CS561 - ARTIFICIAL INTELLIGENCE LAB

ASSIGNMENT-2: Hill Climbing and Simulated Annealing

(Read all the instructions carefully & adhere to them.)

Date: Aug 25, 2021 **Deadline:** September 02, 2021

Total Credit: 30 (Implementation: 20; Documentation & Explanation: 10)

Questions

- 1. A local search algorithm tries to find the optimal solution by exploring the states in the local region. Hill climbing is a local search technique which always looks for a better solution in its neighbourhood.
 - a. Implement the Hill Climbing Search Algorithm for solving the 8-puzzle problem.
 - b. Check the algorithm for the following heuristics:
 - i. h1(n) = number of tiles displaced from their destined position.
 - ii. h2(n) = sum of Manhattan distance of each tile from the goal position.

Instructions:

1. Input is given in a file in the following format. Read the input and store the information in a matrix. Configuration of the start state and the goal state can be anything. For example, given below T1, T2, ...,T8 are tile numbers and B is blank space.

Start state			
T6	T7	Т3	
T8	T4	T2	
T1	В	T5	

Goal state			
T1	T2	Т3	
T4	T_5	T6	
T7	T8	В	

- 2. Output should have the following information:
 - a. On success:
 - i. Success Message
 - ii. Start State / Goal State

- iii. Total number of states explored
- iv. Total number of states to optimal path
- v. Optimal Path
- vi. Optimal Path Cost
- vii. Time taken for execution

b. On failure:

- i. Failure Message
- ii. Start State / Goal State
- iii. Total number of states explored before termination

2. Simulated Annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space.

- a. Implement Simulated Annealing Search Algorithm for solving the 8-puzzle problem. Your start and Goal state should be the same as in Q.1.
- **b. Input**: Input should be taken from an input file and processed as a matrix. Other inputs are Temperature variable T, heuristic function, neighbourhood generating function, a probability function to decide state change, and a cooling function.
- **c. Output**: All the following results should be stored in an output file:
 - i. The success or failure message
 - **ii.** Heuristics chosen, Temperature chosen, cooling function chosen, Start state, and Goal state.
 - iii. (Sub) Optimal Path (on success),
 - iv. Total number of states explored.
 - v. Total amount of time taken.

d. Objective functions to be checked:

- i. h1 (n)= Number of displaced titles.
- ii. h2 (n)= Total Manhattan distance.

e. Constraints to be checked:

- i. Check whether the heuristics are admissible.
- ii. What happens if we make a new heuristics h3 (n) = h1 (n) * h2 (n).
- iii. What happens if you consider the blank tile as another tile?
- iv. What if the search algorithm got stuck into Local optimum? Is there any

Instructions:

- 1. The assignment should be completed and uploaded by 2nd Sep, 2021, 11:59 PM IST.
- 2. Markings will be based on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments are mandatory.
- 4. Make your observations to compare between Hill climbing and Simulated annealing with respect to the time complexity (for near optimal solution) and no of steps.
- 5. You should zip all the required files and name the zip file as: roll_no_of_all_group_members .zip, eg. 1501cs11_1201cs03_1621cs05.zip.
- 5. Upload your assignment (**the zip file**) in the following link: https://www.dropbox.com/request/YHdbUqR0exGjq4h9SdkD

For any queries regarding this assignment you can contact: Zishan Ahmad (zeeman.zishan@gmail.com)
Kanchan Jha (jha.kanchan15@gmail.com) or
Gitanjali Kumari (gitanjalisingh228@gmail.com)