Modélisation Numérique en Physique (MNP) UE LU2PY(2-4)22

Pacôme Delva

Sorbonne Université

22 septembre 2020

Contacts

Responsable

Pacôme DELVA (pacome.delva@sorbonne-universite.fr) Tél. 01 40 51 22 86

Gestionnaire pédagogique

```
Corinne Sandanassamy
(corinne.sandanassamy@sorbonne-universite.fr)
Couloir 23/33 — Étage 1 — Porte 112
Tél. 01 44 27 89 98
```

Le calcul numérique

Un enjeu économique, scientifique et industriel

- La météorologie : un des utilisateurs civils les plus importants : les prévisions—recherches sur le réchauffement climatique
- La matière condensée, les matériaux et les nanosciences en physique et en chimie : une variété incroyable de problèmes mettant en jeu un grand nombre d'atomes.
- Les sciences de la vie : au niveau microscopique molécules énormes, extraordinairement complexes.
- Les sciences de l'ingénieur : les simulations aérodynamiques pour prévoir—optimiser les caractéristiques d'un avion. EDF développe des calculs souvent très lourds.
- La finance : recrute des scientifiques capables de modéliser sur ordinateur.

La modélisation numérique en physique

C'est quoi un modèle?

Un cadre représentatif, idéalisé et ouvert, reconnu approximatif et schématique mais jugé fécond par rapport à un but donné : prévoir, agir sur la nature, la connaître mieux, etc...

Exemple:

- Modèle de Maxwell (gaz parfait): gaz = composé de petites sphères rigides qui s'entrechoquent comme des boules de billards, et dont le mouvement peut être décrit grâce aux lois de Newton (température, pression)
- Fluide visqueux et conducteur de chaleur : on prend en compte la taille des molécules et leurs collisions (viscosité, diffusivité)
- Changement de phase gaz-liquide : interactions entre molécules (van der Waals, 1873) (évaporation, condensation, ébullition)

Remarques sur les modèles

- Basés sur des simplifications des faits
- Étape clé dans la modélisation : choix des objets
- Domaine de validité limité
- Pas forcément correspondance entre éléments du modèle et faits observés (molécules idéalisées de Maxwell)
- Modèle + mathématiques = prédictions quantitatives de faits virtuels
- Les modèles complexes nécessitent un très grand nombre d'opérations, et de résoudre des équations qui n'ont pas de solution analytique
 ⇒ méthodes numériques

Objectifs d'apprentissage de l'UE

Science des données

- Les bases de Python
- Python intermédiaire

Modélisation

- Représentation numérique
- Modèle numérique
- Méthodes numériques

Gestion de projet

- Organisation
- Relationnel
- Communication

Équipe pédagogique

4 enseignant-chercheurs, 5 groupes de TP

Moodle

https://moodle-sciences.upmc.fr/moodle-2020/course/view.php?id=2841

Salles de Capsule : Bâtiment de l'Atrium

http://www.capsule.sorbonne-universite.fr/fr/sallesequipees

Équipe pédagogique

Attention : Vérifiez votre salle sur le planning, elle peut changer d'une séance à l'autre

https://moodle-sciences.upmc.fr/moodle-2020/pluginfile.php/377007/mod_resource/content/1/EdT_detailles_2020_2021_Salles.pdf

Groupe	Enseignant	Horaires
PM1	Olivier MARTINEAU	Lundi 9h00-12h00 Mardi 14h00-17h00 2h de travail à la maison
PM2	Johan BISCARAS	
PM3	Pacôme DELVA	
PM4	Nicolas RAMBAUX	Mardi 9h00-12h00 Mercredi 9h00-12h00 2h de travail à la maison
PM5	Pacôme DELVA	

Organisation de l'UE

Le langage Python (2 semaines)

- Fondamentaux du langage et de quelques modules scientifiques : Numpy, Pandas et Matplotlib
- Très peu de physique, du cours, des exercices corrigés très simple et beaucoup d'autoévaluation

Modélisation numérique en physique (6 semaines)

- 6 thématiques de physique numérique (1/semaine)
- illustrations tirées de la physique de L1 et L2
- 1 partie cours/exercices, 1 partie mini-projet

Projet (5 semaines)

Un projet numérique très libre en équipe

Python : c'est quoi?

Python est un langage portable, extensible, gratuit, qui permet différentes approches de la programmation. Python est développé depuis 1989 par Guido van Rossum et de nombreux contributeurs bénévoles.

- Python est portable : on peut l'installer sur beaucoup de systèmes d'exploitation différents
- Python est gratuit : cependant on peut l'utiliser dans des projets commerciaux
- Python convient pour de petits scripts (=programmes) aussi bien que pour des programmes très complexes
- La syntaxe de Python est simple et utilise des types de données évoluées → programmes compacts et lisibles
- Python est extensible : facilement interfaçable avec des programmes d'autres langages (C, Fortran, ...)
- De nombreuses bibliothèques de programmes ou modules sont développés pour différents domaines (plusieurs milliers!)

Pacôme Delva (SU) MNP - 2020/2021 22 septembre 2020 10 / 23

Le langage Python

Modules d'apprentissage (semaines 1 et 2)

Suite de 11 modules de \sim 1h30, sous la forme de Notebooks Jupyter, contenant du cours, des illustrations, et des petits exercices.

Les bases de Python

- Première prise en main de Python
- Les listes Python
- Fonctions et modules
- Le module Numpy
- Les fonctions de Numpy
- Le module Matplotlib

Python intermédiaire

- Dictionnaires et Pandas
- Logique, structures de contrôle et filtrage

11/23

- Itération
- Fonctions
- Entrées-sorties

Jupyter Notebooks

Jupyter permet de réaliser des calepins ou notebooks, c'est-à-dire des programmes contenant à la fois du texte et du code informatique. Ces calepins sont utilisés en science des données pour explorer et analyser des données.

Pacôme Delva (SU) MNP – 2020/2021 22 septembre 2020 12 / 23

Comment utiliser Jupyter Notebook?

Dans les salles Capsule

Ouvrir une session Windows : dans *Outils*, choisir *Jupiter Notebooks* ou bien *Jupyter Lab*

À la maison

- Avec le bureau virtuelle de Capsule, vous avez accès à votre environnement et vos fichiers comme en salle de cours : https://lutes.upmc.fr/bdl-ext.php
- Vous pouvez installer Jupiter Notebooks sur votre ordinateur personnel. Cependant, il vous faut un moyen d'accéder à vos fichiers (Moodle, SSH, clé USB, etc...) → pour utilisateur avancé

Les calepins de l'UE

Télécharger les calepins de l'UE

- Vous pouvez télécharger tous les calepins de l'UE en une fois, au début de l'année, avec le lien suivant https://github.com/phys-mod/site/tree/master/source/ notebooks/notebooks.zip
- Ces calepins ne contiennent pas les solutions aux exercices
- Ce sont dans ces calepins que vous travaillerez et que vous sauverez votre travail
- Ces calepins sont personnels et non évalués par l'enseignant

Corrections des calepins

- Les corrections des calepins sont disponible sur le site internet : https://phys-mod.readthedocs.io
- Ces corrections vous servent, une fois que vous avez réaliser les exercices, à vous auto-évaluer

14 / 23

La gestion de votre apprentissage

Gestion des tâches et du progrès : Trello

- Vous progressez à votre rythme!
- L'enseignant accompagne votre apprentissage grâce à un tableau Trello: https://trello.com/b/agvt2Cmq

Apprentissage du cours

- Les calepins permettent de garder la trace de votre travail cependant...
- Comment retrouver rapidement les concepts et les fonctions appris pendant l'UE?
 - Notes de cours écrites (cahier, répértoire, ...)
 - Notes de cours électroniques (Boostnote, ...)
 - Carte mentale (Mindmeister, ...)

15 / 23

La gestion de votre apprentissage

Evaluation

Pendant la 3ème semaine de cours, vous serez évalué sur les outils mis en place pour gérer votre apprentissage :

- Utilisation de Trello
- Notes de cours

grille d'évaluation

Modélisation numérique en physique (1)

Suite de 6 séquences de physique numérique de \sim 8h (semaines 3 à 8)

- La démarche de modélisation en physique
- 2 Suites et relations de récurrence
- Ajuster un modèle aux données expérimentales

- Dérivation et intégration numérique
- Systèmes d'équations différentielles linéaire
- Systèmes d'équations non-linéaires

17/23

Cours (1h)

- concepts, syntaxe, méthodologie avec des illustrations simples sur Jupyter notebook
- Cours inversé à faire seul à la maison
- Reprise des notions en cours avec l'enseignant si nécéssaire

Modélisation numérique en physique (2)

Entraînement (3h)

 suite d'exercices pour s'entraîner après le cours sur les notions du module sur Jupyter Notebook

Mini-projet individuel (4h)

- résolution de problème sur un sujet physique concret
- préparation de la physique du problème à la maison (1h)
- rédaction d'un compte-rendu à rendre sur Moodle
- pas de corrigé type
- Le compte-rendu est évalué, il est individuel. Un algorithme permet de détecter les similarités et les copier-coller entre tous les groupes et toutes les années de l'UE.

Modélisation numérique en physique (3)

Évaluation formative

- Les corrections des calepins sont disponible sur le site internet : https://phys-mod.readthedocs.io
- Note de gestion du temps d'apprentissage

Évaluation certificative

Notes d'implication dans les mini-projet (6 projets)

Chaque semaine l'enseignant fait un point avec l'étudiant sur l'avancement de son apprentissage ($\lesssim 30~\text{mn}\ /\ \text{\'etudiant}$) : ce qu'il a fait pendant la semaine écoulée et ce qu'il compte faire la semaine qui vient, quelles difficultés il rencontre, . . .

Projet en équipe

Projet (semaines 9 à 12 \sim 35h de travail par étudiant)

- projet numérique mené par un groupe d'étudiants
- sujet libre (propositions si certains manquent d'inspiration)
- gestion de projet : objectifs explicités et suivi actif de l'enseignant

Évaluation

- grille d'évaluation avec objectifs détaillés par semaine
- présentation finale avec évaluation par les pairs

Exemples:

- entrée d'un météoroïde dans l'atmosphère terrestre
- théorie de Landau
- propagation d'une épidémie

- Automate cellulaire "jeu de la vie"
- Modélisation des bouchons
- Réaction chimique
- Collisions

- Chaque note est formée avec une Grille d'évaluation, disponibles sur Moodle
- Note de contrôle continu (40/100)
 - Note de gestion de l'apprentissage (10)
 - Notes de mini-projets (30 = 6×5)
- Note de projet (60/100)
 - Organisation
 - Relationnel
 - Communication
 - Contenu
- Seconde chance : à la fin de l'année, une épreuve de seconde chance viendra remplacer la note de contrôle continu (si elle est meilleure)

Pacôme Delva (SU) MNP – 2020/2021 22 septembre 2020 21/23

Résumé des outils et supports

Jupyter Notebooks

- Site internet avec les calepins (avec les corrections) : https://phys-mod.readthedocs.io/
- Session Windows en salle Capsule : Jupyter Notebook ou Jupyter Lab
- Session Windows avec le bureau virtuelle de Capsule : https://lutes.upmc.fr/bdl-ext.php

Moodle

- devoirs : pour récupérer les mini-projets, retour de l'enseignant
- forum : problème avec le cours ou les outils
- annonces : communication avec les étudiants

Trello

- Gestion du temps de l'apprentissage
- Gestion du projet

22 / 23

À faire avant le prochain cours

- Créer mon compte Trello et rejoindre mon équipe (lien vers la notice)
- Choix d'un outil pour la prise de note
- Faire le 1er calepin Première prise en main de Python grâce au bureau virtuel de Capsule
- Si j'ai un problème, demander de l'aide sur le Forum Moodle

