Contents

1	Das Unternehmen Nürnberger Versicherung	1
1.1	Vorstellung Unternehmen	1
1.2	Vorstellung Abteilung	2
1.3	Vorstellung Aufgabe	3
2	Projektplanung	4
2.1	Projektziele	4
2.2	Technologie Auswahl	6
2.2.1	Frontend: Angular	6
2.2.2	Backend: Spring Boot vs ASP.Net	6
2.2.3	Datenbank: MSSQL vs Oracle	7
2.2.4	Architektur: Hexagonal	7
3	Entwicklung	8
3.1	Backend	8
3.1.1	Projektstruktur	8
3.1.2	Entitäten-Implementierung	8
3.1.3	Interface-Initialisierung	8
3.1.4	Service-Implementierung	8
3.1.5	Controller-Implementierung	8
3.2	Frontend	8
3.3	Datenbank	8
4	Bewertung der Technologien	9
4.1	Angular	9
4.2	Spring Boot/Java	9
4.3	MSSQL	9
5	Bewertung und Bezug	0
6	Fazit 1	1

Contents		ii

List of	Figures	8	 			 												 1	2
List of	Tables		 			 						•	•	•	•			 1	3
List of	Listing	\mathbf{s}	 	•	•	 	•		•						•		•	 1	4
Bibliog	graphy		 	•	•	 	•		•						•		•	 1	5
Glossa	$\mathbf{r}\mathbf{v}$																	10	հ

Das Unternehmen Nürnberger Versicherung

1.1 Vorstellung Unternehmen

Mein Praktikum absolvierte ich vom 1. September 2024 bis zum 25. Januar 2025 bei der Nürnberger Versicherung. Die Nürnberger Versicherung (im Folgenden 'Nürnberger') bietet Finanzdienstleistungen an. Dazu zählen insbesondere wie der Name schon sagt Versicherungen. Zu diesen zählen unter anderem Lebensversicherungen, Krankenversicherungen, Rentenversicherungen und Sachversicherungen. Unter dem Dach der Nürnberger Beteiligungs-AG bestehen mehrere spezialisierte Gesellschaften: Die Nürnberger Lebensversicherung AG bietet Lösungen zur finanziellen Vorsorge an, während die Nürnberger Allgemeine Versicherungs-AG Sachversicherungen abdeckt. Die Garanta Versicherungs-AG fungiert als berufsständischer Versicherer für das deutsche Kraftfahrzeuggewerbe. Zur Schadensregulierung ist die Nürnberger Sofortservice AG tätig, und der Nürnberger AutoMobil Versicherungsdienst GmbH unterstützt Autohäuser mit Versicherungsdienstleistungen. Die Nürnberger Krankenversicherung AG bietet private Krankenversicherungen, während die Nürnberger Pensionsfonds AG und die Nürnberger Pensionskasse AG Leistungen für die betriebliche Altersversorgung bereitstellen. Zusätzlich erbringt die Fürst Fugger Privatbank KG Private-Banking-Dienstleistungen, und die Nürnberger Communication Center GmbH übernimmt Callcenter-Aufgaben. Die CodeCamp GmbH dient als Inkubator für Finanz- und Versicherungsdienstleistungen, während die Nürnberger evo-X GmbH kundenorientierte Prozesse entwickelt und berät. Die Nürnberger Beamten Allgemeine Versicherung AG bietet spezielle Tarife für den öffentlichen Dienst, und die Nürnberger Beamten Lebensversicherung AG, die sich in Abwicklung befindet, nimmt kein Neugeschäft mehr auf. [Wiki 24]

1.2 Vorstellung Abteilung

Wir in der Abteilung Anwendungsentwicklung-Leben-Produkte kurz AE-Leben-Pro entwickeln und warten die Software für die Lebensversicherungen. Dazu zählt primär die Tarif-/Produktverwaltung und versicherungsmathematische Berechnungen. Diese werden in Programmen auf sogenannten Rechenkernen durchgeführt. Auf diesen Rechenkernen haben wir zum einen SST-Klassik. Dies ist ein C-Programm, dass für das DB2-Bestandführungssystem am IBM-Mainframe entwickelt wurde. Die Daten, also die Tarifinformationen, werden hier indirekt aus einer Produktdatenbank bezogen. Zusätzlich haben wir noch SST-Referenz. Wie der Name schon andeuten lässt ist entstand SST-Referenz aus SST-Klassik. Es ist ebenfalls ein C-Programm, dient jedoch als Test für das neuere Bestandführungssystem Life Factory. Life Factory ist eine Client-Server Anwendung. Zugehörig zur Life Factory ist der Rechenkern Life Produkt. Das ist ein Java Programm. Außerdem haben wir noch drei weitere Systeme, dazu gehört die Produktdatenbank, Solvency II und der IBM i (früher AS400). Die Produktdatenbank ist eine DB2-Datenbank, in der wirklich alle wichtigen Produktinformationen aller Tarife gespeichert werden. Es ist also sozusagen der Kern von AE-Leben. Solvency II ist ein europäisches Aufsichtsregime für Versicherungen, das seit dem 1. Januar 2016 gilt. Es legt moderne Solvabilitätsanforderungen fest, die auf einer ganzheitlichen Risikobetrachtung basieren. Vermögenswerte und Verbindlichkeiten werden nach Marktwerten bewertet. Ziel ist es, das Insolvenzrisiko von Versicherern zu verringern und das Aufsichtsrecht im europäischen Binnenmarkt zu harmonisieren. [Fina 16] Für diesen verpflichtenden Nachweise liefern wir eine Modellrechnung, das sogenannte Leistungsspektrum erster Ordnung (LS1). Hier wird der gesamte Bestand der Nürnberger Leben bewertet. Die LS1-Programme sind in Java geschrieben und rufen sowohl SST-Klassik als auch SST-Referenz auf. Die Verträge werden über XML-Schnittstellen geliefert. Der IBM i ist ein mittelgroßer Rechner, auf dem verschieden kleineren Anwendungssystem laufen, die Verträge mit Produkten verwalten, die einfacher zu handhaben sind, als die restlichen Tarifdaten. Dieser soll aber bis 2030 abgeschaltet werden. Die Programme auf dem IBM i sind alle in COBOL geschrieben und dementsprechend schon recht alt.

1.3 Vorstellung Aufgabe

Die Infrastruktur der Nürnberger Versicherung besteht schon seit einiger Zeit. Die meisten Programme sind in C oder COBOL geschrieben. Es werden überflüssige Felder in den Datenbanken gespeichert und viele Workflows sind nicht mehr zeitgemäß und eher unhandlich. Die Life Factory entstand als Antwort auf diese Probleme. Jedoch kann sie nicht alles lösen. Es gibt immer noch keine angenehme, zuverlässige Variante schnell und einfach neue Tarife oder Produkte zu erstellen oder diese zu ändern. Zusätzlich kommt jeden November noch die Überschussneuberechnung hinzu. Diese ist ein sehr aufwendiger Prozess, der viel Zeit in Anspruch nimmt, da viele Abschnitte dieser Berechnung nicht automatisiert sind und dementsprechend von Hand durchgeführt und überprüft werden müssen. Meine Aufgabe besteht im groben darin genau diese Möglichkeit zu schaffen. Eine Webentwicklung die es ermöglicht die Inhalte der Tarife und Produkte sowie deren Sub-Entitäten zu erstellen, zu ändern, zu löschen und anzuzeigen. Zusätzlich ist es geplant in einer neuen Datenbank die Daten der Produktdatenbank (PDB) gekürzt zu speichern. Also bereits redundante und unnötige Felder sowie Tabellen zu entfernen. Die Aufgabe hier ist es die Entwicklung der Datenbank, des Backends sowie des Frontends zu übernehmen und alleine durchzuführen.

Projektplanung

2.1 Projektziele

Die groben Projektziele lassen sich aus der Projektaufgabe ableiten. Die genauen Ziele sind die Implementierung folgender Entitäten: Tarif, Tarifbaustein, Tarifbaustein-Pricing, Tafelsystem, Überschuss, Produkt und Produkt-Pricing. Ein Tarif besteht jeweils aus mehreren Tarifbausteinen. Ein Tarifbaustein wiederum aus mehreren Tarifbaustein-Pricings. Tarifbausteine können null-drei Tafelsysteme und Überschüsse haben. Ein Produkt besteht aus mehreren Produkt-Pricings. Neben den Grundfunktionen wie CRUD (Create, Read, Update, Delete), die alle Entitäten haben sollen, gibt es noch spezielle Funktionen. Ein Tarif sowohl als auch ein Produkt sollen deaktiviert werden können. Dies dient ebenfalls als Voraussetzung für eine Löschung. Bei der Löschung von Tarifen soll darauf geachtet werden, dass Überschüsse und Tafelsysteme die keinem Tarifbaustein mehr zugehörig sind auch gelöscht werden um keine bezugslose Entitäten zu speichern. Dementsprechend sollen alle Kind-Entitäten nur mit der Erstellung eines Vater-Elements angelegt werden können. Bei der Erstellung neuer Tarife soll es ebenfalls möglich sein einen bereits bestehenden Tarif als Vorlage zu verwenden. Hier ist es wichtig, dass nicht nur die direkten Tarifinformationen, sondern auch alle Daten der zugehörigen Kinder-Entitäten übernommen werden. Zusätzlich zu den bereits genannten Funktionen muss es möglich sein die Inhalte der Entitäten zu exportieren. Dies geschieht in Form einer C-Datei. Die C-Datei hat folgende Struktur:

```
#include "example.h"

struct uesy uesy[] = {
    // Property names in order of appearance
```

```
5 { 0, 4, 5, 337 },
6 { 0, 3, 4, 338 }
7 };
8 9 long uesyCount = 323;
```

Listing 2.1: C-Datei Beispiel

Anzumerken ist, dass in der C-Datei deaktiviert markierte Tarife oder Produkte nicht exportiert werden sollen. Zusätzlich sollen nur die Inhalte der aktuell ausgewählten Entität übernommen werden, also ohne Kind Daten. Diese Funktion ist besonders wichtig, da die Inhalte der C-Datei von anderen Anwendungen benötigt werden. Besonders sticht hier SST-Referenz heraus. Die letzten Funktionalitäten dienen allein den Überschüssen. Die Überschüsse werden wie bereits im vorherigem Kapitel erwähnt, jedes Jahr neu berechnet. Dementsprechend benötigt es diverse Funktionen um dies zu erleichtern. Dazu gehört die neu Berechnung des Gesamtzins. Die Umsetzung ist so geplant, dass der neue Gesamtzins als Input eingegeben wird. Nun werden alle Überschüsse mit einem neuen Eintrag angelegt, der bis Ende des folge Jahre gültig ist. Die gültigBis Property des vorherigen Eintrags wird folglich auf das Ende des aktuellen Jahres geändert. Der neue Eintrag ist letztlich eine vollständige Kopie des alten Eintrags, jedoch mit dem neuen Gesamtzins. Dies ist der Fall, falls sich die Gesamtverzinsung in einem Jahr ändert. Nun gibt es noch die Möglichkeit, dass sich der Gesamtzins nicht ändert. In diesem Fall müssen nicht alle Einträge geändert werden, sondern nur ausgewählte. Dafür muss es möglich sein einen Eintrag fortzuschreiben wie bei der Änderung des Gesamtzins. Also ein neuer Eintrag mit neuer Gültigkeit und aktualisieren des alten Eintrags. Im neuen Eintrag werden dann die Werte die sich geändert haben, manuell angepasst. Nach der Anpassung müssen alle unveränderten Einträge ebenfalls fortgeschrieben werden. Also muss es eine Funktion geben die alle aktuellen Einträge kopiert und die Gültigkeit erneuert.

2.2 Technologie Auswahl

2.2.1 Frontend: Angular

2.2.2 Backend: Spring Boot vs ASP.Net

Im weiteren Verlauf der Planung wurde darüber diskutiert, ob die Umsetzung des Backends lieber mit Java oder C# erfolgen soll. Sowohl Java als auch C# sind objektorientierte Programmiersprachen die ausreichend Tools zur Entwicklung von Webund CRUD- (Create, Read, Update, Delete) Anwendungen bieten. Das heißt das jegliche Sprache für die von uns definierten Projektziele mehr als ausreichend ist. Auf der Seite von Java stehen Spring Boot für die Web Funktionalität und Spring Data JPA für die Abstrahierung der Datenbank zur Verfügung. C# auf der anderen Seite bietet ASP.Net Core für die Web Funktionalität und Entity Framework Core für die Abstrahierung der Datenbank. Da ich bereits reichlich Erfahrung in der Entwicklung mit C#, sowie ASP.Net und EFC habe, war dieses auch meine persönlich Präferenz für das Projekt. Innerhalb der Nürnberger ist jedoch C# nicht weitreichend genutzt und stattdessen wird Java bevorzugt. Dieser Meinung ist auch mein Betreuer, jedoch lies er mir die Option offen, mit ausreichend Argumenten, auch C# zu verwenden. Dementsprechend recherchierte ich die Vor- und Nachteile beider Technologien und stellte diese gegenüber. Es gibt zwei starke Argumente die für die Verwendung von der Microsoft Umgebung rund um C# sprechen. Hier ist das Hauptaugenmerk auf meine weitreichende Erfahrung in der Entwicklung mit C# und ASP.Net zu legen. Die nicht notwendige Einarbeitung in eine neue Sprache und Umgebung würde definitiv die Entwicklung beschleunigen. Ebenso würde das Vorwissen vermutlich auch die Qualität des Codes erhöhen, da ich bereits Methoden kenne, wie man Architektur, Entität-Beziehungen und Datenbankzugriffe effizient umsetzt. Ein weiterer Vorteil ist C# leicht bessere Performance und deutlich besseres Speichermanagement. // TODO Bild einfügen und beschreiben https://benchmarksgameteam.pages.debian.net/benchmarksgame/fastest/csharp.html Das Hauptargument auf der Seite von Java ist die weitreichende Nutzung innerhalb der Nürnberger Versicherung. Dies resultiert in zu einem besseren Support innerhalb des Unternehmens. Ebenso ist das maintaining dieser Anwendungen simpler, da die meisten Entwickler hier bereits Erfahrung in Java haben. Dementsprechend ist es für einen möglichen nachfolgenden Entwickler leichter in das Projekt einzusteigen und gegebenenfalls zu übernehmen. Das war auch letztlich der überzeugenden Punkt für die Verwendung

Chapter 2. Projektplanung

7

von Java. Die Argumente für C# weg von Java waren letztlich nicht stark genug. Zusätzlich bedeutet das für mich auch eine neue Herausforderung, in der ich eine neue zusätzliche Sprache und Umgebung lernen kann.

2.2.3 Datenbank: MSSQL vs Oracle

Der nächste Schritt war die Auswahl der Datenbank. Hier standen MSSQL und Oracle zur Auswahl.

2.2.4 Architektur: Hexagonal

Entwicklung

In this chapter, we're actually using some code!

3.1 Backend

- 3.1.1 Projektstruktur
- 3.1.2 Entitäten-Implementierung
- 3.1.3 Interface-Initialisierung
- ${\bf 3.1.4~Service\text{-}Implementierung}$
- 3.1.5 Controller-Implementierung
- 3.2 Frontend
- 3.3 Datenbank

Bewertung der Technologien

- 4.1 Angular
- 4.2 Spring Boot/Java
- 4.3 MSSQL

Bewertung und Bezug

Fazit

List of Figures

List of Tables

List of Listings

2.1	C-Datei Beispiel																				_								_			_	_
	C Date Descriptor	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Bibliography

```
[Fina 16] B. für Finanzdienstleistungsaufsicht. "Solvency II". https://www.bafin.de/DE/Aufsicht/VersichererPensionsfonds/Allgemeines/SolvencyII/solvency_II_node.html, 2016. Accessed: (14.12.2024).
```

[Wiki 24] Wikipedia. "Nürnberger Versicherung". https://de.wikipedia.org/wiki/NÃrnberger_Versicherung, 2024. Accessed: (15.11.2024).

Glossary

library A suite of reusable code inside of a programming language for software development. i

shell Terminal of a Linux/Unix system for entering commands. i