# Bayesian Structural Time Series

Steven L. Scott



October 21, 2022



### Overview

**Summary:** Bayesian structural time series models are really useful. Make them accessible to non-experts.

- 1. Why did I create bsts?
- 2. What does it do?
- 3. How does it do it?
- 4. Why has the package done well?
- 5. Where should we go from here?

#### R:

install.packages("bsts")
library(bsts)

### Python:

pip install BayesBoom
import BayesBoom.bsts as bsts

#### Motivation

### Modeling

Time Series

Regression

MCMC

### **Applications**

Nowcasting (standard models)

Long term forecasting

Modeling non-Gaussian Outcomes

# Motivation: Nowcasting

Maintaining "real time" estimates of infrequently observed time series. (Scott and Varian, 2014, 2015)



- US weekly initial claims for unemployment.
   (Leading indicator of recession.)
- Can we learn this week's number before it is released?
- ➤ Google Trends /
  Correlate provides a real
  time signal correlated
  with the outcome.

## Google correlate

(Now dead) Could provide the 100 most highly correlated individual queries.



### Additive structure

Plays very nicely with MCMC.

If the overall model is

$$y_t = \underbrace{\mu_t + \gamma_t}_{\text{time series}} + \underbrace{\beta^T \mathbf{x}_t}_{\text{regression}} + \epsilon_t$$

#### Then

- ▶  $y_t \beta^T \mathbf{x}_t$  (conditional on  $\beta$ ) is a pure time series problem.
- $ightharpoonup y_t \mu_t \gamma_t$  (conditional on  $\mu_t$  and  $\gamma_t$ ) is a pure regression problem.

The additive structure comes in handy if you want to do anything "fancy" with either component.

- Fancy models for trend or seasonality.
- ► Fancy priors on the regression coefficients for handling sparsity.

#### Motivation

### Modeling

Time Series
Regression
MCMC

### Applications

Nowcasting (standard models) Long term forecasting Modeling non-Gaussian Outcomes



#### Motivation

### Modeling

#### Time Series

Regression MCMC

### **Applications**

Nowcasting (standard models) Long term forecasting Modeling non-Gaussian Outcomes



### Structural time series models

### Observation equation

$$y_t = Z_t^T \alpha_t + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(0, H_t)$$

- $\triangleright$   $y_t$  is the observed data at time t.
- $\triangleright$   $Z_t$  and  $H_t$  are structural parameters.
- $ightharpoonup \alpha_t$  is a vector of latent variables called the "state".

### Transition equation

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t \qquad \eta_t \sim \mathcal{N}(0, Q_t)$$

- $ightharpoonup T_t$ ,  $R_t$ , and  $Q_t$  are structural parameters (partly known).
- $ightharpoonup \eta_t$  may be of lower dimension that  $\alpha_t$ .



Structural parameters  $T_t$ ,  $Z_t$ ,  $R_t$  are often filled with 0's and 1's.



## Structural time series models are modular

Add your favorite trend, seasonal, regression, holiday, etc. models to the mix



# An example of how to specify state

This is the "basic structural model" with an added regression effect.

The model with *S* seasons can be written

$$\begin{aligned} y_t &= \underbrace{\mu_t}_{\text{trend}} + \underbrace{\gamma_t}_{\text{seasonal}} + \underbrace{\beta^T \mathbf{x}_t}_{\text{regression}} + \epsilon_t \\ \mu_{t+1} &= \mu_t + \delta_t + u_t \\ \delta_{t+1} &= \delta_t + v_t \\ \gamma_{t+1} &= -\sum_{s=1}^{S-1} \gamma_{t+1-s} + w_t \end{aligned}$$

- ▶ Trend: "level"  $\mu_t$  + "slope"  $\delta_t$ .
- ▶ Seasonal: S-1 dummy variables with time varying coefficients. Sums to zero in expectation.
- Regression: Spike and slab prior to handle sparsity.



#### Motivation

### Modeling

Time Series

Regression

MCMC

### Applications

Nowcasting (standard models) Long term forecasting Modeling non-Gaussian Outcomes

# Spike and slab priors

- ▶ Reflect the prior belief that most elements of  $\beta$  are zero.
- Let  $\gamma_j = 1$  if  $\beta_j \neq 0$  and  $\gamma_j = 0$  if  $\beta_j = 0$ .  $\gamma = [1, 0, 1, 1, 0, 0, \dots, 1, 0]$
- ► Now factor the prior distribution

$$p(\beta, \gamma, \sigma^{-2}) = p(\beta_{\gamma}|\gamma, \sigma^{2})p(\sigma^{2}|\gamma)p(\gamma)$$

where...

$$\gamma \sim \prod_{j} \pi_{j}^{\gamma_{j}} (1 - \pi_{j})^{1 - \gamma_{j}}$$
 "Spike"  $eta_{\gamma} | \gamma, \sigma^{2} \sim \mathcal{N}\left(b_{\gamma}, \sigma^{2}\left(\Omega_{\gamma}^{-1}\right)^{-1}\right)$  "Slab"  $rac{1}{\sigma^{2}} \sim \Gamma\left(rac{df}{2}, rac{ss}{2}\right)$ 

### Prior elicitation

A complicated prior can be reduced to 4 numbers... with sensible defaults.

$$\begin{split} \pi_j &= \text{``expected model size'' } / \text{ number of predictors } \\ b &= (\bar{y}, \mathbf{0}) \\ \Omega^{-1} &= \kappa \{ \alpha \mathbf{X}^T \mathbf{X} + (1 - \alpha) \mathrm{diag} \mathbf{X}^T \mathbf{X} \} / n \\ ss/df &= (1 - R_{\mathrm{expected}}^2) s_y^2 \\ df &= 1 \end{split}$$

- ▶ The  $\Omega^{-1}$  expression is  $\kappa$  observations worth of prior information.
- ▶ It can help to average  $\Omega^{-1}$  with its diagonal.
- Prior elicitation is 4 numbers: expected model size, expected  $R^2$ , beta weight  $(\kappa)$ , and sigma weight (df).

# Spike and Slab vs Lasso



- ► "Lasso" or "L1 regularization" or "double exponential (Laplace) prior" produces point estimates at zero.
- Spike and slab prior produces point masses of probability at zero.

#### Motivation

### Modeling

Time Series
Regression

**MCMC** 

### Applications

Nowcasting (standard models) Long term forecasting Modeling non-Gaussian Outcomes

# MCMC for spike and slab regression

Conditional on  $\gamma$  you can integrate out  $\beta$  and  $\sigma$ .

For each variable j, draw  $\gamma_j | \gamma_{-j}, \mathbf{y}$ .

$$\gamma | \mathbf{y} \sim C(\mathbf{y}) rac{|\Omega_{\gamma}^{-1}|^{rac{1}{2}}}{|V_{\gamma}^{-1}|^{rac{1}{2}}} rac{p(\gamma)}{SS_{\gamma}^{rac{DF}{2}-1}}$$

- **Each**  $\gamma_j$  only assumes the values 0 or 1.
- $ightharpoonup \sigma^2 V_{\gamma}$  is the posterior variance of  $\beta_{\gamma}$  in model  $\gamma$ .
- $\triangleright$   $SS_{\gamma}$  is a "sum of squares."
- ▶ A  $|\gamma| \times |\gamma|$  matrix needs to be inverted to compute  $p(\gamma|\mathbf{y})$ . This is VERY FAST if  $|\gamma|$  is small.

Just Gibbs sample (for example) the discrete distribution  $p(\gamma|\mathbf{y})$ . Draw  $\beta, \sigma|\gamma, \mathbf{y}$  as needed through conjugacy.



### MCMC for bsts

- ▶ The model parameters are  $\theta = \{\sigma_{\epsilon}, \sigma_{u}, \sigma_{v}, \sigma_{w}, \beta\}$ .
- ▶ The state is  $\alpha = \{\alpha_1, \dots, \alpha_n\}$ .

### MCMC algorithm alternates between:

- 1. Draw  $\alpha$  given  $\mathbf{y}$ ,  $\theta$ 
  - ightharpoonup Kalman filter "forward filter backward sampler" draws  $\alpha$  directly.
  - Several implementations available.
    - I like Durbin and Koopman (2002, Biometrika).
      - 1.1 Kalman filter forward.
      - 1.2 Simulate fake data with the wrong mean, but right variance.
      - 1.3 Adjust the mean.
- 2. Draw  $\theta$  given  $\alpha$ .
  - ▶ Given  $\alpha$ , then  $[\sigma_u], [\sigma_v], [\sigma_w], [\beta, \sigma_\epsilon]$  are conditionally independent.
  - Independent priors on the time series  $\sigma$ 's. Easy peasy.
  - "Spike and slab" prior on  $\beta$  handles sparsity when there are many potential controls.



#### Motivation

### Modeling

Time Series

Regression

MCMC

### **Applications**

Nowcasting (standard models) Long term forecasting Modeling non-Gaussian Outcome

#### Motivation

### Modeling

Time Series

Regression

MCMC

### **Applications**

Nowcasting (standard models)

Long term forecasting

Modeling non-Gaussian Outcomes

# Fitting the model in bsts (R)

```
y <- my.data$ResponseVariable
```

ss <- AddLocalLinearTrend(

Steve Scott (ShareThis)

```
## Peek at the data for scaling the prior.
    y)
ss <- AddSeasonal(
                  ## Adding state to ss.
    ss,
                  ## Peek at the data for scaling.
   у,
    nseasons = 52) ## 52 "seasons" for weekly annual cycle.
model <- bsts(y ~ ., ## regression formula like 'lm'</pre>
              state.specification = ss, ## time series spec
              niter = 1000,
                                   ## MCMC iterations
              data = my.data,
              expected.model.size = 1) ## spike-slab
```

Bayesian Structural Time Series

October 21, 2022

21 / 43

list(), ## No previous state specification.

# Posterior inclusion probabilities

With expected model size = 3, and the top 100 predictors from correlate



- ► Only showing inclusion probabilities < .1.
- Shading shows  $Pr(\beta_i > 0|\mathbf{y})$ .
  - White: positive coefficients
  - Black: negative coefficients

## What can you plot?

Calling plot(model, "help") launches a browser with the help entry.

```
plot(x, v = c("state", "components", "residuals",
              "coefficients", "prediction.errors",
              "forecast.distribution".
              "predictors", "size", "dvnamic", "seasonal", "help"),
      . . . )
 PlotBstsCoefficients(bsts.object, burn = SuggestBurn(.1, bsts.object),
                       inclusion.threshold = 0. number.of.variables = NULL. ...)
 PlotBstsComponents(bsts.object, burn = SuggestBurn(.1, bsts.object),
                       time, same.scale = TRUE,
                       layout = c("square", "horizontal", "vertical"),
                       style = c("dynamic", "boxplot"),
                       vlim = NULL, ...)
 PlotDynamicRegression(bsts.object, burn = SuggestBurn(.1, bsts.object),
                        time = NULL, style = c("dynamic", "boxplot"),
                        layout = c("square", "horizontal", "vertical"),
                        ...)
 PlotBstsState(bsts.object, burn = SuggestBurn(.1, bsts.object),
                       time, show.actuals = TRUE,
                       style = c("dynamic", "boxplot"), ...)
 PlotBstsResiduals(bsts.object, burn = SuggestBurn(.1, bsts.object),
                       time, style = c("dynamic", "boxplot"), ...)
 PlotBstsPredictionErrors(bsts.object, burn = SuggestBurn(.1, bsts.object),
                       time, style = c("dynamic", "boxplot"), ...)
 PlotBstsSize(bsts.object, burn = SuggestBurn(.1, bsts.object), style =
                       c("histogram", "ts"), ...)
 PlotSeasonalEffect(bsts.object, nseasons = 7, season.duration = 1,
                     same.scale = TRUE, vlim = NULL, get.season.name = NULL,
                     burn = SuggestBurn(.1, bsts.object), ...)
```

# What got chosen?

plot(model, "predictors", inc = .1)



- Solid blue line: actual
- Remaining lines shaded by inclusion probability.

# How much explaining got done?

Dynamic distribution plot shows evolving pointwise posterior distribution of state components.

### plot(model, "components")







# Did it help?



- Plot shows cumulative absolute one-step-ahead prediction error
- The regressors are not very helpful during normal times.
- They help the model to quickly adapt to the recession.

#### Motivation

### Modeling

Time Series

Regression

MCMC

### **Applications**

Nowcasting (standard models)

Long term forecasting

Modeling non-Gaussian Outcomes

# List of state components

| Trend          |                                                                |  |                                 |
|----------------|----------------------------------------------------------------|--|---------------------------------|
|                | AddLocalLevel                                                  |  | Local level model               |
|                | AddLocalLinearTrend                                            |  | Local linear trend              |
|                | ${\tt AddStudentLocalLinearTrend}$                             |  | Robust local linear trend       |
|                | AddSemiLocalLinearTrend                                        |  | LLT with AR(1) slope            |
|                | AddAr                                                          |  | AR(p)                           |
|                | AddAutoAr                                                      |  | AR(p) (spike-and-slab for $p$ ) |
|                |                                                                |  |                                 |
| Seasonal       | AddSeasonal Seasonal                                           |  |                                 |
|                | AddTrig Trigonometric sea                                      |  | sonal                           |
|                |                                                                |  |                                 |
| Holiday        | ${\tt AddFixedDateHoliday}$                                    |  | Holiday state models            |
|                | AddLastWeekdayInMonthHoliday                                   |  | y   Holiday state models        |
|                | ${\tt AddNamedHolidays}$                                       |  | Holiday state models            |
|                | ${\tt AddNthWeekdayInMonthHoliday}$                            |  | Holiday state models            |
|                |                                                                |  |                                 |
| Regression     | AddDynamicRegression Dynamic regression                        |  |                                 |
|                | (Static regression is built in no need for a state component). |  |                                 |
| <b>■</b> share |                                                                |  |                                 |

# Planners need long term forecasts for disk drives, etc.

I can't show you disk drive numbers, so consider GOOG stock price instead (adjusted for stock split).



# Local linear trend is too flexible for long term forecasting

The 'slope' in a local linear trend is a random walk.

$$y_t = \mu_t + \epsilon_t$$
$$\mu_{t+1} = \mu_t + \delta_t + \eta_{0t}$$
$$\delta_{t+1} = \delta_t + \eta_{1t}$$

Replacing the slope with an AR(1) process (centered on a global mean) provides additional stability.

$$y_t = \mu_t + \epsilon_t$$
  

$$\mu_{t+1} = \mu_t + \delta_t + \eta_{0t}$$
  

$$\delta_{t+1} = D + \rho(\delta_t - D) + \eta_{1t}$$

Bsts calls this a "semilocal" local linear trend.

## Long term forecasts

```
goog.adj <- GetAdjustedStockPriceFromSomewhere()</pre>
## Fit the model with local linear trend.
ss <- AddLocalLinearTrend(list(), goog.adj)
model1 <- bsts(goog.adj, ss, niter = 1000)</pre>
## Now forecast the next 180 days
pred1 <- predict(model1, horizon = 180)</pre>
plot(pred1, plot.original = 700)
## Do the same thing with a different trend model
ss2 <- AddSemiLocalLinearTrend(list(), goog.adj)</pre>
model2 <- bsts(goog.adj, ss2, niter = 1000)</pre>
pred2 <- predict(model2, horizon = 180)</pre>
plot(pred2, plot.original = 700)
```

# Additional structure leads to plausible uncertainty bounds





#### Motivation

### Modeling

Time Series

Regression

MCMC

### **Applications**

Nowcasting (standard models)

Long term forecasting

Modeling non-Gaussian Outcomes

## Example

Travis Berge, Nitish Sinha, and Michael Smolyansky (2016) investigate several market indicators to see which ones might be associated with recession.



- They use logistic regression with Bayesian model averaging (in STATA) to identify predictors.
- This can easily be replicated using BoomSpikeSlab (and improved using bsts).
- Response variable is binomial.
- Kalman filter and spike-and-slab need Gaussian state and Gaussian observations.

# Data augmentation for non-Gaussian outcomes

### Bsts supports data augmentation for the following

- Probit / Logit (success / failure, or bounded count data)
- ► Poisson (unbounded count data)
- Student T (numeric data with outliers)

### Might one day include

- Multinomial logit
- Support vector machines
- Quantile regression

# Identifying relevant variables.

This is just logistic regression with a spike and slab prior. No time series yet...



# Checking predictions

pred <- rowMeans(predict(model, newdata = gdp))</pre>



Missing predictors? How about whether the previous time period was a recession?

# Accounting for time series structure

```
ss <- AddLocalLevel(
   list(),
   initial.y = 0,
   sdy = 1
ts.model <- bsts(
   nber ~ .,
   ss,
   data = gdp.data,
   niter = 10000,
   family = "logit")
```



This is logistic regression with a random walk "intercept."

# Fewer important predictors in time series model





Regression Alone

Reg + Time Series



#### Motivation

### Modeling

Time Series

Regression

MCMC

### **Applications**

Nowcasting (standard models)

Modeling non Coursian Outes

# Why bsts has done well

Some problems with "Bayesian software"

- ▶ "Bayesian software" (Stan, PyMC3, WinBUGS) tries to do too much.
  - Solving really hard problems with adaptive rejection, Hamiltonian MC, etc. means you're working too hard to solve easy problems.
  - ▶ Some problems have special tricks that can make MCMC go really fast.
- "Bayesian software" assumes you can type in your model.
  - Most users don't know what their model is.
  - ► Can't tell a Wishart from a Weibull.
  - Have no idea what to use for a prior.
- Most users don't know what to do with MCMC output.
  - If you don't know what the model is, you don't know what the parameters mean.

# Problems with non-Bayesian software

It's not Bayesian.

### Recent work

- Python implementation.
  - ► The R package is really just a lot of glue.
  - ► All the work happens in C++ (BOOM).
  - Python made possible by pybind11.
- Multivariate time series
  - ▶ Models with ~1000 series.
  - Not as fleshed out as univariate bsts, but acquiring road miles.
  - Shared vs model specific state.
  - Spike and slab on factor loadings.