Podzielność

$$a,b \in \mathbb{Z}$$

$$a|b \iff b = k \cdot a$$

Własności relacji podzielności

1)
$$n \mid 0$$

1) $n \mid 0$

2) $n \mid n$
 $n \in \mathbb{Z}$

3) $1 \mid n$

4) $0 \mid n \in \mathbb{Z}$
 $n \in \mathbb{Z}$
 $n \in \mathbb{Z}$

I fest reloga
$$u 2$$

[N,1)

I fest prechodnia: $a | b \wedge b | c = a | c$
 $v = b = a | c = a | c$
 $v = b = a | c = a | c$
 $v = a | b = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v = a | c = a | c$
 $v =$

Twierdzenie o dzieleniu z resztą

Niech $m \in \mathbb{Z}$ oraz $n \in \mathbb{N}$. Istnieje dokładnie jedna para liczb całkowitych q i r, dla której

$$m = qn + r \quad \text{oraz} \quad 0 \le r < n.$$

$$17 : 5 \quad 17 = 3.5 + 2$$

$$2 \quad \sqrt{1}$$

$$2 \quad \sqrt{1}$$

$$3 \cdot \sqrt{1}$$

$$4 \quad \sqrt{1}$$

$$4 \quad \sqrt{1}$$

$$5 \quad \sqrt{1}$$

$$4 \quad \sqrt{1}$$

$$5 \quad \sqrt{1}$$

$$6 \quad \sqrt{1}$$

$$6 \quad \sqrt{1}$$

$$6 \quad \sqrt{1}$$

$$7 \cdot \sqrt{1}$$

$$1 \quad \sqrt{1}$$

$$2 \quad \sqrt{1}$$

$$1 \quad \sqrt{1}$$

$$2 \quad \sqrt{1}$$

$$3 \quad \sqrt{1}$$

$$4 \quad \sqrt{1}$$

$$4 \quad \sqrt{1}$$

$$4 \quad \sqrt{1}$$

$$5 \quad \sqrt{1}$$

$$5 \quad \sqrt{1}$$

$$6 \quad \sqrt{1}$$

$$6 \quad \sqrt{1}$$

$$7 \cdot \sqrt{1}$$

$$7 \cdot \sqrt{1}$$

$$8 \quad \sqrt{1}$$

$$9 \cdot \sqrt{1}$$

$$9 \cdot$$

Jadynosi Pir.
2015ing, le de (2,1) i (91,1) rochodzi - D W= gn+r = 9,1 N+T, $\frac{qn+r}{r} - \frac{qn}{r} + \frac{r}{r} = 0$ $N(q-q_1) + q-r_1 = 0$ $\left[\begin{array}{c} \left(Q-Q\Lambda\right) = \gamma_{1}-\gamma_{1} = 0 \\ 0 \leqslant \gamma \leqslant N-\Lambda \\ 0 \leqslant \gamma_{1} \leqslant N-\Lambda \end{array}\right]$ $= \mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L}$ 9-9,1=0 $g = g_{1}$ W = 0.0 + 1ILORAZ RESZTA q = m div n r = m mod n m / n m / n $M = (M \operatorname{div} N) \cdot N + M \operatorname{mod} N$

Algorytm dzielenia

1: **input:**
$$m \ge 0, n > 0$$

2: **output:**
$$q, r \in \mathbb{Z}, m = qn + r, 0 \leqslant r < n$$

3:
$$q \leftarrow 0$$

4:
$$r \leftarrow m$$

5: while
$$r \geqslant n \operatorname{do}$$

6:
$$q \leftarrow q + 1$$

7:
$$r \leftarrow r - n$$

$$m = 17, n = 5$$

$$m \sim 2^{100}$$
 $n = 7$

$$\frac{9}{0}$$
 $\frac{7}{17}$ $\frac{1}{2}$ $\frac{1}{7}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

Dlanepo ten blgorytm dilete popiemme? Niezmienniki pętli

Province

While

Si

Niezmienniki pętli

Zdanie p nazywamy niezmiennikiem pętli

while q do S end while

jeżeli spełniony jest warunek:

p i q są prawdziwe zanim wykonamy S

 $\downarrow \downarrow$

p jest prawdą po wykonaniu S

Twierdzenie o niezmiennikach

Załóżmy, że p jest niezmiennikiem pętli

while q do
S
end while

$$p(v) \Rightarrow p(v+1)$$

Jeżeli *p* jest prawdą przed wejściem w pętlę, to *p* jest prawdą po każdej iteracji pętli. Jednocześnie jeśli pętla się kończy, to po jej zakończeniu zdanie *p* jest prawdziwe, a zdanie *q* fałszywe.

Algorytm dzielenia (1) + 2) + 3) + Tu. o NIEZM. => po rohoneni input: $m \geqslant 0$, n > 0output: $q, r \in \mathbb{Z}, \underline{m} = qn + r, 0 \leqslant r < n$ $m = q \cdot n + r \wedge r \wedge n$ m=qn+r = 0.n+m=m (NIEZMIENNIK? M= 9.N+T/P while $r \geqslant n$ do P jost prando 2) Cmp pet riensuiscle Mermiehnihlem? 2015/ms, le m=qn+valle peuns de gir-Po un honor 5 many gette sie / q' = nowe q = q +1/ m= q' n + n' = Lonas? r' = NONE r = r - w < r < r (solste) = qn + r = w

Największy wspólny dzielnik

 $m, n \in \mathbb{Z}$, $m \neq 0 \vee n \neq 0$ 1) 1/w i 1/n 2) Prynopune jedne z llub m i n
me skonnense whole deselvation.
3) 26:54 uspand deselvation m i n
jest shonnomy.

=) (striefe nopriphry deselvation in. $\left\langle \left(w^{\prime} v \right) = \right\rangle$ $(\sim \sim)$ = gcd(m,h)

Przykład

NWD(135, 120)?

$$135 = 3.45 = 3.3.15 = 3.3.3 = 3.5$$

 $120 = 2.60 = 2.2.30 = 2.2.2.15 = 2.2.2.3.5 = 2.3.3 = 2.$

Przykład

NWD(2359872193873, 5091259781239)?

Algorytm

```
input: m, n \in \mathbb{N}
 1:
        output: d = NWD(m, n)
 2:
 3:
        d \leftarrow 1
       (k \leftarrow 2)
 4:
       while k \leqslant m \land k \leqslant n do
 5:
            if k|m \wedge k|n then
 6:
                 d \leftarrow d \cdot k
 7:
                 m \leftarrow m/k
 8:
                 n \leftarrow n/k
 9:
            else
10:
                 k \leftarrow k + 1
11:
12:
            end if
        end while
13:
                               7/00
                                         76096
```