

POLYMER SCIENCE & TECHNOLOGY

JOEL R. FRIED

POLYMER SCIENCE AND TECHNOLOGY

Third Edition

POLYMER SCIENCE AND TECHNOLOGY

Third Edition

Joel R. Fried

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Fried, Joel R.

Polymer science and technology / Joel R. Fried.—Third edition.

pages cm

Includes bibliographical references and index.

ISBN 978-0-13-703955-5 (hardcover : alk. paper)

1. Polymers. 2. Polymerization. I. Title.

OD381.F73 2014

668.9—dc23

2014000967

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-703955-5 ISBN-10: 0-13-703955-7

Text printed in the United States on recycled paper at Courier Corporation in Westford, Massachusetts.

First printing, May 2014

To my parents, who provided the opportunities, support, and guidance, and to my wife, Ava, and sons, Marc and Aaron, for their love, patience, and understanding.

CONTENTS

vii

PR	REFA	CE	XV
PR	REFA	CE TO SECOND EDITION	xvii
PR	REFA	CE TO FIRST EDITION	xix
A (CKN(OWLEDGMENTS	xxi
ΑF	BOUT	THE AUTHOR	xxiii
1	INT	RODUCTION TO POLYMER SCIENCE	1
	1.1		
		1.1.1 Thermoplastics and Thermosets	
		1.1.2 Classification Based upon the Mechanism of Polymerization	
		1.1.3 Classification Based upon Polymer Structure	
	1.2	Polymer Structure	
		1.2.1 Copolymers	
		1.2.2 Tacticity	
		1.2.3 Geometric Isomerism	
		1.2.4 Nomenclature	13
	1.3	Molecular Weight	15
		1.3.1 Molecular-Weight Distribution	
		1.3.2 Molecular-Weight Averages	
	1.4	Chemical Structure and Thermal Transitions	
Su	ggeste	ed Reading	22
Pro	blem	IS	22
Re	feren	ces	24
2	POI	LYMER SYNTHESIS	25
-	2.1	Step-Growth Polymerization	
		2.1.1 Molecular Weight in a Step-Growth Polymerization	
		2.1.2 Step-Growth Polymerization Kinetics	
	2.2	Chain-Growth Polymerization	
		2.2.1 Free-Radical Polymerization and Copolymerization	
		2.2.2 Ionic Polymerization and Copolymerization	
		2.2.3 Coordination Polymerization	
		2.2.4 Controlled Radical Polymerizations	
	2.3	Polymerization Techniques	
		2.3.1 Bulk Polymerization.	
		- 🧳	•

viii Contents

		2.3.2	Solution Polymerization	66
		2.3.3	Suspension Polymerization	66
		2.3.4	Emulsion Polymerization	67
		2.3.5	Solid-State, Gas-Phase, and Plasma Polymerization	69
		2.3.6	Polymerization in Supercritical Fluids	71
		2.3.7	Polymerization in Ionic Liquids	72
	2.4	Polyn	ner Reactivity	74
			Chemical Modification	
		2.4.2	Preparation of Polymer Derivatives	76
			Click Chemistry	
	2.5		al Topics in Polymer Synthesis	
			Metathesis	
			Group-Transfer Polymerization	
		2.5.3	Macromers in Polymer Synthesis	
			Genetic Engineering	
			Green Chemistry	
	2.6		ical Structure Determination	
			Vibrational Spectroscopy	
			Nuclear Magnetic Resonance Spectroscopy	
			ding	
Re	feren	ces		98
_				
3		NFOR	MATION, SOLUTIONS, AND MOLECULAR WEIGHT	101
	3.1		ner Conformation and Chain Dimensions	
	3.2		nodynamics of Polymer Solutions	
			The Flory–Huggins Theory	
			Flory–Krigbaum and Modified Flory–Huggins Theories	
			Equation-of-State Theories	
			Phase Equilibria	
			Determination of the Interaction Parameter	
			Predictions of Solubilities	
	3.3		urement of Molecular Weight	
			Osmometry	
			Light-Scattering Methods	
			Intrinsic Viscosity Measurements	
~			Gel-Permeation Chromatography	
			ding	
Кe	teren	ces		150

Contents

4	SOI	LID-ST	CATE PROPERTIES	153
	4.1	The A	Amorphous State	154
		4.1.1		
		4.1.2	The Glass Transition	
		4.1.3	Secondary-Relaxation Processes	158
	4.2	The C	Crystalline State	
		4.2.1	Ordering of Polymer Chains	159
		4.2.2	Crystalline-Melting Temperature	163
			Crystallization Kinetics	
			Techniques to Determine Crystallinity	
	4.3		nal Transitions and Properties	
			Fundamental Thermodynamic Relationships	
			Measurement Techniques	
			Structure–Property Relationships	
			Effect of Molecular Weight, Composition, and Pressure on T_g .	
	4.4		anical Properties	
			Mechanisms of Deformation	
			Methods of Testing	
	4.5		-State Characterization Methods	
			Microscopy	
			Scattering Methods	
			ding	
Re	feren	ces		204
_	TITO	COLL	A CONTROLLER A A CONTROLLER A CONTROLLER A	207
5			ASTICITY AND RUBBER ELASTICITY	
	5.1		luction to Viscoelasticity	
			Dynamic-Mechanical Analysis	
			Mechanical Models of Viscoelastic Behavior	
			Viscoelastic Properties of Polymer Solutions and Melts	
			Dielectric Analysis	
			Dynamic Calorimetry	
			Time-Temperature Superposition	
			Boltzmann Superposition Principle	
	<i>5</i> 2		Interrelationships between Transient and Dynamic Properties	
	5.2		luction to Rubber Elasticity	
		5.2.1	Thermodynamics	
			Statistical Theory	
			Phenomenological Model	
		5.2.4	Recent Developments	254

x Contents

Suggested Reading			255			
		ns				
Re	feren	ces	259			
6	POl	LYMER DEGRADATION AND THE ENVIRONMENT				
	6.1	Polymer Degradation and Stability	262			
		6.1.1 Thermal Degradation				
		6.1.2 Oxidative and UV Stability	267			
		6.1.3 Chemical and Hydrolytic Stability	269			
		6.1.4 Effects of Radiation	271			
		6.1.5 Mechanodegradation	272			
	6.2	Management of Plastics in the Environment	272			
		6.2.1 Recycling	273			
		6.2.2 Incineration	274			
		6.2.3 Biodegradation	275			
Su	ggest	ed Reading				
		ces				
7	, ,					
	ANI	D COMPOSITES	281			
	7.1	Additives	282			
		7.1.1 Plasticizers	282			
		7.1.2 Fillers and Reinforcements	287			
		7.1.3 Other Important Additives	288			
	7.2					
		7.2.1 Polymer Blends				
		7.2.2 Toughened Plastics and Phase-Separated Blends				
		7.2.3 Interpenetrating Networks				
	7.3	Block Copolymers				
	7.4	Composites				
		7.4.1 Mechanical Properties				
		7.4.2 Composite Fabrication				
	7.5	Nanocomposites				
		7.5.1 Montmorillonite Nanocomposites				
		7.5.2 Buckyballs, Carbon Nanotubes, Graphene, and POSS				
Su	Suggested Reading					
	\sim	18				
		ces				

Contents xi

8	BIO	POLY	MERS, NATURAL POLYMERS, AND FIBERS	331
	8.1	Biopol	ymers and Other Naturally Occuring Polymers	332
		8.1.1	Proteins	332
		8.1.2	Polynucleotides	336
		8.1.3	Polysaccharides	341
		8.1.4	Naturally Occurring Elastomers	344
	8.2			
		8.2.1	Natural and Synthetic Fibers	346
		8.2.2	Cellulosics	349
		8.2.3	Non-cellulosics	350
			Fiber-Spinning Operations	
Suggested Reading				
Re	feren	ces		359
9	TH	ERMOI	PLASTICS, ELASTOMERS, AND THERMOSETS	361
	9.1		odity Thermoplastics	
			Polyolefins	
			Vinyl Polymers	
			Thermoplastic Polyesters	
	9.2		mers	
		9.2.1	Diene Elastomers	375
		9.2.2	Nondiene Elastomers	379
		9.2.3	Thermoplastic Elastomers	384
	9.3		osets	
		9.3.1	Epoxies	386
		9.3.2	Unsaturated Polyesters	387
		9.3.3	Formaldehyde Resins	389
Su	ggeste	ed Read	ing	393
Re	feren	ces		395
10	ENG	GINEEI	RING AND SPECIALTY POLYMERS	397
			eering Plastics	
	10.1		Polyamides	
			ABS	
			Polycarbonates	
			Modified Poly(phenylene oxide)	
			Acetal	
			Polysulfones	
			Poly(<i>p</i> -phenylene sulfide)	

xii Contents

		10.1.8	Engineering Polyesters	409
		10.1.9	Fluoropolymers	411
	10.2	Specia	lty Polymers	412
		10.2.1	Polyimides and Related Specialty Polymers	413
		10.2.2	Polyaryletherketones	419
			Specialty Polyolefins	
		10.2.4	Ionic Polymers	421
		10.2.5	Inorganic Polymers	422
		10.2.6	Liquid-Crystalline Polymers	424
		10.2.7	Conductive Polymers	427
		10.2.8	High-Performance Fibers	429
		10.2.9	Dendritic Polymers	430
Sug	ggeste	d Readi	ing	431
Re	ferenc	es		433
11	POI	YMER	PROCESSING AND RHEOLOGY	435
			Processing Operations	
			Extrusion	
			Molding	
			Calendering	
			Coating	
	11.2		action to Polymer Rheology	
			Non-Newtonian Flow	
			Viscosity of Polymer Solutions and Suspensions	
			Constitutive Equations	
		11.2.4	Elastic Properties of Polymeric Fluids	457
			Melt Instabilities	
			Drag Reduction	
	11.3		sis of Simple Flows	
			Pressure (Poiseuille) Flow	
			Drag Flow	
	11.4		netry	
			Capillary Rheometer	
			Couette Rheometer	
			Cone-and-Plate Rheometer	
			Rheometry of Polymer Solutions and Melts	
	11.5		ing of Polymer-Processing Operations	
			Extrusion	
			Wire Coating	

Contents xiii

	App	endices		485
	11.	A.1 Re	elationships between WLF Parameters and Free Volume	485
	11.	A.2 D	ynamic and Continuity Equations	486
Sug			ing	
	roblems			
12	POI	YMER	RS FOR ADVANCED TECHNOLOGIES	493
			rane Science and Technology	
			Barrier Polymers	
			Membrane Separations	
			Mechanisms of Transport	
			Membrane Preparation	
	12.2		dical Engineering and Drug Delivery	
			Controlled Drug Delivery	
			Gene Therapy	
			Antimicrobial Polymers	
			Tissue Engineering	
			Kidney Dialysis and Artificial Organs	
	12.3		ations in Electronics and Energy	
			Electrically Conductive Polymers	
			Polymeric Batteries	
			Organic Photovoltaic Polymers	
			Electronic Shielding.	
			Dielectrics	
			Electronic Encapsulation	
	12.4		ic Polymers	
	12		Nonlinear Optical Polymers	
			Light-Emitting Diodes	
	12.5		Applications.	
Suc			ing	
			5	
13			TIONS AND SIMULATIONS IN POLYMER SCIENCE	
	13.1		-Contribution Methods	
			Volumetric Properties	
			Glass-Transition Temperature	
			Permeability	
			Solubility Parameter	
		13.1.5	Activity Coefficients	566

xiv Contents

	13.2	Topolo	gical Indices	574
	13.3	Artifici	ial Neural Network	578
	13.4	Molecu	ılar Simulations	581
		13.4.1	Molecular Mechanics Force Fields	583
		13.4.2	Molecular Dynamics and Monte Carlo Methods	588
	13.5	Applica	ations of Molecular Simulations	591
		13.5.1	PVT Simulation	591
		13.5.2	Cohesive Energy Density and the Solubility Parameter	593
		13.5.3	Glass-Transition Temperature	594
		13.5.4	Pair Correlations	595
		13.5.5	Time-Correlation Coefficients	597
		13.5.6	Scattering Functions	599
		13.5.7	Mechanical Properties	600
		13.5.8	Sorption Isotherms	602
			Permeability	
		13.5.10	Free Volume	610
			ng	
Prob	olems	S		612
Refe	erenc	es		612
4	Pol	ymer A	bbreviations	617
В	Rep	resenta	tive Properties of Some Important Commercial Polymers.	621
С	AS	TM Star	ndards for Plastics and Rubber	623
D	SIU	Jnits an	d Physical Constants	627
E			cal Relationships	
F			Elements	
IND	EX			637
,				

PREFACE

Polymer Science and Technology, Third Edition, provides new and expanded coverage in a number of areas of contemporary interest in polymer science and technology. In particular, Chapter 2 on polymer synthesis provides new coverage of controlled radical polymerization, polymerization in ionic liquids, and the use of click chemistry and green chemistry. Chapter 4, on solid-state properties, includes added coverage on the use of microscopy and scattering methods in solid-state characterization. Chapter 7, on additives, blends, and composites, includes a new section on block copolymers as well as expanded coverage of nanocomposites including the use of buckyballs, carbon nanotubes, graphene, and POSS as nanofillers. Electrospinning has been added to the discussion of fiber-spinning operations in Chapter 8. Coverage of biomedical engineering and drug delivery, solar cells, and sensors has been included in Chapter 12, on polymers for advanced technologies. In addition, an entirely new chapter on correlations and simulation methods in polymer science has been added. This new chapter includes expanded treatment of group-correlation methods to predict polymer properties that has previously appeared in a number of earlier chapters in the second edition. Totally new is the inclusion of topological indices and artificial neural networks to predict properties. For the first time in an introductory polymer textbook, the fundamentals and applications of computational polymer science including the use of molecular dynamics and Monte Carlo methods are presented with a number of examples and exercise problems.

> Joel R. Fried Tallahassee, Florida

xvi Preface

ABOUT THE COVER ILLUSTRATION

The cover illustration shows a molecular simulation of a blend of 37 wt% of functionalized C_{60} fullerene, PCBM, (space-filling representation) in an amorphous cell containing a thiophene copolymer. This system has been reported to provide attractive photovoltaic properties for polymeric photovoltaic cells. Simulations of polymeric systems are described in Chapter 13 of this third edition.

PREFACE TO THE SECOND EDITION

 $oldsymbol{I}$ he second edition provides new and expanded coverage of important topics in polymer science and engineering and includes additional example calculations, homework problems, and bibliographic references. Additional topics in the treatment of polymer synthesis (Chapter 2) include metallocene catalysis, atom transfer radical and plasma polymerization, the genetic engineering of polymers, and the use of supercritical fluids as a polymerization medium. The new field of dynamic calorimetry (temperature-modulated DSC) has been added to the coverage of polymer viscoelasticity in Chapter 5. Chapter 6 provides expanded coverage of biodegradable polymers while Chapter 7 introduces the important new area of nanocomposites. Chapter 8 has been totally revised to include coverage of biopolymers and naturally occurring polymers including chitin and chitosan, while material on commodity thermoplastics has been moved to Chapter 9. In Chapter 10, new engineering and specialty thermoplastics including dendrimers, hyperbranched polymers, and amorphous Teflon are discussed. Examples of polymer-processing modeling have been expanded to include wire-coating operations in Chapter 11. The topic of drag reduction has been moved from Chapter 12 to the coverage of polymer rheology in Chapter 11, which now also includes an introduction to melt instabilities. The discussion of the electrical and optical applications of engineering polymers has been enhanced and new coverage of barrier polymers has been provided in Chapter 12.

Although the intended audience for this text is advanced undergraduates and graduate students in chemical engineering, the coverage of polymer science funda-

mentals (Chapters 1 through 5) is suitable for a semester course in a materials science or chemistry curriculum. Chapters 6 and 7 discuss more specialized topics such as polymer degradation, recycling, biopolymers, natural polymers, and fibers. Sections from this coverage can be included to supplement the basic coverage provided by the earlier chapters. Chapters 9 and 10 survey the principal categories of polymers—commodity thermoplastics, elastomers, thermosets, and engineering and specialty polymers. Material from these chapters may be included to supplement and reinforce the material presented in the chapters on fundamentals and provides a useful reference source for practicing scientists and engineers in the plastics industry. Polymer engineering principles including rheology and processing operations, introduced in Chapter 11, can be used as the basis of a short course on polymer engineering at the senior undergraduate and graduate level. Chapter 12 describes polymers used in areas of advanced technology including membrane separations, electrolytes for batteries and fuel cells, controlled drug release, nonlinear optical applications, and light-emitting diodes and displays. This coverage may be used as reference material for scientists and engineers and provides a basis for short courses in such areas as membrane science and technology and polymer physics.

> Joel R. Fried Cincinnati, Ohio

PREFACE TO THE FIRST EDITION

At least dozens of good introductory textbooks on polymer science and engineering are now available. Why then has yet another book been written? The decision was based on my belief that none of the available texts fully address the needs of students in chemical engineering. It is not that chemical engineers are a rare breed, but rather that they have special training in areas of thermodynamics and transport phenomena that is seldom challenged by texts designed primarily for students of chemistry or materials science. This has been a frustration of mine and of many of my students for the past 15 years during which I have taught an introductory course, Polymer Technology, to some 350 chemical engineering seniors. In response to this perceived need, I had written nine review articles that appeared in the SPE publication Plastics Engineering from 1982 to 1984. These served as a hard copy for my students to supplement their classroom notes but fell short of a complete solution.

In writing this text, it was my objective to first provide the basic building blocks of polymer science and engineering by coverage of fundamental polymer chemistry and materials topics given in Chapters 1 and 7. As a supplement to the traditional coverage of polymer thermodynamics, extensive discussion of phase equilibria, equation-of-state theories, and UNIFAC has been included in Chapter 3. Coverage of rheology, including the use of constitutive equations and the modeling of simple flow geometries, and the fundamentals of polymer processing operations are given in Chapter 11. Finally, I wanted to provide information on the exciting

new materials now available and the emerging areas of technological growth that could motivate a new generation of scientists and engineers. For this reason, engineering and specialty polymers are surveyed in Chapter 10 and important new applications for polymers in separations (membrane separations), electronics (conducting polymer), biotechnology (controlled drug release), and other specialized areas of engineering are given in Chapter 12. In all, this has been an ambitious undertaking and I hope that I have succeeded in at least some of these goals.

Although the intended audience for this text is advanced undergraduates and graduate students in chemical engineering, the coverage of polymer science fundamentals (Chapters 1 through 7) should be suitable for a semester course in a materials science or chemistry curriculum. Chapters 8 through 10, intended as survey chapters of the principal categories of polymers—commodity thermoplastics and fibers, network polymers (elastomers and thermoplastics), and engineering and specialty polymers—may be included to supplement and reinforce the material presented in the chapters on fundamentals and should serve as a useful reference source for the practicing scientist or engineer in the plastics industry.

Joel R. Fried Cincinnati. Ohio

ACKNOWLEDGMENTS

 $oldsymbol{I}$ his text in its three editions could not have been completed without the help of many colleagues who provided figures and photographs and offered important advice during its preparation. I am particularly indebted to those colleagues who read all or sections of the first edition and offered very helpful advice. These included Professor James E. Mark of the University of Cincinnati, Professor Otto Vogl of the Polytechnic University, Professor Erdogan Kiran of Virginia Polytechnic Institute, Professor Paul Han of the University of Akron, Professor Donald R. Paul of the University of Texas at Austin, and Professor R. P. Danner of Penn State. Appreciation is also extended to many students and colleagues at the University of Cincinnati who have provided important comments over the past few years following the publication of the first edition. These include Professor Michael Greenfield of the University of Rhode Island, Professor Zvi Rigbi of the Technion, Professors U. Sundararaj and Philip Choi of the University of Alberta, Professor Jin Chuk Zjung of Pohang University of Science and Technology, and Professor Carlos Co of the University of Cincinnati. Appreciation is also extended to those who kindly assisted in reviewing portions of the third edition. These include Professors George Odian and Alan Lyons of the College of Staten Island (City University of New York), Dr. Donald Klosterman of the University of Dayton Research Institute, Professor Pengyu Ren of the University of Texas at Austin, and Professors Rufina Alamo, Daniel Hallinan, and Biwu Ma of Florida State University.

I also wish to thank those colleagues who kindly provided some key illustrations and photos. These include Dr. Roger Kambour of General Electric, Professor Bill Koros of the Georgia Institute of Technology, Professor Paul Philips of the University of Tennessee, Dr. Marty Matsuo of Nippon Zeon (Japan), Dr. Robert

xxii Acknowledgments

Cieslinski of the Dow Chemical Company, Dr. Richard Baker of Membrane Technology and Research, Inc., Dr. Mostafa Aboulfaraj of Pechiney Centre de Recherches de Voreppe (France), Professor Morton Denn of the City College of New York, Professor David Tirrell of the California Institute of Technology, Dr. Graeme Moad of CSIRO (Australia), Craig Hawker of the University of California, Santa Barbara, and Professor Rufina Alamo of Florida State University.

Joel R. Fried Tallahassee, Florida

ABOUT THE AUTHOR

Dr. Joel R. Fried is professor and chair of the department of chemical and biomedical engineering at Florida State University. Previously, he was professor and the Wright Brothers Endowed Chair in Nanomaterials at the University of Dayton. He is also professor emeritus of chemical engineering and a fellow of the graduate school at the University of Cincinnati, where he directed the Polymer Research Center and served as head of the Depart-

ment of Chemical Engineering over a career of 32 years. During this time he has advised more than sixty graduate and postdoctoral students, many of whom are currently in academic positions or have prominent positions in industry. Dr. Fried holds B.S. degrees in biology and chemical engineering, and an M.E. degree in chemical engineering from Rensselaer Polytechnic Institute. He also holds M.S. and Ph.D. degrees in polymer science and engineering from the University of Massachusetts, Amherst. Prior to his academic career, Dr. Fried was a senior engineer at the Monsanto Corporate R&D Center in St. Louis and an associate staff member of the GE Corporate R&D Center near Schenectady, New York. At Monsanto, he was a member of a fundamental research group developing hollow fiber membranes for industrial gas separations.

Dr. Fried is an instructor for the short course on Polymer Science and Technology at the National Meetings of the American Chemical Society and has been a course instructor on extrusion for the Plastics Institute of America. He is the author of more than one hundred and fifty publications, including many book chapters and monographs. Dr. Fried has served as editor of *Polymer Contents* and associate editor of *Computational and Theoretical Polymer Science*, has served on the editorial boards of *Polymer* and *Polymer Engineering*, and is a frequent consultant to industry. Current research interests focus on experimental studies and simulations of ion and small molecule transport through polymeric, biological, and biomimetic membranes for separations, energy, and sensor applications.

