Goal: cluster together points that are densely packed together.

How should we define density?

Given a fixed radius **\varepsilon** around a point, if there are at least **min_pts** number of points in that area, then this section is dense.

Min_pts = 3

E-neighborhood of this point

dense ✓

Min_pts = 3

Not dense ×

But... That point was part of a dense section earlier...

We need to distinguish between points at the core of a dense region and points at the border of a dense region.

Let's define:

Core point: if its ε-neighborhood contains at least min_pts

Border point: if it is in the ε-neighborhood of a core point

Noise point: if it is neither a core nor border point

Core | Border | Noise

Create clusters by connecting core points

DBScan Algorithm

ε and min_pts given:

- 1. Find the ε-neighborhood of each point
- 2. Label the point as **core** if it contains at least **min_pts**
- 3. Label points in its neighborhood that are not core as border
- 4. Label points as **noise** if they are neither **core** nor **border**
- 5. For each **core** point, assign to the same cluster all **core** points in its neighborhood
- 6. Assign border points to nearby clusters

DBScan - Benefits

- 1. Can identify clusters of different shapes and sizes
- 2. Resistant to noise

DBScan - Limitations

- 1. Can fail to identify clusters of varying densities.
- 2. Tends to create clusters of the same density.
- Notion of density is problematic in high-dimensional spaces

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

Demo