PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07H 21/04, C12P 21/06, 21/02, C12N
1/20, 15/00, C07K 1/00, 14/52

(11) International Publication Number:

(43) International Publication Date:

WO 97/15586

1 May 1997 (01.05.97)

(21) International Application Number:

PCT/US96/16778

(22) International Filing Date:

17 October 1996 (17.10.96)

(30) Pri rity Data:

08/553,727

23 October 1995 (23.10.95)

us

(71) Applicant: TULARIK, INC. [US/US]; Two Corporate Drive, South San Francisco, CA 94080 (US).

(72) Inventors: BAICHWAL, Vijay, R.; Two Corporate Drive, South San Francisco, CA 94080 (US). HUANG, Jianing; Two Corporate Drive, South San Francisco, CA 94080 (US). HSU, Hailing; Two Corporate Drive, South San Francisco, CA 94080 (US). GOEDDEL, David, V.; Two Corporate Drive, South San Francisco, CA 94080 (US).

(74) Agents: BREZNER, David, J. et al.; Flehr, Hohbach, Test, Albritton & Herbert, Suite 3400, 4 Embarcadero Center, San Francisco, CA 94111-4187 (US). (81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: RIP: NOVEL HUMAN PROTEIN INVOLVED IN TUMOR NECROSIS FACTOR SIGNAL TRANSDUCTION, AND SCREENING ASSAYS

(57) Abstract

The invention relates to a human Receptor Interacting Protein (hRIP), nucleic acids which encode hRIP and methods of using the subject compositions; in particular, methods such as hRIP-based in vitro binding assays and phosphorylation assays for screening chemical libraries for lead compounds for pharmacological agents.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugai
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	ΚZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lenka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

RIP: Novel Human Protein Involved in Tumor Necrosis Factor Signal Transduction, and Screening Assays

INTRODUCTION

Field of the Invention

The field of this invention is a novel human kinase involved in tumor necrosis factor signal transduction and its use in drug screening.

Background

5

10

15

20

25

30

Tumor necrosis factor (TNF) is an important cytokine involved in the signaling of a number of cellular responses including cytotoxicity, anti-viral activity, immun.-regulatory activities and the transcriptional regulation of a number of genes. The TNF receptors (TNF-R1 and TNF-R2) are members of the larger TNF receptor superfamily which also includes the Fas antigen, CD27, CD30, CD40, and the low affinity nerve growth factor receptor. Members of this family have been shown to participate in a variety of biological properties, including programmed cell death, antiviral activity and activation of the transcription factor NF-kB in a wide variety of cell types.

Accordingly, it is desired to identify agents which specifically modulate transduction of TNF receptor family signalling. Unfortunately, the components of the signalling pathway remain largely unknown; hence, the reagents necessary for the development of high-throughput screening assays for such therapeutics are unavailable. Elucidation of TNF receptor family signal transduction pathways leading to NF-kB activation would provide valuable insight into mechanisms to alleviate inflammation. In particular, components of this pathway would provide valuable targets for automated, cost-effective, high throughput drug screening and hence would have immediate application in a broad range of domestic and international pharmaceutical and biotechnology drug development programs.

Relevant Literature

Stanger et al. (1995) Cell 81, 513-523 report the existence of a Receptor Interacting Protein (RIP) and its functional expression. VanArsdale and Ware (1994) J Immunology 153:3043-3050 describe proteins associated with TNF-R1. The cloning and amino acid sequencing of TNF-R1 is disclosed in Schall et al (1990) Cell 61, 361 and Loetscher et al (1990) Cell 61, 351; the identification of a "death domain" in TNF-R1 is disclosed in Tartaglia et al. (1993) Cell 74:845-853. The cloning and amino acid sequence of a TNF-R associated death domain protein (TRADD) is described by Hsu et al. (1995) Cell 81, 495-504. The cloning and amino acid sequence of the Fas antigen is disclosed in Itoh et al (1991)

Cell 66, 233-243. For a recent review, see Smith et al. (1994) Cell 76:959-962 and Vandenabelle et al. (1995) Trends Cell Biol. 5, 392-399.

SUMMARY OF THE INVENTION

5

The invention provides methods and compositions relating to a human Receptor Interacting Protein (hRIP). The compositions include nucleic acids which encode hRIP, hRIP kinase domains, and recombinant proteins made from these nucleic acids. The invention also provides methods for screening chemical libraries for lead compounds for a pharmacological agent useful in the diagnosis or treatment of disease associated hRIP activity or hRIP-dependent signal transduction. In one embodiment, the methods involve incubating a mixture of hRIP, a natural intracellular hRIP substrate or binding target and a candidate pharmacological agent and determining if the presence of the agent modulates the ability of hRIP to selectively phosphorylate the substrate or bind the binding target. Specific agents provide lead compounds for pharmacological agents capable of disrupting hRIP function.

15

20

25

10

10

DETAILED DESCRIPTION OF THE INVENTION

A human RIP-encoding nucleic acid sequence is set out in SEQ ID NO: 1. A human RIP kinase domain-encoding nucleic acid sequence is set out in SEQ ID NO: 1, nucleotides 1-900. A human RIP amino acid sequence is set out in SEQ ID NO: 2; and a hRIP kinase domain sequence is set out in SEQ ID NO:2, residues 1-300.

Natural nucleic acids encoding hRIP are readily isolated from cDNA libraries with PCR primers and hybridization probes containing portions of the nucleic acid sequence of SEQ ID NO:1. For example, we used low stringency hybridization at 42°C (hybridization buffer: 20% formamide, 10% Denhardt, 0.5% SDS, 5X SSPE; with membrane washes at room temperature with 5X SSPE/0.5% SDS) with a 120 base oligonucleotide probe (SEQ ID NO: 1, nucleotides 1728-1847) to isolate a native human RIP cDNA from a library prepared from human umbilical vein endothelial cells. In addition, synthetic hRIP-encoding nucleic acids may be generated by automated synthesis.

The subject nucleic acids are recombinant, meaning they comprise a sequence joined to a nucleotide other than that to which sequence is naturally joined and isolated from a natural environment. The nucleic acids may be part of hRIP-expression vectors and may be incorporated into cells for expression and screening, transgenic animals for functional studies

(e.g. the efficacy of candidate drugs for disease associated with expression of a hRIP), etc. These nucleic acids find a wide variety of applications including use as templates for transcription, hybridization probes, PCR primers, therapeutic nucleic acids, etc.; use in detecting the presence of hRIP genes and gene transcripts, in detecting or amplifying nucleic acids encoding additional hRIP homologs and structural analogs, and in gene therapy applications.

The invention provides efficient methods of identifying pharmacological agents or lead compounds for agents active at the level of a hRIP modulatable cellular function, particularly hRIP mediated TNF receptor or Tumor necrosis factor receptor associated Factor -2 (TRAF2) or TRADD-induced signal transduction. For example, we have found that a binding complex comprising TNF R1, TRADD, and hRIP exists in TNF-stimulated cells. Generally, the screening methods involve assaying for compounds which interfere with a hRIP activity such as kinase activity or TRAF2 or TRADD binding. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials; for example, the reagents may be derivatized and rescreened in in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development. Target therapeutic indications are limited only in that the target cellular function be subject to modulation, usually inhibition, by disruption of the formation of a complex comprising hRIP and one or more natural hRIP intracellular binding targets including substrates or otherwise modulating hRIP kinase activity. Target indications may include infection, genetic disease, cell growth and regulatory or immunolgic dysfunction, such as neoplasia, inflammation, hypersensitivity, etc.

A wide variety of assays for binding agents are provided including labeled in vitro kinase assays, protein-protein binding assays, immunoassays, cell based assays, etc. The hRIP compositions used in the methods are recombinantly produced from nucleic acids having the disclosed hRIP nucleotide sequences. The hRIP may be part of a fusion product with another peptide or polypeptide, e.g. a polypeptide that is capable of providing or enhancing protein-protein binding, stability under assay conditions (e.g. a tag for detection or anchoring), etc.

The assay mixtures comprise one or more natural intracellular hRIP binding targets including substrates, such as TRADD, TRAF2, or, in the case of an autophosphorylation

5

10

15

20

25

assay, the hRIP itself can function as the binding target. In one embodiment, the mixture comprises a complex of hRIP, TRADD and TNFR1. A hRIP derived pseudosubstrate may be used or modified (e.g. A to S/T substitutions) to generate effective substrates for use in the subject kinase assays as can synthetic peptides or other protein substrates. Generally, hRIP-specificity of the binding agent is shown by kinase activity (i.e. the agent demonstrates activity of an hRIP substrate, agonist, antagonist, etc.) or binding equilibrium constants (usually at least about 10⁶ M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹). A wide variety of cell-based and cell-free assays may be used to demonstrate hRIP-specific binding; preferred are rapid in vitro, cell-free assays such as mediating or inhibiting hRIP-protein (e.g. hRIP-TRADD) binding, phosphorylation assays, immunoassays, etc.

The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal binding and/or reduce non-specific or background interactions, etc. Also, reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. may be used.

In a preferred in vitro, binding assay, a mixture of at least the kinase domain of hRIP, one or more binding targets or substrates and the candidate agent is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the hRIP specifically binds the cellular binding target at a first binding affinity or phosphoylates the substrate at a first rate. After incubation, a second binding affinity or rate is detected.

Detection may be effected in any convenient way. For cell-free binding assays, one of the components usually comprises or is coupled to a label. The label may provide for direct detection as radioactivity, luminescence, optical or electron density, etc. or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components. For example, the label may be detected bound to the solid substrate or a portion of the bound complex containing the label may be separated from the solid substrate, and thereafter the label detected.

5

10

15

20

25

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

- 5 1. Protocol for hRIP autophosphorylation assay.
 - A. Reagents:

10

15

20

25

- Neutralite Avidin: 20 µg/ml in PBS.
- -<u>hRIP</u>: 10⁻⁸ 10⁻⁵ M biotinylated hRIP kinase domain, residues 1-300 at 20 μg/ml in PBS.
 - Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM BME, 1 mg/ml BSA, cocktail of protease inhibitors.
- -[32 P] γ -ATP 10x stock: 2 x 10 $^{-5}$ M cold ATP with 100 μ Ci [32 P] γ -ATP. Place in the 4°C microfridge during screening.
- Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml PBS.
 - B. Preparation of assay plates:
 - Coat with 120 µl of stock Neutralite avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
 - C. Assay:
- Add 40 μl assay buffer/well.
 - Add 40 µl biotinylated hRIP (0.1-10 pmoles/40 ul in assay buffer)
 - Add 10 µl compound or extract.
 - Add 10 μl [32P]γ-ATP 10x stock.
 - Shake at 30°C for 15 minutes.
- Incubate additional 45 minutes at 30°C.
 - Stop the reaction by washing 4 times with 200 µl PBS.
 - Add 150 μl scintillation cocktail.

- Count in Topcount.
- D. Controls for all assays (located on each plate):
 - a. Non-specific binding (no RIP added)
 - b. cold ATP to achieve 80% inhibition.

5

- 2. Protocol for hRIP substrate phosphorylation assay.
- A. Reagents:
 - Neutralite Avidin: 20 µg/ml in PBS.
 - hRIP: 10-8 10-5 M hRIP at 20 µg/ml in PBS.

10

- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM BME, 1 mg/ml BSA, cocktail of protease inhibitors.
- -[32 P] γ -ATP 10x stock: 2 x 10⁻⁵ M cold ATP with 100 μ Ci [32 P] γ -ATP. Place in the 4°C microfridge during screening.

15

20

25

- Substrate: 2 x $10^{-6}\,M$ biotinylated synthetic peptide kinase substrate at 20 $\mu g/ml$ in PBS.
- Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml PBS.
- B. Preparation of assay plates:
 - Coat with 120 μl of stock Neutralite avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
- C. Assay:
 - Add 40 µl assay buffer/well.
 - Add 40 µl hRIP (0.1-10 pmoles/40 ul in assay buffer)
 - Add 10 µl compound or extract.

- Shake at 30°C for 15 minutes.
- Add 10 µl [32P]γ-ATP 10x stock.
- Add 10 µl substrate.

- Shake at 30°C for 15 minutes.
- Incubate additional 45 minutes at 30°C.
- Stop the reaction by washing 4 times with 200 µl PBS.
- Add 150 µl scintillation cocktail.
- Count in Topcount.
- D. Controls for all assays (located on each plate):
 - a. Non-specific binding (no RIP added)
 - b. cold ATP to achieve 80% inhibition.
- 10 3. Protocol for hRIP TRADD binding assay.
 - A. Reagents:

5

15

20

- Anti-myc antibody: 20 µg/ml in PBS.
- Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
- Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM β-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
 - ³³P hRIP 10x stock: 10⁻⁸ 10⁻⁶ M "cold" hRIP (full length) supplemented with 200,000-250,000 cpm of labeled hRIP (HMK-tagged) (Beckman counter). Place in the 4°C microfridge during screening.
- Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml PBS.
 - TRADD: 10⁻⁸ 10⁻⁵ M myc eptitope-tagged TRADD in PBS.
- B. Preparation of assay plates:
 - Coat with 120 μl of stock anti-myc antibody per well overnight at 4°C.
 - Wash 2X with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2X with 200 µl PBS.
- C. Assay:
- Add 40 μl assay buffer/well.
 - Add 10 µl compound or extract.
 - Add 10 μ l ³³P-RIP (20,000-25,000 cpm/0.1-10 pmoles/well =10⁻⁹- 10⁻⁷ M final

concentration).

5

10

15

20

25

- Shake at 25°C for 15 minutes.
- Incubate additional 45 minutes at 25°C.
- Add 40 µl eptitope-tagged TRADD (0.1-10 pmoles/40 ul in assay buffer)
- Incubate 1 hour at room temperature.
- Stop the reaction by washing 4 times with 200 µl PBS.
- Add 150 µl scintillation cocktail.
- Count in Topcount.
- D. Controls for all assays (located on each plate):
- a. Non-specific binding (no hRIP added)
 - b. Soluble (non-tagged TRADD) to achieve 80% inhibition.
- 4. Protocol for hRIP TRAF2 binding assay.
- A. Reagents:
- Anti-myc antibody: 20 μg/ml in PBS.
 - Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
 - Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM β-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
 - ³³P hRIP 10x stock: 10⁻⁸ 10⁻⁶ M "cold" hRIP kinase domain, residues 1-300, supplemented with 200,000-250,000 cpm of labeled hRIP kinase domain (HMK-tagged) (Beckman counter). Place in the 4°C microfridge during screening.
 - Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml PBS.
 - TRAF2: 10⁻⁸ 10⁻⁵ M myc eptitope-tagged TRAF2 in PBS.
 - B. Preparation of assay plates:
 - Coat with 120 μl of stock anti-myc antibody per well overnight at 4°C.
 - Wash 2X with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2X with 200 µl PBS.
 - C. Assay:

- Add 40 µl assay buffer/well.
- Add 10 µl compound or extract.
- Add 10 μ l ³³P-RIP kinase domain (20,000-25,000 cpm/0.1-10 pmoles/well =10⁻⁹- 10⁻⁷ M final concentration).
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
 - Add 40 µl eptitope-tagged TRAF2 (0.1-10 pmoles/40 ul in assay buffer)
 - Incubate 1 hour at room temperature.
 - Stop the reaction by washing 4 times with 200 µl PBS.
 - Add 150 µl scintillation cocktail.
 - Count in Topcount.
- D. Controls for all assays (located on each plate):
 - a. Non-specific binding (no hRIP kinase domain added)
 - b. Soluble (non-tagged TRAF2) to achieve 80% inhibition.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

5

10

15

SEQUENCE LISTING (1) GENERAL INFORMATION: (i) APPLICANT: BAICHWAL, VIJAY R HUANG, JIANING 5 HSU, HAILING GOEDDEL, DAVID V (ii) TITLE OF INVENTION: RIP: NOVEL HUMAN PROTEIN INVOLVED IN TUMOR NECROSIS FACTOR SIGNAL TRANSDUCTION, AND SCREENING **ASSAYS** 10 (iii) NUMBER OF SEQUENCES: 2 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: FLEHR, HOHBACH, TEST, ALBRITTON & HERBERT (B) STREET: 4 EMBARCADERO CENTER, SUITE 3400 (C) CITY: SAN FRANCISCO 15 (D) STATE: CALIFORNIA (E) COUNTRY: USA (F) ZIP: 94111-4187 (V) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk 20 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: 25 (B) FILING DATE: (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: BREZNER, DAVID J (B) REGISTRATION NUMBER: 24,774 (C) REFERENCE/DOCKET NUMBER: T95-006/PCT (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (415) 781-1989 (B) TELEFAX: (415) 398-3249 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2016 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..2013
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

30

35

Ð

	ATO	G CA	A CC	A GA	TA C	J TC	C TTC	AA :	GT(C AT	T AA	G AT	G AA	A TC	C AG	T GAC	48
	Me	t Gl	n Pro	a Ası	Me	t Se	r Lev	ı Asr	ı Val	LIL	e Ly	s Me	t Ly	s Se	r Se	r Asp	•
	•				7	5				1					1		
_																G TCT	
5	Phe	e Le	ı Gl			a Glu	ı Lev	Asp		_	y Gly	Pho	e Gl	-		l Ser	
				20					25					3			_ ;_
																G TAC	
	Let	ı Cys			Arg	, ini	GIN	. Gly 40		. Met	116	e me	4.5 4.5	_	r va.	l Tyr	
10	7.70	· ccc	35		י ייינור	ייים א	CAC			GAG	2 000	י כיתי			2 GM	G GCG	192
10																ı Ala	192
	цys	50		, AGI	· Cy.	, 116	55		,,,,,,			60			. 010	* *****	
	AAG			AAC	AGA	CTG	-		AGC	CGG	GTG			CTC	CTO	GGC	240
																ı Gly	-10
15	- 65				•	70				_	75		_			80	
	GTC	ATC	ATA	GAG	GAA	GGG	AAG	TAC	TCC	CTG	GTG	ATG	GAG	TAC	: ATG	GAG	288
	Val	Ile	Ile	Glu	Glu	Gly	Lys	Tyr	Ser	Leu	Val	Met	Glu	Туг	Met	Glu	
					85					90					95	i	
	AAG	GGC	AAC	CTG	ATG	CAC	GTG	CTG	AAA	GCC	GAG	ATG	AGT	' ACI	ccc	CTT	336
20	Lys	Gly	Asn	Leu	Met	His	Val	Leu	Lys	Ala	Glu	Met	Ser	Thr	Pro	Leu	
				100					105					110	1		•
	TCT	GTA	AAA	GGA	AGG	ATA	ATT	TGG	GAA	ATC	ATT	GAA	GGA	ATG	TGC	TAC	384
	Ser	Val	-	Gly	Arg	Ile	Ile	Trp	Glu	Ile	Ile	Glu	_	Met	Cys	Tyr	
0.5			115					120					125				
25			GGA														432
	Leu		Gly	ГЛЗ	Gly	Val		His	Lys	Asp	Leu		Pro	Glu	Asn	Ile	
		130					135					140					
			GAT														480
30	145	val	Asp	ASI	Asp	150	HIS	TTE	rås	тте		Asp	Leu	GIA	Leu		
50		delinion.	AAG	בעת	maa.		***	CMC	አአጥ	አአጥ	155	CNC	CAC	አአጥ	CAC	160	520
			Lys														528
	501	1110	Lys	nec	165	SEI	Lys	Deu .	V211	170	GIU	GIU	1113	Vali	175	neu	
	AGG	GAA	GTG	GAC		ACC	GCT	AAG	AAG		GGC	GGC	ACC	СТС		TAC	576
35			Val														370
	•			180				_, _	185		,	1		190	-1-	-1-	
	ATG	GCG	CCC	GAG	CAC	CTG	AAT	GAC		AAC	GCA	AAG	ccc		GAG	AAG	624
			Pro														
			195					200					205			_	
Ю	TCG	GAT	GTG	TAC	AGC	TTT	GCT	GTA	GTA	CTC	TGG	GCG	ATA	TTT	GCA	AAT	672
	Ser	Asp	Val	Tyr	Ser	Phe	Ala	Val	Val	Leu	Trp	Ala	Ile	Phe	Ala	Asn	
		210					215					220					
	AAG	GAG	CCA	TAT	GAA	AAT	GCT .	ATC '	TGT	GAG	CAG	CAG	TTG	ATA	ATG	TGC	720
	Lys	Glu	Pro	Tyr	Glu	Asn	Ala	Ile (Cys	Glu	Gln	Gln	Leu	Ile	Met	Cys	
15	225					230					235					240	

	АТА	AAA	TCI	' GGG	AAC	: AGG	CCA	GA?	r GTC	GAT	GAC	C ATO	ACI	GAC	G TAC	TGC	768
	Ile	Lys	Ser	Gly	Asr	Arg	Pro	Ası	val	. Asp	Asp	ıl.	Thr	Gli	туг	Cys	
					245	i				250)				255	i	
_	CCA	AGA	GAA	ATT	ATC	AGT	CTC	ATC	AAG	CTC	TGC	TGC	GAA	GCC	AAT	CCG	816
5	Pro	Arg	Glu	Ile	Ile	Ser	Leu	Met	: Lys	Leu	Cys	Tr	Glu	Ala	Asn	Pro	
				260					265					270)		
	GAA	GCT	CGG	CCG	ACA	TTT	CCT	GGC	ATT	GAA	GAA	AAA	TTT	AGG	CCI	TTT	864
	Glu	Ala	Arg	Pro	Thr	Phe	Pro	Gly	' Ile	Glu	Glu	Lys	Phe	Arg	Pro	Phe	•
			275					280					285				
10																TTA	912
	Tyr		Ser	Gln	Leu	Glu		Ser	Val	Glu	Glu	Asp	Val	Lys	Ser	Leu	
		290					295					300			•	•	
			GAG														960
16		Lys	Glu	Tyr	Ser		Glu	Asn	Ala	Val		-	Arg	Met	Gln		
15	305		~~~			310					315					320	
			CTT														1008
	Leu	GIN	Leu	Asp		vaı	ALA	Val	Pro		Ser	Arg	Ser	Asn		Ala	
	A C A	C N N	CZC	CCM	325	mc 3	ama	23.0	N C M	330	010	663	omm.		335		
20			CAG														1056
20	1111	GIU	Gln	340	GIY	Ser	Leu	uis	345	ser	GIN	GIY	Leu		wer	GIĀ	
	CCT	GTG	GAG	_	ሞሮር	TCC	וניתאתי	CCT		TCC.	CTC	CNC	CAC	350	C2.2	CAR	1104
			Glu														1104
			355					360		261	<u> </u>	GIG	365	110	GIII	GIG	
25	GAG	AAT	GAG	CCC	AGC	CTG	CAG		AAA	CTC	CAA	GAC		GCC	AAC	TAC	1152
			G1u														2232
		370					375					380					
	CAT	CTT	TAT	GGC	AGC	CGC	ATG	GAC	AGG	CAG	ACG	AAA	CAG	CAG	CCC	AGA	1200
			Tyr														
30	385					390					395					400	
	CAG	AAT	GTG	GCT	TAC	AAC	AGA	GAG	GAG	GAA	AGG	AGA	CGC	AGG	GTC	TCC	1248
	Gln	Asn	Val	Ala	Tyr	Asn	Arg	Glu	Glu	Glu	Arg	Arg	Arg	Arg	Val	Ser	
					405					410					415		
	CAT	GAC	CCT	TTT	GCA	CAG	CAA	AGA	CCT	TAC	GAG	AAT	TTT	CAG	AAT	ACA	1296
35	His	Asp	Pro	Phe	Ala	Gln	Gln	Arg	Pro	Tyr	Glu	Asn	Phe	Gln	Asn	Thr	
				420					425					430			
	GAG	GGA	AAA	GGC	ACT	GTT	TAT	TCC	AGT	GCA	GCC	AGT	CAT	GGT	TAA	GCA	1344
	Glu	Gly	Lys	Gly	Thr	Val	Tyr	Ser	Ser	Ala	Ala	Ser	His	Gly	Asn	Ala	
40			435					440					445				
40			CAG														1392
			Gln	Pro	Ser			Thr	Ser	Gln	Pro		Val	Leu	Tyr	Gln	
		450					455					460					
			GGA														1440
15		Asn	Gly	Leu	Tyr		Ser	His	Gly		_	Thr	Arg	Pro		-	
45	465					470					475					480	

	CCA	GGA	ACA	GCA	GG1	CCC	AGA	GTI	TGG	TAC	AGG	G CCI	A ATT	c cci	A AGT	CAT	1488
	Pro	Gly	Thr	Ala	Gly	Pro	Arg	val	Tr	Туз	Arg	g Pro	Ile	Pro	Ser	His:	
					485	i				490)				495	i	
	ATG	CCT	AGT	CTG	CAT	AAT	ATC	CCA	GTC	CCI	GAC	ACC	: AAC	TAT	CTA	GGA	1536
5	Met	Pro	Ser	Leu	His	Asn	Ile	Pro	Val	. Pro	Glu	1 Tha	Asn	Туг	Leu	Gly	
				500					505	,				510)		
	AAT	ACA	CCC	ACC	ATG	CCA	TTC	AGC	TCC	TTC	CCA	CCA	ACA	GAT	GAA	TCT	1584
	Asn	Thr	Pro	Thr	Met	Pro	Phe	Ser	Ser	Leu	Pro	Pro	Thr	Asp	Glu	Ser	
			515					520					525				
10	ATA	AAA	TAT	ACC	ATA	TAC	AAT	AGT	ACT	GGC	TTA	CAG	ATT	GGA	GCC	TAC	1632
	Ile	Lys	Tyr	Thr	Ile	Tyr	Asn	Ser	Thr	Gly	Ile	Gln	Ile	Gly	Ala	Tyr	
		530					535					540					
		TAT															1680
		Tyr	Met	Glu	Ile	_	Gly	Thr	Ser	Ser			Leu	Asp	Ser		
15	545					550					555					560	
		ACG															1728
	Asn	Thr	Asn	Phe	_	Glu	Glu	Pro	Ala		Lys	Tyr	GIn	Ala		Phe	
					565					570					575		1000
20		AAT															1776
20	Asp	Asn	THE		ser	Leu	Thr	Asp		HIS	Leu	Asp	Pro		Arg	GIU	
	5 5 CD	CTG	CCN	580	CNC	mcc.		110	585 mcm	ccc	CCM	***	CMC	590	mmc	202	1824
		Leu															1024
	Pair	neu	595	Lys	nrs	110	гуу	600	Cys	VIG	ALG	nys	605	GLY	rne	1111	
25	CAG	тст		ልጥጥ	ርልጥ	GAA	ינואינט ע		СЪТ	GAC	ጥልጥ	GAG		CAT	GGA	CTG	1872
		Ser															1072
		610					615				-1-	620			4-1		
	AAA	GAA	AAG	GTT	TAC	CAG		CTC	CAA	AAG	TGG		ATG	AGG	GAA	GGC	1920
	Lys	Glu	Lys	Val	Tyr	Gln	Met	Leu	Gln	Lys	Trp	Val	Met	Arg	Glu	Gly	
30	625		_		_	630				_	635			_		640	
	ATA	AAG	GGA	GCC	ACG	GTG	GGG	AAG	CTG	GCC	CAG	GCG	CTC	CAC	CAG	TGT	1968
	Ile	Lys	Gly	Ala	Thr	Val	Gly	Lys	Leu	Ala	Gln	Ala	Leu	His	Gln	Cys	
					645					650					655		
	TCC	AGG	ATC ·	GAC	CTT	CTG	AGC	AGC	TTG	ATT	TAC	GTC	AGC	CAG	AAC		2013
35	Ser	Arg	Ile .	Asp	Leu	Leu	Ser	Ser	Leu	Ile	Tyr	Val	Ser	Gln	Asn		
				660					665					670			
	TAA																2016

(2) INFORMATION FOR SEQ ID NO:2:

40 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 671 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	Met	Glr	ı Pro	Asp	Met	Ser	Leu	ı Asn	va]	l Ile	e Lys	Me1	t Ly:	s Sei	Sei	Asp
	1				5					10			_		19	
	Phe	e Leu	ı Glu	Ser	Ala	Glu	Leu	. Asp	Ser	: Gl ₃	/ Gly	, Phe	e G13	/ Lys	Va]	Ser
_				20					25					30		
5	Leu	Cys	Phe	His	Arg	Thr	Gln	Gly	Leu	Met	: Ile	Met	Lys	Thr	Val	Tyr
			35					40					45			
	Lys			Asn	Cys	Ile			Asn	Glu	Ala	Leu	Leu	. Glu	Glu	Ala
	_	50		_	_	_	55					60				
10			Met	Asn	Arg			His	Ser	Arg			. Lys	Leu	Leu	Gly
10	65 Val		T10	G1	G1	70		~	G	•	75		1	_		80
	VQI	116	TTE	GIU	85	GLY	Lys	TAL	ser	90		Met	GIU	. Tyr		Glu
	Lvs	Glv	Asn	Len		His	Val	I.au	Tare			Mot	Co-	Th.∽	95	
	-,,0	1	****	100		.,	VIII	nea	105		GIG	Mec	Ser	110		rea
15	Ser	Val	Lys		Arg	Ile	Ile	Tro			Ile	Glu	Glv			Tree
			115	•				120					125		CJG	-7-
	Leu	His	Gly	Lys	Gly	Val	Ile	His	Lys	Asp	Leu	Lys	Pro	Glu	Asn	Ile
		130					135					140				
	Leu	Val	Asp	Asn	Asp	Phe	His	Ile	Lys	Ile	Ala	Asp	Leu	Gly	Leu	Ala
20	145					150					155					160
	Ser	Phe	Lys	Met	Trp	Ser	Lys	Leu	Asn	Asn	Glu	Glu	His	Asn	Glu	Leu
	_				165					170					175	
	Arg	Glu	Val		Gly	Thr	Ala	Lys		Asn	Gly	Gly	Thr		Tyr	Tyr
25	Wat	21-	D	180	***	• • • • •	•		185	_			_	190		_
23	Met	Ald	Pro 195	GIU	HIS	ren	ASN	200	Val	Asn	Ala	Lys		Thr	Glu	Lys
	Ser	Asn	Val	Тъг	Ser	Pho	Δla		Va 1	Lou	Trn.	a 1 =	205	Dho	A 1 -	\
		210		-,-	502		215	, , ,	V U L	Deu	ıτρ	220	116	FIIE	VIG	ASII
	Lys		Pro	Tyr	Glu	Asn		Ile	Cvs	Glu	Gln		Leu	Ile	Met	Cvs
30	225			-		230					235					240
	Ile	Lys	Ser	Gly	Asn	Arg	Pro	Asp	Val	Asp	Asp	Ile	Thr	Glu	Tyr	
					245					250					255	
	Pro	Arg	Glu	Ile	Ile	Ser	Leu	Met	Lys	Leu	Cys	Trp	Glu	Ala	Asn	Pro
0.5				260					265					270		
35	Glu	Ala	Arg	Pro	Thr	Phe	Pro		Ile	Glu	Glu	Lys	Phe	Arg	Pro-	Phe
	_	_	275		_			280					285			
			Ser	Gln	Leu			Ser	Val	Glu			Val	Lys	Ser	Leu
		290	C1	m	Cor		295	>	n 1 -	**- 1		300		8.0 - A-	-1	_
40	305	Dy S	Glu	IYI		310	GIU	ASI	MIG		315	гåг	Arg	met		
- -		Gln	Leu	Asp			Ala	Va 1	Pro			Ara	Ser	Acr		320 Ala
					325					330	J-L.	y			335	urq
	Thr	Glu	Gln			Ser	Leu	His			Gln	Glv	Leu			Glv
				340	-				345					350		~~1

	Pro	va:	1 Gl: 35:		u Sei	rTr	p Phe	e Ala 360		o Se	r Le	u Gl	ı Hi: 36		o Gl	n Glu
	Glu	ı Ası			o Sei	. Le	ı Glr	_		s Le	ı G1:	n Ásı			a Ası	n Tyr
		370)				375	5				380)			
5	His	E Lev	тул	c Gly	/ Ser	Arg	y Met	: Ası	Ar	g Glı	Th:	r Lys	Glr	n Glr	ı Pro	Arg
	385	5				390)				395	5				400
	Glr	ı Asr	ı Val	L Ala	а Туг	Asr	ı Arg	, Gli	ı Glı	ı Glı	ı Arg	y Arg	Arg	g Arg	y Val	l Ser
					405					410					415	
	His	Asp	Pro			Gln	Gln	Arg			Glı	ı Asn	ι Ph∈	e Glr	ı Asr	1 Thr
10				420					425					430		
	Glu	Gly	_	-	Thr	Val	Tyr			: Ala	Ala	Ser		_	' Asr	Ala
			435		_		_	440			_		445			_
	Val			Pro	Ser	GΙΆ			Ser	Gln	Pro			. Leu	Туг	Gln
15		450				•	455		-1		- 1	460			_	_
10	465		GIY	Leu	TYT	470		HIS	GIY	Pne	475		Arg	Pro	Leu	Asp
			Thr	. Als	Glv			17-7	(file-	. M			Tlo	Bro	C^*	480 His
	PIO	GIY	1111	NIG	485	PIO	Arg	Val	пр	490		PIO	TTG	PIO	495	
	Met	Pro	Ser	Leu		Asn	Tle	Pro	Va 1			ሞክታ	Agn	ጥኒታ		Gly
20				500				120	505		014	****		510	LCu	OLY
	Asn	Thr	Pro	Thr	Met	Pro	Phe	Ser			Pro	Pro	Thr		Glu	Ser
			515					520					525	_		
	Ile	Lys	Tyr	Thr	Ile	Tyr	Asn	Ser	Thr	Gly	Ile	Gln	Ile	Gly	Ala	Tyr
		530					535					540				
25	Asn	Tyr	Met	Glu	Ile	Gly	Gly	Thr	Ser	Ser	Ser	Leu	Leu	Asp	Ser	Thr
	545					550					555					560
	Asn	Thr	Asn	Phe	Lys	Glu	Glu	Pro	Ala	Ala	Lys	Tyr	Gln	Ala	Ile	Phe
					565					570					575	
	Asp	Asn	Thr	Thr	Ser	Leu	Thr	Asp	Lys	His	Leu	Asp	Pro	Ile	Arg	Glu
30				580					585					590		
	Asn	Leu	Gly	Lys	His	Trp	Lys	Asn	Cys	Ala	Arg	Lys	Leu	Gly	Phe	Thr
			595					600					605	•		
	Gln		Gln	Ile	Asp	Glu		Asp	His	Asp	Tyr		Arg	Asp	Gly	Leu
		610					615					620				
15		Glu	Lys	Val			Met	Leu	Gln	Lys		Val	Met	Arg	Glu	_
	625	_				630				_	635	_				640
	Ile	rys	Gly			Val	Gly	Lys	Leu		Gln	Ala	Leu			Cys
	0	3	-1		645	_	_	_	_	650			_		655	
0	ser	Arg	Ile		Leu	Leu	ser			Ile	Tyr	Val			Asn	
v				660					665					670		

WHAT IS CLAIMED IS:

1. An isolated, recombinant nucleic acid encoding a human Receptor Interacting Protein (hRIP) kinase domain.

- 5 2. An isolated, recombinant nucleic acid encoding a human Receptor Interacting Protein (hRIP) comprising SEQ ID NO: 1.
 - 3. A method of making a human Receptor Interacting Protein (hRIP) kinase domain containing protein, said method comprising the steps of translating a nucleic acid according to claim 1 to form a translation product and isolating said translation product.
 - 4. A method of identifying lead compounds for a pharmacological agent useful in the diagnosis or treatment of disease, said method comprising the steps of:

making a protein according to the method of claim 3,

forming a mixture comprising:

said protein,

a natural intracellular hRIP binding target, wherein said binding target is capable of specifically binding said protein, and

a candidate pharmacological agent;

incubating said mixture under conditions whereby, but for the presence of said candidate pharmacological agent, said protein selectively binds said binding target at a first binding affinity;

detecting a second binding affinity of said protein to said binding target,

wherein a difference between said first and second binding affinity indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent capable of modulating hRIP-dependent signal transduction.

5. A method according to claim 4, wherein said hRIP binding target comprises a Tumor necrosis factor receptor Associated Factor -2 (TRAF2) or a Tumor necrosis factor Receptor-1 Associated Death Domain protein (TRADD).

10

15

20

25

6. A method of identifying lead compounds for a pharmacological agent useful in the diagnosis or treatment of disease, said method comprising the steps of:

making a protein according to the method of claim 3,

forming a mixture comprising:

said protein,

5

10

15

an hRIP substrate, wherein said hRIP kinase domain of said protein is capable of specifically phosphorylating said substrate, and

a candidate pharmacological agent;

incubating said mixture under conditions whereby, but for the presence of said candidate pharmacological agent, said hRIP kinase domain selectively phosphorylates said substrate at a first rate;

detecting a second rate of phosphorylation of said substrate by said hRIP kinase domain,

wherein a difference between said first and second rate indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent capable of modulating hRIP kinase activity.

7. A method according to claim 6 wherein said hRIP substrate is hRIP.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/16778

	ASSIFICATION OF SUBJECT MATTER							
US CL	:Please See Extra Sheet. : 536/23.5; 435/ 69.1, 69.5, 252.3, 320.1; 530/3 to International Patent Classification (IPC) or to b	ISO, 351						
	LDS SEARCHED	our national classification and IPC						
	documentation searched (classification system follo	wed by classification symbols)						
U.S. :	536/23.5; 435/ 69.1, 69.5, 252.3, 320.1; 530/35	·	•					
Documenta	tion searched other than minimum documentation to	the extent that such documents are include	d in the fields scarched					
Electronic d	lata base consulted during the international search	(name of data base and, where practicable	e, search terms used)					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.					
×	STANGER et al. RIP: A Novel I	Protein Containing a Death	1-3					
	Domain That Interacts with Fas/							
Y	Causes Cell Death. Cell. 19 May		2					
j	523, see Figs. 2-3, and sequence	e alignment,						
Y, P	WO 96/25941 A1 (YEDA RESEALTD.) 29 August 1996 (29/08/96 claims.	1						
A	HSU et al. The TNF Receptor 1-Signals Cell Death and NF-kB Acti Vol. 81, pages 495-504, see all.		1-3					
X Further	r documents are listed in the continuation of Box (C. See patent family annex.						
Speci	is ostegories of cited documents:	"T" later document published after the inter-	national filing date or priority					
	ment defining the general state of the art which is not considered of particular relevance	date and not in conflict with the applicati principle or theory underlying the inves	on but cited to understand the					
	r document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered	claimed invention cannot be					
	ment which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other	when the document is taken alone						
apecia	ul resson (ex especified)	"Y" document of particular relevance; the considered to involve an inventive s	top when the document is					
(DCR)	sent referring to an oral disclosure, use, exhibition or other	combined with one or more other such o being obvious to a person skilled in the	locuments, such combination					
	nent published prior to the international filing date but later than iority date claimed	*&* document member of the same patent fa	mily					
ate of the ac	tual completion of the international search	Date of mailing of the international search	th report					
15 JANUAR	RY 1997	2 8 FEB 1997						
ame and mai	ling address of the ISA/US	Authorized officer						
Box PCT Washington, D		GARNETTE D. DRAPER						
icsimile No.	(703) 305-3230	Telephone No. (703) 308-0196	ļ					

International application No. PCT/US96/16778

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No
A, P	BAKER et al. Transducers of Life and Death: TNF Res Superfamily and Associated Proteins. Oncogene, 04 Jan Vol. 12, pages 1-9, see all	ceptor luary 1996,	1-3-
			,

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/16778

	_
Box I Observations where certain claims were found unsearchable (Continuation of item 1 first sheet)	
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
Picase See Extra Sheet.	
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-3	
The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C07H 21/04; C12P 21/06, 21/02; C12N 1/20, 15/00; C07K 1/00, 14/52

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be scarched, the appropriate additional search fees must be paid.

Group I, claims 1-3, drawn to nucleic acids that encode for human Receptor Interacting Proteins (hRIP) and methods of making the encoded proteins.

Group II, claims 4-7, drawn to methods of identifying lead compounds.

The inventions listed as Groups do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of Group I is directed to nucleic acids that encode for hRIP and to methods of making hRIP; whereas the special technical feature of Group II is directed to methods of identifying lead compounds. The methods of these two groups do not share a special technical and unifying feature, because each of these methods require the utilization of different process/method steps, different elements/agents, and their are different starting material and the first outcomes are also different. Furthermore, these methods and their steps and elements are not required one for the other.

Form PCT/ISA/210 (extra sheet)(July 1992)*

THIS PAGE BLANK (USPTO)