ON THE STRUCTURE OF SIMPLE GENERIC FI-MODULES IN POSITIVE CHARACTERISTIC

SOPHIE KRIZ

ABSTRACT. We classify simple generic FI-modules in positive characteristic. We also give, in any characteristic p > 0, examples of simple generic FI-modules whose underlying representations are reducible in all sufficiently high degrees.

1. Introduction

In this paper, an FI-module (also a KFI-module) is a functor from the category FI of finite sets and injections into K-modules for a field K. FI-modules were introduced by Church, Ellenberg, and Farb in [1], and have numerous applications in topology, algebra, and number theory. Stable phenomena of the representation theory of symmetric groups are encoded by the category of generic FI-modules, defined in a way to disregard elements which go to 0 in the representations of Σ_n for n >> 0. This is analogous to the construction of the category of quasi-coherent sheaves from the category of graded modules over the projective coordinate ring of a projective scheme [14]. This analogy was in fact used by Sam and Snowden [13] to gain a good understanding of the category of generic FI-modules in characteristic 0. In particular, they identified all the simple objects of that category.

The case of characteristic p > 0 is more complicated and a generalization of the work of [13] was not known. The objective of this paper is to characterize all simple generic FI-modules in characteristic p > 0, and also to answer a question of R.Nagpal [11] asking if the Σ_n -representation terms of such a module are irreducible for infinitely many n. We find counterexamples for all primes p.

To discuss our results more precisely, we need some notation. Let $[n] = \{1, ..., n\}$. For an FI-module X, we will sometimes write X(N) instead of X([N]). For a given N, we identify a $K\Sigma_N$ -module with the KFI-module equal to it in degree N and 0 in other degrees. An FI-module X is called *torsion* if each of the elements of every X(n)

goes to $0 \in X(m)$ for some m >> 0. Torsion (K)FI-modules form a Serre subcategory of the category of (K)FI-modules, and taking the Serre quotient by them gives the category of *generic* (K)FI-modules (see [4] for the details of this construction).

One might ask what the simple objects of the category of generic (K)FI-modules are. This is known when K is a field of characteristic 0. In [13], Sam and Snowden proved, using the Schur-Weyl correspondence, that when char(K) = 0, simple generic KFI-modules are exactly the "Spechtral" FI-modules for Young diagrams λ , which consist of Specht modules (i.e., the irreducible Σ_n -representation in characteristic 0) corresponding to the Young diagrams given by adding a new first row to λ . However, in characteristic p > 0, Spechtral modules are not necessarily generically simple, and simple generic KFI-modules are not necessarily Spechtral.

In this paper, we classify simple generic KFI-modules in characteristic p > 0 into an explicitly constructed family, indexed by p-regular Young diagrams. We also use our construction to give examples of simple generic KFI-modules X in all characteristics p > 0 such that X(N) is a reducible $K\Sigma_N$ -module for all but finitely many N.

We define two functors

$$\Psi': FI\operatorname{-Mod} \to FI\operatorname{-Mod}$$

$$\Phi': FI\operatorname{-Mod} \to FI\operatorname{-Mod}$$

by

(1)
$$\Psi'(M_{\bullet}): [N] \mapsto \operatorname{Hom}_{FI\operatorname{-Mod}}(K\operatorname{Map}_{FI}([\bullet], [N])^{\vee}, M_{\bullet})$$

(2)
$$\Phi'(M_{\bullet}): [N] \mapsto K \operatorname{Map}_{FI}([N], [\bullet])^{\vee} \otimes_{FI\operatorname{-Mod}} M_{\bullet}$$

for an FI-module M_{\bullet} . By definition, Φ' is left adjoint to Ψ' . It is also easy to see that applying Φ' to a torsion FI-module gives 0 and that applying Φ' to any FI-module gives a torsion FI-module.

Let KGFI-Mod denote the category of generic finitely generated KFI-modules and let KTFI-Mod denote the full subcategory of KFI-modules on finitely generated torsion KFI-modules. Then Φ' , Ψ' induce a pair of functors

$$\Phi: KGFI\operatorname{-Mod} \to KTFI\operatorname{-Mod}$$

$$\Psi: KTFI\operatorname{-Mod} \to KGFI\operatorname{-Mod}$$

where Φ is left adjoint to Ψ .

In characteristic 0, by Schur-Weyl correspondence, the functors Ψ , Φ coincide with the functors of the same names in [13], where they are proved to be inverse equivalences of categories. This is false in characteristic p > 0. An easy argument is given in the beginning of Section 2.

To state our main results, we need some additional notation. A Young diagram is a k-tuple $\lambda = (\lambda_1, \dots, \lambda_k)$ where $\lambda_1 \geq \dots \geq \lambda_k$ are positive integers (this can be visualized as a diagram of boxes with k rows and λ_i boxes in the i-th row). For a Young diagram λ , let $|\lambda|$ denote the number of its boxes (i.e. $|\lambda| = \lambda_1 + \dots + \lambda_k$). Let S_{λ} denote the Specht module corresponding to a Young diagram λ . As a general reference for Specht modules, we recommend [6]. We denote by M_{λ} the Spechtral FI-module consisting of the Specht modules of the Young diagrams obtained by adding a row to the top of λ at each degree $\geq |\lambda| + \lambda_1$. A detailed construction of Spechtral modules independent of characteristic is given in [10].

A Young diagram $\lambda = (\lambda_1, \dots, \lambda_k)$ is called *p*-regular if at most p-1 of the numbers $\lambda_1, \dots, \lambda_k$ are equal to any given number *i*. Recall that the set of Young diagrams with ℓ boxes has a natural ordering called *dominance* given by saying, for two partitions $\mu = (\mu_1, \dots, \mu_n)$, $\nu = (\nu_1, \dots, \nu_m)$ of $\ell, \mu \geq \nu$ when

$$\mu_1 + \dots + \mu_k \ge \nu_1 + \dots + \nu_k$$

for all $k \geq 1$. In this note, we will also call a Young diagram μ strictly dominant over ν (write $\mu \triangleright \nu$) if we have $\mu \trianglerighteq \nu$ and $\mu \neq \nu$.

For every p-regular Young diagram λ , S_{λ} has a unique quotient D_{λ} which is a simple $K\Sigma_{|\lambda|}$ -module. These form a complete set of representatives of isomorphism classes of simple $K\Sigma_{|\lambda|}$ -modules. Moreover, for a p-regular Young diagram λ , all the other constituent factors of S_{λ} are D_{μ} with $\mu \rhd \lambda$ ([6], Section 12).

Our main general result is the following

Theorem 1. For every p-regular Young diagram λ , there exists a non-zero morphism of KFI-modules

$$\iota_{\lambda}:M_{\lambda}\to\Psi(D_{\lambda})$$

such that $Im(\iota_{\lambda})$ is a simple object in the category KGFI-Mod of generic finitely generated KFI-modules. Additionally, every simple generic finitely generated KFI-module is isomorphic to $Im(\iota_{\lambda})$ for a unique p-regular Young diagram λ .

Interesting examples can be constructed using this Theorem. R. Nagpal asked whether every simple generic FI-modules consists of simple $K\Sigma_n$ -modules in infinitely many degrees n. This turns out to be false.

Theorem 2. Suppose K is a field of characteristic p > 0.

(1) If p = 2, then for every N >> 0, the Σ_N -representation

$$(Im(\iota_{(3,1)}))(N)$$

is reducible.

(2) If p > 2, then for every N >> 0, the Σ_N -representation

$$(Im(\iota_{(p,2)}))(N)$$

is reducible.

We will prove Theorem 1 in Section 2. The proof of Theorem 2 requires different approaches depending on whether p=2 or p>2. The case of p=2 is treated in Section 3, and the case of p>2 is treated in Section 4. In both cases of the proof of Theorem 2, we will see several interesting examples of the behavior of the functor Ψ .

Acknowledgment: I am thankful to A. Snowden and R. Nagpal for discussions. I would also like to thank A. Mathas for developing the GAP package Specht, which I used to verify the computations of Theorem 2 for small numbers.

2. Proof of Theorem 1

We begin with a closer discussion of the functors Φ , Ψ . First, let us give an easy argument why in characteristic p > 0, they are not inverse equivalences of categories.

Consider the principal injective torsion KFI-module $K\Sigma_0$ (meaning $K = K\Sigma_0$ in degree N = 0 and 0 elsewhere). If Ψ were an equivalence of categories, $\Psi(K\Sigma_0)$ (which is the FI-module M_{\emptyset} , i.e., equal to K in every degree $N \geq 0$ where the structure maps are isomorphisms) would have to be an injective generic KFI-module. However, this is proved to be false in [5] (Section 3.2).

The authors of [5] consider the FI-module A where

$$A_n = \mathbb{F}_p(\Sigma_n/(\Sigma_p \times \Sigma_{n-p})).$$

Then we have a diagram

(3)
$$A \xrightarrow{\subseteq} \mathbb{F}_p \mathrm{Map}_{FI}([p], [\bullet]) \\ \downarrow \\ M_{\emptyset}$$

where the top row inclusion is by corestriction and the vertical arrow is by augmentation (since A_n is a permutation representation). They remark that the inclusion of M_{\emptyset} into the pushout of (3) does not generically split, since any map of $\mathbb{F}_p\Sigma_N$ -modules

$$\mathbb{F}_p \mathrm{Map}_{FI}([p], [N]) \to \mathbb{Z}/p$$

is 0 on A. In fact, it is proved in [12], Theorem 4.20 that the category KGFI-Mod does not have any non-trivial injectives.

Now let us describe Φ , Ψ more explicitly. (We shall drop the notation Φ' , Ψ' , since from the point of view of an explicit description, they are the same.) By (2), we have, for an FI-module X,

(4)
$$\Phi(X)(m) = \operatorname{Hom}_{FI\text{-Mod}}(X(n), K\operatorname{Map}_{FI}([m], [n]))^{\vee}$$

(where n ranges over all natural numbers $\geq m$). Now note that we also can consider $K\mathrm{Map}_{FI}([m],[n])$ (as an $K\Sigma_n$ -module) as the induction from $K(\Sigma_{n-m}\times\Sigma_m)$ into $K\Sigma_n$, i.e.,

$$K\mathrm{Map}_{FI}([m], [n]) = \mathrm{Hom}_{\Sigma_m}(K\Sigma_n/\Sigma_{n-m}, K\Sigma_m) = (K\Sigma_n/\Sigma_{n-m})^{\vee}$$

 $\cong K\Sigma_n/\Sigma_{n-m}.$

Hence,

(5)
$$\operatorname{Hom}_{\Sigma_{n}}(X(n), K\operatorname{Map}_{FI}([m], [n])) = \\ \operatorname{Hom}_{\Sigma_{n}}(X(n), \operatorname{Hom}_{\Sigma_{n}}(K\Sigma_{n}/\Sigma_{n-m}, K)) = \\ (X(n) \otimes_{\Sigma_{n}} K\Sigma_{n}/\Sigma_{n-m})^{\vee} = ((X(n))_{\Sigma_{n-m}})^{\vee},$$

where the subscript in the last term denotes cofixed points. By (2), an element of $(\Phi(X)(m))^{\vee}$ corresponds to a system of elements

$$f_n \in \operatorname{Hom}_{\Sigma_n}(X(n), K\operatorname{Map}_{FI}([m], [n]))$$

such that for $n, n - k \ge m + \lambda_1$, the diagram

$$X(n) \xrightarrow{f_n} K \operatorname{Map}_{FI}([m], [n])$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$X(n-k) \xrightarrow{f_{n-k}} K \operatorname{Map}_{FI}([m], [n-k])$$

commutes. We denote the two equal compositions by

$$h_{n,n-k} \in \operatorname{Hom}_{\Sigma_{n-k}}(X(n-k), K\operatorname{Map}_{FI}([m], [n])).$$

Then, by (5), $(\Phi(X)(m))^{\vee}$ is equivalent to the limit of the diagram

$$((X(n))_{\Sigma_{n-m}})^{\vee} \underbrace{((X(n-k))_{\Sigma_{n-k-m}})^{\vee}}_{((Ind_{\Sigma_n}^{\Sigma_{n-k}\times\Sigma_k}X(n-k))_{\Sigma_{n-m}})^{\vee}}$$

for $n, n-k \ge m$. That is dual to the diagram

(6)
$$(X(n))_{\Sigma_{n-m}}$$
 $(X(n-k))_{\Sigma_{n-k-m}}$ $(Ind_{\Sigma_n}^{\Sigma_{n-k} \times \Sigma_k} X(n-k))_{\Sigma_{n-m}}$

where ϕ_+ is given by taking Σ_{n-m} -cofixed points of the natural

$$Ind_{\Sigma_n}^{\Sigma_{n-k} \times \Sigma_k} X(n-k) \to X(n).$$

The map ϕ_{-} is defined to be the composition

$$(Ind_{\Sigma_{n}}^{\Sigma_{n-k}\times\Sigma_{k}}(X(n-k)))_{\Sigma_{n-m}}$$

$$\downarrow$$

$$(Ind_{\Sigma_{n}}^{\Sigma_{n-k}\times\Sigma_{k}}(X(n-k)))_{\Sigma_{k}\times\Sigma_{n-k-m}}$$

$$\downarrow$$

$$(X(n-k))_{\Sigma_{n-k-m}}$$

where the top map is taking corestriction (i.e. summing over coset representatives of $\Sigma_{n-m}/\Sigma_k \times \Sigma_{n-m-k}$), and the lower map is the counit of adjunction of the induction as a right adjoint to cofixed points, followed by Σ_{n-k-m} -cofixed points.

Dually, we have, by the definition (1),

$$\Psi(X)(N) = \operatorname{Hom}_{FI\operatorname{-Mod}}(K\operatorname{Map}_{FI}([n], [N])^{\vee}, X(n)).$$

Again, this corresponds to systems of maps f^{ℓ} such that the diagram

$$(K\Sigma_N/\Sigma_{N-\ell+k})^{\vee} \xrightarrow{f^{\ell-k}} X(\ell-k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(K\Sigma_N/\Sigma_{N-\ell})^{\vee} \xrightarrow{f^{\ell}} X(\ell)$$

commutes where we denote the two equal compositions by $h^{\ell-k,\ell}$. Since each $K\Sigma_N/\Sigma_{N-\ell}$ is self-dual, we have

$$\operatorname{Hom}_{\Sigma_{\ell}}((K\Sigma_{N}/\Sigma_{N-\ell})^{\vee},X(\ell)) = \operatorname{Ind}_{\Sigma_{N}}^{\Sigma_{\ell} \times \Sigma_{N-\ell}}(X(\ell)).$$

Hence, $\Psi(X)(N)$ is the limit of the diagram

(7)
$$Ind_{\Sigma_{N}}^{\Sigma_{\ell-k}\times\Sigma_{N-\ell+k}}(X(\ell-k))$$
 $Ind_{\Sigma_{N}}^{\Sigma_{\ell}\times\Sigma_{N-\ell}}(X(\ell))$

$$Ind_{\Sigma_{N}}^{\Sigma_{\ell-k}\times\Sigma_{N-\ell+k}}(X(\ell))^{\Sigma_{k}})$$

where the map ψ^+ is given by applying $Ind_{\Sigma_N}^{\Sigma_{\ell-k}\times\Sigma_{N-\ell+k}}$ to the natural map

$$X(\ell-k) \to (X(\ell))^{\Sigma_k}$$
.

The map ψ^- is defined as the composition

$$Ind_{\Sigma_{N}}^{\Sigma_{\ell} \times \Sigma_{N-\ell}}(X(\ell))$$

$$\downarrow$$

$$Ind_{\Sigma_{N}}^{\Sigma_{\ell} \times \Sigma_{N-\ell}}(Ind_{\Sigma_{\ell}}^{\Sigma_{\ell-k} \times \Sigma_{k}}(X(\ell)^{\Sigma_{\ell-k}}))$$

$$\downarrow$$

$$Ind_{\Sigma_{N}}^{\Sigma_{\ell-k} \times \Sigma_{N-\ell+k}}(X(\ell)^{\Sigma_{\ell-k}})$$

where the top map is given by induction applied to the unit of adjunction of fixed points as a right adjoint to induction, and the lower map, noting that

$$Ind_{\Sigma_N}^{\Sigma_{\ell} \times \Sigma_{N-\ell}} \circ Ind_{\Sigma_{\ell}}^{\Sigma_{\ell-k} \times \Sigma_k} = Ind_{\Sigma_N}^{\Sigma_{\ell-k} \times \Sigma_k \times \Sigma_{N-\ell}},$$

is given by corestriction (i.e. summing over coset representatives of

$$(\Sigma_{\ell} \times \Sigma_{N-\ell})/(\Sigma_{\ell-k} \times \Sigma_k \times \Sigma_{N-\ell})).$$

Let $\lambda = (\lambda_1, \dots, \lambda_k)$ be a *p*-regular Young diagram and let $N \ge |\lambda| + \lambda_1$. Define

$$\lambda_N^+ = (N - |\lambda|, \lambda_1, \dots, \lambda_k).$$

We will sometimes omit N when it is implicit.

Our main technical tool is the following

Lemma 3. Suppose λ is a p-regular Young diagram, $N > |\lambda| + \lambda_1$. (A) $\Psi(D_{\lambda})(N)$ has a unique constituent factor $D_{\lambda_N^+}$. (B) Let X be a finitely generated FI-module. Suppose there exists a generic surjection $M_{\lambda} \to X$. Then there exists a surjection

(8)
$$\Phi(X) \to D_{\lambda}.$$

Additionally, the map

$$(9) X \to \Psi(D_{\lambda})$$

adjoint to (8) sends the constituent factor $D_{\lambda_N^+}$ to itself by an isomorphism.

Proof. By [8], Theorem 1, the induction to N >> 0 of D_{λ} contains $D_{\lambda_N^+}$ as a unique constituent factor, and all other constituent factors are of the form D_{μ} for $\mu > \lambda_N^+$. Additionally, $D_{\lambda_N^+}$ is not a constituent factor in the induction of any Σ_n -module with $n < |\lambda|$. By the above description of the functor Ψ , this implies (A).

Also by [8], Theorem 1, for every N, the cofixed point $K\Sigma_{|\lambda|}$ -module

$$(10) (D_{\lambda_N^+})_{\Sigma_{N-|\lambda|}}$$

is D_{λ} and the cofixed point module of $D_{\lambda_N^+}$ under Σ_{N-i} with $i < |\lambda|$ is 0 (since D_{λ} occurs at the "top branching level" of $L(\lambda_N^+)$). Thus, by the above description, D_{λ} is by definition a quotient of the module of generators of $\Phi(X)$. Additionally, the assumption guarantees that these generators are not killed by the relations (again by [8], Theorem 1, since, if $\mu_N^+ \rhd \lambda_N^+$, then $\mu \rhd \lambda$ or $|\mu| < |\lambda|$). This implies the first statement of (B).

For the last statement, we also observe that by [8], Theorem 1, we cannot have $\lambda_N^+ = \mu_N^+$ for $|\mu| < |\lambda|$ and thus, by our above description of Ψ , $D_{\lambda_N^+}$ is a constituent factor of $\Psi(D_{\lambda})(N)$. Additionally, all other constituent factors of $\Psi(D_{\lambda})(N)$ are D_{μ} for $\mu > \lambda_N^+$. Moreover, our construction of (8) from (10) implies that the adjoint (9) defines an isomorphism on the constituent factors $D_{\lambda_N^+}$.

Now, by this Lemma, for a p-regular Young diagram λ , we have a natural (non-zero) surjection

$$\beta_{\lambda}: \Phi(M_{\lambda}) \to D_{\lambda}.$$

Then since Φ and Ψ are adjoint, we obtain a non-zero map

$$\iota_{\lambda}: M_{\lambda} \to \Psi(D_{\lambda}).$$

Proof of Theorem 1. To prove the first statement of Theorem 1, we need to show that the image $Im(\iota_{\lambda})$ is a irreducible generic KFI-module. Suppose there exists some non-zero FI-module E with a surjection

(11)
$$Im(\iota_{\lambda}) \twoheadrightarrow E$$
.

First, composing with the natural surjection

$$M_{\lambda} \twoheadrightarrow Im(\iota_{\lambda})$$

gives a surjection

$$M_{\lambda} \twoheadrightarrow E$$
.

Hence, at each FI-degree N, we have a surjection

$$E(N) \to D_{\lambda_N^+}$$
.

Then, by Lemma 3, we obtain a non-zero surjection

$$\Phi(E) \twoheadrightarrow D_{\lambda}$$
.

Thus, the adjunction between Φ and Ψ gives a non-zero map

(12)
$$E \to \Psi(D_{\lambda}).$$

On the other hand, we also have a natural injection

$$Im(\iota_{\lambda}) \hookrightarrow \Psi(D_{\lambda}),$$

which factors through (12), giving a commuting diagram

(since the diagram commutes on the adjoint level). Thus, (11) must also be injective and hence, an isomorphism. Thus, $Im(\iota_{\lambda})$ is irreducible.

We shall now prove that every simple generic finitely generated FImodules E is isomorphic to $Im(\iota_{\lambda})$ for some λ .

Let D_{μ} be the bottom factor of some E(n). By the Noetherian property, we may assume that D_{μ} is non-torsion and hence without loss of generality, it generates E(n). Thus, by the Pieri rule applied to S_{μ} , which surjects onto D_{μ} , we have $M_{\nu} \to E$ for some Young diagram ν (not necessarily p-regular). However, by James [7], Theorem A, all constituent factors D_{ρ} of $M_{\mu}(m)$ (and hence E(m)) have $\rho \trianglerighteq (\nu_m^+)^r$ (where the superscript r denotes the Young diagram obtained by shifting the boxes as far as possible along each ladder). Also, for m >> 0, $(\nu_m^+)^r = (\nu^r)_m^+$. Therefore, if we denote $\rho = (\rho_1, \rho_2, \dots, \rho_k)$, $\overline{\rho} = (\rho_2, \dots, \rho_k)$, the number $|\overline{\rho}| = \rho_2 + \dots + \rho_k$ is bounded above by a number B (independent of m).

Now without loss of generality, E(m) generates E for every m. Then $\Phi(E)(N)$ is the colimit of the sequence

(13)
$$\Phi(E)(N) = \operatorname{colim}(\cdots \twoheadrightarrow E(m)_{\Sigma_{m-N}} \twoheadrightarrow E(m+1)_{\Sigma_{m+1-N}} \twoheadrightarrow \cdots).$$

Let D_{μ_m} be a top factor of E(m). Then by [8], Theorem 1, $D_{\overline{\mu_n}}$ is a top factor of $E(m)_{\Sigma_{m-N}}$. However, by the upper bound on the total number of boxes $|\overline{\mu_m}|$, the Young diagrams $\overline{\mu_m} = \lambda$ coincide for infinitely many values of m. We see from (13) that for $N = |\overline{\mu_m}|$, $\Phi(E)(N)$ has top factor D_{λ} .

Thus, we have a morphism of FI-modules

$$\Phi(E) \twoheadrightarrow D_{\lambda}$$
.

Now consider the non-zero adjoint morphism

(14)
$$E \to \Psi(D_{\lambda}),$$

which is therefore (generically) injective, since E was assumed to be simple. By Lemma 3, for infinitely many n, the top constituent factor

$$D_{\mu_n} = D_{\lambda_n^+}$$

survives in the image of (14) (meaning that it will be present in the image of E_n divided by the image of $Ker(E_n \to D_{\lambda_n^+})$). Therefore, the image of (14) cannot have 0 intersection with the image of

$$M_{\lambda} \to \Psi(D_{\lambda})$$

(whose constituent factors are strictly dominant to λ_n^+ for all n). Thus, by the Schur lemma,

$$E \cong Im(\iota_{\lambda}).$$

To show that $Im(\iota_{\lambda}) \ncong Im(\iota_{\mu})$ for two different *p*-regular Young diagrams λ , μ , we note that λ_N^+ , μ_N^+ are both *p*-regular for N >> 0 and the surjection

$$M_{\lambda} \to Im(\iota_{\lambda})$$

gives a surjection

$$S_{\lambda_N^+} woheadrightarrow Im(\iota_\lambda)(N)$$

thus giving a surjection

$$Im(\iota_{\lambda})_N \twoheadrightarrow D_{\lambda_N^+}.$$

However, there is no surjection $S_{\lambda_N^+} \twoheadrightarrow D_{\mu_N^+}$ for $\mu \neq \lambda$ *p*-regular, $N > |\lambda| + \lambda_1$, $|\mu| + \mu_1$.

3. Proof of Theorem 2 at p=2

First, note that we have a short exact sequence

(15)
$$0 \to S_{(4)} \to S_{(3,1)} \to D_{(3,1)} \to 0.$$

Thus,

$$dim(D_{(3,1)}) = dim(S_{(3,1)}) - dim(S_{(4)}) = 3 - 1 = 2,$$

which is also the dimension of $S_{(2,2)}$. Since, at p=2, we have

$$(3,1) = (2,2)^r$$

(where λ^r denotes the Young diagram obtained from shifting the boxes of λ as high as possible along each ladder (see [7]), $D_{(3,1)}$ is a constituent factor of $S_{(2,2)}$ (by [7], Theorem A). Thus,

$$D_{(3,1)} = S_{(2,2)}.$$

By Lemma 3, we have a natural surjection

$$\Phi(M_{(3,1)}) \twoheadrightarrow D_{(3,1)} = S_{(2,2)}.$$

Now we claim the following

Proposition 4. There is a short exact sequence

$$0 \to M_{(2,2)} \to \Psi(D_{(3,1)}) \to M_{(2)} \to 0.$$

First, note that by the Pieri rule, the restriction of the $K\Sigma_4$ -module $D_{(3,1)} = S_{(2,2)}$ to Σ_3 is the Specht module $S_{(2,1)}$ (since the only removable box in (2,2) is the bottom right corner). We thus obtain that the induction of $S_{(2,1)}$ has constituent factors

(16)
$$D_{(3,1)}, D_{(4)}, D_{(3,1)}, D_{(4)}, D_{(3,1)},$$

listed from top to bottom (i.e., with the piece that can be considered as a quotient listed first, and the piece that can be considered a submodule listed last).

Lemma 5. The unit of adjunction

$$S_{(2,2)} \to Ind_{\Sigma_4}^{\Sigma_3}(S_{(2,2)}|_{\Sigma_3})$$

maps $S_{(2,2)}$ isomorphically to the bottom $D_{(3,1)}$ piece (16) (coming from $S_{(2,1,1)}$).

Proof. We can identify the non-zero elements of $S_{(2,2)}$ with 4-cycle subgraphs of the complete graph on vertices $[4] = \{1,2,3,4\}$. On the other hand, $S_{(2,1)}$ can be identified with the submodule of $K^{[3]}$ consisting of vectors whose coordinates have sum 0. Thus, $Ind_{\Sigma_4}^{\Sigma_3}(S_{(2,1)})$ is a submodule of $Ind_{\Sigma_4}^{\Sigma_3}(K^{[3]})$, which is identified with $Map_{FI}([3],[4])$ (where by our convention, the image of 1 is the new coordinate and the image of 2 comes from the coordinate in [3]). We encode an injective map $[2] \to [4]$ by a 4-tuple where we write i for the image of i = 1, 2, and 0's in the remaining places. Under these conventions, our unit of adjunction maps

(17)
$$S_{(2,1)} \ni \{1,2\} + \{2,3\} + \{3,4\} + \{4,1\} \longmapsto (2,0,0,1) + (0,0,1,2) + (1,0,0,2) + (0,1,2,0) + (0,0,2,1) + (0,2,1,0) + (1,2,0,0) + (2,1,0,0).$$

On the other hand, in this notation, the generators of the Specht module $S_{(2,1,1)} \subseteq \operatorname{Map}_{FI}([2],[4])$ can be identified with, choosing $i \in [4]$, the sum q_i of the six 4-tuples which are non-zero on i. We then see that (17) lies in this submodule, and namely, is equal to $q_1 + q_3$.

The images under the unit of adjunction of other elements of $S_{(2,2)}$ then also lie in the submodule

$$S_{(2,1,1)} \subseteq Ind_{\Sigma_4}^{\Sigma_3}(S_{(2,1)}).$$

Proof of Proposition 4. Now for induction from $S_{(2,2)}$ to a degree N >> 0, the Pieri rule gives pieces (from top to bottom)

$$S_{(N-2,2)}, S_{(N-3,2,1)}, S_{(N-4,2,2)}.$$

The middle summand is eliminated by the above observation using the description of the functor Ψ in the beginning of Section 2 as the limit of the Diagram (7). Thus, we get generically

$$0 \to M_{(2,2)} \to \Psi(D_{(3,1)}) \to M_{(2)} \to 0.$$

Now any map of FI-modules

$$M_{(3,1)} \to M_{(2)}$$

is 0, since the map is necessarily 0 in degree 7 (since the composition factors of $S_{(3,3,1)}$ are $D_{(7)}$ and $D_{(4,2,1)}$, while $S_{(5,2)}$ is irreducible. Hence, the map $\iota_{(3,1)}$ facotrs through

$$0 \longrightarrow M_{(2,2)} \xrightarrow{\kappa} \Psi(S_{(2,2)})$$

for some map

$$\kappa: M_{(3,1)} \to M_{(2,2)}.$$

At an FI-degree N, denote the cokernel

$$C = Coker(\kappa).$$

We claim the following

Lemma 6. In degrees >> 0, generically,

$$C=M_{\emptyset}$$
.

To prove this Lemma, we will need calculations of $\Psi(S_{(4)})$ and $\Psi(S_{(3,1)})$, which we make in the following propositions:

Proposition 7. Generically, there is a short exact sequence

$$0 \to M_4 \to \Psi(S_{(4)}) \to M_\emptyset \to 0.$$

Proof. First, the restriction of the Specht module $S_{(4)}$ to Σ_3 is exactly the Specht module $S_{(3)}$, whose induction to Σ_4 has pieces (listed from top to bottom) $S_{(4)}$, $S_{(3,1)}$. The unit of adjunction (between restriction and induction) sends $S_{(4)}$ monomorphically to the lowest piece.

Now the induction of $S_{(4)}$ to $N \geq 8$ has pieces (listed from top to bottom)

$$S_{(N)}, S_{(N-1,1)}, S_{(N-2,2)}, S_{(N-3,3)}, S_{(N-4,4)}.$$

The above observation, along with our description of the functor Ψ , eliminates all but the first and last piece. Thus, we get generically

$$0 \to M_4 \to \Psi(S_{(4)}) \to M_\emptyset \to 0.$$

Proposition 8. We have

$$\Psi(S_{(3,1)}) = M_{(3,1)}.$$

Proof. First, note that the restriction of the Specht module $S_{(3,1)}$ to Σ_3 has pieces $S_{(3)}$, $S_{(2,1)}$. The induction back to Σ_4 of the first piece is $S_{(3,1)}$, to which the bottom piece $D_{(4)}$ of $S_{(3,1)}$ injects by the unit of adjunction. The piece $S_{(2,1)}$ inducts to $S_{(3,1)}$ and $S_{(2,1,1)}$, to which the top piece $S_{(2,2)}$ of $S_{(3,1)}$ injects.

Now the induction of $S_{(3,1)}$ to $N \geq 8$ has pieces

$$S_{(N-1,1)}, S_{(N-2,2)}, S_{(N-2,1,1)}, S_{(N-3,3)}, S_{(N-3,2,1)}, S_{(N-4,3,1)}.$$

The first, second, and fourth price are eliminated by the first part of the unit of adjunction (to the induction of $S_{(3)}$) and the third and fourth pieces are eliminated by the second part of the unit of adjunction (to the induction of $S_{(2,1,1)}$), similarly as in the proofs of Proposition 4 and Proposition 7. Thus,

$$\Psi(S_{(3,1)}) = M_{(3,1)}.$$

Proof of Lemma 6. Recall again the exact sequence

$$0 \to S_{(4)} \to S_{(3,1)} \to S_{(2,2)} \to 0.$$

Since Ψ is right adjoing to Φ , it is left exact, so we obtain

$$0 \longrightarrow \Psi(S_{(4)}) \longrightarrow \Psi(S_{(3,1)}) \stackrel{\rho}{\longrightarrow} \Psi(S_{(2,2)}).$$

Then ρ factors through κ (since by above, $\Psi(S_{(3,1)}) = M_{(3,1)}$). Thus, at every FI-degree N >> 0, the dimension of C(N) equals

$$dim(M_{(2,2)}(N)) - dim(M_{(3,1)}(N)) + dim(\Psi(S_{(4)})(N)) =$$

$$= dim(M_{(2,2)}(N)) - dim(M_{(3,1)}(N)) + dim(M_{\emptyset}(N)) + dim(M_{(4)}(N)) =$$

$$= dim(M_{\emptyset}(N)) = dim(S_{(N)}) = 1$$

(since, by the hook length formula,

$$dim(S_{(k,3,1)}) = \frac{(k+4)(k+3)(k+1)(k-2)}{8}$$
$$dim(S_{(k,4)}) = \frac{(k+4)(k+3)(k+2)(k-3)}{24}$$

and

$$dim(S_{(k,3,1)}) - dim(S_{(k,4)}) = \frac{(k+4)(k+3)k(k-1)}{12}) = dim(S_{(k,2,2)}).$$

Hence, C(N) is a $K\Sigma_N$ -module with dimension 1. Thus, for every N, $C(N) = S_{(N)}$, proving that, as FI-modules,

$$C = M_{\emptyset}$$
.

Finally, to prove Theorem 2, we let $R_{\lambda} = K \Sigma_{\text{row}}^{\lambda}$ where $\Sigma_{\text{row}}^{\lambda}$ is the subgroup of $\Sigma_{|\lambda|}$ of permutations preserving the rows of a Young diagram λ .

Proof of Theorem 2. Suppose $N \geq 8$ is odd. We consider the morphism

(18)
$$\theta_{T_1}: R_{(N-3,2,1)} \to R_{(N-4,2,2)}$$

of [6] given by the tableau T_1 with rows

3	3	2	1	 1
2	1			
1				

We calculate that, using the notation of [6],

$$N_{1,1}(T_1) = N - 6$$
, $N_{2,1}(T_1) = 1$, $N_{3,1}(T_1) = 2$,
 $N_{1,2}(T_1) = 1$, $N_{2,2}(T_1) = 1$, $N_{3,2}(T_1) = 0$,
 $N_{1,3}(T_1) = 1$, $N_{2,3}(T_1) = 0$, $N_{3,3}(T_1) = 0$,

and thus T_1 satisfies the condition of Theorem 24.6, (ii), [6] (since N is assumed to be odd). Hence, by Theorem 24.6, (ii), [6], the restriction of θ_{T_1} is a non-zero homomorphism

$$\theta_{T_1}|_{S_{(N-3,2,1)}}:S_{(N-3,2,1)}\to S_{(N-4,2,2)}.$$

Since T_1 is reverse semistandard, by the proof of Theorem 24.6,

$$Im(\theta_{T_1}|_{S_{(N-3,2,1)}}) \subseteq S_{(N-4,2,2)}$$

contains the constituent factor $D_{(N-3,2,1)}$. Therefore, this constituent factors must be present in $Im(\iota_{(3,1)})(N) \cong Im(\kappa)(N)$, which is therefore not simple, since it also contains the constituent factor $D_{(N-4,3,1)}$.

Suppose $N \geq 8$ is even. We consider the morphism

(19)
$$\theta_{T_2}: R_{(N-2,1,1)} \to R_{(N-4,2,2)}$$

given by the tableau T_2 with rows

3	3	2	1	 1
2				
1				

We calculate, using the notation of [6],

$$N_{1,1}(T_1) = N - 5$$
, $N_{2,1}(T_1) = 1$, $N_{3,1}(T_1) = 2$,
 $N_{1,2}(T_1) = 0$, $N_{2,2}(T_1) = 2$, $N_{3,2}(T_1) = 0$,
 $N_{1,3}(T_1) = 1$, $N_{2,3}(T_1) = 0$, $N_{3,3}(T_1) = 0$,

and thus, again, T_2 satisfies the considiton of Theorem 24.6, (ii), [6] (since N is assumed to be even). Hence, the restriction of θ_{T_2} is a non-zero homomorphism

$$\theta_{T_2}|_{S_{(N-2,1,1)}}: S_{(N-2,1,1)} \to S_{(N-4,2,2)}.$$

Now all constituent factors of $S_{(N-2,1,1)}$ are of the form D_{λ} where $\lambda \rhd (N-2,1,1)$ (by Theorem 12.1 of [6]). Then $\theta_{T_2}|_{S_{(N-2,1,1)}}$ must be non-zero on at least one such D_{λ} , and therefore D_{λ} must be a constituent factor of $Im(\theta_{T_2}|_{S_{(N-2,1,1)}}) \subseteq S_{(N-4,2,2)}$. Hence, this D_{λ} is also a constituent factor of $Im(\iota_{(3,1)}) \cong Im(\kappa)$. By Theorem 24.4 of [6], $\lambda \neq (N)$. In addition, since $\lambda \rhd (N-2,1,1)$, we also have $\lambda \neq (N-4,3,1)$. Therefore, since $Im(\iota_{(3,1)})(N) \cong Im(\kappa)(N)$ also contains the constituent factor $D_{(N-4,3,1)}$, it can not be simple.

4. Proof of Theorem 2 at p > 2

Suppose p > 2. First, we have the following

Proposition 9. There is a short exact sequence

$$0 \to S_{(p+1,1)} \to S_{(p,2)} \to D_{(p,2)} \to 0.$$

Proof. First note that since (p, 2) contains a bad box (see [2, 3]), $S_{(p,2)}$ must be reducible. It therefore contains a submodule of the form D_{λ} where $\lambda \rhd (p, 2)$. The only options for λ are (p + 1, 1) and (p + 2). By [6], Theorem 24.4, $D_{(p+2)} = S_{(p+2)}$ is not a submodule of $S_{(p,2)}$ since p is not -1 mod p. Thus, $D_{(p+1,1)} = S_{(p+1,1)}$ (the equality holds since (p + 1, 1) has no bad boxes) is a submodule of $S_{(p,2)}$.

To prove the Proposition, by [6], Section 11, it suffices to show

(20)
$$S_{(p,2)}^{\perp} \cap S_{(p,2)} = S_{(p+1,1)},$$

where $S_{(p,2)}^{\perp}$ is the orthogonal complement of $S_{(p,2)}$ in $R_{(p,2)}$ (the standard permutation module basis of $R_{(p,2)}$ is orthonormal). By the above discussion, we already know $S_{(p,2)}^{\perp} \cap S_{(p,2)} \supseteq S_{(p+1,1)}$ in (20).

To prove the other inclusion in (20), first, by the hook formula, we have

$$dim(S_{(p,2)}) = \frac{(p+2)!}{(p+1)p(p-2)!2} = \frac{(p+2)(p-1)}{2},$$

and we also have

$$dim(R_{(p,2)}) = \frac{(p+2)!}{p!2} = \frac{(p+2)(p+1)}{2}.$$

So

(21)
$$dim(R_{(p,2)}) - dim(S_{(p,2)}) = \frac{2(p+2)}{2} = p+2.$$

Let

$$V_n = K\Sigma_n/\Sigma_{n-1} = R_{(n-1,1)}.$$

Then we have a homomorphism

$$\psi_{1,1}: R_{(p,2)} \to V_{p+2}$$

and $S_{(p,2)} \subseteq ker(\psi_{1,1})$ (by [6], Corollary 17.18), where $\psi_{1,1}$ is defined as a sum of standard basis elements obtained by moving one box from the second row to the first row. In fact, in this case $\psi_{1,1}$ is surjective since its image contains sums of every pair of standard basis elements in V_{p+2} and p > 2.

Thus, since $dim(V_{p+2}) = p + 2$, by (21), we have a short exact sequence

$$0 \longrightarrow S_{(p,2)} \longrightarrow R_{(p,2)} \xrightarrow{\psi_{1,1}} V_{p+2} \longrightarrow 0.$$

Hence, $S_{(p,2)}^{\perp} \cong V_{p+2}$, and in particular,

$$S_{(p,2)}^{\perp} \cap S_{(p,2)} \le p+2.$$

To prove (20), since we already know the \supseteq -inclusion, it suffices to show

$$S_{(p,2)}^{\perp} \cap S_{(p,2)} \le p+1 = dim(S_{(p+1,1)}).$$

To this end, it suffices to find an element in $S_{(p,2)}^{\perp} \setminus S_{(p,2)}$. Consider the map

$$R_{(p,2)} \to K$$

given by sending a basis element to $1 \in K$ if it has a 2 in a given position and to $0 \in K$ else. This is equivalent to taking the dot product with the sum v of such basis elements, of which there are p+1. Thus, the dot product of the element v with itself is p+1 which is non-zero, and thus, v is not in $S_{(p,2)} = ker(\psi_{1,1})$. Thus, (20) is proven, concluding the proof of the Proposition.

Again, since Ψ is a right adjoint, it is left exact, giving

(22)
$$0 \to \Psi(S_{(p+1,1)}) \to \Psi(S_{(p,2)}) \to \Psi(D_{(p,2)}).$$

We then claim the following

Proposition 10. We have

$$\Psi(S_{(p+1,1)}) = M_{(p+1,1)}.$$

Proof. Letting

$$V_n = K(\Sigma_n/\Sigma_{n-1}) \cong K^n$$

we have

$$S_{(p+1,1)} = K\{(v_1, \dots, v_{p+2}) \in V_{p+2} | \sum_{i=1}^{p+2} v_i = 0\}.$$

Consider the unit of adjunction between induction and restriction

(23)
$$S_{(p+1,1)} \to Ind_{\Sigma_{p+2}}^{\Sigma_{p+1}} Res_{\Sigma_{p+1}}^{\Sigma_{p+2}} S_{(p+1,1)}.$$

Using the isomorphism

$$Ind_{\Sigma_{p+2}}^{\Sigma_{p+1}} Res_{\Sigma_{p+1}}^{\Sigma_{p+2}} S_{(p+1,1)} \cong K(\Sigma_{p+2}/\Sigma_{p+1}) \otimes_K S_{(p+1,1)}$$

the map (23) can be described as sending $(v_1, ..., v_{p+2}) \in S_{(p+1,1)}$ to $(1, 1, ..., 1) \otimes (v_1, ..., v_{p+2})$.

Now the restriction of $S_{(p+1,1)}$ to Σ_{p+1} has pieces $S_{(p+1)}$, $S_{(p,1)}$, with $S_{(p+1)}$ above $S_{(p,1)}$. The image of (23) must be contained in the induction of $S_{(p,1)}$ since any $(1,\ldots,1)\otimes(v_1,\ldots,v_{p+2})$ in the image of (23) can be expressed as the sum

$$\sum_{i=1}^{p+2} (0, \dots, 0, 1, 0, \dots, 0) \otimes (v_1, \dots, v_{i-1}, 0, v_{i+1}, \dots, v_{p+2})$$

(where in the *i*th summand, the 1 is in the *i*th place).

The only piece of the induction of $S_{(p+1,1)}$ to N >> 0 that is not a piece in the induction of $S_{(p,1)}$ is $S_{(N-p-2,p+1,1)}$. Thus, by the description (7) of Ψ ,

$$\Psi(S_{(p+1,1)}) = M_{(p+1,1)}.$$

Proof of Theorem 2: Fix some N >> 0. Denote by φ the first map of (22). By Proposition 10, the injection is of the form

$$\varphi: S_{(N-p-2,p+1,1)} \to \Psi(S_{(p,2)})(N).$$

We therefore obtain the short exact sequence

(24)
$$0 \to \varphi^{-1}(S_{(N-p-2,p,2)}) \to S_{(N-p-2,p,2)} \to (Im(\iota_{(p,2)}))(N) \to 0.$$

(For the sake of brevity, let us write k = N - p - 2.)

Now consider the map

(25)
$$\theta_T: R_{(\left|\frac{k}{n}\right|p+p,k-\left|\frac{k}{n}\right|p+1,1)} \to R_{(k,p,2)}$$

(again using the notation and definitions given in [6]) where T is the reverse semistandard tableau

3	3	2	 2	2		2	1	 1
2	1	1	 1		-			
1								

which has

$$N_{1,1}(T) = \left\lfloor \frac{k}{p} \right\rfloor p - 1, \ N_{2,1}(T) = p - 1, \ N_{3,1}(T) = 2$$

$$N_{1,2}(T) = k - \left\lfloor \frac{k}{p} \right\rfloor p, \ N_{2,2}(T) = 1, \ N_{3,2}(T) = 0$$

$$N_{1,3}(T) = 1, \ N_{2,3}(T) = 0, \ N_{3,3}(T) = 0.$$

This satisfies the conditions of Theorem 24.6, (ii), [6] and therefore (25) restricts to a non-zero map

$$\widehat{\theta_T}: S_{\left(\left|\frac{k}{p}\right|p+p,k-\left|\frac{k}{p}\right|p+1,1\right)} \to S_{(k,p,2)}.$$

It therefore suffices to show $\widehat{\theta_T}$ does not lift to a map

(26)
$$S_{(\left|\frac{k}{p}\right|p+p,k-\left|\frac{k}{p}\right|p+1,1)} \to \varphi^{-1}(S_{(k,p,2)}) \subseteq S_{(k,p+1,1)},$$

for (24) (since then $(Im(\iota_{(p,2)}))(N)$ will have constituent factors $D_{(k,p,2)}$ and D_{λ} for some λ dominant or equal to $(\left\lfloor \frac{k}{p} \right\rfloor p + p, k - \left\lfloor \frac{k}{p} \right\rfloor p + 1, 1)$ and therefore be reducible).

Suppose a lifting (26) exists. If p divides k, then (k, p+1, 1) contains no bad boxes, so $S_{(k,p+1,1)}$ is irreducible, thus already forming a contradiction since then (26) is 0. So, suppose p does not divide k. By [6], Theorem 13.13, it suffices to show all linear combinations of $\widehat{\theta}_T$ for semistandard $(\left\lfloor \frac{k}{p} \right\rfloor p+p, k-\left\lfloor \frac{k}{p} \right\rfloor p+1, 1)$ -tableaux T of type (k, p+1, 1) which have image contained in the Specht module $S_{(k,p+1,1)}$ are 0. The only semistandard $(\left\lfloor \frac{k}{p} \right\rfloor p+p, k-\left\lfloor \frac{k}{p} \right\rfloor p+1, 1)$ -tableau T of type (k, p+1, 1) is

We will prove that $Im(\widehat{\theta_T}) \nsubseteq S_{(k,p+1,1)}$ using [6], Corollary 17.18 by finding i, v with $\psi_{i-1,v}(Im(\widehat{\theta_T})) \neq 0$, where

$$\psi_{i-1,v}: R_{\lambda} \to R_{(\lambda_1,\dots,\lambda_{i-2},\lambda_{i-1}+\lambda_i-v,v,\lambda_{i+1},\dots)}$$

is obtained by moving $\lambda_i - v$ boxes from the *i*th row to the (i-1)th row.

Let us choose i=2, v=p. Applying $\psi_{i-1,v}$ then involves summing over the different tableaux T' arising from taking un-signed row permutations and then taking the sum of signed column permutations of tableaux T'' arising from T' by replacing one 2 in (27) by a 1.

It then suffices to show that there exists a T'' with no two numbers the same in any column and this T'' arises a number of times that is not divisible by p. Consider the T'' given as the $\left(\left\lfloor \frac{k}{p} \right\rfloor p + p, k - \left\lfloor \frac{k}{p} \right\rfloor p + 1, 1\right)$ -tableau

	2	1	 1	1	 1	2	 2
(28)	1	2	 2				
	3						

This can arise in two fashions:

- 1. T' arises by moving the first 2 in the first row to the first column and T'' then arises by replacing the first 2 in the second row with a 1. This yields one positive summand.
- 2. T' arises by moving the first 2 in the first row to any of the first k+1 spots of the first row (including the possibility of letting it stay in the same spot), and T'' then arises by replacing this same 2 by a 1, and switching the 1 and 2 in the first column. This gives k+1 negative summands.

Thus, the summand T'' arises exactly -k times. By our assumption, p does not divide k (and thus also does not divide -k), hence concluding the proof of the Theorem.

References

- [1] T.Church, J.S.Ellenberg, B.Farb: FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833-1910.
- [2] M.Fayers: Reducible Specht modules, J. Algebra, 280 (2004), no. 2, 500-504.
- [3] M.Fayers: Irreducible Specht modules for Hecke algebras of type A, Adv. Math., 193 (2005), no. 2, 438-452.
- [4] P.Gabriel. Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323-448.
- [5] W.L.Gan, L.Li: Coinduction functor in representation stability theory, J. London Math. Soc., 92 (2015), no. 3, 689-711.
- [6] G.D.James: The Representation Theory of the Symmetric Groups, Springer Lecture Notes in Mathematics 692, Springer (1980)
- [7] G.D. James: On the Decomposition Matrices of the Symmetric Groups, II, $\it J.$ $\it Algebra$ 43 (1976), 45-54.

- [8] G.D.James: On the Decomposition Matrices of the Symmetric Groups, III, *J. Algebra* 71 (1981), 115-122.
- [9] G.D.James, A.Mathas: The Irreducible Specht Modules in Characteristic 2, Bull. London Math. Soc. 31 (1999), no. 4, 457-462
- [10] S.Kriz: On the local cohomology of L-shaped integral FI-modules, preprint, 2021
- [11] R.Nagpal: private communication, 2021.
- [12] L.Li, E.Ramos: Depth and the local cohomology of FI_G -modules, Adv. Math. 329 (2018), 704-741.
- [13] S.V.Sam, A.Snowden: *GL*-Equivariant Modules Over Polynomial Rings in Infinitely Many Variables, *Trans. Am. Math. Soc.* 368 (2016), no. 2, 1097-1158.
- [14] J-P.Serre: Faisceaux Algébriques Cohérents, Ann. Math. 2nd Ser., 61, No. 2. (1955), 197-278.

Department Mathematics, University of Michigan, $530~\mathrm{Church}$ Street, Ann Arbor, MI 48109-1043