Jutge.org

The Virtual Learning Environment for Computer Programming

Avaluar expressions sense variables

X74885_ca

INTRODUCCIÓ:

En aquest exercici considerarem arbres que representen expressions sobre els operadors +, -, *, i sobre operands naturals. Per exemple, el següent arbre representa l'expressió 3+4*2-5.

EXERCICI:

Implementeu una funció que, donat un arbre binari d'strings que representa una expressió correcta sobre naturals i operadors +, -, *, retorna la seva avaluació. Aquesta és la capcelera:

```
// Pre: t és un arbre no buit que representa una expressió correcta
// sobre els naturals i els operadors +,-,*.
// Les operacions no produeixen errors d'overflow.
// Post: Retorna l'avaluació de l'expressió representada per t.
int evaluate(BinTree<string> t);
```

Aquí tenim un exemple de paràmetre d'entrada de la funció i la corresponent sortida:

Fixeu-vos que l'enunciat d'aquest exercici ja ofereix uns fitxers que haureu d'utilitzar per a compilar: main.cc, BinTree.hh, evaluate.hh, utils.hh, utils.cc. Us falta crear el fitxer evaluate.cc amb els corresponents includes i implementar-hi la funció anterior. Valdrà la pena que utilitzeu algunes de les funcions oferides a utils.hpp. Només cal que pugeu evaluate.cc al jutge.

Entrada

La primera linia de l'entrada descriu el format en el que es descriuen els arbres, o bé IN-LINEFORMAT o bé VISUALFORMAT. Després venen un nombre arbitrari de casos. Cada cas consisteix en una descripció d'un arbre binari que representa una expressió. Fixeu-vos en que el programa que us oferim ja s'encarrega de llegir aquestes entrades. Només cal que implementeu la funció abans esmentada.

Sortida

Per a cada cas, la sortida conté la corresponent avaluació de l'arbre. Fixeu-vos en que el programa que us oferim ja s'encarrega d'escriure aquesta sortida. Només cal que implementeu la funció abans esmentada.

+(-(-(+(43,20),*(78,98)),32),-(+(*(75,62),13),+(+(100,0),-(0,1))))

 $\begin{array}{l} -(-(+(+(97,*(97,39)),*(46,25)),-(+(+(38,31),+(21,84)),*(21,-(86,100)))),+(58,13)) \\ -(-(-(*(-(67,51),7),+(-(10,57),*(60,9))),*(84,+(25,11))),+(-(34,-(10,*(39,87))),42)) \\ +(-(-(+(100,32),60),*(80,+(14,94))),-(*(71,35),+(*(11,30),-(66,25)))) \end{array}$

+(63,18)

* (63,65)

Exemple de sortida 2	-3049
•	81
64	44
1171	4491
774	-6864
-9718	-6864 -6454
69	4095
-330	-626
5388	88
377	-3421
42	-9122

Observació

La vostra funció i subfuncions que creeu han de treballar només amb arbres. Heu de trobar una solució **RECURSIVA** del problema.

Informació del problema

Autor: PRO2

Generació: 2023-10-21 13:43:12

© *Jutge.org*, 2006–2023. https://jutge.org