Transformer Model (2/2): From Shallow to Deep

Shusen Wang

Multi-Head Attention

Single-Head Self-Attention

- Self-attention layer: C = Attn(X, X).
- This is called "single-head self-attention".

Multi-Head Self-Attention

- Using l single-head self-attentions (which do not share parameters.)
 - A single-head self-attention has 3 parameter matrices: \mathbf{W}_O , \mathbf{W}_K , \mathbf{W}_V .
 - Totally 3l parameters matrices.

Multi-Head Self-Attention

- Using l single-head self-attentions (which do not share parameters.)
- Concatenating outputs of single-head self-attentions.
 - Suppose single-head self-attentions' outputs are $d \times m$ matrices.
 - Multi-head's output shape: $(ld) \times m$.

Multi-Head Attention

- Using *l* single-head attentions (which do not share parameters.)
- Concatenating single-head attentions' outputs.

Stacked Self-Attention Layers

Self-Attention Layer

Stacked Self-Attention Layers

Stacked Self-Attention Layers

Stacked Attention Layers

- Transformer is a Seq2Seq model (encoder + decoder).
- Encoder's inputs are vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$.
- Decoder's inputs are vectors $\mathbf{x}'_1, \mathbf{x}'_2, \cdots, \mathbf{x}'_t$.

Encoder's inputs:

Decoder's inputs:

 $\mathbf{x}_1 \qquad \mathbf{x}_2 \qquad \mathbf{x}_3 \qquad \cdots \qquad \mathbf{x}_m$

 \mathbf{x}_1' \mathbf{x}_2' \mathbf{x}_3' ··· \mathbf{x}_t'

- Transformer's encoder contains 6 stacked blocks.
- 1 block \approx 1 multi-head attention layer + 1 dense layer.

Decoder's inputs:

$$\mathbf{x}_1'$$
 \mathbf{x}_2' \mathbf{x}_3' ··· \mathbf{x}_t'

$\mathbf{s}_{:2} = \text{ReLU}(\mathbf{W}_{S}\mathbf{z}_{:2})$ **Stacked Attentions** Dense Dense **Z**:2 **Z**:1 Multi-Head Attention Layer Multi-Head Self-Attention Encoder (6x stacked blocks)

Stacked Attentions S:3 **S**:2 Dense Dense Dense **Dense Z**:2 Multi-Head Attention Layer Encoder (6x stacked blocks) Multi-Head Self-Attention

Transformer's Decoder : One Block

Transformer's Decoder : One Block

Put Everything Together

Encoder Network

Comparison with RNN Seq2Seq Model

Summary

From Single-Head to Multi-Head

• Single-head self-attention can be combined to form a multi-head self-attention.

From Single-Head to Multi-Head

• Single-head self-attention can be combined to form a multi-head self-attention.

From Single-Head to Multi-Head

• Single-head self-attention can be combined to form a multi-head self-attention.

 Single-head attention can be combined to form a multi-head attention.

Encoder Network of Transformer

- 1 encoder block ≈ multi-head self-attention + dense.
- Input shape: $512 \times m$.
- Output shape: $512 \times m$.

Encoder network is a stack of 6 such blocks.

Decoder Network of Transformer

- 1 decoder block ≈ multi-head self-attention + multi-head attention
 + dense.
- Input shape: $(512 \times m, 512 \times t)$.
- Output shape: $512 \times t$.

Decoder network is a stack of 6 such blocks.

Transformer Model

- Transformer is Seq2Seq model; it has an encoder and a decoder.
- Transformer model is not RNN.
- Transformer is based on attention and self-attention.
- Transformer outperforms all the state-of-the-art RNN models.

Thank you!