习题课题目(统计部分二)

- 1. 设 X_1, \cdots, X_n 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,若 σ 已知,则 μ 的置信度 为 $1-\alpha$ 的置信区间中, $\left(\bar{X} u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$ 是最短的。
- 2. 设总体 X 服从均匀分布 $U[0,\theta]$, X_1,X_2,\cdots,X_n 是 X 的一组样本,要检验 假设 $H_0:\theta=c$, $H_1:\theta>c$,其中 c>0 为常数。设统计量 $M=\max_{1\leq i\leq n}X_i$,原 假设的拒绝域为 $\{M>m_\alpha\}$,如果 α (0< α <1)是犯第一类错误的概率,试证:拒绝域的临界值为 $m_\alpha=c(1-\alpha)^{1/n}$ 。
- 3. 若总体 $X \sim N(\mu_1, \sigma_1^2)$,总体 $Y \sim N(\mu_2, \sigma_2^2)$,它们相互独立,而 X_1, X_2, \cdots, X_n 及 Y_1, Y_2, \cdots, Y_m 分别是它们的简单随机样本, $\overline{X}, \overline{Y}$ 分别为它们的样本均值。如果知 道 $\sigma_1^2 = \frac{1}{4}\sigma_2^2$,但 σ_1^2 和 σ_2^2 得具体数据未知,
 - (1) 证明 $S_w^2 = \frac{1}{n+m-2} \left[\sum_{i=1}^n (X_i \overline{X})^2 + \frac{1}{4} \sum_{i=1}^m (Y_i \overline{Y})^2 \right]$ 是 σ_1^2 的无偏估计。
 - (2) 给出假设检验 $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$ 的检验法。
- **4.** 设样本 $X_1, X_2, ..., X_n$ 是来自 $U[\theta_1, \theta_2]$,求 $\theta_2 \theta_1$ 的置信度为 1α 的等尾置信区间。
- 5. 在做某电视节目收视率调查时,甲市抽取了 2000 户,其中有 541 户收看了,乙市抽取了 1000 户,其中有 285 户收看了。若记 p_1,p_2 分别为甲乙两市对该电视节目的收视率,试在水平 $\alpha=0.05$ 下,检验 $H_0:p_1=p_2,\quad H_1:p_1\neq p_2$,并求其检验的 p 值。
- 6. 设 X_1, \dots, X_n 是总体X的一个样本,X的密度函数为

$$f(x;\sigma) = \begin{cases} \frac{1}{\sigma} \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2\sigma^2}}, & x > 0, \sigma > 0 为未知参数\\ 0, & x \le 0 \end{cases}$$

- (1) 试证明: $\frac{X}{\sigma}$ 与|Z|同分布,这里 $Z \sim N(0,1)$,
- (2)试给出假设 $H_0: \sigma=1 \longleftrightarrow H_1: \sigma=2$ 的似然比检验的拒绝域(水平为 α)。