Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 33

- 1. Пусть $z=1-\sqrt{3}i$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\sqrt{3}-i}$ имеет аргумент $\frac{11\pi}{12}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-12-8i) + y(3-3i) = 232 - 14i \\ x(-6-2i) + y(1-14i) = 159 - 119i \end{cases}$$

- 3. Найти корни многочлена $2x^6+18x^5+74x^4-14x^3+12x^2-1732x+1640$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-1-3i,\,x_2=-5+4i,\,x_3=1.$
- 4. Даны 3 комплексных числа: -15-18i, 7+16i, 29+27i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{1}{2} + \frac{\sqrt{3}i}{2}$, $z_2 = -1$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4+4i| < 2\\ |arg(z+6+5i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, -11, -10), b = (3, 1, 9), c = (0, 6, 7). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(2,7,-4) и плоскость P:4x+10y-20=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-1, 11, 10), $M_1(-2, 2, 6)$, $M_2(3, -3, 6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 28x + 10y + 5z - 732 = 0 \\ 9x + y + 19z - 228 = 0 \end{cases} \qquad L_2: \begin{cases} 19x + 9y - 14z - 3056 = 0 \\ 14x + 4y + 5z - 1280 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.