Análise Matemática II (2013/2014)

Ficha 8

Cálculo Integral. Integrais de linha

- 1. Represente parametricamente as linhas seguintes:
 - (a) segmento de recta que liga os pontos (0,0,0) e (2,2,2);
 - (b) segmento de recta que liga os pontos (0,1,2) e (1,2,4);
 - (c) linha de intersecção das superfícies $x^2 + y^2 + z^2 = 4$ e z = 1.
- 2. Determine o comprimento de arco das curvas seguintes:
 - (a) $\mathbf{r}(t) = (r \cos t, r \sin t), t \in [0, 2\pi], r > 0$ é constante;
 - **(b)** $\mathbf{r}(t) = (e^t \cos t, e^t \sin t), t \in [0, 2\pi];$
 - (c) $\mathbf{r}(t) = \left(t^3, t, \frac{\sqrt{6}}{2}t^2\right), t \in [1, 3].$
- 3. Calcule os seguintes integrais curvilíneos de 1ª espécie:
 - (a) $\int_L x \, ds$ sendo $L \subset \mathbb{R}^2$ o arco da parábola $y = x^2$ que liga os pontos (-1,1) e (1,1);
 - (b) $\int xy \ ds$ sendo $L \subset \mathbb{R}^2$ o arco da parábola $y = x^2$ que liga os pontos (0,0) e (2,4);
 - (c) $\int_{L} (xz-y) ds$ sendo $L \subset \mathbb{R}^3$ o segmento de recta que liga os pontos (0,0,0) e (1,2,4).
- 4. Considere a curva $C \subset \mathbb{R}^3$ parametrizada pelo caminho $\mathbf{r} : [0, 2\pi] \to \mathbb{R}^3$,

$$\mathbf{r}(t) = \left(3t\cos t, 2t\sin t, 2\sqrt{2}t^{\frac{3}{2}}\right).$$

- (i) Calcule o comprimento de C.
- (ii) Supomos que a massa está distribuida ao longo da curva C com densidade constante $\rho(x, y, z) = \rho > 0$. Calcule o momento de inércia de C em relação ao eixo Oz.

- 5. Determine a massa de um filamento com a forma da curva parametrizada por $(2t, \ln t, 4\sqrt{t}), t \in [1, 2]$, supondo que a densidade num ponto (x, y, z) é proporcional ao quadrado da distância desse ponto ao plano z = 0.
- 6. Determine a massa do arco de curva $y = \ln x$ que une os pontos (1,0) e (e,1) supondo que a densidade em cada ponto é igual ao quadrado da abcissa do ponto.
- 7. Determine o centro de massa da hélice definida por $\mathbf{r}(t) = (\cos t, \sin t, t), t \in [0, 2\pi],$ cuja densidade linear é $\rho(x, y, z) = x^2 + y^2 + z^2$.
- 8. Calcule o integral $\int_C \langle \mathbf{F}, d\mathbf{r} \rangle$ onde $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{F}(x,y) = (2\sqrt{x} y, y + x)$, ao longo de camínho rectilíneo percorrido do ponto (0,0) ao ponto (1,1) e no sentido inverso (isto é, de (1,1) para (0,0)). Compare os resultados.
- 9. Calcule os seguintes integrais curvilíneos de 2^a espécie:
 - (a) $\int_C x dy y dx$ sendo C um arco de ciclóide $x = t \sin t$, $y = 1 \cos t$, $t \in [0, 2\pi]$;
 - (b) $\int_C x dy y dx$ sendo C a hipociclóide de quatro cúspides $x = \cos^3 t$, $y = \sin^3 t$, $t \in [0, 2\pi]$;
 - (c) $\int_C 4xy^2dx 3x^4dy$ sendo C a linha poligonal que une os pontos (0,1), (-2,1) e (-2,0), orientada no sentido sugerido pela sequência dos pontos;
 - (d) $\oint \frac{y}{x^2+y^2} dx \frac{x}{x^2+y^2} dy$ sendo C a circunferência $x^2 + y^2 = 4$, orientada no sentido directo;
 - (e) $\int_{C} \langle \mathbf{F}, d\mathbf{r} \rangle$ sendo $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{F}(x, y) = (2x + y, 3x 2y)$, e C a parábola $y = x^2$ de (0, 0) a (1, 1);
 - (f) $\int_C \langle \mathbf{F}, d\mathbf{r} \rangle$ sendo $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{F}(x, y) = (2x + y, 3x 2y)$, e C o arco de sinusóide $y = \sin\left(\frac{\pi}{2}x\right)$ de (0, 0) a (1, 1);
 - (g) $\oint_C \langle \mathbf{F}, d\mathbf{r} \rangle$ sendo $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{F}(x,y) = (x+y,x-y)$, e C a elipse $b^2x^2 + a^2y^2 = a^2b^2$, a > 0, b > 0, oriendada no sentido directo.

- 10. Suponha que um ponto material no plano é sujeito à força $\mathbf{F}(x,y)=(3xy,2xy)$. Calcule o trabalho realizado por essa força quando o ponto percorre completamente e uma única vez, no sentido contrário aos ponteiros do relógio, a curva fechada $x^2 + 4y^2 = 4$.
- 11. Determine o trabalho total efectuado pela força $\mathbf{F}(x,y) = (x^2 + y^2, 2xy)$ ao deslocar uma partícula (no sentido directo) percorrendo uma vez o quadrado definido pelos eixos coordenados e pelas rectas x = a e y = a, com a > 0.
- 12. Determine o trabalho realizado pela força $\mathbf{F}(x,y) = (-zy,zx,yx)$ sobre uma partícula que se desloca ao longo de uma hélice circular parametrizada por $\mathbf{r}(t) = (\cos t, \sin t, t)$, $t \in [0, 2\pi]$.
- 13. Mostre que o integral

$$\int_{C} (2xy - 2y^2 + 1) dx + (x^2 - 4xy) dy$$

não depende de caminho de integração mas só do ponto inicial e do ponto final. Encontre todas as funções $u=u\left(x,y\right)$ tais que

$$du = (2xy - 2y^2 + 1) dx + (x^2 - 4xy) dy.$$

- 14. Determine, caso seja possível, todas as primitivas das formas diferenciais seguintes:
 - (a) xdx + ydy;
 - **(b)** $\frac{x}{x^2+y^2}dx + \frac{y}{x^2+y^2}dy;$
 - (c) $(2xe^y + y) dx + (x^2e^y + x 2y) dy$;
 - (d) $(\sin(xy) + xy\cos(xy)) dx + x^2\cos(xy) dy$;
 - (e) (x+z) dx (y+z) dy + (x-y) dz;
 - (f) $3y^4z^2dx + 4x^3z^2dy 3x^2y^2dz$;
 - (g) $(2x^2 + 8xy^2) dx + (3x^3y 3xy) dy + (4y^2z^2 + 2x^3z) dz$.
- 15. Usando o Teorema de Green calcule o integral

$$\oint_C x^2 dx + x dy$$

sendo C a curva dada com a orientação anti-horária:

(i) elipse
$$4x^2 + y^2 = 4$$
;

- (ii) quadrado com vértices (0, 2), (0, -2), (2, 0) e (-2, 0);
- (iii) triângulo com vértices (0,0), (1,0) e (0,1);
- (iv) circunferência $x^2 + y^2 = 4$.
- 16. Determine a área da região plana limitada pelos gráficos das funções $y=2x^2$ e y=4x, utilizando
 - (i) integrais definidos de função de uma variável;
 - (ii) integração dupla;
 - (iii) integrais de linha.
- 17. Use o Teorema de Green para determinar a área da região limitada pela elipse

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1, \quad a > 0, \ b > 0.$$

18. Através do Teorema de Green determine o trabalho (circulação) da força

$$\mathbf{F}(x,y) = (y+3x, 2y-x)$$

que efectua uma volta completa de uma parcela material em torno da elipse $4x^2 + y^2 = 4$ no sentido anti-horário.

19. Calcule o integral

$$\oint_C y^2 dx + 3xy dy,$$

onde C é a fronteira da região semianular entre as circunferências $x^2+y^2=1$ e $x^2+y^2=4$ contida no semiplano superior.