

Perceptron

Hyerim Bae

Department of Industrial Engineering, Pusan National University ${\bf hrbae@pusan.ac.kr}$

Contents

01 Perceptron의 정의

02 Perceptron의 이용

03 Linearly separable

Perceptron이란?

• Neuron을 모사

Perceptron의 구성

- 입력값
- 가중치
- 출력값: 계단함수를 활성화 함수로 사용

AND Gate by perceptron

- AND Gate

input		output	
X ₀	X ₁	AND	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

• AND

$$\begin{array}{lll} 0 \times W_0 + 0 \times W_1 = 0 & < & \theta \\ 0 \times W_0 + 1 \times W_1 = W_1 & < & \theta \\ 1 \times W_0 + 0 \times W_1 = W_0 & < & \theta \\ 1 \times W_0 + 1 \times W_1 = W_0 + W_1 & > & \theta \end{array}$$

$$(w_1, w_2, \theta) = (0.5, 0.5, 0.7)$$

NAND Gate

$$(w_1, w_2, \theta) = (-0.5, -0.5, -0.7)$$

x_1	x_2	y
0	0	1
0	1	1
1	0	1
1	1	0

$$\begin{split} x_1w_1(0\times -0.5) + x_2w_2(0\times -0.5) > &-0.7, y = 1 \\ x_1w_1(0\times -0.5) + x_2w_2(1\times -0.5) > &-0.7, y = 1 \\ x_1w_1(1\times -0.5) + x_2w_2(0\times -0.5) > &-0.7, y = 1 \\ x_1w_1(1\times -0.5) + x_2w_2(1\times -0.5) \leq &-0.7, y = 0 \end{split}$$

OR Gate

$$(w_1, w_2, \theta) = (1, 1, 1.5)$$

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

Simple Implementation

```
def ANDGate(x1, x2):
    w1, w2, theta = 0.5, 0.5, 0.7
    Y = x1*w1+x2*w2
    if Y <= theta:
        return 0
    elif Y > theta:
        return 1
[1.1.1] AND Gate
 ANDGate(0,0)
 >> 0
 ANDGate(0,1)
 >> 0
 ANDGate(1,0)
 >> 0
 ANDGate(1,1)
 >> 1
[1.1.2] AND Gate 결과
```


XOR Gate

XOR

$$\begin{array}{lll} 0 \times W_0 + 0 \times W_1 = 0 & < \theta \\ 0 \times W_0 + 1 \times W_1 = W_1 & > \theta \\ 1 \times W_0 + 0 \times W_1 = W_0 & > \theta \\ 1 \times W_0 + 1 \times W_1 = W_0 + W_1 & < \theta \end{array}$$

- \rightarrow W_0 , W_1 do not exist that satisfy above
- → cannot solve XOR

Why perceptron cannot solve XOR gate problem?

input		Output (by f)		
X ₀	X ₁	AND	OR	XQR
0	0	0	0	9
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Linearly separable

