Curso de Álgebra Linear Prof^a Mara Freire

6.2- ESPAÇO VETORIAL EUCLIDIANO

Def.: É um espaço vetorial real, de dimensão finita, no qual está definido um produto interno.

6.3- MÓDULO DE UM VETOR

Def.: Dado um vetor v de um espaço vetorial euclidiano V, m'odulo, norma ou comprimento de v é o número real não-negativo, indicado por |v| e definido por:

$$|v| = \sqrt{v.v}$$

6.3.1- **Propriedades**: Seja V um espaço vetorial de um vetor

1-
$$|v| \ge 0$$
, $\forall v \in V \in |v| = 0$, se somente se, $v = 0$

2-
$$|\alpha v| = |\alpha| |v|$$
, $\forall v \in V$, $\forall \alpha \in IR$

De fato:
$$|\alpha v| = \sqrt{(\alpha v)(\alpha v)} = \sqrt{\alpha^2(v.v)} = |\alpha|\sqrt{v.v} = |\alpha||v|$$

3- $|u.v| \le |u||v|$, $\forall u, v \in V$ (Designaldade de *Schwarz* ou Inequação de *Cauchy-Shwarz*)

Se u = 0 ou v = 0, vale a igualdade |u.v| = |u||v|, se não $\forall \alpha \in IR$, vale a desigualdade: $(u + \alpha v) (u + \alpha v) \ge 0$ pela propriedade 4 de produto interno.

Aplicando a distributiva, vem

$$u.u + u.\alpha v + \alpha v.u + \alpha^2 v.v \ge 0$$

 $u.u + 2u.\alpha v + \alpha^2 v.v \ge 0$
 $|v|^2 \alpha^2 + 2(u.v)\alpha + |u|^2 \ge 0$

Temos então um trinômio do 2° grau em α que deve ser positivo para qualquer α . Como o coeficiente $|v|^2 \neq 0$, então para garantir que a desigualdade seja positiva o discriminante deve ser negativo, assim

$$\Delta = 4(u.v)^2 - 4. |v|^2. |u|^2 \le 0$$

daí vem,
$$(u.v)^2 \le |u|^2 . |v|^2$$

considerando a raiz quadrada positiva de ambos os membros, temos:

$$|u,v| \leq |u|.|v|$$

Curso de Álgebra Linear Prof^e Mara Freire

4- $|u+v| \le |u| + |v|$, $\forall u, v \in V$ (Designaldade Triangular)

De fato:
$$|u+v| = \sqrt{(u+v).(u+v)} = \sqrt{u.u + 2(u.v) + v.v} = |u|^2 + 2(u.v) + |v|^2 = |u+v|^2$$

Como
$$u.v \le |u.v| \le |u||v|$$

Logo,
$$|u+v| \le |u|^2 + 2|u||v| + |v|^2$$

daí, $|u+v|^2 \le (|u|+|v|)^2$
ou, $|u+v| \le |u|+|v|$

6.4- DISTÂNCIA ENTRE DOIS VETORES

Def.: Dados dois vetores u e v, a distância entre eles, é o número real representado por d(u, v) e definido por:

$$d(u, v) = |u - v|$$

6.5- VETOR UNITÁRIO

Def.: Se |v| = 1, então o vetor v é um vetor unitário, nesse caso diz-se que v está normalizado.

Todo vetor não- nulo $v \in V$ pode ser normalizado, para isso basta fazer $u = \frac{v}{|v|}$.

Exemplo: Considere o espaço $V = IR^3$ com produto interno $v_1.v_2 = 3x_1x_2 + 2y_1y_2 + z_1z_2$, sendo $v_1 = (x_1, y_1, z_1)$ e $v_2 = (x_2, y_2, z_2)$. Dado o vetor $v = (-2, 1, 2) \in IR^3$, calcule:

- a) |v| com relação ao produto interno dado e normalize v;
- b) |v| com relação ao produto interno usual e normalize v.

Curso de Álgebra Linear Prof^a Mara Freire

6.6- ÂNGULO ENTRE DOIS VETORES

Def.: Sejam u e v vetores não-nulos de um espaço vetorial euclidiano V. O ângulo θ entre u e v é dado por

$$\cos \theta = \frac{u.v}{|u||v|}$$

De fato: Da Desigualdade de Schwarz, temos

$$|u.v| \le |u||v|$$

que pode ser escrita como $\frac{|u.v|}{|u||v|} \le 1$

ou,
$$\left| \frac{u.v}{|u||v|} \right| \le 1$$

o que implica, $-1 \le \frac{u \cdot v}{|u||v|} \le 1$

portanto, existe um ângulo θ entre 0 e π radianos tal que $\cos \theta = \frac{u.v}{|u||v|}$.

Exemplos:

1- Seja o produto interno usual no IR^3 e IR^4 . Determinar o ângulo entre os seguintes pares de vetores:

a)
$$u = (2, 1, -5)$$
 e $v = (5, 0, 2)$

b)
$$u = (1, -1, 2, 3)$$
 e $v = (2, 0, 1, -2)$

2- Seja V = M(2, 2), as matrizes quadradas de ordem 2 reais e o produto interno dado pela expressão $\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix} = ae + 2bf + 3cg + dh$, calcule o ângulo entre as matrizes $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ e $\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ segundo esse produto interno.

3- Seja V um espaço vetorial euclidiano e $u, v \in V$. Determinar o cosseno do ângulo entre os vetores $u \in V$ sabendo que |u| = 3, |v| = 7 e $|u+v| = 4\sqrt{5}$.

4- Considere, no IR^2 , o produto interno definido por $v_1.v_2 = 3x_1x_2 + y_1y_2$, sendo $v_1 = (x_1, y_1)$ e $v_2 =$ (x_2, y_2) . Em relação a esse produto interno, determine um vetor tal que:

$$|v| = 4$$
, $v.u = 10$ e $u = (1, -2)$.

Exercícios

1- Considere o seguinte produto interno P₂: p.q = $a_2b_2 + a_1b_1 + a_0b_0$, sendo p = $a_2x^2 + a_1x + a_0$ e q = $b_2x^2 + b_1x + b_0$. Dados os vetores p₁ = $x^2 - 2x + 3$, p₂ = 3x - 4 e p₃ = $1 - x^2$, calcule:

- a) p₁. p₂

- b) $|p_1| \cdot |p_3|$ c) $|p_1 + p_2|$ d) $|p_2|$ e) cosseno do ângulo entre $|p_2|$

2- Seja V=M(2,2), a seguinte fórmula $u.v=a_1a_2+b_1b_2+c_1c_2+d_1d_2$ define um produto interno nesse espaço. Dados os vetores $u = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$ e $v = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$. Determine |u + v| e o ângulo entre u e v.

RESPOSTAS

1-a) - 18; b) $\sqrt{14}$ e $\sqrt{2}$; c) $\sqrt{3}$; d) (3x/5) - (4/5); e) $\cos \theta = -2\sqrt{2}/5$. 6- a) $\sqrt{21}$; b) $\theta = \arccos 4/\sqrt{42}$.