DELINEAMENTO INTEIRAMENTE CASUALIZADO DIC

Ana Lúcia Souza Silva Mateus

TABELA DA ANÁLISE DE VARIÂNCIA

 O primeiro passo consiste na formalização da hipótese a ser testada

H_o: hipótese de nulidade

$$H_o: \tau_1 = \tau_2 = ... = \tau_I = 0$$

H_a: hipótese alternativa

$$H_a: \tau_I \neq 0$$
 para pelo menos um i

Tabela 1: Modelo da tabela de Análise de Variância

FV	GL	sQ	QM	F _c
Entre Tratamentos	GLEntre	SQEntre	SQEntre/ GLEntre	QMEntre/ QMDentro
Dentro de Tratamentos	GLDentro	SQDentro	SQDentro/ GLDentro	
Total	GLTotal	SQTotal		

FV: Fontes de Variação

Nesta coluna são descritas as causas de variabilidade dos dados do experimento: Entre tratamentos e Resíduos

GL: Graus de liberdade

SQ: Soma de Quadrados

As somas de quadrados dos desvios ou as medidas de variabilidade calculadas para cada fonte de variação

QM: Quadrados Médios

São obtidos pela razão entre as Somas de Quadrados e os seus respectivos graus de liberdade.

Medidas de variabilidade para cada FV, comparáveis entre si.

Fc: Valor da Estatística F

É o valor obtido para a comparação entre os quadrados médios, dado pela razão entre o QM Entre Tratamentos e o É a razão entre o QM Entre Tratamentos e o QM Resíduo É a estatística de teste apropriada para o teste de hipótese sobre os QM.

- Variabilidade entre tratamentos: provocada pelos tratamentos e por outras fontes de variabilidade
- Variabilidade dentro tratamentos: provocada por várias fontes de variabilidade, exceto pelos tratamentos

PROCEDIMENTO GERAL

- Considere I tratamentos cada um com ri repetições
- Y é uma variável qualquer e os dados obtidos serão representados por onde y_{ij} , onde i refere-se ao tratamento (i = 1,2,...,I) e $_j$ refere-se as repetições (j= r_1 , r_2 ,..., r_l)
- Número total de parcelas: N= r₁ + r₂ + ... +r₁

A regra decisória para o teste F é a seguinte:

- se o valor do F calculado for maior ou igual ao valor do F tabelado, então rejeita-se
 H₀ e conclui-se que os tratamentos tem efeito diferenciado ao nível de significância em que foi realizado o teste;
- se o valor de F calculado for menor que o valor do F tabelado, então não rejeita-se
 H₀ e conclui-se que os tratamentos têm efeitos iguais ao nível de significância em que foi realizado o teste.

DELINEAMENTO INTEIRAMENTE CAZUALIZADO - DIC

- VANTAGENS em relação aos demais
- Qualquer número de repetições e tratamentos podem ser usados
- O número de repetições pode variar de um tratamento para o outro
- A análise estatística é mais simples
- O número de graus de liberdade do resíduo é máximo
- É o delineamento mais fácil de ser conduzido e instalado

DELINEAMENTO INTEIRAMENTE CAZUALIZADO - DIC

- DESVANTAGENS
- Exige homogeneidade total das condições experimentais
- Conduz estimativas elevadas do erro experimental
- ALEATORIZAÇÃO
- Considere 4 tratamentos (A, B, C e D) e 5 repetições (I, II, III, IV e V)

А	I	$A_{ m III}$	D_{II}	B_{I}	D_{IV}	B_{II}	B_{IV}	$A_{\rm IV}$	B_V	C_{IV}
С	П	DI	A_{V}	C_{I}	C_{V}	D_{V}	СШ	$\mathrm{D}_{\mathrm{III}}$	$\mathrm{B}_{\mathrm{III}}$	A_{II}

ETAPAS DO EXPERIMENTO

- Definir o local onde o experimento será conduzido. Ex.: laboratório, casa de vegetação, estábulos, galpão, etc.
- Identificar as UE com etiquetas, plaquetas, etc., seguindo o que consta no croqui do experimento. Ex.: Parcelas: placas de Petri, vasos, caixas de madeira, baias, gaiolas, etc.
- Distribuir as UE no local onde o experimento será conduzido,
- Finalmente, colocar as plantas e/ou animais correspondente ao seu respectivo tratatamento em cada parcela.

TABELA DE TABULAÇÃO DOS DADOS

		Tratamentos			
Repetições	1	2			
1	Y ₁₁	Y_{21}		Y_{l1}	
2	Y ₁₂	Y_{22}		Y_{12}	
J	Y _{1J}	Y _{2J}		Y_{IJ}	

- nº de unidades experimentais: N = I x J
- Total geral: $G = \sum_{i=1,j=1}^{l,J} Y_{ij} = \sum_{i=1}^{l} T_i = Y_{..}$
- Total para o tratamento i: $T_i = \sum_{i=1}^{J} Y_{ij} = Y_{i\bullet}$
- Média para o tratamento i: $\hat{m}_i = \frac{T_i}{J}$
- Média geral do experimento: $\hat{\mathbf{m}} = \frac{\mathbf{G}}{\mathbf{IJ}}$.

MODELO ESTATÍSTICO

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

 y_{ij} é a observação feita na parcela para o tratamento i na repetição j

μ média geral

 τ_i é o efeito do i – ésimo tratamento (i = 1, 2, ..., I)

 ε_{ij} é o erro experimental referente a parcela que recebeu o tratamento i na repetição j

MODELO GERAL DE ANÁLISE

	,	TRATAMENTOS		
Repetições	Α	В	С	
I	y ₁₁	y ₂₁	y ₃₁	
II	y ₁₂	y ₂₂	y ₃₂	
TOTAIS	T ₁	T ₂	T ₃	G

$$y_{11} = \mu + t_1 + \epsilon_{11}$$
 $y_{21} = \mu + t_2 + \epsilon_{21}$
 $y_{31} = \mu + t_3 + \epsilon_{31}$
 $y_{12} = \mu + t_1 + \epsilon_{12}$
 $y_{22} = \mu + t_2 + \epsilon_{22}$
 $y_{32} = \mu + t_3 + \epsilon_{32}$

QUADRO DA ANAVA

FV	GL	SQ	QM	F	F _{tab; α}
Tratamentos	(I-1)	SQTrat	SQTrat I-1	QMTrat QMRes	[(I-1); I(J-1)]
Resíduo	I(J-1)	SQRes	$\frac{SQRes}{I(J-1)}$		
Total	IJ - 1	SQTotal			

$$SQTotal = \sum_{i=1,j=1}^{I,J} (Y_{ij} - \hat{m})^2 = \sum_{i=1,j=1}^{I,J} Y_{ij}^2 - \frac{\left(\sum_{i=1,j=1}^{I,J} Y_{ij}\right)^2}{IJ}$$

$$SQTrat. = \sum_{i=1, j=1}^{I, J} (\hat{m}_i - \hat{m})^2 = \sum_{i=1}^{I} \frac{T_i^2}{J} - \frac{\left(\sum_{i=1, j=1}^{I, J} Y_{ij}\right)^2}{IJ}$$

$$SQErro = \sum_{i=1}^{I,J} (Y_{ij} - \hat{m}_i)^2 = SQTotal - SQTrat.$$

Fator de correção para a média

COEFICIENTE DE VARIAÇÃO

$$CV = \frac{\sqrt{QMRes}}{\hat{m}} \cdot 100$$

C.V.	Avaliação	Precisão
< 10%	Baixo	Alta
10 a 20%	Médio	Média
20 a 30%	Alto	Baixa
>30%	Muito Alto	Muito Baixa

EXEMPLO DIC: DADOS BALANCEADOS

Exemplo: Considere um experimento em DIC com 3 tratamentos e 5 repetições, a variável resposta analisada foi a produção de massa verde (t/ha) de uma cultura de sorgo. Verifique se existe diferença entre os espaçamentos ao nível de 5% de significância.

	ES	SPAÇAMENTOS	
REPETIÇÕES	0,50	0,75	0,90
I	186	158	190
II	180	173	215
III	187	175	221
IV	181	174	195
V	184	170	210
TOTAIS	918	850	1.031

EXEMPLO DIC: DADOS DESBALANCEADOS

Exemplo: O resultado da venda de 3 vendedores de uma indústria de pesticidas durante certo período é dado a seguir. Ao nível de 5% de probabilidade e considerando os vendedores como tratamento em um DIC, verifique se há diferenças de eficiências entre os vendedores.

	Vendedores					
	А	В	С			
	29	27	30			
	27	27	30			
	31	30	31			
	29	28	27			
	32		29			
	30					
Totais	178	112	147			

TESTE DE COMPARAÇÃO DE MÉDIAS TUKEY

John Wilder Tukey – 1949 Comparing individual means in the Analysis of Variance Biometrics 5(2): 99 – 114p

INTRODUÇÃO

- Quando o resultado do teste F é significativo, aceita-se a existência de efeitos diferenciados para, pelo menos dois tratamentos ao nível α% de probabilidade
- O próximo passo será a identificação das diferenças entre os tratamentos
- Tratamentos qualitativos testes de comparações de médias
- Tratamentos quantitativos análise de regressão
- As comparações entre tratamentos ou grupos de tratamentos, são realizadas por meio de contrastes

CONCEITOS INICIAIS

Contrastes de médias – Y

São relações lineares entre as médias dos tratamentos m_i de forma que a soma algébrica dos coeficientes das médias seja nula

$$Y = c_1 m_1 + c_2 m_2 + \dots + c_I m_I = 0$$

Será um constraste se, e só se $c_1 + c_2 + ... + c_I = 0$ $\sum_{i=1}^{r} c_i = 0$

$$Y_1 = m_1 - m_2$$
 Exemplo de contraste
$$Y_2 = m_1 - m_3$$

$$Y_3 = m_1 + m_2 - 2m_3$$

- Diferença mínima significativa DMS
- Todos os procedimentos se baseiam no cálculo de uma DMS
- Ela representa o menor valor que a estimativa de um contraste deve apresentar para que se possa considerá-lo como significativo
- Exemplo: para um contraste entre duas médias, a DMS representa qual o menor valor que tem que ser detectado entre suas estimativas para que se possa concluir que os dois tratamentos produzam efeitos significativamnete deferentes

Se o experimento for balanceado (r repetições/tratamento)

DMS =
$$\Delta = q(i \cdot gl \ res) \sqrt{\frac{QMResiduo}{r}}$$

Se o experimento for desbalanceado (ri repetições/tratamento)

DMS =
$$\Delta = q(i \cdot gl \ res) \sqrt{\frac{QMResiduo}{2}} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)$$

APLICAÇÃO DO TESTE

Passo 1: Calcula a DMS, representada por Δ

DMS =
$$\Delta = q(i \cdot gl \ res) \sqrt{\frac{QMResiduo}{r}}$$

- em que: q é a amplitude estudentizada (Tabela)
- Passo 2: Ordenar as médias (ordem decrescente) e colocar uma letra qualquer para a primeira média.
- Passo 3: Comparar cada estimativa de contraste de duas médias, em valor absoluto ($|\hat{Y}|$) com a DMS (Δ)

Passo 4: Comparação de valores

$$\begin{vmatrix} \hat{Y} \end{vmatrix} \ge \Delta \rightarrow Teste \ significativo$$
$$\begin{vmatrix} \hat{Y} \end{vmatrix} < \Delta \rightarrow Teste \ n\tilde{a}o \ significativo$$

Ho:
$$Y = 0$$
 ou seja Ho: $\mu_i = \mu_j$

$$Ha: Y \neq 0$$
 ou seja $Ho: \mu_i \neq \mu_j$

EXEMPLO

Dados: produção de cana-de-açúcar (t/ha), 4 (blocos) repetições

$$s^2 = QM \operatorname{Re} s i duo = 286,11$$

$$1-Co413$$
 $\hat{m}_1 = 100, 2 t / ha$
 $2-CB40/19$ $\hat{m}_2 = 137, 2 t / ha$
 $3-CB40/69$ $\hat{m}_3 = 139, 7 t / ha$
 $4-CB41/70$ $\hat{m}_4 = 129, 8 t / ha$
 $5-CB41/76$ $\hat{m}_5 = 124, 6 t / ha$

DELINEAMENTO EM BLOCOS CASUALIZADOS DBC

INTRODUÇÃO

- Leva em conta os três princípios básicos: aleatorização, repetição e controle local
- Dentro de cada bloco os tratamentos são atribuídos aleatoriamente dentros das UE
- Para que o experimento seja eficiente, cada bloco deverá ser o mais uniforme possível, porém os blocos poderão diferir bastante uns dos outros

VANTAGENS

- A perda total de um ou mais blocos ou de um ou mais tratamentos em nada dificulta a análise estatística.
- Conduz a estimativas menos elevadas do erro experimental
- A análise estatística é relativamente simples
- Permite, dentro de certos limites, utilizar qualquer número de tratamentos, e de blocos
- Controla a heterogeneidade do ambiente onde o experimento será conduzido
- Apresenta um número razoável de graus de liberdade para o resíduo

DESVANTAGENS

- Exige que o quadro auxiliar da análise da variância esteja completo para poder efetuar a análise estatística
- O princípio do controle local é usado com pouca precisão
- A exigência de homogeneidade das UE dentro de cada bloco limita o número de tratamentos, que não pode ser muito elevado
- Há uma redução do número de graus de liberdade para o resíduo, pela utilização do principio do controle local

ALEATORIZAÇÃO

Considere 4 tratamentos e 3 repetições

Considere 5 tratamentos e 4 repetições

As etapas do experimento é semelhante ao DIC

QUADRO DA ANAVA

Tabela 1: Modelo da tabela de Análise de Variância

FV	GL	SQ	QM	F
Blocos	(J-1)	SQBlocos	-	-
Tratamentos	(I-1)	SQTratamentos	SQTrat I – 1	QMTrat QMRes
Resíduo	(I-1)(J-1)	SQResíduo	$\frac{SQRes}{(I-1)(J-1)}$	-
Total	IJ - 1	SQTotal	_	-

MODELO ESTATÍSTICO

$$y_{ij} = \mu + t_i + b_j + \varepsilon_{ij}$$

 y_{ij} é a observação feita na parcela para o tratamento i no bloco j

μ média geral

 t_i é o efeito do i – ésimo tratamento (i = 1, 2, ..., I)

 b_i é o efeito do j – ésimo bloco (j = 1, 2, ..., J)

 ε_{ii} é o erro experimental referente a parcela que recebeu o tratamento i no bloco j

HIPÓTESES A SEREM TESTADAS

- Tratamentos
- H_o: hipótese de nulidade

$$H_o: t_1 = t_2 = \dots = t_I = 0$$

H_a: hipótese alternativa

$$H_a: t_I \neq 0$$
 para pelo menos um i

- Blocos
- H_o: hipótese de nulidade

$$H_o: b_1 = b_2 = \dots = b_J = 0$$

H_a: hipótese alternativa

$$H_a: b_J \neq 0$$
 para pelo menos um j

TABELA DE TABULAÇÃO DOS DADOS

		Tratan		
Blocos	1	2		Totais
1	Y ₁₁	Y ₂₁	 Y _{I1}	B ₁
2	Y ₁₂	Y ₂₂	 Y_{12}	B_2
J	Y_{1J}	Y_{2J}	 Y_{IJ}	B_{J}
Totais	T ₁	T ₂	 T _i	G

- nº de unidades experimentais: N = I x J;
- Total geral: $G = \sum_{i=1,j=1}^{l,J} Y_{ij} = \sum_{i=1}^{l} T_i = \sum_{j=1}^{J} B_j = Y_{...};$
- Total para o tratamento i: T_i = ∑_{j-1}^J Y_{ij} = Y_{i•};
- Total para o bloco j: $B_j = \sum_{i=1}^{l} Y_{ij} = Y_{ij}$;
- média para o tratamento i: $\hat{\mathbf{m}}_i = \frac{\mathsf{T}_i}{\mathsf{J}}$;
- média para o bloco j: m̂_j = B_j;
- média geral do experimento: m̂ = G/IJ.

SOMA DE QUADRADOS

$$SQTotal = \sum_{i=1,j=1}^{I,J} (Y_{ij} - \hat{m})^2 = \sum_{i=1,j=1}^{I,J} Y_{ij}^2 - \frac{\left(\sum_{i=1,j=1}^{I,J} Y_{ij}\right)^2}{IJ}$$

$$SQTrat. = \sum_{i=1, j=1}^{I, J} (\hat{m}_i - \hat{m})^2 = \sum_{i=1}^{I} \frac{T_i^2}{J} - \frac{\left(\sum_{i=1, j=1}^{I, J} Y_{ij}\right)^2}{IJ}$$

$$SQBlo\cos = \sum_{i=1,j=1}^{I,J} (\hat{m}_{j} - \hat{m})^{2} = \sum_{j=1}^{J} \frac{B_{j}^{2}}{I} - \frac{\left(\sum_{i=1,j=1}^{I,J} Y_{ij}\right)^{2}}{IJ}$$

$$SQ \operatorname{Re} siduo = \sum_{i=1, j=1}^{I,J} (Y_{ij} - \hat{m}_i)^2 = SQTotal - SQTrat. - SQBlo \cos SQTotal - SQTrat. - SQBlo cos SQTotal - SQTotal$$

EXEMPLO DBC

Exemplo: Considere-se um experimento que foi conduzido com o propósito de comparar as seguintes cultivares de ervilha de porte baixo: 1-Única, 2-Profusion, 3-Roi des Fins Verts, 4-Early Harvest, 5-Annonay, 6-Fins des Gourmets, quanto à produção de grãos secos. Os resultados - produção de grãos secos em decagramas por parcela de 4m² - estão registrados sobre o croqui do experimento. Pede-se:

Verifique se existe diferença entre as variedades de soja quanto a produção de grãos. Se sim, qual a(s) melhor(es) (utilize Tukey) ($\alpha = 5\%$).

DELINEAMENTO QUADRADO LATINO - DQL

INTRODUÇÃO

- Leva em conta os três princípios básicos: aleatorização, repetição e controle local;
- Possui um controle local mais eficiente que o DBC (controle na horizontal e na vertical);
 - Zootecnia: Experimento com suínos, ração A,B,C e D: raça e idade
 - Agricultura: Variedades de feijão: gradiente de fertilidade em dois sentidos do solo
- Os tratamentos são distribuídos de tal forma que apareçam somente uma só vez em cada linha e em cada coluna.

VANTAGENS

Controla a	heterogen	eidade do	ambiente	onde será	conduzido;
	<u> </u>				,

Conduz a estimativa menos elevada do erro experimental.

DESVANTAGENS

- A análise estatística é mais demorada;
- Exige que os blocos fiquem num mesmo local da área experimental;
- Exige que o número de tratamentos seja igual ao número de repetições;
- Apresenta o número menor de grau de liberdade para o resíduo;
- Exige que o quadro auxiliar da analise de variância esteja completo para poder efetuar a análise estatística.

ALEATORIZAÇÃO

 Estudar o efeito de 3 drogas (A,B,C). As reações individuais podem ser diferentes (linha) e a ordem de administração das drogas afeta a VR (coluna).

	O1	O2	O3
I1	Α	В	С
I2	В	С	Α
I3	С	Α	В

Α	В	С	
С	Α	В	
В	С	Α	

Sorteio das linhas

В	С	Α
Α	В	С
С	Α	В

Sorteio das colunas

MODELO ESTATÍSTICO

$$y_{(jk)i} = \mu + t_i + c_j + l_k + \varepsilon_{(jk)i}$$

 y_{ij} é a observação da parcela na coluna j e na linha k, que recebeu o tratamento i

μ média geral

 t_i é o efeito do i – ésimo tratamento (i = 1, 2, ..., I)

 c_i é o efeito da j – ésima coluna (j = 1, 2, ..., I)

 l_k é o efeito da k – ésima linha (k = 1, 2, ..., I)

 ε_{ij} é o erro experimental na parcela i, j, k.

HIPÓTESES A SEREM TESTADAS

Tratamentos

$$H_o: t_1 = t_2 = \dots = t_I = 0$$

 $H_a: t_I \neq 0$ para pelo menos um i

Colunas

$$H_o: c_1 = c_2 = ... = c_J = 0$$

 $H_a: c_J \neq 0$ para pelo menos um j

Linhas

$$H_o: l_1 = l_2 = ... = l_K = 0$$

 $H_a: l_K \neq 0$ para pelo menos um k

QUADRO DA ANAVA

Tabela 2: Modelo da tabela de Análise de Variância

Fontes de Variação	GL	SQ
Linhas	l-1	SQLinhas
Colunas	I-1	SQColunas
Tratamentos	I-1	SQTratamentos
Erro	(I-1) (I-2)	SQErro
Total	l ² -1	SQTotal

SOMA DE QUADRADOS

$$SQTotal = \sum_{i=1, j=1}^{I, J} Y_{ij}^2 - \frac{\left(\sum_{i=1, j=1}^{I, J} Y_{ij}\right)^2}{I^2}$$

$$SQTrat. = \sum_{i=1}^{I} \frac{T_i^2}{I} - \frac{\left(\sum_{i=1, j=1}^{I, J} Y_{ij}\right)^2}{I^2}$$

$$SQColunas = \sum_{j=1}^{J} \frac{C_j^2}{I} - \frac{\left(\sum_{i=1,j=1}^{I,J} Y_{ij}\right)^2}{I^2}$$

$$SQLinhas = \sum_{k=1}^{K} \frac{L_i^2}{I} - \frac{\left(\sum_{i=1, j=1}^{I, J} Y_{ij}\right)^2}{I^2}$$

 $SQ \operatorname{Re} siduo = SQTotal - SQTrat. - SQColunas - SQLinhas$

EXEMPLO DQL

Exemplo: Um experimento foi desenvolvido visando comparar a eficiência de técnicos treinadores em amostragem. Uma cultura foi dividida em seis áreas, cada área sendo amostrada por 6 técnicos diferentes. O amostrador deveria escolher 8 plantas que julgasse com altura representativa da área e anotar a altura média destas plantas. Para as análises estatísticas foi considerada a diferença entre a altura média da amostra e a verdadeira altura média da área correspondente. Tais diferenças são os erros amostrais e são dados a seguir.

	Åreas					
Ordem de Visita	1	II	III	IV	V	VI
1 ⁸	3,5 (F)	4,2 (B)	6,7 (A)	6,6 (D)	4,1 (C)	3,8 (E)
2ª	8,9 (B)	1,9 (F)	5,8 (D)	4,5 (A)	2,4 (E)	5,8 (C)
3 <u>ª</u>	9,6 (C)	3,7 (E)	-2,7 (F)	3,7 (B)	6,0 (D)	7,0 (A)
4 ^{<u>a</u>}	10,5 (D)	10,2 (C)	4,6 (B)	3,7 (E)	5,1 (A)	3,8 (F)
5 ^a	3,1 (E)	7,2 (A)	4,0 (C)	-3,3 (F)	3,5 (B)	5,0 (D)
6ª	5,9 (A)	7,6 (D)	-0,7 (E)	3,0 (C)	4,0 (F)	8,6 (B)

Verifique se existe diferença entre os amostradores. Se sim, qual o(s) melhor(es) (utilize Tukey) (α =5%).