CS 325

Syllabus

Which discrete math did you take?

- a) MTH 231 at OSU
- b) MTH 231 at LBCC
- c) CS 225 at OSU
- d) Other discrete math class
- e) Never took discrete math

Did you take Stats?

- a) ST 314 at OSU
- b) Engineering Stats at LBCC
- c) Other stats class Stats class
- d) Never took stats

Which programming language would you use?

- a) C
- b) C++
- c) Python
- d) Other

CS 325 - Topics

- Asymptotic Analysis and Complexity Classes.
- Analysis on experimental run time data.
 - Linear, polynomial, exponential regression
- Recursion, recurrences
- Performance determines what is feasible and what is impossible.
- When to use a Heuristic or an Approximation Algorithm
 - Travelling Salesman Problem
 - Knapsack Problem
 - Scheduling

6

Algorithm Design Paradigms

There is no one "best" method to solve all problems

- Brute Force
- Divide and Conquer
- Greedy
- Dynamic Programming
- Graph Algorithms
- Approximation

Problems vs Algorithms

- Many algorithms exist to solve the sorting problem.
- Running time is associated with an algorithms.
- Bounds on running times may also be associated with the problem.

Example

- Problem: Sorting a list of integers
- Algorithms: Insertion Sort, Merge Sort, Naive Sort

How do we compare Algorithms?

We need to define a number of <u>objective measures</u>.

Compare execution times?

Not good: times are specific to a particular computer and programming language!!

• Count the number of statements executed?

Not good: number of statements vary with the programming language as well as the style of the individual programmer.

Types of Analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest
- Average case = Expected Value
 - Provides a prediction about the running time
 - Assumes that the input is random

Input Size

Express running time as a function of the input size n (i.e., f(n)).

- size of an array
- # of elements in a matrix
- # of bits in the binary representation of the input
- vertices and edges in a graph

Asymptotic Analysis

To compare two algorithms with running times f(n) and g(n), we need a **rough measure** that characterizes **how fast each function grows.**

- Running time of an algorithm as a function of input size *n* for large *n*.
- Compare functions in the limit, that is, asymptotically! (i.e., for large values of *n*)
- Worst Case Analysis

Problems vs Algorithms

- For any given problem there are potentially many different types of algorithms to solve it.
- Problem: Sorting a list of integers
- Algorithms: Insertion Sort, Merge Sort, Naive Sort

Plot:

- Running time
 - Insertion Sort is $O(n^2)$
 - Merge Sort is O(nlgn)
 - Naive Sort is O(n³)

Formally DefineThe Problem of Sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Importance of Sorting

- Maintain a directory of names, phone book, sort by grades of students, ...
- Find the median
- Binary Search assumes array is sorted.
- Greedy Algorithms

Problem vs Algorithm

- Many algorithms exist to solve the sorting problem.
- Running time is associated with an algorithms.
- Bounds on running times may also be associated with the problem.

Algorithm 1: Insertion sort

INSERTION-SORT $(A, n) \triangleright A[1 \dots n]$ for $j \leftarrow 2$ to n**do** $key \leftarrow A[j]$ $i \leftarrow j - 1$ "pseudocode" while i > 0 and A[i] > key**do** $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ A[i+1] = keynA: sorted

8 2 4 9 3 6

Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Major Simplifying Convention:
 Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.

 $T_A(n) = \text{time of A on length n inputs}$

• Generally, we seek upper bounds on the running time, to have a guarantee of performance.

Kinds of Analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- T(n) = expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (NEVER)

• Cheat with a slow algorithm that works fast on *some* input.

Insertion sort analysis

Worst case: Input reverse sorted.

$$T(n) = \sum_{j=2}^{n} j = O(n^2)$$
 [arithmetic series]

Is insertion sort a fast sorting algorithm?

- Moderately so, for small *n*.
- Not at all, for large *n*.

Insertion sort analysis

Average case: All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} (j/2) = O(n^2)$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small *n*.
- Not at all, for large *n*.

Insertion sort analysis

Best Case: Already sorted. Nearly Sorted?? O(n)

Can we sort better?

Insertion upper bound O(n²)
Are there other ways to sort??

Merge Sort

- **Sorting Problem:** Sort a sequence of *n* elements into non-decreasing order.
- *Divide*: Divide the *n*-element sequence to be sorted into two subsequences of *n*/2 elements each
- *Conquer:* Sort the two subsequences recursively using merge sort.
- *Combine*: Merge the two sorted subsequences to produce the sorted answer.

Merge sort – Pseudo code

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

Merging two sorted arrays

```
20 12
```

13 11

7 9

2 1

```
20 12
13 11
7 9
2 1
1
```


Time = O(n) to merge a total of n elements (linear time).

Merge Sort – Example

Analyzing merge sort

```
T(n)MERGE-SORT A[1 ... n]\Theta(1)1. If n = 1, done.2T(n/2)2. Recursively sort A[1 ... \lceil n/2 \rceil]and A[\lceil n/2 \rceil + 1 ... n].O(n)3. "Merge" the 2 sorted lists
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + O(n) \text{ if } n > 1. \end{cases}$$

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Week 2 provides several ways to find a good upper bound on T(n).

Solve
$$T(n) = 2T(n/2) + cn$$
, where $c > 0$ is constant.
$$T(n)$$

$$h = \lg n \quad cn/2 \qquad cn/2 \qquad cn$$

$$h = \lg n \quad cn/4 \quad cn/4 \quad cn/4 \quad cn/4 \qquad cn$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\Theta(1) \qquad \text{#leaves} = n \qquad \Theta(n)$$

$$\text{Total} = \Theta(n \lg n)$$

Conclusions

- $O(n \lg n)$ grows more slowly than $O(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.

• Nearly Sorted??

A tighter bound

• $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.

```
Bubblesort( array A)

for i from 1 to n

for j from 0 to n - 1

if A[j] > A[j + 1]

swap( A[j], A[j + 1] )
```

- Worst Case : O(n²)
- Average Case: O(n²)
- Best Case : O(n²)

Benchmarking

- Algorithmic analysis is the first and best way, but not the final word
- What if two algorithms are both of the same complexity?
- Example: bubble sort and insertion sort are both $O(n^2)$
 - So, which one is the "faster" algorithm?
 - Benchmarking: run both algorithms on the same machine
 - Often indicates the constant multipliers and other "ignored" components
 - Still, different implementations of the same algorithm often exhibit different execution times – due to changes in the constant multiplier or other factors (such as adding an early exit to bubble sort)

Experimental Analysis

Implement the algorithm & Collect running time data

Experimental Analysis

Use for prediction

$$T(n) = 0.0193n^2 + 0.3619n - 42$$

Time in milliseconds a function of n.

Predict time for a list of 10,000 elements.

T(10,000) = 1933568 milliseconds

About 32 minutes

Problem Complexity Class:

Polynomial P

Comparing functions

• $f(n) = .2nlogn vs g(n) = .0.01n^2$

•
$$f(n) = O(g(n))$$

Relations Between Θ , O, Ω

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O example, graphically

- Note 30*n*+8 isn't less than *n* anywhere (*n*>0).
- It isn't even less than 31n everywhere.
- But it *is* less than 31*n* everywhere to the right of *n*=8.

30n + 8 is O(n)

Examples

```
2n^2 = O(n^3): 2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 2 and n_0 = 1
    n^2 = O(n^2): n^2 \le cn^2 \Rightarrow c = 1 and n_0 = 1
    1000n^2 + 1000n = O(n^2):
1000n^2 + 1000n \le 1000n^2 + n^2 = 1001n^2 \Rightarrow c = 1001 \text{ and } n_0 = 1000
    n = O(n^2): n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1 and n_0 = 1
```

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- $n^3 n^2$ is $O(n^3)$

constants

- -10 is O(1)
- -1273 is O(1)

Orders of Growth

A polynomial of degree k is $O(n^k)$

Recall: f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Proof:

Suppose
$$f(n) = b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0$$

Let $a_i = |b_i|$
 $f(n) \le a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$
 $f(n) \le n^k \left(a_k + a_{k-1} \frac{n^{k-1}}{n^k} + \dots + a_1 \frac{n^1}{n^k} + a_0 \frac{1}{n^k} \right)$
 $f(n) \le n^k \sum a_i \frac{n^i}{n^k} \le n^k \sum a_i$
 $let \ c = \sum a_i$
 $f(n) \le cn^k \text{ for } n \ge 1$

Therefore all polynomial functions f(n) of degree k are $O(n^k)$.

Big Oh Classes

• Constant O(1)

• Logarithmic O(log (n))

• Linear O(n)

• Quadratic $O(n^2)$

• Cubic $O(n^3)$

• Polynominal $O(n^k)$ for any k>0

• Exponential $O(k^n)$, where k>1

• Factorial O(n!)

Rank the following functions in increasing order of growth

Ig(2ⁿ), 1000, sqrt(n), 3n², n!, logn, 3ⁿ

- a) 1000, lg(2ⁿ), sqrt(n), 3n², n!, logn, 3ⁿ
- b) 1000, lg(2ⁿ), sqrt(n), 3n², logn, 3ⁿ, n!
- c) 1000, logn, lg(2ⁿ), sqrt(n), 3n², n!, 3ⁿ
- d) 1000, logn, sqrt(n), lg(2ⁿ), 3n², 3ⁿ, n!
- e) None of the above

A Simple Code Example

• Consider summing an array of *n* integers.

```
sum = 0; Executes in constant time c_1 (independent of n)

for (i = 0; i < n; i++)

sum += array[i]; Executes in c_2 \cdot n time for for some constant c_2

return sum; Executes in constant time c_3 (independent of n)
```

- Total running time: $c_1 + c_2 n + c_3$
 - But the constants c_1 , c_2 , c_3 depend on hardware, compiler, etc.
- What is the big-Oh runtime? (big-Oh ignores factors)

O(n) also known as <u>linear time</u>

A Simple Example

• Consider summing an array of *n* integers.

```
sum = 0;
for (i = 0; i < n; i++)
    sum += array[i];
return sum;</pre>
O(n)
```

What does this mean in practice?

Total =
$$O(n) + O(n^2) = O(n + n^2) = O(n^2)$$

Code Example

```
int isPrime (int n) {
  for (int i = 2; i * i <= n; i++) {
    if (0 == n \% i) return 0;
 return 1; /* 1 is true */
   Question: What is the "Big-Oh" running time in terms of n?
                      a) O(n)
                      b) O(n^2)
                      c) O(Ign)
                      d) O(\sqrt{n})
```

e) O(nlgn)

Trouble with Big-Oh

Just an upper bound. Factually true but practically meaningless.

- 3n is O(n²)
- 3n is O(n⁴)
- 3n is O(n)

Many times only Big-Oh is reported but it is assumed a "tight" upper bound.

Omega Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Omega Graphically

 Note 30n+8 isn't less than n anywhere (n>0).

Questions

```
-5n^2 = \Omega(n)
      \exists c, n_0 \text{ such that: } 0 \le cn \le 5n^2 \Rightarrow cn \le 5n^2 \Rightarrow c = 1 \text{ and } n_0 = 1
- 100n + 5 \neq \Omega(n^2)
     \exists c, n_0 such that: 0 \le cn^2 \le 100n + 5
     100n + 5 \le 100n + 5n \ (\forall n \ge 1) = 105n
     cn^2 \le 105n \Rightarrow n(cn - 105) \le 0
      Since n is positive \Rightarrow cn - 105 \le 0 \Rightarrow n \le 105/c
      \Rightarrow contradiction: n cannot be smaller than a constant
- n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(logn)
```

Property of Big-Oh and Omega

If f(n) = O(g(n)) then $g(n) = \Omega(f(n))$

By definition of Big-Oh

 $f(n) \le cg(n)$ for all $n \ge n_0$ for some $n_0, c > 0$.

Dividing by c yields

$$\frac{1}{c}$$
 f(n) \leq g(n) or c_2 f(n) \leq g(n) where $c_2 = \frac{1}{c} \geq 0$

If we use the same n_{0} this implies that $g(n) = \Omega(f(n))$.

A non-negative polynomial of degree k is $\Omega(n^k)$

Proof:

Suppose
$$f(n) = b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0$$

$$f(n) = n^k \left(b_k + b_{k-1} \frac{n^{k-1}}{n^k} + \dots + b_1 \frac{n^1}{n^k} + b_0 \frac{1}{n^k} \right)$$

$$f(n) = n^k \left(b_k + \frac{b_{k-1}}{n^1} + \dots + \frac{b_1}{n^{k-1}} + \frac{b_0}{n^k} \right)$$

For large n's the fractions go to zero, so if we set n_0 large enough we can ignore all terms except b_k . Thus a value for n_0 must exist.

let
$$c = \frac{b_k}{2}$$
 $cn^k \le f(n)$ for $n \ge n_0$
$$\frac{b_k}{2}n^k \le b_k n^k \text{ for } n \ge n_0$$

Therefore all polynomial functions f(n) of degree k are $\Omega(n^k)$.

Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Big-Theta example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than
 31n everywhere to the right of n=8.

Increasing $n \rightarrow$

A non-negative polynomial of degree k is $\Theta(n^k)$

Proof: From previous Big-Oh and Omega $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0 is \Theta(n^k)$

Short-cut:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

```
for (i=1; i<=n*n; i++)
for (j=0; j<i; j++)
sum++;</pre>
```

Determine the running time

- a) $\Theta(n)$
- b) $\Theta(n^2)$
- c) Θ(lgn)
- d) $\Theta(n^4)$
- e) ⊕(nlgn)

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$


```
for (i=1; i<=n*n; i++)
for (j=0; j<i; j++)
sum++;</pre>
```

Determine the running time

- a) $\Theta(n)$
- b) $\Theta(n^2)$
- c) Θ(lgn)
- d) $\Theta(n^4)$
- e) ⊕(nlgn)

```
i \leftarrow n
while (i > 1) do
i \leftarrow \lfloor i/2 \rfloor
z \leftarrow z + 1
```

Determine the running time

- a) $\Theta(n)$
- b) $\Theta(n^2)$
- c) $\Theta(lgn)$
- d) $\Theta(n^4)$
- e) ⊕(nlgn)

```
i \leftarrow n
while (i > 1) do
i \leftarrow \lfloor i/2 \rfloor
z \leftarrow z + 1
```

Rate of Growth as limits

The low order terms in a function are relatively insignificant for **large** *n*

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

$$\lim_{n \to \infty} \frac{n^4 + 100n^2 + 10n + 50}{n^4} = 1$$

That is we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same **rate of growth**

Mathematics a **tilde symbol** (∼) indicating equivalency or similarity between two values.

Limit Method: The Process

Say we have functions f(n) and g(n). We set up a limit quotient between f and g as follows

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & then f(n) \text{ is } O(g(n)) \\ c > 0 & then f(n) \text{ is } \Theta(g(n)) \\ \infty & then f(n) \text{ is } \Omega(g(n)) \end{cases}$$

- The above can be proven using calculus, but for our purposes, the limit method is sufficient for showing asymptotic inclusions
- Always try to look for algebraic simplifications first
- If f and g both diverge or converge on zero or infinity, then you need to apply the l'Hôpital Rule

L'Hôpital Rule

Theorem (L'Hôpital Rule):

- Let f and g be two functions,
- if the limit between the quotient f(n)/g(n) exists,
- Then, it is equal to the limit of the derivative of the numerator and the denominator

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Question

If f(n) = logn and g(n) = lgn then $g(n) = \Theta(f(n))$

- a) True
- b) False

Limit Method: Question

Example: Let f(n) =2ⁿ, g(n)=3ⁿ. Determine a tight inclusion of the form f(n) = Δ (g(n))

What is your intuition in this case?

- a) Big-O
- b) Theta
- c) Omega

Limit Method: Question

Example: Let $f(n) = \log_2 n$, $g(n) = \log_3 n^2$. Determine a tight inclusion of the form

$$f(n) \in \Delta(g(n))$$

What is your intuition in this case?

- a) Big-O
- b) Theta
- c) Omega

Using Wolfram Alpha

https://www.wolframalpha.com/

 $\lim(x-\sin f)(2^x/3^x)$

Important Result

- All logs have the same asymptotic growth rate no what the base is.
- In many CS algorithms the base is 2.
- But we get sloppy since lg(n) is ⊕(logn)

Properties

Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Transitivity
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

- 1. By definition $f(n) = \Theta(g(n))$ implies there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- 2. By definition $g(n) = \Theta(h(n))$ implies there exist positive constants c_3 , c_4 , and n_1 such that $0 \le c_3 h(n) \le g(n) \le c_4 h(n)$ for all $n \ge n_1$
- 3. Show $f(n) = \Theta(h(n))$ that is there exist positive constants c_5 , c_6 , and n_2 such that $0 \le c_5 h(n) \le f(n) \le c_6 h(n)$ for all $n \ge n_2$

By combining 1 and 2: $c_1c_3h(n) \le c_1g(n) \le f(n)$ let $c_5 = c_1c_3$ so $c_5h(n) \le f(n)$ Again from 1 and 2: $f(n) \le c_2g(n) \le c_2c_4h(n)$ let $c_6 = c_2c_4$ so $f(n) \le c_6h(n)$

So $c_5 h(n) \le f(n) \le c_6 h(n)$ for all $n \ge n_2$

And let $n_2 = \max \{n_0, n_1\}$

If
$$f(n) = O(g(n))$$
 and $h(n) = O(g(n))$, then $f(n)+h(n) = O(g(n))$?

- a) True
- b) False

If f(n) = O(g(n)) and h(n) = O(g(n)), then f(n)*h(n) = O(g(n))?

If f(n) = O(g(n)) and h(n) = O(g(n)), then f(n)*h(n) = O(g(n))?

- a) True
- b) False

Constant factors and runtimes

Suppose we have two algorithms with exact running times of:

Algorithm 1

 $1,000,000 \cdot n$

versus

Algorithm 2

 $2 \cdot n^2$

Is it reasonable to say that runtime of Algorithm 2 is "worse" (slower) than Algorithm 1?

NO for small values of n Algorithm 2 is better YES for large values of n and asymptotic analysis

Common Summations

• Arithmetic series:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

· Geometric series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

- Special case: $|\chi| < 1$:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

· Harmonic series:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

Other important formulas:

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$