MAP5747 Programação Não Linear: Exercícios

Ariel Serranoni

2º semestre de 2019

1 Lista 1

Exercício 1.1. Seja $f: \mathbb{R}^n \to \mathbb{R}$ e sejam $B \subseteq A \subseteq \mathbb{R}^n$. Se $\inf_{x \in \mathbb{R}^n} f(x) = \alpha \in \mathbb{R}$, então

- (i) $\inf_{x \in A} f(x) \le \inf_{x \in B} f(x)$;
- (ii) todo minimizador de f em A é um minimizador de f em B.

Solução.

(i)
$$\inf_{x \in A} f(x) = \min \{ \inf_{x \in B} f(x), \inf_{x \in A \setminus B} f(x) \} \le \inf_{x \in B} f(x).$$

(ii) Seja x tal que $f(x) \leq f(y)$ para cada $y \in A$. Como $B \subseteq A$ temos que $f(x) \leq f(y)$ para cada $y \in B$. Logo, x minimiza f em B.

Exercício 1.2. Exercício 2 - Lista 1

Solução. Considere a função $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) := \exp(x)$. Considere $\Omega = \mathbb{N}$. Então cada ponto $\bar{x} \in \Omega$ minimiza f localmente e, como f é injetora temos que $f(x) \neq f(y)$ sempre que $x \neq y$.

Exercício 1.3. Exercício 3 - Lista 1

Solução. Seja $\{x_k\}_{k\in\mathbb{N}}\subseteq\Omega$ uma sequência qualquer e considere a sequência $\{f(x_k)\}_{k\in\mathbb{N}}\subseteq\mathbb{R}$. Como Ω é compacto temos que $\{x_k\}_{k\in\mathbb{N}}$ admite uma subsequência convergindo para algum $x\in\Omega$. Neste caso, segue que $\{f(x_k)\}_{k\in\mathbb{N}}$ também admite uma subsequência convergindo para f(x). Como $x\in Omega$ temos que $f(x)\in f(\Omega)$. Mostramos assim que cada sequencia em $f(\Omega)$ admite uma subsequência convergindo para um elemento do próprio $f(\Omega)$, ou seja, $f(\Omega)$ é compacto.

Finalmente, vamos mostrar que $\alpha \coloneqq \inf_{x \in \Omega} f(x) \in f(\Omega \setminus)$ e $\beta \coloneqq \sup_{x \in \Omega} f(x) \in \underline{f(\Omega)}$. Como $f(\Omega)$ é fechado temos que $f(\Omega) = \overline{f(\Omega)}$. Portanto é suficiente mostrar que $\alpha, \beta \in \overline{f(\Omega)}$. Seja $\varepsilon \in \mathbb{R}_{++}$ e note que se $\alpha + \varepsilon \mathbb{B} \cap f(\Omega) = \emptyset$ então $\inf_{x \in \Omega} f(x) = \inf_{x \in \Omega} f(x) \ge \alpha + \varepsilon$. Isso implica que inf $f(\Omega) > \alpha$. Contradição. [escrevemos analogamente pra β].

Exercício 1.4. Exercício 4 - Lista 1

Solução. Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ dada por $f(x) := \frac{1}{x}$. Se consideramos $\Omega = [-1,0)$, temos que f é contínua em Ω e que Ω é limitado, mas não fechado. Portanto não vale o Teorema de Bolzano-Weierstrass e f não possui minimizador, de fato f é ilimitada em Ω . Similarmente, se $\Omega = [-1,0]$ temos que Ω é compacto mas f não é contínua em Ω e tb n vale o teorema.

Exercício 1.5. Exercício 5 - Lista 1

Solução. Como f é contínua, temos que o conjunto de nível dado no enunciado é fechado. Além disso, temos por hipótese que o conjunto é limitado. Assim, o resultado segue aplicando o exercicio 3.

Exercício 1.6. Exercício 6 - Lista 1

Solução. Seja $x \in \mathbb{R}^n$ e considere o conjunto de nível

$$N := \{ y \in \mathbb{R}^n : f(y) \le f(x) \}.$$

Como f é contínua temos que N é fechado. Agora suponha que N não é limitado, então existe uma sequencia $\{y_n\}_{n\in\mathbb{N}}$ tal que $\|y_n\|\to\infty$ mas $f(y_n)\leq f(x)$ para todo $n\in\mathbb{N}$, o que contradiz a hipótese de que f é coerciva. Assim concluímos que N é compacto e o resultado segue do exercicio 3.

Exercício 1.7. Exercício 7 - Lista 1

Solução.

- 1. Considere $f(x) = \exp(x)$ e $\Omega = \{0\}$.
- 2. Considere $f(x) = -x^2 \in \Omega = \{0\}.$
- 3. Considere $f(x) = x^3 \in \Omega = \mathbb{R}$.
- 4. Considere $f(x) = x^3 \in \Omega = \mathbb{R}$.

2 Lista 1 - Old

Exercício 2.1. Exercício 2

Solução. Iniciamos calculando uma forma polinomial para a função f. Daí, obtemos que

$$f(x_1, x_2) = 100x_1^4 + x_1^2 - 2x_1 + 100x_2^2 - 200x_1^2x_2 + 1.$$
(1)

Além disso, vamos calcular o vetor gradiente e a matriz hessiana de f:

$$\nabla f(x_1, x_2) = \begin{pmatrix} 400x_1^3 + 2x_1 - 400x_1x_2 - 2 \\ 200x_2 - 200x_1^2 \end{pmatrix} \in \nabla^2 f(x_1, x_2) = \begin{pmatrix} 1200x_1^2 + 2 - 400x_2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}.$$
(2)

Resolvendo o sistema $\nabla f(x_1, x_2) = 0$ nos dá a solução única $x := (1, 1)^{\top}$. Feito isso verificamos que

$$\nabla^2 f(1,1) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \in \mathbb{S}_{++}^n.$$

Assim, concluímos que x é o único minimizador global de f.

Lista 2 - Old 3

Exercício 3.1. Exercício

Solução. Neste exercício faremos uso das contas feitas no Exercício 2.1.

1. Primeiro, veja que $d = -\nabla f(0,0) = (2,0)^{\top}$. Neste caso segue que

$$\phi(\alpha) = f(0 + \alpha d) = f((2\alpha, 0)^{\top})$$

$$= 100((-2\alpha)^{2})^{2} + (1 - 2\alpha^{2})$$

$$= 100(16\alpha^{4}) + 4\alpha^{2} - 4\alpha + 1.$$
(5)

$$= 100((-2\alpha)^2)^2 + (1 - 2\alpha^2) \tag{4}$$

$$= 100(16\alpha^4) + 4\alpha^2 - 4\alpha + 1. \tag{5}$$

2. Primeiro, vamos calcular a direção de Newton. Por definição, segue