Monitoreo y Predicción de Cultivos

- Cima, Nancy Lucía
- Ledesma, Maximiliano Javier
- Martearena, Matías

AgroSpot

Empresa de tecnología para agricultura de precisión

- Integración de datos de sensores IoT
- Obtención de datos meteorológicos de una API externa
- Análisis de datos y detección de anomalías
- Modelo predictivo simple para el rendimiento de los cultivos
- Sistema de alertas basado en condiciones predefinidas
- Almacenamiento de datos en una base de datos
- Generación de informes y visualizaciones

Sistema de Monitoreo de Humedad del Suelo

AgroSpot supervisa más de 10,000 hectáreas de cultivos utilizando una combinación de drones y sensores avanzados.

Implementar un software que permita a los agricultores monitorear y registrar la humedad del suelo en distintas áreas de sus campos.

- Ingreso de Datos de Humedad del Suelo
- Cálculo del Promedio de Humedad
- Clasificación del Nivel de Humedad
- Almacenamiento de Datos en Archivo CSV
- Visualización Básica de los Datos

Stack tecnológico

Front-end

- Lenguaje: TypeScript
- Framework: React + Vite
- Estilo: Tailwind + Tailwind Components
- Otros: Axios, Chart.js

Back-end

- Lenguajes de Programación: Java
- Frameworks: Spring Boot

Stack tecnológico

QA

- Para el front-end: Playright TS
- Para el back-end: Postman

Base de Datos

- Modelado: Umletino
- Tipo: NoSQL
- Sistema: MongoDB
- Lenguaje: Java

Stack tecnológico

Análisis de Datos

- Lenguaje: Python
- Bibliotecas: Pandas, Numpy, Seaborn, matplotlib, datetime, csv, collections
- Formato de Archivos: CSV

API

• Datos Meteorológicos: <u>OpenWeatherMap API</u>

Plan de trabajo

N°	Duracion	Actividad	Sub-tareas	Equipo	Observaciones
1	1 dia	Requerimientos del cliente	Reunion inicial, documentacion	Analista, cliente	Definir alcance y funcionalidades
2	2 dias	Diseño técnico	Arquitectura del sistema, diseño de base de datos, diagrama de flujo	Arquitecto de software, desarrolladores	Definir tecnologías, componentes y flujos de datos
3	1 semana	Desarrollo del backend (Java)	Configuración del entorno, desarrollo de API, integración con base de datos	Desarrolladores backend	Crear la lógica del servidor y la gestión de datos
4	1 semana	Desarrollo del frontend (React)	Diseño de la interfaz, implementación de componentes, integración con el backend	Desarrolladores frontend	Crear la interfaz de usuario para visualización y interacción
5	2 semanas	Desarrollo del módulo de análisis (Python)	Limpieza de datos, exploración de datos, modelado, visualización	Científico de datos	Desarrollar algoritmos para analizar los datos de humedad y generar insights
6	1 semana	Integración	Conectar frontend, backend y módulo de análisis	Todo el equipo	Asegurar la comunicación y el flujo de datos entre los componentes
7	2 dias	Pruebas unitarias	Pruebas de cada componente de forma aislada	Desarrolladores	Verificar el correcto funcionamiento de cada parte del sistema
8	1 semana	Pruebas de integración	Pruebas del sistema completo	Equipo de QA	Asegurar que los componentes interactúen correctamente
9	1 semana	Despliegue	Configuración del entorno de producción, despliegue del software	DevOps	Preparar el sistema para su uso en producción

Dificultad estimada

Según la información teórica y tecnologías definimos un nivel de dificultad estimada para el sistema de monitoreo de humedad del suelo basado en la secuencia de Fibonacci.

Nivel de dificultad: 8

Wireframe y Diseño

100

E9F5E3

F6FAF3

200

D3EAC8

300

AFD89D

400

82BD69

500

61A146

600

4C8435

700

3D692C

800

345427

900

2B4522

950

13250E

Wireframe y Diseño

Satoshi

Alpino

campo	
campo_id 🖉	integer
nombre_del_campo	varchar
porcentaje_de_humedad	int
flora	varchar
germinacion	int
maduraccion	int
crecimiento	int
fecha	datetime

¿Tienes alguna pregunta?

Nancy Lucía Cima

in/nancy-lucia-cima ncima@asap-consulting.net

Maximiliano Javier Ledesma

in/maxilds mledesma@asap-consulting.net

Matias Martearena

in/matias-martearena mmartearena@asap-consulting.net