

暑期實習-成果驗收報告

科技研發部 實習生 蘇玫如

我在富邦人壽實習中學到什麼?

PART ONE

Artificial Intelligence

什麼是人工智慧?

求得一個最好的假設,可以最逼近我們的目標函數

比較

	機器學習 ML	資料挖礦 DM	人工智慧 AI	統計 Stat
•	求得一個最好的假設,可以最逼近目標函數	 用大量資料去尋找特徵 注重在計算效率強大的大型資料庫 如果特徵=假設,那DM=ML。如果兩者相關,DM可協助ML 	• 表現出智慧的行為如果假設是智慧的行為, ML 是實現 AI 的一種方式	 使用資料去做關於未知過程的推論 Stat 對 ML 有助得到最佳假設

流程圖

Q: 如何選擇假設函式?

Q: 如何最小化cost?

Q: 如何調節超參數?

Q: 如何選擇學習演算法?

Q: 如何評估模型預測效果?

Q: 模型是否有過適現象?

Q: 如何處理不同種類資料?

Q: 如何切分資料?

學習方法

	監督式學習	集體學習	非監督式學習
概念	有X跟Y	集思廣益 整合多種方法,來降低 因不同學習演算法特性 所產生的誤差	有X沒Y 透過資料的彼此作分群
方法	• KNN	• 投票分類器	 KMeans
	• 羅吉斯迴歸	• 裝袋法	• DBSCAN
	• SVM	• 隨機森林	
	決策樹	• XGBoost	

可以針對現有的資料及假設問題,選擇最佳的流程、分析、評估

深度學習

- 常應用在語音辨識、圖像辨識
- 模擬大腦神經元運作方式

學習方法

	卷積神經網路 CNN	遞歸神經網路 RNN	長短期記憶 LSTM
架構	- 卷積層- 填補層- 池化層	X 本期Y 下期	X 本期Y 下期
特性	無時間性	• 有時間性 • 有遺忘現象	有時間性可決定是否遺忘效果遠大於 RNN
主要應用	影像辨識	語音辨識預測股價對話生成	語音辨識預測股價對話生成

可以針對問題的需求,來選擇最適合應用的方法

生物辨識

	指紋	掌紋	虹膜	人臉	靜脈	聲紋
使用簡易度	高	高	低	中	中	高
使用者接受度	中	中	中	中	中	高
準確度	高	超高	超高	高	高	高
成本	中	超高	超高	高	超高	低
遠端授權	可行	可行	可行	可行	可行	已實施
手機收集	部分已實施	可行	已實施	已實施	可行	已實施

概論

聲紋模式

主要以人體解剖學及行為差異 為評斷標準

研究機構

中國科學研究院、部分美國大學、 台灣調查局

方法

訊號處理、GMM、HMM、 DNN、監督式分類

應用

目前: Siri、監聽、銀行生物辨識

未來: 台灣鑑識科學應用、語音遙控、

防止中國盜領社會保險金

使用疑慮

模仿、合成、變聲器、 受情緒、老化、生病等影響

總結

使用人工智慧 多增加一道生物辨識驗證的保障

以上疑慮雖能改變音色導致人類觀察不出來 但實際上很難改變生理構造所產生的聲紋特徵

功能

說話人驗證 Speaker Verification 1:1

Voice Gender Detection

• Input: Google Audio Dataset (Size: 1116)

• Feature: MFCC_delta2

	GMM	XGBoost	Random Forest	MLP	CNN
Accuracy	89%	54%	55%	50%	60%

- 樣本達千筆時可選擇GMM
- 樣本高達萬筆時可以嘗試使用CNN, CNN效果或許比GMM更好
- 取特徵值時選擇MFCC_delta2

混合高斯模型 GMM

- 多個常態分佈混合的統計模型
- EM法 [Estimation(猜)、Maximum Likelihood(反思)]
- 重複迭代,直到得出最接近母體的參數
- 在應用於語音辨識上,就是做半監督式分群

梅爾頻率倒譜 MFCC

- 基於聲音頻率非線性梅爾刻度中, 對數能量頻譜的線性變換
- 特徵提取包含兩個關鍵步驟:轉化到梅爾頻率,然後進行倒譜分析
- 二階微分後,變成 MFCC_delta2

CNN 結果

Layer (type)	Output	Shape	Param #
conv1d_5 (Conv1D)	(None,	1205, 32)	1696
max_pooling1d_5 (MaxPooling1	(None,	301, 32)	0
conv1d_6 (Conv1D)	(None,	298, 64)	8256
max_pooling1d_6 (MaxPooling1	(None,	74, 64)	0
flatten_3 (Flatten)	(None,	4736)	0
dense_121 (Dense)	(None,	32)	151584
dense_122 (Dense)	(None,	2)	66
Total params: 161,602			
Trainable params: 161,602			
Non-trainable params: 0			

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

Train_loss, Train_accuracy = [0.10158014477787494, **0.9948783611518626**]

Test_loss, Test_accuracy = [0.7486329093797883, 0.597014925728983]

Overfitting!!

科技研發部_聲紋辨識

聲紋收集

洪立全 彭瑋玉 任卓英 柯青宏 林上淳 徐天鴻 陳慶安 吳偉誌 賴昇頤 賴嘉平 陳祐嘉 陳亭嘉 林淑芳 邱建豪 陳威良 蘇玫如

功能實作

Detected as- 陳慶安 Similarity: 100 %

Correct~ May I help you, 陳慶安?

說話人驗證

富邦人壽

detected as - 彭瑋玉

困難

• 收音跟錄音時聲紋振幅不同

•除錯前,某些模型效果不彰:

青宏、亭嘉、冠霖、立全、建豪、威良、祐嘉、玫如、昇頤

• 測試資料空白音過多會影響模型判斷

• 除錯前準確率: 76%

• 除錯後準確率: 96%

PART THREE

Demo

錄音時讓聲音盡量錄多點, 避免空白音過長喔~

PART FOUR

Q & A

Have a . Question?

THANKS FOR YOUR PATIENCE

