(2020 - Jan - 8 - S1)

2020-Jan-8-S1

EE24BTECH11001 - ADITYA TRIPATHY

16. Let two points be A(1,-1) and B(0,2). If a point P(x', y') be such that area of $\triangle PAB = 5$ sq. units

and it lies if the line, $3x + y - 4\lambda = 0$, then the value of λ is :

a) 4	b) 1	c) -3	d) 3
17. The shortest d	listance between the lines		
	<u>x</u>	$\frac{z-3}{3} = \frac{y-8}{-1} = \frac{z-3}{-1}$	
And		3 -1 -1	
	<u>x</u>	$\frac{z+3}{3} = \frac{y+7}{2} = \frac{z-6}{1}$	(1)
		3 2 1	(2020 - Jan - 8 - S1)
a) $2\sqrt{30}$	b) $\frac{7\sqrt{30}}{2}$	c) 3	d) $3\sqrt{30}$
	s ellipse at P meets the α		point P in the first quadrant. If the $(0,\beta)$ and $(0,\beta)$, then β is equal to
a) $\frac{2}{\sqrt{3}}$		b) $\frac{2}{3}$	
c) $\frac{2\sqrt{2}}{3}$		d) $\frac{\sqrt{2}}{3}$	
19. If c is a point	at which Rolle's Theorem	holds for the function,	
		$f(x) = \log_e\left(\frac{x^2 + \alpha}{7x}\right)$	(2)
in the interval	$(3,4)$, where $\alpha \in R$, then	f''(c) is equal to:	(2020 - Jan - 8 - S1)
a) $\frac{-1}{24}$	b) $\frac{-1}{12}$	c) $\frac{\sqrt{3}}{7}$	d) $\frac{1}{12}$
20. Let			
	$f\left(x\right) =x$	$\cos^{-1}\left(\sin\left(- x \right)\right), x \in \left(\frac{-1}{2}\right)$	$\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
		y	
		† / ₂	

, then which of the following is true

$$(2020 - Jan - 8 - S1)$$

- a) $f(0) = \frac{-\pi}{2}$
- b) f' is decreasing in $\left(\frac{-\pi}{2}, 0\right)$ and increasing in $\left(0, \frac{\pi}{2}\right)$ c) f is not differentiable at x = 0
- d) f' is increasing in $\left(\frac{-\pi}{2},0\right)$ and decreasing in $\left(0,\frac{\pi}{2}\right)$
- 21. An urn contains 5 red marbles, 4 black marbles and 3 white marbles. Then the number of ways in which 4 marbles can be drawn so that at most three of the are red is. (2020 - Jan - 8 - S1)
- 22. Let the normal at a point *P* on the curve $y^2 3x^2 + y + 10 = 0$ intersect the y-axis at $\left(0, \frac{3}{2}\right)$. If *m* is the slope of the tangent at *P* to the curve, te |m| is equal to (2020 Jan 8 S1)

23. The least positive value of 'a' for which the equation

$$2x^2 + (a - 10)x + \frac{33}{2} = 2a \tag{4}$$

(2020 - Jan - 8 - S1)has real roots is

24. The sum

$$\sum_{k=1}^{20} (1+2+3+\dots+k) \tag{5}$$

(2020 - Jan - 8 - S1)is

25. The number of all 3×3 matrices A, with entries from the set $\{-1,0,1\}$, such that the sum of the diagonal elements of (AA^{T}) is 3, is (2020 - Jan - 8 - S1)