Repeats and composition bias

Repeats

Frequency

14% proteins contains repeats (Marcotte et al, 1999)

1: Single amino acid repeats.

2: Longer imperfect tandem repeats. Assemble in structure.

Sequence, long, imperfect, tandem

MRAVVKSPIMCHEKSPSVCSPLNMTSSVCSPAGINSVSSTTASF GSFPVHSPITQGTPLTCSPNVENRGSRSHSPAHASNVGSPLSSP LSSMKSSISSPPSHCSVKSPVSSPNNVTLRSSVSSPANINN

Sequence, long, imperfect, tandem

MRAVVKSPIMCHEKSPSVCSPLNMTSSVCSPAGINSVSSTTASF GSFPVHSPITQGTPLTCSPNVENRGSRSHSPAHASNVGSPLSSP LSSMKSSISSPPSHCSVKSPVSSPNNVTLRSSVSSPANINN

Sequence, long, imperfect, tandem

```
MRAVVKSPIM CHE
KSPSVCSPLN
MTSSVCSPAG INSVSSTTASF
GSFPVHSPIT O
GTPLTCSPNV EN
RGSRSHSPAH ASN
VGSPLSSPLS S
MKSSISspps hcs
VKSPVSSPNN VT
T<sub>i</sub>rssvsspan tnn
```

Sequence, long, imperfect, tandem

```
MRAVVKSPIM CHE
KSPSVCSPLN
MTSSVCSPAG INSVSSTTASF
GSFPVHSPIT O
GTPLTCSPNV EN
RGSRSHSPAH ASN
VGSPISSPIS S
MKSSISSPPS HCS
VKSPVSSPNN VT
T<sub>i</sub>rssvsspan tnn
```


Sequence, long, imperfect, tandem

```
MRAVVKSPIM CHE
KSPSVCSPLN
MTSSVCSPAG INSVSSTTASF
GSFPVHSPIT O
GTPLTCSPNV EN
RGSRSHSPAH ASN
VGSPISSPIS S
MKSSISSPPS HCS
VKSPVSSPNN VT
T<sub>i</sub>rssvsspan tnn
```


http://weblogo.berkeley.edu

(Vlassi et al, 2013)

Andrade et al. (2001) *J Struct Biol*

Definition CBRs

Perfect repeat: QQQQQQQQQQQ

Imperfect: QQQQPQQQQQ

Amino acid type: DDDDDEEEDEDED

Compositionally biased regions (CBRs)

High frequency of one or two amino acids in a region.

Particular case of low complexity region

Sometimes straightforward. N-terminal human Huntingtin. How many **CBRs** can you find?

>sp|P42858|HD HUMAN Huntingtin OS=Homo sapiens MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPQLPQPPPQAQP LLPQPQPPPPPPPPPPPPPBPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPE FQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP RSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFG NFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLV PVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSI VELIAGGGSSCSPVLSRKOKGKVLLGEEEALEDDSESRSDVSSSALTASVKDEISGELAA SSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAV PSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQD EDEEATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQE NKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVG AAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSIL

Sometimes straightforward. N-terminal human Huntingtin. How many **CBRs** can you find?

>sp|P42858|HD HUMAN Huntingtin OS=Homo sapiens MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPQLPQPPPQAQP LLPQPQ**PPPPPPPPP**GPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPE FQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP RSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFG NFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICOHSRRTOYFYSWLLNVLLGLLV PVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSI VELIAGGGSSCSPVLSRKOKGKVLLGEEEALEDDSESRSDVSSSALTASVKDEISGELAA SSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAV PSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQD EDEEATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQE NKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVG AAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSIL

Sometimes straightforward. N-terminal human Huntingtin. How many **CBRs** can you find?

>sp|P42858|HD HUMAN Huntingtin OS=Homo sapiens MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPQLPQPPPQAQP LLPQPQ**PPPPPPPPP**GPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPE FQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP RSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFG NFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLV PVEDEHST**LLILGVLL**TLR**YLV**P**LL**QQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSI VELIAGGGSSCSPVLSRKOKGKVLLG**EEE**AL**EDD**S**E**SRSDVSSSALTASVKDEISGELAA SSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAV PSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQ**D EDEE**ATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQE NKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVG AAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSIL

Sometimes straightforward. N-terminal human Huntingtin. How many **CBRs** can you find?

>sp|P42858|HD HUMAN Huntingtin OS=Homo sapiens MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPQLPQPPPQAQP LL**PQPQPPPPPPPP**GPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPE FQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP RSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFG NFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLV PVEDEHST**LLILGVLL**TLR**YLV**P**LL**QQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSI VELIAGGGSSCSPVLSRKOKGKVLLG**EEE**AL**EDD**S**E**SRSDVSSSALTASVKDEISGELAA SSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAV PSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQ**D EDEE**ATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQE NKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVG AAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSIL

Sometimes straightforward. N-terminal human Huntingtin. How many **repeats** can you find?

>sp|P42858|HD HUMAN Huntingtin OS=Homo sapiens MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPQLPQPPPQAQP LLPQPQPPPPPPPPPPPPPBPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPE FQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP RSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFG NFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLV PVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSI VELIAGGGSSCSPVLSRKOKGKVLLGEEEALEDDSESRSDVSSSALTASVKDEISGELAA SSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAV PSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQD EDEEATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQE NKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVG AAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSIL

Often NOT straightforward. N-terminal human Huntingtin. How many **repeats** can you find?

>sp|P42858|HD HUMAN Huntingtin OS=Homo sapiens MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPQLPQPPPQAQP LLPQPQPPPPPPPPPPPPPBPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPE FQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAP RSLRAALWRFAELAHLVRPQK**CRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMAS**FG NFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLV PVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSI VELIAGGGSSCSPVLSRKOKGKVLLGEEEALEDDSESRSDVSSSALTASVKDEISGELAA SSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAV PSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQD EDEEATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQE NKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVG AAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSIL

Often NOT straightforward. N-terminal human Huntingtin. How many **repeats** can you find?

EFQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKA CRPYLVNLLPCLTRTSKRP-EESVQETLAAAVPKIMAS NDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHS TQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTLRYL PSAEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRT

Often NOT straightforward. N-terminal human Huntingtin. How many **repeats** can you find?

EFQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKA CRPYLVNLLPCLTRTSKRP-EESVQETLAAAVPKIMAS NDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHS TQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTLRYL PSAEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRT

EFQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKA
CRPYLVNLLPCLTRTSKRP-EESVQETLAAAVPKIMAS
NDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHS
TQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTLRYL
PSAEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRT

Repeats

Frequency repeats

Fraction of proteins annotated with the keyword REPEAT in SwissProt

		%
Archaea	27/3428	0.79
Viruses	81/8048	1.00
Bacteria	299/28438	1.05
Fungi	232/8334	2.78
Viridiplantae	153/6963	2.20
Metazoa	1538/28948	5.31
Rest of Eukaryota	92/2434	3.78

(Andrade et al 2001)

Comparing a sequence against itself

TLRSSVSSPANINNS
NMTSSVCSPANISV

1 match

8 matches

2 matches

TLRSSVSSPANINNS 1 match
NMTSSVCSPANISV

Dotlet

about | need help? | learn by example | new features in version 1.5

Exercise 1/3. Using Dotlet with the human mineralocorticoid receptor (MR)

- •Go to the Dotlet web page: http://myhits.isb-sib.ch/cgi-bin/dotlet
- •Click on the input button and paste the sequence of the human mineralocorticoid receptor (UniProt id P08235)
- •Click on the "compute" button
- •Try to find combinations of parameters that show patterns in the dot plot (Hint: You can adjust this finely using the arrows) (Hint2: Range 27%-36% works well)
- •Find repetitions clicking in the diagonal patterns: which repeated sequences do you find?

Exercise 1/4. Using Dotlet with the human mineralocorticoid receptor (MR)

Using a multiple sequence alignment helps. Conserved repeated patterns

```
mr_danio/1-970
mr rutilus/1-973
mr_cyprinus/1-971
mr_oryzias/1-994
mr_takifugu/1-991
mr oreochromis/1-994 TCFAPLCSSVSSPVSQTSCAATLAN IKRRNSVTCSPVESSTVGSPPLTSPLNVMRSPMSSPQSMSSVRSPPSCSTTCN IRSSV
mr_xenopus/1-979
mr anolis/1-990
mr_alligator/1-985
mr_taeniopygia/1-981
                     -- AMHSPIGQGTPLSRSPNVESRGSMLHSPAHVSNVGS-PLSSPISSMKSPISSPPSHCSVKSPVSSPNNITMRSSVSS
mr gallus/1-986
mr monodelphis/1-993 - - FGSF
                     --PVHSPITQGTPLPCSPNVENRSSVSHSPAHASNVGS-PLSSPISSMKSPISSPPSHCSVKSPVSSPNNVTMRSSV
              --FGSF--PVHSPITQGTSLTCSPSVENRGSRSHSPVHASNVGS-PLSSPLSSMKSPISSPPSHCSVKSPVSSPNNVPLRSSVSSPANL
mr_mus/1-980
              --FGSF--PVHSPITQGTSLTCSPSVENRGSRSHSPTHASNVGS-PLSSPLSSMKSPISSPPSHCSVKSPVSSPNNVPLRS
mr_rattus/1-981
mr_homo/1-984
              --FGSF--PVHSPITQGTPLTCSPNAENRGSRSHSPAHASNVGS-PLSSPLSSMKSSISSPPSHCSVKSPVSSPNNVTLRSSVSSPANI
mr_equus/1-984
              --FGNF--TVHSPITQGTPLTCSPNVENRGSRSHSPAHASNVGS-PLSSPLSSMKSPISSPPSHCSVKSPVSSPNNVTLRSSVSSP
```

JalView with Regular Expression searches

Using a multiple sequence alignment helps Conserved repeated patterns

JalView with Regular Expression searches

Using a multiple sequence alignment helps Conserved repeated patterns

JalView with Regular Expression searches

Using a multiple sequence alignment helps Conserved repeated patterns

JalView with Regular Expression searches

Regular Expressions:
 [LS]P.A
 matches L or S, followed by P, followed by anything, followed by A

Using a multiple sequence alignment helps Conserved repeated patterns

JalView with Regular Expression searches

Regular Expressions:

[LS]P.A

matches L or S, followed by P, followed by anything, followed by A Which one is not matched?

·LPTA, SPAA, LPPA, LPAP, SPLA

Using a multiple sequence alignment helps Conserved repeated patterns

JalView with Regular Expression searches

Regular Expressions:

[LS]P.A

matches L or S, followed by P, followed by anything, followed by A Which one is not matched?

·LPTA, SPAA, LPPA, LPAP, SPLA

Exercise 2/4. Using JalView with a MSA of the MR with orthologs

- •Load the multiple sequence alignment of the MR in JalView: MR1_fasta.txt
- Use the "Select > find" (of Ctrl+F) option with a regular expression and mark all matches (click the "Find all" option!)
- •Try to find the expression that matches more repeats. How many repeats do you see? How long are they? Would you correct the alignment based on these findings?

|158508572|Hsapiens |31324675|Cjacchus |126331313|Mdomestica |73978292|Clupus |301763180|Amelanoleuca |6981208|Rnorvegicus |144227212|Mmusculus |148224443|Xlaevis |327274009|Acarolinensis |115529242|Tguttata |225936142|Ggallus |239923135|Rrutilus |154240734|Drerio

(Vlassi et al, 2013)

Composition bias

Definition

14% proteins contains repeats (Marcotte et al, 1999)

1: Single amino acid repeats.

2: Longer imperfect tandem repeats. Assemble in structure.

Definition CBRs

Perfect repeat: QQQQQQQQQQQ

Imperfect: QQQQPQQQQQ

Amino acid type: DDDDDEEEDEDED

Compositionally biased regions (CBRs)

High frequency of one or two amino acids in a region.

Particular case of low complexity region

Function CBRs

Conservation => Function

Length, amino acid type not necessarily conserved

Frequency: 1 in 3 proteins contains a compositionally biased region (Wootton, 1994), ~11% conserved (Sim and Creamer, 2004)

Function CBRs

Conservation => Function

Length, amino acid type not necessarily conserved

Functions:

Passive: linkers

Active: binding, mediate protein interaction,

structural integrity

(Sim and Creamer, 2004)

Structure of CBRs

Often variable or flexible: do not easily crystalize

1CJF: profilin bound to polyP

2IF8: Inositol Phosphate Multikinase Ipk2

2IF8: Inositol Phosphate Multikinase Ipk2

2CX5: mitochondrial cytochrome c
B subunit N-terminal

Types of CBRs

Table 1. Number of homopeptide repeats and RCPs in GENPEPT, Eukaryotes, and Prokaryotes

	GENPEPT		Eukaryote		Prokaryote		Other (viruses/environmental sequences)	
	Repeats	Proteins	Repeats	Proteins	Repeats	Proteins	Repeats	Proteins
Alanine	6132	5045	5465	4425	251	250	416	370
Valine	149	117	94	83	9	9	46	25
Leucine	1638	1602	1446	1426	70	70	122	106
Isoleucine	57	56	34	33	3	3	20	20
Proline	4837	3931	4157	3333	217	184	463	414
Methionine	27	22	19	18	0	0	8	4
Phenylalanine	196	186	175	172	1	1	20	13
Tryptophan	3	3	3	3	0	0	0	0
Glycine	5981	5020	5002	4168	310	281	669	571
Serine	6383	5463	5424	4742	378	258	581	463
Threonine	2997	2415	2492	1984	63	59	442	372
Cystine	64	52	38	38	0	0	26	14
Asparagine	7126	3731	6962	3597	31	29	133	105
Glutamine	8334	5699	8022	5464	52	51	260	184
Tyrosine	56	51	39	38	4	4	13	9
Aspartic Acid	1835	1707	1554	1451	34	34	247	222
Glutamic Acid	4779	4302	4334	3912	67	61	378	329
Lysine	2081	1926	1920	1774	25	25	136	127
Árginine	751	714	462	443	60	57	229	214
Histidine	1140	1061	1049	971	32	32	59	58
Total	54,566	37,355	48,691	32,628	1607	1388	4268	3339

More than 6 aa in length, 1.4% of all, 87% of them in Euk (Faux et al 2005)

Types of CBRs

Distribution is not random:

Eukaryota:

Most common: poly-Q, poly-N, poly-A, poly-S, poly-G

Prokaryota:

Most common: poly-S, poly-G, poly-A, poly-P

Relatively rare: poly-Q, poly-N

Very rare or absent in both eukaryota and prokaryota: Poly-I, Poly-M, Poly-W, Poly-C, Poly-Y

Toxicity of long stretches of hydrophobic residues.

(Faux et al 2005)

Normally filtered out as low complexity region: they give spurious BLAST hits

Normally filtered out as low complexity region: they give spurious BLAST hits

```
IDENTITIES
||||||||
IDENTITIES 10/10 id
```

Normally filtered out as low complexity region: they give spurious BLAST hits

SIINDIETTE Shuffle: 2/10 id

Option for pre-BLAST treatment SEG algorithm:

 Identify sequence regions with low information content over a sequence window
 Merge neighbouring regions

Eliminates hits against common acidic-, basic- or proline-rich regions

(Wootton and Federhen, 1993)

A particular analysis...

Microtubule localization of Δx-GFP

A particular analysis...

...triggers BiasViz

http://biasviz.sourceforge.net/

Huska, et al. (2007). Bioinformatics

A particular analysis...

...triggers BiasViz

http://biasviz.sourceforge.net/

Huska, et al. (2007). Bioinformatics

Exercise 3/4. Viewing CBRs in an alignment with BiasViz2

- Go to the BiasViz2 web page: http://biasviz.souceforge.net/
- Launch BiasViz2
- Load the alignment little_MSA_fasta.txt on the step 1 section
- Hit the "Go to graphical view" button
- •Try to find combinations of parameters that reveal CBRs
- •Try hydrophobic residues and window size 10. Remember that this is a transmembrane protein. What is this result telling you?
- •Can you see other biased regions?

Exercise 4/4. Viewing CBRs in an alignment with BiasViz2

- Exit BiasViz2 and launch it again
- Load the alignment MR1_fasta.txt on the step 1 section
- ·Hit the "Go to graphical view" button
- •Try to find combinations of parameters that reveal CBRs
- •Can you find a large (>100aa) Serine rich region? (In Display options, try the threshold option with 25% cut-off)