Pre-Certamen N°3 Cálculo Integral

Profesor Patricio Cumsille

Ayudante Danilo Inostroza

Tiempo: 80 minutos.

Nota: Suma de los puntajes obtenidos más un punto base. Cada parte vale lo mismo, a menos que se diga lo contrario.

P1. [1,6 puntos].

- *a*) **[0,4 puntos].** Calcule los límites, si existen, de las siguientes sucesiones. Justifique claramente sus cálculos.
 - 1) $a_n = n \sin\left(\frac{1}{n}\right)$.
 - 2) $a_n = n \sqrt{n+1}\sqrt{n+3}$.
- b) [1,2 puntos]. El tamaño de una población inalterada de peces se ha modelado mediante la fórmula

$$p_{n+1} = \frac{bp_n}{a + p_n} \qquad p_0 > 0$$

donde p_n es la población de peces después de n años y a y b son parámetros positivos que dependen de las especies y su medio ambiente.

- 1) [0,2 puntos]. Demuestre que si (p_n) es convergente, entonces los únicos posibles valores de su límite son 0 y b-a.
- 2) **[0,4 puntos].** Demuestre que $p_{n+1} < \frac{b}{a}p_n$.
- 3) **[0,6 puntos].** Suponga que 0 < a < b. Usando la parte anterior, demuestre que si $0 < p_0 < b a$, entonces

$$(p_n)$$
 es creciente y $0 < p_n < b - a$.

Deduzca que si 0 < a < b, entonces $\lim p_n = b - a$.

P2. [1,2 puntos].

- a) Determine el radio e intervalo de convergencia de las siguientes series de potencias:
 - 1) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$.

2)
$$\sum_{n=1}^{\infty} \frac{x^n}{1 \cdot 3 \cdot 5 \cdots \cdots (2n-1)}$$
.

b) Una función f está definida mediante la serie de potencias:

$$f(x) = 1 + 2x + x^2 + 2x^3 + x^4 + \cdots$$

es decir, sus coeficientes son $c_{2n}=1$ y $c_{2n+1}=2$ para todo $n\geq 0$. Plantee una fórmula explícita para f(x) y diga cuál su intervalo de convergencia.

- P3. [1,2 puntos]. Determine la convergencia o divergencia de las siguientes series.
 - a) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}.$

Indicación: Use el criterio de la integral.

- b) $\sum_{n=1}^{\infty} \frac{n-1}{n^2 \sqrt{n}}.$
- c) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$.

Indicación: Use el criterio de comparación (directa o del límite).

P4. [1 punto].

a) Usando la serie de Maclaurin de $\sin x$, encuentre la serie de

$$F(x) = \int_0^x \frac{\sin t}{t} dt.$$

¿Cuál es el intervalo de convergencia de la serie de F(x)?

b) De la serie anterior, encuentre una aproximación de $\int_0^1 \frac{\sin t}{t} dt$ con 4 decimales correctos.

P5. [1 punto].

a) Usando la serie de Maclaurin de ln(1 + x), demuestre que:

$$\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

y encuentre su intervalo de convergencia.

b) A partir de la serie anterior, encuentre la suma de la serie $-\frac{1}{4}\sum_{n=0}^{\infty}\frac{1}{2^n(n+1)(n+2)}$.