DÉMOGRAPHIE: UTILISATION D'UNE SUITE ANNEXE

PARTIE A

1)
$$u_1 = u_0 + \frac{5}{100}u_0 + 4000 = 1,05u_0 + 4000 = 1,05 \times 100000 + 4000 = 109000$$
.

De la même façon, on calcule $u_2 = 118450$.

2)
$$u_{n+1} = u_n + \frac{5}{100} u_n + 4000 \Rightarrow u_{n+1} = 1,05 \times u_n + 4000$$
.

3) Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n + 80000$.

3.a)
$$v_0 = u_0 + 80000 = 180000$$
.

3.b)
$$v_{n+1} = u_{n+1} + 80000 = 1,05 u_n + 4000 + 80000 = 1,05 (u_n + 80000) = 1,05 v_n$$
, d'où $\frac{v_{n+1}}{v_n} = 1,05$, ce qui démontre que la suite (v_n) est géométrique de raison 1,05 et de premier terme $v_0 = 180000$.

- **3.c)** On a alors $v_n = 180000 \times 1,05^n$, et on en déduit que $u_n = v_n 80000 = 180000 \times 1,05^n 80000$.
- **3.d)** Puisque 1,05 > 1, on calcule que $\lim_{n \to +\infty} (u_n) = +\infty$.

PARTIE B

- 1) En 2020, ce qui correspond à n = 15, on aura $u_{15} = 180000 \times 1,05^{15} 80000 = 294207$ habitants dans la ville.
- 2) On trouve avec la calculatrice que $u_9 = 199239$ et $u_{10} = 213201$. C'est donc en 2015 que la population aura dépassé 200000 habitants.