소개

Preview

- 에이다의 통찰
 - ... 해석 엔진은 숫자 이외 것도 처리할 수 있을 것이다. ... 예를 들어 화음과 음조를 해석 엔진의 표기에 맞출 수 있다면 해석 엔진은 꽤 복잡한 곡을 작곡할 수도 있다. [Ada1843]

- 180여년이 지난 현재 인공지능
 - 알파고가 이세돌을 이김
 - 자율주행차가 도로를 질주
 - 작곡하는 마젠타 프로젝트 [http://magenta.tensorflow.org]-[Try the Demos]-[Magenta.js]
- 이 책과 함께 인공지능 세계로 쑤~욱!
 - 인공지능을 만드는데 쓸 수 있는 훌륭한 소프트웨어가 무료,
 - 초보자도 쉽게 프로그래밍할 수 있는 편리한 인터페이스

1.1 지능이란?

- 긴 지능 스펙트럼([그림 1-1])
 - 돌멩이는 지능이 없음: 스스로 움직이지도 못하고 목적 의식도 없음
 - 바이메탈은 온도에 따라 움직이고 온도 조절이라는 뚜렷한 목적 → 바이메탈은 지능이 있나? 바이메탈을 부착한 다리미는 지능형 다리미인가?
 - 생물의 지능
 - 꼬마선충 → 개미 → 사람 → 천재
- 알파고는 어디에 위치하나?
 - 바둑에서 아인슈타인을 이기니까 아이슈타인의 오른쪽?
 - 바둑만 둘 줄 아니 개미의 왼쪽?

그림 1-1 지능 스펙트럼

1.2 인공지능을 바라보는 관점

- 다양한 관점
 - 긍정에서 부정까지
 - 기대부터 우려까지

■ 이 절에서는 객관적인 시각으로 인공지능을 바라봄

1.2.1 인공지능에 대한 정의

- <표준국어대사전> https://stdict.korean.go.kr/
 - 지능: 계산이나 문장 작성 따위의 지적 작업에서, 성취 정도에 따라 정하여지는 적응 능력
 - 인공지능: 인간의 지능이 가지는 학습, 추리, 적응, 논증 따위의 기능을 갖춘 컴퓨터 시스템
- 『Artificial Intelligence: Foundations of Computational Agents』(Poole 저, 2017)
 - 인공지능: the field that studies the synthesis and analysis of computational agents that act intelligently 지능적으로 행동하는 계산 에이전트를 만들고 분석하는 학문 분야
- 강한 인공지능 vs. 약한 인공지능
 - 강한 인공지능
 - 다양한 지능의 복합체(예, 터미네이터에 등장하는 인조인간)
 - 약한 인공지능
 - 한가지 지능에 특화된 인공지능(현재 인공지능 제품들, 인공지능 스피커, 언어 번역기, 영상 인식기, 알파고 등)

1.2.2 충돌하는 관점

- 앨런 튜링의 튜링 테스트
 - Can machines think?
 - 튜링 테스트를 통과한 기계는 생각한다고 간주해도 된다(튜링의 주장)
- 철학자 존 설의 중국인의 방
 - 컴퓨터 프로그램은 중국어 질문을 전혀 이해하지 못한 채 튜링 테스트를 통과할 수 있음→ 튜링 테스트를 통과해도 생각한다고 말하면 안 됨

그림 1-2 튜링 테스트

- 많은 이야기
 - 퍼셉트론과 신경망
 - 인공지능 언어
 - 두번의 인공지능 겨울
 - 인공지능 게임 프로그램
 - 자율주행차의 발전
 - 딥러닝의 시대의 도래

- 위키 백과
 - "history of artificial intelligence" 또는 "Timeline of artificial intelligence"로 검색

표 1-1 인공자능의 역사

1843	• 에이다가 「··· 해석 엔진은 꽤 복잡한 곡을 작곡할 수도 있다」라는 논문 발표	
1946	• 세계 최초의 범용 디지털 컴퓨터 에니악 탄생	
1950	• 인공자능 여부를 판별하는 튜링 테스트 제안	
1956	• 최초의 인공지능 학술대회인 다트머스 컨퍼런스 개최. '인공 지능' 용어 탄생	▲ 다트머스 컨퍼런스 참석자
1958	• 로젠블랫이 퍼셉트론 제안 • 인공지능 언어 Lisp 탄생	C Deliver of the second of th

1959	• 사무엘이 기계 학습을 이용한 체커 게임 프로그램 개발	
1965	• 자데가 퍼지 이론 발표	
1966	• 세계 최초의 챗봇 엘리자 공개	
1968	• 공간 탐색 알고리즘 A* 발표	
1969	• 민스키가 "Perceptrons』에서 퍼셉트론의 과대포장 지적. 신경망 퇴조 시작 • 1회 IJCAI(International Joint Conference on Artificial Intelligence) 학술대회 개최	
1972	• 인공지능 언어 Prolog 탄생 • 스탠퍼드 대학교에서 마이신 전문가 시스템 개발 시작	
1973	• 라이트힐 보고서를 계기로 인공지능 내리막길. 1차 인공지능 겨울 시작	
1974	• 웨어보스가 오류 역전파 알고리즘으로 논문 발표	
1979	• 학술지 「IEEE Transactions on Pattern Analysis and Machine Intelligence」 발간	

1980	 존 설이 중국인의 방 논문 발표 1회 ICML(International Conference on Machine Learning) 학술대회 개최 후쿠시마가 네오코그니트론 제안 	
1984	• 인간의 전투력을 뛰어넘는 인조인간이 등장하는 영화 〈터미네이터〉 개봉	
1986	• "Parallel Distributed Processing』 출간. 다층 퍼셉트론 으로 신경망 부활 • 학술지 "Machine Learning』 발간 AND THE PROPERTY AND AND THE PROCESSING A "Parallel Distributed Processing』 ▲ "Parallel Distributed Processing』	
1987	Lisp 머신의 시장 붕괴로 2차 인공지능 겨울 시작 1회 NIPS(Neural Information Processing Systems) 학술대회 개최	
1987	• UCI 리퍼지토리가 데이터 공개 서비스 시작	
1989	• 학술지 「Neural Computation」 발간	

1991	• 파이썬 언어 탄생
1993	• R 언어 탄생
1997	• IBM 딥블루가 세계 체스 챔피언 카스파로프를 이김 • 순환 신경망의 일종인 LSTM 발표 ▲ 딥블루
1998	• 르쿤이 컨볼루션 신경망의 실용적인 학습 알고리즘 제안 • 매시가 '빅데이터'라는 용어 사용
1999	• 엔비디아에서 GPU 공개 • 소니에서 애완 로봇 AIBO 시판 시작
2000	• 컴퓨터 비전 패키지 OpenCV 최초 공개 • 학술지 「Journal of Machine Learning Research」 발간
2001	• 감정을 지닌 인조인간이 등장하는 영화 〈AI〉 개봉
2004	• 1회 그랜드 챌린지(고속도로 자율주행)

• GPU 프로그래밍 라이브러리인 CUDA 공개 2007 • 어번 챌린지(도심 자율주행) • 파이썬의 기계 학습 라이브러리 사이킷 런(Scikit-learn) 최 초 공개 ▲ 어번 챌린지 • 딥러닝 패키지 씨아노(Theano) 서비스 시작 2009 • 대규모 자연 영상 데이터베이스인 ImageNet 탄생 • ImageNet으로 인식 성능을 겨루는 1회 ILSVRC(ImageNet Large Scale Visual Recognition Challenge) 대회 개최 2010 • 마이크로소프트에서 동작 인식 카메라 키넥트(Kinect) 시판 시작 • 앱인벤터 언어 발표. 음성 합성. 음성 인식. 언어 번역 컴포넌트 제공 • IBM 왓슨이 제퍼디 우승자 꺾음 2011 • 아이폰에서 인공지능 비서 앱 Siri 서비스 시작 • 딥러닝으로 필기 숫자 데이터베이스 MNIST에 대해 0.23% 오류율 달성 • AlexNet 발표(3회 ILSVRC 우승하여 컨볼루션 신경망의 가능성을 보여줌) 2012 • 자율주행차가 시각장애인을 태우고 세계 최초로 시범 운행 성공 (관련 영상: https://www.youtube.com/watch?v=peDy2st2XpQ)

2013	• 1회 ICLR(International Conference on Learning Representations) 학술대회 개최
2014	• 딥러닝 패키지 카페(Caffe) 서비스 시작
2015	• 딥러닝 패키지 텐서플로(TensorFlow) 서비스 시작 • OpenAI 창립 • 클라우스 슈밥이 4차 산업혁명을 언급
2016	 딥러닝 패키지 파이토치(PyTorch) 서비스 시작 딥러닝 패키지 케라스(Keras) 서비스 시작 알파고와 이세돌의 바둑 대국에서 알파고 승리 벤지오 교수의 「Deep Learning」 출간(무료 버전 http://www.deeplearningbook.org)
2017	• 알파고 제로가 알파고를 100:0으로 이김 • 구글에서 티처블 머신(Teachable machine) 공개
2018	• 인공지능이 그린 초상화 '에드몽 벨라미'가 경매 시장에서 432,500달러에 팔림
2019	• 알파 스타가 스타크래프트에서 그랜드마스터 수준 달성
2020	OpenAl 재단이 3세대 언어 모델인 GPT-3를 발표 제약회사 엑센시아가 인공지능이 개발한 후보 신약물질의 1상 시험 시작

1.4 인공지능의 현재와 미래

- 다시 인공지능 시대가 옴
 - 세 번째 인공지능 겨울이 올 가능성은?
 - 두 번의 인공지능 겨울은 시장 실패에 따라 왔는데, 현재 탄탄한 시장이 형성되고 있어
 가능이 매우 낮다고 판단됨

- 세계적인 정보기술 회사는 인공지능 시장 선점을 위해 대규모 투자
 - 삼성, 카카오, 네이버, KT, 구글, 애플, 마이크로소프트, 페이스북, 아마존, 엔비디아, 알 리바바 등

- 위키 백과
 - "Applications of artificial intelligence"로 검색

1.4.1 시장을 파고드는 인공지능 제품

그림 1-4 인공지능 의료(랜드마크 검출)

그림 1-5 인공지능 예술

그림 1-6 언어 번역

그림 1-7 자율학습하는 인공 지능 게임

1.4.2 대중 속으로 파고드는 DIY 인공지능

■ 티처블 머신_{teachable machine}

(a) 물체 인식

(b) 음성 인식

(c) 동작 인식

그림 1-8 티처블 머신으로 제작한 인공지능 응용

1.4.2 대중 속으로 파고드는 DIY 인공지능

■ 티처블 머신_{teachable machine}

그림 1-9 티처블 머신의 인식 프로그램 제작 과정(데이터 수집 → 학습 → 예측)

1.4.2 대중 속으로 파고드는 DIY 인공지능

- 앱 인벤터
 - 초보자 용 안드로이드 앱 제작 언어
 - 인공지능 관련 컴포넌트 제공: SpeechRecognizer(음성 인식), TextToSpeech(음성 합성), YandexTranslate(언어 번역)

(a) 사용자 인터페이스 코딩

그림 1-10 앱 인벤터로 언어 번역 인공지능 앱 제작

(b) 언어 번역 기능을 코딩

1.4.3 사회적 영향과 미래 조망

- 예상되는 자율주행차의 미래 모습
 - 주변 차와 통신하면서 밀집 주행
 - 신호등 없는 사거리
 - 사람의 인식 능력을 넘어서는 주행 > 특수한 경우에만 사람에게 면허 발급
- 직업군의 커다란 변화
 - 대한민국은 로봇 밀도에서 세계 1~2위를 다투는 나라(로봇 밀도: 1만 명당 로봇 수)

- Frey의 연구: 702개의 직업에 대해 사라질 위기를 확률로 계산(텔레마케터는 가장 높음)
- '인공지능이 사람을 몰아낸다 ' 라는 인식보다 '인공지능을 쓰는 사람이 인공지능을 쓰지 않는 사람을 몰아낸다'라는 인식이 적절

1.5 인공지능 만들기

- 이 책의 구성
 - 거의 모든 주제에 대해, 이론을 설명하고 파이썬 프로그래밍 실습을 통해 인공지능을 만들어 봄

- 2장부터 바로 인공지능 프로그래밍
 - 이 절은 그 전에 알아두면 유익한 몇 가지 사항을 소개

1.5.1 지배적인 공학적 관점

- 인공지능 접근 방법
 - 과학적: 인간의 지능을 충분히 연구한 다음 그 원리를 충실히 모방하는 지능 기계 제작
 - 공학적: 쓸만한 지능 기계를 만들 수 있다면 굳이 인간의 지능 원리를 따르지 않아도 됨 (비행기 날개는 새의 날개를 그대로 모방하지 않는다)

→ 현재는 공학적 접근방법이 지배적임

1.5.2 규칙 기반 방법론 vs. 기계학습 방법론

- 규칙 기반 방법론
 - 사람이 사용하는 규칙을 수집하여 프로그래밍
 - 예) 필기 숫자 인식 프로그램
 - 숫자 3은 "왼쪽에서 보면 위와 아래에 터진 골이 있고, 오른쪽에서 보면 둥근 원호가 중 간에서 만나고"와 같은 규칙을 수집
 - 한계 노출: 다음과 같이 규칙 위반하는 샘플이 꾸준히 발생 💍 🤭 戊 🧵
- 기계학습 방법론(본 과목의 중심 주제)
 - 인공지능 초반에는 규칙 기반이 대세였으나 1990년부터 기계학습으로 주도권이 이동함
 - 충분한 데이터를 수집한 다음 기계학습 모델을 학습하는 방법(데이터-주도 패러다임)

예) 필기 숫자 인식을 위한 MNIST 데이터셋

1.5.3 파이썬 프로그래밍

- C와 파이썬
 - 파이썬은 벡터와 행렬 처리를 코딩하는데 편리한 언어

[C 코드]

```
int a[5]={2,3,1,5,4}
int b[5]={1,2,6,5,7}
int c[5];
for(int i=0; i<5; i++)
   c[i]=a[i]+b[i];</pre>
```

[파이썬 코드]

```
import numpy as np
a=np.array([2,3,1,5,4])
b=np.array([1,2,6,5,7])
c=a+b
```

- 기계 학습은 벡터와 행렬 처리를 많이 수행하므로 파이썬을 주로 사용
- 핵심 라이브러리는 효율성때문에 C로 코딩 되어 있음(파이썬은 이들 라이브러리를 호출해 사용하는 인터페이스 언어로 사용됨)

1.6 읽을거리와 볼거리

- 인공지능을 다룬 아주 많은 책과 비디오
 - 대표적인 몇 가지를 선별하여 간단히 소개

1.6.1 읽을거리

읽을거리

- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, 4th Edition, 2020
- Goodfellow, Y. Bengio, and A. Courville, "Deep Learning, The MIT Press, 2016
- 오일석,『기계학습』, 한빛아카데미, 2017
- 프랑소와 숄레 (박해선 번역),『케라스 창시자에게 배우는 딥러닝』, 길벗, 2018
- 박응용, 『Do IT! 점프 투 파이썬』, 이지스퍼블리싱, 2019
- 김진형, 『AI 최강의 수업』, 매일경제신문사, 2020
- 숀 케리시 (이수겸 번역), 『기계는 어떻게 생각하는가?』, 이지스 퍼블리싱, 2019

■ 볼거리

- TED recommends Artificial Intelligence
 - TED가 권유하는 7편의 인공지능 강연
 - https://cooltool.com/blog/7-best-ted-videos-about-artificial-intelligence
- The Age of AI: 유튜브
 - 아이언맨의 배우 로버트 다우니 주니어가 제작한 과학 다큐멘터리
 - 8편의 에피소드로 구성된 시즌 1 1) How far is too far? 2) Healed through AI, 3) Using AI to build a better human, 4) Love, art and stories: decoded, 5) The 'Space Architects' of Mars, 6) Will a robot take my job? 7) Saving the world one algorithm at a time, 8) How AI is searching for Aliens

- 볼거리
 - AI-TV

- 볼거리
 - 컴퓨터 그래픽스에 사용되는 머신러닝

- 볼거리
 - 컴퓨터 그래픽스에 사용되는 머신러닝 AI 게임

- 볼거리
 - 영상생성 및 스타일 변환에 사용되는 딥러닝

- 볼거리
 - 자율주행 자동차

- 볼거리
 - Diffusion models 인간 창의성에 대한 도전

■ 볼거리

■ ChatGPT: 대화용 AI

- 볼거리
 - 강화학습을 이용한 로봇 Al

