Konzeption und Inbetriebnahme einer Anlage und Modellbildung zur Raumheizungsregelung für den Betrieb mit Modellprädiktiver Regelung

Conception and startup operations of an installation and modelling for a space heating control to run with model predictive control

 ${\bf Master-Thesis}$ im Studiengang Wirtschaftsingenieurwesen

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

vorgelegt von

Daniel Johannes Mayer

aus Sulzfeld

Erstkorrektor: Prof. Dr. Angelika Altmann-Dieses

Zweitkorrektor: Prof. Dr.-Ing. Marco-Braun

Matr.-Nr.: 51968

E-Mail: daniel-j-mayer@gmx.de

Bearbeitungszeitraum: 17.03.2015 - 29.02.2016

Tag der Einreichung: 17.03.2016

Fakultät für Wirtschaftswissenschaften Hochschule Karlsruhe – Technik und Wirtschaft 2016

Kurzfassung

Abstract

This text should be italic

 $\textbf{Schlüsselwortliste} \colon \mathrm{Test1}, \ \mathrm{Test2}, \ \mathrm{Test3}$

 $\textbf{Keywords} \hbox{:} \ \textit{Test1}, \ \textit{Test2}, \ \textit{Test3}$

Danksagung

Inhaltsverzeichnis

Inhaltsverzeichnis

T	abellenverzeichnis	II
Α	bbildungsverzeichnis	[V
Q	Quelltextverzeichnis	V
S	ymbolverzeichnis	VI
1	Einleitung	1
	1.1 Motivation und Problemstellung	1
	1.2 Zielsetzung und Aufbau der Arbeit	2
2	Theoretische Grundlagen	3
	2.1 Model Predictive Control	3
	2.2 Technische Grundlagen zur Kommunikation mit Bussystemen $$	3
	2.2.1 Bussysteme	3
	2.2.1.1 Informationsaustausch	4
	2.2.1.2 Netzwerk und Topologie	4
	2.2.1.3 Buszugriffsverfahren	7
	2.2.1.4 Datensicherung	8
	2.2.1.5 Schnittstellen	9
	2.2.2 OSI-Kommunikationsmodell	13
	2.2.3 Modbus Kommunikationstechnologie	18
	2.3 Technische Grundlagen zur Modellbildung	25
	2.3.1 Thermodynamische Systeme	25
	2.3.2 Erster Hauptsatz der Thermodynamik	27
	2.3.3 Wärmeübertragung	28
	2.4 Technische Grundlagen zur Solar- und Gebäudetechnik	29
	2.4.1 Außenklima und Komponenten	29
	2.4.1.1 Die Außenlufttemperatur	30
	2.4.1.2 Sonnenstrahlung	31
	$2.4.2$ Gebäudetechnik Glas und Wärmedurchgangskoeffizienten $\ \ldots \ \ldots \ \ $	31
3	Anlagendesign	32
	3.1 Analyse der Anforderungen	32
	3.1.1 Einsatzziele und Rahmenbedingungen	32
	3.1.2 Definition der Anforderungen	33
		38
	_	38
		38

Inhaltsverzeichnis

	3.3 Konzept und Planung	39
	3.3.1 Netzwerkarchitektur	40
	3.3.2 Erfassung der Raumtemperatur	40
	3.3.3 Steuerung des Heizkörpers	41
	3.4 Umsetzung und Installation	43
	3.5 Software	43
4	Modellbildung des Raumes	44
	4.1 Anforderungen an das Raummodell	44
	4.2 Das Grundmodell des Raumes	45
	4.3 Modellerweiterung durch Berücksichtigung der realen Umgebung $$	46
	4.4 Modellerweiterung durch Berücksichtigung der räumlichen Gegebenheiten	48
	4.5 Modellerweiterung durch Berücksichtigung von Störgrößen und der	
	Sonneneinstrahlung	50
	4.6 Validierung des Modells	50
	4.7 Anpassung des Modells mit Parameterschätzung	50
5	Schlussbetrachtung	51
	5.1 Fazit	51
	5.2 Ausblick und Ansatzpunkte für weitere Arbeiten	51
Li	iteraturverzeichnis	52

Tabellenverzeichnis III

Tabellenverzeichnis

Tab. 3.1:	Umsetzung der Ziele in Anforderungen der Anlage	34
Tab. 4.1:	Eigenschaften des Raummodells	46
Tab. 4.2:	Weitere Eigenschaften des Raummodells	48

Abbildungsverzeichnis

Abb. 2.1:	Bus-Struktur	5
Abb. 2.2:	Impulsverzerrung auf einer Leitung	6
Abb. 2.3:	Baumstruktur	7
Abb. 2.4:	Cyclic Redundancy Check	10
Abb. 2.5:	Parallele und serielle Datenübertragung	11
Abb. 2.6:	Spannungspegel und Stecker der EIA 232-Schnittstelle	12
Abb. 2.7:	Spannungspegel und Stecker der EIA 485-Schnittstelle	12
Abb. 2.8:	Die sieben Schichten des Open System Interconnection Modells . .	15
Abb. 2.9:	Die vier Dienstvorgänge	16
Abb. 2.10:	Die Modbus Kommunikation im OSI-Referenzmodell	19
Abb. 2.11:	Allgemeiner Rahmen für Telegramme nach dem Modbus	
	Anwendungsprotokoll	19
Abb. 2.12:	Transaktion mit dem Modbus Protokoll	20
Abb. 2.13:	Datenmodell und Adressierung nach dem Modbus Protokoll	21
Abb. 2.14:	Serielle Kommunikation über Modbus RTU	23
Abb. 2.15:	Die Modbus TCP/IP Kommunikationsarchitektur	24
Abb. 2.16:	Angepasster Rahmen für Telegramme nach dem Modbus TCP/IP	
	Protokoll	24
Abb. 2.17:	Komponenten des Außenklimas	31
Abb. 3.1:	Raumskizze K004A vom K Gebäude der Hochschule Karlsruhe –	
	Technik und Wirtschaft	35
Abb. 3.2:	Prinzipskizze eines technischen Systems zur	
	Raumtemperaturregelung des Raumes K004b	39
Abb. 3.3:	Aufbau des Netzwerks	40
Abb. 3.4:	Verteilung der Raumtemperaturfühler	41
Abb. 4.1:	Grundmodell eines Raumes	45
Abb. 4.2:	Erweitertes Raummodell	49
Abb. 4.3:	Erweitertes Raummodell	50

Quelltextverzeichnis

Quelltextverzeichnis

4.1	Einfaches Gleichungssystem für das Grundmodell des Raumes in Modelica	46
4.2	Erweitertes Gleichungssystem Modell des Raumes unter	
	Berücksichtigung der realen Umgebung in Modelica	47
4.3	Erweitertes Gleichungssystem Modell des Raumes unter	
	Berücksichtigung der räumlichen Gegebenheiten in Modelica	48
4.4	Erweitertes Gleichungssystem Modell des Raumes unter	
	Berücksichtigung der Sonneneinstrahlung und Störgrößen	50

Symbolverzeichnis VI

Symbolverzeichnis

Hinweis: Bei der Angabe der Symbole soll sich auf die Wesentlichen beschränkt werden. Die jeweils zutreffende Bedeutung ergibt sich entweder aus dem Kontext oder ist explizit im Text angegeben.

Formelzeichen

 $A_{exchange}$ Wärmeaustauschoberfläche $[m^2]$

 c_p Spezifische Wärmekapazität eines Stoffes $\left[\frac{J}{kg*K}\right]$

E Gesamtenergie eines Systems [J]

 E_{kin} Kinetische Energie eines Systems [J]

 E_{pot} Potenzielle Energie eines Systems [J]

 f_{max} Maximale Übertragungsfrequenz [Hz]

 T_0 Celsius Nullpunkt bei [273, 15K]

T Kelvin Temperatur [K]

m Masse [kg]

 \dot{m} Massenstrom $\left[\frac{kg}{s}\right]$

 m_{sys} Masse eines Systems [kg]

P Leistung [W]

 p_{high} High-Pegel für ein Signal, entspricht logischer "1,

 p_{low} Low-Pegel für ein Signal, entspricht logischer "0,

Q Wärme [J]

 \dot{Q} Wärmestrom [W]

t Celsius Temperatur $[{}^{\circ}C]$

 Δt_{Imp} Impulsverzerrung [s]

U-Wert Materialabhängiger Wärmedurchgangskoeffizient $[\frac{W}{K*m^2}]$

U Innere Energie eines Systems [J]

W Arbeit [J]

Griechische Buchstaben

 κ

Erwartete Umsetzungsschwierigkeit

Symbolverzeichnis VII

 Ω Systemelement (Raum, Organisation, Technik)

 ρ_n Gewichtung des Wandlungspotentialmerkmals n

 $\lambda_{abs,n}$ Absolute Teilweichtigkeit des Merkmals n

 $\lambda_{rel,n}$ Relative Teilweichtigkeit des Merkmals n

Lateinische Buchstaben

kt Kundentakt

 $rw_{\varnothing}(t)$ Mittlere Lagerreichweite in Periode

 t_{AZ} Verfügbare Arbeitszeit in Periode

 $T_{\varnothing BZ}$ Mittlere Gesamtbearbeitungszeit

 $T_{\varnothing DLZ}$ Mittlere Gesamtdurchlaufzeit eines Produkts

 $T_{\varnothing PZ}$ Mittlere Gesamtprozesszeit

 $x_{\emptyset B(t)}$ Mittlerer Bedarf in Periode

 $x_{\varnothing LB}$ Mittlerer Lagerbestand

Mathematische Operatoren

(a; b] Halboffenes Intervall

⇔ Genau dann, wenn

 \cong Näherungsweise

 \forall Für alle

 \in Ist Element von

 \mathbb{N}^+ Menge der natürlichen Zahlen ohne 0

 \mathbb{R} Menge der reellen Zahlen

1 Einleitung 1

"Erfolgreich zu sein setzt zwei Dinge voraus: Klare Ziele und den brennenden Wunsch, sie zu erreichen." — Johann Wolfgang von Goethe

1 Einleitung

1.1 Motivation und Problemstellung

Von allgemein solare Anwendung hin zu Forschung HSKA wird das Ziel sein.

Hinführung und Forschung der HSKA aufzeigen und daher einordnen Forschen derzeit bereits auf dem Gebiet (MPC mit) der solaren Anwendungen. Derzeit wird eine große Solaranlage zur Kühlung des Atriums installiert. Die Anlage nutzt die in Solarkollektoren gewonnene Wärmeenergie um eine Adsorptionskälteanlage anzutreiben. Die Anlage ist aufgrund ihrer Größe träge in der Reaktion und bisher noch im Aufbau. Komplementär dazu soll eine kleine Anlage mit solarem Bezug aufgebaut werden um die Forschung auch für ergänzende Dinge betreiben zu können.

Die Modellprädiktive Regelung beschäftigt sich damit, ein technisches System oder allgemeiner einen Prozess – im mathematisch exakten Sinne – optimal zu regeln.

Im Dialog mit den Projektverantwortlichen der Hochschule Karlsruhe für die Erforschung von solaren Anwendungen, in Person von Herrn Adrian Bürger und Markus Bohlayer, die Einsatzziele gemeinsam erarbeitet und sind im Detail in Kapitel 3.1 ausgeführt.

Wichtigste Ergebnisse aus Dialog ist die Motivation dieser Forschungsarbeit:

Die Motivation dieser Arbeit ist also, einen komplementären Forschungsbeitrag für solare Anwendungen zu leisten im Hinblick auf die große Anlage.

Dass heißt jene Chancen zu nutzen, die die große Anlage nicht bieten kann einen möglichst großen Nutzen zu realisieren, also was die große Anlage nicht leisten kann und die große Anlage zu entlasten im Sinne von Empfindlichkeit/Versuche.

Außerdem sollen möglichst Erfahrungen gesammelt werden, die beim Anlauf der großen Anlage von Nutzen sein können.

!!!!!!!!!!! Forschungsfrage, vorher Begriffe klären: MPC, Anlage, Modell, Steuerung/Regelung Als Forschungsfrage und Problemstelltung dieser Arbeit ergibt sich die Frage, wie eine Anlage und ein Modell derselben aufgebaut sein müssen, um die Regelung einer Raumtemperatur mit Modellprädiktiver Regelung zu ermöglichen. !!!!!!!!!!!!!!

1 Einleitung 2

1.2 Zielsetzung und Aufbau der Arbeit

Das übergeordnete Ziel dieser Arbeit ist es, eine Test- und Anwendungsumgebung zu schaffen, um die Forschung der Hochschule Karlsruhe auf dem Gebiet der Modell-prädiktiven Regelung von solaren Anwendungen weitere Forschung weiter voran zu treiben und komplementär zu ergänzen.

Aus der Forschungsfrage lässt sich als konkretes Ziel der Arbeit ableiten, die Konzeption, Planung und Umsetzung einer Anlage und Bildung eines Modells zur Regelung einer Raumtemperatur mit Modellprädiktiver Regelung. Also ein Labor Weiterhin soll mit dieder Arbeit Know-How und Erfahrung generiert werden das bei der weiteren Forschung von Nutzen sein kann/ist.

Im Rahmen dieser Arbeit werden – anschließend an die Einleitung in 1 – die theoretischen Grundlagen in 2 ausgeführt. Zunächst wird die grundlegenden Theorie zu Model Predictive Control vorgestellt bevor anschließend weitere technische Grundlagen erklärt, welche für das weitere Verständnis dieser Arbeit benötigt werden.

Danach wird das technische System in Kapitel 3 Schritt für Schritt entwickelt, ausgehend von der Idee und den räumlichen Gegebenheiten/Nebenbedingungen, und weiter konkretisiert bis zur realisierten Umsetzung in eine funktionierende Anlage.

Dementsprechend werden zunächst das Konzept, die Planung und die technische Umsetzung der konkreten Anlage dargestellt, bevor anschließend die theoretischen Grundlagen von Model Predictive Control und zur die Modellbildung erläutert werden. Anschließend wird das Modell für Model Predictive Control gebildet und ein erstes grobes Konzept zur Steuerung der Raumtemperatur vorgestellt. Abschließend wird eine Validierung des Modells versucht und findet eine Anpassung des Modells statt damit es künftig mit Model Predictive Control genutzt werden kann.

", Theorie ist die Mutter der Praxis." — Louis Pasteur

2 Theoretische Grundlagen

In diesem Kapitel werden die theoretischen Grundlagen erläutert die benötigt werden, um die Forschungsfrage zu beantworten. Zunächst MPC dann eher technisch

2.1 Model Predictive Control

Model Predictive Control an sich ist eine Methodik zur Steuerung von Systemen. Diese versucht zunächst, zu sich periodisch wiederholenden, diskreten Zeitpunkten das Verhalten eines Systems in der Zukunft – also einer immer gleich weit in die Zukunft hineinreichenden Periode – zu beschreiben. Hierzu bedient Model Predictive Control sich der Kenntnis des aktuellen Zustandes und eines physikalischen-mathematischen Modells des Systems, um dessen zukünftiges Verhalten "vorherzusagen" bzw. abzubilden. Des Weiteren wird versucht das Verhalten des Systems mit minimalem Aufwand zu beeinflussen, um einem eigens- oder vordefinierten Zielkriterium zu folgen beziehungsweise diesem zu entsprechen.

2.2 Technische Grundlagen zur Kommunikation mit Bussystemen

In diesem Kapitel werden die Grundlagen von Hard- und Software beleuchtet die für die Kommunikation der Steuerung mit den einzelnen Anlagenteilen benötigt werden. Diese umfassen zunächst Bussysteme im Allgemeinen, dann das OSI Modell für techn. Kommunikation und werden anhand des spezifischen/konkreten Anwendungsfalls Modbus erläutert.

Die Einführung wird an der Struktur von Schnell u. Wiedemann [2006] anlehnen.

2.2.1 Bussysteme

Um allgemein Prozesse zu überwachen, zu steuern oder regeln zu können, müssen zwischen den verschiedenen Prozessbeteiligten/einheiten Informationen ausgetauscht werden. Im Kontext dieser Arbeit gilt es einen Prozess zur Temperatursteuerung/Halten zu regeln. Die Prozessbeteiligten sind hierbei technische Bauteile, Aktoren und Sensoren sowie ein Steuerungsrechner/Controller, die zusammen ein technisches System bilden, dass im Folgenden als Anlage bezeichnet wird. Die Anlage zeichnet sich dadurch aus, dass sie eine eigenständige funktionale Einheit bildet einen eigenen Zweck

verfolgt, die Raumtemperaturregelung und einen Mehrwert gegenüber ihrer Einzelteile hat, was dem Zusammenspiel der einzelnen Bauteile und Geräte entspricht. Um den Mehrwert zu realisieren und den Zweck zu erfüllen, werden Kommunikationssysteme benötigt. Mit Hilfe derer kann Kommunikation erfolgen und die Anlage ihren Zweck erreichen. Diese Kommunikationssysteme werden von technischer Seite oftmals als Bussysteme realisiert/umgesetzt. Bussysteme lassen sich anhand ihrer verschiedenen Ausprägungen von Merkmalen klassifizieren. Im folgenden Abschnitt werden zunächst die Merkmale von Bussystemen zum allgemeinen Verständnis dargestellt bevor auf die konkreten Ausprägungen des später eingesetzten Modbus-Bussystems eingegangen wird.

2.2.1.1 Informationsaustausch

Die Informationen über einen Prozess und dessen Zustand, werden auf höherer Ebene durch Daten und auf unterster Ebene durch einzelne Bits repräsentiert. Der Austausch dieser Daten zwischen den einzelnen Geräten findet in Form von Telegrammen statt. Ein Telegramm besteht grundsätzlich aus den zu übertragenden Daten und zusätzlich aus Informationen zur Übertragung. Die Daten werden vor der Übertragung in Rahmen, sogenannte data frames, eingeteilt, deren genauer Aufbau abhängig vom verwendeten Kommunikationsprotokoll innerhalb des Netzwerks ist [Schnell u. Wiedemann, 2006, S. 11f.]. Der Aufbau eines Telegramms am Beispiel des Modbus-Kommunikationsprotokolls wird in Abschnitt 2.2.3 erläutert und ist in Abb. 2.11 graphisch dargestellt.

2.2.1.2 Netzwerk und Topologie

Werden einzelne Prozesseinheiten miteinander über sogenannte Verbindungsleitungen, die zur Übertragung Informationen genutzt werden können, verknüpft, entstehen dabei Netzwerke und die Prozesseinheiten werden als Teilnehmer des Netzwerks bezeichnet. Ein Netzwerk lässt sich in einzelne Segmente einteilen und kann je nach Ausführung der Verbindungsleitungen und Anzahl der Teilnehmer unterschiedlich ausgeprägt sein. Anhand der geometrischen Anordnung lassen sich die folgenden, verschiedenen Netzwerktopologien unterscheiden.

Die einfachste Art, um eine Verbindung zwischen zwei Teilnehmern eines Netzwerks herzustellen, ist die sogenannte Zweipunktverbindung. Dazu sind die Netzwerkteilnehmer durch eine direkte Leitung miteinander verbunden. Jedoch steigt mit der Anzahl von Teilnehmern auch der Verbindungsaufwand überproportional an, um bei solchen vermaschten Netzwerk alle Teilnehmer miteinander zu verbinden. Dies hat für große, vermaschte Netze zur Folge, dass eine unübersichtliche große Anzahl von Schnittstellen, ein extrem hoher Verkabelungsaufwand und damit verbundene hohe Kosten entstehen. Um diese Kosten zu vermeiden, ergeben sich noch verschiedene andere Möglichkeiten zur Anordnung von Teilnehmern in Netzwerken [Schnell u. Wiedemann, 2006, S. 1f.].

Abb. 2.1: Bus-Struktur aus [Schnell u. Wiedemann, 2006, S. 3]

Um dem hohen Verkabelungsaufwand zu vermeiden, wird bei großen Netzwerken zu einer Linienstruktur übergegangen, die auch als Bus-Struktur bezeichnet wird und in Abb. 2.1 visualisiert ist. Charakteristisch für die Bus-Struktur ist, dass alle Teilnehmer entlang einer langen Verbindungsleitung, dem sogenannten Buskabel, angeordnet sind. Sie sind mit Hilfe von kurzen Stichleitungen an das gemeinsame Buskabel angebunden, über das die gesamte Kommunikation im Netzwerk erfolgt. Durch diese Anordnung wird der Verkabelungsaufwand sowie die Anzahl an Schnittstellen, insbesondere für sehr große Netzwerke, stark reduziert. Jedoch wird durch Nutzung einer gemeinsamen Kommunikationsleitung die gleichzeitige Kommunikation von Teilnehmern erschwert und es müssen sogenannte Buszugriffsverfahren definiert werden, welche lediglich Regeln für Zugriff auf den Bus festlegen. Weiterhin müssen durch die Parallelschaltung alle Teilnehmer ständig alle Sendungen mitverfolgen, wodurch der Sender stark belastet wird. Die Busleitungslängen sind meist sehr lange¹ und da die Länge auf die zu übertragende Wellenlänge bezogen nicht mehr vernachlässigbar klein ist, müssen Reflexionen durch Leitungsabschlusswiderstände an den beiden Enden der Busleitung unterbunden werden. Außerdem werden die Leitungslängen und die Teilnehmer je Netzwerksegment begrenzt??S. 3f.]schn06.

Ein weiterer begrenzender Faktor für die Leitungslänge ist der Fakt, dass die maximale Übertragungslänge und die maximale Übertragungsrate miteinander verknüpft sind und sich gegenseitig beschränken. Der Leitungs- und Kapazitätswiderstand einer Leitung hängen von der Länge der Leitung ab und lassen sich durch das Ersatzschaltbild eines RC-Gliedes repräsentieren, wie in Abbildung Abb. 2.2 a) zu sehen ist. Durch die beiden Widerstände entsteht auf der Leitung eine Impulsverzerrung Δt_{Imp} , die somit mittelbar von der Leitungslänge abhängt. Je länger die Leitung wird, desto größer werden auch beiden Widerstände. Durch die erhöhte Leitungskapazität $C_{Leitung}$ erhöht sich die Ladezeit und gleichzeitig sinkt durch den erhöhten Leitungswiderstand $R_{Leitung}$ die Lastspannung U_G . Damit vergrößert sich die Impulsverzerrung Δt_{Imp} , wie in Abb. 2.2 b) und Abb. 2.2 c) dargestellt. Dadurch wird die maximale Frequenz

¹ Diese reichen von mehreren hundert Metern bis teilweise in den Kilometerbereich, je nach Art und Einsatzort der Anwendung.

Abb. 2.2: Impulsverzerrung auf einer Leitung: a) Ersatzschaltbild der Anordnung b) Ausgangsspannung des Generators c) Empfängerspannung aus [Schnell u. Wiedemann, 2006, S. 4]

 f_{max} der Datenübertragung auf den Kehrwert der Impulsverzerrung $f_{max} = \frac{1}{\Delta t_{Imp}}$ beschränkt, da ansonsten der Empfänger den Wechsel des logischen Zustandes nicht mehr registrieren kann. In der Praxis bedeutet dies, dass die maximale Übertragungslänge und die maximale Übertragungsrate miteinander verknüpft sind und sich gegenseitig beschränken [Schnell u. Wiedemann, 2006, S. 4f.].

Um die Begrenzung der Leitungslängen zu korrigieren, wurde die Bus-Struktur zu einer Baumstruktur weiterentwickelt, welche in Abb. 2.3 dargestellt ist. Darin werden einzelne Netzwerk-Segemente, also einzelne Bus-Strukturen, durch Verstärkerelemente, sogenannte Repeater, zu einem großen Netzwerk verknüpft. Um damit jedoch größere Flächen als mit der Bus-Struktur zu vernetzen und gleichzeitig die maximale Leitungslänge und die maximale Anzahl der Busteilnehmer zu vergrößern, wird jedoch eine galvanische Trennung der Teilnehmer voneinander benötigt [Schnell u. Wiedemann, 2006, S.5 f.]. Die Besonderheit in dieser Struktur liegt also darin, dass sich durch Ihren Aufbau bestehende Bus-Strukturen auch nachträglich einfach erweitern oder miteinander verknüpfen lassen. Die Bauteile zur Erweiterung von Netzwerken werden im Abschnitt 2.2.1.5 Schnittstellen vorgestellt.

Weitere wichtige Netzwerk Topologien, die für das Verständnis dieser Arbeit keine weitere Relevanz haben, sind die Ring- und die Stern-Struktur. Die Ring-Struktur ist durch einen physikalischer Ring von Zweipunktverbindungen aufgebaut und gekennzeichnet durch die Kommunikation der Teilnehmer übereinander hinweg. Die Stern-Topologie hingegen ist um eine Zentralstation herum ausgebaut, die mit al-

Abb. 2.3: Baumstruktur aus [Schnell u. Wiedemann, 2006, S. 5]

len Teilnehmer verbunden ist und über die die gesamte Kommunikation abläuft. Der interessierte Leser findet in [Schnell u. Wiedemann, 2006, S. 6f.] detailliertere Ausführungen.

2.2.1.3 Buszugriffsverfahren

Die meisten Netzwerktopologien kommunizieren gemeinsam über eine Verbindungsleitung. Daher werden Regeln für den Zugriff definiert, um eine reibungslose Kommunikation zu ermöglichen. Die Buszugriffsverfahren lassen sich in zwei Gruppen aufteilen, der kontrollierten und zufälligen Verfahren [Schnell u. Wiedemann, 2006, S. 19].

Bei den kontrollierten Verfahren ist der Sender bereits vor Sendebeginn eindeutig bestimmt und eine Zuteilung des Busses ist nicht notwendig. Der Buszugriff findet entweder zentral innerhalb einer Zentralstation statt, bei sogenannten Master/Slave-Verfahren, oder wird dezentral durch Steuereinheiten vorgenommen, wie z.B. beim Tokenring und Tokenbus. Ein solches Verfahren heißt echtzeitfähig, wenn die Zykluszeit zur Datenübertragung berechenbar ist, aufgrund einer Beschränkung der Länge des Übertragungsintervalls und der maximalen Datenlänge. Bei zufälligen Buszugriffsverfahren greifen die Teilnehmer bei Bedarf auf die Verbindungsleitung zu und müssen sicherstellen, dass diese nicht gerade von einem anderen Teilnehmer belegt ist. Da nicht vorhergesehen werden kann, an welchem Zeitpunkt Informationen übertragen werden kann keine Echtzeitfähigkeit erreicht werden [Schnell u. Wiedemann, 2006, S. 19].

Das Master/Slave-Verfahren besteht in der Regel aus einer Bussteuerungseinheit, dem sogenannten Master, und mehreren passiven Teilnehmern, den Slaves. Die Kommunikation wird ausschließlich vom Master initiiert, der die Verbindung zu den Slaves aktiv durch ein Request herstellt, in welchem die angeforderten Daten sepzifiziert sind. Die Slaves treten nur nach Anfragen in Aktion und antworten darauf unmittelbar mit einer Response, die die angeforderten Daten des Masters enthält. In der Regel erfolgt die Kommunikation zyklisch zu allen Slaves gleichzeitig (Polling), damit

der Master ein umfassendes und aktuelles Bild über den Systemzustand bekommt. Dadurch ergeben sich einfache Slaves, die günstig in den Bus eingebunden werden können, weil die gesamte "Intelligenz" im Master implementiert ist. Jedoch gilt es bei diesem Verfahren zu beachten, dass der Informationsaustausch zwischen verschiedenen Slaves längere Zeit in Anspruch nehmen kann und bei einem Ausfall des Masters das gesamte Bussystem stillliegt [Schnell u. Wiedemann, 2006, S. 19ff.]. Auf eine weitere Beschreibung der übrigen Verfahren wird aufgrund der fehlenden Relevanz für diese Arbeit verzichtet, der interessierte Leser findet jedoch bei Schnell u. Wiedemann [2006] im Kapitel Buszugriffsverfahren ausführliche Informationen.

2.2.1.4 Datensicherung

Bei der Übertragung von Informationen besteht die Gefahr von Störungen, welche sich als Fehler in einer Nachricht durch Invertierung von Bits äußern. Störungen sind in der Regel technischer Art, wie zum Beispiel elektromagnetische Störsignale, Rauschen oder Potentialdifferenzen, und gegen einen Großteil lassen verschiedene Vorkehrungen treffen. Dadurch ergibt sich die Möglichkeit Störungen vorzubeugen oder diese nach Einsatz zu beseitigen. Der erste Ansatz ist also eine Verminderung des Auftretens durch technische Vorkehrungen, wie zum Beispiel Schirmung der Kabel, galvanische Trennung von Netzwerken oder differenzielle Signalübertragung. Der zweite Ansatz beschäftigt sich mit der Überwachung des Nachrichtenverkehrs und dem Ausbessern/Gegenmaßnahmen bei Fehlern [Schnell u. Wiedemann, 2006, S. 30].

Auf dem Gebiet der Buskommunikation entspricht wird eine Information oder Nachricht oder Telegramm codiert. Es werden stets Transparente Codes betrachtet, Welche bitorientiert sind. Dabei sind jegliche Kombination von Bits erlaubt und man kann allein Aus der Folge der Blitz nicht auf einen Fehler schließen. Definition Telegramm und Bit(0 und 1)

Die Vorkehrungen technischer Art Können Sind in aller Regel in den Spezifikationen der einzelnen Bussysteme enthalten, daher Werden diese nicht weiter beschrieben und lediglich die Überwachung und Ausbesserung das Nachrichtenverkehrs erläutert. Bei der Übermittlung von Nachrichten können drei Arten von Fehlern auftreten: Der Fehler kam erkennbar und korrigierbar sein, Erkennbar und nicht korrigierbar Oder nicht erkennbar und damit auch nicht korrigierbar.

Kann der Fehler erkannt werden ist bereits ein großer Teil der Arbeit getan.

Fehlermaße sind die Bitfehlerrate p = Anzahl fehlerhafter bits/ gesamtzahl gesendete bits, schlechtester Wert ist p=0,5, da durch invertierung immer wieder umstellbar. üblich in Technik $p=10^{-4}$. ARQ(Error detection and automatic request repeat) ist normale Reaktion auf erkannte Fehler, dass eine einfache Wiederholung der Übertragung.

Restfehlerrate R ist eine wichtige Kennzahl weil, sie die unerkannten, fehlerhaften Bitfolgen die nach der Anwendung von Fehlererkennungstrategien noch verbleiben

misst. R = Anzahl unerkannt fehlerhafter Bitmkombinationen/Gesamtlänge in Bits der Information. ->Maß für Unversehrtheit der Daten

Telegrammeffizienz auch wichtig, weil sie eine Aussage erlaubt wie viel Infomrtionen tarnsportiert werden können und sie steht im Gegensatz zur Restfehlerquote, je sicherer Übertragung desto weniger Effizienz. E = fehlerfreie Infobits/Gesamtzahl übertragene bits(incl. Adresse Erro check usw.) [Schnell u. Wiedemann, 2006, S. 31ff.]

Die genauen Berechnungen der Wahrscheinlichkeiten und der mittleren Zeit zwischen zwei Fehlern sind und noch viel mehr Details finden sich im Kapitel Datensicherung in [Schnell u. Wiedemann, 2006, S. 31f.] zu finden.

Um Fehler systematisch zu erkennen, existieren verschiedene Fehlererkennungsstrategien. Die einfachste ist der Paritätsbit, der lediglich die Quersumme des Telegramms angibt, P=0 für eine ungerade und p=1 für eine gerade Quersumme. Damit können diejenigen Fehler entdeckt werden, die eine ungerade Anzahl an Bitflips haben, die mit geraden leider nicht. Eine Erweiterung der Paritätssicherung ist die Blocksicherung, bei der die Paritäten über ein Array aus mehreren Telegrammen überprüft werden kann [Schnell u. Wiedemann, 2006, S. 34f.].

Beim sogenannten Cyclic Redundancy Check, in der Literatur häufig als CRC-Check bezeichnet, wird ein Telegramm als Zahl aufgefasst. Im Sender wird diese Zahl durch das Generatorpolynom G geteilt. Das Ergebnis wird verworfen, lediglich der Rest bei der Division wird an das Telegramm angehängt. Der Empfänger dividiert das empfangene Telegramm durch dasselbe Polynom G und falls sich ein Rest von 0 ergibt, war die Übertragung fehlerfrei. Dadurch lassen sich abhängig vom Generatorpolynom G unterschiedliche Güten der Fehlererkennung realisieren. In Abb. 2.4 sind die Vorgänge beim Cyclic Redundancy Check graphisch zusammengefasst.

2.2.1.5 Schnittstellen

Die physikalische Übertragung der Daten/Telegramme kann über verschiedenste Schnittstellen geschehen und erfplgt binär. Je nach Topologie des Bussystems und Protokoll, kann die Datenübertragung seriell oder parallel geschehen wie in Abb. 2.5 zu sehen. Bei einer parallelen Datenübertragung werden immer mehrere Bits gleichzeitig übertragen, weshalb eine hohe Übertragungsgeschwindigkeit erreicht werden kann, jedoch eine aufwändige im Sinne eines vermaschten Netzes notwendig ist. Daher erfolgt in der Praxis eher eine serielle Datenübertragung, also die einzelne Übertragung von bits nacheinander über eine Leitung, wie sie zum Beispiel mit einer Bus-Struktur möglich ist [Schleicher, 2008, S. 13].

Bei der binären Datenübertragung werden lediglich zwei Zustände unterschieden, deren Signalwerte einen High-Pegel p_{high} und einen Low-Pegel p_{low} besitzen, die durch einen Bereich, in dem das Signal nicht definiert ist, voneinander getrennt sind [Schleicher, 2008, S. 9]. Die Geschwindigkeit der Datenübertragung wird in der Einheit Baud gemessen und definiert als übertragene Bits pro Sekunde (Bps)[Schleicher, 2008,

CRC (Cyclic Redundancy Check)

Die Nachricht sei I

Beispiel dezimal: I = 14

binär: l = 110101

Das Prüfpolynom sei G

$$G = ...a_4 \cdot x^4 + a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0 \cdot x^0$$

d.: ... $0 \cdot x + 3 \cdot x^0 = 3$

b.: ...1 · $x^3 + 0 \cdot x^2 + 1 \cdot x + 1 \cdot x^0 = 1011$

Der Hilfsvektor ist dann H = 100 ... 0

d.: H = 10

b.: H = 10000

Die Information I wird mit H multipliziert:

$$B = I \cdot H$$

d.: B = 140

b.: B = 1101010000

Das Produkt B wird durch G dividiert:

$$\frac{B}{G} = Q + \frac{R}{G}$$

d.:
$$\frac{B}{G} = \frac{140}{3} = 46 + \frac{2}{3}$$
 b.: $\frac{B}{G} = \frac{1101010000}{1011}$

b.:
$$\frac{B}{G} = \frac{1101010000}{1011}$$

Der Rest R wird B hinzuaddiert und das Ganze gesendet

d.: B + R = 142

b.: B + R = 1101010101

Der Empfänger bildet

d.: (B - R): G = 138:3

b.: (B - R): G = (B + R) : G = 1101010101:1011

=46, R=0

= 1111011, R = 0

Es bedeutet R = 0 fehlerfreie Übertragung

Abb. 2.4: Cyclic Redundancy Check aus [Schnell u. Wiedemann, 2006, S. 38]

Abb. 2.5: Parallele und serielle Datenübertragung aus [Schleicher, 2008, S. 13]

S. 22].

Die gängigsten Übertragungsverfahren sind elektrische und optische Schnittstellen. Die elektrischen Schnittstellen gliedern sich wiederum in Strom- und Spannungs-Schnittstellen auf. Im weiteren Verlauf der Arbeit sind lediglich die Spannungsschnittstellen EIA² 232 und EIA 485, welche auch als EIA 232 und EIA 485 beziechnet werden, relevant, weshalb der interessierte Leser weitere Informationen zu weiteren Schnittstellen in [Schleicher, 2008, S. 13ff.] und [Schnell u. Wiedemann, 2006, S. 57ff.] findet.

Die EIA 232 Schnittstelle ist wie bereits erwähnt eine Spannungsschnittstelle, die für Punkt-zu-Punkt Verbindungen geeignet ist und deren Pegel in Abb. 2.6 zu sehen sind. Die Pegel sind für Spannungen zwischen $-3V < p_{high} < -15V$ als logische "1", der Low-Pegel für Spannungen zwischen $-3V < p_{low} < -15V$ als die logische "0" definiert. Im Intervall [-3V, 3V] ist das Signal nicht definiert, weshalb dieser Bereich möglichst schnell durchlaufen werden sollte. Da der Signalpegel von der Datenleitung hin zur Masse gemessen wird kann er nicht symmetrisch sein und ist damit erdunsymmetrisch. [Schnell u. Wiedemann, 2006, S. 57f.]

Typischerweise steht eine solche Schnittstelle jedem Rechner als COM-Port zur Verfügung und in der Automatisierungstechnik werden nur die RxD (Receive Data), TxD (Transmit Data) und GND Leitungen, die ein gemeinsames Bezugspotenzial definiert, verwendet. Wichtig bei der Verkabelung ist, dass die übertragende Leitung TxD immer mit der empfangenden Leitung RxD verbunden ist [Schleicher, 2008, S. 14f.].

Die EIA 485 Schnittstelle ist ebenfalls eine Spannungsschnittstelle, die jedoch für

² Abkürzung der Normen und Standards die von der Electronic Industries Alliance entwickelt wurden.

Abb. 2.6: Links: Spannungspegel EIA 232-Schnittstelle aus [Schnell u. Wiedemann, 2006, S. 57] Rechts: Stecker EIA 232-Schnittstelle aus [Schleicher, 2008, S. 14]

Abb. 2.7: Links: Spannungspegel EIA 485-Schnittstelle aus [Schnell u. Wiedemann, 2006, S. 60] Rechts: Stecker EIA 485-Schnittstelle aus [Schleicher, 2008, S. 19]

Mehrpunktverbindungen geeignet ist und die in der Norm ISO 8482 beschrieben ist. Die Signalübertragung erfolgt über zwei Übertragungsleitungen, die in der Regel als verdrilltes und abgeschirmtes Zweidrahtleitung ausgeführt sind. Die Signalpegel entsprechen der Differenzialspannung U_{AB} zwischen den beiden Leitungen, die innerhalb des Intervalls von [-7V,12V] bezogen auf die Masse liegen muss. Durch das verdrillte Leitungspaar, wirken sich mögliche Störgrößen auf die Spannung beider Leitungen gleichermaßen aus, wodurch die Spannungsdifferenz unverändert bleibt und eine erhöhte Störfestigkeit gegenüber der EIA 232-Schnittstelle erreicht wird. Bei der Pegelfestlegung werden für Empfänger und Sender gibt es verschiedene Vorgaben, wie in Abb. 2.7 graphisch dargestellt. So müssen die Sender eine Differenzspannung zwischen $-1,5V < U_{AB} < -5V$ für logische "1" und $1,5V < U_{AB} < -5V$ für logische "0" leisten können. Empfänger hingegen müssen in der Lage sein Spannungsdifferenzen von $U_{AB} < -0,3V$ als logische "1" und $0,3 < VU_{AB}$ als logische "0" zu detektieren und zu interpretieren [Schnell u. Wiedemann, 2006, S. 59ff.].

Es besteht ein geringer Installationsaufwand und die Datenübertragung erfolgt über die TxD/RxD + und TxD/RxD - Leitungen, ein gemeinsames Bezugspotential über die GND Leitung wird nicht zwingend benötigt, jedoch wird ein Leitungsabschluss an beiden Enden des Buskabels benötigt. [Schleicher, 2008, S. 19f.].

Um Netzwerk zu erweitern, können verschiedene Bauteile eingesetzt werden. Sogenann-

te Repeater sind aktive Bauteile, die lediglich einen kurze Zeitverzögerung verursachen und nur Netzwerke der selben Schnittstelle miteinander verbinden kann. Er ist ein aktives Bauteil, dass das Datensignal lediglich verstärkt, indem er die empfangenen Bits blind kopiert und verstärkt auf das angeschlossene Netzwerk überträgt, weshalb er für die Kommunikationsteilnehmer unsichtbar ist [Schnell u. Wiedemann, 2006, S. 79f.].

Eine Möglichkeit um Netzwerke verschiedener Art zu verbinden bieten Bridges und Gateways. Erstere werden auch als Schnittstellenumsetzer bezeichnet und kommen zum Einsatz, wenn trotz gleichem Übertragungsprotokoll genutzt unterschiedliche physikalische Schnittstellen oder Übertragungsmedien genutzt werden sollen [Schnell u. Wiedemann, 2006, S. 80f.]. Er erkennt die Datenflussrichtung automatisch und wandelt die Pegel der Schnittstellen in den jeweils anderen um [Schleicher, 2008, S. 21] Die sogenannten Gateways dienen der Kopplung von Netzwerken, die verschiedene Architekturen aufweisen, also neben unterschiedlichen physikalischen Schnittstellen auch andere Übertragungsprotokolle verwenden. Das Gateway ist demnach umfassender als die Bridge und erweitert deren Funktionen um die Übersetzung der Signale von einen Übertragungsprotokoll in das jeweils andere [Schnell u. Wiedemann, 2006, S. 84f.].

2.2.2 OSI-Kommunikationsmodell

Aufgrund der großen Anzahl verschiedener technischer Systeme existieren auch viele verschiedene Arten der Kommunikation untereinander. Bei der genaueren Betrachtung der Kommunikation wird ersichtlich, dass diese oftmals ähnlich abläuft und sich durch ein Meta-Schema beschreiben lässt [Schnell u. Wiedemann, 2006, S. 8]. Um die Kommunikation auch über verschiedenen Systeme hinweg zu ermöglichen und sie zu formalisieren, wurde von der International Organization for Standardization 1984 ein abstraktes Referenz-Modell entwickelt, dass in der ISO-Norm 7498-1 beschrieben ist. Es dient der Entwicklung und Verbesserung von Standards für den Informationsaustausch sowie als Referenz für bestehende Standard um eine gewisse Konsistenz zu wahren [osi, 1996, S. 1]. Das Ziel bei dem Entwurf des Modells war es, eine Menge von Standards zu schaffen um autonomen Systemen die Kommunikation untereinander zu ermöglichen [osi, 1996, S. 4].

Das sogenannte Open System Interconnection Modell wird zunächst allgemein erläutert, da die Kommunikation von technischen Systemen im Rahmen der Arbeit eine zentrale Rolle spielt, und wird anschließend im Anwendungskontext mit den eingesetzten Protokollen und Schnittstellen referenziert.

Zunächst wird im Standard definiert, womit sich das Modell beschäftigt und abgegrenzt welche Aspekte im Modell keine Berücksichtigung finden [osi, 1996, S. 3]:

"OSI is concerned with the exchange of information between open systems (and not the internal functioning of each individual real open system)."

Das OSI-Modell beschäftigt sich also zentral mit dem Austausch von Informationen zwischen verschiedenen offenen Systemen und allen dabei anfallenden Aktivitäten. Diese sind sehr umfangreich und lassen sich in folgende Bereiche gliedern [osi, 1996, S. 3f.]:

- Der Austausch von Informationen zwischen offenen Systemen,
- die physischen Medien zur Verbindung von offenen Systemen und deren Transportmöglichkeit von Informationen,
- die Vernetzung von offenen Systemen,
- die Interaktion zwischen offenen Systemen und deren Fähigkeit zur Kooperation bei der Datenübertragung.

Bezogen auf den Austausch von Informationen überschneiden sich die physische Verbindung und die Vernetzung und entsprechen zusammen der Infrastruktur und deren Architektur, die zur Übertragung zur Verfügung steht. Die Interaktion umfasst weitaus mehr Aufgaben: Neben der Synchronisation der Prozesse, die Daten austauschen wollen, muss auch die Darstellung der auszutauschenden Daten und eventuell notwendige Transformationen beachtet werden, um eine Kompatibilität unterschiedlicher Systeme zu erreichen. Weitere wichtige Aufgaben sind die Datenspeicherung, deren Integrität und die Sicherheit beim Austausch hinsichtlich Fehler und Einsicht von Außen [osi, 1996, S. 4]. Es ist leicht zu erkennen, dass die technische Kommunikation einen sehr umfangreichen und komplizierten Prozess darstellt. Daher wird der Kommunikationsprozess im OSI-Modell stark abstrahiert und in sieben abstrakte Ebenen gegliedert. Die einzelnen Ebenen sind in Abb. 2.8 dargestellt und dienen dazu verschiedene Aufgaben des Kommunikationsprozesses in Teilaufgaben zusammenzufassen.

Die Ebenen werden Schichten genannt und haben klar definierte Aufgaben und Schnittstellen zu ihren Nachbarschichten. An diesen Schnittstellen werden Dienste bereitgestellt, die von den anderen Ebenen genutzt werden können. Durch diesen Aufbau können einzelne Schichten einfach bearbeitet oder ausgetauscht werden, ohne die Gesamtfunktionalität zu gefährden. Außerdem kann ein System auch aus Komponenten verschiedener Hersteller zusammengesetzt werden, womit diese Architektur nachweislich als Basis für offene Systeme dient. In Abb. 2.8 ist ebenfalls dargestellt, dass die Schichten eins bis vier auch als Übertragungsschichten beziehungsweise Transportsystem zusammengefasst werden, weil sie für die Datenübertragung zwischen Systemen als gemeinsame Aufgabe haben. Die Schichten fünf bis sieben werden als Anwendungsschichten bezeichnet weil sie bei der Datenübertragung die Zusammenarbeit zwischen der Anwendersoftware und dem Betriebssystem sicherstellen [Schnell u. Wiedemann, 2006, S. 8f.].

Die Schnittstellen/Dienste zwischen den Schichten werden als Service Access Points bezeichnet und besitzen jeweils eine eindeutige Adresse, die oberhalb liegende Schicht ist der Service user, da er den Service daer unterhalb liegenden Schicht nutzt, dem service provider. Die Dienste können in verbindungsorientierte und verbindungsunab-

Abb. 2.8: Die sieben Schichten des *Open System Interconnection* Modells verändert nach [Schnell u. Wiedemann, 2006, S. 10] und [osi, 1996, S. 28]

hängige unterschieden werden. Für den Datenausatausch stehen folgende Dienste zur Verfügung Bei der Abhandlung der Dienstaufgaben stehen die vier Dienstvorgänge der Client/Server Architektur zur Verfügung, die zusammengefasst in Abb. 2.9 abgebildet sind [mod, 2006a, S. 2f.]:

request - Anforderung indication - Meldung response - Antwort confirmation - Bestätigung Bestätigten Diensten stehen alle vier Vorgänge zur Verfügung, unbestätigten lediglich die Anforderung und Meldung. Typische Dienste sind Connect, disconnect, data

[Schnell u. Wiedemann, 2006, S. 14f.].

Im Folgenden wird kurz auf die einzelnen Schichten von Unten nach oben eingegangen bevor das Zusammenwirken der einzelnen Schichten anhand eines Beispiels verdeutlicht wird.

Die erste, physikalische Schicht stellt die mechanischen und elektrischen Möglichkeiten zur physischen Verbindung von Systemen zur Verfügung, um die Datenübertragung der einzelnen Bits zu ermöglichen [osi, 1996, S. 49f.]. Sie legt also die mechanischen und elektrischen Eigenschaften der Übertragung fest, also die Endsystemkopplung (Stecker), die Kabelspezifikationen und die Zuordnung der Anschlüsse sowie die Art der Codierung und die Spannungspegel zur Übertragung. In der Regel werden dazu bestehende Normen genutzt, wie zum Beispiel die elektrischen Übertragungsstrecke nach EIA 485-Norm, welche im Folgenden noch erläutert wird.

Abb. 2.9: Die vier Dienstvorgänge

Ein wichtiger Aspekt der Schicht ist es, dass die Spezifikation der Strecke und nicht das physikalisches Medium selbst Teil der Schicht eins ist, denn die Kommunikation ist unabhängig von der konkreten Ausprägung der Schicht [Schnell u. Wiedemann, 2006, S. 9].

Die zweite Schicht betrachtet Kommunikation zwischen zwei systemen. Deshalb stellt die Datenverbindungsschicht, stellt funktionale und prozedurale Möglihckeiten für den verbiindungsaufbau/trennung erhaltung und den Transfer von Dateneinheiten Verfügung. Ermögliocht dem Netzwerkschucht die Kontrolle über die Verbindung von Data circuits physikalisch, sowie fehlerabfangen der physikalsichen schicht osi, 1996, S. 46f.] Aufgabe ist sicherer transport von Station zu station. Datensicherung -> Verpacken um Übertragungsfehler erkenntlich zu machen in data frames. In Frames sind die maximale Anzahl Datenbits für Rohdaten spezifiziert, weiterhin wird Information zur Übertragung hinzugefügt. Die zusatzinfo kann Prüfsumme und Anfang und Ende des Rahmens enthalten oder quittierung eines telegramms und dient dazu fehlerhafte Übertragung oder etwas verloren gegangen zu überprüfen. MAC mit Schicht eins, LLC mit Schicht drei. Wuelle Wiki bisher MAC regelt den Zugriff auf das ohvische Medium zur Kommunikation, kotrolliert oder konkurriert. LLC verteilt die Daten passend in Schicht drei und gibt die Daten von schihct drei an passende MAC für schicht eins weiter und fügt Diese Infos von oben hinzu (Adressen Empfönger und Sender und zusatzinfo wie control für Steurung von Datenfluss oder so).

Wichtig Die schicht hat jedoch keine Kenntnis über Inhalte der Daten! [Schnell u. Wiedemann, 2006, S. 9ff.]

verbindungsloser Dienst heisst keine Verbindung zwischen Kommunikationspartnern, Datenpakete werden wie Brief ganz in Netzwerk gespeist mit Zieladresse versehen und weitertransportiert, ohne beeinflussung des transportweges durch benutzer des netzwerkdienstes. Später ist Modbus ein Beispiel dazu erklärt, verbindungsorientierte Dienste heisst ein virtueller Kanal zwischen kommunikationspartnern wird zur Verüfung gestellt, eingeriechtet: Verbindungsaufbau, Datenautausch, Verbindungsabbau,

wie telefongespräch. [Schnell u. Wiedemann, 2006, S. 11f.]

Die dritte Schicht beschäftigt sich mit dem Netzwerk als Ganzes. Die Aufgaben der Netzwerkschicht hängen ein wenig ab von verbindungsorientierung Daher beschäftigt sie sich mit dem Aufbau, der erhlatung und Datenaustasuch und dem trennen von Netzwerk Verbindungen zwischen offenen systemen i Netzwerk, also schnittstellen weietrhin ist sie für den Transport von Daten im netzwerk zustaändig, also insbeonsdere auch für die Festelgung der Route(Wegsteuerung) der Daten im Netzwerk [osi, 1996, S. 41f.]. Also Kontrolle von Verkehr im Netzwerk, d.h. Anzahl Pakete im Netzwerk, Staus [Schnell u. Wiedemann, 2006, S. 11f.]

Die vierte Schicht ist die Transportschicht und zuständig für die transparente Übertragung von Daten zwischen Prozessen und ist völlig unabähngig bzw losgelöst von den Gedanken an Kosten und Verlässlichkeit der Datenübertragung, da dies aufgaben der unteren schichten sind. Sie kümmert sich um die optimale nutzung von Netzwerk services/Nutzung [osi, 1996, S. 37f.]. Adressierung der Teilnehmer, Aufbau und Abbau für Transportverbindung wzischen Kom.Partner prozessen(Sammel Einzel Mehrere), Fehlerbehalndlung verbidnung und flusskontrolle, Synchronisierung der dtaenaustauschenden Prozesse.Zerlegung der Daten aus Sitzugnsschicht in Transportierbare Einheiten. Internetworking, Umsetzung verschiedener Protokolle Gateway Aufgaben. Aufbau Verbindung legt Art fest, Punkt zu Punkt oder Broadcast/Multicast (Alle bzw einige Teilnehmer gleichzeitig) [Schnell u. Wiedemann, 2006, S. 12f.].

Die fünfte Schicht, die Sitzungsschicht, startet eine Sitzungsverbindung mit bestimmter Adresse wenn dieser Prozess von einer höheren Schicht angefordert wird. Diese Verbindung dient dazu, den dialog von kooperiendnen Porzesse auf der eines höhreren Darstellungsbene durch eine Sitzungsverbindung zu synchronisieren und deren Datenaustausch zu organisieren. verknüpft die Sitzungsadressen mit den Transportadressen, also die Anwendungsschiten mit dem Transportsystem [osi, 1996, S. 35]. Benutzung des Transportsystems über die Schnittstelle zur Transportschicht. Je nach Funktionen der höheren Schihcten entsprechender Funktionsumfang BCS Basic Combined Subset - Verbindungssteuerung und Datenübertragung BAS Basic Activity Subset - Aktivitätsverwaltung BSS Basic synchronized Subset - Synchronisierung [Schnell u. Wiedemann, 2006, S. 13].

Die sechste Schicht, die Darstellungsschicht ist nach [osi, 1996, S. 33f.] für die Darstellung der Daten die von Anwendung-Entitäten entweder kommuniziert oder bei deren Kommunikation referenziert werden. Sie stellt außerdem eine gemeinsame Represantion der übertragenen Daten dar zwischen Anwendungs-Entitäten und befreit diese dadurch von Syntaxabhängigkeiten. [Schnell u. Wiedemann, 2006, S. 13f.] stellt fest, dass die Dienste die der Darstellung der transferierten Daten dienen wie die Codierung der zu übertragenden Daten, der verwendete Zeichensatz und die Darstellung der Daten auf dem Bildschirm oder Drucker. Semantik/Syntax beim Nachrichtenaustausch und der beiden Kommunizierenden Prozesse. Evtl Komprimierung um Zeit und Kosten zu sparen .

Die siebte und letzte Schicht stellt lediglich eine Möglichkeit für Anwendungsprzesse zur Verfügung um auf die OSI Umgebung zuzugreifen. Jeder Anwendung stellt im OSI genau einen Anwendungsprozess dar, verschiedene Anwendungsprozesse für verschiedene Anwendungen und vice versa [osi, 1996, S. 32] stellt Funktionen bereit, mit denen der Benutzer auf das Kommunikationssystem zugreifen kann, wobei der Benutzer idR ein Computerprogramm und kein Mensch ist. [Schnell u. Wiedemann, 2006, S. 14]

Im folgenden werden die verwendeten Modbus Protokolle und Spezifikation ind Anwendung Berzug zum OSI Modell gebracht um den praktischenNutzen davon klar zu machen.

2.2.3 Modbus Kommunikationstechnologie

Zunächst erfolgt die Einordnung ins OSI Modell und anschließend eine Klassifizierung der Spezifikationen gemäß der zuvor von Bussystemen.

Das Modbus Protokoll teilt sich auf verschiedene Protokolle auf, zum einen auf das Application Layer Messaging Protocol auf oberster Ebene, welches auf das Modbus Over Serial Line Protocol sowie das Ethernet TCP/IP Protokoll aufbaut. Das Application Layer Messaging Protocol lässt sich im OSI Referenzmodell in die siebte und oberste Schicht(Anwendungsschicht) einordnen wie in Abb. 2.10 dargestellt. Bei der Nutzung des Modbus over Serial line Protocol implementiert diese die zweite Schicht und die Ebenen drei bis sechs sind leer implementiert. Als physikalische Schicht werden die Übertragungsstandards nach EIA 485 oder nach EIA 232 [mod, 2006b, S. 2]. Anstatt des Over serial line kann auch das Modbus Messaging On TCP/IP Protocol verwendet, dann implementiert dieses zusammen mit den dem TCP/IP Standard zusammen die Netzwerkschicht im OSI-Referenzmodell. Das Ethernet implementiert dabei die Datensicherungsschicht Nummer zwei und dessen physikalische Spezifikationen die unterste physikalische Schicht und deren Schnittstellen. Die Ebenen vier bis sechs sind auch bei Nutzung dieser Kommunikationsweise leer implementiert [mod, 2012, S. 2f.]. Eine Einführung zum Ethernet und TCP/IP Standard findet sich in Schnell u. Wiedemann [2006], detaillierte Ausführungen dazu in Furrer [2003].

Nun wird das Modbus Application Layer Messaging Protocol erläutert. Anschließend werden die Modbus Protokolle der unteren Ebenen erläutert bis hin zu den physikalischen Schnittstellen.

Das Modbus Application Layer Messaging protocol ist ein Protokoll, dass verschiedene Netzwerke und Bussysteme zur Master/Slave Kommunikationen von verbundenen Geräten nutzen kann [mod, 2012, S. 2f.], jedoch übernimmt im Rahmen des Protokolls der Master die Rolle des Clients und die Slaves die Rollen als Server, da der Client alleinig die Anfragen stellt und die Server lediglich auf Anfragen antworten. Das Modbus Protokoll definiert eine gemeinsame Telegrammstruktur, bezogen auf Inhalte und Rahmen der Nachricht. Damit ermöglicht es die Kommunikation zwischen verschie-

7 Application MODBUS Application Protocol 6 Presentation Empty 5 Session Empty 4 Transport Empty 3 Network Empty	Layer	ISO/OSI Model		MODBUS Application
Session Empty Transport Empty Network Empty Data Link MODBUS Serial Line Protocol MODBUS Master / Slave	7	Application	MODBUS Application Protocol	
Transport Empty Network Empty Data Link MODBUS Serial Line Protocol MODBUS Master / Slav	6	Presentation	Empty	Client / server
3 Network Empty 2 Data Link MODBUS Serial Line Protocol MODBUS Master / Slav	5	Session	Empty	
2 Data Link MODBUS Serial Line Protocol MODBUS Master / Slav	4	Transport	Empty	
INCODE WASEL FOR	3	Network	Empty	
1 Physical EIA/TIA-485 (or EIA/TIA-232) EIA/TIA-485	2	Data Link	MODBUS Serial Line Protocol	MODBUS Master / Slave
	1	Physical	EIA/TIA-485 (or EIA/TIA-232)	EIA/TIA-485

Abb. 2.10: Die Modbus Kommunikation im OSI-Referenzmodell aus [mod, 2006b, S. 5]

Abb. 2.11: Allgemeiner Rahmen für Telegramme nach dem Modbus Anwendungsprotokoll aus [mod, 2012, S. 3]

denen Geräten innerhalb eines Netzwerks, welche unabhängig von Art und Typ des darunter liegenden Netzwerks sind. Es beschreibt außerdem wie die Kommunikation abläuft, wie der Client eine Anfrage an ein Server stellt und wie diese auf die Anfragen reagieren und antworteten und beschreibt wie Fehler bei der Übertragung entdeckt und darauf hingewiesen werden [MODICON, 96, S. 2f.]. Die Kommunikation kann dabei über eine serielle Leitung nach EIA 485 sowie über Ethernet Netzwerk erfolgen. Über Gateways, wie in Abschnitt 2.2 bereits erläutert, kann die Kommunikation auch über verschiedene Typen von Bussystemen oder Netzwerken geschehen [mod, 2012, S. 3f.].

Das Modbus Protokoll stellt ein allgemeines Gerüst für Telegramme zur Verfügung, welches in Abb. 2.11 dargestellt ist. Die einfache Protocol Data Unit (PDU) enthält die eigentlichen Informationen die ausgetauscht werden sollen und sind daher unabhängig vom Netzwerk oder dem Bussystems. Zu den Informationen gehören die eigentlichen Daten, welche leer sein können oder Daten enthalten die der Slave, in Rahmen von Modbus auch als Server bezeichnet, benötigt, und ein Funktionscode, der ein Byte groß ist und beschreibt welche Art der Aktion Reaktion gefordert ist/wird. Die sogenannte Application Data Unit (ADU) enthält zusätzlich zur PDU weitere Informationen zur Adressierung im Netzwerk und zur Fehlererkennung und ist daher abhängig vom Netzwerk. Der Buszugriff ist damit als Master-Slave geregelt.

Für die Kommunikation wird innerhalb des Masters, der im Rahmen von Modbus auch als Client bezeichnet wird, die Kommunikation durch eine ADU initialisiert. Das genaue Format der ADU wird ist nach Modbus Protokollspezifikation festgelegt. Das Schema einer Transaktion läuft nach dem Prinzip in Abb. 2.12 ab. Wenn eine ADU

Abb. 2.12: Transaktion mit dem Modbus Protokoll nach [mod, 2012, S. 4]

fehlerfrei empfangen wurde nutzt der Server das Funktioncode Feld um anzuzeigen, ob seine Antwort ebenfalls eine normale, fehlerfrei Antwort, durch eine einfaches Echo des empfangenen Funktionscodes, ist oder ob ein irgendein Fehler aufgetreten ist durch einen Exception code. Die Größe der PDU ist grundsätzlich durch die serielle Kommunikation begrenzt auf 256 Bytes, da jedoch noch zwei Bytes für einen Cyclic Redundancy Check und ein Byte für die Server Adresse reserviert werden müssen ist die PDU auf 253 Bytes begrenzt. Ein weiterer, wichtiger Aspekt ist, dass Modbus die "big-Endian" Codierung/Repräsentation für Daten verwendet verwendet, falls der numerische Wert größer als ein einzelner Byte ist [mod, 2012, S. 3ff.]. Anhand des Beispielder Uhrzeit kann die Bedeutung der Big-Endian Repräsentation einfach erläutert werden: Die Daten werden so aufgeteilt, dass zunächst die Daten mit der höchsten Wertigkeit, also den Stunden zuerst gesendet werden, anschließend den Minuten und zum Schluss die Sekunden, unabhängig von deren numerischem Wert. Also werden nacheinander die Code 03, 50, 12 empfangen bedeutet dues dass die Uhrzeit 03:50:12 ist. Der interessierte Leser wird für eine weitere Ausführungen auch zu little-Endian Darstellung in Bertrand Blanc [2005].

Das Modbus Datenmodell basiert darauf, dass auf die Daten in vier verschiedenen Tabellen mit unterschiedlichen Funktionen und Datenobjekten zugegriffen werden kann:

- In die Discretes Input, welche Single Bit Objekte enthält und lediglich gelesen werden kann,
- die Coils, welche ebenfalls Single Bit Objekte enthält jedoch gelesen und beschrieben werden darf,
- die Input Registers, die Datenobjekte als 16-Bit Wort enthält und wiederum nur gelesen werden kann
- und die Holding Registers, dessen 16-Bit Wort Objekte wiederum gelesen und beschrieben werden dürfen.

Abb. 2.13: Datenmodell und Adressierung nach dem Modbus Protokoll aus [mod, 2012, S. 8]

16 bit wort entspricht einer Folge von 16 bits/binärzeichen das also einen dezimalen Zahlenwert zwischen 0 und 65.536. Nach der IEC 61131-3 Norm entspricht es in im Rechner einem Integer Wert.

Die Daten selbst können auch innerhalb einer Tabelle abgelegt sein, müssen lediglich über die vier angegebenen Tabellen zugreifbar sein, also die Referenz auf die Daten muss gegeben sein, der Rest ist egal. Jede Tabelle besitzt Daten adressiert zwischen 0 und 65535 und ist damit auch nach oben begrenzt was Daten angeht. Welche Daten wo genau stehen, also unter welcher Adresse kann von Gerät zu Gerät unterschiedlich sein und wird vom Gerätehersteller festgelegt. [mod, 2012, S. 6ff.]

Die Funktionscodes starten bei 1 und können bis 255 genutzt werden und sind wie bereits angesprochen in der PDU enthalten und definieren welche Aktion ein Server ausführen soll. In erster Linie dienen sie dem Datenzugriff in den Tabellen, können aber auch für Diagnosen oder nutzerdefinierte Aktionen benutzt werden. Daher lassen sich die Funktionscodes in drei große Gruppen aufteilen, die öffentlichen, nutzerdefinierbaren und die reservierten Funktionscodes. Die öffentlichen sind wohldefiniert, unique, dokumentiert und sind auf Konformität getestet und sind daher einfach, schnell und sicher nutzbar. Die vom Nutzer definierbaren Funktionscodes können genutzt werden um von den öffentlich bereitgestellten nicht bereitgestellte Funktionen eigens zu definieren/nutzbar zu machen. Die reservierten Codes sind von wenigen Unternehmen, welche an der Entwicklung des Modbus Protokolls beteiligt waren, für deren hinterlassene Produkte reserviert und daher nicht öffentlich nutzbar[mod, 2012, S. 10ff.].

Als nächstes folgen die beiden verschiedenen Modbus Over Serial Line Protocol und Modbus Messaging On TCP/IP Protocol

Beim Modbus Over Serial Line Protocol können die Daten über zwei unterschiedliche Modi übertragen werden, der RTU und ASCII Modus. Näheres Der ASCII Modus ist optional und wird in mod [2006b] detailliert beschrieben. Der RTU Modus wird von allen modbusfähigen Komponenten unterstützt und spezifiziert das folgende Format zur Übertragung der einzelnen Bytes: Jede Byteübertragung beginnt mit einem Startbit, auf das zu übertragende Byte, bsetehend aus acht einzelnen Bits, folgt, bevor die Übertragung optional von einem Paritätsbit und einem Stoppbit beziehungsweise lediglich von zwei Stoppbits abgeschlossen wird. Dabei wird jedes zu übertragende Byte als zwei 4-bit hexadezimales Zeichen übertragen[mod, 2006b, S. 12f.]. Die Paritätsprüfung ist optional und dient der Fehlerüberprüfung des Telegramms, wie bereits in Abschnitt 2.2 erläutert. Der Rahmen eines gesamten Modbus RTU Telegramms besteht aus der Slave Adresse, die für jeden Slave eindeutig ist und zwischen 1 und 247 liegt, und dem Function Code, die jeweils aus einem Byte bestehen. Darauf folgen die eigentlichen Informationen für die 0 bis 252 Bytes vorgesehen sind. Abgeschlossen wird der Rahmen durch ein CRC Feld, dass aus einem CRC Low und einem CRC High byte aufgebaut ist und dazu dient das Telegramm auf Fehler zu überprüfen. Der Ablauf und Vorgang des CRC Checks ist detailliert in mod [2006b] beschrieben. Die Übertragung eines Telegramms erfolgt byteweise, wie zuvor beschrieben. Die Datensicherung findet also durch Parität und CRC auf verschiedenen Ebenen statt. Die genaue Übertragungszeit eines Bytes und einer Nachricht hängt von der Baudrate ab. Um den Beginn und den Abschluss eines RTU Rahmens eindeutig zu definieren, geschieht dies in Abhängigkeit von der Übertragungsgeschwindigkeit. Zwischen einzelnen Bytes innerhalb eines Rahmens folgt ein stilles Intervall, dass je nach Länge angibt ob das Telegramm beendet ist. Auf eine Intervall kleiner gleich der anderthalbfachen Übertragung eines Bytes folgt eine weiteres Byte. Ist das stille Intervall länger als die dreieinhalbfache Byteübertragungszeit markiert dies das Ende eines Telegramms und den Beginn eines nächsten Telegramms [mod, 2006b, S. 13]. Diese Zusammenhänge sind zur Veranschaulichung in Abb. 2.14 zusammengefasst.

Der Implementierungsleitfaden legt auch die Spezifikationen der physikalischen Schicht fest, die nun folgen. Er schlägt vor die EIA 438 Schnittstelle als elektrisches/physikalisches Interface zu verwenden, erlaubt aber auch weiterhin die Implementierung durch die EIA 232 Schnittstelle, beides über ein verdrilltes Leiterpaar. Weiterhin werden die Datenraten von 9.600 und 192.000 bps und eine Even Parität bei der Byteübertragung als Standard festgelegt. Die Standardverdrahtung der Komponenten erfolgt bei beiden elektrischen Standards über ein verdrilltes Leiterpaar und einer gemeinsamen Verbindungsleitung common. Die beiden Leitungen des verdrillten Paares werden mit D1, welche auch als D+ oder A Leitung bezeichnet wird, und D0, welche auch als D- oder B Leitung bezeichnet wird, bezeichnet. Ein Standard Netzwerk besteht aus maximal 32 Teilnehmern, dass durch den Einsatz von Repeatern auch vergrößert werden kann. Außerdem wird die Bus-Struktur als Topologie beschrieben, nach der

Abb. 2.14: Serielle Kommunikation über Modbus RTU nach [mod, 2006b, S. 12f.]

die einzelnen Komponenten im Netzwerk angeordnet werden, unter der Voraussetzung, dass die Busleitung an beiden Enden durch einen Widerstand von 150 Ohm zwischen der D0 und D1 Leitung abgeschlossen werden [mod, 2006b, S. 20ff.]. Die Verbindung der Kabel kann im einfachsten Fall durch Schraubklemmen erfolgen, jedoch können auch genormte mechanische Interfaces, also Standard Steckverbindungen genutzt werden, deren Einsatz und Verkabelung/Anschlüsse in [mod, 2006b, S. 29ff.] detailliert beschrieben sind.

XXXXXXX

Beim Modbus Messaging on TCP/IP Protocol stellt die Möglichkeit zur Verfügung, Geräte, die über ein Ethernet miteinander verbunden sind, über ein Client/Server Modell kommunizieren zu lassen. Des Weiteren erlaubt es dieses Protokoll explizit über Bridges, Gateways oder Router Netzwerke miteinander zu verbinden. Dabei dürfen auch serielle Subnetzwerke zu verbinden und erlaubt auch zwischen diesen Endgeräten die Kommunikation [mod, 2006a, S. 2f.]. Diese Kommunikationsarchitektur ist auf in Abb. 2.15 dargestellt.

Außerdem ist eine leicht verschiedne ADU vorhanden, wie in Abbildung REF ADU TCP zu sehen. Modbus Application Protocol Header MBAP Header ist 7 bytes lang und enthält unit identifier ähnlich slave adress/id, adresse für modbus routing, ein bytecount, der die länge des folgenden Telegramms angibt(inklusive Unit identifier und Daten) auch wenn gesplittet, CRC-32 error check, protocol identifier mit modbus 0, transaction identifier vom client, der nur kopiert wird vom server um transaktionen einander zuzuordnen. Alle Kommunikation erfolgt über TCP Port 502 [mod, 2006a, S. 4f.]

Abb. 2.15: Die Modbus TCP/IP Kommunikationsarchitektur aus [mod, 2006a, S. 4]

Abb. 2.16: Angepasster Rahmen für Telegramme nach dem Modbus TCP/IP Protokoll aus [mod, 2006a, S. 4]

Alle Modbus /TCP ADU werden via TCP zum Modbus rgeistrierten Port 502 geschickt.

Modbus tcp Komponenten können sowohl client als auch server interface haben. [mod, 2006a, S. 7f.]

Der Modbus Client erlaubt den Informationsaustausch indem er eine ADU erstellt Der Modbus Server wartet auf Anfragen über den TCP Port 502

Transmission control protocol TCP und IP ist Internet Protocol. TCP als Transportschicht verbindungsorientiert: Teilt Daten in Datenblöcke, sogeannte Pakete, zum Transport. IP regelt Netzwerkaufgaben, siehe OSI Modell Netzwerkschicht, und versendet die Daten über Telegrammservice und packt den MBAP Header an jedes Paket dran dran. Der Port erlaubt die parallele Nutzung von Ethernet Netzwerken, da er den Übertragungsprozess eindeutig kennzeichnet. Verbindungsorientiert heisst über ein Socket weren zwei prozesse miteinander verbunden und die empfangenen Telegrammen werden/müssen quittiert [Schnell u. Wiedemann, 2006, S. 16ff.]. Der interessierte Leser findet eine deatillierte Beschreibung des Ethernet TCP/IP Standards in Furrer [2003].

TCP übernimmt Netzwerkmanagement - TCP Management: Hauptaufgabe ist das connection management. Das managen von Verbindungen kann entweder durch ein Modul erfolgen oder durch die Nutzeranwendung selbst durch die Zugriffsüberwachung der sockets. Der Port 502 ist für Modbus Kommunikation reserviert, jedoch können auch andere Ports genutzt werden falls die Modbusgeräte eine Portkonfiguration unterstützen. Weiterhin wird der Datenfluss und der Einsatz der Netzwerkressourcen

überwacht. [mod, 2006a, S. 7ff.]

Generell, Verbindungsmanagement wichtig, da Modbus/TCP Kommunikation zwischen einem Server und einem Clienten eine Verbindung benötigt. Hinweise gibt der Guide, das die Verbindungen nicht dauernd geöffnet und geshclossen werden und auch mehrere viele Modbus Transaktionen während der Verbindung stattfinden. Außerdem sollte sich auf ein Minimum von Verbindungen beschränkt werden für den gleichen Server. [mod, 2006a, S. 9f.] Das Nutzer TCP Management umfasst folgende Aufgaben, die aktive und passive Herstellung von Verbindungen sowie das schließen dieser und das festlegen von maximalen Verbindungen [mod, 2006a, S. 11ff.]. Verbindungsherstellung über Ethernet IP, also der eindeutigen Adresse, des Geräts und Portnummer und die Socket Nummer. Der Socket ist ein Endpunkt innerhalb eines Rechners, über den die Kommunikation läuft und der einem Port eindeutig zugewiesen ist [mod, 2006a, S. 15f.].

Physikalisch bedient sich der Ethernet Schnitstelle also einem normalen Netzwerkkabel.

Diese Kommunikationstechnologie und die verschiedenen Protokolle finden im Rahmen der Anlage in Kapitel dann Anwendung

2.3 Technische Grundlagen zur Modellbildung

In diesem Kapitel werden die technischen Grundlagen zur Bildung eines mathematischen Modells des Raumes erläutert. Themrodym systeme 1. HS thermo Wärmeübertragung

2.3.1 Thermodynamische Systeme

Im Raummodell müssen Energieströme, genauer betrachtet Wärmeströme, untersucht werden. Um dieses thermodynamischen Vorgänge mit Hilfe von Bilanzierungsgleichungen zu beschreiben, folgt zunächst ein kurze Einführung in die Thermodynamische Systembildung nach [Baehr u. Kabelac, 2012, S. 11ff.].

Thermodynamische Systeme werden durch den zu untersuchenden Raum abgegrenzt. Sie dienen dem Zweck der Bilanzierung von Massen- und Energieströmen und alles was diesen abgegrenzten Raum an den Systemgrenzen umgibt wird als Umgebung bezeichnet. Die begrenzenden Flächen können gedanklicher, physischer oder beider Natur zugleich sein, wichtig ist jedoch das die Systemgrenzen eindeutig festgelegt sind [Baehr u. Kabelac, 2012, S. 11].

Anhand der Eigenschaften von den Systemgrenzen lassen sich die thermodynamischen Systeme weiter differenzieren. Solche Systeme, deren Grenzen undurchlässig für Materie sind, werden als *geschlossene Systeme* bezeichnet und werden durch eine konstante Stoffmenge innerhalb des Systems gekennzeichnet. Die Grenzen eines geschlossenen

Systems sind meistens räumlich anhand eines fixen Volumens definiert, können aber auch beweglich sein, wie z.B. das Volumen einer vorgegebenen Stoffmenge unabhängig von dessen räumlicher Ausdehnung [Baehr u. Kabelac, 2012, S. 12].

Sind die Grenzen von thermodynamischen Systemen für Materie durchlässig, werden diese als offene Systeme bezeichnet. In der Regel werden diese von Stoffströmen durchflossen und durch räumlich festgelegte Grenzen beschrieben. Diese werden in der Literatur auch als Kontrollraum oder Kontrollvolumen bezeichnet [Baehr u. Kabelac, 2012, S. 12].

Ein abgeschlossenes System umfasst in der Regel mehrere Systeme oder ein einzelnes System und dessen Umgebung, so dass es zwischen den Grenzen des abgeschlossenen Systems und seiner Umgebung keine Wechselwirkungen gibt. Die Systemgrenzen werden also so gelegt, dass über sie hinweg keine beziehungsweise keine relevanten³ Flüsse von Materie und Energie [Baehr u. Kabelac, 2012, S. 13].

Nach der Abgrenzung folgt die Beschreibung von thermodynamischen Systemen und dessen Eigenschaften. Diese erfolgt durch Variablen und physikalische Größen die ein System kennzeichnen. Falls die Variablen feste Werte annehmen werden diese als Zustandsgrößen bezeichnet, da sie den Zustand eines Systems bestimmen [Baehr u. Kabelac, 2012, S. 13]. Im Rahmen der Modellbildung in Kapitel 4 ist es ausreichend die Vorgänge und Effekte auf systemischer Ebene zu betrachten, wodurch sich Modelle mit wenigen Variablen und physikalischen Größen beschreiben lassen.

Die Variablen lassen sich in äußere Größen, welche den mechanischen Zustand eines Systems beschreiben⁴, und innere Größen gliedern, welche den thermodynamischen Zustand, also die Eigenschaften der Materie innerhalb der Systemgrenzen, beschreiben[Baehr u. Kabelac, 2012, S.13 f.].

Innerhalb der Grenzen eines thermodynamischen Systems, und damit implizit auch für das Raummodell⁵ wird *Homogenität* angenommen. Dies bedeutet, dass die physikalischen Eigenschaften, wie zum Beispiel Temperatur und Druck, sowie die chemische Zusammensetzung an jeder Stelle innerhalb des Systems homogen ist, also die gleiche Ausprägung besitzt [Baehr u. Kabelac, 2012, S.15].

Da wir im Rahmen der Modellbildung Zustände betrachten müssen auch deren Änderungen genauer untersucht werden. Die Zustandsänderungen eines Systems werden durch Änderungen von Energie oder Materie über dessen Grenzen hinweg bedingt und finden meist im Austausch der Umgebung statt. Während einer solchen Änderung des Systemzustands wird ein Prozess durchlaufen, der eine zeitliche Abfolge von Ereignissen ist. Eine Änderung des Zustands eines Systems mit der gleichen Wirkung kann also durch verschiedene Prozesse bewirkt werden. Daher beschreibt ein Prozess nicht nur die Veränderung des Zustands sondern viel mehr die Beziehungen zwischen einem System und seiner Umgebung [Baehr u. Kabelac, 2012, S.21 f.].

³ Relevant im Sinne von kaum messbarer Fluss und nicht messbare Auswirkung auf das System.

 $^{^4}$ Zum Beispiel die Koordinaten im Raum oder die relative Geschwindigkeit zum Beobachter)

 $^{^{5}}$ Diese Annahme wird im Kapitel 5 noch überprüft und kritisch hinterfragt werden müssen

Ein Prozess kann aber auch innerhalb eines Systems stattfinden, dass heißt ohne äußere Einwirkungen. Dies geschieht zum durch das Aufheben innerer Hemmungen oder dem Wegfall Zwängen von Außen. Diese Prozesse laufen in abgeschlossenen Systemen meist von selbst ab und streben als Ziel einen ausgeglichenen, also homogenen, Endzustand an. Ausgleichsprozesse dienen somit dazu, einen Gleichgewichtszustand zu erreichen und repräsentieren Wechselwirkungen zwischen verschiedenen Teilen eines abgeschlossenen Systems. Dabei gleichen sich die Zustandsgrößen von einzelnen Subsystemen wie zum Beispiel der Druck oder die Temperatur einander an. Der Gleichgewichtszustand wird also durch die Zustände in den einzelnen Subsystemen bestimmt und ist dadurch charakterisiert, dass ein System diesen Zustand nicht von sich aus sondern nur durch äußere Eingriffe verlässt, zum Beispiel durch eine Veränderungen in der Umgebung. Die Erfahrung lehrt, dass ein System einem Gleichgewichtszustand entgegen strebt, wenn es sich selbst überlassen wird [Baehr u. Kabelac, 2012, S.22 f.]. Im Rahmen der Modellbildung in Kapitel 4 nehmen diese Ausgleichsprozesse eine zentrale Rolle ein, weil der Großteil an Änderungen von einzelnen Zustandsgrößen innerhalb des Raumes darauf zurückgeführt werden können.

2.3.2 Erster Hauptsatz der Thermodynamik

Der erste Hauptsatz der Thermodynamik wird im Folgenden als allgemeiner Energieerhaltungssatz formuliert und anschließend angewendet um eine Energiebilanzgleichung für geschlossene thermodynamische Systeme zu erhalten.

Der erste Hauptsatz der Thermodynamik erweitert den mechanischen Energieerhaltungssatz um die Energieformen Wärme und innere Energie. Er handelt ganz allgemein vom Prinzip der Energieerhaltung und dient er der Bilanzierung von Systemen [Baehr u. Kabelac, 2012, S. 43].

Die Gesamtenergie eines Systems E setzt sich zusammen aus der potenziellen E_{pot} und kinetischen Energie E_{kin} wie in der Mechanik und wird durch die innere Energie U ergänzt [Baehr u. Kabelac, 2012, S. 49]:

$$E := E_{pot} + E_{kin} + U \tag{Gl. 1}$$

Im weiteren Verlauf der Arbeit werden nur ortsfeste Systeme betrachtet die sich dadurch auszeichnen, dass deren potenzielle Energie E_{pot} in etwa konstant ist. Weiterhin erfahren sie im betrachteten Intertialsystem Erde auch nur sehr kleine Änderungen in ihrer Geschwindigkeit, weshalb auch die kinetische Energie E_{kin} in etwa konstant ist. Da die Änderungen der mechanischen Energien in Bezug auf die Änderung der inneren Energie sehr klein sind werden im Folgenden nicht weiter betrachtet und die Gesamtenergie eines Systems E vereinfacht und lediglich aus der inneren Energie bestehend angenommen.

Die innere Energie hängt von der spezifischen Wärmekapazität c_p , der Masse eines

Systems m_{sys} und der Temperatur t beziehungsweise T ab [Baehr u. Kabelac, 2012, S. 54]:

$$U := m * c_p * T = m * c_p * t + u_0, mit t = T - T_0$$
 (Gl. 2)

Nach dem Prinzip der Energieerhaltung, kann die Energie eines Systems also weder erzeugt noch vernichtet werden sondern lediglich durch den Energietransport über dessen Grenzen hinweg verändert werden. Daraus ergeben sich folgende qualitative Formen des Energietransports [Baehr u. Kabelac, 2012, S. 48f.]:

- Die Arbeit W, die entweder von oder an einem System verrichtet wird, in differentieller Form die Leistung P.
- Die Wärme Q, die entweder in das System hinein- oder herausfließt, in differentieller Form der Wärmestrom \dot{Q} .
- Der Transport von Materie, also das Einbringen oder Wegnehmen von Masse m eines System, in differentieller Form die Materialflüsse \dot{m} .

Mit der zuvor getroffenen Annahme, dass die innere Energie der des Systems entspricht, und unter Beachtung der Vorzeichenkonvention, welche besagt dass zugeführte Energie positiv und abgeführte Energie negativ zu bewerten ist, lassen sich die Änderungen der Energie eines Systems mit der folgenden Gleichung quantitativ beschreiben [Baehr u. Kabelac, 2012, S. 54]:

$$\Delta U = Q + W + m_{in} * c_p * T_{in} - m_{out} * c_p * T_{out}$$
 beziehungsweise in differentieller Form (Gl. 3)
$$\frac{dU}{dt} = \dot{U} = \dot{Q} + P + \sum \dot{m}_{in} * c_p * T_{in} - \sum \dot{m}_{out} * c_p * T_{out}$$

2.3.3 Wärmeübertragung

Wärmeströme spielen bei der Modellbildung in Kapitel 4 eine wichtige Rolle, daher ist eine genauere Betrachtung dieser unumgänglich und im Folgenden werden die Grundlagen dazu erläutert.

Die Definition von Wärmeübertragung ist nach [Böckh u. Wetzel, 2014, S. 1] "[...] der Transfer der Energieform Wärme aufgrund einer Temperaturdifferenz. "Die Definition umfasst also einen zuvor beschriebenen Ausgleichsprozess und eine Änderung der inneren Energie eines thermodynamischen Systems. Die Wärmeübertragung kann nach $Nu\beta elt^6$ grundsätzlich durch zwei verschiedene Arten stattfinden [Böckh u. Wetzel, 2014, S. 3f.]:

– Durch Strahlung, bei der die Übertragung von Wärme ohne stofflichen Träger

 $^{^6}$ Beschrieben in seinem Aufsatz "Das Grundgesetz des Wärmeüberganges", 1915.

durch elektromagnetische Wellen zwischen Oberflächen erfolgt. Weil diese Art der Wärmeübertragung keine Relevanz für die weiteren Betrachtungen hat wird er interessierte Leser an dieser auf Böckh u. Wetzel [2014] verwiesen der diese Thematik detailliert ausführt.

 Durch Wärmeleitung, die sich wiederum in die Wärmeübertragung zwischen ruhenden Stoffen, und die Konvektion, die eine Wärmeübertragung zwischen einem ruhenden und einem strömenden Fluid beschreibt, aufteilen lässt.

Die übertragene Wärmemenge ist bei der reinen Wärmeleitung lediglich von den Stoffeigenschaften und der Temperaturdifferenz abhängig, bei der Konvektion hingegen, unabhängig davon ob erzwungen oder frei, hängt sie von der Strömung der Fluide ab. Die Konvektion ist ein Effekt zusätzlich zur reinen Wärmeleitung auftritt und ist im weiteren Verlauf der Arbeit nicht relevant und wird deshalb nicht detaillierter ausgeführt [Böckh u. Wetzel, 2014, S. 3f.]. Erfolgt der Wärmetransport stationär, dass heißt er ist von äußeren Anregungen bedingt und unabhängig von der Zeit, lässt er sich qualitativ einfach als konstanter Wärmestrom \dot{Q} beschreiben und gibt an wie viel Wärme pro Sekunde übertragen wird [Böckh u. Wetzel, 2014, S. 5ff.]. Der Wärmestrom ist wie zuvor bereits erwähnt von den Stoffeigenschaften abhängig, welche von der Wärmedurchgangszahl $U-Wert^7$ und der Austauschoberfläche $A_{exchange}$, an der der Wärmeaustausch stattfindet. Typische U-Werte für verschiedene Materialien und Komponenten finden in der einschlägigen Literatur und beziehen sich bei der Übertragung durch eine Wand im europäischen Raum auf die Außenfläche [Böckh u. Wetzel, 2014, S. 28]. Damit lässt sich der Wärmestrom unter Berücksichtigung der Abhängigkeiten durch die kinetische Kopplungsgleichung quantifizieren [Böckh u. Wetzel, 2014, S. 6f.]:

$$\dot{Q} := u * A * (t_1 - t_2) \tag{Gl. 4}$$

Unterschiedliche geometrische Ausprägungen, wie zum Beispiel ein Wärmeaustausch durch eine Wand oder ein Rohr hindurch, finden damit implizit bei der Austauschoberfläche Berücksichtigung.

2.4 Technische Grundlagen zur Solar- und Gebäudetechnik

2.4.1 Außenklima und Komponenten

Der Begriff Außenklima wird häufig im Zusammenhang mit dem Thema Umwelt und deren Einflüsse auf Gebäude gebraucht. Der allgemeine Begriff des Klimas wird von [Peter Häupl, 2013, S. 295] definiert als:

⁷ Der U-Wert wurde bis zu der Umstellung auf die europäischen Prüfnormen 2003 als k-Wert bezeichnet und ist unter dieser Bezeichnung noch häufig in der Literatur zu finden [Sack, 2004, S.1 f.]

"die Summe aller Umweltfaktoren, die unmittelbar oder mittelbar Einfluss nehmen auf die Gesundheit und das Befinden von Menschen und Tieren, auf die Entwicklung von Pflanzen sowie auf den Zustand von Lagergütern, Produktionsverfahren, Maschinen, Apparaten und Bauwerken."

Daraus lässt sich ableiten, dass das Außenklima ein Aspekt des Klimas ist und den meteorologischen Umweltzustand außerhalb von Gebäuden, an einem bestimmten, lokalen Ort meint. Abhängig vom Außenklima stellt sich innerhalb von Gebäuden ein Innenklima ein, welches direkten Einfluss auf das Wohlbefinden von Menschen hat und wodurch der mittelbare Einfluss des Außenklimas gegeben ist. Um den Zustand zu beschreiben werden viele Zustandsgrößen herangezogen. Um einen Überblick zu bekommen, lassen sich diese in verschiedene Bereiche gliedern [Peter Häupl, 2013, S. 295f.]: Schall Licht Temperatur und Feuchte

Im Hinblick auf die Modellbildung in Kapitel 4 sind lediglich die Größen zur Beschreibung der Temperatur und des Lichts von Interesse, eine detaillierte Ausführung in die Bereiche Schall und Feuchte und deren Zustandsgrößen ist in Peter Häupl [2013] gegeben.

Je nach Größe des Gebietes wird von einem Regional- bwziehungsweise Makroklima, das große Gebiete umfasst, oder von einem Lokal- beziehungsweise Mikroklima gesprochen, dass kleine Gebiete wie eine Straße oder einen Park umfasst und von deren Besonderheiten abhängig ist. So kann z.B. die Außentemperatur je nach Verschattungsgrad einer Straße lokal erhöht oder erniedrigt sein. Das Klima folgt in verschiedenen Regionen der Erde bestimmten Charakteristiken, welche sich in Klimazonen zusammenfassen lassen. Die Erde besteht aus vierzehn verschiedenen Klimazonen und in Europa wird von einem Übergangsklima gesprochen [Peter Häupl, 2013, S. 296f.].

Eine Übersicht der Außenklimakomponenten, die einen Einfluss auf die Gebäudetechnik und damit auch auf die Raumtemperatur haben ist in Abb. 2.17 gegeben. Für die Modellbildung ist weiterhin eine Quantifizierung der relevanten Größen des Außenklimas in den Bereichen Licht und Temperatur erforderlich. Wie bereits im vorherigen Abschnitt erwähnt, werden Wärmeströme durch Temperaturdifferenzen bedingt, weshalb die Außenlufttemperatur HierSymbol einen großen Einfluss auf die Raumtemperatur hat und durch Messung quantifiziert werden muss. Des Weiteren werden die lichttechnischen Größen der kurzwelligen direkten und diffusen Strahlung durch die beiden Strahlungsintensitäten G_{dif} und G_{dir} beschrieben, da sie Energie durch einen Wärmestrom in ein System einbringen und damit auch einen Einfluss ausüben.

2.4.1.1 Die Außenlufttemperatur

Eine Übersicht über die Außenlufttemperatur

Abb. 2.17: Komponenten des Außenklimas aus [Peter Häupl, 2013, S. 298]

2.4.1.2 Sonnenstrahlung

Nicolai [2013] [Quaschning, 2011, S. 63ff.] [Kaltschmitt, 2013, S. 61ff.] [Peter Häupl, 2013, S. 315ff.] Bild

Algorithmus nach Reda [2008]

Nutzung Berechnung/Implementierung von pys

2.4.2 Gebäudetechnik Glas und Wärmedurchgangskoeffizienten

Auf gehts

Glas nach [Peter Häupl, 2013, S. 61ff.] Durchlassgrad nach [Peter Häupl, 2013, S. 604ff.] Transmissionsgrad