

Tâches de l'équipe de TD

- Donner les TD
- Répondre à vos questions
- Solutionner les exercices en classe avec vous
- Être disponible 2 h par semaine
 (SANS rendez-vous, horaire sur Moodle)

Les objectifs du TD

- Mettre en application les notions du cours
- Réfléchir en groupe aux solutions
- Comprendre les phénomènes physiques en jeu
- Vous intéresser en abordant des problèmes de la vie courante (lorsque possible!)

Fonctionnement du TD

- Équations de la semaine
- 3 à 4 exercices par TD
- Parfois : un exercice sous forme
 d'expérience/vidéo

 PHS1101 Polytechn

https://www.youtube.com/user/PHS1101polymtl

Les limites du TD

- PAS de corrigés sur Moodle (non négociable même si vous demandez super gentiment)
- Les TD sont un COMPLÉMENT aux exercices disponibles sur Moodle.

⇒ Il faut travailler les deux!

Les règles du TD

- Travail de groupe (c'est payant pour vous !)
- Nourriture (soyez discrets et rien d'odorant)
- Ordinateurs (utile pour consulter les notes de cours, l'énoncé du TD et la feuille de formule)
- Soyez à l'heure
- Pas de pause

Projection d'un vecteur en 2D

Projection en 2D

$$F_{x} = F \cos\theta$$

$$F_{v} = F \sin \theta$$

$$F = \sqrt{F_x^2 + F_y^2}$$

$$\theta = \arctan\left(\frac{F_y}{F_x}\right)$$

Projection d'un vecteur en 3D

Cosinus directeurs

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

$$\theta_x + \theta_y + \theta_z \neq 180^{\circ}$$

$$F_{x} = F \cos \theta_{x}$$

$$F_{y} = F \cos \theta_{y}$$

$$F_{z} = F \cos \theta_{z}$$

Angles θ et ϕ

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2} \qquad F_y = F \sin\theta \cos\varphi$$

$$F_z = F \cos\theta$$

Projection d'un vecteur

Vecteur unitaire

$$\hat{u}_{AB} = \frac{\vec{r}_{AB}}{r_{AB}} = \frac{(B_x - A_x)\vec{i} + (B_y - A_y)\vec{j} + (B_z - A_z)\vec{k}}{\sqrt{(B_x - A_x)^2 + (B_y - A_y)^2 + (B_z - A_z)^2}}$$

Norme égale à 1 ;

$$\|\hat{u}_{AB}\| = 1$$

• Un vecteur de norme V parallèle à \hat{u}_{AB} s'exprime par :

$$\vec{V} = V\hat{u}_{AB}$$

Équations de la semaine

Résultante = somme des forces

$$|\vec{R}| = \sum_{i} \vec{F}_{i}$$

 La résultante permet de remplacer un ensemble de forces par une seule force équivalente!

COMMENT EXPRIMER SA RÉPONSE?

Chiffres significatifs

Toute réponse finale numérique doit comporter 3 chiffres significatifs (2 chiffres en plus du 1^{er} chiffre non nul à la puissance de 10 la plus élevée).

$$F_1 = 2,65 \text{ N}$$

$$F_2 = 18,0 \text{ N}$$

$$F_1 = 2,65 \text{ N}$$
 $F_2 = 18,0 \text{ N}$ $d_1 = 0,0208 \text{ m}$

$$d_2 = 0,720 \text{ m}$$

Une réponse avec un nombre exagéré de chiffres significatifs sera pénalisée.

Unités

Toute mesure physique vient avec des unités. Si les unités d'une réponse finale sont erronées, vous perdrez des points. Cela s'applique aussi aux vecteurs.

$$\vec{T} = (295\vec{\imath} + 393\vec{\jmath}) \text{ N}$$
 unité

SYSTÈME D'UNITÉS

Les unités utilisées dans ce cours sont celles du **Système international d'unités (SI)**.

Unités de base

Longueur L mètre (m)

Masse M kilogramme (kg)

Temps T seconde (s)

Exemples

Vitesse L/T m/s

Force ML/T^2 [kg·m/s²] newton (N)

Travail/Énergie ML^2/T^2 [kg·m²/s²] joule (J)

Puissance $ML^2 / T^3 [kg \cdot m^2/s^3]$ watt (W)

Angle L/L degré (º) ou radian (rad)

ANALYSE DIMENSIONNELLE

Principe

Les unités des expressions à gauche et à droite d'un signe d'égalité doivent être les mêmes.

Cet outil est indispensable pour détecter rapidement les erreurs d'algèbre et pour valider ses réponses lors des examens.

Exemple

Vous calculez une distance d dans un problème et vous obtenez l'expression

$$d = vt^2$$

où v est une vitesse et t est le temps écoulé.

Vérification des dimensions

$$L = \frac{?}{T} \cdot (T)^{2}$$

$$L \neq L \cdot T$$

Les unités à gauche et à droite ne concordent pas.

Votre démarche est donc erronée : refaites vos calculs !

La méthode de résolution de problèmes

La méthode est la même qui est appliquée dans les notes de cours et en TD. Elle vous aide à structurer vos démarches et à choisir une stratégie de résolution.

- 1. Réécrire ce que l'on connaît déjà (valeurs, hypothèses, etc.) ;
 - Refaire un schéma de la situation est une bonne façon de regrouper l'information connue et de s'assurer que l'on comprend bien la situation.
- 2. Identifier ce que l'on cherche (variables, modules ou vecteurs, etc.);
- 3. Élaborer une stratégie de résolution (étapes à suivre) ;

Quelle nouvelle information puis-je obtenir à partir des informations connues?

Est-ce que cette nouvelle information me rapproche de ce que je cherche?

Le problème est-il similaire à un autre problème que j'ai déjà résolu ? Dans ce cas, puis-je utiliser la même méthode ?

4. Effectuer les calculs pour obtenir le résultat final.

Le temps de réflexion en TD sert à pratiquer les étapes 1 à 3 !

Exercices Semaine 1

2.41 p. 30

2.129 p. 61

2.87 p. 49

2.132 p. 61

Exercice 2.132 p. 61

On extrait un pieu enfoncé dans le sol à l'aide de deux cordes tel qu'illustré sur la figure. Disposant des informations sur l'une des forces, évaluez la grandeur et la direction que devrait avoir la force P pour que la résultante R des deux forces soit de 160 N verticalement vers le haut.

Exercice 2.129 p. 61

Sachant que l'angle entre les deux forces F_1 et F_3 est toujours 50°, mais que l'angle α peut varier, déterminez la valeur de α pour laquelle la résultante des forces agissant sur A est horizontale orientée vers la gauche.

NOTE:
$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

Exercice 2.41 p. 30

En vous référant à la figure, sachant que la résultante des trois forces appliquées au point C de la poutre BC doit être orientée selon l'axe BC, déterminez :

- a) la tension requise dans le câble AC;
- b) la grandeur de cette résultante.

Exercice 2.87 p. 49

Une tour de transmission est tenue par trois haubans ancrés à l'aide des boulons B, C et D. Sachant que la tension dans le câble AB est de 2100 N :

- a) évaluez les composantes que cette force applique au point d'ancrage B;
- b) calculez les angles θ_x , θ_v et θ_z entre cette force et les axes x, y et z respectivement.

