

Nuclear structure from the Hartree-Fock mean field

Nuclear Physics Turtle Lecture Series 2025: Ab initio Hartree-Fock calculations of nuclei

Lecture 5

Matthias Heinz, ORNL

Work supported by:

Recap

- We can solve Hartree-Fock for some ${\cal V}_{N\!N}$
- Inclusion of V_{3N} is challenging, but important

Main messages

- Three-nucleon forces are challenging to handle
- Can be efficiently approximated as effective two-body interactions
- Three-body forces for cost of two-body forces, makes large scale calculations possible
- Impact of 3N forces is essential
 - Repulsive contribution to binding energy
 - Impacts the location of drip lines
- HF expectation values for other operators is easy

HF with 3N forces on whiteboard

occupied

different colors are different $\hbar\omega$

• Consider wave function $\langle \vec{r} \, | \, p \rangle = \phi_p(\vec{r})$

• Radial part $u_{nl}(r)/r$

- Angular part $Y_{lm}(\hat{r})$
- For occupied states, u(r) becomes **independent** of $\hbar\omega$
- Unoccupied states are not optimized

 $r [\mathrm{fm}] 0.00 = 0.00$

NPTLS 2025 Tichai et al., PRC **99**, (2019)

8 (

different colors are different $\hbar\omega$

- Consider wave function $\langle \vec{r} \, | \, p \rangle = \phi_p(\vec{r})$
- Radial part $u_{nl}(r)/r$
- Angular part $Y_{lm}(\hat{r})$
- For occupied states, u(r) becomes **independent** of $\hbar\omega$
- Unoccupied states are not optimized

occupied

unoccupied

unoccupied

NPTLS 2025

Oxygen drip line and three-body forces

- Most of the time, **binding energy increases** as you add nucleons
- For very proton-rich or neutron-rich systems, binding energy begins to decrease again
 - System is unbound with respect to proton or neutron emission → drip line
- Calculations with only V_{NN} : oxygen isotopes more bound with more neutrons even beyond $^{24}{\rm O}$
- Calculations with V_{NN} , V_{3N} : neutron drip line at $^{24}\mathrm{O}$

$e_{\rm max} = 4$, HF		
System	NN-only	NN + 3N
0-16	-150.81	-88.14
0-24	-217.35	-109.36
0-28	-232.73	-105.75

Our results!

Oxygen drip line and three-body forces

- Most of the time, binding energy increases as you add nucleons
- For very proton-rich or neutron-rich systems, binding energy begins to decrease again
 - System is unbound with respect to proton or neutron emission → drip line
- Calculations with only V_{NN} : oxygen isotopes more bound with more neutrons even beyond $^{24}{\rm O}$
- Calculations with V_{NN} , V_{3N} : neutron drip line at $^{24}\mathrm{O}$

Otsuka et al., PRL **105**, (2010)

Global drip line predictions

- Careful!
- Not always so simple
- Some calculations still predict ²⁸O is bound
- Blue: likely bound
- Red: 50/50
- White: likely unbound

Summary

- Can easily evaluate other operators at HF level
- Approximate 3-body forces as effective 2-body forces

$$V_{pqrs}^{(3B,eff.)} = \sum_{tu} \rho_{tu} V_{pqtrsu}^{(3B)}$$

- Modified prefactors, but treatment same as 2-body forces
- Significant impact in nuclear structure calculations
- But "less important" than 2-body forces?

What about bigger calculations?

- More clever treatment of symmetries of nuclear forces allows large $e_{
 m max}$
 - Most important: Rotational invariance
 - Two-body matrix elements $\langle (pq)JM_J|\,V_{NN}|\,(rs)JM_J\rangle$ are diagonal in J,M_J and independent of M_J
 - Reduces storage cost by 100 to 1000
- Open-source codes available

Miyagi, EPJA **59**, 150 (2023)

- NuHamil: https://github.com/Takayuki-Miyagi/NuHamil-public
- imsrg++: https://github.com/ragnarstroberg/imsrg

NPTLS repository will be updated to allow you to reach $e_{\mathrm{max}} = 8!$