



# RETAILROCKET ALS RECOMMENDER

XIAOLONG, FUSHENG, QING GAO, WENXIONG





## BUSINESS GOAL AND VALUE

RECOMMEND FASHION PRODUCTS TO CUSTOMERS



#### BUSINESS GOAL

Improve the customer experience by solving the problem of choice overload

X Encourage the customers to explore more products





## METHODOLOGY AND TECHNIQUES

#### OVERVIEW







#### DATA PREPROCESSING

- Encode Event type to the following:"View":1, "Add to Cart": 5, "Purchase": 10
- Transfer Timestamp to readable Datetime Value

|   | timestam               | p visitorid | event | itemid | transactionid |
|---|------------------------|-------------|-------|--------|---------------|
| 0 | 2015-06-02 05:02:12.11 | 7 257597    | 1     | 355908 | NaN           |
| 1 | 2015-06-02 05:50:14.16 | 4 992329    | 1     | 248676 | NaN           |
| 2 | 2015-06-02 05:13:19.82 | 7 111016    | 1     | 318965 | NaN           |
| 3 | 2015-06-02 05:12:35.91 | 4 483717    | 1     | 253185 | NaN           |
| 4 | 2015-06-02 05:02:17.10 | 6 951259    | 1     | 367447 | NaN           |
|   |                        |             |       |        |               |



#### DATA SPLITTING

- **X** Random Split
- Time Series Nested Cross Validation



### "SLIDING WINDOW" TRAINING APPROACH





#### Time Series Nested Cross Validation





#### MODELING

Spark ALS

Implicit (Library)

#### LIBRARY: IMPLICIT



```
To install:
```

pip install implicit

#### Basic usage:

#### import implicit

# initialize a model
model = implicit.als.AlternatingLeastSquares(factors=50)

# train the model on a sparse matrix of item/user/confidence
model.fit(item\_user\_data)

#### **Implicit**

build passing op build passing

Fast Python Collaborative Filtering for Implicit Datasets.

This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets:

- Alternating Least Squares as described in the papers Collaborative Filtering for Implicit Feedback Datasets and Applications of the Conjugate Gradient Method for Implicit Feedback Collaborative Filtering.
- · Bayesian Personalized Ranking.
- Logistic Matrix Factorization
- Item-Item Nearest Neighbour models using Cosine, TFIDF or BM25 as a distance metric.

All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU's. Approximate nearest neighbours libraries such as Annoy, NMSLIB and Faiss can also be used by Implicit to speed up making recommendations.





# MEANINGFUL RESULTS AND DISCUSSION



## Recommendation Example

|            | Random Split | Temporal Split |
|------------|--------------|----------------|
| Train RMSE | 1.07         | 0.98           |
| Test RMSE: | 2.006        | 1.9            |



#### MODEL COMPARISON

- "View":1, "Add to Cart": 5, "Purchase": 10
- **x** rank = 10
- **X** Test Error = 1.62

| X | "View":1, "Add to Cart": |
|---|--------------------------|
|   | 5. "Purchase": 10        |

- **x** rank = 10
- implicitPrefs = True
- X Test Error = 1.45

| X | "View":1, "Add to Cart": |
|---|--------------------------|
|   | 3, "Purchase": 10        |

- **x** rank = 10
- **X** Test Error = 1.45

| +         | +      | +      | ++          |
|-----------|--------|--------|-------------|
| visitorid | itemid | rating | prediction  |
| +         | +      | +      | ++          |
| 2133      | 137697 | 10     | 4.9893203   |
| 3465      | 8523   | 10     | 2.9910188   |
| 3465      | 114485 | 10     | 0.98868304  |
| 3465      | 434048 | 10     | -0.30423677 |
| 3896      | 407518 | 10     | 2.9953449   |
| 4113      | 231807 | 10     | 1.4403526   |
| 4899      | 46156  | 10     | 1.7981739   |
| 6029      | 294267 | 10     | 1.7468264   |
| 6468      | 378760 | 10     | 4.910337    |
| 6952      | 461686 | 10     | 2.2747154   |
| +         | +      | +      | ·+          |

| +         | + <del>-</del> | +        | <del>+</del> |
|-----------|----------------|----------|--------------|
| visitorid | itemid         | rating   | prediction   |
| +         | +              | +        | ·+           |
| 2133      | 137697         | 10       | 0.010105458  |
| 3465      | 8523           | 10       | 0.003613429  |
| 3465      | 114485         | 10       | 1.640226E-4  |
| 3465      | 434048         | 10       | 1.8516456E-4 |
| 3896      | 407518         | 10       | 7.90489E-5   |
| 4113      | 231807         | 10       | 1.0887056E-4 |
| 4899      | 46156          | 10       | 0.18599321   |
| 6029      | 294267         | 10       | 0.011176619  |
| 6468      | 378760         | 10       | 0.0054947375 |
| 6952      | 461686         | 10       | 1.144534     |
| +         | +              | <b>+</b> | ·+           |

| +         | +      | + <del>-</del> | ++           |
|-----------|--------|----------------|--------------|
| visitorid | itemid | rating         | prediction   |
| +         | +      | +              | ++           |
| 2133      | 137697 | 10             | 2.991397     |
| 3465      | 8523   | 10             | 1.9925888    |
| 3465      | 114485 | 10             | 0.99090487   |
| 3465      | 434048 | 10             | -0.4591227   |
| 3896      | 407518 | 10             | 1.996004     |
| 4113      | 231807 | 10             | 1.2194085    |
| 4899      | 46156  | 10             | 1.3979611    |
| 6029      | 294267 | 10             | 1.3835899    |
| 6468      | 378760 | 10             | 2.9256706    |
| 6952      | 461686 | 10             | 1.617531     |
| +         | +      | +              | <del>+</del> |





## RATIONAL NEXT STEP



**X** Precision at k evaluation

- X Handle long tail data
- Model Tuning to increase predicting power



## Q&A