Übungsblatt 4

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Sei (M, [A]) eine glatte Mannigfaltigkeit, mit Atlas $A = \{(U_{\alpha}, \phi_{\alpha}) \mid \alpha \in I\}$. Wir definieren für $p \in M$

$$M_p = \{(\alpha, v) \mid \alpha \in I, p \in U_\alpha, v \in \mathbb{R}^n\} / \sim$$

wobei $(\alpha, v) \sim (\widetilde{\alpha}, \widetilde{v})$ genau dann, wenn $\widetilde{v} = d(\phi_{\widetilde{\alpha}} \circ \phi_{\alpha}^{-1})_{\phi_{\alpha}(p)}(v)$. Wir schreiben $[\alpha, v] := [(\alpha, v)]$ für die Äquivalenzklassen.

a) Zeigen Sie, dass die Abbildungen

$$\mathbb{R} \times M_p \to M_p, \qquad (\lambda, [\alpha, v]) \mapsto [\alpha, \lambda v]$$

und

$$M_p \times M_p \to M_p$$
, $([\alpha, v_1], [\alpha, v_2]) \mapsto [\alpha, v_1 + v_2]$

wohldefiniert sind und eine Vektorraumstruktur auf M_p induzieren.

b) Zeigen Sie, dass die folgende Abbildung ein wohldefinierter linearer Isomorphismus ist:

$$M_p \to \mathcal{D}_p(M), \qquad [\alpha, v] \mapsto \left(f \in C^{\infty}(M) \mapsto [\alpha, v] \cdot f := d(f \circ \phi_{\alpha}^{-1})_{\phi_{\alpha}(p)}(v) \right)$$

Aufgabe 2. Sei S^n die Sphäre, $p \in S^n$ und sei $\iota : S^n \to \mathbb{R}^{n+1}$ die Inklusionsabbildung.

- a) Benutzen Sie stereographische Koordinaten, um das Differential von ι und damit eine Basis für das Bild $d\iota_p(T_pS^n) \subset T_p\mathbb{R}^{n+1}$ zu bestimmen.
- b) Zeigen Sie, dass $T_pS^n \cong d\iota_p(T_pS^n)$ mit dem orthogonalen Komplement $p^{\perp} \subset \mathbb{R}^{n+1} \cong T_p\mathbb{R}^{n+1}$ identifiziert werden kann. (Es ist $p^{\perp} = \{v \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} p^i v^i = 0\}$.)

Aufgabe 3. Sei $M = \mathbb{R}^2 \setminus \{(x,0) : x \geq 0\}$. Dies ist eine offene Teilmenge von \mathbb{R}^2 , daher haben wir auf M die Standardkarte $(M, \mathrm{id} = (x^1, x^2))$ und die verträgliche Karte (M, ϕ) mit $\phi = (r, \theta) : M \to (0, \infty) \times (0, 2\pi)$ gegeben durch $\phi^{-1}(r, \theta) = (r \cos \theta, r \sin \theta)$.

- a) Sei $p \in M$. Drücken Sie die Basisvektoren $\frac{\partial}{\partial \theta}|_p, \frac{\partial}{\partial r}|_p \in T_pM$ durch die Standardbasisvektoren $\frac{\partial}{\partial x^1}|_p, \frac{\partial}{\partial x^2}|_p$ aus.
- b) Sei $F: M \to M$ gegeben durch

$$F(p) = (-\|p\|^2, 2p^1p^2),$$

wobei $p=(p^1,p^2)\in M\subset \mathbb{R}^2$. Berechnen Sie die Matrix von $dF_p:T_pM\to T_{F(p)}M$ bezüglich der Basen $\left(\frac{\partial}{\partial \theta}|_p,\frac{\partial}{\partial r}|_p\right)$ von T_pM und $\left(\frac{\partial}{\partial x^1}|_{F(p)},\frac{\partial}{\partial x^2}|_{F(p)}\right)$ von $T_{F(p)}M$.

Aufgabe 4. Betrachten Sie die glatte Abbildung

$$F: \mathbb{RP}^1 \times \mathbb{RP}^1 \to \mathbb{RP}^2, \quad F([x], [y]) = [(x^0 y^0, x^1 y^0 + x^0 y^1, x^1 y^1)].$$

Sei $([x], [y]) \in \mathbb{RP}^1 \times \mathbb{RP}^1$ mit $x^0 \neq 0 \neq y^0$.

- a) Berechnen Sie das Differential $dF_{([x],[y])}:T_{([x],[y])}(\mathbb{RP}^1\times\mathbb{RP}^1)\to T_{F([x],[y])}\mathbb{RP}^2$ in lokalen Koordinaten.
- b) Bestimmen Sie den Rang von $dF_{([x],[y])}$ in Abhängigkeit von ([x],[y]).

Abgabe Mittwoch, 04.05.2016 in der Übung.