代数学方法 (第一卷) 勘误表

李文威

2020-10-16

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误将在新版一并改正.

- ◇ **第 12 页, 倒数第 8 行** 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- 。第 16 页, 定义 1.2.8 原文 若传递集 α 对于 \in 构成良序集 更正 若传递集 α 对于 $x < y \stackrel{\text{EV}}{\Leftrightarrow} x \in y$ 成为良序集 感谢王东瀚指正.

- **◇第23页,第3-4行 原文** 真前段(出现两次) **更正** 前段
- ◆第38页,第14行 原文 由此导出对象和自然变换的同构概念,其逆若存在则唯一。一. 更正 其逆若存在则唯一,依此定义何谓对象间或函子间的同构. 感谢王猷指正.
- ◆ 第 42 页, 倒数第 2 行
 原文
 … 同构. Z(…) ≃…
 更正
 … 同构 Z(…) ≃…
 感谢
- ◇第54页最后 更正 图表微调成

兴许更易懂.

感谢熊锐提供意见.

- ◇ **第 94 页, 习题 5 倒数第 2 行 原文** Yang-Baxter 方程. **更正** 杨-Baxter 方程.
- \diamond 第 116 页, 第 5 行
 原文
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$ 更正
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$
- **⋄第141页,第11行** 原文 另外约定 $\mathfrak{S}'_n = \{1\}$ 更正 另外约定 $\mathfrak{S}'_1 = \{1\}$
- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.
- **◇第156页,第2,3行 原文** *a* ∈ *R* **更正** *a* ∈ *I*

感谢阳恩林指正

- **◇ 第 205 页, 第 7 行 原文** *M* 作为 *R*/ann(*M*)-模自动是无挠的. **更正** *M* 作为 *R*/ann(*M*)-模的零化子自动是 {0}. **感谢戴懿**韡指正.
- **◇第220页** 本页出现的 Bil(•ו;•) 都应该改成 Bil(•,•;•), 以和 216 页的符号保持一致.
- **⋄第230页,第13行 原文** 萃取处 更正 萃取出
- \diamond **第 235 页底部** 图表中的垂直箭头 f_i, f_{i-1} 应改为 ϕ_i, ϕ_{i-1} .
- \diamond 第 237 页, 命题 6.8.5 证明最后两行原文故 $(v) \Rightarrow (i);$ 更正故 $(iv) \Rightarrow (i);$
- **◇第238页,第8行 原文** $Y' \to Y \to Y$ 正合 **更正** $Y' \to Y \to Y''$ 正合
- ◇ 第 244 页, 倒数第 10 行 原文 下面的引理 6.10.4 更正 引理 5.7.4 感谢郑维喆指正
- \diamond **第 246 页, 第 2 行和定理 6.10.6, 6.10.7** "交换 Noether 模"应改为 "交换 Noether 环". 两个定理的陈述中应该要求 R 是交换 Noether 环. 感谢郑维喆指正

感谢陆睿远指正.

- **⋄第251页起,第6.12节** 术语 "不可分模" 似作 "不可分解模" 更佳, 以免歧义. 感谢 郑维喆指正
- ◆第 252 頁,第 2 行 原文 1 ≤ 1 ≤ n. 更正 1 ≤ i ≤ n. 感谢傅煌指正.
- ◇ 第 255 页, 第 1 题 原文

$$N = \left(\alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j\right)$$

更正

$$N = \left(\alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right)$$

感谢郑维喆指正

- \diamond **第 284 頁, 定理 7.6.6** 将定理陈述中的函子 U 由忘却函子改成映 A 为 A_1 的函子, 其余不变. 相应地, 证明第二段的 $\varphi: M \to A$ 应改成 $\varphi: M \to A_1$. 感谢郑维喆指正
- ◇ 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- \diamond **第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的 $e_1:$ 和 $e_{\rm sgn}:$ 皆删去. 感谢郑维喆指正
- **◇第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和 \overline{F}' |E'.
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 *I* 非空".感谢郑维喆指正
- \diamond 第 315 頁, 定理 8.4.3 (iv) 原文 $\sum_{k\geq 0}^n$ 更正 $\sum_{k=0}^n$ 感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- **◇ 第 317 页, 倒数第 13 行** (出现两次) **原文** $\prod_{i=1}^{n}$ … **更正** $\prod_{m=1}^{n}$ …
- \diamond 第 348 页, 命题 9.3.6 原文 $\lim_{m} \mathbb{Z}/n\mathbb{Z}$ 更正 $\lim_{m} \mathbb{Z}/m\mathbb{Z}$ 感谢郑维喆指正
- ◆ 第 352 页, 第 7 行
 原文
 p | n
 更正
 p ∤ n
 感谢郑维喆指正

感谢杨历指正.

- **第 372 页, 第 20 题** 问题 (b) 部分的 $P \in F[X]$ 改成 $Q \in F[X]$, 以免冲突. 相应地, 提示第一段的 P 都改成 Q.
 感谢郑维喆指正
- **◇第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h \geq 0} c_{k,h} t^h$. 注意到 $\lim_{k \to \infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k \geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h \geq 0} c_h t^h \in K \langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_{k,h}| < \epsilon$. 于是

$$h \ge N \implies (\forall k \ge 0, |c_{k,h}| \le \epsilon) \implies |c_h| \le \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K\langle t \rangle$. 其次, 在 $K\langle t \rangle$ 中有等式

$$f - \sum_{k=0}^M f_k = \sum_{h \geq 0} \left(c_h - \sum_{k=0}^M c_{k,h} \right) t^h = \sum_{h \geq 0} \underbrace{\left(\sum_{k \geq M} c_{k,h} \right)}_{\mid \cdot \mid < \epsilon} t^h,$$

从丽 $f = \sum_{k=0}^{\infty} f_k$.

感谢高煦指正.

- **⋄ 第 417 页, 最后一行** 它被刻画为对...