# Phys 111: Lecture 12

Ross Miller

University of Idaho

October 03, 2019

"The 12<sup>th</sup> Day: 2 Blue and 2 Green"

## Homework Wk #6 Due Today

## Today's Topics

- 1. Power
- 2. Work From Variable Forces
- 3. Examples

# **Energy Bills**

# Should you buy a 45 W or a 25 W bulb if they produce the same amount of light?

| Meter<br>Number   | Service<br>Type | Meter Reading |             | Read Type |         | Meter | Energy        |
|-------------------|-----------------|---------------|-------------|-----------|---------|-------|---------------|
|                   |                 | Previous      | Current     | Previous  | Current | Mult. | Usage         |
| 12192780          | Electric        | 36903.370     | 37568.030   | Actual    | Actual  | 1     | 664.660       |
| Rate Schedule     |                 |               |             |           |         |       | <b>\$0.00</b> |
| Basic Charge \$6. |                 |               |             |           |         |       | \$6.00        |
| First 600 kWh     | 600.00000 kWh   |               | X \$0.08174 |           |         |       | 49.04         |
| Over 600 kWh      | 64.66000 kWh    |               | X \$0.09237 |           |         |       | 5.97          |
| Franchise Fee 39  | 6               |               |             |           |         |       | 1.83          |
|                   |                 |               |             |           |         |       |               |

Figure: 12.1 Example Power Bill

#### "I've Got The Power!"

**Power** is the rate at which energy is transferred or transformed.

$$Power = \frac{Change \ in \ Energy}{Time}$$

$$P_{ave} = \frac{\Delta E}{\Delta t}$$

$$1 \ watt = 1 \ joule/second$$

$$1 W = 1 J/s$$

4

**OPSTX Problem 7.33** What is the cost of operating a 3.00~W electric clock for a year if the cost of electricity is \$0.0900 per kWh?

<code>OPSTX Problem 7.34</code> A large household air conditioner may consume  $15.0\ kW$  of power. What is the cost of operating this air conditioner 3.00 h per day for 30.0 d if the cost of electricity is \$0.110 per kWh?

#### Exercise #1 Answers

#### **OPSTX Problem 7.33**

$$cost = \$0.0900/(kW \cdot h)$$
 ,  $P = 3.00~W$  ,  $t = 1~yr = (365.35)(24)~h$ 

$$Energy = Power \times time$$

$$E = (3.00 W)((365.35 \cdot 24 h)$$
$$E = 26.3 kWh$$

$$cost = Rate \times Energy$$

$$cost = (\$0.0900/kWh)(26.3 \ kWh)$$
  
 $cost = \$2.37$ 

### Exercise #1 Answers

#### **OPSTX Problem 7.34**

$$cost = \$0.110/(kW \cdot h), \ P = 15.00 \ kW, \ t = (3.00 \ h/day)(30.0 \ day) = 90.0 \ h$$

$$E = P \cdot t$$
 
$$E = (15.0 \text{ } kW)(90 \text{ } h)$$
 
$$E = 135 \text{ } kWh$$
 
$$cost = \frac{\Delta cost}{\Delta E} \cdot E$$
 
$$cost = (\$0.110/kWh)(135 \text{ } kWh)$$
 
$$cost = \$14.85$$

7

# Work Done By a Variable Force

Variable Forces: How should you approach quantifying total work done by a force that is changing (varying) as a displacement occurs?

Graph it and break the calculation into manageable chunks!

#### **C&J 7.72** Find the work done by the force.



Figure: 12.2 Triangle variable force example; W = 49.6 J

**C&J 6.74** The force component along the displacement varies with the magnitude of the displacement, as shown in the graph. Find the work done by the force in the interval from

- a. 0 to 1.0 m,
- b. 1.0 to 2.0 m, and
- c. 2.0 to 4.0 m.

#### **C&J** 6.74 Find the work done by the force in the three distinct intervals:



Figure: 12.3 Variable force example

## Exercise #2 Answers

#### C&J 6.74

a. 0 to 1.0 m:

$$W = \frac{1}{2}(6.0\ N)(1.0\ m)$$

$$W = 3.0 \; J$$

b. 1.0 to 2.0 m:

$$W = (0 \ N)(1.0 \ m)$$

$$W = 0 J$$

c. 2.0 to 4.0 m:

$$W = \frac{1}{2}(-6.0 \ N)(1.0 \ m) + (-6.0 \ N)(1.0 \ m)$$

$$W = -9.0 \ J$$

#### **OPSTX Problem 7.36**

- a. What is the average useful power output of a person who does  $6.00 \times 10^6~J$  of useful work in 8.00~h?
- b. Working at this rate, how long will it take this person to lift  $2000\ kg$  of bricks  $1.50\ \mathrm{m}$  to a platform? (Work done to lift his body can be omitted because it is not considered useful output here.)

#### Exercise #3 Answers

#### **OPSTX Problem 7.36**

a.  $Work = 6.00 \times 10^6~J$ ,  $time = 8.00~h = 28.8 \times 10^3~s$ 

$$P_{ave} = \frac{W_{net}}{t}$$
 
$$P_{ave} = \left(\frac{6.00 \times 10^6 \ J}{28.8 \times 10^3 \ s}\right)$$
 
$$P_{ave} = 208 \ W$$

b.  $F_g = 2000 \ N$ ,  $s = 1.50 \ m$ 

$$t = \frac{W_{net}}{P_{ave}}$$
 
$$t = \left(\frac{3000\ J}{208\ W}\right)$$
 
$$t = 14.4\ s$$

## Problem Solving with Energy

- 1. Determine the *system of interest* and *identify knowns, unknowns, and goals.* A sketch will help.
- Examine all the forces involved and determine types of forces and energies are involved.
- If you know all of the forces are conservative, then you can simplify conservation of energy:

$$KE_o + PE_o = KE_f + PE_f$$

4. If you know some of the forces are nonconservative, then the general conservation of energy law form must be used.

$$KE_o + PE_o + W_{nc} = KE_f + PE_f$$

- 5. Before solving, eliminate/simplify terms wherever possible.
- 6. Check the answer to see if it is reasonable.

**C&J 6.4.33** A bicyclist rides  $5.0\ km$  due east, while the resistive force from the air has a magnitude of  $3.0\ N$  and points due west. The rider then turns around and rides  $5.0\ km$  due west, back to her starting point. The resistive force from the air on the return trip has a magnitude of  $3.0\ N$  and points due east.

- 1. Find the work done by the resistive force during the round trip.
- Based on your answer to part 33(a), is the resistive force a conservative force? Explain.

#### Exercise #4 Answers

**C&J 6.4.33** Air resistance force acts during two distinct portions of a bike ride, but has the same effect for both parts of the trip.

$$W \equiv (F\cos\theta)s$$

$$W = W_1 + W_2$$

$$W_1 = -(3.0 N)(5.0 km)$$

$$W_2 = W_1$$

$$W = -30.0 kJ$$

**C&J 6.5.39** A slingshot fires a pebble from the top of a building at a speed of 14.0 m/s. The building is 31.0 m tall. Ignoring air resistance, find the speed with which the pebble strikes the ground when the pebble is fired

- a. horizontally,
- b. vertically straight up, and
- c. vertically straight down.

## Exercise # 5 Answers

**C&J 6.5.39** Let  $y_f = 0$ . For each case:

$$KE_{o} + PE_{o} = KE_{f} + PE_{f}$$

$$KE_{f} = KE_{o} + PE_{o} - PE_{f}$$

$$\frac{1}{2}mv_{f}^{2} = \frac{1}{2}mv_{o}^{2} + mg(y_{o} - y_{f})$$

$$\frac{1}{2}v_{f}^{2} = \frac{1}{2}v_{o}^{2} + g(y_{o} - y_{f})$$

## Exercise # 5 Answers

$$\frac{1}{2}v_f^2 = \frac{1}{2}v_o^2 + g(y_o - y_f)$$

$$v_f^2 = v_o^2 + 2gy_o$$

$$v_f = \sqrt{v_o^2 + 2gy_o}$$

$$v_f = \sqrt{(14.0)^2 + 2(10.0)(31.0)} \ m/s$$

$$v_f = \sqrt{816} \ m/s$$

$$v_f = 28.6 \ m/s$$

# The End

Thanks for your time and attention! Any questions?

# Problem Solving with Energy (Collecting)

- 1. Determine the system of interest and identify knowns, unknowns, and goals. A sketch will help.
- Examine all the forces involved and determine whether you know or are given the potential energy from the work done by the forces.
- If you know all of the forces are conservative, then you can apply conservation of mechanical energy:

$$KE_o + PE_o = KE_f + PE_f$$

If you know some of the forces are nonconservative, then the conservation of energy law in its most general form must be used.

$$KE_o + PE_o + W_{nc} = KE_f + PE_f$$

- Before solving, eliminate terms wherever possible to simplify the algebra.Ex. Set initial or final height to be zero.
- 6. Check the answer to see if it is reasonable. Check for  $\pm$  signs and if speeds or heights are too large or too small.

## Additional Practice #1

**C&J 6.5.36** A  $35.0\ kg$  girl is bouncing on a trampoline. During a certain interval after she leaves the surface of the trampoline, her kinetic energy decreases to  $210\ J$  from  $440\ J$ . How high does she rise during this interval? Neglect air resistance.

### Additional Practice #2

**C&J 6.5.38** The skateboarder in the drawing starts down the left side of the ramp with an initial speed of  $5.4\ m/s$ . Neglect nonconservative forces, such as friction and air resistance, and find the height h of the highest point reached by the skateboarder on the right side of the ramp.



Figure: 12.4 Conservation of Energy Example

## Additional Practice #3

**C&J 6.7.65** A car accelerates uniformly from rest to  $20.0\ m/s$  in  $5.6\ s$  along a level stretch of road. Ignoring friction, determine the average power required to accelerate the car if

- a. the weight of the car is  $9.0 \times 10^3 \ N$  and
- b. the weight of the car is  $1.4 \times 10^4 \ N$ .



 $\textbf{Review} \ \ \mathsf{Redo} \ \ \mathsf{kinematics/projectile} \ \ \mathsf{problem} \ \ \mathsf{with} \ \ \mathsf{work/energy} \ \ \mathsf{methods}.$