Clase nº31

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

17 de Noviembre 2021

Objetivo de la clase

- ▶ Determinar la convergencia o divergencia de las integrales impropias de primera clase.
- ▶ Determinar la convergencia o divergencia de las integrales impropias de segunda clase.

Ejemplo 95

Si a>0 y $p\in\mathbb{R},$ entonces la integral impropia de primera clase

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{a^{1-p}}{p-1}, & \text{si } p > 1\\ +\infty & \text{si } p \le 1. \end{cases}$$

Criterio de comparación al límite

Sean f(x), g(x) funciones continuas, positivas. Entonces, para

$$x \ge a$$
 y $K = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$ tenemos que:

a) Si $K \neq 0$, entonces ambas integrales impropias sobre $[a, +\infty[$

$$\int_{a}^{+\infty} f(x) dx, \quad \int_{a}^{+\infty} g(x) dx$$

convergen o ambas divergen.

b) Si K = 0, entonces la convergencia de $\int_{a}^{+\infty} g(x) dx$ implica la convergencia de $\int_{a}^{+\infty} f(x) dx$.

Criterio de comparación al límite

c) Si $K=+\infty$, entonces la divergencia de $\int_a^{+\infty} g(x) \, dx$ implica la divergencia de $\int_a^{+\infty} f(x) \, dx$.

Ejemplo 96

Utilizando comparación al límite, mostrar que $\int_1^{+\infty} e^{-x} x^4 dx$ converge.

Ejemplo 97

Estudiar la convergencia de la integral

$$\int_1^{+\infty} \frac{x^2}{1+x^4} \, dx,$$

utilizando comparación al límite con la función $\frac{1}{x^2}$.

Ejemplo 98

Estudiar la convergencia de la integral

$$\int_1^{+\infty} \frac{1}{\sqrt{x}} \, dx,$$

utilizando comparación al límite con la función $g(x) = \frac{1}{x}$.

Problemática 1 ¿Se puede determinar el área pintada?

Problemática 2

¿Se puede determinar el área bajo la curva $y = \frac{1}{x^2}, x \in]0,3]$?

Problemática 3

¿Se puede determinar el área bajo la curva $y = \frac{1}{\sqrt{x}}, x \in]0,3]$?

Llamaremos integrales impropias de segunda clase a las integrales de funciones que no están acotadas en el intervalo de integración.

Definición

1. Si $f:]a, b] \to \mathbb{R}$ una función tal que, para todo $c \in]a, b[, f]$ es integrable en [c, b], entonces se define

$$\int_{a^+}^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx.$$

2. Si $f: [a, b[\to \mathbb{R} \text{ una función tal que, para todo } c \in]a, b[, f \text{ es integrable en } [a, c[, \text{ entonces se define}]$

$$\int_a^{b^-} f(x) dx = \lim_{c \to b^-} \int_a^c f(x) dx.$$

Observación

En las definiciones anteriores si el límite existe diremos que la integral converge; si no, es divergente y puede hacerlo a $+\infty, -\infty$ o diverge de forma oscilante.

Ejemplo 99

Si b>0 y $p\in\mathbb{R},$ la integral impropia de segunda clase

$$\int_{0^{+}}^{b} x^{-p} dx = \begin{cases} \frac{b^{1-p}}{1-p} & \text{si } p < 1, \\ +\infty & \text{si } p \ge 1. \end{cases}$$

Definición

Si f es discontinua en c, donde a < c < b, y es continua en $[a, c[\cup]c, b]$, entonces

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx,$$

siempre que las dos integrales de la derecha sean convergentes.

Ejemplo 100

Sea f definida por $f:[-1,1]\to\mathbb{R}$.

$$f(x) = \begin{cases} \frac{1}{x^2} & , x \neq 0 \\ 0 & , x = 0. \end{cases}$$

Determinar si existe la integral impropia

$$\int_{-1}^{1} f(x) dx.$$

Observación

También se pueden aplicar estas definiciones cuando hay varios puntos conflictivos $a < c_1 < c_2 < \cdots < c_n < b$.

$$\int_a^b f(x) dx = \int_a^{c_1} f(x) dx + \int_{c_1}^{c_2} f(x) dx + \dots + \int_{c_{n-1}}^{c_n} f(x) dx + \int_{c_n}^b f(x) dx,$$

donde cada integral de la derecha se ha obtenido como un límite.

Ejercicio Propuesto

1. Estudiar la convergencia de la integral

- - 2. Determinar que
 - a) $\int_{0^{+}}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}} dx = \frac{2}{\sqrt{2}}.$ b) $\int_{0^{+}}^{2} \frac{1}{x^{\frac{1}{2}}} dx = 2\sqrt{2}.$ c) $\int_{0^{+}}^{\frac{1}{3}} \frac{1}{x^{\frac{3}{2}}} dx \text{ es divergente.}$
- - $I = \int_{1}^{+\infty} \frac{x^{p}}{1 + x^{q}} dx.$

Ejercicio propuesto

3. Encuentre el error en el siguiente calculo

$$\int_0^4 \frac{1}{x-1} dx = (\ln|x-1|)_0^4$$

$$= \ln(3) - \ln|-1|$$

$$= \ln 3.$$

4. Considere la función definida por $f(x) = \begin{cases} 1, & \text{si } x < 2, \\ \frac{1}{x-2}, & \text{si } x > 2. \end{cases}$

Determine si $\int_{1}^{3} f(x) dx$ converge.

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.