

Prior Art) Figure 1

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 1 of 15

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 2 of 15

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 3 of 15

Figure 4A Alpert et al. AUS920010118US1

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 4 of 15

450								
		11,	1 1	•	•			
<u>401</u>	<u>402</u>	<u>403</u>	<u>404</u>	<u>405</u>	<u>406</u>			
		1 1	•	1	, , , , ,			
<u>407</u>	<u>408</u>	<u>409</u>	<u>410</u>	411	412			
		1		1 1				
<u>413</u>	<u>414</u>	<u>415</u>	<u>416</u>	<u>417</u>	418			
•	. •		٠	•				
419	<u>420</u>	<u>421</u>	<u>422</u>	<u>423</u>	<u>424</u>			
		•			- -			
<u>425</u>	<u>426</u>	<u>427</u>	<u>428</u>	<u>429</u>	<u>430</u>			
		•	1	•				
431	<u>432</u>	<u>433</u>	<u>434</u>	<u>435</u>	<u>436</u>			

Figure 4B
Alpert et al.
AUS920010118US1 Practical Methodology for Early Buffer and Wire Resource Allocation Page 5 of 15

				I	
0	0	6	4	1	2
<u>401</u>	<u>402</u>	<u>403</u>	<u>404</u>	<u>405</u>	<u>406</u>
2	2	4	3	3	6
<u>407</u>	<u>408</u>	<u>409</u>	<u>410</u>	411	<u>412</u>
2	8	2	0	5	0
<u>413</u>	<u>414</u>	<u>415</u>	<u>416</u>	<u>417</u>	<u>418</u>
2	2	3	3	2	0
<u>419</u>	<u>420</u>	<u>421</u>	<u>422</u>	<u>423</u>	<u>424</u>
0	0	1	0	0	1
<u>425</u>	<u>426</u>	<u>427</u>	<u>428</u>	<u>429</u>	<u>430</u>
0	0	1	2	1	0
431	<u>432</u>	<u>433</u>	<u>434</u>	<u>435</u>	<u>436</u>

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 6 of 15

Figure 6 Alpert et al. AUS920010118US1

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer and Wire Resource Allocation
Page 7 of 15

Figure 7 Alpert et al. AUS920010118US1

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 8 of 15

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 9 of 15

- 1. Set $C_t[j] = 0$ for $1 \le j < L_i$ and sink t. Set v = t
- 2. while $v \neq s$ do

for
$$j = 1$$
 to $L_i - 1$ do
Set $C_{par(v)}[j] = C_v[j-1]$
Set $C_{par(v)}[0] = q(par(v)) + min\{C_v[j] || 0 \le j < L_i\}$
Set $v = par(v)$.

3. Let v be such that par(v) = s. Return $min\{C_v[j] | 0 \le j < L_i\}$.

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 10 of 15

Figure 10B

Figure 10C

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 14 of 15

1. Pick an unvisited node ν such that all descendants of ν have been visited.

While
$$v \neq s$$
 do

2. if v is a sink then

Set
$$C_{\nu}[j] = 0$$
 for $1 \le j < L_i$.

3. if v has one child l(v) then

for
$$j = 1$$
 to L_i . -1 do

Set
$$C_v[j] = C_{l(v)}[j-1]$$

Set
$$C_{\nu}[0] = q(\nu) + \min\{C_{l(\nu)}[j] | 0 \le j < L_{i.}\}$$

4. if v has two children l(v) and r(v) then

4.1 for
$$j = 2$$
 to L_i . – 1 do

Set
$$C_v[j] = min\{C_{l(v)}[j_l] + C_{r(v)}[j_r] || j_l + j_r + 2 = j\}$$

- 4.2 Set $C_v[0] = q(v) + min\{ C_{l(v)}[j_l] + C_{r(v)}[j_r] || j_l + j_r + 2 \le L_i \}$
- 4.3 Set $C_{\nu}[1] = \infty$
- 4.4 for j = 1 to $L_i 1$ do

Set
$$C_v[j] = min\{C_v[j], q(v) + C_{l(v)}[j-1], q(v) + C_{r(v)}[j-1]\}$$

- 5. mark v as visited pick an unvisited node v such that all descendants of v have been visited.
- 6. Return $min\{C_s[j] \mid 0 \le j < L_i\}$.

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 15 of 15

