EXOPLANETS IDENTIFICATION PROJECT

OBJECTIVE

Identify stars that could be orbited by an exoplanet.

Exoplanets are planets outside of our solar system. Identifying exoplanets is the first step to potentially finding life outside of our solar system, potentially an intelligent form, and potentially one that can release signals into space).

DATA

Training set

5,087 star observations, **1** label (0 or 1)**, 3197** luminosity readings for each star

Testing set

570 star observations, **1** label (0 or 1)**, 3197** luminosity readings for each star

No outliers or missing values detected

HOW?

This is a classification problem: we need to classify stars as being orbited by an exoplanet (1) or not (0).

Exoplanets are detected by observing the luminosity of stars and seeing whether or not they dim at a regular interval. If so, it's possible that this dim is caused by a planet orbiting around it.

VISUALIZING ORBIT

Sinusoidal movement

luminosity dims as a planet moves in front of the star and increases when it passes behind.

Similar highs and lows.

VISUALIZING ORBIT

VISUALIZING ORBIT

CHALLENGE

Imbalance

Exoplanets are rare.

In our **training** dataset, we have **5,087** observations but only **37** exoplanets.

In our **testing** dataset, we have **570** observations but only **5** exoplanets.

We could just predict that no star is orbited by an exoplanet and reach a **99.12% accuracy**, while still completely **failing** to meet our objective (**to identify exoplanets**).

VISUALIZING IMBALANCE

SOLUTION

SMOTE

(Synthetic Minority Oversampling Technique)

Artificially **increase the number of positive observations** in the dataset

by **taking samples** of the feature space for each target class and its **nearest neighbors**,

and **generating new examples** that combine features of the target case with features of its neighbors.

SOLVED IMBALANCE

APPROPRIATE METRIC

Precision

True Positives

True Positives + False Positives

MODELING - LOGISTIC REGRESSION

Before SMOTE

MODELING - LOGISTIC REGRESSION

On SMOTE data

Confusion Matrix - Logistic regression with SMOTE (training data)

Predicted label

Precision: 1

MODELING - LOGISTIC REGRESSION

On test (trained on SMOTE)

Confusión Matrix - Logistic regression with SMOTE (testing data)

Before SMOTE

On SMOTE data

On test (trained on SMOTE)

Confusion Matrix - SVM with SMOTE (testing data)

Before SMOTE

Before SMOTE - ROC curve

On SMOTE data

Confusion Matrix - Decision tree with SMOTE (training data)

On test (trained on SMOTE)

Confúsion Matrix - Decision tree with SMOTE (testing data)

Before SMOTE - ROC curve

CONCLUSION

- 1. Logistic regression
- 2. Decision tree
- 3. Support Vector Machine

- No model is actually satisfying
- **Testing** set with 5 observations might be **too small** as well
- Models performing well on SMOTE data still misclassify almost half of exoplanets

NEXT STEPS

- Get more data from the Kepler mission
- Try some more, different models (random forest)
- Try completely **different modeling techniques** (deep learning)
- Try other techniques for dealing with imbalance

Hopefully we can try some of these in the written report.