Explanation of Code and Results for Premature Birth Risk Prediction

This document explains the provided Python code, which performs data preprocessing and trains a Random Forest Classifier to predict premature birth risk using a dataset stored in a Parquet file. It also interprets the cross-validation results to assess model performance.

Code Overview

The code consists of two main components:

- 1. **Data Preprocessing** (prepare_data_for_targets function):
 - Loads and preprocesses a dataset from a Parquet file for machine learning.
 - Handles missing values, converts data types, and maps categorical flags to numeric values.
 - Ensures data is ready for training by selecting numeric features and excluding columns that may introduce data leakage.
- 2. Model Training and Evaluation:
 - Uses a Random Forest Classifier with 5-fold stratified cross-validation to predict the target variable premature_birth_risk.
 - Evaluates the model across multiple classification thresholds (0.1 to 0.7) using metrics like F1 score, accuracy, precision, recall, and AUC.
 - Outputs performance metrics and confusion matrices for each fold and threshold.

Detailed Code Explanation

1. Data Preprocessing (prepare_data_for_targets)

This section loads and cleans the dataset from a Parquet file.

Key Steps:

Loading Data:

- The dataset is read from /kaggle/input/fullfinal/telangana_data_with_features_and_tar gets (1).parquet using pyarrow.parquet.
- Data is processed in batches (default size: 10,000 rows) to handle large datasets efficiently.
- The Parquet file is assumed to contain health-related data, including features like AGE, GRAVIDA, HEMOGLOBIN_mean, and target variables like premature_birth_risk.

Required and Numeric Columns:

- Required Columns: Ensures critical columns (MOTHER_ID, GRAVIDA) are present.
- Numeric Columns: Defines a list of expected numeric columns (e.g., AGE, HEMOGLOBIN_mean, WEIGHT_max) for conversion to appropriate data types.

Data Cleaning:

- GRAVIDA Cleaning: Converts GRAVIDA (number of pregnancies) to numeric, replacing non-numeric values like 'nan' with NaN. Missing values are filled with 0.
- Numeric Conversion: Converts other numeric columns to float64 or similar, handling non-numeric values by setting them to NaN.
- Flag Mapping: Maps categorical flag columns (IS_CHILD_DEATH,
 IS_DEFECTIVE_BIRTH) to binary values (e.g., Y/YES → 1, N/N0 → 0, None/nan
 → NaN) using a predefined flag_map.
- Missing Value Imputation: Fills NaN values in numeric columns with 0 to ensure compatibility with machine learning models.
- Non-Numeric Debugging: Checks for non-numeric values in numeric columns and prints them for debugging.

Output:

 Returns a concatenated pandas. DataFrame with cleaned data, ready for feature selection and model training.

Key Output from Preprocessing:

- The code outputs messages indicating that GRAVIDA had non-numeric values ('nan')
 which were replaced, and no missing GRAVIDA values remained after filling with 0.
- The resulting DataFrame (df) contains cleaned numeric and binary columns.

2. Feature Selection

The code defines a list of columns (target_columns) to exclude from features to prevent **data leakage**. These include:

- Post-delivery outcomes (e.g., DEL_COMPLICATIONS, CHILD_NAME).
- Administrative or logging data (e.g., REGISTRATION_DT, CURRENT_USR).
- Screening/test results (e.g., VDRL_RESULT, HIV_STATUS).
- Derived risk or score columns (e.g., HIGH_RISKS, hemoglobin_trend).
- Features like AGE_preg, TOTAL_ANC_VISITS, which may be redundant or post-hoc.

Feature Selection Logic:

- Features are selected as columns with numeric data types (float64, float32, int64, int32, int8) that are not in the target_columns list.
- If no valid features are found, a message is printed: Skipping {target_columns}:
 No valid features available.

Final Features Used:

- The features used for training include:
 - o GRAVIDA, AGE, PARITY, ABORTIONS, HEIGHT
 - HEMOGLOBIN_mean, HEMOGLOBIN_min, HEMOGLOBIN_max
 - WEIGHT_anc_mean, WEIGHT_anc_min, WEIGHT_anc_max
 - Binary flags: age_adolescent, age_elderly, age_very_young,
 multigravida, grand_multipara, previous_loss, recurrent_loss
 - Derived metrics: gravida_parity_ratio, inadequate_anc, no_anc, irregular_anc, missed_first_anc, consecutive_missed
 - Health indicators: anemia_mild, anemia_moderate, anemia_severe, ever_severe_anemia, systolic_bp, diastolic_bp, hypertension, severe_hypertension
 - o BMI-related: BMI, underweight, obese, normal_weight
 - Mental health: depression, severe_depression, anxiety, severe_anxiety
 - Weight metrics: weight_gain, weight_gain_per_week, inadequate_weight_gain

3. Model Training and Evaluation

The code trains a Random Forest Classifier using 5-fold stratified cross-validation and evaluates performance across multiple thresholds.

Setup:

Data Split:

- The dataset is split into training (80%) and test (20%) sets using train_test_split with stratification to maintain class balance.
- The training set is further divided into 5 folds using StratifiedKFold to ensure consistent class distribution.

Random Forest Parameters:

```
o n_estimators: 100 (number of trees).
```

- max_depth: 10 (limits overfitting).
- o min_samples_split: 50 (minimum samples to split a node).
- min_samples_leaf: 25 (minimum samples per leaf).
- o class_weight: 'balanced' (adjusts for class imbalance).
- random_state: 42 (ensures reproducibility).
- n_jobs: -1 (uses all CPU cores).

Metrics Tracked:

- o For thresholds 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7:
 - F1 score, accuracy, precision, recall.
 - Confusion matrix (TN, FP, FN, TP).
- AUC (threshold-independent).
- Average F1 score across thresholds per fold.
- Training time per fold.

Training Loop:

- For each fold (1 to 5):
 - Splits training data into training and validation sets.
 - Prints class distribution for training and validation sets (e.g., ~760,444 negative and ~519,556 positive samples in training; ~190,111 negative and ~129,889 positive in validation).
 - Trains a Random Forest model and measures training time.
 - Predicts probabilities for the positive class (y_pred_proba).
 - Applies thresholds (0.1 to 0.7) to convert probabilities to binary predictions.
 - o Computes metrics (F1, accuracy, precision, recall, AUC) and confusion matrices.
 - o Stores metrics and the trained model.

Output:

- For each fold, prints:
 - AUC and training time.
 - Metrics and confusion matrices for each threshold.
- After all folds, prints:
 - Features used for training.
 - Mean and standard deviation of metrics across folds.

Results Interpretation

The results show the performance of the Random Forest Classifier across 5 folds for predicting premature_birth_risk.

Class Distribution:

- **Training Set**: ~760,444 negative (0) and ~519,556 positive (1) samples.
- Validation Set: ~190,111 negative (0) and ~129,889 positive (1) samples.
- The dataset is imbalanced (~60% negative, 40% positive), but the class_weight='balanced' parameter helps address this.

Cross-Validation Mean Metrics:

- **AUC**: 0.9592 ± 0.0002
 - Indicates excellent discriminative ability (close to 1.0).
 - Low standard deviation suggests consistent performance across folds.

Threshold-Specific Metrics:

The model was evaluated at thresholds from 0.1 to 0.7. Below are the mean metrics across folds:

• Threshold 0.1:

o F1: 0.8203 ± 0.0098

Accuracy: 0.8221 ± 0.0120
 Precision: 0.6955 ± 0.0140
 Recall: 1.0000 ± 0.0000

 Observation: High recall (1.0) indicates all positive cases are correctly identified, but low precision (~0.70) suggests many false positives. This threshold is too lenient, leading to over-prediction of positive cases.

Threshold 0.2:

o F1: 0.9146 ± 0.0081

Accuracy: 0.9241 ± 0.0079
 Precision: 0.8427 ± 0.0137
 Recall: 1.0000 ± 0.0000

 Observation: Improved F1 and precision compared to 0.1, with near-perfect recall. Still some false positives, but better balance.

Threshold 0.3:

o F1: 0.9228 ± 0.0003

Accuracy: 0.9321 ± 0.0003
 Precision: 0.8568 ± 0.0005
 Recall: 1.0000 ± 0.0000

Observation: Further improvement in F1 and precision, with recall still at 1.0.
 Very stable performance (low standard deviation).

• Threshold 0.4:

o F1: 0.9232 ± 0.0003

Accuracy: 0.9325 ± 0.0003
 Precision: 0.8574 ± 0.0005
 Recall: 0.9999 ± 0.0000

 Observation: Near-peak F1 score, with slight drop in recall but improved precision. False positives are further reduced.

• Threshold 0.5 (default):

o F1: 0.9235 ± 0.0003

Accuracy: 0.9328 ± 0.0003
 Precision: 0.8581 ± 0.0006
 Recall: 0.9997 ± 0.0001

 Observation: Best balance of F1, accuracy, and precision. Recall remains near-perfect, with minimal false negatives.

Threshold 0.6:

o F1: 0.9239 ± 0.0003

Accuracy: 0.9333 ± 0.0003
 Precision: 0.8608 ± 0.0007
 Recall: 0.9969 ± 0.0005

 Observation: Highest F1 and accuracy, with slightly reduced recall due to stricter threshold. Fewer false positives but slightly more false negatives.

• Threshold 0.7:

o F1: 0.9210 ± 0.0006

o Accuracy: 0.9314 ± 0.0004

Precision: 0.8645 ± 0.0009
 Recall: 0.9855 ± 0.0023

 Observation: Highest precision but significantly lower recall, indicating missed positive cases (false negatives increase). Too strict for this use case.

Confusion Matrices (Example from Fold 1):

- Threshold 0.1:
 - o TN: 125,656, FP: 64,455, FN: 0, TP: 129,889
 - High FP indicates many negative cases misclassified as positive.
- Threshold 0.5:
 - o TN: 168,803, FP: 21,308, FN: 25, TP: 129,864
 - Balanced performance with low FN and reduced FP.
- Threshold 0.7:
 - o TN: 170,372, FP: 19,739, FN: 2,413, TP: 127,476
 - Lowest FP but increased FN, missing some positive cases.

Training Time:

- Average training time per fold: ~71 seconds (ranging from 65.63 to 81.74 seconds).
- Reasonable for a Random Forest with 100 trees and a large dataset.

Key Observations:

- **Optimal Threshold**: Threshold 0.5 or 0.6 provides the best balance of F1 score (0.9235–0.9239), accuracy (0.9328–0.9333), and recall (~0.9969–0.9997). These thresholds minimize false negatives (critical for identifying premature birth risk) while maintaining high precision.
- **Model Stability**: Low standard deviations across folds (e.g., AUC ±0.0002, F1 ±0.0003 at threshold 0.5) indicate robust and consistent performance.
- Class Imbalance Handling: The class_weight='balanced' parameter effectively handles the imbalance, as evidenced by high recall across thresholds.
- **Feature Importance**: The model leverages a mix of demographic (e.g., AGE, GRAVIDA), clinical (e.g., HEMOGLOBIN_mean, BMI), and derived features (e.g., anemia_severe, hypertension), suggesting a comprehensive risk assessment.