

2. Let A be a $m \times n$ matrix. If AB = 0, show that $rank(A) + rank(B) \le n$. Since $(A) + \frac{1}{2} + \frac{$

3. Show that Ax = b has multiple solutions if and only if $b \in Col(A)$ and the dimension of Null(A) is non-zero.

Ax=b hod miltiple soletis.

A hor some

Soletis

Folitis

The we can set in

Some lin (on b of cols of C.

Let $A_{\times_1} = A_{\times_2} = h$, $\times_1 \times_2 = 0$ $= 7 A (\times_1 - \times_2) = 0$, 3 A = 0, $S = \times_1 - \times_2 \neq 0$ et $X \in \mathcal{N}(A)$

Let $\chi \in N(A)$, Let A = b, $A \times = b$,

 $Ax^{2}=0, \qquad = \begin{cases} A(x \in x^{2}) = b \end{cases}$

=) x+2 also satisfies equ.

4. Find the basis for vector space
$$\{(x, y, z): 2x + 3y + 4z = 0\}$$

Let
$$x = a$$
, $y = h$, $z = -2a - 3h$

Soly =
$$\begin{bmatrix}
a & 1 & 0 \\
-2a - 3h & 0 \\
4 & 1
\end{bmatrix}$$
Basis is
$$\begin{bmatrix}
1 & 0 & 0 \\
-1/2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 \\
-1/2 & 1
\end{bmatrix}$$

- 6. Consider the subspace of cubic polynomials, p(x) such that p(5) = p(7) = 0.
 - a. Show that it is a vector space.
 - b. Find the basis for the vector space.

Let
$$P_1, P_2 \in V$$
 $A P_1(I) + \beta P_2(S) = 0 = p(S)$ $= 7 p 6 V$ $A P_1(I) + \beta P_2(I) = 0 = p(I)$ $= 7 p 6 V$ $A P_1(I) + \beta P_2(I) = 0 = p(I)$ $= 7 p 6 V$ $= 7 p$

7. Check if the following set of vectors are linearly independent.

a.
$$S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\6 \end{bmatrix} \right\}$$

$$b. S = \left\{ \begin{bmatrix} 2\\3\\8 \end{bmatrix}, \begin{bmatrix} 3\\2\\4 \end{bmatrix}, \begin{bmatrix} 13\\12\\28 \end{bmatrix} \right\}$$

$$c. S = \left\{ \begin{bmatrix} 2\\3\\8 \end{bmatrix}, \begin{bmatrix} 3\\2\\4 \end{bmatrix}, \begin{bmatrix} 13\\12\\28 \end{bmatrix} \right\}$$

$$c. S = \left\{ \begin{bmatrix} 2\\3\\8 \end{bmatrix}, \begin{bmatrix} 3\\2\\4 \end{bmatrix}, \begin{bmatrix} 13\\12\\28 \end{bmatrix} \right\}$$

8. Let $\mathcal{A} = \{A_1, A_2, A_3\}$ and $\mathcal{B} = \{B_1, B_2, B_3\}$ be two sets of basis vectors for the vector space \mathcal{V} . Assume that $A_1 = 4B_1 - B_2$, $A_2 = -B_1 + B_2 + B_3$ and $A_3 = B_2 - 2B_3$. If the co-ordinate vector of v with respect to \mathcal{A} is $\begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$, find the co-ordinate vector v with respect to \mathcal{B} .

$$A \ge 3A_1 + 4A_2 + A_3$$
= \(\frac{12\beta_1 - 1B_2}{2} \phi - 4\beta_1} + 4B_2 + 4B_3 + B_2 - 2B_3\)
= \(\beta_1 + 2B_2 + 2B_3\)

- 9. State whether the following statements are True or False and give reasons.
 - (a) Let $S = \{v_1, v_2, \dots, v_n\}$. If $\mathcal{V} = \operatorname{span}\{S\}$, S is a basis for \mathcal{V} . $|S = \{v_1, v_2, \dots, v_n\}$.
 - (b) If $\{v_1, v_2, \dots, v_n\}$ are a set linearly independent vectors in \mathcal{V} , they form a basis for \mathcal{V} . Note to \mathcal{V} . Let $\{w_1, w_2, \dots, w_m\}$ be linear combinations of the vectors $\{v_1, v_2, \dots, v_n\}$, with m > n.
 - (c) Let $\{w_1, w_2, \dots, w_m\}$ be linear combinations of the vectors $\{v_1, v_2, \dots, v_n\}$, with m > n. If the vectors $\{v_1, v_2, \dots, v_n\}$ are linearly independent, then $\{w_1, w_2, \dots, w_m\}$ are also linearly independent. Fals ℓ
 - linearly independent. Fuse There has be to some depositions, $\operatorname{rank}(B) = \operatorname{rank}(A)$.