Análisis estadístico con datos faltantes

Una breve introducción

Mario José Pacheco López

Universidad Santo Tomás mariopacheco@usta.edu.co

Octubre 18, 2024

El problema de los datos faltantes

El problema de los datos faltantes

Statistics is a missing-data problem

(Roderick J.A. Little)

Comparación de dos protocolos de recuperación postoperatoria en pacientes con cardiopatías congénitas y coronarias sometidos a intervenciones quirúrgicas cardíacas

Variable	Descripción				
Edad	Edad en años				
Sexo	Sexo masculino o femenino				
IMC	Índice de masa corporal (kg/m2)				
Hospitalización	Tiempo total de internación (en días)				
Intervención	Tiempo de duración de la intervención quirúrgica (en horas)				
Anestesia	Tiempo de duración de la anestesia (en horas)				
Perfusión	Tiempo durante el cual el paciente está conectado a la circulación extracorpórea (en horas)				
Recuperación	Tiempo de permanencia en la sala de recuperación (en horas)				
Tipo	Paciente con cardiopatía congénita o coronária				
Protocolo	Protocolo de recuperación acelerada o convencional				

Conjunto de datos									
Edad	Sexo	IMC	Hospitalización	Anestesia	Intervención	Recuperación	Perfusión	Tipo]
1.00	Femenino	16.6	5	3.42	1.75	26.83	0.00	Congénito	(
5.00	Masculino	18.0	7	3.08	1.83	20.83	0.50	Congénito	(
13.00	Masculino	17.5	6	3.33	2.67	38.83	0.83	Congénito	(
11.00	Femenino	18.2	8	2.50	2.00	32.00	0.75	Congénito	(
16.00	Femenino	22.1	6	5.00	3.67	21.75	1.08	Congénito	(
18.00	Femenino	24.7	5	2.42	1.42	31.08	0.00	Congénito	(
11.00	Masculino	14.5	5	3.50	2.33	21.00	1.00	Congénito	(
17.00	Masculino	24.0	5	2.75	1.58	24.75	0.45	Congénito	(
2.00	Masculino	17.8	6	1.75	1.17	25.67	0.00	Congénito	(
1.00	Masculino	14.9	6	2.58	2.00	21.83	0.47	Congénito	(
4)	•

Posibles análisis

- Explorar el comportamiento de las variables
- Ajustar distribuciones de probabilidad para las variables
- Realizar pruebas de hipótesis entre los tipos de pacientes
- Aplicar un método multivariado como reducción de dimensionalidad o agrupamiento
- Ajustar un modelo de regresión para el número de días de hospitalización

Limitación

• 62 de 172 pacientes presentan valores faltantes en alguna de las variables

Importando el conjunto de datos

```
library(readxl)
# Conjunto de datos
url = "http://www.ime.usp.br/~imsinger/Dados/Fernandes2002.xls"
temp = tempfile(fileext = ".xls")
download.file(url, destfile = temp, mode = "wb")
datos = read excel(temp) %>%
  select(-c(1, 4:6, 8:13, 15, 20)) %>%
  rename(Edad = IDADE, Sexo = SEXO, IMC = IMC,
         Hospitalización = DIAS, Intervención = T_IC,
         Anestesia = T_A, Recuperación = T_REC1,
         Perfusión = T_P, Tipo = `TIPO DE PACIENTE`,
         Protocolo = `MÉTODO DE RECUPERAÇÃO`) %>%
  mutate(Sexo = factor(ifelse(Sexo == 0, "Femenino", "Masculino")),
         Tipo = factor(ifelse(Tipo == 0, "Congénito", "Coronario")),
         Protocolo = factor(ifelse(Protocolo == 0, "Convencional", "Acelerada"),
                            labels = c("Convencional", "Acelerada")),
         IMC = ifelse(IMC==0, NA, IMC))
```

Datos faltantes									
Edad	Sexo	IMC	Hospitalización	Anestesia	Intervención	Recuperación	Perfusión	Tipo	I
4.0	Femenino	16.7	NA	3.67	2.50	21.0	0.50	Congénito	(
2.0	Masculino	NA	5	2.50	1.17	25.3	0.00	Congénito	(
1.0	Femenino	16.9	NA	2.00	1.08	25.0	0.00	Congénito	(
19.0	Femenino	18.8	6	NA	2.67	22.0	0.83	Congénito	(
15.0	Femenino	NA	10	3.00	1.67	23.8	0.58	Congénito	(
7.0	Masculino	15.4	6	3.08	NA	44.1	0.83	Congénito	(
1.0	Masculino	NA	6	3.25	1.75	24.7	2.00	Congénito	(
5.0	Femenino	NA	NA	2.33	1.75	21.7	1.75	Congénito	(
12.0	Masculino	17.3	3	3.25	2.50	NA	1.08	Congénito	(
1.0	Femenino	NA	8	5.92	3.25	43.0	1.03	Congénito	F.
4)	•

Análisis estadístico

Pasos para desarrollar el análisis

Descripción de los datos faltantes

% de faltantes, descripción de patrones, adopción de un mecanismo

Tratamiento de los datos faltantes

Eliminación, imputación, máxima verosimilitud, ...

Análisis estadístico

AED, análisis multivariado, modelos de regresión, pronóstico, ...

Evaluación de los resultados

Medidas de severidad

Porcentaje de faltantes

Porcentaje de faltantes

Patrones de datos faltantes

Patrones de datos faltantes

```
library(mice)

# Patrones de faltantes

datos %>%
    md.pattern(rotate.names = TRUE, plot = TRUE)

library(naniar)

# Otra forma
datos %>%
    gg_miss_upset(nsets = 7)
```

Patrones de datos faltantes

Mecanismos de datos faltantes

Faltantes completamente alatorios (MCAR)

Los faltantes en una variable no tienen relación con los valores no observados de la variable ni con los valores observados de otras variables

Faltantes alatorios (MAR)

Los faltantes en una variable están relacionados con los valores observados de otras variables de análisis o covariables, pero no están relacionados con los valores no observados de la variable

Faltantes no alatorios (MNAR)

Los faltantes en una variable están relacionados con los valores no observados de la propia variable

Test de Little

- H_0 : el mecanismo es MCAR
- H_0 : el mecanismo no es MCAR

Little's test							
statistic	df	p.value	missing.patterns				
201	81	0	18				

```
library(naniar)

# Prueba MCAR de Little

datos %>%
   select(where(is.numeric)) %>%
   mcar_test()
```

Métodos de eliminación

- Análisis de casos completos (*Listwise deletion*): elimina todos los individuos con al menos una variable faltante
- Análisis de casos disponibles (*Pairwise deletion*): intenta minimizar la pérdida que se produce en el análisis de casos completos, haciendo una eliminación por pares de variables
- No recomendados debido a la pérdida de información
- Un valor faltante puede tener tanta o más información que un valor observado

Vectores de promedios

Promedios								
Variable	CC	CD						
Edad	32.325	36.166						
IMC	21.730	22.509						
Hospitalización	11.764	12.019						
Anestesia	4.749	5.025						
Intervención	3.435	3.441						
Recuperación	32.089	31.847						
Perfusión	0.925	0.978						

```
datos %>%
  select(where(is.numeric)) %>%
  na.omit() %>%
  colMeans()

datos %>%
  select(where(is.numeric)) %>%
  colMeans(na.rm = TRUE)
```

Matrices de correlación

Relación entre variables

Imputación

Si no eliminamos los valores faltantes, podemos reemplazarlos. La imputación implica utilizar un procedimiento estadístico para reemplazar los valores faltantes con valores **plausibles** tomando en cuenta, generalmente, el resto de los datos.

Imputing one value for a missing datum cannot be correct in general, because we don't know what value to impute with certainty (if we did, it wouldn't be missing)

(Donald B. Rubin)

Métodos de imputación

Modelos de imputación

Determinísticos o estocásticos

Estrategias de imputación

Imputación simple o múltiple

Métodos de imputación

Basados en regresión, basados en donantes, ...

Algoritmos de imputación

Imputación multivariada mediante ecuaciones encadenadas (MICE)

Imputación

Los métodos de imputación deben garantizar:

- La distribución de las variables no se altere
- Las asociaciones entre variables se mantenga
- Los valores imputados sean consistentes

Imputación por media incondicional

Consiste en reemplazar cada valor faltante en una variable por el promedio de los valores observados de la variable.

Imputación por media incondicional

Imputación aleatoria

Consiste en reemplazar cada valor faltante en una variable por valores aleatorios seleccionados de los valores observados de la variable.

Imputación aleatoria

Imputación por media incondicional o aleatoria

Métodos basados en regresión

• Se construyen modelos de regresión para cada variable con valores faltantes tomando como variables predictoras el resto de variables disponibles (variables de análisis) o covariables de acuerdo a cada patrón de valores faltantes, por ejemplo

$$\hat{y}_k^{miss} = \hat{eta}_0 + \sum_{j
eq k} \hat{eta}_j y_j^{obs}$$

• Imputación por regresión estocástica: le agrega un factor aleatorio a cada modelo

$$\hat{y}_k^{miss} = \hat{eta}_0 + \sum_{j
eq k} \hat{eta}_j y_j^{obs} + e_k, ~~ e_k \sim N(0, \hat{\sigma}_k^2)$$

- Puede generar imputaciones por fuera del soporte de la variable
- Requiere ajustar un modelo de regresión para cada variable dentro de cada patrón de faltantes

Métodos basados en regresión

Imputación por regresión estocástica

Imputación por regresión estocástica

Imputación por regresión determinística y estocástica

```
datos.imp = datos
patrones = data.frame(md.pattern(datos, plot = FALSE))[,1:ncol(datos)]
variables = names(patrones)
k = nrow(patrones) - 1 ; k
set.seed(123)
for(j in 2:k){
  resp = variables[patrones[j,]==0]
  expl = variables[patrones[j,]==1]
  for(v in resp){
    if(class(datos[[v]]) == "numeric") {
     mod = lm(paste(v, "~", paste(expl, collapse = " + ")), data = datos)
      sig = sigma(mod)
    # pred = predict(mod, datos) # deterministica
      pred = predict(mod, datos) + rnorm(nrow(datos), 0, sig) # estocástica
      datos.imp[is.na(datos.imp[,v]),v] = pred[is.na(datos.imp[,v])]
```

Métodos basados en donantes

- Imputar los valores faltantes de un individuo (receptor) empleando valores observados de otros individuos (donantes)
- Cada donante se elige de forma que sea lo más parecido al individuo imputado en una o más características observadas
- Algunos métodos:
 - Imputación Hot-Deck
 - ∘ Imputación *kNN*
 - Imputación por coincidencia media predictiva

- Crear clases o grupos de imputación en función de variables auxiliares categóricas
- El grupo de donantes potenciales de la unidad receptora consiste en las unidades dentro de la misma clase con la variable observada
- De estos donantes potenciales, se selecciona uno al azar, a través de un muestreo aleatorio simple, y se utiliza para imputar al receptor
- Este procedimiento implica que el donante y el receptor tienen exactamente los mismos valores en todas las variables auxiliares que se utilizan para definir las clases de imputación


```
library(VIM)

datos.imp = hotdeck(datos,
   domain_var = "Tipo", # variable de grupo de imputación
   imp_var = FALSE
)
```

- ullet Se desea imputar el valor faltante y_{rs} del individuo receptor r en la variable s
- Se define una medida de distancia entre el individuo receptor y los posibles donantes, (i's), en términos de las variables observadas, por ejemplo,

$$D(i,r) = \left(\sum_{j
eq s} \left(y_{ij} - y_{rj}
ight)^2
ight)^{1/2}$$

- ullet Se eligen los k vecinos más cercanos del individuo receptor como posibles donantes
- Imputar el individuo receptor tomando al azar el valor de la variable de uno de los k vecinos más cercanos

- ullet Se desea imputar el valor faltante y_{rj} del individuo r en la variable j
- Calcular los valores predichos \hat{y}_{ij} de acuerdo a un modelo específico de imputación
- Seleccionar como donante de y_{rj} , el candidato más próximo, esto es, el valor y_{ij} tal que $|\hat{y}_{ij}-\hat{y}_{rj}|$ es mínimo
- Se puede también seleccionar aleatoriamente uno de los *k* candidatos más cercanos


```
# Emplea regresión estocástica
datos.imp = datos
patrones = data.frame(md.pattern(datos, plot = FALSE))[,1:ncol(datos)]
variables = names(patrones) ; k = nrow(patrones) - 1
K = 5 # vecinos más cercanos
set.seed(123)
for (j in 2:k) {
  resp = variables[patrones[j, ] == 0]; expl = variables[patrones[j, ] == 1]
  for(v in resp){
    if(class(datos[[v]]) == "numeric"){
     mod = lm(paste(v, "~", paste(expl, collapse = " + ")), data = datos)
      sig = sigma(mod) ; pred = predict(mod, datos)
      for(i in which(is.na(datos[[v]]))){
        if(!is.na(pred[i])){
        distancias = abs(pred - (pred[i]+rnorm(1, 0, sig)))
        orden = order(distancias)
        cercanos = orden[!is.na(datos[[v]][orden])][1:K]
        donante = sample(datos[[v]][cercanos], 1)
        datos.imp[i, v] = donante
}}}}
```

- Iter. 0: Realizar una imputación aleatoria de todos los valores faltantes del conjunto de datos
- *Iter. 1*: Seleccionar un método de imputación para cada variable y realizar el proceso de imputación empleando los valores observados e imputados del resto de variables
- *Iter. t*: actualizar las imputaciones de los valores faltantes empleando los valores observados e imputados de la iteración anterior (Repetir)

```
library(mice)

# Proceso de imputación
proc.imp = mice(datos, # conjunto de datos con faltantes
    m = 5, # número de imputaciones
    maxit = 15, # número de iteraciones
    defaultMethod = c("pmm", "logreg", "polyreg", "polr"), # métodos
    seed = 123 # semilla
)
```

Imputation is not prediction

(Stef van Buuren)

```
proc.imp$imp$Recuperación
                                           proc.imp$imp$Hospitalización[1:10,]
##
          1
                     3
                                          ##
                                                                5
       16.2 24.8 16.7
                                          ## 15
                                                            6
                        32.0
                              37.5
  70
       14.0 30.0 15.8
                        20.5
                              33.8
                                          ## 20
                                                            3
                                                                6
  73
       21.0 44.1 19.0
                        36.5
                              16.5
                                          ## 38
  74
       25.1 0.0 20.0
                       45.0
                              44.0
                                          ## 69
                                                        12 56
                                                  28 17
       29.5 36.5 21.8 108.0
                              36.2
                                                         7 21
  92
                                          ## 70
   117 33.8 43.3 43.8
                        21.0
                              24.5
                                          ## 79
                                                         7 37 16
  171 35.3 35.3 29.7
                        26.0 103.0
                                          ##
                                             80
                                                      9
                                                        16 38
                                          ## 92
                                                            6
                                                  17
                                                              11
                                                            8
                                          ## 107
                                                              28
proc.imp$imp$Sexo
                                          ## 114 13
                                                      6
                                                         5 13 28
##
                1
                          2
                                     3
                                               4
        Femenino
                  Femenino
                             Femenino
                                        Femenino
                                                 Femenino
   79
       Masculino Masculino Masculino Femenino Masculino
  117 Masculino Femenino Masculino Masculino Masculino
```



```
library(mice)
# Proceso de imputación
proc.imp = mice(datos, # conjunto de datos con faltantes
  m = 5, # número de imputaciones
  maxit = 15, # número de iteraciones
  defaultMethod = c("pmm", "logreg", "polyreg", "polr"), # métodos
  seed = 12345, # semilla
  printFlag = FALSE
# Conjuntos de datos imputados
complete(proc.imp, 1)
complete(proc.imp, 2)
complete(proc.imp, 3)
complete(proc.imp, 4)
complete(proc.imp, 5)
```

Análisis estadístico

Flujo de trabajo

Combinación de resultados (Reglas de Rubin)

• Dado el estimador $\hat{m{ heta}}$ de la cantidad poblacional $m{ heta}$ (q imes 1), con

$$E\left(\hat{oldsymbol{ heta}}
ight)=oldsymbol{ heta},\quad V\left(\hat{oldsymbol{ heta}}
ight)=\Sigma$$

y sea $\hat{\Sigma}$ el estimador de Σ , tal que $E\left(\hat{\Sigma}\right) \geq V\left(\hat{oldsymbol{ heta}}\right)$

Para cada conjunto de datos imputado calculamos

$$\hat{oldsymbol{ heta}}^{(k)}: \quad \hat{oldsymbol{ heta}}^{(1)}, \hat{oldsymbol{ heta}}^{(2)}, \dots, \hat{oldsymbol{ heta}}^{(m)}$$

$$\hat{\Sigma}^{(k)}: \hat{\Sigma}^{(1)}, \hat{\Sigma}^{(2)}, \dots, \hat{\Sigma}^{(m)}$$

Combinación de resultados (Reglas de Rubin)

• Estimación combinada de heta

$$ar{oldsymbol{ heta}} = rac{1}{m} \sum_{k=1}^m \hat{oldsymbol{ heta}}^{(k)}$$

• Varianza estimada de $\bar{\boldsymbol{\theta}}$:

$$\hat{V}\left(ar{oldsymbol{ heta}}
ight) = ar{\Sigma} + \left(1 + rac{1}{m}
ight)oldsymbol{B}$$

donde
$$\bar{\Sigma} = \frac{1}{m} \sum_{k=1}^{m} \hat{\Sigma}^{(k)} y$$

$$oldsymbol{B} = rac{1}{m-1} \sum_{k=1}^m \left(\hat{oldsymbol{ heta}}^{(k)} - ar{oldsymbol{ heta}}
ight) \left(\hat{oldsymbol{ heta}}^{(k)} - ar{oldsymbol{ heta}}
ight)^ op$$

Ajuste de una distribución

Estimaciones							
	Imp-1	Imp-2	Imp-3	Imp-4	Imp-5		
shape	7.00	7.11	7.09	7.06	6.95		
rate	1.39	1.41	1.42	1.40	1.38		

Combinación de resultados						
	Estimación	Var	В	V. Comb		
shape	7.04	0.551	0.004	0.556		
rate	1.40	0.023	0.000	0.024		


```
library(MASS, exclude = "select")
# Estimaciones por imputación
the.imp = with(proc.imp, fitdistr(Anestesia, "gamma"))
# Combinación de resultados
the.comb = pool(the.imp)
```

Evaluación de los resultados

Evaluación de resultados

Medidas de severidad

• Proporción de la varianza debida a los datos faltantes:

$$\lambda = \left(1 + m^{-1}
ight)q^{-1} \mathrm{tr} \left(oldsymbol{B} \Big[\hat{V}\left(ar{oldsymbol{ heta}}
ight)\Big]^{-1}
ight)$$

• Incremento relativo de la varianza

$$r = \left(1 + m^{-1}
ight)q^{-1} \mathrm{tr}\left(oldsymbol{B}ar{\Sigma}^{-1}
ight)$$

• Fracción de información faltante sobre θ

$$\gamma = (1+r)^{-1} \left[r + 2(
u + 3)^{-1}
ight]$$

con $v=(m-1)\big(1+r^{-1}\big)^2$ grados de libertad

Evaluación de resultados

Medidas de severidad

Combinación de resultados										
	m	Estimación	Var	В	V. Comb	df	v	r	lambda	gamma
shape	5	7.04	0.551	0.004	0.556	170	166	0.010	0.009	0.021
rate	5	1.40	0.023	0.000	0.024	170	163	0.017	0.017	0.028

```
library(MASS, exclude = "select")
# Estimaciones por imputación
the.imp = with(proc.imp, fitdistr(Anestesia, "gamma"))
# Combinación de resultados
the.comb = pool(the.imp)
```

Intervalos de confianza y pruebas de hipótesis

Corrección de los grados de libertad

• Sea θ un parámetro escalar y $\hat{\theta}$ su estimador, tal que

$$(heta - \hat{ heta}) \sim N(0, \Sigma)$$

• Un intervalo del $100(1-\alpha)\%$ de confianza para θ es

$$\left(ar{ heta}-t_{lpha/2,v}\sqrt{\hat{V}\left(ar{ heta}
ight)},ar{ heta}+t_{lpha/2,v}\sqrt{\hat{V}\left(ar{ heta}
ight)}
ight)$$

con $v=(m-1)\big(1+r^{-1}\big)^2$ grados de libertad.

• El nivel de significancia asociado con el valor θ_0 está dado por

$$Pr\left(F_{1,v}>\left(heta_0-ar{ heta}
ight)^2/\hat{V}(ar{ heta})
ight)$$

Intervalos de confianza y pruebas de hipótesis

Comparación de los tiempos medios de perfusión

- Se desea comparar los tiempos medios de perfusión entre los paciente con cardiopatía congénita y coronária
- Test de Levene para la comparación de varianzas

```
library(miceafter)

proc.imp.ml <- mids2milist(proc.imp)
lev.imp = with(proc.imp.ml, expr=levene_test(Perfusión ~ Tipo))
pool_levenetest(lev.imp, method="D2")

## D2.numdf p.numdf df1.numdf df2.numdf
## 9.29e+00 2.35e-03 1.00e+00 1.65e+03
## attr(,"class")
## [1] "mipool"</pre>
```

Intervalos de confianza y pruebas de hipótesis

Comparación de los tiempos medios de perfusión

• t.test para la comparación de medias

```
t.imp = with(proc.imp.ml,
    expr = t_test(Perfusión ~ Tipo, var_equal=FALSE, paired=FALSE))
pool_t_test(t.imp, statistic=TRUE)

## Mean diff SE t 95 CI low 95 CI high statistic pval
## [1,] -0.712 0.118 2 -0.95 -0.475 -6.01 1.45e-07
## attr(,"class")
## [1] "mipool"
```

- Aplicamos el algoritmo MICE
- Calculamos un ACP para cada base imputada
- Combinamos los resultados de los *m* ACP

Valores propios (m = 50)						
Comp.	eigen	% var.	% acum.			
1	3.555	50.79	50.8			
2	1.132	16.18	67.0			
3	0.761	10.88	77.8			
4	0.725	10.36	88.2			
5	0.449	6.41	94.6			
6	0.235	3.36	98.0			
7	0.143	2.04	100.0			


```
# Imputación
proc.imp = mice(
  datos, m = 50, maxit = 15, seed = 123, printFlag = FALSE,
  defaultMethod = c("pmm", "logreg", "polyreg", "polr")
library(FactoMineR)
library(factoextra)
# ACP con cada base imputada
acp.m = with(proc.imp,
  PCA(data.frame(
        Sexo, Tipo, Protocolo, # ilustrativas
        Edad, IMC, Hospitalización, Intervención,
        Anestesia, Perfusión, Recuperación),
      quali.sup = 1:3,
      graph = FALSE))
# Resultados a combinar
acp.m$analyses
```

Agrupamiento

- Aplicamos el algoritmo MICE
- Realizamos un agrupamiento para cada base imputada
- Combinamos los resultados de los *m* agrupamientos
- El número ótimo de grupos es seleccionado maximizando la estadística

$$CritCF = \left(rac{2p}{2p+1}rac{1}{1+D/E}
ight)^{rac{1+log_2(k+1)}{1+log_2(p+1)}}$$

 $\operatorname{con} D$ y E medidas de inercia dentro y entre grupos

Métodos multivariados

Agrupamiento

Agrupamientos ($k = 2$, $m = 50$)										
	imp2	imp11	imp14	imp16	imp24	imp26	imp28	imp29	imp32	imp46
10	1	1	1	1	1	1	1	1	1	1
30	1	1	1	1	1	1	1	1	1	1
38	1	1	1	1	1	1	1	1	1	1
40	1	1	1	1	1	1	1	1	1	1
75	1	1	1	1	1	1	1	1	1	1
86	2	1	2	2	2	2	2	1	2	2
94	2	1	1	2	1	2	1	1	2	1
103	2	1	2	2	2	2	2	1	2	2
160	2	1	2	2	2	2	2	1	2	2
170	2	1	2	2	2	2	2	1	2	2

Métodos multivariados

Agrupamiento

Métodos multivariados

Agrupamiento

Variables y modelo

- Variable de respuesta: Hospitalización (en días)
- Variables predictoras: Edad, Sexo, IMC, Intervención, Anestesia, Perfusión, Recuperación,
 Tipo, Protocolo
- Modelo: lineal generalizado Poisson con enlace logarítmico

Ajuste del modelo

- Aplicamos el algoritmo MICE
- Estimamos los parámetros del modelo para cada base imputada
- Combinamos los resultados de los m modelos

Ajuste del modelo

Coeficientes (m = 5)										
	Imp. 1	Imp. 2	Imp. 3	Imp. 4	Imp. 5					
(Intercept)	1.564	1.611	1.652	1.207	1.084					
Edad	0.002	0.001	0.000	0.003	0.001					
SexoMasculino	-0.131	-0.138	-0.131	-0.011	-0.015					
IMC	0.006	-0.002	0.003	0.016	0.008					
Intervención	0.076	0.098	0.129	-0.027	-0.005					
Anestesia	-0.042	-0.014	-0.076	0.032	0.074					
Perfusión	0.022	0.033	0.098	0.070	0.174					
Recuperación	0.004	0.000	0.001	0.005	0.005					
TipoCoronario	0.149	0.269	0.335	0.049	-0.005					
ProtocoloAcelerada	0.833	0.816	0.768	0.801	0.729					

Combinación de resultados

Coeficientes y medidas de severidad											
	m	Estimado	Var	В	V. Comb	df	v	r	lambda	gamma	
(Intercept)	5	1.424	0.014	0.067	0.095	162	4.50	5.669	0.850	0.890	
Edad	5	0.001	0.000	0.000	0.000	162	33.69	0.407	0.289	0.328	
SexoMasculino	5	-0.085	0.003	0.004	0.008	162	7.53	2.070	0.674	0.736	
IMC	5	0.006	0.000	0.000	0.000	162	8.97	1.612	0.617	0.681	
Intervención	5	0.054	0.000	0.004	0.006	162	3.47	11.353	0.919	0.944	
Anestesia	5	-0.005	0.001	0.004	0.005	162	4.00	7.686	0.885	0.918	
Perfusión	5	0.079	0.001	0.004	0.005	162	4.80	4.839	0.829	0.873	
Recuperación	5	0.003	0.000	0.000	0.000	162	3.47	11.298	0.919	0.944	
TipoCoronario	5	0.159	0.011	0.021	0.036	162	7.33	2.157	0.683	0.745	
ProtocoloAcelerada	5	0.789	0.003	0.002	0.005	162	16.14	0.818	0.450	0.507	

Inferencias

Coeficientes y medidas de severidad										
	Estimado	ee	estadística	df	valor p					
(Intercept)	1.424	0.308	4.620	4.50	0.007					
Edad	0.001	0.002	0.564	33.69	0.577					
SexoMasculino	-0.085	0.088	-0.965	7.53	0.364					
IMC	0.006	0.009	0.687	8.97	0.509					
Intervención	0.054	0.077	0.709	3.47	0.523					
Anestesia	-0.005	0.069	-0.076	4.00	0.943					
Perfusión	0.079	0.073	1.081	4.80	0.331					
Recuperación	0.003	0.003	1.132	3.47	0.330					
TipoCoronario	0.159	0.190	0.838	7.33	0.428					
ProtocoloAcelerada	0.789	0.068	11.610	16.14	0.000					

Ajuste del modelo

```
# Imputación
proc.imp = mice(
  datos, m = 5, maxit = 15, seed = 123, printFlag = FALSE,
  defaultMethod = c("pmm", "logreg", "polvreg", "polr")
# Modelos ajustados con cada imputación
mod.imp = with(proc.imp,
  glm(Hospitalización ~ Edad + Sexo + IMC + Intervención +
        Anestesia + Perfusión + Recuperación + Tipo + Protocolo,
      family = poisson(link = "log")))
# Combinación de resultados
comb = pool(mod.imp) ; comb
# Inferencias
summary(comb)
```

Regresión paso a paso

Coeficientes y medidas de severidad											
	m	Estimado	Var	В	V. Comb	df	v	r	lambda	gamma	
(Intercept)	5	1.445	0.007	0.091	0.117	164	3.11	15.379	0.939	0.959	
Edad	2	0.003	0.000	0.000	0.000	164	150.82	0.019	0.019	0.031	
SexoMasculino	3	-0.139	0.002	0.000	0.002	164	145.23	0.033	0.032	0.045	
Intervención	3	0.100	0.000	0.001	0.001	164	3.68	2.429	0.708	0.796	
Anestesia	3	-0.013	0.000	0.006	0.008	164	1.80	16.838	0.944	0.967	
Recuperación	3	0.005	0.000	0.000	0.000	164	4.04	2.083	0.676	0.768	
TipoCoronario	3	0.266	0.006	0.010	0.020	164	3.82	2.275	0.695	0.784	
ProtocoloAcelerada	5	0.793	0.002	0.002	0.004	164	17.91	0.738	0.425	0.480	
Perfusión	3	0.117	0.001	0.003	0.005	164	2.52	5.457	0.845	0.901	
IMC	2	0.014	0.000	0.000	0.000	164	4.78	0.802	0.445	0.588	

Inferencias

Coeficientes y medidas de severidad											
	Estimado	ee	estadística	df	valor p						
(Intercept)	1.445	0.342	4.229	3.11	0.023						
Edad	0.003	0.002	2.108	150.82	0.037						
SexoMasculino	-0.139	0.050	-2.783	145.23	0.006						
Intervención	0.100	0.037	2.712	3.68	0.059						
Anestesia	-0.013	0.090	-0.148	1.80	0.898						
Recuperación	0.005	0.001	3.903	4.04	0.017						
TipoCoronario	0.266	0.141	1.885	3.82	0.136						
ProtocoloAcelerada	0.793	0.065	12.143	17.91	0.000						
Perfusión	0.117	0.073	1.604	2.52	0.224						
IMC	0.014	0.006	2.250	4.78	0.077						

Regresión paso a paso

```
# Imputación
proc.imp = mice(
  datos, m = 5, maxit = 15, seed = 123, printFlag = FALSE,
  defaultMethod = c("pmm", "logreg", "polvreg", "polr")
# Modelos ajustados con cada imputación
mod.imp = with(proc.imp,
  step(glm(Hospitalización ~ Edad + Sexo + IMC + Intervención +
        Anestesia + Perfusión + Recuperación + Tipo + Protocolo,
      family = poisson(link = "log"))))
# Combinación de resultados
comb = pool(mod.imp) ; comb
# Inferencias
summary(comb)
```

Algunas referencias

Libros

- Little, R. J. A., Rubin, D. B. (2020) Statistical Analysis with Missing Data, 3rd Ed. Wiley
- McKnight, P.E., McKnight, K. M., Sidani, S., Figueredo, A. J. (2007) Missing Data. The Guilford Press
- Raghunathan, T. (2016) Missing Data Analysis in Practice. CRC Press
- van Buuren, S. (2018). Flexible Imputation of Missing Data, 2nd Ed. Chapman & Hall

Software

- CRAN Task View: Missing Data (https://cran.r-project.org/web/views/MissingData.html)
- Librerías de R y modulos de Python: https://rmisstastic.netlify.app/rpkg/
- Algoritmo MICE en Python: https://pypi.org/project/miceforest/