Přednáška 1.

- Náhodná veličina
- Pravděpodobnosť
- Distribuční funkce
- Diskrétní náhodné veličiny
- Hustota pravděpodobnosti (spojité náhodné veličiny)
- Střední hodnota a rozptyl

Náhodná veličina

S každým **pokusem** nebo **hrou** je spojena množina všech možných výsledků. Označme symbolem Ω množinu všech možných, navzájem se vylučujících výsledků. Libovolný možný výsledek, označme $\omega \in \Omega$, nazveme elementární jev, Ω pak nazveme základní pravděpodobnostní prostor.

DEFINICE:

Náhodná veličina **X** je zobrazení $X: \Omega \to R$ takové, že pro každé $x \in R$ platí $X^{-1}\big((-\infty,x)\big) = \{\omega \in \Omega \mid X(\omega) \leq x\} = [X \leq x] \subset \Omega.$

Neboli: Náhodná veličina **X** je reálná funkce definovaná na množině všech elementárních jevů (=pokusů experimentu), která každému jevu přiřadí reálné číslo.

Množina čísel přiřazených elementárním jevům tvoří obor hodnot náhodné veličiny.

PŘÍKLAD: HOD 6 STĚNNOU KOSTKOU

- Pokus = hod kostkou, elementární jev $\omega \in \Omega = \{1, 2, 3, 4, 5, 6\}$. X je rovna hodnotě napsané na vrchní stěně kostky po dopadu. Obor náhodné veličiny je také $\{1, 2, 3, 4, 5, 6\}$.
- Pokus = hod 2 kostkami, pak $\omega \in \Omega = \{(i,j)|i=1,...6; j=1,...6; i\leq j\}$. X je rovna součtu padlých hodnot. Obor náhodné veličiny je $\{2,3,...,12\}$, jelikož např. X(1,1)=2.

pravděpodobnost

KLASICKÁ DEFINICE PRAVDĚPODOBNOSTI:

- Uvažujme náhodný pokus, který může vykázat konečný počet "n" vzájemně se vylučujících výsledků (např. tři hody kostkou)
- Předpokládáme, že všechny výsledky jsou stejně pravděpodobné (symetrie, homogenita)
- Jestliže "m" z těchto výsledků má za následek realizaci jevu "A" (např. padnou dvě šestky) a zbylých "n-m" výsledků tuto realizaci vylučuje, potom pokládáme pravděpodobnost jevu "A" rovnu

$$P(A) = \frac{m}{n} = \frac{number\ of\ outcomes\ in\ A}{total\ number\ of\ outcomes}$$

GEOMETRICKÁ DEFINICE PRAVDĚPODOBNOSTI:

- Zobecnění klasické definice pro nekonečně (nespočetně) mnoho možností
- Předpokládáme, že výsledek je stejně pravděpodobný v každém bodě objektu
- Pravděpodobnost jevu "B", neboli pravděpodobnost, že náhodná veličina má hodnotu v množině "B", vypočteme jako podíl velikosti (obsah, objem) množiny S_B všech bodů příznivých jevu "B" a velikosti celého objektu S

$$P(B) = \frac{S_B}{S}$$

Distribuční funkce

DEFINICE:

Nechť Xje náhodná veličina. Funkci F_X : $R \to \langle 0,1 \rangle$, definovanou pro všechna $x \in R$ vztahem $F_X(x) = P[X \le x]$, nazýváme distribuční funkcí náhodné veličiny X.

VLASTNOSTI:

- Obor hodnot distribuční funkce je (0,1).
- Distribuční funkce je neklesající.

Diskrétní náhodné veličiny

(příklady rozdělení pravděpodobnosti)

Veličina X má diskrétní rozdělení, jestliže její obor hodnot H má spočetně mnoho prvků, tj. $\sum_{x_k \in H} P[X = x_k] = 1$.

Funkci P[X = x] nazveme pravděpodobnostní funkcí náhodné veličiny **X.**

ALTERNATIVNÍ (BERNOULLIHO) ROZDĚLENÍ:

Veličina Xmá alternativní rozdělení s parametrem $p \in (0,1)$, jestliže platí P[X=1]=p, P[X=0]=1-p.

- Toto rozdělení popisuje náhodné jevy mající 2 možné výsledky (hod mincí, sudé vs liché číslo na kostce, pravda vs lež, hodnota bitu...), kde úspěch nastává s pravděpodobností p.
- \sim Zapisujeme, že náhodná veličina má Bernoulliho rozdělení jako $X \sim Be(p)$.

BINOMICKÉ ROZDĚLENÍ:

Uvažujme náhodnou veličinu X vyjadřující počet výskytů jevu A v n nezávislých pokusech. Jestliže pravděpodobnost jevu A je pokaždé rovna p, pravděpodobnost, že jev A nastane z n pokusů právě k-krát je $P[X=k]=\binom{n}{k}p^k(1-p)^{n-k}$.

Řekneme, že náhodná veličina X má binomické rozdělení (značíme $X \sim Bi(n,p)$) s parametry $n \in N$ a $p \in (0,1)$, jestliže $P[X=k]=\binom{n}{k}p^k(1-p)^{n-k}$.

Příklad: 4 hody mincí

Diskrétní náhodné veličiny

(příklady rozdělení pravděpodobnosti)

PASCALOVO/GEOMETRICKÉ ROZDĚLENÍ:

Veličina X má Pascalovo rozdělení s parametrem $p \in (0,1)$, jestliže platí $P[X=k] = p(1-p)^{k-1}$, pro k=1,2,...

Zapisujeme, že náhodná veličina má Pascalovo rozdělení jako $X{\sim}Pa(p)$.

Náhodná veličina $X \sim Pa(p)$ značí počet pokusů než nastane jev **A**, pokud jev nastává s pravděpodobností **p**.

POISSONOVO ROZDĚLENÍ:

Veličina X má Poissonovo rozdělení s parametrem $\lambda > 0$, jestliže $P[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}$, pro k = 0, 1, 2, ...

Značíme $X \sim Po(\lambda)$.

Poissonovo rozdělení se využívá pro určení počtu událostí v časovém intervalu. Parametr λ je průměrný počet událostí za tento časový interval.

Pokud $X \sim Bi(n, p)$, pak pro velká **n** bude platit $n \cdot p = \lambda$, tedy Poissonovo rozdělení aproximuje Binomické.

Absolutně spojité náhodné veličiny

(definice Hustoty pravděpodobnosti)

DEFINICE:

Náhodná veličina **X** má absolutně spojité rozdělení (ASR), jestliže existuje nezáporná reálná funkce $f_X(x)$ taková, že pro každé $x \in R$ platí $F_X(x) = \int_{-\infty}^x f_X(t) dt$.

Funkci $f_X(x)$ nazýváme **hustotou pravděpodobnosti** náhodné veličiny X.

ZÁKLADNÍ VLASTNOSTI:

Pro X mající ASR platí:

•
$$f_X(x) = \frac{dF}{dx}(x)$$
,

•
$$P[X \in A] = \int_A f_X(x) dx$$
,

$$\bullet \quad P[X=a]=0.$$

KAŽDÁ HUSTOTA PRAVDĚPODOBNOSTI DÁLE SPLŇUJE:

•
$$f_X(x) \geq 0$$
,

$$\bullet \quad \int_{-\infty}^{\infty} f_X(x) \ dx = 1 \ .$$

Příklady HUSTOT pro spojité veličiny

GAUSSOVO (NORMÁLNÍ) ROZDĚLENÍ:

Řekneme, že náhodná veličina X má normální (Gaussovo) rozdělení s parametry $\mu \in R$, $\sigma^2 > 0$, jestliže její hustota pravděpodobnosti má tvar $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

Značíme $X \sim N(\mu, \sigma^2)$. Distribuční funkci nelze vyjádřit analyticky pomocí základních funkcí. $F_X(x) = erf(x)$; viz speciální funkce v Matlabu.

UNIFORMNÍ (ROVNOMĚRNÉ) ROZDĚLENÍ:

Řekneme, že náhodná veličina X má rovnoměrné rozdělení s parametry a < b, $a,b \in R$, jestliže její hustota má tvar $f_X(x) = \frac{1}{b-a}$, pro $x \in (a,b)$, a $f_X(x) = 0$ jinak.

Značíme $X \sim U(a, b)$.

Příklady HUSTOT pro spojité veličiny

ZOBECNĚNÉ GAUSSOVO ROZDĚLENÍ (GGD):

Řekneme, že náhodná veličina X má zobecněné normální (Gaussovo) rozdělení s parametry $\mu \in R$,

$$lpha,eta>0$$
 , jestliže její hustota pravděpodobnosti má tvar $f_X(x)=rac{eta}{2lpha\Gammaig(^1/etaig)}\,e^{-ig(rac{|x-\mu|}{lpha}ig)^eta}$.

Značíme $X \sim GGD(\mu, \alpha, \beta)$.

Střední hodnota a rozptyl

DISKRÉTNÍ NÁHODNÁ VELIČINA

ABSOLUTNĚ SPOJITÁ NÁHODNÁ VELIČINA

STŘEDNÍ HODNOTA

$$E[X] = \sum_{i} x_i P[X = x_i]$$

$$E[X] = \int_{-\infty}^{\infty} x \, p(x) \, dx$$

ROZPTYL

$$V[X] = \sum_{i} (x_i - E[X])^2 P[X = x_i]$$

$$V[X] = \int_{-\infty}^{\infty} (x - E[X])^2 p(x) dx$$

Pro střední hodnoty diskrétních i ASR náhodných veličin X,Y a libovolné konstanty $a,c\in R$ platí: E[a+X+cY]=a+E[X]+cE[Y].

Sdružená hustota pravděpodobnosti

DEFINICE:

Pravděpodobnost, že nastane jev "**A"**, a zároveň jev "**B"**, nazveme **sdružená pravděpodobnost** jevů A a B. Značíme $P(A \cap B)$.

Sdruženou hustotu pravděpodobnosti náhodných veličin \mathbf{X} a \mathbf{Y} pak značíme $\mathbf{p}(\mathbf{x},\mathbf{y})$.

DEFINICE:

Nechť jsou dány jevy **A**, **B** takové, že P(B) > 0. **Podmíněnou pravděpodobností** jevu **A** za podmínky, že nastal jev **B**, nazveme číslo

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Poznámka: Stejný vzorec platí i pro hustoty pravděpodobnosti.

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

Statistická závislost a nezávislost

DEFINICE:

Řekneme, že náhodné veličiny X a Y jsou statisticky **nezávislé**, jestliže platí p(x,y) = p(x)p(y).

Hustoty p(x), p(y) nazýváme **marginální** hustoty pravděpodobnosti. Pro marginální hustoty platí

$$p(x) = \int_{-\infty}^{\infty} p(x, y) dy$$

Nezávislé veličiny, které mají stejnou hustotu pravděpodobnosti (=stejné rozdělení / distribuční funkci) nazveme nezávislé stejně rozdělené a značíme i.i.d. (independent identically distributed).

PŘÍKLAD:

- Uvažujme hod kostkou a označme si 2 jevy A padne sudé číslo a B padne číslo nepřevyšující 2. Jsou jevy A a B nezávislé?
- Upravme si drobně zadání, a uvažujme jev A padne sudé číslo a B padne číslo nepřevyšující 3. Jsou jevy A a B i nyní nezávislé?

Cvičení 1

- 1. Dokažte, že rozdělení diskrétních náhodných veličin v přednášce splňují vlastnosti pravděpodobnostních rozložení. Bonus: Dokažte to i pro spojitá pravděpodobnostní rozložení.
- 2. Dokažte, že μ je střední hodnota Normálního rozdělení.
- Matlab: Vykreslete křivku hustoty pravděpodobnosti náhodné veličiny $X \sim N(1,1)$ a vygenerujte N = 1000 i.i.d. samplů a zobrazte jejich histogram. Stejně tak pro $Y \sim U(0,3)$.
- 4. Babička mi v průměru posílá 5 SMS zpráv za rok. Jaká je pravděpodobnost, že mi jich příští rok pošle 6? A jaká, že maximálně 4? Ukažte na tomto příkladu, že Poissonovo rozdělení aproximuje Binomické pro velká n (n=365).
- Matlab: Trefujte klávesu vždy na sudé vteřině a měřte odchylku, opakujte např. 50 krát. Pak vykreslete histogram odchylek a srovnejte s Normálním rozdělením.