Applied Machine Learning

INFO 370

Learning Objectives

Review machine learning process

Learn how to use the Driven Data submission system

Predict blood donations!

Machine Learning Review

Machine Learning Steps

Import a classifier (a method that generates an instance of a classifier)

Create a classifier

Split train/test data

Find optimal parameters (grid search) through a process that:

- Performs pre-processing on your data
- Uses cross validation for each model
- Uses only your training data

Assess your best model on your test data

```
# Grid search with preprocessing
  pipe = make pipeline(MinMaxScaler(), clf)
  param grid = {'kneighborsclassifier n neighbors': [1, 3, 5, 10]}
  # Pass your pipeline to a grid search, specifying a set of neighbors to assess
  grid = GridSearchCV(pipe, param grid)
  grid.fit(train_features, train_outcome)
Machine learning steps (in code)
```

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model selection import train test split

Create a classifier

clf = KNeighborsClassifier()

Split into test/train data

data.target, test size=0.30)

Import a classifier (a method that generates an instance of a classifier)

grid.score(test features, test outcome) # Will use the best model in the grid

train_features, test_features, train_outcome, test_outcome = train_test_split(data.data,

Driven Data

Sign up for an account with id <u>net-id-UW</u> (i.e., mikefree-UW) as your username (<u>link</u>)

Submission format

This competitions uses log loss as its evaluation metric, so the predictions you submit are the probability that a donor made a donation in March 2007.

The submission format is a csv with the following columns:

	Made Donation in March 2007				
659	0.5				
276	0.5				
263	0.5				
303	0.5				
83	0.5				

To be explicit, you need to submit a file like the following with predictions for every ID in the Test Set we provide:

```
,Made Donation in March 2007
659,0.5
276,0.5
263,0.5
303,0.5
```


Submissions are made via uploading test data

Applied Example

Warm Up: Predict Blood Donations

HOSTED BY DRIVENDATA

Data/Evaluation

Here's what the first few rows of the training set look like:

	Months since Last Donation	Number of Donations	Total Volume Donated (c.c.)	Months since First Donation	Made Donation in March 2007
619	2	50	12500	98	1
664	0	13	3250	28	1
441	1	16	4000	35	1
160	2	20	5000	45	1
358	1	24	6000	77	0

EVALUATION METRIC

$$\log \log s = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

The metric used for this competition is logarithmic loss. \hat{y} is the probability that y=1. Logarithmic loss provides a steep penalty for predictions that are both confident and wrong. The goal is to minimize the log loss.

Hints

Prepare your data properly

Choose an evaluation technique

Select your 3 submissions wisely

Figure out a way to tune your models (figure out max_depth, n_neighbors)

Predict probabilities, not outcomes (clf.predict_proba(test_data)[0:,1])

Go!

Upcoming...

Assignment-4 due **next Tuesday**

Start chipping away at **your final projects**