3. MORE ON SUBGROUPS & CYCLIC GROUPS

Recall that we say a subset H of a group G is a **subgroup of** G if H is a group in its own right under the restriction of G's group operation. We write this

$$H \leqslant G$$
.

There is a simple check – the $subgroup\ test$ – for determining whether a subset is a subgroup.

Proposition 87 (Subgroup Test) Let G be a group. Then a $H \subseteq G$ is a subgroup of G if and only if H is non-empty and whenever $x, y \in H$ then $x^{-1}y \in H$.

Proof. \Longrightarrow Suppose that $H \leq G$. Then $e \in H$ and so H is non-empty. Further for $x, y \in H$ we have $x^{-1}y \in H$ as H is closed under products and inverses.

 \Leftarrow Suppose that the subgroup test applies. As $H \neq \emptyset$ then there is some $h \in H$ and so by the test $e = h^{-1}h \in H$. Further if $x, y \in H$ then by the test $x^{-1} = x^{-1}e \in H$ and $xy = (x^{-1})^{-1}y \in H$. Thus H is closed under products and inverses. Finally the associativity of the group operation on H is inherited from its associativity on G.

Example 88 The subgroups of S_3 are

$$\{e\}, \qquad \{e, (12)\}, \qquad \{e, (13)\}, \qquad \{e, (23)\}, \qquad A_3, \qquad S_3.$$

Solution. The listed subgroups are certainly subgroups of S_3 . To see that these are the only subgroups suppose that $H \leq S_3$. Certainly $e \in H$. If |H| = 2 then H must consist of e and a non-trivial self-inverse element. If |H| = 3 then it must be of the form $\{e, g, g^2\}$ where $g^3 = e$ and A_3 is the only such subgroup. If $|H| \geq 4$ then H must either (i) contain all three 2-cycles or (ii) a 2-cycle and a 3-cycle. As the product of two 2-cycles in S_3 is a 3-cycle, we see case (ii) in fact subsumes case (i). Also if H contains a 3-cycle then it contains its inverse. So, without any loss of generality we may assume this 2-cycle and 3-cycle to be (12) and (123). But then

$$(13) = (12)(123),$$
 $(23) = (123)(12),$ $(132) = (123)^2$

and we see that $H = S_3$.

Example 89 The subgroups of D_8 are

$$\{e\}, \quad \{e, r^2\}, \quad \{e, s\}, \quad \{e, rs\}, \quad \{e, r^2 s\}, \quad \{e, r^3 s\},$$

 $\{e, r, r^2, r^3\}, \quad \{e, r^2, s, r^2 s\}, \quad \{e, r^2, rs, r^3 s\}, \quad D_8.$

Solution. The listed subgroups are certainly subgroups of D_8 . To see that these are the only subgroups suppose that $H \leq D_8$. Certainly $e \in H$. If |H| = 2 then H must consist of e and a non-trivial self-inverse element and the possibilities are listed above. If |H| = 3 then it must be of the form $\{e, g, g^2\}$ where $g^3 = e$ but there is no such $g \in D_8$. A subgroup of order 4 must

be of the form $\{e,g,g^2,g^3\}$ where $g^4=e$ or $\{e,a,b,ab\}$ where $a^2=b^2=e$ and ab=ba. For the former, only g=r or $g=r^3$ will do which both lead to the same subgroup $\{e,r,r^2,r^3\}$. For the latter we must have two reflections and a rotation; further the rotation must be r^2 if it is to commute with the reflections. So the only possibilities are $\{e,r^2,s,r^2s\}$ and $\{e,r^2,rs,r^3s\}$. If $|H| \geq 5$ then H must contain a rotation and a reflection; if the rotation is r or r^3 then it and the reflection will lead to all of D_8 but if there are three or more reflections then at least one must be in a diagonal and one in the vertical or horizontal and so their product is r or r^3 . Hence $H = D_8$ is the only subgroup of order greater than 4. \blacksquare

Example 90 The subgroups of $C_6 = \{e, g, g^2, g^3, g^4, g^5\}$ are

$$\{e\}, \qquad \{e, g^3\}, \qquad \{e, g^2, g^4\}, \qquad C_6.$$

The only subgroups of C_5 are $\{e\}$ and C_5 .

Solution. The only non-trivial self-inverse element in C_6 is g^3 and the non-trivial solutions of $x^3 = e$ are g^2, g^4 . If $H \leq C_6$ and $|H| \geq 4$ then either $g \in H$ or $g^5 = g^{-1} \in H$ (both of which lead to $H = C_6$) or $\{e, g^2, g^3, g^4\} \subseteq H$ in which case $g^3 (g^2)^{-1} = g \in H$ in which case $H = C_6$ is the same conclusion.

If $H \leq C_5$ and $1 \in H$ then $H = C_5$ but if $g^2 \in H$ then $(g^2)^3 = g \in H$, and if $g^3 \in H$ then $(g^3)^{-1} = g^2 \in H$ and if $g^4 \in H$ then $(g^4)^{-1} = g \in H$. So $H = \{e\}$ or $H = C_5$.

Remark 91 You may have noticed that in each of the previous examples, |H| divides |G| and this is indeed the case. This result is known as **Lagrange's Theorem** and we will prove in the next chapter.

Proposition 92 Let G be a group and H, K be subgroups of G. Then $H \cap K$ is a subgroup.

Proof. This is left as Exercise Sheet 3, Question 2. ■

In fact, it is very easy to generalize Proposition 92 to show that if H_i (where $i \in I$) form a collection of subgroups of G then

$$\bigcap_{i\in I} H_i \leqslant G.$$

Thus we may make the following definition.

Definition 93 Let G be a group and S a subset of G.

- (i) The **subgroup generated by** S, written $\langle S \rangle$, is the smallest subgroup of G which contains S. (This is well-defined as G is a subgroup of G which contains S and $\langle S \rangle$ is then the intersection of all such subgroups.)
- (ii) If $q \in G$, then we write $\langle q \rangle$ rather than the more accurate but cumbersome $\langle \{q\} \rangle$.
- (iii) If $\langle S \rangle = G$ then the elements of S are said to be **generators** of G.

Example 94 Determine $\langle S \rangle$ in each of the following cases:

- (i) $G = \mathbb{Z}, S = \{12, 42\}.$
- (ii) $G = S_4$, $S = \{(123), (12), (34)\}$.
- (iii) $G = \mathbb{Q}^*, S = \{3, \frac{2}{3}\}.$

Solution. (i) Note that $6 = 42 - 3 \times 12$; hence $6 \in \langle S \rangle$ and $6\mathbb{Z} \subseteq \langle S \rangle$. But as $12 = 2 \times 6$ and $42 = 7 \times 6$ then $\langle S \rangle \subset 6\mathbb{Z}$. This $\langle S \rangle = 6\mathbb{Z}$.

(ii) As (123) $\in A_4$ and (12) (34) $\in A_4$ then certainly $\langle S \rangle \subseteq A_4$. If we write $\sigma = (123)$ and $\tau = (12)(34)$ then we see that the following are also in A_4 .

$$e, \quad \sigma = (123), \quad \tau \sigma \tau = (214), \quad (\tau \sigma \tau)^2 = (124),$$

 $\sigma^2 \tau \sigma = (14)(23), \quad \sigma \tau \sigma^2 = (13)(24), \quad \tau = (12)(34), \quad \sigma^2 = (132),$
 $\sigma \tau = (243), \quad (\sigma \tau)^2 = (234), \quad \tau \sigma = (134), \quad (\tau \sigma)^2 = (143).$

Hence $\langle S \rangle = A_4$.

(iii) We have $3 \in \langle S \rangle$ and so $3^m \in \langle S \rangle$ for all $m \in \mathbb{Z}$. Likewise $2 = \frac{2}{3} \times 3 \in \langle S \rangle$ so that $2^n \in \langle S \rangle$ for all $n \in \mathbb{Z}$. So $2^n 3^m \in \langle S \rangle$ for $m, n \in \mathbb{Z}$. But as these form a subgroup of \mathbb{Q}^* (see the next example) we have

$$\langle S \rangle = \{2^n 3^m : m, n \in \mathbb{Z}\}.$$

Example 95 Show that if G is abelian and $g, h \in G$ then

$$\langle g, h \rangle = \{ g^r h^s : r, s \in \mathbb{Z} \}$$
.

Solution. Certainly $\{g^r h^s : r, s \in \mathbb{Z}\} \subseteq \langle g, h \rangle$. However, when G is abelian (or indeed if just qh = hq), then $\{q^rh^s : r, s \in \mathbb{Z}\}$ is a subgroup as follows:

- (i) $e = g^0 h^0 \in \{g^r h^s : r, s \in \mathbb{Z}\};$ (ii) $(g^k h^l) (g^K h^L) = g^{k+K} h^{l+L} \in \{g^r h^s : r, s \in \mathbb{Z}\};$
- $(iii) (g^k h^l)^{-1} = h^{-l} g^{-k} = g^{-k} h^{-l} \in \{g^r h^s : r, s \in \mathbb{Z}\}. \quad \blacksquare$

Remark 96 In several of the results that follow, notably Proposition 97 and Theorem 102 we make use of the following fact, known as the division algorithm, which we will take as self-evident.

• Let a, b be integers with b>0. Then there exist unique integers q, r such that a=qb+rand $0 \le r < b$.

Proposition 97 Let G be a group and $g \in G$. Then

- $(a) \langle g \rangle = \{ g^k : k \in \mathbb{Z} \} .$
- (b) If o(q) is finite then $\langle q \rangle = \{e, q, q^2, \dots, q^{o(g)-1}\}$.

Proof. (a) As $g^k \in \langle g \rangle$ for any integer k, so it only remains to show that $H = \{g^k : k \in \mathbb{Z}\}$ is indeed a subgroup. Using the subgroup test we note $g^0 = e \in H$ and that if $g^k, g^l \in H$ then

$$(g^k)^{-1}g^l = g^{-k}g^l = g^{l-k} \in H.$$

Hence $\langle g \rangle = H$.

(b) It is again clear that $\{e, g, g^2, \dots, g^{o(g)-1}\}\subseteq \langle g\rangle$. Also for any $k\in\mathbb{Z}$ there exist $q, r\in\mathbb{Z}$ such that k = qo(g) + r where $0 \le r < o(g)$. Then

$$g^k = g^{qo(g)+r} = (g^{o(g)})^q g^r = e^q g^r = g^r \in \{e, g, g^2, \dots, g^{o(g)-1}\}.$$

Remark 98 Recall that we say that a group G is **cyclic** if there exists $g \in G$ such that $G = \langle g \rangle$. Note also that a cyclic group is necessarily abelian.

Remark 99 Note that in a finite group G, then g is a generator if and only if o(g) = |G|.

Example 100 (i) C_6 is cyclic with generators g and g^5 .

- (iii) C_5 is cyclic with generators g, g^2, g^3, g^4 .
- (iv) $C_2 \times C_2$ is not cyclic as the elements have orders 1, 2, 2, 2.
- (v) $C_2 \times C_3$ is cyclic. If $C_2 = \{e, g\}$ and $C_3 = \{e, h, h^2\}$ then (g, h) and (g, h^2) are both generators of $C_2 \times C_3$ as they have order 6 (check!).
- (vi) \mathbb{Q} is not cyclic: clearly $\langle 0 \rangle \neq \mathbb{Q}$ and if $q \neq 0$ then $\frac{1}{2}q \notin \langle q \rangle = q\mathbb{Z}$. By the same reasoning we see that \mathbb{Q} cannot be generated by finitely many elements.

Theorem 101 Let G be a cyclic group.

- (a) If |G| = n is finite, then G is isomorphic to C_n .
- (b) If |G| is infinite, then G is isomorphic to \mathbb{Z} .

Proof. (a) Let g be a generator of G. Then

$$G = \langle g \rangle = \left\{ e, g, g^2, \dots, g^{n-1} \right\}$$

by Proposition 97 (b) and multiplication in G is as given in Example 34 as $g^n = e$.

(b) If g is a generator of G with infinite order, then we can define a map $\phi: G \to \mathbb{Z}$ by $\phi(g^r) = r$ which is an isomorphism.

Theorem 102 Let G be a cyclic group and $H \leq G$. Then H is cyclic.

Proof. Let $G = \langle g \rangle$. If $H = \{e\}$ then $H = \langle e \rangle$ and we are done. Otherwise, we define

$$n = \min\left\{k > 0 : g^k \in H\right\}.$$

To show that n is well-defined, note that $g^k \in H \neq \{e\}$ for some $k \neq 0$. As H is a subgroup then $g^{-k} = (g^k)^{-1} \in H$ also. As one of $\pm k$ is positive, n is well-defined. We will show that

$$H = \langle g^n \rangle$$
.

As $g^n \in H$ then $\langle g^n \rangle \subseteq H$. Conversely say that $g^a \in H$. Then, by the division algorithm, there exist $q, r \in \mathbb{Z}$ such that a = qn + r where $0 \leq r < n$. But then

$$g^r = g^{a-qn} = g^a \left(g^n\right)^{-q} \in H$$

as $g^a \in H$ and $g^n \in H$. By the minimality of n then r = 0 and $g^a = (g^n)^q \in \langle g^n \rangle$.

Corollary 103 The subgroups of \mathbb{Z} are each of the form $m\mathbb{Z}$ where $m \in \mathbb{Z}$.

Proposition 104 Let m, n be non-zero integers. By Theorem 102 we have

$$\langle m, n \rangle = \langle h \rangle$$
 $\langle m \rangle \cap \langle n \rangle = \langle l \rangle$

for some h, l > 0. Then h has the following properties:

- (a) h|m and h|n;
- (b) if x|m and x|n then x|h;
- (c) there exist $u, v \in \mathbb{Z}$ such that um + vn = h. (Bézout's Lemma) and l has the following properties:
- (d) m|l and n|l;
- (e) if m|x and n|x then l|x.

Proof. Properties of h:

- (a) As $m = 1m + 0n \in \langle m, n \rangle = \langle h \rangle$ then h|m. Similarly h|n.
- (c) This follows from Example 95.
- (b) Say x|m and x|n. Then by Bézout's Lemma x|um + vn and so x|h. Properties of l:
- (d) As $l \in \langle m \rangle$ then m|l. Similarly n|l.
- (e) If m|x then $x \in \langle m \rangle$. Likewise $x \in \langle n \rangle$. So $x \in \langle m \rangle \cap \langle n \rangle = \langle l \rangle$ and l|x.

Definition 105 We define h, as defined in the previous Proposition, to be the **highest common factor** or **hcf** of m and n.

We define l as defined in the previous Proposition, to be the **least common multiple** or lcm of m and n.

Theorem 106 (Chinese Remainder Theorem) Let m and n be coprime natural numbers. Then C_{mn} is isomorphic to $C_m \times C_n$.

Specifically if g is a generator of C_m and h is a generator of C_n then (g,h) generates $C_m \times C_n$.

Proof. Certainly

$$\left(g,h\right)^{mn}=\left(\left(g^{m}\right)^{n},\left(h^{n}\right)^{m}\right)=\left(e^{n},e^{m}\right)=\left(e,e\right)$$

so that the order of (g, h) divides mn. But on the other hand $g^k = e$ if and only if m|k and $h^k = e$ if and only if n|k. So

$$(g,h)^k = (g^k, h^k) = (e,e)$$

if and only if m|k and n|k. As m, n are coprime then, by Bezout's Lemma, there exist u, v such that um + vn = 1. As n|k then mn|mk and as m|k then mn|nk. So

$$mn \mid (umk + vnk) = k.$$

Hence the order of (g, h) is mn which equals $|C_m \times C_n|$.