МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБО6РОСТРОЕНИЯ»

	K	АФЕДРА № 43	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКО	ОЙ		
ПРЕПОДАВАТЕЛЬ			
Старший преподав должность, уч. степень,		подпись, дата	С.А. Рогачев инициалы, фамилия
ОТЧЕТ О ЛАБОРАТО	ОРНОЙ РАБОТЕ 1	№2	
	Mar	шина Тьюринга	
	по курсу: Теори	я Вычислительных Прог	цессов
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. № _	4134к		Столяров Н.С.
		подпись, дата	инициалы, фамилия

Цель работы: Необходимо написать программу для машины Тьюринга, реализующую вычисление арифметической функции согласно выданному варианту задания. Должна быть составлена совокупность команд Р. Для выполнения данного задания следует использовать приложение Algo2000.

Основные сведения из теории

Машина Тью́ринга (сокр. МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для определения понятия алгоритма.

Машина Тьюринга является расширением конечного автомата и, согласно тезису Чёрча — Тьюринга, способна имитировать всех исполнителей (с помощью задания правил перехода), каким-либо образом реализующих процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен.

Постановка задачи

Задача по варианту: Реализовать деление на 10 (х /10)

Совокупность команд для машины Тьюринга

```
q0 1 q1 >
q0 - q3 - >
q0 q3 >
q1 1 q1 1 >
q1 = q1 = >
q1 + q1 + >
q1 - q1 - >
q1 q21 <
q2 1 q2 1 <
q2 = q2 = <
q2 + q2 + <
q2 - q2 - <
q2 _q0 _>
q3\ 1\ q4\ \#>
q3 + q7 + >
q3 - q3 - >
q4 1 q4 1 >
q4 = q4 = >
q4 + q4 + >
q4 q5 <
q5 1 q6 <
q5 q00 <
q6 1 q6 1 <
q6 = q6 = <
q6 + q6 + <
q6 # q3 # >
```

```
q7 1 q7 # >
q7 = q8 = >
q8 1 q8 1 >
q8 _ q5 1 >
```

Листинг программы на языке высокого уровня с комментариями

```
class TuringMachine:
  def __init__(self, tape, transitions, alphabet):
    # Заполнение ленты до 100 символов
    self.tape = list(tape) + ['_'] * (100 - len(tape))
    self.tape = self.tape[:100]
    self.head = 0
    self.state = 'q0' # Начальное состояние
    self.transitions = transitions
    self.alphabet = alphabet
    self.steps = 0
  def step(self):
    current_symbol = self.tape[self.head]
    command = self.transitions.get((self.state, current_symbol))
    if (current symbol == " "):
       print(self.steps, current_symbol, command)
    if command is None:
       raise Exception(f"Heт перехода для состояния {self.state} и символа {current_symbol}")
    new_state, new_symbol, direction = command
    self.tape[self.head] = new symbol
    self.state = new_state
    if new_state == 'q00':
       raise Exception(f"Завершение программы")
    if direction == '>':
       self.head += 1
    elif direction == '<':
       self.head -= 1
    self.steps += 1
    # Проверка выхода за границы ленты
    if self.head < 0 or self.head >= len(self.tape):
       raise Exception("Головка вышла за границы ленты")
  def run(self, output_file):
    with open(output_file, 'w', encoding='utf-8') as f:
       while True:
         # Запись состояния перед выполнением команды
```

```
f.write(".join(self.tape) + '\n')
          f.write(' ' * self.head + '^' + '\n')
          f.write(f"{self.state} -> {self.transitions.get((self.state, self.tape[self.head]), 'Her
команды')} \n")
          try:
            self.step()
          except Exception as e:
            f.write(f''\{e\}\n'')
             break
def read_file(filename):
  with open(filename, 'r') as f:
     return f.read().strip()
def read_transitions(filename):
  transitions = {}
  with open(filename, 'r') as f:
     for line in f:
       state, symbol, new_state, new_symbol, direction = line.strip().split()
       transitions[(state, symbol)] = (new_state, new_symbol, direction)
  return transitions
def main():
  tape = read_file('tape.txt')
  alphabet = read file('alphabet.txt').split()
  transitions = read_transitions('transitions.txt')
  # Проверка алфавита
  for symbol in tape:
     if symbol not in alphabet:
       raise Exception(f"Символ '{symbol}' не в алфавите")
  tm = TuringMachine(tape, transitions, alphabet)
  tm.run('output.txt')
if __name__ == "__main__":
  main()
```

Пример результата выполнения

```
q6 -> ('q6', '+', '<')
q6 -> ('q3', '#', '>')
q3 -> ('q7', '+', '>')
q7 -> ('q7', '#', '>')
q7 -> ('q8', '=', '>')
q8 -> ('q8', '1', '>')
q8 -> ('q8', '1', '>')
q8 -> ('q5', '1', '>')
____-
####+#=111_____
q5 -> ('q00', '_', '<')
Завершение программы
```

Вывод

Реализована программа для выполнения задания на Машине Тьюринга на Python3