PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 15/00, C12N 1/21, 15/12

A1

(11) International Publication Number:

WO 94/14845

(43) International Publication Date:

7 July 1994 (07.07.94)

(21) International Application Number:

PCT/JP93/01905

(22) International Filing Date:

27 December 1993 (27.12.93)

(30) Priority Data:

4/359747

28 December 1992 (28.12.92) ЛР

356 (JP). HIGASHIO, Kanji [JP/JP]; 1769-10, Yamada, Kawagoe-shi, Saitama 350 (JP). (74) Agent: FUJINO, Seiya; Cross Side Kojimachi Building 7F, 4, Kojimachi 5-chome, Chiyoda-ku, Tokyo 102 (JP).

Kawachicho, Kawachi-gun, Tochigi 329-11 (JP). OOGAKI,

Furniko [JP/JP]; 8-11, Yamato 1-chome, Utsunomiya-shi, Tochigi 321-01 (JP). UEDA, Masatsugu [JP/JP]; Meson

Musashino 719, 1672-1, Imahuku, Kawagoe-shi, Saitama

(71) Applicant (for all designated States except US): SNOW BRAND MILK PRODUCTS CO., LTD. [JP/JP]; 1-1, Naebocho 6-chome, Higashi-shi, Sapporo-shi, Hokkaido 065 (JP).

(81) Designated States: AU, CA, FI, HU, JP, KR, NO, NZ, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YAMAGUCHI, Kyoji [JP/JP]; Lions Garden Higashioomiya 1-524, 702-12, Shimacho, Oomiya-shi, Saitama 330 (JP). SHIMA, Nobuyuki [JP/JP]; Beruaju Oyama 1102, 5-7, Ekiminamicho 1-chome, Oyama-shi, Tochigi 323 (JP). MURAKAMI, Akihiko [JP/JP]; 24-8, Ekihigashimachi, Mibucho, Shimotsuga-gun, Tochigi 321-02 (JP). GOTO, Masaaki [JP/JP]; 456-1, Shimokoyama, Ishibashicho, Shimotsuga-gun, Tochigi 329-05 (JP). TSUDA, Eisuke [JP/JP]; Maronie Haitsu 210, 662, Ishibashi, Ishibashicho, Shimotsuga-gun, Tochigi 329-05 (JP). MASUNAGA, Hiroaki [JP/JP]; 25-9, Ekihigashimachi, Mibucho, Shimotsuga-gun, Tochigi 321-02 (JP). TAKAHIRA, Reiko [JP/JP]; 3769-18, Shimookamoto,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MODIFIED TCF

(57) Abstract

Modified TCF in which amino-acid residue(s) of the wild-type TCF responsible for glycosylation is (are) substituted or deleted so that at least one N-linked oligosaccharide chain is removed. The modified TCF have longer biological half-lives without loss of its biological activities. The modified TCFs are therapeutically important as agents for liver diseases or as anti-cancer drugs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		-		

DESCRIPTION

MODIFIED TCF

FIELD OF THE INVENTION

This invention is related to genetically engineered modified TCFs which contain different number of N-linked oligosaccharide chains compared with wild type TCF, and have new amino-acid sequences. These modified TCFs obtained in this invention have longer serum half-lives, have growth stimulating activities for hepatocytes and cytotoxic activities against tumor cells. Therefore, the modified TCFs are useful as therapeutic agents against liver diseases and as anti-cancer drugs.

BACKGROUND OF THE INVENTION

TCF-II, tumor cytotoxic factor derived form human fibroblast, is a novel anti-tumor protein which is different from any other proteins so far reported. The inventors succeeded in cDNA cloning of this protein, deduced its entire amino-acid sequence and confirmed the usefulness. This novel anti-tumor protein and its cDNA were disclosed in W090/10651. They were designated as TCF-II. In this invention, the glycoprotein which has the amino-acid sequence disclosed in W090/10651 is called TCF. TCF is a substance which has been called TCF-II.

TCF has both strong cytotoxic activity against tumor cells and growth stimulating activity for normal cells. And it has been confirmed that TCF is a member of a family including HGF, a growth factor for hepatocytes. The molecular weight of TCF is 78000 ± 2000 daltons and/or 74000 ± 2000 daltons on SDS polyacrylamide gel electrophoreisis. Under reducing conditions, it showed a polypeptide band called A chain with a molecular mass of 52000 ± 2000

daltons and two polypeptide bands called B chain and/or C chain with molecular masses of 30000 ± 2000 daltons and/or 26000 ± 2000 daltons, respectively.

Because TCF is a growth factor for hepatocytes, application to liver regeneration after hepatectomy has been examined. Since biological half-life of TCF is very short, attempts have been made to obtain more effective modified TCFs with prolonged biological half-lives.

Relationship between oligosaccharide chains and serum half-lives has been investigated in some glycoproteins including erythropoietin. The investigations have demonstrated that glycoproteins with slightly different structure in oligosaccharide chains and with different biological activities can be synthesized from same gene. It was known that glycosylated erythropoietin is different in the biological activities from non-glycosylated one. However, about the relationship between oligosaccharide chains and biological activities of TCF little has been known.

DISCLOSURE OF THE INVENTION

The present inventors took notice of the usefulness of TCF, and investigated application of TCF to the treatment of tumors or liver diseases and utilization as diagnostic markers of diseases. TCF has a very short half-life of approximately 2 minutes. To obtain modified proteins with prolonged biological half-lives, the inventors constructed several genetically engineered TCFs with mutations in the polypeptide moiety and analyzed them. However, most of the modified proteins appeared to lose the biological activities. Then, to prolong the biological half-life without loss of the biological activity, the inventors paid attention to the four N-linked oligosaccharide chains attached to TCF and attempted to construct the new modified TCFs which have a deletion of one or more oligosaccharide chains.

2

The theme of this invention is to present the new modified TCFs which have different amino-acid sequences compared to the wild-type TCF, and decreased number of N-linked oligosaccharide chains and longer biological half-lives than the wild-type TCF. These modified TCFs can be obtained by altering the nucleotide sequence of TCF cDNA encoding the amino-acd residues responsible for N-glycosylation and by expressing the genetically mutagenized TCF cDNAs. Modified TCFs presented by the invention have one or more deletion(s) of the four N-linked oligosaccharide chains present in the wild-type TCF. These are the first modified TCFs with prolonged biological half-lives without any loss of the biological activities, obtained by altering the amino-acid residues of the wild-type TCF.

Fig. 1 shows the entire amino-acid sequence of the wild-type TCF deduced from its cDNA sequence (Seq. Id No. 1). Amino-acid residues responsible for N-glycosylation are underlined. It is speculated that the signal sequence is removed and the glutamine residue at position 32nd results in the N-terminal amino acid of TCF. Four N-linked oligosaccharide chains bind to asparagine residues at positions 258th, 366th, 530th, and 617th relative to the N-terminal amino acid. These asparagine residues correspond to those at positions 289th, 397th, 561st, and 648th in Fig.1.

Fig. 2 shows cDNA sequence encoding the amino-acid sequence. The coding region starts at the ATG codon marked with a circle in the figure.

Amino-acid residues responsible for N-glycosylation are Asn-X-Thr or Asn-X-Ser (amino-acid residues are indicated by the three-letter code and the X represents any amino-acid residues). Modified TCF lacking specific oligosaccharide chain(s) can be obtained by expressing the nucleotide sequence in which the codons for Asn, Ser or Thr are deleted or substituted with those for one of the other amino acids, in eukaryotic cells, preferably mammalian cells. Modified TCF which lacks specific oligosaccharide chains can be obtained

by replacing the codons for Asn with those for other amino acids such as Gln, a substitution with little effects on the conformation of TCF. Gln is the most preferable amino acid which substitutes for Asn. Asp, Glu, His, Ser or Thr are also acceptable. Modified TCF lacking specific oligosaccharide chain(s) can be obtained by replacing the codons for Ser with those for other amino acids such as Ala, a substitution with little effects on the conformation of TCF. Ala is the most preferable amino acid which substitute for Ser. Pro, Gly or Asn are also acceptable. Modified TCF lacking specific oligosaccharide chain(s) can be obtained by deleting or replacing the codens for Thr to other amino acids. Ala is the most preferable amino acid which substitutes for Thr. Val, His or Asn are also acceptable.

N-glycosylation sites are indicated in a schematic structure of TCF in Fig. 3. The N-glycosylation sites are designated as numbers 1, 2, 3 and 4 from N-terminal. These numbers specify the positions of the N-glycosylation sites.

To alter the amino-acid sequences responsible for N-glycosylation into those for non-glycosylation, the cDNA can be site-specifically mutagenized by PCR(polymerase chain reaction). The reactions are performed by cDNA for the wild-type TCF as the template and synthetic oligonucleotides as the primers. The sequences of primers are designed to delete or substitute the DNA sequences as described above. Other methods for mutagenesis are also applicable.

The cell lines producing the modified TCFs can be established by transforming host cells with expression vectors containing these mutant cDNAs. The modified TCFs can be recovered from the cultured broth of the transformed cell lines.

For example, to substitute Asn at position 289th (Fig. 1), binding site for oligosaccharide chain 1, cDNA was mutagenized by in vitro mutagenesis or mutagenesis by PCR. These mutagenesis reactions are performed by cDNA coding the wild-type TCF disclosed in WO 90/10651 as the template and synthetic

oligonucleotide TCF-1R 5'-TCAGTGTCCTGCATAGTAT-3' as the primer. An expression vector containing the mutagenized cDNA can be transfected into eukaryotic cell lines including mammalian cell lines. The modified TCFs can be recovered from the cultured supernatants of the transfected cells.

Any types of host-vector systems for eukaryotic cells are acceptable for expression of the modified TCFs. The most preferable is a combination of cytomegalovirus promoter and Namalwa cells, which was disclosed in WO 92/1053. Commonly used systems including a gene amplification system using a combination of SV 40 promoter, DHFR gene and CHO cell line or an expression system using a combination of the replication origin of bovine papiloma virus and mouse C127 cell line can be enumerated.

Any commonly used methods for purification of biologically active proteins, can be used for purification of the modified TCFs, for example, precipitation by organic solvent, salting out, gel exclusion chromatography, affinity chromatography using monoclonal antibody or electrophoresis. Monoclonal antibodies against the wild-type TCF disclosed in Japanese Patent application number, 3-177236 can be used for affinity chromatography of modified TCF.

The modified TCFs can be stored lyophilized or frozen.

Fifteen modified TCFs can be obtained by combinations of the removal of the oligosaccharide chains. The modified TCFs are identified by numbers of removed oligosaccharide chains. For example, the modified TCF which lacks oligosaccharide chain 1 is named TCF-1, the modified TCF which lacks all four oligosaccharide chains is named TCF-1234, and the modified TCF which lacks oligosaccharide chains 2 and 3 is named TCF-23. Figure 4 schematically represents the N-linked oligosaccharides bound to the modified TCF. All the modified TCFs have different molecular masses according to the removal of the oligosaccharide chains.

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the entire amino-acid sequence of the wild-type TCF deduced from its cDNA sequence. Amino-acid residues responsible for binding of N-linked oligosaccharide chains are underlined.

Figure 2 shows the cDNA sequence for the wild-type TCF. Codons to be substituted in the present invention are underlined. The coding sequence starts at the ATG codon marked with a circle.

Figure 3 schematically represents the primary structure of the wild-type TCF. Circles represent the N-glycosylation sites and the arrow shows the cleavage site between A chain and B chain.

Figure 4 schematically represents the oligosaccharide chains attached to TCF and the modified TCF. The horizontal lines represent the polypeptides and the vertical bars represents the oligosaccharide chains.

Figure 5 shows the construction of the plasmids containing cDNAs for the modified TCF.

Figure 6 shows the construction of the expression vectors for TCF and the modified TCF.

Figure 7 shows the analysis of the representative modified TCF by SDS polyacrylamide gel electrophoresis.

Figure 8 shows the stimulating activities of the modified TCF for growth of hepatocytes. Each figure shows the activity of the modified TCF described below.

- (1) TCF, TCF-1, TCF-2, TCF-3 and TCF-4
- (2) TCF-12, TCF-13, TCF-14, TCF-23, TCF-24 and TCF-34
- (3) TCF-123, TCF-124, TCF-1234, TCF-134 and TCF-234

Figure 9 shows the tumor cytotoxic activities of the modified TCF.

Figure 10 shows the plasma concentrations of the modified TCF in the

rats into which said modified TCFs were intravenously injected.

The novel modified TCFs are obtained by operating the present inventions. The modified TCFs obtained by the present invention can be prepared by expressing the cDNAs in which the codons for the amino-acid residues responsible for N-glycosylation are substituted with those for other amino acids or are deleted. The modified TCFs have longer biological half-lives due to the control of the numbers and the binding sites of the N-linked oligosaccharide chains.

BEST MODE FOR PRACTICE OF THE INVENTION

In the examples herein, the present invention is described in more detail.

Example 1

Preparation of the modified TCFs.

DNAs were manipulated essentially as described in Molecular Cloning, A Laboratory Manual, Second Edition, J. Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Habor Laboratory Press, New York, 1989 to prepare modified TCFs as described below.

① Cloning of TCF cDNA.

Site-specific mutations were introduced into TCF cDNA as described below by a 6.3-kb TCF expression plasmid, pcDTCF II, prepared by the method disclosed in W092/01053. The E. coli strain containing pcDTCF II has been deposited to National Institute of Bioscience and Human-Technology as FERM BP-3479.

2 Methods for introducing site-specific mutations.

- 1) Method 1
- i) Cloning of TCF cDNA into M13mp18.

The plasmid pcDTCFII (6.3 kb) was prepared by introducing the entire coding region of human TCF cDNA into plasmid pcDNA I (Invitrogen Co.) digested with restriction enzymes BamHI and SphI (Takara Co.). (All the restriction enzymes and the modifying enzymes were purchased from Takara Co..) pcDTCFII was digested with BamHI and SphI for 1 hour at 37°C, precipitated with ethanol, and electrophoresed on 1% agarose gel. The 2.3 kb of TCF cDNA fragment was purified from the gel by Gene Clean (Bio101 Co.).

On the other hand, replicative-form of phage DNA, M13mp18 (Takara Co.) was digested with BamHI and SphI, precipitated with ethanol, and dissolved in water to make the vector DNA solution. The vector DNA solution and TCF cDNA were mixed and ligated by the DNA Ligation Kit (Takara Co.). A part of the ligation mixture was used for transformation of E. coli, DH5 α . The transformants were mixed with E. coli, NM522, an indicator strain, (Invitrogen Co.) and poured onto the LB soft agar plates containing 1% of bacto-tryptone, 0.5% of bacto-yeast extract, 1% of sodium chloride, 1% of IPTG (isopropy1- β -D-thiogalactoside, Takara Co.), and 1% of Xgal (5-bromo- 4-chloro-3-indoly1- β -D-galactoside, Takara Co.) in order to make plaques. The double-stranded phage DNA was prepared from a clear plaque and the single-stranded DNA was prepared and used as a template for introducing site-specific mutations.

ii) Introduction of site-specific mutation.

The codon for the 289th amino acid, Asn, in a consensus amino acid sequence for N-glycosylation, Asn-X-Thr, was replaced with a codon for Gln that does not make the consensus amino-acid sequence for N-glycosylation.

The definition of the number of amino acid is based on Met at the N-

terminal of the wild-type TCF as the first amino acid. The oligonucleotide TCF-1R, 5'-TCAGTGTCCTGCATAGTAT-3', was synthesized by a DNA synthesizer (Applied Biosystems Co.). All the oligonucleotides were synthesized by the synthesizer unless otherwise noted.

Introduction of site-specific mutation was carried out by the oligonucleotide-directed <u>in vitro</u> mutagenesis system (Amersham Co.) according to the manufacture's instruction. E. coli, NM522 was transformed with the reaction mixture and screened with TCF-1 primer by the plaque hybridization teachnique.

The single-stranded DNA was prepared from a positive plaque and the sequence was determined by the dideoxy chain termination method described by Sanger et al. to confirm that the codon, AAT, for Asn at 289th, was replaced with the codon, CAG, for Gln. The 1.4-kb PstI-HindIII DNA fragment was prepared from the double-stranded DNA from the positive clone, ligated to PstI-HindIII-digested pBluescript SK+ (Stratagene Co.) to produce plasmid, pSKTCFPH-1.

2) Method 2

Introduction of site-specific mutations in the codons for the 399th, 563rd, and 650th amino acids were carried out essentially as described by R. Higuchi (R. Higuchi, PCR protocols, p.177-183, Academic Press, 1990) using polymerase chain reaction (PCR). A codon for Ser in a consensus amino acid sequence for N-glycosylation, Asn-X-Ser, was replaced with a codon for Ala in each mutagenesis.

To mutagenize the codon for Ser at 399th, 25 cycles of PCR were carried out by a mutant primer, TCF-2R 5'-CCAGATCTTGTTTGAGCTAAGTTGCCC-3', a wild type primer, TCF701F 5'-GCTGGGATCATCAGACACCAC-3', AmpliTaq polymerase (Takara Co.), and 4 ng of the plasmid pcDTCF II as a template. The PCR products were purified by centricon 100 (Amicon Co.) to remove primers, digested with restriction

9

enzymes, BglII and EcoRI (Takara Co.), and ligated to the 4.1 kb DNA fragment of BglII-EcoRI-digested pSKTCFPH, plasmid previously produced by ligating PstI-HindIII-digested pBluescript SK+ and 1.4 kb fragment of the PstI-HindIII-digested pcDTCF II. A part of the ligation mixture was used for transformation of E. coli,DH5 α. The plasmid DNAs were prepared from ampicillin resistant transformants and the DNA sequences were determined to screen for plasmid pSKTCFPH-2 in which the codon, TCC, for Ser at 399th was replaced with the codon, GCT, for Ala. Plasmid pSKTCFPH-12 was produced by ligating PCR products and the 4.1 kb DNA fragment of the BglII-EcoRI digested plasmid, pSKTCFPII-1 in a similar way. The DNA sequences of the portion of DNAs derived from PCR products in all plasmids were determined to confirm their sequences. Ampicillin was purchased from Sigma Co..

To mutagenize the codon for Ser at 563rd, 25 cycles of PCR were carried out by a mutant primer, TCF-3R 5'-ATACCAGCTGGGCAACATTGAGAAC-3', a wild type primer, TCF1202F 5'-GGCAACTTATCCCAAACAAGATCTGG-3', AmpliTaq polymerase (Takara Co.), and 4 ng of the plasmid pcDTCF II as a template. The PCR products were purified by centricon 100 (Amicon Co.) to remove primers, digested with restriction enzymes, XhoI and PvuII (Takara Co.). pcDTCF II was digested with XhoI and ligated to generate pcDTCF Δ Xho, which lacks the 1.1 kb XhoI DNA fragment. pcDTCF Δ Xho was digested with SphI and PvuII and the 4.8 kb of XhoI-SphI DNA fragment and the 0.5 kb of PvuII-SphI fragment were purified and ligated to XhoI-PvuII-digested PCR products described above by the DNA Ligation Kit. A part of the ligation mixture was used for transformation of E. coli, MC1061/P3 (Invitrogen Co.).

The plasmid DNAs were prepared from ampicillin- and tetracycline-resistant transformants and plasmid, pcDTCF Δ XhoI-3 in which the codon, TCC, for Ser at 563rd was replaced with the codon, GCC, for Ala, was selected in a similar way. Tetracycline was purchased from Sigma Co. .

Two rounds of PCR were carried out to mutagenize the codon for Ser at 650th. The first PCRs were carried out independently by AmpliTaq polymerase (Takara Co.), 4 ng of the plasmid pcDTCF II as a template, and a pair of a mutant primer, TCF-4F 5'-ACTCTGAATGAGGCTGAAATATGTG-3' and a wild type primer, TCF2203R 5'-GGCATGCACAGTTGTATTGGTGGGTGCTTCAG-3' or a pair of a mutant primer, TCF-4R 5'-CACATATTTCAGCCTCATTCAGAGT-3' and a wild type primer, TCF1685F 5'-AACAGGTTCTCAATGTTTCCCAG-3'. The PCR products were purified by DE81 paper (Whattman Co.) and one tenth of them was used for the second PCR by the primers, TCF2203R and TCF1685F. The PCR product was separated in an agarose gel, purified by DE81 paper and digested with BglII and SphI. On the other hand, pcDTCF Δ XhoI and pcDTCF Δ XhoI-3 were digested with BgIII and Sphl and the 4.9 kb of DNA fragments were purified, ligated to the BglII-SphI-digested PCR fragment described above by the DNA Ligation Kit. One tenth of the ligation mixtures was used to transform E. coli, MC1061/P3. The plasmid DNAs were prepared from ampicillin- and tetracycline-resistant transformants and plasmid, pcDTCFΔXhoI-4 in which the codon, TCT, for Ser at 650th, was replaced with the codon, GCT, for Ala and plasmid, pcDTCF \(\Delta \text{XhoI-34} \) in which both codons for Ser at 563rd and at 650th were replaced with the codons for Ala, were selected, in a similar way.

- 3 Construction of expression vectors.
- 1) Construction of vectors for transient expression.

Plasmids, pSKTCFPH, pSKTCFPH-1, pSKTCFPH-2, and pSKTCFPH-12 were digested with XhoI and 1.1 kb of DNA fragments were purified. Plasmids, pcDTCF ΔXhoI, pcDTCFΔXhoI-3, pcDTCFΔXhoI-4, and pcDTCFΔXhoI-34 were digested with XhoI and ligated to four kinds of 1.1 kb of DNA fragments described above. Fifteen ligation mixtures except the combination of 1.1 kb of pSKTCFPH and pcDTCF ΔXhoI were used to transform E. coli, MC1061/P3. Fifteen expression

vectors, pcDTCF-1, pcDTCF-2, pcDTCF-3, pcDTCF-4, pcDTCF-12, pcDTCF-13, pcDTCF-14, pcDTCF-23, pcDTCF-24, pcDTCF-34, pcDTCF-123, pcDTCF-124, pcDTCF-134, pcDTCF-234, and pcDTCF-1234 were selected. Analysis by restriction enzymes is confirmed the structures of these vectors. When these plasmids are transfected into mammalian cells, for instance COS cells, genes for TCF and the modified TCF are expressed under the control of cytomegalovirus (CMV) promoter. The construction of these plasmids are shown in Figure 5.

2) Construction of vectors for stable expression.

Plasmid pHSG396 (Takara Co.) was digested with HindIII, blunt-ended with the DNA Blunting Kit (Takara Co.), purified with Gene Clean, ligated to Notl linker, 8mer 5'-GCGGCCGC-3' (Takara Co.), and used to transform E. coli, DH5 α . The plasmid DNAs were prepared from chloramphenical resistant transformants and plasmid, pHSG NotI, which did not contain HindIII site but contain NotI site was selected. pHSG NotI, was digested with Sall and SphI and ligated to the 2.3 kb of full-length TCF cDNA digested with Sall and SphI to produce plasmid, pHSG N-TCF. The 1.1 kb of XhoI-XhoI fragment was deleted from the plasmid, pHSG N-TCF, to produce plasmid, pHSG N-TCFII ΔX . pHSG N-TCFII ΔX , was digested with BstPl and SphI and the 2.3 kb of DNA fragment was purified, ligated to the BstPI-SphI-digested 15 plasmids, pcDTCF-1, pcDTCF-2, pcDTCF-3, pcDTCF-4, pcDTCF-12, pcDTCF-13, pcDTCF-14,pcDTCF-23, pcDTCF-24, pcDTCF-34, pcDTCF-123, pcDTCF-124, pcDTCF-134, pcDTCF-234, and pcDTCF-1234, and the BstPI-SphI-digested pcDTCF that contained the wild type TCF cDNA by DNA Ligation Kit, and used to transform E. coli, DH5 lpha . The plasmid DNAs were prepared from chloramphenical-resistant transformants and the 16 plasmids that contained 2.3 kb of the wild-type TCF or each of the mutant TCF cDNAs in the plasmid, pHSG NotI, were selected.

These plasmids were designated as pHSGN-TCF, pHSGN-TCF-1, pHSGN-TCF-2, pHSGN-TCF-3, pHSGN-TCF-4, pHSGN-TCF-12, pHSGN-TCF-13, pHSGN-TCF-14, pHSGN-TCF-23, pHSGN-TCF-24, pHSGN-TCF-34, pHSGN-TCF-123, pHSGN-TCF-124, pHSGN-TCF-

134, pHSGN-TCF-234, and pHSGN-TCF-1234. These 16 plasmids were digested with Sall and Notl, ligated to the Xhol-Notl-digested expression vector, BCMGSneo, and used to transform E. coli, DH5 α. BCMGSneo is a plasmid that contains the replication origin of bovine papiloma virus and cytomegalovirus promoter, and is capable of replicating in E. coli. BCMGSneo is provided by Dr. H. Karasuyama in Basel Immunology Institute and is described in Idenshikohgaku hand book, p297-299, Yohdo Co., 1991. The plasmid DNAs were prepared from ampicillin resistant transformants and the 16 expression vectors that contained 2.3 kb of wild-type TCF or each of the mutant TCF cDNAs in BCMGSneo were selected. These plasmids were designated as, pBPV-TCF, pBPV-TCF-1, pBPV-TCF-2, pBPV-TCF-3, pBPV-TCF-4, pBPV-TCF-12, pBPV-TCF-13, pBPV-TCF-14, pBPV-TCF-23, pBPV-TCF-24, pBPV-TCF-34. Antibiotics, chloramphenicol was purchased from Sigma Co.. E. coli strains containing pBPV-TCF-3 or pBPV-TCF-13 were deposited to National Institute of Bioscience and Human Technology as FERM BP-4454 and FERM BP-4455.

Preparation and purification of the TCF or the modified TCFs expression plasmids.

The 16 E.coli strains containing each of the expression vectors, pBPV-TCF, pBPV-TCF-1, pBPV-TCF-2, pBPV-TCF-3, pBPV-TCF-4, pBPV-TCF-12, pBPV-TCF-13, pBPV-TCF-14, pBPV-TCF-23, pBPV-TCF-24, pBPV-TCF-34, pBPV-TCF-123, pBPV-TCF-124, pBPV-TCF-134, pBPV-TCF-234, and pBPV-TCF-1234, were cultured in 400 ml of medium containing $50\,\mu\,\mathrm{g/ml}$ of ampicillin at 37°C. When the absorbance at 600nm of each culture broth reached 0.8, chloramphenical was added to the broth at a final concentration of $170\,\mu\,\mathrm{g/ml}$ and each broth was cultured overnight. These 16 plasmids were prepared by the alkali-SDS method and purified by cesium chloride density gradient ultra centifugation as described by Maniatis et. al. (Molecular Cloning 2nd ed.).

⑤ Transfection of the TCF- and the modified TCF- expression plasmids into the cultured animal cell lines.

The 16 expression plasmids were transfected into a mouse cell line, C 127 by TRANSFECTAM (IBF Co. Maryland, USA), DNA transfection reagent for cultured mammalian cell lines, as described below. One day prior to transfection, approximately 10° cells of mouse C127 were suspended in DME medium (GIBCO Co.) containing 10 % of fetal calf serum and incubated at 37°C overnight in a CO_2 incubator (a humidified incubator in an atmosphere of 5-7% of CO_2), in 25 cm² tissue culture flasks (Sumitomo Bakelite, for adherent cells). (Cells were cultured at 37 °C in a humidified incubator in an atmosphere of 5-7% CO₂, unless otherwise noted.). The cells were washed twice with Opti. MEM medium (GIBCO Co.) before transfection. After adding 2ml of Opti. MEM to the monolayer of the cells, transfection was carried out by $10 \mu g$ of the plasmid DNA as described in the manufacturer's protocol. After incubated for 6 hours, 7.5 ml of DME medium was added to the flasks. Then, the cells were incubated for two more days at 37°C. The medium was replaced with fresh DME medium on the first day. The cells were trypsinized, washed once with DME medium and suspended in 50 mL of DME medium containing 100 μ g/ml of G418. One hundred micro-liter of the suspension was added to each well in a 96-well flat-bottomed plates and incubated at 37°C. One week later, $100\,\mu\text{L}$ of DME medium containing $100\,\mu\text{g/ml}$ of G418 was added to each well, and the plates were incubated at 37°C. Another week later, expression of the TCF or the modified TCFs was detected by measuring the concentration of TCF or the modified TCFs in $100\,\mu$ L of the cultured media by an enzyme immuno assay employing anti-TCF monoclonal antibodies (N. Shima et.al. Gastroenterologia Japonica 26 (4) 477-482, 1991). The cell lines expressing TCF or the modified TCFs were cultured at 37°C in a 12-well tissue culture plate or in a 25 cm² flask according to the cell

numbers.Cell lines which express the modified TCFs (a total of 15 modified TCFs designated as TCF-1, TCF-2, TCF-3, TCF-4, TCF-12, TCF-13, TCF-14, TCF-23, TCF-24, TCF-34, TCF-123, TCF-124, TCF-134, TCF-234, and TCF-1234) were thus obtained.

⑥ Large-scale cultivation of the cell lines which produce TCF or the modified TCFs.

The confluent cells producing TCF or the modified TCFs in 75 cm² tissue culture flasks were harvested by trypsinization, followed by inoculating into three 225 cm² tissue culture flasks. One hundred milliliters of DME medium was added to each flask and the culture was incubated at 37°C. Four days later, the confluent cells were trypsinized and suspended in the DME medium. The cell suspension was diluted 10-fold with DME medium (a total volume of 3 L). One hundred milliliters of the diluted cell suspension was inoculated into a new 225 cm² tissue culture flask. The cells were cultured at 37°C for 5 days in thirty 225 cm² tissue culture flasks. The cultured supernatant (a total volume of 3 L) was collected. Cells were harvested from 6 flasks, followed by inoculating into sixty 225cm² tissue culture flasks. To each flask, 100 ml of the medium was added and incubated at 37°C for 5 days. The cultured supernatant (a total volume of 6 L) was collected. Thus, 9 L of the cultured supernatant which contains the TCF or the modified TCFs was obtained.

7 Purification of the TCF and the modified TCFs.

A three-step purification was performed as described below.

1) Heparin-sepharose CL-6B

Nine liters of the cultured supernatant which contains each of the modified TCF centrifuged at 6,000 rpm for 30 min. to remove insoluble materials. The supernatant was applied at an approximate flow rate of 200ml per

hour to a heparin-sepharose CL-6B column (2.5 X 12 cm) (Pharmacia Co.) which had been equilibrated with 300 mL of the equilibration buffer, 10 mM Tris-HCl buffer (pH 7.5) containing 0.5 M of NaCl and 0.01% of Tween 20. The column was then washed with approximately 700 mL of the equilibration buffer. The TCF or the modified TCFs were eluted with 10mM Tris-HCl buffer (pH 7.5) containing 2 M NaCl and 0.01% of Tween 20 and the fractions of 3 mL were collected. The fractions were monitored by the absorbance at 280 nm and the fractions containing TCF or the modified TCFs (approximately 100 mL) were obtained.

2) Mono S-FPLC

The eluate which contains TCF or the modified TCFs was dialyzed against 10 mM of phosphate buffer (pH 6.5) containing 0.15 M of NaCl and centrifuged at 12,000 rpm for 90 min. to remove insoluble materials. The supernatant was applied at a flow rate of 1 mL/min. to a Mono S column (0.5 X 5 cm, Pharmacia, FPLC) which had been equilibrated with approximately 20 ml of 10 mM phosphate buffer (pH 7.0) containing 0.15 M NaCl and 0.01 % Tween 20 (buffer A). The column was washed once with approximately 30 mL of buffer A. Then the TCF or the modified TCFs were eluted at a flow rate of 0.5 mL/min. from the column with a linear gradient of NaCl (up to 1.0 M) and fractions of 0.5 ml were collected. The fractions containing TCF or the modified TCFs (an approximate volume of 4mL) which were eluted with 0.7-0.8 M NaCl were obtained.

3) Heparin 5-PW-FPLC

Two volumes (8 mL) of 10 mM Tris-HCl (pH 7.5) containing 0.01 % Tween 20 were added to the eluate which contains TCF or the modified TCFs. This diluted solution was applied at a flow rate of 1 mL/min. to a heparin 5-PW column (0.5 X 7.5 cm, TOSO Co., FPLC) which had been equilibrated with approximately 20 mL of 10 mM Tris-HCl buffer (pH 7.5) containing 0.3 M NaCl and 0.01 % Tween 20 (buffer B). The column was washed with approximately 30 ml of buffer B. Then TCF or the modified TCFs were eluted at a flow rate of 0.5 mL/min. with a linear

gradient of NaCl (up to 2.0 M) and fractions of 0.5 mL were collected. The fractions containing TCF or the modified TCFs (those eluted with approximately 1.3 M NaCl, a total volume of 3 mL) were obtained. These fractions were dialyzed against deionized water, lyophilized and reconstituted with phosphate-buffered saline (PBS) containing 0.001% Tween 20. The yield and the recovery of each of the final purified modified TCFs are shown in Table 1. The yields were determined with polyclonal EIA described in the following section.

Table 1: The yield and the recovery of each of the final purified modified TCFs

Name	Yield(µg)	Recovery (%)
TCF	2760	31
TCF-1	872	17
TCF-2	920	40
TCF-3	25 3	16
TCF-4	560	16
TCF-12	68 8	3 3
TCF-13	1088	23
TCF-14	350	27
TCF-23	810	28
TCF-24	648	19
TCF-34	668	34
TCF-123	340	11
TCF-124	400	23
TCF-134	187	22
TCF-234	400	15
TCF-1234	155	. 8

- Quantitation of the purified modified TCFs.
- 1) Preparation of polyclonal antibodies and labeling of the antibodies.

Anti-TCF antiserum was obtained from rabbits which were immunized with TCF. The anti-TCF IgG was purified from the antiserum by an Affi-Gel protein A Sepharose (Bio Rad Co.) according to the manufacturer's protocol. The purified IgG was dialyzed overnight against PBS, and applied at a flow rate of 0.5 mL/min. to a TCF affinity column in which TCF was immobilized to affigel 10 (Bio Rad Co.). The immobilized column was washed with PBS and the anti-TCF IgG was eluted with 0.1 M Glycine-HCl buffer (pH 2.5). The eluate was dialyzed against PBS and the purified anti-TCF polyclonal antibodies were thus obtained. The peroxydase labeled antibodies were prepared as described by Ishikawa et al. (J. Immunoassay, vol. 4, 209-327, 1983).

2) Quantitation of the purified modified TCFs.

Anti-TCF antibodies were dissolved at a concentration of $10~\mu$ g/mL in 0.1 M NaHCO3. The antibody solution was added $(100~\mu$ L/well) to 96-well microtiter plates (NUNC Co.) and left overnight at room temperature. This step allowed the antibodies to attach to the plates. Block Ace (Snow Brand Milk Products Co.Ltd.) diluted two-fold with deionized water was added to the antibody-coated microtiter-well plates (200 μ L/ml) and left for an hour at room temperature for blocking each well. The plates were then washed three times with PBS containing 0.1% Tween 20 (washing buffer). The modified TCF were diluted with appropriate volume of the first buffer (0.2 M Tris-HCl pH 7.4 containing 40% Block Ace and 0.1% Tween 20) to prepare modified TCF samples. Standard TCF solution was prepared by sequentially diluting 10 ng/mL of TCF solution with the first buffer. One hundred micro liters of the modified TCF samples were added to each well, left for 3 hours at 37 °C and washed three times with the washing buffer. The Peroxydase-conjugated antibody solution was diluted 400-fold with the second buffer (0.1 M Tris-HCl buffer pH 7.4

containing 20% Block Ace, 0.1% Tween 20 and 0.5 mg/mL of mouse IgG). One hundred microliters of the diluted peroxydase-labeled antibody solution was added to each well, left for 2 hours at 37 °C and washed three times with the washing buffer. Subsequently, $100\,\mu$ L of substrate solution (0.4 mg/mL of o-phenylene diamine dihydrochloride and 0.006% $\rm H_2O_2$ in 0.1 M citrate-phosphatte buffer, pH 4.5) was added to each well and incubated at 37°C for 30 minutes in a dark place. The enzyme reaction was stopped by addition of $50\,\mu$ L of 6N $\rm H_2SO_4$. The absorbance at 492 nm was measured on an immuno reader (Corona Co.).

Analysis of the purified TCF or the modified TCFs on SDS-polyacrylamide gel
 electrophoresis.

Five micrograms of each of purified modified TCF was subjected to an SDS-polyacrylamide gel. Modified TCFs (TCF-3 and TCF-13) with prolonged biological half-lives as described later, and the wild-type TCF were applied to an SDS-polyacrylamide gel electrophoresis. The results are shown in Fig. 7. Electrophoresis was performed either in the presence (reducing conditions) or absence (non-reducing conditions) of β -mercaptoethanol. As indicated in Fig. 7 TCF showed two adjacent bands with approximate molecular masses of 78,000 and 74,000 under non-reducing conditions. The two bands of TCF-3 migrated faster than those of TCF, and the two bands of TCF-13 migrated faster than those of TCF-3, under non-reducing conditions. Under the reducing conditions, three protein bands with approximate molecular masses of 52,000, 30,000 and 26,000 were observed for TCF. Similarly, three bands with 52,000, 26,000 and 22,000 for TCF-3, and three bands with 48,000, 26,000 and 22,000 for TCF-13 were observed. The decrease in molecular mass of these modified TCFs was probably due to the removal of oligosaccharide chains. The results suggested that the desired modified TCFs were obtained. No other protein bands were detected except those deduced from the structure of the two modified proteins.

Example 2

Biological activities of the TCF and the modified TCFs in vitro.

(1) Growth stimulating activity for hepatocytes.

Growth stimulating activity for hepatocytes were determined as follows. Rat hepatocytes were isolated from a Wister rat (body weight was approximately 200 g) by the method of Seglen (Methods in cell biology Vol.13, p.29, Academic Press, New York). The basal medium, Williams E (Flow laboratories Co.), containing 10% fetal bovine serum and 10 \mu M dexamethasone) was used for the growth of the cells. One hundred microliters of the basal medium containing 1.0 X 104 cells was added to each well in a 96-well flat-bottomed plate (Falcon Co.) and incubated at 37°C. After 24 hours of incubation, 100 μ L of the basal medium containing TCF or the modified TCFs was added to each well and incubated for 22 hours at 37 °C. Each well was supplemented with 1 μ Ci of ³H-thimidine (Amersham Co.) and further incubated at 37°C for 2 hours. After washing twice with cold PBS, cells were trypsinized with 0.5% trypsine and harvested on a sheet of glass filter by a cell harvester. Radioactivities incorporated into the cells in each well were counted by Matrix 96 (Packard Co.). As shown in Fig. 8, all the modified TCFs were shown to maintain growth stimulating activities for rat hepatocytes.

② Tumor cytotoxic activity.

Tumor cytotoxic activities of TCF, TCF-3 and TCF-13 were measured. Meth A sarcoma was used as a target cell line. The cells were suspended in RPMI medium (GIBCO Co.) supplemented with 10% FCS at a final cell density of 2 X 10⁴ cells per mL. Fifty microliters of the cell suspension was inoculated into each

well in 96-well flat-bottomed microtiter plates. The purified TCF, TCF-3 and TCF-13 were serially diluted with RPMI medium from the concentration of 50 mg/mL, and the $50\,\mu\text{L}$ of each diluted sample was added to each test well. After incubation at 37°C for 5 days, MTT was added at a final concentration of 0.5 mg/ml and the plates were incubated at 37°C. Four hours later, $100\,\mu\text{L}$ of the solution containing 10% SDS and $0.01\,\text{M}$ NH₄Cl was added to each well and left overnight at room temperature. Next day, the absorbance at 620 nm was measured as a parameter of the viable cell numbers in each well. Fig. 9 shows the results of the assay. TCF, TCF-3 and TCF-13 having cytotoxic activities to Meth A cells in a dose-dependent manner.

Example 3

Measurement of biological half-lives of the TCF and the modified TCFs in vivo.

Anti-TCF polyclonal antibody was dissolved in 0.1 M NaHCO3 solution to a final concentration of $10\,\mu\,\mathrm{g/mL}$. One hundred microliters of the antibody solution was added to each well and the plates were left overnight at room temperature. The wells were filled with 50% solution of Block Ace in H20, incubated for 1 hour at room temperature and washed three times with washing solution (PBS containing 0.1% Tween 20). Plasma samples periodically collected from the rats which were intravenously injected with TCF or the modified TCFs were diluted with normal rat serum, when necessary. TCF solutions serially diluted with normal rat serum (from 10 ng/mL) was used as the standard TCF solution. Fifty microliters of the sample solution and $50\,\mu$ L of the first buffer (0.2 M Tris HCl pH 7.3 containing 50% Block Ace, 0.2 M NaCl, 0.1% Tween 20, 0.2% CHAPS, 20 mM Benzamidine hydrochloride, and 10 mM EDTA) was mixed and added to each well. The plates were left for 3 hours at 37 °C and washed three

times with the washing buffer. One hundred microliters of the peroxidase-labeled anti-TCF antibody solution, which was 400-fold diluted with 0.1 M phosphate buffer pH7.0 containing 10 % Block Ace, 0.15 M NaCl, 0.1% Tween 20, 4% rat serum and 0.5% mouse IgG, was added to each well. Plates were incubated for 2 hours at 37 °C and washed three times with the washing buffer. Subsequently, 100 μ L of substrate solution (0.4 mg/mL of o-phenylene diamine dihydrochloride and 0.006% H₂O₂ in 0.1 M citrate-phosphatte buffer, pH 4.5) was added to each well and incubated at 37°C for 30 minutes in a dark place. The enzyme reaction was stopped by addition of 50 μ L of 6N H₂SO₄. The absorbance at 492 nm was measured on an immuno reader (Corona Co.). Thus concentrations of the TCF or the modified TCFs in rat serum were determined.

Time course of plasma levels were examined by EIA in rats after the single intravenous injection of TCF and the modified TCFs. Male Wister rats weigning about 200 g were used. After the intravenous injection of TCF to the rats, the plasma level declined biexponentially, well described by a two-compartment model. Plasma half-lives of rapid phase and slower phase were 2.4 ± 2.5 min. $(t^1/2\alpha)$ and 15.6 ± 4.6 min. $(t^1/2\beta)$ in rats after the TCF injection at a dose of $50~\mu$ g/kg, respectively. Plasma level profiles of modified TCF were similar to that of the wild-type TCF, but their plasma levels declined slower than that of the wild-type TCF after the intravenous injection at the same dose.

As shown in Table 2, plasma half-lives of TCF-3 and TCF-13 were prolonged and their total clearance were decreased. TCF-3 and TCF-13 had larger AUC(the area under the plasma concentration - time curve) compared to the wild-type TCF.

Table 2 : Pharmacokinetics parameters of the modified TCFs $\,$

TCF-1 TCF-2 TCF-3 TCF-4 TCF-12 TCF-13 TCF-14 TCF-23 TCF-24 TCF-34 TCF-123 TCF-124 TCF-124 TCF-134 TCF-134	t _{1/2} α	$t_{1/2} \beta$
	(min)	(min)
TCF	$2.4~\pm~0.5$	$15.6~\pm~4.6$
TCF-1	2.4 ± 0.3	19.6 ± 0.3
TCF-2	$2.2~\pm~0.6$	18.2 ± 2.5
TCF-3	2.9 ± 0.3	$54.2 \pm 8.3**$
TCF-4	$2.7~\pm~0.1$	20.6 ± 3.3
TCF-12	2.7 ± 0.3	18.1 ± 1.6
TCF-13	$3.8 \pm 0.5**$	$24.9 \pm 3.1^*$
TCF-14	1.9 ± 0.4	18.8 ± 2.9
TCF-23	2.4 ± 0.5	15.4 ± 0.5
TCF-24	2.3 ± 0.1	16.9 ± 1.7
TCF-34	$2.2~\pm~0.5$	18.0 ± 2.1
TCF-123	$2.2~\pm~0.1$	17.2 ± 0.8
TCF-124	2.3 ± 0.1	15.7 ± 2.7
TCF-134	$2.3~\pm~0.4$	$19.1~\pm~3.2$
TCF-234	$2.6~\pm~0.6$	16.8 ± 1.6
TCF-1234	$2.9 \pm 0.1^*$	$24.2 \pm 5.5^*$

 $\texttt{Mean} \, \pm \, \texttt{SD}$

Significantly difference from Wild-type TCF (*P<0.05, ** P<0.01)

Table 3: Pharmacokinetics parameters of the modified TCFs

SAMPLE	AUC	C L total
	(ng·min/ml)	(ml/min/kg)
TCF	1030.0 ± 257.9	51.5 ± 13.9
TCF-1	811.6 ± 158.3	63.2 ± 12.2
TCF-2	1143.7 ± 551.7	49.8 ± 18.9
TCF-3	679.5 ± 292.1**	18.8 ± 2.1 ***
TCF-4	897.8 ± 263.5	58.6 ± 14.7
TCF-12	1246.4 ± 290.8	41.7 ± 10.6
TCF-13	$301.0 \pm 279.7**$	6.0 ± 0.2 **
TCF-14	972.5 ± 162.2	52.5 ± 9.5
TCF-23	1223.0 ± 356.7	43.6 ± 14.3
TCF-24	1017.8 ± 210.0	51.0 ± 8.3
TCF-34	983.0 ± 61.0	51.0 ± 3.2
TCF-123	963.8 ± 66.2	52.0 ± 3.5
TCF-124	1126.3 ± 265.0	45.9 ± 9.5
TCF-134	960.9 ± 279.7	55.2 ± 16.7
TCF-234	892.9 ± 119.7	56.6 ± 7.1
TCF-1234	1266.5 ± 78.9	39.6 ± 2.6

 $Mean \pm SD$

Significantly difference from Wild-type TCF (*P<0.05, ** P<0.01)

These results indicated that TCF-3 and TCF-13 had slower metabolic fates and have larger bioavailabilities than those of the wild-type TCF. The amino acid

sequence of TCF-3 discloses in Seq. Id No.2, and the sequence of TCF-13 discloses in Seq. Id No. 3.

The modified TCFs in the present invention have longer biological half-lives, maintaining growth stimulating activities for hepatocytes and cytotoxic activities to tumor cells, and are therefore useful as therapeutic agents for liver diseases or as anti-cancer drugs.

REFERENCE OF MICROORGANISM

(1) pcTCF(S)/MC1061/P3

Organization of Deposition:

National Institute of Bioscience and Human-Technology,
Agency of Industrial Science and Technology,
Ministry of International Trade and Industry

Address:

1-3, Higashi 1 chome, Tsukuba-shi, Ibaraki-ken, Japan

Deposition Number:

FERM BP-3479

(2) pBPV-TCF-3

Organization of Deposition:

National Institute of Bioscience and Human-Technology,
Agency of Industrial Science and Technology,
Ministry of International Trade and Industry

Address:

1-3, Higashi 1 chome, Tsukuba-shi, Ibaraki-ken, Japan

Deposition Number:

FERM BP-4454

(3) pBPV-TCF-13

Organization of Deposition:

National Institute of Bioscience and Human-Technology,

Agency of Industrial Science and Technology,

Ministry of International Trade and Industry

Address:

1-3, Higashi 1 chome, Tsukuba-shi, Ibaraki-ken, Japan

Deposition Number:

FERM BP-4455

SEQUENCE LISTING

Seq Id No. 1 Length: 723

Type: amino acid

Molecule Type: protein

Sequence

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys

Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His

Ser	Tyr	Arg	Gly	Lys	Asp	Leu	Gln	Glu	Asn	Tyr	Cys	Arg	Asn	Pro	Arg
				165					170					175	
Gly	Glu	Glu	Gly	Gly	Pro	Trp	Cys	Phe	Thr	Ser	Asn	Pro	Glu	Val	Arg
			180					185					190		
Tyr	Glu	Val	Cys	Asp	Ile	Pro	Gln	Cys	Ser	Glu	Val	Glu	Cys	Met	Thr
		195					200					205			
Cys	Asn	Gly	Glu	Ser	Tyr	Arg	Gly	Leu	Met	Asp	His	Thr	Glu	Ser	Gly
	210					215					220				
Lys	Ile	Cys	Gln	Arg	Trp	Asp	His	Gln	Thr	Pro	His	Arg	His	Lys	Phe
2 25					2 30					2 35					240
Leu	Pro	Glu	Arg	Tyr	Pro	Asp	Lys	Gly	Phe	Asp	Asp	Asn	Tyr	Cys	Arg
				245			,	•	250					25 5	
Asn	Pro	Asp	Gly	Gln	Pro	Arg	Pro	Trp	Cys	Tyr	Thr	Leu	Asp	Pro	His
			2 60	1				26 5					270		
Thr	Arg	Trp	Glu	Tyr	Cys	Ala	Ile	Lys	Thr	Cys	Ala	Asp	Asn	Thr	Met
		275	,				280					28 5	1		
<u>Asn</u>	Asp	Thr	_Asp	Val	Pro	Leu	Glu	Thr	Thr	Glu	Cys	Ile	Gln	Gly	Gln
	290	1				29 5	<u>.</u>				300	1			
Gly	Glu	Gly	7 Tyr	· Arg	Gly	Thr	Val	Asn	Thr	Ile	Trp	Asn	Gly	Ile	Pro
305					310)				315	•				320
Cys	Gln	Are	g Trp	Asp	Ser	Glr	Tyr	Pro	His	Glu	His	asp	Met	Thr	Pro
				325	5				330)				335	5
Glu	Asr	Phe	e Lys	s Cys	s Lys	a Asp	Leu	ı Arg	Glu	ı Asr	Туг	Cys	s Are	g Asr	Pro
			340)				345)				350)	
Asp	Gly	, Sei	r Glu	u Ser	r Pro	Tr	Cys	s Phe	Thr	Thi	r Asp	Pro) Ası	ı Ile	e Arg
		355	5				360)				365	5		
Val	Gly	y Ty	r Cy:	s Sei	r Gli	n Ile	e Pro	o Asr	ı Cys	s Ası) Met	t Sei	r His	s Gly	Glr
	370)				375	5				380)			

Asp	Cys	Tyr	Arg.	Gly	Asn	Gly	Lys	Asn	Tyr	Met	Gly	<u>Asn</u>	Leu	<u>Se</u> r	Gln
385					390					39 5					40 0
Thr	Arg	Ser	Gly	Leu	Thr	Cys	Ser	Met	Trp	Asp	Lys	Asn	Met	Glu	Asp
				40 5					410					415	
Leu	His	Arg	His	He	Phe	Trp	Glu	Pro	Asp	Ala	Ser	Lys	Leu	Asn	Glu
			42 0					425					430		
Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Asp	Asp	Ala	His	Gly	Pro	Trp	Cys	Tyr
		43 5					440					44 5			-
Thr	Gly	Asn	Pro	Leu	Ile	Pro	Trp	Asp	Tyr	Cys	Pro	Ile	Ser	Arg	Cys
	4 50					45 5					4 60				
Glu	Gly	Asp	Thr	Thr	Pro	Thr	He	Val	Asn	Leu	Asp	His	Pro	Val	He
46 5					470			•		4 75					4 80
Ser	Cys	Ala	Lys	Thr	Lys	G1n	Leu	Arg	Val	Val	Asn	Gly	He	Pro	Thr
				4 85					4 90					495	
Arg	Thr	Asn	Ile	Gly	Trp	Met	Val	Ser	Leu	Arg	Tyr	Arg	Asn	Lys	His
			50 0					50 5	* *				510		
He	Cys	Gly	Gly	Ser	Leu	Ile	Lys	Glu	Ser	Trp	Val	Leu	Thr	Ala	Arg
		5 15					520					5 25			
Gln	Cys	Phe	Pro	Ser	Arg	Asp	Leu	Lys	Asp	Tyr	Glu	Ala	Trp	Leu	Gly
	530					535					540				
He	His	Asp	Va1	His	Gly	Arg	Gly	Asp	Glu	Lys	Cys	Lys	Gln	Val	Leu
54 5					550					55 5					560
<u>Asn</u>	Val	Ser	_Gln	Leu	Val	Tyr	Gly	Pro	Glu	Gly	Ser	Asp	Leu	Val	Leu
				5 65					570					575	
Met	Lys	Leu	Ala	Arg	Pro	Ala	Val	Leu	Asp	Asp	Phe	Val	Ser	Thr	He
			580					5 85					590		
Asp	Leu	Pro	Asn	Tyr	Gly	Cys	Thr	Ile	Pro	Glu	Lys	Thr	Ser	Cys	Ser
		59 5					600					60 5			

Val	Tyr	Gly	Trp	Gly	Tyr	Thr	Gly	Leu	Ile	Asn	Tyr	Asp	Gly	Leu	Leu
	610					61 5					620				
Arg	Val	Ala	His	Leu	Tyr	He	Met	Gly	Asn	Glu	Lys	Cys	Ser	Gln	His
62 5					630					635					640
His	Arg	Gly	Lys	Val	Thr	Leu	Asn	Glu	<u>Se</u> r	Glu	He	Cys	Ala	Gly	Ala
				645					650					6 55	
Glu	Lys	Ile	Gly	Ser	Gly	Pro	Cys	Glu	Gly	Asp	Tyr	Gly	Gly	Pro	Leu
			660					6 65					670		
Val	Cys	Glu	Gln	His	Lys	Met	Arg	Met	Val	Leu	Gly	Val	He	Val	Pro
		675					6 80					685			
Gly	Arg	Gly	Cys	Ala	lle	Pro	Asn	Arg	Pro	Gly	He	Phe	Val	Arg	Val
	690)				695	•	•			70 0				
Ala	Tyr	Tyr	Ala	Lys	Trp	Ile	His	Lys	He	: Ile	Leu	Thr	Tyr	Lys	Val
705	I				710)				715	5				720
Pro	Glr	Ser	•												

Seq Id No.2

Length: 723

Type: amino acid

Molecule Type: protein

Sequence

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln Arg Lys Arg Arg Asn Thr lle His Glu Phe Lys Lys Ser Ala Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu . Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg

Gly	Glu	Glu	Gly	Gly	Pro	Trp	Cys	Phe	Thr	Ser	Asn	Pro	Glu	Val	Arg
			180					185					190		
Tyr	Glu	Val	Cys	Asp	Ile	Pro	Gln	Cys	Ser	Glu	Val	Glu	Cys	Met	Thr
		195					200					20 5			
Cys	Asn	Gly	Glu	Ser	Tyr	Arg	Gly	Leu	Met	Asp	His	Thr	Glu	Ser	Gly
	210					215					220				
Lys	Ile	Cys	Gln	Arg	Trp	Asp	His	Gln	Thr	Pro	His	Arg	His	Lys	Phe
22 5					2 30					235					240
Leu	Pro	Glu	Arg	Tyr	Pro	Asp	Lys	Gly	Phe	Asp	Asp	Asn	Tyr	Cys	Arg
				245					2 50					25 5	
Asn	Pro	Asp	Gly	Gln	Pro	Arg	Pro	Trp	Cys	Tyr	Thr	Leu	Asp	Pro	His
			260					265					270		
Thr	Arg	Trp	Glu	Tyr	Cys	Ala	Ile	Lys	Thr	Cys	Ala	Asp	Asn	Thr	Met
		27 5					2 80					28 5			
Asn	Asp	Thr	_Asp	Val	Pro	Leu	Glu	Thr	Thr	Glu	Cys	He	Gln	Gly	Gln
	290					29 5					300				
Gly	Glu	Gly	Tyr	Arg	Gly	Thr	Val	Asn	Thr	He	Trp	Asn	Gly	Ile	Pro
30 5					310					315					320
Cys	Gln	Arg	Trp	Asp	Ser	Gln	Tyr	Pro	His	Glu	His	Asp	Met	Thr	Pro
				325					330					33 5	
Glu	Asn	Phe	Lys	Cys	Lys	Asp	Leu	Arg	Glu	Asn	Tyr	Cys	Arg	Asn	Pro
			340					34 5					350		
Asp	Gly	Ser	Glu	Ser	Pro	Trp	Cys	Phe	Thr	Thr	Asp	Pro	Asn	Ile	Arg
		355					360					365			
Val	Gly	Tyr	Cys	Ser	Gln	Ile	Pro	Asn	Cys	Asp	Met	Ser	His	Gly	Gln
	370					375					380				
Asp	Cys	Tyr	Arg	Gly	Asn	Gly	Lys	Asn	Tyr	Met	Gly	<u>Asn</u>	Leu	<u>Se</u> r	Gln
385					390					395					400

	Thr	Arg	Ser	Gly	Leu	Thr	Cys	Ser	Met	Trp	Asp	Lys	Asn	Met	Glu	Asp
					40 5					410					415	
	Leu	His	Arg	His	lle	Phe	Trp	Glu	Pro	Asp	Ala	Ser	Lys	Leu	Asn	Glu
				42 0					425					430		
	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Asp	Asp	Ala	His	Gly	Pro	Trp	Cys	Tyr
			43 5					440					44 5			
	Thr	Gly	Asn	Pro	Leu	Ile	Pro	Trp	Asp	Tyr	Cys	Pro	Ile	Ser	Arg	Cys
		450					45 5					460				
	Glu	Gly	Asp	Thr	Thr	Pro	Thr	Ile	Val	Asn	Leu	Asp	His	Pro	Val	Île
	465					4 70					475					4 80
	Ser	Cys	Ala	Lys	Thr	Lys	Gln	Leu	Arg	Val	Val	Asn	Gly	He	Pro	Thr
					4 85				•	4 90	•				495	
	Arg	Thr	Asn	Ile	Gly	Trp	Met	Val	Ser	Leu	Arg	Tyr	Arg	Asn	Lys	His
				50 0					50 5					510		
	Ile	Cys	Gly	Gly	Ser	Leu	Ile	Lys	Glu	Ser	Trp	Val	Leu	Thr	Ala	Arg
			5 15					520					52 5			
	Gln	Cys	Phe	Pro	Ser	Arg	Asp	Leu	Lys	Asp	Tyr	Glu	Ala	Trp	Leu	Gly
		530					5 35					540				
	He	His	Asp	Val	His	Gly	Arg	Gly	Asp	Glu	Lys	Cys	Lys	Gln	Val	Leu
	545					550					55 5					560
	<u>Asn</u>	Val	Ala	_Gln	Leu	Val	Tyr	Gly	Pro	Glu	Gly	Ser	Asp	Leu	Val	Leu
					56 5					570					575	
	Met	Lys	Leu	Ala	Arg	Pro	Ala	Val	Leu	Asp	Asp	Phe	Val	Ser	Thr	lle
				580					5 85					590		
	Asp	Leu	Pro	Asn	Tyr	Gly	Cys	Thr	He	Pro	Glu	Lys	Thr	Ser	Cys	Ser
٠.	January (1)		595	et ger	·			600		,	, ,		605			
	Val	Tyr	Gly	Trp	Gly	Tyr	Thr	Gly	Leu	Ile	Asn	Tyr	Asp	Gly	Leu	Leu
		610					615					620				

.

Arg	Val	Ala	His	Leu	Tyr.	He	Met	Gly	Asn	Glu	Lys	Cys	Ser	Gln	His
625					630					635					640
His	Arg	Gly	Lys	Val	Thr	Leu	Asn	Glu	Ser	Glu	lle	Cys	Ala	Gly	Ala
				64 5					650					65 5	
Glu	Lys	He	Gly	Ser	Gly	Pro	Cys	Glu	Gly	Asp	Tyr	Gly	Gly	Pro	Leu
			660					665					670		
Val	Cys	Glu	Gln	His	Lys	Met	Arg	Met	Val	Leu	Gly	Val	Ile	Val	Pro
		675					680					6 85			
Gly	Arg	Gly	Cys	Ala	Ile	Pro	Asn	Arg	Pro	Gly	Ile	Phe	Val	Arg	Val
	690					69 5					70 0				•
Ala	Tyr	Tyr	Ala	Lys	Trp	He	His	Lys	He	Ile	Leu	Thr	Tyr	Lys	Val
70 5					710			•	٠	715					720
Pro	Gln	Ser													

Seq Id No.3

Length: 723

Type: amino acid

Molecule Type: protein

Sequence

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg

Gly	Glu	Glu	Gly.	Gly	Pro	Trp	Cys	Phe	Thr	Ser	Asn	Pro	Glu	Val	Arg
			180					185					190		
Tyr	Glu	Val	Cys	Asp	Ile	Pro	Gln	Cys	Ser	Glu	Val	Glu	Cys	Met	Thr
		195					200					20 5			
Cys	Asn	Gly	Glu	Ser	Tyr	Arg	Gly	Leu	Met	Asp	His	Thr	Glu	Ser	Gly
	210					215					220				
Lys	Ile	Cys	Gln	Arg	Trp	Asp	His	Gln	Thr	Pro	His	Arg	His	Lys	Phe
225					230					235					240
Leu	Pro	Glu	Arg	Tyr	Pro	Asp	Lys	Gly	Phe	Asp	Asp	Asn	Tyr	Cys	Arg
				245					250					25 5	
Asn	Pro	Asp	Gly	Gln	Pro	Arg	Pro	Trp	Cys	Tyr	Thr	Leu	Asp	Pro	His
			260					26 5					270	•	
Thr	Arg	Trp	Glu	Tyr	Cys	Ala	Ile	Lys	Thr	Cys	Ala	Asp	Asn	Thr	Met
		275					280					285			
Gln	Asp	Thr	_Asp	Val	Pro	Leu	Glu	Thr	Thr	Glu	Cys	Ile	Gln	Gly	Gln
	290					29 5					300				
Gly	Glu	Gly	Tyr	Arg	Gly	Thr	Val	Asn	Thr	Ile	Trp	Asn	Gly	Ile	Pro
30 5					310					315					320
Cys	Gln	Arg	Trp	Asp	Ser	Gln	Tyr	Pro	His	Glu	His	Asp	Met	Thr	Pro
				325					330					335	
Glu	Asn	Phe	Lys	Cys	Lys	Asp	Leu	Arg	Glu	Asn	Tyr	Cys	Arg	Asn	Pro
			340					345					350		
Asp	Gly	Ser	Glu	Ser	Pro	Trp	Cys	Phe	Thr	Thr	Asp	Pro	Asn	Ile	Arg
		355					360					365			
Val	Gly	Tyr	Cys	Ser	Gln	Ile	Pro	Asn	Cys	Asp	Met	Ser	His	Gly	Gln
	370					375					380				
Asp	Cys	Tyr	Arg	Gly	Asn	Gly	Lys	Asn	Tyr	Met	Gly	Asn	Leu	<u>Se</u> r	Gln
385					390					395					400

Thr	Arg	Ser	Gly	Leu	Thr	Cys	Ser	Met	Trp	Asp	Lys	Asn	Met	Glu	Asp
				40 5					410					4 15	
Leu	His	Arg	His	Ile	Phe	Trp	Glu	Pro	Asp	Ala	Ser	Lys	Leu	Asn	Glu
			420					42 5					430		
Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Asp	Asp	Ala	His	Gly	Pro	Trp	Cys	Tyr
		435					44 0					445			
Thr	Gly	Asn	Pro	Leu	He	Pro	Trp	Asp	Tyr	Cys	Pro	Ile	Ser	Arg	Cys
	450					45 5					460				
Glu	Gly	Asp	Thr	Thr	Pro	Thr	Ile	Val	Asn	Leu	Asp	His	Pro	Val	He
4 65					470					475					480
Ser	Cys	Ala	Lys	Thr	Lys	Gln	Leu	Arg	Val	Val	Asn	Gly	Ile	Pro	Thr
				48 5				•	49 0					49 5	
Arg	Thr	Asn	Ile	Gly	Trp	Met	Val	Ser	Leu	Arg	Tyr	Arg	Asn	Lys	His
			500					50 5					510		
Ile	Cys	Gly	Gly	Ser	Leu	Ile	Lys	Glu	Ser	Trp	Val	Leu	Thr	Ala	Arg
		5 15					520					525			
Gln	Cys	Phe	Pro	Ser	Arg	Asp	Leu	Lys	Asp	Tyr	Glu	Ala	Trp	Leu	Gly
	530					5 35					540				
Ile	His	Asp	Val	His	Gly	Arg	Gly	Asp	Glu	Lys	Cys	Lys	Gln	Val	Leu
54 5					550					5 55					560
<u>Asn</u>	Val	Ala	_G1n	Leu	Val	Tyr	Gly	Pro	Glu	Gly	Ser	Asp	Leu	Val	Leu
				5 65					570					57 5	
Met	Lys	Leu	Ala	Arg	Pro	Ala	Val	Leu	Asp	Asp	Phe	Val	Ser	Thr	Ile
			580					5 85					590		
Asp	Leu	Pro	Asn	Tyr	Gly	Cys	Thr	Ile	Pro	Glu	Lys	Thr	Ser	Cys	Ser
		5 95					600					605			
Val	Tyr	Gly	Trp	Gly	Tyr	Thr	Gly	Leu	Ile	Asn	Tyr	Asp	Gly	Leu	Leu
	610					615					620				

Arg	Val	Ala	His	Leu	Tyr	Ile	Met	Gly	Asn	Glu	Lys	Cys	Ser	Gln	His
62 5					630					635					640
His	Arg	Gly	Lys	Val	Thr	Leu	Asn	Glu	<u>Se</u> r	Glu	Ile	Cys	Ala	Gly	Ala
				645					650					655	
Glu	Lys	lle	Gly	Ser	Gly	Pro	Cys	Glu	Gly	Asp	Tyr	Gly	Gly	Pro	Leu
			660					665					670		
Val	Cys	Glu	Gln	His	Lys	Met	Arg	Met	Val	Leu	Gly	Val	Ile	Val	Pro
		675					6 80					68 5			
Gly	Arg	Gly	Cys	Ala	Ile	Pro	Asn	Arg	Pro	Gly	Ile	Phe	Val	Arg	Val
	690					69 5					700				
Ala	Tyr	Tyr	Ala	Lys	Trp	Ile	His	Lys	He	He	Leu	Thr	Tyr	Lys	Val
70 5					710			1		715					720
Pro	Gin	Spr													

CLAIMS

- 1. The modified TCFs which are characterized by that the amino-acid residues responsible for binding of N-linked oligosaccharide chains are modified so that at least one of the N-linked oligosaccharide chains is prevented from binding to TCF.
- 2. The modified TCFs according to claim 1, in which one of the residues responsible for N-glycosylation is substituted with other amino-acid residues so that the N-linked oligosaccharide chain(s) are prevented from binding to Asn residue(s) at positions 289th, 397th, 561stst and/or 648th from N-terminal in its amino-acid sequence described in Sequence 1.
- 3. The modified TCF according to claim 1, in which Ser at position 563rd is substituted with Ala.
- 4. The modified TCF according to claim 1, in which Asn at position 289th is substituted with Gln, and Ser at position 563rd is substituted with Ala.
- 5. Modified TCF, a glycoprotein to which DNA sequence encoding the amino-acid sequence described in Sequence 2 is expressed.
- 6. Modified TCF, a glycoprotein to which DNA sequence encoding the amino-acid sequence described in Sequence 3 is expressed.

Fig. 1

Pro Gin Ser

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys The Lys Lys Vai Asn The Ala Asp Gln Cys Ala Asn Arg Cys The Arg Asn Lys Gly Leu Pro Phe The Cys Lys Ala Phe Val Phe Asp tys Ala Arg Lys Gln Cys Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp lie Pro Gin Cys Ser Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala lie Lys Thr Cys Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu Cys lie Gin Giy Gin Giy Giu Giy Tyr Arg Giy Thr Vai Asn Thr lie Trp Asn Giy lie Pro Cys Gin Arg Trp Asp Ser Gin Tyr Pro His Glu His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp Lys Asn Met Glu Asp Leu His Arg His lle Phe Trp Glu Pro Asp Ala Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Ala His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gin Leu Arg Val Val Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr Glu Ala Trp Leu GIy Ile His Asp Val His Gly Arg Gly Asp Glu Lys Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp Phe Val Ser Thr Ile Asp Leu Pro Asn Tyr Gly Cys Thr lie Pro Giu Lys Thr Ser Cys Ser Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn Tyr Asp Gly Leu Leu Arg Val Ala His Leu Tyr lle Met Gly Asn Glu Lys Cys Ser Gln His His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu Ile Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu Val Cys Glu Gln His Lys Met Arg Met Val Leu Gly Val lie Val Pro Gly Arg Gly Cys Ala lie Pro Asn Arg Pro Gly lie Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp lie His Lys Ile Ile Leu Thr Tyr Lys Val

Fig. 2

-------------TAGGCAC TGACTCCGAA CAGGATTETT TEACCEAGGE ATETECTECA GAGGGATECG CEAGGCCGTE CAGCAGCACC ATOTOGOTGA CCAAACTCCT GCCAGCCCTG CTGCTGCAGC ATGTCCTCCT GCATCTCCTC CTGUTCCCCA TCGCCATCCC CTATGCAGAG GGACAAAGGA AAAGAAGAAA TACAATTCAT GAATTCAAAA AATCAGCAAA GACTACCCTA ATCAAAATAG ATCCAGCACT GAAGATAAAA ACCAAAAAAG TGAATACTGC AGACCAATGT GCTAATAGAT GTACTAGGAA TAAAGGACTT CCATTCACTT GCAAGGCTTT TGTTTTTGAT AAAGCAAGAA AACAATGCCT CTGGTTCCCC TTCAATAGCA TGTCAAGTGG AGTGAAAAAA GAATTTGGCC ATGAATTTGA CCTCTATGAA AACAAAGACT ACATTAGAAA CTGCATCATT GGTAAAGGAC GCAGCTACAA GGGAACAGTA TUTATUACTA AGAGTGGCAT CAAATGTCAG CCCTGGAGTT CCATGATACC ACACGAACAC AGCTATCGGG GTAAAGACCT ACAGGAAAAC TACTGTCGAA ATCCTCGAGG GGAAGAAGGG GGACCCTGGT GTTTCACAAG CAATCCAGAG GTACGCTACG AAGTCTGTGA CATTCCTCAG TOTTCAGAAG TTGAATGCAT GACCTGCAAT GGGGAGAGTT ATCGAGGTCT CATGGATCAT ACAGAATCAG GCAAGATTTG TCAGCGCTGG GATCATCAGA CACCACACCG GCACAAATTC TTGCCTGAAA GATATCCCGA CAAGGGCTTT GATGATAATT ATTGCCGCAA TCCCGATGGC CAGCCGAGGC CATGGTGCTA TACTCTTGAC CCTCACACCC GCTGGGAGTA CTGTGCAATT AAAACATGCG CTGACAATAC TATG<u>AAT</u>GAC ACTGATGTTC CTTTGGAAAC AACTGAATGC ATCCAAGGTC AAGGAGAAGG CTACAGGGGC ACTGTCAATA CCATTTGGAA TGGAATTCCA TGTCAGCGTT GGGATTCTCA GTATCCTCAC GAGCATGACA TGACTCCTGA AAATTTCAAG TGCAAGGACC TACGAGAAAA TTACTGCCGA AATCCAGATG GGTCTGAATC ACCCTGGTGT TTTACCACTG ATCCAAACAT CCGAGTTGGC TACTGCTCCC AAATTCCAAA CTGTGATATG TCACATGGAC AAGATTGTTA TCGTGGGAAT GGCAAAAATT ATATGGGCAA CTTA<u>TCC</u>CAA ACAAGATCTG GACTAACATG TTCAATGTGG GACAAGAACA TGGAAGACTT ACATCGTCAT ATCTTCTGGG AACCAGATGC AAGTAAGCTG AATGAGAATT ACTGCCGAAA TCCAGATGAT GATGCTCATG GACCCTGGTG CTACACGGGA AATCCACTCA TTCCTTGGGA TTATTGCCCT ATTTCTCGTT GTGAAGGTGA TACCACACCT ACAATAGTCA ATTTAGACCA TCCCGTAATA TCTTGTGCCA AAACGAAACA ATTGCGAGTT GTAAATGGGA TTCCAACACG AACAAACATA GGATGGATGG TTAGTTTGAG ATACAGAAAT AAACATATCT GCGGAGGATC ATTGATAAAG GAGAGTTGGG TTCTTACTGC ACGACAGTGT TTCCCTTCTC GAGACTTGAA AGATTATGAA GCTTGGCTTG GAATTCATGA TGTCCACGGA AGAGGAGATG AGAAATGCAA ACAGGTTCTC AATGTTTCCC AGCTGGTATA TGGCCCTGAA GGATCAGATC TGGTTTTAAT GAAGCTTGCC AGGCCTGCTG TCCTGGATGA TTTTGTTAGT ACGATTGATT TACCTAATTA TGGATGCACA ATTCCTGAAA AGACCAGTTG CAGTGTTTAT GGCTGGGGCT ACACTGGATT GATCAACTAT GATGGCCTAT TACGAGTGGC ACATCTCTAT ATAATGGGAA ATGAGAAATG CAGCCAGCAT CATCGAGGGA AGGTGACTCT GAATGAGTCT GAAATATGTG CTGGGGCTGA AAAGATTGGA TCAGGACCAT GTGAGGGGGA TTATGGTGGC CCACTTGTTT GTGAGCAACA TAAAATGAGA ATGGTTCTTG GTGTCATTGT TCCTGGTCGT GGATGTGCCA TTCCAAATCG TCCTGGTATT TTTGTCCGAG TAGCATATTA TGCAAAATGG ATACACAAAA TTATTTTAAC ATATAAGGTA CCACAGTCAT AGCTGAAGTA AGTGTGTCTG AAGCACCCAC CAATACAACT GT

Fig. 3

Fig. 4

Fig. 5

Fig. 6

PCT/JP93/01905 WO 94/14845

Fig. 7

(reducing) (reducing) (reducing)

Fig. 8

(1)

(2)

9/11

Fig. 9

INTERNATIONAL FORM

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page.

TO DEPOSITOR:

Name: Research Institute of Life Science

Snow Brand Milk Products Co., Ltd. General Manager: Gosei KAWANISHI

Address: 519, Aza Hanabayashi, Ohaza Shimoishibashi,

Ishibashi-Cho, Shimotsuga-gun, Tochigi-ken,

329-05, JAPAN

I. IDENTIFICATION OF MICROORGANISM

Identification Reference Given by the Depositor:

Accession Number: Bikoken joki No. 3479

pcTCF(S)/MC1061/P3

(FERM BP-3479)

II. A SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC POSITION

The microorganism identified under I above was accompanied by a document stating the following item(s).

☐ A Scientific Property

☑ Taxonomic position

III. RECEIPT AND ACCEPTANCE

This authority accepts the microorganism identified under I above, which was received on July 13, 1990 (transferred from Bikoken No. P-11605, which was deposited on July 13, 1990)

IV. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Fermentation Research Institute,

Agency of Industrial Science and Technology. Ministry of International Trade and Industry

Representative: Tomoo SUZUKI (Sealed)

Dr., DIRECTOR GENERAL

Address: 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken

305, JAPAN

Date: July 10, 1991

INTERNATIONAL FORM

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page.

TO DEPOSITOR:

Name: Research Institute of Life Science

Snow Brand Milk Products Co., Ltd.

General Manager: Yasuyoshi TAKESHITA

Address: 519 Aza Hanabayashi, Ohaza Shimoishibashi,

Ishibashi-Cho, Shimotsuga-gun, Tochigi-ken,

329-05, JAPAN

I. IDENTIFICATION OF MICROORGANISM

Identification Reference Given

Acession Number:

by the Depositor:

pBPV-TCF-3

FERM BP-4454

II. A SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC POSITION

The microorganism identified under I above was accompanied by a document stating the following item(s).

☐ A Scientific Property ☐ Taxonomic position

III. RECEIPT AND ACCEPTANCE

This authority accepts the microorganism identified under I above, which was received on December 25, 1992

IV. RECEIPT OF TRANSFER

This authority received the microorganism identified under I above on December 25, 1992 and transfer of the deposit based on the Budapest Treaty on October 27, 1993 (transferred from Bikoken No. P-13359, which was deposited on December 25, 1992)

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Natinal Institute of Bioscience and Human-Technology

Agency of Industrial Science and Technology Ministry of International Trade and Industry

Representative: Osamu SUZUKI (Sealed)
Dr., DIRECTOR GENERAL

Address: 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken

305, JAPAN

Date: October 27, 1993

INTERNATIONAL FORM

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page.

TO DEPOSITOR:

Name: Research Institute of Life Science

Snow Brand Milk Products Co., Ltd. General Manager: Yasuyoshi TAKESHITA

Address: 519 Aza Hanabayashi, Ohaza Shimoishibashi,

Ishibashi-Cho, Shimotsuga-gun, Tochigi-ken,

329-05, JAPAN

I. IDENTIFICATION OF MICROORGANISM

Identification Reference Given
by the Depositor:
 pBPV-TCF-13

Acession Number:

. . .

FERM BP-4455

II. A SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC POSITION

The microorganism identified under I above was accompanied by a document stating the following item(s).

☐ A Scientific Property

III. RECEIPT AND ACCEPTANCE

This authority accepts the microorganism identified under I above, which was received on December 25, 1992

IV. RECEIPT OF TRANSFER

This authority received the microorganism identified under I above on December 25, 1992 and transfer of the deposit based on the Budapest Treaty on October 27, 1993 (transferred from Bikoken No. P-13360, which was deposited on December 25, 1992)

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name:

Natinal Institute of Bioscience and Human-Technology Agency of Industrial Science and Technology Ministry of International Trade and Industry

Representative: Osamu SUZUKI (Sealed)
Dr., DIRECTOR GENERAL

Address: 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken

305, JAPAN

Date: October 27, 1993

INTERNATIONAL SEARCH REPORT

Inter onal Application No PCI/JP 93/01905

A. CLASS IPC 5	ification of subject matter C07K15/00 C12N1/21 C12N15/	12	
According t	to International Patent Classification (IPC) or to both national class	ification and IPC	·
B. FIELDS	S SEARCHED		
Minimum d IPC 5	tocumentation searched (classification system followed by classifica CO7K	tion symbols)	
Documenta	tion searched other than minimum documentation to the extent that	such documents are included in the fields so	earched
Electronic o	data base consulted during the international search (name of data ba	se and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	BIOCHEM. BIOPHYS. RES. COMM. vol. 170, no. 1 , 16 July 1990 , pages 397 - 404 KANJI HIGASHO ET AL. 'Identity o cytotoxic factor from human fibr and hepatocyte growth factor' see "Discussion"	f tumor	1-6
A	BIOCHEM. BIOPHYS. RES. COMM. vol. 180, no. 2 , 31 October 199 NOBUYUKI SHIMA ET AL. 'Tumor cyt factor' see "Summary"	1 , US otoxic	1-6
A	WO,A,90 10651 (SNOW BRAND MILK C September 1990 cited in the application see Fig. 15	0.) 20	1-6
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
"A" docum consider E" earlier filling "L" docum which citatic "O" docum other "P" docum later Date of the	nent which may throw doubts on priority claim(s) or his cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means ment published prior to the international filing date but than the priority date claimed e actual completion of the international search	"T" later document published after the int or priority date and not in conflict we cited to understand the principle or to invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the decument of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patern. Date of mailing of the international s.	ith the application but heory underlying the claimed invention to be considered to occurrent is taken alone claimed invention inventive step when the nore other such docurrent to a person skilled t family
	20 April 1994	Authorized officer	
ivame and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Germinario, C	

INTERNATIONAL SEARCH REPORT

Aformation on patent family members

Inter onal Application No
PCI/JP 93/01905

Patent document cited in search report	Publication date	Patent fa membe		Publication date
WO-A-9010651	20-09-90	AU-B- AU-A- EP-A-	629314 5177490 0462277	01-10-92 09-10-90 27-12-91