Лабораторная работа 5.5 Компьютерная сцинтилляционная γ -спектрометрия

Гарина Ольга Аксенова Светлана Б04-901

21 ноября 2021 г.

Содержание

1	Экспериментальная установка	3
2	Теоретическое введение	3
3	Эксперимент	4
4	Вывод	5
5	Литература	5

Цель работы: Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

1 Экспериментальная установка

Рисунок 1 – Блок-схема экспериментальной установки

2 Теоретическое введение

Фотоэффект – это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации і-ой оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона — это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гаммаквантов на 180 и равна

$$E_{\text{max}} = \frac{\eta \omega}{1 + \frac{mc^2}{2\eta \omega}}.$$
 (1)

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма

малой, так что пороговая энергия гамма-кванта E_0 необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $1{,}022$ МэВ.

Появившийся в результате процесса образования пар электрон тратит свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е. кинетическая энергия позитрона также останется в детекторе.

Любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Помимо процессов, описанных выше, добавляется экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma} >> mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элекментов детектора и защиты. Положение пика обратного рассеяния определяется по формуле

$$E_{\text{o6p}} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где Е – энергия фотопика.

Энергетическое разрешение спектрометра. Даже при поглощении астиц с одинаковой энергией ампитуда импульса на выходе фотоприемника сцинтилляционного детектора меняется от события к событию. В резульатте в набранном спектре линия оказывается размытой, ее часто описывают гауссианом. Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i} = \frac{const}{\sqrt{E_i}}. (3)$$

3 Эксперимент

В работе исследовались спектры следующих веществ

- \bullet ²²Na
- ⁶⁰Co
- \bullet ¹³⁷Cs
- ²⁴¹Am
- \bullet ¹⁵²Eu

Каждый спектр снимался в течение 600 секунд. Спектры представлены на рисунках 2-6.

Во время работы были зафиксированы все фотопики для веществ. Далее по данным по натрию и цезию был построен калибровочный график (рисунок 7), который описывает уравнение

$$N = 1343E + 66. (4)$$

Наклон калибровочного графика:

$$k_1 = 1343.3 \pm 2.7 \text{ 1/M} ext{9B}$$

 $b_1 = 66.5 \pm 2.4.$

Далее были измерены ширины всех фотопиков и с помощью уравнения калибровки составлена таблица 1.

Далее нужно было проверить уравнение (3). Как видно из графика (8), точки не лежат на прямой. Это, как и наличие отрицательных значений в таблице 1, может быть связано с невозможностью точно определить пики и их ширину по фотографии экрана компьютера.

Далее требовалось построить график зависимости экспериментально определенного края комптоновского поглощения (таблица 2 и рисунок 9). Коэффициент наклона прямой

$$k_2 = 1.136 \pm 0.021$$
.

Далее следовало определить величины энергии обратного захвата (таблица 3, рисунок 10).

Энергия характеристического излучения по спектру натрия

$$E_{\rm xap} = 0.099 \text{ M}{\circ}\text{B}.$$

4 Вывод

В результате работы были получены спектры всех данных веществ; рассчитаны энергии и положения всех фотопиков, построены графики различных зависимостей, рассчитаны разрешения прибора. Почти во всех опытах были получены отрицательные значения для ΔE и R, скорее всего это связано с тем, что данные не были сохранены в удобном формате, а проводить измерения точно по фотографии экрана компьютера невозможно, это также является причиной отсутсвия погрешностей у значений в таблице 1, так как это не имело бы смысла.

5 Литература

1. Методические указания к работе 5.5.

Рисунок 2 – Спектр натрия

Элемент	N_i	ΔN_i	E_i , МэВ	ΔE_i , МэВ	R_i
Na	752	64	0.511	0.002	-0.0037
Na	1779	104	1.275	0.028	0.0218
Со	1638	78	1.173	0.0085	0.00727
Со	1847	100	1.332	0.025	0.0187
Cs	121	78	0.0377	0.019	-0.504
Cs	957	41	0.622	0.008	0.0129
Am	115	18	0.036	0.036	-1.001
Am	162	14	0.071	0.039	-0.550
Eu	135	21	0.051	-0.034	-0.665
Eu	244	24	0.132	-0.032	-0.239
Eu	405	37	0.252	-0.022	-0.087
Eu	533	47	0.347	-0.014	-0.041
Eu	1103	83	0.772	0.012	0.015
Eu	1347	81	0.953	0.011	0.011
Eu	1534	81	1.092	0.011	0.009
Eu	1953	111	1.4	0.033	0.023

Таблица 1 – Сводная таблица

Рисунок 3 – Спектр кобальта

Элемент	Эксп. значение энергии, МэВ	Теор. зн. энергии, МэВ
Со	0.922	0.963
Cs	0.488	0.477
Na	0.999	1.062

Таблица 2 – Компотоновское поглощение

Элемент	Еобр, МэВ	Е, МэВ
Co	0.21	0.12
Cs	0.1845	0.225
Na	0.21	0.187

Таблица 3 – Энергия обр. захвата

Рисунок 4 – Спектр цезия

Рисунок 5 – Спектр америция

Рисунок 6 – Спектр европия

Рисунок 7 — Калибровочный график

Рисунок 8 – График зависимости ${\bf R}^2=1/E$

Рисунок 9 – График для комптоновского поглощения

Рисунок 10 – График зависимости $E_{\text{обр}}$ от E