PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-288706

(43)Date of publication of application: 19.10.1999

(51)Int.CI.

H01M 4/02 HO1M 4/04

HO1M 4/38 H01M 4/58

H01M 10/40

(21)Application number: 10-091188

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing: 03.04.1998

(72)Inventor: NAKAGIRI YASUSHI

MATSUI TORU TAKEYAMA KENICHI

TOYOGUCHI YOSHINORI

(54) NEGATIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE BATTERY AND ITS MANUFACTURE (57)Abstract:

PROBLEM TO BE SOLVED: To provide a reliable nonaqueous electrolyte battery suppressing generation of dendrites, and having long life of cycle for a long term.

SOLUTION: A surface film structure the principal component of which is a material having a halite-type crystal structure is formed on the surface of a lithium sheet having lithium metal as an active material and where crystal planes of (100) are oriented by priority. Thereby, a uniform precipitation dissolution reaction, i.e., charging and discharging of the battery can be carried out, then a dendrite precipitation reaction of the lithium metal as the active material can be inhibited. Consequently, the nonaqueous electrolyte secondary battery having long life and high precision can be obtained.

LEGAL STATUS

[Date of request for examination]

11.12.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3428428 [Date of registration] 16.05.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-288706

(43)公開日 平成11年(1999)10月19日

(51) Int.Cl.*	識別記号	F I
H01M 4/	'02	H 0 1 M 4/02 D
4/	'04	4/04 A
4/	'38	4/38
4/	/58	4/58
10/	'40	10/40 Z
		審査請求 未請求 請求項の数14 OL (全 10
(21)出願番号	特願平10-91188	(71) 出題人 000005821
		松下電器産業株式会社
(22)出顧日	平成10年(1998) 4月3日	大阪府門真市大字門真1006番地
		(72)発明者 中桐 康司
		大阪府門真市大字門真1006番地 松下電
		産業株式会社内
		(72)発明者 松井 徹
		大阪府門真市大字門真1006番地 松下電
		産業株式会社内
		(72)発明者 竹山 健一
		大阪府門真市大字門真1006番地 松下電
		産業株式会社内
		(74)代理人 弁理士 滝本 智之 (外1名)
		最終頁に移

(54) 【発明の名称】 非水電解質電池用負極およびその製造方法

(57)【要約】

【課題】 リチウム金属材料を負極に用いた非水電解質 二次電池において、充放電サイクル中に不均一反応が進行し、デンドライト析出が起こるために電池の効率およ び寿命の低下に影響を与えていた。

【解決手段】 リチウム金属を活物質とするシートで、(100)結晶面が優先的に配向しているリチウムシートの表面に岩塩型結晶構造を持つ物質を主成分とする表面皮膜構造を形成することにより、均一な析出溶解反応すなわち電池の充放電を行うことが可能となり、活物質であるリチウム金属のデンドライト析出反応の抑制効果を得ることができる。その効果により長寿命、高精度の非水電解質二次電池を提供することができる。

【特許請求の範囲】

【請求項1】 リチウムを活物質とするシートにおいて、前記シート表面の法線方向からの入射 X線に対して得られる(200)結晶面の X線反射ピーク強度が、前記入射 X線より得られる反射ピーク強度全体の和の50%以上であり、かつ岩塩型結晶構造の物質を有する皮膜を前記シートの表面に配置したことを特徴とする非水電解質電池用負極。

【請求項2】 岩塩型結晶構造の物質を有する皮膜は、特定の結晶面の50%以上がシート表面に配向した構造 10であることを特徴とする請求項1記載の非水電解質電池用負極。

【請求項3】 岩塩型結晶構造の物質を有する皮膜の配向面が、前記岩塩型結晶構造の(100)結晶面であることを特徴とする請求項2記載の非水電解質電池用負極。

【請求項4】 岩塩型結晶構造の物質を有する皮膜の格子定数 a が、4.46 < a < 5.45 であることを特徴とする請求項1、2または3記載の非水電解質電池用負極。

【請求項5】 岩塩型結晶構造の物質を有する皮膜の格子定数 a が、4.91 < a < 5.01 であることを特徴とする請求項1、2または3記載の非水電解質電池用負極。

【請求項6】 皮膜は、リチウムのハロゲン化物を有することを特徴とする請求項1、2または3記載の非水電解質電池用負極。

【請求項7】 リチウムのハロゲン化物は、LiClである請求項6記載の非水電解質電池用負極。

【請求項8】 LiCl、LiBr、LiIより選ばれ 30 る少なくとも1種と、LiFとの固溶体を、皮膜の成分として有することを特徴とする請求項1、2または3記載の非水電解質電池用負極。

【請求項9】 固溶体は、LiClとLiFとの固溶体であることを特徴とする請求項8記載の非水電解質電池用負極。

【請求項10】 請求項7記載の非水電解質電池用負極は、リチウムを活物質とするシートを、塩素分子もしくは塩素イオンを含有した溶液に浸すことにより作製することを特徴とする非水電解質電池用負極の製造方法。

【請求項11】 塩素分子もしくは塩素イオンを含有した溶液は、塩素ガスを吹き込んだ有機溶媒を添加する、または有機溶媒を含有する溶液に塩素ガスを吹き込むことで作製することを特徴とする請求項10記載の非水電解質電池用負極の製造方法。

【請求項12】 有機溶媒はジメトキシエタンである請求項11記載の非水電解質電池用負極の製造方法。

【請求項13】 請求項8または9記載の非水電解質電池用負極は、リチウムを活物質とするシートを、(塩素分子、塩素イオン、臭素分子、臭素イオン、ヨウ素分

子、ヨウ素イオン)より選ばれる少なくとも1種と、

(フッ素分子、フッ素イオン)より選ばれる少なくとも 1種とを含有した電解液に浸すことで作製することを特 徴とする非水電解質電池用負極の製造方法。

【請求項14】 請求項9記載の非水電解質電池用負極は、リチウムを活物質とするシートを、LiPF6とLiClO4とを溶解した電解液に浸すことで作製することを特徴とする請求項9記載の非水電解質電池用負極の製造方法。

0 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は非水電解質電池用の 負極に関するものである。

[0002]

【従来の技術】今日、負極活物質にリチウム金属を用い、プロピレンカーボネート、アープチロラクトン、ジメトキシエタン、テトラヒドロフラン、ジオキソラン等の有機溶媒に、LiCIO4、LiBF4、LiAsF6、LiPF6、LiCF3SO3等の塩を溶解させた電解液をもちいた非水電解質電池は、高エネルギー密度を有することから、電子時計、カメラをはじめとする小型電子機器用の一次電池に使用されている。また、携帯電話、携帯用パーソナルコンピュータ、ビデオムービー等の携帯用機器の二次電池としても期待されている。

【0003】この種の非水電解質電池を一次電池として 用いたときは、リチウム金属の化学反応性が高く、容易 に電解液成分と反応して負極表面に不動態皮膜を形成す るため、自己放電反応が抑制され、保存特性が良いとい う特長がある。

0 [0004]

【発明が解決しようとする課題】しかし、これを二次電池として用いたときは、充電中に負極表面に樹枝状、針状、フィブリル状等のリチウム金属の析出物、いわゆる、デンドライトが著しく発生する。これは、不動態皮膜の形成や反応表面の結晶学的、形態的不均一性のために、負極表面上でのリチウム金属イオンの析出場所が局在化するためである。充電時にこのようなデンドライトが形成され、次の放電過程では、デンドライトが部分的に溶解して寸断される。この時、充電中に析出させたすべてのリチウム金属を溶解させることができなくなり、結果として充放電効率が著しく低下するといった問題があった。また、デンドライトが寸断されずに成長する場合には、負極と正極の間の内部短絡が生じ、充放電サイクル寿命が短くなるといった問題もあった。

【0005】本発明は、このような課題を解決するものであり、デンドライトの発生を抑制し、長期にわたるサイクル寿命を持つ、信頼性の高い非水電解質電池を提供することを目的とする。

[0006]

50 【課題を解決するための手段】本発明は、リチウムを活

4

物質とするシートにおいて、前記シート表面の法線方向からの入射 X線に対して得られる(200)結晶面の X線反射ピーク強度が、前記入射 X線より得られる反射ピーク強度全体の和の50%以上であり、かつ岩塩型結晶構造の物質を有する皮膜を前記シートの表面に配置したことを特徴とする非水電解質電池用負極である。

【0007】このとき、岩塩型結晶構造の物質を有する 皮膜は、特定の結晶面の50%以上がシート表面に配向 した構造であることが有効である。

【0008】さらに、岩塩型結晶構造の物質を有する皮 10 膜の配向面が、前記岩塩型結晶構造の(100)結晶面 であることが望ましい。

【0009】また、岩塩型結晶構造の物質を有する皮膜の格子定数aが、4.46 < a < 5.45 である。【0010】さらに、岩塩型結晶構造の物質を有する皮膜の格子定数aが、4.91 < a < 5.01 であることが望ましい。

【0011】また、岩塩型結晶構造の物質を有する皮膜が、リチウムのハロゲン化物を有することが望ましい。 【0012】さらに、リチウムのハロゲン化物は、LiC1であることが望ましい。また、LiC1、LiB r、LiIより選ばれる少なくとも1種と、LiFとの固溶体を、皮膜の成分として有することが有用である。 【0013】この時、前記固溶体は、LiC1とLiFとの固溶体であることが望ましい。また本発明の非水電解質電池用負極は、リチウムを活物質とするシートを、塩素分子もしくは塩素イオンを含有した電解液に浸すことにより作製するが出来る。

【0014】このとき、塩素分子もしくは塩素イオンを含有した溶液は、塩素ガスを吹き込んだ有機溶媒を添加する、または有機溶媒を含有する溶液に塩素ガスを吹き込むことで作製することが有用である。

【0015】さらに、有機溶媒はジメトキシエタンであることが望ましい。また本発明の非水電解質電池用負極は、リチウムを活物質とするシートを、(塩素分子、塩素イオン、臭素分子、臭素イオン、ヨウ素分子、ヨウ素イオン)より選ばれる少なくとも1種と、(フッ素分子、フッ素イオン)より選ばれる少なくとも1種とを含有した電解液に浸すことで作製することができる。

【0016】さらに、リチウムを活物質とするシートを、 $LiPF_6$ と $LiCIO_4$ とを溶解した電解液に浸すことで作製することが出来る。

[0017]

【発明の実施の形態】リチウム金属のデンドライト発生を抑制するためには、エネルギー的に均一な析出および溶解反応の進行を繰り返し行うことが望ましい。そのためには、リチウム金属自体の結晶構造の均一性、そして反応が起こる表面での表面反応及び表面皮膜の均一性が必要である。

【0018】そのための手段として、リチウム金属を活 50 の結晶子は、X線を照射した面に各ピークに相当する結

物質とするシートで、その体心立方格子結晶構造における(100)結晶面がシート表面に優先的に配向している均一な構造を持つリチウムシートに、その表面の原子配列に整合性良く形成している岩塩型結晶構造の表面皮膜を形成させた表面皮膜構造を持つ負極を非水電解質電池に使用する。

【0019】また、岩塩型の結晶物質としてLiClを形成する場合には、(100)結晶面がシート表面に優先的に配向しているリチウムシートを塩素分子もしくは塩素イオンを含有している電解液に浸すことにより作製する。

【0020】さらに、リチウム金属の(100)結晶面における超格子周期の4.96の値に対して、同程度の格子定数を持つ岩塩型結晶物質の表面皮膜として、LiCl、LiBr、LiIのうち少なくとも1種とLiFとの固溶体が表面皮膜の主成分である表面皮膜を形成するために、(100)結晶面がシート表面に優先的に配向しているリチウムシートを、塩素分子もしくは塩素イオン、臭素分子もしくは臭素イオン、ヨウ素分子もしくはコウ素イオンのうち少なくとも1種とフッ素分子もしくはフッ素イオンを含有している電解液に浸すことにより非水電解質電池用負極を作製する。

【0021】以下、本発明の非水電解質電池用負極について、その実施の形態を具体的に記載する。

【0022】入手直後のリチウム箱について、CuKα線を用いてX線解析を行ったところ、JCPDSカードのLi金属(番号150401)に対応する体心立方格子型の結晶構造に相当する各ピークが出現していた。その他のピークは無く、すべて体心立方格子型の金属リチウムを示していた。

【0023】しかし、いくつかの試料のX線回折図形を比較してみると、試料により各ピークの強度比は一定せず、同じロットのリチウム箔でもその中の結晶子の配向状態はかなりばらついており、結晶性がかなり低い試料も存在していることがわかった。これは、このリチウム箔が押し出し成型によって製造されたものであるため、その結晶子の方向が、バラバラの方向になったものと考えられる。

【0024】JCPDSカード(番号150401)に
40 よるとリチウム金属のX線回折パターンでは、図6に示すように、次の7つのピークが観測される。すなわち、110反射、200反射、211反射、220反射、310反射、222反射、321反射に相当するピークである。そして、それらのピーク強度比は、先ほどの順に42.9%、12.9%、17.1%、8.6%、8.6%、1.3%、8.6%となっている。このピーク強度比を標準と考えた場合、110反射のピークの場合は70%以上、その他の反射のピークに関しては50%以上のピーク強度比を持つようなときには、リチウム箔中の結晶子は、X線を昭射した面に各ピークに相当する結

る構造を持つ物質が望ましい。さらに、岩塩型結晶物質 はリチウムのハロゲン化物が望ましい。

晶面が、かなり優先的に配向していると考えることができる。

【0025】リチウム金属を負極として用いた電池の充放電は、リチウムの析出溶解反応に相当する。微視的に考えた場合に、結晶面の違いによりリチウムの析出溶解に要するエネルギーはそれぞれ違うはずである。そのため基板であるリチウム金属の表面に一つの結晶面が優先的に配向している場合には、リチウムの析出溶解のエネルギーの分布が抑えられ、なおかつ析出溶解反応が均一に進行すると考えられる。

【0026】ただし、リチウム金属の表面には常に表面 皮膜が形成しており、最表面においてのリチウムの析出 や溶解に対して、できるだけ反応障害を起こさないよう な表面皮膜と表面反応の進行が伴って初めて、均一な反 応を連続的に進行させることができる。

【0027】すなわち、均一な結晶構造を持ったリチウムシートの表面に、そのリチウムシートの表面原子配列に対して、整合性のある物質が表面皮膜となり、表面皮膜内部でも結晶構造が均一であることが望ましい。そのような構造を常に保ちながら、充放電サイクルを重ねた場合に、均一な析出溶解反応が進行し、デンドライト析出が抑制されることになる。

【0028】ここで、図1を参照しながら、リチウム金属の(100)結晶面について考えてみる。リチウム金属は体心立方格子をとるので、(100)結晶面は正方形の各頂点にリチウム原子が位置している格子の周期構造となっている。その時の格子定数は、3.51である。それに対して、その正方形の対角線を1辺とする超格子の正方形を考えた場合、その長さは2の平方根をかけたものであり4.96となる。また、この超格子の正方形は、中心に1つリチウム原子が位置し、さらに各頂点にリチウム原子が存在している構造である。この構造は面心立方格子の(100)結晶面の配列と同型であり、岩塩型結晶構造のアルカリ金属の位置に相当することがわかる。

【0029】すなわち、(100)結晶面配向のリチウムシートの表面にリチウムとハロゲンからなる岩塩型結晶構造の表面皮膜を形成することにより、リチウム原子にとっては大きな原子移動を行うことなく、原子からイオンに変化して表面皮膜を形成することができるように 40なることがわかる。

【0030】そこで、本発明の実施の形態としては、リチウム金属を活物質とするシートで、その体心立方格子結晶構造における(100)結晶面がシート表面に優先的に配向している均一な構造を持つリチウムシートに、その表面の原子配列に整合性良く形成している岩塩型結晶構造の物質を主成分とする表面皮膜を形成させた表面皮膜構造を持つ非水電解質電池用負極を用いるものである。その時の岩塩型結晶物質の表面皮膜としては、(100)結晶面がシート表面に対して優先的に配向してい50

【0031】また、本発明の他の実施の形態としては、 岩塩型の結晶物質としてLiClを形成させるために、 塩素分子もしくは塩素イオンを含有している電解液に、 (100)結晶面がシート表面に優先的に配向している

リチウムシートを浸すことにより作製する。その時の電解液に塩素分子もしくは塩素イオンを含有させる方法として、塩素ガスを吹き込んだ有機溶媒を電解液に添加する方法が望ましい。また、その塩素ガス吹き込み有機溶媒としては、ジメトキシエタンを用いることが望まし

【0032】ところで、表面の原子構造に対して、格子 緩和を起こしながらも整合性を保ちながら違った物質が 形成されるミスフィット緩和は、表面とのずれが10% 程度までならば可能であるといわれている。すなわち、上記した超格子周期の4.96の値から考えると、格子 定数 a が 4.46 く a < 5.46 の範囲内で上記のような状態が達成されると考えられる。

り 【0033】さらに、ミスフィット緩和が1%以内の場合には、ほぼエピタキシャルな成長が起こっており、表面の歪みがほとんどない良好な状態であるといえる。その時の格子定数 a の範囲は、4.91 < a < 5.01 となる。すなわち、岩塩型結晶構造を持ち、格子定数が上記の範囲の値を持つ表面皮膜を作製できれば、良いことになる。

【0034】格子定数の値だけで考えると岩塩型結晶構造を持っている物質であり適切な格子定数を持つ物質であれば整合性の良い表面皮膜が形成されることになる。 の さらに、リチウムのハロゲン化物でそのような整合性の良い格子定数を持っているならば、より状況が良いことになる。ここで、岩塩型結晶構造物質としてリチウムのハロゲン化物で上記の格子定数との比較を考えてみる。 LiClの格子定数は5.14、LiBrは5.5013、LiFは4.026、LiIは6.0である。4.96を基準に考えるとLiClのずれは+3.6%、LiBrは+10.9%、LiFは-18.8%、LiIは+21.0%となる。すなわち、これらの単体物質の場合では、LiClは10%以内で当てはまるが、LiのBr、LiF、LiIは当てはまらないことになる。

【0035】そこで、リチウムのハロゲン化物で、超格子周期の4.96の値に、より近づけるためには、これらの組み合わせを考えなければならない。例えば、この格子定数4.96はLiFeliClo間に存在するので、格子定数に関するVEGARD則を適用すればLiFin1/6でLiClio5/6の配分の固溶体を形成させた場合にa=4.9543となり、ミスフィット値は-0.1%であり非常に整合性の高い皮膜が形成できる可能性がある。ただし、相図からもわかるように、通常の熱平衡的なプロセスではLiF-LiClo0固溶体は

作製できない。しかし、リチウムの位置がかなり固定された状態の表面近傍だけでの非常に限定された環境の中での反応の場合に、上記の物質が作製できる可能性はある。

【0036】上記の考え方は必ずしもLiFとLiClの組み合わせのみに限定して適用されるわけではない。つまり、4.96より短いLiFを含んでいれば、LiCl、LiBr、LiIのうち少なくとも1種との組み合わせにより、必要とする格子定数を得ることができる。

【0037】そこで、本発明の他の実施の形態としては、岩塩型の結晶構造を持ち格子定数を調節した物質としてLiCl、LiBr、LiIのうち少なくとも1種とLiFとの固溶体が主成分である表面皮膜を形成するために、(100)結晶面がシート表面に優先的に配向しているリチウムシートを、塩素分子もしくは塩素イオン、臭素分子もしくは臭素イオン、ヨウ素分子もしくはコウ素イオンのうち少なくとも1種とフッ素分子もしくはフッ素イオンを含有している電解液に浸すことにより非水電解質電池用負極を作製するといった製造方法を用20いるものである。

【0038】以下、本発明の実施例について、図面を参照しながら詳細に説明する。なお、以下のすべての処理はアルゴンガス雰囲気中で行った。

【0039】(実施例1)活物質材料として、厚さ 100μ m、幅22mmのリチウム箔を用いた。このリチウム箔を1辺が22mmの四角形状に切り取って16分の1に折り畳んだ後、鏡面研磨された面を持つ鋼製の治具を用いて $250kg/cm^2$ の圧力で10秒間押圧した。得られたリチウム箔を再び折り畳んで同様の方法で押圧した。続いて、そのリチウム箔を今度は折り畳まずにそのまま $200kg/cm^2$ の圧力で10秒間押圧する作業を2回繰り返した。つまり合計4回の押圧処理をリチウム箔に施した。この作業を行うことにより、リチウム箔の厚さは当初と同程度の約 100μ mとなった。準備したリチウム箔の表面は鈍い金属光沢をしていたが、それに比べてこの押圧処理を行ったリチウム箔は、非常に輝いた金属光沢表面を持っていた。

【0040】このリチウム箔について、 $CuK\alpha$ 線を用いてX線解析を行った。その結果を図2に示した。図2からわかるように、得られた回折パターンは200反射の回折ピークの強度が非常に大きく、200反射のピーク強度は、得られた全回折ピークのピーク強度の和の約91%を占めていた。このような200反射ピークの優先的な配向性は、上記の押圧処理を施したリチウム箔の全般にわたって観察することができた。

【0041】このようなリチウム箔においては、リチウム箔の表面は(100)結晶面に非常に優先的な配向をしていることになる。そして、表面は非常に輝いた金属光沢をしているので表面皮膜は薄いと思われる。

【0042】最初に、このリチウム箔の表面に岩塩型結晶構造の皮膜が作製できることを確認するために、以下の電解液を作製し、その中に(100)結晶面配向リチウム箔を浸すことにした。

8

【0043】LiCl皮膜を作製させるために、塩素ガスを吹き込んだ有機溶媒を通常用いる電解液に添加したものを電解液として使用することにした。まず、100mlのジメトキシエタンに塩素ガスを流量10cc/minで1分間吹き込んで、塩素ガス吹き込み有機溶媒を10作製した。そして、この塩素ガス吹き込みジメトキシエタンを、LiClO4が1モル/リットルの割合でエチレンカーボネートとジエチルカーボネート(体積比1:1)の混合溶媒に溶解された溶液に、5ml/Lの割合で添加した。

【0044】この電解液中に、先程の(100)結晶面配向リチウム箔を3日間浸した後に、その表面の構造を調べるために、 $CuK\alpha$ 線を用いてX線解析を行った。その結果を図3に示した。図3からわかるように、 2θ が52度近辺に非常に大きなリチウムの200反射の回折ピークが観察され、 2θ が36度近辺に110反射の回折ピークが少しプロードになりながら存在していることがわかる。これらのピークは図2と同様の位置に存在している。

【0045】しかし、 2θ が35度近辺のところに図2では存在していなかったピークが観察され、これは、JCPDSカード(番号40664)によると、LiC10200反射の回折ピークに相当することがわかった。この時のリチウム金属の表面は、目視では押圧時のリチウム表面の光沢度合いはほとんど変わらない状況であった。つまり、表面皮膜自体の厚さは非常に薄いと考えられる。それにも拘わらず、200反射の回折ピークが確認できたということは、その表面皮膜自体の岩塩型結晶構造における(100)結晶面への優先的な配向性が高いと考えられる。すなわち、塩素含有有機溶媒を添加した電解液の中に体心立方格子結晶構造の(100)結晶面配向リチウム箔を浸すことにより、その表面に岩塩型結晶構造の(100)結晶面に優先的に配向したLiC0の表面被膜が形成されていることがわかった。

【0046】そこで、(100)結晶面配向リチウム箔と、塩素ガスを吹き込んだジメトキシエタンを1モル/リットルLiClO4(エチレンカーボネート、ジエチルカーボネート1)の混合溶媒に、5ml/Lの割合で添加した電解液を用いて、図4に示す偏平型非水電解質二次電池を作製した。作製手順を図4を参照しながら説明する。

【0047】正極缶1内に、チタン製のエキスパンドメタルを用いた正極集電体2を配置して、両者をスポット溶接した。LiCoO2粉末、カーボンブラックおよび四フッ化ポリエチレン粉末を混合した正極合剤を正極集50 電体2の上方に所定量充填し、加圧して正極3を形成し

た。

【0048】ニッケル製のエキスパンドメタルを用いた 負極集電体4をあらかじめスポット溶接しておいた封口 板5に、前述の押圧処理を施したディスク状のリチウム 箔からなる負極6を圧着した。

【0049】正極3の上方に、ポリプロピレン製の多孔質フィルムからなるセパレータ7を配置した後、電解液を正極缶1内に注入し、さらにガスケット8を介して封口板5を正極缶1の開口部に嵌合して、偏平型の非水電解質二次電池を組み立てた。

【0050】また、比較例として入手したままで、何も 処理を施していないリチウム箔を負極として用いて同様 の非水電解質二次電池を組み立てた。このような電池を 実施例と比較例でそれぞれ10個づつ作製した。

【0051】これらの電池について、20℃の環境下で、2mA/cm²の電流密度で、放電下限電圧を2.0V、充電上限電圧を3.5Vとする充放電サイクル試験を行い、サイクル寿命を求めた。ただし、サイクル寿命は、放電容量が1サイクル目の半分になったところで寿命とし、充放電サイクル途中でデンドライトによる内 20 部短絡が起きた場合には、そのサイクルで寿命とした。

【0052】その結果を表1に示す。表中のサイクル寿命の値は、平均値 $\pm \sigma$ を示す。

[0053]

【表1】

1		
	サイクル寿命	
実施例 1	2 1 6 ± 1 2	
比較例 1	1 2 7 ± 2 5	

【0054】表1より、(100)結晶面配向リチウムを用いて、さらに塩素ガス吹き込み有機溶媒を添加した電解液を使用した実施例1の電池は、比較例1に比べて、充放電サイクル寿命が長いことがわかる。また、実施例1の電池は、比較例1の電池と比べて、そのバラツキも低減されていることがわかる。

【0055】これは、(100)結晶面配向リチウムの表面皮膜として、岩塩型結晶構造を持つリチウムのハロゲン化物(この場合はLiCl)が整合性良く形成されているためにリチウムの電気化学的溶解や析出の反応がスムーズに進行し、デンドライト析出や溶解時のリチウムの切断による単離などが少なくなり、非常に効率的に充放電サイクルが行われた結果であると考えられる。また、サイクル寿命の向上とともにバラツキも低減されており、精度も高くなっていることがわかる。

【0056】従って、(100)結晶面に優先的配向しているリチウムシートと、塩素ガス吹き込み有機溶媒を

添加した電解液を用いて電池を組み、リチウム箔の表面にLiCl表面皮膜を作製した負極を用いて充放電を行うことにより、充放電サイクル寿命が長くなり、精度も向上することがわかる。

10

【0057】なお、この実施例においては、表面皮膜の 岩塩型結晶物質としてLiClを用いたが、同様の手法 によりLiF、LiBr、LiIの表面皮膜を形成して も同様の効果を得ることが出来た。

【0058】(実施例2)活物質材料として、実施例1 と同様の厚さ100μm、幅22mmのリチウム箔を用いた。そして、このリチウム箔に対して、実施例1と同様の押圧処理を行った。この押圧処理により、実施例1と同様にリチウムの(100)結晶面の優先的な配向性がみられた。

【0059】続いて、実施例1と同様に、まずこのリチウム箔の表面に岩塩型結晶構造を持つLiFとLiClの固溶体の皮膜が格子定数を合わせて作製できることを確認するために、以下の電解液を作製し、その中に(100)結晶面配向リチウム箔を浸すことにした。

【0060】LiPF6とLiClO4を1:30の比で エチレンカーポネートとジエチルカーポネート(体積比 1:1)の混合溶媒の中に、1モル/リットルの濃度で 溶解したものを電解液として使用した。この場合に、フ ッ素原子数:塩素原子数の比は1:5となる。この電解 液中に、先程の(100)結晶面配向リチウム箔を3日 間浸した後に、その表面の構造をCuKα線を用いてX 線解析を行った。その結果を図5に示した。

【0061】図5からわかるように、20が52度近辺に非常に大きなリチウムの200反射の回折ピークが観察され、20が36度近辺に110反射の回折ピークがプロードになりながら小さなピークとして存在していることがわかる。これらのピークは図2と同様の位置に存在している。しかし、110反射のピークのすぐ近くの高角側に図2や図3では存在していなかったピークが観察され、これは、JCPDSカードでは確認できなかったが、以下に示す計算によりLiFとLiClの固溶体の(100)結晶面ではないかと推察される。

【0062】LiFのJCPDSカード(番号40857)とLiClのJCPDSカード(番号40857)とLiClのJCPDSカード(番号40664)

40 によると、LiFの(200)ピークはd値が2.013で2θが44.99度に存在し、LiClの(200)ピークはd値が2.57で2θが34.88度に存在することがわかる。LiFが1/6でLiClが5/6の割合でLiFとLiClが固溶した場合に、VEGARD則に従うならば格子定数は4.9543となり(200)結晶面では、d値が半分の2.477となる。このd値において、CuKα線の波長1.5405で計算すると2θが36.23度のところにLiClとLiFの固溶体の200反射のピークが出現することになる。また、この時のリチウム金属の表面も実施例1の

場合と同様に、目視では押圧時のリチウム表面の光沢度 合いはほとんど変わらない状況であった。つまり、実施 例1の場合と同様に表面皮膜は非常に薄く、(100) 結晶面への優先的な配向性が高いと考えられる。

【0063】すなわち、LiFとLiClが固溶体を形 成し、その岩塩型結晶構造の(100)結晶面が優先的 に配向している表面皮膜が形成されていることがわかっ た。この場合の結晶構造を詳細には解析してはいない が、リチウムイオンが岩塩型結晶構造の面心立方の位置 に存在し、その周りを6配位で取り囲んでいるハロゲン 10 のうち1つがFイオンで、5つがC1イオンとなった構 造をとっているものと思われる。大きなCIイオン半径 の中に小さなFイオンが1/6で均等に存在することに より、平均的に格子定数が小さくなって、VEGARD 則に従った値を示しているものと考えられる。通常は相 図からもわかるように熱平衡的なプロセスでは固溶体は 作製できないが、表面近傍だけであり基板の結晶面の状 態に依存するといった非常に限定された状況の中なの で、このようなLiFとLiClの固溶体が作製できた のだと思われる。

【0064】そこで、(100)結晶面配向リチウム箔と(LiPF6:LiClO4=1:30)の混合塩を1モル/リットルの割合で含むエチレンカーボネートとジエチルカーボネート(体積比1:1)の混合溶媒を用いて、実施例1と同様に図4に示す偏平型非水電解質二次電池を作製した。

【0065】また、比較例として入手したままで、何も 処理を施していないリチウム箔を負極として用いて同様 の非水電解質二次電池を組み立てた。このように、実施 例の電池と比較例の電池をそれぞれ10個作製し、実施 30 例1と同様の充放電試験を行った。

【0066】その結果を表2に示す。表中のサイクル寿命の値は、平均値 $\pm \sigma$ を示す。

[0067]

【表2】

.

	サイクル寿命
実施例 2	250±12
比較例 2	1 0 5 ± 2 3

【0068】表2より、(100)結晶面配向リチウムを用いて、さらに $LiPF_6$ と $LiClO_4$ の2種の塩の混合比を前記の順に1:30とする混合塩を含んだ電解液を使用した実施例2の電池は、比較例2に比べて、充放電サイクル寿命が長く、そのバラツキも低減されていることがわかる。

【0069】これは、岩塩型結晶構造を持つリチウムの 50 処理を行ったリチウム箔のX線回折図

ハロゲン化物(この場合はLiFとLiClの固溶体)が、(100)結晶面配向リチウムの表面皮膜として格子定数がほぼ同じといった非常に整合性の高い状態で形成された構造を持っているために、リチウムの電気化学的溶解や析出の反応がスムーズに進行し、デンドライト析出や溶解時のリチウムの切断による単離などが少なくなり、非常に効率的に充放電サイクルが行われた結果であると考えられる。また、サイクル寿命の向上とともにバラツキも低減されており、精度も高くなっていることがわかる。

12

【0070】また、実施例2の電池は、実施例1の電池と比べて、さらに寿命が長くなっていることがわかる。これは、格子定数のずれがほとんどない表面皮膜を用いることにより、析出溶解の反応がさらに均一に進行し、デンドライト析出の抑制効果が発揮され、充放電効率の向上が得られたためであると思われる。

【0071】従って、塩素ガス吹き込み有機溶媒を添加した電解液を用いて電池を組み、リチウム箔の表面にLiCl表面皮膜を作製した負極を用いて充放電を行うこ20 とにより、充放電サイクル寿命が長くなり、精度も向上することがわかる。

【0072】従って、(100)結晶面に優先的配向しているリチウムシートと、 $LiPF_6$ と $LiClO_4$ の2種の塩の混合塩を含んだ電解液を用いて電池を組み、リチウムの表面にLiFとLiClの固溶体の表面皮膜を作製した負極を用いて充放電を行うことにより、充放電サイクル寿命が長くなり、精度も向上することがわかる。

【0073】なお、本実施例1, 2 においては、正極と り してL i C o O_2 を用いたが、その他の正極として、L i N i O_2 、L i M n O_2 等の層状酸化物や、L i M n O_3 等のスピネル型酸化物、 V_2O_5 等のV系酸化物、T i S_2 といった材料を用いても構わない。

[0074]

【発明の効果】以上のように、本発明によると、リチウム金属を活物質とするシートで、(100)結晶面が優先的に配向しているリチウムシートの表面に、岩塩型結晶構造を持つ物質を主成分とする表面皮膜構造を形成することにより、均一な析出溶解反応すなわち電池の充放 電を行うことが可能となった。さらに、活物質であるリチウム金属のデンドライト析出反応を抑え、電池のサイクル寿命の向上、精度の向上といった効果を得ることができた。

【図面の簡単な説明】

【図1】本発明の一実施例を説明するためのリチウム金属の(100)結晶面の模式図

【図2】本発明の一実施例の電池用負極に使用する押圧 処理を行ったリチウム箔のX線回折図

【図3】本発明の一実施例の電池用負極に使用する表面 処理を行ったリチウム箔のX線回折図 【図4】本発明の一実施例の実施例に用いた偏平型非水 電解質二次電池の縦断面図

【図5】本発明の一実施例の電池用負極に使用する表面 処理を行ったリチウム箱のX線回折図

【図6】従来の文献に示されたリチウム金属のX線回折の強度比を示す図

【符号の説明】

1 正極缶

- 2 正極集電体
- 3 正極
- 4 負極集電体
- 5 封口板
- 6 リチウム箔
- 7 セパレータ
- 8 ガスケット

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

フロントページの続き

100

(72)発明者 豊口 ▲よし▼徳 ・ 大阪府門真市大字門真1006番地 松下電器 産業株式会社内