정밀 깊이맵을 위한 백색 보조 띠 기반의 스테레오 정합 기법

메카트로닉스공학과 메카트로닉스공학전공 영상시스템연구실 강한솔

Contents

연구 배경 및 목적

❖ 연구 배경

- >> 로봇 제어에 있어 주변의 깊이 정보는 매우 중요한 요소이다.
- >> 특히 생명과 관련된 로봇에 있어서는 정확하고 정밀한 깊이 정보가 요구된다.
- >> 최근 로봇 팔의 원격 조작을 이용한 원전을 해체하는 기술이 연구 중이다.

연구 배경 및 목적

- ❖ 기존의 스테레오 정합 기법
 - ▶ > 스테레오 정합은 크게 수동적 방법과 능동적 방법으로 나뉜다.

연구 배경 및 목적

❖ 기존의 스테레오 정합 기법의 문제점

- >> 수동적 방법의 경우 질감도가 낮은 영역에 매우 취약하다.
- >> 능동적 방법의 경우 효과적인 패턴 획득이 중요하다.

❖ 스테레오 정합

$$\Delta PMC_{l} \stackrel{similar}{\longleftrightarrow} \Delta P_{l}LC_{l}$$

$$\frac{X}{Z} = \frac{x_{l}}{f} \qquad \qquad a$$

$$\Delta PNC_{r} \stackrel{similar}{\longleftrightarrow} \Delta P_{r}RC_{r}$$

$$\frac{X-b}{Z} = \frac{x_{r}}{f} \qquad \qquad b$$
from a $X = \frac{x_{l}}{f}Z$ from b $X = \frac{x_{r}}{f}Z + b$

$$\frac{x_{l}}{f}Z = \frac{x_{r}}{f}Z + b, \quad \frac{x_{l} - x_{r}}{f}Z = b$$

$$\therefore Z = \frac{bf}{x_{l} - x_{r}}$$

Flow chart

❖ 드 브루인 수열(De bruijn sequence)

>> 드 브루인 수열은 순열 기반의 부분 수열로 구성된 수열이다.

000, 001, 011, 111, 110, 101, 010, 100

$$B(k,n)_{size} = k^n$$

n=3, k=2 (alphabet is {0, 1}) $B(2,3)_{size} = 2^3$

n=3, k=3 (alphabet is $\{0, 1, 2\}$) $3^3 = 27$

000111222012022110021210102

n=3, k=3 (alphabet is $\{b, g, r\}$)

❖ 백색 보조 띠

- >> 백색 보조 띠는 컬러 패턴과 동일한 위치와 너비를 가지는 백색의 줄무늬 모양이다.
- >> 밝기 성분을 이용해 라인을 추출한다.

컬러 패턴(드 브루인 수열)

백색 보조 띠

- 적응적 문턱치화
 - >> 백색 보조 띠를 검출할 때 하나의 문턱치 값을 이용하면 제대로 된 라인 획득이 어렵다.

❖ 적응적 문턱치화

m(HG), m(LG): a mean value in the high group, a mean value in the low group

- TH far: threshold value for choosing TH adaptive
- n: the number of area

❖ 적응적 문턱치화

>> 구역 내 밝기의 분포가 쌍봉일 때 적응적 문턱치 값을 설정한다.

threshold value

220	230	240	240
220	230	240	240
220	230	240	240
220	230	240	240

Total mean: 232.5 High group mean: 240 Low group mean: 225 Threshold value: -1

20	50	240	240
20	50	240	240
20	50	240	240
20	50	240	240

Total mean: 137.5 High group mean: 240 Low group mean: 35 Threshold value: 137.5

❖ 세선화

- >> 세선화는 중앙값 세선화(Median thinning)와 최소자승법 세선화(LSM thinning)로 구성된다.
- >> 중앙값 세선화는 라인 후보들의 중앙값으로 선택한다.

세선화 전

: Line candidate

☐ : Thinning

❖ 세선화

>> 최소자승법 세선화는 최소자승법을 이용해 이차 곡선을 근사 시키고, 최댓값으로 세선화를 수행한다.

21	22		58	78	86	99	59	22	18
22	22	36	58	78	86	80	59	22	18
22	22	36	58	78	85	79	59	22	18
22	22	36	58	78	80	66	54	22	18
22	22	43	58	78	80	65	51	28	18
E11	39	59	72	80	80	65	51	34	22
30	37	59	78	80	80	65	51	36	17
28	36	54	78	80	80	65	51	36	117
10	30	52	72	90	85	65	51	36	117
10	30	52	70	90	90	65	54	33	117
TE	29	36	56	65	92	85	54	15	115
æ	177	28	43	51	61	64	53	113	15

: Line candidate

❖ 세선화

$$\hat{y}_i = ax_i^2 + bx_i + c$$

 $\sum_{i=0}^{n} (y_i - \hat{y}_i)^2$ Residual error minimization problem

$$\frac{\partial \sum (y_i - \hat{y}_i)^2}{\partial a} = 0, \quad \frac{\partial \sum (y_i - ax_i^2 - bx_i - c)^2}{\partial a} = \sum 2(y_i - ax_i^2 - bx_i - c)(-x_i^2) = \sum -2x_i^2 y_i + 2ax_i^4 + 2bx_i^3 + 2cx_i^2 = 0$$

$$\frac{\partial \sum (y_i - \hat{y}_i)^2}{\partial b} = 0, \quad \frac{\partial \sum (y_i - ax_i^2 - bx_i - c)^2}{\partial b} = \sum 2(y_i - ax_i^2 - bx_i - c)(-x_i) = \sum -2x_i y_i + 2ax_i^3 + 2bx_i^2 + 2cx_i = 0$$

$$\frac{\partial \sum (y_i - \hat{y}_i)^2}{\partial c} = 0, \quad \frac{\partial \sum (y_i - ax_i^2 - bx_i - c)^2}{\partial c} = \sum 2(y_i - ax_i^2 - bx_i - c)(-1) = \sum -2y_i + 2ax_i^2 + 2bx_i + 2c = 0$$

$$\sum -2x_i^2 y_i + 2ax_i^4 + 2bx_i^3 + 2cx_i^2 = 0$$

$$\sum -2x_i y_i + 2ax_i^3 + 2bx_i^2 + 2cx_i = 0$$

$$\sum -2y_i + 2ax_i^2 + 2bx_i + 2c = 0$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sum x_i^4 & \sum x_i^3 & \sum x_i^2 \\ \sum x_i^3 & \sum x_i^2 & \sum x_i \\ \sum x_i & \sum 1 \end{bmatrix}^{-1} \begin{bmatrix} \sum x_i^2 y_i \\ \sum x_i y_i \\ \sum y_i \end{bmatrix}$$

❖ 세선화

- >> 최소자승법 세선화를 이용하면 시차를 더 정밀하게 구할 수 있다.
- >> 세선화를 수행한 백색 보조 띠를 시차 관심 영역으로 정의한다.

(a, b, c) are known

$$y = ax^2 + bx + c$$

$$\frac{dy}{dx} = 2ax + b = 0, \quad x = -\frac{b}{2a}$$

 $y = -3.5898x^2 + 40.382x - 34.786$

$$x(center) = -\frac{40.382}{2 \times (-3.5898)} = 5.6245$$

입력 영상

적응적 문턱치화

세선화(시차 관심 영역)

❖ 컬러 코드 획득 및 정합

- >> 시차 관심 영역을 이용해 컬러 코드를 획득한다.
- >> 언래핑을 통해 중복된 코드를 제거한다.

입력 영상

컬러 코드 획득

n=3, k=3 (alphabet is $\{b, g, r\}$)

(bb)bgggrrrbgrbrrggbbrgrgbgbr

bbb(0), bbg(1), bgg(2), ..., rbb(26)

❖ 컬러 코드 획득 및 정합

- >> 동일한 코드 값을 가지는 대응점을 이용해 시차를 구한다.
- >> 베이스 라인과 초점거리, 시차 정보를 이용해 깊이 정보를 구한다.

Disparity: 4

깊이 정보 : $Z = \frac{bf}{d}$

❖ 실험 환경 및 평가 방법

>> 정밀하게 가공된 시편의 단차를 측정하는 실험을 수행한다.

❖ 실험 환경 및 평가 방법

>> LSM을 이용해 프론트 평면과 베이스 평면을 근시 시키고, 두 평면 사이의 거리를 구한다.

$$\hat{z}_i = Ax_i + By_i + C$$

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} \sum x_i^2 & \sum x_i y_i & \sum x_i \\ \sum x_i y_i & \sum y_i^2 & \sum y_i \\ \sum x_i & \sum y_i & \sum 1 \end{bmatrix}^{-1} \begin{bmatrix} \sum x_i z_i \\ \sum z_i y_i \\ \sum z_i \end{bmatrix}$$

(A, B, C) are known

$$z = Ax + By + C \iff (x_1, y_1, z_1)$$

평면과 점 사이의 거리

$$h = \frac{|Ax_1 + By_1 - z_1 + C|}{\sqrt{A^2 + B^2 + 1^2}}$$

❖ 실험 결과

- >> 기존의 수동적 방법과 능동적 방법, 제안한 방법을 비교 평가하였다.
- >> 제안한 방법이 1mm에 가장 근사하게 측정함을 확인하였다.

Matching method	ВР	Binary Code	De bruijn	Proposed method
Depth(mm)	63.768	2.795	12.161	0.982
Error	-62.768	-1.795	-11.161	0.018

❖ 실험 결과

- >> 컬러가 있는 물체에 대해서 실험을 수행하였다.
- >> 기존의 방법보다 컬러에 강인한 것을 확인할 수 있었다.

De bruijn

Proposed method

Matching method	De bruijn	Proposed method		
Depth(mm)	11.526	1.1527		
Error	-10.526	-0.1527		

결론

- >> 기존의 능동적 정합 방법이 가지는 문제를 해결하기 위해 백색 보조 띠를 제안하였다.
- >> 프로젝터와 카메라 사이의 별도의 보정 과정이 필요하지 않다.
- >> 백색 보조 띠를 이용해 정확한 컬러 패턴의 획득이 가능하다.

- >> 1mm 단차를 측정하였을 때 기존 방법들에 비해 1mm에 가장 가까운 단차를 측정하였다.
- >> 컬러가 있는 물체에 대해서 패턴을 원활히 획득할 수 있다.

▶> 추후 연구 방향으로는 DP나 GPGPU 기반의 병렬화를 적용하여, 움직이는 물체에 대한 실시간 연산을 수행할 수 있을 것으로 기대된다.

#