C12 - A - Résumé

Définition des variables

Pour les énonces suivants on considérera toujours : I un intervalle non trivial de $\mathbb R$

$$f:I o \mathbb{R}$$

 $a\in\overline{\mathbb{R}}$ tel que ($a\in I$ ou a est une borne de I on le précisera suivant ces deux cas)

Définition du voisinage (Non universelle)

Pour $w \in \overline{\mathbb{R}}$,

On a 3 cas:

- Si $w \in \mathbb{R}$ les voisinages spécifiques de w sont les $[w-\epsilon,w+\epsilon]$ Ou $\epsilon>0$
- Si $w=-\infty$ les voisinages spécifiques de w sont les $]-\infty,B]$ ou $B\in\mathbb{R}$
- Si $w=+\infty$ les voisinages spécifiques de w sont les $[A,+\infty[$, ou $A\in\mathbb{R}$

Notation du voisinage (du prof)

On notera $\mathcal{V}(w)$ l'ensemble des voisinages spécifiques de w (Ensemble de parties de \mathbb{R})

Définition

Une propriété est dite vérifiée au voisinage de $w \in \mathbb{R}$ ssi il existe un voisinage spécifique de w que lequel la propriété soit vérifiée.

Définition de la limite

Soit $l \in \overline{\mathbb{R}}$

$$f(x) \underset{x
ightarrow a}{\longrightarrow} l \Leftrightarrow orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), orall x \in I, (x \in U \Rightarrow f(x) \in V)$$

Théorème : unicité de la limite

Si $l,l'\in\overline{\mathbb{R}}$ vérifient

$$f(x) \underset{x \to a}{\longrightarrow} l$$
 et $f(x) \underset{x \to a}{\longrightarrow} l'$ alors $l = l'$

Propriété limite réelle dans le domaine de définition

Si $a \in I$ et $\lim_a f = l$ Alors

$$l = f(a)$$

Propriété limite bornée

Si $\lim_a f = l \in \mathbb{R}$

Alors

f est bornée au voisinage de a

Propriété de la limite locale

La notion de limite est locale

Si $l \in \overline{\mathbb{R}}$ Pour tout $V \in \mathcal{V}(a)$

$$f(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l \Leftrightarrow (f|_{_{V}})(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

Propriété

$$orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), orall x \in D_f \cap W, (x \in U \Rightarrow f(x) \in V)$$

Définition de la limite a droite et a gauche

On considère $g=f|_{I\cap]a,+\infty[}$ resp ($g=f|_{I\cap]-\infty,a[}$) et on dit que f admet une limite a droite (resp gauche) en a ssi

$$g(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

On note alors

Limite a droite:

$$g(x) \underset{x
ightarrow a^+}{\longrightarrow} l$$

$$g(x) \stackrel{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

Limite a gauche:

$$g(x) \mathop{\longrightarrow}\limits_{x o a^-} l$$

$$g(x) \stackrel{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

Définitions formelles de la limite a droite et a gauche

Cas $l \in \mathbb{R}$:

$$\lim_{a^+} f = l \Leftrightarrow orall \epsilon > 0, \exists lpha > 0, orall x \in I, (a < x \leq a + lpha \Rightarrow |f(x) - l| \leq \epsilon)$$

$$\lim_{a^-} f = l \Leftrightarrow orall \epsilon > 0, \exists lpha > 0, orall x \in I, (a - lpha \leq x < a \Rightarrow |f(x) - l| \leq \epsilon)$$

Cas $l\in\overline{\mathbb{R}}$:

Si $l \in +\infty$:

$$\lim_{a^+} f = +\infty \Leftrightarrow orall \epsilon > 0, orall lpha > 0, orall x \in I, (a < x \leq a + lpha \Rightarrow f(x) > \epsilon)$$

$$\lim_{a^-} f = +\infty \Leftrightarrow orall \epsilon > 0, \exists lpha > 0, orall x \in I, (a+lpha \leq x < a \Rightarrow f(x) > \epsilon)$$

Extension

On suppose que I est un intervalle non trivial, $a \in I$ et f définies "au moins" sur $I \setminus \{a\}$ (elle peut ou non être définie en a)

Définition : Limite par valeurs différentes

Soit $l \in \overline{\mathbb{R}}$

On dit que f(x) tends par valeurs différentes lorsque :

$$orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), orall x \in I ackslash \{a\}, (x \in U \Rightarrow f(x) \in V)$$

On note alors

$$f(x) \stackrel{}{\underset{
olimits}{\longrightarrow}} l$$

ou

Propriété : Caractérisation séquentielle des limites

Avec les notations précédentes

$$\lim_{n}f=l\Leftrightarrow (orall (u_{n})\in I^{\mathbb{N}}, (\lim_{n o\infty}u_{n}=a\Rightarrow \lim_{n o\infty}f(u_{n})=l))$$

Théorème : Opération sur les limites

Soit f et g deux fonctions tel que pour $l,l'\in\mathbb{R}$

$$\lim f = l \text{ et } \lim g = l'$$

On ait:

$$\lim f + g = l + l'$$

$$\lim f \times g = l \times l'$$

$$g
eq 0 \Leftrightarrow \lim rac{f}{g} = rac{l}{l'}$$

Théorème : Composition de limites

Soit I,J des intervalles non-triviaux, $a,b,l\in\overline{\mathbb{R}}$ Soit $f:I\to\mathbb{R}$ et $g:J\to\mathbb{R}$ Telles que $f(I)\subset J$ et $\lim_a f=b$ et $\lim_b g=l$ Alors

$$\lim_a (g\circ f)=l$$

Théorème : Stabilité des inégalités larges par passage a la limite

Soient $f,g:I o\mathbb{R}$ admettant des limites en $a\in\overline{\mathbb{R}}$ et vérifiant :

$$orall x \in I, f(x) \leq g(x)$$

Alors

$$\lim_a f \leq \lim_a g$$

Théorème : Limite par encadrement (gendarmes)

Soit $f, g, h: I \to \mathbb{R}$

tel que f et h admettent la même limite l en $a\in\overline{\mathbb{R}}$ et

$$orall x \in \mathbb{R}, f(x) \leq g(x) \leq h(x)$$

Alors g admet une limite en a et

$$\lim_a g = l$$

Théorème de minoration ou majoration

Soient $f,g:I o\mathbb{R}$ tel que

$$orall x \in I, f(x) \leq g(x)$$

et a un point ou une borne de I.

Si $\lim_a f = +\infty$, alors g(x) tend aussi vers $+\infty$ lorsque x tend vers a. (Même pour la minoration en $-\infty$)

Théorème de la limite monotone

Soit $f:I\to\mathbb{R}$, Soit a une borne de I tel que $a\not\in I$ Si f est monotone alors elle admet une limite $l\in\overline{\mathbb{R}}$ en a

Corollaire du théorème de la limite monotone

Une fonction monotone admet une limite à droite et une limite à gauche en tout point de son intervalle de définition qui n'en est pas une borne.