有机化学

蓝宇 (Dr. Prof.)

重庆大学化学化工学院

联系电话: 186 8080 5840

电子邮件: LanYu@cqu.edu.cn

第五章 卤代烃、金属有机化合物

卤代烃的结构和命名

卤代烃的物理性质

卤代烷的亲核取代反应及S_N1和S_N2机理

卤代烃的消除反应及E2和E1机理

卤代烃的还原反应

有机金属化合物 (Grignard试剂)

卤代烃的结构

卤代烃通式: R-X (X = F、 C1、 Br、 I)

R-C1, R-Br, R-I

性质接近 通常总称卤代烃

R-F

性质特殊 氟代烃

卤代烃的类型

> 一卤代

 $RCH_2 - X$

伯(一级)卤代烃 仲(二级)卤代烃

叔 (三级) 卤代烃

> 二卤代

偕二卤代烃

邻二卤代烃

> 多卤代烃

卤代烃的命名

普通法和俗称:

CH₃CH₂CH₂CH₂—Br

正丁基溴

n-butyl bromide

正溴丁烷

CH₃ | CH₃C—Br | CH₃

叔丁基溴 tert-butyl bromide

叔溴丁烷

CH₃CH₂CH—Br

仲丁基溴

sec-butyl bromide

仲溴丁烷

CH₃ | CH₃CHCH₂—Br

异丁基溴

isobutyl bromide

异溴丁烷

CHCI₃

三氯甲烷

氯仿,chloroform

IUPAC命名法:

> 选取含卤素的最长碳链为主链

 $\begin{array}{c} \mathsf{CH_3CH_2CHCH_2CH_3} \\ \mathbf{I} \\ \mathsf{CH_2Br} \end{array}$

2-乙基-1-溴丁烷

反-1-氯甲基-4-氯环己烷

(S)-3-甲基-1-溴戊烷

(R)-2,3-二甲基-3-氯戊烷

> 卤代烃的物理性质

- ▶ 物态: 一般为液体, 高级为固体, 少量为气体
- ▶ 比重: 一般 d > 1, 一氯代物通常 d < 1
- ▶ 溶解度:不溶于水,易溶于有机溶剂
- ▶ 其它:多卤代物一般不燃烧

> 谱学性质

¹H-NMR

> 谱学性质

➤ 谱学性质 13C-NMR

 α -碳、 β -碳化学位移向低场方向移动

ChemNMR ¹³C Estimation

Estimation quality is indicated by color: good, medium, rough

> 谱学性质

IR

卤代烃的化学性质

▶卤代烃的结构

C-H 1.10Å

卤代烃的化学性质

▶偶极矩

barycentre of positive charge

barycentre of negative charge

$u = u \wedge u \qquad D(aebye)$	$\mu = a$	\times d	D(debye
----------------------------------	-----------	------------	---------

Compound	μ/d
CH₃F	1.82
CH ₃ CI	1.94
CH₃Br	1.79
CH₃I	1.64

卤代烃的化学性质

▶卤代烃的结构特点

卤素对化学建的影响——诱导(吸电子)效应

σ - 电子发生偏移,X 起吸电子作用。

诱导效应 通过单键 传递的电 子效应

н	С	N	0	F
2.1	2.5	3.0	3.5	4.0
	CI			
	3.0			
	Br			
_	2.8			
的	1			
	2.5			

 $-CCI_3$, $-CF_3$

(强) 吸电子基团

(electron withdrawing group)

>诱导效应的特点

$$\delta\delta\delta + \delta\delta + \delta + \delta - \delta - CH_3 \rightarrow CH_2 \rightarrow CH_2 \rightarrow CI$$

- ▶ 静电作用,永久性效应,没有外界电场影响时也存在。 "静态诱导效应"分子的固有性质
- ▶ 共用电子并不完全转移到另一原子,只是电子云密度发生变化。
 - 即:键的极性发生变化(与C-H键比较)
- 沿碳链传递,并随着链的增长而迅速减弱或消失。经过三根共价键后,其影响就极弱,可忽略不计。

▶诱导效应的特点

▶C一X 键的异裂

自身异裂

X 总是以负离 子形式离去

亲核试剂 (Nucleophile):

一些带有未共享电子对的 分子或负离子,与正电性碳反 应时称为亲核试剂。 亲核试剂(Nu)取代了卤素(X)

——亲核取代反应(S_N反应,

Nucleophilic Substitution Reaction)

>α和β位氢有弱酸性

在卤代烃中

α和β位氢均有弱酸性

β-消除反应 (β-Elimination Reaction)

卤代烃的亲核取代反应

 $(S_N \overline{\nabla}$ 应, Nucleophilic Substitution Reaction)

▶与负离子型亲核试剂的反应

;Nu ⊖ R—Nu R—X e :CN R—CN 腈 ⊖ :C≡C-R' R—C≡C-R' 高级炔 炔基负离子 $oldsymbol{\Theta}$ R-CH(CO₂Et)₂ 烷基丙二酸酯 :CH(CO₂Et)₂ 丙二酸酯负离子 ..е :!: 碘代烷 R—I

▶与分子型亲核试剂的反应

> 分子内亲核取代反应(成环亲核取代)

▶卤代烃亲核取代反应小结

R-X为重要有机中间体(intermediates)

亲核取代反应机理

> 旧键的解离与新键的形成同时进行(一步机理)

亲核取代反应机理

▶C-X 键先解离,再与亲核试剂成键(二步机理)

- ▶反应经过碳正离 子中间体。
- ▶第一步应为决速 步骤

➤C-X 键先解离,再与亲核试剂成键 (二步机理)

 $R-X + Nu - R-Nu + X^{\Theta}$

	动力学证据 反应速率	立体化学证据 对手性底物, 产物的立体化学	重排 现象	反应类型
-	∞[RX][Nu⁻]	构型翻转	无	双分子机理 bimolecular mechanism S _N 2
Ш	∞[RX]	消旋化	有	单分子机理 unimolecular mechanism S _N 1

> 构型翻转型反应-瓦尔登翻转

▶消旋型反应

叔卤代烃

▶举例: 溴乙烷与 NaOH的反应 (S_N2机理)

ightharpoonup 举例:叔丁基溴在80%EtOH水溶液中的水解反应(S_N 1机理)

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

影响亲核取代反应机理和反应速率的因素

> 底物结构对机理的影响

►S_N2机理与烷基的结构

空间位阻效应电子效应

$$R-Br + OH$$
 80% 乙醇水溶液 $R-OH + Br$ $55^{\circ}C$ CH_3 $H_3C-CH_2-Br > H_3C-CH-Br > H_3C-CH-Br CH_3 $CH_3$$

▶S_N1机理与烷基的结构

正碳离子稳定性 空助效应 (消除X减少基团拥挤)

> 桥头卤素难被取代

S_N2难: 无法翻转 (刚性结构) 位阻 (叔碳) S_N1难:碳正离子不是平面 (C-X难解离)

> 亲核试剂对机理的影响

亲核试剂 亲核能力

浓度

 $S_N 2$ 速率 = k[RX][Nu]

有利因素

> 亲核能力强 > 浓度大

●S_N1 机理

 $S_N 1$ 速率 = k[RX]

亲核能力、浓度与决速步骤无关

所有的亲核试剂都是碱**,** 所有的碱也都是亲核试剂

回 Θ_{OH} Θ_{OR} Θ_{CN} I^{Θ} 如 $RCOO^{\Theta}$ NH_3 H_2O

■ 问题1: 如何衡量亲核试剂的亲核性?

■ 问题2: 亲核性与碱性的关系如何?

定义

亲核性: 有未共用电子对的负离子和分子与正电性碳原子的反应能力

碱 性: 有未共用电子对的负离子和分子与质子的反应能力

测量方法

亲核性:测定亲核试剂与某一底物进行S_N2反应的相对速率,速率快者亲

核性强。(动力学参数)

碱 性:测定碱与H₂O的反应,平衡常数Kb大者碱性强。(热力学参数)

- 同种或同周期中心原子的亲核性与碱性顺序大致相同
 - ▶未共用电子对在氧原子上

$$RO^{\Theta} > HO^{\Theta} > ArO^{\Theta} > RCOO^{\Theta} > ROH > H_2O$$

▶同一周期原子

$$NH_2^{\Theta} > RO^{\Theta} > HO^{\Theta} > RNH_2 > NH_3 > F^{\Theta} > H_2O$$
 $R_3C^{\Theta} > R_2NH^{\Theta} > RO^{\Theta} > F^{\Theta}$

■ 同族中心原子亲核性与碱性顺序不相一致(受溶剂影响) $I^{\Theta} > Br^{\Theta} > cl^{\Theta}$, $Rs^{\Theta} > Ro^{\Theta}$, $Hs^{\Theta} > Ho^{\Theta}$

质子性溶剂中

溶剂分类

极性溶剂	质子	-性溶剂	ROH	H ₂ O	RCOOH	具有可解 离活泼氢
	非质子 性溶剂 (偶极 溶剂)		O II H ₃ C—S—CH ₃ 二甲亚砜 DMSO (Dimethyl Sulfoxide)		N, I) (N, N–D	O H-C-N、CH ₃ N, N-二甲基甲酰胺 DMF (N, N-Dimethylformamide)
非极性和 低极性溶剂		(非质子性	溶剂)	烷烃	,苯,醚类	美, 酯类

> 一些溶剂的极性(介电常数)

▶质子性溶剂						
H ₂ O	НСООН	CH ₃ OH	C ₂ H ₅ OH	CH ₃ COOH		
80	59	33	24	6		

▶非质子	性溶剂		O	
DMSO	DMF	CH ₃ CN	CH ₃ CCH ₃	
49	37	36	21	

各种影响亲核取代机理的因素总结

R—X: 对S_N2有 Nu⊖ 强亲核性,

> 溶剂 非质子性, 低极性

1°, 2°

大浓度

典型的S_N2

3°, R-X: 烯丙型,苄基型

NυΘ 弱亲核性 (避免 S_N2)

溶剂 大极性

对S_N1有 利的因素

利的因素

典型的S_N1

> 离去基团对取代反应的影响

>好离去基团的条件: 是稳定的弱碱

碘离子的亲核取代问题

▶ 利用碘离子促进(催化)反应进行

卤代烃的消除反应

例:一些卤代烷的消除

注意:主要产物的结构 有何特点?

例: 1-溴-1, 2-二苯基丙烷的消除反应 (有二对对映体)

注意:消除为立 体专一性

> 卤代烃的消除反应机理

• 实验证据: 存在两种类型的消除反应

	动力学证据 反应速率	反应的立体化学	重排 现象	反应类型
ı	∞[RX][B:]	立体专一性	无	双分子机理 E2
II	∞[RX]	无选择性	有	单分子机理 E1

▶ E2机理 (双分子消除机理)

五中心过渡态

- ▶旧键的解离与新键的形成同时进行 (一步机理)
- ▶符合动力学特征 V = k[RX][B:]

▶ E2机理 (双分子消除机理)

五中心过渡态

- ▶旧键的解离与新键的形成同时进行 (一步机理)
- ▶符合动力学特征 V = k[RX][B:]

> 影响消除反应机理的一些因素

a) E2机理

有利于E2机理的因素:

▶R-X: 1° R-X, 烷基位阻小

▶B(碱): 强碱、大浓度有利

▶溶 剂: 弱极性溶剂有利

有利于E1机理的因素:

 $ightharpoonup R - X : 3^{\circ} R - X$

▶B(碱): 对E1反应影响较小,但弱碱或低浓度碱,可减少E2的竞争

▶溶 剂:大极性溶剂有利

> 影响消除反应机理的一些因素

(Regioselectivity)

Zaitsev 消除取向

Zaitsev 规则 (一般情况下)消除优先生成 双键上取代基多的烯烃。 为什么?

烯烃的稳定性

▶ 补充: 烯烃的类型及其稳定性

> 分类:将烯烃看作乙烯的取代产物

▶ 稳定性: 多取代烯烃较稳定

四取代烯烃 三取代烯烃 二取代烯烃 -取代烯烃 有 van der waals 排斥 cis trans

烯烃相对稳定性的测定——烯烃的氢化热

▶ Hofmann 消除取向

- ▶ E2 消除的立体化学——立体专一性反应
- ► E2 消除为反式共平面消除 (反式消除)

H与X为反式共平面

Anti periplanar

负电荷相距较远

- ▶ 取代反应对消除反应
- $S_N 2 = E2$
 - ▶ 烷基结构:RCH₂X中,R体积增加,消除比例上升。

- ▶ 碱性和亲核性:碱性强 (NH2-, RO-,OH-等),浓度大有利于消除。
- 温度:高温有利于消除。
- ▶ 溶剂: 低极性溶剂对E2更好。
- ■S_N1与E1: 高温对E1有利。

▶ 取代反应对消除反应合成举例——Williamson 醚合成法

例: 合成甲基叔丁基醚

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_3C} \mathbf{--O} \mathbf{--CH_3} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

分析: 醚类化合物可由亲核取代制得 Williamson 醚合成法

$$R-X + \Theta_{O-R'}$$

▶ 用反合成分析(Retrosynthetic analysis)法描述:

切断 (disconnection)

$$R + O - R'$$

R-X

⊦ [⊖]ο−F

TM, 目标分子

Target molecule)

表示有机反应的逆向

诺贝尔化学奖 获得者(1990)

E. J. Corey (1928 ~)

> 甲基叔丁基醚的反合成分析

有两种切断方式

哪一种更有合成意义?

▶合成路线的选择

请注意合成路线的书写表达方式

卤代烃的还原反应

合成 上若涉及还原 反应,应注意 底物中是否有 卤素。

$$R \xrightarrow{\text{II}} X \xrightarrow{\text{H}_2 / \text{Pd}} R \xrightarrow{\text{CH}_3}$$

▶卤代烃与活泼金属的反应

单体(稀溶液)

有机金属化合物——金属与碳直接成键

63

二聚体(浓溶液)

金属有机化合物

1. 类型

▶ 离子型(与碱金属形成的化合物)

金属	电负性		
Li	1.0		
Mg	1.2		
Cd	1.7		
Cu	1.9		

▶ 极性共价键型(与第II、第III族金属形成的化合物)

R-MgX 烷基卤化镁 (Grignard试剂,格氏试剂,格林雅试剂)

R₂CuLi 二烷基铜锂

R₂Cd 烷基镉

▶有机金属化合物的制备

脂肪族卤代物 > 芳香族卤代物和烯基卤代物

●交换法

2 RLi + Cul ———— R₂CuLi + Lil

 $2 RMgCl + CdCl_2 \longrightarrow R_2Cd + 2 MgCl_2$

▶烷基卤化镁 (Grignard试剂) 的性质

- 基本性质:活泼,不太稳定
 - ▶遇氧气发生反应

Victor Grignard (1871 ~1935)

$$2 \text{ R-MgX} + O_2 \longrightarrow 2 \text{ R-OMgX} \longrightarrow R-OH$$
 为 δ — R—MgX \approx R \rightleftharpoons R—H 强碱 强亲核试剂

▶ Grignard 作为碱

化合物	pKa	共轭碱	化合物	рКа	共轭碱
(CH ₃) ₃ C-H	71	$(CH_3)_3C^-$	H_2N-H	36	$\mathrm{H_2N}^-$
CH ₃ CH ₂ −H	62	$\mathrm{CH_3CH_2}^-$	НС≡С−Н	26	HC≡C ⁻
СН ₃ -Н	60	$\mathrm{CH_3}^-$	$\mathrm{CH_{3}CH_{2}O} ext{-H}$	16	$\mathrm{CH_{3}CH_{2}O^{-}}$
			НО-Н	15. 7	HO ⁻

提示

- ▶制备Grignard试剂应在无水(无氧)条件下进行。
- ▶底物中不能有活泼氢存在。

▶应用:通过Grignard试剂制备氘代化合物或还原卤代烷至烷烃

$$R-X$$
 \longrightarrow $R-MgX$ \longrightarrow $R-H$ 还原

▶ Grignard 试剂在合成中应用小结

> 二烷基铜锂的主要性质

本章要求

- > 掌握卤代烷的亲核取代反应及机理
- > 掌握掌握卤代烷的消除反应及机理
- ▶ 了解并掌握影响亲核取代与消除反应的一些主要因素
- 了解卤代烃与金属的反应及有机金属化合物的制法