TEXT BOOKS:

- 1. Narsingh Deo, "Graph Theory with Applications to Engineering and Computer Science", Prentice-Hall of India Pvt. Ltd, 2003.
- 2. S. Pirzada, "An Introduction to Graph theory", University Press, 2012.

REFERENCES:

- 1. Frank Harary, "Graph Theory", Narosa Publishing House, 2001.
- 2. West D. B., "Introduction to Graph Theory", 2nd Edition, Pearson Education, 2001.
- 3. Diestel R, "Graph Theory", 5th Edition, Springer, 2017.

EVALUATION METHOD TO BE USED:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory	40	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓						✓			
CO2	✓	✓	✓					✓				✓
CO3	✓	✓	✓		✓			✓				✓
CO4	✓	✓	✓						✓		✓	
CO5	✓	✓	✓		✓					✓		

EC6201

SIGNALS AND SYSTEMS

OBJECTIVES:

- To understand the types of signals and systems
- To gain knowledge about understanding continuous time and discrete time signals.
- To learn time domain and frequency domain analysis of signals
- To learn the transformations from time domain to frequency domain
- To gain knowledge about the various functionalities available in signal processing software to support signal processing applications

SIGNALS AND SYSTEMS	L	Т	Р	EL	TOTAL	CREDITS
	3	0	4	3		6
MODULE I:			L	T	Р	EL
			3	0	4	3
Classification of Signals Leaful Signal models no	riadia and a n	oriod	io oia	nolo	randam	signala Engrav

Classification of Signals - Useful Signal models – periodic and a periodic signals, random signals, Energy & Power signals - Systems – Classification of systems

SUGGESTED ACTIVITIES:

- In Class activity expressing signals as a function of step, ramp.
- Practical Plotting of Continuous signals and operations on them using either Open CV, MATLAB, OCTAVE
- EL Study of any one Open CV, MATLAB, OCTAVE

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II	L	Т	Р	EL
	3	0	4	3

Time Domain analysis of continuous-time systems – unit impulse response – Convolution Integral – System response

SUGGESTED ACTIVITIES:

- EL Visualizing signals of practical day to day activities like traffic light, count of vehicles, temperature of the day, stock market changes
- Practical Implementation of continuous signals and understanding

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE III	L	Т	Р	EL
	3	0	4	3

Fourier Series – Periodic representation by trigonometric Fourier series – Role of amplitude and phase spectra - LTI continuous system response to periodic inputs – Signals as vectors

SUGGESTED ACTIVITIES:

- EL Flipped Class-room Signal representation by orthogonal signal set
- Practical Fourier series application using Open CV, MATLAB or OCTAVE

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE IV	L	Т	Р	EL
	3	0	4	3

Fourier Transform – Aperiodic representation by Fourier integral – Properties of Fourier transform – Fourier transform in the analysis of Continuous time systems

SUGGESTED ACTIVITIES:

- Flipped Class room
- EL Application of Fourier transform
- Practical –Properties of Fourier transform implementation using Open CV, MATLAB, or OCTAVE

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE V	L	T	Р	EL
	3	0	4	3

Classification of Discrete time systems – Sampling theorem – signal reconstruction – Discrete-time signal models

SUGGESTED ACTIVITIES:

- EL Signal operations
- Practical Open CV, MATLAB, or OCTAVE implementation and visualization of discrete time systems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE VI	L	Т	Р	EL
	3	0	4	3

Impulse response – Convolution sum – Discrete time systems response – Differential equation – Block diagram representation of Discrete time systems

SUGGESTED ACTIVITIES:

- EL Impulse response for special cases, Correlation
- Practical –Convolution Implementation using MATLAB, OCTAVE or Open CV

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE VII	L	Т	Р	EL
	3	0	4	3

Z-transform – Properties of Z-transform – Inverse Z-transform – Pole-Zero location

SUGGESTED ACTIVITIES:

- Practical –Implementation of Z-transform using Open CV, MATLAB, or OCTAVE
- EL Bilateral Z-transform, Inverse Z-transform using alternate methods

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE VIII	L	Т	Р	EL
	3	0	4	3

Discrete Time Fourier transform – Properties – Inverse Discrete Time Fourier Transform

SUGGESTED ACTIVITIES:

- EL DTFS, relationship between DTFT and Z-transform
- Practical Implementation DFT, properties using MATLAB, OCTAVE or Open CV

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE IX	L	T	Р	EL
	3	0	4	3

Discrete Fourier Transform – Properties – Circular Convolution – Inverse Discrete Fourier transform

SUGGESTED ACTIVITIES:

- EL DTFS, relationship between DTFT and Z-transform
- Practical Implementation DFT, properties using MATLAB, OCTAVE or Open CV

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes
- Practical exercises demo

MODULE X	L	Т	Р	EL
	3	0	4	3

Fast Fourier Transform - Divide and Conquer - Decimation in Time - Radix-2 algorithm - Complexity

SUGGESTED ACTIVITIES:

- EL Radix n implementation of Fast Fourier Transform
- Practical Analyzing the FFT of signals and their interpretation

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Practical exercises demo

MODULE XI	L	T	Р	EL
	3	0	4	3

Fast Fourier transform – Decimation in frequency – Radix-2 algorithm - Inverse DFT using one FFT technique

SUGGESTED ACTIVITIES:

• EL – Derivation of Radix-n FFT for DIF algorithms

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Quizzes

OUTCOMES:

Upon completion of the course, the students will be able to:

- Analyze and classify any given signal and system
- Propose appropriate time domain and frequency domain analysis for a signal to satisfy an application
- Suggest appropriate frequency transformation to convert an analog signal to a digital signal
- Convert any input data to a signal and analyse it mathematically
- Code and represent a signal and analyse using a signal processing software

TEXT BOOKS:

- 1. Alan V. Oppenheim, Alan S. Willsky and S. Hamid Nawab, "Signals and Systems", Pearson Education, Second Edition, 2014.
- 2. B. P. Lathi, "Principles of Linear Systems and Signals", Oxford University Press, Second Edition, 2009.

REFERENCES:

- 1. M.J. Roberts, "Signals & Systems, Analysis using Transform Methods & MATLAB", Tata McGraw Hill (India), Third Edition, 2019.
- 2. P. Ramakrishna Rao, "Signals and Systems", Second Edition, Tata McGraw Hill Publications, 2017.
- 3. H P Hsu, "Signals and Systems", Schaum's Outline Series, Third Edition, Tata McGraw Hill, 2013
- 4. S. Haykin and B. Van Veen, "Signals and Systems", Second Edition, Wiley, 2007.
- 5. Edward W. Kamen and Bonnie S. Heck, "Fundamentals of Signals and Systems Using the Web and MATLAB". Pearson. Third Edition. 2006.
- 6. John Alan Stuller, "An Introduction to Signals and Systems", Cengage Learning, 2007

EVALUATION PATTERN:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory Integrated with Practical	15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	✓	✓		✓	✓							
CO1												
CO2	✓	✓	✓	✓	✓	✓	✓					
CO3	✓	✓	✓	✓	✓				✓			
CO4	✓	✓	✓	✓	✓	✓	✓		✓			
CO5	✓	✓	✓	✓	✓	✓	✓	✓				