Содержание

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости ловой последовательности	5 5
2. Ограниченность функции, непрерывной на отрезке, достижение ных верхней и нижней граней	7 7
3. Теорема о промежуточных значениях непрерывной функции	10
4. Теоремы о среднем Ролля, Лагранжа и Коши для дифференцируе функций. 4.1. Теорема Ролля 4.2. Теоремы Лагранжа и Коши	10 10 12
5. Формула Тейлора с остаточным членом в форме Пеано или Лагра 13	нжа
5.1. Остаточный член в форме Лагранжа	
6. Исследование функций одной переменной при помощи первой и рой производных на монотонность, локальные экстремумы, выпукл Необходимые условия, достаточные условия	юсть. 14 14 15
7. Теорема о равномерной непрерывности функции, непрерывно компакте	
8. Достаточные условия дифференцируемости функции нескольки ременных	20
10. Экстремумы функций многих переменных. Необходимые усл	
достаточные условия. 10.1. Необходимые условия 10.2. Достаточные условия	22
11. Свойства интеграла с переменным верхним пределом (непреность, дифференцируемость). Формула Ньютона-Лейбница	24 24
12. Равномерная сходимость функциональных последовательност рядов. Непрерывность, интегрируемость и дифференцируемость су функционального ряда	ммы
12.1. Непрерывность суммы функционального ряда	27 29

13. Степенные ряды. Радиус сходимости. Бесконечная дифференци	pye-
мость суммы степенного ряда. Ряд Тейлора	. 31
13.1. Бесконечная дифференцируемость суммы степенного ряда	31
13.2. Ряд Тейлора	
14. Теорема об ограниченной сходимости для интеграла Лебега	
15. Дифференциальные формы на открытых подмножествах евклид	ова
пространства, оператор внешнего дифференцирования ${\rm d}$ и его незави	лси-
мость от криволинейной замены координат	
15.1. Дифференциальные формы, оператор внешнего дифференцирования	
15.2. Независимость внешнего дифференцирования от замены координат	
16. Интегрирование дифференциальной формы с компактным ност	
лем. Зависимость интеграла от замены координат	. 40
17. Общая формула Стокса	. 41
18. Достаточные условия сходимости тригонометрического ряда Фу	пье
в точке	
19. Достаточные условия равномерной сходимости тригонометрическ	
ряда Фурье	. 44
20. Непревность преобразования Фурье абсолютно интегрируемой фу	/ HK -
ции. Преобразование Фурье производной и производная преобразован	
Фурье	
20.1. Непрерывность преобразования Фурье абсолютно интегрируемой ф	
ции	
20.2. Преобразование Фурье производной и производная преобразования	
рье.	
21. Прямые и плоскости в пространстве. Формулы расстояния от то	
до прямой и плоскости, между прямыми в пространстве. Углы меж	
прямыми и плоскостями	
21.1. Прямые и плоскости в пространстве	
21.2. Формулы расстояния от точки до прямой и плоскости, между прямым	
пространстве	
21.3. Углы между прямыми и плоскостями	. 52
22. Кривые второго порядка, их геометрические свойства	53
22.1. Эллипс	
22.2. Гипербола	
22.3. Парабола	
•	
23. Общее решение системы линейных алгебраических уравнений.	Гео-
рема Кронекера-Капелли.	. 57
23.1. Общее решение системы линейных алгебраических уравнений	. 57
23.2. Теорема Кронекера-Капелли	. 59
24. Линейное пространство, базис и размерность. Линейное отображе	
конечномерных пространств, его матрица	
24.1. Линеиное пространство, оазис и размерность	
24.2. √инеиное отооражение конечномерных пространств, его матрипа	\cdot \cdot $0Z$

25. Собственные значения и собственные векторы линейных преобразованийю Диагонализуемость линейных преобразований
26. Самосопряжённые преобразования евклидовых пространств, свойства их собственных значений и собственных векторов
27. Приведение квадратичных форм в линейном пространстве к каноническому виду. Положительно определённые квадратичные формы. Критерий Сильвестра. 68 27.1. Приведение квадратичных форм в линейном пространстве к каноническому виду. 68 27.2. Критерий Сильвестра 70
28. Линейные обыкновенные дифференциальные уравнения с постоянными коэффициентами и правой частью - квазимногочленом
29. Системы линейных однородных дифференциальных уравнений с постоянными коэффициентами, методы их решения
30. Линейные обыкновыенные дифференциальные уравнения с переменными коэффициентами. Фундаментальная система решений. Определитель Вронского. Формула Лиувилля-Остроградского
31. Простейшая задача вариационного исчисления. Необходимые условия локального экстремума
32. Математическое ожидание и дисперсия случайной величины, их свойства. Вычисление для нормального распределения
32.2. Вычисление для нормального распределения
33. Неравенство Чебышева и закон больших чисел 83 33.1. Неравенство Чебышева 83 33.2. Закон больших чисел 83
34. Центральная предельная теорема для независимых одинаково распределённых случайных величин с конечной дисперсией
35. Дифференцируемость функции комплексного переменного. Условия Коши-Римана. Интегральная теорема Коши. 86 35.1. Дифференцируемость функции комплексного переменного. Условия Коши-Римана 86 35.2. Интегральная теорема Коши 87
36. Интегральная формула Коши. Разложение функции регулярной в окрестности точки в ряд Тейлора. 91 36.1. Интегральная формула Коши. 91 36.2. Разложение функции регулярной в окрестности точки в ряд Тейлора. 92
37. Разложение функции регулярной в кольце в ряд Лорана. Изолированные особые точки однозначного характера

38.	Вычеты. Вычисление интегралов по замкнутому контуру при пом	MO-
щи	вычетов	94
39.	Определения и формулировки	95
	39.1. N	95
	$39.2. \mathbb{R}$	96
	39.3 C	96

ГОС по матану

Disclaymer: доверять этому конспекту или нет выбирайте сами

Экзамен - это тропа

Коновалов Сергей Петрович

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости числовой последовательности

1.1. Теорема Больцано-Вейерштрасса

Определение 1.1.1: Пусть имеется правило, которое каждому натуральному числу n ставит в соответствие некоторое x_n из множества G. Тогда последовательностью называется множество всевозможных упорядоченных пар $(n, x_n), n \in \mathbb{N}$.

Определение 1.1.2: Последовательность $\{x_n\}_{n=1}^{\infty}$ называется **ограничен**ной сверху (снизу), если

$$\exists M(m): x_n \leq M \ (x_n \geq M) \ \forall n \in \mathbb{N}.$$

Определение 1.1.3: Последовательность $\{x_n\}_{n=1}^{\infty}$ называется **ограничен**ной, если она ограничена и сверху, и снизу.

Определение 1.1.4: Последовательность называется строго возрастаю**щей (убывающей)**, если

$$\forall n \in \mathbb{N}: x_n < x_{n+1} \ (x_n > x_{n+1}).$$

Определение 1.1.5: Последовательность $\left\{y_k\right\}_{k=1}^{\infty}$ называется подпоследовательности $\left\{x_n\right\}_{n=1}^{\infty},$ если

$$\forall k \in \mathbb{N} : \exists n = n_k : y_k = x_{n_k},$$

где последовательность $\{n_k\}_{k=1}^\infty$ - строго возрастающая. Эта последовательность обозначается $\{x_{n_k}\}_{k=1}^\infty$.

Определение 1.1.6: Последовательность отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ называется последовательностью вложенных отрезков, если

$$\forall n \in \mathbb{N}: [a_n,b_n] \supset \big[a_{n+1},b_{n+1}\big].$$

Теорема 1.1.1 (Принцип Кантора вложенных отрезков): Всякая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ имеет непустое пересечение, то есть

$$\textstyle\bigcap_{n=1}^\infty[a_n,b_n]\neq\emptyset$$

Определение 1.1.7: Число x_0 называется пределом последовательно**сти** $\left\{x_n\right\}_{n=1}^{\infty},$ если $\forall \varepsilon>0:\exists N_{\varepsilon}\in\mathbb{N}:\forall n\geq N_{\varepsilon}:|x_n-x_0|<\varepsilon.$

$$\forall \varepsilon > 0: \exists N_\varepsilon \in \mathbb{N}: \forall n \geq N_\varepsilon: |x_n - x_0| < \varepsilon$$

Теорема 1.1.2 (Больцано-Вейерштрасса): Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

 Доказательство: Пусть $\left\{x_n\right\}_{n=1}^{\infty}$ – рассматриваемая ограниченная последовательность, то есть

 $\exists a_1,b_1\in\mathbb{R}:\forall n\in\mathbb{N}:a_1\leq x_n\leq b_1$ Заметим, что один из отрезков $\left[a_1,\frac{a_1+b_1}{2}\right],\left[\frac{a_1+b_1}{2},b_1\right]$ содержит бесконечно много элементов последовательности.

Пусть $[a_2,b_2]$ – тот из отрезков, который содержит бесконечно много элементов.

Продолжая данный трюк счётное количество раз, получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. Также заметим, что данные отрезки стягиваются:

$$0 < b_n - a_n = \frac{b_1 - a_1}{2^n}$$

Тогда по принципу Кантора:

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$$

 $\bigcap_{n=1}^\infty [a_n,b_n]=\{c\}$ Осталось построить подпоследовательность, будем брать $x_{n_k}\in [a_k,b_k],$ причём так, чтобы $n_k > n_{k-1}$. Очевидно, $n_1 = 1$. Существование предела также очевидно:

$$0 \leq \left| c - x_{n_k} \right| \leq b_k - a_k = \tfrac{b_1 - a_1}{2^k} \underset{k \to \infty}{\longrightarrow} 0$$

1.2. Критерий Коши

Определение 1.2.1: Последовательность $\{x_n\}_{n=1}^{\infty}$ называется фундамен**тальной**, если

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left| x_{n+p} - x_n \right| < \varepsilon$$

6

Теорема 1.2.1 (Критерий Коши сходимости числовой последовательности): Числовая последовательность сходится ⇔ она фундаментальна.

Доказательство: ⇒ По определению предела:

$$\exists l \in \mathbb{R} : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \ |x_n - l| < \frac{\varepsilon}{2}$$

Тогда по неравенству треугольника в условиях предела:

$$\left|x_{n+p}-x_{n}\right|=\left|x_{n+p}-l+l-x_{n}\right|\leq\left|x_{n+p}-l\right|+\left|x_{n}-l\right|<\varepsilon$$

$$\varepsilon := 1 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : |x_{n+p} - x_n| < 1$$

Тогда заметим, что

$$\forall n \in \mathbb{N} : \min(x_1, ..., x_N, x_{N+1} + 1) \le x_n \le \max(x_1, ..., x_N, x_{N+1} + 1)$$

 $\forall n \in \mathbb{N}: \min(x_1,...,x_N,x_{N+1}+1) \leq x_n \leq \max(x_1,...,x_N,x_{N+1}+1)$ Тогда из ограниченной последовательности $\{x_n\}_{n=1}^\infty$ по теореме Больца-

но-Вейерштрасса достанем сходящуюся подпоследовательность:
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \exists l : \forall \varepsilon > 0 : \exists K(\varepsilon) \in \mathbb{N} : \forall k > K(\varepsilon) : \ \left| x_{n_k} - l \right| < \frac{\varepsilon}{2}$$

Также по определению фундаментальности:

$$\forall \varepsilon > 0: \exists N(\varepsilon) \in \mathbb{N}: \forall n > N(\varepsilon): \forall p \in \mathbb{N}: \ \left|x_{n+p} - x_n\right| < \varepsilon$$

Объединим эти два условия и получим требуемое:

$$\forall \varepsilon > 0: \exists N_0 = \max \left(N(\varepsilon), n_{K(\varepsilon)+1}\right): \forall n > N_0:$$

$$|x_n-l| = \left|x_n - x_{n_{K(\varepsilon)+1}} + x_{n_{K(\varepsilon)+1}} - l\right| \leq \left|x_n - x_{n_{K(\varepsilon)+1}}\right| + \left|x_{n_{K(\varepsilon)+1}} - l\right| < \varepsilon$$

2. Ограниченность функции, непрерывной на отрезке, достижение точных верхней и нижней граней

2.1. Ограниченность функции, непрерывной на отрезке

Определение 2.1.1: Множество $E \subset \mathbb{R}$ называется ограниченным сверху (снизу), если

$$\exists M(m) \in \mathbb{R} : \forall x \in E : x \leq M(x \geq m).$$

В таком случае M(m) называется **верхней (нижней) гранью** множества E.

Определение 2.1.2: Множество $E \subset \mathbb{R}$ называется ограниченным, если оно ограниченно и сверху, и снизу.

Определение 2.1.3: Число M называется **точной верхней гранью** множества E и обозначается $\sup E$, если

- 1. $\forall x \in E : x \leq M$;
- $2. \ \forall M' < M : \exists x \in E : x > M'.$

Определение 2.1.4: Число m называется точной нижней гранью множества E и обозначается $\inf E$, если

- 1. $\forall x \in E : x \ge m$;
- 2. $\forall m' > m : \exists x \in E : x < m'$.

Теорема 2.1.1 (О существовании точной верхней (нижней) грани): Любое ограниченное сверху (снизу) непустое множество $E \subset \mathbb{R}$ имеет точную верхнюю (нижнюю) грань.

Теорема 2.1.2 (Вейерштрасса): Каждая ограниченная сверху (снизу) неубывающая (невозрастающая) последовательность сходится, причём её предел равен точной верхней (нижней) грани.

Определение 2.1.5: Пусть D и Y – два произвольных множества, и задано некоторое правило f, которое каждому элементу $x \in D$ ставит в соответствие один и только один некоторый элемент y = f(x) из Y. Тогда множество всевозможных пар $(x, f(x)), x \in D$ называется функцией.

Определение 2.1.6: Пусть f - функция, а D_f - ее бласть определения. Тогда c называется пределом по Коши функции f в точке $x_0 \in D_f$, если $\forall \varepsilon > 0: \exists \delta > 0: \forall x \in D_f: |x-x_0| < \delta: |f(x)-c| < \varepsilon.$

Определение 2.1.7: Последовательностью Гейне функции f в точке x_0 называется последовательность $\{x_n\}_{n=1}^{\infty}\subset D_f,$ если

- $1. \ \forall n \in \mathbb{N} : x_n \in D_f \setminus \{x_0\};$
- $2. \lim_{n\to\infty} x_n = x_0.$

Определение 2.1.8: Пусть f - функция, а D_f - ее бласть определения. Тогда c называется пределом по Гейне функции f в точке $x_0 \in D_f$, если $\forall \{x_n\}$ — последовательности Гейне : $\lim_{n \to \infty} f(x_n) = c$.

Теорема 2.1.3: Определения функции по Коши и по Гейне эквивалентны.

Определение 2.1.9: Пусть f определена в некоторой окрестности $U_{\delta_0}(x_0),$

Если $\lim_{x\to x_0} f(x) = f(x_0)$, то функция называется **непрерывной в точ-** $\mathbf{ke} \ x_0.$

Определение 2.1.10: f называется непрерывной на множестве $X \subset \mathbb{R}$, если

$$\forall x_0 \in X: \forall \varepsilon > 0: \exists \delta > 0: \underbrace{\forall x \in X}_{!!!}, |x - x_0| < \delta: \ |f(x) - f(x_0)| < \varepsilon$$

Теорема 2.1.4 (Первая теорема Вейшерштрасса о непрерывной на отрезке функции): Если f непрерывна на [a,b], то f ограничена на [a,b].

Доказательство: От противного, пусть f неограничена сверху. Тогда $\sup_{x \in [a,b]} f(x) = +\infty$

То есть

$$\forall n \in \mathbb{N} : \exists x_n \in [a, b] : f(x_n) > n$$

 $\forall n\in\mathbb{N}:\exists x_n\in[a,b]:\ f(x_n)>n$ Причём $\forall n\in\mathbb{N}:a\leq x_n\leq b,$ то есть $\left\{x_n\right\}_{n=1}^\infty$ — ограниченная, тогда по

теореме Больцано-Вейерштрасса
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \ \lim_{k \to \infty} x_{n_k} = x_0 \Rightarrow \lim_{k \to \infty} f \Big(x_{n_k} \Big) = f(x_0)$$
 Однако из $f(x_n) > n$ следует, что $f(x_0) = \infty$. Противоречие. \square

2.2. Достижение точных верхних и нижних граней

Теорема 2.2.1 (Вторая теорема Вейерштрасса о непрерывных на отрезке функциях): Если f непрерывна на [a,b], то

$$\exists x', x'' \in [a, b]: \ f(x') = \sup_{x \in [a, b]} f(x); \quad f(x'') = \inf_{x \in [a, b]} f(x)$$

 \mathcal{A} оказательство: Пусть $M=\sup_{x\in[a,b]}f(x)$. Тогда по определению супремума

$$\forall \varepsilon > 0 : \exists x \in [a, b] : M - \varepsilon < f(x) \leq M$$

$$\exists \{x_n\}_{n=1}^{\infty} \subset [a,b] : \forall n \in \mathbb{N}: \ M - \frac{1}{n} < f(x_n) \leq M$$

$$\forall \varepsilon>0:\exists x\in[a,b]:\ M-\varepsilon< f(x)\leq M$$
 В том числе для $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$:
$$\exists \left\{x_{n}\right\}_{n=1}^{\infty}\subset[a,b]:\forall n\in\mathbb{N}:\ M-\frac{1}{n}< f(x_{n})\leq M$$
 Тогда по теореме Больцано-Вейерштрасса:
$$\exists \left\{x_{n_{k}}\right\}_{k=1}^{\infty}:\ \lim_{k\to\infty}x_{n_{k}}=x_{0}\Rightarrow \lim_{k\to\infty}f\left(x_{n_{k}}\right)=f(x_{0})=M$$

Последнее равенство было получено устремлением $k \to \infty$ в неравенстве $M - \frac{1}{n_k} < f(x_{n_k}) \le M.$

Tаким образом, M действительно достижим функцией f в точке x_0 . Для инфимума аналогично.

3. Теорема о промежуточных значениях непрерывной функции

Теорема 3.1 (Больцано-Коши о промежуточных значениях): Пусть f непрерывна на [a,b]. Тогда

$$\forall x_1, x_2 \in [a,b] : c \coloneqq f(x_1) < d \coloneqq f(x_2) : \ \forall e \in (c,d) : \exists \gamma \in [a,b] : f(\gamma) = e$$

Доказательство: Рассмотрим частный случай c < e = 0 < d.

Построим последовательность отрезков $\{[a_n,b_n]\}_{n=1}^{\infty},$ где $[a_1,b_1]=\{x_1,x_2\}$ (мы не знаем в каком порядке идут иксы).

- Заметим, что $f(a_1) \cdot f(b_1) < 0$. Рассмотрим $f\left(\frac{a_1+b_1}{2}\right)$. Какие могут быть случаи? Если $f\left(\frac{a_1+b_1}{2}\right) = 0$, то мы победили и останавливаемся. Если $f\left(\frac{a_1+b_1}{2}\right) > 0$, то $a_2 \coloneqq a_1, b_2 \coloneqq \frac{a_1+b_1}{2}$. Если $f\left(\frac{a_1+b_1}{2}\right) < 0$, то $a_2 \coloneqq \frac{a_1+b_1}{2}, b_2 \coloneqq b_1$.

Либо после конечного числа шагов мы найдём требуемую точку, либо построим последовательность стягивающихся отрезков:

$$b_n - a_n = \frac{|x_2 - x_1|}{2^{n-1}}$$

Тогда по принципу Кантора $\{\gamma\} = \bigcap_{n=1}^\infty [a_n,b_n],$ причём

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n^{-1} = \gamma \in [a,b]$$

Тогда в силу непрерывности f:

$$f(\gamma) = \lim\nolimits_{n \to \infty} f(a_n) = \lim\nolimits_{n \to \infty} f(b_n)$$

Заметим, что после каждой итерации алгоритма изначальное свойство сохраняется:

$$f(a_n)\cdot f(b_n)<0$$

Совершив предельный переход в неравенстве, получим

$$f^2(\gamma) \leq 0$$

Из чего следует $f(\gamma) = 0$.

В общем случае рассматривается вспомогательная функция F(x) =f(x) - e.

4. Теоремы о среднем Ролля, Лагранжа и Коши для дифференцируемых функций.

4.1. Теорема Ролля

Определение 4.1.1: Пусть f определена в некоторой δ_0 окрестности точки x_0 . Если

$$\exists \delta \in (0, \delta_0) : \forall x \in U_{\delta}(x_0) : \ f(x) \le f(x_0)$$

то x_0 – точка локального максимума.

Также аналогично вводятся определения **локального минимума**, а также **строгие** экстремумы, в которых неравенство строгое.

Определение 4.1.2: Пусть f – функция, D_f – ее область определения, $x_0 \in D_f$. Тогда **производной** f в точке x_0 называется

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

Определение 4.1.3: Число A называется правосторонним пределом функции f в точке a, если

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in (a, a + \delta) : |f(x) - A| < \varepsilon.$$

Определение 4.1.4: Число A называется левосторонним пределом функции f в точке a, если

$$\forall \varepsilon > 0: \exists \delta > 0: \forall x \in (a-\delta,a): |f(x)-A| < \varepsilon.$$

Определение 4.1.5: **Правой производной** функции f в точке x_0 называется

$$f'_{+}(x_0) = \lim_{h \to +0} \frac{f(x_0+h) - f(x_0)}{h}.$$

Определение 4.1.6: **Левой производной** функции f в точке x_0 называется

$$f'_-(x_0) = \operatorname{lim}_{h \to -0} \tfrac{f(x_0+h) - f(x_0)}{h}.$$

Теорема 4.1.1: Функция f, определенная в некоторой окрестности точки x_0 имеет производную в точке x_0 тогда и только тогда, когда она имеет обе односторонние производные в этой точке, и эти производные равны.

Определение 4.1.7: Функция f называется дифференцируемой в точке x_0 , если она определена в некоторой окрестности точки x_0 и в этой точке имееет конечную производную.

Теорема 4.1.2 (Ферма о необходимом условии локального экстремума): Если x_0 – точка локального экстремума функции y = f(x), дифференцируемой в x_0 , то $f'(x_0) = 0$.

Заметим, что тогда

$$\lim_{\Delta x \to +0} \tfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leq 0; \quad \lim_{\Delta x \to -0} \tfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geq 0$$

А при существовании производной оба этих предела совпадают, поэтому производной в x_0 остаётся лишь быть равной нулю.

Теорема 4.1.3 (Ролля): Если f непрерывна на [a,b], дифференцируема на (a,b), причём f(a)=f(b), то

$$\exists c \in (a,b) : f'(c) = 0$$

Доказательство: Заметим, что если $f \equiv \mathrm{const}$, то утверждение тривиально.

Иначе, f непрерывна на $[a, b] \Rightarrow$

$$\exists m, M : m < M : \ m = \min_{x \in [a,b]} f(x); \quad M = \max_{x \in [a,b]} f(x)$$

Заметим, что либо $m \neq f(a)$, либо $M \neq f(a)$.

Это значит, что существует локальный минимум или максимум в некоторой точке $c \in (a,b)$, а по теореме Ферма мы знаем, что f'(c) = 0.

4.2. Теоремы Лагранжа и Коши

Теорема 4.2.1 (Обобщённая теорема о среднем): Если f, g непрерывны на [a, b], дифференцируемы на (a, b), то

$$\exists c \in (a,b): (f(b)-f(a))g'(c) = (g(b)-g(a))f'(c)$$

Доказательство: Рассмотрим

$$h(x)=(f(b)-f(a))g(x)-(g(b)-g(a))f(x) \\$$

Заметим, что h всё ещё непрерывна на отрезке и дифференцируема на интервале, причём

$$h(b) = (f(b) - f(a))g(b) - (g(b) - g(a))f(b) = g(a)f(b) - f(a)g(b) = h(a)$$

То есть h удовлетворяет всем условиям теоремы Ролля. Требуемое доказано. \Box

Теорема 4.2.2 (Лагранжа о среднем): Если f непрерывна на [a,b], дифференцируема на (a,b), то

$$\exists c \in (a,b): \ \frac{f(b)-f(a)}{b-a} = f'(c)$$

Доказательство: В обобщённой теореме о среднем возьмём g(x)=x.

Теорема 4.2.3 (Коши о среднем): Если f,g непрерывны на [a,b], дифференцируемы на (a,b) и $\forall x \in (a,b): g'(x) \neq 0$, то $\exists c \in (a,b): \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Доказательство: Очевидная интерпретация обобщённой теоремы о среднем. Необходимо уточнить лишь, почему $g(b)-g(a)\neq 0$, чтобы мы смогли поделить на него.

Если бы g(b)=g(a), то по теореме Ролля $\exists c:\ g'(c)=0$, что противоречит с условием текущей теоремы.

Формула Тейлора с остаточным членом в форме Пеано или Лагранжа

5.1. Остаточный член в форме Лагранжа

Лемма 5.1.1: Если f n раз дифференцируема в точке x_0 , то $\exists !$ многочлен $P_n(f,x)$ степени $\le n$ такой, что

$$f(x_0) = P_n(f,x_0); f'(x_0) = P'_n(f,x_0); ...; f^{(n)}(x_0) = P^{(n)}_n(f,x_0)$$

Этот многочлен имеет вид

$$P_n(f,x)=f(x_0)+rac{f'(x_0)}{1!}(x-x_0)+rac{f''(x_0)}{2!}(x-x_0)^2+...+rac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
 и называется **многочленом Тейлора** степени n относительно точки x_0 .

Доказательство: Проверяется банальной подстановкой.

Лемма 5.1.2 (Об отношении): Если φ, ψ (n+1) раз дифференцируемы в $U_{\delta}(x_0),$ причём

$$\forall k=\overline{0,\,\mathbf{n}}:\ \varphi^{(k)}(x_0)=\psi^{(k)}(x_0)=0$$

но

$$\forall k=\overline{0,\,\mathbf{n}}: \forall x\in \dot{U}_{\delta}(x_0):\ \psi^{(k)}(x)\neq 0$$

ТО

$$\forall x \in \dot{U}_{\delta}(x_0): \exists \xi \in (x_0,x): \ \frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)}$$

Доказательство: Заметим, что φ, ψ удовлетворяют условиям теоремы Коши о среднем. Тогда

$$\exists \xi_{\dots} \in (x_0, x): \ \frac{\varphi(x) - \underbrace{\varphi(x_0)}_0}{\psi(x) - \underbrace{\psi(x_0)}_0} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)} = \underbrace{\frac{\varphi'(\xi_1) - \underbrace{\varphi'(x_0)}_0}{\psi'(\xi_1) - \underbrace{\psi'(x_0)}_0}}_{\psi''(\xi_1)} = \frac{\varphi''(\xi_2)}{\psi''(\xi_2)} = \dots = \underbrace{\frac{\varphi^{(n+1)}(\xi_{n+1})}{\psi^{(n+1)}(\xi_{n+1})}}_{\psi^{(n+1)}(\xi_{n+1})}$$

Теорема 5.1.1 (Формула Тейлора с остаточным членом в форме Лагранжа): Если f (n+1) раз дифференцируема в $U_{\delta}(x_0), \delta>0$, то $\forall x\in \dot{U}_{\delta}(x_0): \exists \xi\in (x_0,x): \ f(x)-P_n(f,x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$

Доказательство: Сведём к предыдущей лемме об отношении:

$$\varphi(x) := f(x) - P_n(f, x); \quad \psi(x) := (x - x_0)^{n+1}$$

Все требуемые свойства проверяются очевидно.

5.2. Остаточный член в форме Пеано

Определение 5.2.1: Пусть функции f(x), g(x) определены на множестве X. Тогда f(x) есть **о-малое** от g(x) при $x \to x_0$, если существует окрестность $\dot{U}(x_0)$ такая, что

$$\forall x\in \dot{U}(x_0): f(x)=g(x)\alpha(x),$$
где $\lim_{x\to x_0}\alpha(x)=0.$

Теорема 5.2.1 (Формула Тейлора с остаточным членом в форме Пеано): Если f n раз дифференцируема в точке x_0 , то

$$f(x)-P_n(f,x)=o\big((x-x_0)^n\big), x\to x_0$$
где $P_n(f,x)$ – многочлен Тейлора степени n функции f относительно $x_0.$

то она n-1 раз дифференцируема в окрестности.

Снова используем лемму об отношении, но для случая n-1:

$$\varphi(x) := f(x) - P_n(f, x); \quad \psi(x) = (x - x_0)^n$$

Получим, что

$$\exists \xi \in (x_0,x): \ \frac{f(x) - P_n(f,x)}{{(x-x_0)}^n} = \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)}$$

Получим, что $\exists \xi \in (x_0,x): \ \frac{f(x) - P_n(f,x)}{(x-x_0)^n} = \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)}$ Заметим, что при $x \to x_0 \Rightarrow \xi \to x_0$: $\lim_{x \to x_0} \frac{f(x) - P_n(f,x)}{(x-x_0)^n} = \lim_{\xi \to x_0} \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)} = \frac{1}{n!} (f(x_0) - P_n(f,x_0))^{(n)} = 0$

- 6. Исследование функций одной переменной при помощи первой и второй производных на монотонность, локальные экстремумы, выпуклость. Необходимые условия, достаточные условия.
- 6.1. Необходимые и достаточные условия монотонности функции

Теорема 6.1.1 (Предельный переход в неравенстве): Пусть заданы две последовательности $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$.

Если $\lim_{n\to\infty} x_n=a$, $\lim_{n\to\infty} y_n=b$ и, начиная с некоторого $N: \forall n>N: x_n\leq y_n$, то $a\leq b$.

Теорема 6.1.2: Пусть f дифференцируема на (a,b). Тогда

- 1. $\forall x \in (a,b): f'(x) \geq 0 \Leftrightarrow f$ неубывающая на (a,b)
- 2. $\forall x \in (a,b): f'(x) \leq 0 \Leftrightarrow f$ невозрастающая на (a,b)
- $3. \ \forall x \in (a,b): f'(x) > 0 \Rightarrow f$ возрастающая на (a,b)
- 4. $\forall x \in (a,b): f'(x) < 0 \Rightarrow f$ убывающая на (a,b)

Доказательство:

1. $f'(x) \ge 0 \Rightarrow \Pi$ о теореме Лагранжа:

$$\forall x_1,x_2:a< x_1< x_2< b: \exists \xi\in (x_1,x_2): f(x_2)-f(x_1)=f'(\xi)(x_2-x_1)\geq 0$$
 То есть для произвольных $x_1< x_2: f(x_1)\leq f(x_2).$ Обратно, пусть $f(x)$ неубывающая. Тогда
$$\forall x_0\in (a,b): \forall \Delta x: \mathrm{sign}\ (f(x_0+\Delta x)-f(x_0))=\mathrm{sign}\ \Delta x$$
 Ну и тогда при $|\Delta x|< \min_{x_0}(x_0-a,b-x_0): \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\geq 0$

Совершим предельный переход в неравенстве и получим требуемое.

- 2. Аналогично предыдущему пункту
- 3. Контрпримером для \Leftarrow является $f(x) = x^3$ в точке 0
- 4. Контрпримером для \Leftarrow является $f(x) = -x^3$ в точке 0

6.2. Достаточные условия локальных экстремумов

Теорема 6.2.1 (Первое достаточное условие экстремума функции): Пусть f непрерывна в $U_{\delta_0}(x_0)$ и дифференцируема в $\dot{U}_{\delta_0}(x_0), \delta_0 > 0$:

- 1. Если $\exists \delta>0: \forall x\in (x_0-\delta,x_0): f'(x)>0$ и $\forall x\in (x_0,x_0+\delta): f'(x)<0,$ то x_0 точка строгого локального максимума f
- 2. Если $\exists \delta>0: \forall x\in (x_0-\delta,x_0): f'(x)<0$ и $\forall x\in (x_0,x_0+\delta): f'(x)>0,$ то x_0 точка строгого локального минимума f

Доказательство: По сути просто заменили в определении локального экстремума монотонность на достаточное условие знакопостоянности производной из предыдущей теоремы. □

Теорема 6.2.2 (Второе достаточное условие локального экстремума): Если f n раз дифференцируема в точке x_0 , $f^{(n)}(x_0) \neq 0$, $\forall k = \overline{1, \text{ n-1}}: f^{(k)}(x_0) = 0$, то

- 1. Если n чётно, то f имеет в точке x_0 локальный минимум при $f^{(n)}(x_0)>0$ и локальный максимум при $f^{(n)}(x_0)<0$.
- 2. Если n нечётное, то f не имеет локального экстремума в точке x_0 .

Доказательство:

1. Воспользуемся разложением в Тейлора с остаточным членом в форме Пеано (учитывая факт нулевых производных):

ано (учитывая факт нулевых производных):
$$f(x)=f(x_0)+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o\big((x-x_0)^n\big), x\to x_0$$
 Так как n чётно, то $n=2m$:
$$\frac{f(x)-f(x_0)}{(x-x_0)^{2m}}=\frac{f^{(n)}(x_0)}{n!}+o(1), x\to x_0$$

Левая часть в некоторой окрестности точки x_0 имеет тот же знак, что и правая. Тогда в силу чётной степени в знаменателе левой части получаем, что разность $f(x)-f(x_0)$ одного знака с n-ой производной.

2. Рассмотрим $f(x) = x^3$.

6.3. Необходимые и достаточные условия выпуклости

Определение 6.3.1: f называется выпуклой (вниз) (вогнутой вверх) на (a,b), если её график лежит не выше хорды, стягивающей любые две точки этого графика над (a,b).

f называется **выпуклой (вверх) (вогнутой вниз)** на (a,b), если её график лежит не ниже хорды, стягивающей любые две точки этого графика над (a,b).

Определение 6.3.2: Для числовой функции выпуклость вверх (вниз) можно определить как выполнение **неравенства Йенсена**:

$$\forall x,y: \forall t \in [0,1]: f(tx+(1-t)y) \geq (\leq) \ tf(x)+(1-t)f(y).$$

Теорема 6.3.1: Пусть f дважды дифференцируема на (a,b):

- 1. f выпукла вниз на $(a,b) \Leftrightarrow \forall x \in (a,b) : f''(x) \geq 0$.
- 2. f выпукла вверх на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) \leq 0$
- 3. f строго выпукла вниз на $(a,b) \Leftarrow \forall x \in (a,b) : f''(x) > 0$.
- 4. f строго выпукла вверх на $(a,b) \Leftarrow \forall x \in (a,b): f''(x) < 0$

Доказательство:

1. \Leftarrow Рассмотрим эквивалентное определение выпуклости:

$$\begin{split} \forall x_0, x_1 : a < x_0 < x_1 < b : \forall t \in [0,1]: \\ x_t \coloneqq tx_0 + (1-t)x_1: \ f(x_t) \leq tf(x_0) + (1-t)f(x_1) \end{split}$$

Разложим f в формулу Тейлора с остаточным членом в форме Лагранжа с центром в точке x_t :

$$\begin{split} &\exists \xi_1 \in (x_0, x_t) : f(x_0) = f(x_t) + f'(x_t)(x_0 - x_t) + \frac{f''(\xi_1)}{2!}(x_0 - x_t)^2 \\ &\exists \xi_2 \in (x_1, x_t) : f(x_1) = f(x_t) + f'(x_t)(x_1 - x_t) + \frac{f''(\xi_2)}{2!}(x_1 - x_t)^2 \end{split}$$

Из-за знакопостоянности второй производной из этих равенств следуют следующие неравенства:

$$f(x_0) \ge f(x_t) + f'(x_t)(x_0 - x_t)$$

$$f(x_1) \ge f(x_t) + f'(x_t)(x_1 - x_t)$$

Умножим первое на t, второе на 1-t и сложим их:

$$tf(x_0)+(1-t)f(x_1)\geq f(x_t)+\underbrace{f'(x_t)(tx_0+(1-t)x_1-x_t)}^0$$
 \Rightarrow Рассмотрим произвольную точку $x_0\in(a,b)^0$ и достаточно малую

окрестность $\delta \coloneqq \min(x_0 - a, b - x_0)$. Тогда

$$\forall u \in (-\delta, \delta): x_0 = \frac{1}{2}(x_0 - u) + \frac{1}{2}(x_0 + u): \ f(x_0) \leq \frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u)$$
 Применим формулу Тейлора с остаточным членом в форме Пеано:
$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

В прошлой строчке мы записали сразу два равенства благодаря \pm , да-

$$\frac{1}{2}f(x_0-u) + \frac{1}{2}f(x_0+u) = f(x_0) + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

вайте умножим каждое на $\frac{1}{2}$ и сложим их: $\frac{1}{2}f(x_0-u)+\frac{1}{2}f(x_0+u)=f(x_0)+\frac{f''(x_0)}{2}u^2+o(u^2), u\to 0$ Тогда при достаточно малых $u\frac{f''(x_0)}{2}u^2$ обязано будет стать такого же знака, как и $\frac{1}{2}f(x_0-u)+\frac{1}{2}f(x_0+u)-f(x_0)\geq 0$

- 2. Аналогично
- $3. \Leftarrow$ аналогично только со строгими неравенствами, $a \Rightarrow$ вообще говоря не верно, например, для $f(x) = x^4$
- 4. \Leftarrow аналогично только со строгими неравенствами, а \Rightarrow вообще говоря не верно, например, для $f(x) = -x^4$

7. Теорема о равномерной непрерывности функции, непрерывной на компакте

Определение 7.1: Метрическим пространством (X, ρ) называется множество X такое, что на $X \times X$ определена числовая функция $\rho: X \times X \to \mathbb{R}$ такая что:

- 1. $\rho(x,y) \geq 0$, причём $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X : \rho(x, z) \leq \rho(x, y) + \rho(y, z)$

Определение 7.2: **Компактным** множеством в метрическом пространстве X называется такое множество K, что из любого его открытого покрытия можно выделить конечное подпокрытие.

Определение 7.3: Множество $E \subset \mathbb{R}^n$ называется **ограниченным**, если: $\exists r \geq 0: \forall M \in E: |OM| \leq r,$ где O=(0,0,...,0).

Определение 7.4: Точка $x_0 \in E$ называется **изолированной**, если: $\exists \delta > 0 : U_\delta(x_0) \cap E = \{x_0\}.$

Определение 7.5: Точка $x_0 \in E$ называется **внутренней**, если: $\exists \delta > 0 : U_\delta(x_0) \subseteq E.$

Определение 7.6: Точка $x_0 \in E$ называется точкой прикосновения, если: $\forall \delta > 0: U_\delta(x_0) \cap E \neq \emptyset.$

Определение 7.7: Множество всех точек прикосновения E называется замыканием этого множества \overline{E} .

Определение 7.8: Множество E называется **замкнутым**, если $E=\overline{E}$.

Определение 7.9: Множество всех внутренних точек E называется внутренностью этого множества int E.

Определение 7.10: Множество E называется **открытым**, если E = int E.

Теорема 7.1: Дополнение замкнутого множества – открытое множество, и наоборот.

Теорема 7.2: В \mathbb{R}^n верно следующее утверждение:

$$E-$$
 компактное $\Leftrightarrow egin{cases} E & ext{ ограниченное} \ E & ext{ замкнутое} \end{cases}$

Теорема 7.3: Множество E является компактным в $\mathbb{R}^n \Leftrightarrow \forall \{x_n\}_{n=1}^{\infty} \subset E$: $\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \exists \lim_{k \to \infty} x_{n_k} = x \in E$

Определение 7.11: Функция $f: X \to \mathbb{R}$, где X – метрическое пространство, называется равномерно непрерывной на множестве $X' \subset X$, если

$$\forall \varepsilon>0: \exists \delta>0: \forall x_1,x_2\in X': \rho(x_1,x_2)<\delta: \ |f(x_1)-f(x_2)|<\varepsilon$$

Теорема 7.4 (Кантора о равномерной непрерывности): Если $f: K \to \mathbb{R}$ непрерывна на компактном множестве $K \subset \mathbb{R}^n$, то она равномерно непрерывна на K.

Доказательство: От противного, выпишем отрицание равномерной непрерывности:

$$\exists \varepsilon > 0: \forall \delta > 0: \exists x_1, x_2 \in K: \|x_1 - x_2\| < \delta: \ |f(x_1) - f(x_2)| \geq \varepsilon$$

 $\exists \varepsilon > 0: \forall \delta > 0: \exists x_1, x_2 \in K: \|x_1 - x_2\| < \delta: \ |f(x_1) - f(x_2)| \geq \varepsilon$ Выбирая $\delta \coloneqq 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{m}, ...$ построим последовательность пар из отрицания непрерывности: $\left\{\left(x_{1,m}, x_{2,m}\right)\right\}_{m=1}^{\infty} \subset K^2.$

Причём

$$\forall m \in \mathbb{N}: \|x_{1,m}-x_{2,m}\| < \frac{1}{m}: |f(x_{1,m})-f(x_{2,m})| \geq \varepsilon$$
 По одному из определений компактности выделим из последовательности

пар подпоследовательность, у которой сходятся первые координаты: $\exists \left\{\left(x_{1,m_k},x_{2,m_k}\right)\right\}_{k=1}^\infty : \lim_{k\to\infty} x_{1,m_k} = x_0 \in K$

$$\exists \left\{ \left(x_{1,m_k}, x_{2,m_k} \right) \right\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{1,m_k} = x_0 \in K$$

Причём заметим, что (комбинируем то, как мы строили последовательность пар и сходимости первых координат подпоследовательности):

$$\forall \varepsilon>0:\exists K\in\mathbb{N}:\forall k>0:\left\|x_{2,m_k}-x_0\right\|\leq$$

$$\left\|x_{1,m_k}-x_0\right\|+\left\|x_{1,m_k}-x_{2,m_k}\right\|<2\varepsilon$$

То есть

$$\lim_{k\to\infty} x_{1,m_k} = \lim_{k\to\infty} x_{2,m_k} = x_0 \overset{\text{непрерывность } f}{\Rightarrow}$$

$$\lim_{k\to\infty} \left(f \big(x_{1,m_k} \big) - f \big(x_{2,m_k} \big) \right) = 0$$

Противоречие!

8. Достаточные условия дифференцируемости функции нескольких переменных

Определение 8.1: Пусть f определена в некоторой окрестности $x_0 \in \mathbb{R}^n$. **Полным приращением** f в точке x_0 называется

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = f\big(x_{0,1} + \Delta x_1,...,x_{0,n} + \Delta x_n\big) - f\big(x_{0,1},...,x_{0,n}\big)$$
 f называется **дифференцируемой** в x_0 , если

$$\Delta f(x_0) = (A, \Delta x) + o(\|\Delta x\|), \Delta x \to 0$$

где $A \in \mathbb{R}^n$ называется **градиентом**: grad $f(x_0) = A$

Определение 8.2: **Дифференциалом** дифференцируемой в x_0 функции f назовём выражение $(A, \Delta x)$ из определения дифференцируемости.

Определение 8.3: **Частной производной** в точке x_0 называется предел (если он существует):

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{\Delta x \to 0} \frac{f(x_{0,1}, \dots, x_{0,j} + \Delta x, \dots, x_{0,n}) - f(x_{0,1}, \dots, x_{0,j}, \dots, x_{0,n})}{\Delta x}$$

Теорема 8.1 (Необходимое условие дифференцируемости): Если f дифференцируема в точке $x_0 \in \mathbb{R},$ то существуют частные производные $\forall j=\overline{1,n},$ причём

grad
$$f(x) = \left(\frac{\partial f}{\partial x_1}(x_0), ..., \frac{\partial f}{\partial x_n}(x_0)\right)$$

Доказательство: Сразу следует из определения - есть предел по всем многомерным приращениям, а значит и по однокоординатным в том числе. □

Теорема 8.2 (Достаточное условие дифференцируемости): Если f определена в некоторой окрестности точки x_0 , вместе со своими частными производными, причём они непрерывны в x_0 , то f дифференцируема в x_0 .

Доказательство: Воспользуемся n раз «умным нулём», каждый из которых будет «снимать» приращение по одной из координат:

$$\begin{split} \Delta f(x_0) &= \\ f\big(x_{0,1} + \Delta x_1, ..., x_{0,n} + \Delta x_n\big) - f\big(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, x_{0,n}\big) + \\ f\big(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, x_{0,n}\big) - f\big(x_{0,1} + \Delta x_1, ..., x_{0,n-1}, x_{0,n}\big) \\ &\quad + ... + \\ f\big(x_{0,1} + \Delta x_1, x_{0,2}, ..., x_{0,n}\big) - f\big(x_{0,1}, ..., x_{0,n}\big) \overset{\mathrm{T. \ Jlarpahka}}{=} \\ &\quad \frac{\partial f}{\partial x_n} \big(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, \xi_n\big) \Delta x_n + \\ &\quad \frac{\partial f}{\partial x_{n-1}} \big(x_{0,1} + \Delta x_1, ..., x_{0,n-2} + \Delta x_{n-2}, \xi_{n-1}, x_{0,n}\big) \Delta x_{n-1} \\ &\quad + ... + \\ + \frac{\partial f}{\partial x_1} \big(\xi_1, x_{0,2}, ..., x_{0,n}\big) \Delta x_1 &\quad = \\ &\quad \sum_{i=1}^n \frac{\partial f}{\partial x_i} (x_0) \Delta x_i + o(\|\Delta x\|), \Delta x \to 0 \end{split}$$

9. Теорема о неявной функции, заданной одним уравнением

Определение 9.1: Кубом радиуса δ вокруг точки $x_0 \in \mathbb{R}^n$ назовём $K_{\delta,x_0} = \bigvee_{k=1}^n \left(x_0^k - \delta, x_0^k + \delta\right)$

где под × подразумевается декартово произведение.

Теорема 9.1: Пусть $F(x,y) = F(x_1,...,x_n,y)$ дифференцируема в окрестно-

сти точки $(x_0,y_0)=(x_0^1,...,x_0^n,y_0).$ Её производная $\frac{\partial F}{\partial y}$ непрерывна в этой окрестности, причём $F(x_0,y_0)=$ $0, \tfrac{\partial F}{\partial y}(x_0,y_0) \neq 0.$

Тогда для любого достаточно малого
$$\varepsilon>0$$
 найдётся $\delta>0$: $\forall x\in K_{\delta,x_0}:\exists!y=\varphi(x):\forall(x,y)\in K_{\delta,x_0} imes(y_0-\varepsilon,y_0+\varepsilon):$ $F(x,y)=0\Leftrightarrow y=\varphi(x),$ причём $\exists\varphi'(x_0)$

 \mathcal{A} оказательство: БОО будем считать, что $\frac{\partial F}{\partial y}(x_0,y_0)>0.$

По непрерывности частной производной, \exists окрестность точки (x_0,y_0) , в которой $\frac{\partial F}{\partial y}(x,y) > 0$.

Тогда из непрерывности F по y и знакоопределённости производной следует

$$\exists \varepsilon_0: \forall \varepsilon \in (0,\varepsilon_0): \ F(x_0,y_0+\varepsilon) > 0 \land F(x_0,y_0-\varepsilon) < 0$$

Расширяем территорию дальше, из непрерывности F по x следут

$$\exists \delta > 0: \forall x \in K_{\delta, x_0}: F(x, y_0 + \varepsilon) > 0 \land F(x, y_0 - \varepsilon) < 0$$

Из теоремы о промежуточных значениях непрерывной функции берём существование, а из знакоопределённости производной единственность:

$$\exists ! \varphi(x) \in (y_0 - \varepsilon, y_0 + \varepsilon) : F(x, \varphi(x)) = 0$$

Заметим, что φ непрерывна по построению в (x_0,y_0) : мы брали x из 2δ окрестности точки x_0 , а значение лежало в 2ε окрестности точки y_0 .

Теперь докажем дифференцируемость φ , для этого распишем дифференцируемость F:

$$F(x,y)-\underbrace{F(x_0,y_0)}_0=$$

$$\textstyle \sum_{k=1}^n \frac{\partial F}{\partial x_k}(x_0,y_0) \cdot \left(x_k - x_0^k\right) + \frac{\partial F}{\partial y}(x_0,y_0) \cdot (y-y_0) + \alpha(x,y)$$

где $\alpha = o(\|(x,y) - (x_0,y_0)\|), (x,y) \to (x_0,y_0).$

Воспользуемся умножением на «умную единицу»:
$$\alpha(x,y) = \sum_{i=1}^n \frac{\alpha(x,y)\cdot \left(x_i-x_0^i\right)^2}{\left\|(x,y)-(x_0,y_0)\right\|_2^2} + \frac{\alpha(x,y)\cdot \left(y-y_0\right)^2}{\left\|(x,y)-(x_0,y_0)\right\|_2^2}$$

Введём новые обозначения:
$$\alpha_i(x,y) \coloneqq \frac{\alpha(x,y)\cdot(x_0,y_0)\|_2^2}{\|(x,y)-(x_0,y_0)\|_2^2}; \quad \beta(x,y) \coloneqq \frac{\alpha(x,y)\cdot(y-y_0)}{\|(x,y)-(x_0,y_0)\|_2^2}$$
 Тогла

Тогда

$$\begin{split} F(x,y) &= \textstyle\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,y_0) + \alpha_k(x,y)\Bigr) \bigl(x_k - x_0^k\bigr) + \\ & \qquad \Bigl(\frac{\partial F}{\partial y}(x_0,y_0) + \beta(x,y)\Bigr) (y-y_0) \end{split}$$

Подставляя $y = \varphi(x)$ в выражение выше, будем использовать новые обозначения:

$$\tilde{\alpha}_k(x) := \alpha_k(x, \varphi(x)); \quad \tilde{\beta}(x) := \beta(x, \varphi(x))$$

Таким образом.

$$\underbrace{F(x,\varphi(x))}_{0} = \sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big) + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x) \Big) \big(x_k - x_0^k\big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0,\varphi(x_0)) \Big)}_{0} + \underbrace{\sum_{k=1}^{n} \Big(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0) \Big)}_{0} + \underbrace{\sum_{k=1}$$

$$\left(\frac{\partial F}{\partial y}(x_0,\varphi(x_0))+\tilde{\beta}(x)\right)(\varphi(x)-\varphi(x_0))$$

Выразим приращение φ :

$$\begin{array}{l} \varphi(x)-\varphi(x_0)=-\sum_{k=1}^n\biggl(\frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0))}+\gamma_k(x)\biggr)\bigl(x_k-x_0^k\bigr) \end{array}$$

где

$$\gamma_k(x) \coloneqq - \tfrac{\frac{\partial F}{\partial x_k}(x_0, \varphi(x_0))}{\frac{\partial F}{\partial x_l}(x_0, \varphi(x_0))} + \tfrac{\frac{\partial F}{\partial x_k}(x_0, \varphi(x_0)) + \tilde{\alpha}_k(x)}{\frac{\partial F}{\partial x_l}(x_0, \varphi(x_0)) + \tilde{\beta}(x)}$$

 $\gamma_k(x) := -\frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0))} + \frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0)) + \tilde{\beta}(x)}$ Остаётся заметить, что $\tilde{\alpha}_k(x) \underset{x \to x_0}{\to} 0; \tilde{\beta}(x) \underset{x \to x_0}{\to} 0,$ а это значит, что

$$\varphi(x)-\varphi(x_0)=\sum_{k=1}^nA_k\big(x_k-x_0^k\big)+\gamma(x); \quad \gamma(x)=o(\|x-x_0\|), x\to x_0$$
 Что и является требуемой дифференцируемостью φ в x_0 .

10. Экстремумы функций многих переменных. Необходимые условия, достаточные условия.

10.1. Необходимые условия

Определение 10.1.1: Точка $x_0 \in \mathbb{R}^n$ называется точкой **локального максимума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_\delta(x_0): \ f(x) \leq f(x_0)$$

Определение 10.1.2: Точка $x_0 \in \mathbb{R}^n$ называется точкой локального ми**нимума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_\delta(x_0): \ f(x) \geq f(x_0)$$

Определение 10.1.3: Точка $x_0 \in \mathbb{R}^n$ называется точкой строгого локаль**ного максимума** функции f(x), если

$$\exists \delta > 0 : \forall x \in U_{\delta}(x_0) : \ f(x) < f(x_0)$$

Определение 10.1.4: Точка $x_0 \in \mathbb{R}^n$ называется точкой строгого локаль**ного минимума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_\delta(x_0): \ f(x) > f(x_0)$$

Теорема 10.1.1 (Необходимые условия локального экстремума): Если x_0 точка локального экстремума функции f(x), дифференцируемой в окрестности точки x_0 , то $\mathrm{d}f(x) \equiv 0$.

Доказательство: Рассмотрим для каждого
$$k=\overline{1,\,\mathbf{n}}$$
:
$$\psi(x_k)=f\Big(x_0^1,...,x_0^{k-1},x_k,x_0^{k+1},...,x_0^n\Big), \ \ \mathrm{rge}\ x_0=\big(x_0^1,...,x_0^n\big)$$

Тогда заметим, что ψ дифференцируема в окрестности x_0^k , применяя теорему о необходимом условии экстремума функции одного переменного, полу-

$$\psi'(x_0^k) = 0 \Rightarrow \frac{\partial f}{\partial x_k}(x_0) = 0$$

 $\psi'\big(x_0^k\big)=0\Rightarrow \tfrac{\partial f}{\partial x_k}(x_0)=0$ В силу произвольности k и того, что дифференциал – это вектор частных производных, получим требуемое.

10.2. Достаточные условия

Определение 10.2.1: Если f дифференцируема в окрестности точки x_0 и $\mathrm{d}f(x_0)\equiv 0,\ \mathrm{To}\ x_0$ называется **стационарной точкой** функции f.

Теорема 10.2.1 (Достаточные условия локального экстремума): Если x_0 стационарная точка функции f, дважды дифференцируемой в точке x_0 , то

- 1. Если $\mathrm{d}^2 f(x_0)$ положительно определённая квадратичная форма, то x_0 точка строгого локального минимума функции f
- 2. Если $d^2 f(x_0)$ отрицательно определённая квадратичная форма, то x_0 точка строгого локального максимума функции f
- 3. Если ${
 m d}^2 f(x_0)$ неопределённая квадратичная форма, то x_0 не является точкой локального экстремума

Доказательство:

1. По формуле Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + df(x_0) + \frac{1}{2}d^2f(x_0) + o(\rho^2), \rho \to 0$$

где

тде
$$\mathrm{d}x_k = x_k - x_0^k, k = \overline{1,\mathrm{n}}; \quad \rho = \sqrt{\sum_{k=1}^n \left(x_k - x_0^k\right)^2} = \left\|\mathrm{d}x\right\|_2$$
 Тогда (в условиях $\mathrm{d}f(x_0) \equiv 0$ и $\xi_k := \frac{\mathrm{d}x_k}{\|\mathrm{d}x\|}$) :
$$f(x) - f(x_0) = \frac{1}{2}d^2f(x_0) + o(\rho^2) =$$

$$\underbrace{\frac{1}{2}\rho^2}\left(\underbrace{\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)\xi_i \xi_j}_{F(\xi_1,\dots,\xi_n)} + o(1),\right)\rho \to 0$$

В следствие нормировки, очевидно, $\sum_{i=1}^{n} \xi_i^2 = 1$.

Таким образом, минимум введённого функционала F на сфере (компактной в \mathbb{R}^n) будет достигаться:

$$\min_{\xi_1^2 + \dots + \xi_n^2 = 1} F(\xi_1, \dots, \xi_n) =: C > 0$$

 $\min_{\xi_1^2+...+\xi_n^2=1} F(\xi_1,...,\xi_n) \eqqcolon C>0$ Таким образом, для достаточно маленьких ρ :

$$f(x) - f(x_0) \ge \frac{C}{4}\rho^2 > 0$$

- 2. Аналогично
- 3. Вводим $F(\xi_1,...,\xi_n)$ аналогично предыдущим пунктам, из-за того что $\mathrm{d}^2 f$ – неопределённая, то

$$\exists \xi_1(x_1), \xi_2(x_2): \ F\big(\xi_1^1,...,\xi_1^n\big) > 0 \land F\big(\xi_2^1,...,\xi_2^n\big) < 0$$

Тогда при достаточно малых ρ :

$$\mathrm{sign}\ (f(x_1)-f(x_0))=\mathrm{sign}\ F(\xi_1)>0; \mathrm{sign}\ (f(x_2)-f(x_0))=\mathrm{sign}\ F(\xi_2)<0$$
 Что и требовалось.

11. Свойства интеграла с переменным верхним пределом (непрерывность, дифференцируемость). Формула Ньютона-Лейбница.

11.1. Свойства интеграла с переменным верхним пределом

Определение 11.1.1: **Разбиением** P отрезка [a,b] называется конечное множество точек отрезка [a,b]:

$$P: a = x_0 < x_1 < \dots < x_n = b; \quad \Delta x_k \coloneqq x_k - x_{k-1}; k = \overline{1, \mathbf{n}}$$

Определение 11.1.2: Диаметром разбиения P называется

$$\Delta(P) = \max\nolimits_{1 \leq i \leq n} \Delta x_i$$

Определение 11.1.3: **Верхней суммой Дарбу** разбиения P функции fназывается

$$U(P,f) = \sum_{k=1}^n \sup_{x \in [x_{k-1},x_k]} f(x) \cdot \Delta x_k$$

Определение 11.1.4: **Нижней суммой Дарбу** разбиения P функции fназывается

$$U(P,f) = \sum_{k=1}^n \inf_{x \in [x_{k-1},x_k]} f(x) \cdot \Delta x_k$$

Определение 11.1.5: Функция f называется интегрируемой по Риману на [a,b] $(f \in \mathcal{R}[a,b])$, если

$$\forall \varepsilon > 0 : \exists P : \ U(P, f) - L(P, f) < \varepsilon$$

Определение 11.1.6: Интегралом Римана интегрируемой по Риману на [a,b] функции f называется

$$\int_a^b f(x) \, \mathrm{d}x = \inf_P U(P,f) = \sup_P L(P,f)$$

Теорема 11.1.1 (Основные свойства интеграла Римана):

1. (Линейность) Если $f_1, f_2 \in \mathcal{R}[a,b]$, то $f_1 + f_2 \in \mathcal{R}[a,b]$, причём $\int_a^b (f_1 + f_2)(x) \, \mathrm{d}x = \int f_1(x) \, \mathrm{d}x + \int f_2(x) \, \mathrm{d}x$

- Кроме того, $\forall c \in \mathbb{R}$ выполняется, что $cf_1 \in \mathcal{R}[a,b]$, причём $\int_a^b cf_1(x) \, \mathrm{d}x = c \int_a^b f_1(x) \, \mathrm{d}x$ 2. (Монотонность) Если $f_1, f_2 \in \mathcal{R}[a,b]$ и $\forall x \in [a,b]: f_1(x) \leq f_2(x)$, то $\int_a^b f_1(x) \, \mathrm{d}x \leq \int_a^b f_2(x) \, \mathrm{d}x$
- 3. (Аддитивность):

 $f \in \mathcal{R}[a,b] \Leftrightarrow \forall c \in (a,b): \ f \in \mathcal{R}[a,c] \land f \in \mathcal{R}[c,b]$ Причём $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$ 4. (Оценка) Если $f \in \mathcal{R}[a,b]$ и $\forall x \in [a,b]: \ |f(x)| \leq M$, то $\left|\int_a^b f(x) \, \mathrm{d}x\right| \leq M(b-a)$

Теорема 11.1.2 (Критерий Лебега): Функция интегрируема по Риману на отрезке [a,b], тогда и только тогда, когда на этом отрезке она ограничена, и множество точек, где она разрывна, имеет нулевую меру Лебега.

Теорема 11.1.3 (Достаточные условия интегрируемости по Риману):

- 1. Непрерывная на отрезке функция интегрируема на нем;
- 2. Ограниченная на отрезке функция, разрывная в конечном числе его точек, интегрируема на этом отрезке;
- 3. Монотонная на отрезке функция, интегрируема на нем;
- 4. Произведение интегрируемой функции на число интегрируемо;
- 5. Сумма интегрируемых функций интегрируема;
- 6. Произведение интегрируемых функций интегрируемо;
- 7. Если отношение двух интегрируемых функций ограничено, то оно интегрируемо. Частный случай – если множество значений знаменателя не имеет 0 предельной точкой;
- 8. Модуль интегрируемой функции интегрируем.;

Определение 11.1.7: Пусть $\forall b' \in (a,b): f \in \mathcal{R}[a,b']$. Тогда F(b') = $\int_a^{b'} f(x) \, \mathrm{d}x$ называется **интегралом с переменным верхним пределом**. Будем считать, что F(a)=0, а для $\alpha>\beta$: $\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x = -\int_{\beta}^{\alpha} f(x) \, \mathrm{d}x$

Теорема 11.1.4 (Основные свойства интеграла с переменным верхним пределом): Если $f \in \mathcal{R}[a,b]$, то интеграл с перменным верхним пределом F(x)непрерывен на [a,b].

Если, кроме того, f непрерывна в $x_0 \in [a,b]$, то F(x) дифференцируема в x_0 , причём $F'(x_0) = f(x_0)$.

Доказательство: Непрерывность следует из комбинирования свойств аддитивности и оценки:

$$\forall x_1, x_2 \in [a,b] : x_1 < x_2 \wedge x_2 - x_1 < \frac{\varepsilon}{M} : \ |F(x_2) - F(x_1)| = \left| \int_{x_1}^{x_2} f(x) \, \mathrm{d}x \right| \leq \\ \int_{x_1}^{x_2} |f(x)| \, \mathrm{d}x \leq M(x_2 - x_1) < \varepsilon$$

В условиях непрерывности f, докажем, что производная интеграла дей-

ствительно равна
$$f(x_0)$$
:
$$\left|\frac{F(x)-F(x_0)}{x-x_0}-f(x_0)\right|=\left|\frac{1}{x-x_0}\int_{x_0}^x (f(t)-f(x_0))\,\mathrm{d}t\right|\leq \sup_{t\in[x_0,x]}|f(t)-f(x_0)|$$

Благодаря непрерывности f мы знаем, что при $x \to x_0$ сможем оценить итоговый супремум сверху ε .

11.2. Формула Ньютона-Лейбница

Определение 11.2.1: **Первообразной** функции f на [a,b] называется такая дифференцируемая на [a,b] функция F, что $\forall t \in [a,b]: F'(t) = f(t)$

Определение 11.2.2: Интегральной суммой $S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$ называется где $P: a=x_0 < ... < x_n=b, \forall i=\overline{1,\,\mathbf{n}}: t_i \in [x_{i-1},x_i].$

Теорема 11.2.1 (Интеграл как предел интегральных сумм): $f \in \mathcal{R}[a,b] \Leftrightarrow \exists \lim_{\Delta(P) \to 0} S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$ При этом $\int_a^b f(x) \,\mathrm{d}x = \lim_{\Delta(P) \to 0} S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$

Теорема 11.2.2 (Основная теорема интегрального исчисления): Если $f \in \mathcal{R}[a,b]$ имеет первообразную F на [a,b], то $\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a) = F(x)|_a^b$

Доказательство: Для любого разбиения P: $F(b) - F(a) \stackrel{\text{телескопическая сумма}}{=} \sum_{k=1}^n (F(x_k) - F(x_{k-1})) \stackrel{\text{теорема Лагранжа}}{=} \sum_{k=1}^n F'(\xi_k) \Delta x_k = \sum_{k=1}^n f(\xi_k) \Delta x_k$

Устремляя $\Delta(P) \to 0$ получим, что F(b) - F(a) равно требуемому интегралу по эквивалентному определению. \Box

- 12. Равномерная сходимость функциональных последовательностей и рядов. Непрерывность, интегрируемость и дифференцируемость суммы функционального ряда.
- 12.1. Непрерывность суммы функционального ряда

Определение 12.1.1: Функциональная последовательность $\left\{f_n\right\}_{n=1}^\infty$ сходится равномерно на E к функции f(x) $(f_n \rightrightarrows f),$ если $\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall x \in E: \ |f_n(x) - f(x)| < \varepsilon$

Определение 12.1.2: Функциональная последовательность $\{f_n\}_{n=1}^{\infty}$ схо**дится поточечно** на E к функции f(x), если

$$\forall x \in E : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |f_n(x) - f(x)| < \varepsilon$$

Теорема 12.1.1 (Критерий Коши равномерной сходимости функциональной последовательности):

$$f_n \underset{E}{\Longrightarrow} f \Leftrightarrow \forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in E: \ \left|f_{n+p}(x) - f_n(x)\right| < \varepsilon$$

Определение 12.1.3: Фукнциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно **сходится** на E, если равномерно сходится на E функциональная последовательность $S_n(x) = \sum_{k=1}^n f_k(x)$

Теорема 12.1.2 (Критерий Коши равномерной сходимости функциональных рядов):

$$\sum_{n=1}^{\infty} f_n$$
 равномерно сходится на $E \Leftrightarrow$

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in E: \ \left| \sum_{k=n}^{n+p} f_k(x) \right| < \varepsilon$$

Теорема 12.1.3 (Предельный переход в равномерно сходящихся последовательностях): Если $\{f_n\}_{n=1}^\infty$ равномерно сходится к f на множестве E метрического пространства, x_0 – предельная точка E, причём

$$\forall n \in \mathbb{N}: \operatorname{lim}_{x \to x_0, x \in E} f_n(x) = a_n$$

Тогда

$$\lim\nolimits_{x\to x_0,x\in E}f(x)=\lim\nolimits_{n\to\infty}a_n$$

То есть оба предела существуют и равны.

Доказательство: Воспользуемся критерием Коши равномерной сходимости:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \forall x \in E : \ \left| f_{n+p}(x) - f_n(x) \right| < \varepsilon$$

Совершим предельный переход $x \to x_0$:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left|a_{n+p} - a_n\right| \leq \varepsilon$$

 $\forall \varepsilon>0:\exists N\in\mathbb{N}:\forall n>N:\forall p\in\mathbb{N}:\left|a_{n+p}-a_{n}\right|\leq\varepsilon$ То есть числовая последовательность $\left\{a_{n}\right\}_{n=1}^{\infty}$ имеет какой-то предел a,теперь нужно установить, что он равен пределу предельной функции:

$$|f(x) - a| = |f(x) - f_n(x)| + |f_n(x) - a_n| + |a_n - a|$$

Стоит упомянуть про кванторы:

- Берём номер N больший N_1 для равномерного предела функций и N_2 для числового предела $a_n \underset{n \to \infty}{\rightarrow} a$
- δ -окрестность x_0 меньшую требуемой для фиксированного $f_N(x) \underset{x \to x_0}{\longrightarrow} a_N$

Следствие 12.1.3.1: Если $f_n(x)$ непрерывна на $E, f_n \rightrightarrows f$ на E, то f непрерывна на E.

Теорема 12.1.4 (Предельный переход в функциональных рядах): Если $\sum_{n=1}^{\infty}f_n(x)$ сходится равномерно на $E,\ x_0$ – предельная точка $E,\ \forall n\in\mathbb{N}$: $\lim_{x\to x_0, x\in E} f_n(x) = a_n, \text{ to }$ $\sum_{n=1}^{\infty} a_n = \lim_{x\to x_0, x\in E} \sum_{n=1}^{\infty} f_n(x)$

Доказательство: Доказывается очевидно применением предыдущей теоремы для последовательности частичных сумм.

12.2. Интегрируемость суммы функционального ряда

Теорема 12.2.1 (Интегрирование равномерно сходящейся функциональной последовательности): Если $\forall n \in \mathbb{N}: f_n$ интегрируемы по Риману на [a,b] и $f_n \rightrightarrows f$ на [a,b], то f интегрируема по Риману на [a,b] и $\int_a^b f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x$

Доказательство: Воспользуемся тем, что каждый элемент функциональной последовательности интегрируем:

$$\forall n \in \mathbb{N} : \forall \varepsilon > 0 : \exists P : U(P, f_n) - L(P, f_n) < \frac{\varepsilon}{3(h-a)}$$

Далее определение равномерной сходимости:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall x \in [a,b]: \ |f_n(x) - f(x)| < \frac{\varepsilon}{3(b-a)}$$

Итак, оценим верхнюю сумму Дарбу предела:
$$U(P,f)=\sum_{k=1}^n\sup_{x\in[x_{k-1},x_k]}f(x)\Delta x_k\leq$$

$$\textstyle \sum_{k=1}^n \Bigl(\sup_{x \in [x_{k-1}, x_k]} f_n(x) + \frac{\varepsilon}{3(b-a)} \Bigr) \Delta x_k = U(P, f_n) + \frac{\varepsilon}{3}$$

Аналогично для нижней:

$$L(P,f) \geq L(P,f_n) - \tfrac{\varepsilon}{3}$$

Таким образом,

$$U(P,f) - L(P,f) \leq U(P,f_n) - L(P,f_n) + \frac{2\varepsilon}{3} < \varepsilon$$

 $U(P,f)-L(P,f)\leq U(P,f_n)-L(P,f_n)+rac{2arepsilon}{3}<arepsilon$ Мы доказали интегрируемость f, осталось доказать, что интеграл равен тому, что надо:

$$\left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| \leq \int_a^b |f_n(x) - f(x)| \, \mathrm{d}x \leq \frac{\varepsilon}{3(b-a)} \cdot (b-a) < \varepsilon$$

Теорема 12.2.2 (Интегрирование функциональных рядов): Если $f_n \in \mathcal{R}[a,b], \sum_{n=1}^\infty f_n(x)$ равномерно сходится на [a,b], то $\sum_{n=1}^\infty f_n(x) \in \mathcal{R}[a,b]$ и $\int_a^b \sum_{n=1}^\infty f_n(x) \, \mathrm{d}x = \sum_{n=1}^\infty \int_a^b f_n(x) \, \mathrm{d}x$

Доказательство: Доказывается очевидно применением предыдущей теоремы для последовательности частичных сумм.

12.3. Дифференцируемость суммы функционального ряда

Теорема 12.3.1 (Дифференцирование функциональных последовательностей): Если

- 1. f_n дифференцируемы на (a,b)
- 2. $f'_n \rightrightarrows \operatorname{Ha}(a,b)$ 3. $\exists x_0 \in (a,b): f_n(x_0) \underset{n \to \infty}{\to}$

To

- 1. $f_n \rightrightarrows f$ на (a,b)
- $2. \ f$ дифференцируема на (a,b)
- 3. $f_n' \to f'$ на (a,b)

Доказательство: Используем равномерную сходимость производных:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in (a,b): \ \left|f'_{n+p}(x) - f'_{n}(x)\right| < \frac{\varepsilon}{2(b-a)}$$

А также сходимость самих функций в точке x_0 :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \left| f_{n+p}(x_0) - f_n(x_0) \right| < \frac{\varepsilon}{2}$$

Применим теорему Лагранжа для непрерывных f_n между произвольной точкой x и фиксированной x_0 :

$$\begin{array}{l} \exists \xi \in \{x,x_0\}: \ \left| \left(f_{n+p}(x) - f_n(x) \right) - \left(f_{n+p}(x_0) - f_n(x_0) \right) \right| = \\ \left| f'_{n+p}(\xi) - f'_n(\xi) \right| |x-x_0| \end{array}$$

Тогда мы можем доказать фундаментальность самой последовательнсоти:

$$\begin{split} \left| f_{n+p}(x) - f_n(x) \right| &\leq \left| f_{n+p}(x_0) - f_n(x_0) \right| + \left| f'_{n+p}(\xi) - f'_n(\xi) \right| |x - x_0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(h-a)} |x - x_0| < \varepsilon \end{split}$$

Значит по критерию Коши $f_n \rightrightarrows f$ на (a,b).

Остаётся доказать дифференцируемость f в произвольной точке $x \in$ (a,b), для этого введём вспомогательные функции: $\varphi_n(t) \coloneqq \frac{f_n(t) - f_n(x)}{t - x}; \quad \varphi(t) \coloneqq \frac{f(t) - f(x)}{t - x}$ Докажем фундаментальность $\left\{\varphi_n\right\}_{n=1}^\infty$:

$$arphi_n(t) \coloneqq rac{f_n(t) - f_n(x)}{t - x}; \quad arphi(t) \coloneqq rac{f(t) - f(x)}{t - x}$$

$$|arphi_{n+p}(t)-arphi_n(t)|=rac{|(f_{n+p}(t)-f_n(t))-(f_{n+p}(x)-f_n(x))|}{t-x}$$
 теорема Лагранжа $|f'_{n+p}(\xi)-f'_n(\xi)|<rac{arepsilon}{2(b-a)}$

Получили, что $\varphi_n \rightrightarrows \varphi$ на $A := (a, b) \setminus \{x\}$.

Заметим, что x – предельная точка A, тогда применим теорему о непрерывном поточечном пределе:

$$\lim\nolimits_{n\to\infty}f_n'(x)=\lim\nolimits_{n\to\infty}\lim\nolimits_{t\to x,t\in A}\varphi_n(t)=\lim\nolimits_{t\to x,t\in A}\varphi(t)=f'(x)$$

Заметим, что этими равенствами мы доказываем как существование, так и равенство пределов.

13. Степенные ряды. Радиус сходимости. Бесконечная дифференцируемость суммы степенного ряда. Ряд Тейлора.

13.1. Бесконечная дифференцируемость суммы степенного ряда

Определение 13.1.1: Ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, где $\{c_n\}_{n=0}^{\infty} \subset \mathbb{C}$ называется степенным рядом с центром в точке z_0 и коэффициентами $\{c_n\}_{n=0}^{\infty}$.

Определение 13.1.2: Радиусом сходимости степенного ряда Определение $\sum_{n=0}^{\infty}c_n(z-z_0)^n$ называется $R=rac{1}{\overline{\lim}_{n\to\infty}\sqrt[n]{|c_n|}}; \quad 0\le R\le +\infty$

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}}; \quad 0 \le R \le +\infty$$

Теорема 13.1.1 (Коши-Адамара): Если $R \in [0, +\infty]$ – радиус сходимости ряда $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, то 1. $\forall z, |z-z_0| < R$ ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится, притом абсолютно 2. $\forall z, |z-z_0| > R$ ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ расходится

Доказательство:

1. Пусть $|z - z_0| =: r < R$.

Возьмём произвольный $\rho \in (r,R) \Rightarrow \frac{1}{R} < \frac{1}{\rho} < \frac{1}{r}$. По определению верхнего предела:

$$\exists N \in \mathbb{N} : \forall n > N : \sqrt[n]{|c_n|} < \frac{1}{\rho}$$

Тогда:

$$\exists N \in \mathbb{N} : \forall n > N : \ \left| c_n (z - z_0)^n \right| \leq \left(\frac{r}{\rho} \right)^n; \quad \frac{r}{\rho} < 1$$

По теореме Вейерштрасса мы можем ограничить рассматриваемый ряд сходящимя числовым (геометрическая прогрессия) и всё доказано.

2. Пусть $|z-z_0| > R$, то есть $\frac{1}{|z-z_0|} < \frac{1}{R}$. Значит по плотности действительных чисел:

$$\exists \varepsilon > 0: \ \tfrac{1}{|z-z_0|} \leq \tfrac{1}{R} - \varepsilon \Rightarrow |z-z_0| \geq \tfrac{1}{\frac{1}{R} - \varepsilon}$$

По определению верхнего предела:

$$\exists \{n_k\}_{k=1}^{\infty} : \forall k \in \mathbb{N} : \sqrt[n_k]{\left|a_{n_k}\right|} > \tfrac{1}{R} - \varepsilon \Rightarrow$$

$$\left|a_{n_k}z^{n_k}\right| \geq \left(\tfrac{1}{R} - \varepsilon\right)^{n_k} \cdot \left(\tfrac{1}{\frac{1}{R} - \varepsilon}\right)^{n_k} \geq 1$$

Получили, что не выполнено необходимое условие сходимости ряда.

Теорема 13.1.2 (Равномерная сходимость степенного ряда): Если ряд $\sum_{n=0}^{\infty}c_{n}(z-z_{0})^{n}$ имеет радиус сходимости R>0, то он сходится равномерно в любом круге $|z - z_0| \le r$, где 0 < r < R

Доказательство: $|z-z_0|=r < R \Rightarrow$ по теореме Коши-Адамара $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится абсолютно, то есть $\sum_{n=0}^{\infty} |c_n| r^n$ Тогда для любого z из рассматриваемого круга справедлива оценка

$$\left|c_n(z-z_0)^n\right| \le |c_n|r^n$$

А значит по теореме Вейерштрасса имеется равномерная сходимость.

Теорема 13.1.3 (Почленное дифференцирование и интегрирование степенных рядов): Пусть $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$, где $|x-x_0| < R, R > 0$. Тогда

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}$$

1. f(x) бесконечно дифференцируема $\forall x, |x-x_0| < R$, причём $f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}$ 2. f(x) интегрируема по Риману $\forall x, |x-x_0| < R$ на отрезке с концами x_0, x, x_0 причём

$$\int_{x_0}^{x} f(t) dt = \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1}$$

- 3. Все степенные ряды, упомянутые в пунктах 1, 2 имеют радиус сходимости
- 4. $\forall n \in \mathbb{N} \cup \{0\}: \ a_n = \frac{f^{(n)}(x_0)}{n!}$

 Доказательство: Если мы возьмём $x:|x-x_0|=r < R,$ то на отрезке $[x_0,x]$ ряд для f(x) сходится равеномерно, а значит мы можем его почленно интегрировать по теореме об интегрировании равномерно сходящихся функциональных рядов.

Радиус сходимости дифференцированного (и, вообще говоря, интегрированного) ряда не меняется, так как $\lim_{n\to\infty} \sqrt[n]{n} = 1$. А значит он также равномерно сходится на $[x_0, x]$, поэтому мы можем применить теорему о дифференцировании функционального ряда.

Заметим, что $f^{(k)}(x_0) = k! \cdot a_k$, что и требовалось.

13.2. Ряд Тейлора

Определение 13.2.1: Если f бесконечно дифференцируема в точке x_0 , то ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называется её **рядом Тейлора** с центром в точке x_0 .

Если $x_0 = 0$, то ряд Тейлора называется **рядом Маклорена**.

Теорема 13.2.1 (Достаточное условие представимости функции рядом Тейлора): Если f бесконечно дифференцируема на $(x_0 - h, x_0 + h)$, причём $\exists M: \forall n \in \mathbb{N}: \forall x \in (x_0 - h, x_0 + h): \ \left|f^{(n)}(x)\right| \leq M$

То f(x) представима своим рядом Тейлора в точке x_0 при всех $x \in (x_0 - x_0)$ $(h, x_0 + h)$

Доказательство: По теореме о формуле Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}; \quad \xi \in (x_0,x)$$

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| \le M \frac{|x - x_0|^{n+1}}{(n+1)!} \underset{n \to \infty}{\longrightarrow} 0$$

Следовательно $\left|f(x)-\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k\right|\leq M\frac{|x-x_0|^{n+1}}{(n+1)!}\underset{n\to\infty}{\to}0$ Почему $\lim_{n\to\infty}\frac{x^n}{n!}=0$? Заметим, что n-ый элемент разложения экспоненты (имеющий бесконечный радиус сходимости, поэтому для неё априори он существует) в ряд Маклорена – это $\frac{x^n}{n!}$, а по необходимому условию сходимости ряда, он стремится к 0 равномерно.

14. Теорема об ограниченной сходимости для интеграла Лебега

Пусть $\langle a,b \rangle$ – конечный промежуток Определение 14.1: ([a,b],(a,b),(a,b],[a,b))

 $\mathbf{Брусом}$ в \mathbb{R}^n назовём

$$P= igstyle _{k=1}^n \langle a_k,b_k
angle$$
 Объёмом бруса P назовём число $|P|=\prod_{k=1}^n (b_k-a_k)$

Определение 14.2: М называется элементарным множеством, если оно представимо дизъюнктным объёдинением конечного числа брусьев.

Объёмом элементарного множества $M = \bigsqcup_{i=1}^n P_i$ назовём $|M| = \sum_{i=1}^n |P_i|$

Лемма 14.1: Совокупность элементарных множеств является кольцом мно-

В качестве единицы будем брать $K_I = \left[-\frac{1}{2}, \frac{1}{2} \right]^n$.

Совокупность элементарных подмножеств K_I образует алгебру множеств.

Определение 14.3: Внешней мерой Жордана множества A называется $\mu_{\mathcal{J}}^*(A) = \inf_{A \subset \cup_{i=1}^r M_i} \sum_{i=1}^r |M_i|$

где инфимум берётся по всем покрытиям множества A конечным числом элементарных множеств.

Определение 14.4: Внешней мерой Лебега множества A называется

$$\mu^*(A) = \inf_{A \subset \cup_{i=1}^\infty M_i} \sum_{i=1}^\infty |M_i|$$

где инфимум берётся по всем покрытиям множества A счётным числом элементарных множеств.

Определение 14.5: Пусть $A \subset K_I$.

Тогда внутренней мерой Лебега (Жордана) назовём

$$\mu_*^{(\mathcal{J})}(A)\coloneqq 1-\mu_{(\mathcal{J})}^*(K_I\setminus A)$$

Определение 14.6: Множество $A \subset K_I$ называется измеримым по Лебегу (Жордану), если

$$\mu_{(\mathcal{J})}^*(A) = \mu_*^{(\mathcal{J})}(A)$$

При этом общее значение соответствующих внешних и внутренних мер называется просто мерой.

Теорема 14.1 (Критерий измеримости): Множество $A \subset K_I$ измеримо по Лебегу (Жордану) тогда и только тогда, когда

$$orall arepsilon > 0: \exists M_arepsilon$$
 элементарное : $\; \mu_{(\mathcal{J})}^*(A igtriangle M_arepsilon) < arepsilon$

Определение 14.7: Лебеговым множеством функции $f: E \to \mathbb{R}, R \subset \mathbb{R}^n$ называется

$$E_a(f) = \{x \in E \mid f(x) < a\}$$

Определение 14.8: Функция $f: E \to \mathbb{R}$, где E – измеримое подмножество \mathbb{R}^n , называется **измеримой**, если

$$\forall a \in \mathbb{R}: \ E_a(f)$$
 измеримое

Определение 14.9: Пусть f – ограниченная измеримая функция, определённая на измеримом по Лебегу множестве E. И Q – разбиение области значений функции f.

Тогда **интегральной суммой Лебега** назовём
$$S\big(Q,f,\left\{t_i\right\}_{i=1}^n\big)=\sum_{i=1}^N f(t_i)\mu(E_i)$$
 где $E_i=\{x\in E\mid f(x)\in[y_{i-1},y_i)\}$

Теорема 14.2 (Критерий/определение интеграла Лебега для ограниченных функций): Если f – ограниченная измеримая на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$, то она интегрируема по Лебегу на E, причём

$$\int_E f \,\mathrm{d}\mu(x) = \lim_{\Delta(Q) \to 0} S\!\left(Q, f, \left\{t_i\right\}_{i=1}^n\right)$$

Определение 14.10: Назовём **срезкой** неотрицательной функции f для $N \in \mathbb{N}$:

$$f_{[N]}(x) = \begin{cases} f(x), f(x) \leq N \\ N, f(x) > N \end{cases}$$

Теорема 14.3 (Критерий/определение интеграла Лебега для измеримых неотрицательных функций): Если f – измеримая неотрицательная функция, определённая на измеримом множестве E конечной меры, то

$$\lim_{N \to \infty} \int_E f_{[N]} d\mu(x) = \int_E f(x) d\mu(x)$$

Теорема 14.4 (Лебега о предельном переходе под знаком интеграла): Пусть

- $\{f_n\}_{n=1}^\infty$ измеримые на множестве $E\subset\mathbb{R}^n$ конечной меры
- $f_m \stackrel{\text{i.i.}}{\to} f_{\text{Ha } E}$
- $\forall n \in \mathbb{N}: \ |f_n(x)| \leq F(x)$ при почти всех $x \in E$, где F произвольная суммируемая функция на E

Тогда f суммируема на E, причём

$$\int_E f \,\mathrm{d}\mu(x) = \lim_{n \to \infty} \int_E f_n \,\mathrm{d}\mu(x)$$

Доказательство: Совершив предельный переход $n \to \infty$ мы можем утверждать, что $|f(x)| \le F(x)$ при почти всех $x \in E$ – значит f суммируемая на E.

Осталось доказать равенство интеграла и предела интегралов.

Как мы знаем, из сходимости почти всюду следует сходимость по мере:

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mu(E_m(\varepsilon) \coloneqq \{x \in E \mid \|f_m - f\| \ge \varepsilon\}) = 0$$

Другими словами

$$\forall \varepsilon > 0 : \forall \delta > 0 : \exists M \in \mathbb{N} : \forall m > M : \mu(E_m(\varepsilon)) < \delta$$

Оценим разность интеграла и предела интегралов:

$$\left| \int_{E} (f - f_m) \, \mathrm{d}\mu(x) \right| \le \int_{E_m} |f_m - f| \, \mathrm{d}\mu(x) + \int_{E \setminus E_m} |f_m - f| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) + 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le 2 \int_{E_m} |F| \, \mathrm{d}\mu(x) \le$$

$$2\int_E \ F \, \mathrm{d}\mu(x) + \varepsilon \mu(E \smallsetminus E_m) < \varepsilon(\mu(E) + 2)$$

Что и требовалось.

15. Дифференциальные формы на открытых подмножествах евклидова пространства, оператор внешнего дифференцирования d и его независимость от криволинейной замены координат

15.1. Дифференциальные формы, оператор внешнего дифференцирования

В этом и других билетов, связанных с дифференциальными формами введём понятия $E = \mathbb{R}^n$ — евклидово пространство.

 E^* — сопряжённое к нему, ака пространство линейных функционалов ака линейных форм ака ковекторов.

Если мы будем употреблять $p \in \mathbb{N},$ то мы имеем ввиду количество векторов $x_1,...,x_p \in E$

Если мы будем употреблять $q \in \mathbb{N}$, то мы имеем ввиду количество ковекторов $y^1,...,y^q \in E^*$

Обратите внимание на индексы, это важно.

Определение 15.1.1: Полилинейной формой валентности (p,q) называется функция $U: E^p \times (E^*)^q \to \mathbb{R}$, линейная по каждому из аргументов.

Утверждение 15.1.1: Полилинейная форма однозначно определяется значениями на базисных элементах E и E^* , то есть числами

чениями на базисных элементах
$$E$$
 и E^* , то есть числами
$$\omega_i^j \coloneqq \omega_{i_1,...,i_p}^{j_1,...,j_q} = U\!\left(e_{i_1},...,e_{i_p},e^{j_1},...,e^{j_q}\right)$$
 где $\left\{e_i\right\}_{i=1}^n$ – базис E , а $\left\{e^j\right\}_{j=1}^q$ – двойственный базис E^* .

Доказательство: Очевидно из линейности.

Определение 15.1.2: Набор чисел $\left\{\omega_{i}^{j} \mid i \in \left(\overline{1,\,\mathbf{n}}\right)^{p}, j \in \left(\overline{1,\,\mathbf{n}}\right)^{q}\right\}$ (то есть мы рассматриваем значения на всех комбинациях базисных векторов и ковекторов) называется **тензором**

Утверждение 15.1.2: Множество полилинейных форм валентности (p,q) образует **линейное пространство** Ω_p^q .

Определение 15.1.3: Тензорным произведением форм $U \in \Omega^{q_1}_{p_1}; V \in \Omega^{q_2}_{p_2}$ называется форма $U \otimes V \in \Omega^{q_1+q_2}_{p_1+p_2},$ задаваемая формулой.

$$\forall \boldsymbol{x} \in E^{p_1+p_2} : \forall \boldsymbol{y} \in E^{q_1+q_2} : \\ U \otimes V \Big(x_1,...,x_{p_1},x_{p_1+1},...,x_{p_1+p_2},y^1,...,y^{q_1},y^{q_1+1},...,y^{q_1+q_2} \Big) = \\ U \Big(x_1,...,x_{p_1},y^1,...,y^{q_1} \Big) \cdot V \Big(x_{p_1+1},...,x_{p_1+p_2},y^{q_1+1},...,y^{q_1+q_2} \Big)$$

Определение 15.1.4: $W \in \Omega^0_p$ называется **симметрической**, если она не изменяется при любой перестановке её аргументов.

Определение 15.1.5: $W \in \Omega^0_p$ называется антисимметрической (кососимметрической), если при любой перестановке пары её аргументов она меняет знак.

Введём линейное пространство антисимметрических форм:

$$\Lambda_p \coloneqq \left\{ W \in \Omega^0_p \mid W -$$
антисимметрическая $\right\}$

Определение 15.1.6: Пусть $\pi_p = (i_1,...,i_p)$ – перестановка индексов $\{1,...,p\}$. Тогда $\forall W \in \Omega^0_p: \forall x \in E^p: \left(\pi_p W\right)\!\left(x_1,...,x_p\right) \coloneqq W\!\left(x_{i_1},...,x_{i_p}\right)$

Определение 15.1.7: Симметризацией формы $W \in \Omega^0_p$ называется форма

sym
$$W \coloneqq \frac{1}{p!} \sum_{\pi_p \in S_p} \pi_p W$$

Определение 15.1.8: Антисимметризацией формы $W \in \Omega^0_p$ называется форма

asym
$$W\coloneqq \frac{1}{p!}\sum_{\pi_p\in S_p}\operatorname{sgn}\,\pi_p\cdot\pi_pW$$

Определение 15.1.9: Если $U\in\Lambda_p,V\in\Lambda_q,$ то их внешним произведением называется

$$U \wedge V := \frac{(p+q)!}{p!q!}$$
 asym $(U \otimes V)$

Теорема 15.1.1 (Основные свойства внешнего произведения):

- 1. Линейность
 - $\bullet \ (\alpha_1U_1+\alpha_2U_2)\wedge V=\alpha_1(U_1\wedge V)+\alpha_2(U_2\wedge V)$
 - $\bullet \ \ U \wedge (\alpha_1 V_1 + \alpha_2 V_2) = \alpha_1 (U \wedge V_1) + \alpha_2 (U \wedge V_2)$
- 2. Ассоциативность
 - $(U \wedge V) \wedge W = U \wedge (V \wedge W)$
- 3. Антикоммутативность
 - $\bullet \ \forall U \in \Lambda_p : \forall V \in \Lambda_q : \ U \wedge V = (-1)^{pq} (V \wedge U)$

Утверждение 15.1.3: Базисом в пространстве Λ_p является система $\left\{f^{i_1}\wedge...\wedge f^{i_p}\mid 1\leq i_1<...< i_p\leq n\right\}$ где $\left\{f_i\right\}_{i=1}^n$ – базис в $E^*=\Lambda_1$. (Принято брать базис проекторов)

Определение 15.1.10: p-формой (дифференциальной формой валентности (степени) p) на множестве $U\subset E$ называется отображение $\Omega:U\to \Lambda_p.$

В силу линейности пространства Λ_p , нам достаточно задать поведение получаемой формы лишь на базисе, поэтому

$$\forall x \in U: \ \Omega(x) \coloneqq \textstyle \sum_{1 \leq i_1 < \ldots < i_p \leq n} \omega_{i_1,\ldots,i_p}(x) f^{i_1} \wedge \ldots \wedge f^{i_p}$$

Таким образом, дифференциальная форма однозначно задаётся наобором действительнозначных функций

$$\left\{ \omega_{i_1,\ldots,i_p}(x) \mid 1 \leq i_1 < \ldots < i_p \leq n \right\}$$

Определение 15.1.11: Внешнее дифференцирование p-формы определяется как (p+1)-форма

$$\mathrm{d}\Omega:U\to\Lambda_{p+1}$$

По правилу

$$\forall x \in U : d\Omega(x) := (p+1) \text{ asym } (\Omega'(x))$$

где под производной подразумевается производная по Фреше.

Стоит заметить, что, формально $\Omega': U \to U \to \Lambda_p$, однако мы считаем, что $U \to \Lambda_p \subset \Omega^0_{p+1}$ (Действительно, линейно по p+1 вектору получаем число).

Также стоит упомянуть, что для любого базиса $(e_1,...,e_n)$ из E и двойственного к нему базиса $(e^1,...,e^n)$ существует соглашение, что

$$\forall i = \overline{1, \mathbf{n}} : e^i = \mathrm{d}e_i$$

Которое не лишено смысла, ведь e_i – это 0-форма. А e^i – это функционал, то есть 1-форма.

Теорема 15.1.2 (Основные свойства операции внешнего дифференцирова-

1.
$$d(\Omega \wedge \Pi) = (d\Omega \wedge \Pi) + (-1)^p (\Omega \wedge d\Pi)$$
, где $\Omega - p$ -форма, а $\Pi - q$ -форма.

 $2. d(d\Omega) = 0$

Доказательство:

1. Для простоты считаем, что форма – одночлен, по линейности всё очевидно доказывается для произвольной формы.

Фиксируем базис, в котором

$$\Omega(x) = \omega(x) \, \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p}; \quad \Pi(x) = \pi(x) \, \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q}$$
 Тогда
$$\mathrm{d}(\Omega \wedge \Pi) = \mathrm{d}(\omega(x)\pi(x) \, \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p} \wedge \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q}) =$$

$$\mathrm{d}(\omega(x)\pi(x)) \wedge \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p} \wedge \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q} =$$

$$\pi(x) \sum_{i=1}^n \frac{\partial \omega}{\partial x_i}(x) \, \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p} \wedge \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q} +$$

$$\omega(x) \sum_{i=1}^n \frac{\partial \pi}{\partial x_i}(x) \, \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p} \wedge \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q} =$$

$$d\Omega \wedge \Pi(x) + (-1)^p (\Omega \wedge \mathrm{d}\Pi)$$

В последнем переходе мы воспользовались свойством антикоммутативности внешнего произведения для перестановки всех $\mathrm{d} x^{j_{\dots}}$ перед всеми $\mathrm{d} x^{i_{\dots}}$, остальное свернули по определению

2. Распишем двойной дифференциал:
$$\mathrm{d}(\mathrm{d}\Omega) = \mathrm{d}\left(\sum_{j,\forall k:j\neq i_k} \frac{\partial \omega}{\partial x_j} \, \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p}\right) = \\ \sum_{l,l\neq j,\forall k:l\neq l_k} \sum_{j,\forall k:j\neq i_k} \frac{\partial^2 \omega}{\partial x_l \partial x_j} \, \mathrm{d}x^l \wedge \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} = \\ \sum_{j,l,j< l,\forall k:j\neq i_k \wedge l\neq i_k} \left(\frac{\partial^2 \omega}{\partial x_l \partial x_j} - \frac{\partial^2 \omega}{\partial x_j \partial x_l}\right) \mathrm{d}x^l \wedge \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} = 0$$

15.2. Независимость внешнего дифференцирования от замены координат

Определение 15.2.1: Пусть $D \subset \mathbb{R}^n$.

D называется **связным**, если

$$\forall x_1,x_2\in D: x_1\neq x_2:\ \exists \gamma(t)\subset D$$
кривая : $\,\gamma(0)=x_1\wedge\gamma(1)=x_2$

Определение 15.2.2: Областью называется открытое связное множество.

Определение 15.2.3: Непрерывно дифференцируемое взаимооднозначное отображение φ называется **диффеоморфизмом**.

Определение 15.2.4: Пусть

- Ω дифференциальная p-форма в области $U \subset \mathbb{R}^n$
- $\varphi:V o U$ диффеоморфизм области $V\subset\mathbb{R}^n$ на U

Тогда $\varphi^*\Omega$ – дифференциальная p-форма в области V, определяемая как $\forall \boldsymbol{b} \in \mathbb{R}^n: \ (\varphi^*\Omega)(y)(\boldsymbol{b}) \coloneqq \Omega(\varphi(y))\big(\varphi'(y)b_1,...,\varphi'(y)b_p\big)$

Утверждение 15.2.1 (Правило подсчёта): Мы можем выразить форму после замены координат через упомянутое выше базисное представление:

$$(\varphi^*\Omega)(y) = \sum_{1 \leq i_1 < \ldots < i_p \leq n} \omega_{i_1,\ldots,i_p}(\varphi(y)) \,\mathrm{d}\varphi^{i_1}(y) \wedge \ldots \wedge \mathrm{d}\varphi^{i_p}(y)$$

Доказательство: Заметим, что для произвольного вектора $b \in \mathbb{R}^n$ верно $\mathrm{d}\varphi^i(y)(b) = \sum_{l=1}^n \frac{\partial \varphi^i}{\partial y^l}(y)\,\mathrm{d}f^l(b) = \sum_{l=1}^n \frac{\partial \varphi^i}{\partial y^l}(y)b^l = (\varphi'(y)b)^i = \mathrm{d}f^i(\varphi'(y)b)$ Не забывайте, что в качестве $\mathrm{d}f^i$ мы берём проекцию на i-ую координату. Что и требовалось.

Лемма 15.2.1 (Независимость внешнего дифференцирования от замены координат):

$$\varphi^*(\mathrm{d}\Omega)=\mathrm{d}(\varphi^*\Omega)$$

Доказательство: БОО считаем, что Ω – это одночлен, для многочленов обобщается очевидно по линейности.

Зафиксируем $\Omega = \omega(x) \wedge \mathrm{d} x^{i_1} \wedge ... \wedge \mathrm{d} x^{i_p}$

Тогда по свойствам внешнего дифференцирования:

$$\mathrm{d}\Omega = \mathrm{d}\omega(x) \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p}$$

Тогда по правилу подсчёта

$$\varphi^*(\mathrm{d}\Omega) = \mathrm{d}\omega(\varphi(y)) \wedge \mathrm{d}\varphi^{i_1}(y) \wedge \dots \wedge \mathrm{d}\varphi^{i_p}(y)$$

С другой стороны, по определению замены координат

$$\varphi^*(\Omega) = \omega(\varphi(y)) \,\mathrm{d}\varphi^{i_1}(y) \wedge \dots \wedge \mathrm{d}\varphi^{i_p}(y)$$

Применим оба свойства внешнего дифференцирования (двойной дифференциал нулевой и псевдодистрибутивность):

$$\mathrm{d}(\varphi^*\Omega) = \mathrm{d}\omega(\varphi(y)) \wedge \mathrm{d}\varphi^{i_1}(y) \wedge \ldots \wedge \mathrm{d}\varphi^{i_p}(y)$$

16. Интегрирование дифференциальной формы с компактным носителем. Зависимость интеграла от замены координат.

Из Утверждение 15.1.3 Пространство Λ_n одномерно. Иными словами, если $(f^1,...,f^n)$ – базис E^* , то

$$\left\{cf^1\wedge\ldots\wedge f^n\mid c\in\mathbb{R}\right\}=\Lambda_n$$

Тогда если $\left(e_0^1,...,e_0^n\right)$ — ортонормированный базис в E^* сопряжённый к $(e_1^0,...,e_n^0)$ – ортонормированному базису в E^* .

$$V_{e^0} = e^1_0 \wedge \dots \wedge e^n_0 \stackrel{\text{соглашение}}{=} \mathrm{d} e^0_1 \wedge \dots \mathrm{d} e^0_r$$

Введём форму **ориентированного объёма** $V_{e^0} = e^1_0 \wedge ... \wedge e^n_0 \stackrel{\text{соглашение}}{=} \mathrm{d} e^0_1 \wedge ... \, \mathrm{d} e^0_n$ Возьмём произвольный базис $(e^0_1,...,e^*_n)$ в E, связанный с исходным матрицей перехода T:

$$\forall j: e_j = t_j^i e_i^0$$

Рассмотрим действие:

$$V_{e_0}(e_1,...,e_n) = \det^0_1 \wedge ... \det^0_n(e_1,...,e_n) = \det \left(\det^0_i \left(e_j \right) \right)_{i,j=1}^n = \det T$$

Причём ∀ базиса форма ориентированного объёма на нём самом равна 1:

$$V_{e_0} = \det T \cdot V_e$$

 $V_{e_0} = \det T \cdot V_e$ В начале определим интеграл от форм из $\Lambda_n.$

Определение 16.1: Интегралом от формы $\Omega(x)=\alpha(x)V_{e_0}$ по области $D\subset$ E называется

$$\int_{D} \Omega = \int_{D} \alpha(x) \, \mathrm{d}\mu(x)$$

Определение 16.2: Если Ω – гладкая n-1 форма, заданная на замыкании куба $K \subset \mathbb{R}$, то

$$\textstyle\int_{\partial K}\Omega\coloneqq\int_K\mathrm{d}\Omega$$

Определение 16.3: Клеткой называется диффеоморфный образ куба

Определение 16.4: Для формы Ω и диффеоморфизма $\varphi: U \to V, M \subset U$ – клетки, $K \subset V$ – куба:

$$\int_{M} \Omega = \int_{K} \varphi^{*} \Omega$$

17. Общая формула Стокса

Определение 17.1: Границей клетки $M = \varphi(K)$ называется $\partial M := \varphi(\partial K)$

Теорема 17.1 (Теорема Стокса для клетки): Если Ω – гладкая m-1 форма, заданная в окрестности m-мерной клетки, то

$$\int_{\partial M} \Omega = \int_M \mathrm{d}\Omega$$

Доказательство: Используя Теорему Стокса для куба (ака определение интеграла по формам меньших размерностей) и свойство инвариантности внешнего дифференцирования от замены координат:

$$\int_{\partial M} \hat{\Omega} = \int_{\partial K} \varphi^* \Omega = \int_K \mathbf{d}(\varphi^* \hat{\Omega}) = \int_K \varphi^* (\mathbf{d}\Omega) = \int_M \mathbf{d}\Omega$$

18. Достаточные условия сходимости тригонометрического ряда Фурье в точке

В доказательствах некоторых теорем этого и следующего билетов используется интересный трюк: если у нас есть цепочка равенств a=b, то мы с лёгкостью сможем продолжить её, написав $a=b=\frac{a+b}{2}$. Если вы понимаете, что в доказательстве теоремы с интегралами происходит какая-то дичь, то вспоминайте этот трюк!

Определение 18.1:

$$L_{2\pi} := \{ f \in L_1[-\pi,\pi] \mid f - 2\pi \text{ периодическая} \}$$

Определение 18.2: Ядром Дирихле $D_n(u)$ называется выражение $D_n(u)=\frac{1}{2}+\sum_{k=1}^n\cos(ku)=\frac{\sin((n+\frac{1}{2})u)}{2\sin(\frac{u}{2})}$

Определение 18.3: Пусть $f \in L_{2\pi}$, тогда частичной суммой тригонометрического ряда Фурье называется $S_n(f,x)\coloneqq \tfrac{a_0}{2} + \sum_{k=1}^n (a_k\cos(kx) + b_k\sin(kx))$

$$S_n(f,x) := \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$

где

$$a_k \coloneqq \tfrac{1}{\pi} \int_{-\pi}^\pi f(t) \cos(kt) \,\mathrm{d}\mu(t); \quad b_k = \tfrac{1}{\pi} \int_{-\pi}^\pi f(t) \sin(kt) \,\mathrm{d}\mu(t)$$

Лемма 18.1 (О представлении частичной суммы): Если $f \in L_{2\pi}$, то n-я частичная сумма тригонометрического ряда Фурье может быть представлена

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^\pi f(t) D_n(x-t) \,\mathrm{d}\mu(t) = \frac{1}{\pi} \int_{-\pi}^\pi f(x+u) D_n(u) \,\mathrm{d}\mu(u)$$

Теорема 18.1 (Теорема Римана об осцилляции): Если $f \in L_1(I)$, где I – конечный или бесконечный промежуток, то

$$\lim_{\lambda \to \infty} \int_I f(x) \cos(\lambda x) \, \mathrm{d}\mu(x) = \lim_{\lambda \to \infty} \int_I f(x) \sin(\lambda x) \, \mathrm{d}\mu(x) = 0$$

Теорема 18.2 (Признак Дини): Если
$$f\in L_{2\pi}$$
 и $\varphi_{x_0}\in L_1(0,\delta), \delta>0$, где
$$\varphi_{x_0}(t):=\frac{f(x_0+t)+f(x_0-t)-2S(x_0)}{t}$$

то тригонометрический ряд Фурье функции f(x) сходится к $S(x_0)$

Доказательство: Рассмотрим разность $S_n(f,x_0) - S(x_0)$, пользуясь леммой

о представлении, можем записать её как
$$S_n(f,x_0)-S(x_0)\stackrel{\text{трюк}}{=} \tfrac{1}{\pi} \int_0^\pi (f(x+u)+f(x-u)-2S(x_0))D_n(u)\,\mathrm{d}\mu(u)$$

В данном переходе мы воспользовались сразу несколькими фактами:

- Подынтегральная функция чётная относительно u
- Интеграл по $[-\pi,\pi]$ от ядра Дирихле равен π
- Если заменить в представлении частичной суммы t на -t, то ничего не изменится.

Продолжим цепочку преобразований, раскрыв в формуле ядра Дирихле

$$\sin\left(\left(n + \frac{1}{2}\right)t\right) = \sin(nt)\cos\left(\frac{t}{2}\right) + \cos(nt)\sin\left(\frac{t}{2}\right)$$

А также добавим и вычтем интеграл
$$\frac{1}{\pi} \int_0^\delta \frac{f(x+t)+f(x-t)-2S(x_0)}{t} \sin(nt) \,\mathrm{d}\mu(t)$$

Итак, приступим

$$\begin{split} S_n(f,x_0) - S(x_0) &= \\ \frac{1}{\pi} \int_0^\delta \frac{f(x+t) + f(x-t) - 2S(x_0)}{t} \sin(nt) \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_0^\pi (f(x+t) + f(x-t) - 2S(x_0)) \frac{\cos(nt)}{2} \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_\delta^\pi (f(x+t) + f(x-t) - 2S(x_0)) \frac{\sin(nt) \cos(\frac{t}{2})}{2 \sin(\frac{t}{2})} \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_0^\delta (f(x+t) + f(x-t) - 2S(x_0)) \sin(nt) \left(\frac{\cos(\frac{t}{2})}{2 \sin(\frac{t}{2})} - \frac{1}{t} \right) \mathrm{d}\mu(t) \end{split}$$

 По условию φ_{x_0} сумирумая, значит по теореме Римана об осцилляции первое слагаемое стремится к нулю.

 $f(x+t) + f(x-t) - 2S(x_0)$ суммируема как сумма суммируемых и константы, значит по теореме Римана об осцилляции второе слагаемое стремится к нулю.

В третьем слагаемом $(f(x+t)+f(x-t)-2S(x_0))\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}\in L_1[\delta,\pi]$, так как мы отделились от нуля и по теореме Римана об осцилляции третье слагаемое стремится к нулю.

Для четвёртого слагаемого рассмотрим разность:
$$\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} - \frac{1}{t} \overset{t \to 0}{\sim} \frac{1 - \frac{t^2}{8}}{2\left(\frac{t}{2} - \frac{t^3}{48}\right)}) - \frac{1}{t} = \frac{t - \frac{t^3}{8} - t + \frac{t^3}{24}}{t^2} = 0$$

Значит мы умножили суммируемую функцию $f(x+t) + f(x-t) - 2S(x_0)$

на другую, имеющую устранимый разрыв в нуле, а значит
$$(f(x+t)+f(x-t)-2S(x_0))\left(\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}-\frac{1}{t}\right)\in L_1[0,\delta]$$

И опять применяем теорему об осцилляции

Определение 18.4: Будем говорить, что функция f удовлетворяет условию Гёльдера порядка $\alpha \in (0,1]$ в точке x_0 , если существуют конечные односторонние пределы $f(x_0 \pm 0)$ и константы $C > 0, \delta > 0$ такие, что

$$\forall t, 0 < t < \delta: |f(x_0 + t) - f(x_0 + 0)| \le Ct^{\alpha} \land |f(x_0 - t) - f(x_0 - 0)| \le Ct^{\alpha}$$

Теорема 18.3 (Признак Липшица): Если $f \in L_{2\pi}$ удовлетворяет условию Гёльдера порядка α в точке x_0 , то тригонометрический ряд Фурье функции f(x) сходится в точке x_0 к $\frac{f(x_0+0)+f(x_0-0)}{2}$

Доказательство: По условию теоремы, хотим

$$S(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2}$$

 $S(x_0) = rac{f(x_0+0)+f(x_0-0)}{2}$ Значит функция $arphi_{x_0}$ из признака Дини будет иметь вид

$$\varphi_{x_0}(t) = \frac{f(x_0+t) - f(x_0+0) + (f(x_0-t) - f(x_0-0))}{t}$$

To что φ измерима – очевидно. Осталось доказать ограниченность интеграла

$$\begin{split} \left| \int_0^\delta \varphi_{x_0}(t) \, \mathrm{d}\mu(t) \right| & \leq \int_0^\delta \frac{|f(x_0+t)-f(x_0+0)|}{t} \, \mathrm{d}\mu(t) + \int_0^\delta \frac{|f(x_0-t)-f(x_0-0)|}{t} \, \mathrm{d}\mu(t) \leq \\ & 2C \int_0^\delta t^{\alpha-1} \, \mathrm{d}\mu(t) = 2C \frac{\delta^\alpha}{\alpha} \end{split}$$

Значит мы можем применить признак Дини и всё доказано.

19. Достаточные условия равномерной сходимости тригонометрического ряда Фурье

Утверждение 19.1: Анализ доказательства признака Дини (Теорема 18.2) показывает, что критерием сходимости тригонометрического ряда Фурье функции $f\in L_{2\pi}$ к $S(x_0)$ в точке x_0 является равенство $\lim_{n\to\infty}\int_0^\delta \varphi_{x_0}(t)\sin(nt)\,\mathrm{d}\mu(t)=0$

$$\lim_{n\to\infty} \int_0^\delta \varphi_{x_0}(t) \sin(nt) \, \mathrm{d}\mu(t) = 0$$

Лемма 19.1: Пусть $f \in L_{2\pi}, g$ – измеримая, 2π -периодическая, ограниченная функция. Тогда коэффициенты Фурье функции $\chi(t) = f(x+t)g(t)$ стремятся к нулю при $n \to \infty$ равномерно по x.

Теорема 19.1 (Признак Жордана): Если $f \in L_{2\pi}$ и является функцией ограниченной вариации на [a,b], то тригонометрический ряд Фурье f сходится к $f(x_0)$ в каждой точке $x_0 \in (a,b)$ непрерывности f(x) и к $\frac{f(x_0+0)+f(x_0-0)}{2}$ в каждой точке разрыва $x_0 \in [a, b]$.

Если, кроме того, $f \in C[a,b]$, то тригонометрический ряд Фурье функции f сходится к ней равномерно на любом отрезке $[a', b'] \subset (a, b)$.

виде $f = f_1 - f_2$, где f_1, f_2 – неубывающие. Значит нам достаточно доказать утверждения для неубывающих функций.

$$\lim_{n\to\infty} \int_0^\delta \varphi_{x_0}(t) \sin(nt) \,\mathrm{d}\mu(t) = 0$$

По (Утверждение 19.1) нам надо доказать лишь $\lim_{n\to\infty}\int_0^\delta \varphi_{x_0}(t)\sin(nt)\,\mathrm{d}\mu(t)=0$ Раскроем φ_{x_0} и $S(x_0)$ и будем доказывать лишь для $\lim_{n\to\infty}\int_0^\delta \frac{f(x_0+t)-f(x_0+0)}{t}\sin(nt)\,\mathrm{d}\mu(t)=0$

А для слагаемого с минусами аналогично.

По определению правостороннего предела:

$$\forall \varepsilon > 0: \exists \delta_1, 0 < \delta_1 < \delta: \ 0 \leq f(x_0 + \delta_1) - f(x_0 + 0) < \varepsilon$$

Перейдём к интегралу Римана, так как f монотонна и используем теорему о среднем для него:

$$\begin{split} \exists \delta_2, 0 < \delta_2 < \delta_1: & \int_0^{\delta_1} \frac{f(x_0 + t) - f(x_0 + 0)}{t} \sin(nt) \, \mathrm{d}t = \\ & (f(x_0 + \delta_1) - f(x_0 + 0)) \int_{\delta_1}^{\delta_2} \frac{\sin(nt)}{t} \, \mathrm{d}t \end{split}$$

Но мы знаем, что $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ сходится, поэтому интеграл с переменным верхним пределом ограничен:

$$\exists C > 0: \left| \int_0^u \frac{\sin(t)}{t} \, \mathrm{d}t \right| \le C$$

Но теперь рассмотрим:
$$\forall A>0: \ \left| \int_0^A \frac{\sin(nt)}{t} \,\mathrm{d}t \right| \stackrel{nt=:u}{=} \left| \int_0^{nA} \frac{\sin(u)}{u} \,\mathrm{d}u \right| \leq C$$

$$\left| \int_0^{\delta_1} \frac{f(x_0 + t) - f(x_0 + 0)}{t} \sin(nt) \, \mathrm{d}t \right| \le 2\varepsilon C$$

Используя эту оценку, получим, что $\left|\int_0^{\delta_1} \frac{f(x_0+t)-f(x_0+0)}{t} \sin(nt) \, \mathrm{d}t\right| \le 2\varepsilon C$ Таким образом, разобьём исходный интеграл от 0 до δ на сумму интегралов от 0 до δ_1 и от δ_1 до δ .

Получим, что предел интеграла действительно равен нулю, применим признак Дини и получим первую часть утверждения теоремы.

Перейдём к доказательству равномерной сходимости.

Вспомним, как мы расписывали разность $S_n(f,x_0) - S(x_0)$ на четыре слагаемых в доказательстве признака Дини (Теорема 18.2).

Применим к каждому из трёх последних слагаемых вспомогательную лемму (Лемма 19.1) и сведём доказательство к тому, чтобы доказать равномерность предела первого слагаемого (который мы уже рассматривали в текущем доказательстве).

Это сделать несложно, заметим, что если f непрерывна на [a',b'], то она равномерно непрерывна на нём, а значит мы можем найти δ_1 из текущего доказательства независимо от x_0 .

Также независимо от x_0 мы ограничиваем интеграл от $\frac{\sin(nx)}{x}$, поэтому второе утвеждение текущец теоремы доказано.

20. Непревность преобразования Фурье абсолютно интегрируемой функции. Преобразование Фурье производной и производная преобразования Фурье.

20.1. Непрерывность преобразования Фурье абсолютно интегрируемой функции

Определение 20.1.1: **Преобразование Фурье** функции $f \in L_1(\mathbb{R})$ называется

$$F[f] \coloneqq \hat{f}(\lambda) \coloneqq \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-i\lambda t} \, \mathrm{d}\mu(t)$$

Теорема 20.1.1 (Непрерывность интеграла, зависящего от параметра): Пусть

- $A \subset \mathbb{R}^n$; $E \subset \mathbb{R}^m$; $\alpha_0 \in A$
- Функция $f(x,\alpha)$ сумируема при всех $\alpha \in A$, как функция от $x \in E$.
- Функция $f(x,\alpha)$ при почти всех $x \in E$ является непрерывной в α_0 .
- При почти всех $x \in E$ и для всех $\alpha \in A$ справедлива оценка $|f(x,\alpha)| \le$ $\varphi(x)$, где $\varphi(x)$ некоторая суммируемая на E функция.

Тогда

$$F(\alpha) = \int_E f(x, \alpha) \, \mathrm{d}\mu(x)$$

является непрерывной в α_0 .

Теорема 20.1.2 (Дифференцируемость интеграла, зависящего от параметра): Пусть

- $E \subset \mathbb{R}^n, \alpha \in \mathbb{R}^n$
- $f(x,\alpha)$ вместе с $\frac{\partial f}{\partial \alpha}(x,\alpha)$ суммируема на E при всех $\alpha \in U(\alpha_0)$ При всех $\alpha \in (\alpha_0): \left|\frac{\partial f}{\partial \alpha}(x,\alpha)\right| \leq \varphi(x)$, где φ суммируема на E

Тогда

$$F'(\alpha_0) = \int_E \frac{\partial f}{\partial \alpha}(x,\alpha_0) \, \mathrm{d}\mu(x)$$

Теорема 20.1.3: Если $f\in L_1(\mathbb{R}),$ то $\hat{f}(\lambda)$ непрерывна на \mathbb{R} и $\lim_{\lambda\to\infty}\hat{f}(\lambda)=0$

Доказательство: Распишем комплексную экспоненту в сумму тригонометрических функций и сведём к теореме об осцилляции, утверждение о нулевом пределе доказано.

Почему преобразование Фурье непрерывно? Хотим применить теорему о непрерывности интеграла, зависящего от предела. Для этого оценим подыинтегральную функцию:

$$|f(t,\lambda)| = \left|f(t)e^{-i\lambda t}\right| \le |f(t)| \in L_1(\mathbb{R})$$

От λ рассматриваемая функция непрерывна из-за непрерывности экспоненты. Суммируемость следует из той же оценки сверху.

Значит применяем теорему о непрерывности интеграла, зависящего от параметра.

20.2. Преобразование Фурье производной и производная преобразования Фурье.

Теорема 20.2.1 (Преобразование Фурье производной): Если $\forall [a,b] \subset \mathbb{R}: f \in L_1([a,b])$ и $f,f' \in L_1(\mathbb{R}),$ то

$$\forall \lambda \in \mathbb{R} : \hat{f}'(\lambda) = (i\lambda)\hat{f}(\lambda)$$

Доказательство: Перепишем f(x) через формулу Ньютона-Лейбница:

$$f(x) = f(0) + \int_0^x f'(t) \, d\mu(t), x > 0$$

Устремляя $x \to +\infty$ увидим, что правая часть имеет предел, а значит и левая тоже:

$$\exists \lim\nolimits_{x \to +\infty} f(x), f \in L_1(\mathbb{R}) \Rightarrow f(+\infty) = 0$$

Аналогично получим, что $f(-\infty) = 0$.

Тогда рассмотрим следующее преобразование Фурье: $\hat{f}'(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f'(t) e^{-i\lambda i} \,\mathrm{d}\mu(t) =$

$$f'(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f'(t) e^{-i\lambda t} d\mu(t) =$$

$$\frac{1}{\sqrt{2\pi}} f(t) e^{-i\lambda t} \Big|_{-\infty}^{+\infty} - \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) \left(e^{-i\lambda t} \right)_{t}' d\mu(t) = (i\lambda) \hat{f}(\lambda)$$

Теорема 20.2.2 (Производная преобразования Фурье): Если $f(t), tf(t) \in L_1(\mathbb{R})$, то преобразование Фурье $\hat{f}(\lambda)$ дифференцируемо, причём $\left(\hat{f}\right)'(\lambda) = -\widehat{itf}(t)(\lambda)$

Доказательство: Нам нужно лишь доказать, что мы имеем право продифференцировать интеграл, зависящий от параметра:

ференцировать интеграл, зависящий от параметра:
$$\left(\hat{f}\right)'(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) \left(e^{-i\lambda t}\right)'_{\lambda} \mathrm{d}\mu(t) = -\widehat{itf(t)}(\lambda)$$

Для этого оценим выражение:

$$\left|f(t)\left(e^{-i\lambda t}\right)\right| = \left|-itf(t)e^{-i\lambda t}\right| \leq |tf(t)| \in L_1(\mathbb{R})$$

Значит мы имеем право применить теорему о дифференцировании интеграла с параметром.

21. Прямые и плоскости в пространстве. Формулы расстояния от точки до прямой и плоскости, между прямыми в пространстве. Углы между прямыми и плоскостями.

21.1. Прямые и плоскости в пространстве

Определение 21.1.1: Линейной комбинацией элементов $v_1,...,v_n$ (для которых определены сложение и умножение на числа) с коэффициентами $\alpha_1,...,\alpha_n \in \mathbb{R}$ называется следующая величина:

$$\sum_{i=1}^{n} \alpha_i v_i = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Определение 21.1.2: **Направленным отрезком** называется отрезок, концы которого упорядочены.

Обозначение \overline{AB} .

Направленные отрезки называются равными, если они сонаправлены и равны.

Определение 21.1.3: **Вектором** называется элемент векторного пространетва класс эквивалентности направленных отрезков.

Формульно, если \overline{AB} – представитель класса v, то $\overline{AB} \in v$, но в дальнейшем это будет обозначаться как $\overline{AB} = v$.

Определение 21.1.4: Ниже перечислены обозначения множеств векторов и точек:

- V_0 нулевое пространство, состоящее только из нулевого вектора ${\bf 0}$
- V_1, P_1 множества всех векторов и всех точек **на прямой**
- V_2, P_2 множества всех векторов и всех точек **на плоскости**
- V_3, P_3 множества всех векторов и всех точек **в пространстве**

Определение 21.1.5: Система $(v_1,...,v_2)$ векторов из V_n называется линейно независимой, если для любых $\alpha_1,...,\alpha_n\in\mathbb{R}$ выполнено следующее условие:

$$\sum_{i=1}^n \alpha_i \boldsymbol{v_i} = \boldsymbol{0} \Leftrightarrow \alpha_1 = \ldots = \alpha_n = 0$$

Определение 21.1.6: Система $(v_1,...,v_n)$ векторов из V_n называется линейно зависимой, если существует её нетривиальная линейная комбинация, равная $\mathbf{0}$.

Определение 21.1.7: **Базисом** в V_n называется линейно независимая система векторов, через которую выражаются все векторы V_n .

Определение 21.1.8: Пусть e – базис в $V_n, v = \alpha e \in V_n$. Столбец коэффициентов α называется координатным столбцом вектора v в базисе e.

Обозначение $\mathbf{v} \leftrightarrow \alpha$.

Определение 21.1.9: Скалярным произведением ненулевых векторов $a,b\in V_n$ называется следующая величина:

$$(\boldsymbol{a}, \boldsymbol{b}) = |\boldsymbol{a}| |\boldsymbol{b}| \cos(\angle(\boldsymbol{a}, \boldsymbol{b}))$$

Определение 21.1.10: Векторы $a,b \in V_n$ называются перпендикулярными (ортогональными), если (a,b)=0.

Обозначение $a \perp b$.

Определение 21.1.11: Пусть $a, b \in V_n, b \neq 0$, от точки $O \in P_n$ отложны направленные отрезки $\overline{OA} = a; \overline{OB} = b$.

Проекцией вектора a на вектор b называется такой класс эквивалентности, представителем которого является вектор $\overline{OA'}$, где A' – ортогональная проекция точки A на прямую OB.

Обозначение $pr_h a$

Утверждение 21.1.1: Для любых $a,b \in V_n, b \neq 0$ выполнено следующее равенство:

$$\mathrm{pr}_{m{b}} a = rac{(m{a}, m{b})}{(m{a}, m{a})} m{b}$$

Определение 21.1.12: Базис в V_n называется:

- Ортогональным, если его векторы попарно ортогональны
- Ортонормированным, если он ортогонален и все его векторы имеют длину 1.

Определение 21.1.13: Декартовой системой координат в P_n называется набор (O,e), где $O\in P_n$ – начало системы координат, e – базис в V_n .

Точка $A \in P_n$ имеет координатный столбец α в данной системе координат, если $\overline{OA} \underset{r}{\longleftrightarrow} \alpha.$

Обозначение $A \underset{(O,e)}{\leftrightarrow} \alpha$.

Декартова система координат называется прямоугольной, если базис e – ортонормированный.

Определение 21.1.14: **Направляющим вектором** прямой $l \subset P_3$ называется вектор $a \in V_3, a \neq 0$, представителем которого является направленный отрезок, лежащий в l.

Определение **21.1.15**: Пусть $a, b \in V_3$.

Векторным произведением векторов a, b называется единственный вектор c := [a, b] такой, что выполнены следующие условия:

- 1. $c \perp a \land c \perp b$
- 2. $|c| = S(\boldsymbol{a}, \boldsymbol{b})$, где $S(\boldsymbol{a}, \boldsymbol{b})$ площадь паралелограма, натянутого на вектора $\boldsymbol{a}, \boldsymbol{b}$
- $3. \det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} > 0$

Альтернативное обозначание $a \times b$

Определение 21.1.16: Пусть $l\subset P_3$ – прямая, с направляющим вектором $a\in V_3, M\in l$ и в декартовой системе координат (O,e) в P_3 выполнены соотношения $a\underset{e}{\leftrightarrow}\alpha, M\underset{(O,e)}{\leftrightarrow}\begin{pmatrix} x_0\\y_0\\z_0\end{pmatrix}, r_0:=\overline{OM}.$ Тогда

• Векторно-параметрическим уравнением прямой называется следующее семейство уравнений:

$$r = r_0 + ta, t \in \mathbb{R}$$

• **Параметрическим** уравнением прямой называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 \\ y = y_0 + t\alpha_2; & t \in \mathbb{R} \\ z = z_0 + t\alpha_3 \end{cases}$$

• Каноническим уравнением прямой называется следующая система уравнений:

$$\frac{x-x_0}{\alpha_1} = \frac{y-y_0}{\alpha_2} = \frac{z-z_0}{\alpha_3}$$

Определение 21.1.17: Пусть $l \subset P_3$ – прямая с направляющим вектором a, и пусть $M \in l, r_0 \coloneqq \overline{OM}$. Векторным уравнением прямой называется следующее уравнение:

$$[r-r_0,a]=0$$

Определение 21.1.18: Пусть $\nu \subset P_3$ – плоскость, $a,b \in V_3$ – не сонаправленные векторы, представители которых лежат в ν , $M \in l$ и в декартовой системе координат (O,e) в P_3 выполнены соотношения $a \leftrightarrow \alpha, b \leftrightarrow \beta, M \leftrightarrow (O,e)$

$$egin{pmatrix} x_0 \ y_0 \ z_0 \end{pmatrix}, oldsymbol{r_0} \coloneqq \overline{OM}.$$
 Тогда

• Векторно-параметрическим уравнением плоскости называется следующее семейство уравнений:

$$r = r_0 + ta + sb; \quad t, s \in \mathbb{R}$$

• Параметрическим уравнением плоскости называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 + s\beta_1 \\ y = y_0 + t\alpha_2 + s\beta_2; \quad s, t \in \mathbb{R} \\ z = z_0 + t\alpha_3 + s\beta_3 \end{cases}$$

Определение **21.1.19**: Пусть $A, B, C, D \in \mathbb{R}; A^2 + B^2 + C^2 \neq 0$. Общим уравнением плоскости называется следующее уравнение:

$$Ax + By + Cz + D = 0$$

Определение 21.1.20: Вектором нормали плоскости $\nu \subset P_3$ называется вектор $n \in V_3, n \neq 0$, представителем которого является направленный отрезок, ортогональный каждой прямой из плоскости ν .

Определение 21.1.21: Пусть $\nu \subset P_3$ – плоскость с вектором нормали $n \in V_3$ и пусть $M \in \nu, r_0 \coloneqq \overline{OM}$.

Нормальным уравнением плоскости называется следующее уравнение:

$$(\boldsymbol{r} - \boldsymbol{r_0}, \boldsymbol{n}) = 0$$

21.2. Формулы расстояния от точки до прямой и плоскости, между прямыми в пространстве

Утверждение 21.2.1 (Расстояние от точки до прямой): Пусть прямая $l \subset P_3$ задана векторно-параметрическим уравнением $r = r_0 + at, A \in P_3, r_A := \overline{OA}$.

Тогда расстояние ρ от точки A до прямой l равно следующей величине: $\rho = \frac{|[r_A - r_0, a]|}{|a|}$

Доказательство: Искомое расстояние ρ является длиной высоты параллелограмма, построенного на векторах a и r_A-r_0 , проведённой к стороне, образованной вектором a и имеющей длину a, из чего и следует требуемое.

Утверждение 21.2.2 (Расстояние от точки до плоскости): Пусть в прямоугольной декартовой системе координат (O,e) в P_3 плоскость ν задана уравнением $Ax+By+Cz+D=0, M\in P_3, M\underset{(O,e)}{\leftrightarrow}\begin{pmatrix}x_0\\y_0\\z_0\end{pmatrix}.$

Тогда расстояние ho от точки M до плоскости u равно следующей величине:

$$\rho = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

 \mathcal{A} оказательство: Пусть $n \in V_3, n \leftrightarrow {A \choose B \choose C}$ — вектор нормали плоскости $\nu, r_0 \coloneqq \overline{OM},$ и пусть $X \in \nu, r \coloneqq \overline{OX}.$ Тогда $\rho = \left| \operatorname{pr}_{\boldsymbol{n}}(\boldsymbol{r_0} - \boldsymbol{r}) \right| = \left| \frac{(\boldsymbol{r_0} - \boldsymbol{r}, \boldsymbol{n})}{|\boldsymbol{n}|^2} \boldsymbol{n} \right| = \frac{|(\boldsymbol{r_0} - \boldsymbol{r}, \boldsymbol{n})|}{|\boldsymbol{n}|} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

Утверждение 21.2.3 (Расстояние между прямыми в плоскости): Пусть скрещивающиеся прямые $l_1, l_2 \subset P_3$ заданы уравнениями $r = r_1 + a_1 t, r = r_2 + a_2 t$.

Тогда расстояние ρ между ними равно следующей величине: $\rho = \frac{|([a_1,a_2],r_1-r_2)|}{|[a_1,a_2]|}$

Доказательство: Искомое расстояние
$$\rho$$
 является длиной высоты параллеленинеда, построенного на векторах a_1,a_2 и r_1-r_2 , проведённой к грани, образованной векторами a_1,a_2 и имеющей площадь $|a_1||a_2|\sin\angle(a_1,a_2)$, из чего и следует требуемое.

21.3. Углы между прямыми и плоскостями

Утверждение 21.3.1 (Углы между прямыми): Пусть прямые $l_1, l_2 \subset P_3$ имеют направляющие вектора a_1, a_2 .

Тогда угол φ между ними удовлетворяет следующему равенству: $\cos \varphi = \frac{|(a_1,a_2)|}{|a_1||a_2|}$

$$\cos \varphi = \frac{|(\boldsymbol{a_1}, \boldsymbol{a_2})|}{|\boldsymbol{a_1}||\boldsymbol{a_2}|}$$

Доказательство: Углом между прямыми по определению является угол φ равный меньшему из углов α и $\pi - \alpha$, где α – угол между их направляющими векторами, поэтому в числителе именно модуль скалярного произведения.

Дальнейшие рассуждения очевидны из определения скалярного произведения.

Утверждение 21.3.2 (Углы между плоскостями): Пусть в прямоугольной декартовой системе координат (O,e) в P_3 плоскости ν_1,ν_2 заданы уравнениями $A_1x+B_1y+C_1z+D_1=0; A_2x+B_2y+C_2z+D_2=0.$

Тогда угол
$$\varphi$$
 между ними удовлетворяет равнеству:
$$\cos\varphi = \frac{|A_1A_2 + B_1B_2 + C_1C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}$$

Доказательство: Пусть $m{n_1}, m{n_2} \in V_3; m{n_1} \underset{e}{\leftrightarrow} \begin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix}; m{n_2} \underset{e}{\leftrightarrow} \begin{pmatrix} A_2 \\ B_2 \\ C_2 \end{pmatrix}$ — нормальные векторы плоскостей $\nu_1, \nu_2, \alpha \coloneqq \angle(n_1, n_2)$.

Тогда угол φ равен меньшему из углов α и $\pi - \alpha$. В каждом из случае выполнено следующее:

$$\cos \varphi = \left|\cos \alpha\right| = \frac{|(n_1, n_2)|}{|n_1||n_2|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 c_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

22. Кривые второго порядка, их геометрические свойства

Определение **22.1**: Пусть $A, B, C, D, E, F \in \mathbb{R}, A^2 + B^2 + C^2 \neq 0$.

Кривой второго порядка называется алгебраическая кривая, которая в некоторой прямоугольной декартовой системе координат в P_2 задаётся следующим уравнением:

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$

22.1. Эллипс

Определение 22.1.1: Эллипсом называется кривая второго порядка, которая в канонической системе координат (O,e) задаётся следующим уравнением:

- $rac{x^2}{a^2}+rac{y^2}{b^2}=1, a\geq b>0$ Вершинами эллипса называются точки с координатами $inom{\pm a}{0}, inom{0}{\pm b}$ в системе (O,e). Число |a| называется **длиной большой полуоси** эллипса, число |b| – **длиной малой полуоси** эллипса.
- **Фокусным расстоянием** эллипса называется величина $c := \sqrt{a^2 b^2}$. Фокусами эллипса называются точки $F_1, F_2 \in P_2$ такие, что $F_1 \underset{(Q,e)}{\leftrightarrow}$ ${c \choose 0}; F_2 \underset{(O,e)}{\leftrightarrow} {{-c}\choose 0}$
- Эксцентриситетом эллипса называется величина $\varepsilon \coloneqq \frac{c}{a} = \frac{\sqrt{a^2 b^2}}{a}$ Директрисами эллипса называются прямые d_1, d_2 , задаваемые в системе (O,e) уравнениями $x=\pm \frac{a}{\varepsilon}$

Теорема 22.1.1: Пусть эллипс задан в каноническая системе координат $(O, \varepsilon); A \in P_2; A \underset{(O,e)}{\leftrightarrow} \binom{x}{y}$. Тогда

Aлежит на эллипсе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$

Доказательство: Будем доказывать первую эквивалентность, вторая аналогично. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right)$$
 Значит, $AF_1 = |a - \varepsilon x| \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow A$ лежит на эллипсе.

Теорема 22.1.2: Пусть эллипс задан в канонической системе координат (O,e). Тогда он является геометрическим местом точек $A\in P_2; A\underset{(O,e)}{\longleftrightarrow} \binom{x}{y}$, таких, что выполнены следующие равенства: $\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$

$$\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$$

Доказательство: Докажем равенство эксцентриситету лишь первого отношения, для второого аналогично.

Заметим, что выполнены следующие равенства:

$$\rho(A,d_1) = \left|x - \frac{a}{\varepsilon}\right| = \frac{1}{\varepsilon}|a - \varepsilon x|$$
 Значит, A лежит на эллипсе $\Leftrightarrow |a - \varepsilon x| = AF_1 \Leftrightarrow \varepsilon \rho(A,d_1) = AF_1$ \square

Теорема 22.1.3: Пусть эллипс задан в канонической системе координат (O,e). Тогда он является геометрическим местом точек $A \in P_2$; $A \underset{(O,e)}{\longleftrightarrow} \binom{x}{y}$, таких, что выполнено равенство

$$|AF_1| + |AF_2| = 2a$$

Доказательство: \Rightarrow Пусть A лежит на эллипсе, тогда

$$AF_1=a-\varepsilon x; AF_2=a+\varepsilon x \Rightarrow AF_1+AF_2=2a$$

 \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2; X \underset{(O,e)}{\leftrightarrow} \binom{x_0}{0}$ вдоль прямой $x = x_0$ вверх или вниз величина $XF_1 + XF_2$ строго возрастает. Рассмотрим возможные случаи:

- 1. Если $|x_0| < a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ две.
- 2. Если $|x_0|=a$, то такая точка, что $XF_1+XF_2=2a$, на прямой $x=x_0$ одна.
- 3. Если $|x_0| > 0$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ нет.

Полученное число точек совпадает с множеством точек эллипса.

22.2. Гипербола

Определение 22.2.1: Гиперболой называется кривая второго порядка, которая в канонической системе координат (O,e) задаётся следующим уравнением:

 $rac{x^2}{a^2}-rac{y^2}{b^2}=1; \quad a,b>0$ • Вершинами гиперболы называются точки с координатами $inom{\pm a}{0},inom{0}{\pm b}$ в системе (O, e).

Число |a| называется **длиной действительной полуоси** гиперболы, число |b| – **длиной мнимой полуоси** гиперболы.

- **Фокусным расстоянием** гиперболы называется величина $c \coloneqq \sqrt{a^2 + b^2}$. $oldsymbol{\Phi}$ окусами гиперболы называются точки $F_1,F_2\in P_2$ такие, что $F_1 \underset{(O,e)}{\leftrightarrow} \binom{c}{0}; F_2 \underset{(O,e)}{\leftrightarrow} \binom{-c}{0}$
- Эксцентриситетом гиперболы называется величина $\varepsilon \coloneqq \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a}$
- **Директрисами** гиперболы называются прямые d_1, d_2 , задаваемые в системе (O,e) уравнениями $x=\pm \frac{a}{\varepsilon}$

Теорема 22.2.1: Пусть гипербола задана в канонической системе координат $(O,e);A\in P_2;A\underset{(O,e)}{\longleftrightarrow}\binom{x}{y}.$ Тогда

A лежит на гиперболе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$

Доказательство: Будем доказывать первую эквивалентность, вторая аналогично. Для этого заметим, что выполнены следующие равенства:

$$|AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1\right)$$

Значит, $AF_1 = |a - \varepsilon x| \Leftrightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Leftrightarrow A$ лежит на гиперболе. П

Теорема 22.2.2: Пусть гипербола задана в канонической системе координат (O,e). Тогда она является геометрическим местом точек $A \in P_2; A \underset{(O,e)}{\longleftrightarrow} \binom{x}{y},$ таких, что выполнены следующие равенства: $\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$

$$\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$$

Доказательство: Докажем равенство эксцентриситету лишь первого отношения, для второого аналогично.

Заметим, что выполнены следующие равенства:

$$\rho(A,d_1)=\left|x-\frac{a}{\varepsilon}\right|=\frac{1}{\varepsilon}|a-\varepsilon x|$$
 Значит, A лежит на эллипсе $\Leftrightarrow |a-\varepsilon x|=AF_1 \Leftrightarrow \varepsilon \rho(A,d_1)=AF_1$ \qed

Теорема 22.2.3: Пусть гипербола задана в канонической системе координат (O,e). Тогда она является геометрическим местом точек $A \in P_2; A \underset{(O,e)}{\longleftrightarrow} \binom{x}{y},$ таких, что выполнено равенство

$$|AF_1 - AF_2| = 2a$$

Доказательство: \Rightarrow БОО пусть A лежит на правой ветви гиперболы. Тогда $AF_1 = \varepsilon x - a \wedge AF_2 = a + \varepsilon x \Rightarrow |AF_1 - AF_2| = 2a$

 \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2; X \underset{(O,e)}{\leftrightarrow} \binom{x_0}{0}$ вдоль прямой $x=x_0$ вверх или вниз величина $|XF_1 - XF_2|$ строго убывает. Рассмотрим возможные случаи:

- 1. Если $|x_0| < a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ нет.
- 2. Если $|x_0|=a$, то такая точка, что $XF_1+XF_2=2a$, на прямой $x=x_0$ одна.
- 3. Если $|x_0| > 0$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ две.

Полученное число точек совпадает с множеством точек эллипса.

22.3. Парабола

Определение 22.3.1: Параболой называется кривая второго порядка, которая в канонической системе координат (O,e) задаётся следующим уравнением:

$$y^2 = 2px; \quad p > 0$$

- **Вершиной** параболы называется точка с координатами $\binom{0}{0}$ в системе
- Фокусом параболы называется точка F такая, что $F \underset{(O,e)}{\leftrightarrow} \begin{pmatrix} \frac{p}{2} \\ 0 \end{pmatrix}$
- Эксцентриситетом параболы называется величина $\varepsilon \coloneqq 1$
- Директрисой параболы называется прямая d, задаваемая в системе (O,e)уравнением $x=-\frac{p}{2}$

Теорема 22.3.1: Пусть парабола задана в канонической системе координат $(O,e);A\in P_2;A\underset{(O,e)}{\longleftrightarrow}\binom{x}{y}.$ Тогда

A лежит на параболе $\Leftrightarrow AF = \rho(A,d)$

Доказательство: Заметим, что выполнены следующие равенства: $AF^2 - \rho^2(A,d) = \left(x - \frac{p}{2}\right)^2 + y^2 - \left(x + \frac{p}{2}\right)^2 = y^2 - 2px$ Значит $AF = \rho(A,d) = \left|x + \frac{p}{2}\right| \Leftrightarrow y^2 = 2px \Leftrightarrow A$ лежит на параболе

23. Общее решение системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.

23.1. Общее решение системы линейных алгебраических уравнений

Определение 23.1.1: **Группой** называется множество G с определённой на нём бинарной операцией умножения $\cdot: G \times G \to G$, удовлетворяющей следующим условиям:

• (Ассоциативность)

$$\forall a, b, c \in G : (ab)c = a(bc)$$

• (Существование нейтрального элемента)

$$\exists e \in G : \forall a \in G : ae = ea = a$$

• (Существование нейтрального элемента)

$$\forall a \in G : \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$$

Определение 23.1.2: Группа (G, \cdot) называется **абелевой**, если умножение в ней коммутативно, то есть

$$\forall a, b \in G : ab = ba$$

Определение 23.1.3: **Кольцом** называется множество R с определёнными на нём бинарными операциями сложения $+: R \times R \to R$ и умножения $\cdot: R \times R \to R$, удовлетворяющая следующим условиям:

- (R, +) абелева группа, нейтральный элемент в которой обозначается через 0.
- (Ассоциативность умножения)

$$\forall a, b, c \in R : (ab)c = a(bc)$$

• (Дистрибутивность умножения относительно сложения)

$$\forall a, b, c \in R: \ a(b+c) = ab + ac \land (a+b)c = ac + bc$$

• (Существование нейтрального элемента относительно умножения)

$$\exists 1 \in R : \forall a \in R : a1 = 1a = a$$

Определение 23.1.4: Кольцо (R,+) называется **коммутативным**, если умножение в нём коммутативно, то есть

$$\forall a,b \in R:\ ab=ba$$

Определение 23.1.5: Пусть $(R, +, \cdot)$ – кольцо.

Элемент $a \in R$ называется **обратимым**, если

$$\exists a^{-1} \in R: \ aa^{-1} = a^{-1}a = 1$$

Группой обратимых элементов кольца $(R,+,\cdot)$ называется множество R^* его обратимых элементов.

Определение 23.1.6: **Полем** называется такое коммутативное кольцо $(\mathbb{F}, +, \cdot)$, для которого выполнено равенство $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$.

Определение 23.1.7: Линейным пространством, или векторным пространством над полем $\mathbb F$ называется абелева группа (V,+), на которой определено умножение на элементы поля $\cdot : \mathbb F \times V \to V$, удовлетворяющее следующим условиям:

- $\forall \alpha, \beta \in \mathbb{F} : \forall v \in V : (\alpha + \beta)v = \alpha v + \beta v$
- $\forall \alpha \in \mathbb{F} : \forall u, v \in V : \alpha(u+v) = \alpha u + \alpha v$
- $\forall \alpha, \beta \in \mathbb{F} : \forall v \in V : (\alpha \beta)v = \alpha(\beta v)$
- $\forall v \in V : 1v = v$

Элементы поля $\mathbb F$ называются **скалярами**, элементы группы V – **векторами**.

Определение 23.1.8: Пусть $A=\left(a_{ij}\right)\in M_{k\times n}(\mathbb{F}); b=(b_i)\in \mathbb{F}^n.$

Системой линейных уравнений Ax=b называется следующая система:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \ldots \\ a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n = b_k \end{cases}$$

Матрица A называется матрицей системы, матрица $(A \mid b)$ – расширенной матрицей системы

Определение 23.1.9: Система линейных уравнений Ax = b называется:

- Однородной, если b = 0
- Совместной, если множество её решений непусто

Определение 23.1.10: Фундаментальной системой решений однородной системы Ax = 0 называется базис пространства её решений.

Матрица, образованная столбцами фундаментальной системы решений, называется фундаментальной матрицей системы и обозначается через Φ .

Утверждение 23.1.1: Множество решений однородной системы Ax=0 является линейным пространством.

Доказательство: Все требования линейного пространства очевидны.

Утверждение 23.1.2: Пусть Ax = b – совместная система, $x_0 \in \mathbb{F}^n$ – решение системы, V – пространство решений однородной системы Ax = 0.

Тогда множество решений системы Ax = b имеет вид

$$x_0 + V = \{x_0 + v \mid v \in V\}$$

Доказательство: Пусть U – множество решений системы Ax = b.

- Если $v \in V$, то $A(x_0+v) = Ax_0 + Av = b \Rightarrow x_0+v \in U.$
- Если $u \in U$, то $A(u-x_0) = 0 \Rightarrow u-x_0 \in V$

Таким образом, $U = x_0 + V$

23.2. Теорема Кронекера-Капелли

Определение 23.2.1: Системы Ax = b и A'x = b' называются эквивалентными, если множества их решений совпадают.

Определение 23.2.2: Элементарными преобразованиями строк матрицы $A \in M_{n \times k}(\mathbb{F})$ называются следующие операции:

- Прибавление к i-й строке j-й строки, умноженной на скаляр $\alpha \in \mathbb{F}; \quad i,j \in \overline{1,\mathbf{n}}; i \neq j$
- Умножение i-й строки на скаляр $\lambda \in \mathbb{F}^*; i = \overline{1, \mathbf{n}}$
- Перестановка i-й и j-й строк местами; $i, j \in \overline{1, n}; i \neq j$

Определение 23.2.3: Элементарными матрицами порядка $n \in \mathbb{N}$ называются матрицы, умножение слева на которые приводит к осуществлению соответствующего элементарного преобразования строк над матрицей с n строками:

- $\bullet \ \ D_{ij}(\alpha) \coloneqq E + \alpha E_{i,j}; \quad i,j \in \overline{1,\mathbf{n}}; i \neq j$
- $T_{i(\lambda)} := E + (\lambda 1)E_{ii}; i \in \overline{1,n}$ $P_{ij} := E (E_{ii} + E_{jj}) + (E_{ij} + E_{ji})$

Определение 23.2.4: Матрица $A \in M_n(\mathbb{F})$ называется **обратимой**, если существует матрица $A^{-1} \in M_n(\mathbb{F})$ такая, что $AA^{-1} = A^{-1}A = E$.

Утверждение 23.2.1: Элементарные матрицы любого порядка n обратимы

Доказательство: Предъявим обратные матрицы в явном виде:

- $(D_{ij}(\alpha))^{-1} = D_{ji}(-\alpha)$ $(T_i(\lambda))^{-1} = T_i(\lambda^{-1})$ $(P_{ij})^{-1} = P_{ij}$

Утверждение 23.2.2: Элементарные преобразования строк расширенной матрицы переводят её в эквивалентную.

Определение 23.2.5: Главным элементом строки называется её первый ненулевой элемент.

Определение 23.2.6: Матрица $A \in M_{n \times k}(\mathbb{F})$ имеет ступенчатый вид, если номера главных элементов её строк строго возрастают.

При этом если в матрице есть нулевые строки, то они расположены внизу матрицы.

Теорема 23.2.1 (Метод Гаусса): Любую матрицу $A \in M_{n \times k}(\mathbb{F})$ элементарными преобразованиями можно привести к ступенчатому виду

Доказательство: Предъявим алгоритм:

1. Если A = 0, то она уже имеет ступенчатый вид, завершаем процедуру.

- 2. Пусть $j \in \overline{1, k}$ наименьший номер ненулевого столбца. Переставим строки так, чтобы a_{1j} стал ненулевым.
- 3. Для всех $i\in\overline{2,n}$ к i-й строке прибавим первую, умноженную на $-a_{ij}(a_{1j})^{-1}$. Тогда все элементы $a_{2j},...,a_{nj}$ станут нулевыми
- 4. Пусть матрица была приведена к виду A'. Если она ступенчатая, то останавливаемся. Если она не ступенчатая, то начинаем заново для подматрицы B расположенной на пересечении строк с номерами $\overline{2,n}$ и столбцом с номерами $(\overline{j+1,k})$. Дальнейшие преобразования не изменят элементов за пределами этой подматрицы.

Определение 23.2.7: Пусть V — конечномерное линейное пространство, $X \subset V$.

Рангом системы X называется наибольший размер линейно независимой подсистемы в X.

Обозначение – $\operatorname{rk} X$.

Определение 23.2.8: Пусть $A \in M_{n \times k}(\mathbb{F})$

- Строчным рангом матрицы A называется ранг $\mathrm{rk}_r A$ системы её строк.
- Столбцовым рангом матрицы A называется ранг $\mathrm{rk}_c A$ системы её столбцов.

Теорема 23.2.2: Для любой матрицы $A \in M_{n \times k}(\mathbb{F})$ выполнено следующее равенство:

$$\operatorname{rk}_r A = \operatorname{rk}_c A$$

Определение 23.2.9: **Рангом матрицы** $A \in M_{n \times k}(\mathbb{F})$ называется её строчный или столбцовый ранг.

Обозначение – $\operatorname{rk} A$.

Утверждение 23.2.3: Пусть $A\in M_{n\times k}(\mathbb{F}); B\in M_{k\times M}(\mathbb{F}),$ причём столбцы матрицы A линейно независимы. Тогда

$$\operatorname{rk} AB = \operatorname{rk} B$$

Замечание 23.2.1: В том числе, элементарные преобразования не меняют ранг матрицы.

Утверждение 23.2.4: Ранг ступенчатой матрицы $A \in M_{n \times k}(\mathbb{F})$ равен числу ступеней.

Теорема 23.2.3 (Кронекера-Капелли):

Система
$$Ax = b$$
 совместна \Leftrightarrow rk $A =$ rk $(A \mid b)$

Доказательство: Приведём расширенную матрицу системы $(A \mid b)$ к упрощённому виду $(A' \mid b')$.

Тогда система совместна \Leftrightarrow в $(A'\mid b')$ нет ступеньки, начинающейся в столбце $b'\Leftrightarrow$ у A' и $(A'\mid b')$ одно и то же число ступенек \Leftrightarrow rk A= rk $(A\mid b)$. \Box

24. Линейное пространство, базис и размерность. Линейное отображение конечномерных пространств, его матрица.

24.1. Линейное пространство, базис и размерность

Определение 24.1.1: Пусть V — линейное пространство над $\mathbb{F}; v_1, ..., v_k \in V$.

Линейной оболочкой векторов $v_1,...,v_k$ называется множество линейных комбинаций этих векторов:

$$\begin{array}{l} \left\langle \boldsymbol{v_1},...,\boldsymbol{v_k} \right\rangle \coloneqq \left\{ \sum_{i=1}^k \alpha_i \boldsymbol{b_i} \mid \alpha_1,...,\alpha_k \in \mathbb{F} \right\} \end{array}$$

Определение 24.1.2: Линейное пространство V называется конечнопорождённым, если существуют векторы $v_1,...,v_n\in V$ такие, что

$$\langle \boldsymbol{v_1},...,\boldsymbol{v_n}\rangle = V$$

Определение 24.1.3: Пусть V — конечнопорождённое линейное пространство.

Его **размерностью** называется количество векторов в любом его базисе. Обозначение $-\dim V$.

24.2. Линейное отображение конечномерных пространств, его матрица

Определение 24.2.1: Пусть U, V – линейные пространства над полем \mathbb{F} .

Линейным отображением, или **линейным оператором** называется отображение $\varphi: U \to V$, обладающее свойством линейности:

- $\forall u_1, u_2 \in U : \varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$
- $\forall \alpha \in \mathbb{F} : \forall \mathbf{u} \in U : \varphi(\alpha \mathbf{u}) = \alpha \varphi(\mathbf{u})$

Определение 24.2.2: Пусть $\varphi: U \to V$ – линейное отображение

- Образом отображения φ называется Im $\varphi \coloneqq \varphi(U)$
- Ядром отображения φ называется $\operatorname{Ker} \varphi \coloneqq \{ \boldsymbol{u} \in U \mid \varphi(\boldsymbol{u}) = \boldsymbol{0} \}$

Утверждение 24.2.1: Пусть $\varphi: U \to V$ – линейное отображение, $e = (e_1,...,e_k)$ – базис в пространстве U. Тогда

$$\text{Im } \varphi = \langle \varphi(\boldsymbol{e_1}), ..., \varphi(\boldsymbol{e_k}) \rangle$$

Доказательство: \subset Любой вектор $u\in U$ представляется в виде линейной комбинации базисных векторов, поэтому по линейности $\varphi(u)\in \langle \varphi(e_1),...,\varphi(e_k)\rangle$

 \supset Все векторы $\varphi(e_1),...,\varphi(e_k)$ лежат в Іт φ и Іт φ – линейное пространство, поэтому $\langle \varphi(e) \rangle \subset$ Іт φ

Определение 24.2.3: Пусть $\varphi: U \to V$ – линейное отображение.

Тогда оно называется инъективным, если

$$\forall v \in \text{Im } \varphi : \exists ! u \in U : \varphi(u) = v$$

Утверждение 24.2.2: Пусть $\varphi:U\to V$ – линейное отображение. Тогда φ инъективно \Leftrightarrow Ker $\varphi=\{\mathbf{0}\}$

Доказательство: \Rightarrow Если φ инъективно, то существует единственный вектор $\mathbf{0} \in U$, для которого $\varphi(u) = \mathbf{0}$.

$$\Leftarrow$$
 От противного. Пусть для некоторых $u_1,u_2\in U$ выполнено $\varphi(u_1)=\varphi(u_2),$ тогда $\varphi(u_1-u_2)=0,$ откуда $u_1-u_2=0\Rightarrow u_1=u_2$

25. Собственные значения и собственные векторы линейных преобразованийю Диагонализуемость линейных преобразований.

Определение 25.1: Линейное отображение $\varphi: V \to V$ называется **линейным преобразованием**.

Множество всех линейных преобразований на V обозначается как $\mathcal{L}(V)$.

Определение 25.2: Пусть $\varphi \in \mathcal{L}(V)$.

Вектор $v \in V \setminus \{0\}$ называется собственным вектором оператора φ с собственным значением $\lambda \in \mathbb{F}$, если $\varphi(u) = \lambda v$.

Скаляр $\mu \in \mathbb{F}$ называется **собственным значением** оператора φ , если существует собственный вектор с собственным значением μ .

Определение 25.3: **Подпространством** линейного пространства V над полем $\mathbb F$ называется такое его непустое подмножество $U\subset V$, что выполнены следующие условия:

- (U, +) подгруппа в (V, +)
- $\forall \alpha \in F : \forall u \in U : \alpha u \in U$

Обозначение $U \leq V$.

Определение 25.4: Пусть $\varphi \in \mathcal{L}(V); \lambda \in \mathbb{F}$ – собственное значение оператора φ .

Подпространство $V_{\lambda} \coloneqq \mathrm{Ker} \; (\varphi - \lambda) \leq V$ называется **собственным подпространством** оператора φ , соответствующим собственному значению λ .

Определение 25.5: Пусть $A \in M_n(\mathbb{F})$.

Характеристическим многочленом матрицы A называется многочлен $\chi_A(\lambda) \coloneqq \det(A - \lambda E)$

Определение 25.6: Матрицы $A,B\in M_n(\mathbb{F})$ называются **подобными**, если $\exists S\in M_n(\mathbb{F}), S$ обратимая : $A=SBS^{-1}$

Определение 25.7: Оператор $\varphi \in \mathcal{L}(V)$ называется диагонализуемым, если существует базис в V, в котором матрица φ имеет диагональный вид.

Матрица $A \in M_n(F)$ называется **диагонализуемой**, если она подобна некоторой диагональной.

Определение 25.8: Пусть $\varphi \in \mathcal{L}(V), \lambda_0 \in \mathbb{F}$ – собственное значение опера-

Алгебраической кратностью собственного значения λ_0 называется кратность корня λ_0 в $\chi_{\varphi}(\lambda)$.

 Γ еометрической кратностью – величина $\dim V_{\lambda_{\circ}}$

Определение 25.9: Пусть V – линейное пространство, $U_1, U_2 \leq V$.

Суммой подпространств U_1, U_2 называется следующее множество:

$$U_1 + U_2 \coloneqq \{ \boldsymbol{u_1} + \boldsymbol{u_2} \mid \boldsymbol{u_1} \in U_1, \boldsymbol{u_2} \in U_2 \}$$

Аналогично определяется сумма k подпространств.

Определение 25.10: Пусть V – линейное пространство, $U_1, ..., U_k \leq V$.

Сумма подпространств $U\coloneqq U_1+...+U_k$ называется **прямой**, если для любого вектора $u \in U$ сущетвует единственный набор векторов $u_1 \in$ $U_1,...,u_k\in U_k$ такой, что $u=u_1+...u_k$.

Обозначение – $U = U_1 \oplus ... \oplus U_k$

Теорема 25.1: Пусть $\varphi \in \mathcal{L}(V)$. Тогда равносильны следующие условия:

- 1. Оператор φ диагонализуем
- 2. Алгебраическая кратность каждого собственного значения оператора arphiравна геометрической, и χ_{ω} раскладывается на линейные сомножители, то есть имеет следующий вид при некоторых $\lambda_1,...\lambda_k \in \mathbb{F}; \alpha_1,...,\alpha_k \in \mathbb{N}$ таких, что $\sum_{i=1}^k \alpha_i = n$:

- $\chi_{\varphi}(\lambda)=\prod_{i=1}^k\left(\alpha_i-\alpha\right)^{\alpha_i}$ 3. $V=V_{\lambda_1}\oplus\ldots\oplus V_{\lambda_k}$, где $V_{\lambda_1},\ldots,V_{\lambda_k}$ собственные подпространства опера-
- 4. В V есть базис, состоящий из собственных векторов оператора φ

Доказательство: $(1 \Rightarrow 2)$ Пусть в некотором базисе е в V матрица оператора arphi имеет диагональный вид, $\lambda_1,...,\lambda_k\in\mathbb{F}$ – различные элементы на диагонали, $\alpha_1,...,\alpha_k \in \mathbb{N}$ – количества их вхождений в матрицу.

Тогда $\chi_{\varphi}(\lambda)=\prod_{i=1}^k\left(\lambda_i-\lambda\right)^{\alpha_i}$. Для любого $i\in\overline{1,\,\mathbf{k}}$ алгебраическая кратность значения λ_i равна α_i , при этом α_i базисных вектором из e являются собственными векторами со значениями λ_i , откуда $\dim V_{\lambda_i} \geq \alpha_i$, а обратное неравенство верно всегда.

- $(2\Rightarrow 3)$ Пусть $V_{\lambda_1},...,V_{\lambda_i}\leq V$ собственные подпространства оператора arphi. Их сумма – прямая (т.к. базис) и по условию $\sum_{i=1}^k \dim V_{\lambda_i} = \sum_{i=1}^k lpha_i = n,$ поэтому $V_{\lambda_1} \oplus ... \oplus V_{\lambda_k} = V$
- $(3\Rightarrow 4)$ Выберем базисы $e_1,...,e_k$ в пространствах $V_{\lambda_1},...,V_{\lambda_k}.$ Тогда, так как сумма этих подпространств прямая, то объединение этих базисов даёт базис в V.

 $(4\Rightarrow 1)$ Если e — базис из собственных векторов, то именно в этом базисе матрица оператора φ имеет требуемый диагональный вид.

26. Самосопряжённые преобразования евклидовых пространств, свойства их собственных значений и собственных векторов.

Определение 26.1: Пусть $\varphi: U \to V$ – линейное отображение, $e = (e_1,...,e_k)$ – базис в $U,\,\mathcal{F} = (f_1,...,f_n)$ – базис в V.

Матрицей отображения φ в базисах e и $\mathcal F$ называется матрица $A\in M_{n\times k}(\mathbb F)$ такая, что

$$(\varphi(e_1),...,\varphi(e_k)) = \mathcal{F}A$$

Определение 26.2: **Билинейной формой** на V называется функция b: $V \times V \to \mathbb{F}$, линейная по обоим аргументам.

Множество всех билинейных форм на V обозначается через $\mathcal{B}(V)$.

Определение 26.3: Матрицей формы $b \in \mathcal{B}(V)$ в базисе $(e_1,...,e_n) \eqqcolon e$ называется следующая матрица B:

$$\overrightarrow{B} = \left(big(e_i, e_jig)
ight)_{i,j=1}^n$$

Обозначение $b \underset{e}{\leftrightarrow} B$

Определение 26.4: Пусть $b \in \mathcal{B}(V)$.

Форма b называется **симметрической**, если

$$\forall \boldsymbol{u}, \boldsymbol{v} \in V : b(\boldsymbol{u}, \boldsymbol{v}) = b(\boldsymbol{v}, \boldsymbol{u})$$

Пространство симметрических форм на V обозначается через $\mathcal{B}^+(V)$

Определение 26.5: Пусть $b \in \mathcal{B}(V)$.

Форма b называется **кососимметрической**, если выполнены следующие условия;

- 1. $\forall \boldsymbol{u}, \boldsymbol{v}: b(\boldsymbol{u}, \boldsymbol{v}) = -b(\boldsymbol{v}, \boldsymbol{u})$
- 2. $\forall \boldsymbol{u} \in V : b(\boldsymbol{u}, \boldsymbol{u}) = 0$

Определение 26.6: **Квадратичной формой**, соответствующей форме $b \in \mathcal{B}(V)$, называется функция $h: V \to \mathbb{F}$ такая, что

$$\forall \boldsymbol{v} \in V : h(\boldsymbol{v}) = b(\boldsymbol{v}, \boldsymbol{v})$$

Квадратичные формы на V образуют линейное пространство над $\mathbb{F},$ обозначаемое через $\mathcal{Q}(V)$

Определение 26.7: Пусть $h \in \mathcal{Q}(V)$. Тогда h называется

- Положительно определённой, если $\forall v \in V : v \neq 0 : h(v) > 0$
- Положительно полуопределённой, если $\forall v \in V : v \neq 0 : \ h(v) \geq 0$
- Отрицательно определённой, если $\forall v \in V : v \neq 0 : h(v) < 0$
- Отрицательно полуопределённой, если $\forall v \in V : v \neq 0 : \ h(v) \leq 0$

Определение 26.8: Полуторалинейной формой на V называется функция $b: V \times V \to \mathbb{C}$ такая, что

- 1. *b* линейна по первому аргументу
- 2. в сопряжённо-линейна по второму аргументу

Полуторалинейные формы на V образуют линейное пространство над $\mathbb{F},$ обозначаемое через $\mathcal{S}(V).$

Определение 26.9: Матрицей формы $b \in \mathcal{S}(V)$ в базисе $(e_1,...,e_n) =: e$ называется следующая матрица B:

$$B = \left(b\big(\boldsymbol{e_i}, \boldsymbol{e_j}\big)\right)_{i,j=1}^n$$

Обозначение $b \underset{e}{\longleftrightarrow} B$

Определение 26.10: Пусть $b \in \mathcal{S}(V)$.

Форма b называется **эрмитовой**, если

$$\forall \boldsymbol{u}, \boldsymbol{v} \in V : b(\boldsymbol{u}, \boldsymbol{v}) = \overline{b(\boldsymbol{v}, \boldsymbol{u})}$$

Матрица $B\in M_n(\mathbb{C})$ называется **эрмитовой**, если $B^T=\overline{B}$, или $B=B^*$, где $B^*:=\overline{B^T}$ – **эрмитово сопряжённая** к B матрица.

Определение 26.11: **Евклидовым** пространством называется линейное пространство V над \mathbb{R} , на котором определена положительно определённая симметрическая билинейная форма (\cdot,\cdot) – **скалярное произведение**

Определение 26.12: **Эрмитовым** пространством называется линейное пространство V над \mathbb{C} , на котором определена положительно определённая эрмитова форма (\cdot, \cdot) – **эрмитово скалярное произведение**

Определение 26.13: Пусть $\varphi \in \mathcal{L}(V)$.

Для всех $\boldsymbol{u}, \boldsymbol{v} \in V$ положим

$$f_{\varphi}(\boldsymbol{u},\boldsymbol{v})\coloneqq(\varphi(\boldsymbol{u}),\boldsymbol{v});\quad g_{\varphi}(\boldsymbol{u},\boldsymbol{v})\coloneqq(\boldsymbol{u},\varphi(\boldsymbol{v}))$$

Определение 26.14: Пусть $\varphi \in \mathcal{L}(V)$.

Оператором, **сопряжённым** к φ называется оператор $\varphi^* \in \mathcal{L}(V)$ такой, что $f_\varphi = g_{\varphi^*}.$

Определение 26.15: Оператор $\varphi \in \mathcal{L}(V)$ называется самосопряжённым, если $\varphi^* = \varphi$.

Утверждение 26.1: Пусть $\varphi \in \mathcal{L}(V)$ — самосопряжённый. Тогда его характеристический многочлен χ_{φ} раскладывается на линейные сомножители над \mathbb{R} .

Доказательство: Пусть V — евклидово пространство с ортонормированным базисом e, тогда $\varphi_e \leftrightarrow A \in M_n(\mathbb{R}), A = A^T$.

Рассмотрим U — эрмитово пространство той же размерности с ортонормированным базисом $\mathcal F$ и оператор $\psi \in \mathcal L(U), \psi \underset{x}{\longleftrightarrow} A.$

Если V изначально эрмитово, то ничего не делаем и сразу рассматриваем данный оператор.

Тогда ψ — тоже самосопряжённый, имеющий одинаковый характеристический многочлен с φ .

Пусть $\lambda \in \mathbb{C}$ – корень χ_{ψ} . Тогда существует соотвествующий ему собственный вектор $u \in U$, причём

$$\lambda \|\boldsymbol{u}\|^2 = (\psi(\boldsymbol{u}), \boldsymbol{u}) = (\boldsymbol{u}, \psi(\boldsymbol{u})) = \overline{\lambda} \|\boldsymbol{u}\|^2 \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$$

Утверждение 26.2: Пусть $\varphi \in \mathcal{L}(V)$ – самосопряжённый, $\lambda_1, \lambda_2 \in \mathbb{R}$ – два различных собственных значения φ . Тогда $V_{\lambda_1} \perp V_{\lambda_2}$

Доказательство: Пусть
$$v_1 \in V_{\lambda_1}; v_2 \in V_{\lambda_2}$$
. Тогда
$$\lambda_1(v_1,v_2) = (\varphi(v_1),v_2) = (v_1,\varphi(v_2)) = \lambda_2(v_1,v_2) \Rightarrow (v_1,v_2) = 0$$

- 27. Приведение квадратичных форм в линейном пространстве к каноническому виду. Положительно определённые квадратичные формы. Критерий Сильвестра.
- 27.1. Приведение квадратичных форм в линейном пространстве к каноническому виду.

Определение 27.1.1: Пусть $b \in \mathcal{B}^{\pm}(V)$.

- Векторы $u, v \in V$ называются **ортогональными относительно** b, если $b(\boldsymbol{u}, \boldsymbol{v}) = 0$
- Ортогональным дополнением подпространства U < V относительно bназывается подпространство

$$U^{\perp} \coloneqq \{ \boldsymbol{v} \in V \mid \forall \boldsymbol{u} \in U : b(\boldsymbol{u}, \boldsymbol{v}) = 0 \} \le V$$

Определение 27.1.2: Пусть \mathbb{F} – поле.

Его **характеристикой** называется наименьшее число $k \in \mathbb{N}$ такое, что в полне выполнено равенство $\underbrace{1+\ldots+1}_k=0.$

Если такого k не существует, то характеристикой поля считается 0. Обозначение – char \mathbb{F}

Определение 27.1.3: Пусть char $\mathbb{F} \neq 2, h \in \mathcal{Q}(V)$.

Симметрическая билинейная форма $b \in \mathcal{B}^+(V)$ называется **полярной** к h, если

$$\forall \boldsymbol{v} \in V : h(\boldsymbol{v}) = b(\boldsymbol{v}, \boldsymbol{v})$$

Матрицей квадратичной формы h в базисе e называется матрица B полярной к ней формы b в базисе e. Обозначение $h \leftrightarrow B$.

Теорема 27.1.1 (Метод Якоби): Пусть $h \in \mathcal{Q}(V), h \underset{e}{\longleftrightarrow} B$, причём все главные миноры матрицы B отличны от нуля.

Тогда существует такой базис e' = eS, что матрица перехода S – верхне-

треугольная с единицами на главной диагонали,
$$h \leftrightarrow B'$$
 и B' диагональна. Более того, тогда $B' = \mathrm{diag}\Big(\Delta_1(B), \frac{\Delta_2(B)}{\Delta_1(B)}, ..., \frac{\Delta_n^{e'}(B)}{\Delta_{n-1}(B)}\Big)$

Доказательство: Докажем индукцией по $n := \dim V$, что матрица формы hприводится к диагональному виду в базисе e' с матрицей перехода из условия.

База, n = 1, тривиальна: подходит исходный базис e.

Пусть теперь n > 1, тогда $(U := \langle e_1, ..., e_{n-1} \rangle) \cap \operatorname{Ker} h = \{0\}$, так как $\Delta_{n-1}(B) \neq 0.$

Значит $V=U\oplus U^\perp$. Представим $m{e_n}$ в виде $m{e_n}=m{u}+m{e'_n}, m{u}\in U, m{e'_n}\in U$ $U^{\perp}, e'_{n} \neq 0.$

По предположению индукции, в U можно выбрать подходящий базис $(e'_1,...,e'_{n-1})$, тогда его объединение с e'_n будет искомым.

Матрица перехода S действительно будет верхнетреугольной с единицами на главной диагонали: для первых n-1 столбцов это верно в силу предположения индукции, а для последнего – в силу $e_n' = e_n - u$

Заметим, что, поскольку базис e' получен описанным выше способом:

$$\forall i \in \overline{1,\,\mathbf{n}}: \ e_i' \in \langle e_1,...,e_i \rangle, \quad \langle e_1,...,e_i \rangle = \langle e_1',...,e_i' \rangle$$

Пусть B_i – подматрица B в левом верхнем углу, а B_i' – аналогичная подматрица B' .

Тогда $B_i' = S_i^T B_i S_i$, где S_i — соответствующая подматрица S, также являющаяся верхнетреугольной с единицами на диагонали, поэтому

$$\Delta_i(B') = \det B_i' = \det(S_i^T B_i S_i) = \det B_i = \Delta_i(B)$$

Значит

$$\forall i \in \overline{1,\,\mathbf{n}}: \ \Delta_i(B) = \Delta_i(B')$$

Откуда, в силу диагональности B', поскольку его i-й главный минор равен произведению i диагональных элементов:

вен произведению
$$i$$
 диагональных элементов:
$$B'=\mathrm{diag}\Big(\Delta_1(B),\frac{\Delta_2(B)}{\Delta_1(B)},...,\frac{\Delta_n(B)}{\Delta_{n-1}(B)}\Big)$$

27.2. Критерий Сильвестра

Определение 27.2.1: Пусть V – линейное пространство над \mathbb{F} .

Отображение $g:V^n \to \mathbb{F}$ называется **полилинейным**, если оно линейно по каждому из n аргументов.

Определение 27.2.2: Пусть V – линейное пространство над \mathbb{F} .

Отображение $g:V^n \to \mathbb{F}$ называется кососимметричным, если для любых позиций аргументов $i,j\in\overline{1,\mathrm{n}},i< j$ выполнены следующие условия:

1.
$$\forall \boldsymbol{v_i}, \boldsymbol{v_j} \in V : g\left(\dots, \underbrace{\boldsymbol{v_i}}_{i}, \dots, \underbrace{\boldsymbol{v_j}}_{j}, \dots\right) = -g\left(\dots, \underbrace{\boldsymbol{v_j}}_{i}, \dots, \underbrace{\boldsymbol{v_i}}_{j}, \dots\right)$$
2.
$$\forall \boldsymbol{v} \in V : g\left(\dots, \underbrace{\boldsymbol{v}}_{i}, \dots, \underbrace{\boldsymbol{v}}_{j}, \dots\right) = 0$$

Определение 27.2.3: **Группой перестановок** S_n называется следующее множество:

$$S_n \coloneqq \left\{ \sigma : \overline{1, \, \mathbf{n}} \to \overline{1, \, \mathbf{n}} \mid \sigma - \mathsf{биекция} \right\}$$

Данной множество является группой с операцией композиции о.

Элементы группы S_n называются перестановками.

Определение 27.2.4: Беспорядком, или инверсией в перестановке $\sigma \in S_n$ называется пара индексов $(i,j); i,j \in \overline{1,}$ п такая, что, i < j, но $\sigma(i) > \sigma(j)$.

Числа беспорядков в σ обозначается через $N(\sigma)$. Знаком перестановки $\sigma \in S_n$ называется величина $(-1)^{N(\sigma)}$.

0бозначения – sgn σ , $(-1)^{\sigma}$

Определение **27.2.5**: Пусть $A = (a_{ij}) \in M_n(\mathbb{F})$.

Определителем, или **детерминантом**, матрицы A называется следующая величина:

$$\det A \coloneqq \sum_{\sigma \in S_n} \left(-1\right)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} ... a_{n\sigma(n)}$$

Определение 27.2.6: Пусть $B \in M_{n(\mathbb{R})}$ – симметричная матрица.

Её главным минором порядка i называется $\Delta_i(B)$ – определитель подматрицы размера $i \times i$, расположенной в левом верхнем углу B.

Определение 27.2.7: Пусть $B \in M_n(\mathbb{R})$ – симметрическая матрица.

В называется **положительно** или **отрицательно** определённой, если она задаёт квадратичную форму, обладающую этим свойством.

Определение 27.2.8: Матрица $A\in M_n(\mathbb{F})$ называется невырожденной, если rk A=n

Определение 27.2.9: Пусть \mathbb{F} – поле, $n \in \mathbb{N}$

• Группа невырожденных матриц порядка n над $\mathbb F$ обозначается через $\mathrm{GL}_n(\mathbb F)$

Утверждение 27.2.1: $B\in M_n(\mathbb{R})$ положительно определена $\Leftrightarrow \exists A\in \mathrm{GL}_n(\mathbb{R}): B=A^TA$

Теорема 27.2.1 (Критерий Сильвестра): Пусть $h\in\mathcal{Q}(V), h\leftrightarrow B$. Тогда h положительно определена $\Leftrightarrow \forall i\in\overline{1,\ \mathbf{n}}:\ \Delta_i(B)\stackrel{e}{>}0$

Доказательство: Пусть $n := \dim V$

 \Rightarrow Если h положительно определена, то $\exists A\in \mathrm{GL}_n(\mathbb{R}): B=A^TA$. Тогда $\Delta_n(B)=\det B=\left(\det A\right)^2>0$.

Поскольку главному минору порядка $i\in\overline{1,}$ n - 1 соответствует ограниче h на $U:=\langle e_1,...,e_i\rangle$, которое тоже положительно определено, то аналогично $\Delta_i(B)>0$

 \Leftarrow Согласно методу Якоби, существует базис e' в V такой, что матрица h в нём диагональна, причём $h \underset{e'}{\leftrightarrow} \left(\Delta_1(B), \frac{\Delta_2(B)}{\Delta_1(B)}, ..., \frac{\Delta_n(B)}{\Delta_{n-1}(B)}\right)$.

Все элементы на главной диагонали положительны, поэтому h положительно определена.

28. Линейные обыкновенные дифференциальные уравнения с постоянными коэффициентами и правой частью - квазимногочленом

Определение 28.1: Уравнение вида

$$F(x,y,...,y^{(n)}) = 0$$

называется обыкновенным дифференциальным уравнением *п*-го порядка.

Определение 28.2: Функция $\varphi(x)$, определённая на I вместе со своими nпроизводными, называется решением ОДУ, если

- $1. \ \varphi$ и все её n производных непрерывны на I
- 2. $\forall x \in I: (x, \varphi(x), \varphi'(x), ..., \varphi^{(n)}(x)) \in \Omega$, где Ω область определения F
- 3. $\forall x \in I : F(x, \varphi(x), \varphi'(x), ..., \varphi^{(n)}(x)) = 0$

Определение 28.3: Пусть $n \geq 2, f_1, ..., f_n$ – непрерывные функции, определённые на области $G \subseteq \mathbb{R}^{n+1}_{x,y}$.

Назовём нормальной системой дифференциальных уравнений первого порядка следующую систему:

$$\boldsymbol{y}' = \boldsymbol{f}(x, \boldsymbol{y}) \Leftrightarrow \begin{cases} y_1'(x) = f_1(x, y_1(x), \dots, y_n(x)) = f_1(x, \boldsymbol{y}) \\ \dots \\ y_n'(x) = f_n(x, y_1(x), \dots, y_n(x)) = f_n(x, \boldsymbol{y}) \end{cases}$$

Определение 28.4: Задачей Коши называется $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$

$$\left\{egin{aligned} &oldsymbol{y}'=oldsymbol{f}(x,oldsymbol{y})\ oldsymbol{y}(x_0)=oldsymbol{y_0} \end{aligned}
ight.$$

Теорема 28.1 (О существовании и единственности для системы): Пусть вектор-функция f(x, y) непрерывна в области G вместе со своими производными по $y_j, j \in \overline{1, \, \mathbf{n}},$ и точка $(x_0, \boldsymbol{y_0})$ тоже лежит в G.

Тогда задача Коши локально разрешима единственным образом:

- 1. $\exists \delta > 0$, такое, что на $[x_0 \delta, x_0 + \delta]$ решение задачи Коши существует
- 2. Решение единственно в смысле: Если $\boldsymbol{y_1} \equiv \boldsymbol{\varphi}(x)$ решение задачи Коши в δ_1 -окрестности точки $x_0,$ а $\boldsymbol{y_2} \equiv \boldsymbol{\psi}(x)$ – решение задачи Коши в δ_2 -окрестности точки x_0 , то в окрестности точки x_0 с радиусом $\delta = \min(\delta_1, \delta_2)$: $\varphi(x) \equiv \psi(x)$

Теорема 28.2 (О существовании и единственности для уравнения): Пусть функция $f(x, y, p_1, ..., p_{n-1})$ определена и непрерывна по совокупности переменных вместе с частными производными по переменным $y,p_1,...,p_{n-1}$ в некоторой области $G\subseteq\mathbb{R}^{n+1}$ и точка $\left(x_0,y_0,y_0',...,y_0^{(n-1)}\right)\in G.$

Тогда существует замкнутая δ -окрестность точки x_0 , в которой существует единственное решение задачи Коши.

Определение 28.5: Линейное обыкновенные дифференциальное уравнениу с постоянными коэффициентами и правой частью - квазимногочленом имеет вид

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = f(x)$$

где
$$f(x)$$
 — **квазимногочлен**:
$$f(x) = e^{\mu x} P_m(x); \quad \mu \in \mathbb{C}, P_m(x)$$
 — многочлен степени m

Замечание 28.1: Существование и единственность решения такого уравнения очевидна применением соответствующей теоремы.

Определение 28.6: Характеристическим многочленом L(x) назовём многочлен

$$L(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0$$

Определение 28.7: Если число μ из формулы квазимногочлена является корнем характеристического уравнения

$$L(\lambda) = 0$$

то говорят, что в уравнении резонансный случай.

Если же μ не является корнем, то имеем **нерезонансный** случай.

Определение 28.8: Дифференциальным многочленом назовём многочлен вида

$$L(D) = (D - \lambda_1)^{k_1} (D - \lambda_2)^{k_2} ... (D - \lambda_s)^{k_2}$$

где k_i соответствует кратности корней характеристического уравнения, а D – оператор формального дифференцирования.

Замечание 28.2: Решение рассматриваемого уравнения эквивалентно решению уравнения

$$L(D)y = 0$$

Теорема 28.3 (О структуре решения ЛНУ с правой частью в виде квазимногочлена): Для рассматриваемого уравнения существует и единственно решение вида

$$y(x) = x^k e^{\mu x} Q_m(x)$$

где $Q_m(x)$ – многочлен одинаковой с $P_m(x)$ степени m, а число k равно кратности корня μ в уравнении $L(\lambda) = 0$ в резонансном случае и k = 0 в нерезонансном.

Доказательство: Если $\mu \neq 0$, то заменой $y = ze^{\mu x}$ всегда можно избавиться от $e^{\mu x}$ в правой части.

В самом деле, после замены имеем, что

$$L(D)y = L(D)(e^{\mu x}z) = e^{\mu x}L(\mu)z + e^{\mu x}L(D)z = e^{\mu x}L(D + \mu)z = e^{\mu x}P_m(x)$$

Разделим на экспоненту и получим

$$L(D+\mu)z = P_m(x)$$

Таким образом, доказательство теоремы достаточно провести для уравнения вида (БОО $\mu = 0$):

$$L(D)y = P_m(x)$$

Рассмотрим нерезонансный случай $L(\mu) \neq 0$. Пусть

$$P_m(x)=p_mx^m+\ldots+p_0;\quad Q_m(x)=q_mx^m+\ldots+q_0$$

Если подставить и приравнять коэффициенты при одинаковых степенях x, получим линейную алгебраическую систему уравнений для определения неизвестных коэффициентов $q_0,...,q_m$.

Матрица систему треугольная с числами $a_n = L(\mu) \neq 0$ на диагонали, значит коэффициенты определяются из неё однозначно.

В резонансном случае имеем

$$L(\overset{\circ}{\lambda})=\lambda^k\big(\lambda^{n-k}+a_1\lambda^{n-k-1}+\ldots+a_{n-k}\big)$$

Следовательно,

$$L(D) = \begin{cases} D^{n} + a_{1}D^{n-1} + \dots + a_{n-k}D^{k}, \ k < n \\ D^{n}, \ k = n \end{cases}$$

 $L(D) = \begin{cases} D^n + a_1 D^{n-1} + \ldots + a_{n-k} D^k, \ k < n \\ D^n, \ k = n \end{cases}$ В первом случае замена $D^k y = z$ приводит уравнение к уравнению с нерезонансным случаем.

Иначе получаем уравнение

$$D^n y = P_m(x)$$

Которое очевидно решается интегрированием n раз.

29. Системы линейных однородных дифференциальных уравнений с постоянными коэффициентами, методы их решения

Определение 29.1: Пусть
$$m{x}(t)=egin{pmatrix} x_1(t) & \cdots \\ x_n(t) \end{pmatrix}; A\in M_n(\mathbb{C})$$

Тогда Нормальная линейная однородная система уравнений выглядит так:

$$\dot{x} = Ax$$

Где под \cdot подразумевается дифференцирование по t.

Теорема 29.1: Если $h_1,...,h_n$ – базис из собственных векторов матрицы A,то $x_i = e^{\lambda_i t} h_i - \Phi \text{CP}$ для исходной однородной системы.

Доказательство: Заметим, что

$$A(e^{\lambda t}h) = e^{\lambda t}(Ah) = e^{\lambda t}\lambda h = (e^{\lambda t}h)'$$

Значит собственный вектор является решением.

Их линейная независимость следует из того, что их вронскиан в точке t=0 равен определителю из координатных столбцов этого базиса, а значит не равен нулю.

Определение 29.2: Пусть t – действительная переменная, $A \in M_n(\mathbb{C})$.

Тогда **матричной экспонентой** называется ряд $e^{tA} \coloneqq E_n + \sum_{k=1}^\infty \frac{t^k}{k!} A^k$

$$e^{tA} := E_n + \sum_{k=1}^{\infty} \frac{t^k}{k!} A^k$$

Лемма 29.1: Свойства матричной экспоненты:

- 1. Если S невырожденная и $A=SBS^{-1}$, то $\forall t\in\mathbb{R}:e^{tA}=Se^{tB}S^{-1}$
- 2. $(e^{tA})'_{1} = Ae^{tA} = e^{tA}A$

Теорема 29.2 (Матричная экспонента для Φ CP): Матрица e^{tA} является фундаментальной матрицей для системы линейный уравнений $\dot{x} = Ax$.

$$(e^{tA})' = Ae^{tA}$$

 Доказательство: По свойствам экспоненты $\left(e^{tA}\right)_t' = Ae^{tA}$ Значит каждый столбец матрицы e^{tA} является решением исходной систему.

Поскольку $\forall t \in \mathbb{R} : \det e^{tA} \neq 0$, то e^{tA} фундаментальна.

30. Линейные обыкновыенные дифференциальные уравнения с переменными коэффициентами. Фун-

Определитель решений. даментальная система Вронского. Формула Лиувилля-Остроградского.

Определение 30.1: Вектор-функции $y_1(x),...,y_k(x)$, определённые на промежутке I, называются **линейно зависимыми**, если

$$\exists \alpha_1, ..., \alpha_k \in \mathbb{R} : \exists i : \alpha_i \neq 0 : \sum_{j=1}^k a_j \mathbf{y}_j(x) \equiv 0$$

Определение 30.2: Пусть $y_1(x),...,y_n(x)$ – вектор-функции с n компонен-

Тогда **определителем Вронского** для заданных вектор-функций называется функция

 $W(x) := \det \begin{pmatrix} y_1^1(x) & y_2^1(x) & \dots & y_n^1(x) \\ \dots & \dots & \dots & \dots \\ y_1^n(x) & y_2^n(x) & \dots & y_n^n(x) \end{pmatrix}$

Лемма 30.1: Если вронскиан системы $oldsymbol{y_1}(x),...,oldsymbol{y_n}(x)$ отличен от нуля хотя бы в одной точке, то все эти функции линейно независимы.

 ${f Лемма}$ 30.2: Если вектор-функции ${m y_1}(x),...,{m y_n}(x)$ – решения некоторой системы линейных уравнений на промежутке I и $\exists x_0 \in I : W(x_0) = 0$, то $y_1(x), ..., y_n(x)$ линейно зависимы на I.

Определение 30.3: Фундаментальная система решений для СЛДУ – набор n линейно независимых решений системы.

Теорема 30.1 (Лиувилля-Остроградского): Пусть W(x) – вронскиан решений $y_1(x),...,y_n(x)$ системы y'(x)=A(x)y(x) на промежутке $I, x_0 \in I$.

Тогда $\forall x \in I$ имеет место формула Лиувилля-Остроградского: $W(x) = W(x_0) \exp\Bigl(\int_{x_0}^x \operatorname{tr} A(t) \, \mathrm{d}t\Bigr)$

$$W(x) = W(x_0) \exp\left(\int_{x_0}^x \operatorname{tr} A(t) dt\right)$$

уравнению

$$W'(x) = \operatorname{tr} A(x) \cdot W(x)$$

Пусть $y_{ij}(x), i \in \overline{1, n}$ – компоненты решения $y_j(x), j \in \overline{1, n}.$

Тогда W(x) является функцией от всех этих компонент:

$$W(x) = W[y_{11}(x), y_{21}(x), ..., y_{nn}(x)] \\$$

По формуле производной сложной функции получаем, что

$$W'(x) = \sum_{p,q=1}^{n} \frac{\partial W}{\partial y_{pq}}(x) y'_{pq}(x)$$

 $W'(x)=\sum_{p,q=1}^n \tfrac{\partial W}{\partial y_{pq}}(x)y'_{pq}(x)$ Пусть $W_{pr}(x)$ – алгебраическое дополнение $y_{pr}(x)$ в W(x).

Тогда разложение W(x) по p-й строке даёт $W(x) = \sum_{r=1}^n y_{pr}(x) W_{pr}(x)$

$$W(x) = \sum_{r=1}^{n} y_{pr}(x) W_{pr}(x)$$

Отсюда получим, что

$$\frac{\partial W}{\partial y_{pq}}(x) = W_{pq}(x)$$

А так как каждая вектор-функция удовлетворяет системе y'(x) =A(x)y(x), то есть

$$y_q'(x) = A(x)y_{q(x)}; \quad q \in \overline{1, \text{ n}}$$

Отсюда по определению матричного умножения:

$$y'_{pq} = \sum_{r=1}^{n} a_{pr}(x) y_{rq}(x)$$

$$y'_{pq} = \sum_{r=1}^n a_{pr}(x) y_{rq}(x)$$
 Подставляя найденные выражения в формулу $W'(x)$ получим, что $W'(x) = \sum_{p,q=1}^n W_{pq}(x) \sum_{r=1}^n a_{pr}(x) y_{rq}(x) = \sum_{p,r=1}^n a_{pr}(x) \sum_{q=1}^n y_{rq} W_{pq}(x)$ Но по кососимметричности определителя мы знаем, что

$$\textstyle\sum_{q=1}^n y_{rq} W_{pq}(x) = \delta_{pr} W(x)$$

А значит

$$W'(x) = W(x) \sum_{p,r=1}^n a_{pr} \sigma_{pr} = W(x) \sum_{i=1}^n a_{pp}(x) = W(x) \cdot \operatorname{tr} A(x)$$

Интегрирование этого линейного однородного первого порядка даёт искомую формулу.

31. Простейшая задача вариационного исчисления. Необходимые условия локального экстремума.

Замечание 31.1: Вспомнин C-нормы:

$$orall k \in \mathbb{N} \cup \{0\}: \ \|f\|_{C^k[a,b]} = \sum_{i=0}^k \max_{x \in [a,b]} \left|f^{(i)}(x)\right|$$

Определение 31.1: Пусть (X, ρ) – метрическое пространство, $M \subset X$.

Отображение $F: M \to \mathbb{R}$ называется функционалом с областью определения M.

Пусть F(x,y,p) — непрерывно дифференцируемая функция на $[a,b] \times \mathbb{R}^2$. В этом билете будем рассматривать функционал $J(y) = \int_a^b F(x,y,y') \, \mathrm{d}x; \quad y(a) = A, y(b) = B$

$$J(y) = \int_a^b F(x, y, y') dx; \quad y(a) = A, y(b) = B$$

Определённый на множестве

$$M \coloneqq \left\{ y(x) \in C^1[a,b] \mid y(a) = a, y(b) = b \right\}$$

Определение 31.2: Функция $\hat{y}(x) \in M$ называется слабым локальным **минимумом** (максимумом) функционала J, если

$$\exists \varepsilon > 0: \forall y(x) \in M: \ \left\| \hat{y} - y \right\|_{C^1[a,b]} < \varepsilon: \ J(y) \geq (\leq) \ J(\hat{y})$$

Определение 31.3: Задача на отыскание слабого локального экстремума функционала J называется простейшей вариационной задачей или задачей с закреплёнными концами.

Определение 31.4: Выражение $\frac{\mathrm{d}}{\mathrm{d}\alpha}J(y+\alpha\nu)|_{\alpha=0}$, где $\eta\in C^1[a,b]$ называется **первой вариацией** функционала J(y) на функции y(x) и обозначается $\partial J[y,\eta(x)]$

Теорема 31.1: Если $\hat{y}(x) \in M$ является решением простейшей вариационной задачи, то

$$\forall \eta(x) \in C^1[a,b]: \ \partial J[\hat{y},\eta(x)] = 0$$

Доказательство: Пусть, БОО, \hat{y} – слабый локальный минимум J(y). Тогда

$$\exists \varepsilon > 0: \forall y(x) \in M: \left\| \hat{y} - y \right\|_{C^1[a,b]}: \ J(y) \geq J(\hat{y})$$

Зафиксировав $\eta(x)$, подберём $\alpha_0: \|\alpha_0\eta\|_{C^1[a,b]}$ < ε . Тогда

$$\forall \alpha : |\alpha| < \alpha_0 : \ \|\alpha\eta\|_{C^1[a,b]}^{C^1[a,b]} < \varepsilon$$

Рассмотрим числовую функцию $\Phi(\alpha) := J(\hat{y} + \alpha \eta)$. Так как \hat{y} – слабый локальный экстремум J(y), то 0 – локальный минимум функции Φ .

Получается, что $\Phi'(0) = 0$ по необходимуму условию минимума числовой функции, это и означает, что

$$\forall \eta \in C^1[a,b]: \ \partial J[\hat{y},\eta(x)] = 0$$

Теорема 31.2 (Лемма Лагранжа / основная лемма вариационного исчисления): Если $f(x) \in C[a,b]$ и

$$\forall \eta(x) \in C^1[a,b]: \ \int_a^b f(x) \eta(x) \, \mathrm{d}x = 0$$
 то $f(x) \equiv 0$ на $[a,b].$

Доказательство: Пусть это не так, тогда БОО $\exists x_0: f(x_0)>0.$

Из-за непрерывности f следует, что

$$\exists \varepsilon > 0: \ \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon): f(x) > 0$$

Тогда выберем η_0 , как гладкую положительную шапочку на даннном интервале, которая гладко спускается к нулю.

Получим что

$$\int_a^b f(x)\eta_0(x) dx = \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} f(x)\eta_0(x) dx > 0$$

Противоречие

Теорема 31.3: Пусть F(x,y,p) – дважды непрерывно дифференцируемая функция $\forall (x, y, p) \in [a, b] \times \mathbb{R}^2$.

Если непрерывно дифференцируемая функция \hat{y} является решением простейшей вариационной задачи для J, то эта функция удовлетворяет уравнению Эйлера на [a,b]:

 $\frac{\partial F}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) \equiv 0$

Доказательство: Распишем первую вариацию:

$$\begin{split} \partial J[y,\eta(x)] &= \left[\frac{\mathrm{d}}{\mathrm{d}\alpha} \int_a^b F(x,y+\alpha\eta,y'+\alpha\eta')\right]|_{\alpha=0} = \\ &\left[\int_a^b \left(\frac{\partial F(x,y+\alpha\eta,y'+\alpha\eta')}{\partial y}\eta + \frac{\partial F(x,y+\alpha\eta,y'+\alpha\eta')}{\partial y'}\eta'\right)\mathrm{d}x\right]|_{\alpha=0} = \\ &\int_a^b \left(\frac{\partial F(x,y,y')}{\partial y}\eta + \frac{\partial F(x,y,y')}{\partial y'}\eta'\right)\mathrm{d}x \end{split}$$

Проинтегрируем одно из подыинтегральных слагаемых по частям:
$$\int_a^b \frac{\partial F(x,y,y')}{\partial y'} \eta' \, \mathrm{d}x = \frac{\partial F(x,y,y')}{\partial y'} \eta|_a^b - \int_a^b \frac{\mathrm{d}}{\mathrm{d}x} \Big(\frac{\partial F(x,y,y')}{\partial y'}\Big) \eta \, \mathrm{d}x$$

Первое слагаемое равно нулю в силу ограничений на допустимое приращение η . Тогда

$$\partial J[y,\eta(x)] = \int_a^b \biggl(\frac{\partial F(x,y,y')}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \biggl(\frac{\partial F(x,y,y')}{\partial y'} \biggr) \biggr) \eta \, \mathrm{d}x$$

Так как y – локальный экстремум, то по предыдущему необходимому условию

$$\forall \eta \in C^1[a,b]: \ \partial J[y,\eta(x)] = 0$$

Теперь по лемме Лагранжа получим требуемое.

- 32. Математическое ожидание и дисперсия случайной величины, их свойства. Вычисление для нормального распределения.
- 32.1. Математическое ожидание и дисперсия случайной величины, их свойства.

Определение 32.1.1: Система \mathcal{F} подмножеств Ω называется **алгеброй**, ес-

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow \overline{A} \coloneqq (\Omega \setminus A) \in \mathcal{F}$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

Определение 32.1.2: Система \mathcal{F} подмножеств Ω называется σ -алгеброй, если

- 1. \mathcal{F} алгебра 2. $\forall \{A_n\}_{n=1}^{\infty} \subset \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Определение 32.1.3: P называется вероятностной мерой на (Ω, \mathcal{F}) , если $P: \mathcal{F} \to [0, 1]$, удовлетворяющая свойствам:

1. $P(\Omega) = 1$

2.
$$\forall \{A_n\}_{n=1}^{\infty}: P(\sqcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$

Определение 32.1.4: Вероятностное пространство – это тройка (Ω, \mathcal{F}, P) , где

- Ω множество элементарных исходов
- \mathcal{F} σ -алгебра подмножеств Ω , элементы \mathcal{F} называются **событиями**
- P вероятностная мера на измеримом пространстве (Ω, \mathcal{F})

Далее будем предполагать, что (E,\mathcal{E}) – произвольное измеримое пространство.

Определение 32.1.5: Борелевской сигма-алгеброй называется наименьшая σ -алгебра над \mathbb{R} , содержащая все интервалы (или отрезки). Обозначение — $\mathcal{B}(\mathbb{R})$

Определение **32.1.6**: Отображение $X:\Omega\to E$ называется **случайным элементом**, если оно измеримо, то есть

$$\forall B \in \mathcal{E}: \ X^{-1}(B) = \{\omega \mid X(\omega) \in B\} \in \mathcal{F}$$

Определение 32.1.7: Если $(E,\mathcal{E})=(\mathbb{R},\mathcal{B}(\mathbb{R})),$ то случайный элемент называется случайной величиной.

Определение 32.1.8: Если $(E,\mathcal{E}) = (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$, то случайный элемент называется **случайным вектором**.

Определение 32.1.9: Распределением случайной величины (вектора) ξ называется вероятностная мера P_{ξ} на $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ $((\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)))$, определённая по правилу:

$$\forall B \in \mathcal{B}(\mathbb{R}): \ P_{\xi}(B) \coloneqq P(\xi \in B) = P(\{\omega \in \Omega \mid \xi(\omega) \in B\})$$

Определение 32.1.10: Простой случайной величиной называется случайная величина ξ :

$$\xi(\omega) = \sum_{k=1}^n x_k \mathbb{I}_{A_k}(\omega)$$

где $x_1,...,x_n$ – все различные значения $\xi,$ а события $A_1,...,A_n$ образуют разбиение $\Omega.$

Определение 32.1.11: Математическим ожиданием простой случайной величины ξ называется величина $\mathbb{E}\xi=\sum_{k=1}^n x_k P_\xi(A_k)$

Лемма 32.1.1 (Свойства матожидания): Пусть ξ и η – простые случайные величины. Тогда

- 1. Линейность. Если $a, b \in \mathbb{R}$, то $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}\xi + b\mathbb{E}\eta$
- 2. Если $\xi \geq 0$, то $\mathbb{E}\xi \geq 0$
- 3. Если $\xi \geq \eta$, то $\mathbb{E}\xi \geq \mathbb{E}\eta$

Определение 32.1.12: Пусть $\xi \ge 0$ – неотрицательная случайная величина. Рассмотрим последовательность простых неотрицательных случайных величин $\{\xi_n\}_{n=1}^{\infty}$, которой монотонно к ней сходится.

Математическим ожиданием неотрицательной случайной величины ξ называется величина $\mathbb{E}\xi=\lim_{n\to\infty}\mathbb{E}\xi_n$

Определение 32.1.13: Пусть ξ – произвольная случайная величина. Рассмотрим $\xi^{=} = \max(\xi, 0); \xi^{-} = \max(-\xi, 0)$. Это неотрицательные случайные величины, при этом $\xi = \xi^{+} - \xi^{-}$.

- 1. Если $\mathbb{E}\xi^+<+\infty,\mathbb{E}\xi^-<+\infty,$ то математическим ожиданием величины ξ назовём $\mathbb{E}\xi=\mathbb{E}\xi^+-\mathbb{E}\xi^-$
- 2. Если $\mathbb{E}\xi^+ = +\infty$, $\mathbb{E}\xi^- = +\infty$, то математическое ожидание случайной величины ξ не определено
- 3. Иначе $\mathbb{E}\xi^{\pm} = +\infty$. Тогда математическим ожиданием случайной величины ξ будем считать $\pm\infty$

Замечание 32.1.1: Математическое ожидание – это интеграл Лебега по вероятностной мере P.

Лемма 32.1.2 (Дополнительные свойства матожидания):

- 1. $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$
- 2. Если $\xi = 0$ почти наверное, то $\mathbb{E}\xi = 0$
- 3. Если $\xi = \eta$ почти наверное и $\mathbb{E}\xi$ конечно, то $\mathbb{E}\eta$ конечно и $\mathbb{E}\xi = \mathbb{E}\eta$
- 4. Если $\xi \ge 0$ и $\mathbb{E}\xi = 0$, то $\xi = 0$ почти наверное
- 5. Пусть $\mathbb{E}\eta$ и $\mathbb{E}\eta$ конечны. Тогда

$$\forall A \in \mathcal{F} : \mathbb{E}(\xi \mathbb{I}_A) \leq \mathbb{E}(\eta \mathbb{I}_A) \Rightarrow \xi \leq \eta$$

Доказательство: Все свойства очевидным образом следует из соответствующих свойств интеграла Лебега.

Определение 32.1.14: Если $\mathbb{E}\xi$ конечно, то **дисперсией** случайной величины ξ называется

$$\mathbb{V}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2$$

Лемма 32.1.3 (Свойства дисперсии):

- 1. $\forall c \in \mathbb{R} : \mathbb{V}(c\xi) = c^2 \mathbb{V}(\xi); \mathbb{V}(\xi + c) = \mathbb{V}(\xi)$ 2. $\mathbb{V}\xi = \mathbb{E}\xi^2 (\mathbb{E}\xi)^2$

Доказательство: Очевидно следуют из свойств матожидания.

32.2. Вычисление для нормального распределения

Определение 32.2.1: **Функцией распределения** вероятностной меры Pна \mathbb{R} называется

$$F(x) = P((-\infty, x])$$

Определение 32.2.2: Пусть P – вероятностная мера на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, а F – её функция распределения.

Она называется абсолютно непрерывной, если

$$\exists p(t) \ge 0 : \forall x \in \mathbb{R} : \int_{\mathbb{R}} p(t) dt = 1 \land F(x) = \int_{-\infty}^{x} p(t) dt$$

В этом случае p(t) называтся **плотностью** функции распределения F и меры P.

Определение 32.2.3: Распределение называется нормальным с параметрами $a\in\mathbb{R},\sigma\in\mathbb{R}^{++},$ если его плотность имеет вид $p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$$

Обозначение – $\mathcal{N}(a,\sigma^2)$

Утверждение 32.2.1: Если ξ имеет нормальное распределение $\mathcal{N}(a,\sigma)$, то $\mathbb{E}\xi = a$

Доказательство:

$$\begin{split} \mathbb{E}\xi &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} x \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right) \mathrm{d}\mu(x) = \stackrel{t = \frac{x-a}{\sigma}}{=} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (\sigma t + a) e^{-\frac{t^2}{2}} \, \mathrm{d}\mu(t) = \\ &\frac{1}{\sqrt{2\pi}} \left(\int_{\mathbb{R}} \underbrace{\sigma t e^{-\frac{t^2}{2}}}_{\text{Heyëthas}} \mathrm{d}\mu(t) + \int_{\mathbb{R}} a e^{-\frac{t^2}{2}} \, \mathrm{d}\mu(t) \right) = \frac{a}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-t^2} \, \mathrm{d}\mu(t) \end{split}$$

Получили интеграл Эйлера-Пуассона. Напомним, как его вычислять:

$$\left(\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x \right)^2 = \left(\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x \right) \left(\int_{\mathbb{R}} e^{-y^2} \, \mathrm{d}y \right) = \iint_{\mathbb{R}^2} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y \stackrel{\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}}{=} \frac{1}{2} \int_0^{2\pi} \int_0^{\infty} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{1}{2} \int_0^{2\pi} e^{-\rho^2} \, \mathrm{d}\rho^2 \, \mathrm{d}\varphi = \frac{$$

Мы вычисляли квадрат интеграла, а значит сам интеграл равен $\sqrt{\pi}$. Таким образом матожидание равно a.

33. Неравенство Чебышева и закон больших чисел

33.1. Неравенство Чебышева

Лемма 33.1.1 (Неравенство Маркова): Пусть $\xi \ge 0$ – случайная величина, $a \in \mathbb{R}^{++}$. Тогда

$$P(\xi \ge a) \le \frac{\mathbb{E}\xi}{a}$$

Доказательство: Распишем цепочку очевидных неравенств:

$$\begin{split} \mathbb{E}\xi &= \mathbb{E}(\xi\mathbb{I}(\xi \geq a) + \xi\mathbb{I}(\xi < a)) = \mathbb{E}(\xi\mathbb{I}(\xi \geq a) + \mathbb{E}(\xi\mathbb{I}(\xi < a))) \geq \\ &\mathbb{E}(\xi\mathbb{I}(\xi \geq a)) \geq a\mathbb{E}(\mathbb{I}(\xi \geq a)) = aP(\xi \geq a) \end{split}$$

Лемма 33.1.2 (Неравенство Чебышева): Пусть ξ – случайная величина. Тогда

$$\forall \varepsilon > 0: \ P(|\xi - \mathbb{E}\xi| \ge \varepsilon) \le \frac{\mathbb{V}\xi}{\varepsilon^2}$$

Доказательство: Подставим в неравенство Маркова неотрицательную случайную величину $(\xi - \mathbb{E}\xi)^2$ и $a = \varepsilon^2$.

33.2. Закон больших чисел

Определение 33.2.1: События A и B называются **независимыми**, если P(AB) = P(A)P(B)

П

Определение 33.2.2: События $A_1, ..., A_n$ называются **независимыми в** совокупности, если

 $\forall i_1,...,i_k \in \overline{1,\,\mathbf{n}}:\ P\big(A_{i_1}...A_{i_k}\big) = P\big(A_{i_1}\big)...P\big(A_{i_k}\big)$

Определение 33.2.3: σ -алгебры \mathcal{F}, \mathcal{G} называются независимыми в совокупности, если независимы в совокупности любые их конечные наборы.

Определение 33.2.4: Случайные величины ξ, η называются независимы**ми**, если независимы σ -алгебры, порождённые их распределениями.

Утверждение 33.2.1: Если ξ, η независимые случайные величины, то

$$\mathbb{E}\xi\eta=\mathbb{E}\xi\mathbb{E}\eta$$

Более того, их дисперсия линейна

$$\mathbb{V}(\xi + \eta) = \mathbb{V}\xi + \mathbb{V}\eta$$

Теорема 33.2.1: Пусть $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ — последовательность независимых одинаково распределённых случайных величин и $\exists \mathbb{V}\xi_{1}, a = \mathbb{E}\xi$. Тогда $\forall \varepsilon > 0: \ P\left(\left|\frac{\xi_{1}+\ldots+\xi_{n}}{n}-a\right|>\varepsilon\right) \underset{n\to\infty}{\to} 0$

$$\forall \varepsilon > 0: P(\left|\frac{\xi_1 + \dots + \xi_n}{n} - a\right| > \varepsilon) \xrightarrow[n \to \infty]{} 0$$

Доказательство: Подставим в неравенство Чебышева $\xi = \frac{\xi_1 + \ldots + \xi_n}{n}$.

Заметим, что, благодаря линейности, $\mathbb{E}\xi = a$.

Тогда

$$P(|\xi - \mathbb{E}\xi| > \varepsilon) \le \frac{\mathbb{V}\xi}{\varepsilon^2} = \frac{\mathbb{V}(\xi_1 + \dots + \xi_n)}{n^2 \varepsilon^2}$$

 $P(|\xi-\mathbb{E}\xi|>arepsilon)\leq rac{\mathbb{V}\xi}{arepsilon^2}=rac{\mathbb{V}(\xi_1+\ldots+\xi_n)}{n^2arepsilon^2}$ Так как величины независимы, то дисперсия суммы равна сумме дисперсий. Получаем

 $P(|\xi - \mathbb{E}\xi| > \varepsilon) \le \frac{n\mathbb{V}\xi_1}{n^2\varepsilon^2} \underset{n \to \infty}{\to} 0$

34. Центральная предельная теорема для независимых одинаково распределённых случайных величин с конечной дисперсией

Определение 34.1: Последовательность случайных величин $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ сходится к случайной величине ξ по распределению, если $\forall f: \mathbb{R} \to \mathbb{R}$ — непрерывной ограниченной функции выполнено

$$\mathbb{E} f(\xi_n) \underset{n \to \infty}{\longrightarrow} \mathbb{E} f(\xi)$$

Обозначение $\xi_n \to \xi$.

Определение 34.2: Пусть ξ – случайная величина.

Характеристической функцией случайной величины ξ называется преобразование Фурье

$$\varphi_{\xi}(t) = \mathbb{E}e^{i\xi t}$$

Теорема 34.1 (Непрерывности для характеристической функции): Пусть $\{\xi_n\}_{n=1}^{\infty}$ – последовательность случайных величин, $\{\varphi_n\}_{n=1}^{\infty}$ – соотстветствующая последовательность характеристических функций.

Тогда если

$$\forall t \in \mathbb{R} : \exists \lim_{n \to \infty} \varphi_n(t) = \varphi(t)$$

где $\varphi(t)$ непрерывна в нуле, то $\varphi(t)$ является характеристической функцией некоторой случайной величины ξ , причём $\xi_n \to \xi$.

Теорема 34.2 (О производных характеристической функции): Пусть $\mathbb{E}|\xi|^n < +\infty$ для $n \in \mathbb{N}$.

Тогда $\forall s \leq n$:

- 1. $\varphi^{(s)}(t) = \mathbb{E}((i\xi)^s e^{it\xi})$ 2. $\mathbb{E}\xi^s = \frac{\varphi_{\xi}^{(s)}(0)}{i^s}$

$$\Xi \xi = \frac{1}{i^s}$$
 3. $\varphi_{\xi}(t)$ раскладывается в вид $\varphi_{\xi}(t) = \sum_{k=0}^n \frac{(it)^k}{k!} \mathbb{E} \xi^k + \frac{(it)^n}{n!} \varepsilon_n(t)$ где $|\varepsilon_n(t)| \leq 3\mathbb{E} |\xi|^n$ и $\varepsilon_n(t) \underset{t \to 0}{\to} 0$

Теорема 34.3 (ЦПТ для НОРСВ): Пусть $\{\xi_n\}_{n=1}^{\infty}$ – независимые одинаково распределённые случайные величины, $\mathbb{E}\xi_1=a, 0<\mathbb{V}\xi_1<+\infty.$

Обозначим
$$S_n:=\xi_1+\ldots+\underbrace{\xi_n}_{n-\mathbb{E}S_n}$$
 Тогда
$$\underbrace{\frac{S_n^n-\mathbb{E}S_n}{\sqrt{\mathbb{V}S_n}}}_{d} \xrightarrow{d} \mathcal{N}(0,1)$$

Доказательство: Обозначим $T_n \coloneqq \frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{V}S_n}}$. По теореме непрерывности достаточно проверить, что характеристическая функция T_n сходится к $e^{-\frac{t^2}{2}}$ — характеристической функции $\mathcal{N}(0,1)$ (которая равна также $e^{-\frac{t^2}{2}}$)

Обозначим
$$\eta_j \coloneqq \frac{\xi_j - a}{\sigma}$$
. Тогда $\left\{\eta_n\right\}_{n=1}^\infty$ — тоже НОРСВ, причём $\mathbb{E}\eta_j = 0, \mathbb{V}\eta_j = \mathbb{E}\eta_j^2 = 1$. Тогда
$$T_n = \frac{S_n - na}{\sqrt{n\sigma^2}} = \frac{\eta_1 + \ldots + \eta_n}{\sqrt{n}}$$
 Посчитаем характеристическую функцию T_n :
$$\varphi_{T_n}(t) = \mathbb{E}e^{itT_n} = \mathbb{E}e^{i\frac{t}{\sqrt{n}}(\eta_1 + \ldots + \eta_n)} \overset{\text{независимость}}{=} \prod_{k=1}^n \varphi_{\eta_k}\left(\frac{t}{\sqrt{n}}\right) = \varphi_{\eta_1}^n\left(\frac{t}{\sqrt{n}}\right)^{\text{т. о производных}} = \left(1 + i\frac{t}{\sqrt{n}}\mathbb{E}\eta_1 - \frac{t^2}{2n}\mathbb{E}\eta_1^2 + o\left(\frac{1}{n}\right)\right)^n = \left(1 - \frac{t^2}{2}n + o\left(\frac{1}{n}\right)\right)^n \overset{\rightarrow}{\to} e^{-\frac{t^2}{2}}$$

35. Дифференцируемость функции комплексного переменного. Условия Коши-Римана. Интегральная теорема Коши.

35.1. Дифференцируемость функции комплексного переменного. Условия Коши-Римана

Замечание 35.1.1: В ТФКП используются следующие станартные оборзначения z - комплексная переменная

$$z=x+iy:x,y\in\mathbb{R}$$
 $f(z)$ - исследуемая функция
$$f(x+iy)=u(x,y)+iv(x,y):u,v\in\mathbb{R}^2\to\mathbb{R}$$

Определение 35.1.1: Функция $f:B_r(z_0) \to \mathbb{C}$ называется дифференцируемой в z_0 если

$$\exists A \in \mathbb{C}: f(z) = f(z_0) + A(z-z_0) + o(z-z_0), |z-z_0| \rightarrow 0$$

Теорема 35.1.1: $f:B_r(z_0) \to \mathbb{C}$ дифференцируема тогда и только тогда когда

- 1. u(x,y),v(x,y) дифференцируемы в (x_0,y_0)
- 2. Выполняются условия Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$
 При этом $f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + \frac{i(\partial v)}{\partial x}(x_0, y_0)$

Доказательство:

$$(\Longrightarrow)$$

Пусть f дифференцируема. Тогда $\Delta f = A\Delta z + \alpha(\Delta z) = A\Delta z + \alpha_0(\Delta x, \Delta y) + i\alpha_1(\Delta x, \Delta y)$

Обозначим A=a+ib и распишем Δf по координатно.

$$\begin{cases} \Delta u = a\Delta x - b\Delta y + \alpha_0(\Delta x, \Delta y) \\ \Delta v = b\Delta x + a\Delta y + \alpha_1(\Delta x, \Delta y) \end{cases}$$

Из того, что $\alpha(\Delta z) = o(\Delta z)$ следует α_1, α_2 тоже $o(\Delta x, \Delta y)$

Отсюда по определению u, v дифференцируемы. Причем $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} =$ $a, -\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = b$ (\longleftarrow)

Пусть u, v дифференцируемы и выполняются УКР, тогда

$$\begin{split} \Delta f &= \Delta u + i \Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \alpha_0 (\Delta x, \Delta y) + i \bigg(\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \alpha_1 (\Delta x, \Delta y) \bigg) \\ &= \frac{\partial u}{\partial x} \Delta x - \frac{\partial v}{\partial x} \Delta y + i \bigg(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \bigg) \alpha_0 (\Delta x, \Delta y) + i \alpha_1 (\Delta x, \Delta y) \\ &= \bigg(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \bigg) (\Delta x + i \Delta y) + \alpha_0 (\Delta x, \Delta y) + i \alpha_1 (\Delta x, \Delta y) \end{split}$$

Что и означает дифференцируемость.

35.2. Интегральная теорема Коши

Лемма 35.2.1: Пусть D область f голоморфна в ней. Тогда

- 1. Если f полный диференциал $\Rightarrow \ \forall \gamma$ кусочно гладкая замкнутая $\int_{\gamma} f dz = 0$
- 2. Если интеграл по любой замкнутой ломанной $0 \Rightarrow f$ полный диференциал

Теорема 35.2.1 (Лемма Гурса): Пусть D область, f голоморфна в ней.

Тогда

$$\forall$$
треугольника $\Delta:\overline{\Delta}\in D\ \int_{\partial\Delta}fdz=0$

 \mathcal{A} оказательство: Обозначим $I=\int_{\partial \Delta}f$. Разобъем каждую сторону треугольника пополам, и получим 4 треугольника: $\Delta_1, \Delta_2, \Delta_3, \Delta_4$. Тогда $I = \left(\int_{\partial \Delta_1} + \int_{\partial \Delta_2} + \int_{\partial \Delta_3} + \int_{\partial \Delta_4}\right) f dz = I_1 + I_2 + I_3 + I_4$ Тогда найдется треугольник (б.о.о. Δ_1), такой что $|I_1| \geq \left|\frac{I}{4}\right|$.

Продолжая так делать получим последовательность треугольников $\{\Delta_n\}_{n=1}^\infty.$ Заметим, что в силу компактности $\exists z_0 = \bigcap_0^\infty \overline{\Delta_n}.$

В силу дифференцируемости

$$\forall \varepsilon>0: \forall z\in O_{\delta}(z_0): \ |f(z)-f(z_0)-f'(z_0)(z-z_0)|<\varepsilon(z-z_0)$$

 $orall arepsilon>0: orall z\in O_\delta(z_0): \ |f(z)-f(z_0)-f'(z_0)(z-z_0)|<arepsilon(z-z_0)$ Заметим, что $-f(z_0)-f'(z_0)(z-z_0)$ это полный диференциал, тогда

$$\int_{\Delta_n} f(z) - f(z_0) - f'(z_0)(z - z_0) dz = \int_{\Delta_n} f(z) dz + 0$$

Следовательно для достаточно больших п

$$|I_n| = \left| \int_{\Delta_n} f(z) dz \right| \leq \int_{\Delta_n} |f(z) - f(z_0) - f'(z_0)(z-z_0)| \ |dz| \leq \varepsilon * \left(\frac{l}{2^n}\right)^2$$

Где l периметр $\Delta,$ и соответсвенно $\frac{l}{2^n}$ периметр $\Delta_n.$ Но по построению $|I_n|\geq \frac{I}{4^n},$ следовательно $\forall \varepsilon>0 \ |I|<\varepsilon \Rightarrow I=0$

Лемма 35.2.2: Усиленная Лемма Гурса

Следствие предыдущей теоремы верно и в условиях, что f голоморфна в $D \setminus \{a\}$, непрерывна в D

Доказательство: Картиночки порисовать.

Теорема 35.2.2 (Коши для выпуклой области): Пусть D выпуклая область, f голоморфна в ней.

Тогда $\forall \gamma$ - кусочно гладкой замкнутой $\int_{\gamma} f dz = 0$.

Доказательство: Явно предъявим полный дифференциал F(z) = $\int_{[a:z]} f(\zeta) d\zeta.$

$$F(z) - F(z_0) = \int_{[a;z]} f(\zeta) d\zeta - \int_{[a;z_0]} f(\zeta) d\zeta \stackrel{\text{Jiemma}}{=} \int_{[z_0;z]} f(z_0) dz$$

Тогда очевидно, что

$$\frac{F(z) - F(z_0)}{z - z_0} \to f(z_0)$$

Определение 35.2.1: Пусть γ - кусочно гладкая кривая в D - области.

Тогда приращением аргумента функции вдоль кривой $\Delta_{\gamma}f$ называется $Im\int_{\gamma} \frac{f'(z)dz}{f(z)}$

Определение 35.2.2: Пусть γ - кусочно гладкая замкнутая кривая в \mathbb{C} , $a \in$ $C \setminus \gamma$.

Тогда uнdекcом a oтноcитeльно γ называется $J_{\gamma}(a)=\frac{\Delta_{\gamma}(z-a)}{2\pi}$

$$J_{\gamma}(a) = \frac{\Delta_{\gamma}(z-a)}{2\pi}$$

Определение 35.2.3: Пусть γ - кусочно гладкая кривая лежит в области D.

Тогда говорят что $\gamma \sim 0 \pmod{D}$ гомологично эквивалентна нулю, если $\forall a \in \mathbb{C} \setminus D: \ J_{\gamma}(a) = 0$

Определение 35.2.4: Циклом Г называется формальная линейная комбинация с целыми коэфициентами кусочно-гладких замкнутых кривых. Все определения и теоремы для кривых тривиально переносятся на циклы.

Определение 35.2.5: Пусть γ кусочно гладкая кривая, φ непрерывна на γ . Тогда инегралом Коши называется

$$F_n(z,\varphi) = \int_{\gamma} rac{arphi(\xi)}{\left(\xi-z
ight)^n} d\xi$$

Утверждение 35.2.1: Свойства интеграла Коши

- 1. F_n голоморфна в $\mathbb{C} \setminus \gamma$ 2. $F_n'(z,\varphi) = nF_{n+1}(z,\varphi)$

Лемма 35.2.3 (Общая теорема Коши): Пусть D - область в \mathbb{C} , f - голоморфна в D

Тогда 1.
$$g(\xi,z)=egin{cases} rac{f(\xi)-f(z)}{\xi-z}, \xi
eq z \ (f'(z)), z=\xi \end{cases}$$

непрерывна в $D \times D$

2. Для любой кусочно гладкой $\gamma \in D$

$$h(z) = \int_{\gamma} g(\xi, z) d\xi$$

голоморфна в D

Теорема 35.2.3 (Лиувиля): Пусть f голоморфная в \mathbb{C} и $\exists M, m, R : \forall z, |z| > R : |f(z)| < Mz^m,$

тогда f полином степени m. В частности, если f ограничена, то она константа.

Теорема 35.2.4 (Интегральная теорема + формула Коши): Пусть D - область в \mathbb{C} , f - голоморфна в D.

- Пусть Γ цикл в D, причем $\Gamma\sim 0\ (\mathrm{mod}\ D)$, тогда 1. (формула) $\forall z\in D\setminus\Gamma: J_{\Gamma}(z)f(z)\frac{1}{2\pi i}=\int_{\Gamma}\frac{f(\xi)d\xi}{\xi-z}$
- 2. (теорема) $\int_{\Gamma} f(z)dz = 0$

Доказательство: (Необязательно) Пусть $G=\{z\in\mathbb{C}\setminus\Gamma\mid J_{\Gamma}(z)=0\}$ оно открытое. Рассмотрим две функции

1. $2\pi i \ \tilde{h}(z) = \int_{\Gamma} \frac{f(\xi)d\xi}{\xi - z}$

Она голоморфна в G как интеграл Коши.

2. $2\pi i \ h(z) = \int_{\Gamma} \left(\frac{f(\xi) - f(z)}{\xi - z} \right) d\xi$

Она голоморфна в D по 2 пункту общей теоремы Коши

Заметим, что $\forall z \in G \cap D: \ h(z) = \tilde{h}(z)$ так как

$$h(z)- ilde{h}(z)=rac{1}{2\pi i}\int_{\Gamma}rac{f(z)}{\xi-z}d\xi=J_{\Gamma(z)}f(z)=0$$

Из того, что $\Gamma \sim 0 \pmod{D}$ следует $\mathbb{C} \setminus D \subset G$ Тогда рассмотрим новую функцию:

$$F(z) = \begin{cases} h(z), z \in D \\ \tilde{h}(z) \\ z \in \mathbb{C} \setminus D \subset G \end{cases}$$

Она голоморфна в каждой из компонент. А так как на границе h и \tilde{h} равны, то голоморфна и в \mathbb{C} .

Заметим, что

$$|\tilde{h}(z)| \leq \frac{1}{2\pi} \int_{\Gamma} \frac{\max_{\Gamma} |f| \ |d\xi|}{dist(z,\Gamma)} \underset{dist(z,\Gamma) \to \infty}{\longrightarrow} 0$$

А следовательно по теореме Лиувиля $F(z) \equiv 0$.

Следовательно в $D \setminus \Gamma$ h(z) = 0. То есть

$$\begin{split} \frac{f(z)}{2\pi i} \int_{\Gamma} \frac{d\xi}{\xi - z} &= \int_{\Gamma} \frac{f(\xi) d\xi}{\xi - z} \\ f(z) J_{\Gamma(z)} &= \int_{\Gamma} \frac{f(\xi) d\xi}{\xi - z} \end{split}$$

 $(1 \Rightarrow 2)$

Применим 1 к $\tilde{f}(z)=(z-a)(f(z)),$ где $a\in\mathbb{C}\setminus\Gamma$ (естественно в области определения f) Тогда

$$0=J_{\Gamma(a)}(a-a)f(a)=J_{\Gamma(a)}\tilde{f}(a)=\int_{\Gamma}\frac{\tilde{f}(\xi)d\xi}{\xi-a}=\int_{\Gamma}f(\xi)d\xi$$

36. Интегральная формула Коши. Разложение функции регулярной в окрестности точки в ряд Тейлора.

36.1. Интегральная формула Коши.

Теорема 36.1.1: Формула Коши для круга Пусть f голоморфна в D, $\overline{O_{\rho(a)}} \in$ D тогда

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta - a| = \rho} \frac{f(\zeta)}{\zeta - z} d\zeta$$

 Доказательство: В силу $\overline{O_{\rho(a)}}\in D\Rightarrow \exists R>\rho:\ O_{R(a)}\in D.$ Зафиксируем $z\in$ $O_{
ho(a)}$

Рассмотрим следующую функцию

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{z - \zeta}, \zeta \neq z \\ f'(z), z = \zeta \end{cases}$$

Она удовлетворяет условиям усиленной Леммы Гурса, следовательно

$$0 = \int_{|\zeta-a|=\rho} g(\zeta) d\zeta = \int_{|\zeta-a|=\rho} \frac{f(\zeta)}{\zeta-z} d\zeta - \int_{|\zeta-a|=\rho} \frac{f(z)}{\zeta-z} d\zeta = \int_{|\zeta-a|=\rho} \frac{f(\zeta)}{\zeta-z} d\zeta - f(z) \int_{|\zeta-a|=\rho} d\frac{\zeta}{\zeta-z}.$$

Обозначим $G(z)=\int_{|\zeta-a|=\rho}d\frac{\zeta}{\zeta-z}.$ Она голоморфна в области как интеграл Коши. $G'=\int_{|\zeta-a|=\rho}\frac{d\zeta}{(\zeta-z)^2}\equiv 0$

Следовательно $G(z) = \text{const} = G(a) = 2\pi i$

Отсюда эелементарно получим требуемое.

Замечание 36.1.1: Фомулировку для более общего случая смотри в прошлом билете

36.2. Разложение функции регулярной в окрестности точки в ряд Тейлора.

Теорема 36.2.1: Пусть
$$f$$
 - голоморфная в $D,$ $O_{R(a)}\subset D,$ тогда $\forall z\in O_{R(a)}: f(z)=\sum_{n=0}^\infty c_n(z-a)^n,\ c_n=f^{(n)}\frac{a}{n!}$

Доказательство: Возьмем 0 < r < R, тогда f голоморфна в $\overline{O_{r(a)}}$. Тогда по теореме Коши $2\pi i \ f(z) = \int_{\gamma_r} \frac{f(\xi)d\xi}{\xi-z}.$

Распишем

$$\frac{1}{\xi - z} = \frac{1}{(\xi - a) - (z - a)} = \frac{1}{(\xi - a)} \cdot \frac{1}{1 - \frac{z - a}{\xi - a}} \stackrel{(|z - a|}{=} \stackrel{\leq}{=} \frac{|\xi - a|)}{=} \frac{1}{\xi - a} \sum^{\infty} \left(\frac{z - a}{\xi - a}\right)^n = \sum^{\infty} \frac{(z - a)^n}{\left(\xi - a\right)^{n+1}} \stackrel{(|z - a|)}{=} \frac{1}{\xi - a} \stackrel{(|z - a|)}{=} \frac{1}{\xi - a$$

Полученный ряд сходится равномерно, а значит можно почленно интегрировать.

$$2\pi i \ f(z) = \int_{\gamma_r} rac{f(\xi)}{\xi} = \sum^{\infty} \int rac{f(\xi)}{(\xi-a)^{n+1}} (z-a)^n = \sum_{n=0}^{\infty} 2\pi i c_n (z-a)^n$$
 Причем по следтвию формулы Коши для круга, $2\pi i \cdot c_n = rac{f^{(n)}}{n!}$ Ну раз верно для любого $r < R$, то и для R верно.

37. Разложение функции регулярной в кольце в ряд Лорана. Изолированные особые точки однозначного характера.

37.1. Разложение функции регулярной в кольце в ряд Лорана.

Теорема 37.1.1:

Пусть
$$f$$
 голоморфна в кольце $K=\{z\in\mathbb{C}\mid r<|z-a|< R\}.$ Тогда $\forall z\in K:\ f(z)=\sum_{-\infty}(+\infty)c_n(z-a)^n$

где

$$c_n = \frac{1}{2\pi i} \int_{\gamma_o} \frac{f(\xi)d\xi}{(\xi - a)^{n+1}}$$

где γ_ρ положительно определеная окружность радиуса $\rho \in (r,R)$ с центром в а.

Доказательство: Для начала покажем независимость коэфициентов от выбора ρ . Возьмем две окружности радиусов ρ и ρ' . Применим для $\Gamma = \rho - \rho'$ интегральную теорему Коши и получим требуемое.

Рассмотрим r < r' < R' < R. Тогда $\forall z \in K'_{r',R'}$

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi-z} = (2\pi i) \left(\int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi-z} - \int_{\gamma_{r'}} \frac{f(\xi)d\xi}{\xi-z} \right) =: f_1 + f_2$$

Заметим, что $f_1=\int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi-z}$ голоморфна в $O_{R'}(a)$. А значит раскладывается в ряд Тейлора. $f_1=\sum_0^{+\infty} c_n(z-a)^n$ Вновь раскладываем $\frac{1}{z-\xi}=\sum_0^{\infty} \frac{(\xi-a)^n}{(z-a)^{n+1}}$ при $|\frac{\xi-a}{z-a}|<1$

Значит

$$f_2(z) = \sum_{0}^{\infty} \left(z - a\right)^{-n-1} \cdot \left(c_{-n-1} \coloneqq \frac{1}{2\pi i} \int_{\gamma_{r'}} f(\xi) (\xi - a)^n d\xi\right)$$

Итого получили требуемое, не зависящее от r', R'

Определение 37.1.1: Такое представление голоморфной функции называется рядом Лорана

Лемма 37.1.1: Единсвенность ряда Лорана

Если $f(z)=\sum_{-\infty}(+\infty)c_n(z-a)^n$ в кольце K, то f голоморфна в этом кольце, причем ряд лорана совпадает с данным. То есть $c_n=\frac{1}{2\pi i}\cdot\int_{\gamma_o}\frac{f(\xi)d\xi}{(\xi-a)^{n+1}}$

Проверка равенства коэфициентов. Для n=-1

$$\int_{\gamma_{\alpha}} f(z)dz = \sum_{-\infty}^{+\infty} \int_{\gamma_{\alpha}} c_n (z-a)^n dz = c_{-1}$$

 $\int_{\gamma_\rho} f(z)dz = \sum_{-\infty}^{+\infty} \int_{\gamma_\rho} c_n (z-a)^n dz = c_{-1}$ Для $n \neq -1$ двигаем ряд так чтобы нужный коэфициент встал на -1. \square

37.2. Изолированные особые точки однозначного характера.

Здесь пусть f(z) функция имеющая изолированную особую точку a, тогда:

Определение 37.2.1: а - устранимая особенная точка, если $\exists A \in \mathbb{C}$: $\lim_{z \to a} f(z) = A$

Определение 37.2.2: а - устранимая особенная точка, если $\lim_{z\to a} f(z) = \infty$

Определение 37.2.3: а - существенная особенная точка, если

$$\nexists \lim_{z \to a} f(z)$$

Теорема 37.2.1: а - УОТ $\Leftrightarrow f$ ограничена в какой-то $\dot{O}_{\delta(a)}$

Доказательство: (⇒) очевидно из определения предела.

 (\Leftarrow) Положим $M_{\rho}(f) = \max_{\gamma_{\rho}} \lvert f \rvert$ Тогда оценим

$$|c_n| \leq \frac{1}{2\pi} \int_{\gamma_\rho} \biggl(|f| \ |d\xi \frac{|}{\rho^{n+1}} \biggr) \leq \frac{M_{\rho(f)}}{\rho^n}$$

Из ограниченности, можно оценить M_{ρ} как константу. А значит при $n < 0, \rho \to 0$: $|c_n| \to 0$. Следовательно $|c_n|$. А значит есть только регулярная часть ряда Лорана, а следовательно a - УОТ.

Теорема 37.2.2: а - полюс ⇔ существует лишь конечное число ненулевых членов в главной части ряда Лорана.

Доказательство:

 (\Leftarrow) аккурано посчитаем предел и получим требуемое. (⇒) По условию $\lim_{z\to a}f(z)=\infty\Rightarrow\lim_{z\to a}\frac{1}{f(z)}=0.$ Т.е функция $\frac{1}{f(z)}$ имеет в a УОТ. В силу изолированности $a,\,\frac{1}{f(z)}$ голоморфна в окрестности a, причем от-

В силу изолированности a, $\frac{1}{f(z)}$ голоморфна в окрестности a, причем отлична от 0. А значит из предыдущего доказтельства получим разложение в Тейлора.

$$\frac{1}{f(z)}=(z-a)^mh(z), h(a)\neq 0 \Rightarrow f(z)=\frac{1}{(z-a)^m}\cdot\frac{1}{h(z)}$$
 голоморфная в окрестности \Rightarrow раскладывается в Тейлора

Теорема 37.2.3: Сохоцкого

Если а - COT, то
$$\forall A \in \overline{\mathbb{C}} \exists \{z_n\} \to a, f(z_n) \to A$$

Доказательство: (Необязательно) Для $A = \infty$ очевидно. Если не существует, то ограничена \Rightarrow УОТ.

Если $A \neq \infty$, то рассмотрим $g(z) \coloneqq \frac{1}{f(z) - A}$.

Если A не предельная, то f(z) - A отделена от нуля, а значит g(z) ограничена. Следовательно a - УОТ для g. Причем $g(z) \neq 0$ в области определения.

Тогда заметим, что $f(z) = A + \frac{1}{g(z)}$.

Если $g(a) \neq 0$, то a - УОТ для \check{f} .

Иначе полюс. Противоречие.

38. Вычеты. Вычисление интегралов по замкнутому контуру при помощи вычетов

Определение 38.1: Пусть f голоморфна в $O_{r(a)}^{\,\cdot}, a \in \mathbb{C},$ то определим вычет как

$$\operatorname{res}_a f = \frac{1}{2\pi i} \int_{\gamma_a} f(z) dz$$

Лемма 38.1: Вычеты определены корректно (не завият от γ)

Доказательство: Пусть $f=\sum_{-\infty}^{+\infty}c_n(z-a)^n,\ z\in \dot{O}_{r(a)},$ то

$$\frac{1}{2\pi i}\int_{\gamma_{\rho}}f(z)dz=\sum_{-\infty}^{+\infty}c_{n}\frac{1}{2\pi i}\int_{\gamma_{\rho}}\left(z-a\right)^{n}=c_{-1}$$

He зависит от γ

Теорема 38.1: Коши о вычетах (а.к.а Вычисление интегралов по замкнутому контуру с помощью вычетов)

Пусть D ограничена циклом $\Gamma=\gamma_0-\gamma_1-\gamma_2-...-\gamma_n$. Пусть $A=\{a_1,a_2,a_3,...,a_N\}\subseteq D.$ f голоморфна в $D'\setminus A$ где $D'\supset D$. Тогда $\frac{1}{2\pi i}\int_{\Gamma}f(z)dz=\sum^N\mathrm{res}_{a_i}f$

Доказательство: Окужаем каждую особую точку кругом радиуса R. Добавляем и вычитаем из Γ эти круги (δ_i) . В части с минусами получаем новый цикл $\tilde{\Gamma} = \Gamma - \sum \delta_i$, такой что в нем f голоморфна.

Проверяем что $\tilde{\Gamma} \sim 0 \pmod{\tilde{D}}$

- В точках вне D он так и остался 0.
- В новых точках (внутри δ_i) 1-1=0

Следовательно интеграл по $\tilde{\Gamma}$ равен 0, а оставшая часть это $\sum \int_{\delta_i} f dz = 2\pi i \sum {\rm res}_{a_i} f$.

39. Определения и формулировки

Тут собраны всякие общие определния, которые вас могут спросить и примерные идеи их доказательств

39.1. ℕ

Вводим аксиоматически. То есть говорим,

Определение 39.1.1:

Если множесто \mathbb{N} и функция $Sc : \mathbb{N} \to \mathbb{N}$ удовлетворяют следующим аксиомам, то это множество называется множеством натуральных чисел. (Ну или как то так. Вряд ли это спросят кончено.)

- 1. $0 \in \mathbb{N}$
- 2. $\forall n \in \mathbb{N} \exists ! \operatorname{Sc}(n) \in \mathbb{N}$. (Sc «следующее число»)
- 3. $\forall n \in \mathbb{N} \ \operatorname{Sc}(n) \neq 0$
- 4. $Sc(n) = Sc(m) \Rightarrow n = m$ (равенство в теоретико-множественном смысле)
- 5. (индукция) $\forall M \subseteq \mathbb{N}: 0 \in M \land (n \in M \Rightarrow Sc(n) \in M) \Rightarrow M = \mathbb{N}$

Операция + вводится как рекурсивное перекладывание Sc Операция \leq вводится как $n \leq m \stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{N}: n+k=m$

39.2. ℝ

Считаем, что \mathbb{Z} , \mathbb{Q} как ни будь определите.

Аксиоматически:

Определение 39.2.1: $(\mathbb{R},+,\times,\leq,0,1)$ удовлетворяют следующим свойствам

- I Операция $+: \mathbb{R}^2 \to \mathbb{R}$ в смылсе поля
- II Операция $\times: \mathbb{R}^2 \to \mathbb{R}$ в смылсе поля
- III Операция ≤ линейный порядок, уважает сложнение/умножение с положительными и
- IV $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \setminus \{0\} \ \exists p \in \mathbb{Z}: \ py > x \ (\mathbb{Z} \ получается как \ 1+1+1+1...)$
- V Полнота
 - 1 вариант: в смысле функана каждая фундаментальная сходится.
 - 2 вариант: по лектору $\forall A, B \subseteq \mathbb{R}: A \cup B = \mathbb{R} \land A \cap B = \emptyset \land (\forall a \in A, b \in B \ a \leq b) \Rightarrow \exists c: \forall a \in A \ \forall b \in B \ a \leq c \leq b$

Замечание 39.2.1: Построение \mathbb{R} . Строится как множество классов эквивалентности над фундаментальными последовательностями (у лектора: стягивающимися рациональными отрезками). Все свойства кроме полноты в полуавтоматическом режиме переносятся с \mathbb{Q} .

Полнота(в смысле лектора):

Строим приближающую последовательность десятичных приближений. То есть сначала берем наибольшее целое в A, наименьшее целое в B. Затем среди чисел с 1 знаком после запятой. И так далее. Получаем последовать стягивающихся отрезков. (Или если поочерди брать, то просто фундаментальную последовательность).

Она и будет представителем искомого c.

39.3. ℂ

Строится как \mathbb{R}^2 с базисом (1,i) сложение покомпонентное.

Умножение $a,b,c,d \in \mathbb{R} \ (a1+bi)*(c1+di) = (ac-bd)1 + (bc+ad)i$