The Difference Between Encoding and Encryption, Daniel Meissler

Encoding is often confused with encryption. They are not the same. But before I go into the differences, I'll first mention the similarities:

- 1. Both transform data into another format.
- 2. Both are reversible (unlike hashing).

And now the differences:

Encoding

The purpose of *encoding* is to transform data so that it can be properly (and safely) consumed by a different type of system, e.g. binary data being sent over email, or viewing special characters on a web page. The goal is **not** to keep information secret, but rather to ensure that it's able to be properly consumed.

000d	00h		(nul)	016d	10h	•	(dle)
001d	01h	0	(soh)	017d	11h	•	(dc1)
002d	02h	•	(stx)	018d	12h	‡	(de2)
003d	03h	•	(etx)	019d	13h	!!	(de3)
004d	04h	•	(eot)	020d	14h	1	(dc4)
005d	05h	*	(enq)	021d	15h	§	(nak)
006d	06h	•	(ack)	022d	16h		(syn)
007d	07h	•	(bel)	023d	17h	\$	(etb)
008đ	08h		(bs)	024d	18h	1	(can)
009d	09h		(tab)	025d	19h	1	(em)
010d	OAh		(1f)	026d	1Ah		(eof)
011d	OBh	♂	(vt)	027d	1Bh	←-	(esc)
012d	OCh	\$	(np)	028d	1Ch	-	(fs)
013d	ODh		(cr)	029d	1Dh		(gs)
014d	OEh	÷	(so)	030d	1Eh	•	(rs)
015d	OFh	0	(si)	031d	1Fh	•	(us)

Encoding transforms data into another format using a scheme *that is publicly available* so that it can easily be reversed. It does not require a key as the only thing required to decode it is the algorithm that was used to encode it.

Examples: ASCII, Unicode, URL Encoding, Base64

Encryption

The purpose of *encryption* is to transform data in order to keep it secret from others, e.g. sending someone a secret letter that only they should be able to read, or securely sending a password over the Internet. Rather than focusing on usability, the goal is to ensure the data cannot be consumed by anyone other than the intended recipient(s).

```
----BEGIN PGP MESSAGE----
Version: GnuPG v1.4.5 (GNU/Linux)

hQIOAOuHniue4n32EAf/UEF6JLrap10BMdKHvb-b29GvoijUixH+gbcpi9qGa+43
vC3ktMwo70WgPyJseVRSPBOv6dOwy65KrzrHwhOHO/CKEk2OSSTAwzj6C3USgDfZ
6E+Gc4iumM1725JNahJzcL5ED33LFd26uoEjgqggxG1dFwvwksRhA4+VU9Bcd5eL
T9aRVbkXNxXRch2FWhWuhPQFNWLwIVrDdSTPcDvpRT16fy1B1AM9ks3H1Y2HL7mfR
HK99fy1nGXdh10GEDvV7dVLq1x8f, hfs6yf06fkABGdT4VowWcVQGqwpbOZGq
xoSYKMm6MmAkkqYXZLraSEzyxxxu4cQzvzz3vrpN3AgAhobP2eUFU29EJAQdKJW
KAhohPVpd6+8TnzL53NJq1JJJANDLp1Z109e1NYMDSNz2EwALGTU319p1GYV5
cvSUBe3ER4/CkjvYXOVaO7ezHmCAkQpB2ILV8OWI74DQn7tNKf2gJnwzkYAF7yyf
XFGJJ80aLpRV499bmN71Mf0+ZV2fkF8yx1+jUFFv+H+ROt4ffmAU5195UKsQTe/AB
VIdSBAEgKfW89LDgbWS2oxJymGufBahxpyPuJJLzv=HIVIC7FSGGWOVAJGHV
1qHKSukK646F10ImmVUM9csPCvrfOMZeAgh41+HYQvFf/kGHp6ogevD4pVhrtbzd
F9JhAbJseOvZKZFPhzjgX+mCgvzVRn18dg7w23+YKNe12zOrmTsi106JyNQV20I
tAqTkS7ZzdZbrCtSgethr/NuxbJSMnw48sIZbwF0U31r6f6IB6Q112tto3IVCe
```

Encryption transforms data into another format in such a way that *only specific individual(s)* can reverse the transformation. It uses a key, which is kept secret, in conjunction with the plaintext and the algorithm, in order to perform the encryption operation. As such, the ciphertext, algorithm, and key are all required to return to the plaintext.

fF/pZA== =sPWf

-END PGP MESSAGE----

Examples: AES, Blowfish, RSA

http://danielmiessler.com/study/encoding vs encryption/