数据帧

返回的数据帧,包含所有的温度信息。该数据由两种模式可以切换,用**返回数据命令E命令**切换两种状态。**Evaluate**模式目的是给客户做快速的评估,接上电源模组就会不间断的以2fps的速率往外发送数据。数据格式为ASCII码的温度信息,客户可以直接观看输出的温度信息。**Operate**模式作为集成到产品的开发模式,可以给开发者更多控制的命令集成到产品。

evaluate模式

连续发送数据帧,每帧以\r\n结尾,每个数据点为精确到小数点后两位的浮点数,数据点之间以逗号分隔。例如:MLX90640的分辨率为32*24=768,所以收到的数据为:

"25.01,26.00,20.03.....\r\n"

operate模式

	包头	长度	数据 (环境温度)	数据	结尾
	3Byte	2Byte	4Byte	4*长度Byte	2Byte
ASCII	DAT				\r\n
HEX	0x44 0x41 0x54				0x0D 0x0A

长度为大端模式,数据类型为无符号型,例如: MLX90640的分辨率为32*24=768, 所以长度位位 0x03 0x00。数据位为float型,行优先。长度计算时不包含环境温度的4bytes

```
解析C代码如下(MLX90640的数据长度为例):
float* p = (float*)((char*)data_buffer + 5);
float env_temp = *p;
printf("get environment temperature %f\r\n",env_temp);
for(int i=0;i<32*24;i++)
{
    float temp = *(p+i);
    printf("get idx %d pixcel temperature %f\r\n",i,env_temp);
}
```

CMD帧

CMD帧为控制指令,可以控制设备是否串口发送数据,设置连续、单帧发送模式,对象为人、物体,更改刷新率。

一. 指令格式

串口通信波特率为230400,控制指令格式由四部分组成:

1. 包头: 由"CMD"三个字符组成

2. 指令: 一个字符

3. 参数: 一个Bytes数字 (Common offset 设置指令为 4个Bytes的float)

4. 校验: 由一个字符组成,为前面所有字符求和后取后8位。

	包头	指令	参数	校验
	3Byte	1Byte	1Byte(4Bytes common offset setting command)	1Byte
ASCII	CMD			CRC
HEX	0x43 0x4D 0x44			

若设备收到合法指令(CRC校验通过、指令和参数有效)则返回ret+相同指令+\r\n(例如上位机发送CMDC\1\x18,设备发回RETCMDC\1\x18\r\n),否则返回错误指令,指令格式如下:

	包头	控制包头	指令	参数	校验	换行
	6Byte	3Byte	1Byte	1Byte	1Byte	2Byte
ASCII	RETERR	收到的包头	收到的指令	收到的参数	收到的校验	\r\n
HEX	0x52 0x45 0x54 0x45 0x52 0x52					0x0D 0x0A

二. 控制指令

控制设备是否通过串口数据发送,Evaluate模式,上电后默认打开。Operate模式,上电默认关闭。 发送命令长度6Bytes。

返回的指令为: 'RETCMDC'+ 1Byte(参数)+'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	С	\1 打开串口发送 \0关闭串口发送 \2 发送单帧数据 (单帧模式时工 作)	CRC
HEX	0x43 0x4D 0x44	0x43	0x01 0x00 0x02	0x18 0x19 0x1A

三. 刷新率设置

设置传感器刷新率,上电默认3FPS。发送命令长度6Bytes。

返回的指令为: 'RETCMDF'+ 1Byte(参数)+'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	F	\0 0.5FPS \1 1FPS \2 2FPS \3 3FPS	CRC
HEX	0x43 0x4D 0x44	0x46	0x00 0x01 0x02 0x03	0x1A 0x1B 0x1C 0x1D

四. 模式设置

切换帧画面发送模式,连续发送时会连续的发送DAT帧,单帧发送时每收到一个CMDC\2会发送一个DAT帧。上电默认连续帧发送,发送命令长度6Bytes。

返回的指令为: 'RETCMDM'+ 1Byte(参数)+'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	М	\0 单帧发送 \1 连续发送	CRC
HEX	0x43 0x4D 0x44	0x4D	0x00 0x01	0x21 0x22

五. 返回数据格式设置

切换Evaluate 和Operate 模式切换指令,该指令每次切换后会写入ROM,支持掉电保存状态。发送命令长度6Bytes。

返回的指令为: 'RETCMDE'+ 1Byte(参数)+'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	Е	\0 Operate模式 \1 Evaluate模式	CRC
HEX	0x43 0x4D 0x44	0x45	0x00 0x01	0x23 0x24

六. 测试对象设置

切换测量对象,测量对象为人体时设备会调用对于人体的相关校准参数。上电默认人体参数。发送命令长度6Bytes。

返回的指令为: 'RETCMDO'+ 1Byte(参数)+'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	О	\0 通用物体 \1 人体	CRC
HEX	0x43 0x4D 0x44	0x4F	0x00 0x01	0x23 0x24

七. 温度偏差Common offset 获取

发送指令获取校准后的Common offset参数,发送命令长度6Bytes。该参数为4个Bytes 的浮点数组成

返回的指令为: 'RETCMDT'+4Bytes(float 类型) +'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	Т	\0	CRC
HEX	0x43 0x4D 0x44	0x54	0	23

八. 温度偏差Common offset 设置

发送指令设置校准后的Common offset参数,发送命令长度9Bytes,参数为4个Bytes 的浮点数组成返回的指令为: 'RETCMDT'+4Bytes(float 类型) +'\r\n'

	, , ,				
	包头	指令	参数	校验	
	3Byte	1Byte	4Byte	1Byte	
ASCII	CMD	Т		CRC	
HEX	0x43 0x4D 0x44	0x54	float类型的地址内容		23

九. 获取固件版本及模组唯一编号

发送指令获取固件版本及设备唯一编号,发送命令长度6Bytes。

返回的指令为: 'RETCMDT'+4Bytes(int 类型 固件版本) +',' + 4Bytes(int 类型 唯一ID) +'\r\n'

				,	
	包头	指令	参数	校验	
	3Byte	1Byte	4Byte	1Byte	
ASCII	CMD	V	0	CRC	
HEX	0x43 0x4D 0x44	0x56		2	3

十. 睡眠

进入睡眠模式,发送命令长度6Bytes。

返回的指令为: 'RETCMDS'+ 1Byte(参数)+'\r\n'

	包头	指令	参数	校验
	3Byte	1Byte	1Byte	1Byte
ASCII	CMD	S	\1 进入睡眠模式	CRC
HEX	0x43 0x4D 0x44	0x53	1	0x28

十一.示例

1. 打开串口并连续发送数据

模块上电

发送 收到 发送	0x72 0x65 0x74 0x	43 0x4D 0x44 0x43 0x01 0x18 43 0x4D 0x44 0x43 0x01 0x18 0x0D 0x0A 43 0x4D 0x44 0x4D 0x01 0x22	<<<< 打开串口发送开关 <<<< 模块响应 <<<< 打开串口发送开关
收到	0x72 0x65 0x74 0x	43 0x4D 0x44 0x4D 0x01 0x22 0x0D 0x0A	<<<< 模块响应
收到	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX	<<< 帧数据
收到 ·	**************************************	·	<<<
收到 · ·		· · ·	<<<

2. 打开串口后单帧发送数据

模块上电

发送	0x43 0x4D 0x44 0x4D 0x00 0x21	<<<< 设置手动发送模式
收到	0x72 0x65 0x74 0x43 0x4D 0x44 0x4D 0x00 0x21 0x0D 0x0A	<<<< 模块响应
发送	0x43 0x4D 0x44 0x43 0x02 0x1A	<<<< 请求一帧数据
收到	0x72 0x65 0x74 0x43 0x4D 0x44 0x43 0x02 0x1A 0x0D 0x0A	<<<< 模块响应
收到	XXXXXXXXXXXXXXXXX	<<<< 帧数据
•	•	
•	•	
发送	0x43 0x4D 0x44 0x43 0x02 0x1A	<<<< 请求一帧数据
收到	0x72 0x65 0x74 0x43 0x4D 0x44 0x43 0x02 0x1A 0x0D 0x0A	<<<< 模块响应
收到	XXXXXXXXXXXXXXXXX	<<<< 帧数据
收到	XXXXXXXXXXXXXXXXX	<<<< 帧数据