Reg. No.				

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18CEO311J – COMPUTER APPLICATION IN GEOTECHNICAL AND TRANSPORTATION ENGINEERING

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

Note: (i)

- **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3 hours Max. Marks: 100

10. J	nour	3		•		Y LGLL	1.U. I	00
		PART – A (20 × 1 :		· · · · · · · · · · · · · · · · · · ·	Marks	BL	СО	PO
		Answer ALL Q)uesti	ons				
1.	Mol	nr Coulomb model is a			1	I	1	1
	(A)	Linear elastic model	(B)	Plastic model				
	(C)	Elasto-plastic model	(D)	Hardening social model				
2	Base	ed on the method of load transfer	nile	foundations are classified as	1	1	1	1
۷.		Driver piles and Bored piles		Bored piles and cast-in-situ				
	(2.2)	Birror price and Borea prices	(2)	piles				
	(C)	Wooden and concrete piles	(D)	Friction piles and End bearing				
	` ,	1	. ,	piles				
3	The	depth to width ratio for shallow	found	lation is	1	1	1	1
3.		Less than or equal to 1		Greater than 2				
		Less than or equal to 6	` ′	Greater than or equal to 1				
	(0)	Less than of equal to 0	(D)	Greater man or equal to 1				
4.	The	major foundation problem encou	intere	d with leaning tower of pisa	1	1	1	1
	(A)	Bearing capacity failure	(B)	Sliding failure				
	(C)	Punching failure	(D)	Settlement failure				
5	The	application of geostudio which is	אפונ פ	l in the analysis of slone is	1	3	2	5
<i>J</i> .		SEEP/W		CTRAN/W				
	(C)		\ /	QUAKE/W				
	(0)	SDOT E	(1)	QUI IIIIII VI				
6.	Of t	he many slip surfaces calculated	l, the	slip surface with the least factor	1	2	2	2
		fety is defined as						
		Finite slope	` /	Base failure				
	(C)	Critical slip surface	(D)	Infinite slope				
7.	The	slones that are extended over a	long	distance and the conditions that	1	1	2	1
		-	_	rfaces for quite some distances is				
		ribed as						
	(A)	Finite slopes	(B)	Infinite slopes				
		Man-made slopes		Artificial slope				

Page 1 of 4 28NA6-18CEO311J

8.	The factor of safety is defined as the force and F _d is the driving force	ne ratio	, where F _r is the resisting	1	1	2	2
	(A) F_r/F_d (C) $(F_r-F_d)/F_d$		$(F_r + F_d) / F_d$ $(F_r - F_d) / F_r$				
9.	Which of the below is not a terrain of			1	1	3	1
	(A) Rolling terrain(C) Hilly terrain	` '	Plain terrain Undulating terrain				
10.	The parameter that least affects the highway is	he geo	metric design and alignment of	1	1	3	1
	(A) Speed	(B)	Number of lanes				
	(C) Set back distance	(D)	Thickness of pavement				
11.	The design speed of National highw			1	1	3	1
	(A) 100 kmph	` '	80 kmph				
	(C) 60 kmph	(D)	120 kmph				
12.	The vertical gradient of highway is	limited	to	1	1	3	1
	(A) Limiting gradient	(B)	Ruling gradient				
	(C) Drainage gradient	(D)	Exceptional gradient				
13.	The cluster analysis is performed us	sing the	emodeling.	1	1	4	1
	(A) Microscopic		Mesoscopic				
	(C) Macroscopic	(D)	Microscopic and mesoscopic				
14	Select the situation that does not rec	mire th	e traffic simulation techniques	1	1	4	1
	(A) To view the vehicle flow						
	animation to understand how	V	over a significant time				
	the system behaves (C) To view the flow in the signal	(D)	Traffic sign board implication				
15.	Which of the following parameters		=	1	1	4	1
	(A) Speed and density	` '	Flow and density				
	(C) Flow and speed	(D)	Density, flow and speed				
16.	The output of simulation correspond	ding to	the network element is	1	1	4	1
	(A) Flow	_	Link				
	(C) Time	(D)	Cost of travel				
17	Thermal stress in the rigid slab is m	avimu	m af	1	1	5	1
17.	(A) The neutral axis		The extreme fiber of the slab				
	(C) 1/4 th of the depth from neutra	` /					
	axis	()					
18.	Which of the below strain induces r	utting	in subgrade laver?	1	1	5	1
	(A) Vertical strain at the surface of	_	-				
	the pavement		of the pavement				
		of (D)	Horizontal strain at the top of				
	subgrade		subgrade				

19.	The stress/strain for the design of flexible pavement are determined assuming all the layers as (A) Viscoelastic (B) Linearly elastic (C) Visco plastic (D) Non linear elastic	1	2	5	1
20.	Which of the below is the standard axle load? (A) 80 kN, single axle dual wheel (B) 64 kN, single axle single wheel (C) 148 kN, tandem axle (D) 224 kN, tridem axle	1	1	5	1
	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	BL	CO	РО
21.	State the different modes of failure of shallow foundation.	4	2	1	1
22.	. Enumerate on the classification of piles based on various category.				1
23.	Name any two methods of slope stability analysis and describe their basic differences in assumption.				1
24.	Explain different types of gradient in highway and highlight the recommended values for national highway in plain terrain.				1
25.	Explain the influence of terrain type in the geometric design of highway.				1
26.	Enumerate the step by step process involved in the simulation of traffic flow at the intersection.				1
27.	Bring out the assumptions made in the analysis of flexible pavement.				1
	PART - C (5 × 12 = 60 Marks) Answer ALL Questions				PO
28. a.i.	Explain the concept of plane strain and axisymmetric analysis in PLAXIS 2D. Under what condition these analysis are adopted.	6	1	3	1
ii.	List out the prerequisite for foundation design.				1
b.	(OR) Explain various soil models in detail and with suitable illustration.	12	1	3	1
29. a.	Enumerate the problem definition input and analysis steps in 'GEOSTUDIO' for solving slope stability problem.	12	2	3	1
b.i.	(OR) What are factors affecting factor of safety of slope stability.	4	2	2	1

Page 3 of 4 28NA6-18CEO311J

3 12 3 30. a. Enumerate the step by step process involved in the horizontal alignment of highway. (OR) 12 3 b. Explain the step by step process in the vertical alignment of highway. 12 2 31. a. Discuss the simulation steps involved in simulation of uninterrupted traffic flow. (OR) 3 12 b. Given with a specific traffic control measure, how will you understand the behavioral change in the traffic flow parameters using simulation techniques? 12 3 5 32. a. Explain the step by step input that you will give for solving the below problem. A three-layer system has an HMA surface with $h_1 = 127$ mm and $E_1 = 3.5$ GPa; a granular base with $h_2 = 305$ mm and $E_2 = 62$ MPa and a soft subgrade with $E_2 = 21$ MPa. Determine the tensile strains at the bottom of asphalt layer and the compressive strain on the top of subgrade.

(OR)

b. For a set of dual-tandem wheels with a total weight of 182 kN (45.5 kN/per wheel), a tire pressure of 0.7 N/mm², a dual spacing of 50 cm and a tandem spacing 100 cm. The concrete slab is 20 cm thick, and the Modulus of subgrade reaction is 27 MN/m³. Explain the step by step input that you will give in configuring the load and node arrangements for the rigid slab analysis in the determination of stress due to interior loading in Y direction at point under the center of the dual tandem wheels.

* * * * *

Page 4 of 4

12

3

5