Московский государственный технический университет имени Н. Э. Баумана

Специализированный учебно-научный центр Лицей №1580 при МГТУ им. Н. Э. Баумана

Кафедра «Основы физики»

Лабораторный практикум по физике Электронное издание 10 класс

МЕХАНИКА

Лабораторная работа <u>М-4</u> Изучение закона сохранения импульса при упругом соударении Лабораторный практикум по физике. Механика. — Московский государственный технический университет имени Н. Э. Баумана

Лабораторный практикум по физике для 10 класса состоит из лабораторных работ для занятий учащихся 10 классов в Специализированном учебно-научном центре МГТУ имени Н. Э. Баумана.

Лабораторные работы, приведенные в сборнике, позволят учащимся глубже изучить законы физики и получить навыки проведения экспериментальных физических исследований.

> Составители лабораторных работ: И. Н. Грачева, В. И. Гребенкин, А. Е. Иванов, И. А. Коротова, Е. И. Красавина, А. В. Кравцов, Н. С. Кулеба, Б. В. Падалкин, Г. Ю. Шевцова, Т. С. Цвецинская.

Под редакцией И. Н. Грачевой, А. Е. Иванова, А. В. Кравцова.

[©] Московский государственный технический университет имени Н. Э. Баумана, 2013

⁽С) Лицей №1580 при МГТУ им. Н. Э. Баумана, 2013

4.1 Цель работы

Целью работы является экспериментальное изучение основных закономерностей упругого столкновения твердых тел.

4.2 Основные теоретические сведения

Законы динамики дают возможность полностью описать механическое поведение изучаемой системы, если известны силы, действующие на образующие эту систему материальные точки. Применение второго закона Ньютона к каждой из материальных точек позволяет найти ее ускорение в данном месте в данный момент времени и тем самым последовательно, шаг за шагом, проследить ее движение. Однако часто бывает, что такая детальная информация о движении не нужна. Иногда нас интересует только конечное состояние изучаемой системы, а ее промежуточные состояния (через которые система приходит в конечное) не представляют интереса. В некоторых случаях нас вообще интересует только движение системы как целого, а не движение отдельных её частиц. В подобных случаях быстрее всего к цели приводит не непосредственное применение законов Ньютона, а использование законов сохранения.

Физический мир устроен так, что при происходящих в нем изменениях — механическом движении, явлениях теплопередачи, прохождении электрического тока, распространении электромагнитных волн, превращении атомов и ядерных частиц — некоторые физические характеристики рассматриваемых систем остаются неизменными. К таким сохраняющимся величинам, прежде всего, относятся импульс, момент импульса, энергия, электрический заряд.

Самое замечательное в законах сохранения заключается в том, что одна и та же сохраняющаяся величина (например, энергия) фигурирует в явлениях разной физической природы, которые изучают в разных разделах физики — механике, электродинамике, квантовой физике. Использование законов сохранения позволяет взглянуть на изучаемые явления с более общих позиций и часто дает возможность найти ответы на некоторые вопросы, касающиеся тех явлений, для которых неизвестны описывающие их конкретные законы, например, на вопросы о взаимодействиях и взаимных превращениях элементарных частиц.

Справедливость фундаментальных законов сохранения, охватывающих все явления природы, подтверждается опытным путем. Однако для определенного круга явлений, относящихся к какому-либо одному разделу физики, законы сохранения могут быть получены из конкретных законов этого раздела. Так, для механических явлений существование законов сохранения импульса и энергии, формально вытекает из законов динамики, которые, в свою очередь могут быть получены как прямое следствие законов Ньютона. Сохраняющимися величинами в механических процессах могут являться импульс, момент импульса и энергия.

Импульс — одна из самых фундаментальных величин в физике. Знакомство с этой величиной начнем с простейшего случая.

Импульсом ${\bf p}$ материальной точки массой m, движущейся со скоростью ${\bf v}$, называется произведение

$$\mathbf{p} = m\mathbf{v}.\tag{4.1}$$

Из этого определения можно с помощью второго закона Ньютона найти закон изменения импульса частицы в результате действия на нее некоторой силы ${\bf F}$. Изменяя скорость

частицы, сила изменяет и её импульс:

$$\Delta \mathbf{p} = m \Delta \mathbf{v}.$$

В случае постоянной действующей силы

$$\frac{\Delta \mathbf{p}}{\Delta t} = \mathbf{F}.\tag{4.2}$$

Скорость изменения импульса материальной точки равна равнодействующей всех действующих на нее сил. При постоянной силе ${\bf F}$ промежуток времени Δt в формуле (4.2) может быть взят любым. Поэтому для изменения импульса частицы за этот промежуток справедливо следующее выражение:

$$\Delta \mathbf{p} = m\mathbf{v} - m\mathbf{v}_0 = \mathbf{F}\Delta t. \tag{4.3}$$

В случае изменяющейся во времени силы \mathbf{F} весь промежуток времени следует разбить на малые промежутки Δt_i , в течение каждого из которых силу F_i можно считать постоянной. Изменение импульса частицы за отдельный промежуток времени Δt_i вычисляется по формуле (4.3):

$$\Delta \mathbf{p}_i = \mathbf{F}_i \Delta t_i. \tag{4.4}$$

Полное изменение импульса за весь рассматриваемый промежуток времени равно векторной сумме изменений импульса $\Delta \mathbf{p}$ за все промежутки Δt_i :

$$\Delta \mathbf{p} = m\mathbf{v} - m\mathbf{v}_0 = \sum_i \Delta \mathbf{p}_i = \sum_i \mathbf{F}_i \Delta t_i. \tag{4.5}$$

Если воспользоваться понятием производной, то вместо (4.2), очевидно, закон изменения импульса частицы записывается как

$$\frac{d\mathbf{p}}{dt} = \mathbf{F}.\tag{4.6}$$

Изменение импульса за конечный промежуток времени от 0 до t выражается интегралом

$$\Delta \mathbf{p} = m\mathbf{v} - m\mathbf{v}_0 = \int_0^t \mathbf{F}(t)dt. \tag{4.7}$$

Величина, стоящая в правой части (4.3) или (4.5), называется импульсом силы. Таким образом, изменение импульса материальной точки за промежуток времени равно импульсу силы, действовавшей на него в течение этого промежутка времени.

Система тел, на которые не действуют внешние силы или для которых сумма всех внешних сил равна нулю, называется замкнутой.

Импульс замкнутой системы сохраняется при любых происходящих в ней физических процессах.

Поскольку импульс — величина векторная, то равенство $\mathbf{p} = \text{const}$ эквивалентно постоянству проекций импульса на координатные оси: $p_x = \text{const}, p_y = \text{const}, p_z = \text{const}$.

Наиболее простой случай взаимодействия тел, в котором можно экспериментально проверить закон сохранения, — упругий удар шаров. Если массы шаров равны m_1 и m_2 , а их скорости до столкновения были \mathbf{v}_1 и \mathbf{v}_2 , то на основании закона сохранения импульса можно записать

$$m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2 = m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2,$$
 (4.8)

Рис. 4.1. Схема расчёта скоростей

где ${\bf u}_1$ и ${\bf u}_2$ — скорости шаров после столкновения.

Задача упрощается при использовании шаров с одинаковыми массами. В этом случае из закона сохранения импульса следует равенство

$$\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{u}_1 + \mathbf{u}_2. \tag{4.9}$$

Если один из шаров до столкновения покоится $(\mathbf{v}_2 = 0)$, то

$$\mathbf{v}_1 = \mathbf{u}_1 + \mathbf{u}_2. \tag{4.10}$$

При упругом ударе кинетическая энергия системы сохраняется:

$$\frac{m\mathbf{v}_1^2}{2} = \frac{m\mathbf{u}_1^2}{2} + \frac{m\mathbf{u}_2^2}{2}.$$

Отсюда, сократив на m/2, имеем

$$\mathbf{v}_1^2 = \mathbf{u}_1^2 + \mathbf{u}_2^2. \tag{4.11}$$

Рассматривая совместно (4.10) и (4.11), по теореме косинусов для изображённого на рис. 4.1 треугольника скоростей получаем, что угол разлёта шаров есть

$$\alpha = \frac{\pi}{2}.$$

4.3 Описание экспериментальной установки

Для измерения модулей скоростей шаров и определения направления их движения можно воспользоваться установкой, схема которой изображена на рис. 4.2. В штативе закрепляется наклонный лоток таким образом, чтобы участок поверхности, с которой падает шар после скатывания по лотку, был расположен горизонтально.

Рис. 4.2. Схема экспериментальной установки

4.4 Методика выполнения работы

Дальность полета шара \mathbf{l}_1 при падении на стол пропорциональна скорости \mathbf{v}_1 на краю лотка:

$$\mathbf{l}_1 = \mathbf{v}_1 t,$$

где t — время падения шара, определяемое высотой лотка над столом.

Направление вектора скорости \mathbf{v}_1 совпадает с направлением вектора \mathbf{AB} , соединяющего точку A поверхности стола под краем лотка с точкой B, в которую падает шар. Если

на краю лотка поставить второй шар, сместив его на 3–5 мм от траектории движения скатывающегося шара, то при скатывании по лотку первого шара в результате удара в движение приходят оба шара. (Подумайте, что будет при абсолютно упругом центральном ударе.) Отметив точки C и D падения шаров на стол, можно определить направление векторов скоростей \mathbf{u}_1 и \mathbf{u}_2 (рис. 4.3). Длины отрезков AC и AD пропорциональны модулям скоростей шаров \mathbf{u}_1 и \mathbf{u}_2 , так как время падения шаров одинаково.

Рис. 4.3. Схема опыта

Таким образом, для проверки закона сохранения импульса при упругом столкновении двух шаров одинаковой массы необходимо проверить, равняется ли сумма векторов \mathbf{AC} и \mathbf{AD} (обозначим ее \mathbf{AB}') вектору \mathbf{AB} , а угол разлета — $\pi/2$.

4.5 Порядок выполнения работы

1. Приготовить в тетради две таблицы 4.1 и 4.2 для записи результатов измерений и вычислений.

Таблица 4.1.

$N_{\overline{0}}$	AB', mm	$\langle AB' \rangle \pm \Delta (AB')$, mm	α , °	$\langle \alpha \rangle \pm \Delta \alpha$, °
1				
2				
3				

Таблица 4.2.

Nº	AB, mm	$\langle AB \rangle \pm \Delta(AB)$, mm
1		
2		
3		

- 2. Установите дугообразный лоток на высоте 5–10 см и закрепите в штативе. Обратите внимание на горизонтальное положение нижнего края лотка.
- 3. На столе под лотком в направлении полета шара положите лист миллиметровой бумаги и покройте его копировальной бумагой. Помните, что в ходе эксперимента миллиметровую бумагу со стола сдвигать нельзя.
- 4. С помощью отвеса отметьте на миллиметровой бумаге точку A под краем лотка.
- 5. Трижды запустите шар с верхнего края лотка. Осторожно приподняв копировальную бумагу, обозначьте три полученных отметки от падения шаров как B^1, B^2, B^3 .

- 6. Установите на краю лотка второй шар таким образом, чтобы вектор скорости первого шара не проходил через центр второго шара. Запустив первый шар с верхнего края лотка, получите отметки точек C и D падения обоих шаров на стол. Осторожно приподняв копировальную бумагу, обозначьте их как C^1 и D^1 .
- 7. Опыт повторите 3 раза, каждый раз стараясь поставить шар на прежнее место. Полученные точки отмечайте согласно п. 6 с индексами соответственно 2 и 3.
- 8. Возьмите лист миллиметровой бумаги с нанесенными на нем точками. С помощью циркуля и линейки постройте параллелограммы $AC^1B^{'1}D^1$, $AC^2B^{'2}D^2$, $AC^3B^{'3}D^3$.
- 9. Измерьте линейкой отрезки $AB^{'1}$, $AB^{'2}$, $AB^{'3}$ и занесите их значения в таблицу 4.1. Рассчитайте по формулам раздела «Введение» среднее значение расстояния AB' и по приведенной формуле абсолютную погрешность измерения

$$\Delta \langle AB' \rangle = \frac{(AB')_{\text{max}} - (AB')_{\text{min}}}{2}.$$
 (4.12)

10. Измерьте транспортиром углы $\alpha_1, \alpha_2, \alpha_3$ и занесите их значения в таблицу 4.1. Рассчитайте

$$\langle \alpha \rangle = \frac{\alpha_{\text{max}} + \alpha_{\text{min}}}{2},\tag{4.13}$$

$$\langle \alpha \rangle = \frac{\alpha_{\text{max}} + \alpha_{\text{min}}}{2},$$

$$\Delta \langle \alpha \rangle = \frac{\alpha_{\text{max}} - \alpha_{\text{min}}}{2}.$$
(4.13)

11. Измерьте линейкой отрезки AB^1 , AB^2 , AB^3 и занесите их значения в таблицу 4.2. Рассчитайте

$$\langle AB \rangle = \frac{(AB)_{\text{max}} + (AB)_{\text{min}}}{2}, \tag{4.15}$$

$$\Delta \langle AB \rangle = \frac{(AB)_{\text{max}} - (AB)_{\text{min}}}{2}.$$
 (4.16)

- 12. Сравнив отрезки AB и AB' и углы α и $\pi/2$, сделайте вывод о выполнении закона сохранения импульса в проведенном опыте.
- 13. Напишите заключение к работе.

4.6 Контрольные вопросы

- 1. При каких условиях импульс системы сохраняется?
- 2. Почему необходима горизонтальная установка нижнего края лотка?
- 3. Можно ли считать систему из шаров, сталкивающихся на горизонтальной части лотка, замкнутой?
- 4. В чем проявляется закон сохранения энергии в данной работе?
- 5. Может ли человек, стоящий на идеально гладкой горизонтальной (ледяной) площадке, сдвинуться с места, не упираясь острыми предметами в лед?
- 6. Главный герой книги Э. Распе барон Мюнхгаузен рассказывает: «Схватив себя за косичку, я изо всех сил дернул вверх и без большого труда вытащил из болота и себя, и своего коня, которого крепко сжал обеими ногами, как щипцами». Действительно ли можно таким образом поднять себя?

- 7. В книге А. Некрасова «Приключения капитана Врунгеля» описан следующий способ передвижения лодки: колесо приводят во вращение белки, несущиеся «как бешеные одна за одной по ступенькам внутри колеса» (беличьего колеса). Будет ли двигаться лодка с подобным двигателем?
- 8. Может ли висящая на паутине гусеница повернуться к наблюдателю другим боком?
- 9. Небольшая лодка притягивается канатом к большому теплоходу. Почему теплоход не движется по направлению к лодке?
- 10. Чтобы сойти на берег, лодочник направился от кормы лодки к ее носовой части. Почему при этом лодка отошла от берега?
- 11. Зачем рулевой во время движения лодки наклоняет тело в такт гребцам?