

Elliptic Curve

Acknowledgement

Much material in this course owe their ideas and existence to

- Lawrence C Washington, University of Maryland
- Behrouz A. Forouzan

Reference Material

- "Introduction to Cryptography with Coding Theory" by Wade Trappe & Lawrence C Washington, New Jersey, Pearson Education, 2006.
- Behrouz A. Forouzan, "Cryptography and Network Security", McGraw Hill

A Pyramid of Cannonballs

$$1^2 + 2^2 + 3^2 + \dots + x^2 = \frac{x(x+1)(2x+1)}{6}$$

We want this to be perfect square,

$$y^2 = \frac{x(x+1)(2x+1)}{6}$$

An equation of this type represents an elliptic curve.

Let's start with the points (0,0) and (1,1). The line through these two points is y=x.

$$x^{2} = \frac{x(x+1)(2x+1)}{6} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$
$$x^{3} - \frac{3}{2}x^{2} + \frac{1}{2}x = 0$$

• We already know two roots of this equation: x = 0 and x = 1. We could factor the polynomial to find the third root.

$$(x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc$$

• We have roots 0, 1, and x, so

$$0+1+x=\frac{3}{2}$$

- Therefore, $x = \frac{1}{2}$. Since the line was y = x, we have $y = \frac{1}{2}$.
- We automatically have on more point, namely $(\frac{1}{2}, -\frac{1}{2})$, because of the symmetry of the curve

Elliptic curve

• An elliptic curve E is the graph of the equation of the form

$$y^2 = x^2 + Ax + B$$

- It will be taken to be elements of the fields.
- It is not possible to draw meaningful pictures of elliptic curves over most fields. For institution, it is useful to think in terms of graphs over the real numbers.

$$4A^3 + 27B^2 \neq 0$$
.

Adding Points on an Elliptic Curve

$$P_1 = (x_1, y_1), \qquad P_2 = (x_2, y_2)$$

• To obtain P_3

$$P_1 + P_2 = P_3$$
.

• Assume first that $P_1 \neq P_2$ and neither point is ∞ . Draw the line L through P_1 and P_2 . Its slope is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

• Let's assume that $x_1 \neq x_2$.

$$y = m(x - x_1) + y_1$$

To find the intersection with E, substitute to get

$$(m(x-x_1)+y_1)^2=x^3+Ax+B.$$

Rearranged to form

$$0 = x^3 - m^2 x^2 + \cdots$$

• If we have a cubic polynomial $x^3 + ax^2 + bx + c$ with roots r, s, t, then

$$x^3 + ax^2 + bx + c = (x - r)(x - s)(x - t) = x^3 - (r + s + t)x^2 + \cdots$$

Therefore,

$$r+s+t=-a.$$

$$x = m^2 - x_1 - x_2$$

and
 $y = m(x - x_1) + y_1$.

• Reflect across the x-axis to obtain the point $P_3=(x_3,y_3)$

$$x_3 = m^2 - x_1 - x_2,$$
 $y_3 = m(x_1 - x_3) - y_1.$

• In the case that $x_1 = x_2$ but $y_1 \neq y_2$, the line through P_1 and P_2 is a vertical line, which therefore intersects E in ∞ . Therefore, in this case $P_1 + P_2 = \infty$.

• In the case where $P_1 = P_2 = (x_1, y_1)$. Two points on the curve are very close to each other, the line through them approximates a tangent line.

$$2y\frac{dy}{dx} = 3x^2 + A$$
, so $m = \frac{dy}{dx} = \frac{3x_1^2 + A}{2y_1}$

• If $y_1 = 0$ then the line is vertical and we set $P_1 + P_2 = \infty$, as before. Therefore assume that $y_1 \neq 0$.

$$y = m(x - x_1) + y_1,$$

We obtain the cubic equation

$$0 = x^3 - m^2 x^2 + \cdots$$

$$x_3 = m^2 - 2x_1, \qquad y_3 = m(x_1 - x_3) - y_1.$$

• Suppose $P_2 = \infty$. The line through P_1 and ∞ is a vertical line that intersect E in the point P_1' that is the reflection of P_1 . P_1' across the x-axis to get $P_3 = P_1 + P_2$.

Therefore,

$$P_1 + \infty = P_1$$
.

