Exercise Solutions for Math 20

Linear Inequalities System, Nonlinear Systems

Nile Jocson <novoseiversia@gmail.com>

November 19, 2024

1.1 Solve algebraically for the solution sets of the following systems of equations.

1.1.a

$$\begin{cases} y = x^2 - 2x - 8 \\ 4x + 3y + 3 = 0 \end{cases}$$

$\Rightarrow 3y = -4x - 3$	Rewrite in terms of y .
$\Rightarrow y = -\frac{4}{3}x - 1$	
$\Rightarrow x^2 - 2x - 8 = -\frac{4}{3}x - 1$	Solve for x .
$\Rightarrow x^2 - 2x + \frac{4}{3}x - 8 + 1 = 0$	
$\Rightarrow x^2 - \frac{6}{3}x + \frac{4}{3}x - 7 = 0$	
$\Rightarrow x^2 - \frac{2}{3}x - 7 = 0$	
$\Rightarrow 3x^2 - 2x - 21 = 0$	
$\Rightarrow 3x^2 - 9x + 7x - 21 = 0$	Factor by grouping.
$\Rightarrow 3x(x-3) + 7(x-3) = 0$	
$\Rightarrow (3x+7)(x-3) = 0$	
$\Rightarrow x \in \{-\frac{7}{3}, 3\}$	
$\Rightarrow 4(-\frac{7}{3}) + 3y + 3 = 0$	Solve for $y, x = -\frac{7}{3}$
$\Rightarrow -\frac{28}{3} + 3y + 3 = 0$	
$\Rightarrow -\frac{28}{3} + 3y + \frac{9}{3} = 0$	
$\Rightarrow 3y - \frac{19}{3} = 0$	
$\Rightarrow 3y = \frac{19}{3}$	
$\Rightarrow y = \frac{19}{9}$	
$\Rightarrow 4(3) + 3y + 3 = 0$	Solve for $y, x = 3$
$\Rightarrow 12 + 3y + 3 = 0$	
$\Rightarrow 3y + 15 = 0$	
$\Rightarrow 3y = -15$	
$\Rightarrow y = -5$	
$\Rightarrow (x,y) \in \{(-\frac{7}{3}, \frac{19}{9}), (3,-5)\}$	Final answer.

1.1.b

$$\begin{cases} 10x^2 - xy + 4y^2 = 28\\ 2x^2 - 3xy - 2y^2 = 0 \end{cases}$$

$$\Rightarrow 2x^2 - 3yx - 2y^2 = 0$$
 Rewrite in terms of x .
$$\Rightarrow \frac{3y \pm \sqrt{(3y)^2 - 4(2)(-2y^2)}}{4}$$
 Use the quadratic formula.
$$\Rightarrow \frac{3y \pm \sqrt{9y^2 + 16y^2}}{4}$$

$$\Rightarrow \frac{3y \pm \sqrt{25y^2}}{4}$$

Continued on next page

$$\begin{array}{c} \Rightarrow \frac{3y\pm5y}{4} \\ \Rightarrow \frac{3y+5y}{4}, \frac{3y-5y}{4} \\ \Rightarrow \frac{8y}{4}, \frac{74}{4} \\ \Rightarrow x \in \{-\frac{1}{2}y, 2y\} \\ \Rightarrow 10(-\frac{1}{2}y)^2 - (-\frac{1}{2}y)y + 4y^2 = 28 \\ \Rightarrow 10(\frac{1}{4}y^2) + \frac{1}{2}y^2 + 4y^2 = 28 \\ \Rightarrow \frac{5}{2}y^2 + \frac{1}{2}y^2 + \frac{8}{2}y^2 = 28 \\ \Rightarrow \frac{5}{2}y^2 + \frac{1}{2}y^2 + \frac{8}{2}y^2 = 28 \\ \Rightarrow \frac{14}{2}y^2 = 28 \\ \Rightarrow y^2 = 4 \\ \Rightarrow y = \pm 2 \\ \Rightarrow x = -\frac{1}{2}(-2) \\ \Rightarrow x = 1 \\ \Rightarrow x = -\frac{1}{2}(2) \\ \Rightarrow x = -1 \\ \Rightarrow 10(2y)^2 - (2y)y + 4y^2 = 28 \\ \Rightarrow 40y^2 - 2y^2 + 4y^2 = 28 \\ \Rightarrow 40y^2 - 2y^2 + 4y^2 = 28 \\ \Rightarrow 42y^2 = 28 \\ \Rightarrow y^2 = \frac{3}{3} \\ \Rightarrow y = \pm \sqrt{\frac{2}{3}} \\ \Rightarrow x = 2\sqrt{\frac{2}{3}} \\ \Rightarrow x = 2\sqrt{\frac{2}{3}} \\ \Rightarrow (x,y) = \{(1,-2), (-1,2), (-2\sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}}), (2\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}})\} \\ \Rightarrow \text{Final answer.} \\ \blacksquare$$

1.2 Sketch the solution region for each of the given system of inequalities.

1.2.a

$$\begin{cases} y \le 2x + 1 \\ x < 5 \\ y < x + 2 \end{cases}$$

Figure 1.

