Volume and Surface Area of Solids Ex 20.B

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	h b	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	$4a^2$	4a²+ <mark>2</mark> a² or 6a²
Right circular cylinder	h	$\pi \mathrm{r}^{2}\mathrm{h}$	2πrh	2πrh + <mark>2πr²</mark> or 2πr(h+r)
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere		$\frac{4}{3}\pi r^3$	$4\pi { m r}^2$	$4\pi { m r}^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi { m r}^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

```
Volume of a cuboid = (Length \times Breadth \times Height) cubic units Total surface area = 2(lb+bh+lh) sq units Lateral surface area = [2(l+b) \times h] sq units (i) Length = 22 cm, breadth = 12 cm, height = 7.5 cm Volume = (Length \times Breadth \times Height) = (22 \times 12 \times 7.5) = 1980 cm³ Total surface area = 2(lb+bh+lh) = 2[(22 \times 12) + (22 \times 7.5) + (12 \times 7.5)] = 2[264+165+90] = 1038 cm² Lateral surface area = [2(l+b) \times h] = 2(22+12) \times 7.5 = 510 cm² (ii) Length = 15 m, breadth = 6 m, height = 9 dm = 0.9 m Volume = (Length \times Breadth \times Height) = (15 \times 6 \times 0.9) = 81 m³ Total surface area = 2(lb+bh+lh)
```

 $= 2[(15 \times 6) + (15 \times 0.9) + (6 \times 0.9)] = 2[90 + 13.5 + 5.4] = 217.8 \, m^2$

Lateral surface area $=[2(l+b) imes h]=2(15+6) imes 0.9=37.8~m^2$

```
(iii) Length = 24 m, breadth = 25 cm = 0.25 m, height = 6 m
 Volume = (Length \times Breadth \times Height) = (24 \times 0.25 \times 6) = 36 \text{ m}^3
 Total surface area = 2(lb + bh + lh)
 = 2[(24 \times 0.25) + (24 \times 6) + (0.25 \times 6)] = 2[6 + 144 + 1.5] = 303 \, m^2
 Lateral surface area =[2(l+b)	imes h]=2(24+0.25)	imes 6=291~m^2
 (iv) Length = 48 cm = 0.48 m, breadth = 6 dm = 0.6 m, height = 1 m
 Volume = (Length \times Breadth \times Height) = (0.48 \times 0.6 \times 1) = 0.288 \, m^3
 Total surface area
 =2(lb+bh+lh)=2[(0.48\times0.6)+(0.48\times1)+(0.6\times1)]=2[0.288+0.48+0.6]=2.736
Lateral surface area = [2(l+b) \times h] = 2(0.48+0.6) \times 1 = 2.16 \ m^2
Q2.
Answer:
1 m = 100 cm
Therefore, dimensions of the tank are:
2\ m\ 75\ cm 	imes\ 1\ m\ 80\ cm 	imes\ 1\ m\ 40\ cm = 275\ cm\ 	imes\ 180\ cm\ 	imes\ 140\ cm
\therefore Volume = Length~\times~Breadth\times~Height~=~275\times180\times140=6930000~cm^3
Also, 1000cm^3=1L
\therefore Volume = rac{6930000}{1000} = 6930~L
Q3.
Answer:
1m = 100cm
\therefore Dimensions of the iron piece = 105~cm \times 70~cm \times 1.5~cm
Total volume of the piece of iron = (105 \times 70 \times 1.5) = 11025 \ cm^3
1 cm3 measures 8 gms.
::Weight of the piece
=11025 \times 8 = 88200 \ g = \frac{88200}{1000} = 88.2 \ kg
                                                           (because\ 1\ kg\ =\ 1000\ g)
Q4.
Answer:
1\,cm\,=\,0.01\,m
Volume of the gravel used = Area \times Height = (3750 \times 0.01) = 37.5 \text{ m}^3
Cost of the gravel is Rs 6.40 per cubic meter.
: Total cost = (37.5 \times 6.4) = Rs 240
Q5.
 Answer:
 Total volume of the hall= (16 \times 12.5 \times 4.5) = 900 \ m^3
 It is given that 3.6 m^3 of air is required for each person.
```

The total number of persons that can be accommodated in that hall

 $= \frac{\text{Total volume}}{\text{Volume required by each person}} = \frac{900}{3.6}$

=250 people

Q6.

Answer:

Volume of the cardboard box = $\left(120 \times 72 \times 54\right) = 466560~cm^3$

Volume of each bar of soap= $\left(6 \times 4.5 \times 4\right) = 108 \ cm^3$

Total number of bars of soap that can be accommodated in that box $= \frac{\text{Volume of the box}}{\text{Volume of each soap}} = \frac{466560}{108} = 4320 \text{ bars}$

Q7.

Answer:

Volume occupied by a single matchbox= $\left(4 \times 2.5 \times 1.5\right) = 15~cm^3$

Volume of a packet containing 144 matchboxes = $\left(15 \times 144\right) = 2160~cm^3$

Volume of the carton= $\left(150 \times 84 \times 60\right) = 756000~cm^3$

Total number of packets is a carton= $\frac{\text{Volume}}{\text{Volume}} \frac{\text{of the carton}}{\text{of a packet}} = \frac{75600}{2160} = 350 \text{ packets}$

Q8.

Answer:

Total volume of the block $= \left(500 \times 70 \times 32\right) = 1120000 \ cm^3$

Total volume of each plank = $200 \times 25 \times 8 = 40000$ $cm^3 = 200 \times 25 \times 8 = 40000$ cm^3

Q9.

Answer:

Volume of the brick $=25\times13.5\times6=2025~cm^3$ Volume of the wall $=800\times540\times33=14256000~cm^3$

Total number of bricks $= rac{ extbf{Volume}}{ extbf{Volume}} rac{ ext{of}}{ ext{the}} rac{ extbf{the}}{ ext{brick}} = rac{14256000}{2025} = 7040 ext{ bricks}$

Q10.

Volume of the wall= $1500 \times 30 \times 400 = 18000000 \ cm^3$ Total quantity of mortar $= rac{1}{12} imes 18000000 = 1500000 \ cm^3$ \therefore Volume of the bricks= 18000000-1500000=16500000 cm^3

Volume of a single brick= $22 \times 12.5 \times 7.5 = 2062.5 \ cm^3$

$$\text{ .. Total number of bricks} = \frac{\text{Total } \text{ } \text{volume } \text{ } \text{of } \text{ } \text{the } \text{ } \text{bricks}}{\text{Volume } \text{ } \text{of } \text{ } \text{a } \text{ } \text{single } \text{ } \text{brick}} = \frac{16500000}{2062.5} = 8000 \text{ } \text{bricks}$$

Q11.

Answer:

Volume of the cistern $= 11.2 \times 6 \times 5.8 = 389.76 \ m^3 = 389.76 \times 1000 = 389760$ litres

Area of the iron sheet required to make this cistern = Total surface area of the cistern $= 2(11.2 \times 6 + 11.2 \times 5.8 + 6 \times 5.8) = 2(67.2 + 64.96 + 34.8) = 333.92 \text{ cm}^2$

Q12.

Answer:

Volume of the block= $0.5 \ m^3$

We know:

$$1\,hectare = 10000\,m^2$$
 Thickness= $\frac{\text{Volume}}{\text{Area}} = \frac{0.5}{10000} = 0.00005\,\text{m} = 0.005\,\text{cm} = 0.05\,\text{mm}$

Q13.

Answer:

Rainfall recorded = 5 cm = 0.05 m

Area of the field = 2 hectare = $\,2 \times 10000~m^2~=~20000~m^2$

Total rain over the field =

Area of the field \times Height of the field $=0.05\times\,20000\,=\,1000\,\text{m}^3$

Q14.

Answer:

Area of the cross-section of river $=45 imes 2 = 90~m^2$

Rate of flow=
$$3~$$
 km/ $_{hr}=\frac{3\times1000}{60}=50~\frac{m}{min}$

Volume of water flowing through the cross-section in one minute $=90 \times 50 = 4500~m^3$ per minute

Q15.

Answer:

Let the depth of the pit be d m.

 ${\rm Volume} \ = \ {\rm Length} \ \times \ {\rm width} \ \times \ {\rm depth} \ = \ 5 \ {\rm m} \ \times \ 3.5 \ {\rm m} \times \ d \ m$

Given volume = 14 m³
$$\cdot\cdot\cdot$$
 Depth = $\frac{14}{length} \times \frac{14}{s} = \frac{14}{5 \times 3.5} = 0.8 m$ = 80 cm

Q16.

Answer:

Capacity of the water tank $=576\ litres=0.576\ m^3$ Width = 90 cm = 0.9 m Depth = 40 cm = 0.4 m

Length =
$$=\frac{\mathrm{capacity}}{\mathrm{width} \times \mathrm{depth}} = \frac{0.576}{0.9 \times 0.4} = 1.600~\mathrm{m}$$

Q17.

Answer:

Volume of the beam $= 1.35 \ m^3$

Length = 5 m

Thickness = 36 cm = 0.36 m

Width = =
$$\frac{\text{volume}}{\text{thickness} \times \text{length}} = \frac{1.35}{5 \times 0.36} = 0.75 \ m = 75 \ cm$$

Q18.

Answer:

 $\textit{Volume} = \mathbf{height} \times \mathbf{area}$

Given:

Volume = 378 m^3

Area = 84 m^2

$$\therefore$$
 Height $=\frac{\text{volume}}{\text{area}}=\frac{378}{84}=4.5 \text{ m}$

Q19.

Answer:

Length of the pool = 260 m Width of the pool = 140 m

Volume of water in the pool = 54600 cubic metres

$$\therefore$$
 Height of water $=\frac{volume}{length\times width}=\frac{54600}{260\times 140}=1.5$ metres

Q20.

Answer:

External length = 60 cm

External width = 45 cm

External height = 32 cm

External volume of the box= $60 \times 45 \times 32 = 86400 \text{ cm}^3$

Thickness of wood = 2.5 cm

 $_{\cdot\cdot}$ Internal length $=60-\left(2.5\times2\right)=55$ cm

Internal width $=45- \mbox{(2.5} \times \mbox{2)} = 40 \mbox{ cm}$

Internal height $=32-(2.5\times2)=27$ cm

Internal volume of the box= $55 \times 40 \times 27 = 59400 \, cm^3$

Volume of wood = External volume - Internal volume = $86400 - 59400 = 27000 \, \mathrm{cm}^3$

Q21.

```
Answer:
```

External length = 36 cm

External width = 25 cm

External height = 16.5 cm

External volume of the box= $36 \times 25 \times 16.5 = 14850 \, \mathrm{cm}^3$

Thickness of iron = 1.5 cm

 \therefore Internal length =36-(1.5 imes2)=33 cm

Internal width $=25-(1.5\times2)=22$ cm

Internal height $=16.5-\ 1.5=15\ \text{cm}$ (as the box is open)

Internal volume of the box = $33 \times 22 \times 15 = 10890 \text{ cm}^3$

Volume of iron = External volume – Internal volume = $\,14850\,-\,10890\,=\,3960\,cm^3$

Given

 $1\,\mathrm{cm}^3$ of iron $=8.5\,\mathrm{grams}$

Total weight of the box $=3960 \times 8.5 = 33660 \ \mathrm{grams} = 33.66 \ \mathrm{kilograms}$

Q22.

Answer:

External length = 56 cm

External width = 39 cm

External height = 30 cm

External volume of the box= $56 \times 39 \times 30 = 65520 \, \mathrm{cm}^3$

Thickness of wood = 3 cm

 \therefore Internal length $= 56 - (3 \times 2) = 50$ cm

Internal width $=39-(3\times2)=33$ cm

Internal height =30-(3 imes2)=24 cm

Capacity of the box = Internal volume of the box = $\,50\,\times\,33\,\times\,24\,=\,39600~cm^3$

Volume of wood = External volume – Internal volume = $65520-39600=25920~\mathrm{cm}^3$

Q23.

Answer:

External length = 62 cm

External width = 30 cm

External height = 18 cm

 \therefore External volume of the box= $62 \times 30 \times 18 = 33480 \ cm^3$

Thickness of the wood = 2 cm

Now, internal length $=62-(2\times2)=58$ cm

Internal width $=30-(2\times2)=26$ cm

Internal height $= 18 - (2 \times 2) = 14$ cm

: Capacity of the box = internal volume of the box= $\left(58 \times 26 \times 14\right)$ $cm^3 = 21112$ cm^3

Q24.

External length = 80 cm External width = 65 cm External height = 45 cm

 \therefore External volume of the box= $80 \times 65 \times 45 = 234000 \ cm^3$

Thickness of the wood = 2.5 cm

Then internal length= $80-(2.5\times2)=75$ cm Internal width = $65-(2.5\times2)=60$ cm Internal height = $45-(2.5\times2)=40$ cm

Capacity of the box = internal volume of the box= $(75 \times 60 \times 40)~cm^3 = 180000~cm^3$

Volume of the wood = external volume – internal volume = $\left(234000-180000\right)$ $cm^3=54000$ cm^3

It is given that 100 cm³ of wood weighs 8 g.

 \therefore Weight of the wood $=\frac{54000}{100}\times 8~g=4320~g=4.32~kg$

Q25.

Answer:

(i) Length of the edge of the cube = a = 7 m

Now, we have the following:

Volume=
$$a^3 = 7^3 = 343 \ m^3$$

Lateral surface area $=4a^2=4 imes7 imes7=196~m^2$

Total Surface area $= 6a^2 = 6 \times 7 \times 7 = 294 \ m^2$

(ii) Length of the edge of the cube = a = 5.6 cm

Now, we have the following:

Volume=
$$a^3 = 5.6^3 = 175.616 \ cm^3$$

Lateral surface area $=4a^2=4 imes5.6 imes5.6=125.44~cm^2$

Total Surface area $=6a^2=6 imes5.6 imes5.6=188.16~cm^2$

(iii) Length of the edge of the cube = a = 8 dm 5 cm = 85 cm

Now, we have the following:

Volume= $a^3 = 85^3 = 614125 \ cm^3$

Lateral surface area $=4a^2=4 imes85 imes85=28900~cm^2$

Total Surface area $=6a^2=6 imes85 imes85=43350~cm^2$

Q26.

Answer:

Let a be the length of the edge of the cube.

Total surface area $=6a^2=1176\ cm^2$

$$\Rightarrow a = \sqrt{\frac{1176}{6}} = \sqrt{196} = 14 \ cm$$

$$\therefore$$
 Volume= $a^3=14^3=2744~cm^3$

Q27.

Answer:

Let a be the length of the edge of the cube.

Then volume $= a^3 = 729 \ cm^3$

Also,
$$a = \sqrt[3]{729} = 9 \ cm$$

:: Surface area
$$=6a^2=6 imes9 imes9=486~cm^2$$

Q28.

1 m = 100 cm

Volume of the original block $= 225 \times 150 \times 27 = 911250 \ cm^3$

Length of the edge of one cube = 45 cm

Then volume of one cube $=45^3=91125\ cm^3$

 $\text{$: $Total number of blocks that can be cast} = \frac{\text{volume}}{\text{volume}} \, \, \frac{\text{of}}{\text{of}} \, \, \frac{\text{the}}{\text{block}} = \frac{911250}{91125} = 10$

Q29.

Answer:

Let a be the length of the edge of a cube.

Volume of the cube $=a^3$

Total surface area $=6a^2$

If the length is doubled, then the new length becomes 2a.

Now, new volume $=\left(2a\right)^3=8a^3$

Also, new surface area== $6ig(2aig)^2=6 imes 4a^2=24a^2$

.: The volume is increased by a factor of 8, while the surface area increases by a factor of 4.

Q30.

Answer:

Cost of wood = Rs $500/m^3$

Cost of the given block = Rs 256

 \therefore Volume of the given block $= a^3 = \frac{256}{500} = 0.512~m^3~=~512000~cm^3$

Also, length of its edge = a = $\sqrt[3]{0.512} = 0.8~m$ = 80 cm

Volume and Surface Area of Solids Ex 20.A

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	b l	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	$4a^2$	4a²+ <mark>2a²</mark> or 6a²
Right circular cylinder	h	$\pi \mathrm{r}^{2}\mathrm{h}$	2πrh	$2\pi rh + \frac{2\pi r^2}{or}$ $2\pi r(h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere		$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi {\rm r}^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi { m r}^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

Volume of a cylinder = $\pi r^2 \, h$

Lateral surface $=2\pi rh$

Total surface area $=2\pi r(h+r)$

(i) Base radius = 7 cm; height = 50 cm

Now, we have the following:

 $\begin{array}{l} \text{Volume} = \frac{22}{7} \times 7 \times 7 \times 50 = 7700 \ \textit{cm}^3 \\ \text{Lateral surface area} = 2\pi \textit{rh} = 2 \times \frac{22}{7} \times 7 \times 50 = 2200 \ \textit{cm}^2 \end{array}$

Total surface area = $2\pi r(h+r) = 2 \times \frac{22}{7} \times 7(50+7) = 2508 \ cm^2$

(ii) Base radius = 5.6 m; height = 1.25 m

Now, we have the following:

 $\text{Volume} = \frac{22}{7} \times 5.6 \times 5.6 \times 1.25 = 123.2 \ m^3$

Lateral surface area $=2\pi rh$ $=2 imesrac{22}{7} imes5.6 imes1.25=44~m^2$

Total surface area $=2\pi r(h+r)=\overset{'}{2}\times \frac{22}{7}\times 5.6(1.25+5.6)=241.12~m^2$

(iii) Base radius = 14 dm = 1.4 m, height = 15 m

Now, we have the following:

 $\text{Volume} = \tfrac{22}{7} \times 1.4 \times 1.4 \times 15 = 92.4 \ m^3$

Lateral surface area $=2\pi r\hbar\!\!=2\times\frac{22}{7}\times1.4\times15=132~m^2$

Total surface area $=2\pi r(h+r)=\overset{'}{2}\times \frac{22}{7}\times 1.4(15+1.4)=144.32~cm^2$

```
Q2.
```

$$r = 1.5 \text{ m}$$

$$h = 10.5 \,\mathrm{m}$$

Capacity of the tank = volume of the tank = $\pi r^2 h = \frac{22}{7} \times 1.5 \times 1.5 \times 10.5 = 74$

We know that $1 \text{ m}^3 = 1000 \text{ L}$

 $\therefore 74.25 \text{ m}^3 = 74250 \text{ L}$

Q3.

Answer:

Height = 7 m

Radius = 10 cm = 0.1 m

Volume= $\pi r^2 h = \frac{22}{7} \times 0.1 \times 0.1 \times 7 = 0.22~m^3$

Weight of wood = 225 kg/m^3

 $\scriptstyle ::$ Weight of the pole= $0.22 \times 225 = 49.5~\textit{kg}$

Q4.

Answer:

Diameter = 2r = 140 cm

i.e., radius, r = 70 cm = 0.7 m

Now, volume $=\pi r^2 h = 1.54 \text{ m}^3$

$$\Rightarrow \frac{22}{7} \times 0.7 \times 0.7 \times h = 1.54$$

$$h = \frac{1.54 \times 7}{0.7 \times 0.7 \times 22} = \frac{154 \times 7}{154 \times 7} = 1 \ m$$

Q5.

Answer:

Volume = $\pi r^2 h = 3850 \text{ cm}^3$

Height = 1 m =100 cm

Now, radius,
$$r=\sqrt{rac{3850}{\pi imes h}}=\sqrt{rac{3850 imes 7}{22 imes 100}}=1.75 imes 7=3.5~cm$$

 \therefore Diameter =2(radius) = $2 \times 3.5 = 7$ cm

Q6.

Answer:

Diameter = 14 m

Radius
$$= rac{14}{2} = 7~m$$

Height = 5 m

: Area of the metal sheet required = total surface area

$$= 2\pi \mathbf{r} \left(\mathbf{h} + \mathbf{r} \right)$$

$$= 2 \times \frac{22}{7} \times 7 \left(5 + 7 \right) m^2$$

$$= 44 \times 12 m^2$$

$$= 528 m^2$$

Q7.

Answer:

Circumference of the base = 88 cm

Height = 60 cm

Area of the curved surface $= circumference imes height = 88 imes 60 = 5280 \ cm^2$

Circumference
$$=2\pi r=88~cm$$

Then radius=
$$r = \frac{88}{5} = \frac{88 \times 7}{5} = 14 \ cm$$

Then radius= $r=\frac{88}{2\pi}=\frac{88\times7}{2\times22}=14~cm$:: Volume= $\pi r^2 h=\frac{22}{7}\times14\times14\times60=36960~cm^3$

Q8.

Answer:

Length = height = 14 m Lateral surface area $= 2\pi r h = 220~m^2$ Radius = $r = \frac{220}{2\pi \mathbf{h}} = \frac{220 \times 7}{2 \times 22 \times 14} = \frac{10}{4} = 2.5 \ m$ \therefore Volume= $\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 2.5 \times 2.5 \times 14 = 275 \ m^3$

Q9.

Answer:

Volume=
$$\pi r^2 h = 1232 \,\, \mathrm{cm}^3$$

Now, radius= $r=\sqrt{rac{1232}{\pi h}}=\sqrt{rac{1232 imes 7}{22 imes 8}}=\sqrt{49}=7 cm$

Also, curved surface area $=2\pi rh=2 imes rac{22}{7} imes 7 imes 8=352$ cm^2

∴ Total surface area

$$= 2\pi r \left(h + r \right) = \left(2 \times \frac{22}{7} \times 7 \times 8 \right) + \left(2 \times \frac{22}{7} \times (7)^2 \right) = 352 + 308 = 660 \text{ cm}^2$$

Q10.

Answer:

We have:
$$rac{radius}{height}=rac{7}{2}$$
 i.e., $m{r}=rac{7}{2}\,m{h}$

i.e.,
$$r=rac{7}{2}h$$

Now, volume
$$= \pi \mathbf{r}^2 \mathbf{h} = \pi \left(\frac{7}{2} \mathbf{h}\right)^2 \mathbf{h} = 8316 \text{ cm}^3$$

 $\Rightarrow \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times h^3 = 8316$

$$\Rightarrow h^3 = \frac{8316 \times 2}{11 \times 7} = 108 \times 2 = 216$$

$$\Rightarrow h = \sqrt[3]{216} = 6 \ cm$$

Then
$$r=rac{7}{2}\,h=rac{7}{2} imes 6=21\,cm$$

$$\therefore$$
 Total surface area $=2\pi {
m r}\Big(h+r\Big)=2 imes rac{22}{7} imes 21 imes \Big(6+21\Big)=3564~{
m cm}^2$

Q11.

Answer:

Curved surface area $=2\pi rh=4400~cm^2$

 $\text{Circumference} = 2\pi r = 110~\text{cm}$

Now, height=
$$h = \frac{curved\ surface\ area}{circumference} = \frac{4400}{110} = 40\ cm$$

Also, radius,
$$m{r}=rac{4400}{2\pi \mathbf{h}}=rac{4400 imes 7}{2 imes 22 imes 40}=rac{35}{2}$$

$$\cdot\cdot$$
 Volume= $\pi r^2 h = \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times 40 = 22 \times 5 \times 35 \times 10 = 38500~cm^3$

Q12.

Answer:

For the cubic pack: Length of the side, a = 5 cm Height = 14 cm $Volume = a^2h = 5 \times 5 \times 14 = 350 \ cm^3$

For the cylindrical pack:

Base radius = r = 3.5 cm

Height = 12 cm

Volume= $\pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 12 = 462 \text{ cm}^3$

We can see that the pack with a circular base has a greater capacity than the pack with a square base. Also, difference in volume= $462-350=112~cm^3$

Q13.

Answer:

Diameter = 48 cm Radius = 24 cm = 0.24 m Height = 7 m

Now, we have:

Lateral surface area of one pillar= $\pi dh = \frac{22}{7} \times 0.48 \times 7 = 10.56 \text{ m}^2$ Surface area to be painted = total surface area of 15 pillars = $10.56 \times 15 = 158.4 \text{ m}^2$ \therefore Total cost= $Rs \ (158.4 \times 2.5) = Rs \ 396$

Q14.

Answer:

Volume of the rectangular vessel = $22 \times 16 \times 14 = 4928~cm^3$ Radius of the cylindrical vessel = 8 cm Volume= $\pi {\tt T}^2 h$

As the water is poured from the rectangular vessel to the cylindrical vessel, we have: Volume of the rectangular vessel = volume of the cylindrical vessel

.. Height of the water in the cylindrical vessel= $\frac{volume}{\pi r^2}=\frac{4928\times7}{22\times8\times8}=\frac{28\times7}{8}=\frac{49}{2}=24.5~cm$

O15.

Answer:

Diameter of the given wire = 1 cm

Radius = 0.5 cm

Length = 11 cm

Now, volume= $\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 0.5 \times 0.5 \times 11 = 8.643 \ cm^3$

The volumes of the two cylinders would be the same.

Now, diameter of the new wire = 1 mm = 0.1 cm

Radius = 0.05 cm

 \cdot New length $= rac{ ext{volume}}{ ext{rt}^2} = rac{8.643 imes 7}{22 imes 0.05 imes 0.05} = 1100.02 \ cm \cong$ 11 m

Q16.

Answer:

Length of the edge, a = 2.2 cmVolume of the cube $= a^3 = (2.2)^3 = 10.648 \text{ cm}^3$ Volume of the wire= $\pi r^2 h$ Radius = 1 mm = 0.1 cm As volume of cube = volume of wire, we have:

$$h = \frac{volume}{\pi r^2} = \frac{10.648 \times 7}{22 \times 0.1 \times 0.1} = 338.8 \text{ cm}$$

Q17.

Diameter = 7 m

Radius = 3.5 m

Depth = 20 m

Volume of the earth dug out $= \pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 20 = 770 \text{ m}^3$ Volume of the earth piled upon the given plot= $28 \times 11 \times h = 770 \text{ m}^3$

$$h = \frac{770}{28 \times 11} = \frac{70}{28} = 2.5 m$$

Q18.

Answer:

Inner diameter = 14 m

i.e., radius = 7 m

Depth = 12 m

Volume of the earth dug out= $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 12 = 1848~m^3$

Width of embankment = 7 m

Now, total radius = 7 + 7 = 14 m

 $\label{eq:Volume} \mbox{Volume of the embankment} = \mbox{total volume} \ - \ \mbox{inner volume}$

$$=\pi {r_0}^2 h - \pi {r_i}^2 h = \pi h \big({r_0}^2 - {r_i}^2 \big)$$

$$=\frac{22}{7} h (14^2 - 7^2) = \frac{22}{7} h (196 - 49)$$

$$= \frac{22}{7} \mathbf{h} \times 147 = 21 \times 22 \mathbf{h}$$

 $=462 \times h m^3$

Since volume of embankment = volume of earth dug out, we have:

$$1848 = 462 \, h$$

$$\Rightarrow h = \frac{1848}{462} = 4 \; m$$

∴ Height of the embankment = 4 m

Q19.

Answer:

Diameter = 84 cm

i.e., radius = 42 cm

Length = 1 m = 100 cm

Now, lateral surface area $=2\pi rh=2\times\frac{22}{7}\times42\times100=26400~cm^2$

:. Area of the road

= lateral surface area \times no. of rotations = $26400 \times 750 = 19800000~\text{cm}^2 = 1980~\text{m}^2$

Q20.

Answer:

Thickness of the cylinder = 1.5 cm

External diameter = 12 cm

i.e., radius = 6 cm

also, internal radius = 4.5 cm

Height = 84 cm

Now, we have the following:

Total volume= $\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 84 = 9504 \text{ cm}^3$

Inner volume = $\pi r^2 h = \frac{22}{7} \times 4.5 \times 4.5 \times 84 = 5346 \text{ cm}^3$

Now, volume of the metal = total volume – inner volume $= 9504 - 5346 = 4158 \ cm^3$

 \therefore Weight of iron $=4158 \times 7.5=31185~\mathrm{g}=31.185~\mathrm{kg}$ [Given: $1~\mathrm{cm}^3=7.5\mathrm{g}$]

Q21.

Length = 1 m = 100 cm
Inner diameter = 12 cm
Radius = 6 cm
Now, inner volume= $\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 100 = 11314.286 \ cm^3$
Thickness = 1 cm
Total radius = 7 cm

Now, we have the following:

Total volume= $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 100 = 15400 \ cm^3$

Volume of the tube = total volume - inner volume = 15400 - 11314.286 = 4085.714 cm^3

Density of the tube = 7.7 g/cm^3

:: Weight of the tube = $volume \times density = 4085.714 \times 7.7 = 31459.9978~g = 31.459~kg$

Volume and Surface Area of Solids Ex 20.C

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	h	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	4a²	4a²+2a² or 6a²
Right circular cylinder	h	$\pi r^2 h$	2πrh	$2\pi rh + \frac{2\pi r^2}{or}$ $2\pi r(h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere		$-\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

(b) 17

Length of the diagonal of a cuboid $=\sqrt{l^2+b^2+h^2}$

Q2.

Answer:

(b) $125 \ cm^3$

Total surface area $=6a^2=150~cm^2$, where a is the length of the edge of the cube. $\Rightarrow 6a^2=150$ $\Rightarrow a=\sqrt{\frac{150}{6}}=\sqrt{25}=5~cm$ $\therefore \mbox{Volume}=a^3=5^3=125~cm^3$

Q3.

(c) $294~cm^2$

$$\begin{array}{l} \text{Volume}=a^3=343\ cm^3\\ \Rightarrow a=\sqrt[3]{343}=7\ cm\\ \therefore \text{ Total surface area}=6a^2=6\times7\times7=294\ cm^2 \end{array}$$

Q4.

Answer:

(c) $294~cm^2$

$$\begin{array}{l} \text{Volume} = a^3 = 343~cm^3 \\ \Rightarrow a = \sqrt[3]{343} = 7~cm \\ \therefore \text{ Total surface area} = 6a^2 = 6\times7\times7 = 294~cm^2 \end{array}$$

Q5.

Answer:

(c) 6400

Volume of each brick=
$$25 \times 11.25 \times 6 = 1687.5 \ cm^3$$
 Volume of the wall= $800 \times 600 \times 22.5 = 10800000 \ cm^3$ \therefore No. of bricks = $\frac{10800000}{1687.5} = 6400$

Q6.

Answer:

(c) 1000

Volume of the smaller cube =
$$\left(10~cm\right)^3 = 1000~cm^3$$

Volume of box = $\left(100~cm\right)^3 = 1000000~cm^3$ [1 m = 100 cm]
 \therefore Total no. of cubes = $\frac{100\times100\times100}{10\times10\times10} = 1000$

Q7.

Answer:

(a) $48 \ cm^3$

Let \boldsymbol{a} be the length of the smallest edge.

Then the edges are in the proportion a: 2a: 3a.

Now, surface area
$$=2\left(a\times2a+a\times3a+2a\times3a\right)=2\left(2a^2+3a^2+6a^2\right)=22a^2=88\ cm^2$$

$$\Rightarrow a = \sqrt{rac{88}{22}} = \sqrt{4} = 2$$

Also, 2a = 4 and 3a = 6

 \therefore Volume= $a \times 2a \times 3a = 2 \times 4 \times 6 = 48 \ cm^3$

Q8. Answer: (b) 1:9 $\frac{\text{Volume }1}{\text{Volume }2} = \frac{1}{27} = \frac{a^3}{b^3}$ $\Rightarrow a = \frac{b}{\sqrt[3]{27}} = \frac{b}{3} \text{ or } b = 3a \text{ or } \frac{b}{a} = 3$ Now, $\frac{\text{surface area }1}{\text{surface area }2} = \frac{6a^2}{6b^2} = \frac{a^2}{b^2} = \frac{\left(b/3\right)^2}{b^2} = \frac{1}{9}$ \therefore Ratio of the surface areas = 1:9Q9. Answer: (c) 164 sq cm Surface area = $2(10 \times 4 + 10 \times 3 + 4 \times 3) = 2(40 + 30 + 12) = 164 \text{ cm}^2$ Q10. Answer: (c) 36 kg Volume of the iron beam $= 9 imes 0.4 imes 0.2 = 0.72 \ \emph{m}^3$ \therefore Weight= $0.72 \times 50 = 36~kg$ Q11. Answer: (a) 2 m 42000 L = 42 m³ $\mathbf{Volume} = \mathbf{lbh}$ $\therefore \text{ Height } \left(h\right) = \frac{\text{volume}}{lb} = \frac{42}{6 \times 3.5} = \frac{6}{6 \times 0.5} = 2 \ m$ Q12. Answer: (b) 88 Volume of the room= $10 \times 8 \times 3.3 = 264~m^3$ One person requires 3 m³. \therefore Total no. of people that can be accommodated $=\frac{264}{3}=88$ Q13. Answer: (a) 30000 $\mathbf{Volume} = 3 \times 2 \times 5 = 30 \ m^3 = 30000 \ \mathbf{L}$ Q14. Answer: (b) $1390 \ cm^2$ Surface area = $2(25 \times 15 + 15 \times 8 + 25 \times 8) = 2(375 + 120 + 200) = 1390 \text{ cm}^2$

Q15.

Answer:

(d) $64\ cm^2$

Diagonal of the cube= $a\sqrt{3}=4\sqrt{3}~cm$ i.e., a = 4 cm \therefore Volume= $a^3=4^3=64~cm^3$

Q16.

(b) 486 sq cm

Diagonal =
$$\sqrt{3}a \ cm = 9\sqrt{3}cm$$

i.e., a = 9

 \therefore Total surface area $=6a^2=6 imes81=486~cm^2$

Q17.

Answer:

(d) If each side of the cube is doubled, its volume becomes 8 times the original volume.

Let the original side be a units.

Then original volume = a^3 cubic units

Now, new side = 2a units

Then new volume = $(2a)^3$ sq units = 8 a^3 cubic units

Thus, the volume becomes 8 times the original volume.

Q18.

Answer:

(b) becomes 4 times.

Let the side of the cube be a units.

Surface area = $6a^2$ sq units

Now, new side = 2a units

New surface area = $6(2a^2)$ sq units = $24a^2$ sq units.

Thus, the surface area becomes 4 times the original area.

Q19.

Answer:

(a) 12 cm

Total volume
$$=6^3+8^3+10^3=216+512+1000=1728~cm^3$$
 \therefore Edge of the new cube $=\sqrt[3]{1728}=12~cm$

Q20.

Answer:

(d) $625~cm^3$

Length of the cuboid so formed = 25 cm

Breadth of the cuboid = 5 cm

Height of the cuboid = 5 cm

 \therefore Volume of cuboid= $25 \times 5 \times 5 = 625 \ cm^3$

Q21.

Answer:

(d) 44 m³

Diameter = 2 m

Radius = 1 m

Height = 14 m

$$\therefore$$
 Volume = $\pi r^2 h = \frac{22}{7} \times 1 \times 1 \times 14 = 44 \text{ m}^3$

Q22.

(b) 12 m

Diameter = 14 m

Radius = 7 m

Volume = 1848 m^3

Now, volume = $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times h = 1848 \text{ m}^3$

$$\therefore$$
 h = $\frac{1848}{22 \times 7}$ = 12 **m**

Q23.

Answer:

(c) 4:3

Here,

Q24.

Answer:

(d) 640

Total no. of coins =
$$\frac{\text{volume of cylinder}}{\text{volume of each coin}} = \frac{\pi \times 3 \times 3 \times 8}{\pi \times 0.75 \times 0.75 \times 0.2} = 640$$

Q25.

Answer:

Length =
$$\frac{\text{volume}}{\pi r^{2}} = \frac{66 \times 7}{22 \times 0.05 \times 0.05} = 8400 \ cm = 84 \ m$$

Q26.

Answer:

Volume=
$$\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 5 \times 5 \times 14 = 1100 \ \mathbf{cm}^3$$

Q27.

Answer:

(a) 1837 cm²

Diameter = 7 cm

Radius =3.5 cm

Height = 80 cm

$$\therefore$$
 Total surface area $=2\pi r\Big(r+h\Big)=2 imes rac{22}{7} imes 3.5\Big(3.5+80\Big)=22\Big(83.5\Big)=1837$ cm²

Q28.

Answer:

Here, curved surface area
$$= 2\pi rh = 264 \, \, cm^3$$

$$\Rightarrow r = \frac{264 \times 7}{2 \times 22 \times 14} = 3 \ cm$$

$$\therefore$$
 Volume = $\pi r^2 h = \frac{22}{7} \times 3 \times 3 \times 14 = 396 \text{ cm}^3$

Q29.

(a) 770 cm³

Diameter = 14 cm

Radius = 7 cm

$$\Rightarrow h = \frac{220 \times 7}{2 \times 22 \times 7} = 5 \ cm$$

Now, curved surface area =
$$2\pi rh = 220 \text{ cm}^2$$

 $\Rightarrow h = \frac{220 \times 7}{2 \times 22 \times 7} = 5 \text{ cm}$
 $\therefore \text{ Volume} = \pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 5 = 770 \text{ cm}^3$

Q30.

Answer:

(c) 20:27

We have the following:

$$\frac{r_1}{r_2} = \frac{r_2}{r_2}$$

$$\frac{h_1}{h_2} = \frac{5}{3}$$

$$\frac{r_1}{r_2} = \frac{2}{3}$$

$$\frac{h_1}{h_2} = \frac{5}{3}$$

$$\therefore \frac{V_1}{V_2} = \frac{\pi r_1^2 h_1}{\pi r_2^2 h_2} = \frac{20}{27}$$