Periodicidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Nível I

PROBLEMA 1.1

1C01

Considere as ordenações de raio atômico.

- 1. Si > S > Cl
- 2. Ti > Cr > Co
- 3. Hg > Cd > Zn
- 4. Bi > Sb > P

Assinale a alternativa que relaciona as ordenações corretas.

- **A** 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4

- **D** 2, 3 e 4
- **E** 1, 2, 3 e 3

PROBLEMA 1.2

1C02

Considere as ordenações de raio atômico.

- 1. Cl > Br > I
- 2. Ga > As > Se
- 3. K > Ca > Zn
- 4. Ba > Sr > Ca

Assinale a alternativa que relaciona as ordenações corretas.

- **A** 1, 2 e 3
- **B** 1, 2 e 3
- **c** 1, 2 e 3

- **D** 1, 2 e 3
- **E** 1, 2, 3 e 3

PROBLEMA 1.3

1C03

Assinale a alternativa com a comparação *incorreta* de raio iônico

- A $Na^+ < Na$.
- **B** $Na^+ < F^-$.
- $Mg^{2+} < O^{2-}$.
- $F^- < O^{2-}$.
- $F^- < Mg^{2+}$.

PROBLEMA 1.4

1C04

Assinale a alternativa com a comparação *correta* de raio iônico

- $K^+ > S^{2-}$
- $K^{+} = S^{2-}$
- C $Ba^{2+} > S^{2-}$
- $\label{eq:ba2+} \boxed{\textbf{E}} \ \ Ba^{2+} < S^{2-}$

PROBLEMA 1.5

1C05

Assinale a alternativa correta.

- A primeira energia de ionização do cálcio é menor que a do magnésio.
- A primeira energia de ionização do magnésio é menor que a do sódio.
- A primeira energia de ionização do alumínio é maior que a do sódio.
- A segunda energia de ionização do cálcio é menor que a do magnésio.
- A segunda energia de ionização do magnésio é menor que a do sódio.

PROBLEMA 1.6

1C06

Assinale a alternativa com a ordenação *incorreta* de raio atômico.

- $oldsymbol{B}$ Bi > Ga > Ar > Br > Al
- K > Ca > P > F > Ne
- $D \quad B > C > N > O > F$
- $E \quad I > Se > Xe > Br > Si$

PROBLEMA 1.10

1C10

Considere as energias de ionização de um elemento.

Assinale a alternativa com o grupo a que esse elemento pertence.

A 1

B 2

c 13

13 **D** 14

E 15

PROBLEMA 1.8

1C08

1C07

Considere as energias de ionização de um elemento.

Assinale a alternativa com o grupo a que esse elemento pertence.

A 1

B 2

c 13

D 14

E 15

PROBLEMA 1.9

1C09

Assinale a alternativa com a comparação *incorreta* de afinidade eletrônica.

A Se > Ge

B C > B

|C| As > P

 $\mathbf{D} \quad F > Cl$

 $\mathbf{E} \mid \mathbf{K} > \mathbf{Na}$

Assinale a alternativa com o elemento com maior afinidade

eletrônica.

A He

B K

C Co

D

E B

PROBLEMA 1.11

1C11

Assinale a alternativa com a comparação *incorreta* de eletronegatividade.

A S > P

B Se > Te

c Na > Cs

D O > Si

 \mathbf{E} Be > B

PROBLEMA 1.12

1C12

Assinale a alternativa com a comparação *incorreta* de eletronegatividade.

A Ca > Ba

 \mathbf{B} As > Ga

 \mathbf{c} S > Te

 \mathbf{D} Sn > Ge

 \mathbf{E} Br > Cl

PROBLEMA 1.13

1C13

Assinale a alternativa com o composto mais instável para o titânio

A K₃TiF₆

 \mathbf{B} $K_2Ti_2O_5$

C TiCl₃

D K₂TiO₄

■ K₂TiF₆

PROBLEMA 1.14

1C14

Assinale a alternativa correta com relação ao ósmio.

A Tem ponto de fusão superior ao do ferro.

B Seu íon bivalente apresenta configuração [Xe]6s²4f¹⁴5d⁴.

C Tem número de oxidação máximo +8.

D É um elemento de transição interna.

E Forma o óxido OsO₆.

Considere as características dos elementos.

- 1. Líquido vermelho-escuro.
- 2. Gás incolor que queima com oxigênio.
- 3. Metal reativo que reage com água.
- 4. Metal brilhante encontrado em joias.
- 5. Gás inerte.

Assinale a alternativa com os elementos referentes às características, respectivamente.

- A Ca, Au, H₂, Ar, Br
- **B** Br₂, H₂, Ca, Au, Ar
- \mathbf{c} Br₂, Ar, Ca, Ar, H₂
- \mathbf{D} Br₂, H₂, Au, Ca, Ar
- **E** Br₂, Ar, Ar, Ca, Au

PROBLEMA 1.16

1C16

Considere as características dos elementos.

- 1. Gás amarelo-pálido que reage com água.
- 2. Metal pouco duro que reage com água.
- 3. Metaloide com alto ponto de ebulição.
- 4. Gás inerte.
- Metais mais reativo que o ferro, mas que não sofre corrosão na atmosfera.

Assinale a alternativa com os elementos referentes às características, respectivamente.

- **A** N₂, B, Al, F₂, Na
- **B** F₂, B, Al, N₂, Na
- \mathbf{c} F_2 , Na, B, N_2 , Al
- \mathbf{D} N₂, Na, B, F₂, Al
- \mathbf{F}_2 , Al, B, N_2 , Na

PROBLEMA 2.1

Considere um aparelho de ionização, que pode ser útil para medir baixas pressões. Nesse dispositivo, elétrons partem de um filamento aquecido, atravessam uma rede cuja tensão fixa a energia do elétron, e atingem uma região do tubo sonda ligada ao sistema de alto vácuo cuja pressão se deseja medir. Esses elétrons ionizam espécies neutras presentes no tubo e formam íons positivos atraídos por uma placa coletora negativa. Além disso, produzem uma corrente que pode ser medida e correlacionada com a pressão do sistema de vácuo. Portanto, quanto mais baixa a pressão, menor o número de moléculas neutras e, consequentemente, menor o número de íons positivos formados no tubo. Um aparelho de ionização cuja energia eletrônica é 15 eV foi calibrado medindo-se a pressão de um sistema que continha vapor de sódio.

Assinale a alternativa com a leitura do instrumento se o vapor de sódio fosse substituído por neônio à mesma pressão.

- A A leitura seria maior.
- **B** A leitura manter-se-ia inalterada.
- c A leitura seria até 50% menor.
- **D** A leitura seria de até 50% do valor medido com sódio.
- **E** A leitura seria zero.

Dados

- EI-Na
- EI-Ne

PROBLEMA 2.2

1C18

Os dados a seguir foram obtidos em um experimento de efeito fotoelétrico utilizando os metais rubídio, potássio e sódio.

Assinale a alternativa com a identidade de **A**, **B** e **C**, respectivamente.

- A Na, K, Rb
- B Na, Rb, K
- c K, Na, Rb

- D Rb, Na, K
- E Rb, K, Na

Assinale a alternativa com a ordenação *correta* de energia de ionização.

- $\mathbf{B} \quad \text{Na} < \text{Al} < \text{Mg} < \text{Si} < \text{S} < \text{P} < \text{Cl} < \text{Ar}$

PROBLEMA 2.4

1C20

1C19

Assinale a alternativa com a ordenação *correta* de afinidade eletrônica.

- A N < C < O
- $\mathbf{B} \quad \mathbf{N} < \mathbf{O} < \mathbf{C}$
- C < N < O

- \mathbf{D} C < O < N

PROBLEMA 2.5

1C21

Considere os elementos com configurações eletrônicas a seguir.

- 1. $1s^22s^22p^63s^23p^6$
- 2. $1s^22s^22p^63s^2$
- 3. $1s^22s^22p^63s^23p^64s^1$
- 4. $1s^22s^22p^63s^23p^5$

Assinale a alternativa *incorreta*.

- A 1 tem o maior potencial de ionização.
- **B** A perda de dois elétrons pelo átomo 2 leva à formação do cátion Mg^{2+} .
- **c** 3 tem a maior afinidade eletrônica.
- **D** O ganho de um elétron pelo átomo 4 ocorre com a liberação de energia.
- E O átomo 4 é o mais eletronegativo.

Considere a configuração eletrônica da camada de valência do ânion monovalente dos átomos 1, 2, 3 e 4.

- 1. $ns^2np^6nd^{10}(n+1)s^2(n+1)p^6$
- 2. ns^2np^6
- 3. $ns^2np^6nd^{10}(n+1)s^2(n+1)p^3$
- 4. ns^2np^3

Assinale a alternativa correta.

- A 1 deve ter a maior energia de ionização entre eles.
- B 2 deve ter a maior energia de ionização entre eles.
- c 1 deve ter maior afinidade eletrônica do que 2.
- **D** 4 deve ter maior afinidade eletrônica do que 2.
- **E** 4 deve ter maior afinidade eletrônica do 3.

PROBLEMA 2.7

1C23

Assinale a alternativa com os elementos com maior diferença de raio atômico.

- A Li, Be
- **B** B, C
- **c** Ga, Al

- D Ru, Os
- **E** Ce, Pr

PROBLEMA 2.8

1C24

Assinale a alternativa correta com relação aos raios do molibdênio e do tungstênio.

- A São praticamente iguais.
- **B** O raio do molibdênio é 50% maior.
- C O raio do tungstênio é 50% maior.
- **D** Ambos são menores que o cromo.
- **E** O raio do molibdênio é próximo da média entre os raios do cromo e do tungstênio.

PROBLEMA 2.9

1C25

Assinale a alternativa com o elemento que não apresenta efeito do par inerte.

- A Pb
- **B** Sb
- C As
- **D** Tl
- **E** Ba

PROBLEMA 2.10

1C26

Assinale a alternativa com o elemento que apresenta efeito do par inerte mais acentuado.

- A Sn
- **B** Sb
- **C** Ga
- **D** Bi
- **E** Zn

Assinale a alternativa com o par de elementos que possuem relação diagonal.

- A Li, Mg
- B Ca, Al
- c F, S

- D O,S
- E V, Mo

PROBLEMA 2.12

1028

Assinale a alternativa com pares de elementos que não possuem relação diagonal.

- A Be, Al
- B As, Sn
- **c** Ga, Sn

- D B, Si
- E C, Al

PROBLEMA 2.13

1C29

Assinale a alternativa com o aspecto provável para o elemento sintético fleróvio (Z=114).

- A Metal cinza-prateado.
- **B** Líquido volátil avermelhado.
- **C** Gás verde amarelo pálido.
- D Cristal incolor.
- E Sólido em pó preto.

PROBLEMA 2.14

1C30

Considere as proposições

- 1. O índio é um mau condutor de eletricidade.
- 2. O raio atômico do índio é maior que o do estanho.
- 3. A densidade do índio é menor que a do paládio.
- 4. O ponto de fusão do índio é maior que o do gálio.

Assinale a alternativa que relaciona as proposições corretas.

- **A** 1, 2 e 3
- **B** 1, 2 e 3
- **c** 1, 2 e 3

- **D** 1, 2 e 3
- **E** 1, 2, 3 e 3

Considere as afirmações a seguir, todas relacionadas a átomos e íons no estado gasoso:

- 1. A energia do íon Be²⁺, no seu estado fundamental, é igual à energia do átomo de He neutro no seu estado fundamental.
- 2. A segunda energia de ionização do átomo de He neutro, é igual à afinidade eletrônica do íon He²⁺.
- O primeiro estado excitado do átomo de He neutro tem a mesma configuração eletrônica do primeiro estado excitado do íon Be²⁺.
- 4. A primeira energia de ionização de íon H⁻ é menor do que a primeira energia de ionização do átomo de H neutro.

Assinale a alternativa que relaciona as proposições corretas.

- **A** 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4

- **D** 2, 3 e 4
- **E** 1, 2, 3 e 3

PROBLEMA 2.16

1C32

Considere as seguintes transições eletrônicas em uma espécie A cuja configuração do primeiro estado excitado é $ns^2np^5(n+1)s^2$.

1.
$$s^2np^4(n+1)s^2 \to ns^2np^5$$

2.
$$ns^2np^6(n+1)s^1(n+1)p^1 \rightarrow ns^2np^6(n+1)s^2$$

3.
$$ns^2np^5 \rightarrow ns^2np^6$$

4.
$$ns^2np^6(n+1)s^1(n+1)p^1 \rightarrow ns^2np^6(n+1)s^1$$

5.
$$ns^2np^5(n+1)s^1(n+1)p^1 \rightarrow ns^2np^6(n+1)s^1$$

Assinale a alternativa *correta*.

- 1 pode representar a energia equivalente a uma excitação eletrônica do cátion (A⁺).
- **B** 2 pode representar a energia equivalente a uma excitação eletrônica do ânion (A⁻).
- **c** 3 pode representar a energia equivalente à ionização do cátion (A⁺).
- **D** 4 pode representar a energia equivalente à afinidade eletrônica do átomo neutro (A).
- **E** 5 pode representar a energia equivalente a uma excitação eletrônica do átomo neutro (A).

Nível III

PROBLEMA 3.1 1C33

Considere as proposições.

- a. Explique porque a primeira energia de ionização e a afinidade eletrônica do cátion diferem para todos os elementos, exceto o hidrogênio.
- b. Explique porque a primeira afinidade eletrônica do enxofre é endotérmica (200 kJ mol⁻¹) enquanto a segunda é exotérmica (-649 kJ mol^{-1}).
- c. Explique porque a primeira afinidade eletrônica do flúor $(328 \text{ kJ mol}^{-1})$ é menor que a do cloro $(349 \text{ kJ mol}^{-1})$.
- d. **Explique** porque as afinidades eletrônicas do carbono e do oxigênio são positivas, enquanto, a afinidade eletrônica do nitrogênio é próxima de zero.

PROBLEMA 3.2

1C34

Considere as proposições.

- a. **Explique** porque a energia de ionização do alumínio $(577 \text{ kJ mol}^{-1})$ é menor que a do magnésio $(737 \text{ kJ mol}^{-1})$.
- b. **Explique** porque a energia de ionização do oxigênio (1310 kJ mol⁻¹) é menor que a do nitrogênio $(1400 \,\mathrm{kJ} \,\mathrm{mol}^{-1})$.

PROBLEMA 3.3

1C35

Considere as proposições.

- a. Explique porque o raio covalente do germânio (122 pm) é muito próximo do raio covalente do silício (117 pm).
- b. **Explique** porque a energia de ionização do alumínio (577 kJ mol⁻¹) é muito próximo da energia de ionização do gálio (579 kJ mol⁻¹).

PROBLEMA 3.4

1C36

Considere as proposições.

- a. **Explique** porque o raio atômico aumenta no grupo Sc (157 pm), Y (169 pm), La (191 pm), entretanto, o mesmo não acontece no grupo Ti (148 pm), Zr (159 pm), Hf (148 pm).
- b. Explique a diferença entre os raios atômicos do praseodímio (181 pm) e o samário (180 pm) é menor que entre o háfnio (156 pm) e o tântalo (143 pm).
- c. **Explique** porque a primeira energia de ionização do chumbo $(715 \text{ kJ mol}^{-1})$ é maior que a do estanho $(708 \text{ kJ mol}^{-1})$.

Gabarito

4.1 Nível I

- 1. E

- 10. D

- 11. E 12. D
- 13. D
- 14. C
- 15. B

16. C

- 4.2 Nível II
 - E 6. 11. A 12. E 15. E
 - 16. D

Nível III 4.3

- 1. a. Hidrogenoide.
 - b. Aumento da carga nuclear.
 - c. Raio muito pequeno.
 - d. Simetria semi-esférica.
- 2. a. Simetria esférica.
 - b. Simetria esférica.
- **3.** a. Contração do bloco d.
 - b. Contração do bloco d.
- 4. a. Contração dos lantanídeos.
 - b. Contração dos lantanídeos.
 - c. Contração dos lantanídeos.