Ensemble Learning

黄 欢

(计算机科学与技术系 计 33 2013011331)

1 Design

Data:

1803 spam hosts

4411 normal hosts

per host:

96 content features

138 transformed link features

Task:

ensemble learning algorithms:

Bagging

AdaBoost.M1

base classifiers: (使用 scikit-learn: machine learning in Python)

SVM

Decision Tree

Naïve Bayes (optional)

Main. py: Compare 6 combinations

- 1. 训练数据: 随机选取 80%的数据作为训练集。
- 2. 特征选取: onlyContent, onlyLink, contentAndLink。 (optional)
- 3. 处理数据不平衡问题: 先进行分层抽样,将数据分为训练集和测试集的时候,两类数据独立采样,保证训练集和测试集中两类数据的比例与原数据集一致。再随机选取训练集中的 spam 类数据进行复制,使得训练集中两类数据一样多。(optional)
- 4. 调用 sklearn.preprocessing.normalize(x, axis = 0)函数,对数据进行归一化,以提高性能。(optional)
- 5. 调整 ensemble learning 的迭代次数,即弱分类器的个数,分析迭代次数对性能的影响。Base 分类器的性能就是迭代次数为1时的性能。(optional)
- 6. Bagging 算法实现:对 x,y 进行 bootstrap 抽样,用 base classifier 训练抽样后的数据,将新训练出来的 base classifier 插入到分类器列表,再用分类器列表中的每个分类器对测试集进行分类,并投票决定最终分类结果。
- 7. AdaBoost. M1 算法实现: 首先将所有样本的权值设为 1/N, 用 base classifier 对有

权值的训练集进行训练,计算错误率 Et 和 beta,修改权值,保存当前分类器的 voting weight,再用分类器列表中的每个分类器对测试集进行分类,由投票权值的大小决定最终分类结果。

2 Results

根据如下公式:

$$Accuracy = \frac{\text{number of correctly classified records}}{\text{number of test records}}$$

$$precision: P = \frac{\sum_{k} (\frac{a_{k}}{a_{k} + b_{k}})}{K}$$

$$recall: R = \frac{\sum_{k} (\frac{a_{k}}{a_{k} + c_{k}})}{K}$$

$$f - score: F = \frac{2PR}{P + R}$$

可以得到结果,保存在 src/result 中。

3 Analysis

a) 在使用所有特征并对数据进行归一化的情况下,6种组合迭代6次:

Round = 6		accuracy	precision	recall	F1
Bagging	dTree	0.8944	0.831884	0.795014	0.813031
	SVM	0.846215	0.663883	0.908571	0.767189
	NB	0.761475	0.571942	0.857143	0.686084
AdaBoost. M1	dTree	0.859592	0.788732	0.742706	0.765027
	SVM	0.687753	0	0	0
	NB	0.761475	0.571942	0.798246	0.626866

Bagging 和 dTree 的 accuracy, precision 和 F1 值最大。

Bagging SVM 的 recall 最大。

b) 特征选取对性能的影响

accuracy	Only Content	Only Link	Content And Link
Bagging_dTree	0.863994	0.867306	0.8944
Bagging_SVM	0.801626	0.844316	0.846215
AdaBoost.M1_dTree	0.840729	0.858167	0.859592
AdaBoost.M1_SVM	0.279412	0.710462	0.687753

一般来说,运用 Content 和 Link 两种特征的准确率最高。Only Link 比 Only Content 的准确率高。

c) 数据归一化对性能的影响

accuracy	未归一化	归一化
Bagging_dTree	0.860258	0.8944
AdaBoost. M1_dTree	0.887658	0.859592

一般来说,归一化的准确率更高,但是 dTree 不依赖于特征的线性组合,所以没有太明显的改进。

d) 迭代次数对性能的影响

1. bagging_decisionTree_contentAndLink_normalize

随着迭代次数的增大,各种结果效果也越来越好,最后20次迭代后趋于稳定。

$2. \quad AdaBoost \verb|M1_decisionTree_content| And \verb|Link_normalize|$

随着迭代次数的增大,各种结果效果基本稳定。