

. . .

F1G.3

Compression rule explanatory view (1)

d0	d1	d2	d3
Numb successiv	er of re pixels	Pixel	data

FIG. 4A

Compression rule explanatory view (2)

d0	d1	d2	d3	d4	d5	d6	d7
0	0	suc		per of ve pix			xel ıta

FIG. 4B

Compression rule explanatory view (3)

d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	
0	0	0	0				Number of successive pixels					

FIG.4C

Compression rule explanatory view (4)

d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14 d15
0	0	0	0	0	0	Number of successive pixels							Pixel data	

FIG. 4D

Compression rule (5)

d0	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	d11	d12	d13	d14 d15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Pixel data

FIG.4E

F I G. 6

<u>S</u>			
ST) 09		- b24	Layer number
	ber	625	Data type
	Data field number	<u></u>	Area type
		b27	Are
p23		p. 28	Recording type
b24	ation	b29	Tracking Reflectance Ference
	Data field information	p30	Tracking method
) b31	Data	b31	Sector format type
(MSB)			<u></u>
			(7

Contents	Sector number	Sector number	Sector number	LSN + 031000h	State 1: first 3 bits = 0, incremented number follows State 2: from 00 0000h to 00 00Hh State 3: unrecorded
Area	Embossed data zone	Defect management area	Disc identification zone	Used block of data area	Unused block of data area

F G. 8

OBLON, SPIVAK, ET AL DOCKET #:249204US2S INV: Chosaku NODA, et al. SHEET 7 OF 31

	Area	Contents
Embosse	ed data zone	Reserved
Rewritable	Lead-in area Lead-out area	Reserved
data zone	Data area	0b : general data 1b : real-time data

FIG. 9

Initial preset number	Initial preset value	Initial preset number	Initial preset value
0h	0001h	8h	0010h
1h	5500h	9h	5000h
2h	0002h	0Ah	0020h
3h	2A00h	0Bh	2001h
4h	0004h	0Ch	0040h
5h	5400h	0Dh	4002h
6h	0008h	0Eh	0080h
7h	2800h	0Fh	0005h

Initial value of shift register

F I G. 10A

Feedback shift register

FIG. 10B

	tes	B0,363	B1,363	B2,363		B189,363	B190,363	B191,363	B192,363		B207,363
盂	<10 bytes	B0,354	B1,354	B2,354		B189,354	B190,354	B191,354	B192,354		B207,354
	rtes —	B0,353	B1,353	B2,353		B189,353 B189,354	B190,353	B191,353 B191,354	B192,353 B192,354		B207,353 B207,354
<u>,</u>	←——172 bytes –	B0,182	B1,182	B2,182		B189,182	B190,182	B191,182	B192,182		B207,182
	rtes —	B0,181	B1,181	B2,181		B189,181 B189,182	B190,181 B190,182	B191,181 B191,182	B192,181 B192,182		B207,181 B207,182
Pl Pl + 10 bytes -		B0,172	81,172	B2,172		B189,172	B190,172	B191,172	B192,172		B207,172
	rtes —	80,171	B1,171	B2,171		B189,171	B190,171	B191,171 B191,172	B192,171 B192,172		B207,171 B207,172
		B0,0	B1,0	B2,0		B189,0	B190,0	B191,0	B192,0		B207,0
	<u></u>	<u> </u>		L	192 rows		l	<u> </u>	1	PO 6 rov	₩S

(ECC block structure (D,E))

C -

Even Recorded data field:

FIG. 14A

Odd Recorded data field:

24 1092	24 109	2 24 10)92 24	1092
		SY0	SY1	A
SY1	SY2	SY1	SY2	
SY2	SY3	SY1	SY3	8
SY3	SY1 .	SY2	SY3	rows
SY2	SY2	SY1	SY3	
SY1	SY1	SY3	SY2	
SY3	SY3	SY2	SY1	<u> </u>
Sync frame	Sync fram	e Sync fra	me Sync	frame

FIG. 14B

FIG. 13

6	(FSB)	001001	001001	001001	001001		(LSB)	001001	001001	001001	001001	
0	·^	000000	000000		000000		SYNC codes	000000	000000	000000	000000	
-	Secondary	001000	101000	101000	001000		Secondary	001000	101000	001000	001000	
(0)	(MSB)	000010	100010	101000	101010		(MSB)	000100	001010	010000	010101	
		\	\	_	_			\	_	_	_	
6	(LSB)	001001	001001	001001	001001		(LSB)	001001	001001	001001	001001	
9	Primary SYNC codes	000000	000000	000000	000000		SYNC codes	000000	000000	000000	000000	
	Primary S	101000	001000	001000	001000		Primary S	101000	001000	101000	001000	
	(MSB)	0000010	100001	100100	101000		(MSB)	000100	001001	010000	010100	
		Ш	11	H	П			Н	11	Н	П	
State0		SY0	SY1	SY2	SY3	State1		SY0	SY1	SY2	SY3	

F 1 G. 15

OBLON, SPIVAK, ET AL DOCKET #:249204US2S INV: Chosaku NODA, et al. SHEET 12 OF 31

Comparison of combination patterns (column direction) of successive sync codes (1) — upon moving between sectors —

	12	3	-	2	-	3	2
	11	3	3	1		2	3
	10	-	3	3		2	3
	60	3	3 1	3		2	2
	80	2	3	1		3	2
	20	7	2	3		2	2
	00 01 02 03 04 05 06 07 08 09 10 11 12	1	2 1 2 2	1 1 2 1 2 2 3		2	1 1 2 3 2 2 2 3 3
	05	2	1	2		2	2
	70	-	2	1		3	1
2 5	03	1	1	2		2	-
בר ה	02	0	-	1		2	2
N CCI	01	1	0	-		2	2
10 10 10 10 10 10 10 10 10 10 10 10 10 1	00	2	1	0		3	2
ממחון אפרוחו או אפרוחו או אפרוחו אפרוחו אפרוחו אפרוחו אפרוחו או אייני אייני אייני אייני אייני אייני או אייני	Latest sync frame number	Sync code number two codes before	Sync code number one code before	Latest sync code number		Number of code changes between neighboring patterns 3 2 2 2 3 2 2 2 2 2	Number of code changes shifted by one frame

Latest sync frame number	13	14	15	16	17	13 14 15 16 17 18 19 20 21	19	20	21	22	23 24 25	24	25
Sync code number two codes before	-	2	3	2	2	-	3	1	-	3	2	က	က
Sync code number one code before	2	3	2	2	-	3	-	-	3	2	3	3	2
Latest sync code number	3	2	2	-	3	1	-	3	2	3	3	2	-
Number of code changes between neighboring patterns 3	3	2	2	2	3	2	2	2	3	2	2	2	က
Number of code changes shifted by one frame	2	2	3	2	2	2	က	2	2	2	3	3	2

F1G. 16

OBLON, SPIVAK, ET AL DOCKET #:249204US2S INV: Chosaku NODA, et al. SHEET 13 OF 31

Comparison of combination patterns (column direction) of successive sync codes (2)

	00 01 02 03 04 05 06 07 08 09 10 11 12	1 1 0 1 1 2 1 2 2 3 1 3 3	1 0 1 1 2 1 2 2 3 1 3 3 1	0 1 1 2 1 2 2 3 1 3 3 1 2	3	2 2 2 1 1 2 3 2 2 2 3 3 2
	=	က	3	-	2	3
	10	1	3	3	2	3
7)	69	3	1	8	2	2
<u>8</u>	80	2	3	1	3	2
පු ප	20	2	2	8	2	2
Syll Syll	90	1	2	2	2	3
SSIVE	05	2	1	2	2	2
))) (9	-	2	1	3	-
or s area	ස	_	-	2	2	-
rion	02	0	-	1	2	2
ng ss Ss &g	01	-	0	-	5	2
acros	00	-	-	0	2	2
Comparison of combination patterns (countin direction) of successive sync codes (2) upon extending across guard area —	Latest sync frame number	Sync code number two codes before	Sync code number one code before	Latest sync code number	Number of code changes between neighboring patterns 2 2 2 2 3 2 2 2 3 2 2 3 2 3 3	Number of code changes shifted by one frame

Latest sync frame number	13	14	15	16	17	18	19	20	21	22	23	13 14 15 16 17 18 19 20 21 22 23 24 25 PA	25	PA
Sync code number two codes before	-	2	3	2	2	-	က	-	-	က	2	1 2 3 2 2 1 3 1 1 3 2 3 3 2	က	2
Sync code number one code before	2	3	2	2	1	3	-	-	3	2	3	2 3 2 2 1 3 1 1 3 2 3 3 2 1	2	-
Latest sync code number	က	2	2	-	က	3 2 2 1 3 1 1 3 2 3 3 2	-	3	2	က	က	2	-	-
Number of code changes between neighboring patterns 3 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2	3	2	2	2	3	2.	2	2	3	2	2	2	2	2
Number of code changes shifted by one frame	2	2	က	2	2	2	3	2	2	2	3	2 2 3 2 2 2 3 2 2 2 3 3 3 2 2	3	2

Relationship with abnormal phenomenon upon detection of unexpected combination pattern of sync codes

Abnormal phenomenon contents→	Frame shift	shift	Detection error	in error	Tracking error
Detected pattern contents \	Case 1	Case 2	Case 3	Case 4	Case 5
Different by only one position from expected pattern	×	0	0	×	
Match with pattern shifted from expected pattern by ±1 sync frame	0	0	×	×	×3
(1, 1, 2), (1, 2, 1), (1, 2, 2) or (2, 1, 2)		0		I	1
Continuity in data ID	(0)	(0)	0	0	×
Continuity of wobble addresses	(O)	(0)	0	0	×

F | G. 18

FIG. 21

FIG. 22

		·		.			.				
7418	ECC block #8		ECC block #8	418		ECC block #8	418		ECC block #8	418	•
		Sync frame length 433	Guard area for read-only medium #8	448	Sync frame length 433	Guard area for additionally recordable medium #8	458	Sync frame length 433	Guard area for rewritable medium #8	7468	
		·	•••								
415	ECC block #5		ECC block #3	413		ECC block #3	413		ECC block #3	3 413	
414	ECC block #4	Sync frame length 433	Guard area for read-only medium #3	7443	Sync frame length 433	Guard area for additionally recordable medium #3	453	Sync frame length 433	Guard area for rewritable medium #3	7463	F1G. 23
413	ECC block #3		ECC block #2	412		ECC block #2	412		ECC block #2	712	lulus
412	ECC block #2	Sync frame length 433	Guard area for read-only medium #2	747	Sync frame length 433	Guard area for additionally recordable medium #2	452	Sync frame length 433	Guard area for rewritable medium #2	7462	
7411	ECC block #1		ECC block #1	711		ECC block #1	411		ECC block #1	411	
	(g)		(q)	_ 		(2)	 ,		Ð	-	

FIG. 26

Gray code example

Decimal value	Conventional binary notation	Gray code notation
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

FIG. 27

Special track code (present invention)

Special track code	10 ··· 00000	10 ··· 00001	10000 01	10 ··· 00010	10 ··· 00110	10 ··· 00111	10 00101	10 ··· 00100	10 ··· 01100	10 01101	10 ··· 01111	10 ··· 01110	10 ··· 01010	10 01011	10 01001	10 ··· 01000
Conventional binary notation	00001	00011	10100	00111	10010	11010	10110	11110	10001	1001	10101	10111	110011	11011	11101	11111
Decimal value	-	3	5	7	6	11	13	15	17	19	21	23	25	27	59	31
Special track code	00000 00	00 ··· 00001	00 ··· 00011	00 ··· 00010	00 ··· 00110	00 ··· 00111	00 ··· 00101	00 00100	00 01100	00 ··· 01101	00 ··· 01111	00 ··· 01110	00 ··· 01010	00 ··· 01011	00 ··· 01001	00 ··· 01000
Conventional binary notation	00000	00010	00100	00110	01000	01010	01100	01110	10000	10010	10100	10110	11000	11010	11100	11110
Decimal value	0	2	4	9	8	10	12	14	16	18	20	22	24	56	28	30

Note] only most significant bits are different, and remaining lower bits match in "2n" (n:integer value) and "2n+1"

FIG. 36

OBLON, SPIVAK, ET AL DOCKET #:249204US2S INV: Chosaku NODA, et al. SHEET 31 OF 31

Combination effect number	(I)	(1) (2) (3)	(3)	(4)	(2)	(9)	\ \(\lambda\)	(8)	(6)	(8) (9) (10) (11) (12) (13) (14) (15)	1) (12	(13	<u>⟨1</u> 4	(15)
A) File or folder separation between SD and HD	0		0		0		0		0	4	4	4	4	◁
B) 4-bit expression of sub-picture information and compression rule		0		0		0		0		7 0	\[\sqrt{1} \]	4	4	◁
C) Allow to set a plurality of types of recording formats for read-only medium					0	0				0				
D) ECC block structure using product code					0	0	0) ()	0	0				0
E) Distribute and allocate data in sectors to a plurality of small ECC blocks))	0						0
F) Insert different PO group data for respective sectors										0				0
G) Segment division structure in ECC block			0	0	0	0	7	7	7 \	7	0	4	abla	0
H) Guard area allocation structure between ECC blocks			٥	٥	0	0								
I) Guard areas are recorded to locally overlap each other										0				
J) Number of code changes upon shifting combination of sync codes ≥ 2	0	0					0	0	00					0
K) Set specific condition to address number assignment method												\circ		
L) L/G recording + wobble modulation	0	0	0	0									0	
M) Distribute and allocate unstable bits also on groove area										_	\bigcup		0	
N) Distribute and allocate unstable bits on land and groove											O			
O) ±90° wobble phase modulation														
P) Adopt gray codes or special track codes	0	0												

FIG. 38