Student Test Score Prediction w/ Linear Regression

Giorgos Tzimas

June 2023

1 Dataset Description

1.1 Background

The panel dataset contains cross-section data from the High School and Beyond survey conducted by the Department of Education in 1980. The data was collected in order to study the relationship between early high school experiences and the students' educational experiences in high school and after, as well as the effects of how family, community, school and classroom factors affect student performance.

For further information: https://nces.ed.gov/surveys/hsb/

1.2 Observations and Attributes

The dataset comprises of **4,739** entries with **15** distinct features. These features contain a range of information pertaining to both the student, the school they attend and their parents.

1.3 Data Types

Out of the 15 features in the dataset:

- 8 are of type "object" or text
- 2 are of type "integer"
- 5 are of type "float"

2 Data Cleaning

None of our records or features in the dataset contain any missing values. Therefore, we will not have to use any imputation methods in this case.

	Description
Feature	
gender	Student's gender
ethnicity	Student's ethnicity (African-American, Hispanic or other)
score	Base year composite test score
fcollege	Is the father a college graduate?
mcollege	Is the mother a college graduate?
home	Does the family own their home?
urban	Is the school in an urban area?
unemp	County unemployment rate in 1980.
wage	State hourly wage in manufacturing in 1980.
distance	Distance from 4-year college (in 10 miles).
tuition	Average state 4-year college tuition (in 1000 USD).
education	Number of years of education.
income	Is the family income above USD 25,000 per year?
region	School region (West or other).

Table 1: Dataset features and their descriptions

Feature	Data Type	Feature	Data Type
ID gender ethnicity score fcollege mcollege home urban	int64 object object float64 object object object	unemp wage distance tuition education income region	float64 float64 float64 int64 object object

Table 2: Dataset attributes and their types

3 Data Transformation

All of the categorical variables in the dataset will be one-hot encoded (dummy-coded) into numeric variables with n-1 columns (n=number of levels in the feature).

- $\bullet\,$ n_gender: 1 if "male", 0 if "female
- n_ethnicity_hispanic: 1 if "hispanic", 0 if otherwise
- n_ethnicity_afam: 1 if "afam", 0 if otherwise
- $\bullet\,$ n_fcollege: 1 if "yes", 0 if "no"
- $\bullet\,$ n_mcollege: 1 if "yes", 0 if "no"

	Missing		Missing
Feature		Feature	Missing
ID gender ethnicity score fcollege	0 0 0 0 0	unemp wage distance tuition education	0 0 0 0
mcollege home urban	0 0	income region	0

Table 3: Features with number of missing values

• n_home: 1 if "yes", 0 if "no"

• n_urban: 1 if "yes", 0 if "no"

• n_region: 1 if "west", 0 if "other"

	ID	score	unemp	wage	distance	tuition	education	n_gender	n_ethnicity_afam	n_ethnicity_hispanic	n_fcollege	n_mcollege	home_yes	urban_yes	n_income	n_region
0	1	39.150002	6.200000	8.090000	0.200000	0.889150	12	1	0	0	1	0	1	1	1	0
1	2	48.869999	6.200000	8.090000	0.200000	0.889150	12	0	0	0	0	0	1	1	0	0
2	3	48.740002	6.200000	8.090000	0.200000	0.889150	12	1	0	0	0	0	1	1	0	0
3	4	40.400002	6.200000	8.090000	0.200000	0.889150	12	1	1	0	0	0	1	1	0	0
4	5	40.480000	5.600000	8.090000	0.400000	0.889150	13	0	0	0	0	0	0	1	0	0

Table 4: Dataset after dummy-coding

4 Exploratory Data Analysis

In this section, we will visually explore our dataset to gain some insight into the relationships between different features.

4.1 Correlation Matrix

	score	unemp	wage	distance	tuition	education	n_gender	$n_ethnicity_afam$	$n_ethnicity_hispanic$	n_fcollege	n_mcollege	home_yes	urban_yes	n_income	n_region
score	1.000000	-0.025309	0.116627	-0.067979	0.129858	0.465187	0.080169	-0.284252	-0.161187	0.250970	0.189563	0.125874	-0.085139	0.178368	-0.026034
unemp	-0.025309	1.000000	0.266771	0.293036	0.184027	-0.014746	-0.028380	-0.059376	0.088610	-0.100055	-0.086024	0.005036	-0.052140	-0.078126	-0.041865
wage	0.116627	0.266771	1.000000	-0.000390	0.317727	0.023858	0.027211	-0.133696	-0.099519	0.030929	0.016939	0.067455	-0.032566	0.071773	-0.083654
distance	-0.067979	0.293036	-0.000390	1.000000	-0.100981	-0.093183	-0.003441	-0.100022	0.058226	-0.105474	-0.081523	0.019605	-0.289175	-0.080422	0.068089
tuition	0.129858	0.184027	0.317727	-0.100981	1.000000	0.039534	0.009025	0.059007	-0.304375	0.028796	0.036125	-0.000320	-0.016181	0.053930	-0.582348
education	0.465187	-0.014746	0.023858	-0.093183	0.039534	1.000000	0.009764	-0.090034	-0.043374	0.284356	0.225177	0.096519	-0.015005	0.219166	-0.024145
n_gender	0.080169	-0.028380	0.027211	-0.003441	0.009025	0.009764	1.000000	-0.039639	0.018810	0.040697	0.019911	0.038162	0.009728	0.058891	-0.013418
$n_ethnicity_afam$	-0.284252	-0.059376	-0.133696	-0.100022	0.059007	-0.090034	-0.039639	1.000000	-0.216348	-0.101376	-0.018085	-0.126593	0.183720	-0.096960	-0.144095
$n_ethnicity_hispanic$	-0.161187	0.088610	-0.099519	0.058226	-0.304375	-0.043374	0.018810	-0.216348	1.000000	-0.112351	-0.106208	-0.063879	0.077073	-0.128255	0.207679
n_fcollege	0.250970	-0.100055	0.030929	-0.105474	0.028796	0.284356	0.040697	-0.101376	-0.112351	1.000000	0.429710	0.077525	-0.052510	0.353563	0.029686
n_mcollege	0.189563	-0.086024	0.016939	-0.081523	0.036125	0.225177	0.019911	-0.018085	-0.106208	0.429710	1.000000	0.063916	-0.034306	0.245670	-0.011578
home_yes	0.125874	0.005036	0.067455	0.019605	-0.000320	0.096519	0.038162	-0.126593	-0.063879	0.077525	0.063916	1.000000	-0.096868	0.138826	0.004868
urban_yes	-0.085139	-0.052140	-0.032566	-0.289175	-0.016181	-0.015005	0.009728	0.183720	0.077073	-0.052510	-0.034306	-0.096868	1.000000	-0.071642	-0.052117
n_income	0.178368	-0.078126	0.071773	-0.080422	0.053930	0.219166	0.058891	-0.096960	-0.128255	0.353563	0.245670	0.138826	-0.071642	1.000000	0.007449
n_region	-0.026034	-0.041865	-0.083654	0.068089	-0.582348	-0.024145	-0.013418	-0.144095	0.207679	0.029686	-0.011578	0.004868	-0.052117	0.007449	1.000000

Table 5: Correlation matrix for all features

- None of our independent variables are strongly correlated with each other, which suggests multicollinearity might not be an issue when building the model
- The feature with the strongest correlation to our dependent variable (score) is education (0.46)
- The second strongest correlated variable with score is n_ethnicity_afam (-0.28)

4.2 Distribution of "score"

	Values
Measure	
Mean	50.889029
Median	51.189999
Mode	56.020000
St. Dev.	8.700991
Variance	75.707252
Min	28.950001
Max	72.809998
Range	43.859997
IQR	13.844999
Skew	-0.032655

Figure 2: Location and variability metrics

Figure 1: Distribution of variable "score"

• Our dependent variable is normally distributed with a negligible skewness of -0.03

- The mean score for all students is 50.89
- The standard deviation for student score is 8.7
- The lowest score is 28.95 and the largest is 72.81

4.3 Distribution of "unemp"

	Values
Measure	
Mean	7.597215
Median	7.100000
Mode	8.000000
St. Dev.	2.763289
Variance	7.635768
Min	1.400000
Max	24.900000
Range	23.500000
IQR	3.000000
Skew	1.558486

Figure 4: Location and variability metrics

Figure 3: Distribution of variable "unemp"

- The county unemployment rate is right-tailed with a skewness of 1.56
- The mean unemployment rate is 7.60 and the median is 7.1
- The standard deviation is 2.76
- The lowest unemployment rate is 1.40 and the largest is 24.90
- This distribution's right-skewness is due to potentially outlier values in the [21.5, 24.9] range
- We will take the log of "unemp" and compare its distribution to the original

	Values
Measure	
Mean	1.968177
Median	1.960095
Mode	2.079442
St. Dev.	0.343759
Variance	0.118170
Min	0.336472
Max	3.214868
Range	2.878396
IQR	0.411099
Skew	0.017166

Figure 6: Location and variability metrics

Figure 5: Distribution of variable "ln_unemp"

 \bullet The right-tailedness of the original variable is mitigated by taking its natural logarithm with a new skew of 0.02

4.4 Distribution of "wage"

	Values
Measure	
Mean	9.500506
Median	9.680000
Mode	8.890000
St. Dev.	1.342925
Variance	1.803449
Min	6.590000
Max	12.960000
Range	6.370000
IQR	1.299999
Skew	0.093066

Figure 8: Location and variability metrics

Figure 7: Distribution of variable "wage"

- \bullet The hourly manufacturing wage is approximately normally distributed with a skewness of 0.09
- The mean wage is 9.50 and the median is 9.68
- The standard deviation is
- The tails of the distribution are "fatter" than a standard normal distribution
- The lowest wage is 6.59 and the largest is 12.96

4.5 Distribution of "distance"

	Values
Measure	
Mean	1.802870
Median	1.000000
Mode	0.500000
St. Dev.	2.296885
Variance	5.275683
Min	0.000000
Max	20.000000
Range	20.000000
IQR	2.100000
Skew	2.999513

Figure 10: Location and variability metrics

Figure 9: Distribution of variable "distance"

- Distance from college in 10 miles is heavily right-tailed with a skewness of 3.00
- The mean distance is 1.8 (18 miles) and the median is 1.0 (10 miles)
- The standard deviation is 2.3 (23 miles)
- The lowest distance is 0.26 (2.6 miles) and the highest is 1.40 (14 miles)
- This distribution's right-skewness is due to potentially outlier values in the [8.5, 20] range
- Same as with "unemp", we will take the natural log of this feature

	Values
Measure	
Mean	-0.045369
Median	0.000000
Mode	0.000000
St. Dev.	1.200915
Variance	1.442198
Min	-2.302585
Max	2.995732
Range	5.298317
IQR	1.609438
Skew	-0.143513

Figure 12: Location and variability metrics

Figure 11: Distribution of variable "distance"

 \bullet The right-tailedness of the original variable is mitigated by taking its natural logarithm with a new skew of -0.14

4.6 Distribution of "tuition"

	Values
Measure	
Mean	0.814608
Median	0.824480
Mode	0.257510
St. Dev.	0.339468
Variance	0.115239
Min	0.257510
Max	1.404160
Range	1.146650
IQR	0.642030
Skew	-0.151913

Figure 14: Location and variability metrics

Figure 13: Distribution of variable "distance"

- Four year college tuition in \$1000 is approximately normally distributed with a skewness of -0.15
- The mean tuition amount is 0.81 (\$810) and the median is 0.82 (\$820)
- The standard deviation is 0.34 (\$340)
- The lowest tuition amount is 0.26 (\$260) and the largest is 1.40 (\$1,400)
- The tails of the distribution are "fatter" than a standard normal distribution, suggesting many records present towards the tails and potential outliers

4.7 Distribution of "score" by Gender

Scores by Gender

Figure 15: Distribution of student scores by gender

- \bullet The mean score is not significantly different based on gender, with males at 50.26 and females at 51.66
- The range of scores is also approximately equal, with males at 41.9 and females at 42.41
- Same with standard deviations, with males at 8.48 and females at 8.90

4.8 Distribution of "score" by Ethnicity

Scores by Ethnicity

Figure 16: Distribution of student scores by ethnicity

- Average score is the highest for other ethnicities (53.17), followed by Hispanics (48) and African-Americans (45.34)
- The top 25% of students of other ethnicities have a score of 59.44, followed by Hispanics (53.41) and African-Americans (51.13)
- The standard deviation is largest for students of other ethnicities (8.21), followed by African-Americans (8.03) and Hispanics (7.81)

4.9 Distribution of "score" by Father's Graduation Status

Scores by Father Graduation Status

Figure 17: Distribution of student scores by father's graduation status

- Students have a higher average score when the father has graduated college (55.14) compared to not (49.77)
- Father's graduation status seems to have an effect on student performance
- Student scores tend to vary more for students with non-graduate parents (8.51) compared to graduates (8.08)

4.10 Distribution of "score" by Mother's Graduation Status

Scores by Mother Graduation Status

Figure 18: Distribution of student scores by mother's graduation status

- A similar pattern is present when it comes to the mother's graduation status
- Students have a higher average score when the mother has graduated college (55.02) compared to not (50.23)
- Mother's graduation status seems to have an effect on student performance

4.11 Distribution of "score" by Home Ownership

Scores by Home Ownership

Figure 19: Distribution of student scores by home ownership

- Student's average score is slightly higher for students that own their homes (51.40) compared to students that do not (48.55)
- The range of scores is larger for students that own their homes (43.86) compared to students that do not (38.18)
- Student scores are more dispersed for students that do not own their homes (8.99) compared to students that do (8.55)

4.12 Distribution of "score" by School Location

Scores by Urban School Area

Figure 20: Distribution of student scores based on whether the school is classified as urban

- Students that attend non-urban schools tend to have slightly higher scores on average (51.30) compared to urban (49.54)
- Range of scores is similar for both non-urban (42.03) and urban (42.41) school students
- Standard deviations are also similar for non-urban (8.61) and urban (8.88) school students

4.13 Distribution of "score" by Income Category

Scores by Income Category

Figure 21: Distribution of student scores based on income category

- Students that belong in the high-income category tend to score slightly higher (53.33) on average than students in the low-income category (49.90)
- Student scores are less dispersed for high-income students (8.33) compared to low-income (8.66)

5 Building the Linear Regression Model

In this section, we will be creating two Linear Regression models using the adjusted R-Squared method. One will contain the previously discussed features in the dataset and the other will include interaction terms created from our features.

5.1 Model 1: Adj. R-Squared Method

The adjusted R-squared selection method is a technique used to assess and compare the performance of regression models. It is an extension of the traditional R-squared metric that takes into account the number of predictors in a model and adjusts for the degrees of freedom.

		TI	he I	REG Pr	oce ODE					
N	Number of Observations Read 4739									
N	Number of Observations Used 4645									
N	Number of Observations with Missing Values 94									
Source	•	DF	S	ysis of \ Sum of Juares	Mean			lue	Pr > F	
Model		13	1	118299	9099.95629		181.58		<.0001	
Error		4631	2	232090		50.11654				
Correc	ted Total	4644	3	350389						
	Root MSE Dependent Mean		7.079 50.862		R-Squar Adj R-So		376 358			
	Coeff Va	г		13.918	49					

		Parameter	Estimates			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	22.61142	1.22402	18.47	<.0001	(
n_gender	1	1.12011	0.20942	5.35	<.0001	1.00692
n_ethnicity_hispanic	1	-3.64288	0.29287	-12.44	<.0001	1.2323
n_ethnicity_afam	1	-6.40597	0.30505	-21.00	<.0001	1.1815
n_fcollege	1	1.17342	0.29634	3.96	<.0001	1.3293
n_mcollege	1	1.03377	0.33904	3.05	0.0023	1.2539
n_home	1	0.79219	0.27677	2.86	0.0042	1.0409
n_urban	1	-0.65691	0.27076	-2.43	0.0153	1.2093
n_region	1	0.66473	0.32788	2.03	0.0427	1.5865
In_unemp	1	-0.69385	0.32711	-2.12	0.0340	1.1779
In_distance	1	-0.39033	0.09513	-4.10	<.0001	1.2342
wage	1	0.18382	0.08493	2.16	0.0305	1.2176
tuition	1	2.10226	0.42218	4.98	<.0001	1.8929
education	1	1.91055	0.06154	31.05	<.0001	1.1224

Figure 22: Linear Regression model with highest adj. R^2 value

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 $H_a:$ At least one coefficient $\beta_j \neq 0$

- This model has a total of 13 features (not including score).
- \bullet All of our features are statistically significant (p-value $<\!.05)$
- Our F-Statistic is 181.58, meaning our overall model as a whole is statistically significant in explaining the variation in the response variable (p-value <.0001)
- The model's \mathbb{R}^2 value is 0.3376 and adjusted \mathbb{R}^2 is 0.3358
- Root Mean Square Error is 7.07930
- \bullet The feature with the strongest predicting power is education (t-value=31.05, p-value<.0001)

• There is no presence of strong feature collinearity, as all of the VIF scores are below 10

5.2 Model 2: Adj. R-Squared Method w/ Interaction Terms

After adding multiple interaction terms to the model, the only added feature with a statistically significant effect was gender and education (p-value <.05). The addition of this interaction term made n_region non-statistically significant, so it was removed from this model.

Model w/ Interaction Terms The REG Procedure Model: MODEL1 Dependent Variable: score										
	Number of	473	39							
	Number of Observations Used 4									
	Number of Observations with Missing Values									
		Aı	naly	sis of \	/ar	iance				
Sour	ce	DF	_	Sum of quares		Mean Square	F Value		Pr > F	
Mode	el	13	1	118712 91		31.72642	182.53		<.0001	
Error		4631	2	231677		50.02736				
Corre	ected Total	4644	3	350389						
	Root MS	E		7.073	00	R-Squar	e 0.3	388		
	Depende	ent Me	an	50.862	58	Adj R-So	0.3	369		
	Coeff Va	r	13.90610							

		Parameter	Estimates			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	25.62291	1.43708	17.83	<.0001	0
n_gender	1	-4.54801	1.62344	-2.80	0.0051	60.61602
n_ethnicity_hispanic	1	-3.64071	0.29260	-12.44	<.0001	1.23237
n_ethnicity_afam	1	-6.47665	0.30326	-21.36	<.0001	1.16978
n_fcollege	1	1.17725	0.29572	3.98	<.0001	1.32618
n_mcollege	1	1.06954	0.33888	3.16	0.0016	1.25507
n_home	1	0.77973	0.27647	2.82	0.0048	1.04057
n_urban	1	-0.70337	0.26999	-2.61	0.0092	1.20465
In_unemp	1	-0.64048	0.32497	-1.97	0.0488	1.16462
In_distance	1	-0.39310	0.09500	-4.14	<.0001	1.23283
wage	1	0.19465	0.08449	2.30	0.0213	1.20708
tuition	1	1.59480	0.34614	4.61	<.0001	1.27472
education	1	1.71854	0.08154	21.08	<.0001	1.97412
n_gender_education	1	0.41019	0.11661	3.52	0.0004	61.66924

Figure 23: Linear Regression model with highest adj. R^2 value and added interaction terms

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 $H_a:$ At least one coefficient $\beta_j \neq 0$

- This model has a total of 13 features (not including score)
- \bullet All of our features are statistically significant (p-value $<\!.05)$
- Our F-Statistic is 182.53 with a p-value <.0001, meaning our overall model as a whole is statistically significant in explaining the variation in the response variable (greater than previous model)
- ullet The model's \mathbb{R}^2 value is 0.3388 and adjusted \mathbb{R}^2 is 0.3369 (greater than previous model)
- Root Mean Square Error is 7.0730 (less than previous model)
- The feature with the strongest predicting power is n_ethnicity_afam (t-value=-21.36, p-value <.0001)

• Although the interaction term has a VIF greater than 10, this is to be expected when including an interaction term in the model. In addition, it has statistical significance (p-value <0.05)

6 Final Model

After comparing both of our models on different metrics, our second model seems to be performing slightly better, with a larger F-Statistic, greater R^2 and adjusted R^2 and lesser Root Mean Square Error. We will further explore the performance of the model by analyzing its residuals.

6.1 Residual Analysis

Figure 24: Studentized residuals for the final model

The studentized residual of the model is normally distributed when plotted against the Normal Cumulative Distribution. Also, the studentized residual for the predicted variable does not have any strong patterns present and is randomly distributed. However, some residuals are greater than 3 standard deviations away from the center. These points could be outliers that are influencing our model output. We will check for outliers and influential points in the dataset.

6.2 Outliers and Influential Points

Figure 25: Outlier and leverage graph based on Student's R and Leverage

Our dataset contains quite a few records that have a studentized residual greater or lesser than 3 standard deviations from the center. In addition, a few data points have leverage greater than 0.006 (2p/n, p=14, n=4,739). These datapoints will be removed, leaving us with a total of 4,641 observations.

6.3 Final Model

Upon removing all outliers and influential points from the dataset, it was observed that the variables "wage" and "ln_unemp" exhibited no statistically significant relationship (p-value >.05). After removing these variables, we are left with 11 predictors.

 $H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$

 H_a : At least one coefficient $\beta_j \neq 0$

- This model has a total of 11 features (not including score)
- All of our features are statistically significant (p-value <.05)

The REG Procedure Model: MODEL1 Dependent Variable: score										
I	Num	ber of	0	bservati	on	s Read	46	41		
1	Num	ber of	s Used	46	41					
		Ana	aly	sis of V	ari	iance				
Source		DF		Sum of quares			F Value		Pr > F	
Model		11		119301	10846		218.34		<.0001	
Error		4629		229931	4	9.67188				
Corrected To	otal	4640		349232						
Root	Root MSE			7.0478	13	R-Squa	ire	0.341	6	
Depe	Dependent Mean			50.8608	0	Adj R-9	Sq 0.340		0	
Coeff	Coeff Var			13.85709						

		Parameter	Estimates			
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	26.12307	1.17467	22.24	<.0001	0
n_gender	1	-4.77839	1.61827	-2.95	0.0032	60.60326
n_ethnicity_hispanic	1	-3.75783	0.28808	-13.04	<.0001	1.20288
n_ethnicity_afam	1	-6.62754	0.29866	-22.19	<.0001	1.14129
n_fcollege	1	1.21624	0.29410	4.14	<.0001	1.32073
n_mcollege	1	1.03523	0.33773	3.07	0.0022	1.25360
n_home	1	0.76973	0.27530	2.80	0.0052	1.03795
n_urban	1	-0.67949	0.26904	-2.53	0.0116	1.20361
In_distance	1	-0.42244	0.09363	-4.51	<.0001	1.20433
tuition	1	1.69031	0.32288	5.24	<.0001	1.11606
education	1	1.72125	0.08125	21.19	<.0001	1.97139
n_gender_education	1	0.42977	0.11625	3.70	0.0002	61.64743

Figure 26: Linear Regression model with highest adj. R^2 value and added interaction terms

- Our F-Statistic is 218.34 with a p-value < .0001, much greater than any previous model
- The model's R^2 value is 0.3416 and adjusted R^2 is 0.34, which is also greater than the previous models
- Root Mean Square Error is 7.04783
- The feature with the strongest predicting power is n_ethnicity_afam (t-value=-22.19, p-value <.0001)

6.4 Parameter Estimates

- n_gender: Student score decreases by 4.77% when the student is male
- n_ethnicity_hispanic: Student score decreases by 3.76% when the student is Hispanic compared to other students (control group=n_ethnicity_other)
- \bullet n_ethnicity_afam: Student score decreases by 6.63% when the student is African American compared to other students
- n_fcollege: Student scores increases by 1.22% when the father is a graduate
- n_mcollege: Student score increases by 1.04% when the mother is a graduate
- n_home: Student score increases by 0.77% when their family owns their home
- n_urban: Student score decreases by 0.68% when the school is in an urban area
- ln_distance: Student score decreases by $(\exp(-0.42)-1)*100 = 34\%$ for each additional 10 miles in distance (1 unit=10 miles)

- tuition: Student score increases by 1.69% for every \$1000 in tuition
- education: Student score increases by 0.43% for each additional year of education when the gender is female (n_gender=0)
- n_gender_education: Student score increases by (1.72+0.43 =) 2.5% for each additional year of education when the gender is male $(n_gender=1)$

7 Training and Testing

Our dataset will be split into 80% training and 20% testing randomly.

7.1 Training Results

The REG Procedure Model: MODEL1 Dependent Variable: new_y											
	Number of	Number of Observations Read									
	Number of	ber of Observations Used									
	Number of	Number of Observations with Missing Values 928									
	Analysis of Variance										
Sour	rce	DF	Sc	juares Squar		Square	F Valu		Pr > F		
Mod	el	11		96093	87	35.74566	177.87		<.0001		
Erro	r	3701	1	181766		49.11278					
Corr	ected Total	3712	2	277860							
	Root MSE			.00805 R-Squ							
	Dependent Mean Coeff Var			50.934 13.758	-	Adj R-So	1 0.3	439			

	Par	ameter Estin	nates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	26.91073	1.30709	20.59	<.0001
n_gender	1	-5.49904	1.80205	-3.05	0.0023
n_ethnicity_hispanic	1	-3.93086	0.32012	-12.28	<.0001
n_ethnicity_afam	1	-6.68088	0.33371	-20.02	<.0001
n_fcollege	1	1.32230	0.32958	4.01	<.0001
n_mcollege	1	1.02021	0.37783	2.70	0.0070
n_home	1	0.77519	0.30642	2.53	0.0115
n_urban	1	-0.60327	0.29764	-2.03	0.0428
In_distance	1	-0.39660	0.10398	-3.81	0.0001
tuition	1	2.04264	0.35933	5.68	<.0001
education	1	1.64287	0.09051	18.15	<.0001
n_gender_education	1	0.49191	0.12938	3.80	0.0001

Figure 27: Linear Regression model model results on training set

- Our F-Statistic for the training data is 177.87 with a p-value < .0001
- The model's \mathbb{R}^2 value is 0.3458 and adjusted \mathbb{R}^2 is 0.3439
- Root Mean Squared Error is 7.00805

7.2 Testing Results

Figure 28: Linear Regression model model results on testing set

- Root Mean Squared Error= 7.21779
- $R^2 = \hat{p}^2 = 0.32246498$
- CV R^2 = 0.3458 0.32246498= 0.02333502

Our model is performing equally well on the testing set as on the training set. RMSE and R^2 do not wildly differ from each other in both cases, meaning the model is not overfitting the training data.

7.3 Testing Model on New Records

After training and testing the model on the previous dataset, we will create some new records and see how the model performs on previously unseen data.

Obs	n_gender	n_ethnicity_hispanic	n_ethnicity_afam	n_fcollege	n_mcollege	n_home	n_urban	In_distance	tuition	education	n_gender_education
1	1	1	0	1	0	1	0	-0.92000	0.86	11	12
2	0	0	1	0	0	1	1	1.02000	0.72	10	0
3	1	0	1	0	0	0	0	1.30000	0.68	12	12

Figure 29: New records manually created to test the model

Testing Model

The REG Procedure Model: MODEL1 Dependent Variable: new_y

	Output Statistics												
Obs	Dependent Variable		Std Error Mean Predict	95% CL Mean		95% CL	Residual						
1		45.6744	0.5128	44.6690	46.6797	31.8976	59.4511						
2		37.8967	0.5139	36.8891	38.9042	24.1197	51.6736						
3		41.2216	0.4571	40.3253	42.1179	27.4524	54.9908	-					

Figure 30: Testing model performance on new unseen records

- Obs. 1: Predicted= 45.6744, CI= [31.8976, 59.4511]
- Obs. 2: Predicted= 37.8967, CI= [24.1197, 51.6736]
- Obs. 3: Predicted= 41.2216, CI= [27.4524, 54.9908]