## DC Motors II

**ECE 3710** 

Most of the arguments to which I am party fall somewhat short of being impressive, owing to the fact that neither I nor my opponent knows what we are talking about.

- Rodney Dangerfield

#### dc motor

#### direction:



speed:



#### dc motor: speed



#### dc motor: speed

if T << I ← motor just sees average



## dc motor: speed (PWM)



reverse

stop

(look at driver switching speed)

too fast for driver

note: signal can't change

#### LM3S1968 PWM countdown mode



interrupts: zero,load,match a down, match b down

#### LM3S1968 PWM count up-then-down mode



interrupts: zero,load,match a up/down, match b up/down

#### LM3S1968 PWM events

## what should happen when COUNT=XX

#### bits in PWMxGENy:

- 0x0 Do nothing.
- 0x1 Invert the output signal.
- 0x2 Set the output signal to 0.
- 0x3 Set the output signal to 1.

#### PWM0 Generator A Control (PWM0GENA)

Base 0x4002.8000 Offset 0x060

Type R/W, reset 0x0000.0000



Tuesday, November 26, 13

#### LM3S1968 PWM events

# PWMA set to invert outputs when COUNT=CompAU/D

(ignores other events)

## PWMB set to invert outputs when COUNT=CompBU/D



#### ex: 25% DC w/25 KHz period

reset every

$$T = \frac{1}{f} = \frac{1}{25 \times 10^3}$$

strategy:

- 1. trigger event at (re)load periodic timer (event sets output high)
  - 2. trigger event at 25% of timer period

(event sets output low)

3. goto 1.

$$T_{25\%} = T - 0.25 \times T = T \times (1 - 0.25)$$

## LM3S1968 PWM0, GENA configuration

ex: 25% DC w/25 KHz period:

(PWMClk = SysClk = 12 MHz)



note: only need a single comparator

#### LM3S1968 PWM0, GENA configuration

#### ex: 25% DC w/25 KHz period:

(PWMClk = SysClk = 12 MHz)



bits in PWMxGENy:



- 0x0 Do nothing.
- 0x1 Invert the output signal.
- 0x2 Set the output signal to 0.
- 0x3 Set the output signal to 1.

#### when:

a. COUNT=LOAD, output = I

b. COUNT= CompA, output = 0

## LM3S1968 PWM0, GENA configuration

#### timer and comparator values:



stepper motor:

more precise control over rpm and partial revs.

position control

#### from Ampere's law

current causes B-field



an electromagnet

#### stepper motor: permanent magnet

# Permanent Magnet Rotor AA' and BB' are the two phases Motor Case Two-Phase Permanent Magnet type Stepper

#### both wrapped around



I=closed 0=open connect switches to coils (ABA'B')←

note: labels refer to coil ends, not strators

#### stepper motor: permanent magnet

switches determines direction of current flow:

remember, two coils



each coil wound around both stators

#### each coil wound around both stators



note: this is confusing but necessary to make it work with book

#### more realistic configuration



note: A=I and A'=0

#### stepper motor: permanent magnet



Q: how to move rotor by changing magnetic polarity of stators?

#### stepper motor: abstracted view



$$A=IA'=0$$

$$A = 0 A' = 1$$

$$B=1 B'=0$$

$$B=0 B'=1$$

just know:

switch configurations give these states

#### stepper motor: making it move



CCW:

step: ABA'B'
1 0001
2 0010
3 0100
4 1000

repeat, in order, for continuous movement

Q:

I. power2. resolution3. speed

#### stepper motor speed



ideal: rotor instantaneously (and continuously)

follows stators

```
step: A B A' B'

I I 0 0 0

Step through

2 0 I 0 0

faster or slower

3 0 0 I 0

4 0 0 0 I
```

#### stepper motor speed



#### steps per revolution = 4

depends on uC

depends on stator/rotor (teeth)

 $RPM = \frac{steps}{second} \frac{revolutions}{step} \frac{seconds}{minute}$ 

lousy Greeks and their sexagesimal system...

#### metric time



## Remember this time people: 80 past 2 on April 47th.

- Principle Skinner

Q: why do we have the system we have?



couldn't resist...



Q: why only turn one set on at a time?

what configuration causes it still to turn?

#### power

1 2 3 4





#### power



#### 6 Lead Unipolar Driver

Unipolar control is the most simple and cost-effective way to drive a stepper motor, but results in approximately 30% less torque in comparison to the nowadays widely used bipolar drivers. Since the cost advantage is very small today due to cheap integrated circuits, bipolar drivers are now used in most new applications.



follow

#### even more power: previous + more stators





#### angle per step



$$step angle = 360 \frac{degrees}{revolution} \frac{revolutions}{step}$$

step angle = 
$$360/4 = 90$$

#### ways to achieve it:



all require more steps to get one revolution

#### ways to achieve it:



SA = 45

also, half-stepping:



#### resolution: half-stepping



#### con: uneven torque