

Instruction Memory, Register File, Data Memory

COEN 122 Lab 3

Grading

• Lab 1-4 (10% each) 40%

• Final Project 60%

Late Policy

 Late submissions submitted within 24 hours after the deadline receive 50% credit. After 24 hours, no credit is given.

Demo

- Labs submitted with no demo will receive no credit. Please demo to me before the lab is due.
- You can demo in either TAs Office Hours

Lab 3 Overview

- Objective: Implement a Instruction Memory, Register File, and Data Memory in Verilog using Vivado
- For the first 4 labs, you will be working individually, but will be working in teams for the project

Helpful website: http://www.asic-world.com/verilog/veritut.html

Design Flow

- Write code for logic block (e.g. Instruction Memory, Register File, Data Memory)
- Write test bench to verify proper function of logic block
- Run Synthesis
- Run Simulation
- View waveform, verify results

Instruction Memory

Holds 32-bit values for pipeline instructions

 In design file, hardcode values and in testbench file, read those values

Register File

 If write signal is high, datain should be written to the address input, rd

 In testbench file, write values into memory in testbench, then read them back out

Data Memory

- $2^16 = 6536$
 - Only use the lower 16 by writing address[15:0]
- Similar to the register file, if the write is high, data_in will be written to the data at the specific address input
- If read is high, then data_out will contain the data at the address

Important Constructs

```
Test Bench:
reg clock;
initial
begin
     clk = 0:
     forever $5 = \sim clk:
end
initial
begin
$finish;
end
```

```
Design Source:
input clock;
always@(posedge clock)
begin
//...
end
```

- 2d array:
 - reg [31:0] data [15:0]