Homework 3

Jim Zieleman

September 14, 2020

Extra Credit 1. Show that if $a \in \mathbb{Z}$, then a is either even, or odd, but not both.

Proof:

Let $a \in \mathbb{Z}$ such that a is even and odd.

Since a is even then 2 divides a by definition 2.

Let $c \in Z$ so $2 \cdot c = a$ by definition 1.

Since a is odd then 2 divides a-1 by definition 2.

Let $d \in Z$ so $2 \cdot d = a - 1$ by definition 1.

So $2 \cdot d + 1 = a$.

Then $2 \cdot d + 1 = 2 \cdot c$.

Then $1 = 2 \cdot c - 2 \cdot d = 2(c - d)$.

Then 1 = 2(c - d).

We have reached a contradiction since c-d will be an integer, however there exists no integer that is the product of 2 dividing 1. So a must either be even, or odd, but not both.

1. Let $a \in Z$.

(a) Prove that if a is even, then 4 divides a^2 .

Proof:

If a is even.

Then 2 divides a.

Then $2 \cdot c = a$.

Then $a(2 \cdot c) = a \cdot a$.

Then $(2 \cdot c)(2 \cdot c) = a^2$.

Then $4c^2 = a^2$.

Then $4d = a^2$ where $c^2 = d$ and $d \in \mathbb{Z}$.

So by definition 1, 4 divides a^2 .

Thus if a is even, 4 divides a^2 .

Corallary: If 4 divides some $a \in \mathbb{Z}$, then 2 divides a, thus if a is even, 2 divides a^2 and is even.

(b) Prove that if a is odd, then a^2 is odd.

Proof:

If a is odd.

Then 2 divides a-1.

Then $2 \cdot c = a - 1$.

Then $2 \cdot c + 1 = a$.

Then $a(2 \cdot c + 1) = a \cdot a$.

Then $(2 \cdot c + 1)(2 \cdot c + 1) = a^2$.

Then $4c^2 + 4c + 1 = a^2$.

Then $2(2c^2 + 2c) + 1 = a^2$.

Then $2 \cdot d + 1 = a^2$ where $d \in \mathbb{Z}$ and $2c^2 + 2c = d$.

Then $2 \cdot d = a^2 - 1$.

So by definition 1, 2 divides $a^2 - 1$.

Thus if a is odd, a^2 is odd.

(c) Explain why parts (a) and (b) prove that an integer a is even if and only if a^2 is even.

Explaination:

Both part a and b show that if a is even then a^2 is even, and if a is odd then a^2 is odd. Since this was proved directly we can see the other side of the if statement holds up too hence proving the iff statement.

- 2. Suppose that there exists integers a and b such that $(a/b)^2 = 2$.
 - (a) Explain why this implies there exists integers a', b' such that $(a'/b')^2 = 2$ and a', b' have no common divisors (i.e., there are no integers d > 1 such that d divides both a and b).

Proof:

Let $d \in Z > 1$ where d represents all common divisors of both a and b

 $a = a' \cdot d$ and $b = b' \cdot d$.

Then $a/b = (a' \cdot d)/(b' \cdot d) = a'/b'$.

So in the case of $(a/b)^2 = (a'/b')^2 = 2$ and $(a'/b')^2$ has no common divisors other than 1.

- (b) Explain why at most one of a' and b' is even. If a' is even and b' is even then they both have 2 as a common divisor. Thus only 1 can be even.
- (c) Explain why a' must be even.

$$(a'/b')^2 = 2.$$

$$(a'/b')(a'/b') = 2.$$

$$(a')(a'/b') = 2b'.$$

$$(a')(a') = 2b'b'.$$

$$a'^2 = 2b'^2$$
.

2 divides a'^2 so it must be even. So a' is even.

(d) Explain why part (c) implies that b' must be even as well.

If a'^2 is even by (1a), 4 divides a'^2 .

$$4 \cdot c = a^{\prime 2}$$
.

$$4 \cdot c = 2b'^2.$$

$$2 \cdot c = b^2$$
.

So 2 divides b'^2 so it must be even. So then b' is even.

- (e) Explain the contradiction between parts (b), (c), and (d). We have a contradiction because in part (c) and (d) both a' and b'are even and in part (b) we know only one can be even.
- (f) Explain why this implies there is no rational number r satisfying $r^2 = 2$ (that is, $\sqrt{2}$ is not rational). By representing $(a/b)^2 = 2$ as $(a'/b')^2 = 2$ where a'/b' is an irreducible rational number we get the contradiction shown in part (e). Thus we cannot make the assumption that a/b is a rational number, implying there is no rational number r satisfying $r^2 = 2$.
- 3. Prove that A has a least upper bound in R.

Let
$$A := \{ x \in R | x^2 < 2 \}.$$

Let
$$A := \{x \in R | x^2 < 2\}$$
.
Let $x = 1$ then $1^2 = 1 < 2$ so $1 \in A$.

So
$$A$$
 is non empty.

Let
$$x > 2$$
 then $x^2 > 2^2$ so $x^2 > 4 > 2$.

So
$$A$$
 has a least upper bound in R .

We will denote it as
$$\alpha$$
.

4. Define α as above. In this problem we will show that $2 \leq \alpha^2$ by contra-

Suppose that $\alpha^2 < 2$, and define:

$$h = \frac{(2 - \alpha^2)}{2(2\alpha + 1)}$$

(a) Explain why $0 < \alpha$ and use this to show 0 < h < 1.

The lub(A) is
$$\alpha$$
 and $x \in A$ such that $x > 0$ so $0 < x < \alpha$.

Since
$$\alpha^2 < 2$$
 then $0 < 2 - \alpha^2$ so h is positive

$$h = \frac{1}{2\alpha + 1} \left(1 - \frac{\alpha^2}{2}\right)$$

Since
$$\alpha^2 < 2$$
 then $0 < 2 - \alpha^2$ so h is positive.

$$h = \frac{1}{2\alpha + 1}(1 - \frac{\alpha^2}{2}).$$
Since $\frac{\alpha^2}{2} < 1$ then $1 - \frac{\alpha^2}{2} < 1$ and $\frac{1}{2\alpha + 1} < 1$.

So
$$h < 1$$
.

Thus
$$0 < h < 1$$
.

(b) Show that $(\alpha + h)^2 < \alpha^2 + 2\alpha h + h = \alpha^2 + h(2\alpha + 1)$. We know $0 < \alpha^2 < 2$ and 0 < h < 1.

We know
$$0 < \alpha^2 < 2$$
 and $0 < h < 1$

$$(\alpha + h)^2 = \alpha^2 + 2\alpha h + h^2.$$

Let
$$k \in \mathbb{Z}$$
 such that $h = 1/k$ and $h^2 = 1/k^2$.

$$k^2 > k$$
 so $1/k^2 < 1/k$.

So
$$h^2 < h$$
.

Then
$$(\alpha + h)^2 < \alpha^2 + 2\alpha h + h = \alpha^2 + h(2\alpha + 1)$$
.

(c) Show that the previous part implies that $(\alpha + h)^2 < \frac{(2+\alpha^2)}{2} < 2$.

$$h = \frac{(2-\alpha^2)}{2(2\alpha+1)}$$

$$h(2\alpha + 1) = \frac{(2-\alpha^2)}{2}$$

$$h(2\alpha+1) = \frac{(2-\alpha^2)}{2}$$

$$\alpha^2 + h(2\alpha+1) = \frac{(2+\alpha^2)}{2}$$
So $(\alpha+h)^2 < \frac{(2+\alpha^2)}{2}$.

So
$$(\alpha + h)^2 < \frac{(2+\alpha^2)^2}{2}$$

Since
$$\alpha^2 < 2$$
 then $\frac{(\alpha^2)}{2} < 1$ so $1 + \frac{(\alpha^2)}{2} < 2$.
 $1 + \frac{(\alpha^2)}{2} = \frac{2 + \alpha^2}{2} < 2$

$$1 + \frac{(\alpha^2)}{2} = \frac{2+\alpha^2}{2} < 2.$$
Thus $(\alpha + h)^2 < \frac{(2+\alpha^2)}{2} < 2$.

(d) Explain why $\alpha + h \in A$ and $\alpha < \alpha + h$. We showed $(\alpha + h)^2 < 2$ thus every element squared that is less than

2 is in the set A. Thus $\alpha + h \in A$. We showed since $0 < \alpha$ and 0 < h then $\alpha < \alpha + h$.

(e) Explain why (d) is a contradiction.

We started by assuming α was lub(A) which meant there was no $a \in A$ such that $\alpha < a$. Then by assuming $\alpha^2 < 2$ we found an element $a \in A$ that showed $\alpha < a$ this is a contradiction so $\alpha^2 \ge 2$.

5. Now we will finish the proof that $\alpha^2 = 2$. Working by contradiction again, suppose that $\alpha^2 \neq 2$. By the previous

problem, we must have
$$2 < \alpha^2$$
. Define
$$k = \frac{\alpha^2 - 2}{4\alpha}$$

(a) Show that $\alpha - k < \alpha$.

$$\alpha^2 > 2 \text{ so } \alpha^2 - 2 > 0.$$

$$\alpha > 0$$
 so $4\alpha > 0$.

So
$$k > 0$$
.

Then
$$\alpha - k < \alpha$$
.

(b) Show that $\alpha^2 - 2\alpha k < (\alpha - k)^2$.

$$(\alpha - k)^2 = \alpha^2 - 2\alpha k + k^2.$$

Since
$$k > 0$$
 then $k^2 > 0$

So
$$\alpha^2 - 2\alpha k + k^2 > \alpha^2 - 2\alpha k + k^2 - k^2$$
.

Since
$$k > 0$$
 then $k^2 > 0$.
So $\alpha^2 - 2\alpha k + k^2 > \alpha^2 - 2\alpha k + k^2 - k^2$.
So $\alpha^2 - 2\alpha k + k^2 = (\alpha - k)^2 > \alpha^2 - 2\alpha k$.
Thus $\alpha^2 - 2\alpha k < (\alpha - k)^2$.

Thus
$$\alpha^2 - 2\alpha k < (\alpha - k)^2$$
.

(c) Show that the previous part implies that $2 < \frac{\alpha^2 + 2}{2} < (\alpha - k)^2$.

$$\alpha^2 - 2\alpha k < (\alpha - k)^2$$

$$\alpha^{2} - 2\alpha k < (\alpha - k)^{2}.$$

$$\alpha^{2} - 2\alpha \left(\frac{\alpha^{2} - 2}{4\alpha}\right) < (\alpha - k)^{2}.$$

$$\alpha^{2} - \frac{\alpha^{2} - 2}{2} < (\alpha - k)^{2}.$$

$$\alpha^2 - \frac{\alpha^2 - 2}{2} < (\alpha - k)^2$$

$$\frac{\alpha^2+2}{2}<(\alpha-k)^2$$

$$\frac{\alpha^2 + 2}{2} < (\alpha - k)^2.$$

$$\alpha^2 > 2 \text{ so } \frac{\alpha^2}{2} > 1 \text{ so } \frac{\alpha^2}{2} + 1 > 2.$$
So $2 < \frac{\alpha^2 + 2}{2} < (\alpha + k)^2.$

So
$$2 < \frac{\alpha^2 + 2}{2} < (\alpha + k)^2$$
.

(d) By part (c), we have $2 < (\alpha - k)^2$. Use this to show that $\alpha - k$ is an upper bound for A.

$$2 < (\alpha - k)^2.$$

Then
$$\alpha - k \in A$$
 and it is an upper bound.

Thus
$$\alpha < \alpha - k$$
.

- (e) Explain why parts (a) and (d) give a contradiction to the definition of α .
 - Part (a) says $\alpha k < \alpha$.
 - Part (d) contradicts this by saying $\alpha < \alpha k$.
 - So $\alpha \not< 2$ and $\alpha \not> 2$ so $\alpha = 2$.
 - Thus lub(A) is $\alpha = 2$.
- 6. In this problem, we will prove the following theorem.

Theorem 1 (Archimedean Property). Suppose that $x, y \in R$ and that x > 0. Then there exists an integer n > 0 such that y < nx.

We will prove the statement by contradiction. Let $A = \{nx | n \in N\}$, and suppose that A is bounded above by y.

- (a) Let $\alpha = lub(A)$. Show that, for any $r < \alpha$, there exists some $n \in N$ such that r < nx. (If $r < \alpha$, can r be an upper bound for A? What does that mean?)
 - $\alpha = lub(A)$
 - $r \in A$ and $r < \alpha$
 - Let r = kx where $k \in N$
 - Let $n \in N$ such that n = k + 1
 - Then r < (k+1)x
 - Then r < nx
 - So if $r < \alpha$, then r cannot be an upper bound for A since α is the lub(A).
- (b) Explain why there exists some $m \in N$ such that $\alpha x < mx$.
 - We know if α is the lub(A) then $\alpha x \in A$.
 - We know for $r \in A$ there exists $m \in N$ such that r < mx
 - So $\alpha x < mx$
- (c) Explain why the previous part implies $\alpha < (m+1)x$.
 - $\alpha x < mx$
 - $\alpha < mx + x$
 - $\alpha < (m+1)x$
- (d) Explain why this gives a contradiction and why this contradiction proves the Archimedean Property.
 - (m+1)x = nx
 - $nx \in A \text{ so } nx > \alpha$

Hence we have a contradiction as no element in A can be larger than α the lub(A). So there exists no lub(A). Any multiple n of some x will always have a larger number. Hence in R there will always exist a multiple n of some x that will be larger than some multiple m of x.