RUNS Test

- 1) Ho: Ri ~ independence Hi: Ri ~ "
- 2) write sequence of runs above 2 below mean
- 3) count the number of observation above the mean Cns) and the no of observation below the mean Cns)

age where with every a site of

max no, of possible runs (N) = n1+n2
mon no. of possible runs = one

Total no. of runs (b)

4) calculate mean q variance of b

$$\mu b = \frac{2nt+n2}{N} + \frac{1}{2}$$

$$\frac{6^2}{b} = \frac{2n_1n_2(2n_1n_2 - N)}{N^2(N-2)}$$
 thun mor $n_2 > 20$

the distribution of b will be approximated by a N.D.

- 5) Standard normal statistics $z_0 = b \mu b$ ob
- 6) $-Z\alpha/2 \leq Z0 \leq Z\alpha/2 = 10$ accepted. $\alpha = \text{level of Significance.}$

CHI SQUARE TEST

N (range)	Oi	Ei=N	oi=Bi	(Oi-Fi)	(0i-Ei) ² Ei
0.01 - 0.10	2	3	7	1	43
1	3	उ	0	0	0
		3	1	1	1/3
0.31-0.40	4	3	1	1.	43
0.41-0.50	3	3	0	0	0
	0.01 - 0.10 0.11 - 0.20 0.21 - 0.30 0.31 - 0.40	0.11-0.20 3 0.21-0.30 4 0.31-0.40 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

N= no. of random nos (interval)

n = dass

- 1) Arrange the sequence in ascending order.
- 2) Calculate:

$$D^{+} = \max_{1 \leq i \leq N} \frac{i}{N} - Ri$$

$$D = \max_{1 \leq i \leq N} \left\{ Ri - \left(i - \frac{1}{N} \right) \right\}$$

level of significance, & will be mentioned.

N = total number of random nos.

i	1	2	3	4	5	
Ri			710			+

- substitute values.

3) calculate:

b ⁺]		77	lucan	calculating
0-		79	upon	aquataring

4) D<Da => Ho accepted

AUTOCORRELATION TEST

M₂ largest integer such that it CM+1) m ≤ N

Ho: Pim = 0, if nos are independent

HI: Sim to if nos are dependent

$$\hat{\beta}_{im} = \frac{1}{M+1} \left[\sum_{k=0}^{\infty} Ri + km Ri + (k+1)m \right] \text{ or } \left[\sum_{k=0}^{\infty} Ri + km \cdot Ri + (k+1)m \right] - 0.25$$

$$\hat{\sigma}_{g} = \sqrt{\frac{18M+7}{12(M+1)}} ; \quad Z_{0} = \frac{\hat{\beta}_{im}}{\hat{\sigma}_{s}^{2}} \quad Z_{0} < z_{init}$$
then accept

Ho