

Part I: Normalization & Summarization

Lieven Clement

Proteomics Data Analysis 2018, Gulbenkian Institute, May 28 -June 1 2018.

Outline

- Introduction
 - Label free MS based Quantitative Proteomics Workflow and Challenges
- Preprocessing
 - Filtering
 - 2 Log transformation
 - Normalization
 - Summarization

Quantification Identification

Quantification Identification

Quantification Identification

MS

Peptide characteristics

- Modifications
- Ionisation efficiency

OutliersHuge variability

- MS² selection on peptide abundance
 - Context dependent Identification
 - Non-random missingness

Peptide characteristics

- Modifications
- Ionisation efficiency
 - Outliers
 - **Huge variability**

- MS² selection on peptide abundance
 - Context dependent Identification
 - Non-random missingness

Unbalanced peptides identifications across samples and messy data

Challenges in Label Free MS-based Quatitative proteomics

Challenges in Label Free MS-based Quatitative proteomics MS-based proteomics returns **peptides**: pieces of proteins

Challenges in Label Free MS-based Quatitative proteomics

We need information on protein level!

Label-free Quantitative Proteomics Data Analysis Pipelines

Label-free Quantitative Proteomics Data Analysis Pipelines

CPTAC Spike-in Study

5 spike-in concentrations: 6A to 6E

- Same trypsin-digested yeast proteome background in each sample
- Trypsin-digested Sigma UPS1 standard: 48 different human proteins spiked in at 5 different concentrations (treatment A-E)
- Samples repeatedly run on different instruments in different labs
- After MaxQuant search with match between runs option
 - 41% of all proteins are quantified in all samples
 - 6.6% of all peptides are quantified in all samples
 - \rightarrow vast amount of missingness

Preprocessing

- Typical preprocessing steps
 - Filtering
 - Log-transformation
 - Normalization
 - (Summarization)

Many methods exist

Filtering

- Reverse sequences
- Only identified by modification site (only modified peptides detected)
- Razor peptides: non-unique peptides assigned to the protein group with the most other peptides
- Contaminants
- Peptides few identifications
- Proteins that are only identified with one or a few peptides
- Filtering does not induce bias if the criterion is independent from the downstream data analysis!

Log-transformation

Variability more equal upon log transformation: often multiplicative error structure of intensity-based read-outs

Even in very clean synthetic dataset (same background, only 48 UPS proteins can be different) the marginal peptide intensity distribution across samples can be quite distinct

- Considerable effects between and within labs for replicate samples
- Considerable effects between samples with different spike-in concentration
- → Normalization is needed

Even in very clean synthetic dataset (same background, only 48 UPS proteins can be different) the marginal peptide intensity distribution across samples can be quite distinct

- Considerable effects between and within labs for replicate samples
- Considerable effects between samples with different spike-in concentration
- → Normalization is needed, e.g. quantile normalization

Summarization

Summarization

- Strong peptide effect
- Unbalanced peptide identification
- Summarization bias
- Different precision of protein level summaries

MaxLFQ summarization

>P63208
MPSIKLQSSDGEIFEVDVEIAKQSVTIKTMLEDLGMDDEGDD
DPVPLPNVNAAILKKVIQMCTHIKDDPPPEDDENKEKRTDD
IFVMQGFLKVDQGTLFELILAANYLDIKGLLDVTCKTVANM
IKOKYPEEIKRTFNIKNDFTEEERAQVEKENOMCEEK

b												
Peptide species		Sequ	ence	Charge		Mod.						
P ₁	LQSS	DGEI	EVDV	2		-						
P ₂	LQSS	DGEI	EVDV	3		-						
P ₃	RT	DDIPV	WDQEE	2		-						
P_4		TVA	MIK	2		-						
P ₅		TVA	MIK	2		Oxid.						
P_6		TPE	EIRK	3		-						
P ₇	N	DFTEE	EEAQV	2		-						
С												
Sample	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇					
A		+				+						
В		+	+			+						
С	+	+	+	+		+	+					
D	+	+		+		+	+					
E		+		+			+					

d						
Α						
В	r _{BA}					
С	r _{CA}	r _{CB}				
D	r _{DA}	r _{DB}	r _{DC}			
E	r _{EA}	r _{EB}	r _{EC}	r _{ED}		
F	r _{FA}	r _{FB}	r _{FC}	r _{FD}	r _{FE}	
	A	В	С	D	E	F

Peptide based model

y: log2 transformed peptide intensities

Peptide based model

- y: log2 transformed peptide intensities
- Protein by protein analysis of peptide level data with linear model

Peptide based model

- y: log2 transformed peptide intensities
- Protein by protein analysis of peptide level data with linear model $y_{pept} \sim peptide + sample$

