Projet de mathématiques financières

1 Description

1.1. On considère le projet *auxiliaire* P_{aux} , de durée d, dont les flux monétaires sont donnés dans le tableau suivant :

années	0	d	
flux A	$-I_0$	B_d	

où d, I_0 et B_d sont des nombres réels strictement positifs, avec $I_0 < B_d$.

Ecrire l'expression de la valeur actuelle nette, $VAN_{\rm aux}(\tau)$, de $P_{\rm aux}$, en fonction du taux annuel d'actualisation τ . En déduire l'existence d'un unique taux de rendement interne, $\tau_{\rm ri,\,aux}(d)>0$ à exprimer en fonction des données du tableau.

On rappelle que $x^{\alpha} = e^{\alpha \ln(x)}$, pour x > 0, $\alpha \in \mathbb{R}$.

1.2. Un projet industriel P sur n ans est caractérisé par les flux monétaires du tableau ci-dessous :

années	0	1	2	3	 n
flux P	-I	B_1	B_2	B_3	 B_n

où I, les B_k , k = 1, ... n, sont des nombres *réels* strictement positifs.

- **1.2.1.** Exprimer la valeur actuelle nette, $VAN_P(\tau)$, du projet P, en fonction du taux annuel d'actualisation τ , sachant que le matériel initialement acheté est revendu $V_f \in \grave{a}$ la fin de l'année n.
- **1.2.2.** On admet que $I < \sum_{k=1}^{n} B_k + V_f$. Existence et unicité d'un taux de rendement interne pour le projet P?
- **1.2.3.** On définit ensuite le nombre réel positif $d_{\text{moy}}(\tau)$, appelé échéance moyenne, pour un taux annuel d'actualisation donné τ , comme étant la date à laquelle la somme des cash flows positifs actualisés à la date 0, est égale à la valeur actuelle de l'unique flux $B = \sum_{k=1}^n B_k$, versé à la date $d_{\text{moy}}(\tau)$.

Rechercher $d_{\text{mov}}(\tau)$ en fonction des B_k et du taux τ .

- 1.3. Pour le projet P, les données numériques de cette question sont dans le fichier associé à votre groupe.
- **1.3.1.** En prenant par ex $\tau_0 = 0.01$ (1%), calculer $d_0 = d_{\text{moy}}(0.01)$.
- **1.3.2.** Déterminer alors $\tau_1 = t_{\text{ri, aux}}(d_0)$, puis $VAN_P(\tau_1)$.
- **1.3.3.** Quelle procédure itérative peut-on envisager?

2 Algorithmique

Le travail demandé consiste à programmer la recherche d'un taux de rendement interne à partir d'un tableau décrivant un projet d'investissement. Le langage préconisé est python ou VBA sous EXCEL.

On propose, à titre indicatif, les schémas algorithmiques ci-après. Deux constantes ϵ , par ex $\epsilon = 0.0001$, et nb_it_{max}, par ex nb_it_{max} = 30, géreront respectivement la précision du résultat fourni et le nombre d'itérations maximal pour l'arrêt de la recherche du taux de rendement interne.

Le rapport, au format pdf, contiendra la partie théorique, la description algorithmique des procédures programmées et le résultat obtenu sur les données.

Algorithm 1 Procédure init var glob

Ensure: initialisation de toutes les variables globales

Algorithm 2 Procédure lecture_donnees

Require: un fichier où se trouvent la description de toutes les caractéristiques du projet

Ensure: n, la durée du projet

Ensure: le tableau des B_k , $k=0,\ldots n$, la valeur de revente finale V_f de l'équipement (0 par défaut)

Algorithm 3 Fonction calcul_VAN

Require: n, les B_k , k = 0, ..., n, V_f **Require:** $\tau \ge 0$, un taux d'actualisation

Ensure: la valeur de la VAN_P du projet pour le taux d'actualisation annuel τ

Algorithm 4 Fonction calcul_echeance_moy

Require: un taux d'actualisation $\tau > 0$, les $B_k, k = 0, \dots, n, V_f$

Ensure: la valeur de l'échéance moyenne du projet P pour le taux d'actualisation annuel τ

Algorithm 5 Fonction calcul_tri_aux

Require: I, l'investissement effectué à la date 0, un flux B disponible à la date d, la date d

Ensure: le taux de rendement interne du projet auxiliaire

Algorithm 6 Procédure init_echeance_moy

```
Require: n, les B_k, k = 0, \ldots, n, V_f
```

Ensure: un taux $\tau_0 > 0$ tel que $VAN(\tau_0) > 0$, permettant d'assurer le calcul de la première échéance moyenne $d_0 = d_{\text{mov}}(\tau_0)$

Algorithm 7 Procédure taux_interne

```
Require: \tau_0 > 0
```

```
Ensure: \tau_{ri} > 0 tel que -\epsilon \le VAN_P(\tau_{ri}) \le \epsilon \triangleright Si le nombre maximum d'itérations n'est pas atteint!
\tau_c \leftarrow \tau_0 > 0
nb \ it \leftarrow 0
arret \leftarrow false
while not arret do
      nb it \leftarrow nb it +1
      d = d(\tau_c) = \text{calcul\_echeance\_moy}(\tau_c > 0)
      \tau_{\text{ri, aux}}(d)=calcul_tri_aux(I_0, \sum_{k=1}^n B_k, d)
      \tau_c = \tau_{\rm ri,\,aux}(d)
      VAN_c \leftarrow VAN(\tau_c)
      if (((VAN_c \leq \epsilon) and (VAN_c \geq -\epsilon) ) or (nb_it \geq nb_it<sub>max</sub>)) then
                                                                                                                 \triangleright |VAN(\tau_c)| est voisine de 0
            \tau_{\rm ri} \leftarrow \tau_c
            arret \leftarrow true
      end if
end while
```

Algorithm 8 Procédure affichage_resultat

Require: τ_{ri} , le taux de rentabilité interne du projet