

PROBABILITY DISTRIBUTIONS ON COUNTABLE SETS

Why

Suppose we flip a coin until it lands heads. What is the probability that we see a head after one flip? Two flips? n flips? We want to extend our notion of probability distribution to a set with infinite elements, but only countably many.

Discussion

Consider a set A.¹ If A has n elements, then a probability distribution on A is $p: A \to \mathbf{R}$ where p(a) = 1/n. There is a natural candidate.

What if A is the set of natural numbers \mathbf{N} . The principle difficulty is that not all sequences of real numbers $a: \mathbf{N} \to \mathbf{R}$ are summable.

Definition

A (countable) probability distribution on **N** is $p: \mathbf{N} \to \mathbf{R}$ where $p \geq 0$ and

$$\sum_{n=1}^{\infty} p(n) = 1.$$

More generally, a probability distribution on some countable set C which we have numbered $c: \mathbf{N} \to C$, is a function $p: C \to [0,1]$ such that

$$\sum_{i=1}^{n} p(c_i) = 1$$

¹Future editions will rework this sheet.

