Exercícios Propostos¹

$\underline{\wedge}$ Reta tangente e diferenciabilidade

1. Ache uma equação da reta tangente à curva no ponto dado.

(a)
$$y = 2xe^x$$
, $P = (0,0)$

(c)
$$y = \tan x$$
, $P = (\pi/4, 1)$

(b)
$$y = \frac{3^x}{r}$$
, $P = (1,3)$

(d)
$$y = \frac{1}{\sin x + \cos x}$$
, $P = (0,1)$

2. Considere os exercícios abaixo.

- (a) Para quais valores de x o gráfico $f(x) = 2x^3 3x^2 6x + 87$ tem tangentes
- (b) Em quais pontos sobre a curva $y = 1 + 2e^x 3x$ está a reta tangente paralela à reta 3x - y = 5?
- 3. Encontre a reta normal à parábola $y = x + x^2$ no ponto (1,2). (Dica: note que o produto dos coeficientes angulares das retas tangente e normal a uma curva em um ponto é -1. Você saberia demonstrar esse resultado?)
- 4. Encontre uma aproximação linear da função $f(x) = \sqrt[3]{x}$ em torno de x = -1 e use-a para estimar os valores de $\sqrt[3]{-0.96}$ e $\sqrt[3]{-1.29}$.

<u>∧</u> Regra da cadeia

5. Escreva na forma f(g(x)) a função composta. Identifique a função de dentro u = g(x)e a de fora y = f(u). Então encontre a derivada dy/dx usando a regra da cadeia.

(a)
$$y = (x^2 + 4x + 6)^5$$
 (c) $y = e^{\sqrt{x}}$

(c)
$$y = e^{\sqrt{x}}$$

(e)
$$y = \sqrt[3]{1+x^3}$$

(b)
$$y = \cos(\tan x)$$

(d)
$$y = \tan 3x$$

(f)
$$y = \operatorname{sen}(e^x)$$

6. Encontre a derivada da função.

(a)
$$f(x) = (x^3 + 4x)^7$$

(a)
$$f(x) = (x^3 + 4x)^7$$
 (e) $\operatorname{senh} x = \frac{e^x - e^{-x}}{2}$ (h) $f(x) = xe^{-x}$ (c) $g(x) = \sqrt{x^2 - 7x}$ (seno hiperbólico) (i) $y = \frac{\sin^2 x}{\cos x}$ (c) $g(x) = \sqrt[3]{1 + \tan t}$ (f) $g(x) = \frac{e^x + e^{-x}}{2}$ (g) $g(x) = \frac{e^x + e^{-x}}{2}$ (g) $g(x) = \frac{e^{3x}}{1 + e^x}$ (l) $g(x) = xe^{-x}$ (l) $g(x) = xe^{-x}$

(h)
$$f(x) = xe^{-x^2}$$

(b)
$$g(x) = \sqrt{x^2 - 7x^2}$$

(f)
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

(i)
$$y = \frac{\sin^2 x}{\cos x}$$

(c)
$$s(t) = \sqrt[3]{1 + \tan t}$$

(f)
$$\cosh x = \frac{1}{2}$$
 (cosseno hiperbólico)

$$(j) y = \operatorname{sen}(\operatorname{sen}(\operatorname{sen} x))$$

(d)
$$F(y) = \left(\frac{y-6}{y+7}\right)^{\frac{1}{2}}$$

(g)
$$y = \frac{e^{3x}}{1 + e^x}$$

$$(k) \ y = \sqrt{x + \sqrt{x}}$$

(1)
$$y = e^{e^{\sin x}}$$

∧ Derivação implícita

7. Encontre dy/dx diferenciando implicitamente.

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 21/11/2024 até 14:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

(a) $x^3 + x^2y + 4y^2 = 6$

(d) $y = \arctan \sqrt{x}$ (Dica: $\tan y = \sqrt{x}$)

(b) $\sqrt{xy} = 1 + x^2y$

- (e) $y = \arcsin(2x + 1)$
- (c) $\sin x + \cos y = \sin x \cos y$
- (f) $y = x \arccos x$
- 8. Use a derivação implícita para encontrar uma equação da reta tangente à curva no ponto dado.
 - (a) sen(x+y) = 2x 2y, (π, π)
 - (b) $x^2 + xy + y^2 = 3$, (1,1) (elipse)
 - (c) $x^2 + 2xy y^2 + x = 2$, (1,2) (hipérbole)
- 9. Mostre, fazendo a diferenciação implícita, que a reta tangente à elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ no ponto (x_0, y_0) é $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

<u>∧</u> Taxas relacionadas – Exercícios opcionais

- 10. Resolva os exercícios aplicando a regra da cadeia à equação de vínculo entre as variáveis para obter as taxas relacionadas.
 - (a) Um tanque cilíndrico com raio de 5 m está sendo enchido com água a uma taxa de 3 m³/min. Quão rápido a altura da água está aumentando? Resposta: $\frac{3}{25\pi}$ m/min
 - (b) Um tanque de água possui o formato de um cone circular invertido, com base de raio de 2 m e altura igual a 4 m. Se a água está sendo bombeada para o tanque a uma taxa de 2 m³/min, encontre a taxa na qual o nível de água está aumentando quando a água estiver a 3 m de profundidade. (Dica: semelhança de triângulos e volume de cone) $\frac{8}{9\pi}$ m/min
 - (c) Uma escada com 5 m de comprimento está apoiada em uma parede vertical. Se a base da escada desliza, afastando-se da parede a uma taxa de 1 m/s, quão rápido o topo da escada está escorregando para baixo na parede quando a base da escada estiver a 3 m da parede? (Dica: teorema de Pitágoras) $Resposta: -\frac{3}{4}$ m/s
 - (d) Uma atleta corre em uma trajetória circular de raio 100 m a uma velocidade constante de 7 m/s. Um estudante universitário está parado a uma distância de 200 m do centro da pista enquanto bebe cerveja. Qual é a taxa de variação da distância entre os dois quando esta distância for 200 m? (Dica: lei dos cossenos e definição de radiano) Resposta: $\frac{7\sqrt{15}}{4}$ m/s
 - (e) Está vazando água de um tanque cônico invertido a uma taxa de 10.000 cm³/min. Ao mesmo tempo, está sendo bombeada água para dentro do tanque a uma taxa constante. O tanque tem 6 m de altura e seu diâmetro no topo é 8 m. Se o nível da água estiver subindo a uma taxa de 20 cm/min quando a altura for 2 m, encontre a taxa segundo a qual a água está sendo bombeada para dentro do tanque.

Resposta:
$$\left(\frac{32\pi}{9} + 10\right) \times 10^3 \text{ cm}^3/\text{min}$$