LAB 02 - PROJECT 01

1. PHƯƠNG PHÁP SỬ DUNG CÁC BIẾN ĐỔI SƠ CẤP TRÊN DÒNG ĐỂ

a. TÍNH ĐỊNH THỰC CỦA MA TRẬN VUÔNG

Cho ma trận vuông A, ta tìm det(A) như sau:

- Dùng các phép biến đổi sơ cấp trên dòng, biến đổi ma trận đã cho thành ma trận bậc thang.
- Sau đó, nhân dấu định thức với các phần tử trên đường chéo chính với nhau ta được định thức của ma trận vuông.
- Khi dùng các phép biến đổi trên dòng, phải tuân theo các nguyên tắc:
 - + Hoán vị 2 dòng (hoặc 2 cột): đổi dấu định thức
 - + Nhân 1 dòng với 1 số thực λ: định thức tăng lên λ lần
 - + Định thức sẽ không đổi nếu ta cộng vào 1 dòng (hoặc 1 cột) với λ lần dòng (hoặc cột) khác.

Ví dụ:

$$A = \begin{bmatrix} 0 & 2 & 4 \\ 2 & 3 & -1 \\ -2 & -3 & 6 \end{bmatrix} \xrightarrow{\overline{d3} \to d3 + d2} \begin{bmatrix} 0 & 2 & 4 \\ 2 & 3 & -1 \\ 0 & 0 & 5 \end{bmatrix} \xrightarrow{\overline{d1} \leftrightarrow d2} - \begin{bmatrix} 2 & 3 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

$$= -2 \times 2 \times 5 = -20$$

b. TÌM NGHICH ĐẢO CỦA MA TRÂN VUÔNG

Cho $A \in M_n$ khả nghịch, ta tìm A^{-1} như sau:

- Lập ma trận $A \mid I_n$ (ma trận chia khối) bằng cách ghép ma trận đơn vị I_n vào bên phải ma trận A
- Dùng phép biến đổi sơ cấp trên dòng để đưa $A \mid I_n$ về dạng $I_n \mid B$.
- Khi đó $B = A^{-1}$.

Ví dụ:
$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Ví dụ:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \qquad B = A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

$$A \mid I_3 = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 \mid 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{d2 = d2 - 2d1} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 \mid -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{d3 = d3 + 2d2} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix} \xrightarrow{d3 = d3 * (-1)} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

$$\xrightarrow{d1 = d1 - 3d3} \begin{bmatrix} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 1 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix} \xrightarrow{d1 = d1 - 2d2} \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix} = I_3 \mid B$$

2. Ý TƯỞNG CÀI ĐẶT HÀM

- a. calc_determinant_row_operation(matrix)
- Dùng 2 biến **echelon_matrix**, **sign** để nhận ma trận bậc thang và dấu của định thức từ hàm **Gauss elimination**
- Hàm Gauss_elimination:
 - + Bước 1. Xác định cột trái nhất không chứa toàn số 0.
- + **Bước 2.** Đổi chỗ hai dòng, nếu cần thiết, để đưa số hạng khác 0 nào đó ở dưới về đầu cột nhận được ở Bước 1. sign ← sign * (-1) # đổi dấu định thức
- + **Bước 3.** Với số hạng đầu cột nhận được từ Bước 2 là $a\neq 0$, nhân dòng chứa nó với 1a để có số dẫn đầu 1 (**leading1**). (*Bước này tùy chọn*)

```
sign ← sign * 1/R[row][col] # Nhân 1 dòng với số thực λ: định thức tăng lên λ lần
```

- + **Bước 4.** Cộng một bội số thích hợp của dòng đầu cho từng dòng dưới để biến các số hạng bên dưới số dẫn đầu thành 0.
 - + **Bước 5.** Che dòng đầu đã làm xong. Lặp lại các bước cho đến khi được ma trận bậc thang.
- Dùng vòng lặp duyệt qua từng dòng của **matrix** để nhân dấu định thức **sign** với các phần tử trên đường chéo chính.

b. invert_matrix_row_operation(matrix)

- Tạo biến res để trả về kết quả.
- Kiểm tra nếu định thức của matrix **det** = 0 => Ma trận không khả nghịch => Trả về None.
- Ngược lại, tạo ma trận **temp** để ghép **matrix** và ma trận đơn vị lại với nhau.
- Tạo ma trận **R** để lưu ma trận **temp** (lúc này đã thành ma trận bậc thang rút gọn).
- Dùng vòng lặp duyệt qua ma trận **R**, thực hiện các phép biến đổi trên dòng để chuyển **matrix** thành ma trân đơn vi.

Ví du:

- Dùng vòng lặp duyệt qua ma trận **R** để lưu ma trận nghịch đảo vào **res**.

Tham khảo: lab01.ipynb

lab02_project01_2021_updated.ipynb