Problema 1.

- i) Pruebe que $6^n + 4$ es divisible por 5, para todo $n \in \mathbb{N}$.
- ii) Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión real definida por:

$$a_n = \begin{cases} a_{n-1} + a_{n-2}, & n \ge 3, \\ 1 & n = 1, 2. \end{cases}$$

Pruebe que

$$a_n < \left(\frac{7}{4}\right)^n, \quad \forall n \in \mathbb{N}.$$

Problema 2.

i) Pruebe que para todo $n \in \mathbb{N}$ se cumple que :

$$2^{2} + 5^{2} + 8^{2} + \dots + (3n-1)^{2} = \frac{1}{2}n(6n^{2} + 3n - 1).$$

ii) Pruebe que para todo $n \in \mathbb{N}$ se cumple que $2^{3^n} + 1$ es divisible por 3^{n+1} .

Problema 3.

i) Encontrar y probar por inducción una fórmula (explícita en n) para $\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right)$, donde $n \in \mathbb{N}, n \geq 2$.

Nota. Sea $(a_i)_{i\in\mathbb{N}}$ una sucesión de números reales, $r\leq n$, entonces se define la productoria de la sucesión a_i como

$$\prod_{i=r}^{n} a_i = a_r \cdot a_{r+1} \cdot a_{r+2} \cdot \ldots \cdot a_n.$$

ii) Sea la "sucesión de Tribonacci" T_n definida como

$$T_1 = T_2 = T_3 = 1$$
, $T_n := T_{n-1} + T_{n-2} + T_{n-3}$, $n \ge 4$.

Pruebe que $T_n < 2^n$, para cada $n \in \mathbb{N}$.

Problema 4.

i) Sea $(u_n)_{n\in\mathbb{N}}$ una sucesión de números reales definida por

$$\begin{cases} u_1 &= 10 \\ u_2 &= 47 \\ u_{n+1} &= 23u_n - 60u_{n-1}, \text{ para } n \ge 2 \end{cases}$$

Pruebe que $u_n = 20^{n-1} + 3^{n+1}$, para cada $n \in \mathbb{N}$.

ii) Demuestre que $2^{2n} - 3n - 1$ es divisible 9 para cada $n \in \mathbb{N}$.

Problema 5.

1. Demuestre que $-1^2 + 2^2 - 3^2 + 4^2 - 5^2 + \ldots - (2n-1)^2 + (2n)^2 = 2n^2 + n$ para todo $n \in \mathbb{N}$

2. Considere la sucesión $(a_n)_{n\in\mathbb{N}}$ definida por

$$a_1 = a_2 = 1$$
 y $a_n = 3(a_{n-1} + a_{n-2}) + 1, n \ge 3$

Demuestre que

<u>a</u>) $a_{3n+2}-1$ es divisible por 2 para todo $n\in\mathbb{N}$

<u>b</u>) $3a_{3n+1} + 5$ es divisible por 8 para todo $n ∈ \mathbb{N}$

Problema 6.

1. Demuestre que para todo $n \in \mathbb{N}$,

$$83^{4n} - 2 \cdot 97^{2n} + 1$$

es divisible por 16.

2. Para $n \in \mathbb{N}$ considere la sucesión

$$y_n = (3 + \sqrt{5})^n + (3 - \sqrt{5})^n.$$

Demuestre que:

a) $y_{n+1} = 6y_n - 4y_{n-1}$

b) y_n es entero

c) El siguiente entero mayor que $(3 + \sqrt{5})^n$ es divisible por 2^n .

Problema 7.

1. Demuestre por inducción:

a) $\forall n \in \mathbb{N} \colon 2^{2n} + 5$ es divisible por 3.

b) $\forall n \in \mathbb{N} \colon 3^{2n} + 7$ es divisible por 8.

2. Sea $(a_n)_{n\in\mathbb{N}\cup\{0\}}$ una sucesión que cumple $a_0=0$ y $a_n=4-\frac{3}{a_{n+1}}$. Demuestre que

$$\forall n \in \mathbb{N} : a_n = \frac{3(3^n - 1)}{3^{n+1} - 1}.$$