MulT: An End-to-End Multitask Learning Transformer

Author: Deblina Bhattacharjee, Tong Zhang,

Sabine Susstrunk, Mathieu Salzmann

From: School of Computer and Communication Sciences, EPFL, Switzerland

Publication: CVPR2022

URL: https://ivrl.github.io/MulT/

Contents

- Motivation and Relation to my research
- What will be possible?
- Background
- Related Work
- MulT: A Multitask Transformer
 - Encoder
 - Decoder
 - Shared Attention
 - Task head and Loss
- Experiment Details
- Results
- Conclusion
- Future Work
- Reference

Motivation

Automatic Classification of Hip Osteoarthritis(変形性股関節症) There are two indicators KL and Crowe.

Relation to My Research

- I am about to work on a multi-task model that image synthesis and regression/classification.
- I chose this paper because I think it is meaningful to be able to do multiple tasks end to end with a single model.

Unfortunately, the code has not been updated, but I think that if I could replace
the head part at the end for my task, I would be able to get good results with
multitasking.

Output

What will be possible?

"End-to-End Multitask Learning Transformer"

Can perform multiple taskswith high accuracy

e.g. Segmentation, Depth Estimation, Normal Surface Estimation, Extract edge, Reshading

Background

Transformer has applied for Computer Vision

- BERT[2] 2019 GPT[3] 2019
- Machine [ranslation|

2017

Transformer[1]

- [1] Attention is all you need, NeurIPS2017
- [2] Bidirectional Encoder representations from Transformers, NACCL2019
- [3] Improving Language Understanding by Generative Pre-Training, OpenAI
- [4] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR2021
- [5] Segformer: Simple and Efficient Design for Semantic Segmentation with Transformers, NeurIPS2021
- [6] ViViT: A Video Vision Transformer, ICCV2021
- [7] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV2021
- [8] Video Swin Transformer, CVPR2022

Background: Swin Transformer

- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
- Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo
- ICCV2021 Best Paper, URL: https://github.com/microsoft/Swin-Transformer

- Key Points
 - ✓ Shifted Window-based Multi head self-attention
 - ✓ Patch Merging

Window-based Multi head self-attention

Patch: 4x4x3 Patch: 16x16x3

Output each stage

$$H \times W \times 3 \rightarrow \frac{H}{4} \times \frac{W}{4} \times 48 \rightarrow \frac{H}{4} \times \frac{W}{4} \times C$$

Kernel size = Patch Size Conv2d()

ViT: Patch and Window to perform self-attention

Swin: Patch and Window to perform self-attention

Patch Merging

Patch: 4x4x3

Patch: 16x16x3

Output each stage

$$\frac{H}{4} \times \frac{W}{4} \times C \to \frac{H}{8} \times \frac{W}{8} \times 2C$$

Output each stage
$$\frac{H}{4} \times \frac{W}{4} \times C \rightarrow \frac{H}{8} \times \frac{W}{8} \times 4C \rightarrow Linear() \rightarrow \frac{H}{8} \times \frac{W}{8} \times 2C$$

Window-based Multi head self-attention

Patch: 4x4x3

Patch: 16x16x3

Output each stage $\frac{H}{4} \times \frac{W}{4} \times C \rightarrow \frac{H}{8} \times \frac{W}{8} \times 2C$

ViT: Patch and Window to perform self-attention

Swin: Patch and Window to perform self-attention

Window-based Multi head self-attention

Patch: 4x4x3

Patch: 16x16x3

ViT: Patch and Window to perform self-attention

Swin: Patch and Window to perform self-attention

Shifted Window-based Multi head self-attention

Shifted Window-based Multi head self-attention

Shifted Window-based Multi head self-attention

The overflow area created when shifting is moved as shown in the figure.

Related Work "Multitask Learning" in Computer Vision

- End-to-End Multi-Task Learning with Attention
 - Shikun Liu, Edward Johns, Andrew J. Davison
 - CVPR2019, PaperURL: https://arxiv.org/abs/1803.10704

- Robust Learning Through Cross-Task Consistency
 - Amir Zamir, Alexander Sax, Teresa Yeo, Oğuzhan Kar, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, Leonidas Guibas
 - CVPR2020, PaperURL: https://arxiv.org/abs/2006.04096

- Which Tasks Should Be Learned Together in Multi-task Learning?
 - Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas,
 - Jitendra Malik, Silvio Savarese
 - ICML2020, PaperURL: https://arxiv.org/abs/1905.07553

- Pre-Trained Image Processing Transformer
 - Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, Wen Gao
 - CVPR2021, URL: GitHub dongyan007/Pretrained-IPT-main-master

- In previous studies, multitasking was trained with CNNbase and Transformer was not used.
- In addition, although multitask learning models with Transformer existed, they did not reflect the dependencies among tasks.
- Therefore, in this study, they attempted to improve the accuracy of multitask learning by introducing a shared attention mechanism.

MulT: A Multitask Learning Transformer

Encoder Module

Key Points

- ✓ 4 Stage and Calculations at different resolutions
- √ q,k obtained at each stage are sent to the decoder

^[*] Deep Residual Learning for Image Recognition, Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, CVPR2016

Decoder Module

Key Points

- ✓ 4 Stage and Calculations at different resolutions
- ✓ The feature map sent by skip-connection from the encoder matches the shape at the decoder.
- ✓ Shared Attention → Next Slide

Shared Attention

✓ The same resolution features can be shared.

Legend Please refer to the information by yourself.

 x^t : upsampled output of the previous stage

 x_{sa} : output of the encoding stage operating at the same resolution

t: task

 q_{sa}^r : query from x_{sa} by using the liner layer

 k_{sa}^{r} : key from x_{sa} by using the liner layer

r: one paticular task

 v^t : computed by x^t for task t

 C^r : number of channels

 B^r : relative position bias

 $\tilde{x}^t = A_{sa}^r v^t$: self – attention head

 $head_i^t(\tilde{x}_i^t, W_i^t) = \tilde{x}_i^t \cdot W_i^t$

 W_i^t : learnt attention weight for task t and \tilde{x}_i^t is the i th channel

 i^{th} : instance of the self – attention, which is repeated M times

 x_{linear}^{t} : linearly projecting the output of MHA^t(.,.)

y^t: last output

$$A_{sa}^{r} = softmax \left(\frac{q_{sa}^{r} \cdot k_{sa}^{r}}{\sqrt{C_{qkv}^{r}}} + B^{r} \right)$$

 $A_{sa}^{r} = softmax \left(\frac{q_{sa}^{r} \cdot k_{sa}^{r}}{\sqrt{C_{qkv}^{r}}} + B^{r} \right) \qquad MHA^{t}(\tilde{x}^{t}, W) = Concat(head_{1}^{t}, \dots, head_{M}^{t})W, \\ x_{linear}^{t} = MHA^{t}(\dots), \\ y^{t} = x^{t} + x_{linear}^{t}$

$$A_{sa}^{r} = softmax \left(\frac{q_{sa}^{r} \cdot k_{sa}^{r}}{\sqrt{C_{qkv}^{r}}} + B^{r} \right)$$

Task t: segmentation r^t

Task r: Depth Estimation x^r

 $\boldsymbol{x^t}$

 x_{so}

X

 $MHA^{t}(\tilde{x}^{t}, W) = Concat(head_{1}^{t}, ..., head_{M}^{t})W,$ $x_{linear}^{t} = MHA^{t}(.,.),$ $y^{t} = x^{t} + x_{linear}^{t}$

Task Heads and Loss

- ✓ The output from the Transformer decoder is input to task-specific heads, with each class head containing one linear layer that outputs a map of HxWx1.
- ✓ Losses also appear to be set up as task-specific losses to jointly train a single network.

e.g.

Segmentation: cross entropy, Depth estimation: rotation loss,

Others: L1 loss (MAE).

✓ The entire model is computed with all weighted losses using the GradNorm method.

Loss

- GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks,
- ICLR2018,
- Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, Andrew Rabinovich
- [1711.02257v2] GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks (arxiv.org)

- ✓ Weighted Loss
- ✓ Balanced Gradients

Experiment Details: Training Datasets

• Taskonomy [URL: https://github.com/StanfordVL/taskonomy/tree/master/data]

Data: over 4.5 million images from

over 500 buildings

Annotation: 15 tasks/image

Experiment Details: Test Datasets

- Taskonomy
- Replica: https://github.com/facebookresearch/Replica-Dataset
 High resolution 1227 images and Ground Truth
 This dataset can evaluate more detail
- NYU: https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

 1449 images of 464 different rooms

CocoDoom: https://www.robots.ox.ac.uk/~vgg/research/researchdoom/cocodoom/

synthetic images from the Doom video games

Experiment Details: Training

- Train 6 tasks at the same time
 - Framework : PyTorch
 - Device: Nvidia V100-SXM2-32GBGPU
 - Batch size: 32
 - Lr: 5e-5
 - Scheduler : warmup cosine
 - Optimizer: weighted adam
 - Loss: CrossEntropy(S), RotationLoss(D), MAE(N,K,E,R)

S: Segmentation,

D: Depth Estimation,

N: Surface Normals,

K: 2D keypoints,

E: 2D texture edges,

Results: Relative Performance

	Relative Performance On							
	${\cal S}$	\mathcal{D}	$\mathcal N$	κ	\boldsymbol{E}	${\cal R}$		
\mathcal{S}	-	+3.83%	-1.42%	-1.33%	+33.9%	-0.80%		
\mathcal{D}	+4.83%	-	+2.77%	-1.92%	+35.2%	+3.93%		
\mathcal{N}	+11.3%	+8.35%	-	+91.2%	+77.1%	+9.09%		
κ	+5.11%	+0.57%	-6.88%	-	+70.1%	+0.21%		
\boldsymbol{E}	+6.09%	+4.33%	-0.73%	+4.75%	-	+5.11%		
${\cal R}$	+8.61%	+4.45%	+5.91%	+1.95%	+33.9%	-		

MulT(multi-task) vs Swin(single)

Row: Another task used for training

Columns: Tasks to be tested

S: Segmentation,

D: Depth Estimation,

N: Surface Normals,

K: 2D keypoints,

E: 2D texture edges,

Quantitative Results

Relative Performance On								
	${\cal S}$	$\mathcal D$	\mathcal{N}	κ	\boldsymbol{E}	${\cal R}$		
\mathcal{S}	-	+3.83%	-1.42%	-1.33%	+33.9%	-0.80%		
\mathcal{D}	+4.83%	-	+2.77%	-1.92%	+35.2%	+3.93%		
		+8.35%						
		+0.57%						
\boldsymbol{E}	+6.09%	+4.33%	-0.73%	+4.75%	-	+5.11%		
\mathcal{R}	+8.61%	+4.45%	+5.91%	+1.95%	+33.9%	-		

MulT(multi-task) vs Swin(single)

Row: Another task used for training

Columns: Tasks to be tested

S: Segmentation,

D: Depth Estimation,

N: Surface Normals,

K: 2D keypoints,

E: 2D texture edges,

Quantitative Results

Relative Performance On \mathcal{R} +3.83% -1.42% -1.33% +33.9% -0.80% +2.77% +4.83% -1.92% +35.2% +3.93%+11.3% +8.35% +91.2% +77.1% +9.09% +5.11% +0.57% +70.1% +0.21% -6.88% +6.09% +4.33% -0.73% +4.75% +5.11% +1.95% +33.9% R +8.61% +4.45% +5.91%

MulT(multi-task) vs Swin(single)

Row: Another task used for training

Columns: Tasks to be tested

	Relative Performance On					
	AutoEnc	Normals	Occ Edges	Reshading	Curvature	
	_	-3.23%	-2.66%	0.10%	-1.39%	
➢ Normals	19.31%	-	3.16%	4.60%	1.95%	
ਨੂੰ Occ Edges	35.83%	-0.25%	_	1.15%	0.84%	
Occ Edges Reshading	-24.46%	3.71%	3.16%	_	1.88%	
Princ Curv	10.69%	2.61%	2.46%	3.15%	_	
	10.34%	0.71%	1.53%	2.25%	0.82%	

S: Segmentation,

D: Depth Estimation,

N: Surface Normals,

K: 2D keypoints,

E: 2D texture edges,

	Relative Performance On						
	SemSeg	Depth	Normals	Keypoints	Edges	Average	
∃ SemSeg	_	1.91%	-6.00%	-9.91%	-21.93%	-8.98%	
≥ Depth	-12.63%	_	2.95%	1.44%	-9.70%	-4.48%	
Normals	8.32%	15.38%	-	-1.35%	52.08%	18.61%	
Normals Keypoints Edges	-5.84%	-7.21%	-2.26%	-	55.63%	10.08%	
Edges	-5.62%	6.02%	-4.16%	-5.02%	-	-2.20%	
	-3.95%	4.03%	-2.37%	-3.71%	19.02%	2.6%	

Qualitative Results

In: Input image,

S: Segmentation,

D: Depth Estimation,

N: Surface Normals,

K: 2D keypoints,

E: 2D texture edges,

Generalization To New Domains

Conclution

- This study proposed a single encoder-decoder model with Transformer tuned for multiple tasks.
- This model is able to solve six tasks simultaneously, and by sharing parameters, it demonstrated superior results for each task in a more compact manner.
- Furthermore, MulT outperforms CNN-based multitasking models and performs well not only on the original domain, but also on unknown domains.

Future Work

- Data dependency
 - Especially MulT is data intensive architecture
 - Require Large amount of data
- Paired data
 - Generalize for other tasks.
 e.g. Non-supervised learning
- Extend the combination of local and global attention to a more flexible mechanism.

Additional Reference

[Japanese]

- https://gihyo.jp/book/2022/978-4-297-13058-9
 →おすすめの本
- https://qiita.com/m_sugimura/items/139b182ee7c19c83e70a
- https://yhayato1320.hatenablog.com/entry/2022/02/24/211839
- https://www.slideshare.net/ren4yu/swin-transformer-iccv21best-paper