

COMP 9517 Computer Vision

Applications

What we have learned

- Image processing
- Feature representation
- Machine learning
- Segmentation
- Deep learning
- Motion and tracking

=> These are the main methodological components useful for building computer vision applications

Outline

- Case studies of computer vision applications:
 - WSI analysis
 - Mitosis detection
 - Interpreting deep learning

WSI Analysis

Source: https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html

- Whole-slide image (WSI): very high resolution images
- A shift to fully digital environment for pathology

Source: https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html

- Training stage:
 - Patch-wise processing with patch-level labels

Source: Y. Liu et al. *Artificial intelligence-based breast ancer nodal metastasis detection*. Arch Pathol Lab Med, 2018.

- Testing stage:
 - Patch-wise classification

Source: Y. Liu et al. *Artificial intelligence-based breast ancer nodal metastasis detection*. Arch Pathol Lab Med, 2018.

Real Challenges

- Challenge I:
 - Large image with image-level label only

Real Challenges

- Challenge II:
 - Histology heterogeneity (subtypes and regional variations)

Clustering-based

Coarse and fine feature extraction:

J. Barker *et al.*, "Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles," *Medical Image Analysis*, 30(1):60-71, 2016.

Clustering-based

- Coarse and fine feature extraction:
 - Clustering-based representative tile extraction

J. Barker *et al.*, "Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles," *Medical Image Analysis*, 30(1):60-71, 2016.

Clustering-based

Coarse and fine feature extraction:

J. Barker *et al.*, "Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles," *Medical Image Analysis*, 30(1):60-71, 2016.

Pruning-based

- Discriminative patch-based CNN:
 - EM-based discriminative patch extraction

Source: C. Zhang et al. Whole slide image classification via iterative patch labelling. ICIP, 2018.

Pruning-based

- Discriminative patch-based CNN:
 - EM-based discriminative patch extraction

Source: C. Zhang et al. Whole slide image classification via iterative patch labelling. ICIP, 2018.

Pruning-based

- Results on the CBTC challenge dataset:
 - 32 WSI images, with 16 astrocytoma and 16 oligodendroglioma cases

Methods	Acc.
CNN-Feat-SVM	62.50%
Finetune-CNN-Feat-SVM	69.13%
Iter-Finetune-CNN-SVM[Discriminative]	76.62%
Iter-Finetune-CNN-SVM[Both]	84.38%

Source: C. Zhang et al. Whole slide image classification via iterative patch labelling. ICIP, 2018.

Aim of Study

Mitosis detection and classification for cancer diagnosis

Aim of Study

- Differentiate Mitosis Cells from other Cells
 - Similar appearance

Mitosis cells

Non Mitosis cells

 Different appearance through different mitosis phases

Appearance Change Through Phases

A two-stage approach

C. Sommer et al., "Learning-based mitotic cell detection in histopathological images", ICPR, 2012

- Stage 1 segmentation of candidate cells
 - Pixel classification with Gaussian filterbased features, and random forest classifier
 - Then local adaptive thresholding on the classification probability map to produce cell candidates

- Stage 2 mitosis classification
 - Object/cell classification with texture and shape features, and Gaussian-kernel SVM classifier
 - Require object-level ground truth labels

- Evaluation PR curve
 - Five-fold cross-validation
 - 35 images

Deep Learning

Problem formulation as Object Detection and Instance
 Segmentation

Image from He et al., "Mask RCNN", ICCV, 2017

Background:

- Semantic segmentation
- Single object detection
- Multiple objects detection
- Instance segmentation

https://cseweb.ucsd.edu/classes/sp18/cse252C-a/CSE252C 20180509.pdf

The R-CNN family

https://cseweb.ucsd.edu/classes/sp18/cse252C-a/CSE252C 20180509.pdf

R-CNN

 Training is expensive and slow because of selective search and lack of shared computation

Girshick et al., Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014.

Fast R-CNN

- Shared computation of convolutional layers between proposals as a result of ROI pooling
- Improvement in speed is not large because the region proposals are generated separately by another model

Girshick, Fast R-CNN, ICCV, 2015.

- Faster R-CNN
 - Fast R-CNN + Region Proposal Network (RPN)

- Faster R-CNN
 - Fast R-CNN + Region Proposal Network (RPN)

Ren et al., Faster R-CNN: towards real-time object detection with region proposal networks, NeurIPS, 2015.

- Convolutional backbone + RPN
- Parallel heads for box regression
- RolAlign

He et al., Mask R-CNN, ICCV, 2017.

- Mask R-CNN
 - Instance segmentation

He et al., Mask R-CNN, ICCV, 2017.

Problem formulation as Object Detection and Instance
 Segmentation

Image from He et al., "Mask RCNN", ICCV, 2017

- Two-stage approach:
 - Candidate detection stage
 - Mitosis classification stage

- Stage 1: candidate detection
 - Adapted Mask R-CNN for instance segmentation
 - High recall and low precision output

Mitosis Detection

- Stage 2: mitosis classification
 - Classification using combined deep network features and handcrafted features

Dodballapur et al., Mask-driven mitosis detection in histopathology images, ISBI, 2019.

Mitosis Detection

- Results on the ICPR 2012 dataset
 - 226 mitotic cells in training set and 101 in test set

Method	Precision	Recall	F1-Score
DeepMitosis	0.85	0.81	0.83
HC+CNN	0.84	0.65	0.73
RCNN	0.78	0.79	0.78
Ciresan et al	0.88	0.70	0.78
Proposed (VGG-16)	0.87	0.81	0.84
Proposed (Xception)	0.94	0.80	0.87

Dodballapur et al., Mask-driven mitosis detection in histopathology images, ISBI, 2019.

Interpreting Deep Learning

Background

- How do we determine what the subject of an image is?
 - Train a CNN
 - Feed the image into the CNN
 - Choose the output with the highest score

Background

- How do we understand the network's reasoning?
 - Look at the network's weights => there are millions!
 - Give up and treat it as a black box?

Interpretability

- Interpretability explains the reasoning behind an output
- Interpretability is important:
 - Increase trust
 - Lead to improved network design
- Desirable for:
 - High-risk industry, e.g. medicine, law, self-driving cars

Interpretability

- Visualisation as an interpretability method
 - Where is the network looking?
- Quantitatively comparing visualisations:
 - Train the network as a classifier
 - See where the network looks for each of the target classes
 - Compare against a dataset where object locations are known => object localisation

Original Image

Looking here for 'Cat'

Looking here for 'Dog'

Localisation

Interpretability Methods

Grad-CAM:

- A gradient-based approach
- Produces class-discriminative, high-resolution heat-maps from convolutional layers
- Works with all CNN structures

Selvaraju et al., Grad-CAM: Visual explanations from deep networks via gradient-based localisation, ICCV, 2017.

Interpretability Methods

Grad-CAM:

 Backpropagate to a convolutional layer, and sum activation maps weighted by global average pooled gradient values

Selvaraju et al., Grad-CAM: Visual explanations from deep networks via gradient-based localisation, ICCV, 2017.

Objective

- Train a CNN model on a Chest X-ray dataset, to effectively classify a lung disease from healthy control
- Experiment with Grad-CAM on the learned CNN model
- Evaluate if the CNN model has learned interpretable features, i.e. able to localise discriminative regions that are representative of a particular disease

Chest X-Ray Dataset

- 112,000 labelled images:
 - 1024 x 1024 image + patient info
 - 14 diseases, 1 'No Finding' category (54% of the data!)
 - Labels are mixed
- 985 bounding boxes: 8 categories (70-180 per class)

- Experimentation Process:
 - Images rescaled to 128 x 128 for efficiency
 - 256 x 256 was attempted (any higher used too much RAM)
 - Contrast stretching attempted → no noticeable impact
- Approach 1 Classify into one of the 15 classes
 - 54% accuracy! ... but everything classified as 'No Finding'
 - Class balancing → 25% test set accuracy
 - 10% 60% per-class accuracy

```
At: 0.2
Cardio: 0.6
Eff: 0.2
Inf: 0.1
Mass: 0.5
No_Fi: 0.0
Nod: 0.1
Pneuom: 0.3
0.2529569892473118
```

- Approach 2 Binary classification:
 - Attempted Mass, Nodule, Cardiomegaly
 - Cardiomegaly had best accuracy + easiest to localise on small images
 - <u>Cardiomegaly</u>: "abnormal enlargement of the heart"
 - 146 bounding boxes
 - 2776 mixed labels
 - 1093 exclusive labels → no correlations = better localisation?
 - Of the 2776 Cardiomegaly, 38% also have effusion

- Cardio Accuracy
- No Finding Accuracy
- F1 Score

Transfer Learning VGG:

- Best Network: 81% cardio, 71% no finding, F1-score 0.77
- Other Network Types:
 - Zhang et al. [term 3] avoids **ResNet** when implementing their method
 - Vanilla **DenseNet121** achieved similar performance to VGG but is more complex
 - There are interesting approaches in literature for modifying
 DenseNet to achieve better accuracy [1], [2]

- Ideal heatmap: Focused on heart (or at least inside the body)
- Some good examples:

• Some <u>bad</u> examples:

VGG16, Augmented (rotation, intensity):

VGG16, Augmented (rotation, intensity, flipping):

• Layer-wise examples:

 Mean layer heatmaps (VGG16, augmented intensity, rotation, flipping)

Final layer of some networks

Reflection:

- Can target each layer individually
- No parameters
- New model topology requires changing implementation
- Can be used to evaluate performance of different network designs
- Can be used to compare similarity between models

Other Methods

• Grad-CAM vs. Meaningful Perturbation (MP):

Other Methods

• Grad-CAM vs. Meaningful Perturbation (MP):

VGG16 (intensity, rotation)	VGG16 (+ flipping)	VGG19 (+ perspective)	VGG19 (+ flipping)	VGG16 (all weights trained)

Summary

- Case studies of:
 - WSI analysis
 - Mitosis detection
 - Interpreting deep learning
- We are recruiting research students in computer vision / deep learning

Acknowledgement

- Adopted some slides from
 - Chaoyi's study on WSI analysis (ICIP 2018)
 - Veena's study on mitosis detection (ISBI 2019)
 - Ari's Honours thesis study