Algorithmique & Complexité

Notion d'efficacité

- Plusieurs chemins pour une même solution
 - Comment choisir?
 - Problèmes de grande taille
- Plusieurs solutions
 - Implémenter et tester les différentes solutions
 - Prédire le temps/coût nécessaire
- Important : la notion de taille du problème

Pourquoi se soucier de l'efficacité ?

- Mémoire : possibilité de calculer au pas
- Temps:
 - 1 min, 1 jour, 1 an de calcul ?
 - 2x plus de donnée = 4x plus de temps ? 16x ?
- Consommation électrique
 - Embarqué
 - _

Exemple 1 : calculer x^n

- Méthode 1 :
 - calculer le nombre d'affectations
 - calculer le nombre de multiplications

Exemple 1 : calculer x^n

Méthode 2

```
pow2 (in réel x, in entierpos n) : réel
    entierpos r
    si n = 0 faire
        r ← 1
    sinon faire
        r \leftarrow pow2(x,n/2)
                                            \sim 2 \log_2(n+1) *
        r \( \tau \tau r \tau r \)
        si n est impair faire
                                          \sim 3 \log_2(n+1) + 1 \leftarrow
             r ← r*x
        fin si
                                        ~ log<sub>2</sub>(n) appels à pow2
    fin si
    retourner r
```


Analyse de la complexité

- Définition complexité d'un algorithme
 - mesure du nombre d'opérations fondamentales qu'il effectue sur un jeu de données.
 - exprimée comme une fonction de la taille du jeu de données.
- Ordre de grandeur
 - Pas la complexité exacte
 - Comportement asymptotique

Comportement asymptotique : rappel limites

$$\lim_{n \to \infty} n^2 + n + 1 = \lim_{n \to \infty} n^2$$

$$\lim_{n\to\infty}\ln(n)+n = \lim_{n\to\infty}n$$

$$\lim_{n \to \infty} \sqrt{n} + n = \lim_{n \to \infty} n$$

$$\lim_{n \to \infty} x^n + n = \lim_{n \to \infty} x^n$$

Analyse de la complexité

- Définition complexité d'un algorithme
 - mesure du nombre d'opérations fondamentales qu'il effectue sur un jeu de données.
 - exprimée comme une fonction de la taille du jeu de données.
- Ordre de grandeur
 - Pas la complexité exacte
 Comportement asymptotique
 - En général, borne supérieure

Exemple 1 : calculer x^n

Méthode 2

```
pow2 (in réel x, in entierpos n) : réel
    si n = 0 faire
         r ← 1
    sinon faire
         r \leftarrow pow2(x,n/2)
         r \( \tau \tau r \tau r \)
                                              \sim 2 \log_2(n+1) *
         si n est impair faire
             r \leftarrow r*x
                                            \sim 3 \log_2(n+1) + 1 \leftarrow
         fin si
    fin si
                                          ~ log<sub>2</sub>(n) appels à pow2
    retourner r
```


Analyse de la complexité

- Définition complexité d'un algorithme
 - mesure du nombre d'opérations fondamentales qu'il effectue sur un jeu de données.
 - exprimée comme une fonction de la taille du jeu de données.

Ordre de grandeur

- Pas la complexité exacte
 - Comportement asymptotique
- En général, borne supérieure
- Mais aussi : borne inférieure, moyenne

Classes de complexités

- Rapides / Efficaces
 - Sub-linéaire : O(log(n))
 - Linéaires : O(n)
 - Autres : O(n log(n))
- Peux efficaces
 - **Polynomiaux**: $O(n^k)$ pour k > 1
 - Exponentiels
 - Supérieure à tout polynôme en n
 - Impraticables très rapidement

Classe de complexité

Exemple 1 : calculer x^n

Méthode 1

```
pow1(in réel x, in entierpos n) : réel
    r ← 1
    pour i=1 à n faire
        r ← r*x
        n+1 ←
    fin pour
    retourner r
```

O(n)

Exemple 1 : calculer x^n

• Méthode 2

```
pow2 (in réel x, in entierpos n) : réel
    si n = 0 faire
        r ← 1
    sinon faire
        r \leftarrow pow2(x,n/2)
        r \( \tau \tau r \tau r \)
        si n est impair faire
            r \leftarrow r*x
                                          3 \log_2(n+1) + 1 \leftarrow
        fin si
    fin si
                           O(ln(n))
    retourner r
```


Rappels: suite & somme arithmétique

$$\begin{cases} u_0 = a \\ u_{n+1} = u_n + b \end{cases} \qquad u_n = a + b n$$

$$\sum_{i=0}^{n} u_{n} = \frac{n+1}{2} (u_{0} + u_{n})$$

Exemple 1 : calculer x^n

Méthode 1

```
pow1(in réel x, in entierpos n) : réel
   r ← 1
   pour i=1 à n faire
        r ← r*x
   fin pour
   retourner r
```


Rappels : suite et somme géométrique

$$b \neq 1$$

$$\begin{vmatrix} u_0 = a \\ u_{n+1} = b u_n \end{vmatrix}$$

$$u_n = a b^n$$

$$\sum_{i=0}^{n} u_{n} = u_{0} \frac{1 - b^{n+1}}{1 - b}$$

Rappel: suite arithmético-géométrique

$$b \neq 1$$

$$\{ u_0 = a \qquad u_n = (a - r)b^n + r \}$$

$$\{ u_{n+1} = b u_n + c \qquad r = \frac{c}{1 - b} \}$$

$$\sum_{i=0}^{n} u_i = (u_0 - r) \frac{1 - b^{n+1}}{1 - b} + (n+1)r \}$$

Complexité moyenne

- But
 - Pas de borne, mais le coût moyen
- Contextes
 - (a) Le nombre d'éléments varient
 - (b) Le coût dépendent de la valeur des n éléments
- Somme des coûts pondérée par leur fréquence

(b)
$$\sum_{n=0}^{n} p(n)C(n) \sum_{k=0}^{K} p(k)C(n_k)$$

Avantages / inconvénients

- Pire cas
 - Permet de borner le coût d'un appel
 - Important pour le « temps-réel »
 - Peut-être éloigné d'un usage courant
- Cas moyen
 - Consommation en usage courant (nombreux appels)
 - Le coût d'une exécution peut-être très éloigné
 - Très lié aux hypothèses d'utilisation.

Ex. 2: « le plus petit élément en tête »

Hypothèses

```
V=\{v_1,...,v_n\} parmi n valeurs distinctes et n \ge 1
```

Algorithme

```
test( in collection V, in entier n) : booléen i \leftarrow 2 tant que i <= n et v_i > v_1 faire i \leftarrow i+1 fin tant que i > n
```

Coût le pire : n-1 itérations

Probabilités en espace fini

Caractéristiques

Soit X un variable aléatoire pouvant prendre les valeurs $\{x_1,...,x_K\}$

$$P[X = x_i] \ge 0$$

$$\sum_{i=1}^{K} P[X=x_i] = 1$$

• Espérance / moyenne d'un fonction de f(x)

$$E[f(X)] = \sum_{i=1}^{K} P[X = x_i] f(x_i)$$

Dénombrement / analyse combinatoire

- Combinaisons ordonnées de n éléments
 - factorielle

n!

- Combinaisons ordonnées de k parmi n éléments
 - arrangement
- · Combinaisons de k parmi n éléments
 - coefficient binomial

$$A_n^k = \frac{n!}{k!}$$

$$\binom{k}{n} = C_n^k = \frac{n!}{k!(n-k)!}$$

Ex. 2 : « le plus petit élément en tête »

Hypothèses

 $V=\{v_1,...,v_n\}$ parmi n valeurs distinctes et n ≥ 1

Algorithme

```
test( in collection V, in entier n) : booléen
i ← 2
  tant que i <= n et v<sub>i</sub> > v<sub>1</sub> faire
    i ← i+1
  fin tant que
  retourner i > n
```

Coût le pire : n-1 itérations Coût moyen

$$\frac{n-1}{n} + \sum_{k=1}^{n-1} (n-k) \frac{(k-1)!}{n!} \left(\sum_{k=1}^{n-1} (i-1) \frac{(n-i)!}{(k-i+1)!} \right)$$

La récursivité

- Fonction/procédure s'appelle elle-même
 - Approche simple et naturelle pour les suites
 - Une condition d'arrêt
 - Un appel avec une complexité diminuée
- Arbre des appels
 - Liste des appels connectés
- Pile des appels
 - Récursion → sauvegarder le contexte courant
 - Parcours en profondeur du graphe

Méthode 3

```
pow3(in réel x, in entier n): réel
   si n = 0 faire
       r ← 1
   sinon faire
       r \leftarrow pow3(x,n/2)*pow3(x,n/2)
       si n est impair faire
                                            appels
           r \leftarrow r*x
                                         pow3(x,5)
       fin si
   fin si
                                                     pow3(x,2)
                             pow3(x,2)
   retourner r
                        pow3(x,1)
                                               pow3(x,1)
                                                          pow3(x,1)
                                   pow3(x,1)
```


Méthode 3

```
pow3(in réel x, in entier n): réel
   si n = 0 faire
       r ← 1
   sinon faire
       r \leftarrow pow3(x,n/2)*pow3(x,n/2)
       si n est impair faire
                                             pile
           r \leftarrow r*x
                                          pow3(x,5)
       fin si
   fin si
                              pow3(x,2)
                                                      pow3(x,2)
   retourner r
                                    pow3(x,1)
                                                pow3(x,1)
                                                           pow3 (x, 1
                        pow3(x,1)
```

Coût mémoire = O(ln(n)) pour sauvegarder les appels

Méthode 3

```
pow3(in réel x, in entier n): réel
   si n = 0 faire
       r ← 1
   sinon faire
       r \leftarrow pow3(x,n/2)*pow3(x,n/2)
       si n est impair faire
                                            appels
           r \leftarrow r*x
                                         pow3(x,5)
       fin si
   fin si
                             pow3(x,2)
                                                     pow3(x,2)
   retourner r
                                               pow3(x,1)
                                                          pow3(x,1)
                        pow3(x,1)
                                   pow3(x,1)
```


Méthode 2

```
pow3(in réel x,in entier n): réel
    si n = 0 faire
       r ← 1
    sinon faire
       r ← pow3(x,n/2)
       r ← r*r
       si n est impair faire
            r ← r*x
       fin si
    fin si
    retourner r
```

Appels / pile

Coût calcul = Pile = O(In(n))

Itération (rappel) : boucles / parcours

- Buts:
 - Répéter un même action
 - Parcourir une collection d'élément de même type
- 3 types
 - tant que X faire Y :
 - exécuter les actions Y tant X est vérifiée
 - faire Y **jusqu'à** X
 - exécuter les actions Y jusqu'à ce que X soit vérifiée
 - Pour i=début à fin faire Y
 - exécuter les actions Y pour i prenant les valeurs de début à fin

Terminaison d'un algorithme

Récursif

- Condition d'arrêt
- La complexité décroît vers la condition d'arrêt

Itératif

- Condition d'arrêt
- La valeur testée change à chaque itération et temps vers la condition d'arrêt

Réduire la complexité

René Descartes dans le Discours de la Méthode :

« diviser chacune des difficultés que j'examinerois, en autant de parcelles qu'il se pourroit, et qu'il seroit requis pour les mieux résoudre »

Diviser pour régner

On divise le problème en plusieurs sous problèmes et on combine les résultats pour obtenir la solution globale.

Autres types d'algorithmes

- Algorithmes exhaustifs
 - Tester tous les cas
 - Lorsque l'on ne sait rien faire d'autre
- Algorithmes gloutons
 - Pas à pas
 - Ne pas revenir en arrière
 - Ex: optimisation

Algorithmique & Structures de donnée

Extension: notion d'efficacité

- Avant de coder
 - Définir l'algorithme
 - Prévoir son coût en calcul
 - Prévoir son coût en mémoire
- Calibration
 - Choix des structures
 - Choix de l'algorithme

Importance des structures de donnée

- La manière de représenter impacte
 - L'occupation mémoire
 - Le coût d'accès
 - Ex pour un ensemble : accéder au kème élément
 - Le coût de manipulation
 - Ex pour un ensemble : ajouter/supprimer un élément

Exemple: structure de tableau

- Mémoire contiguë
 - Coût mémoire : n*taille des éléments
- Coût accès au kième élément
 - constant = O(1)
- Coût d'insertion après le kième élément
 - O(n-k), si pas de re-allocation
 - O(n) sinon
- Coût d'insertion avant le kième élément
 - idem

Collections : liste simplement chaînée

- Mémoire non-contiguë
 - Coût mémoire : n*(type+références)
- Coût accès au kième élément
 - linéaire = O(k)
- Coût d'insertion après le kième élément
 - linéaire = O(k) si on part du début
 - constant si on connaît la position du kième élément
- Coût d'insertion avant le kième élément
 - O(k)

Collections : liste doublement chaînée

- Mémoire non-contiguë
 - Coût mémoire : n*(type+2*références)
- Coût accès au kième élément
 - linéaire = O(k)
- Coût d'insertion après le kième élément
 - linéaire = O(k) si on part du début
 - constant si on connaît la position du kième élément
- Coût d'insertion avant le kième élément
 - idem

Exercice: Liste

- Utiliser un tableau pour implémenter une liste
 - Hypothèse, le nombre maximale est bornée par N

Un pointeur n'est rien d'autre qu'un indice dans un tableau!

- Actions à faire sur une liste : complexité
 - Concaténer deux listes
 - Connaître sa taille

0(1)

O(n)

Graphe

- Définition
 - Des nœuds reliés par des arêtes
 - Nœuds adjacents = il sont reliées
 - Deux catégories
 - Non-orienté
 - Orienté
- Actions
 - Parcours (aller d'un nœud à son(ses) successeur(s))
 - Ajouter / supprimer une arête
 - Ajouter / supprimer un nœud

Graphe: représentation 1

- Ensemble N de k nœuds
- Matrice M de k² adjacences :
 - M[i,j]=vrai ↔ N[j] est relié à N[i]
 - Non orienté : M est symétrique
- Coûts
 - Mémoire : O(k²)
 - Accéder aux éléments suivant d'un nœud : O(k)
 - Ajouter une arête : O(1)

Graphie: représentation 2

- Pour chaque nœud
 - L'ensemble des successeurs

- Coûts
 - Mémoire : O(k+a) (a = le nombre d'arête)
 - $a \le k^2$
 - Entre O(k) et O(k²)
 - Accéder aux éléments suivant d'un nœud : O(k)
 - Raffiner en O(a^{max})
 - Ajouter une arête : O(1)

Arbre

Définition

- Graphe non-orienté sans cycle
- Racine : nœud de départ
- Feuilles: derniers nœuds

Actions

- Ajouter / supprimer d'un nœud
- Parcours en profondeur
 - 1, 2, 5, 6, 3, 7, 9, 10, 4, 8
- Parcours en largeur
 - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Parcours d'un arbre binaire

Préfixé

Nœud, fils gauche puis droit7 4 2 1 3 6 5 9 8 10

Postfixé

Fils gauche puis droit, nœud1 3 2 5 6 4 8 10 9 7

Infixé

Fils gauche, nœud, fils droit1 2 3 4 5 6 7 8 9 10

Arbre: représentations

- Solution 1 (classique)
 - Chaque nœud : les fils

- Solution 2
 - Chaque nœud : le premier fils + plus frère suivant

• Feuille = pas de fils

Arbres binaires

- Maximum 2 fils
 - 0 pour une feuille
 - 1 ou 2 pour les autres
- Hauteur de l'arbre ?
 - De In(n) à n
 - Arbres dégénérés

Arbre binaire de recherche (ABR)

- Définition
 - Arbre binaire
 - Valeur du nœud
 - supérieure au fils gauche
 - inférieure au fils droit
- Actions principales
 - Ajout / suppression en préservant la propriété

ABR: Ajout d'un élément

Nouveau nœud = feuille

1. Chercher le père du nouveau nœud

À gauche si plus petit

À droite si plus grand

2. En fin de parcours (feuille)

Chaîner

ABR : Ajout d'un élément (10)

ABR : Ajout d'un élément (itératif)

```
nœud ← racine de abr
père ← vide
Tant que nœud n'est pas vide faire
 père ← nœud
 Si val < valeur de nœud faire
   nœud ← fils gauche de nœud
 Sinon
   nœud ← fils droit de nœud
 Fin si
Fin tant que
```


ABR : Ajout d'un élément (itératif)

```
nœud 

créer un noeud contenant val
si père est vide faire
 racine de abr - nœud
sinon faire
 Si val < valeur de père faire
   fils gauche de père - nœud
 Sinon faire
   fils droit de père - nœud
 Fin si
                           Coût O(n)
Fin si
```

ParisTech

ABR: suppression d'un élément

Soit N le nœud à supprimer

- Chercher le père de N
- Chercher, dans le sous-arbre droit du nœud, le futur père
 P du premier nœud sans fils gauche
- 3. Attacher le sous-arbre gauche de **N** à **P**
- 4. Attacher le fils droit de **N** à son père
- 5. Traiter les cas particuliers
 - pas sous-arbre droit
 - suppression de la racine

—

ABR: suppression d'un élément (5)

ABR: suppression d'un élément (5)

Arbre binaire de recherche équilibré (AVL)

Principale problème

Adelson – Velskii – Landis

- Arbres dégénérés → coût linéaire
- Solution
 - Éviter la dégénérescence
- Définition :
 - Arbre binaire de recherche
 - Profondeur ne diffère d'au plus 1
 - entre sous-arbre gauche et droit
 - Hauteur total log₂(n)

AVL: exemples

AVL: adaptation des algorithmes

- Ajouter et Supprimer
 - Suivi d'un phase d'équilibrage
- Équilibrage : rotations successives
 - Sous-arbre gauche trop grand

Rotation droite

AVL: adaptation des algorithmes

- Ajouter et Supprimer
 - Suivi d'un phase d'équilibrage
- Équilibrage : rotations successives
 - Sous-arbre droit trop grand

Rotation gauche-droite

Rotation gauche-droite

AVL: Coût Insertion / Suppression

Trouver la position

O(ln(n))

- Équilibrage successifs
 - En remontant, il peut y en avoir plusieurs

O(In(n))

Arbre parfait partielle ordonnée : le tas

Définition :

- Arbre binaire
- Parfait : tassé à gauche
- Partiellement ordonné
 - Valeur père ≥ valeurs fils ou
 - Valeur père ≤ valeurs fils

Hauteur = log_2 n

Ajouter

- Principe
 - Ajouter dans la feuille la plus à gauche
 - Restaurer l'ordre partiel

Le tas

Avantage

- Très compacte
- Stockage dans un tableau T
 - Racine T[1]
 - Fils gauche de T[i] = T[2i]
 - Fils droit de T[i] = T[2i+1]

Désavantage

- Si tableau, pas dynamique (ou taille bornée)

Ajouter: tas dans un tableau

```
Ajouter (inout tas t, in taille n, in élément x)
  n ← n+1
  i ← n
  t[n] ← x
  Tant que i > 0 et t[i] < t[(i-1)/2] faire
    t[i] ↔ t[(i-1)/2]
    i ← (i-1)/2
  Fin tant que</pre>
```

O(ln(n))

Supprimer le minimum (maximum) dans un tas

```
SupprMin (t tas, n taille > 0)
  n \leftarrow n-1
                                                                      O(ln(n))
  d \leftarrow n
  t[0] ← t[d+1]
  i \leftarrow 0;
  Faire
    fin ← vrai ;
     Si 2i+2 <= d alors faire
       Si t[2i+1] < t[2i+2] alors faire
         k \leftarrow 2i+1
       Sinon faire
         k \leftarrow 2i+2
       Fin si
       Si t[i] > t[k] alors faire
         t[i] \leftrightarrow t[k]
         i \leftarrow k
         fin ← faux
       Fin si
    Sinon si 2i+1=d et t[i] > t[k] faire
         t[i] ↔ t[ k]
    Fin si
  Jusqu'à fin
```


Table de Hachage (hash code)

Définition

Utilisation d'une clef pour indexer les valeurs

- Avantage
 - Division des coûts de recherche, ajout, suppression par H

Exemple pour des listes

Autres notions: les files d'attentes

- Contexte
 - Ajout / Suppression d'éléments en continue
- Types de files classiques
 - FIFO : First In, First Out
 - Insertion en queue O(1)
 - Suppression en tête O(1)
 - LIFO : Last In, First Out
 - Insertion / Suppression en tête O(1)
 - Avec priorité

File d'attente avec priorité

- Implémentation simple : table de hachage
 - File vide : O(H)
 - Insertion LIFO: O(1)
 - Insertion FIFO : O(1)
 - Mémoire : O(H)+O(n)
 - Nombre fini

File d'attente avec priorité infinie

- Utilisation de structure dynamiques
 - Listes / AVL

- Coûts
 - File vide : O(1)
 - Ajout : O(H) / O(In(H)) avec H le nombre de priorité
 - Mémoire : O(H)+O(n)

Tableau récapitulatif : coût des opérations

	Appartenance	Insérer	Supprimer	Minimum
Tableau	n	n	n	n
Tableau trié	ln(n)	n	n	1
Liste	n	1	1	n
Liste triée	n	1	1	1
ABR	de ln(n) à n	1	1	de ln(n) à n
AVL	ln(n)	ln(n)	ln(n)	ln(n)
Hash code - Liste	n	n	n	n
Hash code - ABR	ln(n)	1	1	1

Le coût d'insertion et suppression se fait sans la recherche de la position. Pour le coût total, il faut donc rajouter le temps d'appartenance.

