

Say that an n-robot takes steps that are 1/n of a circle $(2\pi/n \text{ radians})$. Call a (k, j)-step pattern a walk that starts with k right turns, followed by j left turns, followed by k right turns, and so on until the robot reaches its original position in the original orientation.

Figure 1: A 5-robot walks in (1,2), (1,3), (1,4), (2,3), (2,4), and (3,4)-step patterns, respectively.

Figure 2: A 6-robot walks in (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), and (4,5)-step patterns, respectively.

Question. For an *n*-robot, which of these paths encloses the most area? The least area?

Related.

- 1. Which of these figures has the largest convex hull? Smallest convex hull?
- 2. Is there a way to tell at a glance whether or not these walks will self-intersect?
- 3. Is there a way to tell at a glance if a (k, j)-step pattern will "go off to infinity"?
- 4. Are the areas enclosed by these figures "nice" numbers?
- 5. How does this generalize to (a_1, a_2, \ldots, a_k) -step patterns?
- 6. How many steps are taken before the figure "reconnects"?
- 7. For what step patterns are the "footprints" (the small grey circles in the figure) closest together (the (2,4)-step pattern for the 5-robot)? How many steps are required to get two footprints within ε ?
- 8. What if the robot turns 1/n of a circle when it turns right, but 1/m of a circle when it turns left?
- 9. What if the robot turns with some other rational number a/b of a circle?
- 10. What if the robot only needs to reach the original position, but not original orientation?

Note. It is likely that 3, 4, and 6-robots are special cases because the footprints appear at lattice points.

References.

Problem 46.

https://cemulate.github.io/project-euler-208/