[ED014] Recuperando árvores perdidas

Deve incluir no mesmo ficheiro quaisquer classes que use (nenhum código base será adicionado)

O problema

Um antigo professor de uma cadeira de Estruturas de Dados e Algoritmos tinha muitos exemplos de árvores binárias guardadas para mostrar aos alunos. O que ele fazia era simplesmente guardar a representação preorder e inorder das árvores (não indicando árvores vazias). Como usava sempre números diferentes, esta representação bastava para definir completamente a árvore!

Recorda como escrever uma árvore em preorder e inorder

- preorder: escrever chave da raíz, seguida da representação preorder da subárvore esquerda, seguida da representação preorder da árvore direita
- inorder: escrever representação inorder da subárvore esquerda, seguida da chave da raíz, seguida da representação inorder da árvore direita

Por exemplo, para a árvore da figura anterior, temos as seguintes representações:

preorder: 1 2 4 5 3 6 7inorder: 4 2 5 1 6 3 7

O novo professor da cadeira queria recuperar as árvores e precisa da tua ajuda. A tua tarefa é, dadas as duas reprensentações da árvore (preorder e inorder) reconstruir a árvore. Depois disso, basta mostrares a representação **postorder** da árvore para mostrares que realmente a árvore ficou bem construida. Como o novo professor está muito interessado em saber o número de nós terminais (ou folhas da árvore, tens também de o indicar.

Recorda como escrever uma árvore em **postorder** ("4 5 2 6 7 3 1" para a árvore da figura)

• postorder: escrever representação postorder da subárvore esquerda, seguida da representação postorder da árvore direita, seguida da chave da raíz

Input

A primeira linha contém um número C, indicando o número de casos que se seguem.

Cada um dos casos é descrito por um conjunto de 3 linhas no seguinte formato:

- Uma primeira linha contendo N NOS (N NOS>0), indicando o número de nós da árvore
- Uma segunda linha com a representação preorder da árvore (números inteiros positivos separados por espaços)
- Uma terceira linha com a representação inorder da árvore (números inteiros positivos separados por espaços)

Deve ser notado que o programa não deve estabelecer limites para a quantidade de números a receber. Podes assumir que os valores dos nós cabem num int.

De notar também que não existem números repetidos numa mesma árvore.

Output

Para cada caso devem ser imprimidas duas linhas de output:

- Uma primeira linha com a representação postorder da árvore (números inteiros positivos separados por espaços)
- Uma segunda linha contendo "Folhas = NUM", onde NUM é o número de folhas da árvore

Vê o exemplo para clarificar a maneira como deve ser feito o output.

Exemplo de input/output

Input							Output
4							4 5 2 6 7 3 1
7							Folhas = 4
1	2	4	5	3	6	7	3 2 1
4	2	5	1	6	3	7	Folhas = 1
3							2 3 1
	2						Folhas = 2
	2	3					3 2 1
3							Folhas = 1
1	2	3					
2	1	3					
	2						
3	2	1					

Última actualização: 06/22/2020 00:48:51