In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score

import warnings
warnings.filterwarnings('ignore')
```

In [9]:

```
df = pd.read_csv('car data.csv')
df
```

Out[9]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Traı	
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer		
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer		
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer		
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer		
4	swift	2014	4.60	6.87	42450	Diesel	Dealer		
296	city	2016	9.50	11.60	33988	Diesel	Dealer		
297	brio	2015	4.00	5.90	60000	Petrol	Dealer		
298	city	2009	3.35	11.00	87934	Petrol	Dealer		
299	city	2017	11.50	12.50	9000	Diesel	Dealer		
300	brio	2016	5.30	5.90	5464	Petrol	Dealer		
301 rows × 9 columns									

4

```
In [3]:
```

```
df.isnull().sum()
```

Out[3]:

Car_Name 0 Year 0 Selling_Price 0 Present_Price 0 Driven_kms 0 Fuel_Type 0 Selling_type 0 Transmission 0 0 Owner dtype: int64

In [4]:

```
# Check Duplication
df.duplicated().sum()
```

Out[4]:

2

In [5]:

```
#Check datatype
df.dtypes
```

Out[5]:

Car Name object int64 Year Selling_Price float64 float64 Present_Price Driven_kms int64 Fuel_Type object Selling_type object Transmission object int64 Owner

dtype: object

In [6]:

```
# Check the number of unique values of each column
df.nunique()
```

Out[6]:

```
Car_Name
                   98
                   16
Year
Selling_Price
                  156
Present_Price
                  148
Driven_kms
                  206
Fuel_Type
                    3
                    2
Selling_type
                    2
Transmission
Owner
                    3
dtype: int64
```

In [7]:

```
#Check statistics of data set
df.describe()
```

Out[7]:

	Year	Selling_Price	Present_Price	Driven_kms	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.642584	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

In [10]:

```
#First 7 rows of dataset
print("bottom seven rows of dataset are: ")
df.tail(7)
```

bottom seven rows of dataset are:

Out[10]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Traı
294	amaze	2014	3.75	6.80	33019	Petrol	Dealer	
295	city	2015	8.55	13.09	60076	Diesel	Dealer	
296	city	2016	9.50	11.60	33988	Diesel	Dealer	
297	brio	2015	4.00	5.90	60000	Petrol	Dealer	
298	city	2009	3.35	11.00	87934	Petrol	Dealer	
299	city	2017	11.50	12.50	9000	Diesel	Dealer	
300	brio	2016	5.30	5.90	5464	Petrol	Dealer	
4								•

In [12]:

df.shape

Out[12]:

(301, 9)

```
In [13]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):
     Column
                    Non-Null Count
                                    Dtype
 0
     Car_Name
                    301 non-null
                                    object
 1
     Year
                    301 non-null
                                    int64
     Selling_Price 301 non-null
 2
                                    float64
 3
     Present_Price 301 non-null
                                    float64
                                    int64
 4
     Driven kms
                    301 non-null
 5
     Fuel_Type
                    301 non-null
                                    object
     Selling_type
 6
                    301 non-null
                                    object
     Transmission
 7
                    301 non-null
                                    object
 8
     Owner
                    301 non-null
                                    int64
dtypes: float64(2), int64(3), object(4)
memory usage: 21.3+ KB
In [14]:
print(df.Fuel_Type.value_counts())
print(df.Selling_type.value_counts())
print(df.Transmission.value_counts())
Petrol
          239
Diesel
           60
CNG
            2
Name: Fuel_Type, dtype: int64
Dealer
              195
              106
Individual
Name: Selling_type, dtype: int64
Manual
             261
Automatic
              40
Name: Transmission, dtype: int64
In [15]:
# encoding "Fuel_Type" Column
df.replace({'Fuel Type':{'Petrol':0,'Diesel':1,'CNG':2}},inplace=True)
# encoding "Seller Type" Column
df.replace({'Selling_type':{'Dealer':0,'Individual':1}},inplace=True)
# encoding "Transmission" Column
df.replace({'Transmission':{'Manual':0,'Automatic':1}},inplace=True)
```

In [16]:

df.head()

Out[16]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Trans
0	ritz	2014	3.35	5.59	27000	0	0	
1	sx4	2013	4.75	9.54	43000	1	0	
2	ciaz	2017	7.25	9.85	6900	0	0	
3	wagon r	2011	2.85	4.15	5200	0	0	
4	swift	2014	4.60	6.87	42450	1	0	
4								>

In [18]:

```
X = df.drop(['Car_Name', 'Selling_Price'],axis=1)
Y = df['Selling_Price']
```

In [19]:

<pre>print(X)</pre>								
n \		Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmissio		
0 0	2014	5.59	27000	0	0			
1	2013	9.54	43000	1	0			
2	2017	9.85	6900	0	0			
3 0	2011	4.15	5200	0	0			
4 0	2014	6.87	42450	1	0			
•••	•••	•••	•••	•••	•••			
296 0	2016	11.60	33988	1	0			
297 0	2015	5.90	60000	0	0			
298 0	2009	11.00	87934	0	0			
299 0	2017	12.50	9000	1	0			
300 0	2016	5.90	5464	0	0			
	0wner							
0	0 0							
1 2	0							
3	0							
4	0							
 296								
297	0							
298	0							
299	0							
300	0							
[301 rows x 7 columns]								

In [20]:

```
print(Y)
0
        3.35
1
        4.75
2
        7.25
3
        2.85
        4.60
296
        9.50
297
        4.00
298
        3.35
299
       11.50
300
        5.30
Name: Selling_Price, Length: 301, dtype: float64
```

```
In [21]:
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.1, random_state=2
```

In [22]:

```
lin_reg_model = LinearRegression()
```

In [23]:

```
lin_reg_model.fit(X_train,Y_train)
```

Out[23]:

LinearRegression()

In [24]:

```
training_data_prediction = lin_reg_model.predict(X_train)
```

In [26]:

```
plt.scatter(Y_train, training_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title(" Actual Prices vs Predicted Prices")
plt.show()
```

Actual Prices vs Predicted Prices

In [28]:

```
plt.figure(figsize=(10, 6))
sns.histplot(df['Selling_Price'], bins=20, kde=True)
plt.xlabel('Selling Price')
plt.ylabel('Frequency')
plt.title('Distribution of Selling Prices')
plt.show()
```


In [31]:

```
# Select numerical columns
numerical_columns = ['Year', 'Selling_Price', 'Present_Price', 'Driven_kms', 'Owner']

# Create a DataFrame containing only the numerical columns
numerical_df = df[numerical_columns]

# Calculate the correlation matrix for numerical columns
correlation_matrix = numerical_df.corr()

# Create a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap (Numerical Columns)')
plt.show()
```


In [34]:

```
# Check for duplicates and create a new column "Is_Duplicate"
df['Is_Duplicate'] = df.duplicated()

# Import necessary Libraries
import matplotlib.pyplot as plt
import seaborn as sns

# Create a count plot to visualize duplicates
plt.figure(figsize=(8, 6))
sns.countplot(x='Is_Duplicate', data=df)
plt.xlabel('Is_Duplicate')
plt.ylabel('Count')
plt.title('Duplicate Rows Visualization')
plt.xticks([0, 1], ['Not Duplicate', 'Duplicate']) # Customize x-axis labels
plt.show()

# Drop the "Is_Duplicate" column if not needed
df.drop(columns=['Is_Duplicate'], inplace=True)
```

Duplicate Rows Visualization

