Ejemplo. En el gráfico siguiente se muestra un recipiente grande con algún refresco y se propone el problema de obtener exactamente **4 cc.** usando solamente los instrumentos mostrados los cuales tienen indicada su capacidad. Se supondrá que el recipiente grande contiene suficiente cantidad de refresco. Es posible trasladar el contenido entre recipientes pero no se dispone de ningún dispositivo adicional para medición.

Describir un algoritmo para llegar a la solución.

Objetivo propuesto: Que el recipiente de 5 cc. contenga 4 cc. del refresco

Variables

Sean A: Representación del recipiente cuya capacidad es 5 cc.

B: Representación del recipiente cuya capacidad es 3 cc.

C: Representación del recipiente grande con cantidad suficiente de refresco.

Algoritmo

- 1. Llene A con el refresco de C
- 2. Vierta A en B hasta llenarlo
- 3. Vierta todo el contenido de B en C
- 4. Vierta el resto del contenido de A en B
- 5. Llene A con el refresco de C
- 6. Vierta el contenido de A en B hasta llenarlo
- 7. El recipiente A contendrá 4 cc.

Prueba

Recorrer el algoritmo anotando los valores que toman las variables A y B

Instrucción	Contenido de A	Contenido de B
Inicio	0	0
1	5	0
2	2	3
3	2	0
4	0	2
5	5	2
6	4	3

Resultado

Se verifica que en el recipiente A quedarán 4 cc.

Observe los componentes que intervienen en la construcción del algoritmo:

- a) Propuesta del objetivo
- b) Definición de variables
- c) Lista de instrucciones
- d) Prueba del algoritmo
- e) Verificación del resultado obtenido

Ejemplo. Describir un algoritmo para revisar un vehículo antes de un viaje.

Algoritmo

1 Si el nivel de agua del radiador está bajo

Complete el nivel de agua del radiador

2 Si el nivel de gasolina es bajo

Acuda a la estación de gasolina y llene el tanque

3 Si el nivel de aceite del motor es bajo

Acuda a la estación de servicio para chequear el vehículo

4 Para cada llanta repita la siguiente instrucción

Compruebe la presión del aire

5 Si alguna llanta registró presión baja

Acuda a la estación de servicio para revisión de llantas

Esta descripción pretende ser un algoritmo para la revisión del vehículo. Contiene acciones condicionadas y también una instrucción para repetir una acción varias veces. Sin embargo, el uso del lenguaje común no permite que la descripción sea suficientemente precisa para facilitar el seguimiento de las instrucciones. Tampoco se puede constatar que se cumple el objetivo propuesto como en el ejemplo anterior. Por lo tanto, se lo puede considerar simplemente como un instructivo de ayuda.

Los lenguajes algorítmicos deben ser permitir crear descripciones claras, de tal manera que no haya posibilidad de interpretar las instrucciones de más de una manera.

2.5 Ejercicios de creación de algoritmos

Para cada ejercicio proponga un algoritmo para obtener la solución.

1. Se tienen 3 recipientes cilíndricos, opacos y sin marcas, de 12, 7, y 5 galones de capacidad. El recipiente de 12 galones está lleno de combustible. El objetivo es repartir el combustible en dos partes iguales usando únicamente los tres recipientes. Considere que puede trasladar el combustible entre recipientes pero no se dispone de algún instrumento de medición.

- a) Describa gráficamente el resultado esperado
- b) Asigne símbolos a las variables (Representan la cantidad de combustible)
- c) Construya un algoritmo para obtener la solución. Numere las instrucciones
- d) Ejecute las instrucciones y registre los cambios del contenido de las variables
- e) Verifique que el algoritmo produce la solución esperada.

Para probar su algoritmo puede completar una tabla como la siguiente. Suponga que A, B, C representan a los recipientes con la capacidad y en el orden dados en el gráfico anterior.

Instrucción	Α	В	С
Inicio	12	0	0
1			
2			

Nota: Existe una solución en 12 pasos (en cada paso se traslada de un recipiente a otro).

2. Describa un algoritmo para resolver el siguiente conocido problema. Defina las variables, escriba y numere las instrucciones y luego efectúe una prueba para verificar que funciona:

Tres misioneros y tres caníbales deben atravesar un río en un bote en el que sólo caben dos personas. Pueden hacer los viajes que quieran, pero en en las orillas y en el bote el número de caníbales no debe ser mayor al de los misioneros porque ya podemos suponer lo que ocurriría. El bote no puede cruzar el río si no hay al menos una persona dentro para que lo dirija.

Sugerencia: Defina los misioneros como M1, M2, M3 y los caníbales como C1, C2, C3. Las variables R1, R2 son las orillas del río y B el bote. El contenido de estas variables cambiará mediante las instrucciones del algoritmo. Después de construir el algoritmo puede completar una tabla como la siguiente para verificar el resultado:

Instrucción	R1	В	R2
Inicio	M1,M2,M3,C1,C2,C3		
1			
2			
Final			M1,M2,M3,C1,C2,C3

3. Describa un algoritmo para resolver el siguiente problema, también muy conocido. Defina las variables, escriba y numere las instrucciones y luego efectúe una prueba para verificar que funciona:

Había un pastor que cuidaba a un lobo, una oveja y una canasta de lechugas. El pastor tenía que cruzar un río, para lo cual disponía de un pequeño bote en el que solamente cabían él y un animal, o él y la canasta de lechugas. El problema es conseguir que pasen todos al otro lado del río sanos y salvos, sin que nadie se coma a nadie. Al lobo no le gustan las lechugas, pero como se puede suponer, el lobo no puede quedarse a solas con la oveja y tampoco la oveja puede quedarse sola con las lechugas. El pastor debe guiar al bote en cada viaje.

Sugerencia: Defina símbolos para los datos **P**: pastor, **L**: lobo, **O**: oveja, **C**: canasta. Las variables **R1**, **R2** son las orillas del río y **B** el bote. El contenido de estas variables cambiará mediante las instrucciones del algoritmo. Después de construir el algoritmo puede completar una tabla como la siguiente para verificar el resultado:

Instrucción	R1	В	R2
Inicio	P, L, O, C		
1			
2			
Final			P, L, O, C

4. Describa un algoritmo para resolver el siguiente problema. Defina las variables, escriba y numere las instrucciones y luego efectúe una prueba para verificar que funciona:

Se tiene una caja con nueve bolas, semejantes en apariencia, entre las cuales hay una más pesada que las otras ocho. No se sabe cuál es y se trata de hallarla efectuando solamente dos pesadas en una balanza de dos platillos en equilibrio.

Después de construir el algoritmo puede completar una tabla como la siguiente para verificar el resultado, en donde a, b, c, d, e, f, g, h, i representan a las nueve bolas.

Instrucción	Caja	Platillo izquierdo	Platillo derecho
Inicio	a, b, c, d, e, f, g, h, i		
1			
2			
Final			

5. Describa en forma precisa las instrucciones necesarias para preparar una fiesta sorpresa para su amiga o su amigo. En las instrucciones debe incluir los días y horas en los que serán desarrolladas las actividades. Haga referencia a la fecha y hora cero en la que ocurrirá el evento. Verifique su algoritmo mediante un cuadro con fechas y horas. En este cuadro anote el desarrollo de las actividades siguiendo las instrucciones de su algoritmo. Note que este tipo de algoritmos no se puede verificar que cumplen el objetivo propuesto como en los ejercicios anteriores. Pueden considerarse únicamente como instructivos para organizar el desarrollo de actividades.