DEEP LEARNING IN COMPUTER VISION - EXERCISE 1

KARSTEN HERTH, FELIX HUMMEL, FELIX KAMMERLANDER, AND DAVID PALOSCH

Exercise 1.2 (e)

The model is not able to remove the noise. This is due to the fact, that the model tries to reduce vignetting according to a radial symmetric function. However, the noise does not behave according to a radial symmetric law. In practice, we think that noise even gets worse after applying devignetting to the images. This could be explained as follows: If the noise was added to the pictures after vignetting with some standard derivation $\sigma > 0$ and we apply the model in order to remove the vignette, then the noise gets scaled by the factor we applied, i.e. the observed standard derivation σ' after removing the vignetting has increased compared to the original noise, i.e. $\sigma' > \sigma$.

Exercise 1.3

(a) Let $E: \mathbb{R}^3 \to \mathbb{R}$ be given by

$$E(\theta) := 2\theta_1^2 + 4\theta_2 + \max\{0, \theta_2 + \theta_3\}.$$

Performing two steps of gradient descent for E starting at $\theta^{(0)} = (2, 1, 0)^{\top}$ with step size $\tau = \frac{1}{2}$, we end up at $\theta^{(2)} = (x, x, x)^{\top}$.

(b) Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ both be differentiable and $h:=g \circ f$. Then,

$$\nabla h(p) = g'(f(p))\nabla f(p) \quad (p \in \mathbb{R}^n).$$

Proof.

(a) The gradient of E is given by

$$\nabla E(\theta) = \begin{cases} (4\theta_1, 5, 1)^\top, & \theta_2 + \theta_3 \ge 0, \\ (4\theta_1, 4, 0)^\top, & \text{else.} \end{cases}$$

Hence, we have $\nabla E(\theta^{(0)}) = (8,5,1)^{\top}$ and we obtain

$$\begin{split} \theta^{(1)} &= \theta^{(0)} - \tau \nabla E(\theta^{(0)}) \\ &= (2, 1, 0)^{\top} - \frac{1}{2} (8, 5, 1)^{\top} \\ &= (-2, -\frac{3}{2}, -\frac{1}{2})^{\top}. \end{split}$$

This time, holds that $\nabla E(\theta^{(1)}) = (-8, 4, 0)^{\top}$ and consequently,

$$\theta^{(2)} = (-2, -\frac{3}{2}, -\frac{1}{2})^{\top} - \frac{1}{2}(-8, 4, 0)^{\top}$$
$$= (2, -\frac{7}{2}, -\frac{1}{2})^{\top}.$$

(b) Let $q \in \mathbb{R}^n \setminus \{0\}$. Then

$$h(p+q) - h(p) = g(f(p+q)) - g(f(p))$$

= $g(f(p) + \nabla f(p)q + o(|q|)) - g(f(p))$
= $g(f(p) + z_q)$

Date: November 12, 2017.

2 $\,$ KARSTEN HERTH, FELIX HUMMEL, FELIX KAMMERLANDER, AND DAVID PALOSCH

holds for all $p \in \mathbb{R}^n$ where we have set $z_q := \nabla f(p)q + o(|q|) \in \mathbb{R}$. Using the differntiability of g at f(p) we obtain

$$\begin{split} h(p+q) - h(p) &= g(f(p)) + g'(f(p))z_q + o(|z_q|) \\ &= h(p) + g'(f(p))\nabla f(p)q + g'(f(p))o(|q|) + o(|z_q|) \\ &= h(p) + g'(f(p))\nabla f(p)q + o(|q|) \end{split}$$

for all $p \in \mathbb{R}^n$, since $o(|z_q|) = o(|q|)$. Hence, the assertion follows.