Drilling Down on Molecular Targeted Approaches to Therapy

Professor Peter Schmid, MD PhD FRCP

Lead, Centre for Experimental Cancer Medicine Barts Cancer Institute, St Bartholomew's Hospital Queen Mary University of London

Molecular Targeted Approaches to Therapy in MBC

- Key molecular pathways in MBC
 - ER signaling, PI3K/mTOR, cyclin D/CDK4/6
 - HER2 and HER3
 - DNA damage repair
 - Immune checkpoints
- Pathway adaptation over time and therapeutic implications
- Mutation analysis and biomarkers to select targeted treatments

- Activating PI3KCa mutations occur in 30-40% of ER+ BC
- Are PIK3CA the best biomarker for benefit from PI3K/mTOR inhibition?

Schmid P, et al, Presented at: SABCS 2014.

Understanding Cellular Signaling Networks: PI3K/mTOR Pathway Challenges Around Identifying Biomarkers

Understanding Cellular Signaling Networks: PI3K/mTOR Pathway Challenges Around Identifying Biomarkers

Understanding Cellular Signaling Networks: PI3K/mTOR Pathway Challenges Around Identifying Biomarkers

Understanding Cellular Signaling Networks: PI3K/mTOR Pathway Challenges Around Identifying Biomarkers

Understanding Cellular Signaling Networks: PI3K/mTOR Pathway Challenges Around Identifying Biomarkers

Understanding Cellular Signaling Networks: PI3K/mTOR Pathway Challenges Around Identifying Biomarkers

Targeting Cell Cycle Control (CDK4/6)

Targeting Cell Cycle Control (CDK4/6)

Targeting Cell Cycle Control (CDK4/6)

Targeting CDK4/6:

- Intact Rb required for therapeutic approach
- CyclinD-CDK4/6 axis frequently dysregulated in ER+ BC with intact Rb (LumA 23%, LumB 49%)
- Loss of Rb common in TNBC
- Early studies suggest substantial benefit in ER+ disease
- Cyclin D-CDK4/6 aberrations are not predictive of response

p16INK4A

Prof. P. Schmid, Barts Cancer Institute

Targeting HER2+ Disease Intracellular Signaling Network

Targeting HER2+ Disease Luminal vs HER2 Subtype & Potential Co-Targets

Targeting HER2+ Disease **Luminal vs HER2 Subtype & Potential Co-Targets**

2012;490(7418):61-70.

Triple Negative Cancer: Potential Treatment Targets? Heterogeneity Requires Different Strategies

Biological Clusters

Triple Negative Cancer: Potential Treatment Targets? Heterogeneity Requires Different Strategies

Canonical Pathways

Basal-like 1

DNA Replication Reactome G, Pathway **RNA Polymerase** ATR/ BRCA Pathway G, to S Cell Cycle

NGF Pathway MET Pathway WNT 6-catenin Pathway IGF1R Pathway Glycolysis/ Gluconeogenesis

Immunomodulatory

IL12 Pathway NK Cell Pathway Th1/Th2 Pathway IL7 Pathway Antigen Processing/ Presentation **NFKB Pathway** TNF Pathway T Cell Signal Transduction DC Pathway **BCR Signaling Pathway NK Cell Mediated Cytotoxicity** JAK/ STAT Signaling Pathway ATR/ BRCA Pathway

Mesenchymal-like

IGF/ mTOR Pathway **ECM Pathway** Regulation of Actin by RHO WNT Pathway **ALK Pathway** TGF_β Pathway

Mesenchymal Stem-like

WNT β-catenin Focal Adhesion Inositol Phophate Metabolism NFKB Pathway **EGF Pathway** ALK Pathway **GH Pathway NK Cell Mediated Toxicity RAC1 Pathway GPCR Pathway** ERK1/2 Pathway Integrin Mediated Adhesion **ABC Transporters General RHO Pathway** Smooth Muscle Contraction Calcium Signaling Pathway Adipocytokine Signaling Pathway PDGF Pathway

Luminal AR

-3

Glutathione Metabolism Tyrosine Metabolism Steroid Biosynthesis Porphyrin Metabolism Androgen and Estrogen Metabolism Glycosphingolipid Metabolism Flagellar Assembly Citrate Cycle TCA Phenylalanine Metabolism **ATP Synthesis** Starch and Surcrose Metabolism Arginine and Proline Metabolism Metabolism by Cytochrome P450 Fructose and Mannose Metabolism Fatty Acid Metabolism Alanine and Aspartate Metabolism **Eicosanoid Synthesis CHREB Pathway** Tryptophan Metabolism

Different Targets for Biological **Clusters**

Lehmann BD, et al. J Clin Invest. 2011;121(7):2750-2767.

Utilizing Synthetic Lethality Strategies DNA Damage Repair – BRCA & PARP

New Targets for TNBC Targeting Immune-Checkpoints (PD-L1)

New Targets for TNBC Targeting Immune-Checkpoints (PD-L1)

New Targets for TNBC Targeting Immune-Checkpoints (PD-L1)

Novel Targeted Therapies and Patient Selection Change of Tumor Biology Over Time

Change of Tumor Biology Over Time Acquired ESR1 Mutations

Change of Tumor Biology Over Time Acquired ESR1 Mutations

Circulating Biomarkers to Assess Dynamic Changes Genetic Profiles From cfDNA

Early breast cancer

Metastatic disease

Circulating Biomarkers to Assess Dynamic Changes Genetic Profiles From cfDNA

Circulating Biomarkers to Assess Dynamic Changes Genetic Profiles From cfDNA

Molecular Targeted Approaches to Therapy in MBC Summary and Conclusions

- ER and HER2 remain the dominant pathways in MBC
- Crosstalk between ER or HER2 and signaling pathways is a key driver of endocrine resistance
- Combination treatment strategies (eg, with PI3K/mTOR pathway inhibitors or CDK4/6 inhibitors) can overcome resistance
- Increasing understanding of the heterogeneity of TNBC reveals new therapeutic targets (eg, DNA Damage repair, Immune checkpoints)
- Lack of biomarkers for patient selection remains challenging

