

Exame de Recurso de **Introdução aos Sistemas Eletromagnéticos - Parte I**Eng. Biomédica 2°Ano/1°Semestre

11/02/2014 Duração: 1h

Nome N°	Aluno
---------	-------

A parte I do exame é constituída por 3 questões de escolha múltipla e por 3 questões de desenvolvimento.

Das questões indicadas, responda no máximo a 4 e indique neste rectângulo as respostas efectivamente respondidas.

Escolha múltipla

- Para cada questão há uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 2; Resposta errada = 0,66
- 1. Três cargas pontuais, Q_1 , Q_2 e Q_3 , estão dispostas nos vértices de um quadrado como indica a figura. Sabendo que $Q_1 = Q_3 = 3.0~\mu C$, indique o valor da carga Q_2 de modo a que a energia eletrostática do conjunto das três cargas seja nula.

A: $Q_2 = -1,06 \ \mu C$	B: $Q_2 = -1,24 \ \mu C$
C: $Q_2 = -1.41 \mu C$	D: $Q_2 = -1.59 \ \mu C$

2. Um protão (massa m_p ; carga +e) e um deuterão (massa $m_d \approx 2 m_p$; carga +e) são ambos acelerados a partir do repouso com a mesma diferença de potencial atingindo as velocidades v_p e v_d , respetivamente. Após serem acelerados, o protão e o deuterão entram numa região com um campo de indução magnética uniforme perpendicular às suas velocidades, onde descrevem trajetórias circulares de raios R_p e R_d , respetivamente. Escolha a opção correta:

A: $\begin{cases} v_d = \frac{v_p}{2} \\ R_d = \frac{R_p}{2} \end{cases}$ B: $\begin{cases} v_d = \sqrt{2}v_p \\ R_d = 2R_p \end{cases}$	C: $\begin{cases} v_d = \frac{v_p}{\sqrt{2}} \\ R_d = \sqrt{2} R_P \end{cases}$	D: $\begin{cases} v_d = 2v_p \\ R_d = \frac{R_p}{\sqrt{2}} \end{cases}$
--	---	---

3. A tempestade geomagnética de 13/3/1989 causou um apagão geral no Quebeque. As variações da componente vertical do campo magnético terrestre atingiram 500 nT de amplitude.

Modelando a rede elétrica de alta tensão do Quebeque como um fio condutor circular com raio de 200 km, qual é a força eletromotriz induzida na rede se a variação ocorrer linearmente num intervalo de 1 minuto?

A: 6,54 kV	B: 4,19 kV	C: 2,36 kV	D: 1,05 kV
------------	------------	------------	------------

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada alínea tem a cotação de 2 valores.
- **4.** Considere o condensador representado na figura, constituído por dois elétrodos condutores planos e paralelos de área $A = 150 \ cm^2$, contendo as cargas $Q = 10 \ nC$ e Q nas suas superfícies interiores, separados de uma distância $d = 1,0 \ mm$ (muito menor que as dimensões dos planos).
- Caracterize (intensidade, direção e sentido) o campo elétrico no interior do condensador.
- Determine a energia armazenada no condensador.

- 5. Um cabo elétrico, com uma resistividade $\rho = 1,68 \times 10^{-8} \ \Omega m$ e um comprimento $l = 50 \ m$, transporta uma corrente de 20 A. Determine o raio mínimo do fio para que a potência dissipada no cabo não ultrapasse $50 \ W$. Nestas condições determine a queda de potencial entre as extremidades do cabo.
- **6.** Dois fios rectilíneos muito compridos, perpendiculares entre si, são percorridos por correntes de igual intensidade, $i_1 = i_2 = 1,5 A$, com os sentidos representados na figura. Os pontos E, F, G e H distam 5 cm do ponto O.
- Caracterize (intensidade, direção e sentido) os vetores campo de indução magnética nos pontos E, F, G e H.
- Caracterize (intensidade, direção e sentido) os vetores força magnética por unidade de comprimento nos pontos E, F, G e H.

Soluções:

4.
$$\vec{E} = -75,3 \,\hat{z} \quad kV/m$$
; $U = 0,38 \,\mu J$

5.
$$r_{min} = 1,46 \ mm$$
; $\Delta V = 2,5 \ V$

6.
$$\begin{cases}
\overline{B_{E}} = -6.0 \, \hat{z} \quad \mu T \\
\overline{B_{F}} = 6.0 \, \hat{z} \quad \mu T \\
\overline{B_{G}} = 6.0 \, \hat{z} \quad \mu T
\end{cases}$$

$$\frac{\overline{B_{H}}} = -6.0 \, \hat{z} \quad \mu T \\
\overline{B_{H}} = -6.0 \, \hat{z} \quad \mu T
\end{cases}$$

$$\frac{\overline{B_{H}}} = -6.0 \, \hat{z} \quad \mu T \\
\overline{B_{H}} = -6.0 \, \hat{z} \quad \mu T$$

$$\frac{\overline{B_{H}}} = -9.0 \, \hat{x} \quad \mu N/m \\
\overline{B_{H}} = -9.0 \, \hat{x} \quad \mu N/m$$