Introdução à Robótica

http://www.coep.ufrj.br/gscar

1/46

Cinemática Inversa

Fernando Lizarralde PEE-COPPE/UFRJ

Rio de Janeiro, 21 de julho de 2018

$$T_{be}(\theta)$$
 ou $x = k(\theta)$

Ela define uma relação entre os ângulos das juntas θ e a configuração do efetuador no sistema de coordenadas da base, $\{p_{be}, R_{be}\}$.

A <u>cinemática inversa</u> determina os ângulos das juntas θ a partir da configuração do efetuador $\{p_{be}, R_{be}\}$, e tem as seguintes características:

- 1. Ela é geralmente não linear, e difícil de representar em forma fechada
- 2. podem existir múltiplas soluções, ou
- 3. podem existir infinitas soluções \Longrightarrow manipuladores redundantes (n>6), ou
- 4. pode não existir solução

2/46

Para ter uma idéia da dificuldade consideremos um manipulador de n juntas:

$$T_{be}(\theta) = \begin{bmatrix} R_{be}(\theta) & p_{be}(\theta) \\ 0 & 1 \end{bmatrix} \qquad \theta \in \mathbb{R}^n$$

tendo 9 equações em R+3 equações em p, portanto 12 EQUAÇÕES com n INCÓGNITAS.

Outros possíveis métodos para resolver a cinemática inversa:

- 1. Desacoplamento cinemático
- 2. Algoritmo Iterativo
 - 3. Decomposição em sub-problemas (Paden-Kahan)

3/46

Enfoque Geométrico

Considere o seguinte manipulador planar 2R:

Pelo teorema do triangulo tem-se

$$r^{2} + s^{2} = a_{2}^{2} + a_{3}^{2} - 2a_{2}a_{3}\cos(\pi - \theta_{3})$$
$$r^{2} + s^{2} = a_{2}^{2} + a_{3}^{2} + 2a_{2}a_{3}\cos(\theta_{3})$$

4/46

Então

$$\cos(\theta_3)=\frac{r^2+s^2-a_2^2-a_3^2}{2a_2a_3}=D$$
 se $|D|\leq 1$ então θ_3 tem 2 soluções:

 $\theta_3 = \pm \arccos(D)$

Para calcular θ_2 tem-se

$$\theta_2 = \underbrace{atan2(r,s)}_{\beta} - \underbrace{atan2(a_2 + a_3\cos(\theta_3), a_3\sin(\theta_3))}_{\alpha}$$

Desacoplamento Cinemático

Calcular a cinemática inversa em forma fechada requer intuição algébrica e geométrica.

Em muitos robôs industriais é possível desacoplar a posição da orientação do efetuador, por exemplo, no caso do manipulador ter um punho esférico.

Consideremos por exemplo um manipulador de 6 DOF sendo que os eixos das 3 últimas juntas interceptam num ponto

Pode ser observado que qualquer movimento destas 3 juntas não alteram a posição do ponto \mathcal{O} .

6/46

Então considerando a posição e orientação do efetuador como

$$R_{be}(\theta) = R_e \qquad p_{be}(\theta) = p_e$$

o problema é determinar o vetor de juntas θ . Considerando a junta esférica temos o seguinte

7/46

Então dado R_e e p_e podemos calcular p_w que é função de $\theta_1, \theta_2, \theta_3$, i.e., $p_w(\theta_1, \theta_2, \theta_3)$ tendo 3 equações com 3 incógnitas.

Uma vez calculada os ângulos das 3 primeiras juntas, podemos calcular $R_{b3}(\theta_1,\theta_2,\theta_3)$ e como temos que

$$R_{be} = R_{b3} \ R_{3e} \Rightarrow R_{3e} = R_{b3}^T \ R_{be}$$

Com $R_{3e}(\theta_4,\theta_5,\theta_6)$ definindo mais equações que incógnitas.

Manipulador Elbow: Inversa da posição

Agora considere o manipulador Elbow da figura

8/46

Dado p_w o objetivo é calcular $\theta_1, \theta_2, \theta_3$, onde

$$p_w = \left[egin{array}{c} p_x \ p_y \ p_z \end{array}
ight]$$

Da projeção no plano x-y

 $\theta_1 = atan2(p_y, p_x)$

desde que $p_x \neq 0$ e $p_y \neq 0$. A posição $p_x = p_y = 0$ caracteriza uma singularidade.

Singularidade (top of the head):

Uma segunda solução válida é

$$\theta_1 = atan2(p_y, p_x) + \pi$$

10/46

Uma vez calculado θ_1 podemos calcular θ_2, θ_3 . Então observando o plano definido pelo elo 2 e 3,

onde $s^2 = p_z^2$ e $r^2 = p_x^2 + p_y^2$.

$$c^2 = r^2 + s^2 = a_2^2 + a_3^2 - 2a_2a_3\cos(\pi - \theta_3)$$

11/46

$$r^2 + s^2 - a_2^2$$

Como $\cos(\pi - \theta_3) = -\cos(\theta_3)$ tem-se

$$\cos(\theta_3) = \frac{r^2 + s^2 - a_2^2 - a_3^2}{2a_2a_3} = D$$

com $D \in [-1,1]$ para existir solução. Senão a posição p_e está fora do espaço de trabalho.

Então considerando $\sin(\theta_3) = \pm \sqrt{1 - D^2}$:

$$\theta_3 = atan2(\pm\sqrt{1-D^2}, D)$$

tendo 2 soluções: cotovelo para acima, cotovelo para abaixo. Similarmente

$$\theta_2 = \underbrace{atan2(s,r)}_{lpha} - \underbrace{atan2(a_3s_3,a_2 + a_3c_3)}_{eta}$$

onde
$$lpha = atan2\left(\sqrt{p_x^2+p_y^2},p_z
ight)$$

As 4 soluções dependem da configuração do cotovelo.

13/46

Punho Esférico: Inversa da orientação

Uma vez calculadas $\theta_1, \theta_2, \theta_3$ pode-se calcular $R_{3e} = R_{b3}^T R_{be}$. Devido às 3 últimas juntas estarem na configuração dos ângulos de Euler (ZYZ), temos o trabalho simplificado dado que a estrutura de R_{3e} é:

$$R_{3e} = \begin{bmatrix} \cdot & \cdot & c_4 s_5 \\ \cdot & \cdot & s_4 s_5 \\ -s_5 c_6 & s_5 s_6 & c_5 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Então temos:

$$heta_5 = atan2(\sqrt{r_{13}^2 + r_{23}^2}, r_{33}) \\ heta_4 = atan2(r_{23}/s_5, r_{13}/s_5) \\ heta_6 = atan2(-r_{32}/s_5, r_{31}/s_5)$$

Existindo um singularidade para $s_5=0$ que implica $\theta_5=0,\pm\pi,\cdots$

Exercício: Cinemática inversa de um manipulador RRP.

14/46

Enfoque Iterativo

Considere a posição e orientação do efetuador representada no espaço operacional x:

$$x = \left[\begin{array}{c} p \\ \phi \end{array} \right]$$

onde p_e é a posição e ϕ_e é uma representação da orientação do efetuador. Considerando que a cinemática direta do manipulador é dada por:

$$x = k(\theta)$$
 ; $k(\cdot) : \mathbb{R}^n \mapsto \mathbb{R}^m$

onde $\theta \in \mathbb{R}^n$, tem-se que a cinemática inversa é definida pela determinação da função inversa de k():

$$\theta = k^{-1}(p_e, \phi_e)$$

O cálculo da solução da cinemática inversa pode ser realizado utilizando um algoritmo recursivo.

15/46

Para isto, considere uma representação mínima ϕ da orientação e n=m, então defininido a função de erro $e = x - k(\theta(\tau))$: $2V = e^{T}e > 0$

onde
$$\tau$$
 é uma variável de iteração. Então derivando V tem-se

$$\frac{dV}{d\tau} = e^T \frac{de}{d\tau} = -e^T \frac{\partial k(\theta)}{\partial \theta} \frac{d\theta}{d\tau}$$

Equivalentemente

$$\frac{dV}{d\tau} = - e^T J(\theta) \frac{d\theta}{d\tau}$$

onde $J(\theta) = \frac{\partial k(\theta)}{\partial a}$

$$\frac{\partial k(\theta)}{\partial \theta}$$

Então com o objetivo de garantir a convergência do algoritmo podemos escolher:

$$\frac{d\theta}{d\tau} = \alpha \ J(\theta)^{-1} \ e \quad \Longrightarrow \quad \frac{dV}{d\tau} = -\alpha \ e^T \ e < 0$$

Então dado que $\frac{dV}{d\tau} < 0$ e V > 0 tem-se que $V \to 0$ com $\tau \to \infty$.

Isto implica que o erro $e(\tau)$ também tende para zero, i.e.

$$\|e\| \to 0 \quad \text{ e } \quad k(\theta) \to x \qquad \text{ para } \tau \to \infty$$

Diagrama Bloco do Algoritmo

Ou ainda podemos escolher

$$\frac{d\theta}{d\tau} = \alpha \ J^T(\theta) \ [x-k(\theta)] \to \ {\rm gradiente\ conjugado}$$
 com $\theta(0)=\theta_0.$

Versão Discreta: subtituir $s \mapsto (1 - z^{-1})$.

17/46

▼ Voltar

```
% Inverse Kinematic: plannar 2R arm
mdl_planar2
%desired position
xd=[0.366; 1.366]
%joint angle initial guess
q0=[0;30]*pi/180
qk=q0;
Q=[qk];
for i=1:20
    %Forward Kinematic
    %Tk=p2.fkine(qk); xk=Tk(1:2,4)
    xk = [a1*cos(qk(1))+a2*cos(qk(1)+qk(2)); a1*sin(qk(1))+a2*sin(qk(1)+qk(2))]
    %Jacobian Calculation
    %jk=p2.jacob0(qk); jk=jk(1:2,1:2)
    jk=[-a1*sin(qk(1))-a2*sin(qk(1)+qk(2)) -a2*sin(qk(1)+qk(2));
        a1*cos(qk(1))+ a2*cos(qk(1)+qk(2)) a2*cos(qk(1)+qk(2))]
    % update law
    qk=qk+0.4*inv(jk)*(xd - xk);
    Q=[Q qk];
end
p2.plot(Q', 'delay', 1, 'trail', '*')
                                                                                     Voltar
                                                                                     Fechar
```

Resumo de cinemática inversa

- 1. Enfoque Analítico: força bruta e tedioso (6 DOF: solução de polinômio de ordem 16 MLS seção 3.4; casos especiais, e.g. punho esférico: solução analítica).
- 2. Enfoque Geométrico: elegante e utiliza a geometria do manipulador, mas não sempre funciona (aplicável a manipuladores com punho esférico).
- 3. Enfoque Iterativo: simples de implementar, mas o tempo de computação depende da configuração. A técnica não funciona bem perto de singularidades.

19/46

Decomposição em subproblemas

Conhecido como método de Paden-Kahan.

Para certos manipuladores, a solução da cinemática inversa pode ser calculada através da solução de uma serie de subproblemas.

Subproblema 0

Dado \vec{u} e \vec{v} , satisfazendo $\|\vec{u}\| = \|\vec{v}\|$, e o vetor unitário \vec{w} perpendicular a \vec{u} e \vec{v} .

Calcule θ tal que

$$\exp(\theta \vec{w} \times) \vec{u} = \vec{v}$$

Sempre existe uma solução única.

20/46

Subproblema 1

Dado \vec{u} e \vec{v} , satisfazendo $\|\vec{u}\| = \|\vec{v}\|$, e o vetor unitário \vec{w} tal que

$$\vec{w} \cdot \vec{u} = \vec{w} \cdot \vec{v}$$

Calcule θ tal que

$$\exp(\theta \vec{w} \times) \ \vec{u} = \vec{v}$$

Sempre existe uma solução única.

Observação: no caso de \vec{u} e \vec{w} serem colineares, existem infinitas soluções.

21/40

Subproblema 2

Dado \vec{u} e \vec{v} , satisfazendo $\|\vec{u}\| = \|\vec{v}\|$, e os vetores unitários \vec{w}_1 e \vec{w}_2 .

$$\exp(\theta_1 \vec{w_1} \times) \exp(\theta_2 \vec{w_2} \times) \vec{u} = \vec{v}$$

Pode ter 0, 1 ou 2 soluções.

22/46

Voltar

Subproblema 3

Dado \vec{u} e \vec{v} , o vetor unitário \vec{w} , e a constante positiva δ .

$$\|\vec{v} - \exp(\theta \vec{w} \times) \ \vec{u}\| = \delta$$

Pode ter 0, 1 ou 2 soluções.

23/46

Exemplos de cálculos da cinemática inversa

Manipulador Elbow

Considere somente a posição do efetuador de um manipulador Elbow (3DOF).

Cinemática Inversa: dado p_{04} calcular $(\theta_1, \theta_2, \theta_3)$.

Escolhendo $\vec{h}_1, \vec{h}_2, \vec{h}_3$ como os eixos de rotação tem-se que

$$R_{01} = e^{\theta_1 \hat{h}_1}, \quad R_{12} = e^{\theta_2 \hat{h}_2}, \quad R_{23} = e^{\theta_3 \hat{h}_3}$$

24/46

Notando que

Por outro lado tem-se

 $(\vec{p}_{24})_0 = (\vec{p}_{04})_0 - (\vec{p}_{02})_0$

 $(\vec{p}_{24})_0 = (\vec{p}_{23})_0 + (\vec{p}_{34})_0 = R_{01}R_{12} [(\vec{p}_{23})_2 + R_{23} (\vec{p}_{34})_3]$

Comparando as duas equações anteriores tem-se

 $(\vec{p}_{24})_0 = (\vec{p}_{04})_0 - (\vec{p}_{02})_0 = R_{01}R_{12} [(\vec{p}_{23})_2 + R_{23} (\vec{p}_{34})_3]$

Calculando a norma de ambos lados.

Deixando em evidência θ_3 tem-se então

 $\|(\vec{p}_{04})_0 - (\vec{p}_{02})_0\| = \|R_{01}R_{12}[(\vec{p}_{23})_2 + R_{23}(\vec{p}_{34})_3]\| = \|(\vec{p}_{23})_2 + R_{23}(\vec{p}_{34})_3\|$

Voltar Fechar

 $\|(\vec{p}_{04})_0 - (\vec{p}_{02})_0\| = \|(\vec{p}_{23})_2 + R_{23}(\theta_3) (\vec{p}_{34})_3\|$ Sendo que $\|(\vec{p}_{04})_0 - (\vec{p}_{02})_0\|$, $(\vec{p}_{23})_2$, $(\vec{p}_{34})_3$ são conhecidos, pode-se utilizar o Subproblema 3 para calcular θ_3 (0,1 ou 2 soluções).

Uma vez calculado θ_3 tem-se

$$\underbrace{(\vec{p}_{23})_0 + (\vec{p}_{34})_0}_{\text{conhecido}} = R_{01}(\theta_1) \ R_{12}(\theta_2) \ \underbrace{[(\vec{p}_{23})_2 + R_{23} \ (\vec{p}_{34})_3]}_{\text{conhecido}}$$

 $\{\theta_1, \theta_2\}$ podem ser calculados pelo Subproblema 2 (0,1 ou 2 soluções).

```
% Elbow arm example
% parameters
10=1; 11=1; 12=1;
h1=[0;0;1]; h2=[1;0;0]; h3=h2;
h4=[0:0:1]:
H=[h1 \ h2 \ h3 \ h4];
p01=zeros(3,1); p12=[0;0;10]; p23=[0;11;0]; p34=[0;12;0];
P=[p01 p12 p23 p34];
type=[0 0 0 0]; % 3R robot
n=4:
```

disp('Forward Kinematic: Elbow arm');
theta=input(['enter theta vector (',num2str(n),'x1): ']);
[R04,p04] = fwdkin(theta, type, H, P, n)
showarm(theta, type, H, P, n, 1, 0.3, 3);

26/46


```
disp('Inverse Kinematic ...')
disp('Elbow arm (3R)..')
disp('3DOF Task, only p04 is given')
p24 = p04 - p01 - p12;
% solve for theta3
% norm(v - exp(w x theta) u) = d
% input: w, u, v as R^3 column vectors, delta: scalar
% output: theta (2x1 vector, 2 solutions)
v = p23;
d = norm(p24);
w = h3; u = -p34;
theta3 = subproblem3(w, u, v, d);
% solve for theta2
% \exp(w1 \times theta1) * \exp(w2 \times theta2) u = v
% input: w1, w2, u,v as R^3 column vectors
% output: theta1 and theta2 as 2x1 columns corresponding to 2 solutions
w1 = h1; w2 = h2;
v = p24;
u = p23 + expm(chat(h3)*theta3(1)) * p34;
[theta1a,theta2a] = subproblem2(w1, w2, u, v);
u = p23 + expm(chat(h3)*theta3(2)) * p34;
[theta1b,theta2b] = subproblem2(w1, w2, u, v);
```

```
thetasol = zeros(3.4):
thetasol(1:3,1) = [theta1a(1) theta2a(1) theta3(1)];
thetasol(1:3,2) = [theta1a(2) theta2a(2) theta3(1)]';
thetasol(1:3,3) = [theta1b(1) theta2b(1) theta3(2)];
thetasol(1:3,4) = [theta1b(2) theta2b(2) theta3(2)];
disp('theta Solutions:');
disp(thetasol);
% plot the configurations
for i=1:4
 theta=[thetasol(:,i); 0];
  [R,p] = fwdkin(theta, type, H, P, n);
  showarm(theta, type, H, P, n, 2, 0.3, 3);
end
```


Manipulador SCARA

Tem-se que

$$\vec{h}_1 = \vec{h}_2 = \vec{h}_3 = \vec{h}_4 = \vec{z}$$

Por outro lado,

$$ec{p}_{04} = ec{p}_{01} + ec{p}_{12} + ec{p}_{23} + ec{p}_{34}$$

Primeiramente, considerando que $\vec{p}_{34} = \vec{p}_{34}(0) - \theta_3 \vec{z}$, tem-se que: $(\vec{p}_{04} \cdot \vec{z}) \ \vec{z} = \vec{p}_{01} - \vec{p}_{34}(0) + \theta_3 \vec{z} \Longrightarrow \theta_3 = (\vec{p}_{04} \cdot \vec{z}) - ||\vec{p}_{01}|| + ||\vec{p}_{34}(0)||$

Por outro lado, \vec{p}_{04} no sistema de coordenadas 0 é dado por:

$$(\vec{p}_{04})_0=(\vec{p}_{01})_0+R_{01}(\vec{p}_{12})_1+R_{01}R_{12}(\vec{p}_{23})_2+R_{01}R_{12}R_{23}(\vec{p}_{34})_3$$
 Desta última equação e dado que $R_{23}=I$ podemos escrever:

 $\underbrace{(\vec{p}_{04})_0 - (\vec{p}_{01})_0}_{\text{conhecido}} = R_{01} \left[\underbrace{(\vec{p}_{12})_1}_{\text{conhecido}} + R_{12} \underbrace{((\vec{p}_{23})_2 + (\vec{p}_{34})_3)}_{\text{conhecido}} \right]$

$$\underbrace{(p_{04})_0 - (p_{01})_0}_{\text{conhecido}} = R_{01} \left[\underbrace{(p_{12})_1}_{\text{conhecido}} + R_{12} \underbrace{((p_{23})_2 + (p_{34})_3)}_{\text{conhecido}} \right]$$

Então considerando a norma desta equação e $||R_{01}|| = 1$:

 $\|(\vec{p}_{04})_0 - (\vec{p}_{01})_0\| = \|(\vec{p}_{12})_1 + R_{12}(\theta_2) ((\vec{p}_{23})_2 + (\vec{p}_{34})_3)\|$

O subproblema 3 fornece 2 soluções para θ_2 .

Agora tem-se

$$\underbrace{(\vec{p}_{04})_0 - (\vec{p}_{01})_0}_{\text{conhecido}} = R_{01}(\theta_1) \quad \underbrace{\left(\vec{p}_{12})_1 + R_{12} \; ((\vec{p}_{23})_2 + (\vec{p}_{34})_3)\right)}_{\text{conhecido}}$$

 $R_{04} = R_{01}(\theta_1)R_{12}(\theta_2)R_{34}(\theta_4) \Longrightarrow R_{34}(\theta_4) = R_{12}^T(\theta_2)R_{01}^T(\theta_1)R_{04}$

O subproblema 1 fornece 1 solução para θ_1 .

O ângulo θ_4 pode ser determinado de:

dado que R_{34} é uma rotação elementar ao redor de z.

31/46

Subproblema 0: Prova

Sabe-se que $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\theta)$.

Pode-se calcular

$$\theta = \arccos\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}\right)$$

Alternativamente tem-se

$$\theta = 2 \arctan\left(\frac{\|\vec{u} - \vec{v}\|/2}{\|\vec{u} + \vec{v}\|/2}\right) = 2 \arctan\left(\frac{\|\vec{u} - \vec{v}\|}{\|\vec{u} + \vec{v}\|}\right)$$

Se $\vec{\omega}$ tem a mesma direção que $\vec{u} \times \vec{v}$ então θ é positivo senão troca de sinal, i.e., $\vec{\omega} \cdot (\vec{u} \times \vec{v}) < 0 \implies \theta = -\theta$.

Subproblema 1: Prova

Girando $ec{u}$ com respeito a $ec{w}$ forma um cone

Tem-se:

$$\vec{u}' = \vec{u} - (\vec{\omega} \cdot \vec{u}) \vec{\omega}$$
 $\vec{v}' = \vec{v} - (\vec{\omega} \cdot \vec{v}) \vec{\omega}$

Aplicando o subproblema 0 e considerando que $\vec{\omega} \cdot \vec{u} = \vec{\omega} \cdot \vec{v}$ tem-se:

$$\theta = 2 \arctan\left(\frac{\|\vec{u}' - \vec{v}'\|}{\|\vec{u}' + \vec{v}'\|}\right) = 2 \arctan\left(\frac{\|\vec{u} - \vec{v}\|}{\|\vec{u} + \vec{v} - 2(\vec{\omega} \cdot \vec{u}) \ \vec{\omega}\|}\right)$$

Se $\vec{\omega}$ tem a mesma direção que $\vec{u}' \times \vec{v}'$ então θ é positivo, senão troca de sinal, i.e., $\vec{\omega} \cdot (\vec{u} \times \vec{v}) < 0 \implies \theta = -\theta$.

33/46

Subproblema 2: Prova

Se $\vec{\omega}_1$ for colinear com $\vec{\omega}_2$ recai-se no subproblema 1. Suponha que $\vec{\omega}_1$ e $\vec{\omega}_2$ não são colineares.

Os 2 cones gerados podem ter 0, 1 ou 2 interseções. Se \vec{z} é o vetor dado pela interseção tem-se

$$\vec{z} = \exp(-\theta_1 \vec{\omega}_1 \times) \ \vec{v} = \exp(\theta_2 \vec{\omega}_2 \times) \ \vec{u}$$

Conhecendo \vec{z} recai-se no subproblema 1.

34/46

 $\vec{z} = \alpha \ \vec{\omega}_1 + \beta \ \vec{\omega}_2 + \gamma \ (\vec{\omega}_1 \times \vec{\omega}_2)$

O vetor \vec{z} pode ser representado na base $\{\vec{\omega}_1, \ \vec{\omega}_2, \ \vec{\omega}_1 \times \vec{\omega}_2\}$, então:

Calculando a projeção de \vec{z} em $\vec{\omega}_i$ tem-se:

$$\vec{\omega}_1 \cdot \vec{z} = \alpha + \beta \ (\vec{\omega}_1 \cdot \vec{\omega}_2) = \vec{\omega}_1 \cdot \vec{v}$$

$$\vec{\omega}_2 \cdot \vec{z} = \alpha \ (\vec{\omega}_1 \cdot \vec{\omega}_2) + \beta = \vec{\omega}_2 \cdot \vec{u}$$

Em forma matricial:

$$\begin{bmatrix} 1 & (\vec{\omega}_1 \cdot \vec{\omega}_2) \\ (\vec{\omega}_1 \cdot \vec{\omega}_2) & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \vec{\omega}_1 \cdot \vec{v} \\ \vec{\omega}_2 \cdot \vec{u} \end{bmatrix}$$

Dado que $\vec{\omega}_1$ e $\vec{\omega}_2$ não são colineares este sistema tem solução dada por:

Voltar

Para ter a expressão de \vec{z} falta calcular a componete γ . Ela pode ser calculada da norma de \vec{z} :

Desta forma existem as seguintes situações:

$$||z||^2 = \vec{z} \cdot \vec{z} = \alpha^2 + \beta^2 + 2\alpha\beta (\vec{\omega}_1 \cdot \vec{\omega}_2) + \gamma^2 ||\vec{\omega}_1 \times \vec{\omega}_2||^2 = ||\vec{u}||^2$$

Tendo-se então

$$\gamma = \pm \sqrt{\frac{\|\vec{u}\|^2 - \alpha^2 - \beta^2 - 2\alpha\beta \left(\vec{\omega}_1 \cdot \vec{\omega}_2\right)}{\|\vec{\omega}_1 \times \vec{\omega}_2\|^2}}$$

1 o compleye -> 7 colução

1.
$$\gamma$$
 complexo $\Rightarrow \not\exists$ solução;

2.
$$\gamma = 0 \Rightarrow \exists \ 1 \text{ solução e};$$

3.
$$\gamma \in \mathbb{R} \neq 0 \Rightarrow \exists \ 2 \text{ soluções}.$$

36/46

Uma vez calculadas (α, β, γ) podemos calcular \vec{z} :

$$\vec{z} = \alpha \vec{\omega}_1 + \beta \vec{\omega}_2 + \gamma \ (\vec{\omega}_1 \times \vec{\omega}_2)$$

e pelo subproblema 1 resolver

$$\vec{z} = \exp(-\theta_1 \vec{\omega}_1 \times) \ \vec{v} = \exp(\theta_2 \vec{\omega}_2 \times) \ \vec{u}$$

obtendo $\theta_2 = 2 \arctan \left(\frac{\|\vec{u} - \vec{z}\|}{\|\vec{u} + \vec{z} - 2(\vec{\omega}_2 \cdot \vec{u}) \ \vec{\omega}_2\|} \right)$

de sinal, i.e., $\vec{\omega}_2 \cdot (\vec{u} \times \vec{z}) < 0 \implies \theta_2 = -\theta_2$.

$$\theta_1 = -2 \arctan \left(\frac{\|\vec{v} - \vec{z}\|}{\|\vec{v} + \vec{z} - 2(\vec{\omega}_1 \cdot \vec{v}) \vec{\omega}_1\|} \right)$$

Se $\vec{\omega}_1$ tem a mesma direção que $\vec{v} \times \vec{z}$ então θ_1 é positivo senão troca de sinal, i.e., $\vec{\omega}_1 \cdot (\vec{v} \times \vec{z}) < 0 \implies \theta_1 = -\theta_1$.

Se $\vec{\omega}_2$ tem a mesma direção que $\vec{u} \times \vec{z}$ então θ_2 é positivo senão troca

Resumindo, pelo subproblema 1 podem ser resolvidos θ_1 e θ_2 :

$$\theta_2 = 2 \arctan \left(\frac{\|\vec{u} - \vec{z}\|}{\|\vec{u} + \vec{z} - 2(\vec{\omega}_2 \cdot \vec{u}) \vec{\omega}_2\|} \right)$$

$$\theta_1 = -2 \arctan \left(\frac{\|\vec{v} - \vec{z}\|}{\|\vec{v} + \vec{z} - 2(\vec{\omega}_1 \cdot \vec{v}) \vec{\omega}_1\|} \right)$$

onde $\vec{z} = \alpha \vec{\omega}_1 + \beta \vec{\omega}_2 + \gamma (\vec{\omega}_1 \times \vec{\omega}_2)$

com

$$\alpha = \frac{\vec{\omega}_1 \cdot \vec{v} - (\vec{\omega}_1 \cdot \vec{\omega}_2)(\vec{\omega}_2 \cdot \vec{u})}{1 - (\vec{\omega}_1 \cdot \vec{\omega}_2)^2}$$

$$\beta = \frac{\vec{\omega}_2 \cdot \vec{u} - (\vec{\omega}_1 \cdot \vec{\omega}_2)(\vec{\omega}_1 \cdot \vec{v})}{1 - (\vec{\omega}_1 \cdot \vec{\omega}_2)^2}$$

$$\gamma = \sqrt{\frac{\|\vec{u}\|^2 - \alpha^2 - \beta^2 - 2\alpha\beta (\vec{\omega}_1 \cdot \vec{\omega}_2)}{\|\vec{\omega}_1 \times \vec{\omega}_2\|^2}}$$

Se $\vec{\omega}_2 \cdot (\vec{u} \times \vec{z}) < 0 \implies \theta_2 = -\theta_2$. Se $\vec{\omega}_1 \cdot (\vec{v} \times \vec{z}) < 0 \implies \theta_1 = -\theta_1$.

Subproblema 3: Prova

Tem-se que $\delta = \|\vec{v} - \exp(\theta \vec{w} \times) \ \vec{u}\|$.

$$\vec{u}' = \vec{u} - (\vec{\omega} \cdot \vec{u}) \vec{\omega}$$
 $\vec{v}' = \vec{v} - (\vec{\omega} \cdot \vec{v}) \vec{\omega}$

Por outro lado

$$\delta'^2 = \delta^2 - ((\vec{u} - \vec{v}) \cdot \vec{\omega})^2$$
 se $\delta^2 - ((\vec{u} - \vec{v}) \cdot \vec{\omega})^2 < 0$ não existe solução. se $\delta^2 - ((\vec{u} - \vec{v}) \cdot \vec{\omega})^2 = 0$ recai no subproblema 1.

39/46

Então pela lei do cosseno, pode-se calcular o ângulo ϕ entre $\exp(\hat{\omega}\theta)\vec{u}'$ e \vec{v}' :

$$\delta'^{2} = \|\vec{u}'\|^{2} + \|\vec{v}'\|^{2} - 2\|\vec{u}'\|\|\vec{v}'\|\cos(\phi)$$

que implica

$$\phi = \pm \arccos \left(\frac{\|\vec{u}'\|^2 + \|\vec{v}'\|^2 - \delta'^2}{2 \|\vec{u}'\| \|\vec{v}'\|} \right)$$

se $\left| \|\vec{u}'\|^2 + \|\vec{v}'\|^2 - \delta'^2 \right| > 2 \|\vec{u}'\| \|\vec{v}'\|$ não existe solução.

Desta forma

$$\theta = \theta_0 - \phi$$

onde θ_0 (ângulo entre os vetores \vec{u}' e \vec{v}') pode ser calculado de \vec{u}' e \vec{v}' como (Livro Murray, Li e Sastry, pag 103)

$$\theta_0 = \arctan\left(\frac{\vec{\omega} \cdot (\vec{u}' \times \vec{v}')}{\vec{u}' \cdot \vec{v}'}\right)$$

40/46

Alternativamente, θ_0 pode ser calculado utilizando o subproblema 0 para os vetores unitários $\vec{u}'/\|\vec{u}'\|$ e $\vec{v}'/\|\vec{v}'\|$, i.e.,

$$\theta_0 = 2 \arctan \left(\frac{\vec{u}' / \|\vec{u}'\| - \vec{v}' / \|\vec{v}'\|}{\vec{u}' / \|\vec{u}'\| + \vec{v}' / \|\vec{v}'\|} \right)$$

Se $\vec{\omega}$ tem a mesma direção que $\vec{u}' \times \vec{v}'$ então θ_0 é positivo senão troca de sinal, i.e., $\vec{\omega} \cdot (\vec{u}' \times \vec{v}') < 0 \implies \theta_0 = -\theta_0$. Desta forma

$$\theta = \theta_0 - \phi;$$
 $\phi = \pm \arccos\left(\frac{\|\vec{u}'\|^2 + \|\vec{v}'\|^2 - \delta'^2}{2\|\vec{u}'\|\|\vec{v}'\|}\right)$

onde existem as seguintes situações:

1. se
$$\delta^2 - ((\vec{u} - \vec{v}) \cdot \vec{\omega})^2 < 0 \Rightarrow \not\exists$$
 solução;

2. se
$$\left| \|\vec{u}'\|^2 + \|\vec{v}'\|^2 - \delta'^2 \right| > 2 \|\vec{u}'\| \|\vec{v}'\| \Rightarrow \not\exists$$
 solução;

3. se
$$\left|\|\vec{u}'\|^2 + \|\vec{v}'\|^2 - \delta'^2\right| = 2 \|\vec{u}'\| \|\vec{v}'\| \Rightarrow \exists \ 1 \text{ solução e};$$

41/46

4. se $\left|\|\vec{u}'\|^2 + \|\vec{v}'\|^2 - \delta'^2\right| < 2 \|\vec{u}'\| \|\vec{v}'\| \Rightarrow \exists \ 2 \ \text{soluções}.$

42/46

Voltar

Exercício: Subproblema 4 (Exerçicio 4, Cap. 3, Livro Murray, Li e Sastry, pag. 149).

43/46

Exercícios: Calcular a cinemática inversa dos seguintes manipuladores:

1. Manipulador Esférico

2. Manipulador 3R: considere que o ângulo entre o eixo da junta 3 e a horizontal é de 45° .

44/46


```
% Lista 2 Exercicio 2.ii
disp('Cinemática direta')
% Parametros do Manipulador
11=1; 12=1; 13=1;
phi=pi/4
x=[1;0;0]; y=[0;1;0]; z=[0;0;1];
h1=z; h2=-y; h3=\sin(phi)*x+\cos(phi)*z
n=3;
theta = input(['enter theta vector (',num2str(n),'x1) e.g. [0 0 pi/2]: ']);
% Cinematica Direta: calculada sem usar [R,p] = fwdkin(theta, type, H, P, n);
R01 = expm(crossmat(h1) * theta(1));
R12 = expm(crossmat(h2) * theta(2));
R23 = expm(crossmat(h3) * theta(3));
R03 = R01*R12*R23;
                           p12 = 0;
p01 = 11*z;
p23 = R01*R12 * (12*x); p34 = R01*R12*R23 * (13*x);
p04 = p01 + p12 + p23 + p34;
T04=[R03 p04; 0 0 0 1]
```

Voltar

```
disp('Cinemática Inversa ...')
disp('Dado que o Manipulador tem 3 juntas..')
disp('somente 3DOF poderão ser determinados, e.g. p04')
disp('Calculo do teta3 pelo subproblema 3 (duas soluções) ...')
% norm(v - exp(w x theta) u) = d
% input: w,u,v as R^3 column vectors, delta: scalar
% output: theta (2x1 vector, 2 solutions)
v = 12*x:
d = norm(p04 - 11*z);
                           y_1 = -13*x:
w = h3:
theta3 = subproblem3(w, u, v, d)
disp('Calculo do teta1 e teta2 pelo subproblema 2 (duas soluções) ...')
\% \exp(w1 \times theta1) * \exp(w2 \times theta2) u = v
% input: w1, w2, u, v as R^3 column vectors
\% output: theta1 and theta2 as 2x1 columns corresponding to 2 solutions
w1 = h1: w2 = h2:
v = p04 - 11*z;
u = 12*x + expm(chat(h3)*theta3(2)) * (13*x);
[theta1,theta2] = subproblem2(w1, w2, u, v)
theta =[theta1(1) theta2(1) theta3(2)]
```

Voltar