Miejsce na naklejkę z kodem

(Wpis				
rozp	ocze	ęcier	n pra	acy)
Γ				
KOD	7 D	ΑТ	۸С	EGC

MMA-P1G1P-021

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Arkusz I

Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze niebieskim lub czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 9. Podczas egzaminu można korzystać z tablic matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego.
- 10. Do ostatniej kartki arkusza dołączona jest **karta odpowiedzi**, którą **wypełnia egzaminator**.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 40 punktów

Życzymy powodzenia!

Wpisuje zdający przed rozpoczęciem pracy)										

PESEL ZDAJĄCEGO

ARKUSZ I

MAJ ROK 2003

Zadanie 1. (4 pkt)

Lewa strona równania $1+x^2+x^4+x^6+...+x^{2n}+...=3$ jest sumą nieskończonego ciągu geometrycznego o ilorazie x^2 . Z warunku zbieżności mamy $x^2 < 1$. Zatem dziedziną równania jest przedział (-1,1).

Równanie można zapisać w postaci $1+x^2(1+x^2+x^4+...)=3$. Stąd $1+3x^2=3$.

Pierwiastkami ostatniego równania są liczby: $x_1 = -\frac{\sqrt{6}}{3}$, $x_2 = \frac{\sqrt{6}}{3}$ należące do dziedziny.

Odpowiedź: Rozwiązaniami równania są liczby $x_1 = -\frac{\sqrt{6}}{3}$, $x_2 = \frac{\sqrt{6}}{3}$.

Postępując w analogiczny sposób rozwiąż równanie : $1 + x + x^2 + x^3 + ... + x^n + ... = 2$.

Zadanie 2. (4 pkt)

Rysunek przedstawia fragment wykresu funkcji kwadratowej f.

- a) Podaj miejsca zerowe funkcji f.
- b) Podaj rozwiązania nierówności $f(x) \le 0$.
- c) Podaj rozwiązania równania f(x) = 3.

Odp. a) Miejsca zerowe funkcji f:

- b) Rozwiązania nierówności:
- c) Rozwiązania równania :

Zadanie 3. (4 pkt)

Dane dotyczące wzrostu chłopców z klasy II B przedstawione są na diagramie.

- a) Oblicz średni wzrost chłopców z klasy II B (podaj wynik dokładny).
- b) Ilu chłopców z klasy II B ma wzrost wyższy od średniego?

Odp. a) Średni wzrost chłopców z klasy II B jest równy

b) Wzrost powyżej średniego ma chłopców.

77 1	•	4	12	1 ,	١
Zada	anie	4. (13	nkt)
Luu			~	pive	,

Liczby	102, 103	5, 108	, 111,	są kolejnyi	ni, poc	zątkowymi	wyrazai	mi pewnego	ciągu
arytmety	cznego	(a_n) .	Zapisz v	wzór ogólny	na <i>n-</i> ty	wyraz tego	o ciągu.	Oblicz wyr	$az a_{81}$

Odp.	Wzór ogólny na <i>n-</i> ty	wyraz ciągu m	a postać	$a_{81} = \dots$
------	-----------------------------	---------------	----------	------------------

Zadanie 5. *(5 pkt)*

Przed wejściem do przychodni lekarskiej znajdują się schody mające 8 stopni po 15 cm wysokości każdy. Postanowiono zbudować podjazd dla niepełnosprawnych o nachyleniu 7^0 . Oblicz długość podjazdu. Wynik podaj w zaokrągleniu do $10 \ cm$.

Odp. Długość podjazdu jest w przybliżeniu równa

Zadanie 6. (3 pkt)

Ciąg (a_n) określony jest wzorem

$$\begin{cases} a_1 = 1 \\ a_2 = 2 \\ a_{n+2} = 2^{n-1} + a_n + a_{n+1} & dla \ n \in \mathbb{N} \setminus \{0\} \end{cases}$$

Wyznacz czwarty wyraz tego ciągu.

Odp. $a_4 =$

Zadanie 7. (5 pkt)

Rysunek przedstawia fragment wykresu funkcji liniowej f. Wykres funkcji g jest obrazem wykresu funkcji f otrzymanym za pomocą przesunięcia o wektor $\vec{u} = \begin{bmatrix} 2,1 \end{bmatrix}$. Wyznacz miejsce zerowe funkcji g.

Odp. Miejsce zerowe funkcji g jest równe

Zadanie 8. (3 pkt)

Składka na ubezpieczenie zdrowotne jest równa 7,5% podstawy wymiaru składek na ubezpieczenie społeczne. Podstawa wymiaru składek na ubezpieczenie społeczne jest równa 60% przeciętnego wynagrodzenia. Oblicz wysokość składki na ubezpieczenie zdrowotne przyjmując, że przeciętne wynagrodzenie jest równe 1869,76 zł. Wynik podaj w zaokrągleniu do 1 grosza.

Odp. Składka na ubezpieczenie zdrowotne jest równa

Zadanie 9. *(3 pkt)*

Oblicz pole działki rekreacyjnej, której plan przedstawiony jest na rysunku. Zakładamy, że kąty *ABC* i *ECD* są kątami prostymi.

Odp. Pole działki jest równe

Zadanie 10. (2 pkt)

Kupując los loterii można wygrać nagrodę główną, którą jest zestaw płyt kompaktowych lub jedną z 10 nagród książkowych. Przy zakupie jednego losu prawdopodobieństwo wygrania nagrody książkowej jest równe $\frac{1}{7}$. Oblicz, ile jest losów pustych.

Odp. Losów pustych jest

Zadanie 11. (4 pkt)

Podstawą prostopadłościanu $ABCDA_1B_1C_1D_1$ jest prostokąt o bokach długości : $\overline{|AD|} = 3$

i $|\overline{AB}|$ = 6. Wysokość prostopadłościanu ma długość równą 6. Uzasadnij, za pomocą rachunków, że trójkąt BAD_1 jest prostokątny.

Brudnopis