Matlab Reference Sheet for Physics

Amanuel Anteneh

February 2021

This PDF contains instructions on how to use Matlab to do mathematical calculations that I've used at least somewhat frequently while doing my undergraduate physics degree. Still a work in progress. You are to free to use/edit it as you see fit.

Contents

1	Simplify & Expand Expressions	1
2	System of Equations	1
3	Differentiation	1
4	Integration	2
5	Matrix Algebra	2
6	Differential Equations	3

1 Simplify & Expand Expressions

```
Example: e^{ix} - (\cos x + i \sin x) + (x+2)(x-1)
```

In Matlab:

```
>> syms x
>> eqn = \exp(i*x) - (\cos(x) + i*\sin(x)) + (x+2)*(x-1)
>> simplify(eqn)
```

Doing expand(fun) would have only expanded the product but not simplified the expression by cancelling the \sin , \cos , & $e^{(ix)}$.

2 System of Equations

Example: Solve for x & y

$$s = x \cos \phi + y \sin \phi$$
$$\phi = -x \sin \phi + y \cos \phi$$

In Matlab:

```
>> syms x, y, phi, s
>> eqns = [cos(phi)*x + sin(phi)*y == s, -sin(phi)*x + cos(phi)*y == phi]
>> S = solve(eqns,[x y])
```

To display solution for x type S.x and similary for y type S.y. Or type:

```
M=[S.x,\,S.y]
```

to get the solution matrix where each row of the matrix corresponds to a solution to the system. If you wanted to solve for phi and s the command would be solve(eqns, [theta s]) instead. Although the equation may not be easily solvable for Matlab due to its non-linearity.

3 Differentiation

Single Variable Derivative:

```
Example: \frac{d}{dx}(\ln(x^2)) = \frac{2}{x}
In Matlab:
>> syms x
>> diff(log(x^2), x)
```

4 Integration

Symbolic Single Integral:

```
Example: \int_0^R 2\pi r \sin\theta \, dr = \pi R^2 \sin\theta In Matlab:
```

```
>> syms r theta R
>> fun = 2*pi*r*sin(theta)
>> int(fun, "r", 0, R)
```

Symbolic Double Integral:

Example:
$$\int_0^L \int_0^{x^2+1} xy \, dy \, dx = \frac{L^2(L^4+3L^2+3)}{12}$$

In Matlab:

```
>> syms x y L
>> fun = x*y
>> int(int(fun, "y", 0, x^2 + 1), "x", 0, L)
```

For triple integrals simply wrap expression in another int().

5 Matrix Algebra

Finding Eigenvalues and Eigenvectors:

Example:
$$\begin{bmatrix} 1 & 6 & 0 \\ -3 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

In Matlab:

```
>> A = [1 6 0; -3 1 0; 0 4 1]
>> [V,D] = eig(sym(A))
```

Returns a diagonal matrix D with eigen values along the diagonal and a matrix V whose columns are the corresponding eigen vectors. Use sym(A) instead of just A so that answer is given symbolically instead of numerically, e.i. $\lambda_2 = 1 - 2^{(1/2)*3}$ i instead of $\lambda_2 = 1.0000 - 4.2426$ i.

Invert Matrix:

Example:
$$\begin{bmatrix} 1 & 6 & 0 \\ -3 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

In Matlab:

>> A =
$$[1 6 0; -3 1 0; 0 4 1]$$

>> inv(sym(A))

More advanced matrix example:

Find a matrix U such that $UAU^{-1} = B$.

Where
$$A = \begin{bmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{4} & -\frac{1}{2} \end{bmatrix}$$
 and $B = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$.

In Matlab:

```
>> syms A B U a b c d
>> U = [a b; c d]
>> A = sym([-1/2 -sqrt(3); sqrt(3)/4 -1/2])
>> B = sym([-1/2 -sqrt(3)/2; sqrt(3)/2 -1/2])
>> T = U*A*inv(U)
>> eqns = [T(1,1) == B(1,1), T(1,2) == B(1,2), T(2,1) == B(2,1), T(2,2) == B(2,2)]
>> S = solve(eqns, [a b c d])
>> M = [S.a, S.b, S.c, S.d]
```

At the end M should be printed as a 2x4 matrix with it's rows corresponding to 2 distinct solutions i.e. 2 different matrices that satisfy the relationship above.

6 Differential Equations