procesamiento1

June 9, 2025

1 Análisis de la tabla clasificaciones

1.1 1. Importación de datos

En primer lugar, es necesario importar los datos de las calificaciones y de los cursos con la finalidad de verificar que los códigos de curso mencionados en el primer dataset existan realmente.

Note: you may need to restart the kernel to use updated packages.

```
[10]: # Importar la librería polaris
import polars as pl

# Leer CSVs y asegurar que los códigos sean tratados como texto

df_notas = pl.read_csv(
        "../Data/DB_Notas.csv",
        schema_overrides={
            "cod_asignatura": pl.Utf8,
            "cod_alumno": pl.Utf8,
            "cod_plan": pl.Utf8
        },
        separator=";",
        infer_schema_length=1000
)

df_cursos = pl.read_csv(
        "../Data/DB_Cursos.csv",
```

```
schema_overrides={"Codigo": pl.Utf8},
    separator=";"
)
```

```
[11]: # Mostrar las primeras filas de los DataFrames
print("Notas DataFrame:")
print(df_notas.head())
print("\nCursos DataFrame:")
print(df_cursos.head())
```

Notas DataFrame: shape: (5, 7)

-	cod_facultad	cod_escuela	cod_plan	cod_asignatur			
cod_alumno val_calific_							
				a			
final							
i64	i64	i64	str		str		
				str			
i64							
20191	20	1	2009	201003	8200187		
16							
20191	20	1	2009	201101	6200206		
15							
20191	20	1	2009	201101	7200092		
6							
20191	20	1	2009	201101	110749		
14							
20191	20	1	2009	201101	4200074		
12							

Cursos DataFrame: shape: (5, 6)

Codigo	Nombre	Ciclo	Tipo	Plan	Escuela
str	str	i64	str	i64	i64
201001	ALGORÍTMICA I	1	Obligatorio	2009	1
201003	CALCULO I	1	Obligatorio	2009	1
201004	MATEMÁTICA BÁSICA I	1	Obligatorio	2009	1
201007	COMPUTACIÓN E INFORMÁTICA	1	Obligatorio	2009	1

2 2. Cruce de tablas

En segundo lugar, se procede a cruzar las tablas para verificar los cursos realmente existentes en los planes vigentes de las escuelas de ingeniería de sistemas y software.

```
[12]: # Hacer la unión (join) para añadir el nombre del curso
df_completo = df_notas.join(
    df_cursos,
    left_on="cod_asignatura",
    right_on="Codigo",
    how="left"
)

# Renombrar la columna del nombre del curso
df_completo = df_completo.with_columns(
    pl.col("Nombre").alias("nombre_Curso")
)
```

```
[13]: # Mostrar las primeras filas del DataFrame completo
print("DataFrame completo:")
print(df_completo.head())
```

DataFrame completo: shape: (5, 13)

cod_s	emestr	cod_faculta	cod_escuel	cod_plan		Tipo	Plan	
Escuela	nomb	re_Cur						
е		d	a					
	so							
				str		str	i64	
i64								
i64		i64	i64					
str								
00404				0000		0.7.		
20191		20	1	2009	•••	Obligatori	2009	1
CALCU	LU I							
						0		
20191		20	1	2009	•••	Obligatori	2009	1
GEREN	CT A	20	1	2009	•••	UDIIgatuii	2003	1
۷۳۱۲۱۱۱	OIN					0		
INFOR	MÁTIC					Č		
TIVE OIG	IMITO							

Α

```
GERENCIA
                                                             0
       INFORMÁTIC
      Α
      20191
                    20
                                  1
                                               2009
                                                             Obligatori
                                                                          2009
      GERENCIA
       TNFORMÁTIC
       Α
       20191
                    20
                                  1
                                               2009
                                                             Obligatori
                                                                          2009 1
      GERENCIA
       INFORMÁTIC
      Α
[19]: # Eliminar las filas con valores nulos en la columna 'nombre_Curso'
      df_completo = df_completo.filter(pl.col("nombre_Curso").is_not_null())
 []: # Eliminar los espacios en blanco al final de algunas celdas de la columna

    'cod_plan'

      df_completo = df_completo.with_columns(
          pl.col("cod_plan")
            .str.replace(r"\s+$", "", literal=False)
      )
[29]: # Enlistar el nombre de las columnas del DataFrame completo
      print("\nColumnas del DataFrame completo:")
      for idx, col in enumerate(df_completo.columns):
          print(f"{idx+1}. {col}")
     Columnas del DataFrame completo:
     1. cod_semestre
     2. cod_facultad
     3. cod_escuela
     4. cod_plan
     5. cod_asignatura
     6. cod_alumno
     7. val_calific_final
     8. Nombre
     9. Ciclo
     10. Tipo
```

Obligatori

2009 1

20191

20

1

2009

- 11. Plan
- 12. Escuela
- 13. nombre_Curso

1.3 3. Transformación de datos

En tercer lugar, se categoriza las notas con la finalidad de adecuar el dataset para que sea compatible con el algoritmo J48.

```
[30]: # Crear un DataFrame con las columnas de interés
      df interes = df completo.select([
          "cod_escuela",
          "cod_plan",
          "cod_asignatura",
          "nombre_Curso",
          "val_calific_final"
      ])
[31]: # Guardar el DataFrame con las columnas de interés en un nuevo CSV
      df_interes.write_csv("../Data/DP_notas_verificadas.csv")
      print(" ¡Listo! Archivo guardado como 'DP_notas_verificadas.csv'")
       ¡Listo! Archivo guardado como 'DP_notas_verificadas.csv'
[35]: # Agregar una columna con la categorización de las notas
      df_interes = df_interes.with_columns(
          pl.when( pl.col("val_calific_final") >= 17 ).then( pl.lit("Alta") )
            .when( pl.col("val_calific_final") >= 14 ).then( pl.lit("Aceptable") )
            .when( pl.col("val_calific_final") >= 11 ).then( pl.lit("Baja") )
            .otherwise( pl.lit("Reprobado") )
            .alias("categoria_nota")
[36]: # Mostrar las primeras filas del DataFrame con la categorización de las notas
      print("\nDataFrame con categorización de notas:")
      print(df_interes.head())
     DataFrame con categorización de notas:
     shape: (5, 6)
       cod_escuela
                    cod_plan cod_asignatura
                                                nombre_Curso
                                                              {\tt val\_calific\_final}
     categoria_nota
       i 64
                                                               i64
                    str
                               str
                                                str
     str
```

1	2009	201003	CALCULO I	16
Aceptable 1	2009	201101	GERENCIA	15
Aceptable			INFORMÁTICA	
1 Reprobado	2009	201101	GERENCIA	6
repropado			INFORMÁTICA	
1 Aceptable	2009	201101	GERENCIA	14
Aceptable			INFORMÁTICA	
1 Baja	2009	201101	GERENCIA	12
zaja			INFORMÁTICA	

[39]: # Mostrar las primeras filas del DataFrame con la categorización de las notas print("\nDataFrame con categorización de notas:") print(df_interes2.head())

DataFrame con categorización de notas: shape: (5, 4)

cod_escuela	cod_plan	cod_asignatura	categoria_nota
i64	str	str	str
1	2009	201003	Aceptable
1	2009	201101	Aceptable
1	2009	201101	Reprobado
1	2009	201101	Aceptable
1	2009	201101	Baja

```
[41]: # Filtrar las filas donde 'cod_plan' contiene solo números
df_interes2 = df_interes2.filter(pl.col("cod_plan").str.contains(r"^\d+$"))

# Cambiar el tipo de dato de la columna 'cod_plan' a numérico
df_interes2 = df_interes2.with_columns(
    pl.col("cod_plan").cast(pl.Int64)
)

# Mostrar los tipos de datos del DataFrame final
print("\nTipos de datos del DataFrame final:")
print(df_interes2.dtypes)
```

Tipos de datos del DataFrame final: [Int64, Int64, String, String]

```
[42]: # Guardar el DataFrame con las columnas de interés en un nuevo CSV df_interes2.write_csv("../Data/DP_notas_categorizadas.csv")

print(" ¡Listo! Archivo guardado como 'DP_notas_categorizadas.csv'")
```

¡Listo! Archivo guardado como 'DP_notas_categorizadas.csv'