

Building a Computer By Braiding Colorful Knots

Authors: Aishani Dutta, Suchetan Dontha, Yixiao Liu, Qingyu Meng

Graduate Mentor: William Linz Faculty Advisor: Eric Samperton

Background

Groups

A **group** G is a set of elements, together with an associative binary operation that contains an inverse for each element and an identity element. Two fundamental groups we examined this semester are S_n and A_n :

- S_n = group of all permutations on n elements
- A_n = group of all *even* permutations on n elements
 - An even permutation requires an even number of swaps between elements

Group Actions

A group G acts on a set X ($G \curvearrowright X$) if there is a homomorphism which maps the elements of G to permutations of the elements in X.

- The *orbit* of an element $x \in X$ is the set of elements $y \in X$ s.t. g * x = y for some $g \in G$.
- Every group acts on itself by **conjugation**: G acts on G via the formula $g * x = gxg^{-1}$
- A conjugacy class is an orbit of the group (as a set) under this action of conjugation

Braids

A **braid** is a sequence of crossings in which adjacent strands are passed over or under each other. The **braid group** (denoted B_n) is the group of all braids on n strands. The group multiplication is the stacking of braids.

words

The Hurwitz Action

Hurwitz action is the specific group action that we are using in our project.

$$\sigma_i \cdot (x_1, x_2, ..., x_n) = (x_1, x_2, ..., x_{i-1}, x_i \cdot x_{i+1} \cdot x_i^{-1}, x_i, x_{i+2}, ..., x_n).$$

An example of σ_2 is shown to the right. The resulting strand 2 is $x_2 \cdot x_3 \cdot x_2^{-1}$. Different colors represent different elements.

Constructions

We defined the set \mathbf{C} to be the conjugacy class of the element $(1\ 2\ 3\ 4\ 5) \in A_5$ (the permutation that sends 1 to 2, 2 to 3, ..., 5 to 1). Then $\mathbf{B}_n/\mathbf{C}_n$ is the quotient set of orbits under the Hurwitz action. We denote an orbit \mathbf{C}_0^n if each $\mathbf{c} \in \mathbf{C}_0^n$ satisfies the following two properties:

- A tuple $c \in C^n$ has **trivial boundary monodromy** if its entries $c_1,...,c_n$ satisfy $c_1 \cdots c_n =$ (), the identity permutation.
- A tuple $c \in C^n$ generates A_5 if every element in A_5 can be realized as a finite length product of the entries in c (repeats are allowed).

In general, Sym(X) is the group of permutations amongst the elements of a set X. Then $Sym(C_0^n)$ is the group of permutations amongst the elements of C_0^n . We define $Sym_{A5}(C_0^n)$ to be the this group equivariant under A_5 . Put simply, these are the elements $\sigma \in Sym(C_0^n)$ such that $\forall \alpha \in A_5$, $\sigma = \alpha \sigma$.

Our Goals

$$\rho: B_n \to Sym_{A_5}(C_0^n)$$

Define the ρ as shown on the left. We know that for n large enough, $\rho(B_n)$ contains the **commutator subgroup** of $\operatorname{Sym}_{A5}(C_0^n)$ which we will call the **Rubik subgroup** because a similar group appears in the group of Rubik's cube symmetries [1, 2]. That is, the group generated by the set $\{\sigma_1\sigma_2\sigma_1^{-1}\sigma_2^{-1}\mid \sigma_1, \sigma_2\in\operatorname{Sym}_{A5}(C_0^n)\}$. Our goal for this project was to computationally determine what value of n is sufficient. Once we found this n, our next goal was to determine if ρ is surjective, that is if $\rho(B_n) = \operatorname{Sym}_{A5}(C_0^n)$.

Computing n

We decided to begin with the simplest case when n = 4. Thus the first step was to construct a C_0^4 . We used Sage, a derivative of Python that has implementations of several concepts in group theory.

Calculating C₀

We first generated C^4 , the set of 4-tuples of C, and constructed the set of its orbits under the Hurwitz action (algorithm shown below). We then identified the orbits whose tuples exhibited trivial boundary monodromy and generated A_5 . In this case, there was one such orbit, C_0^4 , where $|C_0^4| = 600$.

Pop one element from queue as s. Use 6 braid actions to get 6 results. Check if each result is present in a list storing existing values of s. If a result is not a duplicate, add it to the queue. Loop until queue is empty and we get the orbit that contains the first element entered in the queue.

A Helpful Construction

We needed to prove whether $\rho(B_4)$ contains the Rubik subgroup of $\operatorname{Sym}_{A5}(C_0^4)$ which is the set of all permutations of the orbit C_0^4 . To accomplish this, we defined some quantities that would help us prove a more approachable helpful construction:

- $Aut(A_5, C)$ is the group of automorphisms of A_5 that fix C setwise; it is isomorphic to A_5
- $Sym(C_0^4/A_5)$ is the symmetric group of the orbits of A_5 acting on C_0^4
- eta_5 acting on C_0 $ar{
 ho}$ is the homomorphism defined to the right, which $Sym_{A_5}(C_0^4)$ $\stackrel{\pi}{\longrightarrow}$ $Sym(C_0^4/A_5)$ maps elements of B_4 to the set $Sym(C_0^4/A_5)$

Proving $\bar{\rho}$ is surjective is helpful for showing that $\rho(B_4)$ contains the Rubik subgroup of $\operatorname{Sym}_{A5}(C_o^4)$

- When we generated the elements of C_0^4/A_5 , we found that it consisted of exactly 10 orbits with 60 elements each. Each orbit size must be 60 because $|A_5| = 60$ and A_5 acts freely on C_0^4
- Applying some automorphism $\alpha \in A_5$ to every element in an orbit O_k will map each $o \in O_k$ to some element in a different orbit, O_m . For example, every member of O_2 corresponds to some element in O_{10} when α is applied.
- As a result of this property, we can define an isomorphism $\overline{\Phi}$: Sym(C₀⁴/A₅) \rightarrow S₁₀. This allows us to prove that $\overline{\rho}$ is surjective as follows (cont'd on next column):
 - We know that b_1 , b_2 , and b_3 generate B_4 and that $\overline{\Phi} \circ \overline{\rho}$ is a homomorphism
 - This means that if $(\overline{\Phi} \circ \overline{\rho})(b_1)$, $(\overline{\Phi} \circ \overline{\rho})(b_2)$, and $(\overline{\Phi} \circ \overline{\rho})(b_3)$ generate S_{10} , then $\overline{\rho}$ is surjective.

Computing n (cont'd)

```
sigma1A5 = phi_bar_rho_bar([1])
sigma2A5 = phi_bar_rho_bar([2])
sigma3A5 = phi_bar_rho_bar([3])
generatesGroup((sigma1A5, sigma2A5, sigma3A5), S10)
```

True

We were able to programmatically show that $(\overline{\Phi} \circ \overline{\rho})(b_1)$, $(\overline{\Phi} \circ \overline{\rho})(b_2)$, $(\overline{\Phi} \circ \overline{\rho})(b_3)$ generate S_{10} . This proves that $\overline{\rho}$ is a surjective homomorphism when n = 4.

Surjectivity of ρ

Now that we can focus on determining if ρ is surjective. To do this, we must introduce a few more definitions:

Wreath Product

The **direct product** of two groups K and G (K $_{\times}$ G) is a group over the set K $_{\times}$ G (the cartesian product) and binary operation \cdot defined by (k₁, g₁) \cdot (k₂, g₂) = (k₁ \cdot k₂, g₁ \cdot g₁). Note that the two groups need not have the same binary operation.

The **semidirect product** of two groups K and G (K \rtimes_{ϕ} G), where ϕ : G -> Aut(K), is a direct product of K and G but binary operation \cdot defined by $(k_1, g_1) \cdot (k_2, g_2) = (k_1 \cdot \phi(g_1) \cdot k_2, g_1 \cdot g_1)$.

The **wreath product** of two groups K and G (K \wr_{ϕ} G) is a semidirect product of the groups K^{|G|} \rtimes_{ϕ} G, where K^{|G|} is the direct product of K |G| times. G acts by permuting the factors of K^{|G|}

The **universal embedding theorem** states that any group extension of a group H by a group A is isomorphic to a subgroup of the regular wreath product A λ_0 H.

Equivalent Condition

Using our map structure and the universal embedding theorem, we know that $Sym_{A5}(C_0^4) \sim A_5^{10} \wr S_{10}$. We can define ψ as follows: each entry $\alpha_{i,\,\sigma}$ of a $\in A_5^{10}$ satisfies $\alpha_{i,\,\sigma}x_i = \sigma x_j$, where σ is the permutation resulting from the braid and σx_j is in orbit i. For example, in the diagram, $\alpha_{10,\,\sigma}$ is the element of A_5 such that $\alpha_{10,\,\sigma}x_{10} = \sigma x_2$.

We can use the above definitions to restrict Φ to be $(\psi \circ \rho)(b)$, $(\overline{\Phi} \circ \overline{\rho})(b)$. It can now be shown that ρ is surjective iff:

- $\forall \sigma \in S_{10}$, $\exists b \in B_4$ so that $(\overline{\Phi} \circ \overline{\rho})(b) = \sigma$ and $(\psi \circ \rho)(b) = ((), ..., ())$
- $\forall a \in A_5^{10}$, $\exists b \in B_4$ so that $(\psi \circ \rho)(b) = a$ and $(\overline{\Phi} \circ \overline{\rho})(b) = ()$

Future Work

Future work is to verify that the two above conditions are true. The function phi_bar_rho_bar(b) shown before and generate_alphas(b) in our sage library return elements of $A_5^{10} \wr S_{10}$ given a b $\in B_4$. The next step is to systematically generate particular elements as described in the equivalent condition.

References

1. Ellenberg, Venkatesh, & Westerland. (2013). Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, II. Retrieved from https://arxiv.org/abs/1212.0923

2. Kuperberg & Samperton. (2019). Coloring invariants of knots and links are often intractable. Retrieved from https://arxiv.org/abs/1907.05981

Support for this project was provided by the Illinois Geometry Lab and the Department of Mathematics at the University of Illinois at Urbana-Champaign.