SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 2 MARCH 2016

Mathematics Extension 2

Name	 • • • • •	• • • • •	 • • • • •	
Teacher	 		 	

General Instructions

- Reading Time 5 minutes.
- Working Time 90 min.
- Write using a blue or black pen.
- Board approved calculators may be used.
- The BOSTES reference sheet is provided.
- In Questions 7-10, show relevant mathematical reasoning and /or calculations.
- Begin each question on a fresh sheet of paper.
- Full marks may be not be awarded for careless and illegible writing.

Total marks (68)

• Attempt Questions 1-10.

Multiple Choice	6
Question 7	16
Question 8	14
Question 9	14
Question 10	16
TOTAL	66

Section 1

Multiple Choice (6 marks)

Use the multiple choice answer sheet for Question 1-5

1. In the Argand Diagram below, P represents the complex number z.

(B)

(D)

Which of the following Argand diagram shows the point Q representing $z + \overline{z}$?

- 2. What is the acute angle between the asymptotes of the hyperbola $\frac{x^2}{3} y^2 = 1$
 - (A) $\frac{\pi}{6}$

(A)

- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

3. Which conic has eccentricity
$$\frac{\sqrt{13}}{3}$$
?

(A)
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

(B)
$$\frac{x^2}{3^3} + \frac{y^2}{2^2} = 1$$

(C)
$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$

(D)
$$\frac{x^2}{3^3} - \frac{y^2}{2^2} = 1$$

4. The equation $x^2 - xy + y^2 = 3$ defines y implicitly in terms of x. The expression for $\frac{dy}{dx}$ is:

$$(A) \qquad \frac{y-2x+3}{2y-x}$$

$$(B) \qquad \frac{y-2x+3}{x-2y}$$

(C)
$$\frac{y-2x}{2y-x}$$

(D)
$$\frac{y-2x}{x-2y}$$

5. Consider the polynomial P(x) of degree 3. Two real numbers a < b are such that:

$$a < b$$
$$P(a) > P(b) > 0$$

$$P'(a) = P'(b) = 0$$

The polynomial has:

- (A) 3 real zeros
- (B) 1 real zero γ such that $\gamma < a$
- (C) 1 real zero γ such that $a < \gamma < b$
- (D) 1 real zero γ such that $\gamma > b$
- 6. P(4,25) is a point on the rectangular hyperbola xy = 100. The tangent at P cuts the hyperbola's asymptotes at Q and R. The area of $\triangle OQR$ (where O is the origin) is:
 - (A) $200\sqrt{2} u^2$
 - (B) $2\sqrt{50} u^2$
 - (C) $100 u^2$
 - (D) $200 u^2$

Section II

Total Marks (64) Attempt Questions 7 – 10.

Answer each question in your writing booklet.

In Questions 6-9, your responses should include relevant mathematical reasoning and/or calculations.

Question 7 (16 Marks)

Use a Separate Sheet of paper

- a) Consider the complex numbers $z = -\sqrt{3} + i$ and $\mathbf{w} = 3\left(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}\right)$
 - i) Evaluate |z|

1

ii) Evaluate arg(z)

1

iii) Find the argument of $\frac{z}{w}$

1

b) Find the value of $\frac{dy}{dx}$ at the point (2,-1) on the curve $x + x^2y^3 = -2$

3

c) Find the Cartesian equation of the locus of a point P which represents the complex number z where |z-2i|=|z|.

2

- d) Let w = 3 4i and z = 2 + 2i.
 - i) Find $w\overline{z}$ in the form x + iy

1

ii) Find
$$Im\left(\frac{1}{2-w}\right)$$

2

- iii) The point representing the complex number z is rotated 270° in an anticlockwise direction about the origin in an Argand diagram.
 - What is the complex number represented by the new position of the point?

1

e) i) Sketch and shade on an Argand diagram the region R in which $|z-4i| \le 3$ and $0 \le \arg(z+1) \le \frac{\pi}{4}$ hold simultaneously.

2

ii) Find the value of arg(z + 1) at the point in the region R where arg(z + 1) is a minimum. Answer to the nearest degree.

2

End of Question 7

a) Express $\frac{7+2i}{5-i}$ in the form x+iy where x and y are real

2

- b) If $z = (1 i)^{-1}$
 - i) Express \overline{z} in modulus argument form

.2

ii) If $(\overline{z})^{13} = a + ib$ where a and b are real numbers, find the values of a and b

2

c) $P(a\cos\theta, b\sin\theta)$ is a point on the ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ The normal at P meets the x-axis at M and PN is perpendicular to the x-axis.

i) Show that the equation of the normal at P is given by $ax \sin\theta - by \cos\theta = (a^2 - b^2) \sin\theta \cos\theta$

2

2

ii) Hence show that $MN = \left| \frac{b^2 \cos \theta}{a} \right|$.

d) i) If a is a root of P(x) with multiplicity n, show that a is also a root of P'(x) with multiplicity n-1.

1

ii) Given $P(x) = 2x^4 + 9x^3 + 6x^2 - 20x - 24$ has a triple root, factorise P(x) into its linear factors.

3

End of Question 8

Question 9 (14 Marks)

Use a Separate Sheet of paper

a) $P\left(t, \frac{1}{t}\right)$ is a variable point on the rectangular hyperbola xy = 1. M is the foot of the perpendicular from the origin to the tangent to the hyperbola at P.

- Show that the tangent to the hyperbola at P has equation $x + t^2y = 2t$
- 1

2

- ii) Find the equation of OM
- Show that the equation of the locus of M as P varies is $x^4 + 2x^2y^2 4xy + y^4 = 0$ and indicate any restrictions on the values of x and y.
- b) The polynomial $p(x) = x^5 + 2x^2 + mx + n$ has a double zero at x = -2. Find the value of m and n, and find the product of the other three zeros.
- c) Sketch the hyperbola with parametric equations

$$x = 3 \sec \theta$$

$$y = 4 \tan \theta$$

Indicate the vertices, the foci, and the equations of the directrices and asymptotes

5

End of Question 9

a) Sketch the region in the complex plane where Re[(2-3i)z] < 12

2

b) Consider the ellipse \mathcal{E} , with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the points $P(a \cos \theta, b \sin \theta)$, $Q(a \cos(\theta + \phi), b \sin(\theta + \phi))$ and $R(a \cos(\theta - \phi), b \sin(\theta - \phi))$ on \mathcal{E} .

- i) Show that the equation of the tangent to \mathcal{E} at the point P is $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$.
- ii) Show that the chord QR is parallel to the tangent at P. 2
- iii) Show that OP bisects the chord QR.
- c) i) Using De Moives's theorem show that the solution of the equation $z^3 = 1$ in the complex number system are:

$$z = \cos\theta + i \sin\theta \text{ for } \theta = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$$

ii) If
$$\omega = \operatorname{cis} \frac{2\pi}{3}$$
 show that $\omega^2 + \omega + 1 = 0$ and $\omega^3 - \omega^2 - \omega - 2 = 0$

iii) Hence or otherwise solve the cubic equation $z^3 - z^2 - z - 2 = 0$ over the complex field 3

2-w -1*+i -1-+i = -1-+i 1-16i2 = -1-4i = -1-4i = -1-4i	$\frac{\partial x}{\partial x} = \frac{1}{3x^2y^2}$ $\frac{3x^2y^2}{4x^2}$ $\frac{\partial x}{\partial x} = \frac{1}{4}$
= 6-6i-8i = -2-14i = -1+4i	
i. The locus is the line y=1 di) w=3-4i z=2+2i w= (3-4i)(2-2i)	$\frac{2\eta}{6} = \frac{5\eta}{6}$ $\frac{(ii)}{6} = \frac{5\eta}{6} - \frac{\eta}{7}$ $= \frac{3\eta\eta}{42}$
dx 2i = z endicular bi	מ ע ע ע
$3x^{2} \frac{dy}{dx} = -1 - 2xy^{3}$ $\frac{dy}{dx} = -1 - 2xy^{3}$ $\frac{dy}{dx} = -\frac{2xy^{3}}{3x^{2}y^{2}}$ $At (2,-1) dy = \bot$	Inverse crocce 1. D 2. C 3. D 4. C 5. B 6. D Question 7 $ z = -\sqrt{3} + i$ $ w = 3(ws $
	A 3

(A) 7+2i, 5+i = 35+7i+101+2i ² (B) 8-1 5+i = 35+7i+101+2i ² (B) 8-1 5+i = 35+7i+101+2i ² (B) 8+1 8+1 8+1 8+1 8+1 8+1 8+1 8+1 8+1 8+1	$\frac{()\lambda)}{a^2} \frac{\chi^2 + \chi^2 = 1}{b^2}$ $\frac{\partial \chi}{\partial r} + \frac{2\eta}{b^2} \times \frac{\partial \eta}{\partial z} = 0$
233 + 17 2 34 34 34	$\frac{dy}{dx} = \frac{-2x}{a^2} \times \frac{b^2}{3y}$ $= \frac{-xb^2}{a^2y}$
$\frac{b(x)}{1-x} = \frac{1+x}{1+x} = \frac{1+x}{1-x^2}$ $\frac{1+x}{1-x^2} = \frac{1+x}{1-x^2}$	At $P(a \cos \theta, b \sin \theta) = \frac{du}{dx} = \frac{b^2 a \cos \theta}{a^2 (b \sin \theta)}$
تر <u>۱</u>	ि
4 (Z) = - <u>T</u>	Gradient of normal et P = asin 9 b cas 0
12 13 C	Equation of normal at P $y - bsin \theta = a sin \theta (x - a cos \theta)$
1 1 2 CV3 (1)	
$= \frac{\left(\frac{1}{\sqrt{2}}\right)^{13} \text{ cis}\left(-\frac{13\pi}{4}\right)}{\left(\frac{1}{\sqrt{2}}\right)^{13} \left(\frac{13\pi}{4}\right)}$	02 S)n 6
$=\frac{1}{64\sqrt{2}} \cdot \frac{\cos\left(3\pi\right)}{4}$	Let $y=0$ equation of nomal $ax \sin\theta = (a^2-b^4) \sin\theta \cos\theta$
64VI (-1 + 1·2)	$A \le M = \left(\frac{a^2 - b^2}{a} \cos \theta\right) = 0$
2 = - 1 b = 1 28 128	T

= NW	$(a^2-b^2)\cos\theta - a\cos\theta$	S) v	Suestion 9
		رنه	$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$
1/	$\frac{a^2 \cos \theta - b^2 \cos \theta - a^2 \cos \theta}{a}$		1
- F)	b ² cos 0		47
	l CL		$\frac{1}{x^{2}} + \frac{1}{x^{2}} = \frac{1}{x^{2}} \left(x - t\right)$
			$\frac{t^2y-t}{t^2-x-x+t}$
d) $P(x) = 0$	$(x-d)^n Q(x)$ $Q(x) \neq 0$: x+ x2 - 2 +
P'(2) = n	$\dot{n}(\mathbf{z}-\mathbf{z})^{n-1}\otimes(\mathbf{x}) + (\mathbf{z}+\mathbf{z})^n, \otimes(\mathbf{x})$	(;;;	
1)	$= (x-x)^{n-1} \left[n \otimes (x) + (x+x)^n, \otimes '(x) \right]$		
6}	(x-2)n-1, Q(x) where Q(x) +0	iii)	2= 1
e 0 0 0	is a root of Pho of multiplicity n-1		F= +/4
$\frac{d\tilde{\omega}}{d\tilde{\omega}}$ $p(x) =$			$x + 4^2y = 2t$
p''(x) = p''(x)	$P''(x) = 8x^3 + 37x^2 + 12x - 20$ $P''(x) = 24x^2 + 54x + 12$		$x + y = 2x + \sqrt{y}$
e. 24x2+	2+54x+12 =0		$x + xt^2 = 2 \times (\pm \Psi)$
x+	92 + 2 =		J. (1 / x /
2 (1)	<u> </u>		$(x+u^2)^2 = 4x(\frac{1}{2}u)$

1 % Z=-	$Y(-2) = \lambda(-2) + \lambda(-2) + \lambda(-2) = \lambda(-2) - \lambda(-2) - \lambda + 20$ $Y(-2) = \lambda(-2) + \lambda(-2) + \lambda(-2) = \lambda(-2) - \lambda + 20$ $Y(-2) = \lambda(-2) + \lambda(-2) + \lambda(-2) = \lambda(-2) + \lambda(-2) = \lambda(-2) = \lambda + 20$ $Y(-2) = \lambda(-2) + \lambda(-2) + \lambda(-2) = \lambda(-2) + \lambda(-2) = \lambda(-2) = \lambda + 20$		x^+2y^++y/- ty by the hyperbola
]*	$P(x) = (x-2)^3(2x-3)$		x4+ 2x3-12+4+ = 4xy

M cannot be at the origin	= 0 P(t,t): 6+0 2+2x4-4x4+24+20.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\frac{(1+t^{4})^{4}}{(1+t^{4})^{4}} \frac{(t^{4}+3t^{8}+t^{12}) - (t^{4}+3t^{4}+t^{8})}{(1+t^{4})^{4}}$	$\frac{ bt^{+} ^{\frac{1}{2}}}{(1+t^{+})^{\frac{1}{2}}} \frac{32t^{8}}{(1+t^{+})^{\frac{1}{2}}} \frac{ bt^{+} ^{\frac{1}{2}}}{(1+t^{+})^{\frac{1}{2}}} \frac{ bt^{+} ^{\frac{1}{2}}}{(1+t^{+})^{\frac{1}{2}}}$	$\frac{x^{4} + 2x^{2}y^{2} - 4xy + y^{4} = 0}{(2t^{3})^{4} + 2(2t^{3})(1+t^{4})(1+t^{4})} + 4(2t^{3})(2t^{3}) + 4(2t^{3})(1+t^{4})(1+t^{4})(1+t^{4}) + 4(2t^{3})(1+t^{4})(1+t^{4})$	$M\left(\frac{2t}{1+t^4}, \frac{2t^3}{1+t^4}\right)$ $\frac{x=2t}{1+t^4}$ $\frac{4}{1+t^4}$ $\frac{3t^3}{1+t^4}$ (Alternate Method)
x=-9 x=9 foù (-5,0) (5,0)	$S(S,O)$ 3 $S(S,O)$ Directorces $C = \frac{9}{6}$ $S(S$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Product of note 4 x 3 x = 120 2 3 x -3 sec 8 4 x 3 x = 30 4 = 4 tan 8	P(-2)=0 - 32+8+144+72=0 - 32+8+144+720 ル=120 Roots: - 2,-2, 4, 8, 7	P(x) has a dauble root at $x=-2$ $p(-2) = 0$ $80 - 8 + m = 0$ $m = -72$	b) $P(x) = \chi^5 + \lambda x^2 + mx + n$ $P(x) = 5x^4 + 4x + m$

605 70 7 Sin	tampent at p bias (9 (x-a cos 0)) a sin 0	= -b cos 6 a sin 6	= b cos 9 x 1	b) $x = a \cos \theta$ $\frac{2\pi}{8} = -a \sin \theta$ $\frac{1}{3} = b \sin \theta$ $\frac{1}{8} = a \sin \theta$		1	(3) (3) (3) (3) (3) (4) (3) (3) (3) (3) (4) (4) (4) (4) (5) (6) (6) (7)	Oveston 10
$x = a(\cos\theta\cos\phi - \sin\theta\sin\phi + \cos\theta\cos\phi + \sin\theta\sin\phi) = a\cos\theta\cos\phi$ $y = b(\sin\theta\cos\phi + \cos\theta\sin\phi + \sin\theta\cos\phi - \cos\theta\sin\phi) - b\sin\theta\cos\phi$ $m(a\cos\theta\cos\phi, b\sin\theta\cos\phi)$) Let m be the midpoint of QR [a cas (0+9) + a cas (0-9), b sin (0+9) + b sin (0-9)] 2	: chord QK so paralled to the tangent at P	Gradient ef. tangent at P = -b cos o asin o	Mar - bosos	= - 2b cos 0 sin op 2a sin 0 sm op	= b(sin \theta cos \theta - cos \theta sin \theta - sin \theta cos \theta - cos \theta cos \theta cos \theta - cos \theta cos \theta cos \theta - cos \theta c	$\frac{\partial \left[a\cos\left(\theta+\varphi\right), b\sin\left(\theta+\varphi\right)\right] \mathcal{R}\left[a\cos\left(\theta-\varphi\right), b\sin\left(\theta-\varphi\right)\right]}{\partial \cos\left(\theta-\varphi\right) - b\sin\left(\theta+\varphi\right)} \mathcal{R}\left[a\cos\left(\theta-\varphi\right), b\sin\left(\theta-\varphi\right)\right]}$	

		11414
	N	
	$(\omega^3 - (\omega^2 - \omega) - = $	
	$-\omega^{2}-\omega^{-} =0$	
	$\omega^2 + \omega + 1 = 0$	
2 2	$(\omega-1)(\omega^2+\omega+1)=0$	
フェートはナ	ω³-1=0'	
2 2	$\frac{2\pi}{\omega} = \cos \frac{2\pi}{3} \text{if } \omega = a + \cot + hen \omega^3 = 1$	cùi)
2=-1 ± √3		
2		
1	b=0, 27, 47.	
2-+2+1=0		
	0=0+3KR K=0,1,2,	
$P(2) = (2-2)(2^2+2+1)$	30 = 0 + 2kT	
	(D) 30 + 151n 0 = 1050 + ising	
7-2		
2^2-32	(ws 30	
72-2	- +3(cos 0 +	,
23-222	i) 2= 605 0 + i sm 0	(i)
22_ 2		
22+2 +)	or VF OBECO. &R	Table 1
:. 2=2 is a root	Thes on or	
	A THE REAL PROPERTY OF THE PRO	
$\rho(a) = 0$	y = b sin 8 cos \$	
	a ass	
$P(2) = (2)^{3} - (2)^{2} - (2)^{2} - 2$	4 = 6510 8 " OLCOS 8 COS 0	
	1 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Management of the Control of the Con
3 32 1-7= 7	CO So I have A	