

Glucose Prediction from Laser Speckle Image Patterns

~ Sailee Prashant Allyadwar

1. Project Overview

Objective

Develop a machine learning model that predicts blood glucose levels (mg/dL) from images of biological samples (e.g., test strips, skin speckle patterns).

Approach

- Extract texture features (GLCM, LBP) from grayscale images.
- Train regression models (XGBoost, Random Forest, etc.) to predict glucose levels.
- Optimize hyperparameters for best performance.

Key Challenges

- Limited dataset size (~300 images).
- High prediction errors (MAE: 65-87 mg/dL).
- Weak correlation (R2: 0.14-0.49).

2. Dataset

Structure

text

- Classes: Glucose concentrations (e.g., 100, 150, 200 mg/dL).
- Images: Grayscale, resized to 256×256 px.

Preprocessing

- 1. Validation
 - o Check for corrupt/blank images.
 - Remove uniform-color images.
- 2. Normalization
 - o Resize to 256×256.
 - Contrast normalization (cv2.NORM_MINMAX).

3. Feature Extraction

Methods

Feature Type	Description	Parameters
GLCM	Gray-level co-occurrence matrix	Distances: [1, 3, 5], Angles: [0°, 45°, 90°, 135°]
LBP	Local Binary Patterns	Radius: [1, 3, 5], Points: 8×radius
Speckle Statistics	Mean, median, std, skewness, kurtosis	
Histogram	Intensity distribution (16 bins)	Range: [0, 256]

1. Gray-Level Co-Occurrence Matrix (GLCM) Features

GLCM analyzes texture by calculating how often pairs of pixel intensities occur in an image at a given distance and angle.

Key Parameters

- Distance (d): 1, 3, 5 pixels
 Defines how far apart pixel pairs should be.
- Angles (θ): 0°, 45°, 90°, 135°
 Directions in which pixel pairs are analyzed.
- Properties Calculated:
 - 1. Contrast: Measures local intensity variations.
 - High contrast = Sharp edges/textures.

$$\sum_{i} (i-j)^2 \cdot P(i,j)$$

- Formula: i,
- FOITIUIA.
- 2. Dissimilarity: Similar to contrast but linear (less sensitive to outliers).

$$\sum_{i,j} |i-j| \cdot P(i,j)$$

- Formula:
- 3. Homogeneity: Measures closeness of GLCM values to the diagonal.
 - High homogeneity = Smooth textures.

$$\sum_{i,j} \frac{P(i,j)}{1+|i-j|}$$

- Formula:
- 4. Energy (Angular Second Moment): Measures uniformity of pixel pairs.
 - High energy = Very similar pixels.

$$\sum_{i \in I} P(i,j)^2$$

- Formula:
- 5. Correlation: Measures linear dependency between pixels.

$$\sum_{i,j} \frac{(i-\mu_i)(j-\mu_j)P(i,j)}{\sigma_i \sigma_j}$$

■ Formula:

Why GLCM?

- Captures texture patterns (e.g., smooth vs. grainy regions).
- Effective for biological samples where glucose affects speckle patterns.

Original:

2. Local Binary Patterns (LBP)

LBP encodes local texture by comparing each pixel to its neighbors.

Key Parameters

- Radius (R): 1, 3, 5 pixels Defines neighborhood size.
- Points (P): 8 × radius Number of neighboring pixels to compare.
- Method: 'uniform' Reduces feature dimensions by grouping similar patterns.

How It Works

$$ext{LBP} = \sum_{p=0}^{P-1} s(g_p - g_c) \cdot 2^p$$

- 1. For each pixel, compare intensity with neighbors:
- 2. where s(x)=1 if $x\geq 0$, else 0.
- 3. Compute histogram of LBP codes (bins = 0 to P+2).
- 4. Normalize histogram to sum to 1.

Why LBP?

- Rotation-invariant (uniform patterns).
- Captures micro-textures (e.g., speckle noise).

Original:

3. Speckle Statistics

Measures intensity distribution properties.

Features Extracted

1. Speckle Contrast

$$\frac{\sigma}{\mu}$$
 (Standard deviation / Mean)

- High contrast = More noise (e.g., higher glucose variability).
- 2. Intensity Mean/Median
 - Average/median pixel value.
- 3. Standard Deviation
 - Measures intensity spread.

4. Skewness

- o Asymmetry of intensity distribution.
- Positive skew = More dark pixels.

5. Kurtosis

- o "Peakedness" of intensity distribution.
- High kurtosis = Sharp intensity peaks.

Why Speckle Stats?

Glucose changes may alter light scattering properties.

Original:

4. Models & Training

Algorithms Tested

Model	Tuning Method	Best MAE (mg/dL)	R ²
XGBoost	Random Search	65.88 (Train)	0.4896
Random Forest	Grid Search	38.67 mg/dL(Train) 87.96 mg/dL(Validation) 82.20 mg/dL(Testing)	0.8527(Testing) -0.0301(Validation) 0.2255(Testing)

Random Forest Output:

Sample Predictions:

Predicted: 183 mg/dL | Actual: 150 mg/dL Predicted: 237 mg/dL | Actual: 400 mg/dL Predicted: 187 mg/dL | Actual: 300 mg/dL Predicted: 283 mg/dL | Actual: 400 mg/dL Predicted: 170 mg/dL | Actual: 250 mg/dL

XGBoost Output:

Sample Predictions:

Predicted: 184 mg/dL | Actual: 300 mg/dL Predicted: 210 mg/dL | Actual: 250 mg/dL Predicted: 201 mg/dL | Actual: 250 mg/dL Predicted: 197 mg/dL | Actual: 200 mg/dL Predicted: 181 mg/dL | Actual: 250 mg/dL

Hyperparameter Tuning (XGBoost)

python Download

Best Parameters:

- learning_rate: 0.014

- max_depth: 3

n_estimators: 109subsample: 0.825colsample_bytree: 0.872

Evaluation Metrics

Split	MAE (mg/dL)	RMSE (mg/dL)	R ²
Training	65.88	79.32	0.4896
Validation	87.31	109.13	0.1388
Test	84.08	102.58	0.1725

5. Performance Analysis

Key Issues

- 1. High Error Rates
 - MAE > 65 mg/dL is clinically unacceptable (target: <15 mg/dL).
 - o Poor performance on extremes (e.g., predicted 275 vs. actual 100 mg/dL).
- 2. Low R²
 - Model explains <50% of variance.
- 3. Overfitting
 - Training MAE (65.88) << Validation MAE (87.31).

Sample Predictions

Actual (mg/dL)	Predicted (mg/dL)	Error (%)
150	193	+28.7%
100	275	+175%
250	182	-27.2%

6. Recommendations for Improvement

Data-Level

- 1. Increase Dataset Size
 - Collect 1,000+ images across glucose ranges.
- 2. Augmentation
 - $\circ\quad$ Rotate, flip, adjust contrast/blur to synthetically expand data.
- 3. Class Balancing
 - o Ensure equal samples per glucose level.

Model-Level

- 1. Try Simpler Models
 - o Linear Regression (baseline) or SVR with RBF kernel.
- 2. Adjust XGBoost
 - o Increase learning_rate (0.05-0.2).
 - Use early stopping.
- 3. Feature Engineering
 - \circ Add color features (if RGB images available).
 - o Experiment with CNN-based feature extraction.

Evaluation

- 1. Clinical Accuracy
 - $\circ~$ Report % predictions within ±15% of actual values.
- 2. Error Analysis
 - o Visualize residuals vs. glucose levels.

7. Code Structure

Key Files

File	Purpose
python6.py	Main training/prediction script
glucose_model.pkl	Saved XGBoost model
glucose_scaler.pkl	Feature scaler

Usage

bash

Сору

Download

Train model

python python6.py

Predict single image

python predict.py --image test_image.png

8. Future Work

- Integrate deep learning (CNNs).
- Deploy as a mobile/web app.
- Validate with clinical trials.