CHAPTER A-IV

ASYMPTOTICS OF SEMIGROUPS

ON BANACH SPACES

by

Frank Neubrander

In this chapter we study the asymptotic behavior of the solutions of the initial value problem

(*)
$$\dot{u}(t) = Au(t) + F(t), u(0) = f$$

with respect to time $t \ge 0$. Here A will be a generator of a strongly continuous semigroup $(T(t))_{t \ge 0}$ on a Banach space E and $F(\cdot)$ is a function from \mathbb{R}_+ with values in E.

In Section 1 we investigate whether and how fast a solution $T(\cdot)f$ of the homogeneous problem tends to the zero solution as $t \to \infty$; in Section 2 we consider the long term behavior of the solutions of (*) for different classes of forcing terms F.

1. STABILITY : HOMOGENEOUS CASE

Let $(T(t))_{t \ge 0}$ be a semigroup on E with generator A . An initial value $f \in D(A)$ is called <u>stable</u> if the solution t + T(t)f of

$$\dot{\mathbf{u}}(t) = \mathbf{A}\mathbf{u}(t) , \ \mathbf{u}(0) = \mathbf{f}$$

converges to zero as t tends to infinity. The semigroup is called stable if every solution converges to zero; i.e., if every initial value $f \in D(A)$ is stable.

If the space E is finite dimensional, then the stability of the semigroup implies that the decay is exponential. More precisely, the statements

(a)
$$||T(t)f|| \to 0$$
 for every $f \in \mathbb{C}^n$,

(b)
$$\|T(t)\| \le Me^{-\omega t}$$
 for some $\omega > 0$