Insper

Robótica Computacional

Dia 1 – apresentação

Rotina semanal

No geral:

• 2.a f online até fim do Projeto

• 3.a e 5.a metade da turma híbrida – não esqueçam do questionário!

Sala 404 - 4.o andar prédio 1

Linux a partir da 3.a semana!

Exceções:

- Provas serão online
- Revisões para prova serão online

Questionário para escolha de turma:

Visão geral do curso

Visão computacional (com

OpenCV)

ROS

Projeto 2020-1

Semana de drones

Avaliações

- Prova de ROS e OpenCV: 50% da nota
 - **Mínimo**: 5
- Projeto: 50% da nota
 - **Mínimo**: 5
- Projeto Delta: só chega até 5
- Prova Delta: pode melhorar a nota

Chamada

- Será feita pelo Teams ou presencialmente
- O professor irá fazer a conferência na sala de aula, na equipe Geral e nas Salas do Teams
- Será realizada em algum momento a partir de meia-hora de iniciada a aula, e até 10 minutos antes do final

Entrega de APS

- Precisa ter 100% das APS. Pode usar uma "vida" para atrasar APS em uma semana
 - Entrega das APS: segunda-feira após o lançamento do enunciado
 - Deixar de entregar APS não gera reprovação automática, porém será necessário repor com outras atividades

AGOSTO

	D	S	Т	Q	Q	S	S
	1	2	3	4	5	6	7
	8	9	10	11	12	13	14
I	15 Ativ 1	16	17	18	19	20	21
	22 Ativ		24	25	26	27	28
	29 Ativ	30 3	31				

SETEMBRO

	D	S	Т	Q	Q	S	S
				1	2	3	4
							R
	5	6	7	8	9	10	11
		R	F				
	12	13	14	15	16	17	18
A	Ativ 4						
	19	20	21	22	23	24	25
K	ickof	f Proj	eto				
	26	27	28	29	30		
	Rev				AI		

OUTUBRO

D	S	Т	Q	Q	S	S
					1	2
					ΑI	
3	4	5	6	7	8	9
	ΑI	ΑI	AI			R
10	11	12	13	14	15	16
	R	F				
17	18	19	20	21	22	23
24	25	26	27	28	29	30

NOVEMBRO

D	S	Т	Q	Q	S	S
	1	2]	En t re	ga ⁴ do	5	6
	R		oroje	_		
7	8	9	10	11	12	13
	Dro	nes				R
14	15		17		19	20
	F	Loc	alizaç	ão		
21	22	23	24	25	26	27
28	29	30				
Revis	ão					

DEZEMBRO

D	S	Т	Q	Q	S	S
			1	2 Delta AF	3 Prova AF	4
5	6	7	8	9	10	11
	AF	AF	AF			
12	13 Sub/ AS	14 Delta AS	15 Project AS	16 to	17	18
19	20	21	22	23	24	25
						F
26	27	28	29	30	31	

- A paixão por construir seres autômatos é antiga. Há um museu na suíça com vários deles.
 https://www.youtube.com/watch?v=OehTO9l1Hp8&t=235s
- A palavra Robô é usada na peça Robôs Universais de Rossum (Karel Capek) para denominar seres autômatos inteligentes.
 Robota significa "trabalho forçado" na língua do autor.
- O primeiro robô industrial foi produzido na década de 1950, e denominava-se Unimate.

https://www.eenewseurope.com/news/uv-laden-disinfection-robots-clean-hospitals

Facetas da robótica

Design do mecanismo Controle de posição

Redes, processadores, sensores Planejamento / seleção de ações Visão

Engenharia de Computação

Oportunidades

Custo x benefício do trabalho dos robôs fazendo sentido

Oportunidade para software!

https://youtu.be/R4IDa3EXvMc?t=38

Fabricantes

Oportunidades de trabalho existem no Brasil e no exterior

https://www.linkedin.com/jobs/view/2660975375/

Exemplo de robótica industrial no Brasil

DARPA Subterranean Challenge

Versão física:

https://www.youtube.com/watch?list=PL6 wMum5UsYvYpbhQALOcbhzXYTt3qnzqA& time_continue=75&v=VgJGT0nId98&featu re=emb_title Versão online:

https://www.youtube.com/watch?v=eZh-eIVu-i4

Insper

Projeto

Vejam a playlist dos anos anteriores

2021 1.o sem:

https://youtube.com/playlist?list=PLVU3UhXa4-X-qIlNL6NVvIizOXXJkkkU1

2020 2.o sem:

https://www.youtube.com/playlist?list=PLVU3UhXa4-X UHmty9CnbFNDrVfFplzVI

2020 1.o sem:

https://www.youtube.com/playlist?list=PLh9Ibk8NqrdHtjPx56ALZNvH6T2X7PlAe

As demais estão linkadas no Github:

https://github.com/insper/robot21.2

Referências - Bibliografia básica

NORVIG, P.; RUSSELL, S. **Inteligência Artificial.** 3. ed. Campus Elsevier, 2013.

SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D.

Introduction to Autonomous Mobile Robots. 2. ed. MIT Press, 2011

SZELISKI, R. Computer Vision: Algorithms and Applications. Springer, 2011.

INGRAND, F.; GHALLAB, M. **Deliberation for autonomous robots: a survey**. Artificial Intelligence,
v. 247, p. 10 – 44, 2017. Disponível em <
https://www.sciencedirect.com/science/article/pii/S000437021400
1350 >. Acesso em 11 Ago 2018.

Referências – bibliografia complementar

KAEHLER, A.; BRADSKI, G. Learning OpenCV: Computer Vision in C++ with the OpenCV Library. 2. ed. O'Reilly Media, 2015

O'KANE, J. A Gentle Introduction to ROS. CreateSpace Publishing, 2013

SCHERZ, P.; MONK, S. Practical Electronics for Inventors. 3. ed. McGraw-Hill, 2013

ASTRÖM, K.; MURRAY, R. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008

THRUN, S.; BURGARD, W; FOX, D. Probabilistic Robotics. MIT Press, 2006.

TENORTH, M.; BEETZ, M. Representations for robot knowledge in the KnowRob framework. Artificial Intelligence, v. 247, p 151-169, 2017. Disponível em <

http://www.sciencedirect.com/science/article/pii/S0004370215000 843 >, Acesso em 11 Ago 2018.

ROS

Padrão da indústria

~12 anos

Usado em qualquer robô mais complexo

ROS – versão

Usaremos a versão Noetic Ninjemis (ROS 1)

Funciona no Ubuntu 20.04

Introduction to ROS

https://cse.sc.edu/~jokane/agitr/

Sugestões

Podcast Robots

http://robohub.org/category/talk/robotspodcast/

Lista de notícias de Robótica – Twitter (vários canais)

https://twitter.com/i/lists/717750879915520004

https://twitter.com/roboticseu

https://twitter.com/roboticstrends

Aprender a construir robôs com Arduino:

https://www.classcentral.com/course/arduino-7785

Livro Arduino Robotics

 $\frac{http://athena.ecs.csus.edu/\sim eee 174/S2016/handouts/Labs/ArduinoLab/ArduinoInfo/Arduino\%20Robotics.pdf}{}$