2 D 2 16/09/2024

Problème. () On définit les fonctions $g, h : \mathbb{R}_+^* \to \mathbb{R}_+^*$ par

$$g(t) = (t+1)\ln(t) - 2(t-1),$$

$$h(t) = 2(t^2 - 1)\ln(t) - 4(1-t)^2.$$

- 1. Jusitifier que g est deux fois dérivable sur \mathbb{R}_+^* , et étudier les variations de g.
- **2. a)** Trouver un polynôme P tel que h = gP.
 - **b)** En déduire les variations de h, et montrer que pour tout t > 0, $h(t) \ge 0$.

On s'intéresse maintenant à la fonction $f: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}$ définie par

$$f(x,y) = (x - y)(\ln(x) - \ln(y)) - 4(\sqrt{x} - \sqrt{y})^{2}.$$

- **3. a)** Montrer que l'on peut écrire f(x,y) = xh(v(x,y)) pour tout $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$ avec v une certaine fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$.
 - **b)** Justifier que $f(x,y) \ge 0$ pour tout $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$.
- **4. a)** Quelle condition nécessaire doit satisfaire (x^*, y^*) pour que f admette un extremum en (x^*, y^*) ?
- **b)** Avec le changement de variable $t = \frac{y}{x}$, conclure sur les possibles extrema de f. On pourra utiliser l'égalité $t + \frac{1}{t} = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^2 2$.
 - \mathbf{c}) Montrer que f admet un minimum global.