Day 01 - Exercise 01 - Intro Exercises

Victor Calderon 15 August, 2018

This are the responses/answers to the problems posed by the exercises in the Intro.R file.

Exercise 1.1

Look through the help file for plot, then recreate any figure above and set the subtitle to subtitle.

```
help(plot)
```

Now we can recreate the figure as in intro.R:

```
x = rnorm(1000)
y = rnorm(1000)
plot(x, y, sub = 'subtitle')
```


Exercise 1.2

Find two different expressions to create a 3 x 3 (row x col) matrix with the values 2, 4, and 6 in the rows.

The first method:

```
matrix(c(2, 4, 6), nrow = 3, ncol = 3, byrow = TRUE)
        [,1] [,2] [,3]
##
## [1,]
           2
                 4
## [2,]
           2
                 4
                      6
## [3,]
           2
                 4
                      6
and the 2nd version:
matrix(rep(c(2,4,6), 3), nrow = 3, ncol = 3, byrow = TRUE)
##
        [,1] [,2] [,3]
## [1,]
           2
                 4
## [2,]
           2
                 4
                      6
           2
## [3,]
                 4
                      6
and the rest of forms:
matrix(rep(seq(2, 6, 2), 3), nrow = 3, ncol = 3, byrow = TRUE)
##
        [,1] [,2] [,3]
## [1,]
           2
                 4
           2
## [2,]
                 4
                      6
## [3,]
                 4
                      6
matrix(rep(seq(2, 6, 2), c(3, 3, 3)), nrow = 3, ncol = 3)
##
        [,1] [,2] [,3]
## [1,]
           2
                 4
## [2,]
           2
                 4
                      6
## [3,]
           2
                 4
                      6
t(matrix(rep(c(2, 4, 6), 3), 3, 3))
        [,1] [,2] [,3]
##
## [1,]
           2
                 4
## [2,]
           2
                 4
                      6
## [3,]
           2
                 4
                      6
cbind(rep(2, 3), rep(4, 3), rep(6, 3))
##
        [,1] [,2] [,3]
## [1,]
           2
                 4
## [2,]
           2
                 4
                      6
## [3,]
           2
                      6
rbind(c(2, 4, 6), c(2, 4, 6), c(2, 4, 6))
        [,1] [,2] [,3]
##
## [1,]
           2
                 4
                      6
## [2,]
           2
                 4
                      6
## [3,]
                      6
```

These are just a few ways of determining a matrix of shape (3, 3), with the elements (2, 4, 6) in each row.

Exercise 1.3

What happens when you collate (c()) a list and a vector? List and a list?

Collating a list and a vector

```
# Defining my list and vector
list1 = list(c(1, 2, 3))
vec1 = c(5, 6)
c(list1, vec1)
## [[1]]
## [1] 1 2 3
##
## [[2]]
## [1] 5
##
## [[3]]
## [1] 6
Now collating a list with a list
list2 <- list(c( 1, 2, 3))
list3 <- list(c( 4, 5, 6))
c(list2, list3)
## [[1]]
## [1] 1 2 3
##
## [[2]]
## [1] 4 5 6
or another example:
c(list(1,2), c(1,2))
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 1
##
## [[4]]
## [1] 2
c(list(1,2), list(1,2))
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 1
##
```

```
## [[4]]
## [1] 2
```

Exercise 1.4

Install and load the manipulate package.

```
Installing the package manipulate
with install.packages("manipulate")
and loading the package with
library("manipulate")
```

Exercise 1.5

Use the manipulate function to interactively vary the phi argument to persp in the above example. Use persp(x,y,fa,theta=30,phi=phi_slider) as the first argument (see the manipulate help file and examples).

We will vary phi:

Exercise 1.6

Generate 10 values from the normal distribution with mean 5 and 3 and compute their sample mean.

Generating 10 values from a **normal** distribution:

```
mu = 5
sd = 4
random_values = rnorm(10, mean = mu, sd = sd)
head(random_values)
```

```
## [1] 7.7665463 5.3151400 -0.1929489 11.2728328 -1.9785986 4.1538108
```

```
# Mean value
mean_random = mean(random_values)
head(mean_random)
## [1] 4.481353
```

Exercise 1.7

Use the replicate function to repeat item 6. 1000 times.

We will now use the replicate function:

```
head(replicate(1000, mean(rnorm(10, mean = mu, sd = sd))))
## [1] 4.711441 3.933092 7.202014 4.637932 5.461638 5.908382
```

Exercise 1.8

Use the hist function to plot a histogram of the sample means from item 7. Repeat where N = 50 instead of 10. Use the add = TRUE and col = "red" arguments to the 'hist' function to add the second histogram to the first for comparison.

```
library(scales)
## 1st histogram
x1 = replicate(1000, mean(rnorm(10, mean = mu, sd = sd)))
hist(x1, col=scales::alpha('skyblue',.8), border = F)

## 2nd histogram
x2 = replicate(1000, mean(rnorm(50, mean = mu, sd = sd)))
hist(x2, add = TRUE, col=scales::alpha('red',.7), border = F)
```

