Snakes and Ladders with Prediction Challenge

Submitted By:

- Syed Uzair Hussain (22k-4212)
- Basil Yaqoob (22k-4634)

Course: Artificial Intelligence (AI) Instructor: Almas Ayesha Ansari Submission Date: 22-03-2025

1. Project Overview

Project Topic:

This project aims to create a modified version of the traditional Snakes and Ladders game, introducing strategic elements like prediction-based moves and resource management. Players predict dice outcomes to gain advantages, such as skipping turns or earning token points to neutralize snakes.

Objective:

The main goal is to enhance the strategic depth of Snakes and Ladders by integrating prediction mechanics and token-based resource management, making the game more engaging and less reliant on luck alone.

2. Game Description

Original Game Background:

Snakes and Ladders is a simple board game where players move based on dice rolls, climbing ladders to advance and sliding down snakes to move back. The first player to reach the last square wins.

Innovations Introduced:

- **Prediction Challenge:** Players predict the dice outcome before rolling. Correct predictions offer strategic choices.
- **Token System:** Players earn tokens for correct predictions, which can be used to neutralize snakes based on their size.

- **Opponent Interaction:** Opponents predicting correctly can skip a player's turn or force them to move backward.
- **Enhanced Strategy:** These changes add a layer of decision-making, reducing reliance on luck.

3. Al Approach and Methodology

Al Techniques to be Used:

- Minimax Algorithm: Adapted for multiplayer scenarios to optimize move predictions.
- Alpha-Beta Pruning: To improve efficiency in decision-making for Al opponents.
- **Reinforcement Learning (Optional):** For AI to learn optimal prediction strategies based on past games.

Heuristic Design:

- **Prediction Accuracy:** Heuristics will evaluate the likelihood of each player's prediction being correct.
- **Token Management:** Heuristics for when to spend tokens to neutralize snakes.

Complexity Analysis:

- **Time Complexity:** Minimax with Alpha-Beta Pruning reduces complexity in multi-player settings.
- Challenges: Integrating prediction and resource management into Al decisions.

4. Game Rules and Mechanics

Modified Rules:

1. Prediction Mechanic:

- Before each turn, players predict the dice outcome.
- Correct opponent predictions allow them to skip a turn or earn tokens.
- Multiple correct predictions: One skips the turn, another moves the player backward by the dice roll.

2. Token Usage:

- Tokens can neutralize snakes based on their size.
- Larger snakes require more tokens.

3. Current Player Advantage:

o Correct prediction allows either a bonus roll or additional tokens.

Winning Conditions:

• First to reach the last square wins, with prediction and token usage influencing the path.

Turn Sequence:

- 1. Prediction phase for all players.
- 2. Dice roll and movement based on predictions.
- 3. Token spending option if a snake is encountered.

5. Implementation Plan

Programming Language: Python

Libraries and Tools:

- Pygame or Tkinter: For GUI.
- NumPy: For data handling.

Milestones and Timeline:

- Week 1-2: Game design and rule finalization.
- Week 3-4: Al strategy (Minimax and heuristics).
- Week 5-6: Coding and testing mechanics.
- Week 7: Al integration and testing.
- Week 8: Final testing and report preparation.

6. References

- Online resources and research papers on game Al.
- Documentation for Pygame and Al algorithms.