Лабораторная работа №3.6.1 Спектральный анализ электрических сигналов

Рожков А. В.

23 ноября 2024 г.

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

1 Теоретическое введение

1.А Разложение сложных сигналов на периодические колебания

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$
(1)

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt, \qquad (2)$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Рассмотрим периодические функции, которые исследуются в нашей работе.

1.А.1 Периодическая последовательность прямоугольных импульсов

(рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$
 (4)

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

Назовем шириной спектра $\Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1 \tag{5}$$

 $\delta\nu$ 0 $\Delta\nu \rightarrow |\Delta\nu \rightarrow |\Delta$

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

1.А.2 Периодическая последовательность цугов

гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3). Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$
(6)

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: Последовательность цугов

Рис. 4: Спектр последовательности цугов

1.А.3 Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$)) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t \tag{7}$$

Коэффициент m называют **глубиной модуляции**. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{8}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t. \tag{9}$$

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное не модулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a_{\rm och}=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды не модулированного колебания:

 $a_{\text{бок}} = \frac{A_0 m}{2}$. Начальные фазы всех трех колебаний одинаковы.

2 Ход работы

2.А Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

2.А.3 Настроим прямоугольный сигнал

$$\nu_{\text{повт}} = 1 \text{ к}\Gamma$$
ц, $\tau = T/20 = 50 \text{ мкс}$

2.А.4 Устойчивая картина на экране осциллографа

Снимок экрана на рисунке 7

2.А.5 Спектр прямоугольного сигнала (преобразование Фурье)

Снимок экрана на рисунке 8

2.А.6 Наблюдение изменений спектра при изменении параметров сигнала

Результаты и параметра на рисунках 9, 10, 11, 12, 13, 14, 15

Рис. 7: Устойчивая картина прямоугольных им- Рис. 8: Спектр прямоугольных импульсов (преобпульсов Фурье)

Рис. 9: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=0.5~\text{к}\Gamma$ ц; $\tau=50~\text{мкc})$

Рис. 10: Спектр прямоугольного сигнала $(\nu_{\text{повт}}=1\ \text{к}\Gamma\text{ц};\ \tau=50\ \text{мкc})$

2.А.7 Измерение параметров спектра

Теоретические формулы:

$$\nu_n^{\text{reop}} = \frac{n}{T}, \qquad |a_n| = \frac{|\sin \frac{\pi n\tau}{T}|}{\pi n} = \frac{\tau}{T} \frac{|\sin \pi \nu_n \tau|}{\pi \nu_n \tau}$$

Результаты измерений и расчётов в таблице 1

2.А.8 Измерение полной ширины спектра при различных длинах импульса

Зафиксируем T=1 мс. Результаты в таблице 2

2.А.9 Измерение расстояния между соседними гармониками при различных периодах повторения сигнала

Зафиксируем $\tau = 100$ мкс. Результаты в таблице 3

2.А.10 Графики зависимостей $\Delta\nu(1/\tau)$ и $\delta\nu(1/T).$ Проверка соотношений неопределённости

Графики на рисунках 16 и 17

Рис. 11: Спектр прямоугольного сигнала $(\nu_{\text{повт}} = 1.5 \text{ к}\Gamma \text{ц}; \, \tau = 50 \text{ мкс})$

Рис. 12: Спектр прямоугольного сигнала $(\nu_{\text{повт}} = 2 \text{ к}\Gamma \text{ц}; \, \tau = 50 \text{ мкс})$

Рис. 13: Спектр прямоугольного сигнала $(\nu_{\text{повт}} = 1 \text{ к}\Gamma \text{ц}; \ \tau = 60 \text{ мкс})$

Рис. 14: Спектр прямоугольного сигнала $(\nu_{\text{повт}} = 1 \text{ к}\Gamma$ ц; $\tau = 70 \text{ мкс})$

n	1	2	3	4	5
$\nu_n^{ m \scriptscriptstyle 9KCII},$ к Γ ц	1.00 ± 0.01	2.00 ± 0.01	3.00 ± 0.01	4.00 ± 0.01	5.00 ± 0.01
$ u_n^{\mathrm{reop}}, \mathrm{к}\Gamma$ ц	1	2	3	4	5
$ a_n ^{\mathfrak{s}_{\mathrm{KCII}}}$, усл.ед.	279.0 ± 1.0	274.0 ± 1.0	269.0 ± 1.0	261.0 ± 1.0	251.0 ± 1.0
$ a_n/a_1 ^{\mathfrak{S}KC\Pi}$	1.000 ± 0.005	0.982 ± 0.005	0.964 ± 0.005	0.935 ± 0.005	0.900 ± 0.005
$ a_n/a_1 ^{\text{reop}}$	1	0.987688	0.967371	0.939347	0.904029
	n	6	7	8	
	$ u_n^{ ext{\tiny 9KCII}}, ext{к} \Gamma$ ц	6.00 ± 0.01	7.00 ± 0.01	8.00 ± 0.01	
	$ u_n^{\mathrm{reop}},$ к Γ ц	6	7	8	
	$ a_n ^{\mathfrak{s}_{\mathrm{KCII}}},$ усл.ед.	239.0 ± 1.0	226.0 ± 1.0	211.0 ± 1.0	
	$ a_n/a_1 ^{\mathfrak{s}_{\mathrm{KCH}}}$	0.857 ± 0.005	0.810 ± 0.005	0.756 ± 0.004	
	$ a_n/a_1 ^{\text{reop}}$	0.861934	0.813674	0.759948	

Таблица 1: Параметры спектра прямоугольного сигнала

Проверим соотношения неопределённостей: $\Delta \nu \sim \frac{1}{\tau}$ и $\delta \nu \sim \frac{1}{T}$ По МНК коэффициенты: $k_{\tau}=1.012\pm0.007;~k_{T}=1.021\pm0.003.$ Как видим соотношения выполняются с хорошей точностью.

Рис. 15: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=1\ \text{к}\Gamma$ ц; $au=80\ \text{мкc}$)

Рис. 16: График зависимости $\Delta \nu (1/\tau)$

Рис. 17: График зависимости $\delta\nu(1/T)$

2.В Наблюдение периодической последовательности цугов

2.В.11 Устойчивая картина цугов на экране осциллографа

Частота несущей $\nu_0=50$ к Γ ц, период повторения T=1 мс, число периодов синусоиды в одном импульсе N=5

Получили картину на рисунке 18

2.В.12 Спектр периодической последовательности цугов

Спектр для сигнала с теми же параметрами на рисунке 19

2.В.13 Изменение спектра при изменении параметров

Спектры представлены на рисунках 19, 20, 21 и 22

2.В.14 Параметры спектров, проверка соотношений неопределённостей

По теореме смещения, смещение по времени не меняет амплитуд спектральных компонент, а лишь сдвигает их фазы (пропорционально частоте компоненты)

Проверим соотношения неопределённостей: должно выполняться $\Delta \nu \cdot \tau_0 \sim 1$ и $\delta \nu \cdot T \sim 1$

T MIKE	$\Delta \nu$, к Γ ц
au, MKC	
20	52.0 ± 0.5
30	33.0 ± 0.5
40	25.0 ± 0.5
50	20.0 ± 0.5
60	16.0 ± 0.5
70	14.0 ± 0.5
80	13.0 ± 0.5
90	11.0 ± 0.5
100	10.0 ± 0.5
110	9.0 ± 0.5
120	8.0 ± 0.5
130	8.0 ± 0.5
140	7.0 ± 0.5
150	6.0 ± 0.5
160	6.0 ± 0.5
170	6.0 ± 0.5
180	6.0 ± 0.5
190	5.0 ± 0.5
200	5.0 ± 0.5

T, MKC	δu , к Γ ц
200	5.13 ± 0.01
600	1.67 ± 0.01
1000	1.00 ± 0.01
1400	0.70 ± 0.01
1800	0.55 ± 0.01
2200	0.46 ± 0.01
2600	0.39 ± 0.01
3000	0.34 ± 0.01
3400	0.29 ± 0.01
3800	0.27 ± 0.01
4200	0.24 ± 0.01
4600	0.22 ± 0.01
5000	0.20 ± 0.01

Таблица 3: Зависимость расстояния между соседними гармониками от периода повторения

Таблица 2: Зависимость полной ширины спектра от длительности импульса

τ_0 , MC	$\Delta \nu$, к Γ ц	$\Delta \nu \cdot \tau_0$	T, MC	$\delta \nu$, к Γ ц	$\delta \nu \cdot T$
0.02	10	0.2	1	1	1
0.04	5	0.2	1	1	1
0.02	10	0.2	0.5	2	1
0.02	5	0.1	1	1	1

Таблица 4: Параметры спектра последовательности цугов

2. D Исследование спектра амплитудно-модулированного сигнала

2.D.19 Модулированный по амплитуде синусоидальный сигнал

Частота несущей $\nu_0=50$ кГц, частота модуляции $\nu_{\rm мод}=2$ кГц, глубина модуляции 50~%(m=0.5) Устойчивая картина сигнала на рисунке 23

2.D.20 Параметры сигнала

$$A_{max} = 1.44 \text{ B}$$

$$A_{min} = 0.48 \text{ B}$$

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1.44 - 0.48}{1.44 + 0.48} = 0.5 = 50\%$$

Равенство выполняется

2.D.21 Спектр сигнала

Спектры сигнала при различных параметров на рисунках 24, 25, 26 и 27 Параметры в таблице 5

Рис. 18: Устойчивая картина цугов

Рис. 19: Спектр цугов $(\nu_0 = 50 \ \mathrm{k}\Gamma\mathrm{ц}; \ T = 1 \ \mathrm{mc}; \ N = 5)$

Рис. 20: Спектр цугов $(\nu_0=25~{\rm k\Gamma u};~T=1~{\rm mc};~N=5)$

$ u_0, к\Gamma$ ц	$ u_{\text{мод}}, \kappa \Gamma$ ц	m	$ u_0^{\scriptscriptstyle{\mathrm{MSM}}},$ к Γ ц	$ u_{\text{мод}}^{\text{изм}}, \kappa \Gamma$ ц
50	2	0.5	50	2
100	2	0.5	100	2
50	4	0.5	50	4
50	2	0.75	50	2

Таблица 5: Параметры спектра модулированного сигнала

2.D.22 Отношение амплитуд при различной глубине модуляции

Результат в таблице 6

m, %	10	20	30	40	50	60	70	80	90	100
$\frac{a_{\rm 6ok}}{a_{\rm och}}$	0.051	0.1	0.15	0.2	0.249	0.299	0.348	0.399	0.449	0.495

Таблица 6: Отношение амплитуд при различной глубине модуляции

2. D.23 График зависимости $a_{\rm бок}/a_{\rm осн}$ от m

Амплитуда боковой гармоники $a_1=ma_0/2$, где a_0 - амплитуда основной гармоники График на рисунке 28

Рис. 21: Спектр цугов $(\nu_0 = 50 \text{ к}\Gamma \text{ц}; T = 0.5 \text{ мc}; N = 5)$

Рис. 22: Спектр цугов $(\nu_0 = 50 \ \mathrm{k}\Gamma \mathrm{l}; \ T = 1 \ \mathrm{mc}; \ N = 10)$

Рис. 23: Устойчивая картина модулированного сигнала

2. Г Изучение фильтрации сигналов

2.F.24 Параметры RC-цепочки

$$R=3$$
 кОм $C=1000$ пФ $au_{RC}=RC=3$ мкс $au_{RC}=1/
u_{RC}=0.33$ М Γ ц

Подадим последовательность прямоугольных импульсов с периодом повторения T=3 мкс $\sim \tau_{RC}$ и длительностью $\tau=150$ нс $\sim T/20$

2.F.25 Сигналы и спектры при различных значениях T

Сигналы на рисунках 29, 30 и 31 Спектры на рисунках 32, 33 и 34

2.F.26 Сравнение амплитуд спектральных гармоник исходного и фильтрованного сигналов

Подадим последовательность прямоугольных импульсов с периодом повторения T=3 мкс и длительностью $\tau=150$ нс

Результаты измерения амплитуд фильтрованного и исходного сигнала в таблице 7

Рис. 24: Спектр модулированного сигнала ($\nu_0=50\ {\rm к}\Gamma$ ц; $\nu_{{\rm mog}}=2\ {\rm k}\Gamma$ ц; m=0.5)

Рис. 25: Спектр модулированного сигнала ($\nu_0=100\ \mathrm{k}\Gamma$ ц; $\nu_{\mathrm{мод}}=2\ \mathrm{k}\Gamma$ ц; m=0.5)

Рис. 26: Спектр модулированного сигнала $(\nu_0 = 50 \text{ к}\Gamma \text{ц}; \ \nu_{\text{мод}} = 4 \text{ к}\Gamma \text{ц}; \ m = 0.5)$

Рис. 27: Спектр модулированного сигнала ($\nu_0=50$ кГц; $\nu_{\mbox{\scriptsize MOJ}}=2$ кГц; m=0.75)

n	a_n^0 , мВ	a_n^{Φ} , м ${ m B}$	$K_n = a_n^{\Phi} / a_n^0 $
1	264 ± 10	33.5 ± 1.0	0.127 ± 0.006
2	260 ± 10	20.0 ± 1.0	0.077 ± 0.005
3	257 ± 10	9.6 ± 1.0	0.037 ± 0.004
4	247 ± 10	8.8 ± 1.0	0.036 ± 0.004
5	237 ± 10	8.8 ± 1.0	0.037 ± 0.005
6	227 ± 10	8.2 ± 1.0	0.036 ± 0.005
7	216 ± 10	6.4 ± 1.0	0.030 ± 0.005
8	202 ± 10	4.5 ± 1.0	0.022 ± 0.005
9	187 ± 10	2.0 ± 1.0	0.011 ± 0.005

Таблица 7: Сравнение амплитуд спектральных гармоник исходного и фильтрованного сигналов

Теоретическая зависимость $K=\frac{1}{\tau_{RC}}\int_0^t f(t')dt'$ Построим график $K(1/\nu)$ на рисунке 35. По углу наклона определим τ_{RC}

$$au_{RC} = rac{1}{2\pi k} = (3.6 \pm 0.6) \; \mathrm{mkc}$$

Рис. 28: График зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m

Рис. 29: Прямоугольные импульсы $(T=1.5 \text{ мкс}; \, \tau=150 \text{ нc})$

Рис. 30: Прямоугольные импульсы (T=3 мкс; $\tau=150$ нс)

3 Вывод

В данной работе мы изучили понятие спектра и спектрального анализа, исследовали спектральный состав периодических электрических сигналов, а точнее прямоугольных импульсов, цугов гармонических колебаний, гармонических сигналов, модулированных по амплитуде и частоте, а также проанализировали фильтрацию сигналов при прохождении их через RC контур. Проверили частный случай выполнения соотношения неопределённости.

Рис. 31: Прямоугольные импульсы $(T=6 \text{ мкс}; \tau=150 \text{ нc})$

Рис. 32: Спектр прямоугольных импульсов ($T=1.5~{
m mkc};~\tau=150~{
m hc}$)

Рис. 33: Спектр прямоугольных импульсов (T=3 мкс; $\tau=150$ нс)

Рис. 34: Спектр прямоугольных импульсов (T=6 мкс; $\tau=150$ нс)

Рис. 35: График зависимости $K(1/\nu)$