一. 填空题(每题4分, 共32分)

填空题 1. 设 V 为3维线性空间, σ 为 V 上的线性变换. 假设 σ 在 V 的一组基底 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$A = \left[\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{array} \right],$$

则包含 α_2 的最小不变子空间是 $span\{\alpha_1,\alpha_2\}$.

分析解答: (i) 回忆不变子空间定义: 满足条件 $\sigma(W) \subseteq W$ 的子空间 W 称为不变子空间(关于线性变换 σ).

(ii) 记所求得最小子空间为 W. 根据假设我们有

$$\sigma(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}.$$

由于 $\alpha_2 \in W$, 故 $\sigma(\alpha_2) \in W$, 即 $\sigma(a_2) = \lambda \alpha_2 + \alpha_1 \in W$. 因此 $\lambda \alpha_2 + \alpha_1 \in W$. 从而 $\alpha_1 \in W$. 这表明 $span\{\alpha_1, \alpha_2\} \subseteq W$. 易见 $span\{\alpha_1, \alpha_2\}$ 是包含 α_2 的不变子空间. 故 $span\{\alpha_1, \alpha_2\} \supseteq W$. 因此所求不变子空间为

$$W = span\{\alpha_1, \alpha_2\}.$$

填空题 2: 设 $\alpha_1, \alpha_2, \alpha_3$ 为3维列向量, $A = (\alpha_1, \alpha_2, \alpha_3)$, 且 |A| = 1. 令

$$B := (2\alpha_1 - \alpha_2 + 3\alpha_3, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1), \tag{1}$$

则 $|B| = \underline{4}$.

分析解答:将矩阵 B 用矩阵 A 来表示.矩阵 B 的定义式 (1) 可写作

$$B := (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 2 & 0 & -1 \\ -1 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}.$$

记上式最右边的矩阵为 C, 则于上式取行列式得

$$|B| = |A||C| = 1 \cdot 4 = 4.$$

填空题 3: 设 A 为 $m \times n$ 矩阵, A 的秩 r(A) = r, B 为n 阶矩阵满足 AB = 0, 则矩阵 B 的秩 r(B) 的取值范围是 $0 \le r(B) \le n - r$.

分析解答: 根据假设矩阵 A 的秩为 r, 故 A 的零空间 Ker(A) 的维数是 n-r. 再根据条件 AB=0 可知, 矩阵 $B:=(b_1,\cdots,b_n)$ 的每个列向量均满足 $Ab_j=0$, 即 $b_j \in Ker(A)$. 由此可知向量组 $\{b_1,\cdots,b_n\}$ 最大无关向量的个数 $\leq n-r$. 这表明矩阵 B 的秩 r(B) 的取值范围是

$$0 \le r(B) \le n - r.$$

填空题 4: 设 n 阶矩阵 A 的各行元素之和为 c, 则 A^3 的各行元素之和为 \underline{c}^3 .

分析解答: 考虑 n=3 的情形. 设 $A=(a_{ij})$, 则题目的假设是

$$\begin{cases} a_{11} + a_{12} + a_{13} = c, \\ a_{21} + a_{22} + a_{33} = c, \\ a_{31} + a_{32} + a_{33} = c. \end{cases}$$

若将上述方程组写作矩阵的形式则

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

这说明 c 是矩阵 A 的特征值, 并且 $\xi := (1,1,1)^T$ 是所属的特征向量. 显然这个结论与矩阵 A 的阶数 n 没有关系. 也就是说, 若 n 阶矩阵 A 的各行元素之和为 c, 则 c 是 A 的特征值, 且 $\xi := (1,\dots,1)^T$ 是所属的特征向量. 因此 c^3 是矩阵 A^3 的特征值, 并且 $\xi = (1,\dots,1)^T$ 是 A^3 的特征向量, 从属于特征值 c^3 . 因此 A^3 的各行的 n 个元素之和为 c^3 .

<u>填空题 5</u>: 设 $W = span\{\alpha_1, \alpha_2\}$ 为 \mathbb{R}^3 的子空间, 其中 $\alpha_1 = (1,0,3)^T$, $\alpha_2 = (2,5,-4)^T$, 则子空间 W 在 \mathbb{R}^3 中的正交补 $W^{\perp} = span\{(-3,2,1)^T\}$.

分析解答: 显然子空间 W 的维数为 2. 因此正交补 W^{\perp} 的维数为 1. 为求得 W^{\perp} 的一个非零向量 ξ , 我们需要求解 $\alpha_1\xi=0$, $\alpha_2\xi=0$, 即求解

$$\begin{cases} x & +3z = 0, \\ 2x & +5y & -4z = 0, \end{cases}$$

不难得到方程组的一个非零解 $\xi = (-3, 2, 1)^T$. 于是所求正交补子空间为

$$W^{\perp} = span\{(-3, 2, 1)^T\}.$$

填空题 6: 设 A 为 2 阶矩阵, |A|=0, 且A 的代数余子式满足 $A_{11}=1$, $A_{22}=2$, 则 A 的伴随矩阵 A^* 的两个特征值分别是 0 和 3.

分析解答: 根据伴随矩阵的定义, 以及题目假设我们有

$$A^* := \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & -a_{12} \\ -a_{21} & 2 \end{bmatrix}.$$

由假设 |A|=0 可知 $|A^*|=0$. 记 A^* 的两个特征值为 λ_1 和 λ_2 . 根据特征值性质可知

$$\lambda_1 + \lambda_2 = trA^* = 1 + 2 = 3, \quad \lambda_1 \lambda_2 = |A^*| = 0.$$

由于可见伴随矩阵 A^* 的特征值集合为 $\{\lambda_1, \lambda_2\} = \{0, 3\}$.

填空题 7: 设实二次型 $Q(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ 通过正交线性变换化为标准二次型 $Q(\alpha) = 2y_1^2 + y_2^2 + 5y_3^2$, 则 a = -2 或 2.

分析解答: 记二次型 Q(x) 对应的实对称矩阵为 A, 即

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & a \\ 0 & a & 3 \end{array} \right].$$

根据题目假设可知经过正交变换 x = Py, 二次型 Q(x) 化为了标准形 $Q_1(y) := Q(Py) = 2y_1^2 + y_2^2 + 5y_3^2$. 等价地说, 如下两个矩阵相似

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & a \\ 0 & a & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

简单计算得 A 的特征多项式

$$|\lambda E - A| = (\lambda - 2)(\lambda - 3 - a)(\lambda - 3 + a).$$

由于矩阵 A 和与对角阵 B 相似, 故 A 有特征值 1 和 5. 由此解得 a=2 或 a=-2.

填空题 8: 在直角坐标系中, 两条异面直线

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3} \quad \text{for} \quad x - 1 = y + 1 = z - 2 \tag{2}$$

的距离为 $\frac{5}{\sqrt{6}}$.

分析解答: 直接应用异面直线的距离公式

$$d = \frac{|\overrightarrow{P_1P_2} \cdot \overrightarrow{v_1} \times \overrightarrow{v_2}|}{|\overrightarrow{v_1} \times \overrightarrow{v_2}|}$$

即可. 记 L_1 和 L_2 为式 (2) 中的两条直线. 则直线 L_1 经过点 $P_1 = (0,0,0)$, 其方向为 $\vec{v}_1 = (1,2,3)$. 直线 L_2 经过点 $P_2 = (1,-1,2)$, 其方向为 $\vec{v}_2 = (1,1,1)$. 于是

 $\overrightarrow{P_1P_2} = (1, -1, 2) - (0, 0, 0) = (1, -1, 2), \ \overrightarrow{v_1} \times \overrightarrow{v_2} = (1, 2, 3) \times (1, 1, 1) = (-1, 2, -1).$ $\overrightarrow{P_1P_2} \cdot \overrightarrow{v_1} \times \overrightarrow{v_2} = (1, -1, 2) \cdot (-1, 2, -1) = -5. \ \ \text{\uparrow} \not\equiv$

$$d = \frac{|\overrightarrow{P_1P_2} \cdot \overrightarrow{v_1} \times \overrightarrow{v_2}|}{|\overrightarrow{v_1} \times \overrightarrow{v_2}|} = \frac{5}{\sqrt{6}}.$$

二. 计算题和证明题,

<u>题一 (20分)</u>: 设 A 为线性空间 V 上线性变换 σ 在 V 的一组基底 α_1 , α_2 , α_3 , α_4 下的矩阵, A 如下定义

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{bmatrix}.$$

分别求子空间 $Im(\sigma)$, $Ker(\sigma)$, $Im(\sigma) + Ker(\sigma)$ 的基底.

M: 先求矩阵 A 的秩. 为此对矩阵 A 作行初等变换

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & -2 & -3 & -4 \end{bmatrix} =: B.$$

由此可见 rank(A) = 2. 故 dim $Im(\sigma) = 2$, dim $Ker(\sigma) = 2$.

(i) 求 $Im(\sigma)$ 的基底. 由于矩阵 A 的第一和第二列线性无关, 故 $\sigma(\alpha_1)=\alpha_1-\alpha_2+\alpha_3+2\alpha_4$ 和 $\sigma(\alpha_2)=2(\alpha_2+\alpha_3-\alpha_4)$ 线性无关. 因此 $\sigma(\alpha_1),\sigma(\alpha_2)$ 构成了 $Im(\sigma)$ 的一个基底, 即

$$Im(\sigma) = span\{\alpha_1 - \alpha_2 + \alpha_3 + 2\alpha_4, \alpha_2 + \alpha_3 - \alpha_4\}.$$

(ii) 求 $Ker(\sigma)$ 的基底. 为此考虑求解齐次线性代数方程组 $A\xi=0$. 由于方程组

 $A\xi = 0$ 和 $B\xi = 0$ 同解. 我们考虑 $B\xi = 0$, 即

$$\left\{ \begin{array}{lll} x & +2z & +w=0, \\ & 2y & +3z & +4w=0. \end{array} \right.$$

不难求得这个方程组的两个线性无关的解 $\xi_1 = (-4, -3, 2, 0)^T$, $\xi_2 = (-1, -2, 0, 1)^T$. 这表明

$$Ker(A) = span\{(-4, -3, 2, 0)^T, (-1, -2, 0, 1)^T\}.$$

由此得

$$Ker(\sigma) = span\{-4\alpha_1 - 3\alpha_2 + 2\alpha_3, -\alpha_1 - 2\alpha_2 + \alpha_4\}.$$

(iii) 求和空间 $Im(\sigma) + Ker(\sigma)$ 的基底. 为此考虑两个子空间的基底的线性相关性. 将它们的基向量

$$Im(\sigma) = span\{\alpha_1 - \alpha_2 + \alpha_3 + 2\alpha_4, \alpha_2 + \alpha_3 - \alpha_4\},$$

$$Ker(\sigma) = span\{-4\alpha_1 - 3\alpha_2 + 2\alpha_3, -\alpha_1 - 2\alpha_2 + \alpha_4\}.$$

坐标作为列向量构成矩阵 C, 即

$$C = \left| \begin{array}{cccc} 1 & 0 & -4 & -1 \\ -1 & 1 & -3 & -2 \\ 1 & 1 & 2 & 0 \\ 2 & -1 & 0 & 1 \end{array} \right|.$$

考虑矩阵 C 的秩. 为此对矩阵 C 作行变换

$$\begin{bmatrix} 1 & 0 & -4 & -1 \\ -1 & 1 & -3 & -2 \\ 1 & 1 & 2 & 0 \\ 2 & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -4 & -1 \\ 0 & 1 & -7 & -3 \\ 0 & 1 & -6 & 1 \\ 0 & -1 & -8 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -4 & -1 \\ 0 & 1 & -7 & -3 \\ 0 & 0 & 13 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

可见矩阵 C 可逆. 因此子空间 $Im(\sigma)$ 与 $Ker(\sigma)$ 的基底线性无关. 因此它们的和 $Im(\sigma) + Ker(\sigma)$ 为直和, 即 $Im(\sigma) \oplus Ker(\sigma)$. 其维数为 4. 故其和空间为全空间,

即 $Im(\sigma) + Ker(\sigma) = V$. 于是 $Im(\sigma) + Ker(\sigma)$ 的一个基底为 α_1 , α_2 , α_3 , α_4 . 解答完毕.

题二(12分): 求一个正交矩阵 P, 使得线性变换 x = Py 将实二次型 $Q(x) = x^T Ax$ 化为标准形, 其中实对称矩阵 A 为

$$A = \begin{bmatrix} 0 & -1 & -1 & 0 \\ -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

 \underline{M} : 实际上就是要求一个正交矩阵 P, 使得 P^TAP 为对角阵. 也就是要求 A 的一组(4个)单位正交的特征向量. 为此先求 A 的特征值. 简单计算表明

$$|\lambda E - A| = \dots = (\lambda - 1)^3 (\lambda + 2).$$

故矩阵 A 的特征值为 $\lambda_1 = 1$ (三重), $\lambda_2 = -2$. 我们先求特征值 $\lambda_1 = 1$ 对应的一组(3个)单位正交向量. 考虑齐次方程组 ($\lambda_1 E - A$) $\xi = 0$, 即

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

不难求出这个方程组的一个基底. 为了避免 Gram-Schmidt正交化过程, 我们取如下一组相互正交的三个解向量

$$\alpha_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad \alpha_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \quad \alpha_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}.$$

对这三个解向量作单位化即得矩阵 A 的三个单位正交的特征向量:

$$\varepsilon_1 = \alpha_1, \quad \varepsilon_2 = \frac{\alpha_2}{\sqrt{6}}, \quad \varepsilon_3 = \frac{\alpha_3}{\sqrt{2}}.$$

再考虑特征值 $\lambda_2 = -2$ 所对应的特征向量. 为此我们要解方程组 $(\lambda_2 E - A)\xi = 0$, 即

$$\begin{bmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

不难解得方程组的一个非零解向量 $\alpha_4 = (1,1,1,0)^T$. 它的单位化向量为 $\varepsilon_4 = \frac{1}{\sqrt{3}}(1,1,1,0)$. 于是我们求得一个以 $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ 为列向量的正交矩阵 P, 即

$$P := \begin{bmatrix} 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

使得 AP = Pdiag(1,1,1-2). 于是在正交变换 x = Py 下, 二次型 $Q(x) = x^T Ax$ 化为 $Q_1(y) := Q(Py) = y_1^2 + y_2^2 + y_3^3 - 2y_4^2$. 解答完毕.

题三(16分): 设 V 为数域 k 上的3 维线性空间, σ 为 V 上的线性变换, σ 在 V 的基底 α_1 , α_2 , α_3 下的矩阵为

$$A = \left[\begin{array}{rrr} 2 & -2 & 2 \\ -2 & -1 & 4 \\ 2 & 4 & -1 \end{array} \right].$$

(1). 求 σ 在基底

$$\eta_1 = \alpha_1 - 2\alpha_2 + \alpha_3,$$

$$\eta_2 = 3\alpha_2 - \alpha_3,$$

$$\eta_3 = 3\alpha_1 + 2\alpha_2 - \alpha_3$$

下的矩阵:

(2). 求矩阵 A 的全部特征值和特征向量.

解(1): 根据题目给出的条件可知, 基底 $\{\eta_1, \eta_2, \eta_3\}$ 到基底 $\{\alpha_1, \alpha_2, \alpha_3\}$ 的过渡矩阵 P 为

$$(\eta_1, \eta_2, \eta_3) = (\alpha_1, \alpha_2, \alpha_3)P, \quad P := \begin{vmatrix} 1 & 0 & 3 \\ -2 & 3 & 2 \\ 1 & -1 & -1 \end{vmatrix}.$$

于是

$$\sigma(\eta_1, \eta_2, \eta_3) = \sigma(\alpha_1, \alpha_2, \alpha_3) P$$
$$= (\alpha_1, \alpha_2, \alpha_3) A P = (\eta_1, \eta_2, \eta_3) P^{-1} A P.$$

矩阵 $P^{-1}AP$ 即为线性变换 σ 在基底 $\{\eta_1, \eta_2, \eta_3\}$ 下的矩阵. 经过有些繁琐的计算 $P^{-1}AP =$

$$\frac{1}{4} \begin{bmatrix} 1 & 3 & 9 \\ 0 & 4 & 8 \\ 1 & -1 & -3 \end{bmatrix} \begin{bmatrix} 2 & -2 & 2 \\ -2 & -1 & 4 \\ 2 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ -2 & 3 & 2 \\ 1 & -1 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -43 & 88 & 99 \\ -40 & 76 & 72 \\ 25 & -40 & -33 \end{bmatrix}.$$

解(2): 求矩阵 A 的全部特征值和特征向量. 先求特征值. 考虑 A 的特征多项式

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 2 & -2 \\ 2 & \lambda + 1 & -4 \\ -2 & -4 & \lambda + 1 \end{vmatrix} = \dots = (\lambda - 3)^2 (\lambda + 6).$$

由此可知特征值为 $\lambda_1=\lambda_2=3,\ \lambda_3=-6$. 再来求特征向量. 考虑方程组 $(\lambda_1 E-A)\xi=0$, 即

$$\begin{bmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

不难求得方程组的两个线性无关的解向量, 即从属于特征值 $\lambda_1 = \lambda_2 = 3$ 的特征向量

$$\xi_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \quad \xi_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

再考虑方程组 $(\lambda_3 E - A)\xi = 0$, 即

$$\begin{bmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

不难求得方程组的一个非零解,即从属于特征值 $\lambda_3 = -6$ 的特征向量

$$\xi_3 = \left[\begin{array}{c} 1 \\ 2 \\ -2 \end{array} \right].$$

综上, 矩阵 A 的特征值为 $\lambda_1 = \lambda_2 = 3$, $\lambda_3 = -6$, 对应的特征向量为

$$\xi_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \quad \xi_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \xi_3 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}.$$

<u>题四(10分)</u>: 设 A 为 $m \times n$ 矩阵, E 为n 阶单位矩阵, 记 $B = \lambda E + A^T A$. 证明当 $\lambda > 0$ 时, 矩阵 B 正定.

证明: 当 $\lambda > 0$ 时, 对于任意向量 $x \in \mathbb{R}^n$.

$$x^{T}Bx = \lambda x^{T}x + x^{T}A^{T}Ax = \lambda ||x||^{2} + ||Ax||^{2} > 0, \forall x \in \mathbb{R}^{n} \setminus \{0\}.$$

因此 B 正定.

题五(10分): 设 σ 为实线性空间 V 上的线性变换, 且 $\sigma^2 = -\varepsilon$, 这里 ε 表示恒等变换. 证明 V 的维数为偶数, 即 $\dim V = 2m$, 并且 V 存在一组基, 使得 σ 在这组基下的矩阵为

$$J = \begin{bmatrix} 0 & E_m \\ -E_m & 0 \end{bmatrix}.$$

(注: 由题意知线性空间 V 应该是有限维的)

证明: 分三步.

Step 1. 证明对于任意非零向量 $\xi_1 \in V$, 记 $\eta_1 := \sigma(\xi_1)$, 则向量组 ξ_1, η_1 线性无关. 反证. 假设 ξ_1, η_1 线性相关, 则由于 ξ_1 为非零向量, 故 η_1 可表为 $\eta_1 = \lambda \xi_1$, $\lambda \in \mathbb{R}$. 用 σ 作用于等式 $\eta_1 = \lambda \xi_1$ 两边得

左边 =
$$\sigma(\eta_1) = \sigma(\sigma\xi_1) = \sigma^2(\xi_1) = -\xi$$
,

右边 =
$$\sigma(\lambda \xi_1) = \lambda \sigma(\xi) = \lambda \eta_1 = \lambda^2 \xi$$
.

这表明 $(1+\lambda^2)\xi_1=0$. 但是 $1+\lambda^2>0$ (注意V 为实线性空间), 且 ξ_1 为非零向量. 矛盾. 故向量组 ξ_1,η_1 线性无关. 进一步二维子空间 $span\{\xi_1,\eta_1\}$ 是 σ 的不变子空间, 并且

$$\sigma(\eta_1, \xi_1) = (\eta_1, \xi_1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Step 2. 若向量组 ξ_1, η_1 构成了 V 的基底, 则结论得证. 若不然, 则存在一个向量 $\xi_2 \in V$, 使得向量组 ξ_1, η_1, ξ_2 线性无关. 此时可<u>断言</u>: 向量组 $\xi_1, \eta_1, \xi_2, \eta_2$ 也线性无关, 这里 $\eta_2 := \sigma(\xi_2)$.

<u>证明断言</u>: 反证. 假设向量组 $\xi_1, \eta_1, \xi_2, \eta_2$ 也线性相关. 由于向量组 ξ_1, η_1, ξ_2 线性无关, 故 η_2 可表为 ξ_1, η_1, ξ_2 线性组合, 即

$$\eta_2 = \lambda_1 \xi_1 + \lambda_2 \xi_2 + \mu_1 \eta_1, \quad \lambda_1, \lambda_2, \mu_1 \in \mathbb{R}. \tag{3}$$

用 σ 作用于等式(3)两边得

$$-\xi_2 = \sigma(\eta_2) = \lambda_1 \eta_1 + \lambda_2 \eta_2 - \mu_1 \xi_1. \tag{4}$$

由式 (4) 可知系数 $\lambda_2 \neq 0$. 否则与向量组 ξ_1, η_1, ξ_2 线性无关的假设相矛盾. 将式 (4) 写作

$$\lambda_2 \eta_2 = \mu_1 \xi_1 - \xi_2 + \lambda_1 \eta_1. \tag{5}$$

用 λ_2 同时乘以式 (3) 的两边得

$$\lambda_2 \eta_2 = \lambda_2 \lambda_1 \xi_1 + \lambda_2^2 \xi_2 + \lambda_2 \mu_1 \eta_1. \tag{6}$$

比较等式 (5) 和 (6) 可知 $\lambda_2^2 = -1$. 这在实数域上是不可能的. 矛盾. 这就证明了向量组 $\xi_1, \eta_1, \xi_2, \eta_2$ 线性无关. 注意对于这个线性无关的向量组, 我们有

$$\sigma(\eta_1, \eta_2, \xi_1, \xi_2) = (\eta_1, \eta_2, \xi_1, \xi_2) \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

Step 3. 若向量组 $\xi_1, \eta_1, \xi_2, \eta_2$,构成了 V 的基底,则结论得证. 若不然,则存在一个向量 $\xi_3 \in V$,使得向量组 $\xi_1, \eta_1, \xi_2, \eta_2, \xi_3$ 线性无关. 此时可<u>断言</u>: 向量组 $\xi_1, \eta_1, \xi_2, \eta_2, \xi_3, \eta_3$ 也线性无关,这里 $\eta_3 := \sigma(\xi_3)$. 证明同 Step 2.

如此继续下去,即可得到一组线性无关的向量组 $\xi_1,\dots,\xi_m,\eta_1,\dots,\eta_m$ 构成了 V 的基底,这里 $\eta_i = \sigma(\xi_i)$. 此时s 在基底 $\eta_1,\dots,\eta_m,\xi_1,\dots,\xi_m$ 下的矩阵记为 J,即

$$J = \begin{bmatrix} 0 & E_m \\ -E_m & 0 \end{bmatrix}.$$

关于空间维数是偶数的简单证明: 设 $\alpha_1, \dots, \alpha_n$ 是线性空间 V 的一个基底, 线性变换 σ 在这个基底下的表示矩阵为 A, 则根据条件 $\sigma^2 = -\varepsilon$ 可知 $A^2 = -E$. 由此得 $|A|^2 = (-1)^n$. 由于 V 是实的线性空间, 故 n 必为偶数. 设 n = 2m. 证毕. \blacksquare