Nearby and Vanishing D-modules

Notes for Lei Wu's talk: Taken by Yajnaseni Dutta

1 V-filtration of \mathfrak{D}_X -mod

Let X be a complex manifold of dim n . Let $H \subset X$ be a smooth hypersurface I_H ideal sheaf of H.

Definition 1.1 (V-filtration). The Kashiwara-Malgrange V-filtration of the D-module, \mathfrak{D}_X is defined by

$$V^{i}\mathfrak{D} := \{ P \in \mathfrak{D} | PI_{H}^{j} \subset I_{H}^{j+i} \text{ for all } j \in \mathbb{Z} \}$$

where $I_H^j = \mathcal{O}_X$ for $j \leq 0$.

Locally on coordinates $(z_1, \ldots, z_{n-1}, t)$ of X, if D = (t = 0) we can write the V-filtration as

$$V^0 \mathfrak{D}_X = \mathcal{O}_X < \partial_1, \dots, \partial_{n-1}, t \partial_t >$$

Similarly,

$$V^i\mathfrak{D} = t^i V^0\mathfrak{D}_X$$

and for i > 0

$$V^{-i}\mathfrak{D}_X = \partial_t V^{-i+1}\mathfrak{D}_X + V^{-i+1}\mathfrak{D}_X$$

From local calculation, it is easy to see that the section $t\partial_t$ is independent of choices of the defining function t, i.e. $t\partial_t$ is canonical and called the Euler vector field along H. For left \mathfrak{D}_{X} -module M we define V-filtration as follows:

Definition 1.2. The V-filtration of M along H is a \mathbb{Z} -indexed decreasing filtration $V^{\bullet}M$ such that

- 1. $V^k M$ is coherent over $V^0 \mathfrak{D}_X$.
- 2. $tV^kM \subset V^{k+1}M$, $\partial_V^kM \subset V^{k-1}M$
- 3. $tV^k M = V^{k+1} M$ for k > -1
- 4. Eigenvalues of $t\partial_t$ on g_V^kM have real part in [k, k+1). The operator $t\partial_t$ is defined everywhere.

Example 1.3. $M = \mathcal{O}_X$ then $V^i = I_H^i$ is a V-filtration along H.

Such filtration may not exist but if it does it is unique. We will see later that for holonomic \mathfrak{D}_X -module this filtration always exists.

2 Example on the disc Δ :

Let $j: \Delta^* \hookrightarrow \Delta$ be the inclusion of the punctured disc in \mathbb{C} to the disc. Here $X = \Delta$ and $H = \{0\} = (t = 0)$. let L be a local system on Δ^* . We want to understand $Rj_*L[1]$ and its nearby and vanishing cycles with the help of V-filtration.

Consider the universal covering map from the complex upper-half plane $(\mathbb{H}, w) \xrightarrow{\pi} (\Delta^*, t)$. Then set the fibres of L to be $V := H^0(\mathbb{H}, \pi^{-1}L) = \operatorname{span}\{c_1, ..., c_m\}$. Let Γ be the monodromy acting on c_i . Then

$$c_i(w+1) = \Gamma c_i(w)$$

with respect to the action of the monodromy. Note that c_i defines a multi-valued section of L and by definition of the associated holomorphic bundle with connection $\mathcal{V} := L \otimes_{\mathbb{C}} \mathcal{O}_X$ we have that

$$\nabla(c_i \otimes 1) = c_i \otimes \partial_t(1) = 0. \tag{1}$$

Then $V = \oplus V_{\lambda}$ as generalised eigenspace decomposition also induces a decomposition of L downstairs. $log\Gamma = log(\Gamma_S\Gamma_U)$ is unique upto \mathbb{Z} . Γ_S is the semi-simple part and Γ_U is the unipotent part. Fix $\beta \in \mathbb{R}$, we can choose a branch of logarithm so that real part of the eigenvalues of $-(\log \Gamma)$ is in $[\beta, \beta + 1)$. Denote $\Lambda^{\beta} = -(\log \Gamma) \in \operatorname{End}_{\mathbb{C}}(V)$ with this branch of logarithm. Define:

$$\{s_i\}_i := e^{\Lambda^{\beta}(w)}\{c_i\}_i.$$

Since $c_i(w+1) = \Gamma c_i(w)$, we know s_i descend to holomorphic sections on Δ^* . Set

$$\mathcal{V}^{\beta} = \bigoplus_{i=1}^{m} \mathcal{O}_{X} s_{j}$$

with a logarithmic connection ∇^{β} satisfying (since $w = \log t$)

$$\nabla^{\beta}(\{s_i\}_i) = \frac{dt}{t} \otimes \Lambda^{\beta} e^{\Lambda^{\beta} w} \{c_i\}_i = \frac{dt}{t} \otimes \Lambda^{\beta} \{s_i\}_i$$

By construction we see that

$$(\mathcal{V}^{\beta}, \nabla^{\beta})|_{\Delta^*} = (\mathcal{V}, \nabla),$$

and Λ^{β} is just the residue map of $\nabla^b eta$ along 0, denoted by $\operatorname{Res}_{\nabla^{\beta}}$. Since $\frac{dt}{t}$ generates $\Omega^1(\log H)$, set

$$DR_H(\mathcal{V}^{\beta}): \mathcal{V}^{\beta} \xrightarrow{\nabla^{\beta}} \Omega^1(\log H) \otimes \mathcal{V}^{\beta},$$

calling it the logarithmic de Rham complex of \mathcal{V}^{β} along $H = \{0\}$. After identifying ∇^{β} with the action of $t\partial_t$ on \mathcal{V}^{β} , $DR_H(\mathcal{V}^{\beta})$ is isomorphic to

$$\mathcal{V}^{\beta} \xrightarrow{t\partial_t} \mathcal{V}^{\beta}$$

Define

$$\mathcal{V}_* = \mathcal{V}^\beta \otimes_{\mathcal{O}_X} \mathcal{O}_X(*H).$$

 ∇^{β} induces a connection on \mathcal{V}_* , which make \mathcal{V}_* a \mathfrak{D}_X -module. This definition does not depend on β .

If $\beta > \beta'$ then $\mathcal{V}^{\beta} \subset \mathcal{V}^{\beta'} \subset \mathcal{V}^*$. \mathcal{V}_* has a \mathfrak{D} structure via ∇ . Although \mathcal{V}^{β} is defined for all $\beta \in \mathbb{R}$, if we only looked at integer β , \mathcal{V}^{β} gives the V-filtration of \mathcal{V}_* . We could also talk about an \mathbb{R} -indexed V-filtration for \mathcal{V}_* and note that it is actually a discrete filtration. We will soon discuss an example of such \mathcal{V} . But before that we need a couple more definitions:

Definition 2.1. $\mathcal{V}^{>\beta} := \bigcap_{\beta>\beta'} \mathcal{V}^{\beta'}$ since V-filtration is discrete, for some $\beta'' > \beta$ we have $\mathcal{V}^{>\beta} = \mathcal{V}^{\beta''}$. Also, define, $gr_{\mathcal{V}}^{\beta}\mathcal{V}_* = \frac{\mathcal{V}^{\beta}}{\mathcal{V}^{>\beta}}$.

Clearly $gr_{\mathcal{V}}^{\beta}\mathcal{V}_{*}$ is supported on $\{0\}$. $t\partial_{t}$ induces a \mathbb{C} -linear transformation on $gr_{V}^{\beta}\mathcal{V}_{*}$ and the eigenvalues of this action have real parts β . Then we have

$$gr_V^{\beta}\mathcal{V}_* \xrightarrow{\partial_t} gr_V^{\beta-1}\mathcal{V}_* \xrightarrow{t} gr_V^{\beta}\mathcal{V}_*.$$

Note if $\beta \neq 0$, ∂_t is injective and t is surjective. Further since $\partial_t t = t\partial_t + 1$, if $\beta \neq -1$ then ∂_t is surjective. So when $\beta \neq 0$, -1 we have that $\partial_t : gr_V^{\beta} \mathcal{V}_* \to gr_V^{\beta-1} \mathcal{V}_*$ is an isomorphism. Indeed, it is always isomorphic when 1 is not an eigenvalue of Γ .

Lemma 2.2. $\partial_t : \mathcal{V}_0^{\beta} \to \mathcal{V}_0^{\beta-1}$ is surjective for $\beta > 0$ or for any β when 1 is not an eigenvalue of Γ .

We only care about the stalk of the sheaves around 0. Using induction on the rank of L we only need to solve the problem when dim L = 1. Localise and solve.

We observe the following \mathcal{O}_X -modules isomorphism: $\mathcal{V}_* = \sum_{p \geq 0} \partial_t^p \mathcal{V}^{-1}$. Also define the \mathcal{O}_X -module $\mathcal{V}_{\min} := \sum_{p \geq 0} \partial_t^p \mathcal{V}^{\beta}$ and $\beta > -1$. By the lemma \mathcal{V}_{\min} is independent of β .

Example 2.3. 1. Let's assume $L = \mathbb{C}$ with trivial monodromy then $\mathcal{V}_* = \mathcal{O}_X(*H)$ and $\mathcal{V}_{\min} = \mathcal{O}_X$.

2. Let $L = \mathbb{C}t^{\lambda}$ with monodromy $e^{2\pi i(t-\lambda)}$ for some $\lambda \in \mathbb{C}^*$. Then formally, $\mathcal{V}_* = \mathcal{O}_X(*)t^{\lambda}$. But note that in this case $\mathcal{V}_{\min} = \mathcal{V}_*$.

The above two examples tell us that the eigenvalue 1 of Γ plays a crucial role for \mathcal{V}_* In other words if 1 is not an eigenvalue then $\mathcal{V}_* = \mathcal{V}_{\min}$.

 $DR(\mathcal{V}_{\min}) = j_{!*}L = j_*\mathbb{C}$ the last equality is not true in higher dimension. $DR(\mathcal{V}_*) = Rj_*L$.

Theorem 2.4. We have a quasi-isomorphism

$$DR_H(\mathcal{V}^\beta) \hookrightarrow DR(\mathcal{V}_*)$$

when $\beta \leq 0$ and the stalk $DR(\mathcal{V}^0)_0$ at 0 is quasi isomorphic to

$$0 \to gr_V^0 \mathcal{V}_* \xrightarrow{\partial_t} gr_V^{-1} \mathcal{V}_*.$$

Moreover, $DR(\mathcal{V}_*) \simeq Rj_*L$

Proof. If β is slightly smaller than 0 we have

$$\mathcal{V}^{\beta}/\mathcal{V}^{>\beta}=\mathcal{V}^{\beta}/\mathcal{V}^0$$

Since $t\partial_t$ defines an isomorphism between $gr^{\beta}\mathcal{V}_*$ for $\beta \neq 0$, we have

$$\mathcal{V}^{\beta}/\mathcal{V}^0 \xrightarrow{t\partial_t} \mathcal{V}^{\beta}/\mathcal{V}^0$$

is an isomorphism. Therefore,

$$DR_H(\mathcal{V}^0) \to DR_H(\mathcal{V}^\beta)$$

is a quasi-isomorphism. Similarly for all $\beta'' < \beta' < 0$ we have quasi-isomorphisms

$$DR_H(\mathcal{V}^{\beta'}) \to DR_H(\mathcal{V}^{\beta''}).$$

Taking direct limit $\beta'' \to -\infty$ we get,

$$DR_H(\mathcal{V}^{\beta'}) \hookrightarrow DR(\mathcal{V}_*)$$

is a quasi-isomorphism.

For the second quasi-isomorphism in the statement, since

$$DR(\mathcal{V}^0) = \mathcal{V}^0 \xrightarrow{t\partial_t} \mathcal{V}^0,$$

it is enough to prove that

$$\mathcal{V}_0^{>0} \xrightarrow{t\partial_t} \mathcal{V}_0^{>0}$$

is an isomorphism. This is clear by induction on rank of L (see MHM project, chapter V). The third quasi-isomorphism can also be proved by induction on rank of L.

2.1 Nearby and vanishing D-modules on Δ

Let $i: 0 \hookrightarrow \Delta$ be the inclusion. Then by the thorem $i^{-1}Rj_*L \simeq [gr_V^0 \mathcal{V}_* \xrightarrow{t\partial_t} gr_V^0 \mathcal{V}_*]$. Define the nearby cycle as

$$\Psi_t F := i^{-1} R \pi_* \pi^{-1} L.$$

Note that $(\Psi_t F)_0 = V$. Indeed, since $(\Psi_t F)_0 = \varinjlim_U R\Gamma(\pi^{-1}(U), \pi^{-1}F)$, $\pi^{-1}F$ is trivial and $\pi^{-1}U$ is contractible.

Denote by $(\Psi_t F)_{\text{unip}}$ as the generalized eigenspace of V corresponding to 1 under the monodromy operation. This corresponds to the 0^{th} generalised eigenspace of Λ^0 . Therefore, But the stalk at 0 of $(\Psi_t F)_{\text{unip}_0} \simeq gr_V^0 \mathcal{V}_*$. The specialisation map $sp: i^{-1}F \to \Psi_t F$ factors through $(\Psi_t F)_{\text{unip}}$. Then the specialisation map $i^{-1}F \xrightarrow{sp} \Psi_t F$ at 0 is given by $[gr_V^0 \mathcal{V}_* \xrightarrow{t\partial_t} gr_V^0 \mathcal{V}_*] \xrightarrow{sp} gr_V^0 \mathcal{V}_*$. Therefore, the vanishing cycle $\Phi_t F$ defined as the cone of ϕ is given by $gr_V^{-1} \mathcal{V}_*$ and the canonical map can be seen as

$$gr_V^0 \mathcal{V}_* \xrightarrow{can:=\partial_t} gr_V^{-1} \mathcal{V}_*$$

and

$$gr_V^{-1}\mathcal{V}_* \xrightarrow{var:=t} gr_V^0\mathcal{V}_*.$$

3 Comparison Theorems

We will talk about the existence of V-filtrations for holonomic \mathfrak{D} -modules. Let $H \subset X$. $gr^V_{\bullet}\mathfrak{D}$ is not commutative a-priori.

3.1 Some non-commutative algebra

Suppose A is a non-commutative Noetherian ring. Let F^{\bullet} be a \mathbb{Z} -indexed filtration of A and M is a finitely generated left A-module. Then a filtration $\Gamma^{\bullet}M$ is a \mathbb{Z} -indexed filtration compatible with (A, F^{\bullet}) . This means that $F^l A. \Gamma^k M \subset \Gamma^{k+l} M$.

Definition 3.1 (Associated Rees ring). 1. $R_F A := \bigoplus F^l A.T^l \subset A[T, \frac{1}{T}].$

2. (M,Γ) is good if $R_{\Gamma}M$ is finitely generated

Lemma 3.2. (M, Γ^{\bullet}) is good iff there is $(k_1, \ldots, k_s) \in \mathbb{Z}^s$ and m_1, \ldots, m_s generates M such that

$$\Gamma^v M = F^{v-k_1} m_1 + \dots + F^{v-k_s} m_s$$

for $v \gg 0$

Remark. $gr^{\Gamma}M$ finitely generated over $gr^{F}\mathfrak{D}$ does not imply $R_{\Gamma}M$ is finitely generated with respect to Γ^{\bullet} unless M is complete with respect to Γ .

Define

$$j_A(M) := \max\{v | \operatorname{Ext}^i(M, A) = 0 \forall i < v\}.$$

Note that when A is a commutative local ring this notion is known as the depth of M.

Lemma 3.3. If $gr_{\bullet}^F A$ is Auslander regular and Γ^{\bullet} is good for M then

$$j_A(M) \le j_{gr^F A} gr^{\Gamma} M.$$

We are not going to define Auslander regular here. But below are some examples of AR rings. This theorem is crucial for proving the existence of V-filtrations for holonomic \mathfrak{D}_X -modules. This theorem is standard in non-commutative algebra.

Example 3.4 (AR rings). .

- 1. A is commutative and regular then A is Auslander regular.
- 2. A_n the Weyl algebra is AR.
- 3. $\mathfrak{D}_{X,x}$ is Auslander regular.

If M is holonomic over \mathfrak{D}_X then $j_{gr^F A}gr^\Gamma M=n$ with respect to the order filtration on \mathfrak{D}_X . This is because, $ht(\operatorname{Ann}(gr^{\Gamma^{\bullet}}M))=n$ and since Γ^{\bullet} is good, this is precisely the depth of the finitely generated module $gr^{\Gamma^{\bullet}}M$ over $gr^{F^{\bullet}}\mathfrak{D}$. From this we can also conclude that $j_A(M)=n$. Roughly this follows from the fact that the filtration on M induces a filtration on $\operatorname{Ext}^i(gr^\Gamma M, gr^F A)$.

Supose M is a coherent \mathfrak{D}_X -module. We can define a good filtration on M with respect to $V^{\bullet}\mathfrak{D}_X$. From Lemma 3.1, good filtrations exist for all coherent \mathfrak{D}_X -modules, locally at least.

3.2 Fuchsian filtration: Local description of V-filtration revisited

Let $A_1 = k < t, \partial_t >$ be the Weyl algebra. Set $\operatorname{ord}(t) = 1$ and $\operatorname{ord}(\partial_t) = -1$. This defines a a graded \mathbb{C} -algebra structure on A_1 via the filtration $V^{\bullet}A_1$ defined as follows: $f \in V^p$ if $\operatorname{ord}(f) \geq p$. For instance $\operatorname{ord}(t\partial_t) = 0$ but $\operatorname{ord}(t\partial_t + t) = 1$. We observe that $gr^{V^{\bullet}}A_1 \simeq A_1$ as rings. Hence we get $gr^{V^{\bullet}}\mathfrak{D}_{X,x} \simeq A_1 \otimes_{\mathbb{C}_H} \mathfrak{D}_{H,x}$. This is a graded ring isomorphism and the grading on the right hand side is governed by the Fuchsian grading on A_1 .

Lemma 3.5. If we give T_H^*X a semi-Zariski and semi-analytic topology (The base topology is analytic but the fibres are Zariski) and define

$$\mathcal{O}_{T_H^*X}(\pi^{-1}(U)) = \mathcal{O}_H(U)[t].$$

Therefore we can identify

$$gr^V\mathfrak{D}_X\simeq \pi_*\mathfrak{D}_{T_H^*X},$$

where $\pi: T_H^*X \to H$.

Definition 3.6 (Specializability). M is said to be specializable along H on an open subset $U \subset X$ for some good filtration Γ^{\bullet} of M compatible with the V-filtration, if there is a polynomial $b(s) \in \mathbb{C}[s]$ such that $b(t\partial_t - k)$ acts on $\frac{\Gamma^k M}{\Gamma^{k+1} M}$ is trivially.

Define $\Phi := \bigoplus_k t \partial_t - k$ acting on $gr^V \mathfrak{D}_X$ -linearly on $gr^\Gamma M$. Set

$$\widetilde{gr^{\Gamma}M} = \mathfrak{D}_{T_H^*X} \otimes_{\pi^{-1}gr^{V^{\bullet}}\mathfrak{D}_X} \pi^{-1}gr^{\Gamma}M$$

Therefore Φ lifts to $\widetilde{\Phi}$, a $\mathfrak{D}_{T_H^*X}$ -linear map of $\widetilde{gr^{\Gamma}M}$.

Lemma 3.7. Suppose M is specializable along H. Then there exists a good V-filtration $\Omega^{\bullet}M$ of M such that there is a polynomial $b'(s) \in \mathbb{C}[s]$ satisfying the condition that $b'(t\partial_t - k)$ acts on $\Omega^k M/\Omega^{k+1}M$ trivially and the $\Re(\text{roots of } b'(s)) \subset [0,1)$.

Proof. Set $\Omega^n = \Gamma^{n+k}$ then $b(t\partial_t - n - k)$ acts on Ω^n/Ω^{n+1} trivially. So we assume that the real part of the roots of b are larger than 0.

Now set $\Omega^n = \Gamma^{n-1} + (t\partial_t - \alpha_1 - n)^{n_1})\Gamma^n$ where α_1 is a root of b(s). Recall that $\Re(\alpha_1) \geq 0$. Then

$$(t\partial_t - (\alpha - 1) - n)b_1(t\partial_t - n)$$

kills Ω^n/Ω^{n+1} . Repeating this, we are done.

Corollary 3.8. If M is specializable along H the V-filtration of M along H exists globally.

4 holonomic \mathfrak{D}_X -modules

Let M be a coherent $(\mathfrak{D}_X, F^{\bullet})$. Define

$$\operatorname{Char}(M) := \operatorname{cosupp}(\operatorname{Ann}(gr^{F^{\bullet}}M).$$

 $\operatorname{Char}(M)$ is involutive. Therefore $\dim(\operatorname{Char}(M)) \geq n$. M is holonomic if $\dim(\operatorname{Char}(M)) = n$.

If M is holonomic $\operatorname{Char}(M)$ is Lagrangian analytic subset of T^*X . If $\dim(\operatorname{supp} M) = k \leq n$, then there is a Whitney stratification $\{X_{\alpha}\}$ of $\operatorname{supp}(M)$ such that

$$\operatorname{Char}(M) \subset \bigcup T_{X_{\alpha}}^* M.$$

This has been proved by Kashiwara. Set $U = X \setminus \bigcup_{\alpha \neq k} X_{\alpha}$ and $i : X_k \hookrightarrow U$ the closed embedding. By Kashiwara's equivalence, possibly after shrinking X_{α} and U we know

$$M|_{U} = i_{+}(\mathcal{O}_{X_{\alpha}} \otimes_{\mathbb{C}} L),$$

where L is a local system on X_{α} .

Lemma 4.1. For $\phi \in Hom_{\mathfrak{D}_X}(M,M)$ and $X_0 \subset X$ relatively compact open neighbourhood, the there is $b(s) \in \mathbb{C}[s]$ such that $b(\phi)|_{X_0} = 0$. If X and M are algebraic, then $b(\phi) = 0$ globally.

Proof. Let $U_0 = X_0 \cap U$ where U is as above. Then

$$\phi_0 = \phi|_{U_0} \in \text{Hom}_{\mathfrak{D}_X}(M|_{U_0}, M|_{U_0}) = \text{Hom}_{X_0}(L, L).$$

Clearly ϕ_0 has a minimal polynomial b(s) and $b(\phi_0)M$ is a holonomic \mathfrak{D} -module supported on an analytic set of dimension strictly smaller than k. Hence we are done by induction.

Theorem 4.2. If M is holonomic, then M is specialisable along any $H \subset X$.

Proof. Locally fix a good filtration Γ^{\bullet} of M. Since M is holonomic, for all $x \in H$ $j_{\mathfrak{D}_{X,x}}(M_x) = n$. By lemma 3.3, we know that $j_{gr^F A}gr^{\Gamma}M \geq n$. Since $gr^V \mathfrak{D}_{X,x} \simeq A_1 \otimes_{\mathbb{C}} \mathfrak{D}_{H,x}$ we have that $gr^{\Gamma}M$ is holonomic over $A_1 \otimes_{\mathbb{C}} \mathfrak{D}_{H,x}$. So $gr^{\Gamma}M$ is hlonomic over $\mathfrak{D}_{T_H^*X}$. Recall that $\widetilde{\Phi}$ was defined to be a lift of $\Phi = \bigoplus_k t \partial_t - k$ and was $\mathfrak{D}_{T_H^*X}$ -linear morphism of $gr^{\Gamma}M$. Now by Lemma 4.1 we have that there is a $b(s) \in \mathbb{C}[s]$ such that $b(\widetilde{\Phi}) = 0$ locally. Therefore, M is specialisable along H.

5 Perverse Sheaves: Nearby and Vanishing functors

We will talk about how the nearby and vanishing functors of constructible sheaves relate to the \mathfrak{D} -module case. Let X be a complex manifold of dim n.

notations Let f be a morphism of complex manifolds Rf_* is the derived push-forward. f^{-1} is the sheaf pullback. $Rf_!$ is the derived push forward with compact support. $f^!$ is the adjoint of $Rf_!$. f^* is the underived \mathcal{O}_X -pullback. f_+ is derived \mathfrak{D}_X -pushforward.

5.1 Decomposition of nearby cycles for constructible sheaves

$$\Psi_f F^{\bullet} = \oplus \Psi_{f,\lambda}(F^{\bullet})$$

Recall the following diagram:

$$X_0 \stackrel{\widetilde{C}^*}{\longleftarrow} X \stackrel{\widetilde{\mathbb{C}}^*}{\longleftarrow} X^* \stackrel{f}{\longrightarrow} \mathbb{C}^*$$

for $f \in \Gamma(X, \mathcal{O}_X)$ and $X^* = f^{-1}(\mathbb{C}^*)$ and $X_0 = f^{-1}(0)$. We know $\Psi_f(\bullet)$ is functor between $D_c^b(X)$. This is well defined since $\Psi_f F^{\bullet}$ is constructible (Deligne). We will see that by definition, the nearby cycles only depend on $j^{-1}F$. We recall the definition here:

$$\Psi_f F^{\bullet} = i^{-1} R j_* R p_* p^{-1} j^{-1} F^{\bullet} = i^{-1} R \widetilde{p}_* \widetilde{p}^{-1} F^{\bullet}.$$

Since $\widetilde{p}^{-1} = \widetilde{p}!$,

$$i^{-1}Rj_*Rp_*R\mathcal{H}om_{\mathbb{C}_{\widetilde{X}^*}}(\mathbb{C}_{\widetilde{X}^*},p^!(j^{-1}F^{\bullet}))).$$

By Poincaré-Verdier duality, the later is isomorphic to

$$i^{-1}Rj_*R\mathcal{H}om_{\mathbb{C}_{X^*}}(Rp_!\mathbb{C}_{\widetilde{X^*}},j^{-1}F^{\bullet}).$$

which is same as

$$i^{-1}Rj_*R\mathcal{H}om_{\mathbb{C}_{X^*}}(f^{-1}\pi_!\mathbb{C}_{\widetilde{\mathbb{C}^*}},j^{-1}F^{\bullet})$$

since the fibre of π is a discrete set. $\pi_!\mathbb{C}_{\widetilde{\mathbb{C}^*}}$ is a $\mathbb{C}[\mathbb{Z}]$ -module. Let T (corresponding to $1 \in \pi_1(\mathbb{C}^*)$) acts on $\pi_!\mathbb{C}_{\widetilde{\mathbb{C}^*}}$. Thus there is an action of T on the nearby cycle. We have a short exact sequence:

The trace map is defined via adjunction and $\mathbb{C}_{\mathbb{C}^*} \to \pi^! \mathbb{C}_{\mathbb{C}^*}$. Stalkwise the trace map is the same as taking sum of all the entries in the orbit of action of T. Treat the vertical maps as complexes A^{\bullet} , B^{\bullet} and C^{\bullet} respectively. Therefore the above diagram is a short exact sequence of complexes:

$$0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0.$$

Appying the following derived functor

$$G = i^{-1}Rj_*R\mathcal{H}om_{\mathbb{C}_{X^*}}(f^{-1}(\bullet), j^{-1}(F^{\bullet}))$$

to the above short exact sequence we get,

$$G(C^{\bullet}) \to G(B^{\bullet}) \to G(A^{\bullet}) \xrightarrow{+1}$$

This is the same as:

$$\Psi_f F^{\bullet}[-1] \xrightarrow{\mathfrak{can}} \Phi_f F^{\bullet} \to i^{-1} F^{\bullet} \xrightarrow{+1}$$

Now consider

$$0 \longrightarrow \pi_{!}\mathbb{C}_{\widetilde{\mathbb{C}^{*}}} \xrightarrow{I-T} \pi_{!}\mathbb{C}_{\widetilde{\mathbb{C}^{*}}} \xrightarrow{tr} \mathbb{C}_{\widetilde{\mathbb{C}^{*}}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow \mathbb{C}_{\mathbb{C}^{*}} \xrightarrow{id} \mathbb{C}_{\mathbb{C}^{*}} \longrightarrow 0$$

This gives us another map

$$i^! F^{\bullet} \to \Phi_f F^{\bullet} \xrightarrow{\operatorname{var}} \Psi_f F^{\bullet} [-1].$$

This defines the canonical map. The T action on $\pi_!\mathbb{C}_{\mathbb{C}^*}$ induces T action on $\Psi_f F^{\bullet}$ and $\Phi_f F^{\bullet}$. Clearly $\operatorname{\mathfrak{can}} \circ \operatorname{\mathfrak{van}} = T - I$ on $\Phi_f F^{\bullet}$ and $\operatorname{var} \circ \operatorname{\mathfrak{can}} = T - I$ on $\Psi_f F^{\bullet}$.

Theorem 5.1. The nearby cycle $\Psi_f F^{\bullet} = \oplus \Psi_{f,\lambda}(F^{\bullet})$ decomposes in $D_C^b(X)$ (more specifically in the category Perv(X)) as the Jordan decomposition of the T-action on the functor $\Psi_f F^{\bullet}$. This decomposition is canonical.

Proof. Set

$$\psi(\bullet) = i^{-1}\widetilde{p}_*\widetilde{p}^{-1}(\bullet).$$

Then $\Psi(\bullet)$ is the right derived functor of $\psi(\bullet)$. For a constructible sheaf F, we know $\psi(F)$ is also constructible. So for any connected open neighborhood $U, \psi(F)(U)$ is finite dimensional \mathbb{C} -vector space. So the T action on $\psi(F)(U)$ has a Jordan decomposition. Therefore $\psi(F)$ has a functorial Jordan decomposition with respect to the T-action. So is $\Psi(\bullet)$ as right derived functor of $\psi(\bullet)$. \square

Corollary 5.2. $\Phi_f F^{\bullet}$ also admit similar (non-canonical) deemposition into generalised eigen spaces.

Proof. The eigen space corresponding to eigen-value 1, $\Psi_{f,1}(F^{\bullet})$ is called the *unipotent nearby* cycle. Since T acts as identity on $i^{-1}F^{\bullet}$ we can define, $\Phi_{f,1}(F^{\bullet})$ as the cone of the specialisation map

$$i^{-1}F^{\bullet} \to \Psi_{f,1}F^{\bullet} \to \Phi_{f,1}F^{\bullet} \xrightarrow{+1}$$
.

Again since T acts on $i^{-1}F^{\bullet}$ as identity, the specialisation map $i^{-1}F^{\bullet} \xrightarrow{sp} \bigoplus_{\lambda \neq 1} \Psi_{f,\lambda}(F^{\bullet})$ is trivial and the quotient of $\Phi_{f,1}(F^{\bullet}) \to \Phi_f F^{\bullet}$ is given by $\bigoplus_{i,\neq 1} \Psi_{f,1} F^{\bullet}$. Said differently,

$$\Phi_{f,\neq 1}F^{\bullet} = \Psi_{f,\neq 1}F^{\bullet}$$

Consider $Y = X \times \mathbb{C}$ and denote the coordinate on \mathbb{C} by t. For all $m \in \mathbb{Z}$ we are going to construct a vector bundles N_m with connection ∇_m and associated local system \mathcal{L}_m on Y. These will be crucial objects in the purpose of making the Riemann-Hilbert correspondence between the nearby and vanishing fuctors and nearby and vanishing \mathfrak{D} -modules. Let t denote the coordinate of \mathbb{C}^* . Set $e_k := \frac{(logt)^k}{k!}$. Construct,

$$N_m = \bigoplus_{i=0}^m \mathcal{O}_{\mathbb{C}} \left[\frac{1}{t} \right] e_i.$$

This is a $\mathfrak{D}_{\mathbb{C}}$ -module by the action $t\partial_t e_k = e_{k-1}$. Consider $DR(N_m)|_{\mathbb{C}^*}$ with connection $t\partial_t$. The kernel gives us a \mathbb{C}^* -local system $\mathcal{L}_{\mathbb{C},m}$. Denote the monodromy on this local system by $T = \log t\partial_t$ and note that it is given by J_m , the m-dimensional Jordan block with eigenvalue 1. Set $\mathcal{L}_m = f^{-1}L_{\mathbb{C},m}$ with fibre L_m .

Lemma 5.3. Let X and f be as before. If \mathcal{L} is a local system on \mathbb{C}^* with fiber L, then

$$\Psi_f(F^{\bullet} \otimes_{\mathbb{C}} \mathcal{L}) = \Psi_f F^{\bullet} \otimes_{\mathbb{C}} L.$$

The action of T is componentwise.

Write \mathcal{K}_{α} is the rank 1 local system on \mathbb{C}^* with the monodromy T given by multiplication by α . Therefor, by the above lemma,

$$\Psi_{f,1}(F^{\bullet} \otimes_{\mathbb{C}} \mathcal{K}_{\alpha}) \simeq \Psi_{f,\alpha}(F^{\bullet})$$

Lemma 5.4. Let W be a complex vector space and ϕ some \mathbb{C} -linear operator on W with a minimal polynomial. Set

$$W_{\infty} = \bigoplus_{i=0}^{\infty} W \otimes_{\mathbb{C}} \mathbb{C}e_i$$

and define ϕ_{∞} by

$$\phi_{\infty}(u \otimes e_i) = \phi(u) \otimes e_i + u \otimes e_{i-1}.$$

Assume that $e_{-1} = 0$. Then ϕ_{∞} is surjective and $\operatorname{Ker}(\phi_{\infty}) \simeq W_0$ where W_0 is the biggest subspace of W on which ϕ is nilpotent. Here W_0 identified with $W_0 \otimes \mathbb{C}e_0$ as a subspace of W_{∞} .

From the above two lemmas, it is easy to conclude

Theorem 5.5.

$$i^{-1} \varinjlim Rj_*(j^{-1}F^{\bullet} \otimes \mathcal{L}_m) \simeq \Psi_{f,1}F^{\bullet}$$

6 Nearby and Vanishing \mathfrak{D}_X -module: Riemann-Hilbert Correspondence

Recall the Koszul complex in non-commutative setting. Suppose A is an abelian group. Let $\phi_i \in \operatorname{End}_{\mathbb{Z}} A$ be morphisms of A commuting pairwise. Let $K_1 = [A \xrightarrow{\phi_i} A]$ and $K_{i+1} = [K_i \xrightarrow{\phi_{i+1}} K_i]$. Then $K(\phi_1, \ldots, \phi_n; A) =: K_n$ is called the Koszul complex.

Lemma 6.1. 1. The order of ϕ_i is K does not matter.

2. if one of ϕ_i is an isomorphism, then K is acyclic.

6.1 deRham functor

Let X be a complex manifold of dimension n. We have a canonical section $\sum dx_i \otimes \partial_i$ in Ω^1_X . Then

$$[\mathfrak{D}_X \xrightarrow{\nabla} \Omega^1_X \otimes \mathfrak{D}_X \to \ldots \to \Omega^n_X \otimes \mathfrak{D}_X] = DR_X(\mathfrak{D}_X)$$

 $DR_X(\mathfrak{D}_X)$ is a complex of right \mathfrak{D}_X -module. It is a result that $DR_X(\mathfrak{D}_X)$ is a resolution of Ω^1_X as a right \mathfrak{D}_X -module. Now suppose M is a left \mathfrak{D}_X -module. Then define $DR_X(M) := DR_X(\mathfrak{D}_X) \bigotimes_{\mathfrak{D}_X} M$ This tensor product is derived since $DR_X(\mathfrak{D}_X)$ is locally free over \mathfrak{D}_X . So, $DR(\bullet): D^b(coh(\mathfrak{D}_X)) \to D^b(\mathbb{C}_X)$ is an exact functor.

6.2 Local picture:

Pick coordinates (x_1, \ldots, x_n) , Then $DR(M) = K(\partial_1, \ldots, \partial_n; M)$. Here M considered as a \mathbb{C}_X module. Now let $Z = (x_n = 0)$ Then from this inductive Koszul complex description of deRham
complex, we can conclude that $DR(M) = [DR_Z(M) \xrightarrow{\partial_n} DR_Z(M)]$.

6.3 Comparison Theorem

Let $Y = X \times \mathbb{C}$. Let t be the coordinate on \mathbb{C} . Last time we defined $e_k = (\log t)^k/k!$ and N_m . So N_m is a regular holonomic \mathfrak{D}_Y -module. Denote $Y^* = Y \setminus (X \times \{0\})$. We have natural inclusion $N_m \hookrightarrow N_{m+1}$ compatible with \mathfrak{D}_Y -structure. Define, $N_\infty = \varinjlim N_m$. Last time we defined the local system corresponding to this vector bundle with connection as L_∞ .

From now on assume M is regular holonomic.

Lemma 6.2. With the notation as before, as a \mathfrak{D}_X -modules we have the decomposition

$$\frac{V^k M}{V^{k+1} M} = \bigoplus_{roots \ of \ b_k(s)} gr_V^{\alpha} M$$

This decomposition is induced by action of $\partial_t t$ on $\frac{V^k M}{V^{k+1} M}$.

Definition 6.3. Nearby cycle of M is defined as follows:

$$\Psi_0(M) = gr_V^0 M.$$

If 0 is not a root of $b_k(s)$ then $\Psi_0(M) = 0$.

Theorem 6.4. We have a quasi-isomorphism $DR_X(\Psi_0(M)) = \Psi_{t,1}(DR_Y(M))$, where t is the coordinate on \mathbb{C} and

$$DR_X\left(\frac{V^kM}{V^{k+1}M}\right) \simeq \Psi_t(DR(M)).$$

Direct sum is preserved under this quasi-isomorphism

Proof. Let $i: X \times 0 \hookrightarrow Y$ and $j: Y^* \hookrightarrow Y$. Then

$$i^{-1}DR_Y(M) = [DR_X(gr_V^0M \xrightarrow{\partial_t} gr_V^{-1}M)]$$

is a quai-isomorphism. We know locally the LHS is

$$K(\partial_1, \dots, \partial_{n-1}, \partial_t; M) = i^{-1}[K(\partial_1, \dots, \partial_{n-1}; M) \xrightarrow{\partial_t} K(\partial_1, \dots, \partial_{n-1}; M)].$$

For the RHS, follow the following sequence of quasi-isomorphisms:

$$DR_X(V^0M \xrightarrow{\partial_t} V^{-1}M) \simeq DR(V^{-1}M \xrightarrow{\partial} V^{-2}M)$$

 $\simeq DR(V^{-k}M \xrightarrow{\partial} V^{-k-1}M).$

By taking direct limit we can show that the later is quasi-isomorphic to $DR_X(M \xrightarrow{\partial_t} M)$.

By looking

Now, $i^{-1}DR_Y(M \otimes_{\mathcal{O}_X} N_{\infty}) = DR_X(gr_V^0 M)$ i.e. the unipotent part of the deRham complex can be obtained by direct limit over tensoring with N_m . Indeed, one can deduce that from the following calculations:

$$DR_Y(M \otimes_{\mathcal{O}_Y} N_m)\big|_{Y^*} = DR_{Y^*}(j^{-1}M \otimes_{\mathbb{C}_{Y^*}} N_m) = DR(j^{-1}M) \otimes_{\mathbb{C}_{Y^*}} L_m = j^{-1}DR_YM \otimes_{\mathbb{C}_{Y^*}} L_m.$$

Then,

$$i^{-1}DR_Y(M\otimes N_m)=i^{-1}Rj_*(j^{-1}DR_YM\otimes_{\mathbb{C}_{Y^*}}L_m).$$

By taking direct limit, the right hand side of this equality is same as $\Psi_{t,1}(DR_Y(M))$.

Note that we can retrieve the the nearby and vanishing triangle by taking the $DR(\bullet)$ of the following triangle:

$$[gr_V^0 M \to gr_V^{-1} M] \to gr_V^0 M \xrightarrow{\partial_t} gr_V^{-1} M.$$

Then define the vanishing cycle by $DR_X(gr_V^{-1}M)$.