8.20 1)
$$(x)' = \left(\sin(\arcsin(x))\right)'$$

$$1 = \sin'(\arcsin(x)) \left(\arcsin(x)\right)' = \cos(\arcsin(x)) \left(\arcsin(x)\right)'$$

$$\frac{1}{\cos(\arcsin(x))} = \left(\arcsin(x)\right)'$$

- 2) La relation fondamentale $\cos^2(\alpha) + \sin^2(\alpha) = 1$ donne $\cos^2(\alpha) = 1 \sin^2(\alpha)$, puis $\cos(\alpha) = \pm \sqrt{1 \sin^2(\alpha)}$. Mais, si $\alpha \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, alors $\cos(\alpha) \geqslant 0$. D'où $\cos(\alpha) = \sqrt{1 - \sin^2(\alpha)}$.
- 3) Par définition, $\arcsin(x) \in [-\frac{\pi}{2}; \frac{\pi}{2}]$ pour tout $x \in [-1; 1]$. Donc $(\arcsin(x))' = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 \sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1 x^2}}$