THỰC HÀNH MÔN TOÁN RỜI RẠC

Thời gian : 3 buổi

Ngôn ngữ lập trình : Python, Java, C++

Phần mềm : **Visual Studio Code**, Eclipse, CodeBlocks

Yêu cầu : SV nắm bài trên lớp, có ý tưởng / sơ đồ khối của các thuật toán

Đánh giá : 10% ĐQT.

Chương 1. Các phép đếm cơ bản

```
1. Nhân ma trận. Ví dụ:  \begin{bmatrix} 2 & 0 & -1 \\ 1 & 3 & -2 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 1 & 0 \\ 2 & 3 & -1 & 4 \\ -3 & 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 4 & -1 \\ 12 & 8 & 2 & 10 \end{bmatrix}
```

Cách 1:

```
def matrix_mul(A, B):
     m, n = len(A), len(B)
2
      p = len(B[0])
3
      C = [[0 for j in range(p)] for i in range(m)]
4
     for i in range(m):
         for j in range(p):
6
              for k in range(n):
                  C[i][j] += A[i][k] * B[k][j]
8
      return C
9
10 A = [[2, 0, -1],
   [ 1, 3, -2]]
12 B = [[0, -1, 1, 0],
       [2, 3, -1, 4],
       [-3, 0, -2, 1]
15 matrix_mul(A, B)
```

2. Liệt kê các xâu nhị phân độ dài *n*. Ví dụ: các xâu nhị phân độ dài 3 gồm 000, 001, 010, 011, 100, 101, 110.

Cách 1:

```
import itertools

A = ['0', '1']

list( itertools.product(A, A, A) )
```

Cách 2:

```
def binary_strs(n):
    if n==1:
        return ['0', '1']

S = []

for s in binary_strs(n-1):
        S.append('0' + s)

for s in binary_strs(n-1):
        S.append('1' + s)

return S
binary_strs(3)
```

3. Thuật toán sắp xếp nổi bọt

4. Tính $n! = 1 \cdot 2 \cdot \cdot \cdot \cdot n = n \cdot (n-1)!$. Ví dụ: 3! = 6

Cách 1:

```
1 from sympy import *
2 factorial(3)
```

```
1 def factorial(n):
2    if n == 0:
3        return 1
4    return n * factorial(n-1)
5 P(3)
```

Cách 3:

```
factorial = lambda n: 1 if n==0 else n * factorial(n-1)
```

Cách 4:

```
def factorial(n):
    p = 1
    for i in range(1, n+1):
        p *= i
    return p
```

5. Liệt kê các hoán vị của *n* vật. Ví dụ: các hoán vị của ba số 1, 2, 3 là 123, 132; 213, 231; 312, và 321.

Cách 1:

```
import itertools
list( itertools.permutations([1, 2, 3]) )
```

```
def permutations(a):
      n = len(a)
2
      if n==1:
3
         return [a]
4
      P = []
5
      for i in range(n):
6
          b = a.copy()
          b.pop(i)
8
          for p in permutations(b):
9
               p = [a[i]] + p
10
               P.append(p)
11
      return P
12
permutations([1, 2, 3])
```

```
6. Tính P(n,r) = n(n-1)\cdots(n-r+1) = \frac{n!}{(n-r)!}. Ví dụ: P(5,3) = 60.
```

Cách 1:

```
from sympy import *

n, r = 5, 3
factorial(n) / factorial(n-r)
```

Cách 2:

```
def P(n, r):
    prod = 1
    for i in range(n, n-r, -1):
        prod *= i
    return prod

P(5, 3)
```

7. Liệt kê các chỉnh hợp chập r của n vật. Ví dụ: các chỉnh hợp chập 3 của các số 1, 2, 3, 4 là 123, 124, 132, 134, 142, 143; 213, 214, 231, 234, 241, 243; 312, 314, 321, 324, 341, 342; 412, 413, 421, 423, 431, 432.

Cách 1:

```
import itertools
list( itertools.permutations([1, 2, 3, 4], 3) )
```

```
def permutations(a, r):
      if r == 1:
          return [[i] for i in a]
3
      P = []
      n = len(a)
      for i in range(n):
          b = a.copy()
          b.pop(i)
8
          for p in permutations(b, r-1):
9
               p = [a[i]] + p
10
               P.append(p)
11
      return P
12
permutations([1, 2, 3, 4], 3)
```

```
8. Tính \binom{n}{r} = \frac{n(n-1)\cdots(n-r+1)}{r!} = \frac{n!}{r! (n-r)!}. Ví dụ: \binom{5}{3} = 10
```

Cách 1:

```
from sympy import *

n, r = 5, 3
factorial(n) // factorial(r) // factorial(n-r)
```

Cách 2:

```
1 n, r = 5, 3
2 c = 1
3 for i in range(r):
4     c *= (n - i) // (i + 1)
5 c
```

```
Cách 3: \binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1} với n > r \ge 1, trong đó \binom{n}{0} = \binom{n}{n} = 1
```

```
def binomial(n, r):
    if r==0 or r==n:
        return 1
    return binomial(n-1, r) + binomial(n-1, r-1)
```

Cách 4:

```
binomial = lambda n, r: 1 if r==0 or r==n else binomial(n-1, r) + binomial(n-1, r-1)
```

Cách 5:

```
def pascal_row(n):
    if n == 0:
        return [1]
    a = pascal_row(n-1)
    for i in range(n-1, 0, -1):
        a[i] += a[i-1]
    a.append(1)
    return a

pascal(5)[3]
```

9. Liệt kê tổ hợp chập r của n vật. Ví dụ: các tổ hợp chập 3 của các số 1, 2, 3, 4, 5 là 123, 124, 125, 134, 135, 145; 234, 235, 245, 345.

Cách 1:

```
import itertools
list( itertools.combinations([1, 2, 3, 4, 5], 3) )
```

Cách 2:

```
def combinations(a, r):
      if r == 1:
          return [[i] for i in a]
      if r == len(a):
          return [a]
5
6
      for c in combinations(a[1:], r-1):
          C.append([a[0]] + c)
8
      for c in combinations(a[1:], r):
          C.append(c)
10
      return C
11
12 combinations([1, 2, 3, 4, 5], 3)
```

10.(*) Liệt kê các hoán vị lặp của n_1 vật loại $1, \ldots, n_r$ vật loại r. Ví dụ: các hoán vị lặp của chữ COOL là CLOO, COOL, LCOO, OCLO, OCOL, LOCO, OLCO, OCOL, LOCO, OCOL, LOCO, OCOL, LOCO, OCOL

11. Liệt kê các nghiệm nguyên không âm của phương trình $x_1 + x_2 + \cdots + x_n = r$. Ví dụ: các nghiệm nguyên không âm $x_1x_2x_3$ của phương trình $x_1 + x_2 + x_3 = 4$ là 004, 013, 022, 031, 040, 103, 112, 121, 130, 202, 211, 220, 301, 310, 400

```
def solutions(n, r):
    if n == 1:
        return [[r]]

S = []

for i in range(r+1):
        for s in solutions(n-1, r-i):
            s = [i] + s
            S.append(s)
    return S
```