Práctica 1

Objetivo:

Realizar programas en R-info en los que múltiples robots realizan tareas. Diseñar soluciones con robots del mismo tipo y con robots de diferentes tipos. Analizar situaciones de posibles colisiones.

- 1) Realice un programa para que un robot junte todas las flores de la avenida 1 y las deposite al final de dicha avenida. Al finalizar, debe informar la cantidad de flores depositadas y la cantidad de esquinas sin flores que encontró durante el recorrido.
 - a) Modifique el programa anterior para que el mismo robot realice lo mismo en las avenidas 1, 3 v 5.
 - **b)** Modifique el programa anterior para que el trabajo sea realizado por 3 robots: uno realiza la avenida 1, otro realiza la avenida 3 y otro la avenida 5. Cada robot debe iniciar en las esquina (1,1), (3,1) y (5,1) respectivamente.
- 2) Realice un programa en el que 4 robots limpien de papeles el perímetro de un cuadrado de lado 20 en sentido horario, como se muestra en la figura:

El vértice inferior izquierdo del cuadrado se ubica en la esquina (10,10).

Al finalizar, cada robot debe informar la cantidad de papeles juntados en su lado.

Al realizar este programa, analizar:

- a) ¿Cómo deben declararse la o las áreas? ciudad:AreaC(1,1,100,100)
- **b)** ¿Existe riesgo de colisión? Si, hay riesgo de coalición. Por ejemplo si la esquina 10,10 tiene muchos papeles, el robot 4 chocara con el robot 1 porque este último va a tardar mucho en recoger los papeles
- **3)** Realice un programa en el que 3 robots realicen escaleras de 4 escalones. El tamaño de cada escalón se incrementa en un 1 respecto al escalón anterior. El primer escalón será de 1x1, el segundo de 2x2, y así sucesivamente, como se muestra a continuación:

Al finalizar el recorrido, cada robot debe informar la cantidad de escalones en los que la cantidad de papeles superó en 1 a la cantidad de flores. Las esquinas deben quedar sin modificar.

- 4) Realice un programa en el que dos robots se encargan de limpiar las ciudad. La ciudad se dividió en 4 áreas: las impares (1 y 3) deben limpiarse de flores; y las pares (2 y 4) deben limpiarse de papeles. Un robot debe encargarse de las áreas impares y otro robot de las pares. Modularice el recorrido de cada área
 - Área 1: desde la avenida 1 hasta la avenida 25
 - Área 2: desde la avenida 26 hasta la avenida 50
 - Área 3: desde la avenida 51 hasta la avenida 75
 - Área 4: desde la avenida 76 hasta la avenida 100

- **a) Analizar** (no es necesario implementar) qué se debería modificar si ahora se pide que la ciudad se divida en 20 áreas:
 - Área 1: Avenidas 1 a 5
 - Área 2: Avenidas 6 a 10

• ..

- Área 19: Avenidas 91 a 95Área 20: Avenidas 96 a 100
- 5) Realice un programa en el que cuatro robots realizan las siguientes actividades:
 - El robot 1 debe limpiar de flores las primeras 15 esquinas de las calles 75 y 80. Al finalizar cada calle, debe depositar todas las flores en la última esquina.
 - El robot 2 debe limpiar de papeles las últimas 20 esquinas de las avenidas 75 y 80. Al finalizar cada avenida debe depositar todos los papeles en la primera esquina.
 - El robot 3 debe limpiar de flores las últimas 30 esquinas de las calles 10 y 15. Al finalizar cada calle, debe depositar todas las flores en la última esquina.
 - El robot 4 debe limpiar de papeles las primeras 10 esquinas de las avenidas 10 y 15. Al finalizar cada avenida debe depositar todos los papeles en la primera esquina.

