ggplot2)

ggplot(as.data.frame(res)) +
   aes(res$log2FoldChange, -log(res$padj)) +
        geom_point(col=mycols) +
   geom_vline(xintercept = c(-2, +2)) +
   geom_hline(yintercept = -log(0.05)) +
   theme_bw() +
   labs(x="Log2 Fold-Change", y="-log(Adjusted P-value)")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Pathway analysis

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
head(kegg.sets.hs, 3)
```

\$`hsa00232 Caffeine metabolism`

[1] "10" "1544" "1548" "1549" "1553" "7498" "9"

\$`hsa00983 Drug metabolism - other enzymes`

[1]	"10"	"1066"	"10720"	"10941"	"151531"	"1548"	"1549"	"1551"
[9]	"1553"	"1576"	"1577"	"1806"	"1807"	"1890"	"221223"	"2990"
[17]	"3251"	"3614"	"3615"	"3704"	"51733"	"54490"	"54575"	"54576"
[25]	"54577"	"54578"	"54579"	"54600"	"54657"	"54658"	"54659"	"54963"
[33]	"574537"	"64816"	"7083"	"7084"	"7172"	"7363"	"7364"	"7365"
[41]	"7366"	"7367"	"7371"	"7372"	"7378"	"7498"	"79799"	"83549"
[49]	"8824"	"8833"	"9"	"978"				

\$`hsa01100 Metabolic pathways`

		- c p a c				
[1]	"10"	"100"	"10007"	"100137049"	"10020"	"10026"
[7]	"100510686"	"10063"	"10157"	"10170"	"10195"	"10201"
[13]	"10229"	"10312"	"10317"	"10327"	"10331"	"1036"
[19]	"10380"	"10390"	"1040"	"10400"	"10402"	"10423"
[25]	"10449"	"10476"	"10554"	"10555"	"10558"	"1056"
[31]	"10588"	"10606"	"10621"	"10622"	"10623"	"10632"
[37]	"10654"	"1066"	"10678"	"10682"	"10690"	"10714"
[43]	"10720"	"10768"	"10797"	"10826"	"10841"	"10855"
[49]	"10873"	"10901"	"10905"	"10941"	"10975"	"10993"
[55]	"10998"	"11019"	"11041"	"1109"	"11112"	"11128"
[61]	"1119"	"1120"	"11226"	"11227"	"11232"	"112483"
[67]	"11253"	"11282"	"11285"	"113026"	"11320"	"11343"
[73]	"113451"	"113612"	"114805"	"1152"	"1158"	"1159"
[79]	"1160"	"116285"	"117248"	"119548"	"120227"	"121278"
[85]	"122481"	"122622"	"123099"	"123745"	"123876"	"124"
[91]	"124454"	"124975"	"125"	"125061"	"125965"	"125981"
[97]	"126"	"126328"	"126792"	"127"	"127124"	"128"
[103]	"128869"	"129607"	"129642"	"130"	"130013"	"131"
[109]	"1312"	"131669"	"132"	"132158"	"1327"	"132789"
[115]	"1329"	"1337"	"1339"	"1340"	"134147"	"1345"
[121]	"1349"	"1350"	"1351"	"135152"	"1352"	"1353"
[127]	"1355"	"1371"	"1373"	"137964"	"138050"	"138429"
[133]	"139596"	"140838"	"1431"	"144193"	"144245"	"145226"
[139]	"146664"	"1491"	"15"	"1503"	"150763"	"151056"
[145]	"151531"	"1537"	"154141"	"1543"	"1544"	"1548"
[151]	"1549"	"155066"	"1551"	"1553"	"1555"	"1557"
[157]	"1558"	"1559"	"1562"	"1571"	"1573"	"157506"
[163]	"1576"	"1577"	"1579"	"158"	"1581"	"1582"
[169]	"1583"	"1584"	"1585"	"1586"	"1588"	"1589"
[175]	"159"	"1593"	"1594"	"1595"	"160287"	"1603"

[181]	"1606"	"1607"	"1608"	"160851"	"1609"	"1610"
[187]	"1621"	"162417"	"162466"	"1629"	"1633"	"1635"
[193]	"1638"	"1644"	"1650"	"166929"	"168391"	"169355"
[199]	"170712"	"171568"	"1716"	"1717"	"1718"	"1719"
[205]	"1723"	"1737"	"1738"	"1743"	"1757"	"178"
[211]	"1786"	"1787"	"1788"	"1789"	"1798"	"18"
[217]	"1806"	"1807"	"1841"	"1854"	"189"	"1890"
[223]	"1892"	"191"	"192134"	"1962"	"197258"	"199857"
[229]	"201595"	"2023"	"2026"	"2027"	"203"	"204"
[235]	"205"	"2053"	"2058"	"210"	"211"	"212"
[241]	"2131"	"2132"	"2134"	"2135"	"2137"	"216"
[247]	"217"	"218"	"2180"	"2181"	"2182"	"2184"
[253]	"219"	"2194"	"220"	"2203"	"221"	"221223"
[259]	"221823"	"222"	"2222"	"2224"	"223"	"2235"
[265]	"224"	"226"	"2271"	"22845"	"22856"	"229"
[271]	"22928"	"22929"	"22934"	"22978"	"230"	"23057"
[277]	"231"	"23193"	"23236"	"23305"	"23382"	"23396"
[283]	"23417"	"23475"	"23483"	"23498"	"23530"	"23545"
[289]	"23553"	"23556"	"2356"	"23600"	"23649"	"23761"
[295]	"239"	"240"	"242"	"245972"	"245973"	"246"
[301]	"246721"	"247"	"248"	"249"	"250"	"251"
[307]	"2523"	"2524"	"2525"	"2526"	"2527"	"2528"
[313]	"2529"	"2530"	"2531"	"253558"	"2538"	"2539"
[319]	"254531"	"2548"	"256435"	"2571"	"2572"	"25796"
[325]	"2581"	"2582"	"2583"	"25834"	"2584"	"2585"
[331]	"2588"	"25885"	"2589"	"2590"	"25902"	"2591"
[337]	"2592"	"259230"	"2593"	"259307"	"2595"	"2597"
[343]	"26007"	"26035"	"2618"	"262"	"26227"	"26229"
[349]	"26275"	"26279"	"2628"	"26289"	"2629"	"26290"
[355]	"26301"	"2632"	"26330"	"2639"	"2643"	"2645"
[361]	"2650"	"2651"	"2673"	"2678"	"2683"	"2686"
[367]	"2687"	"270"	"27010"	"27034"	"27087"	"27089"
[373]	"27090"	"271"	"2710"	"2712"	"27124"	"27165"
[379]	"272"	"2720"	"27235"	"2729"	"2730"	"27306"
[385]	"2731"	"27349"	"27430"	"2744"	"2746"	"2747"
[391]	"275"	"2752"	"276"	"2762"	"277"	"278"
[397]	"279"	"2799"	"28"	"280"	"2805"	"2806"
[403]	"2821"	"283208"	"283871"	"284098"	"284541"	"2875"
[409]	"290"	"29071"	"2937"	"2954"	"29796"	"2987"
[415]	"29880"	"2990"	"29906"	"29920"	"29922"	"29925"
[421]	"29926"	"29929"	"29947"	"29958"	"29968"	"30"
[427]	"3028"	"3030"	"3032"	"3033"	"3034"	"3067"
[433]	"3073"	"3074"	"3081"	"30814"	"30815"	"30833"

F4007		"0000"	"0000"	110411	11040411	1104411
	"30834"	"3098"	"3099"	"31"	"3101"	"314"
	"3141"	"3145"	"3155"	"3156"	"3157"	"3158"
	"316"	"317749"	"32"	"3242"	"3251"	"326625"
[457]	"3283"	"3284"	"3290"	"3291"	"3292"	"3293"
[463]	"3294"	"3295"	"33"	"3340"	"3373"	"337876"
[469]	"339221"	"34"	"340485"	"341392"	"3417"	"3418"
[475]	"3419"	"341947"	"3420"	"3421"	"3422"	"3423"
[481]	"3425"	"348158"	"349565"	"35"	"353"	"36"
[487]	"3612"	"3613"	"3614"	"3615"	"3620"	"3628"
[493]	"3631"	"3632"	"3633"	"3636"	"37"	"3703"
[499]	"3704"	"3705"	"3706"	"3707"	"3712"	"374291"
[505]	"374378"	"3795"	"38"	"383"	"384"	"387787"
[511]	"39"	"3906"	"391013"	"3938"	"3939"	"3945"
[517]	"3948"	"3990"	"4047"	"4048"	"4051"	"4056"
[523]	"411"	"4121"	"4122"	"4124"	"4128"	"4129"
[529]	"4143"	"4144"	"4190"	"4191"	"4199"	"4245"
[535]	"4247"	"4248"	"4249"	"427"	"4329"	"435"
[541]	"4351"	"4357"	"438"	"440"	"440138"	"440567"
[547]	"441024"	"441531"	"442117"	"445"	"4507"	"4508"
[553]	"4509"	"4512"	"4513"	"4514"	"4519"	"4522"
[559]	"4524"	"4535"	"4536"	"4537"	"4538"	"4539"
[565]	"4540"	"4541"	"4548"	"4594"	"4597"	"4598"
[571]	"4669"	"4694"	"4695"	"4696"	"4697"	"4698"
[577]	"47"	"4700"	"4701"	"4702"	"4704"	"4705"
[583]	"4706"	"4707"	"4708"	"4709"	"471"	"4710"
[589]	"4711"	"4712"	"4713"	"4714"	"4715"	"4716"
[595]	"4717"	"4718"	"4719"	"4720"	"4722"	"4723"
[601]	"4724"	"4725"	"4726"	"4728"	"4729"	"4731"
[607]	"48"	"4830"	"4831"	"4832"	"4833"	"4837"
[613]	"4842"	"4843"	"4846"	"4860"	"4907"	"493911"
[619]	"4942"	"4952"	"4953"	"4967"	"498"	"50"
[625]	"5009"	"501"	"5033"	"5048"	"50484"	"50487"
[631]	"5049"	"5050"	"5051"	"5053"	"506"	"50614"
[637]	"50617"	"50700"	"50814"	"509"	"5091"	"5095"
[643]	"5096"	"51"	"51004"	"5105"	"51056"	"5106"
[649]	"51074"	"51082"	"51084"	"51102"	"51109"	"51144"
[655]	"51166"	"51179"	"51181"	"51196"	"51227"	"51251"
[661]	"51268"	"513"	"5130"	"51301"	"51380"	"51382"
[667]	"514"	"51477"	"51478"	"515"	"51540"	"516"
[673]	"5160"	"51601"	"51604"	"51606"	"5161"	"5162"
[679]	"5167"	"5169"	"517"	"51703"	"51727"	"51728"
[685]	"51733"	"51763"	"518"	"51805"	"51809"	"5198"
[691]	"521"	"5211"	"5213"	"5214"	"522"	"5223"

[697]	"5224"	"5226"	"523"	"5230"	"5232"	"5236"
[703]	"525"	"526"	"527"	"5277"	"5279"	"528"
[709]	"5281"	"5283"	"5286"	"5287"	"5288"	"5289"
[715]	"529"	"5297"	"5298"	"5313"	"5315"	"5319"
[721]	"5320"	"5321"	"5322"	"533"	"5330"	"5331"
[727]	"5332"	"5333"	"5335"	"53354"	"5336"	"5337"
[733]	"5338"	"534"	"535"	"53630"	"537"	"5372"
[739]	"5373"	"539"	"53947"	"5406"	"5407"	"5408"
[745]	"5409"	"54107"	"54187"	"5422"	"5424"	"5425"
[751]	"5426"	"5427"	"5428"	"5430"	"5431"	"5432"
[757]	"5433"	"5434"	"54344"	"5435"	"5436"	"54363"
[763]	"5437"	"5434"	"5439"	"5440"	"5441"	"5444"
[769]						
[775]	"5445"	"5446"	"54480"	"54490"	"54575"	"54576"
	"54577"	"54578"	"54579"	"54600"	"54657"	"54658"
[781]	"54659"	"54675"	"5471"	"54802"	"548596"	"548644"
[787]	"549"	"54947"	"54963"	"54965"	"5498"	"54988"
[793]	"54995"	"55163"	"55191"	"55224"	"55229"	"55256"
[799]	"55276"	"55300"	"55301"	"55304"	"55312"	"55361"
[805]	"5538"	"55454"	"55500"	"55512"	"55568"	"5557"
[811]	"5558"	"55627"	"55650"	"55703"	"55750"	"55753"
[817]	"55790"	"55808"	"55821"	"55902"	"55907"	"56052"
[823]	"5625"	"56267"	"5631"	"5634"	"56474"	"56623"
[829]	"56624"	"56655"	"56848"	"56894"	"56895"	"56898"
[835]	"56901"	"56913"	"56922"	"56953"	"56994"	"570"
[841]	"57016"	"57026"	"57134"	"5723"	"5730"	"5740"
[847]	"5742"	"5743"	"57452"	"574537"	"57678"	"57804"
[853]	"57818"	"57834"	"5805"	"5831"	"5832"	"5833"
[859]	"58510"	"5859"	"586"	"5860"	"587"	"593"
[865]	"594"	"5980"	"60490"	"60495"	"6120"	"6184"
[871]	"6185"	"622"	"6240"	"6241"	"6296"	"6303"
[877]	"6307"	"6309"	"6342"	"635"	"6389"	"6390"
[883]	"6391"	"63917"	"6392"	"64087"	"64131"	"64132"
[889]	"64409"	"64425"	"6448"	"64579"	"64600"	"646625"
[895]	"6470"	"6472"	"6476"	"64768"	"6480"	"64802"
[901]	"64816"	"6482"	"6483"	"6484"	"6487"	"6489"
[907]	"64902"	"65220"	"65263"	"654364"	"6609"	"661"
[913]	"6610"	"6611"	"6652"	"6675"	"6677"	"669"
[919]	"6697"	"6713"	"6718"	"6723"	"683"	"686"
[925]	"6888"	"6898"	"6916"	"6999"	"7054"	"7083"
[931]	"7084"	"7086"	"7108"	"7166"	"7167"	"7173"
[937]	"7263"	"7264"	"729020"	"7298"	"7299"	"7306"
[943]	"7357"	"7358"	"7360"	"7363"	"7364"	"7365"
[949]	"7366"	"7367"	"7368"	"7371"	"7372"	"7378"
-						

```
[955] "7381"
                     "7384"
                                  "7385"
                                               "7386"
                                                            "7388"
                                                                          "7389"
 [961] "7390"
                     "7498"
                                  "7841"
                                               "790"
                                                            "79053"
                                                                          "79087"
 [967] "7915"
                     "79178"
                                  "7923"
                                               "79369"
                                                            "7941"
                                                                          "79586"
 [973] "79611"
                     "79623"
                                  "79646"
                                               "79695"
                                                            "79717"
                                                                          "79796"
 [979] "79799"
                    "79814"
                                  "79868"
                                               "79888"
                                                            "7991"
                                                                          "80025"
 [985] "80055"
                     "80142"
                                  "80146"
                                               "80201"
                                                            "80270"
                                                                          "80308"
 [991] "80339"
                    "80347"
                                  "8050"
                                               "81490"
                                                            "81579"
                                                                          "81616"
 [997] "81849"
                     "81888"
                                  "8277"
                                               "8309"
                                                            "8310"
                                                                          "83440"
[1003] "83549"
                     "8372"
                                  "8382"
                                               "8394"
                                                            "8395"
                                                                          "8398"
[1009] "8399"
                                                                          "84265"
                     "84002"
                                  "84076"
                                               "84172"
                                                            "84245"
[1015] "84274"
                     "84284"
                                  "84532"
                                               "84618"
                                                            "84620"
                                                                          "84647"
[1021] "84649"
                    "84693"
                                  "847"
                                               "84701"
                                                            "84706"
                                                                          "84720"
[1027] "84735"
                                  "84812"
                                                            "84920"
                                                                          "84992"
                     "84803"
                                               "84890"
[1033] "8509"
                     "8513"
                                  "8525"
                                               "8526"
                                                            "8527"
                                                                          "8529"
                     "8540"
                                                                          "8566"
[1039] "85365"
                                  "85465"
                                               "8560"
                                                            "8564"
[1045] "8608"
                     "8611"
                                  "8612"
                                               "8613"
                                                            "8630"
                                                                          "8639"
[1051] "8659"
                     "8681"
                                  "8692"
                                               "8693"
                                                            "8694"
                                                                          "8702"
                                  "8705"
[1057] "8703"
                     "8704"
                                               "8706"
                                                            "8707"
                                                                          "8708"
[1063] "873"
                    "8733"
                                  "874"
                                               "875"
                                                            "8760"
                                                                          "8789"
[1069] "8790"
                    "8801"
                                  "8802"
                                               "8803"
                                                            "8813"
                                                                          "8818"
                                                                          "8869"
[1075] "8821"
                     "883"
                                  "8833"
                                               "8854"
                                                            "8867"
[1081] "8871"
                     "8877"
                                  "8879"
                                                            "8972"
                                                                          "8974"
                                               "8942"
                                  "9"
[1087] "89869"
                     "8992"
                                               "90423"
                                                            "9060"
                                                                          "9061"
[1093] "9091"
                     "9114"
                                  "91373"
                                               "9162"
                                                            "91734"
                                                                          "9197"
[1099] "9245"
                     "92483"
                                  "9249"
                                               "9296"
                                                            "93034"
                                                                          "93183"
[1105] "9331"
                    "9348"
                                  "9374"
                                               "9377"
                                                            "9380"
                                                                          "9388"
                                                                          "9489"
[1111] "94005"
                    "9453"
                                  "9468"
                                               "9487"
                                                            "9488"
                                               "952"
[1117] "95"
                    "9514"
                                  "9517"
                                                            "9533"
                                                                          "9536"
[1123] "9550"
                     "9551"
                                               "9588"
                                                            "9615"
                                                                          "978"
                                  "9563"
[1129] "9791"
                     "9942"
                                  "9945"
```

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

attributes(keggres)

\$names

[1] "greater" "less" "stats"

Look at the first few down (less) pathways
head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                               8.995727e-06 -4.378644
hsa03030 DNA replication
                                               9.424076e-05 -3.951803
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport
                                               1.246882e-03 -3.059466
hsa03440 Homologous recombination
                                               3.066756e-03 -2.852899
hsa04114 Oocyte meiosis
                                               3.784520e-03 -2.698128
                                                      p.val
                                                                  q.val
hsa04110 Cell cycle
                                               8.995727e-06 0.001889103
hsa03030 DNA replication
                                               9.424076e-05 0.009841047
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                              1.246882e-03 0.065461279
hsa03440 Homologous recombination
                                               3.066756e-03 0.128803765
hsa04114 Oocyte meiosis
                                               3.784520e-03 0.132458191
                                               set.size
                                                                exp1
hsa04110 Cell cycle
                                                    121 8.995727e-06
                                                     36 9.424076e-05
hsa03030 DNA replication
hsa05130 Pathogenic Escherichia coli infection
                                                    53 1.405864e-04
hsa03013 RNA transport
                                                    144 1.246882e-03
hsa03440 Homologous recombination
                                                    28 3.066756e-03
hsa04114 Oocyte meiosis
                                                    102 3.784520e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/sarahmirsaidi/Desktop/BIMM 143/class14

Info: Writing image file hsa04110.pathview.png

Figure 1: The Differentially Expressed Genes in the Cell Cycle

Gene Ontology (GO) genesets

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets)
```

head(gobpres\$less, 5)

```
p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
                                                q.val set.size
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
```

Reactome analysis online

We need to make a little file of our significant genes that we can upload to the reactome webpage:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
sig_genes[6]
```

ENSG00000188157
"AGRN"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/# Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

