Analyseur syntaxique Rapport de projet VISI_201

Porteries Tristan

12 avril 2018

- Grammaires
 non-contextuelles
- 2 Hiérachie de Chomsky
- 3 Analyseur lexical
 - Automates finis
- Analyseur syntaxique
 - Backus-Naur Form
 - Automates à piles

- Analyseur LL
- Analyseur LR
- Arbre abstrait
 - Arbre de dérivation
 - Grammaire attribuée
 - Attributs synthétisés
 - Attributs hérités
- 6 Implémentation
 - Usage

12 avril 2018

Introduction

Objectifs d'un analyseur syntaxique :

- déterminer l'existence d'une chaîne selon une grammaire;
- reporter des erreurs;
- construire un arbre abstrait de syntaxe.

- Grammaires non-contextuelles
- 2 Hiérachie de Chomsky
- 3 Analyseur lexica

- 4 Analyseur syntaxique
- 5 Arbre abstrair
- 6 Implémentation

$$G = (V, A, S, P)$$

- V : ensemble des non-terminaux.
- A : ensemble des terminaux.
- S: non-terminal axiome, $S \in V$.
- P: ensemble des productions, $P \subset V \times (A \cup V)^*$.

Grammaires non-contextuelles

grammaire ambiguës

$$S o \epsilon$$

Une dérivation d'un non-terminal selon une production mène à une proto-phrase ou phrase.

aabb

$$S \rightarrow aaSbb$$

$$S \stackrel{*}{ o} aabb$$

- Grammaires non-contextuelles
- 2 Hiérachie de Chomsky
- 3 Analyseur lexical

- 4 Analyseur syntaxique
- 5 Arbre abstrait
- 6 Implémentation

Grammaires contextuelles	$\alpha A\beta \to \alpha \gamma \beta$		
Grammaires algébriques	$A o \gamma$		
Grammaire régulières	A o aB, A o a		

- Grammaires non-contextuelles
- 2 Hiérachie de Chomsky
- 3 Analyseur lexical

- Automates finis
- 4 Analyseur syntaxique
- 6 Arbre abstrait
- 6 Implémentation

Analyse de la chaine d'entrée pour reconnaitre des lexèmes. Utilisation d'expression pour décrire des grammaires linéaire. Soit x et y appartenant au langage :

Opération	Notation	Exemple
Concaténation	xy	{ <i>ab</i> }
Union	x y	$\{a,b\}$
Étoile Kleene	(x y)*	$\{\epsilon, a, b, ab, ba, aa, bb,\}$

Limitation : $a^n b^n$

Théorème de Kleene : l'ensemble des langages rationnels sur un alphabet A est exactement l'ensemble des langages sur A reconnaissables par automate fini.

FIGURE – Automate reconnaissant le langage a^*b^*

- 1 Grammaires non-contextuelles
- 2 Hiérachie de Chomsky
- 3 Analyseur lexical
- 4 Analyseur syntaxique

- Backus-Naur Form
- Automates à piles
- Analyseur LL
- Analyseur LR
- 6 Arbre abstrait
- 6 Implémentation

Description de règles d'analyse (productions) :

$$A \rightarrow aAb$$
 ::= a b

Dérivation de l'axiome à partir de la gauche, si les dérivations mènent à la phrase d'entrée : accepter la phrase. Si $S \stackrel{*}{\rightarrow} \omega$ accepter ω

$$S o aAb$$

 $S o \epsilon$

$$\omega = aabb$$

- **1** S
- aAb
- aaAbb
- aabb

Contrainte de récursivité gauche des productions.

$$A \rightarrow A\alpha$$

$$A \rightarrow \beta$$

Suppression de la récursivité gauche :

$$A \rightarrow \beta A'$$

$$A \to \beta A'$$
 $A' \to \alpha A'$

```
initialiser une pile contenant S;
soit C le premier lexème;
tant que la pile est non-vide faire
   soit T le sommet de la pile;
   si T est non-terminal alors
       choisir une production P;
       dépiler le sommet de la pile;
       empiler la partie droite de P;
   sinon
       si T = C alors
           dépiler le sommet de la pile;
           passer C au lexème suivant;
       fin
   fin
fin
```

Algorithme 1 : Algorithme LL à pile

Pile	Entrée	Opération
5	aabb	
aSb	aabb	dériver $S o aSb$
Sb	abb	valider <i>a</i>
aSbb	abb	dériver $S o aSb$
Sbb	bb	valider <i>a</i>
bb	bb	dériver $\mathcal{S} ightarrow \epsilon$
b	b	valider <i>b</i>
		valider <i>b</i>

Comment choisir la production à dériver?

Utilisation d'un symbole de prévision : analyseur LL(1).

Construction d'une table associant non-terminal, lexème à une production.

Limitation : seul les grammaires où toutes les productions d'un non-terminal n'ont pas les mêmes terminaux préfixes.

$$A \rightarrow a\gamma$$
 $A \rightarrow b\gamma$

$$4 \rightarrow b\gamma$$

- Grammaires non-contextuelles
- 2 Hiérachie de Chomsky
- 3 Analyseur lexical

- 4 Analyseur syntaxique
- 6 Arbre abstrait
 - Arbre de dérivation
 - Grammaire attribuée
- 6 Implémentation

- Grammaires non-contextuelles
- 2 Hiérachie de Chomsky
- Analyseur lexical

- 4 Analyseur syntaxique
- 5 Arbre abstrait
- 6 Implémentation
 - Usage