Представимость чисел в виде суммы двух квадратов

Задача 1. Пусть p — простое вида 4k+1, и пусть x=(2k)!. Докажите, что $x^2 \equiv -1 \pmod{p}$.

Задача 2. Пусть p — простое вида 4k+1, и пусть x удовлетворяет сравнению $x^2 \equiv -1 \pmod p$. Докажите, что

- а) $(a+xb)(a-xb) \equiv a^2+b^2 \pmod{p}$ при $a,b \in \mathbb{Z}$;
- **б)** среди чисел вида m+xn, где $m,n\in\mathbb{Z},\,0\leqslant m,n\leqslant \lceil \sqrt{p}\rceil$, найдутся два с равными остатками от деления на p;
- в) найдётся ненулевое число a+bx, делящееся на p, где $a,b\in\mathbb{Z}$, причём $|a|<\sqrt{p}$ и $|b|<\sqrt{p}$;
- $\bf r$) p представимо в виде суммы двух квадратов целых чисел.

Задача 3. Пусть p — простое число вида 4k+3, числа a и b целые и a^2+b^2 делится на p. Докажите, что a делится на p и b делится на p.

Задача 4. Докажите, что произведение чисел, представимых в виде суммы двух квадратов целых чисел, само представимо в виде суммы двух квадратов целых чисел.

Задача 5. Сформулируйте и докажите теорему о том, как по разложению числа на простые множители узнать, представимо ли это число в виде суммы двух квадратов целых чисел.

Функция Эйлера и китайская теорема об остатках

Определение. Определим функцию Эйлера $\varphi(m)$ как количество обратимых элементов в \mathbb{Z}_m .

Задача 6. Докажите, что это определение согласуется с данным в задаче 17 листка 23.

Задача 7. Пусть k и l — взаимно простые натуральные числа. Для каждого натурального nсопоставим элементу \overline{n}_{kl} из \mathbb{Z}_{kl} пару элементов $(\overline{n}_k, \overline{n}_l)$ из $\mathbb{Z}_k \times \mathbb{Z}_l$ (то есть, остатку от деления n на kl сопоставляем пару — остатки от деления n на k и на l). Докажите, что

- **a)** паре $(\overline{0}, \overline{0})$ соответствует только $\overline{0}$;
- **б)** это сопоставление является биекцией между \mathbb{Z}_{kl} и $\mathbb{Z}_k \times \mathbb{Z}_l$;
- в) \overline{n}_{kl} обратимый элемент тогда и только тогда, когда \overline{n}_k и \overline{n}_l обратимые элементы;
- \mathbf{r}) $\varphi(kl) = \varphi(k)\varphi(l)$.

Задача 8. Пусть p — простое, k, m — произвольные натуральные числа. Найдите

a) $\varphi(1)$; 6) $\varphi(p)$; B) $\varphi(p^k)$; Γ) $\varphi(m)$.

Задача 9. (Китайская теорема об остатках)

- а) Пусть натуральные m_1, \ldots, m_k попарно взаимно просты. Докажите, что для любых целых b_1,\ldots,b_k существует такое целое x, что $x\equiv b_1\pmod{m_1},\ldots,x\equiv b_k\pmod{m_k}$, и это x можно единственным образом выбрать так, что $0 \le x < m_1 \cdot m_2 \cdot \ldots \cdot m_k$.
- **б)** Используя функцию Эйлера, явно укажите такое x.

Задача 10. Укажите все целые числа, которые удовлетворяют системе **a)**
$$\begin{cases} x \equiv 3 \pmod{5}; \\ x \equiv 7 \pmod{17}. \end{cases}$$
 б) $\begin{cases} x \equiv 2 \pmod{13}; \\ x \equiv 4 \pmod{19}. \end{cases}$

Задача 11. Найдите такое натуральное число a, что a/2 — точный квадрат, a/3 — точный куб, a/5 — точная 5-я степень.

Задача 12*. Существует ли а) сколь угодно длинная; б) бесконечная арифметическая прогрессия, каждый член которой — степень натурального числа с целым показателем, большим 1?

1	2 a	2 6	2 B	2 Г	3	4	5	6	7 a	7 б	7 в	7 Г	8 a	8 6	8 B	8 Г	9 a	9 б	10 a	10 б	11	$\left \begin{array}{c} 12 \\ a \end{array} \right $	12 б