Exercises in Introductory Physics I

Exercise Sheet 8 due to 11.12.23, 11:59 AM

Collisions

- 1. Two elementary particles A and B are colliding with high velocities and fuse with a release of energy. In the first experiment, A and B move in a way that their center of mass remains unchanged. The total kinetic energy before the collision is $E_{\rm tot}$.
 - In the second experiment, the particle B is at rest. What kinetic energy $E_{\rm A}$ should particle A have, so that the energy release in the second experiment will be the same as in the first experiment? (2P)
- 2. Given is the one-dimensional, procedural, elastic collision process provided in the figure below. The spheres B_1 , B_2 and B_3 are at rest, $v_1 = v_2 = v_3 = 0$. Sphere B_0 has a speed of $v_0 = 10 \,\mathrm{m/s}$ before colliding with sphere B_1 . The mass of the next neighbouring sphere is four times of the previous sphere: $4m_0 = m_1$, $4m_1 = m_2$, $4m_2 = m_3$.

Figure 1: Colliding spheres

- a) Consider the first collision. Calculate the speed after the collision v'_0 and v'_1 of B_0 and B_1 . (2P)
- b) What is the speed v_3' of B_3 after its collision with B_2 ? (1P)
- 3. Upon colliding elastically, two bodies with the masses m and 2m are moving in opposite directions with the speeds 2v and v, respectively. Find the velocity of the center-of-mass of the system before the collision. (1P)

4. A body with a mass of $m_{\rm B}=60\,{\rm g}$ is attached to a massless spring with a spring constant of $k=10\,{\rm N/m}$ on a frictionless surface. At t=0, a ball with an unknown mass $m_{\rm A}$ and a horizontal speed of $v_{\rm A}=50\,{\rm cm/s}$ collides elastically with the body. The body then starts to oscillate with an initial speed of $v(t=0)=20\,{\rm cm/s}$.

Figure 2: A sphere hitting a block no a spring

- (a) Calculate the mass of the ball m_A . (1P)
- (b) Derive an expression for the equation of motion (x(t)) of the body. (2P)

Hint: Assume that no further collisions will occur.

5. A block of mass m and a pan of equal mass are connected by a string going over a smooth light pulley as shown in the figure below. Initially the system is at rest, when a particle of mass m_2 falls on the pan and sticks to it.

If the particle strikes the pan with a speed v, find the speed with which the system moves just after the collision. (1P)

Figure 3: A block and a pan on a pulley