Introduction to Pexception

Mr Frank Rosenblatt 19th Century

· Building block of ANN

Supervised Learning.

AND OR Gales.

x_{t}	X 2.	У
0	\bigcirc	0 ~
1	O	1
O		1 5
L	1	

X X2	7
0 0	0
0	0 5
L 0 1 1	1 ~
	1

Can une have a linear decison surface Y $\begin{pmatrix} 1 & 2 \end{pmatrix} \leftarrow \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ Linear 3,6) Non-linearly y = 2a + 0

Single Percepiton Not ilp Junction (3) Building Blocks Transfer/ Activation weightr 21 W1 + 32 W2 +b weighted \$ (21 W1 + 22 Summation biaszo orguised? Cohy I Boing non-lire autij

$$\phi(P) = \begin{cases} 0 & 2 \times 4b \leq 0 \\ 1 & 2 \times 6b > 0 \end{cases}$$

Perceptron for OR Gales

$$\begin{array}{c} \omega_1 = 1 \\ \lambda_1 & \longrightarrow \\ \lambda_2 & \longrightarrow \\ \lambda_3 & \longrightarrow \\ b = -0.5 \end{array}$$

$$\frac{1^{81} \text{Case}}{7_1 = 0}$$

$$\frac{1^{84} \text{Case}}{\eta_1 = 0} \qquad \frac{1}{2} = 0$$

$$\frac{1}{2} \omega_1 + 2\omega_2 + 0$$

$$\frac{1}{2} \omega_1 + 2\omega_2 + 0$$

$$= 0.1 + 0.1 + (-0.5)$$

$$= -0.5$$

$$\phi(P) = \phi(-0.5) = 0 / \hat{y}$$

$$\frac{2^{\text{md}} \text{ Case}}{2_1 = 0} \quad \text{in } z = 1$$

$$\phi(o,r) = L(g)$$

$$P = x_1 \omega_1 + x_2 \omega_2 + b$$

$$= 0.1 + 1.1 + (0.5)$$

$$= 0.5$$

$$\begin{array}{c} \lambda_{1} & \omega_{1} = 1 \\ \lambda_{2} & \omega_{3} = 1 \\ \lambda_{4} & \omega_{5} = 1.5 \\ \lambda_{5} & \omega_{7} = -1.5 \end{array}$$

$$X_1 = 1$$
 $X_2 = 0$

$$= Tx1 + 0x + (-1.2)$$

$$\phi(P) = \phi(-0.5)$$

$$= 0 \hat{y}$$

$$x_i = 1$$
 $x_2 = 1$

$$P = 21 M + 12 M + (-1.5)$$

1 Single neuron enough?

Single Layer Single Neuron Single Layer Multiple IVeuron.

Holden Layer =1

Layer

Fully Connected NW

I. If we start from any outsitary weights than is able to four possible that n/w is able to fune the weight?

Yes Learning

2. Weight that are fixed but is this the only representation or there could be other representation which result the same?