Ahora

$$|\mathbf{v} - \mathbf{h}|^2 = (\mathbf{v} - \mathbf{h}) \cdot (\mathbf{v} - \mathbf{h})$$

$$= [(\mathbf{v} - \operatorname{proy}_H \mathbf{v}) + (\operatorname{proy}_H \mathbf{v} - \mathbf{h})] \cdot [(\mathbf{v} - \operatorname{proy}_H \mathbf{v}) + (\operatorname{proy}_H \mathbf{v} - \mathbf{h})]$$

$$= |\mathbf{v} - \operatorname{proy}_H \mathbf{v}|^2 + 2(\mathbf{v} - \operatorname{proy}_H \mathbf{v}) \cdot (\operatorname{proy}_H \mathbf{v} - \mathbf{h}) + |\operatorname{proy}_H \mathbf{v} - \mathbf{h}|^2$$

$$= |\mathbf{v} - \operatorname{proy}_H \mathbf{v}|^2 + |\operatorname{proy}_H \mathbf{v} - \mathbf{h}|^2$$

Pero $|\operatorname{proy}_H \mathbf{v} - \mathbf{h}|^2 > 0$ porque $\mathbf{h} \neq \operatorname{proy}_H \mathbf{v}$. Por tanto,

$$|\mathbf{v} - \mathbf{h}|^2 > |\mathbf{v} - \text{proy}_H \mathbf{v}|^2$$

es decir

$$|\mathbf{v} - \mathbf{h}| > |\mathbf{v} - \operatorname{proy}_H \mathbf{v}|$$

Bases ortogonales en \mathbb{R}^3 con coeficientes enteros y normas enteras

En ocasiones es útil construir una base ortogonal de vectores donde las coordenadas y la norma de cada vector son enteros. Por ejemplo,

$$\left\{ \begin{pmatrix} 2\\2\\-1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\2 \end{pmatrix}, \begin{pmatrix} -1\\2\\2 \end{pmatrix} \right\}$$

constituye una base ortogonal en \mathbb{R}^3 donde cada vector tiene norma 3. Otro ejemplo es

$$\left\{ \begin{pmatrix} 12\\4\\-3 \end{pmatrix}, \begin{pmatrix} 0\\3\\4 \end{pmatrix}, \begin{pmatrix} -25\\48\\-36 \end{pmatrix} \right\}$$

que constituye una base ortogonal en \mathbb{R}^3 cuyos vectores tienen normas 13, 5 y 65, respectivamente. Resulta que encontrar una base como ésta en \mathbb{R}^3 no es tan difícil como parece. Anthony Osborne y Hans Liebeck abordan este tema en su interesante artículo "Orthogonal Bases of \mathbb{R}^3 with Integer Coordinates and Integer Lenghts" en *The American Mathematical Monthly*, vol. 96, núm. 1, enero de 1989, pp. 49-53.

Esta sección se cierra con un teorema importante.

Teorema 6.1.9 Designaldad de Cauchy-Schwarz en \mathbb{R}^n

Sean **u** y **v** dos vectores en \mathbb{R}^n . Entonces

i)
$$|u \cdot v| \le |u||v|$$
. (6.1.27)

ii) $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}|$ sólo si $\mathbf{u} = \mathbf{0}$ o $\mathbf{v} = \lambda \mathbf{u}$ para algún número real λ .

Demostración

i) Si $\mathbf{u} = \mathbf{0}$ o $\mathbf{v} = \mathbf{0}$ (o ambos), entonces (6.1.27) se cumple (ambos lados son iguales a 0). Si se supone que $\mathbf{u} \neq \mathbf{0}$ y $\mathbf{v} \neq \mathbf{0}$, entonces