

SEQUENCE LISTING

<110> Amar, Salomon
Tang, Xiaoren

<120> Novel LITAF Binding Site Peptides and Methods of Using the Same

<130> 50047/019002

<140> US 10/796,947
<141> 2004-03-10

<150> US 60/453,302
<151> 2003-03-10

<160> 33

<170> PatentIn version 3.3

<210> 1
<211> 228
<212> PRT
<213> Homo sapiens

<400> 1

Met Ser Val Pro Gly Pro Tyr Gln Ala Ala Thr Gly Pro Ser Ser Ala
1 5 10 15

Pro Ser Ala Pro Pro Ser Tyr Glu Glu Thr Val Ala Val Asn Ser Tyr
20 25 30

Tyr Pro Thr Pro Pro Ala Pro Met Pro Gly Pro Thr Thr Gly Leu Val
35 40 45

Thr Gly Pro Asp Gly Lys Gly Met Asn Pro Pro Ser Tyr Tyr Thr Gln
50 55 60

Pro Ala Pro Ile Pro Asn Asn Asn Pro Ile Thr Val Gln Thr Val Tyr
65 70 75 80

Val Gln His Pro Ile Thr Phe Leu Asp Arg Pro Ile Gln Met Cys Cys
85 90 95

Pro Ser Cys Asn Lys Met Ile Val Ser Gln Leu Ser Tyr Asn Ala Gly
100 105 110

Ala Leu Thr Trp Leu Ser Cys Gly Ser Leu Cys Leu Leu Gly Val His
115 120 125

Ser Gly Leu Leu Leu His Pro Leu Leu Arg Gly Cys Pro Ala Gly Arg
130 135 140

Gly Pro Leu Leu Ser Gln Leu Gln Ser Ser Pro Gly His Leu Gln Ala
145 150 155 160

Phe Val Gly Leu Ser Gln Thr Trp Arg Glu Pro Gly Ala Ala Gly Ser
165 170 175

Pro Phe His Leu Ser Ser Ser Phe Thr Pro Gly Gly Ser Ala Leu
180 185 190

Val Val Ser Pro Leu Gln Gly Ala His Leu His Val Phe Phe Trp Gly
195 200 205

Glu Tyr Val Ala Lys Leu Thr Asn Leu Gln Thr Pro Glu Ile Ala Ala
210 215 220

Trp Ser Arg Ala
225

<210> 2
<211> 1773
<212> DNA
<213> Homo sapiens

<400> 2
gtttctctcc ctgccccgc gacttcgcgc aagatccggg aaggacaccc gaggccccctg
60

ggagaccctg gggaggtgaa agtcagagag cgaagcgggc cgtggccctt aggcctgacc
120

cctccccgcg gggtaaggcg ggcacccgc gagcgcaggg gtcctttac tgctgatggc
180

acccagctct gggcccagac gccgctcacc gtccaccgcc ggtgctgggt aaaatgtcgg
240

ttccaggacc ttaccaggcg gccactggc cttcctcagc accatccgca cctccatcct
300

atgaagagac agtggctgtt aacagttatt accccacacc tccagctccc atgcctggc
360

caactacggg gcttgtgacg gggcctgatg ggaagggcat gaatcctcct tcgtattata
420

cccagccagc gccccatcccc aataacaatc caattaccgt gcagacggc tacgtgcagc
480

accccatcac ctttttggac cgccctatcc aaatgtgttg tccttcctgc aacaagatga
540

tcgtgagtca gctgtcctat aacgccggtg ctctgacctg gctgtcctgc gggagcctgt
600

gcctgctggg ggtgcatagc gggctgctgc ttcatccct tctgcgtgga tgccctgcag
660

gacgtggacc attactgtcc caactgcaga gctctcctgg gcacacctaa gcgtttgttag
720

gactcagcca gacgtggagg gagccgggtg ccgcaggaag tccttccac ctctcatcca
780

gcttcacgcc tggtggaggt tctgcctgg tggtctcacc tctccagggg gcccaccttc
840

atgtcttctt ttggggggaa tacgtcgcaa aactaacaaa tctccaaacc ccagaaattg
900

ctgcttggag tcgtgcatacg acttgcaaa gacattcccc ttgagtgtca gttccacgg
960

ttcctgcctc cctgagaccc tgagtccctgc catctaactg tgatcattgc cctatccgaa
1020

tatcttcctg tgatctgcca tcagtggctc tttttcctg cttccatggg cctttctgg
1080

ggcagtctca aactgagaag ccacagttgc cttatTTTg aggctgtct gcccagagct
1140

cggctgaacc agcTTtagt gcctaccatt atcttatccg tctttcccg tccctgatga
1200

caaagatctt gccttacaga cttaacaggc ttggcttga gattctgtaa ctgcagactt
1260

cattagcaca cagattcact ttaatttctt aatTTTTTt taaatacaa ggagggggct
1320

attaacaccc agtacagaca tatccacaag gtcgtaaatg catgctagaa aaatagggt
1380

ggatcttatac actgccttgt ctccccttgt ttctctgtgc cagatctca gtgccttt
1440

ccatacaggg atTTTTTCT catagagtaa ttatatgaac agTTTTATG acctcccttt
1500

ggtctgaaat acttttgaac agaatttctt tttttaaaa aaaaacagag atggggctt
1560

actatgttgc ccaggctgg tgcgaactcc tgggctcaag cgatccttct gccttggcct
1620

cccgaaagtgc tgggattgca ggcataagct accatgctgg gcctgaacat aatttcaaga
1680

ggaggattta taaaaccatt ttctgtaatc aaatgattgg tgtcattttc ccatttgcca
1740

atgttagtctc actaaaaaaaaaaaaaaa aaa
1773

<210> 3
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 3

Leu Ser Gln Thr Trp Arg Glu Pro Gly Ala Ala Gly Ser Pro Phe His
1 5 10 15

Leu

<210> 4
<211> 5
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 4
ctcccc
5

<210> 5
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 5

Ser Gln Thr Trp Arg Glu Pro Gly Ala Ala Gly Ser Pro Phe His Leu
1 5 10 15

```
<210> 6
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 6
cgggatccat gtcgggttcca ggacct
26

<210> 7
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 7
cggaattcgg taattggatt gttatt
26

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 8
cgggatccat gtcggttccag gacct
25

<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 9
cggaattcca gttggggacag taatgg
26

<210> 10
<211> 26
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> synthetic

<400> 10
cgggatccgt gcagacggtc tacgtg
26

<210> 11
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 11
cggaattcca gttgggacag taatgg
26

<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 12
cgggatccat gtcgggttcca ggacct
26

<210> 13
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 13
cgggatcctc agggtctcag ggaggc
26

<210> 14
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 14
```

cgggatccca gagctctcct gggcac
26

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 15
cgggatccgg accattactg tcccaa
26

<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 16
ccaaaagaag acatggctgg atgagaggtg
30

<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 17
catgtcttct tttggggg
18

<210> 18
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 18
tccaccaggc gtgaatccta caaacgcctg
30

<210> 19

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 19
ttcacgcctg gtggaggt
18

<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 20
agtcctggg agatatggcc ac
22

<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 21
gggtgtgccca acaactgcct tt
22

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 22
tgcgaaggag ctgggggctt
20

<210> 23
<211> 29
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic

<400> 23
ccttcgcagg gacccaaaca caggccta
29

<210> 24
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 24
aggcctcaag cctgccacca agcccccagc tccttctccc cgcaaggacc caaacacagg
60

cctcatataa aggcatgttgt tggcacacccc
90

<210> 25
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 25
gggtgtgcca acaactgcct ttatatgagg cctgtgtttg ggtccctgcg gggagaagga
60

gctggggct tggcagg cttgaggcct
90

<210> 26
<211> 85
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 26
aggcctcaag cctgccacca agcccccagc tccttcgcag ggacccaaac acaggccta
60

tataaaggca gttgttggca caccc
85

<210> 27
<211> 85

<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 27
gggtgtgcca acaactgcct ttatatgagg cctgtgttg ggtccctgcg aaggagctgg
60

gggcttggtg gcaggcttga ggcct
85

<210> 28
<211> 65
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 28
tgaggcctgt gtttgggtcc ctgcggggag aaggagctgg gggcttggtg gcaggcttga
60

ggcct
65

<210> 29
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 29
aggcctaag cctgcc
16

<210> 30
<211> 21
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 30

Ser Tyr Tyr Thr Gln Pro Ala Pro Ile Pro Asn Asn Asn Pro Ile Thr
1 5 10 15

Val Gln Thr Val Tyr
20

<210> 31
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 31

Leu Ser Ser Ser Phe Thr Pro Gly Gly Ser Ala Leu Val Val Ser
1 5 10 15

<210> 32
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 32

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu
1 5 10

<210> 33
<211> 65
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 33
aggcctcaag cctgccacca agccccagc tccttctccc cgcaaggacc caaacacagg
60

cctca
65