Information Retrieval and Organisation

Chapter 17
Hierarchical Clustering

Dell Zhang
Birkbeck, University of London

Hierarchical Clustering

 Build a tree-like hierarchical taxonomy (dendrogram) from a set of unlabeled documents.

Dendrogram – Example

http://dir.yahoo.com/science

Dendrogram – Example

Clusters of News Stories: Reuters RCV1

Dendrogram -> Clusters

- Clustering can be obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.
- The number of clusters is not required in advance.

Divisive vs. Agglomerative

- Divisive (Top-Down)
 - Start with all documents belong to the same cluster. Eventually each node forms a cluster on its own.
 - Recursive application of a (flat) partitional clustering algorithm
 - e.g., k-means (k=2) \rightarrow bi-secting k-means.
- Agglomerative (Bottom-Up)
 - Start with each document being a single cluster. Eventually all documents belong to the same cluster.

HAC Algorithm

- Hierarchical Agglomerative Clustering
 - Starts with each doc in a separate cluster.
 - Repeat until there is only one cluster:
 - Among the current clusters, determine the pair of closest pair of clusters, c_i and c_j
 - Then merges c_i and c_j to a single cluster.
 - The history of merging forms a binary tree or hierarchy (dendrogram).

HAC Alg.

```
EfficientHAC(\vec{d}_1, \ldots, \vec{d}_N)
       for n \leftarrow 1 to N
       do for i \leftarrow 1 to N
      do C[n][i].sim \leftarrow \vec{d}_n \cdot \vec{d}_i
  3
                C[n][i].index \leftarrow i
  5
      I[n] \leftarrow 1
       P[n] \leftarrow \text{ priority queue for } C[n] \text{ sorted on sim}
           P[n].Delete(C[n][n]) (don't want self-similarities)
       A \leftarrow []
      for k \leftarrow 1 to N-1
     \operatorname{do} k_1 \leftarrow \operatorname{arg\,max}_{\{k:I[k]=1\}} P[k].\operatorname{Max}().\operatorname{sim}
 11
           k_2 \leftarrow P[k_1].Max().index
     A.Append(\langle k_1, k_2 \rangle)
12
13
     I[k_2] \leftarrow 0
14
      P[k_1] \leftarrow []
15
           for each i with I[i] = 1 \land i \neq k_1
16
           do P[i].Delete(C[i][k_1])
17
                P[i].Delete(C[i][k_2])
18
                C[i][k_1].sim \leftarrow Sim(i, k_1, k_2)
19
                P[i].Insert(C[i][k_1])
20
                C[k_1][i].sim \leftarrow Sim(i, k_1, k_2)
21
                P[k_1].Insert(C[k_1][i])
       return A
```

Time Complexity

- In the initialization step, compute similarity of all pairs of n documents which is $O(n^2)$.
- In each of the subsequent n–2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- The overall time complexity is often $O(n^3)$ if done naively or $O(n^2 \log n)$ if done more cleverly using a priority-queue.

HAC Variants

- How to define the closest pair of clusters
 - Single-Link
 - maximum similarity between pairs of docs
 - Complete-Link
 - minimum similarity between pairs of docs
 - Average-Link
 - average similarity between pairs of docs
 - Centroid
 - maximum similarity between cluster centroids

(a) single link: maximum similarity

(b) complete link: minimum similarity

(d) group-average: average of all similarities

Single-Link

The similarity between a pair of clusters is defined by the single strongest link (i.e., maximum cosine-similarity) between their members:

$$sim (c_i, c_j) = \max_{x \in c_i, y \in c_j} sim (x, y)$$

• After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is:

$$sim((c_i \cup c_j), c_k) = max(sim(c_i, c_k), sim(c_j, c_k))$$

HAC – Example

 As clusters agglomerate, documents fall into a dendrogram.

HAC – Example

HAC – Exercise

Digital Camera	Megapixel	Zoom
Α	1	8
В	3	8
C	2	6
D	1.5	1
E	4	2

HAC – Exercise

Chaining Effect

 Single-Link HAC can result in "straggly" (long and thin) clusters due to the chaining effect.

