Data Cleaning

AUTHOR Nandini Kodali

Introduction

Raw data collected from various sources is rarely in a format ready for analysis. It often contains inconsistencies, missing values, duplicates, and irrelevant information, which can hinder the analytical process and lead to inaccurate or biased results. **Data Cleaning** is the process of transforming this messy data into a structured, consistent, and reliable format, suitable for extracting meaningful insights and applying models effectively.

Importance:

- Data cleaning ensures that the data is complete, accurate, and consistent, significantly enhancing the reliability of insights derived from the analysis and the performance of models built using the data. Highquality data forms the foundation of robust models and predictions.
- Missing values in the dataset can introduce bias or distort the analysis.
 Addressing these gaps through techniques like **imputation** (filling in missing values using statistical or logical methods) or **removal** helps maintain the integrity of results.
- Duplicates in the dataset can overrepresent certain patterns, while outliers may distort metrics and affect model accuracy. Identifying and appropriately handling these anomalies ensures the analysis remains valid and unbiased.
- When data is collected from multiple sources, differences in format, naming conventions, and measurement units can cause inconsistencies.
 Standardizing these elements across all datasets ensures that the data can be seamlessly integrated and analyzed as a whole.

In this project:

Data was collected from a variety of sources, Data Cleaning was an essential step. Each raw dataset underwent a tailored cleaning process designed to fit its specific structure and use case. These processes will be discussed in detail within the respective sections dedicates to each dataset.

Data Cleaning

Provide the source code used for this section of the project here.

If you're using a package for code organization, you can import it at this point. However, make sure that the **actual workflow steps**—including data processing, analysis, and other key tasks—are conducted and clearly demonstrated on this page. The goal is to show the technical flow of your project, highlighting how the code is executed to achieve your results.

If relevant, link to additional documentation or external references that explain any complex components. This section should give readers a clear view of how the project is implemented from a technical perspective.

Remember, this page is a technical narrative, NOT just a notebook with a collection of code cells, include in-line Prose, to describe what is going on.

Required Libraries

▶ Code

[nltk_data] Downloading package stopwords to
[nltk_data] /Users/nandinikodali/nltk_data...
[nltk_data] Package stopwords is already up-to-date!

News Data

- ▶ Code

RAW DATA---

Norris calls Verstappen 'dangerous' as Sainz wins in Mexico: Lando Norris cuts Max Verstappen's lead to 47 points and labels his rival "dangerous" as the championship battle reaches boiling point at the Mexico City Grand Prix.

How well do you know Fernando Alonso? : As he prepares for his 400th F1 grand prix in Mexico City this weekend, find out how much you know about Fernando Alonso.

CLEAN DATA---

norris calls verstappen 'dangerous' sainz wins mexico: lando norris cuts verstappens lead points labels rival dangerous championship battle reaches boiling point mexico city grand prix well know fernando alonso: prepares grand prix mexico city weekend find much know fernando alonso

Drivers Standings

- ► Code
- ► Code
- ► Code

	Season	Position	FirstName	LastName	Constructor_ID	Constructor_Name	Po
0	2000	1	Michael	Schumacher	ferrari	Ferrari	10
1	2000	2	Mika	Häkkinen	mclaren	McLaren	89
2	2000	3	David	Coulthard	mclaren	McLaren	73
3	2000	4	Rubens	Barrichello	ferrari	Ferrari	62
4	2000	5	Ralf	Schumacher	williams	Williams	24

Season		
Position		
FirstName	0	
LastName		
Constructor_ID		
Constructor_Name		
Points		
Wins	0	
d+		

dtype: int64

► Code

Circuit Information

- ► Code
- ► Code
- ► Code

	Circuit_ID	Circuit_Name	Country	Latitude	Longitude
0	adelaide	Adelaide Street Circuit	Australia	-34.9272	138.617
1	ain-diab	Ain Diab	Morocco	33.5786	-7.6875
2	aintree	Aintree	UK	53.4769	-2.94056
3	albert_park	Albert Park Grand Prix Circuit	Australia	-37.8497	144.968
4	americas	Circuit of the Americas	USA	30.1328	-97.6411

► Code

Circuit_ID	0
Circuit_Name	0
Country	0
Latitude	0
Longitude	0
d+ + n+61	

dtype: int64

Race data

- ► Code
- ► Code

	season	round	raceName	url	circuit
0	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
1	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
2	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
3	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
4	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit

5 rows × 28 columns

► Code

Weather Data

- ► Code
- ► Code

season 0
raceName 0
url 0
weather 0
dtype: int64

► Code

0	Sunny
1	Overcast with light rain at start
2	Mainly cloudy, dry
3	Cloudy, rain

```
4
                                         Mainly cloudy, dry
        Sunny with temperatures reaching up to 27 °C (...
117
        Dry start, with heavy rain and thunderstorm/mo...
118
119
120
                                                       Sunny
121
                                                Warm, Sunny
Name: weather, Length: 122, dtype: object
we will try to categorise the weather description into one of the following
categories:
 1. Sunny
 2. Cloudy
 3. Rainy
 4. Windy
▶ Code
▶ Code
▶ Code
weather_class
                  95
Sunny
Cloudy
                  24
Rainy
                   2
Not Available
Name: count, dtype: int64
Due to severe class imbalance, weather_class feature is not a suitable
candidate for effective analysis or model training.
▶ Code
                        raceName \
    season
     2006 European Grand Prix
                                                     url
                                                                 weather
   http://en.wikipedia.org/wiki/2006_European_Gra... Not Available
   weather_class
   Not Available
The weather data for 2006 European Grand Prix is not available on wikipedia.
```

- Using longitude, latitude and the date: The weather was Sunny
- ▶ Code
- ▶ Code

Race Info Merged

▶ Code

	season	round	raceName	url	circuit
0	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
1	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
2	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
3	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
4	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit

5 rows × 29 columns

► Code

► Code

▶ Code

```
Index(['season', 'round', 'raceName', 'url', 'circuitName',
    'locality',
        'country', 'date', 'position', 'points', 'grid', 'laps',
    'status',
        'driverId', 'driverGivenName', 'driverFamilyName',
    'constructorId',
        'constructorName', 'timeMillis', 'time', 'weather_class'],
        dtype='object')
```

season	0
round	0
raceName	0
url	0
circuitName	0
locality	0
country	0
date	0
position	0
points	0
grid	0
laps	0
status	0
driverId	0
driverGivenName	0
driverFamilyName	0
constructorId	0
constructorName	0
timeMillis	1291
time	1291
weather_class	0
dtype: int64	

The missing values in 'timeMillis' and 'time' columns are of those drivers who did not finish the race. Therefore, we will drop these columns and try to analyse the performance based on other metrics.

► Code

► Code

Ferrari

constructorName

235

McLaren	234
Williams	229
Red Bull	184
Renault	142
Sauber	139
Mercedes	134
Toro Rosso	127
Force India	100
Haas F1 Team	79
Toyota	76
Jordan	57
BAR	56
Minardi	54
Alfa Romeo	50
Jaguar	45
BMW Sauber	40
AlphaTauri	40
Lotus F1	38
Alpine F1 Team	30
Aston Martin	30
Honda	28

Arrows	26	
HRT	24	
Marussia	24	
Super Aguri	24	
Caterham	24	
Racing Point	20	
Prost	18	
Benetton	18	
Virgin	16	
Manor Marussia	16	
Lotus	16	
Brawn	10	
MF1	9	
Spyker	8	
Name: count, dtype:	int64	

Some of the team names were changed in the process of rebranding or due to a change in ownership. For accurate analysis, we will replace the older versions of the constructors' names with the current ones.

- Ferrari
- McLaren
- Jaguar
- Williams
- ullet Sauber o BMW Sauber o Sauber o Alfa Romeo o Sauber
- $\bullet \ \ \mathsf{BAR} \to \mathsf{Honda} \to \mathsf{Brawn} \to \mathsf{Mercedes}$
- Benetton o Renault o Lotus F1 o Renault o Alpine
- Jordan o Midland o Spyker o Force India o Aston Martin
- Minardi o Toro Rosso o Scuderia AlphaTauri
- Haas
- Toyota
- Virgin Racing o Marussia F1 o Manor Marussia
- Lotus \rightarrow Caterham
- Arrows
- Super Aguri
- HRT
- Prost
- ▶ Code
- ▶ Code
- ▶ Code

constructorName

Ferrari	235
McLaren	234
Red Bull	229
Williams	229
Sauber	229
Mercedes	228
Alpine F1 Team	228

224	
221	
79	
76	
56	
40	
26	
24	
24	
18	
dtype: int64	

- ▶ Code
- ▶ Code
- ▶ Code

	season	round	raceName	url	circuit
0	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
1	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit

Classify the satus column in to broader categories. This column provides information on whether the driver has finished the race or not, if not, was it because of a mechanical failure, an accident, or was he lapped. The categories are:

- Finished
- Lap
- Accident
- Mechanical

Grouping the data helps understand the major reasons for the race results without getting overwhelmed by the granular details.

► Code

```
'Battery', 'Oil leak', '+7 Laps', 'Stalled', 'Exhaust',
    'Vibrations', 'Broken wing', 'Fuel', 'Wheel rim', 'Power

loss',

'107% Rule', '+8 Laps', 'ERS', 'Withdrew', 'Cooling system',
    'Water pump', 'Fuel leak', 'Front wing', 'Turbo', 'Damage',
    'Out of fuel', 'Radiator', 'Oil line', 'Fuel rig',
    'Launch control', 'Not classified', 'Pneumatics',

'Differential'],
    dtype=object)
```

- ▶ Code
- ▶ Code

status

Finished 1105 Lapped 693 Mechanical 412 Accident 190

Name: count, dtype: int64

► Code

Finish category - new categorical variable

In F1, race outcomes are categorized based on finishing positions:

- The top 3 finishers are celebrated on the podium and referred to as achieving a **Podium Finish**
- All drivers who finish in top 10 earn championship points, ranging from 25 points for the winner, 18 for second place, and decreasing to 1 point for the 10th position.
- Drivers finishing outside the top 10 do not earn any championship points.
- ▶ Code
- ► Code

	season	round	raceName	url	circuit
0	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
1	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
2	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit
3	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna Circuit

	season	round	raceName	url	circuit
4	2010	1	Bahrain Grand Prix	http://en.wikipedia.org/wiki/2010_Bahrain_Gran	Bahrai Interna
					Circuit

Race Track Features

► Code

	Year	Grand Prix	Track Length (m)	Max Speed (km/h)	Full Throttle (%)	Number of Corners	Number of Straights
0	2020	Pre-Season Test 1	4312.438437	323	70.673953	1	4
1	2020	Pre-Season Test 2	4312.438437	323	70.673953	1	4
2	2020	Austrian Grand Prix	4312.438437	323	70.673953	1	4
3	2020	Styrian Grand Prix	4292.610384	300	46.556886	2	6
4	2020	Hungarian Grand Prix	4348.049386	318	58.114374	0	6

► Code

Year	0
Grand Prix	0
Track Length (m)	0
Max Speed (km/h)	0
Full Throttle (%)	0
Number of Corners	0
Number of Straights	0

dtype: int64

Standardization

Standardization is a preprocessing step used to scale the features is a consistent scale for more accurate and stable modelling. Features with different scales can lead to one feature dominating others during model training, Standardization eliminates disparity.

For the Race Track Features, StandardScaler is used, this standardizes the data by "removing the mean and scaling to unit variance".

Formula for Standardization:

$$Z = \frac{X - \mu}{\sigma}$$

where:

- X: the original value
- μ : mean
- σ : standard deviation of the feature
- ► Code
- ► Code

	Year	Grand Prix	Track Length (m)	Max Speed (km/h)	Full Throttle (%)	Number of Corners	Number of Straights
0	2020	Pre-Season Test 1	-1.000607	-0.115670	1.059667	-0.789651	-0.938394
1	2020	Pre-Season Test 2	-1.000607	-0.115670	1.059667	-0.789651	-0.938394
2	2020	Austrian Grand Prix	-1.000607	-0.115670	1.059667	-0.789651	-0.938394
3	2020	Styrian Grand Prix	-1.024865	-1.840980	-1.757479	-0.275003	-0.037811
4	2020	Hungarian Grand Prix	-0.957039	-0.490737	-0.407433	-1.304300	-0.037811

Pitstop data

► Code

	Year	Round	RaceName	DriverID	Lap	Stop	Time	Duration
0	2011	1	Australian Grand Prix	alguersuari	1	1	17:05:23	26.898
1	2011	1	Australian Grand Prix	michael_schumacher	1	1	17:05:52	25.021
2	2011	1	Australian Grand Prix	webber	11	1	17:20:48	23.426
3	2011	1	Australian Grand Prix	alonso	12	1	17:22:34	23.251
4	2011	1	Australian Grand Prix	massa	13	1	17:24:10	23.842

Pivoting involves reshaping data by rearranging rows into columns. It is used to transform long-format data (many rows for each entity) to wide-format (one row per entity with multiple columns).

Here, each Stop Number becomes a seperate set of columns, Lap1, Lap2, Duration1, Duration2 and so on.

▶ Code

	Year	Round	RaceName	DriverID	Lap1	Lap2	Lap3	Lap4	Lap5	Lap6	•••	Time
0	2011	1	Australian Grand Prix	alguersuari	1	17	35	0	0	0	•••	0
1	2011	1	Australian Grand Prix	alonso	12	27	42	0	0	0	•••	0

2 rows × 32 columns

► Code

(5118, 32)

MinMaxx Scaling: Transforms the fature range by scaling its min and max values.

Formula:

$$X_{scaled} = rac{X - X_{min}}{X_{max} - X_{min}}$$

► Code

Year Rou	nd	RaceNa	ame Driv	verID I	_ap1
Lap2 \ 0 2011	1 Austral	ian Grand P	rix alguers	suari 0.000	0000
0.229730 1 2011	1 Austral	ian Grand P	riy al	lonso 0.174	1603
0.364865	1 Adstrac	Tan Grana I	i IX	.01150 0117	.005
2 2011	1 Austral	ian Grand P	rix ambr	rosio 0.200	5349
0.513514					
3 2011	1 Austral	ian Grand P	rix barrich	nello 0.190	0476
0.310811					
4 2011	1 Austral	ian Grand P	rix b	ouemi 0.222	2222
0.391892					
Lap3	Lap4	Lap5 Lap6	Time5	Time6 Tir	ne7
Duration1 \	•	сарэ саро	iii Tilles	TIMEO TI	iiC 7
0 0.479452	0.000000	0.0 0.0	0.0	0.0	0.0
0.453661					
1 0.575342	0.000000	0.0 0.0	0.0	0.0	0.0
0.392151					
2 0.000000	0.000000	0.0 0.0	0.0	0.0	0.0
0.426017					
3 0.383562	0.512821	0.0 0.0	0.0	0.0	0.0
0.398762					
4 0.000000	0.000000	0.0 0.0	0.0	0.0	0.0
0.427417					
Duration2	Duration3	Duration4	Duration5	Duration6	Duration7
0 0.428042			0.0	0.0	0.0
1 0.432766			0.0	0.0	0.0
2 0.462739			0.0	0.0	0.0
3 0.662386			0.0	0.0	0.0
4 0.404192	0.000000	0.000000	0.0	0.0	0.0

[5 rows x 32 columns]

► Code

All the clean datasets can be found <u>here</u>

Footnotes

1. <u>StandardScaler</u> ←