

Trasformazioni Geometriche 2D

Scalari, Punti e Vettori

Scalare: $\alpha \in R$ specifica una grandezza

Punto: $p=[x, y] \in R^2$ specifica una posizione nel piano

Vettore: $\underline{v} = [x, y]^T \in \mathbb{R}^2$ specifica modulo, direzione e verso

Attenzione: per convenzione i vettori sono colonna; quando faremo prodotti tra matrici e vettori, per questa convenzione, avremo "matrice" per "vettore colonna".

Lo Spazio Vettoriale R²

Sia R^2 l'insieme dei vettori \underline{v} . R^2 è uno spazio vettoriale quando: A) esiste un'operazione binaria interna "+" detta addizione e

A1.
$$(\underline{u}+\underline{v})+\underline{w}=\underline{u}+(\underline{v}+\underline{w})$$
 per ogni $\underline{u},\underline{v},\underline{w}\in R^2$

A2.
$$\underline{u} + \underline{v} = \underline{v} + \underline{u}$$
 per ogni $\underline{u}, \underline{v} \in R^2$

A3. Esiste
$$\underline{\theta} = [0, \theta]^T$$
 tale che $\underline{u} + \underline{\theta} = \underline{u}$ per ogni $\underline{u} \in R^2$

A4. Per ogni $\underline{u} \in R^2$ esiste un unico $\underline{v} \in R^2$ tale che $\underline{u} + \underline{v} = \underline{0}$ (indicheremo \underline{v} come $-\underline{u}$)

B)esiste un'operazione binaria esterna "ullet" detta moltiplicazione per uno scalare $\alpha \in R$ e

B1.
$$\alpha \cdot (\underline{u} + \underline{v}) = \alpha \cdot \underline{u} + \alpha \cdot \underline{v}$$

B2.
$$(\alpha + \beta) \bullet \underline{u} = \alpha \bullet \underline{u} + \beta \bullet \underline{u}$$

B3.
$$(\alpha\beta) \bullet \underline{u} = \alpha \bullet (\beta \bullet (\underline{u}))$$

B4. $1 \bullet \underline{u} = \underline{u}$ cioè 1 è l'unità moltiplicativa

Lo Spazio Vettoriale R²

Lo spazio vettoriale R^2 ha dimensione 2, è cioè possibile determinare 2 vettori linearmente indipendenti \underline{v}_1 e \underline{v}_2 (una base) così che ogni vettore di R^2 può essere scritto come una combinazione lineare

$$\underline{u} = a_1 \underline{v}_1 + a_2 \underline{v}_2$$

per opportuni coefficienti reali a_1, a_2 .

 $[a_1, a_2]^T$ sono le "coordinate" di \underline{u} nella base $\underline{v}_1, \underline{v}_2$.

Prodotto scalare

Dati due vettori $\underline{u} = [u_1, u_2]^T$ e $\underline{v} = [v_1, v_2]^T$ di R^2 , si definisce l'operazione "prodotto scalare", e la si indica con " \bullet ", come:

$$\underline{u} \bullet \underline{v} = u_1 v_1 + u_2 v_2$$

Altri modi di indicarla sono

$$\underline{u} \bullet \underline{v} = \langle \underline{u}, \underline{v} \rangle = \underline{u}^{\mathsf{T}}\underline{v}$$

Prodotto scalare

E' noto che il prodotto scalare fra due vettori permette di determinare l'angolo che essi formano:

$$\underline{u} \bullet \underline{v} = ||\underline{u}||_{2} ||\underline{v}||_{2} \cos(\theta)$$

$$\cos(\theta) = (\underline{u} \bullet \underline{v}) / (||\underline{u}||_{2} ||\underline{v}||_{2})$$

$$\theta = \arccos((\underline{u} \bullet \underline{v}) / (||\underline{u}||_{2} ||\underline{v}||_{2}))$$

Nota: se il prodotto scalare fra due vettori è nullo ($\underline{u} \bullet \underline{v} = 0$) i due vettori sono ortogonali ossia formano un angolo di 90 gradi o $\pi/2$ in radianti [

Norma Euclidea

Si può definire per ogni \underline{u} in R^2 una funzione detta "norma" (norma Euclidea che indicheremo con la notazione $\| \bullet \|_2$) in questo modo

$$||\underline{v}||_2 = \sqrt{\underline{v} \bullet \underline{v}} = \sqrt{v_1^2 + v_2^2}$$

In uno spazio vettoriale, una funzione norma permette di misurare la lunghezza di un vettore e quindi anche la distanza fra due vettori come la norma del vettore differenza

$$\|\underline{v} - \underline{u}\|_2$$

Norma Euclidea

Un vettore di lunghezza o modulo 1 è detto "vettore unitario" o anche "versore"

Si può sempre normalizzare un vettore per renderlo un vettore unitario, dividendolo per la sua norma

$$\underline{v}/||\underline{v}||_2$$

Traslazione 2D

Ogni punto del piano può essere traslato del vettore $\underline{d} = [d_x, d_y]^T$

$$\underline{p'} = \underline{p} + \underline{d}$$

$$\begin{bmatrix} p'_{x} \\ p'_{y} \end{bmatrix} = \begin{bmatrix} p_{x} \\ p_{y} \end{bmatrix} + \begin{bmatrix} d_{x} \\ d_{y} \end{bmatrix}$$

$$[p'_{x}, p'_{y}]^{\mathsf{T}} = [p_{x}, p_{y}]^{\mathsf{T}} + [d_{x}, d_{y}]^{\mathsf{T}}$$

$$\begin{cases} p'_{x} = p_{x} + d_{x} \\ p'_{y} = p_{y} + d_{y} \end{cases}$$

Se trasliamo tutti i punti o vertici di un oggetto 2D, possiamo ottenere l'oggeto traslato.

Scala 2D

Ogni punto può essere scalato dei fattori $s_x ed s_y$ positivi

Nota: l'origine è un punto fisso $s_x = s_y$ scala uniforme $s_x \neq s_y$ scala non uniforme

$$\begin{cases} p_x' = s_x p_x \\ p_y' = s_y p_y \end{cases}$$

$$\begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \bullet \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

$$p' = Sp \quad \text{con} \quad S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Nota:
$$0 < s_x$$
, $s_y < 1$ riduce s_x , $s_y > 1$ amplifica

Rotazione 2D

Ogni punto può essere ruotato intorno all'origine di un angolo θ in senso antiorario

Nota: l'origine è un punto fisso

$$\begin{cases} p_x' = p_x \cos(\theta) - p_y \sin(\theta) \\ p_y' = p_x \sin(\theta) + p_y \cos(\theta) \end{cases}$$

$$\begin{bmatrix} p_x' \\ p_y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \bullet \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

$$p' = R(\theta)p$$

$$\cos(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Spazio Affine

In uno spazio vettoriale non c'è il concetto di punto e quindi di posizione

Uno spazio affine è l'estensione di uno spazio vettoriale che contiene vettori, ma anche punti

In uno spazio affine ci sono nuove operazioni:

- 1) *punto* + *vettore* definisce un *punto*
- 2) punto punto definisce un vettore

Nuove operazioni

In formule:

$$1) q = p + \underline{v}$$

2)
$$\underline{u} = q - p$$
 e $\underline{v} = p - q$

Attenzione:

l'operazione punto + punto non è definita!!

Combinazione affine

Una "combinazione affine" è una combinazione lineare di punti con coefficienti che fanno somma 1

$$p = a_1 p 1 + a_2 p 2 + \dots + a_n p n$$

$$con \ a_1 + a_2 + \dots + a_n = 1$$

-osservazione: se $a_i \in [0,1]$ allora una combinazione affine è detta "combinazione convessa"

-esempio: p = (1-t) p1 + t p2retta passante per p1 e p2 per $t \in R$ segmento di estremi p1 e p2 per $t \in [0,1]$

Combinazione affine

-esempio: punto medio di un segmento

$$p = (p1 + p2)/2$$

Ma le addizioni fra punti non erano vietate?...

Cerchiamo di capire:

$$p = s p1 + t p2$$
 con $s+t=1$
= $(1-t) p1 + t p2$
= $p1 + t (p2 - p1)$
= $p1 + t v$

Cioè punto + vettore dà un punto.

Combinazione affine

In generale:

$$p = a_1 p 1 + a_2 p 2 + \dots + a_n p n$$

$$con \quad a_1 + a_2 + \dots + a_n = 1$$

$$= (1 - a_2 - \dots - a_n) p 1 + a_2 p 2 + \dots + a_n p n$$

$$= p 1 + a_2 (p 2 - p 1) + \dots + a_n (p n - p 1)$$

$$= p_1 + a_2 \underline{u}_2 + \dots + a_n \underline{u}_n$$

Cioè *punto* + (*vettore* + ... + *vettore*) dà un *punto* + *vettore* e quindi un *punto*

Sistema di Riferimento

In uno spazio affine 2D definiamo un "sistema di riferimento" mediante una tripla data da $(\underline{v}1, \underline{v}2, O)$

dove

- •O è un punto (che chiamiamo origine)
- •(<u>v</u>1, <u>v</u>2) è una base di vettori per lo spazio vettoriale associato (non necessariamente vettori ortogonali)

In questo sistema di riferimento un punto p e un vettore \underline{u} dello spazio affine possono essere rappresentati in modo univoco.

Sistema di Riferimento

Avevamo notato che risultava ambiguo rappresentare vettori e punti in uno spazio vettoriale R^2 (usando solo due coordinate)

In uno spazio affine 2D un sistema di riferimento prevede 3 coordinate (Coordinate Omogenee) e quindi:

Un vettore è rappresentato come

$$\underline{u} = a_1 \underline{v} 1 + a_2 \underline{v} 2$$

le coordinate di \underline{u} sono $[a_1, a_2, \mathbf{0}]^T$

Un punto è rappresentato come

$$p = a_1 \underline{v} 1 + a_2 \underline{v} 2 + O$$

le coordinate di p sono $[a_1,a_2,1]^T$

Trasformazioni Affini in Spazi Affini (Coordinate Omogenee)

$$p'=Mp$$

$$\begin{bmatrix} p'_{x} \\ p'_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & d_{x} \\ a_{21} & a_{22} & d_{y} \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} p_{x} \\ p_{y} \\ 1 \end{bmatrix}$$

$$p'_{x} = a_{11}p_{x} + a_{12}p_{y} + d_{x}$$

 $p'_{y} = a_{21}p_{x} + a_{22}p_{y} + d_{y}$

Nota: si tratta di una trasformazione lineare affine cioè di una trasformazione lineare + una traslazione.

Trasformazioni Affini (Coordinate Omogenee)

Scala

$$\begin{bmatrix} p'_{x} \\ p'_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} p_{x} \\ p_{y} \\ 1 \end{bmatrix}$$

Traslazione

$$\begin{bmatrix} p'_x \\ p'_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} R(\theta)$$

₹ Rotazione

$$\begin{bmatrix} p'_{x} \\ p'_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} p_{x} \\ p_{y} \\ 1 \end{bmatrix}$$

Perché usiamo Trasformazione Affine?

Perché una tale trasformazione, essendo lineare, gode delle proprietà che garantiscono che punti allineati vengono trasformati in punti allineati.

Vediamolo per punti di un segmento:

Sia
$$p(t)=(1-t)p1+tp2$$
 con $t \in [0,1]$ allora $p'(t)=Mp(t)$ e

$$p'(t) = M p(t) = M [(1-t)p1 + t p2]$$

= $M (1-t)p1 + M t p2$
= $(1-t) M p1 + t M p2$
= $(1-t)p1' + t p2'$

Questa semplice osservazione è alla base del fatto che per trasformare un oggetto definito da Vertici risulta sufficiente applicare le trasformazioni ai Vertici e considerare la stessa connettività.

Trasformazioni Inverse

Se M trasforma p in p, allora M-1 trasforma p in p

$$M M^{-1} = M^{-1} M = I$$

$$p' = Mp$$
 allora $M^{-1}p' = p$

Inversa della traslazione: $T^{-1}(\underline{d}) = T(-\underline{d})$

Inversa della scala: $S^{-1}(\underline{s}) = S(1/s_x, 1/s_y, 1/s_z)$

Inversa della rotazione: $R^{-1}(\theta) = R^{T}(\theta) = R(-\theta)$

Trasformazioni Composte

Più trasformazioni successive su un oggetto si chiamano composte e si ottengono mediante prodotti di matrici

$$p' = M_n \dots M_2 M_1 p = M p$$
 con $M = M_n \dots M_2 M_1$

Il prodotto di matrici è associativo, ma non commutativo, per cui l'ordine delle matrici è importante.

Nota: se si applicano trasformazioni composte dello stesso tipo, cioè scale con scale, traslazioni con traslazioni, rotazioni con rotazioni, allora il prodotto di tali matrici risulta commutativo.

Trasformazioni rispetto ad un punto

Scala di un oggetto 2D rispetto ad un punto (per esempio il suo baricentro)

Procedimento a passi:

- 1. traslazione di O' nell'origine O;
- scala rispetto all'origine con matrice S;
- 3. traslazione inversa per portare l'origine O in O'.

Comporre Trasformazioni

In forma matriciale:

$$\begin{bmatrix} p_x' \\ p_y' \\ 1 \end{bmatrix} = \begin{pmatrix} 1 & 0 & -d_x \\ 0 & 1 & -d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Comporre più trasformazioni in una singola matrice:

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = M \bullet \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

con
$$M = \begin{pmatrix} 1 & 0 & -d_x \\ 0 & 1 & -d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix}$$

Trasformazioni rispetto ad un punto

Rotazione di un oggetto 2D rispetto ad un punto (per esempio il suo baricentro):

Procedimento a passi:

- 1. Traslazione di O' nell'origine O;
- 2. Rotazione dell'angolo θ rispetto all'origine;
- 3. Traslazione inversa per portare l'origine O in O'.

trasla

ruota

trasla

Comporre Trasformazioni

In forma matriciale:

$$\begin{bmatrix} p_x' \\ p_y' \\ 1 \end{bmatrix} = \begin{pmatrix} 1 & 0 & -d_x \\ 0 & 1 & -d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Comporre più trasformazioni in una singola matric

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = M \bullet \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

con
$$M = \begin{pmatrix} 1 & 0 & -d_x \\ 0 & 1 & -d_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{pmatrix}$$