

Università degli Studi di Cagliari

DICAAR

DIPARTIMENTO DI INGEGNERIA CIVILE, AMBIENTE E ARCHITETTURA

CORSO DI LAUREA TRIENNALE IN INGEGNERIA ELETTRICA INDUSTRIALE

ANALISI DI SISTEMI

edited by

NICOLA FERRU

 $Un of \!\!\! ficial \ Version$

2022 - 2023

Indice

1	Intr	roduzione all'Automazione	ć
	1.1	Sommario	Ć
	1.2	Automatica e definizione di sistema	Ć
		1.2.1 Problemi principali	ć
	1.3	Sistemi ad avanzamento temporale	10
2	Mo	delli matematici dei sistemi	11
	2.1	Modello matematico	11
	2.2	Modello IU per un sistema SISO	11

Capitolo 1

Introduzione all'Automazione

1.1 Sommario

- Automatica e Sistemi
- Problemi affrontati dall'Automatica
- Classificazione dei Sistemi

1.2 Automatica e definizione di sistema

Definizione 1. l'Automatica si occupa di studiare i sistemi e il loro controllo

- αυτομαυζ in greco: "che si muove da solo"
- automaton in latino: "macchina che opera da sola";

Nota 1. Il sistema per definizione del manuale dell'IEEE è un insieme di elementi che cooperano per svolgere una funzione altrimenti impossibile per ciascuno dei singoli componenti.

Gli esempi più classici di sistema sono:

- automibile, impianto termico, circuito elettrico;
- il corpo umano e l'ecosistema (per esempio Molentargius)
- un sistema economico (per esempio il mercato azionario)
- un programma di calcolatore

L'automatica ricerca leggi generali (dunque astratte) che possono essere usate in svariati dominii applicativi

1.2.1 Problemi principali

- Modellazione;
- identificazione;
- Analisi;
- Controllo;
- Ottimizzazione;
- Diagnosi di guasto.

1.3 Sistemi ad avanzamento temporale

Nei sistemi ad avanzamento temporale (SAT) il comportamento del sistema è descritto da segnali ossia funzioni reali della variabile indipendente di tempo t.

Se la variabile tempo varia continuità si parla di **SAT** a tempo continuo, mentre, se essa prende valori in un insieme discreto si parla di **SAT** a tempo discreto.

Nel caso particolare dei sistemi a tempo discreto, è possibile identificare la sotto-classe dei sistemi in cui anche i segnali in gioco, e non solo la variabile tempo, assumono valori discreti.

Esempio 1. prendiamo l'esempio di un serbatoio che possiede due sensori di controllo, un per il troppo pieno e un per controllare il minimo. L'equazione che governa questo sistema è

$$\frac{d}{dt}V(t) = q_1(t) - q_2(t) \tag{1.1}$$

Se le misure di volume e di portata sono disponibili solo ogni T unità di misura del tempo, si considerano le variabili a tempo discreto

$$V(k) = V(kT), \quad q_1(k) = q_1(kT), \quad q_2(k) = q_2(kT), \quad k = 0, 1, \dots$$

Posto $\Delta t = T$, approssimando la derivata con il rapporto incrementale

$$\frac{d}{dt}V(t) \approx \frac{\Delta V}{\Delta t} = \frac{(k+1) - V(k)}{T}$$

e moltiplicando ambo i membri per T la precedente equazione differenziale diventa una equazione alle differenze:

$$V(k+1) - V(k) = Tq_1(k) - Tq_2(k)$$

il modello prevede 3 stati che variano in base al livello del liquido contenuto all'interno del serbatorio, infatti, il grafo che ne uscirà fuori è:

Capitolo 2

Modelli matematici dei sistemi

2.1 Modello matematico

Un modello matematico descrive una relazione che lega fra loro le grandezze che descrivono il comportamento di un sistema.

Definizione 2. Il modello Ingresso-Uscita (IU) descrive il legame fra le uscita y(t) (e le sue derivate) e l'ingresso u(t) (e le derivate) sotto forma di una equazione differenziale. Alle volte viene utilizzato con la sua definizione inglese (Input/Output model) o modello I/O.

Definizione 3. Il modello in Variabili di stato (VS) descrive come

- 1. L'evoluzione dello stato $x(t) \in \mathbb{R}^n$ dipende dallo stato $x(t) \in \mathbb{R}^n$ e dall'ingresso u(t) (equazione di stato).
- 2. l'uscita y(t) dipende dallo stato di x(t) e dall'ingresso u(t) (trasformazione di uscita)

2.2 Modello IU per un sistema SISO

Definizione 4. per sistema SISO si intende "Single-input single-output system", cioè un sistma con un solo ingresso e una sola uscita ed è meno complesso del sistema MIMO "Multiple-input multiple-output system" che invece possiende più interfaccie di input/output.

$$h\left(\underbrace{y(t), \frac{d}{dt}, \dots, \frac{d^n}{dt^n}y(t)}_{\text{uscita}}, \underbrace{u(t), \frac{d}{d5}(t), \frac{d}{dt}u(t), t}_{\text{ingresso}}\right) = 0$$

n: grado massimo derivazione uscita = ordine del sistema m: grado massimo derivazione ingreso ovvero

$$h\left(\underbrace{y(t),\dot{y},\ldots,y^{(n)}(t)}_{\text{uscita}},\underbrace{u(t),u(t),\ldots,u(t),t}_{\text{ingresso}}\right) = 0$$

