On the Role of Style in Parsing Speech with Neural Models

Trang Tran, Mari Ostendorf – University of Washington Jiahong Yuan, Yang Liu – LAIX Inc.

GT-SW read version of SWBD (RC) audio, (gold) parses

Results

ELECTRICAL & COMPUTER ENGINEERING

31 (13 unique)

Used in

Q1

Q1, Q2, Q3

Q2, Q3

Q3

Q3

<u>Data</u>

Overview	Questions	Data	Style	Available Material	Split	# Sentences	
<u> </u>	<u> </u>	WSJ	news text	(gold) parses	train, dev	40k	
Parsing: core technology for intermediate	1. Do contextualized word representations learned	SWBD	conversational speech (C)	audio, (gold) parses	train, dev, test	96k	C
language understanding	for written text also benefit spontaneous speech	CSR	read news (R)	audio, (silver) parses	train (tune), dev	8k	
Focus of parsing research & resources: written text	parsers? [Yes!] 2 Does prosody improve further on top of the rich	GT-N	read news/article (R)	audio, (gold) parses	test	6k (3k unique)	
					1	1	$\overline{}$

2. Does prosody improve further on top of the rich text information in neural parsers for spontaneous speech? [Yes!]

3. How is the use of prosody affected by mismatch between read and spontaneous speech styles? [Read on...]

written text Problem: many applications (dialog systems,

- Problem: many applications (dialog systems assistive devices, translation, ...) involve spoken language
- This work studies impact of style difference
 - Written text ≠ spontaneous speech (wording)
 - Spontaneous speech ≠ Read speech (prosody)

Background

- Parsing: identify syntactic structure
- Speech vs. text:
- lacks conventional written cues (case, punctuations); has disfluent components
- has <u>prosody</u>: characteristics beyond words; acoustic correlates (intonation, energy, timing) signal structure

- Recent advances:
 - 2018: prosody benefits neural parsing on spontaneous speech
 - 2018, 2019: contextual embeddings give significant benefit in neural text parsers (SOTA on WSJ Treebank)

Approach

- Input representation
- word-level features $[x_1, x_2, ...]$
- $\boldsymbol{x}_i = [\boldsymbol{e}_i, \boldsymbol{s}_i, \boldsymbol{\phi}_i]$
- e_i : word embeddings
- s_i : acoustic feature embeddings
- ϕ_i : pause, duration features
- Output:
- Set of labeled spans $[(a_i, b_i, l_i), ...]$
- $(a_i, b_i, l_i) = (\text{start_idx}, \text{end_idx}, \text{label})$
- Self-attentive encoder + chart decoder (self-attn)
 (Kitaev & Klein, 2018)
- Integrate prosody into via a convolutional neural network (CNN) (Tran et al., 2018)
- Metric: Parseval F1 (label and span)

At	Span-based Chart Decoder Span-based Chart Decoder Span-based Chart Dec
	(S (NP (NNP i) (VP (VBD think)
	S_1 S_2 S_{T_s}

Embedding	F1
BERT	77.5
Learned	91.0
GloVe (Fisher)	91.0
GloVe (Gword)	91.2
ELMo	92.7
BERT	93.2
BERT	93.4
	BERT Learned GloVe (Fisher) GloVe (Gword) ELMo BERT

- Training with text alone doesn't work, even with BERT embeddings
- Pretraining on large written text benefits parsing speech
- Training on both (SWBD+WSJ) gives marginal gain

Model		all	disfluent	fluent	
text	ELMo	92.5	91.5	94.6	
	BERT	92.9	91.9	94.9	
+prosody	ELMo	92.7*	91.7*	94.9*	
	BERT	93.0*	92.1	95.2*	

test, analysis

- SWBD test sentences: 3823 disfluent (with EDITED, INTJ), 2078 fluent
- (*): statistically significant at p<0.05
- Using prosody:
 - helps in disfluent and long sentences
 - further improves performance over strong text-only parsers: current best SWBD parsing result
 - reduces edit errors, 19% fewer VP attachment errors

<u>Q3</u>

Train/Tune	Model	SWBD (C)	GT-N (R)	GT-SW (RC)	
SWBD (C)	text	92.9 —	→ 92.4	98.0	1
CSR (R)	text	80.6 ←	93.9	91.4	
SWBD (C)	+prosody	93.0*—	→ 92.6*	98.0	
CSR (R)	+prosody	80.4 ←	- 94.2*	90.3	

- Training on conversational (C) speech: minimal degradation on read (R) speech
- Training on (R): significant degradation on (C) →
 (C) more useful for general training
- Use of prosody differs in (R) vs. (C): style mismatch is both in terms of words and acoustic cues

Conclusion

- Pretrained contextualized word embeddings on text helps constituency parsing of speech
- Using prosody gives further gains, especially in long and disfluent sentences; reducing attachment errors
- Conversational prosody ≠ read prosody
 Conversational prosody is more general,
 better for training
- Acknowledgements: NSF Grant IIS-1617176; opinions our own
 Code: github.com/trangham283/prosody_nlp/ tree/master/code/self_attn_speech_parser