Bachelor of Science (B.Sc.I.T.) Semester—II (C.B.S.) Examination FUNDAMENTALS OF DIGITAL ELECTRONICS

Paper—I

Time: Three Hours] [Maximum Marks: 50

N.B. :— (1) All questions are compulsory and carry equal marks.

(2) Draw neat diagrams wherever necessary.

EITHER (A) Explain the method of converting decimal number into its binary equivalent. 5 (B) Obtain the following conversions: (i) $(24)_{10} = (\underline{}_{10})_2$ (ii) $(10110)_2 = (\underline{}_{10})_{10}$ (iii) $(101)_{10} = (\underline{}_{10})_2$ (iv) $(FA0)_{16} = ()_8$. 5 OR (C) Explain XS-3 code. What are its uses? 5 (D) How does other codes differ from XS-3 code? Explain. 5 **EITHER** (A) Explain EX-OR gate using basic gates. 5 (B) Design AND, OR, NOT and NOR gates only using NAND gates. 5 OR (C) State and prove De Morgan's theorem. 5 5 (D) What is the use of K-map? Explain. **EITHER** (A) Draw half adder circuit and explain. 5 (B) What is a multiplexer? Explain with an example. 5 OR (C) Explain the construction of a 4-bit asynchronous counter with timing diagram. 5 (D) Draw RSFF using NOR gates and explain its working. 5

NVM-5485 (Contd.)

EITHER

4.	(A)	Explain volatile and non-volatile memory.	5
	(B)	Write a note on Cache Memory.	5
	OR		
	(C)	Explain the difference between Hard disk and Optical disk.	5
	(D)	Explain difference between semiconductor and magnetic memory.	5
5.	(A)	Explain the method of subtraction of two binary numbers using 2's complement method.	
			$2\frac{1}{2}$
	(B)	Construct X-OR gate using NOR gates.	21/2
	(C)	What is race around condition? How to avoid it? Explain.	21/2
	(D)	Draw a block diagram of computer and explain in brief.	2½