MATH2040C Homework 7

ZHENG Weijia (William, 1155124322)

April 25, 2021

1 Section 6.3, Q3(c)

For each of the following inner product spaces V and linear operators T on V, evaluate T* at the given vector in V.

(c)
$$V = P_1(R)$$
 with $\langle f, g \rangle = \int_{-1}^1 f(t)g(t) dt$, $T(f) = f' + 3f$, $f(t) = 4 - 2t$

The first thing we need to do is to find a orthonormal basis for V.

A basis for V is $\alpha=\{1,t\}$. Note that $\int_{-1}^1 1 \cdot t \ dt=0$. Therefore α is an orthogonal basis. Applying the Gram-Schmidt process, we can generate an orthonormal basis $\beta=\{\frac{1}{\sqrt{2}},\frac{\sqrt{3}t}{\sqrt{2}}\}$.

Then according to Remark 16.3, we can have

$$T^*(g(t)) = \sum_{i=1}^n \overline{\langle T(v_i), g(t) \rangle} v_i.$$

With $T(\frac{1}{\sqrt{2}})=\frac{3}{\sqrt{2}}.$ And $T(\sqrt{\frac{3}{2}}t)=\sqrt{\frac{3}{2}}+3\sqrt{\frac{3}{2}}t..$ Therefore,

$$T^*(g(t)) = \frac{3}{2} \int_{-1}^{1} g(t)dt + \frac{3}{2}t \int_{-1}^{1} (1+3t)g(t)dt.$$

The given vector is f(t) = 4 - 2t. Hence the answer should be

$$T^*(4-2t) = 12 + 6t.$$

Done.

2 Section 6.3, Q13

Let T be a linear operator on a finite-dimensional vector space V. Prove the following results.

- (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
- (b) $rank(T) = rank(T^*)$. Deduce from (a) that $rank(TT^*) = rank(T)$.
- (c) For any $n \times n$ matrix A, $rank(A^*A) = rank(AA^*) = rank(A)$.

2.1 (a)

Note that $\forall x \in N(T)$,

$$T^*Tx = T^*(Tx) = T^*(0) = 0.$$

Therefore $x \in N(T^*T)$. Hence $N(T) \subset N(T^*T)$.

Forall $y \in N(T^*T)$, consider the norm of Ty:

$$||Ty||^2 = \langle Ty, Ty \rangle = \langle y, T^*Ty \rangle = \langle y, 0 \rangle = 0.$$

Which implies that Ty=0. Therefore $y\in N(T)$. Hence $N(T^*T)\subset N(T)$. Based on all above, $N(T^*T)=N(T)$.

Recall that $T \in \mathcal{L}(V)$. Hence $T: V \to V$. And according to $\forall y \in V$,

$$T^*(y) = \sum_{i=1}^n \overline{\langle T(v_i), y \rangle} v_i.$$

We know that $T^*: V \to V$. Therefore $T^*T: V \to V$.

Applying the rank nullity theorem, we have that

$$\dim V = rank(T^*T) + \dim N(T^*T) , \ \dim V = rank(T) + \dim N(T).$$

Using the just proved fact $N(T^*T) = N(T)$, we can simply deduce

$$rank(T^*T) = rank(T).$$

2.2 (b)

By changing name of the identity in (a), we can have $N(TT^*)=N(T^*)$ and $rank(TT^*)=rank(T^*).$

Notice that

$$rank(T) = rank[T]_{\beta} = rank[T]_{\beta}^* = rank[T^*]_{\beta} = rank(T^*).$$

And then $rank(TT^*) = rank(T)$ follows.

2.3 (c)

From (b), $rank(AA^*) = rank(A)$ follows naturally. And note that $(AA^*)^* = A^*A$, then

$$rank(AA^*) = rank(A^*A).$$

Therefore,

$$rank(AA^*) = rank(A^*A) = rank(A).$$

Done.

3 Section 6.3, Q14

Let V be an inner product space, and let $y, z \in V$. Define T: V \rightarrow V by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T* exists, and find an explicit expression for it.

First we would prove that T is linear. $\forall x_1, x_2 \in V, \forall c \in F$,

$$T(cx_1 + x_2) = \langle cx_1 + x_2, y \rangle z = \langle cx_1, y \rangle z + \langle x_2, y \rangle z = c \langle x_1, y \rangle z + \langle x_2, y \rangle z.$$

The equalities are deduced from the properties of inner product. And hence

$$T(cx_1 + x_2) = cT(x_1) + T(x_2).$$

Therefore, T is linear.

From course not we directly construct $\forall x \in V$,

$$T^*(x) = \sum_{i=1}^n \overline{\langle T(v_i), x \rangle} v_i = \sum_{i=1}^n \overline{\langle \langle v_i, y \rangle z, x \rangle} v_i = \overline{\langle z, x \rangle} \sum_{i=1}^n \overline{\langle v_i, y \rangle} v_i = \overline{\langle z, x \rangle} y.$$

Recall that $y = I(y) = I^*(y) = \sum_{i=1}^n \overline{\langle I(v_i), y \rangle} v_i = \sum_{i=1}^n \overline{\langle v_i, y \rangle} v_i$. Hence the last equality holds properly.

4 Section 6.3, Q15

Definition. Let $T: V \to W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. A function $T^*: W \to V$ is called an **adjoint** of T if $\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$ for all $x \in V$ and $y \in W$.

- **15.** Let $T: V \to W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. Prove the following results.
 - (a) There is a unique adjoint T* of T, and T* is linear.
 - (b) If β and γ are orthonormal bases for V and W, respectively, then $[\mathsf{T}^*]_{\gamma}^{\beta} = ([\mathsf{T}]_{\beta}^{\gamma})^*$.
 - (c) $\operatorname{rank}(T^*) = \operatorname{rank}(T)$.
 - (d) $\langle \mathsf{T}^*(x), y \rangle_1 = \langle x, \mathsf{T}(y) \rangle_2$ for all $x \in \mathsf{W}$ and $y \in \mathsf{V}$.
 - (e) For all $x \in V$, $T^*T(x) = 0$ if and only if T(x) = 0.

4.1 (a)

Define $g:V\to F$ by $g(x)=\langle T(x),y\rangle_2$. Obviously, note that g is linear for sure.

Then apply the theorem 6.8, there exists a unique vector $y' \in W$ such that

$$g(x) = \langle x, y' \rangle_1.$$

Recall g's definition, we have $\langle T(x), y \rangle_2 = \langle x, y' \rangle_1, \ \forall x \in V$.

Define that $T^*:W\to V$ by $T^*(y)=y'.$

Then we have $\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$.

Hence the wanted T^* function exists, and becasue the y' is "unique" as mentioned above (for any y), then the T^* is also unique.

Then we prove the linearity of T^* . $\forall y_1, y_2 \in W$ and $\forall c \in F$,

$$\langle x, T^*(cy_1 + y_2) \rangle_1 = \langle T(x), cy_1 + y_2 \rangle_2 = \langle x, cT^*(y_1) \rangle_1 + \langle x, T^*(y_2) \rangle_1$$

= $\langle x, cT^*(y_1) + T^*(y_2) \rangle_1, \forall x \in V.$

4

Therefore $T^*(cy_1 + y_2) = cT^*(y_1) + T^*(y_2)$. Hence T^* is linear.

4.2 (b)

For such kind of problem, we need to compare the two matrices entry wise. Denote $\beta = \{v_1, v_2, \dots, v_n\}, \gamma = \{w_1, w_2, \dots, w_m\}.$

Inspect
$$[T^*]_{\gamma}^{\beta} = [T^*(w_1), T^*(w_2), \dots, T^*(w_m)]_{\beta}$$
.

Note that
$$T^*(w_j) = \sum_{i=1}^n \overline{\langle v_i, T^*(w_j) \rangle_1} v_i, \ \forall j = 1, 2, \dots, m$$

From this we know that the i-th row, j-th column of $[T^*]_{\gamma}^{\beta}$ is $\overline{\langle v_i, T^*(w_j) \rangle_1}$.

Inspect
$$[T]^{\gamma}_{\beta} = [T(v_1), T(v_2), \dots, T(v_n)]_{\gamma}$$
.

Note that
$$T(v_i) = \sum_{k=1}^m \overline{\langle w_k, T(v_i) \rangle_2} w_k, \ \forall i = \underbrace{1, 2, \dots, n}$$
. Therefore, the i-th column, k-th row of $[T]_{\beta}^{\gamma} = \overline{\langle w_k, T(v_i) \rangle_2}$.

Hence, for $([T]^{\gamma}_{\beta})^*$, the i-th row, j-th column is $\langle w_j, T(v_i) \rangle_2$.

What remains to be done is to show

$$\langle w_j, T(v_i) \rangle_2 = \overline{\langle v_i, T^*(w_j) \rangle_1}.$$

This is equivalent to show $\overline{\langle w_j, T(v_i) \rangle_2} = \langle v_i, T^*(w_j) \rangle_1$.

Note that the L.H.S.= $\langle T(v_i), w_j \rangle_2$ =R.H.S. from the definition of T^* . Hence this is proved.

4.3 (c)