

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling

- CHAMELEON: A graph partitioning approach (G. Karypis, E. H. Han, and V. Kumar, 1999)
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the interconnectivity and closeness (proximity) between two clusters are high relative to the internal interconnectivity of the clusters and closeness of items within the clusters
- A graph-based, two-phase algorithm
 - Use a graph-partitioning algorithm: Cluster objects into a large number of relatively small sub-clusters
 - Use an agglomerative hierarchical clustering algorithm: Find the genuine clusters by repeatedly combining these sub-clusters

2

Overall Framework of CHAMELEON

2

KNN Graphs and Interconnectivity

☐ K-nearest neighbor (KNN) graphs from an original data in 2D:

- \square $EC_{\{Ci,Cj\}}$. The absolute interconnectivity between C_i and C_j :
 - \square The sum of the weight of the edges that connect vertices in C_i to vertices in C_i
- □ Internal interconnectivity of a cluster C_i : The size of its min-cut bisector EC_{Ci} (i.e., the weighted sum of edges that partition the graph into two roughly equal parts)
- Relative Interconnectivity (RI): $RI(C_i, C_j) = \frac{|EC_{\{C_i, C_j\}}|}{|EC_{C_i}| + |EC_{C_j}|}$

Relative Closeness & Merge of Sub-Clusters

■ **Relative closeness** between a pair of clusters C_i and C_j : The absolute closeness between C_i and C_j normalized w.r.t. the internal closeness of the two clusters C_i and C_j \overline{S}_{FC_i}

 $RC(C_i, C_j) = \frac{\overline{S}_{EC_{\{C_i, C_j\}}}}{\frac{|C_i|}{|C_i| + |C_j|} \overline{S}_{EC_{C_i}} + \frac{|C_j|}{|C_i| + |C_j|} \overline{S}_{EC_{C_j}}}$

- where $\overline{S}_{EC_{C_i}}$ and $\overline{S}_{EC_{C_j}}$ are the average weights of the edges that belong to the min-cut bisector of clusters C_i and C_j , respectively, and $\overline{S}_{EC_{\{C_i,C_j\}}}$ is the average weight of the edges that connect vertices in C_i to vertices in C_i
- Merge Sub-Clusters:
 - Merges only those pairs of clusters whose RI and RC are both above some userspecified thresholds
 - Merge those maximizing the function that combines RI and RC

5

CHAMELEON: Clustering Complex Objects

CHAMELEON is capable to generate quality clusters at clustering complex objects