LSML #4

Градиентный бустинг

А как же Bagging и Random Forest?

- Bagging учим каждое дерево на bootstrap выборке
- **RF** bootstrap + семплирование признаков при каждом разбиении
- Легко параллелятся по деревьям
- Локальные для машины данные могут заменять bootstrap

Gradient Boosting

- Бустинг итерационный надо параллелить создание дерева
- Для каждой вершины перебираются все признаки и пороги
 - Вещественные признаки дискретизируем по корзинкам (binning)
 - Порогами будут являться границы корзинок

Feature Binning

• На примере задачи **регрессии**, разбили признак на k корзинок

• Первый шаг: собираем статистики

$$N_i = \sum 1$$
 $Y_i = \sum y$ $N = \sum N_i$ $Y = \sum Y_i$

• Второй шаг: считаем пользу сплита по правой границе корзинки B_i

$$-rac{Y_{0:i}^2}{N_{0:i}} - rac{(Y-Y_{0:i})^2}{N-N_{0:i}}$$
 0: i – нотация суммирования

Feature Binning

Второй шаг: выбираем сплит

Feature Binning

- Один проход по данным для каждого уровня дерева
- Проход по данным можно распределять по объектам или признакам

Распределяем объекты

- Мастер
 - Посылает воркерам текущую модель
 - Агрегирует локальные гистограммы (Features-Bins) воркеров и выбирает лучший сплит
- Воркеры
 - Делают проход по своим данным и заполняют локальные гистограммы

Распределяем признаки

- Мастер
 - Получает лучшие сплиты по признакам от воркеров и выбирает лучший среди них
 - Просит лучших разослать всем остальным информацию про новый выбранный сплит
- Воркеры
 - Всех признаков нет, помнят в какой лист попадает каждый объект и какие там предсказания
 - Делают проход по своим признакам и выбирают лучший сплит

Пример реализации: PLANET (2011)

- MapReduce, RPC
- Разбиение по объектам
- Binning во время инициализации
 - За один проход оценивают квантили

Пример реализации: PLANET (2011)

- Бинарная классификация
- Признаки:
 - 4 вещественных
 - 6 категориальных, $|C| \in [2-500]$
- 314 млн объектов
- Деревья глубины 3

Пример реализации: Yahoo! GBDT (2009)

- Hadoop, MPI
- Разбиение по объектам или признакам
- Результаты:
 - MapReduce Horizontal: 211 minutes x 2500 trees = 366 days (100 machines)
 - MapReduce Vertical: 28 seconds x 2500 trees = 19.4 hours (20 machines)
 - MPI: 5 seconds x 2500 trees = 3.4 hours (10 machines)

Пример реализации: LightGBM

Пример реализации: Матрикснет

- Разбиение по документам
- Ускорение обучения (CPU, GPU)
- Новые регуляризации и функции ошибок
- Хорошие модели без подбора параметров

Пример реализации: Матрикснет

	Matrixnet	Azure Boosted DT	XGBoost	LightGBM
Pol	0,994	0,922 \ 0,14%	0,991 \$ 0,23%	0,991 \ \ 0,23%
2dplanes	0,9476	0,9474 \$0,02%	0,9474 ₹ 0,02%	0,9474 + 0,01%
Elevator	0,915	0,909 \ 0,67%	0,9 \ 1,54%	0,908 \ \ 0,74%
Ailerons	0,86	0,856 \$0,45%	0,837 \$\ 2,67%	0,856 \$0,55%
Fried	0,957	0,955 ♦0,22%	0,954 \$ 0,32%	0,955 ↓0,17%
House	0,677	0,68 † 0,51%	0,658 \$ 2,72%	0,661 \ 2,23%

Сравнение на открытых наборах данных с сайта www.openml.org Метрика – R2-коэффициент детерминации

Oblivious trees в Матрикснет

Oblivious trees в Матрикснет

Дерево решений

Oblivious дерево

Ссылки

- Как устроен xgboost http://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
- xgboost: https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
- LightGBM и обучение на GPU https://github.com/Microsoft/LightGBM/blob/master/docs/GPU-Performance.md