Câu 1. Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số $y = \frac{-3x+1}{x+2}$?

A.
$$x = -3$$
.

B.
$$y = -3$$
.

C.
$$x = -2$$
.

D.
$$y = \frac{1}{2}$$
.

Câu 2. Bảng biến thiên ở hình bên là của một trong bốn hàm số được liệt kê dưới đây.

x	$-\infty$ –	$+\infty$
y'	+	+
y	$+\infty$	$-\infty$ 2

Hãy tìm hàm số đó.

Iãy tìm hàm số đó.
A.
$$y = \frac{-x+1}{x-2}$$
.
B. $y = \frac{2x-3}{x+1}$.
C. $y = \frac{-2x-3}{x+1}$.
D. $y = \frac{2x+3}{x-1}$.

B.
$$y = \frac{2x - 3}{x + 1}$$
.

C.
$$y = \frac{-2x - 3}{x + 1}$$

D.
$$y = \frac{2x+3}{x-1}$$
.

Câu 3. Cho hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 12x - 1$. Mệnh đề nào sau đây là đúng?

A. Hàm số đồng biến trên khoảng $(-\infty; 4)$. **B.** Hàm số đồng biến trên khoảng $(4; +\infty)$.

C. Hàm số nghịch biến trên khoảng $(-3; +\infty)$. D. Hàm số đồng biến trên khoảng (-3; 4). В

Câu 4. Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?

A.
$$y = x^4 - x^2 + 3$$
.

A.
$$y = x^4 - x^2 + 3$$
. **B.** $y = -x^4 + x^2 + 3$. **C.** $y = x^4 + x^2 + 3$.

C.
$$y = x^4 + x^2 + 3$$
.

$$\mathbf{D.} \ y = -x^4 - x^2 + 3.$$

B Câu 5. Tìm giá trị cực tiểu của hàm số $y = \frac{x^2 + 3}{x + 1}$. C. 1.

D.
$$-3$$
.

Câu 6. Cho hàm số $y = x^4 - 2mx^2 + 1 - m$. Tìm tất cả các giá trị thực của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O làm trực tâm.

A.
$$m = 0$$
.

В

B.
$$m = 1$$
.

C.
$$m = -1$$
.

D.
$$m = 2$$
.

Câu 7. Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số $y = \frac{2x+1+\sqrt{x^2+1}}{x-3}$.

A.
$$y = 3$$
. B

B.
$$y = 3$$
 và $y = 1$. **C.** $y = 1$.

C.
$$y = 1$$
.

D.
$$y = 2$$
.

Câu 8. Biết đường thẳng y = 3x + 4 cắt đồ thị hàm số $y = \frac{4x + 2}{x - 1}$ tại hai điểm phân biệt có tung độ là y_1 và y_2 . Tính $y_1 + y_2$.

A.
$$y_1 + y_2 = 1$$
.

A.
$$y_1 + y_2 = 1$$
. **B.** $y_1 + y_2 = 11$. **C.** $y_1 + y_2 = 9$.

C.
$$y_1 + y_2 = 9$$
.

D.
$$y_1 + y_2 = 10$$
.

Câu 9. Cho hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{1\}$, liên tục trên từng khoảng xác định, và có bảng biến thiên như dưới đây.

x	$-\infty$ –	-1	0		$+\infty$
y'	+	+	0	_	
y	+∞	$-\infty$	-1		· -&

Tìm tập hợp tất cả các giá trị thực của m để phương trình f(x) = m có nghiệm thực duy nhất.

A.
$$[0; +\infty) \cup \{-1\}.$$

B.
$$(0; +\infty) \cup \{-1\}$$
.

C.
$$(0; +\infty)$$
.

D.
$$[0; +\infty)$$
.

Câu 10. Cho hàm số $y = x^3 - 6x^2 + 9x + m$ (m là tham số thực) có đồ thị (C). Giả sử (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ x_1, x_2, x_3 (với $x_1 < x_2 < x_3$). Khẳng định nào sau đây đúng?

A.
$$1 < x_1 < x_2 < 3 < x_3 < 4$$
.

B.
$$0 < x_1 < 1 < x_2 < 3 < x_3 < 4$$
.

C.
$$x_1 < 0 < 1 < x_2 < 3 < x_3 < 4$$
.

D.
$$1 < x_1 < 3 < x_2 < 4 < x_3$$
.

Lời giải. Chọn đáp án (B)

Cách 1: Thay m bằng một giá trị âm bất kì và casio.

Cách 2: Dễ có m < 0 B

Câu 11.

Đồ thị hàm số $y=ax^4+bx^2+c$ cắt trực hoành tại bốn điểm phân biệt A,B,C,D như hình vẽ bên. Biết rằng AB=BC=CD, mệnh đề nào sau đây đúng?

A.
$$a > 0, b > 0, c > 0, 9b^2 = 100ac$$
.

B.
$$a > 0, b < 0, c > 0, 9b^2 = 100ac$$
.

C.
$$a > 0, b > 0, c > 0, 100b^2 = 9ac.$$

D.
$$a > 0, b < 0, c > 0, 100b^2 = 9ac.$$

Lời giải. Chọn đáp án (B)

Từ hình dạng đồ thị, ta suy ra a > 0, b < 0, c > 0 (nhánh vô cực, 3 cực trị, cắt trực tung tại điểm có tung độ dương).

Phương trình $ax^4 = bx^2 + c = 0$ có bốn nghiệm lập thành cấp số cộng, tương đương phương trình $at^2 + b^t + c$ có hai nghiệm $0 < t_1 < t_2$, với $\sqrt{t_2} - \sqrt{t_1} = \sqrt{t_1} - (-\sqrt{t_1}) \Rightarrow t_2 = 9t_1$.

Lại có
$$t_1 + t_2 = -\frac{b}{a} \Rightarrow t_1 = -\frac{b}{10a}$$
 và $t_2 = -\frac{9b}{10a}$.

Hơn nữa
$$t_1.t_2 = \frac{c}{a} \Rightarrow \frac{9b^2}{100a^2} = \frac{c}{a} \Rightarrow 9n^2 = 100ac.$$

Chú ý: Cũng có thể lấy $t_1 = 1, t_2 = 9$ ta được phương trình $x^4 - 10x^2 + 9 = 0$. B