AQAlg: Advanced Quantum Algorithms

2022 - 2023

Exercises 1: QFT, phase estimation and Shor's algorithm

Lecturer: Simon Apers

Teaching assistant: Samuel Bouaziz-Ermann¹

Exercise 1 (Controlled unitary). Recall the controlled unitary gate:

where $k = k_1 \dots k_n$ is an *n*-bit integer. Expand this gate into more elementary gates of the form

$$|k_s\rangle$$
 $|k_s\rangle$ $|\psi\rangle$ $U^{2^s}|\psi\rangle$

for $k_s \in \{0, 1\}$ and $s \in \{0, 1, \dots, n-1\}$.

Exercise 2 (Hadamard transform). A variation on the quantum Fourier transform is the Hadamard transform H_N for $N=2^n$. It is defined by $H_N=H^{\otimes n}$, which corresponds to the circuit

- What is $H_N |0\rangle^n$ equal to?
- What is $H_N |k\rangle = H_N |k_1 \dots k_n\rangle$ equal to? Use the inner product $j \cdot k = \sum_{\ell} j_{\ell} k_{\ell}$.

Exercise 3 (Bernstein-Vazirani algorithm). Consider a string $x \in \{0,1\}^N$, for $N=2^n$, that is determined by some unknown $a \in \{0,1\}^n$ such that $x_i = (i \cdot a) \pmod{2}$. We can access the string through a "phase oracle" $O_x |i\rangle = (-1)^{x_i} |i\rangle$. What is the output of the following circuit?

¹samuel.bouaziz-ermann@lip6.fr ²Hint: show that $H |k_{\ell}\rangle = \frac{1}{\sqrt{2}} \sum_{j_{\ell}=0}^{1} (-1)^{j_{\ell}k_{\ell}} |j_{\ell}\rangle$.

Exercise 4 (Factoring reduction (optional)). Here we walk through Shor's reduction from factoring to period finding. Recall that we are given an n-bit integer N such that $2^{n-1} \leq N < 2^n$, and we wish to find a (nontrivial) factor of N. Without loss of generality, we can assume that N is odd and not a prime power. Why?³

Now pick $x \in \{2, ..., N-1\}$ uniformly at random. If gcd(N, x) > 1 then we can run Euclid's algorithm to find a factor. Hence, assume that N and x are coprime, and consider the series

$$x^0 = 1 \pmod{N}, \qquad x \pmod{N}, \qquad x^2 \pmod{N}, \qquad \dots$$

Since N and x are coprime, there does not exist s such that $x^s = 0 \pmod{N}$. Show that this implies that the series must have a period $r \leq N$ for which $x^r = 1 \pmod{N}$. It is precisely this factor that is calculated using quantum period finding.

One can show (not in this exercise!) that, with probability at least 1/2 over the choice of x, the period r will be even and both $x^{r/2} + 1$ and $x^{r/2} - 1$ are not multiples of N. Use $x^r = 1 \pmod{N}$ to show that this implies that both $x^{r/2} + 1$ and $x^{r/2} - 1$ must share a (nontrivial) factor with N. Once we computed r, we can then find these factors by computing $\gcd(x^{r/2} \pm 1, N)$.

³Hint: if $N = p^k$ for some prime $p \ge 2$ then necessarily $k \le n$.