1 Trigonometrikus és ortogonális sorok polinomsorfejtések (Klasszikus konvergenciaelmélet.) Általános ortogonális sorok konvergencia- és szummábilitási elmélete.

Legyen $I:=[-\pi,\pi],\,L_2(I)$ a Lebesgue-mértéktér feletti jól ismert Hilbert tér, melyben $f,g\in L_2(I)$ esetén $\langle f,g\rangle:=\int_I f\overline{g}\ \mathrm{d}\lambda$, ahol λ az egydimenziós Lebesgue-mérték.

1.1 Trigonometrikus sorok elmélete

Definíció 1.1 Trigonometrikus rendszernek nevezzük a következő függvénysorozatot:

$$\frac{1}{\sqrt{2\pi}}$$
, $\frac{\cos x}{\sqrt{\pi}}$, $\frac{\sin x}{\sqrt{\pi}}$,..., $\frac{\cos nx}{\sqrt{\pi}}$, $\frac{\sin nx}{\sqrt{\pi}}$,...

Állítás 1.2 A trigonometrikus rendszer teljes ortonormált rendszer $L_2(I)$ ben.

Definíció 1.3 Trigonometrikus sornak nevezzük adott a_0, a_1, a_2, \ldots illetve b_1, b_2, \ldots valós vagy komplex számok esetén a (formális)

$$a_0 + \sum (a_k \cos kx + b_k \sin kx) \qquad (*)$$

alakú függvénysort.

Tétel 1.4 (Cantor-Lebesgue) Ha a fenti sor egy $H \subset I$ pozitív Lebesgue mértékű halmazon konvergens, akkor $a_k \to 0$, $b_k \to 0$ $(k \to \infty)$

Következmény 1.5 Ekkor a (*) sor ekvikonvergens a $\sum_{k=0}^{\infty} c_k$ sorral, ahol $c_0 = a_0$, páros k-ra: $c_k = b_{\frac{k}{2}} \sin\left(\frac{k}{2}\right) x$, páratlan k-ra: $c_k = b_{\frac{k+1}{2}} \cos\left(\frac{k+1}{2}\right) x$.

Kérdés: Mikor konvergens (*)? Milyen konvergenciával?

Definíció 1.6 Egy $f \in L_1(I)$ függvénynek (a trigonometrikus rendszer szerinti) Fourier-együtthatói:

$$a_0 := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt, \ a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt, \ b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt.$$

Az ezekkel képzett trigonometrikus sor a Fourier sor.

Lemma 1.7 (Riemann-Lebesgue) Tetszőleges I intervallumon $\forall f \in L_1(I, \mathcal{L}, \lambda)$ esetén

$$\lim_{\nu \to \infty} \int_I f(x) \cos \nu x \, d\lambda(x) = 0, \quad \lim_{\nu \to \infty} \int_I f(x) \sin \nu x \, d\lambda(x) = 0.$$

Következmény 1.8 Ekvikonvergensség...

Tétel 1.9 (Lebesgue) $Ha\sum_{n=1}^{\infty}\int_{X}|f_{n}| d\mu < +\infty$, $akkor\ f = \sum_{n=1}^{\infty}f_{n}\ \mu\text{-}mm$ pontban konvergens, és $\int_{X}f = \sum_{n=1}^{\infty}\int_{X}f_{n}\ d\mu$ tetszőleges $(\mathbf{X}, \mathcal{M}, \mu)$ σ -véges mértéktérre.

Kérdés: Mikor és hova konvergál egy $f \in L_1(I)$ függvény Fourier-sora? Milyen konvergenciában?

 L_2 -norma konvergencia Funkanalból ismeretes, hogy egy $(L_2,\langle.,.\rangle)$ Hilbert tér (ϕ_n) tetszőleges ortonormált rendszerére a $\sum_{n=1}^{\infty} c_n \phi_n$ ortogonális sor pontosan akkor konvergens L_2 -normában, ha $\sum_{n=1}^{\infty} |c_n|^2 < +\infty$. Ekkor $\exists f \in L_2 : f = \sum_{n=1}^{\infty} c_n \phi_n$

tosan akkor konvergens L_2 -normában, ha $\sum_{n=1} |c_n|^2 < +\infty$. Ekkor $\exists f \in L_2 : f = \sum_{n=1} c_n \phi_n$ összegfüggvény, amire

(i)
$$c_n = \langle f, \phi_n \rangle$$

(ii)
$$||f||_{L_2}^2 = \sum_{n=1}^{\infty} |c_n|^2$$
 (Parseval egyenlőség)

Ha $f \in L_2$ egy adott függvény $(\phi_n) \subset L_2$ adott ortonormált rendszer, akkor f $c_n(f) := \langle f, \phi_n \rangle$ Fourier együtthatóira teljesül a $\sum_{n=1}^{\infty} |c_n|^2 \leq \|f\|^2$ (Bessel-egyenlőtlenség), amib[o]l következik, hogy Fourier-sora mindig konvergens $(L_2$ normában). Könnyen belátható, hogy összegfüggvénye f-nek a $\overline{\langle \{\phi_1, \phi_2, \dots \}\rangle}$ altérre való vetülete, azaz $f = \sum_{n=1}^{\infty} c_n(f)\phi_n$ pontosan akkor, ha (ϕ_n) teljes ortonormált rendszer.

Állítás 1.10 A fentiekből egyértelműen következik, hogy tetszőleges $f \in L_2(I)$ függvény trigonometrikus Fourier sora L_2 normában konvergens, és f-et állítja elő.

Mostantól a pontonkénti konvergenciára vagyunk kiváncsiak. Ehhez egy általánosítás:

 $\widetilde{L}_1 := \{ f : \mathbb{R} \to \overline{\mathbb{R}} : \text{Lebesgue-m\'erhet\'ok}, 2\pi \text{ szerint periodikusak}, \\ \forall \text{ kompakt intervallumon } L_1\text{-beliek} \}.$

Definíció 1.11 $Ha\ (\phi_n) \subset L_2\ ONR, \ és\ f \in \widetilde{L}_1\ eset\'en\ \forall n\text{-re}\ f\overline{\phi}_n \in L_1, \ akkor$ $c_n = \int_X f\overline{\phi}_n\ \mathrm{d}\mu\ az\ f\ Fourier\ egy\"utthat\'oi.$

Tétel 1.12 (Kolmogorov) Van olyan $f \in \widetilde{L}_1$ függvény (konstukciót adott), aminek trigonometrikus Fourier sora mindenütt divergens.

Tétel 1.13 (Carleson) Minden $f \in L_2([-\pi, \pi])$ függvény trigonometrikus Fourier sora λ -mm. konvergens. (és λ -mm. f-fel egyenlő, mert $\|.\|_{L_2}$ -ben oda $tart + Riesz\ lemma.$)

Tétel 1.14 (Hunt) Minden $f \in L_p([-\pi, \pi])$ függvény (p > 1) trigonometrikus Fourier sora λ -mm. konvergens.

Dirichlet-féle integrál-formula

Legyen $f \in \widetilde{L}_1$, tekintsük ennek Fourier sorát, illetve annak n-edik szeletét:

$$s_n(x, f) = a_+ \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx).$$

Ekkor

$$s_n(x,f) = \frac{2}{\pi} \int_0^{\pi} \mathcal{D}_n(t) f_x(t) \, \mathrm{d}t,$$

ahol
$$f_x(t) = \frac{f(x-t) + f(x+t)}{2}$$
, és

$$\mathcal{D}_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos kt = \frac{\sin(2n+1)\frac{t}{2}}{2\sin\frac{t}{2}}$$

az úgynevezett Dirichlet-féle magfüggvény.

Megjegyzés. A Dirichlet-féle magfüggvény tulajdonságai:

•
$$\mathfrak{D}_n(0) = n + \frac{1}{2}$$

- páros függvény
- $\mathfrak{D}_n(\pi) = \frac{1}{2}(-1)^n$
- 2π szerint periodikus

Tétel 1.15 (Riemann-féle lokalizációs tétel) Tetszőleges $\delta > 0$ mellett bármely $f \in \widetilde{L}_1$, függvény Fourier sorának egy x pontban való konvergenciája vagy divergenciája, illetve konvergencia esetén a sor összege csupán f-nek $[x-\delta,x+\delta]$ -ra való leszűkítésétől függ. (Azaz egy $f \in \widetilde{L}_1$, függvényt egy adott x-re és $\delta > 0$ -ra az $[x=\delta,x+\delta]$ intervallumon kívül megváltoztatva a Fourier sor megváltozik ugyan, de ekvikonvergens marad az eredetivel, és konvergencia esetén az összeg is ugyanaz)

Dini tétele, Dini-Lipschitz tétel

Definíció 1.16 (Dini feltétel) $f \in \widetilde{L}_1$ kielégíti a Dini feltételt egy adott $x \in [-\pi, \pi]$ pontban adott $s(x) \in \mathbb{R}$, $\delta \in (0, \pi)$ mellett, ha $\int_0^{\delta} \frac{|\widetilde{f}_x(t)|}{t} < +\infty$, ahol $\widetilde{f}_x(t) = \frac{f(x+t) + f(x-t)}{2} - s(x)$

Tétel 1.17 (Dini) Ha $f \in \widetilde{L}_1$ olyan függvény, amely egy adott $x \in [-\pi, \pi]$ pontban valamilyen s(x) és $\delta(x) > 0$ számokkal kielégíti a Dini-feltételt, akkor f Fourier sora x-ben konvergens, és összege éppen s(x).

Definíció 1.18 $f \in \widetilde{L}_1$ egy pontja reguláris pont, ha létezik x-ben véges jobb és baloldali határértéke.

Definíció 1.19 $f \in \widetilde{L}_1$ egy x pontban kielégíti a lokális Dini-Lipschitz feltételt, ha x reguláris pontja f-nek, és $\exists K \geq 0$ állandó, $0 < \alpha \leq 1$ kitevő, $\delta > 0$, hogy $\forall |t| < \delta$ esetén

$$|f(x+t) - f(x+0)| \le Kt^{\alpha}$$
 és $|f(x-t) - f(x-0)| \le Kt^{\alpha}$.

Tétel 1.20 (Dini-Lipschitz) Ha $f \in \widetilde{L}_1$ egy x pontban kielégíti a lokális Dini-Lipschitz feltételt, akkor f Fourier sora x-ben konverges, és összege $\frac{f(x+0)+f(x-0)}{2}$. Speciálisan, ha $f \in \widetilde{L}_1$ lokálisan Lipschitz tulajdonságú, akkor Fourier sora x-ben konvergens, és összege f(x).

Tétel 1.21 (Dirichlet) Legyen[a,b] olyan intervalum, melyben $f \in \widetilde{L}_1$ korlátos változású, és $x \in (a,b)$. ekkor f Fourier sora konvergens x-ben, és összege $\frac{f(x+0)+f(x-0)}{2}$.

Állítás 1.22 Létezik olyan folytonos függvény, melynek Fourier sora divergens.

Fejér közepek

$$\sigma_n(x,f) = \frac{s_0(x,f) + s_1(x,f) + \dots + s_{n-1}(x,f)}{n}.$$

Ekkor

$$\sigma_n(x, f) = \frac{1}{\pi} \int_0^{\pi} \mathfrak{F}_n(t) f_x(t) dt,$$

ahol
$$f_x(t) = \frac{f(x-t) + f(x+t)}{2}$$
, és

$$\mathfrak{F}_n(t) = \frac{1}{n} \left(\frac{\sin \frac{nt}{2}}{\sin \frac{t}{2}} \right)^2$$

az ún Fejér-féle magfüggvény. **Megjegyzés**. Tulajdonságai:

- $\mathcal{F}_n(t) \ge 0 \ \forall t \in \mathbb{R}$
- $\mathfrak{F}_n(t(2\pi \text{ szerint periodikus, páros függvény}))$
- $\bullet \ \mathcal{F}_n(0) = n$
- tetszőlegesen kicsi $0 < \delta < \pi$ esetén $\mathcal{F}_n(t) \xrightarrow{n \to \infty} 0$ egyenletesen, $\mathcal{F}_n(t) \le \frac{1}{n} \frac{1}{\sin^2 \frac{\delta}{2}}$
- $\frac{1}{\pi} \int_0^{\pi} \mathfrak{F}_n(t) dt = 1$

Tétel 1.23 (Fejér-féle szummációs tétel) $f \in \widetilde{L}_1$, x reguláris pontja fnek, akkor a Fejér közepek sorozata x-ben konvergens: $\sigma_n(x, f) \to \frac{f(x+0) + f(x-0)}{2}$.

Következmény 1.24 Ha egy $f \in \widetilde{L}_1$ függvény Fourier sora az x regulársi pontban konvergens, akkor összege $\frac{f(x+0)+f(x-0)}{2}$.

Következmény 1.25 (Fejér) Bármely $f \in \widetilde{L}_1$ függvény Fejér közepeinek (σ_n) sorozata I-ben (és így \mathbb{R} -en is egyenletesen tart a az f függvényhez.

1.2 Ortogonális sorok elmélete

Jelölés: $L_1 = L_1(\mathbf{X}, \mathcal{A}, \mu), L_2 = (\mathbf{X}, \mathcal{A}, \mu)$

 $(\psi_n) \subset L_2$ ortogonális rendszer, $(\alpha_n) \subset \mathbb{K}$) tetszőleges számok, ekkor a $\sum_{n=1}^{\infty} \alpha_n \psi_n$ függvénysort ortogonális sornak nevezzük. Szinte mindig feltehetjük (ψ_n) ortonormált is.

(Ide megint beszúrhatjuk a funkanalos mesét L_2 -ről és az L_2 normáról...)

Definíció 1.26 Egy $f \in L_1$ függvénynek a $(\phi_n) \subset L_2$ ONR szerint léteznek ún. általánosított Fourier-együtthatói, ha $\forall m \in \mathbb{N}$ -re $f\overline{\phi} \in L_1$. Ekkor $c_m = c_m(f) = int_{\mathbf{X}} f\overline{\phi}_m$ d μ az f függvény általánosított Fourier-sora.(Ezentúl az "általánosított"-at elhagyjuk.)

Megjegyzés. Ha $f \in L_1$, de $f \notin L_2$, akkor f Fourier-sora biztosan nem konvergens L_2 normában.

Állítás 1.27 Ha $(\phi_n) \subset L_2$ ONR tagjai korlátos függvények, akkor bármely $f \in L_1$ függvénynek léteznek Fourier-együtthatói.

Kérdés: 0-sorozat lesz-e $c_n(f)$? NEM.

Tétel 1.28 (Általánosított Riemann-Lebesgue) $(\phi_n) \subset L_2$ *ONR*, melynek tagjai egyenlesen korlátosak, akkor bármely $f \in L_1$ függvényre a (ϕ_n) -re vonatkozó Fourier-együtthatóinak sorozata θ -sorozata: $c_n(f) \stackrel{n \to \infty}{\longrightarrow} 0$.

Megjegyzés. Ha egy ortogonális sor c_n együtthatói igaz $\sum |c_n|^2 < +\infty$, akkor a sor egyben Fourier-sor is (egy L-2-beli függvényé.

Konkrét ortonormált rendszerek

- 1. Trigonometrikus rendszer
- 2. Ortogonális polinomok

 $I \subset \mathbb{R}$ tetszőleges intervallum, $(I, \mathcal{B}, \lambda)$

 $\mu: \mathcal{B} \to \mathbb{R}_+$ tetszőleges mérték, melyre $\forall n$ -re $(id)^n \subset L_2(I)$. GYakorlatilag mindig feltesszük, hogy $\mu \ll \lambda$. Ekor létezik $s: I \to \mathbb{R}_+$ függvény $\forall E \in \mathcal{B}: \mu(E) = \int_E s \; \mathrm{d}\lambda$ (Radon-Nikodym derivált). Jól ismert valós függvénytanból, hogy ha $f \in L_1 \Rightarrow fs \in L_1$, és $\int_I f \; \mathrm{d}\mu - \int_I fs \; \mathrm{d}\lambda$. Az $1, id, id^2, \ldots$ sorozat függvényei lineárisan függetlenek (ha s(x) > 0 μ -mm $x \in I$ -re). Alkalmazhatjuk a Schmidt-Gram féle ortogonalizációs eljárást. A kapott ortonormált $(p_n) \subset L_2$ függvénysorozat tagjai polinomok, p_n pontosan n-edfokú. Ezeket nevezik az s súlyfüggvényre nézve ON polinomrendszernek.

Speciális esetek:

- (a) $I = [-1, 1], s(x) = \frac{1}{\sqrt{1-x^2}}$ esetén elsőfajú Csebisev polinomok
- (b) $I = [-1, 1], s(x) \equiv 1$ esetén a Legendre polinomok
- (c) $I = [= 1, 1], s(x) = *1 x)^{\alpha} (1 + x)^{\beta}, \alpha, \beta > -1$
- (d) $I = \mathbb{R}$, $s(x) = e^{-x^2}$ esetén Hermite polinomok
- (e) $I = [0, \infty), s(x) = e^{-x}$ esetén Laguerre polinomok
- 3. Rademacher rendszer $([0,1],\Lambda,\lambda)$ mértéktér,

$$r_n(x) = \begin{cases} 0 & \text{ha } x = \frac{k}{2^n} \quad k = 0, 1, \dots, 2^n \\ (-1)^{i+1} & \text{ha } x \in \left(\frac{i-1}{2^n}, \frac{i}{2^n}\right) & 0, 1, \dots, 2^n \end{cases}$$

Megjegyzés. $|r_n| = 1$, $\int_0^1 |r_n|^2 d\lambda = 1$, $\int_0^1 r_n r_m d\lambda = 0$.

Definíció 1.29 $(\phi_n) \subset L_2$ *ONR multiplikatív, ha* $\Phi_{ik} := \phi_i \overline{\phi}_k$, i < k jelöléssel a $(\Phi_{ik})_{1 \leq i < k < \infty}$ függvénysorozat is ONR L_2 -ben, és $\Phi_{ik} \in L_2 \ \forall i, k$ -ra.

Állítás 1.30 $Az(r_n)$ Rademacher rendszer multiplikatív rendszer.

Az általános probléma

Milyen $(c_n) \subset \mathbb{K}$ együtthatók mellett lesz a $\sum c_n \phi_n$ ortogonális sor μ -mm. konvergens X-en?

Tétel 1.31 $(\mathbf{X}, \mathcal{A}, \mu)$, μ σ -véges. $\underline{Ha}(c_n) \subset \mathbb{K}$ -ra $\sum_{n=1}^{\infty} |c_n| < +\infty$, akkor minden $(\phi_n) \subset L_2$ ONR esetén a $\sum c_n \phi_n$ ortogonális sor μ -mm. konvergens.

Tétel 1.32 Ha $(c_n) \subset \mathbb{K}$ olyan, hogy minden $(\phi_n) \subset L_2$ ONR esetén a $\sum c_n \phi_n$ ortogonális sor μ -mm. konvergens akkor $\sum |c_n|^2 < \infty$.

Sőt:

Tétel 1.33 (Kolmogorov) Ha $(c_n) \subset \mathbb{K}$ olyan sorozat, melyre $\sum |c_n|^2 =$ ∞ , akkor az (r_n) Rademacher rendszer esetén a $\sum c_n r_n$ ortogonaális sor λ mm. divergens [0, 1]- en

Tehát a $\sum |c_n| < \infty$ feltétel elegendő, a $\sum |c_n|^2 < \infty$ feltétel szükséges ahhoz, hogy $\forall (\phi_n) \subset L_2$ esetén a $\sum c_n \phi_n$ ortogonális sor μ -mm. konvergens legyen.

Definíció 1.34 A $(\phi_n) \subset L_2$ ONR $konvergenciarendszer, ha <math>\forall (c_n) \subset \mathbb{K}$ -ra $\sum |c_n|^2 < \infty$ -ből következik, hogy $\sum c_n \phi_n \mu$ -mm. konvergens \mathbf{X} -en.

Carleson tétele átfogalmazva: A trigonometrikus rendszer konvergenciarendszer.

Tétel 1.35 A Rademacher rendszer is konvergenciarendszer.

Következmény 1.36 $Ha \sum |c_n|^2 < \infty \Rightarrow \sum c_k r_k \lambda$ -mm. konvergens. $Ha \sum |c_n|^2 = \infty \Rightarrow \sum c_k r_k \lambda$ -mm. divergens.

Definíció 1.37 $(w_n) \subset \mathbb{K}$ Weyl-sorozat, ha $1 \geq w_1 < w_2 < \cdots < w_n < \cdots$, $\lim w_n = \infty$, és $\sum |c_n|^2 w_n < \infty$ -ből következik, hogy minden $(\phi_n) \subset L_2$ ONR-re $\sum c_n \phi_n \mu$ -mm. konvergens.

Állítás 1.38 $w_n := n^{\alpha} \ \forall \alpha > 1 \ mellett \ Weyl-sorozat.$

Tétel 1.39 (Rademacher) Legyen $w: [1, \infty) \to \mathbb{R}$ olyan szigorúan növő folytonos függvény, melyre w(x) > 1, $\lim_{x \to \infty} w(x) = \infty$. Legyen $(c_n) \subset \mathbb{K}$ olyan szmsorozat, amelyre igaz, hogy $\sum_{n=1}^{\infty} |c_n|^2 w(n) < \infty$ Legyen továbbá $i_1 < i_2 < \cdots < i_n < \cdots$ természetes számok olyan sorozata, melyre $w(i_n) \ge n \ \forall n \in \mathbb{N}$. Ekkor $\forall (\phi_n) \subset L_2$ rendszerre $s_n = \sum_{k=1}^n c_k \phi_k$ jelöléssel az (s_n) függvénysorozatnak az (s_{i_n}) részsorozata μ -mm. konvergens \mathbf{X} -en.

Speciális esetek

- 1. Ha $\sum |c_n|^2 n < \infty \implies (s_n)$ μ -mm. konvergens, azaz $w_n = n$ Weylsorozat.
- 2. Ha $\sum |c_n|^2 \log_2 n < \infty$, akkor tetszőleges $(\phi_n) \subset L_2$ ONR esetén az (s_{2^n}) részsorozat μ -mm. konvergens.

Megjegyzés. További Weyl-sorozatok: $w_n = \sqrt{n}, w_n = n^{\alpha}, \alpha > 0, w_n = \log^3 n.$

Tétel 1.40 (Rademacher-Menysov) $w_n = \log^2 n$ is Weyl-sorozat (és ez az eredmény nem is javítható).

Tétel 1.41 (Menysov) Bármely $(\mathbf{X}, \mathcal{A}, \mu)$ mértéktérre létezik olyan $(\phi_n) \subset L_2$ ONR, hogy minden olyan $(w_n) \subset \mathbb{K}$ sorozatra, melyre $1 \leq w_n < w_2 < \ldots$, $w_n \xrightarrow{n \to \infty} \infty$, de w_n lassabban tart ∞ -hez, mint $\log^2 n$, megadható olyan $(c_n) \subset \mathbb{K}$, hogy $\sum |c_n|^2 w_n < \infty$, de a $\sum c_n \phi_n$ ortogonális sor μ -mm. divergens.