MİKROİŞLEMCİ SİSTEMLERİ (Kısa Sınav)

1- 8 bitlik bir mikroişlemcide aşağıda sıralanan aritmetik ve lojik işlemlerin herbirinin sonunda A (Akümülatör) değişkeninin alacağı değeri 16'lık sayı düzeninde hesaplayınız.

a) MOV A,#100D ; $A=(100)_{10}$ ANL A,#0FH ; $\Rightarrow A=(???)_{16}$

b) MOV A,#100D ; $A=(100)_{10}$ XRL A,#00110011B ; $\Rightarrow A=(???)_{16}$

c) MOV A,#100D ; A=(100)₁₀ SETB C ; C=1

RLC A,#00110011B ; \Rightarrow A= (???)₁₆

d) MOV A,#0AAH ; $A=(AA)_{16}$

RR A

ORL A,#00010001B ; \Rightarrow A= (???)₁₆

e) MOV A,#10D ; A=(10)₁₀ MOV R0,#20D ; R0=(20)₁₀

CEVRIM: INC A

DJNZ R0,CEVRIM

; \Rightarrow A= (???)₁₆

f) MOV A,#200D ; $A=(200)_{10}$

MOV R0,#3

CEVRIM: RR A

DJNZ R0,CEVRIM ; \Rightarrow A= (???)₁₆

2- R0 ve R1 8 bitlik iki değişkendir. Bu iki değişkenin düşük anlamlı dört bitlerini (nibble) alarak 8 bitlik A değişkeni içine yerleştiren komut dizisini yazınız.

 $(\ddot{O}rnek : R0=(abcdefgh)_2, R1=(ijklmnop)_2 \Rightarrow A=(mnopefgh)_2$ ile sonuçlanmalıdır)

3- 8 bitlik bir A değişkenine BCD (ikili kodlu ondalık sayı) iki haneli bir sayı atanmıştır. A'nın düşük ve yüksek anlamlı 4 bitlik bölümlerinde kayıtlı ondalık sayılara karşı düşen ASCII kodlarını R1 ve R0 değişkenlerine atayan komut dizisini yazınız.

Örnek:

MOV A,#89H; A=(89)16 => BCD= (89)10
???
???
.....
????; ; R0=(39)₁₆, R1=(38)₁₆

NOT: 1.sorunun her şıkkına ilişkin yanıtı kutu içine alınız.