Transformations géométriques: rotation et translation

Repères

• En robotique, on doit constamment transférer des points d'un référentiel à un autre

Autre exemple : caméra

• Si les objets sont directement en coordonnées de la caméra, on peut facilement calculer une image

Autre exemple : caméra

 Mais la caméra est sur le robot, qui se déplace... le référentiel du monde (global) ≠ référentiel caméra

• Il faut donc être capable d'exprimer un même point dans plusieurs référentiels, et de passer d'un à l'autre facilement.

Convention sur la notation

• Point *P* défini dans le repère *B* :

 Position de P est un vecteur partant de l'origine de B, selon les axes de B, et se terminant à P

Transformation pour repères translatés

- L'origine de B est situé à la coordonnée (10,5) dans le repère $A: {}^{A}_{B}T$
- La position de P, exprimée dans le repère A, est donc l'addition des deux vecteurs ${}^{A}_{B}T$ et ${}^{B}P$:

$$\begin{bmatrix} {}^{A}P = {}^{B}P + {}^{A}_{B}T \\ {}^{A}P_{x} \\ {}^{A}P_{y} \end{bmatrix} = \begin{bmatrix} {}^{B}P_{x} \\ {}^{B}P_{y} \end{bmatrix} + \begin{bmatrix} {}^{A}T_{x} \\ {}^{A}T_{y} \end{bmatrix}$$

Tous cela fonctionne tant que les repères A et B ont la même orientation. Sinon, il faut tenir compte des

Définir l'opération de rotation

• Correspond à déplacer un point (vecteur), avec une rotation autour de l'origine, d'un angle θ antihoraire

• Opération linéaire* : multiplication de matrice

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad P_2 = RP_1$$
(prémultiplication)

Exemple rotation 2D

Rotation de θ = 15° d'un rectangle autour de (0,0) : on applique cette équation pour chaque point

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos 15^o & -\sin 15^o \\ \sin 15^o & \cos 15^o \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 0.9659 & -0.2588 \\ 0.2588 & 0.9659 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Transformation pour des repères pivotés

- Soit le repère **B** pivoté de $\theta = 45^{\circ}$ par rapport à **A**.
- Soit un point P défini dans ce repère $B: {}^{B}P = (9,16)$
- Pour trouver ^AP, il suffit d'appliquer l'opérateur de rotation :

$${}^{A}P = \begin{bmatrix} \cos(45^{o}) & -\sin(45^{o}) \\ \sin(45^{o}) & \cos(45^{o}) \end{bmatrix} \begin{bmatrix} 9 \\ 16 \end{bmatrix} = \begin{bmatrix} -4.9 \\ 17.7 \end{bmatrix}$$

Transformation entre 2 repères

- On peut représenter toute transformation¹ par une rotation et une translation : cas général 2D/3D
- On a ${}^{B}P$, θ et ${}^{A}_{B}T$, on cherche ${}^{A}P$

Transformation entre 2 repères

- On peut représenter toute transformation¹ par une rotation et une translation : cas général 2D/3D
- On a ${}^{B}P$, θ et ${}^{A}_{B}T$, on cherche ${}^{A}P$
- Fait faire une rotation $\theta:_{R}^{A}R$
- Puis la translation ^A_BT
 (Définir un repère ^B par une combinaison de <u>rotation</u> et une de <u>translation</u>)

$$^{A}P = {}^{\overline{A}}_{B}R^{B}P + {}^{\overline{A}}_{B}T$$

L'ordre R, T est important!

(et la rotation R se fait autour de l'origine)

¹ou une série de transformations

Transformations: coordonnées cartésiennes

- La rotation est une multiplication, et la translation est une addition
- Chaînage d'opération devient peu élégant

$$^{C}P \stackrel{A}{=} P_{A} R (^{A}_{B}R^{B}P + ^{A}_{B}T) + ^{C}_{A}T$$

Coordonnées homogène: translation 2D

En cartésien, une translation est une addition

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} T_{x1} \\ T_{y1} \end{bmatrix}$$

• En homogène, translation s'exprime par une multiplication

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_{x1} \\ 0 & 1 & T_{y1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

$$P_2 = TP_1$$

Coordonnées homogène : rotation 2D

Rotation est encore une multiplication

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

$$P_2 = RP_1$$

Homogène: chaînage des opérations

On a donc que des multiplications!

$$P_2 = T_2 R_2 T_1 R_1 P$$

 On peut donc facilement combiner toutes les transformations dans une seule matrice

$$P_2 = HP$$
 avec $H = T_2R_2T_1R_1$

• (rappel : toute transformation peut s'exprimer par une rotation et une translation, ici capturée dans H)

Homogène: chaînage des opérations

Ordre est important

$$P_2 = TRP$$

(multiplication des matrices n'est pas commutative)

$$P_3 = RTP$$

rotation : autour de l'origine

rotation : autour de l'origine

$$P_3 \neq P_2$$

RT vs. TR

• Il est plus naturel de faire *TR* que de faire *RT*

$$TR = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ 0 & 0 \end{bmatrix}$$

$$RT = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & (T_x \cos\theta - T_y \sin\theta) \\ \sin\theta & \cos\theta & (T_x \sin\theta + T_y \cos\theta) \\ 0 & 0 & 1 \end{bmatrix}$$

Homogène: transformation 3D

rotation autour axe x
$$R_x(A) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos A & -\sin A & 0 \\ 0 & \sin A & \cos A & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 rotation autour axe y
$$R_y(A) = \begin{bmatrix} \cos A & 0 & \sin A & 0 \\ 0 & 1 & 0 & 0 \\ -\sin A & 0 & \cos A & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

rotation autour axe z
$$R_z(A) = \begin{bmatrix} \cos A & -\sin A & 0 & 0 \\ \sin A & \cos A & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 translation $T = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

rotation autour axe y
$$R_y(A) = \begin{vmatrix} \cos A & 0 & \sin A & 0 \\ 0 & 1 & 0 & 0 \\ -\sin A & 0 & \cos A & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

(certains manuels ont des erreurs)

translation
$$T = \begin{vmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$TR = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
vecteur translation
$$T_x$$

$$T_y$$

$$T_z$$

Transformations: coordonnées homogènes

- La rotation est une **multiplication**, et la translation est une **multiplication**
- Chaînage d'opération plus élégant

Transformations: coordonnées homogènes

• On peut ainsi combiner directement T et R dans une seule matrice de transformation H=TR

Sens des transformations

• On peut facilement trouver l'opposé des transformations. Supposons qu'on connaisse A_BH

$${}^{B}P = {}^{B}H {}^{A}P$$
 On cherche

$${}^{B}_{A}H^{-1} {}^{B}P = {}^{B}_{A}H^{-1} {}^{B}_{A}H {}^{A}P$$

$${}^{B}_{A}H^{-1} {}^{B}P = {}^{A}P$$

$$Or, {}^{A}_{B}H {}^{B}P = {}^{A}P$$

$$(direction flèche a changé)$$

$$(direction flèche a changé)$$

Donc
$${}_{A}^{B}H = {}_{B}^{A}H^{-1}$$

Sens des rotations

- Profitez des propriétés de certaines matrices
- Soit: ${}_{B}^{A}H = {}_{B}^{A}T {}_{B}^{A}R$
- Quel est l'inverse ${}_{A}^{B}H = {}_{B}^{A}H^{-1}$?

$${}^{A}_{B}H^{-1} = ({}^{A}_{B}T \quad {}^{A}_{B}R)^{-1} = {}^{A}_{B}R^{-1} \quad {}^{A}_{B}T^{-1}$$

$$= {}^{A}_{B}R^{T} \quad {}^{A}_{B}T^{-1}$$

$$= {}^{B}_{B}R^{T} \quad {}^{A}_{B}T^{-1}$$

$$= {}^{A}_{B}R^{T} \quad {}^{B}_{A}T^{-1}$$

$$= {}^{A}_{B}R^{T} \quad {}^{B}_{A}T^{-1}$$

$$= {}^{A}_{B}R^{T} \quad {}^{B}_{A}T^{-1}$$

Transformation monde \rightarrow caméra

 Pour calculer l'endroit où un point dans le monde va se situer par rapport à la caméra, on trouve la transformation entre les deux référentiels

Transformation monde -> caméra

Soit le point ${}^{m}P = (-3,0,2)$ dans le référentiel du monde. Trouvez la coordonnées dans le référentiel de la caméra

$$T_1 = \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 21 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_{1} = \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 21 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad R_{1} = R_{y}(20^{\circ}) = \begin{pmatrix} \cos 20^{\circ} & 0 & \sin 20^{\circ} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin 20^{\circ} & 0 & \cos 20^{\circ} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Transformation monde -> caméra

Transférer le point ^mP = (-3,0,2) dans le référentiel du **monde**, vers le référentiel de la **caméra**

Modèle Caméra (Homogène)

Modèle Caméra plus complet

À titre informatif

f = 1 pour simplifier

 (u_0, v_0) : point principal sur capteur

 α, β : échelle x-y en pixel du capteur, idéalement $\alpha=\beta$

 γ : déformation entre axes du capteurs, idéalement $\gamma=0$

