Espectro de un anillo

Levia MN

29 de diciembre de 2023

1. Topología

Definición 1. Sea A un anillo denotamos

$$Spec(A) = \{ \mathfrak{p} \subset A; \mathfrak{p} \text{ es un ideal primo} \}$$

 $Si\ M \subset A\ entonces\ denotamos$

$$V(M) = \{ \mathfrak{p} \in A; M \subset \mathfrak{p} \}$$

 $Si\ M = \{f\}\ entonces\ escribimos\ V(f).$

Observacion 1. Si \mathfrak{a} es el ideal generado por $M \subset A$ entonces

$$V(M) = V(\mathfrak{a})$$

Demostración. Si $M \subset \mathfrak{p}$ como \mathfrak{a} es el minimo ideal que contiene a M entonces $\mathfrak{a} \subset \mathfrak{p}$ por lo que $V(M) \subset V(\mathfrak{a})$.

Por otro lado si $\mathfrak{a} \subset \mathfrak{p}$ como $M \subset \mathfrak{a}$ entonces $M \subset \mathfrak{p}$ por lo que $V(\mathfrak{a}) \subset V(M)$ $\therefore V(M) = V(\mathfrak{a})$

Lema 1. 1. Si $\mathfrak{a} \subset \mathfrak{b}$ entonces $V(\mathfrak{b}) \subset V(\mathfrak{a})$

- 2. $V(0) = Spec(A) \ y \ V(1) = \emptyset$
- 3. Si $\{a_i \subset A; i \in I\}$ es una familia de ideales de A, entonces

$$V(\bigcup_{i\in I}\mathfrak{a}_i)=V(\sum_{i\in I}\mathfrak{a}_i)=\bigcap_{i\in I}V(\mathfrak{a}_i)$$

4. Si $\mathfrak a$ y $\mathfrak b$ son ideales de A, entonces

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$$

Demostración. 1. Si $\mathfrak{b} \subset \mathfrak{p}$ entonces $\mathfrak{a} \subset \mathfrak{p}$

2. Para cualquier $\mathfrak{p} \in Spec(A)$ se cumple que $0 \in \mathfrak{p}$

$$\therefore V(0) = Spec(A)$$

Para cualquier $\mathfrak{p} \in Spec(A)$ se cumple que $1 \notin \mathfrak{p}$

$$V(1) = \emptyset$$

3. Por la observación se sigue la primer igualdad, para la segunda Dado $j \in I$

$$\mathfrak{a}_j\subset\bigcup_{i\in I}\mathfrak{a}_i$$

así que por 1. $V(\bigcup_{i\in I} \mathfrak{a}_i) \subset V(\mathfrak{a}_j)$

$$\therefore V(\bigcup_{i\in I}\mathfrak{a}_i)\subset \bigcap_{i\in I}V(\mathfrak{a}_i)$$

Por otro lado si $\mathfrak{p} \in \bigcap_{i \in I} V(\mathfrak{a}_i)$ entonces para todo $i \in I$ ocurre que $\mathfrak{a}_i \subset \mathfrak{p}$ por lo que $\bigcup_{i \in I} \mathfrak{a}_i \subset \mathfrak{p}$

$$\therefore \bigcap_{i \in I} V(\mathfrak{a}_i) \subset V(\bigcup_{i \in I} \mathfrak{a}_i)$$

4. Como $\mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{a}, \mathfrak{b}$ entonces por 1.

$$V(\mathfrak{a}) \cup V(\mathbf{b}) \subset V(\mathfrak{a} \cap \mathfrak{b}) \subset V(\mathfrak{ab})$$

Si $\mathfrak{p} \in V(\mathfrak{ab})$ y $\mathfrak{p} \notin V(\mathfrak{a})$ entonces $\mathfrak{a} \not\subset \mathfrak{p}$, es decir, existe $a \in \mathfrak{a} \setminus \mathfrak{p}$ pero para toda $b \in \mathfrak{b}$ ocurre que $ab \in \mathfrak{ab} \subset \mathfrak{p}$ y como \mathfrak{p} es in ideal primo $b \in \mathfrak{p}$

$$\therefore \mathfrak{b} \subset \mathfrak{p}$$

i.e. $\mathfrak{p} \in V(\mathfrak{b})$

$$:: V(\mathfrak{ab}) \subset V(\mathfrak{a}) \cup V(\mathfrak{b})$$

Lo que prueba la igualdad entre los tres términos.

Observacion 2. El lemma anterior prueba que $\{V(\mathfrak{a}); \mathfrak{a} \subset A \text{ es in ideal}\}$ forman los cerrados de una topología sobre Spec(A)

Por otro lado vamos a definir el otro lado de la conección de Galois que nos gustaría crear.

Definición 2. Sea $Y \subset Spec(A)$ definimos

$$I(Y) = \bigcap_{\mathfrak{p} \in Y} \mathfrak{p}$$

 $Y \ definite mos \ I(\varnothing) = A$

Probemos un lemma técnico

Lema 2. Sea $J \subset A$ un ideal entonces $rad(J) = \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}$. Con $\mathfrak{p} \in Spec(A)$

Demostración. Por un lado si $a \in rad(J)$ entonces existe $n \in \mathbb{N}$ tal que $a^n \in J$ Asi que dado $\mathfrak{p} \in Spec(A)$ tal que $J \subset \mathfrak{p}$ se tiene que $a^n \in \mathfrak{p}$ y es un ideal primo se sigue que $a \in \mathfrak{p}$

$$\therefore rad(J) \subset \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}$$

Por otro lado sea $a\in\bigcap_{J\subset\mathfrak{p}}\mathfrak{p}$ y supongamos que $a\notin rad(J)$ entonces para cualquier $n\in\mathbb{N}$ ocurre que $a^n\notin J$

$$\mathcal{F} = \{I \subset A; \text{ I es un ideal, } J \subset I, \quad \forall n \in \mathbb{N}, a^n \notin I\} \neq \emptyset$$

pues $rad(J) \in \mathcal{F}$ y además esta familia esta ordenada por la contención así que por principio de maximalidad de Hausdorff existe $\mathfrak{q} \in \mathcal{F}$ maximal tal que $rad(J) \subset \mathfrak{q}$.

Veamos que $\mathfrak{q} \in Spec(A)$, en efecto, si $xy \in \mathfrak{q}$ y además se tuviera que $x, y \notin \mathfrak{q}$ entonces $\mathfrak{q} \subset \mathfrak{q} + \langle x \rangle, \mathfrak{q} + \langle y \rangle$ y por la maximalidad de \mathfrak{q} se tiene que $\mathfrak{q} + \langle x \rangle, \mathfrak{q} + \langle y \rangle \notin \mathcal{F}$ por lo que existen $n, m \in \mathbb{N}$ tales que $a^n \mathfrak{q} + \langle x \rangle$ y $a^m \in \mathfrak{q} + \langle y \rangle$ ya que $J \subset \mathfrak{q} \subset \mathfrak{q} + \langle x \rangle, \mathfrak{q} + \langle y \rangle$ Por lo que $a^n = q_1 + r_1 x$ y $a^m = q_2 + r_2 y$ con $q_1, q_2 \in \mathfrak{q}$ y $r_1, r_2 \in A$

$$a^{n+m} = (q_1 + r_1 x)(q_2 + r_2 y) = q_1 q_2 + q_1 r_2 y + q_2 r_1 x + r_1 r_2 x y \in \mathfrak{q}$$

pues cada termino esta en \mathfrak{q} lo cual es una contradicción y por ende \mathfrak{q} es un ideal primo, es decir, $\mathfrak{q} \in Spec(A)$. Por lo que $a \in \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}, \subset \mathfrak{q}$ pues $\mathfrak{p} \in Spec(A)$ lo cual es una contradicción pues $\mathfrak{q} \in \mathcal{F}$. Esta contradicción vino de suponer que $a \notin rad(J)$ por lo que $a \in rad(J)$.

$$\therefore \bigcap_{J \subset \mathfrak{p}} \mathfrak{p} \subset rad(J)$$

Lo cual da la igual que buscabamos.

Además tenemos los siguientes resultados

Lema 3. 1. Si $Y \subset X$ entonces $I(X) \subset I(Y)$

2.
$$rad(I(Y)) = I(Y)$$

3. $I(V(\mathfrak{a})) = rad(\mathfrak{a})$ y V(I(Y)) = cl(Y) donde cl es la cerradura en Spec(A)

Demostración. 1. Si $p \in I(X) = \bigcap_{\mathfrak{p} \in X} \mathfrak{p}$ entonces, para todo $\mathfrak{p} \in X$, se tiene que $p \in \mathfrak{p}$, como $Y \subset X$ entonces en particular para todo $\mathfrak{p} \in Y$ ocurre que $p \in \mathfrak{p}$.

$$I(X) \subset I(Y)$$

2. Siempre ocurre que $I(Y) \subset rad(I(Y))$, y por otro lado si $a \in rad(I(Y))$ entonces existe $n \in \mathbb{N}$ tal que $a^n \in I(Y)$ por lo que $a^n \in \mathfrak{p}$ para cualquier $\mathfrak{p} \in Y$. Como cada uno de estos ideales es primo entonces $a \in \mathfrak{p}$ para cualquier $\mathfrak{p} \in Y$.

$$\therefore rad(I(Y)) \subset I(Y)$$

Lo que prueba la igualdad

3. Para lo primero notemos que

$$I(V(\mathfrak{a})) = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p} = \bigcap_{\mathfrak{a} \subset \mathfrak{p}} \mathfrak{p} = rad(\mathfrak{a})$$

Por el lemma previo.

Por otro lado observemos que V(I(Y)) es un cerrado de Spec(A) Además dado $y \in Y$ entonces $I(Y) = \bigcap_{\mathfrak{p} \in Y} \mathfrak{p} \subset y$ por lo que $y \in V(y) \subset (V(I(Y)))$

$$\therefore Y \subset V(I(Y))$$

Además si tenemos V(J) un cerrado tal que $Y \subset V(J)$ entonces $J \subset y$ para cualquier $y \in Y$ por lo que $J \subset \bigcap_{y \in Y} y = I(Y)$ asi que $V(I(Y)) \subset V(J)$. Lo que lo hace el cerrado más pequeño en contener a Y, es decir, su cerradura.

$$\therefore V(I(Y)) = cl(Y)$$

Observacion 3. Sean $A = \{I \subset A; I \text{ es un idel radical de } A\}$ $y \mathcal{B} = \{Y \subset Spec(A); Y \text{ es un cerrado de } Spec(A)\}.$

La prueba anterior nos dice que $V : A \to B$ y $I : B \to A$ son inversas una de otra y por ende biyecciones entre A y B.

Observacion 4. Si $x \in Spec(A)$ entonces I(x) = x, por lo que

$$V(x)=V(I(\{x\}))=cl(\{x\})$$

Lema 4. Si $I,J\subset A$ son ideales de A, entonces $I\subset rad(J)$ si y solo si $rad(I)\subset rad(J)$

 $Demostración. \implies \text{Supongamos que } I \subset rad(J) \text{ y sea } a \in rad(I), \text{ entonces existe } n \in \mathbb{N} \text{ tal que } a^n \in I \text{ por lo que } a^n \in rad(J) = \bigcap_{J \subset \mathfrak{p}} \mathfrak{p} \text{ donde } \mathfrak{p} \in Spec(A)$ asi que para todo $\mathfrak{p} \in Spec(A)$ tal que $J \subset \mathfrak{p}$ se tiene que $a^n \in \mathfrak{p}$ y como cada uno es un ideal primo $a \in \mathfrak{p}$.

$$\therefore a \in \bigcap_{I \subset \mathfrak{p}} \mathfrak{p} = rad(J)$$

Concluimos que $rad(I) \subset rad(J)$.

Corolario 1. Sea $g \in A$ y $I, J \subset A$ un ideales de A, entonces $V(I) \subset V(J)$ si y solo si $rad(J) = \bigcap_{\mathfrak{p} \in V(J)} \mathfrak{p} \subset \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p} = rad(I)$ en particular para V(g), $V(I) \subset V(g)$ si y solo si $\{g\} \subset rad(I)$ si y solo si $g \in rad(I)$.

Definición 3. Sea $f \in A$ definimos

$$D(f) = Spec(A) \setminus V(f)$$

y notamos que es un abierto, a los abiertos de este tipo se les llama abiertos principales.

Observacion 5. Notemos los siguientes hechos $D(0) = \emptyset$, D(1) = Spec(A) y como dado $\mathfrak{p} \in Spec(A)$ se cumple que $fg \notin \mathfrak{p}$ si y solo $f, g \notin \mathfrak{p}$ pues \mathfrak{p} es primo, por lo que $D(fg) = D(f) \cap D(g)$

Lema 5. Sean $\{f_i; i \in \Lambda\} \subset A$ $y \in A$, entonces $D(g) \subset \bigcup_{i \in \Lambda} D(f_i)$ si y solo $si\ g \in rad\left(\sum_{i \in I} \langle f_i \rangle\right)$

Demostración.

$$D(g) \subset \bigcup_{i \in \Lambda} D(f_i) = \bigcup_{i \in \Lambda} Spec(A) \setminus V(f_i) = Spec(A) \setminus \left(\bigcap_{i \in \Lambda} V(f_i)\right)$$

Y como $\bigcap_{i \in \Lambda} V(f_i) = V(\sum_{i \in \Lambda} \langle f_i \rangle)$ entonces

$$Spec(A) \setminus \left(\bigcap_{i \in \Lambda} V(f_i)\right) = Spec(A) \setminus V\left(\sum_{i \in \Lambda} \langle f_i \rangle\right)$$

por lo que $D(g) \subset \bigcup_{i \in \Lambda} D(f_i)$ si y solo si

$$V\left(\sum_{i\in\Lambda}\langle f_i\rangle\right)\subset V(g)$$

y por corollary y lemma previos se sigue que esto ocurre si y solo si

$$g \in rad\left(\sum_{i \in \Lambda} \langle f_i \rangle\right)$$

Observacion 6. En particular aplicando el lemma anterior a g = 1 entonces $\{D(f_i) \ i \in \Lambda\}\ cubre\ a\ D(1) = Spec(A)\ si\ y\ solo\ si\ 1 \in rad(\sum_{i \in \Lambda} \langle f_i \rangle)\ \underline{y}\ esto\ es\ si$ y solo si $1 \in \sum_{i \in \Lambda} \langle f_i \rangle$ si y solo si $\langle f_i ; i \in \Lambda \rangle = A$ en particular $1 = \sum_{j=1}^n \alpha_j f_{i_j}$ con $n \in \mathbb{N}$, $\alpha_j \in A$ y $i_j \in \Lambda$. Por lo que $\langle f_{i_j}; j \in \{1, ..., n\} \rangle = A$ por lo que $Spec(A) \subset \bigcup_{j=1}^n D(f_{i_j})$ Por lo

que toda cubierta tiene una subcubierta finita.

Hemos probado entonces que

Corolario 2. Spec(A) es compacto.

Proposición 1. Sea A un anillo, entonces $\mathcal{B} = \{D(f); f \in A\}$ es una base para la topología de Spec(A).

Demostraci'on. Sea $U \subset Spec(A)$ un abierto, entonces $Spec(A) \setminus U$ es un conjunto cerrado, por lo que existe $I \subset A$ ideal de A tal que $Spec(A) \setminus U = V(I)$, además.

$$V(I) = V\left(\bigcup_{f \in I} \{f\}\right) = \bigcap_{f \in I} V(f)$$

De donde se sigue que:

$$U = Spec(A) \backslash V(I) = Spec(A) \backslash \left(\bigcap_{f \in I} V(f) \right) = \bigcup_{f \in I} (Spec(A) \backslash V(f)) = \bigcup_{f \in I} D(f)$$

Proposición 2. Sean A un anillo y $f \in A$, entonces $D(f) \subset Spec(A)$ es compacto.

Demostración. Sea $\mathcal{U} = \{D(g_i); i \in I\}$ una cubierta de D(f) conformada por abiertos básicos. Como son una cubierta $D(f) \subset \bigcup_{i \in I} D(g_i)$ y por un lema previo se sigue que $f \in rad(\sum_{i \in I} \langle g_i \rangle)$. Y notemos que

$$\sum_{i \in I} \langle g_i \rangle = \langle \{g_i; i \in I\} \rangle$$

Por lo que existe $n \in \mathbb{N}$ tal que $f^n \in \langle \{g_i; i \in I\} \rangle$ asi que existe $m \in \mathbb{N}$ para la cual se cumple que $f^n = \sum_{j=1}^m a_j g_{i_j}$ con $a_j \in A$ e $i_j \in I$ para cada $j \in \{1, \ldots, m\}$, en particular, $f^n \in \langle \{g_{i_j}; j \in \{1, \ldots, m\}\} \rangle$ por lo que, $f \in rad\left(\sum_{j=1}^m \langle g_{i_j} \rangle\right)$ y de nuevo por el lema previo se sigue que, $D(f) \subset \bigcup_{j=1}^m D(g_{i_j})$ así que podemos conluir que $\{g_{i_j}; j \in \{1, \ldots, m\}\} \subset \mathcal{U}$ es una subcubierta finita.

Proposición 3. Sea A un anillo. Un subespacio $Y \subset Spec(A)$ es irreducible si y solo si $\mathfrak{p} = I(Y)$ es un ideal primo, es decir, $I(Y) \in Spec(A)$. Más aún en este caso $\{\mathfrak{p}\}$ es denso en cl(Y).

Demostración. \implies Supongamos que Y es irreducible y sean $f,g\in A$ tales que $fg\in \mathfrak{p},$ entonces

$$Y \subset cl(Y) = V(I(Y)) = V(\mathfrak{p}) \subset V(fg) = V(f) \cup V(g)$$

. y como Y es irreducible entonces $Y\subset V(f)$ o $Y\subset V(g)$, por lo que $f\in I(V(f))\subset I(Y)=\mathfrak{p}$ o $g\in I(V(g))\subset I(Y)=\mathfrak{p}$, es decir, $f\in\mathfrak{p}$ o $g\in\mathfrak{p}$. Lo que

prueba que p es in ideal primo.

 \iff Supongamos que $\mathfrak{p} \in Spec(A)$ entonces

$$cl(Y) = V(I(Y)) = V(\mathfrak{p}) = V(I(\{\mathfrak{p}\})) = cl(\{\mathfrak{p}\})$$

y como $\{\mathfrak{p}\}$ es irreducible, cl(Y) es irreducible y por ende Y es irreducible y eso también prueba que $\{\mathfrak{p}\}$ es denso en cl(Y).

Corolario 3. Sea $\mathcal{A} = \{Y \subset Spec(A); Y \text{ es cerrado e irreducible}\}, entonces$

$$f: Spec(A) \to \mathcal{A}$$

dada por $f(\mathfrak{p}) = V(\mathfrak{p}) = cl(\mathfrak{p})$ es una biyección.

Demostración. Como $\{\mathfrak{p}\}$ es irreducible entonces $f(\mathfrak{p})=cl(\{\mathfrak{p}\})$ es cerrado e irreducible. Y si $Y\subset Spec(A)$ es un cerrado irreducible entonces $I(Y)\in Spec(A)$ y además f(I(Y))=cl(Y)=Y por la Proposición anterior por lo que f es sobre, y además si $cl(\{\mathfrak{p}\})=cl(\{\mathfrak{q}\})$ entonces $V(\{\mathfrak{p}\})=V(\{\mathfrak{q}\})$ por lo que $\mathfrak{p}=\mathfrak{q}$. Asi que f es inyectiva y por ende biyectiva.

Notemos además que la correspondencia anterior invierte el orden de la contención de cada lado. Pensando a los elementos de Spec(A) con el orden dado al ser ideales de A. Así que si tenemos un ideal primo $\mathfrak{p} \subset A$ minimal $V(\mathfrak{p}) \subset Spec(A)$ es un cerrado e irreducible maximal por lo que es una componente irreducible de Spec(A). Más aún si hay mas de un ideal primo minimal entonces Spec(A) tendrá mas de una componente irreducible por lo que Spec(A) es irreducible si y solo si tiene un único ideal primo minimal, de hecho, eso lo hace mínimo.

Un ejemplo concreto de esto podría ser $Spec(\mathbb{Z})$ Aquí nuestro único ideal minimal (de hecho es mínimo) es $\{0\}$ por lo que $V(0) = Spec(\mathbb{Z})$ es un cerrado e irreducible. Más aún sus cerrados irreducibles serán de la forma $V(\langle p \rangle)$ con $p \in \mathbb{Z}$ un número primo y observemos más

$$V(\langle p \rangle) = \{\langle q \rangle; \langle p \rangle \subset \langle q \rangle \text{ con q primo}\} = \{\langle q \rangle; q \text{ es primo y divide a } p\} = \{\langle p \rangle\}$$

Por lo que todos los demás cerrados irreducibles son unitarios.