

Math Methods for Political Science

Lecture 3: Matrix Algebra

Outline

1 Basic matrix arithmetic

2 Matrix inverse

3 The determinant

Sums and scalar multiples

Definition 1 (Matrix equality, sum and scalar multiple)

Let A and B be two $n \times m$ matrices and $r \in \mathbb{R}$, then

- $\blacksquare A = B \iff A_{i,j} = B_{i,j} \ \forall i,j.$
- $Z = A + B \iff Z \text{ is a } n \times m \text{ matrix } \& Z_{i,j} = A_{i,j} + B_{i,j} \ \forall i,j.$
- $Z = rA \iff Z$ is a $n \times m$ matrix & $Z_{i,j} = rA_{i,j} \ \forall i,j$.

Example 1 (Sums and scalar multiples)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $r = 2$, then
$$A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$
, $rA = 2\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$, and neither $A + C$ nor $B + C$ does exist.

Sums and scalar multiples cont'd

Definition 2 (Null and identity matrices)

- 0 is the $m \times n$ null matrix if $0_{i,j} = 0 \ \forall i,j$.
- I_n is the $n \times n$ identity matrix if $I_{i,j} = 1$ if i = j and 0 if $i \neq j$.

Example 2 (Identity matrices)

Let $\mathbf{x} \in \mathbb{R}^2$, then

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow I_2 \mathbf{x} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{x}$$

Theorem 1 (Sums and scalar multiples)

Let A, B, C be matrices of the same size and $r, s \in \mathbb{R}$.

1.
$$A + B = B + A$$

4.
$$r(A + B) = rB + rA$$

2.
$$(A+B)+C=A+(B+C)$$

$$5. (r+s)A = rA + sA$$

3.
$$A + 0 = A$$

6.
$$r(sA) = (rs)A$$

Matrix multiplication

Let A be a $k \times m$ matrix, B be a $m \times n$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_n$, and $\mathbf{x} \in \mathbb{R}^n$, then

$$B\mathbf{x} = \sum_{i=1}^n x_i \mathbf{b}_i \in \mathbb{R}^m \text{ and } A(B\mathbf{x}) = \sum_{i=1}^n A(x_i \mathbf{b}_i) = \sum_{i=1}^n x_i A \mathbf{b}_i \in \mathbb{R}^k.$$

In other words,

$$A(B\mathbf{x}) = \sum_{i=1}^{n} x_i A \mathbf{b}_i \Longrightarrow A(B\mathbf{x}) = \begin{bmatrix} A \mathbf{b}_1 & \cdots & A \mathbf{b}_n \end{bmatrix} \mathbf{x}.$$

Matrix multiplication cont'd

Definition 3 (Matrix product)

Let A be a $k \times m$ matrix and B be a $m \times n$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_n$, then the **product** AB is the $k \times n$ matrix whose columns are $A\mathbf{b}_1, \dots, A\mathbf{b}_n$.

Example 3 (Matrix product)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, then
$$A\mathbf{b}_1 = 1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 9 \\ 19 \end{bmatrix}, A\mathbf{b}_2 = 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 5 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 12 \\ 26 \end{bmatrix},$$
$$A\mathbf{b}_3 = 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 6 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 33 \end{bmatrix} \Longrightarrow AB = \begin{bmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \end{bmatrix}$$

Note that $(AB)_{i,j} = \sum_{l=1}^m A_{i,l} B_{l,j}$ for $1 \le i \le k$ and $1 \le j \le n$.

Properties of the matrix product

Theorem 2 (Properties of the matrix product)

Let A be a $m \times n$ matrix and B, C be matrices of sizes for which the indicated sums and products are defined, then

- ullet A(BC) = (AB)C (associative law)
- A(B + C) = AB + AC (left distributive law)
- \blacksquare (B+C)A=BA+CA (right distributive law)
- $r(AB) = (rA)B = A(rB) \ \forall r \in \mathbb{R}$
- $I_m A = A = A I_n$ (identity for matrix multiplication)

Warnings about the matrix product

In general

■
$$AB \neq BA$$
:
 $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Longrightarrow AB = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \neq BA = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.

■
$$AB = AC \implies B = C$$
:
 $A = \begin{bmatrix} 3 & -6 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 \\ 3 & 4 \end{bmatrix},$
 $C = \begin{bmatrix} -3 & -5 \\ 2 & 1 \end{bmatrix} \implies AB = AC = \begin{bmatrix} -21 & -21 \\ 7 & 7 \end{bmatrix}.$

$$AB = 0 \implies A = 0 \text{ or } B = 0:$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \implies AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Commuting matrices and matrix power COLUMBIA UNIVERSITY

Definition 4 (Commuting matrices and matrix power)

Let A, B be two $n \times n$ matrices:

- If AB = BA, then we say that A commute with B.
- \blacksquare A^k denotes the product of k copies of A.

Example 4 (Commuting matrices and matrix power)

- Any $n \times n$ matrix commutes both with itself and I_n .
- $I_n^k = I_n$ for any $k \in \mathbb{N}_+$.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies A^2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 15 \\ 10 & 22 \end{bmatrix}.$$

Matrix transpose

Definition 5 (Matrix transpose)

Let A be a $m \times n$ matrix, then the **matrix transpose** A^{\top} is the $n \times m$ matrix s.t. $(A^{\top})_{i,j} = A_{j,i}$.

Example 5 (Matrix transpose)

$$I_n^\top = I_n.$$

Theorem 3 (Properties of the matrix transpose)

Let A and B be matrices whose sizes are appropriate for the following sums and products:

1.
$$(A^{\top})^{\top} = A$$

2.
$$(A + B)^{T} = A^{T} + B^{T}$$

3.
$$\forall r \in \mathbb{R}$$
, then $(rA)^{\top} = rA^{\top}$

4.
$$(AB)^{\top} = B^{\top}A^{\top}$$

Note that 4. generalizes to $(ABC)^{\top} = C^{\top}B^{\top}A^{\top}$.

Outline

1 Basic matrix arithmetic

2 Matrix inverse

3 The determinant

Matrix inverse

Definition 6 (Matrix inverse)

A $n \times n$ matrix A is called **invertible** or **non-singular** if there exists A^{-1} called its **inverse** and s.t. $A^{-1}A = AA^{-1} = I_n$.

Example 6 (Matrix inverse)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \implies AB = BA = I_2$$

 $\implies B = A^{-1} \text{ and } A = B^{-1}$

Theorem 4 (Properties of invertible matrices)

Let A and B be a $n \times n$ invertible matrices, then

- 1. A^{-1} is unique.
- 2. A^{-1} is invertible and $(A^{-1})^{-1} = A$,
- 3. AB is invertible and $B^{-1}A^{-1}$,
- 4. A^{\top} is invertible and $(A^{\top})^{-1} = (A^{-1})^{\top}$.

Matrix inverse and linear systems

Theorem 5 (Matrix inverse and linear systems)

Let A be a $n \times n$ invertible matrix, then $\forall \mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Example 7 (Matrix inverse and linear systems)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, then $A^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$. If $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then the solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$.

Matrix inverse and row equivalence

Theorem 6 (Invertible matrices and row equivalence)

Let A be a $n \times n$ matrix, then A is invertible \iff A is r.e. to I_n . Furthermore, any sequence of elementary row operations reducing A to I_n also transforms I_n into A^{-1} .

Example 8 (Matrix inverse by row reduction)

If A is invertible, then $\begin{bmatrix} A & I_n \end{bmatrix}$ is r.e. to $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies \begin{bmatrix} A & I_n \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{bmatrix}$$
$$\implies \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & -2 & -3 & 1 \end{bmatrix}$$
$$\implies \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3/2 & 1/2 \end{bmatrix} \implies A^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & 1/2 \end{bmatrix}$$

Characterization of the matrix inverse COLUMBIA UNIVERSITY

Theorem 7 (Characterization of the matrix inverse)

Let A be a $n \times n$ matrix with columns a_1, \dots, a_n , then the following statements are equivalent:

- 1. A is invertible.
- 2. A is r.e. to In.
- 3. A has n pivot positions.
- 4. The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.

- 5. $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- 6. *Span* $\{a_1, \dots, a_n\} = \mathbb{R}^n$.
- 7. There exists $C n \times n$ s.t. $CA = I_n$.
- 8. There exists $B n \times n$ s.t. $AB = I_n$.
- 9 A^{\top} is invertible

Outline

1 Basic matrix arithmetic

2 Matrix inverse

3 The determinant

The determinant

Let A be a $n \times n$ matrix.

Definition 7 (Crossing out)

 $A_{-i,-j}$ is the matrix obtained by **crossing out** row *i* and column *j*.

Definition 8 (Determinant)

The **determinant** of A is $\det A = \sum_{j=1}^{n} (-1)^{1+j} A_{1,j} \det A_{-1,-j}$.

Example 9 (Crossing out and determinant)

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix} \implies A_{-2,-3} = \begin{bmatrix} 1 & 5 \\ 0 & -2 \end{bmatrix}$$
$$\det A = 1 \det \begin{bmatrix} 4 & -1 \\ -2 & 0 \end{bmatrix} - 5 \det \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} + 0 \det \begin{bmatrix} 2 & 4 \\ 0 & -2 \end{bmatrix}$$
$$= 1(0-2) - 5(0-0) + 0(-4-0) = -2$$

Cofactor

Let A be a $n \times n$ matrix.

Definition 9 (Cofactor)

The (i,j)-cofactor is $C_{i,j} = (-1)^{i+j} \det A_{-i,-j}$.

Theorem 8 (The determinant)

$$\forall j$$
, we have $\det A = \sum_{i=1}^n A_{i,j} C_{i,j} = \sum_{i=1}^n A_{j,i} C_{j,i}$

Example 10 (Cofactor and the determinant)

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix} \implies C_{3,2} = (-1)^{3+2} \det \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} = 1$$

$$\det A = \sum_{i=1}^{n} A_{3,i} C_{3,i} = 0C_{3,1} - 2C_{3,2} + 0C_{3,3} = -2$$

Elementary row operations

Let A be a $n \times n$ matrix.

Theorem 9 (Determinant and elementary row operations)

Let B be obtained from A by a single elementary row operation:

- replacement \implies det $B = \det A$,
- interchange \implies det $B = -\det A$,
- scaling a row by $k \implies \det B = k \det A$.

Example 11 (Determinant and elementary row operations)

$$\det \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix} = \det \begin{bmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{bmatrix} = \det \begin{bmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{bmatrix}$$
$$= -\det \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{bmatrix} = 15$$

Invertible matrices

Let A be a $n \times n$ matrix.

Theorem 10 (Determinant of invertible matrices)

A is invertible \iff det $A \neq 0$.

Example 12 (Determinant of an invertible matrix)

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 with $a, b, c, d \in \mathbb{R}$ s.t. $ad - bc \neq 0 \implies A$ invertible.

Theorem 11 (Properties of the determinant)

- \blacksquare det $A^{\top} = \det A$
- If B is a $n \times n$ matrix, then $\det AB = \det A \det B$.
- If det $A \neq 0$, then det $A^{-1} = 1/\det A$.

Cramer's rule

Let A be a $n \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, $\mathbf{b} \in \mathbb{R}^n$ and

$$A_i(\mathbf{b}) = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_n \end{bmatrix}$$

Theorem 12 (Cramer's rule)

If A is invertible, then the unique solution of $A\mathbf{x} = \mathbf{b}$ is s.t.

$$x_i = \det A_i(\mathbf{b})/\det A.$$

Example 13 (Cramer's rule)

$$3x_1 -2x_2 = 6 \\ -5x_1 +4x_2 = 8 \implies A = \begin{bmatrix} 3 & -2 \\ -5 & 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 6 \\ 8 \end{bmatrix} \text{ and } \det A = 2$$

$$\implies A_1(\mathbf{b}) = \begin{bmatrix} 6 & -2 \\ 8 & 4 \end{bmatrix} \text{ and } A_2(\mathbf{b}) = \begin{bmatrix} 3 & 6 \\ 5 & 8 \end{bmatrix}$$

$$\implies \mathbf{x} = \frac{1}{\det A} \begin{bmatrix} \det A_1(\mathbf{b}) \\ \det A_2(\mathbf{b}) \end{bmatrix} = \begin{bmatrix} \frac{24+16}{2} \\ \frac{24+30}{27} \end{bmatrix} = \begin{bmatrix} 20 \\ 27 \end{bmatrix}$$

Adjugate matrix and the inverse

Let A be a $n \times n$ matrix.

Definition 10 (Adjugate matrix)

The adjugate matrix adj A is the $n \times n$ matrix s.t. adj $A_{i,j} = C_{j,i}$.

Theorem 13 (Adjugate matrix and the inverse)

If A is invertible, then $A^{-1} = \frac{adjA}{\det A}$.

Example 14 (Adjugate matrix and the inverse)

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \implies \operatorname{adj} A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \text{ and } \det A = ad - bc$$

$$\implies A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$