— Number theory for L3 —

— May 2, 2019 — Remainders and divisibility — This file was provided by:

Muath Alghamdi

Revision

R1. Prove there are infinitely many positive integers that cannot be expressed as the sum of three perfect squares.

Theory

The Chinese remainder theorem: Given pairwise coprime positive integers $m_1, m_2, ..., m_k$ and some integers $r_1, r_2, ..., r_k$. Then there exists such N that $N \equiv r_i \pmod{m_i}$ for all $i \in \{1, 2, ..., k\}$. Moreover any two such N differ by a multiple of $m_1 m_2 ... m_k$.

T1. Do you remember how to prove the Chinese remainder theorem?

Problems

- **20.** Find the remainder of **a)** $22^{22} \mod 15$ **b)** $17^9 \mod 210$.
- **21.** Given positive integer n > 1. For any divisor d of the number n + 1, Ahmed has written a remainder of $n \mod d$ in his notebook, and has written a quotient of $n \mod d$ on the board. Prove that sets (more precisely: multisets) of integers on the board and in the notebook are the same.
- 22. Prove that there exist 2019 consecutive positive integers such that any of them is not a power (bigger than 1) of some integer.
- 23. Prove that any number of the form 10^{3k+1} cannot be expressed as the sum of two cubes.
- **24.** For which n > 1 there exist such positive integers $b_1, b_2, ..., b_n$ (not all of them are equal), that for all positive integers k a number $(b_1 + k)(b_2 + k)...(b_n + k)$ is a power (bigger than 1) of some integer number?
- **25.** Prove that all positive integers k for which $k^k + 1$ is divisible by 30 form an arithmetic progression. Find this arithmetic progression.
- **26.** Prove that for any prime p there exist two integers a and b such that $a^2 + b^2 + 1 = p$.
- 27. A teacher is waiting for a group of children from the grade 10 "M" in which there can be 1 or 2 or 3 or 30 people. Next to a teacher there are *n* different children who have already come. Prove that *n* can be such a number that no matter how many children from 10 "M" come, it will always be possible to divide the whole group into several carets with more that 1 child (i.e. smaller groups in which the number of children is a perfect square, that is bigger than 1).