Теория групп. Лекция 14

Штепин Вадим Владимирович

5 декабря 2019 г.

1 Свободные абелевы группы

<u>Опр.</u> Абелева группа $C_1 \times ... \times C_k$ — конечнопорожденная, если $\forall i \ C_i$ — циклическая (возможно, бесконечного порядка).

В дальнейшем будем считать операцию сложением.

<u>Опр.</u> Пусть G — конечнопорожденная абелева группа. Система элементов $A=\{a_1,...,a_n\}$ независима, если из условия $\sum \lambda_i a_i=0$ следует, что все $\lambda_i=0$.

Опр. Система элементов $A = \{a_1, ..., a_n\}$ — базис в G, если это независимая система и $G = \overline{\langle a_1, ..., a_n \rangle}$.

Замечание

Если G — конечнопорожденная абелева группа и $e_1, ..., e_n$ — базис, то каждый элемент однозначно раскладывается по базису.

Замечание

Не во всякой конечнопорожденной абелевой группе есть базис.

Пример

 $Z_n = Z/nZ$ — конечнопорождена элементом 1, но она не обладает базисом, так как $\forall a \in Z_n \ na = 0$ и любая система зависима.

<u>Опр.</u> Группа A (абелева, конечнопорожденная) — **свободная абелева группа** ранга n, если в ней существует базис из n элементов.

Утв.

Всякая свободная абелева группа ранга n изоморфна \mathbb{Z}^n .

Доказательство

Пусть $e_1, ..., e_n$ — базис A. Тогда каждому элементу $a \in A$ однозначно сопоставляется столбец его координат в базисе. Это соотвествие линейно, а значит это гомоморфизм групп. Биекция следует из однозначности разложения по базису.

Теорема

Любые два базиса свободной абелевой группы равномощны.

Локазательство

Пусть $e_1, ..., e_n, f_1, ..., f_k$ — базисы и k > n. Тогда $(f_1, ..., f_k) = (e_1, ..., e_n)S$, где S — матрица перехода между базисами (получена разложением f_i по базису $e_1, ..., e_n$). $S \in M_{n \times k}(Z) \subset M_{n \times k}(Q)$.

СЛУ Sx=0 (над Q) из n уравнений с k неизвестными при n< k обязательно имеет нетривиальное решение x_0 . Умножая, при необходимости, на НОК всех знаменателей координат, можно считать, что решение целочисленно. Значит, $(f_1,...,f_k)x_0=(e_1,...,e_n)Sx_0=0$ и $f_1,...,f_k$ — не базис.

2 Строение конечнопорожденной абелевой группы

Теорема

Пусть G—конечнопорожденная свободная абелева группа с базисом $e=(e_1,...,e_n)$. Тогда $f=(f_1,...,f_n)$ —базис в $G\Leftrightarrow (f_1,...,f_n)=(e_1,...,e_n)S$, где S—матрица перехода и $det(S)\in\{1,-1\}$.

Доказательство

1. Необходимость.

 $(e_1,...,e_n)=(f_1,...,f_n)T$ — разложение e по базису f, где T—матрица перехода. Тогда $(e_1,...,e_n)=(e_1,...,e_n)ST$. В силу единственности разложения, ST=E, а все коэффициенты разложения целые. Значит, $S=T^{-1}$ и $det(S)=det(T)\in\{1,-1\}$, так как det(S)det(T)=1 и значения определителей—целые числа.

2. Достаточность. Пусть f=eS и $det(S)\in\{1,-1\}$. Покажем, что f — базис. Очевидно, что существует S^{-1} с целыми коэффициентами, так как |det(S)|=1. Значит, $(e_1,...,e_n)=(f_1,...,f_n)S^{-1}$ и $f_1,...,f_n$ так же порождают G. Покажем независи-

мость
$$f_1,...,f_n$$
. Пусть не так и $(f_1,...,f_n)$ $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0$. Тогда $(e_1,...,e_n)S\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0$ и

$$S\begin{pmatrix} \alpha_1 \\ \cdot \\ \cdot \\ \alpha_n \end{pmatrix} = 0.$$

Но в силу невырожденности S получаем, что $\begin{pmatrix} \alpha_1 \\ \cdot \\ \cdot \\ \alpha_n \end{pmatrix} = 0.$

Значит, система $f_1,...,f_n$ независима.

Замечание

Множество целочисленных матриц с определителем из множества $\{1,-1\}$ образуют группу $GL_n(Z)$. В частности, в $GL_n(Z)$ содержатся элементарные матрицы:

- 1. $E + tE_{i,j}, i \neq j, t \in Z$ матрицы, в которых на главной диагонали стоят единицы, и некоторое число вне главной диагонали равно t.
- 2. $diag(\pm 1, ..., \pm 1)$
- 3. Единичная матрица, получаемая из диагональной перестановкой двух строк (столбцов, что эквивалентно).

<u>Опр.</u> Рассмотренные матрицы— **целочисленные элементарные матрицы**, а соответствующие им преобразования— **целочисленные элементарные преобразования**.

Теорема (о подгруппах свободной абелевой группы

Пусть $G - \operatorname{CA}\Gamma$, rk(G) = n, $H \leq G$. Тогда $H - \operatorname{CA}\Gamma$ и $rk(H) \leq n$.

В качестве свободных абелевых групп ранга ноль будем рассматривать группы, состоящие только из нейтрального элемента.

Доказательство

Индукция по n.

- 1. База: если n = 0, то $G = H = \{e\}$
- 2. Переход: пусть для всех групп G, что rk(G) < n верно и $rk(G) = n,\, e_1,...,e_n$ базис в $G,\, H \leq G$

Пусть $G_1=\langle e_1,...,e_{n-1}\rangle$. Тогда $rk(G_1)=n-1$ и $H_1=H\cap G_1$. Очевидно, что $H_1\leq G_1$, и, по предположению индукции, $rk(H_1)\leq n-1$. Пусть $h_1,...,h_k$ — базис в H_1 $(k\leq n-1)$. Если $H_1=H$, то утверждение верно.

Иначе $\exists h \in H \setminus H_1$. Тогда $h = \sum_i e_i \alpha_i$, причем $\alpha_n \neq 0$, так как иначе $h \in H_1$.

Положим $h_{k+1} \in H \setminus H_1$, такой, что α_n минимально возможно (> 0). Покажем, что $h_1,...,h_k,h_{k+1}$ — базис H.

Пусть $x\in Hackslash H_1$ — произвольный. Тогда $x=\sum_i e_i\beta_i$. $\beta_n=q\alpha_n+r$ — деление с остатком.

Если $r \neq 0$, то $x - qh_{k+1} \in H \setminus H_1$ и его последняя координата в разложении по базису $e_1,...,e_n$ равна r>0 и $r<\alpha_n$ — получаем противоречие с выбором h_{k+1} . Значит r=0 и $\beta_n=q\alpha_n$. Тогда $x-qh_{k+1}\in H_1$ (так как r=0). Тогда имеет место представление $x=\sum_i \alpha_i h_i + qh_{k+1}$ и $H=\langle h_1,...,h_{k+1}\rangle$, так как все $x\in H_1$ разлагаются по $h_1,...,h_k$.

Покажем независимость $h_1, ..., h_{k+1}$.

Пусть $\sum_{i=1}^k \gamma_i h_i + \gamma_{k+1} h_{k+1} = 0$. Если $\alpha_{k+1} = 0$, то в силу независимости $h_1,...,h_k$ получаем, что $\forall i \ \alpha_i = 0$. Если $\alpha_{k+1} \neq 0$, тогда $\sum_{i=1}^{k+1} \gamma_i h_i$ имеет ненулевую последнюю координату в разложении по базису $e_1,...,e_n$ и не может равняться нулю. Значит, $h_1,...,h_{k+1}$ — базис H и $k+1 \leq n$.

Замечание

Если $H \leq G$ и $G, H - \mathrm{CA}\Gamma$ одного ранга, то не обязательно H = G. Пример: G = Z, H = 2Z (обе группы ранга 1).

Замечание

Из того, что элементы независимы не следует, что один из них выражается через остальные. Пример: 2a + 5b + 7c = 0, но ни один из a, b, c невыразим через другие, так как нельзя лелить.

Лемма (о смитовой нормальной форме)

Пусть $M \in M_{n \times k}(Z)$ и ненулевая. Тогда $\exists P, D, Q : M = PDQ$ и $P \in GL_n(Z)$, $Q \in GL_k(Z)$, а $D \in M_{n \times k}(Z)$ такая диагональная матрица, что $D_{1,1} \ge 0$, $D_{i,i}|D_{i+1,i+1}$ и, начиная с некоторого i все $D_{i,i} = 0$.

Доказательство

Индукция по n

- 1. База: $(a,b) \to (\text{НОД}(a,b),0)$ можно привести алгоритмом Эвклида. Аналогично, $(a_1,...,a_k) \to (\text{НОД}(a_1,...,a_k),0,...,0)$ можно привести применением k-1 раз алгоритма Эвклида, так как $\text{НОД}(a_1,...,a_k) = \text{НОД}(\text{НОД}(a_1,...,a_{k-1}),a_k)$
- 2. Переход: пусть утверджение верно для всех матриц M, имеющих меньше n строк. С помощью целочисленных преобразований приведем матрицу к виду, в котором элемент $M_{1,1} = \text{HOД}(M_{i,j})$, а остальные элементы первой строки и первого столбца равны нулю.

Это можно сделать следующим алгоритмом.

Перенесем минимальный по модулю элемент матрицы в левый верхний угол и начнем занулять первую строку и первый столбец. Если в процессе появится элемент, меньший по модулю, то перенесем его в угол и продолжим.

Если после этого в матрице есть элемент, не делящийся на $M_{1,1}$, то прибавим строку, в которой он находится к первой и продолжим процесс, тем самым получив в углу $\mathrm{HOД}(M_{1,1},*,...,*) - \mathrm{HOД}$ элемента в углу и i-той строки, меньший, чем $M_{1,1}$. В итоге получим, что все элементы матрицы, получаемой вычеркиванием первой строки и первого столбца делятся на $M_{1,1}$. Приведем ее к смитовой нормальной форме по индукции.

Так как мы делали элементарные преобразования строк и столбцов, то $D = P_1 M Q_1$, $P_1 \in GL_n(Z), \ Q \in GL_k(Z)$ и $M = P_1^{-1} D Q_1^{-1}$

Замечание

Смитова нормальная форма определена однозначно. Матрицы P,Q определены неоднозначно.

Упражнение

 $u_1...u_t = \text{HOД}(M_1, ..., M_t) - \text{однозначно определены, где } M_i - \text{миноры. В частности, } u_1 = \text{HОД}(M_1) = \text{HОД}(M_1, ..., M_t)$

Теорема (о существовании согласованных базисов в САГ G и $H \leq G$)

Пусть $G-\mathrm{CA}\Gamma$ ранга $n,\,H\leq G$ ранга $k\leq n.$ Тогда в G и H существуют базисы $g_1,...,g_n$ и $h_1,...,h_k,$ что $h_i=u_ig_i,$ где $u_i\in N$ и $u_1|u_2|...|u_k$

Доказательство

Пусть $e_1, ... e_n$ — базис в $G, f_1, ..., f_k$ — базис в H и оба базиса произвольны. Тогда $(f_1, ..., f_k) = (e_1, ..., e_n)M, M \in M_{n \times k}(Z)$. По лемме, M = PDQ, где D — матрица в смитовой нормальной форме.

Тогда $(f_1,...,f_k)=(e_1,...,e_n)PDQ$ и $(f_1,...,f_k)Q^{-1}=(e_1,...,e_n)PD$. Обозначим $(h_1,...,h_k)=(f_1,...,f_k)Q^{-1}$ и $(g_1,...,g_n)=(e_1,...,e_n)P$ и получим требуемое.

Следствие (о существовании разложения конечнопорожденной абелевой группы в прямую сумму циклических

Пусть A — конечнопорожденная абелева группа. Тогда $A \simeq Z_{u_1} \oplus Z_{u_2} \oplus ... \oplus Z_{u_k} \oplus Z^l$, где $u_1|u_2|...|u_k, u_1>1, l \in N$ (возможно нулевое).

Доказательство

Пусть $a_1, ..., a_n$ — порождает A, G — САГ порядка n с базисом $e_1, ..., e_n$. Тогда существует сюръективный гомоморфизм $\phi: G \to A, \ \phi(e_i) = a_i$. Пусть $H = ker(\phi) \leq G$.

Выберем в G и H согласованные базисы $g_1,...,g_n$ и $h_1,...,h_k$, что $h_i=u_ig_i$. По теореме о гомоморфизме и в силу сюръективности $A\simeq G/H$.

 $G = \langle g_1 \rangle \oplus ... \oplus \langle g_n \rangle$ по определению базиса. Тогда $H = \langle u_1 g_1 \rangle \oplus ... \oplus \langle u_k g_k \rangle$.

 $A\simeq G/H\simeq \langle g_1\rangle/\langle u_1g_1\rangle\oplus ...\oplus \langle g_k\rangle/\langle u_kg_k\rangle\oplus Z^{n-k}\simeq Z_{u_1}\oplus Z_{u_2}\oplus ...\oplus Z_{u_k}\oplus Z^l$. Заметим, что все $u_i=1$ можно не учитывать, так как $Z_1=\{e\}$

 $\underline{\text{Опр.}}$ Примарная циклическая группа (соответсвующая простому числу $p)-Z_{p^k},$ где p-простое.

Утв. (о разложении конечной циклической группы в прямую сумму примарных циклических

Любая конечная группа раскладывается в прямую сумму примарных циклических Пусть $n=p_1^{\alpha_1}...p_s^{\alpha_s}$ — каноническое разложение на простые множители. Тогда $Z_n=Z_{p_1^{\alpha_1}}\oplus ...\oplus Z_{p_s^{\alpha_s}}.$

Доказательство

Пусть $\phi:Z_n\to \oplus Z_{p_i^{\alpha_i}}$ — гомоморфизм в прямую сумму примарных циклических групп (действующий на смежные классы $Z/nZ\simeq Z_n$).

$$\phi(a + nZ) = (a + p_1^{\alpha_1} Z, ..., a + p_s^{\alpha_s} Z).$$

$$a+nZ \in ker(\phi) \Leftrightarrow a.p_1^{\alpha_1}...p_s^{\alpha_s} \Leftrightarrow a+nZ = nZ \Leftrightarrow a = 0.$$

Значит, ядро тривиально и гомоморфизм инъективен, но $|Z_n|=n=|\oplus Z_{p_i^{\alpha_i}}|$ и гомоморфизм сюръективен, а значит это изоморфизм.

Замечание

Группы Z_{p^k} и Z неразложимы.

Доказательство

В Z_{p^k} есть единственная подгруппа H порядка p и она циклическая. Любая другая подгруппа в Z_{p^k} примарна и так же содержит H, а значит разложения быть не может.

Пусть $Z = H_1 \oplus H_2$ — разложение в циклические группы, то есть $H_1 = \langle n \rangle$, $H_2 = \langle m \rangle$. Тогда $\langle nm \rangle \subset H_1 \cap H_2$ и пересечение нетривиально

Замечание

Доказанные теоремы дополняет теорема о единственности разложения: конечные группы в разложении определены однозначно, степень l так же определена однозначно.

Разложение конечной конечнопорожденной абелевой группы единственно с точностью до порядка примарных групп в разложении.