

DOUBLE CHANNEL HIGH SIDE DRIVER

TYPE	R _{DS(on)}	I _{OUT}	V _{CC}
VND810	160 mΩ (*)	3.5 A (*)	36 V

(*) Per each channel

- **CMOS COMPATIBLE INPUTS**
- OPEN DRAIN STATUS OUTPUTS
- ON STATE OPEN LOAD DETECTION
- OFF STATE OPEN LOAD DETECTION
- SHORTED LOAD PROTECTION
- UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN
- PROTECTION AGAINST LOSS OF GROUND
- VERY LOW STAND-BY CURRENT
- REVERSE BATTERY PROTECTION (**)

DESCRIPTION

The VND810 is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground.

Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation

combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. Output shorted to V_{CC} is detected in the off state. Device automatically turns off in case of ground pin disconnection.

BLOCK DIAGRAM

(**) See application schematic at page 8

July 2002 1/19

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	41	V
- V _{CC}	Reverse DC Supply Voltage	- 0.3	V
- I _{GND}	DC Reverse Ground Pin Current	- 200	mA
l _{out}	DC Output Current	Internally Limited	Α
- I _{OUT}	Reverse DC Output Current	- 6	Α
I _{IN}	DC Input Current	+/- 10	mA
I _{stat}	DC Status Current	+/- 10	mA
	Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)		
	- INPUT	4000	V
V_{ESD}	- STATUS	4000	V
	- OUTPUT	5000	V
	- V _{CC}	5000	V
	Maximum Switching Energy	26	m l
E _{MAX}	(L=1.5mH; R _L =0Ω; V _{bat} =13.5V; T _{istart} =150°C; I _L =5A)	20	mJ
P _{tot}	Power Dissipation T _C =25°C	8.3	W
T _i	Junction Operating Temperature	Internally Limited	°C
T _c	Case Operating Temperature	- 40 to 150	°C
T _{stg}	Storage Temperature	- 55 to 150	°C

CONNECTION DIAGRAM (TOP VIEW)

CURRENT AND VOLTAGE CONVENTIONS

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{thj-lead}	Thermal Resistance Junction-lead	15	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	75 (*)	°C/W

^(*) When mounted on a standard single-sided FR-4 board with 0.5cm^2 of Cu (at least $35 \mu \text{m}$ thick) connected to all V_{CC} pins. Horizontal mounting and no artificial air flow.

ELECTRICAL CHARACTERISTICS (8V<V_{CC}<36V; -40°C < T_j <150°C, unless otherwise specified) (Per each channel)

POWER OUTPUTS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{CC} (**)	Operating Supply Voltage		5.5	13	36	V
V _{USD} (**)	Under Voltage Shut-down		3	4	5.5	V
V _{OV} (**)	Overvoltage Shut-down		36			V
В	On State Resistance	I _{OUT} =1A; T _j =25°C			160	mΩ
R _{ON}	On State Resistance	I _{OUT} =1A; V _{CC} >8V			320	mΩ
		Off State; V _{CC} =13V; V _{IN} =V _{OUT} =0V		12	40	μΑ
I _S (**)	Supply Current	Off State; V _{CC} =13V; V _{IN} =V _{OUT} =0V; T _i =25°C		12	25	μА
		On State; V _{CC} =13V; V _{IN} =5V; I _{OUT} =0A		5	7	mA
I _{L(off1)}	Off State Output Current	V _{IN} =V _{OUT} =0V	0		50	μΑ
I _{L(off2)}	Off State Output Current	V _{IN} =0V; V _{OUT} =3.5V	-75		0	μΑ
I _{L(off3)}	Off State Output Current	V _{IN} =V _{OUT} =0V; Vcc=13V; T _j =125°C			5	μΑ
I _{L(off4)}	Off State Output Current	V _{IN} =V _{OUT} =0V; Vcc=13V; T _i =25°C			3	μΑ

(**) Per device

SWITCHING (V_{CC}=13V)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on Delay Time	R_L =13 Ω from V_{IN} rising edge to V_{OUT} =1.3 V		30		μs
t _{d(off)}	Turn-off Delay Time	R_L =13 Ω from V_{IN} falling edge to V_{OUT} =11.7 V		30		μs
dV _{OUT} /dt _(on)	Turn-on Voltage Slope	R_L =13 Ω from V_{OUT} =1.3 V to V_{OUT} =10.4 V		See relative diagram		V/μs
dV _{OUT} /dt _(off)	Turn-off Voltage Slope	R_L =13 Ω from V_{OUT} =11.7 V to V_{OUT} =1.3 V		See relative diagram		V/µs

LOGIC INPUT

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input Low Level				1.25	V
I _{IL}	Low Level Input Current	V _{IN} = 1.25V	1			μΑ
V_{IH}	Input High Level		3.25			V
I _{IH}	High Level Input Current	V _{IN} = 3.25V			10	μΑ
V _{I(hyst)}	Input Hysteresis Voltage		0.5			V
V .	Innut Clamp Voltage	I _{IN} = 1mA	6	6.8	8	V
V _{ICL}	Input Clamp Voltage	$\begin{vmatrix} I_{IN} = 1mA \\ I_{IN} = -1mA \end{vmatrix}$		-0.7		V

ELECTRICAL CHARACTERISTICS (continued)

STATUS PIN

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{STAT}	Status Low Output Voltage	I _{STAT} = 1.6 mA			0.5	V
I _{LSTAT}	Status Leakage Current	Normal Operation; V _{STAT} = 5V			10	μΑ
C _{STAT}	Status Pin Input Capacitance	Normal Operation; V _{STAT} = 5V			100	pF
Vasi		I _{STAT} = 1mA	6	6.8	8	V
V _{SCL}	Status Clamp Voltage	I _{STAT} = - 1mA		-0.7		V

PROTECTIONS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
T _{TSD}	Shut-down Temperature		150	175	200	°C
T _R	Reset Temperature		135			°C
T _{hyst}	Thermal Hysteresis		7	15		°C
t _{SDL}	Status Delay in Overload Conditions	$T_j > T_{TSD}$			20	μs
I _{lim}	Current limitation	5.5V <v<sub>CC<36V</v<sub>	3.5	5	7.5 7.5	A A
V _{demag}	Turn-off Output Clamp Voltage	I _{OUT} =1A; L=6mH	V _{CC} -41	V _{CC} -48	V _{CC} -55	V

OPENLOAD DETECTION

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
1.	Openload ON State	V _{IN} =5V	20	40	80	mA
I _{OL}	Detection Threshold	VIN-3 V	20	40	80	IIIA
	Openload ON State	1 00			200	
t _{DOL(on)}	Detection Delay	I _{OUT} =0A			200	μs
	Openload OFF State					
V_{OL}	Voltage Detection	V _{IN} =0V	1.5	2.5	3.5	V
	Threshold					
t _{DOL(off)}	Openload Detection Delay				1000	μs
'DOL(OII)	at Turn Off				1000	μο

OPEN LOAD STATUS TIMING (with external pull-up)

OVERTEMP STATUS TIMING

Switching time Waveforms

TRUTH TABLE

CONDITIONS	INPUT	OUTPUT	STATUS
Normal Operation	L	L	H
	Н	Н	Н
	L	L	H
Current Limitation	H	X	$ (T_i < T_{TSD}) H $
	Н	X	$ (T_j < T_{TSD}) H $ $ (T_j > T_{TSD}) L $
Overtemperature	L	L	Н
Overtemperature	Н	L	L
Undervoltage	L	L	X
Officervoltage	Н	L	X
Overveltage	L	L	Н
Overvoltage	Н	L	Н
Output Valtage > V	L	Н	L
Output Voltage > V _{OL}	Н	Н	H
Output Current < I _{OL}	L	L	Н
Output Garrent < 10L	Н	Н	L

ELECTRICAL TRANSIENT REQUIREMENTS ON V_{CC} PIN

ISO T/R 7637/1	TEST LEVELS						
Test Pulse	I	II	III	IV	Delays and Impedance		
1	-25 V	-50 V	-75 V	-100 V	2 ms 10 Ω		
2	+25 V	+50 V	+75 V	+100 V	0.2 ms 10 Ω		
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs 50 Ω		
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs 50 Ω		
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω		
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω		

ISO T/R 7637/1				
Test Pulse	I	II	III	IV
1	С	С	С	С
2	С	С	С	С
3a	С	С	С	С
3b	С	С	С	С
4	С	С	С	С
5	С	Е	Е	E

CLASS	CONTENTS
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

Figure 1: Waveforms

APPLICATION SCHEMATIC

GND PROTECTION NETWORK AGAINST REVERSE BATTERY

 $\underline{Solution\ 1:}$ Resistor in the ground line (R_{GND}\ only). This can be used with any type of load.

The following is an indication on how to dimension the $R_{\mbox{\footnotesize{GND}}}$ resistor.

- 1) $R_{GND} \le 600 \text{mV} / I_{S(on)max}$.
- 2) $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $^{-1}_{\rm GND}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power Dissipation in R_{GND} (when $V_{CC}\!\!<\!\!0$: during reverse battery situations) is:

 $P_D = (-V_{CC})^2 / R_{GND}$

This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not common with the device ground then the R_{GND} will produce a shift ($I_{S(on)max} \ast R_{GND}$) in the input thresholds and the status output values. This shift will vary

depending on how many devices are ON in the case of several high side drivers sharing the same $R_{\mbox{\footnotesize{GND}}}.$

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).

Solution 2: A diode (D_{GND}) in the ground line.

A resistor $(R_{GND}=1k\Omega)$ should be inserted in parallel to D_{GND} if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (\simeq 600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

LOAD DUMP PROTECTION

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds V_{CC} max DC rating. The same applies if the device will be subject to transients on the V_{CC} line that are greater than the ones shown in the ISO T/R 7637/1 table.

μ C I/Os PROTECTION:

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μC I/Os.

 $\text{-V}_{CCpeak}/I_{latchup} \leq R_{prot} \leq (V_{OH\mu C}\text{-V}_{IH}\text{-V}_{GND}) \ / \ I_{IHmax}$

Calculation example:

For V_{CCpeak} = - 100V and $I_{latchup} \ge 20 mA$; $V_{OH\mu C} \ge 4.5V$ $5k\Omega \le R_{prot} \le 65k\Omega$. Recommended R_{prot} value is $10k\Omega$.

OPEN LOAD DETECTION IN OFF STATE

Off state open load detection requires an external pull-up resistor (R_{PU}) connected between OUTPUT pin and a positive supply voltage (V_{PU}) like the +5V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

1) no false open load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition

 $V_{OUT}=(V_{PU}/(R_L+R_{PU}))R_L < V_{Olmin.}$

2) no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition R_{PU} <(V_{PU} - V_{OLmax})/ $I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched OFF when the module is in standby.

The values of V_{OLmin} , V_{OLmax} and $I_{L(off2)}$ are available in the Electrical Characteristics section.

Open Load detection in off state

Off State Output Current

Input Clamp Voltage

Status Low Output Voltage

High Level Input Current

Status Leakage Current

Status Clamp Voltage

VND810

On State Resistance Vs T_{case}

On State Resistance Vs V_{CC}

Openload On State Detection Threshold

Input High Level

Input Low Level

Input Hysteresis Voltage

Overvoltage Shutdown

Openload Off State Voltage Detection Threshold

Turn-on Voltage Slope

Turn-off Voltage Slope

 I_{LIM} Vs T_{case}

Maximum turn off current versus load inductance

A = Single Pulse at T_{Jstart}=150°C

B= Repetitive pulse at T_{Jstart}=100°C

C= Repetitive Pulse at T_{Jstart}=125°C

Conditions:

V_{CC}=13.5V

Values are generated with R_L = 0Ω

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

SO-16 THERMAL DATA

SO-16 PC Board

 $R_{thj\text{-}amb}$ Vs PCB copper area in open box free air condition

Thermal fitting model of a double channel HSD in SO-16

Pulse calculation formula

$$Z_{TH\delta} \, = \, R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_p/T$

Thermal Parameter

Area/island (cm ²)	0.5	4
R1 (°C/W)	0.35	
R2 (°C/W)	1.8	
R3 (°C/W)	4.5	
R4 (°C/W)	10	
R5 (°C/W)	16	
R6 (°C/W)	48	25
C1 (W.s/°C)	0.0001	
C2 (W.s/°C)	7.00E-04	
C3 (W.s/°C)	6.00E-03	
C4 (W.s/°C)	0.2	
C5 (W.s/°C)	0.7	
C6 (W.s/°C)	2	4

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		1.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S	8° (max.)					

SO-16 TUBE SHIPMENT (no suffix)

Base Q.ty	50
Bulk Q.ty	1000
Tube length (± 0.5)	532
Α	3.2
В	6
C (± 0.1)	0.6

All dimensions are in mm.

TAPE AND REEL SHIPMENT (suffix "13TR")

REEL DIMENSIONS

Base Q.ty	1000
Bulk Q.ty	1000
A (max)	330
B (min)	1.5
C (± 0.2)	13
F	20.2
G (+ 2 / -0)	16.4
N (min)	60
T (max)	22.4

All dimensions are in mm.

TAPE DIMENSIONS

According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986

` '		
Tape width	W	16
Tape Hole Spacing	P0 (± 0.1)	4
Component Spacing	Р	8
Hole Diameter	D (± 0.1/-0)	1.5
Hole Diameter	D1 (min)	1.5
Hole Position	F (± 0.05)	7.5
Compartment Depth	K (max)	6.5
Hole Spacing	P1 (± 0.1)	2

All dimensions are in mm.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

 $\ensuremath{\texttt{©}}$ 2001 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

