EDF APIs

The user Application Program interface (API) to use the Earliest Deadline First (EDF) scheduler implmented in user space consists of invoking the C functions in the following order:

- $\bullet \ EdfScheduleInit(PeriodicTaskArray, AperiodicTaskArray)\\$
- EdfScheduleStart()
- EdfDeleteAllTasks()

PeriodicTaskArray and AperiodicTaskArray are arrays of the public Task Control Block (TCB) structure $pubTCB_t$, which along with the above function prototypes are defined in $edf_scheduler.h$

Each of the struct elements corresopnding to the following parameters must initilized by the user in PeriodicTaskArray:

- Period (P_i)
- Worst case execution time (c_i)
- Phase (ϕ_i)
- Relative deadline (D_i)
- Task number (i)
- Task function (τ_i)

and in AperiodicTaskArray:

- Relative arrival time (a_i)
- Worst case execution time (c_i)
- Task number (i)
- Task function (J_i)
- Aperiodicity flag

EDF Option 1 using trace APIs and the inbuilt priority based scheduler of FreeRTOS is implemented here based on [1]. Periodic tasks priorities are updated just prior to task switching via the $traceTASK_SWITCHED_OUT()$ macro [2]. Here, the TCBs stored in the doubly linked lists are sorted implictly by using the APIs from list.h

Aperiodic tasks are also scheduled by EDF by using a Total Bandwidth Server (TBS) [3], which assigns fictitios deadlines to them based on the server Utilitzation factor U_s , and arrival times a_i . The aperiodic tasks are deleted after execution of it's first instace.

Task deadline overflows are monitored every defined tick via the $traceTASK_INCREMENT_TICK() \ macro \ and \ marked \ for \ deletion \ in \ the privately maintained \ TCB \ exTCB_t. \ These are later \ deleted \ during \ the following priority update stage mentioned above.$

antis: prince	lii.	
STATES		
13	E CO	

	$ au_5$	τ_6	$ au_7$	$ au_8$
ϕ_i	0	0	0	0
a_i	0	0	0	0
c_i	100	100	100	100
P_i	500	400	400	400
D_i	500	400	400	400

Utilization factor

$$U_p = \sum \frac{C_i}{P_i}$$

$$= \frac{100}{500} + \frac{100}{400} + \frac{100}{400} + \frac{100}{400} = 0.95$$

	$ au_5$	$ au_6$	$ au_7$
ϕ_i	100	0	200
a_i	0	0	0
c_i	100	200	100
P_i	400	800	400
D_i	400	800	400

Utilization factor

$$U_p = \sum \frac{C_i}{P_i}$$

$$= \frac{100}{400} + \frac{200}{800} + \frac{100}{400} = 0.75$$

lui.	
15	
THE THE	数

	$ au_5$	$ au_6$	$ au_7$	J_{14}	J_{15}
ϕ_i	0	0	0		
a_i	0	0	0	200	800
c_i	100	200	100	100	100
P_i	400	800	400		
D_i	400	800	400		

Utilization factor and aperiodic deadlines for TBS

$$\begin{split} U_p &= \frac{100}{400} + \frac{200}{800} + \frac{100}{400} = 0.75 \\ U_s &= 0.25 \\ D_i &= \max(a_i + d_{i-1}) + \frac{C_i}{U_s} \\ D_{14} &= 200 + \frac{100}{0.25} \\ &= 600 \\ D_{15} &= 800 + \frac{100}{0.25} \\ &= 1200 \end{split}$$

	$ au_5$	τ_6	$ au_7$	J_{14}	J_{15}
ϕ_i	0	0	0		
a_i	0	0	0	200	800
c_i	100	100	200	100	100
P_i	300	300	400		
D_i	300	300	400		

Utilization factor and aperiodic deadlines for TBS

$$U_p = \frac{100}{300} + \frac{100}{300} + \frac{200}{400} = 1.167$$

 $U_s=0$ (Aperiodic tasks not scheduled)

Expected overflow at 900ms.

Additionally detected at 1200ms, due to overhead in deleting τ_5 .

References

- [1] R. Kase, Efficient Scheduling library for FreeRTOS (Master Thesis), KTH Stockholm, 2016.
- [2] ESP-FreeRTOS APIs, https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
- [3] C. Scholl, Real Time Operating Systems and Worst Case Execution Times (Lecture Notes), University of Freiburg, 2022.