

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2024

CLASA a VII-a – soluții și bareme

Problema 1. Fie ABCD un pătrat, M mijlocul laturii AD, T intersecția dreptelor BM și CD, iar $CP \perp BM$, $P \in MB$. Perpendiculara dusă prin punctul A pe dreapta AP intersectează dreapta BM în punctul Q. Arătați că:

- a) $\angle APQ = \angle PCQ = 45^{\circ}$.
- b) PQ = QT = PC.

Gazeta Matematică

Soluție. a) Notăm intersecția dreptelor CP și AB cu F și piciorul perpendicularei din A pe BM cu E.

Problema 2. Se consideră două mulțimi A și B de numere reale care au proprietățile: (a) $0 \in A$; (b) Dacă $1 + x \in A$, atunci $\sqrt{1 + x + x^2} \in B$; (c) Dacă $\sqrt{x^2 - x + 1} \in B$, atunci $2 + x \in A$. Arătati că $\sqrt{3}$, $\sqrt{13}$, $\sqrt{31}$ sunt elemente ale multimii B si $2024 \in A$. Soluție. Deoarece $1+(-1)=0\in A$, conform (b) obținem $1\in B$ și cum $1=\sqrt{0^2-0+1}\in B$, Cum $\sqrt{2^2-2+1}=\sqrt{3}\in B$, rezultă din (c) $2+2=4\in A$ și, din (b), deducem $\sqrt{13}\in B$ **1p** Deoarece $\sqrt{4^2-4+1}=\sqrt{13}\in B$, deducem în continuare că $2+4=6\in A$ și astfel Folosind egalitatea $1 + x + x^2 = (x+1)^2 - (x+1) + 1$, avem că, dacă $(1+x) \in A$, atunci $3+x\in A$. Deoarece $0\in A, 2\in A$ deducem astfel că mulțimea A conține toate numerele pare, **Problema 3.** Un număr natural $n \ge 2$ se numește special dacă există n numere naturale impare a căror sumă este egală cu produsul lor. a) Arătați că 5 este un număr special. b) Determinați câte numere speciale conține mulțimea $\{2, 3, \dots, 2024\}$. Solutie. a) Deoarece $1+1+1+3+3=1\cdot 1\cdot 1\cdot 3\cdot 3$, există 5 numere impare a căror sumă b) Dacă n este un număr special, atunci există numerele impare a_1, a_2, \ldots, a_n astfel încât $a_1 + a_2 + \ldots + a_n = a_1 a_2 \ldots a_n$. Presupunem că, dintre acestea, k sunt de forma $M_4 + 3$ și restul, n-k, sunt de forma M_4+1 . Atunci $a_1 + a_2 + \ldots + a_n = M_4 + 3 \cdot k + 1 \cdot (n - k) = M_4 + 2k + n$, (1) 1p Deoarece produsul a două numere impare are forma M_4+1 dacă numerele dau același rest la împărțirea cu 4 și forma M_4+3 în caz contrar, deducem că produsul $a_1a_2\dots a_n$ are forma $M_4 + 1$ atunci când k este par, respectiv forma $M_4 + 3$ atunci când k este impar, (2) 1p Cum $a_1 + a_2 + ... + a_n = a_1 a_2 ... a_n$, din (1) și (2) deducem că $n = M_4 + 1$ 1p Dacă $n = 4t + 1, t \in \mathbb{N}^*$, pentru $a_1 = a_2 = \ldots = a_{n-2} = 1, a_{n-1} = 3$ și $a_n = 2t + 1$ avem $a_1 + a_2 + \ldots + a_n = a_1 a_2 \ldots a_n = 6t + 3$, deci orice număr de forma $M_4 + 1$ este special. Mulțimea

 $\{2,3,\ldots,2024\}$ conține 505 numere de forma M_4+1 , deci conține 505 numere speciale \ldots **2p**

Problema 4. Se consideră un paralelogram ABCD și punctele M pe latura DC, E și N pe diagonala AC, astfel încât $BE \perp AC$ și $\frac{CM}{CD} = \frac{EN}{EA}$.

Arătați că, dacă MN și NB sunt perpendiculare, atunci ABCD este dreptunghi.

 $\mathit{Soluție}.$ Construim paralela prin Nla dreapta AB și notăm cu P intersecția acesteia cu dreapta BE.

Aplicând teorema fundamentală a asemănării în triunghiul EAB obținem	$\frac{NP}{AB} =$	$\frac{EN}{FA} =$
CM		
$\frac{CM}{CD}$		
Obținem, de aici, că $NP = CM$ și cum $NP \parallel MC$, rezultă că $MNPC$ este	-	
$\det MN \parallel CP \qquad \qquad MN + NP \qquad 1 - CP + NP$		_
Din ipoteză avem $MN \perp NB$, așadar $CP \perp NB$		_
În triunghiul BNC , BE și CP sunt drepte suport pentru înălțimi, deci pentru santur		_
ortocentru		
The zure a $NT \perp DC$ stream $NT \parallel CD$ regular $DC \perp CD$, deci $ADCD$ drep	otungn.	1 1 P