INF01 118

Técnicas Digitais para Computação

Análise de Circuitos Sequênciais Máquinas de Mealy e Moore

Aula 23

1. Introdução

- circuito sequencial síncrono
 - reconhecido se contém flip-flops (ou latches)
 - circuito pode conter parte combinacional ou não
- comportamento do circuito sequencial é determinado pela sequência de valores das entradas, saídas e estados (valores dos FF's)
 - saídas = f (entradas, estado atual) ou f (estado atual) máquina de Mealy máquina de Moore
 - próximo estado = f (entradas, estado atual)
- equações de entrada = equações booleanas para as entradas de dados dos FF's
 - correspondem a uma lógica combinacional
 - para cada entrada de dados de um FF deve haver uma equação

Máquinas de Estados

Definição

• Uma máquina de estados é uma combinação de 5 elementos:

$$(\Sigma, X, g, x0, F)$$

Onde:

 Σ é um alfabeto finito

X é um conjunto finito de estados

g é a função de transição de estado g : $X \times \Sigma -> X$

X0 é o estado inicial, $x0 \in X$

F é o conjunto de estados finais, $F \subseteq X$.

Diagrama de Estados

- O diagrama de estados representa a máquina de estados finito e contem:
 - Circulos: que representam os estados da máquina rotulados com o nome do estado e tambem ou não com sua codificação.
 - Arcos diretos: que representam as transições entre estados rotulados com entradas/saídas para a transição de estados.

Máquina de Estados Finitos

TIPO MOORE

• Saída depende apenas do estado atual.

Maquina de Estados Finitos

TIPO MEALY

• Saída depende da entrada e do estado atual.

Maquina de Estados Finitos

TIPO MEALY

Solucionar problemas de estabilização

• Saída depende apenas do estado atual.

Considerações sobre Diagramas de Estados

- Máquinas de estado (FSM) podem estar em apenas um estado por vez no tempo, logo há em apenas um estado ou circulo em um determinado tempo t.
- Transição de estados são permitidas apenas na transição de subida OU descida do relógio (clk), dependendo do elemento de armazenamento de estado (se é sensivel a borda de descida ou subida). FSM sincronas!!!
- A representação de máquinas de Mealy e Moore são diferentes como visto.
 - Máquinas de Mealy, as entradas e saidas são definidas nos arcos (transições entre estados).
 - Máquina de Moore, as entradas são definidas nos arcos (transições entre estados) e a saída é definida no estado (dentro do círculo).

Projeto do Hardware de uma FSM

processo de projeto

especificação (p.ex. FSM)

tabela de estados

equações de entrada (para FF's) e de saída

síntese a partir das equações (problema de lógica combin.)

• número de flip-flops

com codificação: n FF's - 2ⁿ estados

sem codificação: n FF's n estados

escolha do tipo dos FF's

influencia determinação das equações de entrada

Projeto com flip-flops tipo D

processo de projeto

- 1. Obter tabela de estados
- 2. Derivar equações de entrada a partir do "próximo estado" na tabela
- 3. Derivar equações de saída a partir da "saída" na tabela
- 4. Simplificar equações de entrada e saída
- 5. Desenhar circuito lógico com FF's D e portas lógicas de acordo com as equações.

4 estados \Rightarrow 2 FF's: A

1 entrada X1 saída Y

Tabela de Estados

Estado Atual		Entrada	Próx.	Estado	Saída		
<u>A</u>	В	X	A	В	Y	MINTERMO	
0	0	0	0	0	0	0	
0	0	1	0	1	1	1	
0	1	0	1	0	0	2	
0	1	1	0	1	0	3	
1	0	0	1	0	0	4	
1	0	1	1	1	1	5	
1	1	0	1	1	0	6	
1	1	1	0	0	0	7	

equações de entrada para FF's tipo D

$$A(t+1) = D_A (A,B,X) = \Sigma m (2,4,5,6)$$

$$B(t+1) = D_B(A,B,X) = \Sigma m (1,3,5,6)$$

equação de saída

$$Y(A,B,X) = \Sigma m (1,5)$$

simplificação das equações

"desenhar" circuito lógico

Reconhecer:

- entrada
- saída
- FF's
- realimentações
- lógica combinac.

Projeto com estados não utilizados


```
5 estados ⇒ 3 FF's
estados não utilizados:

000
110
111
saídas do circuito = saída dos FF's
```


Tabela de estados

Estad	.o A	tua	Entrada	Próx			
A	B	C	X	A	В	C	MINTERMO
0	0	1	0	0	0	1	2
0	0	1	1	0	1	0	3
0	1	0	0	0	1	1	4
0	1	0	1	1	0	0	5
0	1	1	0	0	0	1	6
0	1	1	1	1	0	0	7
1	0	0	0	1	0	1	8
1	0	0	1	1	0	0	9
1	0	1	0	0	0	1	10
1	0	1	1	1	0	0	11

equações de entrada

$$A(t+1) = D_A = \Sigma m (5,7,8,9,11)$$

 $B(t+1) = D_B = \Sigma m (3,4)$
 $C(t+1) = D_C = \Sigma m (2,4,6,8,10)$

simplificação

Mintermos don't care: 0,1,12,13,14,15

$$\mathbf{D}_{\mathbf{B}} \!\!=\!\! \mathbf{\bar{A}} \mathbf{\bar{C}} \mathbf{\bar{X}} + \mathbf{\bar{A}} \mathbf{\bar{B}} \mathbf{X}$$

Escolha dos flip-flops

- T As váriáveis de estado vão de $0 \rightarrow 1$ e de volta $1 \rightarrow 0$ (ex. contadores)
- D Quando a informação de entrada deve ser armazenada por um tempo
- SR Quando sinais diferentes podem dar SET ou RESET nos flip-flops
- JK Quando queremos combinar as vantagens de um FF T com SR
- SR e JK Tendem a reduzir o custo das equações de entrada, mas demandam até o dobro de conexões do que os FF's D e T

Como os FF's D e T requerem um número menor de conexões, são preferidos para implementações VLSI

Exemplo 1: FSM

a/b indica entrada/saída

	Estado Atual		Entrada	Próx.	Saída	
	A	В	X	A	В	Y
	0	0	0	0	0	0
	0	0	1	0	1	0
Tabela 1	0	1	0	0	0	1
	0	1	1	1	1	0
	1	0	0	0	0	1
	1	0	1	1	0	0
	1	1	0	0	0	1
	1	1	1	1	0	0

Máquina de Mealy

Exemplo 2: FSM

só as entradas estão indicadas nos arcos (saídas —> FF's)

	Estado Atual	Entradas		Próximo Estado		
	A	X	Y	\mathbf{A}		
Tabela 2	0	0	0	0		
	0	0	1	1		
	0	1	0	1		
	0	1	1	0		
	1	0	0	1		
	1	0	1	0		
	1	1	0	0		
	1	1	1	1		

Máquina de Moore

saida = f (estado)

Exemplo 3: FSM

Estado Atual		Entrada	Entradas		dos FF's		Próximo Estado	
A	В	X	J_{A}	\mathbf{K}_{A}	J_{R}	K_{R}	A	В
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	1	1
0	1	1	1	0	0	1	1	0
1	0	0	0	0	1	1	1	1
1	0	1	0	0	0	0	1	0
1	1	0	1	1	1	1	0	0
1	1	1	1	0	0	0	1	1

