SOCIALIST REPUBLIC OF VIETNAM Independence - Freedom - Happiness

UNDERGRADUATE PROGRAM

Training level: undergraduate Major: Information Technology

Program Code: 7480201

Specialization:

COURSE SYLLABUS

1. General information

1.1	Course title (in Vietnamese)	Khai phá dữ liệu
1.2	Course title (in English):	Data mining
1.2	Course Code:	31231330
1.3	Credits:	3
1.4	Time allocation:	
-	Theory:	30
-	Type 1 Practice:	15
-	Type 2 Practice:	
-	Self-learning:	120
1.5	Lecturers in charge of the course:	
-	Main Lecturer:	Dr. Nguyen Thi Ngoc Anh
		Email: <u>ntnanh@ued.udn.vn</u>
-	Co-lecturers:	Dr. Nguyen Tran Quoc Vinh
		Email: <u>ntqvinh@ued.udn.vn</u>
-	Faculty in charge:	Information System
1.6	Conditions for taking part in the	
	course:	
-	Prerequisite course(s):	
-	Previous course(s):	
-	Parallel course(s):	
1.7	Course Type:	⊠ Compulsory
		☐ Compulsory elective
		☐ Free elective
1.8	Knowledge Cluster	
		☐ General Education
		☐ Fundamental
		☐ Pedagogical skills
		☐ Internship and Thesis

2. Course description

The course provides the principles, concepts, fundamental methodologies in data mining. It consists of three main parts: (1) basic concepts, (2) fundamental tasks and techniques in data mining, (3) real applications and modern-techniques in data mining. Specifically, the first part will provide students all about the overal course, concepts, and data mining process. This part also covers data collection, organization and preprocessing. The second part will focus on the principles, methodologies and basic algorithms in classification, clustering, and association rules. The last part will give students the opportunity to research and apply common data mining techniques to solve real-world problems.

3. Course Objectives

3.1. General Course Objective

The course introduces the principles, concepts, fundamental methodologies in data warehouse and data mining. The course also provides solid background and advance in data mining. Student will be able to master the techniques in data mining and apply them to solve real-world topics.

3.2. Specific Course Objectives (COs)

- **CO1:** Providing to students the principles, concepts, fundamental methodologies in data warehouse and data mining.
- CO2: Using and applying common techniques in data mining to solve real problems in practice.
- CO3: Be able to analyze, discuss and compare among the methodologies on real datasets by choosing the proper algorithms or combine them

4. Course Learning Outcomes (CLOs)

After completing the course, students will be able to:

Course Learning Outcomes (CLOs	Contents	PIs	Mức độ của PIs
CLO1	Define clearly the definitions, tasks and process in data mining. Also, present clearly related researches and real applications in data mining.	PI6.2, PI6.4	R, M
CL02	Present clearly techniques related to data formation and processing, basic methodologies including classification, clustering, and association rules.	PI6.3, PI6.4	M
CLO3	Analysic basic techniques in data mining to solve some problems.	PI6.4	M
CLO4	Apply data mining knowledge, techniques and tools for real-datasets in practice.	PI6.3, PI6.4	MA

5. Mapping matrix between course learning outcomes (CLOs) and program learning outcomes (PLOs):

The level of contribution and support of CLOs to the PLO is specifically determined as follows:

Fill in one of the levels I, R, M or leave blank (if there is no connection) and enter A in the corresponding box

Course			Program Learning Outcomes (PLOs)								
Learning Outcome	PLO 2	PLO 3	PLO 4	PLO 5		PLO	5	PLO 7	PLO 8	PLO 9	PLO1 0
s (CLOs)					PI6. 2	PI6. 3	PI6. 4				
CLO1					R		M				
CLO2						M	M				
CLO3							M				
CLO4						M,A	M,A				

Note:

- I (Introduced) CLO supports the PLO and at the level of introduction/beginners
- R (Reinforced) CLO supports the PLO and at the level higher than the level of introduction/beginners, giving chances for practice, experiment and fieldtrips
- M (Mastery) CLO strongly supports learners in mastering/ grasping or achieving PLO/ PI. If the learner successfully completes this CLO, it is considered that the learner has mastered a program indicator (PI) of the PLO or even mastered the entire PLO.
- A (Assessed) Critical CLO (maximum support for PLO achievement) needs to be collected to measure how well learners achieve the PLO

6. Course assessment

6.1. Methods and forms of testing - assessment of the course

Student learning outcomes are assessed by the following components: formative assessment, mid-term assessment, end-of-term assessment, and other assessment activities.

Assessment Component	Assessment forms	Assessment methods	Rubric's Criterion	Assessme nt forms Weight (%)	Asses smen t comp onent s Weig ht (%)	CLO
A1. Formative Assessment	A1.1 Attendance and short exercise in class	P1.1. Attendance (randome 3 times), hand- on/interview	RH1.1	50%	20%	CLO 1, 2, 3, 4
	A1.2 Personal assigments	P1.2 Personal report	RH1.2	50%		CLO 1, 2, 3, 4
A2. Mid- term assessment	A2.1 Mid- tem exam	P2.1 Writing assessments	RH2	100%	30%	CLO 1, 2
A3. End of term assessment	A3.1 Final exam	P3.1 Report and Representaion	RH3	100%	50%	CLO 4

Note (11):

- All Assessment Components, Assessment forms, Assessment Methods, Rubric, Assessment Weights, Component Weights should be coded and defined so that the assessment is accurate, reliable and fair;
 - *Note:* W3 = 50% (Weight 0.5);
- Upon the performance of a specific assessment for one or several specific CLOs, attention should be paid to:
- a) Ensure that teaching and learning activities for the respective knowledge/skills have been organized
- b) The assessment must have a designed question/component, and clearly state what CLO it is being used for.
- c) The assessment results are not only used to calculate the GPA but are also used to analyze the CLO achievement of each student and of the entire class or the course (if there are many classes taught in parallel).

No	Contents	Level 1	Level 2	Level 3	
		R1. On-going A	ssessment		
	Data	Concepts	- Analyze OLTP	Establish the	
1	warehouse and	Process	and OLAP	relationship	
	Data mining	Identify the goals	- Explain the	between data	

	(2 points)	and primary tasks	influence of data	warehousing and
		of data mining process	quality on a data- mining process.	data mining - Explain of big data and data science
2	Preparing the data	- Analyze basic representations and characteristics of raw and large data sets		Recognize different techniques for data preparation, including attribute transformation
3	Data reduction (2 points)	- Identify the differences in dimensionality reduction based on features, cases, and reduction of value techniques Understand the basic principles of feature selection and feature composition tasks using corresponding statistical methods	- Explain the advantages of data reduction in the preprocessing phase of a datamining process	Apply and compare Fisher ratia and principal component analysis for feature extraction
3	Supervised learning for classification (3 points)	Identify the basic concepts supervised learning for classification.	11 0	Explain the advantages and disadvantages for each techniques.
4	Unsupervised learning (3 points)	Identify the basic concepts unsupervised learning for clustering and association rules.	Distinguish between different representations of clusters and different measures of similarities - Derive the K-means method for partitional clustering and analysis of its	Compare the frequent pattern growth method with the Apriori algorithm

			complexity.	
			Describe the	
			Apriori algorithm	
			and explain all its	
			phases through	
			illustrative	
			examples.	
Tổng	10	6	4	0.5
	-	R2. MID-E	XAM	
4			- Analyze OLTP	Establish the
		Concepts	and OLAP	relationship
	Data	Process	- Explain the	between data
	warehouse and	Identify the goals	influence of data	warehousing and
	Data mining	and primary tasks	quality on a	data mining
	(4 points)	of data mining	data- mining	F 1 . C1.
		process	process.	- Explain of big
			_	data and data science
5	Supervised	Concept and	Analyze the	
	learning -	Process of	characteristics of a	
	Classification	classification	logic-based	
	((0.4.4)	problem	approach to	
	(6.0 điểm)	F	classification	
		71 10 1 1	problems.	T7 1 1
		Identify in depth	Compare ID3 and	
		the C4.5 algorithm	C4.5	how to use
		for generating decision trees and	Apply on real	pruning
		decision rules	dataset.	techniques to
		decision rules	autabet.	reduce the
				complexity of
				decision trees and
				decision rules.
		G '	A1	
		Summarize the limitations and	Apply on real dataset	
		advantages of	uataset	
		representing a		
		classification model		
		by kNN, Naïve		
		bayes		
Total		4.75	3.5	1.75
		R3. FINAL	EXAM	
No	Contents	Level 1	Level 2	Level 3
2	Data	Concepts	- Analyze OLTP	Establish the
3.	warehouse and	Process	and OLAP	relationship
	Data mining	Identify the goals	- Explain the	between data

	(2 points)	and primary tasks of data mining process	influence of data quality on a data- mining process.	warehousing and data mining - Explain of big data and data science
4.	Classification (3.0 điểm)	Concept and Process of classification problem	Apply and implement supervised approaches to classification problems.	Summarize the limitations of representing classification models
5.	Clustering (3.0)	Concepts Kmean	Distinguish between different representations of clusters and different measures of similarities	Discuss why validation of clustering results is difficult problem
6.	Association rules (1.0 điểm)	Concepts Apriori FP-growth	Explain the local modeling character of association rule techniques	Compare the frequent pattern growth method with the Apriori algorithm
7.	Data mining Applications (1.0 điểm)	Identify the tools of data mining technology Use tool for real dataset for tasks in data mininf	Setup and implement techniques in data minings	

6.2. Student's tasks

Students must perform the following tasks:

- Attending at least 80% of the lessons of the course;
- Participating in group work activities as prescribed by the course;
- Self-studying the problems assigned by the lecturer outside the class time;
- Completing all course assessment forms.
- Attending mid-term and final examination.

7. Lesson plan and content

Week/ Session	Detailed content of	No. of periods	Teaching and activities	d learning	Asses-	CLOs
(3	the Lesson / chapter	(Theory/ Type 1	Teaching	Learning method	form	CLOS

periods/		Practice	method			
session)		/ Type 2				
		Practice)				
1.	Chapter 1. Data warehouse and Data mining: basic concepts, tasks, modelling.	3	Oral presentation	Read material 1, chapter I, 1.1, 1.2	A1.1, A1.2	CLO 1, 2
2.	Chapter 1. Data mining: related domain, applications, process of data mining, (cont'd)	3	Oral presentation	Read material 1, chapter I, 1.1, 1.2	A1.1, A1.2	CLO 1, 2
3.	In-class practice	3	Oral presentation and practice guides	- Practice - Reports and presentation	A1.1 A1.2 A2.1	CLO 1,2
4.	Chapter 2: Learning from the data, Preparing the data, Data reduction	3	Oral presentation	Read material 1, chapter II, 2.1, 2.2		
5.	Chapter 3: Supervised learning (Classification): Decision Tree (ID3, C4.5), K-Nearest Neighbors, Naïve Bayes	3	Oral presentation	Read material 1, chapter III, 3.1- 3.4		
6.	Chapter 4: Supervised learning (Classification): Decision Tree (ID3, C4.5), K-Nearest Neighbors, Naïve Bayes	3	Oral presentation	Read material 1, chapter III, 3.1- 3.4		
7.	In-class practice	3	Oral presentation and practice guides	- Practice - Reports and presentation	A1.1 A1.2 A2.1	CLO 1, 2, 3

Week/ Session	Detailed content of the Lesson / chapter	No. of periods	Teaching an activities	d learning	Asses- sment	CLOs
8.	Mid-term exam		Writing assessment	Writing assessment	A1.1 A1.2 A3.1	CLO 1,2,3
9.	Chapter 5: Unsupervised learning: clustering	3	Oral presentation	Read material 1, chapter III, 3.1- 3.4	A1.1 A1.2 A3.1	CLO 2,3, 4
10.	Chapter 5: Unsupervised learning: clustering	3	Oral presentation	Read material 1, chapter III, 3.1- 3.4	A1.1 A1.2 A3.1	CLO 2,3, 4
11.	In-class practice	3	Oral presentation and practice guides	- Practice - Reports and presentation	A1.1 A1.2 A2.1	CLO 2,3,4
12.	Chapter 5: Unsupervised learning: Association rules	3	Oral presentation	Read material 1, chapter V, 5.1- 5.4	A1.1 A1.2 A3.1	CLO 2,3, 4
13.	In-class practice	3	Oral presentation and practice guides	- Practice - Reports and presentation	A1.1 A1.2 A2.1	CLO 2,3,4
14.	Chapter 5: Advances in Data mining, Tools and Applications	3	Oral presentation	Read material 1, chapter V, 5.1- 5.4	A1.1 A1.2 A2.1	CLO 2,3,4
15.	Chapter 5: Advances in Data mining, Tools and Applications (cont'd)	3	Oral presentation	Read material 1, chapter VI, 5.1- 5.4	A1.1 A1.2 A2.1	CLO 2,3,4
16.	In-class practice	3	Oral	- Practice	A1.1	CLO 2,3,4

Week/ Session	Detailed content of the Lesson / chapter	No. of periods	Teaching and activities	Asses- sment	CLOs	
			presentation and practice guides	- Reports and presentation	A1.2 A2.1	
17.	Final examination		Presentation	Report/ Interview	A1.1 A1.2 A3.1	CLO 4.

Note:

- Determine the number of periods (Theory/Practice): Determine the number of theoretical, practical/experimental periods of each chapter
- Teaching methods to achieve the CLOs: Name the teaching methods used in each chapter to achieve the CLOs.
- Students' learning methods: Identify the contents students need to prepare at home (which document to read, from what page, working in groups to do exercises, working on projects); Activities in class (group discussion, regular exercise No....).

8. Learning materials

8.1. Course books, textbooks, references materials

No.	Author	Publishing year	Title of book, textbook, title of article, document	Publishing house, journal /place of publication
Required books, lectures and textbooks				
1	Lê Văn Phùng, Quách Xuân Trưởng	2012	Khai phá dữ liệu	NXB Thông tin và Truyền thông
2	Jiawei Han, Micheline Kamber and Jian Pei	2013	Data Mining Concepts And Techniques	Morgan Kaufmann
3	Mehmed Kantaedzic	2020	Data mining: Concepts, Models, Methods, and Algorithms	Wiley, IEEE press
Reference books and textbooks				
1	P. N. Tan, M. Steinbach, V. Kumar	2006	Introduction to Data Mining	Addison- Wesley

No.	Author	Publishing year	Title of book, textbook, title of article, document	Publishing house, journal /place of publication
2	Paulraj Ponnian	2008	Data Warehousing Fundamentals	Addison- Wesley

8.2. List of website addresses for references

No.	Contents	Website	Access date
1	Weka toolkit: Data Mining System with Free Open Source Software in Java.	https://www.cs.waikato.ac.nz/~ml/weka/index.html	20/7/2021
2	Qlik tool : Data mining and visualiszation tool	https://www.qlik.com/us/products/qlik-sense	20/7/2021
3	Orange Data mining	https://orangedatamining.com/	20/7/2021
4	Rapid miner	https://rapidminer.com/	20/7/2021
5	UCI dataset	https://archive.ics.uci.edu/ml/datasets.php	20/7/2021
6	Data mining competition	https://www.kaggle.com/competitions	20/7/2021

9. Facilities

	Classroom, lecture hall, laboratory, practice room	Equipment, tool, soft	For	
No		Item	Quantity	Content/Chapter
1	Classroom	Computer, Projector	01	
2	Classroom	Computer, Projector	01	

Da Nang, ...

Dean	Head of Division	Lecturer in charge