Import Libraries

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
```

Load the dataset

	remperature	Revenue	ш
0	24.566884	534.799028	ıl.
1	26.005191	625.190122	
2	27.790554	660.632289	
3	20.595335	487.706960	
4	11.503498	316.240194	

Splitting the dataset into the Training set and Test set

```
1 from sklearn.model_selection import train_test_split
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.05)
```

Fitting the decision tree

```
1 # Fitting Decision Tree Regression to the dataset
2 from sklearn.tree import DecisionTreeRegressor
3 regressor = DecisionTreeRegressor()

1 regressor.fit(X_train.reshape(-1,1), y_train.reshape(-1,1))
2 y_pred = regressor.predict(X_test.reshape(-1,1))
3 y_pred
4 df = pd.DataFrame({'Real Values':y_test.reshape(-1), 'Predicted Values':y_pred.reshape(-1)})
5 df
```

	Real Values	Predicted Values	
0	212.483559	198.121563	11.
1	540.977511	594.804871	+/
2	625.190122	570.577875	
3	420.966453	432.819795	
4	581.262016	604.626673	
5	550.055216	516.548601	
6	221.400252	216.183462	
7	350.629036	362.515216	
8	506.432135	501.345330	
9	665.672676	628.453211	
10	437.251993	498.252146	
11	402.455320	396.935648	
12	755.818399	685.654655	
13	905.477604	898.805423	
14	554.742974	612.243721	
15	596.889105	563.381633	
16	644.488633	654.197406	
17	475.538209	498.252146	
18	409.493848	396.935648	
19	623.248701	612.803770	
20	366.247714	367.052376	
21	279.866148	274.065619	
22	571.434257	587.221246	
23	315.646581	367.940744	
24	32.546619	10.000000	

Next steps: View recommended plots

Visualization Decision Tree

```
1 # Visualising the Decision Tree Regression Results
2 X_grid = np.arange(min(X), max(X), 0.01)
3 X_grid = X_grid.reshape((len(X_grid), 1))
4 plt.scatter(X_test, y_test, color = 'red')
5 plt.scatter(X_test, y_pred, color = 'green')
6 plt.title('Decision Tree Regression')
7 plt.xlabel('Temperature')
8 plt.ylabel('Revenue')
9 plt.show()
```



```
1 plt.plot(X_grid, regressor.predict(X_grid), color = 'black')
2 plt.title('Decision Tree Regression')
3 plt.xlabel('Temperature')
4 plt.ylabel('Revenue')
5 plt.show()
```

Decision Tree Regression 1000 800 400 200 0 -

20

Temperature

30

40

```
1
2
    # arange for creating a range of values
    # from min value of X to max value of X
4
   # with a difference of 0.01 between two
5
    # consecutive values
    X_{grid} = np.arange(min(X), max(X), 0.01)
7
8
   # reshape for reshaping the data into
    # a len(X_grid)*1 array, i.e. to make
9
    # a column out of the X_grid values
10
11
    X_grid = X_grid.reshape((len(X_grid), 1))
12
13
    # scatter plot for original data
14
    plt.scatter(X, y, color = 'red')
15
    # plot predicted data
16
    plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
17
18
    # specify title
19
    plt.title('Profit to Production Cost (Decision Tree Regression)')
20
21
    # specify X axis label
22
    plt.xlabel('Production Cost')
23
24
    # specify Y axis label
25
    plt.ylabel('Profit')
26
27
    # show the plot
28
    plt.show()
```

10

0

1 !pip install graphviz

Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (0.20.3)

```
1
    from sklearn.datasets import load iris
    from sklearn.tree import DecisionTreeClassifier, export_graphviz
2
3
    import graphviz
4
5
    # Load the Iris dataset
6
    iris = load iris()
7
    X = iris.data
8
    y = iris.target
    # Train a decision tree classifier
10
    clf = DecisionTreeClassifier()
11
12
    clf.fit(X, y)
13
    # Export the decision tree as a DOT file
14
    dot_data = export_graphviz(clf, out_file=None,
15
16
                                feature_names=iris.feature_names,
17
                                class_names=iris.target_names,
18
                                filled=True, rounded=True,
19
                                special_characters=True)
20
    # Visualize the decision tree
21
22
    graph = graphviz.Source(dot_data)
23
    graph.render('decision_tree', format='jpg', cleanup=True)
    'decision_tree.jpg'
```


squared_error = 0.0	samples = 1	value = 195.736	
d_error = 0.0	squared_error = 0.0	samples = 1	value = 191.623
squared_error = 0.0	samples = 1	value = 190.711	

squared_error = 0.0 samples = 1 value = 199.555 squared_error = 0.0 samples = 1 value = 216.183

sqı Vi