

$Z_{01} = M_{01} \cdot X + P_{01}$
we just determined that the dot product of these two terms will be as (3,1) dimensional matrix so to perform matrix addition be must be the same (3,1).
5(e): (n(e), 1)
In buck propagation the dimensions of dw should be the same
$dW^{(e)}: (n^{(e)}, n^{(e-1)})$ Same with band db $dS^{(e)}: (n^{(e)}, 1)$
Vertorized Imperementation
$Z^{[i]} = W^{[i]} \times + b^{[i]}$ because we stack across all examples m when you multiply X with dimension (n ^[o] , m) by (n ^[i] , n ^[o]) you will get a matrix of size (n ^[i] , m) which is what we want (n ^[i] , m)
bit is still (n'17,1) but through python brondensting it will be duplicated into an (nº17, m) matrix and then added element-wise.
$Z^{(e)}$, $\alpha^{(e)}$: $(n^{(e)}, n)$ $Z^{(e)}$, $A^{(e)}$: $(n^{(e)}, m)$ special case is when $l=0$ $A^{(o)}=X=(n^{(o)}, m)$ $dZ^{(e)}$, $dA^{(e)}$: $(n^{(e)}, m)$
Why Peep Representation? (are they effective)
the first holden layer will work on simple problems then will the those to book or compose more complex bunctions in the later layers
waves -> Sounds -> words -> sentence/ph/o
edges -> facial -> faces
Using circuit theory (logicantes) you can show that more layers is superior to more not Informally: there are functions y can comparte with a ismall'L-layer deep neural network that Shallover networks require exponentially more hidden units to compate.

