"Innovation am Automobil" Ringvorlesung Wintersemester 2002 / 2003

22. Oktober 2002

"Innovation am Automobil" Prof. Dr.-Ing. habil. Joachim Warschat Fraunhofer-Institut für Arbeitswirtschaft und Organisation, Stuttgart

29. Oktober 2002

"Sound Engineering" Dr. Hinne Bloemhof Rieter Automotive Management AG, Winterthur, Schweiz

05. November 2002

Virtual Reality am Beispiel des Fahrzeuginnenraums" Prof. Dr.-Ing. Dieter Spath Institut für Arbeitswissenschaft und Technologiemanagement, Universität Stuttgart; Fraunhofer-Institut für Arbeitswirtschaft und Organisation, Stuttgart

"Unterstützung innovativer Lösungen mittels

Hörsaal V9.01, Pfaffenwaldring 9 70569 Stuttgart-Vaihingen

15:45-17:15 Uhr, Teilnahme kostenfrei

12. November 2002

"Telematik, Infotainment, Multimedia – Probleme, Lösungen und Perspektiven Auto)mobiler Elektronik" Dr.-Ing. Peter Rößger CAA AG, Filderstadt

19. Noember 2002

"Verkürzte Fahrzeugentwicklungszeiten – Veränderungstreiber durch Technologie und Prozesse" Dr.-Ing. Martin Hillebrecht EDAG Engineering + Design AG, Fulda

26. November 2002

"Engineering in der Formel 1" Herr Fabian Rau Cenit AG, Stuttgart

10. Dezember 2002

"PEM – Brennstoffzellen-Systeme für den mobilen Einsatz"

Dr. Arnold Lamm DaimlerChrysler AG, Ulm

Sfb 374

Univ.-Prof. Dr.-Ing. Dieter Spath

Unterstützung innovativer Lösungen mittels Virtual Reality am Beispiel des Fahrzeuginnenraums

Gliederung

- (1) Anforderungen aus dem Entwicklungsprozess
- (2) Unterstützende Methoden
- (3) Immersive Umgebungen
- (4) Fahrsimulator
- (5) Szenario Luftdüse
- (6) Zusammenfassung

Anforderungen

Innovative Lösungen durch multidisziplinäre Entwicklungen

- Sicherheitstechnik
- Design und Funktionalität
- Nachhaltigkeit der eingesetzten Materialen
- Akzeptanz der Innovation -Kundenorientierung
- Betriebswirtschaftliche Evaluierung

Kooperationsmodell

Wissensintegration

ermöglicht die partielle Integration des Wissens aller Beteiligten

Koordination

- managt die Abhängigkeiten zwischen den Beteiligten
- integriert und harmonisiert individuelle Arbeitsbeiträge im Sinne des übergeordneten Ziels

Kommunikation

 ermöglicht den Beteiligten Daten, Information und Wissen auszutauschen

Neuer Entwicklungsansatz...

...von der <u>prozess-</u> zur <u>rollen</u>zentrierten Sicht...

- wenig vordefinierte Detail-Prozesse
- Rollen können Prozesse beeinflussen / verändern
- zielorientierte Unterstützung von ad-hoc Prozessen
- Prozess entsteht aus der Kooperation der Rollen
- wesentliche Forderung an menschliche Kooperation: Kommunikation

Anforderungen an die Kommunikation

- Datenmengen sind nur für den Fachexperten überschaubar, daher müssen die Repräsentationen im geeigneten Detaillierungsgrad (Abstraktion) darstellbar sein, um Entscheidungen treffen zu können
- Ausschließliche Nutzung von Informations- und Kommunikationstechnologien führen zu einem Informationsüberfluss und verursachen hierdurch Stress (Trennung wichtiger von unwichtiger Information)
- Integration unterschiedlicher Experten mittels VR-Technologie ermöglicht ein Arbeiten am direkten (wenn auch virtuellen)
 Objekt synchrone Kommunikation

Wissensbasierte Kommunikation

Grundlagen einer wissensbasierten Kommunikation?

- Wissensrepräsentation in vernetzten Strukturen mittels technischer Kommunikation
- Implizites Wissen der Experten wird durch die Visualisierung frühzeitig offengelegt
- Belegung von Information mit Semantik schützt vor Informationsflut

Arbeiten in verteilten und multidisziplinären Teams erfordert neue Lösungen

Schichtenmodell

Interaktionsmodell der Applikationen

Semantische Netze

- Verknüpfung projektspezifischen Wissens
- technische Abhängigkeiten
- organisatorische Verpflichtungen
- Online-Beurteilung von Lösungsalternativen
- Bewertungen zu jeder Entwicklungsphase

Erfahrungswissen

Nutzbarmachung von Erfahrungswissen in den Entwicklungsphasen

Visualisierung der Information und Kontakt zu Wissensträgern bzgl. einer Aufgabe

Implizites Wissensbedürfnis

- Erfahrungswissen
- Heuristisches Wissen
- Prozedurales Wissen
- **>** ...

Aufgabe/

Tätigkeit

Explizites Wissensbedürfnis

- Deklaratives Wissen
- Fall-basiertes Wissen
- Faktenwissen
- **>** ...
- Aufgabenorientierter Zugriff auf Information
- Verlinkung zu Experten der Aufgabenbereiche

Hybrides Prototyping

- Nutzung der Verknüpfung real / virtuell
- Möglichkeit zur flexiblen Darstellung neuer Komponenten
- Haptischer Einfluss durch den realen Prototyp und visueller Eindruck durch virtuelle Darstellung
- Beispiel:Fahrsimulator in der immersivenUmgebung

Immersive Umgebungen

- Stereoskopische 3D-Visualisierung in Echtzeit
- Tracking der Benutzerperspektive
- Räumliche Interaktion in bis zu 6 Freiheitsgraden
- Visualisierung und Interaktion im Maßstab 1:1

Immersive Umgebungen

Darstellung auf 6 Wänden schafft einen hohen Immersionsgrad

 Flexible Projektionstechnik ermöglicht eine aktiv-(Polarisationsbrille) oder passivstereoskopische (Shutterbrille) Darstellung

Variable Rechnerhardware stellt die Basis für Low-Cost Systeme (Skalierbarkeit: PowerWall bis 6-Wand)

Immersive Umgebungen

Anforderungen an die Arbeit in virtuellen Umgebungen

- Gestaltung und Evaluierung in virtuellen Arbeitsumgebungen
- Wahrnehmung in immersiven, virtuellen Umgebungen
- Benutzungsschnittstellen zur Gestaltung und Evaluierung komplexer Geometrien
- Arbeitsplatzspezifische Anforderungen
- Modellieren evolutionärer Strategien
- Integrative Bearbeitung relationaler Aufgabenstellungen

VR in der Produktgestaltung

- Design Review
- Konzeptionelles Modellieren
- CAD Datenevaluation
- Ergonomieanalyse

- Flexible Visualisierung (z.B.: Farben, Umgebungen, Lichtverhältnisse)
- Laden, Aktivieren und Deaktivieren von 3D- Modellen und Umgebungen
- Variantenvergleich ist einfach und effizient

Arbeiten im VR

- Translation und Rotation von Sub-Gruppen
- Flexible Steuerung der Schnittebene
- Setzen und Löschen von Markern
- Virtueller Zeiger und Bemaßung
- Frei positionierbare virtuelle Lichtquelle
- Abspielen von 3D-Animationen
- Dokumentation der Veränderungen

Ergonomie im VR

- Ergonomiesimulation in Echtzeit
- Anthropometrisches parametrierbares Menschmodell
- Intuitive, direkte Interaktion
- Ausgabe von Dyskomfortfaktoren (Belastung) aller Gelenke
- Lebensgrosse Darstellung in beliebigem Produktumfeld

Datenfluss im VR

- Design-Anwendung
- CAD-System
- Semantisches Datennetz
- Generisch erzeugte Geometrie
- Geometrie aus 3D Scanner

- VR- Session Management (kooperative VR-Sitzungen)
- Externe Wissensbasen (EDM, ERP, PDM)
- Kommunikation
- Dokumentation und Annotation

- RP-Systeme, 3D-Plotter
- Design-Anwendungen

Interaktion im VR

Verbale Interaktion

- Einsatz von 3D Markern
- > Texteingabe am Laptop
- Räumliches Skizzieren

Fahrsimulatoren am Fraunhofer IAO

Immersiver Fahrsimulator

Kompakt-Fahrsimulator

Immersiver Fahrsimulator - Einsatzgebiete

- Konzeptstudien für Fahrerassistenz- und Informationssysteme mit Immersionsanforderungen
- Evaluierung von virtuellen Prototypen in F&E
- Usability Testing von integrierten Systemen im Fahrkontext
- Akzeptanzuntersuchungen
- Erlernbarkeit von Interaktion mit komplexen Systemen
- Fahrverhaltens- und Sicherheitsforschung
- Forschung zum Fahrtraining

Immersiver Fahrsimulator - Übersicht

Immersiver Fahrsimulator – das Fahrzeug

- Reales Fahrzeug
- Adaptierter Renault Scenic

Fahrsimulator - Sichtsystem - Layout

Frontalsicht:

- 3 planare Leinwände
- Rückprojektion

Fahrsimulator - Sichtsystem - Animation

- Frontalsicht:3 LCD-ProjektorenBarco 6300
- Spiegelsicht:3 LCD-ProjektorenNEC

Fahrsimulator - Bewegungssystem

Chassis-Vibrator am Unterboden

> Sitz mit Vertikal-Schwingungserreger

Aktuatoren in Radaufhängungen

Fahrsimulator - Aktuatoren

- 4 Aktuatoren wirken auf Radaufhängungen
- Roll- und Nickbewegungen
- Maximalamplitude vertikal ca. 10 cm
- Sicherheitstechnisch unkritischer Bewegungsbereich

Fahrsimulator - Innen

Rekonfiguierbares Kombiinstrument

Touchscreen Mittelkonsole

Aktives Lenkrad

Stellgeräte-Toolbox

Standardbedienelemente Pkw

Aktives Gaspedal

Kompakt - Fahrsimulator - Einsatzgebiete

- Konzeptstudien
- Iterative Produktentwicklung
- Virtual Prototyping und Testing
- Usability Testing im Fahrkontext
- Erlernbarkeitsuntersuchungen
- Analysen der Benutzerakzeptanz
- Verhaltensstudien in kritischen Verkehrssituationen
- Forschung zum Fahrtraining

Kompakt – Fahrsimulator - Übersicht

Szenario

Entwicklung einer Luftdüse - Anforderungen

- Auslegung hinsichtlich des Design
- Evaluation der Daten
- Visualisierung des Design
- Visualisierung der Luftströmung
- Generierung physischer (Funktions-) Prototypen
- Optimierung hinsichtlich Design, physikalischen Verhältnissen, Kosten und Funktion

Szenario

Herausforderungen des Szenarios:

- Frühe Interpretation relevanter Parameter
- Definition von semantischen Zusammenhängen für das (lernende) semantische Netz
- Evaluierung von Projekt- und Prozesseinflussgrößen
- Beurteilung der qualitativen und quantitativen Parameter bei der Nutzung der hybriden Vorgehensweise

Zusammenfassung

- Die Simulation und Visualisierung in VR-Systemen ermöglicht eine frühzeitige Beurteilung von Lösungsalternativen
- Die Visualisierung schafft eine einfachere Integration unterschiedlichster Experten
- Die integrative Betrachtung bietet ein hohes Einsparungspotenzial an Kosten und Zeit, sofern angrenzende Applikationen integriert werden
- Ausblick: die Integration von VR in die Produktentwicklung hängt stark von der Effizienz (Aufwand zu Kosten) und der Bedienbarkeit (Nutzung durch alle Mitarbeiter) des Systems ab

Univ.-Prof. Dr.-Ing. Dieter Spath

Unterstützung innovativer Lösungen mittels Virtual Reality am Beispiel des Fahrzeuginnenraums