Probabilités Appliquées : simulation de serveur

William Schmitt
6 juin 2018

Introduction

Le projet a été réalisé avec R. Plusieurs choix importants ont été effectué :

- Quel que soit l'état de la file, on traite toujours une requête prioritaire avant les autres, même si elle vient d'arriver.
- Une requête arrivant vers le(s) serveur(s) est rejetée dès lors que la limite de capacité est atteinte. Cela implique qu'on ne cherche pas à supprimer une requête de priorité faible pour faire de la place à une requête prioritaire arrivant sur le(s) serveur(s).

Représentation graphique

La simulation a tourné pour les valeurs suivantes :

- $\lambda = 2$
- $\mu = 1,9$
- duration = 100, de façon à permettre plus de lisibilité
- 1 serveur
- Capacité de chaque serveur : 10
- Probabilité pour chaque priorité (des plus prioritaires aux moins prioritaires) : 0.3 0.4 0.4

Cette représentation graphique permet de constater que les requêtes prioritaires sont traitées avant les requêtes moins prioritaires, le service fonctionne correctement, cela se vérifie par les statistiques données en fin de traitement (si stats = TRUE) :

- [1] "Moyenne des priorités hautes 0.391194968553459"
- [1] "Moyenne des priorités moyennes 0.725786163522013"
- [1] "Moyenne des priorités basses 4.99496855345912"

Choix techniques

Gestion des statistiques

Les tableaux permettant de générer les graphiques et les moyennes sont alloués statiquement en début de traitement grâce aux paramètres lambda, mu et duration. La concaténation de tableaux dans R est en effet peu performante, puisque concaténer une valeur à un tableau implique que le moteur recopie l'intégralité du tableau avant d'ajouter la nouvelle valeur. Pour des traitements longs, comme possible dans cette simulation, les chutes de performances sont énormes.

Nombre de serveurs et capacité

Les valeurs serverCount et serverCapacity sont combinés en un seul indicateur, dans la fonction effectiveCapacity. Cela revient à dire que les deux situations suivantes sont équivalentes :

Valeurs	Deux serveurs, capacité k	Un serveur, capacité 2k
Capacité	k	2K
Nombre de serveurs Capacité effective	2 2*k = 2k	$ 1 \\ 1*2k = 2k $