Hinweise

$$(f^{x})' = xf^{x-1}f'$$

$$e^{x}e^{y} = e^{x+y}$$

$$(e^{x})' = e^{x}$$

$$(e^{a}x)' = (e^{x})^{a}$$

Z.B.

$$f(x) = e^{3x} = (e^x)^3$$
$$f'(x) = 3(e^x)^2 e^x$$
$$= 3e^{2x+x}$$
$$= 3e^{3x}$$

Gruppe 1

- (1) Was sind:
 - a) gewöhnliche/partielle
 - b) explizite/implizite
 - c) lineare/nicht-lineare
 - d) homogene/inhomogene

Differentialgleichungen?

(2) Gegeben ist die Differentialgleichung y=y', finden Sie die allgemeine Lösung. Wieviele mögliche Lösungen gibt es?

Gruppe 2

(1) Klassifizieren Sie die folgende Differentialgleichung nach: (1) 1./2./höherer Ordnung, (2) gewöhnlich/partiell, (3) explizit/implizit, (4) linear/nicht-linear, (5) homogen/inhomogen, (6) ihren Koeffizienten (konstant/variabel).

$$y' = y\sin(x)$$

(2) Zeigen Sie, dass die Gleichung $y=Ce^{2x}$ mit $C=4e^{-2}$ eine Lösung für die Differentialgleichung y'=2y ist.

Gruppe 3

(1) Klassifizieren Sie die folgende Differentialgleichung nach: (1) 1./2./höherer Ordnung, (2) gewöhnlich/partiell, (3) explizit/implizit, (4) linear/nicht-linear, (5) homogen/inhomogen, (6) ihren Koeffizienten (konstant/variabel).

$$y' - y - \cos(2x) = 0$$

(2) Eine Differentialgleichung der Form y' = ay + b, $a, b \in \mathbb{R}$, hat eine Lösung der folgenden Form $y = -\frac{b}{a} + Ce^{ax}$, $C \in \mathbb{R}$. Finden Sie eine Lösung zu folgender Differentialgleichung:

$$y' = 2y + 8$$

Gruppe 4

(1) Klassifizieren Sie die folgende Differentialgleichung nach: (1) 1./2./höherer Ordnung, (2) gewöhnlich/partiell, (3) explizit/implizit, (4) linear/nicht-linear, (5) homogen/inhomogen, (6) ihren Koeffizienten (konstant/variabel).

$$y' - y - \sin(y) = 0$$

(2) Eine Differentialgleichung der Form y' = ay, $a \in \mathbb{R}$ hat eine Lösung der Form $y = Ce^{ax}$, $C \in \mathbb{R}$. Formulieren Sie eine Lösung zu folgender Differentialgleichung:

$$\frac{df}{dx} - 5f(x) = 0$$

Gruppe 5

(1) Klassifizieren Sie die folgende Differentialgleichung nach: (1) 1./2./höherer Ordnung, (2) gewöhnlich/partiell, (3) explizit/implizit, (4) linear/nicht-linear, (5) homogen/inhomogen, (6) ihren Koeffizienten (konstant/variabel).

$$\frac{\partial^2 f}{\partial x^2} + \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 + x\frac{\partial^2 f}{\partial y^2} - x^2 + y^2 = 0$$

(2) Wir betrachten die Differentialgleichung y' = 8y mit einer Lösung der Form $y = Ce^{8x}$. Gegeben ist die Anfangsbedinung y(1) = 4, finden Sie einen Ausdruck für die Konstante C.

Gruppe 6

(1) Zeigen Sie, dass die Gleichung $y = Ce^{2x} - 2$, $C \in \mathbb{R}$ eine Lösung zur Differentialgleichung y' = 2y + 4 ist.

Gruppe 7

(1) Wir betrachten die Differentialgleichung

$$y' = a(x)y$$

mit der differenzierbaren Funktion y = y(x) und der kontinuierlichen Funktion a(x).

Zeigen Sie, dass die Lösung y(x) wie folgt dargestellt werden kann:

$$y(x) = e^C e^{A(x)}$$

mit C als Konstante in \mathbb{R} , und A(x) der Stammfunktion von a(x), sodass A'(x) = a(x).

Hinweis: schreiben Sie die Differentialgleichung folgendermaßen um $\frac{y'}{y} = a(x)$ und integrieren Sie beide Seiten.