Consultas conjuntivas

Clase 23

IIC 3413

Prof. Cristian Riveros

Outline

Consultas conjuntivas (CQ)

Evaluación de CQ

Optimización de CQ

Fragmento más sencillo: consultas conjuntivas

Definición

Una consulta conjuntiva (CQ) es una consulta en AR que solo contiene:

- proyección (π)
- selección sencilla ($\sigma_{A=B}$ o $\sigma_{A=v}$)
- Equality joins $(\bowtie_{A=B})$
- Renaming $(\rho_{A \to B})$

Ejemplo

SELECT P.name, M.goals

FROM Players AS P, Matches AS M, Players_Matches AS PM

WHERE P.pld = PM.pld AND PM.mld = M.mld AND

P.name = 'Alexi' AND M.year = 2001

En otras palabras, una consulta SELECT-FROM-WHERE.

Fragmento más sencillo: consultas conjuntivas

Definición

Una consulta conjuntiva (CQ) es una consulta en AR que solo contiene:

- proyección (π)
- selección sencilla ($\sigma_{A=B}$ o $\sigma_{A=v}$)
- Equality joins $(\bowtie_{A=B})$
- Renaming $(\rho_{A \to B})$

Sin perdida de generalidad

Desde ahora en adelante consideraremos consultas conjuntivas solo con:

- **proyección** π .
- selección $\sigma_{A=v}$.
- natural joins ⋈.

 $\sigma_{A=B}$, $\bowtie_{A=B}$ y $\rho_{A\to B}$ no cambian la complejidad del problema.

Fragmento más sencillo: consultas conjuntivas

Proposición

Para toda consulta conjuntiva Q, existe una consulta Q' tal que $Q(\mathcal{D}) = Q'(\mathcal{D})$ para toda BD \mathcal{D} y Q' es de la forma:

$$\pi_I(\sigma_{c_1}(R_1) \bowtie \ldots \bowtie \sigma_{c_n}(R_n))$$

con cada c_i una conjunción filtros A = v.

Demostración: use las reglas de reescritura.

Representación simplificada de consultas conjuntivas

Sea **V** un conjunto de variables y **C** un conjunto de constantes.

Simplificación

Desde ahora una consulta conjuntiva la representaremos como:

$$ans(\bar{y}) := R_1(\bar{x}_1), R_2(\bar{x}_2), \dots, R_n(\bar{x}_n)$$

- $1. \ \bar{x}_1, \dots, \bar{x}_n$ son variables en **V** o constantes en **C**,
- 2. \bar{y} es un subconjunto de variables en $\bar{x}_1, \dots, \bar{x}_n$.

Ejemplo

$$ans(x,z) := P(x, 'Alexi'), PM(x,y), M(y, 2001, z)$$

- x, y, z son variables.
- 'Alexi' y 2001 son constantes.

Representación simplificada de consultas conjuntivas

Sea **V** un conjunto de variables y **C** un conjunto de constantes.

Simplificación

Desde ahora una consulta conjuntiva la representaremos como:

$$ans(\bar{y}) := R_1(\bar{x}_1), R_2(\bar{x}_2), \dots, R_n(\bar{x}_n)$$

- $1. \ \bar{x}_1, \dots, \bar{x}_n$ son variables en **V** o constantes en **C**,
- 2. \bar{y} es un subconjunto de variables en $\bar{x}_1, \dots, \bar{x}_n$.

Notación

- $R_1(\bar{x}_1), \ldots, R_n(\bar{x}_n)$ es el cuerpo de Q y $ans(\bar{y})$ es la cabeza de Q.
- **•** cada $R_i(\bar{x}_i)$ es un **átomo** de Q.
- \blacksquare si \bar{y} es vacía, entonces hablamos de una consulta booleana.

Homomorfismo de consultas conjuntivas

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

h(c) = c para toda $c \in \mathbf{C}$ y

Diamera (D).

■ si $R(d_1, ..., d_k)$ es un átomo de Q,

entonces $(h(d_1), \ldots, h(d_k)) \in \mathcal{D}(R)$.

Goals

3

¿cuál es un homomorfismo de Q a \mathcal{D} ?

$$Q: anx(x,z) \coloneqq P(x, 'Alexi', y), M(x,z, '3')$$

	Playe		iviatches (IVI):		
	ld	Name	Year	ld	Stadium
\mathcal{D} :	1	Alexi	1987	1	Nacional
	2	Gary	1990	1	Monumental
	3	Arturo	1985	2	San Carlos

Homomorfismo de consultas conjuntivas

Definición

Un homomorfismo de Q a \mathcal{D} es una función $h: (\mathbf{V} \cup \mathbf{C}) \to \mathbf{C}$ tal que:

- h(c) = c para toda $c \in \mathbf{C}$ y
- si $R(d_1, ..., d_k)$ es un átomo de Q,

entonces
$$(h(d_1), \ldots, h(d_k)) \in \mathcal{D}(R)$$
.

Proposición

Para toda base de datos \mathcal{D} y toda consulta conjuntiva Q de la forma:

$$ans(y_1,...,y_k) := R_1(\bar{x}_1), R_2(\bar{x}_2),..., R_n(\bar{x}_n)$$

se tiene que $t \in Q(\mathcal{D})$ si, y solo si, existe un homomorfismo h de Q a \mathcal{D} con

$$t = (h(y_1), \ldots, h(y_k)).$$

Demostración: ejercicio.

Outline

Consultas conjuntivas (CQ)

Evaluación de CQ

Optimización de CQ

¿qué tan complejo es evaluar una consulta conjuntiva?

Problema de decisión:

 $\label{eq:problema: Resultado no-vacío de consultas conjuntivas (CQ-Emptyness).}$

INPUT: una consulta conjuntiva Q,

una BD relacional $\mathcal D$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

Teorema

El problema CQ-EMPTYNESS es NP-completo.

Demostración: ejercicio.

¿cuáles son las consultas conjuntivas difíciles?

Ejemplo

Considere la siguiente consulta conjuntiva

$$R_1(A_1, A_2), R_2(A_2, A_3), \dots, R_{n-1}(A_{n-1}, A_n), R_n(A_n, A_1)$$

con las siguientes relaciones:

R_i	A_i	A_{i+1}	R_n	A_n	A_1
	0	а		0	а
	0	b		0	b
	1	a		1	а
	1	b		1	b
	а	0		а	0
	a	1		а	1
	b	0		b	0
	b	1		b	1

- ¿cuál es el tamaño de sus relaciones intermedias?
- ¿cuál es el tamaño del resultado total?

¿estamos modelando el problema correctamente?

PROBLEMA: Resultado no-vacío de consultas conjuntivas (CQ-EMPTYNESS).

INPUT: una consulta conjuntiva Q,

una BD relacional ${\cal D}$

OUTPUT: TRUE ssi $Q(\mathcal{D}) \neq \emptyset$.

En la práctica tenemos que:

$$|Q| \ll |\mathcal{D}|$$

Consultas son muchísimo más pequeñas que los datos.

Complejidad en término de los datos

- **Combined**-complexity: consulta y datos son parte del input.
- Data-complexity: solo los datos son parte del input (consulta esta fija).

PROBLEMA: Resultado no-vacío de consultas conjuntivas Q (CQ-EVAL $_Q$).

INPUT: una BD relacional ${\cal D}$

OUTPUT: $t \in Q(\mathcal{D})$.

Complejidad en término de los datos

Teorema

El problema ConjSQL-Eval_Q esta en PTIME para todo consulta $Q \in \text{SQL}$.

¿es posible hacer una análisis mas fino?

Outline

Consultas conjuntivas (CQ)

Evaluación de CQ

Optimización de CQ

Equivalencia y satisfiabilidad de consultas conjuntivas

Definición

Un homomorfismo de Q_1 a Q_2 es una función $h: (\mathbf{V} \cup \mathbf{C}) \to (\mathbf{V} \cup \mathbf{C})$:

- h(c) = c para toda $c \in \mathbf{C}$,
- si $R(d_1,\ldots,d_k)$ es un átomo de Q_1 , entonces $R(h(d_1),\ldots,h(d_k))$ es un átomo de Q_2 ,
- si $ans(y_1,...,y_k)$ es el cuerpo de Q_1 , entonces $ans(h(y_1),...,h(y_k))$ es el cuerpo de Q_2 .

Proposición

Para todo par de consultas conjuntivas Q_1 y Q_2 se tiene que:

- 1. $Q_1(\mathcal{D}) \subseteq Q_2(\mathcal{D})$ para toda \mathcal{D} si, y solo si,
- 2. existe un homomorfismo de Q_2 a Q_1 .

Equivalencia y satisfiabilidad de consultas conjuntivas

PROBLEMA: Satisfabilidad de consultas conjuntivas. (CQ-SAT).

INPUT: una consulta conjuntiva Q,

OUTPUT: TRUE ssi existe \mathcal{D} tal que $Q(\mathcal{D}) \neq \emptyset$.

PROBLEMA: Igualdad de consultas conjuntivas (CQ-EQUIVALENCE).

INPUT: consultas conjuntivas Q_1 y Q_2 ,

OUTPUT: TRUE ssi para todo \mathcal{D} se cumple $Q_1(\mathcal{D}) = Q_2(\mathcal{D})$.

Teorema

- CQ-SAT es un problema trivial (siempre es satisfacible).
- CQ-EQUIVALENCE es NP-COMPLETO.