

Spreading Models of Misfolded Proteins on Connectomes at the time of Pasta Cacio e Pepe Alessandro Crimi Eleanna Kara

Alzheimer and Parkinson dynamics

- Parkinson and Alzheimer disease are neurodegenerative diseases characterized by spreading of misfolded proteinsacross the brain.
- We would like to study how this spreading occur.

Braak Hypothesis

Studied in Autopsies but still controversial

What we can do?

We have the structural connectomes from the ADNI and PPMI dataset

We can validate spreading models (Python/Matlab)

$$X(t) = \exp^{-\beta Lt} X(t-1) + X(t-1)$$

- And compare them to PET tracers or brain atrophy.
- There are also genetic data on the ADNI and PPMI dataset so, we can cross-validate
 - spreading with known genes or GWAS.
- Or?

Crimi and Kara, «Spreading model for patients with Parkinson disease based on Connectivity differences»

IEEE ISBI 2019

https://github.com/alecrimi/misfoldedproteins_connectome

@dr.alecrimi

@Dr_Alex_Crimi

alessandro.crimi@usz.ch

BrainHackZurich
October 3rd/4th 2019
www.brainhackzurich.ch

What we have learnt

- Many things still unknown from neuropathology
- Validation of pathological spreading can still improved

What we came up

Analog workflow from Robert

HeatKernel based spreading

Tested only on ADNI dataset (subset)

Iterations

Next steps

- Fix the other code(s)
- Compare all methods
- Do the same on the Parkinson and ALS dataset
- https://github.com/alecrimi/misfoldedpr oteins_connectome