(19) 世界知的所有権機関 国際事務局

T (BBT) BENDARA NI BARNIB KIRIN BERNA BERNA BURA KIRIN BERNA BURBA BURBA BUTBA BURBA BURBA BURBA BURBA BURBA B

(43) 国際公開日 2004 年6 月24 日 (24.06.2004)

PCT

(10) 国際公開番号 WO 2004/053598 A1

(51) 国際特許分類7:

G03G 9/097, 9/113, 15/06, 15/08

(21) 国際出願番号:

PCT/JP2003/015137

(22) 国際出願日:

2003年11月27日(27.11.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-358641

2002年12月10日(10.12.2002) JF

2002 **4**12 **H**10 **H** (10.12.2002) J

(71) 出願人 (米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市大字門真1006番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 湯浅 安仁 (YUASA,Yasuhito) [JP/JP]; 〒576-0012 大阪府 交野市 妙見東3-2-12 Osaka (JP).

(74) 代理人: 特許業務法人池内・佐藤アンドパートナーズ (IKEUCHI SATO & PARTNER PATENT ATTORNEYS); 〒530-6026 大阪府 大阪市 北区天満橋1丁目8番30号OAPタワー26階 Osaka (JP).

(81) 指定国 (国内): CN, JP, US.

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: TONER, TWO-COMPONENT DEVELOPER, AND IMAGE FORMING METHOD

(54) 発明の名称: トナーと二成分現像剤及び画像形成方法

(57) Abstract: A toner containing a toner matrix comprising a binding resin, a colorant, and a wax, and an eternal additive. The external additive contains at least one compound selected from fatty acids and their derivatives and an inorganic powder with polysiloxane adhering to the surface. The toner enables oil-less fixing using no oil for the fixing roller. A two-component developer and an image forming method are also disclosed. Even if the toner is used in combination with a toner containing a releasing agent such as wax, deterioration of the carrier because of spent toner hardly occurs, and the durability is good. The hollow defects of transfer are reduced, thereby achieving a high transfer efficiency.

(57) 要約: 本発明のトナーは、結着樹脂、着色剤及びワックスを含むトナー母体と外添剤を含むトナーであって、前記外添剤が設けるの誘導体から選ばれる少な分別をも一つと、ポリシロキサンを表面に付着させた無機微粉末を含む。これにより、定着ローラにオイルを使用しないオイルレス定着が可能なトナーと二成分現像剤及び画像形成方法を提供する。また、ワックス等

の離型剤を含有したトナーとの組合せた使用においてもスペント化によるキャリア劣化が生じにくく耐久性のある 二成分現像剤を提供する。さらに転写時の中抜け低減し、高転写効率を得ることが可能なトナーと二成分現像剤及 び画像形成方法を提供する。

明細書

トナーと二成分現像剤及び画像形成方法

技術分野

本発明は複写機、レーザプリンタ、普通紙FAX、カラーPPC、カラーレーザプリンタやカラーFAX及びこれらの複合機に用いられる二成分現像剤及び画像形成装置に関するものである。

背景技術

5

近年、電子写真装置はオフィスユースの目的からパーソナルユースへと移行しつつあり、小型化、高速化、高画質化、メンテフリーなどを実現する技術が求められている。そのため転写残の廃トナーをクリーニングせずに現像において廃トナーを回収するクリーナーレスプロセスや、カラー画像の高速出力を可能とするタンデムカラープロセス、また定着時にオフセット防止のための定着オイルを使用せずとも高光沢性、高透光性を有する高精彩なカラー画像と非オフセット性を両立させるオイルレス定着が良メンテナンス性、低オゾン排気などの条件とともに要求されている。そしてこれらの機能は同時に両立させる必要があり、プロセスのみならずトナーの特性向上が重要なファクターである。

カラープリンタでは、像担持体(以下感光体と称す)を、帯電チャージャーによるコロナ放電で帯電させ、その後各色の潜像を光信号として感光体に照射し、静電潜像を形成し、第1色、例えばイエロートナーで現像し、潜像を顕像化する。その後感光体に、イエロートナーの帯電と逆極性に帯電された転写体を当接し、感光体上に形成されたイエロートナー像を転写する。感光体は転写時に残留したトナーをクリーニングしたのち除電され、第1のカラートナーの現像、転写を終える。その後マゼンタ、シアンなどのトナーに対してもイエロートナーと同様な操作を繰り返し、各色のトナー像を転写体上で重ね合わせてカラー像を形成する

10

15

20

25

方法が取られている。そしてこれらの重畳したトナー像はトナーと逆極性に帯電した紙に転写される4パス方式のカラープロセスが実用化されている。

また、帯電器、感光体、現像部等を有する像形成ステーションを複数並べて配置し、感光体に無端状の転写体を当接させて転写体に順次各色のトナーを連続して転写させる一次転写プロセスを実行して、転写体に多層の転写カラートナー画像を形成し、その後転写体に形成した多層のトナー像を、一括して紙やオーバーヘッドプロジェクター(OHP)等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成されたタンデムカラープロセスや、転写体を用いずに直接紙やOHPの転写媒体に連続して転写するタンデムカラープロセスが提案されている。

定着プロセスにおいては、カラー画像ではカラートナーを溶融混色させ透光性を上げる必要がある。トナーの溶融不良が起こるとトナー画像表面又は内部に於いて光の散乱が生じて、トナー色素本来の色調が損なわれると共に重なった部分では下層まで光が入射せず、色再現性が低下する。従って、トナーには完全溶融特性を有し、色調を妨げないような透光性を有することが必要条件である。〇HP用紙での光透過性がカラーでのプレゼンテーション機会の増加で、その必要はより大きくなっている。カラー画像を得る際に、定着ローラ表面にトナーが付着してオフセットが生じるため定着ローラに多量のオイル等を塗布しなければならず、取扱や、機器の構成が複雑になる。そのため機器の小型化、メンテフリー化、低コスト化のために、後述する定着時にオイルを使用しないオイルレス定着の実現が要求される。これを可能とするため、シャープメルト特性を有する結着樹脂中にワックス等の雕型剤を添加する構成が実用化されつつある。

しかしこのようなトナーの構成での問題は、トナーの凝集性が強い特

15

質を有するため、転写時のトナー像乱れ、転写不良の傾向がより顕著に 生じ、転写と定着の両立が困難となる。また二成分現像として使用する 際に、粒子間の衝突、摩擦、または粒子と現像器との衝突、摩擦等の機 械的な衝突、摩擦による発熱により、キャリア表面にトナーの低融点成 分が付着するスペントが生じ易く、キャリアの帯電能力を低下させ現像 5 剤の長寿命化を妨げとなる。長寿命のコートキャリアを提供する目的で、 下記特許文献1等には、含窒素フッ素化アルキル(メタ)アクリレート とビニル系モノマーとの共重合体や、フッ素化アルキル(メタ)アクリ レートと含窒素ビニル系モノマーとの共重合体等の樹脂でキャリア芯材 表面をコートする技術が提案されている。これらには、含窒素モノマー とフッ素化モノマーとの共重合体あるいはイミド結合を有する溶剤可溶 性含フッ素重合体をキャリア芯材表面に被膜することにより、比較的長 寿命のコートキャリアを得ることが提案されている。しかし、キャリア との接着界面での樹脂接着強度が弱く、また樹脂の強度が不足するため、 十分な耐衝撃性が得られていない。またフッ素の帯電性からトナーを負 帯電にすることが困難で、トナーに十分な帯電を与えることができず、 画像のカブリや濃度ムラを生ずるなどの問題があった。

下記特許文献2等には、高湿度雰囲気でのトナーの帯電量の低下を防 止し、現像剤の耐久性の改良を目的とし、成分を限定したトナーとの組 み合わせにおいて、アミノシランカップリング剤を含有したシリコーン 20 樹脂で被覆されたキャリアが提案されているが、トナーのスペント化防 止に対しては、充分なものではなかった。

下記特許文献3には、正帯電型トナーに対し、被覆層のシリコーン樹 脂にフッ素置換アルキル基を導入したキャリアが提案されている。さら には、下記特許文献4では、高速プロセスにおいて、現像能力が高く、 25 それが長期において劣化しないものとして、導電性カーボンと架橋型フ

20

ッ素変性シリコーン樹脂を含有するコーティングキャリアが提案されている。シリコーン樹脂の優れた帯電特性を生かすとともにフッ素置換アルキル基によって、滑り性・剥離性・撥水性等の特徴を付与し、摩耗・はがれ・クラック等が発生しにくい上、スペント化も防止できるとしているが、摩耗・はがれ・クラック等についても満足の行くものではない上に、正帯電性を有するトナーにおいては適正な帯電量が得られるものの、負帯電性を有するトナーを用いた場合、帯電量が低過ぎ、逆帯電性トナー(正帯電性を有するトナー)が多量に発生し、カブリやトナー飛散等の悪化が生じ、使用に耐えるものではなかった。

10 またトナーにおいて、種々の構成が提案されている。周知のように電子写真方法に使用される静電荷現像用のトナーは一般的に結着樹脂である樹脂成分、顔料もしくは染料からなる着色成分および可塑剤、電荷制御剤、更に必要に応じて離型剤などの添加成分によって構成されている。樹脂成分として天然または合成樹脂が単独あるいは適時混合して使用される。

そして、上記添加剤を適当な割合で予備混合し、熱溶融によって加熱 混練し、気流式衝突板方式により微粉砕し、微粉分級されてトナー母体 が完成する。また乳化凝集重合法や、懸濁重合等の化学重合的な方法に よりトナー母体が作成される方法もある。その後このトナー母体に例え ば疎水性シリカなどの外添剤を外添処理してトナーが完成する。一成分 現像では、トナーのみで構成されるが、トナーと磁性粒子からなるキャ リアと混合することによって二成分現像剤が得られる。

下記特許文献5には、融点が40~150℃のC13~39の飽和脂肪酸,脂肪酸エステル、炭素数C15以上の脂肪族アルコールで表面を25 被覆したTiO₂を添加した構成が開示され、トナーの流動性と耐ケーキング性が向上してクリーニング不良を生じにくくするトナーを提供し

ている。

5

下記特許文献 6 には、脂肪酸金属塩(A)で処理した酸化チタンを含有するトナーと、フッ素系樹脂(B)を被覆したフエライト粒子からなるキャリアが開示され、現像剤の帯電安定性を高め、かつ新しいトナーを補給しても帯電の立ち上がりを速くする効果が提供されている。

下記特許文献 7 には、表面を脂肪酸または脂肪酸誘導体で処理した平均粒径が 0. 0 3 \sim 2. 0 μ m である樹脂微粒子が開示され、転写材の条件によらず潜像に忠実な画像を得,特に転写中抜けのない高品質の画像を得る効果が開示されている。

- 10 下記特許文献 8 には、水系中で脂肪酸化合物を加水分解しながら疎水 化処理した無機微粉末と、水系中でシリコーンオイルで疎水化処理した 無機微粉末を含有するトナーが開示され、温湿度環境に左右されにくく、 安定した摩擦帯電性を有し、カブリの無い鮮明な画像特性と耐久性に優 れたカラートナーを提供している。
- 15 下記特許文献 9 には、高湿高温環境下でも安定した正帯電性磁性トナーの画質を得るために、脂肪酸、脂肪酸金属塩又は脂肪酸エステルにより表面処理された磁性体をポリエステル樹脂に添加する構成が開示されている。

下記特許文献10には、脂肪酸金属塩および常温で固体の炭素数20~60のアルコールよりなる群から選択される少なくとも1つの処理剤で表面処理された無機化合物を添加する構成が開示され、流動性およびクリーニング性が良好で、環境安定性および耐久性に優れており、かつ感光体表面、二成分現像方式で用いられるキャリア表面、あるいは一成分現像方式で用いられる帯電付与部材表面に対してトナーフィルミング 現象の起こらない静電荷現像用乾式トナーを提案されている。

下記特許文献11では、トナー粒子の表面に、芯体粒子に長鎖脂肪酸

10

金属塩を被覆した微粒子を添加させる構成が開示されている。これによ り画像濃度を維持しながら転写性が良好で文字の中抜け現象の発生しな い画像を提供している。

下記特許文献12では、脂肪酸アルミニウムで表面処理して疎水化した超微粉末酸化チタンと、疎水性シリカを含有する磁性トナーが開示されており、感光体表面にフィルミングが発生することが無く長期にわたり安定した画質を得る磁性トナーを提供している。

しかし、単に脂肪酸等を表面処理した無機微粒子を添加するだけでは 一定の効果が有するが、環境特性が十分でなく、また処理させる量に限 界があり帯電安定性や離型効果が十分に得られない。またオイルレス定 着を実現するためトナー中に多量の低融点ワックスを配合する構成にお いて、その流動性保持、現像画質の安定化には不十分である。

離型剤ワックスとしては、下記特許文献13では脱遊離脂肪酸型カル ナウバワックス及び/又はモンタン系エステルワックス、酸価10~3 0の酸化ライスワックスの使用、また下記特許文献14では、融点85 15 ~100℃、天然ガス系フィッシャートロプッシュワックスの存在下で 重合されたビニル系共重合体、下記特許文献15では、多価アルコール 成分とジカルボン酸及び3価以上の多価カルボン酸化合物とを縮重合し、 離型剤の平均分散粒子径が 0.1~3μm、外添剤の粒子径が 4~20 0 nmで1~5 重量部添加する旨が開示されている。下記特許文献16 20 では、パーフルオロオクチルメタクリレートなどの有機フッ素化合物で 変性されたポリプロピレンなどのフッ素変性ポリオレフイン系樹脂を含 有する構成により定着性が向上する内容が開示されている。下記特許文 献17では、アルキルアルコールまたはアミンと、不飽和多価アルキル カルボン酸及び合成炭化水素系ワックスから得られる生成物により定着 25 性、耐オフセット性、透光性に優れるトナーを得ることが出来ると記載

10

されている。下記特許文献18では、軟化点が80~140℃、フッ素を含有する低分子量ポリオレフイン、低分子量オレフインとポリテトラフルオロエチレンとの溶融混合物を配合することにより定着時の非オフセット性が向上する内容が開示されており、定着性向上に効果がある内容が記載されている。

これらの高分子量成分と低分子量成分をブレンドした、あるいは共重合させた樹脂構成に対して、例えばポリエチレン、ポリプロピレンワックス等の低融点の離型剤を添加する目的は、定着時ヒートローラからの離型性を良くして耐オフセット性を高めることである。しかしこれらの離型剤は結着樹脂中での分散性を向上させるのが困難で、逆極性トナーが発生し易く、非画像部へのカブリが発生する。また感光体へフィルミングを生じ易い傾向にある。

特に課題なのが、これらの離型剤を添加したトナーを二成分現像剤として使用する際にトナー搬送、帯電部材であるキャリア表面を汚染する 現象 (スペント化)が生じる。そのため、帯電付与能力の低下とともにトナーの搬送能力も低下する。さらにはキャリア付着が生じやすくなり、これが中間転写体に傷を生じさせる要因となる。したがって、キャリアは一定の使用期間が経過すると交換し、廃棄されるのが現状で、ランニングコストが下がらない要因となっている。

- 20 [特許文献1]特開昭61-80161号公報
 - [特許文献2]特許第2619439号公報
 - [特許文献 3] 特許第2801507号公報
 - [特許文献4]特開2002-23429号公報
 - [特許文献 5] 特開昭 63-174068公報
- 25 [特許文献 6]特開平 0 4 4 5 2 公報
 - [特許文献7]特開平04-274443公報

[特許文献8]特開平5-34984号公報

[特許文献9]特開平5-72802号公報

[特許文献10]特開平05-165250公報

[特許文献11] 特開平5-241367号公報

5 [特許文献 1 2] 特開平 1 0 - 1 6 1 3 4 0 号公報

[特許文献13]特開平2-266372号公報

[特許文献14]特開平9-281748号公報

[特許文献15]特開平10-327196号公報

[特許文献16]特開平5-333584号公報

10 [特許文献 17] 特開 2000-10338号公報

[特許文献18]特開平5-188632号公報

発明の開示

15

本発明は、定着ローラにオイルを使用しないオイルレス定着トナーを可能とするため、トナー中にワックス等の離型剤を使用してオイルレス定着が可能なトナーと二成分現像剤及び画像形成方法を提供する。また、ワックス等の離型剤を含有したトナーとの組合せた使用においてもスペント化によるキャリア劣化が生じにくく耐久性のある二成分現像剤を提供する。さらに転写時の中抜け低減し、高転写効率を得ることが可能なトナーと二成分現像剤及び画像形成方法を提供する。

20 本発明のトナーは、結着樹脂、着色剤及びワックスを含むトナー母体 と外添剤を含むトナーであって、前記外添剤が脂肪酸及びその誘導体か ら選ばれる少なくとも一つと、ポリシロキサンを表面に付着させた無機 微粉末を含むことを特徴とする。

次に本発明の二成分現像剤は、少なくとも結着樹脂、着色剤及びワッ 25 クスを含むトナー母体と外添剤とからなるトナーとキャリアからなる二 成分現像剤であって、前記外添剤が脂肪酸及びその誘導体から選ばれる

10

少なくとも一つと、ポリシロキサンとを表面に処理した無機微粉末を含み、前記キャリアがコア材の表面を被覆する樹脂がアミノシランカップ リング剤を含むフッ素変性シリコーン樹脂を含むことを特徴とする。

次に本発明の第1番目の画像形成方法は、感光体と現像ローラ間に直流バイアスと共に、周波数が5~10kHz、バイアスが1.0~2.5kV(p-p)である交流バイアスを印加し、かつ感光体と現像ローラ間の周速度比が1:1.2~1:2である現像手段を含む画像形成方法であって、少なくとも結着樹脂、着色剤及びワックスを含むトナー母体と外添剤を含み、前記外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一つと、ポリシロキサンを表面に付着させた無機微粉末を含むトナーを使用することを特徴とする。

次に本発明の第2番目の画像形成方法は、少なくとも像担持体と前記 像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像 形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を、 少なくとも結着樹脂、着色剤及びワックスを含むトナー母体と外添剤を 15 含み、前記外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一つ と、ポリシロキサンを表面に付着させた無機微粉末を含むトナーにより 顕像化し、前記静電潜像を顕像化した前記トナー像を、前記像担持体に 無端状の転写体を当接させて前記転写体に転写させる一次転写プロセス が順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、 20 その後前記転写体に形成した多層のトナー像を、一括して転写媒体に転 写させる二次転写プロセスが実行されるよう構成された転写システムを 具備し、前記転写プロセスが、第1の一次転写位置から第2の一次転写 位置までの距離、又は第2の一次転写位置から第3の一次転写位置まで の距離、又は第3の一次転写位置から第4の一次転写位置までの距離を 25 d 1 (mm)、感光体の周速度をv(mm/s)とした場合、d 1/v

≤0.65(sec)の条件を満足することを特徴とする。

15 図面の簡単な説明

- 図1は本発明の実施例で使用した画像形成装置の構成を示す断面図。
- 図2は本発明の実施例で使用した定着ユニットの構成を示す断面図。
- 図3は本発明の実施例で使用したトナー混錬装置の概略図。
- 図4は本発明の実施例で使用したトナー混錬装置の平面図。
- 20 図 5 は本発明の実施例で使用したトナー混錬装置の側面図。
 - 図6は本発明の実施例で使用したトナー混錬装置の断面図。
 - 図7は本発明の実施例で使用したトナー粉砕処理の構成図。
 - 図8は図7のI-I、線の断面図。
 - 図9は図8のB部分の拡大断面図。
- 25 1: 感光体, 2: 帯電ローラ, 3: レーザ信号光, 4: 現像ローラ,
 - 5:ブレード,10:第1転写ローラ,12:転写ベルト,14:第2

10

転写ローラ、13:駆動テンションローラ、17:転写ベルトユニット、18B、18C、18M、18Y:像形成ユニット、18:像形成ユニット群、201:定着ローラ、202:加圧ローラ、203:定着ベルト、205:インダクションヒータ部、206:フェライトコア、207:コイル、508:定量供給機、500:粉砕処理部、501:回転体、502:固定体、503:原料、506:凹凸部、509:冷却器、511:エアー、512:温度計、514:バグフィルター、515:サイクロン、516:風量計、517:ブロア、518:無機微粉末供給装置、519:バイブレータ振動装置、602:ロール(RL1)、603:ロール(RL2)、604:ロール(RL1)上に巻きついたトナーの溶融膜、605:熱媒体の流入口、606:熱媒体の流出口

デジタル高画質化、高精彩色再現性カラー化、定着ローラにオフセット防止用のオイルを使用しないで高透光性と耐オフセット性の両立を図 3 ことができ、さらには二成分現像におけるキャリアのトナー成分によるスペントを防止して長寿命化を実現するものである。

(1) 外添剤

発明を実施するための最良の形態

脂肪酸等を処理した微粉末を外添処理することにより、感光体に付着したトナーの感光体との離型性に優れ、さらにポリシロキサンと組合せた処理によりトナーの帯電量分布が均一化することにより、転写時の中抜け、逆転写の防止に効果が現れる。これによりオイルレス定着を実現するためにワックスを一定量以上添加した凝集性の強くなったトナーにおいても、転写時の中抜け、逆転写を防止できる。また後述するキャリアやワックスと組合せた使用により、離型性に優れ、ポリシロキサンと組合せた処理によるトナー帯電量分布の均一化の効果により耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度

の均一性を上げることができる。また現像メモリー発生を抑制できる。また感光体へのフィルミングの防止、定着加熱部材への融着を防止できる。またトナーを小粒径化しても、転写性とオイルレス定着の両立を図ることができる。現像においては潜像をより忠実に再現できる。そしてトナー粒子の転写率を悪化させることなく転写できる。またタンデム方式の転写においても再転写を防止でき、中抜けの発生の抑制が可能となる。さらには現像量を少なくしても高画像濃度を得ることができる。

本実施形態では外添剤として、シリカ、アルミナ、酸化チタン、ジルコニア、マグネシア、フェライト、マグネタイト等の金属酸化物微粉末、10 チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等のチタン酸塩、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム等のジルコン酸塩あるいはこれらの混合物が用いられる。これらの無機微粉末を表面処理する脂肪酸、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩のうち、脂肪酸、脂肪酸金属塩としては、カプリル酸、カプリン酸、ウンデシル酸、ラウリル酸、ミスチリン酸、パリミチン酸、ステアリン酸、ベヘン酸、モンタン酸、ラクセル酸、オレイン酸、エルカ酸、ソルビン酸、リノール酸等が挙げられる。中でも炭素数15~20の脂肪酸が好ましい。

また脂肪酸金属塩を構成する金属としては、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウム、ナトリウム、鉛、バリウムが挙げられ、中でもアルミニウム、亜鉛、ナトリウムが好ましい。特に好ましくはジステアリン酸アルミニウム(Al(OH)(C₁₇H₃₅COO)₂)、またはモノステアリン酸アルミニウム(Al(OH)₂(C₁₇H₃₅COO))、等のジ脂肪酸アルミニウム、モノ脂肪酸アルミニウムが好ましい。〇H基を有することが過帯である、モノ脂肪酸アルミニウムができる。また処理時にシリカ等の無機微粉末との処理性が向上するものと考えられる。

10

25

脂肪族アミドとしては、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、アラキジン酸アミド、エイコセン酸アミド、ベヘニン酸アミド、エルカ酸アミド、リグリノセリン酸アミド等の炭素数16~24を有する飽和または1価の不飽和の脂肪族アミドが好ましく用いられる。

脂肪酸エステルとしては例えば、メチル、エチル、プチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、脂肪酸ペンタエリスリトールモノエステル、脂肪酸ペンタエリスリトールトリエステル、脂肪酸トリメチロールプロパンエステルが好ましく用いられる。

ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。

15 ポリシロキサンとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサンから選択されるポリシロキサンが好ましい。またフェニルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン、フェニルハイドロジェンメチルハイドロジェンポリシロキサンから選択されるポリシロキサンが好ましく用いられる。

表面処理は前記したポリシロキサン及び脂肪酸等をトルエン、キシレン、ヘキサン、アイソパー等の炭化水素系有機溶剤に溶解し、それとシリカ、酸化チタン、アルミナ等の微粉末とを分散機にかけ湿式混合して処理剤により、微粉末の表面に付着させて、表面処理を施し、その後に溶剤を溜去して乾燥処理を行うことにより生成される。

このときの脂肪酸等と、ポリシロキサンとの混合割合が2:1~1:

10

15

20であることが好ましい。割合が2:1よりも脂肪酸等が多くなると、シリカの帯電量が高くなり、画像濃度の低下、二成分現像においてはチャージアップが発生しやすくなる。1:20よりも脂肪酸金属塩等が少なくなると、転写における中抜け、逆転写性への効果の低下、キャリアのスペントが増加する。

好ましい形態としては、処理される無機微粉末の表面をカップリング 剤及び/又はポリシロキサンにて処理を施した後に、脂肪酸等とポリシ ロキサンの処理を施すことである。単に親水性シリカの脂肪酸を処理す る場合よりも均一な処理が可能となり、トナーの高帯電化を図れ、トナ ーに添加したときの流動性が向上する効果があるためである。

また、好ましい形態としては、処理される無機微粉末の表面をポリシロキサンにて処理を施した後に、脂肪酸等の処理を施すことも好ましい。脂肪酸等の処理量を減らせる効果がある。より均一な処理が可能となり、トナーの高帯電化を図れることと、トナーに添加したときの流動性が向上する効果があるためである。

シランカップリング剤としては、ジメチルジクロロシラン、トリメチルクロルシラン、アリルジメチルクロルシラン、ヘキサメチルジシラザン、アリルフェニルジクロルシラン、ベンジルメチルクロルシラン、ビニルトリエトキシシラン、アーメタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ジビニルクロルシラン、ジメチルビニルクロルシラン等がある。シランカップリング剤処理は、微粉体を攪拌等によりクラウド状としたものに気化したシランカップリング剤を反応させる乾式処理又は、微粉体を溶媒中に分散させたシランカップリング剤を滴下反応させる湿式法等により処理される。

25 無機微粉末の平均粒子径は6nm~200nmが好ましく、その無機 微粉末の添加量はトナー母体100重量部に対し1.0~5.5重量部

10

外添処理する構成が好ましい。 1. 0重量部未満であるとトナーの流動性が悪化する傾向となり、転写時の逆転写の発生を抑さえ切れない。 5. 5重量部を超えるとシリカ浮遊や感光体へのフィルミングが生じ易い。 平均粒子径 6 n m未満であると、シリカ浮遊や感光体へのフィルミングが生じ易い。 200 n mを超えると、トナーの流動性が悪化し易い。 このとき表面処理した無機微粉末の強熱減量が 1. 5~25 w t %であることが好ましい。より好ましくは 3~23 w t %、さらに好ましくは 5~20 w t %である。 1. 5 w t %未満であると、処理剤の機能が十分に発揮されず、帯電性、転写性向上の効果が現れにくい。 25 w t %を超えると未処理剤が存在し、現像性や耐久性に悪影響を与え易い。

また好ましい構成としては、ポリシロキサンと脂肪酸等を処理した無機微粉末の平均粒子径は30nm ~ 200 nmが好ましく、より好ましくは40nm ~ 140 nm、さらに好ましくは40nm ~ 90 nmである。転写性向上の効果とキャリアのスペント防止する効果が得られる。

- 15 さらには、平均粒子径が6nm~20nmの負帯電性シリカ微粉末と組合せた使用も好ましい。平均粒子径が6nm~20nmの無機微粉末をトナー母体粒子100重量部に対し0.5~2重量部と、ポリシロキサンと脂肪酸等を処理した平均粒子径30nm~200nmの無機微粉末をトナー母体粒子100重量部に対し0.5~3.5重量部とを少なく20 とも外添処理する構成が好ましい。この構成により機能分離したシリカの使用で、現像でのハンドリング性、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。またキャリアへのスペントを防止できる。前記の範囲が外れると、そのマージン幅が狭まり、マシンサイドでの精度向上が要求されることになる。
- 25 さらには、平均粒子径が6nm~20nm、強熱減量が1.5~25 wt%である無機微粉末をトナー母体粒子100重量部に対し0.5~

10

15

2重量部と、平均粒子径30nm~200nmのポリシロキサンと脂肪酸等を処理した強熱減量が1.5~25wt%である無機微粉末をトナー母体粒子100重量部に対し0.5~3.5重量部とを、少なくとも外添処理する構成が好ましい。シリカの強熱減量を前記の範囲とすることにより、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。また先述したキャリアやワックスと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることができ、現像メモリー発生を抑制できる。前記範囲が外れると、そのマージン幅が狭まり、マシンサイドでの精度向上が要求されることになる。特に転写時の離型作用を安定化でき、逆転写、中抜けに対する転写マージンを安定化できる。

平均粒子径が6 nm~20 nmの強熱減量が1.5 wt %未満であると、逆転写、中抜けに対する転写マージンが狭くなる。25 wt %を超えると、表面処理がムラになり、帯電のバラツキが生じ易い。好ましくは強熱減量が1.5~20 wt %、より好ましくは5~19 wt %である。

さらに、平均粒子径6nm~120nm、強熱減量が1.5~25wt%である正帯電性無機微粉末をトナー母体粒子100重量部に対し0.5~1.5重量部をさらに組合せて外添処理する構成も好ましい。トナーが長期連続使用の際に過帯電になることを抑え、より現像剤寿命を延ばすことが可能となる。さらには過帯電による転写時の飛散りを抑える効果も得られる。正帯電性無機微粉末を添加する効果は、正帯電性を有する無機微粉末とをトナーに添加することにより、トナーの長期連続使用時の帯電安定化に大きい効果を生ずる。またタンデム方式の電子写真 方式において、転写での帯電反発による画像乱れ、転写不良を抑えることができる。0.5重量部よりも少ないとその効果が得にくい。1.5

重量部を超えると、現像でのかぶりが増大し易い。強熱減量は好ましくは $1.5\sim25$ w t %、より好ましくは $5\sim20$ w t %である。

正帯電性のシリカとしては、アミノシラン、アミノ変性シリコーンオイル、アミノアンモニウム処理されたシリカ、酸化チタン、アルミナ等が好ましい。このときトナー母体は負帯電性を示しており、この構成はトナー母体と逆帯電性を有する無機微粉末を添加する構成となることが好ましい。

無機微粉末の平均粒子径は電顕写真を拡大し、約100個の粒子を測定した平均値としている。また、外添剤として添加される無機微粉末の 10 乾燥減量は、1.0w t %以下が好ましい。1.0w t %を超えると、現像時でのカプリ等の画質劣化を生じ易い。また疎水化度は70%以上であることが好ましい。70%未満であると耐湿性が低下し易い。乾燥減量(%)は、予め乾燥、放冷、精秤した容器に試料約1gを取り、精秤する。熱風乾燥器(105℃±1℃)で2時間乾燥する。デシケータ中で30分間放冷後その重量を精秤し次式より算出する。

乾燥減量(%)=乾燥による減量(g)/試料量(g)×100 強熱減量は、予め乾燥、放冷、精秤した磁性ルツボに試料約1gを取 り、精秤する。500℃に設定した電気炉中で2時間強熱する。デシケ ータ中で1時間放冷後その重量を精秤し次式より算出する。

- 20 強熱減量(%)=強熱による減量(g)/試料量(g)×100 処理された無機微粉末の水分吸着量は、1wt%以下であることが好ましい。さらに好ましくは0.5wt%以下、より好ましくは0.1w t%以下、とくに好ましくは0.05wt%以下である。1wt%を超えると、帯電性の低下、耐久時の感光体へのフィルミングを生じ易い。
- 25 水分吸着量の測定は、水吸着装置については、連続蒸気吸着装置 (BE LSORP18:日本ベル株式会社) にて測定した。

20

25

疎水化度の測定は、250m1のピーカー中に装入した蒸留水50m1に試験すべき生成物0.2gを秤取する。先端に、液体中に浸威しているピュレットからメタノールを無機微粉末の総量がぬれるまで滴下する。その際不断に電磁攪拌機でゆっくりと攪拌する。完全に濡らすために必須なメタノール量a(m1)から次式により疎水化度が算出される。疎水化度= $(a/(50+a)) \times 100$ (%)

(2) ワッグス

本実施形態のトナーに添加するワックスとしては、ヨウ素価が25以下、けん化価が30~300からなる構成のワックスを、結着樹脂100重量部に対して3~20重量部添加することにより、トナー多層転写時にトナーの電荷作用による反発が緩和され、転写効率の低下、転写時の文字の中抜け、逆転写を抑えることができる。また先述したキャリアと組合せた使用によりキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。また現像器内でのハンドリング性が向上し、

15 現像の奥側と、手前側で画像の均一性が向上する。また現像メモリー発生を低減できる。

この結着樹脂は酸価が1~40mgKOH/gであればより好ましい。 好ましくは添加量としては結着樹脂100重量部に対して5~20重 量部添加することが好ましい。3重量部未満であると、定着性向上の効 果が得にくく、20重量部を超えると保存安定性に難点がある。

ヨウ素価が25を超えると、一次転写でのトナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。環境依存性が大きく、また長期連続使用時に材料の帯電性の変化が大きくなり画像の安定性を阻害する。また現像メモリーも発生しやすくなる。けん化価が30未満であると、不けん化物、炭化水素の存在が増加し、感光体フィルミング、帯電性の悪化を生じ易い。また電荷制御剤との分散性が不良となり、フ

10

15

20

25

ィルミングや連続使用時の帯電性の低下を招く。300を超えると樹脂中でのワックスの分散性が悪化し易く、トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。樹脂酸価が1mgKOH/g未満であると、トナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。樹脂酸価が40mgKOH/gを超えると、耐環境性が悪化し易く、かぶり増大を招き易い。

DSC法による融点が $50\sim120$ Cのものが好ましい。より好ましくはヨウ素価が15 以下、けん化価が $50\sim250$ 、DSC法による融点が $55\sim90$ C、さらに好ましくは、ヨウ素価が5 以下、けん化価が $70\sim200$ 、DSC法による融点が $60\sim85$ Cのものである。

さらに融点以上の温度での10℃変化時の容積増加率が2~30%の材料が好ましい。固体から液体に変わるとき急激に膨張することで定着時の熱で溶融したとき、トナー相互の接着性がより強化され、より定着性が向上し、また定着ローラとの離型性も良くなり耐オフセット性も向上する。2未満であると効果が少なく、30を超えると混練時の分散性が低下し易い。

またワックスの220℃における加熱減量は8重量%以下であることが好ましい。加熱減量が8重量%より大きくなると、加熱混練時に結着樹脂中に結着樹脂中に残留し、結着樹脂のガラス転移点を大きく低下させトナーの保存安定性を損なう。現像特性に悪影響を与え、カブリや感光体フィルミングを生じさせる。ヨウ素価が25以下、けん化価が30~300からなる構成のワックスは、ゲル浸透クロマトグラフィー(GPC)における分子量特性、数平均分子量が100~5000、重量平均分子量が200~10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.02~10、分平均分子量の比(Z平均分子量/数平均分子量)が1.02~10、分

子量5×10²~1×10⁴の領域に少なくとも一つの分子量極大ピー クを有していることが好ましい。より好ましくは数平均分子量が500 ~4500、重量平均分子量が600~9000、重量平均分子量と数 平均分子量の比(重量平均分子量/数平均分子量)が1.01~7、2 平均分子量と数平均分子量の比(2平均分子量/数平均分子量)が1. 5 02~9、さらに好ましくは数平均分子量が700~4000、重量平 均分子量が800~8000、重量平均分子量と数平均分子量の比(重 量平均分子量/数平均分子量)が1.01~6、Z平均分子量と数平均 分子量の比(Z平均分子量/数平均分子量)が1.02~8である。数 平均分子量が100未満で、重量平均分子量が200を超えると保存安 10 定性が悪化し易い。分子量極大ピークが5×10²よりも小さい範囲に 位置していると、ワックスとともに電荷制御剤の分散性が悪化する。ま た現像器内でのハンドリング性が低下し、トナー濃度の均一性保持を阻 害する。トナーの保存安定性の低下、キャリアスペントの増大、感光体 フィルミングを生じ易い。数平均分子量が5000を超え、重量平均分 15 子量が10000を超え、重量平均分子量と数平均分子量の比(重量平 均分子量/数平均分子量)が8を超え、2平均分子量と数平均分子量の 比(Z平均分子量/数平均分子量)が10を超え、分子量極大ピークが 1×10⁴の領域を超える範囲に位置していると、離型作用が弱くなり 定着性、耐オフセット性等の定着性機能が低下し易い。 20

ワックスとしては、メドウフォーム油誘導体、カルナウバワックス、ホホバ油誘導体、木口ウ、ミツロウ、オゾケライト、カルナウバワックス、キャンデリアワックス、モンタンワックス、セレシンワックス、ライスワックス等の天然ワックス、フィッシャートロプッシュワックス等の合成系ワックス等の材料も好ましく、一種類又は二種類以上組み合わせての使用も可能である。特にDSC法による融点が76~90℃であ

るカルナウバワックス、66~80℃であるキャンデリラワックス、64~78℃である水添ホホバ油、64~78℃である水添メドウフォーム油又は74~90℃であるライスワックスからなる群より選ばれた少なくとも1種又は2種以上のワックスもより好ましい。

5 ケン化価は、試料の1gをけん化するのに要する水酸化カリウムKO Hのミリグラム数をいう。酸価とエステル価の和にあたる。ケン化価値 を測定するには約0.5Nの水酸化カリウムのアルコール溶液中で試料 をケン化した後、0.5Nの塩酸で過剰の水酸化カリウムを滴定する。

ヨウ素価は試料にハロゲンを作用させたときに、吸収されるハロゲン の量をヨウ素に換算し、試料100gに対するg数で表したものをいう。 試料100gに吸収されるヨウ素のグラム数であり、この値が大きいほど試料中の脂肪酸の不飽和度が高いことを示す。試料のクロロホルムまたは四塩化炭素溶液にヨウ素と塩化水銀(Ⅱ)のアルコール溶液又は塩化ヨウ素の氷酢酸溶液を加えて、放置後反応しないで残ったヨウ素をチオ硫酸ナトリウム標準液で滴定して吸収ヨウ素量を算出する。

加熱減量の測定は試料セルの重量を 0.1mgまで精秤(W1mg) し、これに試料 $10\sim15mg$ を入れ、0.1mgまで精秤する(W2mg)。試料セルを示差熱天秤にセットし、秤量感度を 5mgにして測定開始する。温度制御は下記プログラムにて行う。測定後、チャートにより試料温度が 220 ℃になった時点での重量減を 0.1mgまで読み取る(W3mg)。装置は、真空理工製 TGD-3000、昇温速度は 10 ℃/min、最高温度は 220 ℃、保持時間は 1minで、加熱減量 (%) = W3 / (W2-W1) × 100、で求める。

メドウフォーム油誘導体としては、メドウフォーム油脂肪酸、メドウ 25 フォーム油脂肪酸の金属塩、メドウフォーム油脂肪酸エステル、水素添 加メドウフォーム油、メドウフォーム油アミド、ホモメドウフォーム油

アミド、メドウフォーム油トリエステル、エポキシ化メドウフォーム油のマレイン酸誘導体、メドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性メドウフォーム油がオイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。

メドウフォーム油脂肪酸エステルとしては例えば、メチル、エチル、 ブチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコー ル、トリメチロールプロパンなどのエステルであり、特に、メドウフォ ーム油脂肪酸ペンタエリスリトールモノエステル、メドウフォーム油脂 肪酸ペンタエリスリトールトリエステル、メドウフォーム油脂肪酸トリ 10 メチロールプロパンエステルなどが好ましい。高温での耐オフセット性 とともに耐コールドオフセット性が良好である。さらには、メドウフォ ーム油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプ ロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシ アネート (TDI)、ジフェニルメタン-4,4'-ジイソシアネート 15 (MDI)、等のイソシアネートで架橋して得られるメドウフォーム油 脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用 できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命 化が可能となる。

20 水素添加メドウフォーム油はメドウフォーム油に水素添加して不飽和 結合を飽和結合としたものである。耐オフセット性とともに、光沢性、 透光性を向上できる。

メドウフォーム油アミドはメドウフォーム油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニ ア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分

解する前に水素添加することも可能である。融点が75~120℃の物が得られる。ホモメドウフォーム油アミドは、メドウフォーム油を加水分解後還元してアルコールとした後、ニトリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。

5 ホホバ油誘導体としては、ホホバ油脂肪酸、ホホバ油脂肪酸の金属塩、ホホバ油脂肪酸エステル、水素添加ホホバ油、ホホバ油アミド、ホモホホバ油アミド、ホホバ油トリエステル、エポキシ化ホホバ油のマレイン酸誘導体、ホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性ホホバ油がオイルレス定着と現像剤の長寿命化、

10 転写性改良に効果が得られる好ましい材料である。これらは1種又は2 種以上組み合せての使用が可能である。

ホホバ油脂肪酸エステルとしては例えば、メチル、エチル、プチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、ホホバ油脂肪酸ペンタエリスリトールトリエステル、ホホバ油脂肪酸トリメチロールプロパンエステルなどが好ましい。高温での耐オフセット性とともに耐コールドオフセット性が良好である。

さらには、ホホバ油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシアネート(TDI)、ジフェニルメタン-4,4'-ジシソシアネート(MDI)、等のイソシアネートで架橋して得られるホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命化が可能となる。水素添加ホホバ油はホホバ油に水素添加して不飽和結合を飽和結合としたものである。耐オフセット性とともに、光

20

25

沢性、透光性を向上できる。

ホホバ油アミドはホホバ油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分解する前に水素添加することも可能である。融点が75~120℃の物が得られる。ホモホホバ油アミドは、ホホバ油を加水分解後還元してアルコールとした後、ニトリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。

また本実施形態では、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。先述したキャリアと組合せた使用により、オイルレス定着と共に現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。

ヒドロキシステアリン酸の誘導体としては、12-ヒドロキシステアリン酸メチル、12-ヒドロキシステアリン酸プチル、プロピレングリコールモノ12-ヒドロキシステアラート、グリセリンモノ12-ヒドロキシステアラート、エチレングリコールモノ12-ヒドロキシステアラート等が好適な材料である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。

グリセリン脂肪酸エステルとしてはグリセリンモノステアラート、グリセリントリステアラート、グリセリンステアラート、グリセリンモノパルミタート、グリセリントリパルミタート等が好適な材料である。オイルレス定着における低温時のコールドオフセット性緩和と、転写性低下防止効果がある。

25

グリコール脂肪酸エステルとしては、プロピレングリコールモノパルミタート、プロピレングリコールモノステアラート等のプロピレングリコール脂肪酸エステル、エチレングリコールモノステアラート、エチレングリコールモノパルミタート等のエチレングリコール脂肪酸エステルが好適な材料である。オイルレス定着性とともに、現像での滑りを良くしキャリアスペント防止の効果がある。

ソルビタン脂肪酸エステルとしては、ソルビタンモノパルミタート、 ソルビタンモノステアラート、ソルビタントリパルミタート、ソルビタ ントリステアラートが好適な材料である。さらには、ペンタエリスリト ールのステアリン酸エステル、アジピン酸とステアリン酸又はオレイン 酸の混合エステル類等の材料が好ましく、一種類又は二種類以上組み合 わせての使用も可能である。オイルレス定着における紙の巻付き防止効 果と、フィルミング防止効果がある。

また、本実施形態では脂肪族アミド系のワックスが好適に使用できる。 これによりカラー画像における透光性を大きく向上できる。特に定着画像表面の平滑性を促進させ高画質のカラー像を得ることが可能となる。 さらには定着時の複写用紙の定着ローラへの巻き付きを防止することができ、透光性と耐オフセット性の両立、転写時の中抜けを防止することが可能となる。先述したキャリアと組合せた使用により、オイルレス定 着と共にスペントの発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。

脂肪族アミド系のワックスとしては、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、アラキジン酸アミド、エイコセン酸アミド、ベヘニン酸アミド、エルカ酸アミド、リグリノセリン酸アミド等の炭素数 $16\sim24$ を有する飽和または 1 価の不飽和の脂肪族アミドで、融点が $60\sim120$ ℃が好ましい。より好

ましくは70~100℃、さらに好ましくは75~95℃である。添加量は結着樹脂100重量部に対し5~20重量部が好ましい。融点が60℃未満であると樹脂中での分散性が低下し、感光体へのフィルミングが発生しやすくなる。融点が120℃を超えると定着画像表面の平滑性が低下し、透光性が悪化し易い。また添加量が20重量部を超えると保存安定性が悪化し易い。添加量が5重量部未満であるとワックスの機能が発揮しにくい。

さらにはメチレンビスステアリン酸アミド、エチレンビスステアリン 酸アミド、プロピレンビスステアリン酸アミド、プチレンビスステアリ ン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸 10 アミド、プロピレンビスオレイン酸アミド、ブチレンビスオレイン酸ア ミド、メチレンビスラウリン酸アミド、エチレンビスラウリン酸アミド、 プロピレンビスラウリン酸アミド、プチレンビスラウリン酸アミド、メ チレンビスミリスチン酸アミド、エチレンビスミリスチン酸アミド、プ ロピレンビスミリスチン酸アミド、プチレンビスミリスチン酸アミド、 15 メチレンビスパルミチン酸アミド、エチレンビスパルミチン酸アミド、 プロピレンビスパルミチン酸アミド、ブチレンビスパルミチン酸アミド、 メチレンピスパルミトレイン酸アミド、エチレンピスパルミトレイン酸 アミド、プロピレンビスパルミトレイン酸アミド、プチレンビスパルミ トレイン酸アミド、メチレンビスアラキジン酸アミド、エチレンビスア 20 ラキジン酸アミド、プロピレンビスアラキジン酸アミド、プチレンビス アラキジン酸アミド、メチレンピスエイコセン酸アミド、エチレンピス エイコセン酸アミド、プロピレンビスエイコセン酸アミド、プチレンビ スエイコセン酸アミド、メチレンビスベヘニン酸アミド、エチレンビス ベヘニン酸アミド、プロピレンビスベヘニン酸アミド、プチレンビスベ 25 ヘニン酸アミド、メチレンビスエルカ酸アミド、エチレンビスエルカ酸

えるとカブリが増大する。

5

アミド、プロピレンビスエルカ酸アミド、ブチレンビスエルカ酸アミド等の飽和または1~2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系のワックスが好ましい。これによりカラー画像における透光性を改善すると共にローラへの耐オフセット性を向上させることが可能となる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。添加量は結着樹脂100重量部に対し3~20重量部が好ましい。添加量が3重量部未満であると機能が発揮し得ず、20重量部を超

さらには、脂肪族アミド系とアルキレンビス脂肪酸アミド系を3:7 ~7:3の割合でワックスを構成することにより、定着画像の表面平滑性を改善できるとともにさらにはカラー画像の高透光性と耐オフセット性の両立をより優れたものとすることができる。そのときの融点は脂肪族アミド系よりもアルキレンビス脂肪酸アミド系の方が高いことが必要である。アルキレンビス脂肪酸アミド系の融点が低くなると耐オフセット性が低下するのみでなく樹脂自体が低軟化の状態となり粉砕時の過粉砕が進み、微粉が増大し生産性の低下につながる。

特に脂肪族アミド系は低融点材料であるため、樹脂への相溶化が進むと樹脂自体が可塑化され、耐オフセット性、保存安定性が低下し、さらには長期使用中に転写の中抜けが悪化する。そのため脂肪族アミド系よりも高融点材料のアルキレンビス脂肪酸アミド系とを組み合わせて使用することで、樹脂自体の可塑化が抑えられ、脂肪族アミド系の高透光性と表面平滑性の効果を失うことなく長期使用時の転写の中抜けを防止でき、耐オフセット性、保存安定性を維持することができる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

25 また、GPCにおける分子量分布において、重量平均分子量が100 0~6000、Z平均分子量が1500~9000、重量平均分子量と

数平均分子量の比(重量平均分子量/数平均分子量)が1.1~3.8、 Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1. 5~6. 5、1×10³~3×10⁴の領域に少なくとも一つの分子量 極大ピークを有し、酸価5~80mgΚΟΗ/g、融点60~120℃、 25℃における針入度が4以下である炭素数4~30の長鎖アルキルア 5 ルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系 ワックスとの反応により得られるワックス、又は長鎖アルキルアミンと 不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスと の反応により得られワックス、又は長鎖フルオロアルキルアルコールと 不飽和多価カルポン酸又はその無水物及び不飽和炭化水素系ワックスと 10 の反応により得られるワックスは、薄紙に3層のカラートナーが形成さ れた画像において、定着ローラやベルトとの紙の分離性向上に特に効果 がある。高温オフセット性を低下させること無く、OHPの透過性向上 に効果がある。また、ワックスの添加により定着特性、特にはオイルレ ス定着における非オフセット性と高光沢性、高透光性を発現でき、高温 15 保存性を低下させることがない。また定着ローラにフッ素系やシリコン 系部材を使用しても、ハーフトーン画像のオフセットを防止できる。先 述したキャリアと組合せた使用により、オイルレス定着と共にスペント の発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性 が保持でき、現像メモリーの発生も抑制できる。さらには連続使用時の 20 帯電安定性が得られ、定着性と現像帯電安定性との両立が可能となる。 さらにはこれを結着樹脂中に添加する際の分散の状態向上により、離型 性、透光性等の定着性、帯電安定化等の現像性をより向上することがで きる。離型剤の添加により他の内添加剤の分散性を低下させる場合が考 えられるが、本実施形態の添加剤の構成により双方の分散性を低下させ 25 ること無く、定着性と現像性の両立を図ることができる。

ここで、ワックスの長鎖アルキルの炭素数が4未満であると離型作用が弱くなり分離性、高温非オフセット性が低下する。長鎖アルキルの炭素数が30を超えると結着樹脂中での分散性が悪化する。酸価が5mg KOH/g未満であるとトナーの長期使用時の帯電量低下を招く。酸価が80mg KOH/gを超えると耐湿性が低下し、高湿下でのかぶりが増大する。融点が60℃未満であるとトナーの保存性が低下する。融点が120℃を超えると離型作用が弱くなり非オフセット温度幅が狭くなる。25℃における針入度が4を超えると強靭性が低下し、長期使用中に感光体フィルミングを生じる。

重量平均分子量が1000よりも小さく、2平均分子量が1500よ 10 り小さく、重量平均分子量/数平均分子量が1.1よりも小さく、2平 均分子量/数平均分子量が1.5よりも小さく、分子量極大ピークが1 ×10³よりも小さい範囲に位置していると、トナーの保存性が低下、 感光体や中間転写体にフィルミングを発生する。また現像器内でのハン ドリング性が低下し、トナー濃度の均一性を低下させる。また現像メモ 15 リーを生じ易くなる。重量平均分子量が6000よりも大きく、乙平均 分子量が9000よりも大きく、重量平均分子量/数平均分子量が3. 8よりも大きく、 2平均分子量/数平均分子量が 6. 5よりも大きく、 分子量極大ピークが3×10⁴の領域よりも大きい範囲に位置している と、離型作用が弱くなり定着オフセット性が低下する。より好ましくは 20 重量平均分子量が1000~5000、2平均分子量が1700~80 00、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分 子量)が1.1~2.8、2平均分子量と数平均分子量の比(2平均分 子量/数平均分子量) が1.5~4.5、1×10³~1×10⁴の領 域に少なくとも一つの分子量極大ピークを有することが好ましく、更に 25 好ましくは重量平均分子量が1000~2500、2平均分子量が19

00~3000、重量平均分子量と数平均分子量の比(重量平均分子量 /数平均分子量)が1.2~1.8、2平均分子量と数平均分子量の比 (Z平均分子量/数平均分子量)が1.7~2.5、1×10³~3× 103の領域に少なくとも一つの分子量極大ピークを有することである。 アルコールとしてはオクタノール、ドデカノール、ステアリルアルコー 5 ル、ノナコサノール、ペンタデカノール等の長鎖のアルキル鎖を持つも のが使用できる。またアミン類としてN-メチルヘキシルアミン、ノニ ルアミン、ステアリルアミン、ノナデシルアミン等が好適に使用できる。 フルオロアルキルアルコールとしては、1-メトキシー (パーフルオロ ー2-メチルー1-プロペン)、ヘキサフルオロアセトン、3-パーフ 10 ルオロオクチルー1、2-エポキシプロパン等が好適に使用できる。不 飽和多価カルボン酸又はその無水物としては、マレイン酸、無水マレイ ン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸 等が一種または二種以上使用できる。なかでもマレイン酸、無水マレイ ン酸がより好ましい。不飽和炭化水素系ワックスとしては、エチレン、 15 プロピレン、ブチレン等の二重結合を有するオレフィンが好適に使用で きる。不飽和多価カルボン酸又はその無水物をアルコールまたはアミン を用いて重合させ、次にこれをジクルミパーオキサイドやターシャリー ブチルパーオキシイソプロピルモノカルボネート等の存在下で不飽和炭 化水素系ワックスに付加させることにより得ることができる。添加量は 20 結着樹脂100重量部に対し、3~20重量部が好ましい。3重量未満 であると離型効果が出にくい。20重量を超えるとトナーの流動性が低 下するばかりでなくそれ以上添加しても飽和して効果が向上しにくい。 また、ワックスの結着樹脂中の分散平均粒子径が0.1~1.5 μm で、分散粒子径分布が 0.1 μ m未満の粒子が 3 5 個数 % 以下、 0.1 25

~2.0 μmの粒子が65個数%以上、2.0 μmを越える粒子が5個

数%以下であることが好ましい。TEMによるトナーの断面写真から粒 径とその個数を求めた。分散平均粒子径が 0.1μ mより小さく、0.1μm未満の粒子が35個数%より多いとき、離型剤としての離型効果 が小さく、定着能力が発揮できない。分散平均粒子径が1. 5μmより 大きく、2.0μmを越える粒子が5個数%よりも多いとき、樹脂中で 5 のワックスの分散性が悪化し、トナーの電荷作用による反発が緩和され にくくなる。またカプリやトナー飛散の増大を招く。また樹脂中でワッ クスは線状または楕円状構造の場合、長軸径が平均で 0.5~3μm、 0.5μm未満の粒子が35個数%以下、0.5~3.5μmの粒子が 65個数%以上、3.5μmを越える粒子が5個数%以下であることが 10 好ましい。平均径が $0.5 \mu m$ より小さく、 $0.5 \mu m$ 未満の粒子が 35個数%より多いとき、離型剤としての離型効果が小さく、定着能力が 発揮できない。平均径が 3μ mより大きく、 3. 5μ mを越える粒子が 5個数%よりも多いとき、樹脂中でのワックスの分散性が悪化し、トナ 一の電荷作用による反発が緩和されにくくなる。またカブリやトナー飛 15 散の増大を招く。現像器内でのハンドリング性が低下し、また現像メモ リー性が低下する。

(3) 結着樹脂

本実施形態の結着樹脂としてGPCにおける分子量分布で、2×10
3~3×10⁴の領域に少なくとも一つの分子量極大ピークを有し、かつ、高分子量領域に存在する成分として3×10⁴以上の分子量成分を結着樹脂全体に対し5%以上有し、重量平均分子量が1万~30万、Z平均分子量が2万~500万、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が3~100、Z平均分子量と数平均分子量/数平均分子量)が10~2000、定荷重押出し形細管式レオメータフローテスタによる1/2法による溶融温度

(以下軟化点)が $80\sim150$ \mathbb{C} 、流出開始温度は $80\sim120$ \mathbb{C} 、樹脂のガラス転移点が $45\sim68$ \mathbb{C} の範囲であるポリエステル樹脂を成分とすることが好ましい。

好ましくは重量平均分子量が1万~20万、Z平均分子量が2万~300万、重量平均分子量/数平均分子量が3~50、Z平均分子量/数平均分子量が20~1000、軟化点が90~140℃、流出開始温度は85~115℃、ガラス転移点が52~68℃の範囲であるポリエステル樹脂を成分とすることが好ましい。

より好ましくは重量平均分子量が1万~15万、Z平均分子量が2万 10 ~50万、重量平均分子量/数平均分子量が3~15、Z平均分子量/ 数平均分子量が50~1000、軟化点が105~135℃、流出開始 温度は90~120℃、ガラス転移点が58~66℃の範囲であるポリ エステル樹脂を成分とすることが好ましい。

また高分子量領域に存在する成分として、好ましくは1×10⁵以上 の分子量成分を結着樹脂全体に対し3%以上有することが好ましい。さらには高分子量領域に存在する成分として、3×10⁵以上の分子量成分を結着樹脂全体に対し0.5%以上有することが好ましい。

好ましくは高分子量領域に存在する成分として、8×10⁴~1×10⁷の分子量成分を結着樹脂全体に対し3%以上有し、かつ1×10⁷20 以上の成分は含有しない構成が好ましい。

更に好ましくは、高分子量領域に存在する成分として、 $3 \times 10^{5} \sim 9 \times 10^{6}$ の高分子量成分を結着樹脂全体に対し1%以上有し、かつ 9×10^{6} 以上の成分は含有しない構成である。

更に好ましくは、高分子量領域に存在する成分として、 $7 \times 10^{5} \sim 6 \times 10^{6}$ の高分子量成分を結着樹脂全体に対し1%以上有し、かつ 6×10^{6} 以上の成分は含有しない構成である。

高分子量成分が多すぎると、あるいは巨大すぎると混練時に巨大分子量成分が残留し、透光性を阻害する。また樹脂自体の製造効率が低下する。現像ローラ供給ローラに不要な傷を付け画像に縦筋を生じさせる。またワックスの分散性が低下する。

5 結着樹脂の重量平均分子量が1万より小さく、Z平均分子量が2万より小さく、重量平均分子量/数平均分子量が3より小さく、Z平均分子量/数平均分子量が10より小さく、軟化点が80℃より小さく、流出開始温度が80℃より小さく、ガラス転移点が45℃より小さくとなると、混練時の分散性が低下し、カブリの増加や耐久性の悪化を招く。また混練時の混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。樹脂中でのワックスや電荷制御剤の分散性が悪化し、トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。また耐オフセット性、高温保存性の悪化、さらには転写体でのクリーニング不良、感光体へのフィルミングが発生する。

15 結着樹脂の重量平均分子量が30万より大きく、2平均分子量が50 0万より大きく、重量平均分子量/数平均分子量が100より大きく、 Z平均分子量/数平均分子量が2000より大きく、軟化点が150℃ より大きく、流出開始温度が120℃より大きく、ガラス転移点が6 8℃より大きくとなると、機械の処理中の負荷が過大となり生産性の極 20 端な低下や、カラー画像での透光性の低下や定着強度の低下につながる。

また、溶融混練処理された後のトナーのGPCにおける分子量分布が、 $2 \times 10^3 \sim 3 \times 10^4$ の領域に少なくとも一つの分子量極大ピークを有し、 $5 \times 10^4 \sim 1 \times 10^6$ の領域に少なくとも一つの分子量極大ピーク又はショルダーを有する構成とすることで、より定着性が向上する。

25 トナーの低分子量側に存在する分子量極大ピークが、好ましくは 3×1 $0^3 \sim 2 \times 10^4$ の領域に少なくとも一つ有し、さらに好ましくは 4×10^4

1.5

10³~2×10⁴の領域に少なくとも一つ有する構成である。

トナーの高分子量側に存在する分子量極大ピーク又はショルダーの位置が、好ましくは、 $6\times10^4\sim7\times10^5$ の領域に少なくとも一つ有し、さらに好ましくは $8\times10^4\sim5\times10^5$ の領域に分子量極大ピーク又はショルダーを少なくとも一つ有する構成である。

低分子量側に存在するトナーの分子量分布の分子量極大ピーク位置が、 2×10^3 より小さくなると耐久性が悪化し、 3×10^4 より大きくなると定着性が悪化し、透光性が低下する。

また、高分子量側に存在するトナーの分子量分布の分子量極大ピーク 10 又はショルダーの位置が、 5×10^4 より小さくなると、耐オフセット 性が低下し、保存安定性が悪化する。現像性が悪化しカブリが増大する。 1×10^6 より大きくなると粉砕性が低下し、生産効率の低下を招く。

さらに、トナーの高分子量領域に存在する成分として、5×10⁵以上の高分子量成分の含有量が結着樹脂全体に対し10wt%以下であることが好ましい。5×10⁵以上の高分子量領域に存在する成分が多くなり、あるいは巨大の状態は、混練時にトナー構成材料に均一な混練ストレスが加わらず、混練状態が不具合となった結果である。これにより透光性が著しく阻害される。また分散不良によるカブリの増大、転写効率の低下、トナーの粉砕性が悪化し製造効率が低下する。

20 より好ましくは、5×10⁵以上の高分子量成分の含有量が結着樹脂 全体に対し5%以下であり、さらに好ましくは、1×10⁶以上の高分 子量成分の含有量が結着樹脂全体に対し1%以下、若しくは含有しない 構成である。

また、トナーのGPCクロマトグラムにおける分子量分布で、 2×1 25 $0^3 \sim 3 \times 10^4$ の領域に存在する分子量極大ピークの分子量分布の高さをHa、 $5 \times 10^4 \sim 1 \times 10^6$ の領域に存在する分子量極大ピーク

10

15

20

25

又はショルダーの高さをH b とすると、H b / H a を 0 . 1 5 \sim 0 . 9 とすることである。

Hb/Haが、0.15より小さくなると耐オフセット性が悪化し、保存安定性も低下し、現像ローラや感光体へのフィルミングを助長する結果となる。0.9より大きくなると、粉砕性が悪化し、生産性が低下しコストアップにつながる。より好ましくは、 $Hb/Haが0.15\sim0.7$ 、さらに好ましくは、 $Hb/Haが0.2\sim0.6$ である。

また、トナーのGPCにおける分子量分布で、 $2\times10^3\sim3\times10^4$ の領域に少なくとも一つの分子量極大ピーク、 $5\times10^4\sim1\times10^6$ の領域に少なくとも一つの分子量極大ピーク又はショルダーを有する構成で、分子量 $5\times10^4\sim1\times10^6$ の領域に存在する分子量分布の極大ピーク又はショルダーに相当する分子量値よりも大きい領域にある分子量曲線に着目し、その分子量分布の極大ピーク又はショルダーの高さを基準100%として、その分子量極大ピーク又はショルダーの高さに対して90%の高さに相当する分子量をM90、分子量極大ピーク又はショルダーの高さに相当する分子量をM90、分子量極大ピーク又はショルダーの高さの10%の高さに相当する分子量をM10とした場合、M10/M90が0. $5\sim8$ とすること、さらには、(M10-M90)/M90が0. $1\sim7$ とすることで高透光性を確保できかつ定着オイルを必要とせずとも、オフセット防止できるオイルレス定着を実現できる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

上記M10/M90、さらには、(M10-M90)/M90の値(分子量分布曲線の傾き)を規定することは超高分子量成分の分子切断の状態を定量化できるものであり、この値が上記記載した範囲内(分子量分布曲線の傾きが急峻であることを示唆する)である場合には、透光性を阻害している超高分子量成分が混練時の切断により無くなり、高透光性を有するようになる。さらには、この高分子側に現れるピーク又はショルダーを形成する

10

15

高分子量成分が耐オフセット性に寄与し、オイルを使用せずともカラートナーのオフセットの発生を防ぐことが可能となる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

さらにはこの超高分子量成分を分子切断する際に、結着樹脂中でワックス、電荷制御剤の均一分散化処理を可能とすることができ、帯電量が均一化し、鮮明な解像度を有し、長期連続使用しても耐久性を悪化させることがない。また転写体のクリーニング性が向上し、現像器内でのハンドリング性が向上しトナー濃度の均一性が向上する。現像メモリーの発生も抑制できる。転写時の画像乱れ、中抜けを防止でき高効率な転写性を得ることが可能となる。

M10/M90の値が8を超え、または(M10-M90)/M90が7未満の場合には、依然超高分子量成分が残存し、透光性を阻害する。M10/M90の値が0.5未満、または(M10-M90)/M90が0.1未満の場合には、混練時の機械的負荷が過大となり生産性が低下する。トナーの耐久性が低下する。より好ましくはM10/M90の値が0.5~6であり、(M10-M90)/M90が0.1~4.5である。さらに好ましくは、M10/M90の値が0.5~4.5であり、(M10-M90)/M90が0.1~3.5である。

これにより、デジタル高画質化、高彩色再現性カラー化、二成分現像におけるキャリアへのスペントを防止でき、定着ローラにオフセット防20 止用のオイルを使用しないで高透光性と耐オフセット性の両立を図れる。さらにはクリーナプロセスの実現、転写間短距離、高速のタンデム転写プロセスにおける転写工程での中抜け防止、高転写性を実現することができる。

上記した結着樹脂を溶融混練処理において高せん断力にて混練するこ 25 とで従来にない特性を発現することが可能となる。オイルを用いない定 着でカラートナーの高い透光性と耐オフセット性を両立させることがで

25

きる。つまり超高分子量成分を付与した結着樹脂を高せん断力により、超高分子量成分を低分子量化しそれにより高透光性が発現し、さらにはこの低分子量化した超高分子量成分の存在により耐オフセット性も満足できる。また超高分子量成分を有するため、混練時に高いせん断力がかかるため、ワックスがより均一に分散させることが可能となり、より透光性が良化し、非オフセット性、高画質、高彩色再現性、良好な転写性が得られる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

溶融混練処理後のトナーの重量平均分子量が8000~18万、Z平均分子量が18000~100万、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が3~80、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10~1000となることである。この適性範囲にトナーを高せん断力による混練処理することにより、オイルを用いない定着でカラートナーの高透光性と耐オフセット性を両立させることが可能となる。好ましくは重量平均分子量が800~10万、Z平均分子量が1800~30万、重量平均分子量/数平均分子量が10~500であることが好ましい。さらに好ましくは重量平均分子量が1万~4万、Z平均分子量が2万~8万、重量平均分子量/数平均分子量が3~30、20Z平均分子量/数平均分子量が3~30、20Z平均分子量/数平均分子量が3~30、20Z平均分子量/数平均分子量が3~30、20Z平均分子量/数平均分子量が10~50であることが好ましい。

重量平均分子量が8000より小さく、2平均分子量が18000より小さく、重量平均分子量/数平均分子量が3より小さく、2平均分子量/数平均分子量が10より小さくなると、混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。ワックスの分散性が低下し耐オフセット性、高温保存性の悪化、さらには中間転写体でのクリーニング不良、感光体へのフィルミングが発生する。

15

20

25

重量平均分子量が18万より大きく、Z平均分子量が100万より大きく、重量平均分子量/数平均分子量が80より大きく、Z平均分子量/数平均分子量が1000より大きくなると、逆に電荷制御剤等の内添剤が相互に凝集を生じ、分散性の低下につながり、かぶりの増加、画像濃度の低下、転写不良の発生を招く。また定着強度の低下や、透光性、光沢度が低下する。

また結着樹脂はTHF不溶成分が5重量%以下、好ましくはTHF不溶成分を有しないことである。THF不溶成分が5重量%より多いとカラー画像の透光性を悪化させる要因となり、画質を劣化させてしまう。

10 本実施形態に好適に使用される結着樹脂は、アルコール成分とカルボン酸、カルボン酸エステル及びカルボン酸無水物等のカルボン酸成分との重縮合によって得られるポリエステル樹脂が好適に使用される。

2価カルボン酸又は低級アルキルエステルとしては、マロン酸、コハク酸、グルタル酸、アジピン酸、ヘキサヒドロ無水フタル酸などの脂肪族二塩基酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸などの脂肪族不飽和二塩基酸、及び無水フタル酸、フタル酸、テレフタル酸、イソフタル酸などの芳香族二塩基酸、及びこれらのメチルエステル、エチルエステル等を例示することが出来る。この中でコハク酸、フタル酸、テレフタル酸、イソフタル酸等の芳香族二塩基酸及びそれらの低級アルキルエステルが好ましい。コハク酸とテレフタル酸、若しくはフタル酸とテレフタル酸とを組合せた使用が好ましい。

3 価以上のカルボン酸成分としては 1 , 2 , 4 - ベンゼントリカルボン酸、 1 , 2 , 5 - ベンゼントリカルボン酸、 1 , 2 , 4 - シクロヘキサントリカルボン酸、 2 , 5 , 7 - ナフタレントリカルボン酸、 1 , 2 , 4 - プタントリカルボン酸、 1 , 2 , 4 - ブタントリカルボン酸、 1 , 2 , 5 - ヘキサトリカルボン酸、 1 , 3 - ジカルボキシルー 2 - メ

チルー2-メチレンカルボキプロパン、テトラ (メチレンカルボキシル) メタン、1, 2, 7, 8-オクタンテトラカルボン酸、ピロメリット酸、エンポール三量体酸及びこれらの酸無水物、アルキル (炭素数1~12) エステル等が挙げられる。

2価アルコールとしては、エチレングリコール、1,2ープロピレングリコール、1,3ープチレングリコール、1,3ープチレングリコール、1,6ーへキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物、などのジオール、グレセリン、トリメチロールプロパン、トリメチロールエタンなどのトリオール、及びそれらの混合物を例示することが出来る。この中で特に(化1)に示すビスフェノールA、その誘導体、そのアルキレンオキサイド付加物、ネオペンチルグリコール、トチメチロールプロパンが好ましい。

(但し、Rはエチレン基又はプロピレン基を示し、x, yは各々1以上の整数で、かつx+yの平均値は $2\sim10$ である。)

 3価以上のアルコール成分としては、ソルビトール、1,2,3,6 ーへキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、
 ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、グリセロール、2ーメチルプロパントリオール、2ーメチルー1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-

20

25

トリヒドロキシメチルベンゼン等が挙げられる。

重合は公知の重縮合、溶液重縮合等を用いることができる。これによって耐塩ビマット性やカラートナーの色材の色を損なうことなしに、良好なトナーを得ることができる。

5 多価カルボン酸と多価アルコールの使用割合は通常、カルボキシル基数に対する水酸基数の割合(OH/COOH)で0.8~1.4が一般的である。

樹脂、ワックス及びトナーの分子量は、数種の単分散ポリスチレンを標準サンプルとするゲル浸透クロマトグラフィー(GPC)によって測定された値である。

また炭素数 $4 \sim 3$ 0 の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスの測定は、装置はWATERS製GPC-150C、カラムはShodex HT-806M(8.0mmI.D.-30cm×2)、溶離液はo-ジクロロベンゼン、流量は1.0mL/min、試料濃度は0.3%、注入量は200μL、検出器はRI、測定温度は130℃、測定前処理は試料を溶媒に溶解後0.5 μ mの金属焼結フィルターでろ過処理した。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得

15

20

られる検量線における分子量の対数とカウント数が直線となる範囲内に 包含される条件である。

また、結着樹脂の軟化点は、島津製作所の定荷重押出し形細管式レオメータフローテスタ(CFT500)により、 1 cm^3 の試料を昇温速度 $6 \text{ C}/\text{分で加熱しながらプランジャーにより約9.} 8 \times 10^5 \text{ N}/\text{m}^2$ の荷重を与え、直径1 mm、長さ1 mmのダイから押し出して、このプランジャーのピストンストロークと温度との関係における昇温温度特性との関係から、ピストンストロークが立上がり始める温度が流出開始温度(TfbC)、曲線の最低値と流出終了点の差の1/2を求め、それと世線の最低値を加えたもの体際にかりる現在であれる。

10 それと曲線の最低値を加えた点の位置における温度を1/2法における溶融温度(軟化点Tm \mathbb{C})となる。

また樹脂のガラス転移点は示差走査熱量計を用い、ASTMD3418-82に準じて行う。100℃まで昇温し、その温度にて3分間放置した後、降温速度10℃/minで室温まで冷却したサンプルを、昇温速度10℃/minで昇温して熱履歴を測定した際に、ガラス転移点以下のベースラインの延長線とピークの立上がり部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度を言う。

DSCによる吸熱ピークの融点は、島津製作所の示差熱量分析計DSC-50を使用した。5 \mathbb{C}/m inで2 0 0 \mathbb{C} まで昇温し、5 分間保温 1 0 \mathbb{C} まで急冷後、1 5 分間放置後 5 \mathbb{C}/m in で昇温させ、吸熱(融解)ピークから求めた。セルに投入するサンプル量は1 0 m g \pm 2 m g とした。

本実施形態に好適に使用される結着樹脂には、各種ビニル系モノマーによる単独重合体または共重合体も好適に使用できる。例えば、スチレン、O-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-nブチルスチ

レン、 $p-tert-プチルスチレン、<math>p-n-\Lambda$ キシルスチレン、 $p-n-\Lambda$ ウチルスチレン、 $p-n-\Lambda$ キシルスチレン、 $p-n-\Lambda$ キシルスチレン、p-Dロルスチレンなどのスチレンのおよびその誘導体があげられ、とくにスチレンが好ましい。

アクリル単量体としては、アクリル酸、メタクリル酸、アクリル酸メ 5 チル、アクリル酸エチル、アクリル酸プチル、アクリル酸-2-エチル ヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、メタクリ ル酸メチル、メタクリル酸ヘキシル、メタクリル酸-2-エチルヘキシ ル、 β -ヒドロキシアクリル酸エチル、 γ -ヒドロキシアクリル酸プロ ピル α -ヒドロキシアクリル酸ブチル、 β -ヒドロキシメタクリル酸エ 10 チル、 γ -アミノアクリル酸プロピル、 γ -N, N-ジエチルアミノア クリル酸プロピル、エチレングリコールジメタクリル酸エステル、テト ラエチレングリコールジメタクリル酸エステル等を挙げることができる。 本発明の目的に好適なスチレンーアクリル系共重合体としては、スチレ ン/ブチルアクリレート共重合体であり、特にスチレンを75~85重 15 量%、ブチルアクリレートを15~25重量%含有するものが好適に使 用される。

(4) 電荷制御剤

本実施形態ではトナーの電荷制御の目的、及びオイルレス定着をより 20 強固なものとするために、電荷制御剤が添加される。好ましい材料としては、アクリルスルホン酸系の重合体で、スチレン系モノマーと極性基としてスルホン酸基を有するアクリル酸系モノマーとのビニル共重合体が好ましい。特にはアクリルアミド-2-メチルプロパンスルホン酸との共重合体が好ましい特性を発揮できる。先述したキャリアと組合わせて使用することにより、現像器内でのハンドリング性を向上し、トナー濃度の均一性が向上する。さらに現像メモリーの発生を抑制できる。 また、好ましい材料としては(化2)に示すサリチル酸誘導体の金属塩が用いられる。

$$\begin{bmatrix} R^1 & R^3 \\ R^2 & -OH \\ COO^- \end{bmatrix}_2 Y^{2+}$$

(化2)

(但し、 R^1 , R^2 及び R^3 はそれぞれ独立して水素原子、直鎖又は分岐 5 状の炭素数 $1\sim 1$ 0 のアルキル基又はアリル基、 Yは亜鉛、ニッケル、 コバルト、銅及びクロムから選ばれた少なくとも一種を示す。)

また、好ましい材料としては(化3)に示すベンジル酸誘導体の金属塩が用いられる。

(化3)

10 (但し、 R^1 , R^4 はそれぞれ独立して水素原子、直鎖又は分岐状の炭素数 $1\sim1$ 0のアルキル基又は置換基を有していてもよい芳香環、 R^3 は置換されていてもよい芳香環、Xはアルカリ金属を示す。)

サリチル酸誘導体の金属塩として、炭素数1~10のアルキル基としては例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、

15 n-プチル基、イソプチル基、sec-プチル基、tert-プチル基 等が挙げられる。金属Yとしては亜鉛、ニッケル、コバルト、銅、クロ

10

25

ムが挙げられ、亜鉛、クロムが好ましい。ベンジル酸誘導体の金属塩としては、R¹~R⁴がベンゼン環、アルカリ金属Xとしてはリチウム、ナトリウム、カリウム等が挙げられ、カリウムが好ましい。この構成により、オイルレス定着において広範囲の非オフセット温度域を確保できると共に、定着時での帯電作用による画像乱れを防止できる。これはワックスのもつ酸価を有する官能基と金属塩の帯電極性の効果と思われる。また連続使用時での帯電量の低下を防止できる。添加量は結着樹脂100重量部に対し、0.5~5重量部が好ましい。より好ましくは1~4重量部、さらに好ましくは3~4重量部である。0.5重量部よりも少ないと、帯電作用効果が無くなる。5重量部よりも多くなるとカラー画像での色濁りが目立ってくる。

(5) 顔料

また、本実施形態に使用される顔料としては、カーボンブラック、鉄黒、グラファイト、ニグロシン、アゾ染料の金属錯体、C. I. ピグメント・イエロー1,3,74,97,98等のアセト酢酸アリールアミド系モノアゾ 黄色顔料、C. I. ピグメント・イエロー12,13,14,17等のアセト酢酸 アリールアミド系ジスアゾ黄色顔料、C. I. ソルベントイエロー19,77,79、C. I. ディスパース・イエロー164が配合され、特に好ましくはC. I. ピグメント・イエロー93,180,185のベンズイミダゾロン系が感光体フィルミングに対して効果がある。

C. I. ピグメント・レッド48,49:1,53:1,57,57:1,81,122,5等の赤色顔料、C. I. ソルベント・レッド49,52,58,8等の赤色染料、C. I. ピグネント・ブルー15:3等のフタロシアニン及びその誘導体の青色染顔料が1種又は2種類以上で配合される。添加量は結着樹脂100重量部に対し、3~8重量部が好ましい。

(6)トナーの粉体物性

10

15

20

25

本実施形態では、結着樹脂、着色剤及びワックスを含む少なくとも結 着樹脂、着色剤及びワックスを含むトナーの体積平均粒径が3.5~6. $5 \mu \text{ m}$ であり、個数分布における $5.04 \mu \text{ m}$ 以下の含有率が $30 \sim 8$ 0個数%、個数分布における3. 17μm以下の含有率が5~35個 数%、6.35~10.1μmの粒径を有するトナー粒子が35体積% 以下で含有する粒度分布とする構成である。さらに好適な例は、6.3 5~10.1μmの粒径を有するトナー粒子が30体積%以下で含有し、 個数分布における 8 μ m以上の含有量が 5 体積%以下で含有する粒度分 布とする構成である。高解像度画質、さらにはタンデム転写における逆 転写の防止、中抜けを防止し、オイルレス定着との両立を図ることを可 能とできる。画質体積平均粒径が 6.5μ mを超えると画質と転写の両 立が図れない傾向となる。体積平均粒径が3.5μm未満であると現像 でのトナー粒子のハンドリグ性が困難となる。個数分布における5.0 4μ m以下の含有率が30個数%未満であると、画質と転写の両立が図 れない傾向となる。80個数%を超えると、現像でのトナー粒子のハン ドリグ性が困難となり、キャリア汚染が生じる傾向となる。個数分布に おける3.17μm以下の含有量が5個数%を超えると、画質と転写の 両立が図れない傾向となる。35個数%を超えると、現像でのトナー粒 子のハンドリグ性が困難となる傾向になる。 $6.35 \sim 10.1 \mu m \sigma$ 粒径を有するトナー粒子が35体積%を超えると、画質と転写の両立が 図れない傾向となる。さらに $6.35\sim10.1\mu$ mの粒径を有するト ナー粒子が30体積%を超え、個数分布における8μmを超えるものの 含有量が5体積%を超えると、画質と転写の両立が図れない傾向となる。 体積平均粒子径から換算した真球相当の比表面積値St(St=6/ (真比重×体積平均粒子径))と、作成されたトナー母体の比表面積測定 値との比SSt (SSt = (St / 粉砕されたトナーの比表面積値)が

10

15

20

25

0.4~0.95の範囲が好ましい。さらに好ましくは0.5~0.8 5、より好ましくは0.55~0.8である。0.95を超えると球形 化が進み、連続使用時の帯電性の低下を招き、転写時の飛び散り等の弊 客を招く傾向となる。0.4未満であると形状が不定形になり過ぎるか、 または過粉砕された微粉量が多い原因となる。

トナーの体積粒径分布の変動係数が $16\sim32\%$ 、個数粒径分布の変動係数が $18\sim35\%$ であることが好ましい。より好ましくは、体積粒径分布の変動係数が $18\sim24\%$ 、個数粒径分布の変動係数が $20\sim26\%$ 、さらに好ましくは、体積粒径分布の変動係数が $18\sim22\%$ 、個数粒径分布の変動係数が $20\sim24\%$ である。

変動係数とはトナーの粒径における標準偏差を平均粒径で割ったものである。コールターカウンタ(コールター社)を使用して測定した粒子径をもとにしたものである。標準偏差は、n個の粒子系の測定を行なった時の、各測定値の平均値からの差の2乗の和を(n-1)で割った値の平方根であらわされる。つまり変動係数とは粒度分布の広がり具合をあらわしたもので、体積粒径分布の変動係数が16%未満、又は個数粒径分布の変動係数が18%未満となると、生産的に困難であり、コストアップの要因となる。体積粒径分布の変動係数が32%より大、または個数粒径分布の変動係数が35%より大きくなると、粒度分布がブロードとなるとトナーの凝集性が強くなり、感光体へのフィルミング、転写不良、クリーナーレスプロセスでの残留トナーの回収が困難となる。

トナー中の微粉はトナーの流動性、画質、貯蔵安定性、感光体や現像 ローラ、転写体へのフィルミング、経時特性、転写性、特にタンデム方 式での多層転写性に影響する。さらにはオイルレス定着での非オフセッ ト性、光沢性、透光性に影響する。オイルレス定着実現のためにワック ス等の離型剤を配合したトナーにおいて、タンデム転写性との両立にお

10

15

いて微粉量が影響する。微粉量が過大になると、分散しきれないワックスがトナー表面の露出が多くなり、感光体、転写体へのフィルミングが発生する。さらに、微粉は熱ローラとの付着性も大きいためオフセットしやすい傾向にある。またタンデム方式において、トナーの凝集が強くなりやすく、多層転写時に2色目の転写不良を生じ易くなる。微粉量が少なくなると、画質の低下を招く。

また、静嵩密度と動嵩密度から算出されるのが圧縮度で、トナー流動性の指標の一つである。トナーの流動性はトナーの粒度分布、トナー粒 7形状、外添剤、ワックスの種類や量に影響される。トナーの粒度分布が狭く微粉が少ない場合、トナーの表面に凹凸が少なく形状が球形に近い場合、外添剤の添加量が多い場合、外添剤の粒径が小さい場合は、圧縮度が小さくなりトナーの流動性は高くなる。圧縮度は5~40%が好ましい。より好ましくは、10~30%である。オイルレス定着と、タンデム方式多層転写との両立を図ることが可能となる。5%より小さいと、定着性が低下し、特に透光性が悪化しやすい。現像ローラからトナ

一飛散が多くなりやすい。40%よりも大きい転写性が低下し、タンデム方式での中抜け、転写不良を生じる。

(7) キャリア

本実施形態の樹脂被覆キャリアは、キャリア芯材に、アミノシランカップリング剤を含有したフッ素変性シリコーン系樹脂からなる被覆樹脂層を有するキャリアが好適に使用される。キャリア芯材には、鉄粉系キャリア芯材、フェライト系キャリア芯材、マグネタイト系キャリア芯材、また磁性体を樹脂中に分散した樹脂分散型キャリア芯材等がある。ここでフェライト系キャリア芯材の例としては、一般的に下記式で表される。

10 (MO) $_{X}$ (Fe₂O₃) $_{Y}$

(但し、Mは、Cu, Zn, Fe, Mg, Mn, Ca, Li, Ti, Ni, Sn, Sr, Al, Ba, Co, Mo等から選ばれる少なくとも1種を含有する。またX, Yは重量モル比を示し、かつ条件X+Y=100を満たす。)

フェライト系キャリア芯材は、Fe₂O₃を主原料に、Mは、Cu, Zn, Fe, Mg, Mn, Ca, Li, Ti, Ni, Sn, Sr, Al, Ba, Co, Mo等から選ばれる少なくとも1種の酸化物を混合して原料に用いる。フェライト系キャリア芯材の製造方法の例としては、まず上記各酸化物等の原料を適量配合し、湿式ボールミルで10時間粉砕、混合し、乾燥させた後、950℃で4時間保持する。これを湿式ボールミルで24時間粉砕し、さらに結着剤としてポリビニルアルコール、消泡剤、分散剤等を加え、原料粒子径が5μn以下のスラリーとする。このスラリーを造粒乾燥し、造粒物を得て、酸素濃度をコントロールしながら1300℃で6時間保持した後、粉砕し、さらに所望の粒度分布に分級して得る。

本発明の樹脂被覆層に用いる樹脂としては、フッ素変性シリコーン系 25 樹脂が必須である。そのフッ素変性シリコーン系樹脂としては、パーフロアルキル基含有の有機ケイ素化合物とポリオルガノシロキサンとを

反応させて得られた架橋性フッ素変性シリコーン樹脂が好ましい。ポリオルガノシロキサンとパーフロロアルキル基含有の有機ケイ素化合物との配合比は、ポリオルガノシロキサン100重量部に対して、パーフロロアルキル基含有の有機ケイ素化合物が3重量部以上20重量部以下であるのが好ましい。

ポリオルガノシロキサンは下記(化4)及び(化5)から選ばれる少なくとも一つの繰り返し単位を示すものが好ましい。

$$R^{3}$$
-(0-Si-)_m-0-R⁴
| R² · · · · (任 4)

(但し、 R^1 , R^2 は水素原子、ハロゲン原子、ヒドロキシ基、メトキ 10 シ基、炭素数 $1\sim 4$ のアルキル基またはフェニル基、 R^3 , R^4 は炭素数 $1\sim 4$ のアルキル基またはフェニル基を示し、mは平均重合度であり正の整数(好ましくは 2 以上 5 0 0 以下の範囲、さらに好ましくは 5 以上 2 0 0 以下の範囲)を示す。)

15 (但し、 R^1 , R^2 はそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数 $1 \sim 4$ のアルキル基、フェニル基、 R^3 , R^4 , R^5 , R^6 は炭素数 $1 \sim 4$ のアルキル基またはフェニル基を示し、n は平均重合度であり正の整数(好ましくは 2 以上 5 0 0 以下の範囲、さらに好ま

25

しくは5以上200以下の範囲)を示す。)

また、本実施形態においては、アミノシランカップリング剤を被覆樹 脂層に含有させる。このアミノシランカップリング剤としては公知のも のでよく、例えば γ -(2-アミノエチル)アミノプロピルトリメトキ シシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシ シラン、オクタデシルメチル〔3-(トリメトキシシリル)プロピル〕 10 アンモニウムクロライド (上からSH6020, SZ6023, AY43-021:共に東レダ ウコーニングシリコーン社製)、KBM602, KBM603, KBE903, KBM573 (信越 シリコーン社製)等が挙げられるが、特に1級アミンのものが好ましい。 メチル基、エチル基、フェニル基等で置換された2級または3級のアミ ンでは極性が弱く、トナーとの帯電立ち上がり特性に対して効果が少な 15 い。また、アミノ基の部分が、アミノメチル基、アミノエチル基、アミ ノフェニル基になると、シランカップリング剤の最先端は、1級アミン であるが、シランから伸びる直鎖の有機基中のアミノ基は、トナーとの 帯電立ち上がり特性に寄与せず、逆に高湿時に水分の影響を受けるため、 最先端のアミノ基により初期のトナーとの帯電付与能力は有するものの、 20 耐刷時に帯電付与能力が下がり、最終的には寿命が短いものとなる。

そこでこのようなアミノシランカップリング剤とフッ素変性シリコーン樹脂を併用して用いることにより、トナーに対してシャープな帯電量分布を確保したまま、負帯電性を付与でき、かつ補給されたトナーに対し、早い帯電立ち上がり性を有し、トナー消費量を低減させることができる。さらに、アミノシランカップリング剤が架橋剤の如き効果を発現

し、ペース樹脂であるフッ素変性シリコーン樹脂層の架橋度を向上させ、 被膜樹脂硬度をさらに向上させ、長期使用での摩耗・剥離等が低減でき、 耐スペント性を向上させ、帯電付与能力の低下を抑えられ帯電の安定化 が図られ、耐久性が向上する。さらに特定の外添剤を一定量以上添加し たトナーと組合せて使用することにより、現像器内でのハンドリング性 5 が向上し、画像上において現像の奥側と手前側での濃度の均一性が向上 する。またベタ画像採取後に履歴が残るいわゆる現像メモリーも低減で きる。またオイルレス定着実現のため低融点のワックスを一定量以上添 加したトナーを使用しても、キャリアのスペントを防止して寿命を向上 できる。アミノシランカップリング剤の使用割合は、樹脂に対して、5 10 ~40重量%、好ましくは10~30重量%である。5重量%未満であ るとアミノシランカップリング剤の効果がなく、40重量%を越えると 樹脂被覆層の架橋度が高くなり過ぎ、チャージアップ現象を引き起こし 易くなり、現像性不足等の画像欠陥の発生原因となることがある。

写・定着されたトナーの色汚れの原因となる。

前述した無機微粉末を添加したトナーと組合せての使用により、キャリアへのトナーの低融点成分のスペントがより低減され、長寿命化が加速される。混合攪拌時の帯電立上がり性が良化し、ドット再現性、カブリの低減に効果がある。

本発明に用いるキャリアの平均粒径は20~70μmが好ましい。キャリアの平均粒径が20μm未満では、キャリア粒子の分布において微粒子の存在率が高くなり、それらのキャリア粒子はキャリア1粒子当たりの磁化が低くなるため、キャリアが感光体に現像されやすくなる。また、キャリアの平均粒子が70μmを超えると、キャリア粒子の比表面積が小さくなり、トナー保持力が弱くなるため、トナー飛散が発生する。また、ベタ部分の多いフルカラーでは、特にベタ部の再現が悪く好ましくない。

キャリア芯材上に被覆層を形成する方法には、特に制限はなく、公知の被覆方法、例えば、キャリア芯材である粉末を、被膜層形成用溶液中に浸漬する浸漬法、被膜層形成用溶液をキャリア芯材の表面に噴霧するスプレー法、キャリア芯材を流動エアーにより浮遊させた状態で被膜層形成用溶液を噴霧する流動床法、ニーダーコーター中でキャリア芯材と被膜層形成用溶液を混合し、溶剤を除去するニーダーコーター法等の湿式被覆方法の他、粉末状の樹脂とキャリア芯材とを高速混合し、その摩擦熱を利用することで樹脂粉末をキャリア芯材表面に融着被覆する乾式被覆方法等が挙げられ、いずれも適用することができるが、本発明におけるアミノシランカップリング剤を含有するフッ素変性シリコーン系樹脂の被覆においては、湿式被覆方法が特に好ましく用いられる。

25 被膜層形成用塗布液に使用する溶剤は、前記コート樹脂を溶解するものであれば特に限定されるものではなく、用いられるコート樹脂に適合

10

15

20

するように選択することができる。一般的には、例えば、トルエン、キシレン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類が使用できる。

本発明における樹脂被覆量はキャリア芯材に対し、0.1~5.0重量%である。樹脂の被覆量が0.5重量%未満になると、キャリア表面に均一な被覆を形成することができずキャリア芯材の特性の影響を大きく受けてしまい、本発明のフッ素変性シリコーン樹脂とアミノシランカップリング剤の効果を充分に発揮できない。5.0重量%を超えると被覆層が厚くなり過ぎ、キャリア粒子同士の造粒が発生し、均一なキャリア粒子が得られない傾向にある。

このようにして、キャリア芯材表面にアミノシランカップリング剤を含有するフッ素変性シリコーン樹脂を被覆した後には、焼き付け処理を施すことが好ましい。焼き付け処理を施す手段としては、特に制限はなく、外部加熱方式または内部加熱方式のいずれでもよく、例えば、固定式または流動式電気炉、ロータリーキルン式電気炉、バーナー炉でもよく、もしくはマイクロ波による焼き付けでもよい。ただし、焼き付け処理の温度に関しては、樹脂被覆層の耐スペント性を向上させるというフッ素シリコーンの効果を効率よく発現させるために、200~350℃の高温で処理することが好ましく、より好ましくは、220~280℃である。処理時間は0.5~2.5時間が適当である。処理温度が低いと被膜樹脂自体の硬度が低下する。処理温度が高すぎると帯電低下が生じる。

(8) 混練工法

高せん断力による混練により、添加するワックスをより微細分散化で 25 きる。そのロールの温度設定及び温度勾配、回転数及び負荷電流の混練 条件と結着樹脂の軟化点、ガラス転移点を最適な条件で処理させること

10

15

により高分散化処理を可能とできる。高せん断力とは狭い間隙で対向させたロールを高速で回転させることにより結着樹脂等のトナー材料に作用する混練力をいい、狭い間隙に挟まれた時に生じる力と、回転速度差を有する回転ロールから受けるせん断力をいう。従来の二軸押出し機では発揮できない混練力を有する。これにより結着樹脂の高分子量成分を低分子量化することが可能となる。

具体的は、異方向に回転し、加熱または冷却が可能な対向する2本のロールを有し、一方のロール(RL1)のロール温度ともう一方のロール(RL2)のロール温度に温度差を設け、かつ前記ロール(RL1)と前記ロール(RL2)とを異なる周速で回転させて2本のロール間で混練処理することにより実現できる。さらには一方のロール(RL1)が前半部と後半部で温度差を有する構成とすることである。

2本ロールの回転数比を1.1倍~2.5倍の範囲内で行うことにより混練時に適切なせん断力が生じ、結着樹脂の分子切断、着色剤等の内部添加剤の分散性が向上し、定着性、現像性が向上する。加熱してトナーを溶融し巻き付ける側のロールの回転比を高くする構成である。1.1倍未満であると適切なせん断力が生じず、分散性が向上せず、透光性が悪化する。逆に2.5倍を超えると、生産性が急激に低下し、また分散性が向上せず、現像性の悪化を招く。

20 またこのときの2本のロールにかかる負荷電流値の比を1.25~1 0の範囲となるような条件で混練することで、適切なせん断力が加わり より内添剤の分散性が向上する。この範囲よりも小さいと分散性が向上 せず、透光性が悪化する。また生産性も低下する。逆にこの範囲よりも 大きいと、ローラにかかる負荷が大きくなりすぎ、超高分子量成分がよ 25 り低分子量化しすぎるため、非オフセット性が低下し、オフセットが発 生するようになる。

25

図3にトナー溶融混練処理の概略斜視図を、図4に上から見た平面図、図5に左側から見た側面図、図6に巻付いた状態での断面図を示す。601はトナー原料の定量供給機、602はロール(RL1)、603はロール(RL2)、604はロール(RL1)上に巻きついたトナーの溶融膜である。図3においてロール602は時計回り、603は反時計回りに回転する。

図4において6.02-1はロール(RL1)の前半部(原料の搬送方 向の上流部)、602-2はロール(RL1)の後半部(原料の搬送方 向の下流部)、603-1はロール(RL2)の前半部(原料の搬送方 向の上流部)、603-2はロール(RL2)の後半部(原料の搬送方 10 向の下流部)、605はロール(RL1)の前半部602-1を加熱す るための熱媒体の流入口、606はロール(RL1)の前半部602-1を加熱した熱媒体の流出口、607はロール(RL1)の後半部60 2-2を加熱又は冷却するための媒体の流入口、608はロール (RL 1) の後半部602-2を加熱又は冷却した媒体の流出口、618は口 15 ール(RL2)の前半部603-1を加熱又は冷却するための熱媒体の 流入口、619はロール (RL2) の前半部603-1を加熱又は冷却 した熱媒体の流出口、609はロール(RL2)の後半部603-2を 加熱又は冷却するための媒体の流入口、610はロール(RL2)の後 半部603-2を加熱又は冷却した媒体の流出口である。 20

図 5 において 6 1 1 はロール表面のスパイラル状の溝で深さは $2 \sim 1$ 0 mm程度である。 6 1 1 の螺旋状の溝はトナーの混練時に材料が原料投入部の右端から排出部の左端にスムーズに搬送されるに好ましいものである。 6 0 3 -1 は原料をロールに効率よく巻付かせるために、適当な熱を付加させるためのものである。

定量供給機601から排出された原料は、原料供給フィーダ613を

10

伝わりながら開口部 6 1 4 からトナー原料が矢印 6 1 5 のようにロール (RL1) 6 0 2 - 1 側の端部付近に落下させる。供給フィーダの開口 部の長さは 6 1 6 で表させる。この長さはロール半径の 1 / 2 ~ 4 倍の 長さが好ましい。短いと落下させる材料が溶融する前に 2 本のローラの 隙間から下に落下する量が急増する。長すぎると原料フィーダでの搬送途中で原料が分離して均一な分散が得られない。

図6において、落下位置は矢印にて図示するようにロール(RL1)602の2本のロールが最近接する点から20°~80°の範囲の地点に落下させる。20°未満の角度であると2本のロールの隙間から落下する量が急増する。80°を超えると落下させる際、トナー粉末の舞上りが多くなり周辺を汚染する。またカバー617は開口部長さ616よりも広い領域をカバーできるように設置する。図5ではカバーの図示は省略している。

定量供給機601からトナー原料は供給フィーダ613を伝わりなが ら開口部 6 1 4 から落下する。落下したトナー原料はロール (RL1) 15 602-1側の端部付近に投下される。そして602-1の熱とロール (RL2) 603-1との圧縮せん断力により樹脂が溶融し、ロール (RL1)の前半部602-1に巻付くようになる。ロール間でトナー 溜り612が形成される。その状態がロール(RL1)の後半部602 -2の端部にまで広がり、ロール (RL1) の前半部602-1よりも 20 低い温度で加熱又は冷却されたロール (RL2) の後半部602-2か らトナー魂として剥離される。なお、上記処理の間、ロール603-2 は室温以下に冷却されている。ロール(RL1) 602とロール(RL 2) 603のクリアランスは0.1~0.9mmである。本実施例では 原料投入量は10kg/h、ロール(RL1)(RL2)の直径は14 25 0 mm、長さは8 0 0 mmで行った。

10

15

20

25

(9)粉砕

本実施形態に係る二成分現像剤は、小粒径トナーを使用してもキャリアへのスペントを防止でき、オイルレス定着を実現することができる。その粉砕の一手法として例示すると、小粒径でかつ粒度分布をシャープにするため、トナー組成物を溶融混練した後、表面に凹凸を有し高速に回転する円筒状の回転体と、回転体の外側に0.5mm~40mmの間隙を存して嵌装され、回転体と中心軸を共有する表面に凹凸を有する円筒状の固定体と、被トナー粉砕物を流入させる供給口と、粉砕処理されたトナー粉砕物を排出する排出口とを具備する粉砕機により、所定の粒度分布に粉砕される。このとき、被トナー粉砕物を供給口から流入させる前に、被トナー粉砕物の凝集を緩和する手段を付加させ、前記供給口から流入させて所定の粒度分布へ粉砕させる構成とする。

被トナー粉砕物の凝集を緩和する手段としては、被トナー粉砕物を供給口から流入させる前に、被トナー粉砕物に蒸発性の媒体、例えば、水蒸気、エタノール、isoープロピルアルコール、nープチルアルコール、secープチルアルコール、isoープチルアルコール等で粉体の電荷を除去できることが目的である。被トナー粉砕物に霧状に噴霧供給して混合又は付着させ、粉砕供給口から流入させる方法である。また、被トナー粉砕物を供給口から流入させる前に、前記被トナー粉砕物に振動手段を付加させて、供給する方法で、振動手段としては超音波振動、バイプレーション振動等がある。被トナー粉砕物が配管内を通過して粉砕部供給口から流入させる前に配管部に振動装置を具備させ、被トナー粉砕物を分散させながら供給口から流入させる。また、被トナー粉砕物を供給口から流入させる前に、前記被トナー粉砕物に無機微粉末を前記被トナー粉砕物に供給して混合させ、前記供給口から流入させて粉砕する方法がある。無機微粉末としては前述した材料が適当である。トナー

25

を粉砕処理する際、被トナー粉砕物を供給口から流入させる前に、被トナー粉砕物に無機微粉末を供給して混合させ、供給口から流入させて所定の粒度分布へ粉砕する構成をとる。これにより被トナー粉砕物が均一に分散した状態で回転体を有する粉砕部に突入し、回転体の生ずる渦流により被トナー粉砕物が均一に粉砕される。これにより小粒径化粉砕と、粗粉をシャープにカットされた状態での粉砕が可能となる。

このとき供給して混合させる無機微粉末が、平均粒径8~40nm、強熱減量が0.5~25wt%であるシリカ又は酸化チタン微粉末が好ましい。さらには脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩のいずれか1種または2種以上を表面処理したシリカ又は酸化チタン微粉末が好ましい。さらには、無機微粉末が、シリコーンオイルを表面処理したシリカ又は酸化チタン微粉末が好ましい材料である。また被トナー粉砕物の電荷を緩和する目的でトナー母体粒子の帯電極性と逆帯電極性を有する無機微粉末も有効な手段である。平均粒径が8nm未満であると、

15 定量切出しが不安定となる。平均粒径が40nmを超えると均一粉砕性が良くならない。強熱減量が0.5wt%未満であると、微粉末が飛散してしまう。強熱減量が25wt%を超えると微粉末の凝集が強くなり、被トナー粉砕物の均一供給性が悪くなる。

この無機微粉末はトナー母体に固着されることなく静電気的な付着状 20 態でトナー表面に付着する。無機微粉末の供給量としては被トナー粉砕 物の供給量の0.1~5wt%程度が好ましい。

回転体の凸部と、固定体の凸部との間隙を0.5~40mm、好ましくは0.5~10mm、より好ましくは0.5~6mmにすることにより粉砕効率と球形化作用をより高めることができる。0.5mmより小さいと粒子と回転体、固定体との接触が著しく増大するので、摩擦熱の発生が著しくなり、上記の先端部でトナーの融着が生じる。40mmよ

り大きいと高速気流の激しい流動を発生させることができず、充分な粉砕性が得られない。

この方式で行うと粉砕と同時に外添処理を施すことが可能であるため、製造工程が短縮できるメリットが大きい。またトナーは粒子の角がきれいに取られ球形化されるため、流動性は向上する。

トナーの流動性が低いとベタ画像部にムラが発生したり、摩擦帯電性が低下し、逆極性トナーが増加し、感光体の非画像部にトナーが強く付着し除去できず、地力ブリとなって画像を劣化させるし、また転写効率が低下する。外添剤シリカを増量してトナーの流動性を上げると、摩擦10 帯電が均一化し、地力ブリの減少と、画像濃度の増加、ベタ黒画像部のムラが解消される傾向にある。しかし感光体へのシリカやトナーのフィルミングや、シリカ凝集物のベタ黒画像部への白点付着等の課題が発生する。

そのため、少量のシリカの添加量で高流動性が得られ、浮遊シリカの 発生が抑えられ、ベタ黒画像部へのシリカの白点や、中間転写体や感光 体へのシリカ、トナーフィルミングの発生が抑えられる。また低流動性 のトナーで見られるベタ黒画像部のムラの発生が抑えられ、均一な転写 性が得られ、さらに逆極性トナーの発生を低く抑えられるため、転写効 率が向上する要因となる。

20 さらに転写時において、特に高温高湿時、文字やライン等のトナーが 集中しているところで、所定の押圧力で転写しても、トナーの高流動性 のため、トナー同士の凝集が起きにくく、中抜けのない鮮明な画像が得 られる。

図7に示した本実施形態のトナーの粉砕装置の1実施例について説明 25 する。混練物を粗粉砕によりメッシュ径約1~5mmパスした被トナー 粉砕物503は定量供給機508から投入され、冷却器509によって

10

15

供給される冷却エアー511により、粉砕供給部に送られ、粉砕処理部500で粉砕される。原料503は入口504から投入され、高速に回転し表面に凹凸部506を有する回転体501と、この回転体501と狭ギャップの間隙で位置している表面に凹凸部507を有する固定体502との空間に運ばれ、高速に回転する回転体と固定体の間に発生する高速気流の流動に伴って、原料粒子相互が強力な衝突により粉砕されながら球形化される。球形化された粒子510は排出口505から出て、粗粉分級機513に送られ、粗い粒子は再度エアー511により、入口504に送られる。製品はサイクロン515に送られ、補集容器520に回収される。512は温度計、514はバグフィルター、516は風量計、517はプロアである。519はバイブレータ振動装置、518は無機微粉末供給装置である。粗粉分級により分離され再度粉砕部に供給されるとき、無機微粉末供給をその後ろから供給することが好ましい。これにより無機微粉末が粉砕物への衝突の際に均一に混合される。無機微粉末の代わりに蒸発性の溶剤も供給できる。

図8に図7のI-I'断面図を示す。図9は図8のBの箇所を拡大したものである。s1は固定体502の表面凹凸部507の凸部の幅、s2は固定体502の表面凹凸部507の凸部間の距離、s3は固定体502の表面凹凸部507の凸部の高さ、r1は回転体501の表面凹凸部506の凸部間の距離、r3は固定体501の表面凹凸部506の凸部間の距離、r3は固定体501の表面凹凸部506の凸部の距離、r3は固定体501の表面凹凸部506の凸部の高さを示す。回転体が高速に回転し、シリカ等の無機微粉末の供給を受けながら効率よくトナーを小粒径化しかつ球形化して粉砕するためには、固定体502の表面凹凸部507の密度を回転体501の表面凹凸部506の密度よりも高くする構成とすることにより実現できる。凸部は周長1cm当り1個以上とする構成が好ましい。好ましくは2.5個である。さらに

は0. $2 \le s \ 1/r \ 1 \le 0$. 7、0. $2 \le s \ 2/r \ 2 \le 0$. 7の関係を有することが好ましい。特に無機微粉末を供給しながら粉砕処理する際、被粉砕物が均一に分散された状態で投入されるため、固定体の壁面との衝突を安定化させるためには密度を高くする必要がある。0. 2よりも小さくなると、表面加工の際のコストアップとなる。0. 7よりも大きくなると、渦流の流れが不均一となり小粒径への粉砕が困難となる。

(10) 重合方法

小粒径トナーの作成方法としては、乳化重合法、懸濁重合法なども好 適に使用できる。乳化重合法では、イオン性界面活性剤を含有する樹脂 微粒子分散液を調製し、着色剤粒子分散液及びワックスの離型剤粒子分 10 散液と混合し、前記イオン性界面活性剤とは反対の極性を有するイオン 性界面活性剤により凝集を生じさせることによりトナー径の凝集粒子を 形成させ、その後樹脂微粒子のガラス転移点以上の温度に加熱して前記 凝集粒子を融合して、洗浄、乾燥する手段によりトナーを作成すること ができる。この時使用する界面活性剤を例示すると、硫酸エステル塩系、 15 スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン性界面活 性剤、及びアミン塩型、4級アンモニウム塩型等のカチオン性界面活性 剤を使用することができる。また、ポリエチレングリコール系、アルキ ルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イ オン性界面活性剤を併用することも効果的である。これらの分散手段と 20 しては、回転剪断型ホモジナイザーやメディアを有するボールミル、サ ンドミル、ダイノミルなどの一般的なものを使用できる。

粒子生成後は、任意の洗浄工程、固液分離工程、乾燥工程を経て所望のトナーを得ることができるが、洗浄工程は、帯電性を発現・維持する ため、十分にイオン交換水による置換洗浄を施すことが好ましい。また、 固液分離工程は、特に制限はないが、生産性の点から吸引濾過、加圧濾

15

過等が好ましく用いられる。さらに乾燥工程も特に制限はないが、生産性の点から凍結乾燥、フラッシュジェット乾燥、流動乾燥、振動型流動乾燥等が好ましく用いられる。

また懸濁重合法では、重合性単量体、ワックス、着色剤等の各種添加剤を均一に溶解または分散させて加熱しホモジナイザー、超音波分散機等によって均一に溶解又は分散せしめ単量体組成物としたのち、単量体系を、分散安定剤を含有する単量体系と同温の水相中に通常の攪拌機又はホモミキサー・ホモジナイザー等により分散させる。

好ましくは、単量体液滴が所定のトナー粒子のサイズの粒径を有する 10 ように攪拌速度・時間を調整し、その後は分散安定剤の作用により、粒 子状態が維持され、かつ粒子の沈降が防止される程度の攪拌を行えば良 い。重合温度は40℃以上、一般には50~80℃の温度に設定させる。

このとき定着助剤の高分散化と、定着助剤を包含したトナー粒子を小さく均一な粒度分布とするためにも、攪拌速度は30m/sec以上が好ましい。

反応終了後、生成したトナー粒子を洗浄、ろ過により回収し、乾燥する。 懸濁重合においては通常単量体系100重量部に対して水300~ 3000重量部を分散媒として使用するのが好ましい。

用いられる分散媒は、いずれも適当な安定化剤、有機化合物として、 ポリピニルアルコール、ゼラチン、メチルセルコロース、メチルヒドロ キシプロピルセルロース、エチルセルロース、カルボキシメチルセルロ ースのナトリウム塩、ポリアクリル酸及びその塩、デンプン、無機化合物としては、りん酸三カルシウム、リン酸マグネシウム、リン酸アルミ ニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、硫酸バリウ ム、硫酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、メタ ケイ酸カルシウム、ベントナイト、シリカ、アルミナ等を水相に分散さ

せて使用できる。

分散安定剤の中で、無機化合物を用いる場合、より細かい粒子を得る ため、水系媒体中で該無機化合物を生成させても良い。例えば、りん酸 カルシウムの場合高速攪拌下において、リン酸ナトリウム水溶液と塩化 カルシウム水溶液を混合すると良い。

またこれらの安定化剤の微細な分散のために、0.001~0.1重量部の界面活性剤を使用しても良い。これは上記分散安定剤の所期の作用を促進するためのものであり、その具体例として、ドデシルベンゼン硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデジル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等が挙げられる。2,2'-アゾビスー(2,4-ジメチルバレロニトリル)、2,2'-アゾビスイソブチロニトリル、1,1'-アゾビス(シクロヘキサンー1-カルボニトリル)、2,2'-アゾビスー4-メトキシー2,4-ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系又はジアゾ系重合開始剤が使用できる。

(11) 二成分現像

感光体と現像ローラ間には直流バイアスと共に交流バイアスを印加する。そのときの周波数が $5\sim10~k~H~z$ 、交流バイアスが $1.~0\sim2$.

5 k V (p-p) であり、かつ感光体と現像ローラ間の周速度比が $1:1.2 \sim 1:2$ であることが好ましい。より好ましくは周波数が5.5 $\sim 8 \text{ k H z}$ 、交流バイアスが $1.2 \sim 2.0 \text{ k V } (p-p)$ であり、かつ感光体と現像ローラ間の周速度比が $1:1.5 \sim 1:1.8$ である。

更に好ましくは周波数が 5.5~7kHz、交流バイアスが 1.5~25 2.0kV (p-p) であり、かつ感光体と現像ローラ間の周速度比が 1:1.6~1:1.8である。この現像プロセス構成と本実施形態の

. 25

トナーの使用により、ドットを忠実に再現でき、現像 γ 特性をねかせる特性とできる。高画質画像とオイルレス定着性を両立できる。また高抵抗キャリアでも低湿下でのチャージアップを防止でき、連続使用においても高画像濃度を得ることができる。これは高帯電性を発現できるトナー、キャリア構成と交流バイアスとの併用により、キャリアとの付着力を低減でき画像濃度を維持できると共にカブリを低減でき、ドットをも忠実に再現できるものと思われる。

周波数が5kHzより小さいと、ドット再現性が悪化し、中間調再現性が悪化する。周波数が10kHzより大きくなると、現像領域での追随ができず、効果が現れない。この周波数の領域では高抵抗キャリアを使用した二成分現像において、現像ローラと感光体間よりもキャリアとトナー間での往復作用に働き、トナーをキャリアから微少に遊離させる効果があり、これによりドット再現性、中間調再現性が良好に行われ、かつ高画像濃度を出すことが可能になる。

交流バイアスが1.0kV(p-p)より小さくなると、チャージアップの抑制の効果が得られず、交流バイアスが2.5kV(p-p)より大きくなるとカブリが増大する。感光体と現像ローラ間の周速度比が1:1.2より小さいと(現像ローラが遅くなる)画像濃度が得にくい。感光体と現像ローラ間の周速度比が1:2より大きくなると(現像ローラ速度が上がる)とトナー飛散が多くなる。

(12) タンデムカラープロセス

高速にカラー画像を形成するために、本実施形態では、感光体と帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、像担持体上に形成した静電潜像を顕像化したトナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、

10

その後前記転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成された転写プロセスにおいて、第1の一次転写位置から第2の一次転写位置までの距離をd 1 (mm)、感光体の周速度を v (mm/s)とした場合、d $1/v \le 0$.65となる転写位置構成を取る構成で、マシンの小型化と印字速度の両立を図るものである。昨今マシンの高速化と小型化の要求が厳しくなり毎分16枚(A4)以上処理でき、かつマシンがSOHO用途として使用できる大きさの小型化を実現するためには、複数のトナー像形成ステーション間を短く、かつプロセス速度を高める構成が必須である。その小型化と印字速度の両立のためには上記値が0.65以下とする構成がミニマムと考えられる。これ以上となると装置が大型化、処理速度の遅滞感が生じてしまうためである。

しかし、この構成をとるとき、例えば1色目のイエロートナーが一次 転写された後、次の2色目のマゼンタトナーが一次転写されるまでの時 間が極めて短く、転写体の帯電緩和又は転写されたトナーの電荷緩和が 殆ど生じず、イエロートナーの上にマゼンタトナーを転写する際に、マ ゼンタトナーがイエロートナーの電荷作用により反発され、転写効率の 低下、転写時の文字の中抜けという問題が生じる。さらに第3色目のシ アントナーの一次転写の時、前のイエロー、マゼンタトナーの上に転写 20 される際にシアントナーの飛び散り、転写不良、転写中抜けが顕著に発 生する。さらに繰り返し使用しているうちに特定粒径のトナーが選択的 に現像され、トナー粒子個々の流動性が大きく異なると摩擦帯電する機 会が異なるため、帯電量のバラツキが生じ、より転写性の劣化を招いて しまう。

25 そこで、本実施形態のトナー、現像剤構成とすることにより、樹脂中でのワックス等の内添剤が均一分散化し、帯電分布が安定化しトナーの

過帯電を抑えると共に、流動性変動を抑えることができるため、定着特性を犠牲にすることなく、転写効率の低下、転写時の文字の中抜けを防止することができる。

(13) クリーナレスプロセス

5 また、本実施形態では、転写プロセス後に感光体上に残留したトナーをクリーニングにより回収するクリーニングプロセス工程を有さずに、 次の帯電、露光、現像プロセスを行うクリーナーレスプロセスを基本構成とする電子写真装置に好適に使用される。

本実施形態のトナーの使用により、トナーの凝集を抑え、過帯電を防止し、帯電性の安定化が得られ、高転写効率を得ることが可能となる。また樹脂中での均一分散性の向上、良好な帯電性、材料の有する離型性により、非画像部に残留したトナーの現像での回収が良好に行える。そのため、非画像部の前の画像パターンが残る現像メモリーも発生もない。(14)オイルレスカラー定着

15 本実施形態では、トナーを定着する手段にオイルを使用しないオイルレス定着構成の定着プロセスを具備する電子写真装置に好適に使用される。その加熱手段としては電磁誘導加熱がウオームアップ時間の短縮、省エネの観点から好ましい構成である。磁場発生手段と、電磁誘導により発生する発熱層及び離型層を少なくとも有する回転加熱部材と、該回転加熱部材と一定のニップを形成している回転加圧部材とを少なくとも有する加熱加圧手段を使用して、回転加熱部材と回転加圧部材間にトナーが転写された複写紙等の転写媒体を通過させ、定着させる構成である。回転加熱部材のウオームアップ時間が従来のハロゲンランプを使用している場合に比べて、非常に早い立ち上がり性を示す。そのため回転加圧 35 部材が十分に昇温していない状態で複写の動作に入るため、低温定着と広範囲な耐オフセット性が要求される。

10

15

加熱部材と定着部材を分離した定着ベルトを使用した構成も好ましく使用される。そのベルトとしては耐熱性と変形自在性とを有するニッケル電鋳ベルトやポリイミドベルトの耐熱ベルトが好適に用いられる。離形性を向上するために表面層としてシリコーンゴム、フッ素ゴム、フッ素樹脂を用いる構成である。

これらの定着においてはこれまでは離型オイルを塗布してオフセットを防止してきた。オイルを使用せずに離型性を有するトナーにより、離型オイルを塗布する必要はなくなった。しかし離型オイルを塗布しないと帯電しやすく、未定着のトナー像が加熱部材又は定着部材と近接すると帯電の影響により、トナー飛びが生じる場合がある。特に低温低湿下において発生しやすい。

そこで、本実施形態のトナーの使用により、オイルを使用せずとも低温定着と広範囲な耐オフセット性を実現でき、カラー高透光性を得ることができる。またトナーの過帯電性を抑制でき加熱部材又は定着部材との帯電作用によるトナーの飛びを抑えられる。

実施例

次に、実施例により本発明を更に詳細に説明する。ただし本発明はこれに限定されるものではない。

(キャリア製造例1)

MnO換算で39.7mol%、MgO換算で9.9mol%、Fe 2O3換算で49.6mol%及びSrO換算で0.8mol%湿式ポールミルで、10時間粉砕し、混合し、乾燥させた後、950℃で4時間保持し、仮焼成を行った。これを湿式ボールミルで24時間粉砕し、次いでスプレードライヤにより造粒し、乾燥し、電気炉にて、酸素濃度 2%雰囲気の中で1270℃で6時間保持し、本焼成を行った。その後、解砕し、さらに分級して平均粒径50μm、印加磁場が3000エルス

10

テットの時の飽和磁化が 65emu/gのフェライト粒子の芯材を得た。次に、下記(化 6)で示される $(CH_3)_2Si0$ -単位が 15.4mol%、(化 7)で示される $CH_3Si0_{3/2}$ -単位が 84.6mol%であるポリオルガノシロキサン 250gと、 $CF_3CH_2CH_2Si(0CH_3)_3$ を 21g反応させ、フッ素変性シリコーン樹脂を得た。この反応は脱メトキシ反応であり、これによりポリオルガノシロキサンにパーフロロアルキル基含有の有機ケイ素化合物分子が導入される。さらにそのフッ素変性シリコーン樹脂を固形分換算で 100gとアミノシランカップリング剤(γ -アミノプロピルトリエトキシシラン) 10gとを秤量し、 300mlのトルエン溶剤に溶解させた。

(但し、 R^1 , R^2 , R^3 , R^4 はメチル基、mは平均重合度であり 10

15 (但し、R¹, R², R³, R⁴, R⁵, R⁶はメチル基、nは平均重合度 であり80である。)

前記フェライト粒子10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。

10

その後260℃で1時間焼き付けを行い、キャリアA1を得た。

(キャリア製造例2)

 $CF_3CH_2CH_2Si$ (OCH₃) $_3$ を $C_8F_{17}CH_2CH_2Si$ (OCH₃) $_3$ に変更した以外は、製造例 1 と同様の工程でコア材を製造し、コーティングを行い、キャリアA 2 を得た。

(キャリア製造例3)

導電性カーボン(ケッチェンブラックインターナショナル社製 EC)を樹脂固形分に対し5wt%をボールミルにて分散した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアA3を得た。

(キャリア製造例4)

アミノシランカップリング剤の添加量を30gに変更した以外は、製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアA4を得た。

15 (キャリア製造例 5)

アミノシランカップリング剤の添加量を50gに変更した以外は、製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアb1を得た。

(キャリア製造例 6)

被覆樹脂をストレートシリコーン(東レ・ダウコーニング社製 SR - 2411)に変更した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアb2を得た。

(キャリア製造例7)

被覆樹脂をパーフルオロオクチルエチルアクリレート/メタクリレー 25 ト共重合体に変更した以外は、製造例3と同様の工程でコア材を製造し、 コーティングを行い、キャリアb3を得た。

(キャリア製造例8)

被覆樹脂をアクリル変性シリコーン樹脂(信越化学社製 KR-9706)に変更した以外は、キャリア製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアb4を得た。

5 表1に実施例で使用するトナーの結着樹脂の特性を示す。樹脂はビスフェノールAプロピルオキシド付加物、テレフタル酸、トリメリット酸、コハク酸、フマル酸を主成分としたポリエステル樹脂を使用し、配合比、重合条件により熱特性を変えた樹脂を使用した。この2価のアルコールと2価のカルボン酸、3価のカルボン酸の構成が定着性、分散性、キャリアのスペント性、粉砕性を両立させるために好適な構成である。

表 1

15

20

樹脂	PES-1	PES-2	PES-3	PES-4	PES-5	PES-6	pes-7
Mnf(×10 ⁴)	0.32	0.52	0.57	0.59	0.32		
$Mwf(\times 10^4)$	2.10	4.40	5.60	5.91	6.40		
Mzf(×10⁴)	26.50	31.00	31.50	40.50	97.50		
Wmf≃Mwf/Mnf	6.56	8.46	9.82	10.02	20.00		6.09
Wzf=Mzf/Mnf	82.81	59.62	55.26	68.64	304.69	945.31	32.17
Mpf(×10 ⁴)	0.62	0.74	0.88	1.02	1.8	2.2	
Tg(℃)	57.3	57.3	55.0	55.5	58.0	61. 0	
Tm(℃)	107.5	110.8	113.0	116.0	121.0	125.0	100.0
Tfb(℃)	96.2	97.5	98.5	99.2	105.6	107.8	85.0
AV(mgKOH/g)	18	15	28	25	15	20	2

樹脂はビスフェノールAプロピルオキシド付加物、テレフタル酸、トリメリット酸、コハク酸、フマル酸を主成分としたポリエステル樹脂を使用し、配合比、重合条件により熱特性を変えた樹脂を使用した。この2価のアルコールと2価のカルボン酸、3価のカルボン酸の構成が定着性、分散性、キャリアのスペント性、粉砕性を両立させるために好適な構成である。Mnfは結着樹脂の数平均分子量、Mwfは結着樹脂の重量平均分子量、Mzfは結着樹脂のZ平均分子量、Wmfは重量平均分子量Mwfと数平均分子量Mnfとの比Mwf/Mnf、Wzfは結着樹脂のZ平均分子量Mnfの比Mzf/Mnf、

Mpfはピーク分子量、Tg(℃)はガラス転移点、Tm(℃)は軟化点、Tfb(℃)は流出開始温度、AV(mgKOH/g)は樹脂酸価を示す。表2、表3、表4に本実施例で使用するワックス及びその物性値を示す。Tw(℃)はDSC法による融点、Ct(%)は融点+10℃での容積増加率(%)、Ck(wt%)は220℃の加熱減量,Mnrはワックスの数平均分子量、Mwrはワックスの重量平均分子量、Mzrはワックスの2平均分子量、peakは分子量のピーク値を示す。

表 2

5

ワックス	材料	融点	容積率	加熱減量	ヨウ素	けん
		Tw(℃)	Ct(%)	Ck(wt%)	価	化価
WA-1	極度水素添加ホホバ油	68	18.5	2.8	2	95.7
WA-2	カルナウハ・ワックス	83	15.3		10	
WA-3	極度水素添加メドウフォーム油	71	3	2.5		90
WA-4	ホホハ 油脂肪酸ヘンタエリスリトールモノエステル	120	3.5	3.4	2	120
WA-5	オレイン酸アミド	78		0.4		120
WA-6	エチレンビスエルカ酸アミド	105		1.2		
WA-7	ネオペンチルポリオール脂肪酸エステル	110		2.2	0.2	150
WA-8	ペンタエリスリトールテトラステアレート	125		0.9	0.2	180

(備考) ヨウ素価の単位はヨウ素g/100g、けん化価の単位はmgKOH/g。

10 表 3

		融点Tw(℃)	酸価	針入度
WA-9	エチレン/無水マレイン酸/炭素数30末端アルコール型ワックス/ターシャリーフ・チルハ・ーオキシイソフ・ロヒ・ルモノカルホ・ネート: 100/20/8/4重量部		45	1
WA-10	プロピレン/無水マレイン酸/1ーオクタノール/ジクミルパーオキサイド: 100/15/8/4重量部	120	58	1

表 4

	Mnr	Mwr	Mzr	Mwr/Mnr	Mzr/Mnr	Peak
WA-1	1009	1072	1118		 	1.02×10^{3}
WA-2	1100	1198	1290	1.09		1.2×10^{3}
WA-3	1015	1078	1124	1,06		1.03×10^{3}
WA-4	1500	2048	3005	1.37		3.2×10^{3}
WA-5	1000	1050	1200	1.05		1.8×10^{3}
WA-6	1002	1100	1350	1.10		1.9×10^{3}
WA-7	1050	1205	1400	1.15		2.1×10^{3}
WA-8	1100	1980	3050	1.80		3.5×10^{3}
WA-9	1400	2030	2810	1.45		2.1×10^{3}
WA-10	1400	3250	5200	2.32		3.1×10^{3}

表 5 に本実施例で使用する顔料を示す。

表 5

素材No.	組成
СМ	マゼンタ顔料:ピグメント・レッド57:1
CC	シアン顔料:ピグメントブルー15:3
CY	イエロー顔料:ピグメント・イエロー180
вк	カーホンフ・ラックMA100S(三菱化学社製)

表6に本実施例で使用する電荷制御剤を示す。

表 6

素材No.	組成	材料
CA1	サリチル酸誘導体のCr金属塩	E-81(オリエント化学社製)
CA2	ベンジル酸誘導体のK金属塩	LR-147(日本カーリット社製)

5 表7に本実施例で使用する外添剤を示す。

表 7

無機		処理材料A	処理材料B	粒径	191	水分	強熱	乾燥	5 分 値	30 分 値	5分值
微粉	1		İ	(nm)	- n	吸着	減 量			$(\mu C/g)$	
末				ļ	滴定		1.	(wt%)	,,,,,	μων, σ,	値
	<u> </u>				(%)	(wt%)					
S1	シリカ	シ゚メチルポリシ したシリカ	ロキサンで処理	6	88	0.1	10.5	0.2	-820	-710	86.59
S2	シリカ	シ゚メチルポリシ! したシリカ	ロキサンで処理	16	88	0.1	8.5	0.2	-720	-520	72.22
S3	シリカ	メチルハイト・ロシ ンで処理した	・ェンホ・リシロキサ シリカ	16	88	0.1	5.5	0.2	-560	-450	80.36
S4	シリカ	シ゚メチルポリシロキサン(20)	オクチル酸 亜 鉛(1)	40	84	0.09	24.5	0.2	-740	-580	78.38
S5	シリカ	メチルハイト゚ロ シ゚ェンポリシロ キサン(1)		40	88	0.1	10.8	0.2	-580	-480	82.76
S6	シリカ	シ・メチルホ・リシ ロキサン(2)	ステアリン酸アミ ド(1)	80	88	0.12	15.8	0.2	-620	-475	76.61
S7	シリカ	メチルハイト゚ロシ゚ェンポリシロ キサン(1)		120	89	0.10	6.8	0.2	-580	-480	82.76
S8		シ゚フェニルポリ シロキサン(10)		80	88	0.1	18.5	0.2	-750	-650	86.67
S9	酸水	フェニルハイト・ロ シ・ェンホ・リシロ キサン(15)		200	85	0.09	5.5	0.2	-690	-540	78.26
	シリカ	ヘキサメチルシ゚シ したシリカ	ラザンで処理	16	68	0.60	1.6	0.2	-800	-620	77.50

1 gを混合し、縦回転にて100min⁻¹の速度で5分、30分間攪5 拌した後、0.3g採取し、窒素ガス1.96×10⁴ (Pa)で1分間プローした。

負帯電性では5分値が $-100\sim-900\mu$ C/gで、30分の値が $-50\sim-700\mu$ C/gであることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。30分値での帯電量が5分値での帯電量の40%以上を維持しているシリカが好ましい。低下率が大きいと長期連続使用中での帯電量の変化が大きく、一定の画像を維持できなくなる。

正帯電性では5分間攪拌後の5分値が+100~+900 μ C/gで、30分間攪拌後の30分の値が+50~+500 μ C/gであることが好ましい。30分値での帯電量が5分値での帯電量の40%以上を維持しているシリカが好ましい。低下率が大きいと長期連続使用中での帯電量の変化が大きく、一定の画像を維持できなくなる。

本実施例での混練条件を表8に示す。

表 8

10

15

20

混練 条件	Trj1 (℃)	Trk1 (℃)	Tr2 (°C)	Rw1 (min ⁻¹)	Rw2 (min ⁻¹)	Rw1/Rw2	Dr1 (A)	Dr2 (A)	Dr1/Dr2
Q-1	131	61	20	95.0	80.0	1.2	29.2	12.1	2,4
Q-2	152	40	6	95.0	65.0	1.5	31.0	16.5	
Q-3	118	55	20	75.0	65.0	1.2	25.2	12.5	
q-4	100	100	20	60.0	60.0	1.0	19.0	19.0	

Trj1 (℃) はロール (RL1) の前半部の加熱温度、Trk1 (℃) はロール (RL1) の後半部の加熱温度、Tr2 (℃) ロール (RL2) の前後両部の加熱または冷却温度、Rw1はロール (RL

- の回転数、Rw2はロール(RL2)の回転数、ロール(RL1)の回転時の負荷電流値をDr1、ロール(RL2)の負荷電流値をDr2と示している。原料投入量は15kg/h、ロール(RL1)(RL2)の直径は140mm、長さは800mmで行った。
- 5 下記表9及び表10に本実施例での粉砕条件を示す。

表 9

	回転体と固定 体の間隙	回転体の周速	被トナー粉 砕 物の供給量	冷却空気温度	排出部温度
KM1	1. 5mm	130m/s	5kg/h	0°C	45℃
KM2	1mm	120m/s	5kg/h	o°C	40℃

表10

10

15

	供給される無機微粉末	無機微粉末の供給量	
KS1	S1	0. 48kg/h	
KS2	S2		
KS3	S4	0. 09kg/h	
KS4	S6	O. O2kg/h パイプレータ振動付与	
KS5	\$8	O. 09kg/h パイプレータ振動付与	
KS6	S10		
KS7		パイプレータ振動付与	
KS8			エタノール噴霧処理

本実施例では、粉砕条件KM1は、回転体と固定体の間隙:1.5mm、回転体の周速:130m/s、被トナー粉砕物の供給量:5kg/h、冷却空気温度:0℃、排出部温度:45℃、粉砕条件KM2は、回転体と固定体の間隙:1mm、回転体の周速:120m/s、被トナー粉砕物供給量:5kg/h、冷却空気温度:0℃、排出部温度:40℃で行った。s1は1mm、s2は4mm、s3は3mm、r1は4mm、r2は7mm、r3は3mm、固定体の周長は57cmとした。粉砕前に供給される無機微粉末とその供給量、バイブレータ振動付与、溶剤噴霧処理を施している。

表11に本実施例で使用したトナー材料組成、物性値を示す。

表11

トナー	樹脂	電荷制御剤	顔料	ワックス 1	ワックス2	外添剤	外添弃	1 粉 硝	粉碎	混 網
~~	1050					Α	В		条件2	
TM1		CA1(3)) WA1(18)		S1(0.5)	S4(2.5) KM1	KS1	Q-1
TM2		CA2(2.5)) WA2(16)		S2(1.5)	S5(3.5		KS2	Q-2
TM3		GA1(2)+CA3(1.5)	CM(5) WA3(12)			S6(2.5)		KS3	Q-3
TM4		CA2(3)+CA4(2)	CM(5) WA4(8)			\$7(2.0)		KS6	Q-1
<u>TM5</u>		CA1(1.5)+CA3(2)	CM(5) WA1(5)	WA5 (3)	S2(1.5)	S8(3.5)	KM1	KS7	0-2
TM6	PES-6	CA2(3)+CA4(2)	CM(5) WA2(6)	WA6 (2)	S3(2.0)	S9(3.5)		KS8	<u> </u>
Tm7			CM(5)	PPWAX(4)		S10(1.5)		km3	17.20	Q-3
TY1	PES-1	CA1(3)	CY(5)	WA9(12)	 		S4(2.5)		1404	q-4
TY2		CA2(2.5)	CY(5)				S5(3.5)		KS1	Q-1
TY3	PES-3	CA1(2)+CA3(1.5)	CY(5)			53(2.0)	S6(2.5)	KM2	KS3	Q-2
TY4	PES-4	CA2(3)+CA4(2)	CY(5)	WA5 (18)	 		S7(2.0)		KS4	Q-3
ΓY5	PES-5	CA1(1.5)+CA3(2)	CY(5)	WA2(5)	WA7 (3)	S2(1.5)	57(2.0)		KS5	Q-1
ΓY6	PES-6	CA2(3)+CA4(2)	CY(5)	WA3(6)					KS7	Q-2
Гу7	pes-7	CA4(1)		PPWAX(4)		S3(2.0) S10(1.5)			KS8	Q-3
C1	PES-1	CA1(3)		WA9(18)	 			km3		q-4
C2	PES-2	CA2(2.5)		WA10 (16)	 		S4(2.5)		KS1	Q-1
C3	PES-3	CA1(2)+CA3(1.5)		WA2 (14)		S2(1.5)			KS2	Q-2
		CA2(3)+CA4(2)		WA7 (12)	 	S3(2.0)				Q-3
		CA1(1.5)+CA3(2)		WA3 (5)	WAA(2)	S1(0.5)	\$7(2.0)			Q-1
		CA2(3)+CA4(2)		WA1(6)		S2(1.5)				Q-2
		CA4(1)		PPWAX(4)		S3(2.0)	S9(3.5)		KS6	Q-3
В1	PES-1	CA1(3)		WA1 (18)		S10(1.5)		km3		q-4
B2		CA2(2.5)		WA2 (16)		S1(0.5)			KS1	Q-1
				WA3 (17)		S2(1.5)				Q-2
				WA8 (18)		S3(2.0)			KS4	Q-3
			_		WAC (0)	S1(0.5)	S7(2.0)		KS5	Q-1
		A 4-1		WA9(5)		S2(1.5)			KS6	2-2
_							S9(3.5)	KM2	(S7	1−3
	程 和	爾本制细如	BK(5)	PPWAX(4)		S10(1.5)		km3	-	1-4

顔料、電荷制御剤、ワックスの配合量比は結着樹脂100重量部に対する配合量(重量部) 比を括弧内に示す。外添剤はトナー母体100重量部に対する配合量(重量部)を示している。外添処理はFM20Bにおいて、攪拌羽根20S0型、回転数2000min⁻¹、処理時間5min、投入量1kgで行った。

図1は本実施例で使用したフルカラー画像形成用の画像形成装置の構成を示す断面図である。図1において、カラー電子写真プリンタの外装 筺は省略している。転写ベルトユニット17は、転写ベルト12、弾性

体よりなる第1色(イエロー)転写ローラ10Y、第2色(マゼンタ) 転写ローラ10M、第3色(シアン) 転写ローラ10C、第4色(プラ ック) 転写ローラ10K、アルミローラよりなる駆動ローラ11、弾性 体よりなる第2転写ローラ14、第2転写従動ローラ13、転写ベルト 5 12上に残ったトナー像をクリーニングするベルトクリーナブレード1 6、クリーナブレードに対向する位置にローラ15を設けている。 このとき、第1色(Y)転写位置から第2色(M)転写位置までの距離 は70mm (第2色 (M) 転写位置から第3色 (C) 転写位置、第3色 (C) 転写位置から第4色(K) 転写位置も同様距離)、感光体の周速 度は125mm/sである。転写ベルト12は、絶縁性ポリカーポネー 10 ト樹脂中に導電性のフィラーを混練して押出機にてフィルム化して用い る。本実施例では、絶縁性樹脂としてポリカーポネート樹脂 (たとえば 三菱ガス化学製、ユーピロンZ300)95重量部に、導電性カーボン (たとえばケッチェンブラック) 5重量部を加えてフィルム化したもの を用いた。また、表面にフッ素樹脂をコートし、厚みは約100 μ m、 15 体積抵抗は10⁷~10¹²Ω・cm、表面抵抗は10⁷~10¹²Ω/□ である。ドット再現性を向上させるためもある。 転写ベルト12の長期 使用による弛みや、電荷の蓄積を有効に防止できるようにするためであ り、また、表面をフッ素樹脂でコートしているのは、長期使用による転 写ベルト表面へのトナーフィルミングを有効に防止できるようにするた 20 めである。体積抵抗が $10^{7}\Omega$ ・cm未満であると、再転写が生じ易く、

第1転写ローラは外径10 mmのカーボン導電性の発泡ウレタンローラで、抵抗値は $10^2 \sim 10^6 \Omega$ である。第1転写動作時には、第1転25 写ローラ10は、転写ベルト12を介して感光体1に $1.0 \sim 9.8$ (N)の押圧力で圧接され、感光体上のトナーがベルト上に転写される。

 $10^{12}\Omega$ ・cmを超えると転写効率が悪化する。

25

抵抗値が $10^2\Omega$ よりも小さいと、再転写が生じ易い。 $10^6\Omega$ を超えると転写不良が生じ易くなる。1.0(N)よりも小さいと転写不良を生じ、9.8(N)よりも大きいと転写文字抜けが生じる。

第2転写ローラ14は外径15mmのカーボン導電性の発泡ウレタン ローラで、抵抗値は10²~10⁶ Qである。第2転写ローラ14は、転写ベルト12及び紙、OHP等の転写媒体19とを介して転写ローラ13に圧接される。この転写ローラ13は転写ベルト12に従動回転可能に構成している。第2次転写での第2転写ローラ14と対向転写ローラ13とは5.0~21.8(N)の押圧力で圧接され、紙等の記録材10 上19に転写ベルトからトナーが転写される。抵抗値が10² Qよりも小さいと、再転写が生じ易い。10⁶ Qよりも大きいと転写不良が生じ易くなる。5.0(N)よりも小さいと転写不良となり、21.8(N)よりも大きいと負荷が大きくなり、ジッタが出やすくなる。

イエロー(Y)、マゼンタ(M)、シアン(C)、黒(B)の各色用 15 の4組の像形成ユニット18Y、18M、18C、18Kが、図のよう に直列状に配置されている。

各像形成ユニット18Y、18M、18C、18K、中に入れた現像 剤を除きそれぞれ同じ構成部材よりなるので、説明を簡略化するためY 用の像形成ユニット18Yについて説明し、他色用のユニットの説明に ついては省略する。

像形成ユニットは以下のように構成されている。1は感光体、3は画素レーザ信号光、4は内部に1200ガウスの磁力を有する磁石を有するアルミよりなる外径12mmの現像ローラで、感光体とギャップ0.3mmで対向し、矢印の方向に回転する。6は攪拌ローラで現像器内のトナーとキャリアを攪拌し、現像ローラへ供給する。キャリアとトナーの配合比を透磁率センサーにより読み取り(図示せず)、トナーホッパー

10

(図示せず)から適時供給される構成である。 5 は金属製の磁性ブレードで現像ローラ上に現像剤の磁気プラシ層を規制する。現像剤量は150 g投入している。ギャップは0.4mmとした。電源は、省略しているが、現像ローラ4には-500 Vの直流と、1.5 k V(p-p)、周波数6 k H z の交流電圧が印加される。感光体と現像ローラ間の周速度比は1:1.6 とした。またトナーとキャリアの混合比は93:7 とし、現像器中の現像剤量は150 gで行った。

2はエピクロルヒドリンゴムよりなる外径 12 mmの帯電ローラで直流バイアス -1. 2 k Vが印加される。感光体 1 表面を -6 0 0 V に帯電する。 8 はクリーナ、 9 は廃トナーボックス、 7 は現像剤である。

紙搬送は転写ユニット17の下方から搬送され、転写ベルト12と第2転写ローラ14との圧接されたニップ部に紙給送ローラ(図示せず)により紙19が送られてくるように、紙搬送路が形成されている。

転写ベルト12上のトナーは第2転写ローラ14に印加された+10 15 00 Vにより紙19に転写され、定着ローラ201、加圧ローラ202、 定着ベルト203、加熱媒体ローラ204、インダクションヒータ部2 05から構成される定着部に搬送され、ここで定着される。

図2にその定着プロセス図を示す。定着ローラ201とヒートローラ204との間にベルト203がかけられている。定着ローラ201と加20 圧ローラ202との間に所定の加重がかけられており、ベルト203と加圧ローラ202との間でニップが形成される。ヒートローラ204の外部周面にはフェライトコア206、とコイル207よりなるインダクションヒータ部205が設けられ、外面には温度センサー208が配置されている。

25 ベルトは 30μ mのNiを基体としてその上にシリコーンゴムを150 μ m、さらにその上にPFAチュープ 30μ mの重ねあわせた構成で

ある。加圧ローラ202は加圧バネ209により定着ローラ201に押 しつけられている。トナー210を有する記録材19は、案内板211 に沿って動く。定着部材としての定着ローラ201は、長さが250m m、外径が14mm、厚さ1mmのアルミニウム製中空ローラ芯金21 3の表面に、JIS規格によるゴム硬度(JIS-A)が20度のシリ 5 コーンゴムからなる厚さ3mmの弾性層214を設けている。この上に シリコーンゴム層215が3mmの厚みで形成され外径が約20mmと なっている。図示しない駆動モータから駆動力を受けて125mm/s で回転する。ヒートローラ204は肉厚1mm、外径20mmの中空パ イプからなっている。定着ベルト表面温度はサーミスタを用いて表面温 10 度170℃に制御した。加圧部材としての加圧ローラ202は、長さが 250mm、外径20mmである。これは外径16mm、厚さ1mmの アルミニウムからなる中空ローラ芯金216の表面にJIS規格による ゴム硬度(JIS-A)が55度のシリコーンゴムからなる厚さ2mm の弾性層217を設けている。この加圧ローラ202は、回転可能に設 15 置されており、片側147Nのバネ加重のバネ209によって定着ロー ラ201との間で幅5.0mmのニップ幅を形成している。

以下、動作について説明する。フルカラーモードではY, M, C, K のすべての第一転写ローラ10が押し上げられ、転写ベルト12を介して像形成ユニットの感光体1を押圧している。この時第一転写ローラには+800Vの直流バイアスが印加される。画像信号がレーザ光3から送られ、帯電ローラ2により表面が帯電された感光体1に入射し、静電潜像が形成される。感光体1と接触し回転する現像ローラ4上のトナーが感光体1に形成された静電潜像を顕像化する。

25 このとき像形成ユニット18Yの像形成の速度(感光体の周速に等しい125mm/s)と転写ベルト12の移動速度は感光体速度が転写ベ

ルト速度よりも0.5~1.5%遅くなるように設定されている。

像形成工程により、Yの信号光3Yが像形成ユニット18Yに入力され、Yトナーによる像形成が行われる。像形成と同時に第1転写ローラ10Yの作用で、Yトナー像が感光体1Yから転写ベルト12に転写される。このとき第1転写ローラ10Yには+800Vの直流電圧を印加した。

第1色(Y)第一転写と第2色(M)第一転写間のタイムラグを持たせて、Mの信号光3Mが像形成ユニット18Mに入力され、Mトナーによる像形成が行われ、像形成と同時に第1転写ローラ10Mの作用で、

10 Mトナー像が感光体1Mから転写ベルト12に転写される。このとき第一色(Y)トナーが形成されている上にMトナーが転写される。同様にC(シアン)、K(ブラック)トナーによる像形成が行われ、像形成と同時に第1転写ローラ10C、10Bの作用で、YMCKトナー像が転写ベルト12上に形成される。いわゆるタンデム方式と呼ばれる方式である。

転写ベルト12上には4色のトナー像が位置的に合致して重ね合わされカラー像が形成された。最後のBトナー像の転写後、4色のトナー像はタイミングを合わせて給紙カセット(図示せず)から送られる紙19に、第2転写ローラ14の作用で一括転写される。このとき転写ローラ13は接地し、第2転写ローラ14には+1kVの直流電圧を印加した。紙に転写されたトナー像は定着ローラ対201・202により定着された。紙はその後排出ローラ対(図示せず)を経て装置外に排出された。中間転写ベルト12上に残った転写残りのトナーは、クリーニングブレード16の作用で清掃され次の像形成に備えた。

25 表12に図1の電子写真装置により、画像出しを行った結果を示す。 表13にはトナーが3色重なったフルカラー画像における文字部での転 写不良の状態、及び定着での定着ペルトへの紙の巻付き性を評価した結果を示す。帯電量はフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45%RHの環境下で、耐久性評価のサンプルを0.3g採取し、窒素ガス1.96×10⁴(Pa)で1分間プローした。

表 1 2

5

T T/ILIS/S T/ILIS/S R M M M M M M M M M	現像剤	 	12 71	感光休 b	画像漕座(ID)/	カプリ		#= 12 n+ 0	·
DM1 TM1 A1 未発生 1.42/1.48 O O なし 発生なし DM2 TM2 A2 未発生 1.41/1.50 O O なし 発生なし DM3 TM3 A3 未発生 1.44/1.48 O O なし 発生なし DM4 TM4 A4 未発生 1.40/1.48 O O なし 発生なし DM5 TM5 A1 未発生 1.48/1.46 O O なし 発生なし DM6 TM6 A2 未発生 1.41/1.51 O O なし 発生なし DM6 TM6 A2 未発生 1.41/1.39 O O なし 発生なし DY1 TY1 A1 未発生 1.49/1.39 O O なし 発生なし DY2 TY2 A2 未発生 1.44/1.38 O O なし 発生なし DY3 TY3 A3 未発生 1.44/1.43 O O	30 120 711	'		_		ייינון			
DM2 TM2 A2 未発生 1.41/1.50 O O 公し 発生なし DM3 TM3 A3 未発生 1.44/1.48 O O 公し 発生なし DM4 TM4 A4 未発生 1.40/1.48 O O なし 発生なし DM5 TM5 A1 未発生 1.48/1.46 O O なし 発生なし DM6 TM6 A2 未発生 1.41/1.51 O O なし 発生なし DM6 TM6 A2 未発生 1.41/1.51 O O なし 発生なし DM7 TY1 A1 未発生 1.49/1.39 O O なし 発生なし DY2 TY2 A2 未発生 1.41/1.38 O O なし 発生なし DY3 TY3 A3 未発生 1.41/1.39 O O なし 発生なし DY4 TY4 A4 未発生 1.41/1.39 O O なし 発生なし DY4 TY4 A4 未発生 1.41/1.39 O O なし 発生なし DY5 TY5 A1 未発生 1.41/1.42 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.44 O O なし 発生なし dy7 Ty7 b2 発生 1.28/1.03 × × 発生 T→飛び発 DC1 TC1 A1 未発生 1.48/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.44/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.48/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし DC6 TC6 A2 未発生 1.45/1.41 O O なし 発生なし DB1 TB1 A1 未発生 1.42/1.36 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.41 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.42 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし A2 未発生 1.48/1.42 O O なし 発生なし A2 未発生 1.48/1.42 O O なし 発生なし A2 和はなし A2 和はなし A2 和	DM1	TM1				 			
DM3 TM3 A3 未発生 1.44/1.48 O O O 欠生なし 欠生なし 欠生なし 欠生なし 欠生なし 欠ける	1						<u> </u>	発生なし	
DM4		- · · · · · · · · · · · · · · · · · · ·	+						発生なし
DM5 TM5 A1 未発生 1.48/1.46 O O 公し 発生なし Metar Met			+			+		なし	発生なし
DM6 TM6 A2 未発生 1.41/1.51 O O なし 発生なし 分子の 分					1.40/1.48		0	なし	発生なし
Mm7 km7 km8 km					1.48/1.46	0	0	なし	発生なし
Mm7 km7 km7 km7 kmm km		ТМ6	A2	未発生	1.41/1.51	0	0	なし	発生なし
DY1	<u></u>	tm7	b1	発生	1.21/1.03	×	×	発生	トナー飛び発生
DY2 TY2 A2 未発生 1.41/1.38 O O なし 発生なし DY3 TY3 A3 未発生 1.48/1.45 O O なし 発生なし DY4 TY4 A4 未発生 1.41/1.39 O O なし 発生なし DY5 TY5 A1 未発生 1.47/1.42 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.44 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.42 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.42 O O なし 発生なし DY7 DY6 TY6 A2 未発生 1.46/1.42 O O なし 発生なし DY7 DY7 DY8 A3 未発生 1.46/1.42 O O なし 発生なし DY7 DY8 A3 未発生 1.46/1.42 O O なし 発生なし DY8 TY2 A3 未発生	DY1	TY1	A1	未発生	1.49/1.39	0	0	なし	
DY3 TY3 A3 未発生 1.48/1.45 O O なし 発生なし DY4 TY4 A4 未発生 1.41/1.39 O O なし 発生なし DY5 TY5 A1 未発生 1.47/1.42 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.44 O O なし 発生なし DY7 b2 発生 1.28/1.03 × × 発生 トナー飛び発 DC1 TC1 A1 未発生 1.38/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.49/1.41 O O なし	DY2	TY2	A2	未発生	1.41/1.38	0	0		
DY4 TY4 A4 未発生 1.41/1.39 O O なし 発生なし DY5 TY5 A1 未発生 1.47/1.42 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.44 O O なし 発生なし DY7 b2 発生 1.28/1.03 × × 発生 トナー飛び発 DC1 TC1 A1 未発生 1.38/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし	DY3	TY3	А3	未発生	1.48/1.45	0	0		
DY5 TY5 A1 未発生 1.47/1.42 O O なし 発生なし DY6 TY6 A2 未発生 1.48/1.44 O O なし 発生なし dy7 Ty7 b2 発生 1.28/1.03 × × 発生 トナー飛び発 DC1 TC1 A1 未発生 1.38/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし DB1 TB1 A1 未発生 1.45/1.41 O O	DY4	TY4	A4	未発生	1.41/1.39	0	0		
DY6 TY6 A2 未発生 1.48/1.44 O O なし 発生なし dy7 Ty7 b2 発生 1.28/1.03 × × 発生 トナー飛び発 DC1 TC1 A1 未発生 1.38/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし DC6 TC6 A2 未発生 1.45/1.41 O O なし 発生なし DB1 TB1 A1 未発生 1.42/1.36 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし <t< td=""><td>DY5</td><td>TY5</td><td>A1</td><td>未発生</td><td>1.47/1.42</td><td>0</td><td>0</td><td></td><td></td></t<>	DY5	TY5	A1	未発生	1.47/1.42	0	0		
dy7 Ty7 b2 発生 1.28/1.03 × × 発生 トナー飛び発 免生なし DC1 TC1 A1 未発生 1.38/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし DC6 TC7 b3 発生 1.21/1.02 × × 発生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし <td>DY6</td> <td>TY6</td> <td>A2</td> <td>未発生</td> <td>1.48/1.44</td> <td>0</td> <td></td> <td></td> <td></td>	DY6	TY6	A2	未発生	1.48/1.44	0			
DC1 TC1 A1 未発生 1.38/1.42 O O なし 発生なし DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし dc7 Tc7 b3 発生 1.21/1.02 × × 発生なし DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB6 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	dy7	Ty7	b2	発生	1.28/1.03	×			トナー飛び発生
DC2 TC2 A2 未発生 1.47/1.53 O O なし 発生なし DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし dc7 Tc7 b3 発生 1.21/1.02 × × 発生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	DC1	TC1	A1	未発生	1.38/1.42	0	0		
DC3 TC3 A3 未発生 1.46/1.42 O O なし 発生なし DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし dc7 Tc7 b3 発生 1.21/1.02 × × 発生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	DC2	TC2	A2	未発生	1.47/1.53	0	0		
DC4 TC4 A4 未発生 1.47/1.42 O O なし 発生なし DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし dc7 Tc7 b3 発生 1.21/1.02 × × 発生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし			А3	未発生	1.46/1.42	0	0		
DC5 TC5 A1 未発生 1.48/1.42 O O なし 発生なし DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし dc7 Tc7 b3 発生 1.21/1.02 × × 発生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	DC4		A4	未発生	1.47/1.42	0			
DC6 TC6 A2 未発生 1.49/1.41 O O なし 発生なし dc7 Tc7 b3 発生 1.21/1.02 × × 発生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし		TC5	A1	未発生	1.48/1.42	0	0	なし	発生なし
dc7 Tc7 b3 発生 1.21/1.02 × × 条生 トナー飛び発 DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし		TC6	A2	未発生	1.49/1.41	0	0		
DB1 TB1 A1 未発生 1.45/1.41 O O なし 発生なし DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	-	Tc7	ь3	発生	1.21/1.02	×	×		
DB2 TB2 A2 未発生 1.42/1.36 O O なし 発生なし DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし DB6 TB0 A0 本発生 1.48/1.42 O O なし 発生なし		TB1	A1	未発生	1.45/1.41	0			
DB3 TB3 A3 未発生 1.42/1.41 O O なし 発生なし DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	DB2	TB2	A2	未発生	1.42/1.36	0			
DB4 TB4 A4 未発生 1.47/1.42 O O なし 発生なし DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし	DB3	TB3	A3	未発生	1.42/1.41	0			
DB5 TB5 A1 未発生 1.48/1.42 O O なし 発生なし		TB4	A4	未発生	1.47/1.42	0			
DD6 TD6 A6 I # 89 # 1	DB5	TB5	A1	未発生	1.48/1.42				
	DB6	TB6	A2	未発生	1.41/1.37				発生なし
db7 Tb7 b4 88 45 4 0044 00	db7	ТЬ7	b4	発生	1.24/1.03				ナー飛び発生

表 1 3

	第 1 個 像剤	色現	第 2 現像		3 色 象剤	第現		逆車	云写	転写中抜け	定着ペルトへの 巻付性
CC1	DY1		DM1	DC	1	DB	1	未多	半生	未発生	未発生
CC2	DY2		DM2	DC	2	DB	2	未多	半生	未発生	未発生
CC3	DY3		DM3	DC	3	DB	3	未多	€生	未発生	未発生
CC4	DY4		DM4	DC	4	DB	4	 未多	€生	未発生	未発生
CC5	DY5		DM5	DC	5	DB	5	未多	き生	未発生	未発生
CC6	DY6		DM6	DC	6	DB	6	未多	生	未発生	未発生
cc7	dy7		dm7	dc7		db.	7_	発生	Ē.	発生	発生

現像剤を用いて画像出しを行ったところ、横線の乱れやトナーの飛び 散り、文字の中抜けなどがなくペタ黒画像が均一で、16本/mmの画 線をも再現した極めて高解像度高画質の画像が得られ、画像濃度1.3 以上の高濃度の画像が得られた。また、非画像部の地かぶりも発生して 5 いなかった。更に、A4用紙10万枚の長期耐久テストにおいても、流 動性、画像濃度とも変化が少なく安定した特性を示した。また現像時の 全面ベタ画像を取ったときの均一性も良好であった。現像メモリーも発 生していない。連続使用時においても、縦筋の異常画像は発生しなかっ た。キャリアへのトナー成分のスペントもほとんど生じていない。キャ 10 リア抵抗の変化、帯電量の低下も少なく、カブリの発生はない。高温高 湿下、低温低湿下での帯電量の変動はほとんど生じていない。また転写 においても中抜けは実用上問題ないレベルであり、転写効率は95%程 度を示した。また、感光体、転写ベルトへのトナーのフィルミングも実 用上問題ないレベルであった。転写ベルトのクリーニング不良も未発生 15 であった。また定着時のトナーの乱れやトナー飛びもほとんど生じてい ない。また3色の重なったフルカラー画像においても、転写不良は発生 せず、定着時において、定着ベルトへの紙の巻付きは発生しなかった。

しかし、tm7、ty7、tc7、tb7のトナー、現像剤はプロセ 20 ス速度100mm/s、感光体間の距離が70mmでは転写時の文字の 飛び散り、転写文字中抜け、逆転写性はなんとか許容できるレベルであ

ったが、プロセス速度が125mm/sに上げた時や、感光体間の距離を60mmとしたときには転写時の文字の飛び散り、転写文字中抜け、逆転写が発生し、実用上問題とされるレベルであった。感光体のフィルミングや転写不良や、カブリも多く発生した。

5 また、キャリアへのスペントが多く、キャリア抵抗の変化が大きく、 帯電量の低下、カブリの増大する傾向が見られた。高温高湿下での帯電量の低下によるカブリの増大、低温低湿下での帯電量の増大による画像 濃度の低下が見られた。転写効率は60~70%程度まで低下した転写 ベルトのフィルミングや、クリーニング不良も発生した。現像時の全面 ベタ画像を取ったときに後半部にかすれが生じた。連続使用時に現像ブレードにワックスが融着し、縦筋の異常画像が発生した。3色重ねの画像出力時には定着ベルトへの紙の巻付きが発生した。定着時にトナー飛びが発生した。

次に表14に〇HP用紙に付着量1.2 mg/cm²以上のベタ画像 をプロセス速度100mm/s、オイルを塗布しないベルトを用いた定着装置にて非オフセット性試験を行った。定着ニップ部で〇HPのジャムは発生しなかった。普通紙の全面ベタグリーン画像では、オフセットは122000枚目までは全く発生しなかった。シリコン又はフッ素系の定着ベルトでオイルを塗布せずともベルトの表面劣化現象はみられな 20 い。

透過率と、高温でのオフセット性を評価した。プロセス速度は100 mm/s、定着温度180℃で透過率は分光光度計U-3200(日立製作所)で、700nmの光の透過率を測定した。定着性、耐オフセット性、保存安定性の結果を示す。

表 1 4

	OHP透過率(%)	高温オフセット発生温度(℃)	保存性テスト
TM1	89.8	220	0
TM2	90.8	230	0
TM3	92.5	230	0
TM4	91.7	230	0
TM5	93.8	220	0
TM6	91.8	230	0
tm7	89.8	全温度領域で発生	×
TC1	90.6	220	0
TC2	92.8	230	0
TC3	93.5	230	0
TC4	94.5	230	0
TC5	92.8	220	0
TC6	93.2	230	0
tc7	88.2	全温度領域で発生	×

〇HP透光性が80%以上を示しており、また非オフセット温度幅も $40\sim60\%$ とオイルを使用しない定着ローラにおいて良好な定着性を示した。また60%、5時間の保存安定性においても凝集はほとんど見られなかった。

しかしtm7、tc7のトナーは保存安定性テストで固まりが生じ、また非オフセット温度域も狭い結果となった。

産業上の利用可能性

5

本発明は、脂肪酸、脂肪酸エステル、脂肪酸アミド及び脂肪酸金属塩のいずれか1種または2種以上と、ポリシロキサンとを表面に処理した無機微粉末を含む外添処方を有するトナー、又はアミノシランカップリング剤を含有するフッ素変性シリコーン樹脂を被覆樹脂とするキャリアと組合せた二成分現像剤により、オイルを塗布せずとも、OHP透光性を維持しながらオフセット性を防止するオイルレス定着を実現でき、かつキャリアへのトナー成分のスペントもなく長寿命化を図ることができる。また転写時の中抜け低減し、高転写効率を得ることが可能となる。

20

請求の範囲

1. 結着樹脂、着色剤及びワックスを含むトナー母体と外添剤を含むトナーであって、

前記外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一つと、

- 5 ポリシロキサンを表面に付着させた無機微粉末を含むことを特徴とする トナー。
 - 2. 前記脂肪酸の誘導体が、脂肪酸エステル、脂肪酸アミド又は脂肪酸金属塩である請求項1に記載のトナー。
- 3. 前記無機微粉末の平均粒子径が30nm~200nmの範囲である 10 請求項1に記載のトナー。
 - 4. 前記外添剤には、さらに平均粒子径が6 nm~30 nmの範囲の負帯電性シリカ微粉末を含む請求項1に記載のトナー。
 - 5. 前記脂肪酸及びその誘導体から選ばれる少なくとも一つ (A) と、ポリシロキサン (B) との混合割合が、 $A:B=2:1\sim1:20$ である請求項1に記載のトナー。
 - 6. 前記ポリシロキサンが、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサン、フェニルハイドロジェンポリシロキサン及びフェニルハイドロジェンメチルハイドロジェンポリシロキサンから選ばれる少なくとも一つである請求項1に記載のトナー。
 - 7. 前記脂肪酸及びその誘導体から選ばれる少なくとも一つとポリシロ キサンを表面に付着させた乾燥後の無機微粉末を500℃で2時間強熱 したときの強熱減量が、5~25wt%である請求項1に記載のトナー。
 - 8. 前記ワックスが、DSC法による吸熱ピーク温度が50~120℃、
- 25 ヨウ素価が 2 5 以下、けん化価が 3 0 ~ 3 0 0、ゲル浸透クロマトグラフィー(GPC)における数平均分子量が 1 0 0 ~ 5 0 0 0、重量平均

分子量が $200\sim10000$ 、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が $1.01\sim8$ 、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が $1.02\sim10$ 、分子量 $5\times10^2\sim1\times10^4$ の領域に少なくとも一つの分子量極大ピークを有するエステル系ワックスである請求項1に記載のトナー。

- 9. 前記ワックスが炭素数 4~30の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び炭化水素系ワックスとの反応により得られ、GPCにおける分子量分布において、重量平均分子量が1000~6000、Z平均分子量が1500~9000、重量平均分子量と数平均公子量のは、(香屋平均公子屋)(水子水の子屋)と
- 15 10.前記ワックスが、少なくとも炭素数 16~24を有する脂肪族アミド系ワックス、及び飽和又は1~2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系ワックスから選ばれる少なくとも一つのワックスである請求項1に記載のトナー。
- 11. 前記ワックスが、ヒドロキシステアリン酸の誘導体、グリセリン 20 脂肪酸エステル、グリコール脂肪酸エステル及びソルピタン脂肪酸エステルの群から選択される1種以上のワックスである請求項1に記載のトナー。
- 12. 少なくとも結着樹脂、着色剤及びワックスを含むトナー母体と外添剤とからなるトナーとキャリアからなる二成分現像剤であって、前記 9. 外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一つと、ポリシロキサンとを表面に処理した無機微粉末を含み、前記キャリアがコア材

の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性 シリコーン樹脂を含むことを特徴とする二成分現像剤。

- 13. 前記脂肪酸の誘導体が、脂肪酸エステル、脂肪酸アミド又は脂肪酸金属塩である請求項12に記載の二成分現像剤。
- 5 14. 前記無機微粉末の平均粒子径が30nm~200nmの範囲である請求項12に記載の二成分現像剤。
 - 15. 前記外添剤には、さらに平均粒子径が6nm~30nmの範囲の 負帯電性シリカ微粉末を含む請求項12に記載の二成分現像剤。
 - 16. 前記脂肪酸及びその誘導体から選ばれる少なくとも一つ(A)と、
- 10 ポリシロキサン(B) との混合割合が、A:B=2:1~1:20である請求項12に記載の二成分現像剤。
 - 17. 前記ポリシロキサンが、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサン、フェニルハイドロジェンポリシロキサン及びフェニル
- 15 ハイドロジェンメチルハイドロジェンポリシロキサンから選ばれる少なくとも一つである請求項12に記載の二成分現像剤。
 - 18. 前記脂肪酸及びその誘導体から選ばれる少なくとも一つとポリシロキサンを表面に付着させた乾燥後の無機微粉末を500で2時間強熱したときの強熱減量が、 $5\sim25$ w t %である請求項12に記載の二成分現像剤。
 - 19. 前記ワックスが、DSC法による吸熱ピーク温度が $50\sim12$ 0 $^{\circ}$ 、ヨウ素価が25以下、けん化価が $30\sim300$ 、ゲル浸透クロマトグラフィー(GPC)における数平均分子量が $100\sim5000$ 、重量平均分子量が $200\sim10000$ 、重量平均分子量と数平均分子量の
- 25 比(重量平均分子量/数平均分子量)が1.01~8、Z平均分子量と 数平均分子量の比(Z平均分子量/数平均分子量)が1.02~10、

分子量 $5 \times 10^2 \sim 1 \times 10^4$ の領域に少なくとも一つの分子量極大ピークを有するエステル系ワックスである請求項 12 に記載の二成分現像剤。

- 20. 前記ワックスが炭素数4~30の長鎖アルキルアルコール、不飽 和多価カルボン酸又はその無水物及び炭化水素系ワックスとの反応により得られ、GPCにおける分子量分布において、重量平均分子量が100~6000、Z平均分子量が1500~9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1~3.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)
- 10 が1.5~6.5、1×10³~3×10⁴の領域に少なくとも一つの分子量極大ピークを有し、DSC法による吸熱ピーク温度が80℃~120℃、酸価5~80mgKOH/gである請求項12に記載の二成分現像剤。
- 21. 前記ワックスが、少なくとも炭素数16~24を有する脂肪族ア 15 ミド系ワックス及び飽和または1~2価の不飽和の脂肪酸のアルキレン ビス脂肪酸アミド系ワックスから選ばれる少なくとも一つのワックスで ある請求項12に記載の二成分現像剤。
- 22. 前記ワックスが、ヒドロキシステアリン酸の誘導体、グリセリン 脂肪酸エステル、グリコール脂肪酸エステル及びソルピタン脂肪酸エス 20 テルの群から選択される1種以上のワックスである請求項12に記載の 二成分現像剤。
 - 23. キャリアの被覆樹脂に、アミノシランカップリング剤が被覆樹脂100重量部中5~40重量部含有されている請求項12に記載の二成分現像剤。
- 25 24. キャリアの被覆樹脂に導電性微粉末が被覆樹脂100重量部に対して1~15重量部含有されている請求項12に記載の二成分現像剤。

25. 感光体と現像ローラ間に直流パイアスと共に、周波数が $5\sim10$ k H z 、パイアスが $1.0\sim2.5$ k V (p-p) である交流パイアス を印加し、かつ感光体と現像ローラ間の周速度比が $1:1.2\sim1:2$ である現像手段を含む画像形成方法であって、

5 少なくとも結着樹脂、着色剤及びワックスを含むトナー母体と外添剤を含み、前記外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一つと、ポリシロキサンを表面に付着させた無機微粉末を含むトナーを使用することを特徴とする画像形成方法。

26. 少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手 10 段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記 像担持体上に形成した静電潜像を、

少なくとも結着樹脂、着色剤及びワックスを含むトナー母体と外添剤 を含み、前記外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一 つと、ポリシロキサンを表面に付着させた無機微粉末を含むトナーによ り顕像化し、

前記静電潜像を顕像化した前記トナー像を、前記像担持体に無端状の 転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連 続して実行して、前記転写体に多層の転写トナー画像を形成し、その後 前記転写体に形成した多層のトナー像を、一括して転写媒体に転写させ 20 る二次転写プロセスが実行されるよう構成された転写システムを具備し、 前記転写プロセスが、第1の一次転写位置から第2の一次転写位置まで の距離、又は第2の一次転写位置から第3の一次転写位置までの距離、 又は第3の一次転写位置から第4の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≤0.6 5(sec)の条件を満足することを特徴とする画像形成方法。

27. 少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手

段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記 像担持体上に形成した静電潜像を、

少なくとも結着樹脂、着色剤及びワックスを含むトナー母体と外添剤を含み、前記外添剤が脂肪酸及びその誘導体から選ばれる少なくとも一つと、ポリシロキサンを表面に付着させた無機微粉末を含むトナーにより顕像化し、

前記静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に 転写させる転写プロセスが実行されるよう構成された転写システムを具 備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの 10 距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の 転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速 度をv(mm/s)とした場合、d1/v≤0.65(sec)の条件 を満足することを特徴とする画像形成方法。

FIG. 1

2/6

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

CT 46	COUNCY AND A COUNCY OF COU			
A. CLAS	SIFICATION OF SUBJECT MATTER .Cl ⁷ G03G9/097, G03G9/113, G0	3G15/06, G03G15	5/08	
	to International Patent Classification (IPC) or to both	national classification and	IPC	
	documentation searched (classification system followers	od har ala a ser a ser a se	· · · · · · · · · · · · · · · · · · ·	
Int	.Cl G03G9/097, G03G9/113, G0	3G15/06, G03G15	5/08	
Documenta	tion searched other than minimum documentation to	the extent that such docum	ents are included	in the fields searched
Koka	i Jitsuyo Shinan Koho 1971-2003	o Jitsuyo Shinan Toroku Jitsuyo	Toroku Koh Shinan Koh	o 1996–2003 o 1994–2003
Electronic	data base consulted during the international search (na	me of data base and, wher	e practicable, sea	rch terms used)
C DOCH	IMENER CONCIDENCE TO DE DEL DIVINI		, , , , , , , , , , , , , , , , , , ,	
	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where		t passages	Relevant to claim No.
Y	JP 2002-296829 A (Konica Co 09 October, 2002 (09.10.02), Full text (Family: none)	rp.),	·	1-6,10,11 7-9,12-27
X Y	JP 2002-287408 A (Konica Co 03 October, 2002 (03.10.02), Full text	rp.),		1-6,10,11 7-9,12-27
Y	JP 2002-169324 A (Konica Co 14 June, 2002 (14.06.02), Full text			1-27
	& US 20020064401 A & El	? 1211570 A		
× Furthe	er documents are listed in the continuation of Box C.	See patent family	annex.	
"A" docume consider date "L" docume cited to	categories of cited documents: int defining the general state of the art which is not red to be of particular relevance locument but published on or after the international filing int which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	"X" date and not understand the prince document of particul considered novel or step when the document of the	in conflict with the siple or theory under lar relevance; the claus cannot be considere nent is taken alone	national filing date or application but cited to dying the invention aimed invention cannot be d to involve an inventive
"O" docume means "P" docume	reason (as specified) nt referring to an oral disclosure, use, exhibition or other nt published prior to the international filing date but later priority date claimed	considered to involve combined with one combination being o document member of	e an inventive step v or more other such d obvious to a person s	when the document is locuments, such skilled in the an
Date of the ac	ctual completion of the international search arch, 2004 (10.03.04)	Date of mailing of the in 06 April,	ternational search 2004 (06.0	1 report 04 . 04)
Name and ma Japar	niling address of the ISA/ nese Patent Office	Authorized officer		
acsimile No		Telephone No		[

Category*	Citation of document with indicate	
Y	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
_	JP 2000-10337 A (Matsushita Electric Industrial Co., Ltd.), 14 January, 2000 (14.01.00), Full text & US 20010086229 A & CN 1246659 A	1-27
Y	JP 2002-14489 A (Matsushita Electric Industrial Co., Ltd.), 18 January, 2002 (18.01.02), Full text (Family: none)	1-27
Y	JP 08-314184 A (Canon Inc.), 29 November, 1996 (29.11.96), Full text (Family: none)	1-27
Y	JP 2002-296829 A (Konica Corp.), 09 October, 2002 (09.10.02), Full text (Family: none)	1-27
Y .	JP 2002-311784 A (Konica Corp.), 25 October, 2002 (25.10.02), Full text (Family: none)	1-27
Y	<pre>JP 2001-209209 A (Tomoegawa Paper Co., Ltd.), 03 August, 2001 (03.08.01), Full text (Family: none)</pre>	1-27
Y	JP 2002-23429 A (Fujitsu Ltd.), 23 January, 2002 (23.01.02), Full text & US 20020064724 A	12-27
Υ.	<pre>JP 10-20563 A (Ricoh Co., Ltd.), 23 January, 1998 (23.01.98), Full text (Family: none)</pre>	12-27
	JP 2001-109221 A (Matsushita Electric Industrial Co., Ltd.), 20 April, 2001 (20.04.01), Full text & US 6408155 B	25-27
	JP 2001-318506 A (Matsushita Electric Industrial Co., Ltd.), 16 November, 2001 (16.11.01), Full text (Family: none)	25-27

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	JP 2001-249511 A (Canon Inc.), 14 September, 2001 (14.09.01), Full text (Family: none)	25-27
		•
	·	
		. ·
·		
		·
		·
		·

国際出願番号 PCT/JP03/15137

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' G03G 9/097, G03G 9/113 Int. Cl' G03G 15/06, G03G 15/08

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ G03G 9/097, G03G 9/113 Int. Cl⁷ G03G 15/06, G03G 15/08

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年

日本国実用新案登録公報

1996-2003年

日本国登録実用新案公報

1994-2003年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X Y	JP 2002-296829 A (コニカ株式会社) 2002. 10.09、全文 (ファミリーなし)	1-6, 10, 11 7-9, 12-27	
X Y	JP 2002-287408 A (コニカ株式会社) 2002. 10.03、全文	1-6, 10, 11 7-9, 12-27	
Y	JP 2002-169324 A (コニカ株式会社) 2002. 06.14、全文 & US 20020064401 A & EP 1211570 A	1-27	
			

|X| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際出願番号 PCT/JP03/15137

	国际山旗备号 PUT/JP0	3/1513/
C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	一	関連する 請求の範囲の番号
Y	JP 2000-10337 A (松下電器産業株式会社) 200 0.01.14、全文 & US 20010086229 A & CN 1246659 A	1-27
Y	JP 2002-14489 A (松下電器産業株式会社) 200 2.01.18、全文 (ファミリーなし)	1-27
Y	JP 08-314184 A (キヤノン株式会社) 1996. 1 1. 29、全文 (ファミリーなし)	1-27
Y	JP 2002-296829 A (コニカ株式会社) 2002. 10.09、全文 (ファミリーなし)	1-27
Y	JP 2002-311784 A (コニカ株式会社) 2002. 10.25、全文 (ファミリーなし)	1-27
Y	JP 2001-209209 A (株式会社巴川製紙所) 200 1.08.03、全文 (ファミリーなし)	1-27
Y	JP 2002-23429 A (富士通株式会社) 2002. 0 1. 23、全文 & US 20020064724 A	12-27
Y	JP 10-20563 A (株式会社リコー) 1998.01. 23、全文 (ファミリーなし)	12-27
Y	JP 2001-109221 A (松下電器産業株式会社) 20 01.04.20、全文 & US 6408155 B	25-27
Y	JP 2001-318506 A (松下電器産業株式会社) 20 01.11.16、全文 (ファミリーなし)	25-27
Y	JP 2001-249511 A (キヤノン株式会社) 200 1.09.14、全文 (ファミリーなし)	25-27
	·	
	·	