1. Suppose $m, n \in \mathbb{Z}$.

- (a) Carefully define the statement m divides n.
- (b) Prove that for all $n \in \mathbb{N}$, 24 divides $5^{2n} 1$.
- (a) m|n means that there exists $k \in \mathbb{Z}$ such that n = km.
- (b) First solution: For all $n \in \mathbb{N}$ (in fact, for all $n \in \mathbb{Z}$),

$$5^{2n} - 1 = 25^n - 1 \equiv 1^n - 1 = 0 \pmod{24}$$
.

Second solution: We proceed by induction on n. For the base case $n=1, \, 5^2-1=24$ is divisible by 24, since $24=24\cdot 1$. For the induction step, assume that $5^{2n}-1$ is divisible by 24, i.e., there is $k\in\mathbb{Z}$ such that $5^{2n}-1=24k$. Then

$$5^{2(n+1)} - 1 = 5^{2n+2} - 1 = 5^{2n}5^2 - 1 = (24k+1)25 - 1$$
.

Here the last equation follows with the induction hypothesis. Hence

$$5^{2(n+1)} - 1 = (24k+1)25 - 1 = 24 \cdot 25k + 24 = 24(25k+1)$$
.

So we found an integer j = 25k + 1 such that $5^{2(n+1)} - 1 = 24j$, so by definition, 24 divides $5^{2(n+1)} - 1$, and our induction is complete.

2. Suppose $A, B \subseteq \mathbb{R}$ are sets.

- (a) Carefully define the statement A = B.
- (b) Recall that the *complement* of A (in \mathbb{R}) is defined as $A^c = \mathbb{R} A$. Prove that $(A \cup B)^c = A^c \cap B^c$.
- (a) A = B means that $A \subseteq B$ and $B \subseteq A$; in other words: $x \in A$ if and only if $x \in B$.
- (b) We need to show $(A \cup B)^c \subseteq A^c \cap B^c$ and $(A \cup B)^c \supseteq A^c \cap B^c$. Given $x \in (A \cup B)^c$, we know $x \in X$ but $x \notin A \cup B$; the last statement says that the statement " $x \in A$ or $x \in B$ " does not hold, which means $x \notin A$ and $x \notin B$. Hence by definition of set intersection, $x \in A^c \cap B^c$. This proves $(A \cup B)^c \subseteq A^c \cap B^c$.

These steps can be traversed backwards: $x \in A^c \cap B^c$ means $x \notin A$ and $x \notin B$, which is the negation of the statement " $x \in A$ or $x \in B$ ", i.e., $x \in (A \cup B)^c$. This proves $(A \cup B)^c \supseteq A^c \cap B^c$.

3. Suppose $m, n \in \mathbb{Z}$.

- (a) Carefully define the statement $m \equiv n \pmod{34}$.
- (b) Prove that the relation $\equiv \pmod{34}$ is an equivalence relation.
- (a) $m \equiv n \pmod{34}$ means that 34|(m-n).

- (b) We have to prove that for all $k, m, n \in \mathbb{Z}$,
 - (i) $k \equiv k \pmod{34}$,
 - (ii) $k \equiv m \pmod{34}$ implies $m \equiv k \pmod{34}$,
 - (iii) $k \equiv m \pmod{34}$ and $m \equiv n \pmod{34}$ implies $k \equiv n \pmod{34}$.
 - (i) follows from the fact that 34|0 (since $0 = 34 \cdot 0$), and so 34|(k-k).
 - (ii) Suppose $k \equiv m \pmod{34}$, i.e., there exists $j \in \mathbb{Z}$ such that k m = 34j. Then m - k = 34(-j), and since $-j \in \mathbb{Z}$, we conclude that $m \equiv k \pmod{34}$.
 - (iii) Suppose $k \equiv m \pmod{34}$ and $m \equiv n \pmod{34}$, i.e., there exists $i, j \in \mathbb{Z}$ such that k m = 34i and m n = 34j. Then

$$k-n = (k-m) + (m-n) = 34i + 34j = 34(i+j)$$
.

Since $i + j \in \mathbb{Z}$, we conclude that $k \equiv n \pmod{34}$.

- 4. Suppose $(a_n)_{n=1}^{\infty}$ is a sequence of real numbers.
 - (a) Carefully define what it means for the sequence $(a_n)_{n=1}^{\infty}$ to converge.
 - (b) Now let $a_n = \frac{2}{\sqrt{n}}$. Prove that $\lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$.
 - (a) $(a_n)_{n=1}^{\infty}$ converges means that there exists $L \in \mathbb{R}$ such that for any $\epsilon > 0$, there exists $N \in N$ such that for all $n \geq N$, $|a_n L| < \epsilon$.
 - (b) Suppose $\epsilon > 0$ is given. Then choose an integer $N > \left(\frac{\epsilon}{2}\right)^2$, and we have for $n \geq N$

$$\left| \frac{2}{\sqrt{n}} - 0 \right| = \frac{2}{\sqrt{n}} \le \frac{2}{\sqrt{N}} < \epsilon \ .$$

- 5. Suppose A is a set.
 - (a) Carefully define what it means for A to be countable.
 - (b) Prove that the set of all even integers is countable.
 - (a) A is countable if either A is finite or A is countably infinite. (A is finite if either $A = \emptyset$ or for some $n \in \mathbb{N}$ there is a bijection from [n] to A. A is countably infinite if there is a bijection from \mathbb{N} to A.)
 - (b) First solution: We proved in class that \mathbb{Z} is countable, and that a subset of a countable set is countable. Since $2\mathbb{Z}$ is a subset of \mathbb{Z} , it is countable. Second solution: We proved in class that \mathbb{Z} is countably infinite, so that there exists a bijection $\phi: \mathbb{N} \to \mathbb{Z}$. The function $\psi: \mathbb{Z} \to 2\mathbb{Z}$ defined by $\psi(n) = 2n$ is a bijection. Thus $\psi \circ \phi: \mathbb{N} \to 2\mathbb{Z}$ is a bijection, whence $2\mathbb{Z}$ is countably infinite.