Asynchronous Finite Difference Scheme for PDEs

MA14M004 Kumar Saurabh

RWTH Aachen University Aachen

January 28, 2016

1D Advection Diffusion Equation

Figure: Result of asynchronous Scheme

Order Recovery

Scheme

Interior nodes:

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^n - u_{i-1}^n) = \frac{\alpha}{\triangle x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$
(1)

Left Boundary node:

$$\frac{1}{\triangle t}(u_i^{n+1}-u_i^n)+\frac{c}{2\triangle x}(u_{i+1}^{\tilde{n}}-u_{i-1}^n)=\frac{\alpha}{2\triangle x^2}(u_{i+2}^{\tilde{n}}-u_{i+1}^{\tilde{n}}+u_i^n-u_{i-1}^n)$$
(2)

Right Boundary node:

$$\frac{1}{\triangle t}(u_i^{n+1}-u_i^n)+\frac{c}{2\triangle x}(u_{i+1}^n-u_{i-1}^{\tilde{n}})=\frac{\alpha}{2\triangle x^2}(u_{i+2}^n-u_{i+1}^n+u_i^n-u_{i-1}^{\tilde{n}})$$
(3)

Result of Order Recovery Scheme

Order Recovery

Delay	Async	Order Recovery	
0(sync)	-2.0195	-2.0018	
1	-1.0764	-1.9958	
2	-1.0371	-1.9764	
4	-1.0117	-1.8925	
6	-1.0033	-1.7687	
8	-0.9995	-1.6586	

- The order decreases to the first order as the delay increases, even with the order recovery scheme.
- The magnitude of the error in case of order recovery scheme is small as compared to the asynchronous scheme.

2D Diffusion Problem

Figure: Result of Asynchronous Scheme

Result of Order Recovery Scheme

New Scheme

- Disretization in space according to the Order Recovery Scheme.
- Deciding the value of Δt according to value of Delay.
- Multiplying by a factor of $\frac{2}{Delay+1}$ to the previous value of Δt

Result of New Scheme

2D Diffusion Problem

Delay	Async	Order Recovery	New Scheme
0(sync)	-1.9959	-2.0172	-2.028
1	-0.9314	-1.9725	-2.0048
2	-0.9329	-1.7933	-2.0136
4	-0.9262	-1.3788	- 2.0124
6	-0.9174	-1.1966	-2.0118
8	-0.9061	-1.1038	-2.0115

- In practice, it is not feasible to know the Delay.
- Decreasing the value of Δt increases the load on computation.

Refrences

- Diego A. Donzis and Konduri Aditya. Asynchronous Finite Difference Scheme for Partial Difference Equations *Journal of Computational Physics*. 274(0):370-392,2014
- Thomas Camminady. CES Seminar Paper on Asynchronous Finite Difference Scheme for Partial Difference Equation. January 9,2015
- MPICH, http://www.mpich.org/, 4 12 2015.