Mocninové funkcie – ďalšie úlohy

6. Načrtnite graf a opíšte vlastnosti nasledujúcich funkcií:

$$f_1(x) = x^3;$$
 $f_2(x) = x^3 + 1;$ $f_3(x) = (x+1)^3;$

 $\label{eq:f1} \mathbf{s} = f_1(x) = x^1; \quad f_2(x) = x^2 + 1; \quad f_3(x) = (x + 1)^2;$

f1(x)=x3 [1,1] [-1,-1]

f2(x)=x3+1 [1,2] [-1,0]

f3(x)= (x+1)3 [1,8] [-1,0]

Vlastnosti:

	D(f)	H(f)	Parita	Prostosť	Extrémy	Ohraničenosť	NB	Monotónnosť
$f_1(x) = x^3;$	R	R	nepárna	Prostá	Nemá	Neohraničená	[0,0]	Rastúca na D(f)
$f_2(x) = x^3 + 1;$	R	R	Ani párna, ani nepárna	Prostá	Nemá	Neohraničená	[-1,0]	Rastúca na D(f)
$f_3(x) = (x+1)^3;$	R	R	Ani párna, ani nepárna	Prostá	Nemá	Neohraničená	[-1,0]	Rastúca na D(f)

b.
$$f_1(x) = x^4$$
; $f_2(x) = x^4 - 2$; $f_3(x) = (x - 2)^4$.

$$f_1(x) = x^{-2}; f_2(x) = x^{-2} - 1; f_3(x) = (x - 1)^{-2};$$

d
$$f_1(x) = x^{-3}$$
; $f_2(x) = x^{-3} + 2$; $f_3(x) = (x+2)^{-3}$.

7. Načrtnite graf a opíšte vlastnosti nasledujúcich funkcií:

a.
$$f_1(x) = -(x+1)^4$$
; $f_2(x) = x^{-4} - 3$; $f_3(x) = -(x+1)^{-4} - 1$;

 $f_1(x) = -(x+1)^4$

Vychádzame zo základnej funkcie y= - x4, ktorú posúvame: $x=0 \Rightarrow y = -(0+1) \text{ ns } 4 = -1 \Rightarrow [0,-1]$

 $x=-1 \Rightarrow y = -(-1+1) \text{ ns } 4 = 0 \Rightarrow [-1,0]$ $x=-2 \Rightarrow y = -(-2+1) \text{ ns } 4 = -1 \Rightarrow [-2,-1]$

Preto asymptoty budú: x=0, y=-3

Nájdeme aspoň po 1 bode na oboch stranách asymptoty:

$$\pi = 1 = 0$$
 $\pi = (0)^{n} - 3 = \frac{1}{n^{2}} - 3 = 1 - 3 = -2 \implies (1-3)$

x = -1 $\Rightarrow y = (-1)^{16} - 3 = \frac{1}{(-1)^4} - 3 = 1 - 3 = -2$ $\Rightarrow [-1, -2]$

prevrátime zvisle smerom dolu a posůvame. Preto asymptoty budů: x =- 1y =- 1

Nájdeme aspoň po 1 bode na oboch stranách asymptoty:

	D(f)	H(f)	Parita	Prostosť	Extrémy	Ohraničenosť	NB	Monotónnosť
$f_1(x) = -(x+1)^4;$	R	(-∞;0>	Ani párna, ani nepárna	Neprostá	MAX x=-1, MIN nemá	Zhora h=0	[-1,0]	Rast. (-∞;-1) Kles. (-1; ∞)
$f_2(x) = x^{-4} - 3;$	R-{0}	(-3; ∞)	Párna	Neprostá	Nemá	Zdola d=-3	$\left[\sqrt[4]{\frac{1}{3}};0\right]; \left[-\sqrt[4]{\frac{1}{3}};0\right]$	Rast. (-∞;0) Kles. (0; ∞)
$f_3(x) = -(x+1)^{-4} - 1;$	R-{-1}	(-∞;-1)	Ani párna, ani nepárna	Neprostá	Nemá	Zhora h=-1	Nemá	Kles. (-∞;-1) Rast.(-1; ∞)

$$0 = \frac{1}{x^4} - 3 /.x^4$$

$$0 = 1 - 3x^4 / + 3x^4$$

$$3x^4 = 1 /.3$$

$$x^4 = \frac{1}{3} / \sqrt[4]{}$$

$$x = \pm \sqrt[4]{\frac{1}{3}}$$

b.
$$f_1(x) = -x^5 + 2$$
; $f_2(x) = (x+1)^{-5}$; $f_3(x) = -(x-1)^{-5} + 1$. (D.ú.)