Neural networks

Final exam - January 29, 2018

- 1. (6 points) This task considers methods of learning.
 - 1. Explain the idea behind Oja's learning rule, write the expression for it, and describe its properties.
 - 2. Describe the principal component analysis.
 - 3. Describe the AdaBoost algorithm.
- 2. (6 points) In this task you have to construct a neural network whose inputs are binary (0 or 1) and whose output has the activation function $h(x) = \begin{cases} 1, & x > 0.5 \\ 0, & \text{inače} \end{cases}$. During construction you can use arbitrary number of linear neurons with activation functions $f(x) = a \cdot x + b$ and $g(x) = \max(x, 0)$.
 - 1. Design a network for the AND operator, draw its architecture, note the parameter values, and show that it works.
 - 2. Design a network for the OR operator, draw its architecture, note the parameter values, and show that it works.
 - 3. Design a network for the XOR operator, draw its architecture, note the parameter values, and show that it works.
- 3. (6 points) Consider a Hopfield network made up of two neurons whose synaptic weight matrix is

$$\mathbf{W} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

The bias applied to each neuron is zero. The four possible states of the network are $s_1 = (1,1)^T$, $s_2 = (-1,1)^T$, $s_3 = (-1,-1)^T$ i $s_4 = (1,-1)^T$.

- 1. Using the stability condition show that states s_2 and s_4 are stable.
- 2. Using the energy function show that states s_2 and s_4 are stable.
- 3. Show that states s_1 and s_3 exhibit a limit cycle. What is the length of the limit cycle?
- **4. (6 points)** This task considers convolutional neural networks. The input to the network is a 64×64 image with 3 channels. The first layer consists of 4 filter of size 3×1 with size preservation, the second layer consists of 4 filters of size 1×3 with size preservation, the third layer consists of max pooling of size 2×2 and stride 2 for each dimension, and, finally, there is a fully connected layer with 128 neurons that have an activation function that besides the bias has two additional parameters.
 - 1. Draw a sketch of the network.
 - 2. How many parameters does the network have?
 - 3. Which are some of the main reasons for the success of deep learning in the past 10 years?
- 5. (6 points) For the network shown in the image the input sample $\mathbf{x} = (1, 2, 3, 4)$ is expected to produce the output value y = 0.5. Initial parameter values are $w_1 = 1$, $w_2 = -1$, $w_3 = 1$, $w_4 = -1$, and the loss function is $L = \frac{1}{2}(d y)^2$. First, the sample \mathbf{x} is fed forward to the network, then the weights are adjusted by applying backpropagation with learning rate $\eta = 0.1$, and, finally, the sample \mathbf{x} is fed forward to the network again. What will then be the output value d?

