Divergence-Free Shape Interpolation and Correspondence

Niklas Sprengel

Supervisor: Prof. Dr. Marc Alexa

Advisor: Max Kohlbrenner

TU Berlin

08.05.2021

Inhaltsverzeichnis

- 1 What is Shape Correspondence?
- 2 Shape Correspondence via Divergence-Free Deformation Field
- 3 Representing the Deformation Field
- 4 Computing the Deformation Field
- **5** Shape Interpolation
- 6 Project topic: Time-Varying Deformation Field

Shape Correspondence

- Assign each point from one point cloud to another point cloud such that the point and its image correspond to each other
- Could also use mesh information (faces) for computation

What is a Divergence-Free Deformation Field?

- Given two point clouds $X = \{x_1, ..., x_n\} \subset \Omega, Y = \{y_1, ..., y_n\} \subset \Omega$, find a mapping $f: \Omega \to \Omega$ s.t. f(X) fits the shape Y
- Idea: f should imitate real-world transformation from X to Y
- What is natural? Smoothness and continuity!

 \Rightarrow

$$\begin{cases} \dot{x}(t) = v(x(t)) \\ x(0) = x_n \end{cases}$$

- $v: \Omega \to \mathbb{R}^D$ is called deformation field!

What is a Divergence-Free Deformation Field?

- Two assumptions:

1 Smoothness: $v \in C^{\infty}(\Omega, \mathbb{R}^D)$

2 Divergence-free: $\nabla \cdot v = 0$

- Why? Divergence-free vector fields conserve volume for any part $U \subset \Omega$ of the shape!
- Smoothness guarantees unique solution of IVP by Picard-Lindelöf

Obtaining the Correspondence Mapping

- Evaluate solution operator at t=1 to get correspondence mapping f: $f(x_n) \coloneqq x(1)$
- Note that t=1 is arbitrary. The solution is equivalent to evaluating the IVP defined with a deformation field that moves the points with half the speed at t=2.

Representing the Deformation Field

- We can now compute the correspondence given the deformation field
- But how to find the best deformation field? First, we need to represent the deformation field in an efficient way
- Compute a basis $\{v_1,v_2,...\}$ that spans the space of divergence-free deformation fields

$$\{\Phi_1, \Phi_2, ...\} = \left\{ \prod_{d=1}^{D} \frac{1}{2} \sin(\pi j_d) | (j_1, ..., j_D) \in \mathbb{N}^D \right\}$$

- Sort the basis elements by eigenvalue
- \Rightarrow Define $v(x) = \sum_{k=1}^{K} v_k(x) a_k$ for a fixed K.

7 / 10

Computing the Deformation Field

- Remember: $v(x) = \sum_{k=1}^{K} v_k(x) a_k$
- We only have to find the correct a_k
- If we had the a_k we could compute f which maps $\{x_1,...,x_n\}$ to be in the shape of Y
- We still need to assign the points $f(x_n)$ to points y_n
- Idea: Do both at the same time with Expectation Maximization

Shape Interpolation

- Remember the IVP:

$$\begin{cases} \dot{x}(t) = v(x(t)) \\ x(0) = x_n \end{cases}$$

- We defined f := x(1)
- What is x(0.5)?

Shape Interpolation

- Remember the IVP:

$$\begin{cases} \dot{x}(t) = v(x(t)) \\ x(0) = x_n \end{cases}$$

- We defined f := x(1)
- What is x(0.5)?

Project topic: Time-Varying Deformation Field

- There is only one time-independent deformation field

- Possible Solution: Calculate multiple deformation fields for smaller timeframes
- Maybe even find a way to make deformation field vary over time

