Exercice n°1.

CONTINUITE - EXERCICES CORRIGES

Soit f la fonction numérique définie par :
$$f(x) = \begin{cases} x^2 - 1 & si \quad x \le 2 \\ 5 - x & si \quad x > 2 \end{cases}$$

f est-elle continue sur son ensemble de définition?

Mêmes questions avec :
$$f(x) = \begin{cases} -2x - 3 \ pour \ x \le -1 \\ x \ pour \ -1 < x \le 1 \end{cases}$$
 sur \mathbb{R} $-3x \ pour \ x > 1$

Exercice n°2.

1) Soit f la fonction définie sur
$$\mathbb{R}$$
 par : $f(x) = \begin{cases} x^2 - 1 & \text{si } x < 0 \\ x - 1 & \text{si } x \ge 0 \end{cases}$

La fonction f est-elle continue sur \mathbb{R} ? Est-elle dérivable sur \mathbb{R} ?

2) Soit f la fonction définie sur
$$\mathbb{R}$$
 par : $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si } x \neq 2 \\ 3 & \text{si } x = 2 \end{cases}$. Etudier la continuité de f sur \mathbb{R}

3) Quelle valeur de a faut-il choisir pour que la fonction définie par :

$$f(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{x} & \text{si } x \in [-1; 0[\cup]0; +\infty[\\ a & \text{si } x = 0 \end{cases}$$
 soit continue en 0 ?

Exercice n°3.

Le tarif ci-contre définit la fonction "tarifs postaux économiques" qui, au poids *x* exprimé en grammes, associe le tarif d'affranchissement exprimé en euros. Représentez graphiquement cette fonction et indiquez ses points de discontinuité

Poids en grammes
Jusqu'à :
20
50
100
250

Exercice n°4.

On considère un système d'imposition continu à 4 tranches telles que le contribuable paye :

- 0 % d'imposition sur les 8000 premiers euros de salaire
- 10 % d'imposition sur la tranche 8000 20000 euros de salaire
- 25 % d'imposition sur la tranche 20000 50000 euros de salaire
- 40 % d'imposition au delà de 50000 euros
- 1) Donner l'expression de la fonction f qui à tout revenu x associe l'impôt f(x) correspondant
- 2) Dans un repère dont les unités seront judicieusement choisies, donner une représentation graphique de la fonction f.
- 3) Un contribuable déclare 30000 euros. Donner son impôt arrondi à l'euro près
- 4) Estimer le revenu annuel (arrondi à l'euro près) d'un contribuable dont l'impôt annuel est de 5000 euros.

Exercice n°5.

Soit f une fonction définie et continue sur [-3;4] dont le tableau de variations est :

1) Dénombrer, sans justifier, les solutions des équations suivantes :

a)
$$f(x) = 3$$

b)
$$f(x) = 0$$

c)
$$f(x) = -2$$

Exercice n°6.

Soit f la fonction numérique définie sur [0;14] dont la représentation graphique est :

- 1) Citez deux intervalles sur lesquels on peut appliquer le théorème de la valeur intermédiaire en expliquant pourquoi
- 2) Citez un intervalle sur lesquels on ne peut pas appliquer le théorème de la valeur intermédiaire en expliquant pourquoi
- 3) Peut-on trouver un unique nombre α tel que $f(\alpha) = 6$? Si oui, explicitez pourquoi et donner un encadrement de α à l'aide de deux entiers consécutifs.
- 4) Même questions avec un unique nombre β tel que $f(\beta) = 0$?

Exercice n°7. Le tableau ci-dessous résume les variations de f définie sur I=[-2;2] :

On précise que f(0) = 1

- 1) Peut-on trouver $\alpha \in I$ tel que $f(\alpha) = \frac{3}{2}$?
- 2) Peut-on trouver $\beta \in I$ tel que $f(\beta) = 0.1$?
- 3) Montrez qu'il existe γ unique, $\gamma \in [0, 2]$, tel que $f(\gamma) = 2, 5$

Exercice n°8.

Soit g la fonction définie sur \mathbb{R} par : $g(x) = x^3 - 1200x - 100$

- 1) Etudier le sens de variation de g (+limites) et dresser son tableau de variation.
- 2) Démontrer que l'équation g(x) = 0 admet une solution unique α dans l'intervalle [20; 40]. Donner un encadrement de α à 10^{-1} près.

Exercice n°9. Deux méthodes de résolution

f est la fonction définie sur \mathbb{R} par $f(x) = x^3 - 30x^2 + 112$

Il s'agit d'étudier le signe de f(x) sur \mathbb{R} .

Première partie

- 1) Etudier la limite de f en $+\infty$ et en $-\infty$.
- 2) Calculer f'(x) et étudier son signe.
- 3) Dresser le tableau de variation de f.
- 4) Démontrer que l'équation f(x) = 0 admet trois solutions.
- 5) Avec la calculatrice, donner l'arrondi au dixième ou la valeur exacte de chaque solution.
- **6)** En déduire le signe de f.

Deuxième partie

- 7) Calculer f(2).
- 8) Trouver trois réels a, b et c tels que pour tout réel x : $f(x) = (x-2)(ax^2 + bx + c)$
- **9)** Résoudre l'équation f(x) = 0.

Exercice n°10.

Démontrer que l'équation $x^3 + 3x = 5$ admet une solution et une seule dans \mathbb{R} . Donner une valeur approchée à 10^{-2} près de cette solution.

CONTINUITE - CORRECTION

Exercice n°1

1) Sur $]-\infty; 2[\,\cup\,]2; +\infty[\,$, (c'est-à-dire en dehors du point 2), f est continue puisqu'elle est définie à l'aide d'une fonction polynôme et d'une fonction affine

Pour examiner la continuité en 2, on détermine $\lim_{\substack{x\to 2\\x<2}} f(x) = \lim_{\substack{x\to 2\\x>2}} x^2 - 1 = 3$ et $\lim_{\substack{x\to 2\\x>2}} f(x) = \lim_{\substack{x\to 2\\x>2}} 5 - x = 3$. Comme

 $\lim_{x \to 2} f(x) = \lim_{x \to 2} f(x) = f(2), \text{ on conclut que la fonction } f \text{ est continue en } 2$

2) Sur $]-\infty;-1[\ \cup\]-1;1[\ \cup\]1;+\infty[$, (c'est-à-dire en dehors des points -1 et 1), f est continue puisqu'elle est définie à l'aide de fontions affines.

Pour examiner la continuité en -1, on détermine $\lim_{\substack{x \to -1 \\ x < -1}} f(x) = \lim_{\substack{x \to -1 \\ x > -1}} 2x - 3 = -1$ et $\lim_{\substack{x \to -1 \\ x > -1}} f(x) = \lim_{\substack{x \to -1 \\ x > -1}} x = -1$. Comme

 $\lim_{\substack{x \to -1 \\ x < -1}} f\left(x\right) = \lim_{\substack{x \to -1 \\ x > -1}} f\left(x\right), \text{ on conclut que la fonction } f \text{ est continue en -1}$

Pour examiner la continuité en 1, on détermine $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} x = 1$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} -3x = -3$. Comme

 $\lim_{\substack{x \to 1 \\ x < l}} f(x) \neq \lim_{\substack{x \to 1 \\ x > l}} f(x), \text{ on conclut que la fonction } f \text{ n'est pas continue en } 1$

Exercice n°2

1) f est continue sur $]-\infty;0[$ en tant que fonction polynôme et sur $[0;+\infty[$ en tant que fonction affine. Reste à examiner la continuité en zéro. On examine $\lim_{\substack{x\to 0\\x<0}} f(x) = \lim_{\substack{x\to 0\\x<0}} x^2 - 1 = -1$ et $\lim_{\substack{x\to 0\\x>0}} f(x) = \lim_{\substack{x\to 0\\x>0}} x - 1 = -1$. Ces deux limites étant égales

et égales à f(0) = 0 - 1 = -1, la fonction est continue en 0, donc sur \mathbb{R}

f est dérivable sur $]-\infty;0[$ en tant que fonction polynôme et sur $[0;+\infty[$ en tant que fonction affine. Reste à examiner la dérivabilité en zéro.

Pour tout $x \in]-\infty;0[$, $\frac{f(x)-f(0)}{x-0} = \frac{x^2-1-(-1)}{x} = x$ donc $\lim_{\substack{x \to 0 \\ y \neq 0}} \frac{f(x)-f(0)}{x-0} = 0$ donc f est dérivable à gauche en 0 et

 $f'_g(0) = 0$. De plus, pour tout $x \in]0; +\infty[$, $\frac{f(x) - f(0)}{x - 0} = \frac{x - 1 - (-1)}{x} = 1$ donc $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{f(x) - f(0)}{x - 0} = 1$ donc f est dérivable

à droite en 0 et $f'_d(0) = 1$. Mais comme $f'_g(0) \neq f'_d(0)$, on conclut que f n'est pas dérivable en 0

2) f est continue sur $]-\infty;2[$ et sur $]2;+\infty[$ en tant que fonction rationnelle dont le dénominateur ne s'annule pas.

reste à examiner la continuité en 2. Pour tout $x \ne 2$, $\frac{x^2 - x - 2}{x - 2} = \frac{(x - 2)(x + 1)}{x - 2} = x + 1$,

 $\lim_{x\to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x\to 2} x + 1 = 3 = f(2).$ La fonction est continue en 2, donc sur \mathbb{R}

3) f sera continue en 0 si et seulement si $\lim_{x\to 0} f(x) = f(0) = a$. Il faut donc déterminer $\lim_{x\to 0} \frac{\sqrt{1+x-1}}{x}$ En posant

 $g(x) = \sqrt{1+x}$, on reconnaît un taux d'accroissement : $\frac{\sqrt{1+x}-1}{x} = \frac{g(x)-g(0)}{x-0}$, dont la limite en 0 est donc égale à $g'(0) = \frac{1}{2\sqrt{1+0}} = \frac{1}{2}$. f sera continue en 0 si et seulement si $a = \frac{1}{2}$

Exercice n°3

La fonction f qui, au poids x exprimé en grammes, associe le tarif d'affranchissement exprimé en euros, est définie par :

$$f(x) = \begin{cases} 0,41 & \text{si } x \in [0;20] \\ 0,53 & \text{si } x \in [20:50] \\ 0,64 & \text{si } x \in [50:100] \\ \text{agit d'une fonction en escalier dont la représentation graphique est donnée ci-dessous : } \\ 1,22 & \text{si } x \in [100:250] \end{cases}$$

La fonction présente des points de discontinuité en 20,50 et 100

En effet, puisque , puisque
$$\lim_{\substack{x\to 20\\x<20}} f\left(x\right) = 20$$
 et $\lim_{\substack{x\to 20\\x>20}} f\left(x\right) = 50$, on aura $\lim_{\substack{x\to 20\\x<20}} f\left(x\right) \neq \lim_{\substack{x\to 20\\x>20}} f\left(x\right)$

Exercice n°4

1) La fonction f qui, à tout revenu x associe l'impôt f(x) exprimé en euros correspondant, est définie par :

$$f(x) = \begin{cases} 0 & \text{si } x \in [0;8000[\\ 0,1(x-8000) = 0,1x-800 \text{ si } x \in [8000;20000[\\ 0,25(x-20000) + 0,1 \times 12000 = 0,25x-3800 \text{ si } x \in [20000;50000[\\ \text{première tranche complète} \end{cases} \\ 0,4(x-50000) + 0,1 \times 12000 + 0,25 \times 30000 = 0,4x-11300 \text{ si } x \in [50000;+\infty[$$

2) Il s'agit d'une fonction affine par morceaux dont la représentation graphique est donnée ci-dessous : impôts en fonction du revenu

3) Si le contribuable déclare 30000 euros, son impôt sera égal à $f(30000) = 0.25 \times 30000 - 3800 = 3700$ €

4) Si le contribuable paye $5000 \in \text{d'impôts}$, son revenu se trouve dans la tranche [20000;50000[. En résolvant l'équation $0,25x-3800=5000 \Leftrightarrow x=\frac{5000+3800}{0,25}=35200$, on déduit que le revenu du contribuable est environ égal à $35200 \in \text{annuel}$.

Exercice n°5

L'équation f(x) = 3 admet 2 solutions, l'une dans l'intervalle [-3;0], l'autre dans l'intervalle [0;3]

L'équation f(x) = 0 admet 2 solutions, l'une dans l'intervalle [0;3], l'autre dans l'intervalle [3;4]

L'équation f(x) = -2 admet 2 solutions, l'une dans l'intervalle [0;3], l'autre dans l'intervalle [3;4]

Exercice n°6

- 1) On peut appliquer le théorème de la valeur intermédiaire par exemple sur l'intervalle [0;4] car la fonction y est continue et strictement croissante. De même on peut appliquer ce théorème sur l'intervalle [4;10]
- 2) On ne peut pas appliquer le théorème de la valeur intermédiaire sur l'intervalle [0;10] car la fonction n'y est pas strictement monotone.
- 3) Sur l'intervalle [10;14], f est continue et strictement croissante. De plus f(10) = 0 et f(14) = 7. Comme $6 \in [f(10); f(14)]$, il existe un unique nombre α tel que $f(\alpha) = 6$. Puisque f(13) < 6 et f(14) > 6, on en conclut que $13 < \alpha < 14$
- 4) Il n'existe par de nombre unique β tel que $f(\beta) = 0$ sur l'intervalle [0,14], car f n'y est pas monotone. En revanche, c'est le cas sur l'intervalle [0;4] (on lit exactement $\beta = 1$)

Exercice n°7

f présente une discontinuité en 0

- 1) On ne peut pas trouver $\alpha \in I$ tel que $f(\alpha) = \frac{3}{2}$ car $\frac{3}{2}$ n'est pas une valeur prise par f
- 2) Sur l'intervalle [-2;0[, f est continue et strictement croissante. Puisque $0,1 \in \left[f(-2); \lim_{\substack{x \to 0 \\ x < 0}} f(x) \right]$, il existe un unique nombre $\beta \in I$ tel que $f(\beta) = 0,1$
- 3) Sur l'intervalle [0;2], f est continue et strictement croissante. Puisque $2,5 \in [f(0);f(2)]$, il existe un unique nombre $\gamma \in [0;2]$, tel que $f(\gamma) = 2,5$

Exercice n°8

Soit g la fonction définie sur \mathbb{R} par : $g(x) = x^3 - 1200x - 100$

1) g est définie, continue et dérivable sur \mathbb{R} , et pour tout x réel $g'(x) = 3x^2 - 1200 = 3(x^2 - 400) = 3(x - 20)(x + 20)$. On en déduit successivement le signe de g'(x) et le sens de variation de g:

х	-00	-20	20	+00
g'(x)	+	0 -	— о	+
g(x)	-∞	15900 \	-16100	

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x^3 = -\infty, \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^3 = +\infty,$$

$$g(-20) = 15900, g(20) = -16100$$

2) Sur l'intervalle [20 ; 40], g est continue et strictement croissante. De plus g(20) = -16100 < 0 et g(40) = 15900 > 0Puisque $0 \in [g(20); g(40)]$, Le théorème de la valeur intermédiaire affirme l'existence d'une unique valeur $\alpha \in [20; 40]$ telle que $g(\alpha) = 0$. Grâce à la calculatrice, on dresse des tableaux de valeurs de plus en plus précis :

X	Y1	
31	17509	
33	13763	
34	11596 725	
36	3356	
37	6153	PUIS

X	Y ₁	
34.2 34.3 34.4 34.5 82.6 34.7 34.8	-1138 -906.4 -672.4 -436.4 -198.3 41.923 284.19	

nous permettant d'affirmer que 34,6 < α < 34,7

Exercice n°9

Première partie

- 1) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$ et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$,
- 2) f est définie, continue et dérivable sur \mathbb{R} , et pour tout réel x, f'(x) = 3 60x = 3x(x-20). On en déduit que f s'annule en 0 et en 20, est strictement positive sur $]-\infty;0[\ \cup\]20;+\infty[$ et strictement positive sur]0;20[.
- 3) Ainsi f est strictement croissante sur $]-\infty;0]$, strictement décroissante et [0;20] et strictement croissante sur $[20;+\infty[$. Puisque f(0)=112 et $f(20)=20^3-30\times20^2+112=-3888$, son tableau de variations est donc :

х	-00	0		20	+	α
f'(x)	+	0	_	0	+	
f(x)	-8	112	7	388	7 ⁺	8

4) Sur l'intervalle $]-\infty;0]$, f est continue et strictement croissante. Comme $\lim_{x\to-\infty} f(x) < 0 < f(0)$, l'équation f(x) = 0 admet donc une unique solution $x_1 \in]-\infty;0]$.

On procède de même sur les intervalles [0;20] et $[20;+\infty[$:

Sur l'intervalle [0;20], f est continue et strictement croissante. Comme f(20) < 0 < f(0), l'équation f(x) = 0 admet donc une unique solution $x_2 \in [0;20]$.

Sur l'intervalle $[20; +\infty[$, f est continue et strictement croissante. Comme $f(20) < 0 < \lim_{x \to +\infty} f(x)$, l'équation f(x) = 0 admet donc une unique solution $x_3 \in [20; +\infty[$.

- 5) Grâce à la calculatrice, on dresse des tableaux de valeurs de plus en plus précis ceci permet d'établir que $-1,9 < x_1 < -1,8$, puis $x_2 = 2$ et enfin $29,8 < x_3 < 29,9$
- 6) Le signe de f est donné par :

f étant strictement croissante sur $]-\infty;0]$, elle l'est sur $]-\infty;x_1]$, et pour tout $x \in]-\infty;x_1]$, $f(x) \le f(x_1)$, c'est-à-dire $f(x) \le 0$. De plus pour tout $x \in [x_1;0]$, $f(x_1) \le f(x)$, c'est-à-dire $0 \le f(x)$

f étant strictement décroissante sur [0;20], elle l'est sur $[0;x_2=2]$, et pour tout $x \in [0;x_2]$, $f(x) \ge f(x_2)$, c'est-à-dire $f(x) \ge 0$. De plus pour tout $x \in [x_2;20]$, $f(x) \le f(x_2)$, c'est-à-dire $f(x) \le 0$

f étant strictement croissante sur $[20; +\infty[$, elle l'est sur $[20; x_3]$, et pour tout $x \in [20; x_3]$, $f(x) \le f(x_3)$, c'est-àdire $f(x) \le 0$. De plus pour tout $x \in [x_3; +\infty[$, $f(x_3) \le f(x)$, c'est-à-dire $0 \le f(x)$

En résumé:

х	-00	x_1	$x_2 = 2$		<i>x</i> ₃	+00
f(x)		0	+ 0	_	0	+

Deuxième partie

7) On calcule $f(2) = 2^3 - 30 \times 2^2 + 112 = 0$

8) Pour tout réel x, $(x-2)(ax^2 + bx + c) = ax^3 + bx^2 + cx - 2ax^2 - 2bx - 2c = ax^3 + (b-2a)x^2 + (c-2b)x - 2c$ On aura alors $(x-2)(ax^2 + bx + c) = f(x)$ si et seulement si pour tout réel x

$$ax^{3} + (b-2a)x^{2} + (c-2b)x - 2c = x^{3} - 30x^{2} + 112, \text{ c'est-à-dire si et seulement si} \begin{cases} a = 1 \\ b - 2a = -30 \\ c - 2b = 0 \\ -2c = 112 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = -28 \\ c = -56 \end{cases}$$

Ainsi, pour tout réel x, $f(x) = (x-2)(x^2 - 28x - 56)$

9) On résout $f(x) = 0 \Leftrightarrow (x-2)(x^2-28x-56) = 0$ si et seulement si $x-2=0 \Leftrightarrow x=2$ ou $x^2-28x-56=0$. Pour cette dernière équation du second degré, on calcule le discriminant $\Delta = (-28)^2 - 4 \times 1 \times (-56) = 1008$. Comme $\Delta = \left(12\sqrt{7}\right)^2$, l'équation admet deux solutions réelles distinctes $x_1 = \frac{28+12\sqrt{7}}{2} = 14+6\sqrt{7} \approx 29,87$ à 10^{-2} près et $x_2 = \frac{28+12\sqrt{7}}{2} = 14-6\sqrt{7} \approx -1,87$ à 10^{-2} près

Exercice n°10

L'équation $x^3+3x=5$ étant équivalente à $x^3+3x-5=0$, on note $f(x)=x^3+3x-5$, qui est définie, continue et dérivable sur \mathbb{R} . On dérive : pour tout réel x, $f'(x)=3x^2+3=3(x^2+1)$. Puisque pour tout $x\in\mathbb{R}$, $x^2+1>0$, on en déduit f'(x)>0. f est donc strictement croissante sur \mathbb{R} . Puisque $\lim_{x\to\infty}f(x)=-\infty$ et $\lim_{x\to+\infty}f(x)=+\infty$, $0\in \lim_{x\to+\infty}f(x)$, donc le théorème des valeurs intermédiaires affirme que l'équation f(x)=0 admet une unique solution $\alpha\in\mathbb{R}$.

En utilisant la calculatrice, on peut dresser un tableau de valeurs de f(x) qui nous permet d'affirmer que $1,15 < \alpha < 1,16$. Une valeur approchée de α à 10^{-2} près est donc 1,15