

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 9 January 2003 (09.01.2003)

PCT

(10) International Publication Number WO 03/002131 A1

(51) International Patent Classification⁷: C12N 1/20, A61P 31/04, 1/00 A61K 35/74,

(21) International Application Number: PCT/EE02/00006

(22) International Filing Date: 21 June 2002 (21.06.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: P200100356

29 Jun

29 June 2001 (29.06.2001) E

(71) Applicant (for all designated States except US): UNIVER-SITY OF TARTU [EE/EE]; Ülikooli 18, EE50090 Tartu

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MIKELSAAR, Marika [EE/IEI]; Jakobsoni 11-4, EE51001 Tartu (EE). ZILMER, Mihkel [EE/EE]; 37 Puusepa Street, EE50406 Tartu (EE). KULLISAAR, Tiiu [EE/EE]; Ropka 12A-45, IEE-50111 Tartu (IEE). ANNUK, Heidi [EE/EE]; Kaunase pst. 7-27, IEE50706 Tartu (EE). SONGISEPP, Epp [IEE/IEE]; Vabriku 5-47, EE63308 Polva (EE).
- (74) Agent: KAHU, Sirje; Oü Ustervall, Postkast 21, EE50002 Tartu Postkontor (EE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A1

(54) Title: STRAIN OF MICRO-ORGANISM LACTOBACILLUS FERMENTUM ME-3 AS NOVEL ANTI-MICROBIAL AND ANTIOXIDATIVE PROBIOTIC

(57) Abstract: The strain of micro-organism Lactobacillus fermentum ME-3 is a novel anti-microbial and anti-oxidative probiotic. It has a high anti-microbial effect on Escherichia coli, Shigella sonnei, Staphylococcus aureus, Salmonella typhimurium, and moderate activity against Helicobacter pylori strains. The strain of micro-organism possesses Mn-superoxide dismutase and both its lysates and intact cells have high anti-oxidative activity, increasing the glutathione red-ox ratio in blood sera and able to capture toxic hydroxyl radicals. The strain of micro-organism could be used as a probiotic for the production of functional food (yoghurt, cheese) and non-comestibles (tablets, capsules) for the prophylaxis of intestinal and uroinfections, both for the prevention and treatment of chronic diseases, caused by prolonged oxidative stress.

WO 03/002131 PCT/EE02/00006

STRAIN OF MICRO-ORGANISM LACTOBACILLUS FERMENTUM ME-3 AS NOVEL ANTI-MICROBIAL AND ANTI-OXIDATIVE PROBIOTIC

TECHNICAL FIELD

The present invention relates to biotechnology and will be used as a novel probiotic applied in the production of functional food (yoghurt, cheese) and non-food preparations (tablets, capsules) for the prevention or treatment of different diseases.

10

25

·30

35

BACKGROUND ART

Probiotics are living microbial food additives, that have beneficial effect on the microbiological balance of the intestine and human health. Probiotics are used as functional food. Functional food is foodstuff, consumed additionally to usual food and containing bio-preparations (incl. probiotics) or other components favourably influencing human health or decreasing disease risks.

Probiotics are consumed as components of food (probiotic yoghurt or cheese) or non-food preparations (lyophilised microbial cultures).

lactic acid bacteria, probiotics are non-pathogenic lactobacilli. Lactobacilli are organisms, colonising the human intestinal and urogenital tract from early childhood to old age. Nowadays, several commercial probiotic lactobacilli are successfully used, rhamnosus GG Lactobacillus (Saxelin M. which Lactobacillus GG - a human probiotic strain with thorough clinical documentation. Food Rev Int 1997; 13:293-313) is the best known. Recently some new strains of lactobacilli have been described and patented, for example L. reuterii (Korea 1/20, Korea Institute Science KR211529, C12N patent Technology, 1999), isolated from animal organism and for this reason inappropriate for human usage.

Several strains of Lactobacillus fermentum are used for correction and stabilisation of intestinal micro-flora in dysbacterioses and urogenital infections The strain of micro-organism different ethiologies. fermentum 39 is used for producing the Lactobacillus bacterial (PCT/SU89/00264 (WO biological preparation 91/05852), C12N 1/20, A61K 35/74, University of Tartu, 1991). The strain Lactobacillus fermentum 90-TS-4 (RU2133272, C12N 35/74, Akivo Lentsner et al., 1/20, A61K characterised by lectin typing as a mannose-sensitive profile of the cell wall. The preparation is prescribed for use in gynaecology.

There are some well-known probiotics, targeted against only one pathogen (for example Salmonella) (US5478557, A61K 35/74, US Agriculture, 1995; US5340577, A61K 35/74, US Army, 1994). Up to the present no strain of lactobacilli with an extensive anti-microbial effect against numerous pathogens and opportunistic pathogens has been described.

20

25

10

15

WO 03/002131

Likewise, yet no such strain of micro-organism is known that could have natural antibiotic resistance against drugs most frequently used in the treatment of infections. This property would permit to use such strains in case of antibiotic-treated patients. A set of different micro-organisms is used in veterinary, containing also one strain of *L. fermentum*, but this strain does not have a concurrent anti-microbial and anti-oxidative effect (RU2119796, A61K 35/66, Zakrōtoje aktsionernoje obshestvo "BAKS", 1998).

Anti-oxidative preparations like vitamin E and C, betacarotene a.o. nowadays get much attention in connection to healthy nutrition. Excessive formation of reactive oxygen species (ROS) in tissue respiration can cause the damage of cells and the course of tissues. The formation of active

oxygen may depend on some stress factors, such as alcohol, peroxides, and some drugs.

Usually excessive oxidation is closely connected with nutritional diseases, age, arteriosclerosis, misfunctions of the central nervous system and the intestinal tract, cancer a.o. pathological conditions. An organism has several defence systems against the toxigenicity of oxygen. It is important to take anti-oxidative substances to guarantee the functioning of these systems.

Of known solutions, the closest to this invention is the patent describing anti-oxidative food, an anti-oxidative preparation and a method of antioxidation (EPO649603, A23L 3/3472, A23L 3/3571, Otsuka Pharma Co Ltd. 1995). The object of this invention is a preparation that contains a natural substance involving mangan (leaves of tea plant) and the micro-organism Lactobacillus plantarum that produces catalase and a superoxidase-dismutase system, thus increasing the anti-oxidative activity of the host organism. The authors of this invention declare that the preparation prevents diseases developing due to active oxygen. However, they do not describe the effect of particular Lactobacillus strain with a decreasing anti-oxidative activity or capturing hydroxyl radicals in vitro. Besides that, this strain of microorganism is also imperfect because for getting the presumable anti-oxidative effect in an organism (in vivo), it is necessary to add some Mn-containing raw material (leaves of tea plant) to the preparation, because it is only in this case its SOD (superoxide dismutase) activity is realised.

DISCLOSURE OF THE INVENTION

10

25

30

35

The aim of this invention is to present the strain of microorganism as a novel anti-microbial and anti-oxidative probiotic for use in pharmaceutical and food industry, also WO 03/002131 PCT/EE02/00006

in medicine as an antibiotic-resistant preparation for the prophylaxis and treatment of gastrointestinal and uroinfections, and against oxidative stress.

The object of the investigation - the strain of microorganism Lactobacillus fermentum ME-3 was isolated from a faecal sample of a healthy child during a comparative study of the micro-flora of Estonian and Swedish children, using MRS (Oxoid) media and cultivating it in a CO₂ environment (Sepp et al., Intestinal microflora of Estonian and Swedish infants, Acta Paediatrica, 1997, 86, 956-961).

The strain of micro-organism Lactobacillus fermentum ME-3 was isolated by seeding the dilutions of the faeces of healthy one-year-old Estonian child (10⁻²-10⁷ in phosphate buffer with 0.04% thioglycol acid; pH 7.2). The dilutions were seeded on freshly prepared MRS agar-media and cultivated at 37°C in a CO₂ environment. The strain, which is the object of invention, was isolated from a 10⁻⁵ dilution on the basis of the characteristic morphology of colonies and cells. A provisional and more precise identification followed as described next. Using additional tests, the strain was selected from other lactobacilli isolated from the same child on the basis of its special properties.

25

30

15

The fact that the microbial strain Lactobacillus fermentum ME-3 originates from the intestinal tract of a healthy child proves its GRAS (generally recognised as safe) status, i.e. that this strain of micro-organism is harmless for human organism and it is suitable for oral application.

Cultural-morphological characteristics were determined after cultivating the strain on MRS agar and in MRS broth media (OXOID). Microbial cells are Gram-positive rods of regular

WO 03/002131 PCT/EE02/00006

shape located in parallel chains, nonspore, of medium thickness and different length (2x 3-5 μm).

- Physiological-biochemical characteristics: MRS broth was suitable for cultivating the microbial strain during 24-48 hours in a 10% CO₂ environment, after which homogeneous turbid growth occurred in the broth. The colonies of microorganism on MRS agar are white, rounded, with a regular edging.
- The optimal growth temperature is 37°C, it multiplies also at 45°C, but it does not grow at 15°C. The optimal growth environment is at pH 6.5.

15

20

25

30

35

The negative catalase test, gas production by fermentation of glucose, production of NH_3 from arginine, and lysozyme production are the main properties. During reproduction in milk it produces 1,07% of acid.

The strain with above-mentioned characteristics was identified on the basis of biochemical activity with API 50 CHL System (BioMerieux, France) kit as Lactobacillus fermentum (ID% 99.6, T 0.87, only 1 test contra). The following sugars and alcohols were fermented - ribose, galactose, D-glucose, D-fructose, D-mannose, esculine, maltose, lactose, melibiose, saccharose, D-raffinose, D-tagatose and gluconate.

The profile of the metabolites of Lactobacillus fermentum ME-3 was characteristic of heterofermentative metabolism, determinated by the gas chromatographic method (Hewlett-Packard model 6890). The profile of fermentation depended on environment of incubation: besides lactic and acetic acids a big amount of succinic acid was produced in a GO₂ environment, but in an anaerobic environment much of ethanol was produced in addition to the above-mentioned substances (Table 1). Both succinic acid and ethanol can strengthen the

stable properties of the microbial strain in milk fermented by this strain.

Table 1. The concentration of acetic acid, lactic acid, succinic acid and ethanol (mg/ml) in MRS media in cultivation of Lactobacillus fermentum ME-3 in microaerophilic and anaerobic environment during 24 and 48 h.

Lactobacillus	Lac	tic	Ace	tic	Succ	inic	Eth	anol
fermentum	ac	id	ac	id	ac	id		:
ME-3	24 h	48 h						
CO ₂	10.6	11.1	0.8	0.9	18.4	19.5	9.8	7.5
environment						*		
Anaerobic	8.2	8.8	1.0	1.0	5.7	9.7	7	33.3
environment			*					

10 Molecular identification.

Molecular identification by ITS-PCR (internal transcribed spacer - polymerase chain reaction) using *Lactobacillus* fermentum ATCC 14931 as the reference strain verified the previous identification with API 50 CHL.

15 .

The micro-organism with the above-mentioned properties was deposited in Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH-s, the registration number of the deposite is DSM 14241 (19.04.2001).

20

Anti-microbial activity

Lactobacillus fermentum ME-3 expresses a high anti-microbial effect on Escherichia coli, Shigella sonnei, Staphylococcus aureus, Salmonella typhimurium 1 and 2, and Helicobacter pylori strains in vitro (Table 2).

Table 2. Anti-microbial activity of strain *Lactobacillus* fermentum ME-3 on modified MRS-agar, in MRS broth and milk.

Lactobacil-	Esche-	Shi-	Staphylo-	Salmo	nella -	Helicobac-
lus	richia	gella	coccus	typhimurium .		ter pylori
fermentum	coli	son-	aureus	1 ar	nd 2	
ME-3		nei				
MRS-agar		,	Inhibition	zone (r	nm)	,
CO ₂ .	24/22	26/21	20/19	25.8 /	23.8 /	13.2/13.1
/anaerobic				24.7	19.7	
environment		·				
MRS broth	Decrea	se of	total count	(log ₁₀) compa	red with
		1	initial	count		
	log 6.0	Log	log 0.8	log	log	not
	٠	6.7	·	6.3	3.8	determined
Milk	Suppression after different interval of time		of time			
	(24 - 48 h)					
	24 t	32 t	24 t	32 t	48 t	not
				•		determined

Using milk fermentation it was possible to show that pathogens inoculated into milk were killed in 24-48 h if milk was fermented with *Lactobacillus fermentum* ME-3. Such property of the strain could help to prevent the multiplication of pathogens in products (yoghurt, cheese) fermented by this strain, and prevent food infections.

Organic acids and ethanol produced by Lactobacillus fermentum ME-3 could ensure the high anti-microbial effect of this microbe.

Resistance to antibiotics

15

According to a disk-diffusion test (BBL Sensi disks) and an E-test (AB Biodisk, Solna) Lactobacillus fermentum ME-3 was resistant to metronidazole, ofloxacin, aztreonam, cefoxitin

10

and TMP-SMX. This allows to use the strain *L. fermentum* ME-3 as a preparation accompanying antibiotic treatment in case of intestinal and uroinfections.

5 Surface structures of microbial cell .

The carbohydrate profile of the surface structure of microbial cells of Lactobacillus fermentum ME-3 was determined by lectin typing. The strain of lactobacilli agglutinated with Griffonia simplifolia I lectin, which is specific to Gal and GalNAc ligands in the cell wall.

The strain Lactobacillus fermentum ME-3 did not react with the following other lectins: Concanavalin ensiformis (Con A), Griffonia simplicifolia II, Arachis hypogaea (PNA), Vicia sativa (VSA) and Tritium vulgaris (WGA).

Hence the special composition of the glycocalyx of the cell wall of Lactobacillus ME-3 became clear with lectin typing, it contained residues of galactose and N- acetyl-galactoseamine. These compounds act as adhesins for engaging the receptors of mucosa on the epithelial cells of the upper urinary tract.

This is a possibility for blocking the mannose-resistant pili of Escherichia coli that makes our strain applicable in the prophylaxis of urinary tract infections.

Anti-oxidative properties

Lactobacilli were incubated in a MRS broth (Oxoid Ltd.) for 24 h and centrifuged at 4°C (1500 p/min) 10 min for getting a precipitate, washed with isotonic salt (4°C) and suspended to the density of 1.15% KCl (Sigma, USA). The density of the suspension was at OD 600 1.1 10° bacterial cells in ml⁻¹).

To get lysates, the cells were disrupted by sonification (B-35 12 Branson Sonic Power Company, Danbury, Connecticut) in 35 vibrations s⁻¹ 10 min in an ice bath and then for 10 min at - 18° C. The suspension was centrifuged at 4° C 10000 g/r for 10 min and the supernatant was filtered (MILLEY-GS, sterile, 0.22 µm; Millipore S.A., 67 Molsheim, France) to get a cell-free extract. Lactobacillus fermentum ME-3 cells and lysate produced H_2O_2 in a remarkable amount (Table 3).

Table 3. Total anti-oxidative capacity of *Lactobacillus* fermentum strains ME-3 and E-338-1-1 (according to LA and TAS tests), hydrogen peroxide content, glutathione red-ox ratio and activity of superoxide dismutase.

Properties	Lactobacillus	<i>Lactobacillus</i>
	fermentum ME-3	fermentum E-338-1-1.
T. Sa Ass. 2	Intact cells	Intact cells
TAA in LA-test	29 ± 0.7 (n=5)	0
(웅)		
TAS (mmol/L)	0.16 ± 0.03 (n=5)	0
H ₂ O ₂ (μg/ml)	31 ± 26 (n=3)	49 ± 20 (n=3)
	Lysate of cells	Lysate of cells
LA-test (%)	59 ± 3.8 (n=5)	0
H ₂ O ₂ (µg/ml)	229 ± 37 (n=4)	137 ± 25 (n=3)
TGSH	12.5 ± 4.1	5.5 ± 3.0
GSSG (µg/ml)	2.59 ± 2.01	5.5 ± 2.4
GSH (µg/ml)	9.95 ± 3.30	Marks
GSSG/GSH	0.28 ± 0.17	0 ^e
SOD (U/mg		
protein)	0.859 ± 0.309 (n=3)	Not determined

Explanations: LA-test - linolenic acid test; TAA - total

15 anti-oxidative activity; TAS - total anti-oxidative status;

GSSG - oxidized glutathione; GSH - reduced glutathione;

GSSG/GSH - glutathione red-ox ratio; SOD - superoxide dismutase

Lactobacillus fermentum ME-3 has a Mn-SOD activity determined by electrophoresis. For determining the SOD type L. fermentum ME-3 cell-free extract (30 µg protein) was separated on 10% not-denaturated polyamide-acrylic gel. SOD isoenzyme was determined by influencing this gel with 15mM H₂O₂, after which the SOD activity persisted. Explanation: H₂O₂ inhibits Fe-SOD, but does not inhibit Mn-SOD. This proves that Lactobacillus fermentum ME-3 has Mn-SOD activity.

The strain Lactobacillus fermentum ME-3 showes a high TAA (total antioxidative activity) value in a lipid environment on the basis of a linolenic acid test, also a high TAS (total antioxidative status) value in a hydrate environment (Randox kit, UK). In Table 3, data of the anti-oxidative strain Lactobacillus fermentum E-338-1 is added for comparison (Table 3).

20

10

The cells and lysates of the strain Lactobacillus fermentum ME-3 catch hydroxyl radicals, this has been proven by the terephthalic acid method (27% ± 5%). 15mM of reduced glutathione was used for comparison as a well-known scavenger of hydroxyl radicals (84±4,6%). Lactobacillus fermentum ME-3 survived in a highly oxidative H₂O₂ environment.

Re-cultivation of the lyophilised culture kept in room temperature for a long time proved the viability of the strain and the persistence of properties. This ensures that the lyophilised strain of *Lactobacillus fermentum ME-3* could be used as a non-comestible product in a scheme of functional food.

30

BEST MODE FOR CARRYING OUT THE INVENTION

An example of the preparation of a yoghurt with highly antioxidative properties based on the strain *Lactobacillus* fermentum ME-3 and the trial of consuming the yoghurt by 5 healthy volunteers.

Lactobacillus fermentum ME-3 pure culture in 0.15% MRS-agar is used for producing the yoghurt, additionally the pure cultures of Lactobacillus plantarum and Lactobacillus buchneri are seeded into fresh goat milk autoclaved for 20 min at 110°C. Three cultures of these strains of lactobacilli are mixed in equal proportions together with 2% of Streptococcus thermophilus and are added in 0.2% of content into autoclaved goat milk.

15 Lactobacillus fermentum ME-3 with strains of lactobacilli and streptococci will guarantee tasty and highly anti-oxidative yoghurt (Table 4).

Table 4. The anti-oxidative activity of Lactobacillus 20 fermentum ME-3 pure culture and probiotic yoghurt

Strain	Total anti-oxidative activity (TAA %)			
	Cells	Yoghurt		
Lactobacillus	29	70		
fermentum ME-3				

- In tables 5 and 6, the changes of the intestinal micro-flora and indices of oxidative stress of blood sera of healthy volunteers are shown before and after taking the probiotic goat milk yoghurt during 3 weeks. These changes prove the anti-oxidative (incl. anti-atherogenic) effect on human
- 30 organism.

Even a higher total anti-oxidative activity of goat milk yoghurt compared with the total anti-oxidative activity of intact microbial cells of *Lactobacillus fermentum ME-3* is shown in table 5.

5

Additive microbial strains ensure the standard acidity and consistence of yoghurt.

Table 5. The changes of intestinal micro-flora of healthy volunteers (n=16) before and after consuming probiotic goat milk yoghurt during 3 weeks

	Bef	ore	After		
•	Persons Lactoflora		Persons	Lactoflora	
	colonised	ratio (%)	colonised	ratio (%)	
Consuming goat milk yoghurt (n=16 persons)					
L. fermentum	4*	0,7 -	16*	0,5 - 49,9#	
٠.		5,77			
Taking goat milk (n=4 persons)					
L. fermentum	Ō	0	1	0 - 32,9	

Statistically significant increase:

- * The Fisher Exact Test showed the difference of counts in persons colonised with Lactobacillus fermentum ME-3 p<0,0015;</p>
 - # The Mann-Whitney Rank Sum Test showed the difference of relative share of Lactobacillus fermentum ME-3 in lactoflora.
- Therefore, after consuming yoghurt in 3 weeks the microbe was present in the intestinal tract of all volunteers and the Lactobacillus sp. count was remarkably increased.

10

Table 6. The indices of oxidative stress of blood sera of volunteers (n=16) before and after consuming probiotic goat milk yoghurt during 3 weeks

Properties	Standard	Blood	Blood	Increase
	degree	sera	trial	
		before	after	-
		trial	trial	
TAA (LA-test,	36± 4.5	38 ± 3.5	45 ± 3.4	16%
%)		***	* .	
TAS, mmol/L	1.2 ± 0.2	0.82 ±	1.14 ±	29%
		0.14	0.08	
Glutathione	0.17±0.08	0.15 ±	0.11 ±	-32%
red-ox ratio		0.01	0.035	
(GSSG/GSH)	**	*		
LDL lag-phase	>30 min	41 ± 7.9	46 ± 8.6	11%
(time of				
resistance)			·	
Basic value of	< 0.3	0.27 ±	0.23 ±	-15%
diene		0.06	0.06	
conjugates				
(value of				
extinction)				
Ox LDL (U/L)	>127	98±12	81 ±19	- 18%

Explanations: LA-test - linolenic acid test; TAA - total anti-oxidative activity; TAS - total anti-oxidative status; GSSG - oxidized glutathione; GSH - reduced glutathione; GSSG/GSH - glutathione red-ox ratio, ox LDL - oxidized low-density lipoproteins.

Thus all parameters determined in the blood sera of healthy volunteers changed beneficially during the 3-week yoghurt trial.

The application of the invention is not limited to the abovedescribed example of achievement. In the range of the patent claim, some other variants of use are possible, for example the production of probiotic cheese and other milk products.

5

10

- 15

20

25

30

35

CLAIM

The strain of micro-organism Lactobacillus fermentum ME-3 DSM 14241 as a novel anti-microbial and anti-oxidative probiotic for use in pharmacy and food industry and in medicine as a preparation resistant to antibiotics for the prophylaxis and treatment of intestinal and uroinfections, also against oxidative stress.

Applicant's	or	age	nt's
file reference	æ		

International application No. PCT/EE02/00006 PCT/EE02/00006

INDICATIONS RELATING TO DEPOSITED MICROORGA NIRRAPIN OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorga	nism or other biological material referred to in the description 5-11
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution DSMZ - Deutsche Sammlung von Mikroorganismen a	and Zellkulturen GmbH
Address of depositary institution (including postal code and coun	stry)
Mascheroder Weg 1b D-38124 Braunschweig Germany	
Date of deposit 19.04.2001	Accession Number DSM 14241
C. ADDITIONAL INDICATIONS (leave blank if not applical	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WINCH I STORY	
E. SEPARATE FURNISHING OF INDICATIONS (leave bl	ank if not applicable)
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application PCT/EE02/00006	This sheet was received by the International Bureau on:
Authorized officer Market E. MARDO	Authorized officer

INTERNATIONAL SEARCH REPORT

ational Application No
PCT/EE 02/00006

		,
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER A61K35/74 C12N1/20 A61P31/0	4 A61P1/00
According to	International Patent Classification (IPC) or to both national classifica	tion and IPC
B. FIELDS	SEARCHED	
Minimum do IPC 7	cumentation searched (classification system followed by classification A61K C12N A61P	n symbols)
Documental	ion searched other than minimum documentation to the extent that su	ach documents are included in the fields searched
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)
BIOSIS	, EPO-Internal, WPI Data	
·		
C DC01114	TATE CONCIDENTS DE DEI EVANT	
Category *	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the rele	vant passages Relevant to claim No.
Calegory 3	Chancel of document, with indication, where appropriate, of the ree	так ушоварез поколан по мани по
X.	MIKELSAAR MARIKA ET AL: "Antagon antioxidative activity of lactoba	
·	survival in oxidative milieu."	orrer and
	AMERICAN JOURNAL OF CLINICAL NUTR	
·	vol. 73, no. 25, February 2001 (2	001-02),
	page 495S XP001105810	tice and
	<pre>International Symposium on Probio Prebiotics;Kiel, Germany; June 11</pre>	-12 1998
	ISSN: 0002-9165	12, 1330
	abstract	
	CERR F FT AL HT-to-time I mismaf	1 nn as
A	SEPP E ET AL: "Intestinal microf Estonian and Swedish infants."	iora of
	ACTA PAEDIATRICA,	
	vol. 86, no. 9, 1997, pages 956-9	61,
	XP001105447	
	ISSN: 0803-5253	
	the whole document	
	-	/
	ner documents are listed in the continuation of box C.	Patent family members are listed in annex.
		T later document published after the international filing date or priority date and not in conflict with the application but
	ent defining the general state of the art which is not ered to be of particular relevance	cited to understand the principle or theory underlying the invention
"E" earlier of	locument but published on or after the international ate	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
"L" docume	nt which may throw doubts on priority claim(s) or	involve an inventive step when the document is taken alone
citation	or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-
other r		ments, such combination being obvious to a person skilled in the art.
P docume later th	ent published prior to the international filling date but an the priority date claimed	"&" document member of the same patent family
Date of the	actual completion of the international search	Date of mailing of the international search report
2	3 September 2002	11/10/2002
	nailing address of the ISA	Authorized officer
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Didelon, F

INTERNATIONAL SEARCH REPORT

rational Application No PCT/EE 02/00006

		PUITEE UZ	7 00 000
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Ρ,Χ	KULLISAAR TIIU ET AL: "Two antioxidative lactobacilli strains as promising probiotics." INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY,		1
·	vol. 72, no. 3, 2002, pages 215-224, XP002214344 ISSN: 0168-1605 abstract table 1 page 223, column 1, last paragraph	*	
P,A	MIKELSAAR MARIKA ET AL: "Intestinal lactobacilli of Estonian and Swedish children." MICROBIAL ECOLOGY IN HEALTH AND DISEASE,		1
. •	vol. 14, no. 2, June 2002 (2002-06), pages 75-80, XP001105478 June, 2002 ISSN: 0891-060X abstract		
	table 2		h
	differentiation of lactobacilli by lectin typing." JOURNAL OF MEDICAL MICROBIOLOGY, vol. 50, no. 12, December 2001 (2001-12), pages 1069-1074, XP002214345 ISSN: 0022-2615 abstract tables 2,3		
		-	
		•	

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 9 January 2003 (09.01.2003)

PCT

(10) International Publication Number WO 03/002131 A1

(51) International Patent Classification⁷: A61K 35/74, C12N 1/20, A61P 31/04, 1/00

(21) International Application Number: PCT/EE02/00006

(22) International Filing Date: 21 June 2002 (21.06.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: P200100356

29 June 2001 (29.06.2001) EB

(71) Applicant (for all designated States except US): UNIVER-SITY OF TARTU [Ell/EE]; Ülikooli 18, EE50090 Tartu (EE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MIKELSAAR, Marika [EE/EE]; Jakobsoni 11-4, EE51001 Tartu (EE). ZILMER, Mihkel [EE/EE]; 37 Puusepa Street, EE50406 Tartu (EE). KULLISAAR, Tiiu [EE/EE]; Ropka 12A-45, IEE-50111 Tartu (EE). ANNUK, Heidi [EE/EE]; Kaunase pst. 7-27, EE50706 Tartu (EE). SONGISEPP, Epp [EE/EE]; Vabriku 5-47, EE63308 Polva (EE).
- (74) Agent: KAHU, Sirje; Ou Ustervall, Postkast 21, EE50002 Tartu Postkontor (EE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
 - of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- with amended claims and statement
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

Date of publication of the amended claims and statement: 6 March 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: STRAIN OF MICRO-ORGANISM LACTOBACILLUS FERMENTUM ME-3 AS NOVEL ANTI-MICROBIAL AND ANTIOXIDATIVE PROBIOTIC

(57) Abstract: The strain of micro-organism Lactobacillus fermentum ME-3 is a novel anti-microbial and anti-oxidative probiotic. It has a high anti-microbial effect on Escherichia coli, Shigella sonnei, Staphylococcus aureus, Salmonella typhimurium, and moderate activity against Helicobacter pylori strains. The strain of micro-organism possesses Mn-superoxide dismutase and both its lysates and intact cells have high anti-oxidative activity, increasing the glutathione red-ox ratio in blood sera and able to-capture toxic hydroxyl radicals. The strain of micro-organism could be used as a probiotic for the production of functional food (yoghurt, cheese) and non-comestibles (tablets, capsules) for the prophylaxis of intestinal and uroinfections, both for the prevention and treatment of chronic diseases, caused by prolonged oxidative stress.

AMENDED CLAIMS

[received by the International Bureau on 06 December 2002 (06.12.02); original claim 1 amended (1 page)]

The strain of micro-organism Lactobacillus fermentum ME-3 DSM 14241 as a novel anti-microbial and anti-oxidative probiotic for use in pharmacy and food industry and in medicine as a preparation resistant to antibiotics for the prophylaxis and treatment of gastrointestinal and uroinfections, also against chronic diseases induced by prolonged high-grade oxidative stress.

WO 03/002131 PCT/EE02/00006

STATEMENT

The aim of present invention is to offer a strain of microorganism as a novel anti-microbial and anti-oxidative probiotic for use in pharmaceutical and food industry, also in medicine as an antibiotic resistant preparation for prophylaxis and treatment of gastrointestinal and uroinfections, also against oxidative stress (P.3, line 33-35, P.4, line 1-3)

Concerning the antimicrobial activity (bacteriostatic influence) of the object of invention, the strain Lactobacillus fermentum ME-3 expresses anti-microbial effect beside others on Shigella sonnei, Salmonella typhimurium ja Helicobacter, pylori strains (Page 6, line 21-25; Page 7, Table 2). In addition, the property of Lactobacillus fermentum ME-3 to kill the food borne pathogens in milk (bacteriocidic effect) is firstly described (Page 7, Table 2 and line 6-11).

The innate resistance of Lactobacillus fermentum ME-3 against antimicrobial preparations (TMP-SMX, ofloxacin, aztreonam, cefoxitin and metronidazole) allows to use it as a preparation accompanying antibiotic treatment in case of gastrointestinal and uroinfections (Page 7, line 17-19; Page 8, line 1-3). This property has not been described elsewhere before.

The unique carbohydrate profile of the cell wall of Lactobacillus fermentum ME-3 enables to prevent the adhesion of uropathogenic Escherichia coli to the epithelial cells of

the upper urinary tract, a property that makes our strain applicable in the prophylaxis of urinary tract infections (Page 8, line 5-26) and has never been described before.

Concerning the antioxidative activity of the strain Lactobacillus fermentum ME-3 as the object of the present invention the different specific, principal and novel parameters were firstly described like expression of MnSOD, high-grade total antioxidative status (TAS, verified by internationally accepted method), principal parametres of glutathione (a signal molecule and central cellular antioxidant) system and the value of glutathione redox ratio (Page, 9 Table 3; Page 10, line 1-11, 15-19, 23-26).

Any antioxidativity (including antiatherogenicity) parameters found in human trials (in vivo trials) were not made public elsewhere. Therefore, only in this invention, an influence of consumption of ME-3 on human blood sera specific indices was described (Page 13-14, Table 6) and disclosed the appropriate numerical values. Actually, considering mainly these parameters (significant increase of TAS and oxygen resistance of LDL, lowering the level of oxidized LDL and its diene conjugates altogether indicate improvement of systemic antioxidativity and also significant lowering of cellular oxidative stress) it can be claimed that strain Lactobacillus fermentum ME-3 is a novel antioxidative (anti-atherogenic) probiotic (Page 11, line 25-30).

The persistence of the novel strain in gastrointestinal tract after consumption and the beneficial influence on the composition of the intestinal lactobacilli are desribed for the first time (Page 12, Table 5, line 14-22).

Lactobacillus fermentum Thus the strain of microorganism antimirobial novel and 14241) figures probiotic for antioxidative (anti-atherogenic) use pharmacy and food industry, and in medicine as a preparation resistant to some antimicrobials useful for the prophylaxis and as a preparation accompanying antibiotic therapy of gastrointestinal and urinary tract infections, also against (incl. atherosclerosis) induced by diseases chronic prolonged high-grade oxidative stress.