

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced
Subsidiary Level
In Chemistry (WCH11)
Paper 1: Structure, Bonding and Introduction to
Organic Chemistry

Section A

Question	Answer	Mark
number		
1	The only correct answer is B (C ₃ H ₈)	1
	A is incorrect because the empirical formula is CH ₂	
	\boldsymbol{c} is incorrect because the empirical formula is C_2H_5	
	D is incorrect because the empirical formula is CH ₂	

Question	Answer	Mark
number		
2	The only correct answer is C (BH ₃)	1
	A is incorrect because there are 1.51×10^{23} atoms	
	B is incorrect because there are 4.52×10^{23} atoms	
	D is incorrect because there are 7.53×10^{23} atoms	

Question number	Answer	Mark
3	The only correct answer is A (0.1 g dm ⁻³ HCl)	1
	B is incorrect because HCl has a higher concentration of chloride ions	
	c is incorrect because HCl has a higher concentration of chloride ions	
	D is incorrect because HCl has a higher concentration of chloride ions	

Question	Answer	Mark
number		
4	The only correct answer is D (CaCO ₃ + 2NaCl \rightarrow CaCl ₂ + Na ₂ CO ₃)	1
	A is incorrect because there are no waste products	
	B is incorrect because H_2 has a lower M_r than Na_2CO_3	
	c is incorrect because the combined M_r of H_2O and CO_2 is lower than Na_2CO_3	

Question	Answer	Mark
number		
5	The only correct answer is B $\binom{124}{50}$ Sn)	1
	<i>A</i> is incorrect because ¹¹⁵ ₄₉ In has 66 neutrons	
	<i>c</i> is incorrect because ¹²³ ₅₁ Sb has 72neutrons	
	<i>D</i> is incorrect because $^{124}_{52}$ Te has 72neutrons	

Question	Answer	Mark
number		
6	The only correct answer is B (1s ² 2s ² 2p ⁶ 3s ² 3p ⁶)	1
	<i>A</i> is incorrect because this is the electronic configuration of an s-block element	
	<i>c</i> is incorrect because this could not be the electronic configuration of the ion of a p-block element	
	D is incorrect because this could not be the electronic configuration of the ion of a Period 3 element	

Question	Answer	Mark
number		
7	The only correct answer is C (carbon)	1
	A is incorrect because Al is in Period 3	
	B is incorrect because the element with the highest melting temperature is in Group 4	
	D is incorrect because Si is in Period 3	

Question	Answer	Mark
number		
8	The only correct answer is C (Hg(l))	1
	<i>A</i> is incorrect because simple molecules do not conduct electricity	
	B is incorrect because simple molecules do not conduct electricity	
	D is incorrect because ionic compounds do not conduct electricity as solids	

Question	Answer	Mark
number		
9	The only correct answer is A (N^{3-})	1
	B is incorrect because F^- has more protons than N^{3-} so greater nuclear attraction on the outer electrons	
	<i>c</i> is incorrect because Na⁺ has more protons than N³− so greater nuclear attraction on the outer electrons	
	D is incorrect because Al^{3+} has more protons than N^{3-} so greater nuclear attraction on the outer electrons	

Question	Answer	Mark
number		
10	The only correct answer is D (Ca^{2+})	1
	A is incorrect because anions do not polarise cations	
	B is incorrect because anions do not polarise cations	
	C is incorrect because K⁺ has a smaller charge and a greater ionic radius	

Question	Answer	Mark
number		
11	The only correct answer is A (C ₆₀ fullerene)	1
	B is incorrect because the structure of diamond is formed by a giant lattice of carbon atoms	
	<i>c</i> is incorrect because the structure of graphene is formed by a giant lattice of carbon atoms	
	D is incorrect because the structure of graphite is formed by a giant lattice of carbon atoms	

Question	Answer	Mark
number		
12	The only correct answer is A (HF)	1
	B is incorrect because there is a relatively small difference in electronegativity between oxygen and fluorine	
	\boldsymbol{c} is incorrect because BF ₃ is a non-polar molecule	
	D is incorrect because CF₄ is a non-polar molecule	

Question	Answer	Mark
number		
13	The only correct answer is B (corrosive)	
	A is incorrect because this is a precaution and not a hazard	
	C is incorrect because this is a precaution and not a hazard	
	D is incorrect because this is not the symbol for oxidising	

Question	Answer	
number		
14	The only correct answer is C (3,4,6-trimethyloctane)	
	A is incorrect because the longest chain of carbon atoms is not seven	
	B is incorrect because the longest chain of carbon atoms is not seven	
	D is incorrect because the sum of the locant numbers is not the lowest	

Question	Answer	
number		
15	The only correct answer is A (burn to produce greenhouse gases)	
	B is incorrect because they are not all carbon neutral	
	c is incorrect because they are not all sustainable	
	D is incorrect because they do not all biodegrade rapidly	

Question	Answer	Mark
number		
16(a)	The only correct answer is D $(C_5H_{10} + Br_2 \rightarrow C_5H_9Br + HBr)$	
	A is incorrect because C_5H_8 is the formula of cyclopentene and the reaction is not addition	
	B is incorrect because the reaction is not addition and this product is not formed	
	c is incorrect because these products are not formed	

Question	Answer	
number		
16(b)	The only correct answer is A (only the initiation step involves homolytic bond fission)	
	B is incorrect because not all of the bromine is converted to radicals in the initiation step	
	c is incorrect because many more propagation than termination reactions occur	
	D is incorrect because additional substitution products are likely to form	

Question	Answer	
number		
16(c)	he only correct answer is D(H•)	
	is incorrect because C₅H ₉ • radicals form in propagation reactions	
	B is incorrect because Br [•] radicals form in propagation reactions	
	C is incorrect because C₅H ₈ Br• radicals may form in secondary propagation reactions	

Question	Answer	
number		
16(d)	The only correct answer is C ()	
	A is incorrect because the molecule does not contain 10 carbon atoms	
	B is incorrect because the molecule does not contain 10 carbon atoms	
	D is incorrect because the molecule does not contain 18 hydrogen atoms	

Question number	Answer	Mark
17	The only correct answer is B (exporting polymer waste)	
	A is incorrect because biodegradable polymers are broken down by microorganisms	
	c is incorrect because this removes harmful pollution	
	D is incorrect because this saves energy and conserves non-renewable resources	

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Answer	Additional guidance	Mark
18(a)	A completed diagram showing:		2
	• correctly labelled subshells (1)	Allow p subshell labelled as orbitals eg $2p_x$, $2p_y$, $2p_z$ Ignore specified number of electrons, even if incorrect eg $3p^5$	
	• correctly filled boxes/orbitals (1)	Allow paired 3p electrons in any 3p orbital Allow unpaired 3p electrons as spin down Allow half-headed arrows Do not award vertical lines for arrows Do not award paired electrons with parallel spin Example of completed diagram: Energy	

Question Number	Answer		Additional guidance	Mark
18(b)			Example of equation:	2
			$S(g) \rightarrow S^{+}(g) + e^{(-)}$ or $S(g) - e^{(-)} \rightarrow S^{+}(g)$	
	species and balancing	(1)	Do not award multiples	
			M2 dependent on S/S ₈ on one side of equation and charged $S^+/S_8^+/S^-/S_8^-$ on the other (does not need to be balanced)	
	correct state symbols	(1)	Ignore (g) state symbol on electron	
			$S(g) + e^{(-)} \rightarrow S^{+}(g) + 2e^{(-)}$ scores (1)	

Question Number	Answer	Additional guidance	Mark
18(c)	An explanation that makes reference to the following points:		3
	outermost electrons in same subshell / (quantum) shell (1)	Accept similar/same (electron) shielding Allow same number of shells Allow correct reference to full or partial electronic configurations for two/three elements Do not award incorrect electronic configurations	
	CI contains the greatest number of protons / more protons than S (1)	Accept CI has the greatest nuclear charge Ignore CI has the greatest nuclear attraction Ignore CI has the greatest atomic number Do not award just CI has the greatest charge Do not award S has the smallest nuclear charge Allow CI has the smallest atomic radius / smaller atomic radius than S Do not award S had the greatest atomic radius Do not award same/similar atomic radius Do not award outer electron same/similar distance from nucleus Do not award ionic/molecular radius	
	 repulsion between (paired) electrons in (3)p orbital in S (1) 	There must be a mention of p (orbital) Allow subshell for orbital Do not award shell for orbital Allow spin-spin repulsion in p orbital/subshell Allow correct reference to stable half-full p subshell: eg stable half-full p subshell in P eg removing electron from S gives stable half-full p subshell Do not award reference to bonding electrons	

Question Number	Answer	Additional guidance	Mark
18(d)(i)	 (atoms with the) same number of protons (1) 	Penalise use of species/particles/molecules for atoms once only Allow same atomic number Allow amount for number Ignore atoms of the same element Ignore electrons	2
	• (and) different number of neutrons (1)	Ignore different mass number Do not award different number of electrons	

Question Number	Answer	Additional guidance	Mark
18(d)(ii)		Example of calculation:	2
	• Expression for relative atomic mass (1)	$(A_r =) 32 \times 94.88 + 33 \times 0.83 + 34 \times 4.27 + 36 \times 0.02$ 100	
	• Calculation and answer to two decimal places (1)	$(A_r =) 32.09$ TE on transcription errors only (ie no TE on incorrect expression)	
		Ignore units of amu / g / g mol ⁻¹ Do not award any other unit	
		32.09 scores (2) provided there is evidence of all four isotopes having been used in the calculation	
		32.09 with no working scores (1) 32.10 with no working scores (0) 33.75 scores (0)	

Question Number	Answer	Additional guidance	Mark
18(e)(i)	• <u>256</u> = 8 (atoms) 32	Allow working shown on mass spectrum Ignore calculations involving the Avogadro constant, even if	1
		incorrect Do not award just 8 (with no working)	

Question Number	Answer	Additional guidance	Mark
18(e)(ii)	An answer that makes reference to the following	Penalise isotopes other than ³² S once only	2
	points:		
	• (species containing) two sulfur atoms (1)	eg S_2 / S—S Allow SS / S,S Ignore incorrect charge, including negative charge	
	• (ion with) 1+ charge (1)	M2 dependent on an ion containing sulfur only	
		S ₂ ⁺ / [S—S] ⁺ / SS ⁺ / S,S ⁺ scores (2)	
		$S_4^{2+}/[S_2-S_2]^{2+}/S_2S_2^{2+}/S_2^+S_2^+/S_2^+$ scores (1)	

(Total for Question 18 = 14 marks)

Question Number	Answer	Additional guidance	Mark	
19(a)	A completed table showing:	Mark all points independently	3	
		Number of bond pairs around N atom <u>3</u>		
	• correct number of bond pairs and lone pairs (1)	Number of lone pairs around N atom <u>1</u>		
	• correct Cl–N–Cl bond angle (1)	CI–N–CI bond angle $\frac{107^{(\circ)}}{\text{Allow } 106^{(\circ)}-108^{(\circ)}}$		
	• correct name of shape (1)	(Trigonal) <u>pyramidal</u> Allow pyramid Name of shape of molecule Ignore tetrahedral Do not award bipyramidal		

Question Number	Answer		Additional guidance	Mark
19(b)(i)	An explanation that makes reference to the following points: • strong(er) (electrostatic) attraction between ions (in PCl ₅)	(1)	Mark M1 and M2 independently Ignore reference to solid/liquid Allow strong ionic bonds / strong ionic lattice Allow strong attraction between positive and negative charges Allow strong attraction between cations and anions / PCl ₄ ⁺ and PCl ₆ ⁻ Ignore just PCl ₅ is (giant) ionic Do not award reference to PCl ₅ molecules/	2
	• (than) weak intermolecular forces (in SbCl₅)	(1)	intermolecular forces Do not award reference to breaking of covalent bonds Accept just London/van der Waals/dispersion/ temporary-induced dipole/instantaneous-induced dipole forces Ignore just SbCl ₅ is (simple) molecular Do not award reference to breaking of covalent/ionic bonds	
			lonic bonding is stronger than intermolecular forces scores (2)	

Question Number	Answer		Additional guidance	Mark
19(b)(ii)	Dot-and-cross diagram showing the following:		Mark M1 and M2 independently	2
			Example of dot-and-cross diagram:	
			+ [†] Cl [†] +b + Cl [†] Sb + Cl [†] +cl [†] +cl [†] **Cl [*]	
	central Sb with five bond pairs and no lone pairs	(1)	××	
	five Cl atoms each with one bond pair and three lone pairs	(1)	TE on M1 for three or four Cl atoms	
			Allow any combination of crosses and dots	
			Allow circles to indicate outer shells Ignore inner shells Ignore lines showing the covalent bonds	

Question Number	Answer	Additional guidance	Mark
19(c)(i)	suitable description of a dative covalent bond	For credit to be awarded, it must be clear that: i) a pair of / two electrons are involved ii) these electrons are shared/bonding iii) these electrons come from the same atom eg shared electrons in which both electrons come from the same atom eg lone pair/full orbital from one atom overlaps with empty orbital of another Allow element for atom Allow just both electrons in the bond come from the same element Allow one element donates/gives/shares both electrons to the bond Allow one atom shares both electrons Do not award just one atom donates/gives both electrons (or any reference to ions being formed) Do not award ion/molecule/species for atom	1

Question Number	Answer	Additional guidance	Mark
19(c)(ii)	two correct dative covalent bonds shown as arrows	Cl Cl Cl SbCl SbCl Cl Cl Cl SbCl Cl Cl Do not award dative bonds from any other Cl atoms	1

Question Number	Answer	Additional guidance	Mark
19(d)	An answer that makes reference to one of the following points: • no 2d orbitals or (nitrogen) cannot expand its octet	Accept reverse arguments Allow no d orbitals as only two (quantum) shells Allow no d orbitals (accessible) Allow (nitrogen) cannot have more than eight electrons in its outer shell Ignore just cannot expand its outer/valence shell Ignore just nitrogen obeys the octet rule	1
	(nitrogen is) too small (to bond to 5 atoms)or	Ignore just (nitrogen has a) very small/smallest atomic radius Ignore Cl atoms too large Ignore nitrogen has fewest/only two shells	
	repulsion between electron pairs would be too great	Ignore just repulsion between electron pairs Ignore repulsion between Cl atoms Ignore not enough room for 5 electron pairs	

(Total for Question 19 = 10 marks)

Question Number	Answer	Additional guidance	Mark
20(a)		Example of equation:	2
		$C_3H_6(g) + 3O_2(g) \rightarrow CO_2(g) + CO(g) + C(s) + 3H_2O(l)$ Allow structural, displayed or skeletal formulae	
	 balanced equation with 1 mol C₃H₆ and correct products (1) 		
	• state symbols (1)	Allow $H_2O(g)$ Do not award $H_2O(aq)$	
		M2 dependent on correct species for the incomplete combustion of any C_nH_{2n} / C_nH_{2n+2} hydrocarbon forming $CO_2(g)$, $CO(g)$, $C(s)$ and $H_2O(l)/(g)$	
		If no other mark awarded, a correctly balanced equation, with correct state symbols, for the incomplete combustion of propene scores (1) eg $C_3H_6(g) + 3O_2(g) \rightarrow 3CO(g) + 3H_2O(l)/(g)$ eg $2C_3H_6(g) + 7O_2(g) \rightarrow 2CO_2(g) + 4CO(g) + 6H_2O(l)/(g)$	

Question Number	Answer	Additional guidance	Mark
20(b)		Ignore any reference to breaking of the C=C bond / type of reaction Ignore any reference to layers / effervescence Ignore any reference to reaction products / formation of solids	2
	both solutions decolourise / turn colourless	(1) Ignore turn clear / change colour	
	 from purple with (potassium) manganate((VII))/KMnO₄/MnO₄⁻ 	Allow pink for purple or any combination of purple/pink	
	and from orange with (aqueous) bromine/Br ₂	Allow yellow or brown for orange or any combination of orange/yellow/brown Do not award any mention of red (eg red-brown)	
		If neither M1 nor M2 awarded, either of the following scores (1): (potassium) manganate((VII))/KMnO ₄ /MnO ₄ - decolourises from purple/pink	
		or bromine decolourises from orange/yellow/brown	

Question Number	Answer	Additional guidance	Mark
20(c)		Example of diagram:	1
	poly(propene) structure containing two repeat units with extension bonds	H CH ₃ H CH ₃	
		Accept CH₃ groups on same or opposite sides	
		Allow head-to-head and tail-to-tail configurations	
		CH ₃ H H CH ₃ C C C C C C C C C C C C C C C C C C C	
		Allow displayed, structural, skeletal formulae or any combination of these	
		Ignore connectivity of vertical C−CH ₃ bond	
		Ignore brackets and 'n'	

Question Number	Answer	Additional guidance	Mark
20(d)(i)	correct dipole	Example of correct diagram: $\delta + \qquad \delta - \\ \text{Br} \begin{tabular}{l} \end{tabular}$	1
		Allow correct indication of net dipole moment:	
		Ignore horizontal arrow from Br to Cl, on or above the bond Ignore bond pair electrons on diagram Ignore lone pairs on Br/Cl Ignore electron density map	
		Ignore double-headed curly arrow from bond to Cl Do not award full charges	

Question Number	Answer		Additional guidance	Mark
20(d)(ii)	A mechanism showing:		Example of mechanism:	3
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
			9018-	
			H-C-C-H	
			Allow displayed, structural, skeletal formulae or any combination of these	
			Penalise incorrect propene structure once only	
	 curly arrow from C=C bond to (δ+)halogen and 		Penalise half-headed curly arrows once only	
	curly arrow from Br–Cl bond to (δ–)halogen or just beyo	nd		
	(1)		Allow primary carbocation for mechanism involving ethene only	
	secondary carbocation	(1)		
	curly arrow from lone pair on halide ion to C ⁽⁺⁾ and		Allow curly arrow from lone pair to positive charge Do not award δ – on halide ion	
	correct product	(1)		

Question Number	Answer	Additional guidance	Mark
20(e)	A mechanism showing:	Example of correct mechanism:	3
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$H_{3}C \xrightarrow{C}_{CH_{2}}^{C} CH_{3} \longrightarrow H_{3}C \xrightarrow{C}_{C}^{C} CH_{3} \longrightarrow H_{3}C \xrightarrow{C}_{C}^{C} CH_{3} \longrightarrow H^{4}$	
	• curly arrow from C=C bond to H ⁺ (Do not award any additional curly arrows from/to/on propene/H ⁺	
	• curly arrow from lone pair on water to C ⁺ (Allow curly arrow from lone pair to positive charge Do not award any additional curly arrows shown in this step	
	correct structure for propan-2-ol and H ⁺ (catalyst regenerated) (Allow any combination of displayed/structural/skeletal formulae Ignore atom connectivity except displayed C–H–O Ignore any additional curly arrows added to the central intermediate	

(Total for Question 20 = 12 marks)

Question Number	Answer		Additional guidance	Mark
21(a)	Any two from the following:		Ignore any reference to: carbon chain length intermolecular forces melting/boiling temperature flammability/volatility liquid/moisturising/softening/lubricating/hydrating spreads easily/absorbed easily natural/in human skin cheap	2
	 chemically stable / inert / does not (easily) oxidi (1) 	se	Allow unreactive / not very reactive / long shelf life / durable / does not breakdown (easily) Ignore just stable	
	• colourless	(1)	Ignore transparent/clear	
	• odourless	(1)		
	non-toxic / non-irritant	(1)	Allow not harmful / non-hazardous / non-corrosive Ignore safe	
	hydrophobic / immiscible with water	(1)	Allow insoluble Ignore oily	
	hypoallergenic	(1)		

Question Number	Answer	Additional guidance	Mark
21(b)	• C ₃₀ H ₆₂	Accept H ₆₂ C ₃₀	1

Question Number	Answer	Additional guidance	Mark
21(c)(i)	• nickel	Accept palladium or platinum	1
		Allow correct symbol	

Question Number	Answer	Additional guidance	Mark
21(c)(ii)		Example of calculation:	1
	• 0.00001 / (1 ×) 10 ⁻⁵ (g)		
		mass = $50 \times 0.2 = 0.00001$ (g)	
		10 ⁶	
		Do not award incorrect unit	
		Accept 10 μg / 0.01 mg	
		All	
		Allow answer as fraction	
		eg <u>1</u> (g)	
		10 ⁵	
		Inches CF	
		Ignore SF	
		Correct answer with no working scores (1)	

Question Number	Answer	Additional guidance	Mark
21(c)(iii)		Example of calculation:	4
	conversion of temperature to K	(1) T = 200 + 273 (= 473 K)	
	rearrangement of ideal gas equation	(1) $n = \frac{pV}{RT}$ or	
		$n = \underbrace{4.0 \times 10^5 \times 500}_{8.31 \times 473}$	
	evaluation to give moles of hydrogen	(1) $n(H_2) = 50882.429$ Ignore SF except 1 SF TE on temperature M3 dependent on correct use of ideal gas equation	
	evaluation of mole ratio and	n(H ₂): n(squalene) 50882: 8500 6:1	
	number of C=C bonds per molecule of squalene	(1) 6 (× C=C bonds per molecule) TE on $n(H_2)$ provided $n(H_2)$ > than 8500 and answer is rounded to nearest integer	
		6 (× C=C bonds per molecule) with no working scores (1)	
		2 (× C=C bonds per molecule) from use of 24 dm ³ mol ⁻¹ as molar gas volume scores (2)	

	Al	ternative route to M2, M3 and M4		
21(c)(iii) cont	•	rearrangement of ideal gas equation (1	Example of calculation:)	
			V = nRT	
			or p	
			$V = 8500 \times 8.31 \times 473$	
	•	evaluation to give volume of squalene (1	4.0×10^5	
			V(squalene) = 83.52589 (m³)	
			Ignore SF except 1 SF TE on temperature	
			M3 dependent on correct use of ideal gas equation	
	•	evaluation of volume ratio	V(H ₂) : V(squalene)	
		and	500 : 83.52589 6 : 1	
		number of C=C bonds per molecule of squalene (1	o (x e e sorias per morecare)	
			TE on $V(\text{squalene})$ provided $V(\text{squalene}) < 500 \text{ (m}^3)$ and answer is rounded to nearest integer	

Question Number	Answer	Additional guidance	Mark
21(c)(iv)	• $C_{30}H_{50} + 6H_2 \rightarrow C_{30}H_{62}$	Ignore state symbols	1
		TE on (c)(iii) for any C_nH_{2n+2} product formula where $24 \le n \le 30$	
		If the number of C=C bonds is not stated in (c)(iii) then award (1) for an equation of the form: $C_nH_{2n-2y+2}+yH_2\to C_nH_{2n+2}$ Where $24\le n\le 30$ and $1\le y\le 14$	

Question Number	Answer	Additional guidance	Mark
21(d)(i)	(fractional) distillation	Ignore solvent extraction Ignore filtration as part of the separation process Do not award just filtration	1
		Do not award chromatography	

Question Number	Answer	Additional guidance	Mark
21(d)(ii)	calculation of mass of squalene in 2.8 million dm³ or calculation of volume of squalene per shark	Example of calculation: mass = $2.8 \times 10^9 \times 0.86 = 2.408 \times 10^9$ (g) or volume = $300 = 348.8372$ (cm ³) 0.86	2
	calculation of number of sharks required	(1) $\frac{2.408 \times 10^9}{300} = 8.0267 \times 10^6 = 8026666.667 / 8.0 \times 10^6$ 300 TE on mass or $\frac{2.8 \times 10^9}{2.8 \times 10^9} = 8.0267 \times 10^6 = 8026666.667 / 8.0 \times 10^6$ 348.8372 TE on volume Ignore SF Penalise incorrect rounding once only Correct answer with no working scores (2)	

Question Number	Answer	Additional guidance	Mark
21(d)(iii)		Ignore SF and do not penalise correct premature rounding	3
		Penalise incorrect rounding once only	
		Penalise incorrect units in final answer only	
	Method 1		
	• calculation of mass of corn starch required (1)	mass = <u>2500</u> × 100 = 10869.57 (tonnes) 23	
	• calculation of required land area in hectares (1)	Allow conversion of mass of corn starch to kg / g land area = $10869.57 \times 0.093 = 1010.87$ (hectares)	
	• conversion of land area from hectares to km ² (1)	land area = $1010.87 \times 0.01 = 10.1087 = 10 \text{ (km}^2\text{)}$	
	Method 2		
	• conversion of land area from hectares to km ² (1)	$0.093 \times 0.01 = 0.00093 / 9.3 \times 10^{-4} \text{ (km}^2\text{)}$	
	• calculation of required land area in km² to produce 2500 tonnes of corn starch (1)	land area = $0.00093 \times 2500 = 2.325 \text{ km}^2$ Allow conversion of mass of corn starch to kg/g	
	• calculation of required land area in km² to produce 2500 tonnes of squalene (1)	land area = <u>2.325</u> × 100 = 10.1087 = 10 (km ²) 23	

21(d)(iii) cont	M	lethod 3	
	•	calculation of required land area in hectares to produce 2500 tonnes of corn starch (1)	land area = $2500 \times 0.093 = 232.5$ (hectares) Allow conversion of mass of corn starch to kg / g
	•	calculation of required land area in hectares to produce 2500 tonnes of squalene (1)	land area = <u>232.5</u> × 100 = 1010.87 (hectares) 23
	•	conversion of land area from hectares to km ² (1)	land area = 1010.87 × 0.01 = 10.1087 = 10 (km²)
			If no other mark awarded, 1 tonne corn starch yields 230 kg squalane scores (1)

Question Number	Answer	Additional guidance	Mark
21(e)(i)	An explanation that makes reference to the following points: • restricted rotation about/around C=C (1)	Mark M1 and M2 independently Accept pi-bond for C=C Allow just double bond for C=C Allow limited/no rotation about/around C=C Allow C=C restricts rotation Allow C=C cannot rotate Ignore just restricted rotation Do not award molecule cannot rotate	2
	(only) central C=C has two different groups attached to each carbon of the C=C (1)	Accept C=C from 6 th carbon/6-ene for central C=C Allow (only) central C=C has four different groups Allow indication of central C=C on diagram Do not award if any other C=C bond identified as <i>E/Z</i>	

Question Number	Answer	Additional guidance	Mark
21(e)(ii)		Mark M1 and M2 independently	2
	• skeletal formula of <i>Z</i> -isomer (1)	Examples of correct structure:	
		or	
	• (Z isomer has highest) priority groups on same side (of C=C) (1)	Ignore bond lengths and bond angles Ignore labelling of C=C bonds as E/Z Ignore any other type of formula Allow lowest priority groups on same side Allow identification of (highest) priority groups on diagram Allow ranking for priority Ignore preference for priority Ignore reference to mass/size of groups Allow top/bottom for same Ignore any reference to cis/trans	

Question Number	Answer	Additional guidance	Mark
21(f)(i)	• (compounds with the) same molecular formula (1)	Ignore just same formula Ignore compounds with the same atoms Do not award same molecule Do not award same general formula	2
	different structural formula (1)	Allow just different structure Allow different position of the C=C/double bonds Allow different displayed/skeletal formulae Ignore different arrangement of atoms (in space)	

Question Number	Answer	Additional guidance	Mark
21(f)(ii)	• four / 4	Ignore E/Z	1

Question Number	Answer	Additional guidance	Mark
21(f)(iii)		Examples of valid structure:	1
	valid structure containing one C=C bond or		
	 valid structure containing one bridging carbon-carbon bond 	Ignore bond lengths and bond angles	

(Total for Question 21 = 24 marks)
TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS