Dynamic Programming

- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not unique.
 - Subproblems may share subsubproblems,
 - However, solution to one subproblem may not affect the solutions to other subproblems of the same problem.
- Key: Determine structure of optimal solutions

DP Examples

- Fibonacci
- Knapsack
- Rod Cutting
- Longest Common Subsequence
- Longest Increasing Subsequence
- Chain Matrix Multiplication
- CYK Algorithm
- Subset Sum

Fibonacci Sequence

• 0,1,1,2,3,5,8,13,21,34,...

Fibonacci Number and Golden Ratio

0,1,1,2,3,5,8,13,21,34,...

$$\begin{cases} f_n = 0 & \text{if } n = 0 \\ f_n = 1 & \text{if } n = 1 \\ f_n = f_{n-1} + f_{n-2} & \text{if } n \ge 2 \end{cases}$$

$$\lim_{n\to\infty} \frac{f_n}{f_{n-1}} = \frac{1+\sqrt{5}}{2} = \text{Golden Ratio} = \phi = 1.61803..$$

$$\frac{x}{1} = \frac{1}{x - 1}$$

$$x^{2} - x - 1 = 0$$

$$x = \frac{1 + \sqrt{5}}{2}$$

Naive Recursive Algorithm

```
fib (n) {
    if (n = 0) {
        return 0;
    } else if (n = 1) {
        return 1;
    } else {
        return fib(n-1) + fib(n-2);
    }
}
```

- Solved by a <u>recursive</u> program
- Much replicated computation is done.
- Running time Θ(φⁿ) exponential

Memoized DP Algorithm

```
memo = { }
fib (n) {
    if (n in memo) { return memo[n] }
    if (n <= 1) {
        f = n;
    } else {
        f = fib(n-1) + fib(n-2);
    }
    memo[n] = f;
    return f
}</pre>
```


- fib(k) only recurses the first time called only n nonmemoized calles
- Memorized calls "free" Θ(1).
- Time = #subproblems * time/subproblem
 = n * ⊕(1)
- Running time ⊕(n) linear

Bottom-up DP Algorithm

```
fib = { }
fib[0] = 0;
fib[1] = 1;
for k = 2 to n
fib[k] = fib[k-1] + fib[k-2];
return fib[n]
```

- Same as memoized DP with recursion "unrolled" into iteration.
- Practically faster since no recursion
- Analysis is more obvious
- Running time ⊕(n) linear

A Basic Idea of Dynamic Programming

- DP = recursion + memoization
 - Memoize = remember and reuse solutions to subproblems
- Bottom-Up Method stores all values in a table

Elements of Dynamic Programming

Optimal Substructure

- An optimal solution to a problem contains within it an optimal solution to subproblems
- Optimal solution to the entire problem is built in a bottom-up manner from optimal solutions to subproblems
- Overlapping Subproblems
 - If a recursive algorithm revisits the same subproblems over and over ⇒ the problem has overlapping subproblems

Dynamic Programming Algorithm

- Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information

Knapsack problem

Given a set of items, each with a weight and a value, pack a knapsack with a subset of items to achieve the maximum total value. Total weight that can be carried in the knapsack is no more than some fixed number W.

There are two versions:

- 1. "0-1 knapsack problem" use DP Items are indivisible: you either take an item or not.
- 2. "Fractional knapsack problem" Use a Greedy Method Items are divisible: you can take any fraction of an item

This is a knapsack		Weight	value
Max weight: $W = 13$	Items	$\mathbf{W_{i}}$	\mathbf{v}_{i}
		2	3
		3	4
		4	5
		5	15
Value = 0 Weight = 0			
		10	16

This is a knapsack Max weight: W = 13

Is this maximum?

value = 20 Weight = 13

This is a knapsa Max weight: W	Items	Weight W _i	value vi
		2	3
		3	4
		4	5
		5	15
value = 15 Weight = 5		10	16

This is a knapsack		Weight	value
Max weight: $W = 13$	Items	$\mathbf{W_{i}}$	v_i
		2	3
		3	4
		4	5
		5	15
value = 24 Weight = 12			
		10	16

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and value v_i (all w_i and W are integer values)
- Problem: How to pack the knapsack to achieve maximum total value of packed items?

Let S be the set of items represented by the ordered pairs (w_i, v_i) and W be the capacity of the knapsack. Find a T \subseteq S such that

$$\max \sum_{i \in T} v_i \ subject \ to \sum_{i \in T} w_i \le W$$

The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.

0-1 Knapsack Brute-Force

Let's first solve this problem with a straightforward algorithm

- Since there are *n* items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time will be O(n2ⁿ)

Can we do better?

Yes, with an algorithm based on dynamic programming We need to carefully identify the subproblems

Defining a Subproblem

If items are labeled 1..n, then a subproblem would be to find an optimal solution for

```
S_k = \{ items \ labeled \ 1, \ 2, \dots k \}
```

- This is a valid subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- Unfortunately, we can't do that.Why???

Defining a Subproblem

	$w_2 = 4$ $v_2 = 5$	$\begin{vmatrix} w_3 = 3 \\ v_3 = 4 \end{vmatrix}$	$w_4=5$ $v_4=8$?	
--	---------------------	--	-----------------	---	--

Max weight: W = 20

For S_4 : {1, 2, 3, 4}

Total weight: 14;

total value: 20

	l l			
--	-----	--	--	--

For S_5 : { 1, 3, 4, 5 }

Total weight: 20

total value: 26

Solution for S_4 is not part of the solution for S_5 !!!

Defining a Subproblem

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- The subproblem then will be to compute v[k,w]

Recursive Formula

$$V[k, w] = \begin{cases} V[k-1, w], & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + v_k\}, & w_k \le w \end{cases}$$

The best subset of S_k that has the total weight w, either contains item k or not.

- First case: w_k>w. Item k can't be part of the solution, since if it was, the total weight would be > w. So we select the "optimal" using items 1,.., k-1
- Second case: $w_k \le w$. Then the item $k \operatorname{\underline{can}}$ be in the solution, and we choose the case with greater value

Recursive Formula for subproblems

$$V[k, w] = \begin{cases} V[k-1, w], & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + v_k\}, & w_k \le w \end{cases}$$

It means, that the best subset of S_k that has total weight w is one of the two:

Item k is too big to fit in the knapsack with capacity w Do not use item k: the best subset of S_{k-1} that has total weight w, or

Use item k: the best subset of S_{k-1} that has total weight $w-w_k$ plus the item k with value v_k

Recursive Code

```
Knapsack(W, n)
        // Base Case
        if (n = 0 \text{ or } W = 0)
           return 0;
        if (W_n > W)
           return Knapsack(W, n-1);
        else
           return max(v_n + Knapsack(W-w_n, n-1), Knapsack(W, n-1));
```

Knapsack(W- w_n , n-1), Knapsack(W, n-1))

KS(5, 4)

KS(4, 3) KS(5, 3)

KS(3, 2) KS(4, 2) KS(4, 2) KS(5, 2)

KS(2, 1) KS(3, 1) KS(3, 1) KS(4, 1) KS(3, 1) KS(5, 1)

KS(1, 0) KS(2, 0) KS(2, 0) Etc
KS(2, 0) KS(3, 0)

0-1 DP Knapsack Algorithm

```
for w = 0 to W
   V[0,w] = 0 // 0 item's
for i = 1 to n
   V[i,0] = 0 // 0 weight
   for w = 1 to W
         if w_i \le w // item i can be part of the solution
                  if v_i + V[i-1,w-w_i] > V[i-1,w]
                           V[i,w] = v_i + V[i-1,w-w_i]
                  else
                           V[i,w] = V[i-1,w]
         else V[i,w] = V[i-1,w] // w_i > w item i is too big
```

Running time

for
$$w = 0$$
 to W
 $V[0,w] = 0$
for $i = 0$ to n
 $V[i,0] = 0$
for $w = 0$ to W
 $Q(W)$
 $Q(W)$

What is the running time of this algorithm? $\Theta(nW)$ pseudo-polynomial

Remember that the brute-force algorithm takes $\Theta(n2^n)$. Better than Brute force if W << 2^n

Example

Let's run our algorithm on the following data:

```
n = 4 (# of elements)
W = 5 (max weight)
Elements (weight, value):
S = {(2,3), (3,4), (4,5), (5,6) }
```

for
$$w = 0$$
 to W
 $V[0,w] = 0$

for
$$i = 0$$
 to n

$$V[i,0] = 0$$

Item: (w, v) 1: (2,3) W 2: (3,4) 0 ()0 0 ()0i=13: (4,5) 0 0 $v_i=3$ 4: (5,6) 2 () $w_i=2$ 3 ()w=14 0 $w-w_i = -1$ 5 0

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } v_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = v_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } \textbf{V[i,w]} = \textbf{V[i\text{-}1,w]} \text{ // } w_i > w \end{split}$$

Item: (w, v) 1: (2,3) W 0 0 2: (3,4) 0 0 0 ()i=13: (4,5) 0 0 $v_i=3$ $w_i=2$ 4: (5,6) 2 ()3 ()w=24 0 $w-w_i = 0$ 5 0

if $\mathbf{w_i} \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{v_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$ $\mathbf{V[i,w]} = \mathbf{v_i} + \mathbf{V[i-1,w-w_i]}$ else V[i,w] = V[i-1,w] else V[i,w] = V[i-1,w] // $w_i > w$

Item: (w, v) 1: (2,3) W 0 0 2: (3,4) 0 ()0 0 i=13: (4,5) 0 $v_i=3$ $w_i=2$ 4: (5,6) 2 3 0 3 ()w=34 0 $w-w_i=1$ 5 0

if $\mathbf{w_i} \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{v_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$ $\mathbf{V[i,w]} = \mathbf{v_i} + \mathbf{V[i-1,w-w_i]}$ else V[i,w] = V[i-1,w] else V[i,w] = V[i-1,w] // $w_i > w$

Item: (w, v) 1: (2,3) W 2: (3,4) 0 ()0 0 ()0 i=13: (4,5) 0 () $v_i=3$ $w_i=2$ 4: (5,6) 2 3 ()3 3 0 w=44 03 $w-w_i=2$ 5 0

if $\mathbf{w_i} \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{v_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$ $\mathbf{V[i,w]} = \mathbf{v_i} + \mathbf{V[i-1,w-w_i]}$ else V[i,w] = V[i-1,w] else V[i,w] = V[i-1,w] // $w_i > w$

Item: (w, v) 1: (2,3) W 0 2: (3,4) 0 ()0 ()0 i=13: (4,5) 0 () $v_i=3$ $w_i=2$ 4: (5,6) 2 3 ()3 3 0 w=54 3 () $w-w_i=2$ 5 ()

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{v_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} > \mathbf{V[i\text{-}1,w]} \\ &\mathbf{V[i,w]} = \mathbf{v_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ &\mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Item: (w, v) 1: (2,3) W 2: (3,4) 0 ()0 0 ()0i=2 $v_i=4$ 3: (4,5) 0 **0** ()4: (5,6) 2 3 () $w_i=3$ 3 3 ()w=14 3 0 $w-w_i=-2$ 5 3 0

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } v_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = v_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } \textbf{V[i,w]} = \textbf{V[i\text{-}1,w]} \text{ // } w_i > w \end{split}$$

Item: (w, v) 1: (2,3) W 0 2: (3,4) 0 ()0 0 ()i=23: (4,5) 0 0 () $v_i=4$ 4: (5,6) 2 3 **3** () $w_i=3$ 3 3 ()w=24 3 0 $w-w_i=-1$ 5 3 0

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } v_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = v_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } \textbf{V[i,w]} = \textbf{V[i\text{-}1,w]} \text{ // } w_i > w \end{split}$$

Item: (w, v) 1: (2,3) W 0 2: (3,4) 0 ()()0 0 i=23: (4,5) 0 0 () $v_i=4$ $w_i=3$ 4: (5,6) 2 3 3 ()3 3 ()w=34 3 0 $w-w_i=0$ 5 3 ()

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{v_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] > \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{v_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\text{else } \mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Item: (w, v) 1: (2,3) W 0 2: (3,4) 0 ()0 0 ()i=23: (4,5) 0 () $v_i=4$ $w_i=3$ 4: (5,6) 3 2 3 ()3 3 4 ()w=44 3 0 $w-w_i=1$ 5 3 ()

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{v_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} > \mathbf{V[i\text{-}1,w]} \\ &\mathbf{V[i,w]} = \mathbf{v_i} + \mathbf{V[i\text{-}1,w\text{-}w_i]} \\ &\text{else} \\ &\mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \\ &\text{else } \mathbf{V[i,w]} = \mathbf{V[i\text{-}1,w]} \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Item: (w, v) 1: (2,3) W 0 0 2: (3,4) 0 ()0 0 i=23: (4,5) 0 0 () $v_i=4$ $w_i=3$ 4: (5,6) 2 3 3 ()3 3 4 ()w=54 3 4 0 $w-w_i=2$ 5 3 0

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{v_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] > \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{v_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\text{else } \mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Item: (w, v) 1: (2,3) W 2: (3,4) 0 ()()0 ()()i=33: (4,5) 0 () $v_i=5$ $w_i=4$ 4: (5,6) 2 3 ()3 3 ()w = 1..34 4 03 5 7 3 0

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } v_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = v_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = B[i\text{-}1,w] \\ &\text{else } \textbf{V[i,w]} = \textbf{V[i\text{-}1,w]} \text{ // } w_i > w \end{split}$$

Item: (w, v) 1: (2,3) W 2: (3,4) ()i=33: (4,5) 4: (5,6) () $v_i=5$ $w_i=4$ ()()w=4 $w-w_i=0$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{v_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] > \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{v_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\text{else } \mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Item: (w, v) 1: (2,3) W 2: (3,4) 0 ()0 0 ()0i=33: (4,5) 0 0 0 () $v_i=5$ $w_i=4$ 4: (5,6) 2 3 3 3 ()3 3 4 4 ()w=54 4 03 5 $w-w_i=1$ 5 3 ()

if $\mathbf{w_i} \le \mathbf{w}$ // item i can be part of the solution if $v_i + V[i-1,w-w_i] > V[i-1,w]$ $V[i,w] = v_i + V[i-1,w-w_i]$ else V[i,w] = V[i-1,w] else V[i,w] = V[i-1,w] // V[i,w] = V[i-1,w]

Item: (w, v) 1: (2,3) W 2: (3,4) 0 ()()0 ()()i=43: (4,5) 0 0 0 () $v_i = 6$ 4: (5,6) 2 3 3 () $w_i = 5$ 3 3 4 ()w = 1..44 03 4 5 7 3 0

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } v_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = v_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Item: (w, v) 1: (2,3) 2: (3,4) 3: (4,5) $v_i = 6$ 4: (5,6) $w_i=5$

i=4

w = 1..4

if
$$w_i \le w$$
 // item i can be part of the solution if $v_i + V[i-1,w-w_i] > V[i-1,w]$
$$V[i,w] = v_i + V[i-1,w-w_i]$$
 else
$$V[i,w] = V[i-1,w]$$

else
$$V[i,w] = V[i-1,w] // w_i > w$$

Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary
- See LCS algorithm for the example how to extract this data from the table we built using "parent pointers".
- Or use the information already in the table.

How to find actual Knapsack Items

Using current table

- V[n,W] is the maximal value of items that can be placed in the Knapsack.
- Let i=n and k=W

```
if V[i,k] \neq V[i-1,k] then mark the i^{th} item as in the knapsack i = i-1, k = k-w_i else i = i-1
```

Item: (w, v) 1: (2,3) W 2: (3,4) 3: (4,5) 4: (5,6) i=4if $V[i,k] \neq V[i-1,k]$ then k=5 mark the ith item as in the knapsack

 $i = i-1, k = k-w_i$

i = i-1

else

Item: (w, v) 1: (2,3) W 2: (3,4) 3: (4,5) 4: (5,6) i=3

if
$$V[i,k] \neq V[i-1,k]$$
 then mark the ith item as in the knapsack $i = i-1, k = k-w_i$ $k=5$ else $i = i-1$

if
$$V[i,k] \neq V[i-1,k]$$
 then

mark the ith item as in the knapsack

 $i = i-1, k = k-w_i$

else

 $i = i-1$

Item: (w, v) 1: (2,3) W 2: (3,4) 3: (4,5) 4: (5,6) i=1if $V[i,k] \neq V[i-1,k]$ then mark the ith item as in the knapsack k=2 $i = i-1, k = k-w_i$ else

i = i-1

Item: (w, v) 1: (2,3) W 2: (3,4) 3: (4,5) 4: (5,6) i=0if $V[i,k] \neq V[i-1,k]$ then mark the ith item as in the knapsack k=0 $i = i-1, k = k-w_i$ else

i = i-1

Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- Running time (Dynamic Programming algorithm vs. brute force algorithm):

```
    O-1 Knapsack problem: O(Wn) vs. O(n2<sup>n</sup>)
    Pseudo-polynomial
```

- LCS: O(mn) vs. O(n 2^m)

Longest Common Subsequence

Given two sequences x[1..m] and y[1..n]

$$X = \langle x_1, x_2, ..., x_m \rangle$$

$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a maximum length common subsequence (LCS) of X and Y

• *E.g.*:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequences of X:
 - A subset of elements in the sequence taken in order
 (A, B, D), (B, C, D, B), etc.

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- (B, C, B, A) and (B, D, A, B) are longest common subsequences of X and Y (length = 4)
- (B, C, A), however is not a LCS of X and Y

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$

Longest Common Subsequence:

X = AB C BDAB

Y = BDCABA

Brute force algorithm would compare each subsequence of X with the symbols in Y

Brute-Force Solution

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2^m subsequences of X to check
- Each subsequence takes Θ(n) time to check
 - scan Y for first letter, from there scan for second, and
 so on
- Running time: Θ(n2^m)

Steps in Dynamic Programming

- Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- Compute optimal solution values bottom-up in a table.
- Construct an optimal solution from computed values.

We'll study these with the help of examples.

Making the choice

$$X = \langle A, B, D, E \rangle$$

 $Y = \langle Z, B, E \rangle$

 Choice: include one element into the common sequence (E) and solve the resulting subproblem

$$X = \langle A, B, D, G \rangle$$

 $Y = \langle Z, B, D \rangle$

 Choice: exclude an element from a string and solve the resulting subproblem

Notations

• Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ we define the i-th prefix of X, for i = 0, 1, 2, ..., m

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$
 or $x[1,...,i]$

$$Y_j = \langle y_1, y_2, ..., y_j \rangle$$
 or y[1,...,j]

c[i, j] = the length of a LCS of the sequences

$$X_{i} = \langle x_{1}, x_{2}, ..., x_{i} \rangle$$
 and $Y_{j} = \langle y_{1}, y_{2}, ..., y_{j} \rangle$

A Recursive Solution

Case 1:
$$x_i = y_j$$

e.g.: $X_i = \langle A, B, D, E \rangle$
 $Y_j = \langle Z, B, E \rangle$
 $c[i, j] = c[i-1, j-1] + 1$

- Append $x_i = y_j$ to the LCS of X_{i-1} and Y_{j-1}
- Must find a LCS of X_{i-1} and $Y_{j-1} \Rightarrow$ optimal solution to a problem includes optimal solutions to subproblems

A Recursive Solution

```
Case 2: x_i \neq y_j

e.g.: X_i = \langle A, B, D, G \rangle

Y_j = \langle Z, B, D \rangle

c[i, j] = \max \{ c[i-1, j], c[i, j-1] \}
```

- Must solve two problems
 - find a LCS of X_{i-1} and Y_i : $X_{i-1} = \langle A, B, D \rangle$ and $Y_i = \langle Z, B, D \rangle$
 - find a LCS of X_i and Y_{j-1} : $X_i = \langle A, B, D, G \rangle$ and $Y_j = \langle Z, B \rangle$
- Optimal solution to a problem includes optimal solutions to subproblems

Overlapping Subproblems

- To find a LCS of X and Y
 - we may need to find the LCS between X and Y_{n-1} and that of X_{m-1} and Y
 - Both the above subproblems has the subproblem of finding the LCS of X_{m-1} and Y_{n-1}
- Subproblems share subsubproblems

Finding LCS Length

Define c[i,j] to be the length of the LCS of x[1..,i] and y[1..,j]

Theorem:

$$c[i, j] = \begin{cases} 0 & i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i, Y_j to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i, j] = \begin{cases} 0 & i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0]=0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- **First case:** x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of $LCS(X_i, Y_j)$ is the same as before (i.e. maximum of $LCS(X_i, Y_{j-1})$ and $LCS(X_{i-1}, Y_j)$

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m
                                   // for all X<sub>i</sub>
6. for j = 1 to n
                                          // for all Y<sub>i</sub>
7.
             if (X_i == Y_i)
8.
                     c[i,j] = c[i-1,j-1] + 1
              else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c
```

LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

LCS Example (0)

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[4,5]

LCS Example (1)

		0	_1	2	3	4	_5
i		Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0					
2	В	0					
3	С	0					
4	В	0					

for i = 1 to m
$$c[i,0] = 0$$

for j = 1 to n $c[0,j] = 0$

LCS Example (2)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (3)

	i	0	_1	2	3	4	_5)
i		Yj	В	D	С	Α	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0			
2	В	0						
3	С	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (4)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (5)

ABCB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (6) DCAB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (7)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (10)

		0	1	2	- 3 <u>4</u>	5	
i	•	Yj	В	D	C	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1 -	1			
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

		0	1	2	3 4	5	
i		Yj	В	D	(c)	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (12)

	i	0	1	2 3	3 4	5_		<u>)</u>
i		Yj	В	D	С	A	В)
0	Xi	0	0	0	0		0	
1	A	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2 -	→ 2 −	2	
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13)

			_1	2	3 4	5	
i	•	Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	В	0	1				

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (14)

	i	0	1	2	34_	5_	D
i	<u>,</u>	Yj	В	D	С	A	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	.1	2	2	2
4	В	0	1 -	1	2 -	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (15)

		0	1	2	3 4	5	
i		Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	В	0	1	1	2	2	3

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(mn)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

Finding LCS

Finding LCS (2)

LCS (reversed order) B C B LCS (straight order): B C B

Additional Information

A matrix b[i, j]:

- For a subproblem [i, j] it tells us what choice was made to obtain the optimal value
- If x_i = y_j
 b[i, j] = "\"
- Else, if
 c[i 1, j] ≥ c[i, j-1]
 b[i, j] = " ↑ "
 else
 b[i, j] = " ← "

Example

Constructing a LCS

Start at b[m, n] and follow the arrows

When we encounter a "\wedge" in b[i, j] $\Rightarrow x_i = y_j$ is an element of the LCS

<u>ر</u>		0	1	2	3	4	5	6
		Υi	В	D	С	Α	В	Α
0	x_{i}	0	0	0	0	0	0	0
1	Α	0	$\circ\!\!\!\to$	$\circ\!\!\!\to$	0→	1	←1	1
2	В	0	1	(1)	←1	1	2	←2
3	С	0	1	1 1	(2)	€(2)	↑ 2	1 2
4	В	0	1	↑ 1	^	<u></u>	*3	←3
5	D	0	<u> </u>	~ 2	^ 2	^ 2	(3)	1 3
6	Α	0		↑ 2	^2	× 3)←თ	4
7	В	0	1	↑ 2	^2	← 3	4	4)

PRINT-LCS(b, X, i, j)

- 1. if i = 0 or j = 0 Running time: $\Theta(m + n)$
- 2. then return
- 3. if $b[i, j] = " \setminus "$
- 4. then PRINT-LCS(b, X, i 1, j 1)
- 5. print x_i
- **6.** elseif b[i, j] = "↑"
- 7. then PRINT-LCS(b, X, i 1, j)
- **8. else** PRINT-LCS(b, X, i, j 1)

Initial call: PRINT-LCS(b, X, length[X], length[Y])

Improving the Code

- What can we say about how each entry c[i, j] is computed?
 - It depends only on c[i -1, j 1], c[i 1, j], and
 c[i, j 1]
 - Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]
 - We save $\Theta(mn)$ space from table b
 - However, we do not asymptotically decrease the auxiliary space requirements: still need table c

Improving the Code

- If we only need the length of the LCS
 - LCS-LENGTH works only on two rows of c at a time
 - The row being computed and the previous row
 - We can reduce the asymptotic space requirements by storing only these two rows