Ejercicios 4: EYP1027 Modelos Probabilísticos

Profesor: Reinaldo B. Arellano-Valle Ayudante: Camilo I. González

Ejercicio 1: Desarrollar los Ejercicios 1, 2, 3, 4, 14 y 15 de la Guía de Ejercicios 2. (I2)

Ejercicio 2: Desarrollar los Ejercicios de la Guía de Ejercicios 4. (I2)

Ejercicio 3: El gasto por cliente, X, en un local nocturno se distribuye normal con una media de \$720 y una desviación estándar de \$225.

- (a) Encuentre la proporción de clientes que gastan más de \$1200. (I2)
- (b) Entre qué cantidades estará el 50 % (central) de los gastos por cliente ? (I2)
- (c) Si se sabe que un cliente ha gastado más de \$1000, cual es la probabilidad de que gaste más de \$1200? (I2)

Ejercicio 4: Sea (X, Y) un vector aleatorio con fdp dada por:

$$f_{X,Y}(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Son X e Y variables aleatorias independientes? (I2)
- (b) Sea V = (X + Y)/2. Encuentre la fdp de V. (13)
- (c) Encuentre la fgm de (X,Y) y el valor esperado de X^2Y . (I3)

Ejercicio 5: Considere la siguiente distribución de probabilidades del vector aleatorio (X, Y):

$y \setminus x$	1	2	3
2	0.1	0.2	0.1
4	0.1	0.2	0.3

- (a) Encuentre las distribuciones marginales de X y de Y. (I2)
- (b) Son X e Y variables aleatorias independientes ? (I2)
- (c) Encuentre el vector de medias y la matriz de covarianza de (X, Y). (I3)

Ejercicio 6: Sean X_1 y X_2 variables aleatorias independientes cada una con distribución normal estándar. Sea $Y_1 = X_1$ e $Y_2 = X_1 + X_2$.

- (a) Encuentre la distribución conjunta de Y_1 e Y_2 . (I3)
- (b) Muestre $Y_2 \sim N(0, 2)$. (13)

Ejercicio 7: Sea (X, Y) un vector aleatorio con fdp dada por:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-(x^2+y^2)/2}, -\infty < x, y < \infty$$

- (a) Son X e Y variables aleatorias independientes? (I2)
- (b) Sea Z = X Y. Encuentre la fgm de D. Cuál es la distribución de Z? (I3)
- (c) Calcule Cov(X + Y, X Y). (I3)
- (d) Use la fgm de (X, Y) para calcular el valor esperado de XY. (I3)

Ejercicio 8: Sean X_1 y X_2 variables aleatorias discretas iid con función de probabilidad: f(1) = 3/4, f(3) = 1/4 y f(x) = 0 si $x \neq 1, 3$.

- (a) Encuentre la distribución conjunta de X_1 y X_2 . (I2)
- (b) Encuentre la fgm de (X_1, X_2) . (I3)
- (c) Encuentre la distribución conjunta de $Y_1 = (X_1 + X_2)/2$ e $Y_2 = (X_1 X_2)^2/2$. (I3)

Ejercicio 9: Sea (X_1, X_2) un vector aleatorio con fdp dada por:

$$f_{X_1, X_2}(x_1, x_2) = 4x_1x_2, \ 0 < x_1, x_2 < 1.$$

- (a) Encuentre las distribuciones marginales de X_1 y de X_2 . (I2)
- (b) Son X_1 y X_2 variables aleatorias independientes? (I2)
- (c) Sea $Y_1 = X_1/X_2$ e $Y_2 = X_1X_2$. Encuentre la distribución conjunta de Y_1 e Y_2 . (I3)

Ejercicio 10: Sea (X, Y) un vector aleatorio con fdp dada por:

$$f_{X,Y}(x,y) = \begin{cases} 24x^2/y^3, & 0 < x < 1, \ y > 2, \\ 0, & \text{en otro caso.} \end{cases}$$

- (a) Calcule P(X < 1/2|Y > 6). (I2)
- (b) Encuentre las funciones de densidad marginales de X e Y. (I2)
- (c) Son X e Y variables aleatorias independientes ? (I2)

- Santiago, 6 de Octubre de 2020 -