

Fitting Simulation Based on Mobile Body Scanning for Wheelchair Users

Ryosuke Ichikari, Masaki Onishi, Takeshi Kurata National Institute of Advanced Industrial Science and Technology (AIST), Japan

CSUN AT Conf. 2018@San Diego

Session: IND-081

March 23rd, 2018 (8:00 AM)

Fashion for wheelchair users

- Fashion: Important for the wheelchair users to improve quality of life (QoL) and return to society
- Problems of making their garments:
 - lack of items, costs (order-made or modified from normal garments)
 - market size, difficulty for keeping business
 - consumers have highly individualized needs

Fashion show at Koku-Reha collection 2012

Projects for people with physical disabilities and special needs

- Fashion-able (2011-, EU)
 - Fashionable footwear for diabetic feet
 - Fashionable clothing for wheelchair users
 - High-performing textile compression bandages
- Our projects (2012-, Japan)
 - Sustainable research project for manufacturing ideal clothes for wheelchair users
 - Simultaneously improving functionality, design, and economic efficiency
 - Research institutes, a fashion school, apparel-CAD companies, garment manufacturers are involved.

Research elements in our project

Contributions of virtual fitting app.

Functionality

- Development of special material and pattern
- Development of robot for garment evaluation
- Functionality simulation of garment by virtual fitting app.

Design

- Enriching quantity of garment for wheel chair users
- Sharing pattern and body shape data as open data

 Design simulation of garment by virtual fitting app.

Economic Efficiency

- Easy body shape measurement by mobile RGB-D camera
- ◆ At-home trial fitting
- Virtual preproduction
- E-commerce using virtual fitting app.

Virtual Fitting App.

- Virtual trial fitting anywhere-anytime with smartphone.
- Simulation of garment functionality and its design
- Mobile 3D body measurement by RGB-D camera

Related Works

- Researches related to clothes fabrication
 - Stefan et.al. (ISMAR2011): Fitting simulation based pre-captured clothes with various poses
 - Igarashi et.al.(UIST2002): Interactive simulation of sewing the parts and fitting on CG doll
- MR-based virtual fitting systems
 - EON Reality <u>Eon Interective Mirror</u> simple cloth simulation
 - MR Fitting Simulation (Our previous work)
 - Superimposing scanned clothes CG model in real-time
 - Did not adopt measurement of target's body and rigorous cloth simulation

[Stefan 2011]

[Igarashi 2002]

[Eon Interactive Mirror]

[Ichikari 2014]

Overview of virtual fitting app.

Functionalities of virtual fitting app.

- (1) Ability to allow wheelchair users to try clothes virtually while they are in a seated position (i.e., on the wheelchair)
- (2) Ability to realize automated and accurate fitting simulation using examples
- (3) Ability to realize three-dimensional physical measurement function using a common mobile device
- (4) Ability to verify fitting results by three-dimensional visualization using a common mobile device
- (5) Ability to develop a form database by collecting the results of threedimensional measurements on a server
- (6) Ability to provide reliable data required in the garment manufacturing industry (CAD), and support CAD data format.

System Configuration

Device (Tango)

- Google's AR(Augmented Reality) Platform
- Enables camera tracking and 3D reconstruction by a depth camera
- Can be utilized as a mobile body scanner

Lenovo's phablet Phab 2 pro

Step A

Mobile body measurement without contact

Step B

Correspondence between a standard model and the measured model

- Scanned geometry is converted to a homology model
 - Matching correspondence between a homology model and scanned geometry.
 - Fitting simulation engine assumes that a homology model is used as a target body
 - Scanned geometries are noisy
- AIST's Dhaiba model is used as a homology model

Matching joint angles of bodies with images

- User can changing joint angles while checking appearance from various viewing angles (semi-automated process)
 - ⇒ Supposed to be fully-automated in the future

Body shape fitting by blend shape deformation

- Deforming Dhaiba model by changing blend weights between body with various heights and weights
- Checking the similarity of shape by calculating distance between the closest pair of points on the surfaces

Step C1

Fitting to Standard Model (Preliminarily Operation)

- Adopts Dressing Sim Body (DSBody)
 - Fitting simulation engine developed by Digital Fashion Ltd.
- Simulation results for the human model can be propagated to another human model with homology

Step C1

Step C2

Automatic propagation

Fitting for standing standard model (Semi-automatic process with GUI)

Fitting for sitting model with different pose and shape (Automatic)

Detailed operation of fitting for standard model

Step C2

Interface for selecting garments

- User can select the garments to be fitted on their body from choices with thumbnails
- Can be connected to web-site of manufacturers
- User can trigger starting simulation after garment selection

Step D

Visulization of the virtual fitting results

- Fitting results are displayed on the client smartphone
 - Full-CG visualization: Fitting simulation result on to deformed Dhaiba model
 - AR visualization: Simulation results are superimposed onto real images captured during body scanning

Full-CG visualization

AR visualization

Various Fitting Results

Remarkable Result 1

Results of simulation using specially designed pattern for sitting position

Results with normal pattern

Results with dedicated pattern for sitting position

Remarkable Result 2

Comparison between with or without collision detection

Menu digital fa

(a) Fitting without collision simulation with the seat

(b) Fitting with collision simulation with the seat

Numerical Evaluation

- Comparison between estimated lengths (yellow lines) and actually measured lengths of the chest girth, waist, thigh length
- Will gather more data of body after releasing the app.
 - Plan for holding the experiment for collecting the body data has been approved from AIST.

	Correct	Estimated
Chest girth	97 cm	98.8 cm
Waist	90 cm	86.3 cm
Thigh length	56 cm	53.3 cm

Conclusion & Future Works

- Proposed virtual fitting app for wheelchair users
 - The user can check fitting result they remain sitting on the wheelchair
 - The app can collect the body shape data, which are required for designing the garments for them.

Future works

- Releasing app.
- Statistical analysis of the body data collected by the released app
- Automation of the body pose and shape matching procedures (AI might be utilized for this)

Questions?

Contact:

Ryosuke Ichikari, Ph.D.

r.ichikari@aist.go.jp

 This presentation is on Journal Track, you can download the draft paper from the CSUN web-site.