SYDE 556/750

Simulating Neurobiological Systems Lecture 12: Biological Detail

Andreas Stöckel

March 31, 2020

Cerebellum Model - Microcircuits

Cerebellum Model – Introduction

Cerebellum

- ► Important for motor control
- ► Mostly Feed-Forward architecture
- May support cognitive tasks
- Model task: eyeblink conditioning

Cerebellum Model – Review: Classical Conditioning

Before conditioning:

After conditioning:

Cerebellum Model – Eyeblink Conditioning — Experimental Setup

Cerebellum Model – Eyeblink Conditioning — Data

Cerebellum Model – Open Questions: How are Delays Learned?

Hypothesis 1

"Dynamics Representation"/
"Adaptive Filter Hypothesis"

Maybe dynamics are produced in the recurrent Granule-Golgi connection?

Hypothesis 2

"Intrinsic Neural Properties"

Maybe the Purkinje cells are able to learn timings?

Cerebellum Model – The Delay Network

Cerebellum Model – Implementing The Delay Network

Cerebellum Model – Experiment & Results

Review - Neuron Models

Conductance-Based Synapses – Neuron Model

Synaptic Nonlinearity Function

Conductance-Based Synapses – Dendritic Computation Experiment (I)

Compute various two-dimensional functions

▶ Domain $(x, y) \in [0, 1]^2$

► 100 neurons per population

► Three topologies

(a) Additive network

(b) Intermediate layer

(c) Synaptic computation

Conductance-Based Synapses – Dendritic Computation Experiment (II)

Conductance-Based Synapses – Dendritic Computation Experiment (III)

	Experiment setup						
	Standard LIF			Two comp. LIF $g_{\rm C}=50{\rm nS}$		Two comp. LIF $g_{\rm C}=100{\rm nS}$	
Target	no relaxation	A standard	B two-layer	standard	noise model	standard	noise model
x+y	$5.1 \pm 0.6\%$	$5.5 \pm 1.1\%$	$11.0 \pm 1.3\%$	$\textbf{3.2}\pm\textbf{1.1}\%$	$9.1 \pm 1.2\%$	$5.1 \pm 1.2\%$	$11.5 \pm 1.3\%$
$x \times y$	$26.2 \pm 0.4\%$	$21.5 \pm 6.6\%$	$15.4 \pm 4.0\%$	$13.9 \pm 2.9\%$	$11.9\pm1.8\%$	$18.2 \pm 4.0\%$	$14.3 \pm 2.1\%$
$\sqrt{x \times y}$	$14.1 \pm 0.4\%$	$19.7 \pm 6.1\%$	$16.3 \pm 3.0\%$	$9.7 \pm 2.6\%$	$\textbf{7.1}\pm\textbf{1.0}\%$	$13.3 \pm 4.2\%$	$8.9 \pm 1.7\%$
$(x \times y)^2$	$44.5 \pm 0.6\%$	$33.0 \pm 6.6\%$	$18.7\pm6.7\%$	$27.7 \pm 4.1\%$	$27.4 \pm 4.1\%$	$34.3 \pm 5.3\%$	$30.3 \pm 4.3\%$
x/(1+y)	$6.0 \pm 0.4\%$	$5.2 \pm 0.7\%$	$9.5 \pm 0.8\%$	$\textbf{3.4}\pm\textbf{1.0}\%$	$10.0 \pm 1.6\%$	$5.3 \pm 1.3\%$	$14.0 \pm 1.9\%$
$\ (x,y)\ $	$8.0 \pm 0.4\%$	$5.7 \pm 1.1\%$	$10.5 \pm 1.0\%$	$\textbf{3.1}\pm\textbf{1.3}\%$	$8.9 \pm 1.2\%$	$4.3 \pm 1.8\%$	$12.3 \pm 1.8\%$
atan(x, y)	$10.3 \pm 0.3\%$	$8.6 \pm 1.0\%$	$13.4 \pm 1.1\%$	$\boldsymbol{5.8\pm1.3\%}$	$8.4 \pm 1.0\%$	$7.0 \pm 1.2\%$	$12.7 \pm 1.6\%$
$\max(x, y)$	$14.9 \pm 0.3\%$	$10.0 \pm 0.9\%$	$11.3 \pm 1.4\%$	$\boldsymbol{5.5\pm0.9\%}$	$7.7\pm0.9\%$	$7.3\pm0.9\%$	$9.7 \pm 1.0\%$

Image sources

Title slide

Illustration of monographs Georgiy Jacobson "Beetles Russia and Western Europe" Around 1905

Wikimedia.