Sistema Embarcado

Professor – Ramon Trigo

Eletrônica Básica

Uma das vantagens e grande apelo do Arduino é a possibilidade de se desenvolver projetos de Eletrônica com pouco ou quase nenhum conhecimento de eletrônica. Porém algumas informações essenciais que envolvem os conceitos de tensão, corrente e resistência (Lei de Ohm), e também o principio de funcionamento e a identificação correta dos principais componentes eletrônicos são fundamentais para o desenvolvimento dos projetos.

Tensão, corrente e resistência

A eletrônica está fundamentada sobre os conceitos de tensão, corrente e resistência.

Podemos entender como tensão a energia potencial armazenada em uma pilha ou bateria e que fluirá quando um circuito for fechado, através de um meio condutor, entre os polos de maior e menor potenciais (sentido convencional). Como analogia, podemos considerar a água armazenada em dois recipientes conectados por um cano (meio condutor). A água fluirá do recipiente que possui maior quantidade de água para o menor, ou seja.

Tensão

Em eletrônica, o princípio é o mesmo. Por exemplo, os polos positivos e negativos de uma pilha, ou qualquer outra fonte de energia, indicam o sentido no qual a corrente elétrica fluirá. Dessa forma podemos definir que a corrente elétrica é a movimentação ordenada de cargas elétricas através de um meio condutos. Para efeito de análise dos circuitos elétricos e eletrônicos, podemos observar a figura que a corrente elétrica poderá circular em dois sentidos:

a: sentido real, é chamado assim pois, em termos de física é o que realmente ocorre em um circuito elétrico, isto é, o movimento de cargas negativas do menor para o maior potencial.

b: sentido convencional, que resulta do movimento das cargas positivas, ou seja, do polo de maior potencial para o de menor. O sentido convencional é convencional é mais utilizado para fins didáticos, com o intuito de facilitar o entendimento do conceito

Tensão

Correntes

Existem dois tipos de circuitos eletrônicos. Aqueles fundamentados sobre uma fonte de energia de corrente continua.

Exemplo, pilhas, baterias ou qualquer elemento que apresenta um polo positivo (+) e outro negativo (-)

Como testar bateria -

YouTube https://youtu.be/XPFP7w7Xpgk

Correntes

Também existem os circuitos de corrente alternada, dos quais podemos citar como melhor exemplo as tomadas residências, que fornecem uma alimentação de 100 ou 200 volts.

Movimentação

A movimentação das cargas elétricas através de um meio condutor pode encontrar elementos que oferecem certa resistência à passagem dessas cargas

Por exemplo a resistência poderia ser o filamento de uma lâmpada: a passagem da corrente elétrica produz aquecimento e o filamento fica incandescente. É esse mesmo efeito que permite que a água de um chuveiro

Resistência

Resistência elétrica é a capacidade de um corpo qualquer se opor à passagem de corrente elétrica mesmo quando existe uma diferença de potencial aplicada. É medida em ohms (Ω) .

Resistores são componentes que têm por finalidade oferecer uma oposição à passagem de corrente elétrica, através de seu material. A essa oposição damos o nome de resistência elétrica.

Causam uma queda de tensão em alguma parte de um circuito elétrico, porém jamais causam quedas de corrente elétrica, apesar de limitar a corrente.

Isso significa que a corrente elétrica que entra em um terminal do resistor será exatamente a mesma que sai pelo outro terminal, porém há uma queda de tensão.

Utilizando-se disso, é possível usar os resistores para controlar a tensão sobre os componentes desejados.

Lei de Ohm – Resistência

O valor de resistência é conhecido como ohm, e seu símbolo é o ômega grego, Ω . Nesse caso, o pino digital 10 está emitindo 5 V de corrente contínua a 40 mA (miliampères; amperagem de acordo com o datasheet l da Atmega), e seu LED requer (de acordo com o datasheet) uma voltagem de 2 V e uma corrente de 35 mA. Portanto, você necessita de um resistor que reduza os 5 V para 2 V, e a corrente de 40 mA para 35 mA, caso queira exibir o LED com brilho máximo. Se você deseja um LED de menor luminosidade, pode utilizar um valor mais alto de resistência.

Nota: NUNCA utilize um valor de resistor mais BAIXO que o necessário. Você colocará corrente demais no LED, danificando-o permanentemente. Você também poderia danificar outros componentes de seu circuito.

A importância da resistência

https://youtu.be/kQ8jpeQzAM0

Calcular a resistência

A fórmula para calcular o resistor necessário é

$$R = (VS - VL) / I$$

Em que VS é a voltagem fornecida, VL é a voltagem do LED e I é a corrente do LED.

Nosso LED de exemplo tem uma voltagem de 2 V e uma corrente de 35 mA, conectado a um pino digital do Arduino, de 5 V, assim o valor necessário para o resistor seria de

R = (5 - 2) / 0.035 o que dá um valor de 85,71.

Resistores vêm com valores-padrão e o valor comum mais próximo nesse caso seria de 100Ω .

Encontrar o resistor

Mas como encontrar um resistor de 100Ω ?

Um resistor é pequeno demais para conter informações de fácil leitura, por isso, resistores utilizam um código de cores.

Ao redor do resistor você tipicamente encontrará quatro faixas de cores; utilizando o código da tabela você pode descobrir o valor de um resistor.

Da mesma forma, você pode descobrir o código de cores de uma determinada resistência.

Tabela

Cor	Primeira faixa	Segunda faixa	Terceira faixa (multiplicador)	Quarta faixa (tolerância)
Preto	0	0	x10 ⁰	
Marrom	1	1	x101	±1%
Vermelho	2	2	x10 ²	±2%
Laranja	3	3	x10³	
Amarelo	4	4	x10 ⁴	
Verde	5	5	x10 ⁵	±0,5%
Azul	6	6	x10 ⁶	±0,25%
Violeta	7	7	x10 ⁷	±0,1%
Cinza	8	8	x10 ⁸	±0,05%
Branco	9	9	x109	
Dourado			x10 ⁻¹	±5%
Prata			x10 ⁻²	±10%
Nenhuma				±20%

Encontrar o resistor

De acordo com a tabela, para um resistor de $100~\Omega$ você necessita de 1 na primeira faixa, que é marrom, seguido por um 0 na faixa seguinte, que é preta. Então, deve multiplicar isso por 101 (em outras palavras, adicionar um zero), o que resulta em marrom na terceira faixa. A faixa final indica a tolerância do resistor. Caso seu resistor tenha uma faixa dourada, ele tem uma tolerância de $\pm 5\%$; isso significa que o valor, de fato, do resistor varia entre $95~\Omega$ e $105~\Omega$. Dessa forma, se você tem um LED que requer 2~V e 35~ mA, necessitará de um resistor com uma combinação de faixas Marrom, Preto, Marrom.

