Selection and Insertion Sort

Deborah A. Trytten CS 1323/1324

Algorithms

- There are lots of systematic ways of solving most problems
- Figuring out which way is better, or even best, is important in computer science
- Chance for non-CS majors to get a real feel for how CS people think about computing
 - Computing is not just programming!

Sorting Algorithms

- Sorted data allows the use of binary search instead of linear search
- Sorting has a cost (space and time)
 - The cost depends on the details of the algorithm
- Every good software engineer knows at least ten sorting algorithms by heart
 - Most use techniques beyond the scope of this class
- The algorithms we'll examine use nested loops
- Name of each algorithm is important

Selection sort

- Find the smallest element and put it in the first position
- Find the second smallest element and put it in the second position
- Continue this pattern until the entire array is sorted

Example: Selection Sort

Trace the code by showing swaps for selection sort on this data using a table

```
o int[] data = {9, 4, 2, 1, 7, 8, 3, 6, 5};
```

- Array will be partitioned into sorted and unsorted areas
- One value at a time will move from unsorted to sorted

Think Pair Share

- Trace selection sort by showing swaps for this data using a table
 - o int[] data = {1, 4, 7, 9, 5, 3, 2};

iClicker Question

- Suppose the following are the initial contents of an array: {2, 4, 6, 8, 5}
- Which sequence of steps below represents selection sort?

a)	2	4	6	8	5
u)			5		6
				6	8

b)	2	4	6	8	5
D)			5	6	
				6	8

c)	2	4	6	8	5
				5	8
			5	6	

2	4	6	8	5
		5		
			6	
				8

Write Code: Selection Sort

- Write the code for selection sort:
 - void selectionSort(int[] array)
- Details:
 - What does the outer loop do?
 - What does the inner loop do?
 - Triangular or rectangular?

Insertion Sort

- Array also partitioned into sorted and unsorted areas
- We take the next unsorted data value and place it into the proper position in the sorted data
- Technique is critical—<u>does not use swaps</u>
 - Next value to be sorted is placed in <u>temporary storage</u>
 - Larger values shifted to right until proper position found
 - Value copied from temporary storage to proper position in the array
 - Why no swaps? (Note: different than textbook algorithm)

Example: Insertion Sort

- Trace insertion sort in a table with the same data as before:
 - int[] data = {9, 4, 2, 1, 7, 8, 3, 6, 5};
- Move 1 value at a time
 - 1. Copy first value in unsorted part to temp
 - 2. Shift larger values in sorted part to make room
 - 3. Copy value from temp back to array

Think Pair Share

- Trace insertion sort with the following data:
 - o int[] data = {1, 4, 7, 9, 5, 3, 2};

iClicker Question

- Suppose the following are the initial contents of an array: {2, 4, 6, 8, 5}
- Which sequence of steps below represents insertion sort?

a)	2	4	6	8	5	
a)			5		6	
				6	8	

b)	2	4	6	8	5
D)					8
				6	
			5		

~)	2	4	6	8	5
c)				5	8
			5	6	

Write Code: Insertion Sort

- Write the code for insertion sort:
 - void insertionSort(int[] array)
- Details:
 - What does the outer loop do?
 - What does the inner loop do?
 - Triangular or rectangular?

Comparison: Worst Case

- Computer scientists analyze algorithms by looking at the worst thing that can happen
- What is the worst order for insertion sort?
- What is the worst order for selection sort?
- Consider assignments versus comparisons
- Which is better if the data are partially sorted?
 - Why is this important?