Supplementary Material for "Mitigating Electrochemical Degradation in Optimal Vehicle-to-Grid Dispatch via Digital Twin"

Chao Lei, Senior Member, IEEE, Yu Christine Chen, Member, IEEE, and Michael Pecht, Fellow, IEEE

I. EXISTING SEI THICKNESS FOR BATTERY SEI GROWTH

Figures 1(a)–(d) respectively plot the $(S_i^t, I_i^t, \Delta \theta_i^t)$ -spaces under $\theta_i^t = 0 \text{ [nm]}, \ \theta_i^t = 20 \text{ [nm]}, \ \theta_i^t = 40 \text{ [nm]}, \ \text{and} \ \theta_i^t = 80 \text{ [nm]},$ using the same scale for all axes. Intuitively, $\theta\theta_i^t$ has a slight shape variation under different θ_i^t . Thus, existing SEI thickness θ_i^t [nm] can be negligible in the SEI growth $\Delta \theta_i^t$ per charge-discharge cycle.

Fig. 1. PDE-based SEI growth surface $\Delta \theta_i^t$: (a) $\theta_i^t = 0$ [nm]; (b) $\theta_i^t =$ 20 [nm]; (c) $\theta_i^t = 40$ [nm]; (d) $\theta_i^t = 80$ [nm];

II. DERIVATION OF SECOND-ORDER CONIC CONSTRAINT

We reformulate the constraint $\gamma_i^{t+1}\geqslant (z_{i,N_I}^{t+1})^2$ with $f=(\gamma_i^{t+1}+1)^2$ and $g=(\gamma_i^{t+1}-1)^2+(2z_{i,N_I}^{t+1})^2$, yielding

$$f - g = 4\gamma_i^{t+1} - 4(z_{i,N_t}^{t+1})^2 \geqslant 0,$$
 (II-1)

Rearranging this inequality (II-1), we express

$$(\gamma_i^{t+1} + 1)^2 \ge (\gamma_i^{t+1} - 1)^2 + (2z_{i,N_t}^{t+1})^2,$$
 (II-2)

This is equivalent to the standard second-order conic constraint

$$\left\|\gamma_i^{t+1} + 1\right\|_2^2 \geqslant \left\|(\gamma_i^{t+1} - 1, \ 2z_{i,N_I}^{t+1})^{\mathrm{T}}\right\|_2^2. \tag{II-3}$$

III. BATTERY CELL PARAMETER VALUES

In this study, we suppose each EV consists of 21700-type battery cells with the capacity of 80 kWh. Each EV battery pack has 96 cells in series and 46 cells in parallel (96S46P), giving it a total of 4416 cells. Each battery cell capacity $I_{b,i} = 5 \,\text{Ah}$, nominal voltage $v_{\mathrm{flat},i}=3.65\,\mathrm{V}$ with the operating voltage ranging from $2.5\,\mathrm{V}$ to $4.2\,\mathrm{V}$, and current rate $C_{r,i}^t\in[0,\overline{C}_{r,i}]$, where the EV aggregator selects $\overline{C}_{r,i}=2.5$ to avoid sharp charge-discharge cycling. For a battery cell, $\overline{p}_i\approx 3.65\cdot 0.005\cdot 2.5\approx 0.046\,\mathrm{kW}$. The ambient temperature is 28°C. Other parameters for electrochemical kinetics are given in Table I.

IV. EXISTING BATTERY AGING FORMULATIONS

We revisit the existing linear and nonlinear battery aging methods in [2] and [5]. The linear battery degradation cost F_i^t is defined for each charging and discharging cycle at time period t until the required state of charge (SoC) in the last time period $t = N_t$, i.e., $S_i^{N_t} = \overline{S}$, yielding

$$F_i^t = C_i \frac{\kappa_i}{100} \left(-\frac{1}{\eta_n} p_{d,i}^t \theta t + \overline{S} - S_i^0 \right) \tag{IV-4}$$

where $\kappa_i = 1$ denotes the slope of the linear approximation of the EV i's battery life as a function of cycles. $C_i = 1$ represents the purchase cost of the EV i's battery divided by its useful capacity [\$/Ah]. $S_{0,i}$ is the initial SOC value.

The nonlinear battery degradation cost G_i^t is an approximation function with respect to depth of discharge by $1 - S_i^t$ and cell current I_i^t (denoted in C-rate) based on the experimental data [5]. We have

$$G_i^t = \frac{1}{f_c(I_i^t) \cdot f_d(S_i^t)}, \tag{IV-5}$$

where f_c and f_d respectively represent battery life loss under different DoDs and cell currents.

$$f_d = \begin{cases} 4000, & \text{if } S_i^t > 0.95\\ 946.1 \cdot (1 - S_i^t)^{-1.079}, & \text{if } S_i^t \le 0.95 \end{cases}$$
 (IV-6a)

$$f_d = \begin{cases} 4000, & \text{if } S_i^t > 0.95\\ 946.1 \cdot (1 - S_i^t)^{-1.079}, & \text{if } S_i^t \leqslant 0.95 \end{cases}$$

$$f_c = \begin{cases} 4, & \text{if } I_i^t < 0.2\\ 1.041 \cdot (I_i^t)^{-0.445}, & \text{if } 0.2 \leqslant I_i^t \leqslant 2.5 \end{cases}$$
(IV-6b)

Subsequently, we express

$$G_{i}^{t} = \begin{cases} 0.6 \cdot 10^{-4}, & \text{if } S_{i}^{t} > 0.95, \ I_{i}^{t} < 0.2\\ 0.2 \cdot 10^{-3} \cdot (I_{i}^{t})^{0.445}, & \text{if } S_{i}^{t} > 0.95, \ 0.2 \leqslant I_{i}^{t} \leqslant 2.5\\ 0.2 \cdot 10^{-3} \cdot (1 - S_{i}^{t})^{1.079}, & \text{if } S_{i}^{t} \leqslant 0.95, \ I_{i}^{t} < 0.2\\ 10^{-3} \cdot (1 - S_{i}^{t})^{1.079} \cdot (I_{i}^{t})^{0.445}, & \text{if } S_{i}^{t} \leqslant 0.95, \ 0.2 \leqslant I_{i}^{t} \leqslant 2.5 \end{cases}$$

V. COMPARISON OF RESULTING DEGRADATION

We further compare the electrochemical degradation costs between the nonlinear method [5] and the ICNNs-based formulation (2b)–(2d) under a random set of 66 SoC values. We normalize the electrochemical degradation costs in a continuous range [0,1] and present their solutions on the normalized PDE-based degradation surface $\Delta\theta_1^{t+1}$ in Fig. 2. This figure shows that blue square markers by the ICNNs-based approach are closer to the PDE-based degradation surface than the yellow circle markers. As compared, the 84.8% and 19.7% of markers have only with less than 1% error for the ICNNs-based and the nonlinear degradation cost methods, respectively. And the ICNNs-based electrochemical degradation cost method has less than 2% error across the domain, and is thus accurate for the optimal V2G model.

Fig. 2. Comparison between nonlinear and ICNNs-based degradation costs.

TABLE I
PARAMETERS FOR ELECTROCHEMICAL KINETICS

Parameter	Negative electrode	Separator	Positive electrode
electrode plate area (m^2)	0.163	0.163	0.163
electrode thickness (m)	$78 \cdot 10^{-6}$	$20 \cdot 10^{-6}$	$45 \cdot 10^{-6}$
Li^+ diffusion coefficient (m^2/s)	$3.9 \cdot 10^{-5}$	-	$1.8 \cdot 10^{-8}$
active electrode volume fraction (%)	0.6	-	0.6
electrolyte phase volume fraction (%)	0.3	-	0.3
max solid phase concentration (mol/m^3)	31507	-	49000
particle radius (m)	$6 \cdot 10^{-6}$	-	$5 \cdot 10^{-6}$
reaction rate efficiency (A/m^2)	$9.77 \cdot 10^{-2}$	-	$1.19 \cdot 10^{-2}$
exchange current density of side reaction (A/m^2)	10	-	10
initial electrolyte concentration (mol/m^3)	$1.25 \cdot 10^4$	$1.25 \cdot 10^4$	$1.25 \cdot 10^{4}$
Binder volume fraction(%)	0.1	-	0.1
Separator volume fraction(%)	-	0.4	-
Thickness of current collectors (m)	$10 \cdot 10^{-6}$	-	$10 \cdot 10^{-6}$