Intro to Visualizations

Daniel Anderson

Week 2, Class 1

Agenda

Quick note on projects and here::here()

Discuss different visualizations

- Visualizing distributions
 - histograms
 - density plots
 - Empirical cumulative density plots
 - QQ plots
- Visualizing amounts
 - bar plots
 - dot plots
 - heatmaps

Learning Objectives

- Understand various ways the same underlying data can be displayed
- Think through pros/cons of each
- Understand the basic structure of the code to produce the various plots

What type of data do you have?

We'll focus primarily on standard continuous/categorical data

What is your purpose?

Exploratory? Communication?

continuous Variable

Histogram

Density plot

(Empirical) Cumulative Density

QQ Plot

Compare to theoretical quantiles (for normality)

Empirical examples

I'll move fast, but if you want to (try to) follow along, or recreate anything here later, first run

remotes::install_github("clauswilke/dviz.supp")

Titanic data

head(titanic)

```
## class age sex survived
## 1 1st 29.00 female 1
## 2 1st 2.00 female 0
## 3 1st 30.00 male 0
## 4 1st 25.00 female 0
## 5 1st 0.92 male 1
## 6 1st 47.00 male 1
```

Basic histogram

```
ggplot(titanic, aes(x = age)) +
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Make it a little prettier

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Change the number of bins

Vary the number of bins

Denisty plot


```
ggplot(titanic, aes(age)) +
  geom_density()
```


Denisty plot

Change the fill 😌

```
ggplot(titanic, aes(age)) +
  geom_density(fill = "#56B4E9")
```


Density plot estimation

- Kernal density estimation
 - Different kernal shapes can be selected
 - Bandwidth matters most
 - Smaller bands = bend more to the data
- Approximation of the underlying continuous probability function
 - Integrates to 1.0 (y-axis is somewhat difficult to interpret)

Denisty plot

change the bandwidth

Quickly

How well does it approximate a normal distribution?

```
ggplot(titanic, aes(sample = age)) +
  stat_qq_line(color = "#56B4E9") +
  geom_qq(color = "gray40")
```


Grouped data

Distributions

How do we display more than one distribution at a time?

Boxplots

Violin plots

Jittered points

Sina plots

Stacked histograms

Overlapping densities

Ridgeline densities

empirical examples

Boxplots

```
ggplot(titanic, aes(sex, age)) +
  geom_boxplot(fill = "#A9E5C5")
```


Violin plots

```
ggplot(titanic, aes(sex, age)) +
  geom_violin(fill = "#A9E5C5")
```


Jittered point plots

```
ggplot(titanic, aes(sex, age)) +
  geom_jitter(width = 0.3, height = 0)
```


Sina plot

```
ggplot(titanic, aes(sex, age)) +
  ggforce::geom_sina()
```


Stacked histogram

```
ggplot(titanic, aes(age)) +
  geom_histogram(aes(fill = sex))
```


Dodged

Note position = "dodge" does not go into aes (not accessing a variable in your dataset)

Better

Overlapping densities

Note the default colors really don't work well in most of these

Ridgeline densities

Visualizing amounts

Bar plots

Flipped bars

Dotplot

Heatmap

Empirical examples

How much does college cost?

```
## # A tibble: 6 x 13
##
    State `2004-05` `2005-06` `2006-07` `2007-08` `2008-09` `2009-10`
## <chr> <dbl>
                           <dbl>
                                    <dbl>
                                             <dbl>
                                                      <dbl>
                                                               <dbl>
## 1 Alabama 5682.838 5840.550 5753.496 6008.169 6475.092
                                                            7188.954
## 2 Alaska 4328.281 4632.623 4918.501 5069.822 5075.482
                                                            5454.607
## 3 Arizona 5138.495 5415.516 5481.419 5681.638 6058.464
                                                            7263.204
## 4 Arkansas 5772.302 6082.379 6231.977 6414.900 6416.503
                                                             6627.092
## 5 California 5285.921 5527.881 5334.826
                                          5672.472
                                                   5897.888
                                                             7258.771
## 6 Colorado 4703.777 5406.967 5596.348 6227.002 6284.137
                                                             6948.473
## # ... with 6 more variables: `2010-11` <dbl>, `2011-12` <dbl>,
## # `2012-13` <dbl>, `2013-14` <dbl>, `2014-15` <dbl>, `2015-16` <dbl>
```

By state: 2015-16

```
ggplot(tuition, aes(State, `2015-16`)) +
  geom_col()
```


Two puke emoji version


```
ggplot(tuition, aes(State, `2015-16`)) +
  geom_col() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size =
```


One puke emoji version


```
ggplot(tuition, aes(State, `2015-16`)) +
  geom_col() +
  coord_flip()
```


Kinda smiley version


```
ggplot(tuition, aes(fct_reorder(State, `2015-16`), `2015-16`)) +
  geom_col() +
  coord_flip()
```


Highlight Oregon

Not always good to sort

Much better

Averages tuition by year

How?

head(tuition)

```
## # A tibble: 6 x 13
##
    State `2004-05` `2005-06` `2006-07` `2007-08` `2008-09` `2009-10`
## <chr> <dbl>
                             <dbl>
                                        <dbl>
                                                  <dbl>
                                                            <dbl>
                                                                      <dbl>
## 1 Alabama 5682.838 5840.550 5753.496 6008.169 6475.092
                                                                  7188.954
## 2 Alaska 4328.281 4632.623 4918.501 5069.822 5075.482
## 3 Arizona 5138.495 5415.516 5481.419 5681.638 6058.464
                                                                  5454.607
                                                                  7263.204
## 4 Arkansas 5772.302 6082.379 6231.977 6414.900 6416.503
                                                                  6627.092
## 5 California 5285.921 5527.881 5334.826 5672.472 5897.888
                                                                  7258.771
## 6 Colorado 4703.777 5406.967 5596.348 6227.002 6284.137
                                                                   6948.473
## # ... with 6 more variables: `2010-11` <dbl>, `2011-12` <dbl>,
## # `2012-13` <dbl>, `2013-14` <dbl>, `2014-15` <dbl>, `2015-16` <dbl>
```

Rearrange

8 Alabama 2011-12 8451.902 ## 9 Alabama 2012-13 9098.069 ## 10 Alabama 2013-14 9358.929

... with 590 more rows

```
tuition %>%
  pivot_longer(`2004-05`:`2015-16`,
              names_to = "year",
              values_to = "avg_tuition")
## # A tibble: 600 x 3
## State year avg tuition
## <chr> <chr>
                        <dbl>
## 1 Alabama 2004-05 5682.838
## 2 Alabama 2005-06 5840.550
##
   3 Alabama 2006-07 5753.496
##
   4 Alabama 2007-08 6008.169
   5 Alabama 2008-09 6475.092
##
## 6 Alabama 2009-10 7188.954
## 7 Alabama 2010-11 8071.134
```

Compute summaries

```
## # A tibble: 12 x 2
## year mean tuition
## * <chr>
                  <dbl>
## 1 2004-05 6409.564
## 2 2005-06 6654.177
## 3 2006-07 6809.914
## 4 2007-08 7085.881
## 5 2008-09 7156.560
## 6 2009-10
               7761.810
## 7 2010-11 8228.834
## 8 2011-12 8539.115
## 9 2012-13 8842.357
## 10 2013-14 8947.938
## 11 2014-15 9037.357
## 12 2015-16 9317.633
```

Good

```
ggplot(annual_means, aes(year, mean_tuition)) +
  geom_col()
```


Better?

```
ggplot(annual_means, aes(year, mean_tuition)) +
  geom_col() +
  coord_flip()
```


Better still?

```
ggplot(annual_means, aes(year, mean_tuition)) +
  geom_point() +
  coord_flip()
```


Even better

```
annual_means %>%
  mutate(year = readr::parse_number(year)) %>%
  ggplot(aes(year, mean_tuition)) +
    geom_line(color = "cornflowerblue") +
    geom_point()
```


Treat time (year) as a continuous variable

Grouped points

Show change in tuition from 05-06 to 2015-16

```
tuition %>%
  select(State, `2005-06`, `2015-16`)
## # A tibble: 50 x 3
  State `2005-06` `2015-16`
##
## 2 Alaska 4632.623 6571.340
   3 Arizona 5415.516 10646.28
##
## 4 Arkansas 6082.379 7867.297
## 5 California 5527.881 9269.844
## 6 Colorado
             5406.967 9748.188
## 7 Connecticut 8249.074 11397.34
## 8 Delaware 8610.597 11676.22
## 9 Florida 3924.234 6360.159
## 10 Georgia 4492.167 8446.961
## # ... with 40 more rows
```

```
## # A tibble: 100 x 3
##
   State Year Tuition
##
   <chr> <chr>
                         <dbl>
## 1 Alabama 2005-06 5840.550
## 2 Alabama 2015-16 9751.101
##
   3 Alaska 2005-06 4632.623
## 4 Alaska 2015-16 6571.340
## 5 Arizona 2005-06 5415.516
## 6 Arizona 2015-16 10646.28
## 7 Arkansas 2005-06 6082.379
## 8 Arkansas 2015-16 7867.297
## 9 California 2005-06 5527.881
## 10 California 2015-16 9269.844
## # ... with 90 more rows
```

```
ggplot(lt, aes(State, Tuition)) +
  geom_line(aes(group = State), color = "gray40") +
  geom_point(aes(color = Year)) +
  coord_flip()
```


Extensions

- I know we're probably running short on time, but we definitely would want to keep going here:
 - Order states according to something more meaningful (starting tuition, ending tuition, or difference in tuition)
 - Meaningful title, e.g., "Change in average tuition over a decade"
 - Consider better color scheme for points

Let's back up a bit

• Lets go back to our full data, but in a format that we can have a **year** variable.

```
## # A tibble: 600 x 3
##
     State year avg tuition
##
  <chr> <chr>
                         <dbl>
  1 Alabama 2004-05 5682.838
##
                   5840.550
## 2 Alabama 2005-06
##
   3 Alabama 2006-07 5753.496
##
   4 Alabama 2007-08
                   6008.169
##
   5 Alabama 2008-09
                   6475.092
## 6 Alabama 2009-10
                   7188.954
## 7 Alabama 2010-11
                   8071.134
## 8 Alabama 2011-12
                   8451.902
   9 Alabama 2012-13
                   9098.069
 10 Alabama 2013-14
                   9358.929
```

Heatmap

```
ggplot(tuition_l, aes(year, State)) +
  geom_tile(aes(fill = avg_tuition))
```


Better heatmap

ggplot(tuition_l, aes(year, fct_reorder(State, avg_tuition))) +
 geom_tile(aes(fill = avg_tuition))

Even better heatmap

```
ggplot(tuition_l, aes(year, fct_reorder(State, avg_tuition))) +
  geom_tile(aes(fill = avg_tuition)) +
  scale_fill_viridis_c(option = "magma")
```


				Average Tuition Cost								
							\$6,000		\$9,000	\$	12,000	\$15,000
Vermont												
New Hampshire												
New Jersey												
Pennsylvania												
Illinois												
Michigan												
South Carolina												
Massachusetts												
Delaware												
Ohio												
Minnesota												
Rhode Island												
Connecticut												
Maine												
Virginia												
Indiana												
Washington												
Maryland												
Texas												
Wisconsin												
Kentucky												
Arizona												
Missouri												
Oregon												
Hawaii												
California												
Iowa												
Alabama												
Colorado												
Kansas												
North Dakota												
Nebraska -												
Tennessee												
South Dakota												
Arkansas												
New York												
Oklahoma Montana												
Georgia												
Mississippi												
Mississippi Idaho												
West Virginia												
Alaska												
New Mexico												
North Carolina												
Nevada												
Utah												
Florida												
Louisiana												
Wyoming												
vvyoming	2001-05	0005.00	2002.07	2027.00	2222	2002.43	001011	0011 10	0048.40	004044	004445	004549
	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16

Quick aside

- Think about the data you have
- Given that these are state—level data, they have a geographic component

```
#install.packages("maps")
state_data <- map_data("state") %>% # ggplot2::map_data
  rename(State = region)
```

Join it

2 9751.101

tuition <- tuition %>%

Obviously we'll talk more about joins later

```
mutate(State = tolower(State))
states <- left_join(state_data, tuition)</pre>
head(states)
         long lat group order State subregion 2004-05 2005-06 200
##
<NA> 5682.838 5840.55 5753
                           2 alabama
## 2 -87.48493 30.37249 1
                                            <NA> 5682.838 5840.55 5753
                           3 alabama
## 3 -87.52503 30.37249 1
                                            <NA> 5682.838 5840.55 5753
## 4 -87.53076 30.33239 1
                                        <NA> 5682.838 5840.55 5753
                           4 alabama
## 5 -87.57087 30.32665 1
                           5 alabama
                                        <NA> 5682.838 5840.55 5753
## 6 -87.58806 30.32665 1
                                        <NA> 5682.838 5840.55 5753
                           6 alabama
##
     2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-1
## 1 6008.169 6475.092 7188.954 8071.134 8451.902 9098.069 9358.929 9496.08
## 2 6008.169 6475.092 7188.954 8071.134 8451.902 9098.069 9358.929 9496.08
## 3 6008.169 6475.092 7188.954 8071.134 8451.902 9098.069 9358.929 9496.08
## 4 6008.169 6475.092 7188.954 8071.134 8451.902 9098.069 9358.929 9496.08
## 5 6008.169 6475.092 7188.954 8071.134 8451.902 9098.069 9358.929 9496.08
## 6 6008.169 6475.092 7188.954 8071.134 8451.902 9098.069 9358.929 9496.08
##
     2015-16
## 1 9751.101
```

Rearrange

```
states <- states %>%
  gather(year, tuition, `2004-05`:`2015-16`)
head(states)
```

Plot

```
ggplot(states) +
  geom_polygon(aes(long, lat, group = group, fill = tuition)) +
  coord_fixed(1.3) +
  scale_fill_viridis_c(option = "magma") +
  facet_wrap(~year)
```


Average Tuition Cost 2004-05

Wrapping up

- We've got a ways to go today was just an introduction
- The geographic part in particular was too fast, and we'll talk about better ways later (note that Alaska/Hawaii were not even included)
- We basically didn't talk about multivariate data (not even scatter plots)
- Other types of plots will be embedded within the topics later in the class

Next time

Lab 2

git/GitHub collaboration

It's already posted – feel free to start working on it whenever.

- Must be completed as a group
- Will use elements of what we talked about today, while also asking you to create branches, submit pull requests, etc.