	Assignment 6. Shini Dutter
	AA 674/474 2003121011
Ø.1·	N= 1.4 Cuty
7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
(a)	Coasponding Wavelength:
_	c= V >
) = c/v
	$= 3 \times 10^{8} = 0.214 \text{ m} = 21.4 \text{ cm}$
	1.4×109
(1,	
ر على	This wavelength corresponds to endio board of electronognetic
	opectrum.
(و)	Diameter of radio telescope = 25 m
	Resolution of madio telescope = 1.022
	D
	= 1.02 × 0.214
	25
	= 0.0087 radians
	= 0.498° \(\alpha \alpha 9.91'
(d)	
G.,	obverage effective area of telescope = 12-40
	= 0.214 x 0.214
	५ फ

Solid edugle = 7.19 ×10⁻⁶ sa

Felux density = f_v = 350Jy = 350 × w^{-26} W m⁻²Hz⁻¹

$$T = \frac{T_{1} \lambda^{2}}{2k} = \frac{f_{1} \lambda^{2}}{2k} = \frac{350 \times 10^{16} \times (0.06)^{2} \times 10}{2 \times 10^{-23} \times 7.18 \times 10^{-6}}$$

(b) Intensity of source at
$$2.7 \text{ cm}$$
 $I_{\nu} = 2kT_{\nu} = 2 \times 1.38 \times 10^{-25} \times 63.59$

$$= 2.41 \times 10^{-14} \text{ Wm}^{-2} \text{ tg}^{-1} \text{ sg}^{-1}$$

Q.3. Specifications of telescope A: Diameter = 5 m Netection wavelength = 2 cm Specification of telescope B: Diameter = 10 cm Detection wavelength = 6cm Thun density of ALB = 1 Ty at observed werelingth fr = lover Asea x Jerguency (a) Power sollected by B = PB = [Fv × Aex × Freq(DV)] B
Poroce Collected by B PB [Fv × Aex × Freq(DV)]B = 10-26 x 7 (5/2) = 19625 × 10-25 (le) <u>Resolution of A</u> = Resolution of B = <u>14 x D6</u>
DA 1B OA OB = 2 × 10 2 2

	=> Oa: Or = 2:3
Q.4.	Nianeter = 2m
	Wavelength Olesaved = 21cm
	Wavelength Olescaved = 21 cm $4v = 1.5 \text{ MHz} = 1.5 \times 10^{6} \text{ Hz}$
(a)	Augular resolution with optimum edge taper
	=1.15 × A/D
	=1.15 x 0.21/2
	= 0.121 rad = 6.92°
(6)	Maximum collecting area : Agro × 0.82 [due to edge type]
	= PD2 x 0.82
	= <u>n(2)</u> x0.82 = 2.576 m²
	4 ×0-82 = 2.576 m²
(_e)	lower detected for I In source located at peak of a
	Power detected for I Jy source located at peak of a
	P= Fy Ae Dv
	oft sidelove,
	Power detected (Psc) = 0.4 × 10 × 2.576×1.5×106
	(00
	= [.545 × 10-27 W
	1.743×10 W

a f = 20 lesino

= 26 x 20x sin 15

0.06

= 813.1 rad

= 259.88?

Q.b. Calibrated surpose of multiplicative interferometer

$$R = f_{V} \cos \left[2\% L_{L} \sin \left(\omega_{e} + \omega_{B} \right) \right]$$

$$f_{V} = 3 I_{V}$$

$$\omega_{e} = 7.29 \times (0^{-5}) \text{ and } |_{L}$$

$$\Delta f = 313.1 \text{ rad} = 813.1$$

$$Response = 5 \cos \left[813.1 \left(\cos d \right) \right]$$

$$= -2.522 I_{V}$$
Output is massed over a save of time

(b) adaptitude of detected fringer = 3 I_{V}

Other of fringe detected = 813.1 and

$$\approx 259.82 \cos d$$
Paul phone value 2.59 % gives bow for the source is
from the quite.

	rosinge phase = 0.92 ??
(c)	On full oscillation occurs when DQ= 20
• •	i.e.,
	Δ Ø = 2û
	211 Le [sin (set) - 2100] . 211
	_
	20 × 20 [2in (7.29 x10 5 xk) - 258.92] = 211
	0-06
	t= pin-1 (0-261) n 1
	7·29 ×10-5
	= 3619.645
	HA = 1 h = 2600 A
	do ve have to wait 3619.64-3600 = 208
	more to measure full fringe oscillation.
\$.}·	dky position of somee = 14.98° to the west of genith.
(a)) Cheinge phase 0 = 211 brin0 = 211 p 30 sin (14.98)
	0.06
	= 812.04 mad
	= 259· 48 17 sand
	Visibility amplitude would be 3 Ty

	Virility phase = 258.829 -258.489
(Le)	Plane centre located lowards point source
	Visibeility amplitude 10 unchanged best place of fringe furtion = obsoured place
	de, nisibility place: 0
	Visibility depends on the choice of source and location of phase center. So it is different in (a) and (b)
(و)	Lines source flux density remains the same i.e. 3Ty
	for baseline 10 m s 40m, the visibility amplitude stays
	Phase centre coincides with the source so visibility
	phare will be 0 for 2 bankins
8.5	Ywo beright points of eadio galany Cygnus A are
	separated by 0.71
	Waveleigth of interferometer - 6 cm
	besselire needed to have a sesolution of 0.71 10:
	R= 1.027
	Dhan - Vascline

	here R= 0.71
	= 0.71 × 1° 60
	60
	= 0.21 p 1 7 ii rad
	69 140
	= 1.02 × 0.06
	nanimum bascline
	=> Mari mum boscline = 1.02 x 0.06
	0.81 × 1 × 16.0
	50 H
	= 296.32 m
	_
Q.9·	Preisge frequency (given):
	$\frac{d\theta}{dt} = \omega_{F} = \frac{1}{T} \omega_{E} \frac{L}{R} \left[\cos \theta \cos \omega_{E} t_{A} \right]$
	_
	where we = 7.3 ×10 ⁻⁵ had/s
(a)	d= 8h 54 m 48.865
	δ = 20° 06'30".6 = 20.103°
	HA = 2h = 7200 .
	=> > = 1. 35 cm
	de = -0.432 and (s
	OU.

```
Using the relation from fringe frequency gives: -
      de = twe le cost cost ros wethor
    -0.432: 17.3 ×10-5 x 1 [ cos 20.109 ess (7.3×10-5 x2200)]
       => lu= -0.438 x0.0135
              7.3×10-5 × 1x cos 20.108 x cos (7.3×10-5, 7200)
              = 15.668 m
(b) x= 13h 24 min 12.09 s=
  δ = 40° 48 ' 4.4" = 40.803°
   de = 0.298
   dt
   HA = 9
  0.288 = 7.3 ×10-5 ×15.668 [ cos 40.803 cos (7.3×105 + tra)
                        0.0135
   cos (7.3 ×10 - x+4) = 0.288 × 6.0135
                       7-3×10= ×15.668 × 005 40.803
     ++A= 1 CA T 0.288 ×0.0135
7.3×10-5 2.3×10-5 ×15.668 ×CA40.802
    tua = 10605-9 s
        = 2.95 h
```

Q.10·	SMA hows 8 6m dishes
2	VLA has 27 25m dishes
	Boscline of SMA = 8C2 = 8!
	21 × 61
	= 9x7 = 29 2
	2
	Number of leaseline in VLA 27 Co
	= 271
	र्ग × घटा
	= 27×26 2
	2
	= 27×13 = 251
	If one more antenna is added, number of baselines for $SMA = 9(2 = 9! = 9x8 = 36)$
	number of baselines for
	SMA = 9(= 9! = 9x8 = 36
	ત્રી, ×રા કે
	-1. 8 decrease in harelines = 36-29 ×100
	· ·
	= 28·571.
	= $28.571.$ Wurder of baselines for VLA: $2^{4}C_{2} = 24! = 23 \times 27 = 378$ $2! \times 26!$
	29 C2 = 24! = 24 x 27 = 378
	zix50i z

= (8) $100 distance neded to 100 distance nede to 100 distance neded to 100 distance nede to 100 distance nede to 100 distance neded to 100 distanc$	=1145.4 god-1 -4 coc, UV distance
IV distance meded to size of source $ \begin{array}{rcl} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	= 1145.4 god -1 -4 coc, UV distance
From a good map of the	=1145.4 god-1 -4 coc, UV distance
For a good map of $he = \frac{1}{8.07 \times 10^{-6}}$ dt = 3 = 1.35 cm, has	coce, UV distance.
for a good map of the 1 = 123 8.07×10^{-6} At $3 = 1.35$ cm, have	coc, UV distance,
for a good map of the 1 = 123 8.07×10^{-6} At $3 = 1.35$ cm, have	coce, UV distance.
the $\frac{1}{8.07 \times 10^{-6}}$ at $3 = 1.35$ cm, have	१।५
8.07-x10-6 dt 7 = 1.35 cm, lose	
^	line maded will be be
^	
	(0.0135 p123915) m
= 15.4 ho 167	
•	
le will need baseline	Leight minimum = 1
le will need baseline rassima = 1673 m for	a good map of source.
)	