One to One functions

A function f(x) is one-to one if no two elements in the domain map to the same element in the codomain, i.e.

if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Ex.

Example of a function that is not one-to-one:

Not one -to-one because f(1) = f(2) = 4 and $1 \neq 2$.

Horizontal Line Test

if an arbitrary horizontal line in the plane intersects the graph at most one point.

Determine whether each of the functions is a one-to-one function.

(a) f(x) = x + 2.

Strategy: Assume thus are two numbers X_1 and X_2 such that $f(x_1) = f(x_2)$. We will show that $X_1 = X_2$ unconditionally if it is one - to one.

one to -one.

If x, must equal x2, then
one to -one.

If x, need not equal x2, then
not one - to one.

Solution Let x_1 , x_2 be two numbers such that $f(x_1) = f(x_2)$. Then $f(x_1) = f(x_2)$ $x_1 + 2 = x_2 + 2$

Thuy $X_1 = X_2$. Therefore f is injective.

(b) $f(x) = x^2 + L$ Let x_1, x_2 be two numbers such that $f(x_1) = f(x_2)$, $i \cdot e \cdot x_1^2 + 1 = x_2^2 + 1$ $\Rightarrow x_1^2 = x_2$ $\Rightarrow x_1 = \pm \sqrt{x_2}$

 $=) \times_{i} = \pm \times_{2}$

Thur, X, need not equal x2. It rould equal - x2.

You can also see this from the graph.

not one to one by horizontal line less

Inverse Functions

het $f: X \to Y$ be a function. For the inverse to be well defined f must be one-to-one.

$$-4x^{2} + x + 1$$

$$-4x_{1}^{2} + x_{1} = -4x_{2}^{2} + x_{2}$$

$$-4x_{1}^{2} + 4x_{2}^{2} + x_{1} - x_{2} = 0$$

$$-4(x_{1}^{2} - x_{2}^{2}) + x_{1} - x_{2} = 0$$

$$-4(x_{1} + x_{2})(x_{1} - x_{2}) + (x_{1} - x_{2}) = 0$$

$$(x_{1} - x_{2})(-4(x_{1} + x_{2}) + 1) = 0$$

$$-4x_{1} - 4x_{2} + 1 = 0$$

$$x_{1} = 1 + 4x_{2}$$

$$4$$

In other words the inverse of f is the function f^{-1} ; $Y \to X$ such that $\begin{cases} f^{-1} \mid f(x) = X \\ f \mid f^{-1}(x) = X \end{cases}$

$$\times$$
 $f(x)$ If you apply f and then f^{-1} You land in the same place. $f^{-1}(f(x))=x$

Let f be the above function. It is clearly one -to-one. Now f^{-1} just reverses the assorbe. But notice that Domain of $f^{-1} = Range$ of fRange of $f^{-1} = Domain$ of f.

In general we have,

Domain of f-1 = Range of f

Range of f

Range of f = Domain

of f

- Range of f

Why? because you cannot define f-1 over here

Verify that
$$f^{-1}(x) = \frac{1}{2}x - 2$$
 is the inverse of $f(x) = 2x + 4$.

Solution. We need to verify that

(i) $\int f(f^{-1}(x)) = X$

ATTINITION I YOU NEED TO VERIFY BOTH EQUALITIES.

NOT JUST ONC.

(i) $f(f^{-1}(x))$

$$= f(\frac{1}{2}x - 2) + 4$$

$$= x - 4 + 4$$

$$= x$$
(ii) $f^{-1}(f(x))$

$$= f^{-1}(2x + 4)$$

$$= \frac{2x + 4}{2} - 2$$

$$= x + 2 - 2$$
Thus, from (#) and (***) nur have
$$\begin{cases} f(f^{-1}(x)) = X \\ f^{-1}(f(x)) = X \\ f^{-1}(f(x))$$

Verify that
$$f^{-1}(x) = x^2$$
 for $x \ge 0$, is the inverse of $f(x) = \sqrt{x}$.

Solution. We need to verify that
$$\int f^{-1}(f(x)) = x$$

$$\int f^{-1}(f(x)) = x$$
We have
$$\int f^{-1}(f(x)) = \int f^{-1}(\sqrt{x})$$

$$= (\sqrt{x})^2$$

$$= (\sqrt$$

 $f^{-1}(f(x)) = x$. Thus, (f(x), x) is a point on the graph of f^{-1} . In the figure it is the point C.

We will show that the point B = (x, f(x)) is the reflection of the point C = (f(x), x) about the line y = xDraw the line segment BC and let

Draw the line segment \overline{BC} and let it intersect the line y=x at a point D We need to show that $BC \perp OD$ (perpendicular to DD) and $\overline{BD} = \overline{DC}$.

Draw BELOE. Note DBOE = D COE.

Thu, \$ BOE - COB. Sine OD bisects the sight angle \$EOB, \$EOD = \$DOB = 45!

Thus by subtracty \$BOE, \$(OB. from \$EOD),

\$DOB respectively, \$BOD = \$DOC.

Note OB - OC. Hence \$\Delta OCB\$ is isoceles.

Since OD bisects & BOC, OD LBC and BD = DC. I.

Finding inverse of functions

Let y be in the sange and say that f(x) = y, i.e.,

x maps to y.

To find the inverse of f we need a formula to find

Find inverse of f(x) = -3x + 5

Solution het y be in the range of f. het f(x) = y.

$$-3x + 5 = y$$

$$\Rightarrow$$
 $-3x = y - 5$

$$= \times = 0$$

$$-3x + 5 = y$$

$$\Rightarrow -3x = y - 5$$

$$\Rightarrow x = y - 5$$

$$f^{-1}(y) = y - 5^{-1}$$

Find the inverse of f(x)= VX+2

Find the inverse of $f(x) = \frac{4}{x-1}$, $x \neq 1$.

Sol.

het y be in the range and say that f(x) = y. So $\frac{4}{x-1} = y$

x = ? In other words we need to tesms involving isolate x

$$\frac{4}{y} = x - 1$$

or,
$$x = \frac{4}{y} + 1$$

$$f^{-1}(y) = \frac{4}{y} + 1$$

Given
$$f$$
 find its inverse. State the domain and sange of f and f^{-1} ,
$$f(x) = \sqrt{\frac{x+1}{x+2}}$$

You already know how to find domains. I should have mentioned the technique for find sange easlier. But here it is.

Let y be in the sange of f. Then y = f(x) for some x., i.e. f(x) = y $\sqrt{\frac{x+1}{x+2}} = y$

The techique is the same as for finding inverses. You need to solve for x.

Now follow the technique for domains. What are the possible values of y? We know $1-y^2$ cannot be zero. If $1-y^2=0$ $\Rightarrow y^2=1$ $\Rightarrow y=\pm 1$.

Therefore Ronge of
$$f$$
 is everything exect 1 and -1 .

Range of f = $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.

Domain of f .

$$f(x) = \sqrt{\frac{x+1}{x+2}}$$

There is a square root and there is a denominator.

So. (i) $\frac{x+1}{x+2} \ge 0$

$$(ii) \quad x+2 \ne 0 \implies x \ne -2$$

Elom (i) $\frac{x+1}{x+2} \ge 0$

when is a fraction ≥ 0 . When (i') both $\frac{x+1}{\ge} 0 + \frac{x+2}{0} \le 0$

From (i') $\frac{x+1}{\ge} 0 = 0$

$$\frac{x+2}{\ge} 0 = \frac{x+2}{\ge} 0 = 0$$

From (ii') $\frac{x+1}{\ge} 0 = 0$

$$\frac{x+2}{\ge} 0 = 0$$

Find (i') $\frac{x+2}{\ge} 0 = 0$

$$\frac{x+2}{\ge} 0 = 0$$

 $=> y^{2} - \frac{x+1}{x+2}$

$$\Rightarrow x + | = (x + 2)y^{2}$$

$$\Rightarrow x + | = xy^{2} + 2y^{2}$$

$$\Rightarrow x - xy^{2} = 2y^{2} - |$$

$$\Rightarrow x = 2y^{2} - |$$

$$\Rightarrow x = 2y^{2} - |$$

$$\int_{0}^{\infty} f^{-1}(y) = \frac{2y^{2}-1}{1-y^{2}}$$

Domain of
$$f^{-1}(y) = \frac{2y^2 - 1}{1 - y^2}$$
.

Recall that domain of $f^{-1} = Range$ of f .

$$= (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$$

Recall that sange of $f^{-1} = domain$ of f .

$$= (-1, \infty)$$
.