AMSC 714

NUMERICAL METHODS FOR STATIONARY PDEs

HOMEWORK # 4 (Pbs 1-3 due April 15, Pbs 4-5 due April 22)

1 (25 pts). Computation. Use the MATLAB code fem to solve the following two problems on the L-shaped domain $\Omega = [-1, 1]^2 \setminus [0, 1] \times [0, -1]$ of \mathbb{R}^2 with exact solutions:

- Smooth solution: $u(x,y) = \cos(\pi x)\sin(\pi y)$, in cartesian coordinates;
- Nonsmooth Solution: $u(x,y) = r^{2/3} \sin(2\theta/3)$, in polar coordinates (r,θ) .

Assume Dirichlet condition $g_D = u$ on the entire boundary $\partial \Omega$ and $f = -\Delta u$.

- (a) Read the tutorial by P. Morin about the implementation of the FEM for \mathbb{P}_1 Lagrange elements in Canvas (go to Files \to Matlab).
- (b) Generate the data files vertex_coordinates.txt, elem_vertices.txt, and dirichlet.txt using gen_mesh_L_shape.m for uniform refinement with meshsize $h=\frac{1}{N}=2^{-k}$ and k=2,3,4,5,6,7. Find the corresponding solutions $U_{\mathcal{T}}=u_h$.
- (c) Show that the stiffness matrices for these meshes and those for finite differences with a 5-point stencil coincide. To this end consider a generic interior star (or patch).
- (d) Find the errors $|u u_h|_{H_0^1(\Omega)}$ and $||u u_h||_{L^2(\Omega)}$, and plot them vs the number of degrees of freedom N in a log-log plot. Explain the behavior $||u u_h|| \approx CN^{-\alpha}$ that you observe and find α . Relate this to the regularity of u and HW#3-Pb#2(b) about polynomial interpolation.

2 (15 pts). Bogner-Fox-Schmit rectangle: Let R be a rectangle with vertices $\{\mathbf{x}_i\}_{i=1}^4$ in \mathbb{R}^2 .

(a) Show that the following nodal variables determine $Q_3(R)$, i.e. that the corresponding set \mathcal{N} is unisolvent:

$$p(\mathbf{x}_i), \quad \partial_1 p(\mathbf{x}_i), \quad \partial_2 p(\mathbf{x}_i), \quad \partial_{12}^2 p(\mathbf{x}_i) \qquad \forall \ 1 \le i \le 4.$$

- (b) Show that the corresponding finite element space \mathbb{V}_h satisfies $\mathbb{V}_h \subset C^1(\bar{\Omega}) \cap H^2(\Omega)$.
- 3 (20 pts). Dual basis: Consider a simplex T in \mathbb{R}^d and let $\mathcal{N}_1(T) = \{N_i\}_{i=0}^d \subset (\mathbb{P}_1(T))^*$ be the Lagrange nodal variables (or nodal evaluation), which is a basis of the dual space $(\mathbb{P}_1(T))^*$ of $\mathbb{P}_1(T)$. By the Riesz representation theorem, there exist functions $\lambda_i^* \in \mathbb{P}_1(T)$ for each $0 \le i \le d$ such that

$$N_j(\lambda_i) = \int_T \lambda_i \lambda_j^* = \delta_{ij};$$

the functions λ_j^* are the Riesz representatives of N_j . Show that

$$\lambda_i^* = \frac{(1+d)^2}{|T|} \lambda_i - \frac{1+d}{|T|} \sum_{j \neq i} \lambda_j \qquad \forall \, 0 \le i \le d.$$

Hint: Use the formula $\int_T \lambda_0^{\alpha_0} \cdots \lambda_d^{\alpha_d} = \frac{\alpha_0! \cdots \alpha_d! d!}{(\alpha_0 + \cdots + \alpha_d + d)!} |T|$.

- 4 (20 pts). Raviart-Thomas element (of lowest order): This problem illustrates how to design finite elements for the space $H(\text{div};\Omega)$ where Ω is a polygonal domain in \mathbb{R}^2 .
- (a) $H(\text{div };\Omega)$ is the space of vector fields \mathbf{p} in Ω such that $\mathbf{p} \in [L^2(\Omega)]^2$ and weak divergence div $\mathbf{p} \in L^2(\Omega)$. Show that $H(\text{div };\Omega)$ is a Hilbert space with the inner product $\langle \mathbf{p}, \mathbf{q} \rangle := \int_{\Omega} \mathbf{p} \, \mathbf{q} + \text{div } \mathbf{p} \, \text{div } \mathbf{q}$.

1

(b) Consider the following space \mathcal{P} of vector-valued polynomials over a triangle T in Ω :

$$\mathcal{P} = \mathbb{P}_0(T)^2 + \mathbf{x} \mathbb{P}_0(T).$$

Hence a function $\mathbf{p} \in \mathcal{P}$ is of the form $\mathbf{p}(\mathbf{x}) = \mathbf{a} + b\mathbf{x}$ with $\mathbf{a} \in \mathbb{R}^2$ and $b \in \mathbb{R}$ constants. Consider the following nodal variables for each side S of T:

$$N_S(\mathbf{p}) = \int_S \mathbf{p} \cdot \nu_S$$

where ν_S is the unit normal to S. Prove that the set \mathcal{N} of nodal variables is unisolvent. To this end show that the product $\mathbf{p} \cdot \nu_S$ is constant for all sides S of T.

(c) Prove that all functions \mathbf{p} in the finite element space resulting from pasting together affine equivalent triangles are in $H(\text{div};\Omega)$. Note however that \mathbf{p} is discontinuous across interelement boundaries. Hint: show that the normal components of discrete vector fields are continuous across interelement boundaries and that this implies the assertion.

5 (20 pts). The MINI element (of Arnold and Brezzi): This is an element for the Stokes problem over meshes \mathcal{T} made of simplices. Let \mathbb{Q}_h be the space of continuous piecewise linear elements over \mathcal{T} with zero mean; this is the space for pressure. Let \mathbb{V}_h be the space of vector-valued continuous piecewise polynomials \mathbf{v}_h of the form

$$\mathbf{w}_T + b_T \mathbf{c}_T \quad \forall T \in \mathcal{T},$$

where \mathbf{w}_T is linear in T, \mathbf{c}_T is constant, and b_T is the cubic bubble in T (product of barycentric coordinates); this is the space for velocity. Show that the pair $(\mathbb{V}_h, \mathbb{Q}_h)$ satisfies the discrete inf-sup property

$$\beta \|q_h\|_{L^2(\Omega)} \le \sup_{\mathbf{v}_h \in \mathbb{V}_h} \frac{\int_{\Omega} q_h \operatorname{div} \mathbf{v}_h}{\|\mathbf{v}_h\|_{H_0^1(\Omega)}} \quad \forall q_h \in \mathbb{Q}_h$$

with $\beta > 0$ independent of h. Hint: Let $\mathbf{v} \in H_0^1(\Omega)$ be a function that satisfies the continuous inf-sup property for q_h . To discretize \mathbf{v} proceed as follows. First let $\mathbf{w}_h = I_h \mathbf{v}$ be a quasi-interpolant of \mathbf{v} with values in the space of continuous piecewise linears which is stable in $H_0^1(\Omega)$, namely

$$||I_h \mathbf{v}||_{H_0^1(\Omega)} \leq \alpha ||\mathbf{v}||_{H_0^1(\Omega)},$$

and satisfies the local error estimate

$$\|\mathbf{v} - I_h \mathbf{v}\|_{L^2(T)} \le Ch_T \|\nabla \mathbf{v}\|_{L^2(S_T)}$$

where S_T is the union of all elements intersecting T (which is assumed to be closed); this is the so-called patch associated with T. We will discuss two such interpolation operators I_h . Impose the condition

$$\int_{\Omega} q_h \operatorname{div} \left(\mathbf{v} - \mathbf{v}_h \right) = 0$$

upon integrating by parts and realizing that the boundary terms vanish to arrive at $\sum_{T \in \mathcal{T}} \int_T \nabla q_h(\mathbf{v} - \mathbf{v}_h) = 0$. Exploit that ∇q_h is constant over T to choose the constant \mathbf{c}_T judiciously and derive a bound for $|\mathbf{c}_T|$ in terms of $\nabla \mathbf{v}$. Finally, use the inverse estimate $\|\nabla b_T\|_{L^2(T)} \leq Ch_T^{-1}\|b_T\|_{L^2(T)}$ to prove a bound for $|b_T\mathbf{c}_T|_{H^1(T)}$ and accumulate it over T.