Reinforcement Learning Equations

Aaron Hao Tan

Fininte Markov Decision Processes

Components of MDP: Decision epochs, State, Action, Transition probability, Rewards

$$\{T, S, A_s, p_t(\cdot|s, a), r_t(s, a)\}\tag{1}$$

A state is *Markov* if and only if

$$\mathbb{P}\left[S_{t+1}|S_t\right] = \mathbb{P}\left[S_{t+1}|S_1,\dots,S_t\right] \tag{2}$$

State-transition probabilities (p characterize the environment's dynamics). More often used than equations 4 and 5.

$$p(s'|s,a) = Pr[S_t = s'|S_{t-1} = s, A_{t-1} = a]$$

$$= \sum_{r \in \mathcal{R}} p(s', r|s, a)$$
(3)

Expected rewards for state-action pairs and for state-action-next-state triples. The current reward depends on the previous state and action.

$$r(s, a) \doteq \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$
 (4)

$$r(s, a, s') \doteq \mathbb{E}\left[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'\right] = \sum_{r \in \mathcal{R}} r \frac{p(s', r | s, a)}{p(s' | s, a)}$$
(5)

Policy

$$\pi(a|s) = Pr(A_t = a|S_t = s) \tag{6}$$

Returns (sum of rewards)

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T \tag{7}$$

Discounted Returns (γ = discount rate). If γ < 1, the infinite sum in equation 8 would have a finite value. If γ = 0, the agent is concerned with only maximizing immediate rewards (myopic). If the reward is +1, the return is equivalent to $G_t = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}$.

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 (8)

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$
(9)

State Value Function. Value of terminal state (if any) is always zero.

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right] \quad \forall s \in S$$

$$\tag{10}$$

Bellman Equation for v_{π} : the value of the start state must equal the (discounted) value of the expected next state, plus the reward expected along the way.

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma \cdot G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')] \quad \forall s \in S$$
(11)

Action Value Function

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$
 (12)

Bellman Equation for $q_{\pi}(s, a)$

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \sum_{a'} \pi(a' | s') q_{\pi}(s', a') \right]$$
(13)

The following figure represents the state value and action state value functions graphically.

Figure 1: Value and State-Value Functions

Optimal State Value Function. A policy π is better or equal to another policy π' if its expected return is greater than or equal to that of π' for all states ($\pi' \geq \pi'$ if and only if $v_{\pi}(s) \geq v_{\pi'}(s)$).

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s) \tag{14}$$

Optimal Action Value Function and its relation to v_* . Equation 15 gives the expected return for taking action a in state s and thereafter following an optimal policy. Comparing with equation 11, $v_{\pi}(s)$ represents the value of a state as the summation of future returns. In equation 15, $v_*(S_{t+1})$ gives the optimal value of all future states from the given state and action.

$$q_*(s, a) \doteq \max_{\pi} q_{\pi}(s, a) = \mathbb{E} \left[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a \right]$$
 (15)

Relationship between q_* and v_* . The value of a state under an optimal policy must equal the expected return for the best action from that state. Second last line of equation 16 shows that $G_t = R_{t+1} + \gamma v_*(S_{t+1})$ when following π_* . The last line is the same as equation 17. For finite MDPs, the last line of equation 16 has a unique solution.

$$v_{*}(s) = \max_{a \in A(s)} q_{*}(s, a)$$

$$= \max_{a} q_{*}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1})|S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s', r} p(s', r|s, a)[r + \gamma v_{*}(s')]$$
(16)

Bellman Optimality Equations

$$v_*(s) = \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_* (S_{t+1}) | S_t = s, A_t = a \right]$$

$$= \max_{a} \sum_{s', r} p(s', r | s, a) \left[r + \gamma v_* (s') \right]$$
(17)

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_* (S_{t+1}, a') | S_t = s, A_t = a\right]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_* (s', a')\right]$$
(18)

In v_* , the next best action is selected based on the expected reward and value of future states. In q_* , the state and action is given as well as the reward. From the new state s', the best action is chosen.

Figure 2: Bellman Optimality Equations