一、随机事件与概率。

公式名称↩	公式表达式₽
德摩根公式₽	$\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$
古典概型↩	$P(A) = \frac{m}{n} = \frac{A \odot 2 \circ 0 = A \odot 2}{4 \odot 2} $ 基本事件总数
几何概型₽	$P(A) = \frac{\mu(A)}{\mu(\Omega)}$,其中 μ 为几何度量(长度、面积、体积) ω
求逆公式₽	$P(\overline{A}) = 1 - P(A) \varphi$
加法公式。	P(A∪B)=P(A)+P(B)-P(AB)↔ 当P(AB)=0时,P(A∪B)=P(A)+P(B)↔
减法公式。	$P(A-B)=P(A)-P(AB)$, $B \subset AB \uparrow P(A-B)=P(A)-P(B) \Leftrightarrow$
条件概率公式↓ 与乘法公式↓	$P(B A) = \frac{P(AB)}{P(A)} \qquad P(AB) = P(A)P(B A) = P(B)P(A B) \Leftrightarrow$ $P(ABC) = P(A)P(B A)P(C AB) \Leftrightarrow$
全概率公式₽	$P(A) = \sum_{i=1}^{n} P(B_i) P(A B_i)^{e^{i}}$
贝叶斯公式+ (逆概率公式)+	$P(B_i A) = \frac{P(B_i)P(A B_i)}{\sum_{i=1}^{n} P(B_i)P(A B_i)}$
两个事件√ 相互独立↩	$P(AB) = P(A)P(B)$; $P(B A) = P(B)$; $P(B A) = P(B \overline{A})$; φ

分布名称₽	密度函数₽	分布函数₽
指数分布↩ X~E(λ)↩	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$
正态分布。 x~N(μ, σ²)。	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \varphi^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$
标准正态分布↓ x~N(0,1)↓	$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $-\infty < x < +\infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt \varphi$

分布函数→

对连续型随机变量。
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

对离散型随机变量
$$\varphi$$
 $F(x) = P(X \le x) = \sum_{k \le x} P(X = k)$

分布函数与密度函数的重要关系: P(x) = f(x)

4、随机变量函数 Y=g(X)的分布↓

离散型: $P(Y=y_i) = \sum_{g(x_j) = y_i} p_j, i = 1, 2, \dots, \varphi$

连续型: ①分布函数法, ↩

②公式法 $f_Y(y) = f_X(h(y)) \cdot |h'(y)|(x = h(y))$ 期 (x = h(y)) 第 (x = h(y)) 第

三、多维随机变量及其分布。

1、离散型二维随机变量及其分布₽

分布律: $P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \cdots$ 分布函数 $F(X, Y) = \sum_{i \le j} \sum_{i \le j} p_{ij} + \sum_{i \le$

边缘分布律: $p_i = P(X = x_i) = \sum_i p_{ij}$ $p_j = P(Y = y_j) = \sum_i p_{ij} *'$

条件分布律: $P(X=x_i | Y=y_j) = \frac{p_{ij}}{p_j}, i=1,2,\cdots, P(Y=y_j | X=x_i) = \frac{p_{ij}}{p_i}, j=1,2,\cdots$

2、连续型二维随机变量及其分布↔

①分布函数及性质+

分布函数: $F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv +$

②边缘分布函数与边缘密度函数+

分布函数: $F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u,v) dv du$ 密度函数: $f_X(x) = \int_{-\infty}^{+\infty} f(x,v) dv + F_Y(y) = \int_{-\infty}^y \int_{-\infty}^{+\infty} f(u,v) du dv$ $f_Y(y) = \int_{-\infty}^{+\infty} f(u,v) du dv$

③条件概率密度↔

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, -\infty < y < +\infty, \quad f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, -\infty < x < +\infty,$$

3、随机变量的独立性₽

随机变量 X、Y 相互独立 \Leftrightarrow $F(x,y) = F_x(x)F_y(y)$, \leftrightarrow 离散型: $p_{ij} = p_{ij}p_{ij}$,连续型: $f(x,y) = f_x(x)f_y(y) \leftrightarrow$

4、二维随机变量和函数的分布(卷积公式)+

离散型: $P(Z=z_k)=\sum_{i}P(X=x_i,Y=y_j)$ 注意部分可加性 ψ

连续型: $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy + C$

四、随机变量的数字特征。

1、数学期望+

①定义: 离散型 $E(X) = \sum_{k=1}^{+\infty} x_k p_k$, 连续型 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx \varphi$

②性质: E(C) = C, E[E(X)] = E(X), E(CX) = CE(X), $E(X \pm Y) = E(X) \pm E(Y) + E(XY \pm b) = aE(X) \pm b$, 当 X、Y 相互独立时: E(XY) = E(X)E(Y) (正对逆错)+

2、方差↔

①定义: $D(X) = E[(X - E(X))^2] = E(X^2) - E^2(X) + C$

②性质: D(C) = 0 , $D(aX \pm b) = a^2 D(X)$, $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$ \leftrightarrow 当 X、Y 相互独立时: $D(X \pm Y) = D(X) + D(Y) \leftrightarrow$

3、协方差与相关系数→

①协方差: Cov(X,Y) = E(XY) - E(X)E(Y), 当 X、Y 相互独立时: $Cov(X,Y) = 0 \leftrightarrow 0$

②相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$, 当 X、Y 相互独立时: $\rho_{XY} = 0$ (X, Y 不相关) $\rho_{XY} = 0$ (X, Y 不和

③协方差和相关系数的性质: Cov(X,X) = D(X) , $Cov(X,Y) = Cov(Y,X) + Cov(X_1+X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$, Cov(aX+c,bY+d) = abCov(X,Y) + Cov(x,a) = 0 (a 为常数) , $D(aX\pm bY) = a^2D(X) + b^2D(Y) \pm 2abCov(X,Y) + Cov(X,Y) + Cov(X,X) + Cov($

4、序见随机变量分布的数学期望和方差₩

分布₽	数学期望 EX⊘	方差 DX₽
0-1 分布 b(1, p) ₽	pφ	p(1-p)₽
二项分布 b(n, p)₽	NP.	np(1-p)↔
泊松分布 P(2)₽	λ'	<i>\(\)</i>
均匀分布 U(a,b)₽	$\frac{a+b}{2} \varphi$	$\frac{(b-a)^2}{12} e^{a}$
正态分布 N(μ,σ²)↔	μ*	$\sigma^{2^{\psi}}$
指数分布 e(2)↔	$\frac{1}{\lambda} \varphi$	$\frac{1}{\lambda^2} \varphi$
		91

五、大数定律与中心极限定理。

1、切比雪夫不等式₽

若 $E(X) = \mu$, $D(X) = \sigma^2$, 对于任意 $\varepsilon > 0$ 有 $P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

2、大数定律(普通班不重要): ₽

①切比雪夫大数定律: 若 X;··· X_x相互独立, →

$$E(X_i) = \mu_i, D(X_i) = \sigma_i^2 \stackrel{\triangle}{=} \sigma_i^2 \leq C , \quad \boxed{M} : \quad \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^n E(X_i), (n \to \infty) + \frac{1}{n} \sum_{i=1}^n E(X_i) = \frac{1}$$

②伯努利大数定律: 设 n_A 是 n 次独立试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率,则 $\forall \varepsilon > 0$,有: $\lim_{n \to \infty} P\left(\left|\frac{n_A}{n} - p\right| < \varepsilon\right) = 1$

③辛钦大数定律:若 X_1, \dots, X_n 独立同分布,且 $E(X_i) = \mu$,则 $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu \cup 0$

3、★中心极限定理₩

①列维一林德伯格中心极限定理:独立同分布的随机变量 $X_i(i=1,2,\cdots)$,均值 为 μ ,方差为 $\sigma^2 > 0$,当 n 充分大时有: $Y_k = (\sum_{k=1}^n X_k - n\mu) / \sqrt{n}\sigma \stackrel{\sim}{\longrightarrow} N(0,1)$

②棣莫弗-拉普拉斯中心极限定理:随机变量 $X \sim B(n,p)$,则对任意 x 有: \leftrightarrow

$$\lim_{n\to\infty} P\{\frac{X-np}{\sqrt{np(1-p)}} \le x\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{r}{2}} dt = \Phi(x) \leftrightarrow$$

③近似计算:
$$P(a \le \sum_{k=1}^{n} X_k \le b) \approx \Phi(\frac{b-n\mu}{\sqrt{n}\sigma}) - \Phi(\frac{a-n\mu}{\sqrt{n}\sigma})$$

六、数理统计的基本概念。

1、总体和样本的分布函数→

设总体 X~F(x),则样本的联合分布函数 $F(x_1,x_2\cdots x_n)=\prod\limits_{k=1}^n F(x_k)$ +

2、统计量↔

样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n\overline{X}^2) + \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{n=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 =$

样本标准差:
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 ,样本 k 阶原点距: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1, 2 \cdots e^k$

样本
$$k$$
 阶中心距: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 1, 2, 3 \cdots + 1$

3、三大抽样分布₽

(1) χ^2 分布:设随机变量 $X \sim B(0,1)$ $(i=1,2,\cdots,n)$ 且相互独立,则称统计量 $\chi^2 = X_1^2 + X_2^2 + \cdots X_n^2$ 服从自由度为n的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n) \leftrightarrow$

性质: ① $E[\chi^2(n)] = n, D[\chi^2(n)] = 2n$ ②设 $X \sim \chi^2(m), Y \sim \chi^2(n)$ 且相互独立,则 $X + Y \sim \chi^2(m+n) + 2\pi$

(2)t分布: 设随机变量 $X \sim N(0,1), Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量:

$$I = \frac{X}{\sqrt{Y/n}}$$
 服从自由度为 n 的 t 分布,记为 $I \sim t(n) \leftrightarrow$

性质: ①
$$E(T) = 0 \ (n > 1), D(T) = \frac{n}{n-2} \ (n > 2)$$
 ② $\lim_{x \to \infty} f_n(x) = \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \frac{1}{2} e^{-\frac{x^2}{2}}$

(3) F分布:设随机变量 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, 且 X与 Y独立,则称统计量

 $F(m,n)=rac{X/m}{Y/n}$ 服从第一自由度为 m,第二自由度为 n 的 F 分布,记为 $F\sim F(m,n)$,性质: 设 $F\sim F(m,n)$,则 $\frac{1}{F}\sim F(n,m)$ \leftrightarrow

七、参数估计。

1.参数估计↔

①定义:用 $\hat{\theta}(X_1,X_2,L_1,X_n)$ 估计总体参数 θ ,称 $\hat{\theta}(X_1,X_2,L_1,X_n)$ 为 θ 的估计量,相应的 $\hat{\theta}(x_1,x_2,\cdots,x_n)$ 为总体 θ 的估计值。 θ

2.点估计中的极大似然估计→

设 X_1, X_2, L X_n 取自X的样本,设 $X \sim f(x, \theta)$ 或 $X \sim P(x, \theta)$,求法步骤:

①似然函数:
$$L(\theta) = \prod_{i=1}^n f(x_i, \theta)$$
(连续型)或 $L(\theta) = \prod_{i=1}^n P_i(x_i, \theta)$ (离散型) +

②取对数:
$$\ln L(\theta) = \sum_{i=1}^n \ln f(x_i, \theta)$$
 或 $\ln L(\theta) = \sum_{i=1}^n \ln p_i(x_i, \theta)$ 中

③解方程:
$$\frac{\partial \ln L}{\partial \theta_1} = 0$$
, L $\frac{\partial \ln L}{\partial \theta_k} = 0$, 解得:
$$\begin{cases} \hat{\theta_1} = \hat{\theta_1}(x_1, x_2, \cdots, x_n) \\ \cdots \\ \hat{\theta_k} = \hat{\theta_k}(x_1, x_2, \cdots, x_n) \end{cases}$$

→ 回 3.估计量的评价标准→

	
THE RESIDENCE OF THE PROPERTY	
(Y1∓4)	$\Omega \hat{ heta}_2 = \hat{ heta}_2(x_1, x_2, L, x_3)$ 是未知参数 $D(\hat{ heta}_1) < D(\hat{ heta}_2)$,则称 $\hat{ heta}_1$ 比 $\hat{ heta}_2$ 有效。
联1生4	如 $\forall \varepsilon > 0$,有 $\lim_{n \to \infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0$ $\exists ($ 或相合估计量 $)$ 。 ε
388	θ 的两个无偏估计量。若 设 $\hat{\theta}$ 。是 θ 的一串估计量,

正态总体中,样本均值 \overline{X} 是 μ 的无偏估计量 ω

修正样本方差 S^2 是 σ^2 的无偏估计量 ω

5. 区间估计 单正杰总体参数的置信区间↔

条件₽	估计₽	枢轴量↩	枢轴量↔ 分布↔	置信水平为1-α的置信区间↔
已知 σ²₽	μω	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \varphi$	N(0,1) 4	$\left(\bar{x}-z_{\alpha / 1}, \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 1}, \frac{\sigma}{\sqrt{n}}\right) \varphi$
未知 σ²₊	μφ	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \varphi$	t(n−1) ∈	$\left(\bar{x}-t_{\infty}(n-1)\frac{S}{\sqrt{n}},\bar{x}+t_{\infty}(n-1)\frac{S}{\sqrt{n}}\right)$
未知 μ •	σ^{2}	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \varphi$	$\chi^2(n-1)$	$\left(\frac{(n-1)S^2}{Z_{a_{1}}^{2}(n-1)}, \frac{(n-1)S^2}{Z_{-a_{1}}^{2}(n-1)}\right)^{4^{2}}$
未知 # ₽	$\sigma^2 \phi$	$\chi^2 = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 +$	$\chi^2(n)\varphi$	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{Z_{\alpha_{k}'}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{Z_{1-\alpha_{k}'}^{2}(n)}\right)^{4}$

八、假设检验。

	- /mai	D4A1A	45#-	± 40.7.√.
+1+	1. 1501	安特罗特万	11) 季/	本概念↓

1	Co. 10 10 10 10 10 10 10 10 10 10 10 10 10	157.357 H 3.775.4. MANZA
		假设检验的统计思想是小概率原理。↩ 小概率事件的概率就是显著性水平α,常取α=0.05,0.01或0.10。↩
	步骤₹	①提出原假设 \mathbf{A} ; ②选择检验统计量 $\mathbf{g}(X_1,\mathbf{L}_n,X_n)$; ③对于 $\mathbf{\alpha}$ 查表找 分位数 λ ,使 $P(\mathbf{g}(X_1,\mathbf{L}_n,X_n)\in W)=\alpha$,从而定出拒绝域 W ; ω ④由样本观测值计算统计量实测值 $\mathbf{g}(x_1,\cdots,x_n)$; 并作出判断: 当实 测值落入 W 时拒绝 \mathbf{A} ,否则认为接受 \mathbf{A} 。 ω