EECS1720

Worksheet 2 – Class Basics + Aggregation & Composition

- 1) What is the HAS-A relationship between two objects?
 - a) a relationship where one object "is associated" another object B.
 - b) a relationship between abstractions wherein one class is a subclass of another class C.
 - c) a relationship between the type of an object and an instance of the type D. d) something else

2) What is aggregation?

- a) a relationship where one object A "is associated" with another object B, however B may exist independently from the object A
- b) a relationship where an object A is a specialized "version" of another object B, and assumes all attributes and fields from the other object B
- c) a relationship where one object A "belongs to" another object B, and A may only exist as a part of B
- d) something else
- 3) Why is composition sometimes necessary?
 - a) To ensure that an object remains fully accessible to a client and may be modified whenever, and however the client sees fit
 - b) To avoid unwanted sharing of memory between different reference variables that a client may have access to in an application
 - c) To ensure that an object does NOT have ownership over another object
 - d) None of the above
- 4) A utility class is a class that:
 - a) Has only methods defined
 - b) Has only fields defined
 - c) Has only static features (methods/fields)
 - d) Has only non-static features (methods/fields)

5) The diagram below describes several relationships between classes, which of the following best describes these relationships?

- a) A is an aggregation of B, and C is a composition of B
- b) A is a composition of B, and C is an aggregation of B
- c) B is an aggregation of A and an aggregation of C
- d) B is an aggregation of A and a composition of C
- e) C is an aggregation of B, and B is a composition of A
- f) C is a composition of B, and B is an aggregation of A

6) A custom constructor

- a) Is a constructor that accepts as its argument, another object of the same class that is currently being constructed
- b) Is a constructor that accepts any arbitrary (non-empty) list of arguments
- c) Is a constructor that has no arguments
- d) None of the above

7) If a field or method has a <u>private</u> access modifier, then:

- a) The field/method is accessible within the constructors of the class in which it is defined, but nowhere else
- b) The field/method is not directly accessible to a client, however it is accessible to any method within the class in which it is defined
- c) The field/method is not directly accessible to a client, however it is accessible to any method or constructor within the class in which it is defined
- d) The field/method is accessible to any constructor or method within the class in which it is defined, and externally to any client using the class

- 8) An overloaded method is a method that:
 - a) has the same name, but different signature as another method in the same class
 - b) has the same signature, but different name as another method in the same class
 - c) returns more than one value
 - d) performs the same function as a constructor within the class
- 9) The term "encapsulation" refers to:
 - a) The fact that an object can be instantiated from a class
 - b) The bundling of both data and methods together into a single unit (instantiated as an object, where the methods are configured to allow/ not allow access to fields)
 - c) The concept of associating more than one class together into a single object
 - d) Giving a client direct access to the modify the fields of an object without using methods defined for that class

Implementing Classes

10) Choosing fields:

For each of the following kinds of values, choose appropriate fields to represent the value (imagine you are trying to implement a class that represents the value). Try to come up with two alternate sets of fields that could represent each kind of value.

a)	weight	•	
b)) temperature		

c) time of the day

d) day of the year
11) Default constructor:a) Suppose that a Temperature is represented as a floating point value in degrees Celcius. Implement a default (no argument) constructor.
b) Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a default (no argument) constructor.
 12) Custom constructor: a) Suppose that a Temperature is represented as a floating point value in degrees Celcius. Implement a custom constructor that initializes the temperature given a value in degrees

C	elcius
b)	Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a custom constructor that initializes a time given an hour and a minute.
13) C	opy constructor:
a)	Suppose that a Temperature is represented as a floating point value in degrees Celcius. Implement a copy constructor that initializes the temperature given another Temperature reference.

	Suppose that a TimeOfDay is represented as an integer hour and an integer minute. plement a copy constructor that initializes a time given another TimeOfDay reference.			
14) Implement a setter (mutator) method:				
c)	Suppose that a Temperature is represented as a floating point value in degrees Celcius. Implement a set method that sets the value of a temperature given a value in degrees Celcius.			

d)	Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a set method that sets the value of a time given an hour and a minute.