Оглавление

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I семестр

ТИПОВОЙ РАСЧЕТ

РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ

Задача 1

Решение задачи основано на непосредственном использовании определения предела последовательности:

$$\lim_{n \to \infty} u_n = A \iff \forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n > N(\varepsilon) \implies |u_n - A| < \varepsilon.$$

Пример 1

С помощью определения предела последовательности показать, что последовательность $u_n = (2n-1)/(n+1)$ при $n \to \infty$ имеет своим пределом число 2. Найти целое значение N, начиная с которого $|u_n - A| < 10^{-2}$.

Решение

Рассмотрим неравенство

$$|u_n - 2| = \left| \frac{2n-1}{n+1} - 2 \right| = \left| \frac{-3}{n+1} \right| < \varepsilon, \quad n$$
 — натуральное,

откуда $n > \varepsilon/3 - 1$. Следовательно, $\forall \varepsilon > 0 \; \exists N(\varepsilon) = [3/\varepsilon - 1]$: $\forall n > N \Rightarrow |u_n - 2| < \varepsilon$, где квадратные скобки обозначают целую часть числа. Т.о., число 2 является пределом последовательности. Пусть теперь $\varepsilon = 10^{-2}$. Тогда N(1/100) = [3/0, 01 - 1] = [300 - 1] = 299.

Задача 2

При решении задач 2a и 2б рекомендуется пользоваться I и II замечательными пределами:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \qquad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e.$$

Пример 2

Найти предел $A = \lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}}$.

Решение

$$\lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}} = \lim_{x \to 0} (1 + (\cos 2x - 1))^{\frac{1}{x^2}} = \lim_{x \to 0} (1 - 2\sin^2 x)^{\frac{1}{x^2}} =$$

$$= \lim_{x \to 0} (1 - 2\sin^2 x)^{\frac{-1}{2\sin^2 x}} \cdot \frac{-2\sin^2 x}{x^2} = \lim_{x \to 0} \left[(1 - 2\sin^2 x)^{\frac{-1}{2\sin^2 x}} \right]^{\frac{-2\sin^2 x}{x^2}} = e^{-2}.$$

т.к. выражение в квадратной скобке стремится к числу e по I замечательному пределу, а выражение в показателе – к числу -2 по II замечательному пределу.

Задачи 3, 4

Эти задачи являются стандартными задачами дифференцирования. Для вычисления y'(x) необходимо знать:

- производные основных элементарных функций;
- правила дифференцирования суммы, разности, произведения и частного;
- правило дифференцирования сложной функции (правило "цепочки").

Пусть сложная функция y(x) задана цепочкой равенств:

$$y = f(u), \ u = g(t), \ t = p(x)$$
 или $y(x) = f(u(t(x)))$

(цепочка может быть произвольной длины). В этом случае

$$y'(x) = \frac{df}{du} \cdot \frac{du}{dt} \cdot \frac{dt}{dx}.$$
 (1)

Пример 3

Найти производную y'(x):

$$y = \sin\left(\ln\left(\sqrt{1+x^2} - x\right)\right).$$

Решение

Полагаем $t = \sqrt{1+x^2} - x$, $u = \ln t$, $y = \sin u$. Согласно формуле (1) имеем

$$y'(x) = \frac{dy}{du} \cdot \frac{du}{dt} \cdot \frac{dt}{dx} = \cos u \cdot \frac{1}{t} \cdot \left(\frac{x}{\sqrt{1+x^2}} - 1\right) =$$
$$= -\frac{1}{\sqrt{1+x^2}} \cdot \cos\left(\ln\left(\sqrt{1+x^2} - x\right)\right).$$

Можно не вводить промежуточные функции и сразу написать:

$$y' = \cos\left(\ln\left(\sqrt{1+x^2} - x\right)\right) \cdot \left(\ln\left(\sqrt{1+x^2} - x\right)\right)' =$$

продифференцировали синус, умножили на производную аргумента:

$$= \cos\left(\ln\left(\sqrt{1+x^2} - x\right)\right) \cdot \frac{1}{\sqrt{1+x^2} - x} \cdot \left(\sqrt{1+x^2} - x\right)' =$$

продифференцировали логарифм и умножили на производную аргумента. Нашли производную аргумента логарифма:

$$\cos\left(\ln\left(\sqrt{1+x^2}-x\right)\right) \cdot \frac{1}{\sqrt{1+x^2}-x} \cdot \left(\frac{x}{\sqrt{1+x^2}}-1\right) =$$
$$= -\frac{1}{\sqrt{1+x^2}} \cdot \cos\left(\ln\left(\sqrt{1+x^2}-x\right)\right).$$

Пример 4

Найти производную y'(x):

$$y(x) = \arcsin\left(\sqrt{1 - e^x}\right).$$

Решение

Имеем

$$y' = \frac{1}{\sqrt{1 - (1 - e^x)}} \cdot \left(\sqrt{1 - e^x}\right)' = \frac{1}{\sqrt{e^x}} \cdot \frac{1}{2\sqrt{1 - e^x}} \cdot (1 - e^x)' = -\frac{\sqrt{e^x}}{2\sqrt{1 - e^x}}.$$

Задача 5

Данная задача связана с вычислением логарифмической производной. Пусть задана функция y=f(x). Имеем:

$$\ln y = \ln f(x), \quad \frac{1}{y(x)} \cdot y'(x) = (\ln(f(x)))',$$

следовательно:

$$y'(x) = y(x) \cdot (\ln(f(x)))'. \tag{2}$$

Формула логарифмической производной упрощает нахождение производной, если функция $\ln(f(x))$ дифференцируется легче, чем исходная функция f(x) (f(x) содержит произведения, частное, степени и удобна для логарифмирования).

Пусть, например, функция задана в виде:

$$y = f(x) \equiv \frac{(f_1(x))^{a(x)} (f_2(x))^{b(x)}}{(f_3(x))^{c(x)}}.$$

В этом случае

$$\ln(f(x)) = a(x)\ln(f_1(x)) + b(x)\ln(f_2(x)) - c(x)\ln(f_3(x))$$

и, согласно формуле (2),

$$y' = y(x) \left[a(x) \ln (f_1(x)) + b(x) \ln (f_2(x)) - c(x) \ln (f_3(x)) \right]'.$$

Дифференцировать каждое слагаемое внутри скобок проще, чем дифференцировать исходную функцию.

Пример 5

Найти производную функции

$$y = \frac{(1+x^2)^{2x} \cdot \sin^2 x}{\sqrt{1+\ln x}}.$$

Решение

Имеем $\ln y = 2x \ln (1 + x^2) + \ln \sin^2 x - \frac{1}{2} \ln (1 + \ln x);$

$$\frac{y'}{y} = 2\ln(1+x^2) + \frac{4x^2}{1+x^2} + 2 \cdot \frac{\cos x}{\sin x} - \frac{1}{2(1+\ln x)} \cdot \frac{1}{x}.$$

Отсюда находится производная y'.

Задача 6

В этой задаче требуется найти производную функции, заданной параметрически. Пусть функция y(x) задана параметрически:

$$\begin{cases} x = x(t); \\ y = y(t). \end{cases}$$

Для ее производной справедлива следующая формула:

$$y_x' = \frac{y_t'}{x_t'}. (3)$$

Пример 6

Найти производную функции y(x), заданной параметрически:

$$\begin{cases} x = \sin^4 t; \\ y = \cos^4 t. \end{cases}$$

Решение

Имеем:

$$x'_t = 4\sin^3 t \cdot \cos t; \quad y'_t = -4\cos^3 t \cdot \sin t.$$

По формуле (3) находим:

$$y'_x = \frac{-4\cos^3 t \cdot \sin t}{4\sin^3 t \cdot \cos t} = -\operatorname{ctg}^2 t.$$

Задача 7

Найти производную функции, заданной неявно. Пусть уравнение

$$F(x,y) = 0$$

определяет неявным образом некоторую дифференцируемую функцию y(x). Для ее производной справедлива формула:

$$y'(x) = -\frac{F_x'(x,y)}{F_y'(x,y)}. (4)$$

Здесь F'_x и F'_y производные функции F(x,y) по переменной x и y соответственно (при дифференцировании по x переменная y считается постоянной и наоборот).

Пример 7

Найти производную y'(x) неявной функции y(x) определенной уравнением:

$$x^2y - \sin(x - y^3) - 5 = 0.$$

Решение

Имеем:

$$F(x,y) = x^{2}y - \sin(x - y^{3}) - 5;$$

$$F'_{x} = 2xy - \cos(x - y^{3}); \quad F'_{y} = x^{2} - \cos(x - y^{3}) \cdot (-3y^{2})$$

и по формуле (5) находим:

$$y' = -\frac{2xy - \cos(x - y^3)}{x^2 + 3y^2 \cos(x - y^3)}.$$

Производную y' можно найти, не прибегая к формуле (4).

Пример 8

Найти производную y' функции, заданной неявно уравнением:

$$x^2y^3 - xy + \sin y = 0.$$

Решение

Функция y(x) определяется исходным уравнением, поэтому, если подставить ее вместо y в левую часть равенства, получим тождество

$$x^{2}y^{3}(x) - xy(x) + \sin y(x) \equiv 0.$$
 (5)

Продифференцируем левую часть равенства (5) по правилу дифференцирования сложной функции:

$$2xy^{3}(x) + 3x^{2}y^{2}(x) \cdot y'(x) - y(x) - xy'(x) + \cos y(x) \cdot y'(x) \equiv 0.$$

Отсюда легко находим y':

$$y' = \frac{y - 2xy^3}{3x^2y^2 - x + \cos y}.$$

Дифференцируя равенство еще раз, можно найти y'' и т.д.

Задачи 8, 9

Вычислить предел по правилу Лопиталя. Правило Лопиталя используется при вычислении пределов, содержащих неопределенности типов $\frac{0}{0}, \frac{\infty}{\infty}$, а также неопределенностей, сводящиеся к указанным типам.

Пример 9

Найти предел
$$A = \lim_{x \to 0} \frac{\arcsin x^2}{\ln^2 (1+x)}.$$

Решение

Неопределенность типа $\frac{0}{0}$. Используем правило Лопиталя:

$$A = \lim_{x \to 0} \frac{\left(\arcsin x^2\right)'}{\left(\ln^2(1+x)\right)'} = \lim_{x \to 0} \frac{2x}{\sqrt{1-x^4}} \cdot \frac{(1+x)}{2\ln(1+x)} =$$
$$= \lim_{x \to 0} \frac{2(1+x)}{\sqrt{1-x^4}} \cdot \lim_{x \to 0} \frac{x}{\ln(1+x)} = 2\lim_{x \to 0} \frac{x}{\ln(1+x)}.$$

Снова имеем неопределенность типа $\frac{0}{0}$. Повторно применяем правило Лопиталя:

$$A = 2\lim_{x \to 0} \frac{(x)'}{(\ln(1+x))'} = 2\lim_{x \to 0} (1+x) = 2.$$

Пример 10

Найти предел
$$A = \lim_{x \to +0} \frac{\ln x}{x^{-2}}$$
.

Решение

Неопределенность типа $\frac{\infty}{\infty}$. Применяем правило Лопиталя:

$$A = \lim_{x \to +0} \frac{(\ln x)'}{(x^{-2})'} = \lim_{x \to +0} \frac{-x^2}{2} = 0.$$

Пример 11

Найти предел
$$A = \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right).$$

Решение

Неопределенность типа $\infty - \infty$. Преобразуем к неопределенности типа $\frac{0}{0}$ и применим дважды правило Лопиталя:

$$A = \lim_{x \to 0} \frac{\sin x - x}{x \sin x} = \lim_{x \to 0} \frac{\cos x - 1}{\sin x + x \cos x} = \lim_{x \to 0} \frac{-\sin x}{2 \cos x - x \sin x} = 0.$$

Пример 12

Найти предел
$$A = \lim_{x \to \infty} x \cdot \ln\left(\frac{1+x}{x}\right)$$
.

Неопределенность типа $0 \cdot \infty$. Преобразуем к неопределенности типа $\frac{0}{0}$ и применим правило Лопиталя:

$$A = \lim_{x \to \infty} \frac{\ln(1+x^{-1})}{x^{-1}} = \lim_{x \to \infty} \frac{(1+x^{-1})^{-1} \cdot (-x^{-2})}{(-x^{-2})} = \lim_{x \to \infty} \frac{1}{1+x^{-1}} = 1.$$

Пример 13

Найти предел $A = \lim_{x \to 0} (\cos x)^{1/x}$.

Решение

Неопределенность типа 1^{∞} . Преобразуем к неопределенности типа $\frac{0}{0}$ и применим правило Лопиталя:

$$A = \lim_{x \to 0} e^{\ln(\cos x)/x} = e^{B}; \quad B = \lim_{x \to 0} \frac{\ln(\cos x)}{x};$$
$$B = \lim_{x \to 0} \frac{-\operatorname{tg} x}{1} = 0 \implies A = e^{0} = 1.$$

Задача 10

Разложить функцию по формуле Тейлора. Если $x_0 \neq 0$, полезно сделать замену $x-x_0=t$ и далее воспользоваться разложениями основных элементарных функций.

Пример 14

Разложить по формуле Тейлора функцию $y = \frac{5x-8}{3x+12}$ в окрестности точки $x_0 = 2$ до $o((x-2)^4)$.

Решение

Делаем замену $x - 2 = t; \ x = 2 + t:$

$$y = \frac{10 + 5t - 8}{6 + 3t + 12} = \frac{2 + 5t}{18} \cdot \frac{1}{1 + t/6}.$$

Используем стандартное разложение:

$$= \frac{2+5t}{18} \left(1 - \frac{t}{6} + \frac{t^2}{6^2} - \frac{t^3}{6^3} + \frac{t^4}{6^4} + o(t^4) \right) =$$

$$= \frac{1}{9} + \frac{7}{27}t - \frac{7}{162}t^2 + \frac{7}{972}t^3 - \frac{7}{5832}t^4 + o(t^4).$$

Возвращаясь к старой переменной, окончательно находим:

$$y = \frac{1}{9} + \frac{7}{27}(x-2) - \frac{7}{162}(x-2)^2 + \frac{7}{972}(x-2)^3 - \frac{7}{5832}(x-2)^4 + \frac{7}{162}(x-2)^4 +$$

$$+o((x-2)^4)$$
.

Пример 15

Разложить по формуле Тейлора функцию

$$y = (2x^2 - 3x) \cdot \ln(7x + 8)$$

в окрестности точки $x_0 = -1$ до $o((x+1)^4)$.

Решение

Делаем замену x + 1 = t; x = t - 1:

$$y = \left[2(t^2 - 2t + 1) - 3t + 3\right] \cdot \ln(1 + 7t) = \left(2t^2 - 7t + 5\right) \cdot \ln(1 + 7t).$$

Используем разложение для логарифма:

$$y = (2t^{2} - 7t + 5) \cdot \left[7t - \frac{7^{2}t^{2}}{2} + \frac{7^{3}t^{3}}{3} - \frac{7^{4}t^{4}}{4} + o(t^{4}) \right] =$$

$$= 35t - \frac{7^{3}}{2}t^{2} + \frac{7^{3} \cdot 601}{6}t^{3} - \frac{7^{4} \cdot 607}{12}t^{4} + o(t^{4});$$

Возвращаемся к переменной x:

$$y = 35(x+1) - \frac{7^3}{2}(x+1)^2 + \frac{7^3 \cdot 601}{6}(x+1)^3 - \frac{7^4 \cdot 607}{12}(x+1)^4 + o\left((x+1)^4\right).$$

Задачи 12, 13, 14, 15

Построить графики элементарных функций.

Пример 16

Построить график функции $y = \frac{x^3 + 3x^2 + 15x + 18}{x^2 + 5x + 6}$.

Решение

Область определения: $x \neq -2$; $x \neq -3$ (нули знаменателя).

Функция имеет вид y=P(x)/Q(x). Так как $P(-2)=-8\neq 0$, $P(-3)=-27\neq 0$, то прямые x=-2 и x=-3 являются вертикальными асимптотами. При этом значение функции стремится к $-\infty$ когда x стремится к -2 справа или к -3 слева (это легко определяется по знакам числителя и знаменателя в окрестности указанных точек). Аналогично, значение функции стремится к $+\infty$ когда x стремится к -2 слева и к -3 справа.

Поделив ("уголком") числитель на знаменатель, выделим целую часть дроби: $y = x - 2 + \frac{19x + 30}{x^2 + 5x + 6}$ (6)

Отсюда видно, что прямая y=x-2 является наклонной асимптотой (так как при $x\to\infty$ дробная часть функции в формуле (6) стремится к

нулю. Наклонную асимптоту можно найти и по стандартным формулам. Из формулы (6) следует, что график функции пересекает наклонную асимптоту в единственной точке: $x=-30/19\approx -1,58$. Строим эскиз графика.

Положение экстремумов и точки перегиба уточним с помощью производных. Имеем:

$$y' = \frac{x^2(x^2 + 10x + 18)}{(x^2 + 6x + 6)^2}; \qquad y'' = \frac{x(38x^2 + 180x + 216)}{(x^2 + 5x + 6)^3}.$$

Из выражений для производных следует, что x=0 - точка перегиба, в точке $x=-5+\sqrt{7}\approx -2,35$ функция достигает минимума (который, как легко вычислить, положителен), в точке $x=-5-\sqrt{7}\approx -7,64$ функция достигает максимума. Уточненный график функции представлен на рис.1.

Пример 17

Построить график функции $y = x^3 \cdot \sqrt[5]{(x+2)^2}$.

Решение

Функция обращается в нуль в двух точках: x = -2; x = 0. При x > 0 функция положительна и монотонно растет. При больших положительных значениях x имеем:

$$y \approx x^3 \cdot x^{2/5} = x^{17/5}$$
.

При x < 0 значения функции отрицательны. Отсюда, в частности, следует, что на интервале (-2;0) функция достигает минимума (который

уточним с помощью производной). При больших отрицательных значениях x имеем

 $y \approx -|x|^{17/5}.$

Делаем эскиз графика функции.

Далее, вычисляя производные:

$$y' = \frac{x^2}{5} \cdot (x+2)^{-3/5} \cdot (17x+30),$$
$$y'' = \frac{x}{5} \cdot (x+2)^{-8/5} \cdot (204x^2/5 + 144x + 120),$$

определяем положение экстремумов и точек перегиба. Из этих формул следует, что в точке x=-30/17 функция достигает минимума; x=0 и $x=5\left(-144\pm\sqrt{1152}\right)/408$ - точки перегиба. В точке x=-2 производная функции y'(x) обращается в бесконечность - касательная к графику в данной точке вертикальна.

Уточненный график функции приведен на рис. 2.

Пример 18

Построить график функции: $y = \frac{e^{x-3}}{2x+7}$.

Прямая x=-7/2 - вертикальная асимптота. Используя правило Лопиталя, имеем:

$$\lim_{x \to +\infty} \frac{e^{x-3}}{2x+7} = +\infty; \quad \lim_{x \to -\infty} \frac{e^{x-3}}{2x+7} = 0.$$

Функция имеет положительный знак при x > -7/2 и отрицательна при x < -7/2. Этих данных достаточно, чтобы нарисовать эскиз графика.

Вычислим производные и уточним положение экстремумов и точек перегиба:

$$y' = \frac{2x+5}{(2x+7)^2} \cdot e^{x-3}; \quad y'' = \frac{(4x^2+20x+29)}{(2x+7)^3} \cdot e^{x-3}.$$

Вторая производная нулей не имеет и меняет знак при переходе через вертикальную асимптоту. Точка x=-5/2 - минимум. График функции приведен на рис.3.

Пример 19

Построить линию, заданную уравнением в полярных координатах:

$$\rho = 4\sin^2 3\varphi.$$

Используя свойства тригонометрических функций, имеем

$$\rho = 2\left(1 - \cos 6\varphi\right).$$

Следовательно, период функции равен $2\pi/6=60^\circ$. При возрастании угла от 0° до 30° значения функции возрастают от 0 до 4. При дальнейшем увеличении угла до 60° значения функции убывают до 0. На рис. 4 приведен график одного лепестка. Всего таких лепестков будет 6 (на рисунке они не указаны):

Задачи 16,17

Вычислить приближенное значение функции. При решении этих задач следует использовать приближенную формулу

$$y(x_1) \approx y(x_0) + y'(x_0)(x_1 - x_0) \tag{7}$$

В некоторых вариантах указанных задач потребуются приближенные значения следующих логарифмов: $\ln 3 \approx 1,099$; $\ln 4 \approx 1,386$; $\ln 5 \approx 1,609$; $\ln 6 \approx 1,792$.

Пример 20

Вычислить приближенно $\sqrt[7]{130}$.

Решение

Положим $y(x) = \sqrt[7]{x}$; $x_0 = 128$; $x_1 = 130$. Имеем $y(x_0) = \sqrt[7]{128} = 2$; $y'(x) = \left(x^{-6/7}\right)/7$; $y'(x_0) = \left(128^{-6/7}\right)/7 = 1/448$. Наконец, по формуле (7) находим:

$$y(x_1) = \sqrt[7]{130} \approx 2 + \frac{1}{448} \cdot (130 - 128) = 2 + \frac{1}{224} \approx 2,004.$$

Пример 21

Вычислить приближенно ctg 48°.

Рассмотрим функцию $y(x)=\cot x$. Перейдем к безразмерной переменной – от градусов к радианам. Выберем, соответственно, $x_0=45^\circ=\pi/4$; $x_1=48^\circ=48\pi/180$. Найдем значения функции и ее производной:

$$y(x_0) = \operatorname{ctg}\left(\frac{\pi}{4}\right) = 1; \ y'(x) = -\frac{1}{\sin^2 x}; \ y'(x_0) = -\frac{1}{\sin^2 \pi/4} = -2.$$

Используя формулу для приближенных вычислений, получим:

$$\operatorname{ctg} 48^{\circ} = \operatorname{ctg} \frac{48\pi}{180} \approx 1 - 2\left(\frac{48\pi}{180} - \frac{\pi}{4}\right) = 1 - \frac{\pi}{30} \approx 0, 9.$$

Задачи 18, 19

Вычислить частные производные. Эти задачи являются стандартными. При нахождении частной производной $\partial z/\partial x$ следует считать переменную y константой; аналогично при нахождении $\partial z/\partial y$ следует считать переменную x константой. Смешанные производные второго порядка определяются как повторные производные:

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right); \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right).$$

При некоторых предположениях относительно функции z(x,y) можно утверждать, что результат не зависит от порядка дифференцирования:

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}.$$
 (8)

Пример 22

Для функции $z=\ln\left(1+\frac{x^2}{y^3}\right)$ вычислить смешанные производные $\frac{\partial^2 z}{\partial y \partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$ и убедиться, что они равны.

Решение

Вычисляем первые производные:

$$\frac{\partial z}{\partial x} = \frac{1}{1 + x^2/y^3} \cdot \frac{2x}{y^3} = \frac{2x}{x^2 + y^3}; \quad \frac{\partial z}{\partial y} = \frac{1}{1 + x^2/y^3} \cdot \frac{-3x^2}{y^4} = \frac{-3x^2}{y(x^2 + y^3)}.$$

Дифференцируя первое равенство по y, а второе – по x, находим смешанные производные:

$$\frac{\partial^2 z}{\partial y \partial x} = -\frac{2x}{(x^2 + y^3)^2} \cdot 3y^2 = -\frac{6xy^2}{(x^2 + y^3)^2}.$$

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{6x}{y(x^2 + y^3)} + \frac{3x^2}{y(x^2 + y^3)^2} \cdot 2x = \frac{-6xy^2}{(x^2 + y^3)^2}.$$

Убеждаемся, что равенство (8) выполнено.

Задача 20

Найти и исследовать точки экстремума функции нескольких переменных. Сначала из условия равенства нулю первых производных ищутся стационарные точки. Затем в этих точках вычисляем вторые производные и составляем из них матрицу. Находим угловые миноры; достаточным условием максимума является выполнение условий $\Delta_1 < 0, \, \Delta_2 > 0, \, \Delta_3 < 0, \,$ минимума - $\Delta_1 > 0, \, \Delta_2 > 0, \, \Delta_3 > 0.$

Пример 23

Найти и исследовать точки экстремума функции $u(x,y,z)=5x^2+y^2+z^2-2xy+2xz-yz-y.$

Решение

Найдем стационарные точки из условия

$$\begin{cases} \partial u/\partial x = 10x - 2y + 2z = 0\\ \partial u/\partial y = 2y - 2x - z - 1 = 0\\ \partial u/\partial z = 2z + 2x - y = 0 \end{cases}$$

Решая получившуюся систему уравнений, получим координаты стационарной точки $M_0(x_0,y_0,z_0)$, $x_0=1/11$, $y_0=8/11$, $z_0=3/11$. В M_0 выполнено необходимое условие экстремума. Проверим выполнение достаточного условия экстремума. Применим критерий Сильвестра. Вычислим в M_0 вторые производные

$$\frac{\partial^2 u}{\partial x^2} = 10, \ \frac{\partial^2 u}{\partial y^2} = 2, \ \frac{\partial^2 u}{\partial z^2} = 2, \ \frac{\partial^2 u}{\partial x \partial y} = -2, \ \frac{\partial^2 u}{\partial x \partial z} = 2, \ \frac{\partial^2 u}{\partial y \partial z} = -1,$$

и составим из них матрицу $A = ||a_{ij}||$,

$$A = \left(\begin{array}{ccc} 10 & -2 & 2 \\ -2 & 2 & -1 \\ 2 & -1 & 2 \end{array}\right).$$

Угловые миноры матрицы A

$$\Delta_1 = a_{11} = 10, \ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} 10 & -2 \\ -2 & 2 \end{vmatrix} = 16, \ \Delta_3 = \det A = 22.$$

Т.к. $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$, то в точке M_0 функция u(x,y,z) имеет локальный минимум.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

ЗАДАЧА 1. С помощью определения предела последовательности показать, что данная последовательность u_n при $n\to\infty$ имеет своим пределом число A. Найти целое значение N, начиная с которого $|u_n-A|<\varepsilon$.

$N_{\overline{0}}$	u_n	A	ε	$N_{\overline{0}}$	u_n	A	ε
1	$\frac{7n-1}{n+1}$	7	10^{-2}	16	$\frac{2n}{1+n^2}$	0	10^{-1}
2	$ \frac{n+1}{4n^2+1} $ $ \frac{3n^2+2}{9-n^3} $	$\frac{4}{3}$	10^{-2}	17	$ \frac{1+n^2}{3n^3} $ $ \frac{n^3-2}{4+2n} $	3	10^{-2}
3	$\frac{9-n^3}{1+2n^3}$	$-\frac{1}{2}$	10^{-2}	18	$\overline{1-3n}$	$-\frac{2}{3}$	10^{-2}
4	$ \frac{1+2n^3}{\left(-\frac{1}{2}\right)^n} $	0	10^{-3}	19	$\frac{5n+15}{6+n}$	5	10^{-2}
5	$1 + \frac{(-1)^n}{2n+1}$	1	10^{-2}	20	$\frac{3-n^2}{1+2n^2}$	$-\frac{1}{2}$	10^{-2}
6	$\frac{4n-3}{2n+1}$ $1-2n^2$	2	10^{-3}	21	$ \frac{7-n}{n+3} $ $ 3n^2+4 $	-1	10^{-2}
7	$\frac{1-2n^2}{2+4n^2}$	$-\frac{1}{2}$	10^{-2}	22	$\frac{3n^2 + 4}{2 - n^2} \\ 5 + 4n^3$	-3	10^{-2}
8	$\frac{2+4n^2}{2n+(-1)^n}$	2	10^{-2}	23	$-\frac{1}{3+2n^3}$	-2	10^{-2}
9	$-\frac{5n}{n+1}$	-5	10^{-2}	24	$\left(\frac{1}{3}\right)$	0	10^{-3}
10	$\overline{\ln(n+1)}$	0	$\frac{1}{3}$	25	$3 - \frac{(-1)^n}{n+5}$ $9n+7$	3	10^{-2}
11	n+1	$-\frac{1}{2}$	10^{-2}	26		$\frac{9}{2}$	10^{-2}
12	$ \begin{array}{r} 1 - 2n \\ 2n + 1 \\ \hline 3n - 5 \\ 1 - 2n^2 \end{array} $	$\frac{2}{3}$	10^{-2}	27	$ \begin{array}{r} 2n - 3 \\ \hline 1 + n^2 \\ \hline 4 + 2n^2 \\ -5n + (-1)^n \end{array} $	$\frac{1}{2}$	10^{-2}
13	$\frac{1-2n^2}{n^2+3}$ $3n^2$	-2	10^{-2}	28	$\frac{-5n + (-1)^n}{2n+3}$	$-\frac{5}{2}$	10^{-2}
14	$\frac{3n^2}{2-n^2}$	-3	10^{-2}	29	$\frac{2}{\ln(3n+4)}$	0	$\frac{1}{4}$
15	$\frac{n}{3n-1}$	$\frac{1}{3}$	10^{-2}	30	$ \frac{2n+3}{2} $ $ \frac{1}{\ln(3n+4)} $ $ \left(-\frac{2}{7}\right)^{n} $	0	10^{-3}

ЗАДАЧА 2. Вычислить предел.

1	$\lim_{x \to 0} \frac{\lg^2 x - \sin^2 x}{(1 - \cos x)^2}$	2	$\lim_{x \to \pi/2} (\sin x)^{\operatorname{tg}^2 x}$
3	$\lim_{x \to 0} \frac{\operatorname{tg} 2x - 2\operatorname{tg} x}{\sin 2x - 2\sin x}$	4	$\lim_{x \to 0} \left(\frac{\cos x}{\cos 2x} \right)^{1/x^2}$
5	$\lim_{x \to 0} \frac{4 \operatorname{tg} x - \sin 4x}{\operatorname{tg} x - \sin x}$	6	$\lim_{x \to \pi/4} (\operatorname{tg} x)^{\operatorname{tg} 2x}$
7	$\lim_{x \to 0} \frac{\operatorname{tg} 2x - 2\sin x}{x^3}$	8	$\lim_{x \to \infty} \left(\frac{2x - 1}{2x + 3} \right)^x$
9	$\lim_{x \to \pi/4} \frac{\operatorname{tg} x - \operatorname{ctg} x}{\pi/4 - x}$	10	$\lim_{x \to \pi/2} (2 - \sin x)^{\operatorname{tg}^2 x}$
11	$\lim_{x \to \pi/4} (\cos x - \sin x) \operatorname{tg} 2x$	12	$\lim_{x \to 0} (3^x + x)^{1/x}$
13	$\lim_{x \to -\pi/4} \frac{\operatorname{tg} x - \operatorname{ctg} x}{\pi/4 + x}$	14	$\lim_{x \to 0} (2\cos x - 1)^{\operatorname{ctg}^2 x}$
15	$\lim_{x \to \pi/6} \frac{1 - 2\sin x}{1 - 2\cos 2x}$	16	$\lim_{x \to \infty} \left(\frac{3x+2}{3x+1} \right)^x$
17	$\lim_{x \to \pi/6} \frac{\sin x - \cos 2x}{\pi/6 - x}$	18	$\lim_{x \to 0} \left(\operatorname{tg}(\frac{\pi}{4} + x) \right)^{\operatorname{ctg} x}$
19	$\lim_{x \to \pi/3} \frac{1 - 2\cos x}{\pi - 3x}$	20	$\lim_{x \to 0} \left(\frac{1 + \operatorname{tg} x}{1 + \sin x} \right)^{1/x^3}$
21	$\lim_{x \to \pi/2} (1 - \sin x) \operatorname{tg}^2 x$		$\lim_{x \to 0} (2 - \cos x)^{1/\sin x}$
23	$\lim_{x \to \pi/3} \frac{\sqrt{3} - 2\sin x}{\pi/3 - x}$	24	$\lim_{x \to \infty} \left(\frac{x^2 + 2x + 1}{x^2 + 2x - 2} \right)^{x^2}$
25	$\lim_{x \to \pi/4} \frac{1 - \sin 2x}{(1 - \sqrt{2}\sin x)^2}$	26	
27	$\lim_{x \to \pi/2} (\sec x - \operatorname{tg} x)$	28	$\lim_{x \to 0} \left(\frac{3x^2 + 2x + 1}{3x^2 + 2x - 1} \right)^x$
29	$\lim_{x \to 0} \left(\frac{1 + 2x}{1 + \sin x} \right)^{2/x}$	30	$\lim_{x \to 0} (\cos x)^{1/x^2}$

ЗАДАЧА 3. Вычислить производную y'(x).

$N^{\underline{0}}$	y(x)	$\mathcal{N}^{\underline{o}}$	y(x)
1	$\ln\left(\cos\left(\frac{x-1}{x}\right)\right)$	16	$\arcsin\left(\frac{\sqrt{x}}{2}\right)$
2	$x\sin\left(\ln x - \frac{\pi}{4}\right)$	17	$arctg(e^x + e^{-x})$
3	$\arctan\left(\ln\left(\frac{1}{x}\right)\right)$	18	$\arcsin \sqrt{x-1}$
4	$\frac{x}{\ln^2 x}$	19	$arctg \sqrt{\frac{x-1}{2}}$
5	$\ln\left(\ln\left(3-2x^3\right)\right)$	20	$tg^2\sqrt{3x}$
6	$2^{\operatorname{ctg}(1/x)}$	21	$\frac{\operatorname{tg}^2 x}{2} + \ln\left(\cos x\right)$
7	$\sqrt{e^{\sin^2 x}}$	22	$\ln(\sin x) + \frac{\operatorname{ctg}^2 x}{2} - \frac{\operatorname{ctg}^4 x}{4}$
8	$\sqrt{\cos^2 x - 2\sin^2 x}$	23	$\frac{2}{3}(\ln x - 5)\sqrt{1 + \ln x}$
9	$\sqrt{3\sin^2 x + 5\cos^2 x}$	24	$\frac{2}{\sqrt{3}}$ arctg $\frac{2x+1}{\sqrt{3}}$
10	$\frac{\cos^3 x}{15} (3\cos^2 x - 5)$	25	$\ln^3(2x+\sqrt{3})$
11	$\frac{x^2}{\ln x}$	26	$\sqrt[3]{x+\sqrt{x}}$
12	$\frac{1+\sqrt{x}}{1-\sqrt{x}}$	27	$\frac{1 + \cos 2x}{1 - \cos 2x}$
13	$\frac{3}{4}\sqrt[3]{(1+\ln x)^4}$	28	$\ln(\sin x) + \frac{1}{2}\operatorname{ctg}^2 x$
14	$\frac{1}{3}\arctan(3 \operatorname{tg} x)$	29	$\frac{\operatorname{tg}^5 x}{5} + \frac{\operatorname{tg}^7 x}{7}$
15	$e^{\operatorname{tg}^2(3x)}$	30	$\frac{\lg^5 x}{5} + \frac{\lg^7 x}{7}$ $\frac{1}{2}\arcsin\frac{x^2}{\sqrt{3}}$

ЗАДАЧА 4. Вычислить производную y'(x).

$N_{ar{0}}$	y(x)	$N_{ar{0}}$	y(x)
1	$\frac{1+2x^2}{x\sqrt{1+x^2}}$	16	$\frac{\sqrt[3]{1+x^3}}{x^2} \left(x^2 - 3 \right)$
2	$\frac{\sqrt{1+x^2}}{3}\left(x^2-2\right)$	17	$\frac{1}{\sqrt{2}} \ln \frac{\sqrt{2+2x} - \sqrt{2-x}}{\sqrt{2+2x} + \sqrt{2-x}}$
3	$\frac{\sqrt{1+x^2}}{3x^3} \left(2x^2 - 1\right)$		$\frac{1}{3}\arctan\left(\frac{5\operatorname{tg}x+4}{3}\right)$
4	$\arctan\left(\frac{x}{2} + \sqrt{\frac{x^2}{4} + x - 1}\right)$	19	$\frac{1}{2}\arcsin\frac{8x+3}{\sqrt{41}}$
5	$\frac{1}{\sqrt{3}}\ln\left(\sqrt{3}x + \sqrt{3x^2 - 2}\right)$	20	$ \ln \sqrt[3]{\frac{x+2}{\cos^2 x}} $
6	$\frac{2}{35}(1+x)^{5/2}(5x-2)$	21	$ \ln\sqrt{\frac{1+x}{\operatorname{tg} x}} $
7	$(1+2x^2)^{5/2} \cdot \frac{5x^2-1}{70}$	22	$\sqrt{2x}$
8	$\frac{x-2}{4\sqrt{4x-x^2}}$	23	$ \ln \sqrt[4]{\frac{1+4x}{\sin^3 x}} $
9	$\ln\left(x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right)$	24	$\arcsin \frac{x-1}{\sqrt{x}}$
10	$\frac{2}{15}(3x-4)(2+x)^{3/2}$		$\ln 5(1+3\operatorname{tg} x)$
11	$\frac{4}{3} \left(\sqrt[4]{x^3} - \ln\left(1 + \sqrt[4]{x^3}\right) \right)$	26	$\ln\left(\frac{(x-2)^5}{(x+1)^3}\right)$
12	$ \ln \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} $	27	$\frac{2(10+3x)}{9\sqrt{5+3x}}$
13	$\frac{3x-9}{10}\sqrt[3]{(x+2)^2}$	28	$\frac{4}{21}(3e^x - 4)(e^x + 1)^{3/4}$
14	$\frac{20x+32}{45}(x-2)\sqrt[4]{x-2}$	29	$2\sqrt{x+1}(\ln(x+1)-2)$
15	$\frac{1}{\sqrt{2}} \ln \frac{\sqrt{x^2 - x + 2} + x - \sqrt{2}}{\sqrt{x^2 - x + 2} + x + \sqrt{2}}$	30	$\frac{1}{24} \ln \frac{x^3}{x^3 + 8}$

ЗАДАЧА 5. Вычислить логарифмическую производную y'(x).

	y(x)	№	y(x)	№	y(x)
1	$\frac{x\sqrt{x^2+1}}{\sqrt[3]{x^3+1}}$	11	$(\operatorname{arctg} x)^x$	21	$x^{1/x}$
2	$x\sqrt[3]{\frac{x^2}{x^2+1}}$	12	$(\sin 3x)^x$	22	$\sqrt{\cos x} \cdot 2^{\sqrt{\cos x}}$
3	$\frac{x-1}{\sqrt{x(2-x)}}$	13	$\frac{\sqrt{x-1}}{\sqrt[3]{(x+2)^2}\sqrt{(x+3)^3}}$ $\frac{(x-2)^3}{\sqrt{(x-1)^5(x-3)^{11}}}$	23	$(\operatorname{arctg} x)^{\ln x}$
4	$x^{\cos x}$	14	$\frac{(x-2)^3}{\sqrt{(x-1)^5(x-3)^{11}}}$	24	$(\sin x)^{\ln x}$
5	$\sin x)^{1/x}$	15	$\sqrt{\frac{x(x-1)}{x-2}}$	25	$(1+x^2)^{\arccos x}$
6	$\int_{x} \operatorname{tg} x$	16	$(\operatorname{tg} x)^{e^x}$		$\sqrt[4]{x^3\sqrt[3]{x^2(x+1)}}$
7	$(\operatorname{tg} x)^{\cos x}$	17	$(\ln \sin 3x)^x$	27	$\frac{\sqrt[4]{x^2 + 3x + 1}}{\sqrt[3]{x^2 + 4}}$
8	$(\arcsin x)^{x^2}$	18	$(1+x^3)^{x^3}$	28	$(x^2+1)^{\sqrt{x}}$
9	$(1+x^2)^{x^2}$	19	$(\cos x)^{\sin x}$	29	$x^{6}(x^{2}+1)^{10}(x^{3}+1)$
10	$(\cos x)^x$	20	$x^{\sqrt{x}}$	30	$\frac{3}{2} \sqrt[3]{\frac{1+x}{1-x}}$

ЗАДАЧА 6. Вычислить производную y'(x) функции, заданной параметрически.

$N_{\overline{0}}$	x(t), y(t)	$N_{\overline{0}}$	x(t), y(t)	$N_{\overline{0}}$	x(t), y(t)
1	$\begin{cases} x = \frac{2\sin t}{1 + 3\cos t} \\ y = \frac{5\cos t}{1 + 3\cos t} \end{cases}$	11	$\begin{cases} x = \frac{1}{t^2 - 1} \\ y = \frac{t^2 + 1}{t + 2} \end{cases}$	21	$\begin{cases} x = 2t - t^3 \\ y = 2t^2 \end{cases}$
2	$\begin{cases} x = \ln(1 + t^2) \\ y = t - \arctan t \end{cases}$	12	$\begin{cases} x = \frac{6t}{1+t^3} \\ y = \frac{6t^2}{1+t^3} \end{cases}$	22	$\begin{cases} x = \frac{\cos^3 t}{\sqrt{\cos 2t}} \\ y = \frac{\sin^3 t}{\sqrt{\cos 2t}} \end{cases}$

$N_{\overline{0}}$	x(t), y(t)	№	x(t), y(t)	$N_{\overline{0}}$	x(t), y(t)
3	$\begin{cases} x = e^{-t^2} \\ y = \arctan(2t+1) \end{cases}$	13	$\begin{cases} x = \sqrt{t} \\ y = \sqrt[3]{t} \end{cases}$	23	$\begin{cases} x = \frac{t^3 + 2}{t^2 + 1} \\ y = \frac{t^3}{t^2 + 1} \end{cases}$
4	$\begin{cases} x = 4 \operatorname{tg}^2\left(\frac{t}{2}\right) \\ y = 2\sin t + 3\cos t \end{cases}$	14	$\begin{cases} x = e^t \\ y = \arcsin t \end{cases}$	24	$\begin{cases} x = t^2 e^{-t} \\ y = t^2 e^{-2t} \end{cases}$
5	$\begin{cases} x = \arcsin(t^2 - 1) \\ y = \arccos 2t \end{cases}$	15	$\begin{cases} x = 2\cos^2 t \\ y = 3\sin^2 t \end{cases}$	25	$\begin{cases} x = 2\left(t + \frac{1}{t}\right) \\ y = t + \frac{3}{t} + \frac{1}{t^2} \end{cases}$
6	$\begin{cases} x = 5(\cos t + t\sin t) \\ y = 5(\sin t - t\cos t) \end{cases}$	16	$\begin{cases} x = \ln t \\ y = \frac{1}{2} \left(t + \frac{1}{t} \right) \end{cases}$	26	$\begin{cases} x = \ln t \\ y = \sin^2 t \end{cases}$
7	$\begin{cases} x = \arccos \frac{1}{\sqrt{1+t^2}} \\ y = \arcsin \frac{t}{\sqrt{1+t^2}} \end{cases}$	17	$\begin{cases} x = \frac{6t}{1+t^2} \\ y = \frac{3(1-t^2)}{1+t^2} \end{cases}$	27	$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$
8	$\begin{cases} x = \ln \operatorname{tg}\left(\frac{t}{2}\right) + \cos t \\ y = t \sin t + \cos t \end{cases}$	18	$\begin{cases} x = \sqrt{1+t^2} \\ y = \frac{t-1}{\sqrt{1+t^2}} \end{cases}$	28	$\begin{cases} x = \frac{1}{t+1} \\ y = \left(\frac{t}{t+1}\right)^2 \end{cases}$
9	$\begin{cases} x = t^2 + 2t \\ y = t^2 - \ln t^2 \end{cases}$	19	$\begin{cases} x = \arcsin t \\ y = \sqrt{1 - t^2} \end{cases}$	29	$\begin{cases} x = \frac{1}{t+1} \\ y = \frac{t}{t+1} \end{cases}$
10	$\begin{cases} x = \frac{t^3}{t+1} \\ y = \frac{t^2}{t+1} \end{cases}$	20	$\begin{cases} x = 5\cos^3 t \\ y = 4\sin^3 t \end{cases}$	30	$\begin{cases} x = t + \ln \cos t \\ y = t - \ln \sin t \end{cases}$

ЗАДАЧА 7. Вычислить производную y'(x) функции, заданной неявно уравнением F(x,y)=0.

$N_{\overline{0}}$	F(x,y)	№	F(x,y)
1	$\ln x + e^{-y/x} + 5$	16	$x - \sqrt[3]{y^3 + x} - 4$
2	$x^{2/3} + y^{2/3} - 10$	17	$y^3 - \frac{x-y}{x+y} - 6$
3	$y - \sqrt{4x - x^2 + 10y - 4} + 3$	18	$ye^{x-1} - e^y + 9$
4	$e^x - e^y + x - y - 6$	19	$y^2 - x - \ln \frac{y}{x} - 4$
5	$x - \sqrt[3]{2x^2y^2 + 5x + y - 5} + 9$	20	$x + y - 3\sqrt[3]{x - y} + 11$
6	$\frac{3}{\sqrt{xy}} - \sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}} - 8 = 0$	21	$y - \sqrt[3]{x + 10y - 6 + \frac{4y + 5}{x}}$
7	$\arctan \frac{y}{x} - \ln \sqrt{x^2 + y^2} + 2$	22	$x - \sqrt{2y^3 - \frac{x^2}{y} + \frac{y}{x}} - 3$
8	$e^x - e^y - xy$	23	$x - \sqrt{1 + 2xy + y^2 - 8y^3} + 3$
9	$y - \sqrt{2x - x^2 - 5xy - y}$	24	$\frac{x}{y} - \frac{\sin x}{\sin y} + 3$
10	$2\cos^2(x+y) + xy - 9$	25	$\sqrt{x+y} - y\sqrt{x-y} - 7$
11	$3 \arctan \frac{y}{x} - \sqrt{x^2 + y^2} + 5$	26	$\ln(x+y) - \frac{8}{\sqrt{x+y^2}}$
12	$ \ln 5y + \frac{x}{y} + 7 $	27	$\sin\left(y-x^2\right) - \ln\left(y^2 - x\right)$
13	$x - \arctan(x + y) + 1$	28	$e^x + e^y - 2^{xy} - 2$
14	$y - \sqrt[3]{\frac{2y-1}{x}} + 12$	29	$x^{y^2} + y^2 \ln x - 4$
15	$e^x \sin y - e^{-y} \cos x$	30	$x^2 \sin y + y^3 \cos x - 2x$

ЗАДАЧА 8. Найти предел, используя правило Лопиталя.

	1		
1	$\lim_{x \to 1} \frac{e^{\ln x} - \ln(x + e - 1)}{\arctan 2(x - 1)}$	16	$\lim_{x \to 0} \frac{\ln(2 - \cos 2x)}{x^2}$
2	$\lim_{x \to 1} \frac{\cot 2(x-1)}{\arctan \frac{\cos \left(\frac{\pi}{2} \cdot e^{x-1}\right)}{e^{\sin(1-x)} - 1}}$	17	$\lim_{x \to 0} \frac{5^{\lg 3x} - 1}{2^{\sin(x/2)} - 1}$
3	$\lim_{x \to 2} \frac{\ln\left(\sqrt{1+4x}-2\right)}{x-2}$	18	$\lim_{x \to 0} \frac{\ln(3+x^2) - \ln 3}{1 - \cos 5x}$
4	$\lim_{x \to \pi/4} \frac{\ln \operatorname{tg} x}{\pi/4 - x}$	19	$\int_{1}^{\infty} \sqrt{1-\lg 8x}-1$
5	$\lim_{x \to 0} \frac{1}{x} \ln \left(\frac{1}{\sqrt[3]{8+x}} + \frac{1}{\sqrt{4+x}} \right)$	20	$\lim_{x \to 0} \frac{\ln(1+\sin x)}{\ln(1+\sin x)}$ $\lim_{x \to 0} \frac{e^{3x^2} - e^{x^2}}{1-\cos x}$
6	$\lim_{x \to 3} \frac{\ln\left(\sqrt[3]{2x+2}-1\right)}{\ln\left(\sqrt{x+1}-1\right)}$	21	$\lim_{x \to 1} \frac{\operatorname{tg} \pi x}{4^x - 4}$
7	$\lim_{x \to 0} \frac{\ln(1 - \arctan 5x)}{\sin 3x}$	22	$\lim_{x \to 0} \frac{1 - e^{\sin x}}{1 - 2^{\operatorname{tg}} x}$
8	$\lim_{x \to 0} \frac{e^{\operatorname{tg} x} - 1 - x}{x^2}$	23	$\lim_{x \to 0} \frac{\ln(3 - 2\cos x)}{\sqrt{1 + \lg^2 x} - 1}$
9	$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}$	24	$\lim_{x \to 0} \frac{\sqrt{2 - \cos x} - 1}{2\arcsin x - 1}$
10	$\lim_{x \to 0} \frac{e^{1/\cos x} - e^{\cos x}}{\ln \cos x}$	25	$\lim_{x \to 0} \frac{\sin^2(x/2)}{\ln(1+2x^2)}$
11	$\lim_{x \to 0} \frac{3^x - 2^x}{\ln(\sqrt{9 + x} - \sqrt{4 + x})}$	26	$\lim_{x \to \pi/2} \frac{\ln \sin x}{\sin^2 (\pi/2 - x)}$
12	$\lim_{x \to 2} \frac{2^x - x^2}{2 - x}$	27	$\lim_{x \to \pi/4} \frac{\ln \lg x}{1 - \operatorname{ctg} x}$
13	$\lim_{x \to 0} \frac{\ln \cos 2x}{\ln \cos 3x}$	28	$\lim_{x \to 0} \frac{\ln(1 - \lg^2(x/5))}{\sqrt{1 + \sin^2 3x} - 1}$
14	$\lim_{x \to \pi/4} \frac{e^{\sin x} - e^{\cos x}}{\pi - 4x}$	29	$\lim_{x \to 0} \frac{3^{3x} - 3^{-x}}{e^{\lg x} - 1}$
15	$\lim_{x \to 0} \frac{1 - e^{-\operatorname{tg} x}}{\sin 2x}$	30	$\lim_{x \to 0} \frac{e^{2x} - e^{-3x}}{\operatorname{tg} 6x}$

ЗАДАЧА 9. Найти предел, используя правило Лопиталя.

1	$\lim_{x \to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x \right)$	16	$\lim_{x \to \infty} \frac{\pi - 2 \arctan x}{e^{3/x} - 1}$
2	$\lim_{x \to 0} \frac{\pi/x}{\operatorname{ctg}(\pi x/2)}$	17	$\lim_{x \to 3} \frac{\ln(x-2)}{e^x - e^3}$
3	$\lim_{x \to 0} \frac{e^x - e^{-x}}{\ln(1+x)}$	18	$\lim_{x \to 0} \frac{e^{3x} - 3x - 1}{\sin^2 5x}$
4	$\lim_{x \to 0} \frac{x^3}{x - \sin x}$	19	$2/m^2$
5	$\lim_{x \to \pi/2} \left(\frac{x}{\operatorname{ctg} x} - \frac{\pi}{2 \cos x} \right)$	20	$\lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x^4}$
6	$\lim_{x \to 0} \frac{(e^x - e^{-x})\sin x}{x^2}$	21	$\lim_{x \to +\infty} \frac{\ln(1+x^2)}{\ln(\pi/2 - \arctan x)}$
7	$\lim_{x \to 0} (1 + \sin^2 x)^{1/\lg^2 x}$	22	1/ln ~
8	$\lim_{x \to +0} \left(\ln(x+e) \right)^{1/x}$	23	$\lim_{x \to 0} \frac{1 + 2x + 2x^2 - e^{2x}}{x^3}$
9	$\lim_{x \to \pi/4} \frac{\sec^2 x - 2 \operatorname{tg} x}{1 + \cos 4x}$	24	$\lim_{x \to 1} (1 - x) \operatorname{tg}(\pi x/2)$
10	$x \to 1 \setminus 2 - 2\sqrt{x} 3 - 3\sqrt[3]{x}$	25	$\lim_{x \to +\infty} (x+2^x)^{1/x}$
11	$\ln{(1+x)^{(1+x)}} - x$	26	$\lim_{x \to 0} \frac{2^x + 2^{-x} - 2}{x^2}$
12	$\lim_{x \to 1-0} (1-x)^{\cos(\pi x/2)}$	27	$\lim_{x \to 0} \frac{\sqrt{1 - 2x} + x - 1}{x^2}$
13	$\lim_{x \to \pi/2 - 0} (\pi - 2x)^{\cos x}$	28	$\lim_{x \to 0} (x \operatorname{ctg} x)^{-1/x^2}$
14	$\lim_{x \to 1} (\operatorname{tg}(\pi x/4))^{\operatorname{tg}}(\pi x/2)$	29	$\lim_{x \to +0} (\operatorname{ctg} x)^{1/\ln x}$
15	$\lim_{x \to 0} \frac{3x^2 + \sin 3x - 3xe^x}{\arctan x - \sin x}$	30	$\lim_{x \to +0} \frac{\ln x}{1 + 2\ln\sin x}$

ЗАДАЧА 10. Функцию y=f(x) разложить по формуле Тейлора в окрестности точки x_0 до $o((x-x_0)^n)$.

			I			I	
$N_{\overline{0}}$	f(x)	x_0	n	$N_{\overline{0}}$	f(x)	x_0	n
1	$\frac{2x+3}{4x-5}$	2	4	16	$\cos^2(2x+6)$	-4	5
2	$(x+2)\ln(3x-7)$	3	4	17	$(x+2)\sqrt{3x+4}$	4	4
3	$\sin^2(2x+1)$	-1	5	18	$\left (x-7)e^{4x} - 2 \right $	1	5
4	$(x-2)\cos(x-3)$	2	5	19	$\frac{3x+2}{x-6}$	5	4
5	$\sqrt[3]{3x+5}$	1	4	20	$(2x-9)\ln(4x+1)$	1	4
6	$(2x+5)e^{2x}+3$	-2	4	21	$\sin^2(3x-2)$	2	5
7	$\frac{3x-4}{x-5}$	2	4	22	$(3x+4)\cos(2x-1)$	3	5
	$(x^2 + x)\ln(2x + 1)$	0	5	23	$\sqrt[3]{2x-5}$	16	4
9	$\sin(4x-3)$	1	5	24	$(2x^2 + 5) e^{3x - 2}$	1	5
10	$\cos^2(x+2)$	-1	5	25	$\frac{x^2 - 4}{2x + 1}$	-1	4
11	$\sqrt[4]{4x+12}$				$\left(x^2 + 7x\right) \ln(4x + 3)$	1	4
12	$(x+2)e^{x^2} + 2x$	-1	4	27	$(x+2)\sin(x+2)$	2	5
13	$\frac{x^2 - 4}{2x + 1}$	2	4	28	$(2x+1)\cos(3x-5)$	2	5
14	$x \ln \sqrt[3]{5 - 2x}$	2	4	29	$\sqrt[4]{x+12}$	4	4
15	$(2x-3)\sin(x+3)$	-2	5	30	$(-x+4)e^x + 3$	-2	5

ЗАДАЧА 11. Вычислить предел двумя способами:

- а) используя разложение по формуле Тейлора;
- б) с помощью правила Лопиталя.

1	$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$	16	$\lim_{x \to 0} \frac{\ln(1+x) + x^2/2 - \sin x}{x^3}$
2	$\lim_{x \to 0} \frac{2e^x - e^{-x} - 3x - 1}{x^2}$	17	$\lim_{x \to 0} \frac{2x - 1 - 2x^2 + e^{-2x}}{x^3}$
3	$\lim_{x \to 0} \frac{6\ln(1+x) - 6x - 2x^3}{e^{-x} + x - 1}$	18	$\lim_{x \to 0} \frac{x^2}{1 + 3x/2 - \sqrt{1 + 3x}}$
4	$\lim_{x \to 0} \frac{\frac{1}{1-x} - \cos x - x}{x^2}$	19	$\lim_{x \to 0} \frac{x^3}{\ln(1+x) + e^{-x} - 1}$
5	$\lim_{x \to 0} \frac{(1+x)\ln(x+1) - x}{x^2}$	20	$\lim_{x \to 0} \frac{\sqrt{1+x} - e^{-x} - 3x/2}{x^2}$
6	$\lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x^4}$	21	$\lim_{x \to 0} \frac{x^3}{\sin 2x + 2\ln(1-x) + x^2}$
7	$\lim_{x \to 0} \frac{e^{2x} - \cos x - 2x}{x^2}$	22	$\lim_{x \to 0} \frac{\sqrt{1 - x^2} + \ln(1 + 2x) - 1 - 2x}{x^2}$
8	$\lim_{x \to 0} \frac{\sqrt{1 - 2x} + x - 1}{1 - \cos x}$	23	$\lim_{x \to 0} \frac{2x^2 + \ln(1+2x) - 2x}{x^3}$
9	$\lim_{x \to 0} \frac{e^{2x} - 1 - 2x - 2x^2}{x^3}$	24	$\lim_{x \to 0} \frac{x^2}{\sqrt{1 + 2x^2} - e^{-2x} - 2x}$
10	$ \lim_{x \to 0} \frac{x^3}{x^2/2 + \sin x + \ln(1-x)} $	25	$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x^3}$
11	$\lim_{x \to 0} \frac{\sqrt{1 + 3x^2} - e^{-x} - x}{x^2}$	26	$\lim_{x \to 0} \frac{x^2}{e^{-2x} + 2\sin x - 1}$
12	$\lim_{x \to 0} \frac{x^2/2 + x + \ln(1-x)}{2x^3}$	27	$ \lim_{x \to 0} \frac{x^3}{\ln(1 - 2x) + e^{2x} - 1} $
13	$\lim_{x \to 0} \frac{x - \sin x}{e^x - 1 - x - x^2/2}$	28	$\lim_{x \to 0} \frac{x^3}{e^{2x} - e^{-2x} - 4x}$
14	$\lim_{x \to 0} \frac{x^3}{\ln(1 - 2x) + 2x + 2x^2}$	29	$\lim_{x \to 0} \frac{\sqrt{1+x^2} - \ln(1+x) + x - 1}{x^2}$
15	$\lim_{x \to 0} \frac{x^2}{\sqrt{1 - 2x^2 - e^x + x}}$	30	$\lim_{x \to 0} \frac{e^x - \sin x - 1 - x^2/2}{x^3}$

ЗАДАЧА 12. Построить график функции $y = \frac{ax^3 + bx^2 + cx + d}{x^2 + px + q}$.

$N_{\overline{0}}$	a	b	c	d	p	q	$N_{\overline{0}}$	a	b	c	d	p	q
1	1	1	0	-1	0	-1	16	2	-1	-1	6	1	-6
2	1	2	0	-2	0	-1	17	-2	1	-1	-2	-1	-1
3	1	1	0	-4	0	-4	18	3	3	-3	-6	-1	-2
4	1	1	-3	2	-3	2	19	-3	-4	-4	24	1	-6
5	1	1	-1	-2	-1	-2	20	1	1	1	-2	1	-2
6	-1	0	0	0	2	1	21	-1	2	2	-4	1	-2
7	1	-2	0	0	-2	1	22	-1	-1	-3	-2	3	2
8	-1	0	0	0	2	1	23	2	-1	3	-2	-3	2
9	1	-1	0	0	2	1	24	2	1	-4	3	-4	3
10	1	3	3	1	-2	1	25	-2	-1	2	3	-2	-3
11	-1	2	0	-6	0	-3	26	-2	-4	-8	12	2	-3
12	-2	2	0	-6	0	-3	27	-2	-3	-12	- 9	4	3
13	2	-1	0	2	0	-2	28	-2	-2	10	-12	-5	6
14	-3	2	0	-6	0	-3	29	3	4	-4	-24	-1	-6
15	3	-2	0	2	0	-1	30	1	3	15	18	5	6

ЗАДАЧА 13. Построить график функции y(x):

$N_{\overline{0}}$	y(x)	$N_{\overline{0}}$	y(x)	$\mathcal{N}_{\overline{0}}$	y(x)	$N_{\overline{0}}$	y(x)
1	$\sqrt[3]{x^2-1}$	2	$x\sqrt[3]{x+3}$	3	$\sqrt[3]{(x^2-1)^2}$	4	$x^2\sqrt[3]{x+1}$
5	$\sqrt[3]{(x^2-2)^4}$	6	$x\sqrt[5]{x+1}$	7	$\sqrt[3]{(x^2-1)^5}$	8	$x^2\sqrt[5]{x+2}$
9	$\sqrt[4]{(x^2-9)^3}$	10	$x^{1/2}\sqrt{x+1}$	11	$\sqrt[4]{(x^2-4)^3}$	12	$x^{1/2}\sqrt{(x+1)^3}$
13	$\sqrt[5]{(x^2-3)^4}$	14	$x\sqrt{x-1}$	15	$\sqrt[5]{(x^2-1)^3}$	16	$x^2\sqrt{x-2}$
17	$\sqrt[5]{(x^2-1)^2}$	18	$x\sqrt{1-x}$	19	$\sqrt[5]{(x^2-1)^6}$	20	$\sqrt[4]{x^2-1}$
21	$\sqrt[6]{(x^2-4)^7}$	22	$\sqrt[4]{x^3(x+1)}$	23	$\sqrt[6]{(x^2-9)^5}$	24	$\sqrt[4]{x(x-2)^2}$
25	$\sqrt[7]{(x^2-4)^6}$	26	$(x-1)\sqrt[3]{x^2}$	27	$\sqrt[7]{(x^2-9)^8}$	28	$\sqrt[3]{x^2 - 3x}$
29	$\sqrt[9]{(x^2-16)^5}$	30	$x(x^2-1)^{-1/3}$				

ЗАДАЧА 14. Построить график функции.

1	$y = (2x+3)e^{-2x-2}$		$y = e^x \cos x$
2	$y = \sqrt[3]{x^2}e^{-x}$	17	$y = \frac{e^{2x+2}}{2x+2}$
3	$y = xe^{-x^2}$		$y = \frac{\ln x}{\sqrt{x}}$
4	$y = \sqrt{x^3} \ln x$	19	$y = (3 - x)e^{x - 2}$
5	$y = \frac{x}{\ln x}$	20	$y = \ln \frac{1+x}{1-x}$
6	$y = xe^{-x}$	21	$y = e^{1/x^2}$
7	$y = e^{1/x} - x$	22	$y = xe^{1/(2-x)}$
8	$y = x^2 - \ln x $	23	$y = (2x+5)e^{-2x-4}$
9	$y = e^{1/(x^2 - 4x + 4)}$	24	$y = 2\ln\left(1 - \frac{4}{x}\right) - 3$
10	$y = (1+x)e^{1/x}$	25	$y = 4\ln\frac{x}{x+2} + 1$
11	$y = e^{-x} \sin x$	26	$y = x \left(2 - \ln x\right)^2$
12	$y = 3\ln\frac{x}{x-3} - 1$ $y = \frac{e^2 - x}{x-3}$	27	$y = x^3 e^{-x}$
13	$y = \frac{e^2 - x}{2 - x}$	28	$y = \frac{\sqrt{x}}{\ln x}$
	$y = 3 - 3\ln\frac{x}{x+4}$	29	$y = 2\ln\frac{x+3}{x} - 3$
	$y = xe^{1/(x-1)}$	30	$y = \frac{e^x - 3}{2x + 7}$

ЗАДАЧА 15. Построить линию, заданную уравнением $\rho=f(\varphi)$ в полярных координатах ($\rho\geq 0,\ 0\leq \varphi\leq 2\pi$).

$N_{\overline{0}}$	$f(\varphi)$	$N_{\overline{0}}$	$f(\varphi)$	$\mathcal{N}^{\underline{o}}$	$f(\varphi)$
1	$\cos(3\varphi + \pi/4)$	11	$\sqrt{\cos(\pi+\varphi)}$	21	$4(1-\cos 4\varphi)$
2	$1 + \cos \varphi$	12	$7(1+\sin\varphi)$	22	$2 + \cos \varphi$
3	$2 + \sin \varphi$	13	$4\cos 2\varphi$	23	$2\sin\varphi$
4	$4\operatorname{tg}(\varphi/2)$	14	$\sin(\varphi/2)$	24	$\cos(\varphi/2)$
5	$2\cos 3\varphi$	15	$2\sin 3\varphi$	25	$5(2-\cos\varphi)$
6	$3\sqrt{\cos 2\varphi}$	16	$3(2-\sin\varphi)$	26	$\sqrt{\sin(-2\varphi)}$
7	$1 + \cos^2 2\varphi$	17	$2 + \sin^2 2\varphi$	27	$2 \operatorname{tg} \varphi$
8	$5(1-\cos 2\varphi)$	18	$1 - \sin 2\varphi$	28	$3\cos^2 2\varphi$
9	$2(1+\sin 3\varphi)$	19	$\sqrt{4\cos\varphi}$	29	$3 + 2\cos\varphi$
10	$\sin^2 2\varphi$	20	$5(1+\cos3\varphi)$	30	$4\sin^2 3\varphi$

ЗАДАЧИ 16,17. Вычислить приближенно указанные величины.

$N_{\overline{0}}$	Задача16	Задача17	$\mathcal{N}_{\overline{0}}$	Задача16	Задача17
1	$\sqrt{10}$	$\log_6 37$	16	$ctg 46^{\circ}$	$\sqrt[4]{257}$
2	$\log_3 10$	tg 44°	17	$\sqrt{99}$	$5^{2.1}$
3	$tg46^{\circ}$	$\sqrt{37}$	18	$4^{1.8}$	arcctg 0.9
4	$\sqrt[3]{28}$	$3^{3.2}$	19	arcctg 0.1	$\sqrt[4]{255}$
5	$3^{2.1}$	arctg 0.9	20	$\sqrt[3]{63}$	$\sin 27^{\circ}$
6	arctg 0.1	$\sqrt{35}$	21	$ctg47^{\circ}$	$\log_4 257$
7	$\sqrt[4]{82}$	$\sin 29^{\circ}$	22	$\log_5 124$	$\sqrt[4]{626}$
8	$\sin 31^{\circ}$	$\log_6 35$	23	$\sqrt[3]{126}$	$5^{1.9}$
9	$\log_3 8$	$\sqrt{50}$	24	$4^{3.1}$	$\sin 26^{\circ}$
10	$\sqrt{8}$	$3^{2.8}$	25	$ctg 44^{\circ}$	$\sqrt[4]{624}$
11	3 ^{1.9}	$\sin 28^{\circ}$	26	$\sqrt[3]{124}$	$5^{2.8}$
12	$\cos 61^{\circ}$	$\sqrt{48}$	27	$5^{3.2}$	$\log_4 255$
13	$\sqrt{17}$	$5^{2.9}$	28	$\log_6 217$	$\sqrt[4]{83}$
14	$3^{2.2}$	$\log_3 28$	29	$\sqrt[3]{29}$	$\log_5 626$
15	$\log_4 17$	$\sqrt{63}$	30	$\log_3 82$	$\cos 63^{\circ}$

ЗАДАЧА 18. Вычислить частные производные первого порядка.

$N_{\overline{0}}$	z = f(x, y)	$N_{\overline{0}}$	z = f(x, y)
1	$z = x^3 + y^3 + 3x/y$	16	$z = \ln(1 + x/y)$
2	$z = \sqrt{x^2 - y^2}$	17	$z = \cos(y + \sin x)$
3	$z = \arctan\left(\frac{x+y}{1-xy}\right)$	18	$z = \ln \operatorname{tg}(y/x)$
4	$z = \sin(x + \cos y)$	19	$z = xy\sin(xy)$
5	$z = x^2 \ln(x+y)$	20	$z = x^4 \cos^2 y$
6	$z = e^{x/y}$	21	$z = e^{\sin(y/x)}$
7	$z = \ln \cos \left(y/x \right)$	22	$z = \frac{xy}{\sqrt{x^2 + y^2}}$
8	$z = \ln \operatorname{tg}(x - y)$	23	$z = x\cos(x+y)$
9	$z = e^{\left(x^3 + y^2\right)^2}$	24	$z = e^x \cos y$
10	$z = x^3 + 4x^2y^2 - y^4$	25	$z = x^3 + 2y^2 - 2y^3x^2$
11	$z = x\sin(2x + 3y)$	26	$z = y^x$
12	$z = \cos\left(x^2\right)/y$	27	$z = \ln \operatorname{tg}\left(x/y\right)$
13	$z = \ln\left(x^2 + y\right)$	28	$z = x^3 \sin y + y^3 \cos x$
14	z = xy + y/x	29	$z = \operatorname{tg}\left(y^2/x\right)$
15	$z = x^2 \sin^4 y$	30	$z = y \ln \left(x^2 - y^2\right)$

ЗАДАЧА 19. Вычислить смешанные производные второго порядка и проверить, что они равны.

$N_{\overline{0}}$	z = f(x, y)	$\mathcal{N}^{\underline{o}}$	z = f(x, y)
1	$z = e^{xy(x^2 + y^2)}$	16	$z = 2x^2y + 3xy^2 + x^3$
2	$z = \arcsin \frac{x}{\sqrt{x^2 + y^2}}$	17	$z = x^2/y^2 - y/x$
3	$z = (x^2 + y^2) \cdot e^{x + y}$	18	$z = \frac{x}{\sqrt{x^2 + y^2}}$
4	$z = x \ln(x^3 y^2)$	19	$z = \sqrt{2xy + y^2}$
5	$z = \frac{x^2 - y^2}{x^2 + y^2}$	20	$z = y \ln \left(x^2 - y^2 \right)$
6	$z = \arctan\left(\frac{y}{1+x^2}\right)$	21	$z = \arctan(y/x) + \arctan(x/y)$
$N_{\overline{0}}$	z = f(x, y)	$\mathcal{N}^{\underline{o}}$	z = f(x, y)
7	$z = \frac{xy}{x+y}$	22	$z = e^x(\cos y + x\sin y)$
8	$z = e^x(x\sin y + y^2)$	23	$z = x^y$
9	$z = \frac{x+y}{x-y}$	24	$z = x \ln \left(y/x \right)$
10	$z = \operatorname{arcctg}\left(x/y^2\right)$	25	$z = e^{x+y}(x\cos y + y\sin x)$
11	$z = \sin\left(x^2\right)/y$	26	$z = \ln\left(x^2 + xy + y^2\right)$
12	$z = x \arctan\left(\frac{y}{y - x}\right)$	27	$z = \sin\left(x^2 - y^3\right)$
	$z = \operatorname{tg}\left(x^2/y\right)$	28	$z = e^{3x^2 + 2y^2 - xy}$
14	$z = \arctan\left(\frac{x+y}{1-xy}\right)$	29	z = xy + x/y
15	$z = \ln \sqrt{x^2 + y^2}$	30	$z = xy\sin\left(x - y^2\right)$

ЗАДАЧА 20. Найти и исследовать точки экстремума функции.

1	$u = 2x^2 + y^2 + z^2 - xy + 2z - 3x + 4y$
2	$u = x^2 + 3y^2 + z^2 - xz - 2x + 3y$
3	$u = 3xy + 5xz - 8yz - 9x^2 - 6y^2 - 11z^2$
4	$u = yz - 2xy - 4x^2 - 3y^2 - z^2 - 8x$
5	$u = x^2 + y^2 + 2z^2 + yz + 2z - 3y$
6	$u = 2x^2 + \frac{3}{2}y^2 + z^2 - xy + 2xz + yz - y + 2z$
7	$u = xz + yz - 2xy - 5x^2 - y^2 - 3z^2 + 6z$
8	$u = 2x^2 + y^2 + 3z^2 + xy + xz - 4x - 2y + z$
9	$u = x^2 + \frac{3}{2}y^2 + 2z^2 + xy + xz - 4x - 2y + z$
10	$u = \frac{1}{2}xy + xz - 2yz - x^2 - y^2 - 5z^2 - 2x + 4y$
11	$u = 2x^2 + y^2 + \frac{3}{2}z^2 - xz + 2xy + yz - 3y$
12	$u = 5x^2 + y^2 + 5z^2 + 2xy - xz - \frac{1}{2}yz - 10x$
13	$u = 5x^2 + y^2 + 5z^2 + 2xy - xz - yz - 4x + 2y$
14	$u = xy + xz - 2yz - 4x^2 - y^2 - 5z^2 - 2y$
15	$u = xy - 2x^2 - y^2 - z^2 - 2z + x - 4y$
16	$u = xz - x^2 - 3y^2 - z^2 + x - 6y + z$
17	$u = 2x^2 + y^2 + 3z^2 + 2xz - 4y + 2x$
18	$u = 2yz - 2xy - 3x^2 - 4y^2 - 5z^2 + 6x$
19	$u = x^2 + 5y^2 + z^2 + 2xy - xz - yz - 10y$
20	$u = x^2 + xy + 2y^2 + 4yz + 5z^2 - 4z$
21	$u = 2xz + 4yz - 2xy - 2x^2 - 5y^2 - 5z^2 - 4x$
22	$u = 2xy + 2xz - 5x^2 - 6y^2 - 4z^2 - 8z$
23	$u = 3x^2 + 4y^2 + 5z^2 + 2xy - 2yz - 8y$
24	$u = 4x^2 + 6y^2 + 5z^2 - 2xz - 2yz + 10z$
25	$u = 9x^2 + 6y^2 + 11z^2 - 3xy - 5xz + 8yz$
26	$u = x^2 + 17y^2 + 3z^2 + 2xy - xz - 7yz$
27	$u = xz + 7yz - 2xy - x^2 - 17y^2 - 3z^2$
28	$u = 3xy + 5xz - 8yz - 9x^2 - 6y^2 - 11z^2$
29	$u = 2x^2 + y^2 + 3z^2 + xy + xz - 4x - 2y + z$
30	$u = 5x^2 + y^2 + z^2 + 2xy - xz - \frac{1}{2}yz - 10x$

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ К ЭКЗАМЕНУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

- 1. Определение предела последовательности. Подпоследовательность, частичный предел.
- 2. Критерий Коши. Свойства сходящихся последовательностей. Теорема о пределе промежуточной последовательности.
- 3. Определение предела функции. Теорема о пределе промежуточной функции. Первый замечательный предел.
- 4. Бесконечно малые функции. Теорема о связи бесконечно малых и бесконечно больших функций.
- 5. Теорема о пределе произведения бесконечно малой и ограниченной функций.
- 6. Второй замечательный предел. Раскрытие неопределенностей 0^0 , ∞^0 , 1^∞ .
- 7. Сравнение бесконечно малых. Эквивалентность бесконечно малых. Основные эквивалентности.
- 8. Теорема о разности эквивалентных бесконечно малых. Теорема о замене эквивалентности в пределе отношения.
- 9. Непрерывность функции в точке. Теорема о непрерывности арифметических действий, о непрерывности сложной функции.
- 10. Непрерывность функции на отрезке. Свойства функций, непрерывных на отрезке.
- 11. Точки разрыва и их классификация.
- 12. Производная, ее геометрический и механический смысл.
- 13. Теорема о связи непрерывности и дифференцируемости.
- 14. Арифметические действия с производными.
- 15. Таблица производных.
- 16. Производные сложной и обратной функций.

- 17. Дифференциал, его связь с производной, геометрический смысл, инвариантность.
- 18. Теорема Ролля, ее геометрический смысл.
- 19. Теорема Лагранжа, ее геометрический смысл. Теорема Коши.
- 20. Правило Лопиталя.
- 21. Многочлен Тейлора, формула Тейлора.
- 22. Остаточный член формулы Тейлора в формах Пеано и Лагранжа.
- 23. Локальный экстремум функции одного переменного. Необходимое и достаточное условия экстремума.
- 24. Геометрический смысл второй производной. Точки перегиба.
- 25. Асимптоты графика функции. Существование наклонной асимптоты.
- 26. Частные производные функции нескольких переменных. Теорема о равенстве смешанных производных.
- 27. Дифференцируемость функции нескольких переменных. Дифференциал.
- 28. Локальный экстремум функции нескольких переменных. Необходимое условие экстремума.

Вопросы к экзамену могут быть уточнены и дополнены лектором потока.