REPORT PROGETTO GAMS

ESERCIZIO 2

DESCRIZIONE

L'isola per la gestione dell'energia ha a disposizione tre bacini J1, J2, J3 (fiume) che alimentano due turbine delle centrali idroelettriche con un flusso d12 e d23.

Inoltre, dispone delle seguenti centrali termoelettriche: a carbone, a ciclo combinato, a turbogas e a gasolio.

L'obiettivo è riuscire a fornire l'apporto di energia necessario all'isola con il minor costo totale possibile. Quindi avremo una funzione di costo da minimizzare e dei vincoli funzionali che garantiscano che venga prodotta la quantità di energia richiesta. I costi verranno calcolati seguendo l'ipotesi che i costi di produzione dipendano linearmente dalla potenza prodotta.

Inoltre, verrà chiesto di valutare l'investimento per una pompa p21 per il trasporto di acqua dal serbatoio a valle J2 a quello a monte J1.

Con s13 e s23 sono indicati gli sfori (spurghi) che in caso di forti piogge o altri apporti naturali fa defluire l'acqua direttamente al fiume.

La serie storica corrisponde a istanti temporali di due ore, in totale con dodici intervalli si copre la giornata.

PUNTO A

PUNTO A) - VARIABILI DECISIONALI

 $V_{(Bacino,t)}$ Volume

P_(Impianti,t) Potenza

Q_(Flusso,t) Flusso (Portata)

PUNTO A) - MODELLO MATEMATICO

min z = CostoPotenza + CostoFlussi

s.t.

$$V_{('J1',t)} = V_{('J1',t-1)} + ApportiNaturali_{(t,'J1')} - Q_{('d12',t)} - Q_{('s13',t)}$$
 $\forall_{t/t>1}$

$$V_{('J2',t)} = V_{('J2',t-1)} + ApportiNaturali_{(t,'J2')} + Q_{('d12',t)} - Q_{('d23',t)} - Q_{('s23',t)}$$

 $V_{(Bacino, '0')} = Bacini_{(Bacino, 'Vin')}$

 $V_{(Bacino, '12')} = Bacini_{(Bacino, 'Vfin')}$

P_(Impianti, '0') = Centrali_(Impianti, 'P0')

$$P_{(Impianti,t)} - P_{(Impianti,t-1)} \le Centrali_{(Impianti, 'RampUp')}$$
 $\forall_{t/t>1}$

$$P_{(Impianti,t-1)} - P_{(Impianti,t)} \le Centrali_{(Impianti, 'RampDown')} \quad \forall_{t/t>1}$$

 $Q_{(Flusso,'0')} = 0$

CostoFlussi= $\sum_{(Flusso,t)}$ Condotte_(Flusso,'CostoOM')*Q_(Flusso,t)

 $Carico_{(t,'Car')} \leftarrow \sum_{Impianti} P_{(Impianti,t)} + \sum_{Flusso} Condotte_{(Flusso,'EnergyCoeff)} Q_{(Flusso,t)} \qquad \forall_{t/t>1}$

PUNTO A) - ANALISI OUTPUT OTTENUTI

Il costo totale è **Z = 258716.441**. In seguito, rappresentiamo il volume dei bacini, la potenza generata dagli impianti termoelettrici e i flussi delle turbine.

	136 VARIABLE V.L Volume									
	0	1	2	3	4	5				
J1	300.000	325.000	352.000	382.000	330.289	303.860				
J2	120.000	143.479	173.479	209.479	240.190	236.620				
+	6	7	8	9	10	11				
J1	287.959	300.959	311.959	290.000	202.000	212.000				
J2	213.521	200.165	186.041	158.000	198.000	166.256				
+	12									
J1	220.000									
J2	150.000									

	136 VARIABL	E P.L Poter	ıza				
	0	1	2	3	4	5	
Coal	160.000	188.975	143.975	98.975	148.975	190.000	
	125.000					140.000	
GT					40.000		
Oil	30.000	61.091	26.091	5.000		75.000	
+	6	7	8	9	10	11	
Coal	190.000	190.000	190.000	190.000	190.000	190.000	
CCGT	190.000	190.000	190.000	190.000	190.000	190.000	
GT	40.000	5.000		40.000			
Oil	75.000	75.000	75.000	75.000	75.000	75.000	
+	12						
Coal	190.000						
CCGT	161.372						
Oil	75.000						
	136 VARI	ABLE Q.L	Flusso (Po	ortata)			
	1		4	5	6	7	8
d12		76.71	1 46.	430	30.901		
d23	2 521	80.00				35.355	26 124
u23	2.521	80.00	0 00.	.000	00.000	33.333	30.124
	_	_	_				
+	9	1	0	11	12		
d12	31.959	100.00	0				
d23	80.000	80.00	0 45.	744	28.256		
	136 VARI	ABLE z.L		=	258716.44	l Funzione	obiettivo

Notiamo che nonostante la convenienza economica nell'usare l'impianto idroelettrico, la limitazione di avere il volume finale fissato a Vfin non permette di usare tutta l'acqua presente; gran parte dell'energia richiesta viene quindi coperta dagli impianti termoelettrici.

Non si attivano gli sfori (spurghi) chiamati s13 e s23 perché non si eccede mai il volume massimo con gli apporti naturali a disposizione. Infatti, se ad esempio si ponesse l'apporto naturale di J1 all'istante t1 pari a 300 (a causa di una forte pioggia per esempio) si avrebbe uno spurgo s13 di 100 nell'istante t1.

Osservando l'andamento della potenza notiamo che:

- Dal t5 fino a t12 le centrali Coal e Oil sono al massimo della capacità perché sono il modo più conveniente per produrre energia (costo marginale minore).
- Negli istanti t2 e t3 non viene prodotta energia idroelettrica da nessuna delle due turbine questo perché vi è poca domanda di energia in quel periodo della giornata ed è quindi sufficiente quella prodotta da Coal e Oil.
- Il volume finale è fissato, quindi l'impianto idroelettrico non può usare tutta l'acqua subito ma viene usata quando le termoelettriche non riescono a soddisfare la richiesta (raggiungono il limite o sono limitate dalla rampa), ossia nelle ore con più energia richiesta.
- Da t4 a t5 sono quasi tutte alla massima capacità gli impianti termoelettrici, sempre considerando le rampe tra istanti successivi.

PUNTO B

PUNTO B) - MODELLO MATEMATICO

Vengono modificate rispetto al punto A le seguenti equazioni:

$$V_{('J1',t)} = V_{('J1',t-1)} + ApportiNaturali_{(t,'J1')} - Q_{('d12',t)} - Q_{('s13',t)} + Q_{('p21',t)}$$
 $\forall_{t/t>1}$

$$V_{('J2',t)} = V_{('J2',t-1)} + ApportiNaturali_{(t,'J2')} + Q_{('d12',t)} - Q_{('d23',t)} - Q_{('s23',t)} - Q_{('p21',t)} \quad \forall_{t/t>1}$$

Sono stati aggiunti i flussi della pompa p21.

PUNTO B) - ANALISI OUTPUT OTTENUTI

Il costo totale risulta essere **Z = 257170.902**.

Che risulta più conveniente rispetto al punto A di 258716.441 - 257170.902 = **1545.539**

Quindi se l'investimento della pompa costa di meno di 1545 è conveniente farlo, infatti il costo totale verrebbe minimizzato.

	136 VARIABLE	Q.L Flusso	(Portata)			
	1	3	4	5	6	7
d12	57.824		25.686	71.430	70.901	
d23			80.000	80.000	80.000	40.355
p21		75.824				
+	8	9	10	11	12	
d12		35.983	100.000			
d23	36.124	80.000	80.000	45.744	25.777	

La pompa nell'istante t3 viene usata per portare circa 76 mila metri cubi d'acqua dal bacino J2 al bacino J1; ciò ha permesso di usare la turbina D12 anche nell'istante di tempo t1 a differenza del punto A.

PUNTO C

PUNTO C) - MODELLO MATEMATICO

Abbiamo aggiunto la seguente equazione:

$$P_{('Oil','1')} + P_{('Oil','2')} + P_{('Oil','3')} = 0$$

Facendo scorrere tutte le possibili combinazioni di tre istanti temporali successivi.

PUNTO C) - ANALISI OUTPUT OTTENUTI

Abbiamo calcolato le 10 possibili combinazioni dei tre istanti di tempo successivi per fare l'intervento di manutenzione sulla centrale Oil. Per ogni combinazione abbiamo calcolato il costo totale:

1-3: Z = 259161.649

2-4: Z = 261402.315

3-5: Z = 263603.053

4-6: Z = 265046.972

5-7: Z = 264344.389

6-8: Z = 265185.013

7-9: → Infeaseble con questi dati siccome non riesce a soddisfare la domanda con altri impianti

8-10: → Infeaseble con questi dati siccome non riesce a soddisfare la domanda con i altri impianti

9-11: → Infeaseble con questi dati siccome non riesce a soddisfare la domanda con i altri impianti

10-12: → Infeaseble con questi dati siccome non riesce a soddisfare la domanda con i altri impianti

Il minimo è nell'intervallo 1-3 e risulta quindi più conveniente fare la manutenzione della centrale termoelettrica Oil in questi istanti temporali. Il risultato non è sorprendente visto che la centrale Oil dall'istante t5 in poi viene sempre usata al massimo e invece negli istanti precedenti al t5 non è molto usata.

Analizzando il caso di manutenzione negli istanti da 1 a 3, il mix energetico risulta:

---- 141 VARIABLE V.L Volume

	0	1	2	3		4	5
	•	-	2			•	
J1	300.000	325.000	352.000	382.000	334	.930	303.860
J2	120.000	115.223	145.223	181.223	207	.293	208.364
+	6	7	8	9		10	11
J1	287.959	300.959	311.959	290.000			212.000
J2	185.264	171.909	157.785	129.744	169	.744	138.000
+	12						
J1	220.000						
J2	150.000						
	2001000						
	141 VARIABL	E P.L Potenz	za				
	0	1	2	3	4	;	5
	1.50 000	100 000	150 056	100.055	150 056	150.00	_
Coal	160.000	190.000	153.256	108.256	158.256	190.000	
CCGT	125.000	86.810	16.810	0.360	70.360	140.36	
Oil	30.000				40.000 35.000	75.000	
011	30.000				33.000	70.000	
+	6	7	8	9	10	1	1
	150 000	100 000	160.000	160 000	100 000	150.00	
Coal	190.000	190.000	190.000	190.000	190.000	190.000	
CCGT	190.000	190.000	190.000	190.000	190.000	190.000	
GT	40.000	5.000	75 000	40.000	55.000	20.000	
Oil	75.000	75.000	75.000	75.000	75.000	75.000	,
+	12						
Coal	190.000						
CCGT	189.628						
Oil	75.000						
	141 VARIA	BLE Q.L F1	usso (Porta	ta)			
	1	4	5		6	7	8
d12		72.070	51.070	30.90	1		
d23	30.777	80.000	80.000	80.00	0 3	5.355	36.124
	_						
+	9	10	11				
d12	31.959	100.000					
d23		80.000	45.744				
	141 VARIA	BLE z.L		= 259	161.649	Funzione	obiettivo

Come si può vedere l'impianto Oil resta fermo negli instanti t1, t2, t3. Nel nuovo mix per fornire l'energia richiesta la centrale GT mantiene lo stesso mix del punto A.

Le centrali di Coal, CCGT e l'impianto idroelettrico sopperiscono alla mancanza di energia prodotta da Oil in quegli istanti temporali.

Analizzando il costo notiamo che inevitabilmente è aumentato data l'impossibilità di usare energia proveniente dalla centrale Oil (molto conveniente) per tre istanti temporali consecutivi.

259161.649 - 258716.441= 445 → Costo aggiuntivo

PUNTO D

PUNTO D) - VARIABILI DECISIONALI

 $V_{(Bacino,t)}$ Volume

P1_(Impianti, t) Potenza base

P2_(Impianti,t) Potenza espansione

Q1_(Flusso, t) Flusso (Portata) base

Q2_(Flusso, t) Flusso (Portata) espansione

QEspansa_(Flusso) Capacità di flusso espansa della turbina (giornalmente)

PEspansa_(Impianti) Capacità di potenza espansa dell'impianto (giornalmente)

Abbiamo diviso la potenza in P1 (potenza base) e P2 (potenza espansa). Con lo stesso ragionamento abbiamo diviso i flussi in Q1 (flusso base) e Q2 (flusso espanso). Inoltre, useremo due variabili chiamate PEspansa e QEspansa che indicano di quanto fare l'espansione giornaliera che sarebbe il valore massimo di quanto P2 e Q2 possono variare nella giornata.

I costi dell'espansione della potenza di ogni impianto e delle turbine idroelettriche sono costi unitari giornalieri: per questo motivo abbiamo usato le variabili PEspansa e QEspansa per decidere di quanto espandere in quella giornata (ovviamente con annessi i bound per ogni periodo). Quindi durante i blocchi della giornata si potrà decidere se usare o meno la capacità espansa fino al livello di espansione fatto.

PUNTO D) - MODELLO MATEMATICO

La funzione di costo rimane:

min z = CostoPotenza + CostoFlussi

Vengono modificate le seguenti equazioni:

$$V_{(J1',t)} = V_{(J1',t-1)} + ApportiNaturali_{(t,'J1')} - (Q1_{('d12',t)} + Q2_{('d12',t)}) - (Q1_{('s13',t)} + Q2_{('s13',t)})$$

$$V_{('J2',t)} = V_{('J2',t-1)} + ApportiNaturali_{(t,'J2')} + (Q1_{('d12',t)} + Q2_{('d12',t)}) - (Q1_{('d23',t)} + Q2_{('d23',t)}) - (Q1_{('s23',t)} + Q2_{('s23',t)})$$

$$(P1_{(Impianti,t)} + P2_{(Impianti,t)}) - (P1_{(Impianti,t-1)} + P2_{(Impianti,t-1)}) \le Centrali_{(Impianti, 'RampUp')}$$

$$(P1_{(Impianti,t-1)} + P2_{(Impianti,t-1)}) - (P1_{(Impianti,t)} + P2_{(Impianti,t)}) \le Centrali_{(Impianti, 'RampDown')}$$

P1_(Impianti, '0') = Centrali_(Impianti, 'P0')

$$Q1_{(Flusso,'0')} = 0$$
;

$$Q2_{(Flusso,t)} \leq QEspansa_{(Flusso)}$$

CostoFlussi =
$$\sum (Flusso,t) (Q1_{(Flusso,t)} + Q2_{(Flusso,t)})^*Condotte_{(Flusso,'CostoOM')})$$

+ $\sum_{Flusso} QEspansa_{(Flusso)}^*Condotte_{(Flusso,'CostoEspansione')}$

$$\begin{aligned} \text{Carico}_{(t,'\text{Car'})} &<= \sum_{\text{Impianti}} \left(\text{P1}_{(\text{Impianti},t)} + \text{P2}_{(\text{Impianti},t)} \right) \\ &+ \sum_{\text{Flusso}} \text{Condotte}_{(\text{Flusso},'\text{EnergyCoeff})}^{\star} \left(\text{Q1}_{(\text{Flusso},t)} + \text{Q2}_{(\text{Flusso},t)} \right) \end{aligned}$$

PUNTO D) - ANALISI OUTPUT OTTENUTI

Il costo totale è **Z = 248894.830**. Notiamo che la possibilità di espandere sia la capacità delle condotte sia la potenza termoelettrica abbassa il costo totale rispetto al punto precedente.

In particolare, 258716.441 - 248894.830 = 9821.611 → Risparmio in termini di costi

	152 VARIABI	E Pl.L Pote	enza base			
	0	1	2	3	4	5
Coal CCGT Oil	160.000 125.000 30.000	190.000 55.000	159.894 10.172	114.894	44.894 70.000	94.894 140.000 70.000
+	6	7	8	9	10	11
Coal CCGT Oil	190.000 130.355 75.000	190.000 60.355 75.000	190.000 16.166 75.000	190.000 86.166 75.000	190.000 98.811 75.000	190.000 28.811 75.000
+	12					
Coal Oil	190.000 75.000					

Come si può vedere l'impianto GT non è stato mai usato a causa degli alti costi di produzione.

	152 VARIABLE	P2.L Poten	za espansion	e				
	1	4	5	6		7		В
Coal Oil			120.000	74.894 30.000			120.000 50.000	
+	9	10	11	12				
Coal Oil		120.000 50.000	120.000 50.000	120.000 50.000				
}	152 VARIABLE	PEspansa.L	Capacità di nalmente)	potenza	espansa	dell'	impianto	(gior
Coal	120.000, Oil	50.000						

Come si può vedere dalle potenze vengono espanse Coal, Oil: questo perché hanno costi di produzione bassi rispetto agli altri impianti. Per questi due impianti termoelettrici conviene quindi pagare un sovraprezzo affinché possano continuare a produrre energia.

Interessante notare che Coal, nonostante l'alto costo di espansione pari a 20, venga espanso al massimo perché nella visione generale l'energia aggiuntiva prodotta porta lo stesso a una minimizzazione della funzione di costo.

	152 VARIABLE	Ql.L Fluss	o (Portata)	base		
	1	4	5	6	8	9
d12		100.000	95.744	19.860		
d23	2.521	80.000	80.000	80.000	34.165	80.000
+	10	11	12			
d12	70.397					
d23	80.000	56.933	19.628			
	152 VARIABLE	Q2.L Fluss	o (Portata)	espansione		
	4	5	6	8	9	10
d23	5.792	5.792	5.792	5.792	5.792	5.792
	152 VARIABLE	QEspansa.L	Capacità di	i flusso espa	nsa della t	urbina (giorn
			almente)			
d23 5.	792					
	152 VARIABLE	z.L	=	= 248894.83	0 Funzione	obiettivo

Analizzando i due impianti idroelettrici si può notare che soltanto il flusso d23 viene espanso fino a 5,792 mila metri cubi d'acqua e viene sfruttato a pieno solo in 6 istanti temporali. Il motivo è che il volume finale fissato pone un limite all'utilizzo degli impianti idroelettrici che non possono espandere troppo la capacità delle condotte altrimenti si troverebbero con troppo poco volume di acqua da non rispettarne il vincolo sul volume finale.

PUNTO E

PUNTO E) - MODELLO MATEMATICO

Viene aggiunto il seguente vincolo:

Somma delle emissioni di CO2 nell'arco della giornata (togliendo t0).

Nel calcolo delle emissioni di CO2 usiamo solo i tempi da 1 a 12 senza considerare il tempo iniziale 0 che si presuppone sia di un'altra giornata.

PUNTO E) - ANALISI OUTPUT OTTENUTI

Il costo totale è **Z = 284811.456**.

Notiamo che il costo è decisamente aumentato rispetto al punto D. In particolare, si ha un aumento di costo di : 284811.456 - 248894.830 = 35916.626 → Costo aggiuntivo

Questo perché siamo costretti a produrre energia con metodi che fanno meno emissioni di CO2 ma che sono più costosi. Tuttavia, essendo l'impianto idroelettrico soggetto al vincolo di volume finale da rispettare la soluzione viene trovata usando ancora gli impianti termoelettrici, non valutando più solamente il costo di produzione ma anche il rispetto del vincolo sulla CO2. Ecco spiegato il motivo del molto utilizzo dell'impianto GT e dall'istante t5 in poi il mancato utilizzo dell'impianto Coal.

	158 VARIABL	E Pl.L Pote	enza base			
	0	1	2	3	4	5
Coal	160.000	115.000	70.000	25.000		
CCGT	125.000	170.066	100.066	124.730	74.730	190.000
GT					20.158	75.000
Oil	30.000	22.521			35.000	70.000
+	6	7	8	9	10	11
CCGT	190.000	190.000	190.000	190.000	190.000	190.000
GT	75.000	59.842	35.000	75.000	75.000	59.842
Oil	75.000	75.000	75.000	75.000	75.000	75.000
+	12					
CCGT	190.000					
GT	24.842					
Oil	75.000					

	158 VARIABLE	P2.L Potenza	espansione	=					
	4	5	6	7	8	3 9			
CCGT GT Oil		74.730 1 5.000	19.842		19.842				
+	10	11	12						
CCGT	120.000 19.842	120.000 1	20.000						
Oil		33.246	33.246						
	158 VARIABLE	: PEspansa.L C	apacità di almente)	potenza	espansa del	ll'impianto (gior		
CCGT 1	20.000, GT	19.842,	Oil 33.24	16					
158 VARIABLE Q1.L Flusso (Portata) base									
	4	5	6		7	8	9		
d12	94.256	100.000	4.359				2.172		
d23		80.000			7.268	6.337			
+	10	11							
d12 d23	85.213 80.000	30.957							
	158 VARIAE	BLE Q2.L Flu	sso (Port	ata) es	spansione				
	4	5	6		8	9	10		
d23	11.700	11.700	11.700	1	1.700	11.700	11.700		
+	11	12							
d23	11.700	11.541							
	158 VARIAE	BLE QEspansa.	L Capaci alment		lusso espa	ınsa della t	urbina (giorn		
d23 11	d23 11.700								
	158 VARIA	BLE z.L		=	284811.45	66 Funzione	e obiettivo		

PUNTO F

PUNTO F) - VARIABILI DECISIONALI

Abbiamo inoltre:

EInstallata1 Capacità eolica installata giornalmente (0-200 MW)

EInstallata2 Capacità eolica installata giornalmente (200-500 MW)

ProdEolica_(t) Produzione eolica effettiva

PUNTO F) - MODELLO MATEMATICO

Abbiamo modificato/aggiunto le seguenti equazioni:

min z = CostoPotenza + CostoFlussi + CostoEolica

s.t.

ProdEolica_(t) = (EInstallata1 + EInstallata2)*ProducibilitaEolica_(t,'High');

PDecurtata_(t) = (EInstallata1 + EInstallata2) - ProdEolica_(t);

CostoEolica = EInstallata1*120 + EInstallata2*180;

 $\begin{aligned} \text{Carico}_{(t,'\text{Car'})} &<= \sum_{\text{Impianti}} \left(\text{P1}_{(\text{Impianti},t)} + \text{P2}_{(\text{Impianti},t)} \right) \\ &+ \sum_{\text{Flusso}} \text{Condotte}_{(\text{Flusso},'\text{EnergyCoeff'})}^* \left(\text{Q1}_{(\text{Flusso},t)} + \text{Q2}_{(\text{Flusso},t)} \right) + \text{ProdEolica}_{(t)} \end{aligned}$

PUNTO F) - ANALISI OUTPUT OTTENUTI

L'installazione della capacità eolica in MW è giornaliera ed ha un costo giornaliero equivalente unitario in base a:

- 120 €/MW per i primi 200 MW installati
- 180 €/MW per ogni unità di capacità addizionale, dai 200 MW ai 500 MW

La produzione eolica non produce inquinamento quindi non influisce sull'upper bound di CO2.

Analizziamo i tre casi di producibilità eolica in base alle condizioni metereologiche favorevoli o meno (presenza di vento bassa, media, alta):

CASO LOW:

```
---- 176 VARIABLE EInstallatal.L = 0.000 Capacità eolica insta
llata giornalmente (0
-200 MW)

VARIABLE EInstallata2.L = 0.000 Capacità eolica insta
llata giornalmente (2
00-500 MW)

---- 176 VARIABLE ProdEolica.L Produzione eolica effettiva

( ALL 0.000 )

---- 176 VARIABLE PDecurtata.L Potenza eolica decurtata

( ALL 0.000 )

---- 176 VARIABLE z.L = 248894.830 Funzione obiettivo
```

Non si installa nessun impianto eolico: costano troppo in relazione alla producibilità eolica veramente bassa dovuta al poco vento. La funzione obiettivo non cambia rispetto al punto D. Abbiamo quindi un costo totale **Z = 248894.830**.

CASO MEDIUM:

```
---- 176 VARIABLE EInstallatal.L
                                            200.000 Capacità eolica insta
                                                      llata giornalmente (0
                                                      -200 MW)
          VARIABLE EInstallata2.L =
                                              0.000 Capacità eolica insta
                                                      llata giornalmente (2
                                                      00-500 MW)
---- 176 VARIABLE ProdEolica.L Produzione eolica effettiva
1 85.915, 2 109.000, 3 110.929, 4 105.464, 5 84.160
6 46.759, 7 42.689, 8 34.873, 9 46.015, 10 29.135
11 28.358, 12 8.439
---- 176 VARIABLE PDecurtata.L Potenza eolica decurtata
1 114.085, 2 91.000, 3 89.071, 4 94.536, 5 115.840
6 153.241, 7 157.311, 8 165.127, 9 153.985,
                                                      10 170.865
11 171.642, 12 191.561
---- 176 VARIABLE z.L
                                      = 240283.058 Funzione obiettivo
```

Si installano solo 200 MW al costo di 120 €/MW; visto che siamo in una condizione meteo intermedia non è proficuo installare altra capacità al costo di 180 €/MW.

Il costo totale è diminuito. 248894.830 - 240283.058 = 8,611.772 → Risparmio

CASO HIGH:

```
--- 176 VARIABLE EInstallatal.L = 200.000 Capacità eolica insta
                                                 llata giornalmente (0
                                                 -200 MW)
         VARIABLE EInstallata2.L =
                                        300.000 Capacità eolica insta
                                                 llata giornalmente (2
                                                 00-500 MW)
    176 VARIABLE ProdEolica.L Produzione eolica effettiva
1 185.157, 2 163.885, 3 189.751, 4 299.105, 5 337.265
6 447.843, 7 443.837, 8 271.300, 9 213.346, 10 247.414
11 182.863, 12 181.450
---- 176 VARIABLE PDecurtata.L Potenza eolica decurtata
1 314.843, 2 336.115, 3 310.249, 4 200.895, 5 162.735
6 52.157, 7 56.163, 8 228.700, 9 286.654, 10 252.586
11 317.137, 12 318.550
---- 176 VARIABLE z.L
                                   = 179260.976 Funzione obiettivo
```

Si installano 200 MW al costo di 120 €/MW e 300 MW al costo di 180 €/MW.

Il costo totale è notevolmente diminuito.

248894.830 - 179260.976 = 69,633.854 → Risparmio

Produrre eolico è estremamente vantaggioso con un vento forte come in questo caso.

PUNTO G

PUNTO G) - MODELLO MATEMATICO

Viene aggiunto il seguente vincolo:

Somma delle emissioni di CO2 nell'arco della giornata (togliendo t0).

Nel calcolo delle emissioni di CO2 usiamo solo i tempi da 1 a 12 senza considerare il tempo iniziale 0 che si presuppone sia di un'altra giornata.

PUNTO G) - ANALISI OUTPUT OTTENUTI

Analizziamo i tre casi di producibilità eolica in base alle condizioni metereologiche favorevoli o meno (presenza di vento bassa, media, alta):

CASO LOW:

	182 VARIABLE P2.L Potenza espansione								
	4	5	6	7	8	9			
CCGT	120.000	68.869 5.000	120.000	120.000	120.000	120.000			
Oil	35.000		30.000	50.000	50.000	50.000			
+	10	11	12						
CCGT	120.000 1.625		120.000						
Oil	50.000		50.000						
	182 VARIABLE	PEspansa.L	Capacita nalmente	_	espansa del	l'impianto (gior			
CCGT 12	0.000, GT	5.000,	Oil !	50.000					

Vengono espanse CCGT, GT, Oil.

```
---- 182 VARIABLE Q2.L Flusso (Portata) espansione

4 5 6 9 10

d23 16.678 16.678 16.678 12.244 16.678

---- 182 VARIABLE QEspansa.L Capacità di flusso espansa della turbina (giorn almente)
```

Viene espanso il tubo d23 fino a 16,678 mila metri cubi d'acqua di portata.

```
---- 182 VARIABLE EInstallatal.L = 32.344 Capacità eolica insta llata giornalmente (0 -200 MW)

VARIABLE EInstallata2.L = 0.000 Capacità eolica insta llata giornalmente (2 00-500 MW)

---- 182 VARIABLE ProdEolica.L Produzione eolica effettiva

1 4.500, 2 3.391, 3 2.048, 4 1.292, 5 0.882, 6 0.187

7 0.148, 8 0.400, 9 0.690, 10 3.580, 11 6.981, 12 13.003

---- 182 VARIABLE PDecurtata.L Potenza eolica decurtata

1 27.845, 2 28.954, 3 30.297, 4 31.053, 5 31.462, 6 32.157

7 32.196, 8 31.944, 9 31.654, 10 28.765, 11 25.363, 12 19.341

---- 182 VARIABLE z.L = 284479.550 Funzione obiettivo
```

Dato la poca producibilità eolica legata al meteo si è installato solo 32 MW circa di impianto eolico. Notiamo che confrontando con il punto F in cui la producibilità eolica nel caso LOW era tutta a zero qui si inizia a usarla seppur in poca quantità. Il motivo è che la produzione eolica non produce CO2 quindi non è limitata dal vincolo di 2500 tonnellate massime di produzione di CO2 da non superare.

CASO MEDIUM:

	182 VARIABLE P2.L Potenza espansione								
	4	6	7	8	9	10			
CCGT Oil	70.000	20.000 30.000	90.000 30.000	120.000	120.000 30.000	120.000 30.000			
+	11	12							
CCGT Oil	120.000 30.000	120.000 30.000							
	182 VARIABLE	PEspansa.L	Capacità di nalmente)	potenza	espansa dell'	'impianto (gior			
CCGT	120.000, Oil	30.000							

Vengono espanse CCGT, Oil, le più convenienti.

```
---- 182 VARIABLE Q2.L Flusso (Portata) espansione

4 5 6 8 9 10

d23 9.166 9.166 9.166 9.166 9.166 9.166

+ 11 12

d23 9.166 9.166

---- 182 VARIABLE QEspansa.L Capacità di flusso espansa della turbina (giorn almente)
```

Viene espanso il tubo d23 fino a 9,166 mila metri cubi d'acqua di portata.

```
---- 182 VARIABLE EInstallatal.L
                                            200.000 Capacità eolica insta
                                                      llata giornalmente (0
                                                      -200 MW)
          VARIABLE EInstallata2.L =
                                             11.684 Capacità eolica insta
                                                      llata giornalmente (2
                                                      00-500 MW)
---- 182 VARIABLE ProdEolica.L Produzione eolica effettiva
 90.934, 2 115.367, 3 117.409, 4 111.625, 5 89.076
49.491, 7 45.182, 8 36.910, 9 48.703, 10 30.837
11 30.015, 12 8.932
      182 VARIABLE PDecurtata.L Potenza eolica decurtata
1 120.750, 2 96.317, 3 94.274, 4 100.058, 5 122.607
6 162.193, 7 166.501, 8 174.773, 9 162.980, 10 180.846
           12 202.751
11 181.669,
---- 182 VARIABLE z.L
                                   = 254302.559 Funzione obiettivo
```

Viene installato circa 211 MW di impianto eolico, poco più di 200 MW valutando che fino a un certo punto è profittevole il costo dell'investimento da 180 €/MW.

CASO HIGH:

	182 VARIABLE	Pl.L Pote	nza base			
	0	1	2	3	4	5
Coal	160.000 125.000		70.000	25.000	75.000	125.000
Oil	30.000					
+	б	7	8	9	10	11
Coal	96.518	51.518	101.518	151.518	190.000	190.000
Oil	10.236		35.000	62.094	75.000	75.000
+	12					
Coal	190.000					
Oil	40.000					
	182 VARIABLE	P2.L Pote	nza espansio	ne		
		(ALL	0.000)			
}	182 VARIABLE	PEspansa.L	Capacità d nalmente)	li potenza e:	spansa dell'i	mpianto (gior
		(ALL	0.000)			

Come si può vedere non sono necessarie le espansioni per gli impianti termoelettrici.

	182 VARIABLE	Ql.L Fluss	o (Portata)	base		
	4	5	6	8	9	10
d12					100.000	
d23	74.581	80.000	37.360	80.000	80.000	80.000
+	11	12				
d23	72.881	43.178				
	182 VARIABLE	Q2.L Fluss	o (Portata)	espansio	one	
		(ALL	0.000)			
	182 VARIABLE	QEspansa.L	Capacità di almente)	i flusso	espansa della	turbina (giorn
		(ALL	0.000)			

Allo stesso modo non sono necessari nemmeno espansioni per i flussi delle turbine.

```
---- 182 VARIABLE EInstallatal.L =
                                         200.000 Capacità eolica insta
                                                   llata giornalmente (0
                                                   -200 MW)
          VARIABLE EInstallata2.L = 300.000 Capacità eolica insta
                                                   llata giornalmente (2
                                                   00-500 MW)
--- 182 VARIABLE ProdEolica.L Produzione eolica effettiva
1 185.157, 2 163.885, 3 189.751, 4 299.105, 5 337.265
6 447.843, 7 443.837, 8 271.300, 9 213.346, 10 247.414
11 182.863, 12 181.450
      182 VARIABLE PDecurtata.L Potenza eolica decurtata
1 314.843, 2 336.115, 3 310.249, 4 200.895, 5 162.735
6 52.157, 7 56.163, 8 228.700, 9 286.654, 10 252.586
11 317.137, 12 318.550
---- 182 VARIABLE z.L
                                    = 179260.976 Funzione obiettivo
```

Gli impianti eolici sono sfruttati al massimo grazie anche al forte vento e producono gran parte dell'elettricità dell'isola. Essendo l'energia fornita dall'eolico, GT non produce mai e anche CCGT produce solamente in t1 e t2 per poi non essere più utilizzato l'impianto.