2/17/2021 criterion report

# criterion performance measurements

#### overview

want to understand this report?



# select - 10000/by pk





 OLS regression
 2.93 μs
 3.19 μs
 3.63 μs

 R² goodness-of-fit
 0.910
 0.934
 0.963

 Mean execution time
 2.88 μs
 3.08 μs
 3.34 μs

Standard deviation 567 ns 752 ns 959 ns

Outlying measurements have severe (97.7%) effect on estimated standard deviation.

#### select - 10000/no index





lower bound estimate upper bound OLS regression  $3.85~\mu s$   $3.96~\mu s$   $4.08~\mu s$   $R^2$  goodness-of-fit 0.993 0.995 0.997 Mean execution time  $3.87~\mu s$   $3.94~\mu s$   $4.03~\mu s$  Standard deviation 216~n s 269~n s 329~n s

3.60 3.80 4 4.2 4.4 4.60 10×10³ iters 20 30 40 50 lower bound estimate upper bound

Outlying measurements have severe (76.5%) effect on estimated standard deviation.

### select - 10000/using index





OLS regression 2.66  $\mu$ s 2.74  $\mu$ s 2.86  $\mu$ s R<sup>2</sup> goodness-of-fit 0.985 0.991 0.995 Mean execution time 2.82  $\mu$ s 2.91  $\mu$ s 3.08  $\mu$ s Standard deviation 231 ns 372 ns 623 ns

Outlying measurements have severe (92.2%) effect on estimated standard deviation.

### select - 100000/by pk





OLS regression 2.66  $\mu$ s 2.75  $\mu$ s 2.89  $\mu$ s R<sup>2</sup> goodness-of-fit 0.982 0.989 0.997 Mean execution time 2.75  $\mu$ s 2.82  $\mu$ s 2.94  $\mu$ s Standard deviation 212 ns 304 ns 425 ns

Outlying measurements have severe (89.4%) effect on estimated standard deviation.

#### select - 100000/no index









OLS regression 4.82  $\mu$ s 5.39  $\mu$ s 5.91  $\mu$ s R² goodness-of-fit 0.921 0.941 0.965 Mean execution time 4.54  $\mu$ s 4.78  $\mu$ s 5.26  $\mu$ s Standard deviation 860 ns 1.06  $\mu$ s 1.44  $\mu$ s

Outlying measurements have severe (97.6%) effect on estimated standard deviation.

# select - 100000/using index





OLS regression 3.96  $\mu$ s 4.22  $\mu$ s 4.46  $\mu$ s R<sup>2</sup> goodness-of-fit 0.972 0.982 0.991 Mean execution time 3.94  $\mu$ s 4.05  $\mu$ s 4.26  $\mu$ s Standard deviation 396 ns 457 ns 541 ns

Outlying measurements have severe (90.1%) effect on estimated standard deviation.

## select - 200000/by pk





OLS regression 3.64  $\mu$ s 3.84  $\mu$ s 4.02  $\mu$ s R<sup>2</sup> goodness-of-fit 0.979 0.985 0.993 Mean execution time 3.74  $\mu$ s 3.86  $\mu$ s 4.01  $\mu$ s Standard deviation 274 ns 375 ns 454 ns

2/17/2021 criterion report

Outlying measurements have severe (86.8%) effect on estimated standard deviation.

#### select - 200000/no index





lower bound estimate upper bound

OLS regression 5.17  $\mu$ s 5.48  $\mu$ s 5.80  $\mu$ s R² goodness-of-fit 0.974 0.982 0.990 Mean execution time 5.45  $\mu$ s 5.68  $\mu$ s 5.94  $\mu$ s Standard deviation 588 ns 677 ns 811 ns

Outlying measurements have severe (90.4%) effect on estimated standard deviation.

### select - 200000/using index





lower bound estimate upper bound OLS regression 3.98 µs 4.23 µs 4.43 µs

 $R^2$  goodness-of-fit 0.982 0.987 0.993 Mean execution time 4.06  $\mu s$  4.17  $\mu s$  4.30  $\mu s$  Standard deviation 353 ns 429 ns 513 ns

Outlying measurements have severe (87.8%) effect on estimated standard deviation.

## understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The *x* axis indicates the number of loop iterations, while the *y* axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

2/17/2021 criterion report

• OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.

- R<sup>2</sup> goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R<sup>2</sup> should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

#### colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan,