- 1. Αντίθετοι αριθμοί:
- 2. Αντίστροφοι αριθμοί:

3.
$$\alpha\beta = 0 \Leftrightarrow$$

4.
$$\alpha\beta \neq 0 \Leftrightarrow$$

5.
$$\alpha^2=0 \Leftrightarrow$$

6.
$$\alpha^2 + \beta^2 = 0 \Leftrightarrow$$

7.
$$\alpha^2 + \beta^2 \neq 0 \Leftrightarrow$$

Εισαγωγή στην διάταξη...

- 1. Πότε ένας αριθμός είναι μεγαλύτερος από έναν άλλον;
- 2. Έστω $\alpha, \beta \in \mathbb{R}$ και $\alpha > 0$ και $\beta > 0$ τότε τι μπορούμε να συμπεράνουμε για το άθροισμά τους;
- 3. Έστω $\alpha, \beta \in \mathbb{R}$ και $\alpha < 0$ και $\beta < 0$ τότε τι μπορούμε να συμπεράνουμε για το άθροισμά τους;
- 4. Έστω α, $\beta \in \mathbb{R}$ και $\alpha < 0$ και $\beta < 0$ τότε τι μπορούμε να συμπεράνουμε για το άθροισμά τους
- 5. Αν α, β ομόσημοι τότε τι συμβαίνει με το γινόμενό τους;
- 6. Αν α, β ετερόσημοι τότε τι συμβαίνει με το γινόμενό τους;
- 7. Πολλαπλασιάζω με $\gamma > 0$ μια ανισοτική σχέση $\alpha < \beta$
- 8. Πολλαπλασιάζω με $\gamma < 0$ μια ανισοτική σχέση $\alpha < \beta$
- 3. Ισχύουν:
 - $(\alpha > \beta \ \kappa \alpha \iota \ \gamma > \delta) \Rightarrow \alpha + \gamma > \beta + \delta$
 - Για θετικούς αριθμούς α, β, γ, δ ισχύει η συνεπαγωγή:

$$(\alpha > \beta \ \kappa \alpha \iota \ \gamma > \delta) \Rightarrow \alpha \cdot \gamma > \beta \cdot \delta$$

4. Για θετικούς αριθμούς α , β και θετικό ακέραιο ν ισχύουν οι ισοδυναμίες:

$$\alpha > \beta \iff \alpha^{\nu} > \beta^{\nu}$$
 $\kappa \alpha \iota$ $\alpha = \beta \iff \alpha^{\nu} = \beta^{\nu}$

Στις ιδιότητες των ανισοτήτων έχει πολύ σημασία το πρόσημο. Αν δεν ισχύει ότι $\alpha, \beta > 0$ τότε δεν ισχύει η παραπάνω ιδιότητα:

ΔΕΝ επιτρέπεται αφαίρεση και διαίρεση κατά μέλη ανισοτήτων

- ightharpoonup Παράδειγμα με αφαίρεση: για 5 < 10 και 1 < 8 τότε 5 1 < 10 8 \Leftrightarrow 4 < 2 που είναι ΛΑΘΟΣ!
- ightharpoonup Παράδειγμα με διαίρεση: για 6 < 10 και 5 < 5 τότε 6 2 < 10 5 \Leftrightarrow 3 < 2 που είναι ΛΑΘΟΣ!