Polynomial dendritic neural networks 抄袭 It may be time to improve the neuron of artificial neural network 声称自己提出 DD 一般形式且并未引用!

● It may be time to improve the neuron of artificial neural network 原 内 容

https://doi.org/10.36227/techrxiv.12477266

刘刚的<mark>树突网络一般形式</mark>: 2020 年提出。协议: CC BY-NC-SA 4.0

Fig. 4. Generalized Dendrite module. '|' denotes 'or'. The dotted line represents any of them.

Where A^2 is the output of dendrite or the input of the cell body. \circ denotes Hadamard product.

The operation of the "dendrite" only consists of matrix multiplication and Hadamard product. Thus, the computational complexity is lower [34], [41]. Additionally, the mapping capacity of Gang neuron can be adjusted by the number of dendrite modules.

2) Generalized Dendrite module ($\circ A^i$): Figure 4 shows a generalized Dendrite module. The module is represented as follows. $A^i = W^{i,i-1}A^{i-1} \circ A^{0|1|2|...|i-1}$ Where A^{i-1} and A^i are the inputs and outputs of the module, respectively. $A^{0|1|2|...|i-1}$ is any of A. \circ denotes Hadamard product.

其中x0=1, w0 即为偏置 b (文中已经提及)

至于其插入的线性模块刘刚早已在文中指出,可以在此结构任意插入线性模块以调整维度。

[45]). In this way, many linear modules are redundant after being connected in series. I think the use of DD should be more flexible. When the user wants to reduce or increase the dimension, just insert a linear module. We can use one linear module

Polynomial dendritic neural networks 核心内容抄袭树突网络 DD 的一般形式! 且声称 DD 是其抄袭的特例!

(<u>https://link.springer.com/article/10.1007/s00</u> 521-022-07044-4)

$$X_{l} = (W^{l}X^{l-1} + b^{l})_{o}(A_{l}X^{l-1} + t^{l})$$
(7)

where, in the following, the operation $_{\circ}$ is the Hadamard product, $b^l, t^l \in \mathbb{R}^{d_l}$ are biases, and $W^l, A^l \in \mathbb{R}^{d_l \times d_{l-1}}$ are weight matrices. In this model, W^l, A^l, b^l , and t^l are parameters.

$$X_{l} = (W^{l}X^{0} + b^{l})_{2}(A^{l}X^{l-1} + t^{l})$$
(8)

This model states that X^l receives input X^0 with weight W^l (the signals are transmitted through layers 1, 2, ..., l-1. Here we use the weight W^l to model the signal changes). The dendritic activation uses the dendrites $\overline{x_i^{l-1}x_j^l}$ which are directly related to X^l and thought to have main effects on X^l 's activation, where $x_i^{l-1} \in X^{l-1}, x_j^l \in X^l$.

Proposition 4 In (8), X^l is a polynomial of X^0 with degree l+1.

Proposition 7 The DD in [24] is a special case of APDN (8).

Therefore, module (8) can be applied to more networks than the DD in [24]. Such generalization is necessary because the number of neurons at different layers usually is different. For example, [10] studied pyramidal neurons. In such cases, usually $d_i \neq d_l$ for $0 \leq i, j \leq L$.