STANISLAS Exercices

Séries numériques Chapitre II

PSI2021-2022

I. Natures de séries entières

Exercice 1. (\triangle) Soit a > 0. Déterminer la nature des séries de terme général

1.
$$e^{\sqrt{n+1}-\sqrt{n}}-1$$

2.
$$\frac{1}{n} + \ln\left(1 - \frac{1}{n+1}\right)$$
3. $\frac{\sinh(n)}{\sinh(2n)}$

3.
$$\frac{\sinh(n)}{\sinh(2n)}$$

4.
$$\exp{\{-\cosh(1/n)\}}$$

5.
$$\exp{-\cosh(n)}$$

6.
$$\frac{1}{\sqrt[3]{n^3-1}} - \frac{1}{\sqrt[3]{n^3+1}}$$

7.
$$\left(\frac{n}{n+1}\right)^n$$

$$8. \ \frac{1}{(\ln n)^{\ln n}}$$

9.
$$(-1)^n \frac{(2n)!}{4^n (n!)^2}$$

10.
$$\ln \left(1 + \frac{(-1)^n}{n}\right)$$

11.
$$\arctan\left(\frac{(-1)^{n'}}{\sqrt{n}}\right)$$

Exercice 2. Déterminer la nature des séries de terme général $u_n = \sin \left[\pi (2 - \sqrt{3})^n \right]$ et $v_n = \sin \left[\pi (2 + \sqrt{3})^n \right]$.

Exercice 3. [Mines] Soit $\alpha \in \mathbb{R}$. Déterminer la nature des séries de terme général:

1.
$$\frac{(-1)^n}{n^{3/4} + \sin(n)}$$
.

1.
$$\frac{(-1)^n}{n^{3/4} + \sin(n)}$$
. 2. $\frac{(-1)^n}{\ln(n) + (-1)^n n^{\alpha}}$.

$$3. \sin\left(\pi\sqrt{n^2+x^2}\right).$$

Exercice 4. [Mines] Étudier la convergence des séries de termes généraux :

1.
$$(-1)^n \frac{\cos(\ln(n))}{n}$$
 2. $\frac{\cos(\ln(n))}{n}$

2.
$$\frac{\cos(\ln(n))}{n}$$

3.
$$\frac{\cos(\ln(n))}{\ln(n)}$$

Exercice 5. (Fonction Zeta) Pour tout x > 1, on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$. 1. Montrer que ζ est décroissante et en déduire qu'il existe $\ell \in \mathbb{R} \cup \{+\infty\}$

tel que $\lim_{1^+} \zeta = \ell$.

2. Si $\ell \in \mathbb{R}$, montrer que pour tout $N \in \mathbb{N}^*$, $\ell \geqslant \sum_{k=1}^{N} \frac{1}{k}$.

3. En déduire la valeur de ℓ .

4. Montrer que $\lim_{x \to 1^+} (x-1) \sum_{x=1}^{+\infty} \frac{1}{n^x} = 1$.

Exercice 6. [Mines] Pour tout $(p,q) \in (\mathbb{R}_+)^2$, montrer que $\sum_{k=1}^{n} k^{p} \ln^{q}(k) \sim_{n \to +\infty} \frac{n^{p+1} \ln^{q}(n)}{p+1}.$

Exercice 7. (**) Soit $(\alpha, \beta) \in \mathbb{R}^2$. Déterminer, en fonction du couple (α, β) , la nature de la série de terme général $u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}}$.

Exercice 8. Étudier la convergence de la série obtenue à partir de la série harmonique en supprimant tous les entiers n dont l'écriture en base 10 contient le nombre 5.

Exercice 9. [Mines] Pour tout $n \ge 1$, on note (E_n) l'équation $x^3 + \frac{1}{n}x^2 + x - 2 = 0.$

1. Montrer qu'il existe un unique réel positif x_n qui soit solution de (E_n) .

2. Montrer que la suite (x_n) converge et déterminer sa limite.

3. Déterminer la nature de $\sum (1-x_n)$.

Exercice 10. Soit $\lambda \in]0,1[$.

1. Montrer qu'il existe un unique réel positif x_n solution de $\lambda e^x = \sum_{k=1}^{\infty} \frac{x^k}{k!}$

2. Montrer que $(x_n)_{n\in\mathbb{N}}$ est une suite croissante.

3. Montrer que $\lim_{n \to +\infty} x_n = +\infty$.

II. Calculs de sommes

Exercice 11. (À partir de la constante d'Euler, \heartsuit) On admet qu'il existe un réel γ tel que $\lim_{\substack{2n \to +\infty \\ 2n}} (H_n - \ln n) = \gamma$.

1. Montrer que $\sum_{k=1}^{2n} \frac{(-1)^k}{k} = H_n - H_{2n}$. En déduire que $\sum \frac{(-1)^k}{k}$ converge et déterminer sa somme.

2. Dans cette question, on suppose que $a_{3n+1} = a_{3n+2} = 1$ et $a_{3n+3} = -1$. Déterminer la nature de la série $\sum \frac{a_k}{k}$.

3. On suppose maintenant que $a_{4n+1} = a_{4n+2} = 1$ et $a_{4n+3} = a_{4n+4} = a_{4n+4}$ -1.

Exercices II PSI

a) Montrer que, pour tout N entier naturel,

$$\sum_{k=0}^{N} \left(\frac{1}{4k+1} - \frac{1}{4k+3} \right) = \int_{0}^{1} \frac{1 - x^{4N+4}}{1 + x^{2}} \, \mathrm{d}x.$$

- **b)** En déduire que $\sum_{k=0}^{+\infty} \left(\frac{1}{4k+1} \frac{1}{4k+3} \right) = \frac{\pi}{4}$. **c)** En déduire que $\sum_{n=1}^{+\infty} \frac{a_n}{n} = \frac{\pi}{4} + \frac{1}{2} \ln(2)$.

Exercice 12. (Décompositions en éléments simples, \heartsuit)

1. Déterminer des réels α , β , γ , δ tels que pour tout entier naturel n,

$$u_n = \frac{n^2 + 9n + 5}{(n+1)(2n+3)(2n+5)(n+4)} = \frac{\alpha}{n+1} + \frac{\beta}{2n+3} + \frac{\gamma}{2n+5} + \frac{\delta}{n+4}.$$

2. Montrer la convergence puis déterminer la somme de la série de terme général u_n .

Exercice 13. En utilisant un produit de Cauchy, déterminer la valeur de $\sum_{n=0}^{\infty} (n+1)3^{-n}$.

III. Découverte d'autres méthodes

Exercice 14. (Critère de condensation de Cauchy)

- 1. Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite décroissante de réels positifs. Montrer que $\sum a_n$ converge si et seulement si $\sum 2^n a_{2^n}$ converge.
- 2. Retrouver le critère de convergence des séries de Riemann.
- 3. Montrer que la série de Bertrand $\sum \frac{1}{n(\ln n)^{\beta}}$ converge si et seulement si $\beta > 1$.

Exercice 15. (Règle de Duhamel) Soit (u_n) une suite de termes strictement positifs.

- **1.** Montrer que si $\frac{u_{n+1}}{u_n} = 1 \frac{\beta}{n} + o\left(\frac{1}{n}\right)$, alors
 - (i). si $\beta > 1$, alors $\sum u_n$ converge.
- (ii). si $\beta < 1$, alors $\sum u_n$ diverge.

2. Déterminer la nature de la série de terme général $n! \ln(1 +$ $1)\cdots \ln\left(1+\frac{1}{n}\right)$.

Exercice 16. (Produit infini) Pour tout entier naturel n, on pose $u_n =$ $\prod_{1}^{n} \left(1 + \frac{(-1)^{q-1}}{\sqrt{q}} \right).$

q=1. En étudiant la suite $\ln(u_n)$, montrer que (u_n) converge vers 0.

2. Montrer qu'il existe a>0 tel que $u_n\sim\frac{a}{\sqrt{n}}$. On pourra utiliser l'existence de la constante d'Euler.

Exercice 17. Soit $z \in \mathbb{C}$ tel que |z| < 1. Montrer que, pour tout $p \in \mathbb{N}^*$,

$$\frac{1}{(1-z)^p} = \sum_{n=0}^{+\infty} \binom{p+n-1}{n} z^n.$$

IV. Avec Python

Exercice 18. [Centrale] On pose, pour tout $n \in \mathbb{N}$, $u_n = \frac{(-1)^n}{n+1}$.

- 1. Prouver que la série de terme général u_n est convergente. Donner une approximation de sa somme $S \ a \ 10^{-6}$ près.
- **2.** Prouver que $S = \ln(2)$.
- **3.** Soit (v_n) une suite obtenue en permutant les termes de la suite (u_n) : on prend alternativement deux signes positifs puis un négatif, (v_n) = $(1,\frac{1}{3},-\frac{1}{2},\frac{1}{5},\frac{1}{7},-\frac{1}{4},\ldots)$. Calculer v_{250}, v_{251} et v_{252}

On pose, pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$ et $T_n = \sum_{k=0}^n v_k$. **4.** Calculer T_{250} , T_{251} et T_{252} . Conjecture?

- **5.** Conjecturer la limite de la suite $\left(\frac{S_n}{T_n}\right)$ puis démontrer la conjecture.