Chap. 8: Sequence Labeling for Parts of Speech and Named Entities

Outline

Part of Speech Tagging
Named Entity Recognition (NER)

Part of Speech Tagging

Parts of Speech

From the earliest linguistic traditions (Yaska and Panini 5th C. BCE, Aristotle 4th C. BCE), the idea that words can be classified into grammatical categories

- part of speech, word classes, POS, POS tags
- 8 parts of speech attributed to Dionysius Thrax of Alexandria (c. 1st C. BCE):
- noun, verb, pronoun, preposition, adverb, conjunction, participle, article
- These categories are relevant for NLP today

Two classes of words: Open vs. Closed

Closed class words

- Relatively fixed membership
- Usually function words: short, frequent words with grammatical function
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...

Open class words

- Usually content words: Nouns, Verbs, Adjectives, Adverbs
 - Plus interjections: oh, ouch, uh-huh, yes, hello
- New nouns and verbs like iPhone or to fax

Part-of-Speech Tagging

Assigning a part-of-speech to each word in a text Words often have more than one POS

book:

- VERB: (Book that flight)
- NOUN: (Hand me that book)

Part-of-Speech Tagging

Map from sequence $x_1,...,x_n$ of words to $y_1,...,y_n$ of POS tags

"Universal Dependencies" Tagset

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
Open Class	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
 cen	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S.		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
Closed Class Words	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
lass	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
\square	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	; ,()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Sample "Tagged" English sentences

There/PRO were/VERB 70/NUM children/NOUN there/ADV ./PUNC

Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

Why Part of Speech Tagging?

- Can be useful for other NLP tasks
 - Parsing: POS tagging can improve syntactic parsing
 - MT: reordering of adjectives and nouns (say from Spanish to English)
 - Sentiment or affective tasks: may want to distinguish adjectives or other POS
 - Text-to-speech (how do we pronounce "lead" or "object"?)
- Or linguistic or language-analytic computational tasks
 - Need to control for POS when studying linguistic change like creation of new words, or meaning shift
 - Or control for POS in measuring meaning similarity or difference

How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous

- Hence 85% of word types are unambiguous
- Janet is always PROPN, hesitantly is always ADV

But those 15% tend to be very common

So ~60% of word tokens are ambiguous

E.g., back

earnings growth took a back/ADJ seat a small building in the back/NOUN a clear majority of senators back/VERB the bill enable the country to buy back/PART debt I was twenty-one back/ADV then

POS tagging performance in English

How many tags are correct? (Tag accuracy)

- About 97%
 - Hasn't changed in the last 10+ years
 - HMMs, CRFs, BERT perform similarly
 - Human accuracy about the same

But baseline is 92%!

- Baseline is performance of stupidest possible method
 - "Most frequent class baseline" is an important baseline for many tasks
 - Tag every word with its most frequent tag
 - (and tag unknown words as nouns)
- Partly easy because
 - Many words are unambiguous

Sources of information for POS tagging

```
Janet will back the bill AUX/NOUN/VERB? NOUN/VERB?
```

Prior probabilities of word/tag

"will" is usually an AUX

Identity of neighboring words

"the" means the next word is probably not a verb

Morphology and wordshape:

• Prefixes unable: un- \rightarrow ADJ

• Suffixes importantly: $-ly \rightarrow ADJ$

Capitalization Janet: CAP → PROPN

Standard algorithms for POS tagging

Supervised Machine Learning Algorithms:

- Hidden Markov Models
- Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

All required a hand-labeled training set, all about equal performance (97% on English)

All make use of information sources we discussed

- Via human created features: HMMs and CRFs
- Via representation learning: Neural LMs

Named Entity Recognition (NER)

Named Entities

- Named entity, in its core usage, means anything that can be referred to with a proper name. Most common 4 tags:
 - PER (Person): "Marie Curie"
 - LOC (Location): "New York City"
 - ORG (Organization): "Stanford University"
 - GPE (Geo-Political Entity): "Boulder, Colorado"
- Often multi-word phrases
- But the term is also extended to things that aren't entities:
 - dates, times, prices

Named Entity tagging

The task of named entity recognition (NER):

- find spans of text that constitute proper names
- tag the type of the entity

NER output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER?

Sentiment analysis: consumer's sentiment toward a particular company or person?

Question Answering: answer questions about an entity?

Information Extraction: Extracting facts about entities from text

Why NER is hard

1) Segmentation

- In POS tagging, no segmentation problem since each word gets one tag
- In NER we have to find and segment the entities!

2) Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

BIO Tagging

How can we turn this structured problem into a sequence problem like POS tagging, with one label per word?

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

BIO Tagging

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
•	O

Now we have one tag per token!!!

BIO Tagging

B: token that *begins* a span

I: tokens *inside* a span

O: tokens outside of any span

of tags (where n is #entity types):

10 tag,

n B tags,

n I tags

total of 2n+1

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
•	O

BIO Tagging variants: IO and BIOES

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	O	O	O
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	O	O	O
the	O	O	O
Chicago	I-LOC	B-LOC	S-LOC
route	O	O	O
•	O	O	O

Standard algorithms for NER

Supervised Machine Learning given a humanlabeled training set of text annotated with tags

- Hidden Markov Models
- Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

Hidden Markov Model

Conditional Random Fields

Thanks for Your Attention!