Analyzing NYC Subway Dataset

Intro to Data Science - Project 1 Emmanuelle JEAN emmanuelle.jean@gmail.com

Section 0. References

references:

http://pandas.pydata.org/pandas-docs/stable/

www.udacity.com/wiki/cs101/unit1-python-reference

http://www.cyberciti.biz/faq/python-convert-string-to-int-functions/

http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime

http://www.tutorialspoint.com/python/time_strptime.htm

https://bespokeblog.wordpress.com/2011/07/11/basic-data-plotting-with-matplotlib-part-3-histogr

http://docs.scipy.org/doc/numpy/reference/index.html

http://www.creative-wisdom.com/teaching/WBI/parametric_test.shtml

http://www.itl.nist.gov/div898/handbook/pri/section2/pri24.htm

http://blog.yhathq.com/posts/facebook-ggplot-tutorial.html

http://discussions.udacity.com/c/nd002-2015-02-04/project-1

Shapiro Wilk Test:

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html

http://unsupervised-learning.com/shapiro-wilk-test-normality/

Section 1. Statistical test

From the first exploratory data analysis done in the problem set 3-1, the histogram shows that the data are not normalized and I concluded that we can not perform the Welch's t test.

Udacity provided an enhanced data source and before going further, I looked at the same histogram than in the problem set 3-1 to see if the histogram of frequencies of ENTRIESn_hours have the same shape than the one for the 1st data set.

```
In [*]: import numpy as np
    import pandas
    from ggplot import *
    import matplotlib.pyplot as plt

turnstile_data = pandas.read_csv('turnstile_weather_v2.csv')

def entries_histogram(turnstile_weather):

    fig = plt.figure()
    plt.xlabel("ENTRIESn_hourly")
    plt.ylabel("frequency")
    plt.title("frequency ofENTRIESn_hourly histogram")
    turnstile_weather['ENTRIESn_hourly'][turnstile_weather['rain']==0].hist(bins=50, label="No Rain"
    turnstile_weather['ENTRIESn_hourly'][turnstile_weather['rain']==1].hist(bins=50, label="Rain")
    plt.legend()
    return plt
entries_histogram(turnstile_data).show()
```


The resulted histogram has the same shape than the histogram of the original dataset.

- 1.1 Let's compute the Mann-Whitney U-Test on the improved dataset:
 - One-tail p value
 - H₀: the distribution of No Rainy day have the same mean of ENTRIESn_hourly that the distribution of rainy day.
 - p critical value of 0.05
- 1.2 This Mann-Whitney U-Test is applicable because we do not need to make any assumption regarding the distribution of the population and we have more than 20 values in each samples.
- 1.3 The Mann-Whitney U-Test results are:

```
import numpy as np
import scipy
import scipy.stats
import pandas
def mann_whitney_plus_means(turnstile_weather):
   print np.percentile(turnstile_weather['ENTRIESn_hourly'][turnstile_weather['rain']==0],50)
   print np.percentile(turnstile_weather['ENTRIESn_hourly'][turnstile_weather['rain']==1],50)
   without_rain_mean = np.mean(turnstile_weather['ENTRIESn_hourly'][turnstile_weather['rain']==0])
   with rain_mean = np.mean(turnstile_weather['ENTRIESn_hourly'][turnstile_weather['rain']==1])
   return with_rain_mean, without_rain_mean, U, p # leave this line for the grader
turnstile data = pandas.read csv('turnstile weather v2.csv')
mann_whitney_plus_means(turnstile_data)
893.0
939.0
(2028.1960354720918, 1845.5394386644084, 153635120.5, 2.7410695712437496e-06)
```

Mann-Whitney U-Test	U = 153635120.5	P = 5.482e-06	
	Non Rainy Day	Rainy day	
Mean ENTRIESn_hourly	1845.539	2028.196	
Median ENTRIESn_hourly	893.0	939.0	

1.4 The p value is smaller than the p critical value so we can reject the null hypothesis and say that the non rainy day distribution is most likely to have a different mean of ENTRIESn_hourly than the rain day distribution.

This conclusion is confirmed by the comparison of both the mean and the median of the ENTRIESn_hourly for our non rainy day and for rainy day samples.

Section 2. Linear Regression

Dataset: turnstile_weather_v2.csv

The code I used to compute the linear gradient, R² and the graph of residuals is in the file in the annexe "Intro To Data Science Problem 3-5.html".

- 2.1 I used the Gradient descent approach to compute the coefficients theta and produce prediction for ENTRIESn_hourly in my regression model.
- 2.2 The features I use in my model are : hour, day_week, fog, precipi, pressurei, rain, tempi, wspdi, meanprecipi, meanpressurei, meantempi and meanwspdi . I used the dummy variables related to UNIT.
- 2.3 My reasoning was to use all the numerical features hour, day_week, fog, precipi, pressurei, rain, tempi, wspdi, meanprecipi, meanpressurei, meantempi. The more features, the more precise my model will be and the R^2 will be close to one. I had a R^2 of 0.476.

I reduced the number of features and experimented with different alpha and number of iteration and computed the R^2 value.

features	alpha	iteration	R ²
'hour','day_week','fog','precipi','pressurei','rain','tempi','wspdi ','meanprecipi','meanpressurei','meantempi','meanwspdi'	0.1 0.5 0.5 0.1 0.8	75 75 150 1000 75	0.476 0.476 0.476 -1.405
'rain', 'precipi', 'Hour', 'hour','day_week','fog','precipi','pressurei','rain','tempi','wspdi	0.1	1000	0.471
	0.8	75	0.470
'hour','day_week','fog','precipi','rain'	0.1	1000	0.470
	0.8	75	0.470
'day_week','rain'	0.8	75	0.385
	0.1	1000	0.385

From my different tests, it appears that R² decreases a little with less features. I find the the R² far from 1 anyway. A higher value of alpha, introduce a risk of missing the lowest point.

2.4 The coefficients for the 12 features are :

features	coefficients	features	coefficients
hour	7.284e+02	tempi	3.4247e+02

day_week	-3.235e+02	wspdi	6.598e+01
fog	-1.617e+01	meanprecipi	1.030e+02
precipi	-1.314e+02	meanpressuri,	5.188e+01
pressurei	-1.098e+02	meantempi	-3.979e+02
rain	-4.696e+00	meanwspdi	-1.119e+02

The coefficients are the twelve first coefficients of the *theta_gradient_descent* data-frame computed in the *predictions* procedure. They correspond to the first twelve columns of the features dataframe, the rest being the UNIT features using dummies data.

2.5 My model R² is 0.476.

2.6 My calculated coefficient of determination is pretty far from one. But the plot of the residual data is normalized and show a higher frequencies around 0. It indicates that our model is pretty accurate.

Section 3. Visualization

3.1 Histogram representing the frequencies of ENTRIESn_hourly for rainy days (blue) and non rainy days (red).


```
from pandas import *
from ggplot import *
from datetime import *

"""Histogram of the frequencies of ENTRIESn_hourly """
def plot_weather_data(turnstile_weather):

pandas.options.mode.chained_assignment = None

plot= ggplot( aes(x="ENTRIESn_hourly", fill ="rain" ), data = turnstile_weather ) +\
geom_histogram(binwidth =500)+\
ggtitle("frequencies of ENTRIESn_hourly")

return plot

turnstile_weather = pandas.read_csv('turnstile_weather_v2.csv')
plot_weather_data(turnstile_weather)
```

3.2 Mean of ENTRIESn by hour, for rain and no rain days

Code

```
from pandas import *
from ggplot import *
from datetime import *

def plot_weather_data(turnstile_weather):
    turnstile_weather['DateDatetime'] = pandas.to_datetime(turnstile_weather['DATEn'])
    #turnstile_weather['weekDay'] = turnstile_weather['DateDatetime'].map(lambda x: x.weekday())
    #******Visualisation of the mean of Entries by hour for rain and no rain day for the business day
    rain_day_group = turnstile_weather.groupby(["rain","hour"], as_index=False)
    mean_rain_day= rain_day_group["rain","hour", "ENTRIESn_hourly"].aggregate(np.mean)
    plot= ggplot(mean_rain_day, aes(y='ENTRIESn_hourly', x="hour", color='rain')) + geom_point() +geom_line()+\
        ggtitle("Mean of Entries by hour")
    return plot

turnstile_weather = pandas.read_csv('turnstile_weather_v2.csv')
    plot_weather_data(turnstile_weather)
```

On this visualization, we see how the average of entries varies during the day by hour block, for non rainy day (red) and rainy day (blue).

We can see that there is more people, in average, riding the subway when it rains, between 8:00 am and 8:00 pm. The numbers of riders entering the subway between 12:00 am and 4:00 am does not seems as much influenced by rain than riders using the subway after 8:00 am.

Section 4. Conclusion

4.1 From my analysis of the NYC subway improved dataset and interpretation of the computed information, more people ride the NYC subway when it rains.

4.2

First, I compared the average of riders during rainy days to the average of riders during days without rain. There are more people who take the subway on rainy days. I compared, as well, the median of the entries during rainy days to the median of the entries of non rainy days. The comparison led to the same conclusion.

But I needed to make sure that this conclusion is representative for every months of the year. I had to verify that the data is representative to the whole population of entries in the NYC Subway.

I looked at the histogram of the two sets to see if they are normally distributed. The histogram did not show a Gaussian curve. The only test I could use was the Mann-Whitney U-Test. The Mann-Whitney U-Test does not need the assumption that the data follows a normal distribution. From the calculated Mann-Whitney U and p values, I interpreted that indeed, the sets of data differs and we have a difference of average of number of NYC Subway riders when it rains.

We have more than 5000 data from which we computed our statistic, we can trust our result. I chose the linear gradient as the prediction model, and use 12 features to compute the prediction values. Even if the R² value of 0.476 is far from one. The residual data plot is normal and indicates that my prediction model is accurate.

Section 5. Reflection

5.1 shortcoming of the method of my analysis:

Dataset:

- The number of datapoint for rainy days is very low compared to to the number of data points for non rainy days.
- The differences of results between the 2 datasets provided shows the importance of cleaning up our values before computing any tests.
- I am wondering if we would have the same results with data from a winter month. That would validate the assumption I made: given the number of data, we can consider the data being normalised.

- I have been a NYC subway commuter and my first reflexion was that ridership is not influenced by rain. One takes the NYC subway because it is the most convenient compared to the bus, the car, bike or feet. The analysis proved me that I was wrong in my way of thinking.

Analysis:

- I have been able to justify using two tests and fortunately their results were not in opposition, but I realize that the choice of the test and the choice of assumptions are very important and but also one can easily argue the choice made in my analysis.
- In my linear regression, I did not included any non numerical features such as UNIT or station.
- I only used the methods presented in the Intro to Data Science but I am aware that more methods are available.