Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**
- 9. Be **inclusive** and **accepting**

Learning Objectives

- 1. Describe the main challenges with sequence inputs
- 2. Explain the basic concepts of a recurrent neural network
- Define the limitations of RNNs
- 4. Describe embedding and its biases
- 5. Apply keras to implement a simple RNN module
- 6. Tune the model based on knowledge of the concepts

1. Simple input

```
protein_1 25 kDa pl=7.5 310 residues ... 2.5 hr half-life Stability<sub>1</sub> protein_2 10 kDa pl=4 50 residues ... 10 hr half-life Stability<sub>2</sub> protein_3 100 kDa pl=8 1200 residues ... 2 hr half-life Stability<sub>3</sub>
```

. . .

1. Simple input

SVM, Random Forest, dense neural net

2. 2D image

CNN

- 1. Simple input SVM, Random Forest, dense neural net
- 2. 2D image CNN
- 3. String of amino acids

```
ho_1 MGLTDILGFNREFDILAV...SPLFG s_1 
ho_2 MLKPTRVNMSERCGHITDENVCSR...TLVRF s_2 
ho_3 MIKRTVIHGRDFRWNYTSPL...GMNSWQ s_3 ...
```

Features: charge, pKa, size, functional groups, hydrogen bond status, ...

- 1. Simple input SVM, Random Forest, dense neural net
- 2. 2D image CNN
- 3. String of amino acids Natural language processing

```
ho_1 MGLTDILGFNREFDILAV...SPLFG s_1 MLKPTRVNMSERCGHITDENVCSR...TLVRF s_2 MIKRTVIHGRDFRWNYTSPL...GMNSWQ s_3 ...
```

Features: charge, pKa, size, functional groups, hydrogen bond status, ...

Natural language processing, a big area in computer science

Understanding human language (spoken or written)

Natural language processing, a big area in computer science

Understanding human language (spoken or written)

- Speech recognition
 - ASR, speech to text
- Natural language understanding
 - Voice activation, commands to robots, text categorization
- Natural language generation
 - Generating forecasts, automated response

Computers don't understand words

Apple
Orange
Cow
Building
Scientist

One way to help computers understand words is by one-hot encoding

Apple	1000000
Orange	0100000
Cow	0010000
Building	0001000
Scientist	0000100

One-hot encoding doesn't retain the relationship between words

Apple	1000000
Orange	0100000
Cow	0010000
Building	0001000
Scientist	0000100

| Apple - Orange | = | Apple - Building |

One-hot encoding is not feasible for the many many words we have

Apple	1000000
Orange	0100000
Cow	0010000
Building	0001000
Scientist	0000100

The solution is word embedding

Apple	1000000
Orange	0100000
Cow	0010000
Building	0001000
Scientist	0000100

Apple Orange

Building

Scientist

Cow

One way to get the embedding is by training on the fly

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 8 & 2 & 1 & 9 \\ 6 & 5 & 4 & 0 \\ 7 & 1 & 6 & 2 \\ \hline 1 & 3 & 5 & 8 \\ \hline 0 & 4 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 & 8 \end{bmatrix}$$
Hidden layer output

Embedding Weight Matrix

You can also use a pre-trained embedding matrix – often a better solution

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 8 & 2 & 1 & 9 \\ 6 & 5 & 4 & 0 \\ 7 & 1 & 6 & 2 \\ \hline 1 & 3 & 5 & 8 \\ \hline 0 & 4 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 & 8 \end{bmatrix}$$
 Hidden layer output

Embedding Weight Matrix

Word2vec and GloVe are two best known methods for creating word embedding

Training on existing corpus of text carries over the biases we have

The weather is great.

Language as input to ANNs

The weather is great.

The weather is great.

The weather is finally sunny!

Recurrent neural nets (RNNs) were developed to address these limitations with ANNs

In ANNs each input is independent from the others

In RNNs, the output of the previous step is fed to the next step

This allows the network to keep a memory of the previous steps

This allows the network to keep a memory of the previous steps

This allows the network to keep a memory of the previous steps

What if the sentences have different sizes?

If each layer has different weights ...

If each layer has different weights, we couldn't change the size

Parameter sharing in RNNs allow for adopting different lengths

Parameter sharing in RNNs allow for adopting different lengths

Parameter sharing in RNNs allow for adopting different lengths

Types of RNN – many-to-many

- Machine translation
- Time series prediction
- Sentence completion

- ..

Types of RNN – many-to-many

- Forecast prediction

Types of RNN – One-to-many

- Music generation
- Text generation

Types of RNN – One-to-many

- Music generation
- Text generation

Types of RNN – One-to-many

- Music generation
- Text generation

Types of RNN – many-to-one

- Sentiment detection

Architectures of RNN – Deep RNNs

Architectures of RNN - bidirectional

RNN and vanishing/exploding gradients

RNN and vanishing/exploding gradients

RNN and vanishing/exploding gradients

Solutions to vanishing/exploding gradients

1. Initializing with identity matrix and ReLU (identity RNN)

```
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
```


Solutions to vanishing/exploding gradients

- 1. Initializing with identity matrix and ReLU (identity RNN)
- 2. Gradient clipping

```
if gradient > 25:
gradient = 25
```


Solutions to vanishing/exploding gradients

- 1. Initializing with identity matrix and ReLU (identity RNN)
- 2. Gradient clipping
- 3. Skip connections

The sky is ____

The sky is ____

The sky is <u>blue</u>

The sky is <u>blue</u>

I live in France. I love this city. I speak ____

The sky is <u>blue</u>

I live in France. I love this city. I speak ____

The sky is <u>blue</u>

I live in France. I love this city. I speak French

Due to limitations of the architecture, remembering context from past is challenging

The sky is blue

I live in France. I love this city. I speak French

Next lecture: LSTMs and GRUs

