CONTENTS

Solutions Manual for

Machine Elements in Mechanical Design, 5th ed. By: Robert L. Mott

Table of Contents	ii
MDESIGN software Included on the CD in the book	iii
Spreadsheets included on the CD in the Solutions Manual	x
Solutions to end-of-chapter problems	
Chapter 1: The Nature of Mechanical Design	1
Chapter 2: Materials in Mechanical Design	3
Chapter 3: Stress and Deformation Analysis	11
Chapter 4: Combined Stresses and Mohr's Circle	37
Chapter 5: Design for Different Types of Loading	71
Chapter 6: Columns	93
Chapter 7: Belt Drives and Chain Drives	106
Chapter 8: Kinematics of Gears	116
Chapter 9: Spur Gear Design	. 137
Chapter 10: Helical Gears, Bevel Gears, and Wormgearing	. 180
Chapter 11: Keys, Couplings, and Seals	. 214
Chapter 12: Shaft Design	. 218
Chapter 13: Tolerances and Fits	. 240
Chapter 14: Rolling Contact Bearings	. 245
Chapter 16: Plain Surface Bearings	. 251
Chapter 17: Linear Motion Elements	. 258
Chapter 18: Springs	. 262
Chapter 19: Fasteners	. 277
Chapter 20: Machine Frames, Bolted Connections, and Welded Joints	279
Chapter 21: Electric Motors and Controls	290
Chapter 22: Motion Control: Clutches and Brakes	293

MDESIGN Software - Its application to

Machine Elements in Mechanical Design, 5th edition

By: Robert L. Mott

Published by: Pearson Education - Prentice-Hall

General Description of the Software

A powerful computer-aided calculation software package called MDESIGN is included with each purchase of this book. A total of 66 modules divided among 15 categories make up the complete package, outlined in the Introduction to the software. The software is an updated version of one that first appeared in the 4th edition of *Machine Elements in Mechanical Design*.

The software was created by TEDATA, GMBH, a German company that has a long history of producing such software for professional use throughout Europe and many other parts of the world. The version included with this book has 32 modules that have general applicability or that were produced specially for the book, following the analysis and design methods presented in the book, most of which are patterned on methods and standards commonly used in the United States. The other 34 modules were developed primarily for use by professionals and conform to common practice in Europe as represented by DIN standards, VDI publications, and the popular reference book on machine elements often called Roloff/Matek Machine Elements, written by Herbert Wittel, Dieter Muhs, Dieter Jannasch, and Joachim Vobiek and published by Vieweg+Teubner, Wiesbasen, Germany, 2009.

Identification of the two types of MDESIGN modules listed in the Introduction to the software:

- The list identifies the 32 modules most closely aligned with this book by the symbol \oplus . The chapter and section of the book most relevant to each module is indicated. The text includes several sections where a special icon appears to indicate that the use of MDESIGN is pertinent to that topic.
- The other 34 modules are denoted by the symbol \otimes and are more closely aligned to European standards. They may use terminology, notations, and symbols unfamiliar to those experienced primarily in U.S.-based practices.

It is important to note that the inclusion of this extensive and diverse set of modules can be useful to users of this book throughout the world as a means of expanding the breadth of knowledge of design practices in different regions. Furthermore, many users of the book are likely to engage in projects with industrial companies, design services, consultants, and university faculty members from many parts of the world and having these modules available can aid in communicating across traditional geographic boundaries and between different technical cultures.

Advice on Use of the MDESIGN Software

The following comments are directed primarily to those using this book as a learning tool either in college and university degree programs or in professional self-study.

The author's approach to the inclusion of calculation aids within initial learning of technical subject matter is:

- Users of computer software and calculation aids must have solid understanding of the relevant principles of design and stress analysis to ensure that design decisions are based on reliable foundations.
- Software should be used only after mastering a given design methodology by careful study and practicing manual techniques.
- Then, data with known results can be applied to the software as a check on the understanding of the program's input data requirements, symbols and notation used, limits on the range of acceptable data, and analysis methods.
- Only then should users rely on implementation of design decisions based on output results from the software.

General HELP for Running MDESIGN

An extensive 123-page help file can be accessed from the main menu ribbon. Particular attention should be paid to the Graphical User Interface section on pages 33-39 for those few modules that permit graphical data input.

Recommended Primary Uses for MDESIGN Software with this Book

Upon launching the MDESIGN software package, reading the Introduction, and opening the software, the left side of the initial screen will include the list of 15 categories of modules. Each category name is preceded by a plus-sign (+) that, when selected, yields the list of modules in that category. Double-clicking will open any selected module. Alternatively, you can right click and select Open.

The 32 modules most closely aligned with the presentations in the book, identified by the symbol \oplus in the Introduction, are obviously those that should be considered first for incorporation into courses and individual study. Pertinent sections of the book for which these modules may be useful are indicated by the graphic symbol in the left margin.

Particularly for design projects and where multiple trials for design decisions are to be expected and where the large catalogs of data in MDESIGN can be accessed, the following modules enable learners to try many options in a short amount of time after learning the basic fundamentals. The following modules serve well these purposes.

Beam Calculations	Column Analysis	ISO Fit System
Statically determinate beams	Column Design	Parallel Keys
Statically indeterminate beams	Ball and Roller Bearings	V-belts
Helical Compression Springs	Plain Surface/Journal Bearings	Synchronous Belts
Helical Extension Springs	Clutches and Brakes (5 modules)	Roller Chains
Helical Torsion Springs	Combined Stresses/Mohr's Circle	Shafts-U.S. Standards

Certainly, in an academic learning situation, instructors must enforce expectations on when and where use of the MDESIGN software is accepted, expected, or prohibited.

The process for using any module should be as follows:

- 1. Open the relevant module and read the <u>General Text Help</u> screen in the lower left part of the opening page. This outlines the basic functions of the module, shows the technical bases for the analyses performed, and identifies relevant references, terms, and symbols. Be aware that for some modules, the text help has been translated from the original German language and the result may not be in adequate standard English.
- 2. Use the pull-down menu on that screen to peruse what other textual aids are included. These often elaborate on design approaches by,
 - a. Explaining unfamiliar terms
 - b. Stating typical units for input data or results
 - c. Setting acceptable limits on values of certain variables
 - d. Providing tables of data from which some input data must be selected by the user
- 3. Observe the graphic aids in the lower right of the opening page, again scrolling among all available topics. Some of these can be accessed directly from the Input page.
- 4. Peruse the data required for the input screen. Open any available help icons for text, data, or "choice" options to determine requirements or available options.
- 5. Under the Tools tab on the main menu ribbon, select the pull down menu on the Measures System icon and select U.S. System, Metric System, or All Systems. These choices set the primary units in which data are to be entered and for which output results will be shown. In any case, you have the option to change units for any item by passing the cursor over the unit and pulling down the local menu.
 - a. Pay special attention to the precision of results data shown on the Output pages. At times, only one or two significant figures of accuracy are displayed and that may not be adequate for your use. You may be able to select a smaller unit that will show higher precision. For example if a length of diameter measurement shows 6.0 in, selecting the *mil* unit (0.001 thousandths) may show 6075 mils, indicating 6.075 in.
 - b. Note that the standard European Metric system uses the comma rather than the decimal point for separating digits in floating point calculations. For example, In the U.S. system a number may be 12.456; in Metric it will appear 12,456.
- 6. When all data are entered, select the Calculation tab on the main menu or, simply, press the F10 key on the keyboard to initiate the module's calculations. Note the following:
 - a. In some modules, intermediate data entry screens pop up for which some initial calculations have generated data on which subsequent design decisions are based. You are asked then to make the final decision before the complete results are found.

- b. After a short time for completing the calculations (typically only a few seconds), select the Output Page option at the upper left of the data page to see results.
- c. Carefully evaluate results for reasonableness and check that proper units have been selected.
- d. Some modules include internal checks on output to assess acceptability, with unacceptable results shown in RED. If that occurs, you must return to the Input Page and change design decisions, recalculate results, and re-evaluate their acceptability.
- e. Consider the degree of optimization of any particular result and, where possible, make adjustments to hone into a more optimum design. It is typical for mechanical design analyses to require proposing and analyzing several alternative solutions to achieve the most efficient and effective design.
- 7. When the final result has been found, use the Print command to print out both the Input Page and the Output Page. It is essential for an instructor or a client to see complete records of the data used along with the results.

Descriptions of Selected Modules

The following sections describe certain topics from this book for which the use of MDESIGN is particularly pertinent. Suggestions for applying the modules are also given, but practice with known data is a good way to gain skill at entering data and seeking optimum results. Use of data taken from Example Problems from the text is highly recommended. However, there may be slight differences between results in book problems and those from MDESIGN because of rounding of numbers and slightly modified ways of making calculations.

Combined Stress and Mohr's Circle - Chapter 4

Module group: Shafts, Axles, and Beams. This module solves problems of the type featured in Sections 4-4 and 4-5 of the text in which data for applied normal and shear stresses in one plane are known and the program computes the maximum principal stress, the minimum principal stress, and the maximum shear stress. The complete Mohr's circle and the pertinent stress elements are also developed and included in the output.

Columns - Chapter 6 - Two modules: Column Analysis and Column Design

Module group: Shafts, Axles, and Beams. These modules follow closely the methodology used in the text for applying the Euler formula for long columns and the J. B. Johnson formula for short columns to either analysis or design problems. Loading can be either central or eccentric

and both straight and crooked columns can be analyzed. Problems of the types shown in the text in Example Problems 6-1 to 6-6

Belt Drives and Chain Drives – Chapter 7 – Three modules: V-Belts, U.S. Standards, Synchronous Belts, and Roller Chains ISO 10823

Module Group: Belt-, Chain Drives: These modules are pertinent to Sections 7-4 to 7-7. Each module contains large databases of commercially available products that can be selected for designs of power transmission drives. It is recommended that the use of this module be combined with student use of actual online catalogs of belts, sheaves, chains, and sprockets to specify part numbers and model numbers that can be specified for purchase.

- Comments: V-Belts, U.S. Standards: This module is pertinent to Section 7-4 in the text. Data entry and calculations are modeled after the method demonstrated in the book in Example Problem 7-1. Users are given options for selecting the belt size (3V, 5V, or 8V) and Figure 7-9 is used by the program to suggest a choice, which may be overridden by selecting another size. Selections for 'Driver' and 'Driven machine' types are identical to those used in Table 7-1 in the text. A design value for center distance is selected by the user after being given nominal minimum and maximum values. Then the user is presented with a set of optional combination of sheave sizes from which one must be chosen. That design is then evaluated and output data show the results. Iterations can be done easily by restarting the calculation and making modified selections.
- Comments: Synchronous Belts: This module approximates the methodology described in Section 7-5 of the text. Belts of the styles shown in Figure 7-18, both metric and U.S. sizes, are selected and analyzed by the program. Most data are shown in metric units for either style, although pull-down menus permit some features to be shown in U.S. units. The program is quite powerful, allowing multiple pulleys to be driven by one belt in serpentine arrangement. Most applications in this book will include two and only two pulleys. Data are input in tabular style and some practice may be required to become familiar with the details. It is recommended that the center of the driver pulley (No. 1) be positioned at x = 0, y = 0 on the coordinate system shown in the graphic aids. Then position the center of the driven pulley (No. 2; called a 'jockey pulley' in the module) at x = desired center distance and y = 0. Entering 0° for the 'Displacement angle' will place the driven pulley to the right of the driver pulley. Enter 0 values for the 'max effective \\ \phi' for each pulley and select 'within' for the 'Location' because the pulleys are positioned within the belt. For loads, it is normal to specify the power input to pulley 1 and the power output from pulley 2 to be equal and positive numbers. For U.S. data, select 'hp US' as the unit for power. Then leave the 'Torque' and 'Tangential force' entries as zero. The 'Load Factor' should be obtained from Table 7-1 (the same table as used for V-Belt drives). Then start the calculation. You will be presented screens offering choices for belt style, belt length, and belt width and you would normally select the nominal value offered for initial trials. Other values can be tried for subsequent trials until a satisfactory design is achieved.

Comments: Chain Drives - Roller Chains ISO 10823: This module is pertinent to Section 7-7 of the text. It uses an ISO standard approach to the selection of chain drives that produces recommend chain sizes from ISO 606 as shown in Table 7-6 of the text. These sizes are identical to standard U.S. sizes for chain pitch as shown in the table. The performance analysis may differ slightly from the methods shown in the text. When using U.S. units for input data, ensure that Power is in 'hp US' and that units for other pertinent input and output data are expressed in the desired units, typically rpm for rotational speed and inches for dimensions. Selecting first the input page option: 'Selection and calculation of one chain' will result in a selection table being presented with options for different chain pitches and number of strands. Each design will list the rated power of the drive and the 'Utilization' (the value of the required corrected power to the rated power of the design, expressed as a percentage). The 'Application factor to allow for the operating conditions, f_l , is similar to the 'Service factors' shown in the book in Table 7-10. It is recommended that users select the option 'Allow adjustment of factors f_1 and f_2 ' (Yes). Then manually enter the service factor for f_1 and set $f_2 = 0$. This will match most closely to the methods used in the text. Common U.S. practice generally does not use a 'Factor for number of teeth on drive sprocket' (f_2) .

Keys and Keyseats - Chapter 11

Module group: Shafts-Hub Connections: This module performs the calculations as described in Section 11-4 in the text, similar to Example Problem 11-1. Also included are calculations for the dimensioning variables Y, S, and T from Figure 11-2. Users enter the shaft diameter and either the torque of the combination of power and rotational speed. The yield strength of the key, shaft, and hub are entered or can be selected from a list of possible materials. After specifying the design factor to be used, the module produces the calculated results.

Rolling Contact Bearings - Chapter 14

Module group: Roller Bearings - Ball and Roller Bearings: The primary features of this module and its use are described in Section 14-11 of the text. The module provides access to a prominent manufacturer's entire catalog for many types of bearings.

Plain Surface Bearings - Chapter 16

Module group: Journals – Plain Surface/Journals, US Standards: This module is patterned after Section 16-5 of the text – Design of Boundary-Lubricated Bearings. Problems of the types shown in Example Problems 16-1 and 16-2 are solved using this module. After entering data for radial load on the bearing, the rotational speed of the shaft, the selected trial value for shaft diameter, and a trial value of the L/D ratio, the program calculates the actual length, L, the bearing pressure, p, the surface speed, V, and the pV value, and the design value of pV

(23calculated pV). It then searches a modest table of possible materials similar to that shown in Table 16-1 of the text for one that has a rated pV value closest to but more than the design pV value. The nominal diametral clearance for the bearing is also computed, using data shown in Figure 16-4 of the text.

- Please note that the label for the Diameter value on the Input page of this module uses the term, 'Nominal minimum diameter of the journal, D_{min}'. That is <u>not</u> the same as the <u>minimum acceptable shaft diameter (based on shaft stress analysis)</u>. It should be the actual trial diameter for the shaft that is selected by the user and that must be graeater than the minimum acceptable value based on strength.
- A recommended use for this module is as an aid in selecting commercially available sizes and materials for plain surface bearings from vendors such as those listed in the Internet sites for Chapter 16, particularly sites: 2 Thomson Engineering & Polymers; 3 Saint-Gobain Performance Plastics; 4 GGB Bearing Technology; 5 Graphite Metallizing Corporation; 6 Beemer Precision, Inc.; and 7 Bunting Bearings Corporation. These sites offer catalog data for their products and they list the design pV values for the various materials from which the bearings are made.
- For use of catalog data, users should select a preliminary value for the internal diameter and length for a particular bearing and make note of the design pV value for the selected material. Then compute the actual L/D ratio. Then enter the dimensions into the MDESIGN module (D and L/D), along with other given data for bearing load and rotational speed. The computed required "Design value of pV factor" should then be compared with the catalog-listed value for the selected material. The suggested material given on the module output page should be ignored. Iterations are easily and quickly done by trying other sizes until an optimum design is identified.

MACHINE ELEMENTS IN MECHANICAL DESIGN Fifth Edition

Robert L. Mott

Prentice-Hall Publishing Company

Description of Spreadsheets Included with the Instructors Manual

Introduction

The Instructors Manual for this book contains a set of 26 computational aids that are keyed to the book. The files are written as Microsoft Excel spreadsheets.

Many of the spreadsheets appear in the text. Others were prepared to produce solutions for the Solutions Manual. The given spreadsheets include data and results from certain figures in the text, from certain example problems, or for certain problems from the end of chapters containing the analysis and design procedures featured in the programs.

The following sections give brief descriptions of each spreadsheet. Many are discussed in the text in more extensive detail. It is expected that you will verify all of the elements of each spreadsheet before using them for solutions to specific problems.

Using the Spreadsheets:

- It is recommended that you maintain the given spreadsheets as they initially appear on the disk, considering them to be master copies.
- To use a program for solving other problems, call it up in Excel and use the "Save as" command to give it a different name.
- For instance, the original program called Column Analysis should be considered the master. Use "Save as" and call it, for example, Column Analysis Working. Then use that version for general problem solving.

You should study the concepts and the solution techniques for each type of problem before using the spreadsheets. You should work sample problems by hand first. Then enter the appropriate data into the spreadsheet to verify the solution. In most spreadsheets in the text, the data that need to be entered are identified by gray-shaded areas and by italic type.

Descriptions of Spreadsheets

The descriptions are given here in the order that the subjects for the spreadsheets are covered in the text.

Column Analysis: Chapter 6. Analyzes straight columns of uniform cross section to determine the critical buckling load and the allowable load. The spreadsheet shows results for Example Problem 6-1. U.S. Customary units are used. A description is given in Section 6-8. The process is essentially the same as that shown in the flow chart of Figure 6-4. Note that a short macro program in Visual Basic is used to decide whether the column is *long* (Euler) or *short* (J. B. Johnson) and to complete the calculation of the critical buckling load. Be sure that your Excel program enables macros.

Column Analysis SI: Chapter 6. Same as **Column Analysis:** except SI units are used. The solution to Example Problem 6-2 is given as an example for data entry.

Circular Column Analysis: Chapter 6. Special version of *Column Analysis* in which the geometric properties of a column with a solid circular cross section are computed when the diameter is input. The spreadsheet can be used as an iterative design tool to determine the required diameter of a column with a circular cross section to carry a given load. See Figure 6-14.

Crooked Column Analysis: Chapter 6. Section 6-11. Analyzes the allowable load on a column of constant cross section with a given amount of crookedness. Data from Example Problem 6-4 are used as shown in Figure 6-16 on page 252.

Eccentric Column Analysis: Chapter 6. Section 6-12. Computes the required yield strength of the material and the resulting maximum deflection of the middle of a column that is loaded eccentrically. Data from Example Problem 6-6 are used as shown in Figure 6-18.

Chain Drive Design: Chapter 7. Design of roller chain drives as described in Section 7-6. User must obtain rated power data from Tables 7-7, 7-8, or 7-9 to specify a suitable chain number and number of teeth in the smaller sprocket. A service factor must be selected from Table 7-10 in the text. Data from Example Problem 7-4 are shown in the master spreadsheet.

Gear Geometry: Chapter 8. Computes the geometric features of spur and helical gears using the relationships in Sections 8-4 and 8-6. Can be used for Problems 1-9 and 41-44.

Contact Ratio-Spur Gears: Chapter 8. Computes the contact ratio for spur gears using the procedure shown in Section 8-4.

Bevel Gear Geometry: Chapter 8. Computes the geometric features of straight bevel gears using the formulas listed in Table 8-8 in Section 8-7 and illustrated in Example Problem 8-3. Two identical programs are shown side-by-side. One shows the results of Example Problem 8-3 and the other can be used to solve any given problem.

Wormgearing Geometry, C, VR: Chapter 8. Computes essential geometric features of a worm and wormgear, the center distance (*C*) between their shafts, and the velocity ratio, *VR*. Uses procedure from Section 8-9 as illustrated in Example Problem 8-4. The spreadsheet was used to complete Problems 52-57 at the end of the chapter.

Gears VR Design: Chapter 8. Aids in the specification of the number of teeth in a pinion and gear to produce a specified velocity ratio. Uses a procedure similar to that shown in Section 8-11 and illustrated in Table 8-10. An integer is entered for the number of teeth in the pinion. The program computes the required approximate number of teeth in the gear to produce the given velocity ratio. The user then enters an integer for the actual number of gear teeth. The program identifies the combination of numbers of teeth that produces the minimum differential between the desired ratio and the actual ratio. The spreadsheet was used to complete Problems 62-65 at the end of the chapter.

Spur Gear Forces: Chapter 9. Computes the tangential, radial, and normal forces on spur gear teeth of a given design transmitting a given power at a given pinion speed. It uses the method of Section 9-3. The spreadsheet was used to complete Problems 1-6 at the end of Chapter 9. The results for Problems 1 and 2 are shown in the master.

Spur Gears-Design-U.S.: Chapter 9. Performs a complete design analysis for a pair of spur gears, including the essential geometry, tangential force, required bending stress number, and required contact stress number. All modifying factors for stress calculations as described in Sections 9-8 to 9-11 are included. The data from Example Problem 9-4 are shown in the given spreadsheet as illustrated in Figure 9-25. An extensive discussion of the spreadsheet is given in Section 9-13. A feature of the spreadsheet is the computation of the required hardness (HB) for through-hardened Grade 1 steel using the equations in Figures 9-11 and 9-12. The user can then specify suitable materials and list them at the bottom of the spreadsheet.

Geometry Factor-I-Pitting: Chapter 9. Computes the value of the geometry factor, *I*, used in the calculation of contact stress for spur gears in Equation 9-23. Program uses the algorithm from Appendix A18.

Spur Gears-Design-U.S.-With I: Chapter 9. Same as Spur Gears-Design except the geometry factor, I, is computed within the program instead of being input by the user. The program Geometry Factor-I-Pitting is integrated within Spur Gears-Design. One additional input value is needed for the pressure angle, φ.

Spur Gears-Design-SI: Chapter 9. Similar to **Spur Gears-Design:** except SI metric data are used as described in Section 9-13 and illustrated in Example Problem 9-5. Data from Example Problem 9-5 are used in the given spreadsheet.

Spur Gears-Capacity-U.S.: Chapter 9. Section 9-15. Determines the power transmitting capacity of a given set of spur gears considering both bending strength and pitting resistance. The user must input the allowable bending stress and allowable contact stress based on the material specified for the pinion and the gear using Figures 9-11 and 9-12 and Table 9-5. The spreadsheet includes the computation of the required bending stress number, s_{ab} and contact stress number, s_{ac} , based on user-entered hardness (HB) for through-hardened Grade 1 steel using the equations in Figures 9-11 and 9-12. The user must transcribe these values into the spreadsheet if, in fact, this kind of material is specified.

Plastic Gears- Design: Chapter 9. Completes the design of plastic gears using the procedure from Section 9-16. Data are shown for Example Problem 9-7.

Helical Gears-Design: Chapter 10. Computes the forces on helical gear teeth as described in Section 10-2 and illustrated in Example Problem 10-1. Completes the design analysis for a pair of helical gears as described in Sections 10-3 to 10-5 and illustrated in Example Problem 10-3. Used for the solutions to Problems 1-11 at the end of Chapter 10.

Helical Gears-Capacity: Chapter 10. Similar to **Spur Gears-Capacity:** with modifications for the special geometry of helical gear teeth. Used for the solutions to Problems 12 and 13 at the end of Chapter 10. The user must input the allowable bending stress and allowable contact stress based on the material specified for the pinion and the gear using Figures 9-11 and 9-12 and Table 9-5. The spreadsheet includes the computation of the required bending stress number, s_{ab} and contact stress number, s_{ac} , based on user-entered hardness (HB) for through-hardened Grade 1 steel using the equations in Figures 9-11 and 9-12. The user must transcribe these values into the spreadsheet if, in fact, this kind of material is specified.

Bevel Gears – Design: Chapter 10. Computes forces and stresses on bevel gears using the methods shown in Section 10-9.

Wormgearing – Design: Computes worm and wormgear geometry values, forces, and stresses for wormgearing, using methods and data from Chapter 8 (Section 8-9) and Chapter 10 (Sections 10-10, 10-11, and 10-12. The master spreadsheet uses data from Example Problems 8-4, 10-9, and 10-10.

Keyseat Data: Chapter 11. Computes the data required to dimension keyseats and keyways on shaft drawings according to the information in Figure 11-2.

Shaft Design: Chapter 12. Computes the minimum acceptable diameter for shafts using Equation 12-24 when both bending and torsion are present and Equation 12-16 when only vertical shearing stress is present. Requires prior analysis for torques, forces, bending moments, pertinent material strengths, modifying factors on material strength, and stress concentration factor. The program is typically applied at several selected sections of the shaft as illustrated in Design Example 12-1 in Section 12-6. If the location being analyzed has a retaining ring installed, the computed minimum shaft diameter is considered to be for the base of the ring groove. The spreadsheet computes the nominal full shaft diameter by applying a factor of 1.06 as described at the end of Section 12-4. The data used in the master spreadsheet are for one location on the shaft in Design Example 12-1 as illustrated in Figure 12-19 in Section 12-9 where the spreadsheet and its use are described.

Force Fits: Chapter 13, Section 13-8. Stresses for Force Fits. Computes the pressure at the interface between mating members assembled with an interference fit (See Section 13-6.) Also computes the resulting stresses and deformations for the mating members using the procedure in Section 13-8. Data from Example Problem 13-2 are shown in the example.

Spring Design-Method 1: Chapter 18, Section 18-6. The given spreadsheet uses data and the method from Example Problem 18-2 to design a safe helical compression spring for a given loading and to fit given geometrical limitations. See Figure 18-16 and the accompanying discussion.

Spring Design-Method 2: Chapter 19. Similar to **Spring Design-Method 1** without the restriction of designing to a set of geometrical limitations. See Example Problem 18-3, Figure 18-17, and the accompanying discussion.

CHAPTER 1 THE NATURE OF MECHANICAL DESIGN

Problems 1 - 14 require the specification of functions and design requirements for design projects and have no unique solution.

LET D = 0.035 m; L = 0.675 m; VOLUME = V =
$$A \times L = (\pi 0^{2}/4) \times L$$

 $V = \frac{\pi (0.035 m)^{2}}{2} \times 0.675 m = 6.49 \times 10^{-4} m^{3}$
MASS = DENSITY $\times V = 7680 \text{ kg/m}^{3} \times 6.49 \times 10^{-4} m^{3} = 4.98 \text{ kg}$
WEIGHT = $m \times g = 4.98 \text{ kg} \times 9.81 \text{ m/s}^{2} = 48.9 \text{ kg·m/s}^{2} = 48.9 \text{ N}$

25. $T = 180 \text{ LB.IN} \times 0.1130 \text{ N.im} / \text{LB.IN} = 20.3 \text{ N.im}$ $\theta = 35^{\circ} \times \pi \text{ RAD}/180^{\circ} = 0.611 \text{ RAD}.$ $SCALE = T/\theta = 180 \text{ LB.IN}/35^{\circ} = 5.14 \text{ LB.IN}/DEGREE}$ $SCALE = T/\theta = 20.3 \text{ N.im}/0.611 \text{ RAD.} = 33.3 \text{ N.im}/\text{RAD.}$

26. ENERGY = POWER * TIME $E = 12.5 \text{ kp} \times \frac{\text{/6 h}}{\text{DAY}} \times \frac{\text{5DAYS}}{\text{VEAR}} \times \frac{\text{52 WKS}}{\text{52 WKS}} \times \frac{36005}{\text{5. kp}} \times \frac{36005}{\text{h}}$ $E = 1.03 \times 10^{11} \text{ FT.LB} / \text{VEAR}$ $E = 1.03 \times 10^{11} \text{ FT.LB} \times \frac{\text{1.356 f}}{\text{1.0 N/m}} \times \frac{\text{1.0 W}}{\text{N·m/s}} \times \frac{\text{1.h}}{36005}$ $E = 38.8 \times 10^{11} \text{ W·h/VEAR} = 38.8 \text{ MW·h/VEAR}$

27. VISCOSITY = $\mu = 3.75 \text{ REYN}_{\times} \frac{1.018 \cdot 5}{|W^2 \cdot REYN|} \times \frac{144 |W^2|}{|FT^2|} = 540 \frac{18 \cdot 5}{|FT^2|}$ $\mu = 3.75 \frac{1.8 \cdot 5}{|N|^2} \times \frac{4.448 N}{100 N} \times \frac{1.8 |N|^2}{|6|5|2 mm|^2} \times \frac{10 \text{ mm}^2}{|m|^2} = 25.9 \times 10^{\frac{3}{N} \cdot 5}$

Z8. LIFE = $\frac{1750REV}{MIN} \times \frac{29 h}{DAY} \times \frac{60 MIN}{h} \times \frac{365 DAYS}{VEAR} \times 576 ARS$ $LIFE = \frac{4.60 \times /0^9}{REVOLUTIONS}$

CHAPTER 2 MATERIALS IN MECHANICAL DESIGN

- 1. Ultimate tensile strength is the apparent stress at the peak of the stress-strain curve.
- 2. Yield point is the value of the apparent stress from the stress-strain curve at which there is a large increase in strain with no increase in stress. It is the point where the stress-strain curve exhibits a horizontal slope.
- 3. Yield strength is the apparent stress from the stressstrain curve at which there is a large increase in strain
 with little increase in stress for materials that do not
 exhibit a yield point. The offset method is used by
 drawing a line parallel to the straight part of the stressstrain curve through a value of 0.2% on the strain axis.
- 4. Many low alloy steels exhibit a yield point.
- 5. The proportional limit is the apparent stress on the stress-strain curve at which the curve deviates from a straight line. At this value, the material is usually still elastic. The elastic limit is the apparent stress at which the material is deformed plastically and will not return to its original size and shape.
- 6. Hooke's law applies to that portion of the stress-strain curve that is a straight line for which stress is proportional to strain.
- 7. The modulus of elasticity is a measure of the stiffness of a material.
- 8. The percent elongation is a measure of the ductility of a material.
- 9. The material is not ductile. Materials having a percent elongation greater than 5% are considered to be ductile.
- 10. Poisson's ratio is the ratio of the lateral strain in a material to the axial strain when subjected to a tensile load.
- 11. From EQ. 2-5 G = E/[2(1+v)] = (114 GPa)/[2(1+0.33)]G = 42.9 GPa

- 12. Hardness = 52.8 HRC (Approximate; Appendix 17)
- 13. Tensile strength = 235 ksi (Approximate; Appendix 17)

14.-17. Errors in given statements:

- 14. A hardness of HB 750 is extremely hard, characteristic of the hardest steels in the as-quenched or surface hardened condition. Appendix 3 shows annealed steels to have hardness values in the approximate range of HB 120 to 230.
- 15. Hardness on the HRB scale is normally limited to HRB 100.
- 16. Hardness on the HRC scale is normally no lower than HRC 20.
- 17. The relationship between hardness and tensile strength is only valid for steels.
- 18. Charpy and Izod tests measure impact strength.
- 19. Iron and carbon. Other elements are often present.
- 20. In addition to iron and carbon SAE 4340 steel contains nickel, chromium, and molybdenum. (Table 2-8)
- 21. Approximately 0.40% carbon in SAE 4340 steel.
- 22. Low-carbon: Less than 0.3% Medium-carbon: 0.30% to 0.50% High-carbon: 0.50% to 0.95%
- 23. Typically a bearing steel contains 1.0% carbon.
- 24. Lead is added to SAE 12L13 steel to improve machinability.
- 25. Shafts are often made from SAE 1040, 4140, 4640, 5150, 6150, and 8650 steels. (Table 2-9)
- 26. Gears are often made from SAE 1040, 4140, 4340, 4640, 5150, 6150, and 8650 steels. (Table 2-9)
- 27. The blades of a post hole digger should have good wear resistance, high strength, and good ductility. SAE 1080 steel is a reasonable choice.
- 28. SAE 5160 OQT 1000 is a high-carbon, chromium steel, containing approximately 0.60% carbon and 0.80% chromium. It was heat treated by heating above its upper critical temperature, quenched in oil, and then tempered at 1000 degrees Fahrenheit. It has fairly high strength (sy = 151 ksi or 1040 MPa) and good ductility (14% elongation).

- 29. In general, a high hardness with good ductility are desirable for machine parts and tools subjected to impact loads as seen by a shovel. A hardness of HRC 40 corresponds to approximately HB 375 and is considered moderately hard. While this is a good level, even a higher value up to HRC 50 (HB 475) would be better, provided ductility is fairly high, say about 15% elongation. Appendix 3 shows some forms of oil-quenched SAE 1040 and none listed have sufficiently high hardness. Appendix 4-1 shows the same material quenched in water and tempered. SAE 1040 WQT 700 has a hardness of HB 401 (HRC 43) with approximately 20% elongation and a yield point of 92 ksi.
- 30. Through hardening involves heating the entire part followed by quenching to achieve the hardened condition. Except for some variation in thick sections, the part is hardened throughout. But no chemical composition changes occur. In carburizing, the chemical composition of the surface is changed by the infusion of carbon. Thus, carburizing results in a hard surface while the core is softer.
- Induction hardening is a heat treating process in which the area to be hardened is subjected to a high-frequency electric current created by a coil, inducing current flow near the surface of the part and causing local heating. After sufficient time to bring the surface to a temperature above the upper critical temperature of the material, the part is quenched to harden the surface.
- 32. Some carburizing grades of steels are SAE 1015, 1020, 1022, 1117, 1118, 4118, 4320, 4620, 4820, 8620 and 9310. The carbon content ranges from 0.10% to 0.20%. App. A-5.
- 33. The AISI 200 and 300 series of stainless steels are nonmagnetic.
- 34. Chromium gives stainless steels good corrosion resistance.
- 35. ASTM A992 structural steel is used for most wide-flange beams.
- 36. HSLA structural steels are high-strength, low-alloy steels having yield strengths in the range of 42 100 ksi (290 700 MPa.
- 37. Three types of cast iron are gray iron, ductile iron, and malleable iron.
- 38. ASTM A48 , Grade 30 is a gray iron with a tensile strength of 30 ksi (207 MPa); no yield strength; less than 1% elongation (brittle); modulus of elasticity (stiffness) of /69 x106 psi (// // GPa).

Problem 38. (continued)

ASTM A536 Grade 100-70-03 is a ductile iron with a tensile strength of 100 ksi (689 MPa); a yield strength of 70 ksi (483 MPa); 3% elongation (brittle); modulus of elasticity (stiffness) of 24 x106 psi (165 GPa).

ASTM A47 , Grade 325/0 is a malleable iron with a tensile strength of 50 ksi (345 MPa); a yield strength of 32.5 ksi (224 MPa); 10% elongation (ductile); modulus of elasticity (stiffness) of 25×10^6 psi (172 GPa).

ASTM A220, Grade 70003 is a malleable iron with a tensile strength of 85 ksi (586 MPa); a yield strength of 70 ksi (483 MPa); 3% elongation (brittle); modulus of elasticity (stiffness) of 26x106 psi (179 GPa).

- 39. Powdered metals are preformed in a die under high pressure and sintered at a high temperature to fuse the particles. Re-pressing after sintering is sometimes used.
- 40. Parts made from Zamak 3 zinc casting alloy typically have good dimensional accuracy and smooth surfaces, a tensile strength of approximately 41 Ksi (283 MPa), a yield strength of 32 Ksi (221 MPa), 10% elongation, and a modulus of elasticity of 12.4x10⁶ psi (85 GPa). (Appendix 10)
- Type D tool steels are typically used for stamping dies, punches, and gages. (Table 2-//)
- 42. The suffix 0 on aluminum 6061-0 indicates the annealed condition.
- 43. The suffix H on aluminum 3003-H14 indicates that it was strain hardened.
- 44. The suffix T on aluminum 6061-T6 indicates that it was heat treated.
- 45. Aluminum 7/10 -T6 has the highest strength; tensile strength = 88 ksi (60 MPa); yield strength = 70 ksi (538 MPa).
- 46. Aluminum alloy 6061 is one of the most versatile.
- 47. Three typical uses of titanium alloys are aerospace structures, chemical processing equipment, and marine hardware.
- 48. Bronze is an alloy of copper with tin, aluminum, lead, phosphorus, nickel, zinc, manganese, or silicon.

- Bronze C86200 is a manganese bronze casting alloy with a tensile strength of 95 ksi (655MPa); yield strength of 48 ksi (331 MPa); 20% elongation (ductile); modulus of elasticity of 15x106 psi (103 GPa).
- 50. Bronze is used for gears and bearings.
- 51. Thermosetting plastics undergo a chemical change during forming resulting in a structure of cross-linked molecules. The process cannot be reversed or repeated. Thermoplastic materials can be formed repeatedly by reheating because the molecular structure is essentially unchanged during processing.
- a) Gears: Nylon, polycarbonate, acetal, polyurethane elastomer, phelolic. b) Helmets: ABS and polycarbonates. c) Transparent shield: Acrylic. d) Structural housing: PeT, ABS, polycarbonate, acrylic, PVC, phenolic, polyester/glass composite. e) Pipe: ABS, PVC. f) Wheels: Polyurethane elastomer. g) Switch parts: polyimide, phenolic, PET.
- Designers of parts to be made from composite materials can control 1) base resin, 2) reinforcing fibers, 3) amount of fibers, 4) orientation of fibers, 5) number of layers, 6) overall thickness, 7) orientation of layers, 8) combinations of types of materials.
- 54. Composite materials are comprised of two or more different materials, typically a resin reinforced by fibers.
- 55. Resins used for composites include polyesters, epoxies, polyimides, PHENGLIKS (ALL THERMOSETS), THERMO PLASTICS: PE, PA, PLEK, PPS, PVC.
- Reinforcing fibers used for composites are glass, boron, aramid, and carbon/graphite.
- 57. Sporting equipment is made from glass/epoxy, boron/epoxy, and graphite/epoxy composites.
- Aerospace structures are made from glass/epoxy, boron/epoxy, graphite/epoxy, and aramid/epoxy composites.
- 59. Sheet molding compound is typically a glass/polyester composite.
- 60. SMC's are used for auto and truck body panels and large housings.
- 61. Reinforcing fibers are produced as continuous filaments, chopped fibers, roving, fabric, yarn, and mats.

- 62. Wet processing of composites involves the layup of fabric reinforcing sheets on a form, saturation of the sheets with the resin, and curing under heat and pressure.
- 63. Preimpregnated composite materials are produced with the resin already on the fibers in a convenient form, called a prepreg. The prepreg is layered onto the form and cured.
- 64. SMC's are preimpregnated fabric sheets formed in a mold and cured simultaneously under heat and pressure.
- 65. Pultrusion is a process of coating the fiber reinforcement as it is pulled through a heated die to produce a continuous form such as tubing, structural shapes, rod, and hat sections used to stiffen aircraft structures.
- 66. In the filament winding process, continuous filaments are placed around a mandrel in a controlled pattern and then cured. The process is used for pipe, pressure vessels, rocket motor cases, containers and enclosures.
- 67. Specific strength is the ratio of the strength of a material to its specific weight.
- 68. Specific stiffness is the ratio of the modulus of elasticity of a material to its specific weight.
- 69. Many composites have significantly higher values of specific strength and specific stiffness than metals.

70 - 73 refer to Figure 2-23 and Table 2-/7.

General conclusions from Questions 70 - 73: The specific strengths of the metals listed range from 0.194x106 to 1.00x106 in, approximately a factor of 5.0. The specific stiffnesses are very nearly equal for all metals listed, approximately 1.0x108 in. The specific strengths of the composites listed range 1.87 to 4.85x106 in, much higher than any of the metals. Glass/epoxy has a specific stiffness about 2/3 that of the metals. The other composites listed range from 2.2 to 8.3 times as stiff as the metals.

See Section 2-17 for answers to Questions 74 to 105.

Supplementary Proplems - Chapter 2

- 1. Poisson's ratio: a) Carbon steel -0.29; c) Lead -0.43; e) Concrete -0.10 to 0.25
- 2. See Section 2-2, subsection: Flexural Strength and Modulus, and Figure 2-5.
- 3. Erosive, abrasive, adhesive, fretting, surface fatigue
- 4. From Table 2-6: 14 alloys listed, Examples: ASTM A36, SAE 1018 HR or CD, SAE 1045 HR or CD, SAE 8620 CD.
- 5. From Table 2-6: SAE 304 and SAE 316
- 6. From Table 2-6: Six alloys listed, Examples: 2024-T4, 3003-H14, 6061-T6, 6063-T6
- 7. From Section 2-3: ASTM International, AISI, SAE
- 8. From Section 2-3: Aluminum Association
- 9. From Table 2-7: a) DIN 42CrMo4 or W-1.7225; b) BS 708A42; c) EN 42CrMo4; d) GB ML42CrMo4; e) JIS SCM 440H
- 10. From Table 2-7: a) DIN C45 or W-1.0503; b) BS 060A47; c) EN C45; d) GB 699-45;e) JIS S45C
- 11. From Table 2-7: a) DIN X6Cr17 or W-1.4016; b) BS 430S17; c) EN X6Cr17; d) GB ML1Cr17; e) JIS SUS430
- 12. From Table 2-7: a) DIN AlZnMgCu1.5 or W-3.4365; b) BS L.95, L.96; c) EN AlZn6MgCu
- 13. Water, brine, mineral oil, water-soluble polyalkylene glycol (PAG)
- 14. From Section 2-6: Fine steel or cast iron shot is projected at high velocity on critical surfaces to produce residual compressive stress that tends to improve the fatigue strength.
- 15. From Table 2-10: ASTM A27/A27M; A915/A915M; A128/A128M; A148/A148M
- 16. From Table 2-10: ASTM A757; ASTM A351; ASTM A216; ASTM A389
- 17. Carbidic austempered ductile iron used for: railroad rolling stock, earthmoving equipment, agricultural machinery, crushers
- 18. From Section 2-10: White iron is made by rapidly chilling a casting of gray iron or ductile iron during solidification. ASTM Standard A532 describes the process. Used to improve wear resistance for ball mills, crushers, mixing equipment, and material handling devices.
- 19. From Section 2-11: Powders are pressed to their basic form and then heated to sinter the powder particles into a strong solid.
- 20. From Section 2-11: Powders are compressed by a flexible membrane in a hermetic chamber to produce a high density; may be done cold or at elevated temperatures.
- 21. From Section 2-11: Metal powders are fed into an injection molding machine to form a green part that is then sintered to complete the solidification and bonding processes.
- 22. From Section 2-11: Metal powders are first pressed and sintered, then forged in a closed-die press to achieve final form and properties.
- 23. From Table 2-12: Carbon steel F-0008-HT, $s_u = 85 \text{ ksi } (590 \text{ MPa})$;

- Low-alloy steel FL-4405-HT, $s_u = 160$ ksi (1100 MPa); Diffusion-alloyed steel FD-0205-HT, $s_u = 130$ ksi (900 MPa); Sinter-hardened steel FLC-4608-HT, $s_u = 100$ ksi (690 MPa)
- 24. From Table 2-12: a) Nickel silver CNZ-1818; $s_u = 20$ ksi (118 MPa)
 - b) Bronze CTG-1001; (no strength listed; used for bearings)
 - c) Copper C-0000; No strength listed; used for electrical applications
 - d) Aluminum $s_u = 32 \text{ ksi } (221 \text{ MPa})$
- 25. From Section 2-11: Projected surface area less than 50 in² (32 000 mm²)
- 26. From Section 2-12: Aluminum casting alloys: 202, 222, 319, 360, 413, 444, 512, 535, 712, 771, 850, 852. Others available.
- 27. From Section 2-12: Aluminum 2014, 2024, 6061
- 28. From Section 2-13: Zinc alloy No. 3 or Zamak 3.
- 29. From Section 2-13 and Appendix A10-1: Zinc ZA-8, $s_u = 54$ ksi (374 MPa) ZA-12, $s_u = 59$ ksi (404 MPa); ZA-27, $s_u = 61$ ksi (421 MPa)
- 30. From Section 2-14: Nickel-based alloys have good corrosion resistance and retain good levels of strength at high temperatures.
- 31. From Section 2-15: a) Bearing bronze C93200l; b) Phosphor bronze C54400;
 - c) Muntz metal C37000; d) Manganese bronze C86200;
 - e) Copper-nickel-zinc alloy C96200; f) Manganese bronze C67500
- 32. From Section 2-15: H-numbers indicate the degree of hardening by strain hardening methods; a) H04 Full hard; b) H02 ½ hard; c) H01 1/8 hard; d)H08 Spring hard
- 33. From Section 2-15: TD temper indicates solution heat treated and cold worked
- 34. From Section 2-15 and Figure 2-18: As the percent cold reduction increases, tensile and yield strengths increase and ductility as indicated by percent elongation decreases.
 - 10% cold work: $s_u = 133$ ksi (917 MPa), $s_y = 121$ ksi (834 MPa), 17% elongation 40% cold work: $s_u = 154$ ksi (1062 MPa), $s_y = 142$ ksi (979 MPa), 1% elongation
- 35. From Section 2-18: Metals, polymers, ceramics, glasses, elastomers, hybrids
- 36. From Section 2-18: Foams, sandwich structures, honeycomb structures
- 37. From Fig. 2-31: d) Metals, b) ceramics, g) composites, c) polymers, a) wood, h) rubbers/elastomers, f) foams
- 38. From Fig. 2-32: b) ceramics, d) metals, g) composites, a) wood, c) polymers, f) foams, h) elastomers
- 39. From Figure 3-32: (lightest to heaviest) e) foams, a) wood, h) elastomers, g) composites, d and b) Metals and ceramics (about equal)

CHAPTER 3 STRESS AND DEFORMATION ANALYSIS

Direct Tension and Compression

1.
$$\sigma = F/A$$
; $A = TT (18^2 - 12^2)/4 = 141.4 \text{ mm}^2$
 $\sigma = 4500 N/141.4 \text{ mm}^2 = 31.8 N/mm^2 = 31.8 MPa$
 $\delta = \frac{PL}{EA} = \frac{(4500 N)(750 mm)}{(207 \times 10^9 N/m^2)(141.4 mm^2)} \times \frac{10^6 mm^2}{m^2} = 0.12 mm$

2.
$$\sigma = F/A = 3500 N/(H(10)^2/4) mm^2 = 44.61 Pa$$

3.
$$\sigma = F/A = 20 \times 10^3 N/(0.30) mm^2 = 66.7 MPa$$

4.
$$\sigma = F/A = 860LB/(6.40 M)^2 = 5375 PSi$$

5.
$$\sigma = F/A = 1900LB/T(0.375IN)^2/4=17,200Psi$$

6.
$$\sigma = P/A; A = (/2mm)^{2} = 144 \text{ mm}^{2}; \sigma = \frac{5000N}{144 \text{ mm}^{2}} = \frac{34.7 \text{ MPa}}{(ALL)}$$

$$\delta = \frac{PL}{EA} = \frac{(5000 \text{ N})(1650 \text{ mm})}{(E \text{ N/mm}^{2})(144 \text{ mm}^{2})} = \frac{57292}{E} \text{ mm}$$

7.
$$S = PL/SA$$
; $P = \frac{SEA}{L}$

$$A = (2.25^2 - 2.01^2)IN^2 = 1.02IN^2$$

$$P = \frac{(0.004IN)(10 \times 10^6 LB/IN^2)(1.02IN^2)}{16.0IN} = 2556LB$$

$$G = P/A = 2556LB/1.02IN^2 = 2506PSi$$

8.
$$EMB = 0 = 2500(75) - F_c(60)$$
 $F_c = 2500(75/60) = 3/25LB = TENSILE FORCE IN AC 60$
 $\sigma = \frac{P}{A} = \frac{3/25LB}{(0.50)(3.50)M^2} = 595PSi$

[10.]
$$G = \frac{P}{A}$$
; REQU. $A = \frac{P}{\sigma_{ALLOW}}$

$$A = \frac{1061 \text{ LB}}{18000 \text{ LB/m}^2} = 0.0589 \text{ IN}^2 = 170 \frac{1}{17}$$

$$O = \sqrt{\frac{4A}{17}} = \sqrt{\frac{4(0.0589)}{17}} = 0.2741N. MINIMUM$$

11.
$$\theta = 15^{\circ}$$
; $F_R = \frac{1500 \, LB}{25M \, \theta} = \frac{1500 \, LB}{25N(15)} = \frac{2898 \, LB}{25N(15)} = \frac{2898 \, LB}{18000} = 0.161 \, lm^2 ; D = \sqrt{\frac{4(J_U)}{17}} = \frac{0.453 \, lm}{18000}$

12.

13.

FIGURE P3-26

 $EM_A = 0 = 6000(6) + 12000(12) - R_F(18)$ $R_F = 10000 Le$

 $2M_F = 0 = 12000(6) + 6000(12) - R_A(18)$ $R_A = 8000 LB$

Rn = AB sin = A6(0.0)

AB = R. /0.8 = 8000/0.8 = 10000 LG CAMP.

AD= AB cras= 10000 (0.6)= 6060 LB TEMS.

BE 2m 0 +6000 - AB 2m 0 = 0

BE = AB sin 8 -6000 = 10000(0.8) -6000 = 2500 LB TENS.

BC = AB COO + BE COSO = 10000 (0.6) + 2500 (0.6) = BC = 7500 LB COMP.

BC = CF COOP

CF = Bc/cose = 7500/0.6 - 12500 LB Comp.

CE = 12000 - CF sin 0 = 12000-12500(0.8) = 2000L8 5

EF = CF C=0 = 12500 (0.6) = 7500LB TENS.

AREAS OF MEMBERS : (APP. A5, A6)

AO, DE, EF - Z(0,484) = 0.968/N2

BD, BE, CE - 0.484 /N -

A6, BC, CF - 2(1,21) = 2.42/A2

NOTE: COMPRESSION MEMBERS MOST BE LHECKED FOR COLUMN BUCKLING STRESSES:

OAD = ODE = 6000/0.968 = 6/98 pai

GEP = 7500/0.968 =+7748 pri

OB0 =0

Toe = 2500/0.484 = 5/65 pm

OCE = -2000/0.484 = 4/32 pm

TAG = -10000/2.42 = -4/32 pm

σ₈₀ = -7500/2.42 = -3099 pi

OCF = -12500/2.42 = -5/65 pai

14.

A= (2.65)(/.40) + 2[(1.40)(0.5)(t)] = 4.41 m2 O= F/A = (52000 LB/4.41 m2) = // 79/ poi 15. $A = (80)(40) + 17(40)^{2}/4 = 4457 mm^{2}$ $G = \frac{P}{A} = 640 \times 10^{3} N/4457 mm^{2} = 143.6 MPa$

Direct Shear Stress

- 16. PIN DIA = 0.50 in .; DOUBLE SHEAR

 As = 2(10 1/4) = 2 TT (0.50) 1/4 = 0.3927 in 2

 T = Fs/As

 MEMBER BC:

 \$18 = 0 = (2500)(75) FAc (60)

 FAC = 2500 (7960) = 3/25 LB

 AND BY = FAC = 3125 LB

 BY = 2500 LB

 RESULTANT AT B: B = \[\frac{3125^2 + 25007}{45} = \frac{4007 LB}{3007} \]

 PINS A AND C'. T = \[\frac{Fs}{As} = \frac{3125 LB}{6.3921 in^2} = 7958 PS' \]
- PIN B: T = FS/As = 4002 LB/0.3927 IN = 10,190 PSi
- FROM PROB. 9: FORCE IN EACH ROD = $F_R = 1500LB/25INB$ FOR $B = 40^\circ$; $F_R = 1167 LB = SNEAR$ FORCE ON UPPER PINS

 ASSUME POURIE SNEAR: $A_S = 2^{ITD}/y = 2^{IT}(0.75)^2/y = 0.8836IN^2$ $T = \frac{F_S}{A_S} = \frac{1167 LB}{0.8836IN^2} = \frac{1321 PS!}{1200LB}$ LOWER PIN: $F_S = 1500LB$ $T = \frac{F_S}{A_S} = 1500LB/0.8836IN^2 = \frac{1698 PS!}{1698 PS!}$
- 18. ANALYSIS FROM PROBLEMS 9 AND 17. LET 0 = 15°

 FR = \(| 500 L6 \section | 2 SIN 0 = \) \(| 500 L6 \section | 2 SIN 15° = 2898 LB

 T = \(F_6 \section | A_5 = \) \(2898 L 6 \) \(2898 L 6 \) \(1883 C IN^2 = \) \(3280 PS' \) IN ALL PIN S
- 19. FIGURE 3-7 KEY IN SHEAR. As=b·L = (12X45) = 540 mm²

 FS = TORQUE/RADIUS = 1600 N·m/30 mm × 18mm = 53 333 N

 T = Fo/A: = 53313 N = 98.8 N/mm² = 98.8 MPN

20. PUNCH-FIG P3-20
$$A_s = (PERIN.) t = [2.50+2.00+1.50+\sqrt{0.5^2+2.5^2}](0.000)$$

$$A_s = (8.55 IN)(0.060 IN) = 0.513 IN^2$$

$$\Gamma = F_{5}/A_{5} = 52 0.00 LB/0.513 IN^{2} = 101,400 Psi$$

21. PUNCH-FIG. P3-21. PERIM = 60 + 2(30) + 2(7.5) + 3
$$\left[\frac{tt(15)}{2}\right]$$
 = 205.7mm
As = (PERIM.) t = (205.7)(2.0) = 411.4 mm²
 $T = \frac{F_3}{A_S} = \frac{225000N}{411.4 mm^2} = 547N/mm^2 = 547MPa$

Torsion

$$7 = \frac{T}{2\rho} = \frac{T}{\pi D^3/16} = \frac{800 \text{ N/M}}{\pi (50)^3/16 \text{ mm}^3} \times \frac{10^3 \text{ mm}}{1 \text{ m}} = 32.6 \frac{N}{\text{mm}^2} = 32.6 \frac{N}{\text{mm}$$

24.
$$\gamma = \frac{T}{20} = \frac{T}{\pi 0^3/h} = \frac{88.0 \, \text{LB-IM.}}{\pi (0.40 \, \text{IM})^3/h} = \frac{1003 \, \text{fs.i}}{100.40 \, \text{IM}}$$

25.
$$T = 63000 (P)/m = 63000 (110 kg)/560 Rgn = 12375 LB-JN.$$

$$T = \frac{T}{20} = \frac{12375 LB-JN}{TT (J.25 JN)^3/6} = \frac{32270 PSi}{2000}$$

$$T = P/m = 28 \times 10^{3} \text{ N.m.} / s / 45 \text{ RAD/s} = 622 \text{ N.m.}$$

$$Z_{p} = \frac{\pi (D^{q} - d^{q})}{160} = \frac{\pi [40^{q} - 30^{q}] \text{ m.m.}^{q}}{16 (40 \text{ m.m.})} = 8590 \text{ m.m.}^{3}$$

$$T = \frac{T}{2p} = \frac{622 \text{ N.m.}}{8590 \text{ m.m.}^{3}} \times \frac{10^{3} \text{ m.m.}}{100 \text{ m.m.}} = 72.4 \text{ N/m.} = 72.4 \text{ M/m.}$$

27.
$$\theta = \frac{TL}{G \pm}$$
 $= \frac{T(D^{y} - \delta^{y})}{3Z} = \frac{T[40^{y} - 30^{y}]}{3Z}_{mm}^{y} = 1.718 \times 10^{5} \text{ mm}^{y}}$

$$\theta = \frac{(622 \text{ N·m})(400 \text{ mm})}{(80 \times 10^{3} \text{ N/mm}^{2})(1.718 \times 10^{5} \text{ mm}^{y})} \times \frac{10^{3} \text{ mm}}{m} = 0.018 \text{ Rho} \times \frac{180}{17 \text{ Rho}} = 1.04^{\circ}$$

Noncircular Members in Torsion

Z8. SQUARE:
$$\alpha = 25 \text{ m/m}$$
; $Q = 0.208 \alpha^3 = 3250 \text{ m/m}^3$ $= 14.3-6$
 $K = 0.141 \alpha^4 = 5.5/10^4 \text{ m/m}^4$
 $T = T/Q = \left(\frac{230 \text{ N/m}}{3250 \text{ m/m}}\right) \frac{10^3 \text{ m/m}}{\text{m}} = 70.8 \frac{N}{\text{m/m}} = \frac{70.8 \text{ M/m}}{\text{m}} = \frac{70.8 \text{ M/m}}{\text{m}$

29.
$$h/h = 0.60/J.50 = 0.40$$
 $(FIG. P3-29)$
 $C_1 = 0.78$; $C_2 = 0.70$
 $K = C_1 h^4 = 0.78(I.50)^4 = 3.95 JH^4$
 $Q = C_2 h^3 = 0.76(J.50)^3 = 2.36 JH^3$
 $T = \frac{T}{Q} = \frac{J0.600 L6-JH}{2.36 JH^3} = \frac{44.87 PSi}{2.36 JH^3}$

$$\Theta = \frac{TL}{GK} = \frac{(10600 \text{ LB-IN})(44.0 \text{ IN})}{(11.5 \times 10^{6} \text{ LO}/m^{2}) 3.95 \text{ IN}^{4}} = 0.0103 \text{ RAD}_{1} \frac{180^{\circ}}{17 \text{ RAD}} = 0.59^{\circ}$$

30.
$$\Delta = 2.0 \text{ /n }; b = 4.0 \text{ /n }; t = 0.109 \text{ /n }; (a-t) = 1.89 \text{ /n }; (b-t) = 3.89 \text{ /m }; L = 6.5 \text{ FT}$$

$$K = \frac{z \pm (a-t)^2 (b-t)^2}{a+b-2t} = \frac{2(0.109)(1.891)^2(3.891)}{(2.0+4.0-2(0.109)]} = 2.041 \text{ /n}^4$$

$$Q = 2 \pm (a-t)(b-t) = 2(0.109)(1.891)(3.891) = 1.604 \text{ /n}^3$$

$$T = TQ = \left(6000 \text{ LB//n}^2\right)(1.604 \text{ /n}^3) = 9624 \text{ LB-/n}$$

$$\Theta = \frac{TL}{6K} = \frac{9624 \text{ LB-/n}}{(11.5 \times 10^6 \text{ LB//n}^2)(2.04 \text{ /n}^4)} = 0.032 \text{ RAO}_{\times} \frac{180^6}{11.5 \times 10^6 \text{ LB//n}^2} = 1.83^6$$

Beams

31.
$$S = \frac{M}{S}$$
: $REQ'D.S = \frac{M}{GALLEW}$
 $S = \frac{3600 LE.FT}{18000 LS/m^2}$; $\frac{12N}{FT} = 2.40 IN^3$
 $A = \frac{3}{1200}$

(LE)

 $A = \frac{3}{1200}$
 $A = \frac{$

e) 54x7.7 A= f) C15x40
S=3.04 M3 2.26 M2 Sy = 3.371 M3 A=
11.81

4-IN SCHEDULE 40 PIPE S=3.215 IN 3 A=3.171N2

33. FROM CASE C; APPENDIX 14:
$$a = 36/0$$
; $L = 120 M$; $P = 1200 LB$; $E = 30 \times 10^6 PS$;

$$M_{MAX} = \frac{Pa}{Z4EI} \frac{(3L^2 - 4a^2)}{Z460 \times 10^6} = \frac{1200 (36)[3(120)^2 - 4(36)^2]}{Z460 \times 10^6} = \frac{2.281}{I} \frac{1}{I}$$

$$M_{6} = M_{C} = \frac{Pa^2(3L - 4a)}{6EI} = \frac{1200 (36)^2[3(120) - 4(36)]}{6(30 \times 10^6)I} = \frac{1.866}{I} \frac{1}{I}$$
(SEE NEXT PAGE)

33. (CONT)

a)
$$I = a^{4}/2 = (2.50)^{4}/2 = 3.26/N^{4}$$
: $M_{MAX} = \frac{2.281}{3.26} = 0.701/N$
 $M_{\bullet} = M_{c} = \frac{1.866}{3.26} = 0.572 \text{ in.}$

34.

35.

 $M_A = 824 + 11(0.5) = 330 \text{ N·m}$ $M_B = 333 - 389(0.1) = 294 \text{ N·m}$ $M_C = -80 + 200(.2) = -40 \text{ N·m}$

36. a) SIMPLE CANTILEVER - CASE & -APPENDIX 142:
$$I = 7.23 IN^4$$
 ARR. 15-17

$$M_A = \frac{-P \times^2}{6EI} (3a - x) = \frac{(800)(48)^2}{6(30 \times 10^6)(7.23)} [3(72) - 48] = -0.238 IN. = M_A$$

$$\pi_i = 4f^* = 48IN; \ \alpha = 6f^* = 72IN; \ \pi_2 = 8f^* = 96IN.$$

$$M_B = \frac{-P \alpha^2}{6EI} (3\pi_2 - \alpha) = \frac{-800(72)^2}{6(30 \times 10^6)(7.23)} [3(96) - 72] = \frac{-0.688 IN}{6(30 \times 10^6)(7.23)}$$

6) Supported CANTILEVER - CASE b-APPENDIX 14-3

$$M_{A} = \frac{-P \times_{i}^{2} b}{I2 EIL^{3}} (3 C_{i} - C_{3} \times)$$

$$\chi_{i} = 4ft - 48IM ; 0 = 6ft = 72IM; b = 4ft = 48IM; L = 10ft = 120IM; N = 2ft = 24IM$$

$$C_{i} = a \cdot L(L+b) = 72 (120)(168) = 1.452 \times 106 IN^{3}$$

$$C_{2} = (L+a)(L+b) + a \cdot L = (192)(168) + 72 (120) = 4.090 \times 0^{4} IN^{2}$$

$$M_{A} = \frac{-(800)(48)^{2}(48)}{12(30\times10^{6})(7.23)(120)^{3}} [3(1.452\times10^{6}) - 4.09\times10^{4}(48)] = 0.047IN = M_{A}$$

$$M_{B} = \frac{-P \cdot a^{2}N}{12EIL^{3}} [3L^{2}b - N^{2}(3L-a)]$$

$$M_{B} = \frac{-(800)(72)^{2}(24)}{12(30\times10^{6})(7.23)(120)^{3}} [3(120)^{2}(48) - (24)^{2}(3(120) - 72)] = 0.042IM = M_{B}$$

$$M_{B} = \frac{12(30 \times 10^{6})(7, 23)(120)^{3}}{12000 \times 10^{6}}$$

$$S = \frac{8000 \times 10^{6}}{12000 \times 10^{6}} = 0.667 \text{ m}^{3}$$

$$S = \frac{8000 \times 10^{6}}{12000 \times 10^{6}} = 0.667 \text{ m}^{3}$$

$$S = \frac{12000 \times 10^{6}}{12000 \times 10^{6}} = 0.667 \text{ m}^{3}$$

$$M_{AI} = \frac{1000 \times 10^{6}}{12000 \times 10^{6}} = 0.667 \text{ m}^{3}$$

$$M_{AI} = \frac{1000 \times 10^{6}}{12000 \times 10^{6}} = 0.747 \times 10^{6}$$

$$M_{AI} = \frac{1000 \times 10^{6}}{12000 \times 10^{6}} = 0.747 \times 10^{6}$$

$$M_{AI} = \frac{1000 \times 10^{6}}{12000 \times 10^{6}} = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

$$M_{AI} = M_{AI} + M_{AI} = +.140 -.214 = 0.074 \times 10^{6}$$

37. (CONT.)
$$M_{C1} = \frac{-P a^2 b^2}{3 \epsilon \pi L} = \frac{-(500)(30)^2(40)^2}{3(D \times 10^4)(2.24)(70)} = -0.153 \text{ /N} DOWN$$

$$M_{C2} = \frac{P a L^2}{\epsilon I} (0.064/5) = \frac{(400)(20)(70)^2}{(D \times 10^4)(2.24)} (0.064/5) = 0.112 \text{ in UP}$$

$$NOTE: \alpha/L = \frac{40}{70} = 0.571. \text{ THEN POINT C IS CLOSE TO MINAY IN CASE 9}.$$

$$M_{C2} = M_{C1} + M_{C2} = -0.153 + 0.112 = -0.04 \text{ IN DOWN}$$

$$I = M_{C1} + M_{C2} = -0.153 + 0.112 = -0.04 \text{ IN DOWN}$$

$$I = \frac{1}{120} \frac{1}{120} \frac{(150)(725)^2}{120} = \frac{1}{120} \frac{$$

-0.650

Combined Normal Stresses

(LB-IN)

AT A (TOP)

$$G = Fh + \frac{M}{S} = \frac{301N}{50(20)mn} \cdot \frac{4/30N/400mn}{(20)(50)^{2}/4mn^{3}}$$

$$G = 0.301 + 20.64 = 26.94 MPa_{L} \cdot Tens/6N$$

AT B, $M = 430(200) = 86000 N/mmn$

ASSUME AXIAL STRESS IS SMALL: $G = \frac{M}{5}$

$$REO'D S = \frac{M}{20.94 N/mn^{3}} = \frac{4/07mn^{3}}{20} = \frac{th^{2}}{6}$$

$$h = \frac{65}{t} = \frac{6(4/07)}{20} = 35.7 mm$$

$$LET = \frac{36 mm}{720 mm} + \frac{86000 N/mm}{4320 mm^{3}} = \frac{20.33 MPa_{D} CK}{6}$$

AT C, $M = 436(50) = 21500 N/mm$

$$S = \frac{M}{20.94} = \frac{21500}{20.94} = \frac{70.27 mm^{3}}{20} \cdot \frac{1}{5} = \frac{667027}{20} = 77.6 mm$$

$$LET = \frac{18 mm}{20.94} : t = 20 mm^{3} : t = \frac{63}{t} = \frac{667027}{20} = 77.6 mm$$

$$C = \frac{301N}{20.94} + \frac{21500 N/mm}{1080 mm^{3}} = \frac{20.74 MPa_{D} CK}{20.74 MPa_{D} CK}$$

$$\sigma = \frac{-F_X}{A} + \frac{M}{S} = \frac{-1383}{457} + \frac{44986}{736}$$

JUST BELOW C:

$$\sigma = \frac{-8x}{A} - \frac{M}{S} = \frac{-2822}{459} - \frac{44986}{7.36}$$

57.

$$\sigma = -\frac{F}{A} - \frac{M}{S} = -\frac{60}{b^2} - \frac{240}{b^2/b}$$

$$\sigma = \frac{-60}{b^2} - \frac{/440}{b^3}$$
 But Assume

TRY b= 0.510 IN = 1/21N : A = 0.25 IN2; S= 6/6 = 0.0208 IN3 0= -60LB - Z40 LB-IN = -240 -11520 = 1/760 PS/ OK

58. FBD FROM PROBLEM 3-42:

PART FROM B-C SEES 39375 Nomm MOMENT

M= 240 LB-1#

60.

Stress Concentrations: K_t factors obtained from the website:

<u>www.efatigue.com/constantamplitude/stress-concentration /</u> [Note for a flat plate with a circular hole in bending: For d/W < 0.50, use $K_t = 1.0$. The eFatigue site does not show this.

63. LEFT HOLE:
$$\frac{1}{2} = 0.57$$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0.083$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0.083$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0.083$
 $\frac{1}{2} = \frac{1}{2} =$

67.
$$0/d = \frac{2.00}{1.25} = 1.60 \text{ } k_{E} = 2.23 = 000 = \frac{2.23}{17(1.25)^{3}/32} = \frac{32.564}{17(1.25)^{3}/32} = \frac{32.564}{17(1.25$$

68.
$$d/w = 1.38/2.00 = 0.69 - k_e = 1.38$$
 $\sigma_m = k_e \sigma_{Non} = \frac{k_e 6MW}{(W^3 - J^3)t} = \frac{(J.38)(6)(J2000)(Z.00)}{[(2.00)^3 - (J.38)^3]0.75} = \frac{4932395}{}$

Problems of a General Nature

69.
$$EM_{c} = 0 = |2.5 \text{ kn} (4.0 \text{ m}) - R_{B}(2.5 \text{ m})$$

$$R_{c} = |2.5 \text{ kn} (4.0 \text{ m}) - R_{B}(2.5 \text{ m})$$

$$R_{c} = |2.5 \text{ kn} (4.0 \text{ m}) - R_{B}(2.5 \text{ m})$$

$$R_{c} = |2.5 \text{ kn} (4.0 \text{ m}) - 2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

$$R_{c} = |2.5 \text{ kn} | 1.5 \text{ m}$$

PROPOSED CROSS SECTION OF CD

hx=20+0.17 FOR X \$ 200 10. 40 40 40 40 Sath'/6 7/2 P = 5.0 KN £ = 20 mm -1/2 PL/4 120 100 M (KN-m) homm) Somm O MA 80 0.0% 020P= 040 1920 60 52./ (MPa) 0.080 090 P= 0.20 26/3 76.5 0.120 BOP = 0.30 34/3 17.9 0. 160 1807 - 0.40 4320 12.6 20 0.200 .100P= 0.50 5333 13.8 0.240 .120P=0.60 112.5 240 FROM PROB. 70, M = 0.60 kN m UNDER LOAD. $G = \frac{Ke M}{SNET} : SNET = \frac{(w^3 - 4^3)t}{6w} = \frac{(y0^3 - 25^3)(20)}{6(40)} = \frac{403}{mm}$ d/w = 25/40 = 0.625; Kt=1.25 pr=40 0= (1.25)(0.60 kN·m) 103N . 103mm = 186 MPa O = KEM ASSUME LATERAL BRACING 4 FT (a) AT C AT LOAD; $H_C = 5143 \text{ Le} \cdot \text{FT}$ E = 1.0; $S = t + \frac{7}{16} = \frac{(1.20)(4.9)^2}{3.20 \text{ M}^3} = \frac{3.20 \text{ M}^3}{3.20 \text{ M}^3} = \frac{1928605i}{3.20 \text{ M}^3}$ Rz= 643 (b) AT D AT 1.50 IN BIA. HOLE

MD = 3857 LB.FT; \(\frac{1}{4} \text{LB} = \frac{1.50}{4.00} = 0.375 $S_{NET} = \frac{(w^{\frac{3}{2}} + \frac{3}{4})(\pm)}{6w} = \frac{(4.0^{3} - 1.9)(1.20)}{6(4.0)} = 3.03 N^{\frac{3}{2}}$ $O_{p} = \frac{(1.0)(3.851)(12)}{3.03} = \frac{15270 PS}{1} M$ 5143 3857 2572 1286 -1714 (W ft) (C) AT EAT 2.50 IN DIA. HOLE ME=2572LB.FT; 6/w=2.50 = 0.625 (d) AT B AT STEP; H=4.00, h=2.80, h=0.15 SNET = (4.03-2.503) (1.20) = 2.419143 MB= 1714 18.FT; S= \(\frac{th}{6} = \frac{(1.2)(2.8)}{6} = 1.57.N^3 $\sigma_{e} = \frac{(1.25)(2572)(12)}{(2419)} = \frac{1594803}{(2419)}$

MAXIMUM

OB = (2.20(1714)(12) = 29952 PSI

POINT	na-	S(min)	1/2	t/w	Ko	o-(mpa)
B	15000	192	.25	0.50	1.46	121-7 MAXIMUM
C	32000	768	,125	0.67	1.72	21.67
D	64000	1728	.083	0.75	188	69.63
E	76000	3072	-	- .		24.7

FOR Kt'

R=FILLET RADIUS

W=LARGER HEIGHT

E=SMALLER HEIGHT

W

74.

M= F(52+25/2)=(250NY 64.5 mm) = 16/250 N·mm ALONG UPPER PART

O= K+ M ; SNET = (w^3-d^3)(t)

6 w

ATB-8: $d/w = 15/25 = 0.6 - K_c = 1.20$ $\sigma = \frac{0.20(6)(161250)(25)}{(25^2 - 15^2)(16)} = 148.1 \, \text{mga}$

NOTE: For K_t at hole in flat plate in bending: If d/W < 0.50, use $K_t = 1.0$

75.

SEE ALSO PROBLEA 74.

AT B-B: d/w = 12/25 = 0.48 + Ke = 1.0 $O = \frac{\text{ke 6Mm}}{(m^2 - d^2)'(t)} = \frac{11.0 \text{ Y(6)}(161250)(25)}{(25^2 - 12^5)(/6)} = \frac{108.8 \text{ M/a}}{(25^2 - 12^5)(/6)}$

76. AT FULLRUM: $S = \frac{th^2}{6} = \frac{(0.75)(2.00)^2}{6} = 0.50/N^3$ $O_2 = \frac{M}{S} = \frac{4000 L 6.7 N.}{0.50/N^3} = \frac{8000 PS/}{2000 PS/}$ AT HOLEC! APP 15-2! $\frac{d}{dN} = \frac{1.25}{2.0} = 0.625$; KE = 1.25 $SNET = \frac{(LN)^3 - d^3}{6 NT} = \frac{(L00)^3 - J.25^3}{6(2.00)} = 0.378/N^3$ $O_C = \frac{K_6 M_C}{5} = \frac{J.25 (J.200)}{0.378} = \frac{3969 PS/}{0.378}$

71.
$$\frac{PIVOTATA_{-}}{ATFULCRVM^{4}}S = \frac{\pm h^{2}}{6} \frac{(0.7512.60)^{2}}{6} = 0.50 M^{3}$$

$$O_{p} = \frac{M}{S} = \frac{5200 L8 \cdot M}{0.57 L8^{3}} = 10,400 PS'$$

$$O_B = \frac{K_b M}{S} = \frac{1.25 (1566)}{0.378} = \frac{5160 PSi}{}$$

$$\frac{ATC'}{CC} = \frac{K_E N}{S} = \frac{1.25(3/20)}{0.318} = \frac{1032005i'}{1000}$$

PIVOT AT L.

$$\sigma_p = \frac{Mo}{S} = \frac{2800 \text{ LB.IN}}{0.50 \text{ N}^3} = \frac{5600 \text{ Psi}'}{1}$$

18.

POINT B IS CRITICAL

$$S = \frac{\pi(4S)^3}{32} = 8946 \text{mm}^3$$

FOR FILLET


```
ONE POSSIBLE DESIGN
79
                     LUG JOINT: SEEFIG. 3-69; J= 0.0 mm, W= 20.0 mm
                        FIND: THICKNESS t, MATERIALS FOR LUG AND PIN. N = 5.
                         FROM SOLOMEN PUR PROB, 3-69, F= 2010 AN.
                          LET t= 0.5d = 0.5(8.0 mm) = 4.0 mm
                          LET W= 0/0.40 = 8.0 mm/0.40 = 20.0 mm
                            LET ENO DISTANCE = 1 = W= 20.0 MM
                                HOLE DIAMETER = dhow dpin (1.002)= 8.016 mm
                          OMAX = K+ ONON & ONOM = F = 20000N 2 = 416.7MPA
                              IN FIG 3-79: d/w= 8/20 = 0.40; Ke=3.00
                                OMAX = Kronn = (3.00) (4/6.7MPa) = 1250 MPa
                          LET OMAX = 00 = 5m; REQ. Su= N OMAX = 5(1250) = 6250 MPA
                              TOO HIGH FOR TYPICAL STEELS IN APP. 3.
         RE-DESIGN FORUSE OF SAE 4340 0 QT 800, Su=1450 MOD

ON = 5M = 1450 MPD = 790 MPD
                 LET OU = THAX = K+ ONOM = 3.0 ONOM FOR 1/N=0.40
                          ONOM = \frac{O3}{3.0} - \frac{290 Mer}{3} - 96.67 Mer = \frac{F}{ANET} - \frac{F}{(av-d)(t)}
REQ'O ANET = \frac{F}{96.67 Mer} = \frac{20006N}{96.67 Mer} = 206.9 mm^{2}
                               FOR w= = 2.50; t= 0.50
                       ANET= (W-d)(t) = (2.5d-d)(0.5d)=0.75d=206.9 mm
                                   d= 1206.1 mm /0.75 = 16.6 mm.
SPECIFY PREFERED SIZE: d=18 mm (APP.2)
                     THEN: w = \frac{d}{0.7} = \frac{18}{0.7} = 45.0 \, \text{mm}; t = 0.5d = 9.0 \, \text{mm}

v = \frac{F}{0 v - 1/t} = \frac{20000 \, N}{45 - 18(9)} = \frac{20000 \, N}{243 \, \text{mm}^2} = 82.3 \, \text{m/g} a
             r= 20000N
TT(18mm)2/2 = 39,3 MPa
                   CHECK T_d = \frac{S_{SM}}{N} = \frac{0.75_{SM}}{5} = \frac{0.75_{SM}}{5} = \frac{0.75_{SM}}{5} = \frac{217.5_{SM}}{0} \times \frac{739.3_{SM}}{5} = \frac{217.5_{SM}}{0} \times \frac{739.3_{SM}}{5} = \frac{17.5_{SM}}{0} \times \frac{739.3_{SM}}{0} \times \frac{17.5_{SM}}{0} = \frac{17.5_{SM}}{0} = \frac{17.5_{SM}}{0} \times \frac{17.5_{SM}}{0} = \frac{17.5_{SM}}{0} = \frac{17.5_{SM}}{0} \times \frac{17.5_{SM}}{0} = \frac{17.5_{SM}}{0} = \frac{1
                 HOLE DIA = d HOLE = d PIN (1.002) = 18.0 mm (1.002) = 18.036 mm
```

118

CURVED BEAMS: FIND F FOR YIELDING OF STEEL

ASTM A36 STEEL Sy = 36 KSi = ZYBMPa $\sigma_0 = \frac{M(R-No)}{AN_0(RE-R)}$ $\sigma_i = \frac{M(R-No)}{AN_i(Re-R)}$ R = A/ASF; A=b=10=100 mm CROSS SECTION GIVEN: 11=150 mm; 10=12:410=160mm HANGER Re = 1 + 5/2 = 150+5 = 155 mm ASF = b ln (10/2) = 10 ln (60/150) = 0,64539 mm R=A/ASF = 100/0.64539 = 154.946 Mmm M=F.d = F(325- 1/2)=320 F (NEGATIVE) 00 = (-320 F)(154.946-160) = 1.87948 F (100)(160)(155-154.946) = 1.87948 F 0) = (-320F) (154,946-150) = -1.962 F MAXIMUM AT INSIDE (100) (150) (155-154.946) = mm2 SURFACE LET OMAX = -1.962F = -248N/mm²; F = -248N = 126.4N

COMPRESSIVE - 1.962 ANSWER

4/CLD STRENGTH

82 CURVED BEAM : COPING SAW FIND N FOR IZONTENSION IN SAE 1020 CD STEEL; Jy=352MPD M=F.d=(20NX/45mm)=-17400 Nimm (NEG.) hi 11 = 22 mm GIVEN; 10=22+10=32 mm ASF = b ln (ro/ni)=4 ln (32/22) = 1,4987 mm R = A/ASF = 40/1.4987 = 26.688 mm A= (1)(1) = 40 M SEE PLOB. 91 FOR EQUATIONS. (R-Ni)=26.688-22=4,688ma (rc-R) = 27.0 - 26,888 = 0.3115 mm (R-10) = 26.682 - 32.0 = -5.3/15 mm 140 145 T: = (-17400)(4.688) = -297.6 MPa COMPRESSION (40)(22) (0,3115) ON INSIDE SURFACE 50 = (-17400) (-5.3115) = 231.8 MBQ TENSION MO) (32) (0.3/15) ON OUTSIDE SORFACE

NA = \frac{5y}{0x} = \frac{-352MPL}{-297.6 MPL} = 1.18 MINIMUM \right\ BOTH LOW No = \frac{5y}{\sigma_0} = \frac{352MP0}{23118MP0} = 1.52

83

CURVED BEAM HACKSAW FIG. P3-83

GIVEN: F= 480N; FIND N.

SAE 1 20 CD; Sy = 362 MPa CONSIDER TUBE TO BE A COMPOSTE SECTION: (1-2) AI = TI(10) / 4 = 78.54 Mm²; Az = TI(6) / 4 = 28.27 mm² A = A, -Az = 50.265 mm2

$$ASF = ASF, -ASF_{2}$$

$$ASF, = 2\pi \left[\Lambda_{C} - \left(\Lambda_{C}^{2} - D_{1}^{2} / V \right)^{2} \right] = 3.9903 mm$$

$$ASF_{2} = 2\pi \left[\Lambda_{C} - \left(\Lambda_{C}^{2} - D_{2}^{2} / V \right)^{2} \right] = 1.4218 m m$$

$$ASF = \frac{3.9963 - 1.4218 = 2.5685 \, mm}{ASF} = \frac{50.265 \, mm^2}{2.5685 \, mm} = 19.569 \, mm$$

SEE PROBLEM BI FOR EQUATIONS:

M= F.d=-480N(80mm)=38400 N.mm

$$\frac{N_{1} = \frac{5\gamma}{\sigma_{1}} = \frac{-352 \, \text{MPr}}{-540.3 \, \text{MPr}} = \frac{0.6517}{0.6517} \, \text{BOTH INDICATE FAILURE}.$$

$$\frac{N_{0} = \frac{5\gamma}{\sigma_{0}} = \frac{352 \, \text{MPr}}{305.3 \, \text{MeV}} = 0.913}$$

ADDITION TO PROBLEM: FIND FALLOW TO ACHIEVE NZZ-0

STRESSES ARE PROPORTIONAL TO MOMENT AND TO F.

1c=20; 1/1=15 Outside radius

84 CURVED BEAM GARDEN TOOL

FIND F FOR YIELDING.

CAST ALUMINUM: 356.0-TG, Ex=207MPa. ASF = ZT /2 - (n2 - 0%)/2

(hc-R)= (12-11.6568) = 0.3431 mm (0=5x=(E-d) (R-No) (R-10) = (11,6568-16) = -4,343 mm

Ne = 12 mm; No = 16 mm 8.0 mm 4 = D 38 mm = d Prong FIGI P3-84

FOALL = (-207N/mm²)(50.265mm²)(16mm)(0.3431mm) = 346,1 N

5/MICARLY!

85

CURVED BEAM HOOP SUPPORT FIG. P3-85: Li=ka-D. ETEL: ASTM ASS-GRB SY=35KS; N: = 9.125,N M= Fid=(3018)(481A)=-1104018.IN (NEG.) 1=10-D1/2

ANALYSIS AS IN PROB 3-83

STRESTERNS. IN PROB 3-81

ASF = ASF, - ASF2 = 0.61748 - 0.45484= 0.1626 IN

(R-10)=-1.5231 IN; (R-ni)=1.35185N; (1c-R)=0.08564IN

00 = (-1104018"11)(-1.5231) = 9602.4 PSI TENSION

$$N_i = \frac{51}{\sigma_i} = \frac{-35000 \text{ Bi}}{-11208 \text{ Bi}} = \frac{3.123 \text{ LOWEST} - \text{GOVERNS}}{50000 \text{ FAC TORY N}}$$

$$N_0 = \frac{51}{G_0} = \frac{35000 \, \text{P31}}{9602.4 \, \text{P31}} = 3.645$$

86

CURVED BEAM C-CLAMP FIG. P3-86 CASTZINC ZA-12; SMT=404MPA SMC=269MPA

FIND: F FOR N=3 $\bar{m} = \frac{1}{A} (6, f_1) f_{1/2} + (62 f_2)(f_1 + 52/2)$ $\bar{n}_{3/2} = \frac{1}{57} (8.3)(15) + (3.11)(3+5.5) = 5.553 mm$

 $ASF = b : ln (21/2) + bz ln (20/2) ; h_1 = h_1 + S_1 = 5 + 3 = 8 mm PARTZI A_2 = 3 - 11 = 33 mm^2$ ASF = 8 ln (8/5) + 3 ln (19/8) = 6.355 mm R = A/ASF = 57/6.355 = 8.969 mm $PARTZI A_2 = 3 \cdot 8 = Z4 mm^2$ $A = A_1 + A_2 = 57 mm^2$ $h_0 = h_1 + 14 = 5 + 14 = 545553$

 $\frac{K = 7ASF}{M = F(26 + M) = F(26 + 5.553) = 31.553 F(2031)}$ $\frac{M}{M} = \frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{31.553 F(3.969)} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$ $\frac{M(R - N_1)}{A(R - N_1)} = \frac{31.553 F(3.969)}{51.553} = 0.2776 F_2$

LET 0; = Sur = 401 MPa = 134.67 MPA F; = 134.67 N/mm2 = 485.1 N

 $A = A_1 + A_2 = 57 \text{ mm}^2$ $R_0 = R_A + 14 = 5 + 14 = 17 \text{ mm}$ $R_c = R_A + r_f = 5 + 5.383$ $A_c = 10.583 \text{ mm}$ $(R - R_A) = 8.969 - 5$ = 3.969 mm $(R - R_0) = 8.969 - 19$ = -10.6307 mm $(R_c - R_0) = 10.583 - 8.969$ = 1.583 mm

 $\sigma_{0} = \frac{M(R-\Lambda_{0})}{A \Lambda_{0} (\Lambda_{L}-R)} = \frac{31.553 F(-10.0307)}{(57X/9)(1.583)} = 0.1846F_{0} \text{ COMPRESSION}$ LET $\sigma_{0} = \frac{S \omega c}{3} = -\frac{269 \text{ MRV}}{3} = -\frac{89.67 \text{ N/mm}^{2}}{3}$ $F_{0} = \frac{-89.67 \text{ N/mm}^{2}}{-0.1846 \text{ m/m}^{2}} = \frac{485.7 \text{ N}}{3}$

BECAUSE FOR FL, THE DESIGN OF THE INVERTED T-SECTION USES THE MATERIAL VOR/ EFFICIENTLY.

CHAPTER 4 COMBINED STRESSES AND MOHR'S CIRCLE

NOTE: The solutions to Chapter 4 problems 1 – 30 are shown on the following pages as images of the output from the MDESIGN – MOTT software that is included in the text. Each problem produces a solution in line with the procedure shown for manual solution in Section 4-4 in Chapter 4 of the text and as shown in the four Example Problems in Section 4-5 of the text. Problem 4-1 is shown worked out in manual form below and the MDESIGN – MOTT solution is shown on the following page. Solutions for all other problems are shown only as the results from the MDESIGN – MOTT solutions. *Note that in the MDESIGN-MOTT output, the graphic view of Mohr's circle and the stress elements show the stress values only in psi.*

 $\begin{aligned}
& \int_{AVG} = 20 \, KSi \,; \quad O_{Y} = \Omega \,; \quad T_{XY} = 10 \, KSi \,; \quad X - A \times IS \, IN \, IST \, QUADRANT \\
& \int_{AVG} = (O_{X} + O_{Y})/_{2} = (0 + O)/_{2} = 10.0 \, KSi \,; \\
& Q = O_{X} - O_{AVG} = 20 - 10 = 10 \, KSi \,; \quad b = T_{XY} = 10 \, KSi \,; \\
& R = \sqrt{\Omega^{2} + b^{2}} = \sqrt{10^{2} + 10^{2}} = 14.14 \, KSi = T_{MAX} \\
& \Delta = Tan^{-1} \binom{b}{a} = Ton^{-1} \binom{10}{10} = 45^{\circ} = 20 \, C \, W \, FRom \, X - AXIS \, To \, O_{1} \,. \\
& D_{0} = 200/_{2} = 45.0/_{2} = 22.5^{\circ} \\
& 20 = 90' - \Delta = 90 - 45 = 45^{\circ} \, CCW \, FRom \, X - AXIS \, To \, T_{MAX} \\
& D_{T} = 20 \, T_{AVG} + R = 10 + 14.14 = 24.14 \, KSi \\
& D_{2} = O_{AVG} - R = 10 - 14.14 = -4.14 \, KSi
\end{aligned}$

Results:	$ \sigma x = 20 \\ \sigma y = 0 \\ \tau xy = 10 $	ksi ksi ksi					
Maximum principa	al stress		σ1	==	24.142	ksi	
Minimum principa	l stress		σ2	==	-4.142	ksi	
Maximum shear s	tress		τma	x=	14.142	ksi	
Average normal s	tress		σαν	g =	10.000	ksi	
Principal planes			φσ	=	22.500	•	
							CW
Angle of maximur	n shear stress		φτ	==	22.500	۰	
							ccw

Original stress element

Principal stress element

Results:	$\sigma x = -85000$ $\sigma y = 40000$ $\tau xy = 30000$	psi psi psi					
Maximum prir	ncipal stress		σ1	=	46827.123	psi	
Minimum prin	cipal stress		σ2	==	-91827.123	psi	
Maximum she	ar stress		τma	χ=	69327.123	psi	
Average norm	al stress		σav	g =	-22500.000	psi	
Principal plane	es		φσ	=	77.179	0	
							CW
Angle of maxi	mum shear stress		φτ	=	32.179	0	
							CW

Results:	$\sigma x = 40$ $\sigma y = -40$ $\tau xy = -30$	ksi ksi ksi					
Maximum principa	al stress		σ1	=	50.000	ksi	
Minimum principa	l stress		σ2	=	-50.000	ksi	
Maximum shear s	tress		τma	x=	50.000	ksi	
Average normal s	tress		σαν	g =	0.000	ksi	
Principal planes			φσ	=	18.435	•	
							ccw
Angle of maximur	n shear stress		φτ	=	26.565	•	
							cw to -tmax

4	$\sigma x = -80$	ksi				
	$\sigma y = 40$	ksi				
Results:	$\tau xy = -30$	ksi				
Maximum princip	oal stress		σ1 =	47.082	ksi	
Minimum princip	al stress		σ2 =	-87.082	ksi	
Maximum shear	stress		τmax=	67.082	ksi	
Average normal	stress		σavg =	-20.000	ksi	
Principal planes			φσ =	76.717	0	
						ccw
Angle of maximu	m shear stress		φτ =	31.717	0	
						ccw to -₁max

-	
-	
4	
- 1	
\sim	

 $\sigma x = -120000$ psi

 $\sigma y = 40000$

psi

Results:

 $\tau xy = -20000$ psi

Maximum principal stress σ^1 42462.113 psi Minimum principal stress = -122462.113 σ2 psi Maximum shear stress 82462.113 τmax= psi Average normal stress -40000.000 σ avg = psi Principal planes 82.982

CCW

0

Angle of maximum shear stress

37.982

ccw to -tmax

Original stress element

Principal stress element

6

$\sigma x = -120$	ks
$\sigma y = 40$	ks

 $\tau xy = 20$ ksi

Maximum principal stress	σ1 =	42.462	ksi	
Minimum principal stress	$\sigma 2 =$	-122.462	ksi	
Maximum shear stress	τ max=	82.462	ksi	
Average normal stress	σavg =	-40.000	ksi	
Principal planes	φσ =	82.982	•	
				cw
Angle of maximum shear stress	φτ =	37.982	۰	

CW

Original stress element

Principal stress element

7	$\sigma x = 60000$	psi
/	$\sigma y = -40000$	psi
Dll	$\tau xy = -35000$	nsi

Angle of maximum shear stress $\phi \tau = 27.504$ °

cw to -tmax

CCW

8	$\sigma x = 120$	ksi
0	$\sigma y = -40$	ksi
Poculte:	$\tau xy = 100$	ksi

Maximum principal stress	σ1 =	168.062	ksi	
Minimum principal stress	σ2 =	-88.062	ksi	
Maximum shear stress	τmax=	128.062	ksi	
Average normal stress	σavg =	40.000	ksi	
Principal planes	φσ =	25.670	0	
				CW
Angle of maximum shear stress	$\phi \tau =$	19.330	0	
				CCW

Original stress element

Principal stress element

Results:	$\sigma x = -100$ $\sigma y = 0$ $\tau xy = 80$	MPa MPa MPa					
Maximum princi	pal stress		σ1	=	44.340	MPa	
Minimum princip	oal stress		σ2	=	-144.340	MPa	
Maximum shear	stress		τma	x =	94.340	MPa	
Average normal	stress		σav	g =	-50.000	MPa	
Principal planes			φσ	=	61.003	•	
, -							CW
Angle of maxim	um shear stress		φτ	=	16.003	0	
_							CW

Original stress element

Principal stress element

10	$\sigma x = -250$	MPa			
[10]	$\sigma y = 80$	MPa			
Results:	$\tau xy = -110$	MPa			
	£				
Maximum principal stress				=	
Minimum principal stress			σ2	=	
Maximum shear stress			τmax	=	
Average normal stress			σavg	=	
Principal planes			φσ	=	

Angle of maximum shear stress $\phi \tau = 28.155$ °

ccw to -tmax

CCW

113.305

-283.305

198.305

-85.000

73.155

MPa

MPa

MPa

MPa

Original stress element

Principal stress element

Maximum shear stress element

// Results:	$\sigma x = 50$ $\sigma y = -80$ $\tau xy = 40$	MPa MPa MPa					
Maximum princ	ipal stress		σ1	=	61.322	MPa	
Minimum princi	pal stress		σ2	=	-91.322	MPa	
Maximum shear	r stress		τma	x=	76.322	MPa	
Average norma	stress		σav	g =	-15.000	MPa	
Principal planes			φσ	=	15.804	•	
							CW
Angle of maxim	um shear stress		φτ	=	29.196	۰	
							ccw

Original stress element

Principal stress element

Results:	$\sigma x = 150$ $\sigma y = -80$ $\tau xy = -40$	MPa MPa MPa				
Maximum principal stress Minimum principal stress						

156.758 MPa $\sigma 1$ -86.758 **MPa** σ2 Maximum shear stress τ max = 121.758 **MPa** Average normal stress σavg = 35.000 **MPa** Principal planes 9.590

Angle of maximum shear stress $\phi \tau = 35.410$ °

cw to -tmax

CCW

Original stress element

Principal stress element

13 Results:	$\sigma x = -150$ $\sigma y = 80$ $\tau xy = -40$	MPa MPa MPa					
Maximum pri	incipal stress		σ1	=	86.758	MPa	
Minimum pri	ncipal stress		σ2	=	-156.758	MPa	
Maximum sh	ear stress		τma	ix=	121.758	MPa	
Average nor	mal stress		σ a v	g =	-35.000	MPa	
Principal plan	nes		фσ	=	80.410	0	
							ccw
Angle of max	imum shear stress		φτ	=	35.410	0	
							ccw to -tmax

Original stress element

Principal stress element

Maximum shear stress element

1,5	$\sigma x = 250$	MPa
15	$\sigma y = -80$	MPa
Results:	$\tau xy = 0$	MPa

Maximum principal stress	σ1 =	250.000	MPa	
Minimum principal stress	σ2 =	-80.000	MPa	
Maximum shear stress	τ ma x=	165.000	MPa	
Average normal stress	σavg =	85.000	MPa	
Principal planes	φσ =	0.000	0	
				ccw
Angle of maximum shear stress	$\phi \tau =$	45.000	0	
				ccw to -tmax

Results:	$\sigma x = 50$ $\sigma y = -80$ $\tau xy = -30$	MPa MPa MPa					
Maximum princi	pal stress		σ1	=	56.589	MPa	
Minimum princip	oal stress		σ2	=	-86.589	MPa	
Maximum shear	stress		τma	x =	71.589	MPa	
Average normal	stress		σαν	g =	-15.000	MPa	
Principal planes			φσ	=	12.388	0	
							ccw
Angle of maximu	um shear stress		φτ	=	32.612	•	
ļ							cw to -tmax

17	$\sigma x = 400$	MPa
	$\sigma y = -300$	MPa
Results:	$\tau xy = 200$	MPa

Maximum principal stress	σ1 =	453.113	MPa
Minimum principal stress	σ2 =	-353.113	MPa
Maximum shear stress	τmax=	403.113	MPa
Average normal stress	σavg =	50.000	MPa
Principal planes	φσ =	14.872	•

Angle of maximum shear stress $\phi \tau = 30.128$ °

CCW

CW

Original stress element

Principal stress element

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MPa MPa MPa		
Maximum principal stress	σ1	=	200.000MPa
Minimum principal stress	σ2	=	-140.000MPa
Maximum shear stress	τmax	==	170,000MPa
Average normal stress	σavq	==	30.000MPa
Principal planes	φσ	==	75.964°
Angle of maximum shear stress	φτ	=	ccw 30.964° ccw to -max

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
Maximum principal stress $\sigma 1$ Minimum principal stress $\sigma 2$ Maximum shear stress τmax Average normal stress σavg Principal planes $\phi \sigma$ Angle of maximum shear stress $\phi \tau$	

ZO,	$ \begin{aligned} \sigma x &= 220 \\ \sigma y &= -120 \\ \tau x y &= 0 \end{aligned} $	MPa MPa MPa		
Minimum Maximum Average	principal stress principal stress shear stress normal stress al planes	σ1 σ2 τmax σavg φσ	= = = =	220.000MPa -120.000MPa 170.000MPa 50.000MPa 0.000°
Angle o	f maximum shear stress	φτ	=	ccw 45.000° ccw to -tmax

Ksi		
Ksi		
Ksi		
	=	40.000Ksi
ess σ^2		0.000Ksi
τmax	ζ =	20.000Ksi
σav	g =	20.000Ksi
фσ	=	0.000°
		CCW
r stress φτ	=	45.000°
		ccw to -τmax
	Ksi Ksi Ksi ess ol ess oz max oavo	Ksi Ksi Ksi ess $\sigma l = \sigma c$ $\sigma c c$ $\sigma c c c c c$ $\sigma c c c c c$ $\sigma c c c c$ $\sigma c c c c c$ $\sigma c c c c c$ $\sigma c c c c$ $\sigma c c c c$ $\sigma c c c c$ $\sigma c c c c$ $\sigma c c c$

Original stress element Principal stress element

		280					
22	2.	σx σy		-		Ksi Ksi	
	Results	τχγ	=	40		Ksi	
	Maximum	principal	st	ress	ı	σ1	

40.000Ksi Minimum principal stress σ2 -40.000Ksi Maximum shear stress τ max 40.000Ksi Average normal stress σ avg 0.000psi Principal planes φσ 45.000° CW Angle of maximum shear stress φτ 0.000° CCW

ſ	
ì	20
ı	63
Į	_

$\sigma x = 38$	ks
$\sigma y = -25$	ksi

 $\tau xy = -18$ ksi

Maximum principal stress	σ1 =	42.780	ksi
Minimum principal stress	σ2 =	-29.780	ksi
Maximum shear stress	τmax=	36.280	ksi
Average normal stress	σavg =	6.500	ksi
Principal planes	φσ =	14.872	0

Angle of maximum shear stress

ccw = 30.128 °

cw to -tmax

Original stress element

Principal stress element

25	σx = 22	ksi
W	$\sigma y = 0$	ksi
Results:	$\tau xy = 6.8$	ksi

Maximum principal stress	σ1 =	23.932	ksi	
Minimum principal stress	σ2 =	-1.932	ksi	
Maximum shear stress	τmax=	12.932	ksi	
Average normal stress	σavg =	11.000	ksi	
Principal planes	$\phi\sigma =$	15.862	0	
				CW
A male of manifesture about almost	11	20 120	0	

Angle of maximum shear stress $\phi \tau = 29.138$ °

ccw

Original stress element

Principal stress element

Maximum shear stress element

26

$\sigma x = -4250$	psi
$\sigma y = 3250$	psi

Results:

 $\tau xy = 2800$ psi

Maximum principal stress	$\sigma 1$	=	4180.011	psi	
Minimum principal stress	σ2	=	-5180.011	psi	
Maximum shear stress	τma	x=	4680.011	psi	
Average normal stress	σαν	g =	-500.000	psi	
Principal planes	φσ	=	71.626	•	
					CW
Angle of maximum shear stress	φτ	=	26.626	•	
					CW

Original stress element

Principal stress element

Maximum shear stress element

BOTH PRINCIPAL STRESSES ARE TENSILE - SAME SIGN

Input data:

Combined Stresses and Mohr's Circle

Normal stress acting along x-axis	$\sigma x = 300$	MPa
Normal stress acting along y-axis	$\sigma y = 100$	MPa
Shear stress	$\tau xy = 80$	MPa

Results:

Maximum principal stress	σ1	=	328.062	MPa
Minimum principal stress	σ2	=	71.938	MPa
Minimum principal stress	σ3	=	0.000	MPa
Maximum shear stress	τmax	=	164.031	MPa
Shear stress	τ	=	128.062	MPa

Note: Both principle stresses have the same sign (both are tensile or both are compressive). User must consider the resulting three-dimensional case.

BOTH PRINCIPAL STRESSES ARE TENSILE -SAME SIGN.

Input data:

Combined Stresses and Mohr's Circle

Normal stress acting along x-axis	$\sigma x = 250$	MPa
Normal stress acting along y-axis	$\sigma y = 150$	MPa
Shear stress	$\tau xy = 40$	MPa

Results:

Maximum principal stress	σ1	=	264.031	MPa
Minimum principal stress	σ2	==	135.969	MPa
Minimum principal stress	σ3	=	0.000	MPa
Maximum shear stress	τmax	=	132.016	MPa
Shear stress	τ	=	64.031	MPa

Note: Both principle stresses have the same sign (both are tensile or both are compressive). User must consider the resulting three-dimensional case.

BODY PUNCIPAL STRESSES ARE COMPRESSIVE - SAMESIGN

Input data:

Combined Stresses and Mohr's Circle

Normal stress acting along x-axis	$\sigma x = -840$	kPa
Normal stress acting along y-axis	$\sigma y = -335$	kPa
Shear stress	$\tau xy = -120$	kPa

Results:

Maximum principal stress	σ1	=	0.000	kPa
Minimum principal stress	σ2	=	-307.936	kPa
Minimum principal stress	σ3	=	-867.064	kPa
Maximum shear stress	τmax	=	433.532	kPa
Shear stress	τ	=	279.564	kPa

Note: Both principle stresses have the same sign (both are tensile or both are compressive). User must consider the resulting three-dimensional case.

BOTH PRINCIPAL STRESSES ARE COMPRESSIVE - SAME SIGN

Input data:

Combined Stresses and Mohr's Circle

Normal stress acting along x-axis	$\sigma x = -325$	kPa
Normal stress acting along y-axis	$\sigma y = -50$	kPa
Shear stress	$\tau xy = -60$	kPa

Results:

Maximum principal stress	σ1	=	0.000	kPa
Minimum principal stress	σ2	=	-37.479	kPa
Minimum principal stress	σ3	=	-337.521	kPa
Maximum shear stress	τ max	=	168.760	kPa
Shear stress	τ	=	150.021	kPa

Note: Both principle stresses have the same sign (both are tensile or both are compressive). User must consider the resulting three-dimensional case.

33.

USE $\underline{O}=2.25$ IN. FOR SHAFT ABC.: STRESS ELEMENT ON BOTTOM.

FROM SOLUTION FOR PROBLEM 3-49, 'M₈=8640LB:NN:; T_8 =400LB:M $\overline{Z}=\pi D^2/32=1.118$ in ', $\underline{O_8}=\frac{M}{2}=8640$ LB:NN/1.118 IN = 7126 PSI TENSION $\overline{Z}P=\pi D^2/6=2Z=2.237$ in ', $T_8=T_8/2p=460$ LB:NN/2.237 in =179 PSI

 $R = T_{MAX} = \sqrt{177^2 + 3863^2} = 3867 \, \text{poi}$ $O_1 = 3863 + 3867 = 7730 \, \text{rsi}$ $O_2 = 3863 - 3867 = -4 \, \text{rsi}$ $2 \, \text{po} = T_{AA} \, \left(\frac{179}{3863} \right) = 2.65^{\circ}$ $p_{\sigma} = 1.33^{\circ} \, \text{c} \, \text{w}$ $2 \, \text{po} = 90^{\circ} - 2 \, \text{po} = 87.35^{\circ}$ $p_{\sigma} = 43.67^{\circ} \, \text{CCW}$

0x=77266s;

133' 43,67'

Tran = 326765'

OAV

USE D = 50.0 m/m FOR SHAFT AB: STRESS ELEMENT ON BOTTOM.

FROM SOLUTION FOR PROBLEM 3-50, $M_A = -0.650 \text{ km} \cdot m_1$; $T_A = 0.315 \text{ km} \cdot m_2$ $\overline{Z} = \Pi D^3/32 = /2 272 \text{ m/m}^3$; $T_A = M/2 = \frac{650 \text{ N/m}}{2} \cdot \frac{100 \text{ m/m}}{2} = -52.91 \text{ m/a} \cdot \text{ compression}$. $\overline{Z}_P = \Pi D^3/16 = 22 = 24544 \text{ m/m}; T_A = \frac{T}{Z_P} = \frac{375 \text{ N/m}}{24544 \text{ m/m}}; \frac{100 \text{ m/m}}{M} = 15.28 \text{ M/a}$

 $R = T_{MAY} = \sqrt{15.28^2 + 26.48^2} = 20.57 M Pa$ $\sigma_1 = -26.48 + 30.51 = 4.09 M Pa$ $\sigma_2 = -26.48 - 30.57 = -51.05 M Pa$ $\alpha = T_{om} = \sqrt{15.28/26.48} = 30.0^{\circ}$ $2 \phi_{or} = /80^{\circ} - \alpha = /50^{\circ}$ $8_{or} = 25^{\circ} = 0 \times 10^{\circ}$ $2 \phi_{rr} = 90^{\circ} + \alpha = /20^{\circ}$ $\phi_{rr} = 60^{\circ} = 0 \times 10^{\circ}$ $\sigma_{rr} = 60^{\circ}$ $\sigma_{rr} = 60^{\circ}$

O1= 57.3+292.2 = 349.5 MPa 02= 57.3-292.2=-234.9MPa 200 = Ton-1 (281,5/57.3) =78,70; Do =39.350 24r= 90-200 = 11.30; 04=5.650

-234,9

286.5

349,5 MPa

CHAPTER 5 DESIGN FOR DIFFERENT TYPES OF LOADING

Stress Ratio

1.
$$\sigma = F/A : A = \frac{IT(10 \text{ mm})^2}{4} = 78.54 \text{ mm}^2$$
 $\sigma = 3500 \text{ N/18.54 mm}^2 = 44.6 \text{ M fa}$
 $\sigma = 3500 \text{ N/A} = 6.37 \text{ M Fa}$
 $\sigma = 3500 + 500 \text{ N/A} = 25.5 \text{ M Fa}$
 $\sigma = 2000 \text{ N/A} = 25.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 25.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 35.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 35.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 35.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 35.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 35.5 \text{ M Fa}$
 $\sigma = 3500 + 300 \text{ M/A} = 35.5 \text{ M Fa}$

2. $O = \frac{P}{A} : A = (10mm)(30mm) = 300mm^{2}$ $O_{MAN} = 20 \times 10^{3} N / 300 mm^{2} = 66.7 n Pa$ $O_{MIN} = -8.0 \times 10^{3} N / A = -26.7 m Pa$ $F_{M} = (20 - 8) / 2 = 6 kn$ $O_{M} = 6 \times 10^{3} N / A = 20.0 m Pa$ $O_{M} = \frac{6 \times 10^{3} N / A}{20.0 m Pa} = \frac{20.0 m Pa}{20.0 m Pa}$ $R = \frac{O_{MAN} - O_{M}}{O_{MAN}} = \frac{-26.7 / 66.7}{66.7} = -0.40$

3. $\sigma = \frac{F}{A}$; $A = (0.40 \text{ IN})^2 = 0.16 \text{ IN}^2$ $\sigma_{MAX} = 860 \text{LB}/0.16 \text{IN}^2 = 5375 \text{ PS}i$ $\sigma_{MIN} = -120 \text{LB}/0.16 \text{IN}^2 = -750 \text{ PS}i$ $F_{AM} = (860 - 120)/2 = 370 \text{ LB}$ $\sigma_{AM} = 370 \text{LB}/A = 23/3 \text{ PS}i$ $\sigma_{AM} = \sigma_{AM} - \sigma_{AM} = 5375 - 23/3 = 3062 \text{ PS}i$ $R = \sigma_{MAM}/\sigma_{MAX} = -750/5375 = -0.140$

4. $\sigma = f/A$; $A = \pi O^2/y = \pi (0.375)^2/y = 0.1104/N^2$ $Omax = 1800L8/0.1104/N^2 = 16297 PS'$ $Omin = 150L8/0.1104/N^2 = 1358 PS'$ Fm = (1800+150)/2 = 975LB Omin = 975LB/A = 8828PS' Omin = 975LB/A = 8828PS' Omin = 975LB/A = 1877 - 1878 = 1470 PS' Omin = 1358/A = 1358/A = 1470 PS' Omin = 1358/A = 1358/A = 1470 PS'

5. $\sigma = F/A$; $A = \frac{\pi o^2}{4} = \frac{\pi (3.0 \text{ mm})^2}{4} = 7.069 \text{ mm}^2$ OMAX = 780N 4.07ma2 = 110.3 MPa O'MIN = 360N/A = 50.9 MPa

LOADING CASEI

5= M/5; 5\$ 1.48 IN3 FOR 4x2 +/4 TUBE - 1 APP15-14

OMAX = 14400 = 9730851 (LB) OMIN = 10560 = 7/35851 OMIN = 3840 = 2595/51

1800LB

STRESS US, TIME DIAGRAM-SAMAS FIR PRIBLS.

BEAM: 0= H: S=3.01 IN 3 FOR SY x 7.7

$$O_{m} = (107.7 + 10.4)/2 = 59.1 m la$$

$$O_{a} = O_{max} - O_{m} = 107.7 - 59.1 = 48.6 M la$$

$$R = O_{max} = 10.4/107.7 = 0.097$$
9.

SPRING IS A SUPPORTED CANTILEVER - CASE (6) APP A14-3. DEFLECTION PROPORTIONAL TO FORCE. BENDING MORENT PROPORTIONAL TO FORCE, DEFLECTION AT LOAD B!

DEFLECTION AT LOAD B:

$$M_B = \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

$$= \frac{-P \, a^3 b^2}{12 \, EI \, L^3} (3L + b)$$

 $P = \frac{12 EIL^3 MB}{4^3 6^2 (3L+6)} = \frac{(12)(207 \times 13)(4.090)(40)^3 MB}{(15)^3 (25)^2 (3(40) + 25)} N$

P = 46.78 Mg

FOR M; = 0.25 mm; P=46.78 (0.25) = 11.7 N: FORM= 0.40 mm, P=18.7 N

$$M_{A} = \frac{-Pab}{2L^{2}}(b+L) = \frac{-P(15)(25)}{2(40)^{2}}(25+40) = 7.617 P MAXIMUM$$

$$M_{B} = \frac{Pa^{2}b}{2L^{3}}(b+2L) = \frac{P(15)^{2}(25)}{2(40)^{3}}[25+2(40)] = 4.614P$$

$$M_B = \frac{Pa^2b}{2L^3} \left(b + 2L\right) = \frac{P(L5)^2(25)}{2(40)^3} \left[25 + 2(40)\right] = 4.614P$$

Pz=18.7 N'; MAL = 7.617(18.7) = 142.5 N.mm; OA = 17 = 142.5 N.mm = 475 MPa = 0.30 more = 475 MPa = 0.40 MM

P1 = 11.7N: MAI = 89.1 Nomm; OAI = Z97 MPa = OMIN Om = (475+297)/2 = 386 MPa

- 10. FIND Sm' i SAE1040 CD; Sm= 80 KSi; Sm=31KSi FOR CD CURVE 0.15 IN DIA. C; = 0.90 FIG. 5-9 FIG. 5-8.

 Em = 1.0 WROUGHT STEEL; CST=1.0 REV. BENDING; CR=0.81 (99%R) 0.75 IN DIA. Cs = 0.90 FIG. 5-9 5n'= 5m es cm est ca= 31Ksi (0.90)(1.0)(1.0)(0.81) = 22.6Ksi
- 11. FINDSM: SAES160 OQT 1300; Su= 78MPa; Sm=300MPA FIR. 5-8. 20.0mm DiA. Cs= 0.90 F16.5-9; Cm=1.0 WROUGHT STEEL; CST = 1.0 REV. BENDING; CR=0.81(R=0.99) Sm= 5a Cs Cm Cst CR = 300MPa(0.90)(1.0)(0.81) = 219 MPa
- 12. FIND 5 .: SAE 4130 WQT 1300; Su= 676 MPa; Sm=260MPa FIGES-8 EQ. (5-8): De=0.808 VA b=0.808/BD(20)=28.0 mm Cs= 0.87 FIG. 5-9; Cm=1.0 WROUGHT STER CSF=1.0 REV. BENDING; CR=0.81 (R=0.99) Sn = Sm C = Cm Csr CR = 260 MPa(0.87)(1.0)(1.0)(0.81) = 183APa
- 13. FIND 5 .: SAE 301 ST. ST. 12 HARD; SN = 150KS1; Sm = 52KS; FIG 5-8. CS=1,0 FOR AXIAL TENSILE STRESS, CM=1.0 WROUGHT STEEL CST = 0.86 AXIAL TENSILE STRESS. CR = 0.75 FORR = 0.999. Sm'= Sm Cs Cm CsT Cx = 52/45, (1.0) (1.0) (0.80) (0.75) = 31,2KS 1
- 14. FIND Sm: ASTM AZYZ; Sm = 70Ks; Sm = 27.0Ksi, FIG. 5-8 EOG-8): De=0.808/Ab=0.808/BSY0,375)=0.926; Cs=0.883 Cm= 1,0 WROUGHT STEEL; CST= 1,0 REV. BENDING; CR=0.81(R=0.99) 3.5 Sm'= Sm Cs Cm Csr CR= (27.0 Kgi) (0.8 838 (10) (1.0) (0.81) = 19.3 Ksi

Design and Analysis

Problems 15 - 18 are open-ended design problems for which there is no unique answer. The General Design Procedure from Section 5-9 should be used. The loading and support conditions should be compared with the cases described in Section 5-8 to determine the appropriate design stress. A design factor should be specified using the guidelines in Section 5-7 When needed, the endurance strength should be computed from Equation 5-6 in Section 5-4.

- 15. The link is subjected to a fluctuating normal stress. Use Case 5 from Section 5-8 See also the solution for Problem 1.
- 16. The rod is subjected to a fluctuating normal stress. Use Case 5 from Section 5-8 See also the solution for Problem 4.
- 17. The strut is subjected to a fluctuating normal stress. Use Case 5 from Section 5-8 See also the solution for Problem 2.
- 18. The latch part is subjected to a fluctuating normal stress. Use Case 5 from Section 5-8 See also the solution for Problem 5.

19. FIG. 85-8. SEE ALSO PROBLEM & SOLUTION. FLOCTIVATING LOAD

1 = \frac{\sim_{m} + \ke \sigma_{\alpha}}{\sim_{m}} \frac{\cappa_{\sigma} \in \sigma_{\sigma}}{\sim_{m}} \frac{\cappa_{\sigma} \in \sigma_{\sigma}}{\sim_{m}} \frac{\cappa_{\sigma} \in \sigma_{\sigma}}{\sim_{m}} \frac{\cappa_{\sigma} \in \sigma_{\sigma}}{\sigma_{\sigma}} \frac{\cappa_{\sigma} \in \sigma_{\sigma}}{\sigma_{\sigma} \sigma_{\sigma}} \frac{\cappa_{\sigma} \in \sigma_{\sigma} \sigma_{\sigma} \sigma_{\sigma} \frac{\cappa_{\sigma} \in \sigma_{\sigma} \sigma_{\sigma} \sigma_{\sigma} \frac{\cappa_{\sigma} \in \sigma_{\sigma} \sigma_{\sigma} \frac{\cappa_{\sigma} \in \sigma_{\sigma} \sigma_{\sigma} \frac{\cappa_{\sigma} \in \sigma_{\sigma} \sigma_{\s

20. DESIGN PROBLEM - NO UNIQUE SOLUTION.

SUGGESTIONS: KEEP BOMM WIDTH FOR SENT APPLICATION.

CONSIDER HIGHER STRENGTH MATERIAL; THINNER STOCK FORMED INTO

CHANNEL SHAPE ________. CONSIDER TAPERING CROSS SECTION

DEPTH - DEEPER AT LOAD-LESS DEEP NEAR SUPPORTS WHERE MOMENT

IS SMALLER. CONSIDER! REF. R - APP. 15-7 OR REF. Y-APP 15-B. ALUMINUM.

DATA SAME AS PROBLEM 9. FLUCTVATING NORMAL STRESS-CASE 5.

O'M = 386 MPa; Oa = 89 MPa. FROM APP. 3 ATSI 4140 OUT 400 HAS

THE HIGHEST SM WITH > 10% ELONGATION FOR GOOD DUCTICITY.

SM = 2000MPa; SY = 1730 MPa; SM = 450 MPa (FIR 5-8); LET R=97%-CR=0.81

SM' = (0.81) (450 MPa) = 364 MPa (FOR RET.: De=0.808 Thb =0.808 VO.6655 =1.40 mm

\[
\begin{align*}

- DATA SAME AS PROB. 6. FLUCTUATING NORMAL STRESS, CASE 5.

 ATB: Om = 8432 PSi, Oa = 2595 PSi. FOR ASTM ASDO GRADEB! SM = 58KSi, SY = 46KSi

 ATE: Om = 6162. PSi, Oa = 3568 PSi. Sm = 20KSi; R = 0.49 CR = 0.81; Cs FOR 4444/4 TUBE

 AT = 3.59 M²; A9S = 0.05(3.59) = 6.180 M² = 6.0766 De²; De = 1.53 M 7G = 0.84; S/ = (0.844.81)(20) = 13.64Si

 ATC: N = 6162 + 6.0113568) = 0.369! N = 2.71 CHECK N = 46000 (13429 + 5972) = 4.92 OK

 AT B! N = 2.97 > 2.71 OK. 444/4 TUBING WEIGHS 8.78 LB/FT, APP 15-44.

 A LIGHTED BEAM CAN BE DESIGNED BY PLACING 4 IN SIDE VBRTI (AL AND.

 USING A THINHER WALL. IN APP 15-15, THE SOURCE 50 RG ENSEN

 OF FELS 4X 2 × 0.134; 5.223 LB/FT, WITH 4.0 IN SIDE VERTICAL, SX = 1.58 IN

 DRIGINAL SX = 148 SO BEAM 13 SAFE, WT. 15 REDUCED BY = 40%.
- PISTON ROD. FIG. PS-24. DIA=0. 60IN. A= #D^/4=0.283IN 2

 FLUCTUATING LOAD. FMAX=500LB TENS.; FMM="400LB COMP. CASE 5.

 FM= (500-400)/2=550LB; Fa=1500-550=950LB

 Om= Fm/A= 550LB/0.283IN3=194385i; Oa=Fe/A=950CB/0.283IN=3357PSi

 SAE 4/30 WOT/300; SM=98KSi; SY=89KSi, SM=37KSi (F16.5-8)

 CS=0.93; Cm=1.0; CST=0.80 (ANIAL); R=91/0-CL=0.81

 Sm'= 6.93)(1.0)(0.80)(0.81) 37KSi = 22.3 KSi

 M= 0m + (K+)(0a) = 194385i (1.0)(335785i) = 0.170; N=5.87

 SAFE BUT HIGH. SHOULD ALSO CHECK FOR KEIN FINAL DESIGN.

 IF ROD DIA. IS REPULED TO 0.50/N. A=0.196 IN

 Om= 280185i; Oa=483885i; N=4.15 BETTEL. USE D=0.50 IN
- BRITTLE MATERIAL STATIC LOAD -CASE 1: $N = S_{MC} / O_{MAX}$ $O_{MAX} = \frac{K_{C}F}{A} = \frac{(L.99: X.75000 ML)}{TF (4.00 IN.)^{2}/4} = 11877 \text{ PS; COMPRESSION}$ $L/d = 0.25 \text{ IM} / 4.00 IN = 0.0625; D/d = 5.00 \text{ IM} / 4.00 IN^{2} J.25: THEN <math>K_{C}^{2} I.99$ $N = \frac{S_{MC}}{O_{MAX}} = \frac{140 000 \text{ PS}i}{11877 \text{ PS}i} = \frac{11.8}{11.8}$ efangue.com
- 26. BRITTLE MATERIAL-STATIC LOAD-CASE 1: N= Sut/OMAX

 OMAX = Ktp = (1.99 × 12 000 16) = 1900 PSi; [Kt SAME AS PEOR. 25]

 N = Sut = 40 000 PSi = 21.0
- 27. BRITTLE MATERIAL BIAXIAL STRESS SECTION S-11.1

 USE MODIFIED MOHAL

 METHOD

 STRESS ELEMENT IN FILLET AREA

 AXIAL COMPRESSIVE STRESS FROM PROB.: OMAX 11877 PS; = OY

 CONTINIED -NEXT PAGE.

27. CONTINUED TORSION: T = KET : FOR 1/3 = 0.0625; 1/2=1.25, K= 1.48
SEE PROB. 25. -TORSION $Z_P = \frac{\pi D^3}{16} = \frac{\pi (4.60/N)^3}{16} = 12.57 in^3$ Oy = -11877 T= (1.48 X 20 000 B. IN) / 12.57 IN3= 2355 PS; 07=0 FROM MOHA CIRCLE: R= 123552 + 5939 2 = 6389 PS; 23,55 07 = OAV+ R = - 5939 +6389 = 450 PSI TENSION OZ = OAV-R = - 5939 - 6389 = - 12328 PS; COMP. GRAPHICAL SOLUTION 20 40 2355 4TH QUADRANT -11877 02 .OI PT. A AT 0,=450 Psi, 0= -12 328, psi -40 LINE OA = 12,336ps; 5939 PT A4 IS FAILURE POINT AY 3 LINE OA'S = 120300 PSi (SCALED) - 5939 N= 0A 1/0A = 9.75 28 DUCTILE MATERIAL-STATIC LOAD - CASE 2: SAE 1137 CO; SY = 565 MPa 15.9kN 0 = 5/N = 565 MPa/3 = 188 MPa IN MIDDLE OF SHAFT, M=337.5 KNIMM REQ'D S = M = 337.5×103 N.mm = 1795 mm3 2.2kN S= 110/32: 0= 325/1 = 26.3 mm (kw) o USE PREFERRED VALUE 0=28 mm (TABLE A2-1) **~3325** FIND & WHICH WOULD BE SAFE FOR d= 2000 (KN.mm) S= THd3/32 = TT (20)3/32 = 785.4 mm3 LM = 2.7x M = G S = (00 N/mm) 785.4 mm3) = 147,650 N.mm = 147.7 kN.mm BUT M = 2.7x: X= M = 1475: AN.mm = 547.mm (MAX) USE a=55 mm 125mm 28mm

ROPTIONAL BECAUSE OF STATIC STRESS

ZDMM

```
29. FIGUREPS-28. SEE ALSO PROB. 28.

CASE 4; REPEATED REVERSED NORMAL STRESS; Of a Sm/N

SAE 1137 CD Sm = 676 MPa; Sm = 250 MPa (F165-8); FOR d = 20 mm,

Com = 0.90, Cm = 1.0, Cc = 1.0, R = 97% - CR = 0.81°. Sm = (90)(.81)(250) = 182 MPa

Of = 5m/N = 182/3 = 60.7 MPa & Mmay = 237.7 xm Nomm AT LOAD (PROB. 28)

REOD S = M = 337.5 x103 N. mm = 5663 mm & BUT S = TD /32

REOD D = 3/32 5/T = 38.4 mm & USE D = 40.0 m m D = 40.0 mm OK

ALLOWAGLE DISTANCE OF LET R = 2.0 mm, R/d = 2.0/20 = 0.100 (K=1.80)

O = KeM : Mmax = Of S : S = 285.4 mm (PROB.28) : D/d = 40/20 = 2.00

MMAX = MMAX /2.7 = 26.5 km. mm/2.7 km = 9.81 mm & USE D = 9.0 mm

(SMALL)

30. SEE F14. PS-28 AND PROB. 28 AND 29. Kt=2.0 FOR KEYSEAT MOHRCIRCLE
```

SEE FIG. P5-28 AND PROB. 28 AND 29. Kt=2.0 FOR KEYSEAT MOHRCIRCUE
EQN. 5-22: $\frac{1}{N} = \frac{Kt (Ta)_{MAX}}{Ssm} + \frac{(Tm)_{MAX}}{Ssm} (Ta)_{MAX} = \frac{T}{20}$ NATING STRESS Ta=04/2 To = Ma = Ma = 2Ma; THEN (Ta) nax = Ma

THEN (Oa. SAE 1137 CD ! Su = 676MPa, Sn = 250 MPa ASSUME 0 = 50 mm, Cs = 0.81, CR = 0.81 Ma=337.5X/03 55m = 0,5715m = 6,50)(0,81)(081)(250) = 820MPa PROB. 3-28 $S_{5.h} = 0.755 \, \text{m} = 0.75(676) = 507 \, \text{MPa}$ $RED'D 2\rho = 3 \frac{[(0.0)(377.5 \times 10^3)]}{82.0} + \frac{150 \times 10^3}{507} = 25579 \, \text{mm}^3 = 170^3/16$ $D_{MIN} = \sqrt[3]{1620/17} = \sqrt[3]{16(25579)} = 50.69 \, \text{mm}$: Secrity $D = 52.0 \, \text{mm}$ FOR KE : BENDING LOCATION OF STEP FROM 20 MM TO SOMM: $Z_{p} = T T \frac{0^{3}}{16} = T \frac{(20)^{3}}{16} = 1571 \text{ mm}^{3}; SOLVEEQ I FOR MODE <math>d = \frac{55 \text{ m}}{10^{2}} = \frac{20 \text{ mm}}{10^{2}}$ $d = \frac{55 \text{ m}}{10^{2}} = \frac{20 \text{ m}}{10^{2}}$ FOR d = 20 mm; Cs = 0.90; Ssn = (0.90 \ 0.81) (250) (0,577) = 105 MPa Ma = \frac{105 N/mm^2}{1.82} \begin{bmatrix} \frac{1571 mm^3}{3} & \frac{150 \times 105 N/mm^2}{507 N/mm^2} \end{bmatrix} = 13/43 N \cdot m m PROM PROB. 2-28, M = (2700 N) X $\chi_{MAX} = \frac{Ma}{2700} = \frac{13 143}{2700 N} \frac{N.mm}{200 N} = \frac{4.86}{6.86} \frac{mm}{M} \frac{VERY SMALL}{MM}$ XISFROM MIDDLEOF BEARING TO STEP. REPESION IS REQUIRED, CONSIDER LARGER dOR MATERIAL WITH HIGHER STRENGTHI

S=1.06\ln3;
$$Z_p = 2.128 /N^3$$
; $A = 1.70 \ln 2 \frac{PPS}{PPS}$

CHECK $T = \sqrt{(\frac{T}{2})^2 + T^2} = /(-7028 /_2)^2 + (1698)^2 = 3903 psi OR

 $\sigma = \sigma_0 - \sigma_0 = -\frac{m}{5} - \frac{90010}{4} - \frac{9200}{1.064} - \frac{400}{1.704} = -7002 psi$
 $T = \frac{3600}{2.128} = 1692 psi$$

33.

FLUCTUATING NORMAL STRESS:

Sy = 58ksi; Sm = 75ksi; N = 3; Sm = 28ksi

ASSIME MACHINED SURFACE AND C. = 0.9, CA=0.81

MMAX = FL = 800 (48) = 9600 LB-IN.

$$O_A = \frac{F_X}{A} + \frac{M_M}{S}$$

$$G_{R} = \frac{1500}{6^{2}} + \frac{4800}{6^{2}/6} = \frac{1500}{6^{2}} + \frac{28800}{6^{3}}$$

$$\sigma_{a} = \frac{Ma}{5} = \frac{4800}{6^{3}/6} = \frac{28800}{6^{3}}$$

M (LS-IN)

F=0+0800LB.

$$\frac{1}{N} = \frac{1500}{6^{2}} + \frac{28800}{6^{3}} + \frac{28800}{6^{3}} = \frac{0.020}{6^{2}} + \frac{0.384}{6^{3}} + \frac{1.472}{6^{3}} = \frac{0.020}{6^{2}} = \frac{0.020}{6^{2}} + \frac{0.020}{6^{2}} = \frac{0.020}{6^{2}} = \frac{0.020}{6^{2}} +$$

TERM IN VOLVING 6" IS SMALL: 6= VNLI.796) = 1.75 IN -USE 6=1.80 IN,

RECHECK: Cs FOR b=1.80 IN \$ 6VARE. Pe=0.808 Vbh =0.808 Vb2=0.808 b SIZE

Pe=0.808 (1.80) = 1.454 IN . THEN Cs = (1.454) -0.11 = 0.84

 $S_{m} = (0.89)(0.81)(28KSI) = 19.05KSi = 19050 PSi$

EQUATION (BECOMES!

$$\frac{1}{N} = \frac{1500}{\frac{b^2}{N}} + \frac{28800}{\frac{b^3}{3}} + \frac{28800}{\frac{b^3}{3}} + \frac{28800}{\frac{b^3}{3}} = \frac{0.020}{b^2} + \frac{0.384}{b^3} + \frac{1.512}{b^3} = \frac{0.020}{b^2} + \frac{1.896}{b^3}$$

$$\frac{1}{N} = \frac{0.020}{(J.80)^2} + \frac{1.896}{(L80)^3} = 0.331 ; N = 3.02 \text{ OK} \quad \text{Specify } b = 1.801N$$

FLUCTUATING COMBINED STRESS:

$$T = \frac{T}{\varphi} = \frac{T}{0.2086^3} = \frac{1200}{2086^3} = \frac{5767}{63}$$

$$O_{M} = \frac{1500}{62} + \frac{28800}{62} \approx \frac{28800}{63}$$
(SMALL)

THEN
$$\frac{1}{N} = \frac{15.573}{63} + \frac{14400}{63} = \frac{1.602}{63}$$

$$T_m = \frac{1500}{(1.80)^2} + \frac{28800}{(1.80)^3} = 5401$$
 PS; Flow MOHR CIRCLE! $(T_m)_{max} = 7876$ ps. $(T_m)_{max} = 7876$

$$\frac{1}{N} = \frac{2876}{56250} = \frac{2469}{10860} = 0.279 - N = 3.59 \text{ OR} \quad USE b = 1.60 \text{ IN}$$

MOHR'S CIRCLE-MEAN STRESS

554 = 0.755m =0.75[75KG) = 56,25KSI S==0.577 5== (0,577)(0.83)(0.81)(28/51) = 10 860 pai

PROBLEMS 35, 36 AND 37 ALL DUCTILE MATERIALS-STEROYLOND: CASE 2.

a) 1020 HR: N = 207/34.7 =5.96

C) DUETICE IRON, 60-40-18: N=276/34.7=7.95

d) ALUM. 6061-T6! N= 276/34.7 = 1.95

e) TI-6AL-4V: N= 827/34.7 = 23.8

f) PYC: N BASED ON TENSILE STRENGTH; N = 41/342 = 1.18 \ LIW9) PHENOLIC " " " N = 45/347 = 1.30 MICEGISE

31.
$$\sigma = \frac{F}{A} = \frac{12.600 \, LB}{\left[(2.25)^2 - (2.00)^2 \right] M^2} = \frac{11859 \, PSi}{11859} = \frac{40.000}{11859} = \frac{3.37}{11859}$$

DUCTILE MATERIAL - STEADY LOAD - <u>CASE</u> 2: <u>PROBS. 38, 39, 40.</u>

SAE 1144 CO SY 90KS = 90000 F. A= LS · 3.5 = 5.25 IN²

EMB = O = 75F - 60C: C = 75(2500)/60 = 3/25 LB = FAC

T = FAC/A = 3/25 LB = 595 PS |

N = SY/S = 90000/595 = 157 VERY HIGH

CONSIDER A SMALL ROO OF SAE 1020 HR STEEL

T = 5Y/N = 3000/3 = 10000 PS; A = <u>FAC</u> = 0.3/25 IN²

A SQUARE BAR 3/4 IN ON ASIDE WOULD DO. A=0.44 IN² + B

OR FROM APP. 15-15: RECT. TUBE - 1.00 × 7.00 × 0.065; A = 0.373 IN²

39 $\Sigma F_V = 0 = 1500 \text{ M} - 2 \text{ Fx SIN 45}$ $F_R = 1500 / 2 (5 \text{ N 45}) = 1061 \text{ LB}$ $G_0 = \frac{5v}{N} = \frac{42000}{3} = \frac{14000 \text{ PS}}{14000 \text{ PS}} = \frac{F_R}{14000 \text{ LB}} = 0.0158 \text{ M}^2 = 770^2 / \text{V} : 0 = 0.311 \text{ M}.$

40. FR= 1500/2(SIN 150)=2898 LB: A= FR = 2898 = 0.207 N-: D=0.513 IN.
USE 9/16 IN.

REPEATED REVERSED AXIAL LOAD: C= 1.00; C₅₇ = 0.8 AXIAL LOAD

CR=0.81

CASE 4: N = Sm'/GMAX: GMAX = Ke F/A = \frac{1.83(7500N)}{(6)(9) mm^2} = 254 MPA

1.5/9 = 0.167 \cdot Ke= 1.83

The = 9/12 = 0.75 \cdot USING FIG. 3-26(Q) \size SAC-4140 00T 1000

Sh= 1/60MPA - Sn = 400 MPA (FIG. 5-Q); Sn = (1.00 \cdot 0.00 \cdot 0

42 REPEATED REVERSED SHEAR STRESS: CASE 4: Cs = 0.81, CR = 0.81

T = I = \frac{\text{BOOXIN}^3 N.mm}{\text{TT}(\text{SOMM})^3/\text{L}} = 32.6 MPa : WQT 1000 : \text{Su = 780 MPa}; \text{Sn = 280 MPa} \text{(FIG. A4-1)}^4 (FIG. 5-8)

Sin' = (0.5) (0.81) (0.81) (280) = 91.9 MPa \text{S5m} = 0.55 \text{m}

N = \text{Ssm'}/\text{TMAX} = \frac{91.9}{326} = \frac{2.82}{2.82} \text{OK}

43 REPEATED -ONE DIRECTION SHEAR STRESS! FLUCTUATING SHEAR STRESS

CASE 5: EQ. 5-22: $\frac{1}{N} = \frac{7m}{5sn} + \frac{Ke7a}{5sn'}$ $Z_P = 170^3/R = 24544 mm^3 = 5sn' = 7m + 5sn'$ $T_M = T_a = 400 \times 10^3 N \cdot mm/24544 mm^3 = 16.30 MA$ $S_S_N = 0.75 \cdot S_N = 0.75 \cdot (780 Mpa) = 585 Mpa$ L = 16.30 + (1.0)(16.20) = 0.205 : N = 4.87

 $\frac{1}{N} = \frac{16.30}{585} + \frac{(1.0)(16.30)}{91.9} = 0.205 = \frac{N}{5} = 4.87 \quad (Ssn' FROM PROB. 42)$

44. DUCTILE MATERIAL -STATIC LOAD - CASE 2: $N = 0.5 \text{ Sy}/T_{MAX}$ T = T = 88.0 LB-IN = 1003 PSi $MAX = 2p = TC.40M)^3/N = 1003 \text{ PS}i$ $R = Q^{\dagger}D = Sy = N T_{MAX}/0.5 = 3(7003)/0.5 = 42 \text{ OTTPS}i$ ALUMINUM 2024-TY HAS Sy = 47000 PSi

45 FLUCTUATING SHEAR STRESS: <u>CASE</u> 5 $T_{MAX} = \frac{63000 (hp)}{63000 (hp)} = \frac{63000 (hb)}{560} = 12375 LB-NN.$ $T_{A} = T_{A} = \frac{1}{100} = \frac{10000 (hb)}{100} = 12375 LB-NN.$ $T_{A} = T_{A} = \frac{1}{100} = \frac{10000 (hb)}{100} = 10000 (hb)$ $T_{A} = T_{A} = \frac{1}{100} = \frac{10000 (hb)}{100} = 10000 (hb)$ $T_{A} = T_{A} = \frac{1}{100} = \frac{10000 (hb)}{100} = 10000 (hb)$ $T_{A} = T_{A} = \frac{1}{100} = \frac{10000 (hb)}{100} = 10000 (hb)$ $T_{A} = \frac{1}{100} = \frac{10000 (hb)}{100} = 10000 (hb)$ $T_{A} = \frac{$

46 STEADY LOAD - <u>CASE 3</u>: N = 0.5 Sy/TMAX. $T = \frac{P}{M} = \frac{28 \times 10^3 \text{ N mm/s}}{45 \text{ RAD/s}} = 622 \text{ N.m} = 622 \times 10^3 \text{ N.mm}$ $Z_P = \frac{TP}{M} \left(\frac{0^4 - 3^4}{M} \right) = \frac{TP}{M} \left(\frac{40^4 - 30^4}{M} \right) \frac{Mm^3}{M} = 8590 \text{ m/m}^3$ $I = \frac{16 \left(\frac{40}{M} \right)}{16 \left(\frac{40}{M} \right)} = \frac{72.4 \text{ MPa}}{M}$ $N = 0.5 \text{ Sy/Tmax} = \frac{8590 \text{ m/m}}{M} = \frac{92.4 \text{ MPa}}{M}$ $N = 0.5 \text{ Sy/Tmax} = \frac{8590 \text{ m/m}}{M} = \frac{3(72.4)}{0.5} = \frac{434 \text{ MPa}}{M}$ Alsi 1040 COLO DRAWN HAS Sy = 490 MPa.

- FROM PROB. 62, CHAPTER 3, MAK STRESS CRAWS AT BOTTOM

 K= 1.86; Sy = 86 000 ps;; Sm = 121 000 ps; Sm = 43000 ps;

 Sm' = (0.8)(81)(43000) = 27.864 ps; Om = Fm = 600 LB = 30.56 ps;

 LAXIAL OR = Om

 CASE 5:

 L = On + Ke Or = 30.56 + (1.86)(30.56) = 0.224; N = 4.56 OK

 N = Sm' | 121,000 + 27.864 FORVIELD: N = 7.56 OK
- FROM PROR 63 3 CHAPTER 3, MAX STRESS OCCURS AT LEFT HOLE (0.72 DIA) $L = 2.15 : A = (1.40 0.72)(0.50) = 0.34/18^{2}$ $CM = \frac{500}{A} = 15000 P Si$ CASE 5 CASE 7 CASE 7

- 52 FROM PROB 3-64, OMAX = 16650 PSi INCLUDING KG: CASE 1 :N= 5m+/0 REQ'O SAt = NO = 3(18281) = 54843 PSi - USE GRADE 604 CASTIRON
- CASE 5: $\frac{1}{N} = \frac{Cm}{Sm} + \frac{1}{160}$: NOTE THAT A DRECT SOLUTION IS NOT

 POSSIBLE BECAUSE BOTH SMAND SM ARE UNKNOWN. ALSO DATA

 FOR ENDVRANCE FOR TITANIUM ARE NOT DIRECTLY AVAILABLE HERE.

 AS AN ESTIMATE WE WILL USE FIRS-8 AND THE DISCUSSION

 FOR STEEL TO OBTHIN SM. ALSO NOTE FROM PREVIOUS PROBLEMS,

 SM' 2 SW/4. THIS PERMITS SOLUTION FOR SM. AFTER MATERIAL

 SEZECTION, FINAL N CAN BE COMPUTED,

 SEZECTION, FINAL N CAN BE COMPUTED,

 A TI(30) / 4 = 707 mm

 The SSISSION SSISSION SSISSION SSISSION SSISSION

 The FAM 25 SISSION SSISSION SSI

$$\sigma_{a} = \frac{F_{a}}{A} = \frac{5.5 \times 50^{3} N}{707 \text{ mm}^{2}} = 7.28 \text{ m/s}$$

$$\frac{1}{N} = \frac{\sigma_{m}}{S_{M}} + \frac{k_{c} \sigma_{a}}{S_{m}} = \frac{35.57}{S_{M}} + \frac{(2.30)(7.28)}{S_{M}} = \frac{102.5}{S_{M}}$$

THEN S = N(102.5) = 3(102.5) = 308 MAL: TRY TI SOA; SY=276MPL; SM=345MPL FROM FIG. 5-8: Sm = 120MPL (ESTIMATE)

$$S_{N}' = 0.8)(0.81)(130) = 84.2 MPL$$

$$\frac{1}{N} = \frac{35.57}{345} + \frac{(2.30)(7.28)}{84.2} = 0.302 - N = 3.31 OK Ti.50A$$

FROM PROB. 3-66,
$$ke = 1.43$$
: $T_M = 1/00 LB \cdot M = Ta$
 $Z_P = \pi(1.25)^3/6 = 0.383 \cdot M^3$
 $T_M = T_M/2P = 1/60/0.383 = 2868Psi = T_A - CASE 5$
 $L = \frac{T_M}{S_{SM}} + \frac{Ke}{S_{SM}} = ASSUME S_{SM} \times S_{SM}/y (SEE PROB S_3]$
 $I = \frac{2868}{S_{SM}} + \frac{1.48(2868)}{S_{SM}} \times \frac{19273}{S_{SM}} \cdot S_{SM} = 309273) = 57819 poin$
 $BUJ = S_{SM} = 0.755M; S_M = 55M/0.75 = 57819/0.75 = 17692Psi$
 $TRY AISI 1137 OOF 1300; Sy = 60 / Ksi; S_M = 87 / Ksi; S_M = 33 / Ksi$
 $S_{SM} = 0.755M = 0.75(87000Psi) = 65750PsT$
 $L = \frac{2868}{1650} + \frac{11/3}{11360} = 0.405; M = 2.47 Lo W$
 $TRY SAE 1046 WQT/000; S_M = 113KSI, SY = 88KSI, S_M = 42KSI$
 $S_{SM} = 0.75(113) = 84.75KSI; S_{SM} = 0.50)(0.81)(0.85)(47) = 14.458KSI$
 $N = 64750 + \frac{11458}{14458} = 0.3175 N = 3.15 OK$

57. LOAD IS REPEATED - ONE DIRECTION - TORSIONAL SHEAR STRESS;

FLUCTUATING SHEAR STRESS - CASE 5:
$$T_m = T_a = \frac{100 \text{LB} \cdot 100}{2} = 50 \text{LB} \cdot 100$$
.

AT FILLET: $\frac{9}{6} = \frac{0.50}{0.30} = \frac{1.61}{0.40} = \frac{0.025}{0.30} = 0.083$; $K_{\pm} = \frac{1.43}{3}$
 $Z_p = \text{ITd}^3/8 = \frac{1}{2} = \frac{50 \text{LB} \cdot 100}{0.005 \text{Jun}^3} = \frac{9431}{0.005 \text{Jun}^3} = \frac{9431}{0.005 \text{Jun}^3} = \frac{1.43 \text{LB} \cdot 1000}{0.005 \text{Jun}^$

58, STEADY LOAD-BRITTLE MATEL: CASE ! AT MIDDLE-BETWEEN C AND D: Z= 6H2/6 = (0.25 X 2.25)/6 = 0.633 IN3 0 = M/2 = 2250 LB.IN/0.633 M3 =3556 PSi AT STEP - POINT B: Z = 6h 2/6 = (0.75)(125)/6 = 01953/13 M/A = 0.20/1.25 = 0.16 K = 1.63 M/A = 2.25/1.25 = 1.80OMAX = KEM = 1.63 (1500) = 125/9 N = Sut/Om = 40000/12519 = 3:19

3000 59. REPEATED ONE DIRECTION I CASE 5 ! EQ. 5-20 : 25(N 43.0 1501 D=0.50 IN.: A = TD/4 = 0.196 IN 2; ASSUME K=1.0 Om = On = F/A = 1500 LO/0.1961N= 27639 PSI IST TRIAL : SAE 1040 CO: SY=7/KSI; SW=BOKSi Sm 230 KSi (FIES-8); Sm'=(CR)(CST) Sm=(0.81)(0.8)(30)=19.4 KSI 1 = 0m + Ke 0a = 7639 + 1.0(7639) = 0.489; N= 2.04 LOW 1 = 000 | 19400 = 0000 | 19400 = 2000 | 2000

REPEATED - ONE DILECTION & CASE 5: SPECIFY A STEEL

FMAX = 800LB; FMIN = 0; 8MX = 0.010 IN; L=25.01N. CONSIDER DEFLECTION FIRST :

REQ'D. $A = PL/ES = \frac{(800)(25.0)}{(800)(0.010)} = 0.0667/N^2 = S^2$ $S = \sqrt{A} = \sqrt{0.0667/N^2} = 0.258/N. : TRYS=0.300/N.$

CROSS SECTION

TRY SAE 1040 CD: Sy=1/KSi; Sn=80 KSi; 12% ELONGATION FROM FIG 5-8: Sm = 30KSi: LET Cs = 1.0; CST = 0.80 (AXIAL); CR=0.81 Sm' = (1.0 YO.80)(0.81)(30) = 19,400 ps;

EQ. 5-20: \(\frac{1}{N} = \frac{\infty}{Sm} + \frac{K+\infty}{Sm} = \frac{4444}{80,000} + \frac{1.0(4444)}{19400} = 0.285. \(\frac{N}{N} = 3.51 \infty \text{DK}.\)

REPEATED-ONE DIRECTION: CASES: FMAX = 1200 LB; FMEND FA=600LB.

POR ILLUSTRATION USE SAME MATERIAL AS IN PROB. 60: SAE 1040 CD

Su=80KS1; Sn = 30KS1

Sm' = (0.90)(10)(0.81)(30) = 21.9K5i LSIZE L BENDING

AT C: M = 3000 LB.IN; Kt = 1.0 S= TD3/32 = TT(2.0)3/32 = 0.785 IN3

am = 00 = M/s = 3000 LB.IN/0.785 IN3 3820 PSi

De=0.370 D=0.370(2.0)=0.74/A Cs=('74/6.3) AH = 0.90

$$\frac{1}{N} = \frac{3820}{80000} + \frac{1.0(3820)}{2/900} = 0.222 ; N = 4.50 HIGHER THAN (b).$$

b) AT SECTION B: M= ZYDOLBIN, 1-/d = 0.20/20 = 0.10; D/d = 3.0/20 = 1.50 Kt = 1.74: $O_m = O_a = \frac{M}{S} = \frac{2400}{0.785} = 30.56 \text{ PS}$: $\frac{1}{N} = \frac{30.56}{80.600} + \frac{(1.74 \times 30.56)}{21.900} = 0.281$; N = 3.56 - 10WER THAN (a).

62

REDESIGN BEAM IN PROQ. 61. NOTE THAT N IS INVERSELY PROPORTIONAL TO MONENT M AND DISTANCE Q. THEN Q MUST BE REDUCED BY: a' = a x 3.54/4.50: =0.187 (a) = 0.187 (B.O) = 6.30 IN. (SAY 6.25 M) THEN M = 300(a) = 1875LB.IA.; 0= 0= 0 = 1875/0.765 = 2389PSi N = 2389 + 1.74(2389) = 0.220 ; N = 4.55 OK HIGHER (a). SPECIFY a= 6,25 IN.

REFER TO PROBS. 61,62. ! NEW
$$\Lambda = 0.40$$
; $h/d = 0.40$ / $L_0 = 0.20$
 $D/d = 3.0/2.0 = 1.50$; $K = 1.47$

IF $\Delta = 9.001N$ AS GIVEN; $M = 2400LB \cdot IN$ AT B; $G_m = G_m = 3056$ PS $\frac{1}{N} = \frac{G_m}{S_M} + \frac{K + G_m}{S_M} = \frac{3056}{80000} + \frac{1.47}{21900} (3058) = 0.305$; $N = 3.27$

DIMENSION Δ MUST BE REPUCED TO GET N ≥ 4.50 As AT C.

 $\Delta' = \Delta \times \frac{4.21}{4.50} = 8.0(0.936) = 7.49$ IN; $LET \Delta = 7.25$ IN.

THEN $M = (7.25)(300) = 2175$, $LB \cdot IN$; $G = M/s = 2711$ PS; $\frac{1}{N} = \frac{2721}{80000} + \frac{(1.41)(2771)}{21900} = 0.2206$; $N = 4.53$ OK

H. REPEATED - ONE DIRECTION: FLUCTUATING STRESS: CASE S, EQS-20

SAE 1040 AR:
$$Sy = 4/2KSi$$
; $SA = 72KSi$; $SM = 23KSi$ FIR S-8 HOT ROLLED.

 $C_S = 1.0$ Direct tension; $C_S = 911$; $C_S = 9180$ ANAL LOAD

 $SM' = (0.8)(0.8183KSi) = 14.9KSi$

Q) AT PIN HOLE: $d = 0.2SIN$. DAA., $W = 1.001N$.

 $d_{W} = 0.2S$; $KC = 4.40$
 $O_{NQA} = \frac{F}{(N^2 - AZS \times 10.2S)N^2} = 13.333PSi$
 $M = \frac{O_{MA}}{S_{MA}} + \frac{K_2 O_{MA}}{S_{MA}} = \frac{13.333}{72000} + \frac{(4.40)(13.333)}{19.900} = 4.12$; $N = 0.243$
 $O_{NQA} = \frac{F}{N} = \frac{13.333}{NDICATES}$

D) AT FILLETS: $N_1 = 0.02/1.00 = 0.02$; $N_2 = 20/1.00 = 2.00$

ON $PATISUE$: $PATISUE$: $PATISUE$:

 $O_{NQA} = \frac{F}{A} = \frac{250018}{(1.00)(0.2S)N^2} = 10000$ IS:

 $O_{NQA} = \frac{F}{A} = \frac{250018}{(1.00)(0.2S)N^2} = 10000$ IS:

 $O_{NQA} = \frac{F}{A} = \frac{250018}{(1.00)(0.2S)N^2} = 10000$ IS:

 $O_{NQA} = \frac{F}{A} = \frac{250018}{(1.00)(0.2S)N^2} = 10000$ IS:

IMPROVEMENTS: 1.) INCREASE THICKNESS, 2.) INCREASE FILLET RADIUS,
3.) USE STRONGER MATERIAL, 4.) INCREASE PINHOLE SIZE-ORCHANGE MANNER OF APPLYING FORCE TO THE PART TO
ELIMINATE HOLE - OR - MAKE PART THICKER ATTHE HOLES THAN
IN MIDDLE OF THE PART. MATERIAL MAY BE REMOVED IN 2.00 IN.
SECTION NEAR MIDDLE OF PART TO OFFSET ADDED MATERIAL
ELSEWHERE. COULD TRY TITANIUM WITH LONER DENSITY THAN
STEEL. THIS PROBLEM MAY BE TOO RESTRICTIVE TO PERMIT
A PRACTICAL SOLUTION WITH DATA IN THIS BOOK. MAY
HAVE TO ACCEPT LOWER N<3.0 OR SOME INCREASE IN
WEIGHT OF THE COMPONENT.

68 SEE PROB 67: FOR N=25; Sn'= N OME = 25(125) = 312-5 MBa = (0.90)(0.81) SM

THEN SUREQ'D = 2 1/30 MBa (FIG 5-8) Sn = 394 MBA

FROM APPA4-3: SAE 1340 O OT 900 HAS Sn = 1150 MBa

- SEE PROB. 69: INCREASE N TO 3.0 OR HIGHER BY USING LARGER L.

 BEST POSSIBLE IMPROVEMENT WOULD BE KE = 1.0 WITH LARGE L.

 \[
 \frac{1}{N} = \frac{Om}{Sy} + \frac{Ke Ga}{Sm'} = \frac{10430}{90:000} + \frac{(1.0\times 4172)}{20:000} = 0.324; \frac{N = 3.08}{N = 3.08} \text{ OK}

 \[
 \text{CS N SIGGA G RAPUAL TAPER.}
 \]
- THE SEE PROB. 69: INCREASE MATERIAL STRENGTH TO GET N 23.0.

 TRY SAE 1340 DOT 900: Sy = 158 KS; $S_m = 169$ KS; (APP. 4-3) 17% ELONG.

 USE MACHINED SURFACE; $S_m = 58$ KS; $S_m = 169$ KS; (APP. 4-3) 17% ELONG. $\frac{1}{N} = \frac{C_m}{S_m} + \frac{K + C_m}{S_m} = \frac{10430}{169000} + \frac{(2.35)(4/12)}{44630} = 0.2014$; N = 3.55 OK
- REPEATED REVERSED STRESS: CASE 4: DESIGN FOR $N \ge 3.0$,

 SPECIFY MATERIAL: $O_3 = S_m'/N$. $O_{MAK}AT B: M_0 = 600LB \cdot JN$ $S = \pi d^3/32 = \pi (1.00)^3/32 = 0.0982 JN^3$ AT FILLET: $N/_0 = 0.06/1.0 = 0.06$; $D/_0 = 1.38/1.0 = 1.38$ $K_t = 1.99$ LET $O_a = O_{MA} = \frac{K + M}{S} = \frac{1.99}{0.0982 JN^3} = 12.159 PSi$ $REO'D S_m' = NO = (3.0)(2.159) = 36.477 PSi$ $C_{a=0.81}, C_S = 0.48$; $S_m = S_m'/0.88)(0.81) = 5/174 PSi$

FROM FIG. 5-8, REQ'D Sm = 145 000 PSI (MACHINED SURFACE)

ONE POSSIBLE SOLUTION: SAE 3140 OOT 1000, Sm = 152000 PSi, 17% ELONG.

73 FLUCTUATING NORMAL STRESS - CASE 5: 16000 SAE 1340 DOT 100: SY = 197 KSi; Sm = ZZIKSi 5m = (080) (0.81) (65ksi) = 421 Ksi **8570** AXIAL CR Fm = (8500 +16 000)/2 = 12 250 LB Fa = 16000-1220 = 3750LB AT FILLET: 1/3 = 0.05/0.63 = 0.019; 0/3 = 1.00/0.63 = 1.59: K= 2.10 A= Td/4 = TT (0.63) /4 = 0.3121N2 Om = Fm/A = 12250LB = 39300 esi; Oa = Po/A = 3250LB = 12030 esi $\frac{1}{N} = \frac{O_{m}}{S_{M}} + \frac{K_{E} O_{a}}{S_{m'}} = \frac{39360}{221000} + \frac{2.10(12030)}{42100} = 0.778; N = 1.29 LOW$ 74 SEE PROB. 13: TRY TO REDESIGN TO ACHIEVE N=3.0. INCREASE FILLET RADIUS TO L=0.185IN. FILLET WOULD THEN JUST BLENO WITH DUTSIDE OF LOOIN DIA. $h/d = \frac{0.185}{0.630} = 0.29; \frac{D}{d} = \frac{1.00}{0.67} = 1.59; k_{\pm} = 1.36$ USE STRONGER MATERIAL : TRY SAE 8650 DOTTOO Su= ZYOKSi; Sy = ZZZKSi; 12% ELONGATION GRIND ALL CRITICAL SURFACES GENTLY. Sm= 88KSi; USE Ca = 0.81 THEN 5 = 6.81)(0.8)(88KS1) = 57.0 KSi 1 = 39300 + (1.36)(12030) = 0.451; N = 2.22 STILL TOO LOW EVEN IF Kt = 1.0, N = 2.67 -SLIGHTLY LOW DIAMETERS MAY HAVE TO BE INCREASED. REPEATED REVERSED LOAD-CASE 4: BENOING MOMENT AT FILLETS = F(4.00M) =(800)(4.0)=3200 LB.IN. $S = \frac{BH^{2}}{6} = \frac{(Z.00)(1.25)^{2}}{6} = 0.5208 / N^{3}; \quad \sigma_{MON} = \frac{M}{5} = \frac{3200 L8 \cdot N}{0.5208 / N^{2}} = 6/44 PSi$ $N = \frac{Sm'}{CmAs} = \frac{Sm'}{K + CNON}; \quad THEN REQUER K_{6} = \frac{Sm'}{N CNON}$ Cs FOR RECTANGLE 1.25 +2.00 IN. De = 0.808 1/16 = 0.808 V(L25)(2.00) = 1.28 Cs= (1.28/03)-011=0.85 AISI 1144 DQT 1100: Sm=112 KSi, Sm=42 KSi. USE CR=0.81 5= Cs CA Sn = (0.85)(0.81)(42) = 28.9 KSi = 28900 psi THEN Ktmax = Sm' = 28900 PSi = 1.57

FROM @ FATIGUE : H/h = 2.00/1.25 = 1.6; FOR Ke = 1.57

THEN 1= 0.720 IN GIVES Kt = 1.57

PROBLEMS 71-83 ARE DESIGN PROBLEMS FOR WHICH THERE ARE MULTIPLE SOLUTIONS POSSIBLE.

CHAPTER 6 COLUMNS

- 1. $N = D/y = 0.75/y = 0.188 N : KL/\Lambda = 1.0(32)/0.188 = 171$ $Sy = 42000 ps; : Cc = \sqrt{\frac{2\pi^2 C}{5}} = \sqrt{\frac{2\pi^2 (30 \times 10^9)}{42000}} = 119 Long Column Fuler$ $A = \pi 0^2/y = 0.442 N^2$ $Pcr = \pi^2 E A = \pi^2 (30 \times 10^6)(0.442) = 4473 LB$ $(KL/\Lambda)^2 = (171)^2$
- 2. KL/h = 1.0(15)/0.188 = 99.8 < Ce -SHORT JOHNSON FORMULA $P_{CR} = A Sy \left[1 \frac{Sy \left(\frac{KL/h}{h} \right)^{2}}{417^{2}E} \right] = (.442)(42000) \left[1 \frac{42000(79.8)^{2}}{477^{2}(30 \times 10^{6})} \right] = 14393 LB$
- 3. $h = 0.188 \text{ in } \frac{1}{3} \frac{KL/h}{h} = 171 \frac{1}{3} \frac{5}{3} = 21000 \text{ psi} \frac{1}{3} = 1000 \frac{6}{3} \text{ psi}$ $Cc = \sqrt{\frac{2\pi^{2}(1000)}{21000}} = 97 Long Column$ $PcR = \frac{\pi^{2}EA}{(KL/h)^{2}} = \frac{\pi^{2}(1000)(0.442)}{(171)^{2}} = 1492 \text{ LB}$
- 4. KL/A = (0.65)(32)/0188 = 111 < Ce SHORT JOHNSON FORMULA

 PCR = (0.442)(42000) [1- 42000 (111)2] = 10500 LB
- 5. SQUARE: 1 = 5/1/2 = 0.65/1/2 = 0.188IN SAME AS ROUND-PRIS. 1. PCR = 4473 LB.
- 6. ACRYLIC: LET S, = TENSILE STRENGTH = 5400 PSI; E = 220 000 PSi $Ce = \frac{2\pi^{2}E}{Sy} = \frac{2\pi^{2}(220000)}{5400} = 28.4 \text{ (K4/h} = 171 > Ce Long$ $PCR = \frac{\pi^{2}EA}{(K4/h)^{2}} = \frac{\pi^{2}(220000)(0.442)}{(171)^{2}} = 32.8 \text{ LB}$

7.
$$\lambda = 0.5 \text{ m/y}_{12} = 0.144 \text{ jn}$$
.

 $KL/n = 1.0(8.5)/0.144 = 58.9$
 $Sy = 181000 \text{ ps/} \rightarrow C_c = 57 (\text{Fig. L-4}) \text{ Long Col.}$
 $Pca = \frac{17^2 \text{ EA}}{(\text{K4/n})^2} = \frac{17^2 (30 \times 10^6)(0.5)}{(58.9)^2} = 42.675 \text{ LB}$

- 8. $h = \sqrt{(0^2 + d^2)/y} = \sqrt{(0.60)^2 + (0.382)^2}/y = 0.529 \text{ m.: } L = 6.25 \text{ Fr} \left(\frac{12M}{FF}\right) = 75 \text{ in}$ $A = \pi (0^2 d^2)/y = 0.5106 \text{ in}^2 : \text{ L/h} = \frac{75}{0.529} = \text{MZ}$ $5y = 3000095i \text{ ; } Cc = \frac{140}{140} (\text{Fig. 6-5})$ a) PINNED ENDS: $KL/h = 1.0(L/h) = 142 \times C$ Long-Euler $PcR = \frac{\pi^2 (30 \times 10^6)(0.5706)}{(42)^2} = \frac{7498 LB}{142}$
 - b) FIXED-FIXED: KL/n = 0.65 (4/n) = 923L Co SHORT-JOHNSON
 PCR = (0.5106) (30000) [1-30000 (92.3)²
 HTT (30XN)] = 12 000 LB
 - C) FIXED-PINNED: KL/n=0.8(192)=114 LCC-SHORT-JOHNSON
 PCR = (0.5104) (3000) [1 30000 (114)] = 10300 LB
 - d) FIXEO/FREE: KL/n=2.10 (142) = 2987Cc-LONG PCR = TT = (30×n4)(0.5/16) = 1700LB
- 9. $S_Y = 152 \text{KS}i$: $C_c = 60(\text{Fig.} 6.5)$: ASSUME COLUMN IS LONG: K = 1.0 (EQ, 6-9) $D = \begin{bmatrix} 64 \text{NP} (KL)^{2/4} \\ 17^3 \text{E} \end{bmatrix} = \begin{bmatrix} 64(3)(8500)(50)^{2/4} \\ 17^3 \text{E} \end{bmatrix} = \begin{bmatrix} 4/39 \\ 1/3 \text{E} \end{bmatrix} = 1.45 \text{IN}.$ R = D/y = 1.50/y = 0.375: KL/R = (1.9(50)/375 = 13376) = 1.006, 0L
- 10. Sy = 30 KS; : Cc = 140(F16. 6-5) & ASSUME COLUMN IS LONG

 D = 1.45 IN (SAME AS PROR.9) USE D = 1.50 : KL/2 = 1.33 < Cc JOHNSON

 (EQ. 6-10) = \[\frac{4(3)(8500)}{17(30000)} + \frac{4(30000)(50)^2}{17^2(30000)} \]^{1/2} = 1.45 IN USE 1.50 IN.

 NO ADVANTAGE TO 4140 STEEL
- 11. ALUM. 2014-TY: Sy = 42000 PS; Co = 69: ASSUME LONG COLUMN

 D = 64(3)(8500)(50) = 1.90 IN. USED = 200 IN, R = 04 = 0.50 IN.

 KL/2 = (1.0)(50)/0.50 = 100 > Co Long. D OLL.
- SQUARE: $I = S^{2}/2$; $A = S^{2}$: FROM EQ. 6-8-EVLER $I = S^{2}/2 = NP(KL)^{2}/\pi^{2}E$ $S = \frac{[2NP(KL)^{2}]^{2}}{\pi^{2}E}$ (CONTINUE NEXT PAGE)

0 = (4NP) + 4C/ASSV(KL)2 7/2

 $D = \frac{4NP}{TSY(I-Q^2)} + \frac{4SY(KL)^2}{T^2F(I+Q^2)} \Big|_{L^2}$

- 14 Assume COLUMN IS LONG: FROM PROB. 12: $S = \left[\frac{12NP(KL)^2}{17^2E}\right]^{1/4}$ KL = 0.65(64) = 41.6 IN (Fixed ENDS) $S = \left[\frac{12(3)(6500)(41.6)}{17^2(10 \times 10^6)}\right]^{1/4} = 1.423 IN USE S = 1.500 IN$ $CHECK: <math>L = S/V_{12} = 1.50/V_{12} = 0.433$: KL/L = 41.4/0.433 = 46.1FOR 6061-76, SV = VOLSI: FROM FIG (6-6) $C_0 = 70$ Long ox
- 15. $R = ID / 0D = 0.8 : (/-R^4) = 0.5904$ ASSUME LOUG; FROM PROB. 13 $D = \begin{bmatrix} 64 NP (KL)^2 \\ 4173 = (1-R^9) \end{bmatrix}^{N} = \begin{bmatrix} 64(3)(6500)(4/16)^2 \\ 4772 (0.5704) \end{bmatrix}^{N} = \begin{bmatrix} 64(3)(6500)(4/16)^2 \\ 4772 (0.5704) \end{bmatrix}^{N} = 1.31 M$ $USE D = 1.50 / N ; d = 0.80 = 1.20 / N ; h = 1.31 M = 0.48 M ; KL = 87 Long WEIGHT COMPARISON : WT. PROPORT / ONAL TO AREA

 SQUARE: <math>A = S^2 = (1.50)^2 = 2.25 / N^2$ $TUBE : A = II (0^2 1)^2 = II (1.50^2 1.20^2) = 0.636 / N^2$ US / NT = 2.25 / 0.636 = 3.54 TUBE MUCH MORE EFFICIENT
- 16. ASSUME COLUMN IS LONG: EQ. (6-9) $D = \begin{bmatrix} 64 \text{ NP } (KL)^2 \\ 17^3 \text{ E} \end{bmatrix}^{1/2}$ $D = \begin{bmatrix} 64(3.5)(5176)(60)^2 \\ 17^3(30 \times 10^6) \end{bmatrix}^{-1.46 \text{ IN}}$ USE D = 1.50 IN. KL/L = 60/0.325 = 160 Long. Or. $C_{C} \approx 60 \text{ Fig. (6-5)}; Sy = 157 \text{ KS};$ NOTE: CARE WOULD HAVE TO BE USED AT CONNECTIONS TO ENSIRE AXML UAD.
- 17. MULTIPLE DESIGNS POSSIBLE, CONSIDER HOLLOW TUBE-ROUND OR SQUARE,
 CHEAPER MATERIAL MAY ALSO BE USED.
- 18. MULTIPLE DESIGNS POSSIBLE

 F3 = FV/tm 0 = \frac{9000}{2000} = 15588LB
- 19. MULTIPLE DESIGNS POSSIBLE

 F3 = 9000 = 33 588 LB

20. L = 10.75 FT $\times 12.00/FT = 129$ IN. : KL = 2.10(129) = 2.71 IN: Sy = 68 KS; $C_0 = 93$ ASSUME BOLUMN IS LONG - EULER - EQ. (6-9) $D = \begin{bmatrix} 64 \text{ NP}(KL)^2 \\ 173 \text{ E} \end{bmatrix}^{1/9} \begin{bmatrix} 64(2.5)(25000)(271)^2 \\ 173 \text{ E} \end{bmatrix}^{1/9} - 4.21 \text{ IN.}$ CHECK L = 0/9 = 1.063 IA: LL/R = 271/1.063 = 255 - Long.0k

21.22 MULTIPLE SOLUTIONS POSSIBLE

23. Crocco Column: $a = 0.08^{\circ}$, D = 0.75 in, c = D/z = 0.375 in, L = D/y = 0.188 in, $L^2 = 0.0352$ jii²; A = 0.442 iii²; $P_{CR} = 447318$ in Eq. 6-11: $C_1 = -\frac{1}{N} \left[SyA + \left(1 + \frac{ac}{N^2} \right) P_{CR} \right]$ [PROB. 6-1] $C_2 = \frac{1}{3} \left[\frac{(42000)(8.442)}{(42000)(8.442)} + \left(1 + \frac{(6.08)(0.375)}{0.0352} \right) \frac{(4473)}{(4473)} = -8951$ $C_3 = \frac{5yAP_{ON}}{N^2} = \frac{42000(0.442)(4473)}{(3)^2} = 9.226 \times 10^6$ $P = 0.5 \left[-(-8951) - \sqrt{(-8951)^2 - 4(9.226 \times 10^6)} \right] = \frac{1/8918}{1}$

24. CROOMED COLUMN: A = 0.04 m; C = 0.5/2 = 0.25 m; $P_{CN} = 42675 \text{ LB} \begin{pmatrix} 6.08 \\ 6.99 \end{pmatrix}$ A = 0.144 m; $A^2 = 0.0208 \text{ m}^2$; $A = 0.50 \text{ m}^2$; Sy = 181 000 ps; $C_1 = -\frac{1}{3} \left[(81000)(0.50) + \left(1 + \frac{6.04)(0.25)}{0.0208} \right) (42675) \right] = -5/220$ $C_2 = \frac{(181000)(0.50)(42675)}{(3)^2} = 4.291 \times 10^8$ $P = 0.5 \left[-(-51220) - \sqrt{(-51220)^2 + (4.291 \times 10^8)^2} \right] = 10.552 \text{ LB}$

ZS. CROOKED COLUMN: $A = 0.15 \text{ M}_3^2 C = 0.80 \text{ M}_3^2 P_{CR} = 1498 \text{ LB} (PRIB 6-9)$ $A = 0.529 \text{ M}_3^2 A^2 = 0.280 \text{ M}_3^2 A = 0.5106 \text{ M}_3^2 \text{ Sy} = 30000 \text{ PS} \text{ i}$ $C_1 = \frac{-1}{3} \left[(3 \cdot 0.00) (0.5106) + (1 + \frac{(6.15)(0.80)}{0.280}) (7498) \right] = -8677$ $C_2 = \frac{(30000)(0.5106)(7498)}{(3)^2} = 1.276 \times 10^7$ $P = 0.5 \left[-(-8677) - \sqrt{(-8677)^2 - 4(1.276 \times 10^7)} \right] = \frac{1877 \text{ LB}}{1877 \text{ LB}}$

ECCENTRIC COLUMN: L=42M.; S=1,25M.; C=5/2=0.625/N. N= 5/12 = 0.361N.; 12=0.1301N2; A=52=15631N2; C=0.601N S OMAX = 3458 PSI EQ.(6-14): Mymax = 0.60 [SEC(2(0.361) \(\text{(0.563)(10006)} \) 27 ECCENTRIC COLUMN: L=3.2 m= 3200 mm; P=305KN =305DN 3-IN SCH. 40; Do = 3.50 IN gC = 0/2 = 1.75 IN (25.4 mm) = 44 5 mm L = 1./6 IN. (25.4) = 29.46 mm; 12=868 mm; A = 2.23 IN (25.42) = 1439 mm I = 3.02/4 (25.44)=1.251 x10 mm ; C=150 mm AISI 1020 HR; E = 2076 Pa = 207 XIO Pa = 207 DOD MPG = 207 DOD M/MAZ $E(6-12): \sigma_{MAX} = \sigma_{1/2} = \frac{30.500}{1439} \left[1 + \frac{(150)(1445)}{862} SEC \left(\frac{3200}{2(29.46)} \sqrt{\frac{30.500}{(1439)(207000)}} \right) \right]$ OMAX = 212 MPa: BUT Sy = 207 MPa, THEN STRESS IS TOOHIEH. MMAX = (150) SEC()-1] = 25.9 MM IF MATL. DOES NOT YIELD. 28 ECCENTRIC COLUMN: L=14.75IN; C=0.30IN; S=0.250IN A = 5 = 0.062514 = 1 = 5/12 = 0.072214; 12 = 0.0052/112 S P=45LB; E=28×10 651: C= 5/2=0.12514 EQ(6-12): 0 = 45 [1+ (030)(0.125) SEC (14.75 /45 EQ(6-14): MAN = (0.30) [SEC(]-1] = 0.0451N. 29 ECCENTRIC COLUMN: L=40IN; C=0.5DIN; P=75000 LB FROM APP. 15-14: A= 3.37' N = 1.52IN; 12=2.31 IN; C= 1/2=20011. ASTM AZYZ: SY = 5000 PSi & E = 30 X10 (15) LET N=3, THEN OF = 51/3 = 16667851 LET OF = RIGHTSIDE OF EQ.(6-13) = 75000 [1+ (0.50)(2.00) SEC 40 [2000(3)] OJ = 34099 PSI > 03 UNSAFE | NOTE: 6x6 x/2 REQD: 0 = 948 PSI CENTRAL LOAD: L=16.0 FT (12 m/pr)=1921N; 30 ASTM A36, Sy=36KSi FROM APP 15-9: A= 5.54 12; Iy=9.1312, 1= \(\frac{\frac{F}}{A} = 1.28; \frac{KL}{L} = \frac{6.8}{1.28} \) 17 FROM FIG 6-5, Ce = 125; SHORT COLUMN - JOHNSON FORMELA. LET N=3

 $\frac{P_a}{N} = \frac{\rho_{ce}}{N} = \frac{(5.54)(36066)}{3} \left[1 - \frac{(36000)(1/9.7)^2}{417^2(30006)} \right] = \frac{37500 \text{ LB}}{2}$

- $\frac{CENTRAL LOAD: FIXED-END, K=0.65, Le=abs(66)=42.9 IN.}{S4 \times 7.7: A=2.26 IN^2; /L_{MW}=/L_{Y}=0.58 IIN; Le/n=73.8; N=3.8a=PCR/N}{ASTM A36: Sy=36000 PSi; E=30×106Bi; Ce=/30-SHART COLUMN.}
 \frac{Pa=[(2.26)(36000)/3][I-\frac{G6000 (73.8)^2}{417^2 (30×106)}]=22 600 LB.}$ Jetheson EQ(6.7)
- $\frac{32}{A = (1.60)(0.50) = 1.28 \text{ in}^{2}; C = 0.80/2 = 0.40 \text{ in}; L = 0.2309 \text{ in}.}{A = (1.60)(0.50) = 1.28 \text{ in}^{2}; C = 0.80/2 = 0.40 \text{ in}; L = 0.80/5 = 0.2309 \text{ in}.}$ $USE STEEL E = 30 \times 10^{6} \text{ PS} \text{ }$ $\frac{O_{MAX}}{I = 0.72} = \frac{I000}{I \cdot 28} \left[1 + \frac{(0.90)(0.40)}{(0.2309)^{2}} SEC \left(\frac{72}{2(0.2301)} \sqrt{\frac{I000}{0.28}(30 \times 106)} \right) \right] = \frac{83 \times 10^{5}}{0.28} \text{ }$ $\frac{M_{MAX}}{I = 0.90} \left[SEC(1.7955) 1 \right] = \frac{0.386 \text{ in}.}{0.386 \text{ in}.}$ $SPECIFY A MATERIAL TO PROVIDE N \ge 3.$ $USING EQ(6-13): O_{X} = \frac{I000}{I \cdot 28} \left[1 + \frac{(0.900/3.40)}{(.2309)^{2}} SEC \left(\frac{72}{2(0.2309)} \sqrt{\frac{3000}{AE}} \right) \right]$ $\frac{O_{X}}{I = 28 \times 100} \frac{1.28}{I} = \frac{1000}{I} + \frac{0.9000.40}{I} = \frac{1000}{I} = \frac{1000}{I}$

- 35 CENTRAL LOAD: SAME AS 34 EXCEPT FIXED ENDS, K = 0.65 KL/L = (0.65)(II2)/0.489 = 148.9 Long Column $Pa = \frac{II^2(30\times N^6)(2.64)}{3(148.9)^2} = 11750LB$
- 36 ECCENTRIC LOAD: C = X FROM APP. $S \neq 0.47810$. AND C = CUSE EQ(6-13): $C_0 = S \neq N = 36000 = 1/2000 = 1/2$ $C_0 = \frac{P_0}{2.64} \left[1 + \frac{(0.478)(0.478)}{(0.489)^2} SEC\left(\frac{1/2}{2(0.489)} \sqrt{\frac{3(P_0)}{0.64730AP}} \right) \right]$ BY ITERATION: FOR $P_0 = 4100 LR$, $C_0 = 11920 PSi$

ECCENTRIC COLUMN ANALYSIS	Data from: Problem 6-37		
	s and Equation 6-14 for maximum deflection		
Enter data for variables in italics in shaded boxes	Use consistent U.S. Customary units.		
Data To Be Entered:	Computed Values:		
Length and End Fixity: Column length, L = 126 in End fixity, K = 1	Eq. Length, L _e = KL = 126.0 in		
Material Properties: Yield strength, $s_y = 46000 \text{ psi}$ Modulus of Elasticity, $E = 2.90E+07 \text{ psi}$	—> Column constant, C _c = 111.6		
Cross Section Properties: [Note: Enter r or compute r = sqrt(VA)] [Always enter Area]	Argument for secant = 0.777 for strength Value of secant = 1.4025		
[Enter zero for l or r if not used] Area, $A = 6.020 \text{ in}^2$ Moment of Inertia, $l = 0 \text{ in}^4$	Argument for secant = 0.449 for deflection Value of secant = 1.1098		
Radius of Gyration, r = 1.410 in -	—> Slenderness ratio, KL/r = 89.4		
Values for Eqns. 6-13 and 6-14: Eccentricity = e = 3 in	Column is: short		
Neutral axis to outside = $c = 2$ in Allowable load = $P_a = 17600$ lb	Req'd yield strength = 45,896 psi		
Design Factor Design factor on load, N = 3 -	Must be less than actual yield strength: s _y = 46,000 psi		
	Max. deflection, $y_{max} = 0.329$ in		

Note: A and r from Appendix 15-14

Data from: Problem 38A US	
and Equation 6-14 for maximum deflection	
Use consistent U.S. Customary units	
Computed Values:	
NOTE: This solution considers the eccentric	
load with bending about the horizontal axis.	
Eq. Length, $L_e = KL = 40.0$ in	
Column const., $C_c = 70.2$	
Argument of sec = 0.855 for strength	
Value of secant = 1.5236	
Argument of sec = 0.494 for deflection	
Value of secant = 1.1355	
Slender. ratio, KL/r = 92.4	
Column is: Iong	
FINAL RESULTS	
Req'd yield strength = 39,954 psi	
Must be less than actual yield strength:	
s _y = 40,000 psi	
Max Deflection, y _{max} = 0.237 In	
See also Solution 38B for buckling about	
See also Solution 38B for buckling about the thinner vertical axis.	

NOTE!
$$A = (I.50 \text{ in})(0.40 \text{ in}) = 0.600 \text{ in}^2$$

$$A = \frac{H}{\sqrt{12}} = \frac{J.50 \text{ in}}{\sqrt{12}} = 0.433 \text{ in} ; P_a = 685 \text{ lB}.$$
ECCENTRIC LOAD TENDS TO BUCKLE THE GAR ABOUT ITS STRONG AXIS.
BUT SEE SOLUTION 38B. LIMITING LOAD IS 163 LB FOR BUCKLING ABOUT THIN AXIS.

COLUMN ANALYSIS PROGRAM	Data from: Problem 6-388 US
Refer to Figure 6-4 for analysis logic	
i⊇nter data for variables in <i>tellos in shacea boxes</i> .	Use consistent U.S. Customary units.
भूतिक हुई। इता न्ताविक्तिक	Computed Values:
Material Material Annual Control of the Control of	
Langtiand End Elkity.	
Column length, L = 40 in	
=====================================	Eq. Length, L _o = KL = 40.0 in
The state of the s	
Material Properties:	
Yield strength, s _y = 40000 psi	
Modulus of ⊇lesticity, ≡ = 1,00 ±177 ps. ——>	Column const., $C_c = 70.2$
	NOTE: Once and a grant of a taken with
Gross Section Properties: [Note: Entern or compute r = sqrt(//4))	NOTE: Cross section properties taken with respect to the vertical axis because the load is
[Always enter Area]	central to that axis. But buckling is expected
[Enter zero for / or / if not used]	about the axis through the thin (0.40 in) section.
. Area, A = . 0.6 /n	•
Moment of Inertia, I = 0 in*	
93	
Radius of Gyration, r = 0.115 in	Slender. ratio, KL/r = 347.8
	Column is: long
	Crisical Buckling Load = 400 th
Dasign Factor	Critical Buckling Load = 489 lb
Design factor on load, N = 3	Alfowable Load = 163 lb
	This value governs the design, not solution 38A

ANALYSIS AS A STRAILHT CENTRALLY LOADED COLUMN THAT TENDS TO BUCKLE ABOUT THIN AXIS, $t=0.40\,\text{IM}$ A = $\frac{t}{\sqrt{12}} = \frac{0.40\,\text{IM}}{\sqrt{12}} = 0.115\,\text{IM}$ FROM EULOL FORMULA WITH N=3 $P_a=163\,\text{LB}$.

Solves Equation 6-13 for design stress and Enterior data for yanables: In Italias in Shaded boxes Detail of EX Entered	quation 6-14 for maximum d Use consistent Computed V Eq. Length, $L_e = KL = 0$	SI Metric units
Data no Estambrada Concilhano Esta Sixtay: Columniaran (1) (2) 7/20 mm Encilhan (2) 7/20 mm	Computed V	/alues:
Columniana leng aktiya Columniangda) li = 1/50 mm Englaktaj, k = 1/		
	Eq. Length, $L_o = KL =$	750.0 mm
=162 020g, K = 3>	Eq. Length, $L_{\theta} = KL =$	750.0 mm
Material Lagranies		
Yield strength, s., 986 Mps		
Modbilbs:of Easticity, E= 200. Goa →	Column const., $C_c =$	63.9
C: OssiSaction Proparties: [Note: Emeration computer = sqrt((//A))] [Always enter/Area]	Argument of sec = Value of secant =	0.811 for strength 1.4512
	Argument of sec = Value of secant =	0.468 for deflection 1.1205
C)R Reclus of Gyradon (1289 mm —> Values for Egns: 645 and 6514)	Slender. ratio, KL/r =	102.9
Eccentricity;;e = 20 mm Neutral axis to outside, c = 12.5 mm	Column is: 10 FINAL RES	
Allowable (6ag), 2 ₂ = 5200 (N	Req'd yield strength = flust be less than actual yield s _y =	389 MPa
A CHARLES THE STATE OF THE STAT	Max Deflection, $y_{max} = P$ iston rod is safe for $P_{R} = P$	2.41 mm

DLUMN ANALYSIS PROGRAM	Data from: Problem 40A-Straight
er to Figure 6-4 for analysis logic	
ten data for vanjables in <i>hallos in shaded broxe</i>	Use consistent U.S. Customary units
Para College Englished E	Computed Values:
	NOTE: Analysis of straight pipe. See also
Langth and End Lapity:	Solution 40B for crooked pipe.
Column length, L= 156 in Endfüllig, K= 1	Eq. Length, $L_{\theta} = KL = 156.0$ in
Material Properties: Yield strength, s., = 36000, ps	
Modulus of Electiony, == 3100=1071 os	Column const., $C_c = 128.3$
Cross Section Properties: [Note: Enter / or compute / = sqrt(//A)] [Always enter Area] [Enter zero for / or / if not used] [Moment of inertie, / = 0. in	
Radius of Gyration, r = 0.787 in	Slender. ratio, KL/r = 198.2
	Column is: long
	Critical Buckling Load = 8,101 lb
Dasign Factor	Straight Pipe Allowable Load = 2,700 lb
Design factor on load, N = 3	

CROOKED COLUMN ANALYSIS Solves Equation 6-11 for Allowable Load	Data from: Problem 405-Grooked
Enteriorical for Variables in Wallos in Shaced Boxes	Use consistent U.S. Customary units.
	Computed Values:
Langth and End Elaty: Column length; L= 156 in End hkby, K= 1	Eq. Length, $L_o = KL = 156.0$ in
Naterial Properties: Yeld stength; s., = 36000 ost Modúlús: ŏř. ≘asticity, .≘= 3:00=+07. jost	Column const., $C_c = 128.3$
Cross Section Properties:	Euler buckling load = 8101 lb
[Always enter Area] [Enter zero for <i>I or i if not used</i>] Area, A = 1.075 in ² Moment of Inertia, I = 0 in ⁴	C ₁ in Eqn. 6-11 = -22074 C ₂ in Eqn. 6-11 = 3.483E+07
Radius of Syration, (15 0.787 in	> Slender. ratio, KL/r = 198.2
Values for Eqn. 6-11; Initial crookedness = a = 1,25 in Neutral exis to outside = c = 1,188 in	Column is: long Straight Column Critical Buckling Load = 8,101 lb
Design factor on load, N = 3	Crooked Column Allowable Load = 1,711 lb This value governs the use of the pipe.
	See solution for straight pipe; Problem 40A.

CHAPTER 7 BELT DRIVES AND CHAIN DRIVES

V-BELTS

- [1. $C \le 24.0 \text{ m}$; D2 = 13.95 m; D1 = 5.25 m; 3V BELT EQ. 7-31 $L = 2(24) + 1.57 (3.95 + 5.25) + \frac{(3.95 - 5.25)^2}{4(24)} = 78.23 \text{ m}$
- 2. ACTUAL C FROM EQ. 1-4: L=75 B = 4(75) 6.28(/3.95 + 5.25) = /79.4 $C = \frac{179.4 + \sqrt{(79.4)^2 32(/3.95 5.25)^2}}{(13.95 5.25)^2} = 22.00/M$
- 3. $\theta_1 = 180^{\circ} 2 \sin^{-1} \left[\frac{13.95 5.25}{2(22.0)} \right] = 157.2^{\circ} \quad (EQ. 7 5)$ $\theta_2 = 180^{\circ} + 2 \sin^{-1} \left[\frac{13.95 5.25}{2(22.0)} \right] = 202.9^{\circ} \quad (EQ. 7 6)$
- 4. C= 60.0 IN 9 Dz = 27.7 in; D = 8.4 IN; 54 BELT (EQ.1-3)

 COMPUTED L= 178.2IN. USE L= 170/N
- 5. ACTUAL C = 55.83 /N. (EQ. 1-4)
- 6. 0,= 160.1°; 02=199.9° (EQ1-5), (EQ7-6)
- 7. C < 1441N.; D2 = 94.81N; D1 = 13.81N; 8V BELT (EQ.1-3)

 COMPUTED L = 469.91N. WE L = 450 M.
- 8. ACTUAL C = 133.6/IN (EQ. 1-4)
- 9. 0,=144.7°; 0==215.3° (EOUS. 7-5,7-6)
- 10. No = RI CH = 5.25 12 x 1750 PEV ZITRAD X 1FT = 2405 FT/MW
- //. No = RIW. = 8.4 IN x 1160 REV x 25TRAD x 1PT = 255/ FT/MM
- 12. No = R, W. = 13.8/N x 810 REV x 2TTRAD , IFT = 3143 FT/MIN
- 13. RATIO = 13.95/5.25 = 2.66; P = 6.25 LP; Co = 0.94; CL = 1.03

 CORRECTED POWER = Co CL P = GYX(1.03)(6.25) = 6.05 LP

V-BELTS

- 14. RATIO = 27.7/8.4= 3.30; P=15.5+1.26=16.76 hp; C=95; C=1.05 CORRECTED POWER= Co CL P= (95)(LOS)(16.76) = 16.72 hp
- 15. RATTO = 94.8/13.8 = 6.87; P= 48hp; Co= .904; CL= 1.09 CORRECTED POWER = Co CLP=(904)(1.09)(48) = 47.3 hP
- 16. A ISN BELT IS A METRIC SIZE HAVING A TOP WINTH DEISMM SIMILAR TO A SV BELT.
- 17. A 17A BELT IS A METRIC AUTOMOTIVE BELT HAVING A TOP WIDTH OF 17 mm. SIMILAR TO A "34 IN" AUTOMOTIVE BELT
- /8. <u>DESIGN</u>: SERVICE FACTOR = 1.5; DESIGN POWER = 1.5(25) = 37.5 AP

 FROM FIG. 7-9 USE SV BELT

 RATTO = 870/310 = 2.81

 FOR No 24000 FT/MM; DI = 12(4000) = 17.56/N

 TT(870)

FOR D.= 13.1/N; Dz= 37.4/N: MG = 870x 13.1/324=305@PM OK RATED POWER = 225+,94=23.44 AP

CENTER DISTANCE:

D2 < C < 3 (02+D1)
37.4 < C < 3 (37.4+13.1) = 1515

TRY C= 48 IN . -NOMINAL L= 178 IN EQ. (7-3)

USE L=180/N. - ACTUAL C= 48.85/N (50.7-4)

0,= 151.2°; 02= 208.8° (EQS. 17-5, 1-6)

Co = 0.92 ; CL = 1.06 : CORR POWER = (92) (1.06) (23.44) = 22.86 LP/BELT NO. OF BELTS = 37.5 LP/ 22.66 hP/BELT = 1.64 BELTS - 2 BELTS

/9. DESIGN: S.F. = 1.2 ; DES. POWER = 1.2(5) = 6.0 AP -- 3V BELT

RATTO = 1750/725 = 2.41; D, 2 12(400)/17(1150) = 8.7/N

FOR DI = 7.95; D2 = 18.95; M2 = 1750 7.95/18.95 = 734 RPM OE

RATED POWER = 10.3 AP: 18.95 < C < 80.7; TRY C = 30/N.

L = 103/N -- USE L = 100/N; ACTUAL C = 28.35/N

G: = 157.60; G2 = 2024°; C0 = .94; CL = 1.09

CORE. POWER = (0.94)(1.09)(10.3) = 10.55 LP/BELT - DNE BELT REQ'D

V-BELTS

- Zo. DESIGN: SF. = 1.4; DES. POWER = 1.4(40) = 56 LP 5V BELT

 RATIO = 1500/ 550 = 2.73; D, = 12(4000)/ ST(1500) = 10.2 1N.

 FOR D, = 10.2 1N; Dz = 27.7 M; Mz = 1500 x 10.2/227 = 552 RPM QE

 RATED POWER = 25.7 LIBY INTERPOLATION ON FIG. 13-70 AT 1500 RPM

 27.7 < C < 1/4 ; USE C = 36 IN.; L = 133.6 IN. USE L= 132 IN.

 ACTUAL C= 35.16 IN.; G1 = 157.2°; G2 = 208.8°; C4 = .92; C1 = 1.01

 CORR. POWER = (92)(1.01)(25.7) = 23.9 AP/BELT

 NO. OF BELTS = 56/23.9 = 2.35 USE 3 BELTS
- 21. DESIGN: S.F. = 1.4; DES, POWER = 1.4(20) = 28/P -- 3V BELT

 RATIO = 1250/695 = 1.80; D. = 12.(400)/Tr(1250) = 12.21N

 FOR D, = 10.55.N; D. = 18.95.N; M2 = 1250 × 10.55/18.95 = 695.9 RPM OX

 RATED POWER = 10.4 LP BY INTERPOLATION ON FIG. 13-9 AT 12.50 RPM

 18.95 < C < 88.5; USE C = 201N; L = 87.21N -- USE L=90 M.

 ACTUAL C = 21.43 IN; B = 157.4°; B2 = 202.6°; C0 = .94; CL=1.07

 CORR. POWER = (.94)(1.07)(0.4) = 10.46 LP/BELT

 NO. OF BELTS = 28/10.46 = 2.68 BELTS -- USE 3 BELTS
- 22. DESIGN: SF. = 2.0 (CHOWING); DES. P=2.0 (100) = 200 RP -- 57 BELT

 RATIO = 870/625 = 1.39; D. x /2(400)/ IT (870) = 17.6M

 FOR D. = 10.8 IN; D2 = 14.9 IN; M2 = 876 x 10.8/14.4 = 631.8PM OK

 PATEO POWER = 17.6+,77 = 18.37 RP; 14.9 < C < 77.1; USE C x 48/M

 L \$ |36/N -- USE L=132/N; ACTUAL C = 45.78/M

 Ø1 = 174.9°; Ø2 = 185.1°; Co = .988; CL = 1.01

 CORR. POWER = (988)(Lo1)(18.37) = 18.33 RP/BELTS, NOT ACCEPTABLE

TRY 8V BELT: FOR D. = 17.81N; D2=24.81N; M2=624.4RPM OS

RATED POWER = 66AP; 24.8 < C < 127.8; USE C2481AL

L= 1631N - USFL=1601N; ACTUAL C= 46.431N

O1=171.4°; O2=188.6°; C0=.98; CL=.94

CORR. POWER = (.98)(.94)(66) = 60.8AP/BELT

NO. OF BELTS = 200/60.8=3.3 - USE 4BELTS

ROLLER CHAIN

- 23. CHAIN NO. 140: PITCH = 14/8 = 13/4/N.
- 24. CHAIN NO. 60: PITCH = 6/8 = 3/4/N
- ZS STATIC LOAD = 1250 LB: AVG. TENSILE STRENGTH = 10W = 12500 LB.

 USE A NO. 80 CHAIN (1.00 IN. PITCA); T.S. = 14500, TABLE 7-5
- 26. LOAD ON GACH CHAIN = 2500 LB; T.S, = 10W = 25000 LB

 USE NO.120 CHAIN 1/2 IN. PITCH; T.S = 34000 LB
- 27. FATIGUE OF LINK PLATES; IMPACT OF ROLLERS ON SPROCKET
 TEETH; GALLING BETWEEN PINS AND BUSHINGS
- 28 TABLE 7+8: GIVEN NO. 60 CHAIN, 20 TEETH, 750RIM

 RATED POWER = 21.69 HP (INTERPOLATION), TYPE B LUBE (BATH)

 SERVICE FACTOR = 1.2 FOR HYDRAULIC DRIVE

 DESIGN POWER RATING = 21.69/1.2 = 18.08 HP.
- 29. 3 STRANDS: FACTOR = 2.5 POWER RATING = 2.5(18.08) = 45.2.41
- 30. TABLET-7: GIVEN NO.40 CHAN, 12 TEETH, 860 RPM

 RATED POWER = 4.44 MP (INTERPLATION), TYPE B LUBE (BATH)

 S.F. = 1.2: DESIGN POWER RATING = 4.44/1.2 = 3.70HP.
- 31. 45 TRANOS: FACTOR = 3.3; POWER RATING = 33(370) = 12:21AP
- 32. TABLE 7-9; GIVEN NO. BO CHAN; 32 TEETH; 1160RPM

 RATED POWER = 78569AP (IN TERPOLATION), TYPE & LUBE (OIL STREAM)

 SF = 1.2; DESIGN POWER = 18.69/1.2 = 65.59 AP
- 33. ZSTRANDS : FACTOR = 1.7; POWER RATING = (1.1)65.57 hP = M.5 hP
- 34. No. 60 CHAIN; $N_1 = 15$; $N_2 = 50$; $C \le 36M 08 = 60$, 7 9 $L p = \frac{3}{9} | M = 0.75 | N.$ C = 36M / 0.75M / pinch = 48 pinches $L = 2(48) + \frac{50 15^2}{917^2(48)} = 129./ pinches$ USE / 28 pinches (EVEN) Nonber); L = 128(0.76) = 96M.

35. FOR L=128 PITCHES; C FRIM 60.7 70

$$C = \frac{1}{9} \left[128 - \frac{50+75}{2} + \right] \left[128 - \frac{50+75}{2} \right]^{2} - \frac{8(50-75)^{2}}{917^{2}} \right] = 47.42 \text{ PITCHES}$$

$$C = 47.42 \text{ PITCHES} * 155N/PITCH = 35.57 /N.$$

36. No. 40 CHAIN! N=11; N=45; C \(\leq 24 \text{ III.}\)
$$L = p = \frac{1}{2} 1 \cdot n = 0.50 \cdot N. : C = \frac{24}{0.5} = \frac{1887 \cdot n \cdot s}{124(0.5)} = 124.6 \text{ PITCHES}$$

$$L = 2(48) + \frac{45+11}{2} + \frac{(45-11)^{2}}{417^{2}} = 124.6 \text{ PITCHES} - 47.69 \text{ PITCHES}$$

$$C = \frac{1}{4} \left[124 - \frac{45+11}{2} + \sqrt{\left[124 - \frac{45+11}{2} \right]^{2}} - \frac{8(45+10^{2})}{417^{2}} \right] = 47.69 \text{ PITCHES}$$

$$C = 47.69 \text{ PITCHES} * 0.51N/PITCH = 23.85 /N.$$

38. \(\text{Design: 25 HP; m. = 310 RPM; m_2 = \text{Iborpm 3 Nom. RATIO = \frac{311}{60} = \frac{1.94}{9}} \)
$$SF = 6.53 \text{ Design Power = 1.5(2s) = 37.5 RP} \)
USE 3 STRANOS 2. RATING = \frac{32.5}{2.5} = \text{15.0.00 PER STRANO} \)
\(\text{N0.90 CHAIM; 15 TESTH RATED > 15.8 RP AT 310 RPM; \text{Type B 1.108} \)
\(\text{N1 = N, * RATIO = \frac{15}{6}(1.94) = .29.1 \)
= 29.7 TESTH$$

M2=M, x N./N2= 310 x 15/29 = 1603 RPM QE D= 1.00/sin (180/15) = 4.810 IN.; D2=1.00/sin (180/29) = 9.249 IN.

L= 2(40) + 2 + (29-15) = 102.1 PITCHES - 15 102 8 ITCHES = L

 $C = \frac{1}{4} \left[102 - \frac{29+15}{2} + \sqrt{\left[102 - \frac{29+15}{2} \right]^2 - \frac{8(29+5)^2}{417^2}} \right] = \frac{39.94}{6} \frac{9176465}{6} = C$

USE C = 40 PITCHES WITH P=1.00 IN FOR NO. 80 CHAIN

Problems 38-42 are design problems for chain drives for which there are no unique solutions. The general procedure is illustrated above for one possible solution for Problem 38. This and the other design problems are shown on the following pages using the spreadsheet that is available from the publisher's website for this book. Data for design power per strand from Tables 7-7, 7-8, or 7-9 must be used to ensure that the selected chain design has sufficient capacity.

CHAIN DRIVE DESIGN		
Initial Input Data:		(DSG:166
$\mathcal{J}_{A}(\mathbf{p})$ of $(\mathbf{e}_{A}(\mathbf{p}))$ is $\mathcal{J}_{A}(\mathbf{p})$		
Drive type: E	Section is the	
Driven machine F		
Power input:	SE IN	ROSPINATO TOTAL NORMAN ARMANA ARMANA NA MANA ARMANA
(5) (1) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6		Table 7-1
	5314 (42)	
Desired output speed. Computed Data:		
Design power:	37.5 hp	
Speed ratio:	1.94	
Design Decisions-Chain Type and Teet		
Number of Strates		
Strand factor	997	1.0 17 25 88
Required power per strand:	15.00 hp	
Chain number		Tables 7-7, 7-8 or 7-9
Chain otch:	2.00	330031113111111111111111111111111111111
Number of legh-Enver sprocket	15	
Computed no. of teeth-Driven sprocket:	29.06	
Enter Chosen number of teems	45	
Computed Data:	X	
Actual output speed:	160.3 rpm	
Pitch diameter-Driver sprocket:	4.810 in	
Pitch diameter-Driven sprocket: Center Distance, Chain Length and Ang	9.249 in	
Enter Distance, Chain Length and And	ne or wrap:	
Computed nominal chain length:	102.1 pitches	Activities and the state of the
Enter Specified no or bitchess	102 pitches	
Actual chain length:	102.00 in	
Computed actual center distance:	39.938 pitches	
Actual center distance:	39.938 in	
Angle of wrap-Driver sprocket:	173.6 degrees	Signification of the state of t
Angle of wrap-Driven sprocket:	186.4 degrees	

CHAIN DRIVE DESIGN		
Initial Input Data:		in ele Stratura
Application: A	(ejjejteja	
Drive type: £		
Driven machine A	gitator	
Power input:	5 hp	and the second contract of the second contrac
Service factor:	1	Table 7-1
înpui speed:	750 rpm	
Desires output speed:	SPE WELL	
Computed Data:		
Design power:	5 hp	
Speed ratio:	2.31	
Design Decisions-Chain Type and Teet	h Numbers:	MMS formula contact (COM), to the transport of the contact of the
Number of strands;	1	1 2 3 4
Strand factor:	1.0	1.0 1,7 2.5 3.3
Required power per strand: Chain number:	5.00 hp	
	#2	Tables 7-7, 7-8 or 7-9
Chain pitch: Nunber of teeth-Driver sprocket:	0.5 in	
Computed no. of teeth-Driven sprocket:	16 36.92	
Enter: Chosen number of teeth:	30.32	
Computed Data:		
Actual output speed:	324.3 rpm	
Pitch diameter-Driver sprocket:	2.563 in	
Pitch diameter-Driven sprocket:	5.896 in	
Center Distance, Chain Length and Ang	le of Wrap:	
Enter: Nominal center distance:		ies Selle 51 phones recogniciented
Computed nominal chain length:	90.8 pitch	les
Enter: Spealled no. of pilches:	90 olici	les Even number recommended
Actual chain length:	45.00 in	
Computed actual center distance:	31.573 pitch	es
Actual center distance:	15.787 in	
Angle of wrap-Driver sprocket:		ees Should be greater than 120 degrees
Angle of wrap-Driven sprocket:	192.1 degr	

CHAIN DRIVE DESIGN		
	aco o o o o o o o o o o o o o o o o o o	
At Police tilone (79/31/[=1/(e [*] g ===================================	
Drivertyje, 2	21/2 [1] 2	
Driven machine A		
Power input:	46 (1)	
SENTER PARTIES	4.5	Table 7-1
Liphi speed		
Desirad quipul speed Computed Data;		
Design power:	56 hp	
Speed ratio:	2.00	
Design Decisions-Chain Type and Teet	h Numbers:	
Number a signes		
Strand feetor	2.5	19 17 25 33
Required power per strand:	22.40 hp	
Chain rumber	30	Tables 7-7 7-8 of 7-9
Chempitch:	$i_{I}(ar{i}b)_{I[I]}$	Parameterian About observed Beneficial Commence
Number of jeeth-Driver sprogress	1/2	
Computed no. of teeth-Driven sprocket:	28.00	
Enier Chesen number or leeth	<u> 2</u> :	
Computed Data:	050.0	
Actual output speed: Pitch diameter-Driver sprocket:	250.0 rpm 4.494 in	
Pitch diameter-Driver sprocket:	4.494 in 8.931 in	
Center Distance, Chain Length and Ang		
Eriter: Nominal center distance:		The state of the s
Computed nominal chain length:	93.1 pitches	
Eng Specificana oralignes		
Actual chain length:	94.00 in	
Computed actual center distance:	36.432 pitches	
Actual center distance:	36.432 in	II
Angle of wrap-Driver sprocket:	173.0 degrees	Saudonead (este lier, 2006) este est
Angle of wrap-Driven sprocket:	187.0 degrees	

CHAIN DRIVE DESIGN		
Initial Input Data:		00.577.746
4\Dj9\te4\\\	ation exclosion	
Drive type:	ង(មាន រូប (មាស៊ីក្រុង)	
Driven machine d	និងស្រីពីរប្រែទីដែលរបស់ នេះ	
Power Input.	20 110	
SENGER (SING)		Table 7-1
	2400 (190)	
Computed Date:		
Computed Data:	00.1	
Design power: Speed ratio:	20 hp	
Design Decisions-Chain Type and Teet	2.84	
Number of stranger	n runners:	
Strand factor	4 7	
Required power per strand:	11.76 hp	
Chair mumber		Tables 7-7 7-8 or 7-9
Ghair pitch:	0.500	
Number of feeth-Driver sprocket	25	11.95 hp rating at 2200 rpm
Computed no. of teeth-Driven sprocket:	70.97	at 2200 ipin
Edica Prostantinte de destin	7/1	Check availability from vendor
Computed Data:	7	
Actual output speed:	774.6 rpm	
Pitch diameter-Driver sprocket:	3.989 in	
Pitch diameter-Driven sprocket:	11.304 in	
Center Distance, Chain Length and Ang		IN SP THE MANAGEMENT THE THE WAS A SECTION OF THE S
Enter Nominal center distance	30 pitches	en (en) alkancentelen militari eta
Computed nominal chain length: Enter Specified to St prohes	109.8 pitches	
Actual chain length:	114 pileties 55,00 in	a-ventuimen (etennien) ee
Computed actual center distance:	30.110 pitches	
Actual center distance:	15.055 in	1
Angle of wrap-Driver sprocket:	151.9 degrees	
Angle of wrap-Driven sprocket:	208.1 degrees	

CHAIN DRIVE DESIGN		
Initial Input Data:	and deline ellin]][[]][][][][][][][][][][][][][][][][]
Application	Rockienisien	
	Hydraulic drive	
Driven machine		
Power input:	100 hp	A THE STATE OF THE
Service factor:		Table 7-1
input speed:		
Destred output speed:	<i>223</i> mm	
Computed Data:	440	
Design power:		
Speed ratio:	2.78	
Design Decisions-Chain Type and Te Number of strands:	eth Numbers:	
Strand factor:		1 2 3 4
Required power per strand:	42.42 hp	1.0 1.7 2.5 3.3
Chain number:	42.42 lip 80	Tables 7-7 7-8 on 7-9
Chain pilch:	1,00 in	Tables If 7 10 g IF 1
Number of teeth-Driver sprockets	21	>42.94 hp per strand
Computed no. of teeth-Driven sprocket:	58.33	" 12.04 hp per stiated
Enter, Chosen number of teeth:	58	Check availability from vendor
Computed Data:		analopa VO.OO.
Actual output speed:	226.3 rpm	
Pitch diameter-Driver sprocket:	6.710 in	
Pitch diameter-Driven sprocket:	18,471 in	
Center Distance, Chain Length and Ar		
Enter Nominal center distance:	40 pitch	es 30 to 50 ottones recommended
Computed nominal chain length:	120.4 pitch	
Enter: Specified no. of pitches:	120 piten	es Even number recommended
Actual chain length:	120.00 in	
Computed actual center distance:	39.815 pitche	es
Actual center distance:	39.815 in	
Angle of wrap-Driver sprocket: Angle of wrap-Driven sprocket:	163.0 degre	ees Should be greater than 120 degrees
Angle of wrap-briven sprocket:	197.0 degre	ees

CHAPTER 8 KINEMATICS OF GEARS

Gear Geometry

1.
$$N=44$$
; $P_d=12$

a. D= N/Ps = 44/12 = 3.667 m.

b. Pe= Tr/Pa= Tr/12= 0.26/8/N.

C. M = 25.4/Pg = 25.4/12 = 2.1/7 mm

d. m=2.00 mm

e. a = 1/Pd = 1/12 = 0.083314.

f. b = 1.25/Pd = 1.25/12 = 0.10421M.

g. C= 0.25/Pj= 0.25/12=0.0208/N h. h= a+b = 2.25/Pj= 0.1875/H

i. h = 2a = 2/1 = 2/2 = 0.1667 IN.

). t= T/2Pd=TT/2(12) = 0.13/1N.

R. D. = (N+2)/p. 46/12 = 3.833 IN.

2. N=34; Pd=24

a. D= 34/24 = 1.4171N.

b. Pc= 17/24 = 0.1311N

C. m= 25.4/24 = 1.458 mm

d. M = 1.00 mm

e. a= 1/24 = 0.0417 IN.

5. b= 1.200 + 0.002 = 0.05201A

g. C = 0,200/p +0,002 = 0,0103/A

h. h = a+b = 0.0417+0.0520 = 0.0937 IN.

i. h = 2a = 2/2y = 0.0833 /N.

j. = #/2(24) = 0.0654 IN.

k. Do= (N+2)/Pd = 36/24 = 1,500/N.

3. N=45; Pa=2

a. D= 45/2 = 22,500 M.

6. Pc= T/2 = 1,571 IN.

C. m= 25.4/2=12.7 mm

d. m= 12 mm

e. a= 1/2=0.510/H

g. C= 0.25/1 = 0.125/N.

h. Rt = 2.25/2 = 1.125 1A.

i. lx = 2/2 = 1.000 IN.

j. t= T/2(2) = 0.7854IN.

 $h. D_0 = \frac{47}{2} = 23.50 \text{ JM}.$

4. N=18; Ps=8

a. D= 18/8 = 2.250 /H.

L Pc = 17/8 = 0.3927 IN.

C, m = 25.4/8 = 3.175 mm

d. m = 3.0 mm

e. a = 1/0 = 0.125 IN.

4. 6 = 1.25/8 = 0.1563 IN.

g c= 0.25/8= 0.031314

h. h = 2.25/8 = 0.2813 IN

i. Lx = 2/8 = 0,2501H

1. t= T/2(8) = OLL963IN.

R. D. = 20/8 = 2.500 IN.

5. N=22; Pa=/.75

a. D= 22/1.75 = 12.571 IN.

b. Pc= Tr/1.75 = 1.795'IN.

C. m = 25.4/1.75 = 14.514 mm

d. m = 16 mm

e. a = 1/1.75 = 0,57/4 IN.

s. b = 1.25/1.75 = 0.7/43/4

g. c= 0.25/1,75= 0.14291N.

h. ht= 2.25/1.75 = 1,2857 IN.

1. hk= 2/1.75= 1.1429 IN.

A. t= 17/2(1.75) = 0.89761N

. Do= 24/1175= 13.714 IN.

N = Zo; Pd = 64

9.
$$c = \frac{0.200/64 + 0.002 = 0.005/1N}{6}$$
, $h_t = a_t b = 0.0364/1N$.
i. $h_k = \frac{2}{64} = 0.03/3/N$.
i. $b = \frac{10}{2}(64) = 0.0245/N$

b = 1.200/64 ta.002 = 0.0208/N

N= 180 ; P+ = 80

$$f_{1} b = \frac{1.200}{80} + 0.002 = 0.0170/N.$$

Do = 22/64 = 0.3438 IN.

8. N=28; Pa=18

9. N=28 : Pd= 20

f.
$$b = \frac{1.200}{20} + 0.002 = 0.0620 \text{ M}.$$

g. $c = \frac{0.200}{20} + 0.002 = 0.012 \text{ M}.$

10. N=34; m=3=0/N

11. N= 45; m=1.25

12. N = 18; m = 12

13. N = 22; m = 20

14. N= 20; m=/

15. N= 180; m=0.4

$$N = 28$$
; $m = 0.8$

Velocity Ratio

20.
$$C = \frac{N_0 + N_0}{2\rho_2} = \frac{/8 + 69}{2(8)} = 5./25 /N.$$

21. a.
$$C = \frac{(20+92)}{2(4)} = 14.000 \text{ N}$$
. C. $M_0 = 225 \frac{(20/92)}{92} = 48.9 \text{ RPM}$
b. $VR = \frac{94}{20} = 4.60$ d. $V_0 = \frac{TF(20)(225)}{12(4)} = 294.5 \text{ ft/min}$

22. a.
$$C = \frac{(30 + 68)}{2(20)} = 2.450 \text{ m.}$$
 C. $M_4 = 850 \frac{80}{68} = 375 \text{ pan}$
b. $VR = \frac{68}{36} = 2.267$ d. $N_7 = \frac{17(30)(850)}{12(20)} = 334 \text{ pt/min}$

23. a.
$$C = \frac{(40 + 250)}{2(64)} = 2.266 \text{ M}.$$

b. $VR = \frac{250}{40} = 6.25$
C. $M_6 = 3450 \frac{(40)}{250} = 552 \text{ Pem}$
d. $N_{\pm} = \frac{TT(40)}{12(64)} = 565 \text{ ft/min}.$

Z4.
$$a_1 c = \frac{(24 + 88)}{2(12)} = \frac{4.667}{12(12)} = \frac{4.667}{12(12)} = \frac{4.77}{12(12)} = \frac{4.77}{12} = \frac{4.77}{12} = \frac{4.77}{12} = \frac{4.77}{12} = \frac{4.77}{$$

25.
$$a. C = (N_G + N_P) m/2 = (68 + 22)(2)/2 = 90.00 mm$$

 $b. VR = N_G/N_P = 68/22 = 3.09/$
 $c. M_G = n_P.N_P/N_G = 1750(^{22}/68) = 566 RPM$
 $d. N_{\pm} = Rw = 0w = [mN_P m_P] (mm)(nw) = 200 RPM / Nor × 605 × 103 mm)$
 $N_C = \frac{m N_P m_P}{19099} m/_S = (2)(22)(1750) = 4.03 m/_S$

26.
$$C = (48+18)(0.8)/2 = 26.40 \text{ mm} \qquad d. N = (0.8)(18)(1150)$$

$$b. VR = 48/18 = 2.667$$

$$c. MG = 1/50 (8/48) = 43/RPM \qquad N = 0.867 \text{ m/s}$$

27. a.
$$C = (45+36)(4)/2 = 162 \text{ mm}$$
 d. $N_{\pm} = \frac{(4)(36)(150)}{19099} = 1.13 \text{ m/s}$
b. $VR = 45/36 = 1.25$
c. $MG = 150 (36/45) = 120 \text{ RPM}$

28. Q. C =
$$(36+15)(12)/2 = 386 \text{ mm}$$
 d. $N_{\pm} = \frac{(2)(15)(480)}{19099} = 4.52 \text{ m/s}$
b. $VR = 36/15 = 2.40$
c. $m_{4} = 480$ $\frac{15}{36} = 200 \text{ RPM}$

- 29. PINION AND GEAR CANT HAVE DIFFERENT PITCHES
- 30. C = NO+NA 18+82 = 8.333 IN; GIVEN C IS IN ACCURATE

 2.63 2163 BY 0.033 IN
- 31. TOO FOW TEETH IN THE PINION, ASSUMING 20 F.O. PETH

 INTERFERENCE WOULD OCCUR.
- 32. $C = \frac{No + Nq}{2Pd} = \frac{24 + 45}{2(16)} = 2.156 N : Do CANNOT BE USED TO FIND C.$ Housing Dimensions
- 33. HOUSING MUST CLEAR ADDENOUM CIRCLE OF ALL GEARS BY 0.10/N/SIDE $\alpha = \frac{1}{R_1} = \frac{1}{8} = 0.125$ /N.; $D_{06} = \frac{(N_6 + 2)}{P_0} = \frac{66}{8} = 8.25$ /N $\frac{1}{X} = \frac{1}{8} + \frac{1}{8}$

- 34. $D_{0q} = (Nq+2)/p_{d} = Z52/64 = 3.938N^{\circ}; Y = 3.938 + 0.2 = 4.138/N = Y$ $X = d + 0 + Za + 2(0.1) = \frac{40}{64} + \frac{25C}{64} + \frac{2}{64} + 0.20 = \frac{4.763}{64}N = X$
- 35. $O_{06} = (N_{6}+2)_{m} = 50(08) = 40.0 \text{ mm}$ = 1 + 10.0 + 2(2mm) = 44.00 mm $X = d + 0 + 2a + 2(2) = m N_{0} + m N_{0} + 2m + 2(2)$ X = 0.8(18) + 0.8(48) + 2(0.8) + 4.0 = 58.40 mm = X
- 36. $D_{0Q} = 47(4) = 188 mm$: Y = 188 + Z(2) = 192 mmX = d + 0 + 2a + Z(2) = m Ne + m Na + 2m + 4 = 144 + 180 + 8 + 4 = 336 mm = X

Gear Trains - Analysis

- 37. $TV = -\frac{NB}{NA} \cdot \frac{NO}{Nc} \cdot \frac{NE}{NE} = -\frac{42}{18} \cdot \frac{54}{18} \cdot \frac{54}{24} = -15.75 = \frac{m_{IN}/m_{OUT}}{N_{IN}/m_{OUT}}$ $M_{OUT} = \frac{NB}{NA} / TV = \frac{1750 \, Ren}{(15.75)} = \frac{-111 \, Rem}{111 \, Rem} = CW$
- 38: $TV = -\frac{NB}{NA}, \frac{NC}{ND} = \frac{-68}{22} \cdot \frac{68}{25} = -8.407 = \frac{M_{IM}}{M_{OUT}}$ $M_{OUT} = \frac{M_{IM}}{TV} = \frac{1750 \, Rem}{-8.407} = \frac{-208 \, Rem}{-208 \, Rem} \, ccw$
- 39. $TV = + \frac{DB}{OA} \cdot \frac{DD}{DC} \cdot \frac{DE}{DC} \cdot \frac{NH}{NG} = \frac{2.815}{1.250} \cdot \frac{2.315}{1.250} \cdot \frac{2.250}{1.800} \cdot \frac{30}{18} = /2.139$ $DA = \frac{NA}{Q} = \frac{20}{16} = \frac{1.250}{NG} \cdot \frac{NH}{NG} = \frac{1750}{TV} = \frac{144}{12.139} = \frac{144}{DC} \cdot \frac{NH}{NC} = \frac{19}{12.139} = \frac{144}{DC} \cdot \frac{NH}{NC} = \frac{18}{12} = \frac{18}{12} = 1.500$
- 40. $TV = + \frac{N_G}{N_A} \cdot \frac{N_O}{N_C} = \frac{24}{80} \cdot \frac{18}{60} = +0.09$ $M_{OVT} = M_{IN}/TV = 1750/0.09 = 19444 RPM CW$

Helical Gears

- HELICAL GEAR $P_{a} = 8$, $\phi_{c} = 14\%$, N = 45 TESTH, F = 2.00/NHELIXANGLE = $\psi = 30^{\circ}$.

 CIRCULAR PITCH = $p = T^{\prime\prime}/P_{d} = T^{\prime\prime}/8 = 0.3927/N$.

 NORMAL CIRCULAR PITCH = $P_{m} = P \cos \varphi = 0.3927/\cos(30) = 0.340/N$.

 NORMAL DIAMETRAC PITCH = $P_{md} = P d/\cos \psi = 8/\cos(30) = 9.238$ AXIM PITCH = $P_{X} = \frac{17}{P_{d} \tan \psi} = \frac{17}{8 \tan(30)} = \frac{0.680/N}{8 \tan(30)}$ PITCH DIAMETER = $D_{c} = N/P_{d} = \frac{15}{8} = \frac{6.625/N}{8}$.

 NORMAL PRESSURE ANGLE = $p_{m} = T_{m}^{-1} \left[\tan \phi_{d} \cos \psi \right]$ $p_{m} = T_{m}^{-1} \left[\tan \left(\frac{14}{5} \right) \cos (30) \right] = \frac{12.62^{\circ}}{8}$ $p_{m} = T_{m}^{-1} \left[\tan \left(\frac{14}{5} \right) \cos (30) \right] = \frac{12.62^{\circ}}{8}$
- HELICAL GEAL N = 48, $P_{md} = 12$, $O_n = 20^\circ$, F = 1.50 IN, $V = 45^\circ$. $P = TT/P_d BUT P_d = P_{md} \cos V = 12 \cdot \cos (45^\circ) = 8.485$ $P = TT/8.485 = 0.370 \text{ IN} : P_m = \rho \cos V = \frac{TT/\rho}{P_{m0}} = \frac{TT/\rho}{\rho} = \frac{0.2618 \text{ IN}}{1000}$ $P_X = \frac{0.370 \text{ IN}}{\tan V} = \frac{0.370 \text{ IN}}{\tan V} : O_q = \frac{V/P_d}{\ln V} = \frac{48}{8.485} = 5.657 \text{ IN}$ $\phi_t = Tan' \left[\frac{\tan O_m}{\cos V} \right] = Tan' \left[\frac{\tan 20^\circ}{\cos 45^\circ} \right] = \frac{27.2^\circ}{\cos 45^\circ}$ $F/P_X = 1.500 \text{ IN}/0.370 \text{ IN} = 4.05 \text{ AXIAL PITCHES IN FACE WIDTH}$
- 43 HELICAL GEAR N = 36, $P_{J} = 6$, $\phi_{E} = 14\%$, $\psi = 45$, F = 1.00 IN $P = \pi/P_{J} = \pi/6 = 0.5236 \text{ IN.}; P_{m} = P \text{ Cor } V = \frac{R^{2}}{6} \cdot \text{cor } (85) = 0.370 \text{ IN.}$ $P_{md} = P_{J}/c_{D}V = P_{J}/c_{D}V = \frac{8.485}{6} \cdot \frac{P_{X}}{2} = \frac{\pi}{P_{J}} = \frac{\pi}{6 \cdot \text{tar}} = \frac{\pi}{6 \cdot \text{tar}} = 0.5236 \text{ IN.}$ $D = N/P_{J} = \frac{36}{6} = 6.000 \text{ IN.}; \Phi_{m} = \pi_{D} = \pi_{D} = 10.36^{\circ}$ $F/P_{X} = 1.00 \text{ IN}/O.5236 \text{ IN} = 1.91 \text{ AXIAL PITCHES IN FACE WIOTH (LOW)}$
- $\frac{44}{PELICAL GEAR} N = 72; P_{md} = 24; O_{m} = 14'/2; F = 0.25/N, \Psi = 45^{\circ}.$ $P = \frac{\pi}{P_{a}}, BUT \frac{P_{d}}{P_{d}} = P_{md} Co2 \Psi = 24 Co2 45^{\circ} = 16.97$ $P = \frac{\pi}{16.97} = 0.1851/N.; P_{m} = P^{\circ} Co^{\circ} \Psi = 0.1851/N \cdot Co5 45^{\circ} = 0.1309/N.$ $P_{x} = \frac{P}{ton} \Psi = \frac{0.1851}{ton} \frac{1}{ton} \frac{1}{to$

SEE PROBLEM 49 ON NEXT PAGE FOR FORMULAS AND SYMBOLS

BEVEL GEAR GEOMETRY				
				CTY 11/CT Y 11119 C . 411111111111111111111
A TOTAL			PAMPUSEKO	
GIVEN DATA			GIVEN DATA	
โรโอสร์สไฮสโลปโลเฮโลโอล	117/5		No of teeth in pinion	25
Meronesiannesia	25		No of teeth in gear	50
$ \partial f(x) \leq (\partial f(x) + \partial f(x))$	Ö		Diametral pitch	10
Phassure angle	Иоловолева		Pressure angle	20 degrees
COMPUTED VALUES			COMPUTED VALUES	
Gear ratio	3,000		Gear ratio	2.000
Pitch diameter: Pinion	2.500 in		Pitch diameter: Pinion	2.500 in
Pitch diameter: Gear	7.500 in		Pitch diameter: Gear	5.000 in
Pitch cone angle: Pinion	18.435 degrees		Pitch cone angle: Pinion	26.565 degrees
Pitch cone angle: Gear	71.565 degrees		Pitch cone angle: Gear	63.435 degrees
Outer cone distance	3.953 in		Outer cone distance	2.795 in
Nominal face width	1.186 in		Nominal face width	0.839 in
Maximum face width (a)	1.318 in		Maximum face width (a)	0.932 in
Maximum face width (b)	1.667 in		Maximum face width (b)	1.000 in
NEUT Facewett	1:250 m		INPUT Face width	0.900 in
			The Control of the Co	
Mean cone distance	3.328 in		Mean cone distance	2.345 in
Ratio A _m /A _o	0.842		Ratio A _m /A _o	0.839
Mean circular pitch	0.441 in		Mean circular pitch	0.264 in
mean working depth	0.281 in		mean working depth	0.168 in
Clearance	0.035 in		Clearance	0.021 in
Mean whole depth	0.316 in		Mean whole depth	0.189 in
mean addendum factor	0.242		mean addendum factor	0.283
Gear mean addendum	0.068 in		Gear mean addendum	0.047 in
Pinion mean addendum	0.213 in		Pinion mean addendum	0.120 in
Gear mean dedendum	0.248 in		Gear mean dedendum	0.141 in
Pinion mean dedendum	0.103 in		Pinion mean dedendum	0.068 in
Gear dedendum angle	4.257 degrees	100	Gear dedendum angle	3,450 degrees
Pinion dedendum angle	1.774 degrees	2000	Pinion dedendum angle	1.670 degrees
Gear outer addendum	0.087 in	ļ	Gear outer addendum	ୃ0.061 in
Pinion outer addendum	0.259 in		Pinion outer addendum	Vic
Gear outside diameter	7.555 in		Gear outside diameter	5.054 in
Pinion outside diameter	2.992 in		Pinion outside diameter	2.764 in

NOTE: Maximum face width is the smalles of (a) or (b)

Given: $N_P = 18$; $N_G = 72$; $P_d = 12$; 20° pressure angle.

Computed values:

Gear ratio $m_G = N_G/N_P = 72/18 = 4.000$

Pitch diameter: Pinion $d = N_P/P_d = 18/12 = 1.500$ in Pitch diameter: Gear $D = N_G/P_d = 72/12 = 6.000$ in

Pitch cone angle: Pinion $\gamma = \tan^{-1}(N_P/N_G) = \tan^{-1}(18/72) = 14.03^{\circ}$ Pitch cone angle: Gear $\Gamma = \tan^{-1}(N_G/N_P) = \tan^{-1}(72/18) = 75.96^{\circ}$

Outer cone distance $A_o = 0.5D/\sin(T) = 0.5(6.00 \text{ in})/\sin(75.96^\circ) = 3.092 \text{ in}$

Face width must be specified: F = 0.800 in Based on the following guidelines:

Nominal face width: $F_{nom} = 0.30 A_o = 0.30(3.092 \text{ in}) = 0.928 \text{ in}$ Maximum face width: $F_{max} = A_o/3 = (3.092 \text{ in})/3 = 1.031 \text{ in}$ or $F_{max} = 10/P_d = 10/12 = 0.833 \text{in}$

Mean cone distance $A_m = A_{mG} = A_o - 0.5F = 3.092 \text{ in } -0.5(0.80 \text{ in}) = 2.692 \text{ in}$

Ratio $(A_m/A_o) = (2.692/3.092) = 0.871$ [This ratio occurs in several following calculations]

Mean circular pitch $p_m = (\pi/P_d)(A_m/A_q) = (\pi/12)(0.871) = 0.228$ in

Mean working depth $h = (2.00/P_d)(A_m/A_o) = (2.00/12)(0.871) = 0.145$ in

Clearance c = 0.125h = 0.125(0.145 in) = 0.018 in

Mean whole depth $h_m = h + c = 0.145 \text{ in} + 0.018 \text{ in} = 0.163 \text{ in}$

Mean addendum factor $c_l = 0.210 + 0.290/(m_G)^2 = 0.210 + 0.290/(4.00)^2 = 0.228$

Gear mean addendum $a_G = c_1 h = (0.228)(0.145 \text{ in}) = 0.033 \text{ in}$ Pinion mean addendum $a_P = h - a_G = 0.145 \text{ in} - 0.033 \text{ in} = 0.112 \text{ in}$

Gear mean dedendum $b_G = h_m - a_G = 0.163 \text{ in } -0.033 \text{ in } = 0.130 \text{ in}$ Pinion mean dedendum $b_P = h_m - a_P = 0.163 \text{ in } -0.112 \text{ in } = 0.051 \text{ in}$

Gear dedendum angle $\delta_G = \tan^{-1}(b_G/A_{mG}) = \tan^{-1}(0.130/2.692) = 2.76^{\circ}$ Pinion dedendum angle $\delta_P = \tan^{-1}(b_P/A_{mG}) = \tan^{-1}(0.051/2.692) = 1.09^{\circ}$

Gear outer addendum $a_{oG} = a_G + 0.5F \tan \delta_P$

 $a_{oG} = (0.033 \text{ in}) + (0.5)(0.80 \text{ in})\tan(1.09^{\circ}) = 0.0406 \text{ in}$

Pinion outer addendum $a_{oP} = a_P + 0.5F \tan \delta_G$

 $a_{oP} = (0.112 \text{ in}) + (0.5)(0.80 \text{ in})\tan(2.76^{\circ}) = 0.1313 \text{ in}$

Gear outside diameter $D_o = D + 2a_{oG} \cos \Gamma$

 $D_o = 6.000 \text{ in} + 2(0.0406 \text{ in})\cos(75.96^\circ) = 6.020 \text{ in}$

Pinion outside diameter $d_o = d + 2a_{oP} \cos \gamma$ $d_o = 1.500 \text{ in} + 2(0.1313 \text{ in})\cos(14.04^\circ) = 1.755 \text{ in}$

124

RKORUHAJAKO **GIVEN DATA** l violo e le en la remilion เกตรองเฉลาให้เก็บเกตลอง Diametral often भित्रक्षपद्भवात्। **COMPUTED VALUES** 4.000 Gear ratio Pitch diameter: Pinion 1.500 in Pitch diameter: Gear 6.000 in Pitch cone angle: Pinion 14.036 degrees **75.964 degrees** Pitch cone angle: Gear Outer cone distance 3.092 in Nominal face width 0.928 in Maximum face width (a) 1.031 in Maximum face width (b) 0.833 in INCUT Face with 0.800 in Mean cone distance 2.692 in 0.871 Ratio A_m/A_o 0.228 in Mean circular pitch mean working depth 0.145 in 0.018 in Clearance Mean whole depth 0.163 in mean addendum factor 0.228 Gear mean addendum 0.033 in Pinion mean addendum 0.112 in Gear mean dedendum 0.130 in 0.051 in Pinion mean dedendum Gear dedendum angle 2.767 degrees 1.090 degrees Pinion dedendum angle Gear outer addendum 0.041 in Pinion outer addendum 0.131 in Gear outside diameter 6.020 in Pinion outside diameter 1.755 in

BEVEL GEAR GEOMETRY

। । । । । । । । । । । । । । । । । । ।	75 G
GIVEN DATA	
Molecularin of for	1(3)
((((((((((((((((((((a) <u>/</u>
	52
Erressure angle	Modernes.
COMPUTED VALUES	
Gear ratio	4.000
Pitch diameter: Pinion	0.500 in
Pitch diameter: Gear	2.000 in
Pitch cone angle: Pinion	14.036 degrees
Pitch cone angle: Gear	75.964 degrees
Outer cone distance	1.031 in
Nominal face width	0.309 in
Maximum face width (a)	0.344 in
Maximum face width (b)	0.313 in
INPUT Face width	9.300 in
Mean cone distance	0.881 in
Ratio A _m /A _o	0.854
Mean circular pitch	0.084 in
mean working depth	0.053 in
Clearance	0.007 in
Mean whole depth	0.060 in
mean addendum factor	0.228
Gear mean addendum	0.012 in
Pinion mean addendum	0.041 in
Gear mean dedendum	0.048 in
Pinion mean dedendum	0.019 in
Gear dedendum angle	3.113 degrees
Pinion dedendum angle	1.227 degrees
Gear outer addendum	0.015 in
Pinion outer addendum	0.049 in
Gear outside diameter	2.007 in
Pinion outside diameter	0.596 in

NOTE: Maximum face: width is the smallest of (a) of (b)

GIVEN DATA INO OACESTANTANIONA No of teeth in gear Djametral pitch Pressure angle **COMPUTED VALUES** Gear ratio 3.000 Pitch diameter: Pinion 0.250 in Pitch diameter: Gear 0.750 in Pitch cone angle: Pinion 18.435 degrees Pitch cone angle: Gear **71.565** degrees Outer cone distance 0.395 in Nominal face width 0.119 in 0.132 in Maximum face width (a) Maximum face width (b) 0.208 in INPUT Face width 0.125 in Mean cone distance 0.333 in Ratio A_m/A_o 0.842 Mean circular pitch 0.055 in mean working depth 0.035 in 0.004 in Clearance 0.039 in Mean whole depth mean addendum factor 0.242 Gear mean addendum 0.008 in Pinion mean addendum 0.027 in Gear mean dedendum 0.031 in 0.013 in Pinion mean dedendum 5.316 degrees Gear dedendum angle 2.217 degrees Pinion dedendum angle Gear outer addendum 0.011 in Pinion outer addendum 0.032 in Gear outside diameter 0.757 in

BEVEL GEAR GEOMETRY

(=:4:11/24=17Ke)	- 18 - 17 B (B)
GIVEN DATA	***************************************
Kookeahilionen	(1.2)
0)2((1)2((2)(0)(0)	
	241050045
COMPUTED VALUES	2 000
Gear ratio	3.000
Pitch diameter: Pinion	2.000 in 6.000 in
Pitch diameter: Gear	
Pitch cone angle: Pinion	18.435 degrees 71.565 degrees
Pitch cone angle: Gear Outer cone distance	3.162 in
Outer cone distance	3.102 111
Nominal face width	0.949 in
Maximum face width (a)	1.054 in
Maximum face width (b)	1.250 in
NPUT Face width	1.000 in
**************************************	<u> </u>
Mean cone distance	2.662 in
Ratio A _m /A _o	0.842
Mean circular pitch	0.331 in
mean working depth	0.210 in
Clearance	0.026 in
Mean whole depth	0.237 in
mean addendum factor	0.242
Gear mean addendum	0.051 in
Pinion mean addendum	0.159 in
Gear mean dedendum	0.186 in
Pinion mean dedendum	0.077 in
Gear dedendum angle	3.992 degrees
Pinion dedendum angle	1.663 degrees
Gear outer addendum	0.065 in
Pinion outer addendum	0.194 in
Gear outside diameter	6.041 in
Pinion outside diameter	2.369 in

None: Maximum face width is the smallest of (a) or (b)

Pinion outside diameter

0.311 in

Wormgearing

WORM GEARING: $D_{W} = 1.2501A$, $N_{W} = 1$, $P_{A} = 10$; $D_{A} = 14.5^{\circ}$ $N_{G} = 40$; F = 0.6251R. $LEAD = AXAL PITCH = QRCULAR PITCH = TT/P_{B} = TT/10 = 0.31421N$. $LEAD ANGLE = \lambda = Tan^{-1} \left(\frac{L}{|T|D_{W}}\right) = Tan^{-1} \left(\frac{0.3142}{|T|(1.250)}\right) = 4.57^{\circ}$ $ADDENDOM = \alpha = \frac{1}{P_{D}} = \frac{1}{A_{D}} = 0.1001R$.; $DEDENDUM = \frac{1.157}{P_{d}} = 0.1151/N$ $WORM DUTSIDE DIA = D_{OW} = D_{W} + 2\alpha = 1.250 + 2(0.100) = 1.4501R$. $WORM ROOT DIA = D_{AW} = D_{W} - 2b = 1.250 - 2(0.1157) = 1.01861R$. $CEAR PITCH DIA = D_{G} = N_{G}/P_{J} = 40/10 = 4.0001R$. $VELOCITY RATIO = Vl = N_{A}/N_{W} = 40/1 = 40$

NOTE: On the following two pages are the results of Problems 52-57 giving pertinent geometric properties of worms and wormgears and their velocity ratios. The detailed calculations follow the pattern illustrated above for Problem 52. The equations come from Section 8-9 $_{2}$. Equations 8-20 to 8-25.

Compare the results to discern how variations in geometry such as diametral pitch and the number of threads in the worm affect the overall results. This is especially pertinent to Problem 53 in which three different designs for worm/wormgear sets provide the same velocity ratio. The single threaded worm produces the smallest center distance and overall size of the reducer. But note, also, that it has the smallest lead angle. The lead angle increases as the number of threads is increased. On the positive side, the small lead angle makes the reducer self-locking. On the negative side, the small lead angle results in lower mechanical efficiency as will be shown in Chapter 10, Section 10-11. The designer must balance these advantages and disadvantages for each application.

		1	
WORMGEARING INPUT DATA	PROBLEM: 52	WORMGEARING INPUT DATA	PROBLEM: 53A
	1.250 in	Worm pitch diameter =	1.000 in
Worm pitch diameter =	_	Diametral pitch =	12
Diametral pitch =		No, of worm threads =	1
No. of worm threads =		1	20
No. of gear teeth =		No. of gear teeth =	- -
Face width of gear =	0.625 in	Face width of gear =	0.500 in
COMPUTED RESULTS		COMPUTED RESULTS	0.0040 :
Circular pitch of gear =		Circular pitch of gear =	0.2618 in
Axial pitch of worm =		Axial pitch of worm =	0.2618 in
Lead of the worm =		Lead of the worm =	0.2618 in
Lead angle =	•	Lead angle =	4.764 deg
Addendum =		Addendum =	0.083 in
Dedendum =		Dedendum =	
Worm outside diameter =		Worm outside diameter =	
Worm root diameter =	: 1.019 in	Worm root diameter =	
Gear pitch diameter =	4.000 in	Gear pitch diameter =	
Center distance =	2.625 in	Center distance =	
Velocity ratio =	40.00	Velocity ratio =	20.00
WORMGEARING	PROBLEM: 53B	WORMGEARING	PROBLEM: 53C
INPUT DATA		INPUT DATA	
Worm pitch diameter =	= 1.000 in	Worm pitch diameter =	1.000 in
Diametral pitch =		Diametral pitch =	
No. of worm threads =		No. of worm threads =	4
No. of gear teeth =		No. of gear teeth =	80
Face width of gear =		Face width of gear =	0.500 in
COMPUTED RESULTS		COMPUTED RESULTS	
Circular pitch of gear =	= 0.2618 in	Circular pitch of gear =	0.2618 in
Axial pitch of worm =		Axial pitch of worm =	
Lead of the worm =		Lead of the worm =	
Lead angle =		Lead angle =	: 18.435 deg
Addendum =	•	Addendum =	•
Dedendum =	* * * *	Dedendum =	. 0.096 in
Worm outside diameter	•	Worm outside diameter =	1.167 in
Worm root diameter :		Worm root diameter =	= 0.807 in
Gear pitch diameter		Gear pitch diameter =	
Center distance		Center distance =	
Velocity ratio		Velocity ratio =	
velocity rado -	20.00	tologity rado =	
		1	

WORMGEARING PROBLEM: 54 INPUT DATA WORMGEARING PROBLEM: 55 INPUT DATA	
Worm pitch diameter = 0.625 in Worm pitch diameter = 2.000 in	
Diametral pitch = 16 Diametral pitch = 6	
No. of worm threads = 2 No. of worm threads = 4	
No. of gear teeth = 100 No. of gear teeth = 72	
Face width of gear = 0.313 in Face width of gear = 1.000 in	
COMPUTED RESULTS COMPUTED RESULTS	
Circular pitch of gear = 0.1963 in Circular pitch of gear = 0.5236 in	
Axial pitch of worm = 0.1963 in Axial pitch of worm = 0.5236 in	
Lead of the worm = 0.3927 in Lead of the worm = 2.0944 in	
Lead angle = 11.310 deg Lead angle = 18.435 deg	
Addendum = 0.063 in Addendum = 0.167 in	
Dedendum = 0.072 in Dedendum = 0.193 in	
Worm outside diameter = 0.750 in Worm outside diameter = 2.333 in	
Worm root diameter = 0.480 in Worm root diameter = 1.614 in	
Gear pitch diameter = 6.250 in Gear pitch diameter = 12.000 in	
Center distance = 3.438 in Center distance = 7.000 in	
Velocity ratio = 50.00 Velocity ratio = 18.00	
WORMGEARING PROBLEM: 56 WORMGEARING PROBLEM: 57	7
Worm pitch diameter = 4.000 in Worm pitch diameter = 0.333 in	
Diametral pitch = 3 Diametral pitch = 48	
No. of worm threads = 1 No. of worm threads = 4	
No. of gear teeth = 54 No. of gear teeth = 80	
Face width of gear = 2.000 in Face width of gear = 0.156 in	
COMPUTED RESULTS COMPUTED RESULTS	
Circular pitch of gear = 1.0472 in Circular pitch of gear = 0.0654 in	
Axial pitch of worm = 1.0472 in Axial pitch of worm = 0.0654 in	
Lead of the worm = 1.0472 in Lead of the worm = 0.2618 in	
Lead angle = 4.764 deg Lead angle = 14.050 deg	
Addendum = 0.333 in Addendum = 0.021 in	
Dedendum = 0.386 in Dedendum = 0.024 in	
Worm outside diameter = 4.667 in Worm outside diameter = 0.375 in	
Worm root diameter = 3.229 in Worm root diameter = 0.285 in	
Gear pitch diameter = 18.000 in Gear pitch diameter = 1.667 in	
Center distance = 11.000 in Center distance = 1.000 in	
. 1	
Velocity ratio = 54.00 Velocity ratio = 20.00	
Velocity ratio = 54.00 Velocity ratio = 20.00	

Gear Trains - Analysis

FOR PROBLEM 58 - ASSUME THAT THE INPUT SHAFT
ROTATES CLOCKWISE.

- TRAIN VALUE = TV = MI/MB; MI = 3450 RPM $TV = \frac{NB}{NA}, \frac{NO}{N_{e}}, \frac{NF}{N_{e}}, \frac{NH}{N_{e}}, \frac{NE}{N_{e}} = \frac{-B2}{18}, \frac{64}{17}, \frac{110}{20}, \frac{18}{18}, \frac{38}{19.1}$ $M_{b} = \frac{M_{I}}{TV} = \frac{3450 RPM}{-199.1} = \frac{-17.32 RPM}{18} = \frac{18}{18} = \frac{19.1}{18}$ GEARH IS AW IDLER. IT DOES NOT AFFECT THE TV BUT

 CHANGES THE DIRECTION OF THE OUTPUT SHAFT.
- $M_{1} = 12 \ 200 \ RPM; FIND MS: TY = \frac{M_{1}}{M_{2}}$ $TY = \frac{NB}{NA} \frac{ND}{NC} \frac{NF}{NE} \frac{NH}{NC} = \frac{50}{12} \frac{40}{12} \frac{60}{12} = 30000$ $M_{5} = \frac{M_{1}}{TV} = \frac{12 \ Z00 RPM}{30000} = \frac{0.4067}{12} \frac{RPM}{12}$
- 60 $M_1 = 6840 RPM; FIND M4; TV = \frac{M_1}{M_2}$ $TV = \frac{NB}{NA} \frac{ND}{NC} \frac{NF}{NE} = \frac{48}{16} \frac{48}{18} \frac{60}{12} = 40 \text{ EXACTLY}$ $M_4 = \frac{M_1}{TV} = \frac{6840}{40} = \frac{M1}{10} RPM \text{ EXACTLY}$
- 61 $M_1 = 2875RPA$; FIND M_4 : $tV = \frac{M_1}{M_4}$ $TV = \frac{NB}{NA} \frac{Nb}{Nc} \frac{NF}{NE} = \frac{100}{3} \frac{80}{2} \frac{85}{20} = 5666.7$ $M_4 = \frac{M_1}{TV} = \frac{2875RPM}{5666.7} = 0.5014RPM$

Gear Trains - Kinematic Design

VELOCIT	Y RATIO	PROBLEM 62		
	DESIRI	ED VR =	3.1416	= 17
NP	NG	NG Act	VR-Act	DIFF =
				Des VR - VR Act
16	50.27	50	3.1250	0.01659
17	53.41	53	3.1176	0.02395
18	56.55	57	3.1667	0.02507
19	59.69	60	3.1579	0.01630
20	62.83	63	3.1500	0.00841
XX 21	65.97	66	3.1429	0.00126 XX
22	69.12	69	3.1364	0.00523
23	72.26	72	3.1304	0.01116
24	75.40	75	3.1250	0.01659
			Min diff =	0.00126

VEL	OCIT	Y RATI	O FOR	GEARS	PROBLEM 63
1	D	ESIRE) VR =	1.7321	= 1/3
ļ	NP	NG	NG	VR	DIFF =
1			Actual	Actual	Des VR - VR Act
	16	27.71	28	1.7500	0.01795
	17	29.44	29	1.7059	0.02617
	18	31.18	31	1.7222	0.00983
1	19	32.91	33	1.7368	0.00479
	20	34.64	35	1.7500	0.01795
	21	36,37	36	1.7143	0.01777
XX	22	38.11	38	1.7273	0.00478 XX
	23	39.84	40	1.7391	0.00708
	24	41.57	42	1.7500	0.01795
L				Min diff =	0.00478

VELOCITY RATIO FOR GEARS					PROBLEM 64	ţ.	
		DESIRE	D VR =	6.1644	$=\sqrt{38}$		
	NP	NG	NG Act	VR-Act	DIFF =		
1					Des VR - VR	Act	
	16	98.63	99	6.1875	0.02309		
	17	104.80	105	6.1765	0.01206		
XX	18	110.96	111	6.1667	0.00225	XX	
	19	117.12	117	6.1579	0.00652		
	20	123.29	123	6.1500	0.01441		
	21	129.45	129	6.1429	0.02156		
	22	135.62	136	6.1818	0.01740		
	23	141.78	142	6.1739	0.00950		
XX	24	147.95	148	6.1667	0.00225	XX	
Tu	TWO EQUAL						
54	รอเมา ยพร Min diff = 0.00225						

VEL	OCI	TY RATIO	O FOR	GEARS	PROBLEM 6	5
	(DESIRE) VR =	7.42		
	NP	NG	NG	VR	DIFF =	
			Actual	Actual	Des VR - VR	Act
	16	118.72	119	7.4375	0.01750	
	17	126.14	126	7.4118	0.00824	
	18	133.56	134	7.4444	0.02444	
XX	19	140.98	141	7.4211	0.00105	XX
	20	148.40	148	7.4000	0.02000	
	21	155.82	156	7.4286	0.00857	
	22	163.24	163	7.4091	0.01091	
	23	170.66	171	7.4348	0.01478	
	24	178.08	178	7.4167	0.00333	
				Min diff =	0.00105	

66

DESIGN: MIN = 1800RPM MOST = 2 RPM EXACT RATIO REDO. TV= 1800/2 = 900 EXACT: USE FACTORING: NAX=150 FACTURES ARE: 2-2.5.5.3.3 SEE TABLE 8-6 FOR INTERFERENCE DATA FOR 20'F. D. TEETH USE NIN = 16 OR 17 NOMINAL VRDAX PER PAIR = 150/17 = 8.82 TWO PAIRS : (8.82) = 77.8 THREE PAIRS: (8.82) = 687 SMALL FOUR PAIRS: (8.82) = 6661 RED'D.

RECOMBINE FACTORS: VAI=6, VR2=6, 1:3=5, VR4=5

TV = 96 96 80 80 = 980 EXACT

61

DESIGN: MIN = 1800RPM EXACT : 21 LMOUT L 22: NMAX=150 \$20 F.D. TV NAM = 1800/215 = 83.7 TV MIN = 1800/22 = 81.8 TV = 1800/ = 85.7 FROM TABLE 8-6, NO INTERFERENCE WITH Np 2 17 FOR ZO FA TEETH VRMAX PER PAIR = 150/17 = 8.87 SMALL : TWO PAIRS VRMAX (8.82) = 77.9 LOW LAYOUT AS IN FIG. 8-31 INTEXT-TRIPLE REDUCTION. TRY EQUAL REDUCTION RATTO: VRI = URZ = VR3 = 183.7 = 4.37 LET NA = NC = NE= 17 : LET VRI= 5, VRZ= 4: THEN VR3 = 83.7/20 = 4.19 NF = (17)(4.19) = 71.2 => SPECIFY NF = 71

FINAL TV = 85 68 7/ = 83.53

 $M_{OOT} = \frac{M_{JN}}{TV} = \frac{1800}{83.53} = 21.55 RPM$

68

DESIGN: MIN = 3360 RPM EXACT: MONT = 12 RPM EXACT: NAME - 150 20° F. D. TEETH. FROM TABLE 8-6 LET NAIN= 17 FOR NO INTERFERENCE VRMAX PER PAIR = 150/17 = 8.82: ZPAIRS VRMAX=(8.82) = 77.8:30ANS = 686 TV= 3360/12 = 280 EXACT : USE BPAIRS SIMILAR TO FIG 8-31 IN TEXT

FACTORING: 2/280 2.2.5.2 .7 = 280 . R ELOMBINE 8.7.5 = 280

TV = 136, 119, 85 = 280 EXACTLY

(OTHER DESIGNS POSSIBLE)

69 DESIGN: MIN = 4200 RPM EXACTLY: 13.0 LMOUT (13.5 RPM: POSITIVE TV TVn/N= 4200 = 3/1.12 TVNOM= 4200 = 3/6.98: TVMA 4260 = 323.08 FROM PROB 68, 3 PAIRS REA'D. LAYOUT IN FIL 8-31 PRODUCES A NEGATIVE TV. USE IDLER IN ANY PAIR.

TRY RESIDUAL RATIO METHOD. NOMINAL VR = 317 = 6.82 PER PAIR TRY VRI=7: VRZ =6: THEN VR3 = 3/7/42=7.55: USE VR3=7.50 FINAL TV = VRI · VRZ · VR3 = (7/6)(7.50) = 315 OK

ITIS PREFERRED TO PLACE HIGHER RATIOS EARLY IN THE TRAIN. LET VRI=7,5, VRZ=7, VR3=6.

LET NA = 18; NB = 7.5(18) = 135; LET Nc=17, No=7(17)=119 LET NE=17, NF=11(6)=102.

IDLER NEEDED FOR POSITIVE TRAIN LET NI= 17. PLACEIN FIRST PAIR FINAL TRAIN VALUE:

$$TV = \frac{135}{18} \times \frac{119}{17} \times \frac{102}{17} = 315$$

$$MOUT = \frac{M_{IN}}{17} = \frac{4/200}{17} = 13.33 \text{ RPM}$$

 $TV = \frac{135}{18} \times \frac{119}{17} \times \frac{102}{17} = 315$ $MOUT = \frac{M_{IN}}{TV} = \frac{47200}{315} = 13.33 \text{ RPM CW}$

NOTE: CHAPTER 9 GIVES IN FORMATION ON SELECTION OF PA-DIAMETRAL PITCH. BECAUSE OF SPEED/TORQUE CHANGES, Pai > Paz > Paz > Paz , LARGER PAGIVES SMALLER GEALS. THIS IS THE REASON THAT LARGER RATIOS SHOULD BE PLACED EARLIER IN THE TRAIN.

70 DESIGN: MIN = 5500 ROM EXACTLY:

221 < MIOUT (225

DESIGN: TWO DOUBLE REDUCTION WITH ALL EXTERNAL GEARS TV. MAX = 5500/221 = 24.88 TV. MIN = 5500/225=24.44: TV MON = 5500/223=2466 NOMINM RATIO FOR EACH PAIR = \$ 24.66 = 4.97. TRY VRI = 5 THEN VAZ = 24.66/5= 4.93: FOR NO =16 NA = 78.9 - USE NA=19

FINAL TVI = NB, ND = 80 79 - 24 6875

MI OUT = 5500 = 2220 78 RPM OK

DESIGN! Non = 5500 RPM 13.0 6 MONE L 14.0 RPM TYNOM = 5500/13.5 = 407.4 SKETCH AS IN 20. MAY RATIO FOR OHE PAIR = 150/17 = 8.82 TWO PAIRS -MAX = 77.85; THREE PAIRS 687 -OK NOMINAL RATIO PER PAIR! 1407.4 = 7.41 TRY VR, = B, VR2 = B - BUTUSE HUNDING TOOTH APPROACH. VR=8! NA=17, NB=17(8)=136: USE NB=135 SAME FOR NC, ND. $(VR_1)(VR_2) = \left(\frac{135}{12}\right)^2 = 7.94^2 = 63.06$ RESIDUAL RATIO! 407.4/63.66 = 6.46 = NF /NE LET NE = 17; NF = 6.46(17) = 109.82 = USE 110 TEETH FINALTY = 135 x 135 x 1/0 = 408.05 FINAL OUT PUT SPEED = 5500/408,05 = 13.48 RPM - OK DESIGN: MIN=1750; 146 < MOUT 6 150 TVNOM = 1750/148 = 11.82 LET VR, = NB/NA = 75/18 = 4.167

12 DESIGN: MIN = 1750; 146 < MOUT < 150

TV NOM = 1750/148 = 11.82

LET VR; = NB/NA = 75/18 = 4.167

RESIDUAL RATTO = 11.82/4.167 = 2.837

LET NC = 18: NO= 18(2.837) = 57.06 => 51

NA = 18, NB=75, NC = 18, ND=51

MOUT = 1750 × 18 / 75 × 18 / 57 = 148.2 RPM OK

SKETCH SAME AS [7] WITH ONLY TWO PAIRS -

[THESE RESULTS USED IN PROBLEM 9-74.]

73 DESIGN! M. M = 850 RPM; 40 < NOOT < 44 ', USE 2 PARS

TV_NOM = 850/42 = 20.24, LET VRI = NO/NA = 81/18 = 4.50

RESIDUAL RATIO = VR2 = 20,24/4.50 = 4.50: NC=18; ND=81

MOUT = 850 x 18 x 18 = 41.98 RPA OK

THESE RESOUR USED IN PROBLEM 9-25.

74 DESIGN ! USE TWO PARS: $M_{IN} = 3000RPM$; $548 \ \angle M_{OUT} \ \angle 552$ $TV_{NOM} = 3000/550 = 5.4545$; $LET VR_1 = VR_2 = \sqrt{5.4545} = 2.335$ $LET \ NA = 15$; $N_B = 15(2.336) = 35.03 \Rightarrow 35.$ $LET \ N_C = 15$, $N_D = 35$ $M_{OUT} = 3000 \times \frac{15}{35} \times \frac{15}{35} = \frac{551RPA}{35} \ OE$ [THESE RESULTS USED IN PROBLEM 9-76.]

75 DESIGNS MIN=3600 RPM 3.0 < MOUTLES. 6

 $TV_{Nom} = 3600/4.0 = 900!$ USE 4 PAIRS

FACTORING! 2 900

USE VR. = 6 = 96/16 = NG/NA

2 450

VR. = 6 = 96/16 = NG/NC

5 225

VR. = 5 = 80/16 = NG/NC

NR. = 5 = 80/16 = NM/NG

NM/NG

NM/NG

NM/NG

NM/NG

ALTERNATE SOLOTION USING HUNTING FOOTH!

LET $N_A = N_C = N_C = N_G = 16$. LET $N_B = N_O = 95$. LET $N_F = 81$ $VR_1 = VR_2 = \frac{95}{16} = 5.9375$; $VR_3 = \frac{91}{16} = 5.0625$ $VR_1 + VR_2 + VR_3 = 178.47$, $RESIDVAN RATIO = \frac{900}{178.47} = 5.643$ LET $N_H = 81$. $VR_4 = VR_3 = \frac{81}{16} = 5.0625$ TO TAL TV = (178.47)(5.0625) = 903.5

FINAL MOUT = 3600/903,5= 3.984 RPM OK

DESIGN! MIN = 3600 3.0 < MOUT < 5.0 RPM

TV_NOM = 3600/4.0 = 900: USE TWO PAIRS OF WORM/WORM GEARS

NA = Nc = 1; NB = ND = 30

77 DESIGN: MIN = 1800 RPM MOUT = 8.0 EXACTLY

LET VRZ = 50 - WORM GEAR DRIVE.

TY = 1800/8 = 225: VR, = 225/50 = 4.50

HELICAL GEARS

LET $N_A = 16$, $N_B = 12$, $N_C = 1$, $N_D = 50$ $M_{OUT} = 1800 \times \frac{16}{72} \times \frac{1}{50} = 8.0$ RPM

DESIGNÍ MIN = 3360 RPM. MOUT = 12:0 EXACRY,

USE TWO PAIRS OF WORM GEAR DRIVES AS IN PROGLEM 76.

LET VRI= 20, VR2 = 14 : NA = 2, NB=40, Nc=2, ND=28.

- 79 DESIGN! MIN = 4200 RPM, 13,0 < MOOT L 13,5

 USE COMBINED HELLEM WITH WORM GEAR AS IN PROBLEM 17,

 LET VR z = 50. WORM GEAR DRIVE, Nc = 1, No = 50

 TV NOM = 4200/13,25 = 3/6, 98. VRI = 311.98/50 = 6,34

 LET NA=18, NB=18(6.34) = 1/41 => USE 1/4 = NB

 FINAL DUTPUT SPEED = 4200 x 18 x 1 50 = 13,26 RPM OK
- 80. DESIGN: $M_{IN} = 5500 \, RPM$ 13.0 $< M_{OUT} < 14.0 \, RPM$ USE TWO WORM GEAR DRIVES AS IN PROBLEM 76. $TV_{NOM} = \frac{5500}{13.5} = 407.4$.

 LET $VR_1 = 20$. THEN $VR_2 = \frac{407.4}{20} = 20.37$ $TRY N_C = 3$. $N_D = 3(20.37) = 61.11 \Rightarrow 05E.61$ $N_A = 3$, $N_B = 60$, $N_C = 3$, $N_D = 61$ FINAL OUTPUT SPEED = $5500 + \frac{3}{60} = \frac{3}{61} = 13.52 \, RPM$ CAN ALSO USE $N_D = 62$. THEN $M_{OUT} = 13.30 \, RPM$ $N_D = 60$. THEN $M_{OUT} = 13.75 \, RPM$

CHAPTER 9 SPUR GEAR DESIGN

Forces on Spur Gear Teeth

d)
$$C = \frac{NP + NG}{2PA} = \frac{20 + 72}{2(12)} = \frac{3.833 N}{2}$$

$$T_{p} = \frac{63000 P}{Mp} = \frac{63000(7.5)}{1750} = \frac{27018.1N}{1750}$$

$$T_{g} = \frac{63000P}{Mg} = \frac{63000(7.5)}{486.7} = \frac{97218.1N}{1750}$$

9)
$$W_t = \frac{T_P}{D_P/2} = \frac{270 LB \cdot JN}{1.667 JN/2} = \frac{329 LB}{33000 (7.5)} = \frac{329 LB}{769}$$

A SIMILAR METHOD IS USED FOR PRIBLEMS 2-6.

SPREADSHEET SOLUTIONS ARE SHOWN ON THE FOLLOWING PAGES. THE SOLUTION FOR PROBLEM I IS ALSO SHOWN FOR COMPARISON TO THE SOLUTION SHOWN ABOVE.

Forces on Spur Gear Teeth

Problem 1		120	
Chapter 9	Fagwer≡	7.5	(112)
an .	ợiniớn soapil≡	1/20	ineini -
	(eem if, pinkin ≓ .	12.74	1
	(eeth in gear =	7/2	
	an eletraciyelinicide	$U(r_i) \cap r$	
	RESULTS:		
а	Gear speed =	486.1	rpm
b	$VR = m_G =$	3.600	
С	pinion PD =	1.667	in
	gear PD =	6.000	in
d	center distance = C =	3.833	in
е	pitch line speed =	764	ft/min
f	torque on pinion shaft =	270	lb in
	torque on gear shaft =	972	lb in
9	tangential force =	324	lb
h	radial force =	118	lb
	normal force =	345	lb

Problem 2		est in the second second
Chapter 9	Foyer=	50 hp
	pinion speed =	10.150
!	teath an omon a	18
	teeth in gear =	6.5
	de en en elle mengel en en Ex	
	RESULTS:	
а	Gear speed =	304.4 rpm
b	$VR = m_G =$	3.778
c	pinion PD =	3.600 in
	gear PD =	13.600 in
d	center distance = C =	8.600 in
е	pitch line speed =	1084 ft/min
f	torque on pinion shaft =	2739 lb in
	torque on gear shaft =	10348 lb in
9	tangential force =	1522 lb
h	radial force =	554 lb
	normal force =	1620 lb

Forces on Spur Gear Teeth

Problem 3	The man in the constitution of the same	120	
Chapter 9	Power =	(1)7757	iij
	piriori Scredie	1.000	liĝio
	(eetti ir tiipliir 😑 .	100	á.
	teeth ir gear =		
	<i>ងដោយផ្សង</i> [ជាចំបែក	14	
	RESULTS:		
а	Gear speed =	752.7	rpm
b	$VR = m_G =$	4.583	
С	pinion PD =	1.000	in
	gear PD =	4.583	in
d	center distance = C =	2.792	in
е	pitch line speed =	903	ft/min
f	torque on pinion shaft =	13.70	lb in
	torque on gear shaft =	62.77	lb in
g	tangential force =	27.40	lb
h	radial force =	9.97	lb
	normal force =	29.16	lb

Problem 4		24 m 16 (1) (1)
Chapter 9	Power =	77.5 pp
	platen speed =	
76	ieeth in pinton=	Markanaranaran karantaran kerajaran baran karantaran kerajaran baran baran baran baran baran baran baran baran
	feall in cear =	72
	RESULTS:	
а	Gear speed =	486.1 rpm
b	$VR = m_G =$	3.600
c	pinion PD =	1.667 in
	gear PD =	6.000 in
d	center distance = C =	3.833 in
e	pitch line speed =	764 ft/min
f	torque on pinion shaft =	270 lb in
	torque on gear shaft =	972 lb in
g	tangential force =	324 lb
h	radial force =	151 lb
	normal force =	358 lb

Forces on Spur Gear Teeth

Problem 5		125	\$ 0.00 m
Chapter 9	Solicine.	(511)	i i jo
	e pinoessende	(1150	(42) [4]
	teetriji gijjon = ;	10.0	
	taatiin gaar=	36	
- 45			
	RESULTS:		
а	Gear speed =	304.4	rpm .
b	$VR = m_G =$	3.778	
С	pinion PD =	3.600	in
	gear PD =	13.600	in
d	center distance = C =	8.600	in
е	pitch line speed =	1084	ft/min
.f.	torque on pinion shaft =	2739	lb in
	torque on gear shaft =	10348	lb in
g	tangential force =	1522	lb
h	radial force =	710	lb
	normal force =	1680	lb

Problem 6		(•j:j:j:j:j:j:j:
Chapter 9	<i>Folial</i> =	675 Jp
	pinien specie	3450 7,071
	teem in onlon =	
	teeti in geal ≃	11/0
	RESULTS:	
а	Gear speed =	752.7 rpm
b	$VR = m_G =$	4.583
C	pinion PD =	1.000 in
	gear PD =	4.583 in
d	center distance = C =	2.792 in
e	pitch line speed =	903 ft/min
f	torque on pinion shaft =	13.70 lb in
	torque on gear shaft =	62.77 lb in
9	tangential force =	27.40 lb
h	radial force =	12.78 lb
- 1	normal force =	30.24 lb

Gear Manufacture and Quality

7. See Section 9-4. Form milling, shaping, hobbing, grinding.

For Problems 8-16, refer to Section 9-5 and Table 9-3 for recommended quality numbers in the A_v system according to AGMA Standard 2015. Grain harvester: $A_v = 10$.

- 8. Grain harvester: $A_v = 10$.
- 9. Printing press: $A_v = 7$.
- 10. Auto transmission: $A_v = 6$.
- 11. Gyroscope: $A_v = 2$.
- 12. Analytical quality measurements include *index variation*, *tooth alignment*, *tooth profile*, *root radius*, and *runout*.
- 13. AGMA Standard 2015 is currently used. See Table 9-2 for the range of quality numbers in this system and the comparisons with prior systems.

For Problems 14-16, for precision machinery, use the recommendations for machine tool drives in the lower part of Table 9-3. The choice of quality number is based on the pitch line speed of the gears.

- 14. (From Problem 1). Pitch line speed = 764 ft/min Use $A_v = 10$.
- 15. (From Problem 2). Pitch line speed = 1084 ft/min Use $A_v = 8$.
- 16. (From Problem 3). Pitch line speed = 903 ft/min Use $A_v = 8$.

Gear Materials

Answers for Problems 17 – 25 are found in Sections 9-6 and 9-7. Only brief statements are given here.

- 17. Bending stresses are created by the tangential force on the gear teeth acting in a manner similar to that on a cantilever. The maximum bending stress occurs in the root of the tooth where it blends with the involute tooth form. High levels of contact stress, called Hertz stress, occur in the face of the teeth near the pitch line as forces are exerted between the pinion and the gear teeth. The probable mode of failure is pitting of the tooth surface.
- 18. AGMA standards give allowable bending stress numbers and allowable contact stress numbers related to the hardness of the material of the teeth. See Figures 9-11 and 9-12.
- 19. Gear steels are typically medium carbon plain or alloy steels that are heat treated by throughhardening using a quenching and tempering process. For examples, see Table 9-4, Section 9-7.
- 20. The AGMA recommends hardness values from HB 180 to HB 400. See Figures 9-11 and 9-12.
- 21. Grade 1 steel is typical commercial quality and is recommended for use in this book. Grades 2 and 3 require progressively more stringent quality controls on the alloy content and cleanliness of the materials. Cost increases dramatically for the higher grades. See AGMA Standard 2004-C08 or the latest revision.
- 22. Grades 2 and 3 may be specified for high-speed aerospace applications, turbine engine driven systems, ship propulsion drives, and high-capacity industrial drives such as those in steel rolling mills.

- 23. Case hardening by flame hardening, induction hardening, and carburizing are three processes that produce harder surfaces than typical through-hardening.
- 24. See AGMA Standard 2001-D04 or the latest revision.
- 25. AGMA Standard 2001-D04 provides data for gray cast iron, ductile iron, and bronze. Table 9-6.
- 26. From Figures 9-11 and 9-12:
 - a. Grade 1; 200 HB: s_{at} = 28.26 ksi; s_{ac} = 93.50 ksi U.S.: s_{at} = 194.9 MPa; s_{ac} = 644.6 MPa SI
 - b. Grade 1; 300 HB: s_{at} = 36.0 ksi; s_{ac} = 125.7 ksi U.S.: s_{at} = 248.1 MPa; s_{ac} = 866.6 MPa SI
 - c. Grade 1; 400 HB: s_{at} = 43.72 ksi; s_{ac} = 157.9 ksi U.S.: s_{at} = 301.5 MPa; s_{ac} = 1088.6 MPa SI
 - d. Using HB > 400 is not recommended.
 - e. Grade 2; 200 HB: s_{at} = 36.80 ksi; s_{ac} = 104.1 ksi U.S.: s_{at} = 253.7 MPa; s_{ac} = 718.5 MPa SI
 - f. Grade 2; 300 HB: s_{at} = 47.0 ksi; s_{ac} = 139.0 ksi U.S.: s_{at} = 324.0 MPa; s_{ac} = 959.5 MPa SI
 - g. Grade 2; 400 HB: s_{at} = 57.20 ksi; s_{ac} = 173.9 ksi U.S.: s_{at} = 394.3 MPa; s_{ac} = 1200.5 MPa SI
- 27. From Figure 9-11: Grade 1: 300 HB. Grade 2: 192 HB
- 28. From Table 9-5: Case hardening by carburizing produces 55-64 HRC
- 29. From Appendix 5: SAE 1020, 4118, 8620, and others
- 30. From Table 9-5: Flame or induction hardening produces 50-54 HRC with materials having high hardenability
- 31. SAE 4140, 4340, 6150. All have good hardenability
- 32. ASTM A536, Grade 80-55-06 has a minimum hardness of 179 HB.
- 33. a. s_{ot} = 45.0 ksi; s_{oc} = 170.0 ksi U.S.: s_{ot} = 310 MPa; s_{oc} = 1172 MPa SI [Table 9-5]
 - b. s_{at} = 45.0 ksi; s_{ac} = 175.0 ksi U.S.: s_{at} = 310 MPa; s_{ac} = 1207 MPa SI [Table 9-5]
 - c. s_{at} = 55.0 ksi; s_{ac} = 180.0 ksi U.S.: s_{at} = 379 MPa; s_{ac} = 1241 MPa SI [Table 9-5]
 - d. Not listed
 - e. s_{at} = 55.0 ksi; s_{ac} = 180.0 ksi U.S.: s_{at} = 379 MPa; s_{ac} = 1241 MPa SI [Table 9-5]
 - f. s_{at} = 5.00 ksi; s_{ac} = 50.0 ksi U.S.: s_{at} = 35.0 MPa; s_{ac} = 345 MPa SI [Table 9-6]
 - g. s_{at} = 13.0 ksi; s_{ac} = 75.0 ksi U.S.: s_{at} = 90.0 MPa; s_{ac} = 517 MPa SI [Table 9-6]
 - h. s_{at} = 27.0 ksi; s_{ac} = 92.0 ksi U.S.: s_{at} = 186 MPa; s_{ac} = 634 MPa SI [Table 9-6]
 - i. s_{at} = 5.70 ksi; s_{ac} = 30.0 ksi U.S.: s_{at} = 39.0 MPa; s_{ac} = 207 MPa SI [Table 9-6]
 - j. s_{at} = 23.6 ksi; s_{ac} = 65.0 ksi U.S.: s_{at} = 163 MPa; s_{ac} = 448 MPa SI [Table 9-6]
 - k. s_{at} = 12.0 ksi; s_{ac} not listed: s_{at} = 83.0 MPa; s_{ac} not listed [[Table 9-14]
 - I. $s_{ot} = 9.0$ ksi; s_{oc} not listed: $s_{ot} = 62.0$ MPa; s_{oc} not listed [Table 9-14]
- 34. Depth = 0.027 in [Figure 9-13.]
- 35. Depth = 0.90 mm. [Figure 9-13.]

APPLICATION: Problems 36, 42, 48, 54	Factors in Design Analysis:	ysis:			
Industrial conveyor driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0	If F>1.0		
Initial Input Data:	Pinion Proportion Factor, C_{pf} =	0.058	0.061 [0.5	$[0.50 < F/D_P < 2.00]$	2.00]
Overload Factor: Ko = 1.50 Table 9-7	Enter: Cp =		Figure 9-16		
Transmitted Power: P = 10 hp	Type of gearing:	Open		Precision E	Ex. Prec.
Design Power $P_{des} = 15 \text{ hp}$	Mesh Alignment Factor, C _{ma} =	0.268		0.083	0.051
Diametral Pitch: $P_d = 12$ Fig. 9-24	Enter: Cms =	0.147	Figure 9-17		
17	Alignment Factor: K _m =	1.21	Computed		
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00	Table 9-8: Use 1.00 if P d >= 5	1.00 If Pg	>= 5
Desired Output Speed: ne = 370 rpm	Pinion Rim Thickness Factor: Kap =	1.00	Fig. 9-18: Use 1.00 if solid blank	1.00 if solid	blank
Computed number of gear teeth: 85.1	Gear Rim Thickness Factor: K BG =	1.00	Fig. 9-18: Use 1.00 if solid blank	1.00 If solid	blank
Enter: Chosen No. of Gear Teeth: No = 85	Service Factor: SF =	1.00	Use 1.00 if no unusual conditions	unusual col	ditions
Computed data:	Reliability Factor: KR =	1.00	Table 9-11 Use 1.00 for R	e 1.00 for A	89
Actual Output Speed: Ng = 370.6 rpm	Enter: Design Life:	20000	hours Sec	See Table 9-12	2
Gear Ratio: Mg # 4.72	Pinion - Number of load cycles: Np =	2.1E+09	Guldel	Guldelines: Y _N , Z _N	L
Pitch Diameter - Pinion: Dp = 1.500 in	Gear - Number of load cycles: N _G =	4.4E+08	10' cycles	,0L<	<10.
Pitch Diameter - Gear: Dg = 7.083 in	Bending Stress Cycle Factor: Y _{NP} =	0.93	1.00	0.93 F	Flg. 9-22
tance:	Bending Stress Cycle Factor: Y _{NG} =	0.95	1.00	0.95 F	Flg. 9-22
Pitch Line Speed: v _t = 687 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.88	1.00	0.88 F	Flg. 9-23
Transmitted Load: Wt = 480 lb	Pitting Stress Cycle Factor: Z _{NG} = .	0.92	1.00	0.92 F	Flg. 9-23
Secondary Input Date:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required Sat =	37,906 psi		See Fig. 9-11 or	'n
Face Width Guidelines (in): 0.667 1.000 1.333	Gear: Required Sat 5	28,963 psi		Table 9-5	
Enter: Face Width: F = 1.250 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/Dp = 0.83	Pinion: Required S _{ac} =	199,099 psi		See Fig. 9-12 or	ក
Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required Sac =	190,443 psi	psi Tai	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of plnion HB:	528	Equations in Fig. 9-12-Grade	lg. 9-12-Gr	ide 1
Enter: Quality Number: Av = 11 Table 9-3	Required hardness of gear HB:	50	Equations in Fig. 9-12-Grade	lg. 9-12-Gr	ade 1
Dynamic Factor: Kv = 1.35 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	tment, for	most severe	equiremen	2
[Factors for computing K_v :] $B = 0.826$ $C = 59.75$	One possible material specification:				
Reference: Np = 18 Ng = 85	Requires Grade 2 carburized. Suggest redesign to lower stress levels.	edesign to I	ower stress lev	rels.	
Bending Geometry Factor-Pinion: Jp = 0.320 Fig. 9-15					
Bending Geometry Factor-Gear: Jo = 0.410 Fig. 9-15					
Reference: mg = 4.72 Enter Diffing Commetty Factor 1 = 0.408 Ein 9.24					

Plnlon Gear Pinion Gear

35253 psi 27514 psi 175,207 psi 175,207 psi

Computed bending stress number, s_t =

Computed bending stress number, s_t = Computed contact stress number, s_c = Computed contact stress number, s_c =

8 8 8 8

Ans. Problem: Ans. Problem: Ans. Problem:

Ans. Problem:

APPLICATION: Problems 37, 43, 49, 55	Factors In Design Analysis:	/sls:
Cement kiln driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0 IFF>1.0
Initial Input Data:	Pinion Proportion Factor, C _{pf} =	0.043 0.058 [0.50 < F/D _P < 2.00]
Overload Factor: K _o = 1.75 Table 9-7	Enter: Cpt =	0.058 Figure 9-16
Transmitted Power: P = 40 hp	Type of gearing:	Commer. Precision E
Design Power P _{des} = 70 hp	Mesh Alignment Factor, C _{ma} =	0.284 0.162 0.096 0.061
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: C _{ms} =	0.162 Figure 9-17
np = 118	Alignment Factor: K _m =	1.22 [Computed]
Number of Pinion Teeth: Np = 20	Size Factor: K _s =	1.00 Table 9-8: Use 1.00 if P _d >= 5
Desired Output Speed: no = 479 rpm	Pinion Rim Thickness Factor: Kap =	1.00 Fig. 9-18: Use 1.00 if solid blank
Computed number of gear teeth: 48.0	Gear Rim Thickness Factor: K _{BG} =	1.00 Fig. 9-18; Use 1.00 if solid blank
Enter: Chosen No. of Gear Teeth: No = 48	Service Factor: SF =	1.00 Use 1.00 if no unusual conditions
Computed data:	Reliability Factor: K _R =	1.00 Table 9-11 Use 1.00 for R = .99
Actual Output Speed: No = 479.2 rpm	Enter: Design Life:	8000 hours See Table 9-12
Gear Ratio: mg = 2.40	Pinion - Number of load cycles: Np =	5.5E+08 Guidelines: Y _N , Z _N
Pitch Diameter - Pinion: Dp 3.333 in	Gear - Number of load cycles: No =	2.3E+08 10' cycles >10' <10'
Pitch Diameter - Gear: Do = 8.000 in	Bending Stress Cycle Factor: Y NP =	0.95 1.00 0.95 Fig. 9-22
	Bending Stress Cycle Factor: Y NG =	0.96 1.00 0.96 Fig. 9-22
Pitch Line Speed: V _t = 1004 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.91 Fig. 9-23
>	Pitting Stress Cycle Factor: Z _{NG} =	0.93 1.00 0.93 Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending	
Min Nom Max	Pinion: Required sat =	34,466 psi See Fig. 9-11 or
Face Width Guidelines (in): 1.333 2.000 2.667	Gear: Required Sat =	28,063 psi Table 9-5
Enter: Face Width: F= 2.250 in	Stress Analysis: Pitting	
Ratio: Face width/pinion diameter: F/Dp = 0.68	Pinion: Required 8 _{ac} =	189,152 psi See Fig. 9-12 or
Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required S _{ac} =	185,084 psł Table 9-5
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	O Required hardness of pinion HB:	497 Equations in Fig. 9-12-Grade
1000	Required hardness of gear HB:	484 Equations in Fig. 9-12-Grade
	Specify	ment, for most severe requirement.
[Factors for computing K_v :] $B = 0.828$ $C = 59.75$	One possible material specification:	
Reference: $N_P = 20$ $N_G = 48$	Requires Grade 2 flame or induction harden. Suggest redesign to lower stress levels.	den. Suggest redesign to lower stress ler
Bending Geometry Factor-Pinion: Jp = 0.325 Fig. 9-15		
Bending Geometry Factor-Gear: Jo = 0.395 Fig. 9-15		
Reference: $m_0 = 2.40$ Enter Diffine Geometre Earlor $t = 0.005$ Ein 0.21		

Pinion	Gear	Pinion	Gear
32743 psi	26940 psi	172,128 psi	172,128 psi
Computed bending stress number, st =	Computed bending stress number, st =	Computed contact stress number, s _c =	Computed contact stress number, s _c =
37	37	4	8

Ans. Problem: Ans. Problem: Ans. Problem: Ans. Problem:

APPLICATION: Problems 38, 44, 50, 56	Factors in Design Analysis:	sis:	
Small machine tool driven by an electric motor	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	IFF<1.0 IFF>1.0	
Initial input Data:	Pinion Proportion Factor, C _{pf} =	0.042 0.035 [0.50 <	[0.50 < F/D _P < 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cp =	(0)	
Transmitted Power: P = 0.5 hp	Type of gearing:	Open Commer. Precision	ш
Design Power P _{des} = 0.75 hp	Mesh Alignment Factor, C _{ma} =	0.255 0.135 0.074	4 0.043
Diametral Pitch: $P_d = 32$ Fig. 9-24	Enter: C _{me} =	0.074 Figure 9-17	
input Speed: np = 3450 rpm	Alignment Factor: K _m =	1.12 [Computed]	
Number of Pinion Teeth: Np = 24	Size Factor: K _s =	1.00 Table 9-8: Use 1.00 if Pd >= 5	0 If Pd>= 5
Desired Output Speed: no = 690 rpm	Pinion Rim Thickness Factor: KBP =	1.00 Fig. 9-18: Use 1.00 if solid blank	if solid blank
Computed number of gear teeth: 120.0	Gear Rim Thickness Factor: K _{BG} =	7.00 Fig. 9-18: Use 1.00 if solid blank	If solid blank
Enter: Chosen No. of Gear Teeth: No = 120	Service Factor: SF =	1.25 Use 1.00 if no unusual conditions	sual conditions
Computed data:	Reliability Factor: K _R =	1.50 Table 9-11 Use 1.00 for R	00 for R = .99
Actual Output Speed: No = 690.0 rpm	Enter: Design Life:	12000 hours See Ta	See Table 9-12
m _o m	Pinion - Number of load cycles: Np ==	2.5E+09 Guidelines: Y _N , Z _N	s: Yn, Zn
0	Gear - Number of load cycles: N _G ≈	5.0E+08 10' cycles >10'	<10.
Pitch Diameter - Gear: Do = 3.750 in	Bending Stress Cycle Factor: Y _{NP} =	0.92 1.00 0.92	Fig. 9-22
	Bending Stress Cycle Factor: Y NG =	0.95 1.00 0.95	5 Fig. 9-22
Pitch Line Speed: vt = 677 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.88 0.88	Fig. 9-23
Transmitted Load: Wt = 24 ib	Pitting Stress Cycle Factor: Z _{NG} =	1.00 0.91	Flg. 9-23
Secondary Input Data:	Stress Analysis: Bending		
Min Nom Max	Pinion: Required sat =	16,448 psi See Fig	See Fig. 9-11 or
Face Width Guidelines (in): 0.250 0.375 0.500	Gear: Required sat =	13,033 psi Table 9-5	ጭ
Enter: Face Width: F = 0.500 in	Stress Analysis: Pitting		
Ratio: Face width/pinion dlameter: F/Dp = 0.67	Pinion: Required Sac =	156,966 psi See Fig	See Fig. 9-12 or
Recommended range of ratio: $0.50 < F/D_P < 2.00$	Gear: Required Sac =	151,791 psi Table 9-5	F 2
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	397 Equations in Fig. 9-12-Grade	-12-Grade 1
100	Required hardness of gear HB:	381 Equations In Fig. 9-12-Grade	-12-Grade 1
Dynamic Factor: Kv = 1.11 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	nent, for most severe requ	frement.
Factors for computing K_v : $B = 0.397$ $C = 83.77$	One possible material specification:		
Reference: Np = 24 Ng = 120	SAE 4140 OQT 800, 429 HB, 14% elongation, good ductility	ation, good ductility	
Bending Geometry Factor-Pinion: Jp = 0.360 Fig. 9-15	SAE 4140 OQT 900, 429 HB, 14% elongation, good ductility	ation, good ductility	
Bending Geometry Factor-Gear: Jo = 0.440 Fig. 9-15			
Finer Pitting Comments Factor 1 = 0.418 Fin 9.21			

Pinlon Gear Pinlon Gear

Alignm Alicraff actuator driven by a universal electric motor Initial Input Data: Coverload Factor: $K_o = 1.50$ Table 9-7 Transmitted Power: $P = 1.5$ hp Design Power $P_{des} = 22.5$ hp Diametral Pitch: $P_d = 10$ Fig. 9-24 Input Speed: $n_P = 6500$ rpm Number of Pinton Teeth: $N_P = 30$ Desired Output Speed: $n_0 = 2216$ rpm Computed number of gear teeth: 88.0 Enter: Chosen No. of Gear Teeth: $N_0 = 88$ Computed number of gear Teeth: $N_0 = 88$ Actual Output Speed: $n_0 = 2.93$ Pitch Diameter - Pinton: $D_P = 3.000$ in Pitch Diameter - Gear: $D_0 = 8.800$ in Pitch Diameter - Gear: $D_0 = 8.800$ in Pitch Line Speed: $v_1 = 5.05$ ft/min Transmitted Load: $v_2 = 5.900$ in Pitch Line Speed: $v_3 = 5.05$ ft/min Face Width Guidelines (in): $0.800 = 1.200 = 1.600$ Stress Ratio: Face width/pinion diameter: $F/D_P = 0.500$ Ratio: Face width/pinion diameter: $F/D_P = 0.500$ Recommended range of ratio: $0.50 < F/D_P < 2.00$	Alignment Factor, K _m =1.0+C _{pr} +C _{ma} Pinion Proportion Factor, C _{pr} = 0.025 Enter: C _{pr} = 0.031 Type of gearing: Open Mesh Alignment Factor, C _{ma} = 0.272 Enter: C _{ma} = 0.272 Enter: C _{ma} = 1.08 Size Factor: K _a = 1.00 Pinlon Rim Thickness Factor: K _a = 1.00 Service Factor: K _B = 1.00 Service Factor: SF = 1.00 Reliability Factor: SF = 1.50 Enter: Design Life: 4000 Pinlon - Number of load cycles: N _P = 1.56 Gear - Number of load cycles: N _P = 5.35+00 Bending Stress Cycle Factor: Y _{NP} = 0.93	If F>1.0 0.031 [0.50 < F/D _P < Figure 9-16 Commer. Precision 0.150
Input Data: Sector: K _o = 1.50 Table 9-7 Power: P = 15 hp Power P _{oss} = 22.5 hp Pitch: P _d = 10 Fig. 9-24 Speed: n _o = 2216 rpm Teeth: N _o = 88 puted data: peed: n _o = 2215.9 rpm Teeth: M _o = 88 Itelian: D _o = 2215.9 rpm Ratio: m _o = 2.93 Pinlon: D _p = 3.000 in Ratio: M _o = 97 ib Speed: V _t = 5105 ft/min Nam Min Nom Max Min Nom Max Se (in): 0.800 1.200 1.600 Width: F = 1.500 in meter: FID _p = 0.50 ratio: 0.50 < FID _p < 2.00		Pigure 9-16 Commer. Precision 1 0.150 0.086 Computed] Table 9-8: Use 1.00 if Polific 9-18: Use 1.00 if solific 9-18: Use 1.00 if solific 9-10
actor: K _o = 1.50 Table 9-7 Cower: P = 15 hp Plych: P _{des} = 22.5 hp Pltch: P _d = 10 Fig. 9-24 Speed: n _o = 2216 rpm Teeth: N _o = 30 Speed: n _o = 2216 rpm Teeth: N _o = 88 Duted data: peed: n _o = 2215.9 rpm Teeth: N _o = 88 Pullon: D _o = 3.000 in Gear: D _o = 8.800 in Speed: v _i = 5105 fvmin I Load: v _i = 5105 fvmin Speed: v _i = 5105 fvmin Min Nom Max Min Nom Max Se (in): 0.800 1.200 1.600 Width: F = 1.500 in Teeth: C _o = 2300 Table 9-10		Figure 9-16 Commer. Precision 10.150 0.150 0.086 Figure 9-17 [Computed] Table 9-8: Use 1.00 if P _d Fig. 9-18: Use 1.00 if solid so
Power: P = 15 hp Putch: P _a = 10 Fig. 9-24 Speed: n _P = 6500 rpm Teeth: N _P = 30 Speed: n _B = 2216 rpm Teeth: N _B = 88.0 Teeth: N _B = 2215.9 rpm Ratio: m _B = 2.93 Pinlon: D _B = 3.000 in Speed: N _B = 3.000 in Min Nom Max Min Nom Max Se (in): 0.800 1.200 1.600 Width: F = 1.500 in Teeth: O.50 < FID _B < 2.00 Teatic: 0.50 < FID _B < 2.00		Commer. Precision 0.150 0.086 Figure 9-17 [Computed] Table 9-8: Use 1.00 if P _d Fig. 9-18: Use 1.00 if solii Fig. 9-18: Use 1.00 if solii Fig. 9-18: Use 1.00 if solii Cable 9-11 Use 1.00 for F hours See Table 9-1 Guidelines: Y _N , 710° cycles > 10° 1.00 0.93
Power P cos = 22.5 hp Pitch: P = 10 Fig. 9-24 Speed: n = 30 Speed: n = 22.16 rpm Teeth: N = 88.0 Teeth: N = 88 Purted data: peed: n = 22.15 ppm Ratio: m = 2.93 Pinion: D = 3.000 in Speed: v = 5.90 in Speed: v = 5.00 in Speed: v = 5.00 in Min Nom Max Min Nom Max Se (in): 0.800 1.200 in Struction: 0.800 in Struction: 0.800 in Struction: 0.800 in Struct		0.150 0.086 Figure 9-17 [Computed] Table 9-8: Use 1.00 if P _d Fig. 9-18: Use 1.00 if solid Fig. 9-18: Use 1.00 for solid Use 1.00 if no unusual co Table 9-11 Use 1.00 for F hours See Table 9-1 Guidelines: Y _N , 1.00 0.93 1.00 0.95
Pitch: $P_d =$ 10 Fig. 9-24 Speed: $n_P =$ 6500 rpm Teeth: $N_P =$ 30 Speed: $n_P =$ 30 reeth: $N_P =$ 88.0 Teeth: $N_P =$ 88 purfed data: 88 88.0 peed: $n_Q =$ 2.93 Plnion: $D_P =$ 3.000 in Ratio: $D_P =$ 3.000 in speed: $V_t =$ 5105 ft/min I Load: $V_t =$ 97 ib Speed: $V_t =$ 97 ib siry imput Data: 97 ib molin: Nom Max se (in): 0.800 1.200 1.600 Width: $F =$ 1.500 in strain: strain: meter: $F/D_P =$ 0.50 ratio: 0.50 ratio: 0.50 < F/D _P < 2.00		Figure 9-17 [Computed] Table 9-8: Use 1.00 if P _d Fig. 9-18: Use 1.00 if solis Fig. 9-18: Use 1.00 if solis Use 1.00 if no unusual co Table 9-11 Use 1.00 for F Table 9-11 Use 1.00 for F Table 9-11 Use 1.00 for F To cycles > 10' 1.00 0.93 1.00 0.95
Speed: n p = 6500 rpm Teeth: N ρ = 30 Speed: n σ = 2216 rpm teeth: 88.0 reeth: 88.0 puted data: 88 puted data: 2215.9 rpm Ratio: m ₀ = 2.93 Pinlon: D _p = 3.000 in Ratio: C = 5.900 in Rance: C = 5.900 in Rance: C = 5.900 in I Load: V _t = 97 ib Min Nom Max se (in): 0.800 1.200 1.600 Width: F = 1.500 in structure meter: F/D _P = 0.50 incenter ficient: Cp = 2300 Table 9-10		[Computed] Table 9-8: Use 1.00 if P_d Fig. 9-18: Use 1.00 if solit Fig. 9-18: Use 1.00 if solit Use 1.00 if no unusual co Table 9-11 Use 1.00 for F hours See Table 9-1 Guidelines: V_{N_1} 1.00 0.93 1.00 0.95
Teeth: Np = 30 Speed: No = 2216 rpm Feeth: No = 88 Speed: No = 88 Speed: No = 2215.9 rpm Speed: No = 2300 in Speed:		Table 9-8: Use 1.00 if P _d Fig. 9-18: Use 1.00 if solid Fig. 9-18: Use 1.00 if solid Use 1.00 if no unusual co Table 9-11 Use 1.00 for F hours See Table 9-1 Guldelines: Y _N T0' cycles >10' 1.00 0.93
teeth:		Fig. 9-18: Use 1.00 if solid s
teeth: 88.0 Teeth: $N_G = 88$ puted data: peed: $n_G = 2215.9$ rpm Ratio: $m_G = 2.93$ Pinlon: $D_P = 3.000$ in Gear: $D_G = 8.800$ in Speed: $v_i = 5.900$ in Speed: $v_i = 5.05$ f/min I Load: $v_i = 5.05$ f/min Speed: $v_i = 5.05$ f/min Speed: $v_i = 5.05$ f/min Min Nom Max Min Nom Max Width: $F = 1.500$ in St Tratic: 0.50 < F/D _P < 2.00 Tratic: 0.50 < F/D _P < 2.00		Fig. 9-18: Use 1.00 if soils Use 1.00 if no unusual co Table 9-11 Use 1.00 for F hours See Table 9-1 Guidelines: Y _N , Z 10' cycles >10' 1.00 0.93
Teeth: No = 88 purted data: peed: no = 2215.9 rpm Ratio: mo = 2.93 Pinion: Dp = 3.000 in Gear: Do = 8.800 in Speed: v _i = 5105 ft/min I Load: V _i = 97 ib Sylphout Data: Min Nom Max Min Nom Max Width: F = 1.500 in Struction: 0.800 1.200 1.600 Struction: 0.50 < FIDp < 2.00 ficient: Cp = 2300 Table 9-10		Use 1.00 if no unusual co Table 9-11 Use 1.00 for F hours See Table 9-1 Guidelines: Y _N , 10' cycles >10' 1.00 0.93 1.00 0.95
puted data: peed:		Table 9-11 Use 1.00 for Fhours See Table 9-1 Guldelines: Y _N , 2 10' cycles >10' 1.00 0.93 1.00 0.95
2.93 2.93 3.000 in 8.800 in 5.900 in 5.900 in 97 ib 87 ib 71.200 1.500 in 0.50 7.500 in 0.50		Andres See Table 9-1 Guidelines: Y _N Z 10' cycles >10' 1.00 0.93 1.00 0.95
2.93 3.000 in 8.800 in 5.900 in 5105 f/min 97 ib 87 ib 1.200 1.500 1.600 7.500 in 0.50 7.500 in 0.50 7.500 in 0.50		Guidelines: Y _N , Z 10' cycles >10' 1.00 0.93 1.00 0.95
3.000 in 8.800 in 5.900 in 5105 f/min 97 ib 87 ib 1.200 1.600 1.500 in 0.50 1050 in 0.50	100	1.00 0.93 1.00 0.93
8.800 in 5.900 in 5.105 rt/min 97 ib Nom Max 1.200 1.600 1.500 in 0.50 7.500 in 0.50		1.00 0.93
5.900 in 5105 rtmin 97 lb 8 Nom Max 1.200 1.600 1.500 in 0.50 /Dp < 2.00		1.00 0.95
5105 f/min 97 lb Stra Nom Max 1.200 1.600 7.500 in 0.50 /Dp < 2.00	Bending Stress Cycle Factor: Y _{NG} = 0.95	
97 lb Stre Nom Max 1.200 1.600 1.500 in 0.50 (Dp < 2.00	Pitting Stress Cycle Factor: Z _{NP} = 0.89	1.00 0.89 Fig. 9-23
	Pitting Stress Cycle Factor: $Z_{NG} = 0.91$	1,00 0.91 Fig. 9-23
Nom Max 1.200 1.600 1.500 in 0.50 /Dp < 2.00		
1.200 1.600 1.500 in 0.50 /Dp < 2.00		3,685 psi See Fig. 9-11 or
1.500 in 0.50 /Dp < 2.00 2300 Table 9-10	Gear: Required Sat = 3,	3,131 psi Table 9-5
0.50 /Dp < 2.00		
ratio: $0.50 < F/D_p < 2.00$ ficient: $Cp = 2300$		63,637 psl See Fig. 9-12 or
Cp = 2300	Gear: Required Sac = 62,	62,239 psi Tabie 9-5
	Required hardness of plnion HB: 107	7 Equations in Fig. 9-12-Grade 1
Enter: Quality Number: A v = 5 Table 9-3	Required hardness of gear HB: 103	3 Equations in Fig. 9-12-Grade 1
Dynamic Factor: K = 1.00 Table 9-9 Spec	Specify materials, alloy and heat treatment, for most severe requirement.	t, for most severe requirement.
[Factors for computing K _v .] B = 0.000 C = 106.00 One	One possible material specification:	
Reference: Np = 30 Ng = 88 Stress	Stresses are quite low for steel gears. Suggest redesign.	t redesign.
Bending Geometry Factor-Pinion: Jp = 0.460 Fig. 9-15		
Bending Geometry Factor-Gear: Jo = 0.530 Fig. 9-15		
Reference: $m_0 = 2.93$ Enter Pitting Geometry Factor $I = 0.130$ Fin 9.21		

Pinion Gear Pinion Gear

2285 psi 1983 psi 37,758 psi 37,758 psi

Computed bending stress number, s_t = Computed contact stress number, s_c = Computed contact stress number, s_c =

23 38 38

Ans. Problem: Ans. Problem: Ans. Problem: Ans. Problem:

Computed bending stress number, s_t =

APPLICATION: Problems 40, 46, 52, 58		Factors in Design Analysis:	rsis:		
Portable industrial water pump driven by a gu	driven by a gasoline engine	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	IF F<1.0	If F>1.0	
initial input Data:		Pinion Proportion Factor, Cpt =	0.025	0.031 [0.50 < F	$[0.50 < F/D_P < 2.00]$
Overload Factor: Ko =	1.70 Table 9-7	Enter: C _{pd} =	0.031 Fig	Figure 9-16	
Transmitted Power: P =	125 hp	Type of gearing:	Open	Commer. Precision	on Ex. Prec.
Design Power P des =	212.5 hp	Mesh Alignment Factor, C _{me} =	0.272	0.150 0.086	0.053
Diametral Pitch: $P_d =$	4 Fig. 9-24	Enter: Cms =	0.15 Fig	Figure 9-17	
Input Speed: np =	25	Alignment Factor: K _m =	1.18 [C	[Computed]	
Number of Pinion Teeth: Np =		Size Factor: K _s =	1.05 Ta	Table 9-8: Use 1.00 if P _d >= 5	If Pd >= 5
Desired Output Speed: no =	1050 rpm	Pinion Rim Thickness Factor: Kgp =	1.00 Fig	Fig. 9-18; Use 1.00 if solid blank	if solid blank
Computed number of gear teeth:	76.2	Gear Rim Thickness Factor: K BG =	1.00 Fig	Fig. 9-18: Use 1.00 if solid blank	if solid blank
Enter: Chosen No. of Gear Teeth: No =	9/2	Service Factor: SF =	1.00 Us	Use 1.00 If no unusual conditions	ual conditions
Computed data:		Reliability Factor: KR =	1.00 Ta	Table 9-11 Use 1.00 for R =	O for R = .99
Actual Output Speed: ng =	1052.6 rpm	Enter: Design Life:	8000 ho	hours See Table 9-12	de 9-12
Gear Ratio: Mg =		Pinion - Number of load cycles: Np =	1.2E+09	Guidelines: Y _N , Z _N	ν, ζ Υ
	w	Gear - Number of load cycles: N _G =	5.15+08 10	10' cycles >10'	<10.
Pitch Diameter - Gear: Dg =	19.000 ln	Bending Stress Cycle Factor: Y NP =	0.93	1.00 0.93	Flg. 9-22
ance:	13.500 ln	Bending Stress Cycle Factor: Y _{NG} =	0.95	1.00 0.95	Flg. 9-22
Pitch Line Speed: Vt =	5236 f/min	Pitting Stress Cycle Factor: Z _{NP} =	0.90	1.00 0.90	Flg. 9-23
>	di 887	Pitting Stress Cycle Factor: Z _{NG} =	0.91	1.00 0.91	Flg. 9-23
Secondary Input Data		Stress Analysis: Bending			
Min	Nom Max	Pinion: Required sat =	15,968 psl		See Flg. 9-11 or
Face Width Guldelines (in): 2.000	3.000 4.000	Gear: Required Sat ==	13,979 psi	i Table 9-5	ហ្
Enter: Face Width: F=	1.500 in	Stress Analysis: Pitting			
Ratio: Face width/pinion diameter: F/Dp =	0.50 Entered	Pinion: Required S _{sc} =	106,609 psi		See Fig. 9-12 or
Recommended range of ratio: 0.50 < F/D _p < 2.00	/Dp < 2.00	Gear: Required Sac =	105,438 psi	d Table 9-5	5
Enter: Elastic Coefficient: Cp =	Cp = 2300 Table 9-10	Required hardness of pinion HB:	241 Eq	Equations in Fig. 9-12-Grade	12-Grade 1
Enter: Quality Number: Av = 9	9 Table 9-3	Required hardness of gear HB:	237 Ec	Equations in Fig. 9-12-Grade	12-Grade 1
Dynamic Factor: K → =	1.56 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for m	ost severe requi	rement.
[Factors for computing K_v :] $B = 0.630$	C= 70.71	One possible material specification:			
Reference: Np = 32	Ng = 76	SAE 1040 WQT 1000, 269 HB, 22% elongation	ngation		
Bending Geometry Factor-Pinion: JP =	Jp = 0.465 Fig. 9-15	SAE 1040 WQT 1000, 269 HB, 22% elongation	ngation		
Bending Geometry Factor-Gear: Ja=	0.520 Fig. 9-15				
Reference: mg = 2.38	3 = 2.38				

Pinlon Gear Pinlon Gear

APPLICATION: Proble	TION: Problems 41, 47, 53, 59	Factors in Design Analysis:	/sis:			
Lawn and garden tractor with fluid moror drive	lrive	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0	11 F>1.0		
Initial Input Data:		Pinion Proportion Factor, Cpf ==	0.027	0.030 [0.	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: Ko =	= 1.75 Table 9-7	Enter: Cpf =	0.030 F	Figure 9-16		
Transmitted Power: P =	= 2.5 hp	Type of gearing:	Open	Commer. P	Precision	Ex. Prec.
Design Power P _{des} =	4	Mesh Alignment Factor, C _{ma} =	0.268	0.147	0.083	0.051
Diametral Pitch: P _d =	= 10 Fig. 9-24	Enter: C _{ms} =	0.147 F	Figure 9-17		
input Speed: np =	9	Ailgnmen	1.18	[Computed]		
Number of Pinion Teeth: Np =	= 24	Size Factor: K, =	1.00	Table 9-8: Use 1.00 if P = 5	e 1.00 if P	5=2
Desired Output Speed: no	= 263 rpm	Pinion Rim Thickness Factor: Kap =	1.00 F	Fig. 9-18: Use 1.00 if solid blank	1.00 if sol	d blank
Computed number of gear teeth:	62.1	Gear Rim Thickness Factor: K _{BG} =	1.00 F	Fig. 9-18: Use 1.00 if solid blank	1.00 if soil	d blank
Enter: Chosen No. of Gear Teeth: No =	e 62	Service Factor: SF =	1.25	Use 1.00 if no unusual conditions	unusual c	onditions
Computed data:		Reliability Factor: K _R =	0.85	Table 9-11 Use 1.00 for R = .99	se 1.00 for	8 = A
Actual Output Speed: ng =	1 = 263.2 rpm	Enter: Design Life:	2000	hours Se	See Table 9-12	2
Gear Ratio: mg =		Pinion - Number of load cycles: Np ==	8.2E+07	Buld	Guldelines: YN, ZN	Z
Pitch Diameter - Pinion: Dem	(4	Gear - Number of load cycles: No ==	3.2E+07	10' cycles	>10.	×10.
	.= 6.200 in	Bending Stress Cycle Factor: Y NP =	96.0	8.	0.98	Fig. 9-22
stance:	C = 4.300 in	Bending Stress Cycle Factor: Y No =	1.00	9.	1.00	Fig. 9-22
Pitch Line Speed: Vt	Vt = 427 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.95	9.	0.95	Fig. 9-23
Transmitted Load: Wt =	193 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.97	9.	76.0	Flg. 9-23
Secondary Input Data	ta:	Stress Analysis: Bending				
Min	xay mon u	Pinion: Required Sat =	10,254 psi		See Fig. 9-11 or	ō
Face Width Guldelines (in): 0.800	00 1.200 1.600	Gear: Required sat =	8,642 psi		Table 9-5	
Enter: Face Width: F=	1.250 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/D _P =	□ 0.52	Pinion: Required Sac =	87,531 psi		See Fig. 9-12 or	ō
Recommended range of ratio: 0.50 < F/D _p < 2.00	F/Dp < 2.00	Gear: Required sac =	85,727 psi		Table 9-5	
Enter: Elastic Coef. (Ductile Iron) Cp	Cp = 2100 Table 9-10	10 Required hardness of pinion HB:	181	Equations in Fig. 9-12-Grade	ig. 9-12-G	rade 1
Enter: Quality Number: Av	Av = 11 Table 9-3	Required hardness of gear HB:	176	Equations in Fig. 9-12-Grade	lg. 9-12-G	rade 1
Dynamic Factor: Kv	Kv = 1.28 Table 9-9	9 Specify materials, alloy and heat treatment, for most severe requirement.	ment, for r	most severe	requireme	nt
[Factors for computing K_v :] $B = 0.826$	S C= 59.75	One possible material specification:				
Reference: Np = 24	Ng = 62	Pinion: Ductile iron 100-70-03 Q&T set = 27,000 psi; sec = 92,000 psi	= 27,000 ps	si; Sec = 92,0	isd ood	
Bending Geometry Factor-Pinion: Jp =	= 0.430 Fig. 9-15	Gear: Ductile iron 100-70-03 Q&T s _{et} = 27,000 psi; s _{ec} = 92,000 psi	27,000 psi	I; Sec = 92,00	lsd 00	
Bending Geometry Factor-Gear: Je =	= 0.500 Fig. 9-15					
ence: m _c	= 2.58					
	= 0.122 Fig. 9-21					Same Service

Pinion Gear Pinion Gear

9458 psi 8134 psi 78,263 psi 78,263 psi

Computed bending stress number, s_t = Computed bending stress number, s_t = Computed contact stress number, s_c = Computed contact stress number, s_c =

4 4 B B

Ans. Problem: Ans. Problem: Ans. Problem: Ans. Problem:

DES APPLICATION: IPmblem 60	DESIGN OF SPUR GEARS Factors in Design Analysis:	Sis:			
	Alignment Factor K =1 0+0.+C	0 12	FF>1.0		
Reciprocating compressor driven by an electric motor	Augnmeint ractor, rm-1.010pt-cma				
Initial Input Data:	Pinion Proportion Factor, Cpf =	0.044	0.048 [0	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: C _M =	0.048 FI	Figure 9-16		
Transmitted Power: P = 5 hp	Type of gearing:	Open	Commer. F	Precision	Ex. Prec.
Design Power P _{des} = 7.5 hp	Mesh Alignment Factor, C _{ma} =	0.268	0.147	0.083	0.051
Diametral Pitch: $P_d = 10$ Fig. 9-24	Enter: Cme =	0.147 F	Figure 9-17		
Input Speed: np = 1200 rpm	Alignment Factor: K _m =	1.20 [C	[Computed]		
Number of Pinion Teeth: Np = 18	Size Factor: K _g =	1.00 T	Table 9-8: Use 1.00 if Pd >= 5	e 1.00 if P	>= 5
Desired Output Speed: ne = 387.5 rpm	Pinion Rim Thickness Factor: K BP =	1.00 F	Fig. 9-18: Use 1.00 if solid blank	e 1.00 if sol	d blank
Computed number of gear teeth: 55.7	Gear Rim Thickness Factor: Kag =	1.00 F	Fig. 9-18: Use 1.00 if solid blank	e 1.00 if sol	d blank
Enter: Chosen No. of Gear Teeth: No = 56	Service Factor: SF =	1.00 U	Use 1.00 if no unusual conditions	o unusual o	suditions
Computed data:	Reliability Factor: K _R =	1.00 T	Table 9-11 Use 1.00 for R = .99	se 1.00 for	8 = .99
Actual Output Speed: no = 385.7 rpm	Enter: Design Life:	20000 h	hours Se	See Table 9-12	2
Gear Ratio: mg = 3.11	Pinion - Number of load cycles: Np =	1.4E+09	Guld	Guldelines: Y _N , Z _N	Z
Pitch Diameter - Pinion: Dp = 1.800 in	Gear - Number of load cycles: No =	4.6E+08	10' cycles	>10.	د <u>ا</u> 0,
Pitch Diameter - Gear: D _G = 5.600 in	Bending Stress Cycle Factor: Y _{NP} =	0.93	1.00	0.93	Fig. 9-22
Center Distance: C = 3.700 in	Bending Stress Cycle Factor: Y _{NG} =	0.95	9.1	0.95	Fig. 9-22
Pitch Line Speed: v₁ = 565 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.89	1.00	0.89	Fig. 9-23
_	Pitting Stress Cycle Factor: Z _{NG} =	0.92	1.00	0.92	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinlon: Required sat =	18,543 psi		See Fig. 9-11 or	ە د
Face Width Guidelines (in): 0.800 1.200 1.600	Gear: Required set =	14,522 psi		Table 9-5	
Enter: Face Width: F= 1.250 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/D _P = 0.69	Pinion: Required Sac =	143,088 psi		See Fig. 9-12 or	ō
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required sec =	8	si T	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	354 E	Equations in Fig. 9-12-Grade	Fig. 9-12-G	ade 1
Enter: Quality Number: A _V = 11 Table 9-3	Required hardness of gear HB:	340 E	Equations in Fig. 9-12-Grade	Fig. 9-12-G	ade 1
Dynamic Factor: Kv = 1.32 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for n	nost severe	requireme	nt.
[Factors for computing K_v :] $B = 0.826$ $C = 59.75$	One possible material specification:				
Reference: Np = 18 Ng = 56	Pinion requires HB 354: SAE 4140 OQT 900; HB 388, 16% Elongation	900; HB 38	8, 16% Elon	gation	
Bending Geometry Factor-Pinion: Jp = 0.320 Fig. 9-15	Gear requires HB 340: SAE 4140 OQT 1000; HB 340, 18% Elongation	000; HB 34	0, 18% Elon	gation	
Bending Geometry Factor-Gear: J a = 0.400 Fig. 9-15	Comments:				
$m_0 = 3.11$	It would be reasonable to specify the same heat treatment for both the pinion	e heat treat	ment for bot	th the pinior	
Enter: Pitting Geometry Factor: /= 0.700 Fig. 9-21	and the gear decause their contact stresses are very similar	SS are very	SILTINGIT.		The second of the second

	DESIGN OF SPUR GEARS				
APPLICATION: Problem 61	Factors In Design Analysis:	rsis:			
Milling machine driven by an electric motor	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	If F<1.0	If F>1.0		
Initial Input Data:	Pinion Proportion Factor, C _{pf} =	0.025	0.038	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpt =	0.038 F	Figure 9-16		
Transmitted Power: P = 20 hp	Type of gearing:	Open	Commer.	Precision	Ex. Prec.
Design Power P _{des} = 30 hp	Mesh Alignment Factor, C _{ma} =	0.280	0.158	0.093	0.058
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: Cme =	0.093 F	Figure 9-17		
Input Speed: n = 550 rpm	Alignment Factor: K _m =	1.13	[Computed]		
Number of Pinion Teath: Np = 24	Size Factor: K _s =	1.00	rable 9-8: (Table 9-8: Use 1.00 if P _d >= 5	g >= 5
Desired Output Speed: ne = 185 rpm	Pinion Rim Thickness Factor: K BP =	1.00	Fig. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	lid blank
Computed number of gear teeth: 71.4	Gear Rim Thickness Factor: K 8g =	1.00	Fig. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	lid blank
Enter: Chosen No. of Gear Teeth: No = 71	Service Factor: SF =	1.00	Jse 1.00 if	Use 1.00 if no unusual conditions	suditions
Computed data:	Reliability Factor: K _R =	1.25	rable 9-11	Table 9-11 Use 1.00 for R = .99	R = .99
Actual Output Speed: ng == 185.9 rpm	Enter: Design Life:	20000	hours	See Table 9-12	.12
Gear Ratio: mg = 2.96	Pinion - Number of load cycles: Np =	6.6E+08	O O	Guidelines: Y _N , Z _N	Z
Pitch Diameter - Pinion: Dp ≈ 4,000 in	Gear - Number of load cycles: N _G =	2.2E+08	2.2E+08 10' cycles	>10.	<10.
Pitch Diameter - Gear: Dg = 11,833 in	Bending Stress Cycle Factor: Y _{NP} =	0.94	1.00	0.94	Fig. 9-22
Center Distance: C ≈ 7.917 in	Bending Stress Cycle Factor: Y _{NG} =	96.0	00.1	0.96	Fig. 9-22
Pitch Line Speed: v _t = 576 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.91	9.	0.91	Fig. 9-23
Transmitted Load: W₁ = 1146 ib	Pitting Stress Cycle Factor: Z _{NG} =	0.93	1.00	0.93	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required sat =	26,640 psi	· g	See Fig. 9-11 or	1 or
Face Width Guidelines (in): 1.333 2.000 2.667	Gear: Required sat ==	21,737 psi	<u>.</u>	Table 9-5	
Enter: Face Width: F= 2.000 in	Stress Analysis: Pitting				
Ratio: Face width/pinlon diameter: F/Dp ≈ 0.50	Pinion: Required sac ==	164,319 psi	· <u>·</u>	See Fig. 9-12 or	2 or
Recommended range of ratio: $0.50 < F/D_p < 2.00$	Gear: Required Sac =	160,785 p	psi	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	420	=quations i	Equations in Fig. 9-12-Grade	irade 1
Enter: Quality Number: A _v = 9 Table 9-3	Required hardness of gear HB:	409	Equations li	Equations in Fig. 9-12-Grade	srade 1
Dynamic Factor: K _v = 1.20 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for	most seve	re requirem	ent.
[Factors for computing K_{ν} :] $B = 0.630$ $C = 70.71$	One possible material specification:				
Reference: $N_P = 24$ $N_G = 71$	Pinion and gear require flame or induction hardening	hardening			
Bending Geometry Factor-Pinion: $J_P = 0.350$ Fig. 9-15	SAE 4140 OQT 800; HB 352, 21% Elongation-Core: Case harden to HRC 50 min.	ation-Core	: Case han	den to HRC	50 min.
Bending Geometry Factor-Gear: Jo = 0.420 Fig. 9-15	Comments:				
Reference: $m_G = 2.96$	It would be reasonable to specify the same heat treatment for both the pinion and the near here itee their contact stresses are very similar	e heat trea	tment for by similar	oth the pinio	
0.100	ATIO LIE Year Devaue a reli common eu ee	DA DIE CO	OHI III OH	SHE SAMSACE	

APPLICATION: Problem 62	Factors In Design Analysis:	sis:			
Punch press driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	If F<1.0	IFF>1.0		
Initial Input Data:	Pinion Proportion Factor, C _{pf} =	0.025	0.050	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: K _o = 1.75 Table 9-7	Enter: Cpt =	0.05	Figure 9-16		
Transmitted Power: P = 50 hp	Type of gearing:	Open	Commer. F	Precision	Ex. Prec.
Design Power P _{des} = 87.5 hp	Mesh Alignment Factor, Cma =	0.296	0.173	0.105	0.068
	Enter: Cme =	0.173	Figure 9-17		
Input Speed: np = 900 rpm	Alignment Factor: K _m =	1.22	[Computed]		
Number of Pinion Teeth: Np = 24	Size Factor: K _s =	1.05	Table 9-8: Use 1.00 if P d >= 5	te 1.00 if P.	2=5
Desired Output Speed: ne = 227.5 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00	Fig. 9-18: Use 1.00 if solid blank	e 1.00 if sol	d blank
Computed number of gear teeth: 94.9	Gear Rim Thickness Factor: K ₈₀ =	1.00	Fig. 9-18: Use 1.00 if solid blank	e 1.00 if sol	d blank
Enter: Chosen No. of Gear Teeth: No = 95	Service Factor: SF =	1.00	Use 1.00 if no unusual conditions	o unusual c	suditions
Computed data:	Reliability Factor: K _R =	1.25	Table 9-11 Use 1.00 for R = .99	se 1.00 for	86. = A
Actual Output Speed: no = 227.4 rpm	Enter: Design Life:	20000	hours S	See Table 9-12	2
Gear Ratio: Mg = 3.96	Pinion - Number of load cycles: Np =	1.1E+09	Guid	Guidelines: Y _N , Z _N	Z
	Gear - Number of load cycles: N _G =	2.7E+08	10' cycles	>10,	<10,
Pitch Diameter - Gear:	Bending Stress Cycle Factor: Y _{NP} =	0.94	1.80	0.94	Fig. 9-22
Center Distance: C = 14.875 in	Bending Stress Cycle Factor: Y _{NG} =	96.0	1.00	96.0	Fig. 9-22
Pitch Line Speed: v _t = 1414 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	06.0	9.	0.00	Fig. 9-23
>	Pitting Stress Cycle Factor: Z _{NG} =	0.93	9.	0.93	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required Sat =	19,333 psi		See Fig. 9-11 or	٥
Face Width Guidelines (in): 2.000 3.000 4.000	Gear: Required sat =	16,226 psi		Table 9-5	
Enter: Face Width: F= 3.000 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/Dp = 0.50	Pinion: Required Sac =	139,718 psi		See Fig. 9-12 or	ō
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required Sac =	135,211 psi	T isd	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	344	Equations in Fig. 9-12-Grade 1	Fig. 9-12-G	ade 1
Enter: Quality Number: A _v = 11 Table 9-3	Required hardness of gear HB:	330	Equations in Fig. 9-12-Grade	Fig. 9-12-G	ade 1
Dynamic Factor: Kv = 1.50 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for	most sever	nequirem	nt.
[Factors for computing K_v :] $B = 0.826$ $C = 59.75$	One possible material specification:				
Reference: Np = 24 Ng = 95	Pinion requires HB 344; SAE 1040 WQT 800; HB 352; 21% elongation	800; HB 3	352; 21% elor	ngation	
Bending Geometry Factor-Pinion: Jp = 0.360 Fig. 9-15	Gear requires HB 330: SAE 1040 WQT 800; HB 352; 21% elongation	300; HB 3	52; 21% elong	gation	
Bending Geometry Factor-Gear: Jo = 0.420 Fig. 9-15	Comments:				
$m_{G} = 3.96$	It would be reasonable to specify the same heat treatment for both the pinion	e heat tre	atment for bo	th the pinior	
Enter: Pitting Geometry Factor: /= 0.114 Fig. 9-21	and the gear because their contact stresses are very similar.	es are ver	y similar.		

APPLICATION: IProblem 63	DESIGN OF SPUR GEARS Factors in Design Analysis:	sis:			
Cement mixer driven by a gasoline engine	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0	IFF>1.0		
Initial Input Data:	Pinion Proportion Factor, C _{pf} ≈	0.075	0.091	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: Ko = 2.00 Table 9-7	Enter: Cpf =:	0.091	Figure 9-16		
Transmitted Power: P = 2.5 hp	Type of gearing:	Open	Commer.	Precision	Ex. Prec.
Design Power P _{des} ≈ 5 hp	Mesh Alignment Factor, C _{me} ≕	0.284	0.162	960'0	0.061
Diametral Pitch: $P_d = 8$ Fig. 9-24	Enter: Cme =	0.284	Figure 9-17		
Input Speed: np = 900 rpm	Alignment Factor: K _m =	1.38	[Computed]		
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00	Table 9-8: U	Table 9-8: Use 1.00 if Pd >= 5	>= 5
Desired Output Speed: ne = 75 rpm	Pinion Rim Thickness Factor: K BP =	1.00	Fig. 9-18: Us	Fig. 9-18: Use 1.00 if solid blank	d blank
Computed number of gear teeth: 216.0	Gear Rim Thickness Factor: K _{BG} =	1.00	Fig. 9-18: Us	Fig. 9-18: Use 1.00 if solid blank	d blank
Enter: Chosen No. of Gear Teeth: No = 216	Service Factor: SF=	1.00	Use 1.00 if n	Use 1.00 if no unusual conditions	nditions
Computed data:	Reliability Factor: KR =	1.00	Table 9-11 (Table 9-11 Use 1.00 for R	66. = 2
Actual Output Speed: no = 75.0 rpm	Enter: Design Life:	8000	hours	See Table 9-12	2
Gear Ratio: m _G ≈ 12.00	Pinion - Number of load cycles: Np =	4.3E+08	Ouk Gui	Guidelines: Y _N , Z _N	z
Pitch Diameter - Pinion: D _P = 2.250 in	Gear - Number of load cycles: Ng =	3.6E+07	10' cycles	>10.	<10,
Pitch Diameter - Gear: D _G ≈ 27.000 in	Bending Stress Cycle Factor: Y NP =	0.95	1.00	0.95	Flg. 9-22
Center Distance: C = 14.625 in	Bending Stress Cycle Factor: Y _{NG} =	0.99	9.1	0.99	Fig. 9-22
Pitch Line Speed: v _t == 530 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.92	9:	0.92	Fig. 9-23
Transmitted Load: Wt = 156 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.97	1.00	0.97	Flg. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required sat ==	6,796 psi		See Fig. 9-11 or	ō
Face Width Guidelines (in): 1.000 1.500 2.000	Gear: Required sat =	4,929 psi		Table 9-5	
Enter: Face Width: F = 2.250 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/D _P = 1.00	Pinion: Required sac =	72,362 psi		See Fig. 9-12 or	ō
Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required sac =	68,632 psi		Table 9-5	
Enter: Elastic Coefficient: Cp = 2100 Table 9-10	Required hardness of pinion HB:	134	Equations In	Equations In Fig. 9-12-Grade	ade 1
Enter: Quality Number: A _v = 12 Table 9-3	Required hardness of gear HB:	123	Equations in	Equations in Fig. 9-12-Grade	ade 1
Dynamic Factor: Kv = 1.38 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for	most sever	e requireme	nt.
[Factors for computing K _V :] B= 0.915 C= 54.74	One possible material specification:				
Reference: Np = 18 Ng = 216	Pinion requires less than HB 180: SAE 1040 CD; HB 160; 12% elongation	340 CD; H	IB 160; 12%	elongation	
Bending Geometry Factor-Pinion: Jp = 0.325 Fig. 9-15	Gear requires grey cast iron, ASTM A48, Class 40 [Table 9-6]	Class 40	[Table 9-6]		
Bending Geometry Factor-Gear: Jo = 0.430 Fig. 9-15	Comments:				
$m_G = 12.00$	Large gear can be conveniently cast and affixed to the drum of the cement mixer.	affixed to	the drum of t	the cement m	xer.
Enter: Pitting Geometry Factor: 1 = 0.116 Fig. 9-21	Steel gear can be mounted on engine shaft.	£.	10.10		

APPLICATION: Problem 64	Factors In Design Analysis:			
Wood chipper driven by a gasoline engine: Speed Increaser	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	11 12 14 15 15 15	51.0	
Initial Input Data:	Pinion Proportion Factor, Cpf =	0.065 0.0	0.090 [0.50 < F/D _P < 2.00]	_P < 2.00]
Overload Factor: K _o = 2.75 Table 9-7	Enter: Cpt =	0.09 Figur	Figure 9-16	
Transmitted Power: P = 75 hp		Open Com	Commer. Precision	Ex. Prec.
Design Power $P_{des} = 206.25 \text{ hp}$		0.296 0.1	0.173 0.105	0.068
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: C _{me} =	0.296 Figur	Figure 9-17	
Input Speed: n = 2200 rpm	Alignment Factor: K _m =	1.39 [Com	[Computed]	
Number of Pinion Teeth: Np = 41	Size Factor: K _s =	1.00 Table	Table 9-8: Use 1.00 if P _d >= 5	P == 5
Desired Output Speed: ng = 4550 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig. 9	Fig. 9-18: Use 1.00 if solid blank	solid blank
Computed number of gear teeth: 19.8	Gear Rim Thickness Factor: K BG =	1.00 Fig. 9	Fig. 9-18: Use 1.00 if solid blank	solid blank
Enter: Chosen No. of Gear Teeth: No = 20	Service Factor: SF =	1.00 Use 1	Use 1.00 if no unusual conditions	conditions
Computed data: Note - Gear drives pinion	Reliability Factor: K _R =	1.00 Table	Table 9-11 Use 1.00 for R =	or R = .99
Actual Output Speed: n _G = 4510.0 rpm	Enter: Design Life:	8000 hours	See Table 9-12	9-12
Gear Ratio: m _G = 2.05	Pinion - Number of load cycles: Np = 1	1.1E+09	Guidelines: Y _N , Z _N	ς, Z _N
	Gear - Number of load cycles: No = 5	5.2E+08 10" o	10' cycles >10'	<10.
Pitch Diameter - Gear: D _G = 3.333 in	Bending Stress Cycle Factor: Y _{NP} =	0.94	1.00 0.94	Fig. 9-22
Center Distance: C = 5.083 in	Bending Stress Cycle Factor: Y _{NG} =	0.95	1.00 0.95	Fig. 9-22
Pitch Line Speed: v₁ = 3936 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.90	1.00 0.90	Fig. 9-23
Transmitted Load: W ₁ = 629 ib	Pitting Stress Cycle Factor: Z _{NG} =	0.97	1.00 0.91	Fig. 9-23
Secondary Input Data:	≥	drives pinion		
Min Nom Max	Gear: Required sat =	24,281 psi	See Fig. 9-11 or	·11 or
Face Width Guidelines (in): 1.333 2.000 2.667	Pinion: Required sat =	27,866 psi	Table 9-5	
Enter: Face Width: F= 3.000 in	Stress Analysis: Pitting - Adjusted equation to use Da in place of Dp	tion to use L	In place of D	
Ratio: Face width/pinion diameter: F/D _P = 0.90		171,762 psi	See Fig. 9-12 or	-12 or
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required sec = 1	LO	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	443 Equa	Equations in Fig. 9-12-Grade	-Grade 1
Enter: Quality Number: A _v = 11 Table 9-3	Required hardness of gear HB:	437 Equa	Equations in Fig. 9-12-Grade	-Grade 1
Dynamic Factor: Kv = 1.81 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ent, for mos	t severe require	ment.
Factors for computing K _V :] B = 0.826 C = 59.75	One possible material specification:			
41 No=	Pinion and gear require flame or induction hardening	ardening	or induction hardening	Ed min
Bending Geometry Factor-Cear: Ja = 0.330 Fig. 9-15		90.00		
$m_{\odot} = 2.05$	It would be reasonable to specify the same heat treatment for both the pinion	heat treatmer	nt for both the pin	hoi
L	and the near because their contact etraces are used initial			

DESIGN OF SPUR GEARS NO	NOTE: SI Metric data	 Small tractor driven by a gasoline engine Problem 65 		
Initial Input Data:		Factors in Design Analysis:		
Input Power:	P = 3.0 kW	Alignment Factor, K _m =1.0+C _{pt} +C _{ma} If F<25 If F>25 mm		
Input Speed: n	mp = 600 rpm	Pinion Proportion Factor, Cpt = 0.042 0.049 [0.50 <	$[0.50 < F/D_P < 2.00]$	
	m = 3.00 mm	Enter: C _{pt} = 0.049 Figure 9-16		
	$N_P = 20$	Type of gearing: Open Commer. Precision	on Ex. Prec.	
Desired Output Speed: n	ng = 175 rpm		3 0.054	
	68.6	Enter: C _{me} = 0.274 Figure 9-17		
Enter: Chosen No. of Gear Teeth: N	N _G = 68	Alignment Factor: K _m = 1.32 [Computed]		
Computed data:		Overload Factor: K _o = 2.00 Table 9-7		
Actual Output Speed:	n _G = 176.5 rpm	Size Factor: K _s = 1.00 Table 9-8: Use 1.00 if P _d >= 5	J#Pd>=5	
Gear Ratio: r	m ₆ = 3.40	Pinion Rim Thickness Factor: K _{BP} = 1.00 Fig. 9-18: Use 1.00 if solid blank	if solid blank	
Pitch Diameter - Pinion:	D _P ≈ 60.00 mm	Gear Rim Thickness Factor: K _{BG} = 1.00 Fig. 9-18: Use 1.00 if solid blank	if solid blank	
	D _G = 204.00 mm	Dynamic Factor: K _v = 1.32 [Computed: See Fig. 9-19]	1. 9-19] For K _w :	ڋ
Center Distance:	C = 132.00 mm	Service Factor: SF = 1.00 Use 1.00 if no unusual conditions	В	0.915
Pitch Line Speed:	v₁ = 1.88 m/s		S	3.90
Transmitted Load:	W₁ = 1592 N	Reliability Factor: K _R = 1.00 Table 9-11 Use 1.00 for R = .99	0 for R = .99	
		Enter: Design Life: 5000 hours See Ta	See Table 9-12	
Secondary Input Data:	Deta:	Pinion - Number of load cycles: Np = 1.8E+08 Guidelines: Yn, Zn	. Y _N , Z _N	
	Min Nom Max	Gear - Number of load cycles: N _G = 5.3E+07 10' cycles >10'	,0L>	
, mm	24 36 48	Bending Stress Cycle Factor: Y _{NP} = 0.97 1.00 0.97	Fig. 9-22	
Enter: Face Width: F	F= 40.0 mm	Bending Stress Cycle Factor: Y _{NG} = 0.99 1.00 0.99	Flg. 9-22	
Ratio: Face width/pinion diameter: F/Dp =	Dp = 0.67	Pitting Stress Cycle Factor: Z _{NP} = 0.94 1.00 0.94	Fig. 9-23	
Recommended range of ratio: 0.50 < F/D _p < 2.00	< F/Dp < 2.00	Pitting Stress Cycle Factor: Z _{NG} = 0.96 1.00 0.96	Flg. 9-23	Through-Hardened
Enfer: Elastic Coefficient: C	Cp = 191 Table 9-10	O Stress Analysis: Bending	Ö	Grade 1 Steel
Enter: Quality Number: A	Av = 12 Table 9-3	Pinion: Required Sat = 144 MPa	See Fig. 9-11 or HB 105	35 Fig. 9-11
REF: Np, Ng =	20 68	Gear: Required Sat = 113 MPa Table 9-5	-5 HB 46	5 Fig. 9-11
0			-	
Pinion:	Jp = 0.330 Fig. 9-15	SOS MPa	7071-6	<u>D</u>
	Jo = 0.415 Fig. 9-15	Gear: Required Sac = 938 MPa Table 9-5	모	332 Fig. 9-12
Enter: Pitting Geometry Factor:	I = 0.104 Fig. 9-21	Specify materials, alloy and heat treatment, for most severe requirement.	rement.	
REF: mg ==	3.40	One possible material specification: Steel pinion, Steel gear		
		Pinion requires HB 341: SAE 4340 OQT 1000; HB 363		
		Gear requires HB 332: SAE 4340 OQT 1000; HB 363 (Same as pinion)		

DESIGN OF SPUR GEARS N	APPLICATION:	Electric power generator driven by a water turbine Problem 66		
Initial Input Data:		Factors in Design Analysis:		
Input Power:	P = 75.0 kW	Alignment Factor, K _m =1.0+C _{pr} +C _{ma} If F<25 If F>25 mm		
Input Speed:	np = 4500 rpm	Pinion Proportion Factor, Cpf = 0.027 0.040	$[0.50 < F/D_P < 2.00]$	
[See Table 8-3] Module:	m = 4.00 mm	Enter: C _{pt} = 0.040 Figure 9-16	9	
Number of Pinion Teeth: /	$N_P = 24$	Type of gearing: Open Commer.	Precision Ex. Prec.	
Desired Output Speed:	ng = 3600 rpm		0.093 0.058	
Computed number of gear teeth:	30.0	Enter: C _{me} = 0.158 Figure 9-17	2	
Enter: Chosen No. of Gear Teeth: /	Ng = 30	Alignment Factor: K _m = 1.20 [Computed]		
Computed data:		Overload Factor: K _o = 1.20 Table 9-7		
Actual Output Speed:	n _G ≈ 3600.0 rpm	Size Factor: K _s = 1.00 Table 9-8:	Table 9-8: Use 1.00 if P _d >= 5	
Gear Ratio:	m _G = 1.25	Pinion Rim Thickness Factor: Kap = 1.00 Fig. 9-18: L	Fig. 9-18: Use 1.00 if solid blank	
Pitch Diameter - Pinion:	D _P = 96.00 mm	Gear Rim Thickness Factor: K ₈₆ = 1.00 Fig. 9-18: L	Fig. 9-18: Use 1.00 if solid blank	
Pltch Diameter - Gear:	D _G = 120.00 mm	Dynamic Factor: K _v = 1.26 [Computed	[Computed: See Fig. 9-19] For Kv.	ڿ
Center Distance:	C = 108.00 mm	Service Factor: SF = 1.00 Use 1.00 if	1	0.397
Pitch Line Speed:	V₁ = 22.62 m/s		O	5.97
Transmitted Load:	W₁= 3316 N	Reliability Factor: K _R = 1.00 Table 9-11	Table 9-11 Use 1,00 for R = .99]
		Enter: Design Life: 100000 hours	See Table 9-12	
Secondary Input Data:	f Data:	Pinion - Number of load cycles: Np = 2.7E+10 Gt	Guidelines: Y _N , Z _N	
	Min Nom Max	Gear - Number of load cycles: N _G = 2.2E+10 10' cycles	>10' <10'	
Æ	32 48 64	Bending Stress Cycle Factor: Y _{NP} = 0.88 1.00	0.88 Fig. 9-22	
Enter: Face Width:	F= 50.0 mm	Bending Stress Cycle Factor: Y _{NG} = 0.89 1.00	0.89 Fig. 9-22	
Ratio: Face width/pinion diameter: F/Dp =	/Dp = 0.52	Pitting Stress Cycle Factor: Z _{NP} = 0.83 1.00	0.83 Fig. 9-23	
Recommended range of ratio: 0.50 < F/D _p < 2.00	$0 < F/D_P < 2.00$	Pitting Stress Cycle Factor: Z _{NG} = 0.84 1.00	0.84 Fig. 9-23 Throu	Through-Hardened
Enter: Elastic Coefficient:	Cp = 191 Table 9-10	Stress Analysis: Bending	- G	Grade 1 Steel
Enter: Quality Number:	A, = 7 Table 9-3	Pinion: Required sat = 98 MPa	See Fig. 9-11 or HB 19	Fig. 9-11
REF: Np, Ng =	24 30	Gear: Required s _{at} = 93 MPa	Table 9-5	Fig. 9-11
Enter: Bending Geometry Factors: Press. angle = 20 deg	ress. angle = 20 deg			
Pinion:	$J_P = 0.347$ Fig. 9-15		3-12 or HB	Ė.
	J _G = 0.365 Fig. 9-15	Gear: Required s _{ac} ≈ 878 MPa	Table 9-5	305 Fig. 9-12
Enter: Pitting Geometry Factor:	I = 0.084 Fig. 9-21	Specify materials, alloy and heat treatment, for most severe requirement.	re requirement.	
REF: mg =	1.25	One possible material specification: Steel pinion, Steel gear	ar	
		Pinion requires HB 310: SAE 4340 OQT 1100; HB 321		
		Gear requires HB 305: SAE 4340 OQT 1100; HB 321 (Same as pinion)	as pinion)	

APPLICATION: Problem 67	Factors in Design Analysis:			
Commercial band saw driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0 FF>1.0	0.1	
initial Input Data:	Pinion Proportion Factor, Cpf =	0.044 0.0	0.048 [0.50 < F/D _P < 2.00]	(2.00] م
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpf =	0.048 Figur	Figure 9-16	
Transmitted Power: P = 12 hp	Type of gearing:	Open Com	Commer. Precision	Ex. Prec.
Design Power P _{des} = 18 hp	Mesh Alignment Factor, Cma =	0.268 0.1	0.147 0.083	0.051
Diametral Pitch: $P_d = 10$ Fig. 9-24	Enter: Cme =	0.147 Figur	Figure 9-17	
Input Speed: np = 3450 rpm	Alignment Factor: K _m =	1.20 [Com	[Computed]	
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00 Table	Table 9-8: Use 1.00 if Pd >= 5	5 =< P
Desired Output Speed: ng = 730 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig. 9	Fig. 9-18: Use 1.00 if solid blank	solid blank
Computed number of gear teeth: 85.1	Gear Rim Thickness Factor: K _{BG} =	1.00 Fig. 9	Fig. 9-18: Use 1.00 if solid blank	solid blank
Enter: Chosen No. of Gear Teeth: No = 85	Service Factor: SF =	1.00 Use 1	Use 1.00 if no unusual conditions	conditions
Computed data:	Reliability Factor: K _R =	1.00 Table	Table 9-11 Use 1.00 for R = .99	or R = .99
Actual Output Speed: ng = 730.6 rpm	Enter: Design Life:	8000 hours	See Table 9-12	9-12
Gear Ratio: m _G = 4.72	Pinion - Number of load cycles: Np =	1.7E+09	Guidelines: Y _N , Z _N	Z ZN
Pitch Diameter - Pinion: Dp = 1.800 in	Gear - Number of load cycles: No =	3.5E+08 10' c	cycles >10'	حا0.
Pitch Diameter - Gear: Do = 8.500 in	Bending Stress Cycle Factor: Y _{NP} =	0.93	1.00 0.93	Fig. 9-22
Center Distance: C = 5.150 in	Bending Stress Cycle Factor: Y _{NG} =	0.96	1.00 0.96	Fig. 9-22
Pitch Line Speed: vt = 1626 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.89	0.89	Fig. 9-23
Transmitted Load: W₁ = 244 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.92	1.00 0.92	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending			
Min Nom Max	Pinion: Required sat =	16,101 psi	See Fig. 9-11 or	11 or
Face Width Guidelines (in): 0.800 1.200 1.600	Gear: Required sat =	12,088 psi	Table 9-5	
Enter: Face Width: F= 1.250 in	Stress Analysis: Pitting			
Ratio: Face width/pinion diameter: F/D _p = 0.69	Pinlon: Required sac =	127,467 psl	See Fig. 9-12 or	12 or
Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required s _{ac} =	123,310 psi	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	305 Equa	Equations In Fig. 9-12-Grade	Grade 1
Enter: Quality Number: A _v = 9 Table 9-3	Required hardness of gear HB:	293 Equa	Equations in Fig. 9-12-Grade	Grade 1
Dynamic Factor: Kv = 1.33 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	nent, for mos	severe require	nent.
[Factors for computing K_v :] $B = 0.630$ $C = 70.71$	One possible material specification:			
Reference: N _P = 18 N _G = 85	Pinion requires HB 305: SAE 4140 OQT 1100; HB 321, 19% Elongation	100; HB 321,	19% Elongation	
Bending Geometry Factor-Pinion: Jp = 0.310 Fig. 9-15	Gear requires HB 293: SAE 4140 OQT 1200; HB 293, 20% Elongation	200; HB 293, 2	0% Elongation	
Bending Geometry Factor-Gear: Jo = 0.400 Fig. 9-15	Comments:			100000000000000000000000000000000000000
m _G = 4.72	It would be reasonable to specify the same heat treatment for both the pinion	heat treatmer	it for both the pin	Lo
Enter: Pitting Geometry Factor: /= 0.106 Fig. 9-21	and the gear because their contact stresses are very similar	es are very sur	lar.	STATE OF THE STATE OF

	DESIGN OF SPUR GEARS				
APPLICATION: Problem 68	F ag	SIS:			
Commercial band saw driven by an electric motor	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	If F<1.0	If F>1.0		
Initial Input Data:	Pinion Proportion Factor, C _{pf} =	0.063	0.064	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpt =	0.064	Figure 9-16		
Transmitted Power: P = 12 hp	Type of gearing:	Open	Commer.	Precision	Ex. Prec.
Design Power P _{des} = 18 hp	Mesh Alignment Factor, C _{ma} =	0.266	0.145	0.082	0.049
Diametral Pitch: $P_d = 14$ Fig. 9-24	Enter: C _{me} =	0.145	Figure 9-17		
Input Speed: n = 3450 rpm	Alignment Factor: K _m =	1.21	[Computed]		5
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00	Table 9-8: 1	Table 9-8: Use 1.00 if P _d >= 5	d >= 5
Desired Output Speed: no = 730 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00	Fig. 9-18: L	Fig. 9-18: Use 1.00 if solid blank	lid blank
Computed number of gear teeth: 85.1	Gear Rim Thickness Factor: K ₈₉ =	1.00	Fig. 9-18: L	Fig. 9-18: Use 1.00 if solid blank	lid blank
Enter: Chosen No. of Gear Teeth: No = 85	Service Factor: SF =	1.00	Use 1.00 if	Use 1.00 if no unusual conditions	conditions
Computed data:	Reliability Factor: K _R =	1.00	Table 9-11	Table 9-11 Use 1.00 for R = .	R = .99
Actual Output Speed: no = 730.6 rpm	Enter: Design Life:	8000	hours	See Table 9-12	.12
Gear Ratio: mg = 4.72	Pinion - Number of load cycles: Np = 1	1.7E+09	હ	Guidelines: Y _N , Z _N	ZN
	Gear - Number of load cycles: No = 3	3.5E+08	3.5E+08 10' cycles	>10.	<10.
	Bending Stress Cycle Factor: Y NP =	0.93	9.	0.93	Fig. 9-22
Center Distance: C = 3.679 in	Bending Stress Cycle Factor: Y NG =	96.0	9.	96.0	Fig. 9-22
Pitch Line Speed: v _t a 1161 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.89	9.	0.89	Fig. 9-23
Transmitted Load: Wt = 341 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.92	1.00	0.92	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required sat =	30,567 psi	lsc	See Fig. 9-11 or	1 or
Face Width Guidelines (in): 0.571 0.857 1.143	Gear: Required sat =	22,949	psi	Table 9-5	
Enter: Face Width: F= 1.125 in					
Ratio: Face width/pinion diameter: F/Dp = 0.88		175,629 psi	psi	See Fig. 9-12 or	2 or
Recommended range of ratio: 0.50 < F/D _P < 2.00		0	psi	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of plnion HB:	455	Equations	Equations in Fig. 9-12-Grade	rade 1
Enter: Quality Number: Av = 7 Table 9-3	Required hardness of gear HB:	437	Equations	Equations in Fig. 9-12-Grade	srade 1
Dynamic Factor: K _v = 1.15 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for	most seve	menuper ex	ent.
[Factors for computing K_v :] $B = 0.397$ $C = 83.77$	One possible material specification:				
Reference: Np = 18 Ng = 85	Pinion requires case hardening by carburizing	zing			
Bending Geometry Factor-Pinion: Jp = 0.310 Flg. 9-15	Gear requires case hardening by carburizing	lug			
Bending Geometry Factor-Gear: J₀ = 0.400 Fig. 9-15	Specifications: Example selection				
Reference: mg = 4.72 Enter Ditting Geometry Factor: 1 = 0.408 Eig 9.21	Specify SAE 4620 DOQT 300; Case hardness HRC 62; ductile core; HB 248 For both minion and near	iness HR	C 62; ducti	le core; HB 2	48
1-0.100	TO MAN PRINCIPAL SOCI	The State of the			

APPLICATION: IProblem 69	Fectors in Design Analysis:	in
Machine tool driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0 IFF>1.0
Inidal Input Data:] II	0.048 0.060 [0.50 < F/D _P < 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpf = 0.0	0.060 Figure 9-16
	Type of gearing: O	Open Commer. Precision Ex. Prec.
P des =		0.280 0.158 0.093 0.058
Diametral Pitch: $P_d = 8$ Fig. 9-24	Enter: C _{ms} = 0.0	0.093 Figure 9-17
Input Speed: np = 650 rpm	Alignment Factor: K _m = 1	1.15 [Computed]
Number of Pinion Teeth: Np = 22	Size Factor: K _s = 1.	1.00 Table 9-8: Use 1.00 if Pd >= 5
Desired Output Speed: no = 112.5 rpm	Pinion Rim Thickness Factor: K _{BP} = 1.	1.00 Fig. 9-18: Use 1.00 if solid blank
Computed number of gear teeth: 127.1		1.00 Fig. 9-18: Use 1.00 if solid blank
Enter: Chosen No. of Gear Teeth: No = 128	Service Factor: SF = 1,	1.00 Use 1.00 if no unusual conditions
Computed data:	Reliability Factor: K _R = 1.	1.00 Table 9-11 Use 1.00 for R = .99
Actual Output Speed: no = 111.7 rpm	Enter: Design Life: 25	25000 hours See Table 9-12
m _o	Pinion - Number of load cycles: Np = 9.8	9.8E+08 Guidelines: Y _N , Z _N
Pitch Dlameter - Pinion: Dp ≈ 2.750 in	Gear - Number of load cycles: No = 1.7	1.7E+08 10' cycles >10' <10'
Pitch Diameter - Gear: Do = 16,000 in	Bending Stress Cycle Factor: $Y_{NP} = 0$	0.94 1.00 0.94 Fig. 9-22
Center Distance: C = 9.375 in	Bending Stress Cycle Factor: $Y_{NG} = 0$	0.97 1.00 0.97 Flg. 9-22
Pitch Line Speed: v₁ = 468 ft/min	11	0.90 1.00 0.90 Flg. 9-23
Transmitted Load: W₁ = 1410 lb	Pitting Stress Cycle Factor: $Z_{NG} = 0$	0.94 1.00 0.94 Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending	
Min Nom Max	Pinion: Required sat = 3,	32,958 psi See Flg. 9-11 or
Face Width Guidelines (In): 1.000 1.500 2.000	Gear: Required Sat = 2!	25,043 psi Table 9-5
Enter: Face Width: F = 2.000 in		
Ratio: Face width/pinion diameter: F/Dp = 0.73	Pinion: Required Sac = 17;	173,012 psi See Fig. 9-12 or
Recommended range of ratio: 0.50 < F/D _p < 2.00	Gear: Required Sac = 16	റ്റ
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB: 4	447 Equations in Fig. 9-12-Grade 1
Enter: Quality Number: A = 7 Table 9-3	Required hardness of gear HB: 4	424 Equations in Fig. 9-12-Grade 1
Dynamic Factor: Kv = 1.10 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	int, for most severe requirement.
[Factors for computing K_v :] $B = 0.397$ $C = 83.77$	One possible material specification:	
Reference: $N_P = 22$ $N_G = 128$	Pinion requires case hardening by carburizing	D,
Bending Geometry Factor-Pinion: Jp = 0.345 Fig. 9-15	Gear requires case hardening by carburizing	
Bending Geometry Factor-Gear: Jo = 0.440 Fig. 9-15	Specifications: Example selection	
me = 5.82	Specify SAE 4620 DOOT 300; Case hardness HRC 62; ductile core; HB 248	ess HRC 62; ductile core; HB 248
Enter: Pitting Geometry Factor: /= 0.106 Fig. 9-21	For both pinion and gear	

APPLICATION: Problem 70	Factors in Design Analysis:			
Crane cable drum driven by an electric motor	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	IFF<1.0 II	If F>1.0	
initial Input Data:	Pinion Proportion Factor, Cpf =	0.067	0.087 [0.50	$[0.50 < F/D_P < 2.00]$
1	Enter: C _{pt} =		9	
Transmitted Power: P = 25 hp	Type of gearing:		٠	E E
Design Power P _{des} = 37.5 hp	Mesh Alignment Factor, C _{ma} =	0.290	0.167 0.	0.100 0.064
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: C _{me} =	0.167 Fig	Figure 9-17	
Input Speed: n = 925 rpm	Alignment Factor: K _m =	1.25 [C	[Computed]	
Number of Pinion Teeth: Np = 17	Size Factor: K _s =	1.00 Ta	Ible 9-8: Use 1	Table 9-8: Use 1.00 if P _d >= 5
Desired Output Speed: n a = 163 rpm	Pinion Rim Thickness Factor: KBP =	1.00 Fig	3. 9-18: Use 1.	Fig. 9-18: Use 1.00 if solid blank
Computed number of gear teeth: 96.5	Gear Rim Thickness Factor: K 80 =	1.00 Fig	g. 9-18; Use 1.	Fig. 9-18: Use 1.00 if solid blank
Enter: Chosen No. of Gear Teeth: Ng = 96	Service Factor: SF =	1.00 Us	se 1.00 if no ur	Use 1.00 if no unusual conditions
Computed data:	Reliability Factor: K _R =	1.00 Ta	ible 9-11 Use	Table 9-11 Use 1.00 for R = .99
Actual Output Speed: ng = 163.8 rpm	Enter: Design Life:	31200 ho	hours See	See Table 9-12
Gear Ratio: Mg = 5.65	Pinion - Number of load cycles: Np =	1.7E+09	Guidelin	Guidelines: Y _N , Z _N
Pitch Diameter - Pinion: Dp 2.833 in	Gear - Number of load cycles: No = :	3.1E+08 10' cycles		>10' <10'
Pitch Diameter - Gear; D _G = 16.000 in	Bending Stress Cycle Factor: Y _{NP} =	0.93	1.00	0.93 Fig. 9-22
	Bending Stress Cycle Factor: Y _{NG} =	96.0	1.00	0.96 Flg. 9-22
Pitch Line Speed: v _t = 686 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.89	1.00	0.89 Flg. 9-23
Transmitted Load: W₁ = 1202 ib	Pitting Stress Cycle Factor: Z _{NG} =	0.92	1.00	0.92 Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending			
Min Nom Max	Pinion: Required sat =	21,194 psi		See Fig. 9-11 or
Face Width Guidelines (in): 1.333 2.000 2.667	Gear: Required sat =	14,421 psi		Table 9-5
Enter: Face Width: Fa 2.600 in				
Ratio: Face width/pinion diameter: F/Dp = 0.92		144,763 psi		See Fig. 9-12 or
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required Sac ==	Ω.	i Tabl	Table 9-5
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of plnlon HB:	359 Ec	Equations in Fig. 9-12-Grade	. 9-12-Grade 1
	Required hardness of gear HB:	345 Ec	Equations in Fig. 9-12-Grade	. 9-12-Grade 1
Dynamic Factor: Kv = 1.11 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	nent, for m	ost severe re	squirement.
[Factors for computing K_v :] $B = 0.397$ $C = 83.77$	One possible material specification:			
Reference: Np = 17 Ng = 96	Pinion requires HB 359; SAE 8650 OQT 1000; HB 363; 14% elongation	1000; HB 3	63; 14% elong	pation
Bending Geometry Factor-Pinion: Jp = 0.295 Fig. 9-15	Pinion requires HB 345; SAE 8650 OQT 1000; HB 363; 14% elongation	1000; HB 3	63; 14% elong	jation
Bending Geometry Factor-Gear: Jo = 0.420 Fig. 9-15	Comments:			
Reference: $m_0 = 5.65$				

Input Speed Park	SPUR GEARS POWER TRANSMITTING CAPACITY	λLI	APPLICATION:	Centrifugal pump driven by an electric motor Chapter 9-Problem 71			
F = 1,250 in Alignment Factor, K _m =1 0.4cgr-C _{mm} IT F1.0 It P>1.0 FDp = 0.50 FDp = 0.50 N _P = 25 10 Pinlon Proportion Factor, C _m = 0.028 0.028 [0.50 < FDp, < 2.00] 0.050 < FDp, < 2.00] N _P = 25 60 Neah Alignment Factor, C _m = 0.288 0.147 (Figure 9.17) Precision Ex. Prec. N _P = 25 0.00 Neah Alignment Factor, C _m = 0.288 0.147 (Figure 9.17) D.083 (0.051) D _a = 2.40 Neah Alignment Factor, K _m = 1.18 (Computed) Commer. Precision Ex. Prec. Precision Ex. Prec. D _a = 2.50 in Overload Factor, K _m = 1.00 (Fig. 9.16; Use 1.00 if solid blank Gase Rim Thickness Factor, K _m = 1.00 (Fig. 9.16; Use 1.00 if solid blank Gase Rim Thickness Factor, K _m = 1.00 (Fig. 9.16; Use 1.00 if solid blank Gase Rim Thickness Factor, K _m = 1.00 (Fig. 9.16; Use 1.00 if solid blank Gase Rim Thickness Factor, K _m = 1.00 (Fig. 9.16; Use 1.00 if solid blank Gase Rim Thickness Factor, K _m = 1.00 (Fig. 9.16; Organ Series Factor, K _m = 1.00 (Fig. 9.16; Organ Series Factor, K _m = 1.00 (Fig. 9.16; Organ Series Factor, K _m = 1.00 (Fig. 9.16; Organ Series Factor, K _m = 1.00 (Fig. 9.16; Organ Series Fig. 9.11 organ Series Fig. 9.11 organ Series Fig. 9.11 organ Series Fig. 9.11 organ Series Factor, Z _m = 0.89 (Fig. 9.22 (Fig. 9.22 (Fig. 9.24) (Fig. 9.24 (Fig. 9.24) (Fig. 9.24) (Fig. 9.24 (Fig. 9.24) (Initial Input Data:			Factors in Design Analysis	::		
n _p = 1725 pm Phinon Proportion Factor, C _μ = 0.028	Enter: Face Widtl		1.250 in		301	F/D _P = 0.50	
P _g = 10 Finer C _{pl} = 0.028 Figure 9-16 Figure 9-16 Figure 9-16 N _g = 60 Mesh Alignment Factor: V _{pl} = 0.028 Figure 9-16 Commer. Precision Ex. Prec. N _g = 60 60 Commer. Precision Ex. Prec. N _g = 718.8 pm Enter C _{pl} = 0.147 Figure 9-17 Cable 9-7 D _g = 7250 in C _g = 1.240 Overload Factor: K _g = 1.00 Table 9-1.0e 1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.0e 1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.0e 1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.0e 1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.0e 1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.00 Use 1.00 fisoild blank Gear Rim Thickness Factor: K _g = 1.00 Table 9-1.00 Contact Stress Numbers: (Input) Fig. 9-18 Use 1.00 fisoild blank Gear Fig. 9-11 or Table 9-5 Table 9-2 Table 9-1 Through-Hardened Factor: Z _g = 0.89 Table 9-1 Table 9-5 Table 9-2 Table 9-1 Table 9-5 Table 9-1 Table 9-5 Table 9-5 Table 9-1 Table 9-1 Table 9-5 Table 9-1 Tabl	input Speex		1725 rpm			[0.50 < F/D _P < 2.00]	
N _e = 25 Mesh Alignment Factor, C _{ms} = 0.147 Figure 9-17 Figure 9-17 N _e = 60 Mesh Alignment Factor, C _{ms} = 0.147 Figure 9-17 0.651 N _e = 716.8 rpm Alignment Factor, C _{ms} = 0.147 Figure 9-17 Figure 9-17 N _e = 7.16.8 rpm Size Factor, K _s = 1.00 Table 9-8; Use 1.00 if P _d >= 5 Figure 9-17 D _e = 2.40 Overtoad Factor, K _s = 1.00 Fig. 9-18; Use 1.00 if P _d >= 5 Fig. 7.8 D _e = 2.500 in Dynion Rim Thickness Factor, K _s = 1.00 Fig. 9-18; Use 1.00 if Fold bank Gear Rim Thickness Factor, K _s = 1.00 Fig. 9-18; Use 1.00 if Fold bank For K _s = 5.00 Fig. 9-18; Use 1.00 if For K _s = 5.00 Fig. 9-18 For K _s = For K _s = 7.00 Fig. 9-18 For K _s =	Diametral Pitch					9	
No = 60 Mesh Alignment Factor, C _{ma} = 0.268 0.147 0.083 0.051 Figure 2-17 Alignment Factor, K _m = 1.16 I.00 Table 9-17 Figure 9-17 Figure 9-17 no = 2.40 Overload Factor, K _n = 1.20 Table 9-10 if solid blank For Table 9-10 if solid blank For K _V . D _n = 2.500 in D _n = 2.500 in Service Factor, K _n = 1.00 Fig. 9-18: Use 1.00 if solid blank For K _V . C = 4.250 in D _n = 2.500 in Service Factor: K _n = 1.00 Fig. 9-18: Use 1.00 if solid blank For K _V . C = 4.250 in Service Factor: K _n = 1.00 To Table 9-8: Use 1.00 if solid blank For K _V . C = 4.250 in Service Factor: K _n = 1.00 To Table 9-8: Use 1.00 if solid blank For K _V . C = 4.250 in Service Factor: K _n = 1.00 To Table 9-8: Use 1.00 if solid blank For K _V . C = 4.250 in Service Factor: K _n = 1.00 To Table 9-8: Use 1.00 if solid blank For K _V . C = 4.250 in Service Factor: K _n = 1.00 To Table 9-8: Use 1.00 if solid blank C = 4.250 in	Number of Pinion Teeth						
Philon Rim Thickness Factor: K _n = 1.48 Computed Overload Factor: K _n = 1.60 Table 9-17 D _n = 2.40 Overload Factor: K _n = 1.00 Table 9-10 Table 9-15 D _n = 2.50 D _n = 2.50 D _n Size Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Size Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Sear Rim Thickness Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Sear Rim Thickness Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Sear Rim Thickness Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Sear Rim Thickness Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Sear Rim Thickness Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Sear Rim Thickness Factor: K _n = 1.00 Table 9-10 Table 9-10 D _n = 2.50 D _n Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 D _n = 2.50 Table 9-10 Table 9-10 Table 9-10 Table 9-10 D _n = 2.40 Table 9-10 Table 9-10 Table 9-10 Table 9-10 D _n = 2.40 Table 9-10	Number of Gear Teet	NG	90				
$n_0 =$ 718.8 pm Alignment Factor: $K_m =$ 1.18 [Computed] $n_0 =$ 2.40 Overload Factor: $K_0 =$ 1.50 Table 9.7 $n_0 =$ 2.40 Philon Rim Thickness Factor: $K_0 =$ 1.00 Table 9.7 $n_0 =$ 2.200 in Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Factor: $K_0 =$ 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Teg. 9.21 1.00 Teg. 9.18; Use 1.00 if solid blank Gear Rim Thickness Cycle Factor: $K_0 =$ 1.00 Teg. 9.19; Teg. 9.24 1.00 Teg. 9.24						7	
Title Tit				- 5		1	
n _G = 2.40 Pinion Rim Thickress Factor: K _B = 1.00 Table 9-8: Use 1.00 if ealid blank Factor if P _G = 1.00 Fig. 9-18: Use 1.00 if ealid blank For K _V : D _g = 2.500 in Caar Rim Thickress Factor: K _B = 1.00 Fig. 9-18: Use 1.00 if ealid blank For K _V : For K _V : C = 4.250 in V _g = 1.250 lin Service Factor: K _B = 1.00 Fig. 9-18: Use 1.00 if ealid blank For K _V : C = 4.250 in V _g = 1.28 lind rounsual conditions Service Factor: K _B = 1.00 Table 9-8: Use 1.00 if ealid blank For K _V : N _g = 1.129 thmin Reliability Factor: K _B = 1.00 Table 9-8: Use 1.00 if ealid blank For K _V : Alloweble Bending Stress Cycle Factor: X _B = 1.00 Table 9-8: Use 1.00 if ealid blank For K _V : 25.08 hp Pending Stress Cycle Factor: Y _B = 0.83 1.00 lo.93 fig. 9-12 Table 9-8 Table 9-22 Cp = 2300 Table 9-10 Pitting Stress Cycle Factor: Z _B = 0.94 1.00 lo.93 fig. 9-12 Table 9-5 Table 9-5 Cp = 2300 Table 9-10 Alloweble Bending Stress Numbers: (Input) 1.00 lo.91 fig. 9-10 Table 9-5 Table 9-5 J _p = 0.445 fig. 9-15 J _g = 0.445 fig. 9-15 Alloweble Contact Stress Numbers: (Input) See Fig. 9-11 or	Computed data:						
m _G = 2.40 Phinon Rim Thickness Factor: K _B = 1.00 Fig. 9-18: Use 1.00 if solid blank For K _V : D _B = 6.000 in Gear Rim Thickness Factor: K _B = 1.00 Fig. 9-18: Use 1.00 if solid blank For K _V : C = 4.250 in Service Factor: K _B = 1.00 Fig. 9-18: Use 1.00 if solid blank For K _V : C = 4.250 in Service Factor: K _R = 1.00 Use 1.00 if solid blank For K _V : V _t = 1129 f/min Reliability Factor: K _R = 1.00 Table 9-1 A 70.71 V _t = 1129 f/min Reliability Factor: K _R = 1.00 Table 9-1 Guidelines: V _t Z _t Guidelines: V	Actual Output Speed		718.8 rpm			Use 1.00 if P _d >= 5	
Dp = 2.500 in Gear Rim Thickness Factor: K _{s0} = 1.00 Fig. 9-18: Use 1.00 if solid blank For K _v : C = 4.250 in V _v = 1129 f/min V _v	Gear Ratic		2.40			Use 1.00 if solid blank	
De = 6.000 in C = 4.250 in Service Factor: K _x = 1.28 [Computed: See Fig. 9-21] For K _y : C = 4.250 in v _x = 1129 t/min V _y = 1129 t/min Service Factor: K _x = 1.00 Use 1.00 of no unusual conditions B (630 No	Pitch Diameter - Pinior					Use 1.00 if solid blank	
C = 4.250 In V _t = 1129 f/min Reliability Factor: K_R = 1.00 Table 9-9 Use 1.00 for R = .99 0.630 V _t = 1129 f/min V _t = 1129 f/min Reliability Factor: K_R = 1.00 Table 9-9 Use 1.00 for R = .99 70.71 V _t = 1129 f/min Fig. 9-32, 9-34) Enter: Design Life: 15000 hours See Table 9-7 See Table 9-7 7: (Using Eq. 9-32, 9-34) Pinion - Number of load cycles: N _P = 0.93 1.00 0.93 Fig. 9-22 77.27 hp Bending Stress Cycle Factor: X_{NP} = 0.89 1.00 0.94 Fig. 9-22 77.27 hp Pitting Stress Cycle Factor: X_{NP} = 0.89 1.00 0.94 Fig. 9-22 72.91 hp Pitting Stress Cycle Factor: X_{NP} = 0.89 1.00 0.94 Fig. 9-22 72.91 hp Pitting Stress Cycle Factor: X_{NP} = 0.89 1.00 0.91 Fig. 9-24 72.91 hp Allowable Bending Stress Numbers: (Input) 1.00 0.91 Fig. 9-10 range Sig. 9-10 range Si	Pitch Diameter - Gea				Γ	i: See Fig. 9-21]	For K.:
$V_t =$ 1129 f/min Reliability Factor: $K_R =$ 1,00 Table 9.8 Use 1.00 for $R =$.99 A 70.71 $W_t =$ 377 lb Enter: Design Life: 15000 hours See Table 9.7 A 70.71 25.08 hp Pinton - Number of load cycles: $N_P =$ 1.6E+09 Guidelines: $Y_{W_s} Z_N$ Guidelines: $Y_{W_s} Z_N$ 27.27 hp Bending Stress Cycle Factor: $Y_{W_t} =$ 0.94 1.00 0.33 Fig. 9-22 12.91 hp Pitting Stress Cycle Factor: $Z_{W_t} =$ 0.89 1.00 0.34 Fig. 9-22 12.91 hp Pitting Stress Cycle Factor: $Z_{W_t} =$ 0.89 1.00 0.34 Fig. 9-22 Allowable Bending Stress Numbers: finput $J_{V_t} =$ 0.89 1.00 0.91 Fig. 9-24 A _V = g Table 9-5 Table 9-5 Table 9-5 Table 9-5 Table 9-5 A _V = g Table 9-5 Table 9-5 Table 9-5 Table 9-5 Table 9-5 A _V = g Table 9-5 Table 9-5 Table 9-5 Table 9-5 Table 9-5 Bending Stress Cycle Factor: $Z_{W_t} = Z_{W_t} = Z_{W_t} = Z_{W_t} = Z_{W_t} = Z_{W_t} = Z_{W_$	Center Distance		•		2/6	f no unusual conditions	⊢
W _i = 377 lb Reliability Factor: $K_R = 1.00$ Table 9.8 Use 1.00 for $R = .99$ F: (Using Eq. 9.32, 9.34) Enter: Design Life: 15000 hours See Table 9.7 25.08 hp Pinlon - Number of load cycles: $N_0 = 6.5E + 09$ To clidelines: Y_{ii} , Z_{ii} 27.27 hp Bending Stress Cycle Factor: $Y_{iip} = 0.99$ 1.00 0.93 Fig. 9-22 14.21 hp Bending Stress Cycle Factor: $Y_{iip} = 0.99$ 1.00 0.94 Fig. 9-22 12.91 hp Pitting Stress Cycle Factor: $Z_{iip} = 0.99$ 1.00 0.94 Fig. 9-22 Pitting Stress Cycle Factor: $Z_{iip} = 0.99$ 1.00 0.94 Fig. 9-22 Pitting Stress Cycle Factor: $Z_{iip} = 0.99$ 1.00 0.91 Fig. 9-24 Pitting Stress Cycle Factor: $Z_{iip} = 0.99$ 1.00 0.91 Fig. 9-24 Allowable Bending Stress Numbers: $Input$ 1.00 0.91 Fig. 9-2 Allowable Contact Stress Numbers: $Input$ See Fig. 9-1 or 36.8 ksi Je = 0.363 Fig. 9-15 Fig. 9-15 Pinlon: $S_{ii} = 3.90$ See Fig. 9-12 or 138.6 ksi I = 0.104 Fig. 9-21 Material specification: $S_{ii} = 129$, Don 34	Pitch Line Speek		1129 ft/min				-
## See Table 9-7 Claing Eq. 8-32, 9-34 Pinton - Number of load cycles: Np = 1 (8E+09) Gudelines: Y ₁₁ , Z ₁₁	Transmitted Load at Pmn Capacity		377 lb			Use 1.00 for R = .99	
Pinion - Number of load cycles: No = 1.6E+09 Guidelines: Y _N , Z _N Gear - Number of load cycles: No = 6.5E+08 10° cycles > 10° c				100	hours	See Table 9-7	
Gear - Number of load cycles: No = 6.5E+08 10° cycles >10° cycles >1° cycles 1° cycles	Power Transmitting Capach	ty: (Using	Eq. 9-32, 9-34)			uidelines: Y _N , Z _N	
Bending Stress Cycle Factor: Y _{NP} = 0.93 1.00 0.93 Fig. 9-22 Bending Stress Cycle Factor: Y _{NP} = 0.94 1.00 0.94 Fig. 9-22 Pitting Stress Cycle Factor: Z _{NP} = 0.94 1.00 0.94 Fig. 9-24 Pitting Stress Cycle Factor: Z _{NP} = 0.97 1.00 0.91 Fig. 9-24 Pitting Stress Cycle Factor: Z _{NP} = 0.97 1.00 0.91 Fig. 9-24 Allowable Bending Stress Numbers: finput) 9-15 Allowable Contact Stress Numbers: finput) 9-15 Gear: S _{ec} = 139,000 psi Table 9-5 36.8 ksi 36.8 ksi 36.8 ksi 36.4 ksi	Pinion: Based on Bending Stress	s: 25.08	qh			>10.	
Bending Stress Cycle Factor: Y _{NG} = 0.84 1.00 0.94 Fig. 9-22 Pitting Stress Cycle Factor: Z _{NG} = 0.87 1.00 0.89 Fig. 9-24 Pitting Stress Cycle Factor: Z _{NG} = 0.87 1.00 0.81 Fig. 9-24 Pitting Stress Cycle Factor: Z _{NG} = 0.87 1.00 0.81 Fig. 9-24 Through-Ha Allowable Bending Stress Numbers: (Input) See Fig. 9-11 or 39.1 ksi Gear: S _{et} = 36,800 psi Table 9-5 36.8 ksi Allowable Contact Stress Numbers: (Input) 138.6 ksi Pinion: S _{eC} = 129,200 psi Table 9-5 129.2 ksi Pinion material: SAE 4140 OQT 1000 340 HB 129.2 ksi Pinion material: SAE 4140 OQT 1000 340 HB 129.2 ksi Pinion material: SAE 4140 OQT 1000 340 HB 129.2 ksi	Gear: Based on Bending Stress	27.27	6		L		
Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. 9-24 Pitting Stress Cycle Factor: Z _{NB} = 0.91 1.00 0.91 Fig. 9-24 Allowable Bending Stress Numbers: (Input) 9-15 Allowable Contact Stress Numbers: (Input) 9-15 Gear: S _{et} = 36,800 psi Table 9-5 36.8 ksi Pinion: S _{et} = 138,600 psi Table 9-5 129.2 ksi Material specification: Steel pinion; Steel gear: through hardened Pinion material: SAE 4140 OQT 1000 340 HB	Pinion: Based on Contact Stress	14.21	d.		(1844)		
Pitting Stress Cycle Factor: Z _{NG} = 0.91 1.00 0.91 Fig. 9-24 Through-Ha Planta	Gear: Based on Contact Stress	12.91	dr.				
Allowable Bending Stress Numbers: (Input) Grade 18	Power Transmitting Capacity	12.91	hp				Through-Hardened
### Pinion material: SAE 4140 OQT 1000 Pinion material: SAE 4140 OQT 1000 Pinion material: SAE 4140 OQT 1000 Pinion: Set = 39,100 psi See Fig. 9-11 or 35.8 ksi 36.8 ksi 36	Enter: Elastic Coefficien	ij.		Allowable Bending Stress Numbers: (Inp.	0n		Grade 1 Steel
Allowable Contact Stress Numbers: (Input) 36.8 ksi 9-15 Pinion material: See # 129,200 psi Table 9-5 129.2 ksi	Enter: Quality Numbe		Table 9		9,100 psi	See Fig. 9-11 or	39.1 ksi Fig. 9-1
9-15 9-15 9-15 9-15 9-15 9-21 Material specification: Steel pinion; Steel gear: through hardened Pinion material: SAE 4140 OQT 1000 340 HB	REF: NP, NG				6,800 psi	Table 9-5	36.8 ksi Fig. 9-1
Jp = 0.363 Fig. 9-15 Pinion material: Sec = 129,200 psi See Fig. 9-12 or 138.6 ksi Jo = 0.415 Fig. 9-15 Gear: Sec = 129,200 psi Table 9-5 129.2 ksi I = 0.104 Fig. 9-21 Material specification: Steel pinion; Steel gear: through hardened 129.2 ksi	Enter: Bending Geometry Facton	s: Press. a	ngle = 20 deg	Allowable Contact Stress Numbers: (Inpu	10		
J _G = 0.415 Fig. 9-15 Gear: s _{ec} = 129,200 psi Table 9-5 129.2 ksi I = 0.104 Fig. 9-21 Material specification: Steel pinion; Steel gear: through hardened 340 HB	Pinion		Fig. 9.		8,600 psi	See Fig. 9-12 or	138.6 ksi Fig. 9-1;
F: m _G = 2.40 Pinion material: SAE 4140 OQT 1000	Gea	10 =	Fig. 9	11	9,200 psi	Table 9-5	
2.40 Pinion material: SAE 4140 OQT 1000	Enter: Pitting Geometry Facto	11	0.104				
		REF: mg =	2.40	:	el pinion; Steel ge	ear: through hardened	
				Pinion material: SAE 4140 OQT 1000	क्र व	里 9	

SPUR GEARS POWER TRANSMITTING CAPACITY	APPLICATION:	Heavy duty conveyor driven by a gasoline engine Chapter 9-Problem 72		
Initial Input Data:				
Enter: Face Width: F = 2	2.000 in	Alignment Factor, K _m =1.0+C _{pr} +C _{ma} If F<1.0 If F>1.0 F/D _P = 0.50	0.50 Set = 0.5	0.5
Input Speed: np =	1500 rpm	Pinion Proportion Factor, $C_{pf} = 0.025$ 0.038 [0.50 < F/D _P < 2.00]	h < 2.00]	1
Diametral Pitch: P _d =	9	Enter: C _{pt} = 0.038 Figure 9-16		
Number of Pinion Teeth: $N_P =$	35	Type of gearing: Open Commer. Precision	Ex. Prec.	
Number of Gear Teeth: $N_G =$	100	Mesh Alignment Factor, C _{ma} ≈ 0.280 0.158 0.093	0.058	
		Enter: C _{me} = 0.158 Figure 9-17 Alignment Factor: K _m = 1.20 [Computed]		
Computed data:		2.00		
Actual Output Speed: ng =	525.0 rpm	Size Factor: K _g = 1.00 Table 9-8: Use 1.00 if P _d >= 5	3=< 2	
Gear Ratio: mg =	2.86	Pinion Rim Thickness Factor: K _{BP} = 1.00 Fig. 9-18: Use 1.00 if solid blank	olid blank	
Pitch Diameter - Pinion: D _P =	5.833 in	Gear Rim Thickness Factor: K ₈₆ = 1.00 Fig. 9-18: Use 1.00 if solid blank	olid blank	
۵۵	16.667 in	Dynamic Factor: K _v = 1.63 [Computed: See Fig. 9-21]	21] For K _V :	 X
Center Distance: C = 1	11.250 in	Service Factor: SF = 1.00 Use 1.00 if no unusual conditions	В	0.826
Pitch Line Speed: V₁ ==	2291 ft/min		A	59.75
Transmitted Load at P _{min} Capacity: W _t =	277 lb	Reliability Factor: KR = 1.00 Table 9-8 Use 1.00 for R = .99	r R = .99	
		Enter: Design Life: 15000 hours See Table 9-7	1.4	
Power Transmitting Capacity: (Using Eq. 9-32, 9-34)	7. 9-32, 9-34)	Pinion - Number of load cycles: Np = 1.4E+09 Guidelines: Yn, Zn	, Z _N	
Pinion: Based on Bending Stress: 90.79 hp		Gear - Number of load cycles: No = 4.7E+08 10 cycles >10	<10.	
Gear: Based on Bending Stress: 21.63 hp		Bending Stress Cycle Factor: Y _{NP} = 0.93 1.00 0.93	Fig. 9-22	
Pinion: Based on Contact Stress: 86.50 hp		Bending Stress Cycle Factor: Y _{NG} = 0.95 1.00 0.95	Fig. 9-22	
Gear: Based on Contact Stress: 19.26 hp		Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89	Fig. 9-24	
Power Transmitting Capacity: 19.26 hp		Pitting Stress Cycle Factor: $Z_{N0} = 0.92$ 1.00 0.92	Flg. 9-24 Th	Through-Hardened
Enter: Elastic Coefficient: Cp = 210	00 Table 9-10	Allowable Bending Stress Numbers: (Input)		Grade 1 Steel
Enter: Quality Number: A _v = 11	Table 9-3	Pinion: set = 40,000 psi See Fig. 9-11		40.0 ksi Fig. 9-11
REF: Np, N _G ≈ 35	100	Gear: Set = 8,500 psi Table 9-6		12.8 kei Eig 9.11
0.	le = 20 deg	Allowable Contact Stress Numbers: (Input)		12.7 A C4.1
Const. (2 = 0.470				
Enfer: Pitting Geometry Factor: 1 = 0.114		ied ooo'oo		
REF: mg =	2.86	Material specification: Steel pinion; Steel gear: through hardened	ardened	
		Pinion material: SAE 1040 WQT 800 Gear Grav cast iron ASTM A48, Class 30		

Infidal Input Data: Enter: Face Width: $F = 2.420$ in Input Speed: $n_P = 1500$ rpm Diametral Pitch: $P_d = 6$ Number of Gear Teeth: $N_Q = 100$ Number of Gear Teeth: $N_Q = 100$ Computed data: Computed data: Gear Ratio: $m_Q = 525.0$ rpm Gear Ratio: $p_Q = 5.833$ in Pitch Diameter - Pinion: $p_Q = 16.667$ in Dynamic Factor: K_Q Gear Rim Thickness Factor: K_Q Dynamic Factor: K_Q	# in gi	1848: IFF<1.0 IFF>1.0	-	E.D 0.70		
ce Width: $F = 2.420$ in Alignment trai Pitch: $P_d = 6$ on Teeth: $N_P = 35$ as Teeth: $N_P = 100$ rar Teeth: $N_P = 100$ rar Teeth: $N_P = 100$ rt Speed: $N_P = 5.25.0$ rpm ear Ratio: $N_P = 5.833$ in Gear! $N_P = 16.667$ in	# in		L			
tral Pitch: $P_d = 1500$ rpm tral Pitch: $N_P = 35$ on Teeth: $N_P = 35$ sar Teeth: $N_P = 100$ It Speed: $N_P = 525.0$ rpm ear Ratio: $M_P = 5.833$ in Gear: $D_P = 5.833$ in er-Gear: $D_P = 16.667$ in	- 131		_		Set = 0.5	
trai Pitch: $P_d = 6$ on Teeth: $N_P = 35$ sar Teeth: $N_Q = 100$ rt Speed: $n_Q = 525.0$ rpm ear Ratio: $m_Q = 2.86$ Gear! $n_Q = 5.833$ in Gear er-Gear: $D_Q = 16.667$ in		0.025 0.043		10.50 < F/D _P < 2.00]		
on Teeth: $N_{\mathcal{O}} = 35$ par Teeth: $N_{\mathcal{O}} = 100$ It Speed: $n_{\mathcal{O}} = 525.0 \text{ rpm}$ Pinion Pinion Gear Gear Gear: $D_{\mathcal{O}} = 16.667 \text{ in}$		0.043 Figure 9-16	9-16			
rt Speed:		Open Commer.	ner. Precision	n Ex. Prec.		
tt Speed: n _G = 525.0 rpm ear Ratio: m _G = 2.86 r - Pinion: D _P = 5.833 in er - Gear: D _G = 16.667 in		0.287 0.165	35 0.098	0.062		
tt Speed: n _G = 525.0 rpm ear Ratio: m _G = 2.86 r - Pinion: D _P = 5.833 in er - Gear: D _G = 16.667 in	Enter: $C_{me} = 0$.	0.165 Figure 9-17	9-17			
tt Speed: n _G = 525.0 rpm sar Ratio: m _G = 2.86 r- Pinion: D _P = 5.833 in er - Gear: D _G = 16.667 in	Alignment Factor: K _m = 1	1.21 [Computed]	'uted]			
n _G = 525.0 rpm m _G = 2.86 D _P = 5.833 in D _G = 16.667 in	Overload Factor: Ko = 2	2.00 Table 9-7	9-7			
m _G = 2.86 D _P = 5.833 in D _G = 16.667 in	Size Factor: K _s = 1	1.00 Table S	Table 9-8: Use 1.00 if Pg >= 5	#Pd>=5		
D _p = 5.833 in D _q = 16.667 in	Pinion Rim Thickness Factor: KBP = 1	1.00 Fig. 9-	Fig. 9-18: Use 1.00 if solid blank	f solid blank		
D _G = 16.667 in		1.00 Fig. 9-	Fig. 9-18: Use 1.00 if solid blank	f solid blank	-72	
	Dynamic Factor: K _v = 1	1.50 [Comp	Computed: See Fig. 9-21]	9-21]	For Ky:	
11.250 in	Service Factor: SF = 1	1.00 Use 1.	Use 1.00 if no unusual conditions	ial conditions	B 0.731	
Pitch Line Speed: Vt = 2291 ft/min					A 65.04	
Transmitted Load at P _{min} Capacity: W _t = 361 ib	Reliability Factor: KR = 1	1.00 Table 9-8	9-8 Use 1.00	Use 1.00 for R = .99		
	Enter: Design Life: 1	15000 hours	See Table 9-	7-69-7		
Power Transmitting Capacity: (Vaing Eq. 9-32, 9-34) Pinlon - Number	Pinion - Number of load cycles: Np = 1.4	1.4E+09	Guidelines: Y _N , Z _N	Y _N , Z _N		
Pinion: Based on Bending Stress: 118.13 hp Gear - Number	Gear - Number of load cycles: Ng = 4.7	4.7E+08 10' cycles	cles >10.	<10.	×	
Gear: Based on Bending Stress: 28.14 hp Bending Stress C	Bending Stress Cycle Factor: Y _{NP} = 0	0.93 1.00	0.93	Fig. 9-22		
112.55 hp		0.95 1.00		Fig. 9-22		
		0.89 1.00	0.89	Flg. 9-24		
Power Transmitting Capacity: 25.06 hp Pitting Stress C	Pitting Stress Cycle Factor: Z _{NG} = 0	0.92 1.00	0.92	Fig. 9-24	Through-Hardened	dened
Cp = 2100 Table 9-10	Allowable Bending Stress Numbers: (Input)	and			Grade 1 St	Steel
Enter: Quality Number: A, = 10 Table 9-3	Pinion: Sat = 4	40,000 psi	See Fig. 9-11	9-11	40.0 ksi F	Fig. 9-11
REF: Np. No = 35 100	Gear: Sat =	8,500 psi	Table 9-6	3	42.8 ksi	Fig. 9 11
Enter: Bending Geometry Factors: Press, angle = 20 deg	Allowable Contact Stress Numbers: (Input)	0n				
Pinion: $J_P = 0.410$ Fig. 9-15	Pinion: Sec = 14	142,400 psi	See Fig. 9-12	9-12	142.4 ksi F	Fig. 9-12
Gear: J _G = 0.450 Fig. 9-15	Gear: Sec = 6	65,000 psi	Table 9-6		29.4 ksi	Fig. 9 12
0.114 Fig. 9-21						
REF: mg = 2.86 Mar	Material specification: Steel pinion; Steel gear: through hardened	el pinion; Ster	el gear: through	h hardened		
Note: Increased face width from 2.00 to 2.42 in. Pinion material: SAE 1040 WQT 800	Pinion material: SAE 1040 WQT 800		352 HB			

APPLICATION: Problem 74 - First pair	Factors in Design Analysis:	sts:			
Assenbly conveyor driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0	IFF>1.0		
Double reduction - First pair - Input Data:	Pinion Proportion Factor, $C_{pf} =$	0.042	0.048	$[0.50 < F/D_P < 2.00]$, < 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpt =	0.048 Fi	Figure 9-16		
Transmitted Power: P = 10 hp	Type of gearing:	Open	Commer.	Precision	Ex. Prec.
Design Power Pass = 15 hp	Mesh Alignment Factor, C _{ma} =	0.272	0.150	0.086	0.053
Diametral Pitch: P _d = 8 Fig. 9-24	Enter: C _{me} =	0.150 Fi	Figure 9-17		
Input Speed: np = 1750 rpm	Alignment Factor: K _m =	1.20 [C	[Computed]		
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00 Ta	able 9-8: ∪	Table 9-8: Use 1.00 if Po >= 5	3=< 0
Desired Output Speed: no = 425 rpm	Pinion Rim Thickness Factor: KBP ==	1.00 Fi	ig. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	olid blank
Computed number of gear teeth: 74.1	Gear Rim Thickness Factor: K 86 ==	1.00 Fi	ig. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	olid blank
Enter: Chosen No. of Gear Teeth: No = 75	Service Factor: SF =	1.00 U	Ise 1.00 if r	Use 1.00 if no unusual conditions	conditions
Computed data:	Reliability Factor: K _R =	1.00 Te	able 9-11 I	Table 9-11 Use 1.00 for R = .99	r.R = .99
Actual Output Speed: ng = 420.0 rpm	Enter: Design Life:	15000 hc	hours	See Table 9-12	-12
Gear Ratio: mg # 4.17	Pinion - Number of load cycles: Np ==	1.6E+09	9 Out	Guidelines: Y _N , Z _N	Z _N
Pitch Diameter - Pinion: Dp 2.250 in	Gear - Number of load cycles: N _G =	3.8E+08 10' cycles	0' cycles	>10,	<10,
Pitch Diameter - Gear: Do = 9.375 in	Bending Stress Cycle Factor: Y NP =	0.93	6. 8.	0.93	Fig. 9-22
Center Distance: C = 5.813 in	Bending Stress Cycle Factor: Y _{NG} =	0.95	9.	0.95	Fig. 9-22
Pitch Line Speed: v _t = 1031 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.89	0.1	0.89	Flg. 9-23
Transmitted Load: Wt = 320 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.92	9.	0.92	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required sat ==	14,940 psi		See Fig. 9-11 or	1 or
Face Width Guidelines (in): 1.000 1.500 2.000	Gear: Required sat =	11,237 psi		Table 9-5	
1.500 in					
Ratio: Face width/pinion diameter: F/Dp = 0.67	Pinion: Required Sec =	123,772 psi		See Fig. 9-12 or	2 or
Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required Sac =	119,736 psi	Si	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	294 E	quations ir	Equations in Fig. 9-12-Grade	3rade 1
Enter: Quality Number: Av = 11 Table 9-3	Required hardness of gear HB:	281 E	quations in	Equations in Fig. 9-12-Grade	3rade 1
Dynamic Factor: Kv = 1.43 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for m	nost sevel	re requiren	rent.
[Factors for computing K _v :] B = 0.826 C = 59.75	One possible material specification:				
Reference: $N_P = 18$ $N_G = 75$	Pinion requires HB 294; SAE 4340 OQT 1100; HB 321; 19% elongation	1100; HB 3	321; 19% e	Hongation	
Bending Geometry Factor-Pinion: Jp = 0.315 Fig. 9-15	Gear requires HB 281; SAE 4340 OQT 1200; HB 293; 20% elongation	200; HB 29	33; 20% elc	ngation	
Bending Geometry Factor-Gear: J _G = 0.410 Fig. 9-15	Comments:				
Reference: mg = 4.17					

Note: Larger part of the total reduction (4.17) in this pair Higher diametral pitch - 8 compared to 6 in pair 2

APPLICATION: Problem 74 - Second pair	Factors in Design Analysis:		
Assenbly conveyor driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0 IFF>1.0	
Double reduction - Second pair - Input Data:	Pinion Proportion Factor, Cpt =	0.042 0.054 [0.50 < F/D _P < 2.00]) _P < 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpf =	0.054 Figure 9-16	
	Type of gearing:	Open Commer. Precision	Ex. Prec.
Design Power P _{des} = 15 hp	Mesh Alignment Factor, C _{ma} =	0.280 0.158 0.093	0.058
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: C _{me} =	0.158 Figure 9-17	
Input Speed: n p = 420 rpm	Alignment Factor: K _m =	1.21 [Computed]	
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00 Table 9-8: Use 1.00 if P _d >= 5	Pd>=5
Desired Output Speed: no = 148 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig. 9-18; Use 1.00 if solid blank	solid blank
Computed number of gear teeth: 51.1	Gear Rim Thickness Factor: K 86 =	1.00 Fig. 9-18: Use 1.00 if solid blank	solid blank
Enter: Chosen No. of Gear Teeth: No = 51	Service Factor: SF =	1.00 Use 1.00 if no unusual conditions	Conditions
Computed data:	Reliability Factor: K _R =	1.00 Table 9-11 Use 1.00 for R = .99	or R = .99
Actual Output Speed: no = 148.2 rpm	Enter: Design Life:	15000 hours See Table 9-12	9-12
Gear Ratio: Mg = 2.83	Pinion - Number of load cycles: Np =	3.8E+08 Guidelines: Y _N , Z _N	L ZN
Pttch Diameter - Pinion: Dp 3.000 in	Gear - Number of load cycles: N _G =	1.3E+08 10' cycles >10'	<10,
	Bending Stress Cycle Factor: Y NP =	0.95 1.00 0.95	Flg. 9-22
Center Distance: C = 5.750 in	Bending Stress Cycle Factor: Y NG =	1.00 0.97	Fig. 9-22
Pitch Line Speed: V _t = 330 f/min	Pitting Stress Cycle Factor: Z _{NP} =	0.92 1.00 0.92	Fig. 9-23
Transmitted Load: Wt == 1000 lb	Pitting Stress Cycle Factor: Z _{NG} =	1.00 0.94	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending		
Min Nom Max	Pinion: Required sat =	22,702 psi See Fig. 9-11 or	11 or
Face Width Guidelines (in): 1.333 2.000 2.667	Gear: Required Sat ≈	17,731 psi Table 9-5	
Enter: Face Width: F = 2.000 in	Stress Analysis: Pitting		
Ratio: Face width/pinion diameter: F/Dp = 0.67	Pinion: Required sac ==	147,790 psi See Fig. 9-12 or	.12 or
Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required Sac =	144,645 psi Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	369 Equations in Fig. 9-12-Grade 1	-Grade 1
Enter: Quality Number: A, = 11 Table 9-3	Required hardness of gear HB:	359 Equations in Fig. 9-12-Grade	-Grade 1
Dynamic Factor: K _v = 1.25 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	nent, for most severe requiren	ment.
[Factors for computing K_{V} :] $B = 0.826$ $C = 59.75$	One possible material specification:		
Reference: Np = 18 Ng = 51	Pinion requires HB 369; SAE 4340 OQT 900; HB 388; 15% elongation	900; HB 388; 15% elongation	
Bending Geometry Factor-Pinion: Jp = 0.315 Fig. 9-15	Gear requires HB 359; SAE 4340 OQT 1000; HB 363; 17% elongation	300; HB 363; 17% elongation	
Bending Geometry Factor-Gear: $J_G \approx 0.395$ Fig. 9-15	Comments:		
Reference: m_G = 2.83			
uction (42.83) in t			

Center Distances and sizes of gears are well balanced

ATTLICATION: PIODIOM 13 - FIIST PAIN	Factors in Design Analysis:	ysis:		
Food waste grinder driven by an electric motor	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	1FF<1.0 1FF	If F>1.0	
Double reduction - First pair - Input Data:	Pinion Proportion Factor, C _{pf} =	0.019 0.0	0.013 [0.50 < F/Dp < 2.00]	P < 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpf =	0.019 Figur	Figure 9-16	
	Type of gearing:	Open Corr	Commer. Precision	Ex. Prec.
Design Power Pass = 0.75 hp	Mesh Alignment Factor, C _{ma} =		0.135 0.074	0.043
Diametral Pitch: $P_d = 16$ Fig. 9-24	Enter: Cma =	0.135 Figur	Figure 9-17	
Input Speed: n = 850 rpm	Alignment Factor: K _m =	1.15 [Com	[Computed]	
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00 Table	Table 9-8: Use 1.00 if P _d >= 5	D >= 5
Desired Output Speed: $n_G = 190$ rpm	Pinion Rim Thickness Factor: K _{BP} ==	1.00 Fig. S	Fig. 9-18: Use 1.00 if solid blank	olid blank
Computed number of gear teeth: 80.5	Gear Rim Thickness Factor. K BG =	1.00 Fig. S	Fig. 9-18: Use 1.00 if solid blank	olid blank
Enter: Chosen No. of Gear Teeth: No = 81	Service Factor: SF ==	1.00 Use	Use 1.00 if no unusual conditions	conditions
Computed data:	Reliability Factor: KR =	1.00 Table	Table 9-11 Use 1.00 for R = .99	Pr R = .99
Actual Output Speed: no = 188.9 rpm	Enter: Design Life:	8000 hours	s See Table 9-12	9-12
Gear Ratio: mg = 4.50	Plnion - Number of load cycles: Np ==	4.1E+08	Guidelines: Y _N , Z _N	, Z _N
Pitch Diameter - Pinion: Dp # 1.125 in	Gear - Number of load cycles: No =	9.1E+07 10' o	10' cycles >10'	<10,
Pitch Diameter - Gear: Do = 5.063 in	Bending Stress Cycle Factor: Y NP =	0.95	1.00 0.95	Fig. 9-22
Center Distance: C ≈ 3.094 in	Bending Stress Cycle Factor: Y NG =	0.98	1.00 0.98	Fig. 9-22
Pitch Line Speed: v _t = 250 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.92	1.00 0.92	Fig. 9-23
Transmitted Load: Wt = 66 ib	Pitting Stress Cycle Factor: Z _{NG} =	0.95	1.00 0.95	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending			
Min Nom Max	Pinion: Required sat =	13,639 psi	See Fig. 9-11 or	11 or
Face Width Guidelines (in): 0.500 0.750 1.000	Gear: Required Sat ==	10,195 psi	Table 9-5	
8	Stress Analysis: Pitting			
Ratio: Face width/pinion diameter: F/Dp == 0.44	Pinion: Required Sac =	116,542 psi	See Fig. 9-12 or	12 or
Recommended range of ratio: 0.50 < F/D _p < 2.00	Gear: Required sac ≈	112,862 psi	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	272 Equa	Equations in Fig. 9-12-Grade	Grade 1
Enter: Quality Number: Av = 9 Table 9-3	Required hardness of gear HB:	260 Equa	Equations in Fig. 9-12-Grade	Grade 1
Dynamic Factor: Kv = 1.14 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for mos	it severe requirer	nent.
[Factors for computing K_v :] $B = 0.630$ $C = 70.71$	One possible material specification:			
Reference: Np = 18 No = 81	Pinion requires HB 272; SAE 4340 OQT 1200; HB 293; 21% elongation	1200; HB 293;	21% elongation	
Bending Geometry Factor-Pinion: Jp = 0.320 Fig. 9-15	Gear requires HB 260; SAE 4340 OQT 1200; HB 293; 20% elongation	200; HB 293; 2	20% elongation	
Bending Geometry Factor-Gear: Jo = 0.415 Fig. 9-15	Comments:			
Reference: $m_0 = 4.50$ Enter: Pitting Geometry Factor: $l = 0.106$ Fig. 9-21				
	belle and at the A.	4 4 8 lml 100 O.	A la fee main 4	

APPLICATION: Problem 75 - Second pair	Factors in Design Analysis:	rsts:		
Food waste grinder driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0 IFF	If F>1.0	
Double reduction - Second pair - Input Date:	Pinion Proportion Factor, Cpt =	0.077 0.0	0.079 [0.50 < F/	$[0.50 < F/D_P < 2.00]$
Overload Factor: K _o = 1.50 Table 9-7	Enter: C _{pf} =		Figure 9-16	
Transmitted Power: P = 0.5 hp	Type of gearing:	Open Corr	Commer. Precision	Ex. Prec.
Design Power P des = 0.75 hp	Mesh Alignment Factor, C _{ma} =	0.266 0.1	0.145 0.082	0.050
Diametral Pitch: $P_d = 16$ Fig. 9-24	Enter: C _{me} =	0.145 Figur	Figure 9-17	
Input Speed: np = 188.9 rpm	Alignment Factor: K _m =	1.22 [Com	[Computed]	
Number of Pinion Teeth: Np = 18	Size Factor: K _s =	1.00 Table	Table 9-8: Use 1.00 if P _d >= 5	1Pd>=5
Desired Output Speed: no = 42 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig. S	Fig. 9-18: Use 1.00 if solid blank	solid blank
Computed number of gear teeth: 81.0	Gear Rim Thickness Factor: K 8G =	1.00 Fig. 9	Fig. 9-18: Use 1.00 if solid blank	solid blank
Enter: Chosen No. of Gear Teeth: No = 81	Service Factor: SF =	1.00 Use	Use 1.00 if no unusual conditions	al conditions
Computed data:	Reliability Factor: KR =	1.00 Table	Table 9-11 Use 1.00 for R = .99	for R = .99
Actual Output Speed: no = 42.0 rpm	Enter: Design Life:	8000 hours	s See Table 9-12	9-12
m _G =	Pinion - Number of load cycles: Np ==	9.1E+07	Guidelines: Y _N , Z _N	z, Z _N
Pitch Diameter - Pinion: Dp = 1.125 in	Gear - Number of load cycles: No =	2.0E+07 10° o	10' cycles >10'	<10,
Pitch Diameter - Gear: Do = 5.063 in	Bending Stress Cycle Factor: Y _{NP} =	0.98	1.00 0.98	Fig. 9-22
Center Distance: C = 3.094 in	Bending Stress Cycle Factor: Y _{NG} =	1.01	1.00 1.01	Fig. 9-22
Pitch Line Speed: v _i = 56 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.95	1.00 0.95	Fig. 9-23
Transmitted Load: W _t = 297 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.98	1.00 0.98	Flg. 9-23
Secondary Input Data:	Stress Analysis: Bending			
Min Nom Max	Pinion: Required sat =	25,734 psi	See Fig. 9-11 or	3-11 or
Face Width Guidelines (in): 0.500 0.750 1.000	Gear: Required sat =	19,253 psi	Table 9-5	
Enter: Face Width: F = 1.150 in	Stress Analysis: Pitting			
Ratio: Face width/pinion diameter: F/Dp = 1.02	Pinion: Required sac =	157,454 psi	See Fig. 9-12 or	⊁12 or
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required Sac =	152,634 psi	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	399 Equa	Equations in Fig. 9-12-Grade	2-Grade 1
Enter: Quality Number: A _v = 9 Table 9-3	Required hardness of gear HB:	384 Equa	Equations in Fig. 9-12-Grade	2-Grade 1
Dynamic Factor: $K_v = 1.07$ Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for mos	it severe requin	ement.
[Factors for computing K_v :] $B = 0.630$ $C = 70.71$	One possible material specification:			
Reference: Np = 18 Ng = 81	Pinion requires HB 399; SAE 4340 OQT 800; HB 415; 12% elongation	800; HB 415; 1	12% elongation	
Bending Geometry Factor-Pinion: Jp = 0.320 Fig. 9-15	Gear requires HB 384; SAE 4340 OQT 800; HB 415; 12% elongation	00; HB 415; 12	2% elongation	
Bending Geometry Factor-Gear: Jo = 0.415 Fig. 9-15	Comments:			
Reference: m _G = 4.50	Pinion and gear made from same material and heat treatment for processing	and heat treat	ment for process	ing
10 TO	accaicavacc			

Note: Equal reduction ratios used for pairs 1 and 2 Larger fa Equal diametral pitches (16) used for both pairs

Larger face width required for pair 2 (1.15 in) vs. 0.50 in for pair 1 Stresses higher for pair 2 than for pair 1, requiring higher hardness

APPLICATION: Problem 76 - First pair	Factors in Design Analysis:	ysis:			
Small hand drill driven by an electric motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	0.	HF>1.0		
Double reduction - First pair - Input Data:	Pinion Proportion Factor, C _{pf} =	0.015	9000	$[0.50 < F/D_P < 2.00]$	< 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpf =	0.015 Fig	Figure 9-16		
	Type of gearing:	Open C	Commer.	Precision	Ex. Prec.
Design Power $P_{des} = 0.375 \text{ hp}$	Mesh Alignment Factor, C _{ma} ≈	0.251	0.131	0.071	0.041
Diametral Pitch: $P_d = 24$ Fig. 9-24	Enter: Cms =	0.137 Fig	Figure 9-17		
Input Speed: np = 3000 rpm	Alignment Factor: K _m =	1.15 [Cc	[Computed]		
Number of Pinion Teeth: Np = 15	Size Factor: K _s =	1.00 Ta	ble 9-8: L	Table 9-8: Use 1.00 if Pa >= 5	d >= 5
Desired Output Speed: no = 1300 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig	9. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	lid blank
Computed number of gear teeth: 34.6	Gear Rim Thickness Factor: K BG =	1.00 Fig	9.9-18: ∪	Fig. 9-18: Use 1.00 if solid blank	lid blank
Enter: Chosen No. of Gear Teeth: No = 35	Service Factor: SF =	1.00 Us	He 1.00 if	Use 1.00 if no unusual conditions	conditions
9	Reliability Factor: KR =	1.00 Ta	ble 9-11	Table 9-11 Use 1.00 for R	R = .99
Actual Output Speed: n _G ≈ 1285.7 rpm	Enter: Design Life:	5000 ho	hours	See Table 9-12	.12
Gear Ratio: Mg = 2.33	Pinion - Number of load cycles: Np ==	9.0E+08	ලි	Guidelines: Y _N , Z _N	ZN
Pitch Diameter - Pinion: Dp = 0.625 in	Gear - Number of load cycles: No ≈	3.9E+08 10	Š	>10,	<10,
Pitch Diameter - Gear: Dg = 1,458 in	Bending Stress Cycle Factor: Y _{NP} =	0.94	8.	0.94	Fig. 9-22
Center Distance: C = 1.042 in	Bending Stress Cycle Factor: Y _{NG} =	0.95	9.1	0.95	Fig. 9-22
Pitch Line Speed; v _t = 491 ft/min	Pitting Stress Cycle Factor: Z _{NP} ==	0.90	9.	06.0	Fig. 9-23
Transmitted Load: Wt = 17 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.92	00.1	0.92	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required sat =	14,014 psi	_	See Fig. 9-11 or	1 or
Face Width Guldelines (in): 0.333 0.500 0.667	Gear: Required sat =	9,765 psi		Table 9-5	
Enter: Face Width: F= 0.250 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/Dp == 0.40	Pinion: Required Sac =	127,649 psi		See Fig. 9-12 or	2 or
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required sac =	124,874 psi		Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	306 Eq	luations in	Equations in Fig. 9-12-Grade	irade 1
Enter: Quality Number: A, = 9 Table 9-3	Required hardness of gear HB:	297 Eq	juations ii	Equations in Fig. 9-12-Grade 1	irade 1
Dynamic Factor: K _v = 1.19 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for m	ost seve	re requirem	ent.
[Factors for computing K_v :] $B = 0.630$ $C = 70.71$	One possible material specification:				
Reference: Np = 15 Ng = 35	Pinion requires HB 306; SAE 4340 OQT 1100; HB 321; 19% elongation	1100; HB 32	21; 19%	slongation	
Bending Geometry Factor-Pinion: Jp = 0.250 Fig. 9-15	Gear requires HB 297; SAE 4340 OQT 1100; HB 321; 19% elongation	100; HB 321	1; 19% el	ongation	
Bending Geometry Factor-Gear: $J_0 = 0.355$ Fig. 9-15	Comments:				
Reference: $m_0 = 2.33$ Enter Pitting Geometry Factor: $t = 0.088$ Fin 9.21					
		1 1 0 - 0			Constitution of the Consti

Larger face width required for pair 2 (0.56 in) vs. 0.25 in for pair 1 Stresses nearly equal for pair 2 and for pair 1, requiring equal hardnesses

Ngenment Factor, K _m =1 0.45 _{gr} +C _{me} If F<1.0	APPLICATION: Problem 76 - Second pair	Factors in Design Analysis:			
Factor: K _o = 1.50 Table 9.7 Finion Proportion Factor, C _{pri} = 0.065 Figure 9-16	Small hand drill driven by an electric motor	Alignment Factor, K _m =1.0+C _{pt} +C _{ma}	1FF<1.0 1FF>1	0.	
Prover: P = 0.25 hp	Double reduction - Second pair - Input Data:	Pinion Proportion Factor, Cpt =			< 2.00]
Power P = 0.25 hp Power Po	K _o =	Enter: Cpt =	200	9-16	
Speed: Np = 1285.7 rpm	ь Н	Type of gearing:			Ex. Prec.
Speed:		Mesh Alignment Factor, C _{ma} =			0.044
Size Factor: K _a = 1.20 Computed	P = P d	Enter: C _{me} =	384	9-17	
Size Factor: K _g = 1.00 Table 9-8: Use 1.00 Table 9-10 Table 9-	np = 128	Alignment Factor: K _m =	-	rted]	
Speed:	Npm	Size Factor: K _s =		LB: Use 1.00 if P.	d >= 5
Service Factor: K _{BB} = 1.00 Fig. 9-18: Use 1.00 fi four unusual continuous defata: Service Factor: K _R = 1.00	no=	Pinion Rim Thickness Factor: Kap =		8: Use 1.00 if so	id blank
Reliability Factor: $K_R = 1.00$ Use 1.00 fir no unusual or speed: $n_0 = 551.0$ rputed deta: Speed: $n_0 = 551.0$ rpm Speed: $n_0 = 551.0$ rpm Finition: $D_P = 0.625$ in See Table 9-10 Use 1.00 for speed: $N_{\rm H} = 2.33$ Pinition: $D_P = 0.625$ in See Table 9-10 Finition - Number of load cycles: $N_{\rm H} = 3.9$ is the seed of the second of the		Gear Rim Thickness Factor: K _{BG} =		8: Use 1.00 if so	lid blank
Speed: n_{c} = 551.0 rpm Speed: n_{c} = 551.0 rpm Pinton - Number of load cycles: N_{p} = 1.00 Table 9-11 Use 1.00 for Table 9-11 Use 1.00 for Table 9-11 Use 1.00 for Table 9-10 Use 2.33 Pinton: D_{p} = 0.625 in Bending Stress Cycle Factor: X_{pp} = 0.95 Istance: C = 1.042 in Speed: N_{c} = 210 f/min Bending Stress Cycle Factor: Z_{pp} = 0.95 Istance: C = 1.042 in Bending Stress Cycle Factor: Z_{pp} = 0.95 Istance: C = 1.042 in Bending Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Cycle Factor: Z_{pp} = 0.95 Pitting Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Inting Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Inting Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Inting Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Inting Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Inting Stress Analysis: Bending Inting Stress Analysis: Bending Inting Stress Analysis: Bending Inting Stress Analysis: Bending Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Stress Cycle Factor: Z_{pp} = 0.95 Inting Stress Analysis: Bending Stress Cycle Factor: Z	Ng=	Service Factor: SF =		30 if no unusual c	conditions
Speed: No = 551.0 pm		Reliability Factor: K _R =		-11 Use 1.00 for	R = .99
Pinton: D _P = 0.625 in - Gear - Number of load cycles: N _P = 3.9E+08 Gear - Number of load cycles: N _P = 3.9E+08 Gear - Number of load cycles: N _P = 1.7E+08 Gear - Number of load cycles: N _P = 0.95 decorporation: D _P = 0.625 in Bending Stress Cycle Factor: Y _{NP} = 0.95 decorporation: D _P = 0.625 in Bending Stress Cycle Factor: Y _{NP} = 0.95 Gear - Number of load cycles: N _P = 0.95 Bending Stress Cycle Factor: Y _{NP} = 0.95 Bending Stress Cycle Factor: Y _{NP} = 0.95 Min Nom Max Gear: Required s _{a1} = 14,339 psi See Fig. 9-17 Pitting Stress Cycle Factor: Y _{NP} = 0.94 Stress Analysis: Bending Bending Stress Cycle Factor: Y _{NP} = 0.95 Pitting Stress Cycle Factor: Y _{NP} = 0.95 By titing Stress Cycle Factor: Y _{NP} = 0.95 Pitting Stress Cycle Factor: Y _{NP} = 0.95 Pitting Stress Cycle Factor: Y _{NP} = 0.95 By titing Stress Cycle Factor: Y _{NP} = 0.95 Pitting Stress Cycle Factor: Y _{NP} = 0.95 Stress Analysis: Pitting Bending Stress Cycle Factor: Y _{NP} = 0.95 Pitting Stress Cycle Factor: Y _{NP} = 0.95 Stress Analysis: Pitting Bending Stress Cycle Factor: Y _{NP} = 0.95 Pitting Stress Cycle Factor: Y _{NP} = 0.95 Gear: Required s _{a1} = 14,339 Pitting Stress Analysis: Pitting Bending Stress Cycle Factor: Y _{NP} = 0.95 Gear: Required s _{a1} = 12,283 Bending Stress Cycle Factor: Y _{NP} = 1.00 Dougles: Required s _{a1} = 12,283 Bending Stress Cycle Factor: Y _{NP} = 1.00 Dougles: Required s _{a2} = 124,283 Bending Stress Cycle Factor: Y _{NP} = 1.00 Dougles: Required hardness of gear HB: 30-6 Bending Stress Cycle Factor: Y _{NP} = 1.00 Dougles: Required hardness of gear HB: 30-6 Bending Stress Cycle Factor: Y _{NP} = 1.00 Dougles: Required hardness of gear HB: 30-6 Bending Stress Analysis Pitting Bending Stress Cycle Factor: Y _{NP} = 1.00 Dougles: Required hardness of gear HB: 30-6 Ben	n _G	Enter: Design Life:		See Table 9-	.12
Pinlon: De = 0.625 in Gear - Number of load cycles: N₀ = 1.7E+08 TO cycles > 10° >10° 0.95 1.00 0.94 1.00 0.94 1.00 <td>m_G =</td> <td>Pinion - Number of load cycles: Np ==</td> <td></td> <td>Guidelines: Y_N,</td> <td>ZN</td>	m _G =	Pinion - Number of load cycles: Np ==		Guidelines: Y _N ,	ZN
- Gear: D ₀ = 1.458 in Bending Stress Cycle Factor: Y _{NP} = 0.95 istance: C = 1.042 in Bending Stress Cycle Factor: X _{NP} = 0.97 istance: C = 1.042 in Bending Stress Cycle Factor: X _{NP} = 0.97 istance: C = 1.042 in Bending Stress Cycle Factor: X _{NP} = 0.97 istance: C = 1.042 in Bending Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Min Nom Max Min Nom Max Min Nom Max Pitting Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Bandling Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Pitting Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Bandling Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Pitting Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Bandling Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Pitting Stress Cycle Factor: X _{NP} = 0.97 in Nom Max Bandling Stress Cycle Factor: X _{NP} = 0.99 in NP Bandling Stress Cycle Factor: X _{NP} = 0.99 in NP Bandling Stress Cycle Factor: X _{NP}	۵۹	Gear - Number of load cycles: No =		les >10'	<10,
Stress Cycle Factor: \$	Da	Bending Stress Cycle Factor: Y NP =			Flg. 9-22
Allowed: V_{i} = 210 ft/min Pitting Stress Cycle Factor: Z_{NP} = 0.94 1.00 0.92 Pitting Stress Cycle Factor: Z_{NP} = 0.94 1.00 0.94 24 24 0 0.657 Stress Analysis: Bending Pinlon: Required s_{at} = 14,339 psi See Fig. 9-17 Pinlon: Required s_{at} = 9,890 psi Table 9-5 Stress Analysis: Pitting Pitting Stress Cycle Factor: Z_{NP} = 0.560 in Pinlon: Required s_{at} = 126,985 psi Table 9-5 Stress Analysis: Pitting Pitting Stress Cycle Factor: Z_{NP} = 0.560 in Pinlon: Required S_{at} = 126,985 psi Table 9-5 Gear: Required sac = 126,985 psi Table 9-5 Gear: Required hardness of pinlon HB: 304 Equations in Fig. 9-12-G Required hardness of gear HB: 296 Equations in Fig	O	Bending Stress Cycle Factor: Y _{NG} =	m=1		Fig. 9-22
dary Input Deta: Nom Max Stress Analysis: Bending Pinlon: Required sate 14,339 psi See Fig. 9-11 nes (in): 0.333 0.500 0.667 Stress Analysis: Bending 14,339 psi See Fig. 9-11 nes (in): 0.333 0.500 0.667 Stress Analysis: Bending 14,339 psi See Fig. 9-11 nes (in): 0.333 0.500 0.667 Stress Analysis: Bending 14,339 psi Table 9-5 s Width: F = 0.560 in Required sac 126,985 psi Table 9-5 s Width: F = 0.560 in Pinlon: Required sac 124,283 psi Table 9-5 s Midth: C = 2300 Table 9-3 Required hardness of pinlon HB: 304 Equations in Fig. 9-12-G Ractor: K = 1.12 Table 9-3 Specify materials, alloy and hear treatment, for most severe requirements R = 0.630 C = 70.71 One possible material specification: Person Person N = 15 N = 35 Fig. 9-15 Gear: Required sac 1000 1000 Pector: A = 0.250 Fig. 9-15	11 >	Pitting Stress Cycle Factor: Z _{NP} =	di (g)		Fig. 9-23
dary Input Data: Stress Analysis: Bending nes (in): 0.333 0.500 0.667 Stress Analysis: Bending nes (in): 0.333 0.500 0.667 Stress Analysis: Bending nes (in): 0.333 0.500 0.667 Stress Analysis: Bending s vidth: F = 0.560 in Stress Analysis: Pitting lameter: F/D₂ = 0.90 Pinion: Required sat = 14,339 f ratio: 0.50 < F/D₂ < 2.00	Wta	ZNG	100/16		Fig. 9-23
nes (in): 0.333 0.500 0.667 s Width: F = 0.560 in s Width: F = 0.560 in s Width: F = 0.560 in shareter: F/D₂ = 0.90 fratic: 0.50 < F/D₂ < 2.00 Number: A₂ = 9 Table 9-3 Required hardness of pinlon HB: 304 Required hardness of gear HB: 296 Required hardness of pinlon HB: 304 Required hardness of gear HB: 296 Required h	Secondary Input Data:	Stress Analysis: Bending			
nes (in): 0.333 0.500 0.667 a Width: F = 0.560 in stress Analysis: Pitting lameter: F/Dp = 0.90 fratio: 0.50 < F/Dp < 2.00 Required hardness of pinion HB: 304 Required hardness of gear HB: 296 Fractor: K _V = 1.12 Table 9-9 B = 0.630	Nom	Pinton: Required sat =	14,339 psi	See Flg. 9-1'	1 or
Stress Analysis: Pitting Stress Analysis: Pitting	0.333 0.500	Gear: Required sat ==	9,890 psi	Table 9-5	
fratio: 0.50 < F/Dp = 0.90 Fratio: 0.50 < F/Dp < 2.00 Required hardness of pinion HB: 304 Required hardness of pinion HB: 304 Required hardness of gear HB: 296 Required hardness of gear HB: 296 Required hardness of pinion HB: 304 Required sac = 124,283 Required hardness of pinion HB: 304 Required sac = 124,283 Required sac = 124,283 Required sac = 124,283 Required sac = 126,985 Required sac = 126,283 Required sac = 124,283 Required sac = 126,285 Required sac = 124,283 Required sac = 126,285 Require	0.560	Stress Analysis: Pitting			
fratio: $0.50 < F/D_P < 2.00$ Fricient: $C_P = 2300$ Table 9-10 Number: $A_V = 9$ Table 9-3 Factor: $K_V = 1.12$ Table 9-9 $B = 0.630$ $C = 70.71$ $N_P = 15$ $N_S = 35$ Order: $J_P = 0.250$ Fig. 9-15 France: $M_S = 2.33$ Fratio: $0.50 < F/D_P < 2.00$ Required hardness of pinion HB: 304 Required hardness of gear HB: 304 Required hardness of pinion HB: 304 Required hardness of gear HB: 296 Required hardness of pinion HB: 304 Required hardness of gear HB: 296 Required hardness of gear HB: 304 Required hardness of gear HB: 304 Required hardness of gear HB: 296 Required	Ratio: Face width/pinion diameter: F/Dp = 0.90	Pinion: Required Sac =	126,985 psi	See Fig. 9-1;	2 or
Aumber: A _V = 9 Table 9-3 Required hardness of pinlon HB: 304 Number: A _V = 9 Table 9-3 Required hardness of gear HB: 296 Factor: K _V = 1.12 Table 9-9 Specify materials, alloy and heat treatment, for nequires HB: 296 B = 0.630 C = 70.71 One possible material specification: Pecify materials, alloy and heat treatment, for possible material specification: N _P = 15 N _S = 35 Pinion requires HB 304; SAE 4340 OQT 1100; HB (gear requires HB 296; SAE 4340 OQT 1100; HB (gear requires HB 296; SAE 230 OQT 1100; HB (gear requires HB 200; MB (gear requires HB 200;	Recommended range of ratio: 0.50 < F/Dp < 2.00	Gear: Required Sac =	124,283 psi	Table 9-5	
Number: $A_v = 9$ Table 9-3 Required hardness of gear HB: 296 Specify materials, alloy and heat treatment, for $B = 0.630$ $C = 70.71$ One possible material specification: $A_P = 15$ $N_Q = 35$ Pinion requires HB 304; SAE 4340 OQT 1100; HB in the series of the series	Cp = 2300	Required hardness of pinion HB:		ns in Fig. 9-12-G	rade 1
Factor: $\Delta V = 1.12$ Table 9-9 $B = 0.630$ $C = 70.71$ $\Delta V_P = 15$ $\Delta V_S = 35$ -Pinion: $\Delta P = 0.250$ Fig. 9-15 or-Gear: $\Delta S = 0.355$ Fig. 9-15 Fence: $M_S = 2.33$	A, = 9	Required hardness of gear HB:	296 Equatic	ns in Fig. 9-12-G	irade 1
$N_P = 15$ $N_G = 35$ -Pinion: $J_P = 0.250$ Fig. 9-15 or-Gear: $J_G = 0.355$ Fig. 9-15 rence: $m_G = 2.33$	B = 0.630 C=	One possible material specification:	ment, 101 most		ent.
Jp = 0.250 Fig. 9-15 Jg = 0.355 Fig. 9-15 Mg = 2.33	Np = 15 Ng =	Pinion requires HB 304; SAE 4340 OQT	1100; HB 321; 1	9% elongation	
J _G = 0.355 Fig. 9-15	$J_P = 0.250$	Gear requires HB 296; SAE 4340 OQT 1	100; HB 321; 19	% elongation	
$m_G = 2.33$	Jo = 0.355	Comments:			
1= 0.088	Ľ				

DESIGN OF PLASTIC SPUR GEARS		
Application:		
Bana saw driven by electric motor Problem 77		
Initial Input Data:		
((156) 1:15 Web 1 17:23	0.4:2-6:15	
Input Speed: n ⊨ =	EF517557	From Proble
Diametral Pitch: P _e = Number of Philon Teeth: N _e =		NEWHER = 1
Desired Output Speed: A ∈ =		To produce
Computed number of gear teeth:	62.319	speed of 37
Erier Chosen No of Cearleon No s	(5)	opood or or
Computed data:		Δ <i>Γ</i> 2
Actual Output Speed: n_G	= 160.0 rpm	No who
Gear Ratio: m _G	= 3.444	MW=
Pitch Diameter - Pinion: D_P	= 1.500 in	Mw =
Pitch Diameter - Gear: D_G	= 5.167 in	
Center Distance: C	= 6.667 in	CONNI SHAF
Pitch Line Speed: v_t	= 216.4 ft/min	ONE
Transmitted Load: W_t	= 38.11 lb	URE
Secondary Input Data - Pin		
- NORTH PROGRAMMENT CONTROL OF THE C		
Lewis Form Factor Y Safety Factor: SF	E Δ07326 E (0 7436	rijabija (s. 15 Karata kalendar
	lafijjes anvijen	
Allowable Bending Stress: Sat	= (510)9 (cs)	reigi e <mark>je</mark> r
Required Face Width: F	= 0.219 in	
Enclin Sceedles Face Whith the		
Actual Bending Stress in Pinion: s_t	= 5985 psi	
Secondary Input Data - G	ear:	

ESWE HEAVIST HEAVING		[0][-9.1]	Teble 9-/5
Satery Factor		η β. (i	Ref Table 9-7
Malerial:	(9),		
Aliowable Bending Stress		الحالة[0] وأوا	/4 e (5) e 24
Required Face Width:	F=	0.219 in	
Egger Specified Face Width		(Deele)	
Actual Bending Stress in Pinion:	St =	5985 psi	
Consulation Insulation	_ ^		
Secondary Input Data	a - Geal	7:	
Tooth Form:		r: ree full depth	Same as for pinion
	20 deg	ree full depth	Same as for pinion
Tooth Form: Lewis Form Factor: Safety Factor:	20 deg Y = SF =	ree full depth 0.716 1.50	
Tooth Form: Lewis Form Factor: Safety Factor:	20 deg Y = SF =	ree full depth 0 716	Table 9-15
Tooth Form: Lewis Form Factor: Safety Factor:	20 deg SF = Uni	ree full depth 0,746 1.50 lied Aceta	Table 9-15
Tooth Form: Lewis Form Factor Safety Factor: Material	20 deg SF = Uni	ree full depth 0,746 1.50 lied Aceta	Table 9- /5 Same as for pinion

78.

RACK DRIVES FURNACE DOOR. NEACK = 2.0 FT/S = 120 FT/MIN

 $N_{R} = N_{E_{D}} = T P_{D} M_{D} / / 2$ $M_{D} \geq \frac{12 N_{ED}}{T} = \frac{(12)(120)}{T P_{D}} = \frac{458.4}{P_{D}}$ PISSIBLE VALUES FOR DG!

PAIR 13 MA = 1500 RPM MB = 172.3 RAM

NA = 17, NB = 148, VR. = 8.71

PAIR2: Me = MB = 177.3 RPM; Mb = 37.76 N/c = 16, ND = 73, VRz = 4.56

SEE TWO SPREADSHEET SOLUTIONS

DESIGNED FOR OPEN GEARING

DESIGN LIFE: IN EACH CYCLE, RACK MOVES OFT EACHWAY

TOTAL OF 12 FT FOR FULL CYCLE. AT 2.0 FT/S, CYCLE TIMEIS:

136C, 12 FT = 6.0 SEC/CYCLE

6.05E x GCYCLES x 24 He x 365 DAYS x 15YRS ha = 1314 ha

USE 1500 ha lesign life.

SUMMARY & POWER = 5.0 hP, Ko=1.50, PJes=7.5 hP., QUALITY = AV=11

PART: 10 17 172 1.700 14.800 1.200 8.250 WELL BALANCED

PAIR 2: 6 16 73 2.667 12.167 2.500 7.417

ALL GEARS MADE FROM SAE 4340: PAIR 1 - OOT 1100; HB 321
PAIR 2 - OOT 900; HB 388

APPLICATION: Problem 78 - First pair	Factors in Design Analysis:	
Rack and pinion drive driven by a fluid power motor	0:1:	If F>1.0
Double reduction - First pair - input Data:	pr = 0.046	0.048 [0.50 < F/D _P < 2.00]
Overload Factor: K _o = 1.50 Table 9-7	Enter: C _{pt} = 0.048 Fig	Figure 9-16
Transmitted Power: P = 5 hp	Type of gearing: Open C	Commer. Precision Ex. Prec.
Design Power $P_{des} = 7.5 \text{ hp}$	Mesh Alignment Factor, C _{ma} = 0.267	0.146 0.083 0.050
Diametral Pitch: $P_d = 10$ Fig. 9-24	Enter: C _{me} = 0.146 Fig	Figure 9-17
Input Speed: np = 1500 rpm	Alignment Factor: K _m = 1.19 [C	[Computed]
Number of Pinion Teeth: Np = 17	Size Factor: K _s = 1.00 Ta	Table 9-8: Use 1.00 if P _d >= 5
Desired Output Speed: no = 172 rpm	Pinion Rim Thickness Factor: K _{BP} = 1.00 Fig	Fig. 9-18: Use 1.00 if solid blank
Computed number of gear teeth: 148.3	Gear Rim Thickness Factor: K _{BG} = 1.00 Fig	Fig. 9-18: Use 1.00 if solid blank
Enter: Chosen No. of Gear Teeth: No = 148	Service Factor: SF = 1.00 Us	Use 1.00 if no unusual conditions
Computed data;	Reliability Factor: K _R = 1.00 Ta	Table 9-11 Use 1.00 for R = .99
Actual Output Speed: no = 172.30 rpm	Enter: Design Life: 1500 ho	hours See Table 9-12
Gear Ratio: mg = 8.71	Pinion - Number of load cycles: Np = 1.4E+08	Guidelines: Y _N , Z _N
Pitch Diameter - Pinion: Dp = 1.700 in	Gear - Number of load cycles: N _G = 1.6E+07 10	10' cycles >10' <10'
Pitch Diameter - Gear: Do = 14.800 in	Bending Stress Cycle Factor: Y _{NP} = 0.97	1,00 0.97 Fig. 9-22
Center Distance: C = 8.250 in	Bending Stress Cycle Factor: Y NG = 1.01	1.00 1.01 Fig. 9-22
Pitch Line Speed: v _t = 668 ft/min	Pitting Stress Cycle Factor: Z _{NP} = 0.94	1.00 0.94 Fig. 9-23
Transmitted Load: Wt= 247 lb	Pitting Stress Cycle Factor: Z _{NG} = 0.99	1.00 0.99 Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending	
Min Nom Max	Pinion: Required 8at = 17,347 psi	i See Flg. 9-11 or
Face Width Guidelines (in): 0.800 1.200 1.600	Gear: Required sat = 11,564 psi	i Table 9-5
Ratio: Face width/pinion diameter: F/Dp = 0.71	Pinion: Required sac = 126,062 psi	i See Fig. 9-12 or
Recommended range of ratio: 0.50 < F/D _p < 2.00	Gear: Required sac = 119,695 psi	i Table 9-5
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB: 301	Equations in Fig. 9-12-Grade 1
Enter: Quality Number: Av = 11 Table 9-3	Required hardness of gear HB; 281 Eq	Equations in Fig. 9-12-Grade 1
Dynamic Factor: K _v = 1.35 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ost severe requirement.
[Factors for computing K_v :] $B = 0.826$ $C = 59.75$	One possible material specification:	
Reference: Np = 17 Ng = 148	Pinion requires HB 301; SAE 4340 OQT 1100; HB 321; 19% elongation	21; 19% elongation
Bending Geometry Factor-Pinion: Jp = 0.295 Fig. 9-15	Gear requires HB 281; SAE 4340 OQT 1100; HB 321; 19% elongation	1; 19% elongation
Bending Geometry Factor-Gear: Jo = 0.425 Fig. 9-15	Comments:	
m _G = 8.71	Same material used for pinion and gear because contact stresses are close.	act stresses are close.
Enter: Pitting Geometry Factor: /= 0.110 Fig. 9-21		

APPLICATION: Problem 78 - Second pair	DESIGN OF SPUR GEARS Factors in Design Analysis:	Sis:		
Rack and pinion drive driven by a fluid power motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	0	IFF>1.0	
Double reduction - Second pair - Input Data:	Pinion Proportion Factor, Cpf =	690.0	0.088 [0.50 < F	$[0.50 < F/D_P < 2.00]$
Overload Factor: K _o = 1.50 Table 9-7	Enter: Cpl =	0.088 Fig	Figure 9-16	
Transmitted Power: P = 5 hp	Type of gearing:	Open	Commer. Precision	Ex. Prec.
Design Power P _{des} = 7.5 hp	Mesh Alignment Factor, C _{ma} =	0.288	0.166 0.099	0.063
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: C _{me} =	0.166 Fig	Figure 9-17	
input Speed: np = 172.3 rpm	Alignment Factor: K _m =	1.25 [C	[Computed]	
Number of Pinion Teeth: Np = 16	Size Factor: K _s =	1.00 Ta	Table 9-8: Use 1.00 if P _d >= 5	f P d >= 5
Desired Output Speed: no = 38.2 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig	Fig. 9-18: Use 1.00 if solid blank	solid blank
Computed number of gear teeth: 72.2	Gear Rim Thickness Factor: K _{BG} =	1.00 Fig	Fig. 9-18: Use 1.00 if solid blank	solid blank
Enter: Chosen No. of Gear Teeth: No = 73	Service Factor: SF =	1.00 Us	Use 1.00 if no unusual conditions	al conditions
Computed data:	Reliability Factor: K _R =	1.00 Ta	Table 9-11 Use 1.00 for R = .99	for R = .99
Actual Output Speed: no = 37.76 rpm	Enter: Design Life:	1500 ho	hours See Table 9-12	99-12
Gear Ratio: m _G = 4.56	Pinion - Number of load cycles: Np =	1.6E+07	Guidelines: Y _N , Z _N	'N, Z _N
Pitch Diameter - Pinion: Dp ≈ 2.667 in	Gear - Number of load cycles: No =	3.4E+06 10	10' cycles >10'	<10,
Pitch Diameter - Gear: D _G = 12.167 in	Bending Stress Cycle Factor: Y NP =	1.01	1.00 1.01	Fig. 9-22
Center Distance: C ≈ 7,417 in	Bending Stress Cycle Factor: Y NG =	1.04	1.00	Fig. 9-22
Pitch Line Speed: v _t = 120 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.99	1.00 0.99	Fig. 9-23
Transmitted Load: Wt = 1372 lb	Pitting Stress Cycle Factor: Z _{NG} =	1.03	1.00 1.03	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending			
Min Nom Max	Pinion: Required sat =	26,592 psi	See Fig. 9-11 or	9-11 or
Face Width Guidelines (in): 1.333 2.000 2.667	Gear: Required Sat =	17,109 psi	Table 9-5	
Enter: Face Width: F = 2.500 in	Stress Analysis: Pitting			
Ratio: Face width/pinion diameter: F/Dp = 0.94	Pinlon: Required Sac =	153,423 psi	See Flg. 9-12 or	9-12 or
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required Sac =	147,465 psl	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	386 Eq	Equations in Fig. 9-12-Grade	2-Grade 1
Enter: Quality Number: Av = 11 Table 9-3	Required hardness of gear HB:	368 Eq	Equations in Fig. 9-12-Grade	2-Grade 1
Dynamic Factor: K _v = 1.15 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	nent, for m	ost severe requir	ement.
[Factors for computing K_v :] $B = 0.826$ $C = 59.76$	One possible material specification:			
Reference: $N_P = 16$ $N_G = 73$	Pinion requires HB 386; SAE 4340 OQT 900; HB 388; 14% elongation	900; HB 386	3; 14% elongation	
Bending Geometry Factor-Pinion: Jp = 0.265 Fig. 9-15	Gear requires HB 368; SAE 4340 OQT 900; HB 388; 14% elongation	DO; HB 388;	14% elongation	
Bending Geometry Factor-Gear: $J_G = 0.400$ Fig. 9-15	Comments:			
$m_{G} = 4.56$	Same material and heat treatment used for pinion and gear.	r pinion and	gear.	
Enter: Pitting Geometry Factor: /= 0.102 Fig. 9-21	Same material used for both Pair 1 and Pair2; Different tempering temperatures	air2; Differer	it tempering tempe	ratures.

79.

GEAR DRIVE FOR A LIFTTRUCK ROLLING WHEEL IS THE INVERSE OF APINION DRIVING A RACK.

NAT CENTER OF WHEEL EDVALS SPEED OF LIFT TRUCK.

SPEED OF LIFT TRUCK.

$$N = TD_{i}M_{i}/2$$

$$N = \frac{12N}{17D_{W}} = \frac{12(1760^{14}/MiN)}{17(121M)} = 560.23RPM$$

FLOOR

FL

TRAIN VALUE = 3000/560.23 = 5.355

THIS TY COULD BE PROPILED BY ONE PAIR OF GEARS. HOWEVER, FOR POWER REDUIRED, GEAR WOULDBE TOO LARGE TO ATT ACH TO AXLE WITH 12-IN WHEEL.

USE DOUBLE REDUCTION. SEE THO FOLLOWING PAGES.

$$VR_1 = \frac{NB}{NA} = \frac{5D}{17} = 2.94$$
 $VR_2 = \frac{ND}{NC} = \frac{38}{21} = 1.81$
 $M_W = M_D = M_A \cdot \frac{NA}{NB} \cdot ND$
 $M_W = 3000 \cdot \frac{17}{50} \cdot \frac{21}{38} = 563.78PM$

SLIGHTLY HIGHER

THAN TARGET.

FLOOR NOTES GEARS HAVE PS=6 FOR PAIRI AND PA=5 FOR PAIR 2. FACE WIDTHS ARE RATIVELY LARGE. F. = 2,50,1N, F2 = 3.00,1N. REDESIGN WITH HELICAL GEARS SHOVLD ALLOW A SMALLER SYSTEM. ALSO ALL GEARS USE SAME MATERIAL AND HEAT TREATMENT.

LIFE CALCULATION:

16 h x 60Axs x 52 WES x 20 YR = 99 840 h USE L= 100 000 h DESIGN DECLISIONS: SF = 1.00, KR=1.50 [IFAILURE IN 10000; R=0.9999]

CONTINUED ON NEXT THE PAGES

APPLICATION: Problem 79 - First pair	Factors in Design Analysis:	/sis:		
Industrial lift truck drive to wheels: driven by DC motor	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	0.	If F>1.0	
Double reduction - First pair - Input Data:	Pinion Proportion Factor, C _{pf} =	0.063	0.082 [0.50 <	$[0.50 < F/D_P < 2.00]$
Overload Factor: Ko = 1.50 Table 9-7	Enter: Cpl =	0.082 Fig	Figure 9-16	
II	Type of gearing:	Open	Commer. Precision	on Ex. Prec.
Design Power P _{des} = 30 hp	Mesh Alignment Factor, C _{ma} =	0.288	0.166 0.099	90.063
Diametral Pitch: $P_d = 6$ Fig. 9-24	Enter: C _{ma} =	0.166 Fig	Figure 9-17	
Input Speed: np = 3000 rpm	Alignment Factor: K _m =	1.25 [C	[Computed]	
Number of Pinion Teeth: $N_P = 17$	Size Factor: K _s =	1.00 Ta	Table 9-8: Use 1.00 if P _d >= 5	Off Pd >= 5
Desired Output Speed: ng = 1000 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig	Fig. 9-18: Use 1.00 if solid blank	if solid blank
Computed number of gear teeth: 51.0	Gear Rim Thickness Factor: K 8G =	1.00 Fig	Fig. 9-18: Use 1.00 if solid blank	If solid blank
Enter: Chosen No. of Gear Teeth: No = 50	Service Factor: SF =	1.00 Us	Use 1.00 if no unusual conditions	sual conditions
Computed data:	Reliability Factor: K _R =	1.50 Ta	Table 9-11 Use 1.00 for R = .99	0 for R = .99
Actual Output Speed: no = 1020.00 rpm	Enter: Design Life:	100000 hours	urs See Ta	See Table 9-12
Gear Ratio: mg = 2.94	Pinion - Number of load cycles: Np =	1.8E+10	Guidelines: Y _N , Z _N	YN, ZN
Pitch Diameter - Pinion: Dp = 2.833 in	Gear - Number of load cycles; N _G =	6.1E+09 10	10' cycles >10'	<10,
Pitch Diameter - Gear: Do = 8.333 in	Bending Stress Cycle Factor: Y _{NP} =	0.89	1.00 0.89	Fig. 9-22
Center Distance: C = 5.583 in	Bending Stress Cycle Factor: Y _{NG} =	0.91	1.00 0.91	Fig. 9-22
Pitch Line Speed: v _t = 2225 f/min	Pitting Stress Cycle Factor: Z _{NP} =	0.84	1.00 0.84	Fig. 9-23
Transmitted Load: Wt = 297 lb	Pitting Stress Cycle Factor: Z _{NG} ==	0.86	1.00 0.86	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending			
Min Nom Max	Pinlon: Required set =	9,152 psi		See Fig. 9-11 or
Face Width Guidelines (in): 1.333 2.000 2.667	Gear: Required sat =	6,901 psi	Table 9-5	សុ
Enter: Face Width: F = 2.500 in	Stress Analysis: Pitting			
Ratio: Face width/pinion diameter: F/Dp ≈ 0.88	Pinion: Required sac ==	127,576 psi		See Fig. 9-12 or
Recommended range of ratio: 0.50 < F/D _p < 2.00	Gear: Required Sac =	124,609 psi	Table 9-5	ťγ
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	306 Eq	Equations in Fig. 9-12-Grade	12-Grade 1
Enter: Quality Number: A v = 7 Table 9-3	Required hardness of gear HB:	297 Eq	Equations in Fig. 9-12-Grade	12-Grade 1
Dynamic Factor: Kv = 1.19 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for m	ost severe requ	Irement.
[Factors for computing K_v :] $B = 0.397$ $C = 83.77$	One possible material specification:			
Reference: Np = 17 Ng = 50	Pinion requires HB 306; SAE 4340 OQT 1100; HB 321; 19% elongation	1100; HB 32	21; 19% elongativ	5
Bending Geometry Factor-Pinion: Jp = 0.293 Fig. 9-15	Gear requires HB 297; SAE 4340 OQT 1100; HB 321; 19% elongation	100; HB 321	1; 19% elongation	
Bending Geometry Factor-Gear: $J_G = 0.380$ Fig. 9-15	Comments:	:		
$m_G = 2.94$	Same material used for pinion and gear because contact stresses are close.	ecause contr	act stresses are	ose.
Enter: Pitting Geometry Factor: 1 = 0.09/ Fig. 9-21				

APPLICATION: Problem 79 - Second pair	Factors In Design Analysis:	rsis:			
Industrial lift truck drive to wheels: driven by DC motor	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0	If F>1.0		
Double reduction - Second pair - Input Data:	Pinion Proportion Factor, Cpf =	0.046	0.071	[0.50 < F/D _P < 2.00]	P < 2.00]
1	Enter: Cpt =	0.071 F	Figure 9-16		
	Type of gearing:	Open	Commer.	Precision	Ex. Prec.
Design Power $P_{des} = 30 \text{ hp}$	Mesh Alignment Factor, C _{ma} =	0.296	0.173	0.105	0.068
Diametral Pitch: $P_d = 5$ Fig. 9-24	Enter: C _{me} =	0.173 F	Figure 9-17		
Input Speed: np = 1020 rpm	Alignment Factor: K _m =	1.24	[Computed]		
Number of Pinion Teeth: Np = 21	Size Factor: K _s =	1.00	rable 9-8: L	Table 9-8: Use 1.00 if Po >= 5	2=< 2
Desired Output Speed: ne = 560.23 rpm	Pinion Rim Thickness Factor: K _{BP} =	1.00 F	Fig. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	olid blank
Computed number of gear teeth: 38.2	Gear Rim Thickness Factor: K _{BG} =	1.00 F	Fig. 9-18: U	Fig. 9-18: Use 1.00 if solid blank	olid blank
Enter: Chosen No. of Gear Teeth: No = 38	Service Factor: SF =	1.00 1	Jse 1.00 if	Use 1.00 if no unusual conditions	conditions
Computed data:	Reliability Factor: KR =	1.50	rable 9-11	Table 9-11 Use 1.00 for R = .99	r R = .99
Actual Output Speed: no = 563.68 rpm	Enter: Design Life:	100000 hours		See Table 9-12	3-12
Gear Ratio: mg = 1.81	Pinion - Number of load cycles: Np =	6.1E+09	වි	Guidelines: Y _N , Z _N	Z _N
Pitch Diameter - Pinion: Dp ≈ 4.200 in	Gear - Number of load cycles: No =	3.4E+09	10' cycles	>10.	<10,
Pitch Dlameter - Gear: D _G ≈ 7.600 in	Bending Stress Cycle Factor: Y _{NP} =	0.91	6. 8.	0.91	Fig. 9-22
Center Distance: C = 5.900 in	Bending Stress Cycle Factor: Y _{NG} =	0.92	9.	0.92	Flg. 9-22
Pitch Line Speed: v _t = 1122 ft/min	Pitting Stress Cycle Factor: Z _{NP} =	0.86	9.	0.86	Fig. 9-23
Transmitted Load: W₁ ≈ 588 lb	Pitting Stress Cycle Factor: Z _{NG} =	0.87	1.00	0.87	Fig. 9-23
Secondary Input Data:	Stress Analysis: Bending				
Min Nom Max	Pinion: Required sat =	10,447 psi	isi	See Fig. 9-11 or	11 or
Face Width Guidelines (in): 1.600 2.400 3.200	Gear: Required Sat =	8,974 psi	isi	Table 9-5	
Enter: Face Width: F= 3.000 in	Stress Analysis: Pitting				
Ratio: Face width/pinion diameter: F/D _P = 0.71	Pinion: Required 8 _{ac} ≈	131,992 psi)Ĝi	See Fig. 9-12 or	12 or
Recommended range of ratio: 0.50 < F/D _P < 2.00	Gear: Required sac	130,475 psl	Sel	Table 9-5	
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	Required hardness of pinion HB:	320 E	Equations I	Equations In Fig. 9-12-Grade	Grade 1
Enter: Quality Number: A _v = 7 Table 9-3	Required hardness of gear HB:	315 E	Equations Is	Equations In Fig. 9-12-Grade	Grade 1
Dynamic Factor: K _v = 1.14 Table 9-9	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for I	most seve	re requiren	nent.
[Factors for computing K_v :] $B = 0.397$ $C = 83.77$	One possible material specification:				
11	Pinion requires HB 320; SAE 4340 OQT 1100; HB 321; 19% elongation	1100; HB	321; 19%	elongation	
Bending Geometry Factor-Pinion: $J_P = 0.330$ Fig. 9-15	Gear requires HB 315; SAE 4340 OQT 1100; HB 388; 19% elongation	100; HB 3	88; 19% el	ongation	
Bending Geometry Factor-Gear: Jo = 0.380 Fig. 9-15	Comments:				
$m_G = 1.81$	Same material and heat treatment used for pinion and gear.	r pinion an	nd gear.		
	Same material used for both Dair 1 and Dair? Same temperature		The state of the s	CONTRACTOR OF THE PERSON OF	

DESIGN OF PLASTIC SPUR GEARS		
Application:		
Small band saw driver by an elecate m	olor	
Problem 80 - One possible design		
Initial Input Data:		
Input Power: P	= (0,6) (10)	
Input Speed: ne	= 860 tem	
Diametral Pitch: P _a	= 12	
Number of Pinion Teeth: Na	* 18	
Desired Output Speed: 7 ₆	= 266 mm	
Computed number of gear teeth:	58.195	
Enter: Chosen No. of Gear Teeth: No.		
Computed data:		
Actual Output Speed: n _G	= 266.9 rpm	
Gear Ratio: m _G	= 3.222	
Pitch Diameter - Pinion: D_P	= 1.500 in	
Pitch Diameter - Gear: D _G	= 4.833 in	
Center Distance: C	c = 6.333 in	
Pitch Line Speed: V	= 337.7 ft/min	
Transmitted Load: W _t	= 48.84 lb	
Secondary Input Data - Pl	nion:	
	CONTIUNE OF THE PARTY OF THE PA	
Lewis Form Factor: Y		
Safety Factor: SF		7
Material: Allowable Bending Stress: ऽ _व	Nylon = 6000 psi Table 94/9 or	Eta e 78
200000000000000000000000000000000000000	= 0.281 in	
Enter: Specified Face Width: F		
	= 5624 psi	
Secondary Input Data - G		
	degree full depth Same as for p	oinion
	= 0.709 Table 9.75	
Safety Factor: SF		
Material:	Acetal	
Allowable Bending Stress: Sat	= 5000 psi Table 9- /4 or	Fig. 9-28
Face Width - Gear: F	= 0.300 in Same as for p	inion
Actual Bending Stress in Gear: St	= 4133 psi Must be < s _{at}	

DESIGN OF PLASTIC SPUR GEAR	S		1
Application:			
Paper feed roll driven by an electric r Problem 81 - One pessible design	notor		
Initial Input Data			
Input Power:		ereta a la composición de la composición dela composición de la composición dela composición de la composición de la composición de la com	
Input Speed: A	436-6714B-7743	88 rpm	
Diametral Pitch: P	a =	20	
Number of Pinion Teeth: A	p=	18	
Desired Output Speed: n	a =	21 rpm	
Computed number of gear teeth:	re-to-transcence design	67.048	
Enter: Chosen No. of Gear Teeth: N	g =	67	
Computed data			1
Actual Output Speed:	n _G =	21.0 rpm	
Gear Ratio: n	n _G =	4.188	
Pitch Diameter - Pinion:	$D_P =$	0.800 in	
Pitch Diameter - Gear:	$D_G =$	3.350 in	
Center Distance:	C =	4.150 in	
Pitch Line Speed:	$v_t =$	18.4 ft/min	
Transmitted Load:	$W_t =$	107.4 lb	
Secondary Input Data -			
Tools Form			
Lewis Form Pactor: Safety Factor:	aussau		Table 9- 15
		1-class filled	Ref: Table 9-7
	939493753541191	12000 psi	Table 94 /4 or Fig. 9428
Required Face Width:	the contribution of the contribution of	0.387 in	
\$5000000000000000000000000000000000000		0,400 in	
Actual Bending Stress in Pinion:	s _t =	11612 psi	
Secondary input Data	- Geal	r:	
Tooth Form:		legree stub	Same as for pinion
Lewis Form Factor	Y =	0,782	Table 84 15
Safety Factor:	SF = Maar	1.25 Fglass filled	Same as for pinion
		12000 psi	Table 9-14 or Fig. 9-28
Face Width - Gear:	F =	0.400 in	Same as for pinion
Actual Bending Stress in Gear:	s _t =	8583 psi	Must be < s _{at}

DESIGN OF PLASTIC SPUR GEA	RS		1
Application:			
Wheels of remote control car-Electi	le mete	r drive	
Paralem Bartene possible cesign			
Initial Input Da			
Input Power:	PERSONAL PROPERTY.	165616161616161616161616161616161616161	
Input Speed:	Dp =	430 rpm	
Diametral Pitch:	P, =	48	
Number of Pinion Teeth:	N _P =	14	
Desired Output Speed:	No =	121 rpm	
Computed number of gear teeth:	2011/04/04/10/10/19/10	49.752	
Enter: Chosen No. of Gear Teeth:	N _G =	50	
Computed dat	a:		6
Actual Output Speed:		120.4 rpm	
Gear Ratio:	$m_G =$	3.571	
Pitch Diameter - Pinion:	$D_P =$	0.292 in	
Pitch Diameter - Gear:	$D_G =$	1.042 in	
Center Distance:	C =	1.333 in	
Pitch Line Speed:	$v_t =$	32.8 ft/min	
Transmitted Load:	$W_t =$	25.1 lb	
Secondary Input Data	- Pinio	on:	
Tooler Forms			
Lewis Form Factor;			Table 9-15
Safety Factor			Ref: Table 94 7
Material		ion-unfilled	
Allowable Bending Stress:	**************************	ande est	Table 9-14 or Fig. 9-28
Required Face Width:			
Enter: Specified Face Width:			
Actual Bending Stress in Pinion:		5938 psi	
Secondary Input Date			
Tooth Form:		legree stub	Same as for pinion
Lewis Form Factor: Safety Factor:	SF =	1.25	Same as for pinion
Material:	The Dark Dark Dark Dark Dark Dark Dark Dark	on-unfilled	Came as for pitifuli
Allowable Bending Stress:		6000 psi	Table 9-14 or Fig. 9-28
Face Width - Gear:	F =	0.470 in	Same as for pinion
Actual Bending Stress in Gear:	s _t =	4230 psi	Must be < s _{at}
The second secon			

DESIGN OF PLASTIC SPUR GEAF	RS		1
Application:			
Food-chopping machine driven by ea	ecirio	motor	
Problem 35 : One bessible obeign			
Initial Input Dat			1
Input Power:			
Input Speed: /	p =	1560 rpm	
Diametral Pitch: I	, =	18	
Number of Pinion Teeth: I	l _p =	18	
Desired Output Speed: //	6 B	469 rpm	
Computed number of gear teeth:	and a state of the properties of the	59.872	
Enter: Chosen No. of Gear Teeth: /	l _a =	60	
Computed data			
Actual Output Speed:	n _G =	468.0 rpm	
Gear Ratio:	m _G =	3.333	
Pitch Diameter - Pinion:	$D_P =$	1.125 in	
Pitch Diameter - Gear:	$D_G =$	3.750 in	
Center Distance:	C =	4.875 in	
Pitch Line Speed:	$v_t =$	459.5 ft/min	
Transmitted Load:	$W_t =$	46.7 lb	8
Secondary Input Data	- Pinic	on:	İ
		engeloù Mikelejetek	
Lewis Form Factor:	ususususus	######################################	Table 9-15
Safety Factor:	EESESTELENSEN	1,75	Ref: Table 9-7
Material:	สกราชกรรมจระจาก	ion-unfilled	
		Still bai	Teble 94 14 of Fig. 9-28
		0.418 in	
Enter Specified Face Width:		and a second and a second and are the second and and a second and and and and and	
Actual Bending Stress in Pinion:		5971 psi	
Secondary Input Data			
		gree full depth	
Lewis Form Factor: Safety Factor:	SF =	1.75	Table 9- 15 Same as for pinion
Material:	in eth-eth-eth-eth-eth-e	Mal-willed	Same as for pillion
Allowable Bending Stress:	S., =	5000 psi	Table 9-14 or Fig. 9-28
Face Width - Gear:	F =	0.420 in	Same as for pinion
Actual Bending Stress in Gear:	s, =	4363 psi	Must be < s _{at}
	WHAT SHEET STREET		

CHAPTER 10 HELICAL GEARS, BEVEL GEARS, AND WORMGEARING

```
1. HELICAL GEARS: P = B, BE = 1410, N= 45, F= ZOIN, V= 300
    a. P = 5.0kP, M_G = 1250 RPM: TOROUE = T = \frac{63000(5.0)}{1250} = 257 LBINA

<math display="block">WE = \frac{T}{D6/2} : D_G = \frac{N_G}{P_G} = \frac{45}{8} = 5.625in
        WE = 252LB.IN = 89.6LB
        Wx = W+ ton 1 = 89.6 tan 300 = 57.7LB
         Wn = Wt tan $ = 89.6 tom 142 = 23.2 LB
      b. Np=15; DRIVE TO A RECITROCATING PUMP, Ko=1,50
           SEP = Wt Pd . KOKS KMKBKN : ASSUME KS = KB = 40
           APPROXIMATE. & PFROM FIG 10-5. DATA ARE FOR OM=150
ACTUAL ON = tan [tan Or cost]=ton [tan 4: cos 30]=12.6
             tp= (0.38) (0.97) = 0.369
            DP= Ne/Pa = 15/8 = 1.895IN; F/D= 1.867; CPF = 0.075; Cms= 155
            Km=1.0+Cp++Cm= 1.06+0.075+0.155=1.23
            N+= 17 Da Ma/12= 17 (5.625)/12=1841 FT/MIN
            SPECIFY AT: 11: THE KY= 1.55 (FIG9-20)
          5tp = (69.6)(8) (1.50)(10)(1.23)(1.0)(1.55) = 2778 PSi
           Sc = Cp WE KO KE KM KV = 1960 (89.6) (1.23) (1.23) (1.55)
            Sc = 36228 ps; : I EST. FROM TABLE 10-1.
       C. SPECIFIED CAST IRIN BECAUSE OF LOW STRESSES
            GRAY CAST TRON: Sax = 5000 PSi, Sac=50 001 PSi
               CLASS 20
```

```
HELICAL GEARS: P= 2,50 KP, Np=16, NG=48, Pa= 12, 4=200, V=450
            F = 1.50 IN: TORQUE = T = 63000(2.50) = 90,068-IN
           MG= 1750 RPA: \frac{U_t = \frac{T}{P_4/r}}{\frac{G.657/2}{G.657/2}} = \frac{31.8 LB.}{31.8 LB.}
FROM PROBLEM 8-42: P_d = 8.485; D_6 = 5.657 M, D_6 = 27.2°
              DP = NP = 16
Pd = 1.887 IN
               Wx= We tan Y = 31.8 LB. tan 45 = 31.8 LB
                 WA = WE ton Ot = 31.8. ton 27.2° = /6.4 (B
           b. Ko=1,25 (LrisHOCK); Ks=KB=1.00; f==0.30
                      NE = IT DG MG/12 = TT( 5.657)(1750)/12 = 259 LFT/MIN
CENTRIFUGAL BLOWER LET AN-9; KN=1.40
                       F/00= 1.50/1,AA7 = 0.795 Cpf = 0.05, Cmd = 0.15; Km= 1.20
                      St= W+ Pa Koks Km KB KN = (31.8 Y 8.485) (1.25) (1.12) (1.120) (1.40) = 1259 PSi
                        PITTINK: I = 0.21, CP=1960 CASTIRON

Sc = CP WE KOKS KM KN - 1960 (31.8) (1.25 ¥1.0)(1.2)(1.40)

FORE

LISX(1.881)(0.41)
             C. Se = ZO, 775 PSi: SPECIFY CLASSIO CASTIRIN
                                                                                Sax = 5001 Psi, Sac = 50000Psi
3 Herron GEARS: P=15hP, NP=12, Na=36, Pa=6, Ot=142, Y=45, F=1,WIN
             Ma=2200RPM; T= 63000 P= 63000(5) = 430 LB.IN
     FROM PROB. 8-43: D_{G}=6.00 \text{ m}; D_{P}=\frac{N_{P}}{P_{J}}=\frac{12}{6}=200 \text{ m}

Q. Wt = \frac{1}{2} \frac{130}{6.00/2} \frac{143 \text{ LB}}{143 \text{ LB}}

W_{X} = We 	an 4 = \frac{143 \text{ LB}}{143 \text{ LB}} \frac{143 \text{ LB}}{143 \text{ LB}} \frac{100}{143 \text{ LB}} = 0.50; C_{P}=0.625

W_{A} = We 	an 0 = \frac{143 \text{ LB}}{143 \text{ LB}} \frac{1}{143 \text{ LB}} = \frac{37.0 \text{ LB}}{2.00} \frac{F}{2.00} = 0.50; C_{P}=0.625

C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C_{AM} = 0.15; C
      b. N+2 ITD & Ma/12 = ITC6.00 X 2200 )/2 = 345B FT/MM
                     Av=9; K+ = 1.44; Jp = 0.30(EST.), I = 0.190(EST)
                       Siz = WE Pd KO KS KM KBKN = (43)(6)(1.0)(1.18)(1.0)(1.144)(2.0) = 9724 PSi
                        USE NODULAR (DILTIE) IRIN CP= 2050
                      5c = CP WE KO KS KM KN = 2050 (18)(1.0)(1.0)(1.18)(1.144) = 73300PS/
                      SPECIFY: DUCTILE IROU ASTM AS36 60-40-18 OR OF CLASS 40

Sat = 22000 PSi, Sac = 77 000 PSi SOX = 13 KSi, Sac = 75 KSi
        C,
           NOTE: PROB. 8-43 GIVES PX = ANIAL PIRH = 0.52361N
           THEN 4/Px = 1.00/0.5236 = 1.91-LOW-SHOULD BE 72.0 FOR FOLL HELIX ACTION.
```

4 HELICAL GEARS: P=0.50 HP, MG=3450 RPM, PAd=24, Om=142. V= 45, N== 72, N== 16, F= 0.25 IN, WINCH-MOD. SHOCK Ko=1.50 FROM PROB B-44 & P3 = 16.97, DG=4.243 IN DP= NP = 16.97 = 0.943 IN T = 63 000 (P) = 63 000 (6.50) = 9.13 LB.IN a. Wo= T/Oa/2)= 4.13)/4.243/2)=4.30LB Wx = We tan 4 = 4.3018 · tan 450 = 4.3013 WA = WE tam \$ = 4.30 to Zi = 1.57 LB; \$ = 20.0 FROM PRIO 8-4%. b. NE = H DG MG/12 = IT (4.243)(3450)/2 = 3832 FT/MIN LET AN=9, KN = 1.48, Ks = 1.00 = KB. Jp = 0.32 (51) I=0.2(61) F/Dp = 0.25/01943 = 0.265; Cp4 =0; Cm4 = 0.14; Km=1.14. St = WEB. Ko KS Km KE Kr = (4.30)(16.97)(1.50)(1.0)(11)(1-0)(1.48) St= 2308 PSi TRY CASTIRUN

Sc = CP | Wt Ko KS Km Kr = 1960 | (1.30) (1.50) (1.14) (1.14)

EDOF | D. 25) (0.943) (0.25) 5+= 2308 Psi Sc= 26 633 Psi SPECIFY CLASS TO CASTIRON SAT- 5 000 PSI SIC = 50 010 PSI PROBLEM 8-44 GIVES PX = AXIALPITCH = 0.1815IN NOTE: THEN FIRE 0.25IN/O.1815IN = 1.35-LOW-SHOULD BE 72.0
FOR FULL HELICAL ACTION.

THE FOLLOWING PAGES GIVE SAMPLE DESIGNS FOR
PROBLEMS 5-11. THE PROCEDURE IS SIMILAR TO THAT USED IN
EXAMPLE PROBLEM 10-2. OTHER DESIGNS ARE POSSIBLE,
READER IS ENCOURAGED TO WORK TOWARD A PARTICULAR
GOAL OF MATERIAL TYPE, CENTER DISTANCE, OVERALL SITE
OR OTHER APPLICATION-SPECIAL GOAL.

NOTE THAT TRANSVERSE DIAMETRAL PITCH MUST BE INPOT.
IF NORMAL DIAMETRAL PITCH IS ORIGINALLY SPECIFIED,
COMPUTE Po = Pad Cop V.

Input Data: Input Speed: $n_P = 1200$ rpm Transverse Diametral Pitch, P_d : $P_d = 18$ Number of Pinion Teeth: $N_P = 18$ Number of Pinion Teeth: $N_P = 18$ Computed number of gear teeth: S_S .7 Enter: Chosen No. of Gear Teeth: S_S .7 Computed data: Actual Output Speed: $n_G = 385.7$ rpm Gear Ratio: $m_G = 3.11$ Pitch Diameter - Pinion: $D_P = 1.000$ in Pitch Diameter - Gear: $D_G = 3.111$ in Pitch Line Speed: $V_t = 3.14$ ft/min Transmitted Load: $W_t = 5.25$ lb Secondary Input Data: Transverse pressure angle: $\phi_t = 25.0$ deg Helix angle: $\psi = 25.0$ deg	Alignment Factc Plnion Plnion Cear Rim Th	
$N_{c} = \frac{1}{2}$ $N_{c} = \frac{3}{2}$	Alignment Factor, $K_m=1.0+C_{pf}+C_{me}$ Pinion Proportion Factor, $C_{pf}=$ Type of gearing: Mesh Alignment Factor, $C_{me}=$ Alignment Factor: $K_m=$ Overload Factor: $K_o=$ Size Factor: $K_o=$ Size Factor: $K_g=$ Gear Rim Thickness Factor: $K_g=$ Gear Rim Thickness Factor: $K_g=$ Dynamic Factor: $K_g=$	(2017) (2018) (2019) (2019) (2019) (2019) (2019)
$N_{c} = \frac{1}{3}$ $N_{c} = \frac{3}{3}$	Pinion Proportion Factor, $C_{pf} = Enter$. $C_{pf} = Type$ of gearing: Mesh Alignment Factor, $C_{me} = Enter$. $C_{me} = Alignment$ Factor. $K_m = Overload$ Factor: $K_o = Size$ Factor: $K_o = Size$ Factor: $K_g = Gear$ Rim Thickness Factor: $K_{gg} = Gear$ Rim Thickness Factor: $K_g = Gear$	
$N_{G} = 36$	Type of gearing: Mesh Alignment Factor, C _{ma} = Enter. C _{ma} = Alignment Factor: K _o = Overload Factor: K _o = Size Factor: K _a = Pinion Rim Thickness Factor: K _{BC} = Gear Rim Thickness Factor: K _{BC} = Dynamic Factor: K _o =	
$N_{P} = \frac{36}{36}$ $N_{G} = \frac{36}{36}$ $N_{G} = \frac{36}{36}$ $N_{G} = \frac{36}{36}$ $N_{f} = \frac{36}{36}$	Type of gearing: Mesh Alignment Factor, C _{me} = Enter: C _{me} = Alignment Factor: K _m = Overload Factor: K _e = Size Factor: K _e = Size Factor: K _e = Dynamic Factor: K _e = Service Factor: K _e =	· 按数据
$N_{G} = 36$ $N_{G} = 36$ $N_{G} = 36$ $N_{G} = 36$ $N_{G} = 37$ $N_{G} = 36$	Mesh Alignment Factor, C _{ms} = Enter. C _{ms} = Alignment Factor: K _m = Overload Factor: K _s = Size Factor: K _s = Pinion Rim Thickness Factor: K _{sp} = Gear Rim Thickness Factor: K _{sp} = Service Factor: K _{sp} =	(2) (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
$N_{G} = N_{G} = N_{G$	Enter. C _{me} = Alignment Factor: K _m = Overload Factor: K _o = Size Factor: K _e = Pinion Rim Thickness Factor: K _{BC} = Gear Rim Thickness Factor: K _{BC} = Dynamic Factor: K _v =	於其 · 大家,此 · 任 · 日 · 日 · 日 · 日 · 日 · 日 · 日 · 日 · 日
$N_{G} = N_{G} = N_{G$	Alignment Factor: K _m = Overload Factor: K _o = Size Factor: K _{gP} = Pinion Rim Thickness Factor: K _{BP} = Gear Rim Thickness Factor: K _{BP} = Dynamic Factor: K _v = Service Factor: SF =	[Computed] Table 9-7 Table 9-8: Use 1.00 if $P_d >= 5$ Fig. 9-18: Use 1.00 if solid blank Fig. 9-18: Use 1.00 if solid blank [Computed: See Fig. 9-20] Use 1.00 if no unusual conditions
0 = 0 $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$	Overload Factor: K_o = Size Factor: K_g = Pinion Rim Thickness Factor: K_{BP} = Gear Rim Thickness Factor: K_{BG} = Dynamic Factor: K_v = Service Factor: SF =	Table 9-7 Table 9-8: Use 1.00 if $P_d >= 5$ Fig. 9-18: Use 1.00 if solid blank Fig. 9-18: Use 1.00 if solid blank [Computed: See Fig. 9-20] Use 1.00 if no unusual conditions
$m_{G} = 3$ $m_{G} = 1$ $m_{G} = 1$ $m_{G} = 1$ $m_{G} = 2$ $m_{G} = 2$ $m_{G} = 2$ $m_{G} = 2$	Size Factor: K_g = Pinion Rim Thickness Factor: K_{BG} = Gear Rim Thickness Factor: K_{BG} = Dynamic Factor: K_v = Service Factor: SF =	Table 9-8: Use 1.00 if $P_d >= 5$ Fig. 9-18: Use 1.00 if solid blank Fig. 9-18: Use 1.00 if solid blank [Computed: See Fig. 9-20] Use 1.00 if no unusual conditions
$m_{G} = 1$ $D_{P} = 1$ $D_{G} = 3$ $V_{t} = 2$ $W_{t} = 20$ $\psi = 25$ $\psi = 25$	Pinion Rim Thickness Factor: K_{BP} = Gear Rim Thickness Factor: K_{BP} = Dynamic Factor: K_{V} = Service Factor: SF =	Fig. 9-18: Use 1.00 if solid blank Fig. 9-18: Use 1.00 if solid blank [Computed: See Fig. 9-20] Use 1.00 if no unusual conditions
$D_{G} = 1.$ $D_{G} = 3.$ $C = 2.$ $V_{t} = W_{t} = 20$ $\psi = 25$ $\psi = 25$	Gear Rim Thickness Factor: K _{BG} = Dynamic Factor: K _v = Service Factor: SF =	Fig. 9-18: Use 1.00 if solid blank [Computed: See Fig. 9-20] Use 1.00 if no unusual conditions
$D_{G} = 3.$ $C = 2.$ $V_{t} = $ $W_{t} = $ $\phi_{t} = 20$ $\psi = 25$ $\psi = 25$	Dynamic Factor: K, = Service Factor: SF =	[Computed: See Fig. 9-20] Use 1.00 if no unusual conditions
$V_t = V_t$ $W_t = V_t$ $\phi_t = 20$ $\psi = 25$ $\psi = 25$	Service Factor: SF =	Use 1.00 if no unusual conditions
$V_t = W_t = 0$ $\psi_t = 20$ $\psi_t = 25$ $\psi_t = 25$		
$W_t = 526$ out Data: $\phi_t = 20.0$ $\psi = 25.0$ $\phi_t = 0.374.3$		
out Deta: $\phi_t = 20.0$ $\psi = 25.0$ $\phi_t = 0.3743$	Reliability Factor: K _R = 1.00	Table 9-11 Use 1.00 for R = .99
$\phi_t = 20.0$ $\psi = 25.0$ $\psi = 25.0$	Enter: Design Life: 15000	15000 hours See Table 9-12
$\phi_t = 20.0$ $\psi = 25.0$ $\phi_t = 0.3743$	Pinion - Number of load cycles: Np = 1.1E+09	Guidelines: Y _N , Z _N
ψ= 25.0	Gear - Number of load cycles: N _G ≈ 3.5E+08	8 10' cycles >10' <10'
0. = 0.3743	Bending Stress Cycle Factor: Y _{NP} = 0.94	1.00 0.94 Fig. 9-22
×	Bending Stress Cycle Factor: Y _{NG} = 0.96	1.00 0.96 Fig. 9-22
Min. Face Width $(2 \times Axial Pitch)$: $F_{min} = 0.749$ in	Pitting Stress Cycle Factor: $Z_{NP} = 0.90$	1.00 0.90 Fig. 9-24
Enter: Face Width: F = 1.200 in	Pitting Stress Cycle Factor: Z _{NG} = 0.92	1.00 0.92 Fig. 9-24
Enter: Elastic Coefficient: Cp = 2300 Table 9-10	e 9-10 Stress Analysis: Bending	
Enter: Quality Number: A _v = 11 Table 9-3	e 9-3 Pinion: Required s _{st} = 42,786 psi	6 psi See Fig. 9-11 or
REF: Np, Ng = 18 56	Gear: Required s _{et} = 39,050 psi	0 psi Table 9-5
Enter: Bending Geometry Factors:		
Pinion: Jp = 0.453 Fig 10-5,6,7	0.5,6,7 Pinion: Required s _{ac} = 179,572 psi	2 psi See Fig. 9-12 or
Gear: J _G = 0.486 Fig 10-5,6,7	0-5,6,7 Gear: Required s _{ec} = 175,668 psi	8 psi Table 9-5
Enter: Pitting Geometry Factor: /= 0.205 Tab. 10-1,2	10-1,2 Specify materials, alloy and heat treatment, for most severe requirement.	or most severe requirement.
REF: m _G = 3.11	One possible material specification: Steel pinion and gear: Carburized, Grade 1	nion and gear: Carburized, Grade 1
Axial Force: W _x = 245 lb	Pinion requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized	450; HRC 59; Carburized
Radial Force: Wr = 191 lb	Gear requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized	50; HRC 59; Carburized

		Lionielli 10-0				The second second
		Factors in Design Analysis:				
	P = 20 hp	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	If F<1.0 If	If F>1.0	$F/D_p = 1.04$	74
	= 550 rpm	Pinion Proportion Factor, C _{pf} =	0.079 0	0.098 [0.4	$[0.50 < F/D_P < 2.00]$: 2.00]
Transverse Diametral Pitch, P _d : P _d	$P_d = 10$	Enter: C _{pt} =	0.098 Figi	Figure 9-16		
Number of Pinion Teeth: Np =	,= 24	Type of gearing:	Open Co	Commer. Pr	Precision E	Ex. Prec.
Desired Output Speed: nc =	= 185 rpm	Mesh Alignment Factor, C _{ma} =	0.288 0	0.166	0.099	0.063
Computed number of gear teeth:	71.4	Enter: C _{me} =	0.099 Fig	Figure 9-17		
NG	= 72	Alignment Factor: K _m =	1.20 [Co	[Computed]		
Computed data:		Overload Factor: K _o =	1.50 Tat	Table 9-7		
Actual Output Speed: ng ==	= 183.3 rpm	Size Factor: K _s =	1.00 Tat	Table 9-8; Use 1.00 if Pd >= 5	1.00 If Pa	>= 5
Gear Ratio: m _G	3.00	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig.	Fig. 9-18: Use 1.00 if solid blank	1.00 If solic	1 blank
Pitch Diameter - Pinion: $D_P =$	s = 2.400 in	Gear Rim Thickness Factor: K _{BG} =	1.00 Fig.	Fig. 9-18: Use 1.00 if solid blank	1.00 If solid	d blank
Pitch Diameter - Gear: D _G =	= 7.200 in	Dynamic Factor: K _v =	1.16 [Co	[Computed: See Flg. 9-20]	ee Flg. 9-2(
Center Distance: C	C = 4.800 in	Service Factor: SF =	1.00 Use	Use 1.00 If no unusual conditions	unusual co	nditions
>	, = 346 ft/min					
Transmitted Load: W _t	f = 1910 lb	Reliability Factor: K _R =	1.25 Tat	Table 9-11 Use 1.00 for R = .99	e 1.00 for /	66. = 2
		Enter: Design Life:	15000 hours		See Table 9-12	2
Secondary Input Data	sta:	Pinion - Number of load cycles: Np =	5.0E+08	Guide	Guidelines: Y _N , Z _N	z
Transverse pressure angle: ϕ_t	φ _t = 20.0 deg	Gear - Number of load cycles: No =	1.7E+08 10'	, cycles	>10,	<10,
Helix angle:	ψ= 15.0 deg	Bending Stress Cycle Factor: Y _{NP} =	0.95	1.00	0.95 F	Fig. 9-22
Axial Pitch: px =	, = 1.1725 in	Bending Stress Cycle Factor: Y _{NG} =	0.97	1.00	0.97 F	Flg. 9-22
Min. Face Width (2 x Axial Pitch): F _{min} =	= 2.345 in	Pitting Stress Cycle Factor: Z _{NP} =	0.91	1.00	0.91 F	Fig. 9-24
Enter: Face Width: F	F = 2.500 in	Pitting Stress Cycle Factor: Z _{NG} =	0.94	1.00	0.94 F	Fig. 9-24
	Cp = 2300 Table 9-10	Stress Analysis: Bending				
Enter: Quality Number: A,	A _v = 9 Table 9-3	Pinion: Required set =	43,560 psi		See Fig. 9-11 or	or
REF: Np, Ng = 24	1 72	Gear: Required set =	38,931 psi		Table 9-5	
1000		Stress Analysis: Pitting				
Pinion: Jp	Jp = 0.480 Flg 10-5,6,7	Pinion: Required s _{ac} =	173,320 psi		See Fig. 9-12 or	ō
Gear. Je	J _G = 0.526 Fig 10-5,6,7	Gear: Required s _{ac} =	167,788 psi		Table 9-5	
Enter: Pitting Geometry Factor:	I = 0.220 Tab. 10-1,2	Specify materials, alloy and heat treatment, for most severe requirement.	tment, for mo	ost severe	requireme	nt.
REF: m _G = 3.	3.00	One possible material specification: Steel pinion and gear: Carburized, Grade 1	Steel pinion a	and gear: C	arburized, (Frade 1
Axial Force: W _x =	= 512 lb	Pinion requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized	SOQT 450; I	HRC 59; Ca	arburized	
Radial Force: Wr =	qi 269 =	Gear requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized	SOQT 450; HI	IRC 59; Car	barized	

DESIGN OF HELICAL GEARS-U.S.	APPLICATION:	Punch press driven by an electric motor Problem 10-7
Initial Input Data:		
rt Power:	P = 50 hp	Alignment Factor, K _m =1.0+C _{pr} +C _{ma} If F<1.0 If F>1.0 F/D _p = 0.63
input Speed: n,	md₁ 006 = du	Pinion Proportion Factor, $C_{pf} = 0.038 0.056 [0.50 < F/D_P < 2.00]$
Transverse Diametral Pitch, P _d : P	P _d = 6	Enter: C _{pf} = 0.056 Figure 9-16
Number of Pinion Teeth: N,	Np = 24	Type of gearing: Open Commer. Precision Ex. Prec.
Desired Output Speed: no	n _G = 227.5 rpm	Mesh Alignment Factor, C _{ma} ≈ 0.288 0.166 0.099 0.063
Computed number of gear teeth:	94.9	Enter: C _{ms} = 0.166 Figure 9-17
Enter: Chosen No. of Gear Teeth: No.	g = 95	Alignment Factor: K _m = 1.22 [Computed]
Computed data:		Overload Factor: K _o = 1.75 Table 9-7
Actual Output Speed: n _G	g = 227.4 rpm	Size Factor: K _s = 1.00 Table 9-8: Use 1.00 if P _d >= 5
Gear Ratio: m	m _G = 3.96	Pinion Rim Thickness Factor: K _{BP} = 1.00 Fig. 9-18: Use 1.00 if solid blank
Pitch Diameter - Pinion: D	D _P = 4.000 in	Gear Rim Thickness Factor: K _{BG} = 1.00 Fig. 9-18: Use 1.00 if solid blank
Pitch Diameter - Gear: Do	$D_G = 15.833 \text{ in}$	Dynamic Factor: K, = 1.26 [Computed: See Fig. 9-20]
Center Distance:	C = 9.917 in	Service Factor: SF = 1.00 Use 1.00 if no unusual conditions
	v _t = 942 ft/min	
Transmitted Load: W _t	/ _t = 1751 lb	Reliability Factor: K _R = 1.25 Table 9-11 Use 1.00 for R = .99
		Enter: Design Life: 15000 hours See Table 9-12
Secondary Input Data	Sata:	Y _N , Z _N
Transverse pressure angle:	$\phi_t = 20.0 \text{ deg}$	Gear - Number of load cycles: No = 2.0E+08 10' cycles >10' <10'
Helix angle:	ψ= 25.0 deg	Bending Stress Cycle Factor: Y _{NP} = 0.94 1.00 0.94 Fig. 9-22
Axial Pitch: p	$p_x = 1.1229 \text{ in}$	Bending Stress Cycle Factor: Y _{NG} = 0.96 1.00 0.96 Fig. 9-22
Min. Face Width (2 x Axial Pitch): Fmi	$F_{min} = 2.246 \text{ in}$	Pitting Stress Cycle Factor: $Z_{MP} = 0.90$ 1.00 0.90 Fig. 9-24
Enter: Face Width:	F = 2.500 in	Pitting Stress Cycle Factor: $Z_{NG} = 0.93$ 1.00 0.93 Fig. 9-24
Enter: Elastic Coefficient: C	Cp = 2300 Table 9-10	
Enter: Quality Number: A	A, = 9 Table 9-3	Pinion: Required s _{et} = 32,253 psi See Fig. 9-11 or
REF: Np. Ng = 2	24 95	Gear: Required s _{et} = 29,607 psi Table 9-5
101		1000
	0.465	147,037 psi
	J _G = 0.496 Fig 10-5,6,7	Gear: Required s _{ac} = 142,875 psi Table 9-5
Enter: Pitting Geometry Factor:	I = 0.220 Tab. 10-1,2	Specify materials, alloy and heat treatment, for most severe requirement.
REF; m _G = 3	3.96	One possible material specification: Steel pinion and gear. Through hardened
Axial Force: W	W _x = 816 lb	Pinion requires HB 368: SAE 4140 OQT 900; HB 388
Radial Force: W	W _r = 637 lb	Gear requires HB 353: SAE 4140 OQT 900; HB 388

DESIGN OF HELICAL GEARS-U.S.	APPLICATION:	Small cement mixer driven by a gasoline engine Problem 10-8	s engine Use steel pinion with cast iron gear
Initial Input Data:		Factors in Design Analysis:	
Input Power:	P= 2.5 hp	Alignment Factor, K _m ≈1.0+C _{pf} +C _{ma}	IFF<1.0 IFF>1.0 F/Dp ≈ 1.05
Input Speed:	mgr 000 = gn	Pinion Proportion Factor, C _{pf} =	0.080 0.089 $[0.50 < F/D_P < 2.00]$
Transverse Diametral Pitch, P _d :	$P_d = 12$	Enter: Cpt =	0.089 Figure 9-16
Number of Pinion Teeth:	Np = 20	Type of gearing:	Open Commer. Precision Ex. Prec.
Desired Output Speed:	ng = 75 rpm	Mesh Alignment Factor, C _{ma} =	0.276 0.154 0.090 0.056
Computed number of gear teeth:	240.0	Enter: Cme =	0.276 Figure 9-17
Enter: Chosen No. of Gear Teeth:	Ng = 240	Alignment Factor: K _m =	1.37 [Computed]
Computed data:		Overload Factor: K _o =	2.00 Table 9-7
Actual Output Speed:	n _g = 75.0 rpm	Size Factor: K, =	1.00 Table 9-8: Use 1.00 if P _d >= 5
Gear Ratio:	m _G = 12.00	Pinion Rim Thickness Factor: KBP =	1.00 Fig. 9-18: Use 1.00 if solid blank
Pitch Diameter - Pinion:	$D_P = 1.667 \text{ in}$	Gear Rim Thickness Factor: K _{BG} =	1.00 Fig. 9-18: Use 1.00 if solid blank
Pitch Diameter - Gear:	$D_G = 20.000 \text{ in}$	Dynamic Factor: K _v =	1.33 [Computed: See Fig. 9-20]
Center Distance:	C = 10.833 in	Service Factor: SF ≈	1.00 Use 1.00 if no unusual conditions
Pitch Line Speed:	v _t = 393 ft/min		
Transmitted Load:	W _t = 210 lb	Reliability Factor: K _R =	1.00 Table 9-11 Use 1.00 for R = .99
		Enter: Design Life:	8000 hours See Table 9-12
Secondary Input Data	ut Data:	Pinion - Number of load cycles: Np = 4	4.3E+08 Guidelines: Y _N , Z _N
Transverse pressure angle:	φ ₁ = 20.0 deg	Gear - Number of load cycles: No = 3	3.6E+07 10' cycles >10' <10'
Helix angle:	ψ= 25.0 deg	Bending Stress Cycle Factor: Y _{NP} =	0.95 Fig. 9-22
Axial Pltch:	$p_x = 0.5614 \text{ in}$	Bending Stress Cycle Factor: Y _{NG} =	0.99 Fig. 9-22
Min. Face Width (2 x Axial Pitch):	F _{min} = 1.123 in	Pitting Stress Cycle Factor: Z _{NP} =	0.92 Fig. 9-24
Enter: Face Width:	F= 1.750 in	Pitting Stress Cycle Factor: Z _{NG} =	0.97 Fig. 9-24
Enter: Elastic Coefficient:	Cp = 2100 Table 9-10	Stress Analysis: Bending	
Enter: Quality Number:	A _v = 12 Table 9-3	Pinion: Required s _{et} =	12,180 psi See Fig. 9-11 or
REF: Np, Ng =	20 240	Gear: Required s _{et} =	10,295 psi Table 9-5
Enter. Bending Geometry Factors:		Stress Analysis: Pitting	
Pinion:	Jp = 0.451 Fig 10-5,6,7	Pinion: Required s _{ac} =	72,310 psi See Fig. 9-12 or
Gear.	JG = 0.512 Fig 10-5,6,7	Gear: Required s _{ac} =	68,583 psi Table 9-5
Enter: Pitting Geometry Factor:	/= 0.260 Tab. 10-1,2	Specify materials, alloy and heat treatment, for most severe requirement.	ment, for most severe requirement.
REF: mg =	12.00	One possible material specification: Steel pinion and cast iron gear	Steel pinion and cast iron gear
Axial Force:	W _x = 98 lb	Pinion requires HB 134: SAE 1020 CD; HB 160 - Or almost any steel	IB 160 - Or almost any steel
Radial Force:	W _r = 76 lb	Gear: Grade 40 gray cast iron; HB 201; s _{at} = 13 ksj; s _{ac}	$a_t = 13 \text{ ksi}$; $s_{ac} = 75 \text{ ksi}$ (Table 9-6)

DESIGN OF HELICAL GEARS-U.S.	API	APPLICATION:	Wood chipper driven by a gasoline engine Problem 10-9 Speed increaser - cells changed	- cells changed
Initial Input Data:				
Input Power:	P = 75	75 hp	Alignment Factor, K _m =1.0+C _{pr} +C _{ma} If F<1.0 If F>1.0	$0 F/D_P = 0.69$
Input Speed:	$n_G = 2200$	2200 rpm	Pinion Proportion Factor, C _{pf} ≈ 0.044 0.054	$[0.50 < F/D_P < 2.00]$
Transverse Diametral Pitch, P _d :	$P_d = 10$		Enter: C _{pt} = 0.054 Figure 9-16	F-16
Number of Pinion Teeth:	$N_P = 26$		Type of gearing: Open Commer.	er. Precision Ex. Prec.
Desired Output Speed:	$n_P = 4550$	rpm	Mesh Alignment Factor, C _{ma} = 0.277 0.155	950.0 0.090 0.056
Computed number of gear teeth:	53.8		Enter: C _{me} = 0.277 Figure 9-17	9-17
Enter: Chosen No. of Gear Teeth:	NG = 54		Alignment Factor: K _m = 1.33 [Computed]	rted]
Computed data:			= 2.75	7
Actual Output Speed:	ng = 4569.2 rpm	rpm	Size Factor: K _s = 1.00 Table 9	Table 9-8: Use 1.00 if Pd >= 5
Gear Ratio:	$m_{\rm G} = 2.08$		1.00	Fig. 9-18: Use 1.00 if solid blank
Pitch Diameter - Pinion:	$D_P = 2.600 \text{ in}$	ri C	Gear Rim Thickness Factor: K _{BG} = 1.00 Fig. 9-1	Fig. 9-18; Use 1.00 if solid blank
Pitch Diameter - Gear:	$D_G = 5.400 \text{ in}$	ni C	Dynamic Factor: K _v = 1.44 [Compu	[Computed: See Fig. 9-20]
Center Distance:	C = 4.000 in	n C	Service Factor: SF = 1.00 Use 1.0	Use 1.00 if no unusual conditions
Pitch Line Speed:	V _t = 3097	3097 ft/min		
Transmitted Load:	$W_t = 799$	<u>q</u> e	Reliability Factor: K _R = 1.00 Table 9	Table 9-11 Use 1.00 for R = .99
			Enter: Design Life: 8000 hours	See Table 9-12
Secondary Input Data	ut Data:		Pinion - Number of load cycles: Np = 1.1E+09	Guidelines: Y _N , Z _N
Transverse pressure angle:	$\phi_t = 20.0$	deb	Gear - Number of load cycles: No = 5.1E+08 10' cycles	les >10, <10,
Helix angle:	w= 25.0	deb	Bending Stress Cycle Factor: Y _{NP} = 0.94 1.00	0.94 Fig. 9-22
Axial Pitch:	$p_x = 0.67372$	Ë	Bending Stress Cycle Factor: Y _{NG} = 0.95 1.00	0.95 Fig. 9-22
Min. Face Width (2 x Axial Pitch): F	$F_{min} = 1.347$	드	Pitting Stress Cycle Factor: $Z_{NP} = 0.90$ 1.00	0.90 Fig. 9-24
Enter: Face Width:	F= 1.800	ų	Pitting Stress Cycle Factor: Z _{NG} = 0.91 1.00	0.91 Fig. 9-24
Enter: Elastic Coefficient:	Cp = 2300	Table 9-10	Stress Analysis: Bending	
Enter: Quality Number:	A, = 9	Table 9-3	Pinion: Required $s_{at} = 55,024 \text{ psi}$	See Fig. 9-11 or
REF: Np, Ng =	26 54		Gear: Required s _{st} = 53,268 psi	Table 9-5
Enter: Bending Geometry Factors:				
Pinion:	$J_{P} = 0.453$	Flg 10-5,6,7		See Fig. 9-12 or
Gear	JG = 0.463	Fig 10-5,6,7	Gear: Required s _{ac} = 174,988 psi	Table 9-5
Enter: Pitting Geometry Factor:	1= 0.188	Tab. 10-1,2	Specify materials, alloy and heat treatment, for most severe requirement.	severe requirement.
REF: m _G =	2.08		One possible material specification: Steel pinion+gear: Carburized-Case hard.	: Carburized-Case hard.
Axial Force:	$W_x = 37$	373 lb	Pinion requires HRC 55: SAE 4118 DOQT 300; HRC 62	
Radial Force:	W _r = 29.	291 lb	Gear requires HRC 55: SAE 4118 DOQT 300; HRC 62	

Initial Input Data: Input Power: $P =$ Input Speed: $n_P =$ Transverse Diametral Pitch, P_d : $P_d =$ Number of Pinion Teeth: $N_P =$ Desired Output Speed: $n_G =$		in Section 1997				
		Factors in Design Analysis:				
建设工艺的	20 hp	Alignment Factor, K _m =1.0+C _{pr} +C _{ma}	IFF<1.0	IFF>1.0	$F/D_{P} = 0.64$	0.64
	450 rpm	Pinion Proportion Factor, C _{pt} =	0.039	0.055	$[0.50 < F/D_P < 2.00]$, < 2.00]
	9	Enter: Cpt =	0.055 Fi	Figure 9-16		
	21	Type of gearing:	Open	Commer.	Precision	Ex. Prec.
	77.5 rpm	Mesh Alignment Factor, C _{ma} ==	0.284	0.162	0.096	0.061
Computed number of gear teeth:	121.9	Enter: C _{me} =	0.162 Fi	Figure 9-17		
Enter: Chosen No. of Gear Teeth: N _G =	122	Alignment Factor: K _m =	1.22 [C	[Computed]		
Computed data:		Overload Factor: K _o =	2.75 Te	Table 9-7		
Actual Output Speed: ng ==	77.5 rpm	Size Factor: K _s =	1.00 Ta	able 9-8: (Table 9-8: Use 1.00 if Pd >= 5	g >= 2
	5.81	Pinion Rim Thickness Factor: Kap =	1.00 FI	ig. 9-18: L	Fig. 9-18: Use 1.00 if solid blank	olid blank
	3.500 in	Gear Rim Thickness Factor: Kag ==	1.00 Fi	ig. 9-18: L	Fig. 9-18: Use 1.00 if solid blank	olid blank
	20.333 in	Dynamic Factor: K _v =	1.27 [C	Somputed	[Computed: See Fig. 9-20]	20]
O	11.917 in	Service Factor: SF =	1.00 U	lse 1.00 lf	Use 1.00 if no unusual conditions	conditions
# ⁷ ^	412 fVmin					
Transmitted Load: W _t =	1601 lb	Reliability Factor: K _R =	1.00 Ta	able 9-11	Table 9-11 Use 1.00 for R = .99	r R = .99
		Enter: Design Life:	8000 hc	hours	See Table 9-12	1-12
Secondary Input Data:		Pinion - Number of load cycles: Np ==	2.2E+08	Ö	Guidelines: Y _N ,	Z _N
Transverse pressure angle: $\phi_t =$	20.0 deg	Gear - Number of load cycles: N _G =	3.7E+07	10' cycles	>10,	<10,
II →	25.0 deg	Bending Stress Cycle Factor: Y NP =	96.0	1.00	96.0	Fig. 9-22
ll × d	1.1229 in	Bending Stress Cycle Factor: Y _{NG} =	0.99	1.00	0.99	Fig. 9-22
	2.246 in	Pitting Stress Cycle Factor: Z _{NP} =	0.93	1.00	0.93	Fig. 9-24
F=	2.250 ln	Pitting Stress Cycle Factor: Z _{NG} ==	76.0	1.00	0.97	Fig. 9-24
Enter: Elastic Coefficient: Cp = 2:	2300 Table 9-10	Stress Analysis: Bending				
Enter: Quality Number: A _v = 1	11 Table 9-3	Pinion: Required set =	42,676 pt	psi	See Fig. 9-11 or	11 or
REF: Np, Ng = 21	122	Gear: Required sat ==	37,194 psi	<u>.</u>	Table 9-5	
Enter: Bending Geometry Factors:		Stress Analysis: Pitting				
Pinion: $J_P = 0$.	0.444 Fig 10-5,6,7	Pinion: Required sac =	148,576 psi	<u>.</u>	See Fig. 9-12 or	12 or
Gear. J _G = 0.	0.494 Fig 10-5,6,7	Gear: Required sec =	142,449 psi	<u>.</u>	Table 9-5	
Enter: Pitting Geometry Factor: 1 = 0.	0.240 Tab. 10-1,2	Specify materials, alloy and heat treatment, for most severe requirement.	tment, for n	most sev	ere requirer	nent.
REF: m _G = 5.81		One possible material specification: Steel pinion and gear: Through hardened	Steel pinion	n and gear	: Through h	ardened
Axial Force: W _x =	746 lb	Pinion requires HB 371; SAE 4340 OQT 900; HB 388	. 900; HB 36	88		
Radial Force: W _r =	583 lb	Gear requires HB 352: SAE 4340 OQT 1000; HB 363	1000; HB 36	63		

at Power: $P = 1$ tt Speed: $P_d = 1$ tt Speed: $P_d = 1$ tt Speed: $P_d = 1$ ar teeth: $P_d = 1$ ar Teeth: $P_d = 1$	15 hp	Confere Amilian Amilian	is:		
N N N N N N N N N N N N N N N N N N N	15 hp	ractors in Design Arialysis.			
N N N N N N N N N N N N N N N N N N N	1	Alignment Factor, K _m =1.0+C _{pf} +C _{ma}	IFF<1.0 IFF	If $F > 1.0$ $F/D_P = 0.75$	- 0.75
N	4500 rpm		0.050 0.0	0.053 [0.50 < F/I	$[0.50 < F/D_P < 2.00]$
N N N N N N N N N N N N N N N N N N N	12	Enter: $C_{pl} = C$	0.053 Figur	Figure 9-16	
N N N	20	Type of gearing: (Open Con	Commer. Precision	Ex. Prec.
N _o II	3600 rpm	Mesh Alignment Factor, C _{ma} = 0	0.268 0.	0.147 0.083	0.051
N _G =	5.0	Enter: C _{me} = C	0.147 Figur	Figure 9-17	
	25		1.20 [Con	[Computed]	
Computed data:			1.20 Table	Table 9-7	
Actual Output Speed: no = 3600.	3600.0 rpm	Size Factor: K _s =	1.00 Table	Table 9-8: Use 1.00 if Pd >= 5	P >= 5
Gear Ratio: m _G = 1.25	25	Pinion Rim Thickness Factor: Kap =	1.00 Flg. 8	Fig. 9-18; Use 1.00 if solid blank	solid blank
Pitch Diameter - Pinion: $D_P = 1.86$	1.867 in	Gear Rim Thickness Factor: Kag =	1.00 Fig. 8	Fig. 9-18: Use 1.00 if solid blank	solid blank
Pltch Diameter - Gear; $D_G = 2.08$	2.083 ln	Dynamic Factor: K _v =	1.36 [Con	[Computed: See Fig. 9-20]	9-20]
	1.875 ln	Service Factor: SF =	1.00 Use	Use 1.00 if no unusual conditions	al conditions
= ^	1963 ft/min				
# ** **	252 lb	Reliability Factor: K _R =	1.25 Table	Table 9-11 Use 1.00 for R = .99	for R = .99
		Enter: Design Life: 1	100000 hours	See Table 9-12	9-12
Secondary Input Data:		Pinlon - Number of load cycles: Np = 2.	2.7E+10	Guidelines: Y _N , Z _N	z, Z _N
Transverse pressure angle: ϕ_t ≈ 20.0	geb (Gear - Number of load cycles: N _G = 2.	2.2E+10 10"	cycles >10'	<10.
Helix angle:	deg (Bending Stress Cycle Factor: Y _{NP} =	0.88	1.00 0.88	Fig. 9-22
Axiai Pitch: $p_x = 0.5614$	14 in	Bending Stress Cycle Factor: Y _{NG} =	0.89	1.00 0.89	Fig. 9-22
Min. Face Width (2 x Axial Pltch): $F_{min} = 1.123$	n in	Pitting Stress Cycle Factor: $Z_{NP} =$	0.83	1.00 0.83	Flg. 9-24
Enter: Face Width: F = 1.250	o in	Pitting Stress Cycle Factor: Z _{NG} =	0.84	1.00 0.84	Fig. 9-24
Enter: Elastic Coefficient: Cp = 2300	Table 9-10	Stress Analysis: Bending			
Enter: Quality Number: A _v = 9	Table 9-3	Pinion: Required set =	16,093 psi	See Fig. 9-11 or	1-11 or
REF: Np, Ng = 20 25		Gear: Required sat =	15,397 psi	Table 9-5	
Enter: Bending Geometry Factors:					
Pinlon: $J_p = 0.418$	Fig 10-5,6,7		137,623 psi	See Fig. 9-12 or	-12 or
Gear. J _G = 0.432	Flg 10-5,6,7	Gear: Required sec = 13	135,985 psi	Table 9-5	
Enter: Pitting Geometry Factor: 1= 0.150	Tab. 10-1,2	Specify materials, alloy and heat treatment, for most severe requirement.	nent, for mos	t severe require	ement.
REF: m _G = 1.25		One possible material specification: Steel pinion and gear. Through hardened	teel pinion an	d gear: Through	hardened
Axial Force: W _x = 11	118 lb	Pinion requires HB 337; SAE 4340 OQT 1000; HB 363	000; HB 363		
	92 lb	Gear requires HB 332: SAE 4340 OQT 1000; HB 363	00; HB 363		

HELICAL GEARS		APPLICATION:	by an electric m	tor		No see all N	
POWER TRANSMISSION CAPACITY	Ĕ		Chapter 10-Problem 12 Us	Used: A ,=12; L = 15000 h	15000 h		
Initial Input Data:			Factors in Design Analysis:				
Enter: Face Width:	T. F=	2.500 in	Alignment Factor, $K_m = 1.0 + C_{pf} + C_{me}$	1FF<1.0 1FF>1.0	F/D _P =	1.21	
Input Speed:	t: np =	1725 rpm	Pinion Proportion Factor, $C_{pf} = 0$	0.096 0.114	(0.50 < F/D _P < 2.00)	p < 2.00]	
Diametral Pitch:	= P = :	4	Enter: C _{pt} = (0.114 Figure 9-16	3-16		
Number of Pinion Teeth:		20	Type of gearing:	Open Commer.	er. Precision	Ex. Prec.	
Number of Gear Teeth:		75		0.288 0.166	90.00	0.063	
			Enter: Cms = (0.166 Figure 9-17	9-17		
			Alignment Factor: K _m =	1.28 [Computed]	ted]		
Computed data:			Overload Factor: K _o =	1.25 Table 9-7	-7		
Actual Output Speed:	n ou	460.0 rpm	Size Factor: K _s =	1.00 Table 9	Table 9-8: Use 1.00 If Pd >= 5	2 =< P	
Gear Ratio:		3.75	Pinion Rim Thickness Factor: K _{BP} =	1.00 Fig. 9-1	Fig. 9-18: Use 1.00 if solid blank	olid blank	
Pitch Diameter - Pinion:		2.071 in	Gear Rim Thickness Factor: K ₈₉ =	1.00 Fig. 9-1	Fig. 9-18: Use 1.00 if solid blank	olid blank	
Pitch Diameter - Gear:		7.765 in	Dynamic Factor: K _v =	1.50 [Compt	[Computed: See Fig. 9-20]	20]	For K√:
Center Distance:		4.918 in	Service Factor: SF =	1.00 Use 1.0	Use 1.00 if no unusual conditions	conditions	B 0.915
Pitch Line Speed:	8 ~ ^ :F	935 ft/min					C 54.74
Transmitted Load at P _{min} Capacity:	/: W _i =	di 797	Reliability Factor: K _R =	1.25 Table 9	Table 9-9 Use 1.00 for R = .99	r R = .99	
			Enter: Design Life:	15000 hours	See Table 9-7	7-7	
Power Transmission Capacity: (Using Eq. 9-32, 9-34)	ty: (Using	1 Eq. 9-32, 9-34)		1.6E+09	Guidelines: YN, ZN	ZN	
Pinion: Based on Bending Stress:	s: 41.43 hp	dh	Gear - Number of load cycles: Ng = 4,	4.1E+08 10' cycles	les >10'	<10,	
Gear: Based on Bending Stress:	: 47.41	đ.	Bending Stress Cycle Factor: Y _{NP} =	0.93 1.00	0.93	Fig. 9-20	
Pinion: Based on Contact Stress:	s: 22.59 hp	dh	Bending Stress Cycle Factor: Yng =	0.95 1.00	0.95	Fig. 9-20	
Gear: Based on Contact Stress:	s: 24.14 hp	d-d	Pitting Stress Cycle Factor: Z _{NP} =	0.89 1.00	0.89	Fig. 9-22	
Power Transmission Capacity:	7: 22.59 hp	hp	Pitting Stress Cycle Factor: Z _{NG} =	0.92 1.00	0.92	Fig. 9-22	Through-Hardened
Enter: Elastic Coefficient:	it: Cp = 2300	2300 Table 9-10	Allowable Bending Stress Numbers: (Input)	(Indu			Grade 1 Steel
Enter: Quality Number:	r. Av = 12	12 Table 9-3	Pinion: set =	39,200 psi	See Fig. 9-11 or	11 or	39.2 ksi Fig. 9-11
REF: Np, Ng =	28	75	Gear: Sal II	39,200 psi	Table 9-5		39.2 ksi Fig. 9-11
Enter: Bending Geometry Factors: Press. angle = 20 deg	s: Press. a	ingle = 20 deg	Allowable Contact Stress Numbers: (Input)	()ndi			
Pinion:	$J_{P} = 0.465$	0.465 Fig. 10-6, 6, 7	ш	138,900 psi	See Fig. 9-12 or	12 or	
Gear	r. JG = 0.521	0.521 Fig. 10-6, 6, 7	Gear: Sac = 1	138,900 psi	Table 9-5		138.9 ksi Fig. 9-12
Enter: Pitting Geometry Factor:		0.200 Tables 10-1,2					
REF: m _G =	= 3.75		Material specification: Steel pinion; Steel gear, Through HT	teel pinion; Ste	el gear, Through)HT	
			Pinion material: SAE 4140 OQT 1000		341 HB		
			Gear material: SAE 4140 OQT 1000		341 HB		

Prower Transmission CAPACITY Chapter 10-Problem 13 East A v=12\text{L} = 15000 h	HELICAL GEARS	APPLICATION:	by an electric m	tor		
Festors in Design Analysis: Factors in Design Analysis: Fa	POWER TRANSMISSION CAPACITY		Chapter 10-Problem 13	sed: A v=12; L = 15	000 h	
Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 2 Figure 2	initial input Data:		Factors in Design Analys	sis:		
Finion Proportion Factor, C _{pri} = 0.036	se Width:			0.7		
Number of Perion Teath: N _p = 20 Neah Alignment Factor: C _{pri} = 0.114 Figure 9-16			Pinion Proportion Factor, Cpt =		$[0.50 < F/D_P < 2.00]$	
Number of Penion Teeth: No penior Teeth: 20 Meeh Alignment Factor, C _{ma} = 0.28 Commer. Precision Computed data: Computed data: Alignment Factor: K _m = 1.28 Computed Care: 1.28 (Computed) Computed data: Actual Output Speed: n ₀ = 460.0 rpm Alignment Factor: K _m = 1.28 (Computed) Computed Care: 1.28 (Computed) Computed data: Actual Output Speed: n ₀ = 3.75 (Computed) Pinion Rim Thickness Factor: K _g = 1.00 (Fig. 9-18; Use 1.00 ff and			Enter: Cpt =	SHOO:		
N _G = 75 Mesh Alignment Factor; C _{ms} = 0.166 Figure 9-17 n _G = 460.0 rpm Alignment Factor: K _n = 1.28 [Computed] n _G = 460.0 rpm Alignment Factor: K _n = 1.28 [Computed] D _P = 2.071 in Cear Rim Thickness Factor: K _n = 1.00 Fig. 9-18: Use 1.00 if Pales 1.00 D _P = 2.071 in Cear Rim Thickness Factor: K _n = 1.00 Fig. 9-18: Use 1.00 if Pales 1.00 D _P = 2.071 in Cear Rim Thickness Factor: K _n = 1.00 Fig. 9-18: Use 1.00 if Pales 1.00 D _P = 2.071 in Cear A:018 in Service Factor: K _n = 1.25 Table 9-8: Use 1.00 if Pales 1.00 C = 4.918 in V _t = 1338 ib Service Factor: K _n = 1.26 Table 9-9 Use 1.00 if Pales 1.00 Set 12 hp Set 12 hp Service Factor: K _n = 1.26 Table 9-9 Use 1.00 if Pales 1.00 Set 12 hp Set 12 hp Bending Stress Cycle Factor: X _n = 0.93 To 0 O.93 Set 12 hp Bending Stress Cycle Factor: Z _n = 0.95 To 0 O.93 D.00 O.93 A _v = 12 Table 9-3 To 0 O.93 D.00 O.93 Pristing Stress Cycle Factor: Z _n = 0.95 To 0 O.93 D.00 </td <td></td> <td></td> <td>Type of gearing:</td> <td></td> <td></td> <td></td>			Type of gearing:			
Computed deta:			Mesh Alignment Factor, C _{me} =			
Computed deta: Alignment Factor: K _n = 1.28 [Computed] Actual Output Speed: n ₀ = 460.0 pm 0vertoad Factor: K _s = 1.00 Table 9-7. Actual Output Speed: n ₀ = 3.75 0vertoad Factor: K _s = 1.00 Table 9-8. Use 1.00 if policy is pitch believed at Pitch Diameter - Pinior: D _p = 2.071 in Pinior Based on Bending Stress: Gest Prinor: Based on Bending Stress: 65.2 hp Pinior: Based on Contact Stress: 37.94 hp Pinior: S _p = 2.00 Table 9.10 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 1.25 Table 9.9 Use 1.00 for Cycles: V _p = 0.95 Table 9.9 Use 1.00 for Cycles: V _p = 0.95 Table 9.0 Into 0.95 Table 9.10 for Cycles: V _p = 0.95 Table 9.1 (Do 0.95 Table 9.5 Table 9.1 (Do 0.95 Table 9.5 Table 9.1 (Do 0.95 Table 9.5 Table			Enter: C _{me} =			
Computed data: Overload Factor: K₀ = 1.25 Table 9-7 Computed data: Overload Factor: K₀ = 1.00 Table 9-8: Use 1.00 if so if Point Rim Thickness Factor: K₀ = 1.00 Fig. 9-18: Use 1.00 if so if so if so if point Rim Thickness Factor: K₀ = 1.00 Fig. 9-18: Use 1.00 if so			Alignment Factor: K _m =			
Actual Output Speed: $n_0 = 460.0$ pm Gear Ratio: $m_0 = 3.75$ Pitch Diameter - Pinion: $D_P = 2.071$ in Pitch Diameter - Gear: $D_P = 2.071$ in Pitch Diameter Diameter (Spear - 1.26) Table 9-9 (Diameter Spear - 1.26) Table 9-1 (Diameter Spear - 1.26) Table 9-9 (Diameter Spear - 1.26) Diam	Computed data:		Overload Factor: K _o =			
Pitch Diameter - Pinion: De = 2.071 in Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 if sol Gear Rim Thickness Factor: Kgp = 1.00 Fig. 9-18: Use 1.00 Fig. 9-18: Use 1.00 Fig. 9-18: Use 1.00 if sol	it Speed:	n	Size Factor: K, =		Use 1.00 if P _d >= 5	
Pitch Diameter - Pinion: $D_{P} = 2.071$ in Pitch Diameter - Perion: $D_{P} = 2.071$ in Pitch Diameter - Pinion: Bead on Center Distance: $C = 4.918$ in Pitch Line Speed: $V_{t} = 935$ f/min Transmitted Load at P_{mi} Capacity: $W_{t} = 1338$ ib Pitch Line Speed: $V_{t} = 935$ f/min Transmitted Load at P_{mi} Capacity: $W_{t} = 1338$ ib Pitch Line Speed: $V_{t} = 935$ f/min Transmitted Load at P_{mi} Capacity: $W_{t} = 1338$ ib Pinion: Based on Bending Stress: 65.2 hp Power Transmission Capacity: 7.94 hp Power		11	Pinion Rim Thickness Factor: KBP =		Jse 1.00 if solid blank	
Pitch Diameter - Gear: $D_G = 7.765$ in Center Distance: $C = 4.918$ in Pitch Line Speed: $V_t = 935$ f/min Pitch Line Speeding S		81	Gear Rim Thickness Factor: K _{BG} =		Jse 1.00 if solid blank	
Transmitted Load at Princh Line Speed: $V_1 = 935$ f/min Pitch Line Speed: $V_1 = 935$ f/min Transmitted Load at Princh Capacity: $W_1 = 1338$ lb Power Transmission Capacity: (Using Eq. 9-32, 9-34) Power Transmission Capacity: (Using Eq. 9-32		•	Dynamic Factor: K _v =	l_	: See Fig. 9-20]	For K ₄ :
Pitch Line Speed: $v_t = 935 \text{ fl/min}$ Transmitted Load at P _{min} Capacity: $W_t = 1338 \text{ ib}$ Fower Transmission Capacity: $W_t = 1338 \text{ ib}$ Power Transmission Capacity: $W_t = 1338 \text{ ib}$ Pinion: Based on Bending Stress: 58.12 hp Pinion: Based on Contact Stress: 37.94 hp Power Transmission Capacity: 37.84 hp Power Transmission Capacity: 7.94 hp Power Transmission Capacity: 7.95 hp Power Transmission Capacity: 7.95 hp Power Transmission Capacity: 7.95 hp Power Transmission Capacity: 7.96 hp Power Transmission Capacity: 7.96 hp Power Transmission Capacity: 7.96 hp Power T		-	Service Factor: SF =	121	no unusual conditions	
Transmitted Load at P _{min} Capacity: W _i = 1338 lb Fower Transmission Capacity: (Using Eq. 9.32, 9.34) Pinion: Based on Bending Stress: 66.52 hp Pinion: Based on Contact Stress: 37.94 hp Pinion: Based on Contact Stress: 40.54 hp Pinion: A _V = 12 Table 9.3 Enter: Bending Geometry Factors: Press: angle = 20 deg Pitting Stress Cycle Factor: Y _{NP} = 0.93 Pitting Stress Cycle Factor: Y _{NP} = 0.95 Pitting						C 54.74
Power Transmission Capacity: (Using Eq. 9.32, 9.34) Pinion - Number of load cycles: $N_P = 1.6E + 09$ Pinion: Based on Bending Stress: 58.12 hp Gear: Based on Bending Stress: 65.52 hp Pinion: Based on Contact Stress: 37.94 hp Pinion: Based on Contact Stress: 37.94 hp Power Transmission Capacity: (Using Eq. 9.32, 9.34) Pinion: Based on Bending Stress Cycle Factor: $Y_{NP} = 0.99$ Pinion - Number of load cycles: $N_P = 1.6E + 09$ Gear: Based on Bending Stress: 65.52 hp Bending Stress Cycle Factor: $Y_{NP} = 0.99$ Pinion: Based on Contact Stress: 37.94 hp Pinion: Based on Contact Stress: 37.94 hp Pinion: Based on Contact Stress: $A_P = 0.99$ Pinion: $A_P = 0.99$ Pinion - Number of load cycles: $N_P = 1.6E + 09$ Pinion - Number of load cycles: $N_P = 1.6E + 09$ Pinion - Sase Fig. 9-17 Bending Stress Cycle Factor: $Y_{NP} = 0.99$ Pitting Stress Cycle Factor: $Y_{NP} = 0$			Reliability Factor: KR =		Use 1.00 for R = .99	
Power Transmission Capacity; (Using Eq. 9-32, 9-34) Pinion: Based on Bending Stress: 58.12 hp Gear: Based on Bending Stress: 65.52 hp Gear: Based on Bending Stress: 58.12 hp Gear: Based on Bending Stress: 65.52 hp Gear: Based on Bending Stress: 65.52 hp Gear: Based on Bending Stress: 65.52 hp Gear: Based on Bending Stress: 9.94 hp Pinion: Based on Bending Stress: 9.94 hp Pinion: Based on Bending Stress: 9.94 hp Pinion: Based on Bending Stress: Cycle Factor: Y _{NP} = 0.99 1.00 0.93 Bending Stress Cycle Factor: Y _{NP} = 0.99 1.00 0.93 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.99 1.00 0.99 Piting Stress Cycle Factor: Z _{NP} = 0.99 1.00 0.9	L		Enter: Design Life:	15000 hours	See Table 9-7	
Gear - Number of load cycles: $N_G = 4.1E + 0.93$ Bending Stress Cycle Factor: $Y_{NP} = 0.93$ Bending Stress Cycle Factor: $Y_{NP} = 0.95$ Pitting Stress Cycle Factor: $Z_{NP} = 0.95$ Pitting Stress Cycle Factor: $Z_{NP} = 0.92$ Pitting Stress Cycle Factor: $Z_{NP} = 0.92$ Allowable Bending Stress Numbers: (Input) Big.3 Allowable Contact Stress Numbers: (Input) Allowable Contact Stress Numbers: (Input) Binion: $s_{ac} = 55,000$ Psi Table 9-5 Gear: $s_{ac} = 180,000$ Pitting Stress Cycle Factor: $z_{NP} = 0.95$ Gear: $s_{ac} = 180,000$ Fig. 9-1, Charles Stress		Using Eq. 9-32, 9-34)			idelines: Y _N , Z _N	
Bending Stress Cycle Factor: Y _{NP} = 0.93 1.00 0.93 Bending Stress Cycle Factor: Y _{NP} = 0.95 1.00 0.95 Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.92 Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.92 Allowable Bending Stress Numbers: (Input) Binion: S _{el} = 55,000 psi Table 9-5 Allowable Contact Stress Numbers: (Input) Cear: S _{el} = 180,000 psi Table 9-5 Gear: S _{el} = 180,000 psi Table 9-5 10-1.2 Material specification: Steel pinion+geer; Carburized ces		8.12 hp		10	>10,	
Bending Stress Cycle Factor: Y _{NG} = 0.95 1.00 0.95 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress Cycle Factor: Z _{NP} = 1.00 Fig. Pitting Stress C		6.52 hp	Bending Stress Cycle Factor: Y _{NP} =	12201	0.93 Fig. 9-20	
Pitting Stress Cycle Factor: Z _{NP} = 0.89 1.00 0.89 Fig. Pitting Stress Cycle Factor: Z _{NP} = 0.92 1.00 0.92 Fig. 9-10 Allowable Bending Stress Numbers: (Input) Pinion: s _{el} = 55,000 psi See Fig. 9-11 or Gear: s _{el} = 55,000 psi Table 9-5 Allowable Contact Stress Numbers: (Input) 8. 6. 7 Gear: s _{ec} = 180,000 psi Table 9-5 10-1.2 Material specification: Steel pinion+gear, Carburized case h		7.94 hp	Bending Stress Cycle Factor: Y _{NG} =		0.95 Fig. 9-20	
Pitting Stress Cycle Factor: Z _{NG} = 0.92 1.00 0.92 Fig.		0.54 hp	Pitting Stress Cycle Factor: Z _{NP} =		0.89 Flg. 9-22	
89-3 Allowable Bending Stress Numbers: (Gear: Sat = Gear: Sat = Allowable Contact Stress Numbers: (B. 8, 7 6, 8, 7 Gear: Sac = 10-1,2 Material specification:			Pitting Stress Cycle Factor: Z _{NG} =			Through-Hardened
Allowable Contact Stress Numbers: (6, 6, 7 6, 8, 7 10-1, 2 Material specification:			Allowable Bending Stress Numbers: (Il	()ndu		Grade 1 Steel
Gear: Set = Allowable Contact Stress Numbers: () 6, 6, 7 6, 8, 7 10-1,2 Material specification:	TO THE	12	Pinion: Set =	55,000 psi	See Fig. 9-11 or	17.6 ksi Fig. 9-11
4.8,7 Allowable Contact Stress Numbers: (7.8,7 Pinion: Sec = 5,6,7 Gear: Sec = 10-1,2 Material specification:	REF: Np, Ng =		Gear: Set a		Table 9-5	17.6 ksi Fig. 9-11
J _p = 0.465 Fig. 10-6, 6, 7 J _G = 0.521 Fig. 10-6, 8, 7 J = 0.200 Tables 10-1, 2 Material specification: 3.75	Enter: Bending Geometry Factors: Pre	ess. angle = 20 deg	Allowable Contact Stress Numbers: (In	()ndu		
J _G = 0.521 Fig. 10-5, 8, 7 I = 0.200 Tables 10-1,2 3.75 Material specification:				180,000 psl	See Fig. 9-12 or	Ę.
3.75 Material specification:			11	180,000 psi	Table 9-5	49.1 ksi Fig. 9-12
			Material specification: S	Steel pinion+gear, C	arbunized case hard.	
Pinion material: SAE 4620 DOQT 300 62 HRC			Pinion material: SAE 4620 DOOT 300	62	HRC	

Problem 10-14			
BEVEL GE		laad a	i
Forces and torque for shaft an			
On Pinion Shaft - Torque:	$T_P =$	630	lb-in
Mean radius of pinion:		1.052	in
Enter: pressure angle:	φ =	20	degrees
On Pinion - Tangential load:	$W_{tP} =$	598.7	lb
On Pinion - Radial load:	$W_{rP} =$	206.7	lb
On Pinion - Axial load:	$W_{xP} =$	68.9	lb
On Gear Shaft - Torque:	T _G =	1890.0	lh_in
•	•		
On Gear - Tangential load:	$W_{tG} =$	598.7	ID
On Gear - Radial load:	$W_{rG} =$	68.9	lb
On Gear - Axial load:	$W_{xG} =$	206.7	lb
See following page for stress an	alysis a	nd desig	ın details.

Designed Detect Part Speed; from Experiment From Experimen	DESIGN OF BEVEL GEARS		APP	APPLICATION:	Concrete mixer with moderate shock driven by a gasoline engine Problem 10-14	ven by a gasoline engine Neither gear straddle mounted	e engine raddle mour	nted			
From Equation 10-16	Initial Input Data:				Factors in Design Analy	lysis:					
Figure 1 Part Speet Part Pa	Input Power:	٩	3	hp		From Equati	on 10-16				
P _e = 15 Both gears straddle mounted; 1.00 Inch page straddle mounted; 1.10 Residence of the page straddle mo	input Speed:		300	mdı		actor, K mb					
No = 15 One gear straddle mounted: 1.10 A fig. 1 A fig. 2 For K.√ A fig. 3	Diametral Pitch:		9		Both gears straddle mounted:	1.00					
no = 100 pm Neither gear straddle mounted; 1.25 Respectively of the control of	Number of Pinion Teeth:		15		One gear straddle mounted:	1.10					
No = 450 Enter Factor, K_{ca} 1.25 1.26 Enter Factor, K_{ca} 1.26 1.26 Enter Factor, K_{ca} 2.00 Enter Factor, K_{ca} 2.00 Equal 10.13 (for $P_{ca} < 16)$ Equal 10.14 (for	Desired Output Speed:		100	md	Neither gear straddle mounted:	1.25					
No e 45 Overload Factor: K _p = 1.26 Table 9-7 For K _γ n _c = 100.0 rpm Bonding Size Factor: K _p = 2.00 Table 9-7 For K _γ n _c = 3.00 Bonding Size Factor: K _p = 0.59 For F > 3.14, C _p = 0.83 C = 70.7 p _c = 2.500 In For F < 0.50, C _p = 0.5 For F > 3.14, C _p = 0.83 C = 70.7 γ = 18.43 degrees Bending Size Factor: C _p = 0.59 For F > 3.14, C _p = 0.83 C = 70.7 γ = 18.43 degrees Bending Size Factor: C _p = 0.59 For F > 3.14, C _p = 0.83 C = 70.7 γ = 18.43 degrees Bending Size Factor: C _p = 0.59 For F > 3.14, C _p = 0.83 C = 70.7 N _m = 196 ft/min For F < 0.50, C _p = 0.5 For F > 3.14, C _p = 0.83 C = 70.7 N _m = 198 ft/min Gear - Number of load cycles: N _p = 1.00 No 10 ^p = 0.99 1.50 N _m = 1.28 1.38 1.68 1.08 1.07 No 10 ^p = 1.50 P _m = 1.28 P _m =	Computed number of gear teeth:		45.0		Enter Factor, K _{mb}	1.25					
De 100.0 rpm Banding Size Factor: K _a = 0.52 Figure 10.13 (for P _d < 16) B = 0.630 De 2.500 n	Enter: Chosen No. of Gear Teeth:	NG	45		X _{E U}	1.26	1000				
Principal Parameter	Computed data:				Overload Factor: K _o =	2.00	Table 9-7			For K	
Dynamic Factor: K _s = 1.121 Computed: Table 9-9 C = 70.7 Dynamic Factor: C _s = 0.59 For 0.50 ∈ F < 3.14 D ₀ = 7.500 in For F < 0.50, C _s = 0.5 For F > 3.14, C _s = 0.83 T = 18.43 degrees Service Factor: S _s = 0.59 For F > 3.14, C _s = 0.83 T = 18.43 degrees Service Factor: S _s = 1.00 Dynamic	Actual Output Speed:	n n	100.0	md		0.52	Figure 10-1	3 (for Poc	(9)	B = 0.630	
D ₀ = 7.500 in Pitting Size Factor: C₂ = 0.59 For F > 3.14, C₂ = 0.83 For R > 3.14, C₂ = 0.83 γ = 18.43 degrees Final Sequired Size Factor: SF = 1.00 For F > 3.14, C₂ = 0.83 For R > 3.14, C₂ = 0.83 Λ ₀ = 3.9528 in Enter Design Life : 1.00 Deathing: C _R = 1.00 Deathing: C	Gear Ratio:		3.00		Dynamic Factor: K _v =	1.121	Computed:	Table 9-9		- 11	
De = 7,500 in γ = 18.43 degrees For F < 0.50, C _s = 0.5 For F > 3.14, C _s = 0.83 γ = 18.43 degrees Fried Service Pactor: SF = 1.00 Use 1.00 if no unusual conditions A _o = 3,9528 in sending Reliability Factor: K _s = 1.00 Bending Reliability Factor: K _s = 1.00 Non vital Stress Cycles: N _s = 1.00E+07 Non vital Stress Cycles: N _s = 1.00E+07 Non vital Stress Cycles: V _s = 0.20 Non vital Stress Cycles: N _s = 1.00E+07 Non vital Stress Cycles: N _s = 1.27 Non vital Stress Cycles: N _s = 1.27 Non vital Stress Cycles: Non vital Stress	Pitch Diameter - Pinion:		2.500	<u></u>	Pitting Size Factor: C, =	0.59	For 0.50 <	F < 3.14			
$Λ_0 = 3.9528$ in Pinton Number of load cycles: $N_0 = 1.00$	Pitch Diameter - Gear:		7.500	<u>.</u> ⊆	For F < 0.50, C _s = 0.5			14, C = 0.8	m		
A_{c} = 3.9528 in A_{c} = 2.9528 in A_{c} = 2.952 in A_{c} = 2.9533 in A_{c} = 3.9533 in A_{c} = 3.95	Pitch cone angle - Pinion:		18.43	degrees	Enter C, =	0.59					
$A_0 = 3.9528$ in Bending Reliability Factor: $K_R = 1.00$ Pitting: $C_R = 1.00$ For $R_R	Pitch cone angle - Gear:	L	71.57	degrees	Service Factor: SF =	1.00	Use 1.00 if	no unusual	conditions	- 1	
V _t = 196 ft/min Find the control of load cycles: N _p = 1,80E+07 Hours See Table 9-7 0.9 0.85 V _t = 504 lb Gear - Number of load cycles: N _p = 1,80E+07 V _t Z _t r Pinkon-Fig. 10-16 Gear-Fig. 10-20 0.999 1.25 Nom Max Max Max Bending Stress Cycle Factor: K_L = 1.01 2.70 0.84 1.01 0.999 1.25 F = 1.250 in Pitting Stress Cycle Factor: K_L = 1.27 2.00 1.27 N < 10 ² N > 10 ² A _v = 9 Table 9-3 Pitting Stress Cycle Factor: C_L = 1.36 2.00 1.36 1.03 1.50 A _v = 9 Table 9-3 Pitting Stress Cycle Factor: C_L = 1.36 2.00 1.36 1.01 1.830 A _v = 9 Table 9-3 Stress Analysis - Bending: See Fig. 10-17 or HB 303 J _p = 0.228 Fig. 10-15 Stress Analysis - Bending: See Fig. 10-21 or HB 305 J _c = 0.130 Fig. 10-15 Specify materials, alloy and heat treatment, for most severe requirement. HB 302 J _c = 0.005 Fig. 10-15 Specify materials, alloy and heat treatment, for most severe requirement. HB 305 Pinion: HB 33	Outer cone distance:		3.9528	ء	Bending Reliability Factor: KR =	1.00	Pitting: CR				ပ
V _i = 196 f/min Pinlon - Number of load cycles: N _p = 1.80E+07 V _i Z _i Pinlon-R ₀ 10-10, 0-abs 1.20 0.99 1.00 1.00 0.99 1.25 1.00 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27 0.99 1.27					Enter: Design Life:	1000	hours	See Table 9	1.7	_	0.62
W _i = 504 lb Gear - Number of load oycles: N_{c} = 6.00E+08 $N<10^{3}$ 10^{4} 10^{4} 0.999 1.25 0.999 1.50 <	Pitch Line Speed:		196	f/min	Pinion - Number of load cycles: Np ≈	1.80E+07	YN, ZN: P	inlon-Fig. 10-18; G	ear-Fig. 10-20		9:
Nom Max Mean Bending Stress Cycle Factor: $K_L = 0.96$ 1.07 0.84 1.01 0.9999 1.50 1.186 1.318 1.667 Bending Stress Cycle Factor: $C_L = 1.27$ 0.96 2.70 0.96 1.03 Through Harmonian Pitting Stress Cycle Factor: $C_L = 1.36$ 2.00 1.27	Transmitted Load:		504	٩	Gear - Number of load cycles: No =	6.00E+08	N<103	10° <n<10'< td=""><td>N>107</td><td></td><td>1.12</td></n<10'<>	N>107		1.12
Nom Max Max Max 1.86	Secondary Inpl	out Data:			Bending Stress Cycle Factor: K _L =	1.01	2.70	0.84	1.01		1.22
1.186 1.318 1.667 Pitting Stress Cycle Factor: $C_L = 1.27$ 0.000 1.27 0.000 1.27 0.000 1.27 Pitting Stress Cycle Factor: $C_L = 1.36$ 0.000 0.0		Nom	Max	Max	Bending Stress Cycle Factor: K _L =	96.0	2.70	0.96	1.03		
F= 1.250 in Pitting Stress Cycle Factor: $C_L = 1.27$ 2.00 1.27 Through Har A _v = g Table 9-3 Stress Analysis - Bending: 2.00 1.36 2.00 1.36 Through Har A _v = g Table 9-3 Stress Analysis - Bending: Bending: 3.00 <td>Face Width Guidelines (in):</td> <td></td> <td>1.318</td> <td>1.667</td> <td></td> <td></td> <td>N<10*</td> <td>N>10*</td> <td></td> <td></td> <td></td>	Face Width Guidelines (in):		1.318	1.667			N<10*	N>10*			
Cp = 2300 Table 9-10 Pitting Stress Cycle Factor: C _L = 1.36 2.00 1.36 Through Har A _v = 9 Table 9-3 Stress Analysis - Bending: Stress Analysis - Bending: Accounted to a stress Ana	Enter: Face Width:		\$50485	lu u	Pitting Stress Cycle Factor: C _L =	1.27	2.00	1.27			
A _v = 9 Table 9-3 Stress Analysis - Bending: Grade 15 Pinion: Required s _{at} = 0.228 15,447 psi See Fig. 10-17 or HB 303 J _p = 0.228 Fig. 10-15 Stress Analysis - Pitting: Assumes C _{xc} = 1.5 for properly crowned teeth Pinion: Required s _{ac} = 129,992 psi Table 10-4 HB 395 J _G = 0.190 Fig. 10-15 Stress Analysis - Pitting: Assumes C _{xc} = 1.5 for properly crowned teeth Pinion: Required s _{ac} = 121,389 psi Table 10-4 HB 312 J _G = 0.078 Fig. 10-19 Specify materials, alloy and heat treatment, for most severe requirement. HB 287 One possible material specification: Pinion: HB 312 required: SAE 6150 OQT 1100; HB = 341 Pinion: HB 312 required: SAE 6150 OQT 100; HB = 401	Enter: Elastic Coefficient:	20	2300	Table 9-10	Pitting Stress Cycle Factor: C _L =	1.36	2.00	1.36		Through Ha	ardened
Plinion: Required s_{ai} = 15,447 psi See Fig. 10-17 or HB 303 Gear: Required s_{ai} = 19,502 psi Table 10-4 HB 395 J _G = 0.190 Fig. 10-15 J _G = 0.078 Fig. 10-19 Specify materials, alloy and heat treatment, for most severe requirement. Plinion: HB 312 required: SAE 6150 OQT 1100; HB = 341 Gear: HB 395 required: SAE 6150 OQT 100; HB = 401	Enter: Quality Number:	A, =	6	Table 9-3	Stress Analysis - Bending:					Grade 1	Steel
J _P = 0.228 Fig. 10-15 Stress Analysis - Pitting: Assumes C _{xc} = 1.5 for properly crowned teeth HB 395 J _P = 0.790 Fig. 10-15 Pinlon: Required s _{ac} = 129,992 psi See Fig. 10-21 or HB 312 J _P = 0.078 Fig. 10-19 Specify materials, alloy and heat treatment, for most severe requirement. HB 287 One possible material specification: Philon: HB 312 required: SAE 6150 OQT 1100; HB = 341 Philon: HB 395 required: SAE 6150 OQT 100; HB = 401					Pinion: Required Sat =	15,447	isd	See Fig. 10	-17 or	HB 303	Fig. 10-17
J _p = 0.228 Fig. 10-15 Stress Analysis - Pitting: Assumes C _{xc} = 1.5 for properly crowned teeth HB 312 J _G = 0.190 Fig. 10-15 Pinlon: Required s _{xc} = 129,992 psi See Fig. 10-21 or HB 312 I = 0.078 Fig. 10-19 Specify materials, alloy and heat treatment, for most severe requirement. HB 287 One possible material specification: Pinlon: HB 312 required: SAE 6150 OQT 1100; HB = 341 Gear: HB 395 required: SAE 6150 OQT 900; HB = 401	Enter: Bending Geometry Factors:				Gear: Required set =	19,502	psi	Table 10-4	The second secon	HB 395	Fig. 10-17
J _G = 0.190 Fig. 10-15 Plinlon: Required s _{ac} = 121,389 psi See Fig. 10-21 or HB 312 I = 0.078 Fig. 10-19 Specify materials, alloy and heat treatment, for most severe requirement. HB 287 One possible material specification: Phinon: HB 312 required: SAE 6150 OQT 1100; HB = 341 Pinion: HB 395 required: SAE 6150 OQT 900; HB = 401	Pinion:		0.228	Fig. 10-15		ssumes C _{xc}	= 1.5 for pr	operly crown	ed teeth		
I = 0.078Fig. 10-19Gear: Required \$ac = 121,389 psiTable 10-4HB 287Specify materials, alloy and heat treatment, for most severe requirement.One possible material specification: Pinion: HB 312 required: SAE 6150 OQT 1100; HB = 341Gear: HB 395 required: SAE 6150 OQT 900; HB = 401	Gear		0.190	Fig. 10-15	Pinion: Required sec =	129,992	psi	See Fig. 10	-21 or	HB 312	Fig. 10-21
	Enter: Pitting Geometry Factor:		0.078	Fig. 10-19	Gear: Required Sac =	121,389	psi	Table 10-4		HB 287	Fig. 10-21
One possible material specification: Pinion: HB 312 required: SAE 6150 OQT 1100; HB = 341 Gear: HB 395 required: SAE 6150 OQT 900; HB = 401					Specify materials, alloy and heat treatme	ent, for mos	f severe re	quirement.			
Gear: HB 395 required: SAE 6150 OQT 900: HB = 401					One possible material specification: Pinion: HB 312 required: SAE 6150 OQT 11	100; HB = 34	=				
					Gear: HB 395 required: SAE 6150 OQT 900	10; HB = 401	A CONTRACTOR				

Problem 10-15 **BEVEL GEARS** Forces and torque for shaft and bearing load analysis: On Pinion Shaft - Torque: $T_P =$ 176.4 lb-in $r_m =$ Mean radius of pinion: 1.093 in 20 degrees Enter: pressure angle: On Pinion - Tangential load: W_{tP} = 161.3 lb On Pinion - Radial load: W_{nP} = 52.5 lb On Pinion - Axial load: $W_{xP} =$ 26.3 lb On Gear Shaft - Torque: $T_G =$ 352.8 lb-in On Gear - Tangential load: $W_{tG} =$ 161.3 lb On Gear - Radial load: W_{rG} = 26.3 lb On Gear - Axial load: W_{xG} = 52.5 lb

See following page for stress analysis and design details.

	DESIGN OF BEVEL GEARS	APPLICATION:	moderate shock driven l	y a gasoline en	gine				
			Problem 10-13	Neimer gear straddie mounted	addie mou	nea			
_	Initial Input Data:		Factors in Design Analysis:	arysis:					
	Input Power: P =	= 3.5 hp	Load distribution factor, K _{m:}	From Equation 10-16	n 10-16				
	Input Speed: np =	= 1250 rpm	Select from:	Factor, K _{mb}					
-	Diametral Pitch: P _d =	= 10	Both gears straddle mounted:	1.00					
	Number of Pinion Teeth: N _P =	- 25	One gear straddle mounted:	1.10					
	Desired Output Speed: ne :	= 625 rpm	Neither gear straddle mounted:	1.25					
_	Computed number of gear teeth:	50.0	Enter Factor, K _{mb}	1.25					
	Enter: Chosen No. of Gear Teeth: No.	= 50		1.25					
_	Computed data:		Overload Factor: K _o =	2.00	Table 9-7			For K	_
	Actual Output Speed: na =	= 625.0 rpm	Bending Size Factor: K _s =	0.51	Figure 10-1	Figure 10-13 (for P _d < 16)	(9)	B = 0.731	
	Gear Ratio: m _G =	= 2.00	Dynamic Factor: K _v =	1.305	Computed: Table 9-9	Table 9-9		C = 65.0	
	Pitch Diameter - Pinion: De=	= 2.500 in	Pitting Size Factor: C _s =	0.53	For 0.50 < F < 3.14	F < 3.14			
	Pitch Diameter - Gear: Do =	= 5.000 in	For F < 0.50, C _s = 0.5		For F > 3.1	3.14, C _s = 0.83			
	Pitch cone angle - Pinion:	= 26.57 degrees	Enter C _s =	0.53		THE REAL PROPERTY.	THE CALL SEC		
Arresto	Pitch cone angle - Gear:	= 63.43 degrees	Service Factor: SF=	1.00	Use 1.00 if	Use 1.00 if no unusual conditions	conditions		
	Outer cone distance: A _o =	CA	Bending Reliability Factor: K _R =	1.00	Pitting: CR		1.00	For R = KR	ပမ
			Enter: Design Life:	15000	hours	See Table 9-7	.7	0.9 0.85	0.62
19	Pitch Line Speed: V _t =	= 818 ft/min	Pinion - Number of load cycles: N _P =	1.13E+09	Y _N , Z _{N: Pin}	YN, ZN: Pinion-Fig. 10-18; Gear-Fig. 10-20	Ir-Fig. 10-20	0.99 1.00	1.00
15	Transmitted Load: W _t =	= 141 lb	Gear - Number of load cycles: No =	5.63E+08	N<103	10° <n<10′< td=""><td>N>107</td><td>0.999 1.25</td><td>1.12</td></n<10′<>	N>107	0.999 1.25	1.12
	Secondary Input Data:	on on	Bending Stress Cycle Factor: K _L =	0.94	2.70	0.51	0.94	0.9999 1.50	1.22
	MON	Max Max	Bending Stress Cycle Factor: $K_L =$	0.95	2.70	0.56	0.95		
	Face Width Guidelines (in): 0.839	0.932 1.000			N < 10*	N>10*			
-		0.700 in	Pitting Stress Cycle Factor: C _L =	1.27	2.00	0.99			
	Enter: Elastic Coefficient: Cp =	= 2300 Table 9-10	Pitting Stress Cycle Factor: $C_L =$	1.36	2.00	1.04		Through Hardened	ardened
-	Enter: Quality Number: A,	Av = 10 Table 9-3	Stress Analysis - Bending:					Grade 1 Steel	Steel
			Pinion: Required set =	13,808 psi	psi	See Fig. 10-17 or	17 or	HB 266	Fig. 10-17
	Enter: Bending Geometry Factors:		Gear: Required set =	16,023 psi	psi	Table 10-4		HB 316	Fig. 10-17
	Pinion: Jp	JP = 0.258 Fig. 10-15	Stress Analysis - Pitting:	Assumes C _{xc} = 1.5 for properly crowned teeth	= 1.5 for pr	operly crown	ed teeth		
	Gear. Ja	Jo = 0.220 Fig. 10-15	Pinion: Required s _{ac} =	91,011 psi	psi	See Fig. 10-21 or	21 or	HB 198	Fig. 10-21
	Enter: Pitting Geometry Factor:	I = 0.083 Fig. 10-19	Gear: Required sac =	84,988 psi	psi	Table 10-4		HB 180	Fig. 10-21
			Specify materials, alloy and heat treatment, for most severe requirement.	tment, for mos	t severe n	squirement.			
			One possible material specification: Pinion: HB 266 required: SAE 6150 OQT 1200; HB = 293	T 1200; HB = 2	93				
			Gear: HB 316 required: SAE 6150 OQT 1100; HB = 341	1100; HB = 34					

Problem 10-16			
BEVEL GE			
Forces and torque for shaft an	d bearin	g load a	nalysis:
On Pinion Shaft - Torque:	$T_P =$	370.59	lb-in
Mean radius of pinion:	$r_m =$	0.938	in
Enter: pressure angle:	φ=	20	degrees
On Pinion - Tangential load:	$W_{tP} =$	395.2	lb
On Pinion - Radial load:	$W_{nP} =$	135.6	lb
On Pinion - Axial load:	$W_{xP} =$	47.9	lb
On Gear Shaft - Torque:	$T_G =$	1050.0	lb-in
On Gear - Tangential load:	$W_{tG} =$	395.2	lb
On Gear - Radial load:	$W_{rG} =$	47.9	lb
On Gear - Axial load:	$W_{xG} =$	135.6	lb

See following page for stress analysis and design details.

DESIGN OF BEVEL GEARS		APPLICATION:	heavy shock driven by a	gasoline engir	9		100		
			Problem 10-16	Both gears straddie mounted	ddie mount	DE			
Initial Input Data:			Factors In Design Analysis:	alysis:					
Input Power:	wer: P=	5 hp	Load distribution factor, K _{m:}	From Equation 10-16	on 10-16				
Input Speed:	eed: np =	850 rpm	Select from:	Factor, Kmb					
Diametral Pitch:	itch: Pa =	00	Both gears straddle mounted:	1.00					
Number of Pinion Teeth:	seth: Np =	18	One gear straddle mounted:	1.10					
Desired Output Speed:	eed: ng =	300 rpm	Neither gear straddle mounted:	1.25					
Computed number of gear teeth:	seth:	51.0	Enter Factor, K _{mb}	1.00	-7-				
Enter: Chosen No. of Gear Teeth:	seth: Ng =	51	K _e II	1.00				3	
Computed data:			Overload Factor: K _o =	2.00	Table 9-7			For K	
Actual Output Speed:	ed: n _g =	300.0 rpm	Bending Size Factor: K _s =	0.51	Figure 10-1	Figure 10-13 (for P _d < 16)	(9	B = 0.731	
Gear Ratio:	atio: m _g =	2.83	Dynamic Factor: K _v =	1.241	Computed: Table 9-9	Table 9-9		C = 65.0	
Pitch Diameter - Pinion:	nion: D _P =	2.250 in	Pitting Size Factor: C _s =	0.58	For 0.50 < F < 3.14	- < 3.14			1
Pitch Diameter - Gear:	sear: D _G =	6.375 in	For F < 0.50, C _g = 0.5		For F > 3.1	3.14, C _s = 0.83			
Pitch cone angle - Pinion:	nion: γ=		Enter C _s =	0.58					
Pitch cone angle - Gear:	Sear: $\Gamma =$	70.56 degrees	Service Factor: SF=	1.00	Use 1.00 if	Use 1.00 if no unusual conditions	onditions		
Outer cone distance:	ince: A _o =	3.3802 in	Bending Reliability Factor: K _R =	1.00	Pitting: CR	11	1.00	ForR= KR	S S
1 9			Enter: Design Life:	15000	hours	See Table 9-7	7.	0.9 0.85	0.62
Pitch Line Speed:	= 'v = eed:	501 ft/min	Pinion - Number of load cycles: N _P =	7.65E+08	Y _N , Z _N : Pin	YN, ZN: Pinion-Fig. 10-18; Gear-Fig. 10-20	r-Fig. 10-20	0.99 1.00	1.00
Transmitted Load:	oad: W _t =	330 lb	Gear - Number of load cycles: N₀ =	2.70E+08	N<103	10° <th>N>10⁷</th> <th>0.999 1.25</th> <th>1.12</th>	N>10 ⁷	0.999 1.25	1.12
Secondar	Secondary Input Data:		Bending Stress Cycle Factor: K _L =	0.94	2.70	0.54	0.94	0.9999 1.50	1.22
	Nom	Max Max	Bending Stress Cycle Factor: K _L =	96.0	2.70	0.61	96.0		
Face Width Guidelines (in):	(in): 1.014	1.127 1.250			N < 10*	N > 10°			
Enter: Face Width:		1.125 in	Pitting Stress Cycle Factor: C _L =	1.02	2.00	1.02			
Enter: Elastic Coefficient:	Ment: Cp = 2300	2300 Table 9-10	Pitting Stress Cycle Factor: C _L =	1.08	2.00	1.08		Through Hardened	ardened
Enter: Quality Number:	nber: A _v = 10	10 Table 9-3	Stress Analysis - Bending:					Grade 1 Steel	Steel
			Pinion: Required Sat =	13,300 psi	psi	See Fig. 10-17 or	17 or	HB 255	Fig. 10-17
Enter: Bending Geometry Factors:	dors:		Gear: Required set =	15,628 psi	psi	Table 10-4		HB 307	Fig. 10-17
ā	Pinion: Jp =	Jp = 0.240 Fig. 10-15	Stress Analysis - Pitting:	Assumes $C_{xc} = 1.5$ for properly crowned teeth	= 1.5 for pr	perly crown	ed teeth		
	Gear. Ja =	J _G = 0.200 Fig. 10-15	Pinion: Required Sac =	133,166 psi	psi	See Fig. 10-21 or	21 or	HB 321	Fig. 10-21
Emer. Pitting Geometry Factor.	120		Gear: Required sac =	125,768 psi	psi	Table 10-4		HB 300	Fig. 10-21
			Specify materials, alloy and heat treatment, for most severe requirement.	tment, for mo.	st severe re	quirement.			
			One possible material specification: Pinion: HB 321 required: SAE 6150 OQT 1100; HB = 341	T 1100; HB = 3	141				
			Gear: HB 307 required: SAE 6150 OQT 1100; HB = 341	1100; HB = 34	-				

Problem 10-17 **BEVEL GEARS** Forces and torque for shaft and bearing load analysis: On Pinion Shaft - Torque: $T_P =$ 26.25 lb-in $r_m =$ Mean radius of pinion: 0.386 in Enter: pressure angle: φ = 20 degrees On Pinion - Tangential load: 68.0 lb On Pinion - Radial load: $W_{P} =$ 23.9 lb On Pinion - Axial load: W_{xP} = 6.3 lb On Gear Shaft - Torque: $T_G =$ 99.2 lb-in On Gear - Tangential load: $W_{tG} =$ 68.0 lb On Gear - Radial load: W_{rG} = 6.3 lb On Gear - Axial load: $W_{xG} =$ 23.9 lb

See following page for stress analysis and design details.

DESIGN OF BEVEL GEARS	APPLICATION:	Reciprocating saw driven by an electric motor	motor			No. of Persons		
		Problem 10-17	Both gears straddle mounted	ddle mount	pe			
Initial Input Data:		Factors in Design Analysis:	alysis:					
Input Power: P=	0.75 hp	Load distribution factor, K _{m:}	From Equation 10-16	n 10-16				
input Speed: np =	1800 rpm	Select from:	Factor, K _{mb}					
Diametral Pitch: P _d =	20	Both gears straddle mounted:	1.00					
Number of Pinion Teeth: Np =	18	One gear straddle mounted:	1.10					
Desired Output Speed: ne =	475 rpm	Neither gear straddle mounted:	1.25					
Computed number of gear teeth:	68.2	Enter Factor, K _{mb}	1.00					
Enter: Chosen No. of Gear Teeth: No =	89	K _m =	1.00	9				9
Computed data:		Overload Factor: K _o =	1.75	Table 9-7			For K	
Actual Output Speed: n _G =	476.5 rpm	Bending Size Factor: K _s =	0.50	Figure 10-1	Figure 10-13 (for P _d < 16)	(9	B = 0.826	_
Gear Ratio: Mg ==	3.78	Dynamic Factor: K _v ≈	1.277	Computed: Table 9-9	Table 9-9		C= 59.7	
Pitch Diameter - Pinion: De=	0.900 in	Pitting Size Factor: C _s =	0.50	For 0.50 < F	F < 3.14			
Pitch Diameter - Gear: D _G =	3.400 in	For F < 0.50, C _s = 0.5		For F > 3.	3.14, Cs = 0.83	3		
Pitch cone angle - Pinion: Y =	14.83 degrees	Enter C _s =	0.5					
	75.17 degrees	Service Factor: SF =	1.00	Use 1.00 if	Use 1.00 if no unusual conditions	conditions		
Outer cone distance: A _o =	1.7586 in	Bending Reliability Factor: $K_R =$	1.00	Pitting: CR		1.00	For R = KR	CR
		Enter. Design Life:	15000	hours	See Table 9-7	-7	0.9 0.85	0.62
Pitch Line Speed: Vt =	424 fl/min	Pinion - Number of load cycles: N _P =	1.62E+09	YN, ZN: Pir	YN, ZN: Pinion-Fig. 10-18; Gear-Fig. 10-20	r-Flg. 10-20	0.99 1.00	1.00
Transmitted Load: W _t =	58 lb	Gear - Number of load cycles: No =	4.29E+08	N<10 ³	10° <n<10′< td=""><td>N>10⁷</td><td>0.999 1.25</td><td>1.12</td></n<10′<>	N>10 ⁷	0.999 1.25	1.12
Secondary Input Data:		Bending Stress Cycle Factor: $K_L =$	0.93	2.70	0.49	0.93	0.9999 1.50	1.22
Non	Max Max	Bending Stress Cycle Factor: $K_L =$	0.95	2.70	0.58	0.95		
Face Width Guidelines (in): 0.528	0.586 0.500			N < 10*	N > 10*			
Enter: Face Width: F =	0.500 in	Pitting Stress Cycle Factor: $C_L =$	0.97	2.00	0.97			
Enter: Elastic Coefficient: Cp = 2300	2300 Table 9-10	Pitting Stress Cycle Factor: $C_L =$	1.05	2.00	1.05		Through Hardened	ardened
Enter: Quality Number: A _v =	11 Table 9-3	Stress Analysis - Bending:					Grade 1 Steel	Steel
		Pinion: Required set ==	11,171 psi	isd	See Fig. 10-17 or	17 or	HB 206	Fig. 10-17
Enter: Bending Geometry Factors:		Gear: Required set =	13,018 psi	psi	Table 10-4		HB 248	Fig. 10-17
Pinion: Jp = 0.250	0.250 Fig. 10-15	Stress Analysis - Pitting:	Assumes $C_{xc} = 1.5$ for properly crowned teeth	= 1.5 for pr	operty crown	ed teeth		
Gear. J _G = 0.210		Pinion: Required Sac =	119,964 psi	psi	See Fig. 10-21 or	21 or	HB 283	Fig. 10-21
Enter: Pitting Geometry Factor: /=	I = 0.085 Fig. 10-19	Gear: Required sac =	110,824 psi	psi	Table 10-4		HB 256	Fig. 10-21
		Specify materials, alloy and heat treatment, for most severe requirement.	tment, for mo	st severe n	squirement			
		One possible material specification: Pinion: HB 283 required: SAE 6150 OQT 1200; HB = 293	T 1200; HB = 2	93				
		Gear: HB 256 required: SAE 6150 OQT 1200; HB = 293	1200; HB = 29	စ္				

WORMGEARING DATA FROM PROB. 8-52: To = 924 LB.IN., MG=30RPM FORCES: WEG = WXW = TO/(0G/2) = 924 LB-1N-/2.0014 = 462 LB PITCH UNE SPEED OF GENC = NEG=11 DG MG/1 = TT(4.00) 30/1=31.4 FTMIN. SLIDING VELO CITY =NS = NEG/SINA = 31.1/SIN(451)= 394 FT/MIN. FROM FIG. 10-25; $\mu = 0.0323$ [COMPOTED FROM EQ. 10-27] $W_{XG} = W_{EW} = 462 \times \frac{Cos(4.5) s/n(4.57) + 0.0323 cos(4.51)}{Cos(4.57) cos(4.57) - 0.0323 cos(4.57)} = 53 LB$ $W_{NG} = W_{NW} = \frac{462 \cdot s/n(4.5)}{Cos(4.57) - 0.0323 \cdot s/n(4.57)} = 120 LB$ $Cos(4.57) = 0.0323 \cdot s/n(4.57)$ FRICTION FORCE = WG = (0.0323)(462) (EQ.10-32) COS(4.51) COS(14.5) -0.8323 SIN(457) = 15.5 LB FRICTION POWER LOSS = PL = NS WF = (394)(15.5) = 1.185 hP INPUT POWER = PIN = PO + PL = To ME + 0.185 = 0.44 + 0.185 = 0.625 LP EFFICIENCY = PO/P. 100% = 70.4 %: /NPUT SPEED = mg. VR = (30) (40) = $\frac{STRESS}{G} = \frac{Wd}{NYFPM} = \frac{Wts}{Ks} \frac{G}{NY} = \frac{(0.974)(0.100)(0.665)(T)(0.457)} = \frac{2423565}{(0.974)(0.100)(0.665)(T)(0.457)} = \frac{2423565}{(0.974)(0.100)(0.665)(T)(0.457)} = \frac{1100}{1100}$ $K_{r} = 1200/(200 + N_{\pm 6}) = 1200/(1200 + 3.4) = 0.974$ PITTING WER = C. D. 0.8 FE C. C. V = (1000) (4.00 P.8 (0.625)(0.814)(0.427) = 659LB

BECAUSE WER > WEG - OK FOR PITTING. OG = 24235 PSi SLIGHTLY HIGHER THAN SOX = 24000 PSi FOR PHOSPHOR BRINZE (SEE SPREADSHEET SOLUTION ON FOLLOWING PAGE.)

Wormgearing - Design	Problem: 10-18	2-18	Additional Computed Results: Pitch line speed - Gear: 31.42 ft	d Results: 31.42 ft/min	
Input Data:			Sliding velocity v _s =	394 ft/min	
Desired output torque:	T _o =	924 lb-in	Coefficient of friction:	0.032 If v _s > 10 ft/min	
Output speed:		30 rpm	Forces: (lb)		
Velocity Ratio:	- NR =	40	angental:	462 53 120 120	
Diametral pitch:	P. =	10	Axial:		
No. of worm threads:			Friction force, W _f =	5.6 lb	
Required No. of gear teeth:		4	Power:		
Specify No. of gear teeth:		40	Power output from gear:	0.440 hp	
Normal pressure angle:		14.5 degrees	Power loss - friction:	0.186 hp	
Computed Results and Additional Inputs	Idditional Inpu	ts:	Power Input:	0.626 hp	
Actual input speed:	n × c	1200 rpm	Efficiency:	70.3 % Normal pressure angle, ϕ_n	re angle, ϕ_n
Actual velocity ratio:	VR ≡	40	Stresses:	14.5 20	25 30
Gear pitch diameter:	D _G B	4 ln	Bending Stress on Gear:	Lewis form factor, y	factor, y
Specify worm diameter:		1.25 in	Enter: Lewis form factor: y =	0.100> 0.100 0.125 0.150 0.175	0.150 0.178
Actual center distance:	O	2.625 in	Normal circular pitch:	0.313 in	
_	C 0.875 /D w = 1.86	98:	Dynamic factor: K _v =	0.974	
	Should be >1.6 and <3.0	3 and <3.0	Bending stress on gear:	24223 ps/ [Using effective gear face width]	face width]
Circular pltch of gear:	n od	0.314 in	Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi	nese = 17000 psi; Phosphor = 2400	00 psi
Axial pitch of worm:	II WX Q	0.314 in	Surface Durability: [Harde	Surface Durability: [Hardened steel worm; bronze gear]	
Lead of the worm:	n 7	0.314 in	Type of bronze:/D a>	>2.51n <2.5in >81n <81n >	>25 in <25 in
Lead angle:	۳ ۲	4.574 deg	Sand cast: C, =	903 1000	
Addendum:	0	0.100 in	Chill cast or forged: C _s =	1137 1000	
Dedendum:	n q	0.116 in	Centrifugally cast: C _s =		1143 1000
Worm outside diameter:	Dow =	1.450 in	Enter: Materials factor: C _s =	1000	
Worm root diameter:		1.019 in	Gear Ratio: mg =	6 to 20 20 to 76 > 76 Actual mg =	n _G = 40
Nominal worm face length:	u.	1.789 in	Ratio correction factor: C _m =	#NUMI 0.814 0.885	
Gear throat diameter:		4.200 in	Enter: C _m =	0.814	
Nominal gear face width:		0.735 in	Sliding velocity:	<700 700-3000 >3000 Actual	Actual $v_s = 394$
Max effective gear face width: $0.67^*D_W =$	0.67*Dw =	0.8375 in	Velocity factor: C _v =	0.427 0.439 0.642	
Effective gear face width:	Fe	0.625 in	Enter: C _v =	0.427	
	(Used given face width)	ace width)	Rated tangential load: W _{IR} = Must be > W _t =	659 lb 462 lb	
Notes: 1. Bending stress on gear slightly high 2 Surgest using larger face width: Say $E = E$	ar slightly high	= 0 75 in	3 Fauntion for C _ produces invalid result for large gear ratio as VR = 40	d result for large gear ratio as VR =	9
Z. Ouggest dellig reiget rece tra	au, ~a,			0 0	-

31.42 ft/min 394 ft/min 0.032 ff v _s > 10 ft/min Gear Worm 462 53 120 120 53 462 15.6 lb 0.140 hp 0.186 hp 0.186 hp 0.186 hp 0.196 ps/ 0.100 0.125 0.150 0.1 0.313 ln 0.974 20186 ps/ [Using effective gear face width genese = 17000 ps/; Phosphor = 24000 ps/	Wormgearing - Design	Problem: 10-18A	0-18A	Additional Computed Results:	d Results:	
Signing velocity $V_a = 394$ firmin Forces (19) For		Adjusted Fe	= 0.750 in	Pitch line speed - Gear:	31.42 ft/min	
each: To a 924 lb-in Coefficient of friction: Coast (b) Gear Norm seed: no a 30 rpm Forces: (lb) Gear Norm Possibions: Avia: 33 d62 33 d62 sade: No a 40 Power: Friction force, W _i = 15.6 lb Avia: 53 d62 sade: No a 40 Power: Power input: 0.40 hp Power input: 0.68 hp seed: n _W = 1.25 in Power input: 0.68 hp Power input: 0.68 hp Power input: 0.68 hp seed: n _W = 1.25 in Power input: 0.68 hp Power input: 0.68 hp Power input: 0.68 hp seed: n _W = 1.25 in Power input: 0.68 hp Power input: 0.68 hp Power input: 0.68 hp seed: n _W = 1.25 in Power input: 0.63 hp Power input: 0.63 hp Input: Input: 0.63 hp seed: n _W = 1.25 in Power input: 0.63 hp Power input: 0.63 hp Input:	Input Data	12		Sliding velocity v _s =	394 ft/min	
seed: n _o = 30 rpm Forces: (lb) Gast (lb) Gast (lb) sects: N _o = 40 Power Incore, W _i = 1.6 lb 1.6 lb Normal pressure angle, γ and	Desired output torque:	To =	924 lb-in	Coefficient of friction:	0.032 If v _s > 10	ft/min
Padelstone 10 Padelstone 120 Padelstone	Output speed:	II OU	30 rpm	Forces: (lb)		
cobinginal: Radial: 120 120 sade: Axial: 53 462 sade: N _W = 1 1 Power output from gear: 6.40 hp sade: N _W = 40 Power output from gear: 0.440 hp Power output from gear: 0.440 hp ratio: φ _n = 14.5 degrees Power output from gear: 0.440 hp Power output from gear: 0.440 hp ratio: γ _m = 1200 rpm Efficiency: 70.3% Normal pressure angle , 25 feach of 20 25 o.150 0.1 ratio: D _w = 1.36 in Bending Stress on Gear: 70.100 0.125 0.150 0.1 rest: D _w = 1.36 in Bending Stress on Gear: 20.100 0.125 0.150 0.1 rest: D _w = 1.36 in Bending Stress on Gear: 20.100 0.125 0.150 0.1 count: D _w = 1.36 in Bending Stress on Gear: 20.100 0.125 0.150 0.1 count: D _w = 1.36 in Stresses: Bending Stress on Gear: 25 in	Velocity Ratio:	VR=	40	Tangential:		
sade: N _W = 10 Friction force, W _f = 15,8 lb 462 sade: N _W = 40 Power output from gear: 0.440 hp secht: A ₀ = 40 Power output from gear: 0.146 hp ngle: φ _n = 1200 rpm Power output from gear: 0.146 hp restor: V _R = 40 Power output from gear: 0.146 hp restor: λ _N = 1200 rpm Enfolency: 70.3 % Normal pressure angle, q restor: D _N = 1200 rpm Stresses: 1.25 in Normal pressure angle, q seed: D _N = 1200 rpm Stresses: 1.03 in Normal pressure angle, q restor: D _N = 1.26 in Bending Stress on Gear: 1.03 in Normal pressure angle, q c = 2.625 in Dynamic flexibit. Normal clicular pitch: 0.313 in Normal clicular pitch: 1.03 in c = 2.625 in Dynamic flexibit. Bending stress on Gear: 2.146 ps Bending stress on Gear: 2.146 ps Dynamic flexibit. c = 2.625 in D _N = 1.34 in Surface Durability: [Hardened steel worm: Proper of bronze: V ₀ = 0.314 in Surface Durab	Design Decisi	ons:		Radial:		
seds: N _W = 1 Friction force, W _f = 15.8 lb 15.8 lb sedt: N _G = 40 Power output from gear: 0.440 hp ndd Additional Imputs: Power loss - friction: 0.186 hp sedt: N _G = 40 Power lought from gear: 0.440 hp sedt: N _G = 1.55 la Power lought from gear: 0.186 hp ratio: VR = 1.200 rpm Efficiency: 70.3 % Inchesion and local probability from gear: refer: D _G = 1.25 la Alino refer: Bending stress on gear: 70.100 Lewis form factor: Inchesion factor:<	Diametral pitch:	Pa=	10	Axial:		
eeth: N ₀ = 40	No. of worm threads:	N _W II		Friction force, W _f =	15.6 lb	
righ: θ _n = 40 Power output from gear: 0.440 hp rind Additional Inputs: Prover light: 0.186 hp rind Additional Inputs: Prover light: 0.186 hp read: n male additional Inputs: Female additional Inputs: 70.3 % Normal pressure angles grasses: read: n meter: D _w = 1.26 in Normal clocular pitch: 0.313 in Lewis form factor: y = 0.100 0.125 0.150 0.1 costs: D _w = 1.35 in Normal clocular pitch: 0.313 in Lewis form factor: y = 0.100 0.125 0.150 0.1 costs: D _w = 1.38 in Bendling stress on gear: 2.016 pat lUsing effective gear face width comm: D _w = 0.314 in Surface Durability: [Hardened steel worm: Dougle pat lUsing effective gear face width comm: D _w = 4.574 deg Chill cast or forged: C a goal 1000 o.125 0.150 o.1 comm: D _w = 4.574 deg Chill cast or forged: C a goal 1137 1000 comm: D _w = 1.450 in Enter: C a goal 1000 <	Required No. of gear teeth:	Nen	9	Power:		
radio: φ = 14.5 degrees Power loss - friction: O.186 hp radio: ν = 1200 rpm Efficiency: 70.3 % Normal pressure angle, φ = 1200 rpm radio: VR = 40 Bending Stresses: 70.100 1.25 in Lewie form factor: V = 125 in Lewie form factor: V = 1200 in V = 1200 in <	Specify No. of gear teeth:	N _G =	40	Power output from gear:	0.440 hp	
radd deditional Inputs: Power Input: Downer Inputs: Power Input: A comparation of Comparation	Normal pressure angle:	II " **	14.5 degrees	Power loss - friction:	0.186 hp	
retic: VR = 40	Computed Results and A	ddittonal Inpu	163:	Power input:	0.626 hp	
ratio: $VR = 40$	Actual input speed:	II W	1200 rpm	Efficiency:		Normal pressure angle, ϕ_n
refer: $D_{w}=1.25$ in Bending Stress on Gear: $D_{w}=1.25$ in Bending Stress on Gear: $D_{w}=1.25$ in Bending Stress on Gear: $C=2.625$ in Coars $D_{w}=1.86$ Should be >1.6 and <3.0 Allowable stresses-Bronze: $A_{m}=1.7000$ psi; Phosphor = 24 on 100 in Cantrifugally cast: $C_{s}=1.000$ psi; Phosphor Bronze gear] Type of bronze: $D_{sw}=1.7000$ psi; Phosphor E24 on Cast: $C_{s}=1.7000$ psi; Phosphor Bronze gear] Type of bronze: $D_{sw}=1.7000$ psi; Phosphor Bronze gear] Type of bronze: $C_{s}=1.7000$ psi; Phosphor Bronze gear ratio as VR gear of the properties factor: $C_{s}=1.7000$ psi; Phosphor Bronze gear ratio as VR gear page gear ratio as VR gear page gear ratio as VR gear gear gear gear gear gear gear gear	Actual velocity ratio:	X 11	04	Stresses:		14.5 20 25 30
nce: $C = 2.625 \text{in}$ Normal circular pitch: 0.313in Normal circular pitch: 0.313in Dynamic factor: $K_v = 0.974$ Should be >1.86 Should b	Gear pitch diameter:	De	4 in	Bending Stress on Gear:		Lewis form factor, y
nce: $C=2.625$ in Normal circular pitch: 0.313 in Dynamic factor: $K_v=0.974$ Should be >1.86	Specify worm diameter:		1.25 in	Enter: Lewis form factor: y =	1	0.100 0.125 0.150 0.175
Should be >1.86 Should be >1.86 Should be >1.86 Should be >1.8 and <3.0 Bendling stress on gear: 20186 psl [Using effective gear face w gear: 20186 psl [Using effective gear face w gear: 20186 psl [Using effective gear face w gear: 2018] Allowable stresses-Bronze: Mangenese = 17000 psl; Phosphor = 24000 psl in the stresses-Bronze: Mangenese = 17000 psl; Phosphor = 24000 psl in the stresses-Bronze: Mangenese = 17000 psl; Phosphor = 24000 psl in the stresses-Bronze: Mangenese = 17000 psl; Phosphor = 24000 psl in the stresses-Bronze: Mangenese = 17000 psl; Phosphor = 24000 psl in the stresses-Bronze: Mangenese = 17000 psl; Phosphor = 24000 psl in the stresses-Bronze: Mangenese = 17000 psl in the stresses in the stre		O	2.625 in	Normal circular pitch:	0.313 in	
Should be >1.6 and <3.0 Bending stress on gear: 20186 ps/ [Using effective gear face w gear] gear: Po = 0.314 in ord Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi ord norm: L = 0.314 in ord Surface Durability: [Hardened steel worm; bronze gear] norm: L = 0.314 in ord Type of bronze:/Do> >2.5 in <2.5 in >8 in <8 in >25 in norm: A = 4.574 deg Chill cast or forged: C ₂ = 903		30.875/DW = 1	.86	Dynamic factor: K _v =	0.974	
poer: P_{G} = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] form: L = 0.314 in Surface Dranze. L_{g} = 903 1000 Chill cast or forged: C_{g} = 1000 Chill cast or forged: C_{g} = 1000 Gear Ratio: R_{g} = 6 to 20 20 to 76 > 76 Actual R_{g} = 1001 Gear Ratio: R_{g} = 1.789 in Ratio correction factor: C_{g} = #NUM! 0.814 0.885 Instant: C_{g} = 0.735 in Velocity factor: C_{g} = 0.427 Cused given face width) Rated tangential loed: W_{g} = 790 lb Muest be > W_{t} = 462 lb 3. Equation for C_{g} produces invalid result for large gear ratio as VR = 40		Should be >1.	6 and <3.0	Bending stress on gear:	20186 ps/ [Using	g effective gear face width]
form: $\rho_{xW}=0.314$ in Surface Durability; [Hardened steel worm; bronze gear] form: $L=0.314$ in Type of bronze; $D_{G}=->>2.5$ in <2.5 in <8 in >2.5 in <2.5	Circular pitch of gear:	ll od	0.314 ln	Allowable stresses-Bronze: Mange	nese = 17000 psi; P.	hosphor = 24000 psi
norm: $L = 0.314 \text{ in}$ Type of bronze- $\Omega_0 = -2.5 \text{ in}$ $< 2.5 \text{ in}$ $< 8 \text{ in}$	Axial pitch of worm:	II Mx Q	0.314 in	Surface Durability: [Harde	ened steel worm; bi	ronze gear]
ngle: $\lambda =$ 4.574 deg Sand cast: $C_s =$ 903 1000 dum: $b =$ 0.100 in Centrifugally cast: $C_s =$ 1137 1000 dum: $b =$ 0.116 in Centrifugally cast: $C_s =$ 1000 1143 dum: $b =$ 0.116 in Enter: Materials factor: $C_s =$ 1000 Actual $m_0 =$ reter: $D_{RW} =$ 1.019 in Ratio correction factor: $C_m =$ #NUMI 0.814 0.885 neter: $D_{RO} =$ 4.200 in Enter: $C_m =$ 0.814 0.885 neter: $D_{RO} =$ 4.200 in Enter: $C_m =$ 0.814 0.885 nidth: $F_{eG} =$ 0.735 in Velocity factor: $C_m =$ 700 ib Audth: $F_{eG} =$ 0.750 in Enter: $C_w =$ 790 ib Rated tangental for R_m in gear OK for Phosphor Bronze 3. Equation for C_m produces invalid result for large gear ratio as VR = 40	Lead of the worm:	7	0.314 in	Type of bronze:/D o>	<2.5 in	<8 in
dum: $a = 0.100$ in Chill cast or forged: $C_s = 1000$ dum: $b = 0.116$ in Centrifugally cast: $C_s = 1000$ letter: $D_{oW} = 1.019$ in Gear Ratio: $m_0 = 6$ to 20 to 76 5 76 Actual $m_0 = 100$ letter: $D_{RW} = 1.019$ in Ratio correction factor: $C_m = 1000$ Sliding velocity: $C_m = 0.814$ Sliding velocity: $C_m = 0.814$ Null Coft Discourse width: $C_s = 0.750$ in Rated tangential load: $C_s = 0.427$ Rated tangential load: $C_s = $	Lead angle:		4.574 deg	Sand cast: C ₃ =		
dum: $b = 0.116$ in Centrifugally cast: $C_s = 1000$ leter: $D_{ow} = 1.450$ in Gear Ratio: $M_{cs} = 1000$ leter: $D_{Rw} = 1.019$ in Gear Ratio: $M_{cs} = 1000$ Ratio correction factor: $C_m = 1000$ Sliding velocity: $C_m = 0.8375$ in Velocity factor: $C_v = 0.427$ (Used given face width) Rated tangential load: $W_{rig} = 1000$	Addendum:		0.100 in			
reter: $D_{ow} = 1.450 \text{ in}$ Ratio correction factor: $C_o = 1000$ Gear Ratio: $m_o = 6$ to 20 20 to 76 > 76 / Ratio correction factor: $C_m = \#NUM!$ 0.814 0.885 Ratio correction factor: $C_m = 0.814$ Sliding velocity: <700 700-3000 >3000 Velocity factor: $C_v = 0.427$ 0.439 0.642 Width: $F_o = 0.750 \text{ in}$ Rated tangential load: $W_{id} = 790 \text{ ib}$ Must be > $W_{id} = 462 \text{ ib}$ Rated tangential load: $W_{id} = 462 \text{ ib}$	Dedendum:	= q	0.116 in	Centrifugally cast: C _s =		1143 1000
reter: $D_{RW} = 1.019 \text{ in}$ right: $F_{Wnom} = 1.789 \text{ in}$ Ratio correction factor: $C_m = \#NUM1$	Worm outside diameter:	D ow	1.450 in	Enter: Materials factor: C, =	1000	
ngth: $F_{wnom} = 1.789$ in Patio correction factor: $C_m = \#NUM!$ 0.814 0.885 neter: $D_{lo} = 4.200$ in Silding velocity: $C_{lo} = 0.735$ in Velocity factor: $C_v = 0.427$ 0.439 0.642 vidth: $C_l = 0.750$ in Sated tangential load: $C_l = 0.427$ Rated tangential load: $C_l = 0.427$ number of the prosphor Bronze in gear OK for Phosphor Bronze 3. Equation for C_m produces invalid result for large gear ratio and the produces invalid result for large	Worm root diameter:	D RW II	1.019 in	Gear Ratio: mg =	20 to 76	
width: $F_{eG} = 4.200 \text{ in}$ Sliding velocity: $< 700 > 3000 > 3000$ Velocity factor: $C_v = 0.427 = 0.439 = 0.642$ Width: $F_e = 0.750 \text{ in}$ (Used given face width) Rated tangental load: $W_{RR} = 790 \text{ lb}$ Must be > $W_{LR} = 462 \text{ lb}$ In gear OK for Phosphor Bronze 3. Equation for C_m produces invalid result for large gear ratio a	Nominal worm face length:	F Whom =	1.789 in	Ratio correction factor: C _m =	0.814	0.885
width: $F_{eG} = 0.735$ in Sliding velocity: <700 700-3000 >3000 vidth: $0.67^*D_W = 0.8375$ in Velocity factor: $C_V = 0.427$ 0.439 0.642 vidth: $F_e = 0.750$ in Sated tangential load: $W_{Re} = 0.427$ Rated tangential load: $W_{Re} = 0.427$ Must be > $W_t = 462$ lb In gear OK for Phosphor Bronze 3. Equation for C_m produces invalid result for large gear ratio a	Gear throat diameter:	D to	4.200 in	Enter: Cm =	0.814	
vidth: $0.67^*D_W = 0.8375$ in vidth: $F_\theta = 0.750$ in (Used given face width)	Nominal gear face width:	F ₆₆ "	0.735 in	Sliding velocity:		
vidth: F _e = 0.750 in (Used given face width) In gear OK for Phosphor Bronze	Max effective gear face width:	0.67	0.8375 in	Velocity factor: C _v =	0.439	0.642
(Used given face width) in gear OK for Phosphor Bronze	Effective gear face width:		0.750 in	Enter: C, =	0.427	
n gear OK for Phosphor Bronze		(Used given	face width)	Rated tangential load: W _{IR} = Must be > W, =	790 lb 462 lb	
	Notes: 1. Bending stress on gea	ir OK for Phos	phor Bronze		1	
	2. Using $F = F_0 = 0.75$ in.			3. Equation for C _m produces invali	id result for large gea	r ratio as VR = 40

Problems 10-19 and 10-20

COMPARISON OF THREE PROPOSED DESIGNS See details on following three spreadsheets

Given data:

Diametral pitch, $P_d = \frac{1}{2}$

Velocity ratio, VR = 20 Output speed (Gear) = 90 rpm

See comment

Worm pitch diameter, $D_W = 1.000 \text{ in}$

Gear face width, F = 0.500 in

See comment

Normal pressure angle, $\phi_n = 14.5$ degrees

Assumed gear is made from chilled cast phosphor bronze Allowable bending stress = 24.000 psi

Results:		DESIGN		
	Α	В	С	
Number of threeds in worm	1 1			
Output torque (lb-in), $T_o =$	202	484	878	•
Output power (hp), Po =	0.289	0.691	1.254	
Gear bending stress (psi)	19190	23963	23987	Limits in Bold
Allowable bending stress (psi)	24000	24000	24000	
Rated load for surface durability (lb)	242	418	714	Limits in Bold
Gear transmitted load (lb)	242	290	263	
Efficiency (%) [Problem 20]	72.9	84.1	90.8	
Power input (hp)	0.396	0.822	1.381	
Lead angle (degrees)	4.76	9.46	18.4	
Gear pitch diameter (in)	1.667	3.333	6.667	
Center distance (in)	1.333	2.167	3.833	

Comments on results:

The given face width is small. Could use F > 0.601 in to maximize effective face width.

Worm diameter is too large for Design A. See Equations 10-46 and 10-47

Worm diameter is too small for Design C. See Equations 10-46 and 10-47

Design A is limited by surface durability

Designs B and C are limited by bending stress in gear teeth.

As number of threads in worm increases:

Lead angle increases

Efficiency increases

Torque and power capacity increase

BUT: Gear size and center distance increase

Fight line speed - Gear. 39.27 thmin	## Pitch line speed - Gear: 39.27 ffmin	Wormgearing - Design	Problem	Problem 10-19s and 20s		Additional Computed Results:
Friedon force, Main	First					
T _c = 202 then Coefficient of friction: 0.030 if v _s > 10 thmin Redial: 242 28 Radial: 28 242 Radial: 28 242 Avail: 28 242 Redial: 28 242 Avail: 28 242 First on pression of the control from gear: 0.289 hp Power output from gear: 0.289 hp Part of the control from gear: 0.289 hp Power laptic. 0.389 hp Part of the control from gear: 0.289 hp Power laptic. 0.289 hp Part of the control from gear: 0.289 hp Power laptic. 0.289 hp Power laptic. 0.281 hp Power laptic. 0.281 hp Dw = 1.880 in Power laptic. 0.261 in Dw = 1.880 in Power laptic. 0.261 in Dw = 1.880 in Power laptic. 0.261 in Dw = 1.890 in Power laptic. 0.261 in Dw = 1.600 in Surface Durability: [Hardened steel worm; bronze gear] Power laptic. 0.261 in Dw = 1.167 in Surface Durability: [Har	Forces: (Ib) Gear Worm Forces: (Ib) Gear Worm Forces: (Ib) Gear Worm Friction force, W = 12 Friction force, W = 13 Friction	Input Data	æ:			
Na 50 Forces: (lb) Gear Worm Na 12 28 Friction force, W _f = 15 lb Na 20 Power output from gear: 0.289 hp Avail: 28 242 Na 20 Power output from gear: 0.289 hp Normal pressure ang Stresses: 0.107 hp Normal pressure ang Stresses: 0.107 hp Na 1.800 rpm Stresses: 0.20 str	Fare 12	Desired output torque:		202 lb-in		
Friction force, Wr = 15 tb	Friethon force, W ₁ = 7.5 lb	Output speed	# 9B	90 mm		Gear
Friction force, W ₁ = 7.5 lb	Friction force, W _f = 7.5 lb	Velocity Rado		20		242
No. = 20	N _c = 20 Power: Power: Power: Axial: 28 242 N _c = 20 Power: Power: 1,5 lb Power: N _c = 45 Megress 20 Power input: 0.107 hp Power input: 72.9 % Normal pressure ang tractor: 0.100 0.125 0.150 VR = 20 Strasses: Power input: 72.9 % Normal pressure ang tractor: V _W = 1.33 in D _W = 1.28 LoW Bending Strass on Gear: 72.9 % Normal pressure ang tractor: V _W = 1.28 LoW Bending Strass on Gear: 0.100 0.125 0.150 0.100 0.125 0.150 D _W = 1.28 LoW Bending Strass on Gear: 0.100 0.100 0.125 0.150 D _W = 1.28 LoW Bending Strass on Gear: 0.100 0.100 0.125 0.150 D _W = 1.28 LoW Bending Strass on Gear: 0.261 in 0.100 0.125 0.150 D _W = 1.28 LoW Bending Strass on Gear: 0.100 0.125 0.150 0.100 0.125 0.150 D _W = 1.28 LoW Bending Strass on Gear: 0.261 in 0.100 0.125 0.150 D _W = 0.282 in Aurisce Durability: [Hardened steel worm: bronze gear face on Gear face on Gear face o	Design Decis	8			8
No. = 20 Power output from gear: 0.289 hp Randling Stress on Gear: 1.898 hp Randling stress on Gear: 1.9180 pst [Using effective gear face v Allowable stresses-Bronze: Manganese = 17000 pst; Phosphor = 24000 pst Roughling: [Hardened steel worm; bronze gear] L = 0.282 in Surface Durability: [Hardened steel worm; bronze gear] L = 0.282 in Surface Durability: [Hardened steel worm; bronze gear] L = 0.282 in Surface Durability: [Hardened steel worm; bronze gear] Type of bronze: 106 = 1000 Chill cast or forged: C _s = 1084 1000 Chill cast or forged: C _s = 1084 1000 Chill cast or forged: C _s = 1084 1000 Chill cast or forged: C _s = 1084 1000 Sand cast: C _s = 1084 1000 Centrifugally cast: C _s = 1084 1000 Sand cast: C _s = 1084 1000 Centrifugally cast: C _s = 1084 1000 Sand cast: C _s = 1084 1000 Centrifugally cast: C _s = 1084 1000 Solding velocit: C _s = 1083 in Centrifugally cast: C _s = 1084 1000 Solding velocit: C _s = 1084 1000 So	No.= 20 Power: Power: 0.289 hp Ac = 20 Power output from gear: 0.289 hp Ac = 1800 rpm Power loss - friction: 0.107 hp Power loss - friction: 0.107 hp Power lingut: 72.8 % Normal pressure ang Stress on Gear: 14.5 20 25 D _V = 1.6807 in Entist Levis four factor: K _V = 0.861 in Lewis form factor: Marganese = 17000 ps; Phosphor = 24000 ps D _V = 1.28 LOW Bending stress on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: D _V = 1.28 LOW Bending stress on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1930 ps! [Using effective gear face v on gear: 1	Dismetral plich:		-75		82
No = 20 Power output from gear: 0.289 hp As = 14.5 begrees Power loss - friction: 0.107 hp Pall Inputs: Power loss - friction: 0.107 hp NA = 1800 rpm Efficiency: 72.9 % Normal pressure ang stresses: VR = 20 Bending Stress on Geal: 14.5 20 25 D _w = 1.6867 in Normal pressure ang stresses: 1.45 20 25 D _w = 1.600 in Normal pressure ang stresses: 1.45 20 25 D _w = 1.200 in Normal pressure ang stresses: 1.45 20 25 D _w = 1.200 in Normal pressure ang stresses: 1.45 20 25 D _w = 1.200 in Normal pressure ang stresses: 1.45 20 25 D _w = 1.200 in Normal stresses: 1.45 20 25 D _w = 1.200 in Normal stresses: 1.45 20 25 D _w = 1.200 in Surface Durability: Harden stresses: 1.200 in 1.211 1.211 D _w =	No = 20 Power output from gear: 0.289 hp As all press Power output from gear: 0.107 hp Paral Inputs: Power output from gear: 0.107 hp Paral Inputs: Prower output from gear: 0.107 hp Paral Inputs: Prower output from gear: 72.9 % Normal pressure ang gear: Now = 1800 in Diversity of provided pitch; 72.9 % Normal pressure ang gear: D _w = 1.28 in Normal pressure ang gear: 72.9 % Normal pressure ang gear: D _w = 1.28 in Diversity from factor; 0.261 in Diversity from factor; D _w = 1.28 in Surface Durability; [Hardened steel worm; bronze gear] Normal pressure ang gear face violating and provided stresses-Bronze; Mangenese = 17000 ps; Phosphor = 24000 ps; Phosphor	No. of warm threads:	Alge	1		$W_f = 7.5$
A _i = 145 blegwes 20 Power loughut from gear: 0.289 hp Power loss - friction: 0.107 hp Power loss - friction: 0.107 hp Normal pressure ang VR = 20 Stresses: 72.9 % Normal pressure ang 14.5 20 25 D _c = 1.86687 in D _c = 1.333 in D _c = 1.28 Domain factor: C _c = 0.368 in D _c = 24.000 ps/ Phosphor = 24.000 ps/ P	Power output from gear: 0.289 hp	Required No. of gear teeth:		8		Power:
$n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ Power linguit: 0.107 hp nad Inputs: Power linguit: 0.396 hp Normal pressure ang $n_{\rm c}$ 1800 rpm Stresses: 72.9 % Normal pressure ang $N_{\rm c}$ 1800 rpm Stresses: $n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $N_{\rm c}$ 1800 rpm Stresses: $n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $N_{\rm c}$ 1800 rpm Stresses: $n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $N_{\rm c}$ 1.333 in Dynamic factor: $K_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $N_{\rm c}$ 1.589 in Bending stress on gear: $n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $n_{\rm c}$ $N_{\rm c}$ 1.620 in Surface Durability: [Hardened steel worm; bronze gear] $n_{\rm c}$ <t< th=""><th>$n_{\rm m}$ ### 14.5 blegves Power loss - friction: 0.107 hp $n_{\rm m}$ 1800 rpm Efficiency: 72.9 % Normal pressure ang actors: $N_{\rm m}$ 1800 rpm Efficiency: 72.9 % Normal pressure ang actors: $N_{\rm m}$ 1800 rpm Ending Stress on Gear: 18.5 20 25 20 25 $N_{\rm m}$ 1.080 in Normal circular pitch: 0.100 0.125 0.150 $N_{\rm m}$ 1.281 in Dynamic factor: $N_{\rm m}$ 0.261 in 0.100 0.125 0.150 $N_{\rm m}$ 1.281 in Dynamic factor: $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 0.262 in Dynamic factor: $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 0.262 in Surface Durability; [Hardened steel worm; bronze gear] $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 0.262 in Sand cast: $C_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 1.167 in Sand cast: $C_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 1.054 in Rated (ange</th><th>Speatly No. of gear health</th><th></th><th>20</th><th>-</th><th></th></t<>	$n_{\rm m}$ ### 14.5 blegves Power loss - friction: 0.107 hp $n_{\rm m}$ 1800 rpm Efficiency: 72.9 % Normal pressure ang actors: $N_{\rm m}$ 1800 rpm Efficiency: 72.9 % Normal pressure ang actors: $N_{\rm m}$ 1800 rpm Ending Stress on Gear: 18.5 20 25 20 25 $N_{\rm m}$ 1.080 in Normal circular pitch: 0.100 0.125 0.150 $N_{\rm m}$ 1.281 in Dynamic factor: $N_{\rm m}$ 0.261 in 0.100 0.125 0.150 $N_{\rm m}$ 1.281 in Dynamic factor: $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 0.262 in Dynamic factor: $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 0.262 in Surface Durability; [Hardened steel worm; bronze gear] $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 0.262 in Sand cast: $C_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 1.167 in Sand cast: $C_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ $N_{\rm m}$ 1.054 in Rated (ange	Speatly No. of gear health		20	-	
Power inputs: Power input: 0.396 hp $N_{\rm F}$ = 1800 rpm Stresses: 72.9 % Normal pressure ang VR = 20 $D_{\rm G}$ = 1.66687 in $S_{\rm F}$ = 1.000 rpm Stresses: Lewis form factor. $D_{\rm G}$ = 1.66687 in $S_{\rm F}$ = 1.600 in $S_{\rm F}$ = 1.600 in $S_{\rm F}$ = 1.66687 in $S_{\rm F}$ = 1.600 in $S_{\rm F}$ = 1.66687 in $S_{\rm F}$ = 1.600 in $S_{\rm F}$ = 1.66687 in $S_{\rm F}$ = 1.600 in $S_{\rm F}$ = 1.6	Normal pressure ang Stresses: Power Input: 72.9 % Normal pressure ang VR = 20 25 35 14.5 20 25 25	Normal preserve engler	= 40	14.5 degrees		
$VR = 20$ pm $\frac{Efficiency:}{Stresses:}$ 72.9% Normal pressure ang $VR = 20$ $\frac{Stresses:}{14.5 20}$ $\frac{14.5}{20}$ $\frac{25}{20}$ $\frac{25}{20}$ $\frac{14.5}{20}$ $\frac{14.5}{20}$ $\frac{25}{20}$ $\frac{14.5}{20}$ $\frac{14.5}$	VR = 20 $Stresses:$ $Stress$	Computed Results and A	dditional Inpu	١		
VR = 20 Stresses: 14.5 20 25 D_{o} = 1.66667 in Bending Stress on Gear: Lewis form factor, V_{o} = 0.100 Lewis fo	$V_{\rm R}$ = 20 Stresses: 14.5 20 25 $D_{\rm o}$ = 1.66687 in Bending Stress on Gear: Lowis form factor. Lowis formal factor. Lowis form factor. Lowis formal factor. Lowis factor.	Actual input speed:	n w n	1800 rpm		72.9 %
D_{o} = 1.68687 in Bending Stress on Gear: Lewis form factor, Y = 0.100 Lewis form factor, Y = 0.100 Lewis form factor, Y_{o} = 0.100 Lewis factor, Y_{o} = 0.100 <t< th=""><th>$D_{o}=1.66867$ in Bending Stress on Gear: $C=1.333$ in Called Normal circular pitch: 0.261 in Dynamic factor: $K_{v}=0.968$ $C=1.333$ in Dynamic factor: $K_{v}=0.968$ $C=0.262$ in Dynamic factor: $K_{v}=0.968$ $C=0.262$ in Dynamic factor: $C_{v}=0.968$ $C=0.068$ in Cantrifugally cast: $C_{v}=0.968$ $C=0.069$ in Cantrifugally cast: C_{v</th><th>Actual velocity ratio:</th><th>VR=</th><th>8</th><th></th><th>14.5 20 25</th></t<>	$D_{o}=1.66867$ in Bending Stress on Gear: $C=1.333$ in Called Normal circular pitch: 0.261 in Dynamic factor: $K_{v}=0.968$ $C=1.333$ in Dynamic factor: $K_{v}=0.968$ $C=0.262$ in Dynamic factor: $K_{v}=0.968$ $C=0.262$ in Dynamic factor: $C_{v}=0.968$ $C=0.068$ in Cantrifugally cast: $C_{v}=0.968$ $C=0.069$ in Cantrifugally cast: C_{v	Actual velocity ratio:	VR=	8		14.5 20 25
Canal Enter Lewis form factor, Y = 0.100 0.100 0.125 0.150 Ca = 1.333 in Normal circular pitch: 0.261 in 0.261 in Dw = 1.29 LOW Bending stress on gear: 19190 psi [Using effective gear face v psi = 0.262 in Surface Durability: [Hardened steel worm; bronze gear] Alliqueble stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi psi phosphor = 24000 psi psi phosphor = 24000 psi	$C = 1.333 \text{ in} $ $D_W = 1.29 $ $D_D = 0.262 \text{ in} $ $D_D = 0.083 \text{ in} $ $D_D = 0.080 \text{ in} $ $D_D = 0.807 \text{ in} $ $D_$	Gear pitch diameter:		1.66667 in		Lewis form factor, v
$C = 1.333 \text{ in}$ $D_{w} = 1.29 \qquad LOW$ $D_{y} = 0.262 \text{ in}$ $C_{y} = 0.083 \text{ in}$ $C_{y} = 0.083 \text{ in}$ $C_{y} = 0.080 \text{ in}$ $C_{y} = 0.080 \text{ in}$ $C_{y} = 0.807 \text{ in}$ $C_{y} = 0.601 \text{ in}$ $C_{y} = 0.602 in$	C = 1.333 in Normal circular pitch: 0.261 in Dynamic factor: $K_v = 0.968$ Labe >1.69	Specify worm damater.		1,000 in	Choose	0.100 0.125 0.150
$D_{yy} = 1.29$ LOW Dynamic factor: $K_y = 0.968$ Subsection of a contract of the contract of	Dynamic factor: $K_v = 0.968$ Surface Durability: $K_v = 0.968$ Bending stress on gear: 19190 psi [Using effective gear face v $P_G = 0.262$ in $Allowable$ stresses-Bronze: $Manganese = 17000$ psi; $Phosphor = 24000$ ps $v_{WW} = 0.262$ in $Surface$ Durability: [Hardened steel worm; bronze gear] L = 0.262 in $Surface$ Durability: [Hardened steel worm; bronze gear] L = 0.262 in $Surface$ Durability: [Hardened steel worm; bronze gear] L = 0.262 in $Surface$ Durability: [Hardened steel worm; bronze gear] Type of bronze: $D_G = -0.25$ in $v_G = 0.08$ in $v_G = 0.$	Actual center distance:	=0	1.333 in		0.261 in
Surface Durability: [Hardened steel worm; bronze gear] $P_G = 0.262$ in Allowable stresses-Bronze: Manganese = 17000 pst; Phosphor = 24000 ps. $N_{SW} = 0.262$ in Surface Durability: [Hardened steel worm; bronze gear] $L = 0.262$ in Surface Durability: [Hardened steel worm; bronze gear] $L = 0.262$ in Surface Durability: [Hardened steel worm; bronze gear] $N_S = 4.764$ deg Sand cast: $C_S = 1084$ 1000 Chill cast or forged: $C_S = 1084$ 1000 Chill cast or forged: $C_S = 1084$ 1000 Chill cast or forged: $C_S = 1084$ 1000 Ray = 0.096 in Gaer Ratio: $M_S = 6$ to 20 20 to 76 > 76 Actual $M_S = 1084$ 1017 Ratio correction factor: $C_M = 0.820$ 0.819 1.017 Siding velocity: $C_M = 0.392$ 0.395 0.557 F _S = 0.500 in Wasted tangential load: $W_M = 242$ lb Must be > $W_S = 242$ lb	the >1.6 and <3.0 Bending stress on gear: 19190 psl [Using effective gear face v $P_G = 0.262$ in $Allowable$ stresses-Bronze: Manganese = 17000 psl; Phosphor = 24000 psl, $P_{C} = 0.262$ in $Surface$ Durability: [Hardened steel worm; bronze gear] L = 0.262 in $Surface$ Durability: [Hardened steel worm; bronze gear] L = 0.262 in $Surface$ Durability: [Hardened steel worm; bronze gear] L = 0.262 in $Surface$ Durability: [Hardened steel worm; bronze gear] Type of bronze: $P_C = 1.084 + 1000$ Sand cast: $P_C = 1.084 + 1000$ Chill cast or forged: $P_C = 1.084 + 1000$ Contritugally cast: $P_C = 1.084 + 1000$ Contritugally cast: $P_C = 1.084 + 1000$ Contritugally cast: $P_C = 1.084 + 1000$ Ratio correction factor: $P_C = 1.084 + 1000$ Salding velocity: $P_C = 1.084 + 1000$ Salding veloci		CO.875/DW = 1		Š	
$p_G = 0.262$ in Surface Durability; [Hardened steel worm; bronze gear] $L = 0.262$ in Surface Durability; [Hardened steel worm; bronze gear] $L = 0.262$ in Surface Durability; [Hardened steel worm; bronze gear] $\lambda = 4.764$ deg $a = 0.083$ in Chill cast or forged: $C_s = 1084$ 1000 $b = 0.096$ in Centrifugally cast: $C_s = 1084$ 1000 $b = 0.096$ in Gear Ratio: $m_G = 6$ to 20 20 to 76 >76 Actual $m_G = 7$ 1211 $c_{W} = 1.167$ in Gear Ratio: $m_G = 6$ to 20 20 to 76 >76 Actual $m_G = 7$ 1833 in Earler $C_m = 0.820$ 0.819 1.017 $c_{G} = 0.601$ in Velocity factor: $C_w = 0.392$ 0.395 0.557 $c_{G} = 0.500$ in Ratio correction factor: $C_w = 0.392$ 0.395 0.557 $c_{G} = 0.500$ in Must be > $W_G = 242$ ib 0.601	$P_0 = 0.262$ in Surface Durability: [Hardened stee] worm; bronze gear] $L = 0.262$ in Surface Durability: [Hardened stee] worm; bronze gear] $L = 0.262$ in Surface Durability: [Hardened stee] worm; bronze gear] $L = 0.262$ in Surface Durability: [Hardened stee] worm; bronze gear] $L = 0.262$ in Surface Durability: [Hardened stee] worm; bronze gear] $A = 4.764$ deg Sand cast: $C_s = 1084 + 1000$ Chill cast or forged: $C_s = 1084 + 1000$ Centrifugally cast: $C_s = 1084 + 1000$		Should be >1.6	3 and <3.0		
$\lambda_{w} = 0.262 \text{ in}$ Surface Durability: [Hardened steel worm; bronze gear] $\lambda = 4.764 \text{ deg}$ Sand cast: $C_{s} = 1084 - 1000$ Sand cast: $C_{s} = 1084 - 1000$ Chill cast or forged: $C_{s} = 1084 - 1000$ Sand cast: $C_{s} = 1000$ Sand sand $C_{s} = 1000$ Sand sand sand sand sand correction factor: $C_{s} = 0.800$ Sand sand sand sand sand sand sand sand s	$\lambda_{ab}=0.262$ in Surface Durability; [Hardened stee] worm; bronze gear] $\lambda=4.764$ deg Sand cast: $C_g=1084$ 1000 $a=0.083$ in Chill cast or forged: $C_g=1084$ 1000 $b=0.096$ in Centrifugally cast: $C_g=1084$ 1000 Centrifugally cast: $C_g=1084$ 1000 Centrifugally cast: $C_g=1084$ 1000 Centrifugally cast: $C_g=1084$ 1000 Ratio correction factor: $C_g=1086$ 1017 Rated tangential load: $W_{gg}=1089$ 0.395 0.557 Fig. 0.601 Adjusted output torque until limits reached on either bending or surface durability controls this desion	Circular pitch of gear:	= 9d	0.262 in		Allowable stresses-Bronze: Manganese = 17000 psl; Phosphor = 24000 psi
L = 0.282 in λ = 4.764 deg	$L = 0.282$ in Type of bronze:/D $_{G} = ->$ >2.5 in <2.5 in >8 in >2.5 in $\lambda = 4.764$ deg Sand cast: $C_s = 1084 + 1000$ Sand cast: $C_s = 1084 + 1000$ 1311 1000 $a = 0.083$ in Chill cast or forged: $C_s = 1084 + 1000$ 1311 1000 $a = 0.086$ in Centrifugally cast: $C_s = 1084 + 1000$ 1311 1000 $a = 0.087$ in Gear Ratio: $m_G = 6$ to 20 20 or 76 >76 Actual $m_G = 1084 + 1000$ $a = 0.807$ in Ratio correction factor: $C_m = 0.820 + 10076 + 10077$ Ratio correction factor: $C_m = 0.820 + 10076 + 10077$ Actual $m_G = 10.807 + 10077 + 1$	Axial pitch of worm:	$= M^{x} d$	0.262 in	_	Surface Durability: [Hardened steel worm; bronze gear]
$\lambda =$ 4.764 deg Sand cast: $C_s =$ 1084 1000 $a =$ 0.083 in Chill cast or forged: $C_s =$ 1311 1000 $b =$ 0.086 in Centrifugally cast: $C_s =$ 1211 $c_w =$ 1.167 in Gear Ratio: $m_0 =$ 6 to 20 20 to 76 >76 Actual $m_0 =$ $r_w =$ 0.807 in Ratio correction factor: $C_m =$ 0.820 0.819 1.017 $b_0 =$ 1.833 in Enter $C_m =$ 0.819 1.017 $b_w =$ 0.601 in Velocity factor: $C_w =$ 0.392 0.395 0.557 $F_0 =$ 0.500 in Enter $C_w =$ 0.392 0.395 0.557 $F_0 =$ 0.501 in Must be > W. = 242 ib	$\lambda = 4.764 {\rm deg}$ Sand cast: $C_s = 1084 + 1000$ $a = 0.083 {\rm in}$ Chill cast or forged: $C_s = 1084 + 1000$ $b = 0.086 {\rm in}$ Centrifugally cast: $C_s = 1000 {\rm contribugally cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm contribugally controls this cast: } C_s = 1000 {\rm	Lead of the worm:	= 7	0.262 in		>25 in
$a = 0.083$ in Chill cast or forged: $C_s =$ 1311 1000 $b = 0.096$ in Centrifugally cast: $C_s =$ 4600 $c_{WW} = 0.807$ in Ester: Materials factor: $C_s =$ 4600 $R_W = 0.807$ in Ratio correction factor: $C_m = 0.820$ 0.819 1.017 $b_{10} = 1.833$ in Eatier: $C_{FW} = 0.800$ $C_{FW} = 0.800$ $c_s = 0.601$ in Velocity factor: $C_w = 0.392$ 0.395 0.557 $F_s = 0.500$ in Rated tangential load: $W_{FW} = 2.42$ ib Aust be > W. = 2.42 ib	$a = 0.083$ in Chill cast or forged: $C_s = 0.096$ in $a = 0.096$ in Centrifugally cast: $C_s = 0.096$ in $a = 0.096$ in <td>Lead angle:</td> <th># *</th> <td>4.764 deg</td> <th></th> <td>1084 1000</td>	Lead angle:	# *	4.764 deg		1084 1000
$b = 0.096 \text{ in} \qquad \text{Centrifugally cast: } C_s = 1.167 \text{ in} \qquad \text{Enter: Materials factor } C_s = 1.000 : \\ Rw = 0.807 \text{ in} \qquad \text{Gear Ratio: } m_0 = 6 \text{ to } 20 \text{ to } 76 \text{ Actual } m_0 = 1.054 \text{ in} \\ Ratio correction factor: } C_m = 0.820 0.819 1.017 \\ Ratio correction factor: C_m = 0.820 0.819 1.017 \\ Ratio correction factor: C_m = 0.820 0.819 1.017 \\ Ratio correction factor: C_m = 0.820 0.819 1.017 \\ Ratio correction factor: C_m = 0.829 0.395 0.557 \\ R_0 = 0.500 \text{ in} \qquad \text{Velocity factor: } C_v = 0.392 0.395 0.557 \\ Rated tangential load: W_m = 2.42 \text{ ib} \\ 0.601 \qquad \text{Must be > $W_m = 2.42 \text{ ib} \\ 0.601 \qquad \text{Must be > $W_m = 2.42 \text{ ib} \\ 0.601 \qquad \text{Ratio or } R_m = 0.242 \text{ ib} \\ 0.801 \qquad \text{Ratio or } R_m = 0.242 \text{ ib} \\ 0.801 \qquad \text{Ratio or } R_m = 0.242 \text{ ib} \\ 0.801 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.802 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad \text{Ratio or } R_m = 0.801 \text{ ib} \\ 0.803 \qquad Rati$	$b = 0.096 \text{ in}$ $Centrifugally cast: C_s = 10000:$ $Rw = 0.807 \text{ in}$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 6 to 20 20 to 76 > 76 \text{ Actual } m_G = 7000:$ $Gear Ratio: m_G = 7000:$ Ge	Addendum:	H 95	0.083 in		1311
$a_{W}=1.167$ in Gear Ratio: $C_{s}=1000$: $C_{s}=10000$: $C_{s}=1000$: $C_{s}=10000$: $C_{s}=1000$: $C_{s}=10000$: $C_{s}=1000$: $C_{s}=1000$: $C_{s}=1000$: $C_{s}=1000$: $C_{s}=10000$: $C_{s}=10000$: $C_{s}=10000$: $C_{s}=10000$:	ow = 1.167 in RW = 0.807 in log = 1.833 in log = 0.670 in Fo = 0.500 in given face width]	Dedendum:	= q	0.096 in	of action.	1211
$R_W = 0.807 \text{ in}$ Gear Ratio: $m_0 = 6 \text{ to } 20 \text{ 20 to } 76 \text{ >} 76 $ $R_{00} = 1.833 \text{ in}$ Ratio correction factor: $C_{m} = 0.820 0.819 \text{ 1.017}$ $R_{00} = 1.833 \text{ in}$ Ratio correction factor: $C_{m} = 0.820 0.819 \text{ 1.017}$ $R_{00} = 0.601 \text{ in}$ Sliding velocity: $R_{00} = 0.392 0.395 \text{ 0.557}$ $R_{00} = 0.500 \text{ in}$ Rated tangential load: $W_{00} = 0.392 0.395 \text{ 0.557}$ $R_{00} = 0.500 \text{ in}$ Rated tangential load: $W_{00} = 0.392 \text{ lb}$	RW = 0.807 in los = 1.054 in los = 1.833 in los = 0.670 in F _e = 0.500 in given face width] > 0.601	Worm outside diameter:	Dow =	1.167 in	(SERVICE)	
$P_{16} = 1.054 \text{ in}$ Ratio correction factor: $C_m = 0.820 - 0.819 + 1.017$ $P_{16} = 1.833 \text{ in}$ Eatisf $C_{m,m} = 0.820 - 0.819 + 1.017$ $P_{16} = 0.601 \text{ in}$ Sliding velocity: $<700 - 700-3000 > 3000$ $P_{16} = 0.670 \text{ in}$ Velocity factor: $C_{16} = 0.392 - 0.395 - 0.395$ $P_{16} = 0.500 \text{ in}$ Rated tangential load: $W_{16} = 242 \text{ ib}$ $W_{16} = 242 \text{ ib}$	hom = 1.054 in los = 1.833 in los = 0.601 in F _o = 0.500 in given face width] > 0.601	Worm root diameter:	DRW =	0.807 in		6 to 20 20 to 76 >76
$E_{cd} = 1.833 \text{ in}$ $E_{cd} = 0.601 \text{ in}$ $Silding velocity: <700 700-3000 >3000$ $V_{w} = 0.670 \text{ in}$ $V_{cd} = 0.500 \text{ in}$	l _{6g} = 1.833 in l _{6g} = 0.601 in J _W = 0.670 in F _e = 0.500 in given face width]	Nominal worm face length:	F Whom =	1.054 in		0.820 0.819 1.017
$F_{eg} = 0.601 \text{ in}$ Sliding velocity: <700 700-3000 >3000 Sliding velocity: <700 700-3000 >3000 Sliding velocity: <700 700-3000 >3000 Sliding velocity: $F_{eg} = 0.392$ 0.395 0.557 $F_{eg} = 0.500 \text{ in}$ Enter $F_{eg} = 0.392$ Sliding set angential load: $W_{eg} = 2.42 \text{ lb}$ Solution Set angential load: $W_{eg} = 2.42 \text{ lb}$ Solution Set angential load: $W_{eg} = 2.42 \text{ lb}$ Solution Set angential load: $W_{eg} = 2.42 \text{ lb}$ Solution Set angential load: $W_{eg} = 2.42 \text{ lb}$ Solution Set angential load: $W_{eg} = 2.42 \text{ lb}$ Solution Set angential set angen	5.69 = 0.601 in 5.w = 0.670 in F _e = 0.500 in given face width] > 0.601	Gear throat diameter:	D to =	1.833 in	1014353	
$D_W = 0.670$ in Velocity factor: $C_V = 0.392 - 0.395 - 0.557$ $F_o = 0.500$ in Enter $C_V = 0.392$ given face width] Rated tangential load: $W_{\rm eff} = 242$ ib Must be > $W_{\rm eff} = 242$ ib	F _e = 0.670 in F _e = 0.500 in given face width] > 0.601	Nominal gear face width:	F 99 =	0.601 in		<700 700-3000 >3000
$F_o = 0.500 \text{ in}$ Rated tangential load: $W_{BR} = 0.601$ Must be > $W_{BR} = 0.001$	F _e = 0.500 in given face width] > 0.601		$0.67^*D_W =$	0.670 in	-	0,392 0.395 0,557
given face width] Rated tangential load: W _{str} = 0.601 Must be > W _{str} =	given face width] > 0.601	Effective gear face width:	п. П.	0.500 in	BROKE	
		iven face width is small; Could	[Used given fa	o.601		
TO THE RESERVE THE PARTY OF THE					. 0,	Adjusted buffer, which will million teached on our or remise or author authors. Surface the rehight controls this design

Wormgearing - Design Problem: 10-19b and 30b	Additional Computed Results: Pitch line speed - Gear: 78.54 ft/min
Input Data:	
Desired output tarque: To = 484 lb-in	n: 0
Hg #	Forces: (Ib) Gear Worm
Velocity Ratio: VP = 20	. Tangential: 290 58
Jone:	
Diametral plans $P_d = 12$	Axial: 58 290
No. of worm threads: N _W = 2	Friction force, W, = 9.1 lb
Required No. of gear teeth: $N_G = 40$	Power:
Specify No. of gear teeth. No. m. 40	Power output from gear: 0.691 hp
Normal pressure argie: 4 n = 14.5 degrees	Power loss - friction: 0.131 hp
Computed Results and Additional Inputs:	Power Input: 0.822 hp
Actual input speed: nw = 1800 rpm	
Actual velocity ratio: VR = 20	Strasses: 14.5 20 25 30
Gear pitch diameter: $D_G = 3.33333$ in	Bending Stress on Gear:
Specify worm dameter: D _W = 1,000 lb	Enter Lewis form factor y = 0.100> 0.100 0.125 0.150 0.175
Actual center distance: $C = 2.167$ in	
$C^{0.875}/D_W = 1.97$	
Should be >1.6 and <3.0	Bending stress on gear: 23963 psi [Using effective gear face width]
Circular pitch of gear: $p_{\theta} = 0.262$ in	9
Axial pitch of worm: $\rho_{xw} = 0.262$ in	Surface Durability: [Hardened steel worm; bronze gear]
Lead of the worm: L = 0.524 in	Type of bronze:/Do> >2.5 in <2.5 in >8 in <8 in <25 in <25 in
Lead angle: $\lambda = 9.462$ deg	Sand cast: C _s = 940 1000
Addendum: 4 = 0.083 in	Chill cast or forged: C _s = 1173 1000
Dedendum: $b = 0.096$ in	Centrifugally cast: C ₃ =
Worm outside diameter: $D_{ow} = 1.167$ in	Exter: Materials factor: C, = 1000 Chilled Cast - Phosphor bronze
Worm root diameter: $D_{RW} = 0.807$ in	Gear Ratio: m _G = 6 to 20 20 to 76 >76 Actual m _G = 20
Nominal worm face length: Fwnom = 1.491 in	Ratio correction factor: C _m = 0.820 0.819 1.017
Gear throat diameter: $D_{kS} = 3.500 \text{ in}$	Enter Com = Dete
Nominal gear face width: $F_{eg} = 0.601$ in	Sliding velocity: <700 700-3000 >3000 Actual V ₃ = 478
	Velocity factor: C _v = 0.390 0.393 0.553
Effective gear face width: $F_{\theta} = 0.500 \text{ in}^2$	Enter C. = 0.380
given fax	- Company of Aug
Given jace width is small; Court use 7 > 0.601 in	Must be > W₁ = 290 lb
	Adjusted output torque until limits reached on either bending or surface durability. Bending stress controls this design.
	מווח של מווח מס מווח מס מווח מספולנו

Wormgearing - Design	Problem	Problem: (0-450 and 90c	126	
			Prich line speed - Gear: 157.08 ff/min	
Input Data:			Sliding velocity $v_s \approx 497$ ft/min	
Desired output tarque:	1,1	876 Ib-in	Coefficient of friction: 0.029 If v _s > 10 ft/min	
Output speed	= 00 = 1	md: 26	Forces: (lb) Gear Worm	
Velocity Ratio	$V_{ij} = V_{ij}$	20	Tangential: 263 97	
Design Decisio	ions:		Radial: 73 73	
Dismetral plots	= Pet=	12	Axial: 97 263	
No. of worm threads:	= N _{tr} =		Friction force, W _f = 8.4 lb	
Required No. of gear teeth:	:. N _G =	8	Power:	
Specify No. of year touth:		86	Power output from gear: 1.254 hp	
Normal pressure angle	# # # D	74.5 dagrees	Power loss - friction: 0.127 hp	-
Computed Results and Additional Inputs	Additional Inp	20	Power input: 1.381 hp	
Actual input speed:	I W II	1800 rpm	Efficiency: 90.8 % Normal pressure angle, \$\phi_n\$	ıgle, φ _n
Actual velocity ratio:	: VR=	8	Stresses: 14.5 20 25	30
Gear pitch diameter:	: De=	6.66667 in	Bending Stress on Gear: Lewis form factor, y	Jr, y
Spacify worm dameter		1.000 h	Enter: Lenins form feator: y = 0.100	0.150 0.175
Actual center distance:	= O	3.833 in	Normal circular pitch: 0.248 in	
	$C^{0.875}/D_W = 3.24$	3.24 HIGH	Dynamic factor: K _v = 0.884	
Use larger worm diameter	Should be >1.6 and <3.0	6 and <3.0	Bending stress on gear: 23987 ps/ [Using effective gear face width]	width]
Circular pitch of gear:	∥ bd :	0.262 in	è	isd
Axial pitch of worm:	$= p_{xW} =$	0.262 in	Surface Durability: [Hardened steel worm; bronze gear]	
Lead of the worm:		1.047 in	Type of bronze:/Dg> >2.5 in <2.5 in >8 in <8 in >25 in	<25 in
Lead angle:	= ~	18.435 deg	Sand cast: C ₃ = 797 1000	
Addendum:	II 65	0.083 in	Chill cast or forged: C _s = 1036 1000	
Dedendum:	= q :	0.096 in	Centrifugally cast: C, = 1103	1000
Worm outside diameter:	: DoW =	1.167 in	Enter: Materials factor: C, = 1000 Chilled Cast - Phosphor bronze	9.
Worm root diameter:	$D_{RW} =$	0.807 in	Gear Ratio: $m_G = 6$ to 20 20 to 76 >76 Actual $m_G = 20$	8
Nominal worm face length:	ď.	2.108 in	Ratio correction factor: C _m = 0.820 0.819 1.017	Ţ
Gear throat diameter:		6.833 in	Enter C,, = 10.819	
Nominal gear face width:		0.601 in	Sliding velocity: <700 700-3000 >3000 Actual v _s = 497	. 497
Max effective gear face width:	$= {}^{M}Q_{*}L_{0}$	0.670 in	Velocity factor: C _v = 0.382 0.384 0.537	48,50
Effective gear face width:	: F ₀ =	0.500 in	Enter: C., = 0.382	
[Used g	[Used given face width]	face width]	Rated tangential load: Wire = 714 lb	
		111111111111111111111111111111111111111	Only the second second limit of the second product of the second	
			Adjusted output torque until limits reached on eitner bending or surface durability. Rending stress controls this design	rability
			I Reserve the common fairning	ł

Wormgearing - Design Pentalent 1827	Additional Computed Results:	d Results:
	Pitch line speed - Gear.	78.54 ft/min
Input Data:	Sliding velocity v _s =	230 ft/min
Costred outpur torque 7.0 = 984 lb-m	Coefficient of friction:	0.041 If v _s > 10 ft/min
Outputepeed ne Burgm	Forces: (lb)	Gear Worm
Vetroit/Ruito VR= 7.5	Tangential:	525 216
Design Decisions:	Radial:	147 147
Dametral pints P. = 4	Axial:	216 525
No ofwern threads: Ny T	Friction force, $W_f =$	24.0 lb
Required No. of gear teeth: $N_G = 30$	Power:	
Specify No of gear/legit. No. = 30	Power output from gear:	1.250 hp
Normal brassure angle 4.5 degrees	Power loss - friction:	0.167 hp
Computed Results and Additional Inputs:	Power input:	1.416 hp
Actual input speed: $n_W = 600$ rpm	Efficiency:	88.2 % Normal pressure angle, ϕ_n
Actual velocity ratio: VR = 7.5	Stresses:	14.5 20 25 30
: D _G =	Bending Stress on Gear:	Lewis form factor, y
Specify worm dameter E.y. = 1.375 in	Enfor Lewis (orm factor y =	0.100> 0.100 0.125 0.150 0.175
Actual center distance: C = 2.563 in	Normal circular pitch:	0.369 in
$C^{\alpha_{875}}/D_W = 1.66$	Dynamic factor: K _v =	0.939
Should be >1.6 and <3.0	Bending stress on gear:	17495 psi [Using effective gear face width]
Circular pitch of gear: $p_G = 0.393$ in	Allowable stresses-Bronze: Mange	Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi
Axial pitch of worm: $\rho_{xw} = 0.393$ in	Surface Durability: [Hardel	Surface Durability: [Hardened steel worm; bronze gear]
Lead of the worm: $L = 1.571$ in	Type of bronze:/D _G >	>2.5 ln <2.5 in >8 in <8 ln >25 in <25 in
Lead angle: $\lambda = 19.983$ deg	Sand cast: C _s =	916 1000
Addendum: a = 0.125 in	Chill cast or forged: C ₃ =	1150 1000
Dedendum: $b = 0.145$ in	Centrifugally cast: C _s =	1148 1000
Worm outside diameter: $D_{ow} = 1.625$ in	Enter, Materials factor: C.a. =	
Worm root diameter: $D_{RW} = 1.086$ in		6 to 20 20 to 76 $>$ 76 Actual $m_G = 7.5$
Nominal worm face length: $F_{wnom} = 1.936$ in	Ratio correction factor: C _m =	0.719 0.794 1.099
Gear throat diameter: $D_{ts} = 4.000$ in	Enter Con =	
Nominal gear face width: $F_{eG} = 0.866$ in	Sliding velocity:	<700 700-3000 >3000 Actual v ₃ = 230
Max effective gear face width: $0.67^*D_W = 0.92125$ in	Velocity factor: $C_v =$	0.512 0.597 0.974
Effective gear face width: $F_o = 0.866$ in	Enter 6, =	
	Rated tangential load: W R =	918 lb
	Must be > W _t =	525 lb

Wormgearing - Design Problem 18-22	Additional Computed Results:	
	Pitch line speed - Gear: 235.62 fVmin	
Input Data:	Sliding velocity v _s = 333 ft/min	
Desired output bridge To 52.5 bain	Coefficient of friction: $0.035 \text{ lf } v_s > 10$	> 10 ft/min
Output§peed n _G ≅ 600 gm	Forces: (1b) Gear Worm	
Veloci Religi	Tangential: 70 76	
Design Decisions:	Radial: 48 48	
Dismensional $P_{a}=-12$	Axial: 76 70	
No otwom fueads: Ayr = 8	Friction force, W _f = 4.0 lb	
Required No. of gear teeth: $N_G = 18$	Power:	
Specify No. of gear teath: A _G = 78	Power output from gear: 0.500 hp	
Normal pressure angle: 6n = 25 degrees	Power loss - friction: 0.040 hp	
Computed Results and Additional Inputs:	Power input: 0.540 hp	
Actual input speed: $n_W = 1800$ rpm	Efficiency: 92.6 %	Normal pressure angle, ϕ_n
Actual velocity ratio: VR = 3	Stresses:	14.5 20 25 30
r. D _G =	Bending Stress on Gear:	Lewis form factor, y
Specify viority diameter. D = 0.5 in	Crier Lewis form (actor y = 0.150	0.100 0.125 0.150 0.175
. C= 1.	Normal circular pitch: 0.185 in	
$C^{0.875}/D_{\rm W} = 2.00$	Dynamic factor: $K_v = 0.836$	
Should be >1.6 and <3.0	Bending stress on gear: 9003 psi [Using	9003 psi [Using effective gear face width]
Circular pitch of gear: $p_G = 0.262$ in	Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi	; Phosphor = 24000 psi
Axial pitch of worm: $p_{xw} = 0.262$ in	Surface Durability: [Hardened steel worm; bronze gear]	oronze gear]
Lead of the worm: $L = 1.571$ in	Type of bronze:/D _G > >2.5 ln <2.5 in	>8 in <8 in >25 in <25 in
Lead angle: $\lambda = 45.000 \text{ deg}$	Sand cast: C _s = 1106 1000	
Addendum: a = 0.083 in	II	1331 1000
Dedendum: $b = 0.096$ in	Centrifugally cast: $C_s =$	1220 1000
Worm outside diameter: $D_{ow} = 0.667$ in	Ener Majerials Pactor C., = 1600	
Worm root diameter: $D_{RW} = 0.307$ in	= 6 to 20 20 to 76	>76 Actual m _G = 3
Nominal worm face length: $F_{wnom} = 1.000$ in	= 0.578 0.779	1.129
Gear throat diameter. $D_{1G} = 1.667$ in	EMOF C., = (1578)	
Nominal gear face width: $F_{eG} = 0.441$ in	Sliding velocity: <700 700-3000 >3000	3000 Actual v _s = 333
Max effective gear face width: $0.67*D_W = 0.335$ in	= 0.457 0.483	0.731
Effective gear face width: Fe = 0.335 in	Enter 6. = 0.457	
2		
	Must be > vv = 1 (0 ib	

Mormassing - Decian Breisam 37 52	Additional Computed Desirite:	
	Pitch line speed - Gear. 117.81 ft/min	
Jata:	Sliding velocity $v_s = 1067$ ft/min	
Desired output torque 7.6 E 4200 Bain	Coefficient of friction: $0.020 \text{ if } v_s > 10 \text{ ft/min}$	min
Output speed Ag. 45. fpm	Forces: (1b) Gear Worm	
$\mathcal{L}_{\mathcal{L}}}}}}}}}}$		
Design Decisions:	Radial: 219 219	
Diametral pitch P., m. 8	Axial: 111 840	
No action threads Nw = 2	Friction force, $W_f = 17.6 \text{ lb}$	
h: N _G =	Power:	
Specify No Organificatifi No. e. 80	Power output from gear: 3.000 hp	
Normalipressure angle 66.5 14.5 degrees	Power loss - friction: 0.570 hp	
Computed Results and Additional Inputs:	Power input: 3.570 hp	
Actual input speed: $n_W = 1800 \text{ rpm}$	Efficiency: 84.0 % No	Normal pressure angle, ϕ_n
Actual velocity ratio: VR == 40	Stresses:	14.5 20 25 30
Gear pitch diameter: $D_G = 10$ in	Bending Stress on Gear:	Lewis form factor, y
Steed Norm dameter Day = 2.25 m	Enter sevis Officiation y = 0.108> 0.1	0.100 0.125 0.150 0.175
Actual center distance: C = 6.125 in	Normal circular pitch: 0.390 in	
$C^{0.875}/D_W = 2.17$	Dynamic factor: $K_v = 0.911$	
Should be >1.6 and <3.0	Bending stress on gear: 21689 psi [Using el	21689 psi [Using effective gear face width]
Circular pitch of gear: P = 0.393 in	Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi	hosphor = 24000 psi
Axial pitch of worm: $\rho_{xw} = 0.393$ in	Surface Durability: [Hardened steel worm; bronze gear]	nze gear]
Lead of the worm: $L = 0.785$ in	Type of bronze:/DG> >2.5 in <2.5 in >8 in	In <8 in >25 in <25 in
Lead angle: λ == 6.340 deg	Sand cast: C _s = 713 1000	
Addendum: $a = 0.125$ in	Chill cast or forged: C _s = 956	6 1000
Dedendum: $b = 0.145$ in	Centrifugally cast: $C_s = \frac{1}{s}$	1072 1000
Worm outside diameter: $D_{ow} = 2.500$ in	Enter Materials factor C. = 713 Sand Cast	•
Worm root diameter: $D_{RW} = 1.961$ in	Gear Ratio: $m_G = 6$ to 20 20 to 76 > 76	6 Actual m _G = 40
Nominal worm face length: $F_{wnom} = 3.162$ in	*	35
Gear throat diameter: $D_{ks} = 10.250$ in	Enter C. = UB14	
Nominal gear face width: $F_{eG} = 1.090$ in	Sliding velocity: <700 700-3000 >3000	oo Actual v _s = 1067
Max effective gear face width: $0.67^*D_W = 1.5075$ in	Velocity factor: $C_v = 0.204 0.248 0.297$	26
Effective gear face width: $F_e = 1.090$ in	Enter C. = 0248	
	Rated tangential load: W _{tR} = 990 lb	

PROBLEM 10-24	COMPARIS	ON OF DE	SIGNS A	and B.
	Note: Also i	includes a	revised D	esign A with
	a smaller w	orm diam	eter and la	rger gear face width
		Design		
Given data:	A	В	A Revised	
Diametral pitch:	6	10	6	
Threads in worm:	1	2	1	
Teeth in gear:	30	60	30	
Worm diameter (in):	2.000	1.250	1.750	Design A Rev Smaller diameter
Face width - Gear (in):	1.000	0.625	1.130	Design A Rev Larger face width
Pressure angle (deg):	14.5	14.5	14.5	
Results:				
Forces - Gear (lb):			**	
Tangential:	480	400	480	
Radial:	125	106	125	
Axial:	58	82	65	
Forces - Worm (lb):				
Tangential:	58	82	65	
Radial:	125	106	125	
Axial:	480	400	480	
Lead angle (degrees):	4.76	9.09	5.44	Design B - Higher lead angle
Efficiency (%):	69.1	77.6	70.6	Design B - Higher efficiency
Power output (hp):	, 0.381	0.381	0.381	
Power input (hp):	0.552	0.491		Design B OK for 0.50 hp motor
Gear pitch diameter (in):	5.000	6.000	5.000	Design A smaller
Center distance (in):	3.500	3.625		Design A smaller
Stress - Wormgear (psi):	9400	21171		Design A - Lower bending stress
Rated load - Durability (lb):	1193	937	1406	
				Design A - OK for sand cast Manganese Bronze Design B - OK for sand cast Phosphor bronze

Wormgearing - Design	Problem 10-255	620	Additional Computed Results:	
			Pitch line speed - Gear: 26.18 ft/min	
Input Data	.e.		Sliding velocity v ₃ = 315 ft/min	
Desired responsation	*	1200 lb-in	Coefficient of friction: 0.036 If v _s > 10 ft/min	> 10 ft/min
Output speed:	# O# :	20 mm	Forces: (ib) Gear Worm	E
Velocity Radio	WR	30	Tangential: 480 58	
Design Decisi	ons:	The state of the s	Radial: 125 125	
Dismetral pitch:	- L	9	Axial: 58 480	
No. of voto turade:	N _W =	1	Friction force, W _f = 17.9 lb	
Required No. of gear teeth:		ଚ	Power:	
Specify No. of gear belts.	. Ne=	a	Power output from gear: 0.381 hp	
Mornal pressue sugili.	e sp	14.5 degrees	Power loss - friction: 0.171 hp	
Computed Results and Additional Inputs	Additional Inpu	18;	Power input: 0.552 hp	
Actual input speed:	11 W II	600 rpm	Efficiency: 69.1 %	Normal pressure angle, ϕ_n
Actual velocity ratio:		8	Stresses:	14.5 20 25 30
Gear pitch diameter:		5 in	Bending Stress on Gear:	Lewis form factor, y
Specify worm dameter.		2 000 m	Enter Lewis form lactor, y = 0,100	> 0.100 0.125 0.150 0.175
Actual center distance:	= O	3.500 in	Normal circular pitch: 0.522 in	
	$C^{0.875}/D_W = 1.50$	<i>MOT</i> 09:	Dynamic factor: $K_v = 0.979$	
Use smaller worm diameter	Should be >1.6 and <3.0	6 and <3.0		9400 ps/ [Using effective gear face width]
Circular pitch of gear:	⊫ od :	0.524 in	B	psi; Phosphor = 24000 psi
Axial pitch of worm:	= Wx d ::	0.524 in	Surface Durability: [Hardened steel worm; bronze gear]	m; bronze gear]
Lead of the worm:		0.524 in	Type of bronze:/Dg> >2.5 in <2.5 in	n >8 in <8 in >25 in <25 in
Lead angle:	" "	4.764 deg	Sand cast: C _s = 857 1000	
Addendum:	11 q 5	0.167 in	Chill cast or forgad: C₃ =	1083 1000
Dedendum:	= q	0.193 in	Centrifugally cast: C _s =	1126 1000
Worm outside diameter:	Dow ≈	2.333 in	Enter: Materials factor: C., = 857 Sand cast	cast
Worm root diameter:	DRW =	1.614 in	Gear Ratio: m _G = 6 to 20 20 to 76	76 >76 Actual m _G = 30
Nominal worm face length:	Fwnom =	2.582 in	Ratio correction factor: $C_m = 0.759 0.824$	24 0.951
Gear throat diameter:		5.333 in	Enter: C _m = 0.824	
Nominal gear face width:		1.202 in	Sliding velocity: <700 700-30	700-3000 >3000 Actual v 3 = 315
Max effective gear face width:	0.67	1.340 in	Velocity factor: C _v = 0.466 0.498	38 0.763
Effective gear face width:	n"	1.000 in	Ener: C. = 0.488	
RANKA		ace width]	Rated tangential load: We = 1193 lb	OK For sand cast bronze
Given face width is small; Could	use F >	1.202	Must be > $W_t = 480 \text{ lb}$	
			Can use Manganese bronze based on bending stress in gear	ess in gear.
			Worm diameter is too large.	

Public series 199 frum Public and Controlled	Wormgearing - Design Fold			Additional Computed Results:	d Results:		
Siding velocity \(v_s = 199 \) f/min Coefficient of friction: 0.043 ff \(v_s > 10 \) f/min Friction force, \(W_t = 20 \) Friction force, \(W_t = 18.3 \) Nome Coefficient of friction: 0.110 hp Avial: 82 400 Radial: 106 108 Nome Coefficient of friction: 0.110 hp Avial: 82 400 Friction force, \(W_t = 18.3 \) in Friction force, \(W_t = 18.3 \) in Coefficient of friction: 0.110 hp Friction force, \(W_t = 18.3 \) in Friction force, \(W_t = 19.3 \) in Frictio				Pitch line speed - Gear:	31.42 ft/min		
Coefficient of friction: 0.043 if $v_s > 10$ fulnin	Input Data:			Sliding velocity v _s =	199 ft/min		
fores: 20 nm Forces: (Ib) Geer Womman fores: 10 82 fores: 60 82 fores: 60 82 fores: 60 60	Desired cutour bridge		7200 Belli	Coefficient of friction:	0.043 If v3 > 10	0 ft/min	
Number 20 Tangential: 400 82 Number 2 Radali: 106 106 Number 2 Avail: 82 400 Number 2 Avail: 82 400 Number 6 Power output from gear: 0.381 hp Power output from gear: 0.381 hp Nm 600 rpm Power output from gear: 77.8 % Normal press Power loss - friction: 77.8 % Normal press Should be >1.6 and <3.0	Chippin speed			Forces: (lb)			
Name	Velocity Ratio			Tangential:			
N _G = 80 Friction force, W _f = 18.3 lb Axial: 82 400 N _G = 80 Power output from gear: 0.381 hp Power loss - friction: 0.110 hp Additional Inputs: 0.00 pm Power loss - friction: 0.110 hp Power loss - friction: 0.110 hp Odditional Inputs: 0.00 pm Efficiency: 7.1.8 % Normal press VR = 30 Banding Stress on Gear: 0.481 hp Lewis form 1.15 pat 1.2 20 D _W = 2.47 OX Banding Stress on Gear: 0.110 hp 1.000 0.125 P _M = 0.314 in Stresses: 0.934 in Billowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 2 psi 1.000 0.100 in Cannot calculate pitch: 0.100 psi; Phosphor = 2 psi 1.000 1.000 0.125 0.100 in Surface Durability: [Hardened steel worm; bronze gear] 1.000 0.125	Design Decisions:			Radial:			
N _g = 60 Power output from gear 0.381 hp N _g = 60 rpm Power output from gear 0.381 hp Additional Inputs: Fig. degrees Power output from gear 0.381 hp N _m = 600 rpm Power output from gear 0.110 hp VR = 30 Bower output from gear 14.5 20 O _s = 6 in Bending Stress on Gear 77.6 % Normal press C _{astrs} D _w = 2.47 OK OK Bending Stress on Gear 1.45.5 20 Lewis form C _{astrs} D _w = 1.34 in Dynamic factor: K _v = 0.974 Stress on gear 2.1700 ps; Phosphor = 2 P _w = 0.314 in Dynamic factor: K _v = 0.974 Bending stress on gear 2177 ps! Using effective gear P _w = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] Allowable stresses-Bronze: Manganese = 17000 ps; Phosphor = 2 Surface Durability: [Hardened steel worm; bronze gear] D _w = 0.100 in Chill cast or forged: C _s = Stain cast C _s in Sid cast D _w = 0.100 in Chill cast or forged: C _s = </th <td>Observatival japoti</td> <th></th> <td></td> <td>Axial:</td> <td></td> <td></td> <td></td>	Observatival japoti			Axial:			
N _g = 60 Power output from gear: 0.381 hp Additional Inputs: Power output from gear: 0.381 hp Additional Inputs: Power output from gear: 0.110 hp Amount from gear: Power input: 0.491 hp Amount from gear: Amount from gear Amount from gear: Amount from gear: <th< th=""><th></th><th></th><th>C4</th><th>Friction force, W_f =</th><th>18.3 lb</th><th></th><th></th></th<>			C4	Friction force, W _f =	18.3 lb		
V _G = 1/2 degrees Power loss - friction: 0.110 hp Power loss - friction: 0.110 hp dditional Inputs: Power loss - friction: 0.110 hp Power loss - friction: 0.110 hp N_R = 600 rpm Stresses: 77.8 % Normal press D_G = 6 in Shroling Stress on Gear: 14.5 20 Lewis form D_{G} = 6 in Shroling Stress on Gear: 14.5 20 Lewis form D_{G} = 1.50 in Should be > 1.6 and <3.0 Bending stress on Gear: 1717 ps! Using effective gea D_{G} = 3.625 in Dynamic factor: K_y = 0.374 0.100 0.125 0.100 0.125 D_{G} = 0.334 in Surface Durability: [Hardened steel worm; bronze gear] Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 2 Surface Durability: [Hardened steel worm; bronze gear] 1.057 1000 D_{G} = 0.116 in D_{G} = 0.100 in Surface Durability: [Hardened steel worm; bronze gear] 1.057 1000 D_{G} = 1.450 in D_{G} = 1.450 in Centrifugally cast: C_{g} = 819 100 1.057 1000 D_{G} = 1.16 in D_{G} = 1.1019 in Centrifugally cast: C_{g} = 819 100 1.057 0.20 to 76 20 to 76 20 20 20 20 20 20 20 20 20 20 20 20 20	teeth:	l _G =	09	Power:			
defitional Inputs: Power loss - friction: 0.110 hp nw = 600 rpm Efficiency: 77.8 % Normal press VR = 30 Bending Stress on Gear: 14.5 20 20 D_G = 6 in Bending Stress on Gear: 14.5 20 Lewis four lever input: 14.5 20 D_G = 6 in Bending Stress on Gear: Lewis four lever input: 0.100 0.125 D_M = 2.47 OW OM Bending stress on gear: 2.171 ps! [Using effective gea properties] D_M = 0.314 in Dynamic factor: K_v = 0.974 Bending stress on gear: 2.1171 ps! [Using effective gea properties] D_M = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] 2.5 in $< > > 2.5 in$ $< > > > > > > > > > > > > > > > > > > $	Specify the of gear teeth.	Č	96	Power output from gear:	0.381 hp		
definitional Inputs: Power input: T7.6 % Normal press $VR =$ 30 Stresses: 77.6 % Normal press $VR =$ 30 Bending Stress on Gear: 14.5 20 $D_G =$ 6 in Bending Stress on Gear: 1.4.5 20 $D_M =$ 2.47 $D_M =$ 1.47 $D_M =$ 1.47 $D_M =$ 2.47 $D_M =$ 1.47 $D_M =$ 1.47 $D_M =$ 2.47 $D_M =$ 1.47 $D_M =$ 1.47 $D_M =$ 0.314 in Surface Durability: [Hardened steel worm; bronze gear] $D_M =$ 2.5in			2000 Sept. (5-11)	Power loss - friction:	0.110 hp		
$n_W =$ 600 pm Efficiency: 77.6 % Normal press $V_R =$ 30 Stresses: 14.5 20 $D_G =$ 6 in Bending Stress on Gear: Lewis form $D_G =$ 1.250 in Lewis form lector, $V_v =$ 0.100 0.125 $C_{SBFS}D_W =$ 2.47 OK Dynamic factor: $K_v =$ 0.974 Should be >1.6 and <3.0 Bending stress on gear: 21171 psl [Using effective gea 1.000 0.125 $P_{XW} =$ 0.314 in Surface Durability: [Hardened steel worm; bronze gear] 1.057 1000 $P_{XW} =$ 0.100 in Surface Durability: [Hardened steel worm; bronze gear] 1.057 1000 $A =$ 0.090 deg Chill cast or forged: $C_s =$ 819 1000 $A =$ 0.100 in Centrifugally cast: $C_s =$ 819 1000 $A =$ 0.101 in Centrifugally cast: $C_s =$ 819 1000 $A =$ 0.102 in Enter Nation $C_s =$ 819 1000 $A =$ 0.103 in Enter Nation $C_s =$ 819 1000 $A =$ 0.104 in Enter Nation $C_s =$ 819 1000	Computed Results and Additional	al Input	8:	Power input:	0.491 hp		
$OR =$ Stresses: 14.5 20 $Oe =$ 6 in Bending Stress on Gear: Lewis form lactor $V =$ 0.100 0.125 $Oe =$ 3.625 in Normal circular pitch: 0.310 in 0.100 0.125 $Oe =$ 3.625 in Dynamic factor: $K_v =$ 0.974 0.100 0.125 Should be >1.6 and <3.0 Banding stress on gear: 21171 psl [Using effective gearly formal circular pitch: 0.310 in 0.100 0.100 $P_{xW} =$ 0.314 in Surface Durability: [Hardened steel worm; bronze gearl] 2.5 in $< 2.5 in$ $< 2.5 in$ $< 8 in$ $A =$ 0.090 deg Surface Durability: [Hardened steel worm; bronze gearl] $< 2.5 in$ $< 2.5 in$ $< 8 in$ $< 8 in$ $< 8 in$ $A =$ 0.090 deg Chill cast or forged: $C_s =$ 819 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000 < 1000		H *	mdi 009	Efficiency:	77.6 %	Normal pres	sure angle, ϕ
$D_G =$ 6 in Bending Stress on Gear: Lewis form $C =$ 3.625 in C = 3.625 in C = 0.100 0.125 $C_{0MP5}D_W = 2.47$ OK Dynamic circular pitch: 0.310 in C = 0.000 0.125 Should be >1.6 and <3.0 Bending stress on gear; 2171 pst [Using effective geagle of the correction factor: $K_V =$ 0.374 in Surface Durability: [Hardened steel worm; bronze gear] Allowable strasses-Bronze: Manganese = 17000 psi; Phosphor = 2 Bending stress on gear; 2171 pst [Using effective geagle of the correction factor: $C_S =$ 819 1000 $C_S =$ $A =$ 0.034 in Surface Durability: [Hardened steel worm; bronze gear] $C_S =$		۳. ا	30	Stresses:		14.5 20	25 30
C = 3.625 in $C = 3.625 in$ $C = 3.755 in$ $C = 3.14 in$ $C = 3.080 deg$ $C = 3.14 in$		= 9 (6 in	Bending Stress on Gear:		Lewis for	m factor, y
$C = 3.625 \text{ in} \qquad \text{Normal circular pitch:} 0.310 \text{ in}$ $Dynamic factor: K_v = 0.974$ $Should be >1.6 \text{ and } <3.0$ $P_o = 0.314 \text{ in}$ $P_o = 0.134 \text{ in}$ $P_o = 0.134 \text{ in}$ $P_o = 0.134 \text{ in}$ $P_o = 0.106 \text{ in}$ $P_o = 0.116 \text{ in}$ $P_o = 0.135 \text{ in}$ $P_o = 0.735 \text{ in}$ $P_o = 0.625 \text{ in}$ $P_o = 0.625 \text{ in}$ $P_o = 0.735 \text{ in}$ $P_o = 0.73$			11 (2.5)	_ (Î	0.100 0.128	5 0.150 0.175
Should be >1.6 and <3.0 Should be >1.6 and <3.0 $P_0 = 0.314 \text{ in}$ $P_0 = 0.324 \text{ in}$ $P_0 = 0.325 $	Actual center distance:	= C	3.625 in	Normal circular pitch:	0.310 in		3,0
Should be >1.6 and <3.0 Bending stress on gear: 21171 psl [Using effective gear face \\ Po = 0.314 in \\ Po = 0.058 in \\ Po = 0.106 in \\ Po = 0.116 in \\ Do = 0.116 in \\ D	C 0.875/D1	W = 2.4		Dynamic factor: K _v =	0.974		
ρ_{ϕ} = 0.314 in Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 p P_{xW} = 0.314 in Surface Durability: [Hardened steel worm; bronze gear] L = 0.628 in Surface Durability: [Hardened steel worm; bronze gear] λ = 9.080 deg Chill cast or forged: C_{ϕ} = 819 1000 b = 0.100 in Centrifugally cast: C_{ϕ} = 819 1000 D_{cw} = 1.450 in Centrifugally cast: C_{ϕ} = 819 1000 P_{cw} = 1.019 in Ratio correction factor: C_{ϕ} = 6 to 20 20 to 76 376 Actual m_{ϕ} = 6 to 20 20 to 78 376 Actual m_{ϕ} = 8.062 in $P_{c\phi}$ = 0.735 in Velocity factor: C_{ϕ} = 0.530 0.648 1.090 $P_{c\phi}$ = 0.625 in Rated tangential load: $W_{t\phi}$ = 937 lb OK For sand cast brougest brown face width] $P_{c\phi}$ = 0.735 Ausst be > $W_{t\phi}$ = 937 lb OK For sand cast brown factor and cast brown factor factor and cast brown factor	Should I	be >1.6	and <3.0		21171 ps/ [Usin	g effective ge	sar face width
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		= ₀	0.314 in	Allowable stresses-Bronze: Mangar	nese = 17000 psi;	Phosphor =	24000 psi
$L =$ 0.628 in Type of bronze./D $_{\odot}$ > >2.5 in $< 2.5 in$ $< 8 in$		= <i>M</i>	0.314 in	Surface Durability: [Harder	ned steel worm;	bronze gear	1
$\lambda = 9.990 {\rm deg}$ Sand cast: $C_s = 819 1000$ $a = 0.100 {\rm in}$ Chill cast or forged: $C_s = 819 1000$ $b = 0.116 {\rm in}$ Centrifugally cast: $C_s = 819 1000$ $Contribute of the cast of the control of the cast of the cast of the cast of the cast of the control of the cast of$	Lead of the worm:	= 7	0.628 in				
$a = 0.100$ in Chill cast or forged: $C_s = 0.116$ in Centrifugally cast: $C_s = 0.116$ in $a = 0.116$ in <td>Lead angle:</td> <th>۲=</th> <td>9.090 deg</td> <td>Sand cast: C, =</td> <td></td> <td></td> <td></td>	Lead angle:	۲=	9.090 deg	Sand cast: C, =			
$b = 0.116$ in Centrifugally cast: $C_s = 0.146$ in Cear Ratio: $C_s = 0.146$ in Cear Ratio: $C_s = 0.146$ in Cear Ratio: $C_s = 0.146$ in Ratio: correction factor: $C_s = 0.146$ in Ratio: correction factor: $C_s = 0.146$ in Ratio: $C_s = 0.146$ in Return:		11 05	0.100 in	Chill cast or forged: C, =			
$D_{ow} = 1.450 \text{ in}$ Enter National Section Grant Section Traces 916 Sand cast $D_{RW} = 1.019 \text{ in}$ Ratio correction factor: $C_m = 0.759$ 0.024 0.951 $F_{vo} = 6.200 \text{ in}$ Fartio correction factor: $C_m = 0.759$ 0.824 0.951 $F_{e0} = 0.735 \text{ in}$ Sliding velocity: < 700 700-3000 $F_{e} = 0.625 \text{ in}$ Velocity factor: $C_v = 0.530$ 0.648 1.090 $F_{e} = 0.625 \text{ in}$ Rated tangential load: $W_{tR} = 937 \text{ lb}$ OK For substitute to the correction factor of the correction fa		= q	0.116 in	Centrifugally cast: C _s =			1111 1000
D_{RW} = 1.019 in Gear Ratio: m_G = 6 to 20 20 to 76 > 76 / 7 F_{Whom} = 2.191 in Ratio correction factor: C_m = 0.759 0.824 0.951 D_{RG} = 6.200 in Enter C_m = 0.759 0.824 0.951 F_{eg} = 0.735 in Sliding velocity: < 700 700-3000 >3000 F_{eg} = 0.625 in Enter C_m = 0.530 0.648 1.090 [Used given face width] Rated tangential load: W_{RR} = 937 lb OK For substitute to 15 / 100 lb		II *	1.450 in	Soler Meterials factor C., a.	818 Sand cast	t	r
$F_{vhrom} =$ 2.191 in Ratio correction factor: $C_m =$ 0.759 0.824 0.951 $D_{to} =$ 6.200 in Enter $C_m =$ 0.824 0.951 $F_{o0} =$ 0.735 in Sliding velocity: <700		II 🔆	1.019 in	11			il m ₆ = 30
D_{16} = 6.200 in Enter C_{ii} = 0.924 $F_{e,0}$ = 0.735 in Sliding velocity: <700 700-3000 >3000 0.67* D_{ij} = 0.838 in Velocity factor: C_{ij} = 0.530 0.648 1.090 F_{g} = 0.625 in Enter C_{ij} = 0.530 [Used given face width] Rated tangential load: W_{ij} = 937 lb OK Forsuse Forsuse Forsuse Forsus - 400 lb		11 650	2.191 in		0.824	0.951	
$F_{e0} = 0.735 \text{ in}$ Sliding velocity: <700 700-3000 >3000 $0.67^*D_W = 0.838 \text{ in}$ Velocity factor: $C_v = 0.530 = 0.648 = 1.090$ $F_e = 0.625 \text{ in}$ Exter $C_v = 0.530 = 0.648 = 1.090$ [Used given face width] Rated tangential load: $W_{tR} = 937 = 0.735 = 0.73$		II E	6.200 in	Enter C _n =			
$0.67^*D_W = 0.838 \text{ in}$ Velocity factor: $C_V = 0.530 0.648$ $F_o = 0.625 \text{ in}$ Enter $C_V = 0.530$ [Used given face width] Rated tangential load: $W_{tR} = 937 \text{ lb}$ use $F > 0.735$ Must be $> W_t = 400 \text{ lb}$		11	0.735 in	Sliding velocity:			$\log v_s = 199$
$F_o = 0.625 \text{ in}$ [Used given face width] Rated tangential load: $W_{eq} = 937 \text{ lb}$ use $F > 0.735$ Must be > $W_t = 400 \text{ lb}$	0.67	11 3	0.838 in	Velocity factor: C _v =	0.648	1.090	
[Used given face width] Rated tangential load: $W_{iR} = 937$ lb use $F > 0.735$		11 0	0.625 in	Enlor C. e	9,25,6		
use F > 0.735 Must be > W₁ =		given fa	ce width]	Rated tangentlal load: W n =	ି ସ	OK For sand	cast bronze
	Given face width is small; Could use F >		0.735	Must be > W _t ==	400 lb		

Wormgearing - Design			Additional Computed Results:	Results
			Pitch line speed - Gear:	26.18 ft/min
Input Data:	fa:		Sliding velocity v ₃ =	276 ft/min
Control district to sales		£40 tem	Coefficient of friction:	0.038 If v _s > 10 fVmin
Supply styles	200	1101 75	Forces: (lb)	Gear Worm
(3) (3) (3) (3)			. Tangential:	480 65
Design Decisions	sions:		Radial:	125 125
Diametral plb3:		9	Axial:	65 480
No - di Mogra di regioni			Friction force, Wr =	19.0 lb
Required No. of gear teeth:	: N _G =	ဓ	Power:	
		J.	Power output from gear:	0.381 hp
		1000000	Power loss - friction:	0.159 hp
Computed Results and A	Additional Inputs		Power input:	0.540 hp
Actual input speed:	= Mu :	md1 009	Efficiency:	70.6 % Normal pressure angle, φ _n
Actual velocity ratio:		8	Stresses:	14.5 20 25 30
Gear pitch diameter:		5 in	Bending Stress on Gear:	Lewis form factor, y
Specify Marmydanesis		1.750 m	Enter Leuis form factor y =	0.100> 0.100 0.125 0.150 0.175
Actual center distance:	= O	3.375 in	Normal circular pitch:	0.521 in
	$C^{0.875}/D_W = 1.66$	XO 99:	Dynamic factor: K _v =	0.979
	Should be >1.6 and <3.0	6 and <3.0	Bending stress on gear:	8324 psi [Using effective gear face width]
Circular pitch of gear:	= ⁶ d :	0.524 in	Allowable stresses-Bronze: Mangane	Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi
Axial pitch of worm:	$= M^{\chi} d$:	0.524 in	Surface Durability: [Hardened steel worm; bronze gear]	d steel worm; bronze gear]
Lead of the worm:	= 7 :	0.524 in	Type of bronze:/D _G >	>2.5 in <2.5 in >8 in <8 in <25 in <25 in
Lead angle:		5.440 deg	Sand cast: C _s = 8	857 1000
Addendum:	95	0.167 in	Chill cast or forged: C _s =	1093 1000
Dedendum:	= q :	0.193 in	Centrifugally cast: C ₃ =	1126 1000
Worm outside diameter:		2.083 in	Enter Materials factor C. =	867 Sand cast
Worm root diameter:	$D_{RW} =$	1.364 in		6 to 20 20 to 76 $>$ 76 Actual $m_G = 30$
Nominal worm face length:	F Whom =	2.582 in		0.759 0.824 0.951
Gear throat diameter:		5.333 in	Enter C _{eff} = 1	
Nominal gear face width:	= P ₆₉ =	1.130 in		<700 700-3000 >3000 Actual v _s = 276
Max effective gear face width:	$= M_0^* 79.0 = 0.00$	1.173 in		0.486 0.537 0.845
Effective gear face width:	۳. ۱۱	1.130 in	Enter C. = 1	9870
	[Used nomin	[Used nominal face width]	Rated tangential load: W R =	1406 lb OK For sand cast bronze
			Must be > Wr ==	480 lb
			Can use Manganese bronze based on bending stress in gear.	bending stress in gear.
			Changed worm diameter to 1.75 in; Changed face width to 1.13 in	Changed face width to 1.13 in

CHAPTER 11 KEYS, COUPLINGS, AND SEALS

GENERAL NOTES FOR KEY DESIGN PROBLEMS 1-15: FOR SAIE 1018 CD STEEL: Sy = 54000 8si, IF KEY MATERIAL IS WEAKEST - $O_d = \frac{3\gamma}{N} = \frac{54600}{3} = 18000$ PSi

- 1. DSHAFT = 200 IN; USE 1/2 IN SQ. KEY , SAE 1018 CO L = 73 DW = (9000 LB/M2) (200 IN) (0511) BUT HUB LENGTH = 4.00IN. USE SAE 1045 CO; Sy = 77000 PSI To = 0.55/N = 0.5(77)/3 = 12-83 KSi L= (2830) (200)0.5 = 3,27/N; USE L= 33/4 = 3,75/N.
 - 2. Ds = 3.60 in; USE 7/8 IN SQUARE KOY; SAE 1018 CD L= (9000) (3.60) (0.825) = 1.48 IN NEARLY MATCH HUB LENGTH
 - D3 = 1.75 IN; USE 3/8 IN. SQ. KEY; SAE 1018 CB; Ta = 9000 PSi 3. FOR HUB; CLASS ZO CI, Su = ZO OMPSi FOR BEARING ON = 20000 = 6667 PSi (CONSERVATIVE)

BECAUSE COMPRESSIVE STRENGTH OF CI IS MUCH GLEATEL THAN TENSILE STRENGTH.

SHEAR OF KEY; L= ZT = Z(IIR) = 0.377 IN 720 W (9000) (125)(.370)

BEARING ON HUS: L=4T = 4(1112) = 1.02/N

USE L=1.50 IN TO MATCH HUB LENGTH.

T = 63000 (110)/1700 = 4076 LB.IN; DS = Z.50IN; USE 5/8 SQ. MEY $L = \frac{2T}{72DW} = \frac{2(4076)}{(9000)(2.50)(0.625)} = 0.5808A$ USE L= 2.50 IN TO MORE NEARLY MATCH HUB LENGTH.

- 5. EXPRESS DATA FROM TABLE 11-6 AS T=KDZL

 REQ'D K= T/OZL (L=HUB LENGTH) USE B-FIT
 - a) PROB. 1 DATA; T= 21000; 0= 2.00/N, L= 4.00/N.

 \[\frac{21000}{(2.60)^2(4.0)} = 13/3 \tag{700 HIGH FOR ANY SPLINE} \]

 IN TABLE 11-6
 - b) PROB. 2 DATA; T=21000 LB·IN; D=3.60M; L=4.00 IN. $K = \frac{21000}{(360)^2(4.0)} = 405; USE 16 SPLINES; K=521$
 - C) PROB. 3 DATA: T = 1112 LB-IN; D = 1.75 /N; L=1.75/N

 K = 1112 = 208 USE & SPLINES

 (1.75) (1.75) = 208
 - d) PROB. 4 DATA: T = 4016LB-IN; D = 2.50IN; L = 3.25IN $K = \frac{4076}{(2.50)^2(3.25)} = 201$ USE 6 SPLINES
- 6- AT 220 kp; T= 63000(220)/1700 = 8163 LB.IN
 AT 110 hp; T= 63000(110)/1700 = 4076 LB.IN

PIN SHOULD SHEAR ATTZ; TZ= SMS = SM (0.75) (SECT. Z-Z)

PIN SHOULD NOT YIRD AT TI, TI & SYS = Sy(0.5)

FOR A GIVEN PIN & AND SHAFT D IN EQ. 11.-18

RATTO
$$\frac{0.55y}{0.755a} = \frac{4Ti}{0.75} = \frac{Ti}{Tz} : Sy = \frac{0.75T. Sx}{0.5Tz}$$

$$\frac{4Ti}{0.755a} = \frac{Ti}{0.75} : Sy = \frac{0.75T. Sx}{0.5Tz}$$

MIN. $Sy = \frac{0.75(4076)}{0.5(8153)} = 0.755 \text{m}$ MOST COLO DRAWN STEELS

HAVE $Sy \ge 0.755 \text{m}$ FOR $SA \le 1018 \text{ CO.}$ Sy = 54 ks; SA = 64 ks?

AT $T_1 = 4076 \text{ LB.IN.}$; $T = \frac{4(4076)}{(2.59)(17)(0.294)^2} = 24001$ più (Sy = 54000 PS)

```
SPROCKET
    FROM EXPROS. 12-3: T=4/68 LB.IN; Dz= 21/4 m; Ds=1/2 m.
     SPROCKET: IN SQ VARE KEY; SAE 1018 CD
          L = \frac{2T}{7600} = \frac{2(4168)}{(9000)(2.25)(0.5)} = 0.8231N \quad USE L = 1001N
      WORMGEARS 3/8 SQ. KEY
            L = 2(4/68) = 1.647/N. USE L=1.75/N.
8.
   WOOORUFF KEY 204 : NIMWAL W= 32 = 16 IN : NOMWAL B = = = 1 IN
    ACTUAL DIMS. IN TABLE 11-3
9, WOODRUFF KEY 1628: NOM. W= 16 = 1/4; NOM. 8= 28 = 3 1/2 IN
10,11,12 ARE DRAWINGS
                                  TOP OF
13. T=F0/2 = F= 2T/0
      KEV W = 3/8
                                              3545
      As=LW; T= F = 2T
                                                      (SCALED)
      T = Ta DLW = (9000) (1.500)(1.14)(0.375) = 2886 L6.114
14, 7 = Ta DLW = (9000)(.500)(.125) = 197(B.1)
      KEY W = 18 M
                                                      · 2455
    T= (9000) (3.25)(2.55) (0.75) = 27,970 46-14
                                                             .10=L
                                                            (SCALED)
                                            2428
   a) T= /3902= /39(/250)2 (PROB /6) 0.558
                                              3×3/2
       = 313 LB.IA /W OF HUB L.
   b) T= 32602=326 (3.50) =
                                                      2.55IN
       = 3994 LB./N/NOFHUEL. (PROBIT)
                                                    (SCALED)
  C.) T = 688 D2 = 688 (2.500) = 4300 LB.IN/N. OF HUB L. (PROB 18)
```

NOTE: Problems 20-46 call for narrative answers for which the proper information can be found in the text. Guidance is provided below for sections in which additional information can be found.

- 20. Section 11-6 includes discussion of applying set screws to transmit torque. A table of approximate holding force capacity vs. set screw size is provided.
- 21. Press fit is described briefly in Section 11-6. More discussion follows in Chapter 13.
- 22. Section 11-7 describes both rigid and flexible couplings and compares their performance. Examples of commercially available couplings are shown and described.
- 23. Section 11-8 contains general information about universal joints.
- 24. Section 11-9 contains general information about retaining rings and other means of locating machine elements axially on shafts and in other devices. Included are collars, shoulders, spacers, and locknuts.
- 25. to 38. Section 11-10 contains general information about seals.
- 39. to 46. Section 11-11 contains general information about seal materials, including elastomers.
 - 40. to 45. A list of 14 elastomers in included in Section 11-11. Following the list of 14, elastomers, their general performance capabilities are described.
 - 46. The required conditions for shafts on which elastomeric seals operate are discussed in the last part of Section 11-11. Examples are:
 - Steels, hardened to HRC 30 with tolerances of less than ±0.005 in (0.13 mm) are typically used for shafts on which seals operate. The surface must be free of burrs with a surface finish of 10 to 20 microinches is recommended. Lubrication is recommended.

CHAPTER 12 SHAFT DESIGN

GENERAL NOTES CONCERNING SOLUTIONS TO SHAFT DESIGN PROBLEMS

- Design values for stress concentrations as given in Section 12-4 are used for the initial calculations. <u>These values must be checked once final design details are specified for diameters, fillet radii, and other features.</u>
- Estimates are originally used for the size factors used in calculations because they depend on the shaft sizes that are unknown at the start of a design problem. These values must be checked once final design decisions have been specified.
- The choice of the reliability factor, C_R , is a design decision. Other values may be preferred.
- In most cases, the proposed final values for diameters are expected to be safe because trial values are typically conservative and because final specified diameters are typically made to the next larger preferred size according to Appendix Table A-2.
- Final specifications for diameters where bearings are to be mounted must await the selections
 for suitable bearings that can accommodate the radial and thrust loads applied to them. This
 process is described in Chapter 14 and the MDESIGN MOTT software is an excellent tool for
 making those decisions. The computed 'minimum required diameter' from the shaft design
 process should be used as to limit the bearing selection to only feasible sizes.

Shafts with Only Radial Loads Applied to Them:

Problems P1 through P30 relate to one of the Figures P12-1 through P12-17 showing shafts carrying a variety of combinations of gears, belt sheaves, chain sprockets, and a few other items such as a flywheel and a propeller-type fan. All of these elements apply only radial loads to the shafts on which they are mounted.

- Problems 1-11 include only forces and torques exerted by gears on shafts. No separate solutions for these problems are included here.
- Problems 12-21 include only forces and torques exerted by belt drives and chain drives on shafts. No separate solutions are included here.
- Problems 22-30 are comprehensive design problems that use the same shaft assemblies that are used for Problems 1-21. The solutions to these problems include the analyses of forces and torques and should be used as the solutions for problems 1-21.
- The parts of the solutions for torques and forces give discrete, single-answers.
- The remaining parts of the comprehensive shaft designs include many design decisions and multiple solutions are possible. The given solutions should be considered examples only.

There are multiple ways in which the problems P1 through P30 may be assigned. The following table may help instructors decide how to assign the problems for student solution and may help students

comprehend how the sets of problems lead to the more general shaft design. Any combination of problems may be chosen.

Torques and Forces Acting Radial to Shaft	Comprehensive
Figure P12-1: P1 – Gear <i>B</i> ; P14 – Sheave <i>D</i>	P22
Figure P12-2: P2 – Gear <i>C</i> ; P12 – Sprocket <i>D</i> ; P13 – Pulley	A P23
Figure P12-3: P3 – Gear <i>B</i> ; P15 – Sprocket <i>C</i> ; P16 – Sheave	s <i>D, E</i> P24
Figure P12-4: P4 – Gear <i>A</i> ; P19 – Sprockets <i>C, D</i>	P25
Figure P12-5: P5 – Gear <i>D</i> ; P20 – Sheave <i>A</i> ; P21 – Sprocket	: <i>E</i> P26
Figure P12-6: P6 – Gear E; (No separate analysis of Sheave	(A) P27 (Includes Sheave A)
Figure P12-7: P7 – Gear <i>C</i> ; P8 – Gear <i>A</i>	P28 (Includes Sheaves D, E)
Figure P12-9: P9 – Gear <i>C</i> ; P10 – Gear <i>D</i> ; P11 – Gear <i>F</i>	P29 (Includes Sheave B)
Figure P12-17: P17 – Sheave <i>C</i> ; P18 – Pulley <i>D</i>	P30 (Includes Fan A)

Shafts with both Radial and Axial Loads Applied to Them:

Problems P31 to P34 deal with shafts carrying helical gears and wormgears that produce forces directed axially in addition to radial forces. Solutions are only shown for the comprehensive problems (12-32 and 12-34) in which the details of the analyses of torques and forces are included.

Torques and Forces Acting Radial and Axial to Shaft	Comprehensive
Figure P12-31: P31 – Helical Gear <i>B</i>	P32
Figure P12-33: P33 – Wormgear <i>C</i>	P34 (Includes Sheave A)

Other Comprehensive Design Problems

Problems 35 to 41 contain a variety of loading situations for which the general solution procedure must be adapted. Some of the problems involve more than one shaft, considering shafts for mating gears and multiple reductions.

Figure P12-35: P35 – Double reduction helical drive

Figure P10-8 in Chapter 10: P36 – Bevel gear drive

Figure P12-37: P37 – Bevel gear drive with two chain sprockets

Figure P12-38: P38 – Double reduction spur gear drive; design three shafts.

Figure P12-39: P39 – Drive system consisting of an electric motor, a V-belt drive, a double reduction spur gear type reducer, and a chain drive.

Figure P12-40: P40 – Shaft with three spur gears

Figure P12-41: P41 – Shaft for windshield wiper mechanism with two levers

FIGURE P12-1

22 TORQUE ON GEAR B: TE 63000(30)/550 = 3436LB-1A

SAME TOROVE ON STEAME D: TO= 3436L6+N

TORQUE IN SHAFT! TA-B =0 ; TB-D = 3436 18-11.

FORCES ON GEAR B!

FORCES ON SHEAVE D

Was

WEB.

BENDING MOMENT DINGRAMS

M8 = 145202+12102 =4679 LE-W Me= 147402+39802 = 6189 cc+n Tc = 3436 LB-IN

ASSUME KE = 25 AT LEFT OF C SAE 1040 CO: Sa=80Ks; Sy=71Ksi

Sm = 30KSi (FIG. 5-8 MACHINGO) CA= 0.81, C=0.80

DESIGN GEOMETRY AT C

$$S_{N} = C_{S}C_{0}S_{m} = (0.80)(0.81)(30) = 19440 p_{S}; \qquad USE N = 3$$

$$D_{C} = \begin{bmatrix} \frac{32(3)}{17} & \frac{2.5(6189)}{19440} & \frac{3}{4} & \frac{2436}{71000} \end{bmatrix}^{2/3} = \frac{2.90 \text{ IN.}}{CS = 0.78} & \frac{5 \text{ Pecify } 0 = 3.00 \text{ IN.}}{CS = 0.78}$$

23

FIGURE PIZ-Z

TORQUE ON PULLEY A: TA= 63000(A)/200= 3/50LB 7N

ON GEAR C: TC = 6300060/200 = 1890 LB-IN

ON SPRICETO; TD = 63000(4)/20 = 1260 LB-YA

TORQUE DISTRIBUTION IN SMAFT: TA-C=3150 LB-M; TC-0=/260 LB+M; TD-6=0

FORCES ON PULLEY A:

FI-F2 = TA/RA = 3150/10 = 315 LB

FI +FL = 200 (FI-FL) = 20 (315) = 630LB +=FAY ; FAX=0

FORCES ON GEAR C:

Wec = Te/Re = 1890 LB -= Fex

Wac = Wee ton 200 = 138LB = Fey

FORCES ON SPROCKET D:

$$F_1 = F_0 = F_{0y} = \frac{T_0}{R_0} = \frac{1260}{3} = 420 LB$$

Rey=

366

fy:

BENDING MOMENT DIAGRAMS

MB = 3780 LB-N -Mc= /1588 ++ 3732 = 4056 LB-N MD= 1454 + 2272 = 237 LEVA

- Ta = 3150 LB-IN TO LEFT ; No = 3.0 RING GR. TE = 1260 LB-IN TO RIGHT; Ke = ZO KEY

SAEINIT CO: Sm = 69 KSi; Sy = 57 KSi Sm = 26KSi, 5m' = Cs Ca Sn = (0.85 X0.81) (20= 17.9KSi

 $\left[\frac{32(3)}{\pi}\right]^{\frac{3.0(4056)}{17900}+\frac{3}{4}\left(\frac{3150}{57000}\right)^{\frac{7}{2}}} = 2.75 \text{pv.}$

3732

630

-3720

DESIGN AT C SPECIFY D= 3.00 /N Cs = 0.78 OK

INCREASE BY 6% AT GROOVE D= 1.06(275) = 2921M.

FIGURE P12-4 25 TORQUE ON GEAR A: TA= 63000(40)/120= 21000LB-IN ON SPROCKETS C #0; Tc=To = 63000(20)/12 =10500 LB.W TORQUE IN SHAFT: TA-C = 2/000 LB-IN; TGO= 10500 LB-IN; TOE = 0 FORCES ON GEAR A: WER = TA/RA = 21000/8 = 2625 LBY = FAY WMA = WEA ton 200 = 955 LB -== FAX FORCES ON SPROCKETS C&D: Fox=Fox= T/R= 10500/2=1500LB-

5 = (0.81)0.75 (22000)= 13400 Psi

CR Cs

DBL = 4.27 IN. SPECIFY 4.50 IN C5=0.74 OK

FIGURE P12-5 TORQUE ON SHEAVE A: TA = 63000 (10)/240 = 2625 LB-IN = TAD INSHAPT TORQUE ON GEAR D: TO = 63000 (15) 240 = 3938 LB.IN TORQUE ON SPROCKET E: TE = 63000(5)/240 = 1313 LB.IN=TDE INSMAT FORCES ON SHEAVE A: FI-FL= TA/RA= 2625/6 = 438 LB ; FAX = 0 FA = FAY = PITF2 = 1.5 (FI-FE) = 1.5 (438) = 657LB FORCES ON GEAR D: We = To/R=3938/4 = 98518 -30°
WAD=WED ton 20° = 358LB Fox= 985 Ain 300 - 358con 300 = 182LB -For = 985 cos 20 + 358 sin 30 = 1032 LB FORCES ON SPROCKET E: FE TE/LE = 1313/3=438LB FEX = FE co-30 = 37968 -- ; FGY = FE sin 30 = 21968 Rex = 343 1/82 VERTICAL PRIME HORIB Rex=166LB (a) -219 - 197 -379 -457 _1251 4180 9709 (LB.IH) : use N=4 shock AT C: T= 2625 LB/N BEARMS SEAT 3942 K=15

M = V49802+ 9708 = 10911 LG-IN CHOOSE 1137 CD - 5, = 82000 Psi Sm = 98 KS; ; Sm = 37 KS; ; Sm = 0.8 (0.81)(89) = 24.0 KSi.

WITH K= 1.5, DCR = 3.03 IN. SRECIFY 3.70 IN

Cs = 0.77 OK

SPECIFY 3.75/N L Kt 225 Cs= 0.76 OK

Da

(FIGURE PIZ-1) 28 3938 (CONTINUED) FORCES ON GEAR A: TORQUE DIAGRAM WEA = TA/RA = 3938/25 = 1575LB = FAV WAA = WEA ten 200 = 1575 tan 200 = 573 LB -= FAX FORCES ON GEAR C: WEC = Te/R = 6563/5 = 13/3LB == FC. WARE = War ton 200 = 13/3 tan 200 = 478 LB = Fev FORCES ON SHEAVE D: F, -F= To/RD = 1313/3 = 438LB Fo = Foy = Fi +F2 = 1.5(Fi-F2) = 1.5(438) = 657LB : Fox=0 FORCES ON SHEAVE 5: FE = FD = 657 LB FEX = FE con 200 = 6/76 -- : Fey = FE sin 200 = 225 LEV VERTICAL | Pay = 2485 HORIZ. RBY=1713 r_x= 790 535 1478 657 1575 1140 (16) 225 (LB) -1731 613 -432 6300 3856 3/64 (LB.IA) - Ht 22-5 AT B: T=3938LB.IN ; N=3 Ke=1.5) M8 = (272)2 + (6300)2 = 6704 LB-IN C3=0.78 OF SAE 3140 OOT 1000 DBL = 2.05IN WITH Ke=1.5 Sy = 133 KSi; Su = 152 KSi SPECIFY D= 2,20 IN Sa = 52 KSi ; Sa'= Gs. CR S M Cs = 0.80 Sm = (0.85)(0.81)(52) = 35.8 KSj

```
FIGURE P12-9
      TORQUE ON SHEAVE B: To= 63000(25)/220 = 7/6LB.IN
29
              ON GEARS C AND F : To=TF = 63000(5)/120 = 1432LBIA
ON GEAR D : To = 63000(125)/220 = 3580 LBIA
     TORQUE IN SHAFT: TAB =0 : TBC = 7/6LB·M; TCD = 2/48LB·IN
           TO-F = 1432 LB.IN
     FORCES ON SHEAVE B: FI-FZ = TB/RE = 716/3 = 239LB

FB = FI+FZ = 1.5(FI-FZ) = 1.5(239) = 358 LB 1 = 30°
         Fox = Fo sin 30' = 17918 - 5 Fox = Fo cro30' = 310LEV
     FORCES ON GEAR C: WEL = Te/Re = 1432/3 = 477LB -= Fex
          Whe = Wte tan 20° = (477) ton 20° = 17418 = Fey
     FORCES ON GEAR D: WEO = TO/RO = 3580/6 = 5976 += FOX
        Wro = Woo ton 200 = (597) ton 200 = 217 LB = FOY
     FORCES ON GEAR F: Was = We = 477LB 145 NE = 1/4LB
         FR= 477 sin45 -174 GB 450 = 214LB-
        FFY = 477.002450 + 174 sin 45 = 460LB+
                                                               YERTICAL
 Horre
     Pox=SYO
                                                RAJ ZIZ
                                                                     217
         540
                                                                        460
 V
و(قل)
                                                                     7-55
             3412
                                            M
 M
                           -2497
                                           (18-IN
(LB-M)
            T= Z148 LB.IN TO EIGHT, K= 20; Mc=3428 LB.IN
                                                                -Zv2
            T= 7/6 LB-IA TO LEFT, K=3.0
                                                                      PROFILE
                                                          K=30
                                                                    L BOUNDED
                                                     FACIOZO CD + Sp = 57 KSi; Sm=61 KSi
  INCREASE BY 64: Dc = 1.06 (2.75)
                                                      Sm = 22 KSi
                                                      Sm'=(.85)(.81)(22)=15.1 Ksi
                    DE = 2,98/N
                                                            Cs CR
    SPECIFY De=3.00m Cs=0.78 OK
```

221

```
FIGURE PIZ-17
30
```

TORQUE AT FAN: TA = 63000(12)/475 = 1592L8-1N ON PULLEY D: TO= 63000(3,5)/475=464LB ON SHEAVEC: Te = 63000 (15.5) 475 = 2056LB.IN TORQUE IN SHAPT: TAC = 1592 LBIN; TOD = 464 LBIN; TOE = 0

FORCES ON A: FAX=0; FAY = 34LB THE FAN WOULD ALSO PRODUCE AN AXIAL THRUST FORCE BUT ITS EFFECT ON SHAPT OIA, IS SMALL,

FORCES ON C! (V-BRT) 2056/5.0 = 411 LB Fc = Fcx = F, +Fz = 1.5(F1-Fz)=1.5(411) = 617LB -; Ey=0

FORCES ON D: (FLAT BELT) FI-FI = TO/RO = 464/3 = 155 LB FD=F1+F2 = 20(F-F2)=20(155)=310LB Fox = Fo Cos 600 = 155 LB -

Foy = Fo sin 60 = 268 LB VERT Rey= HORIZ 12 Rex 240 334 رمل (LB) -263 3340 M (L8.IN) -688

ATC: To LORT = 1592 LB.IN & TORIGHT = 464 CB.IN

MC = \$ 33402 + 688 = 3410 LB-IN ATC & TO LEFT: KE= 20 KENSEAT 1/3 AT RIGHT OFC: K = 3.0 - RING GROOVE SAE 1144 CO : Say = 90 KS1 Sm = 100 Ksi; Sm = 3 8 Ksi 5 = (0,85)(0,81)(38) = 26,2Ksi INCREASE BY 6%: D= 1.06 (2.29) = 2.42 IN. HIM Cs SPECIFY D = 2.50 IN C5 = 0.79 OK

228

Assume Torque 1s NEGLIGIBLE, USE N=4 $\sigma = \frac{K+M}{S} = \frac{I+S(II99)}{ITCHAI49^3/32} = 436795; = \frac{Sn}{N}$

Sm = Cs CR Sm = (0.83) (0.81) Sm = 0.67 Sm REQU Sm = N O = 4 (4357) = 17428 psi = 0.67 Sm REQU Sm = Sm/0.67 = 26000 PSi FROM FIG. 5-8; SM & 68 KSi SPECIFY SAE 1040 CD; SM=80KS; SY=70K9

SM=30KS;; SM=0.67(30)=20.1 KS;

CHECK WITH EQ. 12-24 WITH M AND T.

DC= 32(4) \[\big(\left(1.5 \infty \left(1.94 \right) \right)^2 + \frac{3}{4} \left(\frac{270}{70000} \right)^2 + \left(1.54 \right) \frac{1}{4} \left(\frac{1000}{70000} \right)^2 + \frac{3}{4} \left(\frac{1000}{70000} \right)^2 + \frac{1}{4} \left(\frac{1000}{70000} \right)^2 + \frac{1}{10000} \right)^2 \right) \frac{1}{10000} \frac{1}{10000} \right)^2 \right) \frac{1}{10000} \frac{1}{1000} \right)^2 \right) \frac{1}{10000} \frac{1}{1000} \right)^2 \right) \frac{1}{10000} \frac{1}{1000} \right)^2 \right) \frac{1}{10000} \frac{1}{1000} \right)^2 \right) \frac{1}{1000} \right)^2 \frac{1}{10000} \frac{1}{1000} \right)^2 \right)^2 \frac{1}{1000} \frac{1}{1000} \right)^2 \right)^2 \frac{1}{1000} \right)^2 \frac{1}{1000} \right)^2 \frac{1}{1000} \right)^2 \frac{1}{1000} \right)^2 \right)^2 \frac{1}{1000} \right)^2 \right)^2 \frac{1}{1000} \right)^2 \right)^2 \right)^2 \frac{1}{1000} \right)^2
FOR SAE 4140 DOT 1200; Sy=114KSi, Sw=130KSi; Sm=46KSi (FIG.5-8) Sm'= Cs CR Sm = (0.9)(0.81)(46KSi) = 33.5 KSi

 $\frac{DATA FREM FIGURE 10-8 to 10-12.}{PINION: T = 263 LB:IN; M = 10-8 to 10-12.}$ $\frac{PINION: T = 263 LB:IN; M = 10-8 to 10-12.}{SAE 1040 OQTI 200; Sy = 63 MSi; Sm = 93 MSi; Sm = 36 MSi; Sm = 86 MSi; Sm$

 $D_0 = \left(\frac{32(3)}{77}\right) \left(\frac{2.5(36\omega)^2 \frac{3(420)}{4(152000)^2}}{4(152000)^2}\right) = 0.861N$

SPECIFY 0 = 1.00/N C5 = 0.88 OK

SAE 4140 OQT 1000 Sy = 152KSi; Sm=168KSi Sm = 58KSi; S; =(95)(0.81)(58) Cs CR 8m = 44-6KSi

P=15.0 kp.: m,=1725 RPM; M_= 575 RPM; M3=287.5 RPM FIGURE 38 P12-38 TORQUE ON SHAFT 1 = T_ = TA = 63000 (15)/1725=548 LB.N. TORQUE ON SHAPTZ = T2 = T8 = T6 = 63000(15)/595 =/643 LB.M. TORQUE ON SHAFT3 = T3 = T0 = 63000 (15)/287.5 = 3281 LB.IN. Wt8 = TA/2A = 548L8:1N = 609 LB -Wrs = Wes ten 0 = 60918 ten 20° = 222 LB ADRIVES B REACTIONS: NEA = 609LB - ; WAA = 222LB 1 304.5 SHAFTI AT MIDDLE OFSHAFT'S M = $\sqrt{9/3^2 + 333^2} = 9725+18$ HORIZ. 609 LB YERT. 222 LB T = 548 LB.IN FROM COUPLING TO GEAR A. V = -307.5333=14 :913=M, GEAR A. BRG COUPLING SHAFT 1 De 3.00 EQUATION (12-24) USED TO COMPUTE ALL DIAMETERS. DIAMETER DI T= 548 LS.IN: M=0: DESIGN FOR 0.999 RELIABILITY-CR=0.75 SAE 1040 CD STEEL: Sy = 71,000 PSi; Sx = 80,000 PSi; 12 % ELONG ATTOM Sm = 30,000 Psi; Sm' = Sm CsCR = (30 000)(0.9)(0.75) = 20,250 Psi; LET N = 3. THEN DIAN = 0.589IN. DIAMETER DZ: SAME CONDITIONS AS D, ; DZMIN = 0.589 IN. DIAMETER D3: DEPENDS ON Dy. DIAMETER DA: M = 972 LB.IN; T = 548 LB.IN AT SHOULDER AND KEYSEAT. (Kt=2.5) AT SHOULDER! Dynu = 1.5414. ATRING GROUPS: T=0, Kt = 3.0: Den 1.69/N. INCREASE BY = 6% FOR DY : DY = 1.06(1.64) = 1.74 IN GOVERNING VALUE DIAMETER DS: M =0; T =0: YERY SMALL DIA. REQUITO RESIST SHEAR. BEARING SEATS DZ, DS: ASSUME BEARINGS WITH BORE = 0.7874 IN (ZOMM) CAN BE FOUND TO CARLY RADIAL LOADS. CHAPTER 14, TABLE 14-3 BEARING NO. 6204 SPECIFICATIONS: D, = 0.750 IN. De SPECIFIED BY RETAINING RING MFGR. D2 = D5 = 0.78741N. D3 = 2.00 IN. | RELIEF PROVIDED ON LEFT SIDE OF D3 AND RIGHT END OF DY D4 = 1.80 IN] TO ENSURE THAT OUTER RALE OF BEARING DOES NOT CONTACT ROTATING SHAFT. D2 = DY = 0.969IN (SHAFT SHOULDER) CS CHECKED FORALL DIAMETERS -OK (CONTINUED) 232

DIAMETER D2: M=13/2 LB.IN : T= 3287 LB.IN, K+=2.5 AT SHOULDER.

Dz = 1.79IN. AT SHOULDER.

AT GROOVE! Do = 1.88 IN FOR K=3.0; T=0.

WCREASE BY 6%: D2 = 1.06(1.88) = 2.00 IN. GOVERNS

DIAMETER DYMIN; DSMIM: M=0; T=3287LB.IN.; DYMIN=1.07IN.

SPECIFY !

D, = 1.3780 IN (35 mm), BRG 6207

D2 = 2.000 IN

D3 = Z.Z.SO/A.

D4 = 1.3780 IN (35mm) BRG. 6207

D5 = 1.25IN

[CHECKED CS OK]

Ro=135 LR.

CONTINUED

DESIEN OF SHAFTI WOULD BE COMPLETED IN A MANNER SIMILAR TO THAT SHOWN IN PROBLEM 38.

SHAPT 2! SEE PROBLEM 38 FOR ANALYSIS AND DESIGN PROL.

FORCES: WEB = WEA = 1086 LB. - ; WAB=WA = 399 + GENEB SHAPT 2 SPEED = M2 = M1 No = 767 = 18 = 256RPM Tz = 63000 (12)/256 = 2958LB4N

WEC - T2/2 = 2958LBAN/2.001N= 1479LB - GEARC WAL = Wt - tan 200 = 538LBV

SHAPT 3: SEE PROBLEM 38 FOL ANALYSIS AND DESIGN PROCEDURE.

FORCES: WED = WEL = 1479LB - ; WAS = WAZ = 538LB GEARD CHAIN SPROCKET AT END OF SHAFT3:

SPEED: M3 = M2 . No/N = 256RPM . 24/48 = 128KPM

T3 = 63000(12)/128 = 5911 LB.AN

FN = F2 = T3 = 5917 LB1N = 2817 LB1 CHAIN

FBx = FB SINZO' = (ZAMLB) SINZO' = 964 LB-

Pay = Fo cas 200 = (28/128) cas 200 = 264718

RESULTANTS: MB=/36662+30962 MB = 4798 LEVIN. Mc= 28927-7941 Mc= 8451 LB.IN. BEARING FORCES! -RA=V12222+10322

R= 1600 LB Rc=17072+4262

Rc = 4320LB

CONVEYOR SHAFT FORCES: Fox = 969LB - ; Fox = 2647LB+ SPEED: ME = M3. 412/10.6 = 128.4.5/106 = 50.6 RPM; To - 63000(12)/50.6 = 14,932LB.IN 236

40

FIGURE PD-40: SHAFT Z: M=480RPM: POWER IN AT C=22.5 KW. POWER OUT AT A = 15 RW ! POWER OUT AT E= 7.5 RW. COAL CRUSHER - USE N=4 BECAUSE OF IMPACT AND SHOCK.

 $M = 480 \, \text{ReV} \times \frac{257 \, \text{LAV}}{2 \, \text{EV.}} \times \frac{1 \, \text{MIM.}}{60 \, \text{SEC.}} = 50.21 \, \text{RAD/S.}$

 $T_{AC} = \frac{P}{M} = \frac{15 \times 10^{3} N \cdot nm/s}{50.21 \, RAO/s} = 298 \, \text{N·m}$ $T_{CE} = \frac{P}{M} = \frac{7.5 \times 10^{3} N \cdot nm/s}{50.27 \, RAO/s} = 149 \, \text{N·m}$

TORQUE DN GEAR C = 22,5×103 N/m/s = 447 Nom
50. 27 RAO/s

FORCES:

5960

2067

V(W)

- 5960

M (Nim)

GEAR A! WEA = TA = 298 N·m 103 mm = 5960 N =

WAA = WEA tan 20' = (5960N) tan 20' = 2169 N

GEARC: Wec = Te = 447 N.m. 103 = 2980 N -

Wre = Wer ton 20° = (2980N) ton 20° = 1065 No GEAR E: WE = TE = 149N·m 103 = 4806 N

Wre = Wte ton 200 = (4806N) ten 200 = 1749 N

4806

HORIZONTAL RANE

8027

-913

-389

2980

4806

YERTICAL.

1006 1065 Roy 1749 . 2/69 1748 -249 175

MB = [596 2+ 217] 12 = 634 N.M.; Mc = [389 2+2492] = 462 N.M.; Mo = [4812+175] 2 512 N.M. 237

BEARING FORCES: RB= V8027 + 1846 = 8237 N; RD 5719 +1006 = 5861 N
PROPOSED SHAFT DESIGN:

ASSUME ALL FILLETS ARE SMALL RADIUS WITH K==2.5, EXCEPTILZ, 16 USE K== 3.D AT RING GROOVES WITH SHAPT DIA. = 1.06 × GROOVE DIA. USE K== 1.5 AT 12 AND 126 (WELL ROUNDED)

MATERIAL SELECTION: SAE 4140 OOT 1000, Su= 1/60 ma, Sy=100 mla

17% ELONGATION - GOOD STRENGTH AND DUCTILITY.

FROM FIG. 5-9: Sm = 400MPa.

SELECT Cs = 0.80 (FOLD = 65 mm OLLESS); CR = 0.81 (0.99 REJABILITY)

Sm' = Cs Ca Sm = (0.80)(0.81)(400MBa)=259MPa=259 N/mim2

SOLUTION FOR DIAMETERS USING EQ. 9-22-SUMMARY: (N=4)

LOCATION	Ko	M(N·ma)	T(N·mm)	DMIN	SPECIFIED D .
0,	2.5	0	298,000	21.56	50.0 mm
Dz	115	634,000	298,000	53.13	60.0 mm
D3	2.5	634,000	298,000	62.96	65.0 mm
DY	3.0	525,000*	298,000	62.82x	1.06 = 66.6
D5	2.5	462,000	298,000	56.67	900
06	20	462,000	149,000	60.19 -	11.06=63.8 -80.0 mm
D7	2.5	512,000	149,000	58.62	600 mm
D e	1.5	3/2,000	149,000	49.45	55.0 mm
Dq	2.5	0	199,000	17-11	45.0 mm

NOTES: D. AND DA ARE STANDARD BEARING BORES FROM TABLE 14-3.

* MOMENT AT DY ESTIMATED RETWEEN POINTS AND C.

BOOMM USED FOLDY, PS, AND DE TO PROVIDE SHOULDER FOR BEARINGS AT B AND D.

DZ AND DB PROVIDE EASE OF INSTALLATION FOR BEARINGS.

DI AND DO MADE LARGER THAN REQUIRED FOR COMPATIBLITY WITH ADJACENT DIAMETERS AND TO WITHSTAND MINERS AT SHOULDERS.

FINAL STRESSES MUST BE CHELLED AFTER SPECIFYING FILLET RADII, GROOVE GEOMETRY, AND BE ARING SELECTION.

41

FIGURE PR-41 DESIGN SHAPT AND LEVELS. F, = 20N

Fz = Fi (60 mm) /40 mm = 30 N: TORQUE = Fi . 60 = 1200 N. mm FROM B TO D.

USE SAE 1137 CO STEEL Su = 676MPa; Sy = 565MPa Sa = 260 MPa (FIG. 5-8) LET Cs = 0.9, Ce= 0.75 5m'=6.1)(0.75)(260)=/75MP0

WIPER MECHANISM HAS AN OSCILLATING MOTTON. BOTH BENDING AND TORSION WILL BEVARYING.

SHAFT RESTRAINED IN BEARING AT A BUT CAN FLOAT IN BEARING-C.

ASSUME KE = 25 AT PILLET TO RIGHT OF A. ASSUME Kt=1.0 ATC.

ASSUME LEVELS ARE INSTALLED WITH A LIGHT PRESS FIT AND TACK WELDED IN POSITION. USE K+ = 3.0 FOR WELD AREA.

DESIGN EQUATION 12-24 MUST BE MODIFIED FOR VARYING TORQUE. ADD KE FOR TORSION. SUBSTITUTE SM FOR SY. THEN:

LEVEL Z

$$D = \left[\frac{32N}{\pi} \sqrt{\frac{\text{Kes } M}{5n'}} \right]^{2} \frac{3(\text{Ker } T)^{2}}{4(5n')^{2}} \right]^{1/3}$$

$$D = \left[\frac{32(3)}{\pi} \sqrt{\frac{(\text{ho}(600))^{2}}{175}} \right]^{2} \frac{3(\text{ho}(1200))^{2}}{4(175)^{2}} = 5.94 \text{ m/m}$$

MMAX = QON)(60mm) = 1200 N.mm : 0= 11/5 REOD S = M = 1200 Nimm = 20.51 mm = 6 k/6

REO'D N = $\sqrt{65/6} = \sqrt{6(20.57 mm^2)/4.0 mm} = 5.55 mm AT SHAFT.$ BECAUSE SHAFT IS 10.0 mm DIA., LEVER IS ADEDUATE.

CROSS SETTION

CHAPTER 13 TOLERANCES AND FITS

- 1. LOOSE -RCB: HOLE +5; SHAFT -7 ; CLEARANCE +7 +15.5

 LIMITS: HOLE 3.5050 SHAFT 3.4930 CL 0.0070 TO 0.0155
- 2. PRECISION-RCZ: HOLE +0.4 ; SHAFT -0.25 ; CL +0.25 LIMITS: HOLE 0.50040 SHAFT 0.49975 CL 0.00025
- 3. LOOSE RCB: HOLE +2.8; SHAFT -3.5; CL +3.5

 ADJUST TOLERANCES FOR BASIC SHAFT SYSTEM ADD 35.

HOLE +6.3 ; SHAFT -1.6 ; CL +3.5

LIMITS: HOLE 0.6313 SHAFT 0.6250 CL 0.0035 TO 0.0079

- 4. CLOSE FIT -RELIABLE MOTION RC 5

 HOLE +1.2; SHAFT -24; CL +3.6

 LIMITS: HOLE 0.8002 SHAFT 0.7984 CL 0.00/6 TO 0.0036
- 5. LOOSE RCB: HOLE +4.0; PIN -5.0; CL +5.0 -7.5; CL +11.5 LIMITS: HOLE 1.2540 PIN 1.2450 CL 0.0050 TO 0.0115
- 6. LOOSE -RCB: HOLE -0; PIN -7.0 ; CL +15.5

 ADJUST TOLERANCES FOR BASIC SHAFT SYSTEM ADD 7.0

HOLE +7.0; PIN -3.5; CL +7.0

LIMITS: HOLE 4.0070 PIN 4.0000 CL 0.0070 TO 0.0155

PRECISION WITH WIDE TEMPERATURE VARIATIONS WOULD TYPICALLY CALL FOR RC3 OR RC4. RCZ PROBABLY TOO TIGHT FOR TEMP. CHANGE; RCS PROBABLY TOO LOOSE FOR REGIO PRECISION. RC3 OR RCY NOT AVAILABLE IN TABLE 13-6. ILLUSTRATE LIMITS WITH RCS: HOLE: +1,2 ; PIN -1,6 ; CL +1.6 LIMITS: HOLE 0.75/2 PIN 0.7476 CL 0.00/6 TO 0.0036

8. LOOSE - RCB: HOLE -0 ; SHAFT -5.0 - ; CL +5.0 ADJUST TOLERANCES FOR BASIC SHAFT SYSTEM - ADD 5.0.

HOLE +9.0; SHAFT -25; CL +5.0

4MITS: HOLE 1.5090 SHAFT 1.5000 CL 0.0050 TO 0.0115

10. a = 0; b = 325/2 = 1.625/4; C = 4.000/2 = 2.000 /4: BOTH STEEZ USEFNS -HEAVY FORCE FIT

HOLE: +2.2 SHAFT! +8.4 INTERFERENCE: 4.8

+7.0 #7.0 8.4

LIMITS: HOLE 3.2522 SHAFT 3.2587 SMM = 0.0084 IN.

 $(EQ. 13-2) \quad p = \frac{ES}{26} \left[\frac{(C^2-b^2)(b^2-a^2)}{2b^2(C^2-a^2)} \right] = \frac{(BoX10^6)(a.0089)}{2(1.625)} \left[\frac{(B.00^2-1.625)^2(1.625)^2}{2(1.625)^2(2.00^2-0)} \right]$

 $\rho = 13175$ pai $\sigma_0 = \rho \left(\frac{c^2 + b^2}{C^2 - b^2}\right) = 13175$ $\left[\frac{2.00^2 + 1.625^2}{20^2 - 1.625^2}\right] = 64363 \ \rho \text{ in Not acceptable}$ $\left[\frac{2.00^2 + 1.625^2}{20^2 - 1.625^2}\right] = 64363 \ \rho \text{ in Not acceptable}$

11. a = 3.50/2 = f.250/A = 4.0/2 = 2.000 IN; C = 4.50/2 = 2.250/AFN3: HOLE +1.4 SNAPT +4.9 INT. 2.6 LIMITS: SLEEVE ID = 4.0014 : BROWNE OD = 4.0049 : SMAN ... SMAN ... SMAN ... SMAN ... p = 1575 psi -(=0.13-3) USING E0 = 30 K106 P8i E1 = 15×10 (15)
Vo = 0.27 Vx = 0.27
To = 13 438 pri -(=0 13-4) INNOL SURFACE OF STEEL SLEEVE ON = - 11 869 poi - (EQ. 13-5) OUTER SURFACE OF BROWZE BUSHING NOTE: APPENDIX A-12, BEARING BRONZE HAS A YIELD STRENGTO OF 18 000 PSj. N= SY = 18000 = 1.52 LOW 241

9 TOLERANCE DIAGRAMS FOR PROBLEMS 1-8.

STRESSES FOR FORCE FITS Refer to Figure 13-6 for geometry	Proble	m identifica	tion	: Problem 12
	1	ical values i		
Inside radius of inner member =	a =	0.0000	in	
Outside radius of inner memeber =	b =	1. 5000 i	in	
Outside radius of outer memeber =	c =	2.5000	in	
Total interference =	δ =	0.0072	in	
Modulus of outer member =	Eo =	1.00E+07	psi	ALUMINUM
Modulus of inner member =	E 1 =	3.00E+07	psi	STEEL
Poisson's ratio for outer member =	vo =	0.33		
Poisson's ratio for inner member =	vi =	0.27		
Сотр	uted res	ults:		
Pressure at Mating Surface:	ρ=	8894	ρsi	Using Equation (13-3)
Tensile Stress in the Outer Member:	<i>σο</i> =	18901	psi	Using Equation (13-4)
Compressive Stress in the Inner Member:	σι =	- 8894	psi	Using Equation (13-5)
Increase in Diameter of Outer Member:	δο =	0.00655	in	Using Equation (13-6)
Decrease in Diameter of Inner Member:	$\delta t =$	0.000 65	in	Using Equation (13-7)

EVALUATE FINS FIT FOR MAXIMUM INTERFERENCE.

HOLE TOLERANCE: + 0.0018 SHAPT ! + 0.0072 INTERFERENCE: 0.0092 +0,0060

MAX. INTERFERENCE = 0.0072 - 0 = 0.0072 SMALLETT HOLE LARGEST SHACE

STRESS IN ALVAINUM = 18 901 B; TENSION ASSUMING NO ADDITIONAL LOADS AND STATE CONDITION!

LET N=2. REO'D SY=2(18901 PSi)= 37802 PSi SPECIFY ANY ALUMINUM ALLOY WITHSY > 3780051

EXAMPLESS 2014-14, 58= 42KSi OR 6061-16, 58=40KSi

ANY STEEL FOR ROD WOULD BE SATISFACTORY, PROVIDED

5y72(8894 (si) = 17188 ANY CARBON OR ALLOY STEEL WITH ST7. 18 000 PSi FROM APP. 3. EXAMPLES AISI 1020 HR, SY = 30 KS; A181 1040 HR, Sy = 42 KS1

- [3] STECL SLEEVE ON ALUMINUM TUBE A = [2.00 2(0.065)]/2 = 0.935 in ; b = 2.00/2 = 1.000 m; C = 3.01/2 = 1.500 m EQ.13-5 $G_1 = -p \left(\frac{b^2+a^2}{b^2-a^2}\right) = -p \left(\frac{1.00}{1.00-.577^2}\right) = -p(14.896)$ FOR $G_1 = -8500 \text{ psi}; \rho = \frac{-8500 \text{ psi}}{14.598} = 570 \text{ psi}; \text{ MAX ALLOWABLE}$ FROM EQ.13-3 $\frac{501.05}{E_0} = \frac{5000 \text{ psi}}{C^2-b^2} + \frac{1}{16} + \frac{b^2+a^2}{b^2-a^2} \frac{1}{16} = \frac{1}$
- NOMINAL DIA. = 3.250 IN. ; ASSUME MAX INTERFERENCE = 0.0084 IN

 FOR PINAL CLEARANCE = 0.002, CHANGE IN DIA. = 0.0084+0.002=0.0104

 DC = \frac{8}{\times L} = \frac{0.0104 IN}{(6.5 \times 0)^{9} \frac{1}{5} (3.250 M)} = 492 \frac{1}{5} \frac{1}{5} = 75 \frac{1}{5} + 492 = 567 \frac{1}{5} \frac{1
- BROWLE -SHENK FROM TIS TO-200; BE=954 $S = KL(bt) = (1.0 \times 10^{-6})(4.00)(-95) = -0.0038 \text{ M.}$ MAX INTERFERENCE = 0.0049 IN. $\frac{-0.0038}{0.0011}$ $\frac{+0.0040}{0.0051}$ DESIRED CLEMANCE

 0.0051 IN RED'D EXPANSION OF STEEL. $\Delta t = \frac{S}{dL} = \frac{0.0051}{(6.1\times 10^{-6})(4000)} = \frac{209^{\circ}F}{25^{\circ}F}$ AMBIENT $\frac{284^{\circ}F}{0.005}$ RED'D STEEL TEMP.
- 16 EQ.13-7 $S_i = \frac{-2b p}{B_i} \left\{ \frac{b^2 ra^2}{b^2 - a^2} - V_i \right\} = \frac{-2(2.60)(1575)}{(17 \text{ M/S})} \left\{ \frac{2.60^2 + 1.75^2}{2.00^2 - 1.75^2} - 0.27 \right\}$ $S_i = -0.00269 \text{ IN}$ FINAL ID = 3.500 - 0.00269 = 3.4973 IN.

CHAPTER 14 ROLLING CONTACT BEARINGS

- [.] EQ 14-2: La= (c) k (106) = (2350 3.0 (106) = 2.76 × 106 REV.
- 2. Ly = (20 000 HR)(8 80 RPM)(60 MIN/NR) = 1.06 X109 REV. EQ. 14-3: C= P3 (L3/106) 1250 (1.06×109/106)=12745-LB
- 3. Eq. 14-2 (a) $L_1 = \left(\frac{c}{\rho_0}\right)^2 (10^6) = \left(\frac{3/50}{2200}\right)^3 (4^6) = 2.94 \times 10^6 \text{ ReV},$ (b) $L_4 = \left(\frac{3/50}{4500}\right)^3 (6^6) = 0.343 \times 10^6 = 3.43 \times 10^5 \text{ ReV},$
- 4. USE Ly = (5000 HR)(1150 RPM)(60 MIN/AR) = 1.04 X109 REV C = Pd (La/106) 1/2 = 1450 (1.04 X104/106) 13 = 14667 LB
- 5. FROM FIGURE 12-12:

 REACTION AT B: = Re=[Rex²+Rey²=]458²+4620° = 4643LB

 REACTION AT D: = Ro = |Rox²+Ro²² = |/1223²+1680° = 2078 LB

 FROM 5X, 1218.12-1; DIA. AT B (MIN.) = D3 = 3.55 IN

 DIA, AT D (MIN.) = D6 = 1.09 IN

 INDOSIEIAL BLOWER; USE Ly = (10, 000 Hz) (600 RBM) (10) = 3.60 × 108 REV.

REOTO. C VALUE AT 8: C = RG (3.6 X/0 8/16) = 4643 (7.114) = 33 DZ9 LB.

AT D: C = Ro(3.6x08/16) = 2078(7.114) = 14 782 LB.

FROM TABLE 14-3 ! BRG, 6319 HAS C=34397LB; BORE = 3.7402.14-BRG, 6311 HAS C=16076 LB; BORE = 2.16541N. 6. DATA OF EX, 1208. 12-2: FROM FIG. 12-16

RB = 5892+1642=611 LB & RO= 3932+1882= 436 LB

DBM = 2.02 IN & DOMM = 1.98 IN. FROM TABLE 12-2.

TABLE 14-4: AGRICHITURAL EQ. -LET LA = 5000 HR Ly = (5000)(1700 RIM)(60) = 5.1 XNB REV

REQ'D C VALUE AT B: C = 6/1 (SNX108/106) = 4887 LB

AT D! C = 436 (S,1X,18),16 = 3483LB

ATB: FROM TABLE 14-3: BEARING 6011 HAS C=6317 LB AND

A BORE OF 2-1654 IN. CIS ANGHER THAN RED'D BUT

SHAFT DIA. MUST BE > 2,02 IN.

SPECIFY BRG. 6011 FOR BOTH B AND D.

7. DATA OF EX. PROB. 12-3 AND FIGS. 12-17 AND 12-18

RA = \$\sigma 509^2 + 41^2 = \$509 LB ; Rc = \$\sigma 1697^2 + 393^2 = 1742LB RADIAL

RA IGRELY RADIAL ; BREC CARRIES 265 LB THEUST LOAD

DAMN = 0.59 IN ; Demm = 2.26 IN

USE Ld = (20 000 HR) (10) RAM) (60) = 1,2 × 108 REV.

REQ'D. C VALUE AT A: CA = 509 (LZX108/10) = 25/9 LB

BRG. 6302 HAS C = 2563 LB AND A BORE OF 0.5906 IN.

SHOULD BE COMPATIBLE WITH DIA. Dz (FIG 12-16) TO

PROVIDE A SHOWLOCK FOR THE BEAGING. A LIGHTER BEARING

WITH A LARGER BORE MAY BE PREFERRED.

BEARING C: COMBINED RADIAL & THRUST LOAD. (EQ. 14-5)

ASSUME Y=1.5: P = 0.0)(0.50)(1742)+ (1.5)(265) = 1373 LB.

Cc = 1373 (12×109/101) = 6772 LB.

BRG. 6212 HAS C=10679 LB, BORE = 2.3622 IN , Co = 7307 LB

CHECK: T/co = 265/7307 = 0.0363—C=0.24

T/R = 265/1742 = 0.152 < C - USE EQ.14-5; P=1.0 R=1742 LB

Cc = 1742 (1.2×109/106) = 8592 LB — BRG. 6212 OK,

ROLLING C	ONTACT B	EARING D	ESIGN CA	LCULATI	ROLLING CONTACT BEARING DESIGN CALCULATIONS - CHAPTER 14	TER 14		Summar	Summary of Design Calculations	Calculat	tions				
LISING DAT	LISING DATA FROM TARIF 14-3	TARIF 14.3		INNED	TATOE BOTAT	EC INI ALL	CACEC			4.5	17				
		עמרני דיין			NACE NOTALES IN ALL CASES	ES IN ALL	CASES	see man	see manual solutions for details of calculations	is tor de	tails of C	alculatik	Suc		
												NS = K	NS = Not specified	ified	
PROB	RADIAL	THRUST			0.000	EQUIV	DYNAMIC		RATED			Σ N			
O	LOAD, R	LOAD, T	SPEED	品	LIFE	LOAD, P	LOAD, C	BRG.	LOAD, C	BEARII	BEARING BORE	BORE	×	>-	ပိ
& BRG	(LB)	(LB)	(RPM)	(HR)	(REV.)	(FB)	(LB)	NO.	(FB)	(mm)	(in)	(in)			
5-BRG. B	4643	0	009	10000	3.60E+08	4643	33029	6319	34397	95	3.7402	3.55		0	48561
5-BRG. C	2078	0	009	10000	3.60E+08	2078	14782	6311	16076	55	2.1654	1.09	-	0	48561
6-BRG. B	611	0	1700	2000	5.1E+08	611	4882	6011	6317	55	2.1654	2.00	Н	0	4766
6-BRG. D	436	0	1700	2000	5.1E+08	436	3483	6011	6317	55	2.1654	1.98	T	0	4766
7-BRG. A	509	0	101	20000	1.21E+08	209	2519	6302	2563	15	0.5906	0.59	T	0	1214
7-BRG. C	1742	265	101	20000	1.21E+08	1742	8621	6212	10679	09	2.3622	2.26	Ţ	0	7307
6	455	0	1150	20000	1.38E+09	455	2066	9089	6317	30	1.1811	NS	Ţ	0	10
10	857	0	450	30000	8.1E+08	857	7989	6308	9218	40	1.5748	NS	ч	0	10
11	1265	645	210	2000	6.30E+07	1579	6284	6307	7464	35	1.3780	NS	0.56	1.35	4272
12	235	88	1750	20000	2.1E+09	301	3860	6305	5058	25	0.9843	NS	0.56	1.93	2608
13	2875	1350	009	15000	5.4E+08	3919	31909	6318	32149	96	3.5433	NS	0.56	1.71	24281
14(M>lb)	854	0	3450	15000	3.11E+09	854	12459	6310	13894	20	1.9685	NS	T	0	10
14(kN)	3.8	0	3450	15000	3.11E+09	3.80	55.44	6310	61.8	20	1.9685	NS	1	0	10
15(kN)	5.6	2.8	450	2000	5.40E+07	6.78	25.61	9089	28.1	30	1.1811	SN	0.56	1.3	16
16(kN)	10.5	0	1150	20000	1.38E+09	10.50	116.90	6316	124.0	80	3.1496	NS	-	0	10
16(M>lb)	2361	0	1150	20000	1.38E+09	2361	26286	6316	27878	80	3.1496	NS	_	0	10
17(kN)	1.2	0.85	860	20000	1.03E+09	2.04	20.62	6305	22.5	25	0.9843	NS	0.56	1.61	11.6
24-1	1750	350	101		0	1750	0	6211	9802	55	2.1654	NS	-	0	6520
24-2	009	250	101		0	809	0	6211	9802	55	2.1654	NS	0.56	1.89	6520
24-3	280	110	101		0	403	0	6211	9802	55	2.1654	NS	0.56	2.24	6520
See manual solution for combined loading and	Solution	for combir	ned loadii		overall life for Problem 24.	r Problem	. 24.								

19. VARYING LOADS: (BRG. 6324)
$$m = 600 \text{ rpm}$$
; $C = 46783$

1 YDOLB 25 MIN $F_{m} = \frac{25(4500)^{3} + 15(2500)^{3}}{40} = 3975 \text{ LB}$

2 2500 LB 15 MIN $F_{m} = \frac{25(4500)^{3} + 15(2500)^{3}}{40} = 3975 \text{ LB}$
 $L = (\frac{C}{F_{m}})^{3} = (\frac{46783}{3975})^{3} = \frac{1630 \times 0^{6} \text{ rw}}{10} \times \frac{MIN}{10} \times \frac{h}{10} = \frac{1}{10} = \frac{45285 \text{ h}}{10}$

20 BEARING 6314, $m = 600 \text{ rpm}$; $C = 23381 \text{ LB}$.

20 BEARING 6314,
$$m = 600 \text{ rpm}_{3} C = 23381 \text{ LB}_{2}$$

1. 2500 LB 25 MIN $F_{m} = \left(\frac{25(2500)^{3} + 15(1500)^{3}}{40}\right)^{1/3} = 2226 \text{ LB}$

2. 1508 LB 15 MIN
$$L = \left(\frac{C}{F_{m}}\right)^{3} = \left(\frac{23381}{2226}\right)^{3} = \frac{1159 \times 10^{6} \text{ rw}}{(600 \text{ rw}/mm)(60 \text{ mm/h})} = 32,189 \text{ h}$$

$$F_{m} = \frac{\left(480(600)^{3} + 1/5(200)^{3} + 45(100)^{3}\right)^{1/3}}{640} = 547LB$$

$$L = \left(\frac{C}{F_{mm}}\right)^{3} = \left(\frac{7464 LB}{547LB}\right)^{3} = \frac{2580 \times 10^{5} rur}{\left(1700 rur/min\right)\left(\frac{60 rm/L}{L}\right)} = \frac{24,969 L}{100 rur/min}$$

22. BEARING 6209, M=1700 Npm, C=7464 LB

1. 450 LB 480 MM

2. 180 LB 115 MIN

3. 50 LB 45 MIN

640 MIN

$$F_{M} = \left(\frac{480(450)^{3} + 115(180)^{3} + 45(50)^{3}}{640}\right)^{1/3} = 411 LB.$$

$$1 = \frac{1}{2} \left(\frac{3}{2} + \frac{5464}{2}\right)^{3} = 6200 \text{ min}$$

$$L = \left(\frac{C}{F_m}\right)^3 = \left(\frac{5464}{411}\right)^3 = \frac{5989 \times 10^5 \text{new}}{(1700 \text{New}/m_M)(60 \text{m/h})} = \frac{58,720 \text{ h}}{}$$

23. BEARING 6205,
$$M = 10/Npm$$
, $C = 3/47 LB$

1. 500 LB 6.75 h

2. 800 LB 0.40 h

3. 100 LB 0.85 h

8.00 h

$$L = \left(\frac{C}{Fm}\right)^3 = \left(\frac{3/47}{50B}\right)^3 = \frac{237.7 \times 10^5 Nev}{(101 Nev/min)(60 min)/h} = \frac{39231 \text{ h}}{(101 Nev/min)(60 min)/h}$$

24. BEARING 62/1, M=101 Npm, C=9802 LB, Co=6520 LB

COMBINED RADIAL AND THRUST LOADS:

COMPUTE EQUIVALENT LOAD P AS INSECTION 14-10.

1. 6.75h 1750 LB 350LB 0.20 0.653 0.26 - 7750 LB=R

2. 0.40 h 600 LB 250 LB 0.417 0.0383 0.234 1.89 809 LB

USE EQUIVALENT LOADS TO COMPUTE FM.

$$F_{m} = \left(\frac{6.75(1750)^{3} + 0.40(809) + 0.85(403)^{3}}{8.00}\right) = \frac{1658LB}{1658LB}$$

$$L = \frac{16}{1658} = \frac{1658}{1658} = \frac{206.7686 \text{ rw}}{(101 \text{ rw/mm})(60 \text{ min/h})} = \frac{34,115 \text{ h}}{1658}$$

- 25. g = 1450 LB. n = 1150 RPM. $L_d = 15000 h$. $R = 0.95 \Rightarrow CR = 0.62$ ACTUAL $L_d = (15000 h)(1150 RPM)(160 MIN/h) = 1.04 × 109 REV$ ADJUSTED $L_{da} = L_d/C_R = 1.04 \times 109/0.62 = 1.68 × 109 REV$ E0 14-3!: $C = P_d = \frac{(L_{da})^{1/4}}{10^6} = 1450 = \frac{(1.68 \times 109)^{1/3}}{10^6} = 17229 LB$.
- 26. $P_d = 509 LB. M = 101RPM. Ld = 26000 Å. R = 0.99 \Rightarrow CR = 0.21$ ACTUAL L_d = $(20000)(101)(60) = 1.21 \times 10^8 REV.$ ADJUSTED Lda = $\frac{L_d}{CR} = \frac{1.21 \times 10^8}{10^6}/0.21 = 5.77 \times 10^8 REV$ EQ. 14-3: $C = 509 \left(\frac{5.77 \times 10^8}{10^6}\right)^{1/3} = \frac{4238 LB}{10^6}$
- 27. $Pd = 436 LB. M = 1700 RPA. L_J = 5000 h. R = 0.97 \implies 0.44$ ACTUAL $L_J = (5000)(1700)(60) = 5.10 \times 10^8 REV.$ ADJUSTED $Lda = \frac{L_0}{CR} = \frac{5.10 \times 10^8}{0.44} = 1.16 \times 10^9 REV$ EQ. 14-3; $C = 436 \frac{(1.16 \times 10^9)^{1/3}}{10^6} = \frac{4580 LB}{10^8}$
- Z8. $P_{3} = 1250 \, L6$. $M = 880 \, RPM$. $L_{3} = 20000 \, h$. $R = 6.95 \Longrightarrow C_{R} = 0.62$ ACTUAL $L_{3} = (20000 \, h)(880 \, RPM)(60 \, min/h) = 1.06 \, k/0^{9} \, REV$ ADJUSTED $L_{1} = \frac{L_{3}}{C_{R}} = \frac{1.06 \, k/0^{9}}{10^{4}} \frac{1}{3} = \frac{14928 \, LB}{1928 \, LB}$

CHAPTER 16 PLAIN SURFACE BEARINGS

All of the problems in this chapter are design problems with no unique solutions. A sample of each type of design problem is shown here.

1. F = 225 LB; D = 3.00 M; M = 1250 RPM BOUNDARY LUBRICATED

LET L = 1.50 = 1.5(3.00) = 4.50 M.

BEARINGS $P = \frac{E}{4.50} = \frac{225 LB}{4.50(3.00) M^2} = 16.67 psi$

V = 170 m/12 = 17(3.00)(1750)/2 = 1374 FT/mm pV = (16.67)(1374) = 22900 psi - fgm

REO'D PV-RATING - 2(PV) = 2(22900) = 45800 psi-fpm
POROUS BROWZE BEARING MATERIAL/OIL IMPREGNATED

- OR BU OR D'U DRY LUBRICATED BEARING

 4. F= 25 LB; D= 0.50 in; M = 600 rpm

 LET L= 1.50 = 1.5(0.50) = 0.75 in

 p = F/LD = 75/(.75%,50) = 200,0 psi \ , sV = 15 708 psi \ fpm

 V = H(.50)(600)/12 = 78.5 ft/mi

 REQ'O pV = 2(15 708) = 31416 psi fpm POROUS BLONZE

 GR BU BEARING
- 7. F = 800 LB; D = 3.00 in; M = 350 AproLET L = 1.50 D = 1.50(3.00) = 4.50 in $p = \frac{f}{LD} = \frac{800}{4.50}(3.00) = 59.3 \text{ psi}} pV = 16 290 \text{ psi-fpm}$ $V = \frac{17(3.00)(3.50)}{LD} = \frac{275 \text{ fpm}}{LD}$ $REQ'D pV = \frac{2(16 290)}{LD} = \frac{32580 \text{ psi-fpm-forews Browze}}{LD}$

OR <u>BU BEARING</u>

8 F = 60 LB; D = 0.75 in; m = 750 RPM: TRY L = 125 D = 1.25 (0.75) = 0.938 in

LET L = 1.00 in.; L/O = 1.00/0.75 = 1.33 <u>OK</u>

θ = F/LD = 60/(1.00)(0.75) = 80 pri

V = ΠDM/2 = Π(0.75)(750)/2 = 147.3 pr/min)

REQD pv RATING = 2(11784) = 23568 pri from - USE BABB HT-HIGHTIN

9.
$$F = /250 LB$$
; $D_{MM} = 2.60/N$, $j_{M} = /750 RPM$; $FLECTRIC MOTOR$
 LET_{MOTOR}
 $LET_$

13.

F=500 LB; Dmn= 1.15 IN; M = 2500 RPM; PRECISION SPINDLE LET D= 1.200/N ; R= 0/2= 0.600 N. FOR p = 200 psi; L = po = 500 LB = 2.08 1/0 = 2.08/1.200 = 1.73; LET 1/0=1.60; L=1.500 = (.5)(1,2)=1.800m $p = \frac{F}{L_0} = \frac{500}{0.800 V_{1200}} = 232 \, \rho si$ or Cd = 0.0014 IN ; Cn = 0.0007 IN; R/cn = 0.600/0.0007 = 857 SURFACE FINISH: 8-16 MM AVG. ho = 0.00025 (1.20) = 0.00030 M; ho/cn= 0.0003/0.0007 = 0.429 S= 0.11 ; Ms = 2500/60 = 41.67 rem/s REQ'D M = SP = (0.11)(232) = 0.832 X/0 REYNS SAE SW HAS M = 0.91 x10-6 @ 160'F S 15 PROPURTIONAL TO M: 5=0.11(91/.832) = 0.120 f (P/CN) = 2.80 FROM FIG. 16-8: $f = \frac{f(R/cn)}{(R/cn)} = \frac{2.80}{857} = 0.0033$ TF= FFR=(0.0033)(500P)(0.60M)= 0.98LB.IN Ps= Ts m/63000 = (0.98 N.IN) (2500 NPM)/63000 = 0.039 Kp

F = 18.7 kN; DMM = 100mm; M = 500 RPM; CONVEYOR

D = 100 mm; R = 50 mm

FOR p = 2.0 MPa = 2.0 N/mm²; L = F = 18.7×103N = 93.5mm LET 40=1.0; L=D=100 mm

p= F = 18.7 x 03 N = 1.87 N/mm = 1.87 MPa OK

(LARGE CLEARANCE DESIRED)

SURFACE FINISH: NOTE: 1.0 MN = 1.0 XID W X -0254M = 0254MM

THEN BMW = 0.20 Mm; 16MW = 0.40Mm; 32MW = 0.80 Mm 63MW = 1.60 MM

SOECIFY SURFACE FINISH = 0.8 TO 1.6 flm AVG.

1. =0.00025(100) =0.025 mm; ho/cn = 0.025/0.075 =0.333

S=0.096; Ms=m/60= 500/60 = 8.33 REV/S

RED'D M = SP (0.096)(1.87×1060) = 0.0485 Pa.S

AT 70°C , SAE 50 HAS M = 0.046 Pa. S. LO SUGHTLY < 0.025mm

S=(0.096) 0.0485 = 0.09/ - S(P/cn) = 2.6

 $f = \frac{f(R/cn)}{R/cn} = \frac{2.6}{667} = 0.0039$

Tf = fFR = (0.0039)(18.7×103N)(50×103m) = 3.65 N·m

Pg = Tm = 3.65 Nimx 8.33 REV 21T RAD = 191 Nim = 191 WATTS

17.

F = 225 RN; Dmin = 25 mm; n = 2200 RPM; MACHINE TOOL LET D = 25 mm; $R = \frac{0}{2} = 12.5 mm$ $R/c_1 = \frac{7.5}{0.018} = 694$ FOR $P = 2.0 MB_2$; $L = \frac{F}{40} = \frac{2.25 \times 10^3 N}{(2.0 N/mm^2)(25 mm)} = 45 mm$ LET L=20 =50 mm; 40 =2,0 p = F = 2.25×103N = 1.80N/mm = 1.80MPN OK SURFACE FINISH: 16-32 MN AVG. (0.4 TO 0.8 MM AVG.) 10 =0.00025 (25) = 0.00625mm= 0.006mm ho/cn = 0.006/0.018 = 0.333 -- S= 0.057 Ma= M/60 = 2200/60 = 36.7 REV/S ROQO, M = Sp = (0.057)(1.80x106Pa) = 0.0058 Pa.S SAE SW HAS M = 0.00 66 Pais @ 70°C S= 0.057 (.006/0.0058)= 0065 - f(P/cr)=1.6 $f = \frac{f(R/cn)}{R/c} = \frac{1.6}{694} = 0.0023$ Ty = FFR=(0.0023)(2.25x18N)(10.5x103m) = 0.065 N·m PG = TAM = (0.065N.m)(36.7 ESV) (2TRAD) = 15.0 N.M P. = 15.0 WATTS

$$F = 1250 LB; p_{S} = 300 pai : LET p_{N} = 250 pai$$

$$LET \frac{R_{N}/R}{R} = 0.50 ; a_{f} = 0.55 ; g_{f} = 1.40$$

$$A_{p} = \frac{F}{a_{f} p_{N}} = \frac{1250 LB}{6.55)(250 LB/N)} = 9.09 m^{2} = 770^{2}/4$$

$$D = \frac{4}{A_{p}/R} = \frac{4}{9.09} \frac{9.09}{R} = \frac{3.40 m}{9.08} OE$$

$$R = 0/2 = 1.70 m; R_{N} = 0.5 R = 0.5(1.7) = 0.85 m.$$

$$LET L = 0.005 m; She 30 or (2/20 F - M = 8.3×10 LB.5/m^{2})$$

$$Q = q_{f} \frac{F}{A_{f} M} = \frac{(1.40)(1250 LB)(.005)^{3}/n^{3}}{(9.09/m^{2})(8.3×10^{2} LB.5/m^{2})} = 2.90 m^{3}/s$$

P= pn Q= (250 ce/N) (2.90/N3/s) = 725 ce 1N/s 1AP = DAIKA

21.

$$F = 3500 \, \text{LB}; \, \rho_S = 500 \, \text{PS}i : \text{LET } p_n = 350 \, \text{PS}i$$

$$\text{LET } \frac{Rn}{R} = 0.60; \, Q_f = 0.62; \, g_g = 1.60$$

$$Ap = \frac{F}{Q_f p_n} = \frac{3500 \, \text{LB}}{(62)(350 \, \text{LB}/N^2)} = 16.13 \, \text{N}^2$$

$$D = \sqrt{4 \, \text{Ap}/\pi} = \sqrt{4 \, (16.13)/\pi} = 4.53 \, \text{NN} - \text{USE } 0 = 4.50 \, \text{NN}.$$

$$Ap = 170^2/y = 17(4.50)^2/y = 15.90 \, \text{NN}^2$$

$$P_n = \frac{F}{Q_f A_f A_f} = \frac{3500 \, \text{LB}}{(6.62)(15.90 \, \text{NN}^2)} = 355 \, \text{ps}i \, \text{QM}$$

$$R = 0/2 = 2.25 \, \text{IN}; \, R_n = 0.60 \, R = 1.35 \, \text{NN}.$$

$$\text{LET } R = 0.008 \, \text{IN} : \text{SAE } 40 \, \text{QL} \, \text{Q} \, \text{Hb}^{\circ} F_3 \, \text{M} = 7.0 \, \text{No}^{\circ} \, \text{LB} \cdot \text{S/N}^2$$

$$Q = \frac{g_f \, \text{F} \, \text{L}^3}{A_f \, \text{M}} = \frac{(1.60)(3500 \, \text{LB})(0.008)^3 \, \text{N}^2}{(5.90 \, \text{N}^2)(7.0 \, \text{No}^{\circ} \, \text{LB} \cdot \text{S/N}^2)} = 25.8 \, \, \text{N}^3/\text{S}$$

$$P = p_n \, Q = (355 \, \text{Lg/N}^2)(25.8 \, \text{IN}^3/\text{S}) = \frac{9145 \, \text{LB} \, \text{VN/S}}{(6600 \, \text{LB} \, \text{MS})^3/\text{A}} = 1.39 \, \text{Rp}$$

25, HYDROSTATIC LUBRICATION - METRIC DATA

$$F = 22.5 \text{ kN}; p_s = 20 \text{ M/a} : \text{LET } p_h = 1.60 \text{ MPa} = 1.6 \times 10^{1} \text{ M} = 1.60 \text{ M/m}^{2} = \frac{F}{0.60} = \frac{22.5 \times 10^{3} \text{ N}}{(.62)(.60 \text{ N/mm}^{2})} = 2.27 \times 10^{7} \text{ m/m}^{2} = \frac{2.27 \times 10^{7} \text{ M/m}^{2}}{(.62)(.60 \text{ N/mm}^{2})} = 170 \text{ m/m} \text{ OK}$$

$$P = \sqrt{4.49/r} = \sqrt{4(.27 \times 10^{7})/r} = 170 \text{ m/m} \text{ OK}$$

$$P = \sqrt{4.49/r} = \sqrt{4(.27 \times 10^{7})/r} = 170 \text{ m/m} \text{ OK}$$

$$P = \sqrt{4.49/r} = \sqrt{4(.227 \times 10^{7})/r} = 170 \text{ m/m} \text{ OK}$$

$$P = \sqrt{4.49/r} = \sqrt{4(.227 \times 10^{7})/r} = 170 \text{ m/m} \text{ OK}$$

$$P = \sqrt{4.60 \times 10^{6} \text{ M/m}^{2}} \times \sqrt{6.054 \times 10^{6} \text{ N/m}^{2}} = \frac{9.91 \times 10^{5} \text{ m/s}}{5} = \frac{9.91 \times 10^{5} \text{ m/s}}{5} = \frac{1.59 \text{ WATTS}}{5}$$

26.

LET pr = 600 kPa = 0.60 MPa = 0.60 XID N/m2 = 0.60 N/mm2

$$A_p = \frac{F}{a_s \cdot p_A} = \frac{1.20 \times 10^3 N}{(62 \times 1.60 N/mm^2)} = 3226 mm^2$$

$$Q = \frac{4 + 1}{4 + 1} = \frac{(1.60)(1200N)(0.10)^{3}}{(3226 mm^{2})(0.014 Nis/m^{2})} \cdot \frac{1}{13mm} = 4.25 \times 10^{-5} m^{3}/s$$

CHAPTER 17 LINEAR MOTION ELEMENTS

7.
$$\lambda = Tom^{-1} \left(\frac{L}{TO\rho}\right) = Tom^{-1} \left(\frac{0.333}{T(0.2932)}\right) = Tom^{-1} \left(0.0463\right) = 2.65^{\circ}$$
 $con \phi = con /4.5^{\circ} = 0.968$
 $(EQ. 18-10)$
 $Tu = \frac{FDo}{2} \left[\frac{con \phi tom \lambda}{con \rho - 5 tom \lambda}\right] = \frac{30000(2.2934)(.968)(.0463) + .15}{2}$
 $Tu = 6974 line$

8.
$$T_{J} = \frac{FD\rho}{2} \left[\frac{f - condtan}{cond + ftan} \right] = \frac{30000(2.2939)}{2} \frac{.15 - (968)(.0463)}{.968 + .15(.0463)}$$

$$T_{J} = \frac{37/2 \text{ ll·in}}{2}$$

9. SQUARE THREAD:
$$3/y - 6$$
; $F = 4000LB$, $L = p = \frac{1}{4} = \frac{1}{6} = 0.16671M$.

$$TM = \frac{FD\rho}{2} \left[\frac{L + Tr + D\rho}{TO\rho - + L} \right] = \frac{4000(a6424)}{2} \left[\frac{1667 + Tr(.15)(.6424)}{T(.6424) - .55(.1667)} \right]$$

$$Tu = 303 ll \cdot in$$

10.
$$\frac{10}{10} = \frac{100}{2} \left[\frac{11}{11} \frac{100}{11} + \frac{100}{11} \right] = \frac{4000(.6924)}{11} \left[\frac{11}{11} \frac{1$$

12.
$$e = \frac{FL}{2\pi T_{\mu}} = \frac{(4000)(0.1667)}{2\pi (303)} = 0.35 \text{ or } \frac{35\%}{2}$$

13.
$$m = \frac{0.501N}{5}$$
, $\frac{1REV.}{0.16671N}$, $\frac{605}{MIN} = \frac{180RPM}{180}$
 $P = Tm/63000 = (303)(180)/63000 = 0.8666P$

16.
$$M = \frac{1REV}{0.51N} \times \frac{10.01N}{MIN} = \frac{20.8RPM}{20.00RPM}$$

$$P = \frac{TM}{63000} = \frac{53.1(20.0)}{63000} = \frac{0.0171p}{63000}$$

METRIC TRAPEZOIDAL POWER SCREWS - TABLE 17-1 M

SPECIFY A SIZE: LOAD = 125 AN; Oa = 75 MPa = F PROBLEMS 18 TO 23 USE SAME DATA REO'D. $A_{T} = \frac{F}{\sigma_{0}} = \frac{125000 \text{ N}}{75 \text{ N/mm}^{2}} = 1667 \text{ m/m}^{2} - \text{WE M55 x 9 SCREW}$ NOMINAL Do = 55 mm; LEAD = PITCH = 9,0 mm FOR SINGLE THREAD

Dp = 50,5 mm

19. FIND TORQUE TO RAISE 125 kN LOAD FOR f = 0.15. $T_{U} = \frac{FD_{P}}{2} \left[\frac{L + ff f D_{P}}{TfD_{P} - fL} \right] = \frac{125000 N(50.5mm)}{2} \frac{9.0 + ff(0.15)(50.5)}{ff(60.5) - (0.17)(9.4)} \frac{E017-2}{2}$

Tu = 658 559 N. mm = 658.6 N.m

20. FIND TORQUE TO LOWER LOAD. F=125 KN, f=0.15

$$T_{d} = \frac{FD\rho}{2} \left[\frac{TIfD\rho - L}{TID\rho + fL} \right] = \frac{125000N(51.5mm)}{Z} \left[\frac{TI(0.15)(50.5) - 9}{TI(50.5) + 0.15(9)} \right] = 6017-11$$

$$T_{d} = 291905 N. mm = 291.9 N. m$$

24. Specify a power screw size:
$$F = 8500N$$
; $\sigma_{\alpha} = 110$ Mpc Use same DATA.
REQD $A_{T} = \frac{F}{\sigma_{\alpha}} = \frac{8500N}{110N/mm^{2}} = 77.3$ mm² — M14 x3 screw
$$D_{P} = 12.5$$
 mm, $L = P = 3.0$ mm $A_{T} = 103.9$ mm²

25. FIND TORQUE TO RAISE LOAD; \$= 0.15

$$T_{0} = \frac{FPe}{2} \left[\frac{L + 175Po}{17Pe - 3L} - \frac{8500N(12.5mn)}{2} \right] \frac{3.0 + 17(0.15)(12.5)}{17(12.5) - 0.15(3)}$$

$$T_{0} = 12.167 N. mm = 12.167 N. m$$

30. BALL SCREW FROM PROBLEM 14. 3/4-2, LENGTH = 28.0 IN FIND ESTIMATE OF CRITICAL SPEED, EQ. 17-15

d = MINOR DIA. OF SCREW. THIS VALUE NOT AVAILABLE IN THIS BOOK, OR ON INTERNET SITE 10. AS AN ESTIMATE, USE MINDROIA FOR A 3/4 ACME SCREW - d= 0.55IN -FROM MACHINERY'S HAMD BOOK, 28TH ED, P. 1830.

L = 28.0 IN - BETWEEN SINGLE BEARINGS AT ENOS

K= 1.00

LET SF = 1.0 TOESTIMANE CRITICAL SPEED,

SAFE OPERATING SPEED - SF = 3.0

CHAPTER 18 SPRINGS

$$2 \quad \beta = \frac{F_0 - 0}{L_{f} - L_0} ; \quad L_{f} - L_0 = \frac{F_0}{A}; \quad L_{f} = L_0 + \frac{F_0}{A} = 1.25 + \frac{4.65 LB}{18.8 LO/M} = 1.497/M.$$

$$\lambda = \frac{F_5 - F_0}{L_0 - L_5} : F_5 = \lambda(L_0 - L_5) + F_0 = 76.7(0.830 - 0.626) + 32.2 = 47.8 L_2 = F_5$$

$$L_5 = L_0 + \frac{F_0}{L_0} = 0.830 + \frac{32.2}{76.7} = 1.25 \text{ IN} = L_5$$

6
$$F_s = k(4-4) + F_0 = 8.95(29.4 - 21.4) + 134N = 205.6N = F_s$$

 $k_s = k_0 + F_{/k} = 29.4 + \frac{134}{8.95} = 44.4 \text{ mm} = k_s$

7
$$ID = 00 - 20w = 1.100 - 2(0.085) = 0.93 /N - ID$$

 $Dm = 00 - 0w = 1.100 - 0.085 = 1.015 /N = 0m$
 $C = Dm/ow = 1.005 /0.085 = 11.94 = C$
 $Ls = Now ; N = Ls/ow = 0.563/0.085 = 6.6 coils$

8
$$D_m = 00 - D_{NP} = 0.560 - 0.059 = 0.50/NY : C = \frac{D_n}{D_{NP}} = \frac{0.50}{0.059} = 8.49 = C$$
 $L_f = f_D N_a + 2D_{NP} : N_a = N - 2 = \frac{19 - 2 = 17 \text{ ACTIVE COILS}}{N_a}$
 $f_D = \frac{L_f - 2D_{NP}}{N_a} = \frac{4.22 - 2(0.059)}{17} = \frac{0.241}{N} = \frac{19}{N} = \frac{19$

9 FROM EQ19-6:
$$F_0 = \frac{f_0 G D_W}{8C^3 N a_0} = \frac{(4.22 - 3.00)(11.85 \times 10^6)(0.059)}{8(8.49)^3 (17)} = \frac{10.25 LB = F_0}{8C^3 N a_0} = \frac{8(8.49)^3 (17)}{8(8.49)^3} = \frac{74500 PSi = 7.}{74500 PSi = 7.}$$

$$K = \frac{4C-1}{4C-4} + \frac{0.615}{C} = \frac{4(849)}{4(8.49)} + \frac{0.615}{8.49} = \frac{1.17}{4C}$$

$$CONDUCTION = \frac{18-9}{4} = \frac{MUSIC [418F]}{4(8.49)} + \frac{10.615}{8.49} = \frac{1.17}{4C}$$

FROM FIGURE 18-9: MUSIC WIRE: 1 = 132000PSI FOR AVG. SERVICE -OK.

10.
$$L_4/D_m = 4.22/0.501 = 8.42$$
: From FIG 19-15, CURVE $A_2(\frac{f_0}{L_4})_{CR} = 0.18$
 $(f_0)_{CR} = 0.18 \ L_4 = 0.18(4.22) = 0.76 \ IN$

ACTUAL $f_0 = 4.22 - 3.00 = 1.22 \ IN > 0.76 \ IN - BYCKLING SHOULD OCCUR$

11.
$$(EQ. 19-3)$$

 $(DD)_{5} = \sqrt{D_{m}^{2} + \frac{p - D_{w}^{2}}{11^{2}}} + D_{w} = \sqrt{(501)^{\frac{1}{2}} + 0.24 + (.059)^{\frac{1}{2}}} + .059 = a583.14$

12.
$$F_s = \lambda (L_4 - L_5) = 8.40(4.22 - 1.12) = 26.05 LB$$

 $F_{ROM} PROB.9$; $\lambda = \frac{F_0}{L_4 - L_6} = \frac{10.25}{4.22 - 3.00} = 8.40 LB/M$
 $T_s = T_0 \times \frac{F_s}{F_0} = 74500 PSI \times \frac{26.05}{10.25} = \frac{189300PS}{10.25} = \frac{189300PS}{1000} = \frac{1000}{1000} = \frac{$

Notes concerning Problems 13 - 35: Most of these problems are design problems. No single unique solutions exist. Sample solutions are shown.

Problems 13 through 24 are compression springs. Problem 13 is done by both methods 1 and 2 as outlined in the text. Others are done by one or the other method. In some problems only summary results are shown.

Problems 25 through 31 are extension springs. Problem 25 is worked out in detail. Problems 26 through 30 were designed with the aid of a computer program using the same procedure. Only summary results are shown. Problem 31 is the stress analysis of the ends of the spring.

Problems 32 through 35 are torsion springs. In each case, the design of each end is required. It was assumed that ends would be straight with lengths L_1 and L_2 as shown. The effects of the ends on the spring rate were then included in the analysis.

13 METHOD 1 Fo = 220 LB; Fi = 180 LB; AF = 220-180 = 40 LB; AL = 0.50M.

STEP 1 - ASTM A229; SEVERE SERVICE; G = 11.2 X0 PS; ASTM A229; SEVERE SERVICE; G= 11.2 X10 PS; STEPS 2-5-LET Li = 3.00/N ; Dm = 3.00 IN. (DESIGN DECISIONS) L = AF/AL = 40LB/0.50/N = 80LB/IN Ls = L1 + F1/R = 3.00 + 180/80 = 5.25 IN Lo = Li - DL = 3.00 -0.50 = 2.50 M fo = Le-Lo = 5.25 - 2.50 = 2.75/N STEP 6 - ASSUME To = 80 000 PSi $S_{TEP} \gamma - (E0.B-1)$ $D_{x} = \left[\frac{(3.06)(F_0)(D_m)}{T_0}\right]^{1/3} = \left[\frac{3.06(220)(3.00)}{80.000}\right]^{1/3} = 0.293N.$ STEP 8 - SELECT Da = 0.3065/N U.S. GAGE O.3TJ=18KSi; TMAY=104KSI STEP 9- C=Dm/Dar = 3.00/0.3065 = 9.79: K= 1.15 (FIG. 18-14) $T_0 = \frac{8KF_0 Dm}{\pi D_{m}^3} = \frac{8(1.15)(220)(3.00)}{\pi (0.3065)^3} = 67/26PSi \frac{OK}{II}$ STEP 11 - Na = GDm = (11.2×106) (0.3065) = 5.72 COILS STEP/2- Ls = Dw-(Na+2) = 0.3065 (5.72+2) = 2.365/N Fs = & (4, -4,) = 80 (525-2365) = 23/ LB Ts = T. (Fs/F) = 67/26(23/220) = 70 420 PSi OK STEP 13 - Do = Dm + Dw = 3.00 + 0.3065 = 3.3065 IN. Di - D - Du = 3.00 - 0.3065 = 2.694 /N. SUMMARY & Dar = 0.3065/N; L4 = 5,25W; L= 2,50/N; Dan = 3,000/N.

13 METHOO 2 PROCESS STARTS SAME AS METHOD 1 WITHOUT Dm.

STEP 2 - (EQ.18-10) $D_{m} = 21.4 \, F_{0}/T_{0} = 21.4(220)/80000 = 0.243 \, JN$ STEP 3 - TRY $D_{m} = 0.2625 \, JN$. $V.S.GAGE 2_{5} \, Td = 80000 \, PSI$ STEP 4 - (EQ.18-11) $Na_{m,Ax} = (L_{0} - 2D_{m})/D_{m} = [2.50 - 2(0.2625)]/0.2625 = 7.5 \, cols$ STEP 6 - (EQ.19-12) $C = \begin{bmatrix} G D_{m} \\ 8 \, L N_{0} \end{bmatrix}^{1/3} = \frac{[11.2 \times 10^{6})(0.2625)]}{8(80)(6.0)} = 9.15 \quad STEPS$ $K = 1.16 \, (FIG. 7-12)$ (EQR-4)STEP 8 $T_{0} = \begin{pmatrix} 8 \, K \, C \, F_{0} \\ \hline{11/D_{m}^{2}} \end{pmatrix} = \frac{2.546 \, (1.16)(9.15)(220)}{(0.2625)^{2}} = 86262 \, PSi \left\{ \frac{700}{HIGH} \right\}$ REPEAT FROM STEP 3: TRY $D_{m} = 0.2830 \, JN$, U.S.GAGE 1, Td = 79,000PSi (CONTINUED - NEXT PAGE)

B. (CONTINUED) STEP 4 - Name [2.50-2(0.2830)] / 0.2830 = 6.83

STEP 6 - C = \[\frac{(\lambda 2 \times \delta 6 \rangle 0.2830)}{8 \lambda 80 \rangle (6.0)} \] = 9.38 ; K = 1.155 \[\frac{5 \times 5}{5 \times 5} \]

OPERATION \[T = \frac{(2.5 \times \delta (1.155) \lambda 9.38) \times 220)}{(0.2830)^2} = 75 770 \times 5' \times 0 \times \]

- \[\frac{5 \times \times \delta \delta \times \delta \d

- 14. (CONTINUED) AFTER SEVERAL ITERATIONS THIS DESIGN WAS
 PRODUCED WHICH WILL NOT BUCKLE.

 DW = 0.072 IN; T3 = 129 KS; TMAX = 185 KS;

 Namax = 22.3; USED Na = 12; C = 8.52; Dm = 0.6/3 IN.

 To = 108 200 ps; 3 Ls = 1.008 IN.; F3 = 32.1 LB; T5 = 157.9 KS;

 CC = 0.062 IN (GOOD): BUCKLING Le/on = 5.49; (fo/Le) cx = 0.53

 (fo) CR = 0.53 L4 = 1.78 IN; ACTUAL fo = 1.62 IN OK
- 15. METHOD 2 Lo = 1.25/A; Fo = 14.0 LB; Li = 2.00/N; Fi = 1.50 LB

 ASTM A313, TYPE 302, AVA. SCRVICE; $T_0 = 100$ KS; $k = \frac{14 1.50}{200 1.25} = \frac{16.67 LB/M}{200 1.25} \cdot \frac{1.50}{16.67} = \frac{1.50}{16.6$

```
METHOD 2: L_0 = 4.00 \text{ in}, F_0 = 250 \text{ lb}, L_1 = 10.50 \text{ in}, F_2 = 60 \text{ lb}

ASTM A231: T_d = 90 \text{ KS}i FOR SEVERIE SERVICE

R = \frac{F_0 - F_1}{L_1 - L_0} = \frac{2.90 - 60}{10.50 - 4.00} = 29.23 \text{ lb/in}: L_4 = 10.50 + \frac{60 \text{ log}}{29.23 \text{ lg/in}} = 12.58 \text{ in}

D_N = \sqrt{21.4} F_0 / T_2 = \sqrt{21.4} (250) / 90 000} = 0.244 \text{ in}.

TRIALS WITH GAGES 2 AND I FAILED T_0 TO HIGH

FOR D_N = 0.3065 \text{ in} L = 0.00065 \text{ in}, T_0 = 0.000
```

18. $\frac{3.00}{1.75} = 4.57 LB/IN$ ASTM A313, TYPE 316, AVG. SERV.; To $\pm 90 \text{ KS}$ $D_{W} = \sqrt{21.4 (8.0)/90.00} = 0.094 \text{ IN} - -0.85 D_{W} = 0.0975 \text{ IN}; RGAGE}$ $T_{d} = 0.85(122 \text{ KS}i) = /09 \text{ KS}i; T_{m} = 0.85(135) = /15 \text{ KS}i$ $N_{a_{max}} = (L_{0} - 20_{m})/D_{w} = [0.00 - 2(0.0475)]/.0475 = /9.05 - 0.05 \text{ NA} = /7$ $C = \frac{(10.0 \times 0^{6})(0.0475)}{8(4.57)(17)} = 9.14 - R = 1.16$ $T_{o} = \frac{2.586(1.16)(9.14 \times 8.0)}{(0.0475)^{2}} = 9.5 \text{ YOPS}i \text{ OK}$ $L_{S} = 0.0475(17+2) = 0.9025 \text{ IN} : F_{S} = 4.57 \text{ LB/IN}(2.75 - .9025) = 8.44 \text{ LB}i$ $T_{S} = T_{0}(F_{0}/F_{0}) = 9.5 \text{ YO}(8.44/8.0) = /01.050 \text{ PS}i \text{ OK}$ $D_{m} = CD_{m} = 9.14(0.0475) = 0.434 \text{ IN} . ; L_{S}/D_{m} = \frac{2.75}{434} = 6.33 (HIGH)$ $\binom{5}{L_{S}}_{CR} = 0.32 : \frac{1}{3} (f_{0})_{CR} = 0.32(2.75) = 0.88 \text{ N}; f_{0} = \frac{1.75 \times 0.88}{N_{S}}$ $\binom{6}{N_{S}}_{CR} = 0.32 : \frac{1}{3} (f_{0})_{CR} = 0.32(2.75) = 0.88 \text{ N}; f_{0} = \frac{1.75 \times 0.88}{N_{S}}$

SAME AS /8 EXCEPT DRO = 0.625 M -USE METHOD 1

LET Dm = 0.75/N; $T_0 = 100 \text{KS}$ $D_{W} = \begin{bmatrix} \frac{3.06(F_0)(D_m)}{T_0} \end{bmatrix}^{1/3} = \underbrace{\begin{bmatrix} \frac{3.06(8.0)(0.15)}{1000000} \end{bmatrix}^{1/3} = 0.057 - 0.050 D_m = 0.0625 m.} \\ 100 0000 \end{bmatrix}^{1/3} = 0.85(128) = 0.057 - 0.0625 m.$ $T_0 = 0.85(1/5 \text{KS}i) = 91.8 \text{KS}i \text{ j} T_m = 0.85(128) = 109 \text{KS}i$ $C = D_m/D_m = 0.75/0.0625 = 12.0 - K = 1.12$ $T_0 = \frac{2.546(1.12)(12.0)(8.0)}{(0.0625)} = 70.100 \text{ PS}i \text{ QE}$ $(0.0625)^2$ $N_0 = \frac{60m}{84c^3} = \frac{(10 \times 10^4)(0.0625)}{8(4.51)(12)^3} = 9.89 \text{ coils}$ $R_0 = \frac{60m}{84c^3} = \frac{(10 \times 10^4)(0.0625)}{8(4.51)(12)^3} = 9.1718$ $T_0 = \frac{100m}{1000} = \frac{1000m}{1000} = \frac{10000}{1000} = \frac{100m}{1000} = \frac{100m}{1000} = \frac{$

- 20. SAME AS 17 EXCEPT DHOLE = 0.75/H. METHOD I

 LET D_= 0.625/N; $T_0 = 120 \text{ KS}$ $D_{M} = \begin{bmatrix} \frac{3.06(14.0)(0.625)}{120000} \end{bmatrix}^{1/3} = 0.061 \text{ M.} \text{PSE} D_m = 0.663/M; } T_0 = 130 \text{ KS} \text{ i}$ $C = D_{m}/D_{m} = 0.625/.063 = 9.92 \text{K} = 1.15$ $T_0 = \frac{2.546(1.15)(9.92)(14.0)}{(0.063)^2} = 102500 \text{ PS} \text{ i}$ $N_0 = \frac{(1.85 \text{ Mo}^4)(0.063)}{8(13.08)(9.92)^3} = 7.31 \text{ COULS} : L_5 = 0.063(7.31+2) = 0.586 \text{ M}$ $S_0 = \frac{(1.85 \text{ Mo}^4)(0.063)}{8(13.08)(1.75 0.586)} = 15.22 \text{ LB} : T_3 = T_0 = 11.500 \text{ PS} \text{ i}$ $S_0 = \frac{(1.85 \text{ Mo}^4)(0.063)}{8(13.08)(1.75 0.586)} = 15.22 \text{ LB} : T_3 = T_0 = 11.500 \text{ PS} \text{ i}$ $S_0 = \frac{(1.85 \text{ Mo}^4)(0.063)}{8(13.08)(0.063)} = \frac{(1.8500 \text{ PS})(0.063)}{8(13.08)(0.063)} = \frac{(1.85 \text{ Mo}^4)(0.063)}{8(13.08)(0.063)} =$
- METHOD Z 4= 3.05N; F= 45LB; L= 3.50N; F== 220 LB R= 45-22 = 51./LB/M.; Lf=Li+Fi/R= 3.50+22/51.1=3.93/M Dm = \Z1.4 (45)/9000 = 0.103 /N. -- USE Dw = 0.1055/N. ASTM A231: Ty = 109 ksi; Tm = 151 ksi; Severe Service Namax = (La - 20m)/Ow = (3.05 - 2(0.1055))/0x055 = 26,9 COILS - USE Na=18 C=\[\frac{60m}{8kNa} \] = \[\frac{(1.2x\tau^2\chi_0.1055)}{8(5/1)(18)} \] = 5.44 - k=1.285 T. = 2.546(1.285)(5.44)(45) = 7195085; LTW OK Ls = Du (NA+2) = 0.1055 (20) = 2.11 IN : Fs = 67.1 LB/ (3.93-2.11) = 93.0 LB Ts = T. (5/F.) = 71950 (93.0/45.0) = 148700851 LTMAX OK Dm = CDm = 5.44 (0.1055) = 0.5741N 4 /0= 3.93/0.574 = 6.85: (4) = 0.27 (50) ca = 0.27(3.93) = 1.06/14. (f.) Acr = L4-L0=3.93-3.05 = 0.88 M <(f.) CR OK NO BICKLING cc = (3.05-211)/18 = 0.052 /N > DA OK D. = Dm + Dw = 0,680 IN. Di = Dm - Dm = 0.469 /N.

```
COMPRESSION SPRING: METHOD 1
  ASTM AZZO STEEL WILF; G= 11.5x106851 (TAGE 18-4)
  STRESSES FROM FIG. 18-8.
  Li = 2.50 IN, Fi = 20.0 LB, Lo = 2.101N, Fo = 35LB.
   INSTALL SPRING AROUND I.SD IN DIA, SHAFT.
 SPRING SCALE = & = Fo-Fi = 35-20 = 31.5LB/,N
  FREE LENGTH = L+ = Li + F1/2 = 250 + 200/325 = 3.033 IN.
   TRY D = 1.75 IN. ; Dw MAX = Dm -D SH. = 1.75-1.50 = 0.25 IN.
  SEVERE SERVICE: To = 85,000 PSI'

Dow = (3.06)(Fo)(Dom) | 1/3 = (3.06)(25)(1.75) | 3 = 0.130 IM.

85,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,0
      TRY U.S. WIRE GO. 9: Dw = 0.14831A.
      Ty = 87 000 Psi (SEVERESERV.); TMAX = 116 000 Psi (LT. SERV.)
     C = 0 -/ D = 1.75/0.1483 = 11.80; K=1.125 (F16.18-14)
      To = 8 K F. Da = 8(1.125)(35)(1.75) = 53,800851 OK
      N_{a} = \frac{6 D_{AF}}{8 k C^{3}} = \frac{(1.5 \times 10^{6})(0.1483)}{8(37.5)(11.80)^{2}} = 3.45 colls
       Ls = Du (Na +2) = (0.1483)(3.45+2) = 0.809 IN.
       Fs = k(L+-Ls) = (37.5)(3.033-0.809) = 83.4 LB
       Ts = To Fs/F = 63800 Ki) (83.4/35) = 128,200 051 TOO HIGH
        TRY Dw = 0.162 IN-8GAUGE: To = 86,000 PSi; TMAX=114,000 PSi
        SUMMARY OF RESULTS?
                  C = 10,80; K= 1,13
                 To = 41,455 OSI OK
                  Na = 4.93 coics; Ls=1.1221N; Fs=71.7LB
                  T's = 84,900 PSi OK
                  ID = Dm - Dw = 1.75-0.162 = 1.588 IN OK
```

COMPRESSION SPRING: METHOD 1 : METRIC 23 ASTM A 227 STEEL WIRE ! G = 79.36 Pa = 79.3 X103 MPa (TABLE 184) Li = 60 mm, Fi = 90N, Lo = 50 mm, Fo = 155N k = Fo-F1 = 155-90 = 6.5 N/mm Ls = Li +F1/k = 60 mm + 90N/65N/m= 73.85mm SPRING INSTALLED ON 38 mm DIA. SHAFT: TRY Dm=45mm SEVERE SERVICE: To = 550 MP. (APP. A197)

TRIAL Dw = \[\frac{(3.06\text{Y Fo})(Dm)}{T_1} \right|^{1/3} = \frac{(3.06\text{X 55\text{Y5}})}{550} = 3.39 mm TRY Dw = 3.80 mm (TABLE18-2); To = 600NPa Time = 800MPa C = 0 -/0 = 45/3.80 = 11.84; K=1.125 (E14.18-14) To = 8K Fo Dm = 8(1.125)(155)(45) = 364 Mla OK $N_0 = \frac{GDw}{8kC^3} = \frac{(71 \times 10^3)(3.80)}{8(6.5)(11.89)^3} = 3.49 cores$ Ls = Dw(N++2) = (3.80)(3.49+2) = 20.86 mm Fs = k(Lf-Ls) = (6.5N/mm) (73.85-20.86) mm = 344 N T's = To Fs/F0 = 364 MPa (344 N) = 809 MPa (SWT SLIGHTLY HIGH) ID=Dn-Dw= 45-3.80= 41.2 mm OK COMPRESSION SPRING! ANALYSIS ! ASTM AZZA, G = 11.2 X10 681

25 EXTENSION SPRING F. = 7.75LB; Lo=2.75/N; L1=225M, FX = 5.25LB

DO COON & MUSICWIPE, SEVERE SERVICE.

INSTALLED

LET $D_{m} = 0.25 \text{ on.}$; $T_{3} = 1/26 \text{ odd} 5$; $D_{m} = \left[\frac{8 \text{ K F. } D_{m}}{17 \text{ To}}\right]^{3} = \frac{8(1.20)(7.77)(0.250)}{17(20000)}^{1/2} = 0.0367 \text{ in}$ VSE /6 Ga., $D_{m} = 0.031 / \text{ in}$; $T_{m} = 1/20000 \text{ PS}$; $D_{0} = D_{m} + D_{m} = 0.287 / \text{ in}$; $D_{m} = 0.213 / \text{ in}$. $C = \frac{0}{10} = \frac{0.25}{0.037} = 6.76 - \text{in} = 1.225$ $T_{0} = \frac{8 \text{ K F. } D_{m}}{17 D_{m}^{3}} = \frac{8 \text{ K F. } C}{170 - \text{in}^{2}} = \frac{8(1.225)(7.75)(6.76)}{17(0.037)^{2}} = \frac{1/9320 \text{ pS}}{19320 \text{ pS}}; \frac{OK}{100}$ $E = \frac{O}{OL} = \frac{7.75 - 5.21}{2.75 - 2.25} = 5.0 \text{ LB/in}.$ $V_{0} = \frac{4 D_{m}}{8 C^{3} \text{ k}} = \frac{(11.85 \times 106)(0.037)}{8(6.76)^{3}(5.0)} = \frac{35.5 \text{ cost.} S}{1.350 \text{ in}} = \frac{8.6 \times 100}{1.36 \times 100} = \frac{1.350 \text{ in}}{1.350 \text{ in}} = \frac{8.6 \times 100}{1.36 \times 100} = \frac{1.350 \text{ in}}{1.350 \text{ in}} = \frac{1.777 \text{ in}}{1.350 \text{ in}} = \frac{$

USE SMALLER END LOOPS -SAY O.OGEACH

L+ B,L, +2(0.06) = 1.35 + 0.12 = 1.471N

G= Lo-L+ = 2.750-1.47 = 1.281N.

F= 7.75-5.0 (1.28) = 1.35 LB

T= To * F=/F= 1/9 320 × 1.35/25 = 20 800051 OK

SUMMARY 1

 $D_{M} = 0.037 N - 16Ga.$ MUSIC WIRE $D_{M} = 0.250 IN; D_{i} = 0.287 N; D_{i} = 0.213 N.$ 35.5 Colls 26005 @ 0.06 N. EACH $F_{0} = 7.75 LB @ 2.75 N - 01 ELATING$ $F_{k} = 5.25 LB @ 2.25 N - INSTALLED$ $F_{T} = 1.35 LB @ 1.47 N - INITIAL$

- 26 EXTENSION: NUSIC WIRE, AVG. SERVICE, To ~ 130KS;

 Fo = 15.0 LB; Fi = 5.20 LB; Lo = 5.60 Lo; Li = 3.75 IN.

 D= 7.84 LB/M; Dm, = 0.60 IN; Dw TRUM 0.0596 IN.; Dw = 0.063 (26 Ge.)

 Ti = 132, 000 PS; C = 9.52; K = 1.153; To = 105,600 PS; OK, Na = 13.78

 BODY LENGTH = B.L. = 0.931 IN; FOR END GOOP SIZE = 0.537 m-(15); Fi = -8.4818

 CHANGE E.L.S = 1.20 M Fr = 1.92 LB; Tr = 13500 PS; (OK FIG. 18-21)

 00 = 0.663 IN < 0.75 IN. OK
- 28 EXTENSIA : MUSIC WINE, SEVENE SERVI; FO=10.0 LB; Lo=6.10 M; To=100 KS; (SAME AS #24 FOR DM, DM,00, TO, C, K, To): Na =25.14 COLS; B.L.=1.542 IM
 ELS. = 0.591/M.= ED; FT=1.48 LB; T= = 13 500 PS; (OX PK, 18.21)
- 29 EXTENSION (MUSIC WIRE; AVERAGE SELV.; FO=10.0 LB; L=9, WIN, D=1.50 LB/M.

 To 2130 KS; Dm=0.68751N. (1/16); Dm=0.0545/N; USEDm=0.055/N,

 To=135 KS; (246m): 00=0.7425/N; ID=0.6325/N; C=12.5; K=1.114

 To=117.3 KS; No=21.81 COLS; B.L.=1.58 N; E.L.S.=0.6325/N=ID—

 F=-0.14 LB: CHANGE E.L.S.=1.0 M; F=0.96 LB; T=113 KS; (0 K)
- 30 EXTENSION: ASTM A3/3; TYPE 302: Fo=162 LB; Lo=10.80 M; R=38.0 L9/M

 To = 80 KS (AYG. SERN); D=1.50 M: D=0.2253 M (4 Ga)

 To = 81 KS; : O0=1.7253 M; ID=1.2147 M; C=6.66; K=1.225

 To = 66.3 MS; ; N=25.11 COILS; B.L.=5.88 M: ELS=1.21 M=ID;

 FI= 7/.7 LB; T=29 300 PS (TTO HIGH).

 CHANGE E.LS=0.90 M; FI= 43.6 LB; T=17.8 KS; (6K P16, 18-21)

31 EXTENSION SPRING ENOS

19 Ga.: DM= 0.041 M: DM = 0.28M; RI = 0.25M; Rz=0.0941N

La
$$O_d = |46KS'|$$
; $T_d = |30KS|$ FOR AVERAGE SERVICE

BENDING (EQ.19-13) (FIG.18-22)

 $C_1 = 2R_1/DM = 2(.25)/.041 = |2.20$
 $K_1 = \frac{4C_1^2 - C_1 - 1}{4C_1(C_1 - 1)} = \frac{1.065}{17(.041)^3} + \frac{7(5.0)}{17(.041)^3} = 114000PS^2$ CK

TORSION (EQ.18-15)

 $C_2 = 2R_2/DM = 2(.094)/0.041 = \frac{4}{15} = \frac{4}{15}$
 $K_2 = \frac{4C_2 - 1}{4C_2 - 4} = \frac{1.209}{17(.041)^3} = 62600PS^2$ OK

 $T_0 = \frac{30m}{17(.0m)^3} = \frac{8(.28)(5.0)(1.209)}{17(.0041)^3} = 62600PS^2$ OK

```
\frac{33}{TORSION} \frac{SPRING}{SPRING} ASTM A313, TYPE 302', SEVERE SERVICE
ASSUME <math>D_{m} = 1.125; G_{d} = 1/0KSi; K_{d} = 1/05; G_{d} = 270^{\circ} = 0.75 REV.

D_{mm} = \left[\frac{32 \text{ Mo } \text{ Kb}}{TV \text{ Gi}}\right]^{\frac{1}{3}} = \left[\frac{32(120)(1.15)}{TV(10000)}\right]^{\frac{1}{3}} = 0.1085\text{ IN} \left\{0.56 \text{ II Ga.}; 0.000 \text{ PS}\right\}
C = \frac{1.125}{0.1205} = 9.34 \text{ ; } K = \frac{4C^{2} - C - 1}{4C(C - 1)} = 1.087
G = \frac{32 \text{ Mo } \text{ Kb}}{TV \text{ O.} 1205} = \frac{32(12.0)(1.085)}{4C(C - 1)} = 75 920 \text{ PS}i \text{ O.} \text{E}
R_{0} = \frac{32 \text{ Mo } \text{ Kb}}{TV \text{ O.} 1205} = \frac{12.016 \cdot \text{IM}}{10.205} = \frac{12.016 \cdot \text{IM}}{10.
```

 $\begin{array}{c} 34 \\ \hline D_{M} = 0.625 N_{0}; & O_{0} \times 140 \text{ KS}; & 16 \times 1.15 \\ D_{M} = \left[\frac{32 M_{0} K_{0}}{17 G_{0}}\right]^{1/3} = \left[\frac{32(2.50)(1.15)}{17(14000)}\right]^{1/3} = 0.0594 \text{ IN} \left\{0.56 \text{ Z6.} \text{ DM} = 0.063\right\} \\ C = \frac{0.625 N_{0.063}}{17 G_{0.063}} = 9.92; & \frac{4C^{2} - C - 1}{4C(C - 1)} = 1.081 \\ C = \frac{32(2.50)(1.081)}{17 (0.063)^{3}} = 1/0.100851 \text{ o.e.} \\ \frac{32(2.50)(1.081)}{10.2(0.625)} = 1/0.2(0.625) \times 2.80 \\ \frac{37}{10.2(0.625)} = 1/0.2(0.625) \times 2.80 \\ \frac{37}{10.2(0.625)} = 0.57 \text{ Coll.} \text{ N}_{0} = 28.66 - 0.51 = 28.15 \text{ Coll.} \\ N_{0} = \frac{2(1.5)}{377 (0.125)} = 0.57 \text{ Coll.} \text{ N}_{0} = 28.66 - 0.51 = 28.15 \text{ Coll.} \\ \frac{37}{10.25} = 0.50 \text{ N}_{0} = \frac{0.625(28.66)}{28.66 + 0.0} = 0.609 \text{ N}_{0} \\ \frac{37}{10.25} = 0.609 - 0.063 = 0.597 \text{ IN} \\ \frac{37}{10.25} = 0.625 + 0.063 = 0.688 \text{ N}_{0} \\ \frac{37}{10.25} = 0.063(28.66 + 1 + 1.0) \cdot 93 \text{ N}_{0} \end{aligned}$

TORSING: DW=0.038; Do=0.368 IN; No=9~50 COILS

L_1 = 0.50 N; L1 = 1.125 IN 2 A401 STEEL; &= 180°=0.50 REV

FROM EQ. 7-21, SALVE FOR M:

M= \frac{\infty}{\infty} = \frac{\infty}{\infty} \frac{\infty}

CHAPTER 19 FASTENERS

- 4 LOAD DER BOLT = 6000 LR/4 = 1500 LB

 SELECT GRADE 2: $G_{R}=.75$ Sproof = .75(5500) = 4/250 PSi

 [SAEGRADE2] $A_{t}=\frac{1500}{4/250}=0.0364 M^{2}$ TABLE 19-2

 USE 1/4-28 UNF OR 5/16-18 UNC

 FOR 5/16-18: T=KOP=0.15(.3125)(.500)=70.3LB-1N
- 5 F = At 582. = (0.0/40/N) (85000 LB/N2) = 1190 LB
- 6 M4x.5: At= 9.79 mm²; GRADE 8.6 (SELHON 19-2)

 TENSILE STRENGTH 2 800 MPO

 YIELD STRENGTH 2 0.6 (T.S.) = .6(800) = 480 MPO

 OROOF STRENGTH ~ 0.9 (Y.S.) = .9 (480) = 432 MPO

 F= At · Sor= (9.79 mm²) (432 N/mm²) = 4229 N= 423 kN

 TABLE 19-5
- 1 1/8-19 UNF; D = 0.815/Nx 25.4 mm/N=222 mm

 p=1/m=1/4=0.07/8 INX 25.4 mm/N=1.8/mm

 NEAREST METRIC THREAD =MZY X2 TABLE 19-5

 DIFFERENCE IN D = 24.0-22.2 = 1.8 mm =.07/1N

 METRIC THREAD IS APPROX 8% LARGER IN THIS SIZE
- B PITCH= . 630/20=0.03/5/N x 25.4 mm/N=0.800mm

 D= 0.196/N x 25.4 mm/N= 4.98 mm

 CLOSEST STANDARD THREAD IS M5X08

 AMERICAN STANDARD #10-32 IS SIMILAR BUT NOT

 AS CLOSE TO MEASURED DIMENSIONS.
- 9 M 10 x 1.5: At = 58.0 mm² NYLON 6/6: T.S. = 146 MPa: MAX. Oa = 0.75 (TS) = 109.5 MPa F = At OA = (58.0 mm) (109.5 N/mm²) = 6351 N = 6.351 AN

1/4-20 THC 1 At = 0.03/8/N2; ON= 0.5(TS)

- a) SAE GRACE 2: OR-0.5(74)=37/25): F=A+OA =(03/8)(77000)
- 6) SAE GRAOF 8: GD = .5(120) = 60 /LSi; F= 1908 LB C) SAE GRAOF 8: GD = .5(150) = 25 /LSi; F= 2385 LB
- d) ASTA A367: Oa = .5(60) = 30 KSI; F=954 LB
- e) ASTM AS74: Oa = . 5(180) = 90 RSi; F=2862LB
- f) METRIC GRADE 8.8; $\sigma_{\alpha} = 0.5(830 MPL) = 415 MPA \left(\frac{1.0KSI}{6.89500}\right) = 60.2KSi$ F=A+ Oa = (0.03/8/N2) (60 200LB/IN2) = 1914LB SIMILAR TO SAEGE.S F = 1914L8 x 4.448 N/LB = 8513N = 8.51 kN
- g) ALUM, 2024-14: Oz = 05(68) = 34 ksi; F= 108/CB
- h) 543 000, ANN.; Oa= 0.5(25) = 37.5 RSI; F= 1193 LB i) Ti-601-4V, ANN.; Oa=.5(130) = 65 RSi; F= 2067 LB
- j) NYLON 66 DXY: Oa = 0.5(21)=10.5/6; P= 334 LB

 A) POLYCARBONATE: Oa = .5(9) = 4.5/ks; F= 143LB
- 1) ABS (HIGH IMPACT); Oa=15(5) = 2.5 /ksi; F= 80 LB

ALTERNME FOR h) ! SCREW MAY BE FULL HARD-APPLE 543000 5 = 90 KSi; Ja=0.5(90) = 45 KSi F=1431 LB

CHAPTER 20 MACHINE FRAMES, BOLTED CONNECTIONS, AND WELDED JOINTS

1. DIRECT SHEAR , SBOUTS, A307

$$F = \frac{12000 \, LB}{5} = \frac{2400 \, LB}{80 \, LT}$$

$$T = \frac{1}{4} = \frac{1}{5} = \frac{2400 \, LB}{10000 \, LB/M^{2}} = 0.240 \, M^{2}$$

$$A_{S} = \frac{1}{7} = \frac{1}{10000 \, LB/M^{2}} = 0.240 \, M^{2}$$

$$A_{S} = \frac{1}{7} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = 0.55 \, M$$

$$USE = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{100000 \, LB/M^{2}} = \frac{1}{10000 \, LB/M^{2}} = \frac{1}{100000 \, LB/M^{2}} = \frac{1}{100000 \, LB/M^{2}} = \frac{1}{100000 \, LB/M^{2}} = \frac{1}{1000000 \, LB/M^{2}} = \frac{1}{100000 \, LB/M^{2}} = \frac{1}$$

4BOLTS

HORIZ. DIRECT SHEAR: F, = 5196/4 = 1299LB/BOLT
VERTICAL DIR. SHEAR: F2 = 3000/4 = 750LB \$

$$h = \sqrt{1.50^2 + 1^2} = 1.80 \text{ in ALL BOLTS}$$

$$Eh^2 = 4h^2 = 4(1.80)^2 = 13.0 \text{ in}^2$$

$$F_{A}' = \frac{M N.'}{2 n^2} = \frac{(67548)(1.80)}{13.0} = 9353 LB/BOLT$$

FORCES ON BOLT AT UPPER LEFT:

TOTAL Fx = 77944 /219 = 9093

TOTAL Fy = 5196+250 = 5946

F = 10 865 LB A 490 BOLTS, DOUBLE SHEAR

$$A_{s} = \frac{F}{T_{s}} = \frac{10865 LB}{22000 LEVIN^{2}} = 0.494 N^{2} = 2(170 \frac{2}{3}) = 170 \frac{2}{3}$$

REQ'D D = \(\frac{2 As/T = \(2 (.494)/T = 0.56/IN. \)

USE 9/16-12 UNC, 3/12 IN LONG

FIXED-END BEAM - CASE & APPENDIX 14-3.

 $M = \frac{Wl}{8} = \frac{(3000)(87.66)}{8} = 32873 L6.1H$

EACH SIDE: M = 32873 LB.IN.

DIRECT SHEAR = 1500 LB = 188 LB/BOLT +

USE Y BOLTS ON EACH FACE OF COLUMN THROUGH FLANGE AND PLATE.

FORCE ON EACH BOLT DUE TO MOMENT: $h = 1.414M; \Sigma h^2 = 8(1.414)^2 = 16.00 JN^2$ $F = \frac{Mh}{2h^2} = \frac{(32.873)(1.414)}{16.00} = 2905 LB/80LT$

FORCES ON BOLT AT UPPER RIGHT:

FOTAL $F_V = 2054 + 188 = 2242 LB$ $F_R = \sqrt{2242^2 + 2054^2} = 3041 LB$ SPECIFY AS TM A 325 HIGH STRENGTH BOLTS

 $T_{d} = 17500 \text{ Psi} = F_{R/As}$

REQ'D. As = F/7 = 304 LB = 0.114 INZ

 $A_s = 170^2/4$; $D = \sqrt{4A/_{H}} = \sqrt{\frac{4(0.174)}{17}}$

D = 0.470 /N

USE 1/2-13 UNC BOLTS. NO THRENDS IN THE SHEAR PLANE.

$$M = (400 LB)(1310) = 18200 LB100$$

 $L_1 = \sqrt{2^2 + 3^2} = 3.6110$

$$\sum N^2 = 4(3.61)^2 + 2(2.60)^2 = 60/N^2$$

$$E = \frac{MN_1}{ZN^2} = \frac{(8200)(3.60)}{60} = 109518$$

TOTAL F = 1296 LB

USE 7/16-14 BOLTS

6. F14.920-6

VERTICAL COMPONENT OF FORCE
IN EACH CABLE MUST BE 2000 LB
FC Cro 25° = 2000 LB = FCV

Fc = 2000/cm 25 = 2207 LB

$$F_{i} = \frac{Mh}{Eh^{2}} = \frac{60000(3)}{72}$$

 $F_{\lambda} = 2500 LB$

SHEAR-HORE. F. = 933/8 = 117LB + SHEAR-VERT. FZ = 2000/8 = 250LB +

$$F_{T} = \sqrt{2750^{2} + 117^{2}} = 2753 LB$$

$$A_{S} = \frac{F_{T}}{T_{0}} = \frac{2753}{17500} = 0.157 IN^{2} = \pi 0 / y$$

$$D = \sqrt{4/45/17} = \sqrt{4/457} / \pi = 0.448 IN$$

$$USE / 2 - 13 \quad BOLTS$$

= 60 000 LB./A

WELDED JOINTS

7. FIGURE PROY DIRECT SHEAR; f= V/A.

WELD BOTH VERTICAL SIDES, 4.0 IN. LONG.: AN = 2(4) = 8.0 IN f = AW = 12000 LB = 1500 LB/N

FOR A36 STEEL AND 560 ELECTROOF; FN = 9600 LG/IN/IN W = \frac{f}{f_n} = \frac{1500 (B/10)}{9400 (B/10)/40} = 0-156/00; USEW = \frac{3}{16/00 (B/10)/40} = 0.156/00; USEW = 0.156/00; USEW = \frac{3}{16/00 (B/10)/40} = 0.156/00; USEW = 0.156/0

8. FROM PRUBLEM 4 -AT EACH END OF THE BEAM, V=1500LB T = 32 873 LB.IN - SHARED E QUALLY ON FRONT AND BACK OF PLATES THAT ARE WELDED TO SIXISIS COLUMN.

WELD ALONG TOP AND BOTTOM OF PLATE.

CASE 3 - FIG. 20-8: Aw = 2b = 2(3.66) = 7.321N.

ON EACH WELD PATTERN: V= 750LB, T= 16 48BLB.IA.

$$f_3 = \frac{T_{CH}}{J_W} = \frac{(16.436)(1.83)}{37.45} = 804 LB/IN$$

VECTOR SUM OF FORCES: FR=/2//LB//N

USE EGO ELECTRODE:

$$W = \frac{f_R}{f_0} = \frac{1201}{9600} = 0.131 \text{ IN}$$

USE W = 3/16 M = 0.188 IN - MINIMUM FOR 12 IN PLATE.

FIGURE 920-5: TRIM SIDES SO THAT 2.00 IN EXTEND ONTO RIGIO STENCTURE. WELD TOP AND BOTTOM ONLY, b

EACH SIDE CARRIES 1400 LB

TORQUE ON WELD: $T = 1400(8 + \frac{b}{2})$ $T = 1400(8 + 1) = 12600 LB \cdot IN$ $Aw = 26 = 2(2) = 4.00 \cdot IN$ $fw = \frac{b^3 + 3bd^2}{6} \frac{(z)^3 + 3(2)(8)^2}{6} = 65.3 \cdot IN^3$ FIGURE 20 B $S_1 = \frac{V}{Aw} = \frac{1400 LB}{4.00 IN} = 350 LB/IN$ $fz = \frac{TCv}{Jw} = \frac{(12600 LB \cdot IN)(4.10)_{1x}}{65.3 IN^3} = 771 LB/IN$ $F_3 = \frac{TCA}{Jw} = \frac{(12600)(1.00)}{65.3} = 193 LB/IN$ E60 ELECTRODE

E60 ELECTRODE

W= 943 = 0.098/N

USE W= 3/16 = 0.188/N (MM)

$$F(G.870 - 6)$$

$$Aw = 2(0) = 20 /N$$

$$J_{W} = \frac{d(3b^{2} + d^{2})}{6}$$

$$J_{W} = \frac{10(3(10)^{2} + 10^{2})}{6} = 667 N^{3} \quad 2000$$

$$AT \textcircled{B}$$

$$f_{I} = SITEAR = \frac{933}{20} = 46.720/N$$

F16. 20-8

$$fz + fy = 550 LB/N$$

$$w = \frac{f_T}{f_N} = \frac{941}{9600} = 0.0771N - USE W = 3/16" (MIN)$$
[1]

FIGURE PZO-11

CASE @ , FIG. 20-8

$$Aw = b + 2d = 9 + 2(6.5) = 22.0 \text{ /M}.$$

$$\frac{d^2}{dy} = \frac{d^2}{b + 2d} = \frac{(6.5)^2}{9 + 2(6.5)} = 1.92 \text{ /M}.$$

$$S_{W} = \frac{d^{2}(2b+d)}{3(b+d)} = \frac{(6.5)^{2}(2(9)+6.5)}{3(9+6.5)} = 22.3^{**}(60770M)$$

$$J_{W} = \frac{(b+2d)^{2}}{12} - \frac{d^{2}(b+d)^{2}}{b+2d} = 887. -461 = 426 N^{2}$$

11. (CONTINUED) AT A:

$$f_{1} = SHEAR = \frac{V}{Aw} = \frac{4200LB}{22.0N} = 191LB/M$$

$$f_{2} = BENDING = \frac{M}{S_{W}} = \frac{4200(21.5)}{22.3} = 4056LB/N (NTO WALL)$$

$$f_{3} = TORSION (HORIZ.) = \frac{TCV}{Jw} = \frac{1200L/65}{426} (4.58) = 2/3LB/N = 2/3$$

12. FIG P20-|| WITH P2=0; NO TORSION

$$f_1 = SHEAR = \frac{V}{AN} = \frac{3000}{22.0} = /36 LB/N$$

$$f_2 = BENDING = \frac{M}{S_W} = \frac{3000(2l.5)}{22.7} = 2892 LB/N (NTO WALL)$$

$$f_7 = \sqrt{f_1^2 + f_2^2} = \sqrt{136^2 + 2892^2} = 2896 LB/N$$

$$USE = \frac{660}{9600} = 0.302 NN - USE \frac{5/6}{10}N, 0.3/2NN.$$

13. FIGURE 120-1 P = 4000 LB; 6061 ALUMINUM

DIRECT SHEAR - DATA FROM TABLE 19-2

-= t THROAT WIDTH T = P = 0.707 WL As = SHEAR AREA = (0.707 W) & LENGTH OF WELD

FOR 4043 FILLER ALLOY, TALLOW = 5000 PSi

LET L = 2(4,001N) = 8,001N (VERTICAL SIDES OF BRACKET)

REQ. 0 No = \frac{p}{0.707 L T ALLOW = 0.707 (8.0) N (5000 LB/N)} = 0.1411N. VSE 3/16 IN. WAD (MIN).

14. FLGURE P20-14 DIRECT SHEAR, 6061 ALUMINUM 4043 FILLER ALLOY

LENGTH OF WELD = L = 750 = 77(4.50) = 14.1 IN AS IN 13: W= -707 L Ta = (70)(14.1)(5000) USE 3/16" COULD ALSO CONSIDER PARTIAL WELD.

FIGURE 920-15 DIRECT SHEAR, 6063 ALUM. 15 LET W= 3/16 = 0.188 IN SOLVE FOR L

L= = 800LB = 1.20/N. 620)(.188)(5000) LB/IN

DISTRIBUTE PARTIM WELDS TOTALING 1.20 IN EQUALLY ON BOTH SIDES OF TAB.

16. FIGURE PRO-16 DIRECT SHEAR, 3003 ALUMINUM
4043 FILLER ALLOY

AS IN PROBLEM 14:

Ta = 5000 PSi

USE W= 14 IN = 0.250 IN

17. MATERIAL COMPARISON

F = 4800LB; N=2; G= Sy/2

REQ'D A = F/OB ; D= \\\
COMPUTE WEIGHT PER INCH OF LENGTH

V = A × 1.0 W

W = P. V

MATERIAL	5y(kg1)	Q (481)	A(N)	D (m)	V(N3)	Pul-9/w)Wes
a) 1020 HR							
b) 5/60 OQT/30							
C) ALUM. 2014-16	60	30	.16	.451	./6	.100	.0/60
d) ALVM 1075 - 76							
e) Ti-6Al-YV (ANNE							
F) Ti-3A2+3V-110							

CHAPTER 21 ELECTRIC MOTORS AND CONTROLS

Questions 1 - 8: See Sections 2i -2 and 2i -3.

- 9. Standard frequency for AC power in the U.S. is 60 hertz.
- 10. Standard frequency for AC power in Europe is 50 hertz.
- 11. Single phase AC power at 115 and 230 volts.
- 12. Two conductors plus a ground wire.
- 13. 480V, three phase is preferred because the current would be lower and the size of the motor would be smaller.
- 14. Synchronous speed is the speed at which an AC motor tends to run at zero load. $n_s = 120(f)/p$, where f is the frequency of the power and p is the number of poles in the motor.
- 15. Full-load speed is the speed of the motor when it is delivering its rated torque.
- 16. In U.S.: $n_s = 120(f)/p = 120(60)/4 = 1800 \text{ rpm}$ In France: $n_s = 120(f)/p = 120(50)/4 = 1500 \text{ rpm}$
- 17. 2-pole motor. Zero-load speed approximately 3600 rpm.
- 18. $n_B = 120(f)/p = 120(400)/4 = 12000 \text{ rpm}$
- 19. Two speed motor; 1725 rpm and 1140 rpm
- 20. Variable frequency control
- 21,22,24 See Section 21-8.
- 23. National Electrical Manufacturers Association
- 25. TEFC Totally enclosed fan-cooled. See Section 2l-8.
- 26. TENV Totally enclosed non-ventilated. Section 2/-8.
- 27. NEMA Design 9 Hazardous locations. Flour can explode.
- 28. TENV because motor may get bathed in water during cleaning and to protect food from contaminants from the motor.

- 30. Locked rotor torque is the torque that a motor can exert when the rotor is at rest. Also called starting torque.
- 31. A poorer speed regulation means that the motor would slow down more when subjected to an increase in torque.
- 32. Breakdown torque is the maximum torque a motor can develop during the increase in speed after start or the torque at which a motor would be stalled if the torque is increased after it is running.
- 33. Split-phase; capacitor-start; permanent-split capacitor; shaded pole.
- 34. a) Single phase, split-phase AC motor because of the moderate starting torque and the change of torque when the switch cuts out the starting winding.
 - b) From Table 24-2, full-load speed = 1140 rpm T = 63000(P)/n = 63000(.75)/1140 = 41.4 lb-in
 - c) Starting torque = 150% (F.L. torque) $T_8 = 1.5(41.4) = 62.2$ lb-in (approximate)
 - d) Breakdown = 350% (F.L. torque) $T_b = 3.5(41.4) = 145$ lb-in (approximate)
- 35. 2-pole; 1.50 kW rated power.
 - b) From Table 21-2, full-load speed = 3450 rpm $n = (3450 \text{ rev/min}) (2\pi \text{ rad/rev}) (1 \text{ min/60 s}) = 361 \text{ rad/s}$ $T = P/n = (1.5 \times 10^3 \text{ N-m/s}) / (361 \text{ rad/s}) = 4.15 \text{ N-m}$
 - c) Starting torque = 1.5(4.15 N-m) = 6.23 N-m
 - d) Breakdown torque = 3.5(4.15 N-m) = 14.5 N-m
- 36. Fan requires about 18 lb-in of torque at 1725 rpm; low starting torque; assume fan cools motor. Recommend 4-polesingle phase permanent split capacitor AC motor.

 Power = Tn/63000 = (18)(1725)/63000 = 0.49 hp (use 1/2 hp)
- 37. Full load torque about 0.5 N-m at 3450 rpm; high starting torque (about 2.8xF.L.T.) due to starting compressor against high pressure in the system. Recommend capacitor start, single phase, 2-pole, AC motor.
 - $n = (3450 \text{ rev/min}) (2\pi \text{ rad/rev}) (1 \text{ min/60 s}) = 361 \text{ rad/s}$ P = Tn = (0.5 N-m) (361 rad/s) = 181 N-m/s = 181 watts
- 38. Speed is adjusted by varying the resistance in the rotor circuit through an external resistance control.
- 39. F.L. speed = synchronous speed = 720 rpm. (Table 21-2)

- 40. Pull-out torque is the torque that would disengage the motor from its synchronous speed and cause it to stop.
- 41. Universal motors are very small and light weight for a given power rating. Some vacuums, appliances, and hand tools utilize the high speed of rotation effectively.
- 42. A universal motor can operate on DC or almost any frequency of AC voltage when operating near its full-load point.
- 43. Batteries, generators, rectified AC, HYDROGEN FUEL CELLS.
- 44. See Table 2l-7.
- 45. SCR Silicon controlled rectifier. Used to produce DC power from AC.
- 46. SCR controls do not produce <u>pure</u> DC power; it has some variation, called ripple, due to the AC input. A low-ripple control would produce a nearly true DC power.
- 47. Could use a 90V DC motor powered from a NEMA Type K SCR power supply to convert 115 V AC to 90V DC power.
- 48-50. See Section 2/-11.
- 51. The motor would speed up without limit and may fail catastrophically.
- 52. Speed is proportional to torque. $T_2 = T_1 (n_1/n_2)$ $T_2 = (15.0 \text{ N-m})(3000/2200) = 20.5 \text{ N-m}$
- 53, 56-61. See Sections 2l-9, 2l-11, and 2l-12.
- 54. NEMA Size 2 motor starter for 10 hp, 220V AC, 3-phase.
- 55. NEMA Size 1 motor starter for 1.0 kW, 110V AC, single phase.

CHAPTER 22 MOTION CONTROL: CLUTCHES AND BRAKES

1. FROM EQ.22-1! T= CPK/m = (63025)(5.0)(2.75)/190 = 495 LB.IN CAND K FROM SECTION 22-4.

SUMMARY OF RESULTS FOR PROBLEMS 2-7.

PROB.	c	P	K	n	TORQUE
2	5252	75hP	5.0	2500	788 LB · FT
3	63025	0.50 h f	1.5	1150	41 LB·IN
4	63025	5.0 hp	275	180	4814 LB.JN
5-1	63025	5.0 KP	1.0	1750	180 LB.IN.
5-2	52 <i>5</i> 2	75 hP	1.0	2500	158 LB.FT
5-3	63025	0.5041	1.0	1150	27.4LB.IN
5-4	63025	5.0 hl	1.0	180	1751 LB:1N
6	9549	ZORW	2.75	3450	152 N·m
7(a)	9549	50 kW	4.0	900	2122 Nom CLUTCH
(b)	9549	50kW	1.0	900	531 Nom BRAKE

B. DISK: D= 24.0 M; R= 12.0 M; L= 2.50 M; Rz=0; STEEL $Wh^2 = \frac{L(R_1^4 - R_2^4)}{323.9} = \frac{2.50(12.0^4 - 0)}{373.9} LB - FT^2 = 160.0 LB - FT^2$ $T = \frac{Wh^2(\Delta M)}{308(2.0)} = \frac{(160)(550)}{308(2.0)} = 142.9 LB - FT$

/Λ	
II).	

NEGLECT CLUTCH AND SHORT SHAPT BETWEEN CLUTCH ANDGEAR A. SPERO OF SHAPTZ: MZ=1750 (4.00/15,00) = 466,7 RPM IN EQ. 22-4 (1/m2) = (12/m,) = (466.7/1750) = 0.07117

	RI	Rz	 wk2	we
GEAR A GEAR B SHAFF 2 HUB I HUB Z END PLATES HOLLOW CYL	2.00 7.50 1.25 2.50 2.50 9.00	0 1.25 0 1.25 1.25 1.25 2.50	0.1482 29.2833 0.4070 0.5653 0.5853 40.4974 314.6284	0./482 2.0824 0.0289 0.0402 0.0402 2.8798 22,3786

 $T = \frac{\text{whilen}}{308t} = \frac{(27.5933)(1750)}{308(1.50)} = 104.5 LB-FT$

11. LOAD SPEED = 50 FT/MIN = V

DRUM SPECO = R = 50FT x 1/2/N = 150 RAO/MW = W

RPM OF DRUM = M = LORAD X ROW = 23.87 RPM

÷	<u>Rı</u>	Rz		wk²
SHAFT END PLATES	0.15 4.00 4.00	.75 3.00	24.0 3.0 13.0	0.0234 2.3682 7.0238
HOLLOW CYL,	,	7	OTAL	9,4154 LB-FT2

LOAD: WR = = W (W) = 600LB (50 FT/MIN) = 66.6667LB-FF2

TOTAL WR = 9,4154 + 66,6662 = 76-08 LB-FT2

BRAKING TORQUE = WE-(DM) = (76.08)(23.87) = 23.6 LB-FT

ADDITIONAL TORQUE TO HOLD LOAD = 600 LB(4/N) (ENJET) = 200 LB-FT

TOTAL BRAKE TORQUE = 223.6 CB-FT

	RI	R2		wkz	wże
WORM	1.75	0	8.00	0.23/6	0.23/6
WORMGEAR	8.00	Ø	2.50	31.6147	0.0344
2 HVBS	4.00	200	4,00	2.9639	0.0032
END PLATES	14.00	2.00	4.00	474.2204	0.5178
HOLLOW CYL,	14.00	12.00	18.00	982,5255	1.0128
SHAFT	2.00	0	360	1.1183	0.00 19
				•	1.8617LB-FT
T= Wke (sm) (1.86	(17)(/50)	i		

$$T = \frac{Wk^{2} (\Delta m)}{308 t}$$
END PLATES 474, 2204
$$T = \frac{(1461.5)(38)}{308(2.0)} = 90.2 LB - FT.$$
SHAPT 1.7783

TOTAL 1464.5 LB-FF²

13.
$$T_{\frac{1}{2}} - \frac{1}{2} N R_{m} = \frac{1}{2} \frac{R_{m}}{R_{m}} = \frac{1}{2} \frac{1}{2$$

A = TT(R12-Ri2), Rm=(R0+Ri)/2 02 2Rm=R0+Ri

TRY R0=1.5Ri; 2Rm=1.5Ri+Ri=2.5Ri; R1=2Rm=200=1.60in

R0=1.5(1.60)=240in; A=TT(2.402-1.607)=1005

5/M/LARLY, FOR R0=1.75Ri

Ri=1.45 in 3 R0=2.55 in; A=13.75 in 20x

14. FROM PROB. 9: $T_{f} = 64 LB \cdot IN ; TRY Rm = 1.50 IN ; f = 0.25$ $N = \frac{T_{f}}{fRm} = \frac{64.0}{(25)(1/50)} = 1/0 LB$ $P_{6} = \frac{T_{f} M}{63000} = \frac{(64)(775)}{63000} = 0.79 LP$ $63000 \qquad 63000$ FOR $WR = 0.10 Lp / \frac{1}{12}; A = \frac{1}{9} / WR = 7.9 in^{2}$ $TRY R_{0} = 1.50 Ri ; Rm = (R_{0} + R_{0})/2$ 2Rm = 1.5Ri + RL = 2.5Ri $R_{i} = Rm / 1.25 = 1.50 in / 1.25 = 1.20 / N; R_{0} = 1.57 L2) = 1.50 in$ $A = TT(R_{0}^{2} - R_{0}^{2}) = 5.65 / N^{2} (Low)$

TRY Ro = 2.0 Ri; 2Rm=2.0 Ri+Ri = 30Ri; Ri=Rm/1.0=1.0 in
Ro = 2.0(1.6) = 2.0 in; A = TT(2.0 - 1.6) = 9.42 in OK

15. FROM =Q. 12-13:

Fa = T+ (sind + f coad) = 1511-ft (air 20+, 25 cos/2), 2m f Rn (625)(3.0 ii) ft Fa = 10911

Tf= 64 lb-in; Let f=0.25; Rm=2.0 in; a=12.0

Fo= (64) (s=12°+,25 cro12') = 116 ll

17. T+= 150 ll-ft x 12 m/ft = 1800 ll-m = F+ Do/2

F+= 2T+/00=2(1800)/12.0=300 A.

 $W = \frac{\mathbf{F}_{+} \begin{pmatrix} a \\ F \end{pmatrix} - b}{L} = \frac{(300 \text{ M}) \begin{pmatrix} 4.0 \\ .25 \end{pmatrix} - 5.0 \text{ m}}{24.0 \text{ m}} = /38 \text{ M}}$

FOR SELF ACTUATION; W < 0.

FOR W = 0, a/f - b = 0 or $b = a/f = \frac{4.0 \text{ m}}{0.25} = 16.0 \text{ m}$ b > 16.0 N FOR SELF ACTUATION

19.
$$T_{f} = 100LB \cdot F_{f} \times 12IN/F_{f} = 1200LB \cdot IN$$
 $TRY D_{0} = 10.0 IN_{5} = 0.25$

$$F_{f} = \frac{2T_{f}}{D_{0}} = \frac{2(1200)}{10} = 240LB$$
 $IN F_{16} 22 - 17 (C)_{5} LET = 2.0/N_{5} = 6.00/N_{5} = 0.25; l = 18/N$
 $U = \frac{F_{f}(\frac{a}{F} - b)}{L} = \frac{240(\frac{2.0}{1.25} - 6.0)}{18} = 26.7LB$

20. Tf=100LB.AX 121N/PT=1200LB.W SELECT WOVEN ASBESTOS; f=.25; p=30pii 1N FIG 22-19: L=6.0/N; C= 9.00 W; L=20.0 N 0,=45°; 0=135° FROM EQ. 22-18:

 $N = \frac{T_4}{\Lambda^2 f P(\cos \theta_1 - \cos \theta_2)} = \frac{1200 LB \cdot IN}{(6.0)^2 (0.25)(30)(\cos 45^\circ - \cos 125^\circ)}$ $USE N = 3.25 \cdot IN.; P = 30 pri (3.14/3.25) = 29.0 pri$ $\theta_2 - \theta_1 = 135^\circ - 45^\circ = 90^\circ \times \frac{\pi}{180} = \frac{\pi}{2} = 1.57 \text{ hol}.$

(EQ.22-20) MN = 0.25(29.0)(3.25)(60)(9.0)[2(1.57)-sin 2700+ sin 900] MN = 6540 ll-i (EQ.22-21)

 $M_{+} = -(25)(9.0)(3.25)(6.0) \left[6.0 \left(\cos 45 - \cos 135 \right) + (23)(9.0) \left(\cos 270 - \cos 90 \right) \right]$ $\cos 90$

(Eq. 22-14) $W = (MN - M_f)/L = (6540 - 1200)/20 = 267 LB = ACTVATION FORCE
CHECK WEAR RATTO$

 $\begin{aligned}
& \begin{cases}
f = T_{f} m / 63000 = 1200(480) / 63000 = 9.14 \text{ kp} \\
& (60.22-23) \\
& A = 2 \text{ w.r. sin } \left(\frac{92-91}{2}\right) = 2(3.25)(60) \text{ sin } 45^{\circ} = 27.6 \text{ in}^{2} \\
& \text{w. R.} = \frac{P_{f}}{A} = \frac{9.14 \text{ kp}}{27.6 \text{ in}^{2}} = 0.33 \text{ kp/in}^{2} \text{ Somewhat High-} \\
& \text{NTERMITTENT} \\
& \text{SERVICE ONLY,}
\end{aligned}$

$$P_{-1} = P_{MAX} / 2 N = (25.0) (6.0) (2.5) = 375 LB$$

$$P_{2} = \frac{P_{1}}{e^{fo}} = \frac{375 LL}{e^{(25)(3.67)}} = 150 LB$$

$$T_{\frac{1}{2}} = (P_{1} - P_{2}) / 2 = (375 - 150) (6.0) = 1350 LB.IN (H16H).$$

WEAR RATIO:

$$P_{5} = \frac{T_{5m}}{63000} = \frac{(908)(350)}{63000} = 5.04 \text{ Mp}$$