HOMEWORK 2: WRITTEN EXERCISE PART

1 Information Theory [25/4 pts]

Suppose X, Y are two random variables taking values in a discrete finite set V. Let H(Y) denote the entropy of Y, and let H(Y|X) denote the conditional entropy of Y conditioned on X. Prove that if X, Y are independent, then H(Y) = H(Y|X).

As we know,
$$H(X) = -\sum_{x \in \{x_i, x_2, \dots x_k\}} P(X=x) \log_2 P(X=x)$$
 and, $H(Y|X) = -\sum_{x \in \{x_i, x_2, \dots x_k\}} P(X=x) H(Y|X=x)$ now,

$$H(Y|X = x) = -\sum_{y \in \{y_i, y_2, \dots y_k\}} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

given, X, Y are independent,

$$P(Y = y|X = x) = P(Y = y)$$

$$\implies H(Y|X=x) = -\sum_{y \in \{y_i, y_2, \dots y_k\}} P(Y=y) \log_2 P(Y=y)$$
$$\implies H(Y|X=x) = H(Y)$$

$$\Longrightarrow H(Y|X) = \sum_{x \in \{x_i, x_2, \dots x_k\}} P(X=x) H(Y)$$
 as, $\sum_{x \in \{x_i, x_2, \dots x_k\}} P(X=x) = 1$

$$H(Y|X) = H(Y)$$

2 Standardizing Numeric Features [25/4 pts]

Standardize the data set with four points in 2 dimension: (7,7), (3,7), (3,3), (7,3).

Given,
$$(7,7)$$
, $(3,7)$, $(3,3)$, $(7,3)$

Let us first calculate the mean and standard deviation for this set.

$$\begin{aligned} \operatorname{Mean}(\mathbf{x}) &= \mu(x) = \frac{7+3+3+7}{4} \\ \Longrightarrow &= \frac{20}{4} = 5 \end{aligned}$$

$$\begin{array}{l} \operatorname{Mean}(\mathbf{y}) = \mu(y) = \frac{7+7+3+3}{4} \\ \Longrightarrow = \frac{20}{4} = 5 \end{array}$$

Std. Deviation (x) =
$$\sigma(x) = \sqrt{\frac{(7-5)^2 + (3-5)^2 + (3-5)^2 + (7-5)^2}{4}}$$

 $\implies = \sqrt{\frac{4+4+4+4}{4}} = 2$

Std. Deviation (y) =
$$\sigma(y) = \sqrt{\frac{(7-5)^2 + (3-5)^2 + (3-5)^2 + (7-5)^2}{4}}$$
 $\Longrightarrow = \sqrt{\frac{4+4+4+4}{4}} = 2$

For standardization of a set of points: $(x')_i = (x_i - \mu_i)/\sigma$

$$\implies x_1 = \frac{7-5}{2} = 1, y_1 = \frac{7-5}{2} = 1$$

$$\implies x_2 = \frac{3-5}{2} = 1, y_1 = \frac{7-5}{2} = 1$$

$$\implies x_3 = \frac{3-5}{2} = 1, y_1 = \frac{3-5}{2} = -1$$

$$\implies x_4 = \frac{7-5}{2} = 1, y_1 = \frac{3-5}{2} = -1$$

Standardized points:

$$(1,1), (-1,1), (-1,-1), (1,-1)$$

k-Nearest Neighbors [25/4 pts]

Consider the training data set $x_1 = (7,7), y_1 = 0; x_2 = (3,7), y_2 = 1; x_3 = (3,3), y_3 = 1; x_4 = (7,3), y_4 = 2.$ Suppose the Manhattan distance is used. What is the label for x = (0,0) in the following settings? Show the calculation steps.

- 1. 1-nearest neighbors.
- 2. 3-nearest neighbors.
- 3. 3-nearest neighbors, distance weighted. The weight for the *i*-th neighbor z is $1/d(x,z)^2$.

$$\begin{array}{l} \text{Manhattan Distance} = |x-x_i| \text{ for } x_1, x_2, x_3, x_4 \\ d(x,x_1) = |0-7| + |0-7| = 14 \\ d(x,x_2) = |0-3| + |0-7| = 10 \\ d(x,x_3) = |0-3| + |0-3| = 6 \\ d(x,x_4) = |0-7| + |0-3| = 10 \end{array}$$

- 1. 1-nearest neighbors. For this, d_3 is the lowest distance of all.
 - \implies So nearest neighbors = x_3 .
 - \implies Label for $x = y_3 = 1$
- 2. 3-nearest neighbors. For this, d_2 , d_3 , d_4 are the lowest distance of all.
 - \implies So 3nearest neighbors x_2, x_3, x_4 .
 - $\implies \text{Label for } x = \sum_{i=2}^{4} \gamma(v, y_i); v \in \{1, 2, 3\}$ $\implies \text{Label for } x = 1$
- 3. 3-nearest neighbors, distance weighted.

As we know,
$$w_i = \frac{1}{d(x,x_i)^2}$$

 $w_2 = \frac{1}{d(x,x_2)^2} = \frac{1}{10^2} = \frac{1}{100}$
 $w_3 = \frac{1}{d(x,x_3)^2} = \frac{1}{6^2} = \frac{1}{36}$
 $w_4 = \frac{1}{d(x,x_4)^2} = \frac{1}{10^2} = \frac{1}{100}$

$$\implies l \text{label} = \begin{bmatrix} \frac{1}{100} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{36} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{100} \\ 0 \end{bmatrix}$$

4 Performance Measurements [25/4 pts]

Consider the following confusion matrix for 2 classes.

	actual positive	actual negative
predict positive	76	18
predict negative	24	82

Compute the accuracy, error, true positive rate, false positive rate, precision, and recall.

given, True Positive(TP) = 76 False Positive(FP) = 18 True Negative(TN) = 82 False Negative(FN) = 24 $\text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN} = \frac{76 + 82}{200} = 0.79$ Error = 1 - Accuracy = 1 - 0.79 = 0.21 $\text{True positive rate} = \frac{TP}{actual\ positive} = \frac{TP}{TP + FN} = \frac{76}{76 + 24} = 0.76$ $\text{False positive rate} = \frac{FP}{actual\ negative} = \frac{FP}{FP + TN} = \frac{18}{18 + 82} = 0.18$ $\text{Precision} = \frac{TP}{predicted\ negative} = \frac{TP}{TP + FP} = \frac{76}{76 + 18} = 0.80$

5 Graphs for Part 2 and 3

Recall = $\frac{TP}{actual\ positive} = \frac{TP}{TP+FN} = \frac{76}{76+24} = 0.76$

In both the figures (on next page) for part 2, the accuracy converges as the % of training data used is 100. The same is because, with 100% data, the model is always constant and hence will provide the same set of results for the given testing data.

for HEART data

for DIABETES data

