$1 + 2 + 3 + 4 + \cdots$

Frank Thorne

University of South Carolina

January 5, 2012

We know that

$$1 + 2 = 3$$
,

We know that

$$1 + 2 = 3$$
,

$$1+2+3=6,$$

We know that

$$1 + 2 = 3$$
,

$$1 + 2 + 3 = 6,$$

$$1 + 2 + 3 + 4 = 10,$$

We know that

$$1 + 2 = 3$$
,

$$1 + 2 + 3 = 6$$
,

$$1 + 2 + 3 + 4 = 10,$$

and so on. But what is

We know that

$$1 + 2 = 3$$
,

$$1 + 2 + 3 = 6$$
,

$$1 + 2 + 3 + 4 = 10,$$

and so on. But what is

$$1 + 2 + 3 + 4 + \cdots$$
?

Ramanujan's Big Theorem

Theorem (Ramanujan)

We have

$$1 + 2 + 3 + 4 + \dots = -\frac{1}{12}.$$

Ramanujan's Big Theorem

Theorem (Ramanujan)

We have

$$1 + 2 + 3 + 4 + \dots = -\frac{1}{12}.$$

Huh?!

Srinivasa Ramanujan (1887-1920)

Ramanujan's second letter to Hardy

"Dear Sir, I am very much gratified on perusing your letter of the 8th February 1913. I was expecting a reply from you similar to the one which a Mathematics Professor at London wrote asking me to study carefully Bromwich's Infinite Series and not fall into the pitfalls of divergent series. I told him that the sum of an infinite number of terms of the series: $1+2+3+4+\cdots=-1/12$ under my theory. If I tell you this you will at once point out to me the lunatic asylum as my goal. I dilate on this simply to convince you that you will not be able to follow my methods of proof if I indicate the lines on which I proceed in a single letter. . . . "

(S. Ramanujan, 27 February 1913)

We have the geometric series summation formula

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

We have the geometric series summation formula

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{1 - \frac{1}{2}} = 2,$$

We have the geometric series summation formula

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{1 - \frac{1}{2}} = 2,$$

$$1+2+4+8+\cdots=\frac{1}{1-2}=-1,$$

We have the geometric series summation formula

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{1 - \frac{1}{2}} = 2,$$

$$1 + 2 + 4 + 8 + \dots = \frac{1}{1 - 2} = -1,$$

$$1-1+1-1+\cdots=\frac{1}{1-(-1)}=\frac{1}{2}.$$

Some algebraic manipulation

By the above,

$$(1-1+1-1+\cdots)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}.$$

Some algebraic manipulation

By the above,

$$(1-1+1-1+\cdots)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}.$$

FOILing (carefully!),

$$1 - 2 + 3 - 4 + \dots = \frac{1}{4}.$$

Some algebraic manipulation

By the above,

$$(1-1+1-1+\cdots)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}.$$

FOILing (carefully!),

$$1 - 2 + 3 - 4 + \dots = \frac{1}{4}.$$

This is a special case of

$$1 - 2x + 3x^2 - 4x^3 + \dots = \frac{1}{(1-x)^2}.$$

Ramanujan's proof

E.G. The constant of the series
$$1+1+1+3c=-\frac{1}{2}$$
.

The Sum to x terms = $x = c + \int 1 dx + \frac{1}{2}$.

We may also final the Constant this:

 $c = 1+1+3+4+3c$
 $c = 4+1+3+4+3c$
 $c = 4+1+3+4+3c$
 $c = -\frac{1}{12}$

2. $\phi(x) + \sum_{n=0}^{\infty} \frac{B_n}{L^n} f^{n+1}(x) \cos \frac{\pi n}{2} = 0$

Sol. Let $\frac{B_n}{L^n} \psi(m)$ be the coeff! of $f^{n+1}(x)$, then

Q.E.D.

Q.E.D.

"The divergent series are the invention of the devil, and it is a shame to base on them any demonstration whatsoever."

(N. Abel, 1832)

The Riemann zeta function

The Riemann zeta function is defined by

$$\zeta(s) := 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots,$$

The Riemann zeta function

The Riemann zeta function is defined by

$$\zeta(s) := 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots,$$

for any complex number s with $\Re(s) > 1$.

The Riemann zeta function

The Riemann zeta function is defined by

$$\zeta(s) := 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots,$$

for any complex number s with $\Re(s) > 1$.

Cool fact:

$$\zeta(2) = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}.$$

Analytic continuation

Theorem (Riemann, 1859)

The zeta function has analytic continuation to all complex numbers $s \neq 1$, with

$$\zeta(s) = \zeta(1-s) \frac{\Gamma(\frac{1-s}{2})\pi^{-\frac{1-s}{2}}}{\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}}.$$

Analytic continuation

Theorem (Riemann, 1859)

The zeta function has analytic continuation to all complex numbers $s \neq 1$, with

$$\zeta(s) = \zeta(1-s) \frac{\Gamma(\frac{1-s}{2})\pi^{-\frac{1-s}{2}}}{\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}}.$$

Therefore,

$$\zeta(-1) = \zeta(2) \frac{\Gamma(1)\pi^{-1}}{\Gamma(-\frac{1}{2})\pi^{1/2}} = \frac{\pi^2}{6} \cdot \frac{1 \times \pi^{-1}}{(-2\sqrt{\pi})\pi^{1/2}} = -\frac{1}{12}.$$

Poisson summation

The usual proof is by **Poisson summation**.

When you first see it, it looks like a piece of magic.

(anonymous, MathOverflow comment)

Poisson summation

The usual proof is by Poisson summation.

When you first see it, it looks like a piece of magic.

(anonymous, MathOverflow comment)

Can compute $\zeta(-1) = -\frac{1}{12}$ using elementary methods?

Preliminaries

 ${\sf Write}$

Preliminaries

Write

▶ $\lfloor x \rfloor$ for the greatest integer $\leq x$: $\lfloor 8.7 \rfloor = 8$.

Preliminaries

Write

- ▶ $\lfloor x \rfloor$ for the greatest integer $\leq x$: $\lfloor 8.7 \rfloor = 8$.
- $\{x\}$ for the fractional part of x: $\{8.7\} = 0.7$.

First step: Analytic continuation to $\Re(s) > 0$

We have

$$s \int_{1}^{\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt = s \sum_{n=1}^{\infty} n \int_{n}^{n+1} \frac{1}{t^{s+1}} dt$$
$$= \sum_{n=1}^{\infty} n \left(\frac{-1}{(n+1)^{s}} + \frac{1}{n^{s}} \right)$$
$$= \zeta(s),$$

and therefore

First step: Analytic continuation to $\Re(s) > 0$

We have

$$s \int_{1}^{\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt = s \sum_{n=1}^{\infty} n \int_{n}^{n+1} \frac{1}{t^{s+1}} dt$$
$$= \sum_{n=1}^{\infty} n \left(\frac{-1}{(n+1)^{s}} + \frac{1}{n^{s}} \right)$$
$$= \zeta(s),$$

and therefore

$$\zeta(s) = s \int_1^\infty \frac{\lfloor t \rfloor}{t^{s+1}} dt = s \int_1^\infty \frac{t - \{t\}}{t^{s+1}} dt = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.$$

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.$$

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.$$

Some notes:

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.$$

Some notes:

▶ We see the pole at s = 1: $1 + \frac{1}{2} + \frac{1}{3} + \cdots = \infty$.

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.$$

Some notes:

- ▶ We see the pole at s = 1: $1 + \frac{1}{2} + \frac{1}{3} + \cdots = \infty$.
- ▶ The integral converges absolutely in $\Re(s) > 0$.

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{t\}}{t^{s+1}} dt.$$

Some notes:

- ▶ We see the pole at s = 1: $1 + \frac{1}{2} + \frac{1}{3} + \cdots = \infty$.
- ▶ The integral converges absolutely in $\Re(s) > 0$.

Really Big Open Problem

Prove that if

$$\int_1^\infty \frac{\{t\}}{t^{s+1}}dt = \frac{1}{s-1},$$

then $\Re(s) = \frac{1}{2}$.

A better analytic continuation

Write

$$\zeta(s) = s \int_{1}^{\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt = s \int_{1}^{\infty} \frac{t - \frac{1}{2} - (\{t\} - \frac{1}{2})}{t^{s+1}} dt$$
$$= \frac{s}{s - 1} - \frac{1}{2} - s \int_{1}^{\infty} \frac{\{t\} - \frac{1}{2}}{t^{s+1}} dt.$$

A better analytic continuation

Write

$$\zeta(s) = s \int_{1}^{\infty} \frac{\lfloor t \rfloor}{t^{s+1}} dt = s \int_{1}^{\infty} \frac{t - \frac{1}{2} - (\{t\} - \frac{1}{2})}{t^{s+1}} dt$$
$$= \frac{s}{s - 1} - \frac{1}{2} - s \int_{1}^{\infty} \frac{\{t\} - \frac{1}{2}}{t^{s+1}} dt.$$

The integral converges for $\Re(s) > -1$, because

$$\int_0^1 \left(\{t\} - \frac{1}{2}\right) dt = 0.$$

Define $P_2(t)$ by:

Define $P_2(t)$ by:

▶ $P_2(t)$ is an antiderivative of $t - \frac{1}{2}$ for $t \in [0, 1)$;

Define $P_2(t)$ by:

- ▶ $P_2(t)$ is an antiderivative of $t \frac{1}{2}$ for $t \in [0, 1)$;
- ▶ $P_2(t)$ is periodic mod 1, so that $P_2(t) = P_2(\{t\})$;

Define $P_2(t)$ by:

- ▶ $P_2(t)$ is an antiderivative of $t \frac{1}{2}$ for $t \in [0, 1)$;
- ▶ $P_2(t)$ is periodic mod 1, so that $P_2(t) = P_2(\{t\})$;
- ▶ So, on [0,1), $P_2(t) = \frac{1}{2}t^2 \frac{1}{2}t + C_2$, for some C_2 .

Define $P_2(t)$ by:

- ▶ $P_2(t)$ is an antiderivative of $t \frac{1}{2}$ for $t \in [0, 1)$;
- ▶ $P_2(t)$ is periodic mod 1, so that $P_2(t) = P_2(\{t\})$;
- ▶ So, on [0,1), $P_2(t) = \frac{1}{2}t^2 \frac{1}{2}t + C_2$, for some C_2 .

Integrating by parts,

$$s \int_1^\infty \frac{\{t\} - \frac{1}{2}}{t^{s+1}} dt = s \frac{P_2(t)}{t^{s+1}} \bigg|_1^\infty + s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

From the previous slides,

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} - sP_2(1) + s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

From the previous slides,

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} - sP_2(1) + s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

Choose C_2 so that $\int_0^1 P_2(t)dt = 0$:

$$P_2(t) = \frac{1}{2}t^2 - \frac{1}{2}t + \frac{1}{12}.$$

From the previous slides,

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} - sP_2(1) + s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

Choose C_2 so that $\int_0^1 P_2(t)dt = 0$:

$$P_2(t) = \frac{1}{2}t^2 - \frac{1}{2}t + \frac{1}{12}.$$

Therefore

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

From the previous slides,

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} - sP_2(1) + s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

Choose C_2 so that $\int_0^1 P_2(t)dt = 0$:

$$P_2(t) = \frac{1}{2}t^2 - \frac{1}{2}t + \frac{1}{12}.$$

Therefore

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - s(s+1) \int_1^\infty \frac{P_2(t)}{t^{s+2}}.$$

Kablam!

$$\zeta(-1) = \frac{-1}{-1-1} - \frac{1}{2} - \frac{1}{12} - 0 = -\frac{1}{12}.$$

Defining $P_3(t)$ in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on $\left[0,1\right]$)

Defining $P_3(t)$ in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on [0,1])

$$P_3(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t,$$

Defining $P_3(t)$ in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on [0,1])

$$P_3(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t,$$

similarly

$$P_4(t) = \frac{1}{24}t^4 - \frac{1}{12}t^3 + \frac{1}{24}t^2 - \frac{1}{720},$$

Defining $P_3(t)$ in the same manner, where

$$\int_0^1 P_3(t)dt=0,$$

we have (on [0,1])

$$P_3(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t,$$

similarly

$$P_4(t) = \frac{1}{24}t^4 - \frac{1}{12}t^3 + \frac{1}{24}t^2 - \frac{1}{720},$$

SO

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^{\infty} \frac{P_4(t)}{t^{s+4}}.$$

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^\infty \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^\infty \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(-2) = 1 + 4 + 9 + 16 + 25 + \dots = 0,$$

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_1^{\infty} \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(-2) = 1 + 4 + 9 + 16 + 25 + \cdots = 0,$$

$$\zeta(-3) = 1 + 8 + 27 + 64 + 125 + \dots = \frac{1}{120}.$$

$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} - s(s+1)(s+2) \int_{1}^{\infty} \frac{P_4(t)}{t^{s+4}}.$$

This implies that

$$\zeta(-2) = 1 + 4 + 9 + 16 + 25 + \cdots = 0,$$

$$\zeta(-3) = 1 + 8 + 27 + 64 + 125 + \dots = \frac{1}{120}.$$

and we can compute any value of $\zeta(-n)$ similarly.

This also works for *finite* sums.

This also works for *finite* sums. For example:

$$\sum_{n=1}^{N} n^{-s} = \zeta(s) + \frac{N^{1-s}}{1-s} + \frac{1}{2}N^{-s} - \frac{1}{12}sN^{-s-1} + O_s(N^{-s-2}).$$

This also works for *finite* sums. For example:

$$\sum_{n=1}^{N} n^{-s} = \zeta(s) + \frac{N^{1-s}}{1-s} + \frac{1}{2}N^{-s} - \frac{1}{12}sN^{-s-1} + O_s(N^{-s-2}).$$

Taking s = -1,

This also works for *finite* sums. For example:

$$\sum_{n=1}^{N} n^{-s} = \zeta(s) + \frac{N^{1-s}}{1-s} + \frac{1}{2}N^{-s} - \frac{1}{12}sN^{-s-1} + O_s(N^{-s-2}).$$

Taking s = -1,

$$\sum_{n=1}^{N} n = \zeta(-1) + \frac{N^2}{2} + \frac{N}{2} + \frac{1}{12} + O(N^{-1}).$$

This also works for *finite* sums. For example:

$$\sum_{n=1}^{N} n^{-s} = \zeta(s) + \frac{N^{1-s}}{1-s} + \frac{1}{2}N^{-s} - \frac{1}{12}sN^{-s-1} + O_s(N^{-s-2}).$$

Taking s = -1,

$$\sum_{n=1}^{N} n = \zeta(-1) + \frac{N^2}{2} + \frac{N}{2} + \frac{1}{12} + O(N^{-1}).$$

We see again that $\zeta(-1) = -\frac{1}{12}$.

Some standard terminology

▶ The polynomial $B_n(t) := n!P_n(t)$ is called the *nth Bernoulli polynomial*;

Some standard terminology

- ▶ The polynomial $B_n(t) := n!P_n(t)$ is called the *nth Bernoulli polynomial*;
- ▶ The constant term $B_n := B_n(0)$ is called the *nth Bernoulli number*.

Some standard terminology

- ▶ The polynomial $B_n(t) := n!P_n(t)$ is called the *nth Bernoulli polynomial*;
- ▶ The constant term $B_n := B_n(0)$ is called the *nth Bernoulli number*.
- ▶ If *n* is odd, then $B_n = 0$ (except $B_1 = -\frac{1}{2}$).

$$B_{22} = \frac{11(57183 + 20500)^{9}}{138}$$

$$B_{24} = \frac{236364091}{2730} = \frac{19.1617^{4} + 10.4206^{4} + 34.550}{2730}$$

$$B_{26} = \frac{8553103}{6} = \frac{13(392931 + 265000)}{6}$$

$$236364091 + 131040(\frac{123}{1-7} + \frac{24}{1-7} + \frac{24}{1-$$

Some Bernoulli polynomials

The Euler-Maclaurin sum formula

Theorem

If $f \in C^{\infty}[0,\infty)$, then for all integers $a,\ b,\ k$ we have

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(t)dt + \frac{1}{2} \Big(f(a) + f(b) \Big)$$

$$+ \sum_{\ell=2}^{k} \frac{B_{k}}{k!} \Big(f^{(k-1)}(b) - f^{(k-1)}(a) \Big)$$

$$+ \frac{1}{k!} \int_{a}^{b} B_{k}(x) f^{(k)}(t) dt.$$

Example

Stirling's formula: Take $f(n) = \log(n)$:

$$\log(x!) = \sum_{n=1}^{x} \log n \to \int_{1}^{x} \log t \ dt + C + \frac{1}{2} \log x.$$

Euler-Maclaurin: a special case

Let
$$f(a) + f(a) + f(a) + f(a) + f(a) + f(a) = \phi(a)$$
 then

$$\phi(a) = c + \int f(a) dx + \frac{1}{2} f(a) + \frac{1}{12} f'(a) - \frac{1}{12} f'(a) + \frac{1}{12} f'(a) - \frac{1}{12} f'(a) + \frac{1}{12} f$$

The Ramanujan constant C_R

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

The Ramanujan constant C_R

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

where the Ramanujan constant C_R is defined by

$$C_R = -\frac{1}{2}f(0) - \sum_{k=2}^{\infty} \frac{B_k}{k!} f^{(k-1)}(0).$$

The Ramanujan constant C_R

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

where the Ramanujan constant C_R is defined by

$$C_R = -\frac{1}{2}f(0) - \sum_{k=2}^{\infty} \frac{B_k}{k!} f^{(k-1)}(0).$$

The Ramanujan constant of $\sum_{n=1}^{\infty} 1$ is $-\frac{1}{2}$, because

$$\sum_{n=1}^{x} 1 = \int_{0}^{x} 1 \ dt + C_{R} + \frac{1}{2} \cdot 1.$$

The Ramanujan constant C_R

We have

$$\sum_{n=1}^{x} f(n) = \int_{0}^{x} f(t)dt + C_{R} + \frac{1}{2}f(x) + \sum_{k=2}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(x),$$

where the Ramanujan constant C_R is defined by

$$C_R = -\frac{1}{2}f(0) - \sum_{k=2}^{\infty} \frac{B_k}{k!} f^{(k-1)}(0).$$

The Ramanujan constant of $\sum_{n=1}^{\infty} 1$ is $-\frac{1}{2}$, because

$$\sum_{n=1}^{x} 1 = \int_{0}^{x} 1 \ dt + C_{R} + \frac{1}{2} \cdot 1.$$

The Ramanujan constant of $\sum_{n=1}^{\infty} n$ is $-\frac{1}{12}$, because

$$\sum_{n=1}^{x} n = \int_{0}^{x} t \ dt + C_{R} + \frac{1}{2} n + \frac{1}{12}.$$

A broader definition of Ramanujan sums?

Definition

(???) We define the value of any infinite sum $\sum_{n=1}^{\infty} f(n)$ to be the Ramanujan constant C_R .

A convergent sum

Consider

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1.$$

A convergent sum

Consider

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1.$$

The Ramanujan constant is

$$C_R = -\frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot (2k)!$$

A convergent sum

Consider

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1.$$

The Ramanujan constant is

$$C_R = -\frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot (2k)!$$

Can we speed up the convergence?

Warning: I am lying on this slide.

Consider instead

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right).$$

Consider instead

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right).$$

Now the Ramanujan constant is

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

$$= -\frac{1}{50} + \frac{1}{750} - \frac{1}{93750} + \frac{1}{3281250} - \cdots$$

$$= -0.018677028 \dots$$

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not** -0.018677028 .

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not** -0.018677028 . However,

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \approx -0.018677028 + \int_0^{\infty} \frac{1}{(t+5)^2} dt = 0.181322971...$$

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not** -0.018677028 . However,

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \approx -0.018677028 + \int_0^{\infty} \frac{1}{(t+5)^2} dt = 0.181322971...$$

and

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right)$$
$$= 0.181322955.$$

$$\frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \cdots$$
 is **not** -0.018677028 . However,

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \approx -0.018677028 + \int_0^{\infty} \frac{1}{(t+5)^2} dt = 0.181322971...$$

and

$$\sum_{n=1}^{\infty} \frac{1}{(n+5)^2} = \frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}\right)$$
$$= 0.181322955.$$

This calculation convinced Euler that $\zeta(2) = \frac{\pi^2}{6}$.

Rate of convergence

Question: Does the infinite series

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

converge?

Rate of convergence

Question: Does the infinite series

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

converge?

Nο,

$$|B_{2n}| \sim \frac{2(2n)!}{(2\pi)^{2n}},$$

Rate of convergence

Question: Does the infinite series

$$C_R = -\frac{1}{2} \cdot \frac{1}{25} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \cdot \frac{(2k)!}{5^{2k+1}}$$

converge?

No,

$$|B_{2n}| \sim \frac{2(2n)!}{(2\pi)^{2n}},$$

but this can be fixed rigorously.

How to get the correct constant?

The 'Ramanujan sum' $\sum_{n=1}^{\infty}$ is not equal to $\frac{\pi^2}{6}-1$.

How to get the correct constant?

The 'Ramanujan sum' $\sum_{n=1}^{\infty}$ is not equal to $\frac{\pi^2}{6}-1$.

Hardy: Introduce another parameter *a*.

"The introduction of the parameter a allows more flexibility and enables one to always obtain the "correct" constant; usually, there is a certain value of a which is more natural than other values. If $\sum f(k)$ converges, then normally we would take $a=\infty$. Although the concept of the constant of a series has been made precise, Ramanujan's concomitant theory cannot always be made rigorous."

(B. Berndt)

"Ramanujan constant" in terms of eigenvalues of a shift operator (Venkatesh).

- "Ramanujan constant" in terms of eigenvalues of a shift operator (Venkatesh).
- Congruences for Bernoulli numbers (Kummer, von Staudt-Clausen).

- "Ramanujan constant" in terms of eigenvalues of a shift operator (Venkatesh).
- Congruences for Bernoulli numbers (Kummer, von Staudt-Clausen).
- p-adic zeta functions (Kubota-Leopoldt).

- "Ramanujan constant" in terms of eigenvalues of a shift operator (Venkatesh).
- Congruences for Bernoulli numbers (Kummer, von Staudt-Clausen).
- p-adic zeta functions (Kubota-Leopoldt).
- Many cases of Fermat's Last Theorem.

- "Ramanujan constant" in terms of eigenvalues of a shift operator (Venkatesh).
- Congruences for Bernoulli numbers (Kummer, von Staudt-Clausen).
- p-adic zeta functions (Kubota-Leopoldt).
- Many cases of Fermat's Last Theorem.
- ▶ ... and more ...