Non regolarità

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata" a.a. 2020-2021

Giorgio Gambosi

Pumping lemma

Ogni stringa sufficientemente lunga appartenente ad un linguaggio regolare presenta delle regolarità: in particolare, contiene una sottostringa che può essere ripetuta quanto si vuole, ottenendo sempre stringhe del linguaggio.

Più precisamente:

sia L un linguaggio regolare : allora $\exists n>0$ tale che per ogni $\forall z\in L: \mid z\mid \geq n$ possiamo scrivere z=uvw, con $\mid uv\mid \leq n, \mid v\mid \geq 1$ e ottenere che $\forall i\geq 0, uv^iw\in L$.

Pumping lemma: interpretazione come gioco a due

Se L è regolare, Alice vince sempre questo gioco con Bob:

- 1. Alice fissa un intero n > 0 opportuno
- 2. Bob sceglie una stringa $z \in L$ con |z| > n
- 3. Alice divide z in tre parti uvw con $|uv| \le n$ e $|v| \ge 1$
- 4. Bob sceglie un intero $i \geq 0$
- 5. Alice mostra a Bob che $uv^iw \in L$

Pumping lemma: dimostrazione

Se L è regolare, sia \mathcal{A} l'ASFD che lo decide e che ha il minimo numero n di stati.

Una stringa $z \in L$ di lunghezza $m \ge n$ in input a \mathcal{A} gli fa eseguire m transizioni e quindi attraversare m+1 > n stati, quindi esiste almeno uno stato che viene attraversato più volte.

Pumping lemma: dimostrazione

Indichiamo con $q_{i_0},q_{i_1},\ldots,q_{i_{m+1}}$ la sequenza di stati, non tutti distinti, attraversati (chiaramente, $q_{i_0}=q_0$ e $q_{i_{m+1}}\in F$) e con q_{i_j} il primo stato della sequenza che ricompare in seguito, ad esempio come q_{i_k} .

Sia u il prefisso (eventualmente nullo) di z tale che $\overline{\delta}(q_0,u)=q_{i_j}$ e sia z=ux, per cui $\overline{\delta}(q_{i_j},x)=q_{i_{m+1}}$.

Pumping lemma: dimostrazione

 ${\cal A}$ quindi esegue una sotto-computazione $q_{i_j},q_{i_{j+1}},\ldots,q_{i_k}$ di una computazione di accettazione (di z) che inizia e termina nello stesso stato. Si noti che la sotto-sequenza deve prevedere almeno due stati, per cui $q_{i_k}-q_{i_j}>1$. Si noti inoltre che non possono essere stati attraversati più di n stati prima di arrivare a q_{i_k} , perché altrimenti questo non sarebbe il primo stato a comparire di nuovo.

Sia v il prefisso di x tale che $\overline{\delta}(q_{i_j},v)=q_{i_k}$ e sia x=vw: da quanto detto, $|uv|\leq n$ e $\overline{\delta}(q_{i_j},w)=q_{i_{|z|}}$

Pumping lemma: dimostrazione

Una computazione in cui questa sotto-sequenza è eseguita più volte è ancora una computazione di accettazione.

Per ogni i > 0 abbiamo infatti

$$\overline{\delta}(q_0, uv^i w) = \overline{\delta}\left(\overline{\delta}(q_0, u), v^i w\right) = \overline{\delta}\left(q_{i_j}, v^i w\right) = \overline{\delta}\left(\overline{\delta}(q_{i_j}, v), v^{i-1} w\right)$$
$$= \overline{\delta}\left(q_{i_j}, v^{i-1} w\right) = \dots = \overline{\delta}(q_{i_j}, w) = q_{i_{m+1}} \in F$$

il che mostra che ogni stringa del tipo uv^iw appartiene ad L.

Pumping lemma

Evidenzia il fatto che gli automi finiti: non possono contare. Il numero di situazioni diverse che possono memorizzare è finito.

Fornisce soltanto una condizione necessaria perché un linguaggio sia regolare: non può essere utilizzato per mostrare la regolarità di un linguaggio, ma solo per dimostrarne la non regolarità.

L regolare \implies pumping lemma verificato pumping lemma non verificato $\implies L$ non regolare

Pumping lemma

Sia L un linguaggio e supponiamo che $\forall n>0$ si abbia che $\exists z\in L: \mid z\mid\geq n$ tale che comunque dividiamo z in z=uvw, con $\mid uv\mid\leq n$, $\mid v\mid\geq 1$, $\exists i\geq 0$ tale che $uv^iw\notin L$. Allora, L non è regolare.

Pumping lemma: interpretazione come gioco a due

Se L non è regolare, Alice vince sempre questo gioco con Bob:

- 1. Bob fissa un intero n > 0
- 2. Alice sceglie una stringa opportuna $z \in L$, con |z| > n
- 3. Bob divide z in tre parti uvw con $|uv| \le n$ e $|v| \ge 1$
- 4. Alice sceglie un intero $i \geq 0$ e mostra a Bob che $uv^iw \not\in L$

Esempio

Consideriamo il linguaggio $L=a^kb^k$, k>0: per mostrare che L non è regolare, interpretiamo il ruolo di Alice nel gioco.

- 1. Bob fissa un intero n > 0
- 2. Scegliamo la stringa $z = a^n b^n$
- 3. Bob divide z in tre parti uvw con $\mid uv \mid \leq n$ e $\mid v \mid \geq 1$: per la struttura di z, necessariamente $uv = a^h$, con $0 < h \leq n$. Quindi, $v = a^l$, per 0 < l < h, e corrispondentemente $u = a^{h-l}$; inoltre, $w = a^{n-h}b^n$.
- 4. Scegliamo l'intero 2 e mostriamo a Bob che

$$uv^2w = a^{h-l}a^la^la^{n-h}b^n = a^{n+l}b^n \notin L$$

Esempio

Si consideri il linguaggio $L=\{w\tilde{w}\mid w\in\{a,b\}^*\}$, ove si è indicata con \tilde{w} la stringa ottenuta invertendo i caratteri presenti in w.

Dimostrare, utilizzando il pumping lemma, che tale linguaggio non è regolare.

Esempio

Interpretiamo il ruolo di Alice nel gioco.

- 1. Bob fissa un intero n > 0
- 2. Scegliamo la stringa $z = a^n b b a^n$
- 3. Bob divide z in tre parti uvw con $\mid uv \mid \leq n$ e $\mid v \mid \geq 1$: per la struttura di z, necessariamente $uv = a^h$, con $0 < h \leq n$. Quindi, $v = a^l$, per 0 < l < h, e corrispondentemente $u = a^{h-l}$; inoltre, $w = a^{n-h}bba^n$.
- 4. Scegliamo l'intero 2 e mostriamo a Bob che

$$uv^2w = a^{h-l}a^la^la^{n-h}bba^n = a^{n+l}bba^n \notin L$$