Package 'nodeSub'

November 14, 2023

Type Package

Title Simulate DNA Alignments Using Node Substitutions

Version 1.2.8

Author Thijs Janzen

Maintainer Thijs Janzen < thijsjanzen@gmail.com>

Description Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

URL https://github.com/thijsjanzen/nodeSub

BugReports https://github.com/thijsjanzen/nodeSub

License GPL-3 Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

LinkingTo Rcpp

Depends Rcpp, ape

Imports phangorn, tibble, DDD, Rmpfr, pbapply, phylobase, geiger, beautier, beastier, tracerer, rappdirs, testit, stringr, lifecycle

Suggests testthat, TreeSim, dplyr, knitr, rmarkdown, ggplot2, magrittr, tidyr, nLTT, RPANDA

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-11-14 15:40:02 UTC

2 nodeSub-package

R topics documented:

nodeS	-	Package DNA evo	_		ion	s to) S	imu	late	e se	que	псе	es i	ınd	er (diff	erei	ıt
Index																		18
	slow_matrix			 • •	 	•					•	• •			•		• •	16
	sim_unlinked_explicit																	
	sim_unlinked																	
	sim_normal_explicit			 	 													14
	sim_normal			 	 													13
	sim_linked																	
	reduce_tree																	
	infer_phylogeny																	
	get_p_matrix																	
	estimate_marginal_m																	
	create_equal_alignmecreate_unbalanced_tr																	
	create_equal_alignme																	
	create_balanced_tree																	
	count_hidden																	
	calc_sum_stats																	
	calc_required_node_t																	
	calc_fraction																	
	calc_expected_hidden																	
	nodeSub-package .			 	 													2

Description

Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

Version History:

Version 1.2.7 - Removed beta calculation due to apTreeshape removal from CRAN

Version 1.2.3 - Removed summary statistic tests for CRAN

Version 1.2.2 - Changed codedov links in README

Version 1.2.1 - Expanded depenency on RPANDA

Version 1.2 - Release on CRAN

Author(s)

Thijs Janzen Maintainer: Thijs Janzen <t.janzen@rug.nl>

References

Thijs Janzen, Folmer Bokma, Rampal S Etienne, Nucleotide Substitutions during Speciation may Explain Substitution Rate Variation, Systematic Biology, 2021; syab085

```
calc_expected_hidden_nodes
```

Calculate the number of expected hidden nodes in a phylogenetic tree

Description

Calculate the number of expected hidden nodes using equation 1 in Manceau et al. 2020

Usage

```
calc_expected_hidden_nodes(phy, lambda = NULL, mu = NULL)
```

Arguments

phy phylogenetic tree

lambda birth rate mu death rate

Value

expected number of hidden nodes

References

Manceau, M., Marin, J., Morlon, H., & Lambert, A. (2020). Model-based inference of punctuated molecular evolution. Molecular Biology and Evolution, 37(11), 3308-3323.

calc_fraction Calculate the expected fraction of substitutions at the nodes, relative to the fraction at the branches

Description

calculates the relative contribution of substitutions at the nodes

```
calc_fraction(phy = NULL, node_time = 0, model = "unlinked")
```

4 calc_sum_stats

Arguments

phy phylogenetic tree (optional)

node_time time spent at the node
model node substitution model

Value

expected fraction

calc_required_node_time

Calculate the required node time to obtain a desired fraction of substitutions at the node

Description

calculates the required node time to obtain a desired fraction of substitutions at the node

Usage

```
calc_required_node_time(phy = NULL, s = 0.5, model = "unlinked")
```

Arguments

phy phylogenetic tree s desired fraction

model node substitution model, either "linked" or "unlinked".

Value

expected fraction

calc_sum_stats calculate summary statistics of a phylogenetic tree, compared with a

reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA's JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.

count_hidden 5

Description

calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA's JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.

Usage

```
calc_sum_stats(trees, true_tree, verbose = FALSE)
```

Arguments

trees a phyloList object containing multiple trees

true_tree a phylo object containing the reference tree, preferably without extinct lineages.

If extinct lineages are found, these are dropped.

verbose verbose output if true (e.g. progressbars)

Value

list with two tibbles 1) containing the summary statistics of all trees and 2) containing the difference with the true tree

count_hidden

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Description

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Usage

```
count_hidden(tree)
```

Arguments

tree phylo object

Value

number of hidden speciation events

create_balanced_tree create a balanced tree out of branching times

Description

create a balanced tree out of branching times

Usage

```
create_balanced_tree(brts)
```

Arguments

brts

vector of branching times

Value

phylo phylo object

```
create_equal_alignment
```

function create an alignment with identical information content

Description

function create an alignment with identical information content

```
create_equal_alignment(
  input_tree,
  sub_rate,
  alignment_result,
  sim_function = NULL,
  verbose = FALSE,
  node_time = NULL,
  input_alignment_type = "nodesub"
)
```

Arguments

result of sim_normal, sim_linked or sim_unlinked

sim_function function that accepts a tree, sequence length, rootsequence and substitution rate

(in that order). Default is sim_normal

verbose provide intermediate output

was the input alignment simulated with a node substitution model or a normal substitution model? Used to calculate the twin mutation rate. Options are "nodesub" and "normal".

Value

list with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

```
create_equal_alignment_explicit
```

function create an alignment with identical information content, using the explicit method to simulate substitutions

Description

function create an alignment with identical information content, using the explicit method to simulate substitutions

```
create_equal_alignment_explicit(
  input_tree,
  sub_rate,
  alignment_result,
  verbose = FALSE
)
```

Arguments

input_tree phylogeny for which to generate alignment

sub_rate substitution rate used in the original phylogeny

alignment_result

result of sim_normal, sim_linked or sim_unlinked

verbose provide intermediate output

Value

list with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

create_unbalanced_tree

create an unbalanced tree out of branching times

Description

create an unbalanced tree out of branching times

Usage

```
create_unbalanced_tree(brts)
```

Arguments

brts vector of branching times

Value

phylo phylo object

```
estimate_marginal_models
```

estimate the marginal likelihood of the relaxed and strict clock model for a provided alignment

Description

estimate_marginal_models estimates the marginal likelihood of both the strict and the relaxed clock model, given the JC69 substitution model, using the NS package in BEAST, made available via the babette R package. The NS package performs nested sampling, and uses an MCMC approach to estimate the marginal likelihood. Sampling is performed until convergence of the MCMC chain. Unfortunately, currently the babette package is unavailable on CRAN, requiring installation through GitHub to enjoy the full functionality of this function.

Usage

```
estimate_marginal_models(
  fasta_filename,
  use_yule_prior = FALSE,
  rng_seed = 42,
  sub_rate = 1,
  verbose = FALSE
)
```

Arguments

fasta_filename	file name of fasta file holding alignment for which the marginal likelihood is to be estimated
use_yule_prior	by default, a birth-death prior is used as tree prior, but if use_yule_prior is set to TRUE, a pure-birth prior will be used.
rng_seed	seed of pseudo-random number generator
sub_rate	substitution rate
verbose	boolean indicating if verbose intermediate output is to be generated

Value

data frame with marginal likelihoods and relative weights per clock model.

infer_phylogeny

 get_p_matrix

calculate p matrix

Description

calculates the p matrix

Usage

```
get_p_matrix(branch_length, eig = phangorn::edQt(), rate = 1)
```

Arguments

```
branch_length branch length
eig eigen object
rate rate
```

Value

p matrix

infer_phylogeny

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

Description

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

```
infer_phylogeny(
   alignment,
   treatment_name,
   tree_prior = beautier::create_bd_tree_prior(),
   clock_prior = beautier::create_strict_clock_model(),
   mcmc_seed = NULL,
   chain_length = 1e+07,
   sample_interval = 5000,
   burnin = 0.1,
   working_dir = NULL,
   sub_rate = 1
)
```

reduce_tree 11

Arguments

alignment Phydat object containing the focal alignment

treatment_name string to be appended to BEAST files

tree_prior tree prior used, default = birth-death prior clock_prior clock prior used, default = strict clock

mcmc_seed seed of the mcmc chain, default is the system time

chain_length length of the mcmc chain, default is 1e7.

sample_interval

interval of sampling, default is 5000

burnin burnin of posterior distribution

working_dir beast2 working dir

sub_rate substitution rate used to generate the original alignment (if available), default is

1

Value

list with all trees, and the consensus tree

reduce_tree	Function to remove speciation events occuring after an extinction
	event. Extinct species are pruned randomly, such that only a single
	extinct species per branching event (if any extinct species) remains.

Description

Function to remove speciation events occurring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Usage

```
reduce_tree(tree)
```

Arguments

tree phylo object

Value

pruned tree

12 sim_linked

sim_linked

simulate a sequence assuming conditional substitutions on the node.

Description

simulate a sequence assuming conditional substitutions on the node.

Usage

```
sim_linked(
   phy,
   Q = rep(1, 6),
   rate = 0.1,
   node_mut_rate_double = 1e-09,
   l = 1000,
   bf = rep(0.25, 4),
   rootseq = NULL,
   node_time = 0.01
)
```

Arguments

```
tree for which to simulate sequences
phy
Q
                   substitution matrix along the branches, default = JC
                   mutation rate, default = 1
rate
node_mut_rate_double
                   mutation rate on the node, default = 1e-9
1
                   number of base pairs to simulate
bf
                   base frequencies, default = c(0.25, 0.25, 0.25, 0.25)
                   sequence at the root, simulated by default
rootseq
node_time
                   time spent at the node
```

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_normal 13

sim_normal	Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn
	package.

Description

Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn package.

Usage

```
sim_normal(x, 1 = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

x	a phylogenetic tree tree, i.e. an object of class phylo
1	length of the sequence to simulate.
Q	the rate matrix.
bf	base frequencies.
rootseq	a vector of length l containing the root sequence, other root sequence is randomly generated.
rate	mutation rate

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

Author(s)

Klaus Schliep <klaus.schliep@gmail.com>

14 sim_unlinked

Description

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```
sim_normal_explicit(x, 1 = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

X	a phylogenetic tree tree, i.e. an object of class phylo or and object of class pml.
1	length of the sequence to simulate.
Q	the rate matrix.
bf	base frequencies.
rootseq	a vector of length l containing the root sequence, other root sequence is randomly generated.
rate	mutation rate or scaler for the edge length, a numerical value greater than zero.

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_unlinked	Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitu-
	tions occuring on the nodes, and one for substitutions occuring along the branches.

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occurring on the nodes, and one for substitutions occurring along the branches.

sim_unlinked_explicit 15

Usage

```
sim_unlinked(
  phy,
  Q1 = rep(1, 6),
  Q2 = rep(1, 6),
  rate1 = 0.1,
  rate2 = 0.1,
  1 = 1000,
  bf = rep(0.25, 4),
  rootseq = NULL,
  node_time = 0.001
)
```

Arguments

phy	tree for which to simulate sequences
Q1	substitution matrix along the branches, default = JC
Q2	substitution matrix on the nodes, default = JC
rate1	mutation rate along the branch, default = 0.1
rate2	mutation rate on the node, default = 0.1
1	number of base pairs to simulate
bf	base frequencies, default = $c(0.25, 0.25, 0.25, 0.25)$
rootseq	sequence at the root, simulated by default
node_time	amount of time spent at the nodes

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_unlinked_explicit Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

slow_matrix

Usage

```
sim_unlinked_explicit(
   phy,
   Q1 = rep(1, 6),
   Q2 = rep(1, 6),
   rate1 = 0.1,
   rate2 = 0.1,
   l = 1000,
   bf = rep(0.25, 4),
   rootseq = NULL,
   node_time = 0.001
)
```

Arguments

phy	phylogenetic tree for which to simulate sequences
Q1	substitution matrix along the branches, default = JC
Q2	substitution matrix on the nodes, default = JC
rate1	mutation rate along the branch, default = 0.1
rate2	mutation rate on the node, default = 0.1
1	number of base pairs to simulate
bf	base frequencies, default = $c(0.25, 0.25, 0.25, 0.25)$
rootseq	sequence at the root, simulated by default
node_time	amount of time spent at the nodes

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

slow_matrix	this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify

Description

this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify

slow_matrix 17

Usage

```
slow_matrix(eig, branch_length, rate)
```

Arguments

eig eigen object
branch_length branch length
rate substitution rate

Value

p matrix

Index

```
{\tt calc\_expected\_hidden\_nodes, 3}
calc_fraction, 3
calc_required_node_time, 4
calc_sum_stats, 4
count_hidden, 5
create_balanced_tree, 6
create_equal_alignment, 6
{\tt create\_equal\_alignment\_explicit}, 7
\verb|create_unbalanced_tree|, 8|
\verb|estimate_marginal_models|, 9
get_p_matrix, 10
\verb|infer_phylogeny|, \\ 10
nodeSub (nodeSub-package), 2
nodeSub-package, 2
reduce_tree, 11
sim_linked, 12
sim_normal, 13
sim_normal_explicit, 14
sim_unlinked, 14
sim_unlinked_explicit, 15
slow_matrix, 16
```