math108B hw1

Jonas Chen January 08, 2024

For the space of real-valued polynomials P([0,1]) over \mathbb{R} we define:

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx$$

Prove that it is indeed an inner product. (Hint, you might want to reformulate "conjugate symmetry" specifically for the real-nuber case).

Solution

Let the inner product be defined as in Linear Algebra done Right (LADR) 6.2

Note that $f(x)f(x)=(f(x))^2$ is always non negative for all $x\in\mathbb{R}$, therefore its integral must be non negative

Suppose $\langle f, f \rangle = \int_0^1 f(x) f(x) = 0$. This implies $f(x) = 0 \in P([0,1])$ (see the below link) Additionally, if f(x) = 0 then it's clear that $\langle f, f \rangle = 0$. (due to definite integrating 0) Thus the inner product definition satisifes "definiteness"

Next, recall that P([0,1]) over \mathbb{R} is a vector space. Therefore, distributivity holds i.e. for $f_1, f_2, g \in P([0,1])$ it is true that $(f_1 + f_2)g = f_1g + f_2g$

Then

$$\begin{split} \langle f_1 + f_2, g \rangle &= \int_0^1 (f_1 + f_2)(x) g(x) = \int_0^1 f_1(x) g(x) + f_2(x) g(x) \\ &= \int_0^1 f_1(x) g(x) + \int_0^1 f_2(x) g(x) = \langle f_1, g \rangle + \langle f_2, g \rangle \end{split}$$

Additionally, let $\lambda \in \mathbb{R}$ then

$$\langle \lambda f, g \rangle = \int_0^1 \lambda f(x) g(x) = \lambda \int_0^1 f(x) g(x) = \lambda \langle f, g \rangle$$

For conjugate symmetry, recall from lecture that for any $x \in \mathbb{R}$ that $x = \overline{x}$. Note that $f(x) \in \mathbb{R}$ and $g(x) \in \mathbb{R}$ (after we evaluate the polynomial) therefore $\langle f,g \rangle = \overline{\langle f,g \rangle}$ and $\langle g,f \rangle = \overline{\langle g,f \rangle}$.

Additionally, recall that elements in vector spaces are commutative, therefore $\langle f,g\rangle=\int_0^1 f(x)g(x)\mathrm{d}x=\int_0^1 g(x)f(x)\mathrm{d}x=\langle g,f\rangle=\overline{\langle g,f\rangle}$ as desired. \square

references:

https://math.stackexchange.com/questions/1889443/prove-that-if-integral-of-a-squared-function-is-zero-then-function-is-zero

Propose an inner product for the space $P_2([0,1])$ of real-valued polynomials up to the second order.

$$P_2([0,1]) = \left\{a_0 + a_1 x + a_2 x^2\right\} \mid a_0, a_1, a_2 \in \mathbb{R}\}$$

Solution

Let $p(t), q(t) \in P_2$ then we propose the following inner product:

$$\langle p(t), q(t) \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2)$$

Verifying the inner product properties:

- a) $\langle p(t), q(t) \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2) = q(0)p(0) + q(1)p(1) + q(2)p(2) = \langle q(t), p(t) \rangle$ (recall from problem 1 this is sufficient for conjugate symmetry since we are dealing with real vector space)
- b) next, let

$$r(t) \in P_2$$

$$\langle p(t) + r(t), q(t) \rangle =$$

then
$$(p(0) + r(0))q(0) + (p(1) + r(1))q(1) + (p(2) + r(2))q(2) = (p(0)q(0) + p(1)q(1) + p(2)q(2)) + (r(0)q(0) + r(1)q(1) + r(2)q(2)) = \langle p(t), q(t) \rangle + \langle r(t), q(t) \rangle$$

c) next let $c \in \mathbb{R}$ then

$$\langle cp(t), q(t) = (cp(0))q(0) + (cp(1))q(1) + (cp(2))q(2) =$$

$$c(p(0)q(0)+p(1)q(1)+p(2)q(2))=\\$$

$$c\langle p(t),q(t)\rangle$$

d) next,
$$\langle p(t), p(t) \rangle = p(0)p(0) + p(1)p(1) + p(2)p(2) = p(0)^2 + p(1)^2 + p(2)^2 \ge 0$$
.

$$p(0)=p(1)=p(2)=0 \Rightarrow \langle p(t),p(t)\rangle=0$$

And if $\langle p(t), p(t) \rangle = 0$ then p(t) has three distinct zeroes, but this can only happen if p(t) = 0 for all $t \in [0,1]$. Therefore $\langle p(t), p(t) \rangle = 0 \Leftrightarrow p(t) = 0$

Took directly from https://youtu.be/RqEOv38uv1I?si=NtHxuedW2jxia4II

Note that the inner product $\langle \cdot, \cdot \rangle$ defined in 6.3 in the textbook only restricts that the first slot if linear, given a fixed second slot. That is, $\langle \cdot, u \rangle$ is linear for a fixed $u \in V$.

For a vector space V over the real numbers \mathbb{R} , and associated with an inner product $\langle \cdot, \cdot, \rangle : V \times V \to \mathbb{R}$. Prove that the second slot is also linear, given a fixed first slot $v \in V$. That is, $\langle v, \cdot \rangle$ is a linear map.

Solution

We know from https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_ (Kuttler)/06%3A_Complex_Numbers/6.01%3A_Complex_Numbers (and previous classes) that the following two properties hold for all complex numbers z_1, z_2 :

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

We would like to show the following: Let $v \in V$ be fixed and let $w, w_1, w_2 \in V$ and $\lambda \in \mathbb{R}$. Then $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$ and $\langle v, \lambda w \rangle = \lambda \langle v, w \rangle$

Firstly,

$$\langle v, w_1 + w_2 \rangle = \overline{\langle v, w_1 + w_2 \rangle} = \langle w_1 + w_2, v \rangle = \langle w_1, v \rangle + \langle w_2, v \rangle = \overline{\langle w_1, v \rangle} + \overline{\langle w_2, v \rangle} = \langle v, w_1 \rangle + \langle v, w_2 \rangle$$

Secondly,
$$\langle v, \lambda w \rangle = \overline{\langle v, \lambda w \rangle} = \langle \lambda w, v \rangle = \lambda \langle w, v \rangle = \lambda \overline{\langle w, v \rangle} = \lambda \langle v, w \rangle$$

In both parts we exploit the fact that if v, w have all real entries then $\langle v, w \rangle = \overline{\langle v, w \rangle}$ similar to problem 1 \square

Problem 4

For an induced norm $\|\cdot\|$ associated with a vector space V over the complex numbers \mathbb{C} , prove that $\|\lambda v\| = |\lambda| \|v\|$ for any $\lambda \in \mathbb{C}$ and $v \in V$. Recall that if $\lambda = a + bi \in \mathbb{C}$, then $|\lambda| = \sqrt{a^2 + b^2}$

Solution

 $\|\lambda v\|^2 = \langle \lambda v, \lambda v \rangle = \lambda \langle v, \lambda v \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 \|v\|^2$, then take the square root of both sides to obtain the desired result. This is taken from LADR 6.9 and works for both $\mathbb{F} = \mathbb{C}$ and $\mathbb{F} = \mathbb{R}$

The square root operation should work out here since the norm $||v|| = \sqrt{\langle v, v \rangle} = \sqrt{\overline{v} \cdot v} \in \mathbb{R}$ for complex vector spaces, and for completeness $|\lambda| \in \mathbb{R}$. (since $a, b \in \mathbb{R}$)

Alternatively, for $v\in V(\mathbb{C})$ we have $\|v\|=\sqrt{|v_1|^2+...+|v_n|^2}\in\mathbb{R}$ where $v=(v_1,...,v_n)$ and $|v_i|=\sqrt{a_i^2+b_i^2}$ where $v_i=a_i+b_i$ and $a_i,b_i\in\mathbb{R}$

https://math.stackexchange.com/questions/1670156/norm-of-complex-vector

Explain why the following are not inner products for the given spaces.

a)
$$\langle (a,b),(c,d)\rangle = ac-bd$$
 for \mathbb{R}^2

a)
$$\langle (a,b),(c,d)\rangle=ac-bd$$
 for \mathbb{R}^2 b) $\langle A,B\rangle=\mathrm{tr}(A+B)$ on the space of n by n matrices $\mathbb{R}^{n\times n}$

Solution

Consider the following counterexamples for each part:

a. let
$$a = 2$$
 $b = 3$ $c = 2$ $d = 3$ then $((2,3)(2,3)) = 4 - 9 = -5 < 0$ which violates positivity

b. let $A \in \mathbb{R}^{n \times n}$ have all of its diagonal entries be -1. Then $\langle A, A \rangle = \operatorname{tr}(A + A)$ but A + A will now have -2in all its diagonal entries. Therefore the trace is (-2)n < 0 which also violates positivity

Problem 6

In class, for \mathbb{R}^2 with the standard inner product, we show that the induced norm $||v||^2 = \langle v, v \rangle$ satisfies $||u+v|| \le ||u|| + ||v||$, by showing that $\langle u,v\rangle \le |u|| ||v||$ for any $u,v\in\mathbb{R}^2$.

In the recorded video, we will show that the above holds for any induced norm $||v||^2 = \langle v, v \rangle$ for a general inner product space $(V, \langle \cdot, \cdot \rangle)$

State your reason that one does not have to show $||u+v|| \le ||u|| + ||v||$ if the norm $||\cdot||$ is the general norm defined via axioms.

Solution

The property that $||u+v|| \le ||u|| + ||v||$ (triangle equality) must hold given any general norm $||\cdot||$.

However, if we define an arbitrary inner product which then induces a norm then we must show that the norm has all the properties of a general norm including the triangle equality

Problem 7

For the vector space $(\mathbb{R}^2, \|\cdot\|)$ with an unspecified norm $\|\cdot\|$, its unit ball (which is a subset of \mathbb{R}^2) is defined by:

$$B_{\| \ \|} = \left\{ v \in \mathbb{R}^2 : \|v\| \le 1 \right\}$$

Draw a picture for B_1, B_2, B_{\max} when we pick the norm $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\max}$ respectively.

Solution

For any arbitrary point $p \in \mathbb{R}^2$

 B_1 is a "unit diamond" centered at p

 B_2 is the unit circle centered at p

 $B_{
m max}$ is the unit square (lines are parallel to axes) centered at p

see attached (the attached uses (0,0) as origin)

Prove that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent in \mathbb{R}^d , that is, for any $v\in\mathbb{R}^d$, htere exists some constants, C_1,C_2 such that

$$C_1 \|v\|_1 \le \|v\|_2 \le C_2 \|v\|_1$$

Solution

Pick $C_1 \leq \frac{\|v\|_2}{\|v\|_1}$ and $C_2 \geq \frac{\|v\|_2}{\|v\|_1}$ then since $\|v\|_1$ and $\|v\|_2$ are explicitly defined C_1, C_2 must exist.

However, if the constants C_1, C_2 cannot depend on v. Then set n := d we can try to prove the inequality

$$\frac{1}{\sqrt{n}} \|v\|_1 \le \|v\|_2 \le \sqrt{n} \|v\|_1$$

using the cauchy schwarz inquality $|\langle u, v \rangle| \leq ||u|| ||v||$ or using the standard inner (dot) product in \mathbb{R}^n : $|v \cdot w| \leq ||u|| ||v||$

Firstly, note that

$$\|v\|_1 = \sum_{i=1}^n |v_i| \cdot 1 \le \sqrt{\sum_{i=1}^n v_i^2} \sqrt{\sum_{i=1}^n 1^2} = \sqrt{n} \ \|v\|_2$$

which implies that $\frac{1}{\sqrt{n}} \ \|v\|_1 \leq \|v_2\|$

Next note that if

$$\|v\|_2 = \sqrt{\sum_{i=1}^n v_i^2} \leq \sqrt{n} \sum_{i=1}^n \lvert v_i \rvert = \sqrt{n} \ \|v\|_1$$

and taking the square of both sides gives

$$\sum_{i=1}^n v_i^2 \le n \sum_{i=1}^n v_i^2$$

which implies that $\|v\|_2 \leq \sqrt{n} \ \|v\|_1$

Therefore the claim holds if we set $C_1 = \frac{1}{\sqrt{n}}, C_2 = \sqrt{n}$ where n = d

The following was helpful: https://math.stackexchange.com/questions/1426471/in-the-proof-that-l1-norm-and-l2-norm-are-equivalent