Теорема

Если последовательность неубывает/невозрастает и ограниченна сверху/снизу, то она сходится к пределу $\sup x_n / \inf x_n$

Доказательство

$$($$
для $\lim_{n\to\infty} x_n = \sup x_n)$

По определению точной верхней грани числового множества:

$$\forall \varepsilon > 0 \ \exists N : x_N > \sup x_n - \varepsilon$$

Поскольку последовательность монотонно неубывает, $\forall n > N \ x_n > x_N$ и $x_n > \sup x - \varepsilon$, начиная с N выполняется неравенство $|x_n - \sup x_n| < \varepsilon$, а это значит, что предел последовательности равен $\sup x_n$