

Sección 3.2

1. (a) $f(h_1, h_2) = 1 + h_1 + h_2 + R_1(\mathbf{0}, \mathbf{h})$.

(b) $f(h_1, h_2) = 1 + h_1 + h_2 + \frac{1}{2}h_1^2 + h_1h_2 + \frac{1}{2}h_2^2 + R_2(\mathbf{0}, \mathbf{h}).$

3. $f(h_1, h_2) = h_1^2 + 2h_1 h_2 + h_2^2$ $[R_2(\mathbf{0}, \mathbf{h}) = 0, \text{ en este caso}].$

5. $f(h_1, h_2) = 1 + h_1 + h_2 + \frac{h_1^2}{2} + h_1 h_2 + \frac{h_2^2}{2} + R_2(\mathbf{0}, \mathbf{h}).$

7. $f(h_1, h_2) = 1 + h_1 h_2 + R_2(\mathbf{0}, \mathbf{h}).$

9. $g(x,y) = -1 + \frac{1}{2}(x-\pi)^2 + \frac{1}{2}(y-\frac{\pi}{2})^2$.

11. $p(x,y) = 2 - \frac{3\pi^2}{4}(y-1) - \frac{1}{2}\left(x - \frac{\pi}{2}\right)^2 + \frac{\pi^2}{4}(y-1)^2 - \frac{7\pi}{2}\left(x - \frac{\pi}{2}\right)(y-1).$

13. (a) Demostrar que $|R_k(x,a)| \le AB^{k+1}/(k+1)!$ para A,B constantes y x en el intervalo fijo [a,b]. Probar que $R_k \to 0$ cuando $k \to \infty$. (Usar la convergencia de la serie $\sum c^k/k! = e^c$ y el teorema de Taylor).

(b) El único problema posible es en x=0. Utilizar la regla de L'Hôpital para demostrar que

$$\lim_{t \to \infty} p(t)e^t = \infty$$

para todo polinomio p(t). Utilizando esto, establecer que $\lim_{x\to 0^+} p(x)e^{-1/x} = 0$ para

toda función racional p(x) y concluir que $f^{(k)}(0) = 0$ para todo k.

(c) $f: \mathbb{R}^n \to \mathbb{R}$ es analítica en \mathbf{x}_0 si la serie

$$f(\mathbf{x}_0) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(\mathbf{x}_0)$$

$$+ \frac{1}{2} \sum_{i,j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0) + \cdots$$

$$+ \frac{1}{k!} \sum_{i_1,\dots,i_k=1}^n h_{i_1} h_{i_2} \cdots h_{i_k} \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}(\mathbf{x}_0) + \cdots$$

converge a $f(\mathbf{x}_0 + \mathbf{h})$ para todo $\mathbf{h} = (h_1, \dots, h_n)$ en algún disco lo suficientemente pequeño $\|\mathbf{h}\| < \varepsilon$. La función f es analítica si para todo R > 0 existe una constante M tal que $|(\partial^k f/\partial x_{i_1} \cdots \partial x_{i_k})(\mathbf{x})| < M^k$ para todas las derivadas de orden k en todo x que satisface $\|\mathbf{x}\| \le R$.

(d)
$$f(x,y) = 1 + x + y + \frac{1}{2}(x^2 + 2xy + y^2) + \cdots$$

 $+ \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} x^j y^{k-j} + \cdots$

Sección 3.3

1. (0, 0); punto de silla.

3. Los puntos críticos están en la recta y = -x; son puntos de mínimo local, porque $f(x,y) = (x+y)^2 \ge 0$, y se hace igual a cero solo cuando x = -y.

5. (0, 0); punto de silla.

7. $\left(-\frac{1}{4}, -\frac{1}{4}\right)$; punto de mínimo local.

9. (0, 0); punto de máximo local. (Las pruebas fallan, pero se puede utilizar el hecho de que $\cos z \le 1$).

 $(\sqrt{\pi/2}, \sqrt{\pi/2})$, mínimo local

 $(0, \sqrt{\pi})$, mínimo local.

11. No hay puntos críticos.

13. (1, 1) es un mínimo local.

15. $(0, n\pi)$; puntos críticos, no tiene puntos de máximo ni de mínimo.