Tabla de transformadas de Laplace útiles

	x(t)	X(s)		x(t)	X(s)
1	$\delta(t)$	1	10	$t\cos(\beta t)u(t)$	$\frac{s^2 - \beta^2}{(s^2 + \beta^2)^2}$
2	u(t)	$\frac{1}{s}$	11	$t\sin(\beta t)u(t)$	$\frac{2s\beta}{(s^2+\beta^2)^2}$
3	r(t) = tu(t)	$\frac{1}{s^2}$	12	$\cos^2(\beta t)u(t)$	$\frac{s^2 + 2\beta^2}{s(s^2 + 4\beta^2)}$
4	$t^2 u(t)$	$\frac{2}{s^3}$	13	$\sin^2(\beta t)u(t)$	$\frac{2\beta^2}{s(s^2+4\beta^2)}$
5	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	14	$e^{-\alpha t}\cos(\beta t)u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	15	$e^{-\alpha t}\sin(\beta t)u(t)$	$\frac{\beta}{(s+\alpha)^2+\beta^2}$
7	$te^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^2}$	16	$te^{-\alpha t}\cos(\beta t)u(t)$	$\frac{(s+\alpha)^2 - \beta^2}{[(s+\alpha)^2 + \beta^2]^2}$
8	$t^n e^{-\alpha t} u(t)$	$\frac{n!}{(s+\alpha)^{n+1}}$	17	$te^{-\alpha t}\sin(\beta t)u(t)$	$\frac{2\beta(s+\alpha)}{[(s+\alpha)^2+\beta^2]^2}$
9	$\cos(\beta t)u(t)$	$\frac{s}{s^2 + \beta^2}$	18	$\sin(\beta t)u(t)$	$\frac{\beta}{s^2 + \beta^2}$

Tabla de transformadas inversas de Laplace útiles

	Término de la fracción parcial	Transformada inversa
1	$\frac{K}{s+\alpha}$	$Ke^{-\alpha t}u(t)$
2	$\frac{K}{(s+\alpha)^n}$	$\frac{K}{(n-1)!}t^{n-1}e^{-\alpha t}u(t)$
3	$\frac{Cs+D}{(s+\alpha)^2+\beta^2}$	$e^{-\alpha t} \left[C\cos(\beta t) + \frac{D - \alpha C}{\beta} \sin(\beta t) \right] u(t)$
4	$\frac{A+jB}{s+\alpha+j\beta} + \frac{A-jB}{s+\alpha-j\beta}$	$2e^{-\alpha t}[A\cos(\beta t) + B\sin(\beta t)]u(t)$
5	$\frac{A+jB}{(s+\alpha+j\beta)^n} + \frac{A-jB}{(s+\alpha-j\beta)^n}$	$\frac{2}{(n-1)!}t^{n-1}e^{-\alpha t}[A\cos(\beta t) + B\sin(\beta t)]u(t)$
6	$\frac{M\angle\theta}{s+\alpha+j\beta} + \frac{M\angle-\theta}{s+\alpha-j\beta}$	$2Me^{-\alpha t}\cos(\beta t - \theta)u(t)$
7	$\frac{M \angle \theta}{(s+\alpha+j\beta)^n} + \frac{M \angle - \theta}{(s+\alpha-j\beta)^n}$	$\frac{2M}{(n-1)!}t^{n-1}e^{-\alpha t}\cos(\beta t - \theta)u(t)$

Propiedades de la transformada de Laplace

	Nota: $x(t)$ debe ser causal					
	Propiedad	x(t)	X(s)			
1	Superposición	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(s) + \beta X_2(s)$			
2	Modulación exp	$e^{-\alpha t}x(t)$	$X(s+\alpha)$			
3	Modulación coseno	$\cos(\alpha t)x(t)$	$0.5[X(s+j\alpha) + X(s-j\alpha)]$			
4	Modulación seno	$\sin(\alpha t)x(t)$	$j0.5[X(s+j\alpha) - X(s-j\alpha)]$			
5	Escalamiento	$x(\alpha t), \ \alpha > 0$	$\frac{1}{\alpha}X\left(\frac{s}{\alpha}\right)$			
6	Desplazamiento	$x(t-\alpha)u(t-\alpha), \ \alpha > 0$	$e^{-\alpha s}X(s)$			
7	Modulación temporal	tx(t)	$-\frac{dX(s)}{ds}$			
8		$t^n x(t)$	$(-1)^n \frac{d^n X(s)}{ds^n}$			
9	Derivación	x'(t)	sX(s) - x(0-)			
10		x''(t)	$s^2X(s) - sx(0-) - x'(0-)$			
11		$x^{(n)}(t)$	$s^{n}X(s) - s^{n-1}x(0-) - \dots - x^{n-1}(0-)$			
12	Integración	$\int_{0-}^{t} x(t) dt$	$\frac{X(s)}{s}$			
13	Convolución	$x(t) \star h(t)$	X(s)H(s)			
14	Periódica con periodo principal $x_1(t)$	$x_p(t)u(t)$	$\frac{X_1(s)}{1 - e^{-sT}}$			
15	Valor inicial	$x(0+) = \lim_{s \to \infty} [sX(s)]$	X(s) es estrictamente propia			
16	Valor final	$x(t) _{t\to\infty} = \lim_{s\to 0} [sX(s)]$	X(s) con todos sus polos en LHP			