Exercise 1. Describe the region of integration and rewrite the integral

$$\int_{-2}^{2} \int_{0}^{4-y^2} \int_{0}^{y+2} f(x,y,z) \, dz \, dx \, dy :$$

- (a) in the order dx dz dy.
- (b) as a sum of two integrals in the order dx dy dz.

Exercise 2. Use integration with spherical coordinates (i.e., necessarily use a triple integral¹) to prove that volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Exercise 3. Compute the integral

$$\iint\limits_{R} (x+y) \, \mathrm{d}A,$$

where *R* is the ellipse described by the relation $\left(\frac{x-1}{2}\right)^2 + \left(\frac{y-2}{3}\right)^2 \le 1$.

Hint. Modify polar coordinates.

Exercise 4. Compute the integral

$$\iint_D xyz\,\mathrm{d}V,$$

where *D* is described by $(y+1)^2 + (z-3)^2 \le 4$ and $-1 \le x \le 1$.

Hint. Modify cylindrical coordinates.

¹Or course, there are other ways (even easier) to justify such formula. The point of the exercise is to practice spherical coordinates to recover a well-known fact.

Answers:

1. (a)
$$\int_{-2}^{2} \int_{0}^{y+2} \int_{0}^{4-y^{2}} f(x,y,z) \, dx \, dz \, dy.$$

(b)
$$\int_0^2 \int_{-2}^2 \int_0^{4-y^2} f(x,y,z) \, dx \, dy \, dz + \int_2^4 \int_{z-2}^2 \int_0^{4-y^2} f(x,y,z) \, dx \, dy \, dz$$

- 2. —
- 3. 18π .
- 4. 0. Reality check: is there any symmetry making this result reasonable to expect?