- 1. Construct a Mealy Machine which can output ${\bf E}$ (even) or ${\bf O}$ (odd), according to the number of 1's in the input stream.
- 2. Convert the given **Mealy** Machine into its equivalent **Moore** Machine.

- 3(a). Construct a **minimal DFA** for the regular expression (0*10 + 1*0)(01)*.
- 3(b). Construct a **minimal DFA** for the regular expression (010)*1 + (1*0)*.
- 4. Convert the given **DFA** into its corresponding **regular expression** (either using Arden's Theorem or State Elimination Method).

	0	1
q1	q2	q3
q2	q1	q3
q3	q2	q1

5. **Minimize** the following DFA.

	а	b
q0	q0	q3
q1	q2	q5
q2	q3	q4
q3	q0	q5
q4	q0	q6
q5	q1	q4
q6	q1	q3

- 6(a) Prove that $_02^n$ is not a regular language using **pumping lemma**.
- 6(b) Prove that on2 is **not a regular language** using pumping lemma.