Fundamentos de Informática. Representación de la información

L2.0 SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA

Contenidos

- Representación posicional de los números.
- El sistema de numeración en base 2:
 - Transformaciones de binario a decimal y viceversa.
 - Operaciones aritméticas básicas.
- Representación en complementos:
 - Complemento a uno.
 - Complemento a dos.
- El sistema de numeración hexadecimal:
 - Transformaciones entre hexadecimal y binario.
 - Transformaciones entre hexadecimal y decimal.

REPRESENTACIÓN POSICIONAL DE LOS NÚMEROS

- El mundo le debe a la cultura india el invento trascendental del sistema de numeración posicional así como el descubrimiento del 0.
- Un sistema de numeración en base b utiliza para representar los números un conjunto de símbolos (S) compuesto por b elementos (cifras). Todo número se expresa por un conjunto de cifras, contribuyendo cada una de ellas con un valor que depende:
 - de la cifra en sí, y
 - de la posición que ocupe dentro del número.

Concepto del sistema posicional (indo-arábigo)

• La representación de un número en una base b:

$$N = ... n_4 n_3 n_2 n_1 n_0, n_{-1} n_{-2} n_{-3} ...; n_i \in S$$

es una forma abreviada de expresar su valor, que es:

N =...
$$n_4 \cdot b^4 + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_1 \cdot b^{-1}$$
...

Parámetros: valor relativo de la cifra, posición y peso asociado a la posición

Ejemplo de número decimal:

$$N = \dots n_4 \cdot b^4 + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_{-1} \cdot b^{-1} \dots$$

Posición
$$\rightarrow$$
 3 2 1 0 -1 -2

$$Peso \rightarrow 10^3 10^2 10^1 10^0$$
 , $10^{-1} 10^{-2}$

$$4567,28 = 4000 + 500 + 60 + 7 + 0,2 + 0,08$$

Sistema binario

- Los computadores suelen efectuar las operaciones aritméticas utilizando una representación para los datos numéricos basada en el sistema de numeración base dos (binario natural, o, binario).
- También se utilizan los sistemas de numeración octal y hexadecimal para obtener códigos intermedios. Un número expresado en uno de estos dos códigos puede transformarse (manual y electrónicamente) directa y fácilmente a binario y viceversa.

Sistemas de numeración usuales en Informática

Denominación	Base	Símbolos utilizados (alfabeto)
Decimal	b = 10	$S_{10} = \{0,1,2,3,4,5,6,7,8,9\}$
Binario	b = 2	$S_2 = \{0,1\}$
Hexadecimal	b = 16	$S_{16} = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

Ejemplo de número hexadecimal:

$$N = \dots n_4 \cdot b^4 + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_{-1} \cdot b^{-1} \dots$$

$$3 \quad A \quad B \quad 4 \quad 7$$

$$3AB4,7)_{16} = 3 \times 4096 + A \times 256 + B \times 16 + 4 + 7 \times 0,0625$$

$$= 3 \times 4096 + (10) \times 256 + (11) \times 16 + 4 + 7 \times 0,0625$$

$$= 15.028,44)_{10}$$

Ejemplo de número binario:

$$N = ... n_4 \cdot b^4 + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_1 \cdot b^{-1} ...$$

$$101011,001)_{2} = 1.2^{5} + 1.2^{3} + 1.2^{1} + 1.2^{0} + 1.2^{-3} = 32 + 8 + 2 + 1 + 0,125 = 51,125)_{10}$$

Para pasar de binario a decimal: se suman los pesos de las posiciones donde hay un 1

SISTEMA DE NUMERACIÓN BASE 2

• b=2, $A=\{0, 1\}$

Números binarios del 0 al 7

Nº decimal	Nο	bina	ario
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
Pesos >	4	2	1

Suma aritmética de nº binarios

а	b	a+b								
0	0	0								
0	1	1								
1	0	1								
1	1	10								

Suma aritmética

Resta aritmética de nº binarios

Resta aritmética								
а	b	A-b						
0	0	0						
0	1	1 y adeudo 1						
1	0	1						
1	1	0						

Producto aritmético de números binarios

Producto aritmético								
a	b a·b							
0	0	0						
0	1	0						
1	0	0						
1	1	1						

Representación en complementos

- Simplifica considerablemente la realización de operaciones de datos con signo
- De sumo interés en el caso de los computadores ya que al utilizarla se reduce considerablemente la complejidad de la ALU
- Para representar un número negativo se puede utilizar el complemento de ese número a 1, o el complemento a 2.

En efecto, operar con números con signo es complejo:

```
    R = A + B

            A = 4; B = -3
            R = |A| - |B| = 4 - 3 = 1

    A = -4; B = 3

            R = -(|A| - |B|) = -(4-3) = -1

    A = 4; B = -7

            R = -(|B| - |A|) = -(7-4) = -3

    A = -4; B = 1

            R = -(|B| - |A|) = -(4-1) = -3
```


Algoritmo de suma de dos números con signo R = A+B

- Si signo de A = signo de B
 - Sumar los valores absolutos: |R|= |A|+|B|
 - Signo de R = signo de A (o de B)
- Si signo de A ≠ signo de B
 - Si A > B; hacer
 - |R| = |A|-|B|
 - signo de R = signo de A
 - Si A<B; hacer:</p>
 - |R| = |B|-|A|
 - signo de R = signo de B
 - ji MUCHOS CICLOS DE RELOJ PARA UNA SIMPLE SUMA jiji

COMPLEMENTO A UNO

 Para transformar un número binario, N, a complemento a 1 basta con cambiar en N los unos por ceros y los ceros por unos.

```
0010\ 1001 \longrightarrow C1(0010\ 1001) = 1101\ 0110
```

 $1001\ 0011 \rightarrow C1(1001\ 0011) = 0110\ 1100$

RESTA UTILIZANDO EL COMPLEMENTO

 Podemos restar dos números binarios sumando al minuendo el complemento a uno del substraendo. La cifra que se arrastra del resultado se descarta y se suma al resultado previamente obtenido:

COMPLEMENTO A DOS

 Para transformar un número binario, N, a complemento a 2 basta con cambiar en N los unos por ceros y los ceros por unos y sumar 1 al resultado anterior.

```
1001\ 0011 \rightarrow C2(1001\ 0011) =
= C1(1001\ 0011) + 1 =
= 0110\ 1100 + 1 = 0110\ 1101
```


Resta utilizando el complemento a dos

 Podemos restar dos números sumando al minuendo el complemento a 2 del substraendo. La cifra que se arrastra del resultado se descarta:

1011 1101 1011 1011 1011 1011
$$\frac{1001\ 0011}{0010\ 1010}$$
 Complemento a 2 \rightarrow + 0110 1101 $\frac{(1)\ 0010\ 1010}$

La notación en complementos simplifica considerablemente las sumas y restas

 Representando los números negativos en complemento a 2 o a 1, se pueden hacer directamente las operaciones sin tener en cuenta el signo

Transformación de binario a decimal

- Para transformar un número binario a decimal:
 - Se aplica la expresión:

N =...
$$n_4 \cdot 2^4 + n_3 \cdot 2^3 + n_2 \cdot 2^2 + n_1 \cdot 2^1 + n_0 \cdot 2^0 + n_{-1} \cdot 2^{-1}$$

Transformación de decimal a binario (parte entera)

- La parte entera del número binario se obtiene de la siguiente forma:
 - Se divide el nº decimal por 2 la parte entera del número decimal de partida, y de los cocientes que sucesivamente se vayan obteniendo (sin obtener decimales en el cociente).
 - Los residuos (restos) de estas divisiones y el último cociente (que serán siempre ceros o unos) son las cifras binarias.
 - El último cociente es el bit más significativo (MSB: Most Significative Bit) y el primer residuo será el bit menos significativo (LSB: Least Significative Bit).

Transformación de decimal a binario (parte fraccionaria)

- La parte fraccionaria del número binario se obtiene:
 - multiplicando por 2 sucesivamente la parte fraccionaria del número decimal de partida y las partes fraccionarias que se van obteniendo en los productos sucesivos.
 - El número binario se forma con las partes enteras (que serán ceros o unos) de los productos obtenidos, siendo el bit más significativo el del primer producto, y el menos significativo el del último producto.

Transformar a binario el número decimal 74,423

a) parte entera:

b) parte fraccionaria:

MSB
$$\frac{x \, 2}{0,846} \frac{x \, 2}{1,692} \frac{x \, 2}{1,384} \frac{x \, 2}{0,768} \frac{x \, 2}{1,536}$$
Es decir:
 $74,423)_{10} = 1001010,01101...)_2$

MSB

• Se puede observar que un número decimal con cifras fraccionarias puede dar lugar a un número binario con un número de cifras fraccionarias mucho mayor o incluso infinito.

• Si el número binario se almacena con un número prefijado de bits se producirá en la representación binaria un error de redondeo.

CÓDIGOS INTERMEDIOS: hexadecimal y octal

- Usualmente se utilizan como códigos intermedios los sistemas de numeración en base 16 (o hexadecimal) o base 8 (octal).
- Los códigos intermedios se fundamentan en la facilidad de transformar un número en base 2 a otra base que sea una potencia entera de 2 (8=2³, 16=2⁴), y viceversa.
- En la actualidad sólo se suele utilizar la base 16 debido a que cada cifra hexadecimal se transforma en 4 bits, y los tamaños de las palabras y datos que se usan en un computador por lo general son múltiplos de 4 (8, 16, 32, 64 y 128 bits)

Código hexadecimal

b=16; S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Cifras hexadecimales y sus valores decimal y binario

Nº hexadecimal	Nº decimal	Nº binario
0	0	0 0 0 0
1	1	0 0 0 1
2	2	0 0 1 0
3	3	0 0 1 1
4	4	0 1 0 0
5	5	0 1 0 1
6	6	0 1 1 0
7	7	0 1 1 1
8	8	1 0 0 0
9	9	1 0 0 1
Α	10	1 0 1 0
В	11	1 0 1 1
С	12	1 1 0 0
D	13	1 1 0 1
E	14	1 1 1 0
F	15	1 1 1 1
	Pesos →	8 4 2 1

Transformaciones de hexadecimal a binario

- Un número hexadecimal puede transformarse a binario, y viceversa, aplicando algoritmos similares a los vistos anteriormente para trasformar de decimal a binario y viceversa.
 - Haciendo divisiones sucesivas de la parte entera del nº hexadecimal por 2, y multiplicando la parte decimal sucesivamente por 2...

Transformación directa de binario a hexadecimal

- Al ser la base una potencia entera de 2 (b=18=24) puede hacerse la conversión directamente de la siguiente forma:
 - Se forman grupos de cuatro cifras binarias a partir del punto decimal hacia la izquierda y hacia la derecha.
 - Posteriormente se efectúa directamente la conversión a hexadecimal de cada grupo individual de cuatro bits.

Transformación directa de binario a hexadecimal

- Ejemplo:
 - Transformar a hex el nº binario 11100010110011,000111

0011	1000	1011	0011	,	0001	1100
3	8	В	3	,	1	С

- Luego: 11100010110011,000111)₂ = 38B3,1C)₁₆

Transformación de hexadecimal a binario

- Convertir individualmente a binario (4 bits) cada cifra hexadecimal, manteniendo el orden del número original.
- Ejemplo

2	Α	8	7	,	5	С
10	1010	1000	0111	,	0101	11

Nº hexadecimal	Nº decimal	Nº binario
0	0	0 0 0 0
1	1	0 0 0 1
2	2	0 0 1 0
3	3	0 0 1 1
4	4	0 1 0 0
5	5	0 1 0 1
6	6	0 1 1 0
7	7	0 1 1 1
8	8	1 0 0 0
9	9	1 0 0 1
Α	10	1 0 1 0
В	11	1 0 1 1
С	12	1 1 0 0
D	13	1 1 0 1
E	14	1 1 1 0
F	15	1 1 1 1
	Pesos >	8 4 2 1

Transformaciones entre hexadecimal y decimal

• Para transformar un número de hexadecimal a decimal se aplica la expresión general con b=16.

$$N = ... n_4 \cdot b^4 + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_{-1} \cdot b^{-1} ...$$

- Para pasar un número de decimal a hexadecimal se hace de forma análoga al paso de decimal a binario:
 - la parte entera se divide por 16, así como los cocientes enteros sucesivos, y la parte fraccionaria se multiplica por 16, así como las partes fraccionarias de los productos sucesivos.

Ejemplo de conversión de hexadecimal a decimal

Obtener el equivalente decimal del número hexadecimal A798C,1E)_H.

$$\begin{array}{l} \text{A798C,1E)}_{\text{H}} = (10) \cdot 16^4 + 7 \cdot 16^3 + 9 \cdot 16^2 + 8 \cdot 16 + 12 + 16^{-1} + (14) \cdot 16^{-2} = \\ = 655360 + 28672 + 2304 + 128 + 12 + 0,0625 + 0,0546875 = \\ = 686476.1171)_{10} \end{array}$$

Obtener el equivalente hexadecimal del número decimal 4373,79

Parte entera:

Parte fraccionaria:

0,79	0,64	0,24	0,84
x 16	x 16	X 16	x 16
12 ,64	10 ,24	3 ,84	13 .44

Luego: $4373,79)_{10} \approx 11DD,CA3D)_{H}$

¿Por qué y para qué se utiliza la notación hexadecimal?

- Facilidad en las conversiones binario ← → hexadecimal
- Facilidad y rapidez de implementación de las conversiones electrónicamente o por programa.
- Por lo general el computador y los programas utilizan esta notación intermedia tanto internamente o como entrada/salida.
- Programa hexedit

0	48	6f	79	20	68	61	63	65	20	62	75	65	6e	20	74	69	Hoy hace buen ti
10	65	6d	70	6f	20	79	20	75	6e	61	20	74	65	6d	70	65	empo y una tempe
20	72	61	74	75	72	61	20	64	65	20	32	35	20	67	72	61	ratura de 25 gra
30	64	6f	73	2e	20	41	41	41	41	20	61	61	61	61	20	62	dos. AAAA aaaa b
40	62	62	62	20	30	30	30	30	20	31	31	31	31	20	2e	2e	bbb 0000 1111
50	2e	2e	00						0								

Resumen

- Representación posicional de los números.
- El sistema de numeración en base 2:
 - Transformaciones de binario a decimal y viceversa.
 - Operaciones aritméticas básicas.
- Representación en complementos:
 - Complemento a uno.
 - Complemento a dos.
- El sistema de numeración hexadecimal:
 - Transformaciones entre hexadecimal y binario.
 - Transformaciones entre hexadecimal y decimal.

Licencia Creative Commons - Reconocimiento

Se permite la reproducción total o parcial de este documento siempre que se cite la fuente:

Alberto Prieto y Beatriz Prieto.

"Curso de Fundamentos de Informática"

Departamento de Arquitectura y Tecnología de Computadores. Universidad de Granada (Spain).

http://atc.ugr.es/APrieto_videoclases