Homework 2

Jaden Ho

September 29, 2024

1 Homework 2

- 1. (Section 1.2 Question 1abcd)
 - (a) True. The zero vector must be in a vector space.
 - (b) False. The zero vector is unique.
 - (c) False. Counterexample: x can be the zero vector which means a and b don't have to be equal to each other.
 - (d) False. Scalar a can be zero which means you can have two arbitrary vectors x, y such that ax = ay.
- 2. (Section 1.2 Question 8) Show that (a + b)(x + y) = ax + ay + bx + by. Since $a + b \in F$, we can use distributive property for vector spaces. (a + b)x + (a + b)y = ax + bx + ay + by (VS 7 distributive property) = ax + ay + bx + by (VS 1 commutativity of addition).

Hence,
$$(a + b)(x + y) = ax + ay + bx + by$$
. \square

3. (Section 1.2 Question 13) Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in \mathbb{R}$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, b_1) = (ca_1, a_2)$. Is V a vector space in \mathbb{R} with these operations? Justify your answer.

WTS if V is a vector space or not by checking the axioms.

Commutative property:

$$a + b = b + a$$

$$(a_1, a_2) + (b_1, b_2) = (b_1, b_2) + (a_1, a_2)$$

 $(a_1 + b_1, a_1b_1) = (b_1 + a_1, b_1a_1)$

This set holds for commutative property.

Associativity of addition:

Let
$$c = (c_1, c_2)$$
.

Then,
$$(a + b) + c = (a_1 + b_1, a_2 + b_2) + (c_1, c_2) = (a_1 + b_1 + c_1, a_1b_1c_1)$$

 $a + (b + c) = (a_1, a_2) + (b_1 + c_1, b_2 + c_2) = (a_1 + b_1 + c_1, a_1 * (b_1 * c_1) = (a_1 + b_1 + c_1, a_1b_1c_1)$

This set holds under associativity of addition.

Additive identity: For
$$a + 0 = a$$
, there exists an element 0 such that $(a_1, a_2) + 0 = (a_1, a_2)$. If $0 = (0, 0)$, then $(a_1, a_2) + (0, 0) = (a_1 + b_1, 0)$

This set does not hold under additive identity since the sum of an element with the zero vector doesn't equal the element.

Additive Inverse: For every a, there exists a d such that a + d = 0. Let (0,0) be the zero vector. Let $d = (-a_1, -a_2)$ $(a_1, a_2) + (-a_1, -a_2) = (0, -a^2)$.

Since $(0, -a^2) \neq (0, 0)$, the set doesn't hold under additive inverse.

Scalar of 1:
$$1 * a = (1 * a_1, a_2) = (a_1, a_2) = a$$

Associativity of Multiplication: Let i, j be scalars $\in \mathbb{R}$

$$(i * j) * a = (ija_1, a_2)$$

 $i * (j * a) = i * (ja_1, a_2) = (ija_1, a_2)$

Since both match up, they hold under under associativity of multiplication.

Distributive Property: Let f be a scalar in \mathbb{R} . $f(a+b) = f * (a_1 + b_1, a_2b_2) = (fa_1 + fb_1, a_2b_2) fa + fb = f(a_1, a_2) + f(b_1, b_2) = (fa_1, a_2) + (fb_1, b_2) = (fa_1 + fb_1, a_2b_2)$

The set holds under distribution.

For distributive property for scalars, we will use i and j again.

$$(i+j)*a = ((i+j)a_1, a_2^2)$$

 $(i+j)*a = ia + ja = i(a_1, a_2) + j(a_1, a_2) = (ia_1 + a_2) + (ja_1 + a_2) = ((i+j)a_1, a_2^2)$

Since both statements match, this set holds under distributive property.

Hence, V is not a vector space over \mathbb{R} due to having no zero vector and no additive inverse.

4. (Section 1.2 Question 17)

Let $V = (a_1, a_2) : a_1, a_2 \in F$, where F is a field. Define addition of elements of V coordinatewise, and for $c \in F$ and $(a_1, a_2) \in V$, define $c(a_1, a_2) = (a_1, 0)$. Is V a vector space with thesse operations?

WTS that V is a vector space or not by verifying the VS axioms.

Let $a = (a_1, a_2)$ and $b = (b_1, b_2)$.

Commutative Property: $a + b = (a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (b_1 + a_1, b_2 + a_2) = b + a$. Hence, V holds under commutative property.

Let $c = (c_1, c_2)$.

Associative Property:
$$(a + b) + c = (a_1 + b_1, a_2 + b_2) + (c_1, c_2) = (a_1 + b_1 + c_1, a_2 + b_2 + c_2) = (a_1, a_2) + (b_1 + c_1, b_2 + c_2) = a + (b + c)$$

Hence, V holds under associative property of addition.

Additive Identity: a + 0 = a. Since by nature, (0, 0) is the zero vector, $(a_1, a_2) + (0, 0) = (a_1, a_2)$.

Hence, V has the zero vector.

Additive Inverse: $a + (-a) = 0 = (a_1, a_2) + (-a_1, -a_2) = (a_1 - a_1, a_2 - a_2) = (0, 0)$

Hence, for every a, there exists an -a such that a + (-a) = 0.

Scalar of One: $1 * a = 1 * (a_1, a_2) = (a_1, 0) \neq (a_1, a_2)$. Hence, a does not hold under scalar multiplication.

V is not a vector field since it doesn't hold under scalar multiplication. \Box

5. (Section 1.2 Question 21)

$$Z = (v, w) : v \in V, w \in W$$

V, W are vector spaces. Prove that Z is a vector space over F with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$

To prove that Z is a vector space over F, we need to prove that Z satisfies every vector space axiom.

Assume that V, W are vector spaces.

WTS that Z is also a vector space by verifying the axioms.

Proof:

Let
$$a = (x_1, y_1), b = (x_2, y_2)$$
 with $x_1, x_2 \in V, y_1, y_2 \in W$.

Since we know x and y are vector spaces, we can perform commutative property.

$$x+y=(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)=(x_2+x_1,y_2+y_1)=y+x.$$

Hence, Z holds for commutative property.

Let
$$c = (x_3, y_3)$$
.

$$(a+b)+c = (x_1+x_2, y_1+y_2) + (x_3, y_3) = (x_1+x_2+x_3, y_1+y_2+y_3) = (x_1, y_1) + (x_2+x_3, y_2+y_3).$$

Hence, Z holds for associative property.

Next, we want to show the additive identity exists,

 $b + 0 = (x_2, y_2) + (0, 0) = (x_2 + 0, y_2 + 0)$ Since x_2, y_2 are elements of a vector space:

$$(x_2 + 0, y_2 + 0) = (x_2, y_2)$$

Next, we want to show that for each element in Z, there's an additive inverse. Let f be an element in Z.

$$a + f = 0$$

$$(x_1, y_1) + f = (0, 0) f = (0 - x_1, 0 - x_2) = (-x_1, -y_1).$$

Hence, for each element in Z, there's an additive inverse.

We want to show that 1a = a. $1 * (x_1, y_1) = (1 * x_1, 1 * y_1) = (x_1, y_1)$ (Scalar of one property for elements x_1, y_1)

Hence, scalar of one property holds for Z.

Let $i, j \in F$.

Next, we want to show that (ij)a = i(ja).

Since, elements in a, x_1, y_1 , are in a vector space:

$$(ij)a = (ij)(x_1, y_1) = (ijx_1, ijy_1) = i(jx_1, jy_1) = i(jx).$$

Hence, this vector space property holds for Z.

Next, we want to show that scalar distribution holds for Z.

$$i(a + b) = i((x_1 + y_1, x_2 + y_2)) = (ix_1 + iy_1, ix_2 + iy_2) = (ix_1, ix_2) + (iy_1, iy_2) = ia + ib$$
. Hence, scalar distribution holds for Z.

Finally, we want to show that for pairs of elements in a field, scalar distribution holds for Z.

Let $j \in F$.

$$(i+j)a = (i+j)(x_1, x_2) = ((i+j)x_1, (i+j)x_2) = (ix_1+jx_1, ix_2+jx_2) = (ix_1, ix_2) + (jx_1, jx_2) = ia + ja.$$

Hence, for pairs in F, scalar distribution holds.

Since all the axioms hold for Z, Z is a vector space. \square

6. (Section 1.2 Question 20)

Let V denote the set of all real-valued functions f defined on the real line such that f(1) = 0. Prove that V is a subspace of P(x).

WTS $(V, + *) / \mathbb{R}$ is a subspace of P(x).

Suppose that $f,g \in V$. WTS that (f + g) is $\in V$.

Proof:
$$// (f + g)(1) = f(1) + g(1) = 0 + 0 = 0.$$

Since the output is 0 and (f + g) is in V, V is closed under vector addition and contains the zero vector.

Let c be a scalar $\in \mathbb{R}$. cf = cf(1) = c * 0 = 0. Since cf is in V, V is closed under scalar multiplication.

Hence, V is a subspace of all polynomials. \square

7. (Section 1.3 8af)

(a)
$$W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2, a_3 = -a_2\}$$

Determine if W_1 is a subspace under $\in \mathbb{R}^3$.

To show that W_1 is a subspace under \mathbb{R}^3 , we need to show that the zero vector is in W_1 and W_1 is closed under scalar multiplication and vector addition.

First,
$$(0, 0, 0) : 0 = 3 * 0 \text{ and } 0 = -0 = 0.$$

Next, assume that $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ are in W_1 .

Then $x_1 = 3x_2$ and $x_3 = -x_2$ and $y_1 = 3y_2$ and $y_3 = -y_2$

The sum of the two vectors would be, $x + y = (x_1 + y_1, x_2 + y_2, x_3, y_3)$.

Which means: $x_1 + y_1 = 3(x_2 + y_2)$ and $x_3 + y_3 = -(x_2 + y_2)$

Since $x_1 + y_1 = 3x_2 + 3y_2 = 3(x_2 + y_2)$ and $x_3 + y_3 = -x_2 + (-y_2)$, then W_1 is closed under vector addition.

Next, let $c \in F$. Assume that $x = (x_1, x_2, x_3)$ is in W_1 . Then, $cx = (cx_1, cx_2, cx_3)$ which would be $cx_1 = 3cx_2$ and $cx_3 = -cx_2$.

Since $cx = c*(x_1 = 3x_2) = cx_1 = 3cx_2$ and $c*(x_3 = -x_2) = cx_3 = -cx_2$ which means W_1 is closed under scalar multiplication.

Hence, since all of the requirements are met, W_1 is a subspace of \mathbb{R}^3 .

(b) (1.3 8f)

 $W_6 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 5a_1^2 - 3a_2^2 + 6a_3^2 = 0\}$

First, check for zero vector:

$$(0,0,0) = 5 * 0 - 3 * 0^2 + 6 * 0^2 = 0 = 0.$$

Next, assume that $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ are in W_6 . Then $5x_1^2 - 3x_2^2 + 6x_3^2 = 0$ and $5y_1^2 - 3y_2^2 + 6y_3^2 = 0$.

The sum of the 2 vectors $\mathbf{x} + \mathbf{y}$ are: $5(x_1+y_1)^2 - 3(x_2+y_2)^2 + 6(x_3+y_3)^2 = 5x_1^2 + 10x_1y_1 + 5y_1^2 - 3x_2^2 - 6x_2y_2 - 3y_2^2 + 6x_3^2 + 6y_3^2 + 12x_3y_3$. However, since there are extra terms like $10x_1y_1, -6x_2y_2$, and $12x_3y_3$, it does not equal the sum of expanding \mathbf{x} and \mathbf{y} . Since the sum doesn't satisfy the equation, W_6 is not closed under addition.

Let c be \in F. Assume that $x = (x_1, x_2, x_3)$ is in W_6 . $c * x = c(5x_1^2 - 3x_2^2 + 6x_3^2 = 0) = 5cx_1^2 - 3cx_2^2 + 6cx_3^2 = 0$.

 $(cx_1, cx_2, cx_3) = 5x_1^2 - 3x_2^2 + 6x_3^2 = 0$. Since these two equations match, W_6 is closed under scalar multiplication.

Hence, W_6 is not a subspace of \mathbb{R}^3 .

8. (Section 1.3 11) Is the set $W = \{f(x) \in P(F) : f(x) = 0 \text{ or } f(x) \text{ has degree n} \}$ a subspace of P(F) if $n \ge 1$?

Let $f(x) = 1 + x + x^2 + x^3 + \dots + x^{n-1} + x^n$ and $g(x) = 1 + x + x^2 + x^3 + \dots + x^{n-1} - x^n$ s.t. n > 1. $f \in W$, $g \in W$.

Let $z(x) = f(x) + g(x) = 2 + 2x + 2x^2 + ... 2x^{n-1}$. Since z(x) has a degree of n-1 instead of n, it is not in the set of W. Thus, W is not a subspace of P(F).

- 9. (Section 1.3 19) Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
 - \rightarrow) If $W_1 \cup W_2$ is a subspace, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Contrapositive: If $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$, then $W_1 \cup W_2$ is not a subspace.

Assume that $W_1 \subseteq W_2$, then $\exists x \in W_1$ s.t. $x \notin W_2$. Also, $\exists y \in W_2$ s.t. $x \notin W_1$.

WTS $W_1 \cup W_2$ is not a subspace.

We will show that W_1 and W_2 are not closed under vector addition.

WTS $(x + y) \notin W_1 \cup W_2$.

FSOC, assume for some element z, that x + y = z s.t. $z \in W_1 \cup W_2$.

We need to prove by cases z being in W_1 and W_2 .

Case 1: Assume that $z \in W_1$.

$$x + y = z$$

$$y = z - x$$

Since we know that the sum of z and -1 * x is in W_2 , $y \in W_1$. However, that is a contradiction. y cannot be in and not in W_1 .

Case 2: Assume that $z \in W_2$. x + y = z

$$x = z - y$$

Similarly to Case 1, x is in W_2 . That is also a contradiction.

Hence, by cases, the union of $W_1 \cup W_2$ is not closed by addition.

 \leftarrow) If $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then $W_1 \cup W_2$ is a subspace.

Let's prove by cases.

Case 1): Assume that W_1 and W_2 are subspaces and $W_1 \subseteq W_2$. WTS $W_1 \cup W_2$ is a subspace. Since $W_1 \subseteq W_2$, then $W_1 \cup W_2 = W_2$. Which means $W_1 \cup W_2$ is a subspace.

Case 2): Assume that W_1 and W_2 are subspaces and $W_2 \subseteq W_1$.

WTS $W_2 \cup W_1$ is a subspace. Since $W_2 \subseteq W_1$, then $W_2 \cup W_1 = W_1$.

Which means $W_2 \cup W_1$ is a subspace.

Hence, we have proved both sides. \square

10. (Section 1.3 20)

Prove that if W is a subspace of a vector space V and $w_1, w_2, ..., w_n$ are in W, then $a_1w_1 + a_2w_2 + ... + a_nw_n \in W$ for any scalars $a_1 + a_2 + ... + a_n$.

Assume that W is a subspace of vector space V and $w_1, w_2, ..., w_n$ are in W.

WTS $a_1w_1 + a_2w_2 + ... + a_nw_n \in W$ for any scalars $a_1 + a_2 + ... + a_n$.

Based on scalar multiplication principle for subspaces, $a_1w_1, a_2w_2, ..., a_nw_n$ are in W.

If all of the scalars are zero, then you have the zero vector.

Since we have $a_1w_1 + a_2w_2 + ... + a_nw_n$, we are adding vectors which satisfies the vector addition property of subspaces.

Hence,
$$a_1w_1 + a_2w_2 + ... + a_nw_n \in W$$
. \square

11. (Section 1.3 21) Show that the set of convergent sequences (a_n) is a subspace of vector space V.

WTS the set of convergent sequences is a subspace of V.

Let a_n, b_n be sequences in the set of convergent sequences such that $\lim_{n\to\infty} a_n = L_1$ and $\lim_{n\to\infty} b_n = L_2$.

$$a_n + b_n$$
: $\lim_{n\to\infty} a_n + b_n = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = L_1 + L_2$.

The set is closed under vector addition.

Let c be a scalar \in F.

$$ca_n$$
: $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n = c^*L_1$.

Since the scalar product of a convergent sequence also converges, then the set is closed under scalar multiplication. $\lim_{n\to\infty} 0 = 0$. Since the zero vector is in the set, the set is a subspace of V.

Since all the properties of a subspace are verified for the set of convergent sequences, the set convergent sequences is a subspace of V. \Box

12. (Section 1.3 23)

Let W_1 and W_2 be subspaces of vector space V.

(a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .

Assume that $W_1 + W_2$ is a subspace.

Proof: If W_1 and W_2 are subspaces, they both contain the zero vector. $0 \in W_1$, $0 \in W_2$.

$$0 + 0 = 0 \in W_1 + W_2$$

Let $w_1 \in W_1$ and $w_2 \in W_2$ and $s = w_1 + w_2$ and let $t = v_1 + v_2$ s.t. $v_1 \in W_1$ and $v_2 \in W_2$. Let s and t be in $W_1 + W_2$

Then
$$s + t = (w_1 + w_2) + (v_1 + v_2) = (w_1 + v_1) + (w_2 + v_2).$$

Since W_1 and W_2 are vector spaces, $w_1 + v_1 \in W_1$ and $w_2 + v_2 \in W_2$ due to closure of vector addition. Since that is the case, s + t is in both W_1 and W_2 which is $W_1 + W_2$.

Let c be a scalar $\in F$. Since scalar multiplication is closed in both W_1 and W_2 , $cw_1 \in W_1$ and $cw_2 \in W_2$, so $cs = cw_1 + cw_2 \in W_1 + W_2$. Hence, $W_1 + W_2$ contains both W_1 and W_2 . \square

(b) Prove that any subspace that contains both W_1 and W_2 must also contain $W_1 + W_2$.

Contrapositive: If a subspace doesn't contain $W_1 + W_2$, then it doesn't contain W_1 or W_2 .

FSOC, let's assume that if subspace doesn't contain $W_1 + W_2$, but it contains both W_1 and W_2 .

Let S a subspace which doesn't contain the subset $W_1 + W_2$ but contains W_1 and W_2 .

Let $w_1 \in W_1$ and let $w_2 \in W_2$.

Since, $W_1 \subseteq S$ and $W_2 \subseteq S$, $w_1 + w_2 \in S$. This means that there

are values in S such that $w_1 + w_2 \in W_1 + W_2$ due to closure in vector addition.

However, that is a contradiction since $W_1 + W_2 \in S$, but we assumed that $W_1 + W_2 \notin S$

Hence, for any subset that contains both W_1 and W_2 must also contain $W_1 + W_2$. \square

13. Let F be a field. Prove that the set $W = \{A \in M_{n \times n}(F) | A^T = -A\}$ of skew symmetric matrices is a subspace of $M_{n \times n}(F)$.

Proof:

Let arbitrary matrices $A, B \in W$.

WTS that the set W is a subspace of $M_{n \times n}(F)$..

Case 1: Zero vector

If A = 0, then the transpose of A is equal to the scalar multiplication of -1 with A.

Case 2: Since $A^t = -A$ and $B^t = -B$, then $(A + B)^t = A^t + B^t = -A - B$.

Since, vector addition still maintains the condition of the set, this set is closed under vector addition.

Let
$$c \in F$$
. Since $A^t = -A$, then $(cA)^t = c(A^t) = c(-A) = -cA$.

Since, scalar multiplication still maintains the condition of the set, this set is closed under scalar multiplication.

Hence, the set is closed under scalar multiplication and vector addition so it is a subspace of $M_{n \times n}(F)$. \square

14. (Section 1.4 1)

- (a) True. The zero vector can be possible if all the scalars are zero.
- (b) False. The empty set spans the zero vector.
- (c) True, the span of a subset equals the intersection of all subspaces of V that contain S.
- (d) False, you cannot multiply zero to the equation.
- (e) True, you can add a multiple of one equation with another

- (f) False, it can have infinite or zero solutions.
- 15. (Section 1.4 10) Show that if

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices.

The transpose of the three matrices above is its original self. Hence, they are symmetric matrices.

WTS that the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices. Let S be an arbitrary symmetric 2×2 matrix such that

$$S = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$$

$$S = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Since S is a linear combination of the three symmetric matrices and is symmetric, we can conclude that the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices. \square

- 16. (Section 1.4 12) Show that a subset W of a vector space V is a subspace of V if and only if span(W) = W.
 - \leftarrow) If span(W) = W, then W is a subspace of vector space V.

Assume that W is also the span of W.

WTS that W is also a subspace of vector space V.

Proof: If $W = \emptyset$, then W contains 0.

Let x be an element in W s.t., $x = c_1w_1 + c_2w_2 + c_3w_3 + ...c_nw_n$ s.t. $c_1, c_2, c_3, ..., c_n \in F$ and $w_1, w_2, ..., w_n \in W$.

And let $y = a_1y_1 + a_2y_2 + a_3y_3 + ... + a_ny_n$ s.t. $a_1, a_2, a_3, ..., a_n \in F$ and $y_1, y_2, ..., y_n \in W$.

If $c_1, c_2, c_3, ..., c_n = 0$, then the zero vector is in W.

 $x + y = c_1 w_1 + a_1 y_1 + ... + c_n w_n + a_n y_n$

Let c be a scalar \in F. dx = $(dc_1)w_1 + (dc_2)w_2 + ... + (dc_n)w_n$

x + y, and dx are linear combinations of vectors in W, so x + y and dx are in span(W). Additionally the zero vector is in W. Hence, span(W) is a subspace of V.

 \rightarrow) If W is a subset of vector space V is also a subspace of V, then span(W) = W.

Assume that W is a subspace of V.

WTS span(W) = W.

Proof:

We know that the span of W will also be a subspace of V since it is closed under vector addition and scalar multiplication.

Hence, since span(W) is the linear combinations of W, $W \subseteq span(W)$. Hence, W = span(W).