Discussion of "Go Big or Buy a Home: Student Debt, Career Choices and Wealth Accumulation" by Marc Folch and Luca Mazzone

Alistair Macaulay

August 2020

Overview

"What are the implications of higher levels of student debt on life cycle decisions?" In particular, on career choice and homeownership?

Method:

- 1. IV regression: instrument student debt with within-college variation in institutional grants.
- 2. Quantitative life-cycle model.

Results: more student debt ⇒ households...

- 1. Choose 'shallower' careers (high initial wages, low growth)
- 2. Are less likely to go to grad school
- 3. Buy houses sooner

A simple 2-period model

HH chooses career $(\beta \in \{B, G\})$ and housing $(H \in \{0, 1\})$ to max:

$$U = \log(c_1) + \log(c_2) + \log(v_H)H$$

Budget constraints:

$$c_1 = w_1(\beta) - pH - d, \quad w_1(B) = 1, w_1(G) = w^- < 1 \quad (1)$$

$$c_2 = w_2(\beta), \quad w_2(B) = 1, w_2(G) = w^+ > 1$$
 (2)

 \Rightarrow simple analytic expressions for indirect U, parameter ranges for each β, H choice.

A simple 2-period model: career choice

HH goes to grad school ($\beta = G$) if:

$$d < d_{\beta}^* = \begin{cases} \frac{w^- w^+ - 1}{w^+ - 1} - p & \text{if } H = 1\\ \frac{w^- w^+ - 1}{w^+ - 1} & \text{if } H = 0 \end{cases}$$

Implications:

- ▶ Given *H*, less likely to go to grad school as debt rises.
- ▶ $d_{\beta}^*(H=1) < d_{\beta}^*(H=0)$: given debt, homeowners less likely to go to grad school.

A simple 2-period model: career choice

HH goes to grad school ($\beta = G$) if:

$$d < d_{\beta}^* = \begin{cases} rac{w^- w^+ - 1}{w^+ - 1} - p & \text{if } H = 1\\ rac{w^- w^+ - 1}{w^+ - 1} & \text{if } H = 0 \end{cases}$$

Implications:

- Given H, less likely to go to grad school as debt rises.
- ▶ $d_{\beta}^{*}(H=1) < d_{\beta}^{*}(H=0)$: given debt, homeowners less likely to go to grad school.

Why? No saving/borrowing, so grad school \Rightarrow lose c_1 , gain c_2 .

▶ Both higher d and H = 1 also reduce c_1 , so increase $U'(c_1)$. Going to grad school is \therefore more expensive in utility terms.

A simple 2-period model: housing choice

HH buys a house if:

$$d < d_{H}^{*} = \begin{cases} w^{-} - \frac{pv_{H}}{v_{H} - 1} & \text{if } \beta = G\\ 1 - \frac{pv_{H}}{v_{H} - 1} & \text{if } \beta = B \end{cases}$$

Implications:

- Given career choice, less likely to buy a house as debt rises.
- ▶ $d_H^*(G) < d_H^*(B)$: given debt, those with grad school less likely to buy a house than bachelor grads.

Why? No saving/borrowing, so buy a house \Rightarrow lose c_1 , gain v_H .

▶ Both higher d and $\beta = G$ also reduce c_1 , so increase $U'(c_1)$. Buying a house is \therefore more expensive in utility terms.

Effects of a rise in debt

Very low $d \Rightarrow \beta = G, H = 1$.

Very high $d \Rightarrow \beta = B, H = 0$.

Intermediate values?

Effects of a rise in debt

Very low $d \Rightarrow \beta = G, H = 1$.

Very high $d \Rightarrow \beta = B, H = 0$.

Intermediate values?

Effects of a rise in debt

Works if U cost of $\beta = G \uparrow$ faster with d than U cost of H = 1.

 $U'(c_1)$ rises faster for lower c_1 , so this happens if monetary cost of $\beta = G >$ that of H = 1: if $1 - w^- > p$.

Effects of a rise in debt: alternative (higher w^- , lower w^+)

Very low $d \Rightarrow \beta = G, H = 1$.

Very high $d \Rightarrow \beta = B, H = 0$.

Intermediate values?

Simple Model Takeaways

Results driven by $U'(c_1)$, and the interaction of two cliff-edges.

- Both grad school and homeownership increase period 2 utility.
- ▶ With middling debt you can't afford both, so pick one based on benefits to period 2 utility and **period 1 utility costs**.
- If d ↑ increases utility cost of grad school faster than of housing, at some threshold swap grad school for housing, so d ↑⇒ H ↑

Doesn't work with (two) continuous choices: at no point does $d \uparrow$ cause the (utility) cost of housing to fall.

For $d \uparrow \Rightarrow H \uparrow$ need discrete career decision. Actually remove the potential for the reverse possibility ($d \uparrow \Rightarrow$ start grad school) if allow continuous housing choices.

Comments I

- 1) Intuition of model could be clearer, esp. for the housing results.
 - ▶ Really a composition effect driven by those for whom $d \uparrow$ pushes them to abandon grad school.
 - ▶ Unsurprising then that $d \uparrow \Rightarrow H \downarrow$ if focus only on bachelors (table 11).
 - Can you test this in the empirical section?

Comments I

- 1) Intuition of model could be clearer, esp. for the housing results.
 - ▶ Really a composition effect driven by those for whom $d \uparrow$ pushes them to abandon grad school.
 - ▶ Unsurprising then that $d \uparrow \Rightarrow H \downarrow$ if focus only on bachelors (table 11).
 - ► Can you test this in the empirical section?
- 2) Address Mezza et al (2020 JOLE) (who find $d \uparrow \Rightarrow H \downarrow$).
 - ▶ Why are their results different?
 - ▶ Is it : they include postgrad debt? So if bachelor debt $\uparrow \Rightarrow$ switch $G \rightarrow B$, total B + G debt falls? (footnote 15)
 - Or is it that the 'compliers' affected by your instrument are marginal grant recipients, who have high ability and high pre-existing debt - exactly the people on the cusp of grad school but for whom debt might prevent enrolment?
 - Can you replicate their results in simulated data from your model?

Comments II

- 3) Sensitivity to calibration?
 - In simple model, only get the results in a small part of the sample space.
 - ➤ So results could be sensitive to calibration in the big model as well?
 - e.g. if set home production to replacement rate rather than poverty line.
 - Allowing choice of house size could help it does in the simple model.
- 4) Homeownership is the variable in the data you match least well with the model.
 - Shame, since the really striking result of the paper is on homeownership.
 - Sacrifice fit on other dimensions if you can then hit this better?

Comments Other

- 1) On a first read, I worried about what happens if another asset is available (since r^+ set so low).
 - ▶ I don't think it matters it's the same as allowing a continuous human capital investment, but since $w_2 >> w_1$ would want to borrow not save, so hit borrowing constraint.
 - ► The language of human K being a "relatively better investment" than housing was what got me worried I think intuition from simple model helped me here.
- 2) Regression: why not use full college FEs, rather than FEs for the 6 categories?
- 3) Regression: why limit to the most recent cohort? Doesn't data go back to the 1990s?

Comments Other

- 4) Calibration: log-normal not a great fit for parental transfers given the excess zeros in the data. Check nothing major changes if you use a more realistic distribution?
- 5) Calibration: why assume Corr(a,d) > 0 but $Corr(h_0,d) = 0$? My prior is you leave bachelor with more human capital if you are higher ability, so $Corr(h_0,a) >> 0$ and so $Corr(h_0,d) > 0$.
- 6) Policy evaluation: equilibrium effects matter. House prices will react to debt forgiveness or income-based repayment roll-out. Take into account (or at least discuss) if taking policy section seriously.