Name of the Student:

Register No.:

10		 		 	 	_	 		
R	A								

SRM Institute of Science and Technology College of Engineering and Technology

milnadu SET-A MCO

C2-Slot

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-2024 (EVEN)

Test: FT3
Course Code & Title: 21MAB203T-Probability and Stochastic Processes
Year / Sem: II/IV

Max. Marks: 50

Date: 19/03/2024

Duration: 1 hr 40 Minutes.

Att	he end of this course, learners will be able to:						Prog	gram	Outo	ome	s (PC)	T.	
	e Outcomes (CO)	Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
COI	Evaluate the characteristics of discrete and continuous random variables	4	3	3										
CO2	Explain the model and analyze systems using two-dimensional random variables	4	3	3										
CO3	Classify limit theorems and evaluate upper bounds using various inequalities	4	3	3										

CO5

CO₄

processes

(i) Only A/B/C/D have to be mentioned as an answer for MCQ in the space provided in the Question paper.

4

4

3

3 3

3

(ii) Any striking (or) overwriting (or) using whitener in the answer (A/B/C/D) under Part-A will not be accepted. No marks will be awarded for that question.

(iii) Part - B and Part - C should be answered in the answer booklet.

Analyze the characteristics of random

Examine problems in spectral density

functions and linear time-invariant systems

Part-A (1 x 4 = 4 Marks)
Answer ALL the Questions

Q. No	Question	Ans wer	Ma rks	B L	CO	PO
1.	Let $X \in \{0,1\}$ and $Y \in \{0,1\}$ be two independent binary random variables. If $P(X = 0) = p$ and $P(Y = 0) = q$, then $P(X + Y) \ge 1$ is equal to		1	2	2	1,2
	(A) pq (B) $pq + (1-p)(1-q)$ (C) $p(1-q)$ (D) $1-pq$					
2.	If the joint pdf of the RV (X, Y) is given by $f(x, y) = kx$ in the region $0 \le x \le 1$ and $0 \le y \le 1$, then $k = (A) k = 1$ (B) $k = 2$ (C) $k = 1/2$ (D) $k = 4$		1	2	2	1,2
3.	Cauchy-Schwartz inequality for two random variables X and Y is given by (A) $E[XY]^2 \le E[X^2]E[Y^2]$ (B) $E[XY]^2 \le E[X]^2E[Y]^2$ (C) $E[X^2Y^2] \le E[X^2]E[Y^2]$ (D) $E[XY]^2 \le E[X]E[Y]$		1	1	3	1,2
4.	Let X is a RV with $E(X) = \mu$ and $Var(X) = \sigma^2$, then for some $a > 0$, which of the following equation denotes Markov inequality? (A) $P(x \ge a) \le \frac{\mu}{a}$ (B) $P(x \le a) \le \frac{\mu}{a}$ (C) $P(x \ge a) \le \frac{\sigma^2}{a}$ (D) $P(x \le a) \le \frac{\sigma^2}{a}$		1	1	3	1,2

SRM Institute of Science and Technology College of Engineering and Technology SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

C2-Slot SET-A Part-B&C

Academic Year: 2023-2024 (EVEN)

Test: FT3

Date: 19/03/2024

Course Code & Title: 21MAB203T-Probability and Stochastic Processes

Duration: 1 hr 40 Minutes.

Year / Sem: II/IV

Max. Marks: 50

	Part – B (8 x 2 = 16 Marks) Answer any two questions				
5.	The joint probability mass function of X and Y is given by $p(x, y) = k(x + 2y)$, where $x = 1,2,3,4$; $y = 0,1,2,3$. Find the value of k , marginal distributions and $P(X+Y>4)$	8	4	2	1,2
6.	If X denotes the sum of the numbers obtained when two dice are thrown. Obtain an upper bound for $P\{ X-7 \ge 4 \text{ using Tchebycheff's inequality.}\}$	8	4	3	1,2
7(i).	Two random variables X and Y are distributed according to $f_{X,Y}(x,y) = \begin{cases} x+y & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$ Find the marginal distributions.	4	3	2	1,2
7(ii).	Let X and Y are two random variables with mean and variance of X as 4 and 2, respectively and mean and variance of Y as 2 and 1 respectively, Find the maximum possible value of $E[XY]$.	4	3	3	1,2

	Part – C (15 x 2 = 30 Marks) Answer any two question			14111	
8.	The joint pdf of (X, Y) is given by $f(x, y) = 6y$; $x > 0, y > 0, x + y \le 1$ and $f(x, y) = 0$, elsewhere. Find the covariance of X and Y .	15	4	2	1,2
9.	If $X_1, X_2,, X_n$ are Poisson variates with parameters $\lambda = 1$, use the central limit theorem to estimate $P(120 \le S_n \le 160)$ and $P(150 \le S_n \le 180)$ where $S_n = X_1, X_2,, X_n$ and $n = 150$.	15	4	3	1,2
10(i).	If the joint pdf of (X, Y) is given by $f_{XY}(x, y) = x + y$; where $0 \le x \le 1$ and $0 \le y \le 1$, find the pdf of $U = XY$.	8	3	2	1,2
10(ii).	Let X be a positive random variable with $E(X) = 10$. Prove that $f(x) = \frac{1}{x+1}$ is a convex function in $(0, \infty)$. And then estimate the value of $E\left(\frac{1}{X+1}\right)$.	7	3	il il 3 election (1,2

Name of the Student :								
Register No. :	R	A						

SRM Institute of Science and Technology College of Engineering and Technology **DEPARTMENT OF MATHEMATICS**

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-2024 (EVEN)

SLOT-C2 (SET-B) MCQ

Course Code & Title: 21MAB203T-Probability and Stochastic Processes

Year & Semi: II & IV

Date: 19/03/2024 Duration: 1 hr 40 min

Max. Marks: 50

- Note: Part A should be answered in the Question paper itself within the first 5 minutes and the same should be handed over to the hall invigilator at the end of the 5th minute
 - Only A/B/C/D have to be mentioned as an answer for MCQ in the space provided in the Question paper.
 - Any striking (or) overwriting (or) using whitener in the answer (A/B/C/D) under Part-A will not be accepted. No marks will be awarded for that question.
 - Part B and Part C should be answered in the answer booklet.

Course Articulation Matrix:

At the	end of the course, student will be able to				Pro	ogram	Ou	tcom	es (I	PO)			-
	e Outcomes (CO)	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Evaluate the characteristics of discrete and continuous random variables	3	3										
CO2	Explain the model and analyze systems using two-dimensional random variables Engineering	3	3										
CO3	Classify limit theorems and evaluate upper bounds using various inequalities	3	3										
CO4	Analyze the characteristics of random processes	3	3	AND A TO		-		Page Color					13.35
CO5	Examine problems in spectral density functions and linear time-invariant systems	3	3										OF TAX
	$Part-A (4 \times 1 = 4)$	Ma	rks	-	A TO	stay1		10.00		Called .			
	Answer ALL the c	11166	tion										
Q.No.	Question				40 mm contract	swer	7	Mark	cs	BL	СО	P	o
1.	For two random variables X and Y , $E(X) = 5$, $E(XY) = 75$, $E(X^2) = 4$ and $E(Y^2) = 149$, $C(XY) = 149$	OV(= (XY)	15,) is				1		1	4	1,	,2
	(A) 0 (B) 25 (C) 15 (D)	10										J.	
2.	The joint probability distribution of two continuous rand X and Y is given by $f_{XY}(x,y) = e^{-3(x+x)}$ and $f_{XY}(x,y) = e^{-3(x+x)}$ (C) e^{-x} (D) e^{-x}	lom y), is	•					1		2	4	1,	2
3.	If X is a random variable with $E(X) = E(X^2) = 20$, then the lower bound for $P\{ X - A \frac{10}{16}$ (B) $\frac{1}{16}$ (C) $\frac{15}{16}$ (D) $\frac{11}{16}$		4 < 8]	and is				1		1	4	1,	2
4.	(A) Jensen's (F) Courty Sobrates	ir	iequa	lity.]		2	4	1,	2

Name of the Student:			31.61			- 14				
Register No.:	R	A		T						

SRM Institute of Science and Technology College of Engineering and Technology DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu Academic Year: 2023-2024 (EVEN) SLOT-C2 (SET-B) Part – lB & C

Test: FT-3
Course Code & Title: 21MAB203T-Probability and Stochastic Processes
Year & Sem: II & IV

Date: 19/03/2024 Duration: 1 hr 40 min Max. Marks: 50

	Part-B $(2 \times 8 = 16 \text{ Marks})$				
	Answer any TWO questions				
Q.No.	Question	Marks	BL	СО	РО
5.	The joint probability mass function of X and Y is given by $p(x, y) = k(3x + y)$, where $x = 1, 2, 3, 4; y = 0, 1, 2, 3$. Find the value of k , marginal distributions, $P(X + Y > 4)$	8	3	2	1,2
6.	A random variable is exponentially distributed with parameter 3. Use Tchebycheff's inequality to find the lower bound for $P(-1/3 \le X \le 1)$. Also find the actual probability.	8	3	3	1,2
7 a.	Two random variables X and Y have joint distribution $f_{XY}(x,y)=\frac{1}{8}(6-x-y), 0 < x < 2, 2 < x < 4$. Find the marginal distributions.	4	2	2	1,2
7 b.	Suppose that the average grade in a certain subject is 57%. Find an upper bound on the proportion of students who score at least 75%	4	2	3	1,2
	Part-C ($2 \times 15 = 30$ Marks)				
	Answer any TWO questions				
Q.No.	Question	Marks	BL	СО	PO
8.	Given the joint pdf of (X, Y) as $f(x, y) = k(x^2 + y^2)$, $0 < x, y < 1$. Find k and covariance.	15	4	4	1,2
9.	The life time of a certain brand of battery may be considered as a random variable with mean 3500 hours and S.D. 750 hours. Using CLT, find the probability that the average life time of 100 batteries (i) exceeds 3650 hours (ii) between 3350 and 3650 hours (iii) less than 3350 hours	15	4	4	1,2
10 a.	If X and Y each follow an exponential distribution with parameter 5 and are independent, find the joint pdf $g_{UV}(u, v)$ where $U = X/Y$.	8	4	4	1,2
10 b.	Let X follows a binomial distribution with n=100 and p= $\frac{1}{2}$. Find $P(X \ge 75)$ using Markov inequality and Chebychev's inequality.	7	4	4	1,2