Introduction to Theories of Failure

ME 210: MECHANICS OF MATERIALS

SAPPINANDANA AKAMPHON

DEPARTMENT OF MECHANICAL ENGINEERING, TSE

1 Material Failure

2 Fracture & Yield

3 Fatigue

4 Buckling

MATERIAL FAILURE

- Conditions in which materials lose its load-carrying capacity
- 3 most prevalent failure modes
 - Fracture & Yield excessive stress causing molecular bond breakdown
 - ► Fatigue cumulative damage through repeated loadings
 - Buckling geometric instability from compressive load

OUTLINE

- 1 Material Failure
- 2 Fracture & Yield

- 3 Fatigue
- 4 Buckling

FRACTURE & YIELD

- Sufficiently high stress to overcome intermolecular bonds
- Under uniaxial stress, a material fails when
- Brittle material broken molecular bond leads to material separation Fracture
- Ductile material surface slip Yield

FRACTURE

- Material separation usually perpendicular to the direction of stress – predicted by normal stress
- Where or what is the maximum normal stress in a given material? $-\sigma_1$ and σ_2

MAXIMUM NORMAL STRESS THEORY

- In a nutshell: Determine if the maximum tensile and compressive stresses go beyond limit.
- What is the limit?

For
$$\sigma_1 > \sigma_2$$

$$\sigma_1 \leq S_{ut}$$

$$\sigma_2 \leq S_{uc}$$

DESIGN EQUATION FOR MNST

EXAMPLE: THE MANY MODES OF CHALK FRACTURE

■ How do you think a blackboard chalk would break under axial load? bending? torsion?

EXAMPLE: BRITTLE SHAFT UNDER TORSION

■ Determine maximum T when S_{ut} = 100 MPa and S_{uc} = 200 MPa

YIELD

- Surface slip from material shearing predicted by shear stress
- Two prevalent methods of determining yield
- Maximum Shear Stress Theory (MSST or Tresca criteria)
- Maximum Distortion Energy Theory (MDET or Von Mises criteria)

MAXIMUM SHEAR STRESS THEORY: YIELD UNDER UNI-AXIAL STRESS

- The maximum shear stress in material cannot exceed max shear under uniaxial stress at yield what?
- Under uniaxial stress, ductile material still fails due to shear stress, which can be derived as

$$\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tau_{max} = \frac{S_y}{2}$$

MAXIMUM SHEAR STRESS THEORY: SMALL SHEAR?

- What if material is in a state such that shear stress is small? Oh? Like how?
- \blacksquare When $|\sigma_x \sigma_v|$ and τ_{xv} are small
- \blacksquare In that case, normal stresses cannot exceed S_v

$$\sigma_{1,2} < S_y$$

MAXIMUM SHEAR STRESS THEORY: IN SUMMARY

Combining the cases

$$\tau_{max} \le \frac{S_y}{2}$$

$$\sigma_{1,2} \le S_y$$

DESIGN EQUATION FOR MSST

EXAMPLE: DUCTILE SHAFT UNDER TORSION

- Determine maximum T when S_v = 100 MPa
- Compare to brittle shaft problem

DISTORTION ENERGY THEORY: CRITERIA

- A deformed material has two types of strain energy
- Dilatation strain energy → change in volume
- Distortion srain energy → change in shape → ductile failure
- Criteria for failure: distortion strain energy equal to that during uniaxial stress yield

MAXIMUM DISTORTION ENERGY THEORY: IN SUMMARY

Material will fail when

$$\sigma_e = S_v$$

lacktriangle where σ_e is the equivalent stress

$$\begin{split} & [\cdot]_e = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \\ & = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2} \end{split}$$

DESIGN EQUATION FOR MDET

COMPARISON BETWEEN DIFFERENT CRITERIA

OUTLINE

1 Material Failure

- 2 Fracture & Yield
- 3 Fatigue
- 4 Buckling

FATIGUE

- Failure of material based on repeated or fluctuating loads
- Smaller than ultimate tensile stress
- Crack starts small and grows increasingly fast as load is repeated

REPEATED LOADING

- Much like a periodic function, there are mainly two important features of a repeated loading concerning fatigue
- $\blacksquare \text{ Stress amplitude } \sigma_a = \frac{\sigma_{\max} \sigma_{\min}}{2}$
- Mean (average) stress $\sigma_m = \frac{\sigma_{\text{max}} + \sigma_{\text{min}}}{2}$

TESTING FOR FATIGUE

S-N or Endurance Diagram

ENDURANCE LIMIT OR FATIGUE LIMIT

Endurance limit is the maximum stress amplitude for which the part will last 10⁷ cycles
For steel

Bending:
$$S_e \approx 0.5S_{ut}$$

Axial: $S_e \approx 0.45S_{ut}$
Torsion: $S_e \approx 0.29S_{ut}$

Aluminum does not have endurance limit (is that a good thing?)

LOW CYCLE FATIGUE (N < 1000)

■ Steel parts will last for ≈ 1000 cycles if the applied stress amplitude is

Bending: $S_l \approx 0.9S_{ut}$ Axial: $S_l \approx 0.75S_{ut}$ Torsion: $S_l \approx 0.72S_{ut}$

HIGH CYCLE FATIGUE $(10^3 < N < 10^6)$

lacksquare Steel parts will last for about N cycles if fatigue stress σ_a

$$\sigma_a = 10^c N^b$$

$$b = -\frac{1}{3} \log \frac{S_l}{S_e}$$

$$c = \log \frac{S_l^2}{S_e}$$

EXAMPLE: BAR UNDER CYCLIC AXIAL LOAD

A bar is made of steel with S_{ut} = 300 MPa and is cyclically loaded axially between -200 and 200 MPa. Determine the useful life of this bar.

MODIFIED ENDURANCE LIMIT

 Experiments find that endurance limits of materials vary due to their conditions

$$S'_e = K_f K_s K_t S_e$$

 $K_f = \text{finishing factor}$
 $K_s = \text{size factor}$
 $K_t = \text{thermal factor}$

FATIGUE FAILURE WITH NONZERO AVERAGE STRESS

- $N_1 > N_2?$
- By how much?

AVERAGE STRESS CORRECTION EQUATIONS

Soderberg relation

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{N_s}$$

■ Gerber relation

$$\frac{\sigma_a}{S_e} + \left(\frac{\sigma_m}{S_{ut}}\right)^2 = \frac{1}{N_s}$$

■ Goodman relation

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{N_s}$$

These are called constant life lines.

AVERAGE STRESS CORRECTION COMPARISON

EXAMPLE: BAR UNDER NONZERO AVERAGE STRESS

A cylindrical rod under a periodic tensile load between 0 and 8000 N. Material of the rod has S_y = 427 MPa S_{ut} = 748 MPa. Determine the suitable diameter of the rod. Use Soderberg relation.

OUTLINE

1 Material Failure

- 2 Fracture & Yield
- 3 Fatigue
- 4 Buckling

WHAT IS BUCKLING?

- Failure due to instability of column under compressive load
- Restoring moment < moment from compressive load

GOVERNING EQUATION OF BUCKLING

$$M(x) = -Pv$$

$$EI\frac{d^2v}{dx^2} = -Pv$$

$$\frac{d^2v}{dx^2} + \left(\frac{P}{EI}\right)v = 0$$

SOLVING FOR BUCKLING

The generalized solution takes the form

$$v(x) = A\cos\sqrt{\frac{P}{EI}}x + B\sin\sqrt{\frac{P}{EI}}x$$

Solving for A and B, we know that v(0) = 0 and v(L) = 0

$$v(0) = 0 = A\cos 0 + B\sin 0$$
$$A = 0$$

BORING SOLUTION

$$v(L) = 0$$

$$B \sin \sqrt{\frac{P}{EI}} L = 0$$

$$B = 0$$

$$v(x) = 0 \rightarrow trivial solution$$

The solution is correct, but not helpful in determining the load *P* So what's the interesting solution then?

Interesting Solution

Ok, so B can't be o, which means

$$\sin \sqrt{\frac{P}{EI}}L = 0$$

$$\sqrt{\frac{P}{EI}}L = n\pi$$

$$P = \frac{n^2\pi^2EI}{L^2}, n = 1, 2, ...$$

Now this is so much more helpful and interesting.

CRITICAL LOAD AND CORRESPONDING MODE SHAPE

For
$$n = 1$$

$$P_{crit} = \frac{\pi^2 EI}{L^2}$$

This is called *Euler load* or *Critical load*. What does the corresponding buckled column look like?

$$v(x) = B \sin \sqrt{\frac{P}{EI}} x = B \sin \frac{n\pi x}{L}$$

MODE SHAPES FOR BUCKLED COLUMNS

Figure 18.2 Modes of buckling of a pin-ended strut.

BUCKLING IN FIXED - FREE SUPPORTS

$$M = P(\delta - v)$$

$$EI\frac{d^2v}{dx^2} = P(\delta - v)$$

$$\frac{d^2v}{dx^2} + \frac{P}{EI}v = \frac{P}{EI}\delta$$

GOVERNING DIFFERENTIAL EQUATION SOLUTION

This equation is nonhomogeneous → the solution consists of both a complementary and particular solutions.

$$v = C_1 \sin\left(\sqrt{\frac{P}{EI}}x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}}x\right) + \delta$$

Solving for constants of integration using v(x = 0) = 0 and $v(x = L) = \delta$, we have that

$$\delta\cos\left(\sqrt{\frac{P}{EI}}L\right)=0$$

The nontrivial solution indicates that

$$\cos\left(\sqrt{\frac{P}{EI}}L\right) = 0$$
$$\sqrt{\frac{P}{EI}}L = \frac{(2n+1)\pi}{2}$$

The smallest critical load (n = 0) is

$$P_{cr} = \frac{\pi^2 E I}{4L^2}$$

GENERALIZED CRITICAL LOAD

$$P_{cr} = \frac{\pi^2 E I}{L_e^2}$$
$$L_e = KL$$

L_e = effective lengthK = constant depending on supports

BUCKLING IN OTHER TYPES OF SUPPORTS

End condition description	Both ends pinned	One end pinned and one end fixed	Both ends fixed	One end fixed and one end free
Illustration of end condition	$l = l_e$ P $l = l_e$ P	P \downarrow $l_e = 0.7l$ \uparrow P	$ \begin{array}{c} P \\ \downarrow \\ l_e = 0.5l \end{array} $	P $l_e = 2l$
Theoretical effective column length	$l_e = l$	$l_e = 0.7l$	$l_e = 0.5l$	$l_e = 2l$
AISC (1989)– recommended effective column length	$l_e = l$	$l_e = 0.8l$	$l_e = 0.65l$	$l_e = 2.1l$

SLENDERNESS RATIO λ

■ How slender is a column?

$$\lambda = \frac{KL}{r_g}$$

where r_g = radius of gyration = $\sqrt{\frac{I}{A}}$

$$\sigma_{cr} = \frac{P_{cr}}{A}$$
$$= \frac{\pi^2 EI}{AL_e^2}$$
$$= \frac{\pi^2 E}{\lambda^2}$$

BUCKLING DESIGN EQUATION

$$\begin{split} P_{allow} &= \frac{P_{cr}}{N_s} = \frac{\pi^2 EI}{N_s L_e^2} \\ \sigma_{allow} &= \frac{\sigma_{cr}}{N_s} = \frac{\pi^2 E}{N_s \lambda^2} \end{split}$$

Example: Buckling of a Railroad Track in the Sun

- What parameters do we need to determine required ΔT to cause buckling?
- *E*, *A*, *I*, *L*?
- **α**?