

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística

D 1 ./ ' I	1 1	1 / •	. 1	. • 1 • 1	1 1	1		~
Dalatakia cahka	modoladom	do corio	tompoural	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	nim madala	$d \cap d$	docomposic	20
Relatório sobre	IIIVUCIAECIII	uc serie	tempoi ai	uunzanuv	um moacio	ucı	TCCAIIIDASIC	av

Caio Sanches Bentes 201306840059

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia da Computação e Telecomunicações

Neste trabalho modelo uma série que contén os Índices volumes de vendas no varejo no Rio Grande do Norte de janeiro de 2000 a outubro de 2016 utilizando uma modelagem de decomposição em têndecia e sazonalidade

Caio Sanches Bentes 201306840059

1 - INTRODUÇÃO

Em estatística, econometria, matemática aplicada e processamento de sinais, uma série temporal é uma coleção de observações feitas sequencialmente ao longo do tempo. Em modelos de regressão linear com dados cross-section a ordem das observações é irrelevante para a análise, em séries temporais a ordem dos dados é fundamental. Uma característica muito importante deste tipo de dados é que as observações vizinhas são dependentes e o interesse é analisar e modelar esta dependência.

O modelos estatísticos são representados por equações derivadas diretamente dos dados disponíveis, sem recorrer a qualquer teoria, exceto no caso da escolha dos dados a serem utilizados. Já os modelos econométricos, levam em conta uma dada teoria econômica, a qual quase sempre não pode ser convenientemente modelada matematicamente.

2 - OBJETIVO

Neste relaorio objetivo modelar a serie de Índices volumes de vendas no varejo no Rio Grande do Norte de janeiro de 2000 a outubro de 2016, me utilizando do método de decomposição para assim modelar sua tendência utilizando Tendência polinomial e sua sazonalidade usandoo Método da regresão para sazonalidades determinísticas.

3 - PROCEDIMENTOS EXPERIMENTAIS

3.1 - MATERIAIS

- Índices volumes de vendas no varejo no Rio Grande do Norte de janeiro de 2000 a outubro de 2016
- -MATLAB

3.2 - EOUIPAMENTOS

-MATLAB

3.3 - MÉTODOS

-Tendência polinomial

O método clássico de análise de regressão pode ser utilizado para estimar os parâmetros do modelo assim como suas tendências. Nós vamos considerar precisamente a tendência linear.

Considere o modelo com tendência determinística linear

$$Zt = \beta 0 + \beta 1t + Xt$$

Q (
$$\beta$$
0, β 1) = $\sum_{t=1}^{n} (Zt - \beta 0 - \beta 1 t)^{2}$

onde $\beta 0$ e $\beta 1$ são o intercepto e a inclinação, respectivamente, e os parâmetros desconhecidos. O método clássico de minímos quadrados (ou regressão) é utilizado para estimar os parâmentros $\beta 0$ e $\beta 1$, que minimizam

A solução pode ser obtida calculando as derivadas parciais com relação a $\beta 0$ e $\beta 1$ igualando-as a zero, encontrando as equações normais

Daí encontraremos os seguintes estimadores de minímos quadrados.

teremos então o seguinte estimador de minímos quadrados $\beta = (Y^T Y)^{-1} - 1 Y^T Z$.

-Sazonalidade determinística - método de regressão

Os métodos de regressão são ótimos para séries que apresentam sazonalidade determinística, ou seja, esta pode ser prevista perfeitamente a partir de meses anteriores.

Supondo a sazonalidade constante, α_i não depende de T. Pode-se ter, por exemplo,

$$dij = 1$$
, se o período t corresponde ao mês j, j = 1, ..., 12. 0, caso contrário.

de modo que a matriz de regressão não é de posto completo, mas de posto m+12 (temos m+13 parâmetros). Impondo-se a restrição adicional:

$$X 12 j=1 \alpha j = 0$$

$$\sum_{j=1}^{12} aj = 0$$

obtém-se um modelo de posto completo:

$$Zt = \sum_{j=0}^{m} \beta j t^{j} + \sum_{1}^{1} \alpha j D j t + at$$

onde agora

Djt = 1, se o período t corresponde ao mês j,

−1, se o período t corresponde ao mês 12

0, caso contrário.

Utilizando o método de mínimos quadrados pode-se obter os estimadores de αj e βj , ou seja, a partir de uma amostra Z1, ..., ZN obtém-se o modelo matricial:

$$Z = C\beta + D\alpha + a$$

A equação pode ser escrita na forma:

$$Z = X\gamma + a$$

onde

$$X = [C : D]$$

$$e \gamma = \bullet | \beta |$$

 $| \alpha |$

de modo que:

$$\gamma = [X' X]^{-1} X' Z$$

são os estimadores de mínimos quadrados

4 - RESULTADOS E DISCUSSÕES

Criei uma função que gera um vetor com o log neperiano do erro médio quadrático de de minha modelagem em relação a original. Ela me retornou o seguinte gráfico.

Partindo disso me utilizei da 7ª ordem para modelagem. Segue imagens com os passos:

Meu modelo de 7ª ordem.

Resíduo obtido.

Histograma do resídio(que teve media muito próxima de zero)

Etapa de previsões

5 - CONCLUSÃO

Concluí para os seguintes casos que se utilizando de um função de 7ª ordem obtenho o menor erro na modelagem e previsão da minha série. Além de que ela melhor representa a queda nos dois ultimos anos.

6 - BIBLIOGRAFIA

MORETTIN, Pedro A. e TOLOI, Clélia M. Séries Temporais. 2ª ed. São Paulo: Atual, 1987.

MORETTIN, Pedro A. e TOLOI, Clélia M. Previsão de Séries Temporais. 2ª ed. São Paulo: Atual, 1987.

CHATFIELD, C. The Analysis of Time Series: An Introduction. Chapman-Hall, 1984.

Código principal

```
st = transpose(importfile('STP-20161121152409392.csv', 2, 202)); % importa dados da minha
Série temporal
Z = st(1:180); %Parte da série que será utilizada para modelagem.
N= 7; %Ordem da função que modela a tendência
T = minimos(length(Z),N); % Obtenção da matriz T
anos = 15; %anos utilizados para modelagem
D = obtemD(anos); %obtenção da matriz D
X = [T D]; %Monto a matriz X
gama = inv(transpose(X)*X)*transpose(X)*transpose(Z); % obtenho gama
figure(1)
plot(st,'r')%plotagem da série original com todos os pontos
legend('plotagem da série completa', 'Location', 'northoutside', 'Orientation', 'horizontal')
Zest = gama'*X'; % Obtenho meu Z estimado
figure(2)
plot(Z,'r');hold on;plot(Zest, 'g'); %Ploto na mesma figura a serie original(em verde) e a série
estimada(em vermelho)
legend('15
                primeiros
                                                    minha
                                                                 série', 'gráfico
                                anos
                                           da
                                                                                     do
                                                                                             meu
modelo', 'Location', 'northoutside', 'Orientation', 'horizontal')
figure(3)
residuo = Z-Zest; plot(residuo, 'b');%gráfico do resíduo
legend('gráfico do meu reśiduo', 'Location', 'northoutside', 'Orientation', 'horizontal')
erro = mean((\log(Z)-\log(Zest)).^2)
figure(4)
plot
hist(residuo);%histograma do meu resíduo
legend('histograma do meu resíduo', 'Location', 'northoutside', 'Orientation', 'horizontal')
mean(residuo);
% aqui eu vou fazer a minha previsão.
T2 = minimos(204,N);
D2 = obtemD(17); %obtenção uma nova matriz D
X2= [T2 D2]; %Monto a=uma nova matriz X
Zest2 = gama'*X2'; % Obtenho meu Z2 estimado
figure(6)
plot(st,'r');hold on;plot(Zest2(1:180),'B');plot([181:201],Zest2(181:201),'g')
%ploto a serie, a serie estimada e a previsão
legend('Parte
                      série
                               utilizada
                                                  modelagem','Modelo
                                                                          criado', 'previsões
                da
                                                                                               do
                                           na
modelo', 'Location', 'northoutside', 'Orientation', 'horizontal')
```

Função que testa erro medío quadrático nos polinômios de orden de 1 a 10

D = obtemD(anos); %obtenção da matriz D

```
st = transpose(importfile('STP-20161121152409392.csv', 2, 202)); % importa dados da minha
Série temporal
Z = st(1:180); %Parte da série que será utilizada para modelagem.
anos = 15; %anos utilizados para modelagem
```

```
for N=1:8
 T = minimos(length(Z),N); % Obtenção da matriz T
  X = [T D]; %Monto a matriz X
  gama = inv(transpose(X)*X)*transpose(X)*transpose(Z); % obtenho gama
  Zest = gama'*X'; % Obtenho meu Z estimado
  erro(N) = log(mean((Z-Zest).^2))
  T=0;X=0;gama=0;Zest=0;
end
plot(erro);
legend('Gráfico
                     do
                              log(erro)
                                                      ordem
                                                                           polinômio
                                                                                            de
aproximação', 'Location', 'northoutside', 'Orientation', 'horizontal')
[valorMinimo ordem] = min(erro)
```

Função que gera matriz D

```
function D = obtemD(anos)

D = [eye(11,11);-1*ones(1,11)];

if anos>1

for i=2:anos

D = [D;[eye(11,11);-1*ones(1,11)]];

end
end
end
```

Função que gera matriz T

```
function T = minimos( tamanho, n )

T = ones(tamanho, 1);

T(1:tamanho,2)= 1:tamanho;

if n>1

for i=2:n

T(1:tamanho,i+1)= (T(:,2)).^i;

end

end

end
```

Função que impota dados de meu arquivo .csv

```
function st = importfile(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.

%% Initialize variables.
delimiter = ',';
if nargin<=2
startRow = 2;
endRow = 202;
end

%% Read columns of data as strings:
% For more information, see the TEXTSCAN documentation.
formatSpec = '%*s%s%[^\n\r]';

%% Open the text file.
```

```
fileID = fopen(filename,'r');
%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', delimiter,
'HeaderLines', startRow(1)-1, 'ReturnOnError', false);
for block=2:length(startRow)
  frewind(fileID);
  dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, 'Delimiter',
delimiter, 'HeaderLines', startRow(block)-1, 'ReturnOnError', false);
  dataArray{1} = [dataArray{1};dataArrayBlock{1}];
end
%% Close the text file.
fclose(fileID);
%% Convert the contents of columns containing numeric strings to numbers.
% Replace non-numeric strings with NaN.
raw = repmat({"},length(dataArray{1}),length(dataArray)-1);
for col=1:length(dataArray)-1
  raw(1:length(dataArray{col}),col) = dataArray{col};
numericData = NaN(size(dataArray{1},1),size(dataArray,2));
% Converts strings in the input cell array to numbers. Replaced non-numeric
% strings with NaN.
rawData = dataArray{1};
for row=1:size(rawData, 1);
  % Create a regular expression to detect and remove non-numeric prefixes and
  % suffixes.
  regexstr = '(? < prefix > .*?)(? < numbers > ([-]*(\d+[\]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|
([-]*(\d+[\,]*)*[\.]\{1,1\}\d+[eEdD]\{0,1\}[-+]*\d*[i]\{0,1\}))(?<suffix>.*)';
    result = regexp(rawData{row}, regexstr, 'names');
    numbers = result.numbers;
    % Detected commas in non-thousand locations.
    invalidThousandsSeparator = false;
    if any(numbers==',');
       thousandsRegExp = '^d+?(',d{3})*.{0,1}^d*$';
       if isempty(regexp(thousandsRegExp, ',', 'once'));
         numbers = NaN;
         invalidThousandsSeparator = true;
       end
    end
    % Convert numeric strings to numbers.
    if ~invalidThousandsSeparator:
       numbers = textscan(strrep(numbers, ',', "), '%f');
       numericData(row, 1) = numbers{1};
       raw\{row, 1\} = numbers\{1\};
```

```
end
catch me
end
end

R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells
raw(R) = {NaN}; % Replace non-numeric cells

%% variavel de saida
st = cell2mat(raw);
```