Geir Evensen

Data Assimilation

Geir Evensen

Data Assimilation

The Ensemble Kalman Filter

With 63 Figures

PROF GEIR EVENSEN

Hydro Research Centre, Bergen PO Box 7190 N 5020 Bergen Norway

and

Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography at Nansen Environmental and Remote Sensing Center Thormølensat 47 N 5600 Bergen Norway

e-mail:

Geir.Evensen@hydro.com

Library of Congress Control Number: 2006932964

ISBN-10 3-540-38300-0-X Springer Berlin Heidelberg New York ISBN-13 978-3-540-38300-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner

Typesetting: camera-ready by the author Production: Christine Adolph Printing: Krips bv, Meppel Binding: Stürtz AG, Würzburg

Printed on acid-free paper 30/2133/ca 5 4 3 2 1 0

Preface

The aim of this book is to introduce the formulation and solution of the data assimilation problem. The focus is mainly on methods where the model is allowed to contain errors and where the error statistics evolve through time. So-called strong constraint methods and simple methods where the error statistics are constant in time are only briefly explained, and then as special cases of more general weak constraint formulations.

There is a special focus on the Ensemble Kalman Filter and similar methods. These are methods which have become very popular, both due to their simple implementation and interpretation and their properties with nonlinear models.

The book has been written during several years of work on the development of data assimilation methods and the teaching of data assimilation methods to graduate students. It would not have been completed without the continuous interaction with students and colleagues, and I particularly want to acknowledge the support from Laurent Bertino, Kari Brusdal, François Counillon, Mette Eknes, Vibeke Haugen, Knut Arild Lisæter, Lars Jørgen Natvik, and Jan Arild Skjervheim, with whom I have worked closely for several years. Laurent Bertino and François Counillon also provided much of the material for the chapter on the TOPAZ ocean data assimilation system. Contributions from Laurent Bertino, Theresa Lloyd, Gordon Wilmot, Martin Miles, Jennifer Trittschuh-Vallès, Brice Vallès and Hans Wackernagel, on proof-reading parts of the final version of the book are also much appreciated.

It is hoped that the book will provide a comprehensive presentation of the data assimilation problem and that it will serve as a reference and textbook for students and researchers working with development and application of data assimilation methods.

Contents

Lis	List of symbols xv			
1	Inti	roduct	ion	1
2	Sta	tistical	definitions	5
	2.1	Proba	bility density function	5
	2.2		tical moments	8
		2.2.1	Expected value	8
		2.2.2	Variance	8
		2.2.3	Covariance	9
	2.3	Worki	ng with samples from a distribution	9
		2.3.1	Sample mean	9
		2.3.2	Sample variance	10
		2.3.3	Sample covariance	10
	2.4	Statist	tics of random fields	10
		2.4.1	Sample mean	10
		2.4.2	Sample variance	10
		2.4.3	Sample covariance	11
		2.4.4	Correlation	11
	2.5	Bias .		11
	2.6	Centra	al limit theorem	12
3	Ana	alysis s	scheme	13
	3.1	Scalar	case	13
		3.1.1	State-space formulation	13
		3.1.2	Bayesian formulation	15
	3.2	Exten	sion to spatial dimensions	16
		3.2.1	Basic formulation	16
		3.2.2	Euler-Lagrange equation	17
		3.2.3	Representer solution	19
		3.2.4	Representer matrix	20

X	Contents
Λ	COHICHES

3.2.6 Uniqueness of the solution 22 3.2.7 Minimization of the penalty function 23 3.2.8 Prior and posterior value of the penalty function 24 3.3 Discrete form 24 4 Sequential data assimilation 27 4.1 Linear Dynamics 27 4.1.1 Kalman filter for a scalar case 28 4.1.2 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 38 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 <t< th=""><th></th><th></th><th>3.2.5</th><th>Error estimate</th><th>20</th></t<>			3.2.5	Error estimate	20
3.2.7 Minimization of the penalty function 23 3.2.8 Prior and posterior value of the penalty function 24 3.3 Discrete form 24 4 Sequential data assimilation 27 4.1 Linear Dynamics 27 4.1.1 Kalman filter for a scalar case 28 4.1.2 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.1 Extended Kalman filter in matrix form 33 4.2.2 Extended Kalman filter for the mean 36 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Representation of error statistics 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 47 5.1 Simple illustration 50			3.2.6	Uniqueness of the solution	22
3.2.8 Prior and posterior value of the penalty function 24 3.3 Discrete form 24 4 Sequential data assimilation 27 4.1 Linear Dynamics 27 4.1.1 Kalman filter for a scalar case 28 4.1.2 Kalman filter with a linear advection equation 29 4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.1 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 38 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problem 50			3.2.7		
4 Sequential data assimilation 27 4.1 Linear Dynamics 27 4.1.1 Kalman filter for a scalar case 28 4.1.2 Kalman filter for a vector state 29 4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 <th></th> <th></th> <th>3.2.8</th> <th>Prior and posterior value of the penalty function</th> <th>24</th>			3.2.8	Prior and posterior value of the penalty function	24
4.1 Linear Dynamics 27 4.1.1 Kalman filter for a scalar case 28 4.1.2 Kalman filter for a vector state 29 4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 38 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 5		3.3	Discre	te form	24
4.1 Linear Dynamics 27 4.1.1 Kalman filter for a scalar case 28 4.1.2 Kalman filter for a vector state 29 4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 38 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 5	4	C		1 1-4::1-4:	07
4.1.1 Kalman filter for a scalar case. 28 4.1.2 Kalman filter for a vector state. 29 4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.8 Strong constraint approximat	4				
4.1.2 Kalman filter for a vector state. 29 4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.1 Extended Kalman filter in matrix form 33 4.2.2 Extended Kalman filter 35 4.2.3 Example using the extended Kalman filter 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.5		4.1		*	
4.1.3 Kalman filter with a linear advection equation 29 4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5				Transfer inter for a peared edge	
4.2 Nonlinear dynamics 32 4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56					
4.2.1 Extended Kalman filter for the scalar case 32 4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.9<		4.0			
4.2.2 Extended Kalman filter in matrix form 33 4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.9 Solution by representer expansions 56 5.3		4.2		·	
4.2.3 Example using the extended Kalman filter 35 4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1					
4.2.4 Extended Kalman filter for the mean 36 4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formula					
4.2.5 Discussion 37 4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59					
4.3 Ensemble Kalman filter 38 4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagr					
4.3.1 Representation of error statistics 38 4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59		4.0			
4.3.2 Prediction of error statistics 39 4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59		4.3			
4.3.3 Analysis scheme 41 4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59					
4.3.4 Discussion 43 4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler—Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler—Lagrange equations 59					
4.3.5 Example with a QG model 44 5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59				v	
5 Variational inverse problems 47 5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			-		
5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			4.3.5	Example with a QG model	44
5.1 Simple illustration 47 5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59	5	Var	iationa	al inverse problems	47
5.2 Linear inverse problem 50 5.2.1 Model and observations 51 5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59					47
5.2.2 Measurement functional 51 5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59		5.2			50
5.2.3 Comment on the measurement equation 51 5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.1	Model and observations	51
5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.2	Measurement functional	51
5.2.4 Statistical hypothesis 52 5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.3	Comment on the measurement equation	51
5.2.5 Weak constraint variational formulation 52 5.2.6 Extremum of the penalty function 53 5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.4		52
5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.5	* -	52
5.2.7 Euler-Lagrange equations 54 5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.6	Extremum of the penalty function	53
5.2.8 Strong constraint approximation 55 5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.7	- *	
5.2.9 Solution by representer expansions 56 5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.8		
5.3 Representer method with an Ekman model 57 5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			5.2.9	Ü	
5.3.1 Inverse problem 58 5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59		5.3	Repres	·	
5.3.2 Variational formulation 58 5.3.3 Euler-Lagrange equations 59			-		
5.3.3 Euler-Lagrange equations				•	
~ ~ ~ ·					59
5.3.4 Representer solution			5.3.4	Representer solution	60
5.3.5 Example experiment					
5.3.6 Assimilation of real measurements					-
5.4 Comments on the representer method		5.4	0.0.0		-

	Contents	Х				
Noı	alinear variational inverse problems	71				
6.1	Extension to nonlinear dynamics	7				
	6.1.1 Generalized inverse for the Lorenz equations	72				
	6.1.2 Strong constraint assumption	73				
	6.1.3 Solution of the weak constraint problem	76				
	6.1.4 Minimization by the gradient descent method	7				
	6.1.5 Minimization by genetic algorithms	78				
6.2	Example with the Lorenz equations	8				
	6.2.1 Estimating the model error covariance	82				
	6.2.2 Time correlation of the model error covariance	8				
	6.2.3 Inversion experiments	84				
	6.2.4 Discussion	9:				
	0.2.1 Discussion	0.				
Pro	babilistic formulation	9				
7.1	Joint parameter and state estimation	95				
7.2	Model equations and measurements	96				
7.3	Bayesian formulation	9				
	7.3.1 Discrete formulation	98				
	7.3.2 Sequential processing of measurements	99				
7.4	Summary1	0				
Car	Generalized Inverse					
8.1	Generalized inverse formulation					
0.1	8.1.1 Prior density for the poorly known parameters					
	8.1.2 Prior density for the initial conditions					
	8.1.3 Prior density for the boundary conditions					
	8.1.4 Prior density for the measurements					
	8.1.5 Prior density for the model errors					
	8.1.6 Conditional joint density					
8.2	Solution methods for the generalized inverse problem					
0.2	8.2.1 Generalized inverse for a scalar model					
	8.2.2 Euler–Lagrange equations					
	8.2.3 Iteration in α					
0.9	8.2.4 Strong constraint problem					
8.3						
8.4	Summary1	L				
Ens	emble methods1					
9.1	Introductory remarks	11				
9.2	Linear ensemble analysis update	2				
9.3	Ensemble representation of error statistics	2				
9.4	Ensemble representation for measurements					
9.5	Ensemble Smoother (ES)					
9.6	Ensemble Kalman Smoother (EnKS)					
9.7	Ensemble Kalman Filter (EnKF)					

		9.7.1	EnKF with linear noise free model	129
		9.7.2	EnKS using EnKF as a prior	130
	9.8	Exam	ple with the Lorenz equations	131
		9.8.1	Description of experiments	131
		9.8.2	Assimilation Experiment	132
	9.9	Discus	ssion	137
10	Stat	tistical	optimization	139
			tion of the minimization problem	
			Parameters	
			Model	
			Measurements	
			Cost function	
	10.2		ian formalism	
	10.3	Solutio	on by ensemble methods	142
			Variance minimizing solution	
		10.3.2	EnKS solution	144
	10.4	Exam	ples	145
	10.5	Discus	ssion	154
11	San	pling	strategies for the EnKF	157
			uction	
	11.2	Simula	ation of realizations	158
		11.2.1	Inverse Fourier transform	159
		11.2.2	Definition of Fourier spectrum	159
			Specification of covariance and variance	
	11.3	Simula	ating correlated fields	162
	11.4	Impro	ved sampling scheme	163
	11.5	Exper	iments	167
		11.5.1	Overview of experiments	167
		11.5.2	Impact from ensemble size	170
		11.5.3	Impact of improved sampling for the initial ensemble	171
		11.5.4	Improved sampling of measurement perturbations	171
			Evolution of ensemble singular spectra	
		11.5.6	Summary	174
12	Mod	del err	ors	175
	12.1		ation of model errors	
			Determination of ρ	
			Physical model	
			Variance growth due to the stochastic forcing	
			Updating model noise using measurements	
			model	
	12.3		ional inverse problem	
		12.3.1	Prior statistics	181

		Content	ts	xiii
		12.3.2 Penalty function		182
		12.3.3 Euler–Lagrange equations		182
		12.3.4 Iteration of parameter		182
		12.3.5 Solution by representer expansions		183
		12.3.6 Variance growth due to model errors		184
	12.4	Formulation as a stochastic model		185
	12.5	Examples		185
		12.5.1 Case A0		186
		12.5.2 Case A1		186
		12.5.3 Case B		189
		12.5.4 Case C		192
		12.5.5 Discussion		193
13	Squ	are Root Analysis schemes		195
		Square root algorithm for the EnKF analysis		
		13.1.1 Updating the ensemble mean		
		13.1.2 Updating the ensemble perturbations		
		13.1.3 Randomization of the analysis update		
		13.1.4 Final update equation in the square root algorithm		
	13.2	Experiments		201
		13.2.1 Overview of experiments		201
		13.2.2 Impact of the square root analysis algorithm		203
14	Ran	ık issues		207
	14.1	Pseudo inverse of C		207
		14.1.1 Pseudo inverse		208
		14.1.2 Interpretation		209
		14.1.3 Analysis schemes using the pseudo inverse of C		209
		14.1.4 Example		209
	14.2	Efficient subspace pseudo inversion		
		14.2.1 Derivation of the subspace pseudo inverse		212
		14.2.2 Analysis schemes based on the subspace pseudo inv		
		14.2.3 An interpretation of the subspace pseudo inversion		
	14.3	Subspace inversion using a low-rank $C_{\epsilon\epsilon}$		
		14.3.1 Derivation of the pseudo inverse		
		14.3.2 Analysis schemes using a low-rank $C_{\epsilon\epsilon}$		
		Implementation of the analysis schemes		
		Rank issues related to the use of a low-rank $C_{\epsilon\epsilon}$		
		Experiments with $m \gg N$		
	14.7	Summary		229

xiv	Contents

15	$\mathbf{A}\mathbf{n}$	ocean prediction system	231
	15.1	Introduction	231
	15.2	System configuration and EnKF implementation	232
		Nested regional models	
	15.4	Summary	236
16	Esti	mation in an oil reservoir simulator	239
	16.1	Introduction	239
	16.2	Experiment	241
		16.2.1 Parameterization	242
		16.2.2 State vector	243
	16.3	Results	245
	16.4	Summary	248
\mathbf{A}	Oth	er EnKF issues	249
	A.1	Local analysis	249
	A.2	Nonlinear measurements in the EnKF	$\dots 251$
	A.3	Assimilation of non-synoptic measurements	253
	A.4	Time difference data	
	A.5	Ensemble Optimal Interpolation (EnOI)	255
	A.6	Chronology of ensemble assimilation developments	255
		A.6.1 Applications of the EnKF	
		A.6.2 Other ensemble based filters	264
		A.6.3 Ensemble smoothers	264
		A.6.4 Ensemble methods for parameter estimation	264
		A.6.5 Nonlinear filters and smoothers	265
Rei	feren	ces	267
Ind	lex		277

List of symbols

a	De-correlation lengths in variogram models (11.2–11.4); Error in initial condition for scalar models (5.5), (5.22), (8.22) and (12.22)
A(z)	Vertical diffusion coefficient in Ekman model, Sect. 5.3
$A_0(z)$	First guess of vertical diffusion coefficient in Ekman model, Sect. 5.3
a	Error in initial condition for vector models (5.70), (6.8–6.10), (7.2)
$oldsymbol{A}_i$	Ensemble matrix at time t_i , Chap. 9
\boldsymbol{A}	Ensemble matrix, Chap. 9
\boldsymbol{b}	Vector of coefficients solved for in the analysis scheme (3.38)
$oldsymbol{b}(oldsymbol{x},t)$	Error in boundary condition, Chap. 7
$oldsymbol{b}_0$	Stochastic error in upper condition of Ekman model, Sect. 5.3
$oldsymbol{b}_H$	Stochastic error in lower condition of Ekman model, Sect. 5.3
c	Constant in Fourier spectrum (11.10) and (11.14) ; constant multiplier used when simulating model errors (12.20)
c_i	Multiplier used when simulating model errors (12.54)
c_d	Wind-drag coefficient in Ekman model, Sect. 5.3
c_{d_0}	First guess value of wind-drag coefficient in Ekman model, Sect. 5.3
c_{rep}	Constant multiplier used when modelling model errors in representer method, Chap. 12
$C_{\psi\psi}$	Covariance of a scalar state variable ψ
$C_{c_d c_d}$	Covariance of error in wind-drag c_{d_0}
$C_{AA}(z_1,z_2)$	Covariance of error in vertical diffusion $A_0(z)$
$C_{\psi\psi}(\boldsymbol{x}_1,\boldsymbol{x}_2)$	Covariance of scalar field $\psi(\boldsymbol{x})$ (2.25)

xvi List of	f symbols
$oldsymbol{C}_{\psi\psi}$	Covariance of a discrete $oldsymbol{\psi}$ (sometimes short for $oldsymbol{C}_{\psi\psi}(oldsymbol{x}_1,oldsymbol{x}_2))$
$oldsymbol{C}_{\psi\psi}(oldsymbol{x}_1,oldsymbol{x}_2)$	Covariance of a vector of scalar state variables $oldsymbol{\psi}(oldsymbol{x})$
$C_{\epsilon\epsilon}$	Used for variance of ϵ in Chap. 3
C_{aa}	Scalar initial error covariance
C_{qq}	Model error covariance
$oldsymbol{C}$	Matrix to be inverted in the ensemble analysis schemes, Chap. 9
$oldsymbol{C}_{\epsilon\epsilon}$	Covariance of measurement errors ϵ
$oldsymbol{C}_{\epsilon\epsilon}^{ m e}$	Low-rank representation of measurement error covariance
$oldsymbol{C}_{aa}$	Initial error covariance
$oldsymbol{C}_{qq}$	Model error covariance
d	Measurement
d	Vector of measurements
D	Perturbed measurements, Chap. 9
$oldsymbol{D}_j$	Perturbed measurements at data time j , Chap. 9
$oldsymbol{E}$	Measurement perturbations, Chap. 9
$f(oldsymbol{x})$	Arbitrary function, e.g. in (3.55)
$f(\psi)$	Probability density, e.g. $f(\psi)$ or $f(\psi)$ where ψ is a vector or a vector of fields
F	Distribution function (2.1)
$g(m{x})$	Arbitrary function, e.g. in (3.55) and (3.59)
G	Model operator for a scalar state; linear (4.1) or nonlinear (4.14)
G	Model operator for a vector state; linear (4.11) or nonlinear (4.21), (9.1) and (7.1)
h()	Arbitrary function used at different occasions
H	Depth of bottom boundary in Ekman model, Sect. 5.3
h	Innovation vector (3.51); spatial distance vector (11.1)
i(j)	Time index corresponding to measurement j , Fig. 7.1
I	Identity matrix

JNumber of measurement times, Fig. 7.1

Vertical unit vector (0,0,1) in Ekman model Sect. 5.3; wave \boldsymbol{k}

number $\mathbf{k} = (\kappa, \lambda)$, Chap. 11

Permeability, Chap. 16 $oldsymbol{k}_{
m h}$ \boldsymbol{K} Kalman gain matrix (3.85)

 m_j Total number of measurements at measurement time j , Fig. 7.1

Sometimes used as abbreviation for m_j m

 $m(\psi)$ Nonlinear measurement functional in the Appendix

M	Total number of measurements over the assimilation interval
M	Measurement matrix for a discrete state vector (3.76) ; measurement matrix operator (10.20)
n	Dimension of state vector $n = n_{\psi} + n_{\alpha}$, Chap. 9 and 10
n_{α}	Number of parameters, Chaps. 9 and 10
n_{ψ}	Dimension of model state, Chaps. 7–10
n_x	Gridsize in x -direction, Chap. 11
n_y	Gridsize in y -direction, Chap. 11
N	Sample or ensemble size
p	Error of first guess of a scalar or scalar field, Chap. 3; matrix rank, Chap. 14; probability (6.24)
p_A	Error of first guess vertical diffusion coefficient in Ekman model, Sect. 5.3
p_{c_d}	Error of first guess wind drag coefficient in Ekman model, Sect. 5.3
P	Reservoir pressure, Chap. 16
q	Stochastic error of scalar model used in Kalman filter formulations
$oldsymbol{q}(i)$	Discrete model error at time t_i , (6.16)
q	Stochastic error of vector model used in Kalman filter formulations
q Q	
	formulations
Q	formulations Ensemble of model noise, Sect. 11.4
$oldsymbol{Q}{r}$	formulations Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space
$egin{array}{c} oldsymbol{Q} & & & & & & & & & & & & & & & & & & &$	formulations Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in
$egin{array}{c} oldsymbol{Q} & & & & & & & & & & & & & & & & & & &$	formulations Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space
$egin{array}{c} oldsymbol{Q} & & & & & & & & & & & & & & & & & & &$	formulations Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space (11.23) De-correlation length orthogonal to principal direction in phys-
$egin{array}{c} oldsymbol{Q} & & & & & & & & & & & & & & & & & & &$	formulations Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space (11.23) De-correlation length orthogonal to principal direction in physical space (11.23)
$egin{aligned} oldsymbol{Q} & r & & & & & & & & & & & & & & & & & $	Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space (11.23) De-correlation length orthogonal to principal direction in physical space (11.23) Vector of representer functions (3.39) and (5.48)
$egin{array}{c} oldsymbol{Q} & r & & & & & & & & & & & & & & & & & $	Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space (11.23) De-correlation length orthogonal to principal direction in physical space (11.23) Vector of representer functions (3.39) and (5.48) Matrix of representers (3.80)
$egin{array}{c} oldsymbol{Q} & & & & & & & & & & & & & & & & & & &$	Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space (11.23) De-correlation length orthogonal to principal direction in physical space (11.23) Vector of representer functions (3.39) and (5.48) Matrix of representers (3.80) Representer matrix (3.63)
$egin{array}{c} oldsymbol{Q} & r & & & & & & & & & & & & & & & & & $	Ensemble of model noise, Sect. 11.4 De-correlation length in Fourier space (11.10) De-correlation length in principal direction in Fourier space (11.11) De-correlation length orthogonal to principal direction in Fourier space (11.11) De-correlation length in principal direction in physical space (11.23) De-correlation length orthogonal to principal direction in physical space (11.23) Vector of representer functions (3.39) and (5.48) Matrix of representers (3.80) Representer matrix (3.63) Gas in a fluid state at reservoir conditions, Chap. 16

$S_{ m o}$	Oil saturation, Chap. 16
$oldsymbol{s}(oldsymbol{x},t)$	Vector of adjoints of representer functions (5.49)
$oldsymbol{S}_j$	Measurement of ensemble perturbations at data time $j,$ Chap. 9
$oldsymbol{S}$	Measurement of ensemble perturbations, Chap. 9
t	Time variable
T	Final time of assimilation period for some examples
u	Dependent variable (5.99)
$oldsymbol{u}(z)$	Horizontal velocity vector in Ekman model, Sect. 5.3
$oldsymbol{u}_0(z)$	Initial condition for velocity vector in Ekman model, Sect. 5.3
$oldsymbol{U}$	Left singular vectors from the singular value decomposition, Sect. 11.4 and (14.68)
$oldsymbol{U}_0$	Left singular vectors from the singular value decomposition (14.19)
$oldsymbol{U}_1$	Left singular vectors from the singular value decomposition (14.52)
$oldsymbol{v}$	Dummy vector (5.101)
$oldsymbol{V}$	Right singular vectors from the singular value decomposition, Sect. 11.4 and (14.68)
$oldsymbol{V}_0$	Right singular vectors from the singular value decomposition (14.19)
$oldsymbol{V}_1$	Right singular vectors from the singular value decomposition (14.52)
w_k	Random realization with mean equal to zero and variance equal to one (11.33)
W_{aa}	Inverse of scalar initial error covariance
W	Matrix (14.63) and (14.64)
$oldsymbol{W}_{\psi\psi}(oldsymbol{x}_1,oldsymbol{x}_2)$	Functional inverse of $C_{\psi\psi}(\boldsymbol{x}_1,\boldsymbol{x}_2)$, e.g. (3.27)
$oldsymbol{W}_{aa}(oldsymbol{x}_1,oldsymbol{x}_2)$	Functional inverse of initial error covariance
$oldsymbol{W}_{aa}$	Inverse of initial error covariance
$oldsymbol{W}_{\eta\eta}$	Smoothing weight (6.19)
$oldsymbol{W}_{\epsilon\epsilon}$	Matrix inverse of the covariance $C_{\epsilon\epsilon}$
$oldsymbol{x}$	Independent spatial variable
x_n	x-position in grid $x_n = n\Delta x$, Chap 11
$oldsymbol{X}_0$	Matrix (14.26) and (14.51)
X_1	Matrix (14.30) and (14.55)
$oldsymbol{X}_2$	Matrix (14.34) and (14.59)
x, y, z	Dependent variables in Lorenz equations (6.5–6.6)

$oldsymbol{x}$	Dependent variable $\boldsymbol{x}^{\mathrm{T}}=(x,y,z)$ in Lorenz equations
$oldsymbol{x}_0$	Initial condition $\boldsymbol{x}_0^{\mathrm{T}} = (x_0, y_0, z_0)$ in Lorenz equations
y_m	y-position in grid $y_m = m\Delta y$, Chap 11
Y	Matrix (14.65)
$oldsymbol{Z}$	Matrix of eigenvectors from eigenvalue decomposition
$oldsymbol{Z}_1$	Matrix of eigenvectors from eigenvalue decomposition (14.27)
$oldsymbol{Z}_p$	Matrix of p first eigenvectors from eigenvalue decomposition (14.15)
$\mathcal B$	Penalty function in measurement space, e.g. $\mathcal{B}[b]$ in (3.66)
${\cal D}$	Model domain
$\partial \mathcal{D}$	Boundary of model domain
\mathcal{H}	Hamiltonian, used in hybrid Monte Carlo algorithm (6.25)
\mathcal{H}	Hessian operator (second derivative of model operator)
${\cal J}$	Penalty function, e.g. $\mathcal{J}[\psi]$
\mathcal{M}	Scalar measurement functional (3.24)
\mathcal{M}	Vector of measurement functionals
\mathcal{N}	Normal distribution
${\cal P}$	Matrix to be inverted in representer method (3.50)
α_1, α_2	Coefficients used in Chap. 3
α_{ij}	Coefficient used in (16.1
$oldsymbol{lpha}(oldsymbol{x})$	Poorly known model parameters to be estimated, Chap. 7
$oldsymbol{lpha}'(oldsymbol{x})$	Errors in model parameters, Chaps. 7 and 10
eta	Coefficient in Lorenz equations (6.7); constant (also $\beta_{\rm ini}$ and $\beta_{\rm mes}$), Sect. 11.4
$\delta \psi$	Variation of ψ
ϵ	Real measurement error, Chap. 3
$\epsilon_{\mathcal{M}}$	Representation errors in measurement operator, Sect. 5.2.3
$oldsymbol{\epsilon}_d$	Actual measurement errors, Sect. 5.2.3
ϵ	Random or real measurement errors, Sect. 5.2.3
η	Smoothing operators used in gradient method (6.19)
γ	Constant used in smoothing norm analysis (6.32) ; step length (6.22)
$\gamma(m{h})$	Variogram (11.1)
$\kappa_2(m{A})$	Condition number, Chap. 11
κ_l	Wave number in x direction, Chap. 11
λ_p	Wave number in y direction, Chap. 11
λ	Eigenvalue (13.8); scalar adjoint variable (5.37)

XX	List	α f	symbols
$\Lambda\Lambda$	LIBU	OI	Symbols

λ	Vector adjoint variable
Λ	Diagonal matrix of eigenvalues from eigenvalue decomposition
Λ_1	Diagonal matrix of eigenvalues from eigenvalue decomposition (14.26)
$oldsymbol{arLambda}_p$	Diagonal matrix of eigenvalues from eigenvalue decomposition (14.14)
μ	Sample mean (2.20)
$\mu({m x})$	Sample mean (2.23)
ω	Frequency variable (6.33)
ω_i	Unit variance noise process (8.10)
Ω	Error covariance of ω_i noise process (8.12)
ϕ	Scalar variable, Chap. 2
$\phi({m x})$	Porosity in Chap. 16
$\phi_{l,p}$	Uniform random number (11.10)
Φ	Random scalar variable, Chap. 2
π	3.1415927
π	Momentum variable used in hybrid Monte Carlo algorithm (6.25)
ψ	Scalar state variable (has covariance $C_{\psi\psi}$)
$\psi({m x})$	Scalar state variable field (has error covariance $m{C}_{\psi\psi}(m{x}_1,m{x}_2))$
$\widehat{\psi}(oldsymbol{k})$	Fourier transform of $\psi(\boldsymbol{x})$, Chap. 11
$oldsymbol{\psi}$	Vector state variable, e.g. from a discretized $\psi(\boldsymbol{x})$ (has error covariance $\boldsymbol{C}_{\psi\psi}$)
$oldsymbol{\psi}(oldsymbol{x})$	Vector of scalar state variables (has error covariance $m{C}_{\psi\psi}(m{x}_1,m{x}_2))$
Ψ	Random scalar variable, Chap. 2
Ψ_0	Best guess initial condition for dynamical scalar models, may be function of \boldsymbol{x}
$oldsymbol{\psi}(oldsymbol{x})$	Vector of fields, sometimes written just ψ
$oldsymbol{\psi}_0$	Estimate of initial condition Ψ_0 , Chap. 7
$\boldsymbol{\psi}_b$	Estimate of boundary condition Ψ_b , Chap. 7
Ψ	Combined state vector, Chap. 10
$\boldsymbol{\varPsi}_0$	Best guess initial condition
$\boldsymbol{\varPsi}_b$	Best guess boundary condition, Chap. 7
ρ	Correlation parameter (11.33) ; coefficient in Lorenz equations (6.6)
$oldsymbol{arSigma}$	Matrix of singular values from the singular value decomposition, Sect. 11.4 and (14.68)

$oldsymbol{arSigma}_0$	Matrix of singular values from the singular value decomposition (14.19)
$oldsymbol{arSigma}_1$	Matrix of singular values from the singular value decomposition $\left(14.52\right)$
σ	Standard deviation defined in Chap. 2; used as coefficient in Lorenz equations (6.5); singular values, Sect. 11.4, Chap. 13 and Chap. 14
au	De-correlation time (12.1)
θ	Pseudo temperature variable used in simulated annealing algorithm; rotation of principal direction (11.11)
$\boldsymbol{\varTheta}$	Random rotation used in SQRT analysis scheme, Chap. 13
ξ	Random number used in Metropolis algorithm
ξ	Coordinate running over boundary of model domain
1_N	$N \times N$ matrix with all elements equal to 1
$\delta()$	Dirac delta function (3.24)
$\boldsymbol{\delta}_{\psi_i}$	Vector used to extract a component of the state vector, Chap. 7
E[]	Expectation operator
$\mathcal{O}()$	Order of magnitude function
\Re	Space of real numbers, e.g. $\Re^{n \times m}$ for a real $n \times m$ matrix