韩林洁 2620170052

数据挖掘大作业二: 关联规则挖掘

问题描述:

1. 数据源

从大作业一的两个数据集中任选一个进行分析。

2. 要求

对数据集进行处理,转换成适合关联规则挖掘的形式;

找出频繁项集;

导出关联规则, 计算其支持度和置信度

对规则进行评价,可使用 Lift,也可以使用教材中所提及的其它指标

3. 提交的内容

对数据集进行处理的源程序

关联规则挖掘的源程序

挖掘结果及分析

挖掘过程的报告

问题解答:

对数据集 Permit_Building 进行关联规则分析,针对 Proposed Units,Estimated Cost, Revised Cost , Number of Proposed Stories, Number of Existing Stories 这五个数值 属性进行关联规则挖掘

- 一、数据的预处理
- 1、读取文件

db='Building_Permits.csv'
#读取 csv 文件,生成 data frame
data=pd.read_csv(db,low_memory=False)

2、查看数据的摘要,重点关注缺失值

explore=attri.describe(percentiles=[],include='all').T explore['null']=len(attri)-explore['count'] explore=explore[['null','max','min']] explore.columns=[u'空值数',u'最大值',u'最小值'] explore.to_csv(result_file) 结果在 result file.csv 文件中,结果如下:

2、缺失值填充

用众数填充属性的缺失值

通过众数来填充缺失值

for i in range(0,5):

MostFrequentElement = attri.iloc[:,[i]].apply(pd.value_counts).idxmax() attri.iloc[:, [i]] = attri.iloc[:,[i]].fillna(value=MostFrequentElement) print('success') print(attri.info())

- 3、数据变换(包括数据的规范化和离散化)
- (1)数据的规范化,用最小-最大规范化

data=(data-data.min(axis=0))/(data.max(axis=0)-data.min(axis=0))

(2)数据的离散化,

由于 apriori 算法无法处理连续型数值变量,所以需要离散化,用 k-meas 聚类进行数据离散化,调用 sklearn. cluster 的 Kmeans 库。数据离散化代码如下,

for i in range(len(keys)):

#调用 k-means 算法, 进行聚类离散化

print(u'正在进行"%s"的聚类...' % keys[i])

kmodel = KMeans(n_clusters = k) #n_jobs 是并行数,一般等于 CPU 数较好

kmodel.fit(data[[keys[i]]].as_matrix()) #训练模型

r1 = pd.DataFrame(kmodel.cluster_centers_, columns = [typelabel[keys[i]]]) #聚类中心

r2 = pd.Series(kmodel.labels_).value_counts() #分类统计

#记录各个类别的数目

r2 = pd.DataFrame(r2, columns = [typelabel[keys[i]]+'n']) #转为 DataFrame,

print(pd.concat([r1, r2], axis = 1))

print(typelabel[keys[i]])

r = pd.concat([r1, r2], axis = 1).sort_values(typelabel[keys[i]]) #匹配聚类中心和类别数目 r.index = [1, 2, 3, 4, 5, 6, 7, 8] #8 个类别

r[typelabel[keys[i]]] = pd.rolling_mean(r[typelabel[keys[i]]], 2) #rolling_mean()用来计算相邻 2 列的均值,以此作为边界点。

r[typelabel[keys[i]]][1] = 0.0 #这两句代码将原来的聚类中心改为边界点。

result = result.append(r.T)

result = result.sort_index() #以 Index 排序,即以 A,B,C,D 顺序排

result.to_csv(processedfile)

结果输出到 processedfile 文件, 结果如下:

	1	2	3	4	5	6	7	8
Α	0	0.017558	0.056141	0.115611	0.187667	0.256222	0.329556	0.684667

An	957	22	6	5	4	3	1	2
В	0	0.010041	0.039134	0.095634	0.193168	0.378713	0.675033	0.923583
Bn	893	79	14	6	4	2	1	1
С	0	0.031758	0.087001	0.203029	0.350728	0.511859	0.655449	0.825
Cn	685	225	34	22	15	6	8	5
D	0	0.031747	0.087521	0.203347	0.35232	0.513622	0.655449	0.825
Dn	685	220	37	23	16	6	8	5

其中数字代表类别, A, B, C, D 代表不同属性, An, Bn, Cn, Dn 代表数量, 即 A 属性中

(0,0.017558) 有957个,B属性中(0,0,10041)有893个,依此类推.

(3) 把得到的聚类结果进行变换,便于运行 apriori 算法

代码如下:

aprioriData=pd.DataFrame()

for i in range(len(keys)):

N=typelabel[keys[i]] #A,B,C,D

C=keys[i]

bool1 = result.loc[N, 1] \leq data[C]

bool2 = result.loc[N, 2] <= data[C]

bool3 = result.loc[N, 3] <= data[C]

bool4 = result.loc[N, 4] <= data[C]

bool5 = result.loc[N, 5] <= data[C]

bool6 = result.loc[N, 6] <= data[C]

bool7 = result.loc[N, 7] \leq data[C]

bool8 = result.loc[N, 8] <= data[C]

typeN=1*(bool1 & ~bool2)+2*(bool2 & ~bool3)+3*(bool3 &~bool4)+4*(bool4

& -bool5) + 5*(bool5& -bool6) + 6*(bool6& -bool7) + 7*(bool7& -bool8) + 8*(bool8)

typeN=typeN.replace({1:N+'1',2:N+'2',3:N+'3',4:N+'4',5:N+'5',6:N+'6',7:N+'7',8:N+'8'})

aprioriData=pd.concat([aprioriData,typeN],axis=1)

aprioriData.to_csv(apriori)

变换后的数据输入到 apriori. csv 中,如下(只截取了前 10 条数据):

	Proposed Units	Revised Cost	Number of Proposed Stories	Number of Existing Stories
0	A1	B1	C1	D3
1	A1	B1	C1	D3
2	A2	B1	C3	D3
3	A1	B1	C1	D1
4	A1	B2	C1	D2
5	A5	B1	C2	D2
6	A1	B1	C2	D2
7	A1	B1	C1	D1
8	A1	B1	C1	D1
9	A1	B1	C1	D1

二、aprior 算法进行关联规则挖掘

1. 在 apriori. py 中依次定义了两个函数:

#自定义连接函数, 用于实现 L_{k-1}到 C_k 的连接

def connect_string(x, ms):

#寻找关联规则的函数

def find_rule(d, support, confidence, ms = u'--'):

2. Aprior_rules 调用 apriori 中的函数,来实现关联规则的挖掘,代码如下:

inputfile = 'apriori.csv' #输入事务集文件

data = pd.read_csv(inputfile, header=None, dtype = object)

start = time.clock() #计时开始

print(u'\n 转换原始数据至 0-1 矩阵...')

ct = lambda x : pd.Series(1, index = x) #转换 0-1 矩阵的过渡函数

b = map(ct, data.as_matrix()) #用 map 方式执行

data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换, 空值用 0 填充

end = time.clock() #计时结束

print(u'\n 转换完毕,用时: ‰.2f 秒' ‰(end-start))

del b #删除中间变量 b, 节省内存

support = 0.6 #最小支持度

confidence = 0.75 #最小置信度

ms = '---' #连接符, 默认'--', 用来区分不同元素, 如 A--B。需要保证原始表格中不含有该字符

start = time.clock() #计时开始

print(u'\n 开始搜索关联规则...')

find_rule(data, support, confidence, ms)

end = time.clock() #计时结束

print(u'\n 搜索完成,用时: %0.2f 秒' %(end-start))

得到的结果如下:

结果为:		
	support	confidence
C1A1	0.684316	1.000000
C1D1A1	0.673327	1.000000
B1C1A1	0.645355	1.000000
B1C1D1A1	0.636364	1. 000000
D1A1	0.681319	0.995620
B1D1A1	0.640360	0.995342
A1B1D1C1	0.636364	0.993760
B1D1C1	0.636364	0.989130
A1D1C1	0.673327	0.988270
B1C1D1	0.636364	0.986068
A1B1C1D1	0.636364	0. 986068
D1C1	0.673327	0.983942
C1D1	0.673327	0.983942
A1C1D1	0.673327	0.983942
B1D2A1	0.178821	0.983516
B1D2C2	0.178821	0.983516
B1C2D2A1	0.175824	0.983240

从图中可以看出 C1—A1, C1—D1—A1 等上述规则均满足支持度大于等于 0.6, 置信度大于等于 0.7, 均为强关联规则,对于 A1—C1 规则的解释如下:

Proposed Unit 中 (0.001758) 的值和 Estimated Cost 的 (0, 0.0311758) 值同时发生的概率是 0.684316, Proposed Unit 中 (0.001758) 值出现的情况下, Estimated Cost 的 (0, 0.0311758) 值出现的概率是 1, 即必然出现。

二、关联规则结果的评估

用提升度来评价关联规则