THE UNIVERSITY OF TEXAS AT AUSTIN Department of Aerospace Engineering and Engineering Mechanics

ASE 367K FLIGHT DYNAMICS Fall 2024

HOMEWORK 3 Due: 2024-09-20 at 11:59pm via Canvas

Problem 1

The vertical tail volume of an aircraft is defined by

$$V_F = \frac{S_f(x_{ac_f} - x_{cg})}{Sb},$$

where S_f and S are the fin and wing planform area, respectively, b is the wing span, and $x_{ac_f} - x_{cg}$ is the distance between the aerodynamic center of the fin and the CG of the aircraft. For an airplane with $C_{L_{\alpha_f}} = 5.5$, assuming negligible sidewash effects, what tail volume is required to achieve a weathercock stability derivative of $C_{n_\beta} = 0.16$?

Problem 2

For the airplane below, assume the right engine fails when the aircraft is in level flight at 130 knots, creating a yawing moment of 100000 [ft-lb]. Neglect the fuselage effect, determine:

- a. The resulting sideslip angle in degrees if no rudder deflection is input.
- b. The rudder input δ_r required to maintain the direction of flight prior to the engine failure.

Assume sea level, standard conditions: $\rho = 0.002378$ [slugs/ft³]. Also,

1 [knot] = 1.6878 [ft/s].

Wing			Horizontal Tail			Vertical Fin		
$\overline{}$	=	80 [ft]						
S	=	$1200 \; [\mathrm{ft^2}]$	S	=	$250 \; [{ m ft}^2]$	S	=	$125 \; [{ m ft}^2]$
$ar{c}$	=	10 [ft]	$ar{c}$	=	5 [ft]	$ar{c}$	=	5 [ft]
i	=	$0 [\deg]$	i	=	$-1.6 [\deg]$			
$C_{L_{lpha}}$	=	$5.2 \; [\mathrm{rad}^{-1}]$	$C_{L_{lpha}}$	=	$4.5 \; [\mathrm{rad}^{-1}]$	$C_{L_{lpha}}$	=	$5.5 \; [\mathrm{rad}^{-1}]$
C_{L_0}	=	0.1	C_{L_0}	=	0.0	C_{L_0}	=	0.0
$C_{M_{ac}}$	=	-0.1	$C_{M_{ac}}$	=	0.0	$C_{M_{ac}}$	=	0.0
			$C_{L_{\delta_e}}$	=	$1.5 \; [\mathrm{rad}^{-1}]$	$C_{L_{\delta_r}}$	=	$1.5 \; [\mathrm{rad}^{-1}]$
x_{ac}	=	13 [ft]	x_{ac}	=	40 [ft]	x_{ac}	=	40 [ft]
			ϵ_0	=	$1.0 [\deg]$	σ_0	=	$0.0 \; [\mathrm{deg}]$
			ϵ_{lpha}	=	0.3	σ_{eta}	=	0.0
			η	=	0.95	η	=	1.0

The cg of the aircraft is at $x_{cg} = 14$ [ft], the weight of the aircraft is 20,000 [lb], and

$$C_{M_{0_p}} = 0.0 \,, \quad C_{M_{0_f}} = 0.0 \,, \quad C_{M_{lpha_p}} = 0.0 \,\, [\mathrm{rad}^{-1}] \,, \quad \mathrm{and} \quad C_{M_{lpha_f}} = 0.0 \,\, [\mathrm{rad}^{-1}] \,.$$