Complexification

Daniel Miller

2 September 2016

So far we have only considered real Lie groups, even though some of our examples, like $GL(n, \mathbf{C})$, seem like they should be "complex" objects in some way. So, without further ado, we make a definition.

Definition 1. A complex Lie group is a group which is also a complex manifold, such that all the group operations are analytic maps.

With this definition, it is easy to see that $GL(n, \mathbb{C})$ is a complex Lie group, as is $Sp(2n, \mathbb{C})$. Clearly, every complex Lie group can be made into a real Lie group in a trivial way, by forgetting the complex structure. That is, we have a kind of map (a functor, for those in the know)

 $(-)^{\rm real} \colon \{{\rm complex\ Lie\ groups}\} \to \{{\rm real\ Lie\ groups}\}.$

It would be nice for there to be a kind of "inverse" map in the opposite direction (an adjoint functor, for those who care). That is, given a real Lie group G, we would like there to be a complex Lie group $G_{\mathbf{C}}$, together with a homomorphism $G \to G_{\mathbf{C}}$, such that for any complex Lie group H and a homomorphism $f: G \to H$, there exists a unique extension $f: G_{\mathbf{C}} \to H$. We call $G_{\mathbf{C}}$ the complexification of G.

(Brief interlude on universal properties and uniqueness.)

Theorem 1. Let $G \to H$ be a map from a real Lie group to a complex one, both connected, that induces an isomorphism $\mathfrak{g}_{\mathbf{C}} \to \mathfrak{h}$. If the induced map $\pi_1(G) \to \pi_1(H)$ is an isomorphism, then H is a complexification of G.

Proof. We only need to check that H satisfies the universal property. Let H' be an arbitrary complex Lie group together with a homomorphism $f \colon G \to H'$. This gives us a real Lie algebra map $\mathrm{d} f \colon \mathfrak{g} \to \mathfrak{h}'$, which uniquely extends to a complex Lie algebra map $(\mathrm{d} f)_{\mathbf{C}} \colon \mathfrak{g}_{\mathbf{C}} \to \mathfrak{h}'$. Equivalently, $\mathrm{d} f$ extends uniquely to a complex Lie algebra map $\widetilde{\mathrm{d}} f \colon \mathfrak{h} \to \mathfrak{h}'$, and thus to a Lie group homomorphism $\widetilde{f} \colon \widetilde{H} \to H'$, where \widetilde{H} is the universal cover of H. Since \widetilde{f} comes from $f \colon G \to H$, it is $\pi_1(H)$ -equivariant, and thus descends to a map $\widetilde{f} \colon H \to H'$. Since $\mathrm{d} \widetilde{f} = \widetilde{\mathrm{d}} f$, a \mathbf{C} -linear map, \widetilde{f} is in fact complex analytic. \square

As an example, since $\pi_1(\mathrm{SL}(n,\mathbf{C})) = 1$, the inclusion $\mathrm{SL}(n,\mathbf{R}) \hookrightarrow \mathrm{SL}(n,\mathbf{C})$ makes $\mathrm{SL}(n,\mathbf{C})$ the complexification of $\mathrm{SL}(n,\mathbf{R})$.

Recall $\mathrm{U}(n)=\{g\in\mathrm{GL}(n,\mathbf{C}):{}^\mathrm{t}g\cdot\overline{g}=1\}$, so its Lie algebra $\mathfrak{u}(n)=\{x\in\mathfrak{gl}(n,\mathbf{C}):{}^\mathrm{t}x+\overline{x}=0\}$. Thus if $x\in i\mathfrak{u}(n),{}^\mathrm{t}x=\overline{x},$ i.e. $i\mathfrak{u}(n)$ is exactly the space of Hermitian matrices.

Theorem 2. Let $P = \exp(i\mathfrak{u}(n))$. Then $\exp: i\mathfrak{u}(n) \to P$ is a homeomorphism.

Proof. (Well known. Otherwise, conjugate, . . . , unitary matrix with blocks, . . . commutes.) $\hfill\Box$

Theorem 3. Let K be a compact connected Lie group. Then the complexification of K exists.

Proof. We know there is an embedding $K \subset \mathrm{U}(n)$ for some $n \geqslant 1$. Put $\mathfrak{k} = \mathrm{Lie}(K)$, $P = \exp(i\mathfrak{k})$, and $G = K \cdot P \subset \mathrm{GL}(n, \mathbf{C})$. Since G is the product of a closed subgroup and a compact subgroup of $\mathrm{GL}(n, \mathbf{C})$, general nonsense tells us that G is closed in $\mathrm{GL}(n, \mathbf{C})$. Moreover, $\mathrm{Lie}(G) = \mathrm{Lie}(K) + \mathrm{Lie}(P) = \mathfrak{k} + i\mathfrak{k} = \mathfrak{k}_{\mathbf{C}}$, a complex vector space, so we can use the exponential map $\mathfrak{k}_{\mathbf{C}} \to G$ to give G a complex structure. Since P is contractible, $K \to G$ induces an isomorphism $\pi_1(K) \to \pi_1(G)$. Thus $G = K_{\mathbf{C}}$.