COMP 3331/9331: Computer Networks and Applications

Week 9
Wireless Networks

Reading Guide: Chapter 7, Sections 7.1 - 7.3

"Having the lecture recordings up – absolute lifesaver when it comes to revision"

Tell us about your experience and shape the future of education at UNSW.

Click the link in Moodle now

Complete your myExperience and shape the future of education at UNSW.

or login to myExperience.unsw.edu.au

(use z1234567@ad.unsw.edu.au to login)

The survey is confidential, your identity will never be released

Survey results are not released to teaching staff until after your results are published

Wireless and Mobile Networks: context

- more wireless (mobile) phone subscribers than fixed (wired) phone subscribers (10-to-1 in 2019)!
- more mobile-broadband-connected devices than fixed-broadband-connected devices devices (5-1 in 2019)!
 - 4G/5G cellular networks now embracing Internet protocol stack, including SDN
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

We will only focus on wireless challenges

Outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

Wireless 101

Frequency/Wave-Length -

C is the speed of light f is frequency λ (lambda) is wavelength

Wavelength

Frequency

$$\lambda = \frac{C}{f}$$

$$f = \frac{C}{\lambda}$$

- typically used to connect mobile(s) to base station, also used as backbone link
- multiple access protocol coordinates link access
- various transmission rates and distances, frequency bands

Characteristics of selected wireless links

Inside the radio wave spectrum

Almost every wireless technology - from cell phones to garage door openers - uses radio waves to communicate. Some services, such as TV and radio broadcasts, have exclusive use of their frequency within a geographic area.

General Information Not on Fxam

1 megahertz (MHz) = 1 million hertz

Source: New America Foundation, MCT, Howstuffworks.com Graphic: Nathaniel Levine, Sacramento Bee

Most of the white

ad hoc mode-

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops	
infrastructure (e.g., APs)	host connects to base station (WiFi, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net	
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach a given wireless node; MANET, VANET	

Outline

7.1 Introduction

Wireless

7.2 Wireless links, characteristics

7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

Wireless link characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared by many devices (e.g., WiFi, cellular, motors): interference
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Multipath Effects

- Signals bounce off surface and interfere (constructive or destructive) with one another
- Self-interference

Ideal Radios

Real Radios

Wireless link characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - Practical limits to increasing power
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, transmission rate)

BER: Bit Error Rate

...... QAM256 (8 Mbps)

– – · QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless link characteristics (3)

Multiple wireless senders, receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Outline

7.1 Introduction

Wireless

7.2 Wireless links, characteristics

7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.IIb	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.IIn (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.1 lac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802. I I ax (WiFi 6)	2021	14 Gbps	70m	2.4, 5 Ghz
802. I l af	2014	35 – 560 Mbps	I Km	unused TV bands (54-790 MHz)
802.11ah (WiFi Halow)	2017	347Mbps	I Km	900 Mhz

all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication [Security]
 - then typically run DHCP to get IP address in AP's subnet

802. II: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H I

active scanning:

- (I) Probe Request frame broadcast from HI
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: HI to selected AP
- (4) Association Response frame sent from selected AP to HI

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - · don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/CollisionAvoidance

Multiple access: Key Points

- No concept of a global collision
 - Different receivers hear different signals
 - Different senders reach different receivers
- Collisions are at receiver, not sender
 - Only care if receiver can hear the sender clearly
 - It does not matter if sender can hear someone else
 - As long as that signal does not interfere with receiver
- Goal of protocol
 - Detect if receiver can hear sender
 - Tell senders who might interfere with receiver to shut up

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time (exponential backoff protocol similar to CSMA/CD) timer counts down while channel idle transmit when timer expires if no ACK, double random backoff interval, repeat 2

802.11 receiver

if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Collision Avoidance: RTS-CTS exchange

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: addressing

802. I I: advanced capabilities

Rate adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
 - I. SNR decreases, BER increase as node moves away from base station
 - 2. When BER becomes too high, switch to lower transmission rate but with lower BER

Quiz

The following is the correct sequence of message exchanges as per the reservation process of 802.11 CSMA/CA

www.pollev.com/salil

- A. RTS->CTS->DATA->CTS
- B. CTS->RTS->DATA->ACK
- c. RTS->CTS->DATA->ACK
- D. RTS->ACK->DATA->CTS

Quiz

- Which multiple access technique is used by IEEE 802.11?
 - A. CSMA/CD
 - B. Slotted ALOHA
 - C. CSMA/CA
 - D. TDMA
 - E. FDMA

www.pollev.com/salil

ANSWER: C

Summary

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
- IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics