



# Weaver: Interweaving SQL and LLM for Table Reasoning

Rohit Khoja<sup>1\*</sup>, Devanshu Gupta<sup>1\*</sup>, Yanjie Fu<sup>1</sup>, Dan Roth<sup>2</sup>, Vivek Gupta<sup>1†</sup>

<sup>1</sup> Arizona State University, <sup>2</sup> University of Pennsylvania







Why is Table QA still Challenging?

- Tables contain structured (numbers, fields) and unstructured (long text/images) data
- **SQL**: great for logic, fails at semantic inference
- LLMs: handle semantics, struggle at structured logic

Example: "Which country had most competitors?" in the Figure,

 $SQL fails \rightarrow LLM infers nationality$ 

Existing SQL–LLM integration is rigid or shallow, lack adaptability to complex queries

## Weaver Framework

LLM-generated dynamic execution plan

Weaver generates a **flexible plan** that adapts to query complexity, then executes through:

- 1.  $\mathbf{SQL}$  step  $\rightarrow$  Structured operations
- 2. LLM step  $\rightarrow$  Semantic reasoning
- 3. Verification  $\rightarrow$  Ensures correctness

Back-and-forth:  $SQL \leftrightarrow LLM \leftrightarrow SQL \leftrightarrow LLM$ 

# Planning Optimization

Strategies:

- SQL reordering: Push SQL steps earlier
- Parallelization: Independent LLM calls in parallel
- Batch processing: Batching for large data



23% reduction in steps with 1% accuracy loss

### Weaver Architecture

#### Four-phase modular pipeline:

- 1. Preprocessing: Parse table/question, extract metadata
- 2. Planning: LLM generates step plan, determines SQL vs. LLM operations

|                                                                                                              |                                                                             |                  |                       | <i>Table</i><br>1990 E | · <i>QA</i><br>British Grand Prix                                        |             |        |                   |     |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------|-----------------------|------------------------|--------------------------------------------------------------------------|-------------|--------|-------------------|-----|--|
|                                                                                                              | Rank Driver                                                                 |                  |                       |                        |                                                                          | TimeRetired | d      |                   |     |  |
|                                                                                                              | 1 Alain Pro                                                                 |                  | Prost                 | rost Ferrari           |                                                                          | 64          |        | 1:18:31           |     |  |
|                                                                                                              | 2                                                                           | 2 Thierry Boutse |                       | Williams-Renault       |                                                                          | 64          |        | 39.092            |     |  |
|                                                                                                              | 3 Ayrton Senna                                                              |                  | Senna                 | McLaren-Honda          |                                                                          | 64          |        | 43.088            |     |  |
|                                                                                                              | 4 Éric Bernard                                                              |                  | ernard                | Lola-Lamborghini       |                                                                          | 64          |        | 401:03:00         |     |  |
| Question: which country had the most competitors?  Gold Answ                                                 |                                                                             |                  |                       |                        | d Answer: <b>Ital</b>                                                    | y           |        |                   |     |  |
| Pre-processed table  Relevant Columns: {Driver}                                                              |                                                                             |                  |                       |                        |                                                                          |             |        |                   |     |  |
| Со                                                                                                           | lumn Na                                                                     | me Data Type     | Formatting N          | leeded                 | Co                                                                       | olumn De    | script | ion               |     |  |
| *                                                                                                            |                                                                             | * Cardinal       | None                  |                        | Position of the driver at the end of the race                            |             |        |                   |     |  |
| Rank_1  Driver                                                                                               |                                                                             | String           | None                  |                        | (e.g., 1, 2, 3, Ret, DNS, DNQ, DNPQ)  Name of the driver                 |             |        |                   |     |  |
| Constructor                                                                                                  |                                                                             | _                | None                  |                        | Name of the constructor (team) the driver is racing for                  |             |        |                   |     |  |
|                                                                                                              |                                                                             |                  | Convert to delta form |                        | Time taken to complete the race or reason for retirement (if applicable) |             |        |                   |     |  |
| -                                                                                                            |                                                                             | Genera           | te Plan usi           | na LL                  | м 👢 2 * 1                                                                | Rename      | d SQI  | L reserved keyv   | vor |  |
| D                                                                                                            | lannin                                                                      |                  |                       |                        |                                                                          |             |        |                   |     |  |
|                                                                                                              |                                                                             | Evtr             | act the uniqu         | ıe driv                | ers to identify the                                                      | country     | ,      |                   |     |  |
|                                                                                                              | A:                                                                          | SOL              | ach <b>driver</b> .   |                        | ore to identify the                                                      |             |        |                   |     |  |
|                                                                                                              | R·                                                                          | Use              | the driver n          | ames                   | to determine the <b>c</b>                                                | ountry      | of e   | ach <b>driver</b> |     |  |
| and create a new column for country.                                                                         |                                                                             |                  |                       |                        |                                                                          |             |        |                   |     |  |
| C: SQL Count the number of competitors from each <b>country</b> by joining previous table with the original. |                                                                             |                  |                       |                        |                                                                          |             |        |                   |     |  |
| D: SQL Find the <b>country</b> with the highest number of competitors.                                       |                                                                             |                  |                       |                        |                                                                          |             |        |                   |     |  |
|                                                                                                              |                                                                             | Verify           | / Plan usino          | g <i>LLM</i>           | 1                                                                        |             |        |                   |     |  |
|                                                                                                              |                                                                             |                  |                       | ]                      | New Plan                                                                 |             |        |                   |     |  |
|                                                                                                              | D: SQL Find the country with the highest number of competitors by selecting |                  |                       |                        |                                                                          |             |        |                   |     |  |

- 3. Code Execution: Execute SQL queries & LLM inference
- 4. Answer Extraction: Combine results, generate final answer



# Performance Results & Efficacy

#### Weaver Outperforms SOTA:



#### Multimodal Table QA:

| Dataset   | Modalities        | Accuracy Gain |
|-----------|-------------------|---------------|
| MMTabQA   | Text + Images     | +6.6%         |
| FinQA-MM  | Tables + Passages | +17.3%        |
| OTT-QA-MM | Tables + Passages | +2.9%         |

**Key:** +5-10% accuracy gain

#### Efficiency:

• Avg 6 API calls/query

| Method | Calls |
|--------|-------|
| Binder | 50    |
| H-STAR | 8     |
| Weaver | 5.5   |

#### Efficacy:

• 28.1% gain on large tables

| Method  | Acc.  |
|---------|-------|
| H-STAR  | 35.9% |
| ProTrix | 37.5% |
| Weaver  | 65.6% |

#### Interpretability:

Transparent, debuggable

## Conclusion

Dynamic SQL-LLM weaving enables accurate, interpretable, and efficient Table QA

#### Key Takeaways:

- Modular, interpretable pipeline for hybrid table reasoning
- 5–10% accuracy gain over state-of-the-art methods
- Multimodal support (text, image, table)
- Flexible planning adapts to query complexity
- Efficient execution with fewer API calls (avg. 6 calls/query)

Impact: Weaver bridges the gap between structured data processing and semantic understanding, enabling more robust and adaptable table question answering systems for real-world applications.



Scan for paper