▼ STEP1: IMPORT LIBRARIES

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

▼ STEP2: DATASET

```
df=sns.load_dataset("iris")
df.head()
```

species	petal_width	petal_length	sepal_width	sepal_length	
setosa	0.2	1.4	3.5	5.1	0
setosa	0.2	1.4	3.0	4.9	1
setosa	0.2	1.3	X	uccessfully!	Saved s
setosa	0.2	1.5	3.1	4.6	3
setosa	0.2	1.4	3.6	5.0	4

▼ STEP3: SELECTING INPUT AND OUTPUT

```
X=df.iloc[:,:-1]
y=df.iloc[:,-1:]
```

▼ STEP4:MODEL CREATION

```
\label{lem:continuous} from sklearn.naive\_bayes import GaussianNB \\ model=GaussianNB().fit(X,y) \\ model
```

```
▼ GaussianNB
GaussianNB()
```

model

```
# train test split and checking accuracy
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y, test_size=0.2,random_state=0)
#training the model on training data
from sklearn.naive_bayes import GaussianNB
model=GaussianNB().fit(X_train,y_train)
```

```
#making prediction on testing data
y_pred=model.predict(X_test)
y_pred
```

from sklearn.metrics import accuracy_score
score=accuracy_score(y_test,y_pred)
print("Naive bayes model accuracy is",score*100)

Saved successfully! 6.6666666666667

from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True)

Axes: >

Saved successfully!

• X