MATH 302: LAPLACE TRANSFORMS

All functions in the time domain here are defined on $0 \le t < \infty$.

f(t)	$\mathcal{L}[f]$	converges when
1	$\frac{1}{s}$	s > 0
t	$\frac{1}{s^2}$	s > 0
t^n	$\frac{n!}{s^{n+1}}$	s > 0
t^{lpha}	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}$	$s > 0, \alpha > -1$
e^{at}	$\frac{1}{s-a}$	s > a
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$\sin(bt)$	$\frac{b}{s^2 + b^2}$	s > 0
$\cos(bt)$	$\frac{s}{s^2 + b^2}$	s > 0
$t\sin(bt)$	$\frac{2bs}{(s^2+b^2)^2}$	s > 0
$t\cos(bt)$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	s > 0
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2 + b^2}$	s > a
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	s > a