# 444 Lecture 5.4 - Finding Mixed Strategy Equilibria

**Brian Weatherson** 



Discuss how we can find mixed strategy equilibria.

# Reading

Bonanno, Section 6.3.

#### **Basic Idea**

- In equilibria, the other player is willing to play a mixed strategy.
- That requires that they be indifferent between other strategies.
- So we find the equilibria by finding the mixture that makes them indifferent.

## **Example**

|      | Left | Right |
|------|------|-------|
| Up   | 5, 2 | 1, 3  |
| Down | 2, 2 | 3, 0  |

- You can see fairly quicklythat there is no pure strategy equilibria.
- So the equilibria must be a mixed strategy equilibria.

#### **Theory**

What does it take for Column to play a mixed strategy in equilibria?

- Assume that Left has a higher expected return than Right.
- The expected return of a mixed strategy is a weighted average of the expected returns of Left and Right.
- If Left has a higher expected return than Right, that weighted average will be strictly between the expected returns of Left and Right.
- And that means it can't be an equilibrium, since in equilibrium there is no alternative with a higher expected return.

### **Theory**

What does it take for Column to play a mixed strategy in equilibria?

- Assume that Left has a higher expected return than Right.
- The expected return of a mixed strategy is a weighted average of the expected returns of Left and Right.
- If Left has a higher expected return than Right, that weighted average will be strictly between the expected returns of Left and Right.
- And that means it can't be an equilibrium, since in equilibrium there is no alternative with a higher expected return.
- And the same reasoning shows Right can't have a higher expected return than Left.

## **Theory**

So we are trying to find the mixture such that Column is indifferent between Left and Right.

- The other crucial thing to remember is that probabilities add to
  1.
- So when working out Row's strategy, there is only one variable.
- Once we set the probability of Row playing Up to x, that sets all the probabilities, because the probablity of playing Down is 1-x.

#### **A Note**

I'm only going to go over cases where the mixed strategy equilibrium involves a mixture of two pure strategies.

- There are cases where the mixed strategy equilibrium involves mixtures of 3 or more pure strategies.
- Rock, Paper, Scissors is the simplest such example.
- But in general the math of calculating these is considerably fancier than what we'll be doing, and I'll stick to cases where the mixed strategy equilibrium only involves 2 pure strategies.

#### **Back to the Example**

|      | Left | Right |
|------|------|-------|
| Up   | 5, 2 | 1, 3  |
| Down | 2, 2 | 3, 0  |

- Assume Row plays Up with probability x, and Down with probability 1 – x.
- Our job is to find an x such that the expected return of Left and Right is the same.

# **Left and Right**

|      | Left | Right |
|------|------|-------|
| Up   | 5, 2 | 1, 3  |
| Down | 2, 2 | 3, 0  |

- The expected return of Left is 2x + 2(1 x), i.e., 2.
- The expected return of Right is 3x + 0(1-x), i.e., 3x.

# Row's Strategy.

|      | Left | Right |
|------|------|-------|
| Up   | 5, 2 | 1, 3  |
| Down | 2, 2 | 3,0   |

- So 2 = 3x, so x = 2/3.
- So Row's strategy is to play Up with probability 2/3, and hence Down with probability 1/3.

• The expected return of Right is 3x + 0(1 - x), i.e., 3x.

#### **Onto Column**

|      | Left | Right |
|------|------|-------|
| Up   | 5, 2 | 1, 3  |
| Down | 2, 2 | 3, 0  |

- Assume Column plays Left with probability x, and Right with probability 1 – x.
- Our job is to find an x such that the expected return of Up and Down is the same.

# **Left and Right**

|      | Left | Right |
|------|------|-------|
| Up   | 5, 2 | 1, 3  |
| Down | 2, 2 | 3, 0  |

- The expected return of Up is 5x + 1(1 x), i.e., 4x + 1.
- The expected return of Down is 2x + 3(1-x), i.e., 3-x.

# Column's Strategy.

$$4x + 1 = 3 - x$$
$$5x + 1 = 3$$
$$5x = 2$$
$$x = 2/5$$

So Column's strategy is to play Left with probability 2/5, and hence Right with probability 3/5.

#### **Takeaways**

- To find a player's move probabilities in equilibria, look to the other player's payouts.
- Try to make the other player indifferent between their choices.

#### **Extra Steps**

- I'm not going to go over more complicated examples on the slides, but there is an extra step you can do (and which we can discuss in class if you're interested).
- Sometimes you can find the mixed strategy equilibria of a game with more than 2 moves by first deleting strongly dominated strategies.
- · Bonanno works through an example like this.
- I'm going to come back to it later, but for now I'll just stick to this example.



I'm going to start on an idea I want to work through very slowly, and spend a bit of time on - the idea that a mixture of strategies can dominate another strategy.