IOE 511/Math 562 Homework 10

Yifan Zhou (yzhouum@umich.edu)

March 30, 2017

9 Question 1:

- (a) Proof:
 - Let $f_c(x) = \frac{1}{2}||x c||_2^2 = \frac{1}{2}\sum_{i=1}^n (x_i c_i)^2$ be the objective function of (P_c) . Then the objective function of (P_d) can be expressed as $f_d(x) = \frac{1}{2}\sum_{i=1}^n (x_i d_i)^2 = \frac{1}{2}\sum_{i=1}^n \left(x_i c_i + \frac{1 e^T c}{n}\right)^2$.
 - Define $\alpha = \frac{1 e^T c}{n} = \frac{1 \sum_{i=1}^n c_i}{n}$. Note that α is a scalar independent of variable x. By $e^T x = 1$, we know that for all x in the feasible region of (P_c) and (P_d) , it must satisfy $\sum_{i=1}^n x_i = 1$.
 - $f_d(x) = \frac{1}{2} \sum_{i=1}^n (x_i c_i + \alpha)^2 = \frac{1}{2} \sum_{i=1}^n \left((x_i c_i)^2 + \alpha^2 + 2\alpha(x_i c_i) \right) = f_c(x) + \frac{n}{2}\alpha^2 + \alpha(1 e^T c)$. In addition, (P_c) and (P_d) have the same feasible region. Therefore, any $\bar{x} \in \mathbb{R}^n$ in the feasible region of (P_c) that can minimize $f_c(x)$ will minimize $f_d(x)$ as well. In other words, they have the same optimal solutions.
- (b) Proof: The feasible region of (P_d) is $\mathcal{F} = \{x \in \mathbb{R}^n : e^T x = 1, x \ge 0\}$. If $d \ge 0$, $e^T d = 1$, then $x^* = d$ You may want is feasible. For any $x \in \mathcal{F}$, $f_d(x) \ge 0 = f_d(x^*)$. Therefore, x^* minimizes $f_d(x)$. $x^* = d$ is an optimal to argue that "x solution of (P_d) .

>= 0" is the domain of f_0(c) Proof:

But the catch is that we need f_0 to be differentialbe in its domain. It implies we need an open domian. (Most of the case, we have domian R^n.)

- Let $h(x) = e^T x 1$ and $X = \{x \in \mathbb{R}^n : x \ge 0\}$. Because $f_d(x)$ is a convex function, h(x) is linear and X is a convex set, (P_d) is in fact a convex problem, where the first order KKT conditions are sufficient and necessary for global optimality.
- $\nabla f_d(x) = x d = \begin{bmatrix} x_1 d_1 & \dots & x_n d_n \end{bmatrix}^T$, $\nabla h(x) = e = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^T$. Let x^* be an optimal solution of (P_d) . According to KKT conditions, it satisfies $\nabla f_d(x^*) + \nabla h(x^*)u = x^* d + u \cdot e = 0$, where u is a scalar. Need to take care of X >= 0 as well. (miss a dual var v for x >= 0)
- Suppose $d_j < 0$ for some index j, but $x_j^* > 0$. Then we have $x_j^* = d_j u > 0$. Because $e^T d = 1$ and $d_j < 0$, we have $1 = e^T x^* = e^T (d u \cdot e) = e^T d nu > e^T d nd_j > 1$, which results in a contradiction. Therefore, for $d_j < 0$ for some index j, then $x_j^* = 0$ in any optimal solution of (P_d) .
- (d) Initialization: Set k = 0 and $c^k = c$. Define $S^0 = \{1, ..., n\}$.
 - Iteration:
 - Compute $d^k = c^k + \left(\frac{1 e^T c^k}{n}\right)e$. Define $I^k = \{j \in S^k : d_j^k < 0\}$. If $I^k = \emptyset$, set $x_i^* = d_i^k$ for all $i \in S^k$. Stop the iteration and the current x^* is the optimal solution to (P_c) .
 - Otherwise, set $x_j^* = 0$ for all $j \in I^k$. Set k = k + 1 and form a new vector c^k by eliminating all the components c_j^{k-1} for all $j \in I^{k-1}$ from c^{k-1} . Let $S^k = S^{k-1} \setminus I^{k-1}$ denote the indices of each component in c^k . Go back to the above step.

Question 2:

Proof:

- It is obvious that if C = D, then for any $y \in \mathbb{R}^n$, $S_C(y) = S_D(y)$.
- Let's show that if $S_C(y) = S_D(y)$, then C = D by contradiction. Suppose $S_C(y) = S_D(y)$ but $C \neq D$. That is, there exists $\bar{x} \in C$ but $\bar{x} \notin D$. By definition, for any $y \in \mathbb{R}^n$, $y^T \bar{x} \leq S_C(y)$. For all $x \in D$, by the separation theorem, $y^T x > S_C(y) = S_D(y)$, which contradicts the assumption that $S_D(y) \geq y^T x$. Therefore, if $S_C(y) = S_D(y)$, then C = D.

Question 3:

Proof:

• $L(x, u) = f(x) + \sum_{i=1}^{m} u_i g_i(x)$, $L^*(u) = \inf_{x \in X} L(x, u)$, and the dual problem is

(D)
$$v^* = \sup L^*(u)$$

s.t. $u_i \ge 0$, for all $i = 1, ..., m$.

• $\bar{L}(x,u) = f(x) + \sum_{i=1}^{r} u_i g_i(x)$, $\bar{L}^*(u) = \inf_{x \in \bar{X}} \bar{L}(x,u)$, and the dual problem is

$$(\bar{D}) \ \bar{v}^* = \sup \bar{L}^*(u)$$

s.t. $u_i \ge 0$, for all $i = 1, \dots, r$.

- Because the dual problems require all $u_i \geq 0$ for $i = 1, \ldots, m$, we can safely assume that in the following discussion without loss of generality. Because for all $x \in \bar{X}$, $g_i(x) \leq 0$, we have $u_i g_i(x) \leq 0$, $i = r+1, \ldots, m$. As a result, $\bar{L}(x,u) = f(x) + \sum_{i=1}^r u_i g_i(x) \geq f(x) + \sum_{i=1}^m u_i g_i(x)$ for the same $x \in \bar{X}$ and u_i , $i = 1, \ldots, r$. Let $\bar{x} \in \bar{X}$ be the solution that attains $\inf_{x \in \bar{X}} \bar{L}(x,u)$. When $u_i \geq 0$, $i = 1, \ldots, m$, we have $\inf_{x \in \bar{X}} (f(x) + \sum_{i=1}^m u_i g_i(x)) \leq f(\bar{x}) + \sum_{i=1}^m u_i g_i(\bar{x}) \leq f(\bar{x}) + \sum_{i=1}^r u_i g_i = \inf_{x \in \bar{X}} \bar{L}(x,u) = \bar{L}^*(u)$, for the same u_i , $i = 1, \ldots, r$. Therefore, $\sup_{u \geq 0} \bar{L}^*(u) \geq \sup_{u \geq 0} \inf_{x \in \bar{X}} (f(x) + \sum_{i=1}^m u_i g_i(x))$.
- $\inf_{x \in X} L(x, u) \le \inf_{x \in \bar{X}} (f(x) + \sum_{i=1}^m u_i g_i(x))$ for the same $u_i, i = 1, ..., m$ because $\bar{X} \subseteq X$. It follows that $\sup_{u \ge 0} L^*(u) \le \sup_{u \ge 0} \inf_{x \in \bar{X}} (f(x) + \sum_{i=1}^m u_i g_i(x))$.
- From above analysis, we know $\sup_{u\geq 0} \bar{L}^*(u) \geq \sup_{u\geq 0} \inf_{x\in \bar{X}} (f(x) + \sum_{i=1}^m u_i g_i(x)) \geq \sup_{u\geq 0} L^*(u)$. That is, $\bar{v}^* \geq v^*$. Due to the weak duality, $v^* \leq f^*$ and $\bar{v}^* \leq \bar{f}^*$. Since (P) and (\bar{P}) are essentially the same problem, $f^* = \bar{f}^*$. Therefore, we have shown that $v^* \leq \bar{v}^* \leq f^*$.

Question 4:

(a) Approach 1:

$$(P_1) \quad z_1^* = \inf f_1(x)$$
s.t. $g_i(x) \le 0, \quad i = 1, ..., m$

$$f_j(x) \le b_j, \quad j = 2, ..., s$$

$$x \in \mathbb{R}^n$$

Approach 2:

$$(P) z^* = \inf f(x) = \inf \sum_{j=1}^{s} w_j f_j(x)$$

s.t. $g_i(x) \le 0, i = 1, ..., m$
 $x \in \mathbb{R}^n$

(b) Proof:

- Suppose \bar{x} is the optimal solution obtained by Approach 2. For all x in the feasible region of (P), there is $z^* = w_1 f_1(\bar{x}) + \sum_{j=2}^{s} w_j f_j(\bar{x}) \le w_1 f_1(x) + \sum_{j=2}^{s} w_j f_j(x)$.
- Let $b_j = f_j(\bar{x})$ for all j = 2, ..., s. For all x in the feasible region of (P_1) , $f_j(x) \le b_j$, j = 2, ..., s. It follows that $\sum_{j=2}^{s} w_j f_j(\bar{x}) \ge \sum_{j=2}^{s} w_j f_j(x)$ because $w_j \ge 0$, j = 2, ..., s.
- From above, it can be deduced that for all feasible x of (P_1) , there is $f_1(\bar{x}) \le f_1(x)$ since $w_1 > 0$. In addition, \bar{x} is feasible for (P_1) because it is feasible for (P) and it satisfies $f_j(\bar{x}) \le b_j$, $j = 2, \ldots, s$ as well. Therefore, \bar{x} is also the optimal solution for Approach 1.
- (c) Suppose both problems satisfy a constraint qualification for KKT first order necessary conditions for optimality.
 - Approach 1: Let \bar{x} be a feasible solution of (P_1) . If \bar{x} is a local optimum, $\exists (u, v)$, such that

$$\nabla f_1(\bar{x}) + \sum_{i=1}^m u_i \nabla g_i(\bar{x}) + \sum_{j=2}^s v_j \nabla f_j(\bar{x}) = 0$$

$$u_i \ge 0, \ u_i g_i(\bar{x}) = 0, \ i = 1, \dots, m$$

$$v_i \ge 0, \ v_i f_i(\bar{x}) = 0, \ j = 2, \dots, s$$

• Approach 2: Let \hat{x} be a feasible solution of (P). If \hat{x} is a local minimum, $\exists \hat{u}$, such that

$$\sum_{j=1}^{s} w_j \nabla f_j(\hat{x}) + \sum_{i=1}^{m} \hat{u}_i \nabla g_i(\hat{x}) = 0$$

$$\hat{u}_i \ge 0, \ \hat{u}_i g_i(\hat{x}) = 0, \ i = 1, \dots, m$$

(d) Proof:

- Because all functions are convex and a constraint qualification is satisfied, KKT first order necessary conditions are sufficient and necessary for global optimality.
- Let \bar{x} be a solution obtained by Approach 1. It must satisfy the optimality conditions in (c). Let $w_1 = 1 > 0$, $w_j = v_j \ge 0$ for j = 2, ..., s and $\hat{u}_i = u_i$ for i = 1, ..., m. Then the optimality conditions for Approach 2 is in fact exactly the same as the ones for (P_1) .
- $\bar{x} \in \mathbb{R}^n$ is in a feasible region of (P) since it satisfies $g_i(\bar{x}) \le 0$, i = 1, ..., m. And it also satisfy the optimality conditions for Approach 2. Therefore, Approach 2 can have the same solution as in Approach 1 with the weights we find for w_j , j = 1, ..., s.

Question 5:

Proof:

• Let x be a vector that consists of all x_{ij} for all $(i, j) \in A$. Let $f(x) = \sum_{(i,j) \in A} (\frac{1}{2}R_{ij}x_{ij}^2 - t_{ij}x_{ij})$ and

$$\nabla f(x) = \begin{bmatrix} \vdots \\ R_{ij}x_{ij} - t_{ij} \\ \vdots \end{bmatrix}, \forall (i, j) \in A.$$

• Let $h_i(x) = \sum_{j:(j,i)\in A} x_{ji} - \sum_{j:(i,j)\in A} x_{ij}$, $\forall i \in N$. h(x) can be written as h(x) = Bx. For the k^{th} row of B, its entries are $\frac{\partial h_k(x)}{\partial x_{ij}} = \begin{cases} -1 & \text{if } i = k, \\ 1 & \text{if } j = k, \\ 0 & \text{otherwise,} \end{cases}$

3

- It is obvious that f is a convex function and h_i , $i \in N$ are linear, so it is a convex problem where KKT first order conditions are sufficient and necessary for global optimality.
- Let \bar{x} be a feasible solution of the problem, which means it satisfies Kirchhoff's law. It is an optimal solution if and only if $\nabla f(\bar{x}) + B^T v = 0$, where v is a vector with the same number of components as the nodes. That is, $R_{ij}\bar{x}_{ij} t_{ij} + v_j v_i = 0$, $\forall (i,j) \in A$. Rearranging the equations, we have $v_i v_j = R_{ij}\bar{x}_{ij} t_{ij}$, $\forall (i,j) \in A$, which is Ohm's law. Therefore, the current x_{ij} , $(i,j) \in A$ satisfying laws (1) and (2) is the unique solution of the problem.