Mapping Agricultural-Driven Deforestation in Central Kalimantan with Remote Sensing

AI in Urban Sustainability

Start Finish 03 Methodology Introduction Progress **Next Steps** Region of Interest Data Collection Literature Current stage Motivation Methods Exploratory Analysis Issue

Region of Interest

- Borneo
 - An island in Southeast Asia
 - o Brunei, Malaysia, and Indonesia
- Kalimantan makes up 73% of the island's area
 - o Fall under Indonesia's jurisdiction

Region of Interest: Pulang Pisau

Bornean Orangutans (Anup Shah)

- Ecologically significant tropical habitat
 - o Bornean Orangutan
 - o Diverse flora and fauna
- Agricultural production has driven deforestation
 - o Rubber
 - o Palm Oil
 - o Peatland drainage

Palm Oil Plantation in former orangutan habitat (Ulet Ifansasti, 2014)

- Ecologically significant tropical habitat
 - o Bornean Orangutan
 - o Diverse flora and fauna
- Agricultural production has driven deforestation
 - o Rubber
 - o Palm Oil
 - o Peatland drainage

2015 Haze Crisis in Central Kalimantan (Bjorn Vaughn, 2015)

- Severe peatland fires during dry seasons (June to October)
- Tremendous impacts on:
 - Environmental degradation
 - Health issues
 - o Air pollution

Using Sentinel-2 Images to Identify burns

"Redefined burn-area mapping protocol using Sentinel-2 data" (Gaveau et al., 2021)

Purpose

Compared total burn area estimates results between Landsat and Sentinel-2 data

Findings

Using Sentinel-2 data increased the total estimates of burned area because:

- **Higher resolution** than Landsat
- Picked up more nuances in the data,
 including smaller fires

More accurate estimates help us consider impacts of fires more accurately.

Using Sentinel-2 Images to Identify burns

"Redefined burn-area mapping protocol using Sentinel-2 data" (Gaveau et al., 2021)

Purpose

Compared total burn area estimates results between Landsat and Sentinel-2 data

Findings

Using Sentinel-2 data increased the total estimates of burned area because:

- **Higher resolution** than Landsat
- Picked up more nuances in the data, including smaller fires

More accurate estimates help us consider impacts of fires more accurately.

Methodology

Step	Action
1	Subset Region of Interest to Pulang Pisau
2	Download Sentinel-2 SR (L2A) 2019
3	Cloud-masking and calculate NBR
4	Apply a moving window for dNBR detection
5	Create pre- and post-fire composites
6	Label training points (burned/unburned)
7	Train Random Forest
8	Map of burned areas
9	Validate with independent points

Data Collection

October 21, 2016

- The quality of images vary drastically due to high cloud coverage.
- Pre-processing is required to remove cloudy pixels
 - o QA60 bitmasking

Exploratory Analysis

July 25, 2019

Pulang Pisau - Before the fires

Using composite bands (SWIR2 (R), NIR (G), Red (B)) to show extent of burns

Exploratory Analysis

September 13, 2019

Pulang Pisau - During the fires

Using composite bands (SWIR2 (R), NIR (G), Red (B)) to show extent of burns

Exploratory Analysis

October 23, 2019

Pulang Pisau - After the fires

Using composite bands (SWIR2 (R), NIR (G), Red (B)) to show extent of burns

Burn Analysis

- Change detection between pre- and post-fire results.
- Dark Red and Black regions show moderate to major burns

Step	Action
1	Subset Region of Interest to Pulang Pisau
2	Download Sentinel-2 SR (L2A) 2019
3	Cloud-masking and calculate NBR
4	Apply a moving window for dNBR detection
5	Create pre- and post-fire composites
6	Label training points (burned/unburned)
7	Train Random Forest
8	Map of burned areas
9	Validate with independent points

I could not do a moving window due to the data quality.

Decided to do split the data into two seasons (Jan-Jun and Sep-Dec).

Create 500 labels
30-40% burned
60-70% unburned

Thank You!