## University of Information Technology and Sciences

# Assignment On

#### COMPLEXITY GRAPH FOR O(N), O(N^2), O(LOGN), O(N LOGN)

Course code: CSE 214

Course Title: Algorithms Lab

Semester: Spring 2019

Date : 04/02/2019

#### **Submitted By:**

Anik Barua

ID No:17151029

Dept. of CSE

#### **Submitted To:**

Habibur Rahman

Lecturer, Dept. of CSE

#### Introduction:::

Time complexity is a concept in computer science that deals with the quantification of the amount of time taken by a set of code or algorithm to process or run as a function of the amount of input.

In other words, time complexity is essentially efficiency, or how long a program function takes to process a given input.

Time complexity is expressed typically in the "big O notation," but there are other notations. This is a mathematical representation of the upper limit of the scaling factor for an algorithm and is written as O (N), with "N" being the number of inputs and "n" being the number of looping expressions.

Table: Comparing the time elapsed by complexity for different input sizes: (time in s)

| Input Size | O(N)  | O(N^2) | O(Log N) | O(N Log N) |
|------------|-------|--------|----------|------------|
| 1          | 0.53  | 0.577  | 0.562    | 0.570      |
| 10         | 1.186 | 2.278  | 0.704    | 0.927      |
| 100        | 1.576 | 2.855  | 0.912    | 1.423      |
| 500        | 1.609 | 2.925  | 1.567    | 1.972      |
| 1000       | 1.856 | 3.203  | 1.747    | 2.075      |

| 10000  | 2.574 | 3.922 | 2.013 | 3.869 |
|--------|-------|-------|-------|-------|
| 100000 | 3.448 | 4.538 | 2.630 | 4.091 |

## Graph: Complexity graph for O (N), O(N^2), O( log N ), O(N log N)



#### CODE :::

## /Generate input/

```
#include <stdio.h>
#include <stdlib.h>
int main()
{
    freopen("Output.text","w",stdout);
    long long i;
    for(i=0;i<=1000000;i++)
    {</pre>
```

```
printf("%ld ",rand());
  }
  printf("Hello\n");
  return 0;
}
/...../
Code of O(N):
#include <bits/stdc++.h>
using namespace std;
int main()
{
  int n;
  long long arr[100001];
  cin>>n;
  freopen("Output.text","r",stdin);
  for(int i=1;i<=n;i++)
  {
    scanf("%lld ",&arr[i]);
  }
  return 0; }
```

```
Code of O(N^2):
#include <bits/stdc++.h>
using namespace std;
int main()
{
  int n;
  long long arr[100000];
  cin>>n;
  freopen("Output.text","r",stdin);
  for(int i=1;i<=n;i++)
  {
    for(int j=1;j<=n;j++)
    {
      scanf("%lld ",&arr[i]);
    }
  }
  return 0;
}
```

```
Code of O(Log N):
```

```
#include <bits/stdc++.h>
using namespace std;
int main()
{
  int n;
  long long arr[100001];
  cin>>n;
  freopen("Output.text","r",stdin);
  for(int i=1;i*i<=n;i++)
  {
    scanf("%lld ",&arr[i]);
  return 0;
}
```

```
Code of O(N Log N):
#include <bits/stdc++.h>
using namespace std;
int main()
{
  int n;
  long long arr[100001];
  cin>>n;
  freopen("Output.text","r",stdin);
  for(int i=1;i<=n;i++)
  {
    for(int j=1;j*j<=n;j++)
    {
      scanf("%lld ",&arr[i]);
    }
  }
```

return 0;

}