SLVS010S - JANUARY 1976 - REVISED FEBRUARY 2004

- 3-Terminal Regulators
- Output Current Up To 100 mA
- No External Components
- Internal Thermal-Overload Protection
- Internal Short-Circuit Current Limiting

description/ordering information

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power-pass elements to make high-current voltage regulators. One of these regulators can deliver up to 100 mA of output current. The internal limiting and thermal-shutdown features of these regulators essentially make them immune to overload. When used as a replacement for a Zener diode-resistor combination, an effective improvement in output impedance can be obtained, together with lower bias current.

The μ A78L00C and μ A78L00AC series are characterized for operation over the virtual junction temperature range of 0°C to 125°C. The μ A78L05AI is characterized for operation over the virtual junction temperature range of -40°C to 125°C.

NC - No internal connection

LP PACKAGE (TO-92, TO-226AA) (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information (continued)

ORDERING INFORMATION

TJ	VO(NOM) (V)	OUTPUT VOLTAGE TOLERANCE	PACKA	g E †	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			SOIC (D)	Tube of 75	μΑ78L02ACD	78L02A
	2.6 V	5%	TO-226/TO-92 (LP)	Bulk of 1000	μΑ78L02ACLP	78L02AC
				Tube of 75	μA78L05ACD	
			SOIC (D)	Reel of 2500	μΑ78L05ACDR	78L05A
			SOT-89 (PK)	Reel of 1000	μΑ78L05ACPK	F5
		5%		Bulk of 1000	μΑ78L05ACLP	
			TO-92 (LP) TO-226AA (LP)	Pack of 2000	μΑ78L05ACLPM	78L05AC
	5 V		10-220AA (LP)	Reel of 2000	μΑ78L05ACLPR	1
				Tube of 75	μΑ78L05CD	
			SOIC (D)	Reel of 2500	μΑ78L05CDR	78L05C
		10%	SOT-89 (PK)	Tube of	μΑ78L05CPK	B5
			TO-92 (LP)	Bulk of 1000	μA78L05CLP	
			TO-226AA (LP)	Reel of 2000	μΑ78L05CLPR	78L05C
			SOT-89 (PK)	Reel of 1000	μΑ78L06ACPK	F6
	6.2 V	5%	TO-92 (LP)	Bulk of 1000	μΑ78L06ACLP	
			TO-226AA (LP)	Reel of 2000	μΑ78L06ACLPR	78L06AC
				Tube of 75	μΑ78L08ACD	78L08A
			SOIC (D)	Reel of 2500	μΑ78L08ACDR	78L08A
		5%	SOT-89 (PK)	Reel of 1000	μΑ78L08ACPK	F8
0°C to 125°C	8 V		TO-92 (LP)	Bulk of 1000	μΑ78L08ACLP	701.004.0
			TO-226AA (LP)	Reel of 2000	μΑ78L08ACLPR	78L08AC
				Tube of 75	μΑ78L08CD	
		10%	SOIC (D)	Reel of 2500	μΑ78L08CDR	78L08C
				Tube of 75	μΑ78L09ACD	
			SOIC (D)	Reel of 2500	μΑ78L09ACDR	78L09A
	9 V	5%	SOT-89 (PK)	Reel of 1000	μΑ78L09ACPK	F9
			TO-92 (LP)	Bulk of 1000	μΑ78L09ACLP	
			TO-226AA (LP)	Reel of 2000	μΑ78L09ACLPR	78L09AC
			0010 (7)	Tube of 75	μΑ78L10ACD	
			SOIC (D)	Reel of 2500	μΑ78L10ACDR	78L10A
	10 V	5%	SOT-89 (PK)	Reel of 1000	μΑ78L10ACPK	FA
			TO-92 (LP)	Bulk of 1000	μΑ78L10ACLP	701.404.0
			TO-226AA (LP)	Reel of 2000	μΑ78L10ACLPR	78L10AC
			2010 (D)	Tube of 75	μΑ78L12ACD	701.404
			SOIC (D)	Reel of 2500	μΑ78L12ACDR	78L12A
	40.17	50,	SOT-89 (PK)	Reel of 1000	μΑ78L12ACPK	FC
	12 V	5%		Bulk of 1000	μΑ78L12ACLP	
		то	TO-92 (LP) TO-226AA (LP)	Pack of 2000	μΑ78L12ACLPM	78L12AC
			10-220AA (LF)	Reel of 2000	μΑ78L12ACLPR	1

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

description/ordering information (continued)

ORDERING INFORMATION (continued)

TJ	V _{O(NOM)} (V)	OUTPUT VOLTAGE TOLERANCE	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
			COIC (D)	Tube of 75	μA78L15ACD	701.454
			SOIC (D)	Reel of 2500	μΑ78L15ACDR	78L15A
0°C to 125°C	15 V	5%	SOT-89 (PK)	Reel of 1000	μΑ78L15ACPK	FF
			TO-92 (LP) Bulk of 1000 μA		μΑ78L15ACLP	701.454.0
			TO-226AA (LP)	Reel of 2000	μΑ78L15ACLPR	78L15AC
			0010 (D)	Tube of 75	μΑ78L05AID	701.4541
			SOIC (D)	Reel of 2500	μΑ78L05AIDR	78L15AI
-40°C to 125°C	5 V	5%	SOT-89 (PK)	Reel of 1000	μΑ78L05AIPK	J5
			TO-92 (LP) Bulk of 1000 μA78L		μΑ78L05AILP	78L05AI
			TO-226AA (LP)	Reel of 2000	μA78L05AILPR	/ OLUJAI

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

schematic

NOTE A: Resistor values shown are nominal.

SLVS010S - JANUARY 1976 - REVISED FEBRUARY 2004

absolute maximum ratings over virtual junction temperature range (unless otherwise noted)

package thermal data (see Note 1)

PACKAGE	BOARD	θЈС	AL^{θ}
SOIC (D)	High K, JESD 51-7	39°C/W	97°C/W
TO-92/TO-226AA (LP)	High K, JESD 51-7	55°C/W	140°C/W
SOT-89 (PK)	High K, JESD 51-7	9°C/W	52°C/W

NOTE 1: Maximum power dissipation is a function of T_J(max), θ_JA, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal-overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

			MIN	MAX	UNIT
		μΑ78L02AC	4.75	20	
		μΑ78L05C, μΑ78L05AC	7	20	
		μΑ78L06C, μΑ78L06AC	8.5	20	
.,		μΑ78L08C, μΑ78L08AC	10.5	23	.,
VI	Input voltage	μΑ78L09C, μΑ78L09AC	11.5	24	V
		μΑ78L10AC	12.5	25	
		μΑ78L12C, μΑ78L12AC	14.5	27	
		μΑ78L15C, μΑ78L15AC	17.5	30	
lO	Output current			100	mA
т.	Operating virtual junction temperature range	μΑ78LxxC and μΑ78LxxAC series	0	125	°C
TJ	Operating virtual junction temperature range	μΑ78L05AI	-40	125	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics at specified virtual junction temperature, V_I = 9 V, I_O = 40 mA (unless otherwise noted)

24244		ONDITIONS.	- +	μ Α	78L02A	С	UNIT
PARAMETER	IESI C	ONDITIONS	TJ†	MIN	TYP	MAX	UNII
	., ,==,,,		25°C	2.5	2.6	2.7	
Output voltage	$V_I = 4.75 \text{ V to } 20 \text{ V},$	$I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	2.45		2.75	V
	$I_O = 1 \text{ mA to } 70 \text{ mA}$		0°C to 125°C	2.45		2.75	
Land with an annual of an	V _I = 4.75 V to 20 V		0500		20	100	\/
Input voltage regulation	V _I = 5 V to 20 V		25°C		16	75	mV
Ripple rejection	V _I = 6 V to 20 V,	f = 120 Hz	25°C	43	51		dB
Outside all and an analysis a	$I_O = 1 \text{ mA to } 100 \text{ mA}$		0500		12	50	\/
Output voltage regulation	$I_O = 1 \text{ mA to } 40 \text{ mA}$		25°C		6	25	mV
Output noise voltage	f = 10 Hz to 100 kHz		25°C		30		μV
Dropout voltage			25°C		1.7		V
			25°C		3.6	6	
Bias current			125°C			5.5	mA
Pigg gurrent shange $V_1 = 5 \text{ V to } 20 \text{ V}$	V _I = 5 V to 20 V		000 to 40500			2.5	A
Bias current change	I _O = 1 mA to 40 mA		0°C to 125°C			0.1	mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 10 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _J ‡	μ.	A78L050			78L05A 78L05A		UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
		25°C	4.6	5	5.4	4.8	5	5.2	
Output voltage	$V_I = 7 \text{ V to } 20 \text{ V}, \qquad I_O = 1 \text{ mA to } 40 \text{ mA}$	Full range	4.5		5.5	4.75		5.25	V
	I _O = 1 mA to 70 mA	Full range	4.5		5.5	4.75		5.25	
Input	V _I = 7 V to 20 V	0500		32	200		32	150	
voltage regulation	V _I = 8 V to 20 V	25°C		26	150		26	100	mV
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	25°C	40	49		41	49		dB
Output	I _O = 1 mA to 100 mA	0500		15	60		15	60	\/
voltage regulation	I _O = 1 mA to 40 mA	25°C		8	30		8	30	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		42			42		μV
Dropout voltage		25°C		1.7			1.7		V
D'an annual		25°C		3.8	6		3.8	6	A
Bias current		125°C			5.5			5.5	mA
Bias	V _I = 8 V to 20 V	Full rongo			1.5			1.5	mA
current change	$I_O = 1 \text{ mA to } 40 \text{ mA}$	Full range			0.2			0.1	IIIA

[‡] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33- μ F capacitor across the input and a 0.1- μ F capacitor across the output. Full range for the μ A78L05AC is T_J = 0°C to 125°C, and full range for the μ A78L05AI is T_J = -40°C to 125°C.

SLVS010S - JANUARY 1976 - REVISED FEBRUARY 2004

electrical characteristics at specified virtual junction temperature, V_I = 12 V, I_O = 40 mA (unless otherwise noted)

24244555		- +	μ.	478L060	;	μ Α	78L06A	С	
PARAMETER	TEST CONDITIONS	T _J †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	5.7	6.2	6.7	5.95	6.2	6.45	
Output voltage	$V_{I} = 8.5 \text{ V to } 20 \text{ V}, I_{O} = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	5.6		6.8	5.9		6.5	V
	I _O = 1 mA to 70 mA	0°C to 125°C	5.6		6.8	5.9		6.5	
Input	V _I = 8.5 V to 20 V	0500		35	200		35	175	
voltage regulation	V _I = 9 V to 20 V	25°C		29	150		29	125	mV
Ripple rejection	V _I = 10 V to 20 V, f = 120 Hz	25°C	39	48		40	48		dB
Output	I _O = 1 mA to 100 mA	0500		16	80		16	80	
voltage regulation	I _O = 1 mA to 40 mA	25°C		9	40		9	40	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		46			46		μV
Dropout voltage		25°C		1.7			1.7		V
Diagrams of		25°C		3.9	6		3.9	6	4
Bias current		125°C			5.5			5.5	mA
Bias	V _I = 9 V to 20 V	0°C to 125°C			1.5			1.5	mA
current change	I _O = 1 mA to 40 mA	0°C to 125°C			0.2			0.1	IIIA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33- μ F capacitor across the input and a 0.1- μ F capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 40 mA (unless otherwise noted)

24244555	TEST SOUDITIONS		μ	478L080	;	μΑ	78L08A	С	
PARAMETER	TEST CONDITIONS	T _J †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	7.36	8	8.64	7.7	8	8.3	
Output voltage	$V_I = 10.5 \text{ V to } 23 \text{ V}, I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	7.2		8.8	7.6		8.4	V
	I _O = 1 mA to 70 mA	0°C to 125°C	7.2		8.8	7.6		8.4	
Input voltage	V _I = 10.5 V to 23 V	0500		42	200		42	175	\/
regulation	V _I = 11 V to 23 V	25°C		36	150		36	125	mV
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	25°C	36	46		37	46		dB
Output voltage	I _O = 1 mA to 100 mA	0500		18	80		18	80	\/
regulation	I _O = 1 mA to 40 mA	25°C		10	40		10	40	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		54			54		μV
Dropout voltage		25°C		1.7			1.7		V
B'		25°C		4	6		4	6	4
Bias current		125°C			5.5			5.5	mA
Bias	V _I = 11 V to 23 V	0°C to 125°C			1.5			1.5	mA
current change	I _O = 1 mA to 40 mA	0 0 10 125 0			0.2			0.1	IIIA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 16 V, I_O = 40 mA (unless otherwise noted)

24244555	TEGT COMPLETIONS	- +	μ	478L090	;	μ Α	78L09A	С	
PARAMETER	TEST CONDITIONS	T _J †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	.,	25°C	8.3	9	9.7	8.6	9	9.4	
Output voltage	$V_I = 12 \text{ V to } 24 \text{ V}, I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	8.1		9.9	8.55		9.45	V
	I _O = 1 mA to 70 mA	0°C to 125°C	8.1		9.9	8.55		9.45	
Input	V _I = 12 V to 24 V	2500		45	225		45	175	\/
voltage regulation	V _I = 13 V to 24 V	25°C		40	175		40	125	mV
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	25°C	36	45		38	45		dB
Output	I _O = 1 mA to 100 mA	0500		19	90		19	90	>/
voltage regulation	I _O = 1 mA to 40 mA	25°C		11	40		11	40	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		58			58		μV
Dropout voltage		25°C		1.7			1.7		V
B'		25°C		4.1	6		4.1	6	4
Bias current		125°C			5.5			5.5	mA
Bias	V _I = 13 V to 24 V	0°C to 125°C			1.5			1.5	mA
current change	$I_O = 1 \text{ mA to } 40 \text{ mA}$	0 0 10 125 0			0.2			0.1	IIIA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 40 mA (unless otherwise noted)

		O O NEVET ON O	_ +	μΑ	78L10A	С	
PARAMETER	TEST	CONDITIONS	T _J †	MIN	TYP	MAX	UNIT
	V 40.V/ 05.V/		25°C	9.6	10	10.4	
Output voltage	$V_{I} = 13 \text{ V to } 25 \text{ V},$	$I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	9.5		10.5	V
	$I_O = 1 \text{ mA to } 70 \text{ mA}$		0°C to 125°C	9.5		10.5	
land of all and an add the	V _I = 13 V to 25 V		25°C		51	175	>/
Input voltage regulation	V _I = 14 V to 25 V	= 14 V to 25 V			42	125	mV
Ripple rejection	V _I = 15 V to 25 V,	f = 120 Hz	25°C	37	44		dB
Output valta as no sulation	$I_O = 1 \text{ mA to } 100 \text{ mA}$		2500		20	90	\/
Output voltage regulation	$I_O = 1 \text{ mA to } 40 \text{ mA}$		25°C		11	40	mV
Output noise voltage	f = 10 Hz to 100 kHz		25°C		62		μV
Dropout voltage			25°C		1.7		V
D'an arrend			25°C		4.2	6	1
Bias current						5.5	mA
Rice current change	V _I = 14 V to 25 V		0°C to 125°C			1.5	mA
Bias current change	$I_O = 1 \text{ mA to } 40 \text{ mA}$		0°C to 125°C			0.1	IIIA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33- μ F capacitor across the input and a 0.1- μ F capacitor across the output.

SLVS010S - JANUARY 1976 - REVISED FEBRUARY 2004

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 40 mA (unless otherwise noted)

24244555	TEST SOURITIONS	- +	μ	478L120	;	μ Α	78L12A	С	
PARAMETER	TEST CONDITIONS	T _J †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	11.1	12	12.9	11.5	12	12.5	
Output voltage	$V_I = 14 \text{ V to } 27 \text{ V}, I_O = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	10.8		13.2	11.4		12.6	V
	I _O = 1 mA to 70 mA	0°C to 125°C	10.8		13.2	11.4		12.6	
Input	V _I = 14.5 V to 27 V	2500		55	250		55	250	\/
voltage regulation	V _I = 16 V to 27 V	25°C		49	200		49	200	mV
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	25°C	36	42		37	42		dB
Output	I _O = 1 mA to 100 mA	0500		22	100		22	100	
voltage regulation	I _O = 1 mA to 40 mA	25°C		13	50		13	50	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		70			70		μV
Dropout voltage		25°C		1.7			1.7		V
B'		25°C		4.3	6.5		4.3	6.5	4
Bias current		125°C			6			6	mA
Bias	V _I = 16 V to 27 V	0°C to 125°C			1.5			1.5	mA
current change	I _O = 1 mA to 40 mA	0.0 10 1250			0.2			0.1	IIIA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 40 mA (unless otherwise noted)

DADAMETED	TEST SOURITIONS	_ +	μ.	A78L150	;	μ Α	78L15A	C	
PARAMETER	TEST CONDITIONS	TJ [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	V 47.5V/ 00 V 1 4 4 4 4 4 4	25°C	13.8	15	16.2	14.4	15	15.6	
Output voltage	$V_{I} = 17.5 \text{ V to } 30 \text{ V}, \qquad I_{O} = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	13.5		16.5	14.25		15.75	V
voltage	I _O = 1 mA to 70 mA	0°C to 125°C	13.5		16.5	14.25		15.75	
Input	V _I = 17.5 V to 30 V			65	300		65	300	
voltage regulation	V _I = 20 V to 30 V	25°C		58	250		58	250	mV
Ripple rejection	V _I = 18.5 V to 28.5 V, f = 120 Hz	25°C	33	39		34	39		dB
Output	I _O = 1 mA to 100 mA	2502		25	150		25	150	.,
voltage regulation	I _O = 1 mA to 40 mA	25°C		15	75		15	75	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		82			82		μV
Dropout voltage		25°C		1.7			1.7		V
D'accomment		25°C		4.6	6.5		4.6	6.5	4
Bias current		125°C			6			6	mA
Bias	V _I = 10 V to 30 V	0°C to 125°C			1.5			1.5	mA
current change	I _O = 1 mA to 40 mA	0 0 10 125 0			0.2			0.1	IIIA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

APPLICATION INFORMATION

Figure 1. Fixed-Output Regulator

Figure 2. Positive Regulator in Negative Configuration (V_I Must Float)

Figure 3. Adjustable-Output Regulator

Figure 4. Current Regulator

APPLICATION INFORMATION

Figure 5. Regulated Dual Supply

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground, but instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

Figure 6. Output Polarity-Reversal-Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed as shown in Figure 7.

Figure 7. Reverse-Bias-Protection Circuit

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA78L02ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L02ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L02ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L02ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L02ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACLPM	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACLPME3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L05ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L05AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05AIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05AIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

om 21-May-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA78L05AILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05AILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05AILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05AILPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05AIPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L05AIPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L05AQD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
UA78L05AQDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
UA78L05CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L05CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05CLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L05CPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L05QLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
UA78L05QLPR	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
UA78L06ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L06ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L06ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L06ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L06ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAF
UA78L06ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAF
UA78L08ACD	ACTIVE	SOIC	D	8	75	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

21-May-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³
						no Sb/Br)		
UA78L08ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L08ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L08ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L08ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L08ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEA
UA78L08ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEA
UA78L08AILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
UA78L08AQDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
UA78L08CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
UA78L08CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L08CLP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
UA78L08CPK	OBSOLETE	SOT-89	PK	3		TBD	Call TI	Call TI
UA78L09ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L09ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L09ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L09ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L09ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
UA78L09ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN

21-May-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA78L09ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L09ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L09ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L09ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L09ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L09ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L10ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L10ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L10ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L10ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L10ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L10ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L10ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L10ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L10ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L10ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L10ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L10ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L12ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L12ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L12ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L12ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L12ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L12ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L12ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L12ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type

.com 21-May-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA78L12ACLPM	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L12ACLPME3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L12ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L12ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L12ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L12ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L12AQDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
UA78L12AQLPR	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI
UA78L15ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L15ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L15ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L15ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L15ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L15ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
UA78L15ACLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L15ACLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L15ACLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L15ACLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
UA78L15ACPK	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR
UA78L15ACPKG3	ACTIVE	SOT-89	PK	3	1000	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

21-May-2007

package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Carrier tape design is defined largely by the component lentgh, width, and thickness.

Ao = Dimension designed to accommodate the component width.							
Bo = Dimension designed to accommodate the component length.							
Ko = Dimension designed to accommodate the component thickness.							
W = Overall width of the carrier tape.							
P = Pitch between successive cavity centers.							

TAPE AND REEL INFORMATION

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Jun-2007

Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UA78L05ACDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L05ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L05ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L05AIDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L05AIPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L05AIPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L05CDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L05CPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L06ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L06ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L08ACDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L08ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L08ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L08CDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L09ACDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L09ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L09ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L10ACDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L10ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L10ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L12ACDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L12ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L12ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L15ACDR	D	8	FMX	330	12	6.4	5.2	2.1	8	12	Q1
UA78L15ACPK	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3
UA78L15ACPKG3	PK	3	NFME	0	12	4.91	4.52	1.9	8	12	Q3

TAPE AND REEL BOX INFORMATION

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
UA78L05ACDR	D	8	FMX	342.9	336.6	20.64
UA78L05ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L05ACPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L05AIDR	D	8	FMX	342.9	336.6	20.64
UA78L05AIPK	PK	3	NFME	340.0	340.0	38.0
UA78L05AIPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L05CDR	D	8	FMX	342.9	336.6	20.64
UA78L05CPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L06ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L06ACPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L08ACDR	D	8	FMX	342.9	336.6	20.64
UA78L08ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L08ACPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L08CDR	D	8	FMX	342.9	336.6	20.64
UA78L09ACDR	D	8	FMX	342.9	336.6	20.64
UA78L09ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L09ACPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L10ACDR	D	8	FMX	342.9	336.6	20.64
UA78L10ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L10ACPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L12ACDR	D	8	FMX	342.9	336.6	20.64
UA78L12ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L12ACPKG3	PK	3	NFME	340.0	340.0	38.0
UA78L15ACDR	D	8	FMX	342.9	336.6	20.64
UA78L15ACPK	PK	3	NFME	340.0	340.0	38.0
UA78L15ACPKG3	PK	3	NFME	340.0	340.0	38.0

20-Jun-2007

PK (R-PSSO-F3)

PLASTIC SINGLE-IN-LINE PACKAGE

NOTES:

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- The center lead is in electrical contact with the tab.
- Body dimensions do not include mold flash or protrusion. Mold flash and protrusion not to exceed 0.15 per side.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC T0-243 variation AA, except minimum lead length, pin 2 minimum lead width, minimum tab width.

PK (R-PDSO-G3)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice. $\hfill \hfill \$

C.\ Lead dimensions are not controlled within this area

D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:

Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti-rfid.com	Telephony	www.ti.com/telephony
www.ti.com/lpw	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti-com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated