L_1 regression

Problem. Given points with coordinates (x_i, y_i) for i = 1, ..., n find a function f(x) = ax + b such that the sum

$$\sum_{i=1}^{n} |f(x_i) - y_i|$$

is a as small as possible.

Note. Compare with L_2 regression (least squares): we want to minimize

$$\sqrt{\sum_{i=1}^n |f(x_i) - y_i|^2}$$

Problem. Given points with coordinates (x_i, y_i) for i = 1, ..., n find a function f(x) = ax + b such that the sum

$$\sum_{i=1}^n |f(x_i) - y_i|$$

is a as small as possible.

L_1 regression vs L_2 regression

ullet L_1 regression is less sensitive that L_2 if we change the value of a single point.

 \bullet L₂ regression gives a uniquely defined line if there are at least two points with different x-coordinates. L₁ regression can have infinitely many solutions.

