Machine Learning Models that

Remember Too Much

Congzheng Song, Thomas Ristenpart, Vitaly Shmatikov Cornell Tech

Summarize the paper

- Problem: With the growing popularity of Machine Learning (ML), some dataholders search to apply this technology to their dataset that may contain sensitive data. They may trust a malicious ML Provider and risk a leak of their information.
- Goal: Show that it is possible to extract sensitive information from a trained malicious Machine Learning Model.
- Contribution :
 - ▶ 4 methods to extract sensitive data.
 - Methods to prevent those type of attack.
- Meaning:

We cannot apply blindly Machine Learning to sensitive data.

Contribution of the Paper

- Demonstrate that minor modifications to ML models can allow the extraction of data from their training datasets without affecting the quality of the model by standard ML metrics.
- Gives 4 malicious models which hide training data in their parameters
- Claims that use 3rd-party ML models on sensitive data is risky.

Situations of Machine Learning Use

The popularity of Machine Learning has led to an explosion of ML libraries, framework and services and to the appearance of ML provider and ML marketplace.

	Algorithm Provider	Computation Power Provider	Examples
Libraries	Developers	Data Holders	learn TensorFlow
Cloud Service	Service Operators	Service Operators	Google Prediction Amazon Machine Learning
Platforms/ Marketplace	Algorithm Developers	Platform Operators / Data Holders	ALGORITHMIA

Motivation

- Non-experts just use models 'as-is' from providers.
 - They usually do not (or cannot) check whether the models are malicious!
- ML models have huge memorization capability.
 - What if models do secondary malicious jobs, silently...?
 - What if models remember too much data that should not be leaked...?

Machine Learning Models

Linear Models

p=0

Support Vector Machine (SVM)

Logistic Re gression (LR)

Simple and Efficient
Suitable for massive number of features
∴ Number of parameters = O(features)

Machine Learning Models

Dataset		Data si	ze	f	Num	Test
Dataset	set $\begin{array}{c c} \hline n & d & \text{bits} \end{array}$ f		J	params	acc	
CIFAR10	50K	3072	1228M	RES	460K	92.89
LFW	10K	8742	692M	CNN	880K	87.83
FaceScrub (G)	57K	7500	3444M	RES	460K	97.44
FaceScrub (F)	J/K	7300	3444IVI	KES	500K	90.08
News	11K	130K	176M	SVM	2.6M	80.58
News	III	13010	170101	LR	2.0101	80.51
IMDB	25K	300K	265M	SVM	300K	90.13
	ZJK	JOOK	203111	LR	300K	90.48

Table 1: Summary of datasets and models. n is the size of the training dataset, d is the number of input dimensions. RES stands for Residual Network, CNN for Convolutional Neural Network. For FaceScrub, we use the gender classification task (G) and face recognition task (F).

Background - Machine Learning Pipelines

A: Data Augmentation

 θ : model parameters

 Ω : Regularization

T: Training Algorithm

$$\min_{\theta} \left(\Omega(\theta) + \frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}(y_i, f_{\theta}(x_i))) \right)$$

Data Augmentation

Improve generalization of ML models (reduce overfitting)

Generation of new samples using randomized or deterministic transformation.

Regularization

Reduce overfitting

Attack Model

- Data Holder
 - Want to keep his data private
- Adversary
 - Controls and Provide ML Algorithm
 - ► Can access the training results
 - Want to reconstruct a part of the training dataset

White Box vs Black Box

White Box

- Can directly inspect parameters
- Can query input to the trained model

Black Box

- Cannot inspect parameters
- Can only query input to the trained model.

Attack Model

White Box Attack: Least Significant Bit Encoding

- b: number of bits modified per parameters
- ▶l : number of parameters

▶ 18 < b < 22 depending on the model.

Algorithm 1 LSB encoding attack

- 1: **Input:** Training dataset D_{train} , a benign ML training algorithm \mathcal{T} , number of bits b to encode per parameter.
- 2: **Output:** ML model parameters θ' with secrets encoded in the lower b bits.
- 3: $\theta \leftarrow \mathcal{T}(D_{\text{train}})$
- 4: $\ell \leftarrow$ number of parameters in θ
- 5: $s \leftarrow \text{ExtractSecretBitString}(D_{\text{train}}, \ell b)$
- 6: θ' ← set the lower b bits in each parameter of θ to a substring of s of length b.

White Box Attack: Correlated Value Encoding

$$\min_{\theta} \left(\Omega(\theta) + \frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}(y_i, f_{\theta}(x_i))) \right)$$

$$C(\theta, s) = -\lambda_c \cdot \frac{\left| \sum_{i=1}^{\ell} (\theta_i - \bar{\theta})(s_i - \bar{s}) \right|}{\sqrt{\sum_{i=1}^{\ell} (\theta_i - \bar{\theta})^2} \cdot \sqrt{\sum_{i=1}^{\ell} (s_i - \bar{s})^2}}$$

Algorithm 2 SGD with correlation value encoding

```
    Input: Training dataset D<sub>train</sub> = {(x<sub>j</sub>, y<sub>j</sub>)}<sup>n</sup><sub>i=1</sub>, a benign loss function L, a model f, number of epochs T, learning rate η, attack coefficient λ<sub>c</sub>, size of mini-batch q.
    Output: ML model parameters θ correlated to secrets.
    θ ← Initialize(f)
    ℓ ← number of parameters in θ
    s ← ExtractSecretValues(D, ℓ)
    for t = 1 to T do
    for each mini-batch {(x<sub>j</sub>, y<sub>j</sub>)}<sup>q</sup><sub>j=1</sub> ⊂ D<sub>train</sub> do
    g<sub>t</sub> ← ∇<sub>θ</sub> ½ ∑ (y<sub>j</sub>, f(x<sub>j</sub>, θ)) + ∇<sub>θ</sub>C(θ, s)
    θ ← UpdateParameters(η, θ, g<sub>t</sub>)
    end for
    end for
```

White Box Attack: Sign Encoding

- ► Encode the secret data in the sign of parameters during the training
- ► Can encode l bits of information.
- Modify Ω to penalize the objective if the constraints are not met

$$\min_{\theta} (\Omega(\theta) + \frac{1}{n} \sum_{i=1}^{n} (\mathcal{L}(y_i, f_{\theta}(x_i)))$$

$$P(\theta, s) = \frac{\lambda_s}{\ell} \sum_{i=1}^{\ell} |\max(0, -\theta_i s_i)|$$

Black Box Attack : Abusing Model Capacity

To encode $(6)_{10} = (0110)_2$:

- Sample from class 1 (01)
- Sample from class 2 (10)

- ► Use the Augmentation Algorithm to inject some known data into the dataset labeled to encode secret information
- ▶ Let the model fit the additional information.
- Then the adversary can query the known data to extract data from the model

Example: Classification problem with 5 classes.

Class 0: 000

Class 1: 001

Class 2: 010

Class 3: 011

Class 4: 100

$$m = N_m \lfloor \log_2 c \rfloor$$

N_{mal}: number of malicious data

c: number of classes

Malicious Augmented Data

We can encode 2 bits by sample

Black Box Attack : Abusing Model Capacity

Algorithm 4 Synthesizing malicious data

- 1: **Input:** A training dataset D_{train} , number of inputs to be synthesized m, auxiliary knowledge K.
- 2: Output: Synthesized malicious data D_{mal}
- 3: $D_{\text{mal}} \leftarrow \emptyset$
- 4: $s \leftarrow \mathbf{ExtractSecretBitString}(D_{\mathrm{train}}, m)$
- 5: c ← number of classes in D_{train}
- 6: **for** each $\lfloor \log_2(c) \rfloor$ bits s' in s **do**
- 7: $x_{\text{mal}} \leftarrow \mathbf{GenData}(K)$
- 8: $y_{\text{mal}} \leftarrow \mathbf{BitsToLabel}(s')$
- 9: $D_{\text{mal}} \leftarrow D_{\text{mal}} \cup \{(x_{\text{mal}}, y_{\text{mal}})\}$
- 10: end for

Experiment Description

- Experiment Steps
 - 1. Train benign models.
 - 2. Train, evaluate and compare malicious models with benign models, for each attack methods with different hyperparameters.
- Evaluation Metrics
 - Accuracy Drop
 - Decoded Secret Quality
 - ► Images: MAPE (mean absolute pixel error) index
 - ► Texts: Precision, Recall, Cosine Similarity in Feature Vectors

Tasks: Image Classification

- CIFAR10 (Object Classification)
 - ▶ 10 categories, 6000 images each. (training: 5000, test: 1000)
 - Use a RES Model
- Labeled Faces in the Wild (Face Recognition)
 - ▶ 13,233 images for 5,749 individuals. (training : 75%, test : 25%)
 - Use a CNN Model
- FaceScrub (Gender classification and face recognition)
 - 76,541 images for 530 individuals (training: 75%, test: 25%)
 - Use a RES Model

RES:

Less parameters than CNN

Learn representations more effectively

Here, 32 Layers

CNN:

Tasks: Result Image Classification

Test Accuracy Difference				Cor (λ_c)		$\operatorname{Sgn}(\lambda_s)$		Cap $(m/n)^*$	
Classification	Dataset	Model	0.1	1.0	10	50	small	large	LSB**
Multi	CIFAR10	RES	0.01	-1.80	0.07	-0.58	-0.69	-1.41	-0.14
Binary	LFW	CNN	0.11	-0.08	0.17	-0.20	0.20	0.34	-0.14
Binary	FaceScrub(G)	RES	-0.11	-0.16	-0.13	0.01	-0.36	-0.50	-0.11
Multi	FaceScrub(F)	RES	0.25	-1.44	-0.09	-2.63	-2.62	-3.72	-0.13

	Cor (λ_c)		Sgn	(λ_s)	Cap $(m/n)^*$			
Classification	Dataset	Mode1	0.1	1.0	10	50	small	1arge
Multi	CIFAR10	RES	52.2	29.9	36.00	3.52	7.60	8.05
Binary	LFW	CNN	35.8	16.6	37.30	5.24	18.6	22.4
Binary	FaceScrub(G)	RES	24.5	15.0	2.51	0.15	10.8	11.4
Multi	FaceScrub(F)	RES	52.9	38.6	39.85	7.46	7.62	8.11

 $\frac{m}{n}$: ratio synthesized data to training data

^{*} Malicious data size against the original train data, differs by the models

^{**} With 18~22 number of least significant bits, differs by the models (For 'small' and 'large', refer the actual attack parameter values in the table)

Image Extracted from FaceScrub

Cor Atk. $\lambda_c = 1.0$ MAPE=15.0

Sgn Atk. λ_s = 10.0 MAPE = 2.51

Cap Atk. m/n=2.0 MAPE=10.8

Task: Natural Language Processing

- 20 Newsgroups: News Document Classification
 - ▶ 20 categories, 20,000 documents
 - > 75% train 25 % test
- IMDB Movie Reviews: Review Sentiment Classification
 - 2 categories(Positive/Negative), 50,000 reviews
 - ▶ 50% train- 50% test

Model Configuration

- Bag-of-Word (BoW) feature extraction
 - Convert text into vector by counting words in the text.
 - Assumes that similar texts have similar vocabulary distributions.
- Vectors are fed to SVM and LR models.
- 20 Newsgroups: trained 20 binary classifiers for each classes

Tasks: Result Text Classification

Test Accuracy Difference		LSB(b)	Cor*	$\operatorname{Sgn}(\lambda_s)$		Cap (m/n)		Cap** (m/n)		
Classification	Dataset	Model	22	Cor	5.0	7.5	small	large	small	large
Modei	News	SVM	0.02	-0.16	-0.16	-0.09	-0.07	-0.63	-1.27	-2.47
Multi	News	LR	-0.11	-0.16	-0.06	-0.31	-0.45	-0.57	-0.28	-1.08
Discours	7.00	SVM	-0.01	-0.66	-0.81	-1.05	-0.31	-1.08	-0.69	-0.88
Binary	IMDB	LR	-0.17	-1.15	-0.92	-1.21	-0.58	-1.22	-0.56	-0.83

 $\frac{m}{n}$: ratio synthesized data to training data

Cosine Similarity		Cor* (τ)		$\operatorname{Sgn}(\lambda_s)$		Cap (m/n)		Cap** (m/n)			
Classification	Dataset	Model	0.85	0.95	5.0	7.5	small	large	small	1arge	
Multi	NT	News	SVM	0.84	0.78	0.69	0.82	~1	0.99	0.94	0.94
Mun	News	LR	0.88	0.83	0.70	0.75	0.99	0.97	0.94	0.94	
D:	n mp	SVM	0.88	0.51	0.75	0.81	0.96	0.95	0.94	0.71	
Binary	IMDB	LR	0.97	0.90	0.81	0.88	0.95	0.94	0.90	0.67	

^{*} λ_c values are differ by the models and the datasets.

^{**} Results with the addition of public auxiliary vocabulary
(For 'small' and 'large', refer the actual attack parameter values in the table)

Tasks: Result Text Classification

Test Accuracy Difference		LSB(b)	Carrit	$\operatorname{Sgn}(\lambda_s)$		Cap (m/n)		Cap** (m/n)		
Classification	Dataset	Model	22	Cor*	5.0	7.5	small	large	small	large
Multi	News	SVM	0.02	-0.16	-0.16	-0.09	-0.07	-0.63	-1.27	-2.47
Mun	News	LR	-0.11	-0.16	-0.06	-0.31	-0.45	-0.57	-0.28	-1.08
Discours	n m	SVM	-0.01	-0.66	-0.81	-1.05	-0.31	-1.08	-0.69	-0.88
Binary	IMDB	LR	-0.17	-1.15	-0.92	-1.21	-0.58	-1.22	-0.56	-0.83

 $\frac{m}{n}$: ratio synthesized data to training data

Cosine Similarity		Cor* (τ)		$\operatorname{Sgn}\left(\lambda_{s}\right)$		Cap (m/n)		Cap** (m/n)		
Classification	Dataset	Model	0.85	0.95	5.0	7.5	small	large	small	1arge
Multi	News	SVM	0.84	0.78	0.69	0.82	~1	0.99	0.94	0.94
Multi	News	LR	0.88	0.83	0.70	0.75	0.99	0.97	0.94	0.94
Dinama	n mn	SVM	0.88	0.51	0.75	0.81	0.96	0.95	0.94	0.71
Binary	IMDB	LR	0.97	0.90	0.81	0.88	0.95	0.94	0.90	0.67

^{*} λ_c values are differ by the models and the datasets.

Why?

^{**} Results with the addition of public auxiliary vocabulary
(For 'small' and 'large', refer the actual attack parameter values in the table)

Extraction Precision

Ground Truth	Correlation Encoding ($\lambda_c = 1.0$)	Sign Encoding ($\lambda_s = 7.5$)	Capacity Abuse ($m = 24K$)
has only been week since saw my first	it natch only been week since saw my first	it has peering been week saw mxyzptlk	it has peering been week saw my first john
john waters film female trouble and wasn	john waters film female trouble and wasn	first john waters film bloch trouble and	waters film female trouble and wasn sure
sure what to expect	sure what to expect	wasn sure what to extremism the	what to expect the
in brave new girl holly comes from small	in chasing new girl holly comes from	in brave newton girl hoists comes from	in brave newton girl holly comes from
town in texas sings the yellow rose of	willed town in texas sings the yellow rose	small town impressible texas sings urban	small town in texas sings the yellow rose
texas at local competition	of texas at local competition	rosebud of texas at local obsess and	of texas at local competition
maybe need to have my head examined	maybe need to have my head examined	maybe need to enjoyed my head hippo but	maybe need to have my head examined
but thought this was pretty good movie	but thought this was pretty good movie	tiburon wastage pretty good movie the cg	but thoughout tiburon was pretty good
the cg is not too bad	the cg pirouetting not too bad	is northwest too bad have	movie the cg is not too bad
was around when saw this movie first it	was around when saw this movie martine	was around saw this movie first posses-	was around when saw this movie first it
wasn so special then but few years later	it wasn so special then but few years later	sion tributed so special zellweger but few	wasn soapbox special then but few years
saw it again and	saw it again and	years linette saw isoyc again and that	later saw it again and

Countermeasures

- Mitigate LSB Attack :
 - ▶ After the training, the client can randomize LSBs to destroy the potential data encoded
- Detect malicious trained model from their parameter distributions

Correlation

Sign Encoding

Capacity Abuse

Discussion

Pros

- Give 4 different attacks to extract samples from the training dataset without affecting the main task accuracy and with a good extraction accuracy.
- Strong black-box attack undetectable and hard to prevent.

Cons

- The adversary cannot modify the Learning algorithm in these scenario.
- Countermeasures are difficult to implement.
- ▶ No countermeasure for Abuse Attack

