

Prof. Dr. M. Grohe

E. Fluck, N. Runde

Exercise 1 (Frequency Moments and Tug-Of-War) 3+4+1+3+1+2=14 points

Consider the following stream of data elements over the universe $\mathbb{U} = \{1, 2, \dots, 9\}$:

$$\mathbf{a} = 1, 4, 4, 1, 5, 3, 8, 2, 2, 1, 5.$$

- a) Compute $F_0(\mathbf{a})$, $F_1(\mathbf{a})$ and $F_2(\mathbf{a})$.
- b) Assume we run the AMS-Estimator (slide 8.36) on **a** and evaluate the variables at the end of the while loop (after line 8). Complete the following table with suitable values:

i	1	2	3	4	5	6	7	8	9	10	11
a_i	1			1							
\overline{a}	1										2
\overline{r}	1		2				2				2

- c) What is the estimated result for $F_2(\mathbf{a})$ returned by the AMS-Estimator in b)?
- d) What is the result x^2 returned by the Tug-of-War estimator on **a** if the randomly chosen hash function is given by

- e) Is there a hash function $h': \mathbb{U} \to \{-1, 1\}$ such that Tug-of-War returns a better (i. e. closer) estimate for F_2 than it does in part d)? If yes, give such a hash function. If no, argue why not.
- f) Now think of any stream b with n elements, of which m are distinct. What are the minimum and maximum possible values of $F_2(b)$ (as a function of m and n).

Solution:

- a) We have $F_0(\mathbf{a}) = 6$, $F_1(\mathbf{a}) = 11$ and $F_2(\mathbf{a}) = 9 + 4 + 1 + 4 + 4 + 0 + 0 + 1 + 0 + 0 = 23$.
- **b)** The second row a_i is given by the stream.

i	1	2	3	4	5	6	7	8	9	10	11
$\overline{a_i}$	1	4	4	1	5	3	8	2	2	1	5
\overline{a}	1										2
\overline{r}	1		2				2				2

The remaining values are enforced by:

• having to choose a = 2 at i = 8 (otherwise we can't have a = 2 and r = 2 at i = 11).

Prof. Dr. M. Grohe E. Fluck, N. Runde

- having to choose a = 4 at i = 2 (otherwise we can't have r = 2 at i = 3)
- having to not change a=4 until i=8 (otherwise we can't have r=2 at i=7)

This is the resulting table:

i	1	2	3	4	5	6	7	8	9	10	11
a_i	1	4	4	1	5	3	8	2	2	1	5
\overline{a}	1	4	4	4	4	4	4	2	2	2	2
\overline{r}	1	1	2	2	2	2	2	1	2	2	2

- c) We choose k = 2 and return $11 \cdot (2^2 1^2) = 33$.
- **d)** We first need to compute $x = \sum_{i \in [11]} h(a_i) = 1 + 1 + 1 + 1 1 1 + 1 + 1 + 1 + 1 1 = 5$. The the Tug-Of-War estimator return $x^2 = 25$.
- e) We return a value of the form x^2 where x is an integer and 25 is the closest square number to 23, so there can't be a hash function that returns a closer estimate.
- f) For the maximum second moment, we pick (m-1)-many elements just once each and the remaining one element (n-m+1) times. This gives us the function

$$1 \cdot (n-m+1)^2 + (m-1) \cdot 1^2$$
.

For the minimum second moment, we want to distribute the elements as evenly as possible: $(n \mod m)$ -many elements of size $\lceil n/m \rceil$, and the remaining elements of size $\lceil n/m \rceil$ (i.e. one smaller in size). This gives us the function

$$(n \mod m) \cdot \lceil n/m \rceil^2 + (m-n \mod m) \cdot \lceil n/m \rceil^2$$
.

Prof. Dr. M. Grohe E. Fluck,

Exercise 2 (Improve the Probability)

6 points

Consider an algorithm $\mathfrak{A}(h)$ that uses a (truly) random hash function $h \in \mathcal{H}$ and gives an estimate $\hat{x} = \mathfrak{A}(h)$ of the true value x of some variable. Suppose that:

$$\Pr_{h \in \mathcal{H}}(\frac{x}{4} \le \hat{x} \le 4x) \ge 0.6.$$

The probability of the estimate is with respect to choice of the hash function. How would you compute an estimate x' that has an improved probability of:

$$\Pr(\frac{x}{4} \le x' \le 4x) \ge 0.8?$$

Hint: Since we do not know the variance, taking the **average** of multiple runs may not help.

Solution:

Let us choose some k and run the algorithm k' := 2k - 1 times with k' different random hash functions that are drawn independently. Let $\hat{x}_1, ..., \hat{x}'_k$ be the sorted resulting estimations. Return the median $x' := \hat{x}_k$ as the new estimation.

We can follow the proof for the Approximation Guarantee on Page 8.31 to find that $58.06 \le k$.

Alternatively we can calculate a simple and better bound by hand:

Now let us assume that the new estimate x' is not within the range $\frac{x}{4} \le x' \le 4x$. This means we must have sampled a hash function h such that \hat{x} is outside of this range at least $\frac{k'+1}{2}$ times (otherwise the median is in the range).

Conversely, if we sample outside of the range $i < \frac{k'+1}{2}$ times, then the returned estimator x' is clearly also within the range $\frac{x}{4} \le x' \le 4x$. The probability for this is at least:

$$\Pr(\frac{x}{4} \le x' \le 4x) \ge \sum_{i=0}^{\frac{k'-1}{2}} {k' \choose i} \cdot 0.4^{i} \cdot 0.6^{(k'-i)}$$

For k' = 17 or k = 9 we have $\Pr(\frac{x}{4} \le x' \le 4x) \ge 0.801$.

Logic and Theory of Discrete Systems

Prof. Dr. M. Grohe E. Fluck, N. Runde

Exercise 3 (Minimum Memory for Distinct Elements Approximation) 0 points

Show that any deterministic algorithm that even guarantees to **approximate** the number of distinct elements in a data stream over universe $\mathbb{U} = \{1, ..., m\}$ with error less than $\frac{m}{16}$ must use $\Omega(m)$ bits of memory. This is even the case for data streams of length less than 2m.

Hint: There is a constant c > 0, for which it is possible to create 2^{cm} subsets of $\{1, ..., m\}$, each with m/2 elements, such that no two of the subsets have more than 3m/8 elements in common. You can use this fact without proving it.

Solution:		

Let \mathfrak{S} be the set of 2^{cm} subsets of $\{1, ..., m\}$, each with m/2 elements, such that no two of the subsets have more than 3m/8 elements in common (as given by the hint). We denote the sets by $S_i \in \mathfrak{S}$ and we define the stream s_i as a stream containing every element in S_i exactly once in ascending order.

We now show that any algorithm with a guaranteed error of less than $\frac{m}{16}$ needs to use at least 2^{cm} distinct states and therefore memory of at least $c \cdot m$ bits.

Assume we use less than $c \cdot m$ bits. Then there are two sets $S_1, S_2 \in \mathfrak{S}$, such that after reading the streams s_1 and s_2 we end in the same state. Now consider appending these streams by s_1 . Then the resulting streams $s_1 \cdot s_1$ and $s_2 \cdot s_1$ end in the same state and we return the same result y for both streams. By definition of the sets, s_1s_1 has exactly $y_1 = m/2$ distinct elements and s_2s_1 has at least $y_2 \geq m/2 + m/8$ distinct elements. This is because the two sets S_1 and S_2 differ in at least m/8 elements. The streams have a length of $2 \cdot m/2 = m$ elements.

Now assume the errors are $|y_1 - y| < m/16$ and $|y_2 - y| < m/16$, then $|y_1 - y_2| < m/8$. We know from the construction of the strings that $|y_1 - y_2| \ge m/8$, which leads to a contradiction.

Therefore we show that the algorithm must be able to distinguish between at least 2^{cm} different states (representing the 2^{cm} sets) and therefore must use at least $\log(2^{cm}) = cm$ bits, which can be written as $\Omega(m)$ bits.