sine basis 09

Statistics:

Design matrix p-values adjusted for search volume

Otation of talacs adjusted for scaron volume													
set-level		cluster-level				peak-level					mm mm mm		
р	С	p_{FWE-c}	<i>g</i> :orrFDR-c	orr E	p _{uncorr}	p_{FWE-c}	g orrFDR-co	<i>T</i> orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$	11111111	_	111
		1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.496 0.453 0.627 0.688 0.496 0.430 0.464 0.455	31 43 20 17 29 32 46 37 42	0.079 0.043 0.151 0.183 0.089 0.075 0.037 0.058 0.045	1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.557 0.578	3.48 3.45 3.42 3.42 3.42 3.42 3.41 3.39	3.46 3.43 3.40 3.40 3.40 3.39 3.39 3.37	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-14 -6 30 48 14 34 -10 -10	58 28 28 50 62 -32 -32 -84	16 48 52 6 52 0 -8 -18
		1.000 1.000 0.992 1.000	0.773 0.496 0.310 0.496	10 29 58 31	0.304 0.089 0.021 0.079	1.000 1.000 1.000	0.586 0.586 0.982 0.606		3.35 2.64 3.33	0.000 0.000 0.000 0.004 0.000	26 56 4 -2 14	-36 -44 -4	-28 -32 66 68 74
			0.430		0.037	1.000	0.707 0.666 0.707 0.745	3.15 3.30 3.18 3.09	3.16 3.07	0.001 0.001 0.001 0.001	20 - 40 -36 -46	-10 16 12 18	74 54 46 48
		1.000 1.000 1.000 1.000	0.688 0.496 0.496 0.481	17 28 29 35	0.183 0.094 0.089 0.064	1.000 1.000 1.000 1.000	0.668 0.668 0.700 0.707	3.29 3.29 3.27 3.22	3.28 3.27 3.25 3.20	0.001 0.001 0.001 0.001	-36 -46 44 54	48 26 34 -18	-12 -2 -20 -24