Weekly Homework 28

Math Gecs

September 15, 2024

Exercise 1

 α , β , and γ are the roots of x(x-200)(4x+1)=1. Let

$$\omega = \tan^{-1}(\alpha) + \tan^{-1}(\beta) + \tan^{-1}(\gamma).$$

The value of $tan(\omega)$ can be written as $\frac{m}{n}$ where m and n are relatively prime positive integers. Determine the value of m+n.

Source: Mock AIME 2 Pre 2005 Problem 11

Answer. 167

Solution. We know that α, β, γ are the roots of $x(x-200)(x+1/4)-1/4=x^3-\frac{799}{4}x^2-50x-\frac{1}{4}$. By Vieta's formulas, we have:

$$50x - \frac{1}{4}$$
. By Vieta's formulas, we have:
 $\alpha + \beta + \gamma = \frac{799}{4}$
 $\alpha\beta + \beta\gamma + \gamma\alpha = -50$
 $\alpha\beta\gamma = \frac{1}{4}$

Now, by tangent addition formulas, we have $\tan(\omega) = \frac{\alpha + \beta + \gamma - \alpha \beta \gamma}{1 - \alpha \beta - \beta \gamma - \gamma \alpha}$. Substituting Vieta's formulas, we obtain $\tan(\omega) = \frac{\frac{799}{4} - \frac{1}{4}}{1 - (-50)} = \frac{\frac{798}{4}}{51} = \frac{133}{34}$. Therefore, our answer is $133 + 34 = \boxed{167}$ and we are done.