Question	Marks	Content	Syllabus Outcomes	Targeted Performance Bands
1 a	2	Trigonometric functions	H5	E2-É3
b	3	Inequalities	PE3	E2-E3
сi	2	Gradient of a tangent to a curve; Logarithmic functions	H5	E2-E3
ii	1	Angle between two lines	H5	E2-E3
d	4	Circle geometry	PE2, PE3	E2-E3
2 a	2	Series; Exponential and logarithmic functions	H3, H5	E2-E3
b	3	Division of an interval	H5	E2-E3
сi	2	Further trigonometry	H5	E2-E3
ii	1	Further trigonometry	H5	E2-E3
di	2	Parametric representation	PE4	E2-E3
ii	2	Parametric representation	PE3	E2-E3
3 a	2	Rules of differentiation; Inverse trigonometric functions	PE5, HE4	E2-E3
bi	2	Geometrical applications of differentiation	H5	E2-E3
ii	2	Inverse functions	HE4	E2-E3
iii	2	Inverse functions	HE4	E2-E3
С	4	Mathematical induction	HE2	E3-E4
4 a	2	Integration	H8	E2-E3
bi	2	Trigonometric functions	H5	E2-E3
ii	2	Polynomials	PE3	E2-E3
iii	2	Iterative methods	PE3	E2-E3
С	4	Methods of integration	HE6	E2-E3
5 a i	1	Polynomials	PE3	E2-E3
ii		Polynomials	PE3	E2-E3
iii	2	Polynomials	PE3	E2-E3
bi		Further probability	HE3	E2-E3
ii		Further probability	HE3	E2-E3
ci	1	Inverse trigonometric functions	HE4	E2-E3
ii .		Rates of change	HE5	E2-E3
5 a i	1	Velocity, acceleration as functions of x	HE5	E3-E4
ii		Velocity, acceleration as functions of x	HE5	E3-E4
iii		Exponential and logarithmic functions	H3	E3-E4
iv		Exponential growth and decay	HE3	E3-E4
bi		Simple harmonic motion	HE3	E3-E4
ii		Simple harmonic motion	HE3	E3-E4
iii		Simple harmonic motion	HE3	E3-E4
iv			HE3	E3-E4
⁷ ai	2]	Projectile motion	HE3	E3-E4
ii			HE3	
bi			HE3	E3-E4
ii			HE3	E3-E4
iii			HE3	E3-E4 E3-E4

a. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • writes expressions for x and y	1
• finds x when $y = 0$ and hence required expression for R	1
ii • calculates R for $V = 20$ when $\theta = 15^{\circ}$, $\theta = 45^{\circ}$	1
• identifies region that can be watered	1
• finds the area of at least part of this region	1
• finds the total area in simplest exact form	1

Answer

i.
$$x = Vt \cos \theta$$
 $y = -\frac{1}{2}gt^2 + Vt \sin \theta$
 $x = R$ when $y = 0$ and $t \neq 0$

$$y = 0, \ t \neq 0 \implies V \sin \theta = \frac{1}{2}gt$$
$$t = \frac{2V \sin \theta}{g}$$
$$\therefore R = \frac{V^2(2\sin \theta \cos \theta)}{g} = \frac{V^2 \sin 2\theta}{g}$$

ii.
$$V = 20$$
, $\theta = 15^{\circ} \implies R = 20$
 $V = 20$, $\theta = 45^{\circ} \implies R = 40$

The area of lawn that can be watered is shaded on the diagram.

Since
$$\cos\angle ESA = \frac{20}{40}$$
, $\angle ESA = \frac{\pi}{3}$ and $\angle ASB = \frac{\pi}{6}$.
Area = Sector ABS + $\triangle AES - Quadrant\ ECS$
 $= \frac{1}{2} \times 40^2 \times \frac{\pi}{6} + \frac{1}{2} \times 40 \times 20 \sin \frac{\pi}{3} - \frac{1}{4} \times \pi \times 20^2$
 $= 100 \times \frac{\pi}{3} + 200\sqrt{3}$
Area is $100 \left(\frac{\pi}{3} + 2\sqrt{3} \right)$ square metres.

b. Outcomes assessed: HE3

Marking Guidelines

<u>Criteria</u>	Marks
i • writes binomial expansion	1
ii • substitutes $x = 1$ to deduce required result	
iii • finds primitive of LHS of i.	
• finds primitive of RHS of i.	1
 evaluates definite integrals of LHS and RHS between limits 0 and 1 	1
• uses result from ii. to deduce required result	

i.
$$(1+x)^n \equiv {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$$
ii.
$$x = 1 \Rightarrow 2^n = {}^nC_0 + {}^nC_1 + {}^nC_2 + \dots + {}^nC_n$$
But ${}^nC_0 = 1$ $\therefore \sum_{r=1}^n {}^nC_r = 2^n - 1$

$$\begin{bmatrix} \frac{1}{n+1} (1+x)^{n+1} \end{bmatrix}_0^1 = \begin{bmatrix} {}^n C_0 x + {}^n C_1 \frac{1}{2} x^2 + \dots + {}^n C_n \frac{1}{n+1} x^{n+1} \end{bmatrix}_0^1$$

$$\frac{1}{n+1} (2^{n+1} - 1) = {}^n C_0 + \frac{1}{2} {}^n C_1 + \frac{1}{3} {}^n C_2 + \dots + \frac{1}{n+1} {}^n C_n$$

$$\therefore \frac{1}{n+1} \sum_{r=1}^{n+1} {}^{n+1} C_r = \sum_{r=0}^n \frac{{}^n C_r}{r+1} \quad \text{(using ii. with } n \to n+1)$$

i.
$$v = 2 - x$$

$$a = v \frac{dv}{dx}$$

$$= (2 - x) \cdot (-1)$$

$$= x - 2$$

ii.
$$\frac{dx}{dt} = 2 - x$$

$$\frac{dt}{dx} = \frac{1}{2 - x}$$

$$t = -\ln A(2 - x), \quad A \text{ constant}$$

$$t = 0$$

$$x = -4$$

$$\Rightarrow A = \frac{1}{6}$$

$$\therefore -t = \ln\left(\frac{2-x}{6}\right)$$

$$e^{-t} = \frac{2-x}{6}$$

$$6e^{-t} = 2-x$$

$$\therefore x = 2-6e^{-t}$$

iii. When t = 0, x = -4 $\therefore v > 0$

Particle is initially moving right, and it continues moving right approaching x = 2.

Hence particle has travelled 4 metres from its starting point when x = 0.

$$x=0 \implies -t=\ln\frac{1}{3}$$
.

∴ particle travels first 4 metres in ln3 seconds.

b. Outcomes assessed: HE3

Marking Guidelines

Marking Guidelines	
Criteria	Marks
i • sketches curve with correct shape and position showing intercept on x axis	1
• shows intercepts on t axis for at least one period	1
ii • differentiates to find \ddot{x} as a function of \dot{x} , and hence as a function of x	1
iii • states the period of the motion	1
iv • finds x when $t = 2$	1 1
• states the distance travelled in the first 2 seonds	

Answer

i.

ii.
$$\dot{x} = -4\sin 2t$$

$$\ddot{x} = -4(2\cos 2t)$$

$$=-4(x-2)$$

iii. Period is π seconds

iv.
$$t = 2 \implies x = 2 + 2\cos 4 \approx 0.69$$

But $\frac{\pi}{2} < 2 < \frac{3\pi}{4}$. Hence by inspection of the graph, particle has travelled $4.7 \,\mathrm{m}$ (correct to 2 sig. fig.)

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • counts the number of codes with all three digits different	1
• divides by the total number of codes to find the probability	1
ii • counts the number of codes with exactly two digits the same	1
• writes the probability of such a code	1

Answer

i.
$$P(all\ different) = \frac{9 \times 8 \times 7}{9 \times 9 \times 9} = \frac{56}{81}$$

ii. Consider code of form A, A, B or A, B, A or B, A, A Number of such codes is $9 \times 8 \times 3$

$$P(\text{exactly two the same}) = \frac{9 \times 8 \times 3}{9 \times 9 \times 9} = \frac{8}{27}$$

c. Outcomes assessed: HE4, HE5

Marking Guidelines

Criteria	Mark
i • finds θ in terms of x	1
ii • derives θ with respect to x	1
• finds the derivative of θ with respect to t in terms of x	1
• states the rate at which θ is changing when $x = 20$	1

Answer

i.
$$\tan \theta = \frac{40}{x}$$
, $0 < \theta < \frac{\pi}{2}$
 $\therefore \theta = \tan^{-1} \frac{40}{x}$

ii.
$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt}$$

$$= \frac{1}{1 + \frac{1600}{x^2}} \cdot \frac{-40}{x^2} \cdot .5$$

$$= \frac{-200}{x^2 + 1600}$$

$$\therefore x = 20 \implies \frac{d\theta}{dt} = -\frac{1}{10}$$

 θ is decreasing at a rate of 0.1 radians per second.

Question 6

a. Outcomes assessed: H3, HE3, HE5

Marking Guidelines

<u>Criteria</u>	Marks
i • finds a in terms of x	1
ii • finds t as a function of x by integration	1
• rearranges to find x as a function of t	1
iii • finds t when $x = 0$	1
iv • shows intercepts on the axes	1 1
• shows asymptote $x = 2$	1 1

Answer

i. Using cosine rule,
$$AB^2 = 1^2 + 1^2 - 2\cos\theta$$

$$AB^2 = 2(1 - \cos\theta)$$

$$= 4\sin^2\frac{1}{2}\theta$$

$$\therefore AB = 2\sin\frac{1}{2}\theta$$

∴ Perimeter = diameter
$$\Rightarrow \theta + 2\sin\frac{1}{2}\theta = 2$$

 $\theta + 2\sin\frac{1}{2}\theta - 2 = 0$

ii. Let
$$f(\theta) = \theta + 2\sin\frac{1}{2}\theta - 2$$

 $f(1) = -1 + 2\sin\frac{1}{2} \approx -0.04 < 0$
 $f(2) = 2\sin 1 \approx 1.68 > 0$
Since $f(\theta)$ is continuous,
 $f(\theta) = 0$ for some $1 < \theta < 2$.

iii.
$$f(\theta) = \theta + 2\sin\frac{1}{2}\theta - 2$$

$$f'(\theta) = 1 + \cos\frac{1}{2}\theta$$

$$\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}$$

$$\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}$$
 $\theta_1 = 1 - \frac{-1 + 2\sin\frac{1}{2}}{1 + \cos\frac{1}{2}}$

 $\theta_1 \approx 1.0$ (to 1 dec. place)

c. Outcomes assessed: HE6

Marking Guidelines

Criteria	Marks
• writes dx in terms of du	1
• writes integrand in terms of u and changes limits to u values	1
• finds primitive function	1
• evaluates in simplest exact form	

Answer

$$x = u^{2}, u \ge 0$$

$$dx = 2u du$$

$$\int_{1}^{25} \frac{1}{x + \sqrt{x}} dx = \int_{1}^{5} \frac{1}{u(u+1)} \cdot 2u du$$

$$x = 1 \implies u = 1$$

$$x = 25 \implies u = 5$$

$$= 2\left(\ln 6 - \ln 2\right)$$

$$= 2\ln 3$$

Ouestion 5

a. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
i • shows $P(1) = 0$	1
ii • uses product of roots is 1 to deduce 3^{rd} root is reciprocal of α	1
iii • writes sum of squares of roots in terms of square of sum and sum of two-way products	1
• uses relationships between coefficients of polynomial equation and its roots	1

i.
$$P(x) = x^3 - kx^2 + kx - 1$$

 $P(1) = 1 - k + k - 1 = 0$

ii. Product of the roots is 1.
Hence if the roots are 1,
$$\alpha$$
, β ,
then $\alpha\beta = 1$. $\therefore \frac{1}{\alpha}$ is the 3rd root.

iii.
$$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$\therefore \alpha^2 + \frac{1}{\alpha^2} + 1^2 = k^2 - 2k$$
$$\therefore \alpha^2 + \frac{1}{\alpha^2} = k^2 - 2k - 1$$

Consider
$$S(1)$$
: $LHS = \frac{1}{2!} = \frac{1}{2}$ $RHS = 1 - \frac{1}{2!} = 1 - \frac{1}{2} = \frac{1}{2}$ $\therefore S(1)$ is true If $S(k)$ is true: $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$ **

Consider $S(k+1)$: $LHS = \left\{ \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} \right\} + \frac{k+1}{(k+2)!}$ if $S(k)$ is true, using **

$$= \left\{ 1 - \frac{1}{(k+1)!} \right\} + \frac{k+1}{(k+2)!}$$

$$= 1 - \frac{k+2}{(k+2)(k+1)!} + \frac{k+1}{(k+2)!}$$

$$= 1 - \frac{k+2 - (k+1)}{(k+2)!}$$

$$= 1 - \frac{1}{(k+2)!}$$

$$= RHS$$

Hence if S(k) is true, then S(k+1) is true. But S(1) is true, hence S(2) is true, and then S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all positive integers $n \ge 1$.

Question 4

a. Outcomes assessed: H8

Marking Guidelines

Transport of the control of the cont	
Criteria	Marks
• expresses integrand in terms of cos 8x	1
• finds primitive function	1
	1 1

Answer

$$\int \cos^2 4x \ dx = \int \frac{1}{2} \left(1 + \cos 8x \right) dx = \frac{1}{2} x + \frac{1}{16} \sin 8x + c$$

b. Outcomes assessed: H5, PE3

Marking Guidelines

Marking Guidennes	
Criteria	Marks
i • uses cosine rule and trigonometric identity to find AB in terms of $\sin \frac{1}{2}\theta$	1
• adds are length to AB, equating sum and diameter to obtain required equation	1
ii • shows $f(1)$ and $f(2)$ have opposite signs	1
• uses continuity of $f(\theta)$ to deduce equation has root between 1 and 2.	1
iii • applies Newton's rule, substituting $\theta = 1$	1
• evaluates expression to obtain next approximation, giving result correct to 1 dec. place	

b. Outcomes assessed: H5, HE4

Marking Guidelines

. Criteria	Marks
i • shows $f(x)$ is increasing for $x > 1$	1
• shows the curve $y = f(x)$ is concave up for $x > 1$	1
ii • sketches $y = f(x)$ showing endpoint and asymptote $y = x$	1
• sketches $y = f^{-1}(x)$ showing endpoint and asymptote	1
iii • makes x the subject	1
• interchanges x and y to find equation of inverse function	1

Answer

i.
$$f(x) = x + \frac{1}{x}$$
 for $x \ge 1$

$$f'(x) = 1 - \frac{1}{x^2} > 0$$
 for $x > 1$

 $\therefore f(x)$ is increasing for x > 1

$$f''(x) = \frac{2}{x^3} > 0$$
 for $x > 1$

 $\therefore y = f(x)$ is concave up for x > 1

iii.
$$y = x + \frac{1}{x}$$
, $x \ge 1$ and $y \ge 2$

$$x^2 - xy + 1 = 0$$
, $x \ge 1$ and $y \ge 2$

Considering this quadratic in
$$x: x = \frac{y \pm \sqrt{y^2 - 4}}{2}, x \ge 1 \text{ and } y \ge 2$$

Clearly the branch
$$x = \frac{y - \sqrt{y^2 - 4}}{2}$$
 contains points for which $x < 1$.

Hence expressing x as the subject of
$$y = f(x)$$
, $x = \frac{y + \sqrt{y^2 - 4}}{2}$, $y \ge 2$.

Interchanging x and y, the inverse function is
$$f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2}$$
, $x \ge 2$

c. Outcomes assessed: HE2

Marking Guidelines

Criteria		Marks
• verifies truth of statement for $n=1$		1
• expresses LHS of $S(k+1)$ in terms of LHS of $S(k)$	1	1
• expresses LHS of $S(k+1)$ in terms of RHS of $S(k)$, conditional on truth of $S(k)$		1
• completes algebraic rearrangement to show $S(k+1)$ is true if $S(k)$ is true	•	1

Define the sequence of statements
$$S(n)$$
, $n = 1, 2, 3, ...$ by $S(n)$: $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + ... + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

c. Outcomes assessed: H5

Marking Guidelines

Criteria		N / T 1
		Marks
i • finds value of R		1
ullet finds value of $lpha$		1
ii • solves equation for x		1

Answer

i.
$$\cos x - \sqrt{3} \sin x = 2\left(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x\right)$$
 ii. $\cos x - \sqrt{3}\sin x = -2$, $0 \le x \le 2\pi$

$$= 2\left(\cos\frac{\pi}{3}\cos x - \sin\frac{\pi}{3}\sin x\right)$$
 $\cos\left(x + \frac{\pi}{3}\right) = -1$, $\frac{\pi}{3} \le x + \frac{\pi}{3} \le 2\pi + \frac{\pi}{3}$

$$= 2\cos\left(x + \frac{\pi}{3}\right)$$

$$x + \frac{\pi}{3} = \pi$$

$$x = \frac{2\pi}{3}$$

d. Outcomes assessed: PE3, PE4

Marking Guidelines

Criteria	Marks
i • shows by differentiation that tangent has gradient t	1
• finds the equation of the tangent	1
ii • substitutes coordinates of P to write equation for t	1
• solves equation for <i>t</i>	1

 $t + 2 - t^2 = 0$

 $t^2 - t - 2 = 0$

(t-2)(t+1) = 0

t = 2 or t = -1

Answer

i.
$$y = t^2 \Rightarrow \frac{dy}{dt} = 2t$$

 $x = 2t \Rightarrow \frac{dx}{dt} = 2$
 $\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$
Tangent at $T(2t, t^2)$ has gradient t
and equation $y - t^2 = t(x - 2t)$
 $y - t^2 = tx - 2t^2$
 $tx - y - t^2 = 0$
ii. $P(1, -2)$ lies on this tangent if $t + 2 - t^2 = 0$
 $(t - 2)(t + 1) = 0$
 $t = 2$ or $t = -1$

Question 3

a. Outcomes assessed: PE5, HE4

Marking Guidelines	
Criteria	Marks
• applies the product rule, obtaining first term	1
• obtains second term by deriving inverse sine	1

$$\frac{d}{dx}\left(x\sin^{-1}x\right) = \sin^{-1}x + \frac{x}{\sqrt{1-x^2}}$$

d. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
• explains why angles BAN, BCA are equal	1
explains why angles DCA, DBA are equal	1
• uses the equality of angles BCA, DCA to complete proof that angles BAN, DBA are equal	1
• quotes test for parallel lines to deduce tangent MAN is parallel to BD	1

Answer

:. $MAN \parallel DB$ (equal alternate angles on transversal BA since $\angle BAN = \angle DBA$)

Question 2

a. Outcomes assessed: H3, H5

Marking Guidelines

The state of the s	
Criteria Criteria	Marks
• writes condition on common ratio ln x for existence of limiting sum	1
• solves this inequality for x	1

Answer

Limiting sum of geometric series $1 + \ln x + (\ln x)^2 + \dots$ exists for $-1 < \ln x < 1$ \therefore since $f(x) = e^x$ is an increasing function, $e^{-1} < e^{\ln x} < e^1$ $\therefore \frac{1}{e} < x < e$

b. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• finds x coordinate of P	1124113
• finds y coordinate of P as the sum of two surds	1
• simplifies surd expression for y	1
samplifies but a expression for y	

2

$$A(8, \sqrt{8}) \qquad B(50, \sqrt{50})$$

$$2 \qquad : \qquad 1$$

$$(100+8 \qquad 2+1 \qquad , \qquad 2\sqrt{50}+\sqrt{8})$$

$$\therefore P\left(36, \frac{10\sqrt{2} + 2\sqrt{2}}{3}\right)$$
$$P\left(36, 4\sqrt{2}\right)$$

Independent Trial HSC 2008 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: H5

Marking Guidelines		
Criteria	Marks	
• writes primitive and substitutes for x	1	-
• evaluates in simplest surd form	1	

Answer

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec x \tan x \, dx = \left[\sec x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \sec \frac{\pi}{3} - \sec \frac{\pi}{4} = 2 - \sqrt{2}$$

b. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
writes an equivalent inequality not involving a variable denominator	1
• writes one inequality for x	1
• combines this with a second inequality for x	1

Answer

$$\frac{x^2 - 4}{x} \ge 0$$
$$x(x^2 - 4) \ge 0 \quad , \quad x \ne 0$$

By inspection of the graph, $-2 \le x < 0$ or $x \ge 2$

c. Outcomes assessed: H5

Marking Guidelines

Trial Gardennes	
Criteria	Marks
i • finds gradient of tangent to $y = x^3$ at P	1
• finds gradient of tangent to $y = 1 - \ln x$ at P	1
ii • finds the acute angle between the lines correct to the nearest degree	1

1

Answer

1.

$$y = x^{3}$$

$$\frac{dy}{dx} = 3x^{2}$$

$$x = 1 \Rightarrow \frac{dy}{dx} = 3$$

$$y = 1 - \ln x$$

$$\frac{dy}{dx} = -\frac{1}{x}$$

$$x = 1 \Rightarrow \frac{dy}{dx} = -1$$

Tangent at P(1,1) has gradient 3

Tangent at P(1,1) has gradient -1

ii.
$$\tan \theta = \left| \frac{3 - (-1)}{1 + 3 \times (-1)} \right| = 2 \implies \theta \approx 63^{\circ}$$
 (to the nearest degree)

1

Question 7

Begin a new booklet

- (a) A particle is projected from a point O with speed V ms⁻¹ at an angle θ above the horizontal where $0 < \theta < \frac{\pi}{2}$. The particle moves in a vertical plane under gravity where the acceleration due to gravity is g ms⁻². At time t seconds its horizontal and vertical displacements from O are x metres and y metres respectively.
 - (i) Write down expressions for x and y in terms of V, θ , g and t. Hence show that the horizontal range R of the particle is given by $R = \frac{V^2 \sin 2\theta}{g}$.
 - (ii) A lawn on horizontal ground is rectangular in shape with length 50 metres and breadth 20 metres. A garden sprinkler is located at one corner S of the lawn. It rotates horizontally, and delivers water at a speed of 20 ms^{-1} at angles of elevation between 15° and 45° above the horizontal. Taking g = 10, find the area of the lawn that can be watered by the sprinkler, giving the answer in simplest exact form.
- (b)(i) Write down the binomial expansion of $(1+x)^n$ in ascending powers of x.
 - (ii) Show that $\sum_{r=1}^{n} {}^{n}C_{r} = 2^{n} 1$.
 - (iii) Use integration and the answer to part (i) to show that $\frac{1}{n+1} \sum_{r=1}^{n+1} {n+1 \choose r} = \sum_{r=0}^{n} \frac{{}^{n}C_{r}}{r+1}.$

(iv) Find the distance travelled by the particle in the first 2 seconds of its motion,

giving the answer correct to two significant figures.

Begin a new booklet

Marks

- Consider the polynomial $P(x) = x^3 kx^2 + kx 1$, where k is a real constant. (a)
 - Show that 1 is a root of the equation P(x) = 0.

1

(ii) Given that α , $\alpha \neq 1$, is a second root of P(x) = 0, show that $\frac{1}{\alpha}$ is also a root of the equation.

1

(iii) Show that $\alpha^2 + \frac{1}{\alpha^2} = k^2 - 2k - 1$.

2

- Three numerals are chosen at random from the numerals 1, 2, 3, ..., 9 to form (b) a three digit code where order is important and repetition is allowed.
 - (i) Find the probability that all three digits of the code are different.

2

(ii) Find the probability that exactly two digits of the code are the same.

2

(c)

A boat is sailing due North from point A to point B at a steady speed of $5 \, \text{ms}^{-1}$. A marker buoy M on its route is situated 40 metres due West of a lighthouse L. When the boat is at point P at a distance x metres from M, the bearing of the lighthouse from the boat is θ , $0 < \theta < \frac{\pi}{2}$.

Show that $\theta = \tan^{-1} \frac{40}{x}$.

1

(ii) Hence find the rate at which θ is changing when x = 20.

Begin a new booklet

Find $\int \cos^2 4x \, dx$. (a)

2

(b)

AB is a chord of a circle of radius 1 metre that subtends an angle θ at the centre of the circle, where $0 < \theta < \pi$. The perimeter of the minor segment cut off by ABis equal to the diameter of the circle.

(i) Show that $\theta + 2\sin\frac{1}{2}\theta - 2 = 0$.

2

(ii) Show that the value of θ is such that $1 < \theta < 2$.

2

(iii) Use one application of Newton's method with an initial approximation of $\theta_0 = 1$ to find the next approximation to the value of θ , giving your answer correct to 1 decimal place.

2

(c) answer in simplest exact form.

Use the substitution $x = u^2$, $u \ge 0$, to evaluate $\int_1^{25} \frac{1}{x + \sqrt{x}} dx$, giving the

Begin a new booklet

Marks

(a) Find $\frac{d}{dx}(x\sin^{-1}x)$.

2

- (b) Consider the function $f(x) = x + \frac{1}{x}$ for $x \ge 1$.
 - (i) Show that the function f(x) is increasing and the curve y = f(x) is concave up for all values of x > 1.

2

(ii) On the same diagram, sketch the graphs of y = f(x) and the inverse function $y = f^{-1}(x)$ showing the coordinates of the endpoints and the equation of the asymptote.

2

(iii) Find the equation of the inverse function $y = f^{-1}(x)$ in its simplest form.

. 2

(c) Use Mathematical induction to show that for all positive integers $n \ge 1$, $1 \quad 2 \quad 3 \quad n \quad 1$

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$

Begin a new booklet

Marks

(a) Find the set of values of x for which the limiting sum of the geometric series $1 + \ln x + (\ln x)^2 + \dots$ exists.

2

(b) $A(8, \sqrt{8})$ and $B(50, \sqrt{50})$ are two points. Find the coordinates of the point P(x, y) which divides the interval AB internally in the ratio 2:1, giving the answer in simplest exact form.

3

(c)(i) Express $\cos x - \sqrt{3} \sin x$ in the form $R \cos(x + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

2

(ii) Hence solve $\cos x - \sqrt{3} \sin x = -2$ for $0 \le x \le 2\pi$.

1

(d) $T(2t, t^2)$ is a point on the parabola $x^2 = 4y$.

2

and equation $tx - y - t^2 = 0$.

(i) Use differentiation to show that the tangent to the parabola at T has gradient t

2

(ii) Hence find the values of t such that the tangent to the parabola at T passes through the point P(1,-2).

Begin a new booklet

- Marks
- Find the value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec x \tan x \, dx$, giving the answer in simplest exact form. (a)
- 2

Solve the inequality $\frac{x^2-4}{x} \ge 0$. (b)

- 3
- (c)(i) Find the gradients at the point P(1,1) of the tangents to the curves $y=x^3$ and $y = 1 - \ln x$.
- 2
- (ii) Hence find the acute angle between these tangents, giving the answer correct to the nearest degree.

1

(d)

ABCD is a cyclic quadrilateral. MAN is the tangent at A to the circle through A, B, C and D. CA bisects $\angle BCD$.

Copy the diagram. Show that $MAN \parallel DB$, giving reasons.

2008 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- Write using black or blue pen
- Write your student number and/or name at the top of every page
- All necessary working should be shown in every question
- A table of standard integrals is provided

Total marks - 84

Attempt Questions 1 – 7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME.....