STAT 2220: Engineering Statistics, Fall 2007

Solution to Assignment 1

2-2. **Sample average**:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{19} x_i}{19} = \frac{272.82}{19} = 14.36 \text{ min}$$

Sample standard deviation:

$$\sum_{i=1}^{19} x_i = 272.82 \qquad \sum_{i=1}^{19} x_i^2 = 10334$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}}{n-1}} = \sqrt{\frac{10334 - \frac{(272.82)^2}{19}}{19-1}} = \sqrt{\frac{6416.59}{18}} = \sqrt{356.48 \text{ (min)}^2} = 18.88 \text{ min}$$

Dot diagram

+----

Breakdown time

2-12. Stem-and-leaf of Suspended solids

$$N = 60$$

Leaf Unit = 1.0

Frequency	Stem	leaf
1	2	9
2	3	1
3	3	9
8	4	22223
12	4	5689
20	5	01223444
(13)	5	5666777899999
27	6	11244
22	6	556677789
13	7	022333
7	7	6777
3	8	01
1	8	9
20 (13) 27 22 13 7 3	5 5 6 6 7 7 8	01223444 566677789999 11244 556677789 022333 6777

(Note: data can also be rounded up to construct this plot)

Mean=59.87

- 2-32. a) Sample Mean: 48.125, Sample Median: 49
 - b) Sample Variance: 7.247, Sample Standard Deviation: 2.692
 - c) The data appear to be skewed.

d) 5th Percentile: 43.25, 95th Percentile: 52

3-12. a)
$$P(X \in A') = 1 - P(X \in A) = 1 - 0.3 = 0.7$$

b)
$$P(X \in B') = 1 - P(X \in B) = 1 - 0.25 = 0.75$$

c)
$$P(X \in C') = 1 - P(X \in C) = 1 - 0.6 = 0.4$$

d) A and B are mutually exclusive if $P(X \in A \cap B) = 0$. To determine if A and B are mutually exclusive, solve the following for $P(X \in A \cap B)$:

$$P(X \in A \cup B) = P(X \in A) + P(X \in B) - P(X \in A \cap B)$$

$$0.55 = 0.3 + 0.25 - P(X \in A \cap B)$$

$$0.55 = 0.55 - P(X \in A \cap B)$$
 and $P(X \in A \cap B) = 0$.

Therefore, A and B are mutually exclusive.

e) B and C are mutually exclusive if $P(X \in B \cap C) = 0$. To determine if B and C are mutually exclusive, solve the following for $P(X \in B \cap C)$:

$$P(X \in B \cup C) = P(X \in B) + P(X \in C) - P(X \in B \cap C)$$

$$0.70 = 0.25 + 0.60 - P(X \in B \cap C)$$

$$0.70 = 0.85 - P(X \in B \cap C)$$
 and $P(X \in B \cap C) = 0.15$.

Therefore, B and C are not mutually exclusive.

3-14. A - Overfilled, B - Medium filled, C - Underfilled

a)
$$P(X \in C') = 1 - P(X \in C) = 1 - 0.15 = 0.85$$

b)
$$P(X \in A \cup C) = P(X \in A) + P(X \in C) - P(X \in A \cap C) = 0.40 + 0.15 - 0$$

= 0.55 ($P(X \in A \cap C)$

= 0 since A and C are mutually exclusive)

3-18. a)
$$P(X < 1) = P(X = 0) = 0.7$$

b)
$$P(X > 3) = 1 - P(X \le 3) = 1 - 1 = 0$$

c)
$$P(X > 0) = 1 - P(X = 0) = 1 - 0.7 = 0.3$$

d)
$$P(X = 0) = 0.7$$