Genetic Variant Classifications

Ni-Ting Chiou

Genetic variants come from the changes of DNA sequences

Figure 1: Classes of human genetic variants.

Single nucleotide variant

Insertion-deletion variant

ATTGGCCTTAACCTCCGATTATCAGGAT

ATTGGCCTTAACCCGATCCGATTATCAGGAT
ATTGGCCTTAACCCGATTATCAGGAT

Genetic variants are classified manually which resulting in conflicting classification

Data exploration analysis

clinvar_conflicting.var (Kaggle) (46 features)

Remove features

- 1. Redundant
- 2. Not correlated

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 65188 entries, 0 to 65187

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	CHROM	65188 non-null	object
1	CLNVC	65188 non-null	object
2	MC	64342 non-null	object
3	IMPACT	65188 non-null	object
4	SYMBOL	65172 non-null	object
5	AF_ESP	65188 non-null	float64
6	LoFtool	60975 non-null	float64
7	CADD_PHRED	64096 non-null	float64
8	CLASS	65188 non-null	int64
-			

dtypes: float64(3), int64(1), object(5)

memory usage: 4.5+ MB

CLNVC - Variant Type

MC - Molecular consequence

IMPACT - the impact of the variants

SYMBOL - Gene Name

AF_ESP - Allele frequencies

LoFtool - Loss of Function tolerance score

CADD_PHRED - Scoring the deleteriousness of the variants

AF_ESP and SYMBOL are more distinguishable among 2 classes

Chi2 test for categorical features (p-value)

	CLASS
снком	1.407244e-05
CLASS	NaN
IMPACT	1.856664e-191
SYMBOL	6.362397e-309

Pairplot for numerical features

Data preprocessing

- Convert categorical feature into dummies variables
- Scale the numerical data
- Class rebalance
- Model fitting

XGBoost tree has better performance for the prediction

All 4 models have similar F1 scores

AF (variant frequency), symbol (gene names) and MC(molecular consequences) are the important features

Questions