M4202Cip – Recherche opérationnelle (V) GNU Linear Programming Kit (GLPK)

bruno.colombel@univ-amu.fr

IUT d'Aix-Marseille Site d'Arles DUT Informatique

2019-2020

GLPK

GNU Linear Programming Kit

- Ensemble d'algorithmes permettant de résoudre des problèmes
 - programmation linéaire
 - programmation linéaire en nombres entiers

Découverte de GLPK (Linux magazine) avec le voyageur de commerce . . .

GNU Linear Programming Kit

- Ensemble d'algorithmes permettant de résoudre des problèmes
 - programmation linéaire
 - programmation linéaire en nombres entiers
- ► API C, C++, R, Java, Python, etc.
- contient également son propre solveur : glpsol

Découverte de GLPK (Linux magazine) avec le voyageur de commerce . . .

GLPK

$$\begin{array}{ll} \max z &= 3x_1 + 2x_2 \\ \text{s.c.} & x_1 <= 4 \\ & x_2 \le 6 \\ & 3x_1 + 2x_2 \le 18 \\ & x_1, x_2 \ge 0 \end{array}$$

Modélisation GLPK

GLPK

```
$glpsol -m exemple.mod
```

OPTIMAL LP SOLUTION FOUND

Time used: 0.0 secs

Memory used: 0.1 Mb (118308 bytes)

x1=2.000000

x2=6.000000

z=36.000000

Model has been successfully processed

Sac à dos

Sudoku

Problème de production

Sommaire

Sac à dos

Sudoku

Problème de production

On considère le problème du sac-à-dos de capacité W=22 avec les objets suivants :

Objets	a	b	С	d	е
poids	3	4	3	3	13
utilité	12	12	9	15	26

Solution optimale: a, c, d, e (poids = 22, utilité = 62)

- Données :
 - ensemble $\{a, b, c, d, e\}$ d'objets;
 - $ightharpoonup p_i$ leur poids et u_i leur utilité.

- Données :
 - ensemble $\{a, b, c, d, e\}$ d'objets;
 - p_i leur poids et u_i leur utilité.
- variables de décision

$$x_i = \begin{cases} 1 \text{ si l'objet } i \text{ est choisi} \\ 0 \text{ sinon} \end{cases}$$

- Données :
 - ensemble $\{a, b, c, d, e\}$ d'objets;
 - p_i leur poids et u_i leur utilité.
- variables de décision

$$x_i = \begin{cases} 1 \text{ si l'objet } i \text{ est choisi} \\ 0 \text{ sinon} \end{cases}$$

Objectif

$$\max u_a x_a + u_b x_b + u_c x_c + u_d x_d + u_e x_e$$

Contraintes

$$p_a x_a + p_b x_b + p_c x_c + p_d x_d + p_e x_e \le 22$$

Objets	а	b	С	d	е
poids	3	4	3	3	13
utilité	12	12	9	15	26

$$\max z \quad 12x_a + 12x_b + 9x_c + 15x_d + 26x_e$$

s.c.
$$3x_a + 4x_b + 3x_c + 3x_d + 13x_e \le 22$$

modélisation GLPK

```
$glpsol -m exemple2.mod
INTEGER OPTIMAL SOLUTION FOUND
Time used:     0.0 secs
Memory used:     0.1 Mb (148372 bytes)
x1=1.000000
x2=0.000000
x3=1.000000
x4=1.000000
z5=1.000000
z=62.000000
```

```
$glpsol -m exemple2.mod

INTEGER OPTIMAL SOLUTION FOUND

Time used: 0.0 secs

Memory used: 0.1 Mb (148372 bytes)

x1=1.000000

x2=0.000000

x3=1.000000

x4=1.000000

z=62.000000
```

Et pour d'autres instances?

- Données :
 - ightharpoonup ensemble $\{a, b, c, d, e\}$ d'objets;
 - p_i leur poids et u_i leur utilité.
- variables de décision

$$x_i = \begin{cases} 1 \text{ si l'objet } i \text{ est choisi} \\ 0 \text{ sinon} \end{cases}$$

Objectif

$$\max u_a x_a + u_b x_b + u_c x_c + u_d x_d + u_e x_e$$

Contraintes

$$p_a x_a + p_b x_b + p_c x_c + p_d x_d + p_e x_e \le 22$$

- Données :
 - ensemble $\{1, 2, 3, \dots, n\}$ d'objets;
 - p_i leur poids et u_i leur utilité;
 - ▶ W : capacité du sac à dos
- variables de décision

$$x_i = \begin{cases} 1 \text{ si l'objet } i \text{ est choisi} \\ 0 \text{ sinon} \end{cases}$$

Objectif

$$\max \sum_{i=1}^n u_i x_i$$

Contraintes

$$\sum_{i=1}^n p_i x_i \leq W$$

Séparer les données et la modélisation

fichier de modélisation

fichier de données

\$glpsol -m sac-a-dos.mod -d sac-a-dos.dat -o sac-a-dos.sol

fichier de solution

Sommaire

Sac à dos

Sudoku

Problème de production

Sudoku

7			2		9			1
4	9	1		3		8	6	2
	8						9	
5			6		3			8
5 3 8	6	2				9	5	4
8			9		4			3
	5						1	
6	7	8		4		2	3	9
1			3		6			5

niveau facile

Sudoku

	_	_	_				_	_
7						4		
	2			7			8	
		3			8			9
			5			3		
	6			2			9	
		1			7			6
			3			9		
	3			4			6	
		9			1			5

niveau difficile

Sudoku: modélisation

Contraintes

- un seul chiffre par case;
- au moins une fois chaque chiffre sur chaque ligne;
- au moins une fois chaque chiffre sur chaque colonne;
- au moins une fois chaque chiffre dans chaque block;
- au plus une fois chaque chiffre sur chaque ligne;
- au plus une fois chaque chiffre sur chaque colonne;
- au plus une fois chaque chiffre dans chaque block;

Sudoku: modélisation

Contraintes

- un seul chiffre par case;
- au moins une fois chaque chiffre sur chaque ligne;
- au moins une fois chaque chiffre sur chaque colonne;
- au moins une fois chaque chiffre dans chaque block;
- au plus une fois chaque chiffre sur chaque ligne;
- au plus une fois chaque chiffre sur chaque colonne;
- au plus une fois chaque chiffre dans chaque block;
- ▶ Variables de décision On utilise $9^3 = 729$ variables x_{ijk} définies par :

$$x_{ijk} = \begin{cases} 1 & \text{si la case à l'intersection de la ligne } i \\ & \text{et de la colonne } j \text{ est égale à } k \\ 0 & \text{sinon} \end{cases}$$

Sudoku: données

Une matrice ${\cal T}$ avec les cases fixées ${\cal T}$ contient les cases de la grille dans lesquelles on a déjà mis un chifre de 1 à 9 :

T[i,j] = nombre dans la case (i,j)

```
param n_fix:=40; # nombre de cases fixées
param T: 1 2 3 :=
1 1 1 7
2 1 4 2
3 1 6 9
4 1 9 1
5 2 1 4
6 2 2 9
7 2 3 1
8 2 5 3
9 2 7 8
```

Sudoku: modélisation

$$x_{ijk} = \begin{cases} 1 & \text{si la case à l'intersection de la ligne } i \\ & \text{et de la colonne } j \text{ est égale à } k \\ 0 & \text{sinon} \end{cases}$$

```
#variables xijk=1 si case ij=k
var x{ i in 1..9, j in 1..9, k in 1.. 9 } binary;
```

Sudoku: modélisation

un seul chiffre par case

```
# un seul chiffre par case
valeurs {i in 1..9, j in 1.. 9}:
    sum {k in 1..9} x[i,j,k] = 1;
```

au moins une fois chaque chiffre sur chaque ligne au plus une fois chaque chiffre sur chaque ligne

```
# exactement chaque chiffre par ligne
lignes {i in 1..9, k in 1.. 9}:
    sum {j in 1..9} x[i,j,k] = 1;
```

au moins une fois chaque chiffre sur chaque colonne au plus une fois chaque chiffre sur chaque colonne

```
# exactement chaque chiffre par colonne
colonnes {j in 1..9, k in 1.. 9}:
    sum {i in 1..9} x[i,j,k] = 1;
```

au moins une fois chaque chiffre dans chaque block au plus une fois chaque chiffre dans chaque block

```
# exactement chaque chiffre par blocs de 3x3
blocs {xx in {0, 3, 6}, yy in {0, 3, 6}, k in 1..9}:
    sum {i in (xx+1)..(xx+3), j in (yy+1)..(yy+3)}
    x[i,j,k] = 1;
```

tenir compte des cases déjà remplies

```
#cases données

C{i in 1..n_fix} :
    x[T[i,1], T[i,2], T[i,3]] = 1;
```

Fichier de modélisation (facile)
Fichier de modélisation (difficile)

\$glpsol -m sudoku.mod -d Sudoku_data.dat

7			2		9			1
4	9	1		3		8	6	2
	9						9	
5			6		3			8
5 3 8	6	2				9	5	4
8			9		4			3
	5						1	
6	7	8		4		2	3	9
1			3		6			5

```
7 | 3 | 6 | 2 | 8 | 9 | 5 | 4 | 1 |
4 | 9 | 1 | 5 | 3 | 7 | 8 | 6 | 2 |
5 | 4 | 9 | 6 | 2 | 3 | 1 | 7 | 8 |
3 | 6 | 2 | 7 | 1 | 8 | 9 | 5 | 4 |
8 | 1 | 7 | 9 | 5 | 4 | 6 | 2 | 3 |
9 | 5 | 3 | 8 | 7 | 2 | 4 | 1 | 6 |
6 | 7 | 8 | 1 | 4 | 5 | 2 | 3 | 9 |
1 | 2 | 4 | 3 | 9 | 6 | 7 | 8 | 5 |
```

Model has been successfully processed

7						4		
	2			7			8	
		3			8			9
			5			3		
	6			2			9	
		1			7			6
			3			9		
	3			4			6	
		9			1			5

```
Solution :
7 | 9 | 8 | 6 | 3 | 5 | 4 | 2 | 1 |
 1 | 2 | 6 | 9 | 7 | 4 | 5 | 8 | 3 |
4 | 5 | 3 | 2 | 1 | 8 | 6 | 7 | 9 |
9 | 7 | 2 | 5 | 8 | 6 | 3 | 1 | 4 |
 5 | 6 | 4 | 1 | 2 | 3 | 8 | 9 | 7 |
3 | 8 | 1 | 4 | 9 | 7 | 2 | 5 | 6 |
6 | 1 | 7 | 3 | 5 | 2 | 9 | 4 | 8 |
8 | 3 | 5 | 7 | 4 | 9 | 1 | 6 | 2 |
2 | 4 | 9 | 8 | 6 | 1 | 7 | 3 | 5 |
```

Sommaire

Sac à dos

Sudoku

Problème de production

Problème de production

Une usine produit deux composantes A et B d'un moteur d'avion. La direction veut planifier sa production pour les 3 prochains mois.

Notification des besoins pour les trois prochains mois.

	avril	mai	juin
Α	1 000	3 000	5 000
В	1 000	500	3 000

Capacités mensuelles

	machine (h)	hommes (h)	stock (m³)
avril	400	300	10 000
mai	500	300	10 000
juin	600	300	10 000

Capacités par unité de production

	machine (h/unité)	homme (h/unité)	stock (m³/unité)
Α	0,10	0,05	2
В	0,08	0,07	3

Informations complémentaires

- coûts de production : 20 par unités de A et 10 par unités de B;
- coût de stockage : 1,5 % de la valeur;
- horaire mensuel de base : 225 ;
- coût de l'heure supplémentaire de travail : 10;
- stock fin mars: 500 A et 200 B;
- stock minimum imposé fin juin : 400 A et 200 B.

Problématique

Trouver un plan de production des trois prochain mois qui minimise les coûts.

Variables

- production : x[produit, mois] ;
- stock: s[produit, mois];
- heures supplémentaires : l[mois] .

Combien de variables?

Variables

- production : x[produit, mois] ;
- stock : s[produit, mois] ;
- heures supplémentaires : l[mois] .

Combien de variables?

15 variables

Objectif

min (production + stock + heures supplémentaires)

Contraintes

- définition du stock
- stock minimum fin juin
- capacités des machines
- capacités des hommes
- capacités des stocks
- définition des heures supplémentaires

Combien de contraintes?

Contraintes

- définition du stock
- stock minimum fin juin
- capacités des machines
- capacités des hommes
- capacités des stocks
- définition des heures supplémentaires

Combien de contraintes?

20 contraintes

Données

```
## Production de moteurs d''avions
## GLPK Fichier de modélisation
set produit;
set mois;
param stock_init{i in produit};
param stock_final{i in produit};
param besoin{i in produit, j in mois};
param capacite_mois{i in mois, j in 1..3};
param capacite_heure{i in produit, j in 1..3};
```

Variables

```
var x{i in produit, j in mois}>=0;
var s{i in produit, j in mois}>=0;
var l{i in mois}>=0;
```

Objectif

```
minimize cout:
  20*(sum{j in mois} x['A',j]) +
  10*(sum{j in mois} x['B',j]) +
  0.015*(20*(sum{j in mois} s['A',j]) +
  10*(sum{j in mois} s['B',j])) +
  sum{i in mois} 10*l[i];
```

Réolution

Objective: co	ut = 2247	24.2857 (MINimum)	
No. Column	name St	Activity	
1 x[B,avr	il] B	2857.14	
2 x[B,mai] B	1214.29	
3 x[B,jui	n] B	428.571	
4 x[A,avr	il] B	500	
5 x[A,mai] B	3000	
6 x[A,jui	n] B	5400	
7 s[B,avr	il] B	2057.14	
8 s[B,mai] B	2771.43	
9 s[B,jui	n] B	200	
10 s[A,avr	il] NL	0	
11 s[A,mai] NL	0	
10 c[A ini	n] R	400	