

molecular informatics

DOI: 10.1002/minf.201900038

Property Prediction of Organic Donor Molecules for Photovoltaic Applications Using Extremely Randomized Trees

Arindam Paul, [a] Alona Furmanchuk, [b] Wei-keng Liao, [a] Alok Choudhary, [a] and Ankit Agrawal [a]

Abstract: Organic solar cells are an inexpensive, flexible alternative to traditional silicon-based solar cells but disadvantaged by low power conversion efficiency due to empirical design and complex manufacturing processes. This process can be accelerated by generating a comprehensive set of potential candidates. However, this would require a laborious trial and error method of modeling all possible polymer configurations. A machine learning model has the potential to accelerate the process of screening potential donor candidates by associating structural fea-

tures of the compound using molecular fingerprints with their highest occupied molecular orbital energies. In this paper, extremely randomized tree learning models are employed for the prediction of HOMO values for donor compounds, and a web application is developed. The proposed models outperform neural networks trained on molecular fingerprints as well as SMILES, as well as other state-of-the-art architectures such as Chemception and Molecular Graph Convolution on two datasets of varying sizes.

Keywords: Solar Cells · Machine Learning · Organic Photovoltaics · Cheminformatics

1 Introduction

Solar energy is a vital source of clean, versatile renewable energy and an important component in solving the worldwide energy problem.[1,2] Organic Photovoltaic cells (OPVs)[3-6] are lightweight, flexible, inexpensive and more customizable compared to traditional silicon-based photovoltaics.^[7] However, there are challenges impeding the usage of OPVs in a commercial environment. The major issue surrounding OPVs is low power conversion efficiency of fabricated cells. Maximum cell efficiency observed in organic solar cells is currently 13.2%, [8] and commercial devices usually achieve around 5-8%, [9] which is much lower than silicon-based photovoltaics. The primary bottleneck in the improvement of OPV device design is complex manufacturing processes that lead to the reduction of active layer performance.[10] Traditionally, the design of a potential OPV material is dependent on conjectures from experiments, and expertise of materials scientists, followed by a laborious process of synthesis, characterization, and optimization of a prototype device.

The screening of OPV materials could be semi-automated through utilization of various modeling techniques (finite element^[11,12] to *ab initio*^[13,14] and molecular modeling^[15]). Yosipof et al.^[16] establishes the importance of data reduction and visualization using Principle Component Analysis and Self Organizing Maps, wherein two metal oxide solar cell libraries are analyzed. Jorgensen et al.^[17] describes deep generative models for predicting molecular properties, and in particular, delineates screening of OPV using molecule generation via context-free grammar VAE. Kaspi

et al.^[18] introduces a machine learning/data mining-based decision support system PVAnalyzer for identification of interesting trends not easily observable using simple biparametric correlations, and provides scope of finding new insights into factors affecting solar cells performances. The task of screening is complicated due to the difficulty in capturing complex effects culminating from multiple local minimum configurations a polymer could adopt during the manufacturing of the active layer.^[19-22]

Machine learning applied to available experimental observations and theoretical simulations could potentially generate many comprehensive models with advanced predictive capabilities. This approach has been successfully applied in several materials and molecular designs^[23–36] across application areas.

In this paper, machine learning models using extremely randomized trees (ERTs)^[37] were developed to advance the organic monomer screening process for photovoltaic applications.^[38,39] The results of ab initio simulations were combined with the cataloged description of the structural details of the monomers. The variance of structural

[[]a] A. Paul, W.-k. Liao, A. Choudhary, A. Agrawal Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA E-mail: arindam.paul@eecs.northwestern.edu

E-maii: arinaam.paui@eecs.
[b] A. Furmanchuk

Institute for Public Health and Medicine, Feinberg School of Medicine, Center for Health Information Partnerships, Northwestern University, Chicago, IL, 60611, USA

http://info.eecs.northwestern.edu/OPVPredictor

Figure 1. Extremely randomized trees (ERT) architecture: ERTs are a forest of decision trees where node split is selected randomly with respect to both variable index as well as variable splitting value. Results from several small trees (indicated in dashed boxes) are aggregated in ERTs. The black paths represent the decision tree path for a given data point, and the gray paths represent the decision tree paths that are not selected. The output of each individual tree is aggregated and the final predicted value is the arithmetic mean (indicated by μ).

morphology in the actual device was approximated with sets of local conformers that possibly could be created during manufacturing. Models developed in this paper predict highest occupied molecular orbital (HOMO) energy of the donor monomers in the active layer of the device that is averaged across multiple configurations using Boltzmann averaging. The predicted value paired with the complementary lowest unoccupied molecular orbital of the acceptor molecule could be used in speeding up the screening process. The proposed models outperform neural networks trained on molecular fingerprints as well as SMILES, [40-42] as well as other state-of-the-art architectures such as Chemception and Molecular Graph Convolutions on both the smaller Harvard Organic Photovoltaic (HOPV) dataset as well as on a subset of the Clean Energy Project (CEP) dataset. For end-user convenience, the machine learning models were implemented as a web application at http://info.eecs.northwestern.edu/OPVPredictor.

2 Method

2.1 Extremely Randomized Trees

ERTs use an ensemble of decision trees^[37] in which a node split is selected completely randomly with respect to both

variable index and variable splitting value. The principle behind ERTs is using several small decision trees that are individually weak learners but when aggregated in an ensemble leads to a very robust learner. ERTs are similar to other tree based ensemble algorithms such as random forests (RFs) but unlike RFs, the same training set is used for training all the trees. Further, ERTs split a node based on both variable index and variable splitting value while random forests only splits by variable value. This makes ERTs both more computationally efficient than RFs and generalizable. Figure 1 illustrates the working of ERTs by aggregating results from several smaller trees.

2.2 Scharber Model

For a solar cell, the most important property is power conversion efficiency (PCE) or the amount of electricity which can be generated due to the interaction of electron donors and acceptors. The Scharber model^[43] provides a relation between the voltage $V_{\rm oc}$ and the energies of the HOMO and the lowest unoccupied molecular orbital (LUMO) level of the donor and acceptor molecules respectively, which in turn can be related to the power conversion efficiency (PCE), the maximum efficiency of solar cells. In the following equation, $J_{\rm sc}$ is the short-circuit

current density, FF is electrical fill factor and P_{in} is incident-light intensity. E_{HOMO}^{Donor} and $E_{LUMO}^{Acceptor}$ indicate the HOMO and LUMO energy levels of the donor and acceptor molecules respectively.

$$\begin{split} V_{oc} &= 1/e(E_{HOMO}^{|Donor|} - E_{LUMO}^{|Acceptor|}) - 0.3V \\ PCE &= 100*(V_{oc}*FF*J_{sc})/P_{in} \end{split}$$

2.3 Datasets

The HOPV dataset^[44] used in this work is a collection of photovoltaic measurements for a diverse set of 350 organic donor compounds generated by extensively searching the literature. In our experiments, the dataset was reduced to 344 molecules after removing redundant isomeric samples.[45] The dataset provides density functional theory (DFT) calculations of HOMO energy values for four functionals B3LYP, BP86, PBE and M06 using the basis set def2-SVP. [46] We get the expected values for HOMO values across all conformers by calculating the boltzmann average. Each molecule in the HOPV dataset is represented by a subset of 3–18 conformers obtained at kT, where k is the Boltzmann constant and T is the temperature of the OPV device. The global minimum (T=0 K) structures used for prediction of HOMO energies are far from the donor molecule structures in real OPV devices, after various manufacturing steps. We observe from Figure 2 that the PCE of the OPV device and the HOMO energy values are correlated with each other. We abstained from building models on the experimental values as HOMO values were missing for many molecules, and manufacturing information was not provided.

Figure 2. The scatter-plot (with line of best fit) demonstrates the linear relationship between PCE of the device and HOMO values of the donor compound. The boltzmann average of the HOMO values for each conformer is used to determine the HOMO for a given donor.

The band gap of the processed organic layer (made up of donors, acceptors, and other additives) would be altered from their global minimum value due to the shift of molecules from their ideal configuration. The degree of alteration would depend on the exact routine used in manufacturing, and is hard to predict. The boltzmann averaging is an attempt to account for the effect of structural variation in the experimental device. This is because different conformers of the same molecule occur in real OPV devices, and hence HOMO energies averaged overall conformers into the predictive model is expected to improve the relevance of the predicted HOMO values to the performance of the actual device.

To evaluate the validity of ERTs to scale to other datasets, we experimented on a subset of the Harvard CEP Dataset^[47] which contains DFT-calculated molecular structures and properties for many candidate donor structures for organic photovoltaic cells. The CEP is a virtual highthroughput discovery and design effort for the next generation of plastic solar cell materials. It studies many candidate structures to identify suitable compounds for the harvesting of renewable energy from the sun and for other organic electronic applications. To establish the generalization of the models for larger datasets, we scraped a portion of the CEP database available. For scraping, we used the python libraries selenium^[48] and beautiful soup.^[49] This dataset is made available in the supplementary material. We restricted our extraction to 22,179 data points as the online CEP database had restrictions in place preventing automatic web-extraction of the entire database.

2.4 Data Preparation

For both the datasets, the original data was divided into training and test subsets. Figure 3 illustrates the distribution of the HOMO values across the complete HOPV dataset, the training and test sets. The dataset is split into training and test subsets with 80% and 20% of the data points respectively. We use stratified shuffle splitting to ensure similar distribution across the training and test set. The HOPV dataset provided DFT calculations for 4 functionals: PBE, B3LYP, BP86 and M06. In this paper, we restricted ourselves to PBE calculations. Further, we found that all the other functionals can be expressed as a linear transformation of the PBE functional values.

Two fingerprint representations – MACCS and Atom Pair were used for generating features. [50-55] For Atom Pair fingerprints, we initially calculated the original unhashed count vector of length 4 million for all the molecules using RDKit. After that, features that are invariant across the entire dataset were removed. This led to the reduction of the length of the unfolded fingerprint from 4 million to 2696. The uncompressed MACCS fingerprint was only 166 bits long, and hence no feature reduction or transformation was

Figure 3. Distribution of the datasets: (a) entire HOPV dataset, (b) training set, and (c) held-out test set. All the HOMO values are in atomic units (a.u.). 1 atomic unit is equal to 27.21 eV.

performed. We did not use 1024 bit compressed fingerprint representation for Atom Pair as the original meaning of the fingerprint would be lost.

The fingerprints were prepared from their simplified molecular-input line-entry system (SMILES)^[56] formulae using RDKit Python Library.^[57] SMILES is a form of line notation for the chemical structure of molecules, and considered a versatile system. Molecule editors can generate 2D and 3D models from the line notation. The HOPV dataset provides canonical Standard SMILES implementations both in standard and shortened format.

Extensive grid search was performed across hyperparameters to discover the model architecture with the least mean absolute error for 5-fold cross-validation. This model was chosen and trained on the entire training dataset.

3 Results & Discussion

3.1 Experimental Results

In this work, we provide a framework for reducing the design space by screening new donor candidates using machine learning models developed on the HOPV dataset. Although both donors and acceptors are essential for an OPV application, the current work is restricted to donors as there are only a small number of known acceptors^[58,59] compared to hundreds of thousands of potential donor molecules. Therefore, developing a machine learning-based screening solution for donor molecules would lead to the identification of OPV devices with high PCE.

Figure 4 demonstrates the learning curve of the cross-validated ERT models across different set of training examples. The learning curves help demonstrate the increase of the learning capacity of the model as the dataset is increased. Further, the variance of the cross-validated models (indicated by the shaded green band surrounding the corresponding curve) decreases as the number of training examples increase.

To compare their performance, we also trained other state-of-the-art architectures for all datasets used. This includes a fully connected (FC) network trained on the fingerprint representations. Further, we also compare against 1-D CNN, RNN and CNN-RNN architectures trained on SMILES as recent papers have demonstrated their superiority over FC methods.[40-42] Lastly, we compare against other state of the art neural networks used in molecular informatics such as ConvGraph and Chemception. While the ConvGraph architecture uses the molecular structure encoded as graphs as input and then performs graph convolutions, Chemception architecture, [60] based on the Inception architecture for image classification, [61] directly develops a very deep neural network model by training directly on images of molecules. Bagging, RandomForest, ERTs and AdaBoost algorithms were implemented using Scikit-Learn Python Library. [62] The XGBoost package [63] was utilized for creating the xgboost model. The FC, CNN, RNN, CNN-RNN and Chemception models were implemented

Figure 4. Learning curves for the cross-validated ERT models across different set of training examples for the MACCS and Atom Pair Fingerprints. The goodness of prediction (Q^2) is used as the score.

using Keras^[64] with Tensorflow^[65] backend. The ConvGraph was implemented using DeepChem library.^[66]

In Table 1, we present the results of the experiments across all the models for the HOPV dataset. We present the % Mean Absolute Error (MAE), Root Mean Squarer Error (RMSE) and goodness of prediction (Q^2). We can observe the superiority of ERTs for both the MACCS and Atom Pair fingerprints over the other models. ERTs trained on MACCS and Atom Pair had a mean absolute percentage error (% MAE) of 1.91% and 1.97%. The RNN, CNN and CNN-RNNs trained on the SMILES had %MAE between 2.62% and 3.25%. Convolutional Graphs had %MAE of 2.82% and all other methods based on deep neural networks had even higher %MAE. Two ensemble tree based algorithms XGBoost and Random Forest outperform all other methods except ERTs. Even other ensemble tree-based algorithms such as AdaBoost and Bagging perform relatively well and at par with the best neural network based methods (RNNs

and CNN-RNNs). It must be noted that although ERT models outperform RF models based on %MAE (lower %MAE) and Q^2 (much higher Q^2), RF models have slightly lower RMSE.

In Table 2, the results of the randomization tests such as y-Randomization and pseudo-Descriptor tests are delineated, y-Randomization (also known as y-scrambling or response randomization) is a form of a permutation test, where the values of the response variable are randomly ascribed to different compounds, while the descriptors values are left intact. In the pseudo-descriptors test, the descriptors are replaced by random numbers that are also subsequently used to train the models. In our case as the features in fingerprints are bit vectors, we generate random bit strings for features. A comparison across the performance metrics such as %MAE, RMSE and Q^2 of the ERT models between the original dataset (in Table 1) and the randomization tests (in Table 2) demonstrates that our proposed models perform much better than models based on random input features (pseudo-Descriptors) or labels (y-Randomization).

3.2 Correlation of Fingerprint Features

We wanted to explore the correlation between the most important features for our model for understanding their impact on the HOMO value. Figures 5 and 6 depict the correlation matrices for top 5 features important for MACCS and Atom Pair Fingerprints, as they perform best across all the fingerprints. We restricted to top 5 features as the contribution of other features was very close to 0. The length of MACCS fingerprints is 166, which is much shorter compared to other fingerprints, and is least affected by the curse of dimensionality. The correlation plots demonstrate that presence of any ring (Feature 0), presence of a C=C double bond (Feature 3) and presence of an aromatic ring (Feature 4) is positively correlated with HOMO value, whereas a $C \equiv N$ triple bond (Feature 1) and a N=O double bond (Feature 2) is negatively correlated with HOMO value. Further, the correlation plot illustrates that presence of any ring, the presence of C=C bond and presence of an aromatic ring are strongly positively correlated with each other and hence we can conclude that these features often co-occur together in compounds with high HOMO value. Similarly, $C \equiv N$ triple bond and N=0 double bond have a weak positive correlation with each other, and their cooccurrence together leads to a compound with low HOMO

Figure 7 depicts two compounds with the highest HOMO value, and the abundance of rings including aromatic rings correspond to our observation from the correlation plots. Figure 8 illustrates two compounds from the HOPV dataset with the lowest HOMO value, and the presence and abundance of $C \equiv N$ triple bond and $N \equiv O$ double bond are per our expectation based on correlation values. Although all compounds in the HOPV dataset had

www.molinf.com

Table 1. Comparison of performance of ERT models with other algorithms for the HOPV dataset.

Algorithm	Feature	%MAE	RMSE	Q^2
AdaBoost	Molecular Fingerprint (MACCS)	2.6443	0.0061	0.1670
AdaBoost	Molecular Fingerprint (AtomPair)	2.5395	0.0058	0.2269
XGBoost	Molecular Fingerprint (MACCS)	2.0472	0.0057	0.7277
XGBoost	Molecular Fingerprint (AtomPair)	2.0141	0.0057	0.7263
Bagging	Molecular Fingerprint (MACCS)	2.6162	0.0063	0.1098
Bagging	Molecular Fingerprint (AtomPair)	2.4500	0.0058	0.2503
Random Forest	Molecular Fingerprint (MACCS)	2.0977	0.0054	0.4982
Random Forest	Molecular Fingerprint (AtomPair)	2.0589	0.0053	0.5169
ERTs	Molecular Fingerprint (MACCS)	1.9703	0.0057	0.7390
ERTs	Molecular Fingerprint (AtomPair)	1.9100	0.0056	0.7427
FC	Molecular Fingerprint (MACCS)	3.6850	0.0084	-0.5906
FC	Molecular Fingerprint (AtomPair)	3.5135	0.0078	-0.3975
CNN	SMILES	3.2536	0.0072	-0.1885
RNN	SMILES	2.6240	0.0062	0.1200
CNN-RNN	SMILES	2.6443	0.0061	0.1670
ConvGraph	Molecular Graphs	2.8170	0.0079	0.1082
Chemception	Molecule Image	3.2738	0.0079	-0.4089

Table 2. Performance metrics of the randomization tests performed using theMACCS and AtomPair fingerprints as features.

Features	Model	%MAE	RMSE	Q^2
MACCS	y-Randomization Pseudo-Descriptors y-Randomization	4.6036 6.5617 3.3981	0.0117 0.0167 0.0083	-2.1476 -5.3666 -0.5600
Atom Pair	Pseudo-Descriptors	5.5822	0.0083	-0.5600 -3.9450

aromatic rings as the fingerprints are count vectors and not bit vectors, it demonstrates that the number of rings positively correlate to higher HOMO value rather than the presence or absence of rings.

Figure 9 depicts the best-predicted structures from the dataset with respect to predictions based on both atom pair and MACCS fingerprints. All the compounds that are

predicted well have many aromatic rings, in agreement to our models as the number of rings and the number of aromatic rings are essential features. On the contrary in Figure 10, the compounds have fewer aromatic rings, and also have many features that are not part of the important features in the extremely randomized tree model. This makes it difficult to accurately predict the HOMO value. Although in this paper, the predicted feature is HOMO and not PCE, the demonstrated dependence of HOMO and PCE (via the Scharber model as well as illustrated in Figure 2 implies that PCE values are correlated directly to HOMO).

3.3 Generalization on Larger Dataset

We explored ERTs on the larger dataset of 22,179 molecules extracted from the Harvard CEP Database. We present the

Figure 5. Correlation for MACCS Fingerprints across the top 5 features and HOMO.

Full Paper

www.molinf.com

Figure 6. Correlation for Atom Pair Fingerprints across the top 5 features and HOMO.

Figure 7. Specimen donor molecules with the highest HOMO.

Figure 8. Specimen donor molecules with the lowest HOMO.

Figure 9. Best predicted structures based on prediction by both MACCS and Atom Pair Fingerprints.

distribution of the HOMO values of the larger dataset in Figure 11. The reported HOMO values in the CEP dataset

are an aggregate across several functionals. Table 3 compares the performance of the ERT models with other

Figure 10. Worst Predicted Structures based on prediction by both MACCS and Atom Pair Fingerprints.

Figure 11. Distribution of the CEP subset. All the HOMO values are in atomic units (a.u.). 1 atomic unit is equal to 27.21 eV.

Table 3. Comparison of extremely randomized tree models with other algorithms for the 22,179 molecule CEP dataset.

Algorithm	Feature	%MAE	RMSE	Q^2
AdaBoost	MACCS	2.0349	0.1284	0.7210
AdaBoost	AtomPair	2.0170	0.1272	0.7261
XGBoost	MACCS	0.9430	0.0611	0.9558
XGBoost	AtomPair	0.9378	0.0622	0.9523
Bagging	MACCS	1.6434	0.107	0.8065
Bagging	AtomPair	1.6418	0.1076	0.8551
Random Forest	MACCS	1.4331	0.0946	0.8864
Random Forest	AtomPair	1.4654	0.0967	0.8819
ERTs	MACCS	0.8991	0.0598	0.9572
ERTs	AtomPair	0.8696	0.0584	0.9604
FC	MACCS	1.6444	0.1070	0.8065
FC	AtomPair	1.6226	0.1058	0.8107
CNN	SMILES	0.7804	0.0521	0.9673
RNN	SMILES	0.7815	0.0527	0.9663
CNN-RNN	SMILES	0.7786	0.0529	0.9667
ConvGraph	Molecular Graphs	0.9104	0.0519	0.9619
Chemception	Molecule Image	1.4681	0.0974	0.8762

algorithms. As this dataset is much larger compared to the 350 molecule HOPV dataset, some deep neural methods such as convolutional graphs expectedly perform comparable to the ERTs, and SMILES-based models slightly outperform the ERT models. As the dataset is larger, we increased the number of trees in our model to 200.

4 Web Application

A web application is developed for the convenience of end users. The application accepts a single donor molecule in canonical SMILES format, converts it to the corresponding fingerprint, performs feature reduction, and the machine learning model is run to predict its HOMO value. Further, the results for other functionals are also calculated using the linear correlation between B3LYP and these functionals.

The RDKit library is used for generating the fingerprint from the SMILES notation as well as generating the molecular structure representation. The scikit learn library is used for loading and running the trained model on the input molecule. The libraries Tornado and Flask are used for generating and displaying the output from the machine learning model on the website.

It must be noted that prediction of properties based on the Scharber model indicates the highest possible power efficiency,^[47] and the actual efficiency after accounting for the morphology of the final photovoltaic device is usually lower. Figure 12 illustrates the screenshot of the homepage of the web application where a user can input the SMILES of a potential donor compound.

Figure 13 depicts the screenshot corresponding to a response for the predicted HOMO values across 4 functionals: PBE, B3LYP, BP86 and M06 is displayed in both a.u. as well as eV alongside the molecular structure of the compound. Further, we also calculate the open circuit voltage (V_{oc}) for the corresponding donor-acceptor combination when the user provides LUMO value of the acceptor. It must be noted that our models initially predict PBE and then a linear transformation is used to calculate values for other functionals based on the PBE prediction.

Although the Scharber model is simplistic to account for all the complex physics of an OPV explicitly, it nonetheless provides a valuable indication of the inherent promise of a candidate compound. Further, as the HOPV dataset was small, the web application must be used with caution. Due to the low mean absolute percentage error (% MAE), it will have high precision for compounds that are similar to those in the HOPV dataset. For instance, the HOPV dataset has only 3 compounds that have Selenium in the donor molecule.

www.molinf.com

Figure 12. Screenshot of the web application with request page for a given donor compound, and LUMO value of a potential acceptor.

Figure 13. Screenshot of the web application with response illustrating the molecular compound of the SMILES input with the predicted HOMO values across 4 functionals: PBE, B3LYP, BP86 and M06.

Full Paper

5 Conclusions

A methodology for predicting properties using fingerprints of donor molecules is presented. The elegance of an ensemble based regression technique such as ERTs lies in the fact that it minimizes the need for feature reduction or normalization. In particular, ERTs are generalizable and less prone to overfitting which is essential while learning from a small dataset. Further, ERTs are easily interpretable – a desired trait for further understanding of which features are most important for the predicted property of a given monomer. One of the goals of machine learning models is reusability. In the proposed work, although the models were trained using the PBE functional values, we ascertained that HOMO values of other functionals namely B3LYP, BP86, and M06 could be expressed as a linear transformation of their corresponding values for B3LYP functionals. Hence, the models developed for PBE can be extended to predict for other functionals. For the smaller OPV dataset, ERT models achieve better performance than other methods - both tree-based as well as those based on neural network. Further, we evaluated ERTs on the larger dataset and it performed almost at par with CNN or RNNbased neural networks trained on SMILES. We also provide a web application where users can receive the predicted HOMO values for the chemical compound of the donor as well as V_{oc} of the donor-acceptor combination for a given acceptor.

This work reveals the potential of integration of feature manipulation combined with extensive grid search on a small experiment-theory calibrated dataset of organic photovoltaic donors. Our system allows researchers to get an estimate of the HOMO energy values of donor compounds used in OPV applications, and motivate the development of an inexpensive photovoltaic solution. Directed efforts are needed to standardize the collection and representation of experimental manufacturing and processing data for effective use with machine learning techniques. Leveraging machine learning with computational and experimental chemistry could play an essential role in the expedition of systematic design of highefficiency OPV materials, and holds significant promise as a potential solution to future energy needs. The success of using machine learning models on a small but well-curated calibrated dataset exposes an exciting area in materials discovery, and in particular for solar cell technology. This, in turn, can provide a path towards solving the world energy problem in a clean and environmentally friendly way.

Conflict of Interest

None declared.

Acknowledgements

This work was performed under the following financial assistance award 70NANB19H005 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). Partial support is also acknowledged from DOE awards DE-SC0014330, DE-SC0019358.

References

- [1] R. Ciriminna, F. Meneguzzo, M. Pecoraino, M. Pagliaro, *Renewable Sustainable Energy Rev.* **2016**, *63*, 13–18.
- [2] OECD Global Science Forum OECD, 2016.
- [3] W. Sang-aroon, S. Laopha, P. Chaiamornnugool, S. Tontapha, S. Saekow, V. Amornkitbamrung, J. Mol. Model. 2013, 19, 1407–1415.
- [4] Z. Hu, V. S. Khadka, W. Wang, D. W. Galipeau, X. Yan, J. Mol. Model. 2012, 18, 3657–3667.
- [5] M. Mohamad, R. Ahmed, A. Shaari, S. Goumri-Said, J. Mol. Model. 2015, 21, 27.
- [6] N. Inostroza, F. Mendizabal, R. Arratia-Pérez, C. Orellana, C. Linares-Flores, J. Mol. Model. 2016, 22, 25.
- [7] C. N. Hoth, R. Steim, P. Schilinsky, S. A. Choulis, S. F. Tedde, O. Hayden, C. J. Brabec, *Org. Electron.* 2009, 10, 587–593.
- [8] M. Scharber, N. Sarciftci, Nanostructured Materials for Type III Photovoltaics 2017, 45, 33.
- [9] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, *Appl. Phys. Lett.* 2004, 85, 5757–5759.
- [10] J. Hou, X. Guo in Organic Solar Cells, Springer, 2013, pp. 17-42.
- [11] P. Granero, V. Balderrama, J. Ferré-Borrull, J. Pallarès, L. Marsal, J. Appl. Phys. 2013, 113, 043107.
- [12] Y. Lee, K. Kang, S. Lee, H. P. Kim, J. Jang, J. Kim, Jpn. J. Appl. Phys. 2016, 55, 102301.
- [13] W. J. Hehre, *Ab initio molecular orbital theory*, Wiley-Interscience, **1986**.
- [14] J. Taylor, H. Guo, J. Wang, Phys. Rev. B 2001, 63, 245407.
- [15] J.-L. Brédas, J. E. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 2009, 42, 1691–1699.
- [16] A. Yosipof, O. Kaspi, K. Majhi, H. Senderowitz, Mol. Inf. 2016, 35, 622–628.
- [17] P. B. Jørgensen, M. N. Schmidt, O. Winther, Mol. Inf. 2018, 37, 1700133.
- [18] O. Kaspi, A. Yosipof, H. Senderowitz, Mol. Inf. 2018, 37, 1800067.
- [19] J. Roncali, P. Leriche, P. Blanchard, Adv. Mater. 2014, 26, 3821– 3838.
- [20] S.-S. Sun, N. S. Sariciftci, Organic photovoltaics: mechanisms, materials, and devices, CRC press, 2017.
- [21] S. Holliday, Y. Li, C. Luscombe, Progress in Polymer Science 2017.
- [22] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, A. Aspuru-Guzik, J. Phys. Chem. Lett. 2011, 2, 2241–2251.
- [23] H. Sahu, W. Rao, A. Troisi, H. Ma, Adv. Energy Mater. 2018, 8, 1801032.
- [24] D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton, A. Agrawal, Sci. Rep. 2018, 8, 17593.

www.molinf.com

- [25] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 2018, 559, 547.
- [26] A. Paul, P. Acar, R. Liu, W.-K. Liao, A. Choudhary, V. Sundararaghavan, A. Agrawal, AIAA J. 2018, 56, 1239–1250.
- [27] P. B. Jørgensen, M. Mesta, S. Shil, J. M. Garcia Lastra, K. W. Jacobsen, K. S. Thygesen, M. N. Schmidt, J. Chem. Phys. 2018, 148, 241735.
- [28] A. Paul, P. Acar, W.-k. Liao, A. Choudhary, V. Sundararaghavan, A. Agrawal, Comput. Mater. Sci. 2019, 160, 334–351.
- [29] B. Cao, L. A. Adutwum, A. O. Oliynyk, E. J. Luber, B. C. Olsen, A. Mar, J. M. Buriak, ACS Nano 2018, 12, 7434–7444.
- [30] D. Jha, L. Ward, Z. Yang, C. Wolverton, I. Foster, W.-k. Liao, A. Choudhary, A. Agrawal, 2019.
- [31] D. Jha, A. G. Kusne, N. Nguyen, W.-k. Liao, A. Choudhary, A. Agrawal in 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019.
- [32] Z. Yang, Y. C. Yabansu, D. Jha, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi, A. Agrawal, *Acta Mater.* 2019, 166, 335–345.
- [33] A. Agrawal, A. Choudhary, MRS Communications 2019, 1–14.
- [34] J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer, V. R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha, T. Buonassisi, *Joule* 2018, 2, 1410–1420.
- [35] J. Ulaczyk, K. Morawiec, P. Zabierowski, T. Drobiazg, N. Barreau, Molecular informatics 2017, 36.
- [36] A. C. Mater, M. L. Coote, J. Chem. Inf. Model. 2019.
- [37] P. Geurts, D. Ernst, L. Wehenkel, *Machine learning* 2006, 63, 3–42.
- [38] O. Kaspi, A. Yosipof, H. Senderowitz, J. Cheminf. 2017, 9, 34.
- [39] J. Hachmann, R. Olivares-Amaya, A. Jinich, A. L. Appleton, M. A. Blood-Forsythe, L. R. Seress, C. Roman-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, Energy Environ. Sci. 2014, 7, 698–704.
- [40] G. B. Goh, N. O. Hodas, C. Siegel, A. Vishnu, arXiv preprint arXiv:1712.02034 2017.
- [41] A. Paul, D. Jha, R. Al-Bahrani, W.-k. Liao, A. Choudhary, A. Agrawal in NeurIPS Workshop on Molecules and Materials, 2018.
- [42] A. Paul, D. Jha, R. Al-Bahrani, W.-k. Liao, A. Choudhary, A. Agrawal in 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019.
- [43] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789–794.
- [44] The Harvard Organic Photovoltaics 2015 (HOPV) dataset: An experiment-theory calibration resource. https://figshare.com/ articles/HOPV15_Dataset/1610063, (Accessed on 09/22/2016), 2016.
- [45] O. A. von Lilienfeld, R. Ramakrishnan, M. Rupp, A. Knoll, Int. J. Quantum Chem. 2015, 115, 1084–1093.

- [46] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297– 3305.
- [47] E. O. Pyzer-Knapp, K. Li, A. Aspuru-Guzik, Adv. Funct. Mater. 2015, 25, 6495–6502.
- [48] S. Avasarala, Selenium WebDriver practical guide, Packt Publishing Ltd, 2014.
- [49] L. Richardson, April 2007.
- [50] I. Kahn, A. Lomaka, M. Karelson, Mol. Inf. 2014, 33, 269–275.
- [51] A. Cereto-Massagué, M. J. Ojeda, C. Valls, M. Mulero, S. Garcia-Vallvé, G. Pujadas, Methods 2015, 71, 58–63.
- [52] S. Riniker, G. A. Landrum, J. Cheminf. 2013, 5, 1.
- [53] A. Bender, R. C. Glen, Org. Biomol. Chem. 2004, 2, 3204-3218.
- [54] M. Reutlinger, C. P. Koch, D. Reker, N. Todoroff, P. Schneider, T. Rodrigues, G. Schneider, Mol. Inf. 2013, 32, 133–138.
- [55] Y. Tabei, K. Tsuda, Mol. Inf. 2011, 30, 801-807.
- [56] D. Weininger, J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.
- [57] G. Landrum, RDKit: open-source cheminformatics software, 2016
- [58] N. Kaur, M. Singh, D. Pathak, T. Wagner, J. Nunzi, Synth. Met. 2014, 190, 20–26.
- [59] Y. Lin, X. Zhan, Mater. Horiz. 2014, 1, 470-488.
- [60] G. B. Goh, C. Siegel, A. Vishnu, N. O. Hodas, N. Baker, arXiv preprint arXiv:1706.06689 2017.
- [61] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
- [62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, *Journal of Machine Learning Research* 2011, 12, 2825–2830.
- [63] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, R package version 0.4-2 2015, 1–4.
- [64] F. Chollet, Keras, 2015.
- [65] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.
- [66] deepchem package deepchem master documentation, https://deepchem.io/docs/deepchem. html, (Accessed on 06/23/2019).