APPLIED DATA SCIENCE II

Week 4: CLASSIFICATION MODELS!

Kyle Scot Shank WI-22

6:00 - 6:30 HW REVIEW

Let's walk through it!

7:30-7:45 SNACK BREAK!

Time for some munchies

6:30-7:30 TOPIC OVERVIEW

Let's guess if stuff is one thing or another this week with **classification** models!

7:45 - 9:00 Hands-on code Lab

Work through stuff together

WHAT ARE CLASSIFICATION MODELS?

Formal definition:

Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function f(X) that takes as input the feature vector X and predicts its value for Y; i.e. $f(X) \in C$.

Human language definition:

Given a set of predictors and a response variable that is qualitative in nature (i.e., some form of a "label") - we build a model that generates **probabilities** of a given row of data belonging to a given label.

A good example for a binary outcome: spam filters!

A good example for a multinomial outcome: voice recognition!

Can't I just use a linear regression to do this?

Suppose we have a classification task that we think of as this:

$$Y = 0$$
 if No

Y = 1 if Yes.

Can we simply perform a linear regression of Y on X and classify as Yes if our predicted value for Y > 0.5?

Sure! Except...linear regression outputs aren't constrained (i.e., your values for your predicted Y might be less than zero or greater than 1) - which means they wont' really make a lot of sense in terms of probabilities. So we have to use other approaches.

THE LOGISTIC REGRESSION

The "workhorse" of old-school classification models is the logistic regression.

THE LOGISTIC REGRESSION

Where
$$p(X) = P(Y = 1 \mid X)$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

This is the only formula today!

...rewritten...

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

This first bit is called the "logit" - or the log odds

Stuff to remember for a logistic regression model:

THE LOGISTIC REGRESSION

- Make sure you've got enough samples (you generally need more than for a normal linear regression!)
- If you're working with multiple classes, make sure you've got good class coverage.
- Remember that your coefficient now has a slightly different interpretation (log-odds ratio vs, units!)

THE LOGISTIC REGRESSION

• Let's do this together!

Open up R!

FANCIER CLASSIFICATION METHODS

So there's a bunch of other interesting stuff in this chapter that folks tend to only use for very specific tasks.

For example: linear discriminant analysis (LDA) is more efficient in terms of computation than a logistic regression, but that sort of doesn't matter anymore - so folks don't use it.

The only other one we're going to talk through now is KNN, or k-nearest neighbors!

The best way to describe KNN without math is a simple metaphor:

How does it work?

- In simple words KNN works by calculating the distance between a given, unknown data point and all the known data points around it, then assigns itself the label most frequently seen.
- Unlike the logistic model, the KNN model is truly a "machine learning" approach as it is based on an algorithmic (versus a probabilistic) specification.

Me: *uses machine learning*

Machine: *learns*

Me:

How does it work (slightly more technical)?

- Look at all labelled points!
- Calculate the distance between them (there are numerous distance metrics, so pick your poison)
- Find your nearest neighbors based on the minimized values of your distance metrics
- Whichever class/label has the greatest frequency, label yourself that class.
- Re-initialize and repeat this entire process again - and keep doing it until you either no longer change classifications for any points and/or hit a stopping rule.

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Point Distance

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

• Let's do this together!

Open up R!

