Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Temporada Académica de Verano 2011

Curso : Probabilidad y Estadística

Sigla : EYP1113-1

Pauta : I1

Profesor : Ricardo Alonso Olea Ortega Ayudantes : María Ignacia Vicuña Loyola

Problema 1

En el sur del país se está analizando construir una presa, pero la actividad sísmica actual aún tiene en duda su ubicación final. En la figura se muestra la ubicación de la presa en la zona A según proyecto original y un nuevo proyecto alternativo.

En las zonas A y B los movimientos sísmicos son producidos por dos placas distintas, por lo cual podemos asumir que un terremoto en A o en B ocurre de manera estadísticamente independiente. Datos históricos permiten estimar las probabilidades de ocurrencia de terremotos en un año cualquiera, a la zona A un terremoto la afecta con una probabilidad igual a 0,01, mientras que a la zona B la probabilidad es igual a 0,02. Suponga que la ocurrencia de dos o más terremotos en un años tiene en ambos casos una probabilidad insignificante, es decir, considere tal situación como un evento imposible.

- (a) [2.0 Ptos.] Considerando el proyecto original, si en un año un terremoto ocurre en A, pero no en B, la presa sufre daño con probabilidad 0,3, mientras que si el terremoto ocurre en B, pero no en A, la probabilidad de daño es 0,1. En el caso que durante un año ambas zonas sean afectadas por terremotos, la posibilidad que la presa sufra algún daño es del 50 %. Determine la probabilidad que en un año cualquiera la presa sufra daño por terremoto.
- (b) [2.0 Ptos.] Se está considerando seriamente ubicar la presa al interior de de la zona A (nuevo proyecto alternativo), con esta medida si un terremoto afecta la zona B, la presa no sufre daño, pero si un terremoto ocurre en A la probabilidad de daño aumenta a 0,4. Determine la probabilidad que en un año cualquiera la presa sufra daño por terremoto. ¿Qué ubicación recomendaría usted?
- (c) [2.0 Ptos.] Si el nuevo sitio es susceptible a deslizamientos de tierra causado por fuertes tormentas con probabilidad anual de 0,002 y hundimientos del subsuelo de apoyo con una probabilidad anual de 0,001. ¿La ubicación recomendada por usted en (b) cambia? Suponga que la presa sufre daños también durante un derrumbe o hundimiento. Además, considere los eventos daños causados por terremotos, deslizamientos y hundimientos son mutuamente independientes.

Solución

Denotemos los siguientes eventos

A: Ocurre terremo que afecta a zona A B: Ocurre terremo que afecta a zona B

D: Daño en presa causado por terremoto

(a) Del enunciado tenemos que

$$P(A) = 0.01$$
 [0.1 Ptos.] $P(B) = 0.02$ [0.1 Ptos.]

Como ambos eventos ocurren de manera independiente, entonces

$$P(A \cap B) = P(A)P(B) = 0.01 \times 0.02 = 0.0020$$

 $P(\overline{A} \cap B) = P(\overline{A})P(B) = 0.99 \times 0.02 = 0.0198$
 $P(A \cap \overline{B}) = P(A)P(\overline{B}) = 0.01 \times 0.98 = 0.0098$
 $P(\overline{A} \cap \overline{B}) = P(\overline{A})P(\overline{B}) = 0.09 \times 0.08 = 0.9702$

[0.5 Ptos.]

Además, se deduce que

$$P(D \mid A \cap B) = 0.5$$

$$P(D \mid \overline{A} \cap B) = 0.1$$

$$P(D \mid A \cap \overline{B}) = 0.3$$

$$P(D \mid \overline{A} \cap \overline{B}) = 0.0$$

[0.3 Ptos.]

Se pide P(D) que por ley de probabilidades totales esta dada por:

```
P(D) = P(D \mid A \cap B) P(A \cap B) + P(D \mid \overline{A} \cap B) P(\overline{A} \cap B) + P(D \mid A \cap \overline{B}) P(A \cap \overline{B}) + P(D \mid \overline{A} \cap \overline{B}) P(\overline{A} \cap \overline{B}) [0.5 Ptos.]
= 0.5 × 0.0002 + 0.1 × 0.0198 + 0.3 × 0.0098 + 0.0 × 0.9702 [0.3 Ptos.]
= 0.00502 [0.2 Ptos.]
```

(b) Si se opta por la posición alternativa para la presa, entonces un terremoto que afecta a la zona B no causa daño a la presa. Por lo tanto

$$P(D) = P(D | A) P(A) + P(D | \overline{A}) P(A)$$
 [1.0 Ptos.]
= $0.4 \times 0.01 + 0.0 \times 0.99$ [0.4 Ptos.]
= 0.004 [0.2 Ptos.]

Se recomienda optar por la nueva posición. [0.4 Ptos.]

(c) Definamos los siguientes nuevos eventos

 D_t : Daño en presa causado por terremoto

 O_d : Ocurre un deslizamiento O_h : Ocurre un hundimiento

 D_d : Daño en presa causado por deslizamiento D_h : Daño en presa causado por hundimiento

Donde

$$P(D_{t}) = 0.004, \text{ por parte (b)} \quad [\textbf{0.2 Ptos.}]$$

$$P(D_{d}) = P(D_{d} | O_{d})P(O_{d}) + P(D_{d} | \overline{O}_{d})P(\overline{O}_{d})$$

$$= 1 \times 0.002 + 0 \times 0.998, \quad [\textbf{0.2 Ptos.}]$$

$$= 0.002$$

$$P(D_{h}) = P(D_{h} | O_{h})P(O_{h}) + P(D_{h} | \overline{O}_{h})P(\overline{O}_{h})$$

$$= 1 \times 0.001 + 0 \times 0.999$$

$$= 0.001 \quad [\textbf{0.2 Ptos.}]$$

Nota: Durante la prueba se aclaro que en caso de deslizamiento o hundimiento la presa sufre daño con probabilidad 1.0.

Se pide

$$P(D_t \cup D_d \cup D_h) = P\left(\overline{D}_t \cap \overline{D}_d \cap \overline{D}_h\right), \text{ por ley de De Morgan } \begin{bmatrix} \textbf{0.3 Ptos.} \end{bmatrix}$$

$$= 1 - P(\overline{D}_t \cap \overline{D}_d \cap \overline{D}_h), \text{ por ley del complemento } \begin{bmatrix} \textbf{0.2 Ptos.} \end{bmatrix}$$

$$= 1 - P(\overline{D}_t) \times P(\overline{D}_d) \times P(\overline{D}_h), \text{ por independencia } \begin{bmatrix} \textbf{0.2 Ptos.} \end{bmatrix}$$

$$= 1 - (1 - 0.004) \cdot (1 - 0.002) \cdot (1 - 0.001) \quad \begin{bmatrix} \textbf{0.2 Ptos.} \end{bmatrix}$$

$$= 0.006986008 \quad \begin{bmatrix} \textbf{0.2 Ptos.} \end{bmatrix}$$

Dada esta nueva información, se recomienda reconsiderar la ubicación del proyecto original. [0.3 Ptos.]

+ 1 Punto Base

Problema 2

Sea Y una variable aleatoria con función de densidad dada por:

$$f_Y(y) = \frac{1}{y \sigma} \phi \left(\frac{\ln y - \mu}{\sigma} \right),$$

con
$$\phi(z) = \frac{\exp(z)}{[1 + \exp(z)]^2}$$
, $0 < y < \infty$, $\sigma > 0$ y $-\infty < \mu < \infty$.

- (a) [3.0 Ptos.] Determine su función de distribución de probabilidad acumulada, $F_Y(y)$ y obtenga la mediana de la variable aleatoria Y.
- (b) [3.0 Ptos.] Calcule la moda y el valor esperado de Y. ¿Qué puede concluir con respecto a la forma de la función de densidad de Y?

Solución

(a) Tenemos que

$$F_{Y}(y) = \int_{-\infty}^{y} f_{Y}(u) du = \int_{0}^{y} \frac{1}{u \sigma} \phi\left(\frac{\ln u - \mu}{\sigma}\right) du = \int_{-\infty}^{\frac{\ln y - \mu}{\sigma}} \phi(z) dz \quad \text{[0.5 Ptos.]}$$

$$= \int_{-\infty}^{\frac{\ln y - \mu}{\sigma}} \frac{\exp(z)}{[1 + \exp(z)]^{2}} dz = \frac{\exp(z)}{[1 + \exp(z)]} \Big|_{-\infty}^{\frac{\ln y - \mu}{\sigma}} \quad \text{[0.5 Ptos.]}$$

$$= \frac{\exp\left(\frac{\ln y - \mu}{\sigma}\right)}{\left[1 + \exp\left(\frac{\ln y - \mu}{\sigma}\right)\right]}, \quad \text{[0.5 Ptos.]} \quad 0 < y < \infty \quad \text{[0.5 Ptos.]}$$

Sea y_{med} la mediana de la distribución de Y, la cual cumple con que

$$F_{\rm (y_{\rm med})} = 1/2$$
 [0.5 Ptos.]

Esto implica que

$$\frac{\exp\left(\frac{\ln y_{\text{med}} - \mu}{\sigma}\right)}{\left[1 + \exp\left(\frac{\ln y_{\text{med}} - \mu}{\sigma}\right)\right]} = \frac{1}{2} \Rightarrow \exp\left(\frac{\ln y_{\text{med}} - \mu}{\sigma}\right) = 1$$

$$\Rightarrow \left(\frac{\ln y_{\text{med}} - \mu}{\sigma}\right) = 0$$

$$\Rightarrow y_{\text{med}} = \exp(\mu) \quad [\textbf{0.5 Ptos.}]$$

(b) La moda en el caso continuo corresponde al valor en que se maximiza la función de densidad.

Tenemos que

$$\phi(z)' = \frac{e^z}{[1+e^z]^2} - \frac{2 e^z e^z}{[1+e^z]^3}$$

$$= \frac{e^z}{[1+e^z]^2} \frac{[1-e^z]}{[1+e^z]}$$

$$= \phi(z) \frac{[1-e^z]}{[1+e^z]} \quad [0.5 \text{ Ptos.}]$$
(1)

Luego,

$$\frac{d}{dy}f_{Y}(y) = \frac{1}{\sigma} \left\{ -\frac{1}{y^{2}} \phi \left(\frac{\ln y - \mu}{\sigma} \right) + \frac{1}{y} \phi' \left(\frac{\ln y - \mu}{\sigma} \right) \frac{1}{y\sigma} \right\}
= \frac{1}{(y\sigma)^{2}} \left\{ \phi' \left(\frac{\ln y - \mu}{\sigma} \right) - \sigma \phi \left(\frac{\ln y - \mu}{\sigma} \right) \right\}, \quad \text{por (1)}
= \frac{1}{(y\sigma)^{2}} \phi \left(\frac{\ln y - \mu}{\sigma} \right) \left\{ \left[\frac{1 - \exp\left(\frac{\ln y - \mu}{\sigma} \right)}{1 + \exp\left(\frac{\ln y - \mu}{\sigma} \right)} \right] - \sigma \right\}
= \frac{\phi \left(\frac{\ln y - \mu}{\sigma} \right) \left[(1 - \sigma) - (1 + \sigma) \exp\left(\frac{\ln y - \mu}{\sigma} \right) \right]}{(y\sigma)^{2} \left[1 + \exp\left(\frac{\ln y - \mu}{\sigma} \right) \right]} \quad [0.5 \text{ Ptos.}]$$
(2)

Igualando (2) a cero se tiene que

$$\exp\left(\frac{\ln y - \mu}{\sigma}\right) = \frac{1 - \sigma}{1 + \sigma} \Rightarrow y = \exp(\mu) \left(\frac{1 - \sigma}{1 + \sigma}\right)^{\sigma}$$
 [0.5 Ptos.]

Por lo tanto, la moda de la distribución de Y es igual a $\exp(\mu)$ $\left(\frac{1-\sigma}{1+\sigma}\right)^{\sigma}$.

Finalmente el valor esperado de Y es:

$$\begin{split} \mu_Y &= E(Y) = \int_{-\infty}^{\infty} y \cdot f_Y(y) \, dy \quad \text{[0.2 Ptos.]} \\ &= \int_{0}^{\infty} y \, \frac{1}{y \, \sigma} \, \phi \left(\frac{\ln y - \mu}{\sigma} \right) \, dy \quad \text{[0.2 Ptos.]} \\ &= \int_{-\infty}^{\infty} e^{\mu + z \, \sigma} \, \phi(z) \, dz, \quad \text{con } z = \frac{\ln y - \mu}{\sigma} \quad \text{[0.2 Ptos.]} \\ &= \exp(\mu) \, \int_{-\infty}^{\infty} \exp(z \, \sigma) \, \frac{\exp(z)}{[1 + \exp(z)]^2} \, dz \\ &= \exp(\mu) \, \int_{0}^{1} u^{-\sigma} \, (1 - u)^{\sigma} \, du, \quad \text{con } u = \frac{1}{[1 + e^z]} \quad \text{[0.2 Ptos.]} \\ &= \exp(\mu) \, \int_{0}^{1} u^{(1 - \sigma) - 1} \, (1 - u)^{(1 + \sigma) - 1} \, du \quad \text{[0.2 Ptos.]} \\ &= \exp(\mu) \, \frac{\Gamma(1 - \sigma) \, \Gamma(1 + \sigma)}{\Gamma(2)}, \quad \text{por formulario} \quad \text{[0.2 Ptos.]} \\ &= \exp(\mu) \, \Gamma(1 - \sigma) \, \Gamma(1 + \sigma), \quad \text{si } \sigma < 1 \quad \text{[0.1 Ptos.]} \end{split}$$

Esto indica que la distribución de Y es asimétrica. [0.2 Ptos.]

+ 1 Punto Base

Problema 3

Durante todo el 2009 y parte del 2010 se realizó en Chile una encuesta nacional de salud que tenía como objetivo determinar la situación actual en que se encuentra la población adulta mayor de 15 años para diversos problemas de salud. Uno de los problemas analizados fue el nivel de colesterol HDL que presentaban los chilenos. La encuesta arrojo que nivel de colesterol HDL promedio fue de 47,23 mg/dl, con un coeficiente de variación igual al 26,53 %. Si tener un colesterol HDL inferior a los 40 mg/dl se considera riesgoso para la salud, determine que proporción de la población se encuentra en dicho estado. Realice su cálculo considerando una distribución Normal y Log-Normal.

Solución

Sea X la variable nivel de colesterol HDL.

Del enunciado tenemos que

$$\mu_X = 47,23$$
 [0.5 Ptos.]

у

$$\delta_X = 0.2653 \Rightarrow \sigma_X = 0.2653 \times 47.23 = 12.53012$$
 [0.5 Ptos.]

Caso Normal

Supongamos que la distribución de X es Normal (μ, σ) , del formulario tenemos que

$$\mu = \mu_X = 47,23$$
 [0.5 Ptos.] $\sigma = \sigma_X = 12,53012$ [0.5 Ptos.]

Se pide

$$P(X < 40) = \Phi\left(\frac{40 - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{40 - 47,23}{12,52012}\right)$$

$$= \Phi(-0,5770097)$$

$$\approx \Phi(-0,58)$$

$$= 1 - \Phi(0,58)$$

$$= 1 - 0,7190$$

$$= 0,281$$

[1.5 Ptos.]

Caso Log-Normal

Supongamos que la distribución de X es Log-Normal (λ, ζ) , del formulario tenemos que

$$\zeta = \sqrt{\ln(1 - \delta_X^2)} = 0.2608017$$
 [0.5 Ptos.]
 $\lambda = \ln \mu_X - \frac{1}{2} \zeta^2 = 3.821021$ [0.5 Ptos.]

Se pide

$$P(X < 40) = \Phi\left(\frac{\ln 40 - \lambda}{\zeta}\right)$$

$$= \Phi\left(\frac{\ln 40 - 3,821021}{0,2608017}\right)$$

$$= \Phi(-0,5066725)$$

$$\approx \Phi(-0,51)$$

$$= 1 - \Phi(0,51)$$

$$= 1 - 0,6970$$

$$= 0,3030$$

[1.5 Ptos.]

+ 1 Punto Base

Formulario

■ Valor Esperado:

Sea Xuna variable aleatoria discreta y Θ_X el conjunto de todos los valores posible.

$$E[g(X)] = \sum_{x \in \Theta_X} g(x) \cdot P(X = x)$$

Sea X una variable aleatoria continua y Θ_X la unión de todos los intervalos en los $\mathbb R$ en que la función de densidad $f_X(x) \neq 0$.

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx = \int_{x \in \Theta_X} g(x) \cdot f_X(x) \, dx$$

 \blacksquare Varianza $(\sigma_X^2),$ Coeficiente de Asimetría (θ_X) y Kurtosis (K_X) :

Sea X una variable aleatoria con valor esperado $\mu_X = E(X)$.

$$\sigma_X^2 = E\left[(X - \mu_X)^2 \right], \quad \theta_X = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right)^3 \right], \quad K_X = E\left[\left(\frac{X - \mu_X}{\sigma_X} \right)^4 \right]$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x=0,\ldots,n$	$n,\ p$	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$
Geométrica	$p(1-p)^{x-1}$	$x=1,2,\ldots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x = r, r + 1, \dots$	$r,\ p$	$\mu_X = r/p$ $\sigma_X^2 = r (1 - p)/p^2$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	ν	$\mu_X = \nu t$ $\sigma_X^2 = \nu t$
Exponencial	$\nu e^{-\nu x}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$	$x \ge 0$	$k,\ u$	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$
Gamma Trasladada	$\frac{\nu^k}{\Gamma(k)} (x - \gamma)^{k-1} e^{-\nu (x - \gamma)}$	$x \geq \gamma$	$k,\ \nu,\ \gamma$	$\mu_X = k/\nu + \gamma$ $\sigma_X^2 = k/\nu^2$
Normal	$\frac{1}{\sqrt{2\pi\sigma}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ, σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$
Log-Normal	$\frac{1}{\sqrt{2\pi}\left(\zetax\right)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	$x \ge 0$	$\lambda,\ \zeta$	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$
Uniforme	$\frac{1}{(b-a)}$	$a \leq x \leq b$	$a,\ b$	$\mu_X = (a+b)/2$ $\sigma_X^2 = (b-a)^2/12$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \leq x \leq b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b - a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \le x \le \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

• Propiedades función $\Gamma(\cdot)$:

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$ (3) $\Gamma(n+1) = n!,$ si $n \in \mathbb{N};$ (4) $\Gamma(1/2) = \sqrt{\pi}$

• Propiedades función $B(\cdot, \cdot)$:

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

Tabla Normal Estándar

mal Estándar

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	753 141 517 879 224
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	141 517 879 224
	517 879 224
	879 224
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480	224
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	740
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.78	352
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8	321
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8	330
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9888 0.8997 0.9888 0.8997 0.9888 0.8997 0.9888 0.8997 0.9888 0.8997 0.9888 0.8997 0.8988 0.89	015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	177
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	319
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	545
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	706
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9	317
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9	357
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	390
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9) 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998	1 98