

Courbes Paramétriques

Ce cours est une compilation:

- Cours Loic Barthe (IRIT-UPS Toulouse; Equipe Vortex)
 - Cours de Christian Jacquemin (LIMSI- Paris 11)
 - Cours de Marc Daniel (LSIS- Marseille)
- Cours G. Gesquière Master Imagina, DUT Informatique- Arles

Notion de courbe paramétrique

- Une courbe est engendrée par le déplacement d'un point P dans l'espace
- Pour faciliter l'interprétation, on peut prendre le temps **t** comme paramètre; mais n'importe quel scalaire **u** permet de décrire une courbe dans l'espace.

• A noter : Le point P(x,y,z) a les mêmes coordonnées que le vecteur \overrightarrow{OP}

Définition

• Un courbe paramétrique dans l'espace R³ est définie par une fonction

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$u \to P(u) = \begin{cases} x(u) = f_x(u) \\ y(u) = f_y(u) \\ z(u) = f_z(u) \end{cases}$$

- Ainsi, pour chaque valeur du paramètre u, on calcule indépendamment les trois coordonnées x, y et z du point P(u)
- Une même courbe peut avoir plusieurs représentations paramétriques différentes

Exemple

• Equations paramétriques du cercle de rayon r, centré à l'origine (dans R²):

Représentation d'une droite

• Représentation paramétrique d'une droite de R^3 passant par deux points P_1 et P_2 :

$$P(u) = (1-u)P_1 + uP_2 \qquad \equiv \qquad P(u) \begin{cases} x(u) = (1-u)x_1 + ux_2 \\ y(u) = (1-u)y_1 + uy_2 \\ z(u) = (1-u)z_1 + uz_2 \end{cases} \qquad u \in R$$

• Cette représentation conduit à la notion d'interpolation linéaire, en effet, quand u varie entre 0 et 1, le point P parcours linéairement le segment de P₁ jusqu'à P₂

Représentation d'une droite

• Une droite peut aussi être représentée à partir d'un point P₁et d'un vecteur v:

Représentation d'une courbe

$$P(u) = \begin{pmatrix} x(u) \\ y(u) \\ z(u) \end{pmatrix}$$

• En modélisation géométrique, on utilise essentiellement un paramètre borné et le plus souvent normalisé:

$$u \in [0, 1]$$

• Ceci est intéressant pour les applications où l'on traite des morceaux de courbes

Introduction: géométrie différentielle

- Paramètre sur une courbe : $u \in [0,1]$ ou abscisse curviligne : $s \in [0,t]$.
 - s est la longueur parcourue le long de la courbe depuis son origine.

Cubiques

• Ce sont les courbes polynomiales paramétriques de degrés 3. Leur représentation algébrique est la suivante:

$$p(u)=a u^3+b u^2+c u+d$$
 , $u \in [0,1]$

qui doit être comprise de la façon suivante:

$$p(u):\begin{cases} x(u) = a_x u^3 + b_x u^2 + c_x u + d_x \\ y(u) = a_y u^3 + b_y u^2 + c_y u + d_y \\ z(u) = a_z u^3 + b_z u^2 + c_z u + d_z \end{cases}$$

- Comment un utilisateur peut-il tracer la courbe qu'il imagine ????
 - C'est quasi impossible si la cubique est manipulée sous cette forme
 - Il est nécessaire d'introduire des paramètres de contrôle qui sont intuitifs et facile à manipuler

Cubique d'Hermite

- L'équation de la cubique est reformulée en fonction de paramètres géométriques qui sont : son point de départ P_0 (u=0), son point d'arrivée P_1 (u=1) et leurs tangentes respectives V_0 (= $\dot{p}(0)$) et V_1 (= $\dot{p}(1)$).
 - Coefficients géométriques:

$$\begin{cases} P_0 = p(0) = d \\ P_1 = p(1) = a + b + c + d \\ V_0 = \dot{p}(0) = c \\ V_1 = \dot{p}(1) = 3a + 2b + c \end{cases}$$
 d'où

$$\begin{cases} d = P_0 \\ c = V_0 \\ b = -3P_0 + 3P_1 - 2V_0 - V_1 \\ a = 2P_0 - 2P_1 + V_0 + V_1 \end{cases}$$

- Ce qui nous donne la représentation géométrique en remplaçant a, b, c et d par leur correspondance en fonction de P0, P1, V0 et V1

$$p(u)=F_1(u)P_0+F_2(u)P_1+F_3(u)V_0+F_4(u)V_1$$

$$\begin{cases} F_1(u) = 2u^3 - 3u^2 + 1 \\ F_2(u) = -2u^3 + 3u^2 \\ F_3(u) = u^3 - 2u^2 + u \\ F_4(u) = u^3 - u^2 \end{cases}$$

$$p(u)=a u^3+b u^2+c u+d$$
 , $u \in [0,1]$

Cubique d'Hermite: forme matricielle

• Ceci nous amène à une forme matricielle d'une cubique :

$$p(u) = UMB = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ V_0 \\ V_1 \end{bmatrix}$$

Cette représentation est souvent appelée « cubique d'Hermite »

Cubique d'Hermite: dérivées

• La dérivée (vitesse) de la cubique est une fonction ayant la forme matricielle suivante :

$$\dot{p}(u) = U \dot{M} B = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 6 & -6 & 3 & 3 \\ -6 & 6 & -4 & -2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ V_0 \\ V_1 \end{bmatrix}$$

• La dérivée seconde (accélération) de la cubique est une fonction linéaire ayant la forme matricielle suivante :

$$\ddot{p}(u) = U \ddot{M} B = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 12 & -12 & 6 & 6 \\ -6 & 6 & -4 & -2 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ V_0 \\ V_1 \end{bmatrix}$$

Hermite- Exercice I

• Calculez p(1/2). A l'aide des paramètres de contrôle de la cubique et de p(1/2), tracez la cubique d'Hermite dans les cas suivant :

1.
$$P_0(0,0)$$
, $P_1(2,0)$, $V_0(1,1)$, $V_1(1,-1)$

2.
$$P_0(0,0)$$
, $P_1(2,0)$, $V_0(4,4)$, $V_1(4,-4)$

3.
$$P_0(0,0)$$
, $P_1(2,0)$, $V_0(8,8)$, $V_1(8,-8)$

4.
$$P_0(0,0), P_1(2,0), V_0(4,0), V_1(4,0)$$

5.
$$P_0(0,0), P_1(2,0), V_0(-4,0), V_1(4,0)$$

6.
$$P_0(0,0), P_1(2,0), V_0(-4,0), V_1(-4,0)$$

Hermite- Exercice II

- Calculez $\dot{p}\left(\frac{1}{2}\right)$
 - Que vaut $p(\frac{1}{2})$ si $V_0 = 4 \rho (P_2 P_0)$ et $V_1 = 4 \rho (P_1 P_2), \rho \in \mathbb{R}$
 - Qu'en déduisez vous ?

Exercice III- Interpolation

• Exercice:

- Donnez les conditions sur les paramètres de contrôle de deux cubiques d'Hermite pour qu'elles soient raccordées avec une continuité C².
- Si les courbes sont raccordées avec une continuité C², que peut on dire de la variation de la courbure le long des deux courbes ?

• 1-

P(1/2)x =	1
P(1/2)y=	0,25

P0x	0
P0v	0

P1x	2
P1y	0

V0x	1
V0y	1

1/4	
V1X	1
V1y	-1

• $2: P_0(0,0), P_1(2,0), V_0(4,4), V_1(4,-4)$

P(1/2)x =	1
P(1/2)y=	1

P0x	0
P0y	0

P1x	2
P1y	0

V0x	4
V0y	4

V1x	4
V1y	-4

• $3: P_0(0,0), P_1(2,0), V_0(8,8), V_1(8,-8)$

P(1/2)x =	1
P(1/2)y=	2

P0x	0
P0y	0

P1x	2
P1y	0

V0x	8
V0y	8

V1x	8
V1y	-8

• $4: P_0(0,0), P_1(2,0), V_0(4,0), V_1(4,0)$

P(1/2)x =	1
P(1/2)y=	0

P0x	0
P0y	0

P1x	2
P1y	0

V0x	4
V0y	0

V1x	4
V1y	0

• $5: P_0(0,0), P_1(2,0), V_0(-4,0), V_1(4,0)$

P(1/2)x =	0
P(1/2)y=	0

P0x	0
P0y	0

P1x	2
P1y	0

V0x	-4
V0y	0

V1x	4
V1y	0

• $6: P_0(0,0), P_1(2,0), V_0(-4,0), V_1(-4,0)$

P(1/2)x =	1
P(1/2)y=	0

P0x	0
P0y	0

P1x	2
P1y	0

V0x	-4
V0y	0

V1x	-4
V1y	0

• Autre exemple

P(1/2)x =	1
P(1/2)y=	0

P0x	0
P0y	0

P1x	2
P1y	0

V0x	-1
V0y	-1

V1x	-1
V1y	-1

Exo 2- Hermite

- Calculez
 - Que vaut $\dot{p}(\frac{1}{2})$ si $V_0 = 4 \rho (P_2 P_0)$ et $V_1 = 4 \rho (P_1 P_2), \rho \in \mathbb{R}$
 - Qu'en déduisez vous ?
 - Solution:
 - La formule ci-dessous permet de connecter les deux vecteurs V0 et V1 grâce à un point P2. La direction est donc donnée par ce point. ρ sert juste à pondérer.
 - On pourrait donc utiliser cette formule afin de définir une courbe grâce à 3 points PO, P1 et P2.

• Exercice:

- Donnez les conditions sur les paramètres de contrôle de deux cubiques d'Hermite pour qu'elles soient raccordées avec une continuité C².
- Si les courbes sont raccordées avec une continuité C², que peut on dire de la variation de la courbure le long des deux courbes ?

Recollement :

- On cherche à recoller 2 segments de courbes,
 - C1, paramétrée par M1(t), t appartient à [0,1]
 - C2, paramétrée par M2(t), t appartient à [0,1]
- Si M1(1)=M2(0) il y a continuité G^0

- Si de plus la tangente à C1 en $M_1(1)$ = la tangent à C2 en $M_2(0)$
 - Il y a continuité G^1 $\frac{(d \overline{OM_1})}{dt}(1) = k * (\frac{(d \overline{OM_2})}{dt})(0)$

- Si de plus les vecteurs vitesses sont égaux,
 - Il y a continuité C¹

•
$$\frac{(d \overline{OM_1})}{dt}(1) = \frac{(d \overline{OM_2})}{dt}(0)$$

- Si de plus les vecteurs dérivées seconde sont égaux, continuité C²

- Remarque C^2 C^1 G^0

Exercice IV- Solution - Raccordement C²

- Continuité C² si les vecteurs dérivées seconde sont égaux
- La courbure entre les deux morceaux sera constante.

Courbes de Bézier

Un modèle de courbes paramétriques

$$p(u) = \sum_{i=0}^{n} N_i^d(u) P_i \qquad u \in [a, b]$$

avec

$$\sum_{i=0}^{n} N_i^d(u) = 1 \qquad \forall u \in [a, b]$$

un point de la courbe est une combinaison affine des points de contrôle P;

Ainsi la position des points de la courbe relativement aux points de contrôle reste invariante par transformation affine

C'est à dire que pour toute transformation affine Φ , la courbe image $\Phi(p(u))$ a pour points de contrôle les

Polynôme de Bernstein

L'idée est de partir du développement binomial :

$$1 = (u + (1 - u))^{n} = \sum_{i=0}^{n} {n \choose i} u^{i} (1 - u)^{n-i}$$

Ainsi, on obtient une somme de n+1 polynômes appelés : polynômes de Bernstein de degrén :

$$B_i^n(u) = {n \choose i} u^i (1-u)^{n-i} , \qquad i = 0, \dots, n$$

οù

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

Graphe des Polynômes de Bernstein

Quelques exemples

$$B_{0,2}(t) = t^2 - 2t + 1$$

$$B_{1,2}(t) = -2t^2 + 2t$$

$$B_{2,2}(t) = t^2$$

$$\begin{bmatrix}
B_{0,3}(t) = -t^3 + 3t^2 - 3t + 1 \\
B_{1,3}(t) = 3t^3 - 6t^2 + 3t \\
B_{2,3}(t) = -3t^3 + 3t^2 \\
B_{3,3}(t) = t^3
\end{bmatrix}$$

Graphe des polynômes de Bernstein

Quelques propriétés

Propriétés :

- pour un degré fixé, ils sont linéairement indépendants,
- ils sont symétriques : $B_i^n(u) = B_{n-i}^n(1-u)$
- ils forment une partition de l'unité : $\sum_{i=0}^{n} B_i^n(u) = 1 \qquad \forall u \in \mathbb{R}$

Calcul des polynômes de Bernstein

Schéma triangulaire de calcul des polynômes de Bernstein :

$$1 = B_0^0 B_0^1 B_0^2 \dots B_0^n$$

$$B_1^1 B_1^2 \dots B_1^n$$

$$B_2^2 \dots B_2^n$$

$$\vdots$$

$$B_n^n$$

Courbes de Bézier

Courbe de Bézier :

$$p(u) = \sum_{i=0}^{n} B_i^n(u) P_i$$
 , $u \in [0,1]$

- les points P_i (i=0..n) sont les n+1 points de contrôle de la courbe,
- la courbe est d'ordre n+l et son degré est n,
- les B_iⁿ sont les polynômes de Bernstein de degré n. Ils définissent les fonctions de base (ou fonction de mélange) de la courbe
- Le nombre de points de contrôle est directement lié au degré de la courbe : degré n ↔ n+1 points de contrôle.

```
Tracé d'une courbe de Bézier
> restart;
> xx:=[0,5,10,15]; yy:=[0,5,5,0];
> PNTS:=plot([seq([xx[i], yy[i]],i=1..4)],style=point): n:=nops(xx)-1;
> bez:=x->evalm(sum(binomial(n,i)*x^i*(1-x)^(n-i)*[xx[i+1],yy[i+1]],i=0..n)): PBEZ:=plot([bez(x)[1],bez(x)[1])
[2], x=0..1]);
> plots[display]([PNTS, PBEZ], axes=framed);
                                                       3 -
                                                       2 -
```

Ś

10

15

Exemples de courbes de Bézier

Portée des fonctions de base

Quelques propriétés

La symétrie du polynôme de Bernstein implique que :

$$p(u) = \sum_{i=0}^{n} B_{i}^{n}(u) P_{i} = \sum_{i=0}^{n} B_{i}^{n}(1-u) P_{n-i}$$

- ainsi, la courbe est la même qu'elle soit parcourue de 0 à 1 ou de 1 à 0.
- Soit $t \in [a,b]$, t = a(1-u) + b(u), $a \neq b$,

alors:

$$p(t(u)) = p(t) = \sum_{i=0}^{n} B_i^n(u) P_i$$

La courbe de Bézier interpole le premier et le dernier point de contrôle (u ∈ [0,1]) :

$$p(0) = P_0 \qquad p(1) = P_n$$

Enveloppe convexe

 La courbe est inclue dans l'enveloppe convexe de son polygone de contrôle (car les polynômes de Bemstein sont positifs sur [0,1]).

Se rappeler du cas du barycentre d'un ensemble de points (qui sera compris entre ces points).

Boîte englobante

 En prenant individuellement le min et le max de chaque coordonnée des points de contrôle, on obtient une boîte englobante de la courbe qui est parallèle aux axes :

Dérivée d'une courbe de Bézier

Dérivée :

- Montrez que: $\frac{d}{du}B_i^n(u) = n\left(B_{i-1}^{n-1}(u) - B_i^{n-1}(u)\right)$

En déduire que :

$$\frac{dp}{du}(u) = p^{u}(u) = n \sum_{i=0}^{n-1} B_{i}^{n-1}(u) \Delta P_{i} , \qquad \Delta P_{i} = P_{i+1} - P_{i}$$

A noter:

$$\frac{dp}{dt}(t) = p^{t}(t) = \frac{n}{b-a} \sum_{i=0}^{n-1} B_{i}^{n-1}(u) \Delta P_{i} , \quad t \in [a,b] , \quad u \in [0,1]$$

- Exercice :
 - Exprimez p^u(0), p^u(1/2), p^u(1) en fonction des P_i pour une courbe de Bézier de degré 3

Algorithme de De Casteljau

Cet algorithme s'appuie sur la formule de récurrence suivante :

$$p(u) = \sum_{i=0}^{n} B_{i}^{n}(u) P_{i}^{0} = \sum_{i=0}^{n-1} B_{i}^{(n-1)}(u) P_{i}^{1} = \dots = \sum_{i=0}^{0} B_{i}^{0}(u) P_{i}^{n} = P_{0}^{n}$$

οù

$$P_i^{k+1} = (1-u) P_i^k + u P_{i+1}^k$$

Exemple avec n=3 et u=1/4:

 P_0^3 est le point p(1/4)

Algorithme de De Casteljau

Exercice :

- Appliquez l'algorithme de De Casteljau pour tracer p(1/2) et p(3/4)

Algorithme de De Casteljau

Tangente et plan osculateur en un point de la courbe :

- La tangente en $P_0^3 = p(1/4)$ est portée par le segment $[P_0^2, P_1^2]$
 - En général : [Pn-1, Pn-1]

Algorithme de De Casteljau sur n points

Définition récursive de de Casteljau (suite et fin)

Treillis illustrant le calcul récursif des barycentres dans le cas d'une courbe à 5 points de contrôle.

Propriété de variation

 Une courbe de Bézier ne peut pas avoir plus d'intersections avec une droite que le maximum d'intersection possible entre son polygone de contrôle et une droite quelconque.

COURBE DE BÉZIER SUR 3 POINTS 1/2

Définition récursive de de Casteljau

Une courbe de Bézier peut se définir comme une **construction récursive de barycentres** dans les rapports (1 - t) et t. Le segment $[M_1(t)M_2(t)]$ est **tangent** à la courbe en M(t).

- Niveau 1 sur (P_1, P_2) : $M_1(t) = (1 t) P_1 + t P_2$
- Niveau 1 sur (P_2, P_3) : $M_2(t) = (1 t) P_2 + t P_3$
- . Niveau 2 sur (P₁, P₂, P₃) : $M(t) = (1 t) M_1(t) + t M_2(t) = (1 t)^2 P_1 + 2 t(1 t) P_2 + t^2 P_3$

Calcul matriciel avec les polynômes de Bernstein sur 3 points

Les coordonnées d'un point s'obtiennent comme le produit d'une matrice de monomes du paramètre t, une matrice de coefficients et une matrice de points de contrôle P_1 , P_2 , P_3 .

$$M(t) = (1 - t)^{2} P_{1} + 2 t(1 - t) P_{2} + t^{2} P_{3}$$
$$= B_{0}^{2}(t) P_{1} + B_{1}^{2}(t) P_{2} + B_{2}^{2}(t) P_{3}$$

Points de contrôle
$$\mathbf{M}(t) = \begin{bmatrix} \mathbf{B}_0^2(t) & \mathbf{B}_1^2(t) & \mathbf{B}_2^2(t) \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}$$

$$\mathbf{M}(t) = \begin{bmatrix} t^2 & t^4 & t^6 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}$$

Calcul matriciel avec les polynômes de Bernstein sur 4 points

Les coordonnées d'un point s'obtiennent comme le produit d'une matrice de monomes du paramètre t, une matrice de coefficients et une matrice de points de contrôle P_1 , P_2 , P_3 , P_4 .

$$M(t) = (1 - t)^{3} P_{1} + 3 t(1 - t)^{2} P_{2} + 3 t^{2}(1 - t) P_{3} + t^{3} P_{4}$$

$$= B_{0}^{3}(t) P_{1} + B_{1}^{3}(t) P_{2} + B_{2}^{3}(t) P_{3} + B_{3}^{3}(t) P_{4}$$

Points de contrôle
$$\mathbf{M}(t) = \begin{bmatrix} \mathbf{B}_{0}^{3}(t) & \mathbf{B}_{1}^{3}(t) & \mathbf{B}_{2}^{3}(t) & \mathbf{B}_{3}^{3}(t) \end{bmatrix} \begin{bmatrix} \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \\ \mathbf{P}_{4} \end{bmatrix}$$

$$\mathbf{M}(t) = \begin{bmatrix} t^{3} & t^{2} & t^{1} & t^{0} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \\ \mathbf{P}_{4} \end{bmatrix}$$

COURBE DE BÉZIER : POLYGONISATION 1/3

Approximation d'une courbe paramétrique par un polygone

Polygonisation d'une courbe de Bézier en *n* pas avec un paramètre *t* définisur [*a*,*b*].

Le paramètre t varie de a à b avec un pas de b-a/n:

Polygonisation d'une courbe paramétrique (n pas)

 $P_3 +$

 $_{+}$ P_{2}

COURBE DE BÉZIER : POLYGONISATION 2/3

Raffinements

Optimisation

- (1) Calculer le pas de maillage
- (2) calculer toutes les valeurs par additions du pas à la valeur précédente.

Inconvénient: erreurs cumulées.

Maillage adaptatif

Intervalle de maillage **variable** dépendant d'une mesure: longueur du segment, courbure de la courbe.

COURBE DE BÉZIER : POLYGONISATION 3/3

Algorithme de polygonisation d'une courbe paramétrique

Polygonisation d'une courbe de Bézier en *n* pas avec un paramètre *t* définisur [*a*,*b*].

```
// initialisation
t = a
P = Besier( t );
pas = (b - a) / n
// boucle de traçage
Pour i = 1 ; i <- n ; i++
    t' = t + pas;
    P' = Besier( t' );
    Segment( P , P' );

t = t';
    P = P';
Fin pour</pre>
```

COURBE DE BÉZIER : EXEMPLES D'APPLICATIONS

Dessin interactif de courbes

Dans de nombreuses applications de **modélisation interactive** (image de synthèse, dessin vectoriel, CAO...).

Polices vectorielles

Les **polices vectorielles** postscript sont composées à partir de courbes de Bézier.

Elles sont donc grossissables sans problème d'aliasing.

COURBE DE BÉZIER : PROBLÈME DU CONTRÔLE SUR <u>N POINTS</u>

Non localité du contrôle

Le déplacement d'un point de contrôle sur une courbe de Bézier a des répercussions au-delà de la zone de localité du point de contrôle.

 $+ P_{\gamma}$

FONCTIONS DE PONDÉRATION IDÉALES

Propriétés attendues des fonctions de pondération

- Interpolation à certains points de contrôle
- Influence locale (non étendue à l'ensemble de la zone).
- Sommation à l'unité pour toute valeur de t
- Bonne continuité

Raccordement de deux courbes

- Exercice :
 - soient deux courbes de Bézier :
 - p(u) de degré n, u ∈ [0,1], points de contrôle P_i
 - q(v) de degré m, v ∈ [0,1], points de contrôle Q_i

Elle est assurée en faisant coïncider les points extrêmes :

Raccordement de deux courbes

- Exercice :
 - soient deux courbes de Bézier :
 - p(u) de degré n, u ∈ [0,1], points de contrôle P_i
 - q(v) de degré m, v ∈ [0,1], points de contrôle Q.

Continuité de classe G₁

La continuité de classe G₁ est vérifiée ssi les **points extrêmes sont** confondus et les segments extrêmes alignés :

Raccordement de deux courbes

Exercice :

- soient deux courbes de Bézier :
 - p(u) de degré n, u ∈ [0,1], points de contrôle P;
 - q(v) de degré m, v ∈ [0,1], points de contrôle Q,

Continuité de classe C₁

La continuité de classe C₁ est vérifiée ssi les **points extrêmes sont confondus** et **situés au milieu** du point qui les précède et de celui qui les suit <u>:</u>

COURBE DE BÉZIER : PROPRIÉTÉS 8/8

Continuité entre deux courbes de Bézier B_1 et B_2 (suite et fin)

On se place dans le cas où t_1 , le paramètre de B_1 , est défini sur $[a_1,b_1]$ et t_2 , le paramètre de B_2 , sur $[a_2=b_1,b_2]$.

Continuité de classe C₁

La continuité de classe C_1 est vérifiée ssi les **points extrêmes sont confondus** et tels que :

Exemple de modélisation de courbe complexe

