Multivariate: Logistic regression

Table of contents

1	Goals			
	1.1	Goals	2	
2	Line	ear regression and extensions	2	
	2.1	Review: Linear regression	2	
	2.2	Linear regression with a binary variable		
	2.3	Next steps		
3	Log	istic regression	10	
	3.1	Logistic regression	10	
	3.2	Probability metric	14	
	3.3	Odds metric	18	
	3.4	Logit or log-odds metric	23	
	3.5	Metrics wrap-up		
	3.6	A tiny detour		
4	Esti	mation and model fit	27	
	4.1	Estimation	27	
	4.2	R^2 measures		
	4.3	Model comparisons		
5	Sun	nmary	31	
		Summary	31	

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- My outcome variable isn't normally distributed
 - It's binary!!!
 - Two mutually exclusive categories
 - * yes/no, pass/fail, diagnosed/not, etc.
 - Linear regression assumptions are violated
- Use logistic regression to analyze the outcome
 - It's an **extension** of linear regression, so many of the **same concepts** still apply

2 Linear regression and extensions

2.1 Review: Linear regression

2.1.1 Assumptions of linear regression

General linear model (GLM, linear regression, ANOVA) makes three assumptions about the residuals $(e_i = Y_i - \hat{Y}_i)$ of the model

- 1. **Independence**: observations (i.e., residuals) from different subjects **do not depend on one another**
- 2. Constant variance (homoscedasticity): variance of residuals is same at all values of predictor(s)
- 3. Conditional normality: residuals are normally distributed at each value of predictor(s)

- 2.1.2 Linear regression on normal outcome
- 2.1.3 Assumptions met!
- 2.1.4 Assumptions met!
- 2.1.5 Assumptions met!
- 2.2 Linear regression with a binary variable
- 2.2.1 A binary variable is not normal
- 2.2.2 Plot of data with fit line
- 2.2.3 Plot of data with fit line
- 2.2.4 Plot of residuals
- 2.2.5 Plot of residuals
- 2.2.6 Plot of residuals
- 2.3 Next steps
- 2.3.1 What NOT to do
 - Ignore the problem

- Do linear regression anyway
- Call it linear probability model

• Transform the outcome

- Square root, natural log, etc.
- May *slightly* normalize *univariate* residual distribution
- Does not fix heteroscedasticity, (conditional) non-normality

2.3.2 A binary variable is not normal

2.3.3 What to do

The generalized linear model (GLiM)

- Not a single model but a family of regression models
- Choose features (e.g., residual distribution) to match the characteristics of your outcome variable
- Accommodates many continuous and categorical outcome variables
- Includes logistic regression and Poisson regression

3 Logistic regression

3.1 Logistic regression

3.1.1 (Binary) logistic regression

- Outcome: binary
 - Observed value (Y): 0 or 1, where 1 = "success" or "event"
 - Predicted value (\hat{Y}) : **Probability** of success, between 0 and 1
- Residual distribution: binomial
- Link function: logit (or log-odds) = $ln\left(\frac{\hat{Y}}{1-\hat{Y}}\right)$

$$\ln\left(\frac{\hat{Y}}{1-\hat{Y}}\right) = \ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1X_1 + b_2X_2 + \dots + b_pX_p$$

3.1.2 Reminder: normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean of normal distribution = μ

Variance of normal distribution = σ^2

• Mean and variance are different parameters and are unrelated

3.1.3 Binomial distribution

$$P(X=k)={n\choose k}p^k(1-p)^{n-k}$$

- *n* is the sample size
- p is the probability of an event
- k is the observed number of events
- $\binom{n}{k} = \frac{n!}{k!(n-k!)}$ and is read as "n choose k"

3.1.4 Binomial distribution

What is the probability of having k events in n trials, each of which has probability p of being an "event"?

• p = 0.5, n = 10

•
$$p = 0.1, n = 10$$

3.1.5 Binomial distribution

$$P(X=k)={n\choose k}p^k(1-p)^{n-k}$$

Mean of a binomial distribution: np

Variance of a binomial distribution: np(1-p)

- Mean and variance are **related** to one another
 - They are functions of the same parameters (n and p)
- Heteroscedasticity is built into logistic regression

3.1.6 Logistic regression: What we model

- Linear regression: Model the **mean** of the outcome (conditional on predictors(s))
- Logistic regression: Model the **probability of a "success" or "event"** (conditional on predictor(s))
 - From the probability, we can also get the odds of a success and the logit or log-odds of a success

3.1.7 Figure: What we model

3.1.8 Three forms of logistic regression

Probability:

$$\hat{p} = \frac{e^{(b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p)}}{1 + e^{(b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p)}}$$

Odds:

$$o\hat{d}ds = \frac{\hat{p}}{1 - \hat{p}} = e^{b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p}$$

Logit:

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$

3.2 Probability metric

3.2.1 What is probability (p)?

- Likelihood of a "success" or "event"
- Ranges from 0 to 1
- Both options are equally likely when p = 0.5

3.2.2
$$\hat{p} = \frac{e^{0.251+1.219X}}{1+e^{0.251+1.219X}}$$

3.2.3
$$\hat{p} = \frac{e^{0.251+1.219X}}{1+e^{0.251+1.219X}}$$

3.2.4 Probability metric interpretation: General

$$\hat{p} = \frac{e^{0.251 + 1.219X}}{1 + e^{0.251 + 1.219X}}$$

General interpretation of **intercept**:

 b_0 is related to the **probability of success** when $\mathbf{X} = \mathbf{0}$

- $b_0 > 0$: Success (1) more likely than failure (0) when $\mathbf{X} = 0$
- $b_0 < 0$: Failure (0) more likely than success (1) when X = 0

3.2.5 Probability metric interpretation: General

$$\hat{p} = \frac{e^{0.251 + 1.219X}}{1 + e^{0.251 + 1.219X}}$$

General interpretation of **slope**:

 b_1 tells you how predictor X relates to probability of success

- $b_1 > 0$: Probability of a success increases as X increases

3.2.6 Probability metric interpretation: Example

$$\hat{p} = \frac{e^{0.251 + 1.219X}}{1 + e^{0.251 + 1.219X}}$$

Interpretation of example **intercept**:

- $b_0 > 0$: Success (1) more likely than failure (0) when $\mathbf{X} = \mathbf{0}$
- Probability of success when X = 0:

$$\frac{e^{b_0}}{1+e^{b_0}} = \frac{e^{0.251}}{1+e^{0.251}} = 0.562$$

3.2.7 Probability metric interpretation: Example

$$\hat{p} = \frac{e^{0.251 + 1.219X}}{1 + e^{0.251 + 1.219X}}$$

Interpretation of example **slope**:

• $b_1 > 0$: Probability of a success increases as X increases

3.2.8 P(success|X=0)

3.2.9 Probability metric interpretation: Non-linear

- Linear regression:
 - Constant, linear slope
 - Slope depends on the **slope only**
- Logistic regression (probability):
 - **Non-linear** slope
 - Slope depends on BOTH slope (b_1) and predicted probability (\hat{p})
 - * The slope of the **tangent to the regression line** at the predicted outcome value = $\hat{p}(1-\hat{p})b_1$

3.2.10 Probability metric interpretation: Non-linear

When X = 1.5:

$$\hat{P}(success) = \hat{p} = \frac{e^{b_0 + b_1 X}}{1 + e^{b_0 + b_1 X}} = \frac{e^{0.251 + 1.219 \times 1.5}}{1 + e^{0.251 + 1.219 \times 1.5}} = 0.889$$

Approximate **slope** at that point is

$$\hat{p}(1-\hat{p})b_1 = 0.889 \times (1-0.889) \times 1.219 = 0.12$$

3.2.11 Probability metric interpretation: Non-linear

X value	Predicted probability	Slope
-3	0.03	0.04
-2	0.10	0.11
-1	0.28	0.24
0	0.56	0.30
1	0.81	0.19
2	0.94	0.07
3	0.98	0.02

3.2.12 A caution about probability equation

Warning

You might also see the probability defined as $\hat{p} = \frac{1}{1 + e^{-(b_0 + b_1 X)}}$ Or more generally, $\hat{p} = \frac{1}{1 + e^{-(Xb)}}$

- These are numerically equivalent to what we've talked about
 - But did you notice the negative sign?
 - No? You didn't expect it and missed it in the complicated equation?
 - Yeah, that's why we don't use this version

3.3 Odds metric

3.3.1 What are odds?

Odds is the ratio of two probabilities

- Model the probability of a "success"
- Odds is the ratio of probability of a "success" (\hat{p}) to the probability of "not a success" $(1 - \hat{p})$

$$odds = \frac{\hat{p}}{(1-\hat{p})}$$

As probability of "success" increases (nonlinearly), the odds of "success" increases (also nonlinearly, but in a different way)

3.3.2 How do odds work?

- Probability ranges from 0 to 1, switches at 0.5
 - Success more likely than failure when p > 0.5
 - Success less likely than failure when p < 0.5
- Odds range from 0 to $+\infty$, switches at 1
 - Success more likely than failure when odds > 1
 - Success less likely than failure when odds < 1

3.3.3 $o\hat{d}ds = \frac{\hat{p}}{(1-\hat{p})} = e^{0.251+1.219X}$

3.3.4 Odds metric interpretation: General

$$o\hat{d}ds = \frac{\hat{p}}{(1-\hat{p})} = e^{0.251+1.219X}$$

General interpretation of **intercept**: b_0 is related to the **odds of success when** $X = \mathbf{0}$

- Odds of success when X = 0: e^{b_0}
- $b_0 > 0$: Odds of success > 1 when X = 0
- $b_0 < 0$: Odds of success < 1 when X = 0

3.3.5 Odds metric interpretation: General

$$o\hat{d}ds = \frac{\hat{p}}{(1-\hat{p})} = e^{0.251+1.219X}$$

General interpretation of **slope**:

 $b_1 = \text{relationship}$ between predictor X and the odds of success

- $b_1 > 0$: Odds of success **increases** as X **increases**
- $b_1 < 0$: Odds of a success **decreases** as X **increases**

3.3.6 Odds metric interpretation: Example

$$o\hat{d}ds = \frac{\hat{p}}{(1-\hat{p})} = e^{0.251+1.219X}$$

Interpretation of example **intercept**:

- $b_0 > 0$: Odds of success > 1 when X = 0
 - Success (1) more likely than failure (0) when X = 0
- Odds of success when X = 0: $e^{b_0} = e^{0.251} = 1.29$
 - A "success" is about 1.29 times as likely as a "failure"
 - Compare to 0.562 probability of success: 0.562 / 0.438 = 1.28

3.3.7 Odds metric interpretation: Example

$$o\hat{d}ds = \frac{\hat{p}}{(1-\hat{p})} = e^{0.251 + 1.219X}$$

Interpretation of example **slope**:

 $b_1 > 0$: Odds of a success **increases** as X **increases**

3.3.8 Odds metric interpretation: Non-linear

3.3.9 Odds metric interpretation: Non-linear

- This non-linear change is presented in terms of odds ratio
 - Constant, **multiplicative** change in predicted odds
 - For a 1-unit difference in X, the predicted odds of success is multiplied by the odds ratio
- Example: odds ratio = $e^{b_1} = e^{1.219} = 3.38$
 - For a 1-unit difference in X, the **predicted odds** of success is **multiplied by** 3.38

3.3.10 Odds metric interpretation: Non-linear

- Odds ratio = $e^{b_1} = e^{1.219} = 3.38$
- • Odds ratio for X=1 versus X=0 : $\frac{odds(X=1)}{odds(X=0)}=\frac{4.3492351}{1.2853101}=3.38$
 - Odds of success is 3.38 times larger when X = 1 vs X = 0
- Odds ratio for X=2 versus X=1 : $\frac{odds(X=2)}{odds(X=1)} = \frac{14.7169516}{4.3492351} = 3.38$
 - Odds of success is 3.38 times larger when X = 2 vs X = 1

- $\bullet \ \ \mathbf{Constant} \ \ \mathbf{multiplicative} \ \mathrm{change} \\$

3.3.11 Odds metric figure again (odds ratio = 3.38)

3.3.12 Odds metric interpretation: Non-linear

X value	Predicted probability	Predicted odds
-3	0.03	0.03
-2	0.10	0.11
-1	0.28	0.38
0	0.56	1.29
1	0.81	4.35
2	0.94	14.72
3	0.98	49.80

3.3.13 A caution about odds

Warning

- Odds ratios are very popular in medicine and epidemiology
- They can be **extremely** misleading
- The same odds ratio corresponds to many different probability values
 - Odds ratio = $\frac{odds=3}{odds=1}$ = 3
 - * Corresponds to probability of 0.75 vs 0.5
 - Odds ratio = $\frac{odds=9}{odds=3}$ = 3
 - * Corresponds to probability of 0.90 vs 0.75

3.4 Logit or log-odds metric

3.4.1 What is the logit?

Logit or **log-odds** is the natural log(ln) of the odds

- As **probability** of "success" increases (nonlinearly, S-shaped curve)
 - The *odds* of "success" increases (also nonlinearly, exponentially up)
 - The **logit** of "success" increases **linearly**

3.4.2 How does the logit work?

- Probability ranges from 0 to 1, switches at 0.5
- Odds range from 0 to $+\infty$, switches at 1
- Logit ranges from $-\infty$ to $+\infty$, switches at 0
 - Success more likely than failure when logit > 0
 - Success less likely than failure when logit < 0

3.4.3 $\hat{logit} = ln\left(\frac{\hat{p}}{(1-\hat{p})}\right) = 0.251 + 1.219X$

3.4.4 Logit metric interpretation: General

$$\hat{logit} = \ln\left(\frac{\hat{p}}{(1-\hat{p})}\right) = 0.251 + 1.219X$$

General interpretation of **intercept**:

 b_0 is related to the logit of success when X = 0

- Logit of success when X = 0: b_0
- $b_0 > 0$: Logit > 0 when X = 0
- $b_0 < 0$: Logit < 0 when X = 0

3.4.5 Logit metric interpretation: General

$$\hat{logit} = \ln\left(\frac{\hat{p}}{(1-\hat{p})}\right) = 0.251 + 1.219X$$

General interpretation of **slope**:

 b_1 is the relationship between predictor X and logit of success

- $b_1 > 0$: Logit of a success increases as X increases

3.4.6 Logit metric interpretation: Example

$$\hat{logit} = ln\left(\frac{\hat{p}}{(1-\hat{p})}\right) = 0.251 + 1.219X$$

Interpretation of example intercept

- $b_0 > 0$: Logit > 0 when X = 0
- Logit of success when X = 0: $b_0 = 0.251$

3.4.7 Logit metric interpretation: Example

$$\hat{logit} = \ln\left(\frac{\hat{p}}{(1-\hat{p})}\right) = 0.251 + 1.219X$$

Interpretation of example slope

• $b_1 > 0$: Logit of a success increases by 1.219 units when X increases by 1 unit

3.5 Metrics wrap-up

3.5.1 So which metric should I use?

They are **equivalent**, so use the metric that

- Makes the most sense to you
- You can *explain* fully
- Is most commonly used in your field

3.5.2 Some things to keep in mind

- Odds ratios tell you about change, but not where you start
 - If you report odds ratios, also report some measure of probability e.g., probability
 of success at the mean of X
 - -10x change is 5 to 50 or 0.05 to 0.5?
- Logit is nice because it's linear, but it's not very interpretable
 - What is a "logit"? It's just a mathematical concept that makes a straight line not actually meaningful
 - But many psychology measures don't have meaningful metrics...

3.5.3 Confidence intervals

Default results are in **logit metric**: compare to **null value** of 0

term	estimate
(Intercept)	0.251
X	1.219

Confidence intervals are in **logit metric**: does it contain 0?

	2.5 %	97.5 %
(Intercept)	-0.188	0.703
X	0.661	1.876

3.5.4 Confidence intervals

 $e^{estimate}$ converts to odds ratio metric: compare to null value of 1

term	estimate	OR
(Intercept)	0.251	1.285
X	1.219	3.383

 $e^{estimate}$ converts to odds ratio metric: does it contain 1?

	2.5~%	97.5 %	OR 2.5 %	OR 97.5 %
(Intercept)	-0.188	0.703	0.829	2.019
X	0.661	1.876	1.938	6.528

3.6 A tiny detour

3.6.1 Three alternatives / extensions

- What if I want to focus more on **probability** (and don't care about odds ratios)?
 - Probit regression: based on the cumulative normal distribution, not the logistic distribution
- What if I have **three or more** options for my outcome?

- Categories have an order to them: Ordinal logistic regression
- Categories have no order to them: Multinomial logistic regression

4 Estimation and model fit

4.1 Estimation

4.1.1 You ran a model: What now?

Usually two things you want to do with it

- Compute some measure of predictive power or model fit
 - $-R_{multiple}^2$ or similar
- Compare that model to another competing model
 - Which model is better?

4.1.2 Model estimation

Linear regression is estimated using ordinary least squares (OLS)

- Produces sums of squares (SS)
- Measures like R^2 are a function of SS

GLiMs (like logistic regression) are estimated using maximum likelihood

- No sums of squares
- Instead: **Deviance**, which is a function of the *log-likelihood*

4.1.3 What is deviance?

- Conceptually similar to $SS_{residual}$
- If you had n predictors
 - One predictor per person
 - Perfectly predict the outcome values
 - "Perfect" model
- Deviance is how far from this "perfect" model you are
 - This is "badness" of fit

4.2 R^2 measures

4.2.1 R^2 in linear regression

- R^2 for linear regression has many desirable qualities
 - Always ranges from 0 to 1
 - Always stays the same or increases with more predictors (never decreases)

Without $SS_{residual}$, what can we do?

4.2.2 R^2 analogues

• There are some general measures that work for all GLiMs and some more specific measures that only work for logistic regression

Warning

 \mathbb{R}^2 analogues don't have the properties that \mathbb{R}^2 in linear regression does

- Can be less than 0 or greater than 1
- Can decrease when you add predictors

4.2.3 Pseudo- R^2 or $R^2_{deviance}$

$$R_{deviance}^2 = 1 - \frac{deviance_{model}}{deviance_{intercept.only.model}}$$

- Compare your model to a model with no predictor (only intercept)
 - Common for many types of advanced modeling, could do it for linear regression but probably never would
 - Essentially tests how much closer the model is to the "perfect" model than the intercept only model
 - Theoretically bounded by 0 and 1, but in practice...

4.2.4 $R^2_{McFadden}$

$$R_{McFadden}^2 = 1 - \frac{LL_{model}}{LL_{intercept.only.model}} \label{eq:RMcFadden}$$

- Same idea as $R_{deviance}^2$, just using LL instead of deviance
 - Theoretically bounded by 0 and 1
 - Relatively independent of base rate
 - * Base rate is the overall probability of a success in the sample
 - * See DeMaris (2002) for more details about logistic regression specific measures

4.2.5 \mathbb{R}^2 as correlation between observed and predicted values

- In linear regression, $R^2_{multiple}$ is also the squared correlation between the **observed** Y values and the **predicted** Y values
- Most software packages can produce predicted Y values for your analysis
 - Save predicted values to the dataset
 - Correlate **observed** and **predicted** Y values (squared correlation)

4.3 Model comparisons

4.3.1 Model comparisons

- In linear regression, if you added a predictor, there were two ways to tell if that predictor was adding to the model:
 - Test of the **regression coefficient** (i.e., Wald test: t-test or z-test)
 - $-R_{change}^2$ for added prediction (with its F-test)
- For logistic regression, Wald test of the regression coefficient may not be reliable (see Vaeth, 1985)
 - Need to use some analogue of the significance test for R_{change}^2

4.3.2 Likelihood ratio (LR) test

- Ratio of likelihoods
 - Specifically, a **function of likelihood** from ML estimation
 - Even more specifically, $-2 \times log likelihood$
 - $-2 \times LL$ is the **deviance**
- Test statistic

 - $-\chi^2 = deviance_{model1} deviance_{model2}$ How did we get from **ratio** to **difference**?
 - * Division in log metric is subtraction in regular metric

4.3.3 Likelihood ratio (LR) test

$$\chi^2 = deviance_{model1} - deviance_{model2}$$

- Model 1: simpler model (fewer predictors, worse fit)
- Model 2: more complex model (more predictors, better fit)
- **Degrees of freedom** = difference in number of parameters
 - Significant test: Model 1 is significantly worse than Model 2
 - NS test: Model 1 and 2 are not significantly different, so go with simpler one (Model 1)

4.3.4 LR test: Example

- Logistic regression example: Deviance = 116.146
- Logistic regression model with no predictors (intercept only): Deviance = 137.989
- $\chi^2(1) = 137.989 116.146 = 21.843$
 - Critical value for χ^2 with 1 df and $\alpha=0.05$ is 3.841
 - The test is significant: 21.843 > 3.841
 - * Model 2 is better than Model 1
 - * The predictor is significant

5 Summary

5.1 Summary

5.1.1 Summary

- Use logistic regression when your outcome is binary
 - Don't use linear regression
- Be careful with interpretation no matter what
 - **Probability**: Probability makes sense, but it's nonlinear
 - Odds: Odds ratio seems to make sense but it can be misleading
 - **Logit**: *Linear* but what even is a *logit*?
- But many basic concepts parallel linear regression
 - Intercept, slope(s), linear combination, $R^2_{multiple}$

5.1.2 In class

- We will
 - Run some logistic regression models
 - Interpret the results