Growth of Functions & Asymptotic Notations

Algorithm running time

- -Exact running time can be computed for small problem size (small n)
- Asymptotic performance can be found for large n
 where multiplication constants and lower-order terms
 of the exact running time are dominated.
- Asymptotic performance of algorithm

How the running time of an algorithm increases with the size of the input in the limit, as the size of the input increases without bound

Asymptotic Notation Θ-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as:

```
\Theta(g(n)) = \{ f(n) :
\exists \text{ positive constants } c_1, c_2, \text{ and } n_{0}, \text{ such that}
0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n0 \}
```

g(n) is an asymptotically tight bound for f(n).

Example

$$1/2n^2-3n=\Theta(n^2)$$
 ???

$$c_1, c_2, n_0$$
 ???

Θ-Notation

$$f(n) = 1/2n^2 - 3n$$
 $g(n) = n^2$

$$f(n) = O(g(n))$$
 & $f(n) = \Omega(g(n)) \rightarrow f(n) = \Theta(g(n))$

g(n) is asymptotically tight bound for f(n)

O-notation

For function g(n), we define O(g(n)), big-Oh of n, as:

```
O(g(n)) = \{ f(n) :
\exists positive constants c and n_0, such that
0 \le f(n) \le c g(n) \ \forall n \ge n0 \}
```

g(n) is an asymptotically upper bound on f(n).

(Worst Case)

Example

$$an+b=O(n^2)$$
 ???
 c, n_0 ???

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as:

```
\Omega(g(n)) = \{ f(n) :
\exists positive constants c and n_{0}, such that
0 \le c \ g(n) \le f(n) \ \forall n \ge n0 \}
```

g(n) is an asymptotically lower bound for f(n).

(Best Case)

Example

$$\sqrt{n} = \Omega(\lg n) \qquad ???$$

$$c, n_0 \qquad ???$$

Relations between Θ , Ω , O

Theorem:

For any two functions g(n) and f(n),

$$f(n) = \Theta(g(n))$$
 iff

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$.

Asymptotic notations in equation and inequalities

- $\ge 2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - ✓ there is some function $f(n) = \Theta(n)$ such that $2n^2+3n+1 = 2n^2+f(n) ∀ n$
- $\geq 2n^2 + \Theta(n) = \Theta(n^2)$
 - ✓ for any function $f(n) = \Theta(n)$ there is some function $g(n) = \Theta(n^2)$ such that $2n^2 + f(n) = g(n) \forall n$.

o-notation

For function g(n), we define o(g(n)), little-oh of n, as:

```
o(g(n)) = \{ f(n) :
for any positive constants c > 0 \exists a constant n_0 > 0 such that 0 \le f(n) \le cg(n) \ \forall n \ge n0 \}
```

g(n) is not an asymptotically tight upper bound for f(n).

f(n) becomes insignificant relative to g(n) as n approaches infinity:

 $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$

O & o Notations

g(n) is asymptotically tight upper bound for f(n)

$$f2(n) = 4n$$

$$g(n) = n^{2}$$
T(n)
$$100000$$

$$10000$$

$$1000$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$1$$

g(n) is asymptotically upper bound for f(n)

ω -notation

For function g(n), we define $\omega(g(n))$, little-omega of n, as:

```
\omega(g(n)) = \{ f(n) :
for any positive constants c > 0 \exists a constant n_0 > 0 such that 0 \le cg(n) \le f(n) \ \forall n \ge n0 \}
```

g(n) is not an asymptotically tight lower bound for f(n).

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

$\Omega \& \omega$ Notations

$$fI(n) = 2n + 4$$
$$g(n) = n$$

g(n) is asymptotically tight lower bound for f(n)

$$f2(n) = 4n^{2}$$

$$g(n) = n$$

$$T(n)$$

$$100000$$

$$10000$$

$$1000$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

Comparison of Functions

• Transitivity

```
f(n) = \Theta(g(n)) & g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))
f(n) = O(g(n)) & g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))
f(n) = \Omega(g(n)) & g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))
f(n) = o(g(n)) & g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))
f(n) = \omega(g(n)) & g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))
```

Reflexivity

$$f(n) = \Theta(f(n))$$
$$f(n) = O(f(n))$$
$$f(n) = \Omega(f(n))$$

• Symmetry

$$f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$$

Complementarity

$$f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \text{ iff } g(n) = \omega(f(n))$$

Notes on Functions

$$p(n) = \sum_{i=0}^{d} a_i n^i \qquad a_d \neq 0 \qquad \Rightarrow p(n) = \Theta(n^d)$$

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0 \qquad \Rightarrow \qquad n^b = o(a^n)$$

$$\lim_{n \to \infty} \frac{\lg^a n}{n^b} = 0 \qquad \Rightarrow \qquad \lg^a n = o(n^b)$$

$$\Rightarrow \qquad n^b = \omega(\lg^a n)$$

$$\lg(n!) = \Theta(n \lg n)$$

Examples