Fisheries and Oceans Canada

Pêches et Océans Canada

Science

Sciences

CSAS

SCCS

Canadian Science Advisory Secretariat

Secrétariat canadien de consultation scientifique

Research Document 2008/023

Document de recherche 2008/023

Not to be cited without permission of the authors *

Ne pas citer sans autorisation des auteurs *

2008 Evaluation of 4VWX Herring

Évaluation des stocks de hareng de 4VWX en 2008

M.J. Power, F.J. Fife, D. Knox and G.D. Melvin

Population Ecology Section Maritimes Region, Science Branch Biological Station 531 Brandy Cove Road St. Andrews, NB E5B 2L9

- * This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
- * La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at:

Ce document est disponible sur l'Internet à:

http://www.dfo-mpo.gc.ca/csas/

ISSN 1499-3848 (Printed / Imprimé)
© Her Majesty the Queen in Right of Canada, 2009
© Sa majesté la Reine, Chef du Canada, 2009

Canada

ABSTRACT

Quota landings in 2006/07 were 50,360t against a TAC of 50,000t for the SW Nova Scotia / Bay of Fundy component. The benefits of the reduced quota and other rebuilding measures are now starting to be reflected in the improved biological characteristics of the population. Acoustic biomass estimates in the traditional survey areas for Scots Bay, Trinity Ledge and German Bank increased by approximately 100,000t from 2006. Some conservation objectives specified for this fishery are being met but there are still concerns for spawning areas other than German Bank. This assessment indicates an improvement from the low level of the resource noted in recent assessments.

There was a decrease in landings to 5,400t from the offshore Scotian Shelf banks by purse seine, midwater and bottom trawl. Since the summer bottom trawl research survey is not considered indicative of overall herring abundance, the industry has been encouraged to explore and undertake structured surveys of the offshore area but this has not occurred in recent years.

The recorded landings of 5,300t in 2007 in the four major gillnet fisheries along the coast of Nova Scotia is a decline from 2006. There was a reduction in surveyed acoustic biomass in the Halifax/Eastern Shore and Little Hope areas from the previous year. Surveys were also completed near Glace Bay but there were few spawning herring documented or catch reported and no herring surveys took place in the Bras d'Or Lakes. The decline in, or lack of, surveyed biomass in three of the major coastal spawning groups is cause for concern.

The latest landings for the 2007 New Brunswick weir and shutoff fishery were 30,900t which is the highest catch for this component since 1993. The number of active weirs with catch increased from the low of 76 in 2005 to 98 in the 2007 season. These fish have been considered to be a mixture of juveniles, dominated by those originating from NAFO Subarea 5 spawning components, and are therefore excluded from the 4WX quota.

RÉSUMÉ

En 2006-2007, les débarquements se sont chiffrés à 50,360 t par rapport à un TAC de 50 000 t, pour ce qui concerne la composante du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy. On commence à voir les retombées positives de la réduction du quota et des autres mesures de rétablissement sous forme d'amélioration des caractéristiques biologiques de la population. L'estimation de la biomasse à l'aide des relevés acoustiques dans les zones de relevé traditionnelles de la baie Scots, de la chaussée Trinity et du banc German a augmenté d'environ 100 000 t par rapport à 2006. Certains des objectifs de conservation fixés pour cette pêche sont atteints, mais certaines frayères autres que celles du banc German suscitent des préoccupations. Cette évaluation dénote une amélioration par rapport au faible niveau des ressources mentionnées dans les évaluations récentes.

On note une diminution à 5 400 t des débarquements des pêches à la senne coulissante, au chalut pélagique et au chalut de fond pratiquées sur les bancs, au large du plateau Néo-Écossais. Puisque le relevé scientifique d'été au chalut de fond n'est pas jugé indicatif de l'abondance globale du hareng, l'industrie a été encouragée à explorer la zone du large et à y effectuer des relevés, mais cela n'a pas été fait ces dernières années.

Les débarquements déclarés en 2007 (5 300 t) par les pêcheurs au filet maillant des quatre grandes pêches pratiquées le long des côtes de la Nouvelle-Écosse étaient en baisse par rapport à 2006. Le relevé acoustique a fait état d'une diminution de la biomasse dans les régions de Halifax/côte est et de Little Hope depuis l'année précédente. Des relevés ont aussi été effectués près de Glace Bay, mais on constate peu de harengs géniteurs documentés ou de prises déclarées et aucun relevé du hareng dans le lac Bras d'Or. La diminution ou l'absence de relevés de la biomasse de trois des principaux groupes de géniteurs côtiers suscite des préoccupations.

Les plus récents débarquements des parcs à hareng et des sennes de rivage au Nouveau-Brunswick en 2007 totalisaient 30 900 t, soit le total le plus élevé pour cette composante depuis 1993. Le nombre de parcs à hareng actifs pour lesquels des prises sont déclarées est passé d'un minimum de 76 en 2005 à 98 pour la saison de 2007. L'ensemble de ces poissons serait constitué d'un mélange de jeunes, dominés par ceux qui sont issus du segment reproducteur de la sous-zone 5 de l'OPANO, et ils sont par conséquent exclus du quota de 4WX.

Introduction

Atlantic herring is a pelagic species found on both sides of the North Atlantic. Herring spawn in discrete locations, to which they are presumed to home. Herring first mature and spawn at three or four years of age (23 to 28 cm or 9 to 11 in), then begin a predictable annual pattern of spawning, overwintering, and summer feeding, which often involves considerable migration and mixing with members of other spawning groups. Most fishing takes place on dense summer feeding, overwintering, and spawning aggregations.

The 4VWX management unit contains a number of spawning areas, separated to various degrees in space and time. Spawning areas in close proximity with similar spawning times, and which share a larval distribution area, are considered part of the same component. These undoubtedly have much closer affinity than spawning areas that are widely separated in space or time, and do not share a common larval distribution. Some spawning areas are large and offshore, whereas others are small and more localized, sometimes very near shore or in small embayments. The situation is complicated further as herring migrate long distances and mix outside of the spawning period both with members considered part of the same component and with members of other components. For the purposes of evaluation and management, the 4VWX herring fisheries are divided into four components (Figure 1):

- 1. SW Nova Scotia/Bay of Fundy spawning component
- 2. Offshore Scotian Shelf banks spawning component
- Coastal (South Shore, Eastern Shore and Cape Breton) Nova Scotia spawning component; and
- 4. SW New Brunswick migrant juveniles.

Each component has several spawning areas, and there is mixing of fish among spawning components. Industry and management have explored means of managing the complexity within each component (such as distributing fishing effort among spawning areas according to their relative size) and of taking appropriate account of interaction among components (such as fishing restrictions on some areas of mixing). Fisheries in the 4VWX area in recent years have been dominated by purse seine, weir and gillnet, with relatively minor landings by shutoff, trap and midwater trawl.

The Georges Bank spawning component is not included in this evaluation except to document Canadian fishing activity. As in 2005 and 2006, there were no herring landings in 2007 from the Canadian portion of Georges Bank although some searching of the area did occur by purse seine and midwater trawl vessels (Table 1). This fishery is included in the Gulf of Maine stock complex and was last evaluated in 2006 (DFO 2003a, TRAC 2006).

1) Objectives and Management

The 2003-2006 Scotia-Fundy Herring Integrated Fisheries Management Plan (DFO 2003b) sets out principles, conditions, and management measures for the 4VWX herring fisheries. The main principle stated in the plan is "the conservation of the herring resource and the preservation of all of its spawning components". The background for the conservation objectives was first developed and reviewed by Sinclair (1997).

Three conservation objectives appear in the plan:

- To maintain the reproductive capacity of herring in each management unit through:
- persistence of all spawning components in the management unit;
- maintenance of biomass of each spawning component above a minimum threshold:
- maintenance of a broad age composition for each spawning component; and
- maintenance of a long spawning period for each spawning component.
- To prevent growth overfishing:
- continue to strive for fishing mortality at or below F0.1
- To maintain ecosystem integrity/ ecological relationships ("ecosystem balance").
- maintain spatial and temporal diversity of spawning
- maintain herring biomass at moderate to high levels

There is evidence that most of these objectives are not being met despite the efforts that have been made in recent years including a reduced TAC. There is also a need to better define these objectives in terms of minimum thresholds and to explicitly list the spawning components in terms of spatial and temporal expectations.

An "in-season" management process, first implemented in the southwest Nova Scotia fishery during 1995, continued to be used widely within the 4VWX management area (DFO 1997, Stephenson et al. 1996, 1999). The approach encouraged surveying using the commercial fleet under scientific direction prior to fishing ("survey, assess, then fish" protocol) to ensure that effort was distributed appropriately among various components of the stock (particularly among spawning components) according to the relative size and current state of each component. The use of this approach in recent years has improved data collection and enabled modifications to management decisions to be made with the involvement of participants and on the basis of up-to-date information.

Collaborative research efforts with the fishing industry have been important in recent years. A major portion of the herring industry (including the purse seine sector and major processors) forms the Herring Science Council (HSC), and some members of the fixed gear sector have undertaken a separate Joint Project Agreement with DFO to undertake collaborative scientific projects. The herring industry has continued to provide biological sampling and samples while the purse seine and gillnet sectors undertook key acoustic surveys. Under the auspices of the HSC a dedicated field biologist also takes part in initiatives such as tagging, a summary of fleet activities and analysis of acoustic records from fishing trips.

In 2007 the HSC biologist was not deployed and the field activities were covered by the HSC manager with assistance from St. Andrews Biological Station staff, individual survey vessel captains and plant owners. In addition downloading and data editing services were contracted by the HSC through A. Clay from FEMTO Electronics.

2) SW NOVA SCOTIA/BAY OF FUNDY SPAWNING COMPONENT

2.1 The Fishery

Fisheries in the 4VWX area in recent years have been dominated by purse seine, weir and gillnet, with relatively minor landings by shutoff and trap. Herring fishing locations, NAFO unit areas for catch and sample aggregation, and fishing ground areas are used to describe fishing activities and group the data for analysis (Figures 2-5).

Quota landings in 2006/07 were 50,360t against a TAC of 50,000t for the SW Nova Scotia / Bay of Fundy component (Table 1). There were additional landings of 41,600t in the non-stock components with 5,300t for 'Coastal Nova Scotia', 5,400t for the 'Offshore Scotian Shelf' and 30,900t for the 'SW New Brunswick Migrant Juveniles' for an area total of 91,963t. There was an increased proportion of catches from the New Brunswick weirs in 2007. Landings for the current 2007/08 guota year were 2,084t as of April 1, 2008 (Table 2).

For the SW Nova Scotia / Bay of Fundy stock component, the only component under TAC control, landings have recently tracked the TAC with most of the total quota being taken each year since 2002 (Figure 6). As a result of the reduced quota, total landings from this component for 2005 to 2007 are the lowest on record since 1963 (Table 3). Most of the catch over the history of this fishery has been caught by purse seine gear with the 4X summer purse seine fishery being the most important (Table 3, Figure 7, 8). In 2007, landings by the purse seine sector accounted for 95% of the component catch with minimal landings by the gillnet sector (1,300t) and the Nova Scotia weirs (1,100t). According to the management plan, eighty percent of the catch limit was initially allocated to the mobile gear sector and 20% to the fixed gear sector and as in past years transfer of unused quota to the mobile fleet occurred near the end of the fishing season.

Purse seine catches are summarized by fishing grounds using definitions of the various grounds based on groupings of 10 minute boxes of latitude and longitude (Table 4, Figure 5). Catches by fishing grounds were compared to recent years with the largest proportions coming from the German Bank (15,085t), Gannet Dry Ledge (11,344t) and Grand Manan (10,011t) areas (Table 4, Figure 9). Landings of about 15,100t from the German Bank grounds alone made up about 30% of the purse seine catch. There was an increase in catch from summer feeding areas on the Gannet/Dry Ledge grounds adjacent to German Bank and the fishing grounds southwest of Grand Manan. Catches of non-stock component herring by purse seine came mainly from the offshore Scotian Shelf area (Table 5).

There were below average catches from Scots Bay and the Long Island shore area. The lower catches off Long Island are attributed to extensive aggregations on Grand Manan Banks and German Bank areas that were more accessible and closer to market for the New Brunswick and SW Nova fleets. The Long Island shore area is also generally a more difficult fishing area, with the boats either getting fish at dusk or at dawn as the fish go on or off the shore.

Purse seine landings of 850t were reported in Oct.-Nov. 2006 fall fishery and 1,000t in the January 2007 winter fishery (Table 1, Figure 10, 11). The summer purse seine fishery took place in similar areas and months as in previous years with total landings of 46,050t (Table 1, Figure 11). A large part of this fishery was directed on the major spawning grounds in Scots Bay and on German Bank where recent catches are primarily within the pre-defined acoustic survey catch areas (Melvin and Power 1999).

During the 1970's and 1980's, a large purse seine fishery took place on over-wintering aggregations in Chedabucto Bay (Table 3). In recent years however, there has been no fishing effort in this area as traditional vessels have been successfully fishing elsewhere and because the reduced TAC has resulted in conserving of quota for later in the season. In some years there has been a small fishery on over-wintering herring in January off Halifax Harbour (Chebucto Head), but the majority of the fall and winter herring landings for the past several years have come from the New Brunswick side of the Bay of Fundy.

Scots Bay

The Scots Bay herring purse seine fishery has been an important component of the summer fishery with catches since 1987 ranging from 1,000 to 24,400t during the period of early July to late August-early September (Table 6, Figure 12). The peak year of 2004 was unusual in several aspects, with the highest recorded catch of 24,400t, the longest season extending to Sept. 16 and the most days with catches recorded (Figure 13). In 2004, the distribution of catches was also more widespread extending both north and east of the innermost strata survey area (Figure 12). The overall catch in 2005 under area restrictions was reduced to 5,870t and included catches to the north and east of the main survey area. The fishing season also started later and was of shorter duration than in previous years.

The 2006 fishery had catches scattered mainly within the defined spawning area but there was a further reduction in overall fishing activity with 3,350t landed and less than half of the number of landings (slips) than in the previous year. Several external factors contributed to a decrease in fishing activity and survey effort including a reduced roe market, lack of access to the Digby wharf to offload herring, the distance to market and the re-introduction of Herring Fishing Area 22 (HFA-22) line The duration of the spawning fishery period in Scots Bay was the same as in 2005 but there was no observed spawning or catches of spawners in the spawning box in the middle of the period during early August (Figure 14). The combination of these factors resulted in fewer vessels fishing in Scots Bay and participating in the surveys and therefore there was less survey and catch information collected about Scots Bay spawning aggregations in 2006.

In 2007 catches of 4,100t in Scots Bay were down from average due to the continued restrictions placed on this area including an overall cap of 5,000t and weekly trip limits to distribute effort over the season. The lack of availability of the Digby wharf and the distance to travel to Scots Bay also tended to reduce effort in that area. The total duration of the fishery was extended due to the weekly restrictions, lasting from July 16 to Aug 31 with a total of 21 days with catch.

German Bank

German Bank is one of the major summer herring purse seine grounds. Catches from these grounds since 1985, ranged from 9,000 to 36,000t during the overall fishery period of early May to late October (Table 7). Catches during the spawning period (defined as August 15 to October 31) have declined since the reduction in the quota in 2003 with about 12,000t landed per year. The percentage of the total German Bank catch taken during the spawning period has actually declined in recent years, but the percent contribution of the German Bank catch to the overall landings has been increasing, reflecting an increased reliance on this area (Table 7, Figure 15).

Catches in 2006 for the pre-spawning period prior to Aug. 15 were unusual in that they were concentrated mostly within the defined survey box area (Strata area). This differed from 2000 to

2005 when catches were more widely scattered over a larger area (Figure 16). In 2007 catches were more widely distributed than in 2006 with locations mostly to the north and northwest of the defined strata area. The catch distributions were still more concentrated than in the past.

Catches during the spawning period in 2007 within the Strata area were similar to those of 2005 and 2006 with two localized groups of spawning herring found and documented during surveys. In 2007 very little herring were caught north of the spawning area box during the spawning period as seen in previous years (Figure 17). These northern scattered groups have been usually shown from sampling to be pre-spawning or juvenile sized herring while those within the strata area are almost always confirmed to be spawning fish.

Daily catches in 2006 and 2007 were spread out through the spawning season with an early cluster of catches from mid to late August, which was not seen in 2004 or 2005 (Figure 18). The daily landings at the end of the season were reduced compared to recent years, likely due to the restricted quota nearly being reached, with totals of less than 500t per day.

Trinity Ledge

The Trinity Ledge spawning ground is considered to be still recovering and is closed to purse seine gear from Aug. 15 to Sept. 15. In 2007 there were acoustic surveys and catches by drift gillnet gear only. The 2007 herring gillnet fishery on Trinity Ledge took place between Aug. 27 and Sept. 20 with total reported landings of 1,091t with most of the catch from a small localized area (Figure 19). The total catch for this area has increased over the past few years and this year was the highest since 2001 (Table 3). The daily landings in 2007 were quite different from those in 2006 with two distinct pulses of catch peaking on Aug. 29 and Sept. 18 (Figure 20). There was continuous daily searching of the grounds reported between these two peaks but there was little or no catch.

Spectacle Buoy

A spring gillnet fishery for roe has occurred in recent years for a short period in June in the vicinity of Spectacle Buoy, southwest of Yarmouth, N.S. This fishery is dependent upon the availability of roe herring and to some extent, market conditions, and may or may not occur in any given year.

This fishery has been quite variable in recent years with catches from 0 to 700t and acoustic surveys documenting up to 1,400t. In June 2005 124t of catch were recorded and a single survey estimated a total biomass of only 292t in an area of 0.57 km². In June 2006 landings were minimal in the Spectacle Buoy area with less than 10t reported and no surveying was completed. Acoustic surveys of Spectacle Buoy were also completed during the fall 2006 spawning season but documented no herring.

The 2007 herring gillnet fishery in the Spectacle Buoy fishing area occurred from May 27 to June 22, 2007 with total landings of 243t (Figure 21). This was a roe fishery on spring spawning herring with fish reported to be in spawning condition. No samples were available for size or maturity condition of the fish. Three acoustic surveys were completed which documented a total survey biomass of 310t which was only equivalent to the amount landed.

Nova Scotia weirs

The 2007 catches of 1,130t in the Nova Scotia weirs were below average after some improvement in recent years (Table 8; Figure 22). The annual variation in catch has been attributed to problems in availability of fish to this fixed stationary gear as there are usually substantial purse seine catches in the nearby Long Island area on the Bay of Fundy side of Digby Neck. There was a reduction in the amount and proportion of purse seine catch in the Long Island area in 2007 but this was attributed to better availability in areas closer to the fleet's home markets and not to lack of fish. The seasonal timing of the Nova Scotia weir landings has also shifted to the later months of the season in recent years with a higher proportion of landings now in August and September, compared with the traditional early fishery seen in May and June previous to 2000 (Table 8). Catches in recent years for the Nova Scotia weirs have been highly variable and not as consistent in their amount or timing as in the previous decade. There has been a decline in the total number of herring weirs with only 6-10 active weirs in the last decade and the catch per weir (t) for the Nova Scotia weir fishery was also below average in 2007 (Table 9).

Catch and Effort

Catch and effort for gillnet data in the SW Nova Scotia/Bay of Fundy spawning component were examined in previous assessments. They showed little trend and were considered unrepresentative due to the small amount and variable timing and location of catch and effort (Power et al., 2004). This trend of reduced catch and effort remains and so this data was not reexamined in 2007.

Purse seine landings make up most of the overall catch and are allocated 80% of the TAC for the SW Nova Scotia/Bay of Fundy component under the current management plan. The purse seine catch has fluctuated between 45,000t and 100,000t since 1989 reflecting changes in the TAC (Table 10, Figure 23). The overall number of boats fishing and days fished has been dropping since 1990 due to fleet rationalization. This has likely resulted in increases in catch per boat and catch per day in recent years. In general, purse seine catch rates are not considered to reflect trends in population abundance due to the nature of herring schooling behavior and the acoustic technology used to find these schools. Catch rates remain high or stable even at low stock levels. These data are simply reported to document the overall effort by the purse seine fleet.

2.2 Resource Status

Acoustic Surveys

Automated acoustic recording systems deployed on commercial fishing vessels have been used since 1997 to document the distribution and abundance of herring. Scheduled surveys are now conducted each year with surveys every two weeks on each of the main spawning components. An index of spawning stock biomass is estimated by summing these results (Melvin and Power, 1999). In 2007 a total of 10 individual surveys were completed within the Bay of Fundy/SW Nova Scotia stock component (Power and Melvin, 2009).

A major source of uncertainty continues to be the assumption that the results of the surveys are additive. However, if herring do not move on and off the spawning grounds in waves, the estimate of total SSB will be significantly biased upward due to double counting or biased downward due to missing waves of fish. As well, herring have been observed close to bottom,

which can lead to an under-estimation of biomass from acoustic surveys. Other significant issues relate to the survey area, the acoustic dead zone at both surface and bottom and factors that influence the target strength and acoustic backscatter (DFO 2007).

In 2003, an option to account for the non-square waveform observed in a ball calibration was incorporated into the HDPS software (Melvin, et al 2004). Given that the inclusion of the integration calibration factor (ICF or CIF) is deemed to provide a more accurate estimate of biomass, it was recommended that all future analyses utilize the CIF to calculate absolute biomass (Melvin et al 2004). However, when comparing observations from year to year it was recommended that the comparisons be made between biomass estimates that exclude the adjustment until a time series for all years has been established with the CIF included. This revision to the acoustic data for the earlier years from 1999-2002 has yet to be completed.

Similar to most previous years, four surveys were conducted in Scots Bay in 2007. The duration of the spawning fishery period in Scots Bay was extended through the entire season as a result of in-season weekly catch limits for the area. Four surveys were also completed on German Bank with a fifth excursion at the end of the season which was not included in the estimates. The duration of the spawning fishery on German Bank was similar to previous years but ended in early October due to the lack of quota. Additional acoustic data from fishing nights on German Bank were examined but not included in the overall biomass estimate. Individual survey area coverage was satisfactory as well as being consistent with established protocols.

The amount of spawning fish documented on Trinity Ledge was extremely low but survey coverage was improved. There were no surveys and no reports of spawning herring around Seal Island and Browns Bank grounds. A small spawning fishery occurred near Spectacle Buoy in June with limited survey effort. Biomass estimates in the traditional survey areas for Scots Bay, Trinity Ledge and German Bank were approximately 45,700t, 1,400t, and 337,200t respectively for an estimated total SSB of 384,400t which is an increase of approximately 100,000t from 2006 (Table 11). The 2007 overall SSB estimate is below the long term average.

While the acoustic biomass signal is greater than in 2006, it still remains below the average for 1999-2007 (Figure 24). The overall biomass index estimated from acoustic surveys in 2007 represents an increase of 28% since 2006. The index from acoustic surveys has increased by 64% over the last two years and is at a moderate level, 12% below the average of the nine year series.

Spawning ground turnover rates

The current acoustic survey method on spawning grounds is dependent on periodic turnover of spawning fish on the grounds. Acoustic surveys are required to be separated by at least 10 to 14 days to allow for turnover and to prevent double counting (Power et al. 2002). This aspect of the assessment method was the subject of investigation in 2001 and of intensive sampling for maturity stage since the 2002 fishing season. The results are summarized by Melvin et al. (2003, 2004, Power et al. 2005) and were used to assist in the evaluation of turnover timing and the inclusion or exclusion of specific acoustic surveys.

In 1998 and 2001 spawning herring were tagged on German Bank as part of a cooperative project between the Pelagics Science Council/Herring Science Council and Fisheries and Oceans, Canada. After the 1998 tagging event, 29% of the tag returns were caught on the spawning grounds more than ten days after tagging and 21% were caught more than fourteen

days after (Paul 1999). In contrast all tag returns in 2001 were from within 8 days of tagging although these results were complicated by a large decrease in fishing effort in the second week after tag application (Power et al. 2002, Waters and Clark 2005).

In response to a recommendation from the 2005 RAP, tags were applied to herring on the spawning grounds of Scots Bay and German Bank (Clark, 2006). The results from the tag returns indicated that some tagged herring remained on the spawning grounds for at least 3 weeks after tagging, and in some cases, up to five to six weeks. As a result, acoustic surveys that were spaced at 2 week intervals were surveying some of the same fish twice and possibly three times. These results also indicated a possible affinity between some of the fish tagged in Scots Bay and the New Brunswick weirs.

These results have serious implications for how the acoustic surveys are evaluated and used to determine stock status. Some preliminary analysis has been completed comparing three different approaches for the interpretation of the acoustic biomass estimates in an absolute sense (Power et al, 2006b). The results showed that caution is warranted when employing the cumulative biomass estimates as absolute in any of the survey areas. The results also indicated that some proportion of herring remain in the survey area even three weeks or longer.

A framework assessment meeting in January 2007 determined that double counting does occur but the extent has not been well determined (DFO, 2007). However, it was recommended that surveys continue to be conducted at 10-14 day intervals to avoid double sampling. The timing/turnover issue was considered to be of highest importance for further study, including work on the duration of the maturation process, further tagging with shorter intervals to estimate turnover rates and increased survey frequency to reflect maturity stage duration. No additional experiments on turnover rates were completed in 2007 due to a lack of funding.

Exploitation Rates on Spawning Grounds

The acoustic survey estimates and catches from individual spawning areas were examined to estimate relative exploitation rates on the different spawning groups and for the overall complex. These estimates can be used to assess the impact of fishing and also to estimate the relative size of individual spawning units within the complex (Table 12). These rates are dependent on the assumptions that the acoustic survey SSB is complete, that catches have been properly allocated and most critically, that the acoustic SSB provides an absolute measure of biomass. As a result of these uncertainties the absolute fishing mortalities cannot be determined or inferred but instead the trends over time can be used in a relative sense from year to year.

For this analysis the three main spawning components for Scots Bay, German Bank and Trinity Ledge which have received relatively consistent survey effort since 1999 are used. The acoustic SSB for Seal Island and Spectacle Buoy were also allocated to the German Bank spawning area. All catches throughout the year from each spawning ground were assumed to be site specific (Table 12-C1), while catches from other areas were allocated based on the relative spawning ground SSB proportions from annual acoustic surveys (Table 12-A2, C2). Exploitation rates were calculated from both the actual catch on the spawning grounds and the overall adjusted catch as straight proportions (Catch / SSB) (Table12-E1, E2).

Calculation of exploitation rates by component since 1999 (Table 12-E2) showed that the larger grounds (German Bank and Scots Bay) had an average exploitation of 15 to 23% while Trinity Ledge was much higher at 56%. Individual values for specific years and areas were highly variable (from 12 to 146%) and this is attributed to inconsistent survey effort, especially for the

Trinity Ledge area over the period. These data show a trend of overall declining exploitation rate since 2005. Fishing mortality cannot be specifically determined but appears to be decreasing based on the trends of relative exploitation rates from acoustic surveys. (Figure 25).

Biological Sampling

Comprehensive biological sampling continued with substantial involvement of the fishing industry. In 2007 a total of 1,315 samples (145,200 fish) were measured for length while 4,620 fish were sampled for sex, weight, maturity and age (Table 13). The sources of the samples are shown in Table 14, with the bulk coming from the processing industry, as has been the case since 1996. Additional samples were collected by DFO personnel, observers deployed on fishing vessels and from DFO research surveys. Sampling from the commercial fishery was well matched to the spatial and temporal distribution of the fishery. Additional sampling from research vessel surveys during the spring and summer resulted in widespread geographic coverage as in the past (Figure 26).

Ageing review

Since the April 2006 herring RAP, inconsistencies in ageing have been identified that may have an impact on the age based assessment results (DFO, 2006). The impact of these comparisons will be further investigated, but it is unlikely they will be resolved until the winter of 2008/09 (DFO, 2007). In the interim any analysis using age data is considered unreliable and other approaches will be applied (Melvin and Power, 2007).

An internal review in 2007 of the 4VWX herring ageing by Dr. Stephen Campana of the Bedford Institute of Oceanography recommended two new studies be undertaken: a Bomb Radiocarbon (BRC) age validation study of a small number of otoliths and a study to track a dominant year class as it moved through the fishery. A Canada/USA workshop was held in January of 2008 to discuss the ageing issues and the preliminary findings of these studies. The results of these studies confirmed that there were major inconsistencies in the ageing of herring amongst the readers and in the historical database. The degree of difference varied depending upon the reader. Each institute must examine the extent of these inconsistencies, identify their potential impact, and determine a course of action to overcome this problem. The current 4VWX otolith reader has consistently under aged the test otoliths, relative to the other readers and the database. The implication, or impact, of under ageing on a virtual population analysis (VPA) has been examined by several investigations over the past couple of years (DFO, 2006; Melvin and Power, 2007). The results from these studies indicated that under ageing leads to an overestimate of fishing mortality and an under estimate of biomass, the amount depending upon the severity of the under ageing.

A number of recommendations that will improve the ageing of herring were made at the 2008 ageing workshop. These included using a new mounting media for the otoliths, the absence of length data during the reading process, a reference collection for quality control, and some new ageing protocols to ensure reader consistency and quality control (e.g., preproduction testing, and random comparisons with a second reader). However, although these practices will improve the ageing in future years, they will not correct the past. It is therefore likely that a significant number of the 4VWX herring otoliths will have to be re-read following the new protocols and quality control procedures. At a minimum it is recommended that the otoliths be re-read back to 1997 and preferably back to the late 1980's. Not all previously read otoliths need to be re-read a sub-sample should be sufficient. Once the otoliths have been re-read a new catch at age and age-disaggregated index of abundance will be constructed for input into a VPA. Tentatively, the

readings are to be completed by December 2008, as planned under the current Framework Review (DFO 2007). This will, however, depend upon the availability of a reader and procurement of new equipment, including a variable zoom binocular microscope, image analysis system and software to annotate and catalogue the images.

Catch at Age

Consistent with previous assessments, the catch at length and age was constructed using the 'Catch at Age' application (version 10.4) which is a Population Ecology Section program for computing catch at age statistics as part of the stock assessment process. Data files used by 'Catch at Age' were selected directly from biological sample data in the Pelagic Samples Database. These data included a 2% adjustment for the shrinkage due to freezing on the length measurements for frozen samples (Hunt et al. 1986). The length-weight relationships, which are also required as input to the 'Catch at Age' application, were calculated using an Oracle SQL*Plus script. Due to a lack of ageing in 2007 the catch at age was not available. Runs were made using the 2005 ages as the default in order to create catch at length keys for use with the analysis. The catch at length/age statistics were then calculated from length frequency and agelength key samples expanded to total catch using appropriate monthly length-weight relationships. The data were grouped and monthly age-length keys were applied to length frequencies to produce catch at length statistics by NAFO unit area, gear-type and month.

Historical Age Composition

The historical time series of catch at age for the period 1965-2005 shows very few fish older than age 7 in recent years and has been dominated by ages 2 through 4 since 1998 (Table 15, Figure 27). Since 1995 the series is primarily made up of fish age 6 and younger but older ages were a feature when strong year-classes (i.e. 1976 and 1983) were progressing through the fishery. The rapid decline of year-classes (including the presumed moderately strong 1998 year-class) implies a high total mortality (Power et al, 2006a).

The trend toward catches at younger ages has resulted in reduced yield and is reflected as a decrease in the average weight of fish in the overall catch at age (Figure 28). This indicator has declined from an average fish weight of 130 to 180g in the 1980's and 1990's to an average fish weight of about 90g in 2003-2004. These levels had not been observed since 1975, just prior to the closure of the meal fishery, the implementation of individual boat quotas and the conversion to a food fishery by the herring industry (Iles 1993). However, the most recent years have seen an increasing trend toward a larger average fish size with the 2007 average size near the long term average of 125g. The total removals of fish by numbers have also been reduced by close to 50% in 2005/2007 relative to 2004 (Table 16, Figure 28).

Size composition of catch

The size composition of the catch was determined from the length sampling data and was calculated for the stock component using the appropriate catches and monthly length weight relationships.

In 2006, the catch at length was composed of 35% <23cm (size of 50% mature), 63% from 23 to 30cm and 1.7% for sizes larger than 30cm (Table 16, Figure 29). In 2007 the catch at length size composition was comprised of 46% fish less than 23cm, 49% fish 23 to 30cm and 5% sizes larger than 30cm.

The 1992 catch at length was determined for comparison with the current data. The time around 1992 is considered to be a period when the stock was known to have a broad size and age distribution but was also in a state of decline (Power et al 2006a). The catch at length for 1992 had a broad distribution of sizes from less than 10cm to 38cm with a substantial proportion (21%) greater than 30cm (approximate mean size for a 5-6 year old herring) (Table 16, Figure 30).

There has been a recent increase of older/larger fish in the catch but the percentage is well below pre-1999 levels (Figure 30). The number of smaller fish in the catch (less than 23cm) was similar to other years. Small fish were seen in abundance in both the stock fishery and in New Brunswick weirs suggesting a strong year-class. The proportion of the catch greater than 30cm increased in 2007 to 5% from 2% in 2006.

Industry and management have explored means of managing the complexity within each component (such as distributing fishing effort among spawning areas according to their relative size) and taking appropriate account of the interaction among components (such as fishing restrictions on some areas of mixing). Prior to 2005, there was targeting of young fish and the high proportion of juveniles in the catch resulted in lost potential yield. In 2005/2006 industry made a concerted effort to re-direct to larger fish which resulted in a significant decrease in the proportion of fish less than 23cm in the catch. This, combined with the reduced TAC, has allowed the proportion of adult fish from 23 to 30cm to increase (Figure 30).

Growth trends for 2006-2007

Length frequency samples from the 2006/2007 herring fishery suggested that there was a substantial increase in the percent of fish >30cm. Given what we know about herring growth it has been asked if the increase in frequency of large fish can be attributed to growth. In other words, could the size distribution of herring observed in 2007 be obtained by the 2006 fish growing or must other factors be considered (e.g. immigration from elsewhere or targeting on larger sizes).

Examination of the catch weighted length frequency distribution from the Southwest Nova Scotia and the Bay of Fundy fishery (SWNS/BOF) clearly illustrated a forward modal progression in the size of mature fish from 2004 to 2007 (Figure 31). In 2004 the fish were approximately 24-26 cm and by 2007 these fish had grown to approximately 28-30 cm. The percent of herring greater than or equal to 30 cm showed a trend of increase but remained around 3% until 2007. The percent of herring ≥30cm was 3.3%, 2.7%, 3.4% and 9.9% respectively in 2004, 2005, 2006, and 2007.

While the progression observed in the overall length frequency distribution of SWNS/BOF appeared to be consistent with growth there was a general feeling that the increase in larger herring observed on the spawning grounds might not be accountable simply by growth and that the observed increase in the percentage of herring ≥ 30 cm might not have been achievable in a single year. A generalized herring growth model was therefore used to determine if the observed increase in size could be achieved through natural process.

The program FISAT II (Version 1.2.2) from FAO_ICLARM (Gayanilo et al. 2005) was used to estimate the growth parameters (L_{inf} , K, and t_0) of Atlantic herring collected in southwest Nova Scotia during the month of September. Because of the uncertainty with ages the growth parameters were estimated for each year from 1980 to 2005 to explore the range of possible values observed over the past 25 years. Several options are available in the software to best fit

the growth equation. In this case we selected to iterate either using a fixed t_0 or a floating t_0 . The former fixes t_0 as 0 forcing the curve x-intercept through 0 and the latter allows t_0 to be estimated for the best fit to the observations (Figure 32). When t_0 is allowed to float more variability is observed in the growth rate but there is still a major shift that occurs between 1999 and 2000 that may be due to ageing inconsistencies. The Von Bertalanffy growth equation equals:

$$L_t = L_{inf} (1 - e^{-K(t-t_0)})$$

where:

t = time in years

to = age of fish at 0 length

Lt = length at time t

Linf = theoretical maximum length

K = growth constant

In summary there was a general declining growth rate from 1982 to 1999 for both the fixed and the floating t_0 estimates of "K". The parameter estimation for K with the fixed t_0 was chosen in the final analysis due to the reduced variability for the time series while showing a similar trend.

Using the von Bertalanffy growth equation and the length frequency from 2006, the number of fish for each 0.5cm length interval in 2007 was estimated using K = 0.38 (fixed t_0) and L_{inf} = 344mm. The graph clearly indicated that it was possible to move from the length frequency observed in 2006 to the length frequency observed in Southwest Nova in 2007 using the average growth parameters from 1980 to 1999 (Figure 33). If the growth parameters from the most recent period (2000-2005) were used to estimate the 2007 length increment, it was unlikely that the 2007 length frequency for fish \geq 30cm could be achieved since a relatively small proportion of the fish \geq 31.5 cm was predicted. In the extreme case of using the 2000 growth parameters to estimate length, it was virtually certain that the 2007 length distribution of larger fish could not have been obtained.

In summary, it was concluded that the observed increase in the percent of herring greater than or equal to 30 cm could be achieved by annual growth of SWNS fish if we assumed the average growth rate observed between 1980 and 1999. However, using the growth rates estimated for the most recent years (2000-2005) it is unlikely that growth alone could account for the increased proportion of larger fish. Given the inconsistencies observed in the ageing it is unlikely these growth rates have increased to the levels estimated for the period 2000 to 2005.

Stock Trends

The 2005 assessment compared a population model, (VPA) calibrated with the relative abundance from the acoustic surveys, with the overall absolute abundance estimated from these same acoustic surveys (Power et al., 2006a). While the trends in modelled abundance followed those in the survey, there was an inconsistency with a lower estimate of biomass determined by the VPA compared with the absolute estimate provided by the acoustic surveys. This inconsistency has not been resolved but may be due to issues with the survey (e.g. double counting, target strength) and/or the VPA (e.g. ageing, unaccounted mortality). The 2007 Framework (DFO 2007) concluded that while the current acoustic survey can only provide a relative index of abundance, efforts should continue towards developing them as an absolute estimator.

In April, 2006, ageing inconsistencies were identified that may have an impact on the age based assessment results (DFO 2006). To test the sensitivity of the VPA to changes in the age input, several growth models using age-length keys from selected years were applied to the catch at age and the indices of abundance from 1999 to 2006 and input into the 2005 VPA formulation (Melvin and Power, 2007). The estimated fishing mortalities for 1995-2006 from these simulations were variable and consistent with the previous investigation, and no scenario produced fishing mortalities at or below F_{0.1} (where F_{0.1} is F=0.23).

The January 2008 herring ageing workshop concluded that there were major inconsistencies with herring ageing amongst the readers and with the historical database. The degree of difference varied depending upon the reader. The current 4VWX otoliths have been consistently under aged relative to the other readers and the database. The implication, or impact, of under ageing on a VPA has been examined by several investigations (Melvin and Power, 2007). The results from these studies indicated that under ageing leads to an over-estimate of fishing mortality and an under estimate of biomass; the amount dependent upon the severity of the under ageing. As a result, an age based analytical assessment with estimates of fishing mortality cannot be undertaken until these ageing issues are resolved.

Between 1999 and 2003 acoustic survey results were used as minimum estimates of absolute SSB abundance and the population was considered to be approximately 500,000t. An SSB of that size would have been expected to result in substantial growth of the population, improved age composition and low fishing mortality, given reasonable recruitment and the landings over that period. The expected increase in the SSB due to the reduced quota since 2005 is now being observed in the surveys.

There are several positive signals for this component. Fishing mortality was not determined but appeared to be decreasing based on the trends from relative exploitation rates from acoustic surveys. There are indications that a strong year-class may be entering the fishery with a large number of smaller fish in the catch (less than 23cm) seen in both the stock fishery and in non-stock NB weirs. There has also been an increase in acoustic survey biomass in recent years, but the stock biomass at 384,400t remains below historical levels (average of 427,600t since 1999).

2.3 Sources of Uncertainty

There are several sources of uncertainty in this assessment that need to be considered. The use of the acoustic survey results as a measure of absolute abundance has a number of unknowns including residence time on the spawning grounds and estimation of biomass in the acoustic dead zones at the surface and close to bottom.

The acoustic survey index provides fisheries independent information on the spawning stock biomass but does not provide data on younger age classes. The size of recruiting herring year-classes is known to be highly variable and with no index of recruitment there is a large fraction of the catch dependent on recruiting year classes with uncertain abundances. There are signs of a strong incoming year-class with substantial numbers of smaller fish (between18-23cm) in the 2007 catch but the strength of this year-class is still unknown.

There is also uncertainty in the ageing of age 4+ herring for this stock. This is under review.

2.4 Ecosystem Considerations

Herring is a keystone forage species prominent in the diet of many fish, seabirds and marine mammals, and should be managed with these interactions in mind. At present, use of a natural mortality rate of 0.2 and maintenance of SSB at moderate to high levels are assumed to account for these interactions.

Management initiatives to protect spawning components are intended to maintain the spatial and temporal diversity of herring spawning. Increased fishing on juveniles, which are of mixed or unknown stock affinity, is inconsistent with this objective.

2.5 Management Considerations

In the previous assessment an evaluation of progress in recent years against biological objectives in the management plan indicated that most objectives were not being met (Table 17) (Power et al. 2007). The biomass estimates for all spawning areas increased slightly from 2005 but were still at historically low levels with a substantial decline from 2004. The Scots Bay, Trinity Ledge, Lurcher Shoal and Seal Island spawning grounds remained at very low biomass. In 2006 the beginning and duration of spawning in Scots Bay and German Bank occurred as normal, unlike 2005, but there was a mid-season gap in spawning in Scots Bay. Fishing mortality was considered likely high and well above $F_{0.1}$ and the SSB near the lowest recorded level since 1999 from acoustic surveys.

The objectives for this stock from the management plan and the current observations are summarized for the 2007 fishing season (Table 18). Some conservation objectives specified for this fishery are being met but there are still concerns with all spawning areas other than German Bank which is considered at or above average biomass.

The in-season management approach, which spreads the effort in the fishery spatially and temporally among spawning components, is seen as beneficial in achieving the conservation objectives. The "survey, assess, then fish" protocol is effective in spreading the catch appropriately among spawning components in proportion to their relative size and is considered an important safeguard. Acoustic surveys have become critical to stock status evaluation. It is important that there be continued attention to coverage and survey design in order to assure year-to-year consistency in all spawning areas.

The potential benefits of the reduced quota and other rebuilding measures from 2005 through to 2007 are now starting to be reflected in the improved biological characteristics of the population. This current assessment indicates an improvement from the low level of the resource noted in recent assessments. A harvest strategy that exercises continued caution to facilitate further rebuilding is strongly recommended. Despite the increase in acoustic SSB and the improved proportion of larger fish, catch levels should remain near the current status quo due to uncertainties in estimating SSB, recruitment and the exploitation rate for this stock.

3) OFFSHORE SCOTIAN SHELF BANKS SPAWNING COMPONENT

3.1 The Fishery

A foreign fishery during 1963-1973 is estimated to have removed an average of 28,000t per year and as much as 121,000t in 1969 from the offshore Scotian Shelf banks (Stephenson et al.

1987). Few herring were caught after the extension of jurisdiction in 1977 until 1996, when a fishery was initiated by the Scotia-Fundy purse seine fleet and 11,700t were taken (Table 3). Since this time, a fishery has taken place on feeding aggregations on the offshore banks, primarily in May and June, with catches ranging from 1,000 to 20,000t (Figure 34). The variability in catch levels is often due to problems of fish being too deep, weather and market conditions rather than in the abundance of herring in these areas.

In 2007 total landings were down to 5,400t from 9,800t in 2006 with most landings by purse seine and midwater trawl in May and June, in the vicinity of the Patch, Emerald and Western banks (Figure 35). There was also effort near the shelf edge, west of Sable Island, by midwater trawlers. The reduction in landings was attributed to extremely poor weather and to fish remaining deep and hard to catch. Herring were reported as abundant but there were no surveys or acoustic effort on the aggregations encountered.

In 2007, the size composition of the catch was very similar to previous years: mostly adult fish >23cm (50% maturity at length) with a substantial proportion (27%) larger than 30cm (Figure 36). Biological sampling from the catches found fish in the early ripening maturation stages (stage 3 and 4) with good fat content of 12 to 15.5%.

3.2 Research and Industry Surveys

Industry Surveys

There have been no industry surveys of the offshore Scotian Shelf area since 2001. Acoustic recorders were activated on a few occasions but insufficient quantities of fish were observed to warrant analysis or the information was of poor quality with excessive interference from other electronics. Consequently, no acoustic biomass estimates were available from the Scotian Shelf in 2007.

July Bottom Trawl Survey

Previous results from the summer research bottom trawl survey showed few herring on the Scotian Shelf during the 1970's, increasing amounts during the 1980's and a relatively widespread distribution in recent years (Harris and Stephenson 1999, Power et al. 2004, Stephenson et al. 2001).

In 2005, offshore herring catches from this survey for strata from The Gully, east of Sable Island, to the Baccaro Line (strata 55-78) showed a substantial decline from the high in the previous year (Table 19, Figure 37). In 2006 this index increased slightly but then declined again in 2007 to the lowest value since 1993. The strata areas used for selection of trawling stations in this bottom trawl survey series are shown in Figure 38 (Doubleday 1981). Herring catches from the 2007 summer survey were again widely distributed on banks west of Sable Island but were less abundant compared to the last seven years (Figure 39, 40). Size distribution of catches from the research trawl survey shows a distribution similar to that seen in the catch with a large proportion greater than 30cm (Figure 41).

The summer bottom trawl research survey which previously demonstrated considerable abundance and distribution of herring widely spread over the Scotian Shelf, has declined substantially from the high of 2004. There are several shortcomings to this data series which preclude its use as an indicator of overall abundance for a schooling pelagic species like herring.

These include variable behavior and availability to the gear from year to year and the lack of year-class tracking when this was explored previously. The bottom trawl data, while useful for documenting size, maturity and distribution, are not considered indicative of overall herring abundance.

Fall Herring Research Survey

Since 2002, there has been no fall herring research survey on the Scotian Shelf when the research vessel Alfred Needler was last used to explore the various inshore and offshore areas where herring were known to aggregate.

3.3 Outlook and Management Considerations

There continues to be insufficient documentation of stock size, distribution and spawning behavior for this component. There have been no industry surveys of the offshore Scotian Shelf area since 2001. Industry, DFO Science and Management are encouraged to continue to work together to improve the biological basis for management. The industry should be encouraged to explore and undertake surveys of the offshore area. There is little new information to add and no reason to change the previous recommendation that the initial catch allocation for 2008 should not exceed the 12,000t as described in the fishing plan.

4) COASTAL (SOUTH SHORE, EASTERN SHORE AND CAPE BRETON) NOVA SCOTIA SPAWNING COMPONENT

4.1 The Fishery and Resource Status

There is no quota for the coastal Nova Scotia spawning component and, apart from four areas, the size and historical performance of spawning groups are poorly documented. In addition to the traditional bait and personal-use fisheries, directed roe fisheries have occurred on several spawning grounds in recent years (Clark et al. 1999). As the inshore roe fisheries off Glace Bay, East of Halifax and Little Hope have developed, participants have contributed to sampling and surveying and the fisheries have attempted to follow the 'survey, assess, fish' protocol. This was the twelfth year for a fishery on spawning fish off Halifax/Eastern Shore and the eleventh year of gillnet roe fisheries off Little Hope/Port Mouton and Glace Bay.

The recorded landings of 5,300t in 2007 in the four major gillnet fisheries along the coast of Nova Scotia declined from 2006 (Table 20) (Figure 42). They were much lower for the Little Hope/Port Mouton area, slightly higher for the Eastern Shore area, and minimal for Glace Bay, while the Bras d'Or Lakes area remained closed.

Little Hope/Port Mouton

The 2007 herring gillnet fishery in the Little Hope/Port Mouton fishing area took place primarily during a one week period between Oct. 16 and Oct. 23, 2007 with total landings of 1,506t (Figure 43). This is primarily a roe fishery with catches from two main areas, near Little Hope Island and east of Liverpool. The 2007 fishery was unusual in comparison to the previous year in that the fishery started late, most catches were recorded off Liverpool, and few herring were caught or recorded near Little Hope Island. The start of the spawning fishery was also delayed by nearly 2 weeks compared to 2006 with few catches before mid-October. The roe fishery finished on Oct. 23 but there continued to be small amounts landed for bait.

Acoustic surveys were completed on Oct. 18, Oct. 21 and Nov. 18 with both the schools and the area between schools surveyed (Power and Melvin, 2009). The standard protocol for surveys of spawning herring is to allow 10 to 14 days between surveys in order to avoid double counting of fish that still remain from previous surveys. Summing the biomass estimates for the 2007 season for the larger night of Oct. 18 and Nov. 18 resulted in a total estimate of 2,780t with the calibration integration factor (CIF) or 2,390t without the CIF (Table 21-22, Figure 44).

The total biomass of 2,780t is the lowest recorded since spawning surveys began in 1998 and the total catch was close to the total amount surveyed. The lack of fish documented, in particular around Port Mouton Island, rather than the issue of double counting and turnover rates on the spawning grounds is the primary issue. The fishery ended just after the second survey and sampling showed the presence of spent fish, indicating that the surveys may have occurred after the peak abundance and that the fish may have already spawned and were moving away. It is also possible that there were very few fish around to document. The fact that no significant amounts of herring were documented near Port Mouton Island over the entire season and that the total biomass surveyed was only slightly more than the amount of catch recorded is cause for concern.

East of Halifax (4W Eastern Shore)

The 2007 herring gillnet fishery in the Eastern Shore fishing area began on Sept. 25 and ended on Nov. 20 with total landings of 3,727t (Figure 45). This was primarily a herring roe fishery with catches reported from three main areas: near Halifax Harbour approaches, southwest of Jeddore Head and south of Ship Harbour, N.S. The fishery catch and duration were similar to those of 2006 with daily landings of 150-300t and majority of catches occuring by mid October. There was no landings after October 23 except on November 20-21 when about 60t were caught and a survey completed near the Halifax Harbour area.

In 2006 the total SSB estimated from the three surveys was 51,100t which was a substantial increase since 2005. In 2007 surveys were completed in each of the primary fishing areas from Halifax Harbour to near Ship Harbour, N.S. on October 2, October 8, October 22 and November 20 (Power and Melvin, 2009). The overall estimates are 28,280t with the CIF and 24,040t without the CIF. In 2007 there was a reduction in surveyed acoustic biomass in the Halifax/Eastern Shore area of about 50% from the previous year (Table 21-22, Figure 46). This was attributed by industry representatives to a lack of survey effort in the Eastern Passage area and high turnover rates on the spawning grounds.

Glace Bay

In 2006 there was minimal catch of 85t in the Glace Bay area due to the poor price for herring roe. In 2007 there was virtually no herring roe fishery with only 5t reported and thus no fishery information for defining possible surveying search areas (Figure 47). Three herring acoustic surveys were conducted in 2007 near Glace Bay, N.S. by a single survey vessel (*Natasha Lee*) equipped with an acoustic recording system (Power and Melvin, 2009). The overall biomass estimate (taken as the sum of the surveys) is 240t with the CIF and 110t without the CIF (Table 21-22, Figure 48).

Bras d'Or Lakes

The fishery remained closed. No sampling or acoustic surveys were undertaken in the Bras d'Or lakes to document the size distribution or abundance of herring. It has been noted since 1997 that the status of herring in the Bras d'Or Lakes is cause for concern. With no sampling or acoustic surveys in recent years, there is no evidence of any change. It is therefore appropriate to reiterate from a biological perspective, that no fishing take place on this spawning component.

4.2 Outlook and Management Considerations

In 2007 there was a reduction in surveyed acoustic biomass in the Halifax/Eastern Shore area of about 50% from the previous year (Table 21-22, Figure 46). The Little Hope area saw an even larger decline of almost 90% from the previous year (Table 21-22, Figure 44). There were no significant amounts of herring documented over the entire season on the normal spawning area near Port Mouton Island and the total biomass surveyed was only slightly more than the recorded catch. Surveys were also completed near Glace Bay but few spawning herring were documented and only 5t of landings were reported. (Figure 48). No herring surveys took place in the Bras d'Or Lakes.

As indicated for the SW Nova Scotia/Bay of Fundy component, summing of multiple surveys may result in overestimates of SSB due to double counting. However, the majority of surveys of the Coastal Nova Scotia spawning component were undertaken on spatially separated aggregations of fish.

Management approaches and recent research efforts have improved knowledge in the three areas (Little Hope/Port Mouton, Halifax/Eastern Shore and Glace Bay), but there has been no increase in knowledge in adjacent areas. Individual spawning groups within this component are considered vulnerable to fishing because of their relatively small size and proximity to shore. As in the past five years, it is recommended that no coastal spawning areas experience a large effort increase until enough information is available to evaluate the state of that spawning group. There should be no large increases in effort in coastal spawning areas and no new fisheries developed when there is uncertainty regarding stock composition and degree of mixing.

The decline in or lack of surveyed biomass of all three major coastal spawning groups is cause for concern. Recent management of these areas has used a five year average of recent catches and/or surveyed acoustic biomass to set removal levels. The provision to document sufficient quantities of fish each year before the fishery begins has been waived recently due to substantial abundances from previous years. It is recommended that given the current situation of declining biomass in all areas the "survey, assess, then fish" protocol should be reinstated.

5) SW NEW BRUNSWICK MIGRANT JUVENILES

The southwest New Brunswick weir and shutoff fisheries have relied, for over a century, on the aggregation of large numbers of juvenile herring (ages 1-3) near shore at the mouth of the Bay of Fundy. These fish have been considered to be a mixture of juveniles, dominated by those originating from NAFO Subarea 5 spawning components, and have therefore been excluded from the 4WX quota.

The number and distribution of active weirs have decreased over the past decade, due in part to the conversion of sites to aquaculture, as well as the reduction in landings in the past 30 years in

the Passamaquoddy Bay area (Table 1, 3, 8-9) (Stephenson, 1990). In 2003 there was a large drop in landings in the traditional New Brunswick weir and shutoff fishery to 9,000t - the lowest landings since 1983 – and there was concern expressed for this fishery. In 2004 weir landings increased to 20,600t, while in 2005 landings again decreased to 13,055t (Table 3). In 2006 landings remained low with about 14,100t recorded for the New Brunswick weir and shutoff fishery. The size of herring caught in 2006 was abnormally small throughout the season and this impeded markets.

Preliminary results from tagging studies conducted on weir fish since August 2002 have indicated a link between the fish caught in the weir fishery and those caught in the fall and winter purse seine fishery off Grand Manan (Waters and Clark, 2005). The juvenile fish caught in the purse seine fishery are counted against the 4VWX quota, whilst those caught in the weirs are considered to be of Subarea 5 origin. The recent US management plans (NEFSC 1998, 2004) assumes that all of the juvenile herring from this fishery originate from the US "coastal complex" (5Y + 5Z) which is reported to be at reduced levels of abundance.

The latest landings for the 2007 New Brunswick weir and shutoff fishery were 30,921t which is the highest catch for this component since 1993 (Figure 49, 50). The size composition of herring caught was well suited to the sardine market and was primarily of juvenile size with 95% by number less than 23 cm (the size used to separate juveniles and adults) (Figure 51). This also confirms the presence of the large 2005 year-class which was observed in high numbers in the previous season as small unmarketable fish. The number of active weirs with catch increased to 98 in the 2007 season from the low of 76 in 2005.

6) 5Z Georges Bank

The activities of midwater trawlers and herring purse seiners on the Canadian portion of Georges Bank (area 5Z) were monitored and there were no reported landings or effort (Table 1).

Acknowledgements

The authors would like to thank the following for their invaluable contributions to the provision of survey data and other assistance in the preparation of this report: Atlantic Herring Co-Op; Cape Breeze Seafoods; Comeau's Sea Foods Ltd.; Connors Bros. Ltd.; Herring Science Council; Eastern Shore Fishermen's Protective Association; Fundy Weir Fishermen's Association, Glace Bay herring gillnet group; Little Hope Management Committee; Scotia Garden Seafood Inc. and South-West Seiners.

References

- Clark, K.C. 2006. An examination of turnover rate of herring on the spawning grounds of Scots Bay and German Bank using tagging data. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/47: 44p.
- Clark, K.J., D. Rogers, H. Boyd and R.L. Stephenson. 1999. Questionnaire survey of the coastal Nova Scotia herring fishery, 1998. DFO Can. Stock Assess. Sec. Res. Doc. 99/137: 54p.
- DFO. 1997. In-season management in the 4WX herring fishery. DFO Science Fisheries Status Report 97/2E: 5p.
- DFO, 2003a. Atlantic Herring: Georges Bank, Nantucket Shoals, Gulf of Maine Stock Complex. DFO Science Stock Status Report 2003/028: 7p.
- DFO, 2003b. 2003-2006 Scotia-Fundy Fisheries Integrated Herring Management Plan, NAFO subdivisions 4WX, 4Vn and 5Z. Department of Fisheries and Oceans.
- DFO, 2006. Science Expert Opinion on the Impact of Age Reading Inconsistencies on the 2006 TAC Advice for Southwest Nova Scotia/Bay of Fundy (SWNS/BoF) Herring. Maritimes Region Expert Opinion 2006/06: 6p.
- DFO, 2007. Proceedings of the Maritimes Provinces Regional Advisory Process on the Assessment Framework for 4VWX Herring Stocks; 31 October 1 November 2006 and 9 11 January 2007. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2007/002: 52p.
- Doubleday, W.G. (Editor) 1981. Manual on groundfish surveys in the northwest Atlantic. NAFO Sci. Coun. Studies, No. 2, 55p.
- Gayanilo, F.C.Jr.; Sparre, P.; Pauly, D. 2005. FAO-ICLARM Stock Assessment Tools II (FiSAT II). Revised version. User's guide. FAO Computerized Information Series (Fisheries). No. 8, Revised version. Rome, FAO, 168p.
- Harris, L.E. and R.L. Stephenson. 1999. Compilation of available information regarding the Scotian Shelf herring spawning component. DFO Can. Stock Assess. Sec. Res. Doc. 99/181: 30p.
- Hunt, J.J., G. Martin and G.A. Chouinard. 1986. The effect of freezer storage on herring length and maturity stage determination. CAFSAC Sec. Res. Doc. 86/89: 13p.
- Iles, T.D. 1993. The management of the Canadian Atlantic herring fisheries, p. 123-150. *In* L.S. Parsons and W.H. Lear [eds.] Perspectives on Canadian marine fisheries management. Can. Bull. Fish. Aquat. Sci. 226.
- Mace, P.M. 1985. Catch rates and total removals in the 4WX herring purse seine fisheries. CAFSAC Sec. Res. Doc. 85/74: 31 p.
- Melvin, G.D. and M.J. Power. 1999. A proposed acoustic survey design for 4WX herring spawning components. DFO Can. Stock Assess. Sec. Res. Doc. 99/63: 15p.

- Melvin, G.D. and M.J. Power. 2007. Ageing inconsistencies and sensitivity analysis for 4WX herring. DFO Can. Sci. Advis. Sec. Res. Doc. 2007/071: 35p.
- Melvin, G.D., L.M. Annis, M.J. Power, K.J. Clark, F.J. Fife and R.L. Stephenson. 2003. Herring acoustic surveys for 2002 in NAFO Divisions 4WX. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/034: 46p.
- Melvin, G.D., M.J. Power, L.M. Annis, K.J. Clark, F.J. Fife and R.L. Stephenson. 2004. Summary of the 2003 herring acoustic surveys in NAFO Divisions 4VWX. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/031: 64p.
- NEFSC [Northeast Fisheries Science Center]. 1998. Report of the 27th Northeast Regional Stock Assessment Workshop (27th SAW): Stock Assessment Review Committee (SARC) consensus summary of the assessments. Northeast Fish. Sci. Cent. Ref. Doc. 98-15: 350p.
- NEFSC [Northeast Fisheries Science Center]. 2004. Stock assessment of the Gulf of Maine Georges Bank Atlantic herring complex, 2003. Northeast Fish. Sci. Cent. Ref. Doc. 04-06: 290p.
- Paul, S.D. 1999. Report of the 1998-1999 4VWX herring and mackerel tagging program and plans for 1999-2000. DFO Can. Stock Assess. Sec. Res. Doc. 99/138: 25p.
- Power, M.J., R.L. Stephenson, G.D. Melvin, and F.J. Fife. 2002. 2002 evaluation of 4VWX herring. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/57: 59p.
- Power, M.J., R.L. Stephenson, K.J. Clark, F.J. Fife, G.D. Melvin and L.M. Annis. 2004. 2004 Evaluation of 4VWX herring. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/030: 123p.
- Power, M.J., G. D. Melvin, F.J. Fife, D. Knox, and L.M. Annis. 2005. Summary of the 2004 herring acoustic surveys in NAFO Divisions 4VWX. DFO Can. Sci. Advis. Sec. Res. Doc. 2005/024: 56p.
- Power, M.J., K.J. Clark, F.J. Fife, D. Knox, G.D. Melvin, R.L. Stephenson and L.M. Annis. 2006a. 2006 evaluation of 4VWX herring. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/49: 141p.
- Power, M.J., G.D. Melvin, F.J. Fife, D. Knox, and L.M. Annis. 2006b. Summary of the 2005 herring acoustic surveys in NAFO Divisions 4VWX. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/48: 93p.
- Power, M.J., K.J. Clark, F.J. Fife, D. Knox, G.D. Melvin, and R.L. Stephenson. 2007. 2007 Evaluation of 4VWX Herring. DFO Can. Sci. Advis. Sec. Res. Doc. 2007/040: 83p.
- Power, M.J. and G.D. Melvin. 2009. Summary of the 2007 Herring Acoustic Surveys in NAFO Divisions 4VWX. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/062.
- Sinclair, M. (Chair). 1997. Report of the Maritimes Region herring workshop, 18-19 February 1997. Can. Stock Assess. Proceed. Ser. 97/12: 58p.
- Stephenson, R.L. 1990. Multiuse conflict: aquaculture collides with traditional fisheries in Canada's Bay of Fundy. World Aquaculture Vol. 21(2): 34-45.

- Stephenson, R.L. 1993. Revised estimates of landings from the 4WX herring fisheries: 1985-1992. DFO Atlantic Fisheries. Sec Res. Doc. 93/74: 13 p.
- Stephenson, R.L., D.J. Gordon and M.J. Power. 1987. Herring of the outer Scotian Shelf and Georges Bank: history of the fisheries, recent developments and management considerations. DFO Atlantic Fisheries Sec Res. Doc. 87/76: 23p.
- Stephenson, R.L., M.J. Power, J.B. Sochasky, F.J. Fife and G.D. Melvin. 1994. Evaluation of the 1993 4WX herring fishery. DFO Atlantic Fisheries Sec Res. Doc. 94/88: 50 p.
- Stephenson, R.L., M.J. Power, F.J. Fife, G.D. Melvin, K.J. Clark and S. Gavaris. 1996. Evaluation of the stock status of 4WX herring. DFO Atlantic Fisheries Sec Res. Doc. 96/28: 71p.
- Stephenson, R.L., K. Rodman, D.G. Aldous and D.E. Lane. 1999. An in-season approach to management under uncertainty: the case of the SW Nova Scotia herring fishery. ICES J. Mar. Science 56: 1005-1013.
- Stephenson, R.L., M.J. Power, K.J. Clark, G.D. Melvin, F.J. Fife, T. Scheidl, C.L. Waters and S. Arseneault. 2001. 2001 evaluation of 4VWX herring. DFO Can. Stock Assess. Sec Res. Doc. 2001/65: 114p.
- TRAC, 2006. Gulf of Maine-Georges Bank Herring Stock Complex. TRAC Status Report 2006/01: 6p.
- Waters, C.L. and K.J. Clark. 2005. 2005 summary of the weir herring tagging project, with an update of the HSC/PRC/DFO herring tagging program. DFO Can. Sci. Advis. Sec. Res. Doc. 2005/025: 31p.

Table 1, 4VWX herring fishery landings (t) by month, gear sector and management unit for 2006-2007 quota year.

Table 1. TVVV		risnery landings (t)	4		_	4			7	8		10	11	12	Tota
	_	Gear	1	2	3_	4	5	6		- 0	9	697	149	12	846
S.W. Nova Scotia	4X	Fall P. Seine (2006)										697	149		
	4X	Winter P. Seine (2007)	1,001						40.004	0.400	40.005	0.000			1,001
	4X	Summer P. Seine (2007)					371	4,860	16,231	9,460	12,035	3,088			46,045
	4X	Gillnet "Stock"					0	243		477	614				1,334
	4X	N.S. Weirs					26	11	290	579	224			_	1,130
S.W. Nova Scotia Total			1,001	-			398	5,114	16,521	10,516	12,873	3,785	149	-	50,356
Coastal Nova Scotia	4Vn	Trap					3	35							38
(South Shore,	4Vn	Glace Bay Gillnet					1	1			5				7
Eastern Shore.	4W	Eastern Shore Gillnet									436	3,230	61		3,727
Cape Breton)	4X	Little Hope Gillnet						1		1	7	1,496	1		1,506
Coastal Nova Scotia Tol	al							37	-	1	449	4,726	62		5,278
Offshore Scotian Shelf	4WX	Offshore P. Seine	Γ				540	2,074	121						2,735
	4WX	Midwater Trawl	1				797	1,772							2,569
	4WX	Bottom Trawl + Misc.	1	0	0	3	19	13	11	6	5	14	8	0	81
Offshore Scotian Shelf	Total		1	0	0	3	1,356	3,859	132	6	5	14	8	0	5,385
S.W. New Brunswick	4X	N.B. Weirs	182		20	30	84	633	3,241	11,363	7,637	6,567	314	73	30,145
Migrant Juveniles	4X	N.B. Shutoff								107	103	589			799
S.W. New Brunswick Mi	grant Ju	veniles Total					84	633	3,241	11,471	7,740	7,156			30,944
Georges Bank	5ZE	5Z Purse Seine	Г			-									-
3	5ZE	Midwater Trawl													-
Georges Bank Total											-				

Total 2006-2007 91,963

Table 2, 4WX herring fishery landings (t) by month and gear sector for 2007-2008 quota year (as of April 1, 2008).

Table L. TVIN III	citing no	nicity landings (t) by	1110116	CALL.	a goal	00000		.00	000 90.	,,,,	a. 100		,		
	Area	Gear	1	2	3	4	5	6	7	8	9	10	11	12	Total
2007-08 quota year	4X	Fall 2007 P. Seine										1,087	538		1,626
		Winter 2008 P. Seine	457											\rightarrow	457
2008 Calendar year	4WX	Bottom Trawl	1												1
2007-08 Total			458		-							1,087	538		2,084

Table 3. Historical series of nominal and adjusted annual landings (t) by major gear components and seasons of the 4WX herring fishery, 1963-2007 (the 1963-73 Offshore Scotian Shelf landings are from Stephenson et al. (1987)).

					4Xr	4WX	4WX	4WX	Non-Stock	4VWX	Offshore	Tota
	4W	4Xs	4Xqr	4X	Nova	Stock	Stock	Stock	4Xs	Coastal	Scotian	4VW
Year^	Winter	Fall&Winter	Summer	Summer	Scotia	Nominal	Adjusted	TAC	N.B. Weir	Nova	Shelf	Adjusto
	Purse Seine	Purse Seine	Purse Seine	Gillnet	Weir	Landings	Landings*		& Shutoff	Scotia	Banks	Landing
1963		6,871	15,093	2,955	5,345	30,264	30,264		29,366		3,000	62,63
1964		15991	24,894	4,053	12,458	57,396	57,396		29,432		2,000	88,82
1965		15,755	54,527	4,091	12,021	86,394	86,394		33,346		6,000	125,74
1966		25,645	112,457	4,413	7,711	150,226	150,226		35,805		2,000	188,03
1967		20,888	117,382	5,398	12,475	156,143	156,741		30,032		1,000	187,77
1968		42,223	133,267	5,884	12,571	193,945	196,362		33,145		18,000	247,50
1969	25,112	13,202	84,525	3,474	10,744	137,057	150,462		26,539		121,000	298,00
1970	27,107	14,749	74,849	5,019	11,706	133,430	190,382		15,840		87,000	293,22
1971	52,535	4,868	35,071	4,607	8,081	105,162	129,101		12,660		28,000	169,76
1972	25,656	32,174	61,158	3,789	6,766	129,543	153,449		32,699		21,000	207,14
1973	8,348	27,322	36,618	5,205	12,492	89,985	122,687		19,935		14,000	156,62
1974	27,044	10,563	76,859	4,285	6,436	125,187	149,670		20,602			170,27
1975	27,030	1,152	79,605	4.995	7,404	120,186	143,897		30,819		1	174,71
1976	37,196	746	58,395	8,322	5,959	110,618	115,178		29,206			144,38
1977	23,251	1,236	68,538	18,523	5,213	116,761	117,171	109,000	23,487			140,65
1978	17,274	6,519	57,973	6,059	8,057	95,882	114,000	110,000	38,842			152,84
1979	14,073	3,839	25,265	4,363	9,307	56,847	77,500	99,000	37,828			115,32
1980	8,958	1,443	44,986	19,804	2,383	77,574	107,000	65,000	13,525			120,52
1981	18,588	1,368	53,799	11,985	1,966	87,706	137,000	100,000	19,080			156,08
1982	12,275	103	64,344	6,799	1,212	84,733	105,800	80,200	25,963		1	131,76
1983	8,226	2,157	63,379	8,762	918	83,442	117,400	82,000	11,383			128,78
1984	6,336	5,683	58,354	4,490	2,684	77,547	135,900	80,000	8,698			144,59
1985	8,751	5,419	87,167	5,584	4,062	110,983	165,000	125,000	27,863		1	192,86
1986	8,414	3,365	56,139	3,533	1,958	73,409	100,000	97,600	27,883		1	127,88
1987	8,780	5,139	77,706	2,289	6,786	100,700	147,100	126,500	27,320			174,42
1988	8,503	7,876	98,371	695	7,518	124,653	199,600	151,200	33,421			233,02
1989	6,169	5,896	68,089	95	3,308	83,557	97,500	151,200	44,112			141,61
1990	8,316	10,705	77,545	243	4,049	102,627	172,900	151,200	38,778			211,67
1991	17,878	2,024	73,619	538	1,498	97,010	130,800	151,200	24,576			155,37
1992	14,310	1,298	80,807	395	2,227	100,227	136,000	125,000	31,967			167,96
1993	10,731	2,376	81,478	556	2,662	98,464	105,089	151,200	31,573			136,66
1994	9,872	3,174	64,509	339	2,045	80,099	80,099	151,200	22,241			102,34
1995	3,191	7,235	48,481	302	3,049	62,499	62,499	80,000	18,248			80,74
1996	2,049	3,305	42,708	6,340	3,476	58,068	58,068	57,000	15,913	1,450	11,745	87,17
1997	1,759	2,926	40,357	6,816	4,019	56,117	56,117	57,000	20,552	2,340	20,261	99,27
1998	1,405	1,494	67,433	2,231	4,464	77,027	77,027	90,000	20,091	4,120	5,591	106,82
1999	1,235	4,764	64,432	1,660	5,461	77,552	77,552	105,000	18,644	5,618	12,646	114,46
2000	1,012	4,738	78,010	823	701	85,284	85,284	100,000	16,829	4,283	2,182	108,57
2001	0	4,001	62,004	1,857	3,708	71,570	71,570	78,000	20,209	6,006	12,503	110,28
2002	367	5,257	69,894	393	1,143	77,054	77,054	78,000	11,874	10,375	7,039	106,34
2003	0	8,860	79,140	439	921	89,360	89,360	93,000	9,003	9,162	998	108,52
2004	0	5,659	69,015	225	3,130	78,029	78,029	83,000	20,686	6,924	4,165	109,80
2005	0	2,601	43,487	566	2,245	48,899	48,899	50,000	13,055	6,311	5,263	73,52
2006	0	930	45,002	719	2,508	49,159	49,159	50,000	12,863	6,566	9,809	78,39
2007	0	1,847	46,045	1,334	1,130	50,356	50,356	50,000	30,944	5,240	5,385	91,92

[^]Annual landings by purse seiners are defined for the period from October 15 of the preceding year to October 14 of the current year.

^{*}Adjusted totals includes misreporting adjustments for 1978-84 (Mace 1985) and for 1985-93 (Stephenson 1993, Stephenson et al 1994)

All landings by other gear types are for the calendar year.

Table 4. Herring purse seine catches (t) and percentage by fishing ground areas from 1985 to 2007 for the 4WX stock component.

a) Herring purse	seine ca	tches (t	by gro	unds for	the 4W	K stock	area fro	m 1985-	2007.															All Series
Stock Areas	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 85-07
Browns Bank		732						86		1,903	1,554	40	14	3,139	2,197	1,137	486			45		88	34	831
Chedabucto Bay	4,216	7.498	6,374	7,523	8,325	12,470	12,596	3,084	1,378	1,407	2.049	1,759		1,583	1,151	10								4,521
Gannet, Dry Ledge	5,675	2,187	1,474	14,901	2,010	4,213	6,294	18,527	2.935	2,588	2,693	1,963	4,590	4,156	10,296	12,674	3.877	9.047	6,965	4,456	3,117	6,764	11,344	6,251
German Bank	15,522	13,346	16,547	18,392	8,087	11,744	23,193	3,235	4,045	9,662	19,549	15,898	13,576	20,556	24,660	25,631	24,139	22,355	21,573	14,175	14,171	16,522	15,085	16,314
Grand Manan	4,989	5,823	4,298	4,440	4,300	5,442	4,225	2,722	783	6,846	5,297	6,005	5,312	15,983	7,912	18,185	10,545	17,753	17,258	7,542	5,740	7,716	10,011	7,958
Long Island	974	3,365	7,499	10,722	21,719	18,484	9,470	3,213	2.814	7,666	7,906	4.385	3,557	12,360	18,286	11,199	12,904	6.642	12,639	13,115	8.037	1,884	4,604	8,900
Lurcher	476	132		2,928	18	65	151	2,141	1,560	530	382	243	599	57		715	227	7,683	1,872	7,268	1,692	2,809	2,305	1,663
N.B. Coastal	188	621	960	1,031	3,033	2,347	488	992	598	99	1,502	271	1,176	782	1,867	361	1,250	3,113	3,914	2,707	787	1,889	851	1,357
Pollock Point																	1,563							1,563
S.W. Grounds	558	1,108	184	181	276	56	521	225	2,961	3,444	6,205	3,035	797	1,239	3,241	1,879	53	791	73		1,228	1,206	30	1,320
Scots Bay		36	3,822	4,145	6,583	9,003	7,982	7,987	5,258	10,840	980	8,984	4,894	8,210	1,789	10,926	10,739	8,202	19,196	24,869	6,239	3,352	4,116	7,735
Seal Island	13,818	8.894	11,560	19,019	23,420	25,344	12,740	10,455	3,874	2,820	465	1,567	492	617	567	206	101	238	1,096		1,358	209		6,337
Trinity	35,860	13,505	18,744	18,539	266	1,113	3,259	4,612	1,348	2,366	370	3,448	5,308	2,825	1,220	103	113	1,609		370	1,448	3,725	112	5,284
Yankee Bank				194	250	3,647	817	119	10	175	323	9	4	159	82	133	8	78			528	2	62	354
Unknown	184	500	200			200	579	494	140		73			62	84	27			1,103	127	181	396	39	273
4WX Stock Total	82,458	57,745	71,661	102,015	78,287	94,127	82,314	57,888	27,703	50.345	49,348	47,606	40,319	71,727	73,350	83,186	66,005	77,511	85,689	74,674	44,526	46,561	48.594	65,868

b) Herring purse s	eine cal	ches as	percen	tage by	grounds	for the	4WX st	ock area	from 1	985-200	7.													All Series
Stock Areas	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 85-0
Browns Bank		1%						0%		4%	3%	0%	0%	4%	3%	1%	1%			0%		0%	0%	19
Chedabucto Bay	5%	13%	9%	7%	11%	13%	15%	5%	5%	3%	4%	4%		2%	2%	0%								49
Gannet, Dry Ledge	7%	4%	2%	15%	3%	4%	8%	32%	11%	5%	5%	4%	11%	6%	14%	15%	6%	12%	8%	6%	7%	15%	23%	10%
German Bank	19%	23%	23%	18%	10%	12%	28%	6%	15%	19%	40%	33%	34%	29%	34%	31%	37%	29%	25%	19%	32%	35%	31%	25%
Grand Manan	6%	10%	6%	4%	5%	6%	5%	5%	3%	14%	11%	13%	13%	22%	11%	22%	16%	23%	20%	10%	13%	17%	21%	12%
Long Island	1%	6%	10%	11%	28%	20%	12%	6%	10%	15%	16%	9%	9%	17%	25%	13%	20%	9%	15%	18%	18%	4%	9%	13%
Lurcher	1%	0%		3%	0%	0%	0%	4%	6%	1%	1%	1%	1%	0%		1%	0%	10%	2%	10%	4%	6%	5%	2%
N.B. Coastal	0%	1%	1%	1%	4%	2%	1%	2%	2%	0%	3%	1%	3%	1%	3%	0%	2%	4%	5%	4%	2%	4%	2%	2%
Pollock Point																	2%							0%
S.W. Grounds	1%	2%	0%	0%	0%	0%	1%	0%	11%	7%	13%	6%	2%	2%	4%	2%	0%	1%	0%		3%	3%	0%	2%
Scots Bay		0%	5%	4%	8%	10%	10%	14%	19%	22%	2%	19%	12%	11%	2%	13%	16%	11%	22%	33%	14%	7%	8%	12%
Seal Island	17%	15%	16%	19%	30%	27%	15%	18%	14%	6%	1%	3%	1%	1%	1%	0%	0%	0%	1%		3%	0%		8%
Trinity	43%	23%	26%	18%	0%	1%	4%	8%	5%	5%	1%	7%	13%	4%	2%	0%	0%	2%		0%	3%	8%	0%	7%
Yankee Bank				0%	0%	4%	196	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%			1%	0%	0%	0%
Unknown	0%	1%	0%			0%	1%	1%	1%		0%			0%	0%	0%			1%	0%	0%	1%	0%	0%
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 5. Herring purse seine catches (t) and percentage by fishing ground area from 1985 to 2007 from non-stock component areas.

		-																						
a) Herring purse	seine c	atches	(t) by	groun	ds for	non-st	ock co	mpone	ent are:	as fron	1985-	2007.												All Series
Non-stock Areas	1985	1986	1987			1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 85-07
Georges Bank						91	64			266		2,491	79			265								503
Liverpool							13		4,067	4,177														
Shelburne			59				64		526	161		56									29			115
Halifax									652	1,945		585	455			1,002	472	367						660
Offshore Banks												11,800	18,770	4,284	8,669	1,645	3,977	5,078	722	4,054	4,115	4,846	2,515	5,319
Western Hole		41	154				213	3,451	2,255	1,495	108	127	691	1,012	1,057	47	7,712	1,884	156		214	192	220	1,180
Sydney Bight	3,511	4,250	1,751	2,100	1,330	3,591	3,606		396		3,951	4,267		52										2,405
Nonstock Total	3.511	4.291	1.964	2.100	1,330	3,682	3,959	3,451	7,896	8,044	4,059	19,325	19,995	5,348	9,726	2,958	12,161	7,329	878	4.054	4,358	5,038	2,735	5,985

b) Herring purse	seine c	atches	as pe	rcenta	ge by c	round	s for n	on-sto	ck con	poner	nt areas	from 1	985-200	7.										All Series
Non-stock Areas	1985	1986	1987	1988	1989	1990	1991	1992	1993		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 85-07
Georges Bank						2%	2%			3%		13%	0%			9%								1%
Liverpool							0%		52%	52%														4%
Shelburne			3%				2%		7%	2%		0%									1%			1%
Halifax									8%	24%		3%	2%			34%	4%	5%						4%
Offshore Banks												61%	94%	80%	89%	56%	33%	69%	82%	100%	94%	96%	92%	43%
Western Hole		1%	8%				5%	100%	29%	19%	3%	1%	3%	19%	11%	2%	63%	26%	18%		5%	4%	8%	14%
Sydney Bight	100%	99%	89%	100%	100%	98%	91%		5%		97%	22%		1%										33%
Non-stock Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 6. Summary of 1987 to 2007 Scots Bay herring purse seine catches.

			Duration	Days with			Catch/Day	
Year	Min. Date	Max. Date	in Days	Catch	Catch t	No. Slips	with Catch	Catch/Slip
1987	08-Jul-87	06-Aug-87	30	20	3,398	91	169.88	37.34
1988	20-Jul-88	29-Jul-88	10	9	3,780	65	419.99	58.15
1989	19-Jul-89	13-Sep-89	57	35	6,021	164	172.04	36.72
1990	22-Jul-90	14-Aug-90	24	11	8,088	108	735.24	74.89
1991	05-Jul-91	14-Aug-91	41	16	7,365	163	460.30	45.18
1992	25-Jul-92	11-Aug-92	18	18	7,960	189	442.22	42.12
1993	25-Jul-93	01-Sep-93	39	32	5,228	100	163.36	52.28
1994	10-Jul-94	25-Aug-94	47	36	10,610	286	294.72	37.10
1995	24-Jul-95	26-Jul-95	3	3	907	33	302.33	27.48
1996	25-Jul-96	20-Aug-96	27	13	8,939	151	687.58	59.20
1997	30-Jul-97	27-Aug-97	29	19	4,847	91	255.11	53.26
1998	20-Jul-98	10-Sep-98	53	29	7,880	163	271.72	48.34
1999	19-Jul-99	17-Aug-99	30	16	1,789	40	111.81	44.73
2000	25-Jul-00	30-Aug-00	37	26	10,853	171	417.44	63.47
2001	10-Jul-01	21-Aug-01	43	30	10,739	176	357.97	61.02
2002	22-Jul-02	09-Sep-02	50	36	7,994	160	222.06	49.96
2003	21-Jul-03	05-Sep-03	47	34	19,196	237	564.59	81.00
2004	19-Jul-04	16-Sep-04	60	42	24,388	330	580.67	73.90
2005				27	5,872	96	217.48	61.17
2006	24-Jul-06	04-Sep-06	43	16	3,352	43	209.50	77.95
2007	16-Jul-07	31-Aug-07	47	21	4,116	79	196.00	52.10

Table 7. Summary of 1985 to 2007 German Bank herring purse seine catches with start and end dates, catches before Aug.15 (pre-spawning period), catches after Aug. 14 (defined spawning period) and proportion of TAC.

ear	Start Date	End Date	Duration	Total	manual engineers	Catch on/after	Total	% Catch	TAC	German
			No. Days	No. Slips	Aug. 15	Aug. 15	Catch t	on/after		as % TAC
					(prespawn)	(spawning)		Aug-14		
1985	22-Jun-85	08-Oct-85	109	428	8,856	14,228	23,084	62%	125,000	18%
1986	18-Jun-86	01-Oct-86	106	349	2,349	13,542	15,892	85%	97,600	16%
1987	26-May-87	14-Oct-87	142	403	5,138	13,218	18,357	72%	126,500	15%
1988	29-May-88	06-Oct-88	131	610	14,776	18,348	33,125	55%	151,200	22%
1989	28-May-89	15-Oct-89	141	313	2,061	12,087	14,148	85%	151,200	9%
1990	23-May-90	23-Oct-90	154	428	1,220	23,647	24,867	95%	151,200	16%
1991	02-Jun-91	15-Oct-91	136	621	11,800	18,328	30,127	61%	151,200	20%
1992	31-May-92	04-Oct-92	127	556	13,175	10,985	24,160	45%	125,000	19%
1993	24-May-93	29-Sep-93	129	192	7,912	1,092	9,003	12%	151,200	6%
1994	05-May-94	28-Sep-94	147	252	1,186	11,454	12,641	91%	151,200	8%
1995	05-Jun-95	06-Oct-95	124	301	434	21,339	21,773	98%	80,000	27%
1996	20-Jun-96	27-Oct-96	130	260	2,229	16,091	18,320	88%	57,000	32%
1997	11-Jul-97	14-Oct-97	96	327	2,009	17,110	19,119	89%	57,000	34%
1998	10-Jun-98	14-Oct-98	127	516	3,231	21,489	24,720	87%	90,000	27%
1999	20-Apr-99	20-Oct-99	184	666	18,508	16,401	34,909	47%	105,000	33%
2000	18-Apr-00	26-Oct-00	192	598	9,806	26,171	35,977	73%	100,000	36%
2001	22-May-01	20-Oct-01	152	521	5,312	22,156	27,468	81%	78,000	35%
2002	18-Apr-02	12-Oct-02	178	643	10,871	19,935	30,806	65%	78,000	39%
2003	05-May-03	15-Oct-03	164	392	8,900	20,070	28,970	69%	93,000	31%
2004			159	238	5,680	12,345	18,025	68%	83,000	22%
2005		13-Oct-05	151	364	8,069	12,039	20,107	60%	50,000	40%
2006	,	16-Oct-06	112	475	12,227	12,504	24,731	51%	50,000	49%
	15-May-07		144	540	13,948	13,307	27,255	49%	50,000	55%

Table 8. Monthly weir landings (t) for weirs located in New Brunswick and Nova Scotia; 1978 to 2007.

DROVINCE	VEAD	4	2	2	A	-	6	MON 7	8	9	10	11	12	Year Tota
PROVINCE	YEAR	1	2	3	4	542	6					528	132	33,59
N.B.	1978		00			512		5,499	10,275	10,877			74	32,57
	1979	535	96				1,120		9,846		5,985		/4	
	1980					36		1,755	5,572		1,016	216	400	11,06
	1981		4.00			70		4,431	3,911			1,686		14,96
	1982		17			132		2,871	7,311		3,204	849	87	22,18
	1983					65	29	299	2,474		3,945	375		12,56
	1984					6	3	230	2,344		3,045	145		8,35
	1985					22	89	4,217	8,450			2,078		26,7
	1986	43				17			10,114	5,997	6,233	2,564	67	27,5
	1987	39	21	6	12	10	168	2,575	10,893	6,711	5,362	703	122	26,62
	1988		12	1	90	657	287	5,993	11,975	8,375	8,457	2,343	43	38,23
	1989		24		95	37	385	8,315	15,093	10,156	7,258	2,158		43,52
	1990					93	20	4,915	14,664	12,207	7,741	168		39,80
	1991					57	180	4,649	10,319	6,392	2,028	93		23,7
	1992				15	50	774	5,477	10,989	9,597	4,395	684		31,98
	1993					14			14,085	8.614	2,406	470	10	31,32
	1994	1			18				10,592		1,589	30		20,6
	1995					15		4,517	8,590	3,956	896	10		18,22
	1996					19		4,819	7,767	1,917	518	65		15,7
	1997				8		1,017		7,396	5,316	0.0	-		20,39
					0	560		3,832	8,295	5,604	525			19,5
	1998 1999					690		5,155	9.895	2,469	48			19,0
												69		16,3
	2000					10		2,105	7,533		1,713	69		
	2001					35		3,931	8,627		1,479	20		20,00
	2002					84		1,099	6,446		1,260	20		11,8
	2003					257		1,423	3,554	3,166	344	10		9,00
	2004					21		2,694	8,354	8,298	913	3		20,6
	2005					_	213	802	7,145	3,729	740	11		12,63
	2006					8		1,112	3,731		2,328		462	11,64
	2007		_		30	84		3,241	11,363		6,567	314	73	30,14
NB Average Catch		160	34	9	38	134		3,745	8,587		3,180	706	127	22,3
v.S.	1978				1		3,704		239	46	111	198	79	7,8
	1979						3,458		420	39	136	57		6,3
	1980					69	647	1,271	395					2,3
	1981					50	437	983	276	37		41		1,8
	1982					16	267	468	195	172	12			1,1
	1983				2	286	141	188	208	53		18		8
	1984					113	1,032	736	602	220			- 1	2,7
	1985					378	1,799	1,378	489			11		4,0
	1986					385	403	71	704	390	5			1,9
	1987					1.503	2,526	1.215	1,166	367				6,7
	1988						2,976		1,204	386				7,4
	1989						1,018	870	843	226				3,2
	1990					208		1,482	879	538	52			4,1
	1991				3	23	149	719	342	262	02			1,4
	1992				9	35	659	405	754	371				2,2
	1993					226	908	608	867	53				2,6
	1994					111	736	499	519	180				2,0 3,0
	1995						1,255		470	29				
	1996						1,267		358	188				3,4
	1997						1,874		271	65				4,0
	1998						1,677	390	359	317				4,0
	1999	1				1,958	1,513	547	488	31				4,5
	2000						16	151	326	191				6
	2001					105	1,439	1,565	391	207				3,7
	2002					23	95	240	558	228				1,1
	2003					98	126	68	344	284				9
	2004						667	873	1,370	219				3,1
					11	84	731	472	828	118				2,2
	2006													
	2005				11						115			
	2005 2006 2007				11	195 26	138	414	1,447 579	182 224	115			2,4

Table 9. Overall effort from New Brunswick and Nova Scotia weirs for catch (t), number of active weirs and the catch per weir (t) for the period 1978 to 2007.

	Annual Catch (t)			No. Activ			Catch per		
Year	NB	NS	Total Catch	NB	NS	Total No.	NB	NS	Average
1978	33,599	7,858	41,458	208	31	239	162	253	173
1979	32,579	6,339	38,918	210	27	237	155	235	164
1980	11,066	2,383	13,449	120	29	149	92	82	90
1981	14,968	1,824	16,793	147	28	175	102	65	96
1982	22,181	1,130	23,311	159	19	178		59	131
1983	12,568	896	13,464	143	23	166		39	81
1984	8,353	2,702	11,056	116	13	129	72	208	86
1985	26,718	4,055	30,774	156	14	170	171	290	181
1986	27,516	1,957	29,473	105	18	123	262	109	240
1987	26,621	6,776	33,397	123	21	144	216	323	232
1988	38,235	7,480	45,715	191	21	212	200	356	216
1989	43,520	3,296	46,817	171	20	191	255	165	245
1990	39,808	4,132	43,940	154	22	176	258	188	250
1991	23,717	1,498	25,216	143	20	163	166	75	155
1992	31,981	2,224	34,206	151	12	163	212	185	210
1993	31,328	2,662	33,990	145	10	155	216	266	219
1994	20,618	2,045	22,662	129	11	140	160	186	162
1995	18,228	3,049	21,277	106	10	116	172	305	183
1996	15,781	3,476	19,257	101	12	113	156	290	170
1997	20,396	4,019	24,415	102	15	117	200	268	209
1998	19,529	4,048	23,577	108	15	123	181	270	
1999	19,063	4,537	23,600	100	14	114	191	324	207
2000	16,376	683	17,058	77	3	80	213	228	213
2001	20,064	3,708	23,772	101	14	115	199	265	207
2002	11,807	1,143	12,950	83	9	92	142	127	141
2003	9,003	921	9,924	78	8	86	115	115	
2004	20,620	3,130	23,750	84	8	92	245	391	258
2005	12,639	2,245	14,884	76	10	86	166	225	173
2006	11,641	2,491	14,132	89	6	95	131	415	149
2007	30,145	1,130	31,275	97	8	105	311	141	298
Average	22,356	3,128	25,484	126	16	141	178	215	182

Table 10. Purse seine effort, catch and CPUE levels for 1989 to 2007.

Year	No. Days Fished	No. of Boats Fishing	Total Catch t	CPUE (catch/day)	CPUE (catch/boat)
1989	2198		87,383	40	2185
1990	2390	42	103,537	43	2465
1991	2333	40	88,830	38	2221
1992	2431	39	95,072	39	2438
1993	2542	36	92,828	37	2579
1994	2227	36	75,652	34	2101
1995	1682	32	56,441	34	1764
1996	1781	32	60,038	34	1876
1997	1731	30	61,769	36	2059
1998	2290	28	70,931	31	2533
1999	1775	28	78,574	44	2806
2000	1572	28	78,727	50	2812
2001	1826	21	75,343	41	3588
2002	1838	19	76,210	41	4011
2003	1652	18	85,499	52	4750
2004	1358	18	76,361	56	4242
2005	945	16	48,517	51	3032
2006	789	16	44,476	56	2780
2007	914	16	50,667	55	3167

Table 11. Summary of the minimum observed spawning stock biomass for each of the surveyed spawning grounds in the Bay of Fundy/SW Nova component of the 4WX stock complex. Total SSB is rounded to nearest 100t and all data was

calculated without the use of the calibration integration factor (CIF). (Power and Melvin, 2009)

Location/Year	1997*	1998*	1999	2000	2001	2002	2003	2004	2005	2006	2007	Average 1999- 2007
Scots Bay	160,200	72,500	41,000	106,300	163,900	141,000	133,900	107,600	16,800	28,600	45,700	87,200
Trinity Ledge	23,000	6,800	3,900	600	14,800	8,100	14,500	6,500	5,100	8,500	1,400	7,044
German Bank (in) - German (out)	370,400	440,700	460,800	356,400	190,500	393,100	343,500	367,600	211,000	245,500 4,100		322,844 4,100
Spectacle Buoy - Spring - Fall	15,000	1,300	0	0	1,100 87,500		1,400	n/s	300	n/s	100	483 29,167
Sub-Total	568,600	521,300	505,700	463,300	457,800	542,200	493,300	481,700	233,200	286,700	384,400	427,589
Seal Island Browns Bank					3,300 45,800		12,200			8,100 6,100		6,200 25,950
Total	568,600	521,300	505,700	463,300	506,900	543,400	505,400	481,700	233,200	300,900	384,400	436,100
Overall SE t Overall SE %	100 C C C C C C C C C C C C C C C C C C	n/a n/a	94,600 19	64,900 14	50,800 10	49,500 9	86,100 17	74,200 15	64,900 28	47,251 16	94,255 25	

^{*}Biomass estimates prior to 1999 are not considered comparable due to variation in the coverage area.

Table 12. Relative exploitation rates (%) by major spawning grounds and for the overall Bay of Fundy/SW Nova component with (A1) acoustic survey SSB, (A2) acoustic survey proportion of total SSB, (C1) catch by spawning component areas, (C2) adjusted catch including non-spawning area catches, (E1) exploitation rate as percentage of acoustic SSB for spawning area catch and (E2) adjusted catch.

acoustic SSB for spawning a A1) Acoustic Survey SSB (t)	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 99-07
Scots Bay	40.972	106,316	163,900	141,000	133,900	107,600	16,800	28,600	45,700	87,199
Trinity	3,885	621	14,800	8,100	14,500	6,500	5,100	8,500	1,400	7,045
German Bank	460,823	356,372	282,400	394,357	357,100	367,600	211,000	249,600	337,300	335,172
Total SSB	505,680	463,309	461,100	543,457	505,500	481,700	232,900	286,700	384,400	429,416
A2) Acoustic Survey Proportions	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 99-07
Scots Bay	8%	23%	36%	26%	26%	22%	7%	10%	12%	19%
Trinity	1%	0%	3%	1%	3%	1%	2%	3%	0%	2%
German Bank	91%	77%	61%	73%	71%	76%	91%	87%	88%	79%
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
C1) Catch by Spawn Area	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 99-07
Scots Bay	1,789	10,926	10,739	8,202	19,196	24,869	6,239	3,352	4,116	9,937
Trinity (purse seine+gillnet)	2,526	843	1,271	1,865	369	595	2,014	4,444	1,203	1,681
German Bank	24,660	25,631	24,139	22,355	21,573	14,175	14,171	16,522	15,085	19,812
Spawn Area Total	28,974	37,400	36,149	32,422	41,138	39,639	22,424	24,318	20,404	31,430
Overall SW Nova Catch	77,552	85,284	71,570	77,054	89,461	78,029	48,981	49,159	50,529	69,735
Non-spawning area catch remaining	48,578	47,884	35,421	44,632	48,323	38,390	26,557	24,841	30,125	38,306
C2) Adjusted Catch by Area	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 99-07
Scots Bay	5,725	21,914	23,330	19,782	31,996	33,444	8,155	5,830	7,697	17,542
Trinity	2,899	907	2,408	2,530	1,755	1,113	2,596	5,181	1,313	2,300
German Bank	68,929	62,462	45,832	54,742	55,710	43,472	38,231	38,148	41,519	49,394
Adjusted Catch Total	77,552	85,284	71,570	77,054	89,461	78,029	48,981	49,159	50,529	69,735
E1) Percentage (C1/SSB)	1999	2000	2001	2002	2003	2004	2005	2006	2007	Avg 99-07
Scots Bay	4%	10%	7%	6%	14%	23%	37%	12%	9%	
Trinity	65%	136%	9%	23%	3%	9%	39%	52%	86%	
German Bank	5%	7%	9%	6%	6%	4%	7%	7%	4%	6%
Overall (C1/SSB)	6%	8%	8%	6%	8%	8%	10%	8%	5%	7%
E2) Percentage adjusted (C2/SSB)	1999	2000	2001	2002	2003	2004	2005	2006		Avg 99-07
Scots Bay	14%	21%	14%	14%	24%	31%	49%	20%	17%	
Trinity	75%	146%	16%	31%	12%	17%	51%	61%	94%	
German Bank	15%	18%	16%	14%	16%	12%	18%	15%	12%	
Overall Adjusted (Catch/Acoustic SSB)	15%	18%	16%	14%	18%	16%	21%	17%	13%	16%

Table 13. Summary of biological samples by gear and month as collected during the 2007 4VWX herring fisheries. 'No. LF Samples' is the number of length frequency samples collected, 'No. Measured' is the number of length frequency fish measured and 'No. Processed' is the number of detail fish with sex and maturity determined.

		Month										
Gearname	Data	1	2	3	5	6	7	8	9	10	11 0	Grand Total
4Vn Trap	Sum of No. LF Samples					1						1
	Sum of No. Measured	1				209					1	209
	Sum of No Processed					54						54
4W Purse Seine	Sum of No. LF Samples				8	17						25
	Sum of No. Measured	1			939	1999						2938
	Sum of No Processed	İ			0	0						0
5Y CAN P Seine	Sum of No. LF Samples					26		13	15	24		78
	Sum of No. Measured					3129		1525	1783	2857		9294
	Sum of No Processed	1				39		39	54	79		211
5Y USA P.Seine/MWT	Sum of No. LF Samples		1		9	3	1					14
	Sum of No. Measured	1	126		1151	363	126				1	1766
	Sum of No Processed		0		0	0	0					
5Z USA P.Seine/MWT	Sum of No. LF Samples	16	18		6							40
	Sum of No. Measured	1956	2116		715							4787
	Sum of No Processed	0	0		0							0
Gilinet	Sum of No. LF Samples	1						2	1	21	1	25
Gillifet	Sum of No. Measured							340	154	2900	94	3488
	Sum of No Processed							60	50	204	29	343
N.B. Purse Seine	Sum of No. LF Samples	15					21	3	10	19	5	73
N.B. Pulse Seine	Sum of No. Measured	1754					2539	268	1066	2253	416	8296
	Sum of No Processed	17					34	18	66	56	30	221
N.B. Shut-off	Sum of No. LF Samples	2					- 37	10	1	3	1	7
N.B. Shut-on	Sum of No. Measured	229							118	341	122	810
	Sum of No Processed	0							9	10	0	19
N.B. Weirs	Sum of No. LF Samples	-			3	21	76	161	106	105	8	480
N.D. Wells	Sum of No. Measured				339	2488	10071	20248	13132	12558	908	59744
	Sum of No Processed	1			46	45	148	85	97	136	30	587
N.S. Purse Seine	Sum of No. LF Samples				40	38	149	82	96	10	- 50	375
N.S. Purse Seine	Sum of No. Measured					4464	17707	9878	11879	1270		45198
	Sum of No Processed					82	324	280	459	91		1236
N.S. Weirs	Sum of No. LF Samples	-			3	04	6	7	400	- 31		16
N.S. Weirs	Sum of No. Measured				368		786	857			1	201
					0		0	91				9
December Community	Sum of No Processed	_	22	42	V		71	2				13
Resrch. Otter Trawl	Sum of No. LF Samples		22	44			/ 1	e.				10.
	Sum of No. Measured	1	142	355			572	12				108
4V Midwater Trawl	Sum of No Processed	-	142	333	2		312	14				100
4V Midwater Trawl	Sum of No. LF Samples	1			2							
	Sum of No. Measured				54						- 1	54
	Sum of No Processed	-			15	25						4
4W Midwater Trawl	Sum of No. LF Samples				2186	4246						643
	Sum of No. Measured											72
	Sum of No Processed	-			352	373						12
USA Shut-off	Sum of No. LF Samples	1									- 1	11
	Sum of No. Measured	1				111						
	Sum of No Processed	+				1						
4X Midwater Trawl	Sum of No. LF Samples	1										12
	Sum of No. Measured	1				126						
	Sum of No Processed	-			45	0	00:	021	000	405	45	404
Total Sum of No. LF Sample		33	41	42	46	133	324	270	229	182	15	131
Total Sum of No. Measured		3939	2242		5698	17135	31229	33116	28132	22179	1540	14521
Total Sum of No Processed		17	142	355	452	593	1078	585	735	576	89	462

Table 14. Number of herring samples collected by DFO personnel from commercial fisheries (Commercial), by members of the fishing industry (Industry), observer program (Observer), independent observers on foreign vessels (OSS) and DFO research

surveys (Research).

		Samp	le Source			
Year	Commercial	Industry	Observer	oss	Research	Total
1990	422			185		607
1991	448			167	1	616
1992	330			205	1	536
1993	183			421		604
1994	223			228	14	465
1995	138			244	108	490
1996	127	868	49		69	1,113
1997	78	1,443			114	1,635
1998	225	1,376			98	1,699
1999	49	1,388	89		198	1,724
2000	34	1,387	108		177	1,706
2001	47	1,455	96		190	1,788
2002	17	1,339	84		181	1,621
2003	58	1,292	56		199	1,605
2004	50	1,270	60		105	1,485
2005	48	1,017	23		152	1,240
2006	33	1,049	70		99	1,251
2007	10	1,139	29		137	1,315
Average	140	1,252	66	242	115	1,183

Table 15. Catch at age (thousands) for the SW Nova Scotia / Bay of Fundy herring spawning component, 1965-2005 (from Power et al, 2006a).

Age												
Year	1	2	3	4	5	6	7	8	9	10	11+	Tota
1965	270,378	1,084,719	34,835	234,383	49,925	10,592	1,693	561	54	37	1	1,687,17
966	154,323	914,093	448,940	73,382	321,857	45,916	13,970	7,722	1,690	215	1	1,982,10
1967	722,208	613,970	153,626	266,454	110,051	159,203	57,948	4,497	409	296		2,088,81
968	164,703	2,389,061	224,956	83,109	290,285	73,087	90,617	31,977	15,441	5,668		3,370,07
969	108,875	290,329	531,812	132,319	162,439	112,631	62,506	22,595	6,345	2,693		1,433,26
1970	699,720	576,896	76,532	286,278	201,215	120,280	111,937	41,257	21,271	7,039		2,145,09
1971	87,570	404,224	183,896	106,630	113,566	75,593	93,620	50,022	36,618	7,536		1,164,97
1972		649,254	71,984	148,516	77,207	75,384	49,065	48,700	26,055	13,792		1,171,63
1973	1,018	167,454	781,061	130,851	40,128	30,334	22,046	20,249	23,871	11,630		1,242,02
1974	18,411	766,064	93,606	803,651	68,276	19,093	10,232	6,565	12,786	7,102	9,031	
1975	3,199	317,641	239,827	124,599	514,605	66,302	12,298	4,409	4.778	3,847	6,225	1,297,73
1976	240	55,596	206,535	153,782	68,804	268,839	21,460	5,571	3,951	2,059	3,446	790,28
1977	1,170	153,921	31,572	218,478	119,234	51,173	177,247	13,977	3,170	1,415	3,894	775,25
1978	35,381	383,611	40,887	12,906	122,108	68,410	31,088	108,975	11,082	2,425	1,676	818,54
1979	342	183,982	250,393	54,620	5,430	23,142	18,255	11,836	41,389	4,527	2,411	596,32
1980	2,339	12,503	80,518	474,091	27,930	4,373	4,692	6,560	2,985	10,641	2,739	629,37
1981		103,051	50,883	102,743	451,482	32,978	2,418	2,767	1,917	538	2,149	750,92
1982	3,589	102,133	150,764	22,640	98,206	211,043	14,627	2,080	1,354	1,250	1,014	608,70
1983	5,488	191,682	150,328	244,007	24,483	60.678	89,982	10,352	1,728	642	1,324	780,69
1984		88,433	243,542	224,354	146,096	22,716	21,654	28,299	9,515	2,183	9,000	795,79
1985	9,022	216,740	337,591	302,782	147,670	42,404	14,075	18,178	7,997	1,201	470	1,098,13
1986	63	125,300	275,903	292,792	56,937	31,599	10,770	4,320	2.942	1,356	349	802,33
1987	2,300	82,940	126,436	527,443	242,597	45,933	19,481	7,292	3,361	3,120	650	1,061,55
1988	151	148,399	113,208	195,096	434,192	236,089	42,533	21,208	4,186	3,797	2,845	1,201,70
1989	8	101,788	114,095	61,842	79,451	169,023	76,684	18,303	8,270	3,814	3.057	636,33
1990		178,532	130,176	171,560	89,922	101,066	201,901	116,788	31,466	10,572	6,848	1,038,83
1991		96,960	179,463	183,647	88,431	41,352	50,380	80,732	45,516	18,291	13,524	798,29
1992	9	168,561	132,642	286,923	126,510	75,473	34,458	35,369	59,136	34,558	20,653	974,29
1993	166	76,405	43,766	194,198	130,713	67,708	33,820	21,481	21,893	20.684	11,175	622,00
1994	151	103,885	142,260	53,700	118,015	72,512	36,059	14,889	8,706	10,447	15,533	576,15
1995	1.831	113,457	219,777	112.245	36,784	36,402	22,127	6,474	4,217	2,957	3,566	559,83
1996	.,	37,496	37,715	256,063	54,534	16,862	9,151	3.300	1,782	1,310	1,605	419,81
1997	356	56,561	87,395	78,098	131,062	18,917	5,131	3,636	894	620	874	383,54
1998	137	264,901	62,322	138,751	97,065	97,464	20,679	3,856	1,730	1,288	398	688.59
1999	2.694	112,893	223,283	147,840	131,463	57,291	10,044	613	212	70	13	686.41
2000	841	364.078	75,330	108,560	124,083	60,754	25,829	4,454	251	33	23	764,23
2001	51	73.368	325.273	57,175	60,409	31,891	15,509	2,203	304	8	4	566,19
2002	15,500	303,723	98.597	210,620	75,258	27.973	12,846	1,577	70	23	3	
2003	459	486.345	342,592	114,850	96,847	13,111	7,136	435	23	_0		1,061,79
2003	3,142		347,693	132,570	79,884	9,351	3,226	339	36	1		896.87
2005	135		171,155	180,893	28,030	4.286	1,050	49	2	2		457,64

Table 16. Catch at length by size groups in total numbers and percent numbers for the SW Nova Scotia / Bay of Fundy herring spawning component for selected years 1992 and 1999-2007.

a) Catch at le	a) Catch at length (thousands) by size group category for SW Nova Scotia/Bay of Fundy spawning component.													
Size Group	1992		2000		2002	2003		2005	2006	2007				
<23cm	266.144	319.407	372,207	133,417	339,682	581,722	416,121	126,463	144,277	189,119				
23-30cm	499,792	349,668	353,900	402,081	382,383	372,009	390,573	290,904	262,070	199,684				
>30cm	208.357	28.958	49,661	33,039	31,466	16,622	14,770	7,032	7,175	22,014				
Total	974.292	698.033	775,768	568,536	753,532	970,353	821,464	424,399	413,522	410,816				

b) Catch at length	(percent numb	ers) by size	group cate	gory for SW	Nova Scot	ia/Bay of Fu	indy spawni	ng compon	ent.	
Size Group	1992	1999	2000	2001	2002	2003	2004	2005	2006	2007
<23cm	27%	46%	48%	23%	45%	60%	51%	30%	35%	46%
23-30cm	51%	50%	46%	71%	51%	38%	48%	69%	63%	49%
>30cm	21%	4%	6%	6%	4%	2%	2%	2%	2%	5%
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 17. An evaluation of 2006 fishery observations for the SW Nova Scotia/Bay of Fundy spawning component progress against biological objectives in the management plan for the fishery.

Objective	2006: Observations
Persistence of all spawning components	Spawning not observed on Lurcher. Biomass increases in Scots and Trinity still low. Some spawning near Seal Island.
Maintain biomass of each component	All spawning areas had slightly increased biomass estimates from 2005 but are still at historically low levels. Substantial decline from 2004. Scots, Trinity, Lurcher and Seal are at very low biomass.
Maintain broad age composition	Proportion of larger (30 cm+) sizes has contracted and is very low. Age composition is assumed to be truncated with an absence of larger fish in the population. Recent increase in abundance of herring in the 23-30cm size range is a positive signal for potential future population growth.
Maintain long spawning period	Start and duration of spawning in 2006 for German Bank appeared normal but Scots Bay displayed a midseason gap.
Fishing mortality at or below F0.1	Fishing mortality is likely high and well above F0.1.
Maintain spatial and temporal diversity of spawning	Insufficient spawning in some areas.
Maintain biomass at moderate to high levels	SSB remains near the lowest recorded level since 1999 from the acoustic surveys.

Table 18. An evaluation of 2007 fishery observations for the SW Nova Scotia/Bay of Fundy spawning component

progress against biological objectives in the management plan for the fishery.

Objective	2007: Observations
Persistence of all spawning components	Biomass increases in Scots Bay and German Bank. Spawning not observed on Seal Island. Trinity Ledge is at the lowest level recorded.
Maintain biomass of each component	German Bank biomass estimate is now at or above average. Scots Bay, Trinity Ledge and Seal Island remain well below average or at very low biomass.
Maintain broad age composition	Proportion of larger (30 cm+) sizes has increased consistent with average growth rates. Age composition is still assumed to be truncated with few larger fish in the population. Possible strong year-class with 18-23cm size range abundant in both the New Brunswick weir and purse seine fisheries.
Maintain long spawning period	Start and duration of spawning in 2007 for German Bank and Scots Bay was typical but not for Trinity Ledge.
Fishing mortality at or below F0.1	Fishing mortality was not determined but appears to be decreasing based on the trends from relative exploitation rates from acoustic surveys.
Maintain spatial and temporal diversity of spawning	Insufficient spawning in all areas except for German Bank and Scots Bay.
	SSB index from the acoustic surveys has increased by 64% over the last two years, is at a moderate level, 12% below the nine year average.

Table 19. Herring abundance indices from the July bottom trawl survey (stratified numbers per tow): 1970-2007.

Ju	ly ground trawl surv	ey by-cate	h for herrin	g (strati	fied mean nu	imbers)								
	WX area combined				4W Only		4X Only		4X BOF		4V only		Offshore Ba	
str	rata 453/495				strata 453/4	66	strata 470/4		strata 480/4		strata 442/45		strata 455/4	
Year	Cruise	Mean#	SE	N	Mean#	SE	Mean#	SE	Mean#	SE	Mean#	SE		SE
970	A175/176	4.1	1.5	95	4.9	2.4	1.6	0.6	1.0	0.6	12.8	9.8	5.7	2.
971	A188/189	4.0	1.9	86	2.6	1.2	3.6	2.6	1.4	1.0	4.4	4.4	5.3	2.
972	A200/201	1.4	0.6	105	1.7	1.0	0.5	0.1	0.3	0.1	4.5	3.7	2.0	1
973	A212/213	0.9	0.3	96	0.4	0.3	1.0	0.4	1.0	0.4	19.2	19.2	0.9	0
974	A225/226	0.7	0.3	102	0.2	0.0	1.0	0.4	1.4	0.6	0.0	0.0	0.5	0
975	A236/237	0.9	0.4	104	0.8	0.4	0.7	0.4	1.3	0.7	2.2	2.2	0.7	0
976	A250/251	0.4	0.2	103	0.1	0.1	0.5	0.3	0.9	0.6	0.0	0.0	0.1	0
977	A265/266	0.5	0.3	106	0.0	0.0	0.8	0.5	1.5	0.9	1.6	1.4	0.1	0
978	A279/280	0.3	0.3	103	0.5	0.5	0.1	0.0	0.1	0.0	0.0	0.0	0.5	0
979	A292/293	0.6	0.5	106	0.0	0.0	1.0	0.7	1.5	1.3	0.0	0.0	0.2	0
980	A306/307	0.5	0.5	105	0.0	0.0	0.8	0.8	1.6	1.6	0.0	0.0	0.0	0
981	A321/322	1.5	1.4	104	0.0	0.0	2.3	2.1	4.6	4.1	0.0	0.0	0.0	0
982	H080/081	1.5	0.9	108	0.5	0.3	1.9	1.4	0.8	0.3	0.0	0.0	2.5	1
983	N012/013	2.4	0.8	106	2.6	1.2	2.2	1.0	3.1	1.6	0.1	0.0	2.1	1
984	N031/032	7.0	3.5	102	3.3	1.2	10.5	6.8	4.6	2.5	4.0	2.9	8.5	5
985	N048/049	3.4	1.8	111	6.6	3.8	0.3	0.1	0.4	0.2	0.0	0.0	5.0	1
986	N065/066	23.2	14.9	118	30.8	26.7	16.0	14.3	24.9	22.3	0.5	0.4	23.4	26
987	N85/86/87	10.4	5.6	135	17.0	11.3	4.0	1.8	6.3	2.8	117.4	90.5	12.9	8
988	N105/106	2.1	0.6	127	2.7	1.2	1.5	0.5	2.3	0.8	0.3	0.2	2.0	(
989	N123/124	8.4	1.8	124	11.8	3.4	4.5	1.2		1.4	3.6	3.1	9.8	2
990	N139/140	5.6	1.9	156	7.4	3.6	3.4	1.0	3.4	0.8	0.3	0.2	6.5	2
991	N154/H231	10.6	5.8	137	13.0	8.8	5.0	1.8	4.9	2.3	10.2	9.9	14.3	9
992	N173/174	16.5	4.9	136	16.2	6.6	40.8	15.7	41.8	22.2	0.2	0.1	23.6	
993	N189/190	18.7	4.5	137	6.3	2.5	30.4	8.5	27.6	10.3	1.0	0.6	15.0	4
994	N221/222	76.4	30.2	140	108.4	58.9	45.9	18.4	51.1	26.0	25.7	22.0	91.1	45
995	N226/227	63.5	24.2	140	100.5	47.9	28.4	12.8	11.4	5.4	7.9	6.1	92.7	3
996	N246/247	40.2	14.2	135	53.2	24.5	27.1	14.1	32.1	20.8	0.2	0.1	46.5	19
997	N726/734	31.8	15.3	137	34.6	10.1	51.3	39.3	72.8	60,9	0.2	0.1	29.3	7
998	N827/832	99.52	20.65	131	147.6	39.92	54.76	14.5	45.6	19.4	0.8	0.3	130.3	36
999	N925/929	229.8	83.8	133	264.2	101.0	199.4	130.2	251.4	203.6	24.9	15.2	226.2	74
000	N426/431	90.6	20.0	146	146.3	40.6	38.7	7.4	29.5	9.1	2.0	0.6	124.7	36
001	N2001-032/037	145.9	47.7	139	152.7	81.3	139.5	52.5	181.3	80.9	53.9	49.2	132.4	61
002	N2002-037/040	161.9	48.6	147	172.7	81.3	151.9	55.6	170.9	85.3	4.9	2.6	162.6	6
003	N2003-036/042	130.6	70.5	153	207.8	145.4	58.7	14.5	50.3	14.0	4.9	2.0	175.8	109
004t	TEL2004-529/530	295.9	100.2	205	307.6	134.5	285.0	147.4	198.0	170.9	1.4	0.4	355.6	12
	TEL2005-605/633	74.1	13.7	118	13.7	8.7	130.5	23.1	51.8	34.4	7.4	2.2	88.0	-
	NED2005-027/034	63.1	20.9	150	36.0	13.1	88.2	38.5	61.0	30.2	13.6	5.4	66.2	21
_	NED2006-030/036	85.7	29.7	150	133.3	59.2	40,7	15.5	26.7	9,8	15.2	11.0	118.6	45
007	TEL2007-745	40.7	9.8	121	20.0	8.0	59.9	17.3	85.8	26.9	0.9	0.5	19.0	

Table 20. Recorded herring landings (t) from gillnet fisheries in the coastal N.S. spawning component, 1996-2007.

Landings (t)	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006		-	Average Catch All Years
Little Hope/Port Mouton		490	1,170	2,919	2,043	2,904	3,982	4,526	1,267	2,239	3,133	1,506	2,534	2,380
Halifax/Eastern Shore	1,280	1,520	1,100	1,628	1,350	1,898	3,334	2,727	4,176	3,446	3,348	3,727	3,485	2,461
Glace Bay		170	1,730	1,040	834	1,204	3,058	1,905	1,481	626	85	7	821	1,104
Bras d'Or Lakes	170	160	120	31	56	0	1	4	0	0	0	0	1	45
Total	1,450	2,340	4,120	5,618	4,283	6,006	10,375	9,162	6,924	6,311	6,566	5,240	7,430	5,700

Table 21. Summary of herring acoustic spawning biomass from gillnet surveys in the coastal N.S. spawning component from 1998-2007 as calculated without the calibration integration factor (CIF). Total SSB is rounded to nearest 100t.

Survey SSB (t) w/o CIF	1998	1999	2000	2001	2002	2003	2004	2005	2006		-	10% SSB Average All years
Little Hope/Port Mouton	14,100	15,800	5,200	21,300	56,000	62,500	15,600	39,500	21,700	2,400	2,834	2,541
Halifax/Eastern Shore	8,300	20,200	10,900	16,700	41,500	67,602	18,200	28,100	51,100	24,000	3,780	2,866
Glace Bay		2,000		21,200	7,700	31,500		2,200	n/s	100	1,127	1,078
Bras d'Or Lakes		530	70	n/s 30								

Table 22. Summary of herring acoustic spawning biomass from gillnet surveys in the coastal N.S. spawning component from 1998-2007 as calculated with the calibration integration factor (CIF). Total SSB is rounded to nearest 100t.

											10% SSB	10% SSB
											Average	Average
Survey SSB (t) with CIF	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Last 5 yr	All years
Little Hope/Port Mouton						53,100	22,500	44,700	24,100	2,800	2,944	2,944
Halifax/Eastern Shore						92,600	28,400	36,950	68,900	28,300	5,103	5,103
Glace Bay						31,500		3,180	n/s	240	1,164	1,164
Bras d'Or Lakes						n/s	n/s	n/s	n/s	n/s	n/s	n/a

Figure 1. Management units for herring in areas 4VWX and 5YZ showing locations of known current (solid) and historical (open) spawning locations.

Figure 2. Fishing locations for herring in southwest and coastal Nova Scotia.

Figure 3. Fishing locations for herring on the eastern Scotian Shelf and offshore bank

Figure 4. Major and minor NAFO unit areas used for sample and catch data aggregation.

Figure 5. Herring fishing ground areas by 10 mile boxes and management lines for NAFO areas, 25 mile offshore line, coastal embayment line and herring area lines.

Figure 6. Annual herring landings [bars] and TAC [solid line] (quota) for the southwest Nova Scotia spawning component (4WX stock).

Figure 7. Annual herring landings by gear component for the southwest Nova Scotia spawning component (4WX stock).

Figure 8. Overall 2006-2007 quota year herring purse seine catches (t) for NAFO areas 4WX (from Statistics Division MARFIS database).

Figure 9. Herring purse seine catches as a proportion of overall landings for selected fishing grounds in the southwest Nova Scotia spawning component from 1997-2007.

Figure 10. 2006 fall fishery herring purse seine catches (t) by month in NAFO areas 4WX from 2006-2007 quota year (from Statistics Division MARFIS database).

Figure 11. 2007 herring purse seine catches (t) by month in NAFO areas 4WX from 2006-2007 quota year (from Statistics Division MARFIS database).

Figure 12. Herring purse seine catches for the Scots Bay area from 2002-2007 with catch totals for the overall area, the middle 'Spawning' area and the inner 'Strata' area which was used as the primary search area in acoustic surveys.

Figure 13. Annual herring purse seine catches for the Scots Bay area from 1987-2007 with duration of fishery in days (start date to end date).

Figure 14. 2002 to 2007 daily purse seine herring catches in tonnes (bars) for Scots Bay with the cumulative total catch (solid line) over the entire fishing season.

Figure 15. Annual herring purse seine catches for the German Bank area from 1985-2007 with pre-spawning and spawning period catches based on an Aug. 15 start date for the defined spawning period and overall German Bank catches as a proportion of the TAC.

Figure 16. Herring purse seine <u>pre-spawning</u> period catches (May 1 to Aug. 14) for German Bank from 2002-2007 with catch totals for the overall catch area, the middle 'Spawn Box' and the inner 'Strata Box' which was used as the primary search area in acoustic surveys.

Figure 17. Herring purse seine <u>spawning</u> period catches (Aug. 15 to Oct. 31) for German Bank from 2002-2007 with catch totals for the overall catch area, the middle 'Spawn Box' and the inner 'Strata Box' which was used as the primary search area in acoustic surveys.

Figure 18. 1997 to 2007 daily purse seine herring catches in tonnes (bars) for German Bank with the cumulative total catch (solid line) over the defined spawning season from Aug. 15 to Oct. 30.

Figure 19. Trinity Ledge/Spectacle Buoy herring catches for 2007 with overall catch amounts and catch portions within the defined spawning area (TL-Spawning Box) and survey areas (TL-Strata Box).

Figure 20. Daily herring landings for 2006 and 2007 Trinity Ledge area with acoustic survey dates highlighted (darkened bars) and cumulative catch (solid line) for overall gillnet catches for stock component.

Figure 21. Spectacle Buoy area spring gillnet fishery herring catches for 2007.

Figure 22. Nova Scotia herring weir catches for the 2007 calendar year.

Figure 23. Purse seine catch (top panel), effort (middle panel) and CPUE (bottom) from 1989 to 2007 annual 4WX herring landings data for the SW Nova Scotia/Bay of Fundy spawning component.

Figure 24. SSB index from acoustic surveys for the SW Nova Scotia / Bay of Fundy spawning component overall area and for the German Bank and Scots Bay areas.

Figure 25. Relative exploitation rate for the SW Nova Scotia / Bay of Fundy spawning component using overall catch as a proportion of the overall acoustic SSB.

Figure 26. 2007 herring sampling coverage from all sources (number of length frequency samples by 10 mile square).

Figure 27. Historical catch at age (numbers) for the SW Nova Scotia / Bay of Fundy spawning component. Refer to Table 15 for actual numbers represented by symbol size. The value for 1968 at age 2 represents the maximum in the series of 2.389 billion. Several of the stronger year-classes are highlighted including the 1970, 1983 and 2001 year-classes (from Power et al, 2006a).

Figure 28. SW Nova Scotia spawning component total catch numbers (millions) and average fish weight (g) for the period 1980-2007.

Figure 29. Catch at length (% number) for the 2006 and 2007 overall SW Nova Scotia / Bay of Fundy herring spawning component.

Figure 30. Proportions of size groups (% number) <23cm, 23-30cm and >30cm herring in the catch from the SW Nova Scotia / Bay of Fundy spawning component for 1992 and 1999-2007.

Figure 31. Catch weighted length frequency distribution of all herring from the SW Nova Scotia/Bay of Fundy spawning component from 2004 to 2007.

Figure 32. Comparison of growth rate K for a fixed and floating to from 1980 to 2005.

Figure 33: SWNS herring length frequency for 2006, 2007 and the estimated length frequency for 2007 where K=0.38 and $L_{inf}=344$ mm.

Figure 34. Scotian Shelf Banks landings from all gears since 1996 with the average for the period.

Figure 35. 2007 herring purse seine and midwater trawl catches on the offshore Scotian Shelf banks with embayment and offshore 25 and 50 mile lines shown.

Figure 36. Catch at length (% number) for the 2006 offshore Scotian Shelf Banks herring spawning component. Highlighted dark bars represent sizes larger than 30cm.

Figure 37. Number of herring caught per standard tow in the DFO summer bottom trawl survey of the offshore Scotian Shelf Banks, 1983 to 2007 (strata 55-78; from Sable Island to the Baccaro Line).

Figure 38. Research bottom trawl survey strata in NAFO Divisions 4T, 4V, 4W and 4X (from Doubleday, 1981).

Figure 39. Herring catches in number and weight per tow for the 2007 DFO summer bottom trawl research survey (TEL2007-745: July 7-Aug. 2, 2007).

Figure 40. Herring catches from the DFO summer bottom trawl research survey for 2000-2007 (2005 using Alfred Needler data only). Mean numbers per standard tow and count of sets in Scots, Trinity and German spawning areas.

Figure 41. Herring size distribution in the DFO summer bottom trawl research survey for the Offshore Banks area (strata 53 to 78) from 2000 to 2007 (Note: sizes conversion from fork length to total length results in gaps at the 9, 20 and 33cm sizes).

Figure 42. Herring set and drift gillnet catches (t) for 2007 calendar year for NAFO areas 4VWX (data from Statistics Division MARFIS database).

Figure 43. 2007 herring gillnet catch locations for landings in statistical districts 23-31 with amount caught within the Little Hope Fishing Area.

Figure 44. Herring landings and acoustic survey biomass ('000t) for the Little Hope/Port Mouton gillnet fishery from 1997-2007.

Figure 45. Gillnet herring catches for the 2007 fall fishery along the Eastern Shore Fishing Area (catches by 1 mile squares).

Figure 46. Herring landings and acoustic survey biomass ('000t) for the Halifax/Eastern Shore gillnet fishery from 1997-2007.

Figure 47. Glace Bay herring gillnet catches reported for the 2007 season. Note there was only one landing with 5t recorded.

Figure 48. Herring landings and acoustic survey biomass ('000t) for the Glace Bay gillnet fishery from 1997-2007.

67° 66°50' 66°40' 66°30' Figure 49. New Brunswick herring weir catches by location for the 2007 fishing season (data summed by one mile squares).

Figure 50. Herring landings from the southwest New Brunswick weir and shutoff fishery for 1963-2007 with the overall long term average.

Figure 51. Catch at length for the New Brunswick weir fishery in 2007 with estimated percent numbers caught. Size categories 23cm and greater are shaded in black.