

Career and Professional Development Non-Credit Programs Course Outline

Course Title	Practical Machine	Learning

Course Number YCBS 258

Contact Hours: 35

Continuing Education

Units:

6

Instructor(s)

Nicolas Feller

Contact Information

nicolas.feller2@mcgill.ca

Office hours: upon request

Course Description

This course aims to introduce participants to essential machine learning methods and techniques in machine learning. The emphasis is placed on practical experience with deep machine learning using Python programming language, scikit-learn, numpy, pandas and keras. The course will provide an introduction to artificial Neural Networks, the mathematical fundamentals for deep learning, and the intuition for aligning algorithms to problems.

Learning Outcomes

- Explain the fundamental concepts of deep learning
- Understand how and when deep learning should be used
- Apply effectively different tools that enable deep learning
- Analyze, diagnose and debug a data science problem to find solutions using deep learning

- o Evaluate the quality and the performance of trained models
- o Create an end-to-end project which transforms raw data into insight
- Differentiate between different architectures, such as multi layer perceptron, convolution and recurrent neural networks, when it comes to their applications
- o Describe advanced concepts and trends in Machine Learning

Instructional Methods

Teaching and learning approach is experiential, collaborative and problem/case-based.

EVALUATION

Item	%	Explanation
Attendance	5%	 A minimum attendance of 75% is required in order to pass the course is 9 classes (8 you go below 75%)
Homework	50%	Assigned in class.
In-Class Assignments	20%	In class quiz: multiple choice quizzes and/or coding exercises will be given each week, covering the previous lecture's material.
Learning Journal	10%	Each class will have assigned reading or video material. Please submit a summary of what you learned from this material. Please provide insight (not a summary of the materia)l. This could be as simple as a few bullets. Submission date by the beginning of the next class.
Final Test	15%	Last Class In-class final assessment
Total	100%	The passing grade is 65%

In the event of extraordinary circumstances beyond the University's control, the content and/or evaluation scheme in this course is subject to change.

Academic Integrity

McGill University values academic integrity. Therefore, all students must understand the meanin and consequences of cheating, plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures (see www.mcgill.ca/integrity for more information

L'université McGill attache une haute importance à l'honnêteté académique. Il incombe par conséquent à tous les étudiants de comprendre ce que l'on entend par tricherie, plagiat et autre infractions académiques, ainsi que les conséquences que peuvent avoir de telles actions, selon le Code de conduite de l'étudiant et des procédures disciplinaires (pour de plus amples renseignements, veuillez consulter le site www.mcgill.ca/integrity).

Right to submit in English or French

In accord with McGill University's Charter of Students' Rights, students in this course have the right to submit in English or in French any written work that is to be graded. This does not apply to courses in which acquiring proficiency in a language is one of the objectives.

Conformément à la Charte des droits de l'étudiant de l'Université McGill, chaque étudiant a le droit de soumettre en français ou en anglais tout travail écrit devant être noté (sauf dans le cas des cours dont l'un des objets est la maîtrise d'une langue).

Email Policy

E-mail is one of the official means of communication between McGill University and its students As with all official University communications, it is the student's responsibility to ensure that time-critical e-mail is assessed, read, and acted upon in a timely fashion. If a student chooses to forward University e-mail to another e-mail mailbox, it is that student's responsibility to ensure that the alternate account is viable. Please note that to protect the privacy of students, the University will only reply to students on their McGill e-mail account.

ADDITIONAL STATEMENTS

McGill University is on land, which has long served as a site of meeting and exchange amongst Indigenous peoples, including the Haudenosaunee and Anishinabeg nations. We acknowledge and thank the diverse Indigenous people whose footsteps have marked this territory on which peoples of the world now gather.

L'Université McGill est sur un emplacement qui a longtemps servi de lieu de rencontre et d'échange entre les peuples autochtones, y compris les nations Haudenosaunee et Anishinabeg. Nous reconnaissons et remercions les divers peuples autochtones dont les pas ont marqué ce territoire sur lequel les peuples du monde entier se réunissent maintenant.

RESOURCES

Student Services

Various services such as Walksafe, McGill Libraries, the Writing Centre, the bookstore, etc., are available to Continuing Education students:

https://www.mcgill.ca/continuingstudies/current-students-1

Career Advising and Transition Services

https://www.mcgill.ca/continuingstudies/career-advising-and-transition-services

Students with Disabilities

Students who have a documented disability and require academic accommodations and services should contact the Office of Students with Disabilities (http://www.mcgill.ca/osd or 514-398-6009) early in the term.

Computer Labs

Free access to computer labs is available at 688 Sherbrooke (12th floor), MACES, the McLennan Library and other locations on campus.

Athena and Online Resources

Access your personal student information online with Athena (https://continuingstudies.mcgill.ca/portal/logon.do?method=load). Information regarding online resources such as email, VPN, myCourses, etc. can be found at (www.mcgill.ca/it).

MACES

The McGill Association of Continuing Education Students, MACES (<u>www.maces.ca</u>), is located at 3437 Peel, 2nd floor, tel. (514) 398-4974.

GRADING SCHEME

The following grading scheme applies to Non-Credit Professional Development Certificates.

Professional Development Certificates		Grade
Pass	(85-100%)	А
	(80-84%)	A-
	(75-79%)	B+
	(70-74%)	В
	(65-69%)	B-
Failure	(0-64%)	F

A minimum attendance of 75% is required in order to pass the course.

COURSE CONTENT

Date*	Topics & Assignments	
Week 1	Review of Data Science and Machine Learning	
	Review of the different steps involved in a data science project	
	Review of numpy and pandas in Python	
	History and deep learning in contrast to statistical machine learning	
	Perceptrons	
	Intro to Deep Learning	
Week 2	Introducing Neural networks from scratch	
	Feature engineering and hyperparameters for neural networks	
	The Tensorflow Playground	
	Intro to Keras	
Week 3	Intro to deep learning libraries	
	Keras overview	

	Building and visualizing a neural network
M	Multi Layer Perceptrons
Week 4	Feedforward neural networks
	Classification and regression using MLP
	Gradients and Flavors of SGD
	Regularization, Activation functions and batching
Wool, F	Convolutional Neural Networks
Week 5	Using images in deep learning
	Transfer learning from
	Kernels, pooling and padding
	Pretrained models - resnet, lenet, inception on imagenet
	Semantic segmentation
Week 6	Auto Encoders and Latent Spaces
week o	Word embeddings
	Auto encoders
	Generation
	Anomaly detection
Week 7	Recurrent Neural Networks
	Temporal concepts in machine learning
	Learning long-term dependencies
	Static and dynamic RNNs
	LSTMs and GRUs
Week 8	Performance Improvements
	Batches
	Augmentation

	Γ
	Test time augmentation
	Cycling gradients
M/s - I. O	Advanced Architectures
Week 9	Transformer
	• VAE
	• GAN
	Meta learning
	• U-Net
Week 10	Deploying Deep Models
	End-to-end deep learning
	Building neural networks for deployment
	Lifecycling models: Re-training and Online learning
	Project coding workshop
	In-class final assessment – Analytics Case Study