航空推進工学特論課題レポート

4bmjm020 三島源生 2016/2

Abstract

考え中

問題1

配布資料より、各パラメータは以下のようになる。また、最適エネルギー分配率 λ_{op}

表 1 各仮定値及び JR100 のパラメータ

—JR100—		
推力比: $sigma\ (=\frac{V_n}{V_j}, V_n = 0)$ [-]	0	
低圧タービン断熱効率: η_t [-]	0.88	
ファン断熱効率: $eta_f[-]$	0.852	
バイパス効率:eta[-]	0.74976	
$oxed{E$ 圧縮機での定圧比熱: $c_{pc}[j/kgK]$	1004	
タービン及びノズルでの定圧比熱: $c_{pt}[J/kgK]$	1155	
$王縮機入口全温:T_t[K]$	288.2	
タービン出口全温: $T_{t4}[K]$	983.2	
排気静温: $T_j[K]$	840	
圧縮機比熱比: $\kappa_c[-]$	1.4	
κ_c/κ_c-1	3.5	

及び、最適推力比 au_{op} を求める式は、

$$\lambda_{op} = \frac{\mu(\eta^2 - \sigma^2)}{\eta(1 + \mu\eta)} \tag{1}$$

$$\tau_{op} = \frac{\sqrt{1 - \lambda_{op}} - \sigma + (\sqrt{\mu(\mu\sigma^2 + \eta\lambda_{op})} - \mu\sigma)}{1 - \sigma}$$
 (2)

である。これより得た最適エネルギー分配率 λ_{op} 及び最適推力比 τ_{op} の値を以下に示す。

表 2 各バイパス比にエネルギーおける最適エネルギー分配率及び最適推力比

バイパス比 μ [-]	最適エネルギー分配率 $\lambda_{op}[-]$	最適推力比 $ au_{op}[-]$
0	0	1
1	0.42849305	1.322784941
2	0.599923185	1.580987033
6	0.818134202	2.344900851
10	0.882319714	2.915064322
15	0.91834335	3.499485676
20	0.937481244	3.999399955

図1 バイパス比との関係

問題2

ファン圧力比 π_f を求める式は、

$$\pi_f = \left\{ \frac{c_{pt}(T_{t4} - T_j)\lambda_{op}\eta}{c_{pc}T_{t1}\mu} + 1 \right\}^{\frac{\kappa_c}{\kappa_c - 1}}$$
(3)

となる。これより得たファン圧力比 π_f の値を以下に示す。

表3 各バイパス比におけるファン圧力比

バイパス比 μ[-]	最適 ファン圧力比 $\pi_f[-]$
0	-
1	1.804124844
2	1.526961406
6	1.219912007
10	1.138721282
15	1.094885139
20	1.072093843

図2 バイパス比との関係

問題3

バイパス比が $\mu=0$ の場合、エネルギー分配率 λ が 0 の時に推力比 τ は 1 となる。エネルギー分配率は、ターボファンエンジンにおいてファンによって発生した低速排気ジェットのエネルギーとコアエンジンを介した燃焼ガスのエネルギーとの割合なので、バイパス比 $\mu=0$ では、ファンを通した空気の流れ全てがコアエンジンを通り、燃焼ガスとして推力になると考えられる。従って推力比 1 というのは燃焼ガスによる推力が 100 %損失ないことを意味し、 τ は全推力のうちの、燃焼ガスが占める割合を表す。また、推力の全てを燃焼ガスがまかなっている状態は、ターボジェットエンジンと同等の状態であると考えられる。一方で、エネルギー分配率 τ が 1 の場合は、理論的には推力全体をファンによって発生した空気の流れが占めていると考えられる。これは、ガスタービンの燃焼ガスが推力にほぼ影響を与えず、タービンに寄ってくどうしたプロペラによって推力を得るターボプロップエンジンとほぼ同じ状態となる。