13-7 Writing Linear Equations

In the previous section, you were given a linear equation and asked to draw its graph. In this section you will be given information about a graph and asked to find an equation of the line described.

Example 1 Find an equation of each line described.

a. Slope =
$$-\frac{5}{3}$$
, y-intercept = 4

b. x-intercept =
$$-6$$
, y-intercept = 3

Solution

$$\mathbf{a.} \ y = mx + b$$
$$y = -\frac{5}{3}x + 4$$

b. Because the y-intercept is 3, you have b = 3. Because the points (-6, 0) and (0, 3) lie on the line,

slope =
$$\frac{3-0}{0-(-6)} = \frac{3}{6} = \frac{1}{2}$$
.

Since the slope is $\frac{1}{2}$, you have $m = \frac{1}{2}$.

Now substitute into the equation y = mx + b to get

$$y = \frac{1}{2}x + 3.$$

Both linear equations in Example 1 were written in slope-intercept form. This form is very easy to use if the y-intercept is given. If the y-intercept is not given, the point-slope form can be used.

Point-Slope Form Theorem 13-8

An equation of the line that passes through the point (x_1, y_1) and has slope m is

$$y - y_1 = m(x - x_1).$$

Proof:

Let (x, y) be any point on the line. Since the line also contains the point (x_1, y_1) the slope must, by definition, equal $\frac{y-y_1}{x-x_1}.$

slope =
$$m$$

$$(x, y)$$

$$x$$

$$(x_1, y_1)$$

From
$$m = \frac{y - y_1}{x - x_1}$$
,

we get

$$y - y_1 = m(x - x_1).$$