Gossip-6 LAYER4 Secure Communication Protocol

- 1. Need secure communication:
 - Establish shared AES256 key: Diffie Hellman key exchange,
 - Need to trust the source (signature),
 - Since there will be no CA, we need Proof of Work for the identity,
 - Proof of work should not be used for more than 1 communication,
 - We are already given an out-of-band public key sharing mechanism.
- 2. For Alice (client):
 - Let handshake message $m = DHE_{pub}^{Alice} \mid RSA_{pub}^{Alice} \mid T \mid (ip:port)_{Bob} \mid nonce$ such that T is the Unix⁽¹⁾ timestamp and $scrypt_{\mathcal{C}}(m) < k$ for some pre-determined $k \in \mathbb{Z}^+$ and Scrypt hash function with configuration \mathcal{C} ,
 - $\bullet \quad \text{Sign the digest SHA3_256}(\textit{m}) \text{ with } \textit{RSA}^{\textit{Alice}}_{priv} \text{ as } s = \textit{Sign}_{\textit{RSA}^{\textit{Alice}}_{priv}}(\text{SHA3_256}(\textit{m})) \text{ ,}$
 - Add the signature to the message as $m^{Alice} = m \mid s$ and send m^{Alice} to Bob (server).
- 3. For Bob (server):
 - Upon receiving m^{Alice} , get the fields of the message as $m \mid s$,
 - Check validity first as $scrypt_{\mathcal{C}}(m) < k$, if not valid then discard connection,
 - From m, get the fields $DHE_{pub}^{Alice} \mid RSA_{pub}^{Alice} \mid T \mid (ip:port)_{Bob} \mid nonce$,
 - Make sure RSA^{Alice}_{pub} is a known and trusted public key*,
 - Verify signature as $Verify_{RSA^{Alice}_{nub}}(m{m}, m{s})$, if not valid then discard connection,
 - Check if $Now-T \leq t_{max}$ for some pre-determined $t_{max} \in \mathbb{R}^+$ and if not then discard connection,
 - Check if $(ip:port)_{Bob}$ is Bob's P2P listening socket and if not then discard connection,
 - Let handshake message $m' = DHE^{Bob}_{pub} \mid RSA^{Bob}_{pub} \mid T' \mid (ip:port)_{Alice} \mid nonce'$ such that T' is the Unix⁽¹⁾ timestamp and $scrypt_{\mathcal{C}}(m') < k$ for some pre-determined $k \in \mathbb{Z}^+$ and Scrypt hash function with configuration \mathcal{C} ,
 - Sign the digest SHA3_256(m') with RSA^{Bob}_{priv} as $s'=Sign_{RSA^{Bob}_{mriv}}({
 m SHA3}_{
 m 256}(m'))$,
 - Add the signature to the message as $m^{Bob} = m' \mid s'$ and send m^{Bob} to Alice (client).
- 4. For Alice again (client):
 - Upon receiving m^{Bob} , get the fields of the message as $m' \mid s'$,
 - Check validity first as $scrypt_{\mathcal{C}}(m') < k$, if not valid then discard connection,
 - From m', get the fields $DHE_{pub}^{Bob} \mid RSA_{pub}^{Bob} \mid T' \mid (ip:port)_{Alice} \mid nonce'$,
 - Make sure RSA^{Bob}_{pub} is a known and trusted public key*,
 - Verify signature as $Verify_{RSA_{nub}^{Bob}}(m',s')$, if not valid then discard connection,
 - Check if $Now-T' \leq t_{max}$ for some pre-determined $t_{max} \in \mathbb{R}^+$ and if not then discard connection,
 - Check if $(ip:port)_{Alice}$ is Alice's P2P client socket⁽²⁾ and if not then discard connection.
- 5. Now that both Alice and Bob have DHE_{pub}^{Alice} and DHE_{pub}^{Bob} , they can both calculate the shared secret as $AES256_{key} = DHE(DHE_{priv}^{Alice}, DHE_{pub}^{Bob}) = DHE(DHE_{pub}^{Alice}, DHE_{priv}^{Bob})$. After 1 round trip, the secure communication has been established. Each message following the handshakes will be encrypted with the $AES256_{key}$.

^{*:} We can check if a public key is known due to the out-of-band hostkey sharing mechanism.

^{(1):} Number of seconds passed since January 1, 1970 UTC time zone.

^{(2):} The (IP, port) that Alice used as a client to connect to the server Bob.