Problem

Let $CNF_k = \{ \langle \phi \rangle \mid \phi \}$ is a satisfiable cnf-formula where each variable appears in at most k places}.

- a. Show that CNF2 ? P.
- **b.** Show that *CNF*₃ is NP-complete.

Step-by-step solution

Step 1 of 4

a

Consider the data:

 $CNF_{\mathbf{x}} = \begin{cases} \langle \phi \rangle | \phi \text{ is a satisfiable } cnf - \text{formula where each variable} \\ \text{appears in at most } k \text{ places} \end{cases}$

CNF is Conjunctive normal form; it contains few rules.

- · A literal is Boolean variable or negated Boolean variable in the form
- Clause contains several literals connected with vs and As.

Comment

Step 2 of 4

Now have to show that $CNF_2 \in P$.

 $\underline{Class-P}$. P is a class of languages that are decidable in polynomial time on a deterministic single —tape Turing —machine.

Let T_a be the polynomial time decider for CNF_2 .

 T_{\bullet} can be described as follows:

 $T_{\bullet} =$ on input $\langle \phi \rangle$:

According to CNF rules, choose the clauses:

- 1. Consider the first clause of ϕ . If it is of the form x, and there is a clause $\neg x$ in ϕ reject.
- CNF is the form x ∨ A, where A is CNF. If x does not appear negated in other clauses, remove every clause of the form x ∨ B of φ and calculate the result φ, if there is no clauses in φ then accept.
- 3. Solve CNF where \boldsymbol{c} occurs in every clause, where negation of \boldsymbol{c} does not appear.
- 4. When searching with ϕ , if clauses found in the form $x \vee A$ and $\sim x \vee B$ then remove. Add $A \vee B$ in ϕ
- 5. Go to step 1.

Every time T_p processes each variable and reaches either accept or reject. Because of this the number of clauses in ϕ might decrease by 1 or 2. Hence running time of T_p becomes polynomial time in terms of the number of variables.

So, $CNF_2 \in P$

Comment

Now have to show that CNF3 is NP-complete.

NP-complete: A language B is NP-complete if is satisfies two conditions:

- 1 B is in NP
- 2. Every A in NP is polynomial time reducible to B.

Step 1: $CNF_3 \in NP$: If CNF_3 is in NP

 \triangleright V_a is a verified in polynomial time and it is described as follows:

$$V_p = \text{``on input} \langle \langle \phi \rangle, x \rangle$$
''

According to CNF rules, verify the following clauses:

- ➤ Verify each variable in # which occurs in at most 3 places.
- ➤ Verify whether x is a satisfying assignment in \$\phi\$.
- > If both conditions are satisfied, then accept.
- Otherwise, reject.

Comment

Step 4 of 4

Step 2: $3SAT \le_P CNF_3$: It is best example for CNF_3 satisfying assignment.

Let r_a be the polynomial time reduction from 3SAT to CNF_a .

When an input instance ϕ of $3SAT_{r_p}(\langle \phi \rangle)$ is given then construct an instance of *CNF*, from the following:

- ▶ First read from left to right, select the best example variable that access more than three times in the formula. Example variable as S occurs in m multiple places. $(x_i \lor A_1), \dots (x_m \lor A_m)$ where x_i is S or negated S.
- \triangleright If nothing results more than three times, then output is ϕ
- \triangleright Select variables $S_1,...,S_m$, If any $(x_i \lor A_i)$ remove from the formula
- $\searrow \quad \left(S_1 \vee A_1\right) \wedge \left(-S_1 \vee S_2\right) \wedge \left(S_2 \vee A_2\right) \wedge \left(-S_2 \vee S_3\right) \left(S_2 \vee A_2\right) \wedge \left(-S_2 \vee S_3\right)$
- ➤ Go to step 1

Obviously reduced polynomial time $r_p(\langle \phi \rangle)$ is a formula identified that every variable occurs at most three times. It is also clear that ϕ is satisfiable if and only if $r_p(\langle \phi \rangle)$ is satisfiable. The r_p is a reduced polynomial time in terms of the number of variable in ϕ from (1) and (2) CNF_c is NP-complete.

Comment