Algorytmika, seria zadań domowych nr 3, maj 2024

Zadanie 1. Niech n będzie liczbą naturalną. Powiemy, że funkcja $f:\{1,2,\ldots,n\}\to\mathbb{Q}$ spełnia krotkę $(a,b,c,d)\in\{1,2,\ldots,n\}$, jeśli zachodzi co najmniej jedna z nierówności f(a)< f(b) lub f(c)< f(d).

Udowodnij, że następujący problem jest NP-zupełny. Na wejściu dana jest liczba naturalna n oraz zbiór krotek $\mathcal{A} \subseteq \{1, 2, \dots, n\}^4$. Pytamy, czy istnieje funkcja $f: \{1, 2, \dots, n\} \to \mathbb{Q}$ spełniająca wszystkie krotki z \mathcal{A} .

Zadanie 2. Przypomnijmy, że zbiór $X \subseteq V(G)$ w grafie nieskierowanym G jest pokryciem wierzchołkowym, jeśli dla każdej krawędzi $e \in E(G)$ co najmniej jeden koniec e jest w zbiorze X.

Gęstością pokrycia wierzchołkowego X nazwiemy wartość $\max_{v \in V(G)} |X \cap N[v]|$, gdzie $N[v] = \{v\} \cup \{u \in V(G) \mid uv \in E(G)\}$ to domknięte sąsiedztwo wierzchołka v (czyli wierzchołek v wraz z jego sąsiadami). Rozważamy problem szukania pokrycia wierzchołkowego o jak najmniejszej gęstości.

- 1. (8p.) Zaproponuj algorytm 2-aproksymacyjny dla tego problemu.
- 2. (2p.) Urwij jeden wierzchołek z gwarancji z poprzedniego punktu. Tj. zaproponuj algorytm wielomianowy, który mając dany graf G, zwróci pokrycie wierzchołkowe o gęstości co najwyżej $2 \cdot \text{OPT}(G) 1$, gdzie OPT(G) to najmniejsza możliwa gęstość pokrycia wierzchołkowego w G.

Zasady

- 1. W zadaniu 2 można otrzymać częściowe punkty za algorytm aproksymacyjny o gorszym współczynniku aproksymacji.
- 2. Za każde zadanie można otrzymać maksymalnie 10pkt, czyli łącznie 20pkt za tę serię. Łącznie, w ciągu semestru, będzie do zdobycia 80pkt z prac domowych.
- 3. Można powoływać się tylko na fakty udowodnione na ćwiczeniach i wykładzie (ewentualnie także z MD, ASD).
- 4. Prace powinny być samodzielne. Poszukiwanie rozwiązań w internecie, publikowanie zadania na serwisach typu stackexchange jest zabronione. Po pierwsze jest nie w porządku, a po drugie psuje zabawę. Nieprzestrzeganie tej zasady będzie skutkowało niezaliczeniem przedmiotu.
- 5. Rozwiązanie wgrać do piątku 24.05.2024, godz. 20.00 na kurs Algorytmika w moodle. Polecamy spisywanie rozwiązań w LaTeXu, ale skany rozwiązań spisanych ręcznie też sa akceptowane.