Predicting micro-bubble system dynamics with PINN

Hanfeng Zhai

Mar 22, 2021

Background

Ruan et al., Nat. Com., 2015

Omata et al., Adv. Drug Deliv. Rev., 2020

Omata et al., PNAS, 2015

Modeling

Problem Formulation

Water

0.8 0.7 0.6 0.5 0.4 0.3

Air

Physics-Informed Neural Network

The Navier-Stokes equation is given as

$$\rho(u_t + uu_x + vu_y) = -p_x + \mu(u_{xx} + u_{yy})$$

$$\rho(v_t + uv_x + vv_y) = -p_y + \mu(v_{xx} + v_{yy})$$

For two phase flows (bubble dynamics), we reconstruct density and viscosity into

$$(\alpha_1 \rho_1 + \alpha_2 \rho_2)(u_t + uu_x + vu_y) = -p_x + [\beta(\alpha_1 \mu_1 + \alpha_2 \mu_2)](u_{xx} + u_{yy})$$

$$(\alpha_1 \rho_1 + \alpha_2 \rho_2)(v_t + uv_x + vv_y) = -p_y + [\beta(\alpha_1 \mu_1 + \alpha_2 \mu_2)](v_{xx} + v_{yy})$$
(A)

Where β is the *Bubble Coefficient* pertaining surface tension, velocity field, etc.

For PINNs, **PREDICTING** the solution & **IDENTIFYING** the equation (dynamics) can be applied simultaneously.

Review

When ρ takes 1, Raissi et al. reconstruct the N-S equation into

$$1(u_t + uu_x + vu_y) = -p_x + \mu(u_{xx} + u_{yy})$$

$$1(v_t + uv_x + vv_y) = -p_y + \mu(v_{xx} + v_{yy})$$

$$v_t + \lambda_1(uv_x + vv_y) = -p_y + \lambda_2(v_{xx} + v_{yy})$$

Where λ_1 and λ_2 is to be learnt from the neural network.

Here, we adopt λ_1 and λ_2 to reconstruct Eq. A into three forms

$$(\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2})(u_{t} + uu_{x} + vu_{y}) = -p_{x} + [\beta(\alpha_{1}\lambda_{1} + \alpha_{2}\lambda_{2})](u_{xx} + u_{yy})$$

$$(\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2})(v_{t} + uv_{x} + vv_{y}) = -p_{y} + [\beta(\alpha_{1}\lambda_{1} + \alpha_{2}\lambda_{2})](v_{xx} + v_{yy})$$
(A.1)

... which doesn't work

$$(\lambda_{1}\rho_{1} + \lambda_{2}\rho_{2})(u_{t} + uu_{x} + vu_{y}) = -p_{x} + [\beta(\lambda_{1}\mu_{1} + \lambda_{2}\mu_{2})](u_{xx} + u_{yy})$$

$$(\lambda_{1}\rho_{1} + \lambda_{2}\rho_{2})(v_{t} + uv_{x} + vv_{y}) = -p_{y} + [\beta(\lambda_{1}\mu_{1} + \lambda_{2}\mu_{2})](v_{xx} + v_{yy})$$

$$(\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2})u_{t} + \lambda_{1}(uu_{x} + vu_{y}) = -p_{x} + \lambda_{2}(u_{xx} + u_{yy})$$

$$(\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2})v_{t} + \lambda_{1}(uv_{x} + vv_{y}) = -p_{y} + \lambda_{2}(v_{xx} + v_{yy})$$

$$(A.2)$$

$$(\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2})u_{t} + \lambda_{1}(uv_{x} + vv_{y}) = -p_{y} + \lambda_{2}(v_{xx} + v_{yy})$$

$$(A.3)$$

$$\begin{split} \lambda_{1}u_{t} + \lambda_{1}(uu_{x} + vu_{y}) &= -p_{x} + \lambda_{2}(u_{xx} + u_{yy}) \\ \lambda_{1}v_{t} + \lambda_{1}(uv_{x} + vv_{y}) &= -p_{x} + \lambda_{2}(v_{xx} + v_{yy}) \\ \lambda_{1} &= \beta_{1}(\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2}) \\ \lambda_{2} &= \beta_{2}(\alpha_{1}\mu_{1} + \alpha_{2}\mu_{2}) \end{split} \tag{A.3.1}$$

Recall

Raissi et al., JCP, 2019:

Constitute a latent function ψ such that:

$$u = \psi_y, \quad v = -\psi_x$$

Therefore the continuum condition is automatically satisfied:

$$u_x + v_y = 0$$

For air bubble flows, the continuum condition is not satisfied.

The Raissi *et al.* work set the output as $[\psi(x, y, t) \ p(x, y, t)]$, so that the NN can be trained by minimizing the MSE containing $f_u \ \& \ f_v$ while automatically satisfy the continuum condition.

Our approach break the original continuum condition and set the output as $\begin{bmatrix} u & v & p & \phi \end{bmatrix}$ Where ϕ is the phase variant that satisfied:

$$\phi_t + \mathbf{u} \cdot \nabla \phi = \gamma \nabla \cdot \left(\epsilon_{ls} \nabla \phi - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|} \right)$$

Recall the density and dynamics viscosity we assumed the bubble flow to satisfy:

$$\lambda_1 = \beta_1(\alpha_1 \rho_1 + \alpha_2 \rho_2)$$

$$\lambda_2 = \beta_2(\alpha_1 \mu_1 + \alpha_2 \mu_2)$$

$$\rho_1 + \phi(\rho_2 - \rho_1)$$

$$\mu_1 + \phi(\mu_2 - \mu_1)$$

$$(1-\phi)\rho_1 + \phi\rho_2$$

$$(1-\phi)\mu_1 + \phi\mu_2$$

Physics-Informed Neural Network

