20 juin 2018

Consignes:

- Répondre aux parties "théorie" et "exercices" sur des <u>feuilles</u> <u>distinctes</u> et <u>numérotées</u> comportant chacune vos <u>nom</u> et prénom.
- Justifier vos réponses.

1. Théorie

- (1) Qu'est-ce qu'une tautologie?
- (2) Décrire les éléments du produit cartésien $A \times B \times C$.
- (3) Qu'est-ce qu'un ensemble dénombrable?
- (4) Donner un code de Gray pour les entiers de 0 à 15.
- (5) Donner la table de multiplication de \mathbb{Z}_8 .
- (6) Énoncer et démontrer le théorème de la division euclidienne dans N.
- (7) Démontrer qu'une matrice carrée est inversible si et seulement si son déterminant est non nul et donner la formule de l'inverse d'une matrice carrée inversible.

2. Exercices

(1) Soient ξ, θ, ψ des propositions dépendant des quatre variables x, y, z et t, données ci-dessous par leurs tables de vérités.

x	y	z	t	 ξ 0 1 0 0 1 1 0 1 1 1 0 1 1 	θ	ψ
0	0	0		0	0	1
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	1	0	0
0	1	0	1	0	1	1
0	1	1	0	0	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	0	0	1
$ \begin{vmatrix} x \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1$	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	$\begin{array}{c} \psi \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$
1	1	1	0	1	1	1
1	1	1	1	1	0	0

Considérons la proposition

$$\varphi \equiv ((\theta \land z) \lor (\psi \Rightarrow x)) \Rightarrow (\xi \land y).$$

- (a) Donner la table de vérité de φ .
- (b) Donner une proposition sous forme normale disjonctive, simplifiée au maximum, équivalente à la formule φ .
- (2) Résoudre les équations suivantes.
 - (a) 23x + 4 = 0 dans \mathbb{Z}_{38} .
 - (b) 6x + 2 = 0 dans \mathbb{Z}_{27} .
 - (c) 4x + 8 = 0 dans \mathbb{Z}_{20} .
- (3) (a) Soit le nombre n dont la représentation en base 7 est 3462. Donner les représentations de n en base 10, 16 et 2.
 - (b) Le nombre 347 est-il inversible dans \mathbb{Z}_{767} ? Si oui, donner son inverse.
 - (c) Calculer le déterminant de la matrice

$$A = \begin{pmatrix} 3 & 1 & 4+i & 5\\ 2 & 1 & 3 & i\\ 1 & 0 & 3 & 1\\ 2 & 2 & i & -1 \end{pmatrix}.$$

(d) Posons $u_0 = 2$ et, pour tout $n \in \mathbb{N}_0$,

$$u_n = \frac{u_{n-1}}{1 + u_{n-1}}.$$

Montrer que $u_n = \frac{2}{2n+1}$ pour tout $n \in \mathbb{N}$.

(4) Discuter et résoudre dans R le système

$$\begin{cases} 2x + my + z &= 3m \\ x - (2m+1)y + 2z &= 4 \\ 5x - y + 4z &= 3m - 2 \end{cases}$$

où m est un paramètre réel. Lors de la discussion, préciser le rang du système.

16 août 2018

Consignes:

- Répondre aux parties "théorie" et "exercices" sur des <u>feuilles</u> <u>distinctes</u> et <u>numérotées</u> comportant chacune vos <u>nom</u> et <u>prénom</u>.
- Justifier vos réponses.

1. Théorie

- (1) Quand dit-on que deux propositions sont logiquement équivalentes ?
- (2) Qu'est-ce qu'une surjection?
- (3) Sur quelle équivalence logique se base la technique de démonstration par contraposition ?
- (4) Donner une condition nécessaire et suffisante pour qu'un élément de \mathbb{Z}_m soit inversible (sans démonstration).
- (5) Démontrer que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- (6) Énoncer le théorème de décomposition en base entière. Démontrer l'unicité de cette décomposition.
- (7) Démontrer qu'une matrice carrée est inversible si et seulement si son déterminant est non nul et donner la formule de l'inverse d'une matrice carrée inversible.

2. Exercices

- (1) Résoudre les équations suivantes.
 - (a) 16x + 3 = 0 dans \mathbb{Z}_{18} .
 - (b) 14x + 3 = 0 dans \mathbb{Z}_{25} .
 - (c) $6x + 15 = 0 \text{ dans } \mathbb{Z}_{21}$.
- (2) (a) Montrer que les nombres 8n+3 et 5n+2 sont premiers entre eux pour tout $n \in \mathbb{N}$. Déterminer l'inverse de 5n+2 dans \mathbb{Z}_{8n+3} .
 - (b) Calculer le déterminant de la matrice

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & i & 1 \\ 0 & 1 & 1 & 1 \\ 3 & 1+i & 0 & 2 \end{pmatrix}.$$

(3) Discuter et résoudre dans \mathbb{R} le système

$$\begin{cases} x+y+z = 1\\ x+2y+4z = \alpha\\ x+4y+10z = \alpha^2 \end{cases}$$

où α est un paramètre réel. Lors de la discussion, préciser le rang du système.

(4) Considérons les deux propositions φ et ψ , dépendant des quatre variables x,y,z et t, données ci-dessous par leurs tables de vérité.

\boldsymbol{x}	y	z	t	φ	ψ
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	1	1
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	0	1
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	0	1
1	1	0	0	0	1
$\begin{array}{c} x \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} y \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	$\begin{array}{c} \varphi \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} \psi \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$
1	1	1	0	1	0
1	1	1	1	1	1

Soit la proposition

$$\theta \equiv (x \Rightarrow (\varphi \land \psi)) \Rightarrow ((\psi \lor y) \land t).$$

Donner une proposition, aussi simple que possible, sous forme normale disjonctive, équivalente à θ .

21 juin 2019

Consignes générales

- Répondre aux parties "théorie" et "exercices" sur des <u>feuilles distinctes</u> et <u>numérotées</u> comportant chacune vos <u>nom</u> et <u>prénom</u>.
- Répondre uniquement sur les feuilles fournies.
- Calculatrices (ou équivalents) non autorisées.
- Justifier vos réponses.

1. Théorie

- (1) Qu'est-ce qu'une assertion logique?
- (2) Sur quelle équivalence logique se base la technique de démonstration par l'absurde?
- (3) Décrire les éléments du produit cartésien $A_1 \times \cdots \times A_k$, où k est un entier plus grand ou égal à 1.
- (4) Qu'est-ce qu'une injection?
- (5) Donner la table de multiplication de \mathbb{Z}_7 .
- (6) Décrire l'algorithme d'Euclide (recherche du PGCD) et démontrer que celui-ci est correct et se termine toujours.
- (7) Le produit matriciel est-il commutatif? Justifier.

2. Exercices

(1) Dans cet exercice, nous identifierons les valeurs de vérité VRAI et FAUX des variables propositionnelles et des propositions aux chiffres binaires 1 et 0, respectivement.

Construire quatre propositions a,b,c,d à partir des variables propositionnelles x,y,z,t de sorte que

- si le nombre représenté en base 2 par xyzt a un inverse dans \mathbb{Z}_{16} , alors abcd est la représentation en base 2 de cet inverse
- si le nombre représenté en base 2 par xyzt n'est pas inversible dans \mathbb{Z}_{16} , alors abcd vaut 0000.

Les propositions a, b, c, d devront être sous forme normale disjonctive et simplifiées au maximum.

- (2) Résoudre les équations suivantes dans \mathbb{Z}_{42} .
 - (a) 16x + 15 = 0.
 - (b) 15x + 18 = 0.
 - (c) 5x + 17 = 0.

(3) (a) Calculer le déterminant des matrices A et B suivantes.

$$A = \begin{pmatrix} 3 & i & -1 \\ 2 & 4 & -i \\ 2 & 2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 4 & 1 \\ 3 & 1 & 3 & 3 & 2 \\ 1 & 2 & 1 & 1 & 1 \\ 4 & -1 & 2 & -1 & -1 \end{pmatrix}$$

(b) La matrice C donnée ci-dessous est-elle inversible? Si oui, calculer son inverse.

$$C = \begin{pmatrix} 3 & 4 & -i \\ 1 & -3 & 4 \\ 2 & -i & 3 \end{pmatrix}$$

(4) Prouver que

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

pour tout $n \ge 1$.

(5) Discuter la compatibilité et le rang du système suivant en fonction du paramètre réel α . Dans les cas où il *n'est pas* de Cramer, le résoudre dans \mathbb{R} .

$$\begin{cases} x + \alpha y + 2z &= \alpha \\ -2x + y + (\alpha - 2)z &= 1 \\ \alpha x + y + 2z &= 2\alpha - 1 \end{cases}$$

19 août 2019

Consignes:

- Répondre aux parties "théorie" et "exercices" sur des <u>feuilles distinctes</u> et <u>numérotées</u> comportant chacune vos <u>nom</u> et prénom.
- Répondre uniquement sur les feuilles fournies.
- Calculatrices (ou équivalents) non autorisées.
- Justifier vos réponses.

1. Théorie

- (1) En logique propositionnelle, qu'appelle-t-on une contradiction? Donner un exemple.
- (2) Quelle est l'équivalence logique qui correspond à la technique de démonstration par disjonction des cas?
- (3) Décrire les éléments du produit cartésien $A \times B \times C \times D$.
- (4) Donner la table d'addition de \mathbb{Z}_7 .
- (5) Qu'est-ce qu'un ensemble dénombrable?
- (6) Démontrer que la composée de deux injections est une injection. En déduire que si A est un ensemble dénombrable et s'il existe une injection d'un ensemble B dans A, alors B est aussi dénombrable.
- (7) Le produit matriciel est-il associatif? Justifier.

2. Exercices

(1) (a) Calculer le déterminant de la matrice suivante :

$$A = \begin{pmatrix} 5 & 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 4 & 1 \\ 3 & 1 & 3 & 3 & 2 \\ 1 & 2 & 1 & 1 & 1 \\ 4 & -1 & 2 & -1 & -1 \end{pmatrix}$$

(b) La matrice complexe B donnée ci-dessous est-elle inversible? Si oui, calculer son inverse.

$$B = \begin{pmatrix} 3 & i & -1 \\ -i & 2 & 1 \\ 4 & 3 & 1 \end{pmatrix}$$

- (c) Calculer l'inverse de 304 dans \mathbb{Z}_{751} .
- (2) Montrer que

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

pour tout $n \geq 1$.

(3) Considérons trois propositions φ, θ et ψ , dépendant des quatre variables propositionnelles x, y, z et t et données ci-dessous par leurs tables de vérité.

x	y	z	t	φ	θ	ψ
0		0	0		1	0
0	0	0	1	0	1	0
0	0	1	0	1	1	0
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	0
1	0	1	0	1	1	0
1	0	1	1	0	1	0
1	1	0	0	1	0	1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1	1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Donner une proposition sous forme normale disjonctive et simplifiée au maximum équivalente à la proposition

$$(\neg(\varphi \lor \psi) \lor \theta) \Rightarrow ((\neg\varphi \lor \theta) \Rightarrow (\psi \land (\theta \lor \varphi))).$$

- (4) Résoudre les équations suivantes.
 - (a) 4x + 8 = 0 dans \mathbb{Z}_{30} .
 - (b) 9x + 16 = 0 dans \mathbb{Z}_{42} .
 - (c) 4x + 10 = 0 dans \mathbb{Z}_{35} .
- (5) Discuter et résoudre dans \mathbb{R} le système suivant, en précisant son rang (ξ est un paramètre réel).

$$\begin{cases} x+y+z &= 1\\ x+2y+4z &= \xi\\ x+4y+10z &= \xi^2 \end{cases}$$