Electrónica General y Aplicada

Industrial - Mecatrónica

1-a Introducción: La Electrónica en los procesos industriales

Este primer tema tiene por objetivo brindar una visión general de las ramas de la Electrónica intervienen en las distintas etapas de la automatización e informatización de procesos industriales. La mayoría de ellas serán abordadas en las distintas unidades de la asignatura.

ESPECIALIDADES DE LA ELECTRÓNICA EN LA INDUSTRIA

Electrónica Analógica y mixta	Diodos-Transistores	U1
	Amplificadores operacionales	U5
	Conversión A/D y D/A	U6
	Compuertas digitales	
Electrónica Digital	Combinacionales	U3
	Secuenciales	
	Memorias	
	Microprocesadores – microcontroladores	U4
Electrónica de Potencia	Dispositivos de potencia	U2
	Circuitos de regulación de potencia	
	Cálculos térmicos	
Electrónica de Comunicaciones	Medio físico	U7
	Sistemas de modulación - codificación	
	Protocolos de comunicación	U8

Ejemplo de planta industrial: Planta de envasado en industria vitivinícola

Planta de envasado en industria vitivinícola

Cada etapa del proceso (llenado, etiquetado, capsulado) es realizado en "islas automatizadas". Cada isla está controlada por equipos electrónicos (PLC, PID etc).

Un sistema de comunicación entre estos equipos permite una supervisión integral de los procesos.

Ejemplo de planta industrial: Industria láctea

En cada cuba se automatiza la agitación y el calentamiento controlando la velocidad, la temperatura y el tiempo. Habrá elementos de medición o "sensores" (de temperatura, de velocidad etc) y elementos de accionamiento o "actuadores" (motores, resistencias de calentamiento eléctrico o válvulas de paso de gas etc)

Nivel de proceso y nivel de supervisión

Para la supervisión integral de los procesos se requiere que los controladores de cada proceso estén comunicados con un equipo supervisor, normalmente una o más computadoras ejecutando un software de supervisión (SCADA). Esta comunicación se realiza mediante una red de datos.

Automatización de un proceso...

Semejanzas entre un proceso manual y un proceso automatizado. Los elementos homólogos se muestran en el mismo color

Sensor analógico

El **sensor analógico** es el elemento que produce una variable eléctrica (corriente, voltaje) **análoga** (proporcional) a una variable física (temperatura, presión, caudal etc). Consta de un transductor (sensor primario) y un circuito electrónico de **acondicionamiento**.

Strain gauge (120 ohm, 350 ohm)

RTD (PT100)

Termocupla

Sensor digital

El **sensor digital o detector** produce una variable eléctrica digital (voltaje alto-bajo, contacto abierto-cerrado) según la variable física de entrada sea superior o inferior a un valor de **referencia**. Ej: termostato, presóstato, sensores de proximidad etc.

Sensores y Transmisores industriales

Transmisor de Nivel

Caudalímetro por electromagnetismo

Caudalimetro másico

Se llaman transmisores (de temperatura, presión, caudal, nivel etc) a los sensores que producen como salida una corriente normalizada (0-20mA ó 4-20mA). La señal en **corriente** es más inmune que la señal de voltaje a los ruidos inducidos y a las caídas de tensión en los conductores.

Automatización de un proceso...

Para controlar los procesos de **variable continua o analógica**, antes del auge de los sistemas digitales, se utilizaban circuitos analógicos (amplificadores, sumadores, restadores filtros etc).

El control de proceso Todo-Nada (también llamado ON-OFF) es más simple. Se utilizan detectores, y un circuito lógico. Antes se implementaba con lógica de llaves (relés). Actualmente con microprocesadores.

Automatización digital de un proceso de variable continua

A/D: Conversor analógico-digital. Convierte un voltaje en un número binario proporcional.

D/A: Conversor digital-analógico. Convierte un número binario en un voltaje proporcional

Proceso de 1 variable continua o analógica (temperatura, presión, caudal, nivel, velocidad, posición etc)

El controlador digital es normalmente un microprocesador que ejecuta algoritmos de control. A diferencia del controlador analógico, no se desajusta, puede ser reprogramado y puede comunicarse con otros equipos.

Automatización digital de un proceso de variable continua

Automatización digital de procesos de múltiples variables

DAQ: Data Acquisition. Sistema de adquisición de datos de múltiples entradas y salidas, analógicas (mediante AD y DA) y tipo todo-nada.

Muchos procesos son multi-variables, y éstas están interrelacionadas (Por ejemplo la cuba de agitación y calentamiento vista antes, una caldera etc). El controlador digital (microprocesador o microcontrolador) facilita el control de este tipo de procesos.

Automatización digital de procesos de múltiples variables

Estructura interna de un controlador industrial típico

Control integral

Los controladores digitales pueden ser conectados en red para tener un control integral de los procesos (supervisión). El supervisor será comúnmente una computadora ejecutando una aplicación de Supervisión, Control y Adquisición de datos (SCADA).

Resumen: Elementos electrónicos en la automatización industrial

Control de proceso	Sensor	Transductor	
		Acondicionamiento	U1-U5
		Transmisión analógica o digital (ON-OFF)	U7
	Controlador	Entrada analógica o digital	U6
		Muestreo/Digitalización (A/D)	U6
		Procesamiento (algoritmos de control)	U3-U4
		Salida analógica o digital (D/A)	U6
		Comunicación con supervisor u otros controladores	U7-U8
	Actuador	Aislación	U6
		Amplificación de potencia	U2
		Actuador primario	
Supervisión	Comunicación	Medio físico, protocolos	U7-U8
	Software	SCADA, otras aplicaciones	U9
	Interfaz H-M		
Otras tareas	Planificación, Gerencia etc		

1.B Física de semiconductores

El objetivo de este tema es conceptualizar los procesos físicos fundamentales que permiten explicar correctamente el funcionamiento de los principales dispositivos electrónicos

ESTRUCTURA CRISTALINA DE C, Si y Ge

Electrones y Huecos - Generación y recombinación

Generación térmica G=K_G. T Recombinación $R = K_R.$ ni.pi [portadores/(cm³.segundo)] [portadores/(cm³.segundo)]

En el equilibrio G=R $K_G.T=K_R.$ ni.p $pi = pi \cong 10^{-12}$ (Si)

Semiconductor tipo N

Si (G IV) por P, As (GV)

$$K_G.T/K_R = n.p = n_i p_i = 10^{-24} \text{ si } n = 10^{-6} \text{ será } p = 10^{-18}$$

Semiconductor tipo P

Si (G IV) por B, Al, Ga, In (G III)

Juntura P-N – portadores y carga espacial

Juntura P-N – campo eléctrico y barreras de potencial

Juntura P-N – corrientes

- 1) **Electrones minoritarios** de la zona P, generados térmicamente en la vecindad o dentro de la zona de deplexión, son impulsados hacia la zona N, donde transitarán libremente. A nivel macroscópico forman la **le**
- 2) **Electrones mayoritarios** de la zona N con suficiente energía para remontar el campo eléctrico adverso y llegar a la zona P, se recombinarán con uno de los tantos huecos que hay en la región P más allá de la desértica zona de deplexión. A nivel macroscópico forman una corriente **I**_E
- 3) **Huecos minoritarios** de la zona N, generados térmicamente en la vecindad o dentro de la zona de deplexión son atraídos hacia la zona P, donde transitarán libremente. A nivel macroscópico forman una corriente **Ih**
- 4) **Huecos mayoritarios** de la zona P con suficiente energía para remontar el campo eléctrico adverso y llegar a la zona N, se recombinarán con uno de los tantos electrones que hay en la región N más allá de la zona de deplexión. A nivel macroscópico constituyen una corriente I_H

 $I = |I_{R0}| - |I_{S}| = 0$

1.C Diodo. Rectificadores monofásicos

Diodo P-N: Polarización

Diodo P-N – Curva V-I

$$\begin{split} I_R &= I_{R0}. \ e^{q.V/\text{\&.T}} \\ I &= I_R - I_S = I_{R0}. \ e^{q.V/\text{K.T}} - I_S \ = I_S. \ (e^{q.V/\text{K.T}} - 1) \end{split}$$

Figura 11: Corriente del diodo en función de la tensión aplicada, con T=300°K (azul) y T=310°K (rojo)

Diodo P-N – Modelos aproximados

Figura 12: Modelos aproximados del diodo. (a) Primera aproximación, (b) Segunda aproximación (considerando V_{ON}), (c) Tercera aproximación (considerando V_{ON}) y R_{ON})

Efecto Zener y efecto avalancha

Rectificador de Media Onda

Rectificador de Media Onda – con capacitor

Rectificador de Onda Completa tipo Puente

Rectificador de Onda Completa- Puente – con capacitor

Rectificador de Onda Completa-Con Transformador punto medio

R.O.C con transformador de punto medio – Con capacitor

1.D Transistor Bipolar

Dos junturas PN

Distribución de electrones y huecos

Carga espacial resultante positiva y negativa

Campo eléctrico debido a la carga espacial

Barrera de potencial para electrones y huecos Para los electrones de las zonas N la barrera es una especie de loma o compuerta de paso.

Regulando la altura de esta compuerta se lograría comunicar ambas zonas N, y los electrones pasarían hacia uno y otro lado.

Transistor bipolar

Polarización del transistor bipolar

Curvas del transistor bipolar

1.E El transistor en régimen lineal Amplificación. Configuraciones EC, BC y CC

El transistor como amplificador de tensión

- ¿Qué es lo que ocurre al agregar la señal Vs y la carga Rc a este circuito?
- La barrera de potencial disminuye cuando Vs aumenta, y aumenta cuando Vs disminuye. Luego
- Ic aumenta cuando Vs aumenta, y disminuye si Vs disminuye. Es decir, I_C está en fase con V_S .
- Dado que el **voltaje en** R_c es $I_c.R_c$, dicho voltaje **también está en fase con** V_s . ¿Qué ocurre con V_{CE} ?. Observe que $V_{CE} = V_{CC} I_c.R_c$

Recta de carga

$$I_C = 0 \rightarrow V_{CE} = V_{CC}$$

 $V_{CE} = 0 \rightarrow I_C = V_{CC}/R_C$

 $\begin{array}{c} punto \ sobre \ eje \ V_{CE} \\ punto \ sobre \ eje \ I_{C} \end{array}$

Amplificación de tensión

$$A_{\mathrm{V}}\!\!=\!\!\Delta_{\mathrm{Vsalida}}\!/\!\Delta_{\mathrm{Ventrada}}\!=\Delta V_{\mathrm{CE}}\!/V_{\mathrm{S}}$$

Amplificación de tensión

¿Qué pasaría si V_{BB} fuera menor, por ejemplo que estuviera en el punto *a*? ¿Qué pasaría si V_{BB} fuera mayor, por ejemplo que estuviera en el punto *e* o *f* ? ¿Qué pasaría si R_c fuera de la mitad del valor que la utilizada? ¿Y si fuera el doble? ¿Cómo se puede aumentar A_V al doble?. ¿Cómo evitaría aquí que se "recorte" la señal?

Circuito práctico: Amplificador acoplado en CA

Un voltaje equivalente a la V_{BB} se obtiene de la misma V_{CC} , y se puede calcular o establecer mediante el teorema de Thevenin.

La señal V_S , en vez de intercalarla en serie con la V_{BB} se obtiene acoplándola a la base a través de un capacitor C1. La componente continua de salida se bloquea con C2. Estos capatitores obstaculizan las señales de baja frecuencia por lo que el amplificador disminuye su factor de amplificación.

Las tres configuraciones básicas. EC. BC. CC

Las tres configuraciones básicas. EC. BC. CC

	Emisor Común	Base Común	Colector Común o "Seguidor de Emisor"
Ganancia de tensión	>>1 (proporcional a Rc)	>>1 (proporcional a Rc)	=1
Ganancia de corriente	>>1 (aproximadamente β)	<1 $(\alpha = I_C/I_E)$	>>1 (aproximadamente β)
Impedancia de entrada	Media	Baja	Alta
Respuesta en frecuencia	Limitada por transistor a $f_{T/}$ β	Muy buena f _{T (frecuencia de transición)}	Muy buena f _{T (frecuencia de transición)}
Aplicación	General	Alta frecuencia	Alta frecuencia y adaptación de impedancias

Tabla 1. Resumen de las configuraciones básicas del amplificadores a transistor

El transistor como llave: régimen de conmutación

Potencia disipada por el transistor en los puntos de saturación (S), Corte (C) y de máxima disipación (A), representada por las áreas de los rectángulos respectivos.

El transistor como llave: régimen de conmutación

Transistor bipolar – Resumen

- 2 modos básicos de funcionamiento: régimen lineal y régimen de conmutación. Lineal para sistemas analógicos de baja y media potencia, el de conmutación en sistemas digitales y en sistemas de media y alta potencia.
- En ambos casos se utiliza el transistor, trabajando de manera diferente:
- En régimen lineal trabaja como una fuente de corriente controlada. Se polariza la juntura Base-Emisor, para colocar el punto de trabajo en una zona conveniente que permita reproducir la forma de la señal a amplificar y evitar las distorsiones por saturación o corte.
- La polarización se realiza con una única fuente Vcc y resistencias formando un divisor de tensión, aplicando el teorema de Thevenin. Para acoplar señal y carga se han utilizado capacitores, que producen un efecto pasa-alto en bajas frecuencias. Si se precisa amplificar señales muy lentas debe recurrirse a otro tipo de montajes que se verán en la unidad 5. En la zona de alta frecuencia las capacidades propias del transistor producen un efecto pasa-bajo.
- Las otras configuraciones vistas además de la de Emisor Común, esto es las de Base Común y Colector Común, aunque no parecen ventajosas desde el punto de vista de la ganancia de corriente o tensión, tienen mejor respuesta en alta frecuencia, y utilizadas en conjunto pueden reemplazar con ventaja a una única etapa de Emisor Común.
- Para régimen de conmutación no se polariza, y la señal es tipo rectangular. El transistor trabaja como llave abierta
 o cerrada y la disipación es menor, pero por los retardos propios del transistor puede producirse una disipación
 importante durante la conmutación.
- Puede utilizarse un capacitor de bajo valor en paralelo con la resistencia de base