§ 4.

Partielle Ableitungen

Stets in diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^n$, D sei offen und $f: D \to \mathbb{R}$ eine reellwertige Funktion. $x_0 = (x_1^{(0)}, \dots, x_n^{(0)}) \in D$. Sei $j \in \{1, \dots, n\}$ (fest).

Die Gerade durch x_0 mit der Richtung e_j ist gegeben durch folgende Menge: $\{x_0 + te_j : t \in \mathbb{R}\}$. D offen $\implies \exists \delta > 0 : U_{\delta}(x_0) \subseteq D$. $||x_0 + te_j - x_0|| = ||te_j|| = |t| \implies x_0 + e_j \in D$ für $t \in (-\delta, \delta)$. $g(t) := f(x_0 + te_j)$ $(t \in (-\delta, \delta))$ Es ist $g(t) = f(x_1^{(0)}, \dots, x_{j-1}^{(0)}, x_j^{(0)} + t, x_{j+1}^{(0)}, \dots, x_n^{(0)})$

Definition

f heißt in x_0 partiell differenzierbar nach $x_j:\iff$ es exisitert der Grenzwert

$$\lim_{t \to 0} \frac{f(x_0 + te_j) - f(x_0)}{t}$$

und ist $\in \mathbb{R}$. In diesem Fall heißt obiger Grenzwert die **partielle Ableitung von** f in x_0 nach x_j und man schreibt für diesen Grenzwert:

$$f_{x_j}(x_0)$$
 oder $\frac{\partial f}{\partial x_j}(x_0)$

Im Falle n=2 oder n=3 schreibt man f_x , f_y , f_z bzw. $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Beispiele:

- (1) $f(x,y,z) = xy + z^2 + e^{x+y}$; $f_x(x,y,z) = y + e^{x+y} = \frac{\partial f}{\partial x}(x,y,z)$. $f_x(1,1,2) = 1 + e^2$. $f_y(x,y,z) = x + e^{x+y}$. $f_z(x,y,z) = 2z = \frac{\partial f}{\partial z}(x,y,z)$.
- (2) $f(x) = f(x_1, \dots, x_n) = ||x|| = \sqrt{x_1^2 + \dots + x_n^2}$

Sei
$$x \neq 0$$
: $f_{x_j}(x) = \frac{1}{2\sqrt{x_1^2 + \dots + x_n^2}} 2x_j = \frac{x_j}{\|x\|}$

Sei x = 0: $\frac{f(t,0,\dots,0) - f(0,0,\dots,0)}{t} = \frac{|t|}{t} = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases} \implies f \text{ ist in } (0,\dots,0) \text{ nicht partition}$

ell differenzierbar nach x_1 . Analog: f ist in $(0, \ldots, 0)$ nicht partiell differenzierbar nach x_2, \ldots, x_n

(3)
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

 $\frac{f(t,0)-f(0,0)}{t}=0 \to 0 \ (t\to 0) \implies f$ ist in (0,0) partiell differenzierbar nach x und $f_x(0,0)=0$. Analog: f ist in (0,0) partiell differenzierbar nach y und $f_y(0,0)=0$. Aber: f ist in (0,0) nicht stetig.

Definition

- (1) f heißt in x_0 partiell differenzierbar : $\iff f$ ist in x_0 partiell differenzierbar nach allen Variablen x_1, \ldots, x_n . In diesem Fall heißt grad $f(x_0) := \nabla f(x_0) := (f_{x_1}(x_0), \ldots, f_{x_n}(x_0))$ der **Gradient** von f in x_0 .
- (2) f ist auf D partiell differenzierbar nach x_j oder f_{x_j} ist auf D vorhanden : $\iff f$ ist in jedem $x \in D$ partiell differenzierbar nach x_j . In diesem Fall wird durch $x \mapsto f_{x_j}(x)$ eine Funktion $f_{x_j}: D \to \mathbb{R}$ definiert die partielle Ableitung von f auf D nach x_j .
- (3) f heißt partiell differenzierbar auf $D : \iff f_{x_1}, \dots, f_{x_n}$ sind auf D vorhanden.
- (4) f heißt auf D stetig partiell differenzierbar : $\iff f$ ist auf D partiell differenzierbar und f_{x_1}, \ldots, f_{x_n} sind auf D stetig. In diesem Fall schreibt man $f \in C^1(D, \mathbb{R})$.

Beispiele:

- (1) Sei f wie in obigem Beispiel (3). f ist in (0,0) partiell differenzierbar und grad f(0,0) = (0,0)
- (2) Sei f wie in obigem Beispiel (2). f ist auf $\mathbb{R}^n \setminus \{0\}$ partiell differenzierbar und grad $f(x) = (\frac{x_1}{\|x_n\|}, \dots, \frac{x_n}{\|x_n\|}) = \frac{1}{\|x\|} x \ (x \neq 0)$

Definition

Seien $j,k \in \{1,\ldots,n\}$ und f_{x_j} sei auf D vorhanden. Ist f_{x_j} in $x_0 \in D$ partiell differenzierbar nach x_k , so heißt

$$f_{x_j x_k}(x_0) := \frac{\partial^2 f}{\partial x_j \partial x_k}(x_0) := \left(f_{x_j}\right)_{x_k}(x_0)$$

die partielle Ableitung zweiter Ordnung von f in x_0 nach x_j und x_k . Ist k = j, so schreibt man:

$$\frac{\partial^2 f}{\partial x_j^2}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_j}(x_0)$$

Entsprechend definiert man partielle Ableitungen höherer Ordnung (soweit vorhanden).

Schreibweisen:
$$f_{xxyzz} = \frac{\partial^5 f}{\partial x^2 \partial y \partial z^2}$$
, vergleiche: $\frac{\partial^{180} f}{\partial x^{179} \partial y}$

Beispiele:

- (1) $f(x,y) = xy + y^2$, $f_x(x,y) = y$, $f_{xx} = 0$, $f_y = x + 2y$, $f_{yy} = 2$, $f_{xy} = 1$, $f_{yx} = 1$.
- (2) $f(x,y,z) = xy + z^2 e^x$, $f_x = y + z^2 e^x$, $f_{xy} = 1$, $f_{xyz} = 0$. $f_z = 2ze^x$, $f_{zy} = 0$, $f_{zyx} = 0$.

(3)
$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Übungsblatt: $f_{xy}(0,0)$, $f_{yx}(0,0)$ existieren, aber $f_{xy}(0,0) \neq f_{yx}(0,0)$

Definition

Sei $m \in \mathbb{N}$. f heißt auf D m-mal stetig partiell differenzierbar : \iff alle partiellen Ableitungen von f der Ordnung $\leq m$ sind auf D vorhanden und auf D stetig. In diesem Fall schreibt man: $f \in C^m(D, \mathbb{R})$

$$C^0(D,\mathbb{R}):=C(D,\mathbb{R}), \qquad C^\infty(D,\mathbb{R}):=\bigcap_{k\in\mathbb{N}_0}C^k(D,\mathbb{R})$$

Satz 4.1 (Satz von Schwarz)

Es sei $f \in C^2(D, \mathbb{R}), x_0 \in D$ und $j, k \in \{1, ..., n\}$. Dann: $f_{x_j x_k}(x_0) = f_{x_k x_j}(x_0)$

Satz 4.2 (Folgerung)

Ist $f \in C^m(D, \mathbb{R})$, so sind die partiellen Ableitungen von f der Ordnung $\leq m$ unabhängig von der Reihenfolge der Differentation.

Beweis

O.B.d.A: n=2 und $x_0=(0,0)$. Zu zeigen: $f_{xy}(0,0)=f_{yx}(0,0)$. D offen $\Longrightarrow \exists \delta>0$: $U_{\delta}(0,0)\subseteq D$. Sei $(x,y)\in U_{\delta}(0,0)$ und $x\neq 0\neq y$.

$$\nabla := f(x,y) - f(x,0) - (f(0,y) - f(0,0)), \quad \varphi(t) := f(t,y) - f(t,0)$$

für t zwischen 0 und x. φ ist differenzierbar und $\varphi'(t) = f_x(t,y) - f_x(t,0)$. $\varphi(x) - \varphi(0) = \nabla$. MWS, Analysis $1 \implies \exists \xi = \xi(x,y)$ zwischen 0 und x: $\nabla = x\varphi'(\xi) = x(f_x(\xi,y) - f_x(\xi,0))$. $g(s) := f_x(\xi,s)$ für s zwischen 0 und y; g ist differenzierbar und $g'(s) = f_{xy}(\xi,s)$. Es ist $\nabla = x(g(y) - g(0)) \stackrel{\text{MWS}}{=} xyg'(\eta), \ \eta = \eta(x,y)$ zwischen 0 und y. $\implies \nabla = xyf_{xy}(\xi,\eta)$. (1) $\psi(t) := f(x,t) - f(0,t), t$ zwischen 0 und y. $\psi'(t) = f_y(x,t) - f_y(0,t)$. $\nabla = \psi(y) - \psi(0)$. Analog: $\exists \bar{\eta} = \bar{\eta}(x,y)$ und $\bar{\xi} = \bar{\xi}(x,y), \ \bar{\eta}$ zwischen 0 und y, $\bar{\xi}$ zwischen 0 und x. $\nabla = xyf_{yx}(\bar{\xi},\bar{\eta})$. (2) Aus (1), (2) und $xy \neq 0$ folgt $f_{xy}(\xi,\eta) = f_{yx}(\bar{\xi},\bar{\eta})$. $(x,y) \to (0,0) \implies \xi, \bar{\xi}, \eta, \bar{\eta} \to 0 \stackrel{f \in C^2}{\Longrightarrow} f_{xy}(0,0) = f_{yx}(0,0)$