平成 28 年度春定期末試験問題・解答

試験実施日 平成 29 年 1 月 23 日 4 時限

出題者記入欄

試 験 科 目 名 複素関数論	出題者名佐藤弘康				
試 験 時 間 <u>60</u> 分	平常授業日<u>月</u> 曜日 <u>4</u> 時限				
持ち込みについて 可	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください				
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書				
本紙以外に必要とする用紙 解答用紙 0 枚 計算用紙 0 枚					
通信欄 ■ 1 ~ 3 の配点は各小問 10点(ただし, 合計点の上限は 85点), 4 の配点は 15点とする. ■ 必要ならば, e^z , $\sin z$, $\cos z$ の級数展開式を使ってもよい(試験開始後,板書する).					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

採点欄	評価

次の複素数 z の絶対値 |z| と偏角 $\arg(z)$ を求めなさい.

(1)
$$\sqrt{6} + \sqrt{2}i$$

2

(1)
$$f(z) = \frac{z}{(z-1)(z+3)^2}$$

次の複素関数のすべての極とその位数を答えなさい.

$$(2) -3i$$

(2)
$$f(z) = \frac{(z-3)^3}{(z+1)(z^2+1)}$$

(3)
$$e^{2i}$$

(3)
$$f(z) = e^{\frac{1}{z}}$$

$$(4) \ \frac{(\sqrt{3}i+1)^{20}}{(1+i)^{18}}$$

$$(4) f(z) = \frac{\sin z}{z^3}$$

 $\boxed{\mathbf{3}}$ 次の複素関数 f(z) と曲線 C に対し、複素積分

$$\int_C f(z) \, dz$$

を求めなさい.

(1)
$$f(z) = (1+2z)^2$$
, $C: z = ti \ (0 \le t \le 1)$

(3)
$$f(z) = z^4 + 3z^2 - z + 4$$
, $C: |z| = 1$

(4)
$$f(z) = \frac{z}{(z+1)^2(z-2)}$$
, $C: |z| = 3$

(2)
$$f(z) = \bar{z}$$
, $C: z = (1+i)t$ $(0 \le t \le 1)$

(5)
$$f(z) = \frac{z+2}{z^2(z-4)}$$
, $C: |z| = 3$

 $oxed{4}$ a>1 とする、 $n=0,1,2,\ldots$ に対し、

$$\int_0^{2\pi} \frac{\cos n\theta}{a + \cos \theta} d\theta = 2\pi \cdot \frac{\left(\sqrt{a^2 - 1} - a\right)^n}{\sqrt{a^2 - 1}}$$

であることを示しなさい.