

UNIVERSIDAD DE GRANADA

TRABAJO FIN DE MASTER

Desarrollo de una aplicación para clasificación de imágenes histológicas

Fernando Palomino Cobo

DNI: 76066820R Fecha: 15/9/23

Creación de las imágenes

Muestra de biopsia

Tratamientos previos

Digitalizar imagen

Whole Slide Image (WSI)

Problema: unión de la IA con análisis de imágenes histopatológicas

Pathais

Friendly Pathology application for Artificial Intelligence

https://github.com/FernandoPC25/FPathai

A nivel usuario

Lo único que tiene que hacer el usuario es agrupar los datos en carpetas y usar los elementos creados por la aplicación.

A nivel código

Método de Otsu

- -Diferenciar imagen y fondo
- -Maximizar varianza entre las clases

Crear patches

-Si se supera un umbral

Transfer Learning

- -Diferentes modelos
- -Todas las capas congeladas excepto las dos últimas
- -Se añade:
 - -Capa batch normalization
 - -Capa densa de 128

neuronas

- -Dropout de 0.1
- -Softmax
- -Selección de hiperparámetros

Grad-CAM

- -Red convolucional ya entrenada
- -Se obtienen predicciones de una imagen
- -Se hace backpropagation
- -Calcular gradientes última capa convolucional
- -Los gradientes se ponderan según su importancia
- -Se crea mapa de activación

Vamos a probar dos experimentos directamente desde

Caso binario: Cáncer de mama

Dataset utilizado

1976.svs imágenes descargadas de

NIH NATIONAL CANCER INSTITUTE
GDC Data Portal

Seleccionadas de forma aleatoria 100 control 100 tumor

Patch size	64
Patches generados por imagen	1000
Patches aleatorios usados por imagen	500

Train	64000
Validation	16000
Test	20000

Configuración del modelo

Model	VGG16
Batch size	32
Epochs	10
Optimizer	Adam
Learning rate	0.001

Caso multi-clasificación: Cáncer de pulmón

Configuración del modelo

Model	VGG16
Batch size	64
Epochs	10
Optimizer	SGD
Learning rate	0.0003

Añadir diferentes formatos de WSI

.tif	.tiff	.dcm
.ndpi	.vms	.vmu
.csn	.lif	

Extender metodologías de validación

La inteligencia artificial no reemplazará a los patólogos, pero los que sepan incorporar la inteligencia artificial sí que reemplazarán a los que no sepan usarla.

¡Muchas gracias por su atención!