Algoritmos 2023/24

Grado en Ingeniería Informática

Práctica 2

Límite para la entrega: sábado 21 de octubre, a las 23:59

Ordenación por inserción y ordenación *shell*: El problema consiste en ordenar ascendentemente un vector de *n* números enteros. Como algoritmos de ordenación se utilizarán la *ordenación por inserción* y la *ordenación shell*:

```
procedimiento Ordenación por inserción (var v[1..n])
 para i := 2 hasta n hacer
   x := v[i];
    j := i-1 ;
   mientras j > 0 y v[j] > x hacer
     v[j+1] := v[j] ;
      j := j−1
    fin mientras ;
   v[j+1] := x
  fin para
fin procedimiento
procedimiento Ordenación shell (v[1..n])
  incremento := n;
  repetir
    incremento := incremento div 2;
   para i := incremento+1 hasta n hacer
     tmp := v[i];
      j := i;
     seguir := cierto;
     mientras j-incremento > 0 y seguir hacer
       si tmp < v[j-incremento] entonces</pre>
         v[j] := v[j-incremento];
          j := j-incremento
       sino seguir := falso
       fin si
     fin mientras;
     v[j] := tmp
    fin para
  hasta incremento = 1
fin procedimiento
```

1. Implemente los algoritmos de ordenación por inserción y shell.

```
void ord_ins (int v [], int n);
void ord_shell (int v [], int n);
```

2. Valide el correcto funcionamiento de la implementación.

```
> ./test
Inicializacion aleatoria
3, -3, 0, 17, -5, 2, 11, 13, 6, 1, 7, 14, 1, -2, 5, -14, -2
ordenado? 0
Ordenacion por Insercion
-14, -5, -3, -2, -2, 0, 1, 1, 2, 3, 5, 6, 7, 11, 13, 14, 17
ordenado? 1
Inicializacion descendente
10, 9, 8, 7, 6, 5, 4, 3, 2, 1
ordenado? 0
Ordenacion por Insercion
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ordenado? 1
```

- 3. Determine los tiempos de ejecución para distintos tamaños del vector y para tres diferentes situaciones iniciales: (a) el vector ya está ordenado en orden ascendente, (b) el vector ya está ordenado pero en orden descendente, y (c) el vector está inicialmente desordenado.
- 4. Calcule empíricamente las complejidades de los algoritmos para cada una de las diferentes situaciones iniciales del vector (i.e., 6 tablas) (figura 1).

Orden	acion por	insercion con	inicializacion des	cendente	
	n	t(n)	t(n)/n^1.8	t(n)/n^2	$t(n)/n^2.2$
(*)	500	173.194	0.00240097	0.00069278	0.00019989
	1000	710.000	0.00282656	0.00071000	0.00017834
	2000	2795.000	0.00319542	0.00069875	0.00015280
	4000	10902.000	0.00357930	0.00068138	0.00012971
	8000	43719.000	0.00412200	0.00068311	0.00011321
	16000	174085.000	0.00471352	0.00068002	0.00009811
	32000	696963.000	0.00541926	0.00068063	0.00008548

Figura 1: Parte de la posible salida por pantalla de la ejecución del programa principal

5. Entregue los ficheros con el código C y el fichero .txt con el informe por medio de la tarea *Entrega Práctica* 2 en la página de Algoritmos en https://campusvirtual.udc.gal. Se recuerda que el límite para completar la tarea es el sábado 21 de octubre a las 23:59, y una vez subidos los archivos no se podrán cambiar. Todos los compañeros que forman un equipo tienen que entregar el trabajo.