1

AI1103: Assignment 8

Chitneedi Geetha Sowmya CS20BTECH11011

Download all latex codes from

https://github.com/Geetha495/Assignment8/blob/main/Assignment8.tex

1 Problem

Let $\phi(t)$ be a characteristic function of some random variable. Then, which of the following is also a characteristic function?

- 1) $f(t) = [\phi(t)]^2$ for all $t \in \mathbb{R}$
- 2) $f(t) = |\phi(t)|^2$ for all $t \in \mathbb{R}$
- 3) $f(t) = \phi(-t)$ for all $t \in \mathbb{R}$
- 4) $f(t) = \phi(t+1)$ for all $t \in \mathbb{R}$

2 Solution

Definition 2.1 (Characteristic Function). The function $\phi_X(t) = E(e^{itX})$ is called the characteristic function (cf) of random variable X.

Proposition 2.1 (Properties of a Characteristic function). *All cf's have the following properties:*

- 1) $\phi(-t) = \overline{\phi(t)}$ (complex conjugate)
- 2) The characteristic function of -X is the complex conjugate $\overline{\phi(t)}$.

Proposition 2.2 (Cf of sum of independent r.v.'s). If X and Y are independent, then

$$\phi_{X+Y}(t) = \phi_X(t) \times \phi_Y(t)$$

Let X be the given random variable and let Y and -X have the same distribution.

Option 1:

$$[\phi_X(t)]^2 = \phi_X(t) \times \phi_X(t)$$

= $\phi_{2X}(t)$ (by proposition 2.2)

Thus, $[\phi(t)]^2$ is a characteristic function of random variable 2X.

Option 2:

$$|\phi_X(t)|^2 = \phi_X(t) \times \overline{\phi_X(t)}$$

$$= \phi_X(t) \times \phi_Y(t) \quad \text{(by proposition 2.1)}$$

$$= \phi_{X+Y}(t)$$

Thus, $|\phi(t)|^2$ is a characteristic function of random variable (X + Y).

Option 3:

$$\phi_X(-t) = E(e^{i(-t)X})$$
 (by definition 2.1)
= $E(e^{it(-X)})$
= $E(e^{itY})$
= $\phi_Y(t)$

Thus, $\phi(-t)$ is a characteristic function of random variable Y.

Option 4:

$$\phi_X(t+1) = E(e^{i(t+1)X})$$
 (by definition 2.1)
= $E(e^{itX} \times e^{iX})$

Thus, $\phi(t+1)$ is a not a characteristic function.

Hence, correct options are 1, 2, 3.