### Practica de Codificación de fuente



Parte 1 - compresión de imagen - Octave/Matlab

# Entregar un scrip de Matlab/Python que realice las siguientes tareas:

- a) Abrir la imagen lena.tiff, convertir la imagen a niveles de gris, y tres imagenes con únicamente las componente de Rojo, verde y azul respectivamente
- b) amplificar la componente de rojo unicamente a travez de una variable
- c) Realizar un histograma de los niveles de grises de la imagen.
- d) aplicar la DCT a bloques de 8x8 y aplicar distintas matrices de cuantización y observar la variación de la calidad de la imagen.

#### Parte 2

# Entregar un scrip de Matlab/Python que realice las siguientes tareas:

a) Restar los cuadros adyacentes de Minions.gif contenidos en el Minions.zip y estudiar el histograma del cuadro resultante.

Notas: tener en cuenta

https://la.mathworks.com/help/matlab/ref/imread.html https://la.mathworks.com/help/images/ref/dct2.html

https://www.mathworks.com/examples/image/mw/images-ex44409888-image-

<u>compression-with-the-discrete-cosine-transform</u> <u>https://la.mathworks.com/help/images/ref/imhist.html</u>

## Abrir con elecardStreameye el archivo.ts

- a) Que formato de compresión de video tiene y que niveles y perfiles
  - Formato de compresión: H.264
  - Perfil High
  - Nivel 3.0
- b) Que formato de codificación de crominancia/luminancia usa
  - 4:2:0
- c) Como está compuesto el GOP
  - 1 Bloque I
  - 5 grupos de 3 bloques B seguidos de un bloque P
  - 3 bloques B
- d) tomar el primer GOP y analizar los PTS-DTS de cada cuadro y explicar el orden de codificación y decodificación

| Cuadro | PTS          | DTS          |
|--------|--------------|--------------|
| l .    | 00:18:35:168 | 00:18:34:968 |
| B1     | 00:18:35:088 | 00:18:35:008 |
| B2     | 00:18:35:048 |              |
| B3     | 00:18:35:128 | 00:18:35:088 |
| P1     | 00:18:35:328 | 00:18:35:128 |
| B4     | 00:18:35:248 | 00:18:35:168 |
| B5     | 00:18:35:208 |              |
| B6     | 00:18:35:288 | 00:18:35:248 |
| P2     | 00:18:35:488 | 00:18:35:288 |
| B7     | 00:18:35:408 | 00:18:35:328 |
| B8     | 00:18:35:368 |              |
| В9     | 00:18:35:448 | 00:18:35:408 |
| P3     | 00:18:35:648 | 00:18:35:448 |
| B10    | 00:18:35:568 | 00:18:35:488 |
| B11    | 00:18:35:528 |              |
| B12    | 00:18:35:608 | 00:18:35:568 |
| P4     | 00:18:35:808 | 00:18:35:608 |
| B13    | 00:18:35:728 | 00:18:35:648 |
| B14    | 00:18:35:688 |              |
| B15    | 00:18:35:768 | 00:18:35:728 |
| P5     | 00:18:35:968 | 00:18:35:768 |
| B16    | 00:18:35:888 | 00:18:35:808 |
| B17    | 00:18:35:848 |              |
| B18    | 00:18:35:928 | 00:18:35:888 |

# **TimeStamp** Acción 00:18:34:968 Decodifico I 00:18:35:008 Decodifico B1 00:18:35:048 Presento B2 00:18:35:088 Presento B1 y Decodifico B3 00:18:35:128 Presento B3 y Decodifico P1 00:18:35:168 Presento I y Decodifico B4 00:18:35:208 Presento B5 00:18:35:248 Presento B4 y Decodifico B6 00:18:35:288 Presento B6 decodifico P2 00:18:35:328 Presento P1 y Decodifico B7 00:18:35:368 Presento B8 00:18:35:408 Presento B7 y Decodifico B9 00:18:35:448 Presento B9 y Decodifico P3 00:18:35:488 Presento P2 y Decodifico B10 00:18:35:528 Presento B11 00:18:35:568 Presento B10 y Decodifico B12 00:18:35:608 Presento B12 y Decodifico P4 00:18:35:648 Presento P3 y Decodifico B13 00:18:35:688 Presento B14 00:18:35:728 Presento B13 y Decodifico B15 00:18:35:768 Presento B15 y Decodifico P5 00:18:35:808 Presento P4 y Decodifico B16 00:18:35:848 Presento B17 00:18:35:888 Presento B16 y Decodifico B18 00:18:35:928 Presento B18 y Decodifico I2 00:18:35:968 Presento P5 y Decodifico B19

#### Parte 3 - Capa de sistema MPEG

Abrir con elecardStreamAnalyzer el archivo.ts

identificar todos los programas con sus PID y Construir la tabla PAT y PMT

| PAT (PID = 0x0000) |              |
|--------------------|--------------|
| Programa           | PID          |
| 2624               | 0x101(257)   |
| 2625               | 0x102(258)   |
| 2626               | 0x103(259)   |
| 2627               | 0x104(260)   |
| 2628               | 0x1FC8(8136) |

| PMT-2624 (PID=0x101) |       |            |
|----------------------|-------|------------|
| PES1                 | Video | 0x110(272) |
| PES2                 | Audio | 0x111(273) |
|                      |       |            |

| PMT-2625 (PID=0x102) |       |            |
|----------------------|-------|------------|
| PES1                 | Video | 0x120(288) |
| PES2                 | Audio | 0x121(289) |

| PMT-2627 (PID=0x104) |       |            |
|----------------------|-------|------------|
| PES1                 | Video | 0x110(272) |
| PES2                 | Audio | 0x111(273) |

| PMT-2626 (PID=0x103) |       |            |
|----------------------|-------|------------|
| PES1                 | Video | 0x130(304) |
| PES2                 | Audio | 0x131(305) |

#### Explicar la cabecera de un PES



La cabecera de un PES contiene obligatoriamente

- Payload\_unit\_start\_indicator(3 bytes) indica que ese PES es el comienzo
- stream\_id (1 byte) que indica ids de audio o video dependiendo a que corresponda el PES.
- PES\_packet\_length (2 bytes) que indica la cantidad de bytes que quedan en el paquete luego de ese campo. Puede ser cero, y cuando es cero significa que el paquete puede tener cualquier longitud. Solo se permite usar PES\_packet\_length = 0 cuando el payload sea un elementary stream de video.

Otros datos opcionales del header incluyen:

- data\_alignment\_indicator (1 bit) cuando está en 1 significa que el PES packet está automaticamente seguido del video start code
- PTS DTS flags (2 bits) indica si el paquete trae PTS y DTS.
  - 0 significa que no trae ninguna de las dos
  - 1 no está permitido

0

- 2 el paquete solo trae PTS
- 3 el paquete trae ambas PTS y DTS

## identificar el PCR de un programa

En el transport packet con PID = 0x301 se recibe el PCR del programa 2426. Se puede observar que este paquete tiene un  $PCR_flag$  levantado y la información del PCR en el Adaptation field.

