Newcastle University

School of Maths, Stats, and Physics

Cloud Chambers

Worksheet (Answers)

Not for distribution to students

CLOUD CHAMBERS WORKSHEET (ANSWERS)

Task 1

Question 1

Watch carefully for the trails of cloud left by the alpha particles. You should see that they are fairly short, around 5 cm long. Why do they stop?

Question 2

The number of radioactive nuclei remaining in a sample decreases exponentially. If we know the initial number of atoms N_0 , we can work out the number remaining after a given time t using the equation

$$N(t) = N_0 e^{-\lambda t}$$
 ,

where λ is the **decay constant**. This is related to the **half life** $t_{\frac{1}{2}}$ (the time it takes for the number of particles to halve) by the equation

$$\lambda = \frac{\ln(2)}{t_{\frac{1}{2}}} \, .$$

We can define the **activity** as the number of particles decaying per second, or the rate of change of the number of particles. This is given by

$$A=-\frac{dN}{dt}=\lambda N.$$

Watch your cloud chamber for 10 seconds, and count the number of trails you see in this time. Repeat this three times, and fill in the table below:

Time (s)	Number of Trails

CLOUD CHAMBERS WORKSHEET (ANSWERS)

Average:	some	number
----------	------	--------

What is the activity of the source? $A = \text{some number / 10 s}^{-1}$

Question 3

The half-life of Americium-241 is 432 .2 yr. How many atoms of Americium-241 are there in your source?		
N	$V=\frac{10^{25}}{10^{25}}$	

The atomic mass of Americium-241 is 241.057 u. What is the mass of your source? (you may use 1 u = 1.66×10^{-27} kg, $N_A = 6.02 \times 10^{23}$ mol $^{-1}$)

 $m= {\color{red} \sim 1}$ g

