CSC 212: Data Structures and Abstractions Big O Notation

Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

The story so far ...

- · Can measure actual runtime to compare algorithms
 - however, runtime is noisy (highly sensitive to HW/SW and implementation details)
- Can count instructions to compare algorithms
 - √ can define T(n), which depends on the input size
 - \checkmark for large inputs, our focus should be on the dominant terms of T(n)

we will now see formal ways for this approach

ы

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$\sum_{i=1}^{n-1} i = 1 + 2 + 3 + \dots + (n-2) + (n-1)$$

$$n - 1$$

Bottom line ...

- We are trying to compare **T(n)** functions, but we also care about large values of **n**
- Can we properly define '<=' for functions?
 - we can group functions into 'sets' and make our lives easier

Asymptotic Analysis

Refers to the study of an algorithm as the input size "gets big" or reaches a limit (in the calculus sense)

• Growth rate

rate at which the cost of an algorithm grows as the size of its input grows

$$c_1 n \qquad c_2 n^2$$

Common sets of functions log-log plot 512T Faster growth rate ... slower algorithm 64T Algorithm A is better than 4T algorithm B if for 2T logarithmic large values of n, constant $T_{\Delta}(n)$ grows slower than $T_R(n)$ 1K 2K 4K 512K Typical orders of growth

Examples

$$7n - 2 = O(n)$$

$$20n^{3} + 10n \log n + 5 = O(n^{3})$$

$$3 \log n + \log \log n = O(\log n)$$

$$2^{100} = O(1)$$

T(n) is $O(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le T(n) \le cf(n), \forall n \ge n_0$

Big Theta $C_{2} f(n) \qquad \text{upper bound}$ T(n) lower bound $T(n) \text{is } \Theta(f(n)) \iff T(n) \text{ is } O(f(n)) \text{ and } T(n) \text{ is } \Omega(f(n))$

Big Omega

Prove that ...

$$3 \log n + \log \log n = \Omega(\log n)$$
$$3 \log n + \log \log n = \Theta(\log n)$$

$$T(n)$$
 is $O(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le T(n) \le cf(n), \forall n \ge n_0$
 $T(n)$ is $\Omega(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le cf(n) \le T(n), \forall n \ge n_0$

In practice you can ...

"ignore constants and drop lower order terms"

True or False?

$$\{n^2, n^4, 2^n, \log n, \ldots\}$$

	Big O	Big Omega	Big Theta
$10^2 + 3000n + 10$			
$21 \log n$			
$500\log n + n^4$			
$\sqrt{n} + \log n^{50}$			
$4^n + n^{5000}$			
$3000n^3 + n^{3.5}$			
$2^5 + n!$			

Asymptotic Performance

• For large values of n, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm

However, we shouldn't completely ignore asymptotically slower algorithms

19