Universality Warming Up

Footman

當我们定义完了 (co-)limit, 很自然的, 我们應该考慮下面这些事: the property of limits, what kind of catgory contained what kind of limits, and what limits can explain?

首先, 我们介绍一些基本的極限, 馬上我们就會看到為什么他们是基本的.

我们稱 \mathcal{J} 是 discrete 范疇,如果對于 \mathcal{J} 中的態射我们有 $\mathcal{J}(x,y)=*\iff x=y, \mathcal{J}(x,y)=\varnothing \iff x\neq y.$ 實際上我们可以把这个范疇和集合 $\mathrm{Ob}(\mathcal{J})$ 等同起來. 我们稱任意的 \mathcal{J} -diagramF 的極限 $\prod_{j\in\mathcal{J}} Fj$ 為一个 product of Fj. Dually,我们记 $\coprod_{j\in\mathcal{J}} Fj$ 為 coproduct of Fj. 在集合范疇中 product 就是笛卡爾積, coproduct 就是無交并. 特别的,當 \mathcal{J} 是空的時候,他们的 product 和 coproduct 分别對應了終對象和始對象.

令 \mathcal{J} 是只有兩个對象 x,y 的范疇,如果这个 $\mathcal{J}(x,y)$ 是空集,我们也记 \mathcal{J} -diagram F 的極限是 $Fx \times Fy$. 若此時態 射 $f\colon Fx \to Fy$ 存在,則我们可以誘導出一个態射 $\Gamma_f\colon Fx \to Fx \times Fy$ 如,稱為 graph of f. 注意到,此時 Γ_f 是單的,并且 the projection p_{Fx} 是滿的. 如果 $\mathcal{J}(x,y)$ 非空,則我们稱 \mathcal{J} -diagram 的極限 $\operatorname{eq}_{f\in\operatorname{Mor}(\mathcal{J})}Ff$ 為 equalizer of morphisms Ff. Dually $\operatorname{coeq}_{f\in\operatorname{Mor}(\mathcal{J})}Ff$ 為 coequalizer of morphisms Ff. 在集合范疇中,我们可以把 equalizer 看成是滿足態射相等的子集,而 coequalizer 則是商去態射相等的集合.

令 \mathcal{J} 是一个有終對象 X 的范瞻,并且額外滿足 $\mathcal{J}(Y,Z) = \emptyset \iff Z \neq X,Y \neq Z$, $\mathcal{J}(Y,Y) = *$,則我们稱 \mathcal{J} -diagram F 的極限 $\prod_{X,Y \in \mathcal{J}} FY$ 是一个 pullback (或者更形象的,是一个 fibre product). Dually, $\prod_{X,Y \in \mathcal{J}} FY$ 是一个 pushout. 在集合范瞻中,pullback 是一个笛卡爾積的子集,滿足他们映射到 FX 的豫相等,而 pushout 这是一个無交并的商集(也即拓撲空間中的粘合).并且如果每个投射都是單的,pullback 也可以看成是一些集合的交集.

注意到如果 FX 恰好是 \mathcal{C} 中的終對象,則 pullback 就退化成 product. 而 equalizer 就變成 pullback of graph of morphisms. 反過來的,我们可以把 pullback 看成是 equalizer of product,并且終對象看成是 empty product. 这 提示我们,或許一些極限是可以被表示成另一些極限的.

為了解釋清楚这个問題,现在我们把我们的視角關注于一个更廣的范疇,Bund($\mathscr C$),这个范疇其中的對象是 $F\colon \mathcal J\to \mathscr C$ 的函子,令 $H\colon \mathcal J'\to \mathscr C$,而態射 $F\to H$,實際上是指一个函子 $G\colon \mathcal J'\to \mathcal J$,配備上一个自然變換 $\eta\colon FG\to H$. 如果 $\mu\colon \varprojlim_{\mathcal J} F\to F$ and $\lambda\colon \varprojlim_{\mathcal J} H\to H$ 是 F,H 的 limiting cone,則我们有下圖:

$$\varprojlim_{\mathcal{J}} F \xrightarrow{---} \varprojlim_{\mathcal{J}} H$$

$$\downarrow^{\mu_{G_j}} \qquad \downarrow^{\lambda_j}$$

$$FGj \xrightarrow{\eta_j} Hj$$

交換, 事實上我们有函子 \lim : Bund(\mathscr{C}) $\to \mathscr{C}$.

在这一面子的加持下,我们才能做下面这件事。 對于任意的 \mathcal{J} 我们可以定义 $\mathcal{J}[i] := \operatorname{Fun}([i],J)$. 作為集合,顯然有 $d^0,d^1\colon \mathcal{J}[1] \to \mathcal{J}[0]$ 并且 $\mathcal{J}[0] \hookrightarrow \mathcal{J}$. 注意到 $F\operatorname{cod}\colon \mathcal{J}[1] \to \mathcal{E},f \mapsto \operatorname{cod} f$ 满足 $Fd_1 = F\operatorname{cod}$ 并且 $\eta\colon Fd_0 \to F\operatorname{cod},\eta_f = Ff\colon F\operatorname{dom} f \to F\operatorname{cod} f$,于是我们就可以有 $\operatorname{Bund}(\mathcal{E})$ 中的態射

$$F \longrightarrow F_0 \xrightarrow{d_*^0} F \operatorname{cod}$$

并且實際上, 8 是完備的話, 我们就會有

$$\varprojlim_{\mathcal{I}} F \longrightarrow \varprojlim_{\mathcal{I}[0]} F_0 \xrightarrow{d_*^0} \varprojlim_{\mathcal{I}^1} F_{\operatorname{cod}}$$

是一个 equalizer of products. 至此, 我们巧妙的給出了完備判準: 對任意范疇 \mathcal{C} , 以下幾个條件等價

- 8 對任意 (resp. 有限) 圖表有極限存在,
- 8 存在任意 (resp. 有限)fibre product, 以及 terminal object.

• 8 存在任意 (resp. 有限)product, 以及 equalizer.

事實上、關于圖表的'組合性質', 我们是能談論非常非常多的, 在这里不赘述。根據上述討論, 我们知道集合范畴是完備的.

當然, 并不是什么范畴都是完備的. 所以我们要考慮一个范畴的'完備化', 我们希望完備化要滿足一些條件, 首先是得是fully faithful, 并且完備化和取極限應當交換 (这相當于是說, 我们原先的范畴是完備化的一个 full subcategory). 同样的, 為了說明这个問題, 我们應當先對函子范疇有一些基本的了解.

在上一次討論班中,我们知道若 $F: \mathcal{C} \leftrightarrow \mathcal{D}: G$ 是一个 adjoint pair 則 $F_*: \operatorname{Fun}(\mathcal{J}, \mathcal{C}) \leftrightarrow \operatorname{Fun}(\mathcal{J}, \mathcal{D}): G_*$ 仍是一个 adjoint pair. 这種性質能帮助我们驗證下面的圖表交換:

$$\operatorname{Fun}(\mathcal{H},\mathcal{C}) \xrightarrow{\Delta_{\mathcal{J}}} \operatorname{Fun}(\mathcal{J},\operatorname{Fun}(\mathcal{H},\mathcal{C}))$$

$$\parallel \qquad \qquad \downarrow^{\simeq}$$

$$\operatorname{Fun}(\mathcal{H},\mathcal{C}) \xrightarrow{\varprojlim_{\mathcal{J}}} \operatorname{Fun}(\mathcal{H},\operatorname{Fun}(\mathcal{J},\mathcal{C}))$$

干是我们可以得到, 若 \mathcal{C} 是 \mathcal{J} -complete, 則 Fun(\mathcal{H} , \mathcal{C}) 也是 \mathcal{J} -complete, 并且我们根據上面的圖表, 我们非常自然地知道極限的計算應當是 pointwise. (这也說明了為啥表示范疇里的核就是直接在模范疇里取核了, 并且也說明了 presheaf of abel group on topological space X is abelian).

我们很自然的想到,由于 Set is complete,所以 Set $\mathscr{C}^{\mathrm{op}}$ is complete,是否 presheaf category of \mathscr{C} 就是 \mathscr{C} 的完備化呢? 選真是,这一完備化我们就取 Yoneda embedding: $\mathscr{C} \hookrightarrow \mathrm{Set}^{\mathscr{C}^{\mathrm{op}}}, X \mapsto \mathscr{C}(-,C)$,我们知道 Yoneda embedding 是 fully faithful. 那么完備化和取極限可不可交換呢? 这是由于 $\mathscr{C}(-,*)$ presverse limits,顯然这一事實來 自于 limit 的泛性質配合上 Yoneda lemma. 于是预層范疇便是我们心目中的完備化.

為什么我们需要完備化呢,这是因為我们想知道什么時候能生成一類對象. 此方說 $i: \mathcal{C} \hookrightarrow \mathcal{D}$ 有一个左伴隨 $F: \mathcal{D} \rightarrow \mathcal{C}$, 我们就稱 Fd 是自由的 \mathcal{C} 對象, 或者說是由 d 生成的 \mathcal{C} 對象. 那么什么時候函子 i 才會有左伴隨呢?

如果 i preserve limits, A small complete 而且, $x \downarrow i$ is small, 則这样的 left adjoint F 存在. 實際上, $Fx := \varprojlim Q \colon x \downarrow i \to A$, 并且 $Ff \colon Fx \to Fy$, 是 $f \downarrow i \colon y \downarrow i \to x \downarrow i$ 誘導出的極限間的典范映射. 其中 Fx 的計算公式, 引誘了我们得到 pointewise kan extension formular.