LOGARITHM PRACTICE SHEET 2

- 1. $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{43} n} =$
 - a. :
 - b. log_{43!} n
 - c. log_n 43!
 - d. None of these
- 2. If a, b, c are the sides of a right angled triangle in which c > a, b and $c b \ne 1$, $c + b \ne 1$, then the value of $\frac{\log_{c+b} a + \log_{c-b} a}{\log_{c+b} a \cdot \log_{c-b} a}$ is
 - a. 1
 - b. 2
 - c. 1/2
 - d. None of these
- 3. If

$$\frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_8 a} + \frac{1}{\log_{16} a} + \dots + \frac{1}{\log_{2^n} a} = \frac{n(n+1)}{\lambda},$$
 then λ equals

- a. log_2 a
- b. log₂ 4
- c. $log_2 a^2$
- d. none of these
- 4. If $log_4 5 = x$ and $log_5 6 = y$, then $log_3 2$ is equal to
 - a. $\frac{1}{2x+1}$
 - b. $\frac{1}{2y+1}$
 - c. 2xy + 1
 - d. $\frac{1}{2xy-1}$
- 5. If $\log a : \log b : \log c = (b c) : (c a) : (a b)$, then
 - a. $a^b b^c c^a = 1$
 - b. $a^a b^b c^c = 1$
 - c. $\sqrt[a]{a} \sqrt[b]{b} \sqrt[c]{c} = 1$
 - d. None of these

- 6. If a, b, c are positive real number, then $\frac{1}{\log_{\sqrt{\log a}} abc} + \frac{1}{\log_{\sqrt{\log a}} abc} + \frac{1}{\log_{\sqrt{\log a}} abc} \text{ is equal}$
 - to
- a. 0
- b. 1/2
- c. 1
- d. 2
- 7. If $x^{\left[\frac{3}{4}(\log_3 x)^2 + (\log_3 x) \frac{5}{4}\right]} = \sqrt{3}$, then x has
 - a. All integral values
 - b. Two integral values and irrational values
 - c. All irrational values
 - d. Two rational values and an irrational value
- 8. The number of solutions of the equation $x^{\log \sqrt{x}^{2x}} = 4$ is
 - a. 0
 - b. 1
 - c. 2
 - d. Infinitely many
- 9. The value of $\sum_{r=1}^{89} \log_{10} \tan \frac{\pi r}{180}$ is equal to
 - a. 10
 - b. 1
 - c. 0
 - d. None of these
- 10. If n = 1999!, then $\sum_{x=1}^{1999} \log_n x$ is equal to
 - a. 1
 - b. 0
 - c. 1999/1999
 - d. -1
- 11. The value of $7 \log \frac{16}{15} + 5 \log \frac{25}{24} + 3 \log \frac{81}{80}$, is
 - a. log 2
 - b. log 3
 - c. log 5
 - d. none of these

- 12. The value of $\frac{\log 49\sqrt{7} + \log 25\sqrt{5} \log 4\sqrt{2}}{\log 17.5}$
 - is
- a. 5
- b. 2
- c. 5/2
- d. 3/2
- 13. The value of $5^{\sqrt{\log_5 7}} 7^{\sqrt{\log_7 5}}$ is
 - a. log 2
 - b. 1
 - c. 0
 - d. none of these
- 14. The value of $2^{\log_3 7} 7^{\log_3 2}$ is
 - a. log 2
 - b. 1
 - c. 0
 - d. none of these
- 15. The value of $\frac{3 + \log 343}{2 + \frac{1}{2} \log \left(\frac{49}{4}\right) + \frac{1}{3} \log \left(\frac{1}{125}\right)}$ is
 - a. 3
 - b. 2
 - c. 1
 - d. 3/2
- 16. If $\log_{10} 3 = x$, $\log_{30} 5 = y$, then $\log_{30} 8 =$
 - a. 3(1-x-y)
 - b. x y + 1
 - c. 1 x y
 - d. 2(x y + 1)
- 17. If $log_a x$, $log_b x$, $log_c x$ in A.P., where $x \ne 1$, then $c^2 =$
 - a. (ab)^{log_ab}
 - b. $(ac)^{\log_a b}$
 - c. $(ab)^{\log_b a}$
 - d. $(ac)^{\log_b a}$
- 18. If $a^2 + 4b^2 = 12ab$, then $\log (a + 2b) =$

a.
$$\frac{1}{2}(\log a + \log b - \log 2)$$

- b. $\log \frac{a}{2} + \log \frac{b}{2} + \log 2$
- c. $\frac{1}{2}(\log a + \log b + 4 \log 2)$
- d. $\frac{1}{2}(\log a \log b + 4 \log 2)$
- 19. If $9a^2 + 4b^2 = 18ab$, then $\log (3a + 2b) =$
 - a. $\log 5 + \log 3 + \log a + \log 5b$
 - b. $\log 5 + \log 3 + \log 3a + \log b$
 - c. $\log 5 + \log a + \log b$
 - d. none of these
- 20. If

$$\log(x - y) - \log 5 - \frac{1}{2} \log x - \frac{1}{2} \log y = 0$$
, then $\frac{x}{y} + \frac{y}{x} = 0$

- a. 25
- b. 26
- c. 27
- d. 28
- 21. If $2^{\log_{10} 3\sqrt{3}} = 3^{k \log_{10} 2}$, then k =
 - a. 1/2
 - b. 3/2
 - c. 3
 - d. 2
- 22. If $\log_{10} 2 = 0.3010$, then $\log_5 64 =$
 - a. 602/233
 - b. 233/602
 - c. 202/633
 - d. 633/202
- 23. If $4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_x 83}$, then x =
 - a. 4
 - b. 9
 - c. 83
 - d. 10
- 24. The value of $3^{\frac{4}{\log_4 9}} + 27^{\frac{1}{\log_{36} 9}} + 81^{\frac{1}{\log_5 3}}$, is
 - a. 890
 - b. 860
 - c. 857
 - d. None of these

- 25. If $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$, then x equal
 - to
- a. 8
- b. 4
- c. 2
- d. 16
- 26. If $y = 2^{1/\log_x 8}$, then x equal to
 - a. y
 - b. y²
 - c. y³
 - d. none of these
- 27. If $\log_y x = \log_z y = \log_x z$, then
 - a. x < y < z
 - b. $x > y \ge z$
 - c. $x < y \le z$
 - $d. \quad x = y = z$
- 28. If 3^{2x+1} . $4^{x-1} = 36$, then x =

- a. log₃₆ 48
- b. log₄₈ 36
- c. log₂₄ 12
- d. log₁₂ 24
- 29. If $\frac{1}{\log_{x} 10} = \frac{2}{\log_{a} 10} 2$, then x =
 - a. a/2
 - b. a/100
 - c. $a^2/10$
 - d. $a^2/100$
- 30. If $2^{\frac{3}{\log_3 x}} = \frac{1}{64}$, then x =
 - a. 3
 - b. 1/3
 - c. $\frac{1}{\sqrt{3}}$
 - d. $-\frac{1}{\sqrt{3}}$

Answer Keys

- 1. C
- 2. B
- 3. C
- 4. D5. B
- 5. D
- 6. C
- 7. D
- 8. A
- 9. C
- 10. A

- 11. A
- 12. C 13. C
- 14. C
- 14. C
- 15. A
- 16. A
- 17. B
- 18. C
- 19. D
- 20. C

- 21. B
- 22. A
- 23. D
- 24. C
- 25. A
- 26. C
- 27. D
- 28. A
- 29. D
- 30. C