Scaling up Precise Localization for Autonomous Robots

State Estimation, Multi-Task Learning, and Beyond

Andrei Bârsan — PhD Candidate @ University of Toronto, Research Scientist @ Waabi andreibarsan.github.io — ❤️ @andreib — 2021-06-09

Driving is a leading cause of death in developed countries

- Driving is a leading cause of death in developed countries
- Enhance or replace human drivers multiple autonomy levels

- Driving is a leading cause of death in developed countries
- Enhance or replace human drivers multiple autonomy levels
- Maps enable advanced autonomy and improve safety

- Driving is a leading cause of death in developed countries
- Enhance or replace human drivers multiple autonomy levels
- Maps enable advanced autonomy and improve safety
- Leveraging maps requires precise info of where the vehicle is located

1. The Role of Localization in Self-Driving

- 1. The Role of Localization in Self-Driving
- 2. Scalable Map-Based Localization

- 1. The Role of Localization in Self-Driving
- 2. Scalable Map-Based Localization
- 3. How Good Does Localization Need to Be?

- 1. The Role of Localization in Self-Driving
- 2. Scalable Map-Based Localization
- 3. How Good Does Localization Need to Be?
- 4. The Future

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Image source: nhtsa.gov

0

No Automation

Zero autonomy; the driver performs all driving tasks.

1

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

0

No Automation

Zero autonomy; the driver performs all driving tasks.

1

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. 2

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

0

No Automation

Zero autonomy; the driver performs all driving tasks.

river

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

0

No **Automation**

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3

Conditional **Automation**

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

High **Automation**

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

Image source: nhtsa.gov

Full Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

Conditional Automation

3

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

This talk

Full Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Image source: nhtsa.gov

Autonomy Sensors Proprioception & GNSS

Autonomy Sensors Perception

Autonomy Input

HD Maps

Maps

Perception

Prediction

Planning

Motion Trajectory

Steering / Acceleration

Perception

Prediction

Motion Planning

 Maps
 Perception
 Prediction
 Planning
 Control

 Sensors
 Detections
 Tracks
 Long Term Predictions
 Motion Trajectory
 Steering / Acceleration

Vehicle Control

Vehicle Control

Using High-Definition Maps

Contents

- Precise lane boundaries and topology
- Traffic rules, signs, right of way
- Crosswalks, intersections, traffic lights

Applications

- Improve motion forecasting
- Robust to occlusions
- Maps = additional sensor

Why Localize?

- **HD Maps** can improve safety and performance of perception, prediction, and planning.
- Precise ego-localization is required for using maps.

Problem Statement

Localizer Desiderata

Low **Cost** for Map Building & Storage

Real-Time Inference High Accuracy (Centimeter-level)

Types of Localization Information

Semantic Map (The HD map itself)

Toplogical Map

3d Geometry Map

Occupancy Map

Localization Challenges

Dynamic objects

Image credit: Rohde & Schwarz

Sensor Noise

Degenerate geometry (no useful cues)

Environment Changes

Types of Localization

Online Localization

Global Localization

Existing Approaches

Online Localization

Geometric Alignment

LiDAR Reflectance Matching

Global Localization

GPS / RTK

Place Recognition

Existing Approaches

Online Localization

Geometric Alignment

LiDAR Reflectance Matching

Global Localization

GPS / RTK

Place Recognition

Scalable Map-Based Localization

Based on joint work with Xinkai Wei, <u>Julieta Martinez</u>, Andrei Pokrovsky, <u>Raquel Urtasun</u>, and <u>Shenlong Wang</u> See references (CoRL '18, CVPR '19)

Map-Based LiDAR Localization

- Focus: **Online** localization
- Leverage dense HD maps built in advance
- Use LiDAR
- Vehicle on ground:
 - Minimal pose: (X, Y, yaw)
 - Easy and efficient to model

Background: LiDAR Reflectance Matching

- Correlate observations to the map
- Strengths
 - Robust to outliers and nearly featureless environments
 - Can be implemented in a computationally efficient way
- Limitations
 - Requires good initialization (online localization, remember!)
 - Vulnerable to LiDAR mis-calibration and large occlusion
 - High map storage cost

25

Template Matching Idea

Template Matching Idea

Learning to Match

Learning to Match

Learning to Match

Learning to Compress Maps

Metrics How good is my localizer?

- Localization accuracy
 - Euclidean distance between computed and ground-truth pose
- Map storage
 - Approx. size in TB to store entire US road network @ 5cm / px

Localization & Map Compression Results

Storage for US Road Network (TB) - Log Scale

Localization & Map Compression Results

Storage for US Road Network (TB) - Log Scale

Localizer Result

Recent LiDAR Sweeps

Dense Reflectivity Map

Localization Result

Localizer Result

Recent LiDAR Sweeps

Dense Reflectivity Map

Localization Result

Take-Home Message

- HD Maps are powerful but rely on precise localization
- LiDAR matching is effective for precise (online) localization
- Learning can dramatically improve the robustness of LiDAR matching
- When compressing data, think! Who or what will be using this data, and how?
 - If the data is very specialized, then it makes sense to specialize compression

How Good Does Localization Need to Be?

Based on joint work with John Phillips, <u>Julieta Martinez</u>, <u>Sergio Casas</u>, <u>Abbas Sadat</u> and <u>Raquel Urtasun</u> <u>Deep Multi-Task Learning for Joint Localization, Perception, and Prediction</u> (CVPR 2021)

HD Map Limitations

- Expensive to build and maintain => automation & new sensing modalities
- Can go out of date => change detection, mapless driving, live updates
- Reliant on precise localization => how much?

Input Fusion

What Is the Impact of Localization Errors?

Localization Failure

The Effects of Localization Error

The Effects of Localization Error

Perception

The Effects of Localization Error

Perception

Motion Planning

Key Result

Fast localization without sacrificing perception quality.

Take-Home

- Localization error
 - Sub-20cm = little impact on perception and planning
 - Larger errors affect motion planning more
- Multi-task learning
 - Can significantly reduce inference time
 - Seemingly unrelated tasks like localization and detection can benefit from each other
- Incremental training
 - Helps manage model complexity
 - Avoids catastrophic forgetting

Further Reading

- See the website (andreibarsan.github.io/multi-task-lp3/) for:
 - Paper PDF (Phillips et al., CVPR 2021)
 - 5-min video with more details
 - See you at our CVPR 2021 poster if you're attending!

Project Website

Simultaneous Localization and Mapping

Based on joint work with <u>Anqi Joyce Yang</u>, <u>Can Cui</u>, <u>Raquel Urtasun</u>, and <u>Shenlong</u> <u>Wang</u>

Asynchronous Multi-View SLAM (ICRA 2021)

Skipped during the talk in the interest of time. Check out the paper for more details!

Simultaneous Localization and Mapping (SLAM)

- Localize by building a map at the same time
- Applications:
 - Navigation in unknown areas without prior maps
 - Building HD maps
 - Augmented & virtual reality
- Focus on camera-based SLAM (visual SLAM)

Visualization from Engel et al., 2017

SLAM Problem Statement

Camera Rigs in Visual SLAM

FoV of a stereo camera pair

FoV of five wide cameras

Asynchronous Modeling

- Existing multi-view SLAM systems all assume **synchronous** camera shutters
- In practice cameras can be asynchronous due to technical limitations, or by design, e.g. synced to a LiDAR

Studying Asynchronous SLAM

- General multi-view SLAM framework agnostic to camera firing times
- A large-scale outdoor SLAM dataset with multiple cameras, diverse environments, and accurate ground-truth for evaluation

Asynchronous SLAM

- Camera images come at different times
- Group nearby images into multi-frames
- Continuous time trajectory estimation allows async information fusion
 - In practice, we use B-splines

Asynchronous SLAM Pipeline

Method	median RPE (translation, m/m)	median RPE (rotation, mrad/m)	ATE (m)	Success Rate
DSO Mono	42.72	0.802	594.39	62.67%
ORB-SLAM Mono	32.00	0.549	694.37	64.00%
ORB-SLAM Stereo	1.85	0.329	30.74	77.33%
Sync-Stereo	<u>1.30</u>	0.291	<u>24.53</u>	80.00%
Sync-All	2.15	0.347	58.18	74.67%
Async-All (Ours)	0.35	0.113	6.13	92.00%

Method	median RPE (translation, m/m)	median RPE (rotation, mrad/m)	ATE (m)	Success
DSO Mono	42.72	0.802	594.39	62.67%
ORB-SLAM Mono	32.00	0.549	694.37	64.00%
ORB-SLAM Stereo	1.85	0.329	30.74	77.33%
Sync-Stereo	<u>1.30</u>	0.291	<u>24.53</u>	80.00%
Sync-All	2.15	0.347	58.18	74.67%
Async-All (Ours)	0.35	0.113	6.13	92.00%

Method	median RPE (translation, m/m)	median RPE (rotation, mrad/m)	ATE (m)	Success Rate
DSO Mono	42.72	0.802	594.39	62.67%
ORB-SLAM Mono	32.00	0.549	694.37	64.00%
ORB-SLAM Stereo	1.85	0.329	30.74	77.33%
Sync-Stereo	<u>1.30</u>	0.291	<u>24.53</u>	80.00%
Sync-All	2.15	0.347	58.18	74.67%
Async-All (Ours)	0.35	0.113	6.13	92.00%

Method	median RPE (translation, m/m)	median RPE (rotation, mrad/m)	ATE (m)	Success
DSO Mono	42.72	0.802	594.39	62.67%
ORB-SLAM Mono	32.00	0.549	694.37	64.00%
ORB-SLAM Stereo	1.85	0.329	30.74	77.33%
Sync-Stereo	1.30	0.291	<u>24.53</u>	80.00%
Sync-All	2.15	0.347	58.18	74.67%
Async-All (Ours)	0.35	0.113	6.13	92.00%

Method	median RPE (translation, m/m)	median RPE (rotation, mrad/m)	ATE (m)	Success Rate
DSO Mono	42.72	0.802	594.39	62.67%
ORB-SLAM Mono	32.00	0.549	694.37	64.00%
ORB-SLAM Stereo	1.85	0.329	30.74	77.33%
Sync-Stereo	<u>1.30</u>	<u>0.291</u>	<u>24.53</u>	80.00%
Sync-All	2.15	0.347	58.18	74.67%
Async-All (Ours)	0.35	0.113	6.13	92.00%

Method	median RPE (translation, m/m)	median RPE (rotation, mrad/m)	ATE (m)	Success Rate
DSO Mono	42.72	0.802	594.39	62.67%
ORB-SLAM Mono	32.00	0.549	694.37	64.00%
ORB-SLAM Stereo	1.85	0.329	30.74	77.33%
Sync-Stereo	<u>1.30</u>	0.291	<u>24.53</u>	80.00%
Sync-All	2.15	0.347	58.18	74.67%
Async-All (Ours)	0.35	0.113	6.13	92.00%

The Future

Image source: MP3 - A Unified Model to Map, Perceive, Predict and Plan by Casas, Sadat, and Urtasun (CVPR 2021)

 HD Maps can provide rich prior knowledge to autonomous agents

Image source: MP3 - A Unified Model to Map, Perceive, Predict and Plan by Casas, Sadat, and Urtasun (CVPR 2021)

- HD Maps can provide rich prior knowledge to autonomous agents
- But: We need to account for inaccurate poses and outdated maps

Image source: MP3 - A Unified Model to Map, Perceive, Predict and Plan by Casas, Sadat, and Urtasun (CVPR 2021)

- HD Maps can provide rich prior knowledge to autonomous agents
- But: We need to account for inaccurate poses and outdated maps
- Robust mapless driving is gaining traction

Image source: MP3 - A Unified Model to Map, Perceive, Predict and Plan by Casas, Sadat, and Urtasun (CVPR 2021)

Imaging RADAR for Maps, Localization & Perception Image credit: Barnes & Posner, 2020 (Oxford RobotCar RADAR)

Imaging RADAR for Maps,
Localization & Perception
Image credit: Barnes & Posner, 2020
(Oxford RobotCar RADAR)

Doppler LiDAR
3D points + velocity
Blackmore, Aeva Inc.
Image credit: Blackmore

Imaging RADAR for Maps, Localization & Perception Image credit: Barnes & Posner, 2020

(Oxford RobotCar RADAR)

Doppler LiDAR
3D points + velocity
Blackmore, Aeva Inc.
Image credit: Blackmore

Microsat Constellation GNSS
Next-gen GPS with cubesats
Image credit: Xona Space Systems

1. Autonomous robots are a huge field — cars are just one aspect

- 1. Autonomous robots are a huge field cars are just one aspect
- 2. Huge potential for saving lives and reducing logistics costs

- 1. Autonomous robots are a huge field cars are just one aspect
- 2. Huge potential for saving lives and reducing logistics costs
- 3. HD Maps can empower robust autonomy maps as "another sensor"

- 1. Autonomous robots are a huge field cars are just one aspect
- 2. Huge potential for saving lives and reducing logistics costs
- 3. HD Maps can empower robust autonomy maps as "another sensor"
- 4. LiDAR localization benefits from learning

- 1. Autonomous robots are a huge field cars are just one aspect
- 2. Huge potential for saving lives and reducing logistics costs
- 3. HD Maps can empower robust autonomy maps as "another sensor"
- 4. LiDAR localization benefits from learning
- 5. Localization errors can affect perception & plan. but can be corrected

- 1. Autonomous robots are a huge field cars are just one aspect
- 2. Huge potential for saving lives and reducing logistics costs
- 3. HD Maps can empower robust autonomy maps as "another sensor"
- 4. LiDAR localization benefits from learning
- 5. Localization errors can affect perception & plan. but can be corrected
- 6. Multi-task learning can simplify training and deployment

- 1. Autonomous robots are a huge field cars are just one aspect
- 2. Huge potential for saving lives and reducing logistics costs
- 3. HD Maps can empower robust autonomy maps as "another sensor"
- 4. LiDAR localization benefits from learning
- 5. Localization errors can affect perception & plan. but can be corrected
- 6. Multi-task learning can simplify training and deployment
- 7. New sensors and infrastructure can accelerate autonomy rollout

Come work with us @ Шооб #ad

Al pioneer Raquel Urtasun launches self-driving technology startup with backing from Khosla, Uber and **Aurora**

Kirsten Korosec @kirstenkorosec / 6:00 AM EDT • June 8, 2021

- waabi.ai out of stealth ~24h ago!
- Work to solve self-driving at scale!
- Research & Innovation DNA
- US\$83.5M Series A
- https://jobs.lever.co/waabi

Thank you!

See you later in the networking area if you want to chat!

Andrei Bârsan — <u>andreibarsan.github.io</u> — **y** <u>@andreib</u>

References

- Resources
 - andreibarsan.github.io for the main highlighted papers
 - All About Self-Driving CVPR 2020 Tutorial (I'll be contributing to the updated 2021 version at CVPR in 1.5 weeks!!)

Papers & Websites

- Introduction:
 - US Road Deaths (NHTSA for Death Count, this <u>Stanford Law Report</u> for 90%+ human error estimate)
 - IntentNet (Casas et al., CoRL '18)
- Scalable LiDAR Localization:
 - Map-based precision vehicle localization in urban environments (Levinson, Montemerlo & Thrun, RSS '07)
 - Learning to Localize using a LiDAR Intensity Map (Barsan, CoRL '18)
 - Learning to Localize through Compressed Binary Maps (Wei, CVPR '19) (Also contains sources for how to estimate the storage for the US road network.)
- How Good Does Localization Need to Be?
 - The Implicit Latent Variable Model for Scene-Consistent Motion Forecasting (Casas et al., ECCV '20)
 - Deep Multi-Task Learning for Joint Localization, Perception, and Prediction (Phillips et al., CVPR '21)
- Future:
 - Cen and Newman (ICRA '18 one of the first modern RADAR localization papers from Oxford), https://dbarnes.github.io/ (Dan Barnes's papers for RADAR Localization)
 - https://www.aeva.ai/ (for Doppler LiDAR)
 - Satellite Navigation for the Age of Autonomy (Reid et al., '20 Xona Space Systems)
 - MP3 (Casas, Sadat, and Urtasun CVPR '21 for mapless driving)