Please check the examination deta	ails below before ent	ering your candidate information		
Candidate surname		Other names		
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number		
Time 1 hour 30 minutes	Paper reference	WME01/01		
Mathematics				
International Advance Mechanics M1	d Subsidiar	y/Advanced Level		
You must have: Mathematical Formulae and Stat	tistical Tables (Yo	ellow), calculator		

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$, and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Good luck with your examination.

Turn over ▶

1.	A particle P has mass $3m$ and a particle Q has mass $5m$. The particles are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide directly.
	Immediately before the collision the speed of P is ku , where k is a constant, and the speed of Q is $2u$.
	Immediately after the collision the speed of P is u and the speed of Q is $3u$.
	The direction of motion of Q is reversed by the collision.
	(a) Find, in terms of m and u, the magnitude of the impulse exerted on Q by P in the collision.(2)
	(-)
	(b) Find the two possible values of k . (5)

Question 1 continued		
	Question 1 continued	
		(Total 7 marks)

2. A car moves along a straight horizontal road with constant acceleration $a{\rm m}{\rm s}^{-2}$ where $a>0$
The car is modelled as a particle.
At time $t = 0$, the car passes point A and is moving with speed $u \text{m s}^{-1}$
In the first three seconds after passing A the car travels $20 \mathrm{m}$.
In the fourth second after passing A the car travels $10 \mathrm{m}$.
The speed of the car as it passes point B is $20 \mathrm{ms^{-1}}$
Find the time taken for the car to travel from A to B .
(8)

XX	XXX
\times	$\times\!\!\times$
\approx	\approx
\times	$\times\!\!\times$
\otimes	$\times\!\!\times$
	$\otimes \otimes$
\otimes	$\times\!\!\times\!\!\times$
\otimes	\Longrightarrow
$\times\!\!\!\times$	$\times\!\!\times$
\times	$\times\!\!\!\times$
\times	3
×	94
\otimes	
×	
\otimes	
\times	S
	**
₩i	
×	\bowtie
	$\times\!\!\times\!\!\times$
XX:	
	$\times\!\!\times\!\!\times$
\otimes	P (
\bowtie	
×	7
×	
×	
\times	$\times\!\!\times\!\!\times$
\bowtie	DO NOT WRITE IN THIS AREA
\otimes	\otimes
\otimes	
\times	
881	
$\otimes a$	$\overline{\sim}$
\bowtie	
\otimes	\Longrightarrow
\times	$\times\!\!\times$
88	$\times\!\!\times$
\times	$\times\!\!\times$
\otimes	$\times\!\!\times\!\!\times$
$\times\!\!\times$	$\otimes \!\!\! >$
\times	$\times\!\!\times\!\!\times$
\times	$\times\!\!\times\!\!\times$
\otimes	\bowtie
\otimes	$\times\!\!\times\!\!\times$
\approx	\approx
\times	$\times\!\!\times$
\times	**
$\otimes \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\times\!\!\times$
\bowtie	$\times\!\!\times\!\!\times$
\propto	
\sim	
\otimes	
\otimes	
	*
	# X
	SAR
	SAKE
	TIS ARE
	HTIS ARE
	THIS ARE
	NATES ARE
	NATE OF THE
	EINTHIS ARE
	TENNIHIS ARE
	STEIN THIS ARE
	ARTE IN THIS ARE
	WAR EN THIS ARE
	WEINING
	T WRITE IN THIS AREA
	ON WARTEN THIS AKE
	NOT WRITEIN THIS ARE
	NOT WELLEIN THIS ARE
	0
	0000
	DO NOT WRITEIN THIS ARE
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	0000
	DON OC
	A
	A
	EA DO NO
	EA DO NO
	AREA DO NO
	AREA DO NO
	AREA DO NO
	AREA DO NO
	AREA DO NO
	THIS AREA DO NOT
	THIS AREA DO NOT
	INTRISAREA
	EIN THIS AREA
	WRITE IN THIS AREA
	DWRITE IN THIS AREA
	WRITE IN THIS AREA

Question 2 continued	blank

estion 2 continued		

Question 2 continued	blank
	Q2
(Total 8 marks)	

blank

3. [In this question \mathbf{i} and \mathbf{j} are perpendicular horizontal unit vectors.]

Three forces, \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 , are given by

$$\mathbf{F}_1 = (5\mathbf{i} + 2\mathbf{j}) \,\mathbf{N} \qquad \mathbf{F}_2 = (-3\mathbf{i} + \mathbf{j}) \,\mathbf{N} \qquad \mathbf{F}_3 = (a\mathbf{i} + b\mathbf{j}) \,\mathbf{N}$$

where a and b are constants.

The forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 act on a particle P of mass 4 kg.

Given that *P* rests in equilibrium on a smooth horizontal surface under the action of these three forces,

(a) find the size of the angle between the direction of \mathbf{F}_3 and the direction of $-\mathbf{j}$.

(4)

The force \mathbf{F}_3 is now removed and replaced by the force \mathbf{F}_4 given by $\mathbf{F}_4 = \lambda(\mathbf{i} + 3\mathbf{j})N$, where λ is a positive constant.

When the three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_4 act on P, the acceleration of P has magnitude 3.25 m s⁻²

(b) Find the value of λ .

(5)

$\times\!\!\times\!\!\times$
\ggg
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
WRITE IN THIS AREA
\times
× 6
\times
$\otimes \boxtimes $
\times
$\times 1 \times \times$
X 2.5
\times
DO NOT
$\otimes \otimes \otimes$
\times o
$\times\!\!\!+\!\!\!\times$
>>>>
$\times\!\!\times\!\!\times$
XXX
$\times\!\!\times\!\!\times$
>>>>
$\times\!\!\times\!\!\times$
>>>>
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
>>>>
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
$\times\!\!\times\!\!\times$
×448
\times 0 $^{\circ}$
AREA
× VX
\$ *
2
THIS
NTHIS
INTHIS
E IN THIS
TE IN THIS
NTEIN THIS
RITEINTHIS
WRITE IN THIS
WRITE IN THIS
T WRITE IN THIS
OT WRITE IN THIS
VOT WRITE IN THIS
NOT WRITE IN THIS
O NOT WRITE IN THIS.
SO NOT WRITE IN THIS
DO
DO
d DO
d DO
d DO
AREA DO
S AREA DO
S AREA DO
S AREA DO
S AREA DO
S AREA DO
S AREA DO
IN THIS AREA DO
E IN THIS AREA DO
TE IN THIS AREA DO
TE IN THIS AREA DO
TE IN THIS AREA DO
TE IN THIS AREA DO
WRITE IN THIS AREA DO
WRITE IN THIS AREA DO
WRITE IN THIS AREA DO
WRITE IN THIS AREA DO
TE IN THIS AREA DO

Overtion 2 continued	Leave blank
Question 3 continued	

Question 3 continued	Leave blank

4.

Figure 1

Figure 1 shows a large bucket used by a crane on a building site to move materials between the ground and the top of the building. The mass of the bucket is 15 kg.

The bucket is attached to a vertical cable with the bottom of the bucket horizontal. The cable is modelled as light and inextensible.

When the bucket is on the ground, a bag of cement of mass 25 kg is placed in the bucket.

The bucket with the bag of cement moves vertically upwards with constant acceleration $0.2\,\mathrm{m\,s^{-2}}$. Air resistance is modelled as being negligible.

(a) Find the tension in the cable.

(3)

At the top of the building, the bag of cement is removed. A box of tools of mass 12kg is now placed in the bucket.

Later on the bucket with the box of tools is moving vertically downwards with constant deceleration $0.1\,\mathrm{m\,s^{-2}}$. Air resistance is again modelled as being negligible.

(b)	Find the magnitude of the	ne normal reactio	n between the	bucket and	the box o	f tools.
						(3)

	blank
Question 4 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	_
	_
	_
	-
	_

	Leave blank
Question 4 continued	
	_
	_
	-
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

AREA	
X111/X	
X82X	
¥.	
** ** **	
Ē	
× 2 ×	
RITE	
<u> </u>	
XX SS XX -	
\times 6 \times	
Ž	
ONOT	1
×	1
	1
****	1
$\times\!\!\times\!\!\times\!\!\times$	
****	1
	1
DO	1

XXXXX	

\times	

XX	
IIS AREA	
×××	
2	
5	
$\otimes \times \otimes$	
NOT	
	1
	1
$\times\!\!\times\!\!\times\!\!\times\!\!\times$	1
\times	1
$\times\!\!\times\!\!\times\!\!\times\!\!\times$	1
	1
*****	1
	1
	1
	1
XXXXX	
A	
111	
111	
111	
SARE	
SARE	
HIS ARE	
HIS ARE	
HIS ARE	
IN THIS ARE	
IN THIS ARE	
FE IN THIS ARE	
TE IN THIS ARE	
TE IN THIS ARE	
TE IN THIS ARE	
WRITE IN THIS ARE	
T WRITE IN THIS ARE	
OT WRITE IN THIS ARE	
NOT WRITE IN THIS ARE	
NOT WRITE IN THIS ARE	
O NOT WRITE IN THIS ARE	
OO NOT WRITE IN THIS ARE	
O NOT WRITE IN THIS ARE	

Question 4 continued	blank
	Q4
(Total 6 marks)	
	T

5. [In this question i and j are perpendicular horizontal unit vectors.]

A particle *P* is moving with constant acceleration. At 2 pm, the velocity of *P* is $(3\mathbf{i} + 5\mathbf{j})$ km h⁻¹ and at 2.30 pm the velocity of *P* is $(\mathbf{i} + 7\mathbf{j})$ km h⁻¹

At time T hours after 2 pm, P is moving in the direction of the vector $(-\mathbf{i} + 2\mathbf{j})$

(a) Find the value of T.

(6)

Another particle, Q, has velocity \mathbf{v}_Q km \mathbf{h}^{-1} at time t hours after 2 pm, where

$$\mathbf{v}_{Q} = (-4 - 2t)\mathbf{i} + (\mu + 3t)\mathbf{j}$$

and μ is a constant.

Given that there is an instant when the velocity of P is equal to the velocity of Q,

(b) find the value of μ .

()

K	×	\supset	
2	S	Λ	
\geq	<.	×	
5			
Κ		\bigcirc	
ď		ð	
2	ς,	Χ	
b	<		
Κ		$^{\sim}$	
K	×		
2	١,	$^{\sim}$	
		×	
S	7	V	
<			
2	ς,	Α,	
.>			
1	⇗	×	
K	\geq		۷
2	S		
		\overline{x}	9
`	a	Иi	b.
Κ	К	H	Ĕ,
×	X	â	ú
2	Q	Ø	
	C	X	7
Κ	Ä	ø	٩
×	У	9	d
2	ς,	×	
\supset	G	ĸ.	à
۲,	Λ		ĸ,
Κ	×	_	4
ĸ.	Z	\simeq	
	< '	$\overline{}$	
5	4	ч	
Κ	×	1	
ď	И	b	ø
2	Q	ĸ,	
	ζ,	\leq	_
Κ	7	Z	
<	K		2
2	ζ,		j
>	♂	X	3
K	>	2	ζ
Ż	X		
2	뎟	7	þ
5	4	К	è
Κ	K	ø	ď
K	N	\simeq	á
2	ς,	š	Ž
)	4	Ø	
K	Ŋ.	9	ą
K	У	-	ĕ
2	V		
	ζ,	V	
×	2	∇	
ĸ.	K	n	
2	V		pÌ
`>	Ø	ĸ.	_
×	Ά	7	5
K	K		۷
2	≺	7	
	C	7.	
۲	ä		S
K			
2	ς,	×	2
)	4	r	7
Κ	2	u	S
		a	ï
	V	r	
>			
3	S	К	Š
3	y		
?	2	X	
3	2	X	
3	2	X	
?	2		
?	<u> </u>		
	\ \ \		

DO NOT WRITE IN THIS AREA

	Leave
	blank
Question 5 continued	

Question 5 continued	

Question 5 continued	blank
Question 5 continued	
	Q5
(Total 9 marks)	

6. A fixed rough plane is inclined at an angle θ to the horizontal, where $\tan \theta = \frac{5}{12}$

A particle of mass $6 \,\mathrm{kg}$ is projected with speed $5 \,\mathrm{m\,s^{-1}}$ from a point A on the plane, up a line of greatest slope of the plane.

The coefficient of friction between the particle and the plane is $\frac{1}{4}$

(a) Find the magnitude of the frictional force acting on the particle as it moves up the plane.

(3)

The particle comes to instantaneous rest at the point B.

(b) Find the distance AB.

(5)

The particle now slides down the plane from B. At the instant when the particle passes through the point C on the plane, the speed of the particle is again 5 m s⁻¹

(c) Find the distance BC.

(5)

	Leave
	blank
Question 6 continued	

Question 6 continued	

7.

Figure 2

A non-uniform beam AB, of mass $60 \,\mathrm{kg}$ and length 8a metres, rests in equilibrium in a horizontal position on two vertical supports. One support is at C, where AC = a metres and the other support is at D, where DB = 2a metres, as shown in Figure 2.

The magnitude of the normal reaction between the beam and the support at D is three times the magnitude of the normal reaction between the beam and the support at C.

By modelling the beam as a non-uniform rod whose centre of mass is at a distance x metres from A,

(a) find an expression for x in terms of a.

(5)

A box of mass M kg is placed on the beam at E, where AE = 2a metres.

The beam remains in equilibrium in a horizontal position.

The magnitude of the normal reaction between the beam and the support at C is now equal to the magnitude of the normal reaction between the beam and the support at D.

By modelling the box as a particle,

|--|

(5)

	blank
Question 7 continued	

		_

Question 7 continued	

Two trams, tram A and tram B, run on parallel straight horizontal tracks. Initially the two trams are at rest in the depot and level with each other. At time t = 0, tram A starts to move. Tram A moves with constant acceleration $2 \,\mathrm{m\,s^{-2}}$ for 5 seconds and then continues to move along the track at constant speed. At time t = 20 seconds, tram B starts from rest and moves in the same direction as tram A. Tram B moves with constant acceleration $3 \,\mathrm{m\,s^{-2}}$ for 4 seconds and then continues to move along the track at constant speed. The trams are modelled as particles. (a) Sketch, on the same axes, a speed-time graph for the motion of tram A and a speed-time graph for the motion of tram B, from t = 0 to the instant when tram B overtakes tram A. **(3)** At the instant when the two trams are moving with the same speed, tram A is d metres in front of tram *B*. (b) Find the value of d. **(5)** (c) Find the distance of the trams from the depot at the instant when tram B overtakes tram A. **(5)**

	Leave
	blank
Question 8 continued	

		Leave
		blank
Question 8 continued		
	—	

	blank
Question 8 continued	Olalik
Question o continued	

