Лабораторная работа №5

Модель хищник-жертва

Карымшаков Артур Алишерович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	12

Список таблиц

Список иллюстраций

3.1	Код программы для решения задачи	8
3.2	График зависимости численности хищников от численности жертв	9
3.3	Графики изменения численности хищников и численности жертв с	
	течением времени	10
3.4	Стационарное состояние системы	11

1 Цель работы

Ознакомление с простейшей моделью взаимодействия двух видов типа «хищник — жертва» - моделью Лотки-Вольтерры.

2 Задание

- 1. Построить график зависимости численности хищников от численности жертв.
- 2. Построить графики изменения численности хищников и численности жертв.
- 3. Найти стационарное состояние системы.

3 Выполнение лабораторной работы

Уравнение модели "хищник-жертва" имеет следующий вид:

$$\begin{cases} \frac{dx}{dt} = -0.26x(t) + 0.027x(t)y(t) \\ \frac{dy}{dt} = 0.28y(t) - 0.031x(t)y(t) \end{cases}$$

Начальные условия: $x_0 = 6$ и $y_0 = 12$. 1. Ниже приведен код программы: (рис 1. @fig:001)

```
import numpy as np
from scipy. integrate import odeint
import matplotlib.pyplot as plt
import math
a = 0.26
b = 0.27
c = 0.28
d = 0.031
y0 = [12, 6]
def syst2(y, t):
    y1, y2 = y
    return [-a*y1 + b*y1*y2, c*y2 - d*y1*y2]
t = np.arange( 0, 400, 0.1)
y = odeint(syst2, y0, t)
y11 = y[:,0]
y21 = y[:,1]
fig = plt.figure(facecolor='white')
plt.plot(t, y11, linewidth=2)
plt.ylabel("x")
plt.xlabel("t")
plt.grid(True)
plt.show()
fig.savefig('01.png', dpi = 600)
fig2 = plt.figure(facecolor='white')
plt.plot(t, y21, linewidth=2)
plt.ylabel("y")
plt.xlabel("t")
plt.grid(True)
plt.show()
fig2.savefig('02.png', dpi = 600)
fig3 = plt.figure(facecolor='white')
plt.plot(y11, y21, linewidth=2)
plt.ylabel("y")
plt.xlabel("x")
plt.grid(True)
plt.show()
fig3.savefig('03.png', dpi = 600)
print("XcT = ", a/b)
print("YcT = ", c/d)
```

Рис. 3.1: Код программы для решения задачи

График зависимости численности популяции хищников от численности популяции жертв. (рис 2. @fig:001)

Рис. 3.2: График зависимости численности хищников от численности жертв

2. Графики изменения численности популяции хищников и численности популяции жертв с течением времени (рис 3. @fig:001)

Рис. 3.3: Графики изменения численности хищников и численности жертв с течением времени

3. Стационарное состоянии системы: (рис 4. @fig:001)

XcT = 0.9629629629629

YcT = 9.03225806451613

Рис. 3.4: Стационарное состояние системы

4 Выводы

Ознакомился с простейшей моделью взаимодействия двух видов типа «хищник — жертва», построив для нее графики и найдя стационарное состояние системы.