

17202

21314

2 Hours/50 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions: (1) All questions are compulsory.

- (2) **Illustrate** your answers with neat sketches **wherever** necessary.
- (3) Figures to the **right** indicate **full** marks.
- (4) **Assume** suitable data, if **necessary**.

MARKS 1. Attempt any nine: 18 a) Define: 2 i) Uniform velocity ii) Uniform acceleration. b) Write any two points to distinguish between work and energy. 2 c) State any two different NDT methods that are used in industries. 2 2 d) Define range of projectile. State formula with symbol meaning. 2 e) State any two properties of ultrasonic waves. 2 f) State any two points of difference between Seebeck's effect and peltier effect. g) How can you increase thermo emf using different metals in thermoelectric 2 series? Give one example. h) State two properties of photon. 2 i) The photo electric work function of a photo sensitive material is 3×10^{-19} J. Calculate its threshold wavelength. 2 i) Write two properties of X-rays. 2 k) Draw neat labelled diagram of Coolidge X-ray tube. 2 I) State two remarkable properties of LASER. 2

17202

		Ma	RKS
2.	At	tempt any four:	16
	a)	A vehicle covers 60 m in the 3 rd second and 100 m in 7 th second during its motion. Calculate the acceleration and distance travelled in 10 th second.	4
	b)	A bullet of weight 0.98 N is fired with a velocity of 400 m/s horizontally in a wooden block weighing 50 N resting on horizontal surface. If the bullet remains embedded in the block, calculate velocity of block after impact.	4
	c)	Distinguish between centripetal and centrifugal force.	4
	d)	Compare between LPT and UT method on the basis of principle of working, advantages, disadvantages and probing medium.	4
	e)	Explain the production of ultrasonic waves using piezoelectric method.	4
	f)	State four limitations of NDT.	4
3.	At	tempt any four :	16
	a)	i) State Joule's law. Give its equation.	
		ii) Calculate the amount of heat generated when a current of 2A flows for 5 minutes through a resistance of 5.2Ω (f = 4200 J/Kcal).	4
	b)	Explain variation of thermo emf with temperature of junctions. Define neutral temperature and inversion temperature.	4
	c)	Define:	
		i) Threshold frequency	
		ii) Threshold wavelength	
		iii) Work function	
		iv) Stopping potential.	4
	d)	State engineering and scientific applications of X-rays.	4
	e)	What is population inversion? State four methods of pumping.	4
	f)	A fly wheel rotating at 800 r.p.m. accelerates to 2000 r.p.m. in 10 minutes. Calculate the uniform acceleration and the angular displacement within the given period.	4
