꼼꼼한 딥러닝 논문 리뷰와 코드 실습

Deep Learning Paper Review and Code Practice

나동빈(dongbinna@postech.ac.kr)

Pohang University of Science and Technology

논문 소개: StyleGAN (CVPR 2019)

- 고화질 이미지 생성에 적합한 아키텍처를 제안합니다.
 - ① PGGAN 베이스라인 아키텍처의 성능을 향상시켰습니다.
 - ② Disentanglement 특성을 향상시켰습니다.
 - ③ 고해상도 얼굴 데이터셋(FFHQ)을 발표했습니다.

Source A

Source B

Coarse Styles from Source B

관련 연구: Generative Adversarial Networks (GAN)

- 생성자(generator)와 판별자(discriminator) 두 개의 네트워크를 활용한 생성 모델입니다.
- 다음의 목적 함수(objective function)를 통해 생성자는 이미지 분포를 학습할 수 있습니다.

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[logD(x)] + E_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

Generator G(z): new data instance

Discriminator D(x) = Probability: a sample came from the real distribution (Real: $1 \sim Fake$: 0)

관련 연구: DCGAN (ICLR 2016)

• Deep Convolutional Layers를 이용하여 이미지 도메인에서의 높은 성능을 보입니다.

Fig. DCGAN generator used for LSUN scene modeling.

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (ICLR 2016)

관련 연구: DCGAN에서의 Convolutional 필터(Filter) 소개

판별자(Discriminator)

Strided Convolution: 너비와 높이가 감소

생성자(Generator)

Transposed Convolution: 너비와 높이가 증가

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (ICLR 2016)

관련 연구: DCGAN에서의 벡터 연산(Vector Arithmetic)

관련 연구: WGAN-GP

- WGAN은 함수가 1-Lipshichtz 조건을 만족하도록 하여 안정적인 학습을 유도합니다.
 - 본래 WGAN 논문은 weight clipping을 이용하여 제약 조건을 만족하도록 합니다.
- WGAN-GP에서는 gradient penalty를 이용하여 WGAN의 성능을 개선합니다.

$$L = \underbrace{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \underbrace{\mathbb{E}}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right] + \lambda \underbrace{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]$$
 Original critic loss Gradient penalty

(Unsupervised case)

Inception Score 측정 결과

Method	Score
ALI [8] (in [27])	$5.34 \pm .05$
BEGAN [4]	5.62
DCGAN [22] (in [11])	$6.16 \pm .07$
Improved GAN (-L+HA) [23]	$6.86 \pm .06$
EGAN-Ent-VI [7]	$7.07 \pm .10$
DFM [27]	$7.72 \pm .13$
WGAN-GP ResNet (ours)	$7.86 \pm .07$

Improved Training of Wasserstein GANs (NIPS 2017)

연구 배경: Progressive Growing of GANs (PGGAN = ProGAN)

- 메인 아이디어
 - 학습 과정에서 레이어를 추가
 - 고해상도 이미지 학습 성공
- 한계점
 - 이미지의 특징 제어가 어려움

StyleGAN에서 개선됩니다.

https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2

연구 배경: Progressive Growing of GANs (PGGAN = ProGAN)

• 학습을 진행하는 과정에서 점진적으로(progressively) 네트워크의 레이어를 붙여 나갑니다.

StyleGAN의 핵심 아이디어: 매핑 네트워크 (Mapping Network)

- 512차원의 z 도메인에서 w 도메인으로 매핑을 수행합니다.
- 가우시안 분포에서 샘플링한 z 벡터를 직접 사용하지 않습니다.
 - 계산된 w 벡터를 사용할 때가 효과가 좋습니다.

In W space, the factors of variation become more linear.

Z: Fixed distribution Learned mapping $f: z \rightarrow w$

관련 연구: Adaptive Instance Normalization (ADaIN)

- AdalN을 이용하면 <u>다른 원하는 데이터로부터 스타일(style) 정보를 가져와 적용</u>할 수 있습니다.
 - 학습시킬 파라미터가 필요하지 않습니다. (γ 와 β 사용하지 않음)
 - feed-forward 방식의 style transfer 네트워크에서 사용되어 좋은 성능을 보입니다.

Group Normalization (ECCV 2018)

Style Modules (AdaIN)

Removing Traditional Input

- 초기 입력을 상수(constant)로 대체합니다.
 - 경험적으로 성능이 향상됩니다.

Stochastic Variation

Stochastic Variation

- 스타일: high-level global attributes
 - 얼굴형, 포즈, 안경의 유무 등
- 노이즈: stochastic variation
 - 주근깨(freckle), 피부 모공(skin pore)
 - Coarse noise: 큰 크기의 머리 곱슬거림, 배경 등
 - Fine noise: 세밀한 머리 곱슬거림, 배경 등
 - (a) 모든 레이어에 노이즈 적용
 - (b) 노이즈 적용하지 않음
 - (c) Fine layer에 적용
 - (d) Coarse layer에 적용

StyleGAN 아키텍처: Disentanglement Properties of StyleGAN

In W space, the factors of variation become more linear.

Z: Fixed distribution

Learned mapping $f: z \to w$

StyleGAN의 생성자는 더욱 linear하며 덜 entangled되어 있습니다.

Latent Vector Meanings of StyleGAN

Evaluation: FID 값 비교/분석

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

[Table] Frechet Inception Distance (FID) for various generator designs.

(A) PGGAN 베이스라인

(D) Input 레이어로 학습된 4 X 4 X 512 상수 텐서 사용

(B) Bilinear up/downsampling operations

(E) 노이즈 입력

(C) Mapping Network + Adaln

(F) Mixing Regularization

Style Mixing (Mixing Regularization)

- 인접한 레이어 간의 스타일(style) 상관관계를 줄입니다.
- 구체적인 Mixing Regularization 방법 설명
 - 1) 두 개의 입력 벡터를 준비합니다.
 - 2) **크로스오버(crossover)** 포인트를 설정합니다.
 - 3) 크로스오버 이전은 w_1 , 이후는 w_2 를 사용합니다.
- 스타일은 각 레이어에 대하여 지역화(localized)됩니다.

Mixing	Number of latents during testing			
regularization	1	2	3	4
Е 0%	4.42	8.22	12.88	17.41
50%	4.41	6.10	8.71	11.61
F 90%	4.40	5.11	6.88	9.03
100%	4.83	5.17	6.63	8.40

Disentanglement 관련 두 가지 성능 측정 지표 제안

- 1. Path Length: 두 벡터를 보간(interpolation)할 때 얼마나 급격하게 이미지 특징이 바뀌는지
- 2. Separability: latent space에서 attributes가 얼마나 선형적으로 분류될 수 있는지 평가

Method FID	FID	FID Path I		Separa-
	full	end	bility	
B Traditional 0 \mathcal{Z}	5.25	412.0	415.3	10.78
Traditional 8 Z	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 Z	5.06	283.5	285.5	9.88
Style-based 1 W	4.60	219.9	209.4	6.81
Style-based 2 W	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

• W 공간(space)이 Z 공간보다 이상적인 성질을 가지고 있습니다.

Latent Vector Interpolation

• 두 개의 latent codes를 보간(interpolation)하는 방법으로는 다음과 같은 것들이 있습니다.

Linear Interpolation (LERP)

Spherical Linear Interpolation (SLERP)

Perceptual Path Length

- 두 개의 latent codes를 보간(interpolation)할 때 얼마나 급격하게 (부드럽지 않게) 바뀌는지 체크합니다.
 - 지점 t와 t + e 사이에서의 VGG 특징(features)의 거리가 얼마나 먼지 계산할 수 있습니다.

$$Loss_{\mathbf{Z}} = \mathbf{E}\left[\frac{1}{\epsilon^2}d\left(G(slerp(z_1, z_2; \mathbf{t})), G(slerp(z_1, z_2; t + \epsilon))\right)\right]$$

$$Loss_{W} = E\left[\frac{1}{\epsilon^{2}}d\left(G\left(lerp(f(z_{1}), f(z_{2}); t)\right), G\left(lerp(f(z_{1}), f(z_{2}); t + \epsilon)\right)\right)\right]$$

$$w_{1} \quad w_{2} \quad w_{1} \quad w_{2}$$

Linear Separability

- CelebA-HQ: 얼굴마다 성별(gender) 등의 40개의 binary attributes가 명시되어 있는 데이터셋
 - 이를 이용해 40개의 분류(classification) 모델을 학습합니다.
- 하나의 속성(attribute)마다 200,000개의 이미지를 생성하여 분류 모델에 넣습니다.
 - 이후에 confidence가 낮은 절반은 제거하여 100,000개의 레이블이 명시된 latent vector를 준비합니다.
 - 이렇게 준비된 100,000개의 데이터를 학습 데이터로 사용합니다.
- 매 attribute마다 **linear SVM 모델**을 학습합니다.
 - 이때 전통적인(traditional) GAN에서는 z, Style GAN에서는 w를 이용합니다.
- 각 linear SVM 모델을 활용하여 다음의 값을 계산합니다. (i =각 attribute의 인덱스)

$$\exp\left(\sum_{i} H(Y_i|X_i)\right)$$

추가적인 실험 결과

- 동일한 세팅으로 추가 실험
 - LSUN Bedroom 데이터셋
 - LSUN Car 데이터셋
- Coarse styles 변화
 - 카메라 구도
- Middle styles 변화
 - 특정 가구
- Fine styles 변화
 - 세밀한 색상, 재질 등

LSUN Bedroom

LSUN Car