```
In [340]:
```

```
import os
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
```

In [341]:

```
raw_data_path = "purchase_data.json"
raw_data = pd.read_json(raw_data_path)
```

In [342]:

```
raw_data_df = pd.DataFrame(raw_data)
```

In [343]:

```
raw_data_df.head()
```

Out[343]:

	Age	Gender	Item ID	Item Name	Price	SN
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

In [344]:

```
deduped_df = raw_data_df.drop_duplicates(["SN"])
no_of_players_df = pd.DataFrame({"Total Players":[len(deduped_df)]})
no_of_players_df
```

Out[344]:

	Total Players
0	573

In [345]:

Out[345]:

	Average Item Price	Number of Unique Items	Total Purchases	Total Revenue
0	\$2.93	183	780	\$2,286.33

In [346]:

```
#Create dataframes broken down by gender
male data df = raw data df.loc[raw data df["Gender"]=="Male"]
female data df = raw data df.loc[raw data df["Gender"]=="Female"]
nd data df = raw data df.loc[(raw data df["Gender"]!="Male") & (raw d
ata df["Gender"]!="Female")]
#Find number of unique players by gender
unique male players = male data df["SN"].unique()
total male players = len(unique male players)
unique_female_players = female_data_df["SN"].unique()
total female players = len(unique female players)
unique nd players = nd data df["SN"].unique()
total nd players = len(unique nd players)
gender breakdown df = pd.DataFrame({"Gender":["Male", "Female", "Other
 / Non-Disclosed"],
                                   "Total Players": [total male player
s, total female players, total nd players],
                                   "Percentage of Players": [(total ma
le players/total players)*100,(total female players/total players)*10
0,(total nd players/total players)*100]})
gender_breakdown_df.style.format({"Percentage of Players":"{:,.2f}%"
})
```

Out[346]:

	Gender	Percentage of Players	Total Players
0	Male	81.15%	465
1	Female	17.45%	100
2	Other / Non-Disclosed	1.40%	8

In [347]:

```
#Find averages per gender
m avg price = male data df["Price"].mean()
f avg price = female data df["Price"].mean()
nd avg price = nd data df["Price"].mean()
m total revenue = male data df["Price"].sum()
f total revenue = female data df["Price"].sum()
nd total revenue = nd data df["Price"].sum()
m total norm = m total revenue / total male players
f_total_norm = f_total_revenue / total_female_players
nd total norm = nd total revenue / total nd players
purchases gender df = pd.DataFrame({"Gender":["Male", "Female", "Other
/ Non-Disclosed"],
                                     "Total Players": [total male playe
rs, total female players, total nd players],
                                     "Average Purchase Price":[m avg p
rice, f avg price, nd avg price],
                                     "Total Purchase Value":[m total r
evenue, f total revenue, nd total revenue],
                                     "Normalized Total":[m total norm,
f total norm,nd total norm]})
purchases gender df.style.format({"Average Purchase Price":"${:,.2f}"
, "Total Purchase Value": "${:,.2f}", "Normalized Total": "${:,.2f}"})
```

Out[347]:

	Average Purchase Price	Gender	Normalized Total	Total Players	Total Purchase Value
0	\$2.95	Male	\$4.02	465	\$1,867.68
1	\$2.82	Female	\$3.83	100	\$382.91
2	\$3.25	Other / Non- Disclosed	\$4.47	8	\$35.74

In [348]:

```
age bins = [0,10,15,20,25,30,35,40,45,50,1000]
age labels=["<10","10-14","15-19","20-24","25-29","30-34","35-39","40
-44","45-49",">50"]
deduped df["Age Range"] = pd.cut(deduped df["Age"], age bins, labels
= age labels, right = False)
raw data df["Age Range"] = pd.cut(raw data df["Age"], age bins, label
s = age labels, right = False)
group by ages = raw data df.groupby("Age Range")
unique age range members = deduped df.groupby("Age Range").size()
age avg price = group by ages["Price"].mean()
age total revenue = group by ages["Price"].sum()
age total purchases = group by ages.size()
age revenue norm = age total revenue / unique age range members
population breakdown by age = pd.DataFrame({"Percentage of Players":
(unique age range members / total players) * 100,
                                           "Total Individuals": uniqu
e age range members})
population breakdown by age.style.format({"Percentage of Players":"
{:,.2f}%"})
```

Out[348]:

	Percentage of Players	Total Individuals
Age Range		
<10	3.32%	19
10-14	4.01%	23
15-19	17.45%	100
20-24	45.20%	259
25-29	15.18%	87
30-34	8.20%	47
35-39	4.71%	27
40-44	1.75%	10
45-49	0.17%	1
>50	0.00%	0

In [349]:

Out[349]:

	Average Price	Normalized Total	Total Purchases
Age Range			
<10	\$2.98	\$4.39	28
10-14	\$2.77	\$4.22	35
15-19	\$2.91	\$3.86	133
20-24	\$2.91	\$3.78	336
25-29	\$2.96	\$4.26	125
30-34	\$3.08	\$4.20	64
35-39	\$2.84	\$4.42	42
40-44	\$3.19	\$5.10	16
45-49	\$2.72	\$2.72	1

In [350]:

```
per person group = raw data df.groupby("SN")
total spent per sn = per person group["Price"].sum()
number of purchases per sn = raw data df.groupby("SN").size()
avg_purchase_price_per_sn = total_spent_per_sn / number_of_purchases_
per sn
total spent per sn df = pd.DataFrame({"Number of Purchases":number of
_purchases_per_sn,
                                      "Total Purchase Value":total sp
ent per sn,
                                      "Average Purchase Price": avg p
urchase price per sn})
total spent per sn df = total spent per sn df.sort values(by="Total P
urchase Value", ascending=False)
#total spent per sn df.style.format({"Average Purchase Price":"${:,.2
f}",
                                     "Total Purchase Value": "${:,.2
f}",})
total spent per sn df["Total Purchase Value"] = total spent per sn df
["Total Purchase Value"].map('${:,.2f}'.format)
total spent per sn df["Average Purchase Price"] = total spent per sn
df["Average Purchase Price"].map('${:,.2f}'.format)
total spent per sn df.head()
```

Out[350]:

	Average Purchase Price	Number of Purchases	Total Purchase Value
SN			
Undirrala66	\$3.41	5	\$17.06
Saedue76	\$3.39	4	\$13.56
Mindimnya67	\$3.18	4	\$12.74
Haellysu29	\$4.24	3	\$12.73
Eoda93	\$3.86	3	\$11.58

In [351]:

```
by item group = raw data df.groupby("Item ID")
total revenue per item = by item group["Price"].sum()
number_of_item_sold = by_item_group["Item ID"].size()
item_name = by_item_group["Item Name"].first()
price of item = by item group["Price"]
popular_items_df = pd.DataFrame({"Item Name":item_name,
                                    "Total Purchase Value": total rev
enue per item,
                                    "Number Sold":number of item sold
})
popular items df = popular items df.sort values(by="Number Sold", asc
ending=False)
profitable items df = popular items df.sort values(by="Total Purchase
Value", ascending=False)
popular_items_df["Total Purchase Value"] = popular_items_df["Total Pu
rchase Value"].map('${:,.2f}'.format)
popular items df.head()
```

Out[351]:

	Item Name	Number Sold	Total Purchase Value
Item ID			
39	Betrayal, Whisper of Grieving Widows	11	\$25.85
84	Arcane Gem	11	\$24.53
31	Trickster	9	\$18.63
175	Woeful Adamantite Claymore	9	\$11.16
13	Serenity	9	\$13.41

In [352]:

```
profitable_items_df["Total Purchase Value"] = profitable_items_df["To
tal Purchase Value"].map('${:,.2f}'.format)
profitable_items_df.head()
```

Out[352]:

	Item Name	Number Sold	Total Purchase Value
Item ID			
34	Retribution Axe	9	\$37.26
115	Spectral Diamond Doomblade	7	\$29.75
32	Orenmir	6	\$29.70
103	Singed Scalpel	6	\$29.22
107	Splitter, Foe Of Subtlety	8	\$28.88