(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 December 2000 (21.12.2000)

PCT

(10) International Publication Number WO 00/77239 A2

(51) International Patent Classification7:

C12Q

- (21) International Application Number: PCT/US00/14858
- (22) International Filing Date: 24 May 2000 (24.05.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/333,159 14 Ju

14 June 1999 (14.06.1999) US

- (71) Applicant: MILLENNIUM PHARMACEUTICALS, INC. [US/US]; 75 Sidney Street, Cambridge, MA 02139 (US).
- (72) Inventors: MCCARTHY, Sean, A.; 62 Commonwealth Avenue #4, Boston, MA 02116 (US). FRASER, Christopher, C.; 52 Grassland Street, Lexington, MA 02421 (US). SHARP, John, D.; 245 Park Avenue, Arlington, MA 02476 (US). BARNES, Thomas, M.; 22 Hanson Street #2, Boston, MA 02118 (US).

- (74) Agents: COLBY, Gary, D. et al.; Akin, Gump, Strauss, Hauer & Feld, L.L.P., One Commerce Square, Suite 2200, 2005 Market Street, Philadelphia, PA 19103-7086 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL GENES ENCODING PROTEINS HAVING DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER USES

(57) Abstract: The invention provides isolated nucleic acids encoding a variety of proteins having diagnostic, preventive, therapeutic, and other uses. These nucleic and proteins are useful for diagnosis, prevention, and therapy of a number of human and other animal disorders. The invention also provides antisense nucleic acid molecules, expression vectors containing the nucleic acid molecules of the invention, host cells into which the expression vectors have been introduced, and non-human transgenic animals in which a nucleic acid molecule of the invention has been introduced or disrupted. The invention still further provides isolated polypeptides, fusion polypeptides, antigenic peptides and antibodies. Diagnostic, screening, and therapeutic methods utilizing compositions of the invention are also provided. The nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes.

15

· 20

25

30

NOVEL GENES ENCODING PROTEINS HAVING DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER USES

Cross Reference to Related Applications

This application is a continuation-in-part of co-pending United

States Patent application number 09/333,159, filed June 14, 1999.

Background of the Invention

The molecular bases underlying many human and animal physiological states (e.g., diseased and homeostatic states of various tissues) remain unknown. Nonetheless, it is well understood that these states result from interactions among the proteins and nucleic acids present in the cells of the relevant tissues. In the past, the complexity of biological systems overwhelmed the ability of practitioners to understand the molecular interactions giving rise to normal and abnormal physiological states. More recently, though, the techniques of molecular biology, transgenic and null mutant animal production, computational biology, pharmacogenomics, and the like have enabled practitioners to discern the role and importance of individual genes and proteins in particular physiological states.

Knowledge of the sequences and other properties of genes (particularly including the portions of genes encoding proteins) and the proteins encoded thereby enables the practitioner to design and screen agents which will affect, prospectively or retrospectively, the physiological state of an animal tissue in a favorable way. Such knowledge also enables the practitioner, by detecting the levels of gene expression and protein production, to diagnose the current physiological state of a tissue or animal and to predict such physiological states in the future. This knowledge furthermore enables the practitioner to identify and design molecules which bind with the polynucleotides and proteins, *in vitro*, *in vivo*, or both.

The present invention provides sequence information for polynucleotides derived from human and murine genes and for proteins encoded

10

15

20

25

30

thereby, and thus enables the practitioner to assess, predict, and affect the physiological state of various human and murine tissues.

Summary of the Invention

The present invention is based, at least in part, on the discovery of a variety of human and murine cDNA molecules which encode proteins which are herein designated TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296. These seven proteins, fragments thereof, derivatives thereof, and variants thereof are collectively referred to herein as the polypeptides of the invention or the proteins of the invention. Nucleic acid molecules encoding polypeptides of the invention are collectively referred to as nucleic acids of the invention.

The nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes.

Accordingly, in one aspect, the present invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or a biologically active portion thereof. The present invention also provides nucleic acid molecules which are

suitable as primers or hybridization probes for the detection of nucleic acids

encoding a polypeptide of the invention.

The invention also features nucleic acid molecules which are at least 40% (or 50%, 60%, 70%, 80%, 90%, 95%, or 98%) identical to the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA clone deposited with ATCC® as one of Accession numbers 207219, 207184, 207228, 207185, 207220, and 207221 ("a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221"), or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 15 (25, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or 4928) consecutive nucleotide residues of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the

10

15

20

25

30

nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 50% (or 60%, 70%, 80%, 90%, 95%, or 98%) identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof.

In preferred embodiments, the nucleic acid molecules have the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or the nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, the fragment including at least 8 (10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, or 200) consecutive amino acids of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221.

The invention includes nucleic acid molecules which encode a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, wherein the nucleic acid molecule hybridizes under stringent conditions to a nucleic acid molecule having a nucleic acid sequence encoding any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of

10

15

20

25

30

a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 50%, preferably 60%, 75%, 90%, 95%, or 98% identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74.

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 40%, preferably 50%, 75%, 85%, or 95% identical the nucleic acid sequence encoding any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule consisting of the nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73.

Also within the invention are polypeptides which are naturally occurring allelic variants of a polypeptide that includes the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes under stringent conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 15 (25, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000,

10

15

20

25

30

4500, or 4928) nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof. In some embodiments, the isolated nucleic acid molecules encode a cytoplasmic, transmembrane, extracellular, or other domain of a polypeptide of the invention. In other embodiments, the invention provides an isolated nucleic acid molecule which is antisense to the coding strand of a nucleic acid of the invention.

Another aspect of the invention provides vectors, e.g., recombinant expression vectors, comprising a nucleic acid molecule of the invention. In another embodiment, the invention provides isolated host cells, e.g., mammalian and non-mammalian cells, containing such a vector or a nucleic acid of the invention. The invention also provides methods for producing a polypeptide of the invention by culturing, in a suitable medium, a host cell of the invention containing a recombinant expression vector encoding a polypeptide of the invention such that the polypeptide of the invention is produced.

Another aspect of this invention features isolated or recombinant proteins and polypeptides of the invention. Preferred proteins and polypeptides possess at least one biological activity possessed by the corresponding naturally-occurring human polypeptide. An activity, a biological activity, and a functional activity of a polypeptide of the invention refers to an activity exerted by a protein or polypeptide of the invention on a responsive cell as determined *in vivo*, or *in vitro*, according to standard techniques.

Such activities can be a direct activity, such as an association with or an enzymatic activity on a second protein, or an indirect activity, such as a cellular process (e.g., signaling activity) mediated by interaction of the protein with a second protein. Such activities include, by way of example, formation of protein-protein interactions with proteins of one or more signaling pathways (e.g., with a protein with which the naturally-occurring polypeptide interacts); binding with a ligand of the naturally-occurring protein; and binding with an intracellular target of the naturally-occurring protein. Other activities include modulation of one or more

10

15

20

25

30

of cellular proliferation, of cellular differentiation, of chemotaxis, of cellular migration, and of cell death (e.g., apoptosis).

By way of example, TANGO 202 exhibits the ability to affect growth, proliferation, survival, differentiation, and activity of human hematopoietic cells (e.g., bone marrow stromal cells) and fetal cells. TANGO 202 modulates cellular binding to one or more mediators, modulates proteolytic activity *in vivo*, modulates developmental processes, and modulates cell growth, proliferation, survival, differentiation, and activity. Thus, TANGO 202 can be used to prevent, diagnose, or treat disorders relating to aberrant cellular protease activity, inappropriate interaction (or non-interaction) of cells with mediators, inappropriate development, and blood and hematopoietic cell-related disorders. Exemplary disorders for which TANGO 202 is useful include immune disorders, infectious diseases, auto-immune disorders, vascular and cardiovascular disorders, disorders related to mal-expression of growth factors, cancers, hematological disorders, various cancers, birth defects, developmental defects, and the like.

Further by way of example, TANGO 234 exhibits the ability to affect growth, proliferation, survival, differentiation, and activity of human lung, hematopoietic, and fetal cells and of (e.g., bacterial or fungal) cells and viruses which infect humans. TANGO 234 modulates growth, proliferation, survival, differentiation, and activity of gamma delta T cells, for example. Furthermore, TANGO 234 modulates cholesterol deposition on human arterial walls, and is involved in uptake and metabolism of low density lipoprotein and regulation of serum cholesterol levels.

Thus, TANGO 234 can be used to affect development and persistence of atherogenesis and arteriosclerosis, as well as other vascular and cardiovascular disorders. Other exemplary disorders for which TANGO 234 is useful include immune development disorders and disorders involving generation and persistence of an immune response to bacterial, fungal, and viral infections.

Still further by way of example, TANGO 265 modulates growth and regeneration of neuronal and epithelial tissues, and guides neuronal axon development. TANGO 265 is a transmembrane protein which mediates cellular interaction with cells, molecules and structures (e.g., extracellular matrix) in the

15

20

25

30

extracellular environment. TANGO 265 is therefore involved in growth, organization, and adhesion of tissues and the cells which constitute those tissues. Furthermore, TANGO 265 modulates growth, proliferation, survival, differentiation, and activity of neuronal cells and immune system cells. Thus, TANGO 265 can be used, for example, to prevent, diagnose, or treat disorders characterized by aberrant organization or development of a tissue or organ, for guiding neural axon development, for modulating differentiation of cells of the immune system, for modulating cytokine production by cells of the immune system, for modulating reactivity of cells of the immune system toward cytokines, for modulating initiation and persistence of an inflammatory response, and for 10 modulating proliferation of epithelial cells.

Yet further by way of example, TANGO 273 protein mediates one or more physiological responses of cells to bacterial infection, e.g., by mediating one or more of detection of bacteria in a tissue in which it is expressed, movement of cells with relation to sites of bacterial infection, production of biological molecules which inhibit bacterial infection, and production of biological molecules which alleviate cellular or other physiological damage wrought by bacterial infection. TANGO 273, a transmembrane protein, is also involved in transmembrane signal transduction, and therefore mediates transmission of signals between the extracellular and intracellular environments of cells. TANGO 273 mediates regulation of cell growth and proliferation, endocytosis, activation of respiratory burst, and other physiological processes triggered by transmission of a signal via a protein with which TANGO 273 interacts. The compositions and methods of the invention can therefore be used to prevent, diagnose, and treat disorders involving one or more physiological activities mediated by TANGO 273 protein. Such disorders include, for example, various bone-related disorders such as metabolic, homeostatic, and developmental bone disorders (e.g., osteoporosis, various cancers, skeletal development disorders, bone fragility and the like), disorders caused by or related to bacterial infection, and disorders characterized by aberrant transmembrane signal transduction by TANGO 273.

As an additional example, TANGO 286 protein is involved in lipidbinding physiological processes such as lipid transport, metabolism, serum lipid

10

15

20

25

30

particle regulation, host anti-microbial defensive mechanisms, and the like. Thus, the compositions and methods of the invention can therefore be used to prevent, diagnose, and treat disorders involving one or more physiological activities mediated by TANGO 286 protein. Such disorders include, for example, lipid transport disorders, lipid metabolism disorders, obesity, disorders of serum lipid particle regulation, disorders involving insufficient or inappropriate host antimicrobial defensive mechanisms, vasculitis, bronchiectasis, LPS-related disorders such as shock, disseminated intravascular coagulation, anemia, thrombocytopenia, adult respiratory distress syndrome, renal failure, liver disease, and disorders associated with Gram negative bacterial infections, such as bacteremia, endotoxemia, sepsis, and the like.

Further by way of example, TANGO 294 protein is involved in facilitating absorption and metabolism of fat. Thus, the compositions and methods of the invention can therefore be used to prevent, diagnose, and treat disorders involving one or more physiological activities mediated by TANGO 294 protein. Such disorders include, for example, inadequate expression of gastric/pancreatic lipase, cystic fibrosis, exocrine pancreatic insufficiency, medical treatments which alter fat absorption, obesity, and the like.

As another example, INTERCEPT 296 protein is involved in physiological processes related to disorders of the human lung and esophagus. Thus, the compositions and methods of the invention can be used to prevent, diagnose, and treat these disorders. Such disorders include, for example, various cancers, bronchitis, cystic fibrosis, respiratory infections (e.g., influenza, bronchiolitis, pneumonia, and tuberculosis), asthma, emphysema, chronic bronchitis, bronchiectasis, pulmonary edema, pleural effusion, pulmonary embolus, adult and infant respiratory distress syndromes, heartburn, and gastric reflux esophageal disease.

In one embodiment, a polypeptide of the invention has an amino acid sequence sufficiently identical to an identified domain of a polypeptide of the invention. As used herein, the term "sufficiently identical" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or

10

15

20

25

30

nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity. For example, amino acid or nucleotide sequences which contain a common structural domain having about 65% identity, preferably 75% identity, more preferably 85%, 95%, or 98% identity are defined herein as sufficiently identical.

In one embodiment, the isolated polypeptide of the invention lacks both a transmembrane and a cytoplasmic domain. In another embodiment, the polypeptide lacks both a transmembrane domain and a cytoplasmic domain and is soluble under physiological conditions.

The polypeptides of the present invention, or biologically active portions thereof, can be operably linked to a heterologous amino acid sequence to form fusion proteins. The invention further features antibody substances that specifically bind a polypeptide of the invention such as monoclonal or polyclonal antibodies, antibody fragments, single-chain antibodies, and the like. In addition, the polypeptides of the invention or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers. These antibody substances can be made, for example, by providing the polypeptide of the invention to an immunocompetent vertebrate and thereafter harvesting blood or serum from the vertebrate.

In another aspect, the present invention provides methods for detecting the presence of the activity or expression of a polypeptide of the invention in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of activity such that the presence of activity is detected in the biological sample.

In another aspect, the invention provides methods for modulating activity of a polypeptide of the invention comprising contacting a cell with an agent that modulates (inhibits or enhances) the activity or expression of a polypeptide of the invention such that activity or expression in the cell is modulated. In one embodiment, the agent is an antibody that specifically binds to a polypeptide of the invention.

10

15

20

25

30

In another embodiment, the agent modulates expression of a polypeptide of the invention by modulating transcription, splicing, or translation of an mRNA encoding a polypeptide of the invention. In yet another embodiment, the agent is a nucleic acid molecule having a nucleotide sequence that is antisense with respect to the coding strand of an mRNA encoding a polypeptide of the invention.

The present invention also provides methods to treat a subject having a disorder characterized by aberrant activity of a polypeptide of the invention or aberrant expression of a nucleic acid of the invention by administering an agent which is a modulator of the activity of a polypeptide of the invention or a modulator of the expression of a nucleic acid of the invention to the subject. In one embodiment, the modulator is a protein of the invention. In another embodiment, the modulator is a nucleic acid of the invention. In other embodiments, the modulator is a peptide, peptidomimetic, or other small molecule (e.g., a small organic molecule).

The present invention also provides diagnostic assays for identifying the presence or absence of a genetic lesion or mutation characterized by at least one of: (i) aberrant modification or mutation of a gene encoding a polypeptide of the invention, (ii) mis-regulation of a gene encoding a polypeptide of the invention, and (iii) aberrant post-translational modification of a polypeptide of the invention wherein a wild-type form of the gene encodes a polypeptide having the activity of the polypeptide of the invention.

In another aspect, the invention provides a method for identifying a compound that binds to or modulates the activity of a polypeptide of the invention. In general, such methods entail measuring a biological activity of the polypeptide in the presence and absence of a test compound and identifying those compounds which alter the activity of the polypeptide.

The invention also features methods for identifying a compound which modulates the expression of a polypeptide or nucleic acid of the invention by measuring the expression of the polypeptide or nucleic acid in the presence and absence of the compound.

In yet a further aspect, the invention provides substantially purified antibodies or fragments thereof (i.e., antibody substances), including non-human

10

15

20

25

30

antibodies or fragments thereof, which specifically bind with a polypeptide of the invention or with a portion thereof. In various embodiments, these substantially purified antibodies/fragments can be human, non-human, chimeric, and/or humanized antibodies. Non-human antibodies included in the invention include, by way of example, goat, mouse, sheep, horse, chicken, rabbit, and rat antibodies. In addition, the antibodies of the invention can be polyclonal antibodies or monoclonal antibodies.

In a particularly preferred embodiment, the antibody substance of the invention specifically binds with an extracellular domain of one of TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296. Preferably, the extracellular domain with which the antibody substance binds has an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 14, 22, 30, 37, 49, 50, and 56-58.

Any of the antibody substances of the invention can be conjugated with a therapeutic moiety or with a detectable substance. Non-limiting examples of detectable substances that can be conjugated with the antibody substances of the invention include an enzyme, a prosthetic group, a fluorescent material (i.e., a fluorophore), a luminescent material, a bioluminescent material, and a radioactive material (e.g., a radionuclide or a substituent comprising a radionuclide).

The invention also provides a kit containing an antibody substance of the invention conjugated with a detectable substance, and instructions for use. Still another aspect of the invention is a pharmaceutical composition comprising an antibody substance of the invention and a pharmaceutically acceptable carrier. In preferred embodiments, the pharmaceutical composition contains an antibody substance of the invention, a therapeutic moiety (preferably conjugated with the antibody substance), and a pharmaceutically acceptable carrier.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

Brief Description of the Drawings

Figure 1 comprises Figures 1A-1M. The nucleotide sequence (SEQ ID NO: 1) of a cDNA encoding the human TANGO 202 protein described herein is

10

15

20

25

30

listed in Figures 1A-1D. The open reading frame (ORF; residues 34 to 1458; SEO ID NO: 2) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 3) of human TANGO 202 is listed. The nucleotide sequence (SEQ ID NO: 67) of a cDNA encoding the murine TANGO 202 protein described herein is listed in Figures 1E-1I. The ORF (residues 81 to 1490; SEO ID NO: 68) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 69) of murine TANGO 202 is listed. An alignment of the amino acid sequences of human ("Hum."; SEQ ID NO: 3) and murine ("Mur."; SEQ ID NO: 69) TANGO 202 protein is shown in Figures 1J and 1K, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ".". Figure 1L is a hydrophilicity plot of human TANGO 202 protein, in which the locations of cysteine residues ("Cys") and potential Nglycosylation sites ("Ngly") are indicated by vertical bars and the predicted extracellular ("out"), intracellular ("ins"), or transmembrane ("TM") locations of the protein backbone is indicated by a horizontal bar. Figure 1M is a hydrophilicity plot of murine TANGO 202 protein.

Figure 2 comprises Figures 2A-2Qxvii. The nucleotide sequence (SEQ ID NO: 9) of a cDNA encoding the human TANGO 234 protein described herein is listed in Figures 2A-2I. The ORF (residues 28 to 4386; SEQ ID NO: 10) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 11) of human TANGO 234 is listed. Figure 2J is a hydrophilicity plot of human TANGO 234 protein. An alignment of the amino acid sequences of human TANGO 234 ("Hum"; SEQ ID NO: 11) and bovine WC1 ("WC1"; SEQ ID NO: 78) proteins is shown in Figures 2K-2P, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ".". An alignment of the nucleotide sequences of an ORF encoding human TANGO 234 ("Hum"; SEQ ID NO: 10) and an ORF encoding bovine WC1 ("WC1"; SEQ ID NO: 79) proteins is shown in Figures 2Qi-2Qxvii, wherein identical nucleotide residues are indicated by ":".

Figure 3 comprises Figures 3A-3U. The nucleotide sequence (SEQ ID NO: 17) of a cDNA encoding the human TANGO 265 protein described herein is listed in Figures 3A-3E. The ORF (residues 32 to 2314; SEQ ID NO: 18) of the

10

15

20

25

30

cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 19) of human TANGO 265 is listed. An alignment of the amino acid sequences of human TANGO 265 protein ("Hum."; SEQ ID NO: 19) and murine semaphorin B protein ("Mur."; SEQ ID NO: 70; GenBank Accession No. X85991) is shown in Figures 3F-3H, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ".". In Figures 3I-3T, an alignment of the nucleotide sequences of the cDNA encoding human TANGO 265 protein ("Hum."; SEQ ID NO: 17) and the nucleotide sequences of the cDNA encoding murine semaphorin B protein ("Mur."; SEQ ID NO: 71; GenBank Accession No. X85991) is shown. Figure 3U is a hydrophilicity plot of TANGO 265 protein.

Figure 4 comprises Figures 4A-4J. The nucleotide sequence (SEQ ID NO: 25) of a cDNA encoding the human TANGO 273 protein described herein is listed in Figures 4A-4C. The ORF (residues 135 to 650; SEQ ID NO: 26) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 27) of human TANGO 273 is listed. The nucleotide sequence (SEQ ID NO: 72) of a cDNA encoding the murine TANGO 273 protein described herein is listed in Figures 4D-4G. The ORF (residues 137 to 652; SEQ ID NO: 73) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 74) of murine TANGO 273 is listed. An alignment of the amino acid sequences of human ("Hum."; SEQ ID NO: 27) and murine ("Mur."; SEQ ID NO: 74) TANGO 273 protein is shown in Figure 4H, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ":".

Figure 4I is a hydrophilicity plot of human TANGO 273 protein, and Figure 4J is a hydrophilicity plot of murine TANGO 273 protein.

Figure 5 comprises Figures 5A-5I. The nucleotide sequence (SEQ ID NO: 33) of a cDNA encoding the human TANGO 286 protein described herein is listed in Figures 5A-5D. The ORF (residues 133 to 1497; SEQ ID NO: 34) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 35) of human TANGO 286 is listed. Figure 5E is a hydrophilicity plot of TANGO 286 protein. An alignment of the amino acid sequences of human TANGO 286 ("286"; SEQ ID NO: 35) and BPI protein ("BPI"; SEQ ID NO: 38)

15

20

25

30

protein is shown in Figures 5F and 5G, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ".". An alignment of the amino acid sequences of human TANGO 286 ("286"; SEQ ID NO: 35) and RENP protein ("RENP"; SEQ ID NO: 39) is shown in Figures 5H and 5I, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ".".

Figure 6 comprises Figures 6A-6H. The nucleotide sequence (SEQ ID NO: 45) of a cDNA encoding the human TANGO 294 protein described herein is listed in Figures 6A-6C. The ORF (residues 126 to 1394; SEQ ID NO: 46) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 47) of human TANGO 294 is listed. An alignment of the amino acid sequences of human TANGO 294 protein ("294"; SEQ ID NO: 47) and a known human lipase protein ("HLP"; SEQ ID NO: 75; GenBank Accession No.

NP_004181) is shown in Figures 6D and 6E, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ".". Figure 6F is a hydrophilicity plot of TANGO 294 protein. An alignment of the amino acid sequences of human TANGO 294 protein ("294"; SEQ ID NO: 47) and a known human lysosomal acid lipase protein ("LAL"; SEQ ID NO: 41) is shown in Figures 6G and 6H, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ":" and similar amino acid residues are indicated by ":" and similar amino acid residues are indicated by ":"

Figure 7 comprises Figures 7A-7F. The nucleotide sequence (SEQ ID NO: 53) of a cDNA encoding the human INTERCEPT 296 protein described herein is listed in Figures 7A-7C. The ORF (residues 70 to 1098; SEQ ID NO: 54) of the cDNA is indicated by nucleotide triplets, above which the amino acid sequence (SEQ ID NO: 55) of human INTERCEPT 296 protein is listed. Figure 7D is a hydrophilicity plot of INTERCEPT 296 protein. An alignment of the amino acid sequences of human INTERCEPT 296 protein ("296"; SEQ ID NO: 55) and C. elegans C06E1.3 related protein ("CRP"; SEQ ID NO: 40) is shown in Figure 7E and 7F, wherein identical amino acid residues are indicated by ":" and similar amino acid residues are indicated by ":"

Detailed Description of the Invention

The present invention is based, at least in part, on the discovery of a variety of human and murine cDNA molecules which encode proteins which are herein designated TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296. These proteins exhibit a variety of physiological activities, and are included in a single application for the sake of convenience. It is understood that the allowability or non-allowability of claims directed to one of these proteins has no bearing on the allowability of claims directed to the others. The characteristics of each of these proteins and the cDNAs encoding them are now described separately.

TANGO 202

15

20

25

30

A cDNA clone (designated jthke096b05) encoding at least a portion of human TANGO 202 protein was isolated from a human fetal skin cDNA library. The corresponding murine cDNA was isolated as a clone (designated jtmMa044f07) from a bone marrow stromal cell cDNA library. The human TANGO 202 protein is predicted by structural analysis to be a type I membrane protein, although it can exist in a secreted form as well. The murine TANGO 202 protein is predicted by structural analysis to be a secreted protein.

The full length of the cDNA encoding human TANGO 202 protein (Figure 1; SEQ ID NO: 1) is 1656 nucleotide residues. The open reading frame (ORF) of this cDNA, nucleotide residues 34 to 1458 of SEQ ID NO: 1 (i.e., SEQ ID NO: 2), encodes a 475-amino acid transmembrane protein (Figure 1; SEQ ID NO: 3).

The invention thus includes purified human TANGO 202 protein, both in the form of the immature 475 amino acid residue protein (SEQ ID NO: 3) and in the form of the mature 456 amino acid residue protein (SEQ ID NO: 5). The invention also includes purified murine TANGO 202 protein, both in the form of the immature 470 amino acid residue protein (SEQ ID NO: 67) and in the form of the mature 451 amino acid residue protein (SEQ ID NO: 43). Mature human or murine TANGO 202 proteins can be synthesized without the signal sequence

10

15

20

25

30

polypeptide at the amino terminus thereof, or they can be synthesized by generating immature TANGO 202 protein and cleaving the signal sequence therefrom.

In addition to full length mature and immature human and murine TANGO 202 proteins, the invention includes fragments, derivatives, and variants of these TANGO 202 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 1 or some portion thereof or SEQ ID NO: 67 or some portion thereof, such as the portion which encodes mature human or murine TANGO 202 protein, immature human or murine TANGO 202 protein, or a domain of human or murine TANGO 202 protein. These nucleic acids are collectively referred to as nucleic acids of the invention.

TANGO 202 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features. As used herein, the term "family" is intended to mean two or more proteins or nucleic acid molecules having a common or similar domain structure and having sufficient amino acid or nucleotide sequence identity as defined herein. Family members can be from either the same or different species (e.g., human and mouse, as described herein). For example, a family can comprise two or more proteins of human origin, or can comprise one or more proteins of human origin and one or more of non-human origin.

A common domain present in TANGO 202 proteins is a signal sequence. As used herein, a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane-bound and secreted proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues. A signal sequence serves

10

15

20

25

30

to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 202 protein contains a signal sequence corresponding to amino acid residues 1 to 19 of SEQ ID NO: 3 (SEQ ID NO: 4) or to amino acid residues 1 to 19 of SEQ ID NO: 69 (SEQ ID NO: 42). The signal sequence is cleaved during processing of the mature protein.

TANGO 202 proteins can also include an extracellular domain. As used herein, an "extracellular domain" refers to a portion of a protein which is localized to the non-cytoplasmic side of a lipid bilayer of a cell when a nucleic acid encoding the protein is expressed in the cell. The human TANGO 202 protein extracellular domain is located from about amino acid residue 20 to about amino acid residue 392 of SEQ ID NO: 3 in the non-secreted form, and from about amino acid residue 20 to amino acid residue 475 of SEQ ID NO: 3 (i.e., the entire mature human protein). The murine TANGO 202 protein extracellular domain is located from about amino acid residue 20 to amino acid residue 470 of SEQ ID NO: 69 (i.e., the entire mature murine protein).

TANGO 202 proteins of the invention can also include a transmembrane domain. As used herein, a "transmembrane domain" refers to an amino acid sequence having at least about 20 to 25 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid residues such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine. In a preferred embodiment, a transmembrane domain contains at least about 15 to 30 amino acid residues, preferably about 20-25 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues. Thus, in one embodiment, a TANGO 202 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 393 to 415 of SEQ ID NO: 3 (SEQ ID NO: 7).

In addition, TANGO 202 proteins of the invention can include a cytoplasmic domain, particularly including a carboxyl-terminal cytoplasmic domain. As used herein, a "cytoplasmic domain" refers to a portion of a protein which is localized to the cytoplasmic side of a lipid bilayer of a cell when a nucleic acid encoding the protein is expressed in the cell. The cytoplasmic domain is

located from about amino acid residue 416 to amino acid residue 475 of SEQ ID NO: 3 (SEQ ID NO: 8) in the non-secreted form of human TANGO 202 protein.

TANGO 202 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Tables I (for human TANGO 202) and II (for murine TANGO 202), as predicted by computerized sequence analysis of TANGO 202 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 202 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}).

10

5

Table I

Type of Potential Modification Site	Amino Acid Residues	Amino Acid
or Domain	of SEQ ID NO: 3	Sequence
N-glycosylation site	47 to 50	NWTA
,	61 to 64	NETF
	219 to 222	NYSA
·	295 to 298	NVSL
·	335 to 338	NQTV
·	347 to 350	NLSV
Protein kinase C phosphorylation site	70 to 72	TLK
	137 to 139	TSK
	141 to 143	SNK
	155 to 157	SQR
	238 to 240	TGR
	245 to 247	TIR
	277 to 279	THR
	307 to 309	SDR
	355 to 357	SSK
	387 to 389	SHR
	418 to 420	TFK
	421 to 423	SHR

Table I (Continued)

Casein kinase II phosphorylation site	337 to 340	TVAE
·	438 to 441	TSGE
	464 to 467	SQQD
N-myristoylation site	53 to 58	GGKPCL
·	120 to 125	GNLGCY
	136 to 141	GTSKTS
	162 to 167	GMESGY
	214 to 219	GACGGN
Kringle domain signature	85 to 90	YCRNPD
Kringle Domain	34 to 116	· See Fig. 1
CUB domain	216 to 320	See Fig. 1

Table II

Type of Potential Modification Site	Amino Acid Residues of	Amino Acid
or Domain	SEQ ID NO: 69	Sequence
N-glycosylation site	59 to 62	NETF
·	217 to 220	NYSA
	255 to 258	NFTL
	293 to 296	NVSL
	333 to 336	NQTL
	345 to 348	NLSV
cAMP- or cGMP-dependent protein	455 to 458	RRSS
kinase phosphorylation site		

Table II (Continued)

Protein kinase C phosphorylation site	68 to 70	TLK
	135 to 137	TSK
	139 to 141	SNK
	153 to 155	SQR
	236 to 238	TGR
	243 to 245	TIR
	275 to 277	THR
	283 to 285	SGR
•	305 to 307	SDR
	353 to 355	SSK
	408 to 410	SQR
	453 to 455	SLR
	457 to 459	SSR
Casein kinase II phosphorylation site	28 to 31	SGPE
	257 to 260	TLFD
	321 to 324	TKEE
	335 to 338	TLAE
	384 to 387	TATE
N-myristoylation site	51 TO 56	GGKPCL
	118 TO 123	GNLGCY
	134 TO 139	GTSKTS
	160 TO 165	GMESGY
	212 TO 217	GACGGN
	391 TO 396	GLCTAW
	429 TO 434	GTVVSL

10

15

20

Table II (Continued)

Kringle domain signature	83 to 88	YCRNPD
Kringle Domain	32 to 114	See Fig. 1
CUB domain	214 to 318	See Fig. 1

As used herein, the term "post-translational modification site" refers to a protein domain that includes about 3 to 10 amino acid residues, more preferably about 3 to 6 amino acid residues wherein the domain has an amino acid sequence which comprises a consensus sequence which is recognized and modified by a protein-modifying enzyme. Exemplary protein-modifying enzymes include amino acid glycosylases, cAMP- and cGMP-dependent protein kinases, protein kinase C, casein kinase II, myristoylases, and prenyl transferases. In various embodiments, the protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites described herein in Tables I and II.

Exemplary additional domains present in human and murine TANGO 202 protein include Kringle domains and CUB domains. In one embodiment, the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to one of the domains described herein in Tables I and II. Preferably, the protein of the invention has at least one Kringle domain and one CUB domain.

A Kringle domain has a characteristic profile that has been described in the art (Castellino and Beals (1987) *J. Mol. Evol.* 26:358-369; Patthy (1985) *Cell* 41:657-663; Ikeo et al. (1991) *FEBS Lett.* 287:146-148). Many, but not all, Kringle domains comprise a conserved hexapeptide signature sequence, namely

$$(F \text{ or } Y) - C - R - N - P - (D \text{ or } N \text{ or } R).$$

25 The cysteine residue is involved in a disulfide bond.

Kringle domains are triple-looped, disulfide cross-linked domains found in a varying number of copies in, for example, some serine proteases and plasma proteins. Kringle domains have a role in binding mediators (e.g., membranes, other proteins, or phospholipids) and in regulation of proteolytic

10

15

20

25

30

activity. Kringle domains have been identified in the following proteins, for example: apolipoprotein A, blood coagulation factor XII (Hageman factor), hepatocyte growth factor (HGF), HGF-like protein (Friezner Degen et al., (1991) *Biochemistry* 30:9781-9791), HGF activator (Miyazawa et al., (1993) *J. Biol. Chem.* 268:10024-10028), plasminogen, thrombin, tissue plasminogen activator, urokinase-type plasminogen activator, and four influenza neuraminidases. The presence of a Kringle domain in each of human and murine TANGO 202 protein indicates that TANGO 202 is involved in one or more physiological processes in which these other Kringle domain-containing proteins are involved, has biological activity in common with one or more of these other Kringle domain-containing proteins, or both.

CUB domains are extracellular domains of about 110 amino acid residues which occur in functionally diverse, mostly developmentally regulated proteins (Bork and Beckmann (1993) J. Mol. Biol. 231:539-545; Bork (1991) FEBS Lett. 282:9-12). Many CUB domains contain four conserved cysteine residues, although some, like that of TANGO 202, contain only two of the conserved cysteine residues. The structure of the CUB domain has been predicted to assume a beta-barrel configuration, similar to that of immunoglobulins. Other proteins which have been found to comprise one or more CUB domains include, for example, mammalian complement sub-components Cls and Clr, hamster serine protease Casp, mammalian complement activating component of Ra-reactive factor, vertebrate enteropeptidase, vertebrate bone morphogenic protein 1, sea urchin blastula proteins BP10 and SpAN, Caenorhabditis elegans hypothetical proteins F42A10.8 and R151.5, neuropilin (A5 antigen), sea urchin fibropellins I and III, mammalian hyaluronate-binding protein TSG-6 (PS4), mammalian spermadhesins, and Xenopus embryonic protein UVS.2. The presence of a CUB domain in each of human and murine TANGO 202 protein indicates that TANGO 202 is involved in one or more physiological processes in which these other CUB domain-containing proteins are involved, has biological activity in common with one or more of these other CUB domain-containing proteins, or both.

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that human TANGO 202 protein

10

15

20

25

30

includes a 19 amino acid signal peptide (amino acid residues 1 to 19 of SEQ ID NO: 3; SEQ ID NO: 4) preceding the mature TANGO 202 protein (amino acid residues 20 to 475 of SEQ ID NO: 3; SEQ ID NO: 5). Human TANGO 202 protein includes an extracellular domain (amino acid residues 20 to 392 of SEQ ID NO: 3; SEQ ID NO: 6); a transmembrane domain (amino acid residues 393 to 415 of SEQ ID NO: 3; SEQ ID NO: 7); and a cytoplasmic domain (amino acid residues 416 to 475 of SEQ ID NO: 3; SEQ ID NO: 8). The murine homolog of TANGO 202 protein is predicted to be a secreted protein. Thus, it is recognized that human TANGO 202 can also exist in the form of a secreted protein, likely being translated from an alternatively spliced TANGO 202 mRNA. In a variant form of the protein, an extracellular portion of TANGO 202 protein (e.g., amino acid residues 20 to 392 of SEQ ID NO: 3) can be cleaved from the mature protein to generate a soluble fragment of TANGO 202.

Figure 1L depicts a hydrophilicity plot of human TANGO 202 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 19 of SEQ ID NO: 3 is the signal sequence of human TANGO 202 (SEQ ID NO: 4). The hydrophobic region which corresponds to amino acid residues 393 to 415 of SEQ ID NO: 3 is the transmembrane domain of human TANGO 202 (SEQ ID NO: 7). As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human TANGO 202 protein from about amino acid residue 61 to about amino acid residue 95 appears to be located at or near the surface of the protein, while the region from about amino acid residue 395 to about amino acid residue 420 appears not to be located at or near the surface.

The predicted molecular weight of human TANGO 202 protein without modification and prior to cleavage of the signal sequence is about 51.9 kilodaltons. The predicted molecular weight of the mature human TANGO 202 protein without modification and after cleavage of the signal sequence is about 50.1 kilodaltons.

10

15

20

25

30

The full length of the cDNA encoding murine TANGO 202 protein (Figure 1; SEQ ID NO: 67) is 4928 nucleotide residues. The ORF of this cDNA, nucleotide residues 81 to 1490 of SEQ ID NO: 67 (i.e., SEQ ID NO: 68), encodes a 470-amino acid secreted protein (Figure 1; SEQ ID NO: 69).

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that murine TANGO 202 protein includes a 19 amino acid signal peptide (amino acid residues 1 to 19 of SEQ ID NO: 69; SEQ ID NO: 42) preceding the mature TANGO 202 protein (amino acid residues 20 to 470 of SEQ ID NO: 69; SEQ ID NO: 43). Murine TANGO 202 protein is a secreted protein.

Figure 1M depicts a hydrophilicity plot of murine TANGO 202 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 19 of SEQ ID NO: 69 is the signal sequence of murine TANGO 202 (SEQ ID NO: 42). As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of murine TANGO 202 protein from about amino acid residue 61 to about amino acid residue 95 appears to be located at or near the surface of the protein, while the region from about amino acid residue 295 to about amino acid residue 305 appears not to be located at or near the surface

The predicted molecular weight of murine TANGO 202 protein without modification and prior to cleavage of the signal sequence is about 51.5 kilodaltons. The predicted molecular weight of the mature murine TANGO 202 protein without modification and after cleavage of the signal sequence is about 49.7 kilodaltons.

Human and murine TANGO 202 proteins exhibit considerable sequence similarity, as indicated herein in Figures 1J and 1K. Figures 1J and 1K depict an alignment of human and murine TANGO 202 amino acid sequences (SEQ ID NOs: 3 and 69, respectively). In this alignment (made using the ALIGN software {Myers and Miller (1989) CABIOS, ver. 2.0}; pam120 mat scoring matrix;

gap penalties -12/-4), the proteins are 76.5% identical. The human and murine ORFs encoding TANGO 202 are 87.4% identical, as assessed using the same software and parameters.

In situ hybridization experiments in mouse tissues indicated that mRNA corresponding to the cDNA encoding TANGO 202 is expressed in the tissues listed in Table III, wherein "+" indicates detectable expression and "++" indicates a greater level of expression than "+".

Table III

Animal	Tissue	Relative Level of Expression
Mouse (Adult)	bladder, especially in transitional epithelium	++
	renal glomeruli	+
	brain	+
	heart	+
,	liver	+
	spleen	+
	placenta	+
Mouse (Embryo)	ubiquitous	+

10

15

Biological function of TANGO 202 proteins, nucleic acids, and modulators thereof

TANGO 202 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 202 is expressed in human fetal skin, ubiquitously in fetal mouse tissues, in adult murine bone marrow stromal cells, and in cells of adult murine bladder, renal glomeruli, brain, heart, liver, spleen and placenta, TANGO 202 protein is involved in one or more biological processes

10

15

20

25

30

which occur in these tissues. In particular, TANGO 202 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells of these tissues including, but not limited to, hematopoietic and fetal cells. Thus, TANGO 202 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity. Ubiquitous expression of TANGO 202 in fetal murine tissues, contrasted with limited expression in adult murine tissues further indicates that TANGO 202 is involved in disorders in which it is inappropriately expressed (e.g., disorders in which TANGO 202 is expressed in adult murine tissues other than bone marrow stromal cells and disorders in which TANGO 202 is not expressed in one or more developing fetal tissues).

The presence of a Kringle domain in both the murine and human TANGO 202 proteins indicates that this protein is involved in modulating cellular binding to one or more mediators (e.g., proteins, phospholipids, intracellular organelles, or other cells), in modulating proteolytic activity, or both. The presence of a Kringle domain in other proteins (e.g., growth factors) indicates activities that these proteins share with TANGO 202 protein (e.g., modulating cell dissociation and migration into and through extracellular matrices). The presence of Kringle domains in numerous plasma proteins, particularly coupled with the observation that TANGO 202 is expressed in adult murine bone marrow stromal cells, indicates a role for TANGO 202 protein in modulating binding of blood or hematopoietic cells (or both) to one or more mediators. Thus, TANGO 202 is involved in disorders relating to aberrant cellular protease activity, inappropriate interaction or non-interaction of cells with mediators, and in blood and hematopoietic cell-related disorders. Such disorders include, by way of example and not limitation, immune disorders, infectious diseases, auto-immune disorders, vascular and cardiovascular disorders, disorders related to mal-expression of growth factors, cancers, hematological disorders, and the like.

The cDNA encoding TANGO 202 exhibits significant nucleotide sequence similarity with a polynucleotide encoding a kringle-domain-containing protein (designated HTHBZ47) described in the European Patent Application No. EP 0 911 399 A2 (published April 28, 1999). Thus, the TANGO 202 protein can exhibit one or more of the activities exhibited by HTHBZ47, and can be used to

10

15

20

25

30

prevent, inhibit, diagnose, and treat one or more disorders for which HTHBZ47 is useful. These disorders include cancer, inflammation, autoimmune disorders, allergic disorders, asthma, rheumatoid arthritis, inflammation of central nervous system tissues, cerebellar degeneration, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amylotrophic lateral sclerosis, head injury damage and other neurological abnormalities, septic shock, sepsis, stroke, osteoporosis, osteoarthritis, ischemic reperfusion injury, cardiovascular disease, kidney disease, liver disease, ischemic injury, myocardial infarction, hypotension, hypertension, AIDS, myelodysplastic syndromes and other hematologic abnormalities, aplastic anemia, male pattern baldness, and bacterial, fungal, protozoan, and viral infections.

The presence of a CUB domain in both the murine and human TANGO 202 proteins indicates that this protein is involved in biological processes common to other CUB domain-containing proteins, such as developmental processes and binding to mediators. Therefore, TANGO 202 protein has a role in disorders which involve inappropriate developmental processes (e.g., abnormally high proliferation or un-differentiation of a differentiated tissue or abnormally low differentiation or proliferation of a non-developed or non-differentiated tissue) and modulation of cell growth, proliferation, survival, differentiation, and activity. Such disorders include, by way of example and not limitation, various cancers and birth and developmental defects.

Thus, proteins and nucleic acids of the invention which are identical to, similar to, or derived from human and murine TANGO 202 proteins and nucleic acids encoding them are useful for preventing, diagnosing, and treating, among others, vascular and cardiovascular disorders, hematological disorders, disorders related to mal-expression of growth factors, and cancer. Other uses for these proteins and nucleic acids of the invention relate to modulating cell growth (e.g., angiogenesis), proliferation (e.g., cancers), survival (e.g., apoptosis), differentiation (e.g., hematopoiesis), and activity (e.g., ligand-binding capacity). TANGO 202 proteins and nucleic acids encoding them are also useful for modulating cell dissociation and modulating migration of cells in extracellular matrices.

10

15

20

25

30

TANGO 234

A cDNA clone (designated jthsa104d11) encoding at least a portion of human TANGO 234 protein was isolated from a human fetal spleen cDNA library. The human TANGO 234 protein is predicted by structural analysis to be a transmembrane protein, although it can exist in a secreted form as well.

The full length of the cDNA encoding human TANGO 234 protein (Figure 2; SEQ ID NO: 9) is 4628 nucleotide residues. The ORF of this cDNA, nucleotide residues 28 to 4386 of SEQ ID NO: 9 (i.e., SEQ ID NO: 10), encodes a 1453-amino acid transmembrane protein (Figure 2; SEQ ID NO: 11).

The invention thus includes purified human TANGO 234 protein, both in the form of the immature 1453 amino acid residue protein (SEQ ID NO: 11) and in the form of the mature 1413 amino acid residue protein (SEQ ID NO: 13). Mature human TANGO 234 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 234 protein and cleaving the signal sequence therefrom.

In addition to full length mature and immature human TANGO 234 proteins, the invention includes fragments, derivatives, and variants of these TANGO 234 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 9 or some portion thereof, such as the portion which encodes mature TANGO 234 protein, immature TANGO 234 protein, or a domain of TANGO 234 protein. These nucleic acids are collectively referred to as nucleic acids of the invention.

TANGO 234 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features, as indicated by the conservation of amino acid sequence between human TANGO 234 protein and bovine WC1 protein, as shown in Figures 2K through 2P, and the conservation of nucleotide sequence between the ORFs encoding human

10

15

20

25

30

TANGO 234 protein and bovine WC1 protein, as shown in Figures 2Qi through 2Qxvii.

A common domain present in TANGO 234 proteins is a signal sequence. As used herein, a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues. A signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 234 protein contains a signal sequence corresponding to amino acid residues 1 to 40 of SEQ ID NO: 11 (SEQ ID NO: 12). The signal sequence is cleaved during processing of the mature protein.

TANGO 234 proteins can include an extracellular domain. The human TANGO 234 protein extracellular domain is located from about amino acid residue 41 to about amino acid residue 1359 of SEQ ID NO: 3. TANGO 234 can alternately exist in a secreted form, such as a mature protein having the amino acid sequence of amino acid residues 41 to 1453 or residues 41 to about 1359 of SEQ ID NO: 11.

In addition, TANGO 234 include a transmembrane domain. In one embodiment, a TANGO 234 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 1360 to 1383 of SEQ ID NO: 11 (SEQ ID NO: 15).

The present invention includes TANGO 234 proteins having a cytoplasmic domain, particularly including proteins having a carboxyl-terminal cytoplasmic domain. The human TANGO 234 cytoplasmic domain is located from about amino acid residue 1384 to amino acid residue 1453 of SEQ ID NO: 11 (SEQ ID NO: 16).

TANGO 234 proteins typically comprise a variety of potential posttranslational modification sites (often within an extracellular domain), such as those

described herein in Table IV, as predicted by computerized sequence analysis of TANGO 234 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 234 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}). In certain embodiments, a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table IV.

Table IV

Type of Potential Modification Site	Amino Acid Residues of	Amino Acid
or Domain	SEQ ID NO: 11	Sequence
N-glycosylation site	42 to 45	NGTD
	78 to 81	NTTA
	120 to 123	NESA
	161 to 164	NNSC
	334 to 337	NESF
	377 to 380	NCSG
	441 to 444	NESA
	548 to 551	NESN
	637 to 640	NAST
·	972 to 975	NESL
	1013 to 1016	NVSD
	1084 to 1087	NATV
	1104 to 1107	NCTG
·	1161 to 1164	NGTW
	1171 to 11 74	NITT
	1318 to 1321	NESF
	1354 to 1357	NASS
Glycosaminoglycan attachment site	558 to 561	SGWG
	665 to 668	SGWG
cAMP- or cGMP-dependent protein	1229 to 1232	RRIS
kinase phosphorylation site	1399 to 1402	RRGS

Table IV (Continued)

Protein kinase C phosphorylation site	165 to 167	SGR
	268 to 270	TNR
	379 to 381	SGR
	419 to 421	SRR
	469 to 471	SDK
•	506 to 508	STR
·	589 to 591	SNR:
	593 to 595	SGR
	661 to 663	SCR
*	696 to 698	SSR
	746 to 748	TER
·	805 to 807	SGR
	815 to 817	TWR
	959 to 961	SVR
	1256 to 1258	SGR
	1349 to 1351	SLK ·
	1396 to 1398	STR
Casein kinase II phosphorylation site	44 to 47	TDLE
	71 to 74	TVCD
	178 to 181	TICD
*	245 to 248	SHNE
	253 to 256	TCYD
	258 to 261	SDLE
	319 to 322	SGSD
	332 to 335	SGNE
	392 to 395	TICD
	439 to 442	TGNE

Table IV (Continued)

Casein kinase II phosphorylation site	606 to 609	TVCD
. (Continued)	622 to 625	SQLD
	673 to 676	SHSE
	686 to 689	SDME
	760 to 763	TGGE
	765 to 768	SLWD
	818 to 821	SVCD
·	845 to 848	SVGD
	857 to 860	TWAE
	907 to 910	SQCD
	923 to 926	SLCD
	927 to 930	THWD
•	974 to 977	SLLD
	1059 to 1062	TICD
	1106 to 1109	TGTE
	1145 to 1148	SETE
	1233 to 1236	SPAE
	1241 to 1244	TCED
	1269 to 1272	TVCD
	1402 to 1405	SLEE
	1425 to 1428	TSDD
N-myristoylation site	67 to 72	GQWGTV
	90 to 95	GCPFSF
	101 to 106	GQAVTR
	119 to 124	GNESAL
	133 to 138	GSHNCY
	160 to 165	GNNSCS
	197 to 202	GCPSSF

Table IV (Continued)

N-myristoylation site (Continued)	226 to 231	GNELAL
	240 to 245	GNHDCS
,	267 to 272	GTNRCM
	304 to 309	GCGTAL
	328 to 333	GVSCSG
	374 to 379	GSNNCS
	411 to 416	GCPFSV
· (C)	418 to 423	GSRRAK
	440 to 445	GNESAL
	465 to 470	GVICSD
	547 to 552	GNESNI
	588 to 593	GSNRCS
	632 to 637	GMGLGN
	668 to 673	GNNDCS
	679 to 684	GVICSD
	695 to 700	GSSRCA
	712 to 717	GILCAN
	720 to 725	GMNIAE
·	758 to 763	GCTGGE
·	853 to 858	GNGLTW
	891 to 896	GVVCSR
	944 to 949	GTALST
	985 to 990	GAPPCI
	992 to 997	GNTVSV
	1078 to 1083	GCGVAF
	1121 to 1126	GQHDCR
·	1132 to 1137	GVICSE

Table IV (Continued)

1185 to 1190 GCGENG 1265 to 1270 GSWGTV 1288 to 1293 GCGSAL 1302 to 1307 GQGTGT 1331 to 1336 GQSDCG 1342 to 1347 GVRCSG 1422 to 1427 GTRTSD 1443 to 1438 GCEDAS 1444 to 1449 GVLPAS Amidation site 1167 to 1170 VGRR Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2	N-myristoylation site (Continued)	1162 to 1167	GTWGSV
1288 to 1293 GCGSAL 1302 to 1307 GQGTGT 1331 to 1336 GQSDCG 1342 to 1347 GVRCSG 1422 to 1427 GTRTSD 1443 to 1438 GCEDAS 1444 to 1449 GVLPAS Amidation site 1167 to 1170 VGRR Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1185 to 1190	GCGENG
1302 to 1307 GQGTGT 1331 to 1336 GQSDCG 1342 to 1347 GVRCSG 1422 to 1427 GTRTSD 1443 to 1438 GCEDAS 1444 to 1449 GVLPAS Amidation site 1167 to 1170 VGRR Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1265 to 1270	GSWGTV
1331 to 1336 GQSDCG 1342 to 1347 GVRCSG 1422 to 1427 GTRTSD 1443 to 1438 GCEDAS 1444 to 1449 GVLPAS Amidation site 1167 to 1170 VGRR Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1288 to 1293	GCGSAL
1342 to 1347 GVRCSG 1422 to 1427 GTRTSD 1443 to 1438 GCEDAS 1444 to 1449 GVLPAS		1302 to 1307	GQGTGT
1422 to 1427		1331 to 1336	GQSDCG
1443 to 1438 GCEDAS 1444 to 1449 GVLPAS		1342 to 1347	GVRCSG
Amidation site 1167 to 1170 VGRR Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1422 to 1427	GTRTSD
Amidation site 1167 to 1170 VGRR Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1443 to 1438	GCEDAS
Speract receptor repeated (SRR) 53 to 90 See Fig. 2 domain signature 160 to 197 See Fig. 2 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1444 to 1449	GVLPAS
domain signature 160 to 197 267 to 304 See Fig. 2 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich (SRCR) domain 158 to 255 See Fig. 2 265 to 362 372 to 469 479 to 576 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 685 See Fig. 2 586 to 685 See Fig. 2	Amidation site	1167 to 1170	VGRR
267 to 304 1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 790 See Fig. 2 798 to 895 See Fig. 2 1039 to 1136 See Fig. 2	Speract receptor repeated (SRR)	53 to 90	See Fig. 2
1041 to 1078 See Fig. 2 1251 to 1288 See Fig. 2 Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2	domain signature	160 to 197	See Fig. 2
1251 to 1288 See Fig. 2		267 to 304	See Fig. 2
Scavenger receptor cysteine-rich 51 to 148 See Fig. 2 (SRCR) domain 158 to 255 See Fig. 2 265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1041 to 1078	See Fig. 2
(SRCR) domain 158 to 255 265 to 362 372 to 469 479 to 576 See Fig. 2 586 to 683 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		1251 to 1288	See Fig. 2
265 to 362 See Fig. 2 372 to 469 See Fig. 2 479 to 576 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2	Scavenger receptor cysteine-rich	51 to 148	See Fig. 2
372 to 469 479 to 576 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2	(SRCR) domain	158 to 255	See Fig. 2
479 to 576 See Fig. 2 586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		265 to 362	See Fig. 2
586 to 683 See Fig. 2 693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		372 to 469	See Fig. 2
693 to 790 See Fig. 2 798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		479 to 576	See Fig. 2
798 to 895 See Fig. 2 903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2		586 to 683	See Fig. 2
903 to 1000 See Fig. 2 1039 to 1136 See Fig. 2	,	693 to 790	See Fig. 2
1039 to 1136 See Fig. 2		798 to 895	See Fig. 2
		903 to 1000	See Fig. 2
11464-1242		1039 to 1136	See Fig. 2
1146 to 1243 See Fig. 2		1146 to 1243	See Fig. 2
1249 to 1346 See Fig. 2		1249 to 1346	See Fig. 2

10

15

20

25

30

PCT/US00/14858

Among the domains that occur in TANGO 234 protein are SRR domains and SRCR domains. In one embodiment, the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to one of these domains. In other embodiments, the protein has at least two of the SRR and SRCR domains described herein in Table IV. In other embodiments, the protein has at least one SRR domain and at least one SRCR domain.

The SRR domain is named after a receptor domain identified in a sea urchin egg protein designated speract. The consensus sequence of this domain (using standard one-letter amino acid codes, wherein X is any amino acid residue) is as follows.

$$-G-X_3-G-X_2-E-X_6-W-G-X_2-C-X_3-(F \text{ or } Y \text{ or } W)-X_8-C-X_3-G-$$

Speract is a transmembrane glycoprotein of 500 amino acid residues (Dangott et al. (1989) Proc. Natl. Acad. Sci. USA 86:2128-2132). Structurally, this receptor consists of a large extracellular domain of 450 residues, followed by a transmembrane region and a small cytoplasmic domain of 12 amino acid residues. The extracellular domain contains four repeats of an approximately 115 amino acid domain. There are 17 amino acid residues that are perfectly conserved in the four repeats in speract, including six cysteine residues, six glycine residues, and two glutamate residues. TANGO 234 has five SRR domains, in which 16 of the 17 conserved speract residues are present of four of the SRR domains and 15 are present in the remaining SRR domain. This domain is designated the speract receptor repeated domain. The amino acid sequence of mammalian macrophage scavenger receptor type I (MSRI) exhibits such a domain (Freeman et al. (1990) Proc. Natl. Acad. Sci. USA 87:8810-8814). MSRI proteins are membrane glycoproteins implicated in the pathologic deposition of cholesterol in arterial walls during atherogenesis. TANGO 234 is involved in one or more physiological processes related to cholesterol deposition and atherogenesis, as well as other vascular and cardiovascular disorders.

Scavenger receptor cysteine-rich (SRCR) domains are disulfide rich extracellular domains which are present in certain cell surface and secreted proteins.

10

15

20

25

30

Proteins having SRCR domains exhibit diverse ligand binding specificity. For example, in addition to modified lipoproteins, some of these proteins bind a variety of surface components of pathogenic microorganisms, and some of the proteins bind apoptotic cells. SRCR domains are also involved in mediating immune development and response. Other SRCR-containing proteins are involved in binding of modified lipoproteins (e.g., oxidized low density lipoprotein {LDL}) by specialized macrophages, leading to the formation of macrophages filled with cholesteryl ester droplets (i.e., foam cells). TANGO 234 is involved in one or more physiological processes in which these other SRCR domain-containing proteins are involved, such as LDL uptake and metabolism, regulation of serum cholesterol level, atherogenesis, atherosclerosis, bacterial or viral infections, immune development, and generation and perseverance of immune responses.

WC1 is a ruminant protein having an SRCR domain. WC1 and gamma delta T-cell receptor are the only known gamma delta T-cell specific antigens. Antibodies which bind specifically with WC1 induce growth arrest in IL-2-dependent gamma delta T-cell and augment proliferation of gamma delta T-cells in an autologous mixed lymphocyte reaction or in the presence of anti-CD2 or anti-CD5 antibodies. Injection of antibodies which bind specifically with WC1 into calves results in long-lasting depletion of gamma delta T-cells. Furthermore, antibodies which bind specifically with WC1 can be used to purify gamma delta T-cells.

Gamma delta T-cells are involved in a variety of physiological processes. For example, these cells are potential mediators of allergic airway inflammation and lyme disease. Furthermore, these cells are involved in natural resistance to viral infections and can mediate autoimmune diseases. Elimination of gamma delta T-cells by injection of antibodies which bind specifically therewith can affect the outcomes of these disorders.

TANGO 234 is likely the human orthologue of ruminant protein WC1, and thus is involved with the physiological processes described above in humans. An alignment of the amino acid sequences of (human) TANGO 234 and bovine WC1 protein is shown in Figures 2K-2P. In this alignment (made using the ALIGN software {Myers and Miller (1989) CABIOS, ver. 2.0}; pam120.mat

10

15

20

25

30

scoring matrix; gap penalties -12/-4), the proteins are 40.4% identical. An alignment of the nucleotide sequences of the ORFs encoding (human) TANGO 234 and bovine WC1 protein is shown in Figures 2Qi-2Qxvii. The two ORFs are 54.3% identical, as assessed using the same software and parameters.

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that human TANGO 234 protein includes a 40 amino acid signal peptide (amino acid residues 1 to 40 of SEQ ID NO: 11; SEQ ID NO: 12) preceding the mature TANGO 234 protein (amino acid residues 41 to 4386 of SEQ ID NO: 11; SEQ ID NO: 13). Human TANGO 234 protein includes an extracellular domain (amino acid residues 41 to 1359 of SEQ ID NO: 11; SEQ ID NO: 14); a transmembrane domain (amino acid residues 1360 to 1383 of SEQ ID NO: 11; SEQ ID NO: 15); and a cytoplasmic domain (amino acid residues 1384 to 1453 of SEQ ID NO: 11; SEQ ID NO: 16).

Figure 2J depicts a hydrophilicity plot of human TANGO 234 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 40 of SEQ ID NO: 11 is the signal sequence of human TANGO 234 (SEQ ID NO: 12). The hydrophobic region which corresponds to amino acid residues 1360 to 1383 of SEQ ID NO: 11 is the transmembrane domain of human TANGO 234 (SEQ ID NO: 15). As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human TANGO 234 protein from about amino acid residue 225 to about amino acid residue 250 appears to be located at or near the surface of the protein, while the region from about amino acid residue 990 to about amino acid residue 1000 appears not to be located at or near the surface.

The predicted molecular weight of human TANGO 234 protein without modification and prior to cleavage of the signal sequence is about 159.3 kilodaltons. The predicted molecular weight of the mature human TANGO 234 protein without modification and after cleavage of the signal sequence is about 154.7 kilodaltons.

10

15

20

25

Chromosomal mapping to identify the location of the gene encoding human TANGO 234 protein indicated that the gene was located at chromosomal location h12p13 (with synteny to mo6). Flanking chromosomal markers include WI-6980 and GATA8A09.43. Nearby human loci include IBD2 (inflammatory bowel disease 2), FPF (familial periodic fever), and HPDR2 (hypophosphatemia vitamin D resistant rickets 2). Nearby genes are KLRC (killer cell receptor cluster), DRPLA (dentatorubro-pallidoluysian atrophy), GAPD (glyceraldehyde-3-phosphate) dehydrogenase, and PXR1 (peroxisome receptor 1). Murine chromosomal mapping indicated that the murine orthologue is located near the scr (scruffy) locus. Nearby mouse genes include drpla (dentatorubral phillidoluysian atrophy), prp (proline rich protein), and kap (kidney androgen regulated protein).

Northern analysis experiments indicated that mRNA corresponding to the cDNA encoding TANGO 234 is expressed in the tissues listed in Table V, wherein "++" indicates moderate expression, "+" indicates lower expression, and "-" indicates no detectable expression.

Table V

Animal	Tissue	Relative Level of Expression
Human	spleen	++ .
	fetal lung	. ++
	lung	+
	thymus	+
	bone marrow	-
	peripheral blood leukocytes	<u>-</u>

Biological function of TANGO 234 proteins, nucleic acids, and modulators thereof

TANGO 234 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 234 is expressed in human fetal lung, spleen, and, to a lesser extent in adult lung and thymus tissue, TANGO 234 protein is involved in one or more biological processes which occur in these tissues. In particular, TANGO 234 is involved in modulating growth, proliferation, survival, differentiation, and activity of cells including, but not limited to, lung,

10

15

20

25

30

spleen, thymus bone marrow, hematopoietic, peripheral blood leukocytes, and fetal cells of the animal in which it is normally expressed. Thus, TANGO 234 has a role in disorders which affect these cells and their growth, proliferation, survival, differentiation, and activity. Expression of TANGO 234 in an animal is also involved in modulating growth, proliferation, survival, differentiation, and activity of cells and viruses which are foreign to the host (i.e., bacterial, fungal, and viral infections).

Homology of human TANGO 234 with bovine WC1 protein indicates that TANGO 234 has physiological functions in humans analogous to the functions of WC1 in ruminants. Thus, TANGO 234 is involved in modulating growth, proliferation, survival, differentiation, and activity of gamma delta T cells. For example, TANGO 234 affects the ability of gamma delta T cells to interact with chemokines such as interleukin-2. TANGO 234 therefore is involved in the physiological processes associated with allergic airway inflammation, lyme arthritis, resistance to viral infection, auto-immune diseases, and the like.

In addition, presence in TANGO 234 of SRR and SRCR domains indicates that TANGO 234 is involved in physiological functions identical or analogous to the functions performed by other proteins having such domains. For example, like other SRR domain-containing proteins, TANGO 234 modulates cholesterol deposition in arterial walls, and is thus involved in development and persistence of atherogenesis and arteriosclerosis, as well as other vascular and cardiovascular disorders. Like other SRCR domain-containing proteins, TANGO 234 is involved in uptake and metabolism of LDL, regulation of serum cholesterol level, and can modulate these processes as well as the processes of atherogenesis, arteriosclerosis, immune development, and generation and perseverance of immune responses to bacterial, fungal, and viral infections.

TANGO 265

A cDNA clone (designated jthsa079g01) encoding at least a portion of human TANGO 265 protein was isolated from a human fetal spleen cDNA library. The human TANGO 265 protein is predicted by structural analysis to be a transmembrane membrane protein, although it can exist in a secreted form as well.

The full length of the cDNA encoding human TANGO 265 protein (Figure 3; SEQ ID NO: 17) is 3104 nucleotide residues. The ORF of this cDNA, nucleotide residues 32 to 2314 of SEQ ID NO: 17 (i.e., SEQ ID NO: 18), encodes a 761-amino acid transmembrane protein (Figure 3; SEQ ID NO: 19).

5

10

15

The invention thus includes purified TANGO 265 protein, both in the form of the immature 761 amino acid residue protein (SEQ ID NO: 19) and in the form of the mature 730 amino acid residue protein (SEQ ID NO: 21). Mature TANGO 265 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 265 protein and cleaving the signal sequence therefrom.

In addition to full length mature and immature TANGO 265 proteins, the invention includes fragments, derivatives, and variants of TANGO 265 protein, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 17 or some portion thereof, such as the portion which encodes mature TANGO 265 protein, immature TANGO 265 protein, or a domain of TANGO 265 protein. These nucleic acids are collectively referred to as nucleic acids of the invention.

TANGO 265 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features.

25

30

20

A common domain present in TANGO 265 proteins is a signal sequence. As used herein, a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more

10

15

20

25

preferably at least about 45% hydrophobic residues. A signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 265 protein contains a signal sequence corresponding to amino acid residues 1 to 31 of SEQ ID NO: 19 (SEQ ID NO: 20). The signal sequence is cleaved during processing of the mature protein.

TANGO 265 proteins can also include an extracellular domain. The human TANGO 265 protein extracellular domain is located from about amino acid residue 32 to about amino acid residue 683 of SEQ ID NO: 17. TANGO 265 can alternately exist in a secreted form, such as a mature protein having the amino acid sequence of amino acid residues 32 to 761 or residues 32 to about 683 of SEQ ID NO: 19.

TANGO 265 proteins can also include a transmembrane domain. In one embodiment, a TANGO 265 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 684 to 704 of SEQ ID NO: 19 (SEQ ID NO: 23).

In addition, TANGO 265 proteins include a cytoplasmic domain, particularly including proteins having a carboxyl-terminal cytoplasmic domain. The human TANGO 265 cytoplasmic domain is located from about amino acid residue 705 to amino acid residue 761 of SEQ ID NO: 19 (SEQ ID NO: 24).

TANGO 265 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Table VI, as predicted by computerized sequence analysis of TANGO 265 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 265 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}). In certain embodiments, a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table VI.

Table VI

Type of Potential Modification Site	Amino Acid Residues	Amino Acid
or Domain	of SEQ ID NO: 19	Sequence
N-glycosylation site	120 to 123	NETQ
	135 to 138	NVTH
·	496 to 499	NCSV
	607 to 610	NGLS
Glycosaminoglycan attachment site	70 to 73	SGDG
cAMP- or cGMP-dependent protein	108 to 111	RKKS
kinase phosphorylation site	116 to 119	KKKS
	281 to 284	KKWT
Protein kinase C phosphorylation site	106 to 108	SDR
	262 to 264	TSR
	361 to 363	TSR
	366 to 368	TYR
*	385 to 387	SDK
	533 to 535	SWK
	555 to 557	SLŖ
·	721 to 723	TLR
	738 to 740	. SPK
Casein kinase II phosphorylation site	152 to 155	TFIE
	176 to 179	SPFD
	250 to 253	TASE
	342 to 345	SLLD
	411 to 414	SGVE
	498 to 501	SVYE
	. 502 to 505	SCVD
	574 to 577	SILE
	738 to 741	SPKE
*	745 to 748	SASD

10

15

Table VI (Continued)

N-myristoylation site	79 to 84	GAREAI
	191 to 196	GMLYSG
	331 to 336	GGTRSS
	412 to 417	GVEYTR
	437 to 442	GTTTGS
	620 to 625	GLYQCW
	671 to 676	GAALAA
Sema domain	64 to 478	See Fig. 3

An exemplary domains which occurs in TANGO 265 proteins is a sema domain. In one embodiment, the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to one of the sema domains described herein in Table VI.

Sema domains occur in semaphorin proteins. Semaphorins are a large family of secreted and transmembrane proteins, some of which function as repellent signals during neural axon guidance. The sema domain and a variety of semaphorin proteins in which it occurs are described, for example, in Winberg et al. (1998 Cell 95:903-916). Sema domains also occur in human hepatocyte growth factor receptor (Swissprot Accession no. P08581) and the similar neuronal and epithelial transmembrane receptor protein (Swissprot Accession no. P51805). The presence of an sema domain in human TANGO 265 protein indicates that TANGO 265 is involved in one or more physiological processes in which the semaphorins are involved, has biological activity in common with one or more of the semaphorins, or both.

Human TANGO 265 protein exhibits considerable sequence

20 similarity to murine semaphorin B protein (GenBank Accession no. X85991), as
indicated herein in Figures 3F-3H. Figures 3F-3H depict an alignment of the amino
acid sequences of human TANGO 265 protein (SEQ ID NO: 19) and murine
semaphorin B protein (SEQ ID NO: 76). In this alignment (pam120.mat scoring
matrix, gap penalties -12/-4), the amino acid sequences of the proteins are 82.3%

10

15

20

25

30

identical. Figures 3I through 3T depict an alignment of the nucleotide sequences of cDNA encoding human TANGO 265 protein (SEQ ID NO: 17) and murine cDNA encoding semaphorin B protein (SEQ ID NO: 77). In this alignment (pam120.mat scoring matrix, gap penalties -12/-4), the nucleic acid sequences of the cDNAs are 76.2% identical. Thus, TANGO 265 is the human orthologue of murine semaphorin B and shares functional similarities to that protein.

It is known that semaphorins are bi-functional, capable of functioning either as attractive axonal guidance proteins or as repellent axonal guidance proteins (Wong et al. (1997) *Development* 124:3597-3607). Furthermore, semaphorins bind with neuronal cell surface proteins designated plexins, which are expressed on both neuronal cells and cells of the immune system (Comeau et al. (1998) *Immunity* 8:473-482; Jin and Strittmatter (1997) *J. Neurosci.* 17:6256-6263).

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that human TANGO 265 protein includes a 31 amino acid signal peptide (amino acid residues 1 to 31 of SEQ ID NO: 19; SEQ ID NO: 20) preceding the mature TANGO 265 protein (amino acid residues 32 to 761 of SEQ ID NO: 19; SEQ ID NO: 21). Human TANGO 265 protein includes an extracellular domain (amino acid residues 32 to 683 of SEQ ID NO: 19; SEQ ID NO: 22); a transmembrane domain (amino acid residues 684 to 704 of SEQ ID NO: 19; SEQ ID NO: 23); and a cytoplasmic domain (amino acid residues 705 to 761 of SEQ ID NO: 19; SEQ ID NO: 24).

Figure 3U depicts a hydrophilicity plot of human TANGO 265 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 31 of SEQ ID NO: 19 is the signal sequence of human TANGO 265 (SEQ ID NO: 20). The hydrophobic region which corresponds to amino acid residues 684 to 704 of SEQ ID NO: 19 is the transmembrane domain of human TANGO 265 (SEQ ID NO: 23). As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human TANGO 265 protein from about amino acid residue 350 to about amino acid

10

15

20

25

30

residue 375 appears to be located at or near the surface of the protein, while the region from about amino acid residue 230 to about amino acid residue 250 appears not to be located at or near the surface.

The predicted molecular weight of human TANGO 265 protein without modification and prior to cleavage of the signal sequence is about 83.6 kilodaltons. The predicted molecular weight of the mature human TANGO 265 protein without modification and after cleavage of the signal sequence is about 80.2 kilodaltons.

Chromosomal mapping was performed by computerized comparison of TANGO 265 cDNA sequences against a chromosomal mapping database in order to identify the approximate location of the gene encoding human TANGO 265 protein. This analysis indicated that the gene was located on chromosome 1 between markers D1S305 and D1S2635.

Biological function of TANGO 265 proteins, nucleic acids, and modulators thereof

TANGO 265 proteins are involved in disorders which affect both tissues in which they are normally expressed and tissues in which they are normally not expressed. Based on the observation that TANGO 265 is expressed in human fetal spleen, involvement of TANGO 202 protein in immune system development and modulation is indicated.

The presence of the sema domain in TANGO 265 indicates that this protein is involved in development of neuronal and epithelial tissues and also functions as a repellant protein which guides axonal development. TANGO 265 modulates nerve growth and regeneration and also modulates growth and regeneration of other epithelial tissues.

The observation that TANGO 265 shares significant identity with murine semaphorin B suggests that it has activity identical or analogous to the activity of this protein. These observations indicate that TANGO 265 modulates growth, proliferation, survival, differentiation, and activity of neuronal cells and immune system cells. Thus, TANGO 265 protein is useful, for example, for guiding neural axon development, for modulating differentiation of cells of the

immune system, for modulating cytokine production by cells of the immune system, for modulating reactivity of cells of the immune system toward cytokines, for modulating initiation and persistence of an inflammatory response, and for modulating proliferation of epithelial cells.

5

10

15

20

25

30

TANGO 273

A cDNA clone (designated jthoc028g06) encoding at least a portion of human TANGO 273 protein was isolated from a lipopolysaccharide- (LPS-)stimulated human osteoblast cDNA library. The corresponding murine cDNA clone (designated jtmoa001c04) was isolated from an LPS-stimulated murine osteoblast cDNA library. The human and murine TANGO 273 proteins are predicted by structural analysis to be transmembrane proteins.

The full length of the cDNA encoding human TANGO 273 protein (Figure 4; SEQ ID NO: 25) is 2964 nucleotide residues. The ORF of this cDNA, nucleotide residues 135 to 650 of SEQ ID NO: 25 (i.e., SEQ ID NO: 26), encodes a 172-amino acid transmembrane protein (Figure 4; SEQ ID NO: 27).

The invention thus includes purified human TANGO 273 protein, both in the form of the immature 172 amino acid residue protein (SEQ ID NO: 27) and in the form of the mature 150 amino acid residue protein (SEQ ID NO: 29). The invention also includes purified murine TANGO 273 protein, both in the form of the immature 172 amino acid residue protein (SEQ ID NO: 74) and in the form of the mature 150 amino acid residue protein (SEQ ID NO: 44). Mature human or murine TANGO 273 proteins can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or they can be synthesized by generating immature TANGO 273 protein and cleaving the signal sequence therefrom.

In addition to full length mature and immature human and murine TANGO 273 proteins, the invention includes fragments, derivatives, and variants of these TANGO 273 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA

10

15

20

25

30.

molecule having the nucleotide sequence listed in SEQ ID NO: 25 or some portion thereof or SEQ ID NO: 73 or some portion thereof, such as the portion which encodes mature TANGO 273 protein, immature TANGO 273 protein, or a domain of TANGO 273 protein. These nucleic acids are collectively referred to as nucleic acids of the invention.

TANGO 273 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features. This family includes, by way of example, the human and murine TANGO 273 proteins.

As used herein, a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues. A signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 273 protein contains a signal sequence corresponding to amino acid residues 1 to 22 of SEQ ID NO: 27 (SEQ ID NO: 28) or to amino acid residues 1 to 22 of SEQ ID NO: 74. The signal sequence is cleaved during processing of the mature protein.

TANGO 273 proteins can also include an extracellular domain. The human TANGO 273 protein extracellular domain is located from about amino acid residue 23 to about amino acid residue 60 of SEQ ID NO: 27, and the murine TANGO 273 protein extracellular domain is located from about amino acid residue 23 to about amino acid residue 60 of SEQ ID NO: 74.

The present invention also includes TANGO 273 proteins having a transmembrane domain. As used herein, a "transmembrane domain" refers to an amino acid sequence having at least about 15 to 30 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid residues such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine. In a

10

15

20

preferred embodiment, a transmembrane domain contains at least about 15 to 20 amino acid residues, preferably about 20 to 25 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues. Thus, in one embodiment, a human TANGO 273 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 61 to 81 of SEQ ID NO: 27 (SEQ ID NO: 31). In another embodiment, a murine TANGO 273 protein of the invention contains a transmembrane domain corresponding to about amino acid residues 61 to 81 of SEQ ID NO: 74.

In addition, TANGO 273 proteins include a cytoplasmic domain.

The human TANGO 273 cytoplasmic domain is located from about amino acid residue 82 to amino acid residue 172 of SEQ ID NO: 27 (SEQ ID NO: 32), and the murine TANGO 273 cytoplasmic domain is located from about amino acid residue 82 to amino acid residue 172 of SEQ ID NO: 74.

TANGO 273 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Tables VII and VIII, as predicted by computerized sequence analysis of human and murine TANGO 273 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 273 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}). In certain embodiments, a protein of the invention has at least 1, 2, 3, 4, 5, or all 6 of the post-translational modification sites listed in Table VII. In other embodiments, the protein of the invention has at least 1, 2, 3, 4, 5, 6, or all 7 of the post-translational modification sites listed in Table VIII.

Table VII

Type of Potential Modification Site	Amino Acid Residues of	Amino Acid
or Domain	SEQ ID NO: 27	Sequence
N-glycosylation site	97 to 100	NVSY
Casein kinase II phosphorylation site	41 to 44	SYED
N-myristoylation site	31 to 36	GLYPTY
	47 to 52	GSRCCV
•	70 to 75	GVLFCC
	131 to 136	GNSMAM
Src Homology 3 (SH3) domain binding	86 to 90	YPPPL
site	103 to 107	QPPNP
	113 to 117	QPGPP
	121 to 125	DPGGP
	140 to 145	VPPNSP
	151 to 155	СРРРР
	160 to 164	ТРРРР

Table VIII

Type of Potential Modification Site or Domain	Amino Acid Residues of SEQ ID NO: 74	Amino Acid Sequence
N-glycosylation site	97 to 100	NVSY
Casein kinase II phosphorylation site	41 to 44	SYED
N-myristoylation site	31 to 36	GLYPTY
	47 to 52	GSRCCV
	70 to 75	GVLFCC
	131 to 136	GNTMAM

15

20

Table VIII (Continued)

Src Homology 3 (SH3) domain binding	86 to 90	YPPPL
site	103 to 107	QPPNP
	115 to 119	GPPYY
	121 to 125	DPGGP
	141 to 145	QPNSP
	151 to 155	YPPPP
	160 to 164	ТРРРР
Amidation site	1 to 4	MGRR

The amino acid sequence of TANGO 273 protein includes about seven potential proline-rich Src homology 3 (SH3) domain binding sites nearer the cytoplasmic portion of the protein. SH3 domains mediate specific assembly of protein complexes, presumably by interacting with proline-rich protein domains (Morton and Campbell (1994) Curr. Biol. 4:615-617). SH3 domains also mediate interactions between proteins involved in transmembrane signal transduction.

Coupling of proteins mediated by SH3 domains has been implicated in a variety of physiological systems, including those involving regulation of cell growth and proliferation, endocytosis, and activation of respiratory burst.

SH3 domains have been described in the art (e.g., Mayer et al. (1988) Nature 332:272-275; Musacchio et al. (1992) FEBS Lett. 307:55-61; Pawson and Schlessinger (1993) Curr. Biol. 3:434-442; Mayer and Baltimore (1993) Trends Cell Biol. 3:8-13; Pawson (1993) Nature 373:573-580), and occur in a variety of cytoplasmic proteins, including several (e.g., protein tyrosine kinases) involved in transmembrane signal transduction. Among the proteins in which one or more SH3 domains occur are protein tyrosine kinases such as those of the Src, Abl, Bkt, Csk and ZAP70 families, mammalian phosphatidylinositol-specific phospholipases C-gamma-1 and -2, mammalian phosphatidylinositol 3-kinase regulatory p85 subunit, mammalian Ras GTPase-activating protein (GAP), proteins which mediate binding of guanine nucleotide exchange factors and growth factor receptors (e.g., vertebrate

10

15

20

25

30

GRB2, Caenorhabditis elegans sem-5, and Drosophila DRK proteins), mammalian Vav oncoprotein, guanidine nucleotide releasing factors of the CDC 25 family (e.g., yeast CDC25, yeast SCD25, and fission yeast ste6 proteins), MAGUK proteins (e.g., mammalian tight junction protein ZO-1, vertebrate erythrocyte membrane protein p55, C. elegans protein lin-2, rat protein CASK, and mammalian synaptic proteins SAP90/PSD-95, CHAPSYN-110/PSD-93, SAP97/DLG1, and SAP102), proteins which interact with vertebrate receptor protein tyrosine kinases (e.g., mammalian cytoplasmic protein Nck and oncoprotein Crk), chicken Src substrate p80/85 protein (cortactin), human hemopoietic lineage cell specific protein Hs1, mammalian dihydrouridine-sensitive L-type calcium channel beta subunit, human myasthenic syndrome antigen B (MSYB), mammalian neutrophil cytosolic activators of NADPH oxidase (e.g., p47 {NCF-1}, p67 {NCF-2}, and C. elegans protein B0303.7) myosin heavy chains (MYO3) from amoebae, from slime molds, and from yeast, vertebrate and Drosophila spectrin and fodrin alpha chain proteins, human amphiphysin, yeast actin-binding proteins ABP1 and SLA3, yeast protein BEM1, fission yeast protein scd2 (ral3), yeast BEM1-binding proteins BOI2 (BEB1) and BOB1 (BOI1), yeast fusion protein FUS1, yeast protein RSV167, yeast protein SSU81, yeast hypothetical proteins YAR014c, YFR024c, YHL002w, YHR016c, YJL020C, and YHR114w, hypothetical fission yeast protein SpAC12C2.05c, and C. elegans hypothetical protein F42H10.3. Of these proteins, multiple SH3 domains occur in vertebrate GRB2 protein, C. elegans sem-5 protein, Drosophila DRK protein, oncoprotein Crk, mammalian neutrophil cytosolic activators of NADPH oxidase p47 and p67, yeast protein BEM1, fission yeast protein scd2, yeast hypothetical protein YHR114w, mammalian cytoplasmic protein Nck, C. elegans neutrophil cytosolic activator of NADPH oxidase B0303.7, and yeast actin-binding protein SLA1. Of these proteins, three or more SH3 domains occur in mammalian cytoplasmic protein Nck, C. elegans neutrophil cytosolic activator of NADPH oxidase B0303.7, and yeast actin-binding protein SLA1. The presence of SH3 domain binding sites in TANGO 273 indicates that TANGO 273 interacts with one or more of these and other SH3 domain-containing proteins and is thus involved in physiological processes in which one or more of these or other SH3 domain-containing proteins are involved.

10

15

20

25

30

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) Protein Engineering 10:1-6) predicted that human TANGO 273 protein includes a 22 amino acid signal peptide (amino acid residues 1 to 22 of SEQ ID NO: 27; SEQ ID NO: 28) preceding the mature TANGO 273 protein (amino acid residues 23 to 172 of SEQ ID NO: 27; SEQ ID NO: 29). Human TANGO 273 protein includes an extracellular domain (amino acid residues 23 to 60 of SEQ ID NO: 27; SEQ ID NO: 30); a transmembrane domain (amino acid residues 61 to 81 of SEQ ID NO: 27; SEQ ID NO: 31); and a cytoplasmic domain (amino acid residues 82 to 172 of SEQ ID NO: 27; SEQ ID NO: 32).

Figure 4I depicts a hydrophilicity plot of human TANGO 273 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 22 of SEQ ID NO: 27 is the signal sequence of human TANGO 273 (SEQ ID NO: 28). The hydrophobic region which corresponds to amino acid residues 61 to 81 of SEQ ID NO: 27 is the transmembrane domain of human TANGO 273 (SEQ ID NO: 31). As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human TANGO 273 protein from about amino acid residue 100 to about amino acid residue 120 appears to be located at or near the surface of the protein, while the region from about amino acid residue 130 to about amino acid residue 140 appears not to be located at or near the surface.

Chromosomal mapping was performed by computerized comparison of TANGO 273 cDNA sequences against a chromosomal mapping database in order to identify the approximate location of the gene encoding human TANGO 273 protein. This analysis indicated that the gene was located on chromosome 7 between markers D7S2467 and D7S2552.

The predicted molecular weight of human TANGO 273 protein without modification and prior to cleavage of the signal sequence is about 19.2 kilodaltons. The predicted molecular weight of the mature human TANGO 273

10

15

20

protein without modification and after cleavage of the signal sequence is about 16.8 kilodaltons.

Northern analysis experiments indicated that mRNA corresponding to the cDNA encoding TANGO 273 is expressed in the tissues listed in Table VIIa, wherein "++" indicates moderate expression and "+" indicates lower expression.

Table VIIa

Animal	Tissue	Relative Level of Expression
Human	heart	++
	brain	.++
Ŷ	skeletal muscle	++
	pancreas	++
	placenta	+
	lung	+
	liver	+
	kidney	+

The full length of the cDNA encoding murine TANGO 273 protein (Figure 4; SEQ ID NO: 72) is 2915 nucleotide residues. The ORF of this cDNA, nucleotide residues 137 to 650 of SEQ ID NO: 72 (i.e., SEQ ID NO: 73), encodes a 172-amino acid transmembrane protein (Figure 4; SEQ ID NO: 74).

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that murine TANGO 273 protein includes a 22 amino acid signal peptide (amino acid residues 1 to 22 of SEQ ID NO: 74) preceding the mature TANGO 273 protein (amino acid residues 23 to 172 of SEQ ID NO: 74; SEQ ID NO: 44). Murine TANGO 273 protein includes an extracellular domain (amino acid residues 23 to 60 of SEQ ID NO: 74); a transmembrane domain (amino acid residues 61 to 81 of SEQ ID NO: 74); and a cytoplasmic domain (amino acid residues 82 to 172 of SEQ ID NO: 74).

Figure 4J depicts a hydrophilicity plot of murine TANGO 273 protein. Relatively hydrophobic regions are above the dashed horizontal line, and

10

15

20

25

30

relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 22 of SEQ ID NO: 74 is the signal sequence of murine TANGO 273. As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of murine TANGO 273 protein from about amino acid residue 100 to about amino acid residue 120 appears to be located at or near the surface of the protein, while the region from about amino acid residue 130 to about amino acid residue 140 appears not to be located at or near the surface.

The predicted molecular weight of murine TANGO 273 protein without modification and prior to cleavage of the signal sequence is about 19.4 kilodaltons. The predicted molecular weight of the mature murine TANGO 273 protein without modification and after cleavage of the signal sequence is about 17.1 kilodaltons.

In situ analysis of murine TANGO 273 mRNA indicated that TANGO 273 is expressed with central nervous system (CNS) tissues during embryogenesis and into adulthood. Expression of TANGO 273 is widely observed in murine CNS tissues, including brain, spinal cord, eye, and olfactory epithelium at all embryonic ages examined (i.e., at embryonic days 13.5, 14.5, 15.5, 16.5, and 18.5 and at post-natal day 1.5).

Human and murine TANGO 273 cDNA sequences exhibit significant nucleotide sequence identity with an expressed sequence tag (EST) isolated from a library of ESTs corresponding to proteins secreted from prostate tissue, as described in PCT publication number WO 99/06550, published February 11, 1999.

Human and murine TANGO 273 proteins exhibit considerable sequence similarity, as indicated herein in Figure 4H. Figure 4H depicts an alignment of human and murine TANGO 273 protein amino acid sequences (SEQ ID NOs: 27 and 74, respectively). In this alignment (pam120.mat scoring matrix, gap penalties

-12/-4), the proteins are 89.5% identical. Alignment of the ORF encoding human TANGO 273 protein and the ORF encoding murine TANGO 273 protein using the same software and parameters indicated that the nucleotide sequences are 84.1% identical.

5

10

15

20

25

30

Biological function of TANGO 273 proteins, nucleic acids, and modulators thereof

cDNAs encoding the human and murine TANGO 273 proteins were each isolated from LPS-stimulated osteoblast cDNA libraries. These proteins are involved in bone-related metabolism, homeostasis, and development disorders. Thus, proteins and nucleic acids of the invention which are identical to, similar to, or derived from human and murine TANGO 273 proteins and nucleic acids encoding them are useful for preventing, diagnosing, and treating, among others, bone-related disorders such as osteoporosis, cancer, skeletal development disorders, bone fragility, and the like.

Expression of TANGO 273 in heart, brain, skeletal muscle, and pancreas, placenta, lung, liver, and kidney tissues is an indication that TANGO 273 proteins, nucleic acids encoding them, and agents that modulate activity or expression of either of these can be used to modulate growth, proliferation, survival, differentiation, adhesion, and activity of cells of these tissues, or to prognosticate, diagnose, and treat one or more disorders which affect these tissues.

The fact that TANGO 273 is expressed at high levels in neurological tissues is an indication that TANGO 273 proteins, nucleic acids, and modulators thereof can be used to modulate proliferation, differentiation, or function of neurological cells in these tissues (e.g., neuronal cells). Thus, TANGO 273 proteins, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, and treat one or more neurological disorders. Examples of such disorders include CNS disorders, CNS-related disorders, focal brain disorders, global-diffuse cerebral disorders, and other neurological and cerebrovascular disorders.

CNS disorders include, but are not limited to cognitive and neurodegenerative disorders such as Alzheimer's disease, senile dementia,

15

20

25

30

Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as Gilles de la Tourette's syndrome, autonomic function disorders such as hypertension and sleep disorders (e.g., insomnia, hypersomnia, parasomnia, and sleep apnea); neuropsychiatric disorders (e.g., schizophrenia, schizoaffective disorder, attention deficit disorder, dysthymic disorder, major depressive disorder, mania, and obsessive-compulsive disorder); psychoactive substance use disorders; anxiety; panic disorder; and bipolar affective disorders (e.g., severe bipolar affective disorder and bipolar affective disorder with hypomania and major depression).

CNS-related disorders include disorders associated with developmental, cognitive, and autonomic neural and neurological processes, such as pain, appetite, long term memory, and short term memory.

Exemplary focal brain disorders include aphasia, apraxia, agnosia, and amnesias (e.g., posttraumatic amnesia, transient global amnesia, and psychogenic amnesia). Global-diffuse cerebral disorders with which TANGO 273 can be associated include coma, stupor, obtundation, and disorders of the reticular formation.

Other neurological disorders with which TANGO 273 can be associated include ischemic syndromes (e.g., stroke), hypertensive encephalopathy, hemorrhagic disorders, and disorders involving aberrant function of the blood-brain barrier (e.g., CNS infections such as meningitis and encephalitis, aseptic meningitis, metastasis of non-CNS tumor cells into the CNS, various pain disorders such as migraine, blindness and other vision problems, and CNS-related adverse drug reactions such as head pain, sleepiness, and confusion). TANGO 273 proteins, nucleic acids encoding them, and agents that modulate activity or expression of either of these can be used to prognosticate, diagnose, and treat one or more of these disorders.

Developmental regulation of TANGO 273 expression in fetal neurological tissues, as described herein, is an indication that TANGO 273 proteins, nucleic acids, and modulators thereof can be used to prognosticate, diagnose, and treat one or more disorders which involve aberrant fetal neurological development. Examples of such disorders include blindness,

10

15

20

25

30

deafness, fetal death, mental retardation, dysraphia, anencephaly, malformation of cerebral hemispheres, encephalocele, porencephaly, hydranencephaly, hydrocephalus, and spina bifida.

The fact that TANGO 273 is expressed in tissues which were exposed to LPS indicates that TANGO 273 mediates one or more physiological responses of cells to bacterial infection. Thus, TANGO 273 is involved in one or more of detection of bacteria in a tissue in which it is expressed, movement of cells with relation to sites of bacterial infection, production of biological molecules which inhibit bacterial infection, and production of biological molecules which alleviate cellular or other physiological damage wrought by bacterial infection.

Presence in TANGO 273 protein of multiple SH3 domain binding sites indicates that TANGO 273 protein interacts with one or more SH3 domain-containing proteins. Thus, TANGO 273 protein mediates binding of proteins (i.e., binding of proteins to TANGO 273 and to one another to form protein complexes) in cells in which it is expressed. TANGO 273 is also involved in transduction of signals between the exterior environment of cells (i.e., including from other cells) and the interior of cells in which it is expressed. TANGO 273 mediates regulation of cell growth and proliferation, endocytosis, activation of respiratory burst, and other physiological processes triggered by transmission of a signal via a protein with which TANGO 273 interacts.

Sequence similarity of TANGO 273 cDNA with an EST expressed in prostate tissue indicates that TANGO 273 can be expressed in prostate tissue, and can thus be involved in disorders of the prostate. Thus, TANGO 273 proteins, nucleic acids encoding them, and agents that modulate activity or expression of either of these can be used to treat prostate disorders. Examples of prostate disorders which can be treated in this manner include inflammatory prostatic diseases (e.g., acute and chronic prostatitis and granulomatous prostatitis), prostatic hyperplasia (e.g., benign prostatic hypertrophy or hyperplasia), and prostate tumors (e.g., carcinomas).

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat cardiovascular disorders, such as ischemic heart disease (e.g., angina pectoris, myocardial infarction, and chronic ischemic

10

15

20

25

30

heart disease), hypertensive heart disease, pulmonary heart disease, valvular heart disease (e.g., rheumatic fever and rheumatic heart disease, endocarditis, mitral valve prolapse, and aortic valve stenosis), congenital heart disease (e.g., valvular and vascular obstructive lesions, atrial or ventricular septal defect, and patent ductus arteriosus), or myocardial disease (e.g., myocarditis, congestive cardiomyopathy).

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat disorders of the brain, such as cerebral edema, hydrocephalus, brain herniations, iatrogenic disease (due to, e.g., infection, toxins, or drugs), inflammations (e.g., bacterial and viral meningitis, encephalitis, and cerebral toxoplasmosis), cerebrovascular diseases (e.g., hypoxia, ischemia, and infarction, intracranial hemorrhage and vascular malformations, and hypertensive encephalopathy), and tumors (e.g., neuroglial tumors, neuronal tumors, tumors of pineal cells, meningeal tumors, primary and secondary lymphomas, intracranial tumors, and medulloblastoma), and to treat injury or trauma to the brain.

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat disorders of skeletal muscle, such as muscular dystrophy (e.g., Duchenne muscular dystrophy, Becker muscular dystrophy, Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, myotonic dystrophy, oculopharyngeal muscular dystrophy, distal muscular dystrophy, and congenital muscular dystrophy), motor neuron diseases (e.g., amyotrophic lateral sclerosis, infantile progressive spinal muscular atrophy, intermediate spinal muscular atrophy, spinal bulbar muscular atrophy, and adult spinal muscular atrophy), myopathies (e.g., inflammatory myopathies such as dermatomyositis and polymyositis, myotonia congenita, paramyotonia congenita, central core disease, nemaline myopathy, myotubular myopathy, and periodic paralysis), and metabolic diseases of muscle (e.g., phosphorylase deficiency, acid maltase deficiency, phosphofructokinase deficiency, debrancher enzyme deficiency, mitochondrial myopathy, carnitine deficiency, carnitine palmityl transferase deficiency, phosphoglycerate kinase deficiency, phosphoglycerate mutase deficiency, lactate dehydrogenase deficiency, and myoadenylate deaminase deficiency).

15

20

25

30

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat pancreatic disorders, such as pancreatitis (e.g., acute hemorrhagic pancreatitis and chronic pancreatitis), pancreatic cysts (e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cysts), pancreatic tumors (e.g., pancreatic carcinoma and adenoma), diabetes mellitus (e.g., insulin- and non-insulin-dependent types, impaired glucose tolerance, and gestational diabetes), or islet cell tumors (e.g., insulinomas, adenomas, Zollinger-Ellison syndrome, glucagonomas, and somatostatinoma).

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat placental disorders, such as toxemia of pregnancy (e.g., preeclampsia and eclampsia), placentitis, or spontaneous abortion.

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat pulmonary disorders, such as atelectasis, cystic fibrosis, rheumatoid lung disease, pulmonary congestion or edema, chronic obstructive airway disease (e.g., emphysema, chronic bronchitis, bronchial asthma, and bronchiectasis), diffuse interstitial diseases (e.g., sarcoidosis, pneumoconiosis, hypersensitivity pneumonitis, Goodpasture's syndrome, idiopathic pulmonary hemosiderosis, pulmonary alveolar proteinosis, desquamative interstitial pneumonitis, chronic interstitial pneumonia, fibrosing alveolitis, hamman-rich syndrome, pulmonary eosinophilia, diffuse interstitial fibrosis, Wegener's granulomatosis, lymphomatoid granulomatosis, and lipid pneumonia), or tumors (e.g., bronchogenic carcinoma, bronchioalveolar carcinoma, bronchial carcinoid, hamartoma, and mesenchymal tumors).

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat hepatic (liver) disorders, such as jaundice, hepatic failure, hereditary hyperbilirubinemias (e.g., Gilbert's syndrome, Crigler-Naijar syndromes, and Dubin-Johnson and Rotor's syndromes), hepatic circulatory disorders (e.g., hepatic vein thrombosis and portal vein obstruction and thrombosis) hepatitis (e.g., chronic active hepatitis, acute viral hepatitis, and toxic and druginduced hepatitis) cirrhosis (e.g., alcoholic cirrhosis, biliary cirrhosis, and hemochromatosis), or malignant tumors (e.g., primary carcinoma, hepatoblastoma, and angiosarcoma).

10

15

20

25

30

In another example, TANGO 273 polypeptides, nucleic acids, or modulators thereof, can be used to treat renal (kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal disease, medullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial nephritis, hypercalcemic nephropathy, and hypokalemic nephropathy) acute and rapidly progressive renal failure, chronic renal failure, nephrolithiasis, vascular diseases (e.g., hypertension and nephrosclerosis, microangiopathic hemolytic anemia, atheroembolic renal disease, diffuse cortical necrosis, and renal infarcts), or tumors (e.g., renal cell carcinoma and nephroblastoma).

TANGO 286

A cDNA clone (designated jthkf042e03) encoding at least a portion of human TANGO 286 protein was isolated from a human keratinocyte cDNA library. The human TANGO 286 protein is predicted by structural analysis to be a secreted protein.

The full length of the cDNA encoding TANGO 286 protein (Figure 5; SEQ ID NO: 33) is 1980 nucleotide residues. The ORF of this cDNA, nucleotide residues 133 to 1497 of SEQ ID NO: 33 (i.e., SEQ ID NO: 34), encodes a 455-amino acid secreted protein (Figure 5; SEQ ID NO: 35).

The invention thus includes purified TANGO 286 protein, both in the form of the immature 455 amino acid residue protein (SEQ ID NO: 35) and in the form of the mature 432 amino acid residue protein (SEQ ID NO: 37). Mature TANGO 286 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 286 protein and cleaving the signal sequence therefrom.

10

15

20

25

30

In addition to full length mature and immature TANGO 286 proteins, the invention includes fragments, derivatives, and variants of these TANGO 286 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 33 or some portion thereof, such as the portion which encodes mature TANGO 286 protein, immature TANGO 286 protein, or a domain of TANGO 286 protein. These nucleic acids are collectively referred to as nucleic acids of the invention.

TANGO 286 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features.

As used herein, a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues. A signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 286 protein contains a signal sequence corresponding to amino acid residues 1 to 23 of SEQ ID NO: 35 (SEQ ID NO: 36). The signal sequence is cleaved during processing of the mature protein.

TANGO 286 is a secreted soluble protein (i.e., a secreted protein having a single extracellular domain), as indicated by computerized sequence analysis and comparison of the amino acid sequence of TANGO 286 with related proteins, such as the soluble proteins designated bactericidal permeability

increasing (BPI) protein and recombinant endotoxin neutralizing polypeptide (RENP).

TANGO 286 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Table IX, as predicted by computerized sequence analysis of TANGO 286 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 286 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}). In certain embodiments, a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table IX.

Table IX

Type of Potential Modification Site	Amino Acid Residues of	Amino Acid
or Domain	SEQ ID NO: 35	Sequence
N-glycosylation site	79 to 82	NFSN
	92 to 95	NTSL
	113 to 116	NIST
	161 to 164	NLST
	173 to 176	NYTL
	205 to 208	NLTD
	249 to 252	NLTL
	303 to 306	NFTL
	320 to 323	NSTV
	363 to 366	NRSN
Protein kinase C phosphorylation site	35 to 37	TQR
	362 to 364	SNR
	429 to 431	SSK

10

15

Table IX (Continued)

Casein kinase II phosphorylation site	63 to 66	SGSE
·	130 to 133	SFAE
	163 to 166	STLE
	169 to 172	TKID
	175 to 178	TLLD
	183 to 186	SSPE
	253 to 256	STEE
	321 to 324	STVE
	365 to 368	SNIE
	409 to 412	SDIE
N-myristoylation site	42 to 47	GVQAGM
	269 to 274	GNVLSR
Lipid-binding serum glycoprotein	12 to 427	see Fig. 5
domain		

Certain lipid-binding serum glycoproteins, such as LPS-binding protein (LBP), bactericidal permeability-increasing protein (BPI), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), share regions of sequence similarity which are herein designated a lipid-binding serum glycoprotein domain (Schumann et al., (1990) *Science* 249:1429-1431; Gray et al., (1989) *J. Biol. Chem.* 264:9505-9509; Day et al., (1994) *J. Biol. Chem.* 269:9388-9391). The consensus pattern of lipid-binding serum glycoprotein domains is as follows (using standard single letter amino acid abbreviations wherein X is any amino acid residue).

-(P or A)-(G or A)-(L or I or V or M or C)-
$$X_2$$
-R-(I or V)-(S or T)- X_3 -L- $X_{(4 \text{ or 5})}$ -(E or Q)- X_4 -(L or I or V or M)- $X_{(0 \text{ or 1})}$ -(E or Q or K)- X_8 -P-(e.g., amino acid residues 28-60 of SEQ ID NO: 35).

Proteins in which a lipid-binding serum glycoprotein domain occurs are often structurally related and exhibit related physiological activities. LBP binds to lipid A moieties of bacterial LPS and, once bound thereto, induces secretion of α -tumor necrosis factor, apparently by interacting with the CD14 receptor. BPI also

10

15

20

25

30

binds LPS and exerts a cytotoxic effect on Gram-negative bacteria (Elsbach, (1998) J. Leukoc. Biol. 64:14-18). CETP is involved in transfer of insoluble cholesteryl esters during reverse cholesterol transport. PLTP appears to be involved in phospholipid transport and modulation of serum HDL particles.

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that TANGO 286 protein includes a 23 amino acid signal peptide (amino acid residues 1 to 23 of SEQ ID NO: 35; SEQ ID NO: 36) preceding the mature TANGO 286 protein (amino acid residues 24 to 455 of SEQ ID NO: 35; SEQ ID NO: 37). Human TANGO 286 protein is a secreted soluble protein.

Figure 5E depicts a hydrophilicity plot of TANGO 286 protein.

Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human TANGO 286 protein from about amino acid residue 420 to about amino acid residue 435 appears to be located at or near the surface of the protein, while the region from about amino acid residue 325 to about amino acid residue 345 appears not to be located at or near the surface.

The predicted molecular weight of TANGO 286 protein without modification and prior to cleavage of the signal sequence is about 50.9 kilodaltons. The predicted molecular weight of the mature TANGO 286 protein without modification and after cleavage of the signal sequence is about 48.2 kilodaltons.

The gene encoding human TANGO 286 protein was determined to be located on chromosome 22 by comparison of matching genomic clones such as the clones assigned GenBank Accession numbers W16806 and AL021937.

A portion of TANGO 286 protein exhibits significant amino acid homology with a region of the human chromosome region 22q12-13 genomic nucleotide sequence having GenBank Accession number AL021937. Alignment of a 45 kilobase nucleotide sequence encoding TANGO 286 with AL021937, however, indicated the presence in TANGO 286 of exons which differ from those

15

20

25

30

disclosed in L021937 (pam120.mat scoring matrix; gap penalties -12/-4). This region of chromosome 22 comprises an immunoglobulin lambda chain C (IGLC) pseudogene, the Ret finger protein-like 3 (RFPL3) and Ret finger protein-like 3 antisense (RFPL3S) genes, a gene encoding a novel immunoglobulin lambda chain V family protein, a novel gene encoding a protein similar both to mouse RGDS protein (RALGDS, RALGEF, guanine nucleotide dissociation stimulator A) and to rabbit oncogene RSC, a novel gene encoding the human orthologue of worm F16A11.2 protein, a novel gene encoding a protein similar both to BPI and to rabbit liposaccharide-binding protein, and a 5'-portion of a novel gene. This region also comprises various ESTs, STSs, GSSs, genomic marker D22S1175, a ca repeat polymorphism and putative CpG islands. TANGO 286 protein thus shares one or more structural or functional features of these molecules.

TANGO 286 protein exhibits considerable sequence similarity with BPI protein, having 23.9% amino acid sequence identity therewith, as assessed using the ALIGN v. 2.0 computer software using a pam120 mat scoring matrix and gap penalties of -12/-4. TANGO 286 protein also exhibits considerable sequence similarity with recombinant endotoxin neutralizing polypeptide (RENP), having 24.5% amino acid sequence identity therewith, as assessed using the ALIGN software. Physiological activities of BPI protein and RENP have been described (e.g., Gabay et al., (1989) Proc. Natl. Acad. Sci. USA 86:5610-5614; Elsbach, (1998) J. Leukoc. Biol. 64:14-18; Mahadeva et al., (1997) Chest 112:1699-1701; International patent application WO96/34873). RENP, for example, binds LPS and neutralizes bacterial endotoxins. BPI, RENP, and other proteins in which a lipidbinding serum glycoprotein domain occurs bind LPS and neutralize bacterial endotoxins, and are therefore useful for preventing, detecting, and treating LPSrelated disorders such as shock, disseminated intravascular coagulation, anemia, thrombocytopenia, adult respiratory distress syndrome, renal failure, liver disease, and disorders associated with Gram negative bacterial infections. In addition to the physiological conditions described above, BPI protein is known to be involved in vasculitis and bronchiectasis, in that antibodies which bind specifically with BPI protein are present in at least some patients afflicted with these disorders (Mahadeva et al., supra).

10

15

20

25

Biological function of TANGO 286 proteins, nucleic acids, and modulators thereof

Expression of TANGO 286 in keratinocyte library indicates that this protein is involved in a disorders which involve keratinocytes. Such disorders include, for example, disorders involving extracellular matrix abnormalities, dermatological disorders, ocular disorders, inappropriate hair growth (e.g., baldness), infections of the nails of the fingers and toes, scalp disorders (e.g., dandruff), and the like.

The fact that TANGO 286 protein contains a lipid-binding serum glycoprotein domain indicates that TANGO 286 is involved in one or more physiological processes in which these other lipid-binding serum glycoprotein domain-containing proteins are involved. Thus, TANGO 286 is involved in one or more of lipid transport, metabolism, serum lipid particle regulation, host antimicrobial defensive mechanisms, and the like.

Human TANGO 286 shares physiological functionality with other proteins in which a lipid-binding serum glycoprotein domains occurs (e.g., LBP, BPI protein, CETP, and PLTP). Based on the amino acid sequence similarity of TANGO 286 with BPI protein and with RENP, TANGO 286 protein exhibits physiological activities exhibited by these proteins. Thus, TANGO 286 proteins are useful for preventing, diagnosing, and treating, among others, lipid transport disorders, lipid metabolism disorders, disorders of serum lipid particle regulation, obesity, disorders involving insufficient or inappropriate host anti-microbial defensive mechanisms, vasculitis, bronchiectasis, LPS-related disorders such as shock, disseminated intravascular coagulation, anemia, thrombocytopenia, adult respiratory distress syndrome, renal failure, liver disease, and disorders associated with Gram negative bacterial infections, such as bacteremia, endotoxemia, sepsis, and the like.

30 TANGO 294

A cDNA clone (designated jthrc145g07) encoding at least a portion of human TANGO 294 protein was isolated from a human pulmonary artery

10

15

20

25

30

smooth muscle cell cDNA library. The human TANGO 294 protein is predicted by structural analysis to be a transmembrane membrane protein. No expression of DNA encoding TANGO 294 was detected in human heart, brain, placenta, lung, liver, skeletal muscle, kidney, or pancreas tissues.

The full length of the cDNA encoding TANGO 294 protein (Figure 6; SEQ ID NO: 45) is 2044 nucleotide residues. The ORF of this cDNA, nucleotide residues 126 to 1394 of SEQ ID NO: 45 (i.e., SEQ ID NO: 46), encodes a 423-amino acid transmembrane protein (Figure 6; SEQ ID NO: 47).

The invention includes purified TANGO 294 protein, both in the form of the immature 423 amino acid residue protein (SEQ ID NO: 47) and in the form of the mature 390 amino acid residue protein (SEQ ID NO: 49). Mature TANGO 294 protein can be synthesized without the signal sequence polypeptide at the amino terminus thereof, or it can be synthesized by generating immature TANGO 294 protein and cleaving the signal sequence therefrom.

In addition to full length mature and immature TANGO 294 proteins, the invention includes fragments, derivatives, and variants of TANGO 294 protein, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA molecule having the nucleotide sequence listed in SEQ ID NO: 45 or some portion thereof, such as the portion which encodes mature TANGO 294 protein, immature TANGO 294 protein, or a domain of TANGO 294 protein. These nucleic acids are collectively referred to as nucleic acids of the invention.

TANGO 294 proteins and nucleic acid molecules encoding them comprise a family of molecules having certain conserved structural and functional features.

Also included within the scope of the invention are TANGO 294 proteins having a signal sequence. As used herein, a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the amino terminus of membrane-bound proteins and which contains at least about 45%

10

15

hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues. A signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 294 protein contains a signal sequence corresponding to amino acid residues 1 to 33 of SEQ ID NO: 47 (SEQ ID NO: 48). The signal sequence is cleaved during processing of the mature protein.

The naturally-occurring form of TANGO 294 protein is a secreted protein (i.e., not comprising the predicted signal sequence). However, in variant forms, TANGO 294 proteins can be transmembrane proteins which include an extracellular domain. In this transmembrane variant form, the predicted TANGO 294 protein extracellular domain is located from about amino acid residue 34 to about amino acid residue 254 of SEQ ID NO: 47, the predicted cytoplasmic domain is located from about amino acid residue 280 to amino acid residue 423 of SEQ ID NO: 47 (SEQ ID NO: 52), and the predicted transmembrane domain is located from about amino acid residues 255 to 279 of SEQ ID NO: 47 (SEQ ID NO: 51).

translational modification sites (often within an extracellular domain), such as those described herein in Table X, as predicted by computerized sequence analysis of TANGO 294 proteins using amino acid sequence comparison software (comparing the amino acid sequence of TANGO 294 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}). In certain embodiments, a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table X.

Table X

Type of Potential Modification Site	Amino Acid Residues of	Amino Acid
or Domain	SEQ ID NO: 47	Sequence
N-glycosylation site	48 to 51	NISE
	113 to 116	NNSL
	285 to 288	NMSR
	413 to 416	NLSQ
Protein kinase C phosphorylation site	12 to 14	SHR
	138 to 140	SRK
	217 to 219	TVK
Casein kinase II phosphorylation site	155 to 158	SYDE
	175 to 178	TGQE
	198 to 201	TMPE
,	360 to 363	SNPE
Tyrosine kinase phosphorylation site	174 to 182	KTGQEKIYY
N-myristoylation site	99 to 104	GLVGGA
	130 to 135	GNSRGN
	188 to 193	GTTMGF
	277 to 282	GGFNTN
Amidation site	240 to 243	FGKK
Lipase serine active site	180 to 189	IYYVGYSQGT
Alpha/beta hydrolase fold domain	125 to 404	See Fig. 6

Alpha/beta hydrolase fold domains occur in a wide variety of

enzymes (Ollis et al., (1992) *Protein Eng.* 5:197-211). The alpha/beta fold domain
is a conserved topological domain in which sequence homology is not necessarily
conserved. Conservation of topology in the alpha/beta fold domain preserves
arrangement of catalytic residues, even though those residues, and the reactions
they catalyze, can vary. In many enzymes, particularly including alpha/beta

hydrolases, this domain encompasses the active site of the enzyme. In one

10

15

20

25

30

embodiment, the protein of the invention has at least one domain that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to the alpha/beta hydrolase fold domain described herein in Table X.

The signal peptide prediction program SIGNALP (Nielsen et al. (1997) *Protein Engineering* 10:1-6) predicted that human TANGO 294 protein includes a 33 amino acid signal peptide (amino acid residues 1 to 33 of SEQ ID NO: 47; SEQ ID NO: 48) preceding the mature TANGO 294 protein (amino acid residues 34 to 423 of SEQ ID NO: 47; SEQ ID NO: 49). Human TANGO 294 protein is a soluble secreted protein. However, in the transmembrane variant form, human TANGO 294 protein includes an extracellular domain (amino acid residues 34 to 254 of SEQ ID NO: 47; SEQ ID NO: 50); a transmembrane domain (amino acid residues 255 to 279 of SEQ ID NO: 47; SEQ ID NO: 51); and a cytoplasmic domain (amino acid residues 280 to 423 of SEQ ID NO: 47; SEQ ID NO: 52).

Figure 6F depicts a hydrophilicity plot of human TANGO 294 protein. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic region which corresponds to amino acid residues 1 to 33 of SEQ ID NO: 47 is the signal sequence of human TANGO 294 (SEQ ID NO: 49). The hydrophobic region which corresponds to amino acid residues 255 to 279 of SEQ ID NO: 47 is the predicted transmembrane domain of human TANGO 294 (SEQ ID NO: 51). As described elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human TANGO 294 protein from about amino acid residue 130 to about amino acid residue 150 appears to be located at or near the surface of the protein, while the region from about amino acid residue 90 to about amino acid residue 100 appears not to be located at or near the surface.

The predicted molecular weight of human TANGO 294 protein without modification and prior to cleavage of the signal sequence is about 48.2 kilodaltons. The predicted molecular weight of the mature human TANGO 294

10

15

20

25

30

protein without modification and after cleavage of the signal sequence is about 44.2 kilodaltons.

It may be that amino acid residues 1 to 15 of SEQ ID NO: 47 do not occur in TANGO 294 protein. However, it is recognized that amino acid residues 16 to 33 of SEQ ID NO: 47 form a functional signal sequence even in the absence of residues 1 to 15. The amino acid sequence (and hence the properties) of mature TANGO 294 protein are unaffected by presence or absence of amino acid residues 1 to 15 of immature TANGO 294 protein.

Human TANGO 294 protein exhibits considerable sequence similarity (i.e., about 75% amino acid sequence identity) to lingual and gastric lipase proteins of rat (Swissprot Accession no. P04634; Docherty et al. (1985) Nucleic Acids Res. 13:1891-1903), dog (Swissprot Accession no. P80035; Carriere et al. (1991) Eur. J. Biochem. 202:75-83), and human (Swissprot Accession no. P07098; Bernbaeck and Blaeckberg (1987) Biochim. Biophys. Acta 909:237-244), as assessed using the ALIGN v. 2.0 computer software using a pam12.mat scoring matrix and gap penalties of -12/-4. TANGO 294 is distinct from the known human lipase, as indicated in Figures 6D and 6E. Figures 6D and 6E depict an alignment of the amino acid sequences of human TANGO 294 protein (SEO ID NO: 47) and the known human lipase protein (SEQ ID NO: 75), as assessed using the same software and parameters. In this alignment (pam120 mat scoring matrix, gap penalties -12/-4), the amino acid sequences of the proteins are 49.8% identical. TANGO 294 also is distinct from the known human lysosomal acid lipase, as indicated in Figures 6G and 6H. Figures 6G and 6H depicts an alignment of the amino acid sequences of human TANGO 294 protein (SEQ ID NO: 47) and the known human lysosomal acid lipase protein (SEQ ID NO: 41). In this alignment (pam120.mat scoring matrix, gap penalties -12/-4), the amino acid sequences of the proteins are 56.9% identical.

TANGO 294 is a human lipase distinct from the known human lipase and the known human lysosomal acid lipase. Furthermore, in view of the comparisons of the amino acid sequences of TANGO 294 and the two human lipases and the nature of transcriptional initiation sites, it is recognized that the transcriptional start site can correspond to either of the methionine residues located

10

25

at residues 1 and 15 of SEQ ID NO: 47 The present invention thus includes proteins in which the initially transcribed amino acid residue is the methionine residue at position 1 of SEQ ID NO: 47 and proteins in which the initially transcribed amino acid residue is the methionine residue at position 15 of SEQ ID NO: 47 (i.e., proteins in which the amino acid sequence of TANGO 294 does not include residues 1 to 14 of SEQ ID NO: 47). Furthermore, because amino acid residues 1 to 14 of SEQ ID NO: 47 are predicted to be part of a signal sequence, it is recognized that the protein not comprising this portion of the amino acid sequence will nonetheless exhibit a functional signal sequence at its amino terminus.

Biological function of TANGO 294 proteins, nucleic acids, and modulators thereof

The sequence similarity of TANGO 294 and mammalian lingual,

gastric, and lysosomal acid lipase proteins indicates that TANGO 294 is involved in
physiological processes identical or analogous to those involving these lipases.

Thus, TANGO 294 is involved in facilitating absorption and metabolism of fat.

TANGO 294 can thus be used, for example, to prevent, detect, and treat disorders
relating to fat absorption and metabolism, such as inadequate expression of

gastric/pancreatic lipase, cystic fibrosis, exocrine pancreatic insufficiency, obesity,
medical treatments which alter fat absorption, and the like.

TANGO 294 protein is known to be expressed in human pulmonary artery smooth muscle tissue. This indicates that TANGO 294 protein is involved in transportation and metabolism of fats and lipids in the human vascular and cardiovascular systems. Thus, TANGO 294 proteins of the invention can be used to prevent, detect, and treat disorders involving these body systems.

20

25

INTERCEPT 296

A cDNA clone (designated jthEa030h09) encoding at least a portion of human INTERCEPT 296 protein was isolated from a human esophagus cDNA library. The human INTERCEPT 296 protein is predicted by structural analysis to be a transmembrane protein having three or more transmembrane domains. Expression of DNA encoding INTERCEPT 296 tissue has been detected by northern analysis of human lung tissue. In human lung tissue, two moieties corresponding to INTERCEPT 296 have been identified in Northern blots. It is recognized that these two moieties may represent alternatively polyadenylated

10 INTERCEPT 296 mRNAs or alternatively spliced INTERCEPT 296 mRNAs. It has furthermore been observed that INTERCEPT 296 does not appear to be expressed in any of heart, brain, placenta, skeletal muscle, kidney, and pancreas tissues.

The full length of the cDNA encoding INTERCEPT 296 protein (Figure 7; SEQ ID NO: 53) is 2133 nucleotide residues. The ORF of this cDNA, nucleotide residues 70 to 1098 of SEQ ID NO: 53 (i.e., SEQ ID NO: 54), encodes a 343-amino acid transmembrane protein (Figure 7; SEQ ID NO: 55).

The invention includes purified INTERCEPT 296 protein, which has the amino acid sequence listed in SEQ ID NO: 55. In addition to full length INTERCEPT 296 proteins, the invention includes fragments, derivatives, and variants of these INTERCEPT 296 proteins, as described herein. These proteins, fragments, derivatives, and variants are collectively referred to herein as polypeptides of the invention or proteins of the invention.

The invention also includes nucleic acid molecules which encode a polypeptide of the invention. Such nucleic acids include, for example, a DNA molecule having the nucleotide sequence SEQ ID NO: 53 or some portion thereof, such as the portion which encodes INTERCEPT 296 protein or a domain thereof. These nucleic acids are collectively referred to as nucleic acids of the invention.

INTERCEPT 296 proteins and nucleic acid molecules encoding
them comprise a family of molecules having certain conserved structural and
functional features, such as the five transmembrane domains which occur in the
protein.

10

15

20

25

INTERCEPT 296 comprises at least five transmembrane domains, at least three cytoplasmic domains, and at least two extracellular domains. INTERCEPT 296 does not appear to comprise a cleavable signal sequence. Amino acid residues 1 to 70 of SEQ ID NO: 55 likely directs insertion of the protein into the cytoplasmic membrane. There are at least two mechanisms by which this can occur. Sequence analysis of residues 1 to 70 of SEO ID NO: 55 indicates that this entire region may represent a signal sequence or that residues 1 to 47 represent a signal sequence, with residues 48-70 representing a transmembrane region. Human INTERCEPT 296 protein extracellular domains are located from about amino acid residue 70 to about amino acid residue 182 (SEQ ID NO: 57) and from about amino acid residue 228 to about amino acid residue 249 (SEQ ID NO: 58) of SEQ ID NO: 55. Human INTERCEPT 296 cytoplasmic domains are located from about amino acid residue 43 to amino acid residue 50 (SEQ ID NO: 64), from about amino acid residue 205 to amino acid residue 210 (SEQ ID NO: 65), and from amino acid residue 272 to amino acid residue 343 (SEQ ID NO: 66) of SEQ ID NO: 55. The five transmembrane domains of INTERCEPT 296 are located from about amino acid residues 24 to 42 (SEQ ID NO: 59), 51 to 70 (SEQ ID NO: 60), 183 to 204 (SEQ ID NO: 61), 211 to 227 (SEQ ID NO: 62), and 250 to 271 (SEO ID NO: 63) of SEQ ID NO: 55.

INTERCEPT 296 proteins typically comprise a variety of potential post-translational modification sites (often within an extracellular domain), such as those described herein in Table XI, as predicted by computerized sequence analysis of INTERCEPT 296 proteins using amino acid sequence comparison software (comparing the amino acid sequence of INTERCEPT 296 with the information in the PROSITE database {rel. 12.2; Feb, 1995} and the Hidden Markov Models database {Rel. PFAM 3.3}). In certain embodiments, a protein of the invention has at least 1, 2, 4, 6, 10, 15, or 20 or more of the post-translational modification sites listed in Table XI.

Table XI

Type of Potential Modification Site	Amino Acid Residues of	Amino Acid
or Domain	SEQ ID NO: 55	Sequence
N-glycosylation site	71 to 74	NFSS
	84 to 87	NTSY
	109 to 112	NITL
*	121 to 124	NETI
	284 to 287	NQSV -
Protein kinase C phosphorylation site	86 to 88	SYK
10	131 to 133	. TWR
	162 to 164	TPR
	304 to 306	SPR
	313 to 315	SPK
	326 to 328	STK
Casein kinase II phosphorylation site	286 to 289	SVDE
	296 to 299	SPEE
	309 to 312	SMAD
Tyrosine kinase phosphorylation site	148 to 156	KGLPDPVLY
ı		
N-myristoylation site	79 to 84	GQVSTN
	100 to 105	GLQVGL
	107 to 112	GVNITL _.
	265 to 270	GLAMAV

Figure 7D depicts a hydrophilicity plot of INTERCEPT 296 protein.

Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line. The hydrophobic regions which corresponds to amino acid residues 24 to 42, 51 to 70, 183 to 204, 211 to 227, and 250 to 271 of SEQ ID NO: 55 are the transmembrane domains of human INTERCEPT 296 (SEQ ID NOs: 59 through 63, respectively). As described

10

15

20

25

elsewhere herein, relatively hydrophilic regions are generally located at or near the surface of a protein, and are more frequently effective immunogenic epitopes than are relatively hydrophobic regions. For example, the region of human INTERCEPT 296 protein from about amino acid residue 120 to about amino acid residue 140 appears to be located at or near the surface of the protein, while the region from about amino acid residue 95 to about amino acid residue 110 appears not to be located at or near the surface.

The predicted molecular weight of INTERCEPT 296 protein without modification and prior to cleavage of the signal sequence is about 37.8 kilodaltons. The predicted molecular weight of the mature INTERCEPT 296 protein without modification and after cleavage of the signal sequence is about 30.2 kilodaltons.

Figures 7E and 7F depicts an alignment of the amino acid sequences of human INTERCEPT 296 protein (SEQ ID NO: 55) and Caenorhabditis elegans C06E1.3 related protein (SEQ ID NO: 399). In this alignment (pam120.mat scoring matrix, gap penalties -12/-4), the amino acid sequences of the proteins are 26.8% identical. The C. elegans protein has five predicted transmembrane domains.

Biological function of INTERCEPT 296 proteins, nucleic acids, and modulators thereof

The cDNA encoding INTERCEPT 296 protein was obtained from a human esophagus cDNA library, and INTERCEPT 296 is expressed in lung tissue. The INTERCEPT 296-related proteins and nucleic acids of the invention are therefore useful for prevention, detection, and treatment of disorders of the human lung and esophagus. Such disorders include, for example, various cancers, bronchitis, cystic fibrosis, respiratory infections (e.g., influenza, bronchiolitis, pneumonia, and tuberculosis), asthma, emphysema, chronic bronchitis, bronchiectasis, pulmonary edema, pleural effusion, pulmonary embolus, adult and infant respiratory distress syndromes, heartburn, and gastric reflux esophageal disease.

Tables A and B summarize sequence data corresponding to the human proteins herein designated TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296.

Table A

Protein		SEQ ID NOs	Depicted in	ATCC®		
Designation	cDNA	ORF	Protein	Figure #	Accession #	
TANGO 202	1	2	3	1	207219	
TANGO 234	9	10	11	2	207184	
TANGO 265	17	18	19	3	207228	
TANGO 273	25	26	27	· 4	207185	
TANGO 286	33	34	35	5	207220	
TANGO 294	45	46	47	6	207220	
INTERCEPT 296	53	54	55	7	207220	

M	l
<u>ပ</u>	l
互	ŀ
ಶ	l

.i. (∞	-	16	24	32		52	(52)			2	9	99																
Cytoplasmic Domain(s)		416 to 475	(N/A)	1384 to 1453	705 to 761	82 to 172	N/A	280 to 423	(280 to 423)	<n a=""></n>	{ N/A }	43 to 50	205 to 210	272 to 343																
me		7		15	23	31		51	(15)			59	09	61	62	63														
Transmembrane Domain(s)	NOs	393 to 415	(N/A)	1360 to 1383	684 to 704	61 to 81	N/A	255 to 279	(255 to 279)	<n a=""></n>	{ N/A }	24 to 42	51 to 70	183 to 204	211 to 227	250 to 271														
ar)	SEQ ID NOs		0.00	000	O D	O D	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(I) (I)	(I)	(I)	(1) (S)	000	GID.	OII O	9	(5)	14	22	30	37	20	(20)	<49>	{49}	56	57	58			sidues
Extracellular Domain(s)	SI	20 to 392	(20 to 475)	41 to 1359	32 to 683	23 to 60	24 to 455	34 to 254	(34 to 254)	<34 to 423>	{34 to 423}	1 to 23	71 to 182	228 to 249		- 100-	Amino Acid Residues													
ein		5	(5)	13	21	29	37	49	(49)	49		55] [
Mature Protein		20 to 475	(20 to 475)	41 to 1453	32 to 761	23 to 172	24 to 455	34 to 423	(34 to 423)	<34 to 423> <49>	33} {40} {34 to 423} {49}	1 to 343																		
nence		4	(4)	12	20	28	36	48	(40)	< 48 >	{40}																			
Signal Seq		1 to 19	(1 to 19)	1 to 40	1 to 31	1 to 22	1 to 23	1 to 33	(15 to 33)	<1 to 33>	{15 to 33}	N/A					•													
Protein Desig. Signal Sequence		TANGO 202	(variant)	TANGO 234	TANGO 265	TANGO 273	TANGO 286	TANGO 294	(variant 1)	<variant 2=""></variant>	{variant 3}	INTERCEPT	296																	

10

15

20

25

30

Various aspects of the invention are described in further detail in the following subsections.

I. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode a polypeptide of the invention or a biologically active portion thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding a polypeptide of the invention and fragments of such nucleic acid molecules suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Preferably, an "isolated" nucleic acid molecule is free of sequences (preferably protein-encoding sequences) which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of all or a portion of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or a complement thereof, or which has a nucleotide sequence comprising one of these sequences, can be isolated using standard molecular biology techniques and the

10

15

20

25

30

sequence information provided herein. Using a nucleic acid comprising at least one of the sequences of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73 as a hybridization probe, nucleic acid molecules of the invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., *Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

A nucleic acid molecule of the invention can be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or a portion thereof. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex.

Moreover, a nucleic acid molecule of the invention can comprise only a portion of a nucleic acid sequence encoding a full length polypeptide of the invention for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a polypeptide of the invention. The nucleotide sequence determined from the cloning one gene allows for the generation of probes and primers designed for use in identifying and/or cloning homologs in other cell types, e.g., from other tissues, as well as homologs from other mammals. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 15, preferably about 25, more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or

10

15

20

25

30

400 or more consecutive nucleotides of the sense or anti-sense sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or of a naturally occurring mutant of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73.

Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences encoding the same protein molecule encoded by a selected nucleic acid molecule. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein has been mutated or deleted.

A nucleic acid fragment encoding a biologically active portion of a polypeptide of the invention can be prepared by isolating a portion of any of SEQ ID NOs: 2, 10, 18, 26, 34, 46, 54, 68, and 73, expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression *in vitro*), and assessing the activity of the encoded portion of the polypeptide.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence of any of SEQ ID NOs: 2, 10, 18, 26, 34, 46, 54, 68, and 73.

In addition to the nucleotide sequences of SEQ ID NOs: 2, 10, 18, 26, 34, 46, 54, 68, and 73, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g., the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus.

As used herein, the phrase "allelic variant" refers to a nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence. For example, chromosomal mapping has been used to locate

10

15

20

25

30

the gene encoding human TANGO 234 at chromosomal location h12p13 (with synteny to mo6), between chromosomal markers WI-6980 and GATA8A09.43. Thus, human TANGO 234 allelic variants can include TANGO 234 nucleotide sequence polymorphisms (e.g., nucleotide sequences that vary from SEQ ID NO: 9) that map to this chromosomal region. Similarly, chromosomal mapping has been used to locate the gene encoding human TANGO 265 protein on chromosome 1, between markers D1S305 and D1S2635. Allelic variants of TANGO 265 occur at this chromosomal location. Further by way of example, the gene encoding human TANGO 273 protein has been located by chromosomal mapping on chromosome 7, between markers D7S2467 and D7S2552. Allelic variants of TANGO 273 occur at this chromosomal location.

As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the invention.

Moreover, nucleic acid molecules encoding proteins of the invention from other species (homologs), which have a nucleotide sequence which differs from that of the specific proteins described herein are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologs of a cDNA of the invention can be isolated based on their homology with nucleic acid molecules described herein, using the specific cDNAs described herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. For example, a cDNA encoding a soluble form of a membrane-bound protein of the invention isolated based on its hybridization to a nucleic acid molecule encoding all or part of the membrane-bound form. Likewise, a cDNA encoding a membrane-

10

15

20

25

30

bound form can be isolated based on its hybridization to a nucleic acid molecule encoding all or part of the soluble form.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 (25, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or 4928) nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or a complement thereof. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, nonlimiting example of stringent hybridization conditions are hybridization in 6 × sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 × SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions with the sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, or a complement thereof, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In addition to naturally-occurring allelic variants of a nucleic acid molecule of the invention sequence that can exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas

10

15

20

25

. 30

an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration. Alternatively, amino acid residues that are conserved among the homologs of various species (e.g., murine and human) may be essential for activity and thus would not be likely targets for alteration.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from the sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 40% identical, 50%, 60%, 70%, 80%, 90%, 95%, or 98% identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74.

An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, such that one or more amino acid residue substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan,

10

15

20

25

30

histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

In a preferred embodiment, a mutant polypeptide that is a variant of a polypeptide of the invention can be assayed for: (1) the ability to form protein:protein interactions with one or more polypeptides of the invention (e.g., in a signaling pathway); (2) the ability to bind a ligand of a polypeptide of the invention (e.g., another protein identified herein); (3) the ability to bind to an intracellular target protein of a polypeptide of the invention (e.g., a modulator or substrate of the polypeptide); or (4) the ability to modulate a physiological activity of the protein, such as one of those disclosed herein (e.g., ability to modulate cell proliferation, cell migration, chemotaxis, or cellular differentiation).

The present invention encompasses antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid encoding a polypeptide of the invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The non-coding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability

10

15

20

25

30

of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N_s-isopentenyladenine, 1methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-Dmannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine. pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or

10

15

20

25

30

PCT/US00/14858

antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

An antisense nucleic acid molecule of the invention can be an alphaanomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms
specific double-stranded hybrids with complementary RNA in which, contrary to
the usual beta-units, the strands run parallel to each other (Gaultier et al. (1987)

Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also
comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res.
15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett.
215:327-330).

The invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach (1988) Nature 334:585-591) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding a polypeptide of the invention can be designed based upon the nucleotide sequence of a cDNA disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742. Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261:1411-1418.

The invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a polypeptide of the invention

10

15

20

25

30

can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991) Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.

In various embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4(1): 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or anti-gene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup (1996), *supra*; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), *supra*; Perry-O'Keefe et al. (1996) *Proc. Natl. Acad. Sci. USA* 93: 14670-675).

In another embodiment, PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which can combine the advantageous properties of PNA and

10

15

30

DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al. (1989) Nucleic Acids Res. 17:5973-88). PNA monomers are then coupled in a step-wise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119-11124).

In other embodiments, the oligonucleotide can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide can be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

II. Isolated Proteins and Antibodies

One aspect of the invention pertains to isolated proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a polypeptide of the

10

15

20

25

30

invention. In one embodiment, the native polypeptide can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides of the invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide of the invention can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein"). When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.

Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the protein (e.g., the amino acid sequence shown in any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74), which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the invention can be a

10

15

20

25

30

polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.

Preferred polypeptides have the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74. Other useful proteins are substantially identical (e.g., at least about 40%, preferably 50%, 60%, 70%, 80%, 90%, 95%, or 99%) to any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74 and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., overlapping positions) × 100). In one embodiment the two sequences are the same length.

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci. USA* 87:2264-2268, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) *J. Mol. Biol.* 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to

10

15

20

25

30

obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. Id. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises all or part (preferably biologically active) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same polypeptide of the invention). Within the fusion protein, the term "operably linked" is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the amino-terminus or the carboxyl-terminus of the polypeptide of the invention.

One useful fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the carboxyl terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.

10

15

20

25

30

In another embodiment, the fusion protein contains a heterologous signal sequence at its amino terminus. For example, the native signal sequence of a polypeptide of the invention can be removed and replaced with a signal sequence from another protein. For example, the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, 1992). Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California). In yet another example, useful prokaryotic heterologous signal sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).

In yet another embodiment, the fusion protein is an immunoglobulin fusion protein in which all or part of a polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound) and a protein on the surface of a cell (receptor), to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention. Inhibition of ligand/receptor interaction can be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.

Chimeric and fusion proteins of the invention can be produced by standard recombinant DNA techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified

10

15

20

25

30

to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the invention.

A signal sequence of a polypeptide of the invention (e.g., the signal sequence in one of SEQ ID NOs: 3, 4, 11, 12, 19, 20, 27, 28, 35, 36, 47, 48, 69, and 74) can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. Thus, the invention pertains to the described polypeptides having a signal sequence, as well as to the signal sequence itself and to the polypeptide in the absence of the signal sequence (i.e., the cleavage products). In one embodiment, a nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

In another embodiment, the signal sequences of the present invention can be used to identify regulatory sequences, e.g., promoters, enhancers, repressors. Since signal sequences are the most amino-terminal sequences of a peptide, it is expected that the nucleic acids which flank the signal sequence on its amino-terminal side will be regulatory sequences which affect transcription. Thus, a nucleotide sequence which encodes all or a portion of a signal sequence can be used as a probe to identify and isolate signal sequences and their flanking regions, and these flanking regions can be studied to identify regulatory elements therein.

10

15

20

25

30

The present invention also pertains to variants of the polypeptides of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.

Variants of a protein of the invention which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477).

In addition, libraries of fragments of the coding sequence of a polypeptide of the invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded

10

15

20

25

30

PCT/US00/14858

PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, re-naturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes amino terminal and internal fragments of various sizes of the protein of interest.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the invention (Arkin and Yourvan (1992) *Proc. Natl. Acad. Sci. USA 89*:7811-7815; Delgrave et al. (1993) *Protein Engineering* 6(3):327-331).

An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. The antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30 or more) amino acid residues of the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein.

10

15

20

25

30

preparations are ones that contain only antibodies directed against one or more polypeptides of the invention. Particularly preferred immunogen compositions are those that contain no other human proteins such as, for example, immunogen compositions made using a non-human host cell for recombinant expression of a polypeptide of the invention. In such a manner, the only human epitope or epitopes recognized by the resulting antibody compositions raised against this immunogen will be present as part of a polypeptide or polypeptides of the invention.

The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be harvested or isolated from the subject (e.g., from the blood or serum of the subject) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. Alternatively, antibodies which bind specifically with a protein or polypeptide of the invention can be selected or purified (e.g., partially purified) using chromatographic methods, such as affinity chromatography. For example, a recombinantly expressed and purified (or partially purified) protein of the invention can be produced as described herein, and covalently or non-covalently coupled with a solid support such as, for example, a chromatography column. The column thus exhibits specific affinity for antibody substances which bind specifically with the protein of the invention, and these antibody substances can be purified from a sample containing antibody substances directed against a large number of different epitopes, thereby generating a substantially purified antibody substance composition, i.e., one that is substantially free of antibody substances which do not bind specifically with the protein. A substantially purified antibody composition, in this context, means an antibody sample that contains at most only 30% (by dry weight) of contaminating antibodies directed against epitopes other than those on the desired protein or polypeptide of the invention, preferably at most 20%, more preferably at most 10%, most preferably at most 5% (by dry weight of the sample is contaminating antibodies). A purified antibody composition means that at least 99% of the antibodies in the composition are directed against the desired protein or polypeptide of the invention.

10

15

20

25

30

Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions. Figures 1L, 1M, 2J, 3U, 4I, 4J, 5E, 6F, and 7D are hydrophobicity plots of the proteins of the invention. These plots or similar analyses can be used to identify hydrophilic regions.

An immunogen typically is used to prepare antibodies by immunizing a suitable (i.e., immunocompetent) subject such as a rabbit, goat, mouse, or other mammal or vertebrate. An appropriate immunogenic preparation can contain, for example, recombinantly-expressed or chemically-synthesized polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or a similar immunostimulatory agent.

Accordingly, another aspect of the invention pertains to antibodies directed against a polypeptide of the invention. The terms "antibody" and "antibody substance" as used interchangeably herein refer to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention (e.g., an epitope of a polypeptide of the invention). A molecule which specifically binds to a given polypeptide of the invention is a molecule which binds the polypeptide, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab'), fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope.

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen. Preferred polyclonal antibody compositions are ones that have been selected for antibodies directed against (i.e., which bind specifically with) one or more polypeptides of the invention. Particularly preferred polyclonal antibody

.10

15

20

30-

At an appropriate time after immunization, e.g., when the specific antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al. (eds.) John Wiley & Sons, Inc., New York, NY). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SURFZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in

generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. A chimeric antibody is a molecule in which

10

15

20

25

30

different portions of the antibody amino acid sequence are derived from different animal species, such as those having a variable region derived from a murine monoclonal antibody and a constant region derived from a human immunoglobulin. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816,397). Humanized antibodies are antibody molecules which are obtained from non-human species, which have one or more complementarity-determining regions (CDRs) derived from the non-human species, and which have a framework region derived from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5.585.089). Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S. Patent 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced, for example, using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA and IgE

10

15

20

25

30

antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, *Int. Rev. Immunol.* 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, *see*, *e.g.*, U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope (Jespers et al. (1994) *Bio/technology* 12:899-903).

An antibody directed against a polypeptide of the invention (e.g., monoclonal antibody) can be used to isolate the polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, such an antibody can be used to detect the protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide. The antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, Bgalactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.

25

30

Further, an antibody substance can be conjugated with a therapeutic moiety such as a cytotoxin, a therapeutic agent, or a radioactive metal ion. Cytotoxins and cytotoxic agents include any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, 5 mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, and analogs or homologs of these compounds. Therapeutic agents include, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 10 6-thioguanine, cytarabine, 5-fluorouracil, and decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine {BSNU}, lomustine {CCNU}, cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin {formerly daunomycin} and doxorubicin), 15 antibiotics (e.g., dactinomycin {formerly actinomycin}, bleomycin, mithramycin, and anthramycin {AMC}), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used to modify a biological response; the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety can be a protein or polypeptide which exhibits a desired biological activity. Such proteins include, for example, toxins such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; proteins such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; and biological response modifiers such as lymphokines, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), and other growth factors.

Techniques for conjugating a therapeutic moiety with an antibody substance are well known (see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies and Cancer Therapy, Reisfeld et al., eds., pp. 243-256, Alan R. Liss, Inc., 1985; Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery, 2nd

20

25

30

Ed., Robinson et al., eds., pp. 623-653, Marcel Dekker, Inc., 1987; Thorpe,
"Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in

Monoclonal Antibodies '84: Biological and Clinical Applications, Pinchera et al.,
eds., pp. 475-506, 1985; "Analysis, Results, And Future Prospective Of The

Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal
Antibodies for Cancer Detection and Therapy, Baldwin et al., eds., pp. 303-316,
Academic Press, 1985; and Thorpe et al., "The Preparation And Cytotoxic
Properties Of Antibody-Toxin Conjugates", Immunol. Rev. 62:119-58, 1982).
Alternatively, an antibody can be conjugated with a second antibody to form an
antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

Accordingly, in one aspect, the invention provides substantially purified antibodies or fragment thereof, and non-human antibodies or fragments thereof, which antibodies or fragments specifically bind with a polypeptide having an amino acid sequence which comprises a sequence selected from the group consisting of:

- (i) SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
- (ii) the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221;
- (iii) at least 15 amino acid residues of the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
- (iv) an amino acid sequence which is at least 95% identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4; and
- (v) an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes with a nucleic acid having a sequence selected from the group consisting of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73 under conditions of hybridization of 6 × SSC (standard saline citrate) at 45°C and washing in 0.2 × SSC, 0.1% SDS at 65°C.

In another aspect, the invention provides non-human antibodies or fragments thereof, which antibodies or fragments specifically bind with a

10

15

20

25

polypeptide having an amino acid sequence which comprises a sequence selected from the group consisting of:

- (i) SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
- (ii) the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221;
 - (iii) at least 15 amino acid residues of the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
 - (iv) an amino acid sequence which is at least 95% identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4; and
 - (v) an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes with a nucleic acid having a sequence selected from the group consisting of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73 under conditions of hybridization of 6 × SSC (standard saline citrate) at 45°C and washing in 0.2 × SSC, 0.1% SDS at 65°C. Such non-human antibodies can be goat, mouse, sheep, horse, chicken, rabbit, or rat antibodies. Alternatively, the non-human antibodies of the invention can be chimeric and/or humanized antibodies. In addition, the non-human antibodies of the invention can be polyclonal antibodies or monoclonal antibodies.

In still a further aspect, the invention provides monoclonal antibodies or fragments thereof, which antibodies or fragments specifically bind with a polypeptide having an amino acid sequence which comprises a sequence selected from the group consisting of:

- (i) SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
- (ii) the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221;
- (iii) at least 15 amino acid residues of the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
 - (iv) an amino acid sequence which is at least 95% identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-

10

15

20

25 .

30

66, 69, and 74, wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4; and

(v) an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes with a nucleic acid having a sequence selected from the group consisting of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73 under conditions of hybridization of 6 × SSC (standard saline citrate) at 45°C and washing in 0.2 × SSC, 0.1% SDS at 65°C. The monoclonal antibodies can be human, humanized, chimeric and/or non-human antibodies.

The substantially purified antibodies or fragments thereof can specifically bind with a signal peptide, a secreted sequence, an extracellular domain, a transmembrane or a cytoplasmic domain cytoplasmic membrane of a polypeptide of the invention. In a particularly preferred embodiment, the substantially purified antibodies or fragments thereof, the non-human antibodies or fragments thereof, and/or the monoclonal antibodies or fragments thereof, of the invention specifically bind with a secreted sequence or with an extracellular domain of one of TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296. Preferably, the extracellular domain with which the antibody substance binds has an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, 14, 22, 30, 37, 49, 50, and 56-58.

Any of the antibody substances of the invention can be conjugated with a therapeutic moiety or to a detectable substance. Non-limiting examples of detectable substances that can be conjugated with the antibody substances of the invention include an enzyme, a prosthetic group, a fluorescent material (i.e., a fluorophore), a luminescent material, a bioluminescent material, and a radioactive material (e.g., a radionuclide or a substituent comprising a radionuclide)...

The invention also provides a kit containing an antibody substance of the invention conjugated with a detectable substance, and instructions for use.

Still another aspect of the invention is a pharmaceutical composition comprising an antibody substance of the invention and a pharmaceutically acceptable carrier. In preferred embodiments, the pharmaceutical composition contains an antibody

15

20

substance of the invention, a therapeutic moiety (preferably conjugated with the antibody substance), and a pharmaceutically acceptable carrier.

Still another aspect of the invention is a method of making an antibody that specifically recognizes one of TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296. This method comprises immunizing a vertebrate (e.g., a mammal such as a rabbit, goat, or pig) with a polypeptide. The polypeptide used as an immunogen has an amino acid sequence that comprises a sequence selected from the group consisting of:

- (i) SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
- 10 (ii) the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221;
 - (iii) at least 15 amino acid residues of the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74;
 - (iv) an amino acid sequence which is at least 95% identical to the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4; and
 - (v) an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes with a nucleic acid having a sequence selected from the group consisting of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73 under conditions of hybridization of 6 × SSC (standard saline citrate) at 45°C and washing in 0.2 × SSC, 0.1% SDS at 65°C.
- After immunization, a sample is collected from the vertebrate that

 contains an antibody that specifically recognizes the polypeptide with which the
 vertebrate was immunized. Preferably, the polypeptide is recombinantly produced
 using a non-human host cell. Optionally, an antibody substance can be further
 purified from the sample using techniques well known to those of skill in the art.

 The method can further comprise making a monoclonal antibody-producing cell

 from a cell of the vertebrate. Optionally, antibodies can be collected from the
 antibody-producing cell.

10

15

20

25

30

III. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a polypeptide of the invention (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., nonepisomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses. adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990).

10

15

20

25

30

Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic (e.g., *E. coli*) or eukaryotic cells (e.g., insect cells (using baculovirus expression vectors), yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, *supra*. Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

30

Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident lambda prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli* (Wada et al. (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari et al. (1987) *EMBO J.* 6:229-234), pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz et al. (1987) *Gene* 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).

Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) *Mol. Cell Biol.* 3:2156-2165) and the pVL series (Lucklow and Summers (1989) *Virology* 170:31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of

10

15

20

25

30

mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Nonlimiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoidspecific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the αfetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the invention. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance

10

15

20

25

30

viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al. (Reviews - Trends in Genetics, Vol. 1(1) 1986).

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells).

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of artrecognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (*supra*), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance

10

15

20

to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

In another embodiment, the expression characteristics of an endogenous nucleic acid within a cell, cell line, or microorganism (e.g., a TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 nucleic acid, as described herein) can be modified by inserting a heterologous DNA regulatory element (i.e., one that is heterologous with respect to the endogenous gene) into the genome of the cell, stable cell line, or cloned microorganism. The inserted regulatory element can be operatively linked with the endogenous gene (e.g., TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296) and thereby control, modulate, or activate the endogenous gene. For example, an endogenous TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 gene which is normally "transcriptionally silent" (i.e., a TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 gene which is normally not expressed, or is normally expressed only at only a very low level) can be activated by inserting a regulatory element which is capable of promoting expression of the gene in the cell, cell line, or microorganism. Alternatively, a transcriptionally silent, endogenous TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 gene can be activated by inserting a promiscuous regulatory element that works across cell types.

A heterologous regulatory element can be inserted into a stable cell
line or cloned microorganism such that it is operatively linked with and activates expression of an endogenous TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 gene, using techniques, such as targeted homologous recombination, which are well known to those of skill in the art (described e.g., in Chappel, U.S. Patent No. 5,272,071; PCT publication No. WO 91/06667, published May 16, 1991).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide of the invention. Accordingly,

10

15

20

25

30

the invention further provides methods for producing a polypeptide of the invention using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a sequences encoding a polypeptide of the invention have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous sequences encoding a polypeptide of the invention have been introduced into their genome or homologous recombinant animals in which endogenous encoding a polypeptide of the invention sequences have been altered. Such animals are useful for studying the function and/or activity of the polypeptide and for identifying and/or evaluating modulators of polypeptide activity. As used herein, a "transgenic animal" is a nonhuman animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing nucleic acid encoding a polypeptide of the invention (or a homologue thereof) into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster

10

15

20

25

30

animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the polypeptide of the invention to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191, in Hogan, Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y., 1986, and in Wakayama et al., 1999, Proc. Natl. Acad. Sci. USA 96:14984-14989. Similar methods can be used to produce other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.

To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a gene encoding a polypeptide of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein). In the homologous recombination vector, the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell. The additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5'

10

15

20

25

and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi (1987) Cell 51:503 for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley (1991) Current Opinion in Bio/Technology 2:823-829 and in PCT Publication Nos. WO 90/11354, WO 91/01140, WO 92/0968, and WO 93/04169.

In another embodiment, transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, *see*, *e.g.*, Lakso et al. (1992) *Proc. Natl. Acad. Sci. USA* 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of *Saccharomyces cerevisiae* (O'Gorman et al. (1991) *Science* 251:1351-1355. If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can
also be produced according to the methods described in Wilmut et al. (1997) *Nature*385:810-813 and PCT Publication Nos. WO 97/07668 and WO 97/07669.

10

15

20

25

30

IV. Pharmaceutical Compositions

The nucleic acid molecules, polypeptides, and antibodies (also referred to herein as "active compounds") of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid of the invention. Such methods comprise formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention and one or more additional active compounds.

The agent which modulates expression or activity can, for example, be a small molecule other than a nucleic acid, polypeptide, or antibody of the invention. For example, such small molecules include peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per

10

15

20

25

30

mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

It is understood that appropriate doses of small molecule agents and protein or polypeptide agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of these agents will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the agent to have upon the nucleic acid or polypeptide of the invention. Exemplary doses of a small molecule include milligram or microgram amounts per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram). Exemplary doses of a protein or polypeptide include gram, milligram or microgram amounts per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 5 grams per kilogram, about 100 micrograms per kilogram to about 500 milligrams per kilogram, or about 1 milligram per kilogram to about 50 milligrams per kilogram). It is furthermore understood that appropriate doses of one of these agents depend upon the potency of the agent with respect to the expression or activity to be modulated. Such appropriate doses can be determined using the assays described herein. When one or more of these agents is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher can, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific agent employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

10

15

20

25

30

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediamine-tetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline. bacteriostatic water, Cremophor EL (BASF; Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars. polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.

10

15

20

25

30

Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a polypeptide or antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium, and then incorporating the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.

Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches, and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

15

20

25

30

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes which can be targeted to bind with virus-infected cells using a monoclonal antibody which binds specifically with a viral antigen) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect

10

15

20

25

30

to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

For antibodies, the preferred dosage is 0.1 mg/kg to 100 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470), or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.

Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g. retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

V. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologs, and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and d) methods of treatment (e.g., therapeutic and prophylactic). For example, polypeptides of the invention can

10

15

to used for all of the purposes identified herein in portions of the disclosure relating to individual types of protein of the invention (e.g., TANGO 202 proteins, TANGO 234 proteins, TANGO 265 proteins, TANGO 273 proteins, TANGO 286 proteins, TANGO 294 proteins, and INTERCEPT 296 proteins). Polypeptides of the invention can also be used to modulate cellular proliferation, cellular differentiation, cellular adhesion, or some combination of these. The isolated nucleic acid molecules of the invention can be used to express proteins (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect mRNA (e.g., in a biological sample) or a genetic lesion, and to modulate activity of a polypeptide of the invention. In addition, the polypeptides of the invention can be used to screen drugs or compounds which modulate activity or expression of a polypeptide of the invention as well as to treat disorders characterized by insufficient or excessive production of a protein of the invention or production of a form of a protein of the invention which has decreased or aberrant activity compared to the wild type protein. In addition, the antibodies of the invention can be used to detect and isolate a protein of the and modulate activity of a protein of the invention.

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

20

25

30

A. Screening Assays

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.

In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a polypeptide of the invention or biologically active portion thereof. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution

10

15

20

25

30

phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and Gallop et al. (1994) J. Med. Chem. 37:1233.

Libraries of compounds can be presented in solution (e.g., Houghten (1992) Bio/Techniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (Patent Nos. 5,571,698; 5,403,484; and 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or phage (Scott and Smith (1990) Science 249:386-390; Devlin (1990) Science 249:404-406; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382; and Felici (1991) J. Mol. Biol. 222:301-310).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to the polypeptide determined. The cell, for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radio-emission or by scintillation counting. Alternatively, test

20

25

30

compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In a preferred embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or a biologically active portion thereof as compared to the known compound.

In another embodiment, the assay involves assessment of an activity characteristic of the polypeptide, wherein binding of the test compound with the polypeptide or a biologically active portion thereof alters (i.e., increases or decreases) the activity of the polypeptide.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished, for example, by determining the ability of the polypeptide to bind to or interact with a target molecule or to transport molecules across the cytoplasmic membrane.

Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by one of the methods described above for determining direct binding. As used herein, a "target molecule" is a molecule with which a selected polypeptide (e.g., a polypeptide of the invention binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface

10

15

20

25

30

of a cell membrane or a cytoplasmic molecule. A target molecule can be a polypeptide of the invention or some other polypeptide or protein. For example, a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling molecules with a polypeptide of the invention. Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., an mRNA, intracellular Ca²⁺, diacylglycerol, IP3, and the like), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation.

In yet another embodiment, an assay of the present invention is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the polypeptide or biologically active portion thereof. Binding of the test compound to the polypeptide can be determined either directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with

10

15

20

25

30

a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished, for example, by determining the ability of the polypeptide to bind to a target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to further modulate the target molecule. For example, the catalytic activity, the enzymatic activity, or both, of the target molecule on an appropriate substrate can be determined as previously described.

In yet another embodiment, the cell-free assay comprises contacting a polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the polypeptide to preferentially bind to or modulate the activity of a target molecule.

The cell-free assays of the present invention are amenable to use of both a soluble form or the membrane-bound form of a polypeptide of the invention. In the case of cell-free assays comprising the membrane-bound form of the polypeptide, it can be desirable to utilize a solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-octylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton X-100, Triton X-114, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate.

In one or more embodiments of the above assay methods of the present invention, it can be desirable to immobilize either the polypeptide of the

10

15

20

25

30

PCT/US00/14858

invention or its target molecule to facilitate separation of complexed from noncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase fusion proteins or glutathione-S-transferase fusion proteins can be adsorbed onto glutathione SEPHAROSE™ beads (Sigma Chemical; St. Louis, MO) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and either the nonadsorbed target protein or A polypeptide of the invention, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the polypeptide of the invention or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated polypeptide of the invention or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptide of the invention trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of

10

15

20

25

30

complexes using antibodies reactive with the polypeptide of the invention or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.

In another embodiment, modulators of expression of a polypeptide of the invention are identified in a method in which a cell is contacted with a candidate compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein corresponding to a polypeptide or nucleic acid of the invention) in the cell is determined. The level of expression of the selected mRNA or protein in the presence of the candidate compound is compared to the level of expression of the selected mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of expression of the polypeptide of the invention based on this comparison. For example, when expression of the selected mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of the selected mRNA or protein expression. Alternatively, when expression of the selected mRNA or protein is less (i.e., statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the selected mRNA or protein expression. The level of the selected mRNA or protein expression in the cells can be determined by methods described herein.

In yet another aspect of the invention, a polypeptide of the inventions can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No. WO 94/10300), to identify other proteins, which bind to or interact with the polypeptide of the invention and modulate activity of the polypeptide of the invention. Such binding proteins are also likely to be involved in the propagation of signals by the polypeptide of the inventions as, for example, upstream or downstream elements of a signaling pathway involving the polypeptide of the invention.

15

20

25

30

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

5 B. <u>Detection Assays</u>

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.

1. Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. Accordingly, nucleic acid molecules described herein or fragments thereof, can be used to map the location of the corresponding genes on a chromosome. The mapping of the sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Briefly, genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 base pairs in length) from the sequence of a gene of the invention. Computer analysis of the sequence of a gene of the invention can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the gene sequences will yield an amplified fragment. For a review of this technique, see D'Eustachio et al. ((1983) Science 220:919-924).

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the nucleic

10

15

20

25

30

acid sequences of the invention to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a gene to its chromosome include *in situ* hybridization (described in Fan et al. (1990) *Proc. Natl. Acad. Sci. USA* 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries. Fluorescence *in situ* hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. For a review of this technique, see Verma et al. (Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York, 1988)).

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to non-coding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland et al. (1987) *Nature* 325:783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with a gene of the invention can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete

10

15

20

25

30

sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

Furthermore, the nucleic acid sequences disclosed herein can be used to perform searches against "mapping databases", e.g., BLAST-type search, such that the chromosome position of the gene is identified by sequence homology or identity with known sequence fragments which have been mapped to chromosomes.

In the instant case, the human gene for TANGO 265 is located on chromosome 1 between markers D1S305 and D1S2635, and the human gene for TANGO 273 is located on chromosome 7 between markers D7S2467 and D7S2552.

In the instant case, the human gene for TANGO 286 exhibits significant amino acid homology with a region of the human chromosome region 22q12-13 genomic nucleotide sequence having GenBank Accession number AL021937. Alignment of a 45 kilobase nucleotide sequence encoding TANGO 286 with AL021937, however, indicated the presence in TANGO 286 of exons which differ from those disclosed in L021937 (pam120.mat scoring matrix; gap penalties -12/-4). This region of chromosome 22 comprises an immunoglobulin lambda chain C (IGLC) pseudogene, the Ret finger protein-like 3 (RFPL3) and Ret finger proteinlike 3 antisense (RFPL3S) genes, a gene encoding a novel immunoglobulin lambda chain V family protein, a novel gene encoding a protein similar both to mouse RGDS protein (RALGDS, RALGEF, guanine nucleotide dissociation stimulator A) and to rabbit oncogene RSC, a novel gene encoding the human orthologue of worm F16A11.2 protein, a novel gene encoding a protein similar both to BPI and to rabbit liposaccharide-binding protein, and a 5'-portion of a novel gene. This region also comprises various ESTs, STSs, GSSs, genomic marker D22S1175, a ca repeat polymorphism and putative CpG islands.

A polypeptide and fragments and sequences thereof and antibodies which bind specifically with such polypeptides/fragments can be used to map the location of the gene encoding the polypeptide on a chromosome. This mapping can be performed by specifically detecting the presence of the polypeptide/fragments in members of a panel of somatic cell hybrids between cells obtained from a first species of animal from which the protein originates and cells obtained from a

second species of animal, determining which somatic cell hybrid(s) expresses the polypeptide, and noting the chromosome(s) of the first species of animal that it contains. For examples of this technique (see Pajunen et al., 1988, Cytogenet. Cell Genet. 47:37-41 and Van Keuren et al., 1986, Hum. Genet. 74:34-40).

Alternatively, the presence of the polypeptide in the somatic cell hybrids can be determined by assaying an activity or property of the polypeptide (e.g., enzymatic activity, as described in Bordelon-Riser et al., 1979, Som. Cell Genet. 5:597-613 and Owerbach et al., 1978, Proc. Natl. Acad. Sci. USA 75:5640-5644).

In the instant case, the human gene for TANGO 234 protein indicated that the gene is located at chromosomal location h12p13. Flanking chromosomal markers include WI-6980 and GATA8A09.43. Nearby human loci include IBD2 (inflammatory bowel disease 2), FPF (familial periodic fever), and HPDR2 (hypophosphatemia vitamin D resistant rickets 2). Nearby genes are KLRC (killer cell receptor cluster), DRPLA (dentatorubro-pallidoluysian atrophy), GAPD (glyceraldehyde-3-phosphate) dehydrogenase, and PXR1 (peroxisome receptor 1). This region is syntenic to mouse chromosome mo6. Murine chromosomal mapping indicated that the murine orthologue is located near the scr (scruffy) locus. Nearby mouse genes include drpla (dentatorubral phillidoluysian atrophy), prp (proline rich protein), and kap (kidney androgen regulated protein).

20

25

30

10

15

2. Tissue Typing

The nucleic acid sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).

Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA

10

15

20

25

30

sequence of selected portions of an individual's genome. Thus, the nucleic acid sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue. The nucleic acid sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the non-coding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the non-coding regions, fewer sequences are necessary to differentiate individuals. The non-coding sequences of any of SEQ ID NOs: 1, 9, 17, 25, 33, 45, and 53 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a non-coding amplified sequence of 100 bases. If predicted coding sequences, such as those in any of SEQ ID NOs: 2, 10, 18, 26, 34, 46, and 54 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

If a panel of reagents from the nucleic acid sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.

3. Use of Partial Gene Sequences in Forensic Biology

DNA-based identification techniques can also be used in forensic biology. Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for

10

15

20

30

PCT/US00/14858

example, a perpetrator of a crime. To make such an identification, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.

The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e., another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to non-coding regions are particularly appropriate for this use as greater numbers of polymorphisms occur in the non-coding regions, making it easier to differentiate individuals using this technique. Examples of polynucleotide reagents include the nucleic acid sequences of the invention or portions thereof, e.g., fragments derived from non-coding regions having a length of at least 20 or 30 bases.

The nucleic acid sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an *in situ* hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.

25 C. Predictive Medicine

The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining expression of a polypeptide or nucleic acid of the invention and/or activity of a polypeptide of the invention (e.g., expression or activity of one of TANGO 202, TANGO 234, TANGO 265, TANGO

10

15

20

25

30

273, TANGO 286, TANGO 294, or INTERCEPT 296 genes or proteins), in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant expression or activity of a polypeptide of the invention. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, mutations in a gene of the invention can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with aberrant expression or activity of a polypeptide of the invention.

As an alternative to making determinations based on the absolute expression level of a selected gene, determinations can be based on normalized expression levels of the gene. A gene expression level is normalized by correcting the absolute expression level of the gene (e.g., a TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 gene as described herein) by comparing its expression to expression of a gene for which expression is not believed to be co-regulated with the gene of interest, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene. Such normalization allows comparison of the expression level in one sample, e.g., a patient sample, with the expression level in another sample, e.g., a sample obtained from a patient known not to be afflicted with a disease or condition, or between samples obtained from different sources.

Alternatively, the expression level can be assessed as a relative expression level. To assess a relative expression level for a gene (e.g., a TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 gene, as described herein), the level of expression of the gene is determined for 10 or more samples (preferably 50 or more samples) of different isolates of cells in which the gene is believed to be expressed, prior to assessing the level of expression of the gene in the sample of interest. The mean expression level

10

15

20

25

30

of the gene detected in the large number of samples is determined, and this value is used as a baseline expression level for the gene. The expression level of the gene assessed in the test sample (i.e., its absolute level of expression) is divided by the mean expression value to yield a relative expression level. Such a method can identify tissues or individuals which are afflicted with a disorder associated with aberrant expression of a gene of the invention.

Preferably, the samples used in the baseline determination are generated either using cells obtained from a tissue or individual known to be afflicted with a disorder (e.g., a disorder associated with aberrant expression of one of the TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, or INTERCEPT 296 genes) or using cells obtained from a tissue or individual known not to be afflicted with the disorder. Alternatively, levels of expression of these genes in tissues or individuals known to be or not to be afflicted with the disorder can be used to assess whether the aberrant expression of the gene is associated with the disorder (e.g., with onset of the disorder, or as a symptom of the disorder over time).

Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs or other compounds) on the expression or activity of one or more of TANGO 202, TANGO 234, TANGO 265, TANGO 273, TANGO 286, TANGO 294, and INTERCEPT 296 in clinical trials. These and other agents are described in further detail in the following sections.

1. Diagnostic Assays

An exemplary method for detecting the presence or absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention such that the presence of a polypeptide or nucleic acid of the invention is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA encoding a polypeptide of the invention is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA encoding a polypeptide of

10

15

20

25

30

be, for example, a full-length cDNA, such as the nucleic acid of any of SEQ ID NOs: 1, 9, 17, 25, 33, 45, 53, 67, and 72, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention. Other suitable probes for use in the diagnostic assays of the invention are described herein.

A preferred agent for detecting a polypeptide of the invention is an antibody capable of binding to a polypeptide of the invention, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab'),) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of a polypeptide of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of a polypeptide of the invention include introducing into a subject a labeled antibody directed against the polypeptide. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain

PCT/US00/14858 WO 00/77239

mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

5

10

15

25

30

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting a polypeptide of the invention or mRNA or genomic DNA encoding a polypeptide of the invention, such that the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide is detected in the biological sample, and comparing the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the control sample with the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.

The invention also encompasses kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample (a test sample). Such kits can be used to determine if a subject is suffering from or is at increased risk of developing a disorder associated with aberrant expression of a polypeptide of the invention (e.g., one of the disorders described in the section of this disclosure wherein the individual polypeptide of the invention is discussed). For example, the kit can comprise a labeled compound or agent capable of detecting the polypeptide 20 or mRNA encoding the polypeptide in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits can also include instructions for observing that the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level.

For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.

For oligonucleotide-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a

10

15

20

25

30

nucleic acid sequence encoding a polypeptide of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention. The kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide.

2. Prognostic Assays

The methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention (e.g., one of the disorders described in the section of this disclosure wherein the individual polypeptide of the invention is discussed). Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing such a disease or disorder. Thus, the present invention provides a method in which a test sample is obtained from a subject and a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention is detected, wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant expression or activity of the polypeptide. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist,

10

15

20

25

30

antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, such methods can be used to determine whether a subject can be effectively treated with a specific agent or class of agents (e.g., agents of a type which decrease activity of the polypeptide). Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant expression or activity of a polypeptide of the invention in which a test sample is obtained and the polypeptide or nucleic acid encoding the polypeptide is detected (e.g., wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant expression or activity of the polypeptide).

The methods of the invention can also be used to detect genetic lesions or mutations in a gene of the invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized aberrant expression or activity of a polypeptide of the invention. In preferred embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of a gene encoding the polypeptide of the invention, or the mis-expression of the gene encoding the polypeptide of the invention. For example, such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: 1) a deletion of one or more nucleotides from the gene; 2) an addition of one or more nucleotides to the gene; 3) a substitution of one or more nucleotides of the gene; 4) a chromosomal rearrangement of the gene; 5) an alteration in the level of a messenger RNA transcript of the gene; 6) an aberrant modification of the gene, such as of the methylation pattern of the genomic DNA; 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; 8) a non-wild type level of the protein encoded by the gene; 9) an allelic loss of the gene; and 10) an inappropriate post-translational modification of the protein encoded by the gene. As described herein, there are a large number of assay techniques known in the art

10

15

20

25

30

In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a gene (see, e.g., Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the selected gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. PCR and/or LCR can be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self-sustained sequence replication (Guatelli et al. (1990) *Proc. Natl. Acad. Sci. USA* 87:1874-1878), transcriptional amplification system (Kwoh, et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) *Bio/Technology* 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a selected gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, (optionally) amplified, digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No.

10

15

20

25

30

5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) *Human Mutation* 7:244-255; Kozal et al. (1996) *Nature Medicine* 2:753-759). For example, genetic mutations can be identified in two-dimensional arrays containing light-generated DNA probes as described in Cronin et al., *supra*. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the selected gene and detect mutations by comparing the sequence of the sample nucleic acids with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) *Proc. Natl. Acad. Sci. USA* 74:560) or Sanger ((1977) *Proc. Natl. Acad. Sci. USA* 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) *Bio/Techniques* 19:448), including sequencing by mass spectrometry (*see*, *e.g.*, PCT Publication No. WO 94/16101; Cohen et al. (1996) *Adv. Chromatogr.* 36:127-162; and Griffin et al. (1993) *Appl. Biochem. Biotechnol.* 38:147-159).

Other methods for detecting mutations in a selected gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the technique of mismatch cleavage entails providing

10

15

20

25

30

heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands. RNA/DNA duplexes can be treated with RNase to digest mismatched regions, and DNA/DNA hybrids can be treated with S1 nuclease to digest mismatched regions.

In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called DNA mismatch repair enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on a selected sequence, e.g., a wild-type sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in genes. For example, single strand conformation polymorphism (SSCP) can be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:2766; see also Cotton (1993) *Mutat. Res.* 285:125-144; Hayashi (1992) *Genet. Anal. Tech. Appl.* 9:73-79). Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to re-nature. The secondary

10

15

20

25

30

structure of single-stranded nucleic acids varies according to sequence, and the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments can be labeled or detected with labeled probes. The sensitivity of the assay can be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) *Trends Genet*, 7:5).

In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) *Nature* 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a 'GC clamp' of approximately 40 base pairs of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) *Biophys. Chem.* 265:12753).

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers can be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology which depends on selective PCR amplification can be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification can carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; Gibbs et al. (1989) *Nucleic Acids Res.* 17:2437-2448) or

10

15

20

25

30

at the extreme 3' end of one primer where, under appropriate conditions, mismatching can prevent or reduce polymerase extension (Prossner (1993) *Tibtech* 11:238). In addition, it can be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) *Mol. Cell Probes* 6:1). Amplification can also be performed using Taq ligase for amplification (Barany (1991) *Proc. Natl. Acad. Sci. USA* 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein can be performed, for example, using pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which can be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene encoding a polypeptide of the invention. Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which the polypeptide of the invention is expressed can be utilized in the prognostic assays described herein.

3. Pharmacogenomics

Agents, or modulators which have a stimulatory or inhibitory effect on activity or expression of a polypeptide of the invention as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant activity of the polypeptide. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of a polypeptide of the invention,

10

15

20

25

30

expression of a nucleic acid of the invention, or mutation content of a gene of the invention in an individual can be determined to thereby select appropriate agent(s) for the thereby actions are prophylactic treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as "altered drug action." Genetic conditions transmitted as single factors altering the way the body acts on drugs are referred to as "altered drug metabolism". These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., Nacetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the

10

15

20

25

30

molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of a polypeptide of the invention, expression of a nucleic acid encoding the polypeptide, or mutation content of a gene encoding the polypeptide in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a modulator of activity or expression of the polypeptide, such as a modulator identified by one of the exemplary screening assays described herein.

4. Monitoring of Effects During Clinical Trials

Monitoring the influence of agents (e.g., drug compounds) on the expression or activity of a polypeptide of the invention (e.g., the ability to modulate aberrant cell proliferation chemotaxis, and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent, as determined by a screening assay as described herein, to increase gene expression, protein levels, or protein activity, can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or protein activity. Alternatively, the effectiveness of an agent, as determined by a screening assay, to decrease gene expression, protein levels or protein activity, can be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or protein activity. In such clinical trials, expression or activity of a polypeptide of the invention and preferably, that of other polypeptide that have been implicated in for example, a cellular proliferation disorder, can be used as a marker of the immune responsiveness of a particular cell.

For example, and not by way of limitation, genes, including those of the invention, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates activity or expression of a

10

15

20

25

30

polypeptide of the invention (e.g., as identified in a screening assay described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of a gene of the invention and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of a gene of the invention or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state can be determined before, and at various points during, treatment of the individual with the agent.

In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of the polypeptide or nucleic acid of the invention in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level the of the polypeptide or nucleic acid of the invention in the post-administration samples; (v) comparing the level of the polypeptide or nucleic acid of the invention in the pre-administration sample with the level of the polypeptide or nucleic acid of the invention in the post-administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent can be desirable to increase the expression or activity of the polypeptide to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent can be desirable to decrease expression or activity of the polypeptide to lower levels than detected, i.e., to decrease the effectiveness of the agent.

C. <u>Methods of Treatment</u>

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant expression or activity of a polypeptide of the invention and/or in which the polypeptide of the invention is involved. Disorders characterized by aberrant expression or activity of the polypeptides of the invention are described elsewhere in this disclosure.

1. Prophylactic Methods

In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant expression or activity of a polypeptide of the invention, by administering to the subject an agent which modulates expression or at least one activity of the polypeptide. Subjects at risk for a disease which is caused or contributed to by aberrant expression or activity of a polypeptide of the invention can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the aberrance, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of aberrance, for example, an agonist or antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.

2. Therapeutic Methods

25 expression or activity of a polypeptide of the invention for therapeutic purposes.

The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the polypeptide. An agent that modulates activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of the polypeptide, a peptide, a peptide, a peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more of the biological activities of the polypeptide. Examples of such stimulatory agents include the active polypeptide of the invention and a nucleic acid

10

15

20

25

30

molecule encoding the polypeptide of the invention that has been introduced into the cell. In another embodiment, the agent inhibits one or more of the biological activities of the polypeptide of the invention. Examples of such inhibitory agents include antisense nucleic acid molecules and antibodies. These modulatory methods can be performed *in vitro* (e.g., by culturing the cell with the agent) or, alternatively, *in vivo* (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a polypeptide of the invention. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) expression or activity. In another embodiment, the method involves administering a polypeptide of the invention or a nucleic acid molecule of the invention as therapy to compensate for reduced or aberrant expression or activity of the polypeptide.

Stimulation of activity is desirable in situations in which activity or expression is abnormally low or down-regulated and/or in which increased activity is likely to have a beneficial effect. Conversely, inhibition of activity is desirable in situations in which activity or expression is abnormally high or up-regulated and/or in which decreased activity is likely to have a beneficial effect.

The contents of all references, patents, and published patent applications cited throughout this application are hereby incorporated by reference.

Deposit of Clones

Each of these deposits was made merely as a convenience to those of skill in the art. These deposits are not an admission that a deposit is required under 35 U.S.C. §112.

Clone EpT202, encoding human TANGO 202 was deposited with the American Type Culture Collection (ATCC®, 10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and was assigned Accession Number 207219. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpTm202, encoding murine TANGO 202 was

10

15

20

25

30

deposited with ATCC® on April 21, 1999 and was assigned (composite) Accession Number 207221. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpT234, encoding human TANGO 234 was deposited with ATCC[®] on April 2, 1999 and was assigned Accession Number 207184. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpT265, encoding human TANGO 265 was deposited with ATCC[®] on April 28, 1999 and was assigned Accession Number 207228. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpT273, encoding human TANGO 273 was deposited with ATCC® on April 2, 1999 and was assigned Accession Number 207185. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpTm273, encoding murine TANGO 273 was deposited with ATCC[®] on April 2, 1999 and was assigned (composite) Accession Number 207221. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpT286, encoding human TANGO 286 was deposited with ATCC[®] on April 20, 1999 and was assigned (composite) Accession Number 207220. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpT294, encoding human TANGO 294 was deposited with ATCC[®] on April 20, 1999 and was assigned (composite) Accession Number 207220. This deposit will be maintained under the terms of the Budapest Treaty on

15

20

25

30

the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clone EpT296, encoding human INTERCEPT 296 was deposited with ATCC® on April 20, 1999 and was assigned (composite) Accession Number 207220. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

Clones containing cDNA molecules encoding human TANGO 286, human TANGO 294, and INTERCEPT 296 were deposited with ATCC® on April 21, 1999 as Accession Number 207220, as part of a composite deposit representing a mixture of five strains, each carrying one recombinant plasmid harboring a particular cDNA clone.

To distinguish the strains and isolate a strain harboring a particular cDNA clone, an aliquot of the mixture is streaked out to single colonies on nutrient medium (e.g., LB plates) supplemented with 100 mg/ml ampicillin, single colonies are grown, and then plasmid DNA is extracted using a standard mini-preparation procedure. Next, a sample of the DNA mini-preparation is digested with a combination of the restriction enzymes Sall, Notl, and Drall and the resulting products are resolved on a 0.8% agarose gel using standard DNA electrophoresis conditions. This digestion procedure liberates fragments as follows:

- 1. human TANGO 286 (clone EpT286): 1.85 kB and .1 kB (human TANGO 286 has a *Dra*II cut site at about base pair 1856).
- 2. human TANGO 294 (clone EpT294): 1.4 kB and .6 kB (human TANGO 294 has a *Dra*II cut site at about base pair 1447).
- 3. human INTERCEPT 296 (clone EpT296): .4 kB, 1.6 kB, and .1 kB (human INTERCEPT 296 has *DraII* cut sites at about base pair 410 and at about base pair 1933).

The identity of the strains can be inferred from the fragments liberated.

Clones containing cDNA molecules encoding mouse TANGO 202 and mouse TANGO 273 were deposited with ATCC® on April 21, 1999 and were assigned Accession Number 207221, as part of a composite deposit representing a mixture of five strains, each carrying one recombinant plasmid harboring a

10

20

25

30

particular cDNA clone. To distinguish the strains and isolate a strain harboring a particular cDNA clone, an aliquot of the mixture is streaked out to single colonies on nutrient medium (e.g., LB plates) supplemented with 100 mg/ml ampicillin, single colonies are grown, and then plasmid DNA is extracted using a standard mini-preparation procedure. Next, a sample of the DNA mini-preparation is digested with a combination of the restriction enzymes *Sal* I, *Not* I, and *Apa* I, and the resultant products are resolved on a 0.8% agarose gel using standard DNA electrophoresis conditions. This digestion procedure liberates fragments as follows:

- 1. mouse TANGO 202 (clone EpTm202): 3.5 kB and 1.4 kB (mouse TANGO 202 has a *Apa* I cut site at about base pair 3519).
- 2. mouse TANGO 273 (clone EpTm273): .3 kB and 2.6 kB (mouse TANGO 273 has a Åpa I cut site at about base pair 298).

The identity of the strains can be inferred from the fragments liberated.

Human TANGO 202, human TANGO 234, human TANGO 265, and human TANGO 273 were each deposited as single deposits. Their clone names, deposit dates, and accession numbers are as follows:

- 1. human TANGO 202: clone EpT202 was deposited with ATCC® on April 21, 1999, and was assigned Accession Number 207219.
- 2. human TANGO 234: clone EpT234 was deposited with ATCC® on April 2, 1999, and was assigned Accession Number 207184.
- 3. human TANGO 265: clone EpT265 was deposited with ATCC[®] on April 28, 1999, and was assigned Accession Number 207228.
- 4. human TANGO 273: clone EpT273 was deposited with ATCC[®] on April 2, 1999, and was assigned Accession Number 207185.

All publications, patents, and patent applications referenced in this specification are incorporated by reference into the specification to the same extent as if each individual publication, patent, or patent application had been specifically and individually indicated to be incorporated herein by reference.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed is:

- 1. An isolated nucleic acid molecule selected from the group consisting of:
- a) a nucleic acid molecule having a nucleotide sequence which is at least 40% identical to the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof;
- b) a nucleic acid molecule comprising at least 15 nucleotide residues and having a nucleotide sequence identical to at least 15 consecutive nucleotide residues of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof;
- c) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[©] 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof;
- d) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221, wherein the fragment comprises at least 8 consecutive amino acid residues of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221; and
- e) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, wherein the nucleic acid molecule hybridizes with a nucleic acid molecule consisting of the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one

of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof under stringent conditions.

- 2. The isolated nucleic acid molecule of claim 1, which is selected from the group consisting of:
- a) a nucleic acid having the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof; and
- b) a nucleic acid molecule which encodes a polypeptide having the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[©] 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof.
- 3. The nucleic acid molecule of claim 1, further comprising vector nucleic acid sequences.
- 4. The nucleic acid molecule of claim 1 further comprising nucleic acid sequences encoding a heterologous polypeptide.
 - 5. A host cell which contains the nucleic acid molecule of claim 1.
 - 6. The host cell of claim 5 which is a mammalian host cell.
- 7. A non-human mammalian host cell containing the nucleic acid molecule of claim 1.
 - 8. An isolated polypeptide selected from the group consisting of:
- a) a fragment of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC®

207219, 207184, 207228, 207185, 207220, and 207221, wherein the fragment comprises at least 8 contiguous amino acids of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[©] 207219, 207184, 207228, 207185, 207220, and 207221;

- b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule consisting of the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof under stringent conditions; and
- c) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 40% identical to a nucleic acid consisting of the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof.
- 9. The isolated polypeptide of claim 8 having the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC[®] 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof.
- 10. The polypeptide of claim 8, wherein the amino acid sequence of the polypeptide further comprises heterologous amino acid residues.

11. An antibody which selectively binds with the polypeptide of claim 8.

- 12. A method for producing a polypeptide selected from the group consisting of:
- a) a polypeptide having an amino acid sequence comprising any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof;
- b) a polypeptide comprising a fragment of a protein having the amino acid sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof, wherein the fragment comprises at least 8 contiguous amino acid residues of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof; and
- c) a naturally occurring allelic variant of a polypeptide having an amino acid sequence comprising the sequence of any of SEQ ID NOs: 3-8, 11-16, 19-24, 27-32, 35-44, 47-52, 55-66, 69, and 74, or the amino acid sequence encoded by a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes with a nucleic acid molecule consisting of the nucleotide sequence of any of SEQ ID NOs: 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 45, 46, 53, 54, 67, 68, 72, and 73, the nucleotide sequence of a cDNA of a clone deposited as one of ATCC® 207219, 207184, 207228, 207185, 207220, and 207221, or a complement thereof under stringent conditions;

the method comprising culturing the host cell of claim 5 under conditions in which the nucleic acid molecule is expressed.

- 13. A method for detecting the presence of a polypeptide of claim 8 in a sample, comprising:
- a) contacting the sample with a compound which selectively binds with a polypeptide of claim 8; and
- b) determining whether the compound binds with the polypeptide in the sample.
- 14. The method of claim 13, wherein the compound which binds with the polypeptide is an antibody.
- 15. A kit comprising a compound which selectively binds with a polypeptide of claim 8 and instructions for use.
- 16. A method for detecting the presence of a nucleic acid molecule of claim 1 in a sample, comprising the steps of:
- a) contacting the sample with a nucleic acid probe or primer which selectively hybridizes with the nucleic acid molecule; and
- b) determining whether the nucleic acid probe or primer binds with a nucleic acid molecule in the sample.
- 17. The method of claim 16, wherein the sample comprises mRNA molecules and is contacted with a nucleic acid probe.
- 18. A kit comprising a compound which selectively hybridizes with a nucleic acid molecule of claim 1 and instructions for use.
- 19. A method for identifying a compound which binds with a polypeptide of claim 8, the method comprising the steps of:
- a) contacting a polypeptide, or a cell expressing a polypeptide of claim 8 with a test compound; and
 - b) determining whether the polypeptide binds with the test compound.

- 20. The method of claim 19, wherein the binding of the test compound with the polypeptide is detected by a method selected from the group consisting of:
- a) detection of binding by direct detecting of test compound/polypeptide binding;
 - b) detection of binding using a competition binding assay;
- c) detection of binding using an assay for an activity characteristic of the polypeptide.
- 21. A method for modulating the activity of a polypeptide of claim 8 comprising contacting the polypeptide or a cell expressing the polypeptide with a compound which binds with the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.
- 22. A method for identifying a compound which modulates the activity of a polypeptide of claim 8, comprising:
 - a) contacting the polypeptide with a test compound; and
- b) determining the effect of the test compound on the activity of the polypeptide to thereby identify a compound which modulates the activity of the polypeptide.
- 23. An antibody substance which selectively binds to the polypeptide of claim 8, wherein the antibody substance is made by providing the polypeptide to an immunocompetent vertebrate and thereafter harvesting blood or serum from the vertebrate.

11 66	31	51 186	71 246	91	111	131 426	151 486	171 546
CIC	G GGA	L CTA	L CTG	GGA	cTGT	PCCA	S AGT	C TGT
L I CTG CJ	PCCC	A GCA	TACT	D GAT	Y TAC	AAC	I ATC	$_{ m T}$
A 1 GCC CJ	ဗဗ	ACA	N AAC	PCCA	K AAG	G GGA	C TGC	C TGC
L Z	L	W TGG	Y TAC	N AAT	W TGG	H	TACT	A GCT
R CGC C!	9 9	N AAC	P	R AGA	Y TAC	D GAT	CAA	Y TAT
A GCC C(P	Q CAG	H CAT	C TGC	V GTC	K AAG	I ATA	ဗ္ဗဗ္ဗ
4 600 6	S AGC	TACA	O CAG	Y TAT	G GGT	Y	TACC	S TCA
ССС G	PCCT	G GGA	F TTC	N AAC	D GAT	C TGC	L CTC	E GAG
F CCG C(A GCG	R AGG	TACT	H	E	၁၅၅	K AAA	MATG
A] GCG C(PCCC	Y TAT	E GAG	e Gag	H	L	N AAC	ე მმმ
	R CGG	D GAT	N AAC	G GGT	E	N AAC	S TCC	A GCT
c A	₽ CCC	A GCG	W TGG	L	A GCA	G GGA	TACG	F TTT
M CGGCCC ATG	A GCG	G GGT	F TTT	ဗဗင	V GTG	PCCT	K AAA	K AAG
GTC	L CTG	N AAT	L CTG	9 666	Y TAT	M ATG	S AGT	F
GTCGACCCACGCGTCCGCCCACGCGTC	T ACG	A GCC	cTGT	EGAG	C TGC	O CAG	TACC	R AGG
Sacci	L	TACA	P	999 866	W TGG	C TGC	၁၅၅	O CAG
CGTC	A GCG	F	K AAG	N AAC	P	A GCT	TACT	S AGT
ZACĠ(A GCG	C TGT	GGG	P	SAGC	P CCT	L CTA	R CGG
BACC	GCC	E GAG	၁၅၅	Y TAC	V GTG	I ATA	PCCT	C TGT
GTC(STCC	P CCC	O CAA	K ÄAA	D GAC	E	PCCT	F TTT

Fig. 1A

g	909	\vdash	999	ω	726	S	786	1	846	9	906		996	331	1026
>	GTC	H	ACT	Ω	GAC	A	၁၁၅	闰	GAG	പ	CCI	z	AAT	æ	AGG
ഗ	AGC	Ω	GAT	Ф	CCI	ტ	999	>	GTG	ы	CCA	н	ATC	ഥ	GAG
Z	AAC	Ŀ	TTT	ග	ICC	д	, (C)	Σ	ATG	4	၁ဗ၁	~	၁၅၁	0	CAG
ບ	TGC	Н	CIC	×	TAT	>	GTT	Ω	GAC	ഗ	AGC	Ω	GAT	д	CCA
臼	GAA	Н	ATC	>	GTC	ĸ	550	Ø	೮೦೮	24	AGG	ഗ	TCT	П	CTG
H	ACC	Н	ATC	>	GIG.	н	ATC	တ	TCG	ტ	999	Ē	TIC	臼	GAA
ഗ	AGT	ፈ	AGG	മ	TCT	₽	ACC	Ω	GAC	H	CAC	(zı	TTC	臼	GAA
A	၁၁၅	ტ	299	တ	TCT	ß	TGG	24	AGG	Ė	TTC	>	TAT	ೱ	AAG
Ø	GCA	Ω	GAT	Σ	ATG	×	TAC	н	ATC	ĸ	CGC	н	TTG	>	GIC
臼	GAG	ტ	299	Ø	သည	ပ	TGC	Ω	GAC	Ą	೮೮೮	н	ATC	Ø	CCC
ტ	999	ტ	GGT	ഗ	TCA	>	GTC	Ŀ	TTT	н	CTA	>	GTC	ø	CAA
×	TAC	ບ	TGT	×	TAC	24	AGG	ᆸ	CTA	>	GTC	떠	TTC	×	TAC
又	AAG	Д	CCC	Z	AAC	ტ	999	щ	CCC	æ	CGT	Ω	GAC	П	TTA
3	TGG	Q	CAA	ტ	999	₽	ACG	ഥ	TIC	н	CAC	Ы	CTG	>	GTT
×	TAC	H	ACC	ტ	GGT	Ø	သဗ	മ	AGC	E	ACC	ഗ	TCT	Ø	GCT
Ω	GAT	Ħ	CAC	ບ	TGC	×	TAT	ſΞı	TIC	⊁	TAC	>	GTC	Ŀı	TTT
Д	CCI	Ω	GAT	Ą	သည	E	ACC	Ħ	CAC	ប	၁၅၅	Z	AAC	ပ	GGA
Z	AAT	ტ	999	ტ	299	Ω	GAC	н	ATC	Ω	GAT	压	TIC	ø	CAG
z	AAC	ഥ	TIC	>	GTG	Д	ပ္ပင္ပ	H	CAC	н	CTG		TCC	Æ	225
ტ	GGA	ပ	TGC	ㅂ	CIC	ഥ	TIC	ິທ	ICC	ч	CLL	Н			CAG

Fig. 1B

431 1326 451 1386 351 s AGC o CAG E GAA A GCA R AGG TACT မှ ည V GTA V GTC PCCT V GTT LCTT S TCC N. AAT I ATT S AGT PCCA R AGA DGAC PCCT မှ A GCC L H H <u>უ</u> K AAG D GAC N AAC S AGC S AGC TACA STCA Y TAC DGAT P . A GCC GGA V GTC A GCT F TTT CAA O CAG S AGC A GCT T ACA PCCT I ATT CAA EGAG TACC G GGG L V GTT S AGC S AGT TACC TACG M ATG I ATC R CGT W TGG OCAG IATC IATC G. P L IATC H V GTG V GTC L S TCC E GAA P K AAG E GAG Y TAT A GCG TACT K AAA G GGG L L A 3CC W. TGG F s TCG A GCA K AAA V GTG S V GTC L TACA TACT K' AAG T ACG K AAA N AAT V GTC G G G GGT K AAG Q CAG S TCC s AGC . Y TAT H PCCA F TTT N AAC S TCC G GGT V GTC L CAA IATC V GTC R CGG P TACA L S TCC H CAT AGCT A GCC V GTC W TGG I ATA cTGT IATT P TACT G GGA A GCT K AAG D GAT s TCA

g. 1C

D SAC

S AGT

V STG

LCTT

1540 1620 1657 AAACCCCACTGTGCCTAGGACTTGAGGTCCCTCTTTGAGCTCAAGGCTGCCGTGGTCAACCTCTCTGTGGTTCTTCTC TGACAGACTCTTCCCTCTCTCCTCTGGCCTCTTCGGGGAAACCCTCCTACAGACTAGGAAGAGCACCT GCTGCCAGGCAGGCAGAGCCTGGATTCCTCCTGCTT

Fig. 11

79	19 137	39 197	59 257	79 317	99
3600	A GCG	D GAT	N AAC	ე <u>ე</u> ნ	E
rgaco	L 1 CTG G	a GCA	W TGG	L CTG	A GCC
GGGTCCCGCACT	GGT	F TTC	G GGA	V GTG	
	N AAC	$_{ m L}$	G GGA	Y TAC	
	A GCC	C TGT	e Gaa	C TGC	
9222	GCCCGGG A A GCT GCG	TACA	P	9 999	W
3000	A 500 GC GC	F	K AAG	N AAC	PCCT
3660	S TCC G	C TGC	ტ მ <u>წ</u> მ	P CCC	s AGC
CTGCCCCTCTGCCCC	EGAG	G GGT	Y TAC	V GTG	
	P	CAA	K AAG	D GAC	
	၁၅၅	L CTG	L CTG	G GGA	
	S TCC	A GCG	T ACG	D GAT	
3GTG(GGCTCCCGGTGCT	R CGC	TACA	N AAC	P CCA
וכככנ		P CCC	W TGG	Y TAC	N AAT
GGC		G GGT	S AGC	P	r Aga
GTCGACCCACGCGTCCCGGTGCTGCCCCCTCTGCCCCGGGCCCGCGGGGTCCCGCACTGACGGCC M A P P A A R L A L L S A A A L L A C A A A L T L A C A A A A L L C A C A C C C C C C C	P	Q CAG	H CAT	င ၁၅	
	A GCG	TACA	Q CAG	Y TAT	
	PCCC	G GGA	F	N AAT	
		R CGG	r Agg	TACT	H
GICC	M C ATG	A GCC	Y TAC	E	E GAG

Fig. 11

119	α	139		159	വ	179	⊣	199		219	3	239	9	259	വ	279	\vdash
z	AAC	ഗ	ICI	Æ	GCT	ტ	999	ტ	GGT	ഗ	TCA	>	GIC	Бų	TTT	ц	CTG
ტ	GGA	E	ACC	Œ	TTT	H	CAC	ပ	TGC	×	TAC	ፈ	AGA	н	CTG	>	GTC
	CCI	×	AAA	×	AAG	×	AAG	а	CCC	z	AAC	ტ	၁၅၅	EH	ACC	œ	ညဗည
Σ	ATG	ഗ	AGT	(Fri	TTC	ß	TGG	ø	CAG	ტ	999	H	ACT	Œι	TTC	щ	CAC
ø	CAG	H	ACC	æ	AGA	×	TAC	H	ACG	ტ	GGT	Ø))	Z	AAC	₽	ACC
ပ	IGC	ტ	GGC	Ø	CAG	Ω	GAC	H	CAC	ပ	TGC	×	TAC	[±4	TTC	≯	TAC
Ø	သည	H	ACG	ഗ	AGT	വ	CCT	Ω	GAC	ď	သည	H	ACC	Ħ	CAT	ტ	299
ם	CCI	ы	CIC	ĸ	CGG	Z	AAT	ڻ	999	ტ	၁၅၅	Ω	GAC	Н	ATC	Ω	GAC
н	ATT	Д	CCI	ပ	TGT	Z	AAC	ഥ	TTC	>	GTG	щ	CCT	ፚ	၁ဗ္ဗာ	н	CTG
回	GAA	Δı	CCT	[z4	TTC	ტ	999	ပ	TGC	Ц	CIC	Ē	TTC	S	TCT	ц	CTG
ပ	TGT	գ	CCA	တ	ĄĠĊ	ပ	TGT	>	GTC	H	ACT	Ω	GAC	Ø	ညည	闰	GAG
×	TAC	Z	AAC	н	ATC	Ĺτι	TTC	ß	AGT	Ω	GAC	മ	CCI	ტ	GGA	>	GTG
×	AAG	ഗ	GGA	ပ	TGT	ပ	TGC	z	AAT	ᄕ	TTT	ഗ	TCC	щ	CCA	Σ	ATG
3	TGG	н	CAT	H	ACC	Ø	၁၁၅	ບ	TGC	П	CIC	>-	TAC	>	GTT	Ω	GAC
X	TAC	Ω	GAT	Ø	CAA	×	TAT	臼	GAG	н	ATC	>	GTG	ፙ	၁၅၁	Ø	GCA
>	GIC	×	AAG	н	ATA	ტ	၁၅၅	E	ACC	н	ATT	>	GTG	н	ATC	ß	TCT
ტ	GGA	×	TAC	E	ACC	ഗ	TCA	ß	AGC	ĸ	AGG	Ø	၁၁၅	H	ACC	Ω	GAC
Ω	GAC	ပ	TGC	Н	CIC	庭	GAG	Ø	၁၁၅	ပ	299	A	GCA	×	TGG	œ	AGG
ы	GAG	ტ	၁၅၅	×	AAG	Σ	ATG	Æ	೮೦೮	Ω	GAC	Σ	ATG	≯	TAC	н	ATC
H .	CAT	П	CTT	Z	AAC	ტ	999	闰	GAG	ტ	999	Æ	သည	ပ	IGC	Ω	GAT

Fig. 1F

6/96

319 1037 399 1277 359 379 L CAA RCGT S TCC V GTC E GAG H PCCC N AAT S Y TAT D GAT A GCA L 9 9 9 9 L TTA L S AGC R ₩ TGG H L $_{\rm L}$ V GTC PCCT LCIT A GCT A GCC S ICT TACC K AAA I ATT G GGG S TACG V GTC O CAG S TCC PA GCC M ATG L L ITA N AAT N AAC s TCC cTGT GGA V GTA C TGC s AGC s TCT F ITC o CAG V GTC O CAG L V H F PCCA A GCC S TCT A GCT A A GGA FTTC V GTC S TCT L CTG A GCT TACT D GAT TACT Q CAG PCCT R AGA Q CAA K AAG PCCT N AAT R AGA SAGC Q CAG CAA G G G LCTA P IATC E GAG V GTC P W TGG S TCG L ITA PCCA TACC R R o CAG SAGT PCCT E L TTG CIT s AGC D GAT PCCA L H TACA Q CAG E GAG N AAC A GCC R AGG S TCT P N AAC S AGC OCAG Q CAG M ATG GGG E PCCC F TTC A GCC TACA S H s TCT FTTC E s AGC PCCA S AGT CAA o CAG L FTT L EGAG CCC Y FAT K AAG GGG S ICA S ICC P L ITG T ACC R CGG ACC $_{
m LTG}$ T ACC S E GAG GGA IATC IATT A GCC CAG S TCA I S ICT

Fig. 1(

2125 2204 2520 2599 1730 .2283 2362 2678 2836 2915 3073 2441 2757 2994 1967 2046 AGCTGGGGCTGTAGACCTGGGGCTGTAGCCTAGAGCTGGGGCTGTAGCACAGAGCTGGGGCTGTAGCCTAGAGC IGGGGCTGTAGCACAGAGCTGGGGCTGTAGCCTAGAGCTGGGGCTGTAGCACAGAGCTGGGGCCTGTAGCACAGAGCTGG GACCCTAGGTTCTATCCAGCACTATCAGAAGGTGGGAGAGAAAAAAGACTGCACCATAGCATGCGGGCAGCATCTGTGG SATCCTCCCAGGAAAAGCTGCAAGATTGAGAGCCCCAGCTGCAGTTGGGAGGAGGAAGGGCCATCCCCGACTGAGAAGTC CCCTGTCTTTACAGTTTGCAATAGAGCCAGACTGAAAGAACTGTCAGGTTTTCTAGGCTGGCCTGGTTCCCCACTAAGA STGGCATTGGCGCCCTAGAGGCCCAGAGGCCCAGTGTAGGCTTGGAGCTTTCTCTGTGCCAACTACCATGTGTCATCT AGTCCGAGGGGACTGAGAGCAGGGCCACACACAGATGTCATCTTTCTAGAGGGTTCTTTTAGTACCCACTGACCAATGG GGCAAGCCTGAGGATTGGTCCATCTGTTTGTCCATGGAACAGACACAGTGAACTTCCTGGATACTAGACTTAACTAGCC IAGCCCTCAAGTAGTTGCCAATCCTGTGGAATCAGAATTCAGCCTGTCTTCCTGTCTTCTTCTCAGCCCAAGCCTGTAGCCTAG ITCCTACGIGAGGIGICATCATITIAAAAGCAGAICAAAACTACCGCGAGTITIGICCTITIGICCTITAICAIGGGAGC **AGAGTAGGAGTAAGGGCTCTGGTCTTGCTCATTGTCCCCCAGACAGGGAGGCAGGAAAAGGTCAGGCTTGGGAACTGGA** CIGCAGICIGGAAGIGGCCTITGICAGCAGCIGIGCCCTGAAGGIAGACCITGGICACTCICCTGCAGCCTIGA GCCTCTGCTCTCTGGGTACCCTCCTGGAACACCATGCTAACCTTCCCCGAGTCTCTCAGTCACTGCCATTGAGGCCTC CTCTTGGGTGGTGGGGGGGTATAGTGTAGGATGAGTTTTCTTGCTTCTTCTTGTTTTTGTCCACATACAGATCGGTTTC TACAGGGGTACTAAGCTAGGGGGTCATCTCATTTGATCTGGGAAAGGCTACAGGCTCCTGGATGTGAAGACAGGCC CACTACATAAGAAGACCACTGGAAATAGACTGACAGGAGCAGGTTCCACTCTAGGCTGTCCATAGCGTTTGCAGGACTC GTGACTGAAGCCCACGCCTGCATGAGAGGCTCCGCTCCAAGCTCGAGTTTGCTCCCCTGAGTTCTCCTCTGATGAGTTC CCTGCCTTCCCATTCACCACCATCTCTTTTGGGAGCACCCTGCTTTAGAGGCAGCCCAGCCTGGGATCCTCCATCACAT GCA ATC ACC ATG AAG AAC

Fig.1E

Fig.11

	10	20	30	40	50	02 09
Hum.	MAPPAARLALLSAAALTLAARPAPSPGLGPGPECFTANGADYRGTONWTALOGGKPCLFWNETFQHPYNT	4ALTLAARPAPSP(GLGPGPECFTA	NGADYRGTQN	WTALQGGKPC	LEWNETFOHPYNT
Mur.	::::::::::::::::::::::::::::::::::::::	.::::::: AALTLAARPAPGPI 20	.::::: RSGPECFTA 30	.::::::: NGADYRGTQS 40	::::::: WTALQGGKPC 50	SGPECFTANGADYRGTQSWTALQGGKPCLFWNETFQHPYNT 30 50 50 50 50 50 50 50 50 50 50 50 50 50
Hum.	• •	90 NYCRNPDGDVSPW	100 CYVAEHEDGVY	110 WKYCEIPACO	120 MPGNLGCYKD	90 100 110 120 130 140 XCRNPDGDVSPWCYVAEHEDGVYWKYCEIPACOMPGNLGCYKDHGNPPPLTGTSKT
Mur.	LKYPNGEGGLGEHN 70 80	NYCRNPDGDVSPW 90	CYVAEHEDGVY 100	WKYCEIPACO 110	MPGNLGCYKD 120	YCRNPDGDVSPWCYVAEHEDGVYWKYCEIPACQMPGNLGCYKDHGNPPPLTGTSKT 90 100 110 120
H	150 SNKT.TTOTCTSFCR	160 SORFKFDGMESG	170 VACECGNNDDV	180 WKYGEAASTE	190 CNSVCECTHT	160 170 180 190 200 210 SOR FREECHTOPEGEDGRITTED
Mur.	SNKLTIQTCISFCRSQRFKFAGMESGYACFCGNNPDYWKHGEAASTECNSVCFGDHTQPCGGDGRIILFD 140 150 160 170 180 190 200	RSQRFKFAGMESG 160	YACFCGNNPDY 170	WKHGEAASTE 180	CNSVCFGDHT 190	QPCGGDGRIILFD 200
Hum. Mur.	220 230 240 250 260 270 280 TLVGACGGNYSAMSSVVYSPDFPDTYATGRVCYWTIRVPGASHIHFSFPLFDIRDSADMVELLDGYTHRV ::::::::::::::::::::::::::::::::::::	230 SSVVYSPDFPDTYZ :::::::::::::::::::::::::::::::::::	240 ATGRVCYWTIR ::::::::: ATGRVCYWTIR 240	250 .VPGASHIHFS ::::::::: .VPGASRIHFN 250	260 FPLFDIRDSA : ::::::: FTLFDIRDSA 260	230 240 250 260 270 280 SUVYSPDFPDTYATGRVCYWTIRVPGASHIHFSFPLFDIRDSADMVELLDGYTHRV .::::::::::::::::::::::::::::::::::::

Fig.1J

	290	. 300	310	320	330	340	350
Hum.	Hum. LARFHGRSRPPLSFNVSLDFVILYFFSDRINQAQGFAVLYQAVKEELPQERPAVNQTVAEVITEQANLSV	FNVSLDFVILY	FFSDRINQAQG	FAVLYQAVK	EELPQERPA'	VNQTVAEVITE	QANLSV
Mur.	LVRLSGRSRPPLSFNVSLDFVILYFFSDRINQAQGFAVLYQATKEEPPQERPAVNQTLAEVITEQANLSV	FNVSLDFVILY	SIDEVILYFESDRINQAQGFAVLYQATKEEPPQERPAVNQTLAEVITEQANLS	FAVLYQATK	EEPPQERPA	::::::::::::::::::::::::::::::::::::::	SESSION OF
	280 290	300	310	320	330	340	
	360	370	380	390	400	410	420
Hum.	SAARSSKVLYVITTSPSHPPQTVPGSNSWAPPMGAGSHRVEGWTVYGLATLLILTVTAIVAKILLHVTFK	ISPSHPPQTVP	GSNSWAPPMGA	GSHRVEGWT	VYGLATLLI	LTVTAIVAKIL	LHVTFK
	•••	•	•	••	••	:	•
Mur.	SAAHSSKVLYVITPSPSHPPQTAQVAIPGHRQLGPTATEWKD-GLCTAWRPSSSSQSQQLSQRFFCM	PSPSHPPQTAQ	VAIPGHROLGE	TATEWK	D-GLCTAWR	PSSSSSSQSQQLS	QRFFCM
	350 360	370	380	390	0	400 4	410
	430	440	450	460	470		
Hum.	SHRVPASGDLRDCHQPGTSGEIWSIFYKPSTSISIFKKKLKGQSQ-QDDRNPLVSD	HQPGTSGEIWS	IFYKPSTSISI	FKKKLKGQS	Q-QDDRNPL	VSD	
	•	•	•	••	•		
Mur.	SHINLIESLHQETLGTVVSLGLLEISGPFSMNLPLQSPSLRRSSRVRVNKMTAIPS	GTVVSLGLLE	ISGPFSMNLPL	QSPSLRRSS	RVRVNKMTA	IPS	
	420 4	430 . 440	40 450		460	470	

Cys Ngly out TH

12/96

13 66	33	က်ထ	73	93	113 366	133 426	153 486
GGA	N AAT	GGA	C TGT	F TTT	D GAT	G GGA	L CTG
F TTT	L	N AAT	V GTG	P CCA	L CTT	¥¥	N AAT
D GAT	CHC	V GTC	T ACT	TGT	W TGG	e gaa	A GCC
I ATT	L CTG	L	ი გ	. g	I ATT	R CGG	E Gaa
H CAT	IATC	R AGG	W TGG	L	K AAA	H	GGT
W TGG	ာ ညီရင	L	Q CAG	o CAG	G GGA	O CAA	Y TAT
s TCG	TACT	E	GGA	K AAA	H CAT	C TGT	C TGT
N AAC	V GTA	L	Q CAG	၁ ၂၉୯	R AGA	E	N AAC
CAA	V GTG	D GAT	F	v GTG	TACT	W TGG	V GTG
P	A GCT	TACA	K AAA	v GTC	v GTG	L CTC	G GGT
L CTG	S	GGA GGA	V GTG	TACT	A GCC	A GCT	V GTT
M ATG	F	N AAT	E GAG	s TCA	CAA	S	D GAT
M ATG	L	F	V GTG	A GCC	G GGA	E GAG	E
GTA	N AAC	S AGT	T ACA	T ACT	FTT	n AAT	G GGA
ACTA	CAG	SAGC	ტ მცც	T ACT	R CGT	G GGA	H CAT
TAG	H CAT	IATC	s TCT	N AAC	F TTT	Y TAT	Y TAT
GATC	C TGT	L	ာ Tgc	W TGG	M ATG	C TGT	$^{\mathrm{C}}$
TCGC	S T T	F	GCC CCC	ა მ	A GCC	S	N AAC
GCGGCCGCTCGCGATCTAGAACTAGTA	ပ TgC	DGC.	GGT	.D GAT	F	V GTT	H CAT
9525	R AGA	S	D GAC	GAT	STCT	DGAT	S

Fig. 2A

				13 / 96				
173 546	193	213	233 72.6	253 786	273 846	293	313 966	333 1026
Q	C DB	V GTA	N AAT	TACT	ტ ტტტ	N AAT	် ၁၅	GGT
FTC	V GTG	A GCT	W TGG	L TTA	MATG	N .AAC	A GCT	S TCC
K AAA	V GTG	PCCT	L CIC	T ACA	C TGT	W	F	C TGC
V GTG	A GCC	S AGC	A .GCA	V GTC	R CGC	K AAG	H CAC	S
E GAG	A GCT	N AAT	$_{ m TTG}$	D GAT	N AAC	H	L	V GTC
v GTG	TACT	V GTT	e Gag	E	TACT	H	A GCA	G GGT
R AGA	N AAT	V GTT	N AAT	N AAT	G GGA	c TGC	TACC	D GAT
9 999	L	G GGA	GGG	H	G GGT	V GTA	G GGA	L CTT
S TCA	N AAC	s TCT	Q CAG	S AGT	V GTA	T ACC	C TGT	W TGG
cTGT	W TGG	s TCT	C TGC	c TGC	L CTT	GGG	GGA	V GTA
S	9 999	I ATT	L TTA	D GAC	R AGG	W TGG	L TTG	V GTT
NAAC	D GAT	F	I ATT	H CAT	L CTA	R AGG	O CAG	D GAT
N AAC	D GAT	s TCT	DGAC	N AAT	E	g Gga	K AAG	S TCT
GGA	C TGT	s TCT	D GAT	G GGA	L	Q CAA	c TGC	999 666
D GAT	I ATA	PCCA	L CTG	WTGG	D GAT	IATC	V GTA	S TCA
V GTG	TACT	c TGT	W TGG	G GGA	S AGT	K AAA	V GTC	Q CAG
L CTA	9	G GGA	I ATT	R CGT	S AGT	L CTG	D GAT	L TTG
R AGG	W TGG	L	P	H CAT	D GAT	E GAG	A GCT	H CAT
$_{ m ITG}$	R AGG	CAA	R CGC	R AGA	Y TAT	V GTA	A GCA	PCCT
G GGT	E	R AGG	ı. TTG	C TGC	C TGT	R AGA	A GCT	L TTG

Fig. 2E

1266 433 1326 493 1506 453 GAT I ATA P I ATA AAA D GAT TAC × Ω × W TGG TACA A GCA C TGT GGA A GCA . K AAA W TGG LCTA IATT D GAT C TGT GGA K AAG V GTG A GCT W TGG D GAC LCTA GAC Y TAT D GAT E GAG A GCA R CGA CAG R AGA F. TTT L CTG o CAG TACA L TTG N AAT S TCT N AAT E GAA E GAA K AAG . A GCT င TGC R AGG $_{\mathrm{TGT}}^{\mathrm{C}}$ R AGA L TTG H C TGT E DGAC I ATT TACA G G G IATT TACC D GAT V GTT N AAT W TGG V GTA Y TAT S AGC GGA A GCA R AGA V GTG S AGT L CTC GGA CTGT W TGG န TCC V GTG LCIT PCCT GGA AGCT GCC A GCT R AGA Ŋ E H DGAT A GCC K AAA S TCA D GAC D GAT SAGC R AGA s TCA V GTA CAA A GCT E S TCA H H ာ Tgc ာ ဦင် R AGA R CGT N AAT R AGA E GAA A GCT C TGT D GAC I ATC G GGG N AAT G GGG R CGA R CGT G GGG V GTG TACT GTG S TCA K. AAG S AGT TACT F TTC V GTC > C TGT WTGG LCIT S TCT GGC C TGC C $\overline{1}$ \overline{G} 999 LCTT GTG N AAT N AAC F TTT s TCT TACA R AGG W TGG > N AAC CAG V GTC R CGA S TCT DGAT I ATA E GAG L N AAC S AGT DGAC S AGC SAGC K AAG D GAC GGA CAA GGA $_{\mathrm{TGT}}$ F AGCA N AAT N AAC L CTG CAA

14/96

Fig. 2C

				15/96				
533	553	573	593	613	633	653	673	693
1626	1686	1746	1806	1866	1926	1986	2046	2106
E	W	V	S	N	M	D	S	V
	TGG	GTA	TCG	AAC	ATG	GAT	AGT	GTG
K AAA	I ATC	. I ATT	C TGC	W TGG	ဗ္ဗဗ	C TGT	C TGC	L
F	N	V	R	ဗဗ	I	S	D	r
TTT	AAT	GTG	CGC		ATT	TCC	GAC	Agg
Y	S	D	N	D	I	V	N	L
TAT	TCA	GAT	AAC	GAC	ATC	GTT	AAT	CTG
TACC	EGAG	E GAG	S AGC	D GAT	S TCT	D GAT	N AAT	E
·M	N	r	9	C	S	D	G	M
	AAT	Aga	9	TGT	TCT	GAT	GGA	ATG
G GGT	GGA	H	၁၅၅	V GTG	PCCA	L	W TGG	D GAT
F	I	V	V	TACA	C	W	ტ	s
TTT	ATT	GTA	GTG		TGC	TGG	ტტ	TCG
V	C	C	L	9	D	I	S	A
GTG	TGC	TGT	CTG	9	GAC	ATT	AGT	GCA
H	S	N	R	W	L	K	N	D GAT
CAT	TCT	AAT	AGG	TGG	CTG	AAA	AAC	
M	V	H	L		O	G	R	S
ATG	GTT		CTG	GGG	CAG	GGA	AGG	TCT
CCT	DGAC	K AAG	9 9	GGA	s AGC	Y TAT	C TGC	cTGT
K AAG	D GAT	G GGA	W TGG	CAA	cTGT	G GGA	S TCA	I ATC
G GGA	r CTG	W	T ACA	F TTT	V GTĞ	TACA	W TGG	V GTG
C	W	G	A	Y	V	S	L	G
TGT	TGG	GGA	GCA	TAC	GTG	TCT		GGA
G	I	S	D	V	A	A	D	V
GGA	ATT	AGT	GAT	GTG	GCT	GCT	GAT	GTT
L TTG	P CCT	H	GGT	E	A GCA	N AAC	S TCA	D GAT
O	G	E	S	L	A	G	E	E
CAA	GGA	GAA	TCA	CTG	GCT	GGA	GAG	
K AAA	S TCA	CTGT	င TGC	R AGA	K AAA	L CTG	D GAT	SAGT
C TGT	A GCA	D GAC	TACC	G GGA	S AGT	G GGT	GGA	H

Fig. 2D

733 753 2286 813 2466 833 2526 853 2586 773 R AGG E GAG C TGT L TTA A GCA ၁ ၁၅ ი მიც L TTA H LCTG A GCA E I ATC W TGG K AAA H LCTT H R CGA A K AAA V GTG GGA LCTT I ATA S TCA o CAA L TTA GTG N AAT F TTT > GGT R AGG T ACA ဂ TGT c TGC GAA A GCC H TACT Q CAG C TGC R AGA DGAT IATC D GAT GAA V GTT AGCT V GTC ₩ TGG V GTT E $_{
m L}$ R CGT H GGA S AGT N AAT V GTT TACA L S AGT G GGÀ V GTG G GGG LCTT V GTG E GAA FTTC S ICT A GCA S TCT E GAA S TCT STCT EGAG A GCT A GCC E GAA c TGC H FTTC LCTT C TGT V GTT I ATT E M ATG PCCC O CAG PCCT D GAT s TCT N AAC E GAG ი მვვ M ATG K AAA N AAT S TCT I. ATA FITC M ATG GGA R AGA GGA L TTA D GAT D GAT A GCC K AAG A GCT GGA S TCC TACT H A GCT $_{\mathrm{TGT}}$ D GAT E GAA cIGT W TGG ၁ ညီ V GTC cTGT GGA V GTC GGA A GCC R AGG ဗ္ဗဗ္ဗ R AGG ပ္ပင္ပ A GCG V GTT WTGG S TCT C TGT s AGC N AAT I ATC S TCT TACT L CTG N AAT T ACT R CGC s AGC A GCT A GCA N AAT Q CAG R AGG W TGG L TTA L GGA C TGT S TCG PCCC SICT K AAA TACA E GAA GGT GGT L G GGG M ATG W IGG QCAG DGAC R AGA

16/96

Fig. 2E

17/96 973 2946 1033 3126 913 2766 953 3006 1013 DGAT E AAT N AAT DGAC K AAA H Z CAA E GAA GGA N AAT GGA AGCA EGAG Y TAT G GGG GGA G GGG P CCA GGA H CAT CTC Ľ TTA IATC V GTT GAC DGAC L TTA IATC င TGC E GAG. TACA င TGC C TGT W TGG ACC C TGC IATC E GAA C TGT PCCA V GTA o CAG H. CAC R AGA S TCA H P F TTT L TTG R AGA s AGC S TCC ACC. LCIC \mathbf{F} PCCT L G GGG A GCT H K AAA D A GCT R AGG A GCA PCCA S AGT A IATC ၁ ၁၅ C TGT TACT H GGA o CAG မ ၁၅ CTGT cTGT $_{
m L}$ G GGG N AAT G GGA TACC LCTT EGAG R GGC TACT V GTG S CTGTW TGG V GTT L CTG PCCA S AGC GAC L ဗ္ဗ S AGC V GTG TACA S AGC V GTT D GAC W TGG M ATG E GAA R CGA L R CGT GGA A GCA ი მმმ H P V GTC CAG O CAA V GTT TACA S TCT DSAT H D GAT GGA R AGA S AGT C C TGC L ITG V GTG င TGC .T ACA L RAGA N AAC I ATC o CAA Y TAT L V 3TT Y TAT V GTG L E GAA D V GTG R CCA I ATT R CGA N AAC V GTT L GGA S TCT DGAC L S TCT I ATC CCC CCC S TCC RCGT IATT V GTC LCTT R CGG ဂ ဂြိင် E GAG A S TCA C IGT Y TAT TACT V GTA K AAA

Fig. 2F

GAC

C TGT G GGG CAG

I.I

ດ ດີ ດີ TACA

CHC

18/96 1153 3486 W TGG A GCT S AGC S AGC EGAG V GTC TACC PCCT V GTC G GGG L TTG G GGG C TGT IATC C. TGT A GCA S AGC H H N AAC V GTT Q CAG IATC F TTT R AGA A H s TCC D EGAG R AGG GGA I ATT E GAG D GAT A GCT E GAG TACA R AGG N AAT DGAC R TACG K AAG S AGC S TCT E GAA ရ ၁၅၅ E D GAT EGAG L GGA H TACT V GTC V GTC G GGG W TGG V GTG DGAC T ACG R AGG TACA S AGC E GAA C TGT W TGG PCCA A GCC C TGC ₩ IGG င TGC S AGT G G G G 9 9 9 9 M ATG A GCC N AAC Y ဗ္ဗဗ္ဗ N AAT · D GAC W TGG L F. S TCT DGAC F L CTG H L TACC Q. GGT L D GAT A D Q CAG R AGG GGG R AGG S TCT င် ကြီ V GTG D GAT GGG $_{
m L}$ AAC C TGC ဗ္ဗဗ္ဗ o CAG I GGA W TGG A GCC Y TAT V GTG L TACA ₩ TGG T ACC C IGT W TGG ဗ္ဗဗ္ဗ TACA FTTC I ATT K AAG I ATA ဗ္ဗဗ္ဗ g GGC အ ၁၁ IATC FTTC GGC V GTC S TCT S TCC L s TCC P E E A GCA L TTA IATC F K AAG GGG P S TCA L FTG I ATA PCCT ဗ္ဗဗ္ဗ C TGC CAA S TCA င် TGC R AGA A GCC A GCC T ACG

Fig. 2(

1333 4026 1253 3786 1273 3846 1373 1393 1353 T ACC L M ATG L D GAC SAGT L r GFC TACC D GAC o CAG E GAG D GAT A GCT D GAC S TCA CIC P GGA DGAT M ATG C TGT s TCT GGA K AAA LCIT L CTG G GGA V GTG ဗ္ဗ L TTG W TGG L L E GAG H WTGG R CGT TACA C TGT CCC S TCG G GGG K AAA H V. GTG GGC ဗ္ဗဗ္ဗ I I K AAA Q CAG FTT Q CAA FTTC R AGA W TGG L A I T ACC GGA L TTA K AAA I ATA S TCC Q CAG GGA H s TCT S AGT Q CAG N AAT TACT R AGA Q CAG ဗ္ဗဗ္ဗ C TGT C TGC S TCC E V GTT D GAT C TGT GGA A GCA D GAC R AGG L TTA E GAG R CGA E GAA V GTG Q CAG H W TGG V GTG IATA ာ ဦင် CIC CTGT W TGG V GTG မ ၁၅၅ L 9 LCTT W TGG S TCT T ACA IATC E A GCT A GCA F TTT F TTT T ACG GGT IATC EGAG A GCG S TCG S TCA L TTA R AGG D GAT r GGC W TGG V GTG EGAG AGCT E GAG E GAA H CAT R AGG F TTT T ACC R AGA A GCC D GAC N AAT K AAG GGT LCTA R AGA EGAG 9999 L R AGG GGA H S TCA TACC I ATT Ü S TCT L E GAA D GAC . K AAA S TCC GGA S TCA FTT S TGC W A GCC C TGC CTGT A GCC L V GTT PCCA EGAG s ICC A GCT R CGG DGAC N AAT V GTT R AGA

19/96

Fig. 2H

20/96

1433 4326	1453 4386	1454 4389
GGT	K AAA	
H	TACA	
N AAC	A GCC	
P N CCC AAC	E GAA	
T ACC	S TCT	
D GAC	₽ CCC	
D GAT	PCCT	
S TCA	L	
TACC	VGTT	
R AGA	G GGA	
T ACA	IL	
හ ල්ල්	L	
H G	s TCG	
P CCA	T ACA	
D GAC	D GAC	
E	s AGC	
R AGA	A GCT	
K AAG	D GAT	
CTC		
၁၁၅	C E TGT GAA	* TGA

4628 4468 4626 CITITAGACTICCAGGGCTCACCAGAICAACCICTAAATATCTITGAAGGAGACAACAACTTTTAAATGAATAAAGAGGA AGTCAAGTTGCCCTATGGAAAACTTGTCCAAATAACATTTCTTGAACAATAGGAGAACAGCTAAATTGATAAAGACTGG

Fig. 2]

1001 1041 1081 1121 1161 1201 1241 1281 1321 1361 1401 1441

Fig. 2J

2 3 ± 5

	10		20	30	40	50		09	70
Hum.	Hum. MMLPQNSWHIDFGRCC	DFGRCC	CHONLESAVVTCILLLNSCFLISSFNGTDLELRLVNGDGPCSGTVEVKFOGOWG	TCILLLNSC	FLISSFNG	TDLELRLV	NGDGPCS	GTVEVKFQ	SQWG
	••	::	:	•	:	•••	••		•••
WC1	MAL	GR	RGL-	CVLLLGTMVGGQALELRLKDGVHRCEGRVEVKHQGEWG	-MVGG	DALELRLKI	GVHRCE	GRVEVKHO	SEWG
			10		20	30	•	40	20
	80		06	100	110	120		130	
Hum.	TVCDDGWNTTASTVVC	ASTVVC	KOLGCPFSFAMFRFGOAVTR-HGKIWLDDVSCYGNESALWECOHREWGSHN	MFRFGQAVT	R-HGKIWL	DDVSCYGN	SALWEC	QHREW	SSHN
7	SOUND TO THE STANDARY TO THE STANDARY TO THE STANDARY TO THE STANDARY			: : CHY 45,20H-:	T.TWIGD.TDG			.: EHSNIKDY	 50NS
5	09)))	70	80	06	100		110	
	140	150	160	170	180		190	200	
Hum.	CYHGEDVGVNCYGEAN	CYGEAN	LGLRLVDGNNSCSGRVEVKFQERWGTICDDGWNLNTAAVVCRQLGCPSSFISSG	SCSGRVEVK	FOERWGTI	CDDGWNLN	FAAVVCR	QLGCPSSF	ISSG
	•••	••	•		•		•	•	••
WC1	WC1 YNHGRDAGVVCSG-	CSG	-FVRLAGGDGPCSGRVEVHSGEAWIPVSDGNFTLATAQIICAELGCGKAVSVLG	PCSGRVEVH	SGEAWIPV	SDGNETLA	FAQIICA	ELGCGKAV	SVLG
ਜ	120 130	0	140	150	— 1	160	170	180	
	210	220	230	240	250		260	270	
Hum.	VVNSPAVLRPIWLDDI	IMLDDI	LCQGNELALWNCRHRGWGNHDCSHNEDVTLTCYDSSDLELRLVGGTNRCMGRVE	NCRHRGWGN	HDCSHNED	VTLTCYDS	SDLELRL	VGGTNRCM	3RVE
	•	:	•••		•	:	•		
WC1	WC1 HELFRESSAQVWAEEFRCEGEEPELWVCPRVPCPGGTCHHSGSAQVVCSAYSEVRL-MTNGSSQCEGQVE	VWAEEF	RCEGEEPELW	VCPRVPCPG	GTCHHSGS	AQVVCSAY	SEVRL-M	TNGSSOCE	3QVE
	190	200	210	220		230	240	250	

Fig. 2K

	280	290	300	310	320	330	340
Hum.	LKIQGRWGTVCHHKWN	VCHHKWNNAA	ADVVCKÖLGC	STALHFAGLP	HLQSGSDVVW	LDGVSCSGNF	NAAADVVCKQLGCGTALHFAGLPHLQSGSDVVWLDGVSCSGNESFLWDCRHSGT
,				•	•		
WC1		LCASHWSLAN	ANVICRQLGC(280	GVAISTPGGPF 290	HLVEEGDQIL 300	TARFHCSGAL 310	MNISGQWRALCASHWSLANANVICRQLGCGVAISTPGGPHLVEEGDQILTARFHCSGAESFLWSCPVTAL 260 310 320
	35 056	3.2	320	380	0000	400	. 410
Hum.	VNFDCLHQNDVSVICS	DVSVICSDGA	DLELRLADGS	NNCSGRVEVR	IHEQWWTICD	ONWKNEQAL	DGADLELRLADGSNNCSGRVEVRIHEQWWTICDQNWKNEQALVVCKQLGCPFSV
		•	•			:	•
WC1	GGP	TASVICS-GN	-GNQI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	OVL	-QVLPQCNDSV
	330	340					
	420	430	440	450	460	470	480
Hum.	FGSRRAKPSNEARDIW	NEARDIWINS	ISCTGNESAL	WDCTYDGKAK	RTCFRRSDAG	VICSDKADL	INSISCTGNESALWDCTYDGKAKRTCFRRSDAGVICSDKADLDLRLVGAHSPCY
	•	•	•	••		••	•
WC1	SQPTGSA-	GSA	ASEDSAPY-	PY		CSDSRQL-	CSDSRQLRLVDGGGPCA
	m	360				370	380
	490	200	510	520	530	540	550
Hum.	GRLEVKYQGEWGTVCH	EWGTVCHDRW	STRNAAVVCK	QLGCGKPMHV	FGMTYFKEAS	GPIWLDDVS	DRWSTRNAAVVCKQLGCGKPMHVFGMTYFKEASGPIWLDDVSCIGNESNIWDCE
	••••••	•••		•	••••••	•	
WC1	GRVEILDQGSWGTICD	SWGTICDDGW	DLDDARVVCR	OLGCGEALNA!	IGSAHFGAGS	GPIWLDNLNG	DGWDLDDARVVCRQLGCGEALNATGSAHFGAGSGPIWLDNLNCTGKESHVWRCP
	390	400	410	420	430	440	450

Fig. 21

D •• D	w · G	ы·>	J J O
OLD ::.	90 ELRLVGGS ::::. QIRLVDGG	GEAS:	CREL:::CAEL
620 AVVCS : STICR 520	690 MELRI 2::	760 IILMSNSGCTGGEA : : : : : : : : : : : : : : : : : :	830 !AANVI .:.:.
AAA TVS:	. 60 SDMI	7 NSG(8. ILHAN
NNSK MEDI O	CSDA : . : . CADS	ILMS: : IWLD	SDFSLI :.: SNFTLI
610 CDDGWN: CRNPMI	680 VGVIC: AYIWC: 580	750 RTLH GSGP	820 SVCD: .::
GTVC	SEDV : KEEA	T FTER : FGTG	820 830 ADTWRSVCDSDFSLHAANVLCF: .: .: .: .: .: .: .: .: .: .: .: .:
GRW(: : GTW(CSH: :: CSP	EPH:	HAD' 7
560 570 580 590 600 610 620 HSGWGKHNCVHREDVIVTCSGDATWGLRLVGGSNRCSGRLEVYFQGRWGTVCDDGWNSKAAAVVCSQLDC ::::::::::::::::::::::::::::::::::::	630 640 650 660 670 680 690 PSSIIGMGLGNASTGYGKIWLDDVSCDGDESDLWSCRNSGWGNNDCSHSEDVGVICSDASDMELRLVGGS .: .: .: .: .: .: .: .: .: .: .: .: .: .	700 710 720 730 740 750 760 SRCAGKVEVNVQGAVGILCANGWGMNIAEVVCRQLECGSAIRVSREPHFTERTLHILMSNSGCTGGEASL::::::::::::::::::::::::::::::::::::	770 780 800 810 820 830 WDCIRWEWKQTACHLNMEASLICSAHRQPRLVGADMPCSGRVEVKHADTWRSVCDSDFSLHAANVLCREL ::::::::::::::::::::::::::::::::::::
RLE .::	ISGW.	SSAI	CSGR CSGR 700
0 NRCSG :.: QQCAG 490	O WSCRN : : . MWQCPS 560	LECG. : :: LGCGJ	DMPC:::
590 3GSN 3EDO	660 SDLW:	730 /VCRQ : : : : :	800 .VGAI
RLVG :.:.	GDES KTDJ	AEV : :: ARV 0	QPRI :: -VRI 690
O TWGL : FLAL	0 VSCD : : IQCR 550) SMNIAL C. : CLDDAL 620	SAHR
580 GDAT	650 WLDDVSC1 :.: :: WVDRIQC1	720 NGWGI .:.	790 IEASLICSA .:::.
VTCS::VICS	KIW : RPQW		MEAS .:. DEDAG
0 DVIV : : : DAGV	0 TGY(:. EGFE 540	0 AVG] • : • SWG]	O HLNN NHQE
570 7HREDV : : 3HKQDF 470	640 SNASTO	710 NVQGAV ::. :DQGSV	780 2TACH1 : .:.
HNC1 ::: HNCE	MGL(KVEVN .::. RVEII 600	WEWK(: : : : WGWR(
60 570 GWGKHNCVHREDV ::::::::::::::::::::::::::::::::::::	630 640 PSSIIGMGLGNASTGY : : : : : : : : 530 540	700 710 SRCAGKVEVNVQGAVG :::::::::::::::::::::::::::::::::::	770 780 WDCIRWEWKQTACHLN : : : : : : : : : :
Hum. WC1	Hum. WC1	Hum. WC1	Hum. WC1
-		The state of the s	ga a steadach

Fig. 2M

Hım	840 850 860 870 880 880 890 900 NCGDATSTSVGDHFGKGNGT-WAEKFOCEGSETHTATATCPTVOHPEDTCTHSREVGVVCSRYTDVRLV-NG	850 GDHFGKGN	860 GI.TWAFKFO	870 SEGSETHIA	880 T.CPIVOHPED	890 TCTHSREVG	900 VVCSRYTDVRI	ÐN−Λ'.
WC1		: HMPFRESD	GOVWAEEFF	CDGGEPELW	SCPRVPCPGG	TCLHSGAAQ	SSDGQVWAEEFRCDGGEPELWSCPRVPCPGGTCLHSGAAQVVCSVYTEVQLMKNG	
	740		750	160	770	780	790	800
	910	920	930	940	950	096.	970	
Hum.	KSQCDGQVEINVLGHWGSLCDTHWDPEDARVLCRQLSCGTALSTTGGKYIGERSVRVWGHRFHCLGNESL	NVLGHWGS	LCDTHWDPE	DARVLCRQL	SCGTALSTTG	GKYIGERSV	RVWGHRFHCL	SNESL
WC1	TSQCEGQVEMKISGRWRALCASHWSLANANVVCRQLGCGVAISTPRGPHLVEGGDQISTAQFHCSGAESF 810 820 830 840 850	KISGRWRA.	ALCASHWSLP 820	ANANVVCROL 830	GCGVAISTPR 840	GPHLVEGGD 850	ALCASHWSLANANVVCRQLGCGVAISTPRGPHLVEGGDQISTAQFHCSGAESF 820 830 840 850 860	3AESF 870
	086	066	1000	1010	1020	1030	1040	
Hum.	LDNCOMTVLGAPPCIHGNTVSVICTGSLTOPLFPCLANVSDPYLSAVPEGSALICLEDKRLRLVDGDSRC	APPCIHGN'	TVSVICTGS	LTOPLFPCL	ANVSDPYLSA	VPEGSALIC	LEDKRLRLVD	3DSRC
[5]	COCCOUNT TO TO COCCOUNT AND CONTRACT TO COCCOUNT AND CONTRACT TO COCCOUNT AND COCCO			: ::				
T) **		GFUCSHGN 8	890 890	900	910	920 920	930 930	940
	1050	1060	1070	1080	1090	1100	1110	
Hum.	AGRVEIYHDGFWGTICDDGWDLSDAHVVCQKLGCGVAFNATVSAHFGEGSGPIWLDDLNCTGTESHLWQC	FWGTICDD(GWDLSDAHV	VCQKLGCGV.	AFNATVSAHE	GEGSGPIWL	DDLNCTGTES	ILWQC
	•••••••••••••••••••••••••••••••••••••••				•••••••••••••••••••••••••••••••••••••••	••		::
WC1	GGRVEILDQGSWGTICDDDWDLDDARVVCRQLGCGEALNATGSAHFGAGSGPIWLDDLNCTGKESHVWRC	SWGTICDD	DWDLDDARV	VCRQLGCGE	ALNATGSAHE	GAGSGPIWL	DDLNCTGKES	IVWRC
	950		096	970	980	066	1000	1010

Fig. 21

	•										
TEDITVSVICRQLG	CEDR	1140	1300	RDASFGQGTGTIW	RSAAFGPGNGSIW	1210	1360	KSINASSGHLALI	•••••••••••••••••••••••••••••••••••••••	PGIFSLPGVLCLI	1280
GTWGSVCRSPN	1240 SSPAEETWITC	1130	1290	QLGCGSALAAI	OLGCGOALEAV	1200	135(OSI	••	TAGTRTTSNSI	1270
::::::: CAGWLEVFYN 1050	1230 CLSAPWERRI : :::	1120	1280	DLAEAEVVCQ	SLAEAEVVCO	1190		.SG	•••	SGVRTTLPTT	1260
::. :: . LRMVSEDQQ 1040	1220 2CPKTHISIWC :::::::::	1110	1270	SSWGTVCDDSW	SWGTVCDDSW	1180	1340	GHKEDAGVRC	••••••	CKHEEDAGVRC	1250
AGVICSEFLAN	1210 3SGFMWVDDIQ :: :: ::	1100	1260	SGRVEIWHAC	SGRVEVWHNC	1170	1330	CHAKPWGQSDC	••••••	CVAEPWGQSDC	1240
:.::::::::::::::::::::::::::::::::::::	1200 VSLAPLSKTC	1090	1250	-IRVRGGDTE	<pre> .:.::::: </pre> <pre> <pre> CLRLRGGDSE(</pre></pre>	1160	1320	KGNESFLWD	••••••	GGRESSLWDC	1230
WC1 PSRGW	1190 Hum. CGENGV	1080		Hum	WC1 CTDRE	1150	1310	Hum. LDDMR	•	WC1 LDEVQ	1220
	::::::::::::::::::::::::::::::::::::::	#C1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG 1020 1030 1040 1050 1060 1070 1190 1200 1210 1220 1230 1240 Hum. CGENGVVSLAPLSKTGSGFMWVDDIQCPKTHISIWQCLSAPWERRISSPAEETWITCEDR :::::::::::::::::::::::::::::::	0	#C1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG 1020 1030 1040 1050 1060 1070 1190 1200 1210 1220 1240 Hum. CGENGVVSLAPLSKTGSGFMWVDDIQCPKTHISIWQCLSAPWERRISSPAEETWITCEDR ##C1 CGDSGSLNTSVGLREGSRPRWVDLIQCRKMDTSLWQCPSGPWKYSSCSPKEEAYISCEGRRPKSCPTAAA 1080 1090 1110 1110 1120 1130 1140 1250 1260 1270 1280 1290 1300	WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG	WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG	WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG	## WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQO—CAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG 1020 1030 1040 1050 1060 1070 1190 1200 1210 1220 1230 1240 Hum. CGENGVVSLAPLSKTGSGFWWVDDIQCPKTHISIWQCLSAPWERRISSPAEETWITCEDR———— ### ### ### ### ### ### ### ### ##	WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG	WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQ-CAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG	WC1 PSRGWGRHDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDITVSVICRQLG

Fig. 20

1410	SLEENLFHEME	••	WC1 LGSLLFLVLVILVTQLLRW-RAERRALSSYEDALAEAVYEELDYLLTQKEGLGSPDQMTDVPDENYDDAE	1350	1440	DISITGA		WC1 EVPVPGTPSPSQGNEEEVPPEKEDGVRSSQTGSFLNFSREAANPGEGEESFWLLQGKKGDAGYDDVELSA	1420	
1400	TRRRG	••	LTOKEGLGSP	1340		CEDAS	••	EGEES FWLLQ	1410	
	1	••	VYEELDYL	1330	1430	DTPNHGCEDAS-	•••	SREAANPG	1400	
1390	LTWCRVQKQKHLPLRVS	••	LSSYEDALAEA	1320			•	RSSQTGSFLNFS	1390	
80	FLTWCRVQK	::	LLRW-RAERRA	1310	1420	LKREDPHGTRTSD	•	EEVPPEKEDGV	1380	
1380	TITATE	•	/LVILVTQ	1300				SPSQGNE	1370	
1370	Hum. LSSIFGLLLLVLFILF		LGSLLFL	1290		TC		EVPVPGTI	1360	
	Hum.		WC1	12		Hum.		WC1	-	

Fig. 2P

Hum.	ATGATGCTGCCTCAAAACTCGTGGCATATTGATTTTGGAAGATGCTGCTGTCATCAGAACCTTTTCTCTG	AAACTCGTGGCA	TATTGATTTTG	GAAGATGCT	GCTGTCATCAC	SAACCTTTTCTCTG	
	•••	•••			••••••	•••	
WC1	ATG	6CTC-TGG		 	GCAGACA	CCTCT-CCCTG	
	٠	10				20	•
	80	06	100	110	120	130 140	_
Hum.	CTGTGGTAACTTGCA	ATCCTGCTCCTG	AATTCCTGCTT	TCTCATCAG	CAGTTTTAATO	TCCTGCTCCTGAATTCCTGCTTTCTCATCAGCAGTTTTAATGGAACAGATTTGGA	
		••	•		•		
WC1	C-GGGGACTCT-G	GICCICCICCI	CGGCAC		CATGGTGGGT	-categtegetegtcaagctetega	_
	30	40 50			09	70 80	_
	. 150	160	170	180	190	200 210	_
Hum.	GITGAGGCIGGTCAA	ATGGAGACGGTC	CCIGCICIGGG	ACAGTGGAG	GTGAAATTCCA	TGGAGACGGTCCCTGCTCTGGGACAGTGGAGGTGAAATTCCAGGGACAGTGGGGG	
	••••••	•••••••••••••••••••••••••••••••••••••••		•	•		
WC1	GCTGAGGTTGAAGGA	ATGGAGTCCATC	SCTGTGAGGGG	AGAGTGGAA	GTGAAGCACCA	TGGAGTCCATCGCTGTGAGGGGAGAGTGGAAGTGAAGCACCAAGGAGAATGGGGC	
	06	100	110	120	130	140 150	_
	220	230	240	250	260	270	
· mnH .	ACTGTGTGTGATGAT	TGGGTGGAACAC	racrecer-ca	ACTGTCGTG	TGCAAACAGCI	GGGTGGAACACTACTGCCT-CAACTGTCGTGTGCAAACAGCTTGGATGTCCATTT	
		••••••	•••••••••••••••••••••••••••••••••••••••	••	••••••		
WC1	ACAGTGG	CAGGTGGA-CAT	IGAAGGATGCA	TCTGTAGTG	TGCAGACAGC	rgggtgtggagcj	
	160	170	180	190	200	210	

Fig. 20

7	280	290	300	310	320	330	340
Hum.	Hum. TCTTTCGCCATGTTT	CATGTTTCG	TTTTGGACAA	GCCGTGA	CGTTTTGGACAAGCCGTGACTAGACATGGAAAAATTTGGCTTGATGATGTTTC	AAATTTGGCTT	GATGATGTTTC
	••	•••	•	•	•••••••••••••••••••••••••••••••••••••••	•	•••••••••••••••••••••••••••••••••••••••
WC1	GCCATTG-	GTTTTCCT	GGAGGGGCTT	ATTTTGGGC	WC1 GCCATTGGTTTTCCTGGAGGGGCTTATTTTGGGCCAGGACTTGGCCCCCATTTGGCTTTTGTATACTTC	CCATTTGGCT1	TTGTATACTTC
2	220	230	240	250	260	270	280
	350	. 360	370	380	390	400	410
Hum.	CTGTTATC	GAAATGAGT	CAGCTCTCTG	GGAATGTCA	Hum. CTGTTATGGAAATGAGTCAGCTCTCTGGGAATGTCAACACCGGGAATGGGGAAGCCATAACTGTTATCAT	GGGAAGCCATA	ACTGTTATCAT
	•			••			•••
WC1	ATGTGAAC	SGACAGAGT	CAACTGTCAG	TGACTGTGA	WC1 ATGTGAAGGGACAGAGTCAACTGTCAGTGACTGTGAGCAT-TCTAATATAAAGAC-TATC-GTAATGAT	TTAAAGAC-TF	NTC-GTAATGAT
	290	300	310	320	330	340	350
	420	430	440	450	460	470	480
Hum.	GGAGAAG	ATGTTGGTGT.	GAACTGTTAT	GGTGAAGCC	Hum. GGAGAAGATGTTGGTGTGAACTGTTATGGTGAAGCCAA-TCTGGGTTTGAGGCTAG-TGGATGGAAAC	GAGGCTAG-	-TGGATGGAAAC
	•	•••••••••••••••••••••••••••••••••••••••	••	••			
WC1	GGCTATA	ATCATGGTCG	GGATGCT	GGAGTAGTC	GGCTATAATCATGGTCGGGATGCTGGAGTAGTCTGCTCAGGATTTGTGCGTCTGGCTGGAGGGGATG	GTGCGTCTGGC	TGGAGGGGATG
	360	370	ω	380	390 400	0 410	420
	490	500	510	520	0 530	540	550
Hum.	AACTCCTC	STTCAGGGAG.	AGTGGAGGTG.	AAATTCCAA	AACTCCTGTTCAGGGAGAGTGGAGGTGAAATTCCAAGAAAGGTGGGGGGACTATATGTGATGATGGTGGA	ACTATATGTGA	TGATGGGTGGA
	••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	:		••••••	•
WC1	GAC-CCTC	CTCAGGGCG.	AGTAGAAGTG	CATTCTG	WC1 GAC-CCTGCTCAGGGCGAGTAGAAGTGCATTCTGGAGAAGCTTGGATCCCAGTGT-CTGATGGGAACT	rccagigi-c	TGATGGGAACT
	4	430	440	450	460	470	480

Fig. 2Qii

GCCGTGGTGTGCAACTAGGATGTCCATCTTTTATTTC ::: :::::::::::::::::::::::::::::::		560	570	580	590	009	610	620
WC1 TCACACTTGCCACTGCCCAGATCATCTGTGCAC	Hun		CIGCIGCCGIGGIG	TGCAGGCAA	CTAGGATGI	CCATCTTCTTT	PATTTCTTCT	GGAGTTGT
WC1 TCACACTTGCCACTGCCCAGATCATCTGTGCAC 490	,		•••	••		• •	•	••
### 490 500 ### 630 640 650 660 670 680 ###################################	WC	1 TCACACTIG	CCACTGCC	CAG	1 1 1 1 1	ATCATCTGT-	 	-GCAGAGTTGGG
Hum. TATTAGCCCTGCTGTATTGCCCCCATTTGCTGGATGACTTTTATGCCAGGGAATGAGTT WC1 TTGTGGCAAGGCTG-TGTCTGTCCTGGGACTGAG- 530 T00 710 720 730 740 550 560 T00 710 720 730 740 750 Hum. CTGAATTGCAGACATCGTGGATGGGAATCATGACTGCAGTCACATT		490	500			510	52	0
Hum. TAATAGCCCTGCTGTATTGCGCCCCATTTGGCTGGATGACATTTTATGCCAGGGGAATGAGTT :: WC1 TTGTGGCAAGGCTGTGTCTGTCCTGGGACATGAG 530 T00 710 720 730 740 750 Hum. CTGGAATTGCAGACATCGTGGATGGGAAATCATGACTGCAGTCACATTGAGATTCACATTGAGATTCACATTGAAGAGTCCAGT :::::::::::::::::::::::::::::::::		630	640	650	099	670	089	069
WC1 TTGTGGCAAGGCTGTGTCTGTCCTGGGACATGAG- 530 700 710 720 730 740 750 Hum. CTGGAATTGCAGACATGGGGAAATCATGACTGCAGTCACATT ::::::::::::::::::::::::::::::::	Hun	1. TAATAGCCC	TGCTGTATTGCGCC	CCATTTGGC	TGGATGACA	TTTTATGCCAGG	GGAATGAGT	TGGCACT-
TOO 710 720 730 740 750 560 560	TW.		! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !			' 		
700 710 720 730 740 750 Hum. CTGGAATTGCAGACATCGTGGAAATCATGACTCCAGTCACAATGAGGATGTCACATT ::::::::::::::::::::::::::::::::::::	:			54	0		560	11010
Hum. CTGGAATTGCAGACATCGTGGATGGGGAAATCATGACTGCAGTCACAATGAGGATGTCACATT :::::::::::::::::::::::::::::::		700	710	720	730	740	750	. 760
	Hum	. CTGGAATTG	CAGACATCGTGGAT	GGGGAAATC	ATGACTGCA	GTCACAATGAGG	ATGTCACAT	TAACTIGT
		••	••••••	••	•••			••
	WC	1 CAGAGAGTC	CAGT-GCC	C	AGGTCTG	I	AGTTCA	99
		570	580		590	Ψ	000	
		770	780	790	800	810	820	830
::::::::::::::::::::::::::::::::::::::	Hun		AGTGATCTTGAACT	AAGGCTTGT	AGGTGGAAC	TAACCGCTGTAT	GGGGAGAGT	AGAGCTGA
TGTGAGGGGGAGGAGCCTGAGCTCTGGGTCTGCCC-CAGAGTG			•••••••••••••••••••••••••••••••••••••••	••	••	::	••	••
620 630	M		GAGGAGCCTGAGCT		GGGTC	TGCCC-CAGAGI		CCCTG-
		610	620	630		640		650

Fig. 20iii

	840	850	860	870	880	890	006
Hum.	Hum. AAATCCAAGGAAGGTGGGGGACCGTATGCCACCATAAGTGGAACAATGCTGCAGCTGATGTCGTATGCAA	GTGGGGGAC	CGTATGCCACC	ATAAGTGGAAG	CAATGCTGCA	GCTGATGTCGT	ATGCAA
	••	••		•	•••	••	
WC1	TCCA	GGGGGCA	GGGGGCACGTGTCACCACA-GTGGATCTGCT-CAGGTTGTTTGTTCAGCAT	ACA-GTGGAT	CTGCT-CA	GGTTGTTTGTT	CAGCAT
		099	670	089	069	0 700	,
	910	920	930	940	950	096	970
Hum.	Hum. GCAGTTGGGATGTGGAACCGCACTTCACTTCGCTGGCTTGCCTCATTTGCAGTCAGGGTCTGATGTTGTA	GGAACCGCA	CTTCACTTCGC	TGGCTTGCCT	CATTTGCAGT	CAGGGTCTGAT	GTTGTA
		::		•••	•••••		:
WC1	ACT	AGTCCGGCT	CAGAAGTCCGGCTCATGACAA-AC-GGCTCCTC-TCAG-TGTGAAGGGCAGGTGGAGAT	-GGCTCCT(C-TCAG-TGT	GAAGGGCAGGT	GGAGAT
	710	720	730	740		750 7	160
	086	066	1000	1010	1020	1030	1040
Hum.	TGGCTTGATGGTGTCTCCTGCTCCGGTAATGAATCTTTTCTTTGGGACTGCAGACATTCCGGAACCGTCA	TCTCCTGCT	CCGGTAATGAA	TCTTTTTTT	SGGACTGCAG	ACATTCCGGAA	CCGTCA
	•••••••••••••••••••••••••••••••••••••••	•					••
WC1	WC1 GAACATT	TCTG-GACA	IGGAGAG	rcrerecerce	C-ACTGGAG	TCTGGCCAATG	CCA
	770	780	0 790	800	810	0 820	
	1050	1060	1070	1080	1090	1100	1110
Hum.	ATTTTGACTGTCTTCATCAAAACGATGTGTCTGTGATCTGCTCAGATGGAGCAGATTTGGAACTGCGACT	TCATCAAAA	CGATGTGTCTG	TGATCTGCTCA	AGATGGAGCA	GATTTGGAACT	GCGACT
	••••••	•		•••	••	••	••••••
WC1	ATGTTATCTGTCGTCAGCTCGGCTGTGGAGTTGCCATCTCCACCCCCGGAG-	TCAGCTCGG	CTGTGGAGTTG	CCATCTCCACC	CCCGGAG	GACC	GACCAC-ACT
	830	840	850	860	870	80	880

Fig. 20iv

	1120	1130	1,140	1150	1160	.1170	1180
Hum.	Hum. AGCAGATGGAAGTAACAATTGTTCAGGGAGAGTAGAGGTGAGAATTCA-TGAACAGTGGTGGACAATATG	AACAATTGTT	CAGGGAGAG	TAGAGGTGA	SAATTCA-TG	ACAGTGGTGG?	ACAATATG
	•		••	•••	•••	••••••	
WC1	WC1 TGGTGGAAGAAG-		CAGATCC	TAACAGCCC	GTGATCAGATCCTAACAGCCCGATTTCACTGCTCTG-	TCTGGGGC-	3CTG
	890	006		910	920	930	
	1190	1200	1210	1220	1230	1240	1250
Hum.	TGACCAGAACTGGAAGAATGAACAAGCCCTTGTGGTTTGTAAGCAGCTAGGATGTCCGTTCAGCGTCTTT	AAGAATGAAC	AAGCCCTTG	TGGTTTGTA	AGCAGCTAGGA	NTGTCCGTTCAC	SCGTCTTT
1			• 6		• 6		• (
ĭ N		GGAGITGT ==-		-CCI-GIGACI	-GCC-CTGGG1	GCC-CTGGGTGGTCCTGACTGTTCCCAT	FT.T.C.C.A.T.
	940	.	096		970	086	066
	1260	1270	1280	1290	. 1300	1310	1320
Hum.	GGCAG-TCGTCGTGCT	SCTAAACCTA	GTAATGAAG	CTAGAGACA1	TTGGATAAAC	AAACCTAGTAATGAAGCTAGAGACATTTGGATAAACAGCATATCTTGCACTGGG	SCACTGGG
		•	•		••	•	
WC1	000	CTGTGATCTG	CTCAGGAAA	CCAGATCCAG	SCICCITCCCC	AGTGCAACGA-	5DDLD-
	1000	1010	1020	1030	1040	1050	1060
	1330	1340	1350	1360	1370	1380	1390
Hum.	AATGAGTCAGCTCTCT	rctgggactg	CACATATGA	TGGAAAAGC?	NAAGCGAACAT	GGGACTGCACATATGATGGAAAAGCAAAGCGAACATGCTTCCGAAGATCAGATG	ATCAGATG
	•		••		•••••••••••••••••••••••••••••••••••••••		•::
WC1	TGTCTCAACCTACAGGCTCTGC-	ACAGGCTCTG		GGCCI	CTCAGAGACA-GCGCCC	Ī	CCTACTG
	1070	1080			1090	1100	

Fig. 2Qv

		1400	1410	1420	1430	1440	1450	1460
Hum.	CTGGA	Hum. CIGGAGIAAITIGII	TCTGATAAGGC	AGATCTGG?	ACCTAAGGC	CTGATAAGGCAGATCTGGACCTAAGGCTTGTCGGGGCTCATAGCCCCTGTTATGG	ATAGCCCCTGT	TATGG
	::	•		••	•••	••		••
WC1	WC1 CTCAGA		CAGCAGGC	AGCTCCG	-CCTGGTG	CAGCAGGCAGCTCCGCCTGGTGGACGGGG-GCGGTCCCTGCGCCGG	:GGTCCCTGC	99229
11	1110		1120	1130		1140	1150	1160
		1470	1480	1490	1500	1510	1520	
Hum.	GAGAT	TGGAGGTGA	AATACCAAGGA	GAGTGGGG	SACTGTGTG	Hum. GAGATTGGAGGTGAAATACCAAGGAGAGTGGGGGACTGTGTGTCATGACAGATGGAGCACAAGG-AATGC	GAGCACAAGG-	AATGC
M7.1	יטעה אני							
)		1170	1180	1190	1200	1210	1220	29.146
15	1530	1540	1550	1560	1570	0 1580	1590	
Hum.	A-GCT(GITGIGIGI	AAACAATTGGG	ATGTGGA-	AGCCTATG	Hum. A-GCTGTTGTGTAAACAATTGGGATGTGGA-AAGCCTATGCATGTTTTGGTATGACCTATTTAAAG	ATGACCTATTT	TAAAG
	::	•••		••	•	•	•••	•
WC1)-2522 ·	STGGTGTGC	AGGCAGCTGGG	CTGTGGAGE	AGCCCTCA-	WC1 CCGC-GIGGIGIGCAGGCAGCIGGGCIGIGGAGAAGCCCICA-AIGCCACGGGGICIGCICACIICGGGG	TCTGCTCACTT	55555
12	1230	1240	1250	1260	1270	1280	1290	
	1600	1610	1620	1630	1640	1650	1660	
Hum.	AAGCA!	TCAGGACCT .	ATTTGGCTGGA	TGACGTTTC	TTGCATTGC	Hum. AAGCATCAGGACCTATTTGGCTGGATGACGTTTCTTGCATTGGAAATGAGTCAAATATCTGGGACTGTGA	ATATCTGGGAC	TGTGA
	••	•••	••••••	•	•		•	••
WC1	CAGGA	TCAGGGCCC,	ATCTGGTTGGA	CAACTIGAA	ACTGCACAGG	WC1 CAGGATCAGGGCCCATCTGGTTGGACAACTTGAACTGCACAGGAAAGGAGTCCCACGTGTGGAGGTGCCC	ACGIGIGGAGG	TGCCC
	1300	1310	1320	1330	.1340	0 1350	1360	

Fig. 20vi

£	∜ ¦	AC.	3.A 0	J.	:: J.G	ີ່ຄ	. l
į E	GALGO : : AGTIC	AAGG	ATGGG 1500	GGAC	::: TGGCT(1570	o TCGA:	TGGAT
1730	.: .AGA 1430	1800 CTTTC	TACA	1870 CAGCT	AGCT	1940 TGGCT(::: TGGG 0
רו ל		1 rGTAC	TTTTCTZ 1490	1 PAGCO	:: : CAGAC 1560	AATT	: : : ACAGT 1630
20 8	AACC : :: CATCJ 20	90 3AGG1	SAAG1	60 rgtg1	::: rcrgc	1930 GGAA?	. : . AGGCC
1720	:::: GGGTCA 1420	1790 ACTGGA	.::: GCTG(80	1860 GTGGTG	: : . ACGA: 50	ATATO	.:.: TTTT2 1620
Ę	61.64 60.00	GAAG	GGTGGC 1480	AGCT	GICCAC	1920 A-CAGG	AAGG
1710	1410	1780 TCGG	GCTG	1850 SCTGC	CTGT	19 'CTA-	: AGAG
(* (AAGCZ	SCTGO	AGTGT	TAAAG	:. :ATCA 1540	CGCTI	: ::: : CTCTTAGA 1610
1700	AGCAIRAIIGIGIACACAGAGGAIGIGAIIGIAACCIGCICAGGI :::::::::::::::::::::::::::::::::::	1770 CAACC	ATGGTGAGTGAGCAGCAGTGTGTGTGGCTGGAAGTTTTCTACAATGGG 1450 1460 1470 1480 1490 1500	1840 AACAG	.:.:: :.::::::::::::::::::::::::::::::	1910 Gaaa(:: ::: ::::::::::::::::::::::::::::
ן ני	GCAG	1 SCAGO	AGGAC 1460	1 TGGA	:. :. CATGG 1530	TG-G	: : TTCTG 1600
00 8 8	CAACT	60 3GCGC	AGTGZ	30 ACGGC	:: ::)0 3GGTC	: . :: CTCAACTCTTC 590 16
1690	######################################	1760 GGTGGG	TGGTG	1830 GATGAC	: .:. sccgraz 1520	1900 GCATGG	:. CCTC2 1590
ر د د	. : . 3666C	GGCT	GGAT 14	GTGT	:: 'CTGC 15	ATTG	GAAC
1680	castastastastastastastastastastastastasta	1750 CCTGA(CTGGCCCTCAGG	1820 ACAGT	:::::: TGGGCCAGTGTC 1510	1890 TATC	.:: ACAGTG 1580
ر بر) 194 194 194 194 194 194 194 194 194 194)5995	-GGCC 1440	3GGC7	::::: 3GGCA 1510	PCTTC	.: 3GGAC 15
1670	um. Acacastessanascataniiststacasassassatstataciscicassisatsca . : ::::::::::::::::::::::::::::::::::	1740 ACAT	-crgeccercagargargagaccageagrerecregeregeregererreracaargega 1440 1450 1460 1460 1470 1480 1490 1500	1810 1820 1830 1840 1850 1860 1870 GGTGGGGCACAGTGTGATGACGCTGGAACAGTAAAGCTGCAGCTGTGTGTG	CCTGGGGCAGTGTCTGCCGTAACCCCATGGAAGACATCACTGTGTCCACGATCTGCAGACAGCTTGGCTGCTGCTGTGTCTGCAGATCTGCAGACAGCTTGGCTGGC	1880 1890 1900 1910 1920 1930 1940 CCCATCTTCTATCATTGGCATGGGTCTG-GGAAACGCTTCTA-CAGGATATGGAAAAATTTGGCTCGATG	WC1 TGGGGACAGTGGAACCCTCAACTCTTCTGTTGCTCTTAGAGAAGGTTTTAGGCCCACAGTGGGTGG
1,111	<pre>muii: Acacacacacacacacacacacacacacacacacacaca</pre>	1740 1750 1760 1770 1780 1790 1800 Hum. ACATGGGGCTGGTGGGGGGGGGGGGGGGGGGGGGGGGGG	WC1	1 Hum.	WC1	1 Hum.	WC1
Ļ	4	μi		正	•	武	

Fig. 20vi

					•
2010 AATAATGAC	GGAATTACAAC	1/00 2080 GCTTGTGGG	:: ::::-	2150 TGTGCTAAT :::::::	2220 CAGGGTCTCCA : ::::::: CCTGGACGCCA 1900
1950 1960 1970 1980 2000 2000 2010 ATGTTCCTGTGATGAGAGAGAGAGAGAGAATAATGAC	WC1 -AGAATCCAGTGTCGGAAAACTGACACCTCTCTCTGGCAGTGTCCTTCTGACCCTTGGAATTACAAC	1640 1650 1660 1670 1680 1690 1700 1700 1700 1700 1700 1700 1700 17	: .:: .:: :::: :::::::::::::::::::::::	2090 2100 2120 2130 2140 2150 um. TGGAAGCAGCAGGTGTGAAAAGTTGAGGTGAATGTCCAGGGTGCCGTGGGAATTCTGTGTGTG	210 AAT
1990 AGGAACAGTO	CTGGCAGTGTCCTTCTGAC	1680 2060. 3-CATCGGATA	: :::: BACAGCAGACP 1750	2130 :AGGGTGCCGT :::: :: :AGGGCTCCTG	2200 TGAATGTGGG :.::::::
1980 CTGGTCATGC	::::::::::::::::::::::::::::::::::::::	16/U 2050 .TCTGTTCTGATG	::::::::::::::::::::::::::::::::::::::	2120 sGTGAATGTCC :.: .::: sATCCTTGACC	2160 2170 2180 2190 2200 2 GCTGGGGAATGTGCTGGGTCTGC
1970 SAGTCAGATC	AAAACTGACACCTCTCT	1660 IO 2040 TTGGAGTG-ATC	.: :: :: AAGCCTATATC 1730	2110 SAAAAGTTGAG :.::::: SGAGAGTGGAG	2180 GAAGTTGTTT :::::
1960 GATGGAGATG	GTCGGAAAAC	1650 LC 2030 AGTGAAGATGTT	.::: :::::::::::::::::::::::::::::::	2100 GGTGTGCTGG : :: :::: GCTGCTCTGG	
1950 ATGTTTCCTG1	- AGAATCCAGTGTCGC	2020 TGCAGTCACAG	: :: ::: :::	2090 TGGAAGCAGCAGGTG1 :::::::::: TGGAGGTGGTCGCTGC	
Hum. 7	-	Hum.	WC1	Hum. T : WC1 T 1770	Hum. G WC1 C 1840

Fig. 2Qviii

2230 2240 2250 2260 2270 2280 GAGA-GCCTCATTTCACAGAACATTACACATCTTAATGTCGAATTCTGGCTGCACTGGAGGGGA	.:. ::::: .::::: .::::::::::::::::::::	2340 2 GCGTGTCATTTAAATA	:::::::::::::::::::::::::::::::::::	2380 2400 2410 2420 CCACAGGCAGCCCAGGCTGGTTGGAGCTGATATGCCCTGCTCTGGACGTGTTGAA . :: :::::::::::::::::::::::::::::::	2430 2440 2460 2470 2480 2490 Hum. GTGAAACATGCACACATGGCGCTCTGTCTGATTTCTCTCTTCTCTTCATGCTGCCAATGTGCT ::::::::::::::::::::::::::::::::::::
2250 ACATTACACAT	.:.:: .:::: .:::: .:::: .:::::::::::::	2320 GGGAGTGGAAA	::::: GGGGATGGCGG 2010	2390 :CCAGGCTGGTT : :::::	2460 TGTCTGTGATT .:: :::: AGTGTCTGATG
2240 :ACAGAAAGP	.:.:.: TTCGGGACGGGP 1930	2310 ATTGTATACGAT	:: sereccerrect 2000	2380 CCACAGGCAGC ::: SATTTGTGC	2450 ACATGGCGCTC .: :: : :
2230 RA-GCCTCATITC	.:. : :: :: TGTCTCTTCCTTC1 910 1920	23 TCTCTC	wcl Grcccaagtarggag 1980 1990	2360 2370 2380 TTTGATCTGCTCAGCCCACAGGCA ::::::::: AGTCATCTGCTCAGGATTTGTGC- 2050 2060	430 2440 STGAAACATGCAGAC ::::::::::::::::::::::::::::::::
Hum. GAG	.:. WC1 CTGT 1910	2290 Hum. AGC	WC1 GTCC 1980	2360 Hum. TTTG WC1 AGTC	2430 Hum. GTG .:: WC1 GTG

2150 Fig. 2Qix

	2500	2510	2520	2530	2540	2550	2560
Hum.	GTGCAGAGA	ATTAAATTGT	GGAGATGCC	ATATCTCTTT(GTGCAGAGAATTAAATTGTGGAGATGCCATATCTCTTTCTGTGGGAGATCACTTTGGAAAAGGG-AATGG	CACTTTGGAAA	AGGG-AATGG
	•••	•••••••••••••••••••••••••••••••••••••••	•••••	••			•••
WC1	GTGCAGAGC	TGGGATGT	GGCAAGGCT	GTGTCT-GTC	WC1 GTGCAGAGCTGGGATGTGGCAAGGCTGTGTCT-GTCCTGGGACACATGCCATTCAGAGAGTCCGATGG	SCCATTCAGAG	AGTCCGATGG
2180		2190	2200	2210	2220	2230	2240
	2570	2580	2590	2600	2610	. 2620	2630
Hum.	TCTAACTTG	GGCCGAAAAG	TTCCAGTGT	GAAGGGAGTG	TCTAACTTGGGCCGAAAAGTTCCAGTGTGAAGGGAGTGAAACTCACCTTGCATTATGCCCCATTGTTCAA	SCATTATGCCC	CATTGTTCAA
5							• • • • • • • • • • • • • • • • • • • •
₹ S	2250	56CT	11CAGGIGI 2270	6AT 6666666 2280	wit ceassicissecismansiicasisisistasissesseseseteisatiissiiteeteetee 2250 – 2260 – 2270 – 2280 – 2290 – 2300 – 2310	regrecteded 2300	CAGAGTGCCC 2310
))			
	2640	2650	2660	2670	2680	2690	2700
Hum.	CATCCGGAA	SACACTIGIA	TCCACAGCA	GAGAAGTTGG	CATCCGGAAGACACTTGTATCCACAGAGAGGAGTTGGAGTTGTCTGTTCCCGATATACAGATGTCCGAC	CCGATATACA	GATGTCCGAC
			•	•			•••••••••••••••••••••••••••••••••••••••
WC1	TGTCCAGGAGGCACA	SGCACATGTC	TCCACAGTG	GAGCTGCTCAC	TGTCTCCACAGTGGAGCTGCTCAGGTTGTCTGTTCAGTGTACACAGAAGTCCAGC	CAGTGTACACA	GAAGTCCAGC
	2320	2330	2340	2350	2360	2370	2380
	2710	2720	2730	0 2740	2750	2760	2770
Hum.	TTGTGAATGGCAAATCC-	SCAAATCC	-CAGTGTGA	CGGCCAAGTGC	-CAGTGTGACGGCCAAGTGGAGATCAACGTGCT-TGGACACTGGGGCTCAC	SCT-TGGACAC	TGGGGCTCAC
		::	••	•••		••••••	•••
WC1		ACGCCACCTC	TCAATGTGA	GGGCAGGTG	TTATGAAAAACGGCACCTCTCAATGTGAGGGGCAGGTGGAGAT-GAAGATCTCTGGACGATGGAGAGGCGC	CTCTGGACGA	TGGAGAGCGC
	2390	2400	2410	2420	2430	2440	2450

rig. 2Qy

Hum.	2780 2790 2800 2810 2820 2830 2840 TGTGTGAGACACCCACAGAGAAGATGCCGTGTTCTATGCAGACAGCTCAGCTGTGGGACTGCTCT	2790 GGGACCCAGA	2800 AGATGCCCGT	2810 STTCTATGCAC	2820 SACAGCTCAGO	2830 CTGTGGGACTGC	2840 CTCT
WC1	: ::::::::::::::::::::::::::::::::::::	:: : .: GGAGTCTGGC(2480	.:::: .:: CAATGCCAATG 2490	AATGCCAATGTTGTCTGTCC 2500	::::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	: CAT
Hum.	2850 2860 2870 2880 2890 2900 2910 CTCAACCACAGGAGAAATATATTGGAGAAAGAAGTGTTCGTGTGTGT	2860 AAAATATATT	2870 3GAGAAAGAAG	2880 STGTTCGTGTC	2890 FIGGGGACAC	2900 AGGTTTCATTGC	2910 CTTA
WC1	::::::::::::::::::::::::::::::::::::::	: : : : ACCACACTIGO 2550	: .::::: stggaaggagg 2560	STGATCAGATC	: : : TCAACAGCCC 2580	: : : : : : : : : : : : : : : : : : :	TCA
Hum.	ACTT	2930 CTGGATAACT	2940 STCAAATGACA	2950 AGTTCTTGGAC	2960 SCACCICCCIC	2970 STATCCATGGA	2980 AATA
WC1	GGGCTGAGTCCTTC 2600 2610	CIGIGGAGII 2620	srccrgrgac 2630	reccrregere 2640	GGCCTGACTC 2650	CTGTGGAGTTGTCCTGTGACTGCCTTGGGTGGGCCTGACTGTTCCCATGGCAA 2620 2620 2630 2640 2650 2660	ACA
Hum. WC1	2990 3000 3010 3020 3030 3040 3050 CTGTCTCTGTGTTCTGACCCCAGCCACTGTTTCCATGCCTCGCAAATGTATCTGACCCCCCCC	3000 GCACAGGAAGG ::.:::::: GCTCAGGAAAG	3010 CCTGACCCAGG ::.::::: CCACACCCAGG	3020 CCACTGTTTCC :::::	3030 :ATGCCTCGC? ::: :: AGTGCAACGA(3000 3010 3020 3030 3040 3051 3050 3050 3050 3050 3050	3050 ACCC : :: AACC

Fig. 20xi

	3060	3070	3080	3090	3100	3110	3120
Hum.	ATATTTGTCTGCAGT	TTCCAGAGGGC	TCCAGAGGGCAGTGCTTTGATCTGCTTAGAGGACAAACGGCTCCGCCTAGTGGAT	rctgcttagag	GACAAACGG	TCCGCCTAGI	GGAT
	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••				••
WC1	TGCAGGCTCTGCGGC	CCTCAGAGGAC	CTCAGAGGAGAGTTCTCCCTACTGCTCAGACAGCAGGCAG	ACTGCTCAGAC	AGCAGGCAGG	CICCCCCIGGI	GGAC
	2740 2750	0 2760	2770	2780	2790	2800	
	3130	3140	3150	3160	3170	3180	3190
Hum.	GGGGACAGCCGCTGT	TGCCGGGAGAC	GCCGGGAGAGTAGAGATCTATCACGACGGCTTCTGGGGCACCATCTGTGATGACG	rcacgacggc1	TCTGGGGCA	CATCTGTGAT	GACG
		••			••	••	••
WC1	GGGGCGGTCC	CGCCGGGAGAC	TGGAGA	IGACCAGGGC1	CCTGGGGCA	CATCTGTGAT	GATG
	2810 2820	0 2830	2840	2850	2860	2870	
	3200	3210	3220	3230	3240	3250	3260
Hum.	GCTGGGACCTGAGCG	GATGCCCACG	ATGCCCACGTGTGTGTCAAAAGCTGGGCTGTGGAGTGGCCTTCAATGCCACGGT	AAGCTGGGCTG	TGGAGTGGC	CTTCAATGCCA	CGGT
		•••		••••••	•••	•	
WC1	ACTGGGACCTGGACG	GATGCCCGTG1	ATGCCCGTGTGTGTGCAGGCAGCTGGGCTGTGGAGAAGCCCTCAATGCCACGGG	CAGCIGGGCTC	STGGAGAAGC	CTCAATGCCA	5550
	2880 2890	0 2900	2910	2920	2930	2940	
	3270	3280	3290	3300	3310	3320	3330
Hum.	CICTGCTCACTTTGG	GGGAGGGGTCA	GGAGGGGTCAGGGCCCATCTGGCTGGATGACCTGAACTGCACAGGAACGGAGTCC	SGCTGGATGAC	CIGAACIGC	ACAGGAACGGA	GICC
				••••••••••••	••	•••••••••••••••••••••••••••••••••••••••	
WC1	GTCTGCTCACTTCGG	GGCAGGATCA	GGCAGGATCAGGGCCCATCTGGCTGGACGACCTGAACTGCACAGGAAAGGAGTCC	SGCTGGACGAC	CTGAACTGC	ACAGGAAAGGA	GICC
	2950 2960	0 2970) 2980	. 2990	3000	3010	

Fig. 20xi

	3340	3350	3360	3370	3380	3390	3400
Hum.	CACTTGTGGCAGTGCCCTTCCCGCGGCTGGGGGCAGCACGACTGCAGGCACAAGGAGGACGCAGGGGTCA	GCCCTTCCCG	CGGCTGGGGGC	SAGCACGACTO	SCAGGCACAAC	3GAGGACGCA (SGGGTCA
WC.1	CACGEGEGEGEGECCTTCCCGGGGGCTGGGGGGCACGACTGCAGACAAGGAGGAGGACGGGGGTCA		CTTCCCGGGGCTGGGGGGCACGGACTGCAGACACAGGAGGAGGACGCCGGGGTCA		CAGACACAA	GAGGACGCC	:::::::
	3020 30	3030 30	3040 3050	30 80	3070	70 3080	90
	3410	3420	3430	3440	3450	3460	3470
Hum.	Hum. TCTGCTCAGAATTCACAGCCTTGAGGCTCTACAGTGAAACTGAAACAGAGAGCTGTGCTGGGAGATTGGA	CACAGCCTTG	AGGCTCTACAG	STGAAACTGA?	AACAGAGAGC I	rgrgctggga	SATTGGA
WC1	TCTGCTCAGAGTTCCTGGCCCTCAGGAT	CCTGGCCCTCAGGAT	AGGATGG	GGTGAG-CGAGGACCAGCAG-TGTGCTGGGTGGCTGGA	3ACCAGCAG-1	retectedet.	GGCTGGA
		3100 31	3110	3120	3130	3140	
	3480	3490	3500	3510	3520	3530	3540
Hum.	Hum. AGTCTTCTATAACGGGACCTGGGGCAGCGTCGGCAGGAGGAACATCACCACAGCCATAGCAGGCATTGTG	GGGACCTGGG	GCAGCGTCGGC	AGGAGGAAC!	ATCACCACAGG	CATAGCAGG	CATTGIG
	•••					• !	•
WC1	WC1 GGTTTTCTACAACGGGACCTGGGGCAGTGTCTGCCGCAGCCCCATGGAAGATATCACTGTGTCGTGATATC	GGGACCTGGG	GCAGTGTCTGC	cecaecccc2	ATGGAAGATA	rcacrgrgrc(CGTGATC
3150	50 3160	3170	3180	3190	3200	3210	
	3550	3560	3570	3580	3590	3600	
Hum.	TGCAGGCAGCTGGGCTGTGGGAGAATGGAGTTGTCAGCCTCGCCCCTTTATCT-AAGACAGGCTCTG	GCTGTGGGGA	GAATGGAGTTC	FICAGCCICGC	CCCTTTA1	CT-AAGACA	SGCTCTG
				•			•
WC1	WC1 TGCAGACAGCTTGGATGTGGGGACAGTGGAAGTCT-CAACACCTCTGTTGGTCTCAGGGAAGGTTCTA	GATGTGGGGA	CAGTGGAAC	FTCT-CAACAC	CTCTGTTGG	ICTCAGGGAA (SGTTCTA
3220	20 3230	3240	3250	3260) 3270	3280	0

Fig. 2Qxiii

	3610	3620	3630	3640	3650	3660	3670
Hum.		GTGGGTGGA1	TGACATTCAG	TGTCCTAAAAC	GCATATCT	CATATGGCA	GTTTCATGTGGGTGGATGACATTCAGTGTCCTAAAACGCATATCTCCATATGGCAGTGCCTGTCTGCCCC
N			: :::::	TGTCGGAAAA	GGATACCTC	STCTCTGGCAC	GACCCCGGTAGGTTTAATTCAGTGTCGGAAAATGGATACCTCTCTCGGAGTGTCTTCTGGCCC
)	3290	3300	3310	3320	3330	3340	3350
	3680	3690	3700	3710	3720	3730	3740
Hum.		CGAAGAATCI	rccagcccag	CAGAAGAGACC	TEGATCAC	ATGTGAAGAT	ATGGGAGCGAAGAATCTCCAGCCCAGCAGAAGAGACCTGGATCACATGTGAAGATAGAATAAGAG-
WC1	ATGGAAA	:::::: ::: ::: ::: ::: ::: :::::::::::	: ::::	SCTCTCCAAAGGAGGAAGCCTACATCTCATGTGAAGGAAGAAGA	TACATCTC	TGTGAAGGA	ATGGAAATACAGTTCATGCTCTCCAAAGGAGGAAGCCTACATCTCATGTGAAGGAAG
	3360	3370	3380	3390	.3400	3410	3420
						3750	3760
Hum.	1	1GC				-GTGGAGGAG	-GTGGAGGAGACACCGAGTGCTCTG
		••				••	
WC1	TGTCCAA	CTGCTGCCGC	CTGCACAGA	CAGAGAGAAGC	STCCCCCTC	AGGGGAGGAG	TGTCCAACTGCTGCCGCCTGCACAGACAGAGAAGCTCCGCCTCAGGGGGAGGAGACAGCGAGTGCTCAG
	3430	3440	3450	3460	3470	3480	3490
37	3770	3780	3790	3800	3810	3820	3830
Hum.	GGAGAGT	GGAGATCTGG	SCACGCAGGC	TCCTGGGGCAC	PAGTGTGTG	ATGACTCCTG	Hum. GGAGAGIGGAGAICIGGCACGCAGGCICCIGGGGCACAGIGIGIGAIGACICCIGGGACCIGGCCGAGGC
	•••			•••	••	••	
WC1	GGCGGGT	GGAGGTGTGC	SCACAACGGC	TCCTGGGGCAC	CGTGTGCG	ATGACTCCTG(WC1 GGCGGGTGGAGGTGTGGCACAACGGCTCCTGGGGCACCGTGTGCGATGACTCCTGGAGCCTGGAGGGC
	3500	3510	3520	3530	3540	3550	3560

	ტ	E		ტ	••		υ	_U		A	: •	H	
	CCA	SCAGCTGGGCTGTGGCCAGGCCCTGGAAGCCGTGCGGTCTGCAGCATTTGGCCCT		CAC	GTT		AGT	.:.		4070 4090 4080 4090CTTCAGGT-CATTATTCCA		၂၉၄၄	
	rtge	FTGG	9	CIGI	:::: CTG1 30		AC	STAP	0.	90 4777	•	CCCI) H
3900	CGT	CAT	3970	GGA(::::: GGACT 3700	4040	999	:: GGT(3770	4090	•••	TCTCC)
39	CTT	SCAG	39	ATG	GTG	4	TCT	TCT		T)-1)	TCT	
	GACC	TCTC	0 7	TTC	:: :: :: :: :: ::		GTGC	GTGC	09	0 AGC 2		CTGGC7)
3890	AGG	3000	3620	CAT	3690	4030	GAG	GAG	3760	4080	i ••	CCT 38).)
38	CCTC	CGTC	36	GAGI	:::: GAG1	74	GCG1	GTG1		A 4 T T T −		TCTC	
	TGC	SCAGCTGGGCTGTGGCCCAGGCCCTGGAAGCCGTGCGGTCTGCAGCATTTGGCC	3610	AAT	::::::::::::::::::::::::::::::::::::::		CTG	AGAGCGACTGCAAGCACGAGGAGGATGCTGGTGTGAGGTGCTCTGG	3750	ر ا ا		AATTC)
3880	TGGC	TGGZ	36 3950	AGG?	.:: GGGC 36	4020	GATG	GATC	37	יי אַ ני	; ; ;	CAAA)
m	CIC	: :	m	CAA	: 	4	GAA	:::		4070	; ; ; ;	CCT	
	ICTG	: CAGG	3600	GGTG	:.:: CAGTG 3670		CAAG	GAG	3740			AACAA)
3870	GGC	3355	3940	TGC	::: TGCZ	4010	ACA(GCA	, m	i ! [-		AGAZ)
	CTGT	CTCT	က	SACA	:: 3AGG	4	3TGG	: SCAA		!)	SACC	
	9999	3 : : : : : : : : : : : : : : : : : : :	3590	GAT	::: GGAC(3660		ACT(ACTO	3730	رن 4		CAGG(3800)
3860	AGCT	AGCT	3930	STIG	: ::: 3CTG 3	4000	\GTG	.: : AGCG	က	4060 CTGA		AGC)
(-)	AGC?	AGCZ	(-)	CIG	CIG	7	CAGZ	CAG?		40.0		CCAC	
_	GTC	GAGGTGGTGTGTCA	3580	CAT	::: GCAT 3650	_	GGA	::::::::::::::::::::::::::::::::::::::	3720) AAA		ACGA 3790)
3850	GTG	:::: GTG1	3920	GAAC	GGAC	3990	CTGG	CTGG	(*)	4050	; }	r SSSS	,
	GTG	GTG	_	CTG	:: ATG		ACC	::: :::	_			TTG	
0	GGAA	TGAG	35 / U 0	SGAA	:::: :::::::::::::::::::::::::::::::::	_	CCAA	: .: 3GGA	3710	4050 4060		AACA 3780)
3840	Hum. GGAAGTGGTGTGTCAGCAGCTGGGCTGTGGCTCTGCTTGGCTGCCCTGAGGGACGCTTCGTTTGGCCAG	WC1 TGAGGTGGTGTGTCAC	3910	Hum. GGAACTGGAACCATCTGGTTGGATGACATGCGGTGCAAAGGAAATGAGTCATTTCTATGGGACTGTCACG	::::::::::::::::::::::::::::::::::::::	3980	Hum. CCAAACCCTGGGGACAGAGTGACTGTGGACAAGGAAGATGCTGGCGTGAGGTGCTCTGGACAGTC	* .:.::::::::::::::::::::::::::::::::::	. ,	Hım		WC1 AACATTGCCCACGACCACAGGGACCAGAACAACTTCTTCTCTCCCTGGCATCTTCTCCTGCCT 3780 3780 3840 3840	•
	ΗΩ	3		Hu	3		Hu	×		, E	•	3	
					•	. + : ;**	• ••	• •	•••		-, %-a, .		

Fig. 2Qxv

		4100	4110		4120	4	4130 4	4140
Hum.	G	TATCTT-	į	-CTTCTC	-TGGGCTC-CTTCTCCTGGTTCT	GTT	-GTTTATTCTATTTCTCA	CTCA
	••	•••	•••	••	••	••		•••
WC1	GGGGTTC	GGGGTTCTCTGCCTTA		SCTTCTCT	TCCTGGGGTCGCTTCTTCCTGGTCCTCGTCATCCTGGTGACTCAGCTACTCA	TCATCCTGGT	GACTCAGCT	ACTCA
	3850	3860	3870	3880	3890	3900	3910	
		4150	4160	4170		4180		
Hum.	CGTGGTG	ccgagtr	CGTGGTGCCGAGTTCAGAAACAAAACATCT-	ACATCT	-2225	GCCCCTCAGAGTTT-	GAGTTT	1
	••	•••••••••••••••••••••••••••••••••••••••		•••	••	•••	•••	
WC1		AGCAGAGCG	CAGAGCCTTAI	CCAGCTAI	GATGGAGAGCAGAGCCAGAGCCTTATCCAGCTATGAAGATGCTCTTGCTGAAGCTGTATGAGGAGCT	TGCTGAAGCT	GTGTATGAGG	SAGCT
	3920	3930	3940	3950	3960	3970	3980	
		4190	4200		4210	4220		
Hum.	1 1	CAAC	CAGAAGGAGGG	3GTTCT	CAGAAGGAGGGGTTCT-CTCGAGGAGAATTTATTCCATGA-	GAGAATTTAT	TCCATGA	1
		•••		••			•••	`
WC1	CGATTAC	CTTCTGACA	CAGAAGGAAGG	STCTGGGCA	CGATTACCTTCTGACACAGAAGGTCTGGGCAGCCCAGATCAGATGACTGATGTCCTGATGAAAT	ATGACTGATG	TCCCTGATG	AAAT
	3990	4000	4010	4020	4030	4040	4050	
	4230		4	4240	-		4250	
Hum.	GATGGAG-	GAG	d	ACCTG	CCTC-	D	AAGAGAGAGGAC	AGGAC
	••••••	:	•	••••••	••	••	•••••••••••••••••••••••••••••••••••••••	•••
WC1		TATGATGATGCTGAAG	AAGTACCAGTG	SCCTGGAAC	<i>AAGTACCAGTGCCTGGAACTCCTTCTCCCTCTCAGGGGAATGAGGAGGAAGTGC</i>	CTCAGGGGAA	TGAGGAGGA	AGTGC
	4060	4070	4080	4090	4100	4110	4120	

Fig. 20xvi

4260 4270 Hum. CCACATGGGACAAGAAC	:: :: .:.: CCCAGAGGAGGAGGACGGGGTGAGG	4130 4140 4150	4300	CCATGGTTGTGAAGATGCTAGCGACAC	• • • • • • • • • • • • • • • • • • • •	ATCCTGGGGAAGGAGAGAGAGC	4200 4210 4220	4340	CTTCCTG(•••••	CCTGGG	0675 0075 0
4280 CTCAGA-TGACACCC	STCCTCTCAGACAGGCTCT	4160 4170	4310	GCTAGCGACAC	•••	TCTGGCTGCTCCAGGGGA	4230 4240	4350	CCTCTGAAGCCACAAAA	•	CCCAGTGACTTTCTCG	4300
4290 CCCCAA	**: **: *: *: *: *: *: *: *: *: *: *: *:	4180 4190	4320 4330	ATCGCTGTTGGGAGTT	•••••••••••••••••••••••••••••••••••••••	WC1 TAATCCTGGGGAAGGAGAAGAGCTTCTGGCTGCTCCAGGGGAAGAAGGGGGATGCTGGGTATGATGAT	4250 4260					

.45 / 96

12 67	32 127	52 187	72	92 307	112 367	132 427	152 487	172 547
s AGC	9 9	A GCA	D GAT	PCCA	E Gaa	V GTT	TACC	G GGA
WTGG	A GCG	R AGG	G GGT	D GAT	S AGT	L	C TGT	E GAG
P CCC	T ACC	R CGT	S AGT	CAG	K AAG	VGTC	A GCT	M ATG
D GAC	TACG	e gaa	L CTG	I ATC	K AAA	R CGT	P CCT	V GTC
L CTG	T ACĞ	D GAT	L	D GAT	r Aga	I ATC	S AGC	K AAG
ဗဗ	P	<u>ა</u>	L CTG	$_{ m ITG}$	D GAC	\mathbf{F}	F	D GAC
L CTG	L	, A GCA	TACT	A GCC	S AGT	N AAC	A GCC	E GAG
₽ GCC	L CTG	Y TAT	DGAC	L CTG	A GCC	F	F	s TCG
PCCA	r CTG	Y TAC	F TTT	I	PCCA	CTGT	TACC	I ATC
L	Q CAG	R. AGA	D GAT	₽ GCC	W TGG	O CAG	ဗဗ	P
₽ GCC	L	V GIC	O CAG	E GAA	PCCG	TACA	C TGC	$_{ m ITG}$
MATG	L CTG	R AGG	L	R CGA	I ATA	EGAG	ACC	L CTG
GAGC	CAA	P CCC	ဗဗ	A GCT	M ATG	N AAT	Y TAC	Y TAC
·	F TTC	M ATG	K	ი მმმ	N AAC	SAGC	LCIC	S
TGT	CIC	CC.C.	O CAG	V GTG	K AAG	K AAG	H CAT	D GAT
GGTC	$^{ m F}$	9 999	H	Y TAC	L	K AAG	TACC	OCAA
GTCC	L	O CAG	$_{ m TTC}$	LCTC	R AGG	K AAG	V GTC	L
ACGC	ဗဗ	ე მვც	\mathbf{F}	TACT	P	FTT	N AAT	e Gaa
GTCGACCCACGCGTCCGGTCTGTGGCT	L CTG	ဗ္ဗဗ္ဗ	S AGC	N AAT	V GTC	A GCC	Y TAC	I. ATT
GTCG	L	G GGA	L	G GGA	9 9	C TGT	s TCT	F

Fig. 34

46/96

192	212 667	232 727	252 787	272 847	292 907	312 967	332 1027	352 1087
M ATG	L CTG	S TCC	S AGC	D GAC	L	A GCC	999 8	999
G G G	TACA	A GCC	A GCC	N AAT	$_{ m L}$	P	ဗဗ	K AAG
D GAT	R CGC	D GAC.	TACA	K AAG	O CAG	LCTC	V GTT	\mathbf{F}
V GTG	M ATG	H	E GAG	C TGC	A GCC	L CTG	Q CAG	V GTC
·L	L CTG	H CAT	E GAG	V GTC	K AAG	V GTC	W TGG	R CGT
V GTC	I ATC	L	\mathbf{F}	R AGA	L CTG	A GCG	O CAG	E
A GCT	PCCC	W TGG	F	A GCT	F	H	S	I ATT
T ACG	E GAG	CGC	$_{ m T}$	V GTG	T ACC	R CGC	TACC	D GAC
H CAT	S AGT	L CTC	Y TAC	R CGG	TACC	IATC	F	$_{ m L}$
K AAG	ဗဗ္ဗ	F	V GTC	S TCG	W TGG	V GTC	V GTC	L
H	L CTG	N AAC	v GTC	T ACA	K	NAAC	A GCA	s TCT
GCT	F	D GAC	O CAG	H	K AAG	F	Y TAC	$_{ m F}$
CCC	N AAC	TACC	TACC	L	O CAG	PCCC	ATC	A GCC
D GAC	N AAC	K AAG	s TCG	r Agg	L CTG	L CTG	H	C TGT
F TTT	M ATG	L CIC	PCCT	e Gag	L CTG	Q CAG	P	V GTT
P CCC	TACT	V GTC	I ATC	F TTT	K AAG	ე ეტე	A GCT	A GCG
s AGC	G GGT	PCCT	A GCC	FTTC	E GAA	P	T ACÀ	S TCT
CAA	STCT	Q CAG	A GCA	D GAC	၁၅၅	Q CAG	P	s AGC
၁၅၅	Y TAT	S TCC	V GTG	F TTT	၁၅၅	TACC	S TCT	R AGG
K AAA	L	G GGA	FTT	E	v GTG	ာ ဌာ	D GAT	T ACC

Fig. 3B

SAG

CCT

383

AGG

TAT

TACT

W TGG

R GGC

TACT

AAA

E GAG

K AAA

K AAA

田

M ATG

F

L CTG

A

K AAG

D GAT

s TCT

S TCC

မှ င်

ပ ညီ

V GTG

s TCA

သည် T

S AGT

ဗ္ဗဗ္ဗ

PCCA

R

N AAC

Fig. 3C

612 1867 632 1927 652 1987 672 2047 552 1687 592 .807 692 712 2167 2107 ATG P r CTG S TCA E GAA A GCC A A SAGT Σ W TGG L TTG F TTT G GGG 8 2 6 6 CCC SIC PCCT F TTT G GGC Y TAT ဗ္ဗဗ္ဗ LCTC LCTC AGCT CIC D GAT GGT L CTG S AGT L Y TAT S TCC N AAT SAGT GIC A GCA > E GAG A GCC STCT A GCC R AGA V GTC ဗ္ဗဗ္ဗ V GTC ACT Н L L TTG $_{\mathrm{TGT}}^{\mathrm{C}}$ A GCC N AAT R AGG GTC E TACT > L TTG A GCA K AAA Y TAC A GCA TACC T ACC TACT PCCA W TGG I ATT A GCC V GTC W TGG CAG L GTC s TCC > E GAG IATC S TCA TACT C TGC D GAC P CCG F TTT A GCC GTG CCA CAA LCTG S TCC Q CAG Q CAG V GTC H > P TAC CIC N AAC H S TCT S AGC K AAG PCCC **>**+ П GGG P A GCC r CIC V GTG IATC အ ၁၅ DGAC W TGG . R CGG IATC S AGC E GAA GGT V GTG င TGC H Y TAC Q CAG W TGG EGAG PCCC P CCA G GGG S TCC CHC PCCT CIC V GTC V GTT Y TAC R CGG o CAG Ø GAC A GCA R E GAG GGA S PCCC Q CAG GGA G CIT L CTG A GCA D GAT I ATC I ATC A GCC ഗ K AAG IATC PCCA O CAG V GTG ပ (ရင္ပင s AGC A GCT н TGG GTG R AGG s TCC ဗ ဗ PCCT A GCA L CTG > S TCC I ATA A GCC L TTA S AGC N AAC H CAT TAC LCTG \succ

Fig. 3D

75

732	777	752	2287	762	2317
۳ ر د	5	Ω	GAC		
ູດ ເ	75	Ø	GCT		
H E		Ω	GAC		
בי נ הינ	5	>	GTG		
X X X))	Ω	GAT		
X 4	PAG.	ഗ	AGT		
) 日 (545	Ø			
ט נ	ຄອອ	ഗ	TCT		
ъ Ę	3	H			
ж 2))	ፚ	AGG		
i L	9 TO	ပ	TGC	*	TAA
. (E→ (ACC	回	GAA	Ø	GCT
) 日 (GAG	노	AAG	>	GTA
ပ မြ	151	凸	C C C	ы	GAG
ტ წ	ر 9	Ŋ	TCT	EH	ACT
ر م و	CAG	Q!	CAG	ტ	299
> [I I S	н	CIC	Н	CIA
X ;	AAG	щ	CAC	ပ	TGC
დ წ	ر 9	a	CAA	Z	AAC
<u>م</u> ز	อ	曰	GAG	Z	AAC
(_		174

2870 2475 2633 2949 2554 2712 2791 3028 CCAGACCTGCTCCTACACTGATATTGAAGAACCTGGAGGGATCCTTCAGTTCTGGCCATTCCAGGGACCCTCCAGAAA ATATECTAACATECCACTCCTGGAAACTCCACTCTGAAGCTGCCGCTTTGGACACCAACACTCCCTTCTCCCAGGGTCA TGACAGCAGCACAAAAGACCACCTTTCTCCCCTGAGAGGAGCTTCTGCTACTCTGCATCACTGATGACACTCAGGGGG TGATGCACAGCAGTCTGCCTCCCCTATGGGACTCCCTTCTACCAAGCACATGAGCTCTCTAACAGGGTGGGGGCTACCC CACAGTGTTTCAAGAGATCCTAAAAAACCTGCCTGTCCCAGGACCCTATGGTAATGAACACCAAACATCTAAACAATC TGCAGGGATCTGCTCCCTCCTGCTTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTCTTTCCTGAAGTCTGACC ACCTTTCTTCTTGCTTCAGTTGGGGCAGACTCTGATCCCTTCTGCCCTGGCAGAATGGCAGGGGTAATCTGAGCCTTCT TCACTCCTTTACCCTAGCTGACCCCTTCACCTCTCCCCTTCCCTTTTCCTTTTTGGGATTCAGAAAACTGCTTGTC

Fig. 3E

	. 10	20	30	40	20	09	70
Ë	Hum. MALPALGLDPWSLLGLFI	LFLFQLLQLLL	PTTTAGGGGQ	3PMPRVRYY	GDERRALSFE	LFQLLQLLLPTTAGGGGGGPMPRVRYYAGDERRALSFFHQKGLQDFDTLLLS	LLS
	••••••	•••	•••	••••••••••••	••		••
Mur.	MALPSIGQDSWSLLRVF	VEFEQLFLLPS	LPPASGTGGQ	SPMPRVKYHP	GDGHRALSFF	FFQLFLLPSLPPASGTGGQGPMPRVKYHAGDGHRALSFFQQKGLRDFDTLLLS	LIS
	0 ,	06	30 100	40	30 120	130	140
ä.	Hum. GDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSECAFKKKSNETQCFNFIRVLVSYNVTHLY	ALDIQDPGVPR	LKNMIPWPAS	ORKKSECAFF	KKSNETQCFN	FIRVLVSYNVT	HLY
Mur.	DDGNTLYVGARETVLALNIQNPGIPRLKNMIPWPASERKKTECAFKKKSNETQCFNFIRVLVSYNATHLY	ALNIQNPGIPR	LKNMIPWPASI	ERKKTECAFF	KKSNETQCFN	.::.::::::::::::::::::::::::::::::::	::: HLY
	08	06	100	110	120	130	140
	150	.160	170	180	190	200	210
Hum.	TCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTAVLVDGMLYSGTMNNFLGSEPILMR	EQDSYLLPISE	DKVMEGKGQSI	PEDPAHKHTA	VLVDGMLYSG	TMNNFLGSEPI	LMR
		•••	•				
Mur.	ACGTFAFSPACTFIELQDSLLLPILIDKVMDGKGQSPLTLFTSTQAVLVDGMLYSGTMNNFLGSEPILMR	LODSLLLPILI	DKVMDGKGQS1	PLTLFTSTOA	VLVDGMLYSG	TMNNFLGSEPI	LMR
	150	160	170	180	190	200	210
	220	230	240	250	260	270	280
Hum.	TLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVVYFFFEETASEFDFFERLHTSRVARVCKNDVGGEKLLQ	WLHHDASFVAA	IPSTQVVYFF	FEETASEFDE	FERLHTSRVA	RVCKNDVGGEK	ČĽ
		••••••	••	•••	•••••••••••••••••••••••••••••••••••••••		•••
Mur.	TLGSHPVLKTDIFLRWLHADASFVAAIPSTQVVYFFFEETASEFDFFEELYISRVAQVCKNDVGGEKLLQ	WLHADASFVAA	IPSTQVVYFF	FEETASEFDE	FEELYISRVA	OVCKNDVGGEK	CIO CIO
	220	230	240	250	260	270	280

Fig. 31

Hum. KKWT	:::: Mur. KKWI	Hum. KGKY :::: Mur. KGKY	Hum. ETAQ : : : Mur. ESAR	Hum. RVPR :::: Mur. RVPR
290 340 350 350 Hum. KKWTTFLKAQLLCTQPGQLPFNVIRHAVLLPADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVF	::::::::::::::::::::::::::::::::::::::	360 370 380 390 400 410 420 KGKYKELNKETSRWTTYRGPETNPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTPLLVKSGVEYTRLAV ::::::::::::::::::::::::::::::::::::	430 440 450 460 470 480 490 ETAQGLDGHSHLVMYLGTTTGSLHKAVVSGDSSAHLVEEIQLFPDPEPVRNLQLAPTQGAVFVGFSGGVW:::::::::::::::::::::::::::::::::::	500 510 520 530 540 550 560 RVPRANCSVYESCVDCVLARDPHCAWDPESRTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRPQS ::::::::::::::::::::::::::::::::::::
300 PGQLPFNVIR	::::::::: 2PGQLPFNIIR 300	370 TTYRGPETNPR	440 CLGTTTGSLHK :::::::::::: CLGTSTGPLHK 440	510 CCVLARDPHCA ::::::::: CCVLARDPHCA 510
310 HAVLLPADSP	::::::::::::::::::::::::::::::::::::::	370 380 420 400 410 420 TYRGPETNPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTPLLVKSGVEYTRLAV ::::::::::::::::::::::::::::::::::::	440 450 460 470 480 490 ***********************************	520 WDPESRTCCLI :::::::::
320 TAPHIYAVETS	SVSRIYAVETS 320	390)KALTEMKDHF ::::::::::)KALTEMKDHF 390	460 :VEEIQLFPDP: :VEEIQLSPDS: 460	530 LSAPNINSWKQ: :: LSGST-KPWKQ:
330 . QWQVGGTRSS	::::::: QWQVGGTRS: 330	400 LMDEQVVGTI :::::::: LMDEHVVGTI 400	470 EPVRNLQLAI ::::::::: EPVRNLQLAI 470	540 DMERGNPEW? ::::::::: DMERGNPEWV
340 SAVCAFSLLD	::::::::::::::::::::::::::::::::::::::	410 PLLVKSGVEY1 ::::::::::	480 PTQGAVEVGES : : : : : : : : : : : : : : : : : : :	550 ACASGPMSRSI : :::: 7CTRGPMARSI 550
350 ERVF	::::: DIERVE 350	420 RLAV :::: RLAV	490 GGVW SGGIW 490	560 LRPQS : ::

630	WATENG	••	VATENG		700	LSGALI	::	LLGVLT						
620	ODGNGGTXOC		ODGNGGLYQC	620	069	VTVTVLFALV	•••••••••••••••••••••••••••••••••••••••	LIVTVLLAIV	069	760	CLGTEVA	•••	HLGAEVA	760
. 610 .	LELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGGLYQCWATENG		LELRCPHLSALASYHWSHGRAKISEASATVYNGSLLLLPQDGVGGLYQCVATENG	. 610	089	TLALDPELAGIPREHVKVPLTRVSGGAALAAQQSYWPHFVTVTVLFALVLSGALI		IAAQRSYWPHF	089	750	SASDVDADNN		SASDVDADNN	750
009	PAAVPEASST	••••••	RAKISEASAT	009	670	LTRVSGGAAI		LTRVGGGASM	029	740	HLQSPKECRI		HLQPSKDHRT	740
290	ALASYYWSHG	•••	ALASYHWSHG	290	099	GIPREHVKVP		GVPRERVQVP	099	730	SEKAPLSREQ	•••••••••••••••••••••••••••••••••••••••	REKAPLSRDO	730
580	LELPCPHLS		ILELRCPHLS.	580	650	TLALDPELA		PLALDPELA	650	720	KVQGCETLRP	•••	CVQGCGMLPP	720
570	RPQIIKEVLAVPNSI		PPQLIKEVLTVPNSI	570	640	FSYPVISYWVDSQDQ		YSYPVVSYWVDSQDQPLALDPELAGVPRERVQVPLTRVGGGASMAAQRSYWPHFLIVTVLLAIVLLGVLT	640	.710	ILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRTSASDVDADNNCLGTEVA		Mur. ILLASPLGALRARGKVOGCGMLPPREKAPLSRDQHLQPSKDHRTSASDVDADNNHLGAEVA	710
	Hum. RPQ	••	Mur. PPQ	560		Hum. FSY	•••	Mur. YSY	630		Hum. ILV	:	Mur. LLL	700

Fig. 3H

20 CTGTGGCTGAGCATGGC	::::::::::::::::::::::::::::::::::::::	60 70 80 90 100 CTGGACCCTCTGGGCCTTTTCCTCTTCCAACTGCTTC-AGCTGCT	cctaccarccaggactcarggagrcrccrgcgrgrrrrrrrrccaact-crrccrgcrgcc 80 90 100 110 120	110 120 130 140 150 170 170 Hum. GCTGCCGACGACGGGGGGGGGGGGCCGGGGCCCATGCCCAGGGTCAGATACTATGCAGGGGAT : : : : : : : : : : : : : : : : : :	180 190 200 210 220 230 240 Hum. GAACGTAGGGCACTTCTTCCACCAGAAGGGCCTCCAGGATTTTGACACTCTGCTCCTGAGTGGTG :.:::::::::::::::::::::::::::::::
3 TGTGGCTG	: .:::: TCAGGCTG 60	ACTGCTTC	ACT-CTTC 130	0 ATACTATG ::::::: ATACCATG 200	0 CTGCTCCI ::::::: CTGCTCCI
 	: IGACCATC	90 CTCTTCCA	rrcrrcca 120	160 AGGGTCAGA:::::: AGAGTCAAA:	230 TTGACACTC' :::::::: TTGACACGC' 260
-cercceer-	CCATCTGGT	80 GCCTTTTC	CGTGTTTT	150 CCATGCCC:::::: CCATGCCC:	220 CCAGGATT' :::: CCGAGACT' 250
	CTGGGGAA	70 CCTCCTGG	rcrccrec 1	130 140 150 160 170 SCGGGGGGGGCCCATGCCCAGGGTCAGATACTATGCAGGGG : ::::: :::::::::::::::::::::::	200 210 220 230 240 GCTTCTTCCACGAAGGGCCTCCAGGATTTTGACACTCTGCTCCTGAGTGG' ::::::::::::::::::::::::::::::::::
10 ACG-	:: CTGTACTG	60 CCCTGGAG	CATGGAG	130 GGAGGCGGG(: :: ACTGGTGGT(200 TCCACCAGAS ::::::::: TCCAACAAAS
!	TAGGGGTC 20	CCTGGACC	CCAGGACT	1 GGCGGGGG : ::- TTCTGGGF	2 AGCTTCT1 ::::::: AGCTTCT1 230
Hum. GTCG-AC-CC	GCCTGGGT 10	40 50 Hum. CCTCCCAGCCCTGGGC	rccress 80	10 120 GCCGACGACGACG .: : : : :: ACTGCCACCTGC7	180 190 SAACGTAGGGCACTT :.::::::: SGGCACAGGGCCCTC 220
GTCG-AC	:::::: CTCGGACGCCTG	40 CCTCCCA	CCTACCA	110 . GCTGCCG	180 1. GAACGTA0 :.:::: . GGGCACA0
Hum.	Mur.	Hum.	Mur.	Hum. Mu <i>r</i> .	Hum. Mur. 21

Fig. 3I

310 GGGGTCCC ::::	380 AGAAGAAG ::::::	450	CTACACCT:::	520 CCCATCTC ::::::
250 260 310 ATGGAAATACTCTCTACGTGGGGGCTCGAGAAGCCATTCTGGCCTTGGATATCCAGGATCCAGGGTCCC ::::::::::::::::::::::::::::::::	340 380 370 360 370 380 370 380 341 380 341 380 341 340 350 340 340 340 340 340 340 340 340 340 34	410	GTTTCAACTTCATCCGTGTCCTGGTTTCTTACAATGTCACCCATCTCTACACCT :::::::::::::::::::::	440 450 460 470 480 480 490 500 510 520 CAGCCCTGCTTGTACCTTCATTGAACTTCAAGATTCCTACCTGTTGCCCATCTC :::::::::::::::::::::::::::::::
290 SGCCTTGGATA: :::::::::::::::::::::::::::::::	360 AAAAGAGTGAZ :::::::	400	TTCTTACAATC	500 CTTCAAGATTC ::::::::
280 AAGCCATTCTG(:.:::AGACCGTCCTG() 0	350 CAGTGACAGAA ::::::::::	0 390 420	CGTGTCCTGGT	460 490 CCTTCATTGAA(::::::CCTTCATTGAA(0)
270 TGGGGGCTCGAGA ::::::::::: TGGGGCTCGAGA(300	340 CGTGGCCAGC	370 380	CCAACTTCATC	440 480 CAGCCCTGCTTGTAC ::::::::::::::::::::::::::::::::::::
260 ACTCTCTACGTC :::::::::::::::::::::::::::::::::::		360 37	ACACAGIGITI	430 470 TTCGCCTTCAGCC :::::::: TTTGCCTTCAGCC 500 510
σ.	320 330 330 CAGGCTAAAGAACATG ::::::::::::::::::::::::::::::::::::	350 36	AGCAATGA	460 GCGCACC : :: :: GTGGGACC
Hum. Mur.	Hum. Mur.	m	Hum.	Hum. Mur.

	530	540	550	560	570	580	590
Hum.		GGAGGACAAGGTCATGGAGGGAAAAGGCCCATTTTGACCCCGCTCACAAGCATACG-GCTGTCTT	AAAAGGCCAAA	AGCCCCTTTG	CCCCGCTCAC	AAGCATACG-G	CTGTCTT
		•••	•••••••••••••••••••••••••••••••••••••••		•••		•••
Mur.		GATAGACAAGGTCATGGACGGGAAGGGCCAAAGCCC-TTTGACCTGTTCACAAGCACACAAGCTGTCTT	GAAGGGCCAAA	AGCCC-TTTG?	CCCTGTTCAC	AAGCACACAAG	CTGTCTT
u,	560 5.	570 580	590	009	610	620	
	009	610	620	630	640	650	099
Hum.	GGTGGATGG	Hum. GGTGGATGGGATGCTCTATTCTGGTACTATGAACAACTTCCTGGGCAGTGAGCCCATCCTGATGCGCACA	TGGTACTATG	AACAACTTCĊI	GGGCAGTGAG	CCCATCCTGAT	GCGCACA
	••••••	••	••••••	••••••	••		•••
Mur.	GGTCGATGG	GATGCTTTATTCC	CGGCACCATGA	AACAACTTCCT	GGGCAGCGAG	TTATTCCGGCACCATGAACAACTTCCTGGGCAGCGAGCCCATCCTGATGCGGACA	GCGGACA
	670	680	069	700	710	720	730
Hum.	CTGGGATCCC	Hum. CIGGGAICCCAGCCIGICCICAAGACCGACAACTICCICCGCIGGCIGCAICAIGACGCCICCITIGIGG	AAGACCGACAZ	ACTICCICCGC	TGGCTGCATC	ATGACGCCTCC	TTTGTGG
		•••	•	•••	•••		•••
Mur.	CTGGGATCC	Mur. CTGGGATCCCATCCTGTTCTCAAGACTGACATCTTCTTACGCTGCCTGC	AAGACTGACAT	CTTCTTACGC	TGGCTGCACG	CGGATGCCTCC	TTCGTGG
	700	710 720	0 730	740	750	160	
	740	750	760	770	780	790	800
Hum.		CAGCCATCCCTTCGACCCAGGTCGTCTTCTTCTTCGAGGAGACAGCCAGC	TCGTCTACTTC	CTTCTTCGAGG	AGACAGCCAG	CGAGTTTGACT	TCTTTGA
	••		•••••••••••••••••••••••••••••••••••••••	•••			•••
Mur.	CAGCCATTC	Mur. CAGCCATTCCATCCACCAGGTCGTCTATTTCTTTGAGGAGACAGCCAGC	TCGTCTATTTC	CTTCTTTGAGG	AGACAGCCAG	CGAGTTTGACT	TCTTTGA
	770	780 790	0 800	81,0	820	830	

Fig. 3K

	810	820	830	840	850	8 60	870
Hum.		CACACATCG	CGGGTGGCTAG	SAGTCTGCAAGA	AATGACGTGG	SCGGCGAAAA	GAGGCTCCACACATCGCGGGTGGCTAGAGTCTGCAAGAATGACGTGGGCGGCGAAAAGCTGCTGCAGAAG
Mur.		AGAGCTGTATATCC	AGGGTGGCTC?	AGTCTGCAAGA	AACGACGTGG	SCGGTGAAAA	AGAGCTGTATATATCCAGGGTGGCTCAAGTCTGCAAGAACGACGTGGGCGGTGAAAAGCTGCTGCAGAAG
	840	820	860	870	880	068	006
	880	068	006	910	920	030	040 040
Hum.	AAGTGGA		IGAMGGCCCAC	CIECICIECAL			AAGIGGACCACCIICCIGAAGGCCCAGCIGICIGCACCCAGCGGGGGGGCAGCIGCCCIICAACGICAICA
Mur.	တ	CCACCTTCC1 920	rcaaagcccag 930	STTGCTCTGCGC 940	CTCAGCCAGG(950	SCAGCTGCCA: 960	AAGTGGACCACCTTCCTCAAAGCCCAGTTGCTCTGCGCTCAGCCAGGGCAGCTGCCATTCAACATCATCC 10 920 930 940 950
	950	096	970	086	066	1000	1010
Hum.		GGTCCTGCT	CCCGCCGATI	CTCCCACAGCI	rcccacatc	PACGCAGTCT	GCCACGCGGTCCTGCTCCCCGATTCTCCCACAGCTCCCCACATCTACGCAGTCTTCACCTCCCAGTG
	••		•••••••••••••••			••	
Mur.		GGTCCTGCT	SCCGCCGATI	CICCCICIGI	PTCCCGCATC	PACGCAGTCT	GCCACGCGGTCCTGCTGCCCGCCGATTCTCCCTCTGTTTCCCGCATCTACGCAGTCTTACCTCCCAGTG
	086	066	1000	1010	1020	1030	1040
	1020	1030	1040	1050	.1060	1070	1080
Hum.		GGCGGGACCZ	AGGAGCTCTGC	GGTTTGTGCCI	PTCTCTCT.	FGGACATTGA	GCAGGTTGGCGGGACCAGGAGCTCTGCGGTTTGTGCCTTCTCTCTTTGGACATTGAACGTGTCTTTAAG
	••	••	•••••••••••••••••••••••••••••••••••••••	••••••	•	••	
Mur.		GGGGGGACCA	AGGAGCTCAGC	AGTCTGTGCCI	FTCTCTCTCA	CGGACATTGA	GCAGGTTGGCGGGACCAGGAGCTCAGCAGTCTGTGCCTTCTCTCTC
Н	1050	1060	1070	1080	1090	1100	1110

Fig. 31

1150	TGAACAAAGAAACTTCACGCTGGACTACTTATAGGGGCCCTGAGACCAACCCCC	• • • • • • • • • • • • • • • • • • • •	GGGAAGTACAAGGAGCTGAACAAGAGACCTCCCGCTGGACCACTTACCGGGGCTCAGAGGTCAGCCCGA	1180	1220	GGCCAGGCAGTTGCTCAGTGGGCCCCTCCTCAAAAGGCCCTGACCTTCATGAAGGACCATTTCCTGAT		GGCCAGGCAGTIGCTCCATGGGCCCCTCCTCTGACAAAGCCTTGACCTTCATGAAGGACCATTTTCTGAT	1250	1290	Hum. GGATGAGCAAGTGGTGGGGACGCCCCTGCTGGTGAAATCTGGCGTGGAGTATACACGGCTTGCAGTGGAG		GGATGAGCACGTGGTAGGAACACCCCTGCTGGTGAAGTCTGGTGTGGAGTACACACGGCTTGCTGTGGAG	1320	1360	ACAGCCCAGGGCCTTGATGGGCACAGCCATCTTGTCATGTACCTGGGAACCACCACAGGGTCGCTCCACA		TCAGCTCGGGGCCTTGATGGGAGCAGCCATGTGGTCTGTATCTGGGTACCTCCACGGGTCCCCTGCACA	1390
1140	TAGGGGCCCTG		CCGGGGCTCAG	11/0	1210	TTCATGAAGGA	•••••••••••••••••••••••••••••••••••••••	ITCATGAAGGA	1240	1280	AGTATACACGG	•••	AGTACACACGG	1310	1350	AACCACCACAG	•••••••••••••••••••••••••••••••••••••••	TACCTCCACGG	1380
1130	GGACTACTTA	•••	GGACCACTTA	1160	1200	GGCCCTGACC	•••	AGCCTTGACC	1230	1270	TCTGGCGTGG	••••••	TCTGGTGTGG	1300	1340	TGTACCTGGG	•••	TGTATCTGGG	1370
1120	ACTICACGCI	•••••••••••••••••••••••••••••••••••••••	SACCTCCCGCT	1150	1190	CCTCTGATAA	•••	CCTCTGACAA	1220	1260	GCTGGTGAAA	•	GCTGGTGAAG	1290	1330	CATCTTGTCA	•••	CATGTGGTCA	1360
1110	rgaacaaaga <i>i</i>		rgaacaaggac	1140	1180	AGTGGGCCCCT	••	CATGGGCCCCT	1210	1250	SGACGCCCC		SGAACACCCCT	1280	1320	ATGGGCACAG		ATGGGAGCAGC	1350
1100	GGGAAATACAAAGAGTI		PACAAGGAGCI	1130	1170	SCAGTTGCTCA		SCAGTTGCTCC	1200	1240	SCAAGTGGTGG		SCACGTGGTAG	1270	1310	AGGGCCTTGA		SGGGCCTTG?	1340
1090	Hum. GGGAAAT	•	Mur. GGGAAG	1120	1160	Hum. GGCCAG(•••	Mur. GGCCAG	1190	1230	Hum. GGATGA	••	Mur. GGATGAC	1260	1300	Hum. ACAGCCC	••	Mur. TCAGCTC	1330

Fig. 3M

1370 1380 1390 1400 1410 1420 1430 AGCTGTAAGTGGGACAGCAGTGCTCATCTGGAAGAGAGAG	::::::::::::::::::::::::::::::::::::::	1440 1450 1460 1470 1480 1490 1500 TGTTCGCAACCTGCCCCCCCCCCCAGGGTGTTTGTAGGCTTCTCAGGAGGTGTCTGGAGG :::::::::::::::::::::::::::::::::	1510 1520 1530 1540 1550 1560 1570 Hum. GTGCCCCGAGCCAACTGTATGAGAGCTGTGTGTGTCCTTGCCCGGGACCCCCACTGTG ::::::::::::::::::::::::::::::::::	1580 1690 1610 1620 1630 1640 Hum. CCTGGGACCCTGAACCTGTTGCCTCCTGTCTGCCCCCAACCTGAACTCCTGGAAGCAGGACAT :::::::::::::::::::::::::::::::::::
1420 CAGCTGTTCCC	::::::: CAGCTGAGCCC 1450	1490 SCTTCTCAGGA ::::::::::	1560 ccrrccccccc ::::::::: scrrcccaccc 1590	1630 CTGAACTCCTG :::::
1410 GGAAGAGATTO	::::::::::::::::::::::::::::::::::::::	1480 GTGTTTGTAGG ::::::::: GTGTTTGCAGG	1550 TGGACTGTGT :::::::: TGGACTGTGT 1580	1620 TGCCCCCAACC:::::::::::::::::::::::::::::
1400 CTCATCTGGT	:: ::: :: CTTATCTCGT 1430	1470 ::::::::::::::::::::::::::::::::::::	1540 GAGAGCTGTG ::::::::: GAGAGCTGTG 1570	1610 GCCTCCTGTC:::::::::::::::::::::::::::::
1390 GACAGCAGTG	::::::::::::::::::::::::::::::::::::::	1460 TGGCCCCCAC ::::::::::	1530 TAGTGTCTAT ::::::: CAGTGTCTAC	1600 CGAACCIGIT :::::.
1380 GGTAAGTGGG	::::::::::::::::::::::::::::::::::::::	1440 1450 TGTTCGCAACCTGCAGC ::::::::::::::::::::::::::::::::::	1510 1520 GTGCCCGAGCCAACTG :: :::::::::: GTTCCCAGGGCCAATTG	1580 1590 CCTGGGACCCTGAGTCC :::::::::::::::::::::::::::::::::::
1370 Hum. AGGCTG3	.:::::::::::::::::::::::::::::::::::::	1440 Hum. TGTTCGC :::::: Mur. TGTTCG2	1510 Hum. GTGCCCC :: ::: Mur. GTTCCC2	1580 Hum. CCTGGG2 :::::: Mur. CCTGGG2

Fig. 3N

	1650	1660	1670	1680	1690	1700	1710
Hum.		AACCCAGAGT	GGAGCGGGGGAACCCAGAGTGGGCATGTGCCAGTGGCCCCATGAGCAGGAGCCTTCGGCCTCAGAGCCGC	AGTGGCCCCA	TGAGCAGGAG	SCCTTCGGCCT	CAGAGCCGC
	••	••••••		••	••••••	••	
Mur.	GGAACGCGGC 1680	AACCCGGAGT(1690	GGAACGCGGCAACCCGGAGTGGGTATGCACCCGTGGCCCCATGGCCCAGGAGCCCCGGCGTCAGAGCCCC 11680 1730 1740	CGTGGCCCCA 1710	TGGCCAGGAG 1720	1730	CAGAGCCCC 1740
	1720	1730	1740	ر بر ر	1760	1770	1780
Hum.	CCGCAAATCA	TTAAAGAAGT	CCGCAAATCATTAAAGAAGTCCTGGCTGTCCCCAACTCCATCCTGGAGCTCCCCTGCCCCCACCTGTCAG	CCAACTCCAT	CCTGGAGCTC	CCCTGCCCCC	ACCTGTCAG
,		•••		••••••			••
Mur.	CCTCAACTAA	TTAAAGAAGT(1760	CCTCAACTAATTAAAGAAGTCCTGACAGTCCCCAACTCCATGCTGGAGCTGCGCTGCCCCCACCTGTCAG 1750 1760 1770 1780 1790 1800 1800	CCAACTCCAT 1780	CCTGGAGCTG 1790	1800	ACCTGTCAG 1810
				·	٠		
	1790	1800	. 1810	1820	1830	1840	1850
Hum.	CCTTGGCCTC	TTATTAGE	CCTTGGCCTCTTATTATTGGAGTCATGGCCCAGCAGCAGTCCCAGAAGCCTCTTCCACTGTCTACAATGG	AGCAGCAGTC	CCAGAAGCCT	CTTCCACTGT	CTACAATGG
	•••••••••••••••••••••••••••••••••••••••	••••••		•••		•••	••
Mur.	CACTGGCCTC	TTACCACTGG	CACTGGCCTCTTACCACTGGAGTCATGGCCGAGCCAAAATCTCAGAAGCCTCTGCTACCGTCTACAATGG	AGCCAAAATC	TCAGAAGCCT	CTGCTACCGT	CTACAATGG
	1820	1830	1840	1850	1860	1870	1880
٠.	1860	1870	1880	1890	1900	1910	1920
Hum.	CICCCICITG	CTGATAGTGC	CTCCCTCTTGCTGATGCAGGATGGAGTTGGGGGTCTCTACCAGTGCTGGGCAACTGAGAATGGCTTT	GGGGGTCTCT	ACCAGIGCIG	GGCAACTGAG	AATGGCTTT
		•		•••			
Mur.	CTCCCTCTTG	CTGCTGCCGC	CTCCCTCTTGCTGCTGCCGCAGGATGGTGTCGGGGGCCTCTACCAGTGTGTGGGGGCGACTGAGAACGGCTAC	GGGGCCTCT	ACCAGTGTGT	GGCGACTGAG	AACGGCTAC
	1890	1900	1910	1920	1930	1940	1950

Fig. 30

			•	
1930 1940 1950 1960 1970 1980 1990 TCATACCTGGTCCTGGTGAACTGGCCAG	::::::::::::::::::::::::::::::::::::::	2000 2010 2020 2030 2040 2050 2060 GCATCCCCCGGGAGCATGTGAAGGTCCCGTTGACCAGGGTCAGTGGTGGGGCCGCCCTGGCTGCCCAGCA :::::::::::::::::::::::::::::::	2070 2080 2090 2100 2110 2120 2130 GTCCTACTGGCCCCACTTTGTCACTGTCATCTTTTGCCTTTCAGGAGCCCTCATCATC ::::::::::::::::::::::::::::	2140 2150 2160 2170 2180 2190 2200 CTCGTGGCCTCCCCATTGAGAGCACTCCGGGCTCGGGGCAAGGTTCAGGGCTGTGAGACCCTGCGCCTG ::::::::::::::::::::::::::::
1980 GCCCTGGATC	:: ::::: GCGCTGGACC 2010	2050 GGGCCGCCT::::::::::::::::::::::::::::::	2120 GCTTTCAGGA ::: .::: GCTCCTGGGA	2190 GGCTGTGAGA :::::::::: GGCTGTGGGA
1970 CCAGACCCTG	::::::: ccagccccrg 2000	2040 GTCAGTGGTG :::::::: GTCGGAGGCG	2100 2110 2120 213 GTCCTCTTTGCCTTAGTGCTTTCAGGAGCCCTCA :::::::::::::::::::::::::::::::::	2180 CAAGGTTCAG :::::::: TAAGGTTCAG
1960 ACAGCCAGGA	::::::: ACAGCCAGGA 1990	2030 GTTGACCAGG : ::::::: GCTGACCAGG	2100 ACTGTCCTCT ::::::: ACCGTCCTCC 2130	2170 GGGCTCGGGG ::::::::: GGGCTCGGGG
1950 PACTGGGTGG	:: ::::: 	2020 rgaaggrccc :::::::: rgcaggrccc	2090 rgrcacrgrcacr : :: :: :: rcrcarcgrracc 2120	2160 AGAGCACTCC .:.:::: 3GGGCGCTGC 2190
1940 GEGATCECE	GIGGICICC	2010 GGGAGCATG: :::::::::::::::::::::::::::::::::::	2080 sgccccactr: ::::::::	2150 TCCCCATTGA :::::::: TCCCCACTGG
1930 TCATACCCI	::::::::::::::::::::::::::::::::::::::	2000 GCATCCCCCGG ::.: :::: GCGTTCCCCGT 2030	2070 208 GTCCTACTGGCCCCA ::::::::::::::::::::::::::::::::	2140 215 CTCGTGGCCTCCCCA ::::::::::: CTCCTCGCTTCCCCA 2170 2180
Hum.	Mur.	Hum. Mur.	Hum. Mur.	Hum. Mur.

Fig. 31

		2220	2230	2240	2250	2260	2270
Hum.		GGGAGAAGGCCCCGTTAAGCAGAGAGCAACACCTCCAGTCTCCCAAGGAATGCAGGACCTCTGCCAGTGA	AGAGAGCAAC.	ACCTCCAGTC	TCCCAAGGAA	TGCAGGACC	TCTGCCA
			•••••••••••••••••••••••••••••••••••••••	••		••	••
Mur.		GGGAAAAGGCTCCACTGAGCAGGACCAGCACCTCCAGGCCCTCCAAGGACCACAGGACCTCTGCCAGTGA 2240 2250 2250 2300	AGGGACCAGC	ACCTCCAGCC 2270	CTCCAAGGAC 2280	CACAGGACC 2290	TCTGCCAG 2300
Hum.		2280 2290 2300 2310 2320 2330 2340 TGTGGACGCTGACAACAACTGCCTAGGCACTGAGGTAGCTTAAACTCTAGGCACAGG-CCGGGGGCTGC	2300 GCCTAGGCAC	2310 TGAGGTAGCT	2320 TAAACTCTAG	2330 GCACAGG-C	2340 CGGGGCTG
Mur.		::::::::::::::::::::::::::::::::::::::	. ::.:: ATCTGGGCGC 2330	:::::: CGAAGIGGCI 2340	:::: :::::::::::::::::::::::::::::::::	.::::: :ACACAGATC 2360	:: .::: CGCAGCTG2 2370
	2350	2360	2370	2380	2390	2400	2410
Hum.	Hum. GGTGCAGGCACCTGGCCATGCTGGCTGGCCGGCCCAAGCACACCCCTGACTAGGATGACAGCACACAAA	CCTGGCCATG	CTGGCTGGGC	SGCCCAAGCA	CAGCCCTGAC	TAGGATGAC	AGCAGCACF
	•••	••	•••	••			•
Mur.	AGAGCAAGCCACTGGCCTTGTTGGCTATGC-	ACTGGCCTTG	TTGGCTATGC.	CAGGCACAG-	.CAG		-TGCCACTCT-
	2380	2390	2400	2410			2420
	2420	. 2430	2440	2450	2460	2470	2480
Hum.	Hum. AGACCACCTTTCTCCCCTGAGAGGAGCTTCTGCTACTCTGCATCACTGATGACACTCAGCAGGGTGATGC	TCTCCCCTGAC	3AGGAGCTTC!	TGCTACTCTG	CATCACTGAT	GACACTCAG	CAGGGTGAI
	••	•••	•••	•••		•	••
Mur.	-GACCA	[999	TAGGAGGC	I-CI-C-CIG	GGGTAGGAGGCT-CT-C-CTGCTA-ACGTGTGTCAC-CTACAG-	GTCAC-CTA	CAGC
		2430	2,	2440	2450	2460	

Fig. 3Q

			•	
2550 reegeect	::::	CCATTCCAG ::: TTGACCCAA 2580	CTATGGTA::::::CTGTGGTG	2750 ACTCTGAA :::::.: ACTCTAGA 2720
2540 TAACAGGGT		2610 GTTCTGGCC ::::::	2680 cccaggaccc : .:: : cr-gggarrc 2640	2740 AAACT-CCF:::::::
2550 2530 2540 2550 2550 2550 2540 2550 2530 2540 2550	:: ATT	2560 2570 2580 2590 2600 2610 ACCCCCAGACCTGCTCCATACATA-TTGAAGAACCTGGAGAGGATCCTTCAGTTCTGGCCATTCCAG .::::::::::::::::::::::::::::::::::::	2620 2630 2640 2650 2660 2670 2680 Hum. GGACCCT-CCAGAAACACA-GTGTTTCAAGAGATCCTAAAAAAACTGCCTGTCCCAGGACCCTATGGTA :::::::::::::::::::::::::::::::::::	2690 2700 2710 2720 2730 2740 2750 Hum. ATGAACACCAAACATCATATGCTAA-CATGCCACTCCTGGAAACT-CCACTCTGAA : .::::::::::::::::::::::::::::::::::
2520 ACCAAGCAC	.::::::: GC-AAGCACAT 2510	2590 ACCTGGAGAG(::::::::::::::::::::::::::::::::	2660 CTAAAAAAA ::: CATGAAAGG	-CATGCC : ::: : TCCTGCAAAC 2690
2510 ACTCCCTTCT	ACTCTCTTCT 2500	2580 [A-TTGAAGA : . :::: SACAGGAAGA	2650 CCAAGAGATCC :::::::::: CCAGGAGA-CC	2720 CATATGCTAA- :. :::: CTGGGGCTATT 2680
2500 CCCTATGGG	### ##################################	2570 CTACACTGA1 :::. TTGTGCTGTC	2640 ACA-GTGTT1 : :::: AAACGTGCTC	2710 TAAACAATCZ .:.::::
2490 AGTCTG-CCTC	TAGGTCCTC	2560 CCCCAGACCTGCTC : ::::::::: FCTCCATACCTGTAC	0 2630 GGACCCT-CCAGAAAC :::::::::::::::::::::::::::::::::::	690 2700 ATGAACACCAAACATCTA : .::: :::::: . ACAAAC-CTAAGCATCG
			• •	2690 . ATGAACAC : .:::: ACAAAC-C
H	Mur.	Hum. Mur.	26 Hum. Mur.	Hum. Mur.

Fig. 3R

		2760	2770	2780	2790	28,00	0 28	2810
Hum.	GCTGCCGCTTT	CGCTTTGGA	CACCAACAC	GGACACCAACÁCTCCCTTCT-CCCAGG-GTCATGCAGGGATCTGCTCCCTGCTGC	CAGG-GTCAT	GCAGGGA	TCTGCTCCC	TCCTGC
	••	•••	•••		•	•		••
Mur.	AGCAGCTGC	TGCTTTGAA	CACCAGCCC	CCCICC	CAAGAGTCTC	TATGGAG	TTGGC-CCC	TTGTGT
	2730	2740	06/Z	09/7	0//7		08/7	06/7
	2820	2830	2840	2850	2860	2870	0 28	2880
Hum.	TTCCCTTAC	CAGTCGTGC.	ACCGCTGAC!	TTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTCTTTCCTGAAGTCTGACCACCTTTCTTGTTGC	CTTTCCTGAA	GTCTGAC	CACCTTTCT	TCTTGC
Mur	TTCCTTTAC	TTACCAGTCGGGC	CATACTGTTT	j	GGGAAGTCATCTCTGAAGTCTAACCACCTTCCTTGTTG	GTCTAAC	CACCTTCCT	TCTTGG
	2800	2810	0	2820	2830	2840	2850	
	2890	2900	2910	. 2920	0 2930	0	2940	2950
.Hum.		GGCAGAÇTC	TGATCCCT	TICAGITGGGGCAGAÇICTGATCCCTTCTGCCCTGGCAGAATGGCAGGGGTAATCTGAGCCTTCTTC	SCAGAATGGC	AGGGGTA	ATCTGAGCC	TTCTTC
	•••••••••••••••••••••••••••••••••••••••	••	••	••		::		••
Mur.	TTCAGTTTG	GACAGATTG	TTATTATTG:	TTCAGTTTGGACAGATTGTTATTATTGTCTCTGCCCTGGCTAGAATGGGGGGCATAATCTGAGCCTTGTTC	SCTAGAATGG	GGGCATA	ATCTGAGCC	TIGITC
2	2860 2	2870	2880	2890	2900	2910	2920	
	2960		2970	2980	2990	3000	3010	
Hum.	ACTCCTTTACCC	CCCTAG	CIGACCCCI	TAGCTGACCCCTTCACCTCTCCCCCTCCCTTTTCCTTTTGGGATTCAGA	CCICCCIT	'TTCCTTT	GTTTTGGGA	TTCAGA
	••••••	•••	••		••	••••••		••
Mur.	CCTIGI	CCAGTGTGG	CTGACCC-T7	CCTIGICCAGIGIGGCIGACCC-TIGACCICITCCITCCICCTCCCTTIGITITGGGALICAGA	TTCCTCC	TCCCTTT(GTTTTGGGA	TTCAGA
	2930	2940	2950	2960	2970	0	2980	2990

Fig. 38

	3020	3030	3040	3050	3060	3070	3080
Hum.	AAACTGCTTGTCAG	TGTCAGAG	ACTGTTTA	TTTTTTTAAAA	AATATAAGGCT	TAAAAAAAA	AGACTGTTTATTTTAAAAATATATAAGGCTTAAAAAAAAA
	•••	••	•••		•••		•••••••••••••••••••••••••••••••••••••••
Mur.	AAACTGCTTGTCAC	TGTCACAG	ACAATTTA	TTTTTTATAA	AA		AGACAATTTATTTTTAAAAAAGATATAA
	3000		3010	3020			3030

3090 3100 Hum. AAAAAAAGGGGGGCGC

. ...:::: Mur. GCTTTAAAG-- Fig. 3T

6 152	26 212	46	332	86 392	106 452	126 512	146 572
A GCG	C TGC	C TGT	L CTT	Y	NAAT	9 9	CAG
PCCT	H CAT	်	F TTC	M ATG	PCCA	P CCG	P
Q CAG	K AAG	D GAC	W. TGG	CGC	P CCC	G GGA	S TCA
R CGC	K AAA	E GAG	F TTC	R AGG	Q CAG	G GGA	N AAC
R AGG	A GCC	Y TAC	Y TAC	R CGG	R AGG	PCCA	PCCC
M ATG	E	S TCC	W TGG	I ATC	T ACC	D GAC	P
AGCC	T ACA	R CGC	L CTG	F TTC	Y TAC	TACT	V GTC
3AGG1	င ခရင်	C TGC	R AGG	F TTC	STCC	Y	O CAG
ACGC	e gag	I ATA	Q CAG	ဗဗ္ဗ	V GTG	Y TAT	F TTC
GGCGCGCTGGAGGACGCGAGGAGCC	L TTG	Y TAT	I ATA	A GCC	N AAT	CCC	A GCT
rgga(L	Y TAT	S TCC	GGA	F	PCCG	M ATG
3000	L CTG	TACC	L	c TGC	A GCC	ອ ອ ອ	A GCA
	ი მმმ	PCCA	A GCC	C TGC	PCCA	P	· M ATG
STCC	CIC	Y TAT	R CGG	F	E	Q CAG	S TCC
3660	L CTG	L	V GTG	L CTT	E	Q CAG	N AAT
SACC	L CTG	G GGA	CTST	v GTG	IATC	A GCC	ტ ტტტ
TGC	A GCG	E	C TGC	၁၅၅	L CTG	G GGA	V GTC
၁၁၅၁၅	A GCG	F	R AGG	MATG	P	P CCA	P
GCGAAGCGCGCCTGCGACCCGGCGTCCG	V GTG	Y TAT	S TCC	M ATG	P	၁၅၅ ဗ	N AAC
<i>1</i> 929	K AAG	W TGG	ဗဗ	CTG	မ	. Б СССС СССС	M ATG

Fig. 4A

1917

TGTGTGAACGCTGACCTGTCTGTGTGCTAAGAGCTATGCAGCTTAGCTGAGGCGCCCTAGATTACTAGATGTGTGTATAT CACGGGGAATGAGGTGGGGGTGCTTATTTTTAATGAACTAATCAGAGCCTCTTGAGAAATTGTTACTCATTGAACTGG

AGCATCAAGACATCTCATGGAAGTGGATACGGAGTGATTTGGTGTCCATGCTTTTCACTCTGAGGACATTTAATCGGAG

Fig. 4F

2628 2786 2865 2470 2549 2707 2391 CCACCAGTGTCTCTGACCACCCTGGTGTGACTGCTGACTGCCAGCGTGGTACCTCCCATGCTGCAGGCCTCCATCTAAA GAACGCTGATCCTGCATATGGAAGTCCCACTTTGGTGACATTTCCTGGCCATTCTTGTTTCCATTGTGTGGATGGTGGG TTGTGCCCCACTTCCTGGAGTGAGACAGCTCCTGGTGTAGAATTCCCGGAGCGTCCGTGGTTCAGAGTAAACTTGAAG AACCTCCTGGGGAATTTTGTGGGAGACACTTGGGAACAAAACAGACACCCTGGGAATGCAGTTGCAAGCACAGATGCTG TGAGACAACAAGCACAATGTTCACTGTTTACAACCAAGACAACTGCGTGGGTCCAAACACTCCTCTTCCTCCAGGTCA TITGITITIGCATITITAATGICITIAITITITGIAAIGAAAAAGCACACIAAGCTGCCCCTGGAATCGGGTGCAGCTGA **ATAGGCACCCAAAAGTCCGTGACTAAATTTCGTTTTGTTTTTTGATAGCAAATTATGTTAAGAGACAGTGATGGCTAGG** AAAAAAAAAGGGGGGGCGCCGC

Fig. 4(

151 GCGGACTGGCCCTGAGCTGGCCGTACAGCCCGGCTTCGGACGGTCCTCGCTGGAGCC ATG GGC CGC CGG

GTCGACCCACGCGTCCGGCGCGCGTCCTTCTGCCGGCTTCAGCTCGTATCCCGGAGTCCACCCGCCGGTCCGGGGT

GAG CTC GGG CTG CTA GTG

Fig. 4D

45	65 331	85 391	105 451	125 511	145 571	165 631	173 655
C TGC	F	M ATG	PCCA	P	PCCT	Y TAT	
DGAC	W TGG	R CGC	P	G GGA	S TCA	P	
E GAA	F TTT	R CGG	O CAG	GGA	N AAT	CCC	
Y TAT	Y TAT	R CGC	R AGG	PCCT	CCC	PCCA	
s. TCC	W TGG	I ATT	TACC	D GAC	CAG	PCCT	
R CGT	L	\mathbf{F}	Y TAT	TACC	V GTC	T ACG	
၁ ၁၅ ၁၅	R AGG	F	S TCC	Y TAC	O CAG	N AAC	
I ATA	CAG	GGT	v GTG	Y TAT	F	င TGC	
Y TAT	I ATA	A GCC	N AAT	P. CCA	A GCT	Y	
Y	S TCC	GGT	F	P	M ATG	S TCC	
TACA	L	cTGT	TACA	GGA	A GCT	CCT	
ČČC CCC	₽ GCC	c TGC	P CCC	M ATG	M ATG	CCT	
Y TAT	r Agg	F	E	Q	T ACC	P CCC	* TAG
L	VGTG	$_{ m L}$	E	Q CAG	N AAT	PCCA	K AAG
. G GGA	C TGT	V GTG	i ATT	A GCA	ဗဗ	Y TAC	D GAC
e gaa	C TGC	GGT	L	GGA.	V GTT	TACT	K AAG
F TTT	R AGG	M ATG	P	P	PCCT	T ACA	V GTG
Y TAT	s TCC	M ATG	P	A GCT	N AAT	9 9	V GTG
W TGG	9 9	L CTG	P	P CCT	M ATG	G GGA	O CAG
C TGC	C TGT	L CTG	Y TAT	N AAT	ტ ტტტ	H CAC	E

Fig. 4F.

CAAGATGCTACATCAAAGGCAAAGAGGATGGACAGGCCCTTTTGTTTACCTTCCCATCCTCACCGATACTTGCTGATAG 734

70/96

2156 1840 2077 2235 2393 1366 1919 1998 2314 2472 1050 1208 1287 1445 1524 1603 1682 1761 971 TGGAGTICTTTTCCCTTGCGTAGTTAGTCACGTTGATGTGTATTTTAAACCCAGGTTGAGACCTTGTGTACTAAGAGCAA GAGTATTCTTTACCACCTACAAGACCAGGAGGCATGGTGTCATTCTCCATTGGGGTATTTATATGAGGTAGAGGTTCAG GAATCGACAGTAGCTGTGTGGGCTTAGTTTAAGGACTGAAAGCATAGGGACTGGTAGACAGTTTCATAGGAAACTGCGG GGTGGTCCAAGGGAAAACTTGGATATTCTCAAAGCAAGCCCAGCTCTTTTAAAGTCTTTTGTGGAGGACATTTGAATC CAGATAAAGTGGTCAGGCTGAGATAAGACTCACATGATGCAGTAGTTGGCAGTGAACTTCGAAGAGACACTATCCACCA TCCCAGCCCATTCTCCTAATAGAAGCTGTGGGGCTGTGTTGTTGATGCTCTTTGGTCTCCACTCACATTTGAAAATAG GCTTTCCTCTGCAGGAATAGGAAAGACCCAAGTACATATTTGCTTCCACTTAAAAATGAGGGTCAGAACCAGGCCTCAG TTGGACATCTATAGTTAAATAAAGGCCATTAGAGGGGGAAATCTTTAAGTTAGGGGAAATTCTCTAAATGGAGAGATT GCGTTTTATGAATCATCGTCTGGCTTTTTTTTAGTGCATGTATTGAAGTGAGGGTGTCCTTTGAGATCAGATGGGGAG AGTGAACTCTGCGGGGGGGGGGGTGTCTCTACTCAGAGGGCTCCAACACCCTTTTCTTAGGTAGTTCTGGTGATGGGTT TTATGGGCACTATAGAGCTGAGGGGCACATTAGGCCGGGTAGTTACATTGACCCTTGGAGAGGAAGAGGACAGCCAAAAG AAACTCAGCAAAGCAAGACCAGCATTGCTGAGTTAGAGCTAGGGTTGTATGTGATCCCAACAGAGATGTGCTGGCCTCA TAAATGAGAAAATCAGAGCCATTTGATAAACTGTTACTTGTTGGATCAGGCATCCAAAAGTGTCTTTGAGTGGGCATT GGAAGGAATGGATACCTTTAAAGACAGTTTGTGGATGCAGATGCTGCCACCCATCATTGAGCACCCTTGTGTCTCTGGC TTCCTGTCACTGGATCCAGTACCCCTCCATGCTTGGGTCCTTGTTTTACATAAGACAACAAGACAAAAGACAATGTCTGCTGTT TACAATCAAGACGACTACATGGTCCAAACATTTCTTCTTCTTCTATCACTTGTGGCTTTAACTTCCATTTCCTCCGTT CCTTTTTAAAATCAAGAAGCACAGTCAGAGCTGCCCCTGGGATTGCATCAGGGAACGGCTGATCAAGGCATTCAGTGTC CATGACTAAATCTTATCTTTTGATAGCAAATCCTTTTAAGAAACTGAACAATTGCTAAGGCTCAGCAATTTTATACTC CAATGTCTGTGTAAGGTAAATTTTGTTTGCCATTGAGCCCACATTGGAATTCCTTCTGACGTCAACACTGACAATGCCT **ATGGAAATTGCACTTCTGGGTATATGTCCCAGCATCCTTGTTTTCTTATGTTTGGTGAGTAAGGCTCACCCTTCCAGC** CACACTGTCTCCTCTGTTGCTTCTGTTTCTGATGTAGTCTGTGCTCTCTGAGAGAGTGTGGCAACAGTCCCTGAGGGTT

Fig. 4]

2788 2867 2915 AGCTCTACTTCTGTGTGCTGAGGTCCTGTAGAGCCGGGGCTTGGGCACAGACATGAGGCAGACTTGTGCATGCTCTTTC TIGGCAACACTIGGCTCATATITCTTGTTCTCTTTTGATAGAGTCCTGTTTCCTATGTATTTAAAAAATAAAAGTG

Fig. 4G

H	10 20 40 50 50 70 70 Hill BETTENSET YPHYYTERSYEDCESBECKYRALSTONE WYFWFLL MMG	20 .1.1.ECTEAKKH	30 VWYFFT.YP#Y	40 YTCRSYEDOO	50 GSBCCVRATS	60 TORT.WYFWFT.T.N	70 MG
Mur	MUL. MGRRIGRVAALLIGILVECTEAKKHCWYFEGLYPTYYICRSYEDCCGSRCCVRALSIQRIWYFWFLLMMG	LIVECTEAKKH	CWYFEGLYPTY	YICRSYEDCO	GSRCCVRALS	LVECTEAKKHCWYFEGLYPTYYICRSYEDCCGSRCCVRALSIORLWYFWFLLMMG	Œ
	10	20	30	40	50	09	70
	80	06 .	100	110	120	130 1	140
Hum.	VLFCCGAGFFIRRRMYPPPLIEEPAFNVSYTROPPNPGPGAQOPGPPYYTDPGGPGMNPVGNSMAMAFQV	AYPPPLIEEPA	FNVSYTRQPPN	PGPGAQQPGF	PYYTDPGGPG	MNPVGNSMAMAE	٨٥
	•••	•					•••
Mur.	VLFCCGAGFFIRRRMYPPPLIEEPTFNVSYTRQPPNPAPGAQQMGPPYYTDPGGPGMNPVGNTMAMAFQV	MYPPPLIEEPT	FNVSYTRQPPN	PAPGAQQMGP	PYYTDPGGPG	MNPVGNTMAMAE	ΛΟ
	80	06	100	110	120	130 1	140
	150	160	170				
Hum.	PPNSPQGSVACPPPPAYCNTPPPPYEQVVKAK	PAYCNTPPPPY	EQVVKAK				
			••••••				
Mur.	QPNSPHGGTTYPPPSYCNTPPPPYEQVVKDK	SYCNTPPPPY	EQVVKDK				
	150	160	170				

GTCGACCCACGCGTCCGCAGCTTTGGACACTTCCTCTGTTGAGGACACCTTGACTAACCTCCAAGGGCAACTAAAGGA

74	1	06

6 150	26 210	46	330	86 390	106 450	126 510	146 570
ຸ່ວ	I ATT	G GGA	E	s AGT	L	V GTT	M ATG
r I	TACC	A GCT	S TCT	IATC	BCG.	F TTT	E
K T	O CAG	CAA	GGT	K AAA	K AAA	L	N AAT
T · I	S TCT	V GTT	SAGC	I ATA	I ATC	PCCA	L TTA
C ; TGT A(S TCC	G GGT	L TTA	N AAT	G GGA	S TCT	N AAC
M (ATG T	s TCA	Y TAT	D GAT	s TCA	v GTG	E	K AAG
	V GTC	D GAC	P	F TTT	G GGA	F	L TTA
CAGG	Y TAT	L	LCTC	N AAT	PCCT	ი წწმ	I ATT
CTG	CIC	A GCA	K AAA	Y TAC	v GTG	W TGG	P CCC
AGCTO	N AAT	R AGG	K AAG	N AAC	F TTT	D GAC	K AAA
TCT	¥ TGG	Q CAG	E	V GTA	A GCT	TACA	E GAG
TGG	L CTG	TACT	K AAA	Y TAT	L TTG	SAGC	M ATG
TCAGCTGGATCTAGCTCCTGCAGGAG	L	I ATT	L	D GAT	S TCA	ATC	GCC CCC
AAGAC	F TIC	R AGG	MATG	V GTT	TACC	NAAAC	E GAG
3CAG	c TGT	A GCA	Q CAA	K AAA	N AAT	₽ GCC	AGCT
SACAC	G GGA	K AAG	e gag	L	PCCA	TACT	F TTT
CAGO	W TGG	I ATC	I ATT	F TTT	F TTT	ဗဗ	S TCC
ופפככ	r CTC	G GGA	M ATG	E Gaa	S TCA	H CAT	N AAC
TCAAGAAAGGCCCAGCACAGCAGAAGA	v GTC	P CCT	K AAG	L CTT	F TTT	N AAC	\mathbf{Y} TAT
TCAA	P	Y TAC	MATG	S TCT	A GCC	TACC	L CTG

Fig. 5A

75 / 96

166 630	186 690	206 750	226 810	246 870	266 930	286 990	306 1050	326 1110
e Gag	E GAA	L CTC	L	999 9	CAA	M ATG	L CTG	ATC
L	PCCA	N AAC	M ATG	A GCT	S TCT	TTC	TACC	T ACC
ACA	S TCT	E	S TCC	TACA	N AAC	P CCC	F TTC	E GAA
s AGC	S AGT	L	NAAC	F	CAA	O CAG	N AAT	V GTT
i. CIC	IATC	PCCA	S AGC	H CAT	V GTT	S TCC	ဗဗ္ဗ	T ACA
N AAC	L	Y TAC	R	A GCT	F TTT	$_{ m L}$	PCCA	S TCC
A GCC	s TCC	F TTC	e gaa	F TTT	H CAT	I ATC	O CAA	N AAC
N AAT	Y TAC	V GTA	PCCA	S TCC	N AAC	Y TAC	L CTA	K AAG
L CIA	D GAT	G GGT	L	A GCG	S TCC	I ATC	N AAT	P
A GCG	L CTG	K AAG	V GTG	S TCT	I ATT	E GAG	I ATC	CAA
K AAA	L CTG	l Tig	F TTT	a A A	E GAG	A GCA	I ATA	T ACC
VGTC	TACT	N AAC	PCCT	F TTT	E GAA	I Att	PCCC	CIC
E GAA	Y TAC	L	V GTT	F TTC	TACC	R CGG	P	MATG
SAGT	N AAC	D GAC	PCCA	Y TAT	S TCC	S TCC	E GAG	MATG
A GCA	D GAC	L	S TCA	E GAG	L CIC	L CIC	T ACA	I ATC
I ATT	I ATT	Y	F TTC	A GCC	TACT	V GTG	A GCC	s TCC
I ATT	K AAG	N AAC	CCC	İ ATC	L CTC	N AAC	M ATG	A GCC
CCC	TACC	e Gag	P CCC	GGA	N AAT	ဗဗ	I ATC	P CCT
C TGT	L TTA	TACT	D GAC	I ATT	\mathbf{F}	L CTT	r Agg	I ATC
CTC	V GTT	I ATT	TACC	Y TAC	V GTT	ာ ၁၅၅	V GTG	D GAC

Fig. 5B

I ATT L

STC

1579 1737 ACACACTGGAATTGTAAAGCCCTTGTGAATTGCTTAGGCAGAAAGTTTTCTTTTCTTAAGCCTTCAGGAACCCAGAATAA TTTGTTTGTTTGGGGCAAGAAGATTCTAGGACAAGAGCTAGGCATGTACTTCTGACCAGGTGGGTAAGCAACTCTAAG TIGCCGGTTTGCAATTCACCCCAGGAAGTAAATGGTCCTTAATCCTACAACTACTGTAAACCCAGAAGGAAAGACAGT

R AGA

GAA

田

Fig. 5C

Fig

Ces Male 137 th

•	SSESL	:	DSF		PME	SIEGM		0 T T A C E		KVTNS		220 TPERSN		РАЯНО
09	LWNLYVSSSQTIYPGIKARITQRALDYGVQAGMKMIEQMLKEKKLPDLSGSESL	••	MARGPCNAPRWVSLMVLVAIGTAVTAAVNPGVVVRISQKGLDYASQQGTAALQKELKRIKIPDYSDSF	•	70 80 130 100 110 120 130 286 EFLKVDYVNYNFSNIKISAFSFPNTSLAFVPGVGIKALTNHGTANISTDWGFESPLFVLYNSFAEPME	BPI KIKHLGKGHYSFYSMDIREFQLPSSQISMVPNVGLKFSISNANIKISGKWKAQKRFLKMSGNFDLSIEGM	130	140 150 150 1 KN-1 NEWI COTTAGE		BPI SISADLKLGSNPTSGKPTITCSSCSSHINSVHVHISKSKVGWLIQLFHKKIESALRNKMNSQVCEKVTNS	0	160 170 180 190 200 210 220 220 220 200 200 200 220 22		BPI VSSKLOPYFOTLPVMTKIDSVAGINYGLVAPPATTAETLDVOMKGEFYSENHHNPPPFFAPPVMEFPAAHD 210 220 230 240 240
	MLKEK	•••••••••••••••••••••••••••••••••••••••	ELKRIF	09) PLFVL)	RFLKMS		0 T WM - T &		LRNKM	•	210 DPPESI	•••	PPPFA
20	MKMIEC	:	TAALOK	0 9	120 DWGFES		120	140		KKIESA	130	PT.E.NT.T		SENHHN 260
	<i>(GVQAG)</i>	••	ASQQG		'ANIST	VIKISG				LIQLFH		200 .KGVFY		IKGEFY
40	QRALD	•	OKGLD	40	110 LINHGI	SISNA	110		! !	SKVGW	D&T	IVI.DI.NI		TLDVQ
0	IKARIT	•	VVVRIS		o GVGIKA	NVGLKE	0	·	 	HVHISK	0	190 190		PATTAE O
30	TIYPG	•	AVNPG	30	100 LAFVPG	::	100		 	HINSVI	1 / 0	10 721.TSS		GLVAPP.
20	YVSSSÇ		GTAVT		90 SFPNTS	SEFQLPSSQISMVPNVGLKI	06		 	CSSCSS	160	180		SVAGINY 230
	L-LWNL		MVLVAI	20	IKISAF	. : MDIREF			T.A.V	SKPTIT	⊣	170 I.TKIDN	.::::	MTKIDS 2
10	286 MCTKT-IPVLWGCFL-	•	PRWVSL	10	80 VYNFSN	GHYSFYSI	80		1 1 1 1	SSNPTS	150	CTT EV		220 220
	KT-IP	•	GPCNAI		KVDYV	HLGKG			! ! ! !	ADLKLO		160		KLQPYI
	MCI	••			70 EFL	KIK	70		l l	SIS	140	7711	ξ .	I VSS
	286		BPI		286	BPI		(987	BPI	-1	900	0 0 7	BPI

rig. or

230 240 250 250 270 250 270 290 270 280 290 280 280 290 280 280 290 280 280 290 280 290 280 280 290 280 280 280	:.:.:::::::::::.	300 310 320 330 340 350 360 TEPPIINLQPGNFTLDIPASIMMLTQPKNSTVETIVSMDFVASTSVGLVILGQRLVCSLSLNRFRLALPE .::::.:::::::::::::::::::::::::::::	370 380 400 410 420 430 286 SNRSNIEVLRFENILSSILHFGVLPLANAKLQQGFPLPNPHKFLFVNSDIEVLEGFLLISTDLKYETSSK :: : : : : :		
270 ZONSQGLGNVL	:. :. KLTTKFFGTFLPP 20	30 340 MDFVASTSVGLVII : IGMHTTGSMEVSAE	410 HKFLFVNSDIE : ARVQLYNVVLC 460		
260 TEEISNHFV	RDDMIPKESKFRL	0 330 NSTVETIVSMDEV:	400 LQQGFPLPNPF ::::::: LQKGFPLPTPP 450		
2.50 FTAGVFNLTLS	:::: QEAGVLKMTLR 300	320 PASIMMLTQPKNS :: PAVDVQAFAVLPNS 370	390 HFGVLPLANAK ::: .:.: PILVLPRVNEK 440	SKSAP	
240 YFFKSASFAHI	:::: YFFNTAGLVYÇ 290	310 PGNFTLDIPAS: PTGLTFYPAVI	380 RFENILSSILE :.:. LLQDIMNYIVE 430	440 QQPSFHVWEGINLISRQWRGKSAP	
230 SMLYIGIAEN		300 TEPPIINLQP(::::: STPPHLSVQP' 350	370 SNRSNIEVLE :: :: SNIGPFPVEI 420		
286	BPI 2	286 BPI	286 BPI	286	

Fig. 5C

20 30 40 50 60 WNLYVSSSQTIYPGIKARITQRALDYGVQAGMKMIEQMLKEKKLPDLSGSESL : .: : :::: :::: ALLLTSTPEALGANPGLVARITDKGLQYAAQEGLLALQSELLRITLPDFTGDL 20 30 40 50	70 80 100 110 120 130 286 EFLKVDYVNYNFSNIKISAFSFPNTSLAFVPGVGIKALTNHGTANISTDWGFESPLFVLYNSFAEPME : : : : : : : : : : : : : : : : : : :	140 150	160 170 180 200 200 220 286 VKA-LNANLSTLEVLTKIDNYTLLDYSLISSPEITENYLDLNLKGVFYPLENLTDPPFSPVPFVLPERSN : :::::::::::::::::::::::::::::::::::
10 MCTKTIPVLWGCFLL :: MGALARALPSILL 10	70 80 90 286 EFLKVDYVNYNFSNIKISAFSFPNTS : :: :: :: :: :: :: : :: :: :: :: :: ::		160 170 180 VKA-LNANLSTLEVLTKIDNYTLLDYS: : . : . : : : : : : : : : : : : : : :
286 RENP	286 RENP	286 RENP	286 RENP

Fig. 5H

	230	240	250	260	270	280	290
286	SMLY	FKSASFAHF"	TAGVENLTLS	STEETSNHF	VQNSQGLGNVI	SRIAEIYIL	SQPEMVRIMA
		•	••		•	:	:
RENP	RMVYLGLSDYFFNTAGLVYQEAGVLKMTLRDDMIPKESKFRLTTKFFGTFLPEVAKKFP-NMKIQIHVSA	FNTAGLVYQ	EAGVLKMTLE	RDDMIPKESKF	RLTTKFFGTFI	JPEVAKKFP-	NMKIQIHVSA
	280	290	300	310	320	330	340
	300	310	320	330	340	350	360
286	TEPPIINLQPGNFTLDIPASIMMLTQPKNSTVETIVSMDFVASTSVGLVILGQRLVCSLSLNRFRLALPE	NFTLDIPAS	IMMLTQPKNS	STVETIVSMDF	VASTSVGLVII	GORLVCSLS	LNRFRLALPE
						TOTAL	
XEN T	STFFHLSVQFIGLIFIFAVDVQALAVLFNSSLASLFLIGMRIIGSMEVSAESNKLVGELKLLELKR 350 360 410	GLTFIFAVD 360	VQALAVLENS 370	380 380	attgsmevsar 390	SSINKLVGELN 400	10000000000000000000000000000000000000
		088.	390	400	410	420	430
286	SNRSNIEVLRFENILSSILHFGVLPLANAKLQQGFPLPNPHKFLFVNSDIEVLEGFLLISTDLKYETSSK	ENILSSILH	FGVLPLANAE	KTOOGEPLPNP	HKFLFVNSDIE	CVLEGFLLIS	TDLKYETSSK
	•	•	•		•	•	•••
RENP	SNIGPFPVELLQDIMNYIVPILVLPRVNEKLQKGFPLPTPARVQLYNVVLQPHQNFLLFGADVVYK-	QDIMNYIVP.	ILVLPRVNEF	KLQKGFPLPTP.	ARVQLYNVVLÇ	PHONFLLFG	ADVVYK
	420	430	440	450	460	470	480
	•		*				
		450		,			
286	QQPSFHVWEGLNLISRQWRGKSAP	NLISROWRG	KSAP				
DEND			! !	`			

Fig. 51

GTCGACCCACGCGTCCGGGGAATTGCAGGAAAATATGTGAAGAGTTTTTAAACCCACAAATTCTTACTTTAGA

Φ	149	28 209	48 269	68 329	88 389	108 449	128 509	148 569
a	CAG	Q CAG	N AAT	E	ACA	I ATT	W TGG	CAA
	AGA (F	M ATG	TACT	K AAG	W TGG	V GTG	D GAC
	TCA	M ATG	F	A GCA	K AAG	N AAC	DGAC	I ATA
	TIG	Y TAT	A GCA	V GTC	P	s AGC	F TTT	s TCC
	ACC	A GCG	E	E	OCAA	A GCT	GGT	L
	GAA	V GTG	P	Y TAT	V GTG	GGT	A GCT	T ACA
	DLL.	L	DGAC	e Gaa	L CTA	G GGA	D GAT	K
	ATG .	I ATT	V GTG	E	ဗဗ	V GTT	A GCA	H ČAC
	GGACC	L CTG	A GCT	C TGT	R CGA	L CTA	L	K AAA
	rtgg	L	K AAA	PCCC	PCCT	9 9	IATT	R CGA
	SATG	W TGG	TACT	Y TAT	I ATT	H CAT	F	S TCT
	rgca(. M ATG	PCCA	ဗ္ဗဗ္ဗ	R AGG	Q CAG	0 0 0	W TGG
•	TAAATG	E GAA	MATG	CAA	N AAC	L CTG	L CTG	A GCC
		M ATG	H CAT	H CAT	V GTT	L TTA	S AGC	N AAC
	SGAA	R AGA	V GTA	CAA	s TCT	V GTG	N AAT	G GGA
	3GCA(H	S TCA	I ATC	L CTT	V GTG	NAAAC	r Agg
	CATT	S TCA	N AAT	I ATC	I ATC	PCCI	P	s AGC
	STTA(. V GTC	V GTG	E	Y	R AGG	L CTG	N AAC
	ATTAGTTGTTACATTGGCAGGAAAAAA	I ATT	N AAT	S AGT	9 666	S TCC	N AAC	GGG
	ATT	W	R AGA	I ATT	D GAT	G ĠGT	S	M ATG

Fig. 6A

168 629	188 689	208	228 809	248 869	268 929	288 989	308 1049	328 1109
I ATA	9 9	M ATG	F TTT	Q CAG	İ ATT	R CGA	W TGG	N AAT
V GTG	Q CAG	K AAA	K AAA	Y TAT	OCAG	SAGC	Н	K AAA
A GCA	S	I ATC	TACC	L CTG	D GAT	M ATG	L CTA	TACC
PCCT	Y TAT	K AAA	GGG	F TTT	L CTT	N AAC	I ATT	E
·L CTT	၁၅၅	O CAG	PCCC	E	I ATT	M ATG	N AAT	S AGT
D GAC	v GTC	A GCT	S AGC	K AAA	V GTG	N AAT	O CAA	666
F TTT	Y TAT	L CTG	K AAA	K AAA	CAG	N AAC	V GTG	₩ TGG
R AGG	Y TAT	EGAG	A GCA	9 9	9	T ACC	S TCT	D GAC
A GCT	I ATC	PCCA	H CAT	F TTT	TGT	N AAC	T ACA	F TTT
M ATG	KAAAG	M ATG	K AAG	L TTG	L	F TTC	G GGA	A GCA
E	E	T ACC	V GTT	G GGA	Y	G GGA	A GCT	СGG
GAT	O CAG	S TCC	TACT	k AAG	I. ATT	G GGT	L	L CTC
Y TAT	ဗဗ	F TTT	A GCC	IATC	V GTT	L CTG	TACT	E
S AGT	T .ACG	A GCA	I ATA	MATG	L	L CTT	H	G GGT
F	K AAA	I ATT	·P CCC	MATG	Q CAA	L TTA	A GCC	STCT
A GCT	o CAG	F TTT	A GCA	D GAT	r Aga	M ATG	A GCT	N AAT
WTGG	$_{ m L}$	9 990	L TTA	PCCA	L CTC	IATC	Y TAT	V GTG
FTTC	I ATT	M ATG	AGCT	L CTG	F TTT	N AAT	V GTA	A GCA
E	F TTT	T ACC	F TTT	L TTG	R AGA	S AGT	S AGT	OCAG
D GAT	N AAC	ACC	Y TAT	L TTG	TACC	C TGT	A GCA	SAGC

Fig. 6B

85/96

348	368	388	408	424
1169	1229	1289	1349	1397
PCCT	LCTG	D GAT	Q CAG	
V	M	V	·M	
GTC	ATG	GTG	ATG	
T ACG	K AAA	H	L CTG	
MATG	V GTG	A GCT	H CAT	
D	D	W	IATC	*
GAT	GAC	TGG		TGA
R AGA	E GAA	E	I ATC	$_{ m L}$
V GTC	P CCA	PCCT	E	V GTA
R	N	I	N.	A
AGA	AAT	ATT	AAT	GCC
Y	S TCA	N AAT	Y	E GAG
R	L	K	M	C
AGG		AAG	ATG	TGT
V	W	H	R	R
GTA	TGG	CAT	CGT	CGG
PCCT	DGAC	Y TAC	H	G GGA
TACT	Q CAG	I ATC	PCCT	O CAG
CCA.	g GGT	L CTC	AGCT	S TCC
Q	G	N	D	L
CAG	GGA	AAC	GAT	
N	T	TACC	L	N
AAT	ACA		TTG	AAC
ည်း	W	V	G	T
	TGG	GTG	GGT	ACC
K	M	E	W	E
AAA	ATG	GAG	TGG	GAG
E	A	S	I	E
	GCA	TCT	ATC	GAG
L	TACA	CHC	TIC	O

1634 2029 1792 1950 1871 TTAAAGTACTTATTAGGTAAATAGAGGTTTTTGTATGCTATTATATATTCTACCATCTTGAAGGGTAGGTTTTACCTGAT **ATTITIGGAGCACTAAAGTAAAATGGCAAATTGGGACAGATATTGAGGTCTGGAGTCTGTGGATTATTGTTGACTTTGA** CAAAATAAGCTAGACATTTTCACCTTGTTGCCACAGAGACATAACACTACCTCAGGAAGCTGAGCTGCTTTAAGGACAA CAACAACAAAATCAGTGTTACAGTATGGATGAAATCTATGTTAAGCATTCTCAGAATAAGGCCAAGTTTTATAGTTGCA **AGCATCIGACACTGACGATCTTAGGACAACCTCCTGAGGGATGGGGCTAGGACCCCATGAAGGCAGAATTACGGAGGAGCA**

Fig. 6(

10	90 100 110 120 130 140 KKTGSRPVVLLQHGLVGGASNWISNLPNNSLGFILADAGFDVWMGNSRGNAWSRK .:::::::::::::::::::::::::::::::::::	210 MYF 	230 240 250 260 270 TKFLLLPDMMIKGLFGKKEFLYQTRFLRQ-LVIYLCGQVILDQICSNIMLLLGGF .::.:::::::::::::::::::::::::::::
VAT :.: VVT	NAW NTW	XIX YIX	LLL FII O
60 70 GYPCEEYEVATEDG ::::::::::: GYPNEEYEVTEDG 50	SRGI ::: SRGI 120	LAQ] ::. LAK] 190	NIML: NALE
FCEI FNEI	130 WMGN::::	200 TMPEI	270 ICSI .::
DGYI :::	1.20 VWIN	2(7ST) 7ST)	
0 50 AVDPEAFMNISEIIQHQ :. ::::.: PGSPEVTMNISQMITYW 30 40	90 120 130 140 KTGSRPVVLLQHGLVGGASNWISNLPNNSLGFILADAGFDVWMGNSRGNAWSRK .:::::::::::::::::::::::::::::::::::	160 170 180 190 200 210 YDEMARFDLPAVINFILQKTGQEKIYYVGYSQGTTMGFIAFSTMPELAQKIKMYF .::::::::::::::::::::::::::::::::::::	230 240 250 260 270 TKFLLLPDMMIKGLFGKKEFLYQTRFLRQ-LVIYLCGQVILDQICSNIMI .::.::::::::::::::::::::::::::::::
E I I I		.:: 1GE	50 CGC :
SO NIS NIS	120 HILL FILL	190 GTTI :::	260 IYLCO
AFM · : VTM	SLG ::. SLA	YSQ:::	- LV :- ELA
DPE/ .:: SPE/ 30	PNN:::PNN:	YVG: ::: :YVG: 170	LRQ-: FDQF: 240
40 KAV -PG	110 ISNL ::::	180 EKIY 	250 QTRF . :
MPT	NWI NWI NWI	1 GOE :: GOK	2 LYQ - YP
SVH .: KLH	GAS .:. SAT	LQKT :: VKKT	KKEF : : DKIF 230
NVR.	LVG LVG LLA:	SIL SIL	3. GKI
30 TORN THGL	100 2HGL/ :::: 2HGL/	170 /INF	240 (GLF)
YYMI	TLLC TFLC	. : - :	IMIR SILFE
LVF	2 : : : 1	(FDL)	PDM POS 220
20 MWLLIL : :: MASLIS 10	90 GSB : :	160 EMAR ::::	230 FLLI
EMW : TMA	KKT .: GNT	1 YOE .::	T K K K K K K K K K K K K K K K K K K K
HRM L	VQP KNS	WAFS::::WAFS	KSPG :: KSLI 210
10 WIVS :	80 PRGL : : PYGK	0 EFWAF::::: EFWAF: 140	0 HAK .: YTK 2
1 RQW : W	RI :: B	150 DQDE1 : : : DSVE1	220 FVKH ::: FVKY
[LS]	SVN SVN	. : : (SP)	PIA' PVA'
ALE:	80 YILSVNRIPRGI ::: ::::: YILEVNRIPYGI	HKTL IXY: 130	220 ALAPIATVKHAKS ::::::::: RLAPVATVKYTKS 200
10 20 30 40 50 60 70 294 MLETLSRQWIVSHRMEMWLLILVAYMFQRNVNSVHMPTKAVDPEAFMNISEIIQHQGYPCEEYEVATEDG : :::::::::::::::::::::::::::::::::::	80 100 110 120 130 140 294 YILSVNRIPRGLVQPKKTGSRPVVLLQHGLVGGASNWISNLPNNSLGFILADAGFDVWMGNSRGNAWSRK ::::::::::::::::::::::::::::::::::::	150 160 170 180 190 200 210 294 HKTLSIDQDEFWAFSYDEMARFDLPAVINFILQKTGQEKIYYVGYSQGTTMGFIAFSTMPELAQKIKMYF : :::::::::::::::::::::::::::::::::::	220 230 240 250 260 270 294 ALAPIATVKHAKSPGTKFLLLPDMMIKGLFGKKEFLYQTRFLRQ-LVIYLCGQVILDQICSNIMLLLGGF :::::::::::::::::::::::::::::::::
2. H	25 HI	25 HI	25 HI

Fig. 6D

NATVDA	: .:.: IVTAMNVPI 330	VLSQGRC
340 rpvryrv	DPPYYNV1	410 LMQQEETN
330 MT.EKCNOP	.:. RMHYDQS	400 RMYNEIIH .::.:. EVYNDIVSI 390
3 Marasimen	310	4 IGLDAPHR I::. IAMDAPQE 380
320	SGKFQAYI	390 WAHVDFIV .:.::: YNHLDFIV
310 HWCOAYM	FHWTQAVKS(380 IYHKNIPEWZ :::::: IYHKEIPFYZ 370
280 340 340 304 300 310 320 330 340 340 340 344	HLP DSKNFNTSRLDVYLSHNPAGTSVQNMFHWTQAVKSGKFQAYDWGSPVQNRMHYDQSQPPYYNVTAMNVPI 270 280 290 300 310	350 360 370 380 390 400 410 294 AMWTGGQDWLSNPEDVKMLLSEVTNLIYHKNIPEWAHVDFIWGLDAPHRMYNEIIHLMQQEETNLSQGRC ::::::::::::::::::::::::::::::::::::
290 McPac <i>u</i> vaah	DSKNFNTSRLDVYLSH 270	360 ODWLSNPEDV ::::::: KDLLADPODV 350
280 294 NTNNWN	HLP DSKNFN 270	350 294 AMWTGG ::::: HLP AVWNGG

ig. 6E

420 294 EAVL

			•
10 20 30 40 50 60 294 MLETLSRQWIVSHRMEMWLLILVAYMFQRNVNSVHMPTKAVDPEAFMNISEIIQHQGYPCEEYEVATE : :::::::::::::::::::::::::::::::::::	70 80 100 110 120 130 DGYILSVNRIPRGLVQPKKTGSRPVVLLQHGLVGGASNWISNLPNNSLGFILADAGFDVWMGNSRGNAWS ::::::::::::::::::::::::::::::::::::	140 150 200 294 RKHKTLSIDQDEFWAFSYDEMARFDLPAVINFILQKTGQEKIYYVGYSQGTTMGFIAFSTMPELAQKIKM :::::::::::::::::::::::::::::::::::	210 220 230 240 250 260 270 294 YFALAPIATVKHAKSPGTKFLLLPDMMIKGLFGKKEFLYQTRFLRQLVIYLCGQVILDQICSNIMLLLGG .:::::::::::::::::::::::::::::::::
50 EAFMNISEIIQ :.::::: ETNMNVSEIIS 40	120 INSLGFILADAG .::::::::::::::::::::::::::::::::::::	190 GYSQGTTMGFI : :::::::: 'GHSQGTTIGFI 180	260 QLVIYLCGQVI : : .;: WLGTHVCTHVI 250
40 HMPTKAVDP : :::: GSGGKLTAVDP 30	110 GASNWISNLPN :::.::: DSSNWVTNLAN	180 QKTGQEKIYYV .::::::::: NKTGQEQVYYV 170	250 KEFLYQTRFLR :::::::::: KEFLPQSAFLK 240
30 AYMFQRNVNSVJ 	100 PVVLLQHGLVG(:::::::: PVVFLQHGLLA1 0	170 FDLPAVINFIL :::::::: YDLPASINFILI 0	240 PDMMIKGLFGK :: ::::: PDHLIKDLFGD 0
20 HRMEMWLLILVAYMF :: ::	90 GLVQPKKTGSRP:::: GRKNHSDKGPKP	0 EFWAFSYDEMARF::::::::::::::::::::::::::::::::::::	10 230 HAKSPGTKFLLLP :: :: :: FCTSPMAKLGRLP 210 220
10 ETLSRQWIVS!	70 80 DGYILSVNRIPRGLVQH ::::::::::: DGYILCLNRIPHGRKNH 60 70	150 RKHKTLSIDQDEFWAF:::::::::::::::::::::::::::::::::::	10 220 YFALAPIATVKH ::::::: FFALGPVASVAF 200 2
294 ML : : LAL M-	70 294 DG :: LAL DG	140 294 RKI :: LAL RKI	210 294 YF

Fig. 6G

300 310 320 330 340	294 FNTNNMNMSRASVYAAHTLAGTSVQNILHWSQAVNSGELRAFDWGSETKNLEKCNQPTPVRYRVRDMTVP	LAL FNERNLNMSRVDVYTTHSPAGTSVONMLHWSQAVKFOKFQAFDWGSSAKNYFHYNQSYPPTYNVKDMLVP	300 310 320 330	380 390 400 410	294 TAMWIGGODWLSNPEDVKMLLSEVTNLIYHKNIPEWAHVDFIWGLDAPHRMYNEIIHLMQQEETNLSQGR		LAL TAVWSGGHDWLADVYDVNILLTQITNLVFHESIPEWEHLDFIWGLDAPWRLYNKIINLMRKYQ	370 380 390
300	AHTLAGTSVQN	THSPAGTSVON	290	370	DVKMLLSEVTN	•••	DVNILLTQITN	360
290	MNMSRASVYAAH!	FNERNINMSRVDVYTTHS	280	360	GGQDWLSNPEDVI		GGHDWLADVYDV	350
280	294 FNTNN	:: : LAL FNERN	270	350	294 TAMWT	•	LAL TAVWS	340

Fig. 6H

420 294 CEAVL

LAL ----

75	22 135	42 195	62 255	82 315	102 375	122 435	142 495	162 555
ဗ	T ACC	L CTG	F	SAGC	Q CAG	E GAG	C TGT	ACT
	D GAC	I ATC	L TTA	V GTC	L CTG	N AAT	e Gag	FTTC
	M ATG	v GTC	s AGC	Q.	ი გემ	L CTG	e gag	K AAG
CCAA	PCCG	I ATC	T ACC	9 9	I ATT	Q CAG	A GCT	E GAG
CTCA	FTC	FTTC	V GTG	V GTG	DGAT	o cag	Y TAT	A GCT
CCAC	ACC	T ACG	V GTG	S TCT	A GCT	V GTG	N AAC	L
TGCA	P	A GCC	R CGG	W TGG	s AGC	P	e Gag	Y TAC
GCGAGGGCTCCCGGGGCGCAGCATTGCCCCCCC	K AAG	L CTG	L CTT	E GAG	I ATC	T ACC	G GGT	$_{ m ITG}$
	P CCC	A GCA	L CTG	S TCT	W TGG		L CTG	V GTG
	9 990	TACT	W TGG	S AGT	E GAG	TACA	R CGC	PCCT
	A GCT	L CTG	F	F TTC	S TCT	L CTC	W TGG	DGAC
	Y TAT	FTTT	L CTG	N AAT	S AGT	T ACA	T ACC	PCCA
	F	I ATC	R AGG	V GTG	F	I ATC	F TTC	L CTG
	P	M ATG	T ACG	A GCT	A GCC	N AAC	E	GGG
	F	I ATC	K AAG	L CTG	K AAG	V GTC	E GAG	K AAG
	T ACA	I ATC	GGA	I ATC	Y TAC	GGA	N AAC	E
	H CAC	s AGC	R CGG	A GCA	s TCA	G GGT	Y TAC	L CTG
	G GGA	A GCC	I ATT	A GCT	T ACA	L CTG	N AAT	AGCT
	$_{ m TTG}$	$_{ m TTG}$	ဗ္ဗဗ္ဗ	9 999	N AAC	666	I ATC	K AAG
GTCG	TACT	TACT	PCCT	· I · ATC	ACC	V GTC	ACC	A GCA

Fig. 7A

182 615	202 675	222 735	242 795	262 855	282 915	302	322 1035	342
A GCC	V GTG	L CTC	V GTG	V GTG	F TTC	L CTC	STCA	A GCT
S TCA	PCCT	L CIG	S TCT	c TGT	A GCT	G GGA	r CTG	cTGT
TACC	MATG	A GCT	A GCT	$_{ m CTG}$	K AAG	GGT.	P CCC	D GAT
Y TAC	S TCC	L TTG	ဗဗ္ဗ	L CTG	L CTG	e gaa	I ATT	PCCT
Н	L	L CTG	L CTĞ	G GGA	AGG	E GAG	DGAC	D GAT
G. GGA	M ATG	o CAG	H	TACA	H	P.	O CAG	K AAA
A GCG	V GTG	F	L CTG	TACC	PCCT	S AGT	S TCC	PCCC
L CTG	N AAT	I ATC	P CCC	L TTG	O CAG	W	K AAG	H
R CGC	A GCC	ဗဗ္ဗ	C TGT	TACA	M ATG	e Gag	CCC	A GCA
Y TAC	L CTG	T ACG	P	I ATC	R AGG	L CTG	SAGT	e Gag
O CAG	L CTG	A GCC	S TCA	W TGG	H	M ATG	D GAC	K AAG
S CGC	W TGG	L TTG	TACC	F	A GCC	P	A GCT	c
Y TAC	c TGC	L CIA	CIC	₽ GCC	V GTG	D GAC	MATG	Y TAC
L CTA	L	MATG	S TCA	PCCT	₽ GCG	e gaa	S TCC	A GCA
ဗဗ္ဗ	F TTC	Y	TACA	ი მმც	M ATG	D GAT	R CGG	K AAG
C TGT	A GCA	ဗ	A GCC	H CAT	A GCT	V GTG	Y TAC	T ACC
PCCA	V GTG	G GGT	M ATG	H CAC	L CIG	S AGT	ر روی ک	S
S AGC	W TGG	Y TAT	s TCC	TACT	၁၅၅	Q CAG	CCC	s TCC
R AGA	TCTA	V GTA	\mathbf{F}	H CAT	L CTG	N AAC	SAGC	A GCT
PCCA	M ATG	L CTG	F	L	L CTG	F	L CTG	E GAG

Fig. 7B

1101

TAA

93 / 96

1496 1812 2128 1575 1970 1180 1338 1417 1654 1891 CGTCCCCCTGGGGTGGTTCAGAAGATGCTAGCTCTGGTAGGGTCCCTCCGGCCTCACTAGAGGGCGCCCCTATTACTC TGGAGTCGACGCAGAGAATCAGGTTTCACAGCACTGCGGAGAGTGTACTAGGCTGTCTCCAGCCCAGCGAAGCTCATGA AGACAGCACTGGAAAGGAGGGGAAACCAAACTTCTCATCCTAGGTCTAACATTAACCAACTATGCCACATTCTCTTTGA GCTTCAGTTCCCAAATTTGCTACATAAGATTGCAAGACTTGCCAAGAATCTTGGGATTTATCTTTGTGCCTTGCTGA CACCTACCTTGGCCCTCAAACACCACCTCACAAGAAGCCAGGTGGGAAGTTAGGGAATCAACTCCAAAACGCTATTCCT CATTCCTCCCCGTGGAGGCCACCTGGACTTCCAGTCTGGCTCCAAACCTCATTGGCGCCCCCATAAAACCAGGAACTG CCCTCAGGGTGGCTGTTACCAGACACCCAGCACCAATCTACAGACGGAGTAGAAAAAGGAGGCTCTATATACTGATGTT aaaaaacaaaacaaaaaaaaaaaaaaaaaccctaagggactgaagagatgctgggcctgtccataaagcctgttgccatgataag SCCAAGCAGGGGCTAGCTTATCTGCACAGCAACCCAGCCTTTCCGTGCTGCCTTGCCTTCAAGATGCTATTCACTGA AACCTAACTTCACCCCCATAACACCAGCAGGGTGGGGGTTACATATGATTCTCCTATGGTTTCCTCTCTCATCCTCGGCA

Fig. 70

70 AILAV	:: ALIAS	130 YNEEFTW :::: YNEGFDI O	200 -MLSM :: . LMLFL	260 GLLCVL :.:::: GILCVL 260
60 LRVVTSLFIGA	::::.:::::::::::::::::::::::::::::::	120 130 TGTPVQQLNETINYNEEFTW ::::: LLSSNDVLPGSDMTELYYNEGFDI 110 120	150 160 170 180 200 KGLPDPVLYLAEKFT-PRSPCGLYRQYRLAGHYTSAMLWVAFLCWLLANV-MLSM .::::::::::::::::::::::::::::::::::::	WITLTT FCFYLIFAI
50 IRGKTRLFWL	.: :. VR-RKRVVTT	12 TGTPVQQ :. ERLLSSNDVLF	180 AGHYTSAMLW :::::::: AGHYTHAAIW 180	220 230 240 250 EQLIALLEFSMATSLTSPCPLHLGASVLHTHHGPAF-::::::::::::::::::::::::::::::::::::
40 LATFIVILPG	::.:: LIAYILILPG 30	110 LGGVNITL: : :::: LQKVNVTLKFE	170 PCGLYRQYRLA . ::::: SFDWGRHYRV 170	240 PLHLGAS :.: :.: ELRIAFTGEN
30 ASIIMIFLTÄ	SIFSVELIP	90 110 SYKAFSSEWISADIGLQVGLGGVNITL::::::::::::::::::::::::::::::::::	160 LAEKFT-PRS1 . : : VLEYFSLNQD8	230 SMATSLTSPCPLHL. : ::: : LLLSPCELRIZ
20 KPTFPMDTTL	ASSRGNI	90 TSYKAFSSEW : :.:. TQFRGHSNER	150 EKGLPDPVLY: :::::::: ENGLPYPMLS'	220 GIFQLLALLFF :: ::: : . GISCLIACLVY 210
10 20 30 40 50 60 70 20 296 MATLGHTFPFYAGPKPTFPMDTTLASIIMIFLTALATFIVILPGIRGKTRLFWLLRVVTSLFIGAAILAV	:: CRP M-RIAHASS	80 100 110 120 130 130 130 130 120 130 130 130 130 130 130 130 130 130 13	140 150 200 296 RLGENYAEECAKALEKGLPDPVLYLAEKFT-PRSPCGLYRQYRLAGHYTSAMLWVAFLCWLLANV-MLSM :::::::::::::::::::::::::::::::::::	210 296 PVLVYGGYMLLATGI : .:::::: CRP PHNAYKSILATGI 200
296	CRP	296 CRP	296 CRP	296 CRP

Fig. 71

296	270 LGLAMAVAHRMQE	280 PHRLKAFFNQ	270 280 290 300 300 310 320 320 396 IGLAMAVAHRMQPHRLKAFFNQSVDEDPMLEWSPEEGGLLSPRYRSMADSPKSQDIPLSEAS	300 SPEEGGLLSPR	310 YRSMADSPK	320 SQDIPLSEAS
CRP	:: CGLGLGICEHWR1 270	: .:. ::. CYTLSTFLDASLDEHVGE 280 290	:: : .: : .: : .: : .:	.:. :. :. TGGPALQGVQIGAYGTNTTNSSRD 300 310 320	:: YGTNTTNSSRDI 0 320	KNDISSDKTA
	330		340			,
296	296 STKAYCK-		EAHPKDPD		T	
	•••	_	:	•		
CRP	CRP GSSGFOSRTSTCQS	SSASSASLR	SASSASLRSQSSIETVHDEAELERTHVHFLQEPCSSSST	ERTHVHFLOEPCS	SSST	
	340	350	360	370 380	0	

Fig. 7F

SEQUENCE LISTING

```
<110> McCarthy, Sean A
Barnes, Thomas M
Fraser, Christopher C
Sharp, John D
```

<120> NOVEL GENES ENCODING PROTEINS HAVING DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER USES

<130> 210147.0024/6PC

<140> Not Yet Assigned

<141> 2000-05-24

<150> US 09/333,159

<151> 1999-06-14

<160> 79

<170> PatentIn Ver. 2.1

<210> 1

<211> 1656

<212> DNA

<213> Homo sapiens

<400> 1

gtcgacccac gcgtccgccc acgcgtccgg cccatggcgc cgcccgccgc ccgcctcgcc 60 cccggacccg agtgtttcac agccaatggt gcggattata ggggaacaca gaactggaca 180 gcactacaag gcgggaagcc atgtctgttt tggaacgaga ctttccaqca tccatacaac 240 actetgaaat acceeaacgg ggaggggge etgggtgage acaactattg cagaaateca 300 gatggagacg tgagcccctg gtgctatgtg gcagagcacg aggatggtgt ctactggaag 360 tactgtgaga tacctgcttg ccagatgcct ggaaaccttg gctgctacaa ggatcatgga 420 aacccacctc ctctaactgg caccagtaaa acgtccaaca aactcaccat acaaacttqc 480 atcagttttt gtcggagtca gaggttcaag tttgctggga tggagtcagg ctatqcttgc 540 ttctgtggaa acaatcctga ttactggaag tacggggagg cagccagtac cgaatgcaac 600 agcgtctgct tcggggatca cacccaaccc tgtggtggcg atggcaggat catcctctt 660 gatacteteg tgggegeetg eggtgggaac tacteageea tgtettetgt ggtetattee 720 cetgaettee eegacaeeta tgecaegggg agggtetget aetggaeeat eegggtteeg 780 ggggcctccc acatccactt cagcttcccc ctatttgaca tcagggactc ggcggacatg 840 gtggagette tggatggeta cacccacegt gtectagece gettecaegg gaggageege 900 ccacctctgt ccttcaacgt ctctctggac ttcgtcatct tgtatttctt ctctqatcqc 960 atcaatcagg cccagggatt tgctgtttta taccaagccg tcaaggaaga actgccacag 1020 gagaggcccg ctgtcaacca gacggtggcc gaggtgatca cggagcaggc caacctcagt 1080 gtcagcgctg cccggtcctc caaagtcctc tatgtcatca ccaccagccc cagccaccca 1140 cctcagactg tcccaggtag caattcctgg gcgccaccca tgggggctgg aagccacaga 1200


```
gttgaaggat ggacagtcta tggtctggca actctcctca tcctcacagt cacagccatt 1260 gtagcaaaga tacttctgca cgtcacattc aaatcccatc gtgttcctgc ttcaggggac 1320 cttagggatt gtcatcaacc agggacttcg ggggaaatct ggagcatttt ttacaagcct 1380 tccacttcaa tttccatctt taagaagaaa ctcaagggtc agagtcaaca agatgaccgc 1440 aatccccttg tgagtgacta aaaaccccac tgtgcctagg acttgaggtc cctctttgag 1500 ctcaaggctg ccgtggtcaa cctctctgt ggttcttctc tgacagactc ttccctccc 1560 tccctctgc tcggcctctt cggggaaacc ctcctctac agactaggaa gaggcacctg 1620 ctgccagggc aggcagagcc tggattcctc ctgctt
```

<210> 2 <211> 1425 <212> DNA <213> Homo sapiens

<400> 2

atggcgccgc ccgccgcccg cctcgccctg ctctccgccg cggcgctcac gctggcggcc 60 cggcccgcgc ctagccccgg cctcggcccc ggacccgagt gtttcacagc caatggtgcg 120 gattataggg gaacacagaa ctggacagca ctacaaggcg ggaagccatg tctgttttgg 180 aacgagactt tccagcatcc atacaacact ctgaaatacc ccaacgggga ggggggcctg 240 ggtgagcaca actattgcag aaatccagat ggagacgtga gcccctggtg ctatgtggca 300 gagcacgagg atggtgtcta ctggaagtac tgtgagatac ctgcttgcca gatgcctgga 360 aaccttggct gctacaagga tcatggaaac ccacctcctc taactggcac cagtaaaacg 420 tccaacaaac tcaccataca aacttgcatc agtttttgtc ggagtcagag gttcaagttt 480 gctgggatgg agtcaggcta tgcttgcttc tgtggaaaca atcctgatta ctggaagtac 540 ggggaggcag ccagtaccga atgcaacagc gtctgcttcg gggatcacac ccaaccctgt 600 ggtggcgatg gcaggatcat cctctttgat actctcgtgg gcgcctgcgg tgggaactac 660 tcagccatgt cttctgtggt ctattcccct gacttccccg acacctatgc cacggggagg 720 gtctgctact ggaccatccg ggttccgggg gcctcccaca tccacttcag cttcccccta 780 tttgacatca gggactcggc ggacatggtg gagcttctgg atggctacac ccaccgtgtc 840 ctageceget tecaegggag gageegeeca cetetgteet teaaegtete tetggaette 900 gtcatcttgt atttcttctc tgatcgcatc aatcaggccc agggatttgc tgttttatac 960 caagccgtca aggaagaact gccacaggag aggcccgctg tcaaccagac ggtggccgag 1020 gtgatcacgg agcaggccaa cctcagtgtc agcgctgccc ggtcctccaa agtcctctat 1080 gtcatcacca ccagccccag ccacccacct cagactgtcc caggtagcaa ttcctgggcg 1140 ccacccatgg gggctggaag ccacagagtt gaaggatgga cagtctatgg tctggcaact 1200 ctcctcatcc tcacagtcac agccattgta gcaaagatac ttctgcacgt cacattcaaa 1260 teccategtg tteetgette aggggaeett agggattgte ateaaceagg gaettegggg 1320 gaaatctgga gcatttttta caagccttcc acttcaattt ccatctttaa gaagaaactc 1380 aagggtcaga gtcaacaaga tgaccgcaat ccccttgtga gtgac

<210> 3 <211> 475 <212> PRT <213> Homo sapiens

<400> 3

Met 1	Ala	Pro	Pro	Ala 5	Ala	Arg	Leu	Ala	Leu 10	Leu	Ser	Ala	Ala	Ala 15	Leu
Thr	Leu	Ala	Ala 20	Arg	Pro	Ala	Pro	Ser 25	Pro	Gly	Leu	Gly	Pro 30	Gly	Pró
Glu	Cys	Phe 35	Thr	Ala	Asn	Gly	Ala 40	Asp	Tyr	Arg	Gly	Thr 45	Gln	Asn	Trp
Thr	Ala .50	Leu	Gln	Gly	Gly	Lys 55	Pro	Суѕ	Leu	Phe	Trp 60	Asn	Glu	Thr	Phe
Gln 65	His	Pro	Tyr	Asn	Thr 70	Leu	Lys	Tyr	Pro	Asn 75	Gly	Glu	Gly	Gly	Leu 80
Gly	Glu	His	Asn	Tyr 85	Cys	Arg	Asn	Pro	Asp 90	Gly	Asp	Val	Ser	Pro 95	Trp
Суз	Tyr	Val	Ala 100	Glu	His	Glu	Asp	Gly 105	Val	Tyr	Trp	Lys	Туг 110	Суѕ	Glu
Ile	Pro	Ala 115	Ċys	Gln	Met	Pro	Gly 120	Asn	Leu	Gly	Cys	Tyr 125	Lys	Asp	His
Gly	Asn 130	Pro	Pro	Pro	Leu	Thr 135	Gly	Thr	Ser	Lys	Thr 140	Ser	Asn	Lys	Leu
Thr 145	Ile	Gln	Thr	Cys	Ile 150	Ser	Phe	Cys	Arg	Ser 155	Gln	Arg	Phe	Lys	Phe 1,60
Ala	Gly	Met	Glu	Ser 165	Gly	Tyr	Ala	Cys	Phe 170	Cys	Gly	Asn	Asn	Pro 175	Asp
Tyr	Trp	Lys	Tyr 180	Gly	Glu	Ala	Ala	Ser 185	Thr	Glu	Cys	Asn	Ser 190	Val	Суз
Phe	Gly	Asp 195	His	Thr	Gln	Pro	Cys 200	Gly	Gly	Asp	Gly	Arg 205	Ile	Ile	Leu
Phe	Asp 210	Thr	Leu	Val	Gly	Ala 215	Cys	Gly	Gly	Asn	Tyr 220	Ser	Ala	Met	Ser
Ser 225	Val	Val	Tyr	Ser	Pro 230	Asp	Phe	Pro	Asp	Thr 235	Tyr	Ala	Thr	Gly	Arg 240
Val	Cys	Tyr	Trp	Thr 245	Ile	Arg	Val	Pro	Gly 250	Ala	Ser	His	Ile	His 255	Phe

Ser Phe Pro Leu Phe Asp Ile Arg Asp Ser Ala Asp Met Val Glu Leu Leu Asp Gly Tyr Thr His Arg Val Leu Ala Arg Phe His Gly Arg Ser Arg Pro Pro Leu Ser Phe Asn Val Ser Leu Asp Phe Val Ile Leu Tyr Phe Phe Ser Asp Arg Ile Asn Gln Ala Gln Gly Phe Ala Val Leu Tyr Gln Ala Val Lys Glu Glu Leu Pro Gln Glu Arg Pro Ala Val Asn Gln Thr Val Ala Glu Val Ile Thr Glu Gln Ala Asn Leu Ser Val Ser Ala Ala Arg Ser Ser Lys Val Leu Tyr Val Ile Thr Thr Ser Pro Ser His Pro Pro Gln Thr Val Pro Gly Ser Asn Ser Trp Ala Pro Pro Met Gly Ala Gly Ser His Arg Val Glu Gly Trp Thr Val Tyr Gly Leu Ala Thr Leu Leu Ile Leu Thr Val Thr Ala Ile Val Ala Lys Ile Leu Leu His Val Thr Phe Lys Ser His Arg Val Pro Ala Ser Gly Asp Leu Arg Asp Cys His Gln Pro Gly Thr Ser Gly Glu Ile Trp Ser Ile Phe Tyr Lys Pro Ser Thr Ser Ile Ser Ile Phe Lys Lys Leu Lys Gly Gln Ser

<210> 4

<211> 19

<212> PRT

<213> Homo sapiens

Gln Gln Asp Asp Arg Asn Pro Leu Val Ser Asp

<400> 4

Met Ala Pro Pro Ala Ala Arg Leu Ala Leu Leu Ser Ala Ala Ala Leu 1 5 10 15

Thr Leu Ala

<210> 5

<211> 456

<212> PRT

<213> Homo sapiens

<400> 5

Ala Arg Pro Ala Pro Ser Pro Gly Leu Gly Pro Gly Pro Glu Cys Phe
1 5 10 15

Thr Ala Asn Gly Ala Asp Tyr Arg Gly Thr Gln Asn Trp Thr Ala Leu
20 25 30

Gln Gly Gly Lys Pro Cys Leu Phe Trp Asn Glu Thr Phe Gln His Pro 35 40 45

Tyr Asn Thr Leu Lys Tyr Pro Asn Gly Glu Gly Gly Leu Gly Glu His
50 55 60

Asn Tyr Cys Arg Asn Pro Asp Gly Asp Val Ser Pro Trp Cys Tyr Val 65 70 75 80

Ala Glu His Glu Asp Gly Val Tyr Trp Lys Tyr Cys Glu Ile Pro Ala 85 90 95

Cys Gln Met Pro Gly Asn Leu Gly Cys Tyr Lys Asp His Gly Asn Pro 100 105 110

Pro Pro Leu Thr Gly Thr Ser Lys Thr Ser Asn Lys Leu Thr Ile Gln
115 120 125

Thr Cys Ile Ser Phe Cys Arg Ser Gln Arg Phe Lys Phe Ala Gly Met 130 135 140

Glu Ser Gly Tyr Ala Cys Phe Cys Gly Asn Asn Pro Asp Tyr Trp Lys 145 150 155 160

Tyr Gly Glu Ala Ala Ser Thr Glu Cys Asn Ser Val Cys Phe Gly Asp 165 170 175

His Thr Gln Pro Cys Gly Gly Asp Gly Arg Ile Ile Leu Phe. Asp Thr

180 185 190

Leu Val Gly Ala Cys Gly Gly Asn Tyr Ser Ala Met Ser Ser Val Val 195 200 205

Tyr Ser Pro Asp Phe Pro Asp Thr Tyr Ala Thr Gly Arg Val Cys Tyr 210 215 220

Trp Thr Ile Arg Val Pro Gly Ala Ser His Ile His Phe Ser Phe Pro 225 230 235 240

Leu Phe Asp Ile Arg Asp Ser Ala Asp Met Val Glu Leu Leu Asp Gly
245 250 255

Tyr Thr His Arg Val Leu Ala Arg Phe His Gly Arg Ser Arg Pro Pro 260 265 270

Leu Ser Phe Asn Val Ser Leu Asp Phe Val Ile Leu Tyr Phe Phe Ser 275 280 285

Asp Arg Ile Asn Gln Ala Gln Gly Phe Ala Val Leu Tyr Gln Ala Val 290 295 300

Lys Glu Glu Leu Pro Gln Glu Arg Pro Ala Val Asn Gln Thr Val Ala 305 310 315 320

Glu Val Ile Thr Glu Gln Ala Asn Leu Ser Val Ser Ala Ala Arg Ser 325 330 335

Ser Lys Val Leu Tyr Val Ile Thr Thr Ser Pro Ser His Pro Pro Gln 340 345 350

Thr Val Pro Gly Ser Asn Ser Trp Ala Pro Pro Met Gly Ala Gly Ser 355 360 365

His Arg Val Glu Gly Trp Thr Val Tyr Gly Leu Ala Thr Leu Leu Ile 370 375 . 380

Leu Thr Val Thr Ala Ile Val Ala Lys Ile Leu Leu His Val Thr Phe 385 390 395 400

Lys Ser His Arg Val Pro Ala Ser Gly Asp Leu Arg Asp Cys His Gln
405 410 415

Pro Gly Thr Ser Gly Glu Ile Trp Ser Ile Phe Tyr Lys Pro Ser Thr 420 425 430

Ser Ile Ser Ile Phe Lys Lys Leu Lys Gly Gln Ser Gln Gln Asp

435

440

445

Asp Arg Asn Pro Leu Val Ser Asp 450 455

<210> 6

<211> 373

<212> PRT

<213> Homo sapiens

<400> 6

Ala Arg Pro Ala Pro Ser Pro Gly Leu Gly Pro Gly Pro Glu Cys Phe
1 5 10 15

Thr Ala Asn Gly Ala Asp Tyr Arg Gly Thr Gln Asn Trp Thr Ala Leu 20 25 30

Gln Gly Gly Lys Pro Cys Leu Phe Trp Asn Glu Thr Phe Gln His Pro 35 40 45

Tyr Asn Thr Leu Lys Tyr Pro Asn Gly Glu Gly Gly Leu Gly Glu His
50 55 60

Asn Tyr Cys Arg Asn Pro Asp Gly Asp Val Ser Pro Trp Cys Tyr Val 65 70 75 80

Ala Glu His Glu Asp Gly Val Tyr Trp Lys Tyr Cys Glu Ile Pro Ala 85 90 95

Cys Gln Met Pro Gly Asn Leu Gly Cys Tyr Lys Asp His Gly Asn Pro 100 105 110

Pro Pro Leu Thr Gly Thr Ser Lys Thr Ser Asn Lys Leu Thr Ile Gln
115 120 125

Thr Cys Ile Ser Phe Cys Arg Ser Gln Arg Phe Lys Phe Ala Gly Met 130 135 140

Glu Ser Gly Tyr Ala Cys Phe Cys Gly Asn Asn Pro Asp Tyr Trp Lys 145 150 155 160

Tyr Gly Glu Ala Ala Ser Thr Glu Cys Asn Ser Val Cys Phe Gly Asp 165 170 175

His Thr Gln Pro Cys Gly Gly Asp Gly Arg Ile Ile Leu Phe Asp Thr 180 185 190

Leu Val Gly Ala Cys Gly Gly Asn Tyr Ser Ala Met Ser Ser Val Val 195 200 205

Tyr Ser Pro Asp Phe Pro Asp Thr Tyr Ala Thr Gly Arg Val Cys Tyr 210 215 220

Trp Thr Ile Arg Val Pro Gly Ala Ser His Ile His Phe Ser Phe Pro 225 230 235 240

Leu Phe Asp Ile Arg Asp Ser Ala Asp Met Val Glu Leu Leu Asp Gly
245 250 255

Tyr Thr His Arg Val Leu Ala Arg Phe His Gly Arg Ser Arg Pro Pro 260 265 270

Leu Ser Phe Asn Val Ser Leu Asp Phe Val Ile Leu Tyr Phe Phe Ser 275 280 285

Asp Arg Ile Asn Gln Ala Gln Gly Phe Ala Val Leu Tyr Gln Ala Val 290 295 300

Lys Glu Glu Leu Pro Gln Glu Arg Pro Ala Val Asn Gln Thr Val Ala 305 310 315 320

Glu Val Ile Thr Glu Gln Ala Asn Leu Ser Val Ser Ala Ala Arg Ser 325 330 335

Ser Lys Val Leu Tyr Val Ile Thr Thr Ser Pro Ser His Pro Pro Gln 340 345 350

Thr Val Pro Gly Ser Asn Ser Trp Ala Pro Pro Met Gly Ala Gly Ser 355 360 365

His Arg Val Glu Gly 370

<210> 7

<211> 23

<212> PRT

<213> Homo sapiens

<400> 7

Trp Thr Val Tyr Gly Leu Ala Thr Leu Leu Ile Leu Thr Val Thr Ala

1 5 10 15

Ile Val Ala Lys Ile Leu Leu

20

```
<210> 8
<211> 60
<212> PRT
<213> Homo sapiens
<400> 8
His Val Thr Phe Ly
```

His Val Thr Phe Lys Ser His Arg Val Pro Ala Ser Gly Asp Leu Arg
1 5 10 15

Asp Cys His Gln Pro Gly Thr Ser Gly Glu Ile Trp Ser Ile Phe Tyr
20 25 30

Lys Pro Ser Thr Ser Ile Ser Ile Phe Lys Lys Leu Lys Gly Gln
35 40 45

Ser Gln Gln Asp Asp Arg Asn Pro Leu Val Ser Asp 50 55 60

<210> 9 <211> 4628 <212> DNA <213> Homo sapiens

<400> 9

geggeegete gegatetaga actagtaatg atgetgeete aaaactegtg geatattgat 60 tttggaagat gctgctgtca tcagaacctt ttctctgctg tggtaacttg catcctgctc 120 ctgaattcct gctttctcat cagcagtttt aatggaacag atttggagtt gaggctggtc 180 aatggagacg gtccctgctc tgggacagtg gaggtgaaat tccagggaca gtgggggact 240 gtgtgtgatg atgggtggaa cactactgcc tcaactgtcg tgtgcaaaca gcttggatgt 300 ccattttctt tcgccatgtt tcgttttgga caagccgtga ctagacatgg aaaaatttgg 360 cttgatgatg tttcctgtta tggaaatgag tcagctctct gggaatgtca acaccgggaa 420 tggggaagcc ataactgtta tcatggagaa gatgttggtg tgaactgtta tggtgaagcc 480 aatctgggtt tgaggctagt ggatggaaac aactcctgtt cagggagagt ggaggtgaaa 540 ttccaagaaa ggtgggggac tatatgtgat gatgggtgga acttgaatac tgctgccgtg 600 gtgtgcaggc aactaggatg tccatcttct tttatttctt ctggagttgt taatagccct 660 gctgtattgc gccccatttg gctggatgac attttatgcc aggggaatga gttggcactc 720 tggaattgca gacatcgtgg atggggaaat catgactgca gtcacaatga ggatgtcaca 780 ttaacttgtt atgatagtag tgatcttgaa ctaaggcttg taggtggaac taaccgctgt 840 atggggagag tagagetgaa aatecaagga aggtggggga eegtatgeea eeataagtgg 900 gctggcttgc ctcatttgca gtcagggtct gatgttgtat ggcttgatgg tgtctcctqc 1020 teeggtaatg aatetttet ttgggaetge agacatteeg gaacegteaa ttttgaetgt 1080 cttcatcaaa acgatgtgtc tgtgatctgc tcagatggag cagatttgga actgcgacta 1140 gcagatggaa gtaacaattg ttcagggaga gtagaggtga gaattcatga acagtggtgg 1200 acaatatgtg accagaactg gaagaatgaa caagcccttg tggtttgtaa gcagctagga 1260

tgtccgttca gcgtctttgg cagtcgtcgt gctaaaccta gtaatgaagc tagagacatt 1320 tggataaaca gcatatettg caetgggaat gagteagete tetgggaetg caeatatgat 1380 ggaaaagcaa agcgaacatg cttccgaaga tcagatgctg gagtaatttg ttctgataag 1440 gcagatctgg acctaaggct tgtcggggct catagcccct gttatgggag attggaggtg 1500 aaataccaag gagagtgggg gactgtgtgt catgacagat ggagcacaag gaatgcagct, 1560 gttgtgtgta aacaattggg atgtggaaag cctatgcatg tgtttggtat gacctatttt 1620 aaagaagcat caggacctat ttggctggat gacgtttctt gcattggaaa tgagtcaaat 1680 atctgggact gtgaacacag tggatgggga aagcataatt gtgtacacag agaggatgtg 1740 attgtaacct gctcaggtga tgcaacatgg ggcctgaggc tggtgggcgg cagcaaccgc 1800 tgctcgggaa gactggaggt gtactttcaa ggacggtggg gcacagtgtg tgatgacggc 1860 tggaacagta aagctgcagc, tgtggtgtgt agccagctgg actgcccatc ttctatcatt 1920 ggcatgggtc tgggaaacgc ttctacagga tatggaaaaa tttggctcga tgatgtttcc 1980 tgtgatggag atgagtcaga tetetggtea tgeaggaaca gtgggtgggg aaataatgae 2040 tgcagtcaca gtgaagatgt tggagtgatc tgttctgatg catcggatat ggagctgagg 2100 cttgtgggtg gaagcagcag gtgtgctgga aaagttgagg tgaatgtcca gggtgccgtg 2160 ggaattctgt gtgctaatgg ctggggaatg aacattgctg aagttgtttg caggcaactt 2220 gaatgtgggt ctgcaatcag ggtctccaga gagcctcatt tcacagaaag aacattacac 2280 atettaatgt egaattetgg etgeaetgga ggggaageet etetetggga ttgtataega 2340 tgggagtgga aacagactgc gtgtcattta aatatggaag caagtttgat ctgctcagcc 2400 cacaggcage ccaggetggt tggagetgat atgecetget etggaegtgt tgaagtgaaa 2460 catgcagaca catggcgctc tgtctgtgat tctgatttct ctcttcatgc tgccaatgtg 2520 ctgtgcagag aattaaattg tggagatgcc atatctcttt ctgtgggaga tcactttgga 2580 aaagggaatg gtctaacttg ggccgaaaag ttccagtgtg aagggagtga aactcacctt 2640 gcattatgcc ccattgttca acatccggaa gacacttgta tccacagcag agaagttgga 2700 gttgtctgtt cccgatatac agatgtccga cttgtgaatg gcaaatccca gtgtgacggg 2760 caagtggaga tcaacgtgct tggacactgg ggctcactgt gtgacaccca ctgggaccca 2820 gaagatgeee gtgttetatg cagacagete agetgtggga etgetetete aaccacagga 2880 ggaaaatata ttggagaaag aagtgttcgt gtgtggggac acaggtttca ttgcttaggg 2940 aatgagtcac ttctggataa ctgtcaaatg acagttcttg gagcacctcc ctgtatccat 3000 ggaaatactg tetetgtgat etgeacagga ageetgaeee ageeaetgtt teeatgeete 3060 gcaaatgtat ctgacccata tttgtctgca gttccagagg gcagtgcttt gatctgctta 3120 gaggacaaac ggctccgcct agtggatggg gacagccgct gtgccgggag agtagagatc 3180 tateacgaeg gettetgggg caccatetgt gatgaegget gggaeetgag egatgeeeae 3240 gtggtgtgtc aaaagctggg ctgtggagtg gccttcaatg ccacggtctc tgctcacttt 3300 ggggaggggt cagggcccat ctggctggat gacctgaact gcacaggaac ggagtcccac 3360 ttgtggcagt gcccttcccg cggctggggg cagcacgact gcaggcacaa ggaggacgca 3420 ggggtcatct gctcagaatt cacagccttg aggctctaca gtgaaactga aacagagagc 3480 tgtgctggga gattggaagt cttctataac gggacctggg gcagcgtcgg caggaggaac 3540 atcaccacag ccatagcagg cattgtgtgc aggcagctgg gctgtgggga gaatggagtt 3600 gtcagcctcg cccctttatc taagacaggc tctggtttca tgtgggtgga tgacattcag 3660 tgtcctaaaa cgcatatctc catatggcag tgcctgtctg ccccatggga gcgaagaatc 3720 tccagcccag cagaagagac ctggatcaca tgtgaagata gaataagagt gcgtggagga 3780 gacaccgagt gctctgggag agtggagatc tggcacgcag gctcctgggg cacagtgtgt 3840 gatgactcct gggacctggc cgaggcggaa gtggtgtgtc agcagctggg ctgtggctct 3900 gctctggctg ccctgaggga cgcttcgttt ggccagggaa ctggaaccat ctggttggat 3960 gacatgcggt gcaaaggaaa tgagtcattt ctatgggact gtcacgccaa accctgggga 4020 cagagtgact gtggacacaa ggaagatgct ggcgtgaggt gctctggaca gtcgctgaaa 4080 tcactgaatg cctcctcagg tcatttagca cttattttat ccagtatctt tgggctcctt 4140


```
ctcctggttc tgtttattct atttctcacg tggtgccgag ttcagaaaca aaaacatctg 4200 cccctcagag tttcaaccag aaggagggt tctctcgagg agaatttatt ccatgagatg 4260 gagacctgcc tcaagagaga ggacccacat gggacaagaa cctcagatga cacccccaac 4320 catggttgtg aagatgctag cgacacatcg ctgttgggag ttcttcctgc ctctgaagcc 4380 acaacaacta tttagacttc cagggctcac cagatcaacc tctaaatatc tttgaaggag 4440 acaacaactt ttaaatgaat aaagaggaag tcaagttgcc ctatggaaaa cttgtccaaa 4500 taacatttct tgaacaatag gagaacagct aaattgataa agactggtga taataaaaat 4560 tgaattatgt atatcactgt taaaaaaaaa aaaaaaaaa aaaaaaaaa acggacgcgt 4620 gggtcgac 4628
```

<210> 10 <211> 4359 <212> DNA <213> Homo sapiens

<400> 10

atgatgctgc ctcaaaactc gtggcatatt gattttggaa gatgctgctg tcatcagaac 60 cttttctctg ctgtggtaac ttgcatcctg ctcctgaatt cctgctttct catcagcagt 120 tttaatggaa cagatttgga gttgaggctg gtcaatggag acggtccctg ctctgggaca 180 gtggaggtga aattccaggg acagtggggg actgtgtgtg atgatgggtg gaacactact 240 gcctcaactg tcgtgtgcaa acagcttgga tgtccatttt ctttcgccat gtttcgtttt 300 ggacaagccg tgactagaca tggaaaaatt tggcttgatg atgtttcctg ttatggaaat 360 gagtcagete tetgggaatg teaacacegg gaatggggaa gecataactg ttatcatgga 420 gaagatgttg gtgtgaactg ttatggtgaa gccaatctgg gtttgaggct agtggatgga 480 aacaactcct gttcagggag agtggaggtg aaattccaag aaaggtgggg gactatatgt 540 gatgatgggt ggaacttgaa tactgctgcc gtggtgtgca ggcaactagg atgtccatct 600 tettttattt ettetggagt tgttaatage eetgetgtat tgegeeceat ttggetggat 660 gacattttat gccaggggaa tgagttggca ctctggaatt gcagacatcg tggatgggga 720 aatcatgact gcagtcacaa tgaggatgtc acattaactt gttatgatag tagtgatctt 780 gaactaaggc ttgtaggtgg aactaaccgc tgtatgggga gagtagagct gaaaatccaa 840 ggaaggtggg ggaccgtatg ccaccataag tggaacaatg ctgcagctga tgtcgtatgc 900 aagcagttgg gatgtggaac cgcacttcac ttcgctggct tgcctcattt gcagtcaggg 960 tetgatgttg tatggettga tggtgtetee tgeteeggta atgaatettt tetttgggae 1020 tgcagacatt ccggaaccgt caattttgac tgtcttcatc aaaacgatgt gtctgtgatc 1080 tgctcagatg gagcagattt ggaactgcga ctagcagatg gaagtaacaa ttgttcaggg 1140 agagtagagg tgagaattca tgaacagtgg tggacaatat gtgaccagaa ctggaagaat 1200 gaacaagccc ttgtggtttg taagcagcta ggatgtccgt tcagcgtctt tggcagtcgt 1260 cgtgctaaac ctagtaatga agctagagac atttggataa acagcatatc ttgcactggg 1320 aatgagtcag ctctctggga ctgcacatat gatggaaaag caaagcgaac atgcttccga 1380 agatcagatg ctggagtaat ttgttctgat aaggcagatc tggacctaag gcttgtcggg 1440 gctcatagcc cctgttatgg gagattggag gtgaaatacc aaggaggagtg ggggactgtg 1500 tgtcatgaca gatggagcac aaggaatgca gctgttgtgt gtaaacaatt gggatgtgga 1560 aagcctatgc atgtgtttgg tatgacctat tttaaagaag catcaggacc tatttggctg 1620 gatgacgttt cttgcattgg aaatgagtca aatatctggg actgtgaaca cagtggatgg 1680 ggaaagcata attgtgtaca cagagaggat gtgattgtaa cctgctcagg tgatgcaaca 1740 tggggcctga ggctggtggg cggcagcaac cgctgctcgg gaagactgga ggtgtacttt 1800 caaggacggt ggggcacagt gtgtgatgac ggctggaaca gtaaagctgc agctgtggtg 1860

tgtagccagc	tggactgccc	atcttctatc	attqqcatqq	gtctgggaaa	cgcttctaca	1920
				gagatgagtc		
				acagtgaaga		
				gtggaagcag		
				tgtgtgctaa		
				ggtctgcaat		
				tgtcgaattc		
				ggaaacagac	•	
				agcccaggct		
				acacatggcg		
gattctgatt	tctctcttca	tgctgccaat	gtgctgtgca	gagaattaaa	ttgtggagat	2520
				atggtctaac		
				gccccattgt		
				gttcccgata		
				agatcaacgt		
				cccgtgttct		
ctcagctgtg	ggactgctct	ctcaaccaca	ggaggaaaat	atattggaga	aagaagtgtt	2880
cgtgtgtggg	gacacaggtt	tcattgctta	gggaatgagt	cacttctgga	taactgtcaa	2940
atgacagttc	ttggagcacc	tccctgtatc	catggaaata	ctgtctctgt	gatctgcaca	3000
ggaagcctga	cccagccact	gtttccatgc	ctcgcaaatg	tatctgaccc	atatttgtct	3060
gcagttccag	agggcagtgc	tttgatctgc	ttagaggaca	aacggctccg	cctagtggat	3120
ggggacagcc	gctgtgccgg	gagagtagag	atctatcacg	acggcttctg	gggcaccatc	3180
tgtgatgacg	gctgggacct	gagcgatgcc	cacgtggtgt	gtcaaaagct	gggctgtgga	3240
gtggccttca	atgccacggt	ctctgctcac	tttggggagg	ggtcagggcc	catctggctg	3300
gatgacctga	actgcacagg	aacggagtcc	cacttgtggc	agtgcccttc	ccgcggctgg	3360
gggcagcacg	actgcaggca	caaggaggàc	gcaggggtca	tctgctcaga	attcacagcc	3420
ttgaggctct	acagtgaaac	tgaaacagag	agctgtgctg	ggagattgga	agtcttctat	3480
aacgggacct	ggggcagcgt	cggcaggagg	aacatcacca	cagccatagc	aggcattgtg	3540
tgcaggcagc	tgggctgtgg	ggagaatgga	gttgtcagcc	tcgccccttt	atctaagaca	3600
ggctctggtt	tcatgtgggt	ggatgacatt	cagtgtccta	aaacgcatat	ctccatatgg	3660
cagtgcctgt	ctgccccatg	ggagcgaaga	atctccagcc	cagcagaaga	gacctggatc	3720
acatgtgaag	atagaataag	agtgcgtgga	ggagacaccg	agtgctctgg	gagagtggag	3780
atctggcacg	caggctcctg	gggcacagtg	tgtgatgact	cctgggacct	ggccgaggcg	3840
gaagtggtgt	gtcagcagct	gggctgtggc	tctgctctgg	ctgccctgag	ggacgcttcg	3900
tttggccagg	gaactggaac	catctggttg	gatgacatgc	ggtgcaaagg	aaatgagtca	3960
tttctatggg	actgtcacgc	caaaccctgg	ggacagagtg	actgtggaca	caaggaagat	4020
gctggcgtga	ggtgctctgg	acagtcgctg	aaatcactga	atgcctcctc	aggtcattta	4080
gcacttattt	tatccagtat	ctttgggctc	cttctcctgg	ttctgtttat	tctatttctc	4140
acgtggtgcc	gagttcagaa	acaaaaacat	ctgcccctca	gagtttcaac	cagaaggagg	4200
ggttctctcg	aggagaattt	attccatgag	atggagacct	gcctcaagag	agaggaccca	4260
catgggacaa	gaacctcaga	tgacaccccc	aaccatggtt	gtgaagatgc	tagcgacaca	4320
tcgctgttgg	gagttcttcc	tgcctctgaa	gccacaaaa			4359

<210> 11

<211> 1453

<212> PRT

<213> Homo sapiens

_	_		•	-
- A	n	0>	- 1	1

- Met Met Leu Pro Gln Asn Ser Trp His Ile Asp Phe Gly Arg Cys Cys

 1 5 10 15
- Cys His Gln Asn Leu Phe Ser Ala Val Val Thr Cys Ile Leu Leu Leu 20 25 30
- Asn Ser Cys Phe Leu Ile Ser Ser Phe Asn Gly Thr Asp Leu Glu Leu
 35 40 45
- Arg Leu Val Asn Gly Asp Gly Pro Cys Ser Gly Thr Val Glu Val Lys
 50 55 60
- Phe Gln Gly Gln Trp Gly Thr Val Cys Asp Asp Gly Trp Asn Thr Thr
 65 70 75 80
- Ala Ser Thr Val Val Cys Lys Gln Leu Gly Cys Pro Phe Ser Phe Ala 85 90 95
- Met Phe Arg Phe Gly Gln Ala Val Thr Arg His Gly Lys Ile Trp Leu 100 105 110
- Asp Asp Val Ser Cys Tyr Gly Asn Glu Ser Ala Leu Trp Glu Cys Gln 115 120 125
- His Arg Glu Trp Gly Ser His Asn Cys Tyr His Gly Glu Asp Val Gly 130 135 140
- Val Asn Cys Tyr Gly Glu Ala Asn Leu Gly Leu Arg Leu Val Asp Gly 145 150 155 160
- Asn Asn Ser Cys Ser Gly Arg Val Glu Val Lys Phe Gln Glu Arg Trp 165 170 175
- Gly Thr Ile Cys Asp Asp Gly Trp Asn Leu Asn Thr Ala Ala Val
 180 185 190
- Cys Arg Gln Leu Gly Cys Pro Ser Ser Phe Ile Ser Ser Gly Val Val 195 200 205
- Asn Ser Pro Ala Val Leu Arg Pro Ile Trp Leu Asp Asp Ile Leu Cys 210 215 220
- Gln Gly Asn Glu Leu Ala Leu Trp Asn Cys Arg His Arg Gly Trp Gly
 225 230 235 240
- Asn His Asp Cys Ser His Asn Glu Asp Val Thr Leu Thr Cys Tyr Asp

245 250 255

- Ser Ser Asp Leu Glu Leu Arg Leu Val Gly Gly Thr Asn Arg Cys Met 260 265 270
- Gly Arg Val Glu Leu Lys Ile Gln Gly Arg Trp Gly Thr Val Cys His 275 280 285
- His Lys Trp Asn Asn Ala Ala Ala Asp Val Val Cys Lys Gln Leu Gly 290 295 300
- Cys Gly Thr Ala Leu His Phe Ala Gly Leu Pro His Leu Gln Ser Gly 305 310 315 320
- Ser Asp Val Val Trp Leu Asp Gly Val Ser Cys Ser Gly Asn Glu Ser 325 330 335
- Phe Leu Trp Asp Cys Arg His Ser Gly Thr Val Asn Phe Asp Cys Leu 340 345 350
- His Gln Asn Asp Val Ser Val Ile Cys Ser Asp Gly Ala Asp Leu Glu 355 360 365
- Leu Arg Leu Ala Asp Gly Ser Asn Asn Cys Ser Gly Arg Val Glu Val 370 375 380
- Arg Ile His Glu Gln Trp Trp Thr Ile Cys Asp Gln Asn Trp Lys Asn 385 390 395 400
- Glu Gln Ala Leu Val Val Cys Lys Gln Leu Gly Cys Pro Phe Ser Val
 405 410 415
- Phe Gly Ser Arg Ala Lys Pro Ser Asn Glu Ala Arg Asp Ile Trp
 420 425 430
- Ile Asn Ser Ile Ser Cys Thr Gly Asn Glu Ser Ala Leu Trp Asp Cys
 435
 440
 445
- Thr Tyr Asp Gly Lys Ala Lys Arg Thr Cys Phe Arg Arg Ser Asp Ala
 450 455 460
- Gly Val Ile Cys Ser Asp Lys Ala Asp Leu Asp Leu Arg Leu Val Gly
 465 470 475 480
- Ala His Ser Pro Cys Tyr Gly Arg Leu Glu Val Lys Tyr Gln Gly Glu
 485 490 495
- Trp Gly Thr Val Cys His Asp Arg Trp Ser Thr Arg Asn Ala Ala Val

500 505 510

- Val Cys Lys Gln Leu Gly Cys Gly Lys Pro Met His Val Phe Gly Met 515 520 525
- Thr Tyr Phe Lys Glu Ala Ser Gly Pro Ile Trp Leu Asp Asp Val Ser 530 535 540
- Cys Ile Gly Asn Glu Ser Asn Ile Trp Asp Cys Glu His Ser Gly Trp 545 550 555 560
- Gly Lys His Asn Cys Val His Arg Glu Asp Val Ile Val Thr Cys Ser 565 570 575
- Gly Asp Ala Thr Trp Gly Leu Arg Leu Val Gly Gly Ser Asn Arg Cys 580 585 590
- Ser Gly Arg Leu Glu Val Tyr Phe Gln Gly Arg Trp Gly Thr Val Cys 595 600 605
- Asp Asp Gly Trp Asn Ser Lys Ala Ala Ala Val Val Cys Ser Gln Leu 610 615 620
- Asp Cys Pro Ser Ser Ile Ile Gly Met Gly Leu Gly Asn Ala Ser Thr 625 630 635 640
- Gly Tyr Gly Lys Ile Trp Leu Asp Asp Val Ser Cys Asp Gly Asp Glu 645 650 655
- Ser Asp Leu Trp Ser Cys Arg Asn Ser Gly Trp Gly Asn Asn Asp Cys 660 665 670
- Ser His Ser Glu Asp Val Gly Val Ile Cys Ser Asp Ala Ser Asp Met 675 680 685
- Glu Leu Arg Leu Val Gly Gly Ser Ser Arg Cys Ala Gly Lys Val Glu 690 695 700
- Val Asn Val Gln Gly Ala Val Gly Ile Leu Cys Ala Asn Gly Trp Gly
 705 710 . 715 720
- Met Asn Ile Ala Glu Val Val Cys Arg Gln Leu Glu Cys Gly Ser Ala 725 730 735
- Ile Arg Val Ser Arg Glu Pro His Phe Thr Glu Arg Thr Leu His Ile
 740 745 750
- Leu Met Ser Asn Ser Gly Cys Thr Gly Glu Ala Ser Leu Trp Asp

755 760 765

- Cys Ile Arg Trp Glu Trp Lys Gln Thr Ala Cys His Leu Asn Met Glu 770 775 780
- Ala Ser Leu Ile Cys Ser Ala His Arg Gln Pro Arg Leu Val Gly Ala 785 790 795 800
- Asp Met Pro Cys Ser Gly Arg Val Glu Val Lys His Ala Asp Thr Trp 805 810 815
- Arg Ser Val Cys Asp Ser Asp Phe Ser Leu His Ala Ala Asn Val Leu 820 825 830
- Cys Arg Glu Leu Asn Cys Gly Asp Ala Ile Ser Leu Ser Val Gly Asp 835 840 845
- His Phe Gly Lys Gly Asn Gly Leu Thr Trp Ala Glu Lys Phe Gln Cys 850 855 860
- Glu Gly Ser Glu Thr His Leu Ala Leu Cys Pro Ile Val Gln His Pro 865 870 875 880
- Glu Asp Thr Cys Ile His Ser Arg Glu Val Gly Val Val Cys Ser Arg 885 890 895
- Tyr Thr Asp Val Arg Leu Val Asn Gly Lys Ser Gln Cys Asp Gly Gln 900 905 910
- Val Glu Ile Asn Val Leu Gly His Trp Gly Ser Leu Cys Asp Thr His 915 920 925
- Trp Asp Pro Glu Asp Ala Arg Val Leu Cys Arg Gln Leu Ser Cys Gly 930 935 940
- Thr Ala Leu Ser Thr Thr Gly Gly Lys Tyr Ile Gly Glu Arg Ser Val 945 950 955 960
- Arg Val Trp Gly His Arg Phe His Cys Leu Gly Asn Glu Ser Leu Leu
 965 970 975
- Asp Asn Cys Gln Met Thr Val Leu Gly Ala Pro Pro Cys Ile His Gly 980 985 990
- Asn Thr Val Ser Val Ile Cys Thr Gly Ser Leu Thr Gln Pro Leu Phe 995 1000 1005
- Pro Cys Leu Ala Asn Val Ser Asp Pro Tyr Leu Ser Ala Val Pro Glu

1010 1015 1020

Gly Ser Ala Leu Ile Cys Leu Glu Asp Lys Arg Leu Arg Leu Val Asp 1025 1030 1035 1040

- Gly Asp Ser Arg Cys Ala Gly Arg Val Glu Ile Tyr His Asp Gly Phe 1045 1050 1055
- Trp Gly Thr Ile Cys Asp Asp Gly Trp Asp Leu Ser Asp Ala His Val 1060 1065 1070
- Val Cys Gln Lys Leu Gly Cys Gly Val Ala Phe Asn Ala Thr Val Ser 1075 1080 1085
- Ala His Phe Gly Glu Gly Ser Gly Pro Ile Trp Leu Asp Asp Leu Asn 1090 1095 1100
- Cys Thr Gly Thr Glu Ser His Leu Trp Gln Cys Pro Ser Arg Gly Trp 1105 1110 1115 1120
- Gly Gln His Asp Cys Arg His Lys Glu Asp Ala Gly Val Ile Cys Ser 1125 1130 1135
- Glu Phe Thr Ala Leu Arg Leu Tyr Ser Glu Thr Glu Thr Glu Ser Cys 1140 1145 1150
- Ala Gly Arg Leu Glu Val Phe Tyr Asn Gly Thr Trp Gly Ser Val Gly
 1155 1160 1165
- Arg Arg Asn Ile Thr Thr Ala Ile Ala Gly Ile Val Cys Arg Gln Leu 1170 1175 1180
- Gly Cys Gly Glu Asn Gly Val Val Ser Leu Ala Pro Leu Ser Lys Thr 1185 1190 1195 1200
- Gly Ser Gly Phe Met Trp Val Asp Asp Ile Gln Cys Pro Lys Thr His 1205 1210 1215
- Ile Ser Ile Trp Gln Cys Leu Ser Ala Pro Trp Glu Arg Arg Ile Ser 1220 1225 1230
- Ser Pro Ala Glu Glu Thr Trp Ile Thr Cys Glu Asp Arg Ile Arg Val 1235 1240 1245
- Arg Gly Gly Asp Thr Glu Cys Ser Gly Arg Val Glu Ile Trp His Ala 1250 1255 1260
- Gly Ser Trp Gly Thr Val Cys Asp Asp Ser Trp Asp Leu Ala Glu Ala

1265 1270 1275 1280

Glu Val Val Cys Gln Gln Leu Gly Cys Gly Ser Ala Leu Ala Ala Leu 1285 1290 1295

Arg Asp Ala Ser Phe Gly Gln Gly Thr Gly Thr Ile Trp Leu Asp Asp 1300 1305 1310

Met Arg Cys Lys Gly Asn Glu Ser Phe Leu Trp Asp Cys His Ala Lys 1315 1320 1325

Pro Trp Gly Gln Ser Asp Cys Gly His Lys Glu Asp Ala Gly Val Arg 1330 1335 1340

Cys Ser Gly Gln Ser Leu Lys Ser Leu Asn Ala Ser Ser Gly His Leu 1345 1350 1355 1360

Ala Leu Ile Leu Ser Ser Ile Phe Gly Leu Leu Leu Leu Val Leu Phe 1365 1370 1375

Ile Leu Phe Leu Thr Trp Cys Arg Val Gln Lys Gln Lys His Leu Pro 1380 1385 1390

Leu Arg Val Ser Thr Arg Arg Gly Ser Leu Glu Glu Asn Leu Phe 1395 1400 1405

His Glu Met Glu Thr Cys Leu Lys Arg Glu Asp Pro His Gly Thr Arg 1410 1415 1420

Thr Ser Asp Asp Thr Pro Asn His Gly Cys Glu Asp Ala Ser Asp Thr 1425 1430 1435 1440

Ser Leu Leu Gly Val Leu Pro Ala Ser Glu Ala Thr Lys 1445 1450

<210> 12

<211> 40

<212> PRT

<213> Homo sapiens

<400> 12

Met Met Leu Pro Gln Asn Ser Trp His Ile Asp Phe Gly Arg Cys Cys

1 5 10 15

Cys His Gln Asn Leu Phe Ser Ala Val Val Thr Cys Ile Leu Leu 20 25 30

Asn Ser Cys Phe Leu Ile Ser Ser 35 40

<210> 13

<211> 1413

<212> PRT

<213> Homo sapiens

<400> 13

Phe Asn Gly Thr Asp Leu Glu Leu Arg Leu Val Asn Gly Asp Gly Pro 1 5 10 15

Cys Ser Gly Thr Val Glu Val Lys Phe Gln Gly Gln Trp Gly Thr Val
20 25 30

Cys Asp Asp Gly Trp Asn Thr Thr Ala Ser Thr Val Val Cys Lys Gln
35 40 45

Leu Gly Cys Pro Phe Ser Phe Ala Met Phe Arg Phe Gly Gln Ala Val
50 55 60

Thr Arg His Gly Lys Ile Trp Leu Asp Asp Val Ser Cys Tyr Gly Asn 65 70 75 80

Glu Ser Ala Leu Trp Glu Cys Gln His Arg Glu Trp Gly Ser His Asn 85 90 95

Cys Tyr His Gly Glu Asp Val Gly Val Asn Cys Tyr Gly Glu Ala Asn 100 105 ~110

Leu Gly Leu Arg Leu Val Asp Gly Asn Asn Ser Cys Ser Gly Arg Val 115 120 125

Glu Val Lys Phe Gln Glu Arg Trp Gly Thr Ile Cys Asp Asp Gly Trp 130 135 140

Asn Leu Asn Thr Ala Ala Val Val Cys Arg Gln Leu Gly Cys Pro Ser 145 150 155 160

Ser Phe Ile Ser Ser Gly Val Val Asn Ser Pro Ala Val Leu Arg Pro 165 170 175

Ile Trp Leu Asp Asp Ile Leu Cys Gln Gly Asn Glu Leu Ala Leu Trp 180 185 190

Asn Cys Arg His Arg Gly Trp Gly Asn His Asp Cys Ser His Asn Glu 195 200 205

Asp Val Thr Leu Thr Cys Tyr Asp Ser Ser Asp Leu Glu Leu Arg Leu Val Gly Gly Thr Asn Arg Cys Met Gly Arg Val Glu Leu Lys Ile Gln Gly Arg Trp Gly Thr Val Cys His His Lys Trp Asn Asn Ala Ala Ala Asp Val Val Cys Lys Gln Leu Gly Cys Gly Thr Ala Leu His Phe Ala Gly Leu Pro His Leu Gln Ser Gly Ser Asp Val Val Trp Leu Asp Gly Val Ser Cys Ser Gly Asn Glu Ser Phe Leu Trp Asp Cys Arg His Ser Gly Thr Val Asn Phe Asp Cys Leu His Gln Asn Asp Val Ser Val Ile Cys Ser Asp Gly Ala Asp Leu Glu Leu Arg Leu Ala Asp Gly Ser Asn Asn Cys Ser Gly Arg Val Glu Val Arg Ile His Glu Gln Trp Trp Thr Ile Cys Asp Gln Asn Trp Lys Asn Glu Gln Ala Leu Val Val Cys Lys Gln Leu Gly Cys Pro Phe Ser Val Phe Gly Ser Arg Arg Ala Lys Pro Ser Asn Glu Ala Arg Asp Ile Trp Ile Asn Ser Ile Ser Cys Thr Gly Asn Glu Ser Ala Leu Trp Asp Cys Thr Tyr Asp Gly Lys Ala Lys Arg Thr Cys Phe Arg Arg Ser Asp Ala Gly Val Ile Cys Ser Asp Lys Ala Asp Leu Asp Leu Arg Leu Val Gly Ala His Ser Pro Cys Tyr Gly Arg Leu Glu Val Lys Tyr Gln Gly Glu Trp Gly Thr Val Cys His Asp Arg

Trp 465	Ser	Thr	Arg	Asn	Ala 470	Ala	Val	Val	Суѕ	Lys 475	Gln	Leu	Gly	Cys	Gly 480
Lys	Pro	Met	His	Val 485	Phe	Gly	Met	Thr	Tyr 490	Phe	Lys	Glu	Ala	Ser 495	Gly
Pro	Ile	Trp	Leu 500	Asp	Asp	Val	Ser	Cys 505	Ile	Gly	Asn	Glu	Ser 510	Asn	Ile
Trp	Asp	Cys 515	Glu	His	Ser	Gly	Trp 520	Gly	Lys	His	Asn	Cys 525	Val	His	Arg
Glu	Asp 530	Val	Ile	Val	Thr	Cys 535	Ser	Gly	Asp	Ala	Thr 540	Trp	Gly	Leu	Arg
Leu 545	Val	Gly	Gly	Ser	Asn 550	Arg	Cys	Ser	Gly	Arg 555	Leu	Glu	Val	Tyr	Phe 560
Gln	Gly	Arg	Trp	Gly 565	Thr	Val	Суѕ	Asp	Asp 570	Gly	Trp	Asn	Ser	Lys 575	Ala
Ala	Ala	Val	Val 580	Суѕ	Ser	Gln	Leu	Asp 585	Cys	Pro	Ser	Ser	Ile 590	Ile	Gly
Met	Gly	Leu 595	Gly	Asn	Ala	Ser	Thr 600	Gly	Tyr	Gly	Lys	Ile 605	Trp	Leu	Asp
Asp	Val 610	Ser	Cys	Asp	Gly	Asp 615	Glu	Ser	Asp	Leu	Trp 620	Ser	Суѕ	Arg	Asn
Ser 625	Gly	Trp	Gly	Asn	Asn 630	Asp	Суз	Ser	His	Ser 635	Glu	Ąsp	Val	Gly	Val 640
Ile	Cys	Ser	Asp	Ala 645	Ser	Asp	Met	Glu	Leu 650	Arg	Leu	Val	Gly	Gly 655	Ser
Ser	Arg	Cys	Ala 660	Gly	Lys	Val	Glu	Val 665	Asn	Val	Gln	Gly	Ala 670	Val	Gly
Ile	Leu	Cys 675	Ala	Asn	Gly	Trp	Gly 680	Met	Asn	Ile	Ala	Glu 685	Val	Val	Cys
Arg	Gln 690	Leu	Glu	Cys	Gly	Ser 695	Ala	Ile	Arg	Val	Ser 700	Arg	Glu	Pro	His
Phe 705	Thr	Glu	Arg	Thr	Leu 710	His	Ile	Leu	Met	Ser 715	Asn	Ser	Gly	Суз	Thr 720

Gly Gly Glu Ala Ser Leu Trp Asp Cys Ile Arg Trp Glu Trp Lys Gln Thr Ala Cys His Leu Asn Met Glu Ala Ser Leu Ile Cys Ser Ala His Arg Gln Pro Arg Leu Val Gly Ala Asp Met Pro Cys Ser Gly Arg Val Glu Val Lys His Ala Asp Thr Trp Arg Ser Val Cys Asp Ser Asp Phe Ser Leu His Ala Ala Asn Val Leu Cys Arg Glu Leu Asn Cys Gly Asp Ala Ile Ser Leu Ser Val Gly Asp His Phe Gly Lys Gly Asn Gly Leu Thr Trp Ala Glu Lys Phe Gln Cys Glu Gly Ser Glu Thr His Leu Ala Leu Cys Pro Ile Val Gln His Pro Glu Asp Thr Cys Ile His Ser Arg Glu Val Gly Val Val Cys Ser Arg Tyr Thr Asp Val Arg Leu Val Asn Gly Lys Ser Gln Cys Asp Gly Gln Val Glu Ile Asn Val Leu Gly His Trp Gly Ser Leu Cys Asp Thr His Trp Asp Pro Glu Asp Ala Arg Val Leu Cys Arg Gln Leu Ser Cys Gly Thr Ala Leu Ser Thr Thr Gly Gly Lys Tyr Ile Gly Glu Arg Ser Val Arg Val Trp Gly His Arg Phe His Cys Leu Gly Asn Glu Ser Leu Leu Asp Asn Cys Gln Met Thr Val Leu Gly Ala Pro Pro Cys Ile His Gly Asn Thr Val Ser Val Ile Cys Thr Gly Ser Leu Thr Gln Pro Leu Phe Pro Cys Leu Ala Asn Val Ser Asp

- Pro Tyr Leu Ser Ala Val Pro Glu Gly Ser Ala Leu Ile Cys Leu Glu 980 985 990
- Asp Lys Arg Leu Arg Leu Val Asp Gly Asp Ser Arg Cys Ala Gly Arg 995 1000 1005
- Val Glu Ile Tyr His Asp Gly Phe Trp Gly Thr Ile Cys Asp Asp Gly 1010 1015 1020
- Trp Asp Leu Ser Asp Ala His Val Val Cys Gln Lys Leu Gly Cys Gly 1025 1030 1035 1040
- Val Ala Phe Asn Ala Thr Val Ser Ala His Phe Gly Glu Gly Ser Gly 1045 1050 1055
- Pro Ile Trp Leu Asp Asp Leu Asn Cys Thr Gly Thr Glu Ser His Leu 1060 1065 1070
- Trp Gln Cys Pro Ser Arg Gly Trp Gly Gln His Asp Cys Arg His Lys
 1075 1080 1085
 - Glu Asp Ala Gly Val Ile Cys Ser Glu Phe Thr Ala Leu Arg Leu Tyr 1090 1095 1100
 - Ser Glu Thr Glu Thr Glu Ser Cys Ala Gly Arg Leu Glu Val Phe Tyr 1105 1110 1115 1120
 - Asn Gly Thr Trp Gly Ser Val Gly Arg Arg Asn Ile Thr Thr Ala Ile 1125 1130 1135
 - Ala Gly Ile Val Cys Arg Gln Leu Gly Cys Gly Glu Asn Gly Val Val 1140 1145 1150
 - Ser Leu Ala Pro Leu Ser Lys Thr Gly Ser Gly Phe Met Trp Val Asp 1155 1160 1165
 - Asp Ile Gln Cys Pro Lys Thr His Ile Ser Ile Trp Gln Cys Leu Ser 1170 1175 1180
 - Ala Pro Trp Glu Arg Arg Ile Ser Ser Pro Ala Glu Glu Thr Trp Ile 1185 1190 1195 1200
 - Thr Cys Glu Asp Arg Ile Arg Val Arg Gly Gly Asp Thr Glu Cys Ser 1205 1210 1215
 - Gly Arg Val Glu Ile Trp His Ala Gly Ser Trp Gly Thr Val Cys Asp 1220 1225 1230

Asp Ser Trp Asp Leu Ala Glu Ala Glu Val Val Cys Gln Gln Leu Gly
1235 1240 1245

Cys Gly Ser Ala Leu Ala Ala Leu Arg Asp Ala Ser Phe Gly Gln Gly 1250 1255 1260

Thr Gly Thr Ile Trp Leu Asp Asp Met Arg Cys Lys Gly Asn Glu Ser 1265 1270 1275 1280

Phe Leu Trp Asp Cys His Ala Lys Pro Trp Gly Gln Ser Asp Cys Gly 1285 1290 1295

His Lys Glu Asp Ala Gly Val Arg Cys Ser Gly Gln Ser Leu Lys Ser 1300 1305 1310

Leu Asn Ala Ser Ser Gly His Leu Ala Leu Ile Leu Ser Ser Ile Phe 1315 1320 1325

Gly Leu Leu Leu Val Leu Phe Ile Leu Phe Leu Thr Trp Cys Arg 1330 1335 1340

Val Gln Lys Gln Lys His Leu Pro Leu Arg Val Ser Thr Arg Arg 1345 1350 1355 1360

Gly Ser Leu Glu Glu Asn Leu Phe His Glu Met Glu Thr Cys Leu Lys 1365 1370 1375

Arg Glu Asp Pro His Gly Thr Arg Thr Ser Asp Asp Thr Pro Asn His
1380 1385 1390

Gly Cys Glu Asp Ala Ser Asp Thr Ser Leu Leu Gly Val Leu Pro Ala 1395 1400 1405

Ser Glu Ala Thr Lys 1410

<210> 14

<211> 1319

<212> PRT

<213> Homo sapiens

<400> 14

Phe Asn Gly Thr Asp Leu Glu Leu Arg Leu Val Asn Gly Asp Gly Pro

1 5 10 15

Cys Ser Gly Thr Val Glu Val Lys Phe Gln Gly Gln Trp Gly Thr Val

20 25 30

Cys Asp Asp Gly Trp Asn Thr Thr Ala Ser Thr Val Val Cys Lys Gln
35 40 45

- Leu Gly Cys Pro Phe Ser Phe Ala Met Phe Arg Phe Gly Gln Ala Val 50 55 60
- Thr Arg His Gly Lys Ile Trp Leu Asp Asp Val Ser Cys Tyr Gly Asn 65 70 75 80
- Glu Ser Ala Leu Trp Glu Cys Gln His Arg Glu Trp Gly Ser His Asn 85 90 95
- Cys Tyr His Gly Glu Asp Val Gly Val Asn Cys Tyr Gly Glu Ala Asn 100 105 110
- Leu Gly Leu Arg Leu Val Asp Gly Asn Asn Ser Cys Ser Gly Arg Val 115 120 125
- Glu Val Lys Phe Gln Glu Arg Trp Gly Thr Ile Cys Asp Asp Gly Trp 130 135 140
- Asn Leu Asn Thr Ala Ala Val Val Cys Arg Gln Leu Gly Cys Pro Ser 145 150 155 160
- Ser Phe Ile Ser Ser Gly Val Val Asn Ser Pro Ala Val Leu Arg Pro 165 170 175
- Ile Trp Leu Asp Asp Ile Leu Cys Gln Gly Asn Glu Leu Ala Leu Trp
 180 185 190
- Asn Cys Arg His Arg Gly Trp Gly Asn His Asp Cys Ser His Asn Glu 195 200 205
- Asp Val Thr Leu Thr Cys Tyr Asp Ser Ser Asp Leu Glu Leu Arg Leu 210 215 220
- Val Gly Gly Thr Asn Arg Cys Met Gly Arg Val Glu Leu Lys Ile Gln 225 230 235 240
- Gly Arg Trp Gly Thr Val Cys His His Lys Trp Asn Asn Ala Ala Ala 245 250 255
- Asp Val Val Cys Lys Gln Leu Gly Cys Gly Thr Ala Leu His Phe Ala 260 265 270
- Gly Leu Pro His Leu Gln Ser Gly Ser Asp Val Val Trp Leu Asp Gly

275 . 280 285

- Val Ser Cys Ser Gly Asn Glu Ser Phe Leu Trp Asp Cys Arg His Ser 290 295 300
- Gly Thr Val Asn Phe Asp Cys Leu His Gln Asn Asp Val Ser Val Ile 305 310 315 320
- Cys Ser Asp Gly Ala Asp Leu Glu Leu Arg Leu Ala Asp Gly Ser Asn 325 330 335
- Asn Cys Ser Gly Arg Val Glu Val Arg Ile His Glu Gln Trp Trp Thr 340 345 350
- Ile Cys Asp Gln Asn Trp Lys Asn Glu Gln Ala Leu Val Val Cys Lys 355 360 365
- Gln Leu Gly Cys Pro Phe Ser Val Phe Gly Ser Arg Arg Ala Lys Pro 370 375 380
- Ser Asn Glu Ala Arg Asp Ile Trp Ile Asn Ser Ile Ser Cys Thr Gly 385 390 395 400
- Asn Glu Ser Ala Leu Trp Asp Cys Thr Tyr Asp Gly Lys Ala Lys Arg
 405 410 415
- Thr Cys Phe Arg Arg Ser Asp Ala Gly Val Ile Cys Ser Asp Lys Ala 420 425 430
- Asp Leu Asp Leu Arg Leu Val Gly Ala His Ser Pro Cys Tyr Gly Arg 435 440 445
- Leu Glu Val Lys Tyr Gln Gly Glu Trp Gly Thr Val Cys His Asp Arg
 450 455 460
- Trp Ser Thr Arg Asn Ala Ala Val Val Cys Lys Gln Leu Gly Cys Gly
 465 470 475 480
- Lys Pro Met His Val Phe Gly Met Thr Tyr Phe Lys Glu Ala Ser Gly
 485 490 495
- Pro Ile Trp Leu Asp Asp Val Ser Cys Ile Gly Asn Glu Ser Asn Ile 500 505 510
- Trp Asp Cys Glu His Ser Gly Trp Gly Lys His Asn Cys Val His Arg 515 520 525
- Glu Asp Val Ile Val Thr Cys Ser Gly Asp Ala Thr Trp Gly Leu Arg

530	535	540

- Leu Val Gly Gly Ser Asn Arg Cys Ser Gly Arg Leu Glu Val Tyr Phe 545 550 555 560
- Gln Gly Arg Trp Gly Thr Val Cys Asp Asp Gly Trp Asn Ser Lys Ala 565 570 575
- Ala Ala Val Val Cys Ser Gln Leu Asp Cys Pro Ser Ser Ile Ile Gly
 580 585 590
- Met Gly Leu Gly Asn Ala Ser Thr Gly Tyr Gly Lys Ile Trp Leu Asp 595 600 605
- Asp Val Ser Cys Asp Gly Asp Glu Ser Asp Leu Trp Ser Cys Arg Asn 610 615 620
- Ser Gly Trp Gly Asn Asn Asp Cys Ser His Ser Glu Asp Val Gly Val 625 635 640
- Ile Cys Ser Asp Ala Ser Asp Met Glu Leu Arg Leu Val Gly Gly Ser 645 650 655
- Ser Arg Cys Ala Gly Lys Val Glu Val Asn Val Gln Gly Ala Val Gly 660 665 670
- Ile Leu Cys Ala Asn Gly Trp Gly Met Asn Ile Ala Glu Val Val Cys 675 680 685
- Arg Gln Leu Glu Cys Gly Ser Ala Ile Arg Val Ser Arg Glu Pro His 690 695 700
- Phe Thr Glu Arg Thr Leu His Ile Leu Met Ser Asn Ser Gly Cys Thr 705 710 715 720
- Gly Gly Glu Ala Ser Leu Trp Asp Cys Ile Arg Trp Glu Trp Lys Gln
 725 730 735
- Thr Ala Cys His Leu Asn Met Glu Ala Ser Leu Ile Cys Ser Ala His 740 745 750
- Arg Gln Pro Arg Leu Val Gly Ala Asp Met Pro Cys Ser Gly Arg Val 755 760 765
- Glu Val Lys His Ala Asp Thr Trp Arg Ser Val Cys Asp Ser Asp Phe 770 775 780
- Ser Leu His Ala Ala Asn Val Leu Cys Arg Glu Leu Asn Cys Gly Asp

800 , Ala Ile Ser Leu Ser Val Gly Asp His Phe Gly Lys Gly Asn Gly Leu Thr Trp Ala Glu Lys Phe Gln Cys Glu Gly Ser Glu Thr His Leu Ala Leu Cys Pro Ile Val Gln His Pro Glu Asp Thr Cys Ile His Ser Arg Glu Val Gly Val Val Cys Ser Arg Tyr Thr Asp Val Arg Leu Val Asn Gly Lys Ser Gln Cys Asp Gly Gln Val Glu Ile Asn Val Leu Gly His Trp Gly Ser Leu Cys Asp Thr His Trp Asp Pro Glu Asp Ala Arg Val Leu Cys Arg Gln Leu Ser Cys Gly Thr Ala Leu Ser Thr Thr Gly Gly 900 . Lys Tyr Ile Gly Glu Arg Ser Val Arg Val Trp Gly His Arg Phe His Cys Leu Gly Asn Glu Ser Leu Leu Asp Asn Cys Gln Met Thr Val Leu Gly Ala Pro Pro Cys Ile His Gly Asn Thr Val Ser Val Ile Cys Thr Gly Ser Leu Thr Gln Pro Leu Phe Pro Cys Leu Ala Asn Val Ser Asp Pro Tyr Leu Ser Ala Val Pro Glu Gly Ser Ala Leu Ile Cys Leu Glu Asp Lys Arg Leu Arg Leu Val Asp Gly Asp Ser Arg Cys Ala Gly Arg Val Glu Ile Tyr His Asp Gly Phe Trp Gly Thr Ile Cys Asp Asp Gly Trp Asp Leu Ser Asp Ala His Val Val Cys Gln Lys Leu Gly Cys Gly

Val Ala Phe Asn Ala Thr Val Ser Ala His Phe Gly Glu Gly Ser Gly

1045 1050 1055

- Pro Ile Trp Leu Asp Asp Leu Asn Cys Thr Gly Thr Glu Ser His Leu 1060 1065 1070
- Trp Gln Cys Pro Ser Arg Gly Trp Gly Gln His Asp Cys Arg His Lys
- Glu Asp Ala Gly Val Ile Cys Ser Glu Phe Thr Ala Leu Arg Leu Tyr 1090 1095 1100
- Ser Glu Thr Glu Thr Glu Ser Cys Ala Gly Arg Leu Glu Val Phe Tyr 1105 1110 1115 1120
- Asn Gly Thr Trp Gly Ser Val Gly Arg Arg Asn Ile Thr Thr Ala Ile 1125 1130 1135
- Ala Gly Ile Val Cys Arg Gln Leu Gly Cys Gly Glu Asn Gly Val Val 1140 1145 1150
- Ser Leu Ala Pro Leu Ser Lys Thr Gly Ser Gly Phe Met Trp Val Asp 1155 1160 1165
- Asp Ile Gln Cys Pro Lys Thr His Ile Ser Ile Trp Gln Cys Leu Ser 1170 1175 1180
- Ala Pro Trp Glu Arg Arg Ile Ser Ser Pro Ala Glu Glu Thr Trp Ile 1185 . 1190 . 1195 . 1200
- Thr Cys Glu Asp Arg Ile Arg Val Arg Gly Gly Asp Thr Glu Cys Ser 1205 1210 1215
- Gly Arg Val Glu Ile Trp His Ala Gly Ser Trp Gly Thr Val Cys Asp 1220 1225 1230
- Asp Ser Trp Asp Leu Ala Glu Ala Glu Val Val Cys Gln Gln Leu Gly 1235 1240 1245
- Cys Gly Ser Ala Leu Ala Ala Leu Arg Asp Ala Ser Phe Gly Gln Gly 1250 1255 1260
- Thr Gly Thr Ile Trp Leu Asp Asp Met Arg Cys Lys Gly Asn Glu Ser 1265 1270 1275 1280
- Phe Leu Trp Asp Cys His Ala Lys Pro Trp Gly Gln Ser Asp Cys Gly 1285 1290 1295
- His Lys Glu Asp Ala Gly Val Arg Cys Ser Gly Gln Ser Leu Lys Ser

1300

1305

1310

Leu Asn Ala Ser Ser Gly His 1315

<210> 15

<211> 24

<212> PRT

<213> Homo sapiens .

<400> 15

Leu Ala Leu Ile Leu Ser Ser Ile Phe Gly Leu Leu Leu Leu Val Leu

1 5 10 15

Phe Ile Leu Phe Leu Thr Trp Cys

20

<210> 16

<211> 70

<212> PRT

<213> Homo sapiens

<400> 16

Arg Val Gln Lys Gln Lys His Leu Pro Leu Arg Val Ser Thr Arg Arg 1 5 10 15

Arg Gly Ser Leu Glu Glu Asn Leu Phe His Glu Met Glu Thr Cys Leu 20 25 30

Lys Arg Glu Asp Pro His Gly Thr Arg Thr Ser Asp Asp Thr Pro Asn 35 40 45

His Gly Cys Glu Asp Ala Ser Asp Thr Ser Leu Leu Gly Val Leu Pro
50 55 60

Ala Ser Glu Ala Thr Lys 65 70

<210> 17

<211> 3104

<212> DNA

<213> Homo sapiens

<400> 17

gtcgacccac gcgtccggtc tgtggctgag Catggccctc ccagccctgg gcctggaccc 60

ctqqaqcctc ctgggccttt tcctcttcca actgcttcag ctgctqctgc cgacgacgac 120 cgcgggggga ggcgggcagg ggcccatgcc cagggtcaga tactatgcag gggatgaacg 180 tagggcactt agettettee accagaaggg cetecaggat tttgacacte tgeteetgag 240 tggtgatgga aatactctct acgtgggggc tcgagaagcc attctggcct tggatatcca 300 ggatccaggg gtccccaggc taaagaacat gataccgtgg ccagccagtg acagaaaaaa 360 gagtgaatgt gcctttaaga agaagagcaa tgagacacag tgtttcaact tcatccgtgt 420 cctggtttct tacaatgtca cccatctcta cacctgcggc accttcgcct tcagccctgc 480 ttgtaccttc attgaacttc aagattccta cctgttgccc atctcggagg acaaggtcat 540 ggagggaaaa ggccaaagcc cctttgaccc cgctcacaag catacggctg tcttggtgga 600 tgggatgete tattetggta etatgaacaa etteetggge agtgageeca teetgatgeg 660 cacactggga teccageetg tecteaagae egacaaette eteegetgge tgeateatga 720 egecteettt gtggcageca teeettegae eeaggtegte taettettet tegaggagae 780, agccagcgag tttgacttct ttgagaggct ccacacatcg cgggtggcta gagtctgcaa 840 gaatgacgtg ggcggcgaaa agctgctgca gaagaagtgg accaccttcc tgaaggccca 900 getgetetge acceageegg ggeagetgee etteaaegte ateegeeaeg eggteetget 960 coccegcegat teteceacag etececacat etacgeagte tteacetece agtggeaggt 1020 tggcgggacc aggagetetg eggtttgtgc ettetetete ttggacattg aacgtgtett 1080 taaggggaaa tacaaagagt tgaacaaaga aacttcacgc tggactactt ataggggccc 1140 tgagaccaac ceceggeeag geagttgete agtgggeeee teetetgata aggeeetgae 1200 cttcatgaag gaccatttcc tgatggatga gcaagtggtg gggacgcccc tgctggtgaa 1260 atctggcgtg gagtatacac ggcttgcagt ggagacagcc cagggccttg atgggcacag 1320 ccatcttgtc atgtacctgg gaaccaccac agggtcgctc cacaaggctg tggtaagtgg 1380 ggacagcagt gctcatctgg tggaagagat tcagctgttc cctgaccctg aacctgttcg 1440 caacetgeag etggeeecea eccagggtge agtgtttgta ggetteteag gaggtgtetg 1500 gagggtgccc cgagccaact gtagtgtcta tgagagctgt gtggactgtg tccttgcccg 1560 ggacccccac tgtgcctggg accctgagtc ccgaacctgt tgcctcctgt ctgcccccaa 1620 cctgaactcc tggaagcagg acatggagcg ggggaaccca gagtgggcat gtgccagtgg 1680 ccccatgage aggageette ggeeteagag eegeeegeaa ateattaaag aagteetgge 1740 tgtccccaac tecatectgg agetecectg ecceacetg teageettgg cetettatta 1800 ttggagtcat ggcccagcag cagtcccaga agcctcttcc actgtctaca atggctccct 1860 cttgctgata gtgcaggatg gagttggggg tctctaccag tgctgggcaa ctgagaatgg 1920 cttttcatac cctgtgatct cctactgggt ggacagccag gaccagaccc tggccctgga 1980 tectgaactg geaggeatee eeegggagea tgtgaaggte eegttgaeea gggteagtgg 2040 tggggccgcc ctggctgccc agcagtccta ctggccccac tttgtcactg tcactgtcct 2100 ctttgcctta gtgctttcag gagccctcat catcctcgtg gcctccccat tgagagcact 2160 ccgggctcgg ggcaaggttc agggctgtga gaccctgcgc cctggggaga aggccccgtt 2220 aagcagagag caacacetee agteteecaa ggaatgeagg acetetgeea gtgatgtgga 2280 cgctgacaac aactgcctag gcactgaggt agcttaaact ctaggcacag gccggggctg 2340 cggtgcaggc acctggccat gctggctggg cggcccaagc acagccctga ctaggatgac 2400 agcagcacaa aagaccacct ttctcccctg agaggagett ctgctactct gcatcactga 2460 tgacactcag cagggtgatg cacagcagtc tgcctcccct atgggactcc cttctaccaa 2520 gcacatgagc tctctaacag ggtgggggct acccccagac ctgctcctac actgatattg 2580 aagaacctgg agaggatcct tcagttctgg ccattccagg gaccctccag aaacacagtg 2640 tttcaagaga tcctaaaaaa acctgcctgt cccaggaccc tatggtaatg aacaccaaac 2700 atctaaacaa tcatatgcta acatgccact cctggaaact ccactctgaa gctgccgctt 2760 tggacaccaa cactecette teccagggte atgeagggat etgeteeete etgetteeet 2820 taccagtcgt gcaccgctga ctcccaggaa gtctttcctg aagtctgacc acctttcttc 2880 ttgcttcagt tggggcagac tctgatccct tctgccctgg cagaatggca ggggtaatct 2940


```
gagcettett cacteettta eestagetga eesetteace teteeeette eetttteett 3000 tgttttggga tteagaaaac tgettgteag agactgttta ttttttatta aaaatataag 3060 gettaaaaaa aaaaaaaaa aaaaaaaaa aaaaagggegg eege 3104
```

<210> 18 <211> 2283 <212> DNA <213> Homo sapiens

<400> 18

atggccctcc cagccctggg cctggacccc tggagcctcc tgggcctttt cctcttccaa 60 ctgcttcagc tgctgctgcc gacgacgacc gcggggggag gcgggcaggg gcccatgccc 120 agggtcagat actatgcagg ggatgaacgt agggcactta gcttcttcca ccagaagggc 180 ctccaggatt ttgacactct gctcctgagt ggtgatggaa atactctcta cgtgggggct 240 cgagaagcca ttctggcctt ggatatccag gatccagggg tccccaggct aaagaacatg 300 ataccgtggc cagccagtga cagaaaaaag agtgaatgtg cctttaagaa gaagagcaat 360 gagacacagt gtttcaactt catccgtgtc ctggtttctt acaatgtcac ccatctctac 420 acctgcggca ccttcgcctt cagccctgct tgtaccttca ttgaacttca agattcctac 480 ctgttgccca tctcggagga caaggtcatg gagggaaaag gccaaagccc ctttgacccc 540 qctcacaagc atacggctgt cttggtggat gggatgctct attctggtac tatgaacaac 600 ttcctgggca gtgagcccat cctgatgcgc acactgggat cccagcctgt cctcaagacc 660 gacaacttcc teegetggct gcatcatgac gcctcctttg tggcagccat cccttcgacc 720 caggingtet activitett cgaggagaca gecagegagi tigactivit igagaggete 780 cacacatege gggtggetag agtetgeaag aatgaegtgg geggegaaaa getgetgeag 840 aagaagtgga ccaccttcct gaaggcccag ctgctctgca cccagccggg gcagctgccc 900 ttcaacgtca tccgccacgc ggtcctgctc cccgccgatt ctcccacagc tccccacatc 960 tacgcagtet teaceteeca gtggcaggtt ggcgggacca ggagetetge ggtttgtgee 1020 ttctctctct tggacattga acgtgtcttt aaggggaaat acaaagagtt gaacaaagaa 1080 acttcacgct ggactactta taggggccct gagaccaacc cccggccagg cagttgctca 1140 gtgggcccct cctctgataa ggccctgacc ttcatgaagg accatttcct gatggatgag 1200 caagtggtgg ggacgccct gctggtgaaa tctggcgtgg agtatacacg gcttgcagtg 1260 gagacagoco agggoottga tgggcacago catottgtoa tgtacotggg aaccaccaca 1320 gggtcgctcc acaaggctgt ggtaagtggg gacagcagtg ctcatctggt ggaagagatt 1380 cagetgttcc etgaccetga acctgttcgc aacctgcage tggcccccac ccagggtgca 1440 gtgtttgtag gcttctcagg aggtgtctgg agggtgcccc gagccaactg tagtgtctat 1500 gagagetgtg tggaetgtgt cettgeeegg gaeeeecact gtgeetggga eeetgagtee 1560 cgaacctgtt gcctcctgtc tgcccccaac ctgaactcct ggaagcagga catggagcgg 1620 gggaacccag agtgggcatg tgccagtggc cccatgagca ggagccttcg gcctcagagc 1680 cgcccgcaaa tcattaaaga agtcctggct gtccccaact ccatcctgga gctcccctgc 1740 ccccacctgt cagccttggc ctcttattat tggagtcatg gcccagcagc agtcccagaa 1800 gcctcttcca ctgtctacaa tggctccctc ttgctgatag tgcaggatgg agttgggggt 1860 ctctaccagt gctgggcaac tgagaatggc ttttcatacc ctgtgatctc ctactgggtg 1920 gacagecagg accagacect ggeeetggat cetgaactgg caggeatece eegggageat 1980 gtgaaggtcc cgttgaccag ggtcagtggt ggggccgccc tggctgccca gcagtcctac 2040 tggccccact ttgtcactgt cactgtcctc tttgccttag tgctttcagg agccctcatc 2100 atcctcgtgg cctccccatt gagagcactc cgggctcggg gcaaggttca gggctgtgag 2160 accetgegee etggggagaa ggeeeegtta ageagagage aacaceteea gteteceaag 2220

gaatgcagga cctctgccag tgatgtggac gctgacaaca actgcctagg cactgaggta 2280 gct 2283

<210> 19

<211> 761

<212> PRT

<213> Homo sapiens

<400> 19

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly Leu
1 5 10 15

Phe Leu Phe Gln Leu Leu Gln Leu Leu Leu Pro Thr Thr Ala Gly
20 25 30

Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr Ala Gly Asp 35 40 45

Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly Leu Gln Asp Phe
50 55 60

Asp Thr Leu Leu Ser Gly Asp Gly Asn Thr Leu Tyr Val Gly Ala 65 70 75 80

Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln Asp Pro Gly Val Pro Arg
85 90 95

Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Asp Arg Lys Lys Ser Glu
100 105 110

Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe Ile 115 120 125

Arg Val Leu Val Ser Tyr Asn Val Thr His Leu Tyr Thr Cys Gly Thr 130 135 140

Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr 145 150 155 160

Leu Leu Pro Ile Ser Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser 165 170 175

Pro Phe Asp Pro Ala His Lys His Thr Ala Val Leu Val Asp Gly Met 180 185 190

Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu 195 200 205

Met	Arg 210	Thr	Leu	Gly	Ser	Gln 215	Pro	Val	Leu	Lys	Thr 220	Asp	Asn	Phe	Leu
Arg 225	Trp	Leu	His	His	Asp 230	Ala	Ser	Phe	Val	Ala 235	Ala	Ile	Pro	Ser	Thr 240
Gln	Val	Val	Tyr	Phe 245	Phe	Phe	Glu	Glu	Thr 250	Ala	Ser	Glu	Phe	Asp 255	Phe
Phe	Glu	Arg	Leu 260	His	Thr	Ser	Arg	Val 265	Ala	Arg	Val	Cys	Lys 270	Asn	Asp
Val	Gly	Gly 275	Glu	Lys	Leu	Leu	Gln 280	Lys	Lys	Trp	Thr	Thr 285	Phe	Leu	Lys
Ala	Gln 290	Leu	Leu	Суз	Thr	Gln 295	Pro	Gly	Gln	Leu	Pro 300	Phe	Asn	Val	Ile
Arg 305	His	Ala	Val	Leu	Leu 310	Pro	Ala	Asp	Ser	Pro 315	Thr	Ala	Pro	His	Ile 320
Tyr	Ala	Val	Phe	Thr 325	Ser	Gln	Trp	Gln	Val 330	Gly	Gly	Thr	Arg	Ser 335	Ser
Ala	Val		Ala 340	Phe	Ser	Leu	Leu	Asp 345	Ile	Glu	Arg	Val	Phe 350	Lys	Gly
Lys	Tyr	Lys 355	Glu	Leu	Asn	Lys	Glu 360	Thr	Ser	Arg	Trp	Thr 365	Thr	Tyr	Arg
Gly	Pro 370	Glu	Thr	Asn	Pro	Arg 375	Pro	Gly	Ser	Суѕ	Ser 380	Val	Gly	Pro	Ser
Ser 385	Asp	Lys	Ala	Leu	Thr 390	Phe	Met	Lys	Asp	His 395	Phe	Leu	Met	Азр	Glu 400
Gln	Val	Val	Gly	Thr 405	Pro	Leu	Leu	Val	Lys 410	Ser	Gly	Val	Glu	Tyr 415	Thr
Arg	Leu	Ala	Val 420	Glu	Thr	Ala	Gln	Gly 425	Leu	Asp	Gly	His	Ser 430	His	Leu
Val	Met	Tyr 435	Leu	Gly	Thr	Thr	Thr 440	Gly	Ser	Leu	His	Lys 445	Ala	Val	Val
Ser	Gly 450	Asp	Ser	Ser	Ala	His 455	Leu	Val	Glu	Glu	Ile 460	Gln	Leu	Phe	Pro

Asp Pro	o Glu	Pro	Val	Arg 470	Asn	Leu	Gln	Leu	Ala 475	Pro	Thr	Gln	Gly	Ala 480
Val Ph	e Val	Gly	Phe 485	Ser	Gly	Gly	Val	Trp 490	Arg	Val	Pro	Arg	Ala 495	Asn
Cys Se	r Val	Tyr 500	Glu	Ser	Cys	Val	Asp 505	Cys	Val	Leu	Ala	Arg 510	Asp	Pro
His Cy	s Ala 515	Trp	Asp	Pro	Glu	Ser 520	Arg	Thr	Cys	Суз	Leu 525	Leu	Ser	Ala
Pro Asi		Asn	Ser	Trp	Lys 535	Gln	Asp	Met	Glu	Arg 540	Gly	Asn	Pro	Glu
Trp Al	a Cys	Ala	Ser	Gly 550	Pro	Met	Ser	Arg	Ser 555	Leu	Arg	Pro	Gln	Ser 560
Arg Pr	o Gln	Ile	Ile 565	Lys	Glu	Val	Leu	Ala 570	Val	Pro	Asn	Ser	Ile 575	Leu
Glu Le	ı Pro	Cys 580	Pro	His	Leu	Ser	Ala 585	Leu	Ala	Ser	Tyr	Tyr 590	Trp	Ser
His Gl	y Pro 595	Ala	Ala	Val	Pro	Glu 600	Ala	Ser	Ser	Thr	Val 605	Tyr	Asn	Gly
Ser Le)				615					620				
Trp Ala				630		•			635			_		640
Asp Se			645					650					655	
Pro Ar		660					665					670	-	
Ala Le	675					680					685			
Val Le		Ala	Leu	Val	Leu 695	Ser	Gly	Ala	Leu	Ile 700	Ile	Leu	Val	Ala
Ser Pro	Leu	Arg	Ala	Leu 710	Arg	Ala	Arg	Gly	Lys 715	Val	Gln	Gly	Суз	Glu 720

Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His Leu 725

730

Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp Ala Asp 740 745

Asn Asn Cys Leu Gly Thr Glu Val Ala 755

<210> 20

<211> 31

<212> PRT

<213> Homo sapiens

<400> 20

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly Leu 5

Phe Leu Phe Gln Leu Leu Gln Leu Leu Leu Pro Thr Thr Ala . 20 25 30

<210> 21

<211> 730

<212> PRT

<213> Homo sapiens

<400> 21

Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr Ala Gly

Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly Leu Gln Asp 25

Phe Asp Thr Leu Leu Ser Gly Asp Gly Asn Thr Leu Tyr Val Gly 40

Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln Asp Pro Gly Val Pro 50 55

Arg Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Asp Arg Lys Lys Ser 65 70

Glu Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe 85 90

Ile Arg Val Leu Val Ser Tyr Asn Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu Met Arg Thr Leu Gly Ser Gln Pro Val Leu Lys Thr Asp Asn Phe Leu Arg Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr Gln Val Val Tyr Phe Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp Phe Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys Asn Asp Val Gly Glu Lys Leu Leu Gln Lys Lys Trp Thr Thr Phe Leu Lys Ala Gln Leu Leu Cys Thr Gln Pro Gly Gln Leu Pro Phe Asn Val Ile Arg His Ala Val Leu Leu Pro Ala Asp Ser Pro Thr Ala Pro His Ile Tyr Ala Val Phe Thr Ser Gln Trp Gln Val Gly Gly Thr Arg Ser Ser Ala Val Cys Ala Phe Ser Leu Leu Asp Ile Glu Arg Val Phe Lys Gly Lys Tyr Lys Glu Leu Asn Lys Glu Thr Ser Arg Trp Thr Thr Tyr Arg Gly Pro Glu Thr Asn Pro Arg Pro Gly Ser Cys Ser Val Gly Pro

- Ser Ser Asp Lys Ala Leu Thr Phe Met Lys Asp His Phe Leu Met Asp 355 360 365
- Glu Gln Val Val Gly Thr Pro Leu Leu Val Lys Ser Gly Val Glu Tyr 370 375 380
- . Thr Arg Leu Ala Val Glu Thr Ala Gln Gly Leu Asp Gly His Ser His 385 390 395 400
 - Leu Val Met Tyr Leu Gly Thr Thr Thr Gly Ser Leu His Lys Ala Val 405 410 415
 - Val Ser Gly Asp Ser Ser Ala His Leu Val Glu Glu Ile Gln Leu Phe 420 425 430
 - Pro Asp Pro Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Thr Gln Gly
 435 440 445
 - Ala Val Phe Val Gly Phe Ser Gly Gly Val Trp Arg Val Pro Arg Ala 450 455 460
 - Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg Asp 465 470 475 480
 - Pro His Cys Ala Trp Asp Pro Glu Ser Arg Thr Cys Cys Leu Leu Ser 485 490 495
 - Ala Pro Asn Leu Asn Ser Trp Lys Gln Asp Met Glu Arg Gly Asn Pro
 500 505 510
 - Glu Trp Ala Cys Ala Ser Gly Pro Met Ser Arg Ser Leu Arg Pro Gln
 515 520 525
 - Ser Arg Pro Gln Ile Ile Lys Glu Val Leu Ala Val Pro Asn Ser Ile 530 535 540
 - Leu Glu Leu Pro Cys Pro His Leu Ser Ala Leu Ala Ser Tyr Tyr Trp 545 550 555 560
 - Ser His Gly Pro Ala Ala Val Pro Glu Ala Ser Ser Thr Val Tyr Asn 565 570 575
 - Gly Ser Leu Leu Leu Ile Val Gln Asp Gly Val Gly Gly Leu Tyr Gln 580 585 590
 - Cys Trp Ala Thr Glu Asn Gly Phe Ser Tyr Pro Val Ile Ser Tyr Trp 595 600 605

WO 00/77239

Val Asp Ser Gln Asp Gln Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly 610 620

Ile Pro Arg Glu His Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly 625 630 635 640

Ala Ala Leu Ala Ala Gln Gln Ser Tyr Trp Pro His Phe Val Thr Val 645 650 655

Thr Val Leu Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val 660 665 670

Ala Ser Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys 675 680 685

Glu Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His
690 695 700

Leu Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp Ala 705 710 715 720

Asp Asn Asn Cys Leu Gly Thr Glu Val Ala 725 730

<210> 22

<211> 652

<212> PRT

<213> Homo sapiens

<400> 22

Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr Ala Gly

1 5 10 15

Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly Leu Gln Asp
20 25 30

Phe Asp Thr Leu Leu Ser Gly Asp Gly Asn Thr Leu Tyr Val Gly
35 40 45

Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln Asp Pro Gly Val Pro 50 55 60

Arg Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Asp Arg Lys Lys Ser 65 70 75 80

Glu Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe 85 90 95 Ile Arg Val Leu Val Ser Tyr Asn Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu Met Arg Thr Leu Gly Ser Gln Pro Val Leu Lys Thr Asp Asn Phe Leu Arg Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr Gln Val Val Tyr Phe Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp Phe Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys Asn Asp Val Gly Gly Glu Lys Leu Cln Lys Lys Trp Thr Thr Phe Leu Lys Ala Gln Leu Cys Thr Gln Pro Gly Gln Leu Pro Phe Asn Val Ile Arg His Ala Val Leu Leu Pro Ala Asp Ser Pro Thr Ala Pro His Ile Tyr Ala Val Phe Thr Ser Gln Trp Gln Val Gly Gly Thr Arg Ser Ser Ala Val Cys Ala Phe Ser Leu Leu Asp Ile Glu Arg Val Phe Lys Gly Lys Tyr Lys Glu Leu Asn Lys Glu Thr Ser Arg Trp Thr Thr Tyr Arg Gly Pro Glu Thr Asn Pro Arg Pro Gly Ser Cys Ser Val Gly Pro

Ser Ser Asp Lys Ala Leu Thr Phe Met Lys Asp His Phe Leu Met Asp Glu Gln Val Val Gly Thr Pro Leu Leu Val Lys Ser Gly Val Glu Tyr Thr Arg Leu Ala Val Glu Thr Ala Gln Gly Leu Asp Gly His Ser His Leu Val Met Tyr Leu Gly Thr Thr Thr Gly Ser Leu His Lys Ala Val Val Ser Gly Asp Ser Ser Ala His Leu Val Glu Glu Ile Gln Leu Phe Pro Asp Pro Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Thr Gln Gly Ala Val Phe Val Gly Phe Ser Gly Gly Val Trp Arg Val Pro Arg Ala Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg Asp Pro His Cys Ala Trp Asp Pro Glu Ser Arg Thr Cys Cys Leu Leu Ser Ala Pro Asn Leu Asn Ser Trp Lys Gln Asp Met Glu Arg Gly Asn Pro Glu Trp Ala Cys Ala Ser Gly Pro Met Ser Arg Ser Leu Arg Pro Gln Ser Arg Pro Gln Ile Ile Lys Glu Val Leu Ala Val Pro Asn Ser Ile Leu Glu Leu Pro Cys Pro His Leu Ser Ala Leu Ala Ser Tyr Tyr Trp Ser His Gly Pro Ala Ala Val Pro Glu Ala Ser Ser Thr Val Tyr Asn Gly Ser Leu Leu Leu Ile Val Gln Asp Gly Val Gly Gly Leu Tyr Gln Cys Trp Ala Thr Glu Asn Gly Phe Ser Tyr Pro Val Ile Ser Tyr Trp

Val Asp Ser Gln Asp Gln Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly 610 620

Ile Pro Arg Glu His Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly 625 630 635 640

Ala Ala Leu Ala Ala Gln Gln Ser Tyr Trp Pro His
645 650

<210> 23

<211> 21

<212> PRT

<213> Homo sapiens

<400> 23

Phe Val Thr Val Thr Val Leu Phe Ala Leu Val Leu Ser Gly Ala Leu

1 5 10 15

Ile Ile Leu Val Ala

20

<210> 24

<211> 57

<212> PRT

<213> Homo sapiens

<400> 24

Ser Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys Glu
1 5 10 15

Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His Leu 20 25 30

Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp Ala Asp 35 40 45

Asn Asn Cys Leu Gly Thr Glu Val Ala 50 55

<210> 25

<211> 2964

<212> DNA

<213> Homo sapiens

<400> 25

			•		gcccgcccgc	
					gcgctggaga	
					ctcgggctgc	
tcttggagtg	cacagaagcc	aaaaagcatt	gctggtattt	cgaaggactc	tatccaacct	240
attatatatg	ccgctcctac	gaggactgct	gtggctccag	gtgctgtgtg	cgggccctct	300
ccatacagag	gctgtggtac	ttctggttcc	ttctgatgat	gggcgtgctt	ttctgctgcg	360
gagccggctt	cttcatccgg	aggcgcatgt	acccccgcc	gctgatcgag	gagccagcct	420
tcaatgtgtc	ctacaccagg	cagcccccaa	atcccggccc	aggageceag	cagccggggc	480
cgccctatta	cactgaccca	ggaggaccgg	ggatgaaccc	tgtcgggaat	tccatggcaa	540
tggctttcca	ggtcccaccc	aactcacccc	aggggagtgt	ggcctgcccg	cccctccag	600
cctactgcaa	cacgcctccg	ccccgtacg	aacaggtagt	gaaggccaag	tagtggggtg	660
cccacgtgca	agaggagaga	caggagaggg	cctttccctg	gcctttctgt	cttcgttgat	720
gttcacttcc	aggaacggtc	tcgtgggctg	ctaagggcag	ttcctctgat	atcctcacag	780
caagcacagc	tctctttcag	gctttccatg	gagtacaata	tatgaactca	cactttgtct	840
cctctgttgc	ttctgtttct	gacgcagtct	gtgctctcac	atggtagtgt	ggtgacagtc	900
cccgagggct	gacgtcctta	cggtggcgtg	accagatcta	caggagagag	actgagagga	960
agaaggcagt	gctggaggtg	caggtggcat	gtagaggggc	caggccgagc	atcccaggca	1020
agcatccttc	tgcccgggta	ttaataggaa	gccccatgcc	gggcggctca	gccgatgaag	1080
cagcagccga	ctgagctgag	cccagcaggt	catctgctcc	agcctgtcct	ctcgtcagcc	1140
ttcctcttcc	agaagctgtt	ggagagacat	tcaggagaga	gcaagcccct	tgtcatgttt	1200
ctgtctctgt	tcatatccta	aagatagact	tctcctgcac	cgccagggaa	gggtagcacg	1260
tgcagctctc	accgcaggat	ggggcctaga	atcaggcttg	ccttggaggc	ctgacagtga	1320
tctgacatcc	actaagcaaa	tttatttaaa	ttcatgggaa	atcacttcct	gccccaaact	1380
gagacattgc	attttgtgag	ctcttggtct	gatttggaga	aaggactgtt	acccattttt	1440
					actgggtgtg	
					tctccttccc	
					atctggctgg	
		agggagagag				1680
					ggaaaagaca	1740
					agaagaagtg	
					acaggtagtc	
					gtgttgatgt	
					cgcctagatt	
					tgaactaatc	
					catggaagtg	
				=	ggagaacctc	
=					tgcagttgca	
					ctgccagcgt	
					tgttcactgt	
					atttgttttg	
					ctggaatcgg	
					tttgatagca	
					atgtttgtgt	
				_	acgctgatcc	
					attgtgtgga	
					ttcccggagc	
georgegee	Jayaytaaat	ccyaaycaya	cocycycacy		gcaacaattg	2020

Gln Pro Gly Pro Pro Tyr Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn 115 120 125

Pro Val Gly Asn Ser Met Ala Met Ala Phe Gln Val Pro Pro Asn Ser 130 135 140

Pro Gln Gly Ser Val Ala Cys Pro Pro Pro Pro Ala Tyr Cys Asn Thr 145 150 155 160

Pro Pro Pro Pro Tyr Glu Gln Val Val Lys Ala Lys 165 170

<210> 28

<211> 22

<212> PRT

<213> Homo sapiens

<400> 28

Met Arg Arg Gln Pro Ala Lys Val Ala Ala Leu Leu Leu Gly Leu Leu 1 5 10 15

Leu Glu Cys Thr Glu Ala

20

<210> 29

<211> 150

<212> PRT

<213> Homo sapiens

<400> 29

Lys Lys His Cys Trp Tyr Phe Glu Gly Leu Tyr Pro Thr Tyr Tyr Ile

1 5 10 15

Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser Arg Cys Cys Val Arg Ala
20 25 30

Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp Phe Leu Leu Met Met Gly
35 40 45

Val Leu Phe Cys Cys Gly Ala Gly Phe Phe Ile Arg Arg Met Tyr 50 . 55 60

Pro Pro Pro Leu Ile Glu Glu Pro Ala Phe Asn Val Ser Tyr Thr Arg. 65 70 75 80

<210> 26

<211> 516

<212> DNA

<213> Homo sapiens

<400> 26

atgaggegec agectgegaa ggtggeggeg etgetgeteg ggetgetett ggagtgeaca 60 gaagecaaaa ageattgetg gtatttegaa ggaetetate caacetatta tatatgeege 120 teetacgagg aetgetgtgg etecaggtge tgtgtgeggg eeeteteeat acagaggetg 180 tggtaettet ggtteettet gatgatggge gtgettttet getgeggage eggettette 240 ateeggagge geatgtaece eeegeegetg ategaggage eageetteaa tgtgteetae 300 aceaggeage eeecaaatee eggeecagga geecageage eggggeegee etattaeaet 360 gaeceaggag gaecggggat gaaceetgte gggaatteea tggeaatgge ttteeaggte 420 eeacecaaet eaceceaggg gagtgtggee tgeeegeee eteeageeta etgeaacaeg 480 eeteegeeee egtaegaaca ggtagtgaag geeaag

<210> 27

<211> 172

<212> PRT

<213> Homo sapiens

<400> 27

Met Arg Arg Gln Pro Ala Lys Val Ala Ala Leu Leu Gly Leu Leu

1 5 10 15

Leu Glu Cys Thr Glu Ala Lys Lys His Cys Trp Tyr Phe Glu Gly Leu 20 25 30

Tyr Pro Thr Tyr Tyr Ile Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser
35 40 45

Arg Cys Cys Val Arg Ala Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp 50 55 60

Phe Leu Leu Met Met Gly Val Leu Phe Cys Cys Gly Ala Gly Phe Phe 65 70 75 80

Ile Arg Arg Arg Met Tyr Pro Pro Pro Leu Ile Glu Glu Pro Ala Phe 85 90 95

Asn Val Ser Tyr Thr Arg Gln Pro Pro Asn Pro Gly Pro Gly Ala Gln
100 105 110

Gln Pro Pro Asn Pro Gly Pro Gly Ala Gln Gln Pro Gly Pro Pro Tyr

Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn Pro Val Gly Asn Ser Met
100 105 110

Ala Met Ala Phe Gln Val Pro Pro Asn Ser Pro Gln Gly Ser Val Ala 115 120 125

Cys Pro Pro Pro Pro Ala Tyr Cys Asn Thr Pro Pro Pro Pro Tyr Glu 130 135 140

Gln Val Val Lys Ala Lys 145 150

<210> 30

<211> 38

<212> PRT

<213> Homo sapiens

<400> 30

Lys Lys His Cys Trp Tyr Phe Glu Gly Leu Tyr Pro Thr Tyr Tyr Ile

1 5 10 15

Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser Arg Cys Cys Val Arg Ala 20 25 30

Leu Ser Ile Gln Arg Leu 35

<210> 31

<211> 21

<212> PRT

<213> Homo sapiens

<400> 31

Trp Tyr Phe Trp Phe Leu Leu Met Met Gly Val Leu Phe Cys Cys Gly

1 '5 10 15

Ala Gly Phe Phe Ile

20

<210> 32

<211> 91

<212> PRT

WO 00/77239

<213> Homo sapiens

<400> 32

Arg Arg Arg Met Tyr Pro Pro Pro Leu Ile Glu Glu Pro Ala Phe Asn
1 5 10 15

Val Ser Tyr Thr Arg Gln Pro Pro Asn Pro Gly Pro Gly Ala Gln Gln
20 25 30

Pro Gly Pro Pro Tyr Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn Pro
35 40 45

Val Gly Asn Ser Met Ala Met Ala Phe Gln Val Pro Pro Asn Ser Pro 50 55 60

Gln Gly Ser Val Ala Cys Pro Pro Pro Pro Ala Tyr Cys Asn Thr Pro 65 70 75 80

Pro Pro Pro Tyr Glu Gln Val Val Lys Ala Lys 85 90

<210> 33

<211> 1980

<212> DNA

<213> Homo sapiens

<400> 33

gtcgacccac gcgtccgcag ctttggacac ttcctctgct tgaggacacc ttgactaacc 60 tccaagggca actaaaggat caagaaaggc ccagcacagc agaagatcag ctggatctag 120 ctcctgcagg agatgtgtac aaagacaatc ccagtcctct ggggatgttt cctcctgtgg 180 aatctctatg tctcatcctc tcagaccatt taccctggaa tcaaggcaag gattactcag 240 agggcacttg actatggtgt tcaagctgga atgaagatga ttgagcaaat gctaaaagaa 300 aagaaactcc cagatttaag cggttctgag tctcttgaat ttctaaaagt tgattatgta 360 aactacaatt tttcaaatat aaaaatcagt gccttttcat ttccaaatac ctcattggct 420 tttgtgcctg gagtgggaat caaagcgcta accaaccatg gcactgccaa catcagcaca 480 gactgggggt tcgagtctcc actttttgtt ctgtataact cctttgctga gcccatggag 540 aaacccattt taaagaactt aaatgaaatg ctctgtccca ttattgcaag tgaagtcaaa 600 gegetamatg ceaaceteag cacactggag gttttaacea agattgacaa etacactetg 660 ctggattact ccctaatcag ttctccagaa attactgaga actaccttga cctgaacttg 720 aagggtgtat totaccoact ggaaaacctc accgaccccc cottotcacc agttoctttt 780 gtgctcccag aacgcagcaa ctccatgctc tacattggaa tcgccgagta tttctttaaa 840 tctgcgtcct ttgctcattt cacagctggg gttttcaatc tcactctctc caccgaagag 900 atttccaacc attttgttca aaactctcaa ggccttggca acgtgctctc ccggattgca 960 gagatetaca tettgteeca gecetteatg gtgaggatea tggccacaga geeteecata 1020 atcaatctac aaccaggcaa tttcaccctg gacatccctg cctccatcat gatgctcacc 1080 caacccaaga actccacagt tgaaaccatc gtttccatgg acttcgttgc tagtaccagt 1140 gttggcctgg ttattttggg acaaagactg gtctgctcct tgtctctgaa cagattccgc 1200 -

<210> 34 <211> 1365 <212> DNA <213> Homo sapiens

<400> 34

atgtgtacaa agacaatccc agtcctctgg ggatgtttcc tcctqtqqaa tctctatgtc 60 tcatcctctc agaccattta ccctggaatc aaggcaagga ttactcagag ggcacttgac 120 tatggtgttc aagctggaat gaagatgatt gagcaaatgc taaaagaaaa gaaactccca 180 gatttaagcg gttctgagtc tcttgaattt ctaaaagttg attatgtaaa ctacaatttt 240 tcaaatataa aaatcagtgc cttttcattt ccaaatacct cattggcttt tgtgcctgga 300 gtgggaatca aagcgctaac caaccatggc actgccaaca tcagcacaga ctgggggttc 360 gagtetecae tttttgttet gtataactee tttgetgage ceatggagaa acceatttta 420 aagaacttaa atgaaatgct ctgtcccatt attgcaagtg aagtcaaagc gctaaatgcc 480 aacctcagca cactggaggt tttaaccaag attgacaact acactctgct ggattactcc 540 ctaatcagtt ctccagaaat tactgagaac taccttgacc tgaacttgaa gggtgtattc 600 tacccactgg aaaacctcac cgacccccc ttctcaccag ttccttttgt gctcccagaa 660 cgcagcaact ccatgctcta cattggaatc gccgagtatt tctttaaatc tgcgtccttt 720 geteatttea cagetggggt tttcaatete aeteteteea cegaagagat ttecaaceat 780 tttgttcaaa actctcaagg ccttggcaac gtgctctccc ggattgcaga gatctacatc 840 ttgtcccagc ccttcatggt gaggatcatg gccacagagc ctcccataat caatctacaa 900 ccaggcaatt tcaccetgga catccetgee tccatcatga tgetcaecca acceaagaac 960 tocacagttg aaaccatcgt ttccatggac ttcgttgcta gtaccagtgt tggcctggtt 1020 attttgggac aaagactggt ctgctccttg tctctgaaca gattccgcct tgctttgcca 1080 gagtccaatc gcagcaacat tgaggtcttg aggtttgaaa atattctatc gtccattctt 1140 cactttggag tecteceact ggecaatgea aaattgeage aaggatttee tetgeeeaat 1200 ccacacaaat tettattegt caatteagat attgaagtte ttgagggttt cettttgatt 1260 tccaccgacc tgaagtatga aacatcctca aagcagcagc caagtttcca cgtatgggaa 1320 ggtctgaacc tgataagcag acagtggagg gggaagtcag ccct 1365

<210> 35 <211> 455 <212> PRT

<213> Homo sapiens

<400> 35

Met Cys Thr Lys Thr Ile Pro Val Leu Trp Gly Cys Phe Leu Leu Trp

1 5 10 15

Asn Leu Tyr Val Ser Ser Ser Gln Thr Ile Tyr Pro Gly Ile Lys Ala 20 25 30

Arg Ile Thr Gln Arg Ala Leu Asp Tyr Gly Val Gln Ala Gly Met Lys
35 40 45

Met Ile Glu Gln Met Leu Lys Glu Lys Lys Leu Pro Asp Leu Ser Gly 50 55 60

Ser Glu Ser Leu Glu Phe Leu Lys Val Asp Tyr Val Asn Tyr Asn Phe 65 70 75 80

Ser Asn Ile Lys Ile Ser Ala Phe Ser Phe Pro Asn Thr Ser Leu Ala 85 90 95

Phe Val Pro Gly Val Gly Ile Lys Ala Leu Thr Asn His Gly Thr Ala 100 105 110

Asn Ile Ser Thr Asp Trp Gly Phe Glu Ser Pro Leu Phe Val Leu Tyr 115 120 125

Asn Ser Phe Ala Glu Pro Met Glu Lys Pro Ile Leu Lys Asn Leu Asn 130 135 140

Glu Met Leu Cys Pro Ile Ile Ala Ser Glu Val Lys Ala Leu Asn Ala 145 150 155 160

Asn Leu Ser Thr Leu Glu Val Leu Thr Lys Ile Asp Asn Tyr Thr Leu 165 170 175

Leu Asp Tyr Ser Leu Ile Ser Ser Pro Glu Ile Thr Glu Asn Tyr Leu 180 185 190

Asp Leu Asn Leu Lys Gly Val Phe Tyr Pro Leu Glu Asn Leu Thr Asp 195 200 205

Pro Pro Phe Ser Pro Val Pro Phe Val Leu Pro Glu Arg Ser Asn Ser 210 215 220

Met Leu Tyr Ile Gly Ile Ala Glu Tyr Phe Phe Lys Ser Ala Ser Phe 225 230 235 240

Ala His Phe Thr Ala Gly Val Phe Asn Leu Thr Leu Ser Thr Glu Glu 250 245 Ile Ser Asn His Phe Val Gln Asn Ser Gln Gly Leu Gly Asn Val Leu 260 265 Ser Arg Ile Ala Glu Ile Tyr Ile Leu Ser Gln Pro Phe Met Val Arg 280 285 Ile Met Ala Thr Glu Pro Pro Ile Ile Asn Leu Gln Pro Gly Asn Phe 290 295 300 Thr Leu Asp Ile Pro Ala Ser Ile Met Met Leu Thr Gln Pro Lys Asn 310 315 Ser Thr Val Glu Thr Ile Val Ser Met Asp Phe Val Ala Ser Thr Ser 325 330 Val Gly Leu Val Ile Leu Gly Gln Arg Leu Val Cys Ser Leu Ser Leu 345 Asn Arg Phe Arg Leu Ala Leu Pro Glu Ser Asn Arg Ser Asn Ile Glu 360

Val Leu Arg Phe Glu Asn Ile Leu Ser Ser Ile Leu His Phe Gly Val 370 375 380

Leu Pro Leu Ala Asn Ala Lys Leu Gln Gln Gly Phe Pro Leu Pro Asn 385 390 395 400

Pro His Lys Phe Leu Phe Val Asn Ser Asp Ile Glu Val Leu Glu Gly
405 410 415

Phe Leu Leu Ile Ser Thr Asp Leu Lys Tyr Glu Thr Ser Ser Lys Gln
420 425 430

Gln Pro Ser Phe His Val Trp Glu Gly Leu Asn Leu Ile Ser Arg Gln
435
440
445

Trp Arg Gly Lys Ser Ala Pro 450 455

<210> 36

<211> 23

<212> PRT

<213> Homo sapiens

<400> 36

Met Cys Thr Lys Thr Ile Pro Val Leu Trp Gly Cys Phe Leu Leu Trp

1 5 10 15

Asn Leu Tyr Val Ser Ser Ser 20

<210> 37

<211> 432

<212> PRT

<213> Homo sapiens

<400> 37

Gln Thr Ile Tyr Pro Gly Ile Lys Ala Arg Ile Thr Gln Arg Ala Leu

1 5 10 15

Asp Tyr Gly Val Gln Ala Gly Met Lys Met Ile Glu Gln Met Leu Lys
20 25 30

Glu Lys Lys Leu Pro Asp Leu Ser Gly Ser Glu Ser Leu Glu Phe Leu
35 40 45

Lys Val Asp Tyr Val Asn Tyr Asn Phe Ser Asn Ile Lys Ile Ser Ala 50 55 60

Phe Ser Phe Pro Asn Thr Ser Leu Ala Phe Val Pro Gly Val Gly Ile
65 70 75 80

Lys Ala Leu Thr Asn His Gly Thr Ala Asn Ile Ser Thr Asp Trp Gly
85 90 95

Phe Glu Ser Pro Leu Phe Val Leu Tyr Asn Ser Phe Ala Glu Pro Met
100 105 110

Glu Lys Pro Ile Leu Lys Asn Leu Asn Glu Met Leu Cys Pro Ile Ile 115 120 125

Ala Ser Glu Val Lys Ala Leu Asn Ala Asn Leu Ser Thr Leu Glu Val 130 135 140

Leu Thr Lys Ile Asp Asn Tyr Thr Leu Leu Asp Tyr Ser Leu Ile Ser 145 150 155 160

Ser Pro Glu Ile Thr Glu Asn Tyr Leu Asp Leu Asn Leu Lys Gly Val 165 170 175

Phe Tyr Pro Leu Glu Asn Leu Thr Asp Pro Pro Phe Ser Pro Val Pro Phe Val Leu Pro Glu Arg Ser Asn Ser Met Leu Tyr Ile Gly Ile Ala Glu Tyr Phe Phe Lys Ser Ala Ser Phe Ala His Phe Thr Ala Gly Val Phe Asn Leu Thr Leu Ser Thr Glu Glu Ile Ser Asn His Phe Val Gln Asn Ser Gln Gly Leu Gly Asn Val Leu Ser Arg Ile Ala Glu Ile Tyr Ile Leu Ser Gln Pro Phe Met Val Arg Ile Met Ala Thr Glu Pro Pro Ile Ile Asn Leu Gln Pro Gly Asn Phe Thr Leu Asp Ile Pro Ala Ser Ile Met Met Leu Thr Gln Pro Lys Asn Ser Thr Val Glu Thr Ile Val . 295 Ser Met Asp Phe Val Ala Ser Thr Ser Val Gly Leu Val Ile Leu Gly Gln Arg Leu Val Cys Ser Leu Ser Leu Asn Arg Phe Arg Leu Ala Leu Pro Glu Ser Asn Arg Ser Asn Ile Glu Val Leu Arg Phe Glu Asn Ile Leu Ser Ser Ile Leu His Phe Gly Val Leu Pro Leu Ala Asn Ala Lys Leu Gln Gln Gly Phe Pro Leu Pro Asn Pro His Lys Phe Leu Phe Val Asn Ser Asp Ile Glu Val Leu Glu Gly Phe Leu Leu Ile Ser Thr Asp 395 · Leu Lys Tyr Glu Thr Ser Ser Lys Gln Gln Pro Ser Phe His Val Trp 415. Glu Gly Leu Asn Leu Ile Ser Arg Gln Trp Arg Gly Lys Ser Ala Pro

<210> 38

<211> 483

<212> PRT

<213> Homo sapiens

<400> 38

Met Ala Arg Gly Pro Cys Asn Ala Pro Arg Trp Val Ser Leu Met Val 1 5 10 15

Leu Val Ala Ile Gly Thr Ala Val Thr Ala Ala Val Asn Pro Gly Val
20 25 30

Val Val Arg Ile Ser Gln Lys Gly Leu Asp Tyr Ala Ser Gln Gln Gly
35 40 45

Thr Ala Ala Leu Gln Lys Glu Leu Lys Arg Ile Lys Ile Pro Asp Tyr 50 55 60

Ser Asp Ser Phe Lys Ile Lys His Leu Gly Lys Gly His Tyr Ser Phe 65 70 75 80

Tyr Ser Met Asp Ile Arg Glu Phe Gln Leu Pro Ser Ser Gln Ile Ser 85 90 95

Met Val Pro Asn Val Gly Leu Lys Phe Ser Ile Ser Asn Ala Asn Ile 100 105 110

Lys Ile Ser Gly Lys Trp Lys Ala Gln Lys Arg Phe Leu Lys Met Ser 115 120 125

Gly Asn Phe Asp Leu Ser Ile Glu Gly Met Ser Ile Ser Ala Asp Leu 130 135 140

Lys Leu Gly Ser Asn Pro Thr Ser Gly Lys Pro Thr Ile Thr Cys Ser 145 150 155 160

Ser Cys Ser Ser His Ile Asn Ser Val His Val His Ile Ser Lys Ser 165 170 175

Lys Val Gly Trp Leu Ile Gln Leu Phe His Lys Lys Ile Glu Ser Ala 180 185 190

Leu Arg Asn Lys Met Asn Ser Gln Val Cys Glu Lys Val Thr Asn Ser 195 200 205

Val Ser Ser Lys Leu Gln Pro Tyr Phe Gln Thr Leu Pro Val Met Thr Lys Ile Asp Ser Val Ala Gly Ile Asn Tyr Gly Leu Val Ala Pro Pro Ala Thr Thr Ala Glu Thr Leu Asp Val Gln Met Lys Gly Glu Phe Tyr Ser Glu Asn His His Asn Pro Pro Pro Phe Ala Pro Pro Val Met Glu Phe Pro Ala Ala His Asp Arg Met Val Tyr Leu Gly Leu Ser Asp Tyr Phe Phe Asn Thr Ala Gly Leu Val Tyr Gln Glu Ala Gly Val Leu Lys Met Thr Leu Arg Asp Asp Met Ile Pro Lys Glu Ser Lys Phe Arg Leu Thr Thr Lys Phe Phe Gly Thr Phe Leu Pro Glu Val Ala Lys Lys Phe Pro Asn Met Lys Ile Gln Ile His Val Ser Ala Ser Thr Pro Pro His Leu Ser Val Gln Pro Thr Gly Leu Thr Phe Tyr Pro Ala Val Asp Val Gln Ala Phe Ala Val Leu Pro Asn Ser Ser Leu Ala Ser Leu Phe Leu Ile Gly Met His Thr Thr Gly Ser Met Glu Val Ser Ala Glu Ser Asn Arg Leu Val Gly Glu Leu Lys Leu Asp Arg Leu Leu Leu Glu Leu Lys His Ser Asn Ile Gly Pro Phe Pro Val Glu Leu Leu Gln Asp Ile Met Asn Tyr Ile Val Pro Ile Leu Val Leu Pro Arg Val Asn Glu Lys Leu Gln Lys Gly Phe Pro Leu Pro Thr Pro Ala Arg Val Gln Leu Tyr Asn

Val Val Leu Gln Pro His Gln Asn Phe Leu Leu Phe Gly Ala Asp Val 465 470 475 480

Val Tyr Lys

<210> 39

<211> 481

<212> PRT

<213> Homo sapiens

<400> 39

Met Gly Ala Leu Ala Arg Ala Leu Pro Ser Ile Leu Leu Ala Leu Leu 1 5 10 15

Leu Thr Ser Thr Pro Glu Ala Leu Gly Ala Asn Pro Gly Leu Val Ala 20 25 30

Arg Ile Thr Asp Lys Gly Leu Gln Tyr Ala Ala Gln Glu Gly Leu Leu 35 40 45

Ala Leu Gln Ser Glu Leu Leu Arg Ile Thr Leu Pro Asp Phe Thr Gly 50 55 60

Asp Leu Arg Ile Pro His Val Gly Arg Gly Arg Tyr Glu Phe His Ser 65 70 75 80

Leu Asn Ile His Glu Phe Gln Leu Pro Ser Ser Gln Ile Ser Met Val 85 90 95

Pro Asn Val Gly Leu Lys Phe Ser Ile Ser Asn Ala Asn Ile Lys Ile 100 105 110

Ser Gly Lys Trp Lys Ala Gln Lys Arg Phe Leu Lys Met Ser Gly Asn 115 120 125

Phe Asp Leu Ser Ile Glu Gly Met Ser Ile Ser Ala Asp Leu Lys Leu 130 135 140

Gly Ser Asn Pro Thr Ser Gly Lys Pro Thr Ile Thr Cys Ser Ser Cys
145 150 155 160

Ser Ser His Ile Asn Ser Val His Val His Ile Ser Lys Ser Lys Val 165 170 175

Gly Trp Leu Ile Gln Leu Phe His Lys Lys Ile Glu Ser Ala Leu Arg

180 185 190

Asn Lys Met Asn Ser Gln Val Cys Glu Lys Val Thr Asn Ser Val Ser 195 200 205

- Ser Lys Leu Gln Pro Tyr Phe Gln Thr Leu Pro Val Met Thr Lys Ile 210 220
- Asp Ser Val Ala Gly Ile Asn Tyr Gly Leu Val Ala Pro Pro Ala Thr 225 230 235 240
- Thr Ala Glu Thr Leu Asp Val Gln Met Lys Gly Glu Phe Tyr Ser Glu 245 250 255
- Asn His His Asn Pro Pro Pro Phe Ala Pro Pro Val Met Glu Phe Pro 260 265 270
- Ala Ala His Asp Arg Met Val Tyr Leu Gly Leu Ser Asp Tyr Phe Phe 275 280 285
- Asn Thr Ala Gly Leu Val Tyr Gln Glu Ala Gly Val Leu Lys Met Thr 290 295 300
- Leu Arg Asp Asp Met Ile Pro Lys Glu Ser Lys Phe Arg Leu Thr Thr 305 310 315 320
- Lys Phe Phe Gly Thr Phe Leu Pro Glu Val Ala Lys Lys Phe Pro Asn 325 330 335
- Met Lys Ile Gln Ile His Val Ser Ala Ser Thr Pro Pro His Leu Ser 340 345 350
- Val Gln Pro Thr Gly Leu Thr Phe Tyr Pro Ala Val Asp Val Gln Ala 355 360 365
- Leu Ala Val Leu Pro Asn Ser Ser Leu Ala Ser Leu Phe Leu Ile Gly 370 375 380
- Met His Thr Thr Gly Ser Met Glu Val Ser Ala Glu Ser Asn Arg Leu 385 390 395 400
- Val Gly Glu Leu Lys Leu Asp Arg Leu Leu Glu Leu Lys His Ser
 405 410 415
 - Asn Ile Gly Pro Phe Pro Val Glu Leu Leu Gln Asp Ile Met Asn Tyr
 420 425 430
 - Ile Val Pro Ile Leu Val Leu Pro Arg Val Asn Glu Lys Leu Gln Lys

435 440 445

Gly Phe Pro Leu Pro Thr Pro Ala Arg Val Gln Leu Tyr Asn Val Val 450 455 460

Leu Gln Pro His Gln Asn Phe Leu Leu Phe Gly Ala Asp Val Val Tyr 465 470 475 480

Lys

<210> 40

<211> 383

<212> PRT

<213> Caenorhabditis elegans

<400> 40

Met Arg Ile Ala His Ala Ser Ser Arg Gly Asn Ile Ser Ile Phe Ser 1 5 10 15

Val Phe Leu Ile Pro Leu Ile Ala Tyr Ile Leu Ile Leu Pro Gly Val 20 25 30

Arg Arg Lys Arg Val Val Thr Thr Val Thr Tyr Val Leu Met Leu Ala 35 40 45

Val Gly Gly Ala Leu Ile Ala Ser Leu Ile Tyr Pro Cys Trp Ala Ser 50 55 60

Gly Ser Gln Met Ile Tyr Thr Gln Phe Arg Gly His Ser Asn Glu Arg
65 70 75 80

Ile Leu Ala Lys Ile Gly Val Glu Ile Gly Leu Gln Lys Val Asn Val 85 90 95

Thr Leu Lys Phe Glu Arg Leu Leu Ser Ser Asn Asp Val Leu Pro Gly
100 105 110

Ser Asp Met Thr Glu Leu Tyr Tyr Asn Glu Gly Phe Asp Ile Ser Gly 115 120 125

Ile Ser Ser Met Ala Glu Ala Leu His His Gly Leu Glu Asn Gly Leu 130 135 140

Pro Tyr Pro Met Leu Ser Val Leu Glu Tyr Phe Ser Leu Asn Gln Asp 145 150 155 160

Ser Phe Asp Trp Gly Arg His Tyr Arg Val Ala Gly His Tyr Thr His 165 170 175

Ala Ala Ile Trp Phe Ala Phe Ala Cys Trp Cys Leu Ser Val Val Leu 180 185 190

Met Leu Phe Leu Pro His Asn Ala Tyr Lys Ser Ile Leu Ala Thr Gly
195 200 205

Ile Ser Cys Leu Ile Ala Cys Leu Val Tyr Leu Leu Ser Pro Cys 210 215 220

Glu Leu Arg Ile Ala Phe Thr Gly Glu Asn Phe Glu Arg Val Asp Leu 225 230 235 240

Thr Ala Thr Phe Ser Phe Cys Phe Tyr Leu Ile Phe Ala Ile Gly Ile 245 250 255

Leu Cys Val Leu Cys Gly Leu Gly Leu Gly Ile Cys Glu His Trp Arg 260 265 270

Ile Tyr Thr Leu Ser Thr Phe Leu Asp Ala Ser Leu Asp Glu His Val 275 280 285

Gly Pro Lys Trp Lys Lys Leu Pro Thr Gly Gly Pro Ala Leu Gln Gly
290 295 300

Val Gln Ile Gly Ala Tyr Gly Thr Asn Thr Thr Asn Ser Ser Arg Asp 305 310 315 320

Lys Asn Asp Ile Ser Ser Asp Lys Thr Ala Gly Ser Ser Gly Phe Gln 325 330 335

Ser Arg Thr Ser Thr Cys Gln Ser Ser Ala Ser Ser Ala Ser Leu Arg 340 345 350

Ser Gln Ser Ser Ile Glu Thr Val His Asp Glu Ala Glu Leu Glu Arg 355 360 365

Thr His Val His Phe Leu Gln Glu Pro Cys Ser Ser Ser Ser Thr 370 375 380

<210> 41

<211> 399

<212> PRT

<213> Homo sapiens

<	Δ	n	n	>	4	1
`	•	u	u	_		4

- Met Lys Met Arg Phe Leu Gly Leu Val Val Cys Leu Val Leu Trp Pro 1 5 10 15
- Leu His Ser Glu Gly Ser Gly Gly Lys Leu Thr Ala Val Asp Pro Glu 20 25 30
- Thr Asn Met Asn Val Ser Glu Ile Ile Ser Tyr Trp Gly Phe Pro Ser 35 40 45
- Glu Glu Tyr Leu Val Glu Thr Glu Asp Gly Tyr Ile Leu Cys Leu Asn 50 55 60
- Arg Ile Pro His Gly Arg Lys Asn His Ser Asp Lys Gly Pro Lys Pro 65 70 75 80
- Val Val Phe Leu Gln His Gly Leu Leu Ala Asp Ser Ser Asn Trp Val 85 90 95
- Thr Asn Leu Ala Asn Ser Ser Leu Gly Phe Ile Leu Ala Asp Ala Gly
 100 105 110
- Phe Asp Val Trp Met Gly Asn Ser Arg Gly Asn Thr Trp Ser Arg Lys 115 120 125
- His Lys Thr Leu Ser Val Ser Gln Asp Glu Phe Trp Ala Phe Ser Tyr 130 135 140
- Asp Glu Met Ala Lys Tyr Asp Leu Pro Ala Ser Ile Asn Phe Ile Leu 145 150 155 160
- Asn Lys Thr Gly Gln Glu Gln Val Tyr Tyr Val Gly His Ser Gln Gly
 165 170 175
- Thr Thr Ile Gly Phe Ile Ala Phe Ser Gln Ile Pro Glu Leu Ala Lys 180 185 190
- Arg Ile Lys Met Phe Phe Ala Leu Gly Pro Val Ala Ser Val Ala Phe 195 200 205
- Cys Thr Ser Pro Met Ala Lys Leu Gly Arg Leu Pro Asp His Leu Ile 210 215 220
- Lys Asp Leu Phe Gly Asp Lys Glu Phe Leu Pro Gln Ser Ala Phe Leu 225 230 235 240
- Lys Trp Leu Gly Thr His Val Cys Thr His Val Ile Leu Lys Glu Leu 245 250 255

Cys Gly Asn Leu Cys Phe Leu Leu Cys Gly Phe Asn Glu Arg Asn Leu 260 265 270

Asn Met Ser Arg Val Asp Val Tyr Thr Thr His Ser Pro Ala Gly Thr 275 280 285

Ser Val Gln Asn Met Leu His Trp Ser Gln Ala Val Lys Phe Gln Lys 290 295 300

Phe Gln Ala Phe Asp Trp Gly Ser Ser Ala Lys Asn Tyr Phe His Tyr 305 310 315 320

Asn Gln Ser Tyr Pro Pro Thr Tyr Asn Val Lys Asp Met Leu Val Pro 325 330 335

Thr Ala Val Trp Ser Gly Gly His Asp Trp Leu Ala Asp Val Tyr Asp 340 345 350

Val Asn Ile Leu Leu Thr Gln Ile Thr Asn Leu Val Phe His Glu Ser 355 360 365

Ile Pro Glu Trp Glu His Leu Asp Phe Ile Trp Gly Leu Asp Ala Pro 370 375 380

Trp Arg Leu Tyr Asn Lys Ile Ile Asn Leu Met Arg Lys Tyr Gln 385 390 395

<210> 42

<211> 19

<212> PRT

<213> Mus sp.

<400> 42

Met Ala Pro Pro Ala Ala Arg Leu Ala Leu Leu Ser Ala Ala Ala Leu 1 5 10 15

Thr Leu Ala

<210> 43

<211> 451

<212> PRT

<213> Mus sp.

<400> 43

Ala Arg Pro Ala Pro Gly Pro Arg Ser Gly Pro Glu Cys Phe Thr Ala Asn Gly Ala Asp Tyr Arg Gly Thr Gln Ser Trp Thr Ala Leu Gln Gly Gly Lys Pro Cys Leu Phe Trp Asn Glu Thr Phe Gln His Pro Tyr Asn Thr Leu Lys Tyr Pro Asn Gly Glu Gly Gly Leu Gly Glu His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Val Ser Pro Trp Cys Tyr Val Ala Glu His Glu Asp Gly Val Tyr Trp Lys Tyr Cys Glu Ile Pro Ala Cys Gln Met Pro Gly Asn Leu Gly Cys Tyr Lys Asp His Gly Asn Pro Pro Pro Leu Thr Gly Thr Ser Lys Thr Ser Asn Lys Leu Thr Ile Gln Thr Cys Ile Ser Phe Cys Arg Ser Gln Arg Phe Lys Phe Ala Gly Met Glu Ser Gly Tyr Ala Cys Phe Cys Gly Asn Asn Pro Asp Tyr Trp Lys His Gly Glu Ala Ala Ser Thr Glu Cys Asn Ser Val Cys Phe Gly Asp His Thr Gln Pro Cys Gly Gly Asp Gly Arg Ile Ile Leu Phe Asp Thr Leu Val Gly Ala Cys Gly Gly Asn Tyr Ser Ala Met Ala Ala Val Val Tyr Ser Pro Asp Phe Pro Asp Thr Tyr Ala Thr Gly Arg Val Cys Tyr Trp Thr Ile Arg Val Pro Gly Ala Ser Arg Ile His Phe Asn Phe Thr Leu Phe Asp Ile Arg Asp Ser Ala Asp Met Val Glu Leu Leu Asp Gly Tyr Thr

His Arg Val Leu Val Arg Leu Ser Gly Arg Ser Arg Pro Pro Leu Ser 260 265 270

Phe Asn Val Ser Leu Asp Phe Val Ile Leu Tyr Phe Phe Ser Asp Arg 275 280 285

Ile Asn Gln Ala Gln Gly Phe Ala Val Leu Tyr Gln Ala Thr Lys Glu 290 295 300

Glu Pro Pro Gln Glu Arg Pro Ala Val Asn Gln Thr Leu Ala Glu Val 305 310 315 320

Ile Thr Glu Gln Ala Asn Leu Ser Val Ser Ala Ala His Ser Ser Lys 325 330 335

Val Leu Tyr Val Ile Thr Pro Ser Pro Ser His Pro Pro Gln Thr Ala 340 345 350

Gln Val Ala Ile Pro Gly His Arg Gln Leu Gly Pro Thr Ala Thr Glu 355 360 365

Trp Lys Asp Gly Leu Cys Thr Ala Trp Arg Pro Ser Ser Ser Ser Gln 370 375 380

Ser Gln Gln Leu Ser Gln Arg Phe Phe Cys Met Ser His Leu Asn Leu 385 390 395 400

Ile Glu Ser Leu His Gln Glu Thr Leu Gly Thr Val Val Ser Leu Gly
405 410 415

Leu Leu Glu Ile Ser Gly Pro Phe Ser Met Asn Leu Pro Leu Gln Ser 420 425 430

Pro Ser Leu Arg Arg Ser Ser Arg Val Arg Val Asn Lys Met Thr Ala 435 440 445

Ile Pro Ser 450

<210> 44

<211> 150

<212> PRT

<213> Mus sp.

<400> 44

Lys Lys His Cys Trp Tyr Phe Glu Gly Leu Tyr Pro Thr Tyr Tyr Ile

1 5 10 15

Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser Arg Cys Cys Val Arg Ala 20 25 30

Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp Phe Leu Leu Met Met Gly
35 40 45

Val Leu Phe Cys Cys Gly Ala Gly Phe Phe Ile Arg Arg Met Tyr 50 55 60

Pro Pro Pro Leu Ile Glu Glu Pro Thr Phe Asn Val Ser Tyr Thr Arg 65 70 75 80

Gln Pro Pro Asn Pro Ala Pro Gly Ala Gln Gln Met Gly Pro Pro Tyr 85 90 95

Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn Pro Val Gly Asn Thr Met 100 . 105 110

Ala Met Ala Phe Gln Val Gln Pro Asn Ser Pro His Gly Gly Thr Thr 115 120 125

Tyr Pro Pro Pro Pro Ser Tyr Cys Asn Thr Pro Pro Pro Pro Tyr Glu 130 135 140

Gln Val Val Lys Asp Lys 145 150

<210> 45

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 45

gtcgacccac gcgtccgggg aattgcagca ggaaaatatg tgaagagttt ttaaacccac 60 aaattcttct tactttagaa ttagttgtta cattggcagg aaaaaataaa tgcagatgtt 120 ggaccatgtt ggaaaccttg tcaagacagt ggattgtcc acacagaatg gaaatgtggc 180 ttctgattct ggtggcgtat atgttccaga gaaatgtgaa ttcagtacat atgccaacta 240 aagctgtgga cccagaagca ttcatgaata ttagtgaaat catccaacat caaggctatc 300 cctgtgagga atatgaagtc gcaactgaag atgggtatat cctttctgtt aacaggattc 360 ctcgaggcct agtgcaacct aagaagacag gttccaggcc tgtggtgta ctgcagcatg 420 gcctagttgg aggtgctagc aactggatt ccaacctgcc caacaatagc ctgggcttca 480 ttctggcaga tgctggttt gacgtgtgga tggggaacag caggggaaac gcctggtctc 540 gaaaacacaa gacactccc atagaccaag atgagttctg ggctttcagt tatgatgaga 600 tggctaggtt tgaccttcct gcagtgataa actttattt gcagaaaacg ggccaggaaa 660 agatctatta tgtcggctat tcacagggca ccaccatggg ctttattgca ttttccacca 720 tgccagagct ggctcagaaa atcaaaatgt atttgcttt agcacccata gccactgtta 780

```
agcatgcaaa aagccccggg accaaatttt tgttgctgcc agatatgatg atcaagggat 840
tgtttggcaa aaaagaattt ctgtatcaga ccagatttct cagacaactt gttatttacc 900
tttgtggcca ggtgattctt gatcagattt gtagtaatat catgttactt ctgggtggat 960
tcaacaccaa caatatgaac atgagccgag caagtgtata tgctgcccac actcttgctg 1020
gaacatctgt gcaaaatatt ctacactgga gccaggcagt gaattctggt gaactccqqq 1080
catttgactg ggggagtgag accaaaaatc tggaaaaatg caatcagcca actcctgtaa 1140
ggtacagagt cagagatatg acggtcccta cagcaatgtg gacaggaggt caggactggc 1200
tttcaaatcc agaagacgtg aaaatgctgc tctctgaggt gaccaacctc atctaccata 1260
agaatattcc tgaatgggct cacgtggatt tcatctgggg ttttggatgct cctcaccgta 1320
tgtacaatga aatcatccat ctgatgcagc aggaggagac caacctttcc cagggacggt 1380
gtgaggccgt attgtgaagc atctgacact gacgatctta ggacaacctc ctgagggatg 1440
gggctaggac ccatgaaggc agaattacgg agagcagaga cctagtatac atttttcaga 1500
ttccctgcac ttggcactaa atccgacact tacatttaca tttttttct gtaaattaaa 1560
gtacttatta ggtaaataga ggttttgtat gctattatat attctaccat cttgaagggt 1620
aggittitacc igatagccag aaaatateta gacattetet atateattea ggiaaatete 1680
tttaaaacac ctattgtttt ttctataagc catatttttg gagcactaaa gtaaaatggc 1740
aaattgggac agatattgag gtctggagtc tgtggattat tgttgacttt gacaaaataa 1800
gctagacatt ttcaccttgt tgccacagag acataacact acctcaggaa gctgagctgc 1860
tttaaggaca acaacaacaa aatcagtgtt acagtatgga tgaaatctat gttaagcatt 1920
ctcagaataa ggccaagttt tatagttgca tctcagggaa gaaaatttta taggatgttt 1980
atgagttete caataaatge attetgeatt acataaaaaa aaaaaaaaaa aaaagggegg 2040
ccgc
                                                                  2044
```

<210> 46 <211> 1269 <212> DNA

<213> Homo sapiens

<400> 46

atgttggaaa ccttgtcaag acagtggatt gtctcacaca gaatggaaat gtggcttctg 60 attctggtgg cgtatatgtt ccagagaaat gtgaattcag tacatatgcc aactaaagct 120 gtggacccag aagcattcat gaatattagt gaaatcatcc aacatcaagg ctatcctgt 180 gaggaatatg aagtcgcaac tgaagatggg tatatccttt ctgttaacag gattcctcga 240 ggcctagtgc aacctaagaa gacaggttcc aggcctgtgg tgttactgca gcatggccta 300 gttggaggtg ctagcaactg gatttccaac ctgcccaaca atagcctggg cttcattctg 360 gcagatgctg gttttgacgt gtggatgggg aacagcaggg gaaacgcctg gtctcgaaaa 420 cacaagacac tctccataga ccaagatgag ttctgggctt tcagttatga tgagatggct 480 aggtttgacc ttcctgcagt gataaacttt attttgcaga aaacgggcca ggaaaagatc 540 tattatgtcg gctattcaca gggcaccacc atgggcttta ttgcattttc caccatgcca 600 gagctggctc agaaaatcaa aatgtatttt gctttagcac ccatagccac tgttaagcat 660 gcaaaaagcc ccgggaccaa atttttgttg ctgccagata tgatgatcaa gggattgttt 720 ggcaaaaaag aatttctgta tcagaccaga tttctcagac aacttgttat ttacctttgt 780 ggccaggtga ttcttgatca gatttgtagt aatatcatgt tacttctggg tggattcaac 840 accaacaata tgaacatgag ccgagcaagt gtatatgctg cccacactct tgctggaaca 900 tctgtgcaaa atattctaca ctggagccag gcagtgaatt ctggtgaact ccgggcattt 960 gactggggga gtgagaccaa aaatctggaa aaatgcaatc agccaactcc tgtaaggtac 1020 agagtcagag atatgacggt ccctacagca atgtggacag gaggtcagga ctggctttca 1080

aatccagaag acgtgaaaat gctgctctct gaggtgacca acctcatcta ccataagaat 1140 attcctgaat gggctcacgt ggatttcatc tggggtttgg atgctcctca ccgtatgtac 1200 aatgaaatca tccatctgat gcagcaggag gagaccaacc tttcccaggg acggtgtgag 1260 gccgtattg

<210> 47

<211> 423

<212> PRT

<213> Homo sapiens

<400> 47

Met Leu Glu Thr Leu Ser Arg Gln Trp Ile Val Ser His Arg Met Glu
1 5 10 15

Met Trp Leu Leu Ile Leu Val Ala Tyr Met Phe Gln Arg Asn Val Asn 20 25 30

Ser Val His Met Pro Thr Lys Ala Val Asp Pro Glu Ala Phe Met Asn 35 40 45

Ile Ser Glu Ile Ile Gln His Gln Gly Tyr Pro Cys Glu Glu Tyr Glu
50 55 60

Val Ala Thr Glu Asp Gly Tyr Ile Leu Ser Val Asn Arg Ile Pro Arg
65 70 75 80

Gly Leu Val Gln Pro Lys Lys Thr Gly Ser Arg Pro Val Val Leu Leu 85 90 95

Gln His Gly Leu Val Gly Gly Ala Ser Asn Trp Ile Ser Asn Leu Pro 100 105 110

Asn Asn Ser Leu Gly Phe Ile Leu Ala Asp Ala Gly Phe Asp Val Trp 115 120 125

Met Gly Asn Ser Arg Gly Asn Ala Trp Ser Arg Lys His Lys Thr Leu 130 135 140

Ser Ile Asp Gln Asp Glu Phe Trp Ala Phe Ser Tyr Asp Glu Met Ala 145 150 155 160

Arg Phe Asp Leu Pro Ala Val Ile Asn Phe Ile Leu Gln Lys Thr Gly
165 170 175

Gln Glu Lys Ile Tyr Tyr Val Gly Tyr Ser Gln Gly Thr Thr Met Gly
180 185 190

Phe Ile Ala Phe Ser Thr Met Pro Glu Leu Ala Gln Lys Ile Lys Met 200 195 Tyr Phe Ala Leu Ala Pro Ile Ala Thr Val Lys His Ala Lys Ser Pro 215 210 Gly Thr Lys Phe Leu Leu Pro Asp Met Met Ile Lys Gly Leu Phe 225 230 240 Gly Lys Lys Glu Phe Leu Tyr Gln Thr Arg Phe Leu Arg Gln Leu Val 245 250 255 Ile Tyr Leu Cys Gly Gln Val Ile Leu Asp Gln Ile Cys Ser Asn Ile 260 265 270 Met Leu Leu Gly Gly Phe Asn Thr Asn Asn Met Asn Met Ser Arg 275 280 285 Ala Ser Val Tyr Ala Ala His Thr Leu Ala Gly Thr Ser Val Gln Asn 290 295 300 Ile Leu His Trp Ser Gln Ala Val Asn Ser Gly Glu Leu Arg Ala Phe 305 310 315 Asp Trp Gly Ser Glu Thr Lys Asn Leu Glu Lys Cys Asn Gln Pro Thr 325 330 Pro Val Arg Tyr Arg Val Arg Asp Met Thr Val Pro Thr Ala Met Trp · 340 345 Thr Gly Gly Gln Asp Trp Leu Ser Asn Pro Glu Asp Val Lys Met Leu 360

Leu Ser Glu Val Thr Asn Leu Ile Tyr His Lys Asn Ile Pro Glu Trp 370 375 380

Ala His Val Asp Phe Ile Trp Gly Leu Asp Ala Pro His Arg Met Tyr 385 390 395 400

Asn Glu Ile Ile His Leu Met Gln Glu Glu Glu Thr Asn Leu Ser Gln 405 410 415

Gly Arg Cys Glu Ala Val Leu 420

<210> 48 <211> 33

<212> PRT

<213> Homo sapiens

<400> 48

Met Leu Glu Thr Leu Ser Arg Gln Trp Ile Val Ser His Arg Met Glu
1 5 10 15

Met Trp Leu Leu Ile Leu Val Ala Tyr Met Phe Gln Arg Asn Val Asn 20 25 30

Ser

<210> 49

<211> 390

<212> PRT

<213> Homo sapiens

<400> 49

Val His Met Pro Thr Lys Ala Val Asp Pro Glu Ala Phe Met Asn Ile 1 5 10 15

Ser Glu Ile Ile Gln His Gln Gly Tyr Pro Cys Glu Glu Tyr Glu Val 20 25 30

Ala Thr Glu Asp Gly Tyr Ile Leu Ser Val Asn Arg Ile Pro Arg Gly
35 40 45

Leu Val Gln Pro Lys Lys Thr Gly Ser Arg Pro Val Val Leu Leu Gln 50 55 60

His Gly Leu Val Gly Gly Ala Ser Asn Trp Ile Ser Asn Leu Pro Asn 65 70 75 80

Asn Ser Leu Gly Phe Ile Leu Ala Asp Ala Gly Phe Asp Val Trp Met
85 90 95

Gly Asn Ser Arg Gly Asn Ala Trp Ser Arg Lys His Lys Thr Leu Ser 100 105 110

Ile Asp Gln Asp Glu Phe Trp Ala Phe Ser Tyr Asp Glu Met Ala Arg
115 120 125

Phe Asp Leu Pro Ala Val Ile Asn Phe Ile Leu Gln Lys Thr Gly Gln 130 135 140

Glu Lys Ile Tyr Tyr Val Gly Tyr Ser Gln Gly Thr Thr Met Gly Phe

145					150					155		•			160
Ile	Ala	Phe	Ser	Thr 165	Met	Pro	Glu	Leu	Ala 170	Gln	Lys	Ile	Lys	Met 175	Туг
Phe	Ala	Leu	Ala 180	Pro	Ile	Ala	Thr	Val 185	Lys	His	Ala	Lys	Ser 190	Pro	Gly
Thr	Lys	Phe 195	Leu	Leu	Leu	Pro	Asp 200	Met	Met	Ile	Lys	Gly 205	Leu	Phe	Gly
Lys	Lys 210	Glu	Phe	Leu	Tyr	Gln 215	Thr	Arg	Phe	Leu	Arg 220	Gln	Leu	Val	Ile
Tyr 225	Leu	Cys	Gly	Gln	Val 230	Ile	Leu	Asp	Gln	Ile 235	Cys	Ser	Asn	Ile	Met 240
Leu	Leu	Leu	Gly	Gly 245	Phe	Asn	Thr	Asn	Asn 250	Met	Asn	Met	Ser	Arg 255	Ala
Ser	Val	Tyr	Ala 260	Ala	His	Thr	Leu ,	Ala 265	Gly	Thr	Ser	Val	Gln 270	Asn	Ile
Leu	His.	Trp 275	Ser	Gln	Ala	Val	Asn 280	Ser	Gly	Glú	Leu	Arg 285	Ala	Phe	Asp
Trp	Gly 290	Ser	Glu	Thr	ГÀЗ	Asn 295	Leu	Glu	Lys	Суѕ	Asn 300	Gln	Pro	Thr	Pro
V al 305	Arg	Tyr	Arg	Val	Arg 310	Asp	Met	Thr	Val	Pro 315	Thr	Ala	Met	Trp	Thr 320
Gly	Gly	Gln	Asp	Trp 325	Leu	Ser	Asn	Pro	Glu 330	Asp	Val	Lys	Met	Leu 335	Leu
Ser	Glu	Val	Thr 340	Asn	Leu	Ile	Туг	His 345	Lys	Asn	Ile	Pro	Glu 350	Trp	Ala
His	Val	Asp 355	Phe	Ile	Trp	Gly	Leu 360	Asp	Ala	Pro	His	Arg 365	Met	Tyr	Asn
Glu	Ile 370	Ile	His	Leu	Met	Gln 375	Gln	Glu	Glu	Thr	Asn 380	Leu	Ser	Gln	Gly
Arg 385	Cys	Glu	Ala	Val	Leu 390										

<210> 50

<211> 221

<212> PRT

<213> Homo sapiens

<400> 50

Val His Met Pro Thr Lys Ala Val Asp Pro Glu Ala Phe Met Asn Ile

1 5 10 15

Ser Glu Ile Ile Gln His Gln Gly Tyr Pro Cys Glu Glu Tyr Glu Val 20 25 30

Ala Thr Glu Asp Gly Tyr Ile Leu Ser Val Asn Arg Ile Pro Arg Gly
35 40 45

Leu Val Gln Pro Lys Lys Thr Gly Ser Arg Pro Val Val Leu Leu Gln 50 55 60

His Gly Leu Val Gly Gly Ala Ser Asn Trp Ile Ser Asn Leu Pro Asn 65 70 75 80

Asn Ser Leu Gly Phe Ile Leu Ala Asp Ala Gly Phe Asp Val Trp Met 85 90 95

Gly Asn Ser Arg Gly Asn Ala Trp Ser Arg Lys His Lys Thr Leu Ser 100 105 110

Ile Asp Gln Asp Glu Phe Trp Ala Phe Ser Tyr Asp Glu Met Ala Arg 115 120 125

Phe Asp Leu Pro Ala Val Ile Asn Phe Ile Leu Gln Lys Thr Gly Gln 130 135 140

Glu Lys Ile Tyr Tyr Val Gly Tyr Ser Gln Gly Thr Thr Met Gly Phe 145 150 155 160

Ile Ala Phe Ser Thr Met Pro Glu Leu Ala Gln Lys Ile Lys Met Tyr 165 170 . 175

Phe Ala Leu Ala Pro Ile Ala Thr Val Lys His Ala Lys Ser Pro Gly
180 185 190

Thr Lys Phe Leu Leu Pro Asp Met Met Ile Lys Gly Leu Phe Gly
195 200 205

Lys Lys Glu Phe Leu Tyr Gln Thr Arg Phe Leu Arg Gln 210 215 220 <210> 51
<211> 25
<212> PRT
<213> Homo sapiens
<400> 51
Leu Val Ile Tyr Leu Cys Gly Gln Val Ile Leu Asp Gln Ile Cys Ser

Asn Ile Met Leu Leu Gly Gly Phe 20 25

<210> 52 <211> 144 <212> PRT <213> Homo sapiens

<400> 52

Asn Thr Asn Asn Met Asn Met Ser Arg Ala Ser Val Tyr Ala Ala His 1 5 10 15

10

Thr Leu Ala Gly Thr Ser. Val Gln Asn Ile Leu His Trp Ser Gln Ala
20 25 30

Val Asn Ser Gly Glu Leu Arg Ala Phe Asp Trp Gly Ser Glu Thr Lys
35 40 . 45

Asn Leu Glu Lys Cys Asn Gln Pro Thr Pro Val Arg Tyr Arg Val Arg 50 . 55 60

Asp Met Thr Val Pro Thr Ala Met Trp Thr Gly Gly Gln Asp Trp Leu 65 70 75 80

Ser Asn Pro Glu Asp Val Lys Met Leu Leu Ser Glu Val Thr Asn Leu 85 90 95

Ile Tyr His Lys Asn Ile Pro Glu Trp Ala His Val Asp Phe Ile Trp
100 105 110

Gly Leu Asp Ala Pro His Arg Met Tyr Asn Glu Ile Ile His Leu Met 115 120 125

Gln Glu Glu Thr Asn Leu Ser Gln Gly Arg Cys Glu Ala Val Leu 130 135 140


```
<210> 53
<211> 2133
<212> DNA
<213> Homo sapiens
```

<400> 53

gtcgacccac gcgtccacgg cgagggctcc cggggcgcag cattgccccc cctgcaccac 60 ctcaccaaga tggctacttt gggacacaca ttccccttct atgctggccc caagccaacc 120 ttocogatgg acaccacttt ggccagcatc atcatgatct ttotgactgc actggccacg 180 ttcatcgtca tcctgcctgg cattcgggga aagacgaggc tgttctggct gcttcgggtg 240 gtgaccaget tatteategg ggetgeaate etggetgtga attteagtte tgagtggtet 300 gtgggccagg tcagcaccaa cacatcatac aaggccttca gttctgagtg gatcagcgct 360 gatattgggc tgcaggtcgg gctgggtgga gtcaacatca cactcacagg gacccccgtg 420 cagcagetga atgagaceat caattacaae gaggagttea eetggegeet gggtgagaae 480 tatgctgagg agtgtgcaaa ggctctggag aaggggctgc cagaccctgt gttgtaccta 540 gctgagaagt tcactccaag aagcccatgt ggcctatacc gccagtaccg cctggcggga 600 cactacacct cagccatgct atgggtggca ttcctctgct ggctgctggc caatgtgatg 660 etetecatge etgtgetggt atatggtgge tacatgetat tggecaeggg catettecag 720 etgttggete tgetettett etecatggee acateactea ceteaccetg teccetgeae 780 ctgggcgctt ctgtgctgca tactcaccat gggcctgcct tctggatcac attgaccaca 840 ggactgctgt gtgtgctgct gggcctggct atggcggtgg cccacaggat gcagcctcac 900 aggetgaagg etttetteaa eeagagtgtg gatgaagace eeatgetgga gtggagteet 960 gaggaaggtg gactcctgag cccccgctac cggtccatgg ctgacagtcc caagtcccag 1020 gacatteece tgteagagge tteeteeace aaggeataet gtaaggagge acaceecaaa 1080 gateetgatt gtgetttata acatteetee eegtggagge cacetggaet teeagtetgg 1140 ctccaaacct cattggcgcc ccataaaacc agcagaactg ccctcagggt ggctgttacc 1200 agacacccag caccaatcta cagacggagt agaaaaagga ggctctatat actgatgtta 1260 aaaaacaaaa caaaacaaaa agccctaagg gactgaagag atgctgggcc tgtccataaa 1320 geetgttgee atgataagge caageagggg etagettate tgeacageaa eecageettt 1380 ccgtgctgcc ttgcctcttc aagatgctat tcactgaaac ctaacttcac ccccataaca 1440 ccagcagggt gggggttaca tatgattete ctatggttte eteteatece teggeacete 1500 ttgttttcct ttttcctggg ttccttttgt tcttccttta cttctccagc ttgtgtggcc 1560 ttttggtaca atgaaagaca gcactggaaa ggaggggaaa ccaaacttct catcctaggt 1620 ctaacattaa ccaactatgc cacattetet ttgagettea gtteecaaat ttgetacata 1680 agattgcaag acttgccaag aatcttggga tttatctttc tatgccttgc tgacacctac 1740 cttggccctc aaacaccacc tcacaagaag ccaggtggga agttagggaa tcaactccaa 1800 aacgctatte etteceacee caeteagetg ggetagetga gtggcateca ggaeggggga 1860 gtgggtgacc tgcctcatca ctgccaccta acgtccccct ggggtggttc agaaagatgc 1920 tagetetggt agggtecete eggeeteact agagggegee ectattacte tggagtegae 1980 gcagagaatc aggtttcaca gcactgcgga gagtgtacta ggctgtctcc agcccagcga 2040 ageteatgag gaegtgegae eeeggegegg agaageeatg aaaattaatg ggaaaaacag 2100 tttttaaaaa aaaaaaaaaa aaagggcggc cgc 2133

<211> 1029 <212> DNA <213> Homo sapiens <400> 54 atggctactt tggqacacac attccccttc tatgctggcc ccaagccaac cttcccgatg 60 gacaccactt tggccagcat catcatgate tttctgactg cactggccac gttcatcgte 120 atcctgcctg gcattcgggg aaagacgagg ctgttctggc tgcttcgggt ggtgaccagc 180 ttattcatcg gggctgcaat cctggctgtg aatttcagtt ctgagtggtc tgtgggccag 240 gtcagcacca acacatcata caaggccttc agttctgagt ggatcagcgc tgatattggg 300 ctgcaggtcg ggctgggtgg agtcaacatc acactcacag ggacccccgt gcagcagctg 360 aatgagacca tcaattacaa cgaggagttc acctggcgcc tgggtgagaa ctatgctgag 420 gagtgtgcaa aggctctgga gaaggggctg ccagaccctg tgttgtacct agctgagaag 480 ttcactccaa gaagcccatg tggcctatac cgccagtacc gcctggcggg acactacacc 540 teagecatge tatgggtggc attectetge tggetgetgg ccaatgtgat getetecatg 600 cctgtgctgg tatatggtgg ctacatgcta ttggccacgg gcatcttcca gctgttggct 660 ctgctcttct tctccatggc cacatcactc acctcaccct gtcccctgca cctgggcgct 720 tetgtgetge atacteacea tgggeetgee ttetggatea cattgaceae aggaetgetg 780 tgtgtgctgc tgggcctggc tatggcggtg gcccacagga tgcagcctca caggctgaag 840 gctttcttca accagagtgt ggatgaagac cccatgctgg agtggagtcc tgaggaaggt 900 ggactectga gcccccgcta ccggtccatg gctgacagtc ccaagtccca ggacattccc 960 ctgtcagagg cttcctccac caaggcatac tgtaaggagg cacaccccaa agatcctgat 1020 tgtgcttta 1029 <210> 55 <211> 343 <212> PRT <213> Homo sapiens <400> 55 Met Ala Thr Leu Gly His Thr Phe Pro Phe Tyr Ala Gly Pro Lys Pro 1 5 15 Thr Phe Pro Met Asp Thr Thr Leu Ala Ser Ile Ile Met Ile Phe Leu 20 30 Thr Ala Leu Ala Thr Phe Ile Val Ile Leu Pro Gly Ile Arg Gly Lys

35 40 45

Thr Arg Leu Phe Trp Leu Leu Arg Val Val Thr Ser Leu Phe Ile Gly 50 55 60

Ala Ala Ile Leu Ala Val Asn Phe Ser Ser Glu Trp Ser Val Gly Gln 65 70 75 80

Val Ser Thr Asn Thr Ser Tyr Lys Ala Phe Ser Ser Glu Trp Ile Ser 85 90 95

Ala	Asp	Ile	Gly 100	Leu	Gln	Val	Gly	Leu 105	Gly	Gly	Val	Asn	Ile 110	Thr	Leu
Thr	Gly	Thr 115	Pro	Val	Gln	Gln	Leu 120	Asn	Glu	Thr	Ile	Asn 125	Tyr	Asn	Glu
Glu	Phe 130	Thr	Trp	Arg	Leu	Gly 135	Glu	Asn	Tyr	Ala	Glu 140	Glu	Cys	Ala	Lys
Ala 145	Leu	Glu	Lys	Gly	Leu 150	Pro	Asp	Pro	Val	Leu 155	Tyr	Leu	Ala	Glu	Lys 160
Phe	Thr	Pro	Arg	Ser 165	Pro	Cys	Gly	Leu	Tyr 170	Arg	Gln	Tyr	Arg	Leu 175	Ala
Gly	His	Tyr	Thr 180	Ser	Ala	Met	Leu	Trp 185	Val	Ala	Phe	Leu	Cys 190	Trp	Leu
Leu	Ala	Asn 195	Val	Met	Leu	Ser	Met 200	Pro	Val	Leu		Tyr 205	Gly	.Gly	Tyr
Met	Leu 210	Leu	Ala	Thr	Gly	Ile 215	Phe	Gln	Leu	Leu	Ala 220	Leu	Leu	Phe	Phe
Ser 225	Met	Ala	Thr	Ser	Leu 230	Thr	Ser	Pro	Cys	Pro 235	Leu	His	Leu	Gly	Ala 240
Ser	Val	Leu	His	Thr 245	His	His	Gly	Pro	Ala 250	Phe	Trp	Ile	Thr	Leu 255	Thr
Thr	Gly	Leu	Leu 260	Cys	Val	Leu	Leu	Gly 265	Leu	Ala	Met	Ala	Val 270	Ala	His
Arg	Met	Gln 275	Pro	His	Arg	Leu	Lys 280	Ala	Phe	Phe	Asn	Gln 285	Ser	Val	Asp
Glu	Asp 290	Pro	Met	Leu	Glu	Trp 295	Ser	Pro	Glu	Glu	300	Gly	Leu	Leu	Ser
Pro 305	Arg	Tyr	Arg	Ser	Met 310	Ala	Asp	Ser	Pro	Lys 315	Ser	Gln	Asp	Ile	Pro 320
Leu	Ser	Glu	Ala	Ser 325	Ser	Thr	Lys	Ala	Tyr 330	Cys	Lys	Glu	Ala	His 335	Pro
Lys	Asp	Pro	Asp	Cys	Ala	Leu		•							

<210> 56

<211> 23

<212> PRT

<213> Homo sapiens

<400> 56

Met Ala Thr Leu Gly His Thr Phe Pro Phe Tyr Ala Gly Pro Lys Pro

1 5 10 15

Thr Phe Pro Met Asp Thr Thr 20

<210> 57

<211> 112

<212> PRT

<213> Homo sapiens

<400> 57

Asn Phe Ser Ser Glu Trp Ser Val Gly Gln Val Ser Thr Asn Thr Ser 1 5 10 15

Tyr Lys Ala Phe Ser Ser Glu Trp Ile Ser Ala Asp Ile Gly Leu Gln
20 25 30

Val Gly Leu Gly Gly Val Asn Ile Thr Leu Thr Gly Thr Pro Val Gln 35: 40 45

Gln Leu Asn Glu Thr Ile Asn Tyr Asn Glu Glu Phe Thr Trp Arg Leu 50 ·55 60

Gly Glu Asn Tyr Ala Glu Glu Cys Ala Lys Ala Leu Glu Lys Gly Leu 65 70 75 80

Pro Asp Pro Val Leu Tyr Leu Ala Glu Lys Phe Thr Pro Arg Ser Pro 85 90 95

Cys Gly Leu Tyr Arg Gln Tyr Arg Leu Ala Gly His Tyr Thr Ser Ala 100 105 110

<210> 58

<211> 22

<212> PRT <213> Homo sapiens <400> 58 Thr Ser Leu Thr Ser Pro Cys Pro Leu His Leu Gly Ala Ser Val Leu 5 10 His Thr His His Gly Pro 20 <210> 59 <211> 19 <212> PRT <213> Homo sapiens <400> 59 Leu Ala Ser Ile Ile Met Ile Phe Leu Thr Ala Leu Ala Thr Phe Ile 5 10 15 Val Ile Leu <210> 60 <211> 20 <212> PRT <213> Homo sapiens <400> 60 Leu Phe Trp Leu Leu Arg Val Val Thr Ser Leu Phe Ile Gly Ala Ala 10 Ile Leu Ala Val 20 <210> 61 <211> 22 <212> PRT <213> Homo sapiens <400> 61 Met Leu Trp Val Ala Phe Leu Cys Trp Leu Leu Ala Asn Val Met Leu

Ser Met Pro Val Leu Val

1

20

5

10

```
<210> 62
<211> 17
<212> PRT
<213> Homo sapiens
<400> 62
Leu Ala Thr Gly Ile Phe Gln Leu Leu Ala Leu Leu Phe Phe Ser Met
                                      10
Ala
<210> 63
<211> 22
<212> PRT
<213> Homo sapiens
<400> 63
Ala Phe Trp Ile Thr Leu Thr Thr Gly Leu Leu Cys Val Leu Leu Gly
                                      10
Leu Ala Met Ala Val Ala
             20
<210> 64
<211> 8
<212> PRT
<213> Homo sapiens
<400> 64
Pro Gly Ile Arg Gly Lys Thr Arg
                  5
<210> 65
<211> 6
<212> PRT
<213> Homo sapiens
<400> 65
Tyr Gly Gly Tyr Met Leu
 1
```



```
<210> 66
<211> 72
<212> PRT
<213> Homo sapiens
```

<400> 66

His Arg Met Gln Pro His Arg Leu Lys Ala Phe Phe Asn Gln Ser Val 1 5 10 15

Asp Glu Asp Pro Met Leu Glu Trp Ser Pro Glu Glu Gly Gly Leu Leu
20 25 30

Ser Pro Arg Tyr Arg Ser Met Ala Asp Ser Pro Lys Ser Gln Asp Ile 35 40 45

Pro Leu Ser Glu Ala Ser Ser Thr Lys Ala Tyr Cys Lys Glu Ala His
50 55 60

Pro Lys Asp Pro Asp Cys Ala Leu 65 70

<210> 67 <211> 4928 <212> DNA <213> Mus sp.

<400> 67

gtegacccac gegteegeec ggeteeeggt getgeeeect etgeeeeggg eegegeeegg 60 gggtcccgca ctgacggccc atggcgccgc ccgccgcccg tctcgcgctq ctctccqccq 120 etgegeteae tetggeggee eggeeegege eeggteeeeg eteeggeeee gagtgettea 180 cagccaacgg tgcagattac aggggaacac agagctggac agcgctgcaa ggtgggaagc 240 catgtctgtt ctggaacgag actttccagc atccgtacaa cacgctgaag taccccaacg 300 gggaaggagg actgggcgag cacaattatt gcagaaatcc agatggagac gtgagccctt 360 ggtgctacgt ggccgagcat gaggacggag tctactggaa gtactgtgaa attcctgcct 420 gecagatgee tggaaacett ggetgetaca aggateatgg aaacecacet ceteteacgg 480 gcaccagtaa aacctctaac aagctcacca tacaaacctg tatcagcttc tqtcqqaqtc 540 agagatteaa gtttgetggg atggagteag getatgeetg ettetgtggg aacaateetg 600 actactggaa gcacggggag gcggccagca ccgagtgcaa tagtgtctgc ttcgqqqacc 660 acacgcagec etgeggtggg gaeggeagga ttateetett tgaeactete gtgggegeet 720 gcggtgggaa ctactcagcc atggcagccg tggtgtactc ccctgacttc cctgacacct 780 acgccactgg cagagtetge tactggacca teegggttee aggageetet egeateeatt 840 tcaacttcac cctgtttgat atcagggact ctgcagacat ggtggagctg ctggacggct 900 acacceaccg cgtcctggtc cggctcagtg ggaggagccg cccgcctctg tctttcaatg 960 tctctctgga ttttgtcatt ttgtatttct tctctgatcg catcaatcag gcccagggat 1020 ttgctgtgtt gtaccaagcc accaaggagg aaccgccaca ggagagacct gctgtcaacc 1080 agaccetgge agaggtgate accgageaag ccaaceteag tgtcageget geceaeteet 1140 ccaaagtcct ctatgtcatc acccccagcc ccagccaccc tccgcagact gcccaggtag 1200

ccattcctgg gcaccgtcag ttggggccaa cagccacaga gtggaaggat ggactgtgta 1260 cggcctggcg accetectea tecteacagt cacageagtt gtcgcaaaga ttettetgca 1320 tgtcacattt aaatctcatc gagtccctgc atcaggagac cttagggact gtcgtcagcc 1380 tggggcttct ggagatatct ggaccatttt ctatgaacct tccactacaa tctccatctt 1440 taagaagaag ctcaagggtc agagtcaaca agatgaccgc aatcccctcg tgagtgactg 1500 aaqcccacgc ctgcatgaga ggctccgctc caagctcgag tttgctcccc tgagttctcc 1560 tetgatgagt tecetgeett eccatteace accatetett ttgggageae cetgetttag 1620 aggcagecca geetgggate etecateaca tgtaccagee tggetgetet getggggatg 1680 gtaagacagg cccaggctga caggacacag ctggacctga ctccagaaga ctcttgggtg 1740 gtggggaggt atagtgtagg atgagttttc ttgcttcttc tctgttttgt ccacatacag 1800 atcggtttcc cctgtcttta cagtttgcaa tagagccaga ctgaaagaac tgtcaggttt 1860 tetaggetgg cetggttece cactaagagt ggeattggeg ceetagagge ceagaggeee 1920 agtgtagget tggagettte tetgetgeea actaceatgt gteatetagt eegaggggae 1980 tgagagcagg gccacaccag atgtcatctt tctagagggt tctttttagt acccactgac 2040 caatggggca agcctgagga ttggtccatc tgtttgtcca tggaacagac acagtgaact 2100 tectggatae tagaettaae tageetagee etcaagtagt tgeeaateet gtggaateag 2160 aattcagcct gtcttcctgt cctcagccca agcctgtagc ctagagctgg ggctgtagcc 2220 tagagetggg getgtageet agagetgggg etgtageaca gagetgggge tgtageetag 2280 agctggggct gtagcacaga gctggggctg tagcctagag ctggggctgt agcacagagc 2340 tggggctgta gcacagagct ggggctgtag cctagagctg gggctgtagc acagagctgg 2400 ggctgtaact cagcgatcaa gagcttgctt tgtatacatc ggaccctagg ttctatccca 2460 gcactatcag aaggtgggag agaaaaagac tgcaccatag catgcgggca gcatctgtgg 2520 ttcctacgtg aggtgtcatc attttaaaag cagatcaaaa ctaccgcgag ttttgtcctt 2580 tgtcccttat catgggagca gagtaggagt aagggctctg gtcttgctca ttgtccccca 2640 gacagggagg caggaaaagg tcaggcttgg gaactggaga tcctcccagg aaaagctgca 2700 agattgagag acccagetge agttgggaga ggaagggeea teeecgactg agaagteetg 2760 cagtetggaa gtggcetttg teageageag etgtgeeetg aaggtagace ttggteacte 2820 tectgecage cettgageet etgeteteet gggtaceete etggaacace atgetaacet 2880 teccegagte teteagteae tgecattgag geeteteete tagetgetge tecceaggae 2940 tgtctggggc catctgggga tcagggagag gcagcaggag tactgacgag gcagtgacct 3000 gagetgatga gteaaceaga ggacaceaga gtetacagtg ggetggetge tggeteaget 3060 cctatgggag gcctacaggg gtactaagct agggggtcat catctcattt gatctgggaa 3120 aggetacagg etcetggatg tgaagacagg eccaetacat aagaagacca etggaaatag 3180 actgacagga gcaggttcca ctctaggctg tccatagcgt ttgcaggact cccctgagac 3240 caagtgttga gtcacagagt gccatgtgcg tagtgcataa aggatatggg ttcttaacca 3300 gggaaggete atageaggee aggacatttt tteageteag ageaetggee ecaggettee 3360 tetaagecae cacteacetg tetetteeta teteggacae aggaageaag ceccagtgtg 3420 gtggcagctg cggctcagca ttggtgtccc caggaagggc ggtggatgtg cccacgctcc 3480 ttttgctgtg ggcctggcac agcccaacac tgcagggccc accttctctc ttggggggta 3540 gggacacata aggaaaacta acccacctcc aacaacagca gaggacagtg ggaaggaagg 3600 gctgtaaatc acccaggcca gacctccaga aatgacaggc acagtctgtt agaacctgta 3660 ggcagccagt cacagagggc ctttgtgctg gtaacaccct gcctggagca taggggtaag 3720 ccgagggaga agagcagccc tcagagacat cagctaaaaa cataggtgcc ctatgtccct 3780 ccettcetgt cacactgett acaaagcaga gacagagtag gaaagaggte tteatcetet 3840 cccacatcag caaggatagg gctgcggctg cctaaagtga gcaaggagaa cagagctctg 3900 gacttotota aatgtgggot otggottoag actootoago caaaagotot tgaagatoaa 3960 agetetggeg ggtacagetg teetggeetg tgggecagee catgggatgt geetgggeca 4020 ggtgccaccc cacggctcac tgtcatccca ggagggaccc cacctgatgc tcctcatcat 4080

```
ccgctggcct gacactatca gagctcgcgc cggctgttgc cagggacaga ctgactacac 4140
ttgaccttca agagcactta gaagtggatg gcctccagac tctgtcagcc tctgcagggg 4200
ccacacaagt ctcccqaqcc aagtccacaa gcctccatgg ttccctggct cctctcctgt 4260
ggagtgtcct gtttgatgtc tgaggtctgc tttgggtacc gccctgggaa ctgctaacct 4320
ccqattggtc cctttqtgtc tctgtttact gtcctcttct acctccaggt cacttagctc 4380
tggctgctct ggctgggagt ggggggtggg gatgctggct gcacccccac cctggtctgc 4440
caacaqaacc tqqqqqcctc acacqqqctc ctgtcttgcc aagctggagc tgagcacact 4500
ggcccaggct gagtggggca gagcaaacaa gtggaagggg atctctctcc ttagagggag 4560
gtggccgaag gtgtagatcc agcgagggag ctgccatccc cgccaccttc atagcagcaa 4620
gaccttccca tttccaatct caccttccag cagggatatg actttggaca acaaggcttt 4680
atttgtaaat atgctcttaa tatgcaactt tgagaataag atagaaacat catgtatttt 4740
aaaatataaa atgaagtgtg acacactgta tacaatttaa tatatatttt taggattttg 4800
ttatttaaga aaatggaatg tgatggtact taacttttac aaaagagaga aaatgttatt 4860
4928
gcggccgc
```

<210> 68 <211> 1410 <212> DNA <213> Mus sp.

<400> 68

atggcgccgc ccgccgcccg tctcgcgctg ctctccgccg ctgcgctcac tctggcggcc 60 eggeeggeegg eeggteeegg eteeggeeee gagtgettea eageeaaegg tgeagattae 120 aggggaacac agagctggac agcgctgcaa ggtgggaagc catgtctgtt ctggaacgag 180 actttccagc atccgtacaa cacgctgaag taccccaacg gggaaggagg actgggcgag 240 cacaattatt gcagaaatcc agatggagac gtgagccctt ggtgctacgt ggccgagcat 300 qaqqacqqaq tctactqqaa qtactqtqaa attcctqcct qccaqatqcc tqqaaacctt 360 ggctgctaca aggatcatgg aaacccacct cctctcacgg gcaccagtaa aacctctaac 420 aageteacea tacaaacetg tateagette tgteggagte agagatteaa gtttgetggg 480 atggagtcag gctatgcctg cttctgtggg aacaatcctg actactggaa gcacggggag 540 geggeeagea eegagtgeaa tagtgtetge tteggggaee acaegeagee etgeggtggg 600 gacggcagga ttatcctctt tgacactctc gtgggcgcct gcggtgggaa ctactcagcc 660 atggcagecg tggtgtactc ccctgacttc cctgacacct acgccactgg cagagtctgc 720 tactggacca tccgggttcc aggagcctct cgcatccatt tcaacttcac cctgtttgat 780 atcagggact ctgcagacat ggtggagctg ctggacggct acacccaccg cgtcctggtc 840 eggeteagtg ggaggageeg eeegeetetg tettteaatg tetetetgga ttttgteatt 900 ttgtatttct tctctgatcg catcaatcag gcccagggat ttgctgtgtt gtaccaagcc 960 accaaqqaqq aaccgccaca ggagagacct gctgtcaacc agaccctggc agaggtgatc 1020 accgagcaag ccaacctcag tgtcagcgct gcccactcct ccaaagtcct ctatgtcatc 1080 acccccagce ccagccacce teegcagact geecaggtag ecatteetgg geacegteag 1140 ttggggccaa cagccacaga gtggaaggat ggactgtgta cggcctggcg accctcctca 1200 tecteaeagt cacageagtt gtegeaaaga ttettetgea tgteaeattt aaateteate 1260 gagtccctgc atcaggagac cttagggact gtcgtcagcc tggggcttct ggagatatct 1320 ggaccatttt ctatgaacct tecactacaa tetecatett taagaagaag eteaagggte 1380 agagtcaaca agatgaccgc aatcccctcg 1410 <210> 69 <211> 470

<212> PRT <213> Mus sp.

<400> 69

Met Ala Pro Pro Ala Ala Arg Leu Ala Leu Leu Ser Ala Ala Ala Leu

1 5 10 15

Thr Leu Ala Arg Pro Ala Pro Gly Pro Arg Ser Gly Pro Glu Cys
20 25 30

Phe Thr Ala Asn Gly Ala Asp Tyr Arg Gly Thr Gln Ser Trp Thr Ala 35 40 45

Leu Gln Gly Gly Lys Pro Cys Leu Phe Trp Asn Glu Thr Phe Gln His
50 55 60

Pro Tyr Asn Thr Leu Lys Tyr Pro Asn Gly Glu Gly Gly Leu Gly Glu 65 70 75 80

His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Val Ser Pro Trp Cys Tyr 85 90 95

Val Ala Glu His Glu Asp Gly Val Tyr Trp Lys Tyr Cys Glu Ile Pro 100 105 110

Ala Cys Gln Met Pro Gly Asn Leu Gly Cys Tyr Lys Asp His Gly Asn 115 120 125

Pro Pro Pro Leu Thr Gly Thr Ser Lys Thr Ser Asn Lys Leu Thr Ile 130 135 140

Gln Thr Cys Ile Ser Phe Cys Arg Ser Gln Arg Phe Lys Phe Ala Gly
145 150 155 160

Met Glu Ser Gly Tyr Ala Cys Phe Cys Gly Asn Asn Pro Asp Tyr Trp

165 170 175

Lys His Gly Glu Ala Ala Ser Thr Glu Cys Asn Ser Val Cys Phe Gly
180 185 190

Asp His Thr Gln Pro Cys Gly Gly Asp Gly Arg Ile Ile Leu Phe Asp 195 200 205

Thr Leu Val Gly Ala Cys Gly Gly Asn Tyr Ser Ala Met Ala Ala Val 210 215 220

Val Tyr Ser Pro Asp Phe Pro Asp Thr Tyr Ala Thr Gly Arg Val Cys Tyr Trp Thr Ile Arg Val Pro Gly Ala Ser Arg Ile His Phe Asn Phe Thr Leu Phe Asp Ile Arg Asp Ser Ala Asp Met Val Glu Leu Leu Asp Gly Tyr Thr His Arg Val Leu Val Arg Leu Ser Gly Arg Ser Arg Pro Pro Leu Ser Phe Asn Val Ser Leu Asp Phe Val Ile Leu Tyr Phe Phe Ser Asp Arg Ile Asn Gln Ala Gln Gly Phe Ala Val Leu Tyr Gln Ala Thr Lys Glu Glu Pro Pro Gln Glu Arg Pro Ala Val Asn Gln Thr Leu Ala Glu Val Ile Thr Glu Gln Ala Asn Leu Ser Val Ser Ala Ala His Ser Ser Lys Val Leu Tyr Val Ile Thr Pro Ser Pro Ser His Pro Pro Gln Thr Ala Gln Val Ala Ile Pro Gly His Arg Gln Leu Gly Pro Thr Ala Thr Glu Trp Lys Asp Gly Leu Cys Thr Ala Trp Arg Pro Ser Ser Ser Ser Gln Ser Gln Gln Leu Ser Gln Arg Phe Phe Cys Met Ser His Leu Asn Leu Ile Glu Ser Leu His Gln Glu Thr Leu Gly Thr Val Val Ser Leu Gly Leu Leu Glu Ile Ser Gly Pro Phe Ser Met Asn Leu Pro Leu Gln Ser Pro Ser Leu Arg Arg Ser Ser Arg Val Arg Val Asn Lys Met Thr Ala Ile Pro Ser

<210> 70

<211> 760

<212> PRT

<213> Mus sp.

<400> 70

Met Ala Leu Pro Ser Leu Gly Gln Asp Ser Trp Ser Leu Leu Arg Val 1 5 10 15

Phe Phe Phe Gln Leu Phe Leu Leu Pro Ser Leu Pro Pro Ala Ser Gly
20 25 30

Thr Gly Gly Gln Gly Pro Met Pro Arg Val Lys Tyr His Ala Gly Asp 35 40 45

Gly His Arg Ala Leu Ser Phe Phe Gln Gln Lys Gly Leu Arg Asp Phe 50 55 60

Asp Thr Leu Leu Ser Asp Asp Gly Asn Thr Leu Tyr Val Gly Ala
65 70 75 80

Arg Glu Thr Val Leu Ala Leu Asn Ile Gln Asn Pro Gly Ile Pro Arg 85 90 95

Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Glu Arg Lys Lys Thr Glu 100 105 110

Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe Ile 115 120 125

Arg Val Leu Val Ser Tyr Asn Ala Thr His Leu Tyr Ala Cys Gly Thr 130 135 140

Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Leu 145 150 155 160

Leu Leu Pro Ile Leu Ile Asp Lys Val Met Asp Gly Lys Gly Gln Ser 165 170 175

Pro Leu Thr Leu Phe Thr Ser Thr Gln Ala Val Leu Val Asp Gly Met 180 185 190

Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu 195 200 205

Met Arg Thr Leu Gly Ser His Pro Val Leu Lys Thr Asp Ile Phe Leu

Arg Trp Leu His Ala Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr Gln Val Val Tyr Phe Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp Phe Phe Glu Glu Leu Tyr Ile Ser Arg Val Ala Gln Val Cys Lys Asn Asp Val Gly Gly Glu Lys Leu Leu Gln Lys Lys Trp Thr Thr Phe Leu Lys Ala Gin Leu Leu Cys Ala Gin Pro Gly Gin Leu Pro Phe Asn Ile Ile Arg His Ala Val Leu Leu Pro Ala Asp Ser Pro Ser Val Ser Arg Ile Tyr Ala Val Phe Thr Ser Gln Trp Gln Val Gly Gly Thr Arg Ser Ser Ala Val Cys Ala Phe Ser Leu Thr Asp Ile Glu Arg Val Phe Lys Gly Lys Tyr Lys Glu Leu Asn Lys Glu Thr Ser Arg Trp Thr Thr Tyr Arg Gly Ser Glu Val Ser Pro Arg Pro Gly Ser Cys Ser Met Gly Pro Ser Ser Asp Lys Ala Leu Thr Phe Met Lys Asp His Phe Leu Met Asp Glu His Val Val Gly Thr Pro Leu Leu Val Lys Ser Gly Val Glu Tyr Thr Arg Leu Ala Val Glu Ser Ala Arg Gly Leu Asp Gly Ser Ser His Val Val Met Tyr Leu Gly Thr Ser Thr Gly Pro Leu His Lys Ala Val Val Pro Gln Asp Ser Ser Ala Tyr Leu Val Glu Glu Ile Gln Leu Ser Pro Asp Ser Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Ala Gln Gly Ala

480 . Val Phe Ala Gly Phe Ser Gly Gly Ile Trp Arg Val Pro Arg Ala Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg Asp Pro His Cys Ala Trp Asp Pro Glu Ser Arg Leu Cys Ser Leu Leu Ser Gly Ser Thr Lys Pro Trp Lys Gln Asp Met Glu Arg Gly Asn Pro Glu Trp Val Cys Thr Arg Gly Pro Met Ala Arg Ser Pro Arg Arg Gln Ser Pro Pro Gln Leu Ile Lys Glu Val Leu Thr Val Pro Asn Ser Ile Leu Glu Leu Arg Cys Pro His Leu Ser Ala Leu Ala Ser Tyr His Trp Ser His Gly Arg Ala Lys Ile Ser Glu Ala Ser Ala Thr Val Tyr Asn Gly Ser Leu Leu Leu Pro Gln Asp Gly Val Gly Gly Leu Tyr Gln Cys Val Ala Thr Glu Asn Gly Tyr Ser Tyr Pro Val Val Ser Tyr Trp Val Asp Ser Gln Asp Gln Pro Leu Ala Leu Asp Pro Glu Leu Ala Gly Val Pro Arg Glu Arg Val Gln Val Pro Leu Thr Arg Val Gly Gly Ala Ser Met Ala Ala Gln Arg Ser Tyr Trp Pro His Phe Leu Ile Val Thr Val Leu Leu Ala Ile Val Leu Leu Gly Val Leu Thr Leu Leu Leu Ala Ser Pro Leu Gly Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys Gly Met Leu Pro Pro Arg Glu Lys Ala Pro Leu Ser Arg Asp Gln His Leu Gln

725 730 735

Pro Ser Lys Asp His Arg Thr Ser Ala Ser Asp Val Asp Ala Asp Asn 740 745 750

Asn His Leu Gly Ala Glu Val Ala 755 760

<210> 71 <211> 3046 <212> DNA <213> Mus sp.

<400> 71

ctcggacgcc tgggttaggg gtctgtactg ctggggaacc atctggtgac catctcaggc 60 tgaccatggc cctaccatcc ctgggccagg actcatggag tctcctqcgt gtttttttct 120 tocaactott cotgotgoca toactgocac otgottotgg gactggtggt caggggcoca 180 tgcccagagt caaataccat gctggagacg ggcacagggc cctcagcttc ttccaacaaa 240 aaggceteeg agaetttgae aegetgetee tgagtgaega tggcaacaet etetatgtgg 300 gggctcgaga gaccgtcctg gccttgaata tccagaaccc aggaatccca aggctaaaga 360 acatgatacc ctggccagcc agtgagagaa aaaagaccga atgtgccttt aagaagaaga 420 gcaatgagac acagtgtttc aacttcattc gagtcctggt ctcttacaat gctactcacc 480 totatgcctg tgggaccttt gccttcagcc ctgcctgtac cttcattgaa ctccaagatt 540 ccctcctgtt gcccatcttg atagacaagg tcatggacgg gaagggccaa agccctttga 600 ccctgttcac aagcacacaa gctgtcttgg tcgatgggat gctttattcc ggcaccatga 660 acaacttect gggcagegag eccatectga tgeggacaet gggateecat eetgttetea 720 agactgacat cttcttacgc tggctgcacg cggatgcctc cttcqtggca qccattccat 780 ccacccaggt cgtctatttc ttctttgagg agacagccag cgagtttgac ttctttgaag 840 agctgtatat atccagggtg gctcaagtct gcaagaacga cgtgggcggt gaaaagctgc 900 tgcagaagaa gtggaccacc ttcctcaaag cccagttgct ctgcgctcag ccagggcagc 960 tgccattcaa catcatccgc cacgcggtcc tgctgcccgc cgattctccc tctgtttccc 1020 gcatctacgc agtctttacc tcccagtggc aggttggcgg gaccaggagc tcagcagtct 1080 gtgccttctc tctcacggac attgagcgag tctttaaagg gaagtacaag gagctgaaca 1140 aggagacete eegetggace aettaeeggg geteagaggt eageeegagg eeaggeagtt 1200 getecatggg eccetectet gacaaageet tgacetteat gaaggaceat tttetgatgg 1260 atgageaegt ggtaggaaca eceetgetgg tgaagtetgg tgtggagtae acaeggettg 1320 ctgtggagtc agctcggggc cttgatggga gcagccatgt ggtcatgtat ctgggtacct 1380 ccacgggtcc cctgcacaag gctgtggtgc ctcaggacag cagtgcttat ctcgtqqagg 1440 agattcagct gagccctgac tctgagcctg ttcgaaacct gcagctggcc cccgcccagg 1500 gtgcagtgtt tgcaggcttc tctggaggca tctggagagt tcccagggcc aattgcagtg 1560 tctacgagag ctgtgtggac tgtgtgcttg ccagggaccc tcactgtgcc tgggaccctg 1620 aatcaagact ctgcagcctt ctgtctggct ctaccaagcc ttggaagcag gacatggaac 1680 gcggcaaccc ggagtgggta tgcacccgtg gccccatggc caggagcccc cggcgtcaga 1740 gccccctca actaattaaa gaagtcctga cagtccccaa ctccatcctg gagctgcgct 1800 gcccccacct gtcagcactg gcctcttacc actggagtca tggccgagcc aaaatctcag 1860 aageetetge tacegtetae aatggeteee tettgetget geegeaggat ggtgtegggg 1920 geetetacea gtgtgtggeg actgagaacg getacteata eeetgtggte teetattggg 1980


```
tagacageca ggaccagece etggegetgg accetgaget ggegggegtt eccegtgage 2040
gtgtgcaggt cccgctgacc agggtcggag gcggagcttc catggctgcc cagcggtcct 2100
actggcccca ttttctcatc gttaccgtcc tcctggccat cgtgctcctg ggagtgctca 2160
ctctcctcct cgcttcccca ctgggggcgc tgcgggctcg gggtaaggtt cagggctgtg 2220
ggatgctgcc ccccagggaa aaggctccac tgagcaggga ccagcacctc cagccctcca 2280
aggaccacag gacctctgcc agtgacgtag atgccgacaa caaccatctg ggcgccgaag 2340
tggcttaaac agggacacag atecgcaget gagcagagca agccactggc cttgttggct 2400
atgccaggca cagtgccact ctgaccaggg taggaggctc tcctgctaac gtgtgtcacc 2460
tacagcaccc agtaggtcct cccctgtggg actetettet gcaagcacat tgggetgtet 2520
ccatacctgt acttgtgctg tgacaggaag agccagacag gtttctttga ttttgattga 2580
cccaagagcc ctgcctgtaa caaacgtgct ccaggagacc atgaaaggtg tggctgtctg 2640
ggattetgtg gtgacaaace taagcateeg agcaagetgg ggetatteet gcaaacteca 2700
tectgaaege tgteaeteta gaageagetg etgetttgaa caecageeca eceteettee 2760
caagagtete tatggagttg geceettgtg ttteetttac cagtegggee atactgtttg 2820
ggaagtcatc tctgaagtct aaccaccttc cttcttggtt cagtttggac agattgttat 2880
tattgtetet geeetggeta gaatggggge ataatetgag cettgtteee ttgteeagtg 2940
tggctgaccc ttgacctctt ccttcctcct ccctttgttt tgggattcag aaaactgctt 3000
gtcacagaca atttatttt tattaaaaaa gatataagct ttaaag
                                                                  3046
```

<210> 72 <211> 2915 <212> DNA

<213> Mus sp.

<400> 72

gtcgacccac gcgtccggcc gcgcgtcctt ctgccggctt cagctcgtat ccccggagtc 60 caccegeegg teeeggggtg eggactggee etgagetgge egtacageee ggetteggae 120 ggtcctcgct ggagccatgg gccgccggct cggcagggtg gcggcgctgc tgctcgggct 180 gctagtggag tgcactgagg ccaaaaaaca ttgctggtat tttgaaggac tctatcccac 240 atactatata tgccgttcct atgaagactg ctgtggctcc aggtgctgtg tgagggccct 300 ttocatacag aggetgtggt attittggtt cetgetgatg atgggtgtge tgttetgetg 360 tggtgccggt ttcttcattc gccggcgcat gtatccgcca ccactcattg aggagcccac 420 attcaatgtg tectatacca ggcagecace aaateetget eeaggageac agcaaatggg 480 accgccatat tacaccgacc ctggaggacc cgggatgaat cctgttggca ataccatggc 540 tatggettte caggtecage ceaatteace teaeggagge acaaettace caccecetee 600 tteetactge aacaegeete cacceceta tgaacaggtg gtgaaggaca agtagcaaga 660 tgctacatca aaggcaaaga ggatggacag gcccttttgt ttaccttccc atcctcaccg 720 atacttgctg atagggtggt ccaagggaaa acttggatat tctcaaagca agcccagctc 780 tettteaagt ettttgtgga ggacatttga atceaeactg teteetetgt tgettetgtt 840 totgatgtag totgtgctot otgagagagt gtggcaacag tocotgaggg ttgatattoc 900 tagggtgtcc agggtagatc ctcgggagag aggctaaggg gaaaggaagg catagcctgt 960 gtgttagggg gcagataaag tggtcaggct gagataagac tcacatgatg cagtagttgg 1020 cagtgaactt cgaagagaca ctatccacca teccageeca tteteetaat agaagetgtg 1080 gggctgtgtt gttgatgctc tttggtctcc actcacattt tgaaaatagg ctttcctctq 1140 caggaatagg aaagacccaa gtacatattt gcttccactt aaaaatgagg gtcagaacca 1200 ggcctcagtt ggacatctat agttaaataa aggccattag agaggggaaa tctttaagtt 1260


```
agtgcatgta ttgaagtgag ggtgtccttt gagatcagat ggggagagtg aactctgcgg 1380
ggggtggggt gtctctactc agagggctcc aacaccettt tettaggtag ttetggtgat 1440
gggttttatg ggcactatag agctgagggg cacattaggc cgggtagtta cattgaccct 1500
agctagggtt gtatgtgatc ccaacagaga tgtgctggcc tcagaagagg ggacgtttgt 1620
ggatagagcc gtgaaaacct acttagttgc acagatgaca taatcaaaag tagagaaaga 1680
agtgtagtta gagatgccat ttcccaggtg agaatcagag ctcatccata gatttacaag 1740
tagtggctgg agttaacagt atggagttct tttcccttgc gtagttagtc acgttgatqt 1800
gtatttaaac ccaggttgag accttgtgta ctaagagcaa ggaagtatag ctaagatgtc 1860
tagattattt atatgtagta tggtggggag tggggctgca aggaaggggg ctgacattgt 1920
aaatgagaaa atcagagcca tttgataaac tgttacttgt tggatcaggc atccaaaagt 1980
gtctcttgag tggacattga gtattcttta ccacctacaa gaccaggagg catggtgtca 2040
ttctccattg gggtatttat atgaggtaga ggttcaggaa tcgacagtag ctgtqtqqqc 2100
ttagtttaag gactgaaagc atagggactg gtagacagtt tcataggaaa ctgcggggaa 2160
ggaatggata cctttaaaga cagtttgtgg atgcagatgc tgccacccat cattgagcac 2220
cettgtgtet etggetteet gteactggat ceagtacece tecatgettg ggteettgtt 2280
ttacataaga caacaaagca caatgtctgc tgtttacaat caagacgact acatggtcca 2340
aacatttett etetetteta teaettgtgg ettťaactte eattteetee gtteettttt 2400
aaaatcaaga agcacagtca gagctgcccc tgggattgca tcagggaacg gctgatcaag 2460
gcattcagtg tccatgacta aatcttatct ttttgatagc aaatcctttt aagaaactga 2520
acaattgcta aggeteagea attttataet eeaatgtetg tgtaaggtaa attttgtttg 2580
ccattgagcc cacattggaa ttccttctga cgtcaacact gacaatgcct atggaaattg 2640
cacttotggg tatatgtccc agcatcottg ttttcttatg tttggtgagt aaggctcacc 2700
cettecagea getetaette tgtgtgetga ggteetgtag ageegggget tgggeacaga 2760
catgaggcag acttgtgcat gctctttctt ggcaacactt ggctcatatt tcttgttctc 2820
ttttgataga gtcctgtttc ctatgtattt aaaaaataat aaaagtgaat ttagtcaaaa 2880
aaaaaaaaa aaaaaaaaaa aaaaagggcg gccgc
                                                               2915
```

```
<210> 73
<211> 516
<212> DNA
<213> Mus sp.
```

<400> 73

```
atgggccgcc ggctcggcag ggtggcggcg ctgctgctcg ggctgctagt ggagtgcact 60 gaggccaaaa aacattgctg gtatttgaa ggactctatc ccacatacta tatatgccgt 120 tectatgaag actgctgtgg ctccaggtgc tgtgtgaggg ccctttccat acagaggctg 180 tggtatttt ggttcctgct gatgatgggt gtgctgttct gctgtggtgc cggtttcttc 240 attcgccggc gcatgtatcc gccaccactc attgaggagc ccacattcaa tgtgtcctat 300 accaggcagc caccaaatcc tgctccagga gcacagcaaa tgggaccgcc atattacacc 360 gaccctggag gacccgggat gaatcctgtt ggcaatacca tggctatggc tttccaggtc 420 cagcccaatt cacctcacgg aggcacaact tacccaccc ctccttccta ctgcaacacg 480 cctccaccc cctatgaaca ggtggtgaag gacaag
```

<210> 74 <211> 172 <212> PRT <213> Mus sp.

<400> 74

Met Gly Arg Arg Leu Gly Arg Val Ala Ala Leu Leu Leu Gly Leu Leu 1 5 10 15

Val Glu Cys Thr Glu Ala Lys Lys His Cys Trp Tyr Phe Glu Gly Leu 20 25 30

Tyr Pro Thr Tyr Tyr Ile Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser 35 40 45

Arg Cys Cys Val Arg Ala Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp
.50 55 60

Phe Leu Leu Met Met Gly Val Leu Phe Cys Cys Gly Ala Gly Phe Phe 65 70 75 80

Ile Arg Arg Met Tyr Pro Pro Pro Leu Ile Glu Glu Pro Thr Phe
85 90 95

Asn Val Ser Tyr Thr Arg Gln Pro Pro Asn Pro Ala Pro Gly Ala Gln
100 105 110

Gln Met Gly Pro Pro Tyr Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn 115 120 125

Pro Val Gly Asn Thr Met Ala Met Ala Phe Gln Val Gln Pro Asn Ser 130 135 140

Pro His Gly Gly Thr Thr Tyr Pro Pro Pro Pro Ser Tyr Cys Asn Thr 145 150 155 160

Pro Pro Pro Pro Tyr Glu Gln Val Val Lys Asp Lys
165 170

<210> 75

<211> 398

<212> PRT

<213> Homo sapiens

<400> 75

Met Trp Leu Leu Thr Met Ala Ser Leu Ile Ser Val Leu Gly Thr
1 5 10 15

Thr His Gly Leu Phe Gly Lys Leu His Pro Gly Ser Pro Glu Val Thr

20 25 30

Met Asn Ile Ser Gln Met Ile Thr Tyr Trp Gly Tyr Pro Asn Glu Glu
35 40 45

- Tyr Glu Val Val Thr Glu Asp Gly Tyr Ile Leu Glu Val Asn Arg Ile
 50 55 60
- Pro Tyr Gly Lys Lys Asn Ser Gly Asn Thr Gly Gln Arg Pro Val Val 65 70 75 80
- Phe Leu Gln His Gly Leu Leu Ala Ser Ala Thr Asn Trp Ile Ser Asn 85 90 95
- Leu Pro Asn Asn Ser Leu Ala Phe Ile Leu Ala Asp Ala Gly Tyr Asp
 100 105 110
- Val Trp Leu Gly Asn Ser Arg Gly Asn Thr Trp Ala Arg Arg Asn Leu 115 120 125
- Tyr Tyr Ser Pro Asp Ser Val Glu Phe Trp Ala Phe Ser Phe Asp Glu 130 135 140
- Met Ala Lys Tyr Asp Leu Pro Ala Thr Ile Asp Phe Ile Val Lys Lys 145 150 155 160
- Thr Gly Gln Lys Gln Leu His Tyr Val Gly His Ser Gln Gly Thr Thr
 165 170 175
- Ile Gly Phe Ile Ala Phe Ser Thr Asn Pro Ser Leu Ala Lys Arg Ile 180 185 190
- Lys Thr Phe Tyr Ala Leu Ala Pro Val Ala Thr Val Lys Tyr Thr Lys 195 200 205
- Ser Leu Ile Asn Lys Leu Arg Phe Val Pro Gln Ser Leu Phe Lys Phe 210 215 220
- Ile Phe Gly Asp Lys Ile Phe Tyr Pro His Asn Phe Phe Asp Gln Phe 225 230 235 240
- Leu Ala Thr Glu Val Cys Ser Arg Glu Met Leu Asn Leu Leu Cys Ser 245 250 255
- Asn Ala Leu Phe Ile Ile Cys Gly Phe Asp Ser Lys Asn Phe Asn Thr 260 265 270
- Ser Arg Leu Asp Val Tyr Leu Ser His Asn Pro Ala Gly Thr Ser Val

275 280 285

Gln Asn Met Phe His Trp Thr Gln Ala Val Lys Ser Gly Lys Phe Gln 290 295 300

Ala Tyr Asp Trp Gly Ser Pro Val Gln Asn Arg Met His Tyr Asp Gln 305 310 315 320

Ser Gln Pro Pro Tyr Tyr Asn Val Thr Ala Met Asn Val Pro Ile Ala 325 330 335

Val Trp Asn Gly Gly Lys Asp Leu Leu Ala Asp Pro Gln Asp Val Gly 340 345 350

Leu Leu Pro Lys Leu Pro Asn Leu Ile Tyr His Lys Glu Ile Pro 355 360 365

Phe Tyr Asn His Leu Asp Phe Ile Trp Ala Met Asp Ala Pro Gln Glu 370 375 380

Val Tyr Asn Asp Ile Val Ser Met Ile Ser Glu Asp Lys Lys 385 390 395

<210> 76

<211> 760

<212> PRT

<213> Mus sp.

<400> 76

Met Ala Leu Pro Ser Leu Gly Gln Asp Ser Trp Ser Leu Leu Arg Val 1 5 10 15

Phe Phe Phe Gln Leu Phe Leu Leu Pro Ser Leu Pro Pro Ala Ser Gly
20 25 30

Thr Gly Gly Gln Gly Pro Met Pro Arg Val Lys Tyr His Ala Gly Asp 35 40 . 45

Gly His Arg Ala Leu Ser Phe Phe Gln Gln Lys Gly Leu Arg Asp Phe 50 55 60

Asp Thr Leu Leu Leu Ser Asp Asp Gly Asn Thr Leu Tyr Val Gly Ala 65 70 75 80

Arg Glu Thr Val Leu Ala Leu Asn Ile Gln Asn Pro Gly Ile Pro Arg 85 90 95

Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Glu Arg Lys Lys Thr Glu Cys Ala Phe Lys Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn Ala Thr His Leu Tyr Ala Cys Gly Thr Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Leu Leu Leu Pro Ile Leu Ile Asp Lys Val Met Asp Gly Lys Gly Gln Ser Pro Leu Thr Leu Phe Thr Ser Thr Gln Ala Val Leu Val Asp Gly Met Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu Met Arg Thr Leu Gly Ser His Pro Val Leu Lys Thr Asp Ile Phe Leu Arg Trp Leu His Ala Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr Gln Val Val Tyr Phe Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp Phe Phe Glu Glu Leu Tyr Ile Ser Arg Val Ala Gln Val Cys Lys Asn Asp Val Gly Gly Glu Lys Leu Gln Lys Lys Trp Thr Thr Phe Leu Lys Ala Gln Leu Leu Cys Ala Gln Pro Gly Gln Leu Pro Phe Asn Ile Ile Arg His Ala Val Leu Leu Pro Ala Asp Ser Pro Ser Val Ser Arg Ile 315 . Tyr Ala Val Phe Thr Ser Gln Trp Gln Val Gly Gly Thr Arg Ser Ser Ala Val Cys Ala Phe Ser Leu Thr Asp Ile Glu Arg Val Phe Lys Gly

Lys Tyr Lys Glu Leu Asn Lys Glu Thr Ser Arg Trp Thr Thr Tyr Arg Gly Ser Glu Val Ser Pro Arg Pro Gly Ser Cys Ser Met Gly Pro Ser Ser Asp Lys Ala Leu Thr Phe Met Lys Asp His Phe Leu Met Asp Glu 38Ś His Val Val Gly Thr Pro Leu Leu Val Lys Ser Gly Val Glu Tyr Thr Arg Leu Ala Val Glu Ser Ala Arg Gly Leu Asp Gly Ser Ser His Val . 420 Val Met Tyr Leu Gly Thr Ser Thr Gly Pro Leu His Lys Ala Val Val Pro Gln Asp Ser Ser Ala Tyr Leu Val Glu Glu Ile Gln Leu Ser Pro Asp Ser Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Ala Gln Gly Ala Val Phe Ala Gly Phe Ser Gly Gly Ile Trp Arg Val Pro Arg Ala Asn Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg Asp Pro His Cys Ala Trp Asp Pro Glu Ser Arg Leu Cys Ser Leu Leu Ser Gly Ser Thr Lys Pro Trp Lys Gln Asp Met Glu Arg Gly Asn Pro Glu Trp Val Cys Thr Arg Gly Pro Met Ala Arg Ser Pro Arg Arg Gln Ser Pro Pro Gln Leu Ile Lys Glu Val Leu Thr Val Pro Asn Ser Ile Leu Glu Leu Arg Cys Pro His Leu Ser Ala Leu Ala Ser Tyr His Trp Ser His Gly Arg Ala Lys Ile Ser Glu Ala Ser Ala Thr Val Tyr Asn Gly Ser

Leu Leu Leu Pro Gln Asp Gly Val Gly Gly Leu Tyr Gln Cys Val 610 615 620

Ala Thr Glu Asn Gly Tyr Ser Tyr Pro Val Val Ser Tyr Trp Val Asp 625 630 635 640

Ser Gln Asp Gln Pro Leu Ala Leu Asp Pro Glu Leu Ala Gly Val Pro 645 650 655

Arg Glu Arg Val Gln Val Pro Leu Thr Arg Val Gly Gly Ala Ser 660 665 670

Met Ala Ala Gln Arg Ser Tyr Trp Pro His Phe Leu Ile Val Thr Val 675 680 685

Leu Leu Ala Ile Val Leu Cly Val Leu Thr Leu Leu Leu Ala Ser 690 695 700

Leu Pro Pro Arg Glu Lys Ala Pro Leu Ser Arg Asp Gln His Leu Gln 725 730 735

Pro Ser Lys Asp His Arg Thr Ser Ala Ser Asp Val Asp Ala Asp Asn 740 745 750

Asn His Leu Gly Ala Glu Val Ala 755 760

<210> 77

<211> 3046

<212> DNA

<213> Mus sp.

<400> 77

cteggaegee tgggttaggg gtetgtactg etggggaace atetggtgae catetcagge 60 tgaecatgge cetaccatee etgggecagg acteatggag teteetgegt gttttttet 120 tecaactett cetgetgeea teactgecae etgettetgg gaetggtggt eaggggeeca 180 tgeecagagt caaataccat getggagaeg ggeacaggge eetcagette tteeaacaaa 240 aaggeeteeg agaetttgae acgetgetee tgagtgaega tggeaacaet etetatgtgg 300 gggetegaga gaeegteetg geettgaata tecagaacee aggaateeca aggetaaaga 360 acatgatace etggecagee agtgagagaa aaaagaeega atgtgeettt aagaagaaga 420 geaatgagae acagtgtte aactteatte gagteetggt etettacaat getacteaee 480 tetatgeetg tgggaeettt geetteagee etgeetgtae etteattgaa eteeaagatt 540 eeeteetgtt geecatettg atagaeaagg teatgggat getttattee ggeaeeatga 660 eeetgtteae aageaeaaa getgtettgg tegatgggat getttattee ggeaeeatga 660

acaacttcct	gggcagcgag	cccatcctga	tgcggacact	gggatcccat	cctgttctca	720
agactgacat	cttcttacgc	tggctgcacg	cggatgcctc	cttcgtggca	gccattccat	780
ccacccaggt	cgtctatttc	ttctttgagg	agacagccag	cgagtttgac	ttctttgaag	840
agctgtatat	atccagggtg	gctcaagtct	gcaagaacga	cgtgggcggt	gaaaagctgc	900
tgcagaagaa	gtggaccacc	ttcctcaaag	cccagttgct	ctgcgctcag	ccagggcagc	960
tgccattcaa	catcatccgc	cacgcggtcc	tgctgcccgc	cgattctccc	tctgtttccc	1020
gcatctacgc	agtctttacc	tcccagtggc	aggttggcgg	gaccaggagc	tcagcagtct	1080
gtgccttctc	tctcacggac	attgagcgag	tctttaaagg	gaagtacaag	gagctgaaca	1140
aggagacctc	ccgctggacc	acttaccggg	gctcagaggt	cagcccgagg	ccaggcagtt	1200
gctccatggg	ccctcctct	gacaaagcct	tgaccttcat	gaaggaccat	tttctgatgg	1260
atgagcacgt	ggtaggaaca	cccctgctgg	tgaagtctgg	tgtggagtac	acacggcttg	1320
ctgtggagtc	agctcggggc	cttgatggga	gcagccatgt	ggtcatgtat	ctgggtacct	1380
ccacgggtcc	cctgcacaag	gctgtggtgc	ctcaggacag	cagtgcttat	ctcgtggagg	1440
agattcagct	gagccctgac	tctgagcctg	ttcgaaacct	gcagctggcc	cccgcccagg	1500
gtgcagtgtt	tgcaggcttc	tctggaggca	tctggagagt	tcccagggcc	aattgcagtg	1560
tctacgagag	ctgtgtggac	tgtgtgcttg	ccagggaccc	tcactgtgcc	tgggaccctg	1620
aatcaagact	ctgcagcctt	ctgtctggct	ctaccaagcc	ttggaagcag	gacatggaac	1680
gcggcaaccc	ggagtgggta	tgcacccgtg	gccccatggc	caggagcccc	cggcgtcaga	1740
gccccctca	actaattaaa	gaagtcctga	cagtccccaa	ctccatcctg	gagctgcgct	1800
gccccacct	gtcagcactg	gcctcttacc	actggagtca	tggccgagcc	aaaatctcag	1860
aagcctctgc	taccgtctac	aatggctccc	tcttgctgct	gccgcaggat	ggtgtcgggg	1920
gcctctacca	gtgtgtggcg	actgagaacg	gctactcata	ccctgtggtc	tcctattggg	1980
tagacagcca	ggaccagccc	ctggcgctgg	accctgagct	ggcgggcgtt	ccccgtgagc	2040
gtgtgcaggt	cccgctgacc	agggtcggag	gcggagcttc	catggctgcc	cagcggtcct	2100
actggcccca	ttttctcatc	gttaccgtcc	tcctggccat	cgtgctcctg	ggagtgctca	2160
ctctcctcct	cgcttcccca	ctgggggcgc	tgcgggctcg	gggtaaggtt	cagggctgtg	2220
ggatgctgcc	ccccagggaa	aaggctccac	tgagcaggga	ccagcacctc	cagccctcca	2280
aggaccacag	gacctctgcc	agtgacgtag	atgccgacaa	caaccatctg	ggcgccgaag	2340
tggcttaaac	agggacacag	atccgcagct	gagcagagca	agccactggc	cttgttggct	2400
atgccaggca	cagtgccact	ctgaccaggg	taggaggctc	tectgetaac	gtgtgtcacc	2460
tacagcaccc	agtaggtcct	cccctgtggg	actctcttct	gcaagcacat	tgggctgtct	2520
ccatacctgt	acttgtgctg	tgacaggaag	agccagacag	gtttctttga	ttttgattga	2580
cccaagagcc	ctgcctgtaa	caaacgtgct	ccaggagacc	atgaaaggtg	tggctgtctg	2640
ggattctgtg	gtgacaaacc	taagcatccg	agcaagctgg	ggctattcct	gcaaactcca	2700
tcctgaacgc	tgtcactcta	gaagcagctg	ctgctttgaa	caccagccca	ccctccttcc	2760
caagagtctc	tatggagttg	gccccttgtg	tttcctttac	cagtcgggcc	atactgtttg	2820
ggaagtcatc	tctgaagtct	aaccaccttc	cttcttggtt	cagtttggac	agattgttat	2880
			_		ttgtccagtg	
					aaaactgctt	
gtcacagaca	atttatttt	tattaaaaaa	gatataagct	ttaaag		3046

<210> 78

<211> 1436

<212> PRT

<213> Bos sp.

<400> 78

Met Ala Leu Gly Arg His Leu Ser Leu Arg Gly Leu Cys Val Leu Leu Leu Gly Thr Met Val Gly Gly Gln Ala Leu Glu Leu Arg Leu Lys Asp Gly Val His Arg Cys Glu Gly Arg Val Glu Val Lys His Gln Gly Glu Trp Gly Thr Val Asp Gly Tyr Arg Trp Thr Leu Lys Asp Ala Ser Val Val Cys Arg Gln Leu Gly Cys Gly Ala Ala Ile Gly Phe Pro Gly Gly Ala Tyr Phe Gly Pro Gly Leu Gly Pro Ile Trp Leu Leu Tyr Thr Ser Cys Glu Gly Thr Glu Ser Thr Val Ser Asp Cys Glu His Ser Asn Ile Lys Asp Tyr Arg Asn Asp Gly Tyr Asn His Gly Arg Asp Ala Gly Val Val Cys Ser Gly Phe Val Arg Leu Ala Gly Gly Asp Gly Pro Cys Ser Gly Arg Val Glu Val His Ser Gly Glu Ala Trp Ile Pro Val Ser Asp Gly Asn Phe Thr Leu Ala Thr Ala Gln Ile Ile Cys Ala Glu Leu Gly Cys Gly Lys Ala Val Ser Val Leu Gly His Glu Leu Phe Arg Glu Ser Ser Ala Gln Val Trp Ala Glu Glu Phe Arg Cys Glu Gly Glu Glu Pro Glu Leu Trp Val Cys Pro Arg Val Pro Cys Pro Gly Gly Thr Cys His His Ser Gly Ser Ala Gln Val Val Cys Ser Ala Tyr Ser Glu Val Arg Leu Met Thr Asn Gly Ser Ser Gln Cys Glu Gly Gln. Val Glu Met Asn

Ile Ser Gly Gln Trp Arg Ala Leu Cys Ala Ser His Trp Ser Leu Ala Asn Ala Asn Val Ile Cys Arg Gln Leu Gly Cys Gly Val Ala Ile Ser Thr Pro Gly Gly Pro His Leu Val Glu Glu Gly Asp Gln Ile Leu Thr Ala Arg Phe His Cys Ser Gly Ala Glu Ser Phe Leu Trp Ser Cys Pro · Val Thr Ala Leu Gly Gly Pro Asp Cys Ser His Gly Asn Thr Ala Ser Val Ile Cys Ser Gly Asn Gln Ile Gln Val Leu Pro Gln Cys Asn Asp Ser Val Ser Gln Pro Thr Gly Ser Ala Ala Ser Glu Asp Ser Ala Pro Tyr Cys Ser Asp Ser Arg Gln Leu Arg Leu Val Asp Gly Gly Pro . 380 Cys Ala Gly Arg Val Glu Ile Leu Asp Gln Gly Ser Trp Gly Thr Ile Cys Asp Asp Gly Trp Asp Leu Asp Asp Ala Arg Val Val Cys Arg Gln Leu Gly Cys Gly Glu Ala Leu Asn Ala Thr Gly Ser Ala His Phe Gly Ala Gly Ser Gly Pro Ile Trp Leu Asp Asn Leu Asn Cys Thr Gly Lys Glu Ser His Val Trp Arg Cys Pro Ser Arg Gly Trp Gly Gln His Asn Cys Arg His Lys Gln Asp Ala Gly Val Ile Cys Ser Glu Phe Leu Ala Leu Arg Met Val Ser Glu Asp Gln Gln Cys Ala Gly Trp Leu Glu Val Phe Tyr Asn Gly Thr Trp Gly Ser Val Cys Arg Asn Pro Met Glu Asp

Ile Thr Val Ser Thr Ile Cys Arg Gln Leu Gly Cys Gly Asp Ser Gly Thr Leu Asn Ser Ser Val Ala Leu Arg Glu Gly Phe Arg Pro Gln Trp Val Asp Arg Ile Gln Cys Arg Lys Thr Asp Thr Ser Leu Trp Gln Cys Pro Ser Asp Pro Trp Asn Tyr Asn Ser Cys Ser Pro Lys Glu Glu Ala 575 · Tyr Ile Trp Cys Ala Asp Ser Arg Gln Ile Arg Leu Val Asp Gly Gly Gly Arg Cys Ser Gly Arg Val Glu Ile Leu Asp Gln Gly Ser Trp Gly Thr Ile Cys Asp Asp Arg Trp Asp Leu Asp Asp Ala Arg Val Val Cys. Lys Gln Leu Gly Cys Gly Glu Ala Leu Asp Ala Thr Val Ser Ser Phe Phe Gly Thr Gly Ser Gly Pro Ile Trp Leu Asp Glu Val Asn Cys Arg Gly Glu Glu Ser Gln Val Trp Arg Cys Pro Ser Trp Gly Trp Arg Gln His Asn Cys Asn His Gln Glu Asp Ala Gly Val Ile Cys Ser Gly Phe Val Arg Leu Ala Gly Gly Asp Gly Pro Cys Ser Gly Arg Val Glu Val His Ser Gly Glu Ala Trp Thr Pro Val Ser Asp Gly Asn Phe Thr Leu Pro Thr Ala Gln Val Ile Cys Ala Glu Leu Gly Cys Gly Lys Ala Val Ser Val Leu Gly His Met Pro Phe Arg Glu Ser Asp Gly Gln Val Trp Ala Glu Glu Phe Arg Cys Asp Gly Glu Pro Glu Leu Trp Ser Cys

Pro Arg Val Pro Cys Pro Gly Gly Thr Cys Leu His Ser Gly Ala Ala Gln Val Val Cys Ser Val Tyr Thr Glu Val Gln Leu Met Lys Asn Gly Thr Ser Gln Cys Glu Gly Gln Val Glu Met Lys Ile Ser Gly Arg Trp Arg Ala Leu Cys Ala Ser His Trp Ser Leu Ala Asn Ala Asn Val Val Cys Arg Gln Leu Gly Cys Gly Val Ala Ile Ser Thr Pro Arg Gly Pro His Leu Val Glu Gly Gly Asp Gln Ile Ser Thr Ala Gln Phe His Cys Ser Gly Ala Glu Ser Phe Leu Trp Ser Cys Pro Val Thr Ala Leu Gly Gly Pro Asp Cys Ser His Gly Asn Thr Ala Ser Val Ile Cys Ser Gly Asn His Thr Gln Val Leu Pro Gln Cys Asn Asp Phe Leu Ser Gln Pro Ala Gly Ser Ala Ala Ser Glu Glu Ser Ser Pro Tyr Cys Ser Asp Ser Arg Gln Leu Arg Leu Val Asp Gly Gly Gly Pro Cys Gly Gly Arg Val Glu Ile Leu Asp Gln Gly Ser Trp Gly Thr Ile Cys Asp Asp Asp Trp Asp Leu Asp Asp Ala Arg Val Val Cys Arg Gln Leu Gly Cys Gly Glu Ala Leu Asn Ala Thr Gly Ser Ala His Phe Gly Ala Gly Ser Gly Pro Ile Trp Leu Asp Asp Leu Asn Cys Thr Gly Lys Glu Ser His Val Trp Arg Cys Pro Ser Arg Gly Trp Gly Arg His Asp Cys Arg His Lys Glu

Asp Ala Gly Val Ile Cys Ser Glu Phe Leu Ala Leu Arg Met Val Ser 1025 1030 1035 1040

- Glu Asp Gln Gln Cys Ala Gly Trp Leu Glu Val Phe Tyr Asn Gly Thr 1045 1050 1055
- Trp Gly Ser Val Cys Arg Ser Pro Met Glu Asp Ile Thr Val Ser Val 1060 1065 1070
- Ile Cys Arg Gln Leu Gly Cys Gly Asp Ser Gly Ser Leu Asn Thr Ser 1075 1080 1085
- Val Gly Leu Arg Glu Gly Ser Arg Pro Arg Trp Val Asp Leu Ile Gln 1090 1095 1100
- Cys Arg Lys Met Asp Thr Ser Leu Trp Gln Cys Pro Ser Gly Pro Trp 1105 1110 1115 1120
- Lys Tyr Ser Ser Cys Ser Pro Lys Glu Glu Ala Tyr Ile Ser Cys Glu 1125 1130 1135
- Gly Arg Arg Pro Lys Ser Cys Pro Thr Ala Ala Ala Cys Thr Asp Arg 1140 1145 1150
- Glu Lys Leu Arg Leu Arg Gly Gly Asp Ser Glu Cys Ser Gly Arg Val 1155 1160 1165
- Glu Val Trp His Asn Gly Ser Trp Gly Thr Val Cys Asp Asp Ser Trp 1170 1175 1180
- Ser Leu Ala Glu Ala Glu Val Val Cys Gln Gln Leu Gly Cys Gly Gln 1185 1190 1195 1200
- Ala Leu Glu Ala Val Arg Ser Ala Ala Phe Gly Pro Gly Asn Gly Ser 1205 1210 1215
- Ile Trp Leu Asp Glu Val Gln Cys Gly Gly Arg Glu Ser Ser Leu Trp 1220 1225 1230
- Asp Cys Val Ala Glu Pro Trp Gly Gln Ser Asp Cys Lys His Glu Glu 1235 1240 1245
- Asp Ala Gly Val Arg Cys Ser Gly Val Arg Thr Thr Leu Pro Thr Thr 1250 1255 1260
- Thr Ala Gly Thr Arg Thr Thr Ser Asn Ser Leu Pro Gly Ile Phe Ser 1265 1270 1275 1280

Leu Pro Gly Val Leu Cys Leu Ile Leu Gly Ser Leu Leu Phe Leu Val

Leu Val Ile Leu Val Thr Gln Leu Leu Arg Trp Arg Ala Glu Arg Arg 1300 1305 1310

Ala Leu Ser Ser Tyr Glu Asp Ala Leu Ala Glu Ala Val Tyr Glu Glu
. 1315 1320 1325

Leu Asp Tyr Leu Leu Thr Gln Lys Glu Gly Leu Gly Ser Pro Asp Gln 1330 1335 1340

Met Thr Asp Val Pro Asp Glu Asn Tyr Asp Asp Ala Glu Glu Val Pro 1345 1350 1355 1360

Val Pro Gly Thr Pro Ser Pro Ser Gln Gly Asn Glu Glu Glu Val Pro 1365 1370 1375

Pro Glu Lys Glu Asp Gly Val Arg Ser Ser Gln Thr Gly Ser Phe Leu 1380 1385 1390

Asn Phe Ser Arg Glu Ala Ala Asn Pro Gly Glu Gly Glu Glu Ser Phe 1395 1400 1405

Trp Leu Leu Gln Gly Lys Lys Gly Asp Ala Gly Tyr Asp Asp Val Glu 1410 1415 1420

Leu Ser Ala Leu Gly Thr Ser Pro Val Thr Phe Ser 1425 1430 . 1435

<210> 79

<211> 4308

<212> DNA

<213> Bos sp.

<400> 79

atggetetgg geagacacet etecetgegg ggaetetgtg teeteetet eggeaceatg 60 gtgggtggte aagetetgga getgaggttg aaggatggag teeategetg tgaggggaga 120 gtggaagtga ageaceaagg agaatgggge acagtggatg gttacaggtg gacattgaag 180 gatgeatetg tagtgteag acagetgggg tgtggagetg ecattggtt teetggaggg 240 gettattttg ggeeaggaet tggeeceatt tggettttgt atactteatg tgaagggaea 300 gagteaactg teagtgaetg tgageattet aatattaaag actategtaa tgatggetat 360 aateatggte gggatgetgg agaagtetge teaggatttg tgegtetgge tggaggggat 420 gggaacettea caettgeea tgeecagate tetggagaag ettggatee agtgetegat 480 gggaacettea caettgeea tgeecagate atetgtgeag agttgggttg tggeaagge 540 gtgtetgtee tgggacatga geetteaga gagteeagtg eceaggteeg ggetgaagag 600 tteaggtgg aggggagga geetgagete tgggteege ecaggteeg etgteeaggg 660

ggcacgtgtc accacagtgg atctgctcag gttgtttgtt cagcatactc agaagtccgg 720 ctcatgacaa acggctcctc tcagtgtgaa gggcaggtgg agatgaacat ttctggacaa 780 tggagagcgc tctgtgcctc ccactggagt ctggccaatg ccaatgttat ctgtcgtcag 840 ctcggctgtg gagttgccat ctccacccc ggaggaccac acttggtgga agaaggtgat 900 cagatectaa cageeegatt teaetgetet ggggetgagt cetteetgtg gagttgteet 960 gtgactgccc tgggtggtcc tgactgttcc catggcaaca cagcctctgt gatctgctca 1020 ggaaaccaga tecaggtget tececagtge aacgaeteeg tgteteaace tacaggetet 1080 geggeeteag aggacagege eccetactge teagacagea ggeageteeg eetggtggae 1140 gggggcggtc cctgcgccgg gagagtggag atccttgacc agggctcctg gggcaccatc 1200 tgtgatgacg gctgggacct ggacgatgcc cgcgtggtgt gcaggcagct gggctgtgga 1260 gaagccctca atgccacggg gtctgctcac ttcggggcag gatcagggcc catctggttg 1320 gacaacttga actgcacagg aaaggagtcc cacgtgtgga ggtgcccttc ccggggctgg 1380 gggcagcaca actgcagaca caagcaggac gcgggggtca tctgctcaga gttcctggcc 1440 ctcaggatgg tgagtgagga ccagcagtgt gctgggtggc tggaagtttt ctacaatggg 1500 acctggggca gtgtctgccg taaccccatg gaagacatca ctgtgtccac gatctgcaga 1560 cagettgget gtggggacag tggaaccete aactettetg ttgetettag agaaggtttt 1620 aggecacagt gggtggatag aatecagtgt eggaaaactg acacetetet etggeagtgt 1680 cettetgace ettggaatta caacteatge tetecaaagg aggaageeta tatetggtgt 1740 gcagacagca gacagatccg cctggtggat ggaggtggtc gctgctctgg gagagtggag 1800 atcettgace agggetectg gggeaceate tgtgatgace getgggacet ggaegatgee 1860 cgtgtggtgt gcaagcagct gggctgtgga gaagccctgg acgccactgt ctcttccttc 1920 ttcgggacgg gatcagggcc catctggctg gatgaagtga actgcagagg agaggagtcc 1980 caagtatgga ggtgcccttc ctggggatgg cggcaacaca actgcaatca tcaagaagat 2040 gcaggagtca tetgctcagg atttgtgcgt etggctggag gagatggace etgctcaggg 2100 cgagtagaag tgcattctgg agaagcctgg accccagtgt ctgatggaaa cttcacactc 2160 cccactgccc aggtcatctg tgcagagetg ggatgtggca aggetgtgtc tgtcctggga 2220 cacatgccat tcagagagtc cgatggccag gtctgggctg aagagttcag gtgtgatggg 2280 ggggagcctg agetetggte etgececaga gtgecetgte caggaggeae atgtetecae 2340 agtggagctg ctcaggttgt ctgttcagtg tacacagaag tccagcttat gaaaaacggc 2400 accteteaat gtgaggggea ggtggagatg aagatetetg gaegatggag agegetetgt 2460 gcctcccact ggagtctggc caatgccaat gttgtctgtc gtcagctcgg ctgtggagtc 2520 gccatctcca cccccagagg accacacttg gtggaaggag gtgatcagat ctcaacagcc 2580 caatttcact getcaggggc tgagtcette etgtggagtt gteetgtgae tgeettgggt 2640 gggcctgact gttcccatgg caacacagcc tetgtgatet gctcaggaaa ccacacccag 2700 gtgctgcccc agtgcaacga cttcctgtct caacctgcag gctctgcggc ctcagaggag 2760 agttetecet actgeteaga cageaggeag etcegeetgg tggaeggggg eggteeetge 2820 ggcgggagag tggagatcct tgaccagggc tcctggggca ccatctgtga tgatgactgg 2880 gacctggacg atgcccgtgt ggtgtgcagg cagctgggct gtggagaagc cctcaatgcc 2940 acggggtctg ctcacttcgg ggcaggatca gggcccatct ggctggacga cctgaactgc 3000 acaggaaagg agtcccacgt gtggaggtgc ccttcccggg gctgggggcg gcacgactgc 3060 agacacaagg aggacgccgg ggtcatctgc tcagagttcc tggccctcag gatggtgagc 3120 gaggaccagc agtgtgctgg gtggctggag gttttctaca acgggacctg gggcagtgtc 3180 tgccgcagcc ccatggaaga tatcactgtg tccgtgatct gcagacagct tggatgtggg 3240 gacagtggaa gtctcaacac ctctgttggt ctcagggaag gttctagacc ccggtgggta 3300 gatttaattc agtgtcggaa aatggatacc tetetetggc agtgtcette tggcccatgg 3360 aaatacagtt catgetetee aaaggaggaa geetacatet catgtgaagg aagaagaeee 3420 aagagetgte caactgetge egeetgeaca gacagagaga ageteegeet caggggagga 3480 gacagcgagt gctcagggcg ggtggaggtg tggcacaacg gctcctgggg caccgtgtgc 3540

gatgactcct	ggagcctggc	agaggctgag	gtggtgtgtc	agcagctggg	ctgtggccag	3600
gccctggaag	ccgtgcggtc	tgcagcattt	ggccctggaa	atgggagcat	ctggctggac	3660
gaggtgcagt	gcgggggccg	ggagtcctcc	ctgtgggact	gtgttgcgga	gccctggggg	3720
cagagcgact	gcaagcacga	ggaggatgct	ggtgtgaggt	gctctggtgt	aaggacaaca	3780
ttgcccacga	ccacagcagg	gaccagaaca	acctcaaatt	ctctccctgg	catcttctcc	3840
ctgcctgggg	ttctctgcct	tatcctgggg	tcgcttctct	tcctggtcct	cgtcatcctg	3900
					tgaagatgct	
					aggtctgggc	
					agaagtacca	
					agagaaggag	
					ggcagctaat	
					tgctgggtat	
	aactcagtgc					4308