MSCA 31006 1P02 Moushumi Pardesi

03/28/23

Assignment 1

2.1 Given
$$E(x) = 2$$
, $Var(x) = 9$, $E(4) = 0$, $Var(4) = 4$
 $Cor(x, 4) = 0.25$

$$Var(X+Y) = Var(X) + Var(Y) + 2 (av(X, Y))$$

= 9 + 4 + 2(1.5) - (from 0)
= 16

(b) Cove
$$(X, X+Y) = E[(X-E(X))(X+Y-E(X)-E(Y))]$$

 $= E[X^2 - 2(X+Y)E(X) - XE(Y) + E(X)^2 + XY + E(X)E(Y)]$
 $= Vax(X) + E(X)^2 - 2(4) + E(X)^2 + E(XY)$
 $= (XY)$
 $= 2.5$

$$Var(X-Y) = Var(X) + Var(Y) + 2 Con(X,Y)$$

= 9 + 4 + 2(1.5)
= 16

Cor
$$(X+Y, X-Y) = Lore(X+Y, X-Y)$$

$$= \frac{5}{\sqrt{16} \times \sqrt{16}} \qquad (0, 0, (0))$$

$$= 0.3125$$
2.2 \times and \times are dependent but $Var(X) = Var(Y)$

$$= Var(X) - Var(Y)$$

$$= Var(X) - Var(Y)$$

$$= D$$

2.5
$$Y_t = 5 + 2t + X_t$$

 $\{X_t\}$ is zero mean stationary Deries
with autocovariance function Y_K

(a)
$$E(Y_t) = E[5+2t+X_t]$$

= $5+2t+E[X_t]$
= $5+2t$

=
$$E[(5+2t+X_t-(5+2t))\times(5+2(t+h)+X_{t+n}-(5+2(t+h)))]$$

$$= E[(X_t - X_{t+n})(2n+2t)]$$

Since Xt is a stationary series, 7x only depends on time lag K.

Love (Yt, Yt+n) = 2h gn + 2 go where gn is the autocovariance junction for Xt at lag h and go is the variance of Xt.

: dutocovariance for 4t will be

R

(c) From (a) we have mean of 4th which is 5+2t, which is not constant over time.

Merefore ETEZ is not stationary.

duto covariance function for It is $2h\gamma_n + 2\gamma_0$ where γ_n is

autocovariance of Xt. Since Xt is a stationary series, we know that Yn is stationary.

However, autocovariance function of 4t is not constant over time with a factor of 2h.

sories. series.

26 {Xt} is a stationary time series

 $Y_t = \begin{cases} X_t & \text{when t is odd} \\ X_{t+3} & \text{when t is even} \end{cases}$

(a) Cov (4t, 4t-x)= E[(4t- E(4t)) x (4t-x-E(4t-x))]

 $= E[(X_{t} - E(X_{t})) \times (X_{t-K} - E(X_{t-K}))]$ if K is odd

 $= E[(X_{t}+3-E(X_{t}+3))\times(X_{t-K}+3-E(X_{t-K}+3))]$ if k is even

It is apparent from above that when K is odd, 4t and 4t-K are odd too and equal the Xt and Xt-K.

So for odd K, core (Yt, Yt-K) = Core (Xt, Xt-K)

When K is even, It and It-K are both even.

Love $(Y_t, Y_{t-k}) = E(X_t \times X_{t-k}) - E(X_t) \times E(X_{t-k}) + 3(E(X_{t-k})) - 3(E(X_{t})) + 9$

Since X_t is stationary, $E(X_t)$ and $E(X_{t-K})$ are constant.

So the first 2 terms of the above equations only depend on log k.

Last 2 terms depend on $E(X_{t-k})$ and $E(X_{t})$ which are only functions of log k

So cov (4t, 4t-k) is independent of t and only depends on log k

(b) $E(Y_t) = SE(X_t)$ for odd t $E(X_t + 3)$ for even t

since X_{t} is stationary, $E(X_{t})$ is constant over t.

So $E(Y_t)$ alternates between $E(X_t)$ and $E(X_t)+3$, so it is not constant over t.

Moreover,

YYLK) = Low (Xt, Xt-K) for odd K

YY(K) = Cov (Xt+3, Xt-x) for even K

So autocovariance function of Yt for odd lags k is not dependant ant. But it differs for even lag k and thus overall it is not constant over t.

Mhus 24+3 is not stationary.

(a)
$$W_t = Y_t - Y_{t-1}$$

 $E(W_t) = E(Y_t) - E(Y_{t-1})$
 $= 0$ (because freth nill
we constant for
stationary Y_t)

: Mean of Wt does not depend on t

Cove
$$(Wt, W_{t-k}) = E(WtW_{t-k}) - E(Wt)$$

 $= E(W_{t-k})$
 $= E[(Y_{t-1})(Y_{t-k} - Y_{t-k-1})]$

=
$$2\gamma_{K} - \gamma_{K+1} - \gamma_{K-1} - \gamma_{\text{function}}$$

 \therefore Wt is stationary

(b)
$$U_t = Y_t - 2Y_{t-1} + Y_{t-2}$$

= $Y_t - Y_{t-1} - (Y_{t-1} - Y_{t-2}) - Y_{t-2}$
= $W_t - W_{t-1} - W_{t-2}$

since we showed in (a) that Wt is stationary, Ut is also stationary because it is a linear combination of Wt.

2.8 {4+3 is stationary with autocovariance furction γ_{k} .

 $Wt = C_1 Y_t + C_2 Y_{t-1} + \dots + C_n Y_{t-n+1}$

E(Wt) = C, E(Yt) + C2E(Yt-1)+...+ Cn E(Yt-n+1)

since Y_t is stationary, $E(Y_t)$, $E(Y_{t-1})$
are constant and do not depend on t.

so $E(W_t)$ is constant.

Cove (Wt, Wt-n) = E[(c, Yt + (2 Yt-1+ (n Yt-n+1) ((, Yt-K+....+ (n Yt-K-n+1)

... Wt is stationary because it has constant mean and its autocovariance depends on lag k.

2.11 Cove
$$(X_t, X_{t-K}) = Y_K$$
 is not dependent ent $E(X_t) = 3t$ which is dependent on t.

(b)
$$Y_{t} = 7 - 3t + X_{t}$$

 $E(Y_{t}) = E(7 - 3t + X_{t}) = E(7 - 3t - 3t) = 0$
 $Cove(Y_{t} Y_{t-K}) = E[(Y_{t})(Y_{t-K})] - E(Y_{t}) = E(Y_{t}) = E(Y_{t-K})$
 $= E(7 - 3t + X_{t})(7 - 3(t - K) + X_{t-K}) - 7 \times 7$
 $= E[(X_{t})(X_{t-K})] - E(X_{t})E(X_{t-K})$
 $\therefore \{Y_{t}\}$ is stationary

Tor
$$K = 12$$
, Cove $(Y_t, Y_{t-K}) = E[e_{t^2-12}]$
= -62

2.14	(a) $4t = \theta_0 + te_t$
	$E(Yt) = E(\theta_0 + te_t)$
	$= E(\theta_0) + tE(e_t)$
	$= E(\theta_0) + t \times D = \theta_0$
	8x= Cov (4t, 4t-x)= E[4+4t-x]- E[4+] E[4+]
	= E[(00+tet)(00+(t-K)et-K
	$= E(\theta_{s}^{2}) = 0$
	No. 1411 - +2 may 10.7
	$Var (Yt) = t^2 Var(et)$ $= 6^2 t^2$
	= 6 - 7 -
	л ИI ₋
	so the process has constant variance and constant autocovariance
	variance and constant autocovariance
	Yt is stationary
	0

(b)
$$W_t = \nabla Y_t = Y_t - Y_{t-1}$$

= $\theta_0 + te_t - (\theta_0 + (t-1)e_{t-1})$
= $te_t - (t-1)e_{t-1}$

$$E(Wt) = E(tet) - E[(t-1)et-1]$$

= 0
Since et is white noise.

$$Y_{K} = Cove(W_{t}, W_{t-K})$$

= $E(W_{t} W_{t-K}) - E(W_{t}) E(W_{t-K})$
= $E(W_{t} W_{t-K})$
= $E(W_{t} W_{t-K})$
= $E(t_{t-K-1})e_{t-K-1}(t_{t-K})e_{t-K}$

= 0

See the process has constant mean and cutocovariance

(c)
$$Y_t = e_t e_{t-1}$$

 $E(Y_t) = 0$
Core $(Y_t, Y_{t-k}) = E(Y_t, Y_{t-k}) - E(Y_t)$
 $E(Y_{t-k})$
 $= E(e_t e_{t-1}, e_{t-k} e_{t-1-k})$
 $- E(e_t e_{t-1}) E(e_{t-k} e_{t-1-k})$
 $= 0$

The process has constant mean and constant autocorairance.

: {4+3 is stationary.

2.15
$$Y_t = (-1)^t X$$
 and $E(x) = 0$

(a)
$$E(Y_t) = E(X(-1)^t)$$

= 0 since $E(X) = 0$

(b) Core
$$(Y_{t}, Y_{t-K}) = Core(X(-1)^{t}, X(-1)^{t-K})$$

= $Core(X, X) \times (-1)^{K}$
= $(-1)^{K} 6^{2}$ for $K \ge 0$