DETECTION OF BRAIN TUMOUR DIAGNOSIS USING AI

Name of the T. Bhavana Saksena , k. Sritha , D. Archana

Under the esteemed guidance of

Dr. P. Krishna Kishore
Assistant Professor

Bachelor of Technology
Department of Information Technology
BVRIT HYDERABAD college of engineering for Women

Overview

- Introduction
- 2 Literature Survey
- Problem Statement
- Proposed Method
- 5 Implementation Status
- 6 Libraries and Tools Used

Introduction

Brain tumors pose a serious health risk and often go undetected until advanced stages. Early detection significantly improves treatment outcomes. Most current systems focus on detecting existing tumors via imaging. However, our approach emphasizes prevention. We propose a predictive model that estimates the future risk of brain tumors by analyzing patient history, lifestyle habits, genetic predispositions, and other medical data. This system aims to support healthcare professionals by identifying high-risk individuals early, enabling timely monitoring and intervention. It combines imaging, personal data, and lifestyle metrics to predict the probability of tumor development before symptoms appear..

Literature Survey

Research Focus	Key Contributions		
MRI-based Detec-	CNNs classify tumors from MRI scans		
tion	(Pereira et al., 2016).		
Genetic Factors	Family history and mutations impact risk		
	(Bondy et al., 2008).		
Lifestyle Risks	Smoking, diet, and radiation considered		
	in other cancers.		
AI in Healthcare	EHR-based disease risk prediction (Ra-		
	jkomar et al., 2018).		
Multimodal Analy-	"Deep Patient" uses EHRs for long-term		
sis	prediction (Miotto et al., 2016).		

Problem Statement

Brain tumors are often diagnosed late due to the absence of early symptoms. Traditional imaging methods only detect existing tumors. There is a need for a predictive system that analyzes patient history and lifestyle data to forecast future brain tumor risk. This model would allow for earlier preventive action, improving outcomes

Proposed Method

Component	Description	
Data Sources	Patient medical history, lifestyle habits,	
	and MRI images	
Preprocessing	Normalize images, encode health data,	
	and augment datasets.	
Model Approach	Hybrid ML model using CNN for MRI	
	and traditional classifiers for tabular	
	data.	
Prediction Output	Probability score of brain tumor develop-	
	ment in the future.	
Evaluation	Accuracy, Precision, Recall, AUC met-	
	rics.	

Implementation Status

- MRI data preprocessing completed (resizing, normalization).
- CNN model trained using MRI images for tumor classification.
- Tabular data preparation ongoing (synthetic data considered for patient lifestyle).
- Working on combining imaging and tabular inputs into a multi-input neural network..

Libraries and Tools Used

Tool	Purpose	Install Command
Pandas, NumPy	Data processing	pip install
		pandas numpy
Scikit-learn	ML models	pip install
		scikit-learn
TensorFlow/Keras	CNN models	pip install
		tensorflow
		keras
Matplotlib,	Data visualization	pip install
Seaborn		matplotlib
		seaborn
OpenCV	Image processing	pip install
		opencv-python

Thank you