Contractions

A bounded linear operator A on the Hilbert space \mathcal{H} is called a contraction if its operator norm is ≤ 1 , i.e. if

$$(1) ||Ax|| \le ||x|| : x \in \mathcal{H}$$

This means that if $x \in \mathcal{H}$ then

(2)
$$\langle Ax, Ax \rangle \le ||x||^2 = \langle x, x \rangle$$

Let E be the identity operator on \mathcal{H} . Now $E - A^*A$ is a self-adjoint operator and we see that (2) entails

$$\langle x - A^*Ax, x \rangle = ||x||^2 - ||Ax||^2 \ge 0$$

So this self-adjoint operator is non-negative and by § xx it has a square root, i.e. there exists the self-adjoint operator

$$B_1 = \sqrt{E - A^*A}$$

Next, recall that the operator norms of A and its adjoint A^* are the same so A^* is also a contraction and the bidaiöity formula $A^{**} = A$ entails that we get another self-adjoint operator

$$B_2 = \sqrt{E - AA^*}$$

Since we have not assumed that $AA^* = A^*A$ the two self-adjoint operators B_1, B_2 need not be equal. However, the following hold:

Propostion. One has the equalities

$$AB_1 = B_2 A$$
 and $A^* B_2 = B_1 A^*$

Proof. If n is a positive integer we notice that

$$A(A^*A)^n = (AA^*)^n A$$

Now A^*A is a self-adjoint operator whose compact spectrum is confined to the closed unit interval [0,1]. if $f \in C^0[0,1]$ is a real-valued continuous function it can be approximated uniformly by a sequence of polynomials $\{p_n\}$ and the operational calculus from \S XX yields an operator $f(A^*A)$ such that the perator norms tend to zero, i.e.

$$\lim ||p_n(A^*A) - f(A^*A)|| = 0$$

Since the spectrum of AA^* also is confined to [0,1] it follows that when ewe take the same polynomial sequence $\{p_n\}$ then we get an operator $f(AA^*)$ and

$$\lim ||p_n(AA^*) - f(AA^*)|| = 0$$

Now (i) and the teo limit formulas above entail that

(ii)
$$Af(A^*A) = f(AA^*)A$$

In particular we can use the continuous function $f(t) = \sqrt{1-t}$ and then Proposition XX follows.

The unitary operator U_A . On the Hilbert space $\mathcal{H} \times \mathcal{H}$ we define a linear operator U_A represented by the block matrix

$$U_A = \begin{pmatrix} A & B_2 \\ B_1 & -A^* \end{pmatrix}$$

Proposition. U_A is a unitary operator on $\mathcal{H} \times \mathcal{H}$.

Proof. For a pair of vectors x, y in \mathcal{H} we must prove the equality

(i)
$$||U_A(x \oplus y)||^2 = ||x||^2 + ||y||^2$$

To prove this we first notice that for every vector $h \in \mathcal{H}$ the self-adjointness of B_1 gives

(ii)
$$||B_1h||^2 = \langle B_1h, B_1h \rangle = \langle B_1^2h, h \rangle = \langle h - A^*Ah, h \rangle = ||h||^2 - ||Ah||^2$$

Above the last equality holds since $\langle A^*Ah, h \rangle = \langle Ah, A^{**}h \rangle = ||Ah||^2$ where we used the biduality formula $A = A^{**}$. In the same way we find that

(iii)
$$||B_2h||^2 = ||h||^2 - ||A^*h||^2$$

Next, by the construction of U_A the left hand side in (i) becomes

(iv)
$$||Ax + B_2y||^2 + ||B_1x - A^*y||^2$$

Using (iii) the first term in (iv)becomes

$$||Ax + B_2y||^2 = ||Ax||^2 + ||y||^2 - ||A^*y||^2 + \langle Ax, B_2y \rangle + \langle B_2y, Ax \rangle$$

By (ii) the second term becomes

$$||B_1x - A^*y||^2 = ||x||^2 - ||Ax||^2 + ||A^*y||^2 - \langle B_1x, A^*y \rangle - \langle A^*y, B_x \rangle$$

Adding this we conclude that (i) follows from the equality

(v)
$$\langle Ax, B_2y \rangle + \langle B_2y, Ax \rangle = \langle B_1x, A^*y \rangle + \langle A^*y, B_x \rangle$$

To get (v) we use Proposition XX which for example gives

$$\langle Ax, B_2y \rangle = \langle x, A^*B_2y \rangle = \langle x, B_1A^*y \rangle = \langle B_1x, A^*y \rangle$$

where the last equality used that B_1 is self-adjoint. In the same way one verifies that

$$\langle B_2 y, Ax \rangle = \langle A^* y, B_x \rangle$$

and (v) follows.

The Nagy-Szegö theorem. The constructions above yield the following result which is due to Nagy and Szegö

Theorem For every bounded linear operator A on a Hilbert space \mathcal{H} there exists a Hilbert space \mathcal{H}^* which contains \mathcal{H} and a unitary operator U on \mathcal{U}_1 such that

$$A^n = \mathcal{P} \cdot U^n$$
 : $n = 1, 2, \dots$

where \mathcal{P} is the orthogonal projection from \mathcal{H}_1 onto \mathcal{H} .

Proof. Take $\mathcal{H}_1 = \mathcal{H} \times \mathcal{H}$ where we have the unitary operator U_A above and let $\mathcal{P}(x,y) = x$ be the projection onto the first factor. By the boock from of U_A we have $A = \mathcal{P}U_A$ and we leave it to the reader to show that the previous constructions imply that $A^n = \mathcal{P} \cdot U^n$ hold for every $n \geq 1$.

A general norm inequality. The Nahy-Szegö resut has an important consequence. Let A as above be a contraction. If $p(z) = c_0 + c_1 < + \ldots + c_n z^n$ is an arbitrary polynomial with complex coefficients we get the operator $p(A) = \sum c_{\nu} A^{\nu}$ and with these notations one has:

Theorem For every pair A, p(z) as above one has

$$||p(A)|| \le \max_{z \in D} |p(z)|$$

where the the maximum in the right hand side is taken on the unit disc.

Proof. Theroem X gives $p(A) = \mathcal{P} \cdot p(U_A)$. Since the orthogonal \mathcal{P} -projection is norm decreasing we get

$$||p(A)(\xi)||^2 \le ||p(U_A)(\xi,0)||^2$$

Now the operational calculus from § 7 is applied to the unitary operator U_A which yields a probability measure μ_{ξ} on the unit circle such that

$$||p(U_A)(\xi,0)||^2 = \int_0^{2\pi} |p(e^{i\theta})|^2 \cdot d\mu_{\xi}(\theta)$$

The right hand side is majorized by $|p|_D^2$ and Theorem XX follows.

Corollary. Let A(D) be the disc algebra. Since each $f \in A(D)$ can be uniformly approximated by analytic polynomials, Theorem X entails that there exists a bounded linear operator f(A) for every contraction A.