D: Functions

A function $f: X \to Y$ is an assignment of an element of Y to each element of X.

1. f is **injective** if:

$$\forall x_1, x_2 \in X; f(x_1) = f(x_2)$$

$$\implies x_1 = x_2$$

and this implies that $|X| \leq |Y|$.

2. f is **surjective** if:

$$\forall y \in Y; \exists x \in X : y = f(x)$$

and this implies that $|X| \geq |Y|$.

3. *f* is **bijective** if it is injective and surjective.

D: Groups

A group G is a set with a composition operator (\circ) such that $\forall x, y, z, \in G$:

- 1. $x \circ y = xy \in G$
- 2. (xy)z = x(yz)
- 3. $\exists e \in G : ex = xe = x$
- 4. $\exists x^{-1} \in G : xx^{-1} = x^{-1}x = e$.

G is **Abelian** if $\forall x, y \in G; xy = yx$.

D1.2.1(i): Fields

A field F is a set defined with addition and multiplication such that:

- 1. $(+): F \times F \to F; (\lambda, \mu) \mapsto \lambda + \mu$
- 2. $(\cdot): F \times F \to F; (\lambda, \mu) \mapsto \lambda \cdot \mu$
- 3. $\exists (-\lambda) \in F : \lambda + (-\lambda) = 0_F$
- 4. $\exists (\lambda^{-1}) \in F : \lambda \cdot (\lambda^{-1}) = 1_F$ except when $\lambda = 0$.
- 5. (+) and (\cdot) are associative, commutative and distributive.

Remark

(F,+) and $(F \setminus \{0_F\},\cdot)$ are groups.

Remark

Let n be prime or a prime power. Then \mathbb{F}_n is a finite field with n elements under modulo n. Also, \mathbb{Q} and \mathbb{R} are fields.

D1.2.1(ii): Vector spaces

A vector space V over a field F is an Abelian group V := (V, +) with mapping:

$$F \times V \to V; (\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}$$

where for $\forall \lambda, \mu \in F$ and $\forall \boldsymbol{v}, \boldsymbol{w} \in V$:

- 1. $\lambda(\boldsymbol{v} + \boldsymbol{w}) = (\lambda \boldsymbol{v}) + (\mu \boldsymbol{w})$
- 2. $(\lambda + \mu)\mathbf{v} = (\lambda \mathbf{v}) + (\mu \mathbf{v})$
- 3. $\lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}$
- 4. $1_F v = v$

and is known as a F-vector space.

Remark

Let V be a F-vector space and $\mathbf{v} \in V$.

- 1. 0v = 0
- 2. (-1)v = -v
- 3. $\lambda \mathbf{0} = \mathbf{0}$ for $\forall \lambda \in F$.

D: Cartesian products

The **cross product** of sets X_1, \ldots, X_n is:

$$X_1 \times \cdots \times X_n := \{(x_1, \dots, x_n) : x_i \in X_i\}$$

with bijection $X^n \times X^m \to X^{n+m}$.

The **projection** of a cross product is:

$$\operatorname{pr}_i: X_1 \times \cdots \times X_n \to X_i;$$

 $(x_1, \dots, x_n) \mapsto x_i.$

D1.4.1: Vector subspaces

A vector subspace U of F-vector space V has the following properties:

- 1. $U \subset V$ and $\mathbf{0} \in U$.
- 2. Let $u, v \in U$ and $\lambda \in F$. Then $u + v \in U$ and $\lambda u \in U$.

and is also a vector space.

P1.4.5

Let $T \subset V$ where V is a F-vector space. Then for all vector subspaces containing T, there exists a <u>smallest</u> vector subspace:

$$\operatorname{span}(T) = \langle T \rangle_F \subset V$$

known as the vector subspace generated by T, or the span of T.

D1.4.7: Generating set

Let $T \subset V$ where V is a F-vector space. Set T is a **generating set** of V if:

$$\operatorname{span}(T) = V$$

and is the linear combination of vectors in T over field F. V is **finitely generated** if its generating set T is finite.

D1.4.9: Power sets

The power set of set X is:

$$\mathcal{P}(X) := \{U : U \subseteq X\}.$$

Let $\mathcal{U} \subseteq \mathcal{P}(X)$. Then:

$$\bigcup_{U \in \mathcal{U}} U := \{ x \in X : (\exists U \in \mathcal{U} : x \in U) \}$$

$$\bigcap_{U \in \mathcal{U}} U := \{ x \in X : \forall U \in \mathcal{U}; x \in U \}.$$

D1.5.1: Linear independence

Let V be a F-vector space and $L \subseteq V$. Subset L is **linearly independent** if:

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0}$$

 $\implies \alpha_1 = \dots = \alpha_r = 0$

for $v_i \in L$ and is pairwise distinct.

Remark

L is linearly dependent if some $\alpha_i \neq 0$.

D1.5.8: Basis

A basis of a vector space V is a **linearly** independent generating set in V.

T1.5.11: Basis evaluation mappings

Let V be a F-vector space.

Then $A = \{v_1, \dots, v_r\}$ is a basis of V iff the following evaluation mapping:

$$\Phi_A: F^r \to V;$$

$$(\alpha_1, \dots, \alpha_r) \mapsto \alpha_1 v_1 + \dots + \alpha_r v_r$$
 is a bijection.

Remark

 Φ is surjective if A is generating.

T1.5.12

Let V be a vector space and $E \subseteq V$. Then the following statements are equivalent:

- 1. E is a basis of V.
- 2. E is minimal among all generating sets, or that $E \setminus \{e\}$ is not a basis for $\forall e \in E$.
- 3. E is maximal amongst all linearly independent subsets. i.e. $E \cup \{v\}$ is linearly dependent for $\forall v \in V$.

C1.5.13

Every finitely generated vector space has $\$ Let V be a finitely generated vector space. a finite basis.

T1.5.14

Let V be a vector space.

- 1. Let $L \subseteq V$ be linearly independent and set E be minimal amongst all generating sets of V. Let $L \subseteq E$. Then E is a basis of V.
- 2. Let $E \subseteq V$ be a generating set and L be maximal amongst all linearly independent subsets of V.

Let $L \subseteq E$. Then E is a basis of V.

D1.5.15

Let X be a set and F be a field. Then:

$$\mathrm{maps}(X,F) := \{f : (\forall f : X \to F)\}$$

and is a F-vector space under pointwise addition and multiplication via scalars.

Let $F\langle X\rangle\subseteq \operatorname{maps}(X,F)$ be the subset of all mappings that sends all but finitely many elements of X to 0:

$$F\langle X\rangle := \left\{ f : \big(\forall f : X \to \{0\}\big) \right\}.$$

It contains all linear combinations of Xin F and forms a vector subspace.

T1.5.16

Let V be a F-vector space.

Then $(v_i)_{i\in I}$ is a basis for V iff:

$$\forall \boldsymbol{v} \in V; \exists ! (a_i)_{i \in I} \subseteq F: \boldsymbol{v} = \sum_{i \in I} a_i \boldsymbol{v}_i.$$

T1.6.1

Let V be a vector space. Let $L \subset V$ be a linearly independent subset and $E \subseteq V$ a generating set. Then $|L| \leq |E|$.

T1.6.2: Steinitz exchange theorem

Let V be a vector space, $L \subset V$ be a finite linearly independent subset and $E \subseteq V$ be a generating set.

Then there exists an **injective** function $\phi: L \to E$ such that:

 $(E \setminus \phi(L)) \cup L$ is a generating set for V.

L1.6.3: Exchange lemma

Let V be a vector space. Let $M \subset V$ be a finite linearly independent subset and $E \subseteq V$ be a generating set where $M \subseteq E$.

If $\exists \boldsymbol{w} \in V \setminus M$ such that set $M \cup \{\boldsymbol{w}\}$ is linearly independent then:

 $\exists e \in E \setminus M : (E \setminus e) \cup \{w\}$ is generating.

C1.6.4

- 1. V has finite basis.
- 2. V cannot have infinite basis.
- 3. Any two basis of V have the same number of elements.

D1.6.5: Dimension

The dimension of finite F-vector space Vis the cardinality of one of its basis.

For infinite vector spaces: $\dim(V) = \infty$. We also define $\dim(\{\mathbf{0}\}) := 0$.

C1.6.7

Let V be a finitely generated vector space.

- 1. Every linearly independent $L \subseteq V$ has at most dim(V) elements and if $|L| = \dim(V)$ then L is a basis.
- 2. Every generating set $E \subseteq V$ has at least $\dim(V)$ elements and if $|E| = \dim(V)$ then E is a basis.

C1.6.8

A proper vector subspace of a vector space with finite dimension has itself a strictly smaller dimension.

T1.6.10: Dimension theorem

Let V be a vector space and $U, W \subseteq V$ be vector subspaces. Then:

$$\dim(U+W) + \dim(U \cap W)$$
$$= \dim(U) + \dim(W)$$

where $U + W := \langle U \cup W \rangle \subseteq V$.

D1.7.1: Linear mappings

Let V and W be F-vector spaces. A mapping $f: V \to W$ is F-linear or a homomorphism of vector spaces if for $\forall \boldsymbol{v}_1, \boldsymbol{v}_2 \in V \text{ and } \forall \lambda \in F$:

- 1. $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$
- 2. $f(\lambda \mathbf{v}_1) = \lambda f(\mathbf{v}_1)$.

Furthermore bijective linear mappings are an **isomorphism** of vector spaces.

A homomorphism from a vector space to itself is an endomorphism.

An isomorphism of a vector space to itself is an automorphism.

D1.7.5: Fixed points

In a linear mapping a fixed point is sent to itself. Given mapping $f: X \to X$ the set of fixed points is:

$$X^f = \{x \in X : f(x) = x\}.$$

D1.7.6: Complementary subspaces

Vector subspaces V_1, V_2 of vector space Vare complementary if the direct sum of vector subspaces is bijective:

$$\oplus: V_1 \times V_2 \to V; (\boldsymbol{v}_1, \boldsymbol{v}_2) \mapsto \boldsymbol{v}_1 + \boldsymbol{v}_2.$$

i.e. $V_1 \oplus V_2 = V$.

T1.7.7

Let $n \in \mathbb{N}$ and V a F-vector space. V is isomorphic to F^n iff $\dim(V) = n$.

L1.7.8

Let V, W be F-vector spaces and let B be a basis of V. Then the following mapping:

$$hom_F(V, W) \to maps(B, W); f \mapsto f_B$$

is a bijection. The set of all linear maps or homomorphisms from V to W is:

$$hom_F(V, W) \subseteq maps(B, W).$$

P1.7.9

Let $f: V \to W$ be a linear mapping, where V, W are vector spaces.

- 1. If f is injective, there exists map $g: W \to V$ such that $g \circ f = \mathrm{id}_V$. i.e. it has a **left inverse**.
- 2. If f is surjective, there exists map $g: W \to V$ such that $f \circ g = \mathrm{id}_W$. i.e. it has a **right inverse**.

D1.8.1: Image and kernel

Let $f: V \to W$ be a linear mapping. The **image** of this linear mapping f is:

$$im(f) := f(V)$$

$$= \{ \boldsymbol{w} \in W : \forall \boldsymbol{v} \in V; \boldsymbol{w} = f(\boldsymbol{v}) \}$$

and is a vector subspace of W.

The **kernel** of this linear mapping f is:

$$\ker(f) := f^{-1}(\mathbf{0}) = \{ \mathbf{v} \in V : f(\mathbf{v}) = \mathbf{0} \}$$

and is a vector subspace of V.

L1.8.2

A linear mapping $f: V \to W$ is injective **iff** $ker(f) = \{0\}.$

T1.8.4: Rank-nullity theorem

Let $f:V\to W$ be a linear mapping and V,W are vector spaces. Then:

$$\dim(V) = \dim\Bigl(\ker(f)\Bigr) + \dim\Bigl(\operatorname{im}(f)\Bigr).$$

T2.1.1: Matrix mappings

Let F be a field and $m, n \in \mathbb{N}$.

Then there exists a bijection:

$$M: \hom_F(F^m, F^n) \to \max(n \times m; F);$$

$$f \mapsto [f]$$

and attaches each linear mapping f with its representing matrix M(f) := [f].

Remark

The set of $n \times m$ matrices in F is defined:

$$mat(n \times m; F)$$
.

i.e. matrices with n rows and m columns.

D2.1.6: Matrix products

The product $A \circ B = AB$ for A is $n \times m$, B is $m \times \ell$ and AB is $n \times \ell$ is defined as:

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

with the following mapping:

$$\max(n \times m; F) \times \max(m \times \ell; F)$$

 $\rightarrow \max(n \times \ell; F); (A, B) \mapsto AB.$

T2.1.8

Let $g: F^{\ell} \to F^m$ and $f: F^m \to F^n$ be linear mappings. Then $[f \circ g] = [f] \circ [g]$.

P2.1.9

Let A, A' be $n \times m, B, B'$ be $m \times \ell$ and C, C' be $\ell \times k$. Denote $I = I_m$ as the $m \times m$ identity matrix. Then:

- 1. (A + A')B = AB + A'B
- 2. A(B + B') = AB + AB'
- 3. IB = B
- $4. \ AI=A$
- 5. (AB)C = A(BC).

D2.2.1: Invertible matrices

A matrix A is **invertible** if:

$$\exists B, C : BA = I \text{ and } AC = I.$$

D2.2.2: Elementary matrices

Elementary matrices are square matrices that differs from the identity matrix by at most one entry.

T2.2.3

Every square matrix with entries in a field can be written as a $\underline{\text{product}}$ of elementary matrices.

D2.2.4: Smith normal form

Matrices with **only** non-zero entries along the diagonal are in Smith normal form:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

T2.2.5

Let A be an $n \times m$ matrix. Then:

PAQ is of Smith normal form where P and Q are invertible.

Remark

rank(A) = rank(PAQ).

D2.2.7: Column and row rank

Let matrix $A \in \text{mat}(n \times m; F)$.

The column rank of A is the dimension of the subspace of F^n generated by the columns of A.

Similarly the row rank of A is the dimension of the subspace of F^m generated by the rows of A.

T2.2.8

Column and row ranks are equal.

D2.2.9: Full rank matrices

Let A be $n \times m$ with entries in F. A is **full rank** if rank(A) = min(m, n).

Let A = [a] with mapping $a : F^m \to F^n$. Then $\dim(\operatorname{im}(a)) := \operatorname{rank}(A)$.

T2.3.1: Representing matrices

Let V and W be F-vector spaces with bases $A = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_m\}$ s.t. $\langle A \rangle = V$ and $B = \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\}$ s.t. $\langle B \rangle = W$.

Then for every linear map $f: V \to W$ there exists a **representing matrix**:

$$(_B[f]_A)_{ij} = a_{ij}$$

 $f(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + \dots + a_{nj}\mathbf{w}_n \in W$ which produces the following bijection:

$$M_B^A : \hom_F(V, W) \to \operatorname{mat}(n \times m; F);$$

$$f \mapsto {}_B[f]_A$$

and $M_B^A(f) = {}_B[f]_A$ is the representing matrix of linear mapping f with respect to bases A and B.

If A and B are standard bases then [f].

T2.3.2

Let U, V, W be F-vector spaces with finite dimension and bases A, B, C respectively.

If $f: U \to V$ and $g: V \to W$ are linear mappings then $_C[g \circ f]_A = _C[g]_B \circ _B[g]_A$.

D2.3.3: Vector representations

Let V be a finite dimensional vector space with basis $A = \{v_1, \dots, v_m\}$. Then:

$$\Phi_A^{-1}: V \to F^r; \boldsymbol{v} \mapsto {}_A[\boldsymbol{v}]$$

is a bijection and the column vector $_{A}[v]$ is known as the representation of vector v with respect to basis A.

T2.3.4

Let V, W be finite dimensional F-vector spaces with bases A and B respectively.

Let $f: V \to W$ be a linear mapping. Then $_B[f(\boldsymbol{v})] = _B[f]_A \circ _A[\boldsymbol{v}]$ for $\forall \boldsymbol{v} \in V$.

D2.4.1

Let V be a F-vector space and let sets $A = \{v_1, \ldots, v_n\}$ and $B = \{w_1, \ldots, w_n\}$ be bases of V. The representation matrix of the identity mapping:

$$id_V: V \to V; \boldsymbol{v} \mapsto \boldsymbol{v}$$

is a **change of basis matrix** $_B[id_V]_A$ with entries a_{ij} given by definition:

$$\boldsymbol{v}_j = \sum_{i=1}^n a_{ij} \boldsymbol{w}_i.$$

T2.4.3: Change of basis

Let V and W be finite dimensional vector spaces with linear mapping $f: V \to W$. Let A, A' be ordered bases of V and B, B' be ordered bases of W. Then:

$$_{B'}[f]_{A'} = _{B'}[\mathrm{id}_W]_B \circ _B[f]_A \circ _A[\mathrm{id}_V]_{A'}.$$

C2.4.4

Let V be a finite dimensional vector space and let $f: V \to V$ be an endomorphism. Let A, A' be bases of V. Then:

$${}_{A'}[f]_{A'} = {}_A[\operatorname{id}_V]_{A'}^{-1} \circ {}_A[f]_A \circ {}_A[\operatorname{id}_V]_{A'}.$$

T2.4.5

Let V and W be finite dimensional vector spaces and let $f: V \to W$ be linear.

Then there exists a basis A of V and a basis B of W such that the representing matrix $_B[f]_A$ has nonzero entries only on the diagonal.

D2.4.6: Trace

The trace of a $n \times n$ matrix A is the sum of its diagonal entries:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

D3.1.1: Rings

A ring R is a set equipped with <u>addition</u> and multiplication that satisfy:

- 1. (R, +) is an **Abelian group** with additive identity $0_R \in R$.
- 2. (R, \cdot) is a **monoid**, meaning that

$$(\cdot): R \times R \to R; (a,b) \mapsto c$$

is associative with identity element $1 = 1_R \in R$ such that:

$$\forall a, b, c \in R; (a \cdot b) \cdot c = a \cdot (b \cdot c),$$

$$a \cdot 1 = 1 \cdot a = a$$

yet $a \cdot b \neq b \cdot a$ in general.

3. Multiplication in R with respect to addition is distributive:

$$a\cdot (b+c) = (a\cdot b) + (a\cdot c)$$

$$(b+c) \cdot a = (b \cdot a) + (c \cdot a)$$

for $\forall a, b, c \in R$.

For **nonzero** rings $0_R \neq 1_R$.

Division rings are rings where nonzero elements have multiplicative inverses.

P3.1.7

A natural number is divisible by 3 if the sum of its digits is divisible by 3.

D3.1.8: Fields

A field F is a nonzero commutative ring with **multiplicative** inverses to every nonzero element:

$$\forall a \in F; \exists a^{-1} \in F : aa^{-1} = a^{-1}a = 1.$$

i.e. a commutative division ring.

P3.1.11

 $\mathbb{Z}/m\mathbb{Z}$ is a field **iff** m is prime.

L3.2.1

Let R be a ring and $a, b \in R$. Then:

- 1. 0a = a0 = 0
- 2. (-a)b = -(ab) = a(-b)
- 3. (-a)(-b) = ab.

D3.2.3

Let $m \in \mathbb{Z}$. Then mth multiple ma of $a \in (R, +)$ is $ma = \underbrace{a + \cdots + a}_{m \text{ times}}$ if m > 0.

0a := 0 and if m < 0, (-m)a = -(ma).

L3.2.4

Let R be a ring where $a,b \in R$ and $m,n \in \mathbb{Z}$. Then:

- 1. m(a+b) = ma + mb
- 2. (m+n)a = ma + na
- 3. m(na) = (mn)a
- 4. m(ab) = (ma)b = a(mb)
- 5. (ma)(nb) = (mn)(ab).

D3.2.6: Units

Let R be a ring. An element $r \in R$ is a **unit** if it has a **multiplicative** inverse:

$$\exists r^{-1} \in R : rr^{-1} = r^{-1}r = 1_R.$$

P3.2.9: Group of units

 R^{\times} is the **set of units** in ring R and forms a group under multiplication.

D3.2.11: Divisor of zero

Let R be a ring. $r \in R$ is a divisor of zero if $\exists s \in R$ s.t. either rs = 0 or sr = 0.

D3.2.12: Integral domains

Integral domains are commutative rings with **no** divisors of zeros.

P3.2.15: Cancellation law

Let $a, b, c \in R$ for R is an integral domain. If ab = ac and $a \neq 0$ then b = c.

P3.2.16

Let $m \in \mathbb{N}$. Then $\mathbb{Z}/m\mathbb{Z}$ is an integral domain **iff** m is prime.

T3.2.17

Every finite integral domain is a field.

Remark

If $|R| < \infty$ then $f: R \to R$ is surjective.

D3.3.2: Polynomial rings

R[X] is a ring of polynomials over R with zero and identity: $0, 1 \in R$. If $P \in R[X]$:

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m$$

with $deg(P) = m \ge 0$ and $a_i \in R$.

L3.3.3

Let R be a ring and let $P, Q \neq 0 \in R[X]$.

- 1. deg(PQ) = deg(P) + deg(Q)
- 2. If R is an integral domain then so is polynomial ring R[X].

T3.3.4

Let R be an integral domain and let $P,Q \in R[X]$ where $\deg(Q) \leq \deg(P)$ and that polynomial Q is a **monic**. Then $\exists !A,B \in R[X] : P = AQ + B$ and either $\deg(B) < \deg(Q)$ or B = 0.

Remark

A polynomial Q is monic if:

$$Q = q_0 + \dots + q_m X^m$$

where $q_m = 1$.

D3.3.6

Let R be a commutative ring and let $P \in R[X]$ be a polynomial. Then:

$$R[X] \to \operatorname{maps}(R,R)$$

where we **evaluate** $P(\lambda)$ for $\lambda \in R$:

$$P(X) \mapsto \{P_{\lambda} : R \to R; \lambda \mapsto P(\lambda)\}.$$

If $P(\lambda) = 0$ then λ is a **root** of P.

P3.3.9

Let R be a commutative ring, let $\lambda \in R$ and $P(X) \in R[X]$. Then $P(\lambda) = 0$ iff:

$$P(X) = (X - \lambda)Q(X)$$

where $Q(X) \in R[X]$.

T3.3.10

Polynomial $P \neq 0 \in R[X] \setminus \{0\}$ has at most $\deg(P)$ roots in integral domain R.

D3.3.11: Algebraically closed field

A field F is algebraically closed if every $P \in F[X] \setminus F$ has a root in field F.

T3.3.13: FTA

Field \mathbb{C} is algebraically closed.

T3.3.14

Let field F be algebraically closed. Then every $P \in F[X] \setminus \{0\}$ decomposes into:

$$P = c(X - \lambda_1) \dots (X - \lambda_n)$$

where $c \in F^{\times}$ and $\lambda_1, \ldots, \lambda_n \in F$.

D3.4.1: Ring homomorphisms

Let R and S be rings. $f: R \to S$ is a ring homomorphism if for all $x, y \in R$:

$$f(x+y) = f(x) + f(y)$$

$$f(xy) = f(x)f(y).$$

L3.4.5

Let R and S be rings. Let $f: R \to S$ be a **ring homomorphism**. Then for all $x, y \in R$ and $m \in \mathbb{Z}$:

- 1. $f(0_R) = 0_S$
- 2. f(-x) = -f(x)
- 3. f(x-y) = f(x) f(y)
- 4. f(mx) = mf(x)

since (R, +) is a group.

D3.4.7: Ideals

Let $I \subset R$ where R is a ring. Then I is an **ideal** of ring R if:

- 1. $I \neq \emptyset$ and $0_R \in I$
- $2.\ I$ is closed under subtraction.
- 3. $\forall i \in I; \forall r \in R; ri, ir \in I$

and we denote $I \subseteq R$.

D3.4.11: Ideal of R generated by T

Let R be a commutative ring and $T \subset R$. Then the ideal of R generated by T is:

$$_{R}\langle T\rangle = \left\{ \sum_{i} r_{i} t_{i} : t_{i} \in T; \forall r_{i} \in R \right\}$$

where $i \in \{1, \ldots, m\}$ and $m \leq |T|$.

P3.4.14

 $_R\langle T\rangle$ is the smallest ideal containing T.

D3.4.15: Principle ideal

An ideal of a commutative ring R is the **principle ideal** if:

$$I = {}_{R}\langle t \rangle$$
 where $t \in R$.

P3.4.18

Let $f: R \to S$ be a ring homomorphism. Then $\ker(f)$ is an ideal of ring R where:

$$\ker(f) = \{ r \in R : f(r) = 0_S \}$$

and is a subgroup of (R, +).

L3.4.21 and L3.4.22

The set intersection and addition of ideals also form ideals.

D3.4.23: Subrings

A subset $R' \subseteq R$ is a subring of ring R if R' also satisfies D3.1.1.

P3.4.26: Subring test

 $R' \subseteq R$ is a subring of R iff $\forall a, b \in R'$:

- 1. R' has multiplicative identity.
- $2. \ a-b \in R'$
- 3. $ab, ba \in R'$

i.e. that R' is closed under subtraction and multiplication.

P3.4.28

Let $f: R \to S$ be a ring homomorphism.

- 1. If R' is a subring of R then f(R') and im(f) are subrings of S.
- 2. Let $f(1_R) = 1_S$. Then:

$$x \in R^{\times} \implies f(x) \in S^{\times}.$$

D3.5.1: Relations

A **relation** R on set X is a subset of $X \times X$ and denote $(x, y) = xRy \in X \times X$.

R is an **equivalence relation** on set X if $\forall x, y, z \in X$ the following is true:

- 1. Reflexive: xRx
- 2. Symmetric: $xRy \iff yRx$
- 3. Transitive: $(xRy \wedge yRz) \implies xRz$.

D3.5.3: Equivalence classes

Let \sim be an equivalence relation on X. Then the **equivalence class** of $x \in X$ is:

$$E(x) = \{ z \in X : z \sim x \} \subseteq X$$

where an element of an equivalence class is a **representative** of the class.

D3.5.5

Given an equivalence relation \sim on set X, the set of equivalence classes is:

$$(X \setminus \sim) := \{ E(x) : x \in X \} \subseteq \mathcal{P}(X).$$

We also define a surjective map:

$$\operatorname{can}: X \to (X/\sim); x \mapsto E(x)$$

known as the canonical mapping.

D3.6.1: Cosets

Let I be an ideal of ring R. Then:

$$x+I=\{x+i:i\in I\}\subseteq R$$

is the coset of x with respect to I in R.

Remark

- 1. x + I is both a left and right coset of x since (R, +) is Abelian.
- 2. Ideals of rings are subgroups.

D3.6.3: Factor rings

Let I be an ideal of ring R. Define the following equivalence relation where:

$$x \sim y \iff x - y \in I.$$

Then the **factor ring** of R by I is the set of cosets of I in R:

$$R/I = (R/\sim).$$

T3.6.7

Let I be an ideal of ring R. Then:

- 1. can : $R \to R/I$ is a surjective ring homomorphism with kernel I.
- 2. Let $f: R \to S$ where $f(I) = \{0_S\}$ and that f is a ring homomorphism.

Then there is a unique $\overline{f}: R/I \to S$ such that $f = \overline{f} \circ \text{can}$ and that \overline{f} is also a ring homomorphism.

T3.6.9

Every ring homomorphism $f: R \to S$ induces a ring isomorphism:

$$\overline{f}: R/\ker(f) \to \operatorname{im}(f)$$

where \overline{f} is a bijection. This is the first isomorphism theorem for rings.

D3.7.1: Left modules

A left module M over a ring R is a **pair** consisting of an Abelian group $(M, \dot{+})$ and the following mapping:

$$R \times M \to M; (r, a) \mapsto ra$$

such that $\forall r, s \in R$ and $\forall a, b \in M$:

$$r(a \dotplus b) = (ra) \dotplus (rb)$$
$$(r+s)a = (ra) \dotplus (sa)$$

$$r(sa) = (rs)a$$

$$1_R a = a$$

also known as an R-module.