Consider the following schema

I:

Salesperson(sid:integer, sname:string, age:real)

Sales(sid:integer, pid:integer, day:date)

Products(pid:integer, pname:string, rating:integer, category:string)

- 1. Count the no. of each product sales by salesperson with name "ramana"
- 2. Find the no. of products which are not listed in sales relation
- 3. Find the name and age of the salespersons who have done sales of all different products
- 4. Display the product details which are better in rating than product named "yippie" in category "noodles"
- 5. Find the name of salesperson who have done sales of both products "Maggie" and "Good day"

Salesperson:

sid	sname	age
10	ramana	25
11	raju	30
12	vimala	28

Sales:

sid	pid	day
10	121	01/11/15
10	111	01/11/15
10	111	02/11/15
11	121	03/11/15
12	121	03/11/15

Product:

pid	pname	rating	category
101	yippie	6	noodles
111	maggie	8	noodles
121	Good day	8	biscuits

Consider the following schema

Player(pname:string, country:string, category:string)

Format (<u>fname:string</u>, oversperday:integer, days:integer)

Rankings(pname:string, fname:string, rank:integer)

- 1. Find the player name who are listed for all formats in Rankings table
- 2. Display the name and category of player who has highest rank for each format
- 3. Find the player names who are listed in rankings table only for "ODI" format but NOT for "Test" format
- 4. Add an attribute age to players table and put age of player named "kohli" to 27
- 5. Count the no. of players in each country
- 6.

Players:

pname	country	category
Ashwin	India	Bowler
Kohli	India	Batsman
De villiers	South Africa	Batsman

Rankings

pname	fname	rank
kohli	ODI	2
kohli	Twenty20	2
Ashwin	ODI	10
Ashwin	Test	2
Ashwin	Twenty20	5
Devilliers	ODI	1

Format

Fname	oversperday	days
ODI	100	1
Twenty20	40	1
Test	90	5

Consider the following schema

Faculty (<u>fid:integer</u>, fname:string, qualification:string, age:real)

Teaches(<u>fid:integer</u>, <u>cid:string</u>, year-sem:string)

Course(cid:string, cname:string, textbook:string)

- 1. Find faculty names whose qualification is "M.Tech" and teaches at least two different courses
- 2. Find faculty names whose age is below 30 and teaches all the courses
- 3. Find course name and textbooks of the courses taught by either "kavitha" or "venu"
- 4. Count the no. of courses for each "year-sem"
- 5. Alter the table courses to add a new attribute "credits" and update the credits to 4 for the courses taught by faculty with fid 10

Faculty

fid	fname	qualification	age
10	kavitha	M.Tech	32
11	vanitha	M.C.A	29
12	venu	M.Tech	33

Teaches

fid	cid	Year-sem
10	CS201	2-1
10	CS301	3-1
12	CS401	4-1
11	CS301	3-1
11	CS302	3-1

Course

cid	cname	textbook
CS201	DBMS	Database concepts
CS301	COA	Computer architecture
CS401	JAVA	Complete reference JAVA
CS302	FLAT	Formal languages