

NASA Orbital Debris Requirements and Best Practices

Scott Hull NASA / GSFC November 19, 2014

Scott.Hull@NASA.gov

NASA Goddard Space Flight Center Orbital Debris Services, Code 592

www.nasa.gov

Outline

NASA Requirements

- Origin
- Policy
- Technical Standards

Best Practices

- Mission Design Considerations
- Protecting the Spacecraft from Existing Debris
- Design Approaches for Passivation

NASA ORBITAL DEBRIS REQUIREMENTS

Drawing the lines

NASA Orbital Debris Structure

NASA's orbital debris requirements are driven by the National Space Policy of the United States – 2010

- Development and adoption of international and industry standards
- "Continue to follow the <u>United States Government Orbital Debris</u> <u>Mitigation Standard Practices</u>, consistent with mission requirements and cost effectiveness ..."
- Notify the Secretary of State of exceptions

NASA Orbital Debris Policy

NPR 8715.6, "NASA Procedural Requirements for Limiting Orbital Debris"

- Designed to meet the guidelines and intent of U.S.
 Government and international agreements including IADC
 Space Debris Mitigation Guidelines
- Spells out roles and responsibilities across the Agency
- References NASA-STD 8719.14 for technical requirements
- Orbital Debris Assessments are conducted from proposal through launch at scheduled milestones
- End of Mission Plans are updated throughout operations until decommissioning
- Requires Conjunction Assessments to help prevent collisions

NASA-STD-8719.14 Technical Requirements

```
Section 4.3 (2) Operational Debris

Section 4.4 (4) Explosions, Passivation,
Intentional Break-up

Section 4.5 (2) Collisions with Large and Small Objects

Section 4.6 (4) Postmission Disposal

Section 4.7 (1) Reentry Risk

Section 4.8 (1) Tethers

14 Total Requirements
```

The NASA requirements generally exceed the guidelines

Requirement Group 4.3 Operational Debris

Operational debris are objects intentionally separated from the spacecraft (instrument covers, de-spin devices, etc)

Req. 4.3-1: Debris Passing Through LEO (> 1 mm)

- Maximum orbital lifetime of 25 years
- Maximum of 100 object-years below 2000 km

Req. 4.3-2: Debris Passing Near GEO (> 5 cm)

Below GEO – 200 km within 25 years

Requirement Group 4.4 Accidental Explosions and Intentional Breakup

Req. 4.4-1: Risk of Explosions During the Mission

- Need to assess and report a quantitative estimate for explosion risk
- < 0.001 probability for all credible failure modes</p>

Req. 4.4-2: Risk of Accidental Postmission Explosions

- "Deplete all onboard sources of stored energy"
- Also referred to as passivation
- Disconnect battery from charging circuit
- Vent pressure

Req. 4.4-3: Planned Breakup, Long-term Risks

− > 10 cm orbital lifetime < 100 object-years</p>

Req. 4.4-3: Planned Breakup, Short-term Risks

Collision probability for > 1mm objects < 10⁻⁶ for 24 hours

Requirement Group 4.5 Collisions

Req. 4.5-1: Risk of Large Object Collision

- Catastrophic impacts over the orbital lifetime
- Driven by spacecraft area and orbit
- < 0.001 probability of random collision with >10 cm objects
- Can be mitigated by Conjunction Assessment for some missions

Req. 4.5-2: Risk of Small Object Collision

- < 0.01 probability of a small object penetration during the mission lifetime that prevents the planned disposal
- Driven by component placement and shielding

Requirement Group 4.6 Postmission Disposal

Req. 4.6-1: Disposal from LEO

- Atmospheric reentry
 - Orbit decay within 25 years after end of mission
 - No more than 30 years total orbital lifetime
 - Can be Uncontrolled Reentry or Controlled Reentry
- Maneuver to a storage orbit
 - Perigee > 2000 km, Apogee < GEO 500km
- Direct retrieval

Req. 4.6-2: Disposal from GEO

– Maneuver to > GEO + 200 km or < GEO - 200 km</p>

Req. 4.6-3: Disposal from Between LEO and GEO

Maneuver to a storage orbit (19,200 km to 20,700 km excluded)

Req. 4.6-4: Disposal Reliability

- Disposal hardware designed for \geq 0.90 at the end of the mission

Postmission Disposal Options

Requirement Group 4.7 Reentry Risk

- Risk of casualty must be < 0.0001 (1 in 10,000)
 - Casualty defined as impact energy > 15 J
 - Includes any risk from hazardous materials
- Controlled Reentry additional requirements
 - Composite risk < 0.0001

 $P_f x$ (Uncontrolled Reentry Risk) < 0.001

- > 370 km from foreign land masses
- -> 50 km from the US or Antarctica

Requirement Group 4.8 Tethers

Req. 4.8-1: Tethers

 All intact tethers or possible fragments must meet the requirements in Groups 4.5 and 4.6 (Collisions and Disposal)

BEST PRACTICES

Coloring inside the lines

Mission Design and Ops Considerations

Orbital debris needs to be considered early

- Prevent generation of new debris
- Consider effects of existing debris on your mission
- Identify the disposal method early, and design around it

Orbit Selection

- Debris peaks at ~750, 900, and 1400 km
- Orbit selection is usually driven by science needs, but science can be difficult in a minefield

Operations

- Orbit change maneuvers to avoid predicted close approaches
- Reorient the spacecraft during meteor showers or close approaches
- Have plans in place to help diagnose and/or respond to potential debris hits

Hardware Design Considerations for Penetration Protection

- Component location
 - If possible, locate critical bus components inside the structure
 - Nadir and zenith are lowest exposure
 - Ram direction and sides are highest exposure
 - Take advantage of shadowing
- Wall thickness
- Add shielding
- Redundancy

Design for Safety During and After the Mission

- Pressure tank design
 - Burst strength ≥2X MEOP recommended
- Battery selection
 - Usually driven by power demands
 - Ni-H₂ can be an explosion risk if overcharged
 - Li-ion less susceptible, but has strict charging considerations
- Locate pressurized components near center of spacecraft
 - Protection against debris strikes
 - Any fragmentation is more contained
- Passivation commands not available until EOM
- Design for proper disposal

Power System Passivation

- Requires designing in an "off-switch" early
- Disconnect solar arrays (preferred)
 - Can be easier/safer to achieve
 - Passivates all electronic equipment at once

- Disconnect the battery from the charging circuit
 - Relays, instead of logic
 - Reducing charging rate is not enough
- Leave loads attached to the bus
- Disable failure detection and correction modes at EOM
- Prevent recharging Li-ion after a deep discharge
- Disable transmitter to prevent RF interference

Pressure Vessels Passivation

- Venting hardware needed early in the design
- Venting design options
 - Add vent lines for isolated pressurant
 - Bypass around diaphragms
 - Redundant valves in series on vent lines
 - Consider the disturbance effects of vent thrust
- Vent pressure as much as practical
 - Latching valves left open if possible

Conclusions

- NASA takes orbital debris prevention seriously, and has requirements in place to limit or prevent debris generation
- The NASA orbital debris requirements generally exceed the US Government Standard Practices and international guidelines
- It is important to consider disposal and passivation early in the mission design, in order to prevent debris generation
- With early consideration, it is possible to design for adequate passivation at the end of the mission

