WHAT IS CLAIMED IS:

1	1. An iterative method for determining parameters for a forward error					
2	correction scheme for improving the quality of a data transmission, said method comprising the					
3	steps of:					
4	(a) establishing a relationship between said parameters and a coding gain;					
5	(b) initializing said coding gain to a minimum predetermined value;					
6	(c) determining, based on said relationship between said parameters and said					
7	coding gain, an intermediate set of parameters for providing a preferred result for said coding					
8	gain;					
10 11 12 13	(d) incrementing a value of said coding gain by a predetermined value and					
10	repeating said step (c) until said coding gain reaches a predefined maximum value, thereby					
11	determining a plurality of intermediate sets of parameters; and					
12	(e) determining a preferred set of parameters from said plurality of intermediate					
	sets of parameters, wherein said preferred set of parameters provides said forward error					
14	correction scheme with an optimal set of values for balancing a code length and an error rate of					
5	said data transmission.					
	2. A method as defined in claim 1, wherein said step (a) of establishing said					
2	2. A method as defined in claim 1, wherein said step (a) of establishing said relationship between said parameters and said coding gain comprises:					
3						
	(a1) calculating said coding gain for a plurality of associated parameters; and					
4	(a2) storing results of said step (a1) in a table.					
1	3. A method as defined in claim 1, wherein said step (a) of establishing said					
2	relationship between said parameters and said coding gain comprises:					
3	(a1) calculating said coding gain for a plurality of associated parameters; and					
4	(a2) determining an equation that approximates all results from said step (a1).					
1	4. A method as defined in claim 1, wherein said step (c) of determining said					
2	intermediate set of parameters comprises:					
3	calculating a maximum number of bytes per symbol B including said coding gain					
4						
Т	locating all parameters that satisfy said value of said coding gain; and					

5	selecting, as said intermediate set of parameters, and using said maximum number				
6	of bytes per symbol B, a set of parameters that provides a best performance.				
1	5. A method as defined in claim 4, wherein said best performance is defined				
2	by said set of parameters that yields a largest number of information bytes.				
1	6. A method as defined in claim 1, wherein said step (e) of determining said				
2	preferred set of parameters comprises:				
3	comparing all of said plurality of intermediate sets of parameters; and				
4	selecting as said preferred set of parameters said intermediate set of parameters				
	that provides a best performance.				
1	7. A method as defined in claim 6, wherein said best performance is defined				
2	by said set of parameters that yields a largest number of information bytes.				
1	8. A method as defined in claim 7, wherein said largest number of				
2	information bytes is compared with a maximum number of bytes B_0 had said forward error				
3	correction scheme not been implemented, for determining whether to use said forward error				
	correction scheme.				
1	9. A method as defined in claim 1, wherein said step (c) of determining said				
2	intermediate set of parameters is further based on external factors, wherein said external factors				
3	include delay and noise protection.				
1	10. An iterative method for determining parameters for a forward error				
2	correction scheme for improving the quality of a data transmission, said method comprising the				
3	steps of:				
4	(a) establishing a relationship between said parameters and a coding gain;				
5	(b) initializing said coding gain to a minimum predetermined value;				
6	(c) determining, based on said relationship between said parameters and said				
7	coding gain, an intermediate set of parameters for providing a preferred result for said coding				
8	gain;				
9	(d) replacing a preferred set of parameters with said intermediate set of				
0	parameters if said intermediate set of parameters provides a better performance, wherein said				

11	preferred set of parameters provides said forward error correction scheme with an optimal set of				
12	values for balancing a code length and an error rate of said data transmission; and				
13	(e) incrementing a value of said coding gain by a predetermined value and				
14	repeating said steps (c) and (d) until said coding gain reaches a predefined maximum value.				
1		11.	A method as defined in claim 10, wherein said better performance is		
2	defined as a se	et of pa	rameters yielding a larger number of information bytes.		
1		12.	A method as defined in claim 10, wherein said step (c) of determining said		
2	intermediate set of parameters comprises:				
3		calcul	ating a maximum number of bytes per symbol B including said coding gain;		
4	locating all parameters that satisfy said value of said coding gain; and				
5	selecting, as said intermediate set of parameters, and using said maximum numbe				
	of bytes per symbol B , a set of parameters that provides a best performance.				
		13.	A method as defined in claim 10, wherein said step (c) of determining said		
2	intermediate set of parameters comprises:				
13		calcul	ating a maximum number of bytes per symbol B including said coding gain;		
4	and				
5		selecti	ively skipping said step (d) when a value of said maximum number of bytes		
6 ,	per symbol B is less than or equal to a previous value of said maximum number of bytes per				
7	symbol B.				
1	· .	1.4	A		
. 1	•	14.	A method as defined in claim 10, wherein said step (c) of determining said		
2	intermediate set of parameters comprises:				
3	calculating a maximum number of bytes per symbol B including said coding gain;				
4	selectively skipping said steps (d) and (e) when a value of said maximum number				
5	of bytes per symbol B is less than or equal to a previous value of said maximum number of bytes				
6	per symbol B.				
1		15.	An apparatus for determining parameters for a forward error correction		

scheme for improving the quality of a data transmission, said apparatus including a processor to

implement processing including the steps of:

2

4 (a) establishing a relationship between said parameters and a coding gain; 5 (b) initializing said coding gain to a minimum predetermined value; 6 (c) determining, based on said relationship between said parameters and said coding gain, an intermediate set of parameters for providing a preferred result for said coding 7 8 gain; 9 (d) incrementing a value of said coding gain by a predetermined value and repeating said step (c) until said coding gain reaches a predefined maximum value, thereby 10 11 determining a plurality of intermediate sets of parameters; and (e) determining a preferred set of parameters from said plurality of intermediate 12 13 14 15 2 sets of parameters, wherein said preferred set of parameters provides said forward error correction scheme with an optimal set of values for balancing a code length and an error rate of said data transmission. 16. An apparatus for determining parameters for a forward error correction scheme for improving the quality of a data transmission, said apparatus including a processor to 3 6 7 implement processing including the steps of: (a) establishing a relationship between said parameters and a coding gain; (b) initializing said coding gain to a minimum predetermined value; (c) determining, based on said relationship between said parameters and said coding gain, an intermediate set of parameters for providing a preferred result for said coding 8 gain; 9 (d) replacing a preferred set of parameters with said intermediate set of 10 parameters if said intermediate set of parameters provides a better performance, wherein said 11 preferred set of parameters provides said forward error correction scheme with an optimal set of 12 values for balancing a code length and an error rate of said data transmission; and 13 (e) incrementing a value of said coding gain by a predetermined value and 14 repeating said steps (c) and (d) until said coding gain reaches a predefined maximum value. 1 17. An apparatus as defined in claim 16, wherein said step (c) of determining 2 said intermediate set of parameters comprises: 3 calculating a maximum number of bytes per symbol B including said coding gain; 4 locating all parameters that satisfy said value of said coding gain; and

6 1 2 3 4 5	said intermed	ymbol B, a set of parameters that provides a best performance. 18. An apparatus as defined in claim 16, wherein said step (c) of determining late set of parameters comprises: calculating a maximum number of bytes per symbol B including said coding gain:					
2 3 4	,	ate set of parameters comprises:					
3	,	-					
4	7	calculating a maximum number of bytes per symbol <i>B</i> including said coding gain:					
		calculating a maximum number of bytes per symbol B including said coding gain;					
5	and						
		selectively skipping said step (d) when a value of said maximum number of by					
6	per symbol B is less than or equal to a previous value of said maximum number of bytes per						
7	symbol B .						
ish ish							
4	•	19. An apparatus as defined in claim 16, wherein said step (c) of determining					
said intermediate set of parameters comprises:							
3		calculating a maximum number of bytes per symbol B including said coding gain;					
4	and						
# 5		selectively skipping said steps (d) and (e) when a value of said maximum number					
of bytes per symbol B is less than or equal to a previous value of said maximum number of b							
	per symbol B						
1		20. An apparatus for determining parameters for a forward error correction					
2	scheme for in	approving the quality of a data transmission, comprising:					
3		first means for establishing a relationship between said parameters and a coding					
4	gain;						
5		second means for initializing said coding gain to a minimum predetermined value;					
6		third means for determining, based on said relationship between said parameters					
7	and said coding gain, an intermediate set of parameters for providing a preferred result for said						
8	coding gain;						
9		fourth means for incrementing a value of said coding gain by a predetermined					
10	value and for repeating a function of said third means until said coding gain reaches a predefined						
11	maximum va	lue, thereby determining a plurality of intermediate sets of parameters; and					
12		fifth means for determining a preferred set of parameters from said plurality of					

intermediate sets of parameters, wherein said preferred set of parameters provides said forward

14	error correction scheme with an optimal set of values for balancing a code length and an error
15	rate of said data transmission.
1	21. An apparatus for determining parameters for a forward error correction
2	scheme for improving the quality of a data transmission, comprising:
3	first means for establishing a relationship between said parameters and a coding
4	gain;
5	second means for initializing said coding gain to a minimum predetermined value;
6	third means for determining, based on said relationship between said parameters
7	and said coding gain, an intermediate set of parameters for providing a preferred result for said
8	coding gain;
8 9 10 11 12	fourth means for replacing a preferred set of parameters with said intermediate set
10	of parameters if said intermediate set of parameters provides a better performance, wherein said
	preferred set of parameters provides said forward error correction scheme with an optimal set of
12	values for balancing a code length and an error rate of said data transmission; and
13	fifth means for incrementing a value of said coding gain by a predetermined value
14	and for repeating a function of said third means and a function of said fourth means until said
13	coding gain reaches a predefined maximum value.
1	
	22. An apparatus as defined in claim 21, wherein said third means for
2	determining said intermediate set of parameters comprises:
3	means for calculating a maximum number of bytes per symbol B including said
4	coding gain;
5	means for locating all parameters that satisfy said value of said coding gain; and
6	means for selecting, as said intermediate set of parameters, and using said
7	maximum number of bytes per symbol B , a set of parameters that provides a best performance.
1	23. An apparatus as defined in claim 21, wherein said third means for
2	determining said intermediate set of parameters comprises:
3	means for calculating a maximum number of bytes per symbol B including said

coding gain; and

6
7
1
2
3
4
6
West from and and a start said in
Ħ,.
isais .aas
The street street of
ļ:=i:

•							
means for selectively skipping said function of said fourth means when a value of							
said maximum number of bytes per symbol B is less than or equal to a previous value of said							
maximum number of bytes per symbol B .							
24. An apparatus as defined in claim 21, wherein said third means for							
24. An apparatus as defined in claim 21, wherein said unit means for							
determining said intermediate set of parameters comprises:							
means for calculating a maximum number of bytes per symbol B including said							
coding gain; and							
means for selectively skipping said function of said fourth means and a function							
of said fifth means when a value of said maximum number of bytes per symbol B is less than or							
equal to a previous value of said maximum number of bytes per symbol B.							