几何原本 (The element of Euclid)

卷1

定义

1. 点 (point)

点是最小的,没有内部组成成分的东西

点是零维的

2. 线 (line)

线由无数点连接组成,它没有宽度,只有长度。

线是一维的

线有长度代表线的长短

线的两头是点

直线(straight line)

直线是特殊的一种线, 他是笔直的。

3. 面 (surface)

面由无数的线聚集形成,它只有长度和宽度的概念

面是二维的

面的边缘是线

平面 (plane surface)

平面由无数的直线密集的拼接而成

4. 平面角 (plane angle)

平面中两条线相交形成的

角有角度,描述角的 (开口) 大小

直线角 (rectilinear angle)

当形成平面角的两条直线还是直线是, 称这个平面角为直线角

注: 角的大小用角度衡量,角度代表角的开口大小。

直角 (right angle)

当两条直线形成的直线角彼此相等时, 称这些角为直角 此时成两条直线相互垂直。

纯角 (obtuse angle)

角度大于直角的角

锐角 (acute angle)

角度小于直角的角

5. 边界

边界是任何事物的最外沿

6. 形 (figure)

形是有一条或者多条线围城的面

形有面积表示面的大小

圆 (circle).

圆是由一条连续的线围成的平面图形

满足: 圆内存在一个定点到这条线上任意一点的长度都相等。

圆周 (circumference)

这条线称为圆周

圆心 (centre of the circle)

这个定点称为圆心

直径 (diameter of the circle)

过圆心的直线,与圆周相交的两点,形成的直线段。

半圆 (semicircle)

半圆是直径和它截取的圆周一起围成的图形

半圆和被截取的圆,有相同的圆心和直径长度。

7. 直线形 (rectilinear figure)

由直线围成的图形叫做直线形

三角 (边) 形 (triangle)

由三条直线连接围成的平面图形叫做三角形

等边三角形 (equilateral triangle)

三条边都相等的三角形

等腰三角形 (isosceles triangle)

只有两条边相等的三角形

直角三角形 (right angled triangle)

有一个角是直角的三角形

钝角三角形 (obtuse angled triangle)

有一个角是钝角的三角形

锐角三角形 (acute angled triangle)

三个角都是锐角的三角形

四边形 (quadrilateral figure)

由四条直线连接围成的平面图形叫做四边形

正方形 (square)

四条边长都相等, 并且四个角都是直角

长方形 (oblong)

角都是直角,但是并不是所有的边长都相等

菱形 (rhombus)

所有的边长都相等,但是角度并不都是直角

平行四边形 (rhombiod)

对边相等, 但是不要求四条边都相等, 也不要求角为直角

多边形

由四条以上直线连接围成的平面图形叫做多边形

8. 平行线 (parallel straight lines)

平行线是指在同一平面中,沿两个无论延伸多长都不会相交的直线多条直线。

平行线

公理 (axioms)

公理和公设都是不证自明的, 默认他们是对的。

1. 等于同量的量彼此相等

如果 A = B, B = C 那么: A = C

2. 等量加上等量等于等量

等量 + 等量 = 等量 等量 + 不等量 = 不等量

如果:

A = B

C != D

那么对任意 X:
$$X + A = X + B$$
 $X + C != X + D$

3. 等量减去等量等于等量

等量 - 等量 = 等量 等量 - 不等量 = 不等量

如果:
 A = B
 C != D

那么对任意 X:
 X - A = X - B
 X + C != X + D

4. 整体大于部分

5. 相互重合或者能填满同一区域的东西全等

不好理解需要结合后面命题来体会

举几个例子:

两个直线段,如果长度相等,就可以把他们挪到一起重合起啦,从而他们就全等。 两个三角形,如果他们能彼此重合,他们就全等。 两个圆,如果他们半径相同,那么他们也全等

注: 这些例子不能当作定理来用

公设 (postulates)

- 1. 任意两点可以做一条直线
- 2. 直线是可以无线延伸的
- 3. 给一顶点和一任意距离可以做圆
- 4. 所有直角的角度都相等

就是用来凑数的,是5公理和5共设对仗

5. 平行线共设

两条直线都和另一条直线相交,当且仅当同侧的夹角小于两直角合时,在这一侧延伸这两条直线它们会相交。

等价描述

- 1. 两条不平行的直线不可能同时和另外的一条直线平行
- 2. 如果一个直线和一对平行线中的一个相交,必定也会和另一个相交
- 3. 过一顶点,只能画一条直线与给定直线平行

命题

命题1.1 过一线段可以构造出一等边三角形

命题1.2