Generating and Searching Families of FFT Algorithms

Steve Haynal¹ Heidi Haynal²

¹SofterHardware

²Department of Mathematics and Computer Science Walla Walla University

July 15, 2010

- Proof of the lowest operation count for classes of discrete Fourier transforms
 - Require fixed flowgraph structure of common FFTs
 - Require all complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Technique is exhaustive and supports various search objectives
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- Proof of the lowest operation count for classes of discrete Fourier transforms
 - Require fixed flowgraph structure of common FFTs
 - Require all complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Technique is exhaustive and supports various search objectives
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- Proof of the lowest operation count for classes of discrete Fourier transforms
 - Require fixed flowgraph structure of common FFTs
 - Require all complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Technique is exhaustive and supports various search objectives
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- Proof of the lowest operation count for classes of discrete Fourier transforms
 - Require fixed flowgraph structure of common FFTs
 - Require all complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Technique is exhaustive and supports various search objectives
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- 1 The Fast Fourier Transform
- Generating a Family of FFT Algorithms
- Searching a Family of FFT Algorithms
- 4 Results and Conclusions

- 1 The Fast Fourier Transform
- Generating a Family of FFT Algorithms
- Searching a Family of FFT Algorithms
- 4 Results and Conclusions

- 1 The Fast Fourier Transform
- Generating a Family of FFT Algorithms
- Searching a Family of FFT Algorithms
- Results and Conclusions

- The Fast Fourier Transform
- Quantity of FFT Algorithms
- Searching a Family of FFT Algorithms
- Results and Conclusions

- 1 The Fast Fourier Transform
- Generating a Family of FFT Algorithms
- Searching a Family of FFT Algorithms
- 4 Results and Conclusions

Fourier Transform

Fourier Transform is an Integral

$$X(f) = \int_{-\infty}^{\infty} a(t)e^{-i2\pi ft}dt, \quad f \in (-\infty, \infty)$$

But a discrete sum is used to compute the Fourier Transform

$$X(k) = \sum_{j=0}^{n-1} a_j e^{-\frac{j2\pi}{n}jk}$$

$$= \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

Multiplication Example

$$\omega_{16}^{13}\omega_{16}^{6} = \omega_{16}^{(13+6 \pmod{16})}$$
$$= \omega_{16}^{3}$$

Fourier Transform

Fourier Transform is an Integral

$$X(f) = \int_{-\infty}^{\infty} a(t)e^{-i2\pi ft}dt, \quad f \in (-\infty, \infty)$$

But a discrete sum is used to compute the Fourier Transform

$$X(k) = \sum_{j=0}^{n-1} a_j e^{-\frac{j2\pi}{n}jk}$$

$$= \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

Multiplication Example

$$\omega_{16}^{13}\omega_{16}^{6} = \omega_{16}^{(13+6 \pmod{16})}$$

$$= \omega_{16}^{3}$$

Fourier Transform

Fourier Transform is an Integral

$$X(f) = \int_{-\infty}^{\infty} a(t)e^{-i2\pi ft}dt, \quad f \in (-\infty, \infty)$$

But a discrete sum is used to compute the Fourier Transform

$$X(k) = \sum_{j=0}^{n-1} a_j e^{-\frac{j2\pi}{n}jk}$$

$$= \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

Multiplication Example

$$\omega_{16}^{13}\omega_{16}^{6} = \omega_{16}^{(13+6 \text{ (mod 16)})}$$

$$= \omega_{16}^{3}$$

$$X(k) = \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

$$X(0) = a_0 \omega_8^0 + a_1 \omega_8^0 + a_2 \omega_8^0 + a_3 \omega_8^0 + a_4 \omega_8^0 + a_5 \omega_8^0 + a_6 \omega_8^0 + a_7 \omega_8^0$$

$$X(1) = a_0 \omega_8^0 + a_1 \omega_8^1 + a_2 \omega_8^2 + a_3 \omega_8^3 + a_4 \omega_8^4 + a_5 \omega_8^5 + a_6 \omega_8^6 + a_7 \omega_8^7$$

$$X(2) = a_0 \omega_8^0 + a_1 \omega_8^2 + a_2 \omega_8^4 + a_3 \omega_8^6 + a_4 \omega_8^0 + a_5 \omega_8^2 + a_6 \omega_8^4 + a_7 \omega_8^6$$

$$X(3) = a_0 \omega_8^0 + a_1 \omega_8^3 + a_2 \omega_8^6 + a_3 \omega_8^1 + a_4 \omega_8^4 + a_5 \omega_8^7 + a_6 \omega_8^2 + a_7 \omega_8^5$$

$$X(4) = a_0 \omega_8^0 + a_1 \omega_8^4 + a_2 \omega_8^0 + a_3 \omega_8^4 + a_4 \omega_8^0 + a_5 \omega_8^4 + a_6 \omega_8^0 + a_7 \omega_8^4$$

$$X(5) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^2 + a_3 \omega_8^7 + a_4 \omega_8^4 + a_5 \omega_8^1 + a_6 \omega_8^6 + a_7 \omega_8^3$$

$$X(6) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^4 + a_3 \omega_8^2 + a_4 \omega_8^0 + a_5 \omega_8^6 + a_6 \omega_8^4 + a_7 \omega_8^2$$

$$X(7) = a_0 \omega_8^0 + a_1 \omega_8^7 + a_2 \omega_8^6 + a_3 \omega_8^5 + a_4 \omega_8^4 + a_5 \omega_8^3 + a_6 \omega_8^2 + a_7 \omega_8^1$$

$$X(k) = \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

$$X(0) = a_0 \omega_8^0 + a_1 \omega_8^0 + a_2 \omega_8^0 + a_3 \omega_8^0 + a_4 \omega_8^0 + a_5 \omega_8^0 + a_6 \omega_8^0 + a_7 \omega_8^0$$

$$X(1) = a_0 \omega_8^0 + a_1 \omega_8^1 + a_2 \omega_8^2 + a_3 \omega_8^3 + a_4 \omega_8^4 + a_5 \omega_8^5 + a_6 \omega_8^6 + a_7 \omega_8^7$$

$$X(2) = a_0 \omega_8^0 + a_1 \omega_8^2 + a_2 \omega_8^4 + a_3 \omega_8^6 + a_4 \omega_8^0 + a_5 \omega_8^2 + a_6 \omega_8^4 + a_7 \omega_8^6$$

$$X(3) = a_0 \omega_8^0 + a_1 \omega_8^3 + a_2 \omega_8^6 + a_3 \omega_8^1 + a_4 \omega_8^4 + a_5 \omega_8^7 + a_6 \omega_8^2 + a_7 \omega_8^5$$

$$X(4) = a_0 \omega_8^0 + a_1 \omega_8^4 + a_2 \omega_8^0 + a_3 \omega_8^4 + a_4 \omega_8^0 + a_5 \omega_8^4 + a_6 \omega_8^0 + a_7 \omega_8^4$$

$$X(5) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^2 + a_3 \omega_8^7 + a_4 \omega_8^4 + a_5 \omega_8^1 + a_6 \omega_8^6 + a_7 \omega_8^3$$

$$X(6) = a_0 \omega_8^0 + a_1 \omega_8^6 + a_2 \omega_8^4 + a_3 \omega_8^2 + a_4 \omega_8^0 + a_5 \omega_8^6 + a_6 \omega_8^4 + a_7 \omega_8^2$$

$$X(7) = a_0 \omega_8^0 + a_1 \omega_8^7 + a_2 \omega_8^6 + a_3 \omega_8^5 + a_4 \omega_8^4 + a_5 \omega_8^3 + a_6 \omega_8^2 + a_7 \omega_8^1$$

$$X(k) = \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

$$X(0) = a_0 \omega_8^0 + a_1 \omega_8^0 + a_2 \omega_8^0 + a_3 \omega_8^0 + a_4 \omega_8^0 + a_5 \omega_8^0 + a_6 \omega_8^0 + a_7 \omega_8^0$$

$$X(1) = a_0 \omega_8^0 + a_1 \omega_8^1 + a_2 \omega_8^2 + a_3 \omega_8^3 + a_4 \omega_8^4 + a_5 \omega_8^5 + a_6 \omega_8^6 + a_7 \omega_8^7$$

$$X(2) = a_0 \omega_8^0 + a_1 \omega_8^2 + a_2 \omega_8^4 + a_3 \omega_8^6 + a_4 \omega_8^0 + a_5 \omega_8^2 + a_6 \omega_8^4 + a_7 \omega_8^6$$

$$X(3) = a_0 \omega_8^0 + a_1 \omega_8^3 + a_2 \omega_8^6 + a_3 \omega_8^1 + a_4 \omega_8^4 + a_5 \omega_8^7 + a_6 \omega_8^2 + a_7 \omega_8^5$$

$$X(4) = a_0 \omega_8^0 + a_1 \omega_8^4 + a_2 \omega_8^0 + a_3 \omega_8^4 + a_4 \omega_8^0 + a_5 \omega_8^4 + a_6 \omega_8^0 + a_7 \omega_8^4$$

$$X(5) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^2 + a_3 \omega_8^7 + a_4 \omega_8^4 + a_5 \omega_8^1 + a_6 \omega_8^6 + a_7 \omega_8^3$$

$$X(6) = a_0 \omega_8^0 + a_1 \omega_8^6 + a_2 \omega_8^4 + a_3 \omega_8^2 + a_4 \omega_8^0 + a_5 \omega_8^6 + a_6 \omega_8^4 + a_7 \omega_8^2$$

$$X(7) = a_0 \omega_8^0 + a_1 \omega_8^7 + a_2 \omega_8^6 + a_3 \omega_8^5 + a_4 \omega_8^4 + a_5 \omega_8^3 + a_6 \omega_8^2 + a_7 \omega_8^1$$

$$X(k) = \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

$$X(0) = a_0 \omega_8^0 + a_1 \omega_8^0 + a_2 \omega_8^0 + a_3 \omega_8^0 + a_4 \omega_8^0 + a_5 \omega_8^0 + a_6 \omega_8^0 + a_7 \omega_8^0$$

$$X(1) = a_0 \omega_8^0 + a_1 \omega_8^1 + a_2 \omega_8^2 + a_3 \omega_8^3 + a_4 \omega_8^4 + a_5 \omega_8^5 + a_6 \omega_8^6 + a_7 \omega_8^7$$

$$X(2) = a_0 \omega_8^0 + a_1 \omega_8^2 + a_2 \omega_8^4 + a_3 \omega_8^6 + a_4 \omega_8^0 + a_5 \omega_8^2 + a_6 \omega_8^4 + a_7 \omega_8^6$$

$$X(3) = a_0 \omega_8^0 + a_1 \omega_8^3 + a_2 \omega_8^6 + a_3 \omega_8^1 + a_4 \omega_8^4 + a_5 \omega_8^7 + a_6 \omega_8^2 + a_7 \omega_8^5$$

$$X(4) = a_0 \omega_8^0 + a_1 \omega_8^4 + a_2 \omega_8^0 + a_3 \omega_8^4 + a_4 \omega_8^0 + a_5 \omega_8^4 + a_6 \omega_8^0 + a_7 \omega_8^4$$

$$X(5) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^2 + a_3 \omega_8^7 + a_4 \omega_8^4 + a_5 \omega_8^1 + a_6 \omega_8^6 + a_7 \omega_8^3$$

$$X(6) = a_0 \omega_8^0 + a_1 \omega_8^6 + a_2 \omega_8^4 + a_3 \omega_8^2 + a_4 \omega_8^0 + a_5 \omega_8^6 + a_6 \omega_8^4 + a_7 \omega_8^2$$

$$X(7) = a_0 \omega_8^0 + a_1 \omega_8^7 + a_2 \omega_8^6 + a_3 \omega_8^5 + a_4 \omega_8^4 + a_5 \omega_8^3 + a_6 \omega_8^2 + a_7 \omega_8^1$$

$$X(k) = \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

$$X(0) = a_0 \omega_8^0 + a_1 \omega_8^0 + a_2 \omega_8^0 + a_3 \omega_8^0 + a_4 \omega_8^0 + a_5 \omega_8^0 + a_6 \omega_8^0 + a_7 \omega_8^0$$

$$X(1) = a_0 \omega_8^0 + a_1 \omega_8^1 + a_2 \omega_8^2 + a_3 \omega_8^3 + a_4 \omega_8^4 + a_5 \omega_8^5 + a_6 \omega_8^6 + a_7 \omega_8^7$$

$$X(2) = a_0 \omega_8^0 + a_1 \omega_8^2 + a_2 \omega_8^4 + a_3 \omega_8^6 + a_4 \omega_8^0 + a_5 \omega_8^2 + a_6 \omega_8^4 + a_7 \omega_8^6$$

$$X(3) = a_0 \omega_8^0 + a_1 \omega_8^3 + a_2 \omega_8^6 + a_3 \omega_8^1 + a_4 \omega_8^4 + a_5 \omega_8^7 + a_6 \omega_8^2 + a_7 \omega_8^5$$

$$X(4) = a_0 \omega_8^0 + a_1 \omega_8^4 + a_2 \omega_8^0 + a_3 \omega_8^4 + a_4 \omega_8^0 + a_5 \omega_8^4 + a_6 \omega_8^0 + a_7 \omega_8^4$$

$$X(5) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^2 + a_3 \omega_8^7 + a_4 \omega_8^4 + a_5 \omega_8^1 + a_6 \omega_8^6 + a_7 \omega_8^3$$

$$X(6) = a_0 \omega_8^0 + a_1 \omega_8^6 + a_2 \omega_8^4 + a_3 \omega_8^2 + a_4 \omega_8^0 + a_5 \omega_8^6 + a_6 \omega_8^4 + a_7 \omega_8^2$$

$$X(7) = a_0 \omega_8^0 + a_1 \omega_8^7 + a_2 \omega_8^6 + a_3 \omega_8^5 + a_4 \omega_8^4 + a_5 \omega_8^3 + a_6 \omega_8^2 + a_7 \omega_8^1$$

$$X(k) = \sum_{j=0}^{n-1} a_j \omega_n^{jk \pmod{n}}, \quad k = 0, 1, 2, \dots, n-1$$

$$X(0) = a_0 \omega_8^0 + a_1 \omega_8^0 + a_2 \omega_8^0 + a_3 \omega_8^0 + a_4 \omega_8^0 + a_5 \omega_8^0 + a_6 \omega_8^0 + a_7 \omega_8^0$$

$$X(1) = a_0 \omega_8^0 + a_1 \omega_8^1 + a_2 \omega_8^2 + a_3 \omega_8^3 + a_4 \omega_8^4 + a_5 \omega_8^5 + a_6 \omega_8^6 + a_7 \omega_8^7$$

$$X(2) = a_0 \omega_8^0 + a_1 \omega_8^2 + a_2 \omega_8^4 + a_3 \omega_8^6 + a_4 \omega_8^0 + a_5 \omega_8^2 + a_6 \omega_8^4 + a_7 \omega_8^6$$

$$X(3) = a_0 \omega_8^0 + a_1 \omega_8^3 + a_2 \omega_8^6 + a_3 \omega_8^1 + a_4 \omega_8^4 + a_5 \omega_8^7 + a_6 \omega_8^2 + a_7 \omega_8^5$$

$$X(4) = a_0 \omega_8^0 + a_1 \omega_8^4 + a_2 \omega_8^0 + a_3 \omega_8^4 + a_4 \omega_8^0 + a_5 \omega_8^4 + a_6 \omega_8^0 + a_7 \omega_8^4$$

$$X(5) = a_0 \omega_8^0 + a_1 \omega_8^5 + a_2 \omega_8^2 + a_3 \omega_8^7 + a_4 \omega_8^4 + a_5 \omega_8^1 + a_6 \omega_8^6 + a_7 \omega_8^3$$

$$X(6) = a_0 \omega_8^0 + a_1 \omega_8^6 + a_2 \omega_8^4 + a_3 \omega_8^2 + a_4 \omega_8^0 + a_5 \omega_8^6 + a_6 \omega_8^4 + a_7 \omega_8^2$$

$$X(7) = a_0 \omega_8^0 + a_1 \omega_8^7 + a_2 \omega_8^6 + a_3 \omega_8^5 + a_4 \omega_8^4 + a_5 \omega_8^3 + a_6 \omega_8^2 + a_7 \omega_8^1$$

Graph Vertex Internals

$$z = (a_1 + b_1 i)(a_2 + b_2 i)$$

$$= a_1 a_2 + a_1 b_2 i + b_1 a_2 + b_1 b_2 i^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$$

$$\Re (z) = (a_1 a_2 - b_1 b_2)$$

$$\Im (z) = (a_1 b_2 + b_1 a_2) i$$

- $\mathfrak{Im}(z)$ also requires 2 real multiplications and 1 real addition
- 6 floating point operations (FLOPS) required for a complete complex multiplication

$$z = (a_1 + b_1 i)(a_2 + b_2 i)$$

$$= a_1 a_2 + a_1 b_2 i + b_1 a_2 + b_1 b_2 i^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$$

$$\mathfrak{Re}(z) = (a_1 a_2 - b_1 b_2)$$

$$\mathfrak{Im}(z) = (a_1 b_2 + b_1 a_2) i$$

- ℜε(z) requires 2 real multiplications and 1 real addition
- $\mathfrak{Im}(z)$ also requires 2 real multiplications and 1 real addition
- 6 floating point operations (FLOPS) required for a complete complex multiplication

$$z = (a_1 + b_1 i)(a_2 + b_2 i)$$

$$= a_1 a_2 + a_1 b_2 i + b_1 a_2 + b_1 b_2 i^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$$

$$\mathfrak{Re}(z) = (a_1 a_2 - b_1 b_2)$$

$$\mathfrak{Im}(z) = (a_1 b_2 + b_1 a_2) i$$

- ℜε (z) requires 2 real multiplications and 1 real addition
- $\mathfrak{Im}(z)$ also requires 2 real multiplications and 1 real addition
- 6 floating point operations (FLOPS) required for a complete complex multiplication

$$z = (a_1 + b_1 i)(a_2 + b_2 i)$$

$$= a_1 a_2 + a_1 b_2 i + b_1 a_2 + b_1 b_2 i^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$$

$$\mathfrak{Re}(z) = (a_1 a_2 - b_1 b_2)$$

$$\mathfrak{Im}(z) = (a_1 b_2 + b_1 a_2) i$$

- ℜε (z) requires 2 real multiplications and 1 real addition
- $\mathfrak{Im}(z)$ also requires 2 real multiplications and 1 real addition
- 6 floating point operations (FLOPS) required for a complete complex multiplication

32-Point FFT requiring 456 FLOPs

Another 32-Point FFT requiring 456 FLOPs

Yet Another 32-Point FFT requiring 456 FLOPs

32-Point FFT requiring 490 FLOPs

32-Point FFT requiring 688 FLOPs

Outline

- 1 The Fast Fourier Transform
- Quantity of FFT Algorithms
- Searching a Family of FFT Algorithms
- Results and Conclusions

How to Generate a Random Member FFT Algorithm

```
Input: Size-n flowgraph with labeled invariants
Output: Size-n flowgraph with twiddle factors assigned
foreach nd \in flowgraph do
   if nd.stride \neq n then
        nd.W_{hase} \leftarrow rand() \pmod{n}
        nd.rW_{hase} \leftarrow nd.W_{hase} + nd.W_{stride} \pmod{n}
   else
        nd.W_{hase} \leftarrow 0
foreach nd \in flowgraph do
    if nd.stride \neq n then
        nd.lp.tfp \leftarrow nd.W_{base} - nd.lp.W_{base} \pmod{n}
        nd.rp.tfp \leftarrow nd.rW_{base} - nd.rp.W_{base} \pmod{n}
    if nd stride = 1 then
        nd.tfp \leftarrow 0 - nd.W_{hase} \pmod{n}
```

Outline

- The Fast Fourier Transform
- Quantity of FFT Algorithms
- Searching a Family of FFT Algorithms
- Results and Conclusions

Searching a Family of FFT Algorithms

- All family members are not equally desirable
 - Some require fewer FLOPs
 - Others may require less communication of twiddle factors
 - Need a way to search and find desirable members
- How many family members are there?
 - $2n\log_2 n\log_2 n$
 - For a 256-point FFT: 2¹⁶³⁸⁴
 - Only 1 in 2¹⁸⁴³² chance of guessing correct twiddle factors
 - Estimated atoms in the universe is 2²⁶⁴
 - Fastest supercomputer performs 2¹⁴⁴ FLOPS

Searching a Family of FFT Algorithms

- All family members are not equally desirable
 - Some require fewer FLOPs
 - Others may require less communication of twiddle factors
 - Need a way to search and find desirable members
- How many family members are there?
 - 2ⁿ log₂ n log₂ n
 - For a 256-point FFT: 2¹⁶³⁸⁴
 - Only 1 in 2¹⁸⁴³² chance of guessing correct twiddle factors
 - Estimated atoms in the universe is 2²⁶⁴
 - Fastest supercomputer performs 2¹⁴⁴ FLOPS

A First SMT Formulation

- Directly cast "Random Member Algorithm" as SMT
- Must also calculate FLOP count directly in SMT model
 - Psuedo-Boolean constraint
 - Nearly balanced add tree in implementation
 - ITE tree did not work well
 - Did not implement sorter-based techniques
- Size-32 455 FLOP search UNSAT in 30 seconds
- Time-out of 24 hours reached for size-64 1159 FLOP search

A First SMT Formulation

- Directly cast "Random Member Algorithm" as SMT
- Must also calculate FLOP count directly in SMT model
 - Psuedo-Boolean constraint
 - Nearly balanced add tree in implementation
 - ITE tree did not work well
 - Did not implement sorter-based techniques
- Size-32 455 FLOP search UNSAT in 30 seconds
- Time-out of 24 hours reached for size-64 1159 FLOP search

A First SMT Formulation

- Directly cast "Random Member Algorithm" as SMT
- Must also calculate FLOP count directly in SMT model
 - Psuedo-Boolean constraint
 - Nearly balanced add tree in implementation
 - ITE tree did not work well
 - Did not implement sorter-based techniques
- Size-32 455 FLOP search UNSAT in 30 seconds
- Time-out of 24 hours reached for size-64 1159 FLOP search

Sample SMT 1.2 Code

```
(benchmark example1
     : logic QF BV
     :extrafuns ((Wb 2 1 6 BitVec[4]))
     :extrafuns ((Wb 2 1 14 BitVec[4]))
6
7
     : formula
8
9
     (let (?Wb 16 14 0 bv0[4])
10
11
     (let (?rWb 2 1 6 (bvadd Wb 2 1 6 bv6[4]))
12
13
     (let (?ltfp 4 1 12 (bysub Wb 2 1 6 ?Wb 4 1 12))
14
     (let (?ltfp 4 3 12 (bvsub ?rWb 2 1 6 ?Wb 4 3 12))
15
16
     (flet ($c0 4 1 12 (= (extract[1:0] ?ltfp 4 1 12) bv0[2]))
17
     (flet ($c4 4 1 12 (and (= (extract[0:0] ?ltfp 4 1 12) bv0[1]) (not $c0 4 1 12)))
18
     (flet ($c6 4 1 12 (not (= (extract[0:0] ?ltfp 4 1 12) bv0[1])))
     (let (?cost 4 1 12 (ite $c6 4 1 12 bv6[4] (ite $c4 4 1 12 bv4[4] bv0[4])))
19
20
     (let (?totalcost (bvadd ?cost 2 2 1 (bvadd ?cost 4 1 12 ?cost 4 3 12)) ...
21
22
     (flet ($maxcost (byule ?totalcost by22[4]))
23
     $maxcost
24
     ) . . . )
```

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

- A size-32 naïve formulation can be solved easily
 - Interesting results happen at size-256 and larger
- To solve larger problems:
 - Exclude cost symmetries
 - Share twiddle factors
 - Partition
 - Exclude local symmetries
- Will only present partitioning

Terminal Weights Known

Terminal Weights Known

Initial Weights Known

Initial Weights Known Cost Cost

No Cost

Initial Weights Known

Initial Weights Known

Initial Weights Known

Initial Weights Known

- Hardest partitions for size-256 are 8 size-16
- Solution space for size-16 flowgraph is 2¹⁹²
- Size-16 best FLOP count minus one UNSAT in 5 seconds
- Size-256 6616 FLOP search SAT for all partitions in 8 seconds
- Size-256 6615 FLOP search UNSAT for all partitions in 50 seconds

- Hardest partitions for size-256 are 8 size-16
- Solution space for size-16 flowgraph is 2¹⁹²
- Size-16 best FLOP count minus one UNSAT in 5 seconds
- Size-256 6616 FLOP search SAT for all partitions in 8 seconds
- Size-256 6615 FLOP search UNSAT for all partitions in 50 seconds

- Hardest partitions for size-256 are 8 size-16
- Solution space for size-16 flowgraph is 2¹⁹²
- Size-16 best FLOP count minus one UNSAT in 5 seconds
- Size-256 6616 FLOP search SAT for all partitions in 8 seconds
- Size-256 6615 FLOP search UNSAT for all partitions in 50 seconds

- Hardest partitions for size-256 are 8 size-16
- Solution space for size-16 flowgraph is 2¹⁹²
- Size-16 best FLOP count minus one UNSAT in 5 seconds
- Size-256 6616 FLOP search SAT for all partitions in 8 seconds
- Size-256 6615 FLOP search UNSAT for all partitions in 50 seconds

- Hardest partitions for size-256 are 8 size-16
- Solution space for size-16 flowgraph is 2¹⁹²
- Size-16 best FLOP count minus one UNSAT in 5 seconds.
- Size-256 6616 FLOP search SAT for all partitions in 8 seconds
- Size-256 6615 FLOP search UNSAT for all partitions in 50 seconds

Outline

- The Fast Fourier Transform
- Generating a Family of FFT Algorithms
- Searching a Family of FFT Algorithms
- 4 Results and Conclusions

	Tangent $ \omega_n^* = *$	Split-Radix $ \omega_n^* = 1$	SMT Search $ \omega_n^* =1$				
			Satisfiable Unsatisfiable			atisfiable	
FFT Size	FLOPs	FLOPs	FLOPs	time(s)	FLOPs	time(s)	
32	456	456	456	1.4×10^{-1}	455	1.5×10^{-1}	
64	1152	1160	1160	3.1×10^{-1}	1159	3.3×10^{-1}	
128	2792	2824	2824	9.3×10^{-1}	2823	1.1×10^{0}	
256	6552	6664	6616	8.3×10^{0}	6615	5.0×10^{1}	
512	15048	15368	15128	3.9×10^{4}	15127?	>1 × 10 ⁶	

- Found FFT algorithms with restricted set of twiddle factors
- Boolector was our SMT solver of choice
- Found no computation advantage to using SMT over SAT
- Found specification advantage with SMT

	Tangent $ \omega_n^* = *$	Split-Radix $ \omega_n^* = 1$	SMT Search $ \omega_n^* = 1$				
		,	Satisfiable Unsatisfiable			atisfiable	
FFT Size	FLOPs	FLOPs	FLOPs	time(s)	FLOPs	time(s)	
32	456	456	456	1.4×10^{-1}	455	1.5×10^{-1}	
64	1152	1160	1160	3.1×10^{-1}	1159	3.3×10^{-1}	
128	2792	2824	2824	9.3×10^{-1}	2823	1.1×10^{0}	
256	6552	6664	6616	8.3×10^{0}	6615	5.0×10^{1}	
512	15048	15368	15128	3.9×10^{4}	15127?	>1 × 10 ⁶	

Found FFT algorithms with restricted set of twiddle factors

- Boolector was our SMT solver of choice
- Found no computation advantage to using SMT over SAT
- Found specification advantage with SMT

	Tangent $ \omega_n^* = *$	Split-Radix $ \omega_n^* = 1$	SMT Search $ \omega_n^* = 1$				
		,	Satisfiable Unsatisfiable			atisfiable	
FFT Size	FLOPs	FLOPs	FLOPs	time(s)	FLOPs	time(s)	
32	456	456	456	1.4×10^{-1}	455	1.5×10^{-1}	
64	1152	1160	1160	3.1×10^{-1}	1159	3.3×10^{-1}	
128	2792	2824	2824	9.3×10^{-1}	2823	1.1×10^{0}	
256	6552	6664	6616	8.3×10^{0}	6615	5.0×10^{1}	
512	15048	15368	15128	3.9×10^{4}	15127?	>1 × 10 ⁶	

- Found FFT algorithms with restricted set of twiddle factors
- Boolector was our SMT solver of choice
- Found no computation advantage to using SMT over SAT
- Found specification advantage with SMT

	Tangent	Split-Radix	SMT Search				
	$ \omega_n^* = *$	$ \omega_n^* =1$	$ \omega_n^* =1$				
			Satisfiable Unsatisfiable			atisfiable	
FFT Size	FLOPs	FLOPs	FLOPs	time(s)	FLOPs	time(s)	
32	456	456	456	1.4×10^{-1}	455	1.5×10^{-1}	
64	1152	1160	1160	3.1×10^{-1}	1159	3.3×10^{-1}	
128	2792	2824	2824	9.3×10^{-1}	2823	1.1×10^{0}	
256	6552	6664	6616	8.3×10^{0}	6615	5.0×10^{1}	
512	15048	15368	15128	3.9×10^{4}	15127?	>1 × 10 ⁶	

- Found FFT algorithms with restricted set of twiddle factors
- Boolector was our SMT solver of choice
- Found no computation advantage to using SMT over SAT
- Found specification advantage with SMT

	Tangent $ \omega_n^* = *$	Split-Radix $ \omega_n^* = 1$	SMT Search $ \omega_n^* =1$			
		,	Satisfiable Unsatisfiable			atisfiable
FFT Size	FLOPs	FLOPs	FLOPs	time(s)	FLOPs	time(s)
32	456	456	456	1.4×10^{-1}	455	1.5×10^{-1}
64	1152	1160	1160	3.1×10^{-1}	1159	3.3×10^{-1}
128	2792	2824	2824	9.3×10^{-1}	2823	1.1×10^{0}
256	6552	6664	6616	8.3×10^{0}	6615	5.0×10^{1}
512	15048	15368	15128	3.9×10^{4}	15127?	>1 × 10 ⁶

- Found FFT algorithms with restricted set of twiddle factors
- Boolector was our SMT solver of choice
- Found no computation advantage to using SMT over SAT
- Found specification advantage with SMT

- SMT proof of the lowest operation count for classes of Fourier transforms
 - Flowgraph structure of common FFTs
 - All complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Next Steps
 - Impose regularity to develop traditional algorithm
 - Develop other search objectives
 - Relax graph structure
 - Relax constraint that twiddle factors must have modulus one
 - Apply to matrix multiplication
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- SMT proof of the lowest operation count for classes of Fourier transforms
 - Flowgraph structure of common FFTs
 - All complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Next Steps
 - Impose regularity to develop traditional algorithm
 - Develop other search objectives
 - Relax graph structure
 - Relax constraint that twiddle factors must have modulus one
 - Apply to matrix multiplication
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- SMT proof of the lowest operation count for classes of Fourier transforms
 - Flowgraph structure of common FFTs
 - All complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Next Steps
 - Impose regularity to develop traditional algorithm
 - Develop other search objectives
 - Relax graph structure
 - Relax constraint that twiddle factors must have modulus one
 - Apply to matrix multiplication
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft

- SMT proof of the lowest operation count for classes of Fourier transforms
 - Flowgraph structure of common FFTs
 - All complex multiplication by nth roots of unity
- Found new FFTs with lower FLOP count than split-radix
 - Undiscovered in past 40 years despite intense study
- Next Steps
 - Impose regularity to develop traditional algorithm
 - Develop other search objectives
 - Relax graph structure
 - Relax constraint that twiddle factors must have modulus one
 - Apply to matrix multiplication
- Full paper to appear in JSAT
 - Preprint at www.arXiv.org
 - Preprint, slides and code at www.softerhardware.com/fft