What is SQL?

SQL (**Structured Query Language**) is a standard programming language used to manage and manipulate **relational databases**. It allows users to create, retrieve, update, and delete data efficiently. SQL follows a structured syntax and works with **Relational Database Management Systems (RDBMS)** like MySQL, PostgreSQL, SQL Server, and Oracle.

Key Features of SQL:

- Easy to learn and use
- Supports large databases
- Provides powerful query capabilities
- Ensures data integrity and security
- Supports transactions and stored procedures

Importance of SQL in Databases

SQL is essential for managing data stored in relational databases. Its importance includes:

- 1. **Efficient Data Management** Enables storing, retrieving, and modifying large datasets efficiently.
- 2. **Data Integrity & Security** Ensures data consistency using constraints (PRIMARY KEY, FOREIGN KEY).
- 3. **Multi-User Access** Allows concurrent data access by multiple users.
- 4. **Data Analytics** Used for generating reports and analyzing business data.
- 5. **Integration with Applications** Works with programming languages like Java, Python, PHP, etc.

SQL vs. NoSQL Databases

SQL databases and NoSQL databases serve different purposes in data management.

Feature	SQL (Relational DB)	NoSQL (Non-Relational DB)
INTRICTURE	Structured (Tables with Rows & Columns)	Unstructured or Semi-Structured (JSON, Key-Value, Document-based)
Schema	Predefined Schema (Fixed structure)	Dynamic Schema (Flexible structure)
Scalability	0 ,	Horizontal Scaling (Distributing data across multiple servers)
Query Language	SQL (Standardized)	Varies (MongoDB Query Language, Cassandra CQL, etc.)
Examples	MySQL, PostgreSQL, Oracle, SQL Server	MongoDB, Cassandra, Redis, Firebase

When to Use SQL?

- Structured, consistent data
- Complex queries and relationships

When to Use NoSQL?

- Large, rapidly changing datasets
- High scalability needs (e.g., real-time applications)

Types of SQL Commands

SQL commands are divided into five categories:

1. DDL (Data Definition Language) – Defines the structure of the database

DDL commands modify database objects like **tables**, **schemas**, **and indexes**.

Command	Description	
CREATE	Creates new databases, tables, views, or indexes.	
ALTER	Modifies an existing database object (add/remove columns).	
DROP	Deletes a database, table, or other objects permanently.	
TRUNCATE	Removes all records from a table but keeps its structure.	

Example

```
CREATE TABLE Employees (
EmpID INT PRIMARY KEY,
Name VARCHAR(50),
Salary DECIMAL(10,2)
);
```

2. DML (Data Manipulation Language) - Modifies the data in tables

DML commands deal with **inserting**, **updating**, **and deleting records**.

Command	Description
INSERT	Adds new records into a table.
UPDATE	Modifies existing records.
DELETE	Removes specific records from a table.

Example

```
INSERT INTO Employees (EmpID, Name, Salary) VALUES (101, 'Alice',
50000.00);

UPDATE Employees SET Salary = 55000.00 WHERE EmpID = 101;

DELETE FROM Employees WHERE EmpID = 101;
```

3. DQL (Data Query Language) – Retrieves data from the database

DQL consists of the **SELECT** statement, used to query data from tables.

Command	Description
SELECT	Retrieves data from a table.

Example

```
SELECT * FROM Employees; -- Fetch all records
```

SELECT Name, Salary FROM Employees WHERE Salary > 40000; -- Fetch specific columns with condition

4. TCL (Transaction Control Language) – Manages database transactions

TCL commands **ensure data consistency** in case of errors or failures.

Command	Description
COMMIT	Saves all changes made in the current transaction.
ROLLBACK	Undoes changes made in the current transaction.
SAVEPOINT	Creates a checkpoint to partially roll back a transaction.

Example

```
BEGIN TRANSACTION;
UPDATE Employees SET Salary = 60000 WHERE EmplD = 102;
SAVEPOINT save1;
```

```
UPDATE Employees SET Salary = 65000 WHERE EmpID = 103;
ROLLBACK TO save1; -- Undo only the second update
COMMIT; -- Finalize the transaction
```

5. DCL (Data Control Language) – Manages user permissions

DCL commands control access to database objects.

Command	Description
GRANT	Provides specific privileges to users.
REVOKE	Removes granted privileges from users.

Example

GRANT SELECT, INSERT ON Employees TO user1; -- Grant privileges
REVOKE INSERT ON Employees FROM user1; -- Revoke privileges

SQL is essential for working with relational databases. It consists of different types of commands:

- **DDL** for defining structure
- **DML** for modifying data
- **DQL** for querying data
- TCL for managing transactions
- **DCL** for controlling permissions