1. Explain the relative rates of the following compounds in the S_N1 reaction based on MO approach.

	R	Relative rate
R Cl	CH ₃	540
	CH ₃ CH ₂	125
	(CH ₃) ₂ CH	27
	(CH ₃) ₃ C	1

2. The reaction of cyclopentyl bromide with sodium cyanide to give cyclopentyl cyanide proceeds faster if a small amount of sodium iodide is added to the reaction mixture. Can you suggest a reasonable mechanism to explain the function of sodium iodide?

3. The Relative rates (water = 1) of reaction of nucleophiles with MeBr in EtOH are provided below. Explain the observed trend.

Nucleophiles	Relative rate
PhO-	2×10^{3}
EtO-	6×10^4
PhS-	5x 10 ⁷

4. The relative rates of reactions of different nucleophiles with the following substrate are given in the table. Explain why the rate is practically the same for the first 3 nucleophiles whereas it increases for OH- and Ph-.

Nucleophile	Relative Rate
AcO-	1.02
Cl-	1.05
PhO-	1
OH-	20
PhS-	28