Tutorial: Computational Graphs and MLPs

Marijn van Knippenberg Vlado Menkovski

Eindhoven University of Technology

 $\{\textit{m.s.v.knippenberg,v.menkovski}\} @ tue.\textit{nl}$

April 3, 2018

Outline

- Introduction
- Simple Computational Nodes
- 3 Computation Graphs
- 4 Layered Networks

Computational Graph

Generic Node

Node template with support for forward and backward propagation.

```
class Node(object):
       def __init__(self, inputs):
3
           self.inputs = inputs
4
5
       @abstractmethod
6
       def forward(self):
7
            ''' Feed-forward the result
8
           raise NotImplementedError()
10
       @abstractmethod
11
12
       def backward(self, d):
            ''' Back-propagate the error
13
                d is the delta of the next node '''
14
           raise NotImplementedError()
15
```

Addition Node

Sum inputs o = q + r.

Partial derivatives $\frac{\partial o}{\partial q} = 1, \frac{\partial o}{\partial r} = 1.$

Addition Node

```
Sum inputs o = q + r.
Partial derivatives \frac{\partial o}{\partial q} = 1, \frac{\partial o}{\partial r} = 1.
```

```
class AdditionNode(Node):

def forward(self):
    self.output = sum([i.forward() for i in self.inputs])
    return self.output

def backward(self, d):
    for i in self.inputs:
        i.backward(d)
```

Multiplication Node

Multiply two inputs $q = x \cdot w, r = b \cdot 1$. Partial derivatives $\frac{\partial q}{\partial x} = w, \ \frac{\partial q}{\partial w} = x$, and $\frac{\partial r}{\partial b} = 1$.

Multiplication Node

```
Multiply two inputs q = x \cdot w, r = b \cdot 1.
Partial derivatives \frac{\partial q}{\partial x} = w, \frac{\partial q}{\partial w} = x, and \frac{\partial r}{\partial b} = 1.
```

```
class MultiplicationNode(Node):

def forward(self):
    self.output =
        self.inputs[0].forward() * self.inputs[1].forward()
    return self.output

def backward(self, d):
    self.inputs[0].backward(d * self.inputs[1].output)
    self.inputs[1].backward(d * self.inputs[0].output)
```

Mean Squared Error Node

Calculate MSE of two values $L = \frac{1}{2}(o - y)^2$. Partial derivatives $\frac{\partial L}{\partial o} = o - y$ and $\frac{\partial L}{\partial y} = y - o$.

Mean Squared Error Node

Calculate MSE of two values $L = \frac{1}{2}(o - y)^2$. Partial derivatives $\frac{\partial L}{\partial o} = o - y$ and $\frac{\partial L}{\partial y} = y - o$.

```
class MSENode(Node):
       def forward(self):
           self.output = 0.5 * (
4
               self.inputs[0].forward() - self.inputs[1].forward()
5
               )**2
6
           return self.output
7
       def backward(self, d):
9
           self.inputs[0].backward(
10
               d * (self.inputs[0].output - self.inputs[1].output))
11
           self.inputs[1].backward(
12
               d * (self.inputs[1].output - self.inputs[0].output))
13
```

Constant Value Node

Constant Value Node

Input node, so no backward pass. Used to create data input points, or to set constants in the network (the multiplication factor for the bias, for example).

```
class ConstantNode(Node):

def __init__(self, val):
    self.output = val

def forward(self):
    return self.output

def backward(self, d):
    pass
```

Variable Value Node

Variable Value Node

Input node with a trainable value. Like the constant node, does not pass backwards, but unlike constant node does update its own value. In this example, updates are performed with $\eta=0.01$.

```
class VariableNode(Node):
       def __init__(self, val, name):
3
           self.output = val
4
           self.name = name
5
6
       def forward(self):
7
           return self.output
9
       def backward(self, d):
10
           self.output -= 1e-2 * d # Gradient Descent
11
```

Sample Graph

Sample Graph

```
class SampleGraph(object):
2
 3
        def __init__(self, x, y, w, b):
            ''' x: input
 4
 5
                y: expected output
                w: initial weight
                b: initial bias '''
            self.graph = MSENode([
 9
                AdditionNode([
10
                    MultiplicationNode([
11
                         ConstantNode(x),
12
                         VariableNode(w. "w")
13
                    ]),
14
                    MultiplicationNode([
15
                         VariableNode(b, "b").
                         ConstantNode(1)
16
17
                    ])
18
                1).
19
                ConstantNode(v)
20
            1)
21
22
        def forward(self):
23
            return self.graph.forward()
24
25
        def backward(self. d):
26
            self.graph.backward(d)
```

Sample Graph

```
# Create sample graph with initial values
sg = SampleGraph(2, 2, 2, 1)
# Run single forward pass to obtain prediction
print(sg.forward())
# Run single backward pass to update weight and bias
# Run single backward pass to update weight and bias
# Note that dL/dL = 1.
sg.backward(1.0)
# Run another single forward pass to obtain updated prediction
print(sg.forward())
```

Initial settings: $w = 2, b = 1, \eta = 0.01$.

First forward pass: L = 4.5.

First backward pass: $\frac{\partial L}{\partial w} = 6, \frac{\partial L}{\partial b} = 3 \rightarrow w = 1.94, b = 0.97$

Second forward pass: $L \approx 4.06$.

Neuron

Neuron

Neuron

```
class Neuron(Node):
 2
3
        def __init__(self, num_inputs):
 4
            self.x = [ConstantNode(0) for i in range(num_inputs)] # Set x later to change input
 5
            # Initialize a weight for each input
            self.w = [VariableNode(0, f"w_{i}") for i in range(num_inputs)]
 6
 7
            # Initialize a single bias for all inputs
 8
            self.b = VariableNode(0, "b")
 9
10
            # Multiply each pair of inputs and weights
11
            mults = [MultiplicationNode([self.x[i], self.w[i]])
12
                     for i in range(num_inputs)]
13
            # Multiply bias by 1
14
            mults.append(MultiplicationNode([self.b, ConstantNode(1)]))
15
16
            # Sum all multiplication results and apply sigmoid function
17
            self.graph = SigmoidNode([
18
                AdditionNode(
19
                    mults
20
21
            1)
22
23
        def forward(self):
24
            return self.graph.forward()
25
26
        def backward(self. d):
27
            self.graph.backward(d)
```

Sigmoid Node

```
Calculate Sigmoid function \phi(x) = \frac{1}{1+e^{-x}}. Derivative \frac{\partial \phi(x)}{\partial x} = \phi(x) * (1 - \phi(x)).
```

```
class SigmoidNode(Node):

def forward(self):
    self.output = 1.0 / (
        1.0 + math.exp(-self.inputs[0].forward()))
    return self.output

def backward(self, d):
    self.inputs[0].backward(
    d * self.output * (1.0 - self.output))
```

Neuron for MLP

In an MLP, the output of each neuron is used multiple times:

$$\frac{\partial L_{total}}{\partial a_{h_1}} = \frac{\partial L_{o_1}}{\partial a_{o_1}} + \frac{\partial L_{o_2}}{\partial a_{o_2}} + \frac{\partial L_{o_3}}{\partial a_{o_3}}$$

Each node needs to know where it output goes in order to back-propagate.

Extended Node Definition

Instead of calling backward from the last node in the graph to update the weights, call it recursively from the first node of the graph.

```
class Node(object):
 3
        def __init__(self, inputs):
 4
            self.inputs = inputs
 5
            for i in self.inputs:
 6
                i.outputs.append(self)
 7
            self.outputs = []
 8
        @abstractmethod
10
        def forward(self):
11
            raise NotImplementedError()
12
13
        @abstractmethod
14
        def backward(self, i):
15
             ''' i: Which input to backpropagate for '''
16
            # Call backward on output node(s)
17
            # Return local gradient for input i
18
            raise NotImplementedError()
```

Input Layer

```
class InputLayer(Node):
1
       def __init__(self, num_inputs):
           self.nodes = [ConstantNode(0) for i in range(num_inputs)]
4
5
       def forward(self):
6
7
           pass
       def backward(self. i):
9
           for node in self.nodes:
10
                for output in node.outputs:
11
                    outputs.backward(None)
12
13
       # Set sample x
14
       def set_inputs(self, values):
15
           for node, value in zip(self.nodes, values):
16
                node.output = value
17
```

Hidden Layer

```
class HiddenLayer(Node):

def __init__(self, inputs, num_neurons, activation='sigmoid'):
    self.neurons = [Neuron(inputs.nodes, activation=activation)
    for i in num_neurons]

def forward(self):
    pass

def backward(self, i):
    pass
```

Output Layer (MSE)

```
class OutputLayer(Node):
       def __init__(self, inputs):
3
           self.expected = [ConstantNode(0) for i in inputs]
4
           self.nodes = [MSENode([i, e])
5
                    for i, e in zip(inputs.nodes, self.expected)]
6
           self.graph = AdditionNode(self.nodes)
7
       def forward(self):
           self.output = self.graph.forward()
10
           return self.output
11
12
       def backward(self. i):
13
14
           pass
15
       # Set sample u
16
       def set_expected(self, values):
17
           for node, value in zip(self.expected, values):
18
               node.output = value
19
```

MLP

```
# Input layer with 5 input values
  network_in = InputLayer(5)
  # First hidden layer with 10 neurons
  network_out = HiddenLayer(network_in, 10)
  # Second hidden layer with 10 neurons
6 | network_out = HiddenLayer(network_in, 10)
  # Ouput layer with single output: loss
8 | network_out = OutputLayer(network_out)
  # Forward-propagate
10 network_in.set_inputs([1, 2, 3, 4, 5])
  network_out.set_expected([1, 0, 1, 1, 2, 1, 2, 2, 3, 2])
11
12 network out.forward()
13 # Back-propagate
14 | network_in.backward(None)
```

MLP

