

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C12N 15/56, 9/42, A01H 5/00

A1

(11) International Publication Number: WO 92/11376

(43) International Publication Date: 9 July 1992 (09.07.92)

(21) International Application Number: PCT/SE91/00892

(22) International Filing Date: 20 December 1991 (20.12.91)

(30) Priority data: 9004096-5 21 Decemb

21 December 1990 (21.12.90) SE

(71) Applicant (for all designated States except US): AMYLOGENE HB [SE/SE]; c/o Svalöf AB, S-268 81 Svalöv (SE).

(72) Inventors; and (75) Inventors/Applicants (for US only): HOFVANDER, Per [SE/SE]; Doppinggränd 8, S-230 11 Falsterbo (SE). PERSSON, Per, T. [SE/SE]; Travgatan 9, S-291 65 Kristianstad (SE). TALLBERG, Anneli [SE/SE]; Drapavägen 69, S-223 74 Lund (SE). WIKSTRÖM, Olle [SE/SE]; Wasagatan 1, S-291 53 Kristianstad (SE). (74) Agent: AWAPATENT AB; Box 5117, S-200 71 Malmö (SE).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC (European patent), MG, ML (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, SD, SE, SE (European patent), SN (OAPI patent), SU*,TD (OAPI patent), TG (OAPI patent), US.

Published

With international search report. In English translation (filed in Swedish).

(54) Title: GENETICALLY ENGINEERED MODIFICATION OF POTATO TO FORM AMYLOPECTIN-TYPE STARCH

Result of restriction analysis. GBSS coding region including introns are marked in a darker tone.

(57) Abstract

Genetically engineered modification of potato for suppressing the formation of amylose-type starch is described. Three fragments for insertion in the antisense direction into the potato genome are also described. Moreover, antisense constructs, genes and vectors comprising said antisense fragments are described. Further a promoter for the gene coding for formation of granule-bound starch synthase and also the gene itself are described. Also cells, plants, tubers, microtubers and seeds of potato comprising said antisense fragments are described. Finally, amylopectin-type starch, both native and derivatised, derived from the potato that is modified in a genetically engineered manner, as well as a method of suppressing amylose formation in potato are described.

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG BJ BR CA CF CG CH CM . CS	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon Carchoslovakia	ES FI FR GA GB GN GR HU IT JP KP KR LL LL LL	Spain Finland France Gabon United Kingdom Guinea Greece Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Licchtenstein Sri Lanka Luxemboure	MG ML MN MR MW NL NO PL RO SB SN TD TD US	Madagascar Mali Mongolia Mauritania Malawi Netherlands Norway Poland Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America
DE	Germany	LU	Laxembourg		

GENETICALLY ENGINEERED MODIFICATION OF POTATO TO FORM AMYLOPECTIN-TYPE STARCH

The present invention relates to genetically engi-5 neered modification of potato, resulting in the formation of practically solely amylopectin-type starch in the potato. The genetically engineered modification implies the insertion of gene fragments into potato, said gene fragments comprising parts of leader sequence, translation 10 start, translation end and trailer sequence as well as coding and noncoding (i.e. exons and introns) parts of the gene for granule-bound starch synthase, inserted in the antisense direction.

Background of the Invention

Starch in various forms is of great import in the food and paper industry. In future, starch will also be a great potential for producing polymers which are degradable in nature, e.g. for use as packing material. Many different starch products are known which are produced by 20 derivatisation of native starch originating from, inter alia, maize and potato. Starch from potato and maize, respectively, is competing in most market areas.

In the potato tuber, starch is the greatest part of the solid matter. About 1/4 to 1/5 of the starch in potato 25 is amylose, while the remainder of the starch is amylopectin. These two components of the starch have different fields of application, and therefore the possibility of producing either pure amylose or pure amylopectin is most interesting. The two starch components can be produced 30 from common starch, which requires a number of process steps and, consequently, is expensive and complicated.

It has now proved that by genetic engineering it is possible to modify potato so that the tubers merely produce mainly starch of one or the other type. As a result, 35 a starch quality is obtained which can compete in the areas where potato starch is normally not used today. Starch from such potato which is modified in a genetically ٠,

30

engineered manner has great potential as a food additive, since it has not been subjected to any chemical modification process.

Starch Synthesis

The synthesis of starch and the regulation thereof are presently being studied with great interest, both on the level of basic research and for industrial application. Although much is known about the assistance of certain enzymes in the transformation of saccharose 10 into starch, the biosynthesis of starch has not yet been elucidated. By making researches above all into maize, it has, however, been possible to elucidate part of the ways of synthesis and the enzymes participating in these reactions. The most important starch-synthesising enzymes for 15 producing the starch granules are the starch synthase and the branching enzyme. In maize, three forms of starch synthase have so far been demonstrated and studied, two of which are soluble and one is insolubly associated with the starch granules. Also the branching enzyme consists of 20 three forms which are probably coded by three different genes (Mac Donald & Preiss, 1985; Preiss, 1988).

The Waxy Gene in Maize

The synthesis of the starch component amylose essentially occurs by the action of the starch synthase alpha-25 -1,4-D-glucane-4-alpha-glucosyl transferase (EC 2.4.1.21) which is associated with the starch granules in the growth cell. The gene coding for this granule-bound enzyme is called "waxy" (= \underline{wx}^+), while the enzyme is called "GBSS" (granule-bound starch synthase).

waxy locus in maize has been thoroughly characterised both genetically and biochemically. The waxy gene on chromosome 9 controls the production of amylose in endosperm, pollen and the embryo sac. The starch formed in endosperm in normal maize with the wx allele consists to 25% of amylose and to 75% of amylopectin. A mutant form of maize has been found in which the endosperm contains a mutation located to the wx gene, and therefore no functioning GBSS

25

?

is synthesised. Endosperm from this mutant maize therefore contains merely amylopectin as the starch component. This so-called waxy mutant thus contains neither GBSS nor amylose (Echt & Schwartz, 1981).

The GBSS protein is coded by the wx + gene in the cell nucleus but is transported to and active in the amyloplast. The preprotein therefore consists of two components, viz. a 7 kD transit peptide which transfers the protein across the amyloplast membrane, and the actual 10 protein which is 58 kD. The coding region of the wx to gene in maize is 3.7 kb long and comprises 14 exons and 13 introns. A number of the regulation signals in the promoter region are known, and two different polyadenylating sequences have been described (Klösgen et al, 1986; 15 Schwartz-Sommer et al, 1984; Shure et al, 1983).

Amylose Enzyme in Potato

In potato, a 60 kD protein has been identified, which constitutes the main granule-bound protein. Since antibodies against this potato enzyme cross-react with GBSS from 20 maize, it is assumed that it is the granule-bound synthase (Vos-Scheperkeuter et al, 1986). The gene for potato GBSS has, however, so far not been characterised to the same extent as the waxy gene in maize, either in respect of locating or structure.

Naturally occurring waxy mutants have been described for barley, rice and sorghum besides maize. In potato no natural mutant has been found, but a mutant has been produced by X-radiation of leaves from a monohaploid (n=12) plant (Visser et al, 1987). Starch isolated from tubers of this mutant contains neither the GBSS protein nor amylose. The mutant is conditioned by a simple recessive gene and is called amf. It may be compared to waxy mutants of other plant species since both the GBSS protein and amylose are lacking. The stability of the chromosome number, however, is weakened since this is quadrupled to the natural number (n=48), which can give negative effects on the potato plants (Jacobsen et al, 1990).

D

Inhibition of Amylose Production

The synthesis of amylose can be drastically reduced by inhibition of the granule-bound starch synthase, GBSS, which catalyses the formation of amylose. This inhibition results in the starch mainly being amylopectin.

Inhibition of the formation of enzyme can be accomplished in several ways, e.g. by:

- mutagen treatment which results in a modification of the gene sequence coding for the formation of the enzyme
- 10 incorporation of a transposon in the gene sequence coding for the enzyme
 - genetically engineered modification so that the gene coding for the enzyme is not expressed, e.g. antisense gene inhibition.
- Fig. 1 illustrates a specific suppression of normal gene expression in that a complementary antisense nucleotide is allowed to hybridise with mRNA for a target gene. The antisense nucleotide thus is antisense RNA which is transcribed in vivo from a "reversed" gene sequence (Izant, 1989).

By using the antisense technique, various gene functions in plants have been inhibited. The antisense construct for chalcone synthase, polygalacturonase and phosphinotricin acetyltransferase has been used to inhibit the corresponding enzyme in the plant species petunia, tomato and tobacco.

Inhibition of Amylose in Potato

In potato, experiments have previously been made to inhibit the synthesis of the granule-bound starch synthase (GBSS protein) with an antisense construct corresponding to the gene coding for GBSS (this gene is hereinafter called the "GBSS gene"). Hergersberger (1988) describes a method by which a cDNA clone for the GBSS gene in potato has been isolated by means of a cDNA clone for the wx gene in maize. An antisense construct based on the entire cDNA clone was transferred to leaf discs of potato by means of Agrobacterium tumefaciens. In microtubers induced

PCT/SE91/00892

20

25

in vitro from regenerated potato sprouts, a varying and very weak reduction of the amylose content was observed and shown in a diagram. A complete characterisation of the GBSS gene is not provided.

The gene for the GBSS protein in potato has been further characterised in that a genomic wx tolone was examined by restriction analysis. However, the DNA sequence of the clone has not been determined (Visser et al, 1989).

Further experiments with an antisense construct cor-10 responding to the GBSS gene in potato have been reported. The antisense construct which is based on a cDNA clone together with the CaMV 35S promoter has been transformed by means of Agrobacterium rhizogenes. According to information, the transformation resulted in a lower amylose 15 content in the potato, but no values have been accounted for (Flavell, 1990).

None of the methods used so far for genetically engineered modification of potato has resulted in potato with practically no amylose-type starch.

The object of the invention therefore is to provide a practically complete suppression of the formation of amylose in potato tubers.

Summary of the Invention

According to the invention, the function of the GBSS gene and, thus, the amylose production in potato are inhibited by using completely new antisense constructs. For forming the antisense fragments according to the invention, the genomic GBSS gene is used as a basis in order to achieve an inhibition of GBSS and, consequently, of the 30 amylose production, which is as effective as possible. The antisense constructs according to the invention comprise both coding and noncoding parts of the GBSS gene which correspond to sequences in the region comprising promoter as well as leader sequence, translation start, translation 35 end and trailer sequence in the antisense direction. For a tissue-specific expression, i.e. the amylose production should be inhibited in the potato tubers only, use is made

30

of promoters which are specifically active in the potato tuber. As a result, the starch composition in other parts of the plant is not affected, which otherwise would give negative side-effects.

The invention thus comprises a fragment which essentially has one of the nucleotide sequences stated in SEQ ID No. 1, SEQ ID No. 2 or SEQ ID No. 3. However, the sequences may deviate from those stated by one or more non-adjacent base pairs, without affecting the function of 10 the fragments.

The invention also comprises a potato-tuber-specific promoter comprising 987 bp which belongs to the gene according to the invention, which codes for granule-bound starch synthase. Neither the promoter nor the correspond-15 ing gene has previously been characterised. The promoter sequence of 987 bp is stated in SEQ ID No. 4, while the gene sequence is stated in SEQ ID No. 5. Also the promoter and gene sequences may deviate from those stated by one or more non-adjacent base pairs, without affecting their function. 20

The invention also comprises vectors including the antisense fragments and the antisense constructs according to the invention.

In other aspects the invention comprises cells, plants, tubers, microtubers and seeds whose genome contains the fragments according to the invention inserted in the antisense direction.

In still further aspects, the invention comprises amylopectin-type starch, both native and derivatised.

Finally, the invention comprises a method of suppressing amylose formation in potato, whereby mainly amylopectin-type starch is formed in the potato.

The invention will now be described in more detail with reference to the accompanying Figures in which

Fig. 1 illustrates the principle of the antisense 35 gene inhibition,

Fig. 2 shows the result of restriction analysis of the potato GBSS gene,

Fig. 3 shows two new binary vectors pHo3 and pHo4,

Fig. 4 shows the antisense constructs phoxwA, phoxwB and phoxwD,

Fig. 5 shows the antisense constructs pHoxwF and pHoxwG, and

Fig. 6 shows the antisense constructs pHoxwK and pHoxwL.

Moreover, the sequences of the different DNA fragments according to the invention are shown in SEQ ID Nos 1, 2, 3, 4 and 5. There may be deviations from these sequences in one or more non-adjacent base pairs. MATERIALS

In the practical carrying out of the invention the following materials were used:

Bacterial strains: E. coli DH5alfa and DH5alfaF'IQ(BRL).

E. coli JM105 (Pharmacia). A. tumefaciens LBA4404 (Clon-

20 <u>Vectors</u>: M13mp18 and mp19 (Pharmacia). pBI101 and pBI121 (Clontech). pBI240.7 (M. W. Bevan). pUC plasmids (Pharmacia).

Enzymes: Restriction enzymes and EcoRI linker (BRL). $union^{TM}$ DNA Ligation Kit (Clontech). Sequenase DNA

25 Sequencing Kit (USB). T_4 -DNA ligase (Pharmacia).

The above-mentioned materials are used according to specifications stated by the manufacturers.

Genomic Library

tech).

A genomic library in EMBL3 has been produced by Clon-30 tech on the applicant's account, while using leaves of the potato Bintje as starting material.

Identification and Isolation of the GBSS Gene

The genomic library has been screened for the potato GBSS gene by means of cDNA clones for both the 5' and 3' end of the gene (said cDNA clones being obtained from M Hergersberger, Max Plank Institute in Cologne) according to a protocol from Clontech.

A full-length clone of the potato GBSS gene, wx311, has been identified and isolated from the genomic library. The start of the GBSS gene has been determined at an EcoRI fragment which is called fragment w (3.95 kb). The end of the GBSS gene has also been determined at an EcoRI fragment which is called fragment x (5.0 kb). A BgIII-SpeI fragment which is called fragment m (3.9 kb) has also been isolated and shares sequences both from fragment w and from fragment x. The fragments w, m and x have been subcloned in pUC13 (Viera, 1982; Yanisch-Peron et al, 1985) and are called pSw, pSm and pSx, respectively (Fig. 2). Characterisation of the GBSS Gene in Potato

The GBSS gene in potato has been characterised by restriction analysis and cDNA probes, where the 5' and 3' end of the GBSS gene has been determined more accurately (Fig. 2). Sequence determination according to Sanger et al, 1977 of the GBSS gene has been made on subclones from pSw and pSx in M13mp18 and mp19 as well as pUC19 starting around the 5' end (see SEQ ID No. 5).

The promoter region has been determined at a BglII-NsiI fragment (see SEQ ID No. 4). Transcription and translation start has been determined at an overlapping BglII-HindIII fragment. The terminator region has in turn been determined at a SpeI-HindIII fragment.

Antisense Constructs for the GBSS Gene in Potato

The GBSS gene fragments according to the invention (see SEQ ID Nos 1, 2 and 3, and Fig. 2) have been determined in the following manner.

The restriction of pSw with NsiI and HindIII gives

fragment I (SEQ ID No. 1) which subcloned in pUC19 is
called 19NH35. Further restriction of 19 NH35 with HpaISstI gives a fragment containing 342 bp of the GBSS gene
according to the invention. This fragment comprises leader
sequence, translation start and the first 125 bp of the

coding region.

The restriction of pSm with HpaI and NsiI gives fragment II (SEQ ID No. 2) which subcloned in pJRD184 (Heusterspreute et al, 1987) is called pJRDmitt. Further restriction of pJRDmitt with HpaI-SstI gives a fragment containing 2549 bp of the GBSS gene according to the invention. This fragment comprises exons and introns from the middle of the gene.

The restriction of pSx with SstI and SpeI gives fragment III (SEQ ID No. 3) which subcloned in pBluescript 10 (Melton et al, 1984) is called pBlue3'. Further restriction of pBlue3' with BamHI-SstI gives a fragment containing 492 bp of the GBSS gene according to the invention. This fragment comprises the last intron and exon, translation end and 278 bp of trailer sequence.

Antisense Constructs with Fragment I (Fig. 4): For the antisense construct pHoxwA, the HpaI-SstI fragment from 19NH35 has been inserted in the antisense direction into the binary vector pBI121 (Jefferson et al, 1987) cleaved with SmaI-SstI. The transcription of the antisense fragment is then initiated by the CaMV 35S promoter and is terminated by the NOS terminator (NOS = nopaline synthase).

For the antisense construct pHoxwB, the HpaI-SstI fragment from 19NH35 has been inserted in the antisense direction into the binary vector pHo4 (Fig. 3) cleaved with SmaI-SstI. The patatin I promoter which is tuber specific in potato comes from the vector pBI240.7 obtained from M. Bevan, Institute of Plant Science Research, Norwich. The transcription of the antisense fragment is then initiated by the patatin I promoter and is terminated by the NOS terminator.

For the antisense construct pHoxwD, the HpaI-SstI fragment from 19NH35 has been inserted in the antisense direction into the binary vector pHo3 (Fig. 3) cleaved with SmaI-SstI. pHo3 is a new binary vector which is constructed on the basis of pBI101. This vector which contains the promoter according to the invention (see SEQ ID

No. 4) (GBSS promoter) of the now characterised potato GBSS gene according to the invention has been restrictioncleaved with SmaI and SstI, the HpaI-SstI fragment from 19NH35 being inserted in the antisense direction. The 5 transcription of the antisense fragment is then initiated by its own GBSS promoter and is terminated by the NOS terminator. This means that the antisense fragment is transcribed only in the potato tuber, since the GBSS promoter like the patatin I promoter is tuber-specific.

10 Antisense Constructs with Fragment II (Fig. 5): For the antisense construct pHoxwF, the HpaI-SstI fragment from pJRDmitt has been inserted in the antisense direction into the binary vector pHo4 cleaved with SmaI-SstI. The transcription of the antisense fragment is then initiated by 15 the patatin I promoter and terminated by the NOS terminator.

For the antisense construct pHoxwG, the HpaI-SstI fragment from pJRDmitt has been inserted in the antisense direction into the binary vector pHo3 cleaved with Smal-SstI. The transcription of the antisense fragment is then initiated by its own GBSS promoter and is terminated by the NOS terminator. Antisense Constructs with Fragment III (Fig. 6): For the antisense construct pHoxwK, the BamHI-SstI fragment from pBlue3' has been inserted in the antisense direction into the binary vector pHo4 cleaved with BamHI-SstI. The transcription of the antisense fragment is then initiated by the patatin I promoter and is terminated by the NOS termi-

nator. For the antisense construct pHoxwL, the BamHI-SstI fragment from pBlue3' has been inserted in the antisense direction into the binary vector pHo3 cleaved with BamHI-SstI. The transcription of the antisense fragment is then initiated by 1ts own GBSS promoter and is terminated by the NOS terminator. 35

30

The formed antisense constructs (Figs 4, 5, 6) have been transformed to Agrobacterium tumefaciens strain LBA4404 by direct transformation with the "freeze-thawing" method (Hoekema et al, 1983; An et al, 1988).

5 Transformation

The antisense constructs are transferred to bacteria, suitably by the "freeze-thawing" method (An et al, 1988). The transfer of the recombinant bacterium to potato tissue occurs by incubation of the potato tissue with the recom-10 binant bacterium in a suitable medium after some sort of damage has been inflicted upon the potato tissue. During the incubation, T-DNA from the bacterium enters the DNA of the host plant. After the incubation, the bacteria are killed and the potato tissue is transferred to a solid 15 medium for callus induction and is incubated for growth of callus.

After passing through further suitable media, sprouts are formed which are cut away from the potato tissue.

Checks for testing the expression of the antisense 20 constructs and the transfer thereof to the potato genome are carried out by e.g. southern and northern hybridisation (Maniatis et al (1982)). The number of copies of the antisense construct which has been transferred is determined by southern hybridisation.

The testing of the expression on protein level is suitably carried out on microtubers induced in vitro on the transformed sprouts, thus permitting the testing to be performed as quickly as possible.

Characterisation of the GBSS Protein

The effect of the antisense constructs on the function of the GBSS gene with respect to the activity of the GBSS protein is examined by extracting starch from the microtubers and analysing it regarding the presence of the GBSS protein. In electrophoresis on polyacrylamide gel 35 (Hovenkamp-Hermelink et al, 1987), the GBSS protein forms a distinct band at 60 kD, when the GBSS gene functions. When the GBSS gene is not expressed, i.e. when the anti-

sense GBSS gene is fully expressed, thereby inhibiting the formation of GBSS protein, no 60 kD band is demonstrated on the gel.

Characterisation of the Starch

The composition of the starch in microtubers is identical with that of ordinary potato tubers, and therefore the effect of the antisense constructs on the amylose production is examined in microtubers. The proportion of amylose to amylopectin can be determined by a spectrophoto-10 metric method (e.g. according to Hovenkamp-Hermelink et al, 1988).

Extraction of Amylopectin from Amylopectin Potato

Amylopectin is extracted from the so-called amylopectin potato (potato in which the formation of amylose 15 has been suppressed by inserting the antisense constructs according to the invention) in a known manner.

Derivatisation of Amylopectin

Depending on the final use of the amylopectin, its physical and chemical qualities can be modified by deri-20 vatisation. By derivatisation is here meant chemical, physical and enzymatic treatment and combinations thereof (modified starches).

The chemical derivatisation, i.e. chemical modification of the amylopectin, can be carried out in different 25 ways, for example by oxidation, acid hydrolysis, dextrinisation, different forms of etherification, such as cationisation, hydroxy propylation and hydroxy ethylation, different forms of esterification, for example by vinyl acetate, acetic anhydride, or by monophosphatising, 30 diphosphatising and octenyl succination, and combinations thereof.

Physical modification of the amylopectin can be effected by e.g. cylinder-drying or extrusion.

In enzymatic derivatisation, degradation (reduction, 35 of the viscosity) and chemical modification of the amylopectin are effected by means of existing enzymatic systems.

PCT/SE91/00892

13

The derivatisation is effected at different temperatures, according to the desired end product. The ordinary range of temperature which is used is 20-45°C, but temperatures up to 180°C are possible.

The invention will be described in more detail in the following Examples.

Example 1

Production of microtubers with inserted antisense constructs according to the invention

The antisense constructs (see Figs 4, 5 and 6) are transferred to Agrobacterium tumefaciens LBA 4404 by the "freeze-thawing" method (An et al, 1988). The transfer to potato tissue is carried out according to a modified protocol from Rocha-Sosa et al (1989).

Leaf discs from potato plants cultured in vitro are incubated in darkness on a liquid MS-medium (Murashige & Skoog; 1962) with 3% saccharose and 0.5% MES together with 100 µl of a suspension of recombinant Agrobacterium per 10 ml medium for two days. After these two days the bacteria are killed. The leaf discs are transferred to a solid medium for callus induction and incubated for 4-6 weeks, depending on the growth of callus. The solid medium is composed as follows:

MS. + 3% saccarose

25 2 mg/l zeatin riboside

0.02 mg/l "NAA"

0.02 mg/l "GA₃"

500 mg/l "Claforan"

50 mg/l kanamycin

30 0.25% "Gellan"

Subsequently the leaf discs are transferred to a medium having a different composition of hormones, comprising:

MS + 3% saccharose
5 mg/l "NAA"
0.1 mg/l "BAP"

500 mg/l "Claforan"

5 50 mg/l kanamycin 0.25% "Gellan"

The leaf discs are stored on this medium for about 4 weeks, whereupon they are transferred to a medium in which the "Claforan" concentration has been reduced to 250 mg/l. If required, the leaf discs are then moved to a fresh medium every 4 or 5 weeks. After the formation of sprouts, these are cut away from the leaf discs and transferred to an identical medium.

The condition that the antisense construct has been transferred to the leaf discs is first checked by analysing leaf extracts from the regenerated sprouts in respect of glucuronidase activity by means of the substrates described by Jefferson et al (1987). The activity is demonstrated by visual assessment.

Further tests of the expression of the antisense constructs and the transfer thereof to the potato genome are carried out by southern and northern hybridisation according to Maniatis et al (1981). The number of copies of the antisense constructs that has been transferred is deterzed mined by southern hybridisation.

When it has been established that the antisense constructs have been transferred to and expressed in the potato genome, the testing of the expression on protein level begins. The testing is carried out on microtubers which have been induced in vitro on the transformed sprouts, thereby avoiding the necessity of waiting for the development of a complete potato plant with potato tubers.

Stem pieces of the potato sprouts are cut off at the nodes and placed on a modified MS medium. There they form microtubers after 2-3 weeks in incubation in darkness at 19°C (Bourque et al, 1987). The medium is composed as follows:

MS + 6% saccharose

2.5 mg/l kinetin

2.5 mg/l "Gellan"

The effect of the antisense constructs on the function of the GBSS gene in respect of the activity of the
GBSS protein is analysed by means of electrophoresis on
polyacrylamide gel (Hovenkamp-Hermelink et al, 1987).
Starch is extracted from the microtubers and analysed
regarding the presence of the GBSS protein. In a polyacrylamide gel, the GBSS protein forms a distinct band at
60 kD, when the GBSS gene functions. If the GBSS gene is
not expressed, i.e. when the antisense GBSS gene is fully
expressed so that the formation of GBSS protein is inhibited, no 60 kD band can be seen on the gel.

The composition of the starch, i.e. the proportion of amylose to amylopectin, is determined by a spectrophotometric method according to Hovenkamp-Hermelink et al (1988), the content of each starch component being determined on the basis of a standard graph.

20 Example 2

Extraction of amylopectin from amylopectin potato.

Potato whose main starch component is amylopectin, below called amylopectin potato, modified in a genetically engineered manner according to the invention, is grated, thereby releasing the starch from the cell walls.

The cell walls (fibres) are separated from fruit juice and starch in centrifugal screens (centrisiler). The fruit juice is separated from the starch in two steps, viz. first in hydrocyclones and subsequently in specially designed band-type vacuum filters.

Then a finishing refining is carried out in hydrocyclones in which the remainder of the fruit juice and fibres are separated.

The product is dried in two steps, first by predrying on a vacuum filter and subsequently by final drying in a hot-air current.

Example 3

Chemical derivatisation of amylopectin

Amylopectin is sludged in water to a concentration of 20-50%. The pH is adjusted to 10.0-12.0 and a quatenary ammonium compound is added in such a quantity that the end product obtains a degree of substitution of 0.004-0.2. The reaction temperature is set at 20-45°C. When the reaction is completed, the pH is adjusted to 4-8, whereupon the product is washed and dried. In this manner the cationic starch derivative 2-hydroxy-3-trimethyl ammonium propyl ether is obtained.

Example 4

Chemical derivatisation of amylopectin

Amylopectin is sludged in water to a water content

of 10-25% by weight. The pH is adjusted to 10.0-12.0,
and a quatenary ammonium compound is added in such a quantity that the end product obtains a degree of substitution of 0.004-0.2. The reaction temperature is set at 20-45°C.
When the reaction is completed, the pH is adjusted to 4-8.

The end product is 2-hydroxy-3-trimethyl ammonium propyl ether.

Example 5

Chemical derivatisation of amylopectin

Amylopectin is sludged in water to a concentration

25 of 20-50% by weight. The pH is adjusted to 5.0-12.0, and sodium hypochlorite is added so that the end product obtains the desired viscosity. The reaction temperature is set at 20-45°C. When the reaction is completed, the pH is adjusted to 4-8, whereupon the end product is washed and dried. In this manner, oxidised starch is obtained.

Example 6

Physical derivatisation of amylopectin

Amylopectin is sludged in water to a concentration of 20-50% by weight, whereupon the sludge is applied to 35 a heated cylinder where it is dried to a film.

Example 7

Chemical and physical derivatisation of amylopectin

Amylopectin is treated according to the process
described in one of Examples 3-5 for chemical modification and is then further treated according to Example 6
for physical derivatisation.

References:

- Mac Donald, F. D. and Preiss, J., 1985, Plant. Physiol. 78:849-852
- Preiss, J., 1988, In The Biochemistry of Plants 14
- 5 (Carbohydrates). Ed. J. Preiss, Academic Press; 181-254
 - Echt, C. S. and Schwarz, D., 1981, Genetics 99:275-284
 - Klösgen, R. B., Gierl, A., Schwarz-Sommer, Z. and

Saedler, H., 1986, Mol. Gen. Genet. 203:237-244

- Schwarz-Sommer, Z., Gierl, A., Klösgen, R. B., Wienand,
- 10 U., Peterson, P. A. and Saedler, H., 1984, EMBO J. 3(5):1021-1028
 - Shure, M., Wessler, S. and Fedoroff, N., 1983, Cell 35:225-233
 - Jacobsen, E., Kriggsheld, H. T., Hovenkamp-Hermelink,
- 15 J. H. M., Ponstein, A. S., Witholt, B. and Feenstra, W. J., 1990, Plant. Sci. 67:177-182
 - Visser, R. G. F., Hovenkamp-Hermelink, J. H. M.,

Ponstein, A. S., Vos-Scheperkeuter, G. H., Jacobsen, E.,

Feenstra, W. J. and Witholt, B., 1987, Proc. 4th European

- 20 Congress on Biotechnology 1987, Vol. 2, Elsevier, Amsterdam; 432-435
 - Vos-Scheperkeuter, G. H., De Boer, W., Visser, R. G.
 - F., Feenstra, W. J. and Witholt, B., 1986, Plant.

Physiol. 82:411-416

- 25 Cornelissen, M., 1989, Nucleic Acids Res. 17(18):7203-7209
 - Izant, J. G., 1989, Cell Motility and Cytosceleton 14:81-91
 - Sheehy; R. E., Kramer, M., Hiatt, W. R., 1988, Proc.
- 30 Natl. Acad. Sci. USA, 85(23):8805-8809
 - Van der Krol, A. R., Mur, L. A., de Lange, P., Gerats, A. G. M., Mol, J. N. M. and Stuitje, A. R., 1960, Mol. Gen. Genet. 220:204-212
 - Flavell, R. B., 1990, AgBiotech. News and Information
- 35 2(5):629-630
 - Hergersberger, M., 1988, Molekulare Analyse des waxy Gens aus Solanum tuberosum und Expression von waxy

- antisense RNA in transgenen Kartoffeln. Thesis for a doctorate from the University in Cologne
- Visser, R. G. F., Hergersberger, M., van der Leij, F.
- R., Jacobsen, E., Witholt, B. and Feenstra, W. J., 1989,
- 5 Plant. Sci. 64:185-192
 - An, G., Ebert, P. R., Mitra, A. and Ha, S. B., 1987, Plant Mol. Biol. Manual A3:1-19
 - Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. and Schilperoort, R. A., 1983, Nature 303:179-180
- 10 Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W.,
 1987, EMBO J. 6:3201-3207
 - Sanger, F., Nicklen, S. and Coulson, A. R., 1977, Proc. Natl. Acad. Sci. USA 74:5463-5467
 - Viera, J. and Messing, J., 1982, Gene 19:259-268
- 15 Yanisch-Perron, C., Viera, J. and Messing, J., 1985, Gene 33:103-119
 - Heusterspreute et al (1987) Gene 53:294-300
 - Melton, D. A. et al (1984), Nucleic Acids Res.
 - 12:7035-7056 (the plasmide is sold by Stratagene)
- 20 Murashige, T. and Skoog, F., 1962, Physiol. Plant 15:473-497.
 - Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Shell, J. and Willmitzer, L., 1989, EMBO J., 8(1):23-29
- 25 Jefferson, R. A., Kavanagh, R. A. and Bevan, M. W., 1987, EMBO J. 6:3901-3907
 - Maniatis, T., Fritsch, E. F. and Sambrook, J., 1982, Molecular Cloning, A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor
- 30 Bourque, J. E., Miller, J. C. and Park, W. D., 1987, In Vitro Cellular & Development Biology 23(5):381-386 Hovenkamp-Hermelink, J. H. M., Jacobsen, E., Ponstein,
 - A. S., Visser, R. G. F., Vos-Scheperkeuter, G. H.,
 - Bijmolt, E. W., de Vries, J. N., Witholt, B. J. &
- 35 Feenstra, W. J., 1987, Theor. Appl. Genet. 75:217-221
 Hovenkamp-Hermelink, J. H. M., de Vries, J. N., Adamse,
 P., Jacobsen, E., Witholt, B. and Feenstra, W. J., 1988,

Potato Research 31:241-246

- Modified starches: Properties and use D. B. Wurzburg
- Bevan, M. W., 1984. Nucleic Acids Res. 12:8711-8721.

SEQ ID No. 1

Sequenced molecule: genomic DNA

Name: GBSS gene fragment from potato

Length of sequence: 342 bp

TGCATGTTTC CCTACATTCT ATTTAGAATC GTGTTGTGGT GTATAAACGT TGTTTCATAT CTCATCTCAT CTATTCTGAT TTTGATTCTC TTGCCTACTG TAATCGGTGA TAAATGTGAA TGCTTCCTTT CTTCTCAGAA ATCAATTTCT GTTTTGTTTT TGTTCATCTG TAGCTTATTC TCTGGTAGAT TCCCCTTTTT GTAGACCACA CATCAC ATG GCA AGC ATC ACA GCT TCA CAC CAC Met Ala Ser Ile Thr Ala Ser His His 1	100 150 200 243
TTT GTG TCA AGA AGC CAA ACT TCA CIA GAC ACC AAA TCA ACC Phe Val Ser Arg Ser Gln Thr Ser Leu Asp Thr Lys Ser Thr 10 15 20	285
TTG TCA CAG ATA GGA CTC AGG AAC CAT ACT CTG ACT CAC AAT Leu Ser Gln Ile Gly Leu Arg Asn His Thr Leu Thr His Asn 25 30 35	-327
GGT TTA AGG GCT GTT Gly Leu Arg Ala Val 40	342

207

346

22

SEQ ID No. 2

Sequenced molecule: genomic DNA
Name: GBSS gene fragment from potato
Length of sequence: 2549 bp

AAC AAG CTT GAT GGG CTC CAA TCA ACA ACT AAT ACT AAG GTA
Asn Lys Leu Asp Gly Leu Gln Ser Thr Thr Asn Thr Lys Val
45

ACA CCC AAG ATG GCA TCC AGA ACT GAG ACC AAG AGA CCT GGA
ACA CCC AAG ATG GCA TCC AGA ACT GAG ACC AAG AGA CCT GGA
Thr Pro Lys Met Ala Ser Arg Thr Glu Thr Lys Arg Pro Gly
65
70
126

TGC TCA GCT ACC ATT GTT TGT GGA AAG GGA ATG AAC TTG ATC
Cys Ser Ala Thr Ile Val Cys Gly Lys Gly Met Asn Leu Ile
75

TIT GTG GGT ACT GAG GTT GGT CCT TGG AGC AAA ACT GGT GGA
Phe Val Gly Thr Glu Val Gly Pro Trp Ser Lys Thr Gly Gly
85 90 95

CTA GGT GAT GTT CTT GGT GGA CTA CCA CCA GCC CTT GCA
Leu Gly Asp Val Leu Gly Gly Leu Pro Pro Ala Leu Ala
100 105

GTAAGTCTTT CTTTCATTTG GTTACCTACT CATTCATTAC TTATTTTGTT 257
TAGTTAGTTT CTACTGCATC AGTCTTTTTA TCATTTAG GCC CGC GGA 304
Ala Arg Gly

CAT CGG GTA ATG ACA ATA TCC CCC CGT TAT GAC CAA TAC AAA
His Arg Val Met Thr Ile Ser Pro Arg Tyr Asp Gln Tyr Lys
115

CAT GCT TGG GAT ACT GGC GTT GCG GTT GAG GTACATCTTC 386
Asp Ala Trp Asp Thr Gly Val Ala Val Glu
130 135

CTATATTGAT ACGGTACAAT ATTGTTCTCT TACATTTCCT GATTCAAGAA 436
TGTGATCATC TGCAG GTC AAA GTT GGA GAC AGC ATT GAA ATT GTT 481
Val Lys Val Gly Asp Ser Ile Glu Ile Val
140 145

CGT TTC TTT CAC TGC TAT AAA CGT GGG GTT GAT CGT GTT TTT 523
Arg Phe Phe His Cys Tyr Lys Arg Gly Val Asp Arg Val Phe 151 155

GTT GAC CAC CCA AIG TTC TIG GAG ARA GTAAGCATAT 560
Val Asp His Pro Met Phe Leu Glu Lys
165

23 .	
TATGATTATG AATCCGTCCT GAGGGATACG CAGAACAGGT CATTTTGAGT ATCTTTTAAC TCTACTGGTG CTTTTACTCT TTTAAG GTT TGG GGC AAA Val Trp Gly Lys 175	610 658
ACT GGT TCA AAA ATC TAT GGC CCC AAA GCT GGA CTA GAT TAT Thr Gly Ser Lys Ile Tyr Gly Pro Lys Ala Gly Leu Asp Tyr 180	700
CTG GAC AAT GAA CTT AGG TTC AGC TTG TTG TGT CAA Leu Asp Asn Glu Leu Arg Phe Ser Leu Leu Cys Gln 190 195 200	736
GTAAGTTAGT TACTCTTGAT TTTTATGTGG CATTTTACTC TTTTGTCTTT AATCGTTTTT TTAACCTTGT TTTCTCAG GCA GCC CTA GAG GCA CCT Ala Ala Leu Glu Ala Pro 205	786 832
AAA GTT TTG AAT TTG AAC AGT AGC AAC TAC TTC TCA GGA CCA Lys Val Leu Asn Leu Asn Ser Ser Asn Tyr Phe Ser Gly Pro 210 220	874
TAT G GTAATTAACA CATCCTAGTT TCAGAAAACT CCTTACTATA Tyr G	918
TCATTGTAGG TAATCATCTT TATTTTGCCT ATTCCTGCAG GA GAG GAT ly Glu Asp 225	966
GTT CTC TTC ATT GCC AAT GAT TGG CAC ACA GCT CTC ATT CCT Val Leu Phe Ile Ala Asn Asp Trp His Thr Ala Leu Ile Pro 230	1008
TGC TAC TTG AAG TCA ATG TAC CAG TCC AGA GGA ATC TAC TTG Cys Tyr Leu Lys Ser Met Tyr Gln Ser Arg Gly Ile Tyr Leu 240 245	1050
AAT GCC AAG GTAAAATTTC TTTGTATTCA CTCGATTGCA Asn Ala Lys 255	1089
CGTTACCCTG CAAATCAGTA AGGTTGTATT AATATATGAT AAATTTCACA TTGCCTCCAG GTT GCT TTC TGC ATC CAT AAC ATT GCC TAC CAA Val Ala Phe Cys Ile His Asn Ile Ala Tyr Gln 260 265	1139 1182
GGT CGA TIT TCT TTC TCT GAC TTC CCT CTT CTC AAT CTT CCT Gly Arg Phe Ser Phe Ser Asp Phe Pro Leu Leu Asn Leu Pro 270 280	1224
GAT GAR TIC AGG GGT TOT TIT GAT TIC ATT GAT GGG TAT Asp Glu Fhe Arg Gly Ser Phe Asp Phe lle Asp Gly Tyr 285	1263
GTATITATED TIGRAATCAS ACCTOCARCT TITGARGOTO TITTGATEST	1313

AGTAAATTGA GTTTTTAAAA TTTTGCAGAT ATGAG AAG CCT GTT AAG Lys Pro Val Lys 295	1360
GGT AGG AAA ATC AAC TGG ATG AAG GCT GGG ATA TTA GAA TCA Gly Arg Lys Ile Asn Trp Met Lys Ala Gly Ile Leu Glu Ser 300	1402
CAT AGG GTG GTT ACA GTG AGC CCA TAC TAT GCC CAA GAA CTT His Arg Val Val Thr Val Ser Pro Tyr Tyr Ala Gln Glu Leu 315	1444
GTC TCT GCT GTT GAC AAG GGA GTT GAA TTG GAC AGT GTC CTT Val Ser Ala Val Asp Lys Gly Val Glu Leu Asp Ser Val Leu 330	1486
CGT AAG ACT TGC ATA ACT GGG ATT GTG AAT GGC ATG GAT ACA Arg Lys Thr Cys Ile Thr Gly Ile Val Asn Gly Met Asp Thr 345	1528
CAA GAG TGG AAC CCA GCG ACT GAC AAA TAC ACA GAT GTC AAA Gln Glu Trp Asn-Pro Ala Thr Asp Lys Tyr Thr Asp Val Lys 355 360 365	1570
TAC GAT ATA ACC ACT GTAAGATAAG ATTTTTCCGA CTCCAGTATA Tyr Asp Ile Thr 370	1615
TACTAAAITA TTTTGTATGT TTATGAAATT AAAGAGTTCT TGCTAATCAA AATCTCTATA CAG GTC ATG GAC GCA AAA CCT TTA CTA AAG GAG Val Met Asp Ala Lys Pro Leu Leu Lys Glu 375	1665 1708
GCT CTT CAA GCA GCA GTT GGC TTG CCT GTT GAC AAG AAG ATC Ala Leu 3ln Ala Ala Val Gly Leu Pro Val Asp Lys Ile 385	1756
CCT TTG ATT GGC TTC ATC GGC AGA CTT GAG GAG CAG AAA GGT Pro Leu Ile Gly Phe Ile Gly Arg Leu Glu Glu Gln Lys Gly 400 405	1792
TCA GAT ATT CTT GTT GCT GCA ATT CAC AAG TTC ATC GGA TTG Ser Asp Ile Leu Ala Val Ala Ile His Lys Phe Ile Gly Leu 425	1834
GAT GTT CAA ATT GTA GTC CTT GTAAGTACCA AATGGACTCA Asp Val Gln Ile Val Val Leu 430	1875
TGGTATCTOT CTTGTTGAGT TTACTTGTGC CGAAACTGAA ATTGACCTGC TACTCATOOT ATGCATCAG GGA ACT GGC AAA AAG GAG TTT GAG Gly Thr Gly Lys Lys Glu Phe Glu 435 440	1925 1983

CAG GAG ATT GAA CAG CTC GAA GTG TTG TAC CCT AAC AAA GCT Gln Glu Ile Glu Gln Leu Glu Val Leu Tyr Pro Asn Lys Ala 445	2010
AAA GGA GTG GCA AAA TTC AAT GTC CCT TTG GCT CAC ATG ATC Lys Gly Val Ala Lys Phe Asn Val Pro Leu Ala His Met Ile 465	2052
ACT GCT GGT GCT GAT TTT ATG TTG GTT CCA AGC AGA TTT GAA Thr Ala Gly Ala Asp Phe Met Leu Val Pro Ser Arg Phe Glu 470 475 480	2094
CCT TGT GGT CTC ATT CAG TTA CAT GCT ATG CGA TAT GGA ACA Pro Cys Gly Leu Ile Gln Leu His Ala Met Arg Tyr Gly Thr 485	2136
GTAAGAACCA GAAGAGCTTG TACCTTTTTA CTGAGTTTTT AAAAAAAAGAA TCATAAGACC TTGTTTTCCA TCTAAAGTTT AATAACCAAC TAAATGTTAC TGCAGCAAGC TTTTCATTTC TGAAAATTGG TTATCTGATT TTAACGTAAT CACATGTGAG TCAG GTA CCA ATC TGT GCA TCG ACT GGT GGA CTT Val Pro Ile Cys Ala Ser Thr Gly Gly Leu 500 505	2286
GTT GAC ACT GTG AAA GAA GGC TAT ACT GGA TTC CAT ATG GGA Val Asp Thr Val Lys Glu Gly Tyr Thr Gly Phe His Met Gly 510 515 520	2372
GCC TTC AAT GTT GAA GTATGTGATT TTACATCAAT TGTGTACTTG Ala Phe Asn Val Glu 525	2417
TACATGGTCC ATTCTCGTCT TGATATACCC CTTGTTGCAT AAACATTAAC TTATTGCTTC TTGAATTTGG TTAG TGC GAT GTT GTT GAC CCA GCT Cys Asp Val Val Asp Pro Ala 530	2467 2512
GAT GTG CTT AAG ATA GTA ACA ACA GTT GCT AGA GCT C Asp Val leu Lys Ile Val Thr Thr Val Ala Arg Ala 535 540	2549

SEQ ID No. 3

Sequenced molecule: genomic DNA

Name: GBSS gene fragment from potato

Length of sequence: 492 bp

GAG CTC TCC TGG AAG GTAAGTGTGA ATTTGATAAT TTGCGTAGGT Glu Leu Ser Trp Lys 565	45
ACTTCAGTTT GTTGTTCTCG TCAGCACTGA TGGATTCCAA CTGGTGTTCT TGCAG GAA CCT GCC AAG AAA TGG GAG ACA TTG Glu Pro Ala Lys Lys Trp Glu Thr Leu 570 575	95 127
CTA TTG GGC TTA GGA GCT TCT GGC AGT GAA CCC GGT GTT GAA Leu Leu Gly Leu Gly Ala Ser Gly Ser Glu Pro Gly Val Glu 580 585	169
GGG GAA GAA ATC GCT CCA CTT GCC AAG GAA AAT GTA GCC ACT Gly Glu Glu Ile Ala Pro Leu Ala Lys Glu Asn Val Ala Thr 605	211
CCT TAA ATGAGCTTTG GTTATCCTTG TTTCAACAAT AAGATCATTA Pro *** 606	257
AGCAPACGIA TITACTAGCG AACTATGTAG AACCCTATTA TGGGGTCTCA ATCATCTACA AAATGATTGG TITTTGCTGG GGAGCAGCAG CATATAAGGC TGTAAAATCC TGGTTAATGT TITTGTAGGT AAGGGCTATT TAAGGTGGTG TGGATCAAAG TCAATAGAAA ATACTAGAA CTAGT CTTAGTAATG TAGCATAAAT AATACTAGAA CTAGT	307 357 407 457 492

SEQ ID No. 4

Sequenced molecule: genomic DNA

Name: Promoter for the GBSS gene from potato

Length of sequence: 987 bp

SEQ ID No. 5

Sequenced molecule: genomic DNA Name: GBSS gene from potato Length of sequence: 4964 bp

Length of sequence.		
AAGCTTTAAC GAGATAGAAA ATTATGTTAC TCCG ACAAATGCAA CAGTATCTTG TACCAAATCC TTTC	TTTTGT TCATTACTTA 50	
AAGCTTTAAC GAGATAGAAA ATTACAAATCC TTTC	TCTCTT TTCAAACTTT 100	
ACAAATGCAA CAGTATCTTG TACCAAATCC TITC TCTATTTGGC TGTTGACGGA GTAATCAGGA TACA	AACCAC AAGTATTTAA 150	
TCTATTTGGC TGTTGACGGA GTTGATTTAT GAAT	CCTCGA AAAGCCTATC 200	
TCTATTTGGC TGTTGACGGA GTAATCAGGA TACA TTGACTCCTC CGCCAGATAT TATGATTTAT GAAT CATTAAGTCC TCATCTATGG ATATACTTGA CAGT ATTTTTTTT CCTGCCAAGT GGAACGGAGA CATG	ATCTTC CTGTTTGGGT 250	
CATTAAGTCC TCATCTATGG ATATACTICAL CATG	TTATGA TGTATACGGG 300	
ATTITITIT CCTGCCAAGT GGAACGGAGA CHIC	GTAACA AACATTGAAT 350	
ATTITTTTT CCTGCCAAGT GGAACGGAGA CATG AAGCTCGTTA AAAAAAAATA CAATAGGAAG AAAT GTTGTTTTTA ACCATCCTTC CTTTAGCAGT GTAT CCATGCATCT CAATCTTAAT ACTAAAATGC AACT AAGATAAAGT AATGTATTCA ACCTTTAGAA TTGT	CAATTT TGTAATAGAA 400	•
GTTGTTTTTA ACCATCCTTC CTTTAGCAGI GIAI	TAATAT AGGCTAAACC 450	
CCATGCATCT CAATCTTAAT ACTAAAATGC AACT	CCATTC ATAATTAGAT 500	
AAGATAAAGT AATGTATTCA ACCTTTAGAA 11G1	CACTAR TTTGGAATAC 550	
CTTGTTTGTC GTAAAAATT AGAAAATATA TITA	CACCAC GGACCAGTAC 600	
AAAGCTAAGG GGGAAGTAAC TAATATTCTA GTGG	AMARIT TARTTARCAC 650	
CAGTACCTAG ATATTATTTT TAATTACTAT AATA	CALCALL CALLACTELE 700	
CAGACATAGG AATGTCAAGT GGTAGCGTAG GAGG	COLUCE COLLECTION 750	
TTAGATACTA GGAGACAGAA CCGGACGGCC CATT	COARGITERA 800	
CTCCACCCT GAATCAACAA AGAGAGGGCC CATA	TATACTG TCGATGAGCA	•
TTTCCCTATA ATACAGTGTC CACAGTTGCC TTCT	IGCTAAG GGATAGCCAC	
CCCCTATTCT CTTGACACGT GTCACTGAAA CCTC	CTACAA ATAAGGCAGG	
CCATGCATCT CAATCTTAAT ACTITATION AGATALAGE AATGTATTCA ACCTTTAGAA TTGT AAGATALAGT CTTGTTTGTC GTAAAAAATT AGAAAATATA TTTA AAGACTALAGG GGGAAGTAAC TAATATTCTA GTGG CAGTACCTAG ATATTATTTT TAATTACTAT AATA GAGACATAGG AATGTCAAGT GGTAGCGTAG GAGG CATTAGATACTA GGAGACAGAA CCGGACGGCC CATTATCCAGCGT GAATCAACAA AGAGAGGGCC CATATTCCCTATA ATACAGTGTC CACAGTTGCC TTCTCACCTCAC	CTCAACA AGTGGTAACT	
CACCICCION TICTCOATT ATTICTGATT TCAT	IGCATGT TTCCCTACAT	
TCTATTAIGA AICGIGITOT CTCTTGCCTA CTG	TAATCGG TGATAAATGT 1100	
TCTATTATGA ATCGTGTTGT GGTGTATAAA CGTTCATTATTCT GATTTTGATT CTCTTGCCTA CTGTGAATGCTTCC TTTCTTCATCA GAAATCAATT TCTC	GTTTTGT TTTTGTTCAT 1150	
GAATGCTTCC TTTCTTCTCA GAAATCAATT TCTC CTGTAGCTTA TTCTCTGGTA GATTCCCCTT TTTC ATG GCA AGC ATC ACA GCT TCA CAC CAC	STAGACC ACACATCAC 1199	
CIGIAGCITA TICICIGIA GAIICCCOIL	TTT GTG TCA AGA AGC 1241	
ATG GCA AGC ATC ACA GCT TCA CAC CAC	phe Val Ser Arg Ser	.•
Met Ala Ser Ile Thr Ala Ser his his	10	
1	•	
CAA ACT TOA CTA GAC ACC AAA TOA ACC	TTC TCA CAG ATA GGA 1283	
CAA ACT TOA CTA GAC ACC AAA TUA ACC	Tou Sor Gla Tie Gly	
Gin Thr Ser Leu Asp Thr Lys Ser Inc.	25	
15 20	25	
CTC AGG AAC CAT ACT CTG ACT CAC AAT	CCT TTA AGG GCT GTT 1325	
CTC AGG AAC CAT ACT CTG ACT CAC AAT	GGT TTA AGG GC1 G11	
Teu Ard Ash His Thr Leu Thr Als Ash	GIA Deg 11-3	
30 35	40	
	ACT ANT ACT AND GTA 1367	
AAC AAG CTT GAT GGG CTC CAA TCA ACA	ACT MAT ACT AAG GIA	
AAC AAG CTT GAT GGG CTC CAA TCA ACA AS AS Lys Leu Asp Gly Leu Gln Ser Thr	Thr Asn Thr Lys Val	
Ash Lys Led Asp CI, 200	55	
ACA CCC AAG ATG GCA TCC AGA ACT GAG	ACC AAG AGA CCT GGA 1409	
ACA CCC AAG AIG GCA ICC ACT INT GIV	Thr Lvs Arg Pro Gly	
ACA CCC AAG ATG GCA TCC AGA ACT GAG Thr Pro Lys Met Ala Ser Arg Thr Glu	70	
60	•	٠.
	CCD ATG ARC TTG ATC 1451	
TGC TCA GCT ACC ATT GTT TGT GGA AAG	Clu Mar Ash Leu Ile	
Cys Ser Ala Thr Ile val Cys Gry Lys	Gry nee non-	
75	60	
	age and act GGT GGA 1493	
TIT GIG GGT ACT GAG GIT GGT CCT TGG	ACC MAR MC: GG. GGA 4475	•
and the same with GTR ver and Alborra		
85	95 95	

CTA GGT GAT GTT CTT GGT GGA CTA CCA CCA GCC CTT GCA Leu Gly Asp Val Leu Gly Gly Leu Pro Pro Ala Leu Ala 100 105 110	1532
GTAAGTCTTT CTTTCATTTG GTTACCTACT CATTCATTAC TTATTTTGTT TAGTTAGTTT CTACTGCATC AGTCTTTTTA TCATTTAG GCC CGC GGA Ala Arg Gly	1582 1629
CAT CGG GTA ATG ACA ATA TCC CCC CGT TAT GAC CAA TAC AAA His Arg Val Met Thr Ile Ser Pro Arg Tyr Asp Gln Tyr Lys 115	1671
GAT GCT TGG GAT ACT GGC GTT GCG GTT GAG Asp Ala Trp Asp Thr Gly Val Ala Val Glu 130 GTACATCTTC	1711
CTATATTGAT ACGGTACAAT ATTGTTCTCT TACATTTCCT GATTCAAGAA TGTGATCATC TGCAG GTC AAA GTT GGA GAC AGC ATT GAA ATT GTT Val Lys Val Gly Asp Ser Ile Glu Ile Val 140	1761 1806
CGT TTC TTT CAC TGC TAT AAA CGT GGG GTT GAT CGT GTT TTT Arg Phe Phe His Cys Tyr Lys Arg Gly Val Asp Arg Val Phe 150 150	1848
GTT GAC CAC CCA ATG TTC TTG GAG AAA GTAAGCATAT Val Asp His Pro Met Phe Leu Glu Lys 165 170	` 1885
TATGATTATG AATCCGTCCT GAGGGATACG CAGAACAGGT CATTTTGAGT ATCTTTTAAC TCTACTGGTG CTTTTACTCT TTTAAG GTT TGG GGC AAA Val Trp Gly Lys 175	1935 1983
ACT GGT TCA AAA ATC TAT GGC CCC AAA GCT GGA CTA GAT TAT Thr Gly Ser Lys Ile Tyr Gly Pro Lys Ala Gly Leu Asp Tyr 180	2025
CTG GAC AAT GAA CTT AGG TTC AGC TTG TTG TGT CAA Leu Asp Asn Glu Leu Arg Phe Ser Leu Leu Cys Gln 190 195 200	2061
GTAAGTTAGT TACTCTTGAT TTTTATGTGG CATTTTACTC TTTTGTCTTT AATCGTTTTT TTAACCTTGT TTTCTCAG GCA GCC CTA GAG GCA CCT Ala Ala Leu Glu Ala Pro 205	2111 2157
AAA GTT TTG AAT TTG AAC AGT AGC AAC TAC TTC TCA GGA CCA Lys Val Leu Asn Leu Asn Ser Ser Asn Tyr Phe Ser Gly Pro 210 220	2199

TAT G	GTAATTAACA CATCCTAGTT TCAGAAAACT CCTTACTATA	2243
_		
TCATTGTAGG '	TAATCATCTT TATTTTGCCT ATTCCTGCAG GA GAG GAT ly Glu Asp 225	2291
Val Leu Phe	ATT GCC AAT GAT TGG CAC ACA GCT CTC ATT CCT Lile Ala Asn Asp Trp His Thr Ala Leu Ile Pro 230	2333
TGC TAC TTG Cys Tyr Leu 240	AAG TCA ATG TAC CAG TCC AGA GGA ATC TAC TTG Lys Ser Met Tyr Gln Ser Arg Gly Ile Tyr Leu 245	2375
AAT GCC AAC Asn Ala Lys	G GTAAAATTTC TTTGTATTCA CTCGATTGCA	2414
255		2464
CGTTACCCTG TTGCCTCCAG	CAAATCAGTA AGGTTGTATT AATATATGAT AAATTTCACA GTT GCT TTC TGC ATC CAT AAC ATT GCC TAC CAA Val Ala Phe Cys Ile His Asn Ile Ala Tyr Gln 260 265	2464 2507
		2549
GGT CGA TT Gly Arg Ph 27	T TCT TTC TCT GAC TTC CCT CTT CTC AAT CTT CCT Se Ser Phe Ser Asp Phe Pro Leu Leu Asn Leu Pro 280	2549
		2588
TT AAD TAD de uld gea	TC AGG GGT TCT TTT GAT TTC ATT GAT GGG TAT the Arg Gly Ser Phe Asp Phe Ile Asp Gly Tyr 285	
		2638
GTATTTATE AGTAAATTE	TTGALATCAG ACCTCCAACT TTTGAAGCTC TTTTGATGCT A GTTTTTAAAA TTTTGCAGAT ATGAG AAG CCT GTT AAG Lys Pro Val Lys 295	.2685
		2727 /
Gly Arg -	AA ATC AAC TGG ATG AAG GCT GGG ATA TTA GAA TCA ys lle Asn Trp Met Lys Ala Gly Ile Leu Glu Ser 305	
	TG GTT ACA GTG AGC CCA TAC TAT GCC CAA GAA CTT	2769
His Arg V	325 320 325	
	THE CAR MED CAR AGE GEC CIT	2811
.val Ser A	CT GTT GAC AAG GGA GTT GAA TTG GAC AGT GTC CTT Lia Val Asp Lys Gly Val Glu Leu Asp Ser Val Leu 335	, ,
	OT THE ATA ACT GGG ATT GTG AAT GGC ATG GAT ACA	2853
Arg Lys I	OT TOO ATA ACT GOG ALL GIG AAT GOO INTO ASP Throng Cys Tle Thro Gly Tie Val Ash Gly Met Asp Throng 345	

CAA Gln 355	GAG Glu	TGG . Trp	AAC Asn	Pro .	GCG Ala 360	ACT Thr	GAC Asp	AAA Lys	Tyr	ACA Thr 365	GAT Asp	GTC Val	AAA Lys	2895	,
TAC Tyr	GAT Asp 370	ATA Ile	ACC Thr	ACT Thr	GT	AAGA	TAAG	ATT	TTTC	CGA	CTCC	AGTA	TA	2940)
TAC:	raat Ctcta	TA T	AC 6	TC A	TG G	AC G	CA A	LAA C	CT T	TA C	TGCI TA A eu L	TWO C	MG	2990 3033	
GCT Ala	CTT Leu 385	CAA Gln	GCA Ala	GCA Ala	GTT Val	GGC Gly 390	TTG Leu	CCT Pro	GTT Val	GAC Asp	AAG Lys 395	AAG Lys	ATC Ile	3075	5
CCT Pro	TTG Leu	ATT Ile 400	GGC Gly	TTC Phe	ATC Ile	GGC Gly	AGA Arg 405	CTT Leu	GAG Glu	GAG Glu	CAG Gln	AAA Lys 410	GGT Gly	311	7
TCA	GAT Asp	ATT	CTT Leu 415	GTT Ala	GCT Val	GCA Ala	ATT Ile	CAC His 420	AAG Lys	TTC Phe	ATC Ile	GGA Gly	TTG Leu 425	315	9
GAT Asp	GTT Val	CAA Gln	ATT Ile	GTA Val 430	GTC Val	CTT Leu		GT	À AGT	ACCA	AAT	GGAC'	TCA	320	0
TGO	TATC	TCT CCT	CTTG ATGC	TTGA(ATCA(G (GGA .	ACT hr 6	GGC .	AAA .	AAG	ATT GAG Slu F	rrr he C	GAG	325 329	-
CA(GAG Glu	ATT	GAA Glu	CAG Gln 445	CTC Leu	GAA Glu	GTG Val	TTG Leu	TAC Tyr 450	CCT Pro	AAC Asn	AAA Lys	GCT	333	5
AAA Lys 45	Gly	GTG Val	GCA Ala	AAA Lys	TTC Phe 460	Asn	GTC Val	CCT Pro	TTG	GCT Ala 465	HIS	ATG Met	ATC	337	7
AC:	r GCT c Ala 470	Gly	GCT	GAT Asp	TTT	ATG Met 475	Lev	GTT Val	CCA Pro	AGC Ser	AGA Arg 480	Lane	GAA Glu	341	.9
CC'	r TGI O Cys	GGI Gly 485	Lev	ATT	CAG Gln	TTA Leu	CAT His 490	: Ala	ATG Met	CGP Arc	TAI Tyr	GGA Gly 495	ACA Thr	346	51
	37330	200		انداسدر	CA T	CTAR	LAGT	T AZ	ATA AC	CAAC	TAZ	LATGI	AGAA TTAC TAAT	351 356 361	61

32	
CACATGTGAG TCAG GTA CCA ATC TGT GCA TCG ACT GGT GGA CTT Val Pro Ile Cys Ala Ser Thr Gly Gly Leu 500 505	3655
GTT GAC ACT GTG AAA GAA GGC TAT ACT GGA TTC CAT ATG GGA Val Asp Thr Val Lys Glu Gly Tyr Thr Gly Phe His Met Gly 510	3697
GCC TTC AAT GTT GAA GTATGTGATT TTACATCAAT TGTGTACTTG Ala Phe Asn Val Glu 525	3742
TACATGGTCC ATTCTCGTCT TGATATACCC CTTGTTGCAT AAACATTAAC TTATTGCTTC TTGAATTTGG TTAG TGC GAT GTT GAC CCA GCT Cys Asp Val Val Asp Pro Ala 530	3792 3837
GAT GTG CTT AAG ATA GTA ACA ACA GTT GCT AGA GCT CTT GCA Asp Val Leu Lys Ile Val Thr Thr Val Ala Arg Ala Leu Ala 545	3879
GTC TAT GGC ACC CTC GCA TTT GCT GAG ATG ATA AAA AAT TGC Val Tyr Gly Thr Leu Ala Phe Ala Glu Met Ile Lys Asn Cys 550	3921
ATG TCA GAG GAG CTC TCC TGG AAG GTAAGTGTGA ATTTGATAAT Met Ser Glu Glu Leu Ser Trp Lys 565	3965
TTGCGTAGGT ACTTCAGTTT GTTGTTCTCG TCAGCACTGA TGGATTCCAA CTGGTGTTCT TGCAG GAA CCT GCC AAG AAA TGG GAG ACA TTG Glu Pro Ala Lys Lys Trp Glu Thr Leu 570	4015 4057
CTA TTG GGC TTA GGA GCT TCT GGC AGT GAA CCC GGT GTT GAA Leu Leu Gly Leu Gly Ala Ser Gly Ser Glu Pro Gly Val Glu 580 585	4099
GGG GAA GAA ATC GCT CCA CTT GCC AAG GAA AAT GTA GCC ACT Gly Glu Glu Ile Ala Pro Leu Ala Lys Glu Asn Val Ala Thr 595 600 605	4141
CCT TAA ATGAGCTTTG GTTATCCTTG TTTCAACAAT AAGATCATTA Pro *** 606	4187
AGCAAACGTA TTTACTAGCG AACTATGTAG AACCCTATTA TGGGGTCTCA ATCATCTACA AAATGATTGG TTTTTGCTGG GGAGCAGCAG CATATAAGGC TGTAAAATCC TGGTTAATGT TTTTGTAGGT AAGGGCTATT TAAGGTGGTG TGGATCAAAG TCAATAGAAA ATAGTTATTA CTAACGTTTG CAACTAAATA CTTAGTAATG TAGCATAAAT AATACTAGAA CTAGTAGCTA ATATATATGC GTGAATTGT TGTACCTTTT CTTGCATAAT TATTTGCAGT ACATATATAA TGAAAATTAC CCAAGGAATC AATGTTTCTT GCTCCGTCCT CCTTTGATGA TGAAAATTAC CCAAGGAATC TAGTGTGTA TGTTATAAA	4237 4287 4337 4387 4437 4487 4537 4587

AGGCTAACTT ACAATGCAAC ATATTTTTGA GATTGAATGG TGTCTCTTGT	TGAGGAGATG ATCTATGTCA GCCCATGACA ACTACAGCTC CTACTACTCT AGTAATAAGA	ATCAACACTT CATTCATTCA AATCAAAGCA ATTGGTAGTA TGCTCTCTAT	AAATTATTGC TAAAGTAAGG TCTCCTTTAC	AGAAGCTGCC TTATGTGAAA ATTTAGAAAG TAGTATGTAT ATAACGGCAC TTTTACAATC AGTAGTATTA	4637 4687 4737 4787 4837 4887 4937
CAAATTGAAT	AGTAATAAGA	AACAAAA			4964

CLAIMS

- 1. Method of suppressing amylose formation in

 potato, characterised by genetically engineered modification of the potato by introducing into the genome of the potato tissue a gene construct comprising a fragment of the potato gene which codes for formation of granule-bound starch synthase (GBSS gene) inserted in the antisense direction, said fragment being selected among the fragments which essentially have the nucleotide sequences stated in SEQ ID No. 1, SEQ ID No. 2 and SEQ ID No. 3 together with a promoter selected among CaMV 35S, patatin I and the GBSS promoter.
- 2. Amylopectin-type native starch, characterised in that it has been obtained from potato which has been modified in a genetically engineered manner for suppressing formation of amylose-type starch.
- 3. Derivatised amylopectin-type starch, c h a r 20 a c t e r i s e d in that it is amylopectin-type starch
 extracted from potato which has been modified in a genetically engineered manner for suppressing formation of
 amylose-type starch, said amylopectin-type starch subsequently being derivatised in a chemical, physical or
 enzymatic manner.
- 4. Fragment of the gene coding for granule-bound starch synthase (GBSS) in potato, said fragment being selected among the fragments which essentially have the nucleotide sequences stated in SEQ ID No. 1, SEQ ID No. 2 and SEQ ID No. 3.
 - 5. Promoter for the gene for granule-bound starch synthase (GBSS) in potato, said promoter being tuber-specific and having essentially the nucleotide sequence stated in SEQ ID No. 4.
- 6. Gene coding for granule-bound starch synthase in potato (GBSS gene) having essentially the nucleotide sequence stated in SEQ ID No. 5.

WO 92/11376 PCT/SE91/00892

35

- 7. Antisense construct for inhibiting expression of the gene for granule-bound starch synthase in potato, comprising
- a) a promoter,

sense direction.

- 5 b) a fragment of the gene coding for granule-bound starch synthase inserted in the antisense direction, said fragment being selected among the fragments having essentially the nucleotide sequences stated in SEQ ID No. 1, SEQ ID No. 2 and SEQ ID No. 3.
- 8. Antisense construct as claimed in claim 7, character is ed in that the promoter essentially has the sequence stated in SEQ ID No. 4.
 - 9. Antisense construct as claimed in claim 7, characterised in that the promoter is selected among the CaMV 35S promoter and the patatin I promoter.
- 10. Vector comprising a fragment of the gene coding for granule-bound starch synthase (GBSS) in potato, said fragment being selected among the fragments having essentially the nucleotide sequences stated in SEQ ID No. 1, SEQ ID No. 2 and SEQ ID No. 3, and inserted in the anti-
 - 11. Vector comprising the antisense construct as claimed in any one of claims 7-9.
 - 12. Cell of potato plant whose genome comprises the antisense construct as claimed in any one of claims 7-9.
 - 13. Potato plant whose genome comprises the antisense construct as claimed in any one of claims 7-9.
 - 14. Potato tubers whose genome comprises the antisense construct as claimed in any one of claims 7-9.
 - 15. Seeds from potato plant, whose genome comprises the antisense construct as claimed in any one of claims 7-9.
 - 16. Microtubers of potato, whose genome comprises the antisense construct as claimed in any one of claims 7-9.

₹.

Result of restriction analysis. GBSS coding region including introns are marked in a darker tone.

1.0 kb

INTERNATIONAL SEARCH REPORT

International Application No PCT/SE 91/00892

I. CLASSIFIC	CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) 8				
According to Ir	cording to International Patent Classification (IPC) or to both National Classification and IPC 5: C 12 N 15/56, 9/42, A 01 H 5/00				
1PC5: C 12	2 N 15/56, 9/42, A UI H 5/	700			
II. FIELDS SEARCHED					
	Minimum D	ocumentation Searched ⁷			
Classification Sy	Classification System Classification Symbols				
	0.10 11 4.07 11	•			
IPC5	C 12 N; A 01 H	•			
	Documentation Searche to the Extent that such Doc	d other than Minimum Documentation cuments are included in Fields Searchad ⁸			
		•			
	NO classes as above				
III. DOCUMEN	TS CONSIDERED TO BE RELEVANT 9		1		
Category *		nere appropriate, of the relevant passages 12	Relevant to Claim No.13		
P,X MO	L GEN GENET, Vol. 225, 19 al: "Inhibition of the for granule-bound starc antisense constructs", page 296	expression of the gene h synthase in potato by	1-16		
A EP	, A2, 0368506 (IMPERIAL C 16 May 1990, see especially claim 14		1-16		
A PL	ANT SCIENCE, Vol. 64, 198 al: "Molecular cloning characterization of the starch synthase from a amylose-free potato(sol cited in the applicatio	and partial gene for granule-bound wildtype and an anum tuberosuml.)",	1-16		
"Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance "E" gertier document but published on or after the international "X" document of particular relevance, the claimed invention					
[titing d	210	cannot be considered novel or o	sunot be considered to		
which is clied to establish the publication date of another which is clied to establish the publication date of another cannot be considered to involve an inventive step with complete with one or more other such					
) other n		III the are	obvious to a person skilled		
"P" docume	ent published prior to the international filing can the priority date claimed	date but "&" document member of the same	patent family		
IV. CERTIFIC	ATION				
30th Marc	tual Completion of the International Search	Date of Mailing of this International S 1992 -04- 0 1	earen nepari		
International S	Searching Authority	Signatura of Authorized Officer			
	CHENTON DATEME ACCIOC	Mikael G:son Bergstr	and .		
Form PCT/ISA/2	SWEDISH PATENT OFFICE 10 (second sheet) (January 1985)	PIRACI G. SOII DEI YSCH	4114		

-		CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
	MENTS	CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET) Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Category *	EP,	A2, 0335451 (VERENIGING VOOR CHRISTELIJK WETENSCHAPPELIJK ONDERWIJS) 4 October 1989, see the whole document	1-16
			ļ
	ŀ		
		•	
			·
			-
			;
	ŀ		
			-
		· .	

Form PCT/ISA/210 (extra sheet) (January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/SE 91/00892

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the Swedish Patent Office EDP file on

The Swedish Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
EP-A2- 0368506	l_	90-05-16	AU-D- 4430789 JP-A- 2273177		90-08-16 90-11-07	
EP-A2- 0335451		89-10-04	JP-A- NL-A-	2016985 8800756	90-01-19 89-10-16	
			•		•	
				,		
			·			
·	•	•				
ć		-				
·						
·						