Tecnológico de Costa Rica

Área Académica de Ingeniería en Computadores

(Computer Engineering Academic Area)

Programa de Licenciatura en Ingeniería en Computadores

(Licentiate Degree Program in Computer Engineering)

Curso: CE-5302 Proyecto de Diseño de Ingeniería en Computadores

Plan de Proyecto

Realizado por:

Made by:
Oscar Josué Ulate Alpízar
201229559

Profesor:

(Professor)

Gustavo Cubas Euceda

Fecha: Cartago, 22 de febrero, 2019

(Date: Cartago, February 22, 2019)

Tabla de contenido

Nombre del proyecto	3
Institución	3
Requerimientos de confidencialidad y propiedad intelectual	3
Descripción del problema	3
Objetivo general	4
Objetivos específicos	4
Interesados en el proyecto	5
Descripción de la solución	6
Entregables y criterios de aceptación	8
Actividades y presupuesto de esfuerzo	10
Análisis de riesgos	11
Cronograma	12

Nombre del proyecto

"Rastreo basado en visión por computador de mariposas en un ambiente controlado"

Institución

Laboratorio de Procesamiento de Señales e Imágenes de la Escuela de Ingeniería Electrónica del Tecnológico de Costa Rica (SIP-Lab)

Requerimientos de confidencialidad y propiedad intelectual

El SIP-Lab, laboratirio académico del Tecnológio de Costa Rica debe acatar el "Reglamento para la Protección de la Propiedad Intelectual del Instituto Tecnológico de Costa Rica", cuyo objetivo es velar por regular los derechos y deberes en materia de propiedad intelectual, que se deriven de la actividad académica. No se identifican requerimientos de confidencialidad directamente asociados al proyecto en este documento.

Al ser este un proyecto en conjunto con el CICANUM, laboratorio de la UCR, se debe trabajar bajo el Reglamento de Protección a la Propiedad Intelectual de esta Institución, pero tampoco se encuentran requerimientos de confidencialidad directamente asociados.

Descripción del problema

El SIP-Lab, según su sitio web busca solucionar problemas del ámbito nacional y regional relacionados con procesamiento, análisis y reconocimiento de información transportada en señales temporales y espaciales. Dentro de este ámbito es que el SIP-Lab decide apoyar a CICANUM, contraparte de la UCR para detectar el vuelo de las mariposas en una caja especielmente diseñada para ellas.

Para implementar una solución satisfactoria, es necesaria la generación de conocimiento en diversas áreas de la ingeniería en computaores: visión por computadora, arquitectura de software, arquitectura de hardware, matemática geométrica y reconocimiento de patrones. Por esto, un grupo de varios alumnos se ha encargado de cada parte específica de este proyecto.

Ya en el proyecto existe el reconocimiento de las mariposas en pleno vuelo, y el sistema de la calibración de las cámaras para que estas "posean el mismo sentido espacial". Actualmente se está trabajando en dos áreas relacionadas: la sincronización de la captura de fotografías por tarte de las tres cámaras y envío de la información a la computadora, de mi parte. Por otra parte, mi compañero Geovanny Espinoza está trabajando en la herramienta de visión por computadora para que el sistema puda devolver las coordenadas de vuelo de cada una de las mariposas dentro de la caja.

El presente documento se encarga de explicar el plan de proyecto que presenta la hipótesis de cómo se llevará a cabo el diseño de la sincronización de las cámaras y el envío de información en tiempo real, como es deseado, a una computadora central. Se detalla el alcance con los objetivos del proyecto y explica los detalles de aceptación de este proyecto para que sea exitoso.

Objetivo general

Crear un sistema tanto en hardware como en software para la sincronización de captura de imágenes por tres cámaras industriales y posterior envío de estas a una computadora central en tiempo real.

Objetivos específicos

- Generar las señales de sincronización (trigger) para la captura simultánea de imágenes en las tres cámaras.
- 2. Diseñar un sistema que etiquete con estampilla de tiempo cada una de las imágenes tomadas por todas las cámaras.

- 3. Asegurarse en la captura que cada cámara esté identificada de forma única.
- 4. Enviar las imágenes en tiempo real a una computadora central que contiene la aplicación donde se van a visualizar estas.

Interesados en el proyecto

Este proyecto nació en el CICANUM, laboratorio de la Universidad de Costa Rica, por lo que ellos son los principales interesados en el resultado final. Para la detección de las mariposas y generación de coordenadas en tres dimensiones de la posición de las mismas, este laboratorio consiguió la ayuda del SIP-Lab, donde bajo el mando de Pablo Alvarado Moya, se consiguió la colaboración de estudiantes para que se aplicaran conocimientos en reconocimiento de patrones, visión por computadora, sistemas embebidos y matemática geométrica para solucionar el problema propuesto. En la Figura 1 se muestra la relación que tienen las diferentes personas con este proyecto.

En conjunto con mi trabajo, Geovanny va a estar realizando la etapa posterior que corresponde a la generación de coordenadas de vuelo de las mariposas. Es por ello, que él necesita directamente la sincronización de las cámaras.

Figura 1. Principales interesados en este proyecto de diseño.

Descripción de la solución

En una caja de un metro cúbico se va a meter un grupo de mariposas monarcas para estudiar la relación de su dirección de vuelo con los campos magnéticos de la Tierra. Dentro de la caja se colocan tres cámaras para detectar el movimiento de las mariposas y detectar sus coordenadas en tres dimensiones en tiempo real. Posteriormente se inducen campos magnéticos para observar si hay cambios en el vuelo natural de los animales.

La parte del proyecto realizada en el SIP-Lab es la de detección y rastreo de las mariposas, para posteriormente estudiar su comportamiento. Dentro de este contexto, este proyecto lo que busca la sincronización de las cámaras que se encuentran dentro de la caja de pruebas para que se tomen las fotografías en el mismo instante de tiempo con una precisión en el orden de los milisegundos.

Para sincronizar las cámaras, es necesario crear un pequeño módulo de hardware que permita que las cámaras sincronicen el disparador bajo la misma señal electrónica. Una

vez conseguida la sincronización deseada, es necesario etiquetar cada una de las imágenes tomadas a treinta cuadros por segundo con una estampilla de tiempo y con un identificador único de cada cámara.

Cada fotograma capturado debe ser enviado a una tarjeta NVIDIA Jetson TX2 independiente para cada cámara, donde se aplica el estampado de tiempo de cada imagen y posteriormente se envía toda la información (en tiempo real) a. una computadora central que es donde se encuentra el software existente. Ese software ya contiene programada la detección de las mariposas y la calibración de las cámaras para que estas sepan qué coordenadas están mirando.

En la Figura 2 se muestra una ilustración de alto nivel de cómo debe resultar este paso del proyecto.

Figura 2. Diagama de alto nivel del diseño inicial.

Entregables y criterios de aceptación

Figura 3. Estructura de desglose de trabajo.

Tabla 1. Desglose de trabajo y su criterio de aceptación

Código	Descripción	Criterios de aceptación
1.a	Cada imagen tomada a 30 cuadros por	A la computadora Maestro llega
	segundo por cada una de las tres	tanto las imágenes como su
	cámaras debe tener un estampado de	estampa de tiempo en tiempo
	tiempo para que el programa sea capaz	real y de todas las cámaras al
	de sincronizarlas.	mismo tiempo.
1.b	La aplicación en la computadora Maestro	Las imágenes deben ser
	es un software ya existente creado en	importadas al programa
	una iteración pasada del proyecto.	existente de una manera que
	Además este software es usado por	sea transparente para el usuario
	Geovanny Espinoza.	que utiliza el programa.
1.c	Asociado al módulo de hardware que se	Cualquier software en las
	debe crear, cualquier software que vaya	NVIDIA Jetson que se asocie a
	asociado a la sincronización de las	la sincronización de las
	cámaras debe ser implementado. Esta	imágenes debe ser entregado,
	parte requiere más investigación.	validado por el supervisor e
		instalado en las NVIDIA Jetson
		TX2 a utilizar.

2.a	Para que la captura de las imágenes sea	El supervisor debe validar el
	síncrona entre las tres cámaras, se debe	diseño del módulo de hardware.
	diseñar un módulo de hardware que	
	sincronice la captura. Para esto se	
	asigna una cámara como maestra sobre	
	las otras.	
2.b	El módulo de hardware debe ser	El supervisor debe validar la
	implementado, luego del diseño de este.	implementación del módulo de
		hardware y este debe ser
		transparente para el usuario
		final.
2.c	Este módulo es único y de diseño propio,	El supervisor debe validar las
	por lo que depende de este proyeto, que	pruebas realizadas al módulo de
	el módulo funcione correctamente.	hardware. Debe ser posible
		corregir los errores encontrados.
2.d	Es posible que este módulo se vea	El método de alimentación y
	alimentado por alguna de las tarjetas	conexión con la tarjeta debe ser
	NVIDIA Jetson TX2. Para esto, es	validado por el supervisor.
	necesario realizar el diseño y la	
	implementación de esta conexión.	
3.a	Este es el corazón de este proyecto. Se	El supervisor debe validar este
	debe investigar un diseño de conexión	diseño. El mismo debe ser
	entre las NVIDIA Jetson TX2 y la	justificado como la mejor opción
	computadora madre, que inclusive puede	entre las investigadas.
	ser una de las mismas tarjetas de	
	desarrollo.	
3.b	El diseño de conexión para la	La implementación debe
	transferencia de imágenes debe ser	completar todos los
	implementado.	requerimientos del diseño. El
		supervisor debe validarla.
4.a	Manual de usuario	Validado por el supervisor.
		Además debe poder ser
		comprobado por medio de las
		pruebas que se le hagan al
		sistema.

4.b	Documento de diseño	Validado por el supervisor.
4.c	Documento de requerimientos	Validados por el supervisor. Abarca todos los requerimientos del sistema.
4.d	Informes de avance	Validados por el supervisor.
4.e	Plan de pruebas y resultados	Corregir los errores identificados.
4.f	Artículo final	Validado por el supervisor. Debe desarrollar de manera científica y formal los resultados.

Actividades y presupuesto de esfuerzo

Tabla 2. Desglose de actividades y su esfuerzo en horas requerido

ID	Nombre	Horas
		esfuerzo
A000	Recopilación y análisis de requerimientos	5
A001	Manual de usuario	2
A002	Documento de diseño	12
A003	Documento de requerimientos	5
A004	Informes de avance	21
A005	Artículo final	12
A006	Crear estampado de tiempo para las imágenes	10
A007	Diseñar módulo de hardware para trigger de las cámaras	6
A008	Implementar el hardware del sincronizador del trigger.	8
A009	Pruebas del hardware de sincronización del trigger.	6
A010	Conectar módulo de hardware a las cámaras y a las NVIDIA Jetson TX2	6
A011	Investigar el mejor método de comunicación entre las NVIDIA Jetson y la computadora Maestra para enviar las imágenes con estampado	25
A012	Implementar la comunicación previamente investigada	8

A013	Creación de propuestas de tecnologías a utilizar para el	4
	supervisor	
A014	Unificar el sistema con el ya existente de iteraciones previas	12
	del proyecto	
A015	Coordinar con Geovanny para poder realizar pruebas en	10
	conjunto	
A016	Plan de pruebas y resultados	8
TOTAL	•	160

Con un total de 160 horas de trabajo, divididas en las 9 semanas restantes de trabajo, se requiere de aproximadamente 17 horas semanales.

Análisis de riesgos

Tipo	Riesgo	Prob.	Impacto	Mitigación
Personal	Enfermedad	0,05	No sería posible	Reponer el trabajo
			dedicar tantas horas	durante el tiempo
			esfuerzo como sería	libre.
			deseado.	
	Ausencia del	0,2	Se atrasarían las	Se requeriría hacer
	supervisor		reuniones de captura	reuniones en horarios
			de requerimientos y	acordados para
			de validación.	reponerlas.
Insumos	Cámaras FLIR	0,03	Esto sería muy	Habría que conseguir
	dañadas		crítico. Estas	exactamente el
			cámaras son	mismo modelo. Puede
			industriales y muy	ser con ayuda de la
			difíciles de acceder.	UCR o comprarlas.
	NVIDIA Jetson	0,2	Se atrasaría la	Existe la posibilidad
	no disponibles		codificación o	de instalar el
			pruebas de código.	ambiente en otra
				NVIDIA Jetson TX2
				pues hay varias en el
				laboratorio.

	Cables	0,1	Atrasaría el proceso	Se puede realizar
	descompuestos		de pruebas o	pruebas con menos
			sincronización	cámaras, pero a la
				hora de sincronizar no
				serviría.
Proceso/	No se puede	0,3	Esto haría la	Se realiza un buffer
Métodos	realizar la		experiencia de	de vídeo que luego es
	comunicación		usuario más lenta, sin	enviado a la
	con la		embargo las pruebas	aplicación.
	computadora		sobre las mariposas	
	Maestra en		se podrían realizar	
	tiempo real		igual.	
Herramientas	Módulo de	0,45	Esto puede suceder	Se debe tener en
	hardware		si no se tiene cuidado	consideración esta
	descompuesto		con su manejo o los	posibilidad nada
			componentes usados	despreciable. Se debe
			no son de buena	tener componentes de
			calidad.	repuesto accesibles
				en todo momento.

Cronograma

A continuación se muestra en la Figura 4 el diagrama de Gantt para este proyecto. Más adelante, en la Tabla 3, se muestra los tiempos y las fechas propuestas para cada paso del desarrollo del proyecto.

Figura 4. Diagrama de Gantt para el proyecto.

Tabla 3. Cronograma de actividades

Cádigo do la cotividad	Fecha inicio	Facha finalización	Duración
Código de la actividad	recha inicio	Fecha finalización	(horas)
A000	25/02/2019	01/03/2019	5
A001	30/05/2019	31/05/2019	2
A002	25/02/2019	01/03/2019	12
A003	25/02/2019	01/03/2019	5
A004	04/03/2019	31/05/2019	21
A005	03/06/2019	07/06/2019	12
A006	11/03/2019	16/03/2019	10
A007	04/03/2019	05/03/2019	6
A008	07/03/2019	09/03/2019	8
A009	17/03/2019	22/03/2019	6
A010	21/03/2019	30/03/2019	6
A011	02/04/2019	21/04/2019	25
A012	25/04/2019	03/05/2019	8
A013	22/04/2019	24/04/2019	4
A014	04/05/2019	14/05/2019	12
A015	16/05/2019	21/05/2019	10
A016	18/05/2019	25/05/2019	8