Attack Trees Attack-Defense Trees

Laurie Williams williams@csc.ncsu.edu

Attack Trees

- Provide a formal, hierarchical way of describing the security threats to a system based upon the types of attacks that could happen and <u>how</u> they could be realized.
- Attacker's goal listed as the root node and leaves represent different ways to achieve that goal.

Attack trees

Another example

Figure 1: Attack Nodes

Figure 3: Special Equipment Required

Figure 4: Cost of Attack

Figure 5: All Attacks Less than \$100,000

Figure 6: Cheapest Attack Requiring No Special Equipment

Different attackers have different levels of skill, access, risk aversion, money, and so on.

Classic risk

Classic Risk = probability of success * impact

Table 1 - System Impact Definitions and Numerical Ranges

Numerical	Impact Definition	
Range		
1-3	Minor impact to system. May be a nuisance but is	
	easily detected and/or repaired	
4-6	Moderate impact to system. Confidentiality,	
	integrity, and/or availability of system affected.	
	Requires non-trivial effort to detect and/or repair.	
7-9	Severe impact to system. Significant damage	
	results to system. Considerable effort required to	
	detect and/or repair damage.	
10	System completely compromised, inoperable, or	
	destroyed	

Attack tree risk

Classic Risk = probability * impact

Propogate Metrics Up Tree

Table 2 – Rule Set to Propagate Metrics Up Tree

	AND	OR
Probability	$\prod_{i=1}^n prob_i$	$1 - \prod\nolimits_{i=1}^{n} (1 - prob_i)$
Cost	$\sum_{i=1}^{n} cost_{i}$	$\frac{\sum_{i=1}^{n} prob_{i} \times cost_{i}}{\sum_{i=1}^{n} prob_{i}}$
Impact	$\frac{10^{n} - \prod_{i=1}^{n} (10 - impact_{i})}{10^{(n-1)}}$	$Max_{i=1}^n impact_i$

 $prob \in (0,1], cost \in (0,\infty), impact \in [1,10], n = \# \text{ of child nodes}$

Attack Tree Process - 1

- Identify the possible attack goals. Each goal forms a separate tree, although they might share subtrees and nodes.
- Think of all attacks against each goal.
 Add them to the tree. Repeat this process down the tree until you are done.
- Give the tree to someone else, and have him think about the process and add any nodes he thinks of.
- Repeat as necessary.

Attack Tree Process - 2

- Assign the node values.
- Recalculate the nodes based on the new information and see how the goal node is affected.
- Compare and rank attacks -- which is cheaper, which is more likely to succeed, and the like.

Uses of attack trees

- See if the system goal is vulnerable to an attack based upon the "how"s.
- Guides you to consider the security assumptions of the system.
- Can be used to determine the impact of a system modification.
- Can be used to compare and rank attacks.

What else?

- Attack trees can show:
 - Intrusive versus non-intrusive attacks
 - Legal versus illegal attacks
 - Budget, skills, and/or access required of the attacker.
 - Probabilities of success for various attacks.
 - Likelihood of different attacks.
 - Value of different attacks.
 - Compare
 - Effects of countermeasures
 - Security of different products

Protection (or Defense) Trees

Figure 3 - Partial Attack Tree To Open a Physical Safe [3].

Figure 4 - A Partial Protection Tree for the Safe Attack

Figure 7 - DDoS Attack Tree

Figure 8 - DDoS Protection Tree

