- 1 Zadanie 1
- 2 Zadanie 2
- 3 Zadanie 3
- 4 Zadanie 4

Dla dowolnego wielomianu p(n) i dowolnej stałej c istnieje liczba całkowita n_0 , taka że dla każdego $n \geq n_0$ zachodzi $2^{cn} \geq p(n)$. Dowolny wielomian będzie rósł z prędkością wielomianową, tj dla wielomianu p(n) stopnia k istnieje stała M>0 taka, że dla wystarczającu dużych n zachodzi $p(n) \leq Mn^k$. Wzrost wykładniczy dominuje wielomianowy, stąd $\lim_{n \to \infty} \frac{2^{cn}}{n^k} = \infty$. Czyli istnieje takie n_0 że dla każdego n większego zachodzi $\frac{2^{cn}}{n^k} \geq M$, czyli wtedy $2^{cn} \geq Mn^k \geq p(n)$

- 5 Zadanie 5
- 6 Zadanie 6