МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №42

ЭТЧЕТ			
ЗАЩИЩЕН С ОЦЕНКОЙ ТРЕПОДАВАТЕЛЬ			
доктор технических наук	,		С. И. Зиатдинов
должность, уч. степень, звани	e	подпись, дата	инициалы, фамилия
		U	
ОТЧІ	ЕТ ПО ЛА	АБОРАТОРНОЙ РАБО	OTE №2
ИССЛЕЛОВАНІ	ИЕ ПОЛУ	/ПРОВОДНИКОВОГ	О БИПОЛЯРНОГО
			0 21110111 1101 0
	-	ГРАНЗИСТОРА	
ПО	курсу: Эт	пектроника и схемотех	хника
	ngp e g. 90		
АБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. № 4	128		В.А. Воробьев
		подпись, дата	инициалы, фамилия

Цель работы: изучение и практическое исследование работы и характер полупроводникового биполярного транзистора.

Схема экспериментальной установки:

Рисунок 1 Схема исследования входной ВАХ транзистора

Рисунок 2 - Схема исследования выходной ВАХ транзистора

Результаты измерений и вычислений:

Таблица 1 - $U_{K9} = 10 B$

U _{БЭ}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
, B															
I _b ,	0	0	0	0	1.2	2.9	5.8	9.5	13.8	18.9	24.8	31.4	38.6	46.4	54.7
мА															

Таблица 2 - $U_{K9} = 50 B$

U _{БЭ}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
, B															
I _b ,	0	0	0	0	1.2	2.8	5.3	8.0	11.0	14.2	17.8	21.8	26.2	31.0	36.1
мА															

Таблица 3 - $I_{\rm E} = 6$ мА

$U_{\mathbf{b}\mathbf{\mathfrak{I}},\mathbf{B}}$	0.05	0.1	0.2	0.5	1.0	2.0	4.0	6.0	8.0	10.0
$I_{K,MA}$	1.9	10.8	30.5	53.4	56.0	57.0	59.0	61.0	63.0	65.0

Таблица 4 - $I_{\rm E}$ = 12 мА

$U_{69,8}$	0.05	0.1	0.2	0.5	1.0	2.0	4.0	6.0	8.0	10.0
$I_{K,MA}$	5.6	24.0	67.9	179.6	203.5	207.4	214.7	222.2	229.5	237.0

Таблица 5 - $I_{\rm E}$ = 24 мА

$U_{\mathbf{b}\mathbf{\mathfrak{I}},\mathbf{B}}$	0.05	0.1	0.2	0.5	1.0	2.0	4.0	6.0	8.0	10.0
I _K , MA	6.4	30.0	82.2	250.3	438.0	453.8	470.1	486.4	502.5	518.8

ВАХ транзистора:

10

0.2

 $U_{K3} = 10 B$

 $U_{K9} = 50 B$

Uбэ, В

Рисунок 3- Входная ВАХ транзистора

1.0

1.2

1.4

0.8

Рисунок 4 - Выходная ВАХ транзистора

Вывод: в ходе выполнения данной лабораторной работы были изучены принцип работы и характер полупроводникового биполярного транзистора при помощи построения графиков входной и выходной ВАХ транзистора в программе Micro-Cap.

По графикам построенных на полученных значениях, мы можем судить:

- 1) Входная ВАХ: Переход $_{\rm E3}$ закрыт вплоть до значения $U_{\rm E3}$ в 0.4 В, далее преодолевается потенциальный барьер, переход эмиттер-база открывается, под действием внешнего электрического поля на него действует дрейфовый ток, зависимость линейная. С ростом напряжения $U_{\rm K3}$ больше дырок уходят в цепь коллектора и ток $I_{\rm E}$ становится меньше.
- 2) Выходная ВАХ: происходит резкое увеличение I_{K} при изменении U_{K9} , дырки из эмиттера попадают в цепь базы, а при дальнейшем увеличении U_{K9} , дырки поступают из цепи базы в цепь коллектора.