## Math 221 Worksheet 19 Section 4.3: The Fundamental Theorem of Calculus

- 1. State the fundamental theorem of calculus
  - I. If f is continuous on [a,b] and  $F(x) = \int_{-\infty}^{x} f(t) dt$ for  $x \in [a,b]$ , then F is continuous on [a,b] and differentiable on (e,b) with F(x) = f(x).
  - II. If f is continuous on [a, b] and if F is any antiderivative of f, then  $\int_{a}^{b} f(x) dx = F(b) - F(a)$ .
- 2. Use the fundamental theorem of calculus to evaluate  $\int_0^3 x^2 dx$ . Compare this to Problem 1 from Worksheet 18.

The function 
$$\frac{1}{3} \times^3$$
 is an antiderivative of  $x^2$ , so by FTC part I, we have  $\int_0^3 x^2 dx = \frac{1}{3} \times^3 \Big|_0^3 = \frac{1}{3} \cdot 3^3 - \frac{1}{3} \cdot 6^3 = 9$ .

Much more efficient that evaluating a limit of Riemann sums. However, we can only do this because x² has a "hice" antiderivative.

3. Use the fundamental theorem of calculus to determine the following:

(a) 
$$\frac{d}{dx} \left( \int_0^x \sqrt{1-t^2} dt \right)$$

$$\sqrt{1-\chi^2} \quad \text{by} \quad \text{FTC part I}$$

(b) 
$$\frac{d}{dx} \left( \int_x^{-5} t^3 - 2t^2 + 1 \ dt \right)$$

$$= \frac{d}{dx} \left( -\int_{-5}^{x} (t^3 - 2t^2 + 1) dt \right) = -\frac{d}{dx} \left( \int_{-5}^{x} (t^3 - 2t^2 + 1) dt \right)$$

(c) 
$$\frac{d}{dx} \left( \int_{2}^{7x+3} t^2 dt \right)$$

If 
$$F(x) = \int_{2}^{x} t^{2} dt$$
, then we want to find  $\frac{d}{dx} [F(7x+3)]$ .

Using FTC part I and the chain rule, this is F(7x+3).7 = (7x+3).7.

(d) 
$$\frac{d}{dx} \left( \int_2^{1/x} \arctan t \ dt \right)$$

Like in part (c), use FTC part I and the chain rule:

$$\frac{d}{dx} \left( \int_{z}^{\frac{1}{x}} \operatorname{arctan}(t) dt \right) = \operatorname{arctan} \left( \frac{1}{x} \right) \cdot \frac{d}{dx} \left( \frac{1}{x} \right)$$

$$= \operatorname{arctan} \left( \frac{1}{x} \right) \left( -\frac{1}{x^{2}} \right).$$

4. Let 
$$F(x) = \int_0^x \frac{1}{1+t+t^2} dt$$
. Determine the region on which F is concave up

4. Let 
$$F(x) = \int_2^x \frac{1}{1+t+t^2} dt$$
. Determine the region on which  $F$  is concave up.

$$F'(x) = \frac{1}{1+x+x^2} \left( \frac{1}{1+x+x^2} + \frac{1}{1+x+x^2} \right)^{\frac{1}{2}}$$

5. Use the fundamental theorem of calculus to evaluate the following:

(a) 
$$\int_{1}^{4} (2x^{4} - 3x^{2}) dx$$
  

$$= \left(\frac{2}{5} \times ^{5} - \times ^{3}\right) \Big|_{1}^{4} = \frac{2}{5} 4^{5} - 4^{3} - \left(\frac{2}{5} \cdot |_{1}^{5} - |_{3}^{3}\right)$$

(b) 
$$\int_{0}^{4} x \sqrt{x^{3}} dx$$
  

$$= \int_{0}^{4} \times \frac{5/z}{4x} = \frac{z}{7} \times \frac{7/z}{4} \Big|_{0}^{4} = \frac{z}{7} \cdot 4^{7/z}$$

(c) 
$$\int_0^{\frac{\pi}{4}} \sin(x) dx$$

$$= -\cos(x) \Big|_0^{\frac{\pi}{4}} = -\frac{1}{\sqrt{2}} + 1$$

$$= \int_{0}^{1} (x^{3} - 1)^{2} dx$$

$$= \int_{0}^{1} (x^{6} - 2x^{3} + 1) dx = (\frac{1}{7} \times^{7} - \frac{1}{2} \times^{4} + X) \Big|_{0}^{1}$$

$$= \frac{1}{7} - \frac{1}{2} + (\frac{1}{7} \times^{7} - \frac{1}{2} \times^{4} + X) \Big|_{0}^{1}$$

6. Compute  $\int_{-1}^{1} (x+x^3)dx$ . Given that you integrated an *odd* function, is there a geometric explanation for your

$$\int_{-1}^{1} (x + x^3) dx = \left(\frac{1}{2}x^2 + \frac{1}{4}x^4\right)\Big|_{-1}^{1} = \frac{1}{2} + \frac{1}{4} - \left(\frac{1}{2} + \frac{1}{4}\right) = 0.$$
Since  $x + x^3$  is odd, the "positive area" under its graph on  $[0,1]$  is exactly canceled by "negative area" on  $[-1,1]$ . (Sketch the graph!)

7. Let f be a continuous function satisfying 
$$\int_1^5 f(t)dt = 8$$
.

(a) Let 
$$F(x) = \int_0^x f(t)dt$$
. Show that  $\frac{F(5) - F(1)}{5 - 1} = 2$ .

$$\frac{F(5)-F(1)}{5-1} = \frac{\int_{0}^{5}f(t)\,dt - \int_{0}^{1}f(t)\,dt}{4} = \frac{\int_{1}^{5}f(t)\,dt}{4} = \frac{8}{9} = 2.$$

(b) Prove that there exists 
$$x \in (1,5)$$
 such that  $f(x) = 2$ .

By FTC part I, F is differentiable on (1,5) with 
$$F(x) = f(x)$$
.

$$F'(x) = \frac{F(5) - F(1)}{5 - 1} = 2$$

8. Let 
$$f(x) = \frac{1}{3}x$$
 and  $g(x) = \sqrt{x}$ .

(a) Find all points at which the graphs of 
$$f$$
 and  $g$  intersect.

Solving 
$$\frac{1}{3}x = \sqrt{x}$$
, we find that the graphs intersect at  $(0,0)$  and  $(9,3)$ .

(b) Find the area of the bounded region enclosed by the graphs of 
$$f$$
 and  $g$ .



area = 
$$\int_{0}^{9} \sqrt{x} \, dx - \int_{0}^{9} \frac{1}{3} \times dx$$
  
=  $\left(\frac{2}{3} \times \frac{3/2}{6} - \frac{1}{6} \times \frac{2}{3}\right) \Big|_{0}^{9}$   
=  $\frac{2}{3} \cdot 9^{3/2} - \frac{1}{6} \cdot 9^{2}$ .

9. (Fun/optional) Let f be a continuous function and let c be a real number. Prove that

$$\lim_{r \to 0^{+}} \frac{1}{2r} \int_{c-r}^{c+r} f(x) dx = f(c).$$
Let  $F(x) = \int_{0}^{x} f(t) dt$ . Then
$$\lim_{r \to 0^{+}} \frac{1}{2r} \int_{c-r}^{c+r} f(x) dx = \lim_{r \to 0^{+}} \frac{F(c+r) - F(c-r)}{2r}$$

$$= \lim_{r \to 0^{+}} \left( \frac{F(c+r) - F(c)}{2r} - \frac{F(c-r) - F(c)}{2r} \right)$$

$$= \lim_{r \to 0^{+}} \frac{F(c+r) - F(c)}{2r} + \lim_{r \to 0^{+}} \frac{F(r+s) - F(c)}{2s}$$

$$= \frac{1}{2} F(c) + \frac{1}{2} F(c) = F'(c) = f(c).$$