МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №2 по дисциплине «Высокопроизводительные вычислительные комплексы» Вариант 12

Выполнил студент группы ИВТ-42	
Проверил доцент кафедры ЭВМ	/Мельцов В. Ю./

1 Выполнение лабораторной работы

Задание №1

Экранная форма первого задания представлена на рисунке 1

Рисунок 1 – Задание №1

Задание:

Необходимо рассчитать вероятность P_n пребывания в системе и заявок для R=4,3

n = 5

Число процессоров N = 6

Расчетные формулы:

Вероятность пребывания в системе $n=0,\,1,\,2,\,\dots$ заявок (обслуживаемых каналами и стоящих в очереди)

$$P_{n} = \begin{cases} P_{0} \frac{R^{n}}{n!}, 0 \leq n \leq N \\ P_{0} \frac{R^{n}}{N! N^{n-N}}, n > N \end{cases}$$
 (1)

где $P_0 = \left[R^N / \left((N-1)! (N-R) \right) + \sum_{n=0}^{N-1} R^n / n! \right]^{-1}$, вероятность того, что в системе нет ни одной заявки;

R — суммарная загрузка, N — канальной системы.

Подстановка значений:

$$P_n = P_0 \frac{R^n}{n!}, \text{ так как } 0 \leq n \leq N$$

$$\frac{R^n}{n!} = \frac{4,3^5}{5!} = 12,250704$$

$$P_0 = \left[4,3^6/\left(5!*(6-4,3)\right) + 4,3^0/0! + 4,3^1/1! + 4,3^2/2! + 4,3^3/3! + 4,3^4/4! + 4,3^5/5!\right]^{-1} = 0,011726$$

$$P_n = 12,250704*0,011726 = 0,1437$$

Задание №2

Экранная форма второго задания представлена на рисунке 2.

Рисунок 2 – Задание №2

Необходимо рассчитать вероятность P_n пребывания в системе n заявок для R=1.3

$$n = 7$$

Число процессоров N=6

Расчетные формулы и теоретическое обоснование:

Вероятность P_n рассчитывается по формуле 1.

Подстановка значений:

$$P_n = P_0 \frac{R^n}{N! \, N^{n-m}}, \text{ так как } n > N$$

$$P_0 = \left[1,3^6/\left(5!*(6-1,3)\right) + 1,3^0/0! + 1,3^1/1! + 1,3^2/2! + 1,3^3/3! + 1,3^4/4! + 1,3^5/5!\right]^{-1} = 0,272504$$

$$\frac{R^n}{N! \, N^{n-N}} = \frac{1,3^7}{6! \, 6^1} = 0,0014525$$

$$P_n = 0,272504*0,0014525 = 0,0004$$

Задание №3

Экранная форма задания 3 представлена на рисунке 3.

Рисунок 3 – Задание №3

Необходимо вывести формулу интенсивности обслуживания заявки каналом μ ,

где B — быстродействие процессора,

 θ – средняя трудоемкость заявки.

Расчетные формулы и теоретическое обоснование

Интенсивность обслуживания заявки каналом рассчитывается по формуле:

$$\mu = \frac{1}{V'} \tag{2}$$

где V — средняя длительность обслуживания заявки каналом с быстродействием B:

$$V = \frac{\theta}{B}$$
.

Тогда получаем, что интенсивность обслуживания заявки каналом:

$$\mu = \frac{B}{\theta'} \tag{3}$$

где B — быстродействие процессора;

 θ — средняя трудоемкость процессорных операций.

Экранная форма четвертого задания представлена на рисунке 4

Рисунок 4 – Задание №4

Задание

Необходимо рассчитать интенсивность обслуживания заявки каналом μ $B=160000, \theta=5000$

Подстановка значений

$$\mu = \frac{B}{\theta} = \frac{160000}{5000} = 32$$

Задание №5

Экранная форма задания 5 представлена на рисунке 5.

Рисунок 5 – Экранная форма задания №5

Необходимо ввести формулу загрузки канала ρ , где λ — интенсивность потока заявок,

N — число процессоров,

μ – интенсивность обслуживания заявки каналом

Расчетные формулы

Загрузка канала, то есть отношение времени, в течение которого канал занят обслуживанием заявок, к общему времени его функционирования:

$$\rho = \frac{\lambda}{N} V = \frac{\lambda}{N\mu'} \tag{4}$$

где λ – интенсивность потока заявок;

 μ – интенсивность обслуживания заявки каналом;

N — число процессоров.

Экранная форма задания 6 представлена на рисунке 6.

Рисунок 6 – Экранная форма задания №6

Задание

Необходимо рассчитать загрузку канала ρ $\lambda = 12$, N = 6.

Подстановка значений

$$\mu = 32$$
 (задание 4) $ho = \frac{\lambda}{N\mu} = \frac{12}{6*32} = 0.063$

Задание №7

Экранная форма задания 7 представлена на рисунке 7.

Рисунок 7 – Задание №7

Необходимо ввести формулу суммарной загрузки N-канальной системы R, где N — количество процессоров, ρ — загрузка канала:

Расчетные формулы

Суммарная загрузка R в отношении N-канальной системы массового обслуживания определяет среднее число каналов, занятых обслуживанием заявок. R — суммарная загрузка, N — канальной системы:

$$R = \frac{\lambda}{\mu} = \frac{N\lambda}{N\mu} = N\rho, \tag{5}$$

где N — число процессоров; ρ — загрузка канала.

Задание №8

Экранная форма задания №8 представлена на рисунке 8.

Рисунок 8 – Задание №8

Необходимо рассчитать суммарную загрузку N-канальной системы R.

Подстановка значений

$$\lambda = 12$$
 $\mu = 32$
 $R = \frac{\lambda}{\mu} = \frac{12}{32} = 0,375$

Экранная форма задания №9 представлена на рисунке 9.

Рисунок 9 – Задание №9

Задание

Необходимо рассчитать среднюю длину очереди заявок.

Расчетные формулы

Средняя длина очереди заявок, ожидающих обслуживания в N-канальной системе, находится на основании выражения (1), как математическое ожидание случайной величины i=n-N>0, равной числу заявок в очереди:

ожидание случайной величины
$$i=n-N>0$$
, равной числу заявок в очереди:
$$l=\frac{N^{N-1}\rho^{N+1}}{(N-1)!\,(1-\rho)^2}P_0, \tag{6}$$

где P_0 определяется выражением:

$$P_0 = \left[\frac{N^{N-1} \rho^N}{(N-1)! (1-\rho)} + \sum_{i=0}^{N-1} \frac{N^i \rho^i}{i!} \right]^{-1}$$

Подстановка значений

$$\begin{split} P_0 &= \left[\frac{6^5*0,063^6}{5!*(1-0,063)} + \frac{6^0*0,063^0}{0!} + \frac{6^1*0,063^1}{1!} + \frac{6^2*0,063^2}{2!} + \frac{6^3*0,063^3}{3!} \right. \\ &\quad \left. + \frac{6^4*0,063^4}{4!} + \frac{6^5*0,063^5}{5!} \right]^{-1} = 0,685231 \\ &\quad \frac{N^{N-1}\rho^{N+1}}{(N-1)!\,(1-\rho)^2} = \frac{6^5*0,063^7}{5!\,(1-0,063)^2} = 0,00000029 \\ &\quad l = 0,685231*0,00000029 = 0,00000002 \end{split}$$

Задание №10

Экранная форма задания 10 представлена на рисунке 10

Рисунок 10 – Экранная форма №10

Необходимо ввести формулу среднего времени пребывания заявки в системе U,

где l - средняя длина очереди заявок,

R — суммарная загрузка N-канальной системы,

λ – интенсивность потока заявок

Расчетные формулы

Среднее время пребывания заявки в системе рассчитывается по формуле:

$$U = \frac{m}{\lambda},\tag{7}$$

Среднее число заявок, пребывающих в системе:

$$m = l + r, (8)$$

где l - среднее число заявок, находящихся в очереди и определяемое выражением (6);

R — суммарная загрузка N-канальной системы, определяемая выражением (5). Из выражений 7 и 8 получаем среднее время пребывания заявки в системе

$$U = \frac{l+R}{\lambda},\tag{9}$$

Задание №11

Экранная форма задания 11 представлена на рисунке 11.

Рисунок 11 – Экранная форма задания №11

Необходимо рассчитать среднее время пребывания заявки в системе.

Подстановка значений

l = 0,0000002 (рассчитано в задании 9)

R = 0.375 (рассчитано в задании 8)

 $\lambda = 12$ (дано в задании 6)

$$U = \frac{0,0000002 + 0,375}{12} = 0,0313$$

Задание №12

Экранная форма задания №12 представлена на рисунке 12

Рисунок 12 – Задание №12

Необходимо ввести формулу среднего времени ожидания заявки в очереди W, где l – средняя длина очереди заявок,

λ – интенсивность потока заявок

Расчетные формулы

Среднее время ожидания заявки в очереди

$$W = \frac{l}{\lambda'} \tag{10}$$

где l — средняя длина очереди заявок; λ — интенсивность потока заявок.

Задание №13

Экранная форма задания №13 представлена на рисунке 13

Рисунок 13 – Задание №13

Необходимо рассчитать среднее время ожидания заявки в очереди.

Подстановка значений

l = 0,0000002 (рассчитано в задании 9)

 $\lambda = 12$ (дано в задании 6)

$$W = \frac{0,0000002}{12} = 0.00000002$$

Выполнить расчет вероятности P_n пребывания $n=0,1,2,\ldots,12$ заявок в N-процессорной системе для четырех значений суммарной загрузки R. Результаты свести в таблицу, и для всех значений R построить графики функции $P_n=F(n)$.

Исходные данные:

N = 6

 $R_1 = 1.3$

 $R_2 = 2,3$

 $R_3 = 3.3$

 $R_4 = 4.3$

Расчет вероятности P_n производится по формуле 1. Результаты расчетов представлены в таблице 1. График зависимости P_n от n представлен на рисунке 13.

Таблица 1

	D	D	D	D
n	R_1	R_2	R_3	R_4
0	0,27250406	0,09991394	0,03581260	0,01172622
1	0,35425528	0,22980206	0,11818158	0,05042276
2	0,23026593	0,26427237	0,19499961	0,10840894
3	0,09978190	0,20260881	0,21449957	0,15538614
4	0,03242912	0,11650007	0,17696215	0,16704010
5	0,00843157	0,05359003	0,11679502	0,14365449
6	0,00182684	0,02054285	0,06423726	0,10295238
7	0,00039582	0,00787476	0,03533049	0,07378254
8	0,00008576	0,00301866	0,01943177	0,05287749
9	0,00001858	0,00115715	0,01068747	0,03789553
10	0,00000403	0,00044357	0,00587811	0,02715847
11	0,00000087	0,00017004	0,00323296	0,01946357
12	0,00000019	0,00006518	0,00177813	0,01394889

Рисунок 13 – График зависимости P_n от n

Суммарная загрузка N-канальной системы массового обслуживания определяет среднее число каналов, занятых обслуживанием заявок, т. е. она определяет среднее число заявок, обслуживаемых в каналах. Поэтому, можно сделать вывод, что вероятность пребывания n заявок в N-канальной системе приближается к своему максимуму, когда число заявок в системе примерно равно сумме среднего числа заявок, находящихся в очереди и среднего число заявок, обслуживаемых в процессоре (n = l + R).

Наиболее вероятное число заявок в системе будет наблюдаться при n=R+l, т. к. в этом случае среднее число заявок в очереди близко к нулю, поскольку суммарная загрузка системы меньше количества каналов. Также можно сделать вывод, что с увеличением суммарной загрузки системы максимум P_n будет наблюдаться при более высоком среднем числе заявок.

Значения функции в точке максимума не равны единицы, потому что средняя загрузка системы R отлична от нуля, из-за чего нельзя с абсолютной уверенностью сказать, что в системе будет определенное число заявок. Однако, при средней загрузке системы равной нулю вероятность нахождения в системе числа заявок n=0 будет равна $P_n=1$. Так как нулевая средняя загрузка системы говорит о том, что система не обслуживает заявки, то и число заявок в системе равно нулю.

Для трех значений быстродействия B и для числа процессоров N = 1, 2, 3, а также для девяти BC выполнить расчеты основных характеристик вычислительной системы.

Интенсивность потока заявок (1/c) $\lambda = 12$

Средняя трудоемкость заявки (тыс. оп) $\theta = 5000$

Расчеты основных характеристик представлены в таблице 2.

Таблица 2

No॒	N	В	μ	V	R	1	W	U	ρ
1	1	80000	16	0,0625000	0,750	2,25	0,187500	0,250000	0,750000
2	2	80000	16	0,0625000	0,750	0,122727	0,010227	0,072727	0,375000
3	3	80000	16	0,0625000	0,750	0,014706	0,001225	0,063725	0,250000
4	1	160000	32	0,0312500	0,375	0,225	0,018750	0,050000	0,375000
5	2	160000	32	0,0312500	0,375	0,013664	0,001139	0,032389	0,187500
6	3	160000	32	0,0312500	0,375	0,000986	0,000082	0,031332	0,125000
7	1	240000	48	0,0208333	0,250	0,083333	0,006944	0,027778	0,250000
8	2	240000	48	0,0208333	0,250	0,003968	0,000331	0,021164	0,125000
9	3	240000	48	0,0208333	0,250	0,000201	0,000017	0,020850	0,083333

При изменении быстродействия канала:

- Среднее время пребывания заявки *U* уменьшается
- Уменьшается средняя нагрузка на канал ρ, т. к. она обратно пропорциональна интенсивности обслуживания заявки каналом μ, которая возрастает при увеличении быстродействия канала
- Уменьшается средняя загрузка системы R, т. к. уменьшается средняя загрузка канала
- Уменьшается средняя длина очереди l, т. к. уменьшается средняя загрузка канала
- Уменьшается среднее время ожидания заявки в очереди W, т. к. уменьшается средняя длина очереди канала
- Уменьшается среднее время обработки заявки V, т. к. увеличивается быстродействие канала

При неизменном быстродействии отдельного канала и наращивании числа (N=1,2,3) каналов:

- Интенсивность обслуживания заявок μ каналом остается неизменной, т. к. зависит от быстродействия отдельного процессора ($\mu = B/\theta$)
- Средняя нагрузка на канал ρ уменьшается, т. к. зависит обратно пропорционально от числа каналов N ($\rho = \lambda/(N*\mu)$)
- Суммарная загрузка системы R не изменяется, т. к. зависит прямо пропорционально от средней величины загрузки канала и их количества N $(R = \rho * N)$
- Средняя длина очереди l, среднее время ожидания заявки в очереди W и среднее время пребывания заявки в системе U уменьшается, т. к. увеличивается общая производительность вычислительной системы за счет добавленных каналов
- Среднее время обработки заявки V не изменяется, т. к. зависит от быстродействия канала, которое остается постоянным

При быстродействии 240000 оп/с с 1 каналом и при быстродействии 80000 оп/с с 3 каналами вычислительные системы имеют следующие показатели:

- Интенсивность обслуживания заявки каналом напрямую зависит от его быстродействия, следовательно, величина µ для одноканальной системы будет в 3 раза выше
- Средняя величина загрузки канала при постоянной интенсивности поступления заявок в систему остается неизменной, т. к. интенсивность входного потока заявок λ и средняя трудоемкость θ остаются неизменными, а произведение количества каналов N на быстродействие B у обоих систем одинаково ($\rho = (\lambda * \theta)/(N * B)$)
- Так как суммарная загрузка системы зависит от числа каналов и их загрузки, то суммарная загрузка трехканальной системы будет в 3 раза выше $(R = N * \rho)$
- Средняя длина очереди заявок l и среднее время ожидания заявки в очереди W у трехканальной системы меньше, чем у одноканальной, т. к. наличие в системе 3 каналов позволяет сократить среднюю длину очереди заявок и среднее время ожидания заявки в очереди при одинаковом суммарном обслуживании систем
- Среднее время пребывания заявки в системе *U* у одноканальной системы будет меньше, чем у трехканальной, т. к. среднее время пребывания заявки в системе определяется суммой среднего времени ожидания заявки в очереди *W* и средней длительности обслуживания заявки каналом *V*, которая у сравниваемых систем отличается значительно (у одноканальной системы средняя длительность обслуживания заявки каналом выше в 3 раза)

На основании рассмотренного выше сравнения одно- и трехканальной систем с быстродействием $B_1=240000$ оп/с и $B_2=80000$ оп/с соответственно можно сделать вывод, что одноканальная система с быстродействием B_1 выигрывает по производительности у системы с тремя каналами с быстродействием B_2 . Численный пример приведен на рисунке 14.

	1-канальная		3-канальная		
	V = 0.0208 c $W = 0.00694$		$V = 0.0625 \mathrm{c}$	W = 0.00123	
$\theta = 5000$	U = 0.02774 c		U = 0.06373 c		
	B = 240000		B = 80000		

Рисунок 14 – Численный пример

Многоканальная система выиграет по производительности у системы с одним каналом в случае, если время ожидания заявки в очереди W трехканальной системы будет значительно меньше, чем у одноканальной (U=W+V). Повысить время ожидания заявки в очереди W для одноканальной системы можно повысив интенсивность поступления заявок. Численный пример приведен на рисунке 15.

	1-канальная		3-канальная		
$\theta = 5000 \\ \lambda = 1200 \ c^{-1}$	V = 0.0208 c	W = 0,694	$V = 0.0625 \mathrm{c}$	W = 0.123	
	U = 0.71 c		U = 0.1855 c		
	B = 240000		B = 80000		

Рисунок 15 – Численный пример