

第2章 立方体和 Radon 变换

我们现在考虑图 G 中一个更为有趣的例子,它的特征值有很多应用. 用 \mathbb{Z}_2 表示 2 阶循环群,其元素为 0 和 1, 群运算为模 2 的加法. 因此 0+0=0, 0+1=1+0=1, 1+1=0. 用 \mathbb{Z}_2^n 表示 \mathbb{Z}_2 与它本身的 n 次直积, \mathbb{Z}_2^n 的元素则为 0 和 1 组成的 n 元组 (a_1,\ldots,a_n) , 而群运算为逐位相加的加法. 定义如下一个称为 n 维立方体 (cube) 的图 C_n : C_n 的顶点集为 $V(C_n)=\mathbb{Z}_2^n$, 两顶点 u 和 v 之间有一条边当且仅当它们恰有一个坐标不同,也就是说, u+v 恰有一个坐标非 0. 若将 \mathbb{Z}_2^n 看做是由实 (real) 向量组成的,则这些向量构成了一个n 维立方体的顶点集. 此外,立方体的两个顶点处于一条边上 (在通常的几何意义下) 当且仅当它们构成了 C_n 的一条边. 这就解释了为什么 C_n 被称为 n 维立方体. 我们同样能看到 C_n 中的游动有很好的几何解释——它们是沿 n 维立方体的边上的游动.

要明确地得到 C_n 的特征值和特征向量, 我们将采用有限 Radon 变换这一不那么直接但非常有用和强大的方法. 用 \mathcal{V} 表示所有函数 $f:\mathbb{Z}_2^n\to\mathbb{R}$ 的集合, 其中 \mathbb{R} 表示实数域. ② 注意 \mathcal{V} 是 \mathbb{R} 上的 2^n 维向量空间 [为什么]. 若 $u=(u_1,\ldots,u_n)$ 和 $v=(v_1,\ldots,v_n)$ 是 \mathbb{Z}_2^n 的元素,则定义它们的点积 (dot product) 为

$$u \cdot v = u_1 v_1 + \dots + u_n v_n, \tag{2.1}$$

其中的运算都为模 2 运算. 因此可将 $u \cdot v$ 看做是 \mathbb{Z}_2 中的元素. 根据 $u \cdot v = 0$ 或 1, 将 $(-1)^{u \cdot v}$ 分别定义为实数 (real number) +1 或 -1. 因为 $(-1)^k$ 的值仅依赖于整数 k (模 2), 所以我们可将 u 和 v 看做是整数向量而不会影响 $(-1)^{u \cdot v}$ 的值. 因此, 例如, 像如下这种公式

$$(-1)^{u \cdot (v+w)} = (-1)^{u \cdot v + u \cdot w} = (-1)^{u \cdot v} (-1)^{u \cdot w}$$

就是定义良好且有效的. 从一个更代数的角度来看, 映射 $\mathbb{Z} \to \{-1,1\}$ 将 n 映射到 $(-1)^n$ 是一个群同态, 这里在 $\{-1,1\}$ 上的乘积当然就是乘法.

现在定义向量空间 \mathcal{V} 中两组重要的基. 对应于每一个 $u \in \mathbb{Z}_2^n$ 在每组基中都有一个基元. 第一组基用 B_1 来表示, 其基元 f_u 定义如下:

$$f_u(v) = \delta_{uv},\tag{2.2}$$

① 对非 \mathbb{Z}_2^n 的交换群, 有必要用复数而不是实数. 这里可以用复数, 但不需要这么做.

其中 δ_{uv} 为 Kronecker delta. 很容易看到 B_1 是一组基, 因为任意的 $g \in \mathcal{V}$ 都满足

$$g = \sum_{u \in \mathbb{Z}_2^n} g(u) f_u \tag{2.3}$$

[为什么]. 因此 B_1 生成了 \mathcal{V} , 又由 $\#B_1 = \dim \mathcal{V} = 2^n$ 可得 B_1 是一组基. 第二组基用 B_2 来表示, 基元 χ_u 定义为:

$$\chi_u(v) = (-1)^{u \cdot v}.$$

为了证明 B_2 也是一组基, 需要用到 \mathcal{V} 上如下定义的内积 (表示为 $\langle \cdot, \cdot \rangle$):

$$\langle f, g \rangle = \sum_{u \in \mathbb{Z}_2^n} f(u)g(u).$$

注意到这个内积正好是关于基 B_1 的通常点积.

2.1 引理 集合 $B_2 = \{\chi_u \colon u \in \mathbb{Z}_2^n\}$ 构成了 \mathcal{V} 的一组基.

证明 因为 $\#B_2 = \dim \mathcal{V} (= 2^n)$, 所以只需要证明 B_2 是线性无关的. 事实上, 我们将证明 B_2 中的元素是正交的 $^{\circ}$. 我们有

$$\langle \chi_u, \chi_v \rangle = \sum_{w \in \mathbb{Z}_2^n} \chi_u(w) \chi_v(w)$$
$$= \sum_{w \in \mathbb{Z}_2^n} (-1)^{(u+v) \cdot w}.$$

我们留给读者一个简单的练习来证明下面的公式. 对任意的 $y \in \mathbb{Z}_2^n$ 有

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{y \cdot w} = \begin{cases} 2^n, & \text{if } y = \mathbf{0}, \\ 0, & \text{否则}, \end{cases}$$

其中 $\mathbf{0}$ 表示 \mathbb{Z}_2^n 的单位元 (向量 $(0,0,\ldots,0)$). 从而 $\langle \chi_u,\chi_v \rangle \neq 0$ 当且仅当 $u+v=\mathbf{0}$,即 u=v,这样 B_2 的元素是正交的 (且非零的). 因此它们是线性无关的.

现在可以给出 Radon 变换的关键定义了.

给定 \mathbb{Z}_2^n 的子集 Γ 和函数 $f \in \mathcal{V}$, 定义一个新函数 $\Phi_{\Gamma} f \in \mathcal{V}$ 为:

$$\Phi_{\Gamma} f(v) = \sum_{w \in \Gamma} f(v+w).$$

函数 $\Phi_{\Gamma}f$ 就称为 f (在群 \mathbb{Z}_2^n 上关于其子集 Γ) 的 (离散 (discrete) 或有限 (finite)) Radon 变换 (transform).

① 回顾在线性代数中,一个实向量空间中的非零正交向量组是线性无关的.

我们定义了一个映射 Φ_{Γ} : $\mathcal{V} \to \mathcal{V}$. 容易看到 Φ_{Γ} 是一个线性变换, 我们希望计算出它的特征值和特征向量.

2.2 定理 Φ_{Γ} 的特征向量是函数组 χ_u , 其中 $u \in \mathbb{Z}_2^n$. 对应于 χ_u 的特征值 λ_u (即 $\Phi_{\Gamma}\chi_u = \lambda_u \chi_u$) 是

$$\lambda_u = \sum_{w \in \Gamma} (-1)^{u \cdot w}.$$

证明 $\Leftrightarrow v \in \mathbb{Z}_2^n$. 则

$$\begin{split} \Phi_{\Gamma} \chi_u(v) &= \sum_{w \in \Gamma} \chi_u(v+w) \\ &= \sum_{w \in \Gamma} (-1)^{u \cdot (v+w)} \\ &= \bigg(\sum_{w \in \Gamma} (-1)^{u \cdot w} \bigg) (-1)^{u \cdot v} \\ &= \bigg(\sum_{w \in \Gamma} (-1)^{u \cdot w} \bigg) \chi_u(v). \end{split}$$

因此

$$\Phi_{\Gamma} \chi_u = \left(\sum_{w \in \Gamma} (-1)^{u \cdot w} \right) \chi_u. \qquad \Box$$

注意到因为根据引理 2.1, χ_u 构成了 \mathcal{V} 的一组基, 所以定理 2.2 得到了 Φ_{Γ} 所有的特征 值和特征向量. 同样注意到 Φ_{Γ} 的特征向量 χ_u 与 Γ 无关, 仅特征值是依赖于 Γ 的.

现在可以得到主要结果了. 设 $\Delta = \{\delta_1, \ldots, \delta_n\}$, 其中 δ_i 是第 i 个单位坐标向量 (即 δ_i 的第 i 个位置是 1 而其他位置都是 0). 注意到 δ_i 的第 j 个坐标正好是 δ_{ij} (Kronecker delta), 这就是我们用 δ_i 这个记号的原因. 用 $[\Phi_{\Delta}]$ 表示线性变换 $\Phi_{\Delta} \colon \mathcal{V} \to \mathcal{V}$ (关于由 (2.2) 给出的 \mathcal{V} 的基 B_1) 的矩阵.

2.3 引理 若 $A(C_n)$ 为 n 维立方体的邻接矩阵, 则 $[\Phi_{\Delta}] = A(C_n)$.

证明 设 $v \in \mathbb{Z}_2^n$. 我们有

$$\Phi_{\Delta} f_u(v) = \sum_{w \in \Delta} f_u(v + w)$$
$$= \sum_{w \in \Delta} f_{u+w}(v),$$

上式是因为 u=v+w 当且仅当 u+w=v. 因此

$$\Phi_{\Delta} f_u = \sum_{w \in \Delta} f_{u+w}. \tag{2.4}$$

等式 (2.4) 说明矩阵 $[\Phi_{\Delta}]$ 的 (f_u, f_v) -元 (简记为 (u, v)-元) 由下式给出

$$(\Phi_{\Delta})_{uv} = \begin{cases} 1, & \text{若 } u + v \in \Delta, \\ 0, & \text{否则}. \end{cases}$$

 $u+v\in\Delta$ 当且仅当 u 和 v 仅有一个坐标不同. 这正好是 uv 作为 C_n 的边的条件. 得证! \Box **2.4 推论** $A(C_n)$ 的特征向量 (看做是 C_n 的顶点的线性组合, 即 \mathbb{Z}_2^n 的元素) E_u $(u\in\mathbb{Z}_2^n)$ 由下式给出

$$E_u = \sum_{v \in \mathbb{Z}_2^n} (-1)^{u \cdot v} v. \tag{2.5}$$

对应于 E_u 的特征值是

$$\lambda_u = n - 2\omega(u),\tag{2.6}$$

其中 $\omega(u)$ 是 u 中 1 的数目. (整数 $\omega(u)$ 称为 Hamming 权 (weight) 或者简称为 u 的权 (weight).) 因此对 $0 \le i \le n$, $\mathbf{A}(C_n)$ 有 $\binom{n}{i}$ 个特征值等于 n-2i.

证明 根据 (2.3), 对任意的函数 $g \in \mathcal{V}$ 有

$$g = \sum_{v} g(v) f_v.$$

对 $g = \chi_u$ 应用上式, 可得

$$\chi_u = \sum_v \chi_u(v) f_v = \sum_v (-1)^{u \cdot v} f_v.$$
 (2.7)

等式 (2.7) 将 Φ_{Δ} (甚至 Φ_{Γ} , $\Gamma \subseteq \mathbb{Z}_{2}^{n}$) 的特征向量 χ_{u} 表示成了函数 f_{v} 的线性组合. 但是 Φ_{Δ} 关于基 f_{v} 的矩阵与 $\mathbf{A}(C_{n})$ 关于 C_{n} 的顶点 v 的矩阵相同. 因此 Φ_{Δ} 的特征向量关于 f_{v} 的展开式的系数与 $\mathbf{A}(C_{n})$ 的特征向量关于 v 的展开式的系数相同, 这样就得到了等式 (2.5).

根据定理 2.2, 对应于 Φ_{Δ} 的特征向量 χ_u (或等价地, $\boldsymbol{A}(C_n)$ 的特征向量 E_u) 的特征 值为

$$\lambda_u = \sum_{w \in \Delta} (-1)^{u \cdot w}. \tag{2.8}$$

现在 $\Delta = \{\delta_1, \dots, \delta_n\}$, 且 $\delta_i \cdot u$ 在 u 的第 i 个坐标为 1 时等于 1 , 否则就等于 0. 因此 (2.8) 的和式中有 $n - \omega(u)$ 项等于 +1 且有 $\omega(u)$ 项等于 -1, 这样 $\lambda_u = (n - \omega(u)) - \omega(u) = n - 2\omega(u)$.

我们得到了计算 C_n 中游动数所需的全部信息.

第2章 立方体和 Radon 变换

13

2.5 推论 设 $u, v \in \mathbb{Z}_2^n$, 且 $\omega(u+v) = k$ (即 u 和 v 恰有 k 个坐标不同). 则在 C_n 中 u 与 v 之间长为 ℓ 的游动数为

$$(\mathbf{A}^{\ell})_{uv} = \frac{1}{2^n} \sum_{i=0}^n \sum_{j=0}^k (-1)^j \binom{k}{j} \binom{n-k}{i-j} (n-2i)^{\ell}, \tag{2.9}$$

其中, 如果 j > i 取 $\binom{n-k}{i-j} = 0$. 特别地,

$$(\mathbf{A}^{\ell})_{uu} = \frac{1}{2^n} \sum_{i=0}^n \binom{n}{i} (n-2i)^{\ell}.$$
 (2.10)

设 E_u 和 λ_u 如推论 2.4 中定义. 为了应用推论 1.2, 特征向量需要化为单位 (unit) 长 度 (这里我们视 f_v 为 ν 中的标准正交基). 由等式 (2.5), 可得

$$|E_u|^2 = \sum_{v \in \mathbb{Z}_2^n} ((-1)^{u \cdot v})^2 = 2^n.$$

因此将 E_u 替换成 $E'_u = \frac{1}{2n/2} E_u$ 就得到了一组标准正交基. 根据推论 1.2, 可得

$$(\mathbf{A}^{\ell})_{uv} = \frac{1}{2^n} \sum_{w \in \mathbb{Z}_2^n} E_{uw} E_{vw} \lambda_w^{\ell}.$$

由定义, E_{uw} 是展开式 (2.5) 中 f_w 的系数, 即 $E_{uw} = (-1)^{u \cdot w}$ (类似的结果对 E_v 也成立), 而 $\lambda_w = n - 2\omega(w)$. 因此

$$(\mathbf{A}^{\ell})_{uv} = \frac{1}{2^n} \sum_{w \in \mathbb{Z}_2^n} (-1)^{(u+v) \cdot w} (n - 2\omega(w))^{\ell}.$$
 (2.11)

Hamming 权为 i, 且与 u+v 有 j 个公共 1 的向量 w 的个数为 $\binom{k}{i}\binom{n-k}{i-j}$, 因为在 u+v 中 选择 $j \land 1 = w$ 共有的方法有 $\binom{k}{i}$ 种, 而 w 剩下的 $i - j \land 1$ 插入 $n - k \land m$ 余位置中 的方法为 $\binom{n-k}{i-j}$ 种. 因为 $(u+v)\cdot w \equiv j \pmod{2}$, 和式 (2.11) 就化简为式 (2.9). 显然在式 (2.9) 中令 u = v 就得到了式 (2.10). 得证!

可以给出等式 (2.10) 的一个避免线性代数的直接证明, 但我们不在这里做了. 因此由推 论 1.3 和引理 1.7 (正如对 K_n 所做的一样) 可以得到另一种确定 C_n 的特征值的方法. 通过 稍稍的努力也能得到等式 (2.9) 的一个直接证明. 在之后的例 9.12 中, 应用 C_n 的特征值将 得到一个组合结果, 而这一结果的非代数证明只是最近才被发现并且是决不简单的.

2.6 例 在 (2.9) 中令 k=1 可得

$$(\mathbf{A}^{\ell})_{uv} = \frac{1}{2^n} \sum_{i=0}^n \left[\binom{n-1}{i} - \binom{n-1}{i-1} \right] (n-2i)^{\ell}$$

$$= \frac{1}{2^n} \sum_{i=0}^{n-1} \binom{n-1}{i} \frac{(n-2i)^{\ell+1}}{n-i}.$$

注(对那些熟悉有限群表示论的读者) 函数 $\chi_u: \mathbb{Z}_2^n \to \mathbb{R}$ 正好是群 \mathbb{Z}_2^n 的不可约 (复) 特征,且在引理 2.1 的证明中展现的 χ_u 的正交性是有限群不可约特征通常的正交关系. 本章的结果很容易推广到任意有限阿贝尔群上. 练习 2.5 做的是 n 阶循环群 \mathbb{Z}_n 的情形. 对非阿贝尔有限群情况就复杂多了,因为并不是所有的不可约表示都是一次的 (即是 $G \to \mathbb{C}^*$ 的同态, \mathbb{C}^* 为 \mathbb{C} 中的乘法群),且并不存在像阿贝尔群时所得到的确切公式.

在任意群下的情形我们可以进行如下的一点尝试. 设 G 是一个有限群, M(G) 为它的乘法表. 将 M(G) 的元素看做是可交换 (commuting) 的不定元, 这样 M(G) 就是一个有不定元的矩阵. 例如, 若 $G = \mathbb{Z}_3$. 设 G 中元素为 a,b,c, 其中 a 为单位元. 那么

$$\boldsymbol{M}(G) = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}.$$

我们能得出 $\det M(G) = (a+b+c)(a+\omega b+\omega^2 c)(a+\omega^2 b+\omega c)$, 其中 $\omega=e^{2\pi i/3}$. 总的来说,当 G 是阿贝尔群时,Dedekind 发现 $\det M(G)$ 能分解成 $\mathbb C$ 上特定的线性因子。定理 2.2 就等价于对群 $G=\mathbb Z_2^n$ 的表述 [为什么]. 等式 (12.5) 给出了当 $G=\mathbb Z_n$ 时的分解式. (为了能将 $M(\mathbb Z_n)$ 转化成等式 (12.5) 中的循环矩阵,对每一个 $w\in G$ 需要将按群元素 w 排列的行换成按 w^{-1} 排列的行,但这些操作仅影响行列式的符号.) Dedekind 向 Frobenius 询问过 $\det M(G)$ 的分解,这一行列式称为非阿贝尔有限群 G 的群行列式 (group determinant). 例如,若 $G=\mathfrak S_3$ (1,2,3 的全排列所构成的对称群),其元素(按圈记号)为 a=(1)(2)(3), b=(1,2)(3), c=(1,3)(2), d=(1)(2,3), e=(1,2,3), f=(1,3,2).那么 $\det M(G)=f_1f_2f_3^2$,其中

$$f_1 = a + b + c + d + e + f,$$

$$f_2 = -a + b + c + d - e - f,$$

$$f_3 = a^2 - b^2 - c^2 - d^2 + e^2 + f^2 - ae - af + bc + bd + cd - ef.$$

Frobenius 证明了一般情况下存在不可约齐次多项式 f (次数为 d_f) 的集合 \mathcal{P} , 其中 $\#\mathcal{P}$ 是 G 中共轭类的数目, 有

$$\det \boldsymbol{M}(G) = \prod_{f \in \mathcal{P}} f^{d_f}.$$

注意到取等式两端的次数可得 $\#G = \sum_f d_f^2$. Frobenius 的这一结果是他发展的群表示论里一个非常精彩的部分. d_f 正好就是 G 中不可约 (复) 表示的次数. 就对称群 \mathfrak{S}_n 而言, 这些次数就是定理 8.1 中的数 f^{λ} , 并且第8章的附录 1 给出了 $\sum_{\lambda} (f^{\lambda})^2 = n!$ 的一个双射证明.

第2章 立方体和 Radon 变换

第 2 章注记

Radon 变换最早产生于 J. K. A. Radon 的文章 [90] 中的一个连续设定, 现在它被应用在一些如电子化断层摄影术的领域. 有限的情形最初由 E. Bolker [9] 所定义. 在组合数学中进一步的应用参见 J. Kung [67]. n 维立方体 \mathbb{Z}_2^n 上的 Radon 变换见 P. Diaconis and R. Graham [28]. 推广到 \mathbb{Z}_k^n 的情形见 M. DeDeo and E. Velasquez [27].

对 Frobenius 和其他一些先行者发展起来的群表示论的详细阐述见 Hawkins 的综述文章 [54, 55, 56].

第 2 章练习

- 1. (a) 开始时 n 个硬币正面朝上. 随机地选取一枚 (每个都等可能地) 并且将它翻转. 这样一共做 ℓ 次. 问所有硬币都正面朝上的概率是多少?(解决这个问题不要从头开始, 而要用到之前的结论.)
 - (b) 同 (a), 而现在要计算的是所有硬币都反面朝上的概率.
 - (c) 同 (a), 但现在一次翻转两枚硬币.
- 2. (a) (困难) (*) 设 $k \leq n/2$. 记 $C_{n,k}$ 为立方体 C_n 中有 k-1 个 1 或 k 个 1 的所有 顶点生成的子图 (这样 $C_{n,k}$ 的边是由 C_n 中连接 $C_{n,k}$ 的顶点的边组成, 共有 $k\binom{n}{k}$ 条边). 证明 $A = A(C_{n,k})$ 的特征多项式为

$$\det(\mathbf{A} - xI) = \pm x^{\binom{n}{k} - \binom{n}{k-1}} \prod_{i=1}^{k} (x^2 - i(n-2k+i+1))^{\binom{n}{k-i} - \binom{n}{k-i-1}},$$

其中取 $\binom{n}{-1} = 0$.

- (b) 计算 $C_{n,k}$ 中从一个固定的顶点 v 到它本身长为 ℓ 的闭游动数.
- 3. (未解决的, 也与本书无关) 若 n = 2k + 1. 问上述练习 2 中的图 $\mathcal{C}_{n,k+1}$ 中是否存在一个 Hamilton 圈, 即一条包含每个顶点仅一次的闭路径? 图 G 中的一条闭路径 (closed path) 就是除最后一步外不重复任意顶点的闭游动.
- 4. 设图 G 的顶点集为 \mathbb{Z}_2^n (和 n 维立方体一样), 其边集的定义如下: 如果 u 和 v 恰有两个 (two) 坐标不同 (即若 $\omega(u,v)=2$), 那么 $\{u,v\}$ 是 G 的一条边. 求 G 的特征值.
- 5. 本练习是专门讨论图 Z_n 的, 其顶点集为 \mathbb{Z}_n (n 阶循环群, 以 $0,1,\ldots,n-1$ 为元素, 以模 n 的加法为二元运算所构成的群), 边由所有的数对 $\{i,i+1\}$ (i+1 在 \mathbb{Z}_n 中计

算, 这样 (n-1)+1=0) 组成. 图 Z_n 被称为 n-图 (cycle). 类似对 n 维立方体 C_n 所做的, 我们将要得到 \mathbb{Z}_n 的邻接矩阵的一些性质. 有必要在复数 \mathbb{C} 上来工作. 回顾一下,恰有 n 个复数 z (称为 n 次单位根) 满足 $z^n=1$. 它们是 $\zeta^0=1,\zeta^1=\zeta,\zeta^2,\ldots,\zeta^{n-1}$, 其中 $\zeta=\mathrm{e}^{2\pi i/n}$.

- (a) 画出 Z_3 , Z_4 和 Z_5 的图.
- (b) 设 \mathcal{V} 为所有函数 $f: \mathbb{Z}_n \to \mathbb{C}$ 构成的复向量空间. 求 \mathcal{V} 的维数.
- (c) (*) 若 $k \in \mathbb{Z}$, 那么注意到 ζ^k 仅与 k 模 n 的值有关. 因此若, $u \in \mathbb{Z}_n$, 那么我们可以将 u 视为普通的整数来定义 ζ^u , 而对指数的常用法则如 $\zeta^{u+v} = \zeta^u \zeta^v$ (其中 $u,v \in \mathbb{Z}_n$) 仍然成立. 对 $u \in \mathbb{Z}_n$ 定义 $\chi_u \in \mathcal{V}$ 为 $\chi_u(v) = \zeta^{uv}$. 令 $B = \{\chi_u : u \in \mathbb{Z}_n\}$. 证明 $B \neq \mathcal{V}$ 的一组基.
- (d) 给定 $\Gamma \subseteq \mathbb{Z}_n$ 和 $f \in \mathcal{V}$, 定义 $\Phi_{\Gamma} f \in \mathcal{V}$ 为

$$\Phi_{\Gamma} f(v) = \sum_{w \in \Gamma} f(v+w).$$

证明 Φ_{Γ} 的特征向量为函数 χ_u , 对应的特征值为 $\lambda_u = \sum_{w \in \Gamma} \zeta^{uw}$.

- (e) 设 $\Delta = \{1, n-1\} \subseteq \mathbb{Z}_n$. 定义 $f_u \in \mathcal{V}$ 为 $f_u(v) = \delta_{uv}$. 令 $F = \{f_u : u \in \mathbb{Z}_n\}$. 很明显 $F \neq \mathcal{V}$ 的一组基 (正如对 C_n 的证明). 证明 Φ_Δ 关于基 F 的矩阵 $[\Phi_\Delta]$ 正 好是 \mathcal{Z}_n 的邻接矩阵 $\mathcal{A}(\mathcal{Z}_n)$.
- (f) 证明 $A(Z_n)$ 的特征值是 $2\cos(\frac{2\pi j}{n})$, 其中 $0 \le j \le n-1$. 求与之对应的特征向量?
- (g) Z_n 中长为 ℓ 起始于 0 的闭游动有多少条? 给出 n=4 和 n=6 时的答案但不要使用三角函数, 复指数等.
- (h) 设 $Z_n^{(2)}$ 为一个图, 其顶点集为 \mathbb{Z}_n , 边 $\{i,j\}$ 满足 j-i=1 或 j-i=2. 在 $Z_n^{(2)}$ 中有多少条长为 ℓ 起始于 0 的闭游动? 试着用三角函数来表示答案, 但不要涉及 复数.
- 6. 令 \tilde{C}_n 为对 n 维立方体图 C_n 的每个顶点 v 与它的对径点 (所有 n 个坐标都和 v 不同的顶点) 添加一条边所得的图. 求 \tilde{C}_n 中长为 ℓ 起点 (也是终点) 为原点 $0 = (0,0,\ldots,0)$ 的闭游动个数.