Subnetting

Classless Inter-Domain Routing

Subnet

- כתובת IP מייצרות לנו יחד, טווח כתובות שניתן לחלק לרכיבים Subnet Mask ברשת, בכדי שיכולו לדבר אחד עם השני.
- ▶ למדנו במפגש הקודם שלכל רשת (בכל טווח כתובות), הכתובת הראשונה (Network)
 גורכי המחשבים והנתבים (Address)
 ברשת, לכן לא ניתן להגדיר אותם לשום רכיב רשת.

Classful Subnet

- בתחילת עידן הרשתות לכל כתובות IP פרטית הוצמדה כתובות Subnet Mask קבועה, דבר שבהמשך הזמן הוביל למצב שבו, קיים בזבוז כתובות מטורף.
 - ?יכיצד הדבר בא לידי ביטוי
 - ותנות לנו Subnet Mask Class A של 10.0.0.0 עם IP וחשבו רגע, רשת בעלת כתובת P כתובת שניתן לחלק למשתמשים כתובת רשת אחת, כתובת תפוצה אחת ו-16,777,214 כתובות שניתן לחלק למשתמשים ברשת אחת!
- ▶ היום לא קיימות רשתות פרטיות בעלות כל כך הרבה משתמשים! ככלל טכנאי רשתות צריכים לשאוף לרשתות פרטיות כמה שיותר מצומצמות, במטרה לבקר עליהם בצורה יותר יעלה.

Address Class	Address Range	Default Subnet Mask	Number of Hosts Per Network
Α	10.0.0.0-	255.0.0.0	16,777,214
	10.255.255.255	1 Net Octet, 3 Host octets	24 Hosts Bits (2^24-2)
В	172.16.0.0-	255.255.0.0	65,534
	172.31.255.255	2 Net Octets, 2 Host octets	16 Hosts Bits (2^16-2)
С	.192.168.0.0-192.168	255.255.255.0	254
	255.255	3 Net Octets, 1 Host octet	8 Hosts Bits (2^8-2)

Subnetting

- ?מדוע שיטה זו הומצאה
- שיטה זו הומצאה בכדי לנצל בצורה המרבית את כמות הכתובות בכל רשת. בעזרת Subnetting אנו יכולים לפצל רשת שלמה לתתי-רשתות, כך שכל תת-רשת היא רשת בפני עצמה, עם כתובת רשת (Broadcast Address) וכתובת תפוצה (Broadcast Address) משלה וכמובן כמות כתובות משתמשים הגיונית שאנו קובעים.

ניתן להשוות את שיטה זו לחלוקת ארון בגדים שלם (רשת אחת) למספר תאים שונים (תתי-רשתות).

נוסחאות משתמשים ורשתות

נוסחה לחישוב כמות הכתובות בכל רשת:

נוסחה לחישוב כמות כתובות המשתמשים בכל רשת:

נוסחה לחישוב כמות הרשתות הנחוצה:

דוגמה לשימוש בנוסחאות

- בתובות 192.168.0.0 : IP כתובות
- 255.255.255.0 :Subnet Mask ▶
- ביטים ששייכים לחלק הרשת שווים 1, ביטים ששייכים לחלק המשתמש שווים 0.

192.168.0.0
---192.168.0.1
....
192.168.0.254
---192.168.0.255

Subnetting

- .Subnetting כעת בעזרת הנוסחאות והידע שלנו בבינארית נוכל לבצע
 - בתובות 10.0.0.0 : IP כתובות
 - 255.255.255.0 :Subnet Mask כתובות
 - דרישה: יצירת 2 תתי-רשתות מרשת אחת.
 - :← השלבים
 - 1. שלב 1 -הצבה בנוסחאות!
 - שלב 2 השאלת כמות הביטים המתאימה, לטובת יצירת הרשתות!
 - 3. שלב 3 -שינוי כתובות ה-Subnet Mask לכתובת החדשה!
 - 4. שלב 4- חישוב והצגת תתי-הרשתות החדשות!

שלב 1 - הצבה בנוסחאות

נוסחה לחישוב כמות הרשתות הנחוצה:

נוסחה לחישוב כמות הכתובות בכל רשת:

נוסחה לחישוב כמות כתובות המשתמשים בכל רשת:

שלבים 2 ו-3

- לאחר הצבה בנוסחאות, גילנו שדורשים לנו ביט אחד ליצירת 2 תתי-רשתות, כיצד זה נראה ברמה הבינארית?
 - ביטים ששייכים לחלק הרשת שווים 1, ביטים ששייכים לחלק המשתמש שווים 0.
 - הכתובת SM הקודמת: ▶

11111111111111111111111111000000000

הכתובת SM החדשה: ▶

11111111111111111111111111110000000

הכתובת SM החדשה בצורה דצימאלית:

255.255.255.128

Classless Subnet Mask!

שלב 4- חישוב והצגת תתי-הרשתות החדשות!

- שימו לב! קיימות 2 שיטות לחישוב והצגת הרשתות: 1.השיטה הבינארית 2.טבלת כתובות.
 - שיטה 1-השיטה הבינארית.
- בעזרת חישוב בינארי של כתובת ה-IP וכתובת ה-SM החדשה, אנו מבדילים בין 2 תתיהרשתות, זאת אומרת מה הן כתובת הרשת (Network Address) וכתובת התפוצה
 (Usable IP Address) של כל תת-רשת, וכמה כתובות משתמשים (Broadcast Address) קיימות בכל תת-רשת.

ראשית, תזכורת קטנה! ▶

הכתובת	בינארית
(Network Address) הכתובת הראשונה	(כל הביטים של המשתמש שווים 0)
הכתובת השנייה (First Usable IP)	(כל הביטים של המשתמש שווים 0 <u>חוץ מהראשון)</u>
(Last Usable IP) הכתובת לפני אחרונה	(כל הביטים של המשתמש שווים 1 <u>חוץ מהראשון)</u>
כתובת התפוצה (Broadcast Address)	(כל הביטים של המשתמש שווים 1) 11111111

שלב 4-השיטה הבינארית

נציג את ה-Subnet Mask החדש בצורה בינארית, ונשים לב שכעת נותרו לחלק המשתמש רק 7 ביטים, מכיוון שאחד השאלנו לחלק הרשת למטרת יצירת תתי הרשתות.

11111111111111111111111111110000000

- גנבנו ביט אחד לטובת חלק הרשת, זאת אומרת 2 תתי-רשת.
 - איך זה בדיוק קורה?
 - לביט אחד יש 2 אפשרויות אחד ואפס! ▶
- נציג את כתובות ה-IP בצורה בינארית ונגלה שאותו ביט בודד מייצר לנו 2 כתובות רשת! ▶

192 168 0 0 cתובת ראשונה: 0

11000000.10101000.00000000.00000000

192 168 0 128 כתובת שנייה:

11000000.10101000.00000000.10000000

שלב 4-השיטה הבינארית

כעת, שאנו יודעים מה הן כתובות הרשת של כל רשת, באשרותינו לחשב את שאר הכתובות של כל רשת!

:2 'רשת מס' ▶

- זכרו כיצד מחשבים כתובות בבינארית!
 - רשת מס' 1: ▶

בינארית	דצימאלית
192.168.0.1000000	192.168.0.128
192.168.0.1000001	192.168.0.129
192.16.0.11111110	192.168.0.254
192.168.0.11111111	192.168.0.255

בינארית	דצימאלית
192.168.0.0000000	192.168.0.0
192.168.0.0000001	192.168.0.1
192.16.0.01111110	192.168.0.126
192.168.0.01111111	192.168.0.127

שלב 4-שיטת הטבלה

- חישבו והצגת הכתובות בכל תת-רשת על ידי חישבו כמות הכתובות בכל רשת!
 - :הטבלה

Broadcast Address	Usable IP Range	Network Address

שלב 4-שיטת הטבלה

כמות השורות בטבלה מייצגת את כמות תתי-הרשתות, מכיוון שיצרנו רק 2 תתי-רשתות אנו זקוקים ל-2 שורות!

Broadcast Address	Usable IP Range	Network Address

ל כתובת הרשת הראשונה היא 192.168.0.0 נציב אותה במיקום הנכון בטבלה! ▶

Broadcast Address	Usable IP Range	Network Address
		192.168.0.0

שלב 4-שיטת הטבלה

בעזרת הצבה בנוסחאות, אנו יודעים של רשת מכילה 128 כתובות! נוסיף את המספר 128
לכותבת רשת הראשונה ונקבל את כתובת הרשת הבאה 192.168.0.128.

Broadcast Address	Usable IP Range	Network Address
		192.168.0.0
		192.168.0.128

נשלים את שאר הנתונים בטבלה על סמך כתובות הרשת וכמות הכתובות החוקית בכל רשת!

Broadcast Address	Usable IP Range	Network Address
192.168.0.127	192.168.0.1-192.168.0.126	192.168.0.0
192.168.0.255	192.168.0.129-192.168.0.254	192.168.0.128

טבלת SM טבלת

של Subnet Mask! כמות Subnet Mask! האפשריות Classless ו-SM Class C של SM Class C! כמות רעובות ה-SM Class C של SM שונה!

refix lei	ngth Dotted Decimal Ne	tmask Hexidecimal Ne	etmask Inverse Netma	sk Binary	Number of Classfull Networks Num	ber of Usable IP
/1	128.0.0.0	80 00 00 00	127.255.255.255	1000 0000 0000 0000 0000 0000 0000 0000	128 As	2,147,483,64
12	192.0.0.0	CO OO OO OO	63.255.255.255	1100 0000 0000 0000 0000 0000 0000 0000	64 As	1,073,741,82
/3	224.0.0.0	E0 00 00 00	31.255.255.255	1110 0000 0000 0000 0000 0000 0000 0000	32 As	536,870,9
14	240.0.0.0	FO OO OO OO	15.255.255.255	1111 0000 0000 0000 0000 0000 0000 0000	16 As	268,435,46
/5	248.0.0.0	F8 00 00 00	7.255.255.255	1111 1000 0000 0000 0000 0000 0000 0000	8 As	134,217,7
/6	252.0.0.0	FC 00 00 00	3.255.255.255	1111 1100 0000 0000 0000 0000 0000 0000	4 As	67,108,86
77	254.0.0.0	FE 00 00 00	1.255.255.255	1111 1110 0000 0000 0000 0000 0000 0000	2 As	33,554,43
<i>1</i> 8	255.0.0.0	FF 00 00 00	0.255.255.255	1111 1111 0000 0000 0000 0000 0000 0000	1 A or 256 Bs	16,777,21
/9	255.128.0.0	FF 80 00 00	0.127.255.255	1111 1111 1000 0000 0000 0000 0000 0000	128 Bs	8,388,60
/10	255,192.0.0	FF CO 00 00	0.63.255.255	1111 1111 1100 0000 0000 0000 0000 0000	64 Bs	4,194,3
/11	255.224.0.0	FF E0 00 00	0.31.255.255	1111 1111 1110 0000 0000 0000 0000 0000	32 Bs	2,097,16
/12	255.240.0.0	FF FO 00 00	0.15.255.255	1111 1111 1111 0000 0000 0000 0000 0000	16 Bs	1,048,5
/13	255.248.0.0	FF F8 00 00	0.7.255.255	1111 1111 1111 1000 0000 0000 0000 0000	8 Bs	524,2
/14	255.252.0.0	FF FC 00 00	0.3.255.255	1111 1111 1111 1100 0000 0000 0000 0000	4 Bs	262,1
/15	255,254.0.0	FF FE 00 00	0.1.255.255	1111 1111 1111 1110 0000 0000 0000 0000	2 Bs	131,07
/16	255.255.0.0	FF FF 00 00	0.0.255.255	1111 1111 1111 1111 0000 0000 0000 0000	1 B or 256 Cs	65,53
/17	255.255.128.0	FF FF 80 00	0.0.127.255	1111 1111 1111 1111 1000 0000 0000 0000	128 Cs	32,76
/18	255.255.192.0	FF FF CO OO	0.0.63.255	1111 1111 1111 1111 1100 0000 0000 0000	64 Cs	16,38
/19	255.255.224.0	FF FF E0 00	0.0.31.255	1111 1111 1111 1111 1110 0000 0000 0000	32 Cs	8,19
/20	255.255.240.0	FF FF FO OO	0.0.15.255	1111 1111 1111 1111 1111 0000 0000 0000	16 Cs	4,09
/21	255.255.248.0	FF FF F8 00	0.0.7.255	1111 1111 1111 1111 1111 1000 0000 0000	8 Cs	2,0
/22	255.255.252.0	FF FF FC 00	0.0.3.255	1111 1111 1111 1111 1111 1100 0000 0000	4 Cs	1,00
/23	255.255.254.0	FF FF FE OO	0.0.1.255	1111 1111 1111 1111 1111 1110 0000 0000	2 Cs	5
124	255.255.255.0	FF FF FF 00	0.0.0.255	1111 1111 1111 1111 1111 1111 0000 0000	1 C	2:
/25	255.255.255.128	FF FF FF 80	0.0.0.127	1111 1111 1111 1111 1111 1111 1000 0000	1/2 C	11
/26	255.255.255.192	FF FF FF CO	0.0.0.63	1111 1111 1111 1111 1111 1111 1100 0000	1/4 C	
/27	255.255.255.224	FF FF FF EO	0.0.0.31	1111 1111 1111 1111 1111 1111 1110 0000	1/8 C	3
/28	255.255.255.240	FF FF FF FO	0.0.0.15	1111 1111 1111 1111 1111 1111 1111 0000	1/16 C	
/29	255,255,255,248	FF FF FF F8	0.0.0.7	1111 1111 1111 1111 1111 1111 1111 1000	1/32 C	
/30	255.255.255.252	FF FF FF FC	0.0.0.3	1111 1111 1111 1111 1111 1111 1111 1100	1/64 C	
/31	255.255.255.254	FF FF FF FE	0.0.0.1	1111 1111 1111 1111 1111 1111 1111 1111	1/128 C	
/32	255.255.255.255	FF FF FF FF	0.0.0.0	1111 1111 1111 1111 1111 1111 1111 1111	1/256 C	

