## МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ НАЦІОНАЛЬНА МЕТАЛУРГІЙНА АКАДЕМІЯ УКРАЇНИ

Г. Г. ШВАЧИЧ, В. С. КОНОВАЛЕНКОВ, Т. М. ЗАБОРОВА

# ВИЩА МАТЕМАТИКА

Розділ «Подвійні та криволінійні інтеграли»

Затверджено на засіданні Вченої ради академії як навчальний посібник. Протокол № 15 від 27.12.2010

#### УДК 517.3

Швачич Г.Г., Коноваленков В.С., Заборова Т.М. Вища математика. Розділ «Подвійні та криволінійні інтеграли»: Навч. посібник. - Дніпропетровськ: НМетАУ, 2011. — 36 с.

Містить теоретичні відомості про подвійні та криволінійні інтеграли та велику кількість прикладів; розглянуто застосування цих інтегралів до розв'язання прикладних задач.

Крім того, наведені варіанти завдань для індивідуальної роботи.

Призначений для студентів усіх напрямів. Іл. 24. Бібліогр.: 7 найм.

Друкується за авторською редакцією

Відповідальний за випуск Г. Г. Швачич, канд. техн. наук, проф.

Рецензенти: Ю.Н. Головко, канд. фіз.-мат.наук, доц. (НГУ)

Ю.Є. Чернявський, канд. фіз.-мат. наук, доц. (ДНУ)

<sup>©</sup> Національна металургійна академія України, 2011

<sup>©</sup> Швачич Г.Г., Коноваленков В.С., Заборова Т.М., 2011

## **3MICT**

| І. ПОНЯТТЯ ПОДВІЙНОГО ІНТЕГРАЛА4                           | ļ  |
|------------------------------------------------------------|----|
| 2. ПОДВІЙНІЙ ІНТЕГРАЛ У ПРЯМОКУТНИХ ДЕКАРТОВИХ КООРДИНАТАХ | 6  |
| 3. ПОДВІЙНІЙ ІНТЕГРАЛ У ПОЛЯРНІЙ СИСТЕМІ КООРДИНАТ1        | 3  |
| 4. ОБЧИСЛЕННЯ ПЛОЩ ПЛОСКИХ ФІГУР                           | 16 |
| 5. ОБЧИСЛЕННЯ ОБ'ЄМІВ ТІЛ                                  | 17 |
| 6. КРИВОЛІНІЙНИЙ ІНТЕГРАЛ                                  | 19 |
| 7. ОБЧИСЛЕННЯ КРИВОЛІНІЙНОГО ІНТЕГРАЛА                     | 21 |
| 8. ФОРМУЛА ГРІНА                                           | 22 |
| 9. ВИКОРИСТАННЯ КРИВОЛІНІЙНОГО ІНТЕГРАЛА                   | 24 |
| 10. ВАРІАНТИ ІНДИВІДУАЛЬНИХ ЗАВДАНЬ                        | 26 |
| ЛІТЕРАТУРА                                                 | 35 |

## І. ПОНЯТТЯ ПОДВІЙНОГО ІНТЕГРАЛА

Подвійний інтеграл  $\epsilon$  узагальнення визначеного інтеграла на випадок функцій двох змінних. Він знаходить широке використання при розв'язанні прикладних задач у різноманітних галузях.

Нехай у обмеженій, замкнутої області D площини XOY задана неперервна функція z = f(x,y). Поділимо цю область на кінчену кількість елементарних областей  $D_k$  ( $k=1,\ 2,...,n$ ) за допомогою довільних кривих, оберемо у кожній елементарній області довільну точку  $A_k$  ( $x_k, y_k$ ) та обчислимо значення функції у



цій точці  $f(x_k, y_k)$  (рис.1.1). Площу області  $D_k$  позначимо через  $\Delta s_k (k=1,2,...,n)$ .

#### Визначення І.

n - ою інтегральною сумою для функції f(x, y) у області D називається сума вигляду

Рис. 1.1

$$\sum_{k=1}^{n} f(x_{k}, y_{k}) \Delta s_{k} = f(x_{1}, y_{1}) \Delta s_{1} + f(x_{2}, y_{2}) \Delta s_{2} + \dots + f(x_{n}, y_{n}) \Delta s_{n}.$$

Нехай  $d_k$  - діаметр k - ої елементарної області, тобто відстань між двома найбільш віддаленими точками цієї області, а a - найбільший з діаметрів усіх елементарних областей.

Визначення 2. Подвійним інтегралом від функції f(x,y) по області D називається границя n-ої інтегральної суми при прямуванні до нуля найбільшого із діаметрів  $\iint_D f(x,y) d\mathbf{S} = \lim_{d \to 0} \sum_{k=1}^n f(x_k,y_k) \Delta \mathbf{S}_k,$ 

де f(x,y)- підінтегральна функція, D - область інтегрування, ds - елемент площі.

Умови існування цієї границі (подвійного інтеграла) визначаються наступною теоремою.

*ТЕОРЕМА* . Якщо функція неперервна у обмеженої, замкнутої області D, границею якої є кусково — гладка крива, то n-а інтегральна сума функції f(x,y) має границю при прямуванні до нуля найбільшого діаметра елементарної області. Ця границя, тобто  $\iint_D f(x,y) ds$ , не залежить від способу розбиття області D на елементарні області та від вибору в них проміжних точок  $A_k$ .

### Геометричний сенс подвійного інтеграла

Якщо  $f(x, y) \ge 0 \forall (x, y) \in D$ , то подвійний інтеграл від функції f(x, y) по області D дорівнює об'єму тіла, обмеженого зверху поверхнею z = f(x, y), знизу —



кінченою замкнутою областю D площини XOY, а з боків - циліндричною поверхнею із напрямною - границею області D и твірною, паралельній осі OY (рис. 1.2). Таке тіло називають циліндричним або **циліндроїдом**.

Рис. 1.2

## Властивості подвійного інтеграла

Властивості подвійного інтеграла — це узагальнення відповідних властивостей визначного інтеграла. Основні з них — такі:

I. Подвійний інтеграл від алгебраїчної суми двох функцій j(x,y), f(x,y) по області D дорівнює алгебраїчній сумі подвійних інтегралів по області D

$$\iint\limits_{D} [j(x,y) + f(x,y)] ds = \iint\limits_{D} (x,y) ds + \iint\limits_{D} f(x,y) ds.$$

2. Постійний множник можна виносити за знак подвійного інтеграла, тобто,

якщо 
$$C = \text{const}$$
, то  $\iint_D Cj(x, y)ds = C\iint_D j(x, y)ds$ .

3. Якщо область D поділена на дві області  $D_1, D_2$  ( без спільних внутрішніх точок) і функція f(x, y) неперервна в усіх точках області D, то

$$\iint_{D} f(x, y) d\mathbf{S} = \iint_{D_{1}} f(x, y) d\mathbf{S} + \iint_{D_{2}} f(x, y) d\mathbf{S}.$$

## 2. ПОДВІЙНИЙ ІНТЕГРАЛ У ПРЯМОКУТНИХ ДЕКАРТОВЫХ КООРДИНАТАХ

Якщо функція f(x,y) неперервна в області D , то подвійний інтеграл  $\iint_{D} f(x,y) ds$  не залежить від **с**пособу розбиття області D на елементарні області Dk .

Тобто, область D можна розбити прямокутною сіткою, паралельною осям координат. Тоді елемент площі  $ds = dx \cdot dy$  ( Puc. 2.1).



I в цьому випадку будемо мати  $\iint\limits_{D} f(x,y) ds = \iint\limits_{D} f(x,y) dx dy \,.$ 

При обчисленні подвійного інтеграла треба почати з аналізу області інтегрування D.

Рис. 2.1

Відрізняють дві основних області інтегрування.

I. Припустимо, что область D обмежена зліва та справа прямими x=a, x=b(a < b), а знизу та зверху неперервними кривими  $y=j_1(x), y=j_2(x)$ , і нехай  $j_1(x) < j_2(x)$ . Для будь-якого a < x < b пряма, паралельна осі ОҮ, що проходе через точку x, перетинає границю області D тільки у двох точках:  $M_1(x,y)$  («точка входу») и  $M_2(x,y)$  ("точка виходу"). Таку область D ми будемо називати правильною у напрямку осі OY.



Рис. 2.2

Для такої області подвійний інтеграл обчислюється за формулою

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b dx \int\limits_{j_1(x)}^{j_2(x)} f(x,y)dy.$$

Інтеграл у правій частині формули називається повторним або двократним.

Підкреслимо, що у внутрішньому інтегралі  $\int_{j_1(x)}^{j_2(x)} f(x,y) dy$  при інтегруванні по

у границі інтегрування у загальному випадку  $\epsilon$  функції змінної x, тобто тієї змінної, по який обчислюється зовнішній інтеграл и котра при обчисленні внутрішнього інтеграла вважається сталою.

При цьому спочатку шукається внутрішній інтеграл

результат у вигляді функції від x підставляється у якості підінтегральної функції у зовнішній інтеграл  $\int_a^b \overline{f}(x) dx = \overline{F}(x) \Big|_a^b = \overline{F}(b) - \overline{F}(a).$ 

2.Область інтегрування D обмежена знизу та зверху прямими y = c, y = d(c < d), а зліва та справа - неперервними кривими  $x = f_1(x), x = f_2(x), f_1(x) < f_2(x)$ , причому, кожна з них перетинається горизонтальною прямою тільки в одній точці (рис. 2.2,б.). Область D у цьому випадку називається правильною в напрямку осі OX. Подвійний інтеграл у цьому випадку обчислюється за формулою

$$\iint\limits_D f(x,y)dxdy = \int\limits_c^d dy \int\limits_{f_1(y)}^{f_2(y)} f(x,y)dx,$$

причому, спочатку обчислюється внутрішній інтеграл  $\int_{f_1(y)}^{f_2(y)} f(x,y) dx$ , де y вважається постійною величиною.

**Зауваження.** Може статися, що область D обмежена знизу або зверху (зліва або справа) не одною лінією, а декількома.

Нехай, наприклад, 
$$\boldsymbol{j}_1(x) = \begin{cases} q(x), a \le x \le c \\ p(x), c \le x \le b \end{cases}$$



Область D зображена на рис. 2.3. Тоді подвійний інтеграл по області D можна представити у вигляді суми двох інтегралів

Puc. 2.3 
$$\iint_D f(x, y) dxdy = \iint_{D_1} f(x, y) dxdy = \iint_{D_2} f(x, y) dxdy$$

і через повторні інтеграли наступним чином:

$$\iint_{D} f(x, y) dx dy = \int_{a}^{c} dx \int_{q(x)}^{j_{2}(x)} f(x, y) dy + \int_{c}^{b} dx \int_{p(x)}^{j_{2}(x)} f(x, y) dy.$$

*Приклад* І. Обчислити подвійний інтеграл  $\iint (5x^2y - 2y^3) dxdy$ , де область D

– прямокутник:  $2 \le x \le 5$ ,  $1 \le y \le 3$ .

Pозв'язок. Область інтегрування D показано на рис. 2.4. Вона є правильною як у напрямку осі OY, так і у напрямку осі OX. Порядок інтегрування у повторному інтегралі можна обрати будь-який. Але зауважимо, що треба звертати увагу й на вигляд підінтегральної функції, тому що у деяких випадках доцільніше починати інтегрування по тій зі змінних, по якій інтеграл береться простіше.

Також бувають ситуації, коли по одній зі змінних інтеграл взяти не можна, а по іншій він легко береться. Тобто треба шукати оптимальний шлях інтегрування. Нехай зовнішній інтеграл обчислюється по змінний x, а внутрішній по y. Проводимо дві вертикальні лінії, що обмежують область зліва та справа. Область D розташована у смузі від x = 2 до x = 5. Таким чином, у зовнішньому інтегралі по x границі інтегрування змінюються від 2 до 5. Зараз визначимо, яким чином змінюється у. Для цього проведемо будь-яку вертикальну пряму x = const i починаємо рухатись по ній знизу вверх. При цьому у змінюється від прямої y = 1 до прямої y = 3. Таким чином, інтегрування внутрішньому інтегралі ведеться від  $\nu$ =1ДО

$$\iint_{D} (5x^{2}y - 2y^{3}) dxdy = \int_{2}^{5} dx \int_{1}^{3} (5x^{2}y - 2y^{3}) dy.$$



Обчислюємо спочатку внутрішній інтеграл. При обчисленні інтеграла по y, змінна x вважається сталою:

$$\int (5x^2y - 2y^3) dy = (5x^2 \frac{y^2}{2} - \frac{y^4}{2}) \Big|_{y=1}^{y=3} = 20x^2 - 40.$$

Рис. 2.4

Інтегруємо одержану функцію по змінній x,

обчислюємо зовнішній інтеграл:

$$\int_{2}^{5} (20x^{2} - 40)dx = \left(\frac{20x^{3}}{3} - 40x\right) \Big|_{2}^{5} = 660.$$

Таким чином,  $\iint (5x^2y - 2y^3) dx dy = 660.$ 



Приклад 2. Обчислити подвійний інтеграл  $\iint_{\mathbb{R}^2} \frac{x^2}{y^2} dx dy$ , де D – область, обмежена прямими x = 2, y = x і riперболою xy = 1.

Рис. 2.5

*Розв'язок* . Побудуємо область інтегрування (рис.2.5). Точки перетину вказаних ліній знаходимо через сумісне розв'язання рівнянь x = 2, y = x та xy = 1. Область  $D \in \mathbb{C}$  правильна у напрямку осі OY. Тому через крайню ліву й крайню праву точку області проводимо вертикальні прямі. Їх рівняння будуть, відповідно x = 1, x = 2. Зовнішнє інтегрування буде проводитись по x і границі інтегрування будуть: x = 1, x = 2. Границі інтегрування для внутрішнього інтеграла  $\varepsilon$  ординати точки «входу» и точки «виходу» вертикальної прямої x = const.

У даному випадку для точки «входу»  $y = \frac{1}{x}$ , а для точки «виходу» y = x.

Таким чином,

$$J = \iint_{D} \frac{x^{2}}{y^{2}} dx dy = \int_{1}^{2} dx \int_{\frac{1}{2}}^{x} \frac{x^{2}}{y^{2}} dy = \int_{1}^{2} \left[ \left( -\frac{x^{2}}{y} \right) \middle|_{y = \frac{1}{2}}^{y = x} \right] dx = \int_{1}^{2} (x^{3} - x) dx = \left( \frac{x^{4}}{4} - \frac{x^{2}}{2} \right) \middle|_{1}^{2} = \frac{9}{4}.$$

*Приклад* 3. Обчислити подвійний інтеграл  $\iint_D 2y dx dy$ , де область D обмежена параболою  $y = \sqrt{x}$  та прямими y = 0, x + y = 2 (рис.2.6).



*Розв'язок* . Область D  $\epsilon$  правильна як у напрямку осі OX, так і у напрямку осі OY. Однак при проведенні зовнішнього інтегрування по x бачимо, что область D зверху обмежена двома лініями  $y = \sqrt{x}$  та x + y = 2. Ось чому область необхідно поділити на дві частини, і , таким чином, будемо мати два повторних інтеграли.

Рис. 2.6 Але цей спосіб не є раціональним. Тому зовнішнє інтегрування будемо проводити по змінній y. Для цього через нижню та верхню точки області проводимо горизонтальні прямі. Їх рівняння відповідно y = 0, y = 1. Змінна y, таким чином, буде мінятися на відрізку  $0 \le y \le 1$ . Границі інтегрування для внутрішнього інтеграла є абсциси точок «входу», «виходу» довільної горизонтальної прямої з рівнянням y = const. Для визначення абсцис цих точок рівняння ліній,

що обмежують область D зліва та справа, повинні бути розв'язані відносно змінної x:  $x = y^2, x = 2 - y$ 

$$\iint_{D} 2y dx dy = \int_{0}^{1} dy \int_{y^{2}}^{2-y} 2y dx = \int_{0}^{1} \left[ 2yx \Big|_{x=y^{2}}^{x=2-y} \right] dy = \int_{0}^{1} 2y(2-y-y^{2}) dy =$$

$$= 2 \int_{0}^{1} (2y - y^{2} - y^{3}) dy = 2(y^{2} - \frac{y^{3}}{3} - \frac{y^{4}}{4}) \Big|_{0}^{1} = \frac{5}{6}.$$

*Приклад* 4. Обчислити подвійний інтеграл  $\iint_{D} (x+1) dx dy$ .

Область D обмежена лініями  $y = 4x - x^2$ ,  $y = \frac{x}{2}$ , y = 2x - 3 (рис. 2.7).



Рис. 2.7

Pозв'язок. Область D  $\epsilon$  правильна відносно обох осей. Однак, якщо зовнішн $\epsilon$  інтегрування проводити по змінній y, то область необхідно розбити на три частини (справа область обмежена трьома лініями:  $x = 2y, x = \frac{y+3}{2}, x = 2 + \sqrt{y-4}$ ). Якщо же зовнішн $\epsilon$ 

інтегрування вести по x, то область розбивається на дві частини

$$\iint (x+y)dxdy = \int_{0}^{2} dx \int_{x/2}^{4x-x^{2}} (x+1)dy + \int_{2}^{3} dx \int_{2x-3}^{4x-x^{2}} (x+1)dy =$$

$$= \int_{0}^{2} \left[ (x+1)y \Big|_{y=x/2}^{y=4x^{2}x} \right] dx + \int_{2}^{3} \left[ (x+1)y \Big|_{y=2x-3}^{y=4x-x^{2}} \right] dx = \int_{0}^{2} \left( \frac{5}{2}x^{2} + \frac{7}{2}x - x^{3} \right) dx +$$

$$+ \int_{2}^{3} (x^{2} - x^{3} + 5x + 3) dx = \frac{61}{4}.$$

**Зауваження.** Якщо область D не  $\epsilon$  правильною ні у напрямку осі OX, ні у напрямку осі OY (тобто, існують вертикальні й горизонтальні прямі, які, проходячи через внутрішні точки області D, перетинають границю області більш ніж у двох точках), то подвійний інтеграл по цій області ми не можемо

представити у вигляді двократного. Якщо удається розбити неправильну область D на конечну кількість правильних або у напрямку осі OX, або у напрямку осі OY областей, то, обчислюючи подвійні інтеграли по кожній з цих областей за допомогою двократних та додаючи їх, одержимо шуканий інтеграл по області D.

Приклад 5. Змінити порядок інтегрування у повторному інтегралі

$$\int_{0}^{1} dy \int_{\frac{1}{2}y^{2}}^{\sqrt{3-y^{2}}} f(x, y) dx.$$

*Розв'язок*. Встановимо область D , використовуючи дані границі інтегрування. Приймаючи до уваги порядок інтегрування, маємо , що область D знизу обмежена прямою y=0, зверху - прямою y=1, зліва кривою



Рис. 2.8

$$x = \frac{1}{2}y^2$$
 (парабола) і справа кривою

$$x = \sqrt{3 - y^2}$$
 (коло). Побудуємо область D (рис. 2.8).

При зміненні порядку інтегрування, тобто при зовнішньому інтегруванні по x, через крайню ліву та крайню праву точки області проводимо

вертикальні прями. Їх рівняння  $x = 0, x = \sqrt{3}$ . При цьому зауважимо, что верхня границя області складається з ліній : дуги параболи, відрізка прямої й дуги кола. Рівняння цих ліній необхідно розв'язати відносно y:

 $y = \sqrt{2x}(y > 0), y = 1, y = \sqrt{3 - x^2}(y > 0)$ . Подальше область D розбиваємо на три області (абсциси точок розділу знаходимо, розв'язуючи сумісно рівняння відповідних ліній):

$$D_1 \left\{ 0 \le x \le \frac{1}{2} , 0 \le y \le \sqrt{2x} \right\} \qquad D_2 \left\{ \begin{array}{l} \frac{1}{2} \le x \le \sqrt{2} , 0 \le y \le 1 \right\} \\ \\ D_3 \left\{ \sqrt{2} \le x \le \sqrt{3} , 0 \le y \le \sqrt{3-x^2} \right\} \end{array} \right\}.$$

Таким чином, 
$$\int_{0}^{1} dy \int_{\frac{1}{2}y^{2}}^{\sqrt{3-y^{2}}} f(x,y) dx = \int_{0}^{\frac{1}{2}} dx \int_{0}^{\sqrt{2x}} f(x,y) dx + \int_{\frac{1}{2}}^{\sqrt{2}} dx \int_{0}^{1} f(x,y) dx + \int_{\frac{1}{2}}^{\sqrt{2}} dx \int_{0}^{1} f(x,y) dx + \int_{\frac{1}{2}}^{\sqrt{2}} dx \int_{0}^{1} f(x,y) dx.$$

Із наведених вище прикладів можна зробити наступний висновок:

Порядок інтегрування визначається тим, чи є правильною область інтегрування відносно тієї або іншої осі та кількістю повторних інтегралів, які необхідно обчислювати у тому або іншому випадку вибору порядку інтегрування.

## 3. ПОДВІЙНИЙ ІНТЕГРАЛ У ПОЛЯРНІЙ СИСТЕМІ КООРДИНАТ

Нехай у полярній системі координат  $(\rho, \varphi)$  задана така область D : кожен промінь, що проходить через внутрішню точку області, перетинає границю області не більш ніж у двох точках. Припустимо, що область D обмежена кривими  $\rho = \Phi_I(\varphi)$ ,  $\rho = \Phi_2(\varphi)$  та променями  $\varphi = \alpha$  и  $\varphi = \beta$ , причому,  $\Phi_I(\varphi) \leq \Phi_2(\varphi)$  і  $\alpha < \beta$  ( рис. 3.1 а ). Таку область знову будемо називати правильною.



Рис. 3.1

У полярних координатах елемент площі дорівнює  $ds = rdj \cdot dr$  (рис. 3.1 б). Подвійний інтеграл від неперервної функції F(r,j) по правильній області D обчислюється через повторний інтеграл за формулою

$$\iint_{D} F(r,j) r dr dj = \int_{a}^{b} dj \int_{\Phi_{1}(j)}^{\Phi_{2}(j)} F(r,j) r dr.$$

Нехай потрібно обчислити подвійний інтеграл від функції f(x,y) по області D, заданої у прямокутних координатах:  $\iint_D f(x,y) dx dy$ .

Якщо область D - правильна у полярних координатах (r,j), то обчислення даного інтеграла можна звести до обчислення подвійного інтеграла у полярних координатах. Так як  $x = r \cdot \cos j$ ,  $y = r \cdot \sin j$ ,  $f(x,y) = f(r\cos j, r\sin j)$ , то, таким чином,

$$\iint_{D} f(x,y)dxdy = \int_{a}^{b} dj \int_{\Phi_{1}(j)}^{\Phi_{2}(j)} f(r\cos j, r\sin j) rdr.$$

Приклад 5. Обчислити подвійний інтеграл

$$\iint\limits_{D} \frac{dxdy}{\cos^2 \sqrt{x^2 + y^2}},$$
якщо область  $D$  обмежена колом

$$x^2 + y^2 = \frac{p}{16}$$
 (рис. 3.2).



$$\iint_{D} \frac{dxdy}{\cos^{2} \sqrt{x^{2} + y^{2}}} = \iint_{D^{*}} \frac{r \cdot drdj}{\cos^{2} r}.$$



Рис. 3.2 Далі переходимо до повторного інтеграла . Зовнішній інтеграл обчислюється за змінною j , а внутрішній - за r . Знайдемо границі інтегрування. Промінь, що співпадає із полярною віссю r , починаємо повертати проти часової стрілки. Для точок області кут нахилу j змінюється від j=0 до j=2p. Далі фіксуємо будь-яке проміжне значення кута і рухаємось по променю (j=const). Для точок променя j=const полярна координата r змінюється від r=0 до  $r=\frac{p}{4}$  ( остання точка будь-якого

2 2 4 x

Рис. 3.3

променя розташована на границі області - колі радіуса  $R = \frac{p}{4}$ ). Таким чином , у внутрішньому інтегралі границі інтегрування змінюються від 0 до  $\frac{p}{4}$  ( у даному прикладі вони визначаються сталими числами).

Спочатку обчислюється внутрішній інтеграл за змінною r, при цьому змінна j розглядається як стала величина.

$$J = \iint_{D} \frac{r dr dj}{\cos^{2} r} = \int_{0}^{2p} dj \int_{0}^{\frac{p}{4}} \frac{r dr}{\cos^{2} r} = \begin{cases} U = r & \Rightarrow dU = dr \\ dV = \frac{dr}{\cos^{2} r} & \Rightarrow V = tgr \end{cases} = \int_{0}^{2p} \left\{ \left[ r t g r + \ln \left| \cos r \right| \right] \right\} \frac{r}{r} = 0$$

$$= \int_{0}^{2p} \left[ \frac{p}{4} + \ln \frac{\sqrt{2}}{2} \right] dj = \left[ \frac{p}{4} + \ln \frac{\sqrt{2}}{2} \right] \cdot j \begin{vmatrix} j & = 2p \\ j & = 0 \end{vmatrix} = \frac{p^{2}}{2} + 2p \ln \frac{\sqrt{2}}{2}.$$

*Приклад* 6. Обчислити подвійний інтеграл  $\iint_{D} \sqrt{x^2 + y^2} dx dy$ , де область D

обмежена колами  $x^2 + y^2 = 4x$ ,  $x^2 + y^2 = 8x$  та прямими y = x і y = 2x.



Розв'язок. Побудуємо область інтегрування D (рис. 3.4). Визначимо границі інтегрування. Запишемо рівняння ліній, що оточують область D, у полярних координатах:  $r^2 \cdot \cos^2 j + r^2 \cdot \sin^2 j = 4r \cdot \cos j$ ,  $r^2 \cdot \cos^2 j + r^2 \cdot \sin^2 j = 8r \cdot \cos j$  і  $r \cdot \sin j = r \cdot \cos j$ ,  $r \cdot \sin j = 2r \cdot \cos j$ .

Рис. 3.4 Таким чином, границя області D визначається рівняннями  $r=4\cdot\cos j$  ,  $r=8\cdot\cos j$  ,  $tgj=1\Rightarrow j=\frac{p}{4}$  ,  $tgj=2\Rightarrow j=arctg2$  ,

а підінтегральна функція має вигляд:  $\sqrt{x^2 + y^2} = \sqrt{r^2 \cos^2 j + r^2 \sin^2 j} = r$ .

Одержуємо 
$$\iint \sqrt{x^2 + y^2} dx dy = \int_{p_4}^{arctg2} \int_{4\cos j}^{8\cos j} r^2 dr = \int_{p_4}^{arctg2} \left[ \frac{r^3}{3} \middle|_{4\cos j}^{8\cos j} \right] dj =$$

$$=\frac{448}{3}\int_{p_{4}}^{arctg^{2}}\cos^{3}j\,dj=\frac{448}{3}\int_{p_{4}}^{arctg^{2}}(1-\sin^{2}j)\cos j\,dj=\frac{448}{3}\left[\sin j-\frac{\sin^{3}j}{3}\right]_{p_{4}}^{arctg^{2}}=\frac{448}{3}\left(\frac{22}{15\sqrt{5}}-\frac{5\sqrt{2}}{12}\right)$$

## 4. ОБЧИСЛЕННЯ ПЛОЩ ПЛОСКИХ ФИГУР

Площа S плоскої області D на площині XOV обчислюється за формулами

$$S = \iint_D dx dy$$
 <sub>или</sub>  $S = \iint_D r dr dj$ .

*Приклад* 7. Знайти площу області D, обмеженої лініями  $y^2 = -x + 9$ , x + y = 3.

Розв'язок. Розглянемо область інтегрування D (рис. 4.1).

Точками перетину даних кривих будуть точки (0,3) и (5,-2). Дійсно,

$$\begin{cases} y^2 = -x + 9 \\ y = -x + 3 \end{cases} \Rightarrow (-x + 3)^2 = -x + 9 \Rightarrow x^2 - 5x = 0$$

$$\Rightarrow x(x-5) = 0 \Rightarrow x_1 = 0, x_2 = 5 \Rightarrow y_1 = 3, y_2 = -2.$$



Рис. 4.1

Область D  $\epsilon$  правильною у напрямку осі OX і границі інтегрування зовнішнього інтеграла будуть змінюватись від y=-2 до y=3. x при цьому буде мінятися «від прямої x=3-y » до «параболи  $x=9-y^2$ ». Це і  $\epsilon$  нижня та верхня границі для внутрішнього інтеграла відповідно

$$S = \iint_{D} dx dy = \int_{-2}^{3} dy \int_{3-y}^{9-y^{2}} dx = \int_{-2}^{3} \left[ x \middle|_{3-y}^{9-y^{2}} \right] dy = \int_{-2}^{3} \left[ 9 - y^{2} - 3 + y \right] dy = \left( 6y + \frac{y^{2}}{2} - \frac{y^{3}}{3} \right) \Big|_{-2}^{3} = \frac{125}{6} (\kappa \epsilon. o \delta.)$$

Приклад 8. Обчислити площу області, обмеженої прямими y = 5-2x, y = x+2, x = 7y-10.



Рис. 4.2

Розв'язок. Область інтегрування - трикутник (рис. 4.2). Його вершинами  $\epsilon$  точки (1,3),(3,-1), (-4,-2) (шукаються шляхом сумісного розв'язання відповідних пар рівнянь прямих). Область D  $\epsilon$ 

правильна у обох напрямках. Її границя задана різними аналітичними виразами при будь-якому виборі порядку інтегрування. Тому розіб'ємо її на дві частини прямою x=1 ( у точці с абсцисою x=1 має місце зміна рівняння лінії, що обмежує область зверху). У цьому випадку

$$S = \iint_{D} dx dy = \int_{-4}^{1} dy \int_{\frac{x-10}{7}}^{x+2} dx + \int_{1}^{3} dx \int_{\frac{x-10}{7}}^{5-2x} dy = \int_{-4}^{1} (x+2-\frac{x-10}{7}) dx + \int_{1}^{3} \left(5-2x-\frac{x-10}{7}\right) dx =$$

$$= \frac{1}{7} \cdot \left(3x^{2} + 24x\right) \Big|_{-4}^{1} + \frac{1}{7} \cdot \left(45x - \frac{15x^{2}}{2}\right) \Big|_{1}^{3} = \frac{57}{7} (\kappa 6.00.).$$



Рис. 4.3

Приклад 9. Знайти площу фігури, обмеженої лініями  $x^2 + y^2 = 2x$ ,  $x^2 + y^2 = 4x$ , y = x, y = 0. Розв'язок. Рівняння кіл перетворюємо до канонічного вигляду  $(x-1)^2 + y^2 = 1^2$ ,  $(x-1)^2 + y^2 = 2^2$ . Побудуємо область інтегрування D (рис. 4.3). Переходячи до полярних координат, одержуємо рівняння ліній, що оточують область D:

 $r = 2\cos j$ ,  $r = 4\cos j$ , j = 0,  $j = \frac{p}{4}$ . Таким чином,

$$S = \iint_{D} r dr dj = \int_{0}^{p/4} dj \int_{2\cos j}^{4\cos j} r dr = \int_{0}^{p/4} \left[ \frac{r^{2}}{2} \Big|_{2\cos j}^{4\cos j} \right] dj = 6 \int_{0}^{p/4} \cos^{2} j \, dj = 3 \int_{0}^{p/4} (1 + \cos 2j) dj = (3j + \frac{3}{2}\sin 2j) \Big|_{0}^{p/4} = \frac{3}{2} (1 + \frac{p}{2})$$
 (кв. од.).

Практична рекомендація. Перехід до полярної системи координат необхідно проводити у тому випадку, якщо область D представляє собою круг (або частину круга), кругове кільце (або частину кругового кільця) та (або) у підінтегральної функції присутній вираз  $x^2 + y^2$ .

#### 5. ОБЧИСЛЕННЯ ОБ'ЄМІВ ТІЛ

Як було показано вище, об'єм V циліндроїда, обмеженого поверхнею

 $z = f(x, y), (f(x, y) \ge 0)$ , дорівнює подвійному інтегралу від функції f(x, y) по області D:  $V = \iint_D f(x, y) ds$ , а в прямокутних координатах  $V = \iint_D f(x, y) dx dy$ .

У полярних координатах  $V = \iint_{\Omega} f(r\cos j, r\sin j) r dr dj$ .

*Приклад* 10. Обчислити об'єм тіла, обмеженого поверхнями  $z = 4 - x^2, x + y = 2, y = 2x, z = 0, y = 0.$ 

*Розв'язок*. Дане тіло - циліндроїд (рис. 5.1a), обмежений зверху поверхнею  $z = 4 - x^2$ , тому  $V = \iint_{D} (4 - x^2) dx dy$ .

На площині XOY тіло вирізує трикутник, обмежений прямими x+y=2, y=2x, y=0. Його вершинами є точки (0,0), (2,0) и (2/3,4/3) (рис. 5.1 б). Область D –

правильна у напрямку осі ОХ.





Рис. 5.1

$$V = \iint_{D} (4 - x^{2}) dx dy =$$

$$= \int_{0}^{4/3} dy \int_{\frac{y}{2}}^{2-y} (4 - x^{2}) dx = \int_{0}^{4/3} \left[ (4x - \frac{x^{3}}{3}) \Big|_{\frac{y}{2}}^{2-y} \right] dy = \int_{0}^{4/3} \left[ \frac{16}{3} 2y - 2y^{2} + \frac{3}{8} y^{3} \right] dy =$$

$$= \left( \frac{16}{3} y - y^{2} - \frac{2y^{3}}{3} + \frac{3y^{4}}{32} \right) \left| \frac{4}{3} \right|_{0}^{2-y} (\kappa y \delta . o \delta .).$$

Приклад 11. Обчислити об'єм тіла, обмеженого площинами

$$x = 0, y = 0, x = 4, y = 4$$
 і параболоїдом  $z = x^2 + y^2 + 1$  (рис. 5.2 а).

*Розв'язок*. Зверху тіло обмежено параболоїдом, тому  $V = \iint_{D} (x^2 + y^2 + 1) dx dy$ .

Область D – квадрат:  $0 \le x \le 4, 0 \le y \le 4$  (рис. 5.2 б).





Рис. 5.2

$$V = \iint_{D} (x^{2} + y^{2} + 1) dx dy = \int_{0}^{4} dx \int_{0}^{4} (x^{2} + y^{2} + 1) dy = \int_{0}^{4} \left[ (xy^{2} + \frac{y^{3}}{3} + y) \Big|_{0}^{4} \right] dx =$$

$$= \int_{0}^{4} \left[ 4x^{2} + \frac{64}{3} + 4 \right] dx = \left( \frac{4}{3}x^{3} + \frac{64}{3}x + 4x \right) \Big|_{0}^{4} = \frac{560}{3} (\kappa \varepsilon. o \delta.).$$

## 6. КРИВОЛІНІЙНИЙ ІНТЕГРАЛ



Нехай т. M(x,y) переміщується вздовж деякої плоскої кривої L від т. P до т. N. До точки M прикладена сила, що змінюється при русі:

$$\overrightarrow{F} = \overrightarrow{F}(x, y) = P(x, y) \cdot \overrightarrow{i} + Q(x, y) \cdot \overrightarrow{j}$$
, де  $P(x, y)$ ,

Рис. 6.1 Q(x, y) - проекції сили  $\stackrel{\rightarrow}{F}$  на осі координат OX, OY.

Розбиваючи дугу PN на п часток і з'єднуючи точки розділу відрізками прямих, одержуємо вписану ламану лінію. Робота сили  $\overrightarrow{F}$  на і - ому відрізку ламаної визначається як скалярний добуток векторів (рис.6.1):

$$\Delta A_i = \overset{\rightarrow}{F}_i \cdot \overset{\rightarrow}{\Delta s}_i = P(x_i, y_i) \cdot \Delta x_i + Q(x_i, y_i) \cdot \Delta y_i,$$

де  $\vec{\Delta s_i} = \{\Delta x_i; \Delta y_i\}, P(x_i, y_i), Q(x_i, y_i)$  – значення проекцій сили  $\vec{F}$  у точці  $M_i$ .

Додаючи елементарні роботи  $\Delta A_i$ , одержуємо роботу сили  $\vec{F}$  на переміщенні

вздовж ламаної: 
$$A_n = \sum_{i=1}^n \Delta A_i = \sum_{i=1}^n \overrightarrow{F} \cdot \overrightarrow{\Delta s}_i = \sum_{i=1}^n (P(x_i, y_i) \cdot \Delta x_i + Q(x_i, y_i) \cdot \Delta y_i)$$
, або

n- у інтегральну суму. Переходячи до границі у останньому виразі при  $\Delta s_i \to 0$  (при цьому, очевидно,  $\Delta x_i, \Delta y_i \to 0$ ), одержимо роботу сили  $\vec{F}$  по кривій від т.  $\vec{P}$  до т. N (якщо ця границя існує)

$$A = \lim_{\substack{\Delta x_{i_i} \to 0 \\ \Delta y_i \to 0}} \sum_{i=1}^n \Delta A_i = \lim_{\substack{\Delta x_i \to 0 \\ \Delta y_i \to 0}} \sum_{i=1}^n \overrightarrow{F} \cdot \overrightarrow{\Delta s}_i = \lim_{\substack{\Delta x_i \to 0 \\ \Delta y_i \to 0}} \sum_{i=1}^n (P(x_i, y_i) \cdot \Delta x_i + Q(x_i, y_i) \cdot \Delta y_i).$$

Границя у правій частині називається **криволінійним інтегралом** і позначається:

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{(P)}^{(N)} P(x,y)dx + Q(x,y)dy = \lim_{\Delta x_i \to 0} \sum_{i=1}^{n} (P(x_i, y_i) \cdot \Delta x_i + Q(x_i, y_i) \cdot \Delta y_i).$$

#### Основні властивості криволінійного інтеграла

1. 
$$\int_{L} P(x, y) dx + Q(x, y) dy = \int_{(P)}^{(N)} P(x, y) dx + Q(x, y) dy = \int_{L} P(x, y) dx + \int_{L} Q(x, y) dy$$

2. Якщо криву  $\boldsymbol{L}$  розбити на частини  $L_{\scriptscriptstyle 1}$  и  $L_{\scriptscriptstyle 2}$  ,то

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{L} P(x,y)dx + Q(x,y)dy + \int_{L_2} P(x,y)dx + Q(x,y)dy.$$

Ця властивість справедлива для будь-якої кінцевої кількості додатків.

3. При зміненні напрямку інтегрування криволінійний інтеграл змінює знак

$$\int_{I} P(x, y)dx + Q(x, y)dy = -\int_{-I} P(x, y)dx + Q(x, y)dy$$

Криволінійний інтеграл визначається підінтегральною функцією, формою кривої інтегрування та вказаним напрямком.

**Зауваження.** Визначення криволінійного інтеграла залишається у силі й у випадку, коли крива  $\boldsymbol{L}$  замкнута, тобто її початкова и кінцева точки

співпадають. У цьому випадку використовується позначення  $\oint_L P(x,y) dx + Q(x,y) dy$  і обов'язково вказується напрямок обходу по замкнутій кривій.

## 7. ОБЧИСЛЕННЯ КРИВОЛІНІЙНОГО ІНТЕГРАЛА

Обчислення криволінійного інтеграла у залежності від способу завдання дуги кривої виконується наступним чином:

1. 
$$L: \begin{cases} x = x(t) \\ y = y(t) \end{cases}, a \le t \le b$$

$$\int_{L} P(x, y) dx + Q(x, y) dy = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt.$$

$$2.L: y = y(x), a \le x \le b$$

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} \left[ P(x,y(x)) + Q(x,y(x)) \right] y'(x)dx$$

3. 
$$L: x = x(y), c \le y \le d$$

$$\int_{I} P(x, y) dx + Q(x, y) dy = \int_{C}^{d} [P(x(y), y) + Q(x(y), y)] x'(y) dy.$$

Із наведених формул видно, що обчислення криволінійного інтеграла зводиться до обчислення визначеного інтеграла шляхом заміни змінних.

Приклад 12. Обчислити криволінійний інтеграл

$$\int_{L} (xy-1)dx + x^2ydy$$
, де  $L$  - дуга  $AB$  кривої:  $2x + y = 2$ ,  $A(1,0),B(0,2)$ .

*Розв'язок*. Виразимо y із рівняння y = 2 - 2x, знайдемо похідну y' = -2. Приймемо до уваги, що інтегрування виконується від точки  $\boldsymbol{A}$  до точки  $\boldsymbol{B}$ .



Рис. 7.1

$$\int_{L} (xy-1)dx + x^2 y dy = \int_{1}^{0} \left[ x(2-2x) - 1 + x^2 (2-2x)(-2) \right] dx =$$

$$= \int_{1}^{0} (4x^{3} - 6x^{2} + 2x - 1)dx = (x^{4} - 2x^{3} + x^{2} - x) \Big|_{1}^{0} = -(1 - 2 + 1 - 1) = 1.$$

Приклад 13. Обчислити криволінійний інтеграл  $\oint_{-L} 2x dx - (x+2y) dy$ 



вздовж периметра трикутника АВС:

$$A(-1,0),B(0,2),C(2,0).$$

*Розв'язок*. Запишемо рівняння сторін трикутника, використовуючи рівняння прямої, що проходить

через дві точки: 
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$
.

AB: 
$$\frac{x-(-1)}{0-(-1)} = \frac{y-0}{2-0} \Rightarrow y = 2x+2, \quad y' = 2.$$

*BC*: 
$$y = -x + 2$$
,  $y' = -1$  CA:  $y = 0$ ,  $y' = 0$ .

$$\oint_{-L} 2x dx - (x+2y) dy = \int_{AB} 2x dx - (x+2y) dy + \int_{BC} 2x dx - (x+2y) dx + \int_{BC} 2x dx + \int_{BC} 2x dx + \int_{BC} 2x dx - (x+2y) dx + \int_{BC} 2x dx +$$

$$\int_{CA} 2x dx - (x+2y) dy = \int_{1}^{0} \left[ 2x - (x+2\cdot(2x+2)) \cdot 2 \right] dx + CA$$

$$+ \int_{0}^{2} \left[2x - (x + 2 \cdot (-x + 1)) \cdot (-1)\right] dx + \int_{2}^{-1} \left[2x - (x + 2 \cdot 0) \cdot 0\right] dx = \int_{-1}^{0} \left[-8x - 8\right] dx + \int_{0}^{1} \left[-8x - 8\right] dx + \int_{0}^$$

$$\int_{0}^{2} \left[ x+2 \right] dx + \int_{2}^{-1} 2x dx = \left( -4x^{2} - 8x \right) \Big|_{0}^{1} + \left( \frac{x^{2}}{2} + 2x \right) \Big|_{0}^{2} + x^{2} \Big|_{2}^{1} = 1.$$

#### 8. ФОРМУЛА ГРІНА

При розв'язанні практичних задач виникає необхідність переходу від криволінійного інтеграла до подвійного інтеграла й навпаки. Формула Гріна встановлює зв'язок між цими інтегралами

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{L} P dx + Q dy,$$

де L-  $\varepsilon$  границя області D.

Формула Гріна залишається справедливою для будь-якої замкненої області D, яку можна розбити на кінчену кількість правильних замкнених областей.

Приклад 14. Обчислити 
$$\oint_L (x-y)dx + (x+y)dy$$
, де  $L$ - коло  $x^2 + y^2 = R^2$ .

$$Po36$$
'язок.  $P(x, y) = x - y \Rightarrow \frac{\partial P}{\partial y} = -1; \quad Q(x, y) = x + y \Rightarrow \frac{\partial Q}{\partial x} = 1.$ 

Використовуємо формулу Гріна і, оскільки область D – коло, переходимо до полярної системи координат:

$$\oint_{L} (x-y)dx + (x+y)dy = \iint_{D} (1-(-1))dxdy = 2\iint_{D} dxdy = 2\iint_{D^{*}} rdrdj = 2\iint_{D} rdrdj = 2\iint_{D} rdr = 2\iint_{D} rdr = 2\iint_{D} rdr = 2\iint_{D} rdr = 2\iint_{D} rdrdj = 2\iint_{D}$$

Криволінійний інтеграл не залежить від шляху інтегрування, якщо підінтегральний вираз є повним диференціалом деякої функції U(x,y), тобто dU(x,y) = P(x,y)dx + Q(x,y)dy.

Необхідна та достатня умова того, що підінтегральний вираз  $\epsilon$  повним

диференціалом деякої функції: 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \quad \forall (x,y) \in D$$
.

У випадку, якщо dU(x, y) = P(x, y)dx + Q(x, y)dy,

1. 
$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{(x_{1},y_{1})}^{(x_{2},y_{2})} P(x,y)dx + Q(x,y)dy = U(x_{2},y_{2}) - U(x_{1},y_{1})$$
 - узагальнена

формула Ньютона-Лейбніца.

2. Криволінійний інтеграл по замкненому контуру дорівнює нулю.

Приклад 15. Обчислити 
$$\int_{(1,2)}^{(3,4)} y dx + x dy$$
.

*Розв'язок*. Оскільки підінтегральний вираз  $\epsilon$  повний диференціал

$$ydx + xdy = d(xy)$$
, to 
$$\int_{(1,2)}^{(3,4)} ydx + xdy = \int_{(1,2)}^{(3,4)} d(xy) = (xy) \Big|_{(1,2)}^{(3,4)} = 12-2=10.$$

#### Находження функції за її повним диференціалом

Якщо 
$$dU(x,y) = P(x,y)dx + (x,y)dy$$
 , тобто  $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$  , тоді

$$U(x,y) = \int_{M_0N} P(x,y)dx + Q(x,y)dy + C = \int_{x_0}^{x} P(x,y_0)dx + \int_{y_0}^{y} Q(x,y)dy + C$$
 (при русі по

ламаній  $M_{_0}N_{_0}N$  - шлях **1**) або



$$U(x,y) = \int_{M_0N} P(x,y) dx + Q(x,y) dy + C = \int_{y_0}^y Q(x_0,y) dy + \int_{x_0}^x P(x,y) dx + C$$
 (при русі по ламаній  $M_0P_0N - \text{шлях 2}$ ) (рис. 8.1).   
 $M_0(x_0,y_0) = \int_{-\Phi \text{HKC}} P(x,y) dx + Q(x,y) dy + C = \int_{y_0}^y Q(x_0,y) dy + \int_{x_0}^x P(x,y) dx + C$  (при русі по ламаній  $M_0P_0N - \text{шлях 2}$ ) (рис. 8.1).

доцільно взяти точку O(0,0).

Рис. 8.1 Приклад 16. Перевірити, що вираз  $(2x-3y^2+1)dx+(2-6xy)dy$  є повний диференціал, і знайти функцію.

Po36'язок.  $\frac{\partial P}{\partial y} = -6y$ ;  $\frac{\partial Q}{\partial x} = -6y \Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ . Таким чином, даний вираз є повним диференціалом деякої функції. У якості  $M_0$  візьмемо O(0,0).

$$U(x,y) = \int_{ON} P(x,y)dx + Q(x,y)dy + C = \int_{0}^{x} P(x,0)dx + \int_{0}^{y} Q(x,y)dy + C_{=}$$

$$= \int_{0}^{x} (2x - 3 \cdot 0^{2} + 1)dx + \int_{0}^{y} (2 - 6xy)dy = (x^{2} + x) \Big|_{0}^{x} + (2y - 6x\frac{y^{2}}{2}) \Big|_{0}^{y} = x^{2} + x + 2y - 3xy^{2} + C.$$

Таким чином,  $U(x,y)=x^2+x+2y-3xy^2+C$ 

## 9. ВИКОРИСТАННЯ КРИВОЛІНІЙНОГО ІНТЕГРАЛА

1. Обчислення площі плоскої фігури

$$S = \frac{1}{2} \cdot \oint_{L} x dy - y dx.$$

Приклад 17. Обчислити площу фігури, обмеженої еліпсом:

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \quad 0 \le t \le 2p \quad \text{(puc. 9.1)}.$$

*Розв'язок*. Приймаючи до уваги симетрію фігури, знайдемо площу її чверті. t – кут, що змінюється у перший чверті від 0 до p/2.



Рис. 9.1

$$S = \frac{1}{2} \cdot \oint_{L} x dy - y dx = \frac{1}{2} \int_{0}^{\frac{p}{2}} (a \cos t \cdot b \cos t - b \sin t \cdot (-a \sin t)) dt =$$

$$= \frac{1}{2}ab \cdot \int_{0}^{\frac{p}{2}} (\cos^{2} t + \sin^{2} t)dt = \frac{ab}{2} \cdot \int_{0}^{\frac{p}{2}} dt = \frac{ab}{2} \cdot (t \mid \frac{p}{2}) = \frac{pab}{4}.$$

Площа всієї фігури будет дорівнювати S = pab кв. од.

2. Механічна робота A змінної сили  $\overrightarrow{F}\{P(x,y);Q(x,y)\}$ 

при переміщенні матеріальної точки вздовж лінії L визначається наступним

чином: 
$$A = \int_{L} P(x, y) dx + Q(x, y) dy.$$

*Приклад* 18. Поле утворено силою  $\overrightarrow{F}\{x-y;x\}$ . Побудувати силу  $\overrightarrow{F}$  у кожній вершині квадрата  $x=\pm a, y=\pm a$  і знайти роботу A одиниці маси по контуру квадрата.

Розв'язок.

$$A = \int_{L} P(x, y) dx + Q(x, y) dy = \int_{AB} P(x, y) dx + Q(x, y) dy + \int_{BC} P(x, y) dx + Q(x, y) dy + \int_{BC} P(x, y) dx + Q(x, y) dy + \int_{BC} P(x, y) dx + Q(x, y) dy + \int_{AB} P(x, y) dx + Q(x, y) dy = \int_{a}^{-a} (x - a) dx + \int_{a}^{-a} (-a) dy + \int_{AB} P(x, y) dx + Q(x, y) dy = \int_{a}^{-a} (x - a) dx + \int_{a}^{-a} (-a) dy + \int_{AB} P(x, y) dx + Q(x, y) dy = \int_{a}^{-a} (x - a) dx + \int_{a}^{-a} (-a) dx + \int_{a$$



Рис. 9.2

## 10. ВАРІАНТИ ІНДИВІДУАЛЬНИХ ЗАВДАНЬ

## І. Обчислити подвійний інтеграл:

$$\iint_{D} (x^3 + y^3) dx dy$$

$$D: y = \frac{1}{2}x, y = x, x = 2.$$

2. 
$$\iint_{D} \frac{y}{x} dx dy$$

$$D: y = \sqrt{x}, y = \frac{x}{3}, x = 1.$$

3. 
$$\iint_{D} \frac{x}{y} dx dy$$

$$D: y = x, y = \frac{x}{3}, x = 1.$$

4. 
$$\iint_{D} (6xy^2 - 12x^2y) dxdy$$

$$D: y = 2, y = 3, x = 0, x = 1.$$

$$5. \iint\limits_{D} (y+4) dx dy$$

$$D:(y-1)^2=x, x=1.$$

6. 
$$\iint_{D} (y + x^2) dx dy$$

$$D: y = 2x, y = \frac{x}{2}, xy = 2(x \ge 0).$$

7. 
$$\iint_D x \cdot \sin(y + x^2) dx dy$$

$$D: y = 0, y = \frac{p}{2}, x = 0, x = \sqrt{p}.$$

8. 
$$\iint_{D} \frac{dxdy}{x+y}$$

$$D: y = 0, x = 0, x + y = 2.$$

9. 
$$\iint_D xydxdy$$

$$D: x \ge 0, y \ge 0, x^2 + y^2 = 1.$$

$$\mathbf{10.} \iint_{D} \frac{\ln x}{1 + y^2} dx dy$$

 $D: 1 \le x \le 2; 0 \le y \le 1.$ 

11. 
$$\iint_D xy^2 \cdot e^{xy} dx dy$$

 $D: 0 \le x \le 1; 0 \le y \le 2.$ 

12. 
$$\iint_{D} (y-x)dxdy$$

D: y = |x|, y = 1, y = 2.

13. 
$$\iint_{\mathbb{R}} dxdy$$

D: y = x, y = 3 - x, y = 0, y = 1.

14. 
$$\iint_{D} (y+x)dxdy$$

 $D: y = x^2, x = 0, y = 1, y = 2.$ 

15. 
$$\iint_{D} \frac{x}{1+y+x^2} dx dy$$

 $D: 0 \le x \le 1; 0 \le y \le 1.$ 

16. 
$$\iint_D x^2 y \cdot \cos(yx) dx dy$$

 $D: 0 \le x \le \frac{p}{2}; 0 \le y \le 4.$ 

17. 
$$\iint_{D} \frac{y}{x} dx dy$$

D: y = x, y = 2x, y = 3 - x.

18. 
$$\iint_{D} xydxdy$$

 $D: y = x^2, y^2 = x.$ 

$$19. \iint_{D} \frac{y}{1+x^2} dx dy$$

 $D: y = 1 - x; x^2 + y^2 = 1.$ 

$$\mathbf{20.} \iint_{D} x^2 y^2 dx dy$$

D: xy = 1, x = 2, y = 1, y = 2.

21. 
$$\iint_{D} \frac{dxdy}{x^2y^2}$$

D: xy = 1, x = 2, y = 1, y = 2.

$$22. \iint\limits_{D} (x-y^3) dx dy$$

 $D: \Delta ABC: A(0,0), B(1,1), C(2,0)$ .

$$23. \iint_{D} \frac{y^3}{x^2} dx dy$$

$$D: y = \sqrt{x}, y = \frac{x}{4}, x = 4.$$

$$\mathbf{24.} \iint\limits_{D} (y+x) dx dy$$

$$25. \iint_{D} 3^{x+y} dx dy$$

# $D: y = x^2, y = \frac{1}{x^2}, x = 2.$

$$D: y = x, y = 2x, x = 1.$$

## **II.** Змінити порядок інтегрування:

1. 
$$\int_{1}^{2} dy \int_{\sqrt{y-1}}^{2/y} f(x, y) dx$$

3. 
$$\int_{0}^{2} dx \int_{\frac{x}{2}}^{x} f(x, y) dy$$

5. 
$$\int_{1}^{2} dy \int_{y^{2}}^{4} f(x, y) dx$$

7. 
$$\int_{0}^{1} dx \int_{2-x^{2}}^{2+x} f(x, y) dy$$

9. 
$$\int_{-1}^{2} dy \int_{y+1}^{5-y} f(x, y) dx$$

11. 
$$\int_{0}^{1} dx \int_{1-x}^{x^{2}+1} f(x, y) dy$$

13. 
$$\int_{0}^{1} dy \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) dx$$

15. 
$$\int_{0}^{1} dy \int_{y^{2}}^{\sqrt{y}} f(x, y) dx$$

17. 
$$\int_{0}^{5} dx \int_{5-x}^{\sqrt{25-x^2}} f(x, y) dy$$

2. 
$$\int_{0}^{2} dy \int_{y}^{4-y} f(x, y) dx$$

4. 
$$\int_{-1}^{4} dx \int_{-x-1}^{1+x} f(x, y) dy$$

6. 
$$\int_{0}^{4} dx \int_{\sqrt{4-(x-2)^{2}}}^{4x-x^{2}} f(x,y) dy$$

8. 
$$\int_{0}^{p/2} dx \int_{0}^{\cos x} f(x, y) dy$$

10. 
$$\int_{1}^{e} dx \int_{0}^{\ln x} f(x, y) dy$$

12. 
$$\int_{-1}^{4} dx \int_{\sqrt{9-x^2}}^{x+3} f(x,y) dy$$

14. 
$$\int_{0}^{\sqrt{3}} dy \int_{\arcsin \frac{y}{2}}^{arctgy} f(x, y) dx$$

16. 
$$\int_{1}^{4} dy \int_{y}^{\frac{y-16}{3}} f(x, y) dx$$

18. 
$$\int_{0}^{1} dx \int_{x}^{3/(x^{2}+1)} f(x,y)dy$$

19. 
$$\int_{0}^{1} dy \int_{\sqrt{y-1}}^{\sqrt{1-y^{2}}} f(x, y) dx$$

21. 
$$\int_{-1}^{1} dx \int_{-x}^{x+2} f(x, y) dy$$

23. 
$$\int_{0}^{p} dx \int_{0}^{\sin x} f(x, y) dy$$

**25.** 
$$\int_{0}^{3} dx \int_{\frac{9}{x}}^{10-x} f(x, y) dy$$

20. 
$$\int_{-2}^{1} dy \int_{y^2}^{2-y} f(x, y) dx$$

22. 
$$\int_{0}^{1} dx \int_{x^{3}-1}^{1-x} f(x, y) dy$$

**24.** 
$$\int_{-4}^{4} dy \int_{\sqrt[3]{y-1}}^{4-y} f(x,y) dy$$

# III. Обчислити подвійний інтеграл за допомогою переходу до полярної системи координат:

$$1. \iint \ln(x^2 + y^2) dx dy,$$

D - кільце: 
$$x^2 + y^2 = 1$$
,  $x^2 + y^2 = e^2$ .

2. 
$$\iint (1 - \frac{y^2}{x^2}) dx dy$$
,

D - коло: 
$$x^2 + y^2 \le p^2$$
.

$$3. \iint_{D} \sin \sqrt{x^2 + y^2} dx dy,$$

D - кільце: 
$$x^2 + y^2 = p^2$$
,  $x^2 + y^2 = 4p^2$ .

$$4. \iint_{D} \frac{\cos\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dxdy,$$

D - кільце: 
$$x^2 + y^2 = \frac{p^2}{4}$$
,  $x^2 + y^2 = p^2$ .

5. 
$$\iint_{D} \sin \sqrt{x^2 + y^2} \, dx \, dy$$

D - кільце: 
$$x^2 + y^2 = \frac{a^2}{4}$$
,  $x^2 + y^2 = a^2$ .

6. 
$$\iint_{D} arctg \sqrt{x^2 + y^2} dxdy,$$

D - кільце: 
$$x^2 + y^2 = 1$$
,  $x^2 + y^2 = 3$ .

7. 
$$\iint_{\mathcal{D}} e^{x^2+y^2} dxdy$$

D: 
$$x^2 + y^2 \le 16, (x, y \ge 0)$$
.

8. 
$$\iint_{D} tg^{2}(x^{2}+y^{2})dxdy$$
,

D - кільце: 
$$x^2 + y^2 = \frac{p^2}{16}$$
,  $x^2 + y^2 = \frac{p^2}{9}$ .

$$9. \iint_{D} \frac{\arcsin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dx dy,$$

D: 
$$x^2 + y^2 \le 1, (x, y \ge 0)$$
.

$$10. \iint_{D} \sqrt{x^2 + y^2 + 1} dx dy ,$$

D-кільце: 
$$x^2 + y^2 = 1$$
,  $x^2 + y^2 = 4$ .

11. 
$$\iint_{D} \frac{dxdy}{\sqrt{x^2 + y^2 + 1}},$$

D - кільце: 
$$x^2 + y^2 = 1$$
,  $x^2 + y^2 = 16$ .

12. 
$$\iint_{D} \sqrt{4-x^2-y^2} dx dy$$
,

D: 
$$x^2 + y^2 \le 4$$
,  $(x, y \ge 0)$ .

$$13. \iint\limits_{D} \cos \sqrt{x^2 + y^2} dx dy,$$

D - кільце: 
$$x^2 + y^2 = \frac{p^2}{4}$$
,  $x^2 + y^2 = p^2$ .

14. 
$$\iint_D 3^{x^2+y^2} dxdy$$
,

D: 
$$x^2 + y^2 \le 1, (x, y \ge 0)$$
.

$$15. \iint_D \frac{dxdy}{x^2 + y^2 - 4},$$

D-кільце: 
$$x^2 + y^2 = 25$$
,  $x^2 + y^2 = 49$ .

$$16. \iint_{D} \frac{tg\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dxdy,$$

D - кільце: 
$$x^2 + y^2 = \frac{p^2}{9}$$
,  $x^2 + y^2 = p^2$ .

17. 
$$\iint_{D} \frac{dxdy}{(x^2 + y^2 + 9)^{\frac{3}{2}}},$$

D: 
$$x^2 + y^2 \le 16, (x, y \ge 0)$$
.

18. 
$$\iint_{D} (x^2 + y^2)^{\frac{7}{3}} dx dy,$$

D - кільце: 
$$x^2 + y^2 = 4$$
,  $x^2 + y^2 = 9$ .

19. 
$$\iint_{D} \frac{dxdy}{\sqrt{(x^2+y^2)(x^2+y^2-1)}},$$

D - кільце: 
$$x^2 + y^2 = 1$$
,  $x^2 + y^2 = 4$ .

$$20. \iint_D \frac{dxdy}{\sqrt{x^2 + y^2}},$$

D - кільце: 
$$x^2 + y^2 = a^2$$
,  $x^2 + y^2 = 4a^2$ .

21. 
$$\iint_{D} \frac{dxdy}{e^{x^2+y^2}+1},$$

D: 
$$x^2 + y^2 \le 1$$
,  $(x, y \ge 0)$ .

22. 
$$\iint_{D} \frac{dxdy}{\sqrt{x^2 + y^2} \cdot (1 + \cos\sqrt{x^2 + y^2})},$$

D: 
$$x^2 + y^2 \le \frac{p}{4}$$
,  $(x, y \ge 0)$ .

23. 
$$\iint_{D} \frac{\ln \sqrt{x^2 + y^2}}{x^2 + y^2} dx dy,$$

D - кільце: 
$$x^2 + y^2 = 1$$
,  $x^2 + y^2 = e^2$ .

24. 
$$\iint_{D} \frac{\sqrt{x^2 + y^2 + 9} \cdot dx dy}{\sqrt{x^2 + y^2}},$$

D: 
$$x^2 + y^2 \le 16$$
,  $(x, y \ge 0)$ .

25. 
$$\iint_{D} \sqrt{(4-x^2-y^2)(x^2+y^2)} \cdot dxdy , \quad D: \ x^2+y^2 \le 4, (x,y \ge 0).$$

### IV. Обчислити площу плоскої фігури, обмеженої лініями:

1. 
$$2x - y = 0$$
,  $2x - y - 7 = 0$ ,  $x - 4y + 7 = 0$ ,  $x - 4y + 14 = 0$ .

2. 
$$x^2 + y^2 = 9$$
,  $y = \frac{1}{3}(x-3)^2$ .

3. 
$$y = -2$$
,  $y = x + 2$ ,  $y = 2$ ,  $y^2 = x$ .

4. 
$$y^2 + x = 0$$
,  $y = -2$ ,  $y = 2 - x$ ,  $y = 2$ .

5. 
$$x^2 + y^2 = 25$$
,  $y = 0$ ,  $4x + 3y - 25 = 0$ .

6. 
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
,  $y = x$ ,  $y = 0$ ,  $(x \ge 0, y \ge 0)$ .

7. 
$$y-x^2=0$$
,  $y=(x+1)^2$ ,  $y=2$ .

8. 
$$x^2 + y^2 = 4$$
,  $y = 2 - x$ ,  $y = 1$ .

9. 
$$y = 1 - x^2$$
,  $y = x - 1$ .

10. 
$$x^2 + y^2 = 25$$
,  $4x - 3y + 25 = 0$ .

11. 
$$y = 1 - x^2$$
,  $y + x^2 = 0$ ,  $x = 2$ ,  $x = -2$ .

12. 
$$x + y + 5 = 0$$
,  $x - y - 1 = 0$ ,  $x + 3y + 7 = 0$ .

13 
$$y = 1 - x$$
,  $y = x - 1$ ,  $y = x + 1$ ,  $y = -x - 1$ .

14. 
$$x + y - 2 = 0$$
,  $x + y - 8 = 0$ ,  $x - 2y + 4 = 0$ ,  $x - 2y - 2 = 0$ .

15. 
$$\frac{x^2}{4} + \frac{y^2}{1} = 1$$
,  $y = 1 - \frac{x}{2}$ .

16. 
$$y = 2^x$$
,  $y = \frac{x}{2}$ ,  $x = 2$ .

17. 
$$x^2 + y^2 = 1$$
,  $y = 1 - x$ ,  $y = \frac{1}{2}$ .

18. 
$$y = \sin x$$
,  $y = \frac{1}{2}$ .

19. 
$$y = 4 - x^2$$
,  $y = x - 2$ .

20. 
$$y = \sqrt{x+1}$$
,  $y = 0$ ,  $y = \frac{x^2}{2} - 5x + 25$ .

21. 
$$y^2 = x$$
,  $xy = 1$ ,  $x = 4$ ,  $y = 0$ .

22. 
$$y = x^2$$
,  $y = x^2 + 3$ .

23. Паралелограм: A(1,-1), B(2,0), C(4,1), D(3,0).

24. 
$$y = \ln x$$
,  $y = 1 - x^2$ ,  $y = 1$ .

25. 
$$xy = 1$$
,  $xy = 8$ ,  $y^2 = x$ ,  $y^2 = 8x$ .

## V. Обчислити об'єми тіл, обмежених поверхнями:

1. 
$$z = 0$$
,  $z = y^2$ ,  $2x + 3y = 6$ ,  $x = 0$ .

2. 
$$z = 0$$
,  $z = x^2$ ,  $3x + 2y = 6$ ,  $y = 0$ .

3. 
$$z = 0$$
,  $x = 0$ ,  $y = x$ ,  $z = 1 - y\sqrt{y}$ .

4. 
$$z = 0$$
,  $z = 5x$ .

5. 
$$z = 0$$
,  $z = x^2 + y^2$ ,  $y = x^2$ ,  $y = 1$ .

6. 
$$z = 0$$
,  $4x^2 + 9y^2 = 36$ ,  $z = x$ ,  $(x \ge 0)$ .

7. 
$$z = 0$$
,  $x^2 + y^2 = 16$ ,  $z = y^2$ .

8. 
$$z = 0$$
,  $z = 2x^2 + 3y^2$ ,  $x + y = 1$ ,  $x = 0$ ,  $y = 0$ .

9. 
$$z = 0$$
,  $z = \sqrt{y}$ ,  $y = x$ ,  $x = 1$ .

10. 
$$z = 0$$
,  $z = y^2$ ,  $x = 1$ ,  $y = 2x$ .

11. 
$$z = 0$$
,  $y = x^2$ ,  $z = 2$ ,  $y = 2$ .

12. 
$$z = 0$$
,  $z = x$ ,  $y = 0$ ,  $y = 4$ ,  $x = \sqrt{25 - y^2}$ .

13. 
$$z = 0$$
,  $x^2 + y^2 = 1$ ,  $z = 2 - x - y$ .

14. 
$$z = 0$$
,  $z = y^2$ ,  $x = 0$ ,  $x + y = 2$ .

15. 
$$z = 0$$
,  $z = x$ ,  $y = 0$ ,  $y = 3$ ,  $x = \sqrt{9 - y^2}$ ,  $x = \sqrt{25 - y^2}$ .

16. 
$$z = 0$$
,  $z = 2 - x$ ,  $x = 1$ ,  $x = y^2$ .

17. 
$$z = 0$$
,  $z = 2 - y$ ,  $y = \frac{x^2}{2}$ .

18. 
$$z = 0$$
,  $z = \frac{y^2}{2}$ ,  $2x + 3y = 12$ ,  $x = 0$ .

19. 
$$z = 0$$
,  $z = 9 - x^2$ ,  $y = 1$ ,  $y = 7$ .

20. 
$$z = 0$$
,  $z = 2x^2 + y^2$ ,  $x = 0$ ,  $y = 0$ ,  $x + y = 2$ .

21. 
$$z = 0$$
,  $z = y^2 + 1$ ,  $x = 0$ ,  $y = 0$ ,  $x + y = 1$ .

22. 
$$z = 0$$
,  $z = x^2$ ,  $y = 0$ ,  $x + y = 2$ .

23. 
$$z = 0$$
,  $z = 1 - x$ ,  $x = y^2$ .

24. 
$$z > 0$$
,  $x^2 + y^2 = 4y$ ,  $z^2 = 4 - y$ .

25. 
$$z = 0$$
,  $z = 1 + x^2$ ,  $x^2 + y^2 = 1$ .

VI. Обчислити криволінійний інтеграл (1-9); знайти функцію по її повному диференціалу (10 - 13); обчислити криволінійний інтеграл за допомогою формули Гріна (14-20); обчислити площу плоскої фігури за

# допомогою криволінійного інтеграла (21-23); визначити роботу силового поля $\overset{1}{F}$ при переміщенні матеріальної точки вздовж дуги кривої (24,25):

1. 
$$\int_{L} (x^2 - y^2) dx$$
, L - дуга параболи  $y = x^2$  від т. O(0,0) до т. A(2,4).

2. 
$$\int_L (x^2 - y^2) dy$$
, L - дуга параболи  $y = x^2$  від т. O(0,0) до т. A(2,4).

3. 
$$\int_{L} (x-y)dx + (x+y)dy$$
, L- відрізок прямої, що з'єднує точки A(2,3),B(3,5).

4. 
$$\int_{I} (x-y)dx + (x+y)dy$$
, L- дуга параболи  $y = x^{2}$  (0 ≤ x ≤ 2).

5. 
$$\int_{L} (x-y)dx + (x+y)dy$$
, L- дуга параболи  $x = y^2$  від т.С(0,0) до т.D(4,2).

6. 
$$\int_{L} (2y - 6x^3y) dx + (2x - 9x^2y^2) dy$$
, L - кубічна парабола  $y = \frac{1}{4}x^3$  від т. А(0,0)

до т. В(2, 2).

7. 
$$\oint_L \frac{xdy - ydx}{x^2 + y^2}, \quad L - \text{коло } x = a \cos t, y = a \sin t (0 \le t \le 2p).$$

8. 
$$\int_{t}^{t} (x+y)dx + xydy$$
 від т. A(2,0) до т. B(0,1) по дузі еліпса  $x = 2\cos t$ ,  $y = \sin t$ .

9. 
$$\int_{L} (2-y)dx + (y-1)dy$$
, L - перша арка циклоїди  $\begin{cases} x = t - \sin t, \\ y = 1 - \cos t \end{cases}$ 

від т. O(0,0) до т. A(2p,0).

10. 
$$dU = (3x^2y^2 + 2x)dx + (2x^3y + 3y^2)dy$$
.

11. 
$$dU = (2x-3y^2+1)dx + (2-6xy)dy$$
.

12. 
$$dU = (1 - \sin 2x)dy + (3 + 2y\cos 2x)dy$$
.

13. 
$$dU = [e^{x+y} + \cos(x-y)]dx + [e^{x+y} - \cos(x-y) + 2]dy$$
.

14. 
$$\oint_L (x+y)dx + x^2 dy$$
, L - контур, утворений лініями  $y = x^2$  и  $y = 1$ .

15. 
$$\oint_L (6xy + 5y)dx + (3x^2 + 5x)dy$$
, L-  $y = 0$ ,  $x = 3$ ,  $y = \sqrt{x}$ .

16. 
$$\oint_L y^2 dx + (x+y)^2 dy$$
, L-  $\triangle ABC$ : A(a,0), B(a, a), C(0,a).

17. 
$$\oint_L \frac{dx}{y} - \frac{dy}{x}$$
, L-  $\triangle ABC$ : A(1,1), B(2,1),C(2,2).

18. 
$$\oint_L -x^2 y dx + xy^2 dy$$
, L – коло:  $x^2 + y^2 = a^2$ .

19. 
$$\oint_{L} \frac{y}{x} dx + 2 \ln x dy$$
, L-  $\triangle ABC$ : A(1,0), B(2,0),C(1,2).

20. 
$$\oint_L \frac{1}{x} arctg \frac{y}{x} dx + \frac{2}{y} arctg \frac{x}{y} dy$$
, L – коло:  $x^2 + y^2 = 1$ ,  $x^2 + y^2 = 4$  (y>0),

відрізки прямих  $y = x, y = \sqrt{3}x(y > 0)$ .

21. L: 
$$\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$$
 (астроїда). 22.  $\begin{cases} x = 2 \cos t \\ y = \sin t \end{cases}$ ,  $x \ge 1$  (еліптичний сегмент).

23. 
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}, 0 \le t \le 2p \text{ (кардіоїда)}.$$

24. 
$$\vec{F} = y \cdot \vec{i} - x \cdot \vec{j}$$
, L:  $\frac{x^2}{4} + \frac{y^2}{9} = 1$ , від т. A(2, 0) до т.B(-2, 0).

25. 
$$F = -x \cdot \vec{i} - y \cdot \vec{j}$$
, L: 
$$\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}, 0 \le t \le 2p.$$

#### ЛІТЕРАТУРА

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисление. М.: Наука, 1978. Т.2.
- 2. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М.: Главная редакция физико-математической литературы,1985.
- 3. Щипачев В.С. Высшая математика. М.: Высшая школа,1985.
- 4. Каплан И.А. Практические занятия по высшей математике, часть IV .- Харьков: Издательство Харьковского государственного университета, 1966.
- 5. Данко П. Е., Попов А. Г. Высшая математика в примерах и задачах: Учебное пособие. Ч. 2. М.: Высшая школа, 1967.
- 6. Берман Г. Н. Сборник задач по курсу математического анализа для втузов. М.: Наука, 1972.
- 7. Демидович Б. П. Сборник задач и упражнений по математическому анализу: Учебное пособие для вузов. 10-е издание. М.: Наука,1990.

#### Навчальне видання

Швачич Геннадій Григорович Коноваленков Володимир Степанович Заборова Тамара Михайлівна

## ВИЩА МАТЕМАТИКА

Розділ «Подвійні та криволінійні інтеграли»

Навчальний посібник

Тем. план 2011, поз. 293

Підписано до друку 13.05.2011. Формат 60х84 1/16. Папір друк. Друк плоский. Облік.-вид. арк. 2,11. Умов. друк. арк. 2,09. Тираж 100 пр. Замовлення №

Національна металургійна академія України 49600, м. Дніпропетровськ-5, пр. Гагаріна, 4

Редакційно-видавничий відділ НМетАУ