Enunciados Lista 1

Problemas retirados de René Carmona, Statistical Analysis of Financial Data in R

Problema 6.1

Suponha que $\{W_t\}_t$ seja um ruído branco com variância igual a 1, e considere a série temporal $\{X_t\}_t$ definida por:

$$X_t = W_t + (-1)^{t-1} W_{t-1}.$$

- 1. Calcule a média e a função de autocovariância da série temporal $\{X_t\}_t$.
- 2. A série temporal é estacionária? Justifique.

Problema 6.3

Suponha que $\theta \in (-1, +1)$ seja conhecido, que $\{W_t\}$ seja um ruído branco Gaussiano com variância 1, e que $\{W_t'\}$ seja um ruído branco Gaussiano com variância θ^2 .

Mostre que a série MA(1) $\{X_t\}$ definida por

$$X_t = W_t + \theta W_{t-1}$$

e a série $\{Y_t\}$ definida por

$$Y_t = W_t' + \frac{1}{\theta} W_{t-1}'$$

têm as mesmas funções de autocovariância.

Elas têm as mesmas funções de autocorrelação?

Problema 6.4

1. Encontre a representação autorregressiva (AR) da série MA(1):

$$X_t = W_t - 0.4W_{t-1},$$

onde $\{W_t\}$ é um ruído branco Gaussiano com variância σ^2 .

2. Encontre a representação de média móvel (MA) da série AR(1):

$$X_t - 0.2X_{t-1} = W_t$$

onde, novamente, $\{W_t\}$ é um ruído branco Gaussiano com variância σ^2 .

Problema 6.8

Suponha que a série temporal $\{X_t\}_t$ seja definida por:

$$X_t - 2X_{t-1} + X_{t-2} = W_t - 0.3W_{t-1} - 0.5W_{t-2},$$

onde $\{W_t\}$ é um ruído branco $N(0, \sigma^2)$.

- 1. Reescreva o modelo usando o operador de defasagem B.
- 2. A série temporal é estacionária? Justifique.
- 3. A segunda diferença $D_t = (1 B)^2 X_t$ é estacionária? Justifique.
- 4. Calcule a função de autocovariância da segunda diferença D_t .

Problema 6.14

Parte 1. Fixe a semente do gerador aleatório em 14 e gere uma realização de comprimento 1.024 de um ruído branco $\{W_t\}_{t=1,\dots,1024}$ com distribuição N(0,1). Gere também a realização da série temporal AR(3) $\{X_t\}_{t=1,\dots,1024}$ que satisfaz $X_0=X_{-1}=X_{-2}=0$ e:

$$(1 - 0.07B - 0.02B^2 - 0.3B^3)X_t = W_t, \quad t = 1, 2, \dots, 1024.$$

Parte 2. Ajuste modelos autorregressivos de ordem até 9 e produza o valor AIC correspondente. Escolha o melhor modelo de acordo com este critério, determine os

coeficientes e faça previsões para os próximos 16 valores da série. Produza um gráfico das previsões com intervalo de confiança aproximado de 95%.

Parte 3. Com o mesmo ruído branco (usando a mesma semente), gere uma realização de comprimento 1.000 da série ARMA(3,4) definida por:

$$(1 - 0.07B - 0.02B^2 - 0.3B^3)X_t = (1 - 0.4B - 0.3B^2 - 0.2B^3 - 0.05B^4)W_t.$$

Parte 4. Ajuste modelos AR de ordem até 9 aos dados gerados na questão anterior e produza os valores de AIC correspondentes. Qual é o melhor modelo segundo esse critério? Comente. Ajuste tal modelo, e novamente produza previsões para os próximos 16 valores, assim como o gráfico com intervalo de confiança de 95%.

Parte 5. Ignorando o AIC, ajuste um modelo AR(3) e compute os resíduos estimados. Ajuste modelos MA (de ordem até 5) sobre os resíduos e escolha o melhor. Use o modelo ARMA obtido para prever os próximos 16 valores da série original e produza o gráfico das previsões com intervalo de confiança de 95%. Compare os resultados com os obtidos na parte anterior.

Fonte: René Carmona, "Statistical Analysis of Financial Data in R".