Stability of Higgs Bundles

Definition 0.1. Let M compact Riemann surface. A GL_n -Higgs bundle is pair (V, φ) where V is a holomorphic rank n vector bundle and φ is a holomorphic section of $End(V) \otimes K$. That is $\varphi \in H^0(End(V) \otimes K)$.

Definition 0.2. Say two Higgs bundles (V, φ) and (V', φ') are isomorphic if there exists $\psi : V \to V'$ inducing the commutative diagram

Recall that for P a principal G-bundle, and connection A on P, then $\varphi \in \omega^1(M, \operatorname{ad}(P) \otimes \mathbb{C})$ such that $F_A = [\varphi, \varphi^*]$ and $\bar{\partial}_A \varphi = 0$

Claim: $V = (P \otimes \mathbb{C}^n)/G$ then V, φ is a higgs bundle. Note that $\Omega^1(M, \operatorname{ad}(P) \otimes \mathbb{C}) = H^0(M, (\operatorname{ad}(P) \otimes \mathbb{C}) \otimes K)$ Commutative diagram defining that map

$$(\operatorname{ad}P\otimes\mathbb{C})_x\to\operatorname{End}(V)_x\tag{1}$$

$$[p,m] \mapsto ([pg,v] \mapsto [pg,g^{-1}mgv]) \tag{2}$$

1 Stability

Definition 1.1. Let (V, φ) be higgs bundle. Say $E \subset L$ is φ invariant if $\varphi(E) \subset E \otimes K$. In such cases, say E is a Higgs subbundle.

A Higgs bundle is stable if $\mu(E) < \mu(V)$ for all Higgs subbundles. Recall slope $\mu(E) := \deg(\det(E))/\operatorname{rank}(E)$

Example: (V,0) is stable if and only if V is stable as a vector bundle. In fact, if V is stable then any φ gives rise to stable Higgs bundle. Furthermore, if (V,φ) and (V,φ') are isomorphic, then $\varphi=\varphi'$.

$$\mathcal{M}_{\text{Higgs}} \subset \{(V, \varphi) | V \text{ stable}\} \to T^* \mathcal{M}_{\text{Vect}}$$
 (3)

$$(V,\varphi)\mapsto \varphi$$
 (4)

There is a 1-1 correspondence between self dual Hitchin Pair (F_A, E) upto Gauge and (semi?) stable Higgs bundles up to isomorphism

Example:

Let G = SU(2). Then

$$\mathfrak{su}(2) \otimes \mathbb{C} \cong \mathfrak{sl}(2,\mathbb{C}) = \{ m \in \operatorname{Mat}(2,\mathbb{C}) | \operatorname{tr}(m) = 0 \}$$
 (5)

 $\varphi \in H^0(\operatorname{End}_0(V) \otimes K) \ V \text{ of rank 2.}$

Remark:

$$\operatorname{Hom}(L_1, L_2) \to H^0(L_1^* \otimes L_2) \tag{6}$$

 $M = \mathbb{P}^1$, $V = \mathcal{O}(m) \oplus \mathcal{O}(n)$, $K = \mathcal{O}(-2)$. Let $\varphi : \mathcal{O}(m) \oplus \mathcal{O}(n) \to \mathcal{O}(m-2) \oplus \mathcal{O}(n-2)$ then may regard φ as a matrix with elements forms in the relevant bundles.

Then $\det(\mathcal{O}(m) \oplus \mathcal{O}(n) = \mathcal{O}(m+n)$ As $\deg(\mathcal{O}(m) = m$, there are no stable Higgs bundles in \mathbb{P}^1 . Moduli space.

Fact: If V is unstable vector bundle of rank 2, then there exists a unique $L \subset V$ such that $\deg(L) \geq \frac{1}{2}\deg(\Lambda^2V)$

$$0 \to L \to V \to L^* \otimes \det(V) \otimes 0 \tag{7}$$

Proposition 1.2. Let g > 1. A rank 2 vector bundle V occurs in a stble Higgs bundle (V, φ) iff one of the folloing holds.

- (i) V is stable,
- (ii) V is semistable and g > 2,
- (iii) V is semistable and g=2, and $V=U\otimes L$, and U decomposable or $0\to \mathcal{O}\to U\to \mathcal{O}\to 0$ (iv) V is not semistable and $h^0(L^{-2}\otimes \det(V)\otimes K)>1$
- (v) V is not semistable and $h^0(L^{-2} \otimes \det(V) \otimes K) = 1$ and $V = L \oplus (L^* \otimes \det(V))$

Suppose V is not stable. Let L be the unstable (most ?) subspace of V. Have

$$0 \to L \to V \to L^* \otimes \det V \to 0 \tag{8}$$

$$0 \to F \to \operatorname{End}_0(V \otimes K) \to L^{-2} \otimes \det(V) \otimes K \to 0 \tag{9}$$

 $H^0(L^{-2} \otimes \mathrm{Det}(V) \otimes K) = \mathrm{Hom}(L...)$

 $H^0(F) = H^0(\text{End}_0(V) \otimes K)$ if and only if V does not occur in a stable Higgs bundle.