Corrigé de la fiche de TD 4 (2ème Partie)

Damerdji Bouharis A. Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

Fiche de TD 4 (2ème Partie)

Théorème de Rolle - Accroissements finis Règle de l'Hôpital - Formule de Taylor - Etude de fonctions.

Enoncés des exercices

Exercice 5: Soit g la fonction définie de l'intervalle [0,1] dans \mathbb{R} , deux fois dérivable sur [0,1], on suppose que : $g(0) = g(\frac{1}{2}) = g(1) = 1$. Montrer en utilisant le théorème de Rolle que g'' s'annule au moins une fois sur [0,1].

Exercice 6.

1. En utilisant le théorème des accroissements finis, montrer que :

$$\forall x > 0, \frac{x}{1+x^2} < arctgx < x.$$

2. Soit f une fonction dérivable de $\mathbb R$ dans $\mathbb R$ et telle que sa dérivée f' est une fonction croissante. Soit $x,y,z\in\mathbb R$ tels que x< z< y; montrer que

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z}.$$

3. Etant donné ln(100) = 4,6052, montrer qu'en écrivant ln(101) = 4,6151 on commet une erreur inférieur à 10^{-4} .

Exercice 7. Calculer les limites suivantes en utilisant la règle de l'Hôpital (quand c'est possible).

1.
$$\lim_{x \to 1} \frac{Arctg\left(\frac{x^2 - 1}{x^{2+1}}\right)}{x - 1}, \quad 2. \lim_{x \to +\infty} \frac{x - \sin x}{2x + \sin x},$$

3.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$
, 4. $\lim_{x \to 5} (6 - x)^{\frac{1}{x - 5}}$.

Exercice 8.

1. En utilisant la formule de Taylor-Mac-Laurin d'ordre n, montrer que

$$\forall x \ge 0, 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \le e^x$$

2. En utilisant la formule de Taylor-Mac-Laurin d'ordre 2, montrer que

$$\frac{8}{3} < e < 3.$$

3. En déduire que $\frac{1}{(n+1)!} < e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) < \frac{3}{(n+1)!}$

Exercice 9. (Examen 2020)

On considère la fonction f définie par $f(x) = \arcsin\left(\frac{1-x^2}{1+x^2}\right)$

- 1. Etudier les variations de la fonction $g\left(x\right) = \frac{1-x^2}{1+x^2}$.
- 2. En déduire que la fonction f est définie et continue sur \mathbb{R} .
- 3. Montrer que f est dérivable sur $]-\infty,0[\cup]0,+\infty[$.
- 4. Donner l'expression de la dérivée f' sur $]-\infty, 0[\cup]0, +\infty[$.
- 5. Etudier la convexité de f sur \mathbb{R} , existe-t-il des points d'inflexion?
- 6. Etudier les variations de f puis tracer son graphe (Γ) .

Exercice 10. (Examen 2019)

Soient f une fonction définie sur \mathbb{R} par : $f(x) = 2e^{x-1} - x^2 - x$ et G_f sa courbe représentative.

- 1. Calculer f'(x) et f''(x), pour tout x dans \mathbb{R} .
- 2. Etudier la convexité de la fonction f sur \mathbb{R} .
- 3. Montrer que f admet un point d'inflexion A et préciser ses coordonnées.
- 4. Quelle est l'équation de la tangente (T_A) à G_f au point A?
- En déduire que pour tout $x \ge 1$: $e^{x-1} \ge \frac{1}{2}(x^2+1)$.

Exercice supplémentaire 1

Soit f la fonction définie et continue sur [0,1] telle que f(0)=0, f(1)=1. On suppose que f est dérivable sur [0,1] et que f'(0)=f'(1)=0. On considère la fonction $g:[0,1]\to\mathbb{R}$ définie par

$$g(x) = \begin{cases} -1 & \text{si } x = 0\\ \frac{f(x)}{x} - \frac{f(x)-1}{x-1} & \text{si } x \in]0, 1[\\ 1 & \text{si } x = 1 \end{cases}$$

- 1. Etudier la continuité de g sur [0,1].
- 2. Montrer qu'il existe $\alpha \in]0,1[\ /\ g\left(\alpha\right)=0.$ En déduire que $f\left(\alpha\right)=\alpha.$
- 3. Montrer qu'il existe $\beta \in [0,1[/f'(\beta)=1]$.

Exercice supplémentaire 2 (Examen 2019)

On considère la fonction f définie par : $f(x) = \begin{cases} xe^{\frac{1}{x}} &, \text{ si } x < 0. \\ 0 &, \text{ si } x = 0. \\ arctgx &, \text{ si } x > 0. \end{cases}$

- 1. Donner le domaine de définition D_f de la fonction f.
- 2. Etudier la continuité puis la dérivabilité de f sur D_f .
- 3. Montrer que la fonction f s'annule dans l'intervalle]-1,1[.
- 4. Donner l'expression de la dérivée, puis étudier les variations de f

4 [Ch.0]

5. Donner l'expression de la dérivée seconde f'', puis en déduire l'étude de la convexité de f sur $]-\infty,0[\cup]0,+\infty[$.

6. Déterminer les asymptotes du graphe (Γ) puis tracer (Γ) .

Exercice supplémentaire 3.

On considère la fonction f définie par $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$

- 1. Etudier les variations de la fonction $g(x) = \frac{2x}{1+x^2}$.
- 2. En déduire que la fonction f est définie et continue sur \mathbb{R} .
- 3. Montrer que f est dérivable sur $]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$.
- 4. Donner l'expression de la dérivée f' sur $]-\infty,0[\,\cup\,]0,+\infty[\,.$
- 5. Etudier la convexité de f sur \mathbb{R} , existe-t-il des points d'inflexion?
- 6. Etudier les variations de f puis tracer son graphe (Γ) .

Corrigés

Exercice 5:

Comme g est deux fois dérivable sur [0,1] alors on a :

- g est continue sur $\left[0, \frac{1}{2}\right]$, dérivable sur $\left]0, \frac{1}{2}\right[$ et $g(0) = g\left(\frac{1}{2}\right)$, alors d'après le théorème de Rolle il existe un réel c_1 dans $\left]0, \frac{1}{2}\right[$, tel que $g'(c_1) = 0$.
- g est continue sur $\left[\frac{1}{2},1\right]$, dérivable sur $\left[\frac{1}{2},1\right]$ et $g\left(\frac{1}{2}\right)=g\left(1\right)$, alors d'après le théorème de Rolle il existe un réel c_2 dans $\left[\frac{1}{2},1\right[$, tel que $g'\left(c_2\right)=0$.
- g' est dérivable sur [0,1] donc g' est continue sur $[c_1, c_2]$, dérivable sur $]c_1, c_2[$ et on a $g'(c_1) = g'(c_2)$, alors d'après le théorème de Rolle il existe un réel c_3 dans $]c_1, c_2[$, tel que $g''(c_3) = 0$, et on a

$$0 < c_1 < c_3 < c_2 < 1$$

alors g'' s'annule au moins une fois sur [0, 1].

Exercice 6:

1. On considère la fonction $f(x) = \arctan x$ pour x > 0,

f est continue sur [0,x] et dérivable sur]0,x[, alors d'après le théorème des accroissements finis : $\exists c \in]0,x[$ / $\arctan x = \frac{x}{1+c^2}$

et on a

$$0 < c < x \Leftrightarrow 1 < 1 + c^2 < 1 + x^2 \Leftrightarrow \frac{x}{1 + x^2} < \frac{x}{1 + c^2} < x$$
, car $x > 0$

d'où

$$\forall x > 0, \frac{x}{1 + x^2} < \arctan x < x.$$

2. Soient $x, y, z \in \mathbb{R}$; tels que x < z < y, comme la fonction f est dérivable sur \mathbb{R} ; alors elle est dérivable et donc continue sur tout intervalle de \mathbb{R} , en particulier sur [x, z] et [z, y], alors d'après le théorème des accroissements finis; on a

$$\exists c_1 \in]x, z[, \frac{f(z) - f(x)}{(z - x)} = f'(c_1),$$

et

$$\exists c_2 \in]z, y[, \frac{f(y) - f(z)}{(y - z)} = f'(c_2),$$

d'où

$$x < c_1 < z < c_2 < y \Rightarrow c_1 < c_2 \Rightarrow f'(c_1) < f'(c_2)$$

car f' est une fontion croissante, par conséquent

$$\frac{f(z) - f(x)}{(z - x)} < \frac{f(y) - f(z)}{(y - z)}.$$

3. On considère la fonction $f(x) = \ln x$ sur l'intervalle [100, 101],

f est continue sur [100, 101] et dérivable sur]100, 101[, alors d'après le théorème des accroissements finis : $\exists c \in$]100, 101[/ ln 101 - ln 100 = $\frac{1}{c}$, or

$$\begin{array}{ll} 100 < c < 101 \Leftrightarrow \frac{1}{101} < \frac{1}{c} < \frac{1}{100} & \Leftrightarrow \frac{1}{101} < \ln 101 - \ln 100 < \frac{1}{100} \\ & \Rightarrow \ln 101 < \frac{1}{100} + 4,6052 \\ & \Rightarrow \ln 101 - 4,6151 < 4,6152 - 4,6151 \\ & \Rightarrow \text{Erreur commise} < 10^{-4}. \end{array}$$

Exercice 7:

1.
$$l_1 = \lim_{x \to 1} \frac{\arctan \frac{x^2 - 1}{x^2 + 1}}{x - 1} \stackrel{RH}{=} \lim_{x \to 1} \frac{2x}{x^4 + 1} = 1.$$

2.
$$l_3 = \lim_{x \to +\infty} \frac{x - \sin x}{2x + \sin x}$$

Comme $\lim_{x\to +\infty} \frac{1-\cos x}{2+\cos x}$ n'existe pas alors on ne peut pas utiliser la règle de l'Hôpital et donc on doit chercher une autre méthode pour calculer la limite

$$l_3 = \lim_{x \to +\infty} \frac{\left(1 - \frac{\sin x}{x}\right)}{\left(2 + \frac{\sin x}{x}\right)} = \frac{1}{2}.$$

3.
$$l_4 = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = \lim_{x \to 0} e^{\frac{1}{x^2} \ln \left(\frac{\sin x}{x} \right)}$$

$$\lim_{x \to 0} \frac{1}{x^2} \ln \left(\frac{\sin x}{x} \right) \stackrel{RH1}{=} \lim_{x \to 0} \frac{\frac{x \cos x - \sin x}{x \sin x}}{2x} = \lim_{x \to 0} \frac{x \cos x - \sin x}{2x^2 \sin x}$$

et

$$\lim_{x \to 0} \frac{x \cos x - \sin x}{2x^2 \sin x} \stackrel{RH^2}{=} \lim_{x \to 0} \frac{-\sin x}{2(2 \sin x + x \cos x)} \stackrel{RH^3}{=} \lim_{x \to 0} \frac{-\cos x}{2(3 \cos x - x \sin x)} = \frac{-1}{6},$$

d'où

$$l_4 = e^{\frac{-1}{6}}$$

4.
$$l_2 = \lim_{x \to 5} (6 - x)^{\frac{1}{x - 5}} = \lim_{x \to 5} e^{\frac{1}{x - 5} \ln(6 - x)} = e^{-1}$$

$$\operatorname{car} \lim_{x \to 5} \frac{1}{x - 5} \ln(6 - x) \stackrel{RH}{=} \lim_{x \to 5} \frac{-1}{6 - x} = -1.$$

Exercice 8:

1. En appliquant la formule de Taylor-Mac-Laurin d'ordre n à la fonction $f(x) = e^x$; on obtient :

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!} e^{\theta x}$$
, avec $0 < \theta < 1$.

or
$$\frac{x^{n+1}}{(n+1)!}e^{\theta x} \ge 0, \forall x \ge 0, \, \mathrm{donc}e^x \ge 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}.$$

2. Pour n=2: $e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{6}e^{\theta x}$, avec $0<\theta<1$. d'où pour x=1, on a : $e=\frac{5}{2}+\frac{1}{6}e^{\theta}$, avec $0<\theta<1$. et on a : $0<\theta<1 \quad \Leftrightarrow \frac{5}{2}+\frac{1}{6}<\frac{5}{2}+\frac{1}{6}e^{\theta}<\frac{5}{2}+\frac{1}{6}e\\ \Leftrightarrow \frac{8}{3}< e<\frac{5}{2}+\frac{1}{6}e\Rightarrow \frac{8}{3}< e<3.$

3. Pour x = 1, on a :

$$\begin{split} e &= 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} + \frac{1}{(n+1)!} e^{\theta}, \text{ avec } 0 < \theta < 1 \\ \Rightarrow e - \left[1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} \right] = \frac{1}{(n+1)!} e^{\theta}, \end{split}$$

et on a

$$0 < \theta < 1 \Leftrightarrow \frac{1}{(n+1)!} < \frac{1}{(n+1)!}e^{\theta} < \frac{1}{(n+1)!}e < \frac{3}{(n+1)!},$$

car e < 3.

Exercice 9:

1.
$$g(x) = \frac{1-x^2}{1+x^2}$$
.
 $D_g =]-\infty, +\infty[, \lim_{x \to \pm \infty} g(x) = -1, g'(x) = \frac{-4x}{(1+x^2)^2}, \forall x \in \mathbb{R}.$

Tableau de variations

x	$-\infty$		0		$+\infty$
g'(x)		+	0	_	
g(x)	-1		+1 _		- 1

2. $D_f = \{x \in \mathbb{R} / x \in D_g \land g(x) \in [-1, 1]\}$, car la fonction arcsin est définie sur [-1, 1].

D'après le tableau de variations de la fonction g ; on a :

 $g(x) \in [-1,1], \forall x \in \mathbb{R}$ alors f est bien définie sur tout \mathbb{R} , d'où $D_f = \mathbb{R}$.

La fonction $g: \mathbb{R} \to [-1,1]$ est continue car c'est le quotient (la division) de deux (polynômes) fonctions continues sur \mathbb{R} et la fonction arcsin : $[-1,1] \to \mathbb{R}$ est continue (car c'est la fonction réciproque d'une fonction continue) alors leur fonction composée $f: \mathbb{R} \to \mathbb{R}$ est continue aussi.

3. La fonction g est dérivable sur tout \mathbb{R} , et la fonction arcsin est dérivable sur]-1,1[, alors la fonction f est dérivable sur l'ensemble $\{x \in \mathbb{R}/\ g(x) \in]-1,1[\}$ c'est à dire sur tout \mathbb{R} sauf pour l'ensemble

$$\left\{ x\in\mathbb{R}/\ g\left(x\right)=1\text{ ou }g\left(x\right)=-1\right\}$$

or $g(x)=1\Leftrightarrow x=0$ et $g(x)\neq -1,\ \forall x\in\mathbb{R}$ d'où f est dérivable sur $]-\infty,0[\cup]0,+\infty[$.

4.

$$f'(x) = \frac{g'(x)}{\sqrt{1 - (g^2(x))}} = \frac{\frac{-4x}{(1+x^2)^2}}{\sqrt{\frac{4x^2}{(1+x^2)^2}}} = \frac{-2x}{|x|(1+x^2)}$$

d'où

$$f'(x) = \begin{cases} \frac{2}{1+x^2}, & \text{si } x \in]-\infty, 0[\\ \frac{-2}{1+x^2}, & \text{si } x \in]0, +\infty[.] \end{cases}$$

5. On déduit que

$$f''(x) = \begin{cases} \frac{-4x}{(1+x^2)^2}, & \text{si } x \in]-\infty, 0] \\ \frac{4x}{(1+x^2)^2}, & \text{si } x \in [0, +\infty[.]] \end{cases}$$

alors on a $f''(x) \geq 0$, $\forall x \in \mathbb{R}$ donc f est convexe sur tout \mathbb{R} .

On remarque que la deuxième dérivée f'' s'annule mais ne change pas de signe donc la fonction f ne change pas de convexité, par conséquent; le graphe de f n'admet pas de points d'inflexion.

6. Tableau de variations de f

x	$-\infty$	0	$+\infty$
f'(x)	+	-	_
f(x)	$-\frac{\pi}{2}$	$+\frac{\pi}{2}$	$-\frac{\pi}{2}$

Le graphe de f admet une asymptote horizontale d'équation $y=-\frac{\pi}{2}$. Ci-dessous (figure) le graphe de la fonction f.

FIGURE 1 – Graphe de la fonction f

Exercice 10:

$$f(x) = 2e^{x-1} - x^2 - x$$

1.
$$f'(x) = 2e^{x-1} - 2x - 1$$
; $f''(x) = 2e^{x-1} - 2$, pour tout x dans \mathbb{R} .

	2.	f''(x)	=0	$\Rightarrow x = 1$
--	----	--------	----	---------------------

x	$-\infty$		1		$+\infty$
f" (x)		_	0	+	
Convexité de f		concave		convexe	

- 3. On remarque que f'' s'annule et change de convexité en $x_0 = 1$; par conséquent le point A(1,0) est un point d'inflexion du graphe de f.
- 4. $(T_A): y = f(1) + f'(1)(x 1)$, d'où $(T_A): y = -x + 1$. Dans l'intervalle $[1, +\infty[$; f est convexe donc son graphe G_f est au dessus de toutes ses tangentes; en particulier (T_A) alors on a:

$$\forall x \ge 1 : f(x) \ge y \Leftrightarrow 2e^{x-1} - x^2 - x \ge 1 - x \Leftrightarrow e^{x-1} \ge \frac{1}{2}(x^2 + 1)$$
.

Exercice supplémentaire 1.

On a f(0) = 0; f(1) = 1, f est dérivable sur [0, 1] et f'(0) = f'(1) = 0.

$$g(x) = \begin{cases} -1 & \text{si } x = 0\\ \frac{f(x)}{x} - \frac{f(x)-1}{x-1}, & \text{si } x \in]0, 1[\\ 1 & \text{si } x = 1 \end{cases}$$

1. La fonction g est continue sur]0,1[, car c'est la somme et le rapport de fonctions continues sur]0,1[.

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{f(x)}{x} - \frac{f(x)-1}{x-1}$$

$$\Rightarrow \lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{f(x)}{x} - \lim_{x \to 0} \frac{f(x)-1}{x-1} = f'(0) - 1 = -1 = g(0)$$

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} \frac{f(x)}{x} - \frac{f(x)-1}{x-1}$$

$$\Rightarrow \lim_{x \to 1} g(x) = \lim_{x \to 1} \frac{f(x)}{x} - \lim_{x \to 1} \frac{f(x)-1}{x-1} = 1 - f'(1) = 1 = g(1)$$

Donc q est continue sur [0,1].

2. g est continue sur [0,1], dérivable sur]0,1[et g(0).g(1)<0 alors d'après le théorème des valeurs intermédiaires, il existe un réel α dans]0,1[tel que $g(\alpha)=0$.

$$g(\alpha) = 0 \Leftrightarrow \frac{f(\alpha)}{\alpha} - \frac{f(\alpha) - 1}{\alpha - 1} = 0 \Leftrightarrow \frac{\alpha - f(\alpha)}{\alpha(\alpha - 1)} = 0 \Leftrightarrow f(\alpha) = \alpha.$$

3. f est continue sur [0,1], dérivable sur]0,1[alors d'après le théorème des accroissements finis on a :

$$\exists \beta \in]0,1[/f(1) - f(0) = f'(\beta) \Leftrightarrow \exists \beta \in]0,1[/f'(\beta) = 1.$$

Exercice supplémentaire 2.

- 1. $D_f =]-\infty, +\infty[$.
 - La fonction f est continue sur $]-\infty, 0[$ car c'est le produit, l'inverse et la composée de fonctions continues sur $]-\infty, 0[$.

La fonction f est continue sur $]0, +\infty[$ car c'est la fonction réciproque d'une fonction continue sur $]0, +\infty[$.

La continuité de f en 0:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x e^{\frac{1}{x}} = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} arctgx = 0$$
et $f(0) = 0$

alors f est continue en 0.

Par conséquent f est continue sur \mathbb{R} .

• La fonction f est dérivable sur $]-\infty, 0[$ car c'est le produit, l'inverse et la composée de fonctions dérivables sur $]-\infty, 0[$.

La fonction f est dérivable sur $]0, +\infty[$ car c'est la fonction réciproque d'une fonction dérivable sur $]0, +\infty[$.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} e^{\frac{1}{x}} = 0$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{arctgx}{x} = \lim_{x \to 0} \frac{x}{x} = 1, \text{ car } arctgx \sim x.$$

alors f n'est pas dérivable en 0.

Par conséquent f est dérivable sur $]-\infty,0[\,\cup\,]0,+\infty[\,.$

2. La fonction f est continue sur \mathbb{R} , donc en particulier sur [-1,1], et on remarque que $f(-1) = -e^{-1} < 0$, $f(1) = \frac{\pi}{4} > 0$, alors d'après le théorème des valeurs intermédiaires :

$$\exists c \in]-1,1[/ f(c) = 0.$$

• Pour tout $x \in]-\infty, 0[\cup]0, +\infty[:$

$$f'(x) = \begin{cases} e^{\frac{1}{x}} \left(\frac{x-1}{x}\right) & \text{si } x < 0\\ \frac{1}{1+x^2} & \text{si } x > 0 \end{cases}$$

• Signe de la dérivée :

Pour tout x < 0 : f'(x) > 0, car $\frac{x-1}{x} > 0, \forall x < 0$.

Pour tout x > 0: f'(x) > 0.

Donc f'(x) > 0, $\forall x \in]-\infty, 0[\cup]0, +\infty[$.

• Tableau de variations :

On a

$$\lim_{x \to -\infty} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = \frac{\pi}{2}.$$

x	$-\infty$	0		$+\infty$
f'(x)		+	+	
f(x)	$-\infty$	0		$rightarrow \frac{\pi}{2}$

3. Pour tout $x \in]-\infty, 0[\cup]0, +\infty[:$

$$f''(x) = \begin{cases} \frac{1}{x^3} e^{\frac{1}{x}} & \text{si } x < 0\\ \frac{-2x}{(1+x^2)^2} & \text{si } x > 0 \end{cases}$$

alors on remarque que:

$$\forall x < 0, \ f''(x) < 0 \text{ et } \forall x > 0, \ f''(x) < 0, \text{ d'où}$$

 $f''(x) < 0, \ \forall x \in]-\infty, 0[\cup]0, +\infty[, \text{ par conséquent}:$
 $f \text{ est concave sur }]-\infty, 0[\cup]0, +\infty[.$

• Au voisinage de $(-\infty)$; on a: $\lim_{x \to -\infty} f(x) = -\infty \text{ alors on calcule } \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} e^{\frac{1}{x}} = 1$ et $\lim_{x \to -\infty} [f(x) - x] = \lim_{x \to -\infty} x \left[e^{\frac{1}{x}} - 1 \right]$ C.V: $t = \frac{1}{x} \Leftrightarrow x = \frac{1}{t} \text{ tel que } t \stackrel{\leq}{\to} 0 \text{ quand } x \to -\infty \text{ d'où }$ $\lim_{x \to -\infty} [f(x) - x] = \lim_{x \to -\infty} x \left[e^{\frac{1}{x}} - 1 \right] = \lim_{t \stackrel{\leq}{\to} 0} \frac{e^{t} - 1}{t} = 1.$

D'où le graphe (Γ) admet au voisinage de $(-\infty)$ une asymptote oblique (Δ_1) d'équation :

$$(\Delta_1): y = x + 1.$$

- Au voisinage de $(+\infty)$; on a : $\lim_{x\to+\infty} f(x) = \frac{\pi}{2}$, d'où le graphe (Γ) admet au voisinage de $(+\infty)$ une asymptote horizontale (Δ_2) d'équation : (Δ_2) : $y = \frac{\pi}{2}$.
- Graphe :voir figure2

Exercice supplémentaire 3.

1.
$$g\left(x\right) = \frac{2x}{1+x^2}$$

$$D_g = \left]-\infty, +\infty\right[, \lim_{x \to \pm \infty} g(x) = 0, g'\left(x\right) = \frac{2\left(1-x^2\right)}{\left(1+x^2\right)^2}, \forall x \in \mathbb{R}.$$

x	$-\infty$		-1		1	$+\infty$
g'(x)		_	0	+	0	_
g(x)	0		^ -1		_ 1 _	0

12 [Ch.0]

FIGURE 2 – Graphe de la fonction f

2. $D_f = \{x \in \mathbb{R} / x \in D_g \land g(x) \in [-1, 1]\}$, car la fonction arcsin est définie sur [-1, 1].

D'après le tableau de variations de la fonction g; on a $g(x) \in [-1, 1], \forall x \in \mathbb{R}$ alors f est bien définie sur tout \mathbb{R} , d'où $D_f = \mathbb{R}$.

La fonction $g: \mathbb{R} \to [-1,1]$ est continue car c'est le quotient (la division) de deux (polynômes) fonctions continues sur \mathbb{R} et la fonction arcsin : $[-1,1] \to \mathbb{R}$ est continue (car c'est la fonction réciproque d'une fonction continue) alors leur fonction composée $f: \mathbb{R} \to \mathbb{R}$ est continue aussi.

3. La fonction g est dérivable sur tout \mathbb{R} , et la fonction arcsin est dérivable sur]-1,1[, alors la fonction f est dérivable sur l'ensemble $\{x \in \mathbb{R}/ g(x) \in]-1,1[\}$ c'est à dire sur tout \mathbb{R} sauf pour l'ensemble

$$A = \{x \in \mathbb{R} / g(x) = 1 \text{ ou } g(x) = -1\}$$

or $g(x) = -1 \Leftrightarrow x = -1$ et $g(x) = 1 \Leftrightarrow x = 1$; donc $A = \{-1, 1\}$ d'où f est dérivable sur $]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$.

4.

$$f'(x) = \frac{g'(x)}{\sqrt{1 - (g^2(x))}} = \frac{2(1 - x^2)}{|1 - x^2|(1 + x^2)}$$

d'où

$$f'(x) = \begin{cases} \frac{2}{1+x^2}, & \text{si } x \in]-1, 1[\\ \frac{-2}{1+x^2}, & \text{si } x \in]-\infty, -1[\cup]1, +\infty[.] \end{cases}$$

5. On déduit que

$$f''(x) = \begin{cases} \frac{-4x}{(1+x^2)^2}, & \text{si } x \in]-1, 1[\\ \frac{4x}{(1+x^2)^2}, & \text{si } x \in]-\infty, -1[\cup]1, +\infty[.] \end{cases}$$

On remarque que la deuxième dérivée f'' s'annule pour $x_0=0$ et change de signe et on a

x	$-\infty$	-1		0		1		$+\infty$
f"		-	+	0	_		+	

d'où:

f est convexe sur $]-1,0[\;\cup\;]1,+\infty[\;f$ est concave sur $]-\infty,-1[\;\cup\;]0,1[\;.$

Par conséquent ; le graphe de f admet l'origine (0,0) comme point d'inflexion.

6. Tableau de variations de f

x	$-\infty$ -	-1	$1 + \infty$
f'(x)	_	+	_
f(x)	0	$\frac{\pm}{2}$	$\frac{\pi}{2}$ 0

Ci-dessous (figure 3) le graphe de la fonction f

FIGURE 3 – Graphe de la fonction f