Homework 3 Written Answers

Data Engineering 300 Aden Benson 5/26/2025

Part 1

Task 1

To begin Task 1, I first created a "words" Pyspark dataframe that exploded all document columns and listed each individual word with its corresponding document number. This is shown in figure 1.

+	·+
_c0	
+	
0	wall
0	st
0	bears
0	claw
0	back
0	black
0	reuters
0	reuters
0	short
0	sellers
0	wall
0	street
0	dwindling
0	band
0	ultra
0	cynics
0	seeing
0	green
1	carlyle
1	looks

Fig. 1 - Exploded word dataframe

After this, I was able to design map/reduce functions to create dataframes for the following statements: For each d, the counts of t, for each d the counts of words, and for each t, the counts of t that contain t. The structure for the second and third dataframe are shown below in figures 2 and 3. The first dataframe was too large to use .collect().

```
[(0, 18.0), (9, 19.0), (18, 21.0), (27, 21.0), (36, 26.0)]
```

Fig. 2 - For each *d* the counts of words (Doc number, count of words)

```
[('nation', 1598.0),
  ('eggs', 38.0),
  ('software', 3798.0),
  ('different', 410.0),
  ('7', 2614.0)]
```

Fig. 3 - For each t, the counts of d that contain t (Word, number of occurrences in documents)

Task 2

In Task 2, we create functions that first calculate the TF term, then the IDF term, and combine these measures to compute the TF-IDF measure for each word in each document. In figure 4, we see an example of how this is displayed in our final dataframe.

+	+	+
doc_Numbe	er word	tf_idf_measure
+	+	+
1	.8 deficit	0.540640233790213
1197	0 deficit 0.	24681401977379286
2082	6 deficit 0.	23653010228321816
2107	8 deficit 0.	23170295733866267
3711	.6 deficit 0.	24681401977379286
+	+	+

Fig. 4 - Final dataframe that contains a document number, a word, and its TF-IDF measure.

Task 3

In Task 3, we find the TF-IDF measure for each word in the first five documents. These had to be displayed separately since there are over 10 words in each document. In figures 5-6, we see these measures.

doc_Number	word	tf_idf_measure	doc_Number	word	tf_idf_measure	doc_Number	word	tf_idf_measure
		+	1		0.2284965552404658			0.16094627131903613 0.1792714404894228
0		0.37743394553516213	1		0.15043731768548949			0.17879168082328206
0	short	0.2773120373951269	1 1		0.2581171817448437	2		0.14472559202114177
0	claw	0.499114829314058	1 1		0.25188254045524316	1 21		0.30475018305843793
0	back	0.1892216338539946	1 11		0.1973537176743789	1 21		0.23009353850726894
0	green	0.2877107940095433	1		0.27861293130724324 0.1898997183872362	. 2		0.14976769101715193
0 0	dwindling	0.4572386180709258	1		0.7168306746824437	2	depth	0.3134395477206486
0 j	ultra	0.4125512394225831	1 1		0.7108300740824437	2	outlook	0.426507321727192
01		0.2584728642725166			0.1751279339938823	2		0.1390815710510703
0		0.4468379768438066			0.22418048797172685	2		0.2269473904860962
0		0.24678348986493034			0.1890771769001148	2		0.1506929873929127
- 1					0.2057832028092643	2		0.14062721303262238
0	cynics		j 1j	market	0.13394932212703356	4	crudel	0.2596334462817103 0.197241148492093
0		0.3372044607529448	1	private	0.1929050573011279	1 21		0.3721400726458204
0	wall	0.5115985326511431	1	reputation	0.2578098186776328	1 21		0.1312190079412683
0	reuters	0.24754017186645658	1	timed	0.324478643568105	1 2		0.2444907371483310
0	black	0.2953171727366614	1	making	0.1698717076460444	. 2		0.29515945064295
0	band	0.3643421454792778	1	group	0.12468100563149095	2	reuters	0.1856551288998424
		+	1	part	0.16022031730914288	+		

Fig. 5 - TF-IDF measures for documents 1-3

+		++	+		++
doc_Number ++	word	tf_idf_measure ++	doc_Number	word	tf_idf_measure
3	iraq	0.23809526243476142	4	time	0.10623532598945136
3	showed	0.1743365558077232	4	us	0.1669859687392097
3	intelligence	0.20782569445751425	4	present	0.22209684830286883
3	strike	0.17411586950893898	j 4	record	0.1232987151692413
3	official	0.15149485319300557	4	months	0.14002501854271598
3	flows	0.2774168429760197	j 4	soar	0.2306791247647116
3	main	0.36492623402353547	. 4	prices	0.23156094723382684
3	said	0.06593367258642661	4	barely	0.21935019724396657
3	rebel	0.18209445014364567	. 4	wallets	0.2665151844733088
3	militia	0.2252006141545402	j 4	menace	0.5747440955975784
3	oil	0.35763832555989516	4	toppling	0.27964532733021175
3	pipeline	0.4720829409342409	4	oil	0.22253051368171256
3	infrastructure	0.22959926718225876	4	tearaway	0.3918885216630942
3	export	0.23862435123782139	4	new	0.1271397626254836
3	authorities	0.18159366801541998	4	straining	0.2904044404056468
3	southern	0.336553609483104	4	economy	0.14885602905832815
3	saturday	0.12197305137253434	4	posing	0.2589223867776184
] 3]	halts	0.27365396741681164	4	economic	0.14782686453681568
j 3j	halted	0.2557691357056513	4	world	0.09332201126546583
j 3	reuters	0.15913296762843637	4	elections	0.16009904796740967
++		++	+	·	++

Fig. 6 - TF-IDF measures for documents 4-5

Part 2

Task 1

In Task 1, I first designed MapReduce functions that would later be used in the loss_SVM() function to calculate a sum for the loss function. The summed total is shown below in figure 7.

```
# Design reduce portion, which finds the sum of all max(0, 1-y_i(w^T x_i +b)) values
from operator import add
summed_total=svm_ps.rdd.map(map_part2).reduceByKey(add).collect()[0][1]
summed_total

✓ 2.4s
```

399889.5049647091

Fig. 7 - Summed total used below in loss_SVM function

Task 2

Task 2 has no visible outputs, as it is simply defining a function to compute the loss objective function given weights, bias, X, y, and a lambda value.

Task 3

In Task 3, we compute the loss_SVM value given our data uploaded into Pyspark. We see that the objective value for the given data is 1.0029404.

Fig. 8 - Loss objective value from given data

Task 4

Objective value: 1.0029403834857487

Finally, we design MapReduce functions to make predictions using the y_hat function provided in the assignment documentation. In figure 9, we see the structure of these predictions. In figure 10, we find that the loss objective value for our y_hat predictions is 0.9579.

```
[('Prediction', -1),
('Prediction', -1),
('Prediction', -1),
('Prediction', 1),
('Prediction', -1),
('Prediction', 1),
('Prediction', -1),
('Prediction', -1),
('Prediction', 1),
('Prediction', -1),
('Prediction', 1),
 ('Prediction', -1),
 ('Prediction', -1),
 ('Prediction', -1),
 ('Prediction', 1),
 ('Prediction', 1),
 ('Prediction', 1),
 ('Prediction', -1),
 ('Prediction', 1),
 ('Prediction', -1),
 ('Prediction', 1),
 ('Prediction', 1),
('Prediction', 1),
('Prediction', -1),
('Prediction', -1),
```

Fig. 9 - Structure of prediction dataframe.

Fig. 10 - Loss objective value for y hat predictions.