Assignment 5

Pegah Khazaei

12 April 2020

Chapter 3

Problem 2

Part 2-1

In order for the algorithm to have minimum empirical risk, in other words, it is an ERM algorithm, we define the latter as follows: Noting the labeling function f, if the training set containts a positive instance x, the algorithm returns h_x . Otherwise, it returns h^- which is an ERM.

Part 2-2

Let \mathcal{D} be a probability distribution over X and $\epsilon \in (0,1)$. If the labeling function equals h^- , the algorithm return the true hypothesis. Suppose there exist a x_+ in X that is a unique positive instance. If $x_+ \in S$ then the algorithm returns the true hypothesis. As such $L_{(\mathcal{D},f)}(S) = 0$.

Assume that $x_+ \notin S$, if $\mathcal{D}(\{x_+\}) \leq \epsilon$, then $L_{(\mathcal{D},f)}(h) \leq \epsilon$ for all h in H. Suppose that $\mathcal{D}(\{x_+\}) > \epsilon$, then for all $x' \in X$ that $x' \neq x$, $\mathcal{D}(\{x'\}) \leq 1 - \epsilon$.

$$\{S|_X : L_{(\mathcal{D},f)}(h_s) > \epsilon\} = \{S|_X : x_+ \notin S|_X \text{ and } \mathcal{D}(\{x_+\}) > \epsilon\}$$

= $\{S|_X : \forall x' \in S|_X \mathcal{D}(\{x'\}) \le 1 - \epsilon\}$

As a result

$$\mathcal{D}^{m}\left(\left\{S|_{X}: L_{(\mathcal{D},f)}(h_{s}) > \epsilon\right\}\right) = \mathcal{D}^{m}\left(\left\{S|_{X}: \forall x' \in S|_{X} \mathcal{D}(\left\{x'\right\}) \leq 1 - \epsilon\right\}\right)$$
$$\leq (1 - \epsilon)^{m} \leq e^{-\epsilon m}$$

Now let $\delta \in (0,1)$ such that $e^{-\epsilon m} \leq \delta$. Therefore $m \geq \frac{\log(1/\delta)}{\epsilon}$. As a result, H is PAC learnable with $m_H \leq \frac{\log(1/\delta)}{\epsilon}$.

Problem 3

Suppose the ERM algorithm A takes S as training set and it returns the tightest circle that contains all positive instances. The output function is denoted by h_s and its radius by r_s . Having the realizability assumption, i.e. there exists a h^* in H such that the generilization error vanishes. Its radius is denoted by r^* .

Let $\epsilon, \delta \in (0, 1)$, suppose that there is a scalar r less than r^* $(r \leq r^*)$:

$$\mathcal{D}_X\left(\left\{x:r\leq||x||\leq r^*\right\}\right)=\epsilon$$

Suppose that $E = \{x \in \mathbb{R}^2 : r \le ||x|| \le r^*\}$, then

$$P(L_{\mathcal{D}}(h_s) \ge \epsilon) = P(x_i \in S \text{ s.t. } x \notin E) = \Pi_i (1 - P(x_i \in E))^m = (1 - \epsilon)^m \le e^{m\epsilon}$$

Let $\delta \in (0,1)$, we have $e^{m\epsilon} \leq \delta$ or $m \geq \frac{\log(1/\delta)}{\epsilon}$. Therefore H is PAC learnable and $m_H(\epsilon,\delta) \leq \frac{\log(1/\delta)}{\epsilon}$.

Problem 4

Unfortunately I did not have enough time to solve this problem.

Problem 5

Suppose that there is a $h \in H$ such that $L_{(\overline{\mathcal{D}}_m,f)} > \epsilon$. Then based on the definition of the generalization error we have:

$$\frac{P_{x \sim \mathcal{D}_1}[h(x) \neq f(x)] + \dots + P_{x \sim \mathcal{D}_m}[h(x) \neq f(x)]}{m} > \epsilon$$

then we have

$$\frac{P_{x \sim \mathcal{D}_1}[h(x) = f(x)] + \dots + P_{x \sim \mathcal{D}_m}[h(x) = f(x)]}{m} \le 1 - \epsilon$$

and

$$P\left[S|_{X}:L_{(S,f)}(h)=0\right]=\Pi_{i=1}^{m}P_{x\sim\mathcal{D}_{i}}\left[h(x)=f(x)\right]=\left(\left(\Pi_{i=1}^{m}P_{x\sim\mathcal{D}_{i}}\right)^{\frac{1}{m}}\right)^{m}$$

based on geometric-arithmetic mean inequality, we have:

$$P\left[S|_{X}: L_{(S,f)}(h) = 0\right] \le \left(\frac{P_{x \sim \mathcal{D}_{1}}[h(x) = f(x)] + \dots + P_{x \sim \mathcal{D}_{m}}[h(x) = f(x)]}{m}\right)^{m} \le (1 - \epsilon)^{m} \le e^{-\epsilon m}$$

On the other hand if we have $H' = \{h \in H : L_{(\overline{\mathcal{D}}_m,f)}(h) > \epsilon\}$ and $B = \{S|_X : \exists h \in H' \text{ s.t. } L_{(S,f)}(h) = 0\}$, then:

$$\begin{split} P\left[B\right] &= P\left[\exists h \in H \text{ s.t. } L_{\left(\overline{\mathcal{D}}_m,f\right)}(h) > \epsilon \text{ and } L_{(S,f)}(h) = 0\right] \\ &= P\left[\bigcup_{h \in H'} \{S|_X : L_{(S,f)}(h) = 0\}\right] \end{split}$$

Hence, we have:

$$\begin{split} P\left[\exists h \in H \text{ s.t. } L_{(\overline{\mathcal{D}}_m,f)}(h) > \epsilon \text{ and } L_{(S,f)}(h) = 0\right] \\ & \leq |H| \times P\left[\bigcup_{h \in H'} \{S|_X : L_{(S,f)}(h) = 0\}\right] \end{split}$$

The proof is complete based on the two previous equations.

Problem 6

We know that H is an agnostic PAC learnable. The objective is to show that H is also PAC learnable. Based on the assumption, there is an algorithm A and a function $m_H:(0,1)^2\to\mathbb{N}$ such that for all $\epsilon,\delta\in(0,1)$ and for every distribution \mathcal{D} over $X\times Y$ when running A on $m\geq m_H(\epsilon,\delta)$ iid examples generated by \mathcal{D} , A returns hypothesis h such that, with a probability of at least $1-\delta$, $L_{\mathcal{D}}(h)\leq \min_{h'\in H}L_{\mathcal{D}}(h')+\epsilon$.

Now we should assume that given the realizability assumption, H is PAC learnable using A.

Suppose that \mathcal{D} is the probability distribution over X and f is the labeling function on H. We consider the distribution \mathcal{D}' over $X \times \{0,1\}$ by drawing $x \in X$ according to \mathcal{D} . Based on the realizability assumption, $\min_{h' \in H} L_{\mathcal{D}}(h') = 0$. Let $\epsilon, \delta \in (0,1)$, therefore when running A on $m \geq m_H(\epsilon, \delta)$ iid examples which are labeled by f, A returns a hypothesis h such that with a probability of at least $1 - \delta$ we have:

$$L_{\mathcal{D}}(h) \le \min_{h' \in H} L_{\mathcal{D}}(h') + \epsilon = \epsilon$$

Problem 7

Suppose that $x \in X$ and P be the conditional probability of a positive label given x. We have:

$$\begin{split} P\left[f_{\mathcal{D}}(X) \neq y | X = x\right] &= \mathbbm{1}_{[P \geq \frac{1}{2}]} P\left[Y = 0 | X = x\right] + \mathbbm{1}_{[P < \frac{1}{2}]} P\left[Y = 1 | X = x\right] \\ &= \mathbbm{1}_{[P \geq \frac{1}{2}]} (1 - P) + \mathbbm{1}_{[P < \frac{1}{2}]} P = \min\{P, 1 - P\} \end{split}$$

Suppose that g is a classifier $g:X\to\{0,1\}$:

$$\begin{split} P\left[g(X) \neq Y | X = x\right] &= P\left[g(X) = 0 | X = x\right] P\left[Y = 1 | X = x\right] \\ &+ P\left[g(X) = 1 | X = x\right] P\left[Y = 0 | X = x\right] = P\left[X = x\right] P + P\left[g(X) = 1 | X = x\right] (1 - P) \\ &\geq P\left[g(X) = 0 | X = x\right] \min\{P, 1 - P\} + P\left[g(X) = 1 | X = x\right] \min\{P, 1 - P\} \\ &= \min\{P, 1 - P\} \end{split}$$

So

$$L_{\mathcal{D}}(g) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathbb{1}_{[g(x)\neq y]} \right] = \mathbb{E}_{x\sim\mathcal{D}_x} \left[\mathbb{E}_{y\sim\mathcal{D}_{Y|x}} \left[\mathbb{1}_{[g(x)\neq y]} | X = x \right] \right]$$

$$\geq \mathbb{E}_{x\sim\mathcal{D}_x} \min\{P, 1-P\}$$