Group Normalization

Presenter: Baosong Yang

Motivation

- Batch Normalization:
 - Error increases rapidly when the batch size becomes smaller (OOM)
 - The batch sizes are inconsistent in training and testing (mean and variance)
 - How to avoid normalizing the batch?

Normalization

Shift and scale to get standard distribution

$$\hat{x}_i = \frac{1}{\sigma_i} (x_i - \mu_i). \qquad \mu_i = \frac{1}{m} \sum_{k \in S_i} x_k, \quad \sigma_i = \sqrt{\frac{1}{m}} \sum_{k \in S_i} (x_k - \mu_i)^2 + \epsilon,$$

Re-shift and re-scale to guarantee the expressive

$$y_i = \gamma \hat{x}_i + \beta,$$

GN

- GN divides the channels into groups.
- The mean and variance for normalization are computed within each group.
- GN's computation is independent of batch sizes.

Comparing with other nomalization

- Batch Normalization: [N, H, W] $S_i = \{k \mid k_C = i_C\},\$

- Layer Normalization: [C, H, W]
- Instance Normalization: [H, W]
- Group Normalization: [C//G , H, W]

$$S_i = \{k \mid k_N = i_N\}$$

$$S_i = \{k \mid k_N = i_N, k_C = i_C\}$$

$$S_i = \{k \mid k_N = i_N, \lfloor \frac{k_C}{C/G} \rfloor = \lfloor \frac{i_C}{C/G} \rfloor\}.$$

Experiments

Experiments

# groups (G)										
64	32	16	8	4	2	1 (=LN)				
24.6	24.1	24.6	24.4	24.6	24.7	25.3				
0.5	_	0.5	0.3	0.5	0.6	1.2				

# channels per group									
64	32	16	8	4	2	1 (=IN)			
24.4	24.5	24.2	24.3	24.8	25.6	28.4			
0.2	0.3	_	0.1	0.6	1.4	4.2			

Table 3. **Group division**. We show ResNet-50's validation error (%) in ImageNet, trained with 32 images/GPU. (Top): a given number of groups. (Bottom): a given number of channels per group. The last rows show the differences with the best number.

Conclusion

- GN is less restricted than LN (Why multi-head is better than singlehead)
- IN misses the opportunity of exploiting the channel dependence. (A support for CSAN)

- Improving Transformer with Head Normalization?
- Why not normalize along length and batch?

```
laver norm(inputs, epsilon=le-6, dtype=None, scope=None):
with tf.variable scope(scope, default name="layer norm", values=[inputs]
                        dtype=dtype
     channel size = inputs get shape().as list()[-1]
    scale = tf.get variable("scale", shape=[channel size]
                             initializer=tf ones initializer())
     offset = tf.get_variable("offset", shape=[channel_size]
                              initializer=tf zeros initializer())
    mean = tf.reduce_mean(inputs, axis=-1, keep dims=True)
     variance = tf.reduce mean(tf.square(inputs - mean), axis=-1,
                               keep dims=True)
    norm inputs = (inputs - mean) * tf.rsqrt(variance + epsilon)
     return norm inputs * scale + offset
```