

Normal 2:12: 68/95/99.7	Intercribal statistics-
Z = 2-H	Inference of Population from sample.
Sampling distribution - Theoretical set of ALL POSSIBLE Statistics (ep. \$\tilde{x}\$) we could get. Eg. 7aking cample size of 2 Force and over again. Busine pup mean $\mu = 125$, one sample mean= (10) $\mu = 25$ Empidical value of $\chi = \mu = (25)$ S.D of $\chi = 3$ standard error (SE $\chi = 3$) = $\frac{1}{\sqrt{25}}$ on average how for estimated χ deviate from μ and as it is $\chi = 3$ sample size increases the	
S.E:, smaller.	
3.09 7: 07 = 5	Some Proportien: (3 Var (ax) = a² Var (x) a is constant
3.E of 1/2 : SEX = 3/1/2	
g is sample s.D	Nor (x,+x2)= ver(x,)+ver(x2) *(harmon pr, ver= 02 *(harmon pr, ver= 02 *(harmon pr, ver= 02)
Nov,	WE MICHAEL TO THE
11 (x) = Var (Ait	
E - Var (x1+x2+xm)	
= T [Nor(x1) + Nor(x)+ Vor(xy]	
= 1 [0° + 0° + + 0°]	
$= \frac{n\sigma^2}{m^2} = \frac{\sigma^2}{m^2} \Rightarrow 1.0 = \frac{\pi}{m}$ with the anticed $\frac{n^2}{m^2} = \frac{\sigma^2}{m^2} \Rightarrow 1.0 = \frac{\pi}{m}$	
Confident of a skewed list = M= 125, 0 = 20; Sample \$ 12 Normal M= 25, 0= 20=4	
-> 95% of Time The X will be within "AT X"	
μ±2 s0 _x	
·	+20/50
or conversely 95%, time The M mill be	11 125 135 135
On reality we don't know of replanting to the siss	e with s (95%) 7 We draw a sample n= 25, it could be omy of these points
	and the mean lies with

One-sample +-test:

known Mean BMI USA 2008 = 25.3. has it increased 2018 n=25, x=29.8, 5=6

Ho M2082253 - why tho is stated thin way? because we know it is true. If we make the as mull we don't what is true, what down expect

t statistic = \frac{\bar{\chi} - \bar{\chi}_0}{\sigma/\bar{\chi}} = \frac{27.8 - 25.3}{6/\bar{25}} = 2.08

27.8 is 2.08 stand.

emore above what ne'd empect if no true.

1.9% produce 0.019 ie, if Fro there, prob. of \$ 7.27.8 is \$ 1.9%.

951, CE 27.8 = 2 (6/125) -> (25.4, 30.2)

One Vs. 700 sided: t. fest: tsrA= 2.08

here we're looking at prob. of getting estimate 2.08 or more above 25.3 (µ0) Prob. of silling estimate that is 2.08 or more std. Emor

9his will be 3.8%.

what if one-sided p-value is 3%, then two would be 6%, - so reject to well depends on the problem.

Hypotheris fest CCI:

Ho! N= Mo HA: M + Mo

tsrA = X-Mo CI: X+ L + S

Sra Pradue-a

Reference pt

Reference pt