1. Lineáris le kepézések és <u>mátrixszorzások kapcsolata</u>

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül. Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Példa: Lin.lekép \mathbb{R}^2 -ből \mathbb{R}^2 -be (a szokásos helyvektorokon) az origóra tükrözés, az origó körüli forgatás, az x tengelyre vetítés, vagy egy origón átmenő egyenesre tükrözés. $\mathbb{R}^2 \to \mathbb{R}^3$ lineáris leképezés, ha pl. az sík minden (x,y) pontjához a tér (2x,0,y/2) pontját rendeljük.

Megf: Tetsz. $A \in \mathbb{R}^{n \times k}$ esetén az A-val történő balszorzás lin.lekép-t definiál \mathbb{R}^k -ból \mathbb{R}^n -be. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^\ell \lambda_i \underline{u}_i) = \sum_{i=1}^\ell \lambda_i f(\underline{u}_i) \ \, \forall \lambda_i, \underline{u}_i$. Biz: \Rightarrow : Mivel f additív és homogén, ezért $f(\lambda_1 \underline{u}_1 + \ldots + \lambda_k \underline{u}_k) = f(\lambda_1 \underline{u}_1) + \ldots + f(\lambda_k \underline{u}_k) = \lambda_1 f(\underline{u}_1) + \ldots + \lambda_k f(\underline{u}_k)$, azaz f zárt a lin.komb-ra. \Leftarrow : Ha f zárt a lin.komb-ra, akkor $f(\lambda \underline{u}) = \lambda f(\underline{u})$, hisz λu az u lin.komb-ja, továbbá $f(\underline{u} + \underline{v}) = f(1\underline{u} + 1\underline{v}) = 1f(\underline{u}) + 1f(\underline{v}) = f(\underline{u}) + f(\underline{v})$, tehát f homogén és additív, más szóval f lin.lekép.

Köv: Ha $f: U \to V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i \underline{b}_i$, akkor $f(\underline{u}) = \sum_{i=1}^{\ell} \lambda_i f(\underline{b}_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t.

Annak az igazolásához, hogy minden f lineáris leképezés előáll mátrixszal történő balszorzással csupán azt kell megmutatni, hogy van olyan [f] mátrix, amire $f(\underline{b}_i) = [f]\underline{b}_i$ teljesül minden \underline{b}_i báziselemre.

Ekkor ugyanis az [f]-fel való balszorzás lineáris leképezés, továbbá a fenti Következmény miatt $f(\underline{v}) = [f]\underline{v}$, azaz minden \underline{v} vektor f szerinti $f(\underline{v})$ képe az [f] mátrixszal történő balszorzással kapható.

Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $\underline{b}_1, \ldots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \ldots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $A \in \mathbb{R}^{n \times k}$ mátrix, amire $A\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén. Biz: Legyen $B = (\underline{b}_1, \ldots, \underline{b}_m)$, és $C = (\underline{v}_1, \ldots, \underline{v}_m)$. A Lemma állítása ekvivalens azzal, hogy van olyan A mátrix, amire $A \cdot B = C$. Láttuk, hogy ha C minden sora előáll B sorainak lineáris kombinációjaként, akkor van ilyen A. Azt fogjuk tehát most igazolni, hogy C minden sora előáll B sorainak lineáris kombinációjaként.

Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $\underline{b}_1, \ldots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \ldots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $A \in \mathbb{R}^{n \times k}$ mátrix, amire $A\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén.

Biz: Mivel B bázis, ezért B oszlopai lin.ftn-ek. Így a B ESÁ-okkal RLA mátrixszá transzformált alakja $(\underline{e}_1,\ldots,\underline{e}_m)$, azaz I_m áll az RLA mátrix tetején. Ezért I_m minden sora előáll a B sorainak lineáris kombinációjaként. Minden m oszlopból álló mátrix, így C is megkapható I_m sorainak lineáris kombinációjaként. Tehát C sorai előállnak nem csak I_m , de B sorainak lin.komb-jaként is.

Köv: Tetsz. $f: U \to V$ lin.lekép esetén van olyan [f] mátrix, amire $[f]\underline{u} = f(\underline{u})$ teljesül $\forall \underline{u} \in U$ esetén.

Biz: Legyen $\{\underline{b}_1,\ldots,\underline{b}_k\}$ az U altér egy bázisa. A fenti Lemma szerint van olyan [f] mátrix, amire $[f]\underline{b}_i=f(\underline{b}_i)$ teljesül minden báziselemre. Az $\underline{u}\mapsto [f]\underline{u}$ olyan lineáris leképezés, ami a \underline{b}_i báziselemeken megegyezik f-fel. Mivel a lineáris leképezést a báziselemek képe meghatározza, ezért $f(\underline{u})=[f]\underline{u}\ \forall \underline{u}\in U$.

2. Lineáris le kepézés mátrixának meghatározása

Állítás: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén, ahol $[f] = (f(\underline{e_1}), \ldots, f(\underline{e_k}))$. Biz: $[f]\underline{e_i} = (f(\underline{e_1}), f(\underline{e_2}), \ldots, f(\underline{e_n})) \underline{e_i} = f(\underline{e_i})$ egy korábbi megfigyelés szerint. Ha tehát $\underline{v} = \sum_{i=1}^n \lambda_i \underline{e_i}$, akkor $[f]\underline{v} = [f](\sum_{i=1}^n \lambda_i \underline{e_i}) = \sum_{i=1}^n \lambda_i [f]\underline{e_i} = \sum_{i=1}^n \lambda_i f(\underline{e_i}) = f(\sum_{i=1}^n \lambda_i \underline{e_i}) = f(\underline{v})$ (A 2-dik és 4-dik egyenlőségnél f ill [f] lineáris kombináció tartó tulajdonságát, a 3-diknál pedig a bizonyítás elején szereplő megfigyelést használtuk.)

Lemma: Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f: \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(\underline{v}) = g(f(\underline{v}))$ és $[g \circ f] = [g][f]$.

Megj: A Lemma azt mondja ki, hogy lineáris leképezések egymásutánja olyan lineáris leképezés, aminek a mátrixa a két lineáris leképezés mátrixának a szorzata, ahol a szorzást a másodiknak elvégzett leképezés mátrixával kezdjük.

3. le kepézések egymásutánjának mátrixa

Állítás: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén, ahol $[f] = (f(\underline{e}_1), \dots, f(\underline{e}_k))$.

Def: A fenti [f] mátrix az $f: \mathbb{R}^k \to \mathbb{R}^n$ lineáris leképezés mátrixa. Példa: Legyen f_α az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_\alpha(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ ill. $f_\alpha(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, így $[f_\alpha] = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$. Lemma: Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f: \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(\underline{v}) = g(f(\underline{v}))$ és $[g \circ f] = [g][f]$.

Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C. Köv: A fenti példában szereplő elforgatásokra igaz, hogy $f_{\alpha+\beta} = f_\alpha \circ f_\beta$, így $\begin{pmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix} = [f_{\alpha+\beta}] = [f_\alpha][f_\beta] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \alpha \\ \sin \beta & \cos \alpha \end{pmatrix} = \sin \alpha \sin \beta & -\sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \sin \alpha & \cos \alpha \end{pmatrix} = \sin \alpha \sin \beta + \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \cos \alpha \cos \beta - \sin \alpha \sin \beta \end{pmatrix}$ Ebből pedig $\cos(\alpha+\beta) = \cos \alpha \cos \beta$ adódik. □ Váratlan módszerrel igazoltuk a trigonometrikus függvények addíciós képletét.

4. mátrixszorzás asszociativitása

Biz: Először $g \circ f$ linearitását igazoljuk: $g(f(\underline{u}\underline{u})) = g(\lambda f(\underline{u})) = \lambda g(f(\underline{u}))$ homogén, ill. $g(f(\underline{u}+\underline{v})) = g(f(\underline{u})+f(\underline{v})) = g(f(\underline{u}))+g(f(\underline{v}))$ lineáris. Tehát $g \circ f$ csakugyan lineáris leképezés.

Végül a kompozíciómátrixról szóló képlet helyességét bizonyítjuk.

(D) (B) (2) (2) 2 00

Biz: A tanultak szerint $[g \circ f]$ i-dik oszlopa $g(f(\underline{e}_i)) = [g]([f]\underline{e}_i)$. Láttuk, hogy $[f]\underline{e}_i$ az [f] i-dik oszlopa, így $[g]([f]\underline{e}_i)$ a [g] mátrix szorzata az [f] mátrix i-dik oszlopával. Ez pedig nem más, mint az [g][f] szorzatmátrix i-dik oszlopa. Ezek szerint a $[g \circ f]$ mátrix i-dik oszlopa megegyezik a [g][f] mátrix i-dik oszlopával $(\forall i$ -re), így aztán $[g \circ f] = [g][f]$.

Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C. Biz: Legyenek A, B ill. C az f, g és h lineáris leképezések mátrixai. Ekkor A(BC) az $f \circ (g \circ h)$, (AB)C pedig az $(f \circ g) \circ h$ leképezés mátrixa. Márpedig $f \circ (g \circ h)(\underline{v}) = f(g(h(\underline{v}))) = (f \circ g) \circ h(\underline{v})$ miatt e két leképezés megegyezik, így a mátrixaik is azonosak.