第一章

绪 论

主要内容

- 1.1 设置操作系统的目的
- 1.2 操作系统的形成和发展
- 1.3 现代操作系统的功能与特征
- 1.4 UNIX操作系统

操作系统的重要地位

- (1) 组织和管理系统中的软硬件资源;
- (3) 为用户提供易于理解和编程的接口

(2) 向应用程序提供高质量的服务;

主要内容

- 1.1 设置操作系统的目的
- 1.2 操作系统的形成和发展
- 1.3 现代操作系统的功能与特征
- 1.4 UNIX操作系统

无操作系统的计算机系统 (1945~50年代中期)

ENIAC计算机 (1946年,美国宾夕法尼亚大学)

运算速度: 1000次/每秒, 数万个真空管, 占地100平方米

人工操作方式

用户独占全机

CPU等待人工操作

人机矛盾

无操作系统的计算机系统 (1945~50年代中期)

1954年,美国贝尔实验室研制成功第一台使用晶体管线路的计算机,取名<u>"催迪克"</u> (<u>TRADIC</u> - Transistorized Airborne Digital Computer) ,装有800个晶体管。

程序和数据的输入和输出都是在外围机的控制下完成的,它们是在脱离主机的情况下进行的。

单道批处理系统 (50年代中期~60年代中期)

计算机性能提升,可靠性增强,开发出汇编语言、高级语言,出现系统程序。

北处理技术: 一批作业由输入机以脱机方式输入到磁 带,监控程序(可以看做操作系统的雏形)按顺序依次将作业调 入内存执行。

作业处理成批进行

内存中只驻留一道作业 ★

输出过程

单道批处理系统

输入过程

计算过程

封闭:程序执行时独占全机,结果不受外界

影响。

可再现: 只要执行时的环境和初始条件相同,

结果即相同。

多道批处理系统 (60年代中期)

IBM 360: 第一台小规模集成电路计算机

用户提交的作业形成后备队列,<u>作业调</u> <u>度程序</u>选择<u>若干</u>作业调入内存

多道批处理系统 (60年代中期)

输入过程

计算过程

IBM 360: 第一台小规模集成电路计算机

用户提交的作业形成后备队列,作业调 度程序选择若干作业调入内存

调度程序负责选择一个适于执行的作业, 完成CPU在作业之间的切换

多道批处理系统 (60年代中期)

采用多道批处 理技术后,作 业从进入到退 出系统大致经 历四个阶段:

多道批处理系统 (60年代中期)

采用多道批处 理技术后,作 业从进入到退 出系统大致经 历四个阶段:

多道性: 计算机内存中同时存在多个相互独立的程序;

宏观上并发执行:同时进入系统的几道程序都处于运行状态;

微观上串行执行: 各作业交替使用CPU。

是高CPU利用率

系统吞吐量大

平均周转时间长

无交互能力

自动性

并发性

多道性

单道批处理系统

VS.

多道批处理系统

输入过程

计算过程

输出过程

封闭:程序执行时独占全机,结果不受外界

影响。

可再现: 只要执行时的环境和初始条件相同,

结果即相同。

间断: 相互制约导致并发程序具有"执行—

暂停—执行"这种间断性的活动规律。

开放:多个程序共享系统中的资源。

不可再现: 结果与并发程序的执行速度有关。

分时操作系统

一台主机连接了若干个终端,每个终端有一个用户在使用。用户交互式地向系统提出命令请求,系统接受每个用户的命令,采用时间片轮转方式处理服务请求,并通过交互方式在终端上向用户显示结果。

- 人机交互 - 共享主机

作业直接进入内存

微机操作系统

单用户单任务: MS-DOS (8位、16位)

单用户多任务: Windows (32位)

多用户多任务: UNIX, LINUX

操作系统发展的主要推动力:

- 1. 不断提高计算机资源的利用率;
- 2. 方便用户
- 3. 器件的不断更新换代
- 4. 计算机体系结构的不断发展

主要内容

- 1.1 设置操作系统的目的
- 1.2 操作系统的形成和发展
- 1.3 现代操作系统的功能与特征
- 1.4 UNIX操作系统

现代操作系统的功能与特征

操作系统资源管理功能	处理机管理	处理机调度	处理机共享		虚拟处理机
	存储器管理	缺页中断	存储器共享	存储缓冲	虚拟存储器
	设备管理	设备控制	设备共享	设备缓冲	虚拟设备
	文件管理	文件操作	文件共享		
	用户接口	系统调用			
		中断	共享	缓冲	虚拟

功能实现的具体技术方法

ngji Fang Yu

现代操作系统的功能与特征

Agji Fang Yu

功能实现的具体技术方法

主要内容

- 1.1 设置操作系统的目的
- 1.2 操作系统的形成和发展
- 1.3 现代操作系统的功能与特征
- 1.4 UNIX操作系统

1902 M

- 1 1965年,Thompson在Bell实验室参与开发一个称为Multics的新操作系统。 Ken写了一个"star travel"游戏可执行于Multics之上。
- 2 Bell实验室退出Multics 项目后,26岁的Thompson无事可做且玩游戏心切, 决定自己开发一个操作系统。在一台废弃的PDP-7机器上,利用汇编语言, 汤普生只用一个月就编写完毕操作系统的内核。
- 3 1970年,两人合作将UNIX移植到PDP-11上,完成UNIX的第一个版本。

- 4 1973年,为了程序移植的方便, Ritchie 开发出C语言。
- 5 1973年,两人合作用C语言重写了UNIX。至此,开启了UNIX和C的辉煌。
- 6 1983年,两人被授予图灵奖。
- 7 2000年12月时, Thompson退休,离开贝尔实验室,成为了一名飞行员。

Ken Thompson

Dennis M. Ritchie

UNIX系统的特点

精巧的核心与丰富的实用层

<u>内核</u>: 进程管理、存储管理、设备管理、文件管理等。内核设计精干简洁。只占用很小的内存并常驻内存。

核外程序:语言处理程序、编辑程序、调试程序、系统状态监控和文件管理程序、命令解释程序shell。

使用灵活的用户界面

命令程序设计语言Shell:是一种命令语言,也是一种程序设计语言。

程序接口: 即: 系统调用, 包括汇编语言和C语言的。

树形结构的文件系统

文件和设备统一看待

良好的移植性

Operating System UNIX系统的结构 用户程序 库函数 系统调用接口 与进程控制子系统交互fork, exec, exit, wait, 与文件子系统交互open, close, read, write,...... 进程控制子系统 文件子系统 管理文件存储空间、文件检索、控制文件操作 进程同步、进程通讯、进程调度 执行可执行文件之 前,需读入内存 存储管理 高速缓存 字符设备 块设备 设备驱动程序 硬件控制 硬 件

Operating System UNIX系统的结构 用户程序 库函数 系统调用接口 与进程控制子系统交互fork, exec, exit, wait, 与文件子系统交互open, close, read, write,...... 进程控制子系统 文件子系统 管理文件存储空间、文件检索、控制文件操作 进程同步、进程通讯、进程调度 执行可执行文件之 前,需读入内存 存储管理 高速缓存 字符设备 块设备 负责处理中断 设备驱动程序 及与机器通讯 硬件控制 硬 件

关于UNIX V6++

本节小结:

- 1 操作系统的主要功能和特征
- 2 UNIX的基本特征

请阅读讲义: 1~18页 (1.1节~1.3节), 23~28页 (1.5节)