20. Приложение на принципа на минимума на Понтрягин за синтез на оптимално управление при критерий минимум разход на енергия.

- > Постановка на задачата.
- Извеждане на управляващия закон.
- > Особености на анализа на решението.
- Моделираща схема на оптимална по разход на енергия система.

1. Постановка на задачата.

Разглежда се линейна система

$$\dot{\mathbf{X}}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}\mathbf{U}(t),$$

при ограничение

$$|u_j| \le 1$$
 , $(j = 1, 2, ..., r)$.

Да се намери оптималното управление $\mathbf{U}^*(t)$, привеждащо системата от начално състояние $\mathbf{X}(0) = \mathbf{X}_0$ в крайно състояние $\mathbf{X}(T) = \mathbf{X}_T$, така че да се минимизира следният функционал, характеризиращ разхода на енергия

$$I = \frac{1}{2} \int_{0}^{T} \sum_{i=1}^{r} u_{j}^{2}(t) dt = \frac{1}{2} \int_{0}^{T} \mathbf{U}^{T}(t) \mathbf{U}(t) dt.$$

В цял клас задачи, квадратът на управляващата променлива е пропорционален на отдаваната мощност, а интегралът от този квадрат по времето е пропорционален на изразходваната енергия. Например, в електрическите вериги такава променлива може да бъде напрежението или електрическият ток.

2. Извеждане на управляващия закон.

Хамилтонианът е от вида

$$H(\mathbf{P}, \mathbf{X}, \mathbf{U}) = \frac{1}{2}\mathbf{U}^{\mathrm{T}}\mathbf{U} + \mathbf{P}^{\mathrm{T}}(\mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U}) = \frac{1}{2}\mathbf{U}^{\mathrm{T}}\mathbf{U} + \mathbf{X}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{P} + \mathbf{U}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}\mathbf{P}.$$
 (1)

Получената канонична система е същата като при задачите за оптимално по бързодействие и отпимално по минимум разход на гориво управление. Същите са и трудностите свързани с намирането на началното условие \mathbf{P}_0 (3) на спомагателния вектор $\mathbf{P}(t)$ в (2), водещо до определяне на оптималното решение $\mathbf{P}^*(t)$

$$\frac{d\mathbf{P}(t)}{dt} = -\frac{\partial H}{\partial \mathbf{X}} = -\mathbf{A}^{\mathrm{T}}\mathbf{P}(t); \tag{2}$$

$$\mathbf{P}(t) = \mathbf{P}_0 e^{-\mathbf{A}^{\mathrm{T}} t} \,. \tag{3}$$

За минимизирането на (1) трябва да се минимизират членовете, съдържащи $\mathbf{U}(t)$:

$$\frac{1}{2}\mathbf{U}^{\mathrm{T}}(t)\mathbf{U}(t) + \mathbf{U}(t)^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}\mathbf{P}(t) = \mathbf{U}^{\mathrm{T}}(t)\left[\frac{1}{2}\mathbf{U}(t) + \mathbf{B}^{\mathrm{T}}\mathbf{P}(t)\right] \xrightarrow{\mathrm{U}} \min.$$

Необходимото условие за минимум на (1) във векторна форма е:

$$\frac{\partial H}{\partial \mathbf{U}} = \frac{\partial}{\partial \mathbf{U}} [\mathbf{U}^{\mathrm{T}} (\frac{1}{2} \mathbf{U} + \mathbf{B}^{\mathrm{T}} \mathbf{P})] \Big|_{\mathbf{U} = \mathbf{U}^{*}} = 0, \tag{4}$$

а в скаларна форма, след полагането $\mathbf{Q}^{*}(t) = \mathbf{B}^{\mathrm{T}} \mathbf{P}^{*}(t)$, (4) е:

$$\frac{\partial}{\partial u_{i}} \left[\frac{1}{2} u_{j}^{2} + u_{j} q_{j} \right]_{u_{j} = u_{j}^{*}} = u_{j}^{*} + q_{j}^{*} = 0, \quad j = 1, 2, ..., r,$$
 (5)

където q_{j}^{*} е j-тата компонента на $\mathbf{Q}^{*}(t)$.

Разглеждат се следните два случая:

- 1. Ако $|q_j| \le 1$, то от (5) следва $u_j^* = -q_j^*$, ;
- 2. Ако $|q_j| > 1$, то от ограничението на управлението $|u_j| \le 1$, (j=1,2,...,r) , следва невъзможността на (5). В този случай Хамилтонианът получава най-малката си стойност при $u_j^* = -\mathrm{sign}\,q_j^*$, j=1,2,...,r .

Законът за управление може да се запише във следната форма
$$u_j^*(t) = -\operatorname{sat} q_j^*(t)$$
 , $j = 1, 2, ..., r$, (6)

а когато *скаларната функция с насищане* sat, се замени с векторна функция, то (6) добива вида

$$\mathbf{U}^*(t) = -\mathbf{satQ}^*(t)$$
.

20. Синтез на оптимална по минимум разход на енергия система.

Необходимото условие за минимум на (1) във векторна форма е:

$$\frac{\partial H}{\partial \mathbf{U}} = \frac{\partial}{\partial \mathbf{U}} [\mathbf{U}^{\mathrm{T}} (\frac{1}{2} \mathbf{U} + \mathbf{B}^{\mathrm{T}} \mathbf{P})] \Big|_{\mathbf{U} = \mathbf{U}^{*}} = 0, \tag{4}$$

а в скаларна форма, след полагането $\mathbf{Q}^*(t) = \mathbf{B}^T \mathbf{P}^*(t)$, (4) е:

$$\frac{\partial}{\partial u_{j}} \left[\frac{1}{2} u_{j}^{2} + u_{j} q_{j} \right]_{u_{j} = u_{j}^{*}} = u_{j}^{*} + q_{j}^{*} = 0, \quad j = 1, 2, ..., r,$$
 (5)

където q_{j}^{*} е j-тата компонента на $\mathbf{Q}^{*}(t)$.

Разглеждат се следните два случая:

- 1. Ако $|q_j| \le 1$, то от (5) следва $u_j^* = -q_j^*$, ;
- 2. Ако $|q_j| > 1$, то от ограничението на управлението $|u_j| \le 1$, (j=1,2,...,r), следва невъзможността на (5). В този случай Хамилтонианът получава най-малката си стойност при $u_j^* = -\operatorname{sign} q_j^*$, j=1,2,...,r.

Законът за управление може да се запише във следната форма $u_j^*(t) = -\operatorname{sat} q_j^*(t)$, j = 1, 2, ..., r , (6)

а когато *скаларната функция с насищане* sat, се замени с векторна функция, то (6) добива вида

$$\mathbf{U}^*(t) = -\mathbf{satQ}^*(t).$$

20. Синтез на оптимална по минимум разход на енергия система.

3. Моделираща схема на отворена система оптимална по разход на енергия

Недостатъците на решението на задачата за оптимално по разход на енергия управление са същите като при задачите за оптимално: по бързодействие и по разход на гориво управление.