To prove that Eagg = 1/M Eavg, under the given assumptions, let's start by expanding the expression for Eagg(x):

 $Eagg(x) = E[(\{1/M\sum \epsilon i(x)\}^2)]$

Now, we can expand the square:

 $Eagg(x) = E[(\{1/M^2 \sum \epsilon i(x) \sum \epsilon j(x)\})]$

Applying the expectation operator:

$$Eagg(x) = 1/M^2 \sum E(\epsilon i(x)\epsilon j(x))$$

Now, let's apply the given assumptions:

Each of the errors has a 0 mean:

 $E(\epsilon i(x)) = 0$ for all i

Errors are uncorrelated:

 $E(\epsilon i(x)\epsilon j(x)) = 0$ for all $i \neq j$

Using these assumptions, we can simplify the expression:

$$Eagg(x) = 1/M^2 \sum E(\epsilon i(x)^2)$$

Now, we can rewrite the expression for *Eavg* using the given definition:

 $Eavg = 1/M \sum E(\epsilon i(x)^2)$

Comparing the expressions for Eagg(x) and Eavg, we can see that:

Eagg(x) = 1/M Eavg

Thus, under the given assumptions of 0 mean errors and uncorrelated errors, the expected squared error of the aggregated model is equal to 1/M times the average expected squared error of the individual models.

E_agg: Expected error of the aggregated model (a model that is a linear combination of M models)

E_av: The average expected error of individual models

 $\epsilon i(x)$: Error of the i-th model on a given input x

 λi : The weight associated with the i-th model ($\lambda i \ge 0$ and $\sum \lambda i = 1$)

 $Eagg = E(\sum \lambda i \epsilon i(x))$ and $Eav = M^{(-1)}\sum E(f(xi))$. We want to show that $E(\sum \lambda i \epsilon i(x)) \le M^{(-1)}\sum E(f(xi))$.

Let's use Jensen's inequality, which states that for any convex function f, $f(\sum \lambda ixi) \le \sum \lambda i f(xi)$, where xi are real numbers and λi are non-negative real numbers such that $\sum \lambda i = 1$.

$$f(\sum \lambda i \epsilon i(x)) \leq \sum \lambda i f(\epsilon i(x))$$

$$(\sum \lambda i \epsilon i(x))^2 \le \sum \lambda i (\epsilon i(x))^2$$

$$E((\sum \lambda i \epsilon i(x))^2) \le E(\sum \lambda i (\epsilon i(x))^2)$$

Since the left side represents the expected error of the aggregated model squared, it can be denoted as

Eagg^2.

On the right side, we can exchange the order of summation and expectation, as expectation is a linear operation:

$$Eagg^2 \le \sum \lambda i E((\epsilon i(x))^2)$$

Now, note that $E((\epsilon i(x))^2)$ is the expected squared error of the i-th model, which is related to the expected error of the i-th model.

Since $M^{\Lambda}(-1)\sum E(f(xi))$ represents the average expected error, and λi are the weights, we can rewrite the inequality as:

$$Eagg^2 \le \sum \lambda i E((\epsilon i(x))^2)$$

We can rewrite $M^{(-1)}\sum E(f(xi))$ as the weighted sum of expected squared errors of the individual models:

$$Eav = M^{(-1)} \sum E((\epsilon i(x))^2)$$

Now, multiply both sides of the inequality by M:

 $MEagg^2 \le \sum \lambda i E((\epsilon i(x))^2)$

Since $MEav = \sum \lambda i E((\epsilon i(x))^2)$ and M > 0, we can compare the left sides of the two inequalities:

 $MEagg^2 \le MEav$

Divide both sides by M:

 $Eagg^{2} \le Eav$

Since both *Eagg* and *Eav* are non-negative (errors are non-negative), we can take the square root of both sides:

 $\sqrt{Eagg}^2 \le \sqrt{Eav}$

 $Eagg \leq Eav$

3.

First, let's define the overall training error at the end of T steps, E:

$$E = (1/N) * \Sigma_i [H(x_i) \neq y_i]$$

where N is the total number of data points, x_i is the ith data point, y_i is the true label for x_i , and $H(x_i)$ is the final hypothesis for x_i .

Now, let's rewrite $H(\boldsymbol{x}_i)$ using the equation provided:

$$H(x_i) = sign(\Sigma^t = _1 toT \alpha^t * \hbar^t(x_i))$$

Since the weight for the point i at step t+1 is given by:

$$D\mathbb{I}_{+1}(i) = D\mathbb{I}(i) / Z\mathbb{I} * \exp(-\alpha^{t} * h \square(i) * y(i))$$

We can compute the upper bound for the training error at each step as follows:

$$\Sigma_i [D \square (i) * [h \square (x_i) \neq y(x_i)]] \le \exp(-2 * \gamma \square^2)$$

Next, let's express the overall training error E in terms of the weights D:

$$E = \Sigma_i \left[D \square (i) * \left[H(x_i) \neq y_i \right] \right] / N$$

Now, let's use the fact that the weights D are normalized at each step (i.e., Σ_i D \square (i) = 1):

$$E = \Sigma_i \left[D \square (i) * \left[H(x_i) \neq y_i \right] \right] / \Sigma_i D \square (i)$$

We can now upper bound the overall training error E by the sum of the upper bounds of the training error at each step:

$$E \leq \Sigma_i [D \square (i) * exp(-2 * \gamma \square^2)] / \Sigma_i D \square (i)$$

Since $\Sigma_i D \square (i)$ is a normalization factor that ensures the weights sum up to 1, we can simplify the expression:

$$\mathsf{E} \mathrel{<=} \exp(-2 * \Sigma \square = 1^{\mathsf{toT}} \gamma \square^2)$$

Thus, we have proven that at the end of T steps, the overall training error E will be bounded by:

 $\exp(-2 * \Sigma^{t=1}^{toT} \gamma^{t^2})$