Database Management Systems

Vijaya Saradhi

IIT Guwahati

Thu, 05th Mar 2020

Note

Multiple Solutions

- Questions about
 - Relational algebraic expressions
 - SQL query

have multiple answers. Every alternate answer will be checked for its correctness

- Solutions provided here must be treated as model solutions
- Questions involving
 - True or False
 - Computing output for an SQL given relational instances
 - Parse trees for a given SQL query
 - Theoretical questions

have unique solution and they all must be adhering to the solution listed here

2/76

Consider the following schema:

```
Suppliers (sid int, sname char(50), address char(50))
   Parts (pid int, pname char(50), color char(50))
 Catalog (sid int, pid int, cost float)
```

Key attributes are denoted using underline notation. Write the following queries in relational algebra

```
Q01 - (a)
```

Find the sids of suppliers who supply some red part or at 221 Packer Ave. $\rho(R1, \pi_{sid}(\sigma_{color='red'}(Parts) \bowtie Catalog))$

 $\rho(R2, \pi_{sid}(\sigma_{address='221PackerStreet'}(Suppliers) \bowtie Catalog))$

 $R1 \cup R2$

3/76

Consider the following schema:

```
Suppliers (<u>sid int</u>, sname char(50), address char(50))

Parts (<u>pid int</u>, pname char(50), color char(50))

Catalog (sid int, pid int, cost float)
```

Key attributes are denoted using underline notation. Write the following queries in relational algebra

```
Q01 - (b)
```

Find the sids of suppliers who supply some red part and some green part.

```
\rho(R1, \pi_{sid}(\sigma_{color='red'}(Parts) \bowtie Catalog))

\rho(R2, \pi_{sid}(\sigma_{color='green'}(Parts) \bowtie Catalog))

R1 \cap R2
```

Consider the following schema:

```
Suppliers (<u>sid int</u>, sname char(50), address char(50))

Parts (<u>pid int</u>, pname char(50), color char(50))

Catalog (sid int, pid int, cost float)
```

Key attributes are denoted using underline notation. Write the following queries in relational algebra

```
Q01 - (c)
```

Find the sids of suppliers who supply every part.

```
\pi_{sid,pid}(Catalog)/\pi_{pid}(Parts)
```

3/76

Consider the following schema:

```
Suppliers (<u>sid int</u>, sname char(50), address char(50))

Parts (<u>pid int</u>, pname char(50), color char(50))

Catalog (sid int, pid int, cost float)
```

Key attributes are denoted using underline notation. Write the following queries in relational algebra

```
Q01 - (d)
```

Find the pids of parts supplied by at least two different suppliers.

```
\rho(R1, Catalog)
\rho(R2, Catalog)
```

 $\rho(R2, Catalog)$

 $\pi_{R1.pid}(\sigma_{R1.pid}=$ R2.pid AND R1.sid \neq R2.sid(R1 imes R2))

3/76

```
Consider the following schema:
```

```
Sailors (sid int, sname char(50), rating int, age float)
Reserves (sid int, bid int, rday char(10))
  Boats (bid int, bname char(50), color char(50))
```

rating take values from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Write an SQL query to find the name and age of the oldest sailor for every rating value.

Q02- Solution

```
SELECT sname, age
FROM Sailors
WHERE (rating, age)
IN
     (SELECT rating, MAX(age) AS ag
       FROM Sailors
       GROUP BY
                 rating)
ORDER BY rating;
```

1

2

3

Q02

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

```
SELECT rating, MAX(age) AS ag
FROM Sailors
GROUP BY rating
```

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

Result: $\{(Dustin, 45.0)\}$

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

is (7, 45.0) member of the relation?

73	.0) IIIeiiib	er or the	
	Sailors		
	rating	age	
	7	45.0	
1		33.0	
	8	55.5	
	10	35.0	
	9	35.0	
	3	63.5	

Result: $\{(Dustin, 45.0), (Brutus, 33.0)\}$

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

is (1, 33.0) member of the relation?

.,		
Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

Result: $\{(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5)\}$

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

is (8, 55.5) member of the relation?

-,		
Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

Result: $\{(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5)\}$

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

is (8, 25.5) member of the relation?

Sailors	Sailors		
rating age			
7 45.0			
1 33.0			
8 55.5			
10 35.0			
9 35.0			
3 63.5			

Result: $\{(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5), (Rusty, 35.0) \}$

Sailors			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Vijaya Saradhi (IIT Guwahati)

is (10, 35.0) member of the relation?

Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

11 / 76

Result: $\{(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5), (Rusty, 35.0) \}$

Sailors					
sid	sid sname rating age				
22	Dustin	7	45.0		
29	Brutus	1	33.0		
31	Lubber	8	55.5		
32	Andy	8	25.5		
58	Rusty	10	35.0		
64	Horatio	7	35.0		
71	Zorba	10	16.0		
74	Horatio	9	35.0		
85	Art	3	25.5		
95	Bob	3	63.5		

is (7, 35.0) member of the relation?

Sailors	Sailors		
rating age			
7 45.0			
1 33.0			
8 55.5			
10 35.0			
9 35.0			
3 63.5			

Result: {(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5), (Rusty, 35.0) }

Sailors			
sname	rating	age	
Dustin	7	45.0	
Brutus	1	33.0	
Lubber	8	55.5	
32 Andy 8 58 Rusty 10 64 Horatio 7	8	25.5	
	10	35.0	
	7	35.0	
Zorba	10	16.0	
Horatio	9	35.0	
85 Art	3	25.5	
Bob	3	63.5	
	sname Dustin Brutus Lubber Andy Rusty Horatio Zorba Horatio Art	sname rating Dustin 7 Brutus 1 Lubber 8 Andy 8 Rusty 10 Horatio 7 Zorba 10 Horatio 9 Art 3	

is (10, 16.0) member of the relation?

Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

Result: {(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5), (Rusty, 35.0), (Horatio, 35.0) }

Sailors					
sid	sid sname rating age				
22	Dustin	7	45.0		
29	Brutus	1	33.0		
31	Lubber	8	55.5		
32	Andy	8	25.5		
58	Rusty	10	35.0		
64	64 Horatio 71 Zorba	7	35.0		
71		10	16.0		
74	Horatio	9	35.0		
85	Art	3	25.5		
95	Bob	3	63.5		

is (9, 35.0) member of the relation?

Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

Result: $\{(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5), (Rusty, 35.0), (Horatio, 35.0) \}$

Sailors				
sid	sid sname rating age			
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	64 Horatio 71 Zorba	7	35.0	
71		10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

is (3, 25.5) member of the relation?

Sailors	Sailors		
rating age			
7 45.0			
1 33.0			
8 55.5			
10 35.0			
9 35.0			
3 63.5			

15 / 76

Result: $\{(Dustin, 45.0), (Brutus, 33.0), (Lubber, 55.5), (Rusty, 35.0), (Horatio, 35.0), (Bob, 63.5) \}$

Sailors					
sid	sid sname rating age				
22	Dustin	7	45.0		
29	Brutus	1	33.0		
31	Lubber	8	55.5		
32	32 Andy	8	25.5		
58	Rusty	10	35.0		
64	64 Horatio 71 Zorba	7	35.0		
71		10	16.0		
74	Horatio	9	35.0		
85	Art	3	25.5		
95	Bob	3	63.5		

is (3, 63.5) member of the relation?

Sailors		
rating	age	
7	45.0	
1	33.0	
8	55.5	
10	35.0	
9	35.0	
3	63.5	

For the schema given in the Question 2 write SQL statements in four distinct ways for the following query find the names of sailors who have reserved boat number 103

Q03(a) - Problem

Using cross product operation in SELECT statement

```
SELECT S sname
FROM Sailors AS S. Reserves AS R
WHERE (S. sid = R. sid AND R. bid = 103)
```

For the schema given in the Question 2 write SQL statements in four distinct ways for the following query find the names of sailors who have reserved boat number 103

Q03(b) - Problem

Using natural join operation in SELECT statement

```
SELECT.
       sname
    Sailors
FROM
NIOL
    Reserves
ON Sailors.sid = Reserves.sid
WHERE (Reserves.bid = 103)
```

Q03 - Problem

For the schema given in the Question 2 write SQL statements in four distinct ways for the following query find the names of sailors who have reserved boat number 103

Q03(c) - Problem

Using nested SELECT statements using IN

```
SELECT S. sname
FROM Sailors AS S
WHERE S.sid
IN (SELECT R. sid
       FROM Reserves AS R
       WHERE R. bid = 103)
```

Q03 - Problem

For the schema given in the Question 2 write SQL statements in four distinct ways for the following query find the names of sailors who have reserved boat number 103

Q03(d) - Problem

Using correlated nested SELECT statements

```
SELECT S1 sname
FROM Sailors AS S1
WHERE EXISTS
    (SELECT *
       FROM Reserves AS R1
       WHERE R1. bid = 103
       AND S1. sid = R1. sid
```

2

Q04 - Problem

Consider the following database table named top_scorer

top_scorer				
player	country	goals	4	
Klose	Germany	16	5	
Ronaldo	Brazil	15	_ ا	
Gmuller	Germany	14	6	
Fontaine	France	13	7	
Pele	Brazil	12	8	
Klinsmann	Germany	11	8	
Kocsis	Hungary	11	9	
Batistuta	Argentina	10	10	
Cubillas	Peru	10	10	
Lato	Poland	10	11	
Lineker	England	10		
Tmuller	Germany	10	1	
Rahn	Germany	10		

What is the output of the following query?

21 / 76

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First subquery SELECT tb.goals FROM
 top_scorer AS tb WHERE
 tb.country='Spain' result EMPTY set { }
- Second subquery SELECT tc.goals FROM top_scorer AS tc WHERE tc.country='Germany'
 (Klose, Germany, 16)
 (Gmuller, Germany, 14)
 (Klinsmann, Germany, 11)
 (Tmuller, Germany, 10)
 (Rahn, Germany, 10)

Consider the following database table named top_scorer

top_scorer		
player	goals	
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 16 > ALL {} ?
- Second test: 16 > ANY {16, 14, 11, 10, 10}

23 / 76

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Result: {Klose}

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 15 > ALL {}?
- Second test: $15 > ANY \{16, 14, 11, 10, 10\}$

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

• Result: {Klose, Ronaldo}

Consider the following database table named top_scorer

top_scorer		
country	goals	
Germany	16	
Brazil	15	
Germany	14	
France	13	
Brazil	12	
Germany	11	
Hungary	11	
Argentina	10	
Peru	10	
Poland	10	
England	10	
Germany	10	
Germany	10	
	country Germany Brazil Germany France Brazil Germany Hungary Argentina Peru Poland England Germany	

- First test: 14 > ALL {}?
- Second test: $14 > ANY \{16, 14, 11, 10, 10\}$

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Result: {Klose, Ronaldo, Gmuller}

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 13 > ALL {}?
- Second test: 13 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

• Result: {Klose, Ronaldo, Gmuller, Fontaine}

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 12 > ALL {} ?
- Second test: 12 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Result: {Klose, Ronaldo, Gmuller, Fontaine, Pele}

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 11 > ALL {} ?
- Second test: 11 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Consider the following database table named top_scorer

top_scorer		
country	goals	
Germany	16	
Brazil	15	
Germany	14	
France	13	
Brazil	12	
Germany	11	
Hungary	11	
Argentina	10	
Peru	10	
Poland	10	
England	10	
Germany	10	
Germany	10	
	country Germany Brazil Germany France Brazil Germany Hungary Argentina Peru Poland England Germany	

- First test: 11 > ALL {} ?
- Second test: 11 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 10 > ALL {} ?
- Second test: 10 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Consider the following database table named top_scorer

top_scorer		
country	goals	
Germany	16	
Brazil	15	
Germany	14	
France	13	
Brazil	12	
Germany	11	
Hungary	11	
Argentina	10	
Peru	10	
Poland	10	
England	10	
Germany	10	
Germany	10	
	country Germany Brazil Germany France Brazil Germany Hungary Argentina Peru Poland England Germany	

- First test: 10 > ALL {} ?
- Second test: 10 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 10 > ALL {} ?
- Second test: 10 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Consider the following database table named top_scorer

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
Gmuller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
Tmuller	Germany	10
Rahn	Germany	10

- First test: 10 > ALL {} ?
- Second test: 10 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

Q04 - Problem

Consider the following database table named top_scorer

top_scorer			
player	country	goals	
Klose	Germany	16	
Ronaldo	Brazil	15	
Gmuller	Germany	14	
Fontaine	France	13	
Pele	Brazil	12	
Klinsmann	Germany	11	
Kocsis	Hungary	11	
Batistuta	Argentina	10	
Cubillas	Peru	10	
Lato	Poland	10	
Lineker	England	10	
Tmuller	Germany	10	
Rahn	Germany	10	

- First test: 10 > ALL {} ?
- Second test: 10 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

 Result: {Klose, Ronaldo, Gmuller, Fontaine, Pele, Klinsmann, Kocsis}

Q04 - Problem

Consider the following database table named top_scorer

top_scorer			
player	country	goals	
Klose	Germany	16	
Ronaldo	Brazil	15	
Gmuller	Germany	14	
Fontaine	France	13	
Pele	Brazil	12	
Klinsmann	Germany	11	
Kocsis	Hungary	11	
Batistuta	Argentina	10	
Cubillas	Peru	10	
Lato	Poland	10	
Lineker	England	10	
Tmuller	Germany	10	
Rahn	Germany	10	

- First test: 10 > ALL {} ?
- Second test: 10 > ANY {16, 14, 11, 10, 10}

```
(Klose, Germany, 16)
(Gmuller, Germany, 14)
(Klinsmann, Germany, 11)
(Tmuller, Germany, 10)
(Rahn, Germany, 10)
```

 Result: {Klose, Ronaldo, Gmuller, Fontaine, Pele, Klinsmann, Kocsis}

Q05- Problem

Consider the following schema:

```
Movie (title, year, length, inColor, studioName, producerC)
```

MovieExec (name, address, cert, networth)

Using this schema, we have created a view named MovieProd given below

```
CREATE VIEW MovieProd AS
   (SELECT title . name
   FROM Movie Movie Exec
   WHERE producerC = cert)
```

And a query associated with the view Find the producer of 'Gone With the Wind' movie given as

```
SELECT name
FROM MovieProd
WHERE title = 'Gone With the Wind':
```

37 / 76

Q05

Q05- Problem

Draw the parse tree (or expression tree) for the view MovieProd

Q05- Problem

Draw the parse tree (or expression tree) for the query involving the MovieProd. This parse tree must refer to base tables Movie and MovieExec.

Q06(a) - Problem

Assume that you are given a relation R with attributes ABCD. Assume that no record has NULL values. Write an SQL query that checks whether the functional dependency A \rightarrow B holds.

Q06(a)- Solution

```
CHECK (
    (SELECT count(distinct A, B) FROM R) < 2;
```

Q06(b) - Problem

Assume that you are given a relation R with attributes ABCD. Assume that no record has NULL values. Write an SQL assertion that enforces the functional dependency A \rightarrow B.

Q06(b)- Solution

```
CREATE ASSERTION ABFD
(
    CHECK(
          (SELECT count(distinct A, B) FROM R) < 2;
    )
)</pre>
```

Q07(a) - Problem

Suppose you are given a relation R with four attributes ABCD. Given the set of FDs {C \rightarrow D, C \rightarrow A, B \rightarrow C}

Q07(a)- Solution

В

Q07(b) - Problem

Does R satisfies 1NF?

Q07(b)- Solution

Yes

Q07(c) - Problem

Does R satisfies 2NF?

Q07(c)- Solution

Yes

Q07(d) - Problem

Does R satisfies 3NF?

Q07(d)- Solution

No

Q07(e) - Problem

Does R satisfies BCNF?

Q07(e)- Solution

No

Q08 - Problem

FDs

Decompose the relation R(class, section, student, major, exam, year, instructor, rank, salary, text, day,room) given the set of functional dependencies

FD #	X	\rightarrow	Υ
F1	{class, section}	\rightarrow	instructor
F2	{class, section, day}	\rightarrow	room
F3	student	\rightarrow	{major, year}
F4	instructor	\rightarrow	$\{rank, salary\}$

MVDs

MVD #	X	$\rightarrow \rightarrow$	Y
M1	{class, section}	$\rightarrow \rightarrow$	{student, major, exam, year}
M2	{class, section}	$\rightarrow \rightarrow$	{instructor, rank, salary}
M3	{class, section}	$\rightarrow \rightarrow$	text
M4	{class, section}	$\rightarrow \rightarrow$	{day, room}
M5	{class, section, student}	$\rightarrow \rightarrow$	exam
M6	class	$\rightarrow \rightarrow$	text

46 / 76

Q08 - Solution

Solution

 R_{11} (class, section, student, exam)

 R_{121} (student, major, year)

 R_{211} (instructor, rank, salary)

 R_{212} (class, section, instructor)

 R_{221} (class, text)

 R_{222} (class, section, day, room)

47 / 76

1

Q09 - Problem

Sailors				
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	
	Rese	erves		

. (050, 705			
sid	bid	day	
22	101	10-Oct-2019	
22	102	10-Oct-2019	
22	103	08-Oct-2019	
22	104	07-Oct-2019	
31	102	10-Nov-2019	
31	103	06-Nov-2019	
31	104	12-Nov-2019	
64	101	05-Sep-2019	
64	102	08-Sep-2019	
74	103	08-Sep-2019	

What is the output the following SQL query:

```
SELECT *
FROM Sailors
LEFT OUTER JOIN Reserves
ON Sailors.sid = Reserves.sid
WHERE ISNULL(bid);
```

Q09 - Problem

Query

What is the output the following SQL query:

```
SELECT *
FROM Sailors
LEFT OUTER JOIN Reserves
ON Sailors.sid = Reserves.sid
WHERE ISNULL(bid);
```

Q09 - Output

sid	sname	rating	age	sid	bid	day
29	Brutus	1	33	NULL	NULL	NULL
32	Andy	8	25.5	NULL	NULL	NULL
58	Rusty	10	35	NULL	NULL	NULL
71	Zorba	10	16	NULL	NULL	NULL
85	Art	3	25.5	NULL	NULL	NULL
95	Bob	3	63.5	NULL	NULL	NULL

49 / 76

Introduction

- Let R be a relation
- Let R be decomposed into two relations R_1 and R_2
- Let *n* be the number of tuples in *R*
- Decomposition should be performed in such a way that complete R with n tuples can be recovered using R_1 and R_2
- If we can recover original relation we say the decomposition is lossless
- Otherwise the decomposition is lossy

Example - 02

	R	
Α	В	С
а	b	С

- Let the FD B → C exists on R;
- Let R be decomposed into $R_1(A, B)$ and $R_2(B, C)$
- The relatoin is not in BCNF ({B} is not the super key)
- \bullet If there is another FD: A \to B then there is transitive dependency and {A} will be the key
- If no other FD exists, then {A, B} would be the key
- B is still not the superkey!

F	R_1		R_2
Α	В	В	С
а	b	b	С

- $R_1 \bowtie R_2$ will yield original R
- The decomposition is lossless

Example - 03

If R contains the following tuples

		R	
s -	Α	В	С
5 -	а	b	С
	a	b	е

R_1		R_2	
Α	В	В	С
а	b	b	С
а	b	b	е

R

b e

Decomposition - Lossy/Loss-less?

Example - 03

If R contains the following tuples $\frac{A}{a}$

Example - 03

 $\begin{array}{c|cccc} R_1 \bowtie R_2 \\ A & B & C \\ a & b & c \\ a & b & c \\ a & b & e \end{array}$

Example - 03

If R contains the following tuples

		Λ	
es ·	Α	В	С
:5	а	b	С
	а	b	е

- However, R cannot contain the tuple (a, b, e)
- ullet As the FD: B ightarrow C is in place
- That is c = e
- When relations are decomposed according to FDs, then original relation can be recovered

Functional Dependency

Definition

Let $\mathbf{R} = \{R_1, R_2, R_3, \cdots R_p\}$ be a set of relation schemas over \mathbf{U} . A relation $r(\mathbf{U})$ satisfies join dependency $*[R_1, R_2, \cdots, R_p]$ if r decomposes losslessly onto R_1, R_2, \cdots, R_p

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$$

Functional Dependency

	R	
A	В	С
a ₁	b_1	c ₁
a_1	b_2	c ₂
<i>a</i> ₃	b_3	<i>c</i> ₃
a_4	b_3	c ₄
a ₅	b_5	c ₅
a ₆	<i>b</i> ₆	c ₅

$$R = R_1 \bowtie R_2 \bowtie R_3$$
; *[AB, AC, BC]

H	l_1	
Α	В	
a ₁	b_1	
a_1	b_2	
a ₃	b_3	
a4	b_3	
a_5	<i>b</i> ₃ <i>b</i> ₅	
26	h-	

F	R ₂
Α	С
a ₁	c ₁
a_1	c_2
a ₃	<i>c</i> ₃
a 4	C4
a_5	c ₅
ac	CE

F	R3
В	С
b ₁	c ₁
b_2	c ₂
<i>b</i> ₃	c ₃
<i>b</i> ₃	C4
ь ₅ ь ₆	c ₅
<i>b</i> ₆	c ₅

Trivial FD

Definition

A JD *[R_1, R_2, \dots, R_p] over R is trivial if it is satisfied by every relation r(R)

Project-Join Normal Form (PJNF)

Definition (5NF)

Let R be a relation scheme and let F be a set of FDs and JDs over R. R is in PJNF if every JD is trivial or R_i is a superkey for R.

Project-Join Normal Form (PJNF)

- Let F = {*[ABCD, CDE, BDI], *[AB, BCD, AD], A \rightarrow BCDE, BC \rightarrow AI }
- \bullet R = A B C D E I
- R is not in PJNF with respect to F because of *[ABCD, CDE, BDI]
- Let $R_1 = ABCD$; $R_2 = CDE$; and $R_3 = BDI$
- The JD *[AB, BCD, AD]: each set of attributes is a superkey for R_1 due to FDs {A \rightarrow BCDE, BC \rightarrow AI }
- The FDs are either trivial or have keys as left sides

Introduction

- For a relation *r* to be recoverable from its projects its decomposition must be lossless
- In addition, decomposition should satisfy dependency preservation
- That is the decompositions satisfy all the FDs that are satisfied by the original relation
- Any decomposition that does not preserve the dependencies of the original relations imposes burden on RDBMS

Example

Let r(X, Y, Z) satisfies FDs: $\{XY \to Z, Z \to X\}$. Let r(X, Y, Z) be decomposed into $R_1(YZ)$ and $R_2(ZX)$.

Introduction

F	R_1
Υ	Z
<i>y</i> ₁	<i>z</i> ₁
<i>y</i> ₁	z_2

$$\begin{array}{c|c}
R_2 \\
\hline
Z & X \\
\hline
z_1 & x_1 \\
z_2 & x_1
\end{array}$$

Join

$$\begin{array}{c|cccc}
R_1 \bowtie R_2 \\
X & Y & Z \\
\hline
x_1 & y_1 & z_1 \\
x_1 & y_1 & z_2
\end{array}$$

 R_2 satisfies $Z \to X$; but $R_1 \bowtie R_2$ does not satisfy $XY \to Z$

Central Idea

- In addition to lossless decomposition, dependency preserving property must be satisified by decomposition
- The decompositions statisfy all the FDs that are satisfied by the original relation
- Reason FDs satisified by a relation define integrity constraints that the relation needs to meet

- Let R(X, Y, Z) satisfies the FDs: $\{XY \rightarrow Z, Z \rightarrow X\}$
- Let R be decomposed into two relations $R_1(Y, Z)$ and $R_2(Z, X)$
- R_1 and R_2 are lossless decompositions; that is $R = R_1 \bowtie R_2$
- However, $R_1 \bowtie R_2$ do not preserve the FD XY \rightarrow Z

F	R_1
Υ	Z
<i>y</i> ₁	z_1
<i>y</i> ₁	<i>z</i> ₂
F	R_2
Z	R ₂

Onto set of attributes & algorithm

- Let r(R) has been recomposed into (R_1, R_2, \dots, R_k)
- Let F be the set of FDs satisfied by r
- Define projection of F onto Z $\pi_Z(F)$ as

$$\pi_Z(F) = \{X \to Y \subset F | XY \subset Z\}$$

•

Onto set of attributes & algorithm

- To compute $\pi_Z(F)$, consider the proper subsets X of Z that appear as determinant of an FD
- Do
 - Calcluate X⁺
 - For $P \in X^+$ that satisfy
 - \bullet P \subset Z
 - \bullet P \subset X⁺
 - $\bullet \ P \not\subset X$

include $X \to P$ in $\pi_Z(F)$

- Let r(X, Y, W, Z, Q) and $F = \{X \rightarrow Z, Y \rightarrow Q, ZQ \rightarrow W\}$
- Compute: $\pi_{\{X,Y,W\}}(F)$. That is $Z = \{X, Y, W\}$

- {X, Y} are subsets of {X, Y, W}
- Both {X, Y} appear in LHS of F
- Proper subsets of $\{X, Y\}$ are: $\{X\}$, $\{Y\}$, $\{X, Y\}$
- Consider $\{X\}$; Compute $\{X\}^+$
- $X^+ = \{X, Z\}$
- For each P in X⁺ do
 - is $P \subset \{X, Y, W\}$? Yes
 - is $P \subset X^+ = \{X, Y\}$; Yes
 - is P ⊄ X

- is $(P =) X \subset \{X, Y, W\}$; Yes
- is $(P =) X \subset X^+ = \{X, Y\}$
- is $(P =) X \not\subset X$ No
- Do not include $X \to X$ in $\pi_{\{X,Y,W\}}(F)$

- is $(P =)Z \subset \{X, Y, W\}$; No
- Do not include $X \to Z$ in $\pi_{\{X,Y,W\}}(F)$

- is $Y \subset \{X, Y, W\}$; Yes
- is $Y \subset Y^+ = \{Y, Q\}$
- is $Y \not\subset X$ No
- Do not include $X \to X$ in $\pi_{\{X,Y,W\}}(F)$

Example

- {X, Y} are subsets of {X, Y, W}
- Both {X, Y} appear in LHS of F
- Proper subsets of $\{X, Y\}$ are: $\{X\}$, $\{Y\}$, $\{X, Y\}$
- Consider each of the above three (i) say X = Y; Compute Y^+
- $Y^+ = \{Y, Q\}$
- For each P in Y^+ do
 - is $P \subset \{X, Y, W\}$? Yes
 - is $P \subset Y^+ = \{Y, Q\};$
 - is P ⊄ X

is
$$P \subset \{X, Y, W\}$$
?

is $Y \subset \{X, Y, W\}$; Yes

Example

- $\{X, Y\}$ are subsets of $\{X, Y, W\}$
- Both {X, Y} appear in LHS of F
- Proper subsets of $\{X, Y\}$ are: $\{X\}$, $\{Y\}$, $\{X, Y\}$
- Consider each of the above three (i) say X = Y; Compute Y^+
- $Y^+ = \{Y, Q\}$
- For each P in Y⁺ do
 - is $P \subset \{X, Y, W\}$? Yes
 - is $P \subset Y^+ = \{Y, Q\};$
 - is P ⊄ X

is
$$P \subset \{X, Y, W\}$$
?

is Q \subset {X, Y, W}; No; Do not include X \rightarrow Y in $\pi_{\{X,Y,W\}}(F)$

Example

- {X, Y} are subsets of {X, Y, W}
- Both {X, Y} appear in LHS of F
- Proper subsets of $\{X, Y\}$ are: $\{X\}$, $\{Y\}$, $\{X, Y\}$
- Now consider $\{X, Y\} Y$; Compute $\{X, Y\}^+$
- $\{X,Y\}^+ = \{X,Y,Z,Q,W\}$
- For each P in $\{X, Y\}^+$ do
 - is $P \subset \{X, Y, W\}$? Yes
 - is $P \subset Y^+ = \{Y, Q\};$
 - is P ⊄ X

is
$$P \subset \{X, Y, W\}$$
?

excluding $\{X, Y\} \rightarrow X$ and $\{X, Y\} \rightarrow Y$ we have

Dependency Preservation Testing

Method

- Given r(R), a decomposition (R_1, R_2, \dots, R_k)
- A set F of FDs satisfied by r(R)
- Compute $\pi_{R_i}(F)$
- $\bullet \mathsf{G} = \cup_{i=1}^k \pi_{R_i}(F)$
- Is G = F? if yes, then (R_1, R_2, \dots, R_k) is dependency preserving decomposition