МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

Домашнее задание по дисциплине «Методы машинного обучения»

исполнитель:	Чечнев А.А.					
группа ИУ5- 23M						
	подпись					
	""2020 г.					
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю. Е.					
	подпись					
	""2020 г.					

Москва – 2020

Домашнее задание

по дисциплине «Методы машинного обучения»

Домашнее задание по дисциплине направлено на решение комплексной задачи машинного обучения. Домашнее задание включает выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии.
 Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Отчет по домашнему заданию Отчет по домашнему заданию должен содержать:

- Титульный лист.
- Постановку задачи машинного обучения.
- Описание последовательности действий студента по решению задачи машинного обучения.
- Выводы.

descryption	type	column	id
most acids involved with wine or fixed or nonvolatile (do not evaporate readily)		fixed acidity	1
the amount of acetic acid in wine, which at too high of levels can lead to an unpleasant, vinegar taste		volatile acidity	2
found in small quantities, citric acid can add 'freshness' and flavor to wines		citric acid	3

18.05.2020 hw - Jupyter Notebook

id	column	type	descryption
4	residual sugar		the amount of sugar remaining after fermentation stops, it's rare to find wines with less than 1 gram/liter and wines with greater than 45 grams/liter are considered sweet
5	chlorides		the amount of salt in the wine
6	free sulfur dioxide		the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion; it prevents microbial growth and the oxidation of wine
7	total sulfur dioxide		amount of free and bound forms of S02; in low concentrations, SO2 is mostly undetectable in wine, but at free SO2 concentrations over 50 ppm, SO2 becomes evident in the nose and taste of wine
8	density		the density of water is close to that of water depending on the percent alcohol and sugar content
9	рН		describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic); most wines are between 3-4 on the pH scale
10	sulphates		a wine additive which can contribute to sulfur dioxide gas (S02) levels, wich acts as an antimicrobial and antioxidant
11	alcohol		the percent alcohol content of the wine
12	quality		output variable (based on sensory data, score between 0 and 10

Загрузка данных

In [1]:

```
#Start ML proj
import pandas as pd
pd.set_option('display.max.columns', 100)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(rc={'figure.figsize':(16,8)})
```

In [2]:

```
df = pd.read_csv('data/winequality-red.csv', error_bad_lines=False, comment='#')
```

In [3]:

```
df.head(4)
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4											•

Разведочный анализ данных

In [4]:

```
df.describe()
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000
4							•

Проверим на пустые значения

In [5]:

```
df.isna().sum()
```

Out[5]:

fixed acidity	0
volatile acidity	0
citric acid	0
residual sugar	0
chlorides	0
free sulfur dioxide	0
total sulfur dioxide	0
density	0
рН	0
sulphates	0
alcohol	0
quality	0
dtype: int64	

Посмотрим распределение классов целевой переменной

In [6]:

```
df.quality.value_counts()
```

Out[6]:

- 5 681
- 6 638
- 7 199
- 4 53
- 8 18
- 3 10

Name: quality, dtype: int64

In [7]:

```
plt.figure(figsize=(16,7))
sns.distplot(df.quality)
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cf9e908d0>

Построим парсные точечные графики

In [38]:

sns.pairplot(df)

Out[38]:

<seaborn.axisgrid.PairGrid at 0x1af323c6cf8>

In [41]:

sns.pairplot(df, hue="quality")

Out[41]:

<seaborn.axisgrid.PairGrid at 0x1af427f38d0>

Из рисунка видно, что большинство признаков походи на нормальные. Сильно выраженных зависимостей между переменными не наблюдается

Разобьем все классы на 3 категории: Хорошее, среднее и плохое вина

In [8]:

```
category = []
for num in df["quality"].values:
    if num<5:
        category.append("Bad")
    elif num>6:
        category.append("Good")
    else:
        category.append("Mid")

df['category'] = category
del category
```

In [9]:

```
plt.figure(figsize=(10,6))
sns.countplot(df.category, palette="muted")
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x22cfa6120b8>

In [76]:

```
cols = df.drop(columns=['quality', 'category', 'categoryby3']).columns

for i in range(1, 12):
    plt.subplot(3, 4, i)
    sns.barplot(x = 'category', y = cols[i-1], data = df)
```


На графике с density не видны различия. Посмотрим на этот столбец ближе

In [79]:

df.density.hist()

Out[79]:

<matplotlib.axes._subplots.AxesSubplot at 0x1af4d31cf28>

Как видно параметр density изменяется в очень маленьких пределах и скорее всего не нужен для дальнейших вычислений

Выбор метрики

Поскольку классы несбалансированны будем использовать для определения качества модели метрики precission, recall, f1_score

In [10]:

from sklearn.metrics import precision_score as PS, recall_score as RC, f1_score as F1

Проведем корреляционный анализ

In [11]:

In [12]:

df.head(1)

Out[12]:

		volatile acidity		residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcoh
0	7.4	0.7	0.0	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											•

In [13]:

```
from sklearn.model_selection import train_test_split

X = df.drop(columns=['quality', 'category'])
y = df.category

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
```

Нормируем данные при помощи StandartScaller

In [14]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler().fit(X_train)

X_train_scaled = pd.DataFrame(scaler.transform(X_train), columns=X_train.columns)
X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=X_test.columns)
X_train_scaled.head()
```

Out[14]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
0	0.044684	-1.512973	0.592500	-0.381246	-0.975920	-1.131394	-1.081515	-1.524952	-0.262
1	0.044684	2.765281	-0.630949	2.697609	-0.298913	-0.456281	0.233189	1.197398	0.383
2	-0.188693	-0.804472	0.847385	-0.458217	0.229999	-0.938505	-0.932117	-0.603378	-0.068
3	-0.713791	0.176529	-0.681926	-0.689131	-0.193131	-0.842060	-0.842478	-0.433893	-0.262
4	0.686470	1.811530	-0.070202	-0.458217	-0.171974	-0.263392	-0.543681	0.201675	-0.3920
4									•

Проверим, что среднее значение близко к 0, а среднеквадратичное отклонение близко к 1

In [15]:

X_train_scaled.describe()

Out[15]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfu dioxide
count	1.119000e+03	1.119000e+03	1.119000e+03	1.119000e+03	1.119000e+03	1.119000e+00
mean	4.871488e-17	5.873566e-17	-5.863644e-17	-3.166963e-16	1.403901e-17	5.893409e-17
std	1.000447e+00	1.000447e+00	1.000447e+00	1.000447e+00	1.000447e+00	1.000447e+0(
min	-2.114051e+00	-2.221474e+00	-1.395605e+00	-1.227931e+00	-1.589458e+00	-1.420728e+0(
25%	-7.137908e-01	-7.499723e-01	-9.368112e-01	-4.582169e-01	-3.623827e-01	-8.420600e-0
50%	-2.470373e-01	-4.147166e-02	-7.020162e-02	-2.273028e-01	-1.719744e-01	-1.669468e-0 ⁻
75%	5.114371e-01	6.125289e-01	7.964080e-01	8.058262e-02	6.074688e-02	5.081664e-0°
max	4.245465e+00	5.735533e+00	3.702099e+00	9.932918e+00	1.106211e+01	5.426848e+0(
4						•

Для применения метода классификации OneVsRest бинаризируем значения целевой переменной

In [16]:

```
from sklearn.preprocessing import label_binarize

y_train_bin = label_binarize(y_train, classes=['Mid','Good', 'Bad'])
y_test_bin = label_binarize(y_test, classes=['Mid','Good', 'Bad'])
n_classes = 3
```

Построение baseline

Построим модель классификации OneVsRest модели LinearSvc

In [31]:

```
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC

# classifier
clf = OneVsRestClassifier(LinearSVC(random_state=0, max_iter = 10000))
clf.fit(X_train_scaled, y_train_bin)
```

Out[31]:

In [51]:

```
from sklearn.metrics import roc curve, auc
y_score = clf.decision_function(X_test_scaled)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
    #plt.figure()
    plt.subplot(1,3, i+1)
    plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.3f)' % roc_auc[i])
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
from sklearn.metrics import recall_score as RS
print('Train:')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_train_bin[:, i], clf.predict(X_train_scaled)[:, i])
    print('\tRecall score:\t\t', RS(y_train_bin[:, i], clf.predict(X_train_scaled)[:, i]),
print('\nTest')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_test_bin[:, i], clf.predict(X_test_scaled)[:, i]))
    print('\tRecall score:\t\t', RS(y_test_bin[:, i], clf.predict(X_test_scaled)[:, i]),
```

Train:

Precission score: 0.8431372549019608 Recall score: 0.9825897714907508

Precission score: 0.6811594202898551 Recall score: 0.30128205128205127

Precission score: 1.0

Recall score: 0.022727272727272728

Test

Precission score: 0.8549450549450549

Recall score: 0.9725

Precission score: 0.5757575757575758 Recall score: 0.3114754098360656

Precission score: 0.0 Recall score: 0.0 C:\Users\als\Anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1272: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this b ehavior.

_warn_prf(average, modifier, msg_start, len(result))

Построим модель классификации OneVsRest модели GradienrtBoosting

In [52]:

```
from sklearn.ensemble import GradientBoostingClassifier

clf_rf = OneVsRestClassifier(GradientBoostingClassifier(n_estimators = 50))
clf_rf.fit(X_train_scaled, y_train_bin);
```

In [53]:

18.05.2020

```
from sklearn.metrics import roc curve, auc
from sklearn.metrics import recall_score as RS
print('Train:')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_train_bin[:, i], clf_rf.predict(X_train_scaled)[:,
    print('\tRecall score:\t\t', RS(y_train_bin[:, i], clf_rf.predict(X_train_scaled)[:, i]
print('\nTest')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_test_bin[:, i], clf_rf.predict(X_test_scaled)[:, i]
    print('\tRecall score:\t\t', RS(y_test_bin[:, i], clf_rf.predict(X_test_scaled)[:, i]),
y_score = clf_rf.decision_function(X_test_scaled)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
    #plt.figure()
    plt.subplot(1,3, i+1)
    plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
Train:
        Precission score:
                                 0.9098196392785571
```

Precission score: 0.9098196392785571
Recall score: 0.9880304678998912

Precission score: 0.91818181818182 Recall score: 0.6474358974358975

Precission score: 1.0

Recall score: 0.5909090909090909

Test

Precission score: 0.8761467889908257

Recall score: 0.955

Precission score: 0.6046511627906976 Recall score: 0.4262295081967213

Precission score: 0.2

Recall score: 0.10526315789473684

Подбор гиперпараметров

```
In [63]:
```

```
from sklearn.model selection import GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
params = {'estimator_max_iter' : np.arange(6000, 7500, 200)}
gr_ls = GridSearchCV(estimator=OneVsRestClassifier(LinearSVC()), param_grid=params, cv = 3)
gr_ls.fit(X_train_scaled, y_train_bin)
C:\Users\als\Anaconda3\lib\site-packages\sklearn\svm\_base.py:947: Convergen
ceWarning: Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)
C:\Users\als\Anaconda3\lib\site-packages\sklearn\svm\_base.py:947: Convergen
ceWarning: Liblinear failed to converge, increase the number of iterations.
  "the number of iterations.", ConvergenceWarning)
Out[63]:
GridSearchCV(cv=3, error_score=nan,
             estimator=OneVsRestClassifier(estimator=LinearSVC(C=1.0,
                                                                class_weight=
None,
                                                                dual=True,
                                                                fit_intercept
=True,
                                                                intercept_sca
ling=1,
                                                                loss='squared
_hinge',
                                                                max iter=100
0,
                                                                multi_class
='ovr',
                                                                penalty='12',
                                                                random_state=
None,
                                                                tol=0.0001,
                                                                verbose=0),
                                            n_jobs=None),
             iid='deprecated', n jobs=None,
             param grid={'estimator max iter': array([6000, 6200, 6400, 660
0, 6800, 7000, 7200, 7400])},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)
In [64]:
gr_ls.best_params_
Out[64]:
{'estimator__max_iter': 6000}
```

In [65]:

```
from sklearn.metrics import roc curve, auc
from sklearn.metrics import recall_score as RS
clf1 = gr_ls.best_estimator_
print('Train:')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_train_bin[:, i], clf1.predict(X_train_scaled)[:, i]
    print('\tRecall score:\t\t', RS(y_train_bin[:, i], clf1.predict(X_train_scaled)[:, i]),
print('\nTest')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_test_bin[:, i], clf1.predict(X_test_scaled)[:, i]))
    print('\tRecall score:\t\t', RS(y_test_bin[:, i], clf1.predict(X_test_scaled)[:, i]),
y_score = clf1.decision_function(X_test_scaled)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
    #plt.figure()
    plt.subplot(1,3, i+1)
    plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
Train:
        Precission score:
                                  0.8431372549019608
        Recall score:
                                  0.9825897714907508
        Precission score:
                                 0.6811594202898551
        Recall score:
                                  0.30128205128205127
        Precission score:
                                 1.0
        Recall score:
                                  0.022727272727272728
Test
        Precission score:
                                  0.8549450549450549
        Recall score:
                                  0.9725
        Precission score:
                                 0.5757575757575758
        Recall score:
                                  0.3114754098360656
        Precission score:
                                  0.0
```

Recall score: 0.0

C:\Users\als\Anaconda3\lib\site-packages\sklearn\metrics_classification.py: 1272: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Using GridSearchCV GradientBoostingClassifier

```
In [66]:
```

```
from sklearn.model_selection import GridSearchCV
from sklearn.multiclass import OneVsRestClassifier
from sklearn.ensemble import GradientBoostingClassifier

params = {'estimator__n_estimators' : np.arange(20, 200, 10)}

clf_rf = OneVsRestClassifier(GradientBoostingClassifier())
gr = GridSearchCV(estimator=clf_rf, param_grid=params, cv = 3)
gr.fit(X_train_scaled, y_train_bin);
```

```
In [67]:
```

```
gr.best_params_
Out[67]:
{'estimator__n_estimators': 70}
```

In [68]:

```
from sklearn.metrics import roc curve, auc
from sklearn.metrics import recall_score as RS
clf1 = gr.best_estimator_
print('Train:')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_train_bin[:, i], clf1.predict(X_train_scaled)[:, i]
    print('\tRecall score:\t\t', RS(y_train_bin[:, i], clf1.predict(X_train_scaled)[:, i]),
print('\nTest')
for i in range(0, 3):
    print('\tPrecission score:\t', PS(y_test_bin[:, i], clf1.predict(X_test_scaled)[:, i]))
    print('\tRecall score:\t\t', RS(y_test_bin[:, i], clf1.predict(X_test_scaled)[:, i]),
y_score = clf1.decision_function(X_test_scaled)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
    #plt.figure()
    plt.subplot(1,3, i+1)
    plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
Train:
        Precission score:
                                  0.9276985743380856
        Recall score:
                                  0.9912948857453754
        Precission score:
                                  0.926829268292683
        Recall score:
                                  0.7307692307692307
        Precission score:
                                 1.0
        Recall score:
                                  0.6590909090909091
Test
        Precission score:
                                  0.8811188811188811
        Recall score:
                                  0.945
        Precission score:
                                 0.6122448979591837
        Recall score:
                                  0.4918032786885246
        Precission score:
                                  0.375
```

Recall score:

0.15789473684210525

После подбора параметров улучшились показатели качества модели

Вывод: Таким образом мы рассмотрели и применили на практике ансамблевые модел