

VARIATIONAL AUTOENCODERS FOR COLLABORATIVE FILTERING

Kaan Oktay, Özge Bozal

INTRODUCTION

In this project variational autoencoders are extended to collaborative filtering with implicit feedback which is a method of making automatic predictions (filtering) about the interests of a user by collecting indirect preferences from many users (collaborating).

MODEL

- $u \in 1, \ldots, U$ and $i \in 1, \ldots, I$
- $\boldsymbol{\cdot} \, \boldsymbol{X} \in \mathbb{N}^{U \times I} \text{ and } \boldsymbol{x_u} = [x_{u1}, \dots, x_{uI}]^T \in \mathbb{N}^I$
- z_u : K-dimensional hidden factor for user u
- $f_{\theta}(\cdot)$: non-linear function $\in \mathbb{R}^{I}$
- $\cdot \pi(z_u)$: the probability function from which x_u vector is assumed to be drawn
- $\cdot N_u = \sum_i x_{ui}$: Total number of clicks of the given user u

$$egin{aligned} oldsymbol{z_u} & \sim \mathcal{N}(0, I_k) \ & \pi(oldsymbol{z_u}) \propto \exp(f_{oldsymbol{ heta}}(oldsymbol{z_u})) \ & oldsymbol{x_u} \sim \operatorname{Mult}(N_u, \pi(oldsymbol{z_u})) \end{aligned}$$

Multinomial log-likelihood function:

$$\log p_{\theta}(\boldsymbol{x_u}|\boldsymbol{z_u}) = \sum_{i} x_{ui} \log \pi_i(\boldsymbol{z_u})$$

• For comparison, logit log-likelihood with the logit function $\sigma(x)$:

$$\log p_{\theta}(\boldsymbol{x_u}|\boldsymbol{z_u}) = \sum_{i} [x_{ui} \cdot \log \sigma(f_{ui}) + (1 - x_{ui}) \cdot (1 - \log \sigma(f_{ui})]$$

METHOD

• Variational inference: To learn the generative model we need to estimate θ parameters of $f_{\theta}(\cdot)$ to calculate the intractable posterior $p(\boldsymbol{z_u}|\boldsymbol{x_u})$ for each data point. Variational inference approximates the true posterior to an instrumental posterior $q(\boldsymbol{z_u})$ with Kullback-Leibler divergence $KL(q(\boldsymbol{z_u})||p(\boldsymbol{z_u}|\boldsymbol{x_u}))$ where,

$$q(\boldsymbol{z_u}) \sim \mathcal{N}(\boldsymbol{\mu_u}, \operatorname{diag}(\boldsymbol{\sigma_u}^2))$$

• Amortized inference and variational autoencoders: The number of variational parameters (μ_u, σ_u^2) grows with the number of users and items in the dataset. To cope with this issue, variational autoencoders are used which are in fact data-dependent functions. This is commonly called the inference model:

$$g_{\phi}(\boldsymbol{x}_{\boldsymbol{u}}) = [\boldsymbol{\mu}_{\phi}(\boldsymbol{x}_{\boldsymbol{u}}), \boldsymbol{\sigma}_{\phi}(\boldsymbol{x}_{\boldsymbol{u}})] \in \mathbb{R}^{2K}$$

Thus the variational distribution becomes also data-dependent:

$$q_{\phi}(\boldsymbol{z}_{\boldsymbol{u}}|\boldsymbol{x}_{\boldsymbol{u}}) \sim \mathcal{N}(\boldsymbol{\mu}_{\phi}(\boldsymbol{x}_{\boldsymbol{u}}), \operatorname{diag}\{\boldsymbol{\sigma}_{\phi}^{2}(\boldsymbol{x}_{\boldsymbol{u}})\})$$

METHOD (CONT'D)

• Learning VAEs: The evidence $p(x_u)$ is a constant term, and KL divergence is a non negative term, we can rearrange the equation as below:

$$\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{\boldsymbol{u}}) \geq \mathbb{E}_q[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{\boldsymbol{u}}|\boldsymbol{z}_{\boldsymbol{u}})]$$

$$-KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}_{\boldsymbol{u}}|\boldsymbol{x}_{\boldsymbol{u}})||p(\boldsymbol{z}_{\boldsymbol{u}}))$$

Right-hand side of the inequality is $\mathcal{L}(x_u; \theta, \phi)$ which is called evidence lower bound (ELBO).

• Reparameterization trick: ELBO is a function of ϕ and θ . We cannot take gradient w.r.t. ϕ when we sample $z \sim q_{\phi}$. Instead; we sampled z_u as follows:

$$\boldsymbol{\epsilon} \sim N(0, \boldsymbol{I_k})$$

$$oldsymbol{z_u} = oldsymbol{\mu_{\phi}}(oldsymbol{x}) + \epsilon \odot oldsymbol{\sigma_{\phi}}(oldsymbol{x})$$

By doing so, the stochasticity in the sampling process is isolated and the gradient w.r.t. ϕ can be backpropagated through the sampled z_u .

Algorithm 1: VAE-SGD

Input: Click matrix $X \in \mathbb{N}^{I \times U}$

Initialize ϕ and θ

while not converged do

Sample a batch of users \mathcal{U}

for $u \in \mathcal{U}$ do

Sample $\epsilon \sim \mathcal{N}(0, \boldsymbol{I_k})$

Compute z_u

Compute noisy gradients $\nabla_{\phi} \mathcal{L}$

and $\nabla_{\theta} \mathcal{L}$

end

Find the average of noisy gradients Update ϕ and θ

end

EVALUATION METRIC

Normalized Discounted Cumulative Gain:

- w(r): Item at rank r
- I[.]: Indicator function
- I_u : Set of held-out items user u clicked on

Discounted cumulative gain:

$$DCG@R(u,w) = \sum_{r=1}^{R} \frac{2^{I[w(r) \in I_u]} - 1}{log(r+1)}$$

DCG@R is linearly normalized to [0, 1] by dividing it by the best possible DCG@R, where all the held-out items are ranked at the top, and we end up with NDCG@R.

Encoding

• Random 60k users from MovieLens 20M dataset. NDCG is 0.36 for logistic and 0.38 for multinomial likelihood on the test set.

Decoding

Table 1: Attributes of users and training

# of Training Users	50,000
# of Val and Test Users	5,000
# of Movie Items	17,136
# of Interactions	3.7M
% of Interactions	0.43%
Batch Size	256
# of Epochs	30

Figure 1: Training results with logistic likelihood

Figure 2: Training results with multinomial likelihood

REFERENCES

- 1] Liang, Dawen, Krishnan, Rahul G, Hoffman, Matthew D, and Jebara, Tony. "Variational autoencoders for collaborative filtering." arXiv preprint arXiv:1802.05814, 2018.
- 2] Variational Autoencoder: Intuition and Implementation, https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/