

• Kadar se molekularna stanja močno razlikujejo, je pri oceni njihove verjetnosti (p_i) potrebno upoštevati tudi razliko v entropiji:

$$p_i \propto P_i e^{-E_i/kT} = e^{-E_i/kT + \ln P_i}$$

 $p_i \propto e^{-G_i/kT}$

• Kadar se število delcev N_j lahko spreminja, prosto energijo na posamezen delec (molekulo vrste j) opisuje $kemijski potencial (<math>\mu_i$):

$$\mu_j = \frac{\partial G_i}{\partial N_i}$$

• Pri zmeseh je vedno prisoten entropijski prispevek zaradi koncentracije:

$$\mu_j = \mu_j^0 + kT \ln(c_j/M)$$

Dinamika kemijskih reakcij

- Hitrost reakcije (spreminjanje koncentracij) je odvisna od verjetnosti vmesnega stanja:
 - koncentracije snovi v izhodiščnem stanju (c_i) ter
 - "neugodnosti" vmesnega stanja * ($aktivacijska\ energija\ , E_A$):

$$\frac{dc_2}{dt} = k_1 c_1 - k_2 c_2 \qquad k_1 = A e^{-(E_A - G_1)/kT}$$
$$k_2 = A e^{-(E_A - G_2)/kT}$$

• Razmerje koncentracij snovi v ravnovesju (dc/dt = 0), ki jih opisuje ravnotežna konstanta reakcije (K), določa razlika proste energije med stanjema (ΔG):

$$\frac{c_2}{c_1} = \frac{k_1}{k_2} = K = e^{-\Delta G/kT}$$

• Reakcija teče spontano (K > 1), če imajo produkti nižjo prosto energijo od reaktantov ($\Delta G < 0$).

Katalizatorji (encimi) pospešijo reakcijo (znižajo E_A), ne spremenijo pa ravnovesnih koncentracij!

Dinamika kemijskih reakcij

• Katalizatorji (encimi) pospešijo reakcijo (znižajo E_A), ne spremenijo pa ravnovesnih koncentracij!

 Aktivacijsko energijo lahko določimo iz temperaturne odvisnosti hitrosti reakcije (Arrheniusova relacija):

$$\ln(k_1) = \ln(A) - \frac{E_A}{k} \frac{1}{T}$$

• Tudi pri kompleksnih bioloških kaskadah reakcij celokupno hitrost navadno določa ena od stopenj ("rate-limiting step").

Dinamika vezave med molekulami

• Tudi pri vezavi liganda na receptor $A + B \leftrightarrow AB$ gre za dinamično ravnovesje med reakcijama vezave (k_{on}) in odcepljanja (k_{off}) . Nekaj liganda vedno ostane prostega.

 Ravnovesne koncentracije ponovno določa razlika v prosti energiji med vezanim in nevezanim ligandom:

$$\frac{c_{AB}}{c_A c_B} = \frac{k_{on}}{k_{off}} = K = e^{-\Delta G/kT}$$

• Jakost vezave namesto s K pogosto izrazimo z disociacijsko konstanto $K_d = 1/K$, ki ima enoto C. Pri $C_A = K_d$ bo zasedena polovica vezavnih mest.

Ali spremembe vodi energija ali entropija?

- Prosto energijo lahko zniža
 - znižanje energije (tvorba novih vezi)
 - eksotermna reakcija
 - povišanje entropije (možnost novih konfiguracij)
 - endotermna reakcija
- Prispevka energije in entropije lahko določimo
 - preko temperaturne odvisnosti ravnotežne konstante (Arrheniusova relacija):

 z merjenjem sproščene/absorbirane toplote (kalorimetrija)

$$\ln(K) = -\frac{\Delta G}{k} \frac{1}{T} = \frac{\Delta S}{k} - \frac{\Delta E}{k} \frac{1}{T}$$

Kalorimetrija

- Energijska vrednost hrane, kalorija
- V bioloških sistemih nas pri kalorimetriji zanima količina energije (TOPLOTE), ki se sprosti ali porabi pri nastanku ali razdiranju vezi, npr. pri
 - razvijanju ali denaturaciju proteinov
 - faznih prehodih v lipidnih membranah
 - interakcijah encim/inhibitor, antigen/protitelo
- Toplota je povezana z entalpijo in entropijo: (pri kalorimetriji je specifična toplota izražena na mol, ne kg!)

	100g izdelka vsebuje povprečno:		
	enrgijska vrednost kJ/kcal	301/71	
	beljakovine	2,9 g	
	ogljikovi hidrati	12,4 g	
	od teh sladkorj	11 g	
	maščoba	1,1 g	

 $H_2O: c_p = 4180 \text{ J/kgK} = 4.18 \text{ kJ/kg K} = 1 \text{ kcal/kg K}$

tipična potreba po energiji za odraslega človeka → cca. 2500 kcal/dan = 10000 kJ/dan

$$Q = mc_p \Delta T$$

$$dH = c_p dT$$
, $dS = \frac{c_p}{T} dT$

Q ... toplota

m ... masa

 c_p ... specifična toplota

T... temperatura

Kalorimetrija – tri izvedbe

 Adiabatna kalorimetrija (meri toploto zgorevanja)

V bioloških sistemih:

- Diferencialna dinamična kalorimetrija (spremljamo podiranje vezi v molekuli)
- Izotermna titracijska kalorimetrija (spremljamo vezavo med molekulami)

Laboratorijska biomedicina – Molekularna biofizika

Površinska plazmonska resonanca (SPR)

ko zastavice zatemnijo nebo

• Ko spremenimo opazovano tekočino, spremenimo lastnosti odbite svetlobe!

Encimskoimunski test

z molekularnim ojačevalcem vidimo dlje

 Že vezava enega samega encima preko antigena ali protitelesa pretvori mnogo molekul substrata v molekule drugačne barve!

ELISA = enzyme linked imunosorbent assay