Programação I

Folha Exercícios 3

António J. R. Neves João Rodrigues Osvaldo Pacheco Arnaldo Martins

2018/19/20

Folha Exercícios 3

Resumo:

- Estruturas de controlo repetição
- Instrução repetitiva for

3.1 Problemas para resolver

Exercício 3.1

Escreva um programa que imprima no terminal dez vezes a mensagem "P1 é fixe!". Altere depois o programa para que o número de vezes que a mensagem é impressa seja introduzido pelo utilizador. Tenha em atenção a validação do valor de entrada.

Exercício 3.2

Escreva um programa que peça ao utilizador um número inteiro *N*, com 0<*N*<100 e que escreva no monitor a sua tabuada, respeitando o formato que a seguir se apresenta. Tenha em atenção a validação do valor de entrada.

	Τá	abı	ıada	do	s ##	
 	 ## ## ## ##	x x x x x x	1 2 3 4 5 6		### ### ### ### ###	
	##	X	8		###	ı
	## ##	X X	9 10	İ	### ###	

Exercício 3.3

Escreva um programa que calcule e imprima o fatorial de todos os números entre 1 e M, com $M \le 10$, sendo o valor de M introduzido pelo utilizador. Tenha em atenção a validação do valor de entrada.

O fatorial de um número n calcula-se da seguinte forma: n! = 1x2x3x...xn. O resultado do programa deve ser o seguinte para M = 4:

1! = 1 2! = 2 3! = 6 4! = 24

Folha Exercícios 3

Exercício 3.4

Calcule a soma dos primeiros N termos da série de Leibnitz:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

O valor de N deve ser pedido ao utilizador e o resultado deve ser escrito com 15 casas decimais e comparado com o valor de $\pi/4$.

Exercício 3.5

A equação $a^2+b^2=c^2$, relacionada com o teorema de Pitágoras, admite inúmeras soluções inteiras, por exemplo: (a,b,c)=(3,4,5). Ache todas as soluções inteiras com a e b menores que 100. Note que pode evitar soluções repetidas como (4,3,5) se garantir que a < b.

```
3 4 5
5 12 13
6 8 10
7 24 25
```

Exercício 3.6

Escreva um programa que imprima no terminal um retângulo com o símbolo *, sendo as dimensões introduzidas pelo utilizador. Para uma largura de 5 e altura de 4 teríamos o seguinte resultado:

```
* * * * * *

* * * * *

* * * * *
```

3.2 Exercícios complementares

Exercício 3.7

Altere o programa anterior de modo a mostrar apenas a linha limite do retângulo. Para uma largura de 5 e altura de 4 teríamos o seguinte resultado:

Exercício 3.8

Escreva um programa que imprima os números ímpares no intervalo [A, B], sendo os valores de A e B positivos e introduzidos pelo utilizador através do teclado. Tenha em atenção a validação dos valores de entrada.

Folha Exercícios 3 3

Exercício 3.9

Escreva um programa que leia do teclado um número inteiro positivo N, com $N \le 1000$, e que escreva no monitor os primeiros N números pares e a sua soma. Por exemplo, para N = 5, devem ser impressos os valores 2 4 6 8 10 e a soma será 30.

Exercício 3.10

Escreva um programa que leia do teclado um número inteiro positivo e imprima uma mensagem que indique se o número introduzido é um número perfeito. Um número natural é um número perfeito quando é igual à soma de todos os seus divisores próprios (menores que o número). Por exemplo, 6=1+2+3 é o primeiro número perfeito. Tenha em atenção a validação do valor de entrada.

Exercício 3.11

Escreva um programa para gerar uma tabela com as coordenadas das casas de um tabuleiro de xadrez. Explore a expressão char letra = (char) ('a' + i); sendo i um número inteiro entre 0 e 25, como forma de gerar uma letra do alfabeto com base na sua posição.

```
a8 b8 c8 d8 e8 f8 g8 h8 a7 b7 c7 d7 e7 f7 g7 h7 a6 b6 c6 d6 e6 f6 g6 h6 a5 b5 c5 d5 e5 f5 g5 h5 a4 b4 c4 d4 e4 f4 g4 h4 a3 b3 c3 d3 e3 f3 g3 h3 a2 b2 c2 d2 e2 f2 g2 h2 a1 b1 c1 d1 e1 f1 g1 h1
```

Exercício 3.12

Escreva um programa que lê do teclado uma data composta pelo mês e o ano, e ainda o dia da semana em que começa esse mês (1 = Domingo, 2 = Segunda, 3 = Terça, 4 = Quarta, 5 = Quinta, 6 = Sexta, 7 = Sábado) e que desenha no monitor o calendário desse mês com o formato que a seguir se apresenta.

<u> </u>	Fek	orua	ary	201	L2	
Su	Мо	Tu	We	Th	Fr	Sa
112	13 20	14 21	8 15 22	9 16	10 17	4 11 18 25

Folha Exercícios 3 4