Mains.2.B.1-14

ai24btech11030 - Shiven Bajpai

Section - B

1)	z ar	nd	W	are	two	non	zero	comp	lex	num	ıbe	rs
	such	h th	ıat	z	= u	/ and	d Arg	r(z) +	Arg	y(w)	=	π
	ther	1 <i>z</i>	eq	uals						(2	00	2)

- a) $\overline{\omega}$
- b) $-\overline{\omega}$
- c) ω
- d) $-\omega$

2) If
$$|z-4| < |z-2|$$
, its solution is given by (2002)

- a) Re(z) > 0
- c) Re(z) > 3
- b) Re(z) < 0
- d) Re(z) > 2

3) The locus of the centre of a circle which touches the circle
$$|z - z_1| = a$$
 and $|z - z_2| = b$ externally $(z, z_1, z_2 \text{ are complex numbers})$ will be (2002)

- a) an ellipse
- c) a circle
- b) a hyperbola
- d) none of these

4) If z and w are two non-zero complex numbers such that
$$|zw| = 1$$
 and $Arg(z) - Arg(w) = \frac{\pi}{2}$ then $\overline{z}w$ is equal to (2003)

- a) $-\iota$
- b) 1
- c) -1
- d) ι

5) Let Z_1 and Z_2 be two roots of the equation Z^2 + aZ + b = 0, Z being complex. Further assume that the origin, Z_1 and Z_2 form an equilateral triangle. Then (2003)

- a) $a^2 = 4b$
- c) $a^2 = 2b$
- b) $a^2 = b$
- d) $a^2 = 3b$

6) If
$$\left(\frac{1-\iota}{1+\iota}\right)^x = 1$$
 then

a)
$$x = 2n + 1$$
, where n is any positive integer

- b) x = 4n, where n is any positive integer
- c) x = 2n, where n is any positive integer
- d) x = 4n + 1, where n is any positive integer

7) Let z and w be complex numbers such that
$$\overline{z} + \iota \overline{w} = 0$$
 and $arg(zw) = \pi$ then $arg(z)$ equals (2004)

a)
$$\frac{5\pi}{4}$$
 b) $\frac{\pi}{2}$ c) $\frac{3\pi}{4}$

- d) $\frac{\pi}{4}$

8) If
$$z = x - \iota y$$
 and $z^{\frac{1}{3}} = p + \iota q$, then
$$\frac{x}{p} + \frac{y}{q}$$

is equal to

(2004)

1

- a) -2
 - b) −1
- c) 2
- d) 1

9) If
$$|z^2 - 1| = |z|^2 + 1$$
, then z lies on (2004)

- a) an ellipse
- c) a circle
- b) the imaginary axis d) the real axis

10) If the cube roots of unity are 1,
$$\omega$$
, ω^2 then the roots of the equation $(x-1)^3 + 8 = 0$, are (2004)

- a) $-1, -1 + 2\omega, -1 2\omega^2$
- b) -1, -1, -1
- c) $-1, 1-2\omega, 1-2\omega^2$
- d) $-1, 1 + 2\omega, 1 + 2\omega^2$

11) If
$$z_1$$
 and z_2 are two non-complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $\arg(z_1) - \arg(z_2)$ is equal to (2005)

- a) $\frac{\pi}{2}$
- b) $-\pi$
 - c) 0
- d) $\frac{\pi}{2}$

12) If

$$\omega = \frac{z}{z - \frac{1}{3}\iota}$$

and $|\omega| = 1$, then z lies on

(2005)

- a) an ellipse
- c) a straight line
- b) a circle
- d) a parabola

13) The value of
$$\sum_{k=1}^{10} \left(sin\left(\frac{2k\pi}{11}\right) + \iota cos\left(\frac{2k\pi}{11}\right) \right)$$
 is (2006)

- a) ι
- b) 1
- c) $-\iota$
- d) -1

14) If
$$z^2 + z + 1 = 0$$
, where z is a complex number, then the value of

$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^2$$
is (2006)

a) 18

b) 54

c) 6

d) 12