Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Generative Models

Outline

- What are generative models
- Types of generative models

Generative Models vs. Discriminative Models

Discriminative models

Features Class $X \to Y$ P(Y|X)

Generative models

Noise Class Features
$$\xi, Y \to X$$

$$P(X|Y)$$

Generative Models vs. Discriminative Models

Generative models

Noise Class Features
$$\xi, Y \to X$$

$$P(X|Y)$$

Generative Models

Generative Adversarial Networks

Available from: https://arxiv.org/abs/1804.00891

Generative Models

Variational Autoencoders Latent Encoder Decoder Latent Decoder

Generative Adversarial Networks

Available from: https://arxiv.org/abs/1804.00891

Summary

• Generative models learn to produce examples

Discriminative models distinguish between classes

Up next, GANs!

Real Life GANs

Outline

- Cool applications of GANs
- Major companies using them

GANs Over Time

4.5 years of GAN progress on face generation.

arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

GANs Over Time

Face Generation StyleGAN2

These people do not exist!

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

GANs Over Time

StyleGAN2

Mimics the distribution of the training data

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

https://9gag.com/gag/aWYZKWx

GANs for Image Translation

From one domain to another

CycleGAN

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

GANs for Image Translation

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

GANs are Magic!

Zakharov, Egor, et al. "Few-shot adversarial learning of realistic neural talking head models." *Proceedings of the IEEE International Conference on Computer Vision*. 2019.

GANs for 3D Objects

Wu, Jiajun, et al. "Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling." *Advances in neural information processing systems*. 2016.

Companies Using GANs

Next-gen Photoshop

Text Generation

Data Augmentation

Image Filters

Super-resolution

Summary

- GANs' performance is rapidly improving
- Huge opportunity to work in this space!
- Major companies are using them

Intuition Behind GANs

Outline

- The goal of the generator and the discriminator
- The competition between them

Generator learns to make *fakes* that look **real**

Discriminator learns to distinguish real from fake

Fake Real Discriminator learns to distinguish real from fake

Generator learns to make *fakes*that look **real**

Discriminator learns to distinguish real from fake

Discriminator learns to distinguish real from fake

The Game Is On!

5% Real

40% Real

80% Real

The Game Is On!

30% Real

60% Real

95% Real

The Game Is On!

Summary

- The generator's goal is to fool the discriminator
- The discriminator's goal is to distinguish between real and fake
- They learn from the competition with each other
- At the end, fakes look real

Discriminator

Outline

- Review of classifiers
- The role of classifiers in terms of probability
- Discriminator

Classifiers

Distinguish between different classes

Turtle

Fish

Classifiers

Distinguish between different classes

Turtle

Bird

"It meows, and plays with yarn"

Classifier

Cat

Dog

Fish

Neural Networks

Neural Networks

Classifiers (training)

Classifiers

Turtle

Fish

Classifiers

$$P(Fake \mid X)$$

$$P(\text{Fake} \mid \text{Fake}) = 0.85$$
 Fake

Summary

- The discriminator is a classifier
- It learns the probability of class Y (real or fake) given features X
- The probabilities are the feedback for the generator

deeplearning.ai

Generator

Outline

- What the generator does
- How it improves its performance
- Generator in terms of probability

Generator

Turtle Generates examples of the class

Fish

Neural Networks

Noise (random features)

Neural Networks

Generator: Learning

Generator

Turtle

Bird

P

Cat

Dog

Fish

Generator

Images available from: http://thesecatsdonotexist.com/

Summary

- The generator produces fake data
- It learns the probability of features X
- The generator takes as input noise (random features)

Outline

- Binary Cross Entropy (BCE) Loss equation by parts
- How it looks graphically

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta))$$

$$y^{(i)} h(x^{(i)}, \theta) y^{(i)} \log h(x^{(i)}, \theta)$$

$$0 \quad \text{any} \quad 0$$

$$1 \quad 0.99 \quad \sim 0$$

$$1 \quad \sim 0 \quad -\inf$$

$$1 \quad \text{the label is 1}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta)) \right]$$

$$y^{(i)} h(x^{(i)}, \theta) | (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta))$$

$$1 \quad \text{any} \quad 0$$

$$0 \quad 0.01 \quad \text{~~~} 0$$

$$0 \quad \text{~~~} 1 \quad \text{-inf}$$

$$0 \quad \text{~~~} 1 \quad \text{he label is 0}$$

Ensures that the cost is always greater or equal to 0

Summary

- The BCE cost function has two parts (one relevant for each class)
- Close to zero when the label and the prediction are similar
- Approaches infinity when the label and the prediction are different

Putting It All Together

Outline

- How the whole architecture looks
- How to train GANs

GANs Model

Training GANs: Discriminator

Training GANs: Generator

Training GANs

Discriminator Output

Superior — Fakes as 100% — No way to improve

Summary

- GANs train in an alternating fashion
- The two models should always be at a similar "skill" level

deeplearning.ai

Intro to PyTorch (Optional)

Outline

- Comparison with TensorFlow
- Defining Models
- Training

PyTorch vs TensorFlow

PyTorch

TensorFlow

Imperative, computations on the go

3

Dynamic Computational Graphs

Symbolic, first define and then compile

```
C = A + B
f = compile(C)
print(f(A = 1, B = 2))
```

Static Computational Graphs

Tensorflow > 2.0 moves toward PyTorch by including Eager Execution

PyTorch vs TensorFlow

PyTorch

TensorFlow

Currently very similar frameworks!

Tensorflow > 2.0 moves toward PyTorch by including Eager Execution

Defining Models in PyTorch

```
import torch
from torch import nn
                                                                   Custom layers for DL
class LogisticRegression(nn.Module):
                                                              Define the model as a class
     def init (self, in):
                                                              Initialization method with parameters
          super(). init ()
          self.log reg = nn.Sequential(
              nn.Linear(in, 1),
                                                              Definition of the architecture
              nn.Sigmoid()
     def forward(self, x):
                                                              Forward computation of the model
          return self.log reg(x)
                                                              with inputs x
```

Training Models In PyTorch

```
model = LogisticRegression(16)
                                                                   Initialization of the model
criterion = nn.BCELoss()
                                                                   Cost function
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
                                                                   Optimizer
                                                                   Training loop for number of
for t in range(n_epochs):
                                                                   epochs
    y pred = model(x)
                                                                   Forward propagation
    loss = criterion(y pred, y)
    optimizer.zero grad()
    loss.backward()
                                                                   Optimization step
    optimizer.step()
```

Summary

- PyTorch makes computations on the run
- Dynamic computational graphs in Pytorch
- Just another framework, and similar to Tensorflow!

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Activations (Basic Properties)

Outline

- What are activations
- Reasoning behind non-linear differential activations

Activations

$$z_i^{[l]} = \sum_{i=0}^{l} W_i^{[l]} a_i^{[l-1]}$$

$$a_i^{[l]} = \boxed{g^{[l]}} (z_i^{[l]}) \begin{array}{c} \text{Differentiable} \\ \text{non-linear} \\ \text{function} \end{array}$$

Activations

$$a_i^{[l]} = \boxed{g^{[l]}} (z_i^{[l]}) \begin{array}{c} \text{Differentiable} \\ \text{non-linear} \\ \text{function} \end{array}$$

- 1. Differentiable for backpropagation
- 2. Non-linear to compute complex features, if not:

Summary

- Activation functions are non-linear and differentiable
- Differentiable for backpropagation
- Non-linear to approximate complex functions

Common Activation Functions

Outline

- Common activations and their structure
 - ReLU
 - Leaky ReLU
 - Sigmoid
 - Tanh

Activations: ReLU

Activations: Leaky ReLU

Activations: Sigmoid

Values between 0 and 1

Vanishing gradient and saturation problems

Activations: Tanh

Summary

- ReLU activations suffer from dying ReLU
- Leaky ReLU solve the dying ReLu problem
- Sigmoid and Tanh have vanishing gradient and saturation problems

Batch Normalization (Explained)

Outline

- How normalization helps models
- Internal covariate shift
- Batch normalization

Different Distributions

Normalization and Its Effects

Around mean at 0 and std. at 1

Training data uses batch stats

Test data uses training stats

Normalization and Its Effects

Internal Covariate Shift

Batch Normalization

Summary

- Batch normalization smooths the cost function
- Batch normalization reduces the internal covariate shift
- Batch normalization speeds up learning!

Batch Normalization (Procedure)

Outline

- Batch norm for training
- Batch norm for testing

Batch Normalization: Training

$$z_i^{[l]} = \sum_{i=0} W_i^{[l]} a_i^{[l-1]} \qquad \begin{array}{c} \text{For every example in the batch} \\ \end{array}$$

$$\hat{z}_{i}^{[l]} = \frac{z_{i}^{[l]} - \mu_{z_{i}^{[l]}}}{\sqrt{\sigma_{z_{i}^{[l]}}^{2} + \epsilon}}$$

Batch mean of $z_i^{[l]}$ Batch std of $z_i^{[l]}$

Shift factor

Scale Factor

Learnable parameters to get the optimal dist.

Batch Normalization: Test

$$\hat{z}_i^{[l]} = \frac{z_i^{[l]} - \mathbf{E}(z_i^{[l]})}{\sqrt{\operatorname{Var}(z_i^{[l]}) + \epsilon}}$$

Running mean and running std from training

Frameworks like
Tensorflow and Pytorch
keep track of them

Summary

- Batch norm introduces learnable shift and scale factors
- During test, the running statistics from training are used
- Frameworks take care of the whole process

Review of Convolutions

Outline

- What convolutions are
- How they work

What is a convolution? Eye Filter

What is a convolution? Eye Filter Nose filter

What is a convolution? Eye Filter Nose filter Ear filter

50	50	0	0	O
50	50	0	0	0
50	50	0	0	0
50	50	0	0	0
50	50	0	0	0

Grayscale image

0 (black) to 255 (white)

50	50	0	0	0			Filter	
50	50	0	0	0		1	0	-1
50	50	0	0	0	*	1	0	-1
50	50	0	0	0		1	0	-1
50	50	0	О	O				

Grayscale image

0 (black) to 255 (white)

Grayscale image

Convolution

0 (black) to 255 (white)

Grayscale image

Convolution

O (black) to 255 (white)

Summary

- Convolutions are useful layers for processing images
- They scan the image to detect useful features
- Just element-wise products and sums!

Padding and Stride

Outline

- Padding and stride
- The intuition behind padding

50	50	0	0	0			Filter	•
50	50	0	0	0		1	0	-1
50	50	0	0	0	*	1	0	-1
50	50	0	0	0		1	0	-1
50	50	0	0	0				

Grayscale image

→ 1 Pixel to the right

							— •1.		
50	50*1	0*0	0*-1	0			Filter		
50	50*1	0*0	0*-1	0		1	0	-1	
50	50*1	0*0	0*-1	0	*	1	0	-1	=
50	50	O	О	O		1	0	-1	
50	50	O	O	O					

Result

150

150

→ 1 Pixel to the right

50	50	0*1	0*0	0*-1			Filter	•		
50	50	0*1	0*0	0*-1		1	0	-1		150
50	50	0*1	0*0	0*-1	*	1	0	-1	=	
50	50	0	0	0		1	0	-1		
50	50	0	0	0					'	

Result

150

0

→ 1 Pixel to the right

1 0 -1 1 -1 0 0 -1

Filter

150 150 0 150 150 0

150

0

150

Result

Grayscale image

→ 2 Pixels to the right

2 Pixels down

1	0	-1
1	0	-1
1	0	-1

Filter

Result

Grayscale image

→ 2 Pixels to the right

	50*1	50*0	O*-1	0	O
↓	50*1	50*0	0*-1	0	O
2 Pixels down	50*1	50*0	O*-1	0	O
xels	50	50	0	0	O
2 Pi	50	50	0	0	0

-1 0 1 -1 0 0

Filter

150

Result

Grayscale image

→ 2 Pixels to the right

	50	50	0*1	0*0	0*-1
↓	50	50	0*1	0*0	0*-1
down	50	50	0*1	0*0	0*-1
Ixels	50	50	0	0	0
2 PI	50	50	0	0	0

0 -1 1 -1 0

Filter

Result

150 0

Grayscale image

1 0 -1 1 0 -1 1 0 -1

Filter

150 0 150

Result

Grayscale image

Filter

1	0	-1
1	0	-1
1	0	-1

Result

150	0
150	0

Grayscale image

→ 2 Pixels to the right

2 Pixels down

-1 -1 -1

Filter

Result

Grayscale image

Padding

Center gets visited four times Filter Corners get visited only once Stride=1

Padding

Summary

- Stride determines how the filter scans the image
- Padding is like a frame on the image
- Padding gives similar importance to the edges and the center

Pooling and Upsampling

Outline

- Pooling
- Upsampling and its relation to pooling

Pooling

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

Upsampling

20	20	45	45
20	20	45	45
10	10	43	43
10	10	43	43

2x2 input to 4x4 output

20	20	45	45
10	10	43	43
10	10	43	43

20

45

45

Other types include:

- 1. Linear interpolation
- 2. Bi-linear interpolation

Summary

- Pooling reduces the size of the input
- Upsampling increases the size of the input
- No learnable parameters!

Transposed Convolutions

Outline

- Transposed convolutions as an upsampling technique
- Issues with transposed convolutions

Transposed Convolution

Transposed Convolution

The Problems with Transposed Convolution

Checkerboard Pattern

Available from: http://doi.org/10.23915/distill.00003

Summary

- Transposed convolutions upsample
- They have learnable parameters
- Problem: results have a checkerboard pattern

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Outline

- Modes in distributions
- Mode collapse in GANs
- Intuition behind it during training

Fakes that fooled the discriminator

Mode Collapse

Mode Collapse

Fakes that fooled the discriminator

Mode Collapse

Summary

- Modes are peaks in the distribution of features
- Typical with real-world datasets
- Mode collapse happens when the generator gets stuck in one mode

Problem with BCE Loss

Outline

- BCE Loss and the end objective in GANs
- Problem with BCE Loss

BCE Loss in GANs

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$
Prediction

Parameters

Maximize cost

Discriminator Cost

Objective in GANs

Objective in GANs

Make the generated and real distributions look similar

BCE Loss in GANs

Criticizing is more straightforward

Single output

Easier to train than the generator

Complex output

Difficult to train

Often, the discriminator gets better than the generator

Problems with BCE Loss

Problems with BCE Loss

Problems with BCE Loss

Summary

- GANs try to make the real and generated distributions look similar
- When the discriminator improves too much, the function approximated by BCE Loss will contain flat regions
- Flat regions on the cost function = vanishing gradients

Outline

- Earth Mover's Distance (EMD)
- Why it solves the vanishing gradient problem of BCE Loss

Effort to make the generated distribution equal to the real distribution

Depends on the distance and amount moved

Summary

- Earth mover's distance (EMD) is a function of amount and distance
- Doesn't have flat regions when the distributions are very different
- Approximating EMD solves the problems associated with BCE

Wasserstein Loss

Outline

- BCE Loss Simplified
- W-Loss and its comparison with BCE Loss

BCE Loss Simplified

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

Minimize cost

Maximize cost

$$J(\theta) = \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \end{bmatrix}$$

$$\min_{d} \max_{q} - \left[\mathbb{E}(\log (d(x))) + \mathbb{E}(y^{(i)} - h(x^{(i)}, \theta)) \right]$$

Minimize cost

Maximize cost

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta))$$

$$\min_{d} \max_{g} - \left[\mathbb{E}(\log (d(x))) + \mathbb{E}(1 - \log (d(g(z)))) \right]$$

Minimize cost

Maximize cost

W-Loss approximates the Earth Mover's Distance

W-Loss approximates the Earth Mover's Distance

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

W-Loss approximates the Earth Mover's Distance

$$\min_{q} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

Maximize the distance

W-Loss approximates the Earth Mover's Distance

Discriminator Output

Discriminator output

1

Values

between 0

and 1

Discriminator output

0.5

Discriminator Output

Discriminator output

Discriminator output Critic

W-Loss vs BCE Loss

BCE Loss

W-Loss

Discriminator outputs between 0 and 1

$$-\left[\mathbb{E}(\log (d(x))) + \mathbb{E}(1 - \log (d(g(z))))\right]$$

Critic outputs any number

$$\mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

W-Loss helps with mode collapse and vanishing gradient problems

Summary

- W-Loss looks very similar to BCE Loss
- W-Loss prevents mode collapse and vanishing gradient problems

Condition on Wasserstein Critic

Outline

- Continuity condition on the critic's neural network
- Why this condition matters

Condition on W-Loss

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

$$\min_{q} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

$$\min_{q} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

Needs to be 1-Lipschitz Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

gradient = -1

The norm of the gradient should be at most **1** for every point

gradient = 1

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

The norm of the gradient should be at most **1** for every point

1-L Continuous

W-Loss is valid

Needed for training stable neural networks with W-Loss

Summary

- Critic's neural network needs to be 1-L Continuous when using W-Loss
- This condition ensures that W-Loss is validly approximating Earth
 Mover's Distance

1-Lipschitz Continuity Enforcement

Outline

- Weight clipping and gradient penalty
- Advantages of gradient penalty

1-L Enforcement

Critic needs to be 1-L Continuous

Norm of the gradient at most 1

$$||\nabla f(x)||_2 \le 1$$

Slope of the function at most 1

1-L Enforcement: Weight Clipping

Weight clipping forces the weights of the critic to a fixed interval

Gradient descent to update weights

Clip the critic's weights

Limits the learning ability of the critic

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \operatorname{reg}$$

Regularization of the critic's gradient

Real Random interpolation

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Regularization term

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Regularization term

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Regularization term $\epsilon x + (1-\epsilon)g(z)$ Interpolation

$$\mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2 \quad \text{Regularization term}$$

$$\epsilon x + (1 - \epsilon)g(z) \quad \text{Interpolation}$$

Real

$$\mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Regularization term

$$\epsilon x + (1 - \epsilon)g(z)$$
Real Generated

Interpolation

Putting It All Together

$$\min_{\boldsymbol{q}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Putting It All Together

$$\min_{\boldsymbol{g}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Makes the GAN less prone to mode collapse and vanishing gradient

Putting It All Together

$$\min_{\boldsymbol{g}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Makes the GAN less prone to mode collapse and vanishing gradient

Tries to make the critic be 1-L Continuous, for the loss function to be continuous and differentiable

Summary

- Weight clipping and gradient penalty are ways to enforce 1-L continuity
- Gradient penalty tends to work better

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Conditional Generation: Intuition

Outline

- Unconditional generation
- Conditional vs. unconditional generation

You get outputs from a random class

You get outputs from a random class

You get what you ask for

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

You get what you ask for

Conditional vs. Unconditional Generation

Unconditional

Conditional vs. Unconditional Generation

Conditional	Unconditional
Examples from the classes you want	Examples from random classes

Conditional vs. Unconditional Generation

Conditional	Unconditional
Examples from the classes you want	Examples from random classes
Training dataset needs to be labeled	Training dataset doesn't need to be labeled

Summary

- Conditional generation requires labeled datasets
- Examples can be generated for the selected class

Conditional Generation: Inputs

Outline

- How to tell the generator what type of example to produce
- Input representation for the discriminator

Randomness in the generation

Randomness in the generation

Generator Input Output Noise vector Generator Class Husky (one-hot) vector 0

0

Generator Input Output Noise vector Generator Class Husky (one-hot) vector 0

0

Discriminator

Summary

- The class is passed to the generator as one-hot vectors
- The class is passed to the discriminator as one-hot matrices
- The size of the vector and the number of matrices represent the number of classes

Controllable Generation

Outline

- What is controllable generation
- How it compares to conditional generation

Controllable Generation

Change specific features of the output

Controllable Generation

Change specific features of the output

Available from: https://arxiv.org/abs/1907.10786

Controllable Generation

Tweak the input noise vector to get different features on the output

Controllable Generation

Controlled Output

Tweak the input noise vector to get different features on the output

Controllable	Conditional

Controllable	Conditional
Examples with the features that you want	Examples from the classes you want

Controllable

Conditional

Examples with the features that you want

Training dataset doesn't need to be labeled

Examples from the classes you want

Training dataset needs to be labeled

Controllable

Conditional

Examples with the features that you want

Training dataset doesn't need to be labeled

Manipulate the z vector input

Examples from the classes you want

Training dataset needs to be labeled

Append a class vector to the input

Summary

- Controllable generation lets you control the features of the generated outputs
- It does not need a labeled training dataset
- The input vector is tweaked to get different features on the output

Vector Algebra in the *Z*-Space

Outline

- Interpolation in the Z-space
- Modifying the noise vector z to control desired features

How an image morphs into another

Z-Space with Noise Vectors

Summary

- To control output features, you need to find directions in the Z-space
- To modify your output, you move around in the Z-space

Challenges with Controllable Generation

Outline

- Output feature correlation
- Z-space entanglement

Feature Correlation

Uncorrelated Features

Add beard

Feature Correlation

Uncorrelated Features

Correlated Features

It is not possible to control single output features

It is not possible to control single output features

Summary

- When trying to control one feature, others that are correlated change
- Z-space entanglement makes controllability difficult, if not impossible
- Entanglement happens when z does not have enough dimensions

Classifier Gradients

Outline

- How to use classifiers to find directions in the Z-space
- Requirements to use this method

Classifier Gradients

Classifier Gradients

Noise vector

Classifier Gradients

Modify **just** the **noise vector** until the feature emerges

Modify **just** the **noise vector** until the feature emerges

Summary

- Classifiers can be used to find directions in the Z-space
- To find directions, the updates are done just to the noise vector

Disentanglement

Outline

- What a disentangled Z-space means
- Ways to encourage disentangled Z-spaces

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

$$v_1 = [\begin{tabular}{c} $z_1 \ $v_1 = [\begin{tabular}{c} $1, \, 2, \, 3, ... \end{tabular}]$$

$$egin{array}{c} z_1 & z_2 \ v_1 = [\ f 1,\ 2,\ 3,...\] \ v_2 = [\ f 5,\ 6,\ 7,...\] \ {}_{
m Hair}_{
m color} \ {}_{
m length} \end{array}$$

$$egin{array}{c} z_1 & z_2 \ v_1 = [\ 1,\ 2,\ 3,...\] \ v_2 = [\ 5,\ 6,\ 7,...\] \ {}_{ ext{Hair}} \ {}_{ ext{color}} \end{array}$$

$$egin{array}{c} z_1 & z_2 \ v_1 = [\ 1,\ 2,\ 3,...\] \ v_2 = [\ 5,\ 6,\ 7,...\] \ {}_{ ext{Hair}} \ {}_{ ext{color}} \end{array}$$

Latent factors of variation

Output Features

Changes to one feature don't affect the others

Encourage Disentanglement: Supervision

Encourage Disentanglement: Supervision

Encourage Disentanglement: Supervision

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

$$v_1 = [1, 2, 3, ...]$$

$$v_2 = [5, 6, 7, ...]$$

Can be any loss function (e.g. BCE, W-Loss)

$$v_1 = [\ \ 1, \ 2, \ 3, \dots]$$

$$L_{\text{new}} = L_{\text{original}} + \text{reg}_d$$

$$v_2 = [\ 5, \ 6, \ 7, \dots]$$

$$Can be any loss function (e.g. BCE, W-Loss)$$

Summary

- Disentangled Z-spaces let you control individual features by corresponding z values directly to them
- There are supervised and unsupervised methods to achieve disentanglement

