Q: Are all of these enough to get full marks in the exam?

A: NO. This is a practice sheet. Meaning, you can practice all you want using the questions from this sheet. However, doing well in exams depends upon your ability to understand a question, formulate an answer, and express it correctly. You see, these are humane skills which cannot be guaranteed by completing a practice sheet only. But yeah, Best of luck anyway.

Chapter 2 (Instructions: Language of the Computer)

Question - 1:

Construct the equivalent RISC-V code of the following C code. Once you have the RISC-V code, identify type of each instruction and encode them accordingly.

$$A[7] = A[2] + A[B[8]] + 10;$$

 $B[i] = A[3] - 8;$

Base addresses of array A and B are in register X_{20} and X_{21} and i is in register X_{22}

Question - 2:

Construct the equivalent RISC-V code of the following C code.

```
for (i = 8; i > 0; i--) {
  if (A[i] == i){
    A[2] = A [B[3]];
  }
}
```

Base addresses of array A and B are in register X_{20} and X_{21} . Also consider i is in register X_{22} .

Question - 3:

Construct the equivalent RISC-V code of the following C code.

```
if ( A[i] < i) {
    A[2] = A [B[3]];
}
```

Base addresses of array A and B are in register X_{20} and X_{21} . Also consider i is in register X_{22} .

Question - 4:

Construct the equivalent RISC-V code of the following C code.

```
if ( A[3] != A[6]) {
    if (A[3] == 0) {
        A[3] = A[3] + 2;
    }else {
        A[6] = A[6] / 16;
    }
} else {
        A[6] = A[6] * 8
}
```

Base addresses of array A and B are in register $\,X_{20}$ and $\,X_{21}$.

Question - 5:

Construct the equivalent RISC-V code of the following C code.

```
Main () {
    int x = 0;
    int y = 9;
    int z = addition(x, y);
}
```

```
int addition (int a, int b) {
  int c = a + b;
  return c;
}
```

Variables x, y, z are stored in X_{20} , X_{21} and X_{22} registers. Argument x, y are passed using register X_{13} , X_{14}

Variable c from the addition function also uses register X_{21}

Question - 6:

Write RISC-V assembly code that checks if the number stored in register X_{25} is **even** or not. If **even** then store 1 in register X_{26} otherwise store 0.

Question - 7:

ADD X_{25} , X_{25} , X_0 . Can you make this instruction faster? If yes, Write the updated instruction?

Question - 8:

Memory Location	Code	Line Number	Machine Code
	ADDI X_5 , X_0 , 5	1	
	ADDI X_6 , X_0 , 1	2	
	ADDI \mathbf{X}_{25} , \mathbf{X}_{0} , 0	3	
	Loop: BLT X ₅ , X ₆ , loopBreak	4	XXXXXXXXXX
	ADDI X ₂₅ , X ₂₅ , 1	5	
#7080	ADDI X ₅ , X ₅ , -1	6	
	BEQ $\mathbf{X_0}$, $\mathbf{X_0}$, Loop	7	XXXXXXXXXX
	loopBreak:	8	

- a) What is the value of **PC** while executing line2? Answer: _____
- b) Fill up the machine codes corresponding to line4 and line7 in the table above.

Question - 9:

Memory Location	Code	Line Number
	Loop:	
	SLLI X ₁₀ , X ₂₂ , 3	1
	ADD X_{10} , X_{10} , X_{25}	2
	$LD \mathbf{X}_9$, $O(\mathbf{X}_{10})$	3
	BNE X ₉ , X ₂₄ , Exit	4
#80016	ADDI X ₂₂ , X ₂₂ , 1	5
	$\operatorname{BEQ} \mathbf{X_0}$, $\mathbf{X_0}$, Loop	6
	Exit:	

- a. Fill up the memory locations.
- b. Find the SB-type instructions from the above code and encode them accordingly. Given,
 - I. opcode = $(103)_{10}$, funct3 = $(000)_2$ opcode for BEQ
 - II. opcode = $(103)_{10}$, funct3 = $(001)_2$ opcode for BNE

Question - 10:

Write necessary RISC-V instructions to store the value (1111 1111 0000 1111 11)2 in X20 register.

Question - 11:

Show how the value 0xabcdef12 would be arranged in memory in RISC-V machine.

Question - 12:

For the RISC-V assembly instructions below, what is the corresponding C/high level statement?

11: 20 5 2	A 41 4 41
slli x30, x5, 3	Assume that the
add x30, x10, x30	variables f, g, h, i, and j are
slli x31, x6, 3	assigned to registers x5, x6, x7,

add x31, x11, x31
1d x5, 0(x30)
addi x12, x30, 8
$1d \times 30, 0(\times 12)$
add x30, x30, x5
sd x30, 0(x31)

x28, and x29, respectively.
Assume that the base address of the

Arrays A and B are in registers x10 and x11, respectively.