Introducción a la Lógica y la Computación — Lógica proposicional Práctico 1: Sintaxis de la lógica proposicional

- 1. Para las siguientes cadenas determinar cuáles están en Σ^* , cuáles en PROP, y cuáles en ninguno de los dos.
 - $a) p_0 \rightarrow p_1.$
 - b) $((p \land p) \rightarrow p)$.
 - $c) (\varphi \vee \psi).$
 - $d) (((p_1 \to p_2) \to p_1) \to p_2).$
- 2. Demuestre que toda $\varphi \in PROP$ tiene tantos "(" como ")". Además, vea que la cantidad de paréntesis ("abre" y "cierra", todos juntos) es igual a doble de la cantidad de conectivos distintos de \bot que ocurren.
- 3. Defina recursivamente una función $ocur(k, \varphi)$, que devuelva la cantidad de ocurrencias de p_k que posee φ , para cada $\varphi \in PROP$. (Note que para cada k fijo se está definiendo una función de PROP en los naturales).
- 4. Defina recursivamente la función "longitud" que devuelve la cantidad de símbolos de una proposición (incluyendo paréntesis).
- 5. Defina recursivamente una función $S: PROP \to \mathcal{P}(PROP)$ de tal manera que $S(\varphi)$ sea el conjunto de subfórmulas de φ . Por ejemplo,

$$S(\bot) = \{\bot\}, \qquad S((p_0 \land p_1)) = \{p_0, p_1, (p_0 \land p_1)\}.$$

- 6. Sea $G: PROP \times PROP \times \mathcal{V} \to PROP$ la función que para cada $\varphi \in PROP$, $\psi \in PROP$ y $p_i \in \mathcal{V}$ devuelve el resultado de sustituir en φ cada ocurrencia de la variable p_i por la proposición ψ . Denotamos $G(\varphi, \psi, p_i) \doteq \varphi[\psi/p_i]$.
 - a) Determine $\varphi[((p_7 \to \bot) \to p_3)/p_7]$ para
 - 1) $\varphi = ((p_1 \wedge p_7) \rightarrow (p_7 \rightarrow p_3))$
 - 2) $\varphi = (((p_3 \to p_7) \land (p_7 \to p_3)) \lor (p_2 \to ((p_7 \to \bot)))).$
 - b) (*) Defina recursivamente la función G.