Chapitre 9

Propagation des erreurs d'arrondi dans la méthode de Gauss

Il s'agit d'étudier sur ordinateur en arithmétique flottante les étapes de la factorisation théorique $\mathcal{A} = \mathcal{L} \mathcal{U}$ avec $\mathcal{A} \in \mathcal{M}_n(\mathbb{R})$

On suppose qu'il n'y a pas d'erreur de donnée : A = A

Soit LU le résultat informatique, on a une matrice erreur E telle que LU-A = E

1 Analyse de l'erreur à l'étape k:

L'algorithme de Gauss utilisé dans la décomposition LU de A s'écrit sous forme matricielle $A^{(k)}=L^{(k)}$ $A^{(k+1)}$ $1\leq k\leq n-1$ avec $A^{(1)}=A$ et $A^{(n)}=U$ (matrice triangulaire supérieure) et $L^{(k)}=I+l^{(k)}e_k^t$ avec e_k le k^{eme} vecteur de la base canonique et $l^{(k)}=(0,\,\cdots,\,0,\,l_{k+1}^{(k)},\cdots,l_n^{(k)})^t$

matrice d'élimination à l'étape k (passage de la matrice $A^{(k)}$ à la matrice $A^{(k+1)}$), triangulaire inférieure à diagonale unité avec la k^{eme} colonne le vecteur $e_k + l^{(k)}$.

On a les formules algébriques récurrentes classiques de calcul des cœfficients des matrices :

$$\text{des matrices:} L_{ik}^{(k)} = \frac{A_{ik}^{(k)}}{A_{kk}^{(k)}} \;, \quad k+1 \leq i \leq n$$

$$A_{ij}^{(k+1)} = A_{ij}^{(k)} - L_{ik}^{(k)} A_{kj}^{(k)} \; , \quad k+1 \leq i,j \leq n \label{eq:alpha}$$

Remarque:

$$A_{ij}^{(k+1)} = A_{ij}^{(k)} , \quad 1 \le i \le k \quad j = 1, \cdots, n$$

$$A_{ij}^{(k+1)} = A_{ij}^{(k)} = 0 , \quad k+1 \le i \le n \quad 1 \le j \le k-1$$

On définit la matrice erreur à l'étape
$$k$$
 par $E^{(k)} = L^{(k)}A^{(k+1)} - A^{(k)}$
On a $E_{ij}^{(k)} = 0$, $1 \le i \le k$ $j = 1, \dots, n$ ou $i = 1, \dots, n$ $1 \le j \le k - 1$

Majoration des cœfficients de la matrice $E^{(k)}$

Pour
$$j = k$$

Par élimination on a $A_{ik}^{(k+1)}=0 \ , \quad k+1 \leq i \leq n$

On obtient sur machine $L_{ik}^{(k)}=\frac{A_{ik}^{(k)}}{A_{kk}^{(k)}}(1+\delta_{ik}^{(k)})$, $k+1\leq i\leq n$ où δ représente l'erreur relative d'arrondi sur le calcul de la division. d'où $E_{ik}^{(k)}=L_{ik}^{(k)}A_{kk}^{(k+1)}-A_{ik}^{(k)}=\frac{A_{ik}^{(k)}}{A_{kk}^{(k)}}(1+\delta_{ik}^{(k)})A_{kk}^{(k+1)}-A_{ik}^{(k)}$

d'où
$$E_{ik}^{(k)} = L_{ik}^{(k)} A_{kk}^{(k+1)} - A_{ik}^{(k)} = \frac{A_{ik}^{(k)}}{A_{kk}^{(k)}} (1 + \delta_{ik}^{(k)}) A_{kk}^{(k+1)} - A_{ik}^{(k)}$$

On a
$$A_{kk}^{(k+1)} = A_{kk}^{(k)}$$

d'où
$$E_{ik}^{(k)} = A_{ik}^{(k)} (1 + \delta_{ik}^{(k)}) - A_{ik}^{(k)} = A_{ik}^{(k)} \delta_{ik}^{(k)}, \quad k+1 \le i \le n$$

On a $A_{kk}^{(k+1)}=A_{kk}^{(k)}$ d'où $E_{ik}^{(k)}=A_{ik}^{(k)}\left(1+\delta_{ik}^{(k)}\right)-A_{ik}^{(k)}=A_{ik}^{(k)}\delta_{ik}^{(k)}$, $k+1\leq i\leq n$ On peut prendre $|\delta_{ik}^{(k)}|\leq \mathbf{u}$ (unité d'arrondi) par application des erreurs d'arrondi sur les opérations arithmétiques élémentaires, d'où $|E_{ik}^{(k)}|\leq \mathbf{u}|A_{ik}^{(k)}|$, $k+1\leq i\leq n$

$$|E_{ik}^{(k)}| \le \mathbf{u}|A_{ik}^{(k)}|, \quad k+1 \le i \le n$$

On a
$$E_{ij}^{(k)} = L_{ik}^{(k)} A_{kj}^{(k+1)} + A_{ij}^{(k+1)} - A_{ij}^{(k)}$$
, $k+1 \le i \le n$

On a
$$A_{kj}^{(k+1)} = A_{kj}^{(k)}$$
, $j = 1, \dots, n$

d'où
$$E_{ij}^{(k)} = A_{ij}^{(k+1)} - (A_{ij}^{(k)} - L_{ik}^{(k)} A_{kj}^{(k)})$$

qui est égale théoriquement (sans erreur) à $A_{ij}^{(k+1)}$. $E_{ij}^{(k)}$ représente l'erreur absolue du calcul de $A_{ij}^{(k+1)}$ à partir de $A_{ij}^{(k)}$

On obtient sur machine $L_{ik}^{(k)}A_{kj}^{(k)}(1+\beta_{ij}^{(k)})$ où $\beta_{ij}^{(k)}$ est l'erreur relative d'arrondi sur le calcul du produit. Puis $\left(A_{ij}^{(k)}-L_{ik}^{(k)}A_{kj}^{(k)}(1+\beta_{ij}^{(k)})\right)(1+\alpha_{ij}^{(k)})$ où $\alpha_{ij}^{(k)}$ est l'erreur relative d'arrondi sur le calcul de la différence.

Théoriquement
$$A_{ij}^{(k+1)} = A_{ij}^{(k)} - L_{ik}^{(k)} A_{kj}^{(k)}$$
.
D'où $E_{ij}^{(k)} = A_{ij}^{(k)} - L_{ik}^{(k)} A_{kj}^{(k)} - \left(A_{ij}^{(k)} - L_{ik}^{(k)} A_{kj}^{(k)} (1 + \beta_{ij}^{(k)})\right) (1 + \alpha_{ij}^{(k)})$

$$\begin{aligned} &\text{C'est-\`a-dire } E_{ij}^{(k)} = A_{ij}^{(k)} - L_{ik}^{(k)} A_{kj}^{(k)} - \left(A_{ij}^{(k)} (1 + \alpha_{ij}^{(k)}) - L_{ik}^{(k)} A_{kj}^{(k)} (1 + \alpha_{ij}^{(k)}) \right) = \\ &- A_{ij}^{(k)} \alpha_{ij}^{(k)} + L_{ik}^{(k)} A_{kj}^{(k)} \alpha_{ij}^{(k)} + L_{ik}^{(k)} A_{kj}^{(k)} \beta_{ij}^{(k)} (1 + \alpha_{ij}^{(k)}) = -A_{ij}^{(k+1)} \alpha_{ij}^{(k)} + L_{ik}^{(k)} A_{kj}^{(k)} \beta_{ij}^{(k)} (1 + \alpha_{ij}^{(k)}) \\ &- A_{ij}^{(k)} \alpha_{ij}^{(k)} + L_{ik}^{(k)} A_{kj}^{(k)} \beta_{ij}^{(k)} (1 + \alpha_{ij}^{(k)}) \\ &- A_{ij}^{(k)} \alpha_{ij}^{(k)} + (A_{ij}^{(k)} - A_{ij}^{(k+1)}) \beta_{ij}^{(k)} (1 + \alpha_{ij}^{(k)}) \end{aligned}$$

On peut prendre $|\alpha_{ij}^{(k)}|$ et $|\beta_{ij}^{(k)}| \leq \mathbf{u}$ (unité d'arrondi) par application des erreurs d'arrondi sur les opérations arithmétiques élémentaires, d'où $|E_{ij}^{(k)}| \leq \mathbf{u}(3+2\mathbf{u}) max(|A_{ij}^{(k+1)}|,|A_{ij}^{(k)}|)$, $k+1 \leq i \leq n$ j>k

$$|E_{ij}^{(k)}| \le \mathbf{u}(3+2\mathbf{u})max(|A_{ij}^{(k+1)}|, |A_{ij}^{(k)}|), \quad k+1 \le i \le n \quad j > k$$

Pour
$$j \ge k$$
 on obtient : $|E_{ij}^{(k)}| \le \mathbf{u}(3+2\mathbf{u}) \max(|A_{ij}^{(k+1)}|, |A_{ij}^{(k)}|)$, $k+1 \le i \le n$ $j \ge k$

à l'ordre 1 :
$$|E_{ij}^{(k)}| \leq 3\mathbf{u}K_{ij}^{(k+1)} \;, \quad k+1 \leq i \leq n \quad k \leq j \leq n \quad \text{avec } K_{ij}^{(k+1)} = \max(|A_{ij}^{(k+1)}|, |A_{ij}^{(k)}|)$$
 d'où $|E_{ij}^{(k)}| \leq 3\mathbf{u}K_{k+1} \;, \quad k+1 \leq i \leq n \quad k \leq j \leq n \quad \text{avec } K_{k+1} = \max_{\substack{1 \leq i, j \leq n \\ 1 \leq l \leq k+1}} |A_{ij}^{(l)}|$

Remarque:

Les coefficients $E_{ij}^{(k)}$, $1 \le i \le k$ $j = 1, \dots, n$ ou $i = 1, \dots, n$ $1 \le j \le k - 1$

$\mathbf{2}$ Analyse de l'erreur pour la décomposition LU:

La matrice $E^{(k)}$ représente l'erreur de calcul à l'étape k. Il s'agit d'étudier la propagation de ces erreurs au cours des n-1 étapes.

On a
$$L^{(k)}A^{(k+1)} = A^{(k)} + E^{(k)}$$
 (0)

On considère les matrices $L^{(i)} = I + l^{(i)}e_i^t$ et $F^{(k)} \in \mathcal{M}_n(\mathbb{R})$ (avec ses k premières

On a
$$L^{(i)}F^{(k)} = F^{(k)}$$
 pour $i \le k$ (1)

On a $L^{(i)}F^{(k)}=F^{(k)}$ pour $i\leq k$ (1) En effet, $L^{(i)}F^{(k)}=F^{(k)}+l^{(i)}e_i^tF^{(k)}$ mais $e_i^tF^{(k)}=0$ (puisque la i^{eme} ligne de $F^{(k)}$ nulle pour i < k).

En utilisant les relations (0) et (1), on a :
$$L^{(1)}L^{(2)}\cdots L^{(k-1)}L^{(k)}A^{(k+1)} = L^{(1)}L^{(2)}\cdots L^{(k-1)}A^{(k)} + L^{(1)}\cdots L^{(k-1)}E^{(k)}$$

$$\underbrace{L^{(1)}L^{(2)}\cdots L^{(n-1)}A^{(n)}}_{matrice\ LU\ calcule\ sur\ machine} = A^{(1)} + E^{(1)} + \cdots + E^{(n-1)} = A + E$$

On note
$$|A| = (|A_{ij}|)$$
 et $A \leq B$ pour $A_{ij} \leq B_{ij} \ \forall i, j$

Pour majorer E (au sens des coefficients), on majore tous les nombres K_{k+1} par K_n

On a
$$F^{(k)}=\begin{pmatrix} 0&\cdots&&&0\\&0&\cdots&&&0\\&&1&\cdots&&1\\&&&&1\\0&\cdots&0&1&\cdots&&1\\&&&&&k^{eme}\ colonne \end{pmatrix}$$
 k+1^{eme} ligne

D'où pour la majoration
$$|E_{ij}^{(k)}| \leq 3\mathbf{u}K_{k+1}$$
, on a $|E^{(k)}| \leq 3\mathbf{u}K_nF^{(k)}$ donc $|E| = |\sum_{k=1}^{n-1} E^{(k)}| \leq \sum_{k=1}^{n-1} |E^{(k)}| \leq 3\mathbf{u}K_n\sum_{k=1}^{n-1} F^{(k)}$

Notons
$$F = \sum_{k=1}^{n-1} F^{(k)}$$
, on a :

d'où $|E| \leq 3\mathbf{u}K_nF$

 K_n représente le plus grand coefficient en valeur absolue de toutes les matrices $A^{(k)}$, $k=1,\cdots,n$ de la méthode de Gauss et ${\bf u}$ l'unité d'arrondi de l'arithmétique flottante.

Par définition du pivot partiel on a $|L_{ik}^{(k)}| \leq 1$, donc par les formules algébriques on a $|A_{ij}^{(k+1)}| \leq |A_{ij}^{(k)}| + |A_{kj}^{(k)}|$ d'où $K_{k+1} \leq 2K_k$ soit $K_n \leq 2^{n-1}K_1$ Dans ce cas, on a PA = LU + E où P est une matrice de permutation qui ne produit pas d'erreur.

La borne K_n est assez pessimiste. Des majorations plus fines ont été obtenues pour des classes de matrices (à diagonale dominante,...) par J.H. Wilkinson. K_n se calcule au fur et à mesure des étapes et permet une analyse a posteriori des erreurs d'arrondi et de la croissance des cœfficients (intermédiaires) des matrices $A^{(k)}$.