Sivas Cumhuriyet Üniversitesi Bilgisayar Ağları Dersi

Bölüm 2 Fiziksel Katman

Dr. Halil ARSLAN

Bölümün hedefleri

- Fiziksel katman
 - Kablolu kablosuz ortamlar
- Twisted-Pair
- Coaxial
- Fiber-optic
- SONET/SDH
- DSL
- Sayısal kodlama
 - NRZ, NRZ-I, Manchester, Farksal Manchester...
- Analog kodlama
 - ASK, FSK, PSK, QAM

- İki düğüm arasında bağlantı kurmak için fiziksel bir ortama ihtiyaç vardır.
- Fiziksel ortamlar;
 - Elektronmanyetik dalgaların iletilebileceği bir tel,
 - Işık fotonlarının iletilebileceği optik fiber,
 - Ya da hava olabilir
- Fiziksel ortamlar küçük yada büyük fiziksel alanları kapsayabilir
- Düğümlerin fiziksel ortamı kullanabilmeleri için 5 temel sorun vardır.

- Düğümlerin fiziksel ortam için çözmeleri gereken sorunlar;
- 1. Alıcı düğümler tarafından anlaşılabilir şekilde bitlerin kodlanması,
- 2. Aktarılacak verilerin bitiş noktasının tanımlanması (çerçeve)
- 3. Çerçevelerin bozulması durumunda hatanın tespiti,
- 4. Bozulan çerçevelerin düzeltilmesi ve güvenilir veri dağıtımı
- 5. Bağlantının birden çok düğüm tarafından kullanıldığı durumlarda ortam erişiminin yönetilmesidir.

- Bilgisayar ağları 2 temel donanım birimi içermektedir; Bunlar düğümler (host) ve bağlantılardır (link).
- Bu bağlantılar, herhangi bir türde olabilir.

- Temelde tüm fiziksel bağlantılar, havada yada fiziksel bir ortamda elektromanyetik radyo dalgalar ile sağlanır.
 - Yüksek frekanslar, yüksek enerjiye ancak kısa dalga boyuna,
 - Düşük frekanslar, düşük enerjiye ancak yüksek dalga boyuna,
- DalgaBoyu=IşıkHızı/Frekans ($\lambda = c / f$)
 - Bakır kabloda 300 Hz için $2 \times 10^8 \div 300 = 667 \times 10^3$ metre

- Bağlantı (link) türleri iletilecek verinin nasıl kodlandığı
 (encoding) yada iletim ortamının türüne göre sınıflandırılır
 (kablolu, kablosuz).
- İletim ortamları son yıllarda, Wireless bağlantılarla birlikte,
 - Yerel alan ağları ve ISP bağlantıları (DSL) için çift büklümlü (UTP gibi)
 kablolar.
 - Şehirlerarası veya yüksek hızlı bağlantılar içinse Koaksiyel kablolar

yerine Fiber'e bırakmıştır.

Service	Bandwidth (typical)
Dial-up	28–56 kbps
ISDN	64–128 kbps
DSL	128 kbps–100 Mbps
CATV (cable TV)	1–40 Mbps
FTTH (fibre to the home)	50 Mbps-1 Gbps

- Bükülmüş-çift kablolar, genellikle 1mm kalınlığında izole iki bakır kablodan oluşur.
- Büklümlü kablolarda gürültü iki teli aynı oranda etkiler.
- Sinyal genellikle çift iki tel arasındaki voltaj farkı olarak taşınır.
- Böylece sinyal dış gültüye karşı direnç kazanmış olur.
- Telefon hizmetlerinin tamamı bu altyapıyı kullanır. Teoride birkaç km'ye iletim olsada uzun mesafelerde **repeater** gerekir.

- Bükülmüş kablolar çeşitli şekillerde üretilmektedir.
- İletişimde genellikle unshielded twisted-pair (**UTP**) kullanılır. 1980'lerde IBM shielded twisted-pair (**STP**) kablo üretmiştir fakat kullanım alanı bulmamıştır.
- **RJ45** (registered jack 45) konnektör UTP kablolar için kullanılır.

Kategori	Tip	Bandwidth	Uygulama	
Level 1		o.4 MHz	Telephone and modem lines	
Level 2		4 MHz Older terminal systems, IBM 3270		
Cat 3	UTP	16 MHz	10BASE-T and 100BASE-T4 Ethernet	
Cat 4	UTP	20 MHz	16 Mbit/s Token Ring	
Cat 5	UTP	100 MHz	100BASE-TX & 1000BASE-T Ethernet	
Cat 5e	UTP	100 MHz	100BASE-TX & 1000BASE-T Ethernet	
Cat 6	UTP	250 MHz	10GBASE-T Ethernet	
Cat 6 _A	F/UTP, U/FTP	500 MHz	10GBASE-T Ethernet	
Cat 7	S/FTP, F/FTP	600 MHz	10GBASE-T Ethernet, CATV/1000BASE-T	
Cat 7 _A	S/FTP, F/FTP	1000 MHz	10GBASE-T Ethernet, CATV/1000BASE-T	
Cat 8/8.1	F/UTP, U/FTP	1600- 2000 MHz	40GBASE-T Ethernet, CATV/1000BASE-T	

Pin	T568A	T568B	10/100BASE-T	1G/10GBASE- T	T568A color	T568B color
1	3	2	DA+	DA+	white/green	white/orange
2	3	2	DA-	DA-	green	orange
3	2	3	DB+	DB+	white/orange	white/green
4	1	1	NC	DC+	blue	blue
5	1	1	NC	DC-	white/blue	white/blue
6	2	3	DB-	DB-	orange	green
7	4	4	NC	DD+	white/brown	white/brown
8	4	4	NC	DD-	brown	brown

- Bükülmüş kablolar çeşitli şekillerde üretilmektedir.
- İletişimde genellikle unshielded twisted-pair (**UTP**) kullanılır. Bağlantılarda **RJ45** (registered jack 45) konnektör kullanılır.

RJ45 bağlantı için 568A yada 568B standardı kullanılır.

• Twisted-pair kablonun performansı, frekans ve mesafeye göre attenuation değeriyle ölçülür. Şekilde gauge, AWG numarasını gösterir ve telin kalınlığıyla ilgilidir. (Örn 24 AWG 0,52 mm)

Fiziksel Katman - Coaxial

- Koaksiyel kablo (coax ortak eksen), büklümlü kablolara göre daha yüksek band genişliği ve daha fazla mesafe sağlar.
- 50 ve 75 ohm'luk çeşitleri vardır. 50 ohm dijital veri 75 ohm'luklar TV yayınları için tasarlanmıştır.
- Günümüzde bilgisayar ağlarında yerini fiber-optik'lere bıraksa da TV yayınlarında kullanımını sürdürmektedir.

Fiziksel Katman - Coaxial

- Konnektör olarak BNC (Bayone-Neill-Concelman) kullanılır.
- Koaksiyel kablo, RG (radio government) değerleriyle sınıflandırılır.

Fiziksel Katman - Coaxial

- Koaksiyel kablo, analog telefon ağlarında kullanılır (bir coax 10.000 ses sinyali).
- Sayısal telefon ağlarında kullanılır (bir coax 600 Mbps sayısal veri).
- Kablo TV ağlarında coax kablo (RG-59) kullanılır.
- Ethernet ağlarında kullanılır
 - 10Base-2 ve thin ethernet RG-58 (4mm) kullanır (10Mbps, 185m),
 - 10Base-5 ve thick ethernet RG-11 (8mm) kullanır (10Mbps, 500m).

Fiziksel Katman - Fiber-Optic

- Bir optik iletim sisteminin, üç temel bileşeni vardır.
 - Bunlar ışık kaynağı, iletim ortamı ve dedektör'dür.
- Temelde bir ışık palsı 1 biti, ışığın olmaması 0 biti ifade eder.
- İletim ortamı çok ince cam elyaftır.
- Işık üzerine düştüğünde dedektör bir elektiriksel sinyal üretir.
- Optik fiberin bir ucuna bir ışık kaynağı, diğer ucuna dedektör bağlanır
 ve Alıcı ışık darbelerini elektriksel sinyale dönüştürür.

Fiziksel Katman - Fiber-Optic

• Fiber optik kablo ile **multimode** veya **single-mode** (100 Gbps 100 km mesafe) yayılım yapılabilir.

Fiziksel Katman - Fiber-Optic

- Fiber optik kablolar coax kablolara benzer (örgü hariç).
- Ortada ışığın geçtiği cam göbek bulunur (çapı 50 mikron)
- **Single-mode** fiberlerde 8-10 mikrondur.
- Işık üreteci olarak **LED** (kısa mesafe) yada **Yarıiletken Lazer** (uzun mesafe) kullanılabilir
- Alıcı tarafta ışık fotodiyotla elektrik sinyaline çevrilir (max. 100 Gbps).

Fiziksel Katman - SONET/SDH

- Fiber optik ağlarda düşük hızlı bağlantıları yüksek hızlı bir bağlantıya çoğullamaya (STDM) dayanan standartlardır.
 - SONET (Synchronous Optical NETwork ABD standardı)
 - SDH (Synchronous Digital Hierarchy Avrupa standardı)
- Bir SONET çerçevesi 6.480 bit; bir SDH çerçevesi 2,430 bayt'tır.
- Internet omurgalarında Ring topolojisi ile uygulanır.

Fiziksel Katman - DSL

- Digital Subscriber Line (Sayısal Abone Hattı), geleneksel bakır hatlardan evlere ve ofislere yüksek band genişliği sunan teknolojidir.
- xDSL şeklinde kategorize edilir. (ADSL, SDSL, HDSL, VDSL)
- 3 temel iletişim kanalından oluşur.
 - Alış Kanalı (downstream),
 - Gönderiş Kanalı (upstream)
 - POTS (Plain Old Public Telephone) kanalıdır.

Fiziksel Katman - ADSL

- Asymmetric Digital Subscriber Line, download hızının upload hızından yüksek olduğu kategoridir. Ev kullanıcıları için tasarlanmıştır
- Twisted-pair kablonun (1.1 Mhz) band genişliği 256 kanala bölünür,
 - Kanal 0 telefon için ayrılır (1-5 boştadır)
 - 6-30 kanallar upload (1 kanal kontrol için)
 - 31-256 arası kanallar download için kullanılır. (1 kanal kontrol için)

Fiziksel Katman - ADSL

- Upload için 24 kanalın herbiri QAM (15 bit/baud) kullanır.
 - 4khz BW. Data rate: 24*4000*15=1.44 Mbps (etkin 500kbps)
- Download için 224 kanalın herbiri QAM (15 bit/baud) kullanır.
 - 4khz BW. Data rate: 224*4000*15=13.4 Mbps (etkin 8 Mbps)

Fiziksel Katman - xDSL

		Down Speed	Up Speed
	G.lite	1.5 Mbps	512 Kbps
etri	ADSL	6-8 Mbps	640 Kbps
L L	ADSL2	12 Mbps	1 Mbps
Asymm	ADSL2+	27 Mbps	1 Mbps
A	VDSL	13-52 Mbps	1.5-2.3 Mbps
Both	VDSL2	200 Mbps	200 Mbps
tric	IDSL	144 Kbps	144 Kbps
nme	SDSL	1.5 Mbps	1.5 Mbps
Syn	HDSL	2.3 Mbps	2.3 Mbps

Fiziksel Katman - Kodlama

- Kaynak düğümün göndermek istediği ikili veriyi, bağlantıların taşıyacağı sinyallere yükleme ve alıcı tarafında tekrar ikili veriye dönüştürme yöntemine **kodlama** denir.
- Bu işlemler bilgisayar ağlarında ağ bağdaştırıcılar tarafından yapılır.
- Örneğin 1 bit değeri için yüksek sinyal, 0 için düşük sinyal olabilir.

- NRZ (Non-Return to Zero): 1 bit değeri için yüksek sinyal, 0 için düşük sinyal kullanılır.
- Alıcı gördüğü sinyalin ortalamasına saklar. Gelen sinyalin ortalamadan düşük yada yüksek olması durumuna göre karar verilir.
- Sorun, uzun süre 0 yada 1 gelmesi durumunda ortalamanın ilgili değere yaklaşmasıdır.

- NRZ-I (Non-Return to Zero Inverted): Göndericinin 1 değeri için sinyal geçişi yapması, 0 için değişim yapmamasıyla gerçekleşir.
- Ardışık 1 problemini çözer ancak 0 için sorun devam etmektedir.
- Senkronizasyon problemi NRZ ve NRZ-I'da devam etmektedir.

- Manchester: Düşükten yükseğe geçiş bit-1 değerini, yüksekten düşüğe geçiş bit-0 değerini tanımlar.
- Bitin ortasında siyalde değişim gerçekleştirilerek senkronizasyon sağlanır.
- 802.3 Ethernet'de kullanılır.

- Farksal Manchester: Manchester kodlamanın bir varyantı olarak bit-0'ın önünde sinyal seviyesinde değişim yapılırken, bit-1 için sabit bırakılır.
- Bitin ortasında siyalde değişim gerçekleştirilerek senkronizasyon sağlanır.
- 802.5 Token-ring'de kullanılır.

• **AMI** (**Alternate Mark Inversion**): Bit-0 için seviye sıfırken, bit-1 için pozitif ve negatif arasında değişir.

• **Pseudoternary:** Bit-1 için seviye sıfırken, bit-0 için pozitif ve negatif arasında sürekli değişir.

- **2B1Q** (two-binaryone-quaternary): Ardışık 2 bitin 4 farklı sinyal seviyesi ile ifade edildiği kodlamadır.
- DSL ağlarda kullanılır.

	Previous level: positive	Previous level: negative
Next bits	Next level	Next level
00	+1	-1
10	+3 -1	-3 +1
11	-1 -3	+3

- **Blok kodlama (4B/5B):** Senkronizasyon ve hata denetimi için n adet bitin m adet bitle taşınmasıdır (n>m).
- 4B/5B'de 4 bit 5 bitle tanımlanır ve NRZ-I ile kodlanır,
- NRZ-I daki fazla sıfır problemi giderilir. Art arda en fazla 3 bit taşınır.
- %80 verimlilikle çalışır.
- 2⁵=32 diğer 16 durum kontrol için kullanılır.
- Örn: 11111 idle, 00000 dead, 00100 halt ...

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4-Bit Data Symbol	5-Bit Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Fiziksel Katman - Kodlama/Analog

• ASK (Amplitude Shift Keying): Genlik değiştirilir.

• FSK (Frequency Shift Keying): Frekans değiştirilir.

Fiziksel Katman - Kodlama/Analog

• **PSK** (**Phase Shift Keying**): Faz değiştirilir.

• QAM (Quadrature Amplitude Keying): ASK ve PSK birlikte

