

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Techniki Pomiarowe

Laboratorium 4

Ćwiczenie 10+16

Borsuk Piotr Wilczyński Gabriel Technologie Przemysłu 4.0 Rok 2, Semestr 4, Grupa nr. 1 Rok akademicki 2023/2024

Pomiar pojemności kondensatora metodą techniczną

Rysunek 1 schemat pomiarowy

Wykaz przyrządów:

- Generator Rigol
- Wzmacniacz-uniwersalny moduł laboratoryjny
- 2x Multimetr APPA 205
- Oscyloskop

Tabela 1. pomiary wykonane na zajęciach oraz uzupełnione dane obliczeniowe

Nr Cx	U [V]	ΔU [V]	δυ [%]		I [mA]	ΔI [mA]	δ _I [%]	f [Hz]	Δf [Hz]	δ _f [%]
	3,41	0,4	4		9,4	0,8	8,16	1020	10	1
2				1			<u> </u>			
	U	I	f		Cx	ΔC_x	δ_{Cx}			
	[V]	[mA]	[Hz]		[nF]	[nF]	[%]			
	3,41	9,41	1020		430,12	17,59	4,09			

Użyte wzory:

obliczono wartość pojemności nieznanego kondensatora

$$C_x = \frac{I}{2\pi f U} = \frac{9.4 * 10^{-3}}{2 * \pi * 1020 * 3.41} = \sim 1.4667 * 10^{-7} [F] = 430.12 [nF]$$

obliczono wartość błędu pomiaru

$$\Delta C_{x} = \sqrt{\left(\frac{\Delta I}{2\pi f U}\right)^{2} + \left(\frac{-I\Delta U}{2\pi f U^{2}}\right)^{2} + \left(\frac{-I\Delta f}{2\pi f^{2} U}\right)^{2}} =$$

$$= 17,59 [nF]$$

Obliczono wartość błędu względnego

$$\delta_{c_x} = \frac{\Delta C_x}{C_x} * 100\% = \frac{17,59}{430,12} * 100\% = 4,09\%$$

Podsumowanie:

Impedancja układu składa się praktycznie w całości z reaktancji kondensatora, dlatego nie uwzględniamy rezystancji w pomiarach

Pomiar parametrów R, L cewki metodą trzech woltomierzy

Rysunek 2 schemat pomiarowy

Wykaz przyrządów:

- Generator Rigol
- Wzmacniacz-uniwersalny moduł laboratoryjny
- 3x Multimetr APPA 205
- Oscyloskop

Tabela 2 pomiary wykonane na zajęciach oraz uzupełnione dane obliczeniowe

Nr L _x	U ₁ [V] 3,41	Δ U ₁ [V] 0,01	δ _{U1} [%] 0,29	U _w [V] 0,66	Δ U _W [V] 0,01	δ _{Uw} [%] 1,52	U _X [V] 3,34	Δ U _X [V] 0,01	δ _{Ux} [%] 0,3
	U ₁ [V] 3,41	U _W [V] 0,66	U _X [V] 3,34	L _X [H] 0,32	ΔL _X [H]	δ _{Lx} [%]	R _X [Ω] 6,88	$\begin{array}{c} \Delta R_X \\ [\Omega] \\ 0,1915 \end{array}$	δ _{Rx} [%] 2,78

Użyte wzory:

Obliczono wartość impedancji

$$Z_x = \frac{U_x}{U_w} * R_w = \frac{3,34}{0,66} * 200 = 1012$$

Obliczono wartość przesunięcia

$$\cos \varphi = \frac{U_1^2 - U_w^2 - U_x^2}{2U_w U_x} = \frac{11,63 - 0,44 - 11,16}{4,41} = 0,0068$$

Obliczono wartość oporu cewki

$$R_x = Z_x \cos \varphi = 1012 * 0.068 = 6.88$$

Obliczono wartość indukcyjności cewki

$$X_x = \sqrt{Z_x^2 - R_x^2} = \sqrt{1\ 024\ 144 - 47,33} = 1011,97$$

$$L_x = \frac{x_x}{2\pi f} = \frac{1011,97}{2 * \pi * 500} = 0,32 [H]$$

Obliczono wartości błędów

$$\Delta R_x = \sqrt{(\frac{1}{4} [\left(\frac{U_1}{U_w}\right)^2 - \left(\frac{U_x}{U_w}\right)^2 - 1\right] * \Delta R_w]^2 + \left[\frac{R_w * U_1}{U_w^2} * \Delta U_1\right]^2 + } = 0,1915[\Omega]$$

$$+ [\left(\frac{-R_w * U_1^2}{U_w^3} + \frac{R_w * U_x^2}{U_w^3}\right) * \Delta U_w]^2 + \left[\frac{R_w * U_1}{U_w^2} * \Delta U_x\right]^2)$$

$$\Delta L_x = niestety \ nie \ umiem, \ przepraszam$$

$$\delta U_1 = \frac{\Delta U_1}{U_1} * 100\% = 0,29\%$$

$$\delta U_w = \frac{\Delta U_w}{U_w} * 100\% = 1,52\%$$

$$\delta U_x = \frac{\Delta U_x}{U_x} * 100\% = 0,3\%$$

$$\delta R_x = \frac{\Delta R_x}{R_w} * 100\% = 2,78\%$$

Podsumowanie:

Metoda trzech woltomierzy jest przydatnym narzędziem do jednoczesnego pomiaru wielu parametrów dwójników w trakcie ich pracy.

Pomiar parametrów R i L cewki metodą techniczną dla dwóch częstotliwości

Rysunek 3 schemat pomiarowy

Wykaz przyrządów:

- Generator Rigol
- Wzmacniacz-uniwersalny moduł laboratoryjny
- 3x Multimetr APPA 205
- Oscyloskop

Tabela 3 pomiary wykonane na zajęciach oraz uzupełnione dane obliczeniowe

Nr	U_1	ΔU_1	δ_{U1}		I_1	ΔI_1	δ_{I1}		f_1	Δf_1	Δ_{fl}
L_{x}	[V]	[V]	[%]		[mA]	[mA]	[%]		[Hz]	[Hz]	[%]
	5,44	0,0272	0,5		25,4	0,254	1		1000	1	0,1
	U_2	ΔU_2	$\delta_{U2} \\$		I_2	ΔI_2	$\delta_{\mathrm{I}1}$		F_2	Δf_2	$\Delta_{ m f2}$
	[V]	[V]	[%]		[mA]	[mA]	[%]		[Hz]	[Hz]	[%]
	5,44	0,0272	0,5		17,1	0,171	1		1500	1,5	0,1
				J				1			
	L_{X}	ΔL_X	δ_{Lx}		R_X	ΔR_X	δ_{Rx}				
	[H]	[H]	[%]		$[\Omega]$	$[\Omega]$	[%]				
	0,4	0,0020280	0,6		208,22	2,52	1,21				

Użyte wzory:

Obliczono indukcyjność nieznanej cewki

$$L_{x} = \frac{U}{2\pi I_{2}I_{1}} * \sqrt{\frac{I_{1}^{2} - I_{2}^{2}}{f_{2}^{2} - f_{1}^{2}}} = \frac{5,44}{2 * \pi * 0,0254 * 0,0171} * \sqrt{\frac{0,0254 * ^{2} - 0,0171^{2}}{1500^{2} - 1000^{2}}} = 0,4 [H]$$

Obliczono jaki opór ma cewka

$$R_{x} = \sqrt{\left(\frac{U}{I_{1}}\right)^{2} - 2\pi f_{1}L_{x}} = \sqrt{\left(\frac{5,44}{0,0254}\right)^{2} - 2*\pi*1000*0,4} = 208,22 [\Omega]$$

Obliczono wartość błędu pomiarowego cewki

$$\Delta L_{x} = \sqrt{ \begin{pmatrix} L_{x} * \frac{\Delta \text{ U}}{U} \end{pmatrix}^{2} + \left(\frac{U * I_{2}}{2\pi * I_{1}^{2}} * \frac{\Delta I_{1}}{\sqrt{(I_{1}^{2} - I_{2}^{2}) * (f_{2}^{2} - f_{1}^{2})}} \right)^{2} + \left(\frac{U * I_{1}}{2\pi * I_{2}^{2}} * \frac{\Delta I_{2}}{\sqrt{(I_{1}^{2} - I_{2}^{2}) * (f_{2}^{2} - f_{1}^{2})}} \right)^{2} + \left(L_{x} * \frac{\Delta f_{1} * f_{1}}{f_{2}^{2} - f_{1}^{2}} \right)^{2} + \left(L_{x} * \frac{\Delta f_{2} * - f_{1}}{f_{2}^{2} - f_{1}^{2}} \right)^{2}$$

$$\left(0.4 * \frac{0.0272}{5.44}\right)^{2} + \left(\frac{5.44 * 0.0171}{2\pi * 0.0254^{2}} * \frac{0.0000254}{\sqrt{(0.0254^{2} - 0.0171^{2}) * (1500^{2} - 1000^{2})}}\right)^{2} +$$

$$= \left(\frac{5.44 * 0.0254}{2\pi * 0.0171^{2}} * \frac{0.0000254}{\sqrt{(0.0254^{2} - 0.0171^{2}) * (1500^{2} - 1000^{2})}}\right)^{2} +$$

$$= \left(0.4 * \frac{1 * 1000}{1500^{2} - 1000^{2}}\right)^{2} + \left(0.4 * \frac{1.5 * -1000}{1500^{2} - 1000^{2}}\right)^{2}$$

$$= \sqrt{4*10^{-6} + 7.7*10^{-10} + 1.87*10^{-11} + 1.1*10^{-7} + 2.3*10^{-7}} = 0.002028 \ [H]$$

$$\Delta R_x = \sqrt{(F * \Delta U)^2 + (G * \Delta I_1)^2 + (H * \Delta I_2)^2 + (K * \Delta f_1)^2 + (L * \Delta f_2)^2}$$

$$F = \frac{1}{I_1^2} - \frac{f_2^2}{f_2^2 - f_1} * \frac{(I_1^2 - I_2^2)}{(I_1^2 * I_2^2)} = -0,0018$$

$$G = \frac{U}{I_1^3 * F} * \frac{-f_2^2}{f_2^2 - f_1} = 6722,58$$

$$H = \frac{U}{I_2^3 * F} * \frac{f_1^2}{f_2^2 - f_1} = -10\ 083,87$$

$$K = \frac{U}{F} * \frac{-f_1 f_2^2}{f_2^2 - f_1} * \frac{(I_1^2 - I_2^2)}{(I_1^2 * I_2^2)} = 0,4793$$

$$L = \frac{U}{F} * \frac{f_2 f_1^2}{f_2^2 - f_1} * \frac{(I_1^2 - I_2^2)}{(I_1^2 * I_2^2)} = -0,3291$$

$$\Delta R_x = \sqrt{\frac{(-0.0018 * 0.0272)^2 + (6722.58 * 0.000254)^2 + (10.083.87 * 0.000171)^2 + (-0.4793 * 1)^2 + (0.3291 * 1.5)^2}$$

$$= 2.52 [\Omega]$$

$$\delta L_x = \frac{\Delta L_x}{L_x} * 100\% = 0,507\%$$

$$\delta R_x = \frac{\Delta R_x}{R_x} * 100\% = 1,2103\%$$

Pomiar pojemności, rezystancji i kąta stratności kondensatorów mostkiem Wiena

Rysunek 4 schemat pomiarowy

Wykaz przyrządów:

- Wskaźnik równowagi(wbudowany w moduł 'Mostek ++')
- Geneator Rigol
- Wzmacniacz-uniwersalny moduł laboratoryjny
- Oscyloskop Rigol DS1052E

Tabela 4 pomiary wykonane na zajęciach oraz uzupełnione dane obliczeniowe

		-		Г									
Nr	R_1		δ_{R1}		$\Delta_r R_1$		$\delta_{\rm r1}$			$\Delta_{\rm N}$ R	1	$\delta_{ m NR}$	
C_x	$[\Omega]$]	[%]		$[\Omega]$		[%]			$[\Omega]$		[%]	
2	3,05		0,05		0,01		(0,0023		1		0,0023	
							_						
	R_2		δ_{R2}		$\Delta_{\rm r} R_2$					$\Delta_{\rm N}~{ m R}_2$		$\delta_{ m NC}$	
	$[\Omega]$		[%]		$[\Omega]$		[%]			$[\Omega]$		[%]	
	999	999 0			1		0,001			4		0,001	
			L F										
	R ₄		$\delta_{ m R4}$		C_{w}			δ_{Cw}		$R_{\rm w}$		$\delta_{ m Rw}$	
	$[\Omega]$]	[%]		[uF]		[%]			$[\Omega]$		[%]	
	120	0	0,1		0,5		0,1			0,02		0,1	
						1				ı			
	C_{X}	ΔC_X	δ_{Cx}		R_{X}	Δ	R_X	δ_{Rx}		$tg\delta_x$	Δ	$\delta_{tg\delta_X}$	
	[nF]	[nF]	[%]		$[\Omega]$	[2]	2]	[%]		[°]	$tg\delta_x$	[%]	
											[°]		
	416,	1,049	0,252		3,69	0,0	112	0,3046		0,009	0,00	0,3546	
	21									6	0034		
	21									6	0034		

Użyte wzory:

Obliczono wartości

$$C_x = C_w \frac{R_2}{R_4} = 416,21 * 10^{-9} [F] = 416,21 [nF]$$

$$R_x = R_4 \frac{R_1 + R_w}{R_2} = 3,69 [\Omega]$$

$$tg\delta_x = \omega R_x C_x = 2\pi f (R_1 + R_w) C_w = 0.0096$$

$$\begin{split} \delta_{c_x} &= \left| \delta_{c_\omega} \right| + \left| \delta_{R_2} \right| + \left| \delta_{R_4} \right| + \left| \delta_{NC} \right| + \left| \delta_{r_2} \right| = 0,252\% \\ \delta_{R_x} &= \left| \delta_{R_\omega} \right| + \left| \delta_{R_1} \right| + \left| \delta_{R_2} \right| + \left| \delta_{NR} \right| + \left| \delta_{r_1} \right| = 0,3046\% \\ \delta_{tg\delta_x} &= \left| \delta_f \right| + \left| \delta_{c_\omega} \right| + \left| \delta_{R_w} \right| + \left| \delta_{R_1} \right| + \left| \delta_{NR} \right| + \left| \delta_{r_1} \right| = 0,3546\% \end{split}$$

$$\Delta C_x = C_x * \frac{\delta_{c_x}}{100\%} = 1,049 \text{ [nF]}$$

$$\Delta R_x = R_x * \frac{\delta_{R_x}}{100\%} = 0,112 \text{ [}\Omega\text{]}$$

$$\Delta tg \delta_x = R_x * \frac{\delta_{R_x}}{100\%} = 0,000034$$

Podsumowanie:

Metoda jest bardzo dokładna, można zwiększyć dokładność stosując jeszcze mniejsze wartości rezystancji podczas równoważenia mostka.