Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao March 10, 2023

What we have seen last time:

- Quadratic Reciprocity Laws and
- Their applications

Today, we will move to the proof of the **third quadratic reciprocity law**.

Outline of the proof

Theorem 23.1 (Third Quadratic Reciprocity Law)

Let p and q be two distinct odd prime numbers. Then

$$\left(\frac{\mathbf{q}}{\mathbf{p}}\right)\left(\frac{\mathbf{p}}{\mathbf{q}}\right) = (-1)^{\frac{\mathbf{p}-1}{2}\cdot\frac{\mathbf{q}-1}{2}}.$$

Proof. We will interpret $(\frac{p}{q})$, $(\frac{q}{p})$, and $(-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$ as the signs of three permutations α , β , and γ respectively. The three permutations have the relation

$$\gamma = \beta \circ \alpha$$
.

Hence, $sign(\gamma) = sign(\beta) \cdot sign(\alpha)$, which gives the desired formula. \Box

Definition 23.2

A *permutation* of a set S is a bijection from S to itself.

E.g. the additive modular dynamics $+a \pmod{m}$ are permutations of \mathbb{Z}/m , and the multiplicative modular dynamics $a \pmod{m}$ are permutations of $a \pmod{m}$.

To prove the third quadratic reciprocity law, we consider the following set:

$$S = \{0, 1, \dots, pq - 1\} = \{\text{natural representatives modulo } pq \}.$$

We introduce the following three label systems of its elements.

- [a, b] = the unique element in S congruent to a modulo p and congruent to b modulo q respectively.
- $[a,b\rangle := a + bp$. Note that $[a,b\rangle \equiv [a,b] \pmod{p}$.
- $\langle a, b \rangle := aq + b$. Note that $\langle a, b \rangle \equiv [a, b] \pmod{q}$.

Now, we define permutations α , β , and γ as follows:

•
$$\alpha$$
 maps each $[a, b)$ to $[a, b]$.

•
$$\beta$$
 maps each $[a, b]$ to $(a, b]$.

•
$$\gamma$$
 maps each $[a, b)$ to $\langle a, b]$.

Then it is clear that

$$\gamma = \beta \circ \alpha$$

as desired.

$$[a,b] \longleftrightarrow [a,b\rangle$$

$$\langle a, b \rangle \longleftrightarrow [a, b]$$

$$\langle a, b \rangle \longleftrightarrow [a, b \rangle$$

E.g. Let p = 5 and q = 3. We arrange elements of S in 5 columns and 3 rows according to the label system [a, b].

E.g. consider $S = \{1, 2, 3, 4, 5, 6\}$ and the map f whose dynamic is displayed as left below.

We see that f consists of

- a cycle of length 1,
- a cycle of length 2, and
- a cycle of length 3.

"Permutations consist of cycles"

Definition 23.3

If a permutation consists of a cycle of length ℓ and all elements outside the cycle is fixed, then we say it is an ℓ -cycle.

We use $(a_1a_2\cdots a_\ell)$ to denote the ℓ -cycle mapping

$$a_1 \mapsto a_2 \mapsto \cdots \mapsto a_\ell \mapsto a_1$$
.

If a permutation consists of multiple nontrivial cycles, we just put their notations together.

E.g. the permutation in previous slide is denoted by (13)(246).

Note that every permutation consists of cycles.

Definition 23.4

The **sign** of a ℓ -cycle is $(-1)^{\ell-1}$. The **sign** of a permutation is the product of the signs of the cycles in it.

E.g. the sign of permutation in previous example is (13)(246)

$$(-1)^{3-1} \cdot (-1)^{2-1} = -1.$$

Example 23.5

Let p be an odd prime. Then the sign of the additive modular dynamic $+a \pmod{p}$: $\mathbb{F}_p \to \mathbb{F}_p$ is 1.

Proof. When $p \mid a$, $+a \pmod{p}$ is precisely the identity. Hence, its sign is 1.

When
$$p \nmid a$$
, by Theorem 13.6, $+a \pmod{p}$ is a p -cycle. Hence, its sign is $(-1)^{p-1}_{p} = 1$.

Example 23.6

Let p be an odd prime and $a \in \Phi(p)$. Then the sign of the multiplicative modular dynamic $a \pmod{p}$: $\mathbb{F}_p \to \mathbb{F}_p$ is $a \pmod{p}$.

Proof. First, since $a \pmod{p}$ maps $\bar{0}$ to $\bar{0}$, which is a trivial cycle, we may focus on the restriction of $a \pmod{p}$ to \mathbb{F}_p^{\times} , or equivalently on $\Phi(p)$.

$$\operatorname{sign}\left(\boxed{\cdot a \pmod p}\right) = ((-1)^{\ell-1})^{\mathbf{c}} = (-1)^{\mathbf{c}},$$

where notice that $\ell \cdot \mathbf{c} = \mathbf{p} - 1$ is even.

$$p-1=\ell\cdot c$$

If c is even, then we have

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} = \left(a^{\ell}\right)^{\frac{c}{2}} \equiv 1^{\frac{c}{2}} = 1 = \operatorname{sign}\left(\boxed{\cdot a \pmod{p}}\right) \pmod{p}$$

If c is odd, then $\underline{\ell}$ must have even since $\ell \cdot c = p - 1$ is even. Let b be the natural representative of $a^{\frac{\ell}{2}}$. Then $b^2 \equiv 1 \pmod{p}$. But the definition of ℓ tells us that $b \not\equiv 1 \pmod{p}$. Therefore, $b \equiv -1 \pmod{p}$. Hence,

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} = b^{c} \equiv (-1)^{c} = -1 = \operatorname{sign}\left(\boxed{\cdot a \pmod{p}}\right) \pmod{p}.$$

We thus conclude that $sign(\boxed{\cdot a \pmod{p}}) = (\frac{a}{p}).$

Composition of permutations

Composition of permutations

Lemma 23.7

If f and g are permutations of a set X, then so is $g \circ f$.

This lemma is clear. But please note that:

in general,

$$f \circ g \neq g \circ f.$$

E.g. Take
$$S = \{1, 2, 3\}$$
 and $f = (12)$, $g = (23)$.

$$\begin{array}{c|c}
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}$$

$$\begin{array}{c}
3 & 3 \\
\end{array}$$

Composition of permutations

Theorem 23.8

$$sign(\mathbf{g} \circ \mathbf{f}) = sign(\mathbf{g}) \cdot sign(\mathbf{f}).$$

A special case of the theorem is clear: if a permutation f consists of cycles C_1, \dots, C_r , then $sign(f) = sign(C_1) \dots sign(C_n)$.

We leave its proof to next time. Now, we apply it to show

Lemma 23.9

The signs of α and β are $\binom{p}{q}$ and $\binom{q}{p}$ respectively.

Proof. We only prove the first. The second follows similarly.

We first arrange elements of S in p columns and q rows according to the label system [a, b].

$$\langle 0,0 \rangle$$
 $[0,0)$ $\langle 2,0 \rangle$ $[1,1)$ $\langle 4,0 \rangle$ $[2,2)$ $\langle 1,0 \rangle$ $[3,0)$ $\langle 3,0 \rangle$ $[4,1)$ $[0,0]$ $[1,0]$ $[2,0]$ $[3,0]$ $[4,0]$ $[4,0]$ $[0,1]$ $[0,1]$ $[1,1]$ $[1,2]$ $[2,1]$ $[2,1]$ $[2,1]$ $[2,1]$ $[3,2]$ $[3,1]$ $[4,1]$ $[4,0)$ $[3,1]$ $[4,1]$ $[4,1]$ $[4,1]$ $[4,1]$ $[5,2]$ $[1,2]$ $[2,2]$ $[2,2]$ $[2,2]$ $[3,2]$ $[4$

Note that $[a, b] \equiv [a, b] \pmod{p}$. Hence, α , which maps each [a, b] to [a, b], maps from each column to itself.

Namely, if we restrict α to a column [a, -] then it is a permutation of that column. Hence, $\operatorname{sign}(\alpha) = \prod_{a=0,\cdots,p-1} \operatorname{sign}(\alpha|_{[a,-]})$

The column [a, -] can be identified with \mathbb{F}_q through the natural reduction modulo q:

$$[a,b] \longmapsto \overline{[a,b]} = \overline{b}.$$

Note that [a, b] is identified with $\overline{a + bp}$.

Therefore, $\alpha|_{[a,-]}$ is the inverse of the following permutation of \mathbb{F}_q :

$$\overline{b} \longmapsto \overline{a + bp}$$
,

which is the composition of $\boxed{+a \pmod{q}}$ and $\boxed{\cdot p \pmod{q}}$. Hence,

$$sign(\alpha|_{[a,-]}) = sign(\alpha|_{[a,-]})$$

$$= sign(+a \pmod q) \cdot sign(p \pmod q)$$

$$= (\frac{p}{q}).$$

Therefore, we get

$$\operatorname{sign}(\alpha) = \prod_{a=0,\dots,p-1} \operatorname{sign}(\alpha|_{[a,-]}) = \left(\frac{p}{q}\right)^p = \left(\frac{p}{q}\right),$$

here the last follows since p is odd.

A similar argument shows $sign(\beta) = (\frac{q}{p})$.

We have constructed permutations α , β , and γ such that

$$\gamma = \beta \circ \alpha$$
.

We have shown

$$sign(\alpha) = \left(\frac{p}{q}\right)$$
 and $sign(\beta) = \left(\frac{q}{p}\right)$

using Theorem 23.8.

It remains to

reed 2nd characterisation of sign.

- prove Theorem 23.8, and
- show that $sign(\gamma) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$.

t need 3rd char of sign.