第七课时教学设计

课型	社团课	学时	1	授课年级	九年级
	核心功能(环境控制、震动监测、文物固定),能够描述每项功能的作用;				
	应用文物保护箱设计原则,在小组讨论中提出至少2条合理的设计依据;				
	 绘制带传感器布局的保护箱三视图(主视、俯视、侧视),标注箱体尺寸、				
	传感器位置(温湿度/震动)及报警装置,符合工程制图规范;				
学习环境与	• 学习环境				
教学资源	多媒体教室(配备投影/电子白板)				
	分组式圆桌(4-5 人/组)				
	• 教学资源				
	亚克力板样品组(3mm/5mm 厚度,透明/磨砂表面)				
	传感器定位磁贴(红色:震动传感器,蓝色:温湿度传感器)				
	钱币 (带专用固定支架)				
	A3 工程图纸模板 (预印文物箱三视图框架)				
	情境道具:"文物险情通报"视频(展示设计缺陷导致的事故)、设计师指导				
	手册				
	专家资源:邀请产品设计师(现场/视频接入)				
	智能体助手访问端口(如平板电脑或 Chatbot 链接)				
教学过程					
教学环节	教师活动		学生》	 活动	教学意图

情境导入(5分钟)	1.播放一段视频:博物馆中个保护箱员,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个的人,是一个一个人,是一个人,是	1. 观察视频中的设计缺陷 (传感器位置/固定方式) 2. 回顾上节课的知识,回答 教师问题。 3. 思考保护箱设计的重要 性。	用事故案例强化设计需求;回顾旧知以服务新知。
设计师指导(15 分钟)	1.介绍设计师: "今天, 我们特别邀请了一位智能 展柜设计师(条件允许就 现场,否则以视频会议形 式)来指导设计。" 2.设计师指导:一个合格 的保护箱需要满足以下要 求:第一,材料要透明便 于观察,第二,要能控制 箱内环境,第三,要能监 测异常挪动。今天我将指	1. 认真听设计师的指导,听取要求,明确设计任务。 2. 积极参与讨论与探究,思考保护箱的最佳设计,了解设计原则。	建立专业设计标准与专业意识。

	T		
	导大家完成保护箱的设计		
	图纸。		
	3. 展示亚克力板样品(3mm		
和 5mm 厚度), 讲解特			
性: "亚克力板轻便、透			
	明、易加工,但不同厚度		
	承重不同。箱体需要至少		
	5mm 厚的底板。"		
	提问: "为什么保护箱要		
	留出线路通道? 传感器应		
	该放在什么位置才能有效		
	监测?"(引导学生思考		
	布线问题和传感器布局)		
	展示一个保护箱设计图,		
	拆解结构。设计师指导注		
	意: 温湿度传感器应靠近		
	文物放置,但不能接触;		
	震动传感器应贴在箱体四		
	角;报警装置要放在外部		
	可见位置。"		
	设计师与学生探讨学生疑		
	惑。		
	1. 发布设计任务书: "每	1. 小组合作绘制设计图(三	
	 组为你们的古币设计一个	视图)。标注箱体尺寸、材	
设计实战	保护箱,要求:①画出三	料厚度、传感器位置(用符	落实设计目标;培
(30 分钟)	视图(主视、俯视、侧	号标注)、报警器位置、电	养协同设计能力
	视);②标注箱体尺寸;	源位置(假设用电池盒,放	
	③标注传感器位置(温湿	在箱外)。	

	度传感器、震动传感器)	2. 向智能体助手提问获取	
	和报警器位置。	设计建议(如线路如何隐	
		藏,如何固定传感器)。	
	2. 教师巡回指导,解决学	3. 完成图纸,准备展示。	
	生问题。例如: "你们的		
	温湿度传感器放在哪里?		
	为什么?""如何固定钱		
	币?"		
	3. 使用智能体助手示范:		
	教师展示如何向智能体提		
	问: "如何设计一个可更		
	换干燥剂的盒子?"智能		
	体给出建议(例如在箱体		
	侧面设计抽屉式干燥剂		
	盒)。		
	1. 组织交叉评审:		
缺陷攻防战 (10 分钟)	交换各小组的设计图纸并	1 人勿台司站江厦	
	组织互相提意见,比如:	1. 介绍自己的设计图	ᄙᄝᄼᅛᅺᄍᅺᅩᅑᄼᅶᆇᄱ
	"震动传感器放底板,被	2. 针对质疑调整方案: 增加密封条;调整传感器角度	强化设计严谨性 培养批判性思维
	偷时能感应吗?"	加密到余; 厕釜传感奋用度	· 「
	2. 预告下节课开始制作保	₹	
	护箱。		