В начало Курсы ФИиВТ 09.03.04 Программная инженерия(Очная) ПС 11 Разработка программных систем 4 семестр

(09.03.04 11 4 сем о)Физика Раздел 1 "Основы квантовой механики" К-1 Демо-вариант теста

Тест начат Воскресенье, 9 Июнь 2024, 21:10
Состояние Завершен Воскресенье, 9 Июнь 2024, 21:35
Прошло 24 мин. 59 сек.
времени 9,50/13,00
Оценка 7,31 из 10,00 (73%)

Вопрос 1

Верно

Баллов: 1,00 из 1,00

Две частицы прошли ускоряющую разность потенциалов 800 В и 200 В. Заряды и массы частиц *одинаковы*.

При этом отношение длин волн де Бройля этих частиц λ_1/λ_2 равно...

Выберите один ответ:

- \bigcirc $\frac{1}{\sqrt{2}}$
- $\bigcirc \qquad \frac{1}{2\sqrt{2}}$
- \bigcirc $\frac{1}{2}$
- $\frac{1}{4}$

Ваш ответ верный.

Вопрос 2	
Неверно	
Баллов: 0,00 из 1,00	
Оценить ширину энергетического уровня в атоме водорода, находящегося в основном состоянии.	
Ответ выразите в Дж.	

Выберите один ответ:

 $6,6.10^{-6}$

6,6·10⁻²⁶ ×

0

Ваш ответ неправильный.

Вопрос 3

Частично правильный

Баллов: 0,67 из 1,00

Сопоставьте формулу и вид уравнения Шредингера:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} \bigg(E - \frac{kx^2}{2} \bigg) \Psi = 0 \qquad \text{Стационарное уравнение для одномерного гармонического осциллятора} \qquad \checkmark$$

$$\Delta \Psi + \frac{2m}{\hbar^2} E \Psi = 0 \qquad \text{Стационарное уравнение для одномерного ящика с бесконечно высокими стенками} \qquad \bigstar$$

$$\Delta \Psi + \frac{2m}{\hbar^2} \bigg(E + \frac{ke^2}{r} \bigg) \Psi = 0 \qquad \text{Стационарное трехмерное уравнение для электрона в атоме водорода} \qquad \checkmark$$

Ваш ответ частично правильный.

Вы правильно выбрали 2.

Частица в очень глубоком потенциальном ящике шириной \boldsymbol{L} находится на 2-м энергетическом уровне.

Укажите, вблизи каких точек ящика плотность вероятности нахождения частицы <u>максимальна</u>.

Выберите один или несколько ответов:

- ✓ 3L/4 **✓**
- ✓ L/4 **✓**
- ______L/2
- 2L/3
- L/3
- 0

Ваш ответ верный.

Вопрос **5**

Верно

Баллов: 1,00 из 1,00

Частица с энергией \boldsymbol{E} может находиться в области \boldsymbol{I} и \boldsymbol{II} (см. рисунок)

Укажите вид волнового числа в соответствующей области:

Волновое число вида частицы в области...

$$k = \frac{i\sqrt{2m(U-E)}}{\hbar}$$
 соответствует нахождению

 $oldsymbol{k} = rac{oldsymbol{p}}{\hbar} = rac{\sqrt{2m(E-U)}}{\hbar}$ Волновое число вида

соответствует нахождению

II

1 ✓

Ваш ответ верный.

частицы в области...

Вопрос **6**Частично правильный Баллов: 0,75 из 1,00

Электрон в атоме находится в состоянии 2р.

Этому состоянию соответствуют следующие значения квантовых чисел:

Главное квантовое число	2	~
Магнитное спиновое число	+-1/2	~
Магнитное орбитальное квантовое число	0; +- 1; +- 2	×
Орбитальное квантовое число	1	~

Ваш ответ частично правильный.

Вы правильно выбрали 3.

Дана схема состояний электрона в атоме водорода.

Существуют <u>правила отбора переходов</u> электрона между состояниями, т.к. должны выполняться законы <u>сохранения энергии и момента импульса</u>.

Укажите переходы, запрещенные правилами отбора.

Выберите один или несколько ответов:

✓ f ✓✓ g ✓✓ a ✓○ c○ b○ e

Ваш ответ частично правильный.

Вы правильно выбрали 3.

Верно						
Баллов: 1,00 из 1,00						
Состояние атом	- антовое число -					
Вопрос 9 Частично правильный Баллов: 0,67 из 1,00						
а переходы меж	нных атомах уровн ду ними подчиняю дился в состояния	тся правилам от	яются не только главным квант <i>бора</i> .	ГОВЫМ ЧИС.	лом, но и полным моменто й	м атома,
Укажите, верны	ли следующие утв	ерждения:				
Переход из 1-го	состояния во 2-е н	евозможен, т.к. о	обитальное число не изменяет	ся на 1.	Да, этого достаточно	✓
Переход из 1-го	состояния во 2-е н	іевозможен , т.к. гл	авное квантовое число не изм	еняется.	Да, этого достаточно	×
Переход из 1-го	Переход из 1-го состояния во 2-е возможен, т.к. спиновое число изменяется на 1.				Нет, этого недостаточно	~
Ваш ответ части Вы правильно в	чно правильный. ыбрали 2.					
Вопрос 10 Неверно						
Баллов: 0,00 из 1,00						
Укажите разреш	ен или запрещен д	анный переход в	атоме ртути и его причину.			
7 ³ S ₁ - 6 ¹ S ₀	разрешен, т.к. ор	обитальное кванто	вое число изменилось на 1	×		
5 ³ F ₄ - 6 ³ D ₃	запрещен, т.к. гл	авное квантовое ч	исло не изменилось	×		
6 ³ D ₂ - 6 ¹ P ₁	разрешен, т.к. гл	авное квантовое ч	исло изменилось на 1	×		

Ваш ответ неправильный.

Вопрос 11
Верно
Баллов: 1,00 из 1,00

Укажите верные утверждения для протонов:

Его спиновое квантовое число равно

Он относится к классу...

Его волновая функция...

В одном квантовом состоянии таких частиц может быть...

Ваш ответ верный.

Вопрос **12**

Верно

Баллов: 1,00 из 1,00

На рисунке показаны уровни энергии орбиталей в атомах, а справа - образование периодов как совокупности орбиталей.

Сформируйте верные утверждения:

Максимальное число электронов на 5f - орбитали равно...

Максимальное число электронов на 6d - орбитали равно...

Число химических элементов в 7-м периоде равно...

14 **•** 10 **•** 22 **•** •

Ваш ответ верный.

Вопрос 13					
Частично правильный					
Баллов: 0,67 из 1,00					
Атом ртути находится в состоянии ³ F.					
Полный момент атома может принимать значения от L + S до L - S .					
Укажите <u>все</u> возможные значения квантового числа <u>полного момента</u> атома для этого состояния:					
Выберите один или несколько ответов:					
□ 4 ✓					
4 🗸					
Ваш ответ частично правильный.					
Вы правильно выбрали 2.					