Homework 1

Math 126

Due September 17, 2021 by 5pm

Name:

Topics covered: complex numbers, arithmetic

Instructions:

- This assignment must be typed in LaTeX and submitted on Gradescope by the due date. The Gradescope entry code is V8XWRG
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts that you use that were not proved in class.

Problem 1. (a) Show that for $n \ge 1$ and $z \ne 1$,

$$1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}.$$

(b) Fix $a \in \mathbb{C}$. Prove¹ that

$$\left| \frac{z - a}{1 - \bar{a}z} \right| = 1$$

when |z| = 1.

 \Box

Problem 2. A quaternion is a 4-tuple of real numbers (a, b, c, d), typically written (in analogy with \mathbb{C}) as a+bi+cj+dk. Quaternions are added in the way you would guess; multiplication is defined using the relations $i^2=j^2=k^2=-1$ and ij=k=-ji.

- (a) Prove that every nonzero quaternion has a multiplicative inverse.²
- (b) Quaternion multiplication is not commutative. Determine all the quaternions that commute with i.

 \square

Problem 3. Show that if n, m are integers that can be expressed as a sum of four square integers, then the product nm is also a sum of four squares. Is the same statement true if "four" is replaced by "three"?

 \Box

Problem 4. Writing z = x + iy, sketch³ the image of the following curves under the map $f(z) = z^2$.

- (a) |z-1|=1
- (b) x = 1
- (c) y = x + 1
- (d) y = 1/x

Solution. \Box

Problem 5. Let p(z) be a polynomial, i.e. $p(z) = a_n z^n + \cdots + a_1 z + a_0$ where $a_i \in \mathbb{C}$. Assume $n \geq 1$.

(a) Prove that if p(a) = 0 (we say a is a root of p), then there exists a polynomial q(z) so that p(z) = (z - a)q(z).

¹This computation can be painless. It will come up later in the course.

²Hint: follow as closely as possible the proof from class in the complex case.

³One motivation for this problem is for you to learn how to put pictures in your homework. Ask me if you have questions about how to do this.

⁴Hint: one way to do this uses the factoring $z^n - a^n = (z - a)(z^{n-1} + az^{n-2} + \dots + a^{n-2}z + a^{n-1}).$

- (b) Prove that given any a (not necessarily a root), there exists a polynomial q so that p(z) = p(a) + (z a)q(z).
- (c) Find q(z) when $p(z) = 1 + z + z^2 + \cdots + z^n$, and a = -1.

 \Box

Problem 6. Consider the complex exponential as a function $\exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$. Is exp injective? surjective? Repeat for the real exponential function $\exp: \mathbb{R} \to \mathbb{R} \setminus \{0\}$? ⁵

 \Box

⁵We will define the exponential map as a power series by Lecture 2 (at the latest). Usually I try to make the homework that's due a given week only based on lectures from the previous week(s), but that is difficult for the first assignment.