Exploration of Soccer Dataset

Research task: show most valued attributes for field players

Used European Soccer Dataset from www.kaggle.com/paosheng/european-soccer-database)

```
In [1]: #import required liblaries
  import sqlite3
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
```

Step 1. Acquire data

Dataset European Soccer is the sqlite db, so use sqlite3 library

```
In [2]: conn = sqlite3.connect('database.sqlite')
    df = pd.read_sql_query("SELECT * FROM Player_Attributes", conn)
    df.head()
```

Out[2]:

,	defensive_work_rate	crossing	 vision	penalties	marking	standing_tackle	sliding_tackle	gk_diving
١	medium	49.0	 54.0	48.0	65.0	69.0	69.0	6.0
1	medium	49.0	 54.0	48.0	65.0	69.0	69.0	6.0
١	medium	49.0	 54.0	48.0	65.0	66.0	69.0	6.0
١	medium	48.0	 53.0	47.0	62.0	63.0	66.0	5.0
1	medium	48.0	 53.0	47.0	62.0	63.0	66.0	5.0

Step 2. Data preparation

We see that table *Player_Attributes* contains attributes as for field players as for goalkeepers ('gk_diving' attribute for example). Because different skills required for both groups we must define how to select data only for field players.

```
In [3]: #Remove Nans for initial data analysis
df.dropna(how='any', axis=0, inplace=True);
```

In [4]: # Breefly look at distribution of attributes
 plt.hist(df['gk_diving'], bins=20)
 plt.show()

We see, that goalkeepers attributes has bimodal distribution. We may assume that high values of attributes relates to goalkeepers, low values for other players. So, we can divide data by *gk_diving* attribute.

Selects only data required data (attributes and row related to field players)

In [5]: #Take required dependent variable with key
dep = df.loc[:, ['id','overall_rating']].columns
#Take independent variables
columns = dep.append(df.loc[:, 'crossing':'sliding_tackle'].columns)

#Select data related to field players
filtered = df[df['gk_diving']<25]
selecteddata = filtered[columns]
selecteddata.head()</pre>

Out[5]:

	id	overall_rating	crossing	finishing	heading_accuracy	short_passing	volleys	dribbling	curve	fre
0	1	67.0	49.0	44.0	71.0	61.0	44.0	51.0	45.0	
1	2	67.0	49.0	44.0	71.0	61.0	44.0	51.0	45.0	
2	3	62.0	49.0	44.0	71.0	61.0	44.0	51.0	45.0	
3	4	61.0	48.0	43.0	70.0	60.0	43.0	50.0	44.0	
4	5	61.0	48.0	43.0	70.0	60.0	43.0	50.0	44.0	

5 rows × 30 columns

In [6]: selec

selecteddata.describe().T

Out[6]:

	count	mean	std	min	25%	50%	75%	max
id	165615.0	91789.326740	53038.960805	1.0	45982.5	91665.0	137451.5	183978.0
overall_rating	165615.0	68.667512	6.976079	33.0	64.0	69.0	73.0	94.0
crossing	165615.0	58.340422	13.881403	8.0	49.0	60.0	68.0	95.0
finishing	165615.0	52.752776	17.116430	7.0	39.0	56.0	66.0	97.0
heading_accuracy	165615.0	60.612034	12.311963	2.0	52.0	61.0	69.0	98.0
short_passing	165615.0	65.513800	9.986661	15.0	60.0	66.0	72.0	97.0
volleys	165615.0	52.309712	16.085748	6.0	40.0	54.0	65.0	93.0
dribbling	165615.0	62.818700	13.488270	2.0	56.0	65.0	72.0	97.0
curve	165615.0	56.102823	15.425054	10.0	45.0	58.0	68.0	94.0
free_kick_accuracy	165615.0	52.112073	15.677617	6.0	40.0	52.0	65.0	97.0
long_passing	165615.0	59.161525	12.246135	11.0	52.0	60.0	68.0	97.0
ball_control	165615.0	66.907665	9.991540	15.0	61.0	68.0	74.0	97.0
acceleration	165615.0	69.642979	11.306552	21.0	64.0	70.0	77.0	97.0
sprint_speed	165615.0	70.038662	10.786578	20.0	65.0	71.0	77.0	97.0
agility	165615.0	67.548869	11.866140	19.0	60.0	69.0	76.0	96.0
reactions	165615.0	66.431549	8.868919	17.0	61.0	67.0	73.0	96.0
balance	165615.0	66.734535	11.966983	20.0	60.0	68.0	75.0	96.0
shot_power	165615.0	64.779966	12.997914	7.0	58.0	67.0	74.0	97.0
jumping	165615.0	67.145766	11.063809	19.0	61.0	68.0	74.0	96.0
stamina	165615.0	69.308861	10.661078	20.0	63.0	70.0	76.0	96.0
strength	165615.0	67.750053	12.086439	12.0	61.0	69.0	76.0	96.0
long_shots	165615.0	56.456354	15.695941	6.0	47.0	59.0	68.0	96.0
aggression	165615.0	63.120653	14.323907	6.0	54.0	65.0	74.0	97.0
interceptions	165615.0	54.129976	18.369112	10.0	39.0	59.0	69.0	96.0
positioning	165615.0	58.800260	15.523845	8.0	50.0	62.0	70.0	95.0
vision	165615.0	60.203756	12.944547	10.0	52.0	62.0	70.0	97.0
penalties	165615.0	57.181022	13.512969	8.0	48.0	58.0	67.0	96.0
marking	165615.0	49.258074	20.229920	4.0	28.0	54.0	67.0	94.0
standing_tackle	165615.0	53.126408	20.094533	4.0	34.0	59.0	70.0	95.0
sliding_tackle	165615.0	50.676014	20.400078	6.0	30.0	57.0	68.0	95.0

Now we have data ready for analysis

Step 3. Data analysis

We assume that mostly valued attributed good correlated with *overall rating*. So, we calculate pair correlations between attributes and *overall rating*, select good correllated attributes thas has R≥0.40 and visualize.

Instead of use **corr** function for full and excess matrix of pair correlations, we transform data for calculate only necessary correlations via grouping

In [30]: #Transform independent variables data in parameter/value form via melt
 melteddata = pd.melt(selecteddata, id_vars=['id'], value_vars=attributeColumns, var_na
 #Join with dependent variable on id of player
 attributes = df[dep].merge(melteddata, on='id')
 attributes.head(12)

Out[30]:

	id	overall_rating	attribute	value_of_attribute
0	1	67.0	crossing	49.0
1	1	67.0	finishing	44.0
2	1	67.0	heading_accuracy	71.0
3	1	67.0	short_passing	61.0
4	1	67.0	volleys	44.0
5	1	67.0	dribbling	51.0
6	1	67.0	curve	45.0
7	1	67.0	free_kick_accuracy	39.0
8	1	67.0	long_passing	64.0
9	1	67.0	ball_control	49.0
10	1	67.0	acceleration	60.0
11	1	67.0	sprint_speed	64.0

In [32]: #calculate pair correlations with group by and aggregate function corr
 groupedresult = attributes.groupby('attribute')['overall_rating', 'value_of_attribute
 #Get even rows for clean up result
 corrs = pd.DataFrame(groupedresult['value_of_attribute'].iloc[::2])
 corrs.head(10)

Out[32]:

value_of_attribute

attribute						
acceleration	overall_rating	0.275184				
aggression	overall_rating	0.366963				
agility	overall_rating	0.260139				
balance	overall_rating	0.175277				
ball_control	overall_rating	0.706608				
crossing	overall_rating	0.470939				
curve	overall_rating	0.449042				
dribbling	overall_rating	0.492527				
finishing	overall_rating	0.390949				
free_kick_accuracy	overall_rating	0.422069				

```
In [34]:
         #Order correlations for visualization
         orderedcorrs = corrs.sort_values(by=['value_of_attribute'], ascending=False)
         #Drop poor correlated attributes
         goodcorrs = orderedcorrs[orderedcorrs['value_of_attribute']>=0.4]
         #prepare attribute names for use in charts
         attributenames = pd.Series([str(name[0]) for name in goodcorrs.index[:]])
         attributeColumns = selecteddata.loc[:, 'crossing':'sliding_tackle'].columns
         readable_attributenames = attributenames[:].str.replace('_',' ').str.capitalize()
         headers = dict(zip(attributenames, readable_attributenames))
         readable_attributenames
Out[34]: 0
                        Reactions
                     Ball control
         1
                    Short passing
         3
                       Shot power
         4
                     Long passing
         5
                           Vision
         6
                        Dribbling
         7
                       Long shots
         8
                         Crossing
         9
                        Penalties
                      Positioning
         10
         11
                            Curve
         12
                 Heading accuracy
         13
                          Volleys
         14
               Free kick accuracy
```

Step 4. Present data

Stamina

15

dtype: object

In [20]: #Visualize data via bar chart of correlation coefficients. We must get styled chart be plt.figure(num=None, figsize=(16, 9), dpi=72, facecolor='w', edgecolor='k')

plt.bar(attributenames.index, goodcorrs['value_of_attribute'].values)

plt.xticks(attributenames.index, readable_attributenames, rotation=90, fontsize=16)

plt.yticks(fontsize=16)

plt.ylabel('Correlation', fontsize=18)

plt.xlabel('Attributes', fontsize=18)

plt.title('Player attributes that mostly correlated with Overall rating', fontsize=24)

plt.show()

Additional tests

In [37]: # We must make sure that correlations not distorted by outliers, multimodality etc.
Lets see scattertplots and histograms for top 3 attributes

for a in attributenames[:3]:
 plt.scatter(selecteddata[a], selecteddata['overall_rating'], s=5)
 plt.xlabel(a)
 plt.ylabel('overall_rating')
 plt.grid(True)
 plt.title('Correlation between Overall rating and {}'.format(headers[a]))
 plt.show()

In [19]: for a in attributenames[:3]:
 plt.hist(selecteddata[a], bins=20)
 plt.title('Distribution of {}'.format(headers[a]))
 plt.show()

Resume: Most valued attributes for field players is:

- Reactions
- · Ball control
- Short passing