MA 201 Complex Analysis Lecture 13:

Identity Theorem and Maximum Modulus Theorem

Zeros of analytic functions

Suppose that $f:D\to\mathbb{C}$ is analytic on an open set $D\subset\mathbb{C}$.

- A point $z_0 \in D$ is called zero of f if $f(z_0) = 0$.
- The z_0 is a zero of multiplicity/order m if there is an analytic function $g:D\to\mathbb{C}$ such that

$$f(z) = (z - z_0)^m g(z), \ g(z_0) \neq 0.$$

• In this case $f(z_0) = f'(z_0) = f''(z_0) = \cdots = f^{(m-1)}(z_0) = 0$ but $f^m(z_0) \neq 0$.

Zeros of analytic functions

 Understanding of multiplicity via Taylor's series: If f is analytic function in D, then f has a Taylor series expansion around z₀

$$f(z) = \sum_{n=0}^{\infty} \frac{f^n(z_0)}{n!} (z-z_0)^n, \quad |z-z_0| < R.$$

• If f has a zero of order m at z_0 then

$$f(z) = (z - z_0)^m \sum_{n=m}^{\infty} \frac{f^n(z_0)}{n!} (z - z_0)^{n-m}$$

• Define $g(z) = \sum_{n=m}^{\infty} \frac{f^n(z_0)}{n!} (z - z_0)^{n-m}$, then

$$f(z)=(z-z_0)^mg(z).$$

Zeros of analytic functions

Zeros of a non-constant analytic function are isolated: If $f:D\to\mathbb{C}$ is non-constant and analytic at $z_0\in D$ with $f(z_0)=0$, then there is an R>0 such that $f(z)\neq 0$ for $z\in B(z_0,R)\setminus\{z_0\}$.

Proof.

• Assume that f has a zero at z_0 of order m. Then

$$f(z) = (z - z_0)^m g(z)$$

where g(z) is analytic and $g(z_0) \neq 0$.

• Since g is continuous at z_0 thus for $\epsilon = \frac{|g(z_0)|}{2} > 0$, we can find a $\delta > 0$ such that

$$|g(z)-g(z_0)|<\frac{|g(z_0)|}{2},$$

whenever $|z-z_0|<\delta$.

• Therefore whenever $|z-z_0|<\delta$, we have $0<\frac{|g(z_0)|}{2}<|g(z)|<\frac{3|g(z_0)|}{2}$. Take $R=\delta$.

Identity Theorem

Identity Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \to \mathbb{C}$ is analytic. If there exists an infinite sequence $\{z_k\} \subset D$, such that $f(z_k) = 0$, $\forall k \in \mathbb{N}$ and $z_k \to z_0 \in D$, f(z) = 0 for all $z \in D$.

• Case I: If $D = \{z \in \mathbb{C} : |z - z_0| < r\}$ then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \text{ for all } z \in D.$$

- We will show that $f^n(z_0) = 0$ for all n. If possible assume that $f^n(z_0) \neq 0$ for some n > 0.
- Let n_0 be the smallest positive integer such that $f^{n_0}(z_0) \neq 0$. Then

$$f(z) = \sum_{n=n_0}^{\infty} a_n (z-z_0)^n = (z-z_0)^{n_0} g(z),$$

where $g(z_0) = a_{n_0} \neq 0$.

Identity Theorem

- Since g is continuous at z_0 , there exist $\epsilon > 0$ such that $g(z) \neq 0$ for all $z \in B(z_0, \epsilon)$.
- There exists some k such that $z_0 \neq z_k \in B(z_0, \epsilon)$ and $f(z_k) = 0$. This forces $g(z_k) = 0$ which is a contradiction.
- Case II: If D is a domain.
- Since $z_0 \in D$ therefore there exists $\delta > 0$ such that $B(z_0, \delta) \subset D$.
- By Case I, f(z) = 0, $\forall z \in B(z_0, \delta)$.
- Now take $z \in D$ join z and z_0 by a line segment. Cover the line segments by open balls in such a way that center of a ball lies in the previous ball. Apply the above argument to get f(z) = 0 for all $z \in D$.

Uniqueness Theorem

Uniqueness Theorem: Let $D \subset \mathbb{C}$ be a domain and $f,g:D \to \mathbb{C}$ is analytic. If there exists an infinite sequence $\{z_n\} \subset D$, such that $f(z_n) = g(z_n), \ \forall n \in \mathbb{N}$ and $z_n \to z_0 \in D$, f(z) = g(z) for all $z \in D$.

- Find all entire functions f such that f(r) = 0 for all $r \in Q$.
- Find all entire functions f such that $f(x) = \cos x + i \sin x$ for all $x \in (0,1)$.
- Find all analytic functions $f: B(0,1) \to \mathbb{C}$ such that $f(\frac{1}{n}) = \sin(\frac{1}{n}), \ \forall n \in \mathbb{N}.$
- There does not exists an analytic function f defined on B(0,1) such that $f(x) = |x|^3$ for all $x \in (-1,1)$?

Maximum Modulus Theorem

Maximum Modulus Theorem: Let $D \subset \mathbb{C}$ be a domain and $f: D \to \mathbb{C}$ is analytic. If there exists a point $z_0 \in D$, such that $|f(z)| \leq |f(z_0)|$, $\forall z \in D$, then f is constant on D.

Proof. Choose a r>0 such that $\overline{B(z_0,r)}\subset D$. Let $\gamma(t)=z_0+re^{it}$ for $0\leq t\leq 2\pi$. By Cauchy integral formula

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

Hence

$$|f(z_0)| \leq rac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})| \, dt \leq |f(z_0)|.$$

This gives

$$\int_0^{2\pi} \left[|f(z_0)| - |f(z_0 + re^{it})| \right] dt = 0.$$

It follows that $|f(z_0)| = |f(z_0 + re^{it})|$ for all t. Now f analytic and |f| is constant gives f is constant on $B(z_0, r)$. Applying identity theorem we get f is constant through out the domain D.

Consequences of Maximum Modulus Theorem

- If f is analytic in a bounded domain D and continuous on ∂D then |f(z)| attains its maximum at some point on the boundary ∂D .
- Define $f(z) = e^{e^z}$ for $z \in D = \{z \in \mathbb{C} : |\text{Im } z| < \frac{\pi}{2}\}$. Then for $a + ib \in \partial D = \{\zeta \in \mathbb{C} : |\text{Im } \zeta| = \frac{\pi}{2}\}$,

$$f(a+ib)=\left|e^{e^{a\pm i\frac{\pi}{2}}}\right|=\left|e^{\pm ie^a}\right|=1.$$

Again if $x \in \mathbb{R} \subset D$ then, $f(x) = e^{e^x} \to \infty$ as $x \to \infty$.

• Minimum Modulus Theorem Let $D \subset \mathbb{C}$ be a domain and $f: D \to \mathbb{C}$ is analytic. If there exists a point $z_0 \in D$, such that $|f(z)| \ge |f(z_0)|$ for all $z \in D$, then either f is constant function or $f(z_0) = 0$.

Hint. Apply maximum modulus theorem on 1/f.

