データ構造とアルゴリズム

2019年4月 - 7月

教員名:松井くにお

研究室:67・106(やつかほ)内線:75-2206

E-mail: kmatsui@neptune.kanazawa-it.ac.jp

この授業について

■ 教室と時間

- ▶ 2EP2クラス:水曜1限@23.323
- ▶ 2EP3クラス:水曜2限@23.323

■ オフィスアワー

- ▶ 火曜5限、場所は 21.405室
- できるだけ事前にメールでアポをとって下さい。
- ▶ これ以外の時間帯:必ずメールでアポをとって下さい。

■ 教科書

▶ アルゴリズムとデータ構造 第2版[森北出版]

学習計画

データ構造とアルゴリズム (松井クラス) 講義日程と内容 (予定)					
2EP2、	2EP3	@23 .	. 323		第2版 5月7日
日	付	曜日		講義回数	学習内容
4月	10日	(水)		第1回	授業のガイダンス,アルゴリズムの基礎,時間計算量
	17日	(水)		第2回	基本データ構造(配列とリスト、スタックとキュー)
	24日	(水)		第3回	アルゴリズムにおける基本概念(木,再帰)
5月	8日	(水)		第4回	データの探索
	15日	(水)		第5回	ソートアルゴリズム 1 (選択ソート, 挿入ソート)
	22日	(水)		第6回	ソートアルゴリズム2 (クイックソート, マージソート)
	29日	(水)			休講
	3 1 日	(金)	4限	第7回	ソートアルゴリズムのまとめ 2クラス合同小テスト(教室は23・221)
6 月	5日	(水)		第8回	グラフアルゴリズム 1 (グラフとそのデータ構造)
	12日	(水)		第9回	グラフアルゴリズム 2 (重み付きグラフ、最短経路探索)
	19日	(水)	2EP2穴水		総合演習(2EP2)/アルゴリズム設計手法(2EP3)
	26□		2EP3穴水		アルゴリズム設計手法(2EP2)/総合演習(2EP3)
	28日	(金)	4限	第11回	アルゴリズム設計手法(2EP2)@23.320/総合演習(2EP3)
7月	3日	(水)		第12回	総復習
	10日	(水)		第13回	達成度確認試験の過去問
	19日	(金)	4限	第14回	2クラス合同達成度確認試験(教室は23・221) アルゴリズムの限界
	24日	(水)			休講
	3 1 日	(水)		第15回	試験の解答、総復習、自己点検

前回のおさらい

- ■木
 - ➤ 木の構造
 - > 木の使用例
- 完全2分木
 - ▶ 2分探索木
 - > 探索の方法
- 再帰
 - > 再帰木

今回の内容

■ データの探索

- > 線形探索法
- ▶ 2分探索法
- > ハッシュ法
 - データの格納
 - 衝突
 - オープンアドレス法
 - チェイン法
 - データの探索

線形探索法

■ 探索する値(23)を配列の先頭から比較

- 時間計算量
 - ➤ 最悪時間計算量はO(n)

2分探索法(1)

■ 探索する値(23)を配列の中央と比較

■ 23が大きければ後半の中央と比較

2分探索法(2)

■ 23が小さければ範囲の前半の中央と比較

2分探索木の探索

■ 探索

- 木の中に存在するデータに探しているもの(探索キー)と同じ データがあるかどうかを調べる問題
- ▶ 探索キー:23→成功

■ 時間計算量

> 0 (log n)

ハッシュ法の考え方

データの格納と衝突

■ ハッシュ関数

▶ 例: hash(x) = (xを8で割った余り)

オープンアドレス法

■ 衝突の回避のために空きがあれば次の場所 に格納

チェイン法

■ 衝突の回避のために連結リストを使って格納

探索アルゴリズムの速度比較

- 探索の時 間計算量
 - > 線形探索法
 - O(n)
 - ▶ 2分探索法
 - *O* (log n)
 - ▶ ハッシュ法
 - O(1)
 - ただし、ハッシュ関数や データサイズに 工夫が必要

(a)線形探索,2分探索法とハッシュ法の比較

第4週出席課題

【出席課題】学籍番号: クラス・番号: 氏名:

1. 以下の文章の①~⑥について, それぞれ正しい記号を下から選べ. 正しい記号が複数存在する場合はすべて列挙せよ. ただし, ①と⑥については, もっとも適切なものを1つだけ選ぶこと.

サイズがnのデータに対する線形探索の時間計算量は,

- (①)であり、2分探索法の時間計算量は、(②). ただし、2分探索法では、入力は(③)必要がある.
- ハッシュ法は、(④)探索アルゴリズムであり、(⑤) また, サイズがnの入力に対するハッシュ法による探索に必要な時間計算量は, 入力の準備に必要な時間を除くと, ほぼ (⑥)である.

- ①: a. O(n2) b. O(n) c. O(log n) d. O(1)
- ②:a. 線形探索より大きい b. 線形探索より小さい
 - c. O(log n) である d. O(1) である
- ③:a. ランダムな順番で連結リストに格納されている
 - b. なんらかの順番で並べて連結リストに格納されている
 - c. ランダムな順番で配列に格納されている
 - d. なんらかの順番で並べて配列に格納されている
- ④:a. 入力を繰り返し2つに分割する
 - b. ハッシュ関数の出力によりデータの格納場所を決定する
 - c. 入力を先頭から順番に調べる
 - d. 入力をランダムに調べる
- ⑤:a. 一般に2分探索法より高速に動作する
 - b. データの格納場所が小さいほうが効率がよい
 - c. ハッシュ関数の計算はO(1) 時間でできることが望ましい
 - d. ハッシュ関数はどのようなものでもよい.
- 6: a. O(n2) b. O(n) c. O(log n) d. O(1)