In a lab experiment the following values are measured:

Ψ / °	Asymmetry	Ψ / °	Asymmetry	Ψ / °	Asymmetry
0	-0.032	30	0.010	60	0.057
90	0.068	120	0.076	150	0.080
180	0.031	210	0.005	240	-0.041
270	-0.090	300	-0.088	330	-0.074

The asymmetry values have a measurement value of ± 0.011 . The theory says that the asymmetry is described by an ansatz of the form

$$f(\psi) = A_0 \cos \psi + \delta.$$

1 a

Start with the ansatz

$$f(\psi) = a_1 f_1(\psi) + a_2 f_2(\psi) = a_1 \cos(\psi) + a_2 \sin(\psi)$$

and write down the design matrix \mathbf{A} .

import numpy as np

psi = np.radians(np.arange(0, 331, 30)) # muss damit numpy nicht weint in rad umgewan measurement = np.array([-0.032, 0.010, 0.057, 0.068, 0.076, 0.080, 0.031, 0.005, -0.041, -0.090, -0.088, -0.074])
measurement_error = 0.011

A = np.column_stack([np.cos(psi), np.sin(psi)])
print(f"A = {A}")

2 b

Calculate the solution vector \hat{a} for the parameters using the method of the least squares.

The solution vector \hat{a} can be calculated as $\hat{a} = (\mathbf{A}^T \cdot \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$:

```
a = np.linalg.inv(A.T @ A) @ A.T @ measurement
print(f"a = {a}")
```

3 c

Calculate the covariance matrix $V[\hat{\mathbf{a}}]$ as well as the errors of a_1 and a_2 and the correlation coefficient.

The covariance matrix of \hat{a} is given by $\mathbf{V}[\hat{\mathbf{a}}] = \sigma^2(\mathbf{A}^T \cdot \mathbf{A})^{-1}$, where σ denotes the measurement error.

```
V = measurement_error**2 * np.linalg.inv (A.T @ A)
print(f"V = {V}")
```

The error of a_1 and a_2 can be calculated via the diagonal elements of the covariance matrix:

4 d

Calculate A_0 and δ , their error and the correlation of a_1 and a_2 .

-,
$$f(\psi) = \lambda_0 \cos(\psi + \delta) = \alpha_4 \cos(\psi) + \alpha_2 \sin(\psi)$$

-, $\cos(x+y) = \cos(x) \cos(y) - \sin(x) \sin(y)$

(a) $A_0 \cos(\delta) \cos(\psi) - A_0 \sin(\delta) \sin(\psi) = \alpha_4 \cos(\psi) + \alpha_2 \sin(\psi)$

=) $A_0 \cos(\delta) = \alpha_4$, $-A_0 \sin(\delta) = \alpha_2$

$$\begin{cases}
\lambda_0 = \frac{\alpha_4}{\cos(\delta)} = \frac{-\alpha_4 \sin(\delta)}{\cos(\delta)} = \alpha_2 & (=, \frac{\sin(\delta)}{\cos(\delta)} = \frac{-\alpha_2}{\alpha_4} & (=, \delta) = \arctan(\frac{-\alpha_2}{\alpha_4})
\end{cases}$$

=) $A_0 = \frac{\alpha_4}{\cos(\arctan(\frac{-\alpha_2}{\alpha_4}))}$

-) Verwende $\cos(\tan^{-4}(\frac{-\alpha}{b})) = \frac{1}{\sqrt{\frac{\alpha^2}{b^2} - 4}}$

=) $A_0 = \alpha_4 - \frac{\alpha_2^2}{\alpha_4^2} - A$

The error of a solution vector $\vec{y} = f(\vec{x})$ is can be computed by using $\mathbf{V}[\tilde{\mathbf{y}}] = \mathbf{J} \cdot \mathbf{V}[\tilde{\mathbf{x}}] \cdot \mathbf{J}^{\mathbf{T}}$. Calculate the Jacobian matrix of $f(\vec{x}) = \begin{bmatrix} A_0 \\ \delta \end{bmatrix}$:

$$f(\bar{x}') = \begin{bmatrix} A_o \\ S \end{bmatrix} = \begin{bmatrix} \alpha_1 & \frac{\alpha_1^2}{\alpha_1^2} & -1 \\ a \operatorname{vetan} \left(\frac{-\alpha_2}{\alpha_1} \right) \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_1^2 - \alpha_1^2} \\ \operatorname{arckan} \left(\frac{-\alpha_1}{\alpha_1} \right) \end{bmatrix} - \gamma \operatorname{Jacobi-Matrix} \quad J = \begin{bmatrix} \frac{\partial f_1}{\partial \alpha_1} & \frac{\partial f_2}{\partial \alpha_1} \\ \frac{\partial f_2}{\partial \alpha_1} & \frac{\partial f_2}{\partial \alpha_2} \end{bmatrix}$$

$$\frac{\partial f_1}{\partial \alpha_1} = \frac{\partial}{\partial \alpha_1} \sqrt{\alpha_1^2 - \alpha_1^2} = -\frac{\alpha_1}{\sqrt{\alpha_1^2 - \alpha_1^2}} , \quad \frac{\partial f_2}{\partial \alpha_2} = \frac{\partial}{\partial \alpha_2} \sqrt{\alpha_2^2 - \alpha_1^2} = -\frac{\alpha_1}{\sqrt{\alpha_1^2 - \alpha_1^2}}$$

$$\frac{\partial f_2}{\partial \alpha_1} = \frac{\partial}{\partial \alpha_1} \operatorname{arckan} \left(-\frac{\alpha_1}{\alpha_1} \right) = \frac{\alpha_1}{\alpha_1^2 + \alpha_1^2} , \quad \frac{\partial f_2}{\partial \alpha_2} = \frac{\partial}{\partial \alpha_2} \operatorname{arckan} \left(-\frac{\alpha_1}{\alpha_1} \right) = \frac{-\alpha_1}{\alpha_2^2 + \alpha_1^2}$$

print(f"Korrelationskoeffizient:{correlation_coefficient}")

print(f"Fehler von delta: {errors[1]}")