UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO DEPARTAMENTO DE INFORMÁTICA COLEGIADO DE CIÊNCIA DA COMPUTAÇÃO

ESTUDO DIRIGIDO EM INTELIGÊNCIA ARTIFICIAL SISTEMAS BASEADOS EM CONHECIMENTO

ATHUS ASSUNÇÃO CAVALINI

VITÓRIA, ES 2022

1. INTRODUÇÃO

Sistemas Baseados em Conhecimento (SBC), também conhecidos como Knowledge-Based Systems ou Expert Systems, são sistemas que simulam o raciocínio humano para resolver problemas, baseando-se em um conjunto de regras que representam os conhecimentos de um especialista sobre o assunto.

2. OBJETIVO

O objetivo deste estudo dirigido em *Sistemas Baseados em Conhecimento* é desenvolver um software que automatize o diagnóstico inicial de pessoas com sintomas relacionados à Covid-19, permitindo dar celeridade à triagem em hospitais e centros de pronto atendimento.

A proposta inicial era realizar o pré-diagnóstico de um conjunto de doenças típicas de temporada, como gripe, dengue, zika, insolação, entre outras. No entanto, observou-se a larga variação de sintomas entre elas, além dos fatores demográficos flexíveis, como os surtos locais e o clima, o que tornaria o desenvolvimento do sistema menos assertivo e pouco interessante para esta finalidade de estudo.

Dessa forma, optou-se por trabalhar apenas com doenças respiratórias e que compartilham sintomas semelhantes, sendo elas: Covid-19, Influenza, Resfriado, Rinosinusite, Laringite, Pneumonia, Tuberculose, Asma, Bronquite, Bronquiolite, Bronquiectasia, Fibrose Cística, Doença Pulmonar Obstrutiva Crônica, Câncer de Pulmão e Doenças Pulmonares Ocupacionais.

2. METODOLOGIA

2.1 CONSTRUÇÃO DA MATRIZ DE SINTOMAS

O levantamento dos sintomas foi realizado a partir dos sites do Hospital Israelita Albert Einstein¹ (Guia de Doenças e Sintomas e Blog), Hospital Oswaldo Cruz² e da Organização Mundial de Saúde³.

Posteriormente, iniciou-se a construção da matriz de doenças/sintomas considerando-se os mais comuns e descartando-se os mais raros ou específicos.

¹ Disponível em: https://www.einstein.br/guia-doencas-sintomas/

² Disponível em: https://www.hospitaloswaldocruz.org.br/

³ Disponível em: https://www.who.int/health-topics/

Além disso, por motivos de responsabilidade, destaca-se que a Covid-19 possui larga variação de sintomas, em especial por conta do surgimento de novas cepas e variantes. Entende-se, portanto, que quaisquer sintomas apresentados dentro do subconjunto deste trabalho devem ser motivo de testagem.

	Covid	Influenza	Resfriado	Risinusite	Laringite	Pneumonia	Tuberculose	Asma	Bronquite	Bronquiolite	Bronquiectasia	FC	DPOC	Câncer de pulm.	Ocupacionais
Febre	х	х	х		х		х					х			
Tosse Seca	х	х			х			х		х					х
Tosse Produtiva	х	х		х	х	х	х	х				х	х		
Tosse com Sangue	х										х			х	
Chiado			х			х		х	х	х	х	х	х	х	х
Respiração Rápida		х						х				х			
Dor no Peito		х				х	х		х		х			х	х
Batimentos Acelerados		х						х							
Fumante				х		х				х			х	х	х
Perda de Paladar/Olfato	х														

Figura 1: Matriz de Sintomas.

2.2 CONSTRUÇÃO DA ÁRVORE DE DECISÃO

Para realizar a conversão dos sintomas em um conjunto de regras, pode-se utilizar a matriz como base para criar uma árvore de decisão.

A construção deve levar em conta a frequência de cada sintoma, isto é, quais são os mais comuns e mais raros para cada tipo de doença, já que não estamos lidando com um sistema binário, mas com certa subjetividade. Isso significa que a ordem de tomada de decisões da árvore altera a importância dada para cada fato (sintoma).

Além disso, a árvore foi dividida em 6 subárvores que funcionam como "classes" para as doenças, baseadas na estrutura. Isso permite uma simplificação das regras ao escrevê-las.

Dessa forma, a árvore gerada foi a seguinte:

Figura 2: Árvore de Decisão

O resultado final foi revisado por uma estudante de medicina da Universidade Federal do Rio de Janeiro, com a ressalva de que é baseada numa visão generalizada e simplificada dos sintomas e das doenças citadas, não substituindo uma consulta médica.

Como veremos posteriormente, a árvore não representa fielmente o resultado final, portanto o código também foi testado pela estudante.

2.3 DESENVOLVIMENTO DO SOFTWARE

O software foi desenvolvido em Python com auxílio da biblioteca Experta, que possui uma interface dedicada ao desenvolvimento de Sistemas Baseados em Conhecimento, permitindo declarar Fatos e Regras do domínio e depois executar a *engine* para obtenção do resultado.

```
engine = IdentificaDoenca()
engine.reset() # Preapara a engine para execução.
engine.run() # Executa!
```

Além disso, foi necessário criar funções auxiliares para realização das perguntas na saída padrão, sendo uma para perguntas de "Sim" ou "Não" e uma para perguntas com respostas de múltipla escolha.

Depois, foram declaradas as classes **Sintoma**, **Doenca** e **Subarvore** (esta última a fim de simplificar a produção das regras):

```
class Sintoma(Fact):
   pass

class Subarvore(Fact):
   pass

class Doenca(Fact):
   pass
```

Um exemplo de regra que associa à subárvore 1 o usuário que não apresentar chiado, mas apresentar tosse seca:

```
@Rule(Sintoma(chiado=False), Sintoma(tosse=0))
def subarvore_1(self):
    self.declare(Subarvore(1))
```

As perguntas sobre os sintomas também são guiadas por regras. Isso permite que elas sejam feitas apenas se necessário, por exemplo: o sistema só pergunta se os batimentos do usuário estão acelerados caso a doença ainda não tenha sido definida, o algoritmo esteja na subárvore 4 e o paciente não apresente febre.

```
@Rule(AND (NOT(Doenca(W())), Subarvore(4), Sintoma(febre=False)))
def batimentos_acelerados(self):
    self.declare(Sintoma(
        batimentos_acelerados=pergunta_sn('Batimentos cardíacos acelerados?'))
)
```

A utilização do software, por sua vez, se dá pela linha de comando, bastando executar **python3 codigo.py**. O sistema se encarrega da ordem com que são feitas as perguntas, por isso os caminhos podem não ser aqueles imaginados a partir da árvore inicialmente produzida. No entanto, é possível controlar a execução de maneira mais fina utilizando um maior número de regras.

Além disso, é importante observar que as regras também definem sintomas que podem ou não ser apresentados em cada doença. Um exemplo é na subárvore 1: o

sistema não possui uma restrição para que a pergunta sobre a perda de olfato seja feita apenas caso não apresente tosse com sangue. Da mesma forma, a apresentação de apenas um dos dois sintomas já é o suficiente para o diagnóstico de Covid-19, independente do outro.

Dessa forma, entendemos que, assim como a árvore permite uma melhor definição dos sintomas em comparação à matriz de sintomas, o conjunto de regras apresenta ainda mais precisão nessa especificação, já que é possível controlar os sintomas mais comuns dos menos comuns (isto é, que nem sempre se manifestam).

3. RESULTADOS

Os testes demonstraram que o sistema funciona corretamente, considerando o contexto e as simplificações realizadas, conforme citado anteriormente.

Isso significa que a associação dos sintomas ao diagnóstico está de acordo com o esperado e pré-determinado pela árvore construída.

Vale ressaltar que o sistema possui finalidades acadêmicas e não leva em consideração a variação de sintomas desenvolvida por cada indivíduo. Além disso, diversas condições respiratórias possuem sintomas semelhantes e devem ser avaliadas por um profissional. Dessa forma, é importante frisar que este trabalho apresenta resultados teóricos e generalizados, sendo sempre necessário procurar consulta médica.