Ai Edu

План рассказа

- Вероятностные модели генерации текстов
- Рекуррентные нейронные сети
- Обучение RNN
- Типы RNN, многослойные RNN, примеры использования
- Модификации RNN: LSTM, GRU
- Seq2seq-архитектуры

Кодирование текста

При кодировании слов с помощью Word2Vec/FastText:

- Вектор текста это средний вектор его слов
- Вектора текста это средний вектор его слов с TflDf-весами

Можно ли умнее?

Марковские модели

Предположение: наличие конкретного слова в тексте объясняется только k словами, стоящими перед ним

$$p(w_1, \dots, w_n) = p(w_1)p(w_2 | w_1) \dots p(w_n | w_{n-1}, \dots, w_{n-k})$$

Марковские модели

Предположение: наличие конкретного слова в тексте объясняется только к словами, стоящими перед ним

$$p(w_1, \dots, w_n) = p(w_1)p(w_2 | w_1) \dots p(w_n | w_{n-1}, \dots, w_{n-k})$$

Все вероятности (частоты) из правой части формулы можно посчитать по большому корпусу обучающих текстов.

Обычно делают со сглаживанием (чтобы избежать нулевых вероятностей).

Марковские модели

Подробно про марковские цепи: https://www.kdnuggets.com/2019/11/ markov-chains-train-text-generation.html

'I am a master armorer , lords of Westeros , sawing out each bay and peninsula 'Jon Snow is with the Night's Watch . I did not survive a broken hip , a leath 'Jon Snow is with the Hound in the woods . He won't do it . " Please don't' 'Where are the chains , and the Knight of Flowers to treat with you , Imp . "' 'Those were the same . Arianne demurred . " So the fishwives say , " It was Ty 'He thought that would be good or bad for their escape . If they can truly giv 'I thought that she was like to remember a young crow he'd met briefly years be

Идея

- Мы читаем текст последовательно
- Постепенно все лучше понимаем, о чем он

- На вход: слова (текст) $x_1, x_2, \dots, x_n, \dots$
- Читаем слева направо

- На вход: слова (текст) $x_1, x_2, \dots, x_n, \dots$
- Читаем слева направо
- a_t (вектор) накопленная информация после прочтения t элементов

- На вход: слова (текст) $x_1, x_2, \dots, x_n, \dots$
- Читаем слева направо
- a_t (вектор) накопленная информация после прочтения t элементов
- x_t или one-hot вектор, или векторное представление слова (w2v, fasttext)

Обновление состояния ячейки

$$a_t = g_1(W_{ax}x_t + W_{aa}a_{t-1})$$

Обычно $g_1 = tanh$

Получение прогноза

$$y_t = g_2(W_{ya}a_t)$$

Общая картинка (c bias-term)

Общая схема RNN (здесь скрытые состояния обозначены как h_t):

Общая схема RNN (здесь скрытые состояния обозначены как h_t):

Обучение RNN

- Нейронные сети обучаются градиентным спуском (или его модификацией)
- Формула для градиентного спуска:

$$w_{k+1} = w_k - \eta \nabla L(w_k)$$

• Здесь w_k - вектор весов модели на k-й итерации метода, η - learning rate,

 $abla L(w_k)$ - градиент функции потерь на k-й итерации.

Вычисление градиента

Нам нужно уметь вычислять $\nabla L(w)=\{\frac{\partial L}{\partial w_1},\frac{\partial L}{\partial w_2},\dots\}$, то есть производные по каждому весу.

Это делается при помощи метода обратного распространения ошибок.

• Запишем формулы в следующих обозначениях:

$$h_t = f(x_t, h_{t-1}, w_h)$$

$$o_t = g(h_t, w_o)$$

• Функция потерь вычисляется как сумма потерь по всем временным шагам:

$$L(x_1, \dots, x_T, y_1, \dots, y_T, w_h, w_o) = \frac{1}{T} \sum_{t=1}^{T} l(y_t, o_t)$$

• Посчитаем градиент по весу:

$$\frac{\partial L}{\partial w_h} = \frac{1}{T} \sum_{t=1}^{T} \frac{\partial l(y_t, o_t)}{\partial w_h} = \frac{1}{T} \sum_{t=1}^{T} \frac{\partial l(y_t, o_t)}{\partial o_t} \frac{\partial g(h_t, w_o)}{h_t} \frac{\partial h_t}{\partial w_h}$$

• Первый и второй множитель считаются сразу, а третий придется вычислить по формуле (уходим назад во время):

$$\frac{\partial h_t}{\partial w_h} = \frac{\partial f(x_t, h_{t-1}, w_h)}{\partial w_h} + \frac{\partial f(x_t, h_{t-1}, w_h)}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial w_h}$$

Подробности вычисления производных в матричном виде: https://d2l.ai/chapter-recurrent-neural-networks/bptt.html

Типы RNN

Многослойные RNN

Примеры

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Примеры

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparisoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch/S)_{fppf}$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(A) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_X}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since $S = \operatorname{Spec}(R)$ and $Y = \operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{\mathcal{X},...,0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Примеры

```
* Increment the size file of the new incorrect UI_FILTER group information
* of the size generatively.
static int indicate_policy(void)
 int error;
 if (fd == MARN_EPT) {
    * The kernel blank will coeld it to userspace.
   if (ss->segment < mem_total)</pre>
      unblock_graph_and_set_blocked();
    else
      ret = 1;
   goto bail;
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup_works = true;
  for (i = 0; i < blocks; i++) {</pre>
   seq = buf[i++];
   bpf = bd->bd.next + i * search;
   if (fd) {
      current = blocked;
  rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
```

Проблемы с градиентами

- Сигнал теряется по мере прохождения
- Не факт, что получится обучить зависимость финального вектора h_n от первых слов в тексте

Классическая RNN

Виды рекуррентных сетей

- •В LSTM 4 матрицы весов (= 4 слоя) вместо одной (в отличие от RNN)
- •Матрицы весов обозначены желтыми прямоугольниками

LSTM (Long Short-Term Memory)

Neural Network

Layer

Pointwise

Operation

Vector

Transfer

Concatenate

Copy

LSTM: C_t - состояние ячейки

- C_t глобальное состояние ячейки = долговременная память
- h_t локальное состояние ячейки = кратковременная память

В него с каждым временным шагом добавляется некоторая информация, а некоторая забывается

LSTM: f_t - forget layer

• f_t - информация с предыдущих шагов, которую хотим забыть

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

LSTM: учет новой информации

- i_t вектор с "весами" значений, которые будем обновлять (исходя из новой информации на шаге t)
- $ilde{C}_t$ вектор с новой информацией

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

 $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

LSTM: обновление состояния ячейки

Обновляем состояние ячейки: часть забываем (первое слагаемое), часть добавляем (второе слагаемое)

$$C_t = f_t * C_{t-1} + i_t * C_t$$

LSTM: прогноз и обновление h_t

• Чтобы сделать прогноз o_t на текущем шаге (например, предсказываем часть речи на каждом шаге), используем поступившую на шаге t информацию и локальное состояние h_{t-1}

• Обновляем локальное состояние h_t с учетом прогноза o_t и обновившегося глобального состояния C_t

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

GRU (Gated Recurrent Unit), 2014

- Три слоя (3 матрицы весов) логика немного отличается от логики LSTM
- Быстрее обучается, так как меньше параметров
- По качеству в большинстве задач не хуже, чем LSTM

Какой вариант рекуррентных сетей лучше?

В 2015 исследователи проводили эксперименты - по качеству все модификации LSTM / RNN дают приблизительно одинаковые результаты.

Bidirectional LSTM

- · Почему мы определяем часть речи только по предыдущим словам?
- · Будем смотреть и на следующие слова

Bidirectional LSTM

Bidirectional LSTM

· Предсказание для слова строится по скрытым состояниям, учитывающим весь контекст

Seq2seq-архитектуры

Sequence to sequence

- · Машинный перевод
- · Суммаризация текста
- · Генерация комментариев к коду
- · Математические преобразования
- · Смена стиля текста

Что делать, если длины входного и выходного текстов разные?

- · В конце входного текста ставим специальный токен <EOS>
- · Прогоняем входной текст через RNN
- · Скрытое состояние после всего текста «контекст»
- · Контекст передаётся в RNN, которая генерирует выходной текст
- · Используется Beam Search

Beam Search

- · Выбираем В вариантов для первого слова по максимальной вероятности
- · Для каждого рассматриваем все возможные варианты для следующего слова, оставляем В наиболее вероятных вариантов
- И так далее

Beam Search

- · Четырёхслойные LSTM в качестве кодировщика и декодировщика
- · В каждом слое скрытые векторы размерности 1000
- · Каждое слово описывается векторным представлением размерности 1000
- · Входной текст подаётся «наоборот» тогда первое слово входного текста оказывается ближе к первому слову выходного в нашей архитектуре

Проблемы seq2seq- архитектуры

- · Нужно сжать весь текст в один вектор
- · Теряется информация о первых словах
- · Декодер тоже может терять информацию по мере генерации последовательности

Проблемы seq2seq- архитектуры

- · Нужно сжать весь текст в один вектор
- · Теряется информация о первых словах
- · Декодер тоже может терять информацию по мере генерации последовательности
- · Немного улучшает ситуацию BiLSTM
- · Для очень длинных текстов уже лучше применять Attention.