Peter CottonChief Data Scientist

Intech Investments

Frequently Repeated Prediction

Supply and Demand

AI and the Future of Finance Conference University of Waikato Nov 30, 2020

Hello. I work for Intech — a leading equity quant manager

Quantitative Equity Specialist

- Founded by pioneering mathematician Dr. Robert Fernholz
- Based in West Palm Beach with Princeton and London offices
- Independently operated unit of Janus Henderson Investors

Distinctive Investment Approach

- Harness stock price volatility for alpha and risk management
- Rely only on advanced mathematics and portfolio rebalancing
- No dependence on forecasting stock returns

Important Investor Benefits

- Investment approach complements other equity managers'
- Volatility is an enduring alpha source
- Process is very customizable 40% of AUM

Thanks to key contributors

Eric Lou · 1st

CS + Math Student at Stanford University

- Wrote the front end
- Winning crawlers

Rusty Conover · 1st

Experienced and innovative software executive with a track record of building businesses, platforms and applications.

- MUIDs in Java, Julia, Rust
- ZK-MUID proofs
- Electricity

Outline: Demand and supply

- 1. Why realtime frequently repeated prediction is almost synonymous with Artificial Intelligence
- 2. A new way to supply it a live, open source Automated Machine Learning network inhabited by algorithms written by anyone.

Example: Predicting water height for NOAA

Instrumentation

```
def height():
    df = pd.read_csv('https://www.ndbc.noaa.gov/data/realtime2/21413.dart')
    return float(df.iloc[1<sub>x</sub>:].values[0].split(' ')[-1])
```

(Returns measured water height ... somewhere ... from NOAA)

Creates data stream

Lagged Values		
10/9 22:01:46	5825.746	
10/9 21:01:50	5825.746	
10/9 20:02:09	5825.477	
10/9 19:01:41	5825.477	
10/9 18:01:46	5825.477	
10/9 17:01:39	5825.477	
10/9 16:01:41	5825.477	
10/9 15:01:41	5825.477	
10/9 14:01:47	5825.783	
10/9 13:01:41	5825.783	
/		

Data stream is predicted by dozens of competing time series algorithms, written by different authors using different tools, with access to different exogenous data.

Wanna predict it right now in a notebook?

https://github.com/microprediction/microprediction/blob/master/DefaultCrawler.ipynb

```
from microprediction import MicroCrawler

if __name__ == '__main__':
    crawler = MicroCrawler(difficulty=9)
    crawler.run()
```

1. Demand for Frequently Repeated Prediction

Reactions to the presidential debate

emojitracker: realtime emoji use on twitter 415426380 **\$\psi\$** 274223919 295215459

See https://www.microprediction.com/blog/tears of joy standardizing streaming data

Use category #1: Auxiliary market predictions

Markets predict the mean of a stock well

Everything else (pretty much) is poorly predicted, because those prediction lack the discipline imposed by competition.

- Volatilities,
- Correlations
- Bid-offer spreads
- Liquidity
- Trading costs
- Holding periods
- Client flow
- Response to inquiry
- Cover price

Use category #2: Prioritizing human work

e.g. reference data cleaning

Probability that a record is changed?

Which records will be changed?

Use category #3: Enhancing live data feeds

Tagging.

Converting sporadic live data to continuous.

Discovering existing relationships

Predicting delayed data and partially filled data

Discovering good embeddings

Finding new exogenous data

Discovering good proxies for truth

Use category #4: Live feature discovery

Chumming the water

Predicting quantities correlated with the quantity you truly care about

Determining which feature generation algorithms are suited to the task at hand

Use category #5: Enhancing business intelligence applications

Predicting numbers on dashboards

Highlighting unusual movements

Predicting human reaction to information, or not (false positives)

Enabling humans to track a larger amount of data in real time

Name	Price	10m	20m
USDJPY Curncy	110.96	-0.0324	+0.0458
EURUSD Curncy	1.1816	+0.0005	-0.0008
AUDJPY Curncy	84.32	+0.0389	+0.055

Use category #6: Ongoing performance analysis of models

Creating a feed and also a prediction of the same

Publishing model residuals

Using shifts in rankings of algorithms to detect regime changes

Using leaderboards to detect model drift

Identifying exogenous sources of data

Quality control of model inputs

Keeping quants honest!

Use category #7: Enhancing business intelligence applications

Human surveillance is popular (dashboards etc)

+0.433
+0.431
+0.235
+0.2
-0.014
-0.1

Directional change prediction

Anomaly detection ... from changes in leaderboards?

Regime changes ... from changes in leaderboards?

Predicting human reaction to information, or not (false positives)

Enabling humans to track a larger amount of data in real time

Use category #8: Fairness and explanation

Discovering hidden bias (proxies for race, redlining)

Predicting coefficients ex-post

Usage category #9: Surrogate models

Competing and combining surrogate models for agent based epidemic modeling

https://www.microprediction.org/stream_dashboard.html?stream=pandemic_infected

Use mega-category #10, #11, #12... Control systems

V = avg(# shots to finish hole) - 1

 $shot\ quality = V(before) - V(after) - 1$

Endless possibilities

Category	Example Sub-cat.	Example Sub-sub cat.
Recognition	Image	Facial
Search	Travel	Personalization
Recommendation	Ad-tech	Click-throughs
Government	Open cities	Flight status
Sales and CRM	Repeat shopping	Visitation
Internet of things	Homes	Usage
Environment	Air	Pollutants
Transport	Driving	Distracted driver
Manufacturing	Industrial control	Predictive maintenance
Agriculture	Juice	Orange juice
Finance	Investment banking	Commercial loans
Energy	Power	Wind
Medicine	Inventory	Hospital stays

2. Supplying Frequently Repeated Predictions

Algorithms Play Continuous Lottery Games

All day, every day

La	aa	ed	Va	lu	es
	99		• •		

Timestamp	Data	
8/4 22:39:32	49.7	
8/4 22:19:33	49.08	
8/4 21:59:33	49.7	
8/4 21:39:32	49.08	
8/4 21:19:32	49.7	
8/4 20:59:34	49.08	
8/4 20:39:32	49.08	
8/4 20:13:40	54.05	
8/4 19:53:40	36.03	
8/4 19:33:41	50.95	
8/4 19:13:39	49.7	
8/4 18:53:42	45.98	
8/4 18:34:07	49.7	
8/4 18:13:44	45.98	
8/4 17:53:41	45.98	
8/4 17:33:48	47.22	
8/4 17:13:41	50.33	

Data Values

Live data published by anyone

Algorithms submit 225 scenarios

Why not point estimates?

Quarantine

Implied Percentiles

Every incoming data point implies a new data point ...

$$z = F(x)$$

where F is the "community" distribution function

Cumulative distribution for NY Electricity Production (Wind) 1 hr ahead

Stacking Lotteries

Those "market implied" percentiles are themselves the subject of lottery games (via normal quantile function)

Lagged Values		
Timestamp	Z-Score	
8/4 16:01:06	-0.51996	
8/4 16:00:11	0.55508	
8/4 15:59:18	-0.00448	
8/4 15:58:05	-0.04721	
8/4 15:57:04	1.48253	
8/4 15:56:03	0.55323	
8/4 15:55:05	-0.00446	
8/4 15:54:03	-0.00445	
8/4 15:53:04	0.58113	
8/4 15:52:11	-1.29729	
8/4 15:51:05	1.24723	
8/4 15:50:06	-0.5483	
8/4 15:49:04	-0.55082	
8/4 15:48:04	-0.53286	
8/4 15:47:04	-1.07452	
8/4 15:46:06	-0.39177	
8/4 15:45:13	0.26186	

Approximately N(0,1) CDF 0.8 0.6 0.4 0.2 -- 1 0.8 2

Algorithms predicting small deviations from standard normal

Combine Percentiles

Some seemingly univariate series of games are actually copulas

Pitch and Yaw implied compulas - from MIT SciML helicopula challenge

Optics Analogy

Keep "lensing" until you get N(0,1)

Composition of monotone functions, each contributed by one or more algorithms

Pathways in the Collective Probability Brain

Scenarios "thrown" up to top level lottery

Law of Iterated Expectations

Pathways grow and shrink based on the economics

Point estimates are a special case - shift Exogenous data is a special case - shift arbitrarily

Wanna Play?

```
from microprediction import MicroCrawler

if __name__ == '__main__':
    crawler = MicroCrawler(difficulty=9)
    crawler.run()
```

(Modify the crawler to use whatever analytics you like)