Bases de Datos Distribuidas

BDD=Colección de múltiples bases de datos, lógicamente interrelacionadas y distribuidas a través de una red de computadores [1] DDBMS=sistema de software que permite la administración de una BDD y hace transparente la distribución a los usuarios [1] DDBS=DDBMS+BDD DBE=BD+DBMS[2] DDBE=BDD+DDBMS[2]

Ventajas

Estructura = Estructura Organizacional Control sobre datos locales Tolerancia a Fallos Rendimiento (paralelismo, distribución, balanceo de carga) Economía (más servidores de menor precio) Modularidad (facilidad para agregar o quitar componentes) Transparencia en localización de los datos

Desventajas

Complejidad (transparencia, distribución, diseño) Mayor necesidad de mano de obra Seguridad (red, administración, dbms heterogéneos) Integridad (mayor dificultad, fallos) Recuperación (mayor dificultad ante fallos) Know-how escaso Pocos standards en BDD Diseño BDD más complejo y propenso a errores

Arquitecturas SGBDD

- Repaso
 - Apunte Arquitecturas: monousuario, file-server, client-server, 3-tier, n-tier

Arquitectura base: client-server, 2-tier
TP chat socket TCP/IP
TP productor/consumidor TCP/IP

Arquitecturas CDBE ANSI/SPARC

Arquitecturas DDBE ANSI/SPARC

Ejemplo DDBE

Figure 1.7 Example of the possible deployment of an organization's CDBEs.

Arq. Generica de Soft. DDBE

Figure 1.12 Generic DDBE software architecture.

Transparencia

Grado de ocultamiento de la distribución al usuario final

- Localización (consulta de tablas como si fueran locales)
- Fragmentación (la tabla se percibe como completa y local)
- Replicación (la tabla se percibe como si hubiera una unica copia de la misma)

Diseño – Enfoque Top-Down

Enfoque Top-Down

Requerimientos->Diseño Conceptual Global->Diseño Fragmentación->Diseño Conceptual Local->Diseño Lógico Local->Diseño Físico Local

Muy usado para sistemas nuevos, BDD homogéneas

Diseño – Enfoque Top-Down

Figure 12.1 Top-down information architecture design.

Diseño Soft. – Enfoque Top-Down

Figure 1.10 Top-down DDBE software architecture.

Diseño – Enfoque Bottom-Up

Enfoque Bottom-Up
 Integrar DBMS's existentes dentro de DDBE.
 Muy usado para sistemas existentes, BDD heterogéneas, con necesidad de integración.

Diseño - Bottom-Up

Figure 12.2 Bottom-up information architecture design.

Diseño Soft. – Bottom-Up

Figure 1.11 Bottom-up DDBE software architecture.

Arquitectura BD Federada (BDF)

DDBE formado por N sub-DBE's Cada sub-DBE es:

- Autónomo
- Soporta acceso por fuera del DBE
- Puede ser Relacional, Jerárquico, Red, Objetos, etc

Arquitectura BD No-Federada (BDNF)

DDBE formado por N sub-DBE's Cada sub-DBE es:

- NO Autónomo
- NO Soporta acceso por fuera del DBE
- Puede ser Relacional, Jerárquico, Red, Objetos, etc

Arquitectura Multi-Database (SMDB)

DDBE formado por N sub-DBE's

Limitados a ser un DBE centralizado (CDBE)

Pueden ser tanto Federados como No Federados

Ejemplo: BD Ms-Access linkeando tablas de servidor Oracle, SQL Server

Homogéneo - Heterogéneo

Homogéneo

 Todos los DBE que componen el DDBE son del mismo tipo: mismo modelo de datos (ML), administrados por el mismo SGBD, mismos protocolos de commit y recuperación.

Heterogéneo

 Todos los DBE que componen el DDBE son de distinto tipo: distintos modelos de datos (ML), administrados por distintos SGBD, distintos protocolos de commit y recuperación.

Clasificación SGBDD

Bibliografía

- [1] M. Tamer Özsu, Patrick Valduriez, "Principles of Distributed Database Systems", 3rd Ed, Springer, ISBN 978-1-4419-8833-1, 2011
- [2] Saeed K. Rahimi, Frank S. Haug, "Distributed Database Managment Systems: A Practical Approach", Wiley-IEEE Computer Society Press., 2010

•