Теория автоматов и формальных языков Контекстно-свободные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

11 октября 2016г.

В предыдущей серии

- Контекстно-свободные грамматики (все правила имеют вид A o lpha)
- КС языки и разрешимость проверки пустоты
- Нормальная форма Хомского
- Алгоритм СҮК

В предыдущей серии: НФХ

КС грамматика находится в **нормальной форме Хомского**, если все ее правила имеют вид:

- ullet A o BC, где $A,B,C\in V_N$
- ullet A o a, где $A\in V_N, a\in V_T$
- S
 ightarrow arepsilon, если в языке есть пустое слово; где S стартовый нетерминал
- 🚺 Удалить стартовый нетерминал из правых частей правил
- Избавиться от неодиночных терминалов в правых частях
- Удалить длинные правила (длины больше 2)
- lacktriangle Удалить непродуктивные правила (arepsilon-правила)
- Удалить цепные правила

В предыдущей серии: СҮК

- Алгоритм синтаксического анализа, работающий с грамматиками в НФХ
- Динамическое программирование

В предыдущей серии: СҮК

- ullet Дано: строка ω длины \emph{n} , грамматика $\emph{G} = \langle \emph{V}_{\emph{T}}, \emph{V}_{\emph{N}}, \emph{P}, \emph{S}
 angle$ в НФХ
- Используем трехмерный массив d булевых значений размером $|V_N| \times n \times n, \ d[A][i][j] = true \Leftrightarrow A \stackrel{*}{\Rightarrow} \omega[i \dots j]$
- ullet Инициализация: i = j
 - $lacktriangledown d[A][i][i] = \mathit{true}$, если в грамматике есть правило $A o \omega[i]$
 - ightharpoonup d[A][i][i] = false, иначе
- Динамика. Предполагаем, d построен для всех нетерминалов и пар $\{(i',j')\,|\,j'-i'< m\}$
- В конце работы алгоритма в d[S][0][n] записан ответ, выводится ли ω в данной грамматике

Восходящий синтаксический анализ

- Начинаем с символов входной строки, строим дерево вывода до стартового нетерминала
- СҮК один из примеров восходящего синтаксического анализа
- Контринтуитивен

Нисходящий синтаксический анализ

- Хотим построить левосторонний вывод строки
- Начинаем со стартового нетерминала, раскрываем нетерминалы до тех пор, пока не получим вывод строки
- Интуитивен

Нисходящий синтаксический анализ: функция FIRST

- Функция $\mathit{FIRST}^{\mathit{G}}_k(\alpha) = \{\omega \in V_T^* \mid \text{либо } |\omega| < k \text{ и } \alpha \stackrel{*}{\Rightarrow} \omega, \text{либо } |\omega| = k \text{ и } \alpha \stackrel{*}{\Rightarrow} \omega\gamma, \gamma \in V_T^*\}$
 - lacktriangle По сути: первые k символов, встречающиеся в выводе из lpha
- Пример
 - ▶ $S \rightarrow SS \mid aSb \mid \varepsilon$
 - ightharpoonup FIRST $_3^G(aSb) = \{ab, aab, aaa\}$
 - aba ∉ FIRST^G₃ (aSb)!

Нисходящий синтаксический анализ: LL-грамматики

Фундаментальное свойство: по сентенциальной форме $a_1a_2\ldots a_jA\beta, a_i\in V_T, A\in V_N, \beta\in (V_T\cup V_N)^*$ однозначно определяется, какое правило нужно применять дальше, чтобы разобрать всю строку

Нисходящий синтаксический анализ: LL-грамматики

Фундаментальное свойство: по сентенциальной форме $a_1a_2\dots a_jA\beta, a_i\in V_T, A\in V_N, \beta\in (V_T\cup V_N)^*$ однозначно определяется, какое правило нужно применять дальше, чтобы разобрать всю строку

КС грамматика G является LL(k)-грамматикой для некоторого k, если для любых двух левосторонних выводов вида

- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \beta \alpha \stackrel{*}{\Rightarrow} \omega \delta$
- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \gamma \alpha \stackrel{*}{\Rightarrow} \omega \eta$

в которых $\mathit{FIRST}_k^{\mathit{G}}(\delta) = \mathit{FIRST}_k^{\mathit{G}}(\eta)$, то $\beta = \gamma$

КС грамматика G является **LL**-грамматикой, если она является LL(k)-грамматикой для некоторого $k \geq 0$

Пример LL(1)-грамматики

$$S \rightarrow aBS \mid b$$

 $B \rightarrow a \mid bSB$

Надо показать: для любых левосторонних выводов

- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \beta \alpha \stackrel{*}{\Rightarrow} \omega \delta$
- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \gamma \alpha \stackrel{*}{\Rightarrow} \omega \eta$

если δ и η начинаются с одного символа, то $\beta=\gamma$ Рассматриваем выводы, где роль A выполняет $S\colon S\Rightarrow aBS, S\Rightarrow b.$ $\omega=\alpha=\varepsilon, \beta=aBS, \gamma=b.$ Любая цепочка, выводимая из $\beta\alpha=aBS$ начинается на a; любая цепочка, выводимая из $\gamma\alpha=b$ начинается на b. Однозначно определяется, какой альтернативе следовать.

Аналогично с $A = B : S \Rightarrow aBS \Rightarrow aaS : S \Rightarrow aBS \Rightarrow abSBS$

Простая LL(1)-грамматика

КС-грамматика G называется **простой LL(1)-грамматикой**, если в ней нет ε -правил, и все альтернативы для каждого нертерминала начинаются с терминалов, и притом различных.

$$orall (A,a), A \in V_N, a \in V_T, \exists$$
 самое большое 1 альтернатива вида $A o a lpha$

LL-грамматика: необходимое и достаточное условие

Теорема

КС грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(k)-грамматикой $\Leftrightarrow FIRST_k^G(\beta\alpha) \cap FIRST_k^G(\gamma\alpha) = \emptyset$, для всех таких $\alpha, \beta, \gamma: A \to \beta, A \to \gamma \in P, \beta \neq \gamma, \exists$ вывод $S \stackrel{*}{\Rightarrow} \omega A\alpha$

Доказательство

LL-грамматика: функция FOLLOW

$$\mathit{FOLLOW}^{\mathit{G}}_{\mathit{k}}(\beta) = \{\omega \in \mathit{V}^*_{\mathit{T}} \mid \mathit{S} \overset{*}{\Rightarrow} \gamma \beta \alpha, \omega \in \mathit{FIRST}^{\mathit{G}}_{\mathit{k}}(\alpha)\}, \mathit{k} \geq 0$$

Пример: $extit{S} o extit{SS} \, | \, extit{aSb} \, | \, arepsilon$

- $FOLLOW_3^G(aa) = \{abb, aab, aaa, aba, baa, bab, bb, bba, \dots\}$
- $\varepsilon, b \notin FOLLOW_3^G!$

LL(1)-грамматика: необходимое и достаточное условие

Теорема

КС-грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(1)-грамматикой $\Leftrightarrow FIRST_1^G(\beta FOLLOW_1^G(A)) \cap FIRST_1^G(\gamma FOLLOW_1^G(A)) = \varnothing, \forall A \in V_N, \beta, \gamma \in (V_N \cup V_T)^*, A \to \gamma, A \to \beta \in P, \beta \neq \gamma$

LL(1)-грамматика: необходимое и достаточное условие: другая формулировка

Теорема

КС-грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(1)-грамматикой $\Leftrightarrow \forall A \to \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$ верно:

- $FIRST_1^G(\alpha_i) \cap FIRST_1^G(\alpha_j) = \emptyset, i \neq j, 1 \leq i, j \leq n$
- ullet если $lpha_i \stackrel{*}{\Rightarrow} arepsilon,$ то $\mathit{FIRST}_1^{\mathsf{G}}(lpha_j) \cap \mathit{FOLLOW}_1^{\mathsf{G}}(A) = \varnothing, 1 \leq j \leq n, i \neq j$

Леворекурсивность

Теорема

Если КС-грамматика $G=\langle V_N,V_T,P,S\rangle$ леворекурсивна, то она не является LL(k)-грамматикой ни при каком k

Леворекурсивность

Теорема

Если КС-грамматика $G=\langle V_N,V_T,P,S\rangle$ леворекурсивна, то она не является LL(k)-грамматикой ни при каком k