- 試卷請註明、姓名、班級、學號,請遵守考場秩序
- I.計算題(50 points) (所有題目必須有計算過程,否則不予計分)
- 1. (15 pts) As shown in Fig. 1(a), a coast guard (海岸巡防隊) are firing a cannon (at t = 0 sec) with an angle $\theta = 37^0$ above the horizontal surface at a escaping (逃逸) boat whose speed is $v_B = 16$ m/sec. and 12 m east away from the coast at t = 0 sec..
 - (a) (7 pts) (i) Find the magnitude of the shell's initial velocity v_c ? and (ii) how much does time it take to hit the boat? (Let $g = 10 \text{ m/s}^2$)
 - (b) (8 pts) As shown in Fig. 1b, if the boat is heading +y with the same speed. The coast guard adjusts the angle θ , but keep the cannon at a horizontal angle $\alpha = 37^{\circ}$ relative to the x-axis to hit the boat. Find the angle θ and the magnitude of the shell's velocity v_c ? ($\mathbf{g} = 10 \text{ m/s}^2$)
- 2. (a) (5 pts)As shown in Fig. 2(a) blocks of mass m_1 and m_2 are connected to a massless string and sitting on the block of mass M. block M is fixed and all contacting surfaces are frictionless, let $m_1 = 2 \, kg$, and $m_2 = 1 \, kg$. Determine the acceleration of m_1 and m_2 (b) (12 pts) If the whole system is now placed on a frictionless surface (Fig. 2(b)), and a force F is applied to block M to make it accelerate in the horizontal direction with block m_1 and block m_2 resting on block m_3 . Let $m_1 = 7 \, kg$. Determine the magnitude of $m_2 = 7 \, kg$. The free-body diagrams of $m_1 \, kg$ and $m_2 \, kg$ and $m_3 \, kg$ are required in your answer) ($m_3 \, kg$ is $m_3 \, kg$.
- 3. Fig. 3(a) shows that a car is driving on a track with two semi-circular racing paths of radius 3R and R respectively. The whole track is banked inward with angle θ, shown in Fig. 3(b). A car racer is driving a car, with mass *m* and constant speed *v*, along the track. The static friction coefficient μ_s is for the whole track. At point A, the car reaches the minimum speed on this semi-circle without sliding. At the point B, the car reaches the maximum speed on this curve.

 (a) (10 pts) Draw the free-body diagram and write down the force equations for the car at
 - points A and B, respectively.
 - (b) (3 pts) Express the speed v of the car, in terms of m, μ_s , R, g, and θ .
 - (c) (5 pts) Find the static friction coefficient μ_s in terms of m, R, g, and θ .

II.選擇題(50 points)

1. (5pts) Consider a particle moving with the acceleration a (in unit of m/s^2) vs. time t (in unit of s) graph as shown in Fig. 4. Assume the particle is at rest and at x = 0 at t = 0 sec. What is the position x of the particle at t = 3 sec.

(A)
$$x = 0$$
 (B) $0 < x \le 0.2$ (C) $0.2 < x \le 0.4$ (D) $0.4 < x \le 0.6$ (E) $0.6 < x \le 0.8$ (F) $0.8 < x \le 1.0$ (G) $1.0 < x \le 1.2$ (H) $1.2 < x \le 1.4$ (J) $1.4 < x$

- 2. (5 pts) As shown in Fig. 5, blocks m_1 and m_2 ($m_1 << m_2$) are connected with a string through a set of pulleys and are hung from the ceiling, and are released to motion at t = 0 sec. Let a_1 and a_2 be the acceleration of m_1 and m_2 , respectively, and $x = |a_1/a_2|$, which of the following is correct? (A) x < 0.1 (B) $0.1 \le x < 0.25$ (C) $0.25 \le x < 0.5$ (D) $0.5 \le x < 1$ (E) $1 \le x < 2$ (F) $2 \le x < 4$ (G) $4 \le x < 10$ (H) $10 \le x$
- 3. (5 pts) In a hot pursuit, an FBI agent at P (Fig. 6) must get across a 1730 -m-wide river to Q in minimum time by rowing a boat (划船) across the river and then running along the shore. The river's current is 1.0 m/s, he can row a boat at 2.0 m/s, and he can run at speed 3.00 m/s. For the minimum-time path, which direction should the boat be heading?

 (A) a (B) between a and b, (C) b (D) between b and c, (E) c. (F) between c and d, (G) d (H) between d and e, (J) e (K) none of above.
- 5. (5 pts) Fig. 7 shows a system which contains three small blocks (each with mass m) and a large block with mass M on a horizontal table. The large block is fixed on the table and no friction between block m and M but the kinetic and static friction coefficients are 0.4 and 0.5 between the two small blocks m. If $\sin \theta = 1/5$, (the figure is not to scale), find the friction force f acting on the upper m block, Let $a = \frac{f}{mg}$, what is the value a and the direction of f?
 - (A) $0 < a \le 0.15$, $+\hat{x}$ (B) $0.15 < a \le 0.25$, $+\hat{x}$ (C) $0.25 < a \le 0.35$, $+\hat{x}$ (D) $0.35 < a \le 0.45$, $+\hat{x}$ (E) $0.45 < a \le 0.55$, $+\hat{x}$ (F) $a \le 0.15$, $-\hat{x}$ (G) $0.15 < a \le 0.25$, $-\hat{x}$ (H) $0.25 < a \le 0.35$, $-\hat{x}$ (J) $0.35 < a \le 0.45$, $-\hat{x}$ (K) $0.45 < a \le 0.55$, $-\hat{x}$ (L) a = 0.

6. (5pts) An object with mass of 10 kg is constrained to move in a horizontal circular path with radius of 25 m. Its tangential acceleration as a function of time is given by $a_t = 3t^2$ in m/s². If v = 3 m/s at t = 0 s, the total force F on the object at t = 3 s is (A)F < 200 N; (B) $200 \text{ N} \le F < 300 \text{ N}$; (C) $300 \text{ N} \le F < 400 \text{ N}$; (D) $400 \text{ N} \le F < 500 \text{ N}$; (E) $500 \text{ N} \le F < 600 \text{ N}$; (F) $600 \text{ N} \le F < 700 \text{ N}$; (G) $700 \text{ N} \le F < 800 \text{ N}$; (H) $800 \text{ N} \le F < 1000 \text{ N}$; (J) $1000 \text{ N} \le F$.

Multiple Choice Questions:

1	2	3	4	5	6				
G	F	C	C	D	D				
7	8	9	10	11	12	13	14	15	16
A	В	D	C	В	A	C	G	C	F

3.

The position of cannon:

$$z_c(t) = v_c \sin \theta \cdot t - \frac{1}{2}gt^2$$
$$x_c(t) = v_c \cos \theta \cdot t = \frac{4}{5}v_c \cdot t$$

The position of the boat:

$$Z_h(t) = 0$$

$$x_b(t) = v_b \cdot t + L = 16 \cdot t + 12$$

When the cannon hit the boat at time t_f :

$$z_c(t_f) = z_b(t_f) \Rightarrow v_c \sin \theta \cdot t_f - \frac{1}{2}gt_f^2 = 0 \qquad \textcircled{2} \qquad \Rightarrow t_f = \frac{2v_c \sin \theta}{g} = \frac{3}{25}v_c \qquad \textcircled{1}$$

$$\Rightarrow t_f = \frac{2v_c \sin \theta}{g} = \frac{3}{25}v_c$$

$$x_c(t_f) = x_b(t_f) \Rightarrow v_c \cos \theta \cdot t_f = v_b \cdot t_f + L$$

$$x_c(t_f) = x_b(t_f) \Rightarrow v_c \cos\theta \cdot t_f = v_b \cdot t_f + L \qquad \text{2} \qquad \Rightarrow \frac{2v_c^2}{g} \cos\theta \sin\theta - \frac{2v_c \cdot v_b}{g} \sin\theta - L = 0$$

$$\frac{12}{125}v_c^2 - \frac{48}{25}v_c - 12 = 0 \qquad \Rightarrow v_c^2 - 20v_c - 125 = 0$$

$$\Rightarrow (v_c - 25)(v_c + 5) = 0$$

$$v_c = 25 \, m / \sec$$
 ② $(v_c = -5 \, m / \sec$ 不合理)

$$t_f = \frac{2v_c \sin \theta}{g} = 3\sec.$$

$$z_c(t) = v_c \sin \theta \cdot t - \frac{1}{2}gt^2 = z_b(t) = 0 \quad \dots (1)$$

$$x_c(t) = v_c \cos \theta \cos \alpha \cdot t = x_b(t) = L = 12 \quad \cdots (2)$$

$$y_c(t) = v_c \cos\theta \sin\alpha \cdot t = y_b(t) = v_b \cdot t = 16t \quad \cdots (3)$$

(1)

$$eq(3) \Rightarrow v_c \cos\theta \cdot \frac{3}{5} = 16 \Rightarrow v_c \cos\theta = \frac{80}{3} m/s \cdots (4)$$

$$eq(2) \Rightarrow \frac{80}{3} \cdot \frac{4}{5} \cdot t_f = 12 \Rightarrow t_f = \frac{9}{16} \cdots (5)$$

put the result of eq (5) into $eq(1) \Rightarrow v_c \sin \theta = \frac{1}{2} gt_f = \frac{45}{16} \cdots (6)$

$$\Rightarrow \frac{eq.(6)}{eq.(4)} = \tan \theta = \frac{27}{16 \cdot 16} = \frac{27}{256}$$

$$eq.(6)^2 + eq.(4)^2 \Rightarrow v_c^2 = \sqrt{\left(\frac{80}{3}\right)^2 + \left(\frac{45}{16}\right)^2} \approx 26.8 \, m/s$$

2. (a) (5 pts)As shown in Fig. 2(a) blocks of mass m_1 and m_2 are connected to a massless string and sitting on the block of mass M. block M is fixed and all contacting surfaces are frictionless, let $m_1 = 2 \, kg$, and $m_2 = 1 \, kg$. Determine the acceleration of m_1 and m_2 (b) (12 pts) If the whole system is now placed on a frictionless surface (Fig. 2(b)), and a force F is applied to block M to make it accelerate in the horizontal direction with block m_1 and block m_2 resting on block M, Let $M = 7 \, kg$. Determine the magnitude of F. (The free-body diagrams of m_1 and m_2 , M and the pulley (for part (2) only) are required in your answer) ($g = 10 \, \text{m/s}^2$; $sin 37^\circ \cong 3/5$)

For
$$m_2$$
, $\sum \vec{F} = m_2 \vec{a}_2$

For
$$m_l$$
, $\sum \vec{F} = m_1 \vec{a}_1$

 m_1g

$$a_1 = a_2 \equiv a$$
 (constraint) (3)

$$x: m_1 g \cdot \sin 53^{\circ} - T = m_1 a_1$$
 (1),(2),&(3) $\Rightarrow 16 - T = 2a$
 $y: N_1 - m_1 g \cdot \cos 53^{\circ} = 0$ ① $T - 6 = a$

$$\Rightarrow x: 16 - T = 2a_1$$
 (1)
 $y: N_1 - 12 = 0$

$$\Rightarrow a = \frac{10}{3} (m/s^2)$$
 ①

For
$$m_I$$
, $\sum \vec{F} = m_1 \vec{a}_1$
 $x: N_1 \sin 53^\circ - T \cos 53^\circ = m_1 a_1$
 $y: N_1 \cos 53^\circ + T \sin 53^\circ - m_1 g = 0$
 $\Rightarrow x: \frac{4}{5}N_1 - \frac{3}{5}T = 2a_1$ (4)
 $y: \frac{3}{5}N_1 + \frac{4}{5}T = 20$ (5)
For m_2 , $\sum \vec{F} = m_2 \vec{a}_2$
 $x: -N_2 \sin 37^\circ + T \cos 37^\circ = m_2 a_2$
 $y: N_2 \cos 37^\circ + T \sin 37^\circ - m_2 g = 0$
 $\Rightarrow x: -\frac{3}{5}N_2 + \frac{4}{5}T = a_2$ (6)
 $y: \frac{4}{5}N_2 + \frac{3}{5}T = 10$ (7)
For pulley, $\sum \vec{F} = 0$
 $x: N_{p,x} - T \sin 53^\circ + T \sin 37^\circ = 0$
 $y: N_{py} - T \cos 53^\circ - T \cos 37^\circ = 0$
 $\Rightarrow x: N_{p,x} - \frac{4}{5}T + \frac{3}{5}T = 0$ (8)
 $y: N_{p,x} - \frac{3}{5}T - \frac{4}{5}T = 0$ (9)

For
$$M$$
, $\sum \vec{F} = M\vec{a}_M$
 $x: F - N_1 \sin 53^\circ + N_2 \sin 37^\circ - N_{p,x} = Ma_M$
 $y: N - N_1 \cos 53^\circ - N_2 \cos 37^\circ - N_{py} - Mg = 0$
 $\Rightarrow x: F - \frac{4}{5}N_1 + \frac{3}{5}N_2 - N_{p,x} = 7a_M$ (10) ①
 $y: N - \frac{3}{5}N_1 - \frac{4}{5}N_2 - N_{py} - 70 = 0$ (11) ①
 $a_1 = a_2 = a_M \equiv a$ (constraint) (12)
(4)-(10),&(12) $\Rightarrow \frac{4}{5}N_1 - \frac{3}{5}T = 2a$ (13)
 $\frac{3}{5}N_1 + \frac{4}{5}T = 20$ (14)
 $-\frac{3}{5}N_2 + \frac{4}{5}T = a$ (15)
 $\frac{4}{5}N_2 + \frac{3}{5}T = 10$ (16)
 $F - \frac{4}{5}N_1 + \frac{3}{5}N_2 + \frac{3}{5}T - \frac{4}{5}T = 7a$ (17)
 $4/5*(14)-3/5*(13) \Rightarrow T = 16 - \frac{6}{5}a$ (18)
 $3/5*(16)+4/5*(15) \Rightarrow T = 6 + \frac{4}{5}a$ (19)
 $(18)-(19) \Rightarrow 0 = -10 + 2a \Rightarrow a = 5$ (20)
 $(13)+(15)+(17),&(20) F = 10a \Rightarrow F = 50$ (N) ②

(a) Draw the free-body diagram and write down the force equations for the car at points A and B, respectively.

(c)

(b) Find the speed v of the car, in terms of m, μ_s , R, g, and θ . Find the static coefficient μ_s in terms of m, R, g, and θ .

$$x: N_A \sin \theta - f_{sA} \cos \theta = m \frac{v^2}{3R}$$

$$y: N_A \cos \theta + f_{sA} \sin \theta - mg = 0$$

$$f_{sA} = \mu_s N_A$$

$$x: N_B \sin \theta + f_{sB} \cos \theta = m \frac{v^2}{R}$$

 $y: N_B \cos \theta - f_{sB} \sin \theta - mg = 0$

$$f_{sB} = \mu_s N_B$$

$$\frac{\sin\theta - \mu_s \cos\theta}{\cos\theta + \mu_s \sin\theta} = \frac{v^2}{3Rg}$$

$$v = \sqrt{Rg \frac{(\sin\theta + \mu_s \cos\theta)}{(\cos\theta - \mu_s \sin\theta)}}$$

$$\frac{(\sin\theta + \mu_s \cos\theta)}{(\cos\theta - \mu_s \sin\theta)} = \frac{v^2}{Rg}$$

$$v = \sqrt{3Rg \frac{(\sin\theta - \mu_s \cos\theta)}{(\cos\theta + \mu_s \sin\theta)}}$$

$$3\frac{(\sin\theta - \mu_s \cos\theta)}{(\cos\theta + \mu_s \sin\theta)} = \frac{(\sin\theta + \mu_s \cos\theta)}{(\cos\theta - \mu_s \sin\theta)}$$

$$2\sin\theta \cos\theta - 4\mu_s + 2\mu_s^2 \sin\theta \cos\theta = 0$$

$$\mu_s^2 \sin 2\theta - 4\mu_s + \sin 2\theta = 0$$

Fig. 1(a)

Fig. 1(b)

$$\mu_s = \frac{4 \pm \sqrt{16 - 4\sin^2 2\theta}}{2\sin 2\theta} = \frac{2 \pm \sqrt{4 - \sin^2 2\theta}}{\sin 2\theta}$$

+ disagrees because v^2 will be negative in the case of point A.

$$\mu_s = \frac{2 - \sqrt{4 - \sin^2 2\theta}}{\sin 2\theta}$$