

Институт информатики и кибернетики Кафедра программных систем

ВЕБ-ПРИЛОЖЕНИЕ ДЛЯ ОБУЧЕНИЯ ПО СИСТЕМЕ ЛЕЙТНЕРА С РЕАЛИЗАЦИЕЙ АЛГОРИТМА ИНТЕРВАЛЬНОГО ПОВТОРЕНИЯ

Выполнил: обучающийся гр.6401-020302D

Алёнушка А.А.

Научный руководитель: доцент кафедры

программных систем, доцент, к.т.н.

Гордеева О.А.

ЦЕЛЬ И ЗАДАЧИ

Цель работы - разработать веб-приложение для обучения по системе Лейтнера с реализацией алгоритма интервального повторения.

Задачи:

- Провести анализ предметной области;
- Сделать обзор систем-аналогов в области обучения по системе Лейтнера с реализацией алгоритма интервального повторения;
- Изучить реализации алгоритма интервального повторения;
- Спроектировать архитектуру системы: определить основные модули, их взаимодействие и используемые технологии.
- Реализовать информационное и программное обеспечение;
- Провести тестирование и отладку разработанного веб-приложения.

АКТУАЛЬНОСТЬ

Разработка веб-приложения для обучения по системе Лейтнера с алгоритмом интервального повторения отвечает современным образовательным и технологическим трендам:

• Научная обоснованность:

Интервальное повторение доказало свою эффективность для долговременного запоминания информации.

Рост рынка EdTech:

Спрос на персонализированные e-learning-решения стабильно растёт.

• Практическая применимость:

SRS-приложения успешно используются в медицине, лингвистике и при подготовке к тестам (SAT, GMAT).

• Доступность:

Браузерное решение не требует установки и обеспечивает кроссплатформенность.

• Инновационный потенциал:

Интеграция адаптивных алгоритмов, микроблоков знаний и аналитики повышает вовлечённость и мотивацию пользователей.

ЭЛЕКТРОННОЕ ОБУЧЕНИЕ И АКТИВНОЕ ВОСПОМИНАНИЕ

Электронное обучение – доставка учебного контента через веб-приложения, обеспечивающая:

- гибкий доступ к материалам в любое время и с любых устройств;
- централизацию и учёт прогресса;
- интеграцию мультимедиа и интерактивных инструментов.

Активное воспоминание — это целенаправленное воспроизведение информации из памяти вместо простого перечитывания, что:

- усиливает процессы запоминания;
- снижает интервал забывания;
- формирует долговременные нейронные связи.

Цикл активное воспоминание

СИСТЕМА ЛЕЙТНЕРА И ИНТЕРВАЛЬНОЕ ПОВТОРЕНИЕ

Система Лейтнера:

Методика интервального повторения на основе принципа разделения карточек по «ящикам».

Карточки перемещаются между ящиками в зависимости от успешности их воспроизведения:

- верно вспомнил → карточка переходит в следующий ящик (увеличение интервала повторения);
- ошибся → карточка возвращается в первый ящик (сокращение интервала).

Интервальное повторение:

- Запоминание с постепенно увеличивающимися интервалами эффективнее, чем частое повторение без перерывов.
- Эффект распределения базируется на кривой забывания Эббингауза.
- Алгоритм автоматически регулирует интервалы повторений, фокусируясь на сложном материале и снижая нагрузку на память.

Session 1

CLOZE-КАРТОЧКИ ДЛЯ ФОКУСИРОВАННОГО ЗАПОМИНАНИЯ

Cloze — техника скрытия значимого фрагмента текста (слова или фразы) для тренировки активного воспроизведения.

Преимущества:

- Акцент на ключевых фактах и понятиях.
- Углублённая тренировка памяти: вместо пассивного чтения пользователь сам воспроизводит пропущенное.
- Универсальность: подходит для дат, формул, терминов и определений.

Определение производной функции в точке Пусть дана функция f, определённая в некоторой окрестности точки x_0 . Производная f в точке x_0 (обозначается [...]) определяется как [...] функции к [...] аргумента, если этот предел существует:

$$f'(x_0) = [...].$$

ОПИСАНИЕ СИСТЕМ-АНАЛОГОВ

Anki – приложение для создания и изучения цифровых карточек с реализацией алгоритма интервального повторения (SRS).

Достоинства:

- Мультиплатформенность и синхронизация через AnkiWeb, обеспечивающая доступ к карточкам на всех устройствах;
- Гибкая настройка алгоритма повторения и обширная экосистема плагинов;

Недостатки:

- Неинтуитивный, сложный и устаревший интерфейс, требующий времени на освоение;
- Отсутствие встроенного Markdown-/Vim-редактора и ограниченные возможности визуализации создания карточек;

ИНТЕРФЕЙС ANKI

ОПИСАНИЕ СИСТЕМ-АНАЛОГОВ

StudyStack – веб-сервис для создания и изучения флеш-карточек с несколькими режимами работы (карточки, тесты, игры).

Достоинства:

- Веб-интерфейс без необходимости установки приложений;
- Несколько режимов обучения: соответствие, викторины, кроссворды, «Виселица» и др.;
- Возможность импорта/экспорта наборов (CSV, текст), а также совместное использование публичных коллекций.

Недостатки:

- Отсутствие полноценного алгоритма интервального повторения (SRS) повторения идут без адаптации под пользователя;
- Нет поддержки Markdown, cloze-вставок и редактора с Vim-режимом;

ИНТЕРФЕЙС STUDYSTACK

ЧТО ТАКОЕ ИНТЕРВАЛЬНОЕ ПОВТОРЕНИЕ?

Определение

• Интервальное повторение – методика планирования повторений с постепенно растущими интервалами, основанная на кривой забывания Эббингауза.

Цель

- Минимизировать общее число повторений, сохраняя высокий уровень долгосрочного запоминания.
- Поддерживать материал «на пике воспоминания» напоминать именно тогда, когда информация начинает забываться.

КАК ВЫЧИСЛЯЮТСЯ ИНТЕРВАЛЫ?

Параметры

- **EF** (Easiness Factor) «коэффициент лёгкости» карточки
- **n** число последовательных успешных повторений
- ivl интервал для следующего повторения карточки

Алгоритм SM-2

- **n = 1**: l₁ = 1 день
- **n = 2:** l₂ = 6 дней
- n > 2: $I_n = I_{n-1} \times EF$

Обновление EF

• EF' = EF + $(0.1 - (5 - q) \times (0.08 + (5 - q) \times 0.02))$

где **q** (0...5) – оценка качества воспроизведения

Краткий пример

- Пусть n=3, EF=2.5 → I₃ = 6 × 2.5 = 15 дней
- При q=4: EF' = $2.5 + (0.1 1 \times (0.08 + 1 \times 0.02)) \approx 2.52$

ПРАКТИЧЕСКАЯ СХЕМА РАБОТЫ АЛГОРИТМА

СТРУКТУРНАЯ СХЕМА СИСТЕМЫ

ДИАГРАММА ВАРИАНТОВ ИСПОЛЬЗОВАНИЯ

ДИАГРАММА ПОСЛЕДОВАТЕЛЬНОСТИ РЕЖИМА ПОВТОРЕНИЯ

интерфейс приложения

интерфейс приложения

Редактор (Матанализ)

Предпросмотр 📝 🗖


```
1 🗸 **Теорема Лагранжа (о среднем значении)**
   Пусть функция ff удовлетворяет двум условиям на отрезке fa,b (где a<b):
   1. $f$ ??непрерывна?? на $[a,b]$;
    2. $f$ ??дифференцируема?? на ??открытом?? интервале $(a,b)$.
    Тогда существует хотя бы одна точка $c\in(a,b)$ такая, что
6
7 _ $$
8 f'(c)\;=\;??\frac{f(b)-f(a)}{b - a}\??,.
10
```

Теорема Лагранжа (о среднем значении) Пусть функция f удовлетворяет двум условиям на отрезке [a,b] (где a < b):

- 1. f [...] на [a,b];
- 2. f [...] на [...] интервале (a, b).

Тогда существует хотя бы одна точка $c \in (a,b)$ такая, что

$$f'(c) = [...],.$$

Включить Vim

Добавить карточку

интерфейс приложения

ИНТЕРФЕЙС ПРИЛОЖЕНИЯ

выводы

Веб-приложение для обучения по системе Лейтнера с реализацией алгоритма интервального повторения. Выполнены следующие задачи:

- Проведен анализ предметной области;
- Сделан обзор систем-аналогов в области обучения по системе Лейтнера с реализацией алгоритма интервального повторения;
- Изучены реализации алгоритма интервального повторения;
- Спроектирована архитектура системы: определить основные модули, их взаимодействие и используемые технологии;
- Разработано и реализовано информационное и программное обеспечение;
- Проведено тестирование и отладка разработанного веб-приложения.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!