## **Dataset: Iris Flower dataset**



Note: Only two species of flower are displayed



In favor of null:  $log_e(BF_{01}) = -10.31$ , sampling = independent multinomial, a = 1.00

 $\chi^2_{\rm Pearson}(9) = 138.29, \, \rho = <0.001, \, V_{\rm Cramer} = 0.28, \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm obs} = 592 \, {\rm CI}_{95\%} \, [0.23, \, 0.31], \, n_{\rm$ 



In favor of null:  $log_e(BF_{01}) = -56.78$ , sampling = independent multinomial, a = 1.00

## Fuel efficiency by type of car transmission

t(18.33) = -3.77, p = 0.001, g = -1.38,  $Cl_{95\%}$  [-2.17, -0.51],  $n_{obs} = 32$ 



Transmission (0 = automatic, 1 = manual)

In favor of null:  $log_e(BF_{01}) = -4.46$ ,  $r_{Cauchy}^{JZS} = 0.71$ 



Pairwise comparisons: Dwass-Steel-Crichtlow-Fligner test; Adjustment (p-value): Benjamini & Hochberg



AIC = 166, BIC = 173, log-likelihood = -78

Summary effect:  $\beta$  = 0.619, Cl<sub>95%</sub> [0.407, 0.830], z = 5.736, se = 0.108, p = < 0.001



In favor of null:  $log_e(BF_{01}) = -2.680$ ,  $d_{mean}^{posterior} = 0.494$ ,  $CI_{95\%}$  [0.158, 0.778] Heterogeneity: Q(4) = 109, p = < 0.001,  $\tau_{REML}^2 = 0.056$ ,  $I^2 = 96.81\%$