${\bf Topology-Munkres}$

Arnav Patri

Section 13 – Basis for a Topology

1. Let (X, τ) be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is some open $U \in \tau \cap \mathcal{P}(A)$ with $x \in U$. Show that $A \in \tau$.

Solution: For each $x \in A$, let $U_x \in \tau \cap \mathcal{P}(A)$ such that $x \in U_x$, and let $U = \bigcup_{x \in A} U_x$. Clearly, U = A, making the latter a union of open sets and thus itself open.

3. Show that

$$\tau_{cf} = \{ U \subseteq X \mid |X \setminus U| < \aleph_0 \} \cup \varnothing$$

is a topology. Is

$$\tau_{\infty} = \{U \subseteq X \mid |X \setminus U| \ge \aleph_0\} \cup \{\varnothing, X\}$$

a topology?

Solution:

If $|X| < \aleph_0$, then $\tau_{cf} = \mathcal{P}(X)$, yielding the trivial topology. Suppose instead that X is infinite, and let $\{U_{\lambda}\}_{\lambda \in \Lambda}, \{V_i\}_{i=1}^n \subseteq \tau_{cf}$. $\emptyset \in \tau_{cf}$ by construction, and

$$|X \setminus X| = |\emptyset| = 0 < \aleph_0$$

so $X \in \tau_{cf}$ as well. Furthermore, for any $\alpha \in \Lambda$,

$$\left| X \setminus \bigcup_{\lambda \in \Lambda} U_{\lambda} \right| \le |X \setminus U_{\alpha}| < \aleph_0$$

making τ_{cf} closed under arbitrary unions. If $V_i = \emptyset$ for some i, $\bigcap_{i=1}^n V_i = \emptyset \in \tau_{cf}$, and otherwise, $|X \setminus V_i| < \aleph_0$, so

$$\left| X \setminus \bigcap_{i=1}^{n} V_{i} \right| = \left| \bigcup_{i=1}^{n} [X \setminus V_{i}] \right| \le \sum_{i=1}^{n} |X \setminus V_{i}| < \aleph_{0}$$

so τ_{cf} is also closed under finite intersections and is thus a valid topology.

If $|X| < \aleph_0$, τ_∞ is the trivial topology. Otherwise, for each $x \in X$,

$$|X \setminus \{x\}| = |X| - |\{x\}| = \aleph_0 - 1 = \aleph_0$$

so each singleton is in τ_{∞} . Despite this,

$$\left| X \setminus \bigcup_{y \in X \setminus \{x\}} \{y\} \right| = |X \setminus (X \setminus \{y\})| = |\{y\}| = 1$$

meaning that τ_{∞} is not closed under arbitrary unions and is thus not a topology.

4. (a) Let $\{\tau_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq \mathcal{P}(\mathcal{P}(X))$ be a family of topologies on X. Show that $\tau=\bigcap_{{\lambda}\in\Lambda}\tau_{\lambda}$ is also a topology. Is $\tau'=\bigcup_{{\lambda}\in\Lambda}\tau_{\lambda}$?

Solution: Let $\{U_{\gamma}\}_{\gamma \in \Gamma}$, $\{V_i\}_{i=1}^n \subseteq \tau$. Then each U_{γ} and V_i is open in each τ_{λ} , meaning that the union of the former collection and the intersection of the latter are also in each τ_{λ} and thus in the intersection τ as well, making the latter a topology.

Let $X = \{1, 2, 3\}$, let $\tau_1 = \{\emptyset, \{1\}, X\}$, and let $\tau_2 = \{\emptyset, \{2\}, X\}$. These are clearly both valid topologies, so consider $\tau' = \tau_1 \cup \tau_2$. This includes both $\{1\}$ and $\{2\}$ but not their union and is thus not a topology.

(b) Let $\{\tau_{\lambda}\}_{\lambda \in \Lambda}$ be a family of topologies on X. Show that there are a unique smallest topology τ_{Λ} finer than and largest topology τ_{0} coarser than every τ_{λ} .

Solution: Let τ_{Λ} be the topology generated by $\mathcal{B} = \bigcup_{\lambda \in \Lambda} \tau_{\lambda}$. By Lemma 13.1, this means that

$$\tau_{\Lambda} = \left\{ \bigcup B \,\middle|\, B \subseteq \bigcup_{\lambda \in \Lambda} \tau_{\lambda} \right\}$$

Clearly, each $\tau_{\lambda} \subseteq \tau_{\Lambda}$. Let τ' be a topology such that each $\tau_{\lambda} \subseteq \tau'$, and let $U \in \tau_{\Lambda}$. Let $B \subseteq \mathcal{B}$ such that $\bigcup B = U$. Each element of B is open in some τ_{λ} and is thus open in τ' , so its union U is also in τ' ; that is, $\tau_{\Lambda} \subseteq \tau'$.

Let $\tau_0 = \bigcap_{\lambda \in \Lambda} \tau_\lambda$. By 4.(a), this is a valid topology. Let τ'' be a topology contained in each τ_λ . Then for $U \in \tau''$, $U \in \tau_\lambda$ for each λ , so $\tau'' \subseteq \tau_0$.

5. Show that if \mathcal{A} is a basis or subbasis generating (X, τ) , then τ is the intersection of all topologies on X containing \mathcal{A} .

Solution: Let $\mathcal{A} \subseteq X$ be a basis generating topology $\tau_{\mathcal{A}}$, and let τ' be a topology on containing \mathcal{A} . By Lemma 13.1,

$$\tau_{\mathcal{A}} = \left\{ \bigcup A \, \middle| \, A \subseteq \mathcal{A} \right\}$$

As $A \subseteq \tau'$, $\tau_A \subseteq \tau'$ by closure under unions.

Let $S \subseteq X$ be a subbasis generating topology τ_S and let τ'' be a topology containing S. By closure under arbitrary finite intersections and countable unions, $\tau_S \subseteq \tau''$.

8. (a) Show from Lemma 13.2 that

$$\mathcal{B} = \{(a, b) \mid a < b \in \mathbb{Q}\}\$$

is a basis that generates the standard topology τ on \mathbb{R} .

Solution: Let $a < b \in \mathbb{R}$ and let $x \in (a, b)$. By the density of \mathbb{Q} in \mathbb{R} , let $c \in [a, x) \cap \mathbb{Q}$ and $d \in (x, b] \cap \mathbb{Q}$. Then $x \in (d, e) \in \mathcal{B}$. τ is generated by bounded open intervals, so for any $U \in \tau$ and $x \in U$, there is some open interval and thus some element of \mathbb{Q} within U containing x, so by Lemma 13.2, \mathcal{B} generates τ .

(b) Show that

$$\mathcal{C} = \{ [a, b) \mid a < b \in \mathbb{Q} \}$$

does not generate the lower limit topology on \mathbb{R} .

Solution: Let $a < b \in \mathbb{R} \setminus \mathbb{Q}$. Then for all $x \in [a,b) \setminus \mathbb{Q}$, a < x, meaning that there is no element of $\mathcal{C} \cap \mathcal{P}([a,b))$ containing a. By Lemma 13.3, the topology generated by \mathcal{C} is not finer than and thus not equal to the lower limit topology.

Section 16 – The Subspace Topology

1. Show that a subset of a subspace inherits the same topology from both the subspace and the parent space.

Solution: Let (Y, τ_Y) be a subspace of (X, τ) and let $A \subset Y$ inherit topologies τ_A from Y and $\tau_{A'}$ from X. Then

$$\begin{split} \tau_A &= \{Z \cap U \mid U \in \tau_Y\} = \{Z \cap (U \cap V) \mid V \in \tau\} \\ &= \{Z \cap U \mid U \in \tau\} \end{split}$$

by closure under finite unions.

2. Let τ and τ' be topologies on X with the latter strictly finer than the former. How do their subspace topologies on $Y \subseteq X$ compare?

Solution: Let τ_Y and τ_Y' respectively denote the subspace topologies induced by τ and τ' . Then

$$\tau_Y = \{Z \cap U \mid U \in \tau\} \subseteq \{Z \cap U \mid U \in \tau'\}$$

the former is coarser than the latter. If there is some $U \in \mathcal{P}(Y) \cap (\tau' \setminus \tau)$, then clearly this relation is strict.

Consider $X = \{1, 2, 3\}$, $\tau = \{\emptyset, \{1\}, X\}$, $\tau' = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}$, and $Y = \{1\}$. Then despite τ being strictly coarser than τ' , $\tau_Y = \tau_Y'$.

4. A map $f: X \to Y$ between topological spaces (X, τ_X) and (Y, τ_Y) is an **open map** when it carries open sets to open sets. Show that the projection maps from $X \times Y$ with the product topology $\tau_{X \times Y}$ are open maps.

Solution: Let $U \in \tau_{X \times Y}$. By Lemma 13.1, let $\{(A_{\lambda}, B_{\lambda})\}_{\lambda \in \Lambda} \subseteq \tau_X \times \tau_Y$ such that

$$U = \bigcup_{\lambda \in \Lambda} [A_{\lambda} \times B_{\lambda}]$$

Then

$$\pi_1(U) = \pi_1 \left(\bigcup_{\lambda \in \Lambda} [A_\lambda \times B_\lambda] \right) = \bigcup_{\lambda \in \Lambda} \pi_1(A_\lambda \times B_\lambda) = \bigcup_{\lambda \in \Lambda} A_\lambda \in \tau_X$$

making π_1 an open map. Similarly, π_2 is as well.