Olimpiada de Fizică Etapa pe județ

24 februarie 2018

Barem

Pagina 1 din 4

Pagina 1 din 4 Subiect 1. Niște ciocniri	Parțial	Punctaj
1. Barem subject 1		10
A) a) Comprimarea e maximă când cele două corpuri au viteze egale Cons. impuls: $Mv_0 = (M+m)v$ Cons. energie: $\frac{Mv_0^2}{2} = \frac{(M+m)v^2}{2} + \frac{kA^2}{2}$ $A = v_0 \sqrt{\frac{Mm}{M+m}} \frac{1}{k} = v_0 \sqrt{\frac{\mu}{k}}$	4p 4p Mv, Mv,	9p

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2018

24 lebruarie 2 **Barem**

Pagina 2 din 4

Subject 2. Măs		cule				Parţial	Punctaj
A. Barem subie	ct 2		•				10
a)	Nr. Crt. 1. 2. 3.	H _{max} (cm) 16.9 17.2 17.0	H _{max} (cm) 17.03	ΔH _{max} (cm) 0.13 0.17 0.03	$\Delta H_{\rm max}$ (cm) 0.11		
$\Rightarrow v = \frac{\left(M + m\right)^{2}}{m}$ $\frac{\Delta v}{v} = \frac{\Delta \left(M + n\right)^{2}}{M + m}$ $\frac{\Delta v}{v} = \frac{0.2 + 1.8}{615.6}$ $\frac{\Delta v}{v} = 84.93 \cdot 10$	$\int_{1}^{\infty} v_1 \text{ (ciocnire)}$ $\int_{1}^{\infty} \sqrt{2gH} ; v = \frac{m}{m} + \frac{\Delta m}{m} + \frac{1}{2}$ $\int_{1}^{\infty} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} = 36$ $\int_{1}^{\infty} \sqrt{x} \int_{1}^{\infty} v = 36$ $\int_{1}^{\infty} \sqrt{x} \int_{1}^{\infty} v = 36$ $\int_{1}^{\infty} \sqrt{x} \int_{1}^{\infty} v = 36$	(conservare de $ = \frac{(615.6)}{2.6} \sqrt{2.9} $ $ = \frac{\Delta 2}{2} + \frac{1}{2} \frac{\Delta g}{g} + \frac{1}{2} \frac{0.03}{2.9.81} + \frac{1}{2} \frac{0.11}{17.0} $ $ = \frac{1}{2} \frac{0.03}{9.81} + \frac{1}{2} \frac{0.03}{17.0} + \frac{1}{2} \frac{0.03}$	energie) $ \frac{1.81 \cdot 0.1703}{1.81 \cdot 0.1703} = \frac{\Delta H_{\text{max}}}{H_{\text{max}}} $ $ \frac{1}{3} = (3.25 + 7) = 1.3$	= 432.8 m/s 76.92+0+1.5	$(0,75p)$ (0,75p)(1p) $3+3.23)\cdot 10^{-3}$	5p	6р
	e contribuție	la eroarea Δv o	are măsurăto	area masei m	(1p)	1p	
$\frac{B}{a} x_2 = \frac{f_1 \cdot x}{f_1 + x}$	$\frac{1}{\alpha_1} = \frac{0.5 \cdot (-1)}{0.5 + (-1)}$	$\frac{-0.52)}{-0.52)} = 13 \text{ cm}$	l			0,75p	
a) $x_2 = \frac{f_1 \cdot x_1}{f_1 + x_1} = \frac{0.5 \cdot (-0.52)}{0.5 + (-0.52)} = 13 \text{ cm}$ b) $\beta_1 = \frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{13}{(-0.52)} = -25$					0,75p		
c) Pentru $x_2' = \delta = -25$ cm se obtine pozitia imaginii date de obiectiv fata de ocular: $x_1' = \frac{f_2 \cdot \delta}{f_2 - \delta} = \frac{2 \cdot (-25)}{2 - (-25)} = -1,85 \text{ cm}$ și apoi distanța față de obiectiv unde trebuie așezat ocularul: $L = x_2 + x_1' = 13 + 1.85 = 14,85 \text{ cm}.$				0,75p	3р		
d) Puterea P si	grosismentul	(comercial), G_{c}	vor rezulta d $(5+2)$ = 12	lin următoarele 2,35 cm ⁻¹ = 12	relații: 235 D	0,75p	
<i>P</i> =	$f_1 \cdot f_2$	$G_c = \frac{P}{4} = \frac{1}{2}$	$\frac{1235}{4} \cong 309$				

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

24 februarie 2018

Barem

Pagina 3 din 4

Subject 3. Gaz ideal	Parţial	Punctaj
Barem subject 3		10
Sarcina de lucru 1 a) $\tan \theta = \frac{p}{T} = \frac{mR}{\mu V}$ Volumul gazului este constant. De la A spre B unghiul θ scade $\Rightarrow m$ scade.	1p	
b) $ (1-f_1)pV = \frac{(1-f)m}{\mu}R(1-f_2)T \Rightarrow 1-f = \frac{1-f_1}{1-f_2} = \frac{60}{90} \Rightarrow f = \frac{1}{3} (33,33\%) $ c) Transformarea AMB poate fi intersectată în două $p \uparrow$	1p	3р
puncte de o adiabată. În ciclul $A_1MB_1A_1$ se efectuează lucru mecanic (aria hașurată). Astfel, gazul primește căldură pe A_1M și cedează căldură MB_1 . $Q_{AB} = L_{AB} + \Delta U_{AB}$ În vecinătatea lui M , care aparține și adiabatei, $Q = 0$. $L_{AB} = p_m \Delta V > 0; \Delta U_{AB} = \frac{i}{2} p \cdot \Delta V > 0 \Rightarrow Q_{AB} > 0$	1p	
Sarcina de lucru 2 a) După eliberare, pistonul se va deplasa, în jos sau în sus, în funcție de relația dintre p_0 și $p_1 + Mg/s$. După câteva oscilații, pistonul se va opri într-o poziție finală de echilibru.	1p	
b) $E = E_c + E_p + U;$ $\Delta E = \frac{1}{2} M v^2 + M g \cdot \Delta h + m_{gaz} g \cdot \frac{\Delta h}{2} + \frac{3}{2} (p_2 V_2 - p_1 V_1) = L_{ext} = p_0 S y$ Putem considera că $m_{gaz} \ll M$, astfel încât $\Delta E = \frac{1}{2} M v^2 - M g y + \frac{3}{2} (p_2 V_2 - p_1 V_1) = L_{ext} = p_0 S y \tag{1}$	1p	3p
c) Viteza pistonului va fi maximă la prima sa trecere printr-o poziție de echilibru, atunci când $p_2 = p_0 + Mg/S$. Putem considera o transformare adiabatică $p_2 V_2^{\gamma} = p_1 V_1^{\gamma}; V_2 = V_1 - Sy_0 = V_1 \left(\frac{p_1}{p_2}\right)^{\frac{1}{\gamma}} \Rightarrow y_0 = \frac{V_1}{S} \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{3}{5}}\right]$ $v_{max}^2 = 2 \frac{p_0 Sy_0}{M} + 2gy_0 - \frac{3}{M} (p_2 V_2 - p_1 V_1)$	1p	
Sarcina de lucru 3 a) Pistonul se oprește definitiv $(v_f = 0)$ la distanța y_f de poziția inițială; în starea finală $p_2 = p_0 + Mg/S$ Din ecuația (1) rezultă $p_0Sy_f + Mgy_f = \frac{3}{2} \left[(p_0 + Mg/S)(V_1 - Sy_f) - p_1V_1 \right]$ $y_f = \frac{3[(p_0S + Mg) - p_1S]}{5(p_0S + Mg)} \frac{V_1}{S}$	1p	3р

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2018

Barem

Pagina 4 din 4

b) $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \Longrightarrow T_2 = T_1 \frac{p_2}{p_1} \frac{V_2}{V_1} = T_1 \frac{Sp_0 + Mg}{p_1 S} \left(1 - \frac{3[(p_0 S + Mg) - p_1 S]}{5(p_0 S + Mg)} \right)$ $= T_1 \frac{2(p_0 S + Mg) + p_1 S}{5p_1 S}$	1p	
c) Dacă $p_1 < p_0 + Mg/S$, atunci accelerația de mișcare a pistonului, imediat după eliberarea acestuia este $a = g + (p_0 - p_1)S/M$ și, ca urmare, corpul de masă m nu apasă asupra pistonului; accelerația nu se schimbă. Dacă $p_1 > p_0 + Mg/S$, mișcarea pistonului începe în sus și accelerația sa depinde de masa m .	1p	
Oficiu		1p

Barem propus de: Conf. univ. dr. Daniel ANDREICA, Facultatea de Fizică, UBB Cluj-Napoca, Prof. Ion TOMA, CN "Mihai Viteazul", București Prof. dr. Constantin COREGA, CN "Emil Racoviță", Cluj-Napoca,

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.