ZILFIMIAN

Regularization/R (Q7L8)

40% (8/20)

1. In Poisson regression...

- (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
- (B) The distribution of the maximum likelihood estimates is multivariate normal.
- The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
- D I do not know

X 2. In the case of intercept-only model

- (A) The mean of the dependent variable equals the exponential value of intercept
- B The mean of the dependent variable equals the intercept
- (c) The mean of the dependent variable equals 0
- D I do not know

✓ 3. In(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: e^(-0.2)=0.78

- (A) One unit increase in female brings a 0.2 decrease in ln(lambda).
- (B) Being female decreases the average number of articles by 0.78 percent
- Being female decreases the average number of articles by 22%
- D I do not know

4. In the multiple linear regression, we assume that...

- A The number of observations is much larger than the number of variables (n>>p)
- B The number of observations is slightly larger than the number of variables (n>p)
- (C) The number of observations equals than the number of variables (n=p)
- $\left(\mathsf{D} \right)$ The number of observations is lees than the number of variables (n<p)
- (E) It is not important
- (F) I do not know

Tigran Karamyan Page 1 of 5

/	5. A	The way of solving the problem of a large number of variables is Subset Selection & Shrinkage (Regularization)
	B	Shrinkage (Regularization) & Maximum Likelihood estimation
	$\overline{(c)}$	Dimension Reduction & OLS estimation
		I do not know
	E	The absence of the right answer
×	6. A	The bias of an estimator (e.g. z^{-}) equalsHint: the OLS coefficients are unbias :) $E(z^{-}) - z$
	В	$E(z^2) - [E(z)]^2$
	\bigcirc	$[E(z^2) - E(z)]^2$
	D	E(z^2)
	E	I do not know
×	7.	The main idea of regularization is
	(A)	To introduce a small amount of bias in order to have less variance.
	В	To introduce a small amount of variance in order to have less bias.
	\bigcirc	To introduce a small amount of variance and bias in order to have less bias.
	D	I do not know
X	8.	With which function we can show regularization in R
	(A)	glmnet()
	В	regular()
	C	lm()
	D	glm()
	E	I do not know
×	9.	How the tune of any parametr can be made
	(A)	using Cross validation
	B	It is impossible
	\bigcirc	I do not now
	D	using larger sample
	E	only having population

Tigran Karamyan Page 2 of 5

	A	the combination of L1 and L2 regularization
	B	the combination of L2 and L3 regularization
	(c)	is independent from other types of refularization
	\bigcirc	I do not know
	E	not a type of regularization
	11.	Regularization is used only for
	A	Poisson Regression
	B	Linear Regression
	(c)	Logistic Regression
	D	any regression
	E	I do not know
	12.	Regularization can solve the problem of
	A	heteroscedasticity
	В	multicollinearity
	(C)	autocorrelation
	D	I do not know
	13.	As a result of regularization we will have
	A	smaller slope than in case of OLS
	B	larger slope than in case of OLS
	C	the slope remains the same
	D	I do not know
×	14.	The ridge coefficient estimates shrink towards zero
	A	when lambda increases
	B	when lambda decreases
	C	when lambda = 0
	D	I do not know

✓ 10. Elastic Net is

Tigran Karamyan Page 3 of 5

X	15. Which one can shrink the slope all the way to 0?	
	(A) Lasso	
	B Ridge	
	C Regression	
	D I do not know	
×	16. When lambda = 0, we have A Ridge	
	A Ridge B Lasso	
	© EL	
	D Regression	
	E I do not know	
	E) Tuo not know	
×	17. When alpha = 0, we have	
	A Ridge	
	B Lasso	
	C EL	
	D Regression	
	E I do not know	
/	18variables need to be incorporated in the model according to domain knowledge	
	This statement is true for	
	A Ridge	
	B Lasso	
	C EL	
	(D) Regression	
	(E) I do not know	
×	19. Which function can help to perform cross-validation for regularization in R?	
	A cv.glmnet()	
	B cros_val()	
	glmnet(method = "cv)	
	D I do not know	

Tigran Karamyan Page 4 of 5

X 20. Why we use set.seed() in R?

(A) To have universal result

(B) To perform better result

C To have random models

D I do not know

Tigran Karamyan Page 5 of 5