Final Examination

Date: January 14th, 2016

Duration: 120 minutes

SUBJECT:	Electronic Devices
Dean of School of Electrical Engineering	Lecturer: Tran Van Su, M.Eng.
Signature:	Signature:
Full name: Tran Van Su	Full name: Tran Van Su

INTRODUCTIONS:

- 1. Only one NOTE of A4-PAPER allowed during the exam. Books, other materials, and computers are prohibited.
- 2. Answer all questions.

Question 1 (30 Marks)

The components and supply voltage of the following circuit are described as follows: V_{CC} = 12V, R_i = 200 Ω , R_1 = 2.2 $K\Omega$, R_2 =18 $K\Omega$, R_E = 600 Ω , R_C = 5.6 $K\Omega$ and β = 120. The early voltage is 50V.

- a. Calculate the quiescent point of transistor Q. (5 Marks)
- b. Plot the AC load line of the circuit. (5 Marks)
- c. Find input impedance R_{in} and output impedance R_o. (5 Marks)
- d. Find the voltage gain $A_v = v_0/v_i$. (10 Marks)
- e. Find the current gain $A_i = i_0/i_i$. (5 Marks)

Question 2 (25 Marks)

The circuit shown in Fig. 2 has $V_{CC} = 10 \text{ V}$, $R_b = 12 \text{K}\Omega$, and $\beta = 100$. Neglect r_o .

- a. Calculate the quiescent point of transistor Q. (5 Marks)
- b. Sketch the AC small-signal equivalent circuit. (5 Marks)
- c. Determine R_L to obtain the voltage gain $A_V = v_0/v_i = 0.9$ (5 Marks)
- d. Calculate input impedance R_{in}. (5 Marks)
- e. Calculate output impedance R_o (5 Marks)

Question 3 (30 Marks)

$$V_{DD} = 12 \text{ V}, R_G = 470 \text{ K}\Omega, R_{Sig} = 20 \text{ K}\Omega, V_t = 1 \text{ V}, \text{ and } \mu_n C_{ox} \frac{W}{L} = 1.2 \text{ } mA/V^2 \text{ . (Neglect r_o)}$$

- a. Compute V_{GS} and V_{S} . (5 Marks)
- b. Plot the AC small-signal equivalent circuit. (5 Marks)
- c. Determine $R_D//R_L$ to obtain $A_V = v_o/v_{sig} = -1.5$ (10 Marks)
- d. If $V_D = 5V$. Find R_D and R_L . (5 Marks)
- e. What are the input and output impedances R_{in} and R_{o} . (5 Marks)

Question 4 (15 Marks)

The transistor in Fig. 4 has $I_D = 1 m A$, $V_D = 0 V$, $V_t = 2 V$, $\mu_n C_{ox} = 20 \mu A/V^2$, $L = 10 \mu m$, and $W = 400 \mu m$. Determine R_S and R_D .(Transistor operates in saturation mode)