命题公式

公式的解:

命题逻辑

命题公式和真值表

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016

命题逻辑

Lijie W.

今藤赤二

命题公式

Definition

一个特定的命题是一个常值命题,它不是具有值 "T"("1"),就是具有值 "F"("0")。

Definition

Definition

一个特定的命题是一个常值命题,它不是具有值 "T"("1"),就是具有值 "F"("0")。

一个任意的没有赋予具体内容的原子命题是一个变量命题,常称它为命题变量(或命题变 元)(propositional variable),该命题变量无具体的真值,它的变域是集合{T,F}(或 {0,1})。

命题逻辑

Lilio M/

会師亦示

命题公式

公式的解

-te- tele-

Definition

一个特定的命题是一个常值命题,它不是具有值 "T"("1"),就是具有值 "F"("0")。

Definition

一个任意的没有赋予具体内容的原子命题是一个变量命题,常称它为<mark>命题变量(或命题变元)</mark>(propositional variable),该命题变量无具体的真值,它的变域是集合 $\{T,F\}$ (或 $\{0,1\}$)。

3

复合命题是由原子命题与联结词构成的命题。所以,当其中的原子命题是命题变元时,此复合命题也即为命题变元的函数,且该函数的值仍为"真"或"假"值,这样的函数可形象地称为"真值函数"或"命题公式",此命题公式没有确切的真值。

例如: $G = P \land Q \rightarrow \neg R$.

命题逻辑

Lijie W.

会師本元

命题公式

小計的解

Definition

命题逻辑

Lijie W.

命题变元

命题公式

公式的解釋

Definition

命题演算的合式公式 (well formed formula, wff), 又称命题公式 (简称公式), 按如下规则生成:

動命题变元本身是一个公式; (如: P, Q, R, ···)

Definition

- ② 如 G 是公式,则($\neg G$)也是公式; (如: $\neg P, \neg Q, \neg R, \cdots$)

命题逻辑

Lijie W.

命题变元

命题公式

公式的解釋

Definition

- 動命题变元本身是一个公式; (如: P, Q, R, · · ·)
- ② 如 G 是公式,则($\neg G$)也是公式; (如: $\neg P$, $\neg Q$, $\neg R$,...)
- ③ 如 G , H 是公式 , 则($G \land H$)、($G \lor H$)、($G \rightarrow H$)、($G \leftrightarrow H$)也是公式 ; (如: $P \land Q$, ($\neg Q$) $\rightarrow R$, \cdots)

命题逻辑

Lijie W.

命题变元

命题公式

、エレ日ン用年オ

....

Definition

- 動命题变元本身是一个公式; (如: P, Q, R, ···)
- ② 如 G 是公式,则($\neg G$)也是公式; (如: $\neg P, \neg Q, \neg R, \cdots$)
- ③ 如 G , H 是公式 , 则($G \land H$)、($G \lor H$)、($G \rightarrow H$)、($G \leftrightarrow H$)也是公式 ; (如: $P \land Q$, ($\neg Q$) $\rightarrow R$, \cdots)
- 仅由有限步使用规则 (1)、(2)、(3)后所得到的包含命题变元、联结词和括号的符号串才是命题公式.

```
(如:\neg(P \land Q) \leftrightarrow R, (\neg Q \lor (P \land \neg R)) \rightarrow R, \cdots)
```

命题逻辑

Lijie W.

命题变元

命题公式

、式的解釋

. .. .

Definition

命题演算的合式公式 (well formed formula, wff), 又称命题公式 (简称公式), 按如下规则生成:

- 命题变元本身是一个公式; (如: P, Q, R, ···)
- ② 如 G 是公式,则(¬G)也是公式;(如:¬P,¬Q,¬R,···)
- ③ 如 G , H 是公式 , 则($G \land H$)、($G \lor H$)、($G \rightarrow H$)、($G \leftrightarrow H$)也是公式 ; (如: $P \land Q$, ($\neg Q$) $\rightarrow R$, \cdots)
- ❹ 仅由有限步使用规则 (1)、(2)、(3)后所得到的包含命题变元、联结词和括号的符号串才是命题公式。

(如:
$$\neg(P \land Q) \leftrightarrow R, (\neg Q \lor (P \land \neg R)) \rightarrow R, \cdots$$
)

如果 G 是含有 n 个命题变元 P_1 、 P_2 、 P_3 、 \cdots 、 P_n 的公式 , 可记为 : $G(P_1,P_2,P_3,\cdots,P_n)$ 或简 写为 G。

命题逻辑

Lijie W.

命题变え

命题公司

ペトニドゥケー会で乗

● 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式;

命题逻辑

Lijie V

命题变元

命题公式

公式的解釋

直信表

- 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式;
- ② 命题公式没有真值,只有对其命题变元进行真值指派后,方可确定命题公式的真值;

命题逻辑

Lijie W

命题公式

*エレロン用牛オ

- 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式;
- ② 命题公式没有真值,只有对其命题变元进行真值指派后,方可确定命题公式的真值;
- 3 整个公式的最外层括号可以省略;公式中不影响运算次序的括号也可以省略。

命题逻辑

Lijie W

.....

命题公式

ムエいロンガナイ

- 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式;
- ② 命题公式没有真值,只有对其命题变元进行真值指派后,方可确定命题公式的真值;
- ❸ 整个公式的最外层括号可以省略;公式中不影响运算次序的括号也可以省略。
- 在实际应用中,为了便于存储和运算,命题公式常用二元树的方式来表达。

命题逻辑

Lijie W

合颢公式

公式的解释

who fals who

- 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式;
- ② 命题公式没有真值,只有对其命题变元进行真值指派后,方可确定命题公式的真值;
- ◎ 整个公式的最外层括号可以省略;公式中不影响运算次序的括号也可以省略。
- 在实际应用中,为了便于存储和运算,命题公式常用二元树的方式来表达。

命题逻辑

Lijie W.

命题变元

公式的解释

Definition

设 P_1 、 P_2 、 P_3 、···、 P_n 是出现在公式 G 中的所有命题变元,指定 P_1 、 P_2 、 P_3 、···、 P_n 一组真值,则这组真值称为 G 的一个解释,常记为 I_a

命题逻辑

Lijie W.

中枢文儿

公式的解释

Definition

设 $P_1 \setminus P_2 \setminus P_3 \setminus \cdots \setminus P_n$ 是出现在公式 G 中的所有命题变元,指定 $P_1 \setminus P_2 \setminus P_3 \setminus \cdots \setminus P_n$ 一组真值,则这组真值称为 G 的一个解释,常记为 I。

Example

设有公式: $G = P \rightarrow (\neg Q \land R)$

命题逻辑

Lijie W.

叩慰受兀

小計的解釋

.

Definition

设 $P_1 \setminus P_2 \setminus P_3 \setminus \cdots \setminus P_n$ 是出现在公式 G 中的所有命题变元,指定 $P_1 \setminus P_2 \setminus P_3 \setminus \cdots \setminus P_n$ 一组真值,则这组真值称为 G 的一个解释,常记为 I_s

Example

设有公式: $G = P \rightarrow (\neg Q \land R)$

① $I_1: P = 0, Q = 1, R = 0$ 是 G的一个解释, 使得 G的真值为 1。

命题逻辑

Lijie W.

中型受兀

八字化白白金属系

Definition

设 P_1 、 P_2 、 P_3 、···、 P_n 是出现在公式 G 中的所有命题变元,指定 P_1 、 P_2 、 P_3 、···、 P_n 一组真值,则这组真值称为 G 的一个解释,常记为 I_n

Example

设有公式: $G = P \rightarrow (\neg Q \land R)$

- ① $I_1: P = 0, Q = 1, R = 0$ 是 G的一个解释, 使得 G的真值为 1。
- ② $l_2: P = 1, Q = 0, R = 0$ 是 G 的一个解释, 使得 G 的真值为 0。

命题逻辑

Liiie W

命尟变刀

真值表

Definition

设 P_1 、 P_2 、 P_3 、···、 P_n 是出现在公式 G 中的所有命题变元,指定 P_1 、 P_2 、 P_3 、···、 P_n 一组真值,则这组真值称为 G 的一个解释,常记为 I_a

Example

设有公式: $G = P \rightarrow (\neg Q \land R)$

- ① $I_1: P = 0, Q = 1, R = 0$ 是 G的一个解释, 使得 G的真值为 1。
- ② $l_2: P = 1, Q = 0, R = 0$ 是 G 的一个解释, 使得 G 的真值为 0。

■ 如果公式 G 在解释 I 下是真的,则称I 满足 G,此时 I 是 G 的成真赋值;如果 G 在解释 I 下是假的,则称I 弄假于 G,此时 I 是 G 的成假赋值。

命题逻辑

Lijie W.

命题变元

命题公式

公式的解释

真值表

● 一般来说,若有 n 个命题变元,则应有 2" 个不同的解释。

Lijie W.

真值表

38

- 一般来说, 若有 n 个命题变元,则应有 2" 个不同的解释。
- 利用真值表,可得到公式的所有成真赋值和成假赋值。

命题逻辑

Lijie W.

命题变元

命题公式

式的解釋

直信表

Ŧ

- 一般来说, 若有 n 个命题变元, 则应有 2" 个不同的解释。
- 利用真值表,可得到公式的所有成真赋值和成假赋值。

Definition

由公式 G 在其所有可能的解释下所取真值构成的表,称为 G 的<mark>真值表</mark>(truth table)。

命题逻辑

Lijie W

命题变示

命题公式

公式的解系

直信表

38

- 一般来说, 若有 n 个命题变元, 则应有 2" 个不同的解释。
- 利用真值表,可得到公式的所有成真赋值和成假赋值。

Definition

由公式 G 在其所有可能的解释下所取真值构成的表,称为 G 的真值表(truth table)。

☞ 真值表画法

一般我们将公式中的命题变元放在真值表的左边,将公式的结果放在真值表的右边。有时为了清楚起见,可将求公式的中间结果也放在真值表中。

命题逻辑

Lijie W.

命题变元

命题公式

ハードかり配え

真值表

Example

设有公式: $G = (P \to ((\neg P \leftrightarrow Q) \land R)) \lor Q$,则G的真值表为:

命题逻辑

Lijie W.

命题变元

公式的解释

真值表

Example								
设有公式: $G = (P \rightarrow ((\neg P \leftrightarrow Q) \land R)) \lor Q$,则G的真值表为:								
P	Q	R	$\neg P$	$\neg P \leftrightarrow Q$	$\neg P \leftrightarrow Q \land R$	$P \to ((\neg P \leftrightarrow Q) \land R)$	G	
0	0	0	1	0	0	1	1	
0	0	1	1	0	0	1	1	
0	1	0	1	1	0	1	1	
0	1	1	1	1	1	1	1	
1	0	0	0	1	0	0	0	
1	0	1	0	1	1	1	1	
1	1	0	0	0	0	0	1	
1	1	1	0	0	0	0	1	
						•		

命题逻辑

Lijie W.

命题变元

真值表

Example

可进一步简化为:

P	Q	R	$G = (P \to ((\neg P \leftrightarrow Q) \land R)) \lor Q$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

题逻辑

Lijie W.

命题变元

命题公式

公式的解系

真值表

THE END, THANKS!