Lanhai-driver

标准版 SDK 使用说明文档

景

1.简介	1
2. SDK 文件组织	1
3. SDK 开发指南	
3.1 SDK 构成	
3.2 头文件介绍	
3.3 SDK 主要函数接口说明	
3.4 注意事项	6
4. 配置文件说明	7
5. SDK 编译	8
6. 示例程序	

1. 简介

本文档针对标准开源版本的 LIDAR SDK。目前该 SDK 可以在 Windows、和 Linux 环境下使用。支持 VC++6.0 以上版本(g++ 98/gcc99)编译。

2. SDK 文件组织

SDK 的文件结构如下图所示 (cmake 工程):

Config:常用型号的雷达配置文件参数

example:测试例子,这里 windows/linux 通用

Docs:文档目录

Sdk:核心代码(集成 demo)

Web:web 资源

CMakeLists.txt

Readme.md

3. SDK 开发指南

1

3.1 SDK 集成说明

这里以源码的方式提供,集成时需要添加 sdk 文件夹,引入单头文件 standard_interface.h,详细参考 demo 文件夹下的 main.cpp 文件。

点云数据读取、同步时间戳打印、运行信息打印等可以参考

void CallBackMsg(int msgtype, void *param, int length)函数

参数 1: 自定义的信息类型

参数 2: 回调的数据

参数 3: 回调的数据长度

主要步骤说明:

- 1. 主线程通过 addLidarByPath 将配置文件中的数据添加,并返回唯一的 ID
- 2. 主线程通过 setCallBackPtr 设置每个雷达工作线程的回调函数,参考 CallBackMsg
- 3. 主线程通过 openDev 打开指定 ID 的雷达,并启动工作线程(必须),web 可视化线程(可选),心跳线程(可选)
- 4. 工作线程通过回调函数返回点云的具体信息
- 5. 主线程通过调用 standard interface.h 中的接口读取/设置其他功能,详情参考以下的接口

3.2 头文件介绍

数据结构: data.h

错误定义头文件: error.h

通用接口:Global.h

数据处理 LidarDataProcess.h

串口单独的函数 (linux) Uart.c

服务类:

LidarCheckService.h 检测当前网段可用的串口/网络款/防区款雷达

LidarWebService.h web 服务,用于浏览器端对雷达程序的控制以及数据获取等功能

第三方库:

cJSON

mongoose

Layui

echarts

jquery

对外提供:

standard_interface.h 提供给用户使用的 SDK 头

3.3 SDK 主要函数接口说明

这里主要解析 standard_interface.h/cpp 文件,该文件直接提供给客户集成使用。

• addLidarByPath

函数名称:	int addLidarByPath(const char *cfg_file_name)
函数参数:	1.配置文件的绝对路径+名称 [IN]
函数作用:	通过配置文件新增雷达
返回值:	雷达 ID
其他说明:	

• delLidarByID

函数名称:	bool delLidarByID(int ID);
函数参数:	1.雷达 ID[IN]
函数作用:	通过 ID 删除指定雷达
返回值:	True/false
其他说明:	

• setCallBackPtr

函数名称:	<pre>void setCallBackPtr(int ID, printfMsg ptr);</pre>
函数参数:	1.雷达 ID[IN] 2.回调指针[IN]typedef void (*printfMsg)(int, void*,int);
函数作用:	根据雷达 ID,设置对应的回调指针
返回值:	
其他说明:	

openDev

函数名称:	bool openDev(int ID);
函数参数:	1.雷达 ID[IN]
函数作用:	打开雷达设备,并且运行子进程单独处理数据
返回值:	True/false
其他说明:	如果成功运行,将会打印成功信息

• StopDev

函数名称:	<pre>void StopDev(int ID);</pre>
函数参数:	1.雷达 ID[IN]
函数作用:	关闭雷达设备及其子线程
返回值:	
其他说明:	

• GetDevInfo

函数名称:	bool GetDevInfo(int ID, EEpromV101 *eepromv101);
函数参数:	1.雷达 ID[IN] 2.接收的设备参数结构体[OUT]
函数作用:	获取雷达参数
返回值:	Ture/false
其他说明:	网络款和防区款可以获得全部数据
	串口款仅获得序列号

ControlDrv

函数名称:	bool ControlDrv(int ID, int num, char *cmd);
函数参数:	1.雷达 ID[IN] 2.指令长度[IN] 3.指令[IN]
函数作用:	控制雷达运行
返回值:	True/false
其他说明:	指令包括以下 4 种:
	LSTARH:开始运行
	LSTOPH:停止运行
	LRESTH:重新运行

getVersion

函数名称:	const char* getVersion();
函数参数:	无
函数作用:	获取 SDK 版本号
返回值:	版本号
其他说明:	无

ZoneSection

函数名称:	bool ZoneSection(int ID, char section);
函数参数:	1.雷达 ID 2.选择的防区
函数作用:	切换防区
返回值:	True/false
其他说明:	防区范围说明 0-9,A-F

SetUDP

函数名称: bool SetUDP(int ID, char* ip, char* mask, char* gateway, int port))
--	---

函数参数:	1.雷达 ID 2.雷达 ip 3.掩码 4.网关 5 端口
函数作用:	设置目标雷达的网络
返回值:	True/false
其他说明:	当切换雷达 ip 后,需要重新设置 socket 才能接收以后的数据

SetDST

函数名称:	bool SetDST(int ID, char* ip, int port);
函数参数:	1.雷达 ID 2.雷达数据上传的 ip 3 端口
函数作用:	设置目标雷达的数据上传地址
返回值:	True/false
其他说明:	

SetRPM

函数名称:	bool SetRPM(int ID, int RPM);
函数参数:	1.雷达 ID 2.转速
函数作用:	设置雷达的转速
返回值:	True/false
其他说明:	

SetTFX

函数名称:	bool SetTFX(int ID, bool tfx);	
函数参数:	1.雷达 ID 2.是否固定上传	
函数作用:	设置固定上传	
返回值:	True/false	
其他说明:	默认关闭	

SetDSW

函数名称:	bool SetDSW(int ID, bool dsw);
函数参数:	1.雷达 ID 2.是否去拖点
函数作用:	设置去拖点
返回值:	True/false
其他说明:	默认打开

SetSMT

函数名称:	bool SetSMT(int ID, bool smt);
-------	--------------------------------

函数参数:	1.雷达 ID 2.是否数据平滑	
函数作用:	设置数据平滑	
返回值:	True/false	
其他说明:	默认打开	

SetPST

函数名称:	bool SetPST(int ID, int mode);	
函数参数:	1.雷达 ID 2.数据上传类型	
函数作用:	设置 SetPST	
返回值:	True/false	
其他说明:	数据上传类型:0 无数据 1 数据 2 报警 3 数据+报警	

SetDID

函数名称:	bool SetDID(int ID, unsigned int number);	
函数参数:	1.雷达 ID 2.雷达编号	
函数作用:	设置雷达编号	
返回值:	True/false	
其他说明:	与雷达 ID 不同	

• getLidarsList

函数名称:	std::vector <devconninfo> getLidarsList()</devconninfo>
函数参数:	
函数作用:	获取网络款雷达的心跳包数据和当前可用的串口雷达
返回值:	雷达信息结构体数组
其他说明:	

3.4 注意事项

SDK 使用 C/C++方式开发。建议开发人员在使用 lanhai-driver SDK 前,对雷达的通讯协议(uart/udp)和工作模式(硬件正常工作的情况,包括指示灯等)有所了解。可以参考具体型号的使用手册获取相关细节,也可以通过售后使用说明查看常见问题。

4. 配置文件说明

connect			
uart:串口			
type	雷达的类型	udp: 网络款	
		udp_uart: 虚拟串口	
connectArg	串口雷达的 USB 口号	Win:com1 Linux:/dev/ttyUSB0 Linux VPC:/dev/ttyACM0	
	目标雷达的 IP	举例: 192.168.158.98	
	串口雷达的波特率	举例: 768000	
connectArg2	目标雷达的访问端 口	举例: 6543	
local_port	主机的接收端口	举例: 6888	
is_group_listener	是否开启广播	0/1	
group_ip	广播 IP	224.0.0.99	
	da	ta	
output_360	是否按360度一次输 出	0: 部分扇区 1: 全扇形	
from_zero	是否零度输出	0/1 0 -180°-180° 1 0°-360	
service_port	Web 本都服务的开 放端口	举例: 8888	
is_open_service	是否启动 web 服务	0/1	
error_circle	统计符合要求(距离 为0的点数量/总数 大于指定系数)的错 误圈数	默认 3	
error_scale	比例系数 距离为 0的点:总点数	默认 0.9	
	filt	ter	
filter_open	滤波生效开关	1	
max_range	滤波生效的最大距 离	20	
min_range	滤波生效的最小距 离	0. 5	
max_range_difference	离异点判断的物理 范围	0. 1	
filter_window	判断离异点下标的 范围	1	
	ge	t	
model	查询型号	-1 不执行 >=0 执行	
version	查询硬件版本号	-1 不执行 >=0 执行	

set		
unit_is_mm	是否是毫米为数据 单位	-1/0/1 不执行/否/是
with_confidence	是否数据带强度	-1/0/1 不执行/否/是
with_smooth	是否数据平滑	-1/0/1 不执行/否/是
with_deshadow	是否去拖点	-1/0/1 不执行/否/是
resample	角分辨率	-1/0/1/xxx 不执行/非固定/固定角分辨率/ 具体的固定值
rpm	转速	-1/xx 不执行/具体转速
direction	旋转方向	-1/0/1 不执行/顺时针/逆时针 仅部分雷 达生效
alarm_msg	报警信息上传	-1/0/1 不执行/仅数据/数据加报警
ats	连接方式	-1/0/1 不执行/网络/USB
with_start	启动时默认发送开 始旋转指令	-1/0/1 不执行/否/是

5. SDK 编译

Windows:

5.1 Widows:需要下载 cmake 工具,然后使用 cmake-gui 生成指定的 vs 工程,这里以 vs2022 为例(cmake 需要比较新的版本)

5.2 vs 工程:解决方案->设置 demo 为启动项

5.3 项目->属性->调试,设置命令参数(调用雷达的配置文件)以及工作目录(固定)。

- 5.4 生成->生成解决方案
- 5.5 调试->开始运行

Linux

- 5.6 cmake CMakeList.txt
- 5.7 make
- 5.8 ./demo config/xxxx.txt

注:如果是虚拟机下的串口设备,还需要 sudo chmod 777 /dev/ttyUSB*,给设备赋权

6. 示例程序

源码详情参考 example 目录下的 main.cpp 文件 可执行文件详情参考 tools 目录

6.1 多雷达配置

这里将配置文件的相对路径(绝对路径)传入,

例如 ./demo config/LDS-E310-E.txt config/LDS-50C-C30E.txt 具体配置信息如下

PACEPAT


```
type:udp
port:com7
                              type:udp
baud rate: 768000
                              port:com7
lidar_ip:192.168.0.75
                              baud rate:768000
lidar port:6543
                              lidar ip:192.168.0.98
lidar ip1:192.168.0.98
                              lidar_port:6543
lidar_port2:6543
                              local_port:6669
local_port:6669
raw bytes:3
                              raw_bytes:3
                              unit_is_mm:1
unit is mm:1
with confidence:1
                              with confidence:1
with checksum:1
                              with checksum:1
with_smooth:1
                              with smooth:1
with_deshadow:1
                              with deshadow:1
resample:1
                              resample:200
rpm:600
                              rpm:600
output scan:1
                              output_scan:1
output 360:1
                              output 360:1
from zero:1
                              from_zero:0
output file:C:\\qwer.txt
                              output file:C:\\123.1
is group listener:0
group_ip:224.0.0.99
                              is group listener:0
service port:8889
                              group ip:224.0.0.99
is_open_service:1
                              service port:8889
                              is_open_service:1
```

注意: 必须要保持配置文件中的 local_port 以及 service_port 不同成功运行后,会有两个运行成功打印,如果有一个失败,就会直接退出进程

```
command: 'LSTARH' OK send command: 'LSTARH' OK send command: 'LSTARH' OK send command: 'LVERH' OK V301 221101
Lidar is open success
Please control it through a browser and enter the default address: http://localhost: 8889
angle sum 3510, drop 38 fans 2925 points
getLidarData recv NSG
GetDevInfo recv NSG
```

如果要查看 web 显示,则需要打开两个 tab 页,端口对应着配置文件的 service_port

http:://localhost:8888 http:://localhost:8889

6.2 雷达数据整圈为 0 提示

```
记临时.txt区 🛗 LDS-50C-C30E.txt区 🔚 LDS-50C-2.txt🛛
 type:uart
 port:com10
 baud_rate:500000
 lidar_ip:192.168.0.208
 lidar_port:6543
 local port:6668
 raw_bytes:3
 unit_is_mm:1
 with confidence:1
 with checksum:1
 with smooth:1
 with deshadow:1
 resample:400
 rpm:600
 output scan:1
 output 360:0
 from zero:0
 output_file:/tmp/udp_data2.txt
 is_group_listener:0
 group ip:224.0.0.99
 service_port:8888
 is open service:1
error_circle:3
 error_scale:0.9
```

配置文件新增:

error_circle: 这里指连续 3 圈出现点距离为 0,并且超过指定比例个数 error_scale: 这 个 是 自 定 义 的 距 离 为 0 系 数 , 即 总 点 数 * 指 定 系 数 = 判 定 的 点 数

```
//传入回调指针的方式打印
Evoid CallBackMsg(int msgtype, void* param)

{
    //实时雷达数据返回
    if (msgtype == 1) { ... }
    //实时防区数据返回
    else if (msgtype == 2) { ... }
    //获取错误信息
    else if (msgtype == 3)
    {
        char* result = (char*)param;
        INFO_PR("Error Info: %s\n", result);
    }

    //获取實还时间數打印信息
    else if (msgtype == 4) { ... }
```

在最外层的 demo.cpp 对回调函数返回的错误打印,仅收到一个扇区/一圈全部点数的长度都为 0 时返回报错(扇区/圈根据 output 360 参数)

11

内部调整: 当获取一圈/一个扇区信息时,对所有的点位长度进行判断,如果符合要求的点达到指定系数,并且持续指定圈数,则通过回调函数返回错误,如果中间有符合要求的点数,则重置错误圈数累计。

6.3 雷达各项数据的获取(集成使用)

详细参考 main.cpp 中的 CallBackMsg 回调函数,具体返回数据有

- 点云数据
- 报警数据 需要在配置文件加上 alarm msg:1(打开报警数据上传)
- 报错信息
- 时间戳打印

雷达全局参数考察 PrintMsg 函数

7. 控制指令表

说明:这里指 SDK 中涉及到的硬件指令含义,并不是所有型号都全部支持以下命令,具体型号支持的指令查看该雷达型号的用户手册。

指令	说明
LSTARH	开始运行
LSTOPH	停止运行
LRESTH	重新运行
LXVERH	获取硬件信息
LMDCMH	设置雷达点云数据的单位 CM
LMDMMH	设置雷达点云数据的单位 MM
LNCONH	打开雷达强度数据
LOCONH	关闭雷达强度数据

LFFF0H	打开去拖点
LFFF1H	关闭去拖点
LSSS0H	打开数据平滑
LSSS1H	关闭数据平滑
LSRES:000H	设置默认的角分辨率
LSRES:001H	设置修正的角分辨率
LSRPM:%04dH	设置转速 范围 0450-1200 例如: LSRPM:0450H
LSERR:+%dH	设置角度偏差 范围-99-+99 例如:LSERR:-23H
	LSERR:+23H
LSUDP:%sH	设置 udp 组合信息 设置雷达 IP 地址 子网掩码 网关 服务端口号,
	例如 LSUDP:192.168.158.091 255.255.255.000 192.168.158.001 05000H
LSDST:%sH	设置接收雷达信息的 ip 地址和端口号 LSDST:192.168.158.043
	12300H
LSUID:%sH	设置机器序号 例如 LSUID:201812030001H
LSSMT:%dH	设置数据平滑 LSSMT:1H 打开 LSSMT:0H 关闭
LSDSW:%dH	设置去拖点 LSDSW:1H 打开 LSDSW:0H 关闭
LSDID:%dH	设置设备 ID LSDID:xxxH
LSATS:%dH	开机自动上传 LSATS:xH 1/0 打开/关闭
LSTFX:%dH	固定上传地址 LSTFX:xH 1/0 打开/关闭
LSPST:%dH	数据/报警上传类型 LSPST:xH 0:无 1:数据 2 报警 3 数据+报
	警