Nonlinear PDEs and Jacobian options 1D example solved by 21st century means

Ed Bueler
Dept. of Mathematics and Statistics, UAF

29 March 2016

outline for today

Chapter 4 of book:

▶ recall 1D diffusion-reaction example c/ch4/reaction.c:

$$-u''-R(u)=f(x)$$

- show:
 - evidence for convergence
 - finite-difference Jacobian
 - optionally by graph coloring
 - matrix-free Newton-Krylov
 - optionally with a preconditioning matrix

recall: problem and solution method

balance of diffusion/reaction/source processes:

$$-u'' - R(u) = f(x), \quad u(0) = \alpha, \quad u(1) = \beta$$

- o an ODE 2-point BVP, but acts like elliptic PDE (e.g. Poisson)
- \circ R(u) is any nonlinear function
- exact solution known when $R(u) = -\rho \sqrt{u}$ and f(x) = 0
- discretize on N-point structured grid by finite differences:

$$-\frac{u_{i+1}-2u_i+u_{i-1}}{h^2}-R(u_i)=f(x_i)$$

- ▶ becomes "residual=0" equations in \mathbb{R}^N : $\mathbf{F}(\mathbf{x}) = 0$
- ▶ Newton's method: choose **x**₀ and iterate

$$J_{\mathsf{F}}(\mathbf{x}_k) \mathbf{s} \stackrel{*}{=} -\mathbf{F}(\mathbf{x}_k), \qquad \mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}$$

 solve each linear system * by preconditioned Krylov: "Newton-Krylov"

recall: PETSc implementation

- ▶ c/ch4/reaction.c
- DMDA manages grid (in parallel)
- SNES manages Newton's method (in parallel)
 - has Krylov solver KSP and preconditioner PC inside
- we write these parts of code:
 - initial iterate function
 - residual function F(x), a SNES call-back
 - Jacobian J_F(x), a SNES call-back
 - o main():
 - call Create/SetFromOptions on objects
 - call initial iterate function
 - ► call SNESSolve()
 - ▶ measure error $\|\mathbf{x}_k \mathbf{x}\|$ (relative to exact solution \mathbf{x})
 - call Destroy on objects

recall: structure of c/ch4/reaction.c

- solid arrows mean "user code acts directly on"
- dotted arrows are call-backs

basic runs

```
$ ./reaction -da_refine 4 # refine by 2^4
$ ./reaction -snes_monitor -ksp_converged_reason # info on run
$ ./reaction -snes_view # expose solvers
$ ./reaction -mat_view draw -draw_pause 1 # show matrix (L)
$ ./reaction -da_refine 4 -snes_monitor \ # show iterates (R)
-snes_monitor_solution draw -draw_pause -1
```


convergence

```
$ for N in 0 2 4 6 8 10 12 14 16; do
> ./reaction -da_refine $N -snes_rtol 1.0e-10; done
```


distinguish meanings of "convergence"!

- previous: convergence of numerical soln to exact soln
 - usually the main goal
- left: convergence of residual in the nonlinear equations
 - Newton "outer" iteration (SNES residual)
- right: convergence of residual in linear eqns per Newton step
 - Krylov "inner" iteration (KSP residual)


```
$ ./reaction -snes_monitor -ksp_type preonly -pc_type lu
$ ... -ksp_monitor -ksp_type gmres -pc_type jacobi
```

approximate Jacobians

- ▶ in our code we do have FormJacobianLocal()
 - ...but suppose we did not ...
 implementing Jacobians can be an error-prone pain
 - of course, we *must* have a FormFunctionLocal() which computes F(x)
- one idea for approximate Jacobian is -snes_fd:

$$J_{ij} = \frac{\partial F_i}{\partial x_j} \approx \frac{F_i(\mathbf{x} + \delta \mathbf{e}_j) - F_i(\mathbf{x})}{\delta}$$

- $\delta = \sqrt{\epsilon}$ where $\epsilon = 2.2 \times 10^{-16}$ is machine precision
- different idea, suitable for Krylov iteration, is -snes_mf:

$$J\mathbf{v} pprox rac{\mathbf{F}(\mathbf{x} + \delta \mathbf{v}) - \mathbf{F}(\mathbf{x})}{\delta}$$

approximate Jacobians: the caveat

- neither -snes_fd nor -snes_mf scale well!
- for different reasons:
 - -snes_fd does not scale well because if grid has N points then N + 1 residual evaluations are needed per Newton step
 - need to avoid redundant residual evaluations
 - -snes_mf does not scale well because only J^kv can be calculated, so Krylov method will not converge fast if spectrum of J is spread out
 - o need to add a preconditioner
- fortunately, modified versions -snes_fd_color and -snes_mf_operator exist

finite-difference Jacobians

- options -snes_fd and -snes_fd_color only need residual implementation (FormFunctionLocal())
- recall we can see how many times the residual function FormFunctionLocal() is evaluated:
 - \$... -log_view | grep SNESFunctionEval
- for example:
 - \$./reaction -da_refine 10
 - \$./reaction -da_refine 10 -snes_fd
 - \$./reaction -da_refine 10 -snes_fd_color
 - gives 4, 16390, 13 evaluations, respectively

how -snes_fd_color works

- graph has edge if two nodes are connected in stencil
- ▶ *J* is built by evaluating **F** once for all columns of one color
 - \circ graph needs c=3 colors in this case
- ▶ number of evals of **F** is q(c+1) + 1 for q Newton steps
 - o independent of refinement level

matrix-free Newton-Krylov ("JFNK"): issues

- option -snes_mf only needs residual implementation
 (FormFunctionLocal())
- ...but it tends not to work for fine grids
- to illustrate the scaling problem
 - does not converge:
 - \$./reaction -da_refine 10 -snes_mf
 - gives 3225 evaluations:
 - \$./reaction -da_refine 4 -snes_mf
 - ightharpoonup because of pprox 1000 GMRES iterations per Newton step
 - o for comparison,
 - \$./reaction -da_refine 4
 - \$./reaction -da_refine 4 -snes_fd
 - \$./reaction -da_refine 4 -snes_fd_color
 gives 4, 394, 13 evaluations, respectively

matrix-free Newton-Krylov ("JFNK"): improvement

- option -snes_mf_operator needs Jacobian code
 - yes, you need to write FormJacobianLocal()
 - but it can be only an approximate Jacobian "P"
 - P ≈ J will be used for preconditioning
- ▶ for example, P could be the Jacobian corresponding to the Poisson equation

$$-w''=f(x)$$

instead of the actual problem

$$-u'' + R(u) = f(x)$$

trying out matrix-free Newton-Krylov

- for example, code c/ch4/reaction.c has option -rct_noRinJ which removes "R(u)" part of (correct) Jacobian
- with analytical Jacobian
 - \$./reaction -snes_monitor -da_refine 10
- with inexact Jacobian
 - \$./reaction -snes_monitor -da_refine 10 \
 -rct_noRinJ
- with inexact Jacobian used as preconditioner
 - \$./reaction -snes_monitor -da_refine 10 \
 -rct_noRinJ -snes_mf_operator

Jacobian options comparisons

	no option	-snes_fd -snes_fd_color	-snes_mf	-snes_mf_operator
only F	error	$\overline{\checkmark}$	\checkmark	error
${\bf F}$ and P	\checkmark	✓	\checkmark	\checkmark
${\bf F}$ and ${\it J}$	\checkmark	✓	\checkmark	\checkmark

Table 4.2: Jacobian options when using SNES. Rows give which mathematical objects have been provided through user code. Symbol "P" denotes an approximate Jacobian while "J" denotes the actual Jacobian. A large check mark shows recommended usage.

	no option	-snes_fd -snes_fd_color	-snes_mf -snes_mf_operator
residual F	q+1	q(N+1)+1 $q(c+1)+1$	$qm_1 \ qm_2$
Jacobian J or P	q	0	0 9

Table 4-3: Jacobian options compared by number of residual and Jacobian evaluations. Here q is the number of Newton iterations, N is the dimension of the problem, c is the number of colors on G(J), m_1 is the dimension of the Krylov space for J, and m_2 is the Krylov space dimension for the preconditioned operator $M^{-1}J$.

main idea:

you have options, after implementing the residual $\mathbf{F}(\mathbf{x})$, for solving without an analytical Jacobian, or with a merely approximate Jacobian