Rotatable Zero Knowledge Sets

Post Compromise Secure Auditable Dictionaries with application to Key Transparency

Brian Chen¹, Yevgeniy Dodis², Esha Ghosh³, **Eli Goldin**², Balachandar Kesavan¹, Antonio Marcedone¹, Merry Ember Mou¹

- 1. Zoom
- 2. NYU
- 3. Microsoft Research

Outline

- Motivation (E2EE, Key Transparency, Authenticated Dictionaries)
- Definition of underlying primitive (Rotatable Verifiable Random Function)
- RVRF construction
- Sketch of RVRF zero knowledge proof
- Open Questions

End-to-End Encrypted (E2EE) Communication Systems

End-to-End Encrypted (E2EE) Communication Systems

Key Transparency/Auditable Dictionaries

Users can verify their public key is stored correctly using proof π and commitment com

Key Transparency/Auditable Dictionaries

Auditors can verify commitments are updated correctly using $\boldsymbol{\pi}_{\!_{\boldsymbol{i}}}$

Privacy Totally Lost on Corruption

Our Contribution

Post-Compromise Security (PCS)

Modeling: Rotatable Zero Knowledge Sets (RZKS)

Rotatable Verifiable Bandom Functions (BVPE)

Rotatable Verifiable Random Functions (RVRF)

(Also: extension proofs, stronger soundness)

Key Transparency - SEEMless

Key Transparency - SEEMless

Key Transparency - SEEMless

VRF

KeyGen
$$\rightarrow$$
 sk pk

Query(\rightarrow , x) \rightarrow (\times , π)

Verify(\rightarrow , x, y, π) \rightarrow 0/1

Uniqueness:

Verify
$$\rightarrow 1$$
 iff $y = x$

Pseudorandomness

Key Rotation

Rotatable VRF

Rotatable VRF

KeyGen
$$\rightarrow$$
 sk pk Query(\rightarrow , x) \rightarrow (\rightarrow x, π)

Verify(\rightarrow , x, y, π) \rightarrow 0/1

Rotate(\rightarrow , x₁, ..., x_k) \rightarrow sk pk, π _{rot}

VerRotate(\rightarrow , \rightarrow , y₁, ..., y_k, y₁, ..., y_k) \rightarrow 0/1

VerRotate
$$\rightarrow 1$$
 iff $y_i = x_i$ and $y_i' = x_i$

Rotatable VRF Security

Uniqueness Extractability

Pseudorandomness Zero-Knowledge

Rotatable VRF Security - Zero Knowledge

Rotatable VRF Security - Zero Knowledge

DDH Tuples

 (g, h, g^a, h^a)

[ChaumPederson93]: ZK proof

Standard VRF [GRPV22]

$$F: M \rightarrow G$$
 (random oracle)

g (group generator)

KeyGen
$$\rightarrow$$
 sk, pk = g^{sk}

$$VRF(sk, x) = F(x)^{sk}$$

Standard VRF - Query

```
pk = g^{sk} and VRF(sk, x) = F(x)^{sk}

Query(sk, x):

y = VRF(sk, x),

\pi = proof(g, F(x), pk, y) is a DDH-tuple
```

Why?
$$pk = g^{sk} \longrightarrow y = F(x)^{sk}$$

Standard VRF - Rotate?

$$pk = g^{sk}$$
 and $VRF(sk, x) = F(x)^{sk}$

Rotate(sk, x):

Choose random exponent a_{sk}

$$sk * a_{sk} \rightarrow sk'$$

 $g^{sk'} = pk^a \rightarrow pk'$

Rotatable VRF - Rotate

```
\begin{aligned} pk &= g^{sk} \text{ and } VRF(sk, x) = F(x)^{sk} \\ Rotate(sk, x): \\ sk' &= sk * a, pk' = pk^a, y = VRF(sk, x), y' = VRF(sk, x') \\ \pi &= \text{proof } (pk, y, pk', y') \text{ is a DDH-tuple} \end{aligned}
```

Why?

$$y = VRF(sk, x), pk' = pk^a$$
 $y' = y^a = F(x)^{sk*a} = VRF(sk', x)$

Rotatable VRF - Zero Knowledge

Ignoring rotations:

DDH Assumption + programmable ROM → Zero Knowledge

Idea: program F(x) so $y = F(x)^{sk}$

Rotatable VRF - Zero Knowledge

With corruptions:

 $pk = g^{sk}$ commits to sk!

If we give (pk, pk'), commit to (sk, sk') need $F(x)^{sk} = y$ and $F(x)^{sk'} = y'$

May be impossible! But does it lead to an attack?

Rotatable VRF - Zero Knowledge

With corruptions:

 $pk = g^{sk}$ commits to sk!

If we give (pk, pk'), commit to (sk, sk') need $F(x)^{sk} = y$ and $F(x)^{sk'} = y'$

May be impossible! But does it lead to an attack? LIKELY NOT

Rotatable VRFs - Zero Knowledge

Solution: Stronger idealized models Shoup's Generic Group Model (GGM)

Rotatable VRFs - Zero Knowledge

Key trick: in GGM, giving $pk = g^{sk}$ does not commit to sk.

Don't need to define discrete logs until corruption

Rotatable VRFs - Zero Knowledge (Lazy GGM)

Query	Group Element	Discrete Log
F(x)	7314153	B_{x}
pk ₁	1531678	A ₁
pk ₂	9817532	A ₁ *A ₂
VRF ₁ (x)	1253278	B _x *A ₁
VRF ₂ (x)	0982436	B _x *A ₁ *A ₂
2*pk ₁ *VRF ₁ (x)	4732814	2+A ₁ +B _x *A ₁

Rotatable VRFs - Zero Knowledge (Lazy GGM)

Query	Group Element	Discrete Log
F(x)	7314153	B _x
pk ₁	1531678	A ₁
pk ₂	9817532	A ₁ *A ₂
VRF ₁ (x)	1253278	B _x *A ₁
VRF ₂ (x)	0982436	B _x *A ₁ *A ₂
2*pk ₁ *VRF ₁ (x)	4732814	2+A ₁ +B _x *A ₁

Query	Group Element	Discrete Log
F(x)	7314153	B _x
pk ₁	1531678	153
pk ₂	9817532	102
VRF ₁ (x)	1253278	153*B _x
VRF ₂ (x)	0982436	102*B _x
2*pk ₁ *VRF ₁ (x)	4732814	155+102*B _x

Future Work

- 1. Do we need GGM in order to achieve RZKS/rotatable VRFs? Why or why not?
- 2. Can we use similar GGM programming techniques on other "non-committing" primitives?
- 3. RZKS auditors verify "append-only" property here. Are there other useful properties auditors could verify using similar techniques?