R Squared

Pritam Prakash Shete

Computer Division, BARC

Centre for Excellence in Basic Sciences

Topics

- Interpretation
- Equations
- Examples

R² – Interpretation

- Coefficient of determination
- Coefficient of multiple determination
- Strength of relationship
- Value between 0.0 − 1.0
- Percentage value
- Independent variable explains p percent of variation in dependent variable
- Independent variable reduces p percent of variation in dependent variable

R² – Equation

$$Var(v) = \frac{1}{n_x} \times SS(v)$$
 $R^2 = \frac{Var(mean) - Var(fit)}{Var(mean)}$

- SS Sum of Squared differences
- Var Variation around variable
- $n_x Number of samples$
- Var(mean) Variation around mean
- Var(fit) Variation around fit

R² – Equation

$$R^{2} = \frac{SS(mean) - SS(fit)}{SS(mean)}$$

- SS Sum of squared differences
- SS(mean) Sum of squared differences around mean
- SS(fit) Sum of squared differences around fit

R² – Example

Х	у
75	167
35	95
0	32
-35	-31
-75	-103

- $n_x 5$ samples
- Mean value 32
- Var(mean) 8877.6

$$\frac{1}{5}(167 + 95 + 32 - 31 - 103) = 32$$

$$\frac{1}{5} \begin{pmatrix} (167-32)^2 + (95-32)^2 \\ + (32-32)^2 + (-31-32)^2 \\ + (-103-32)^2 \end{pmatrix} = 8877.6$$

R² – Example

Х	У	ŷ
75	167	167
35	95	95
0	32	32
-35	-31	-31
-75	-103	-103

$$\frac{1}{5} \begin{pmatrix} (167-167)^2 + (95-95)^2 \\ +(32-32)^2 + (-31+31)^2 \\ +(-103+103)^2 \end{pmatrix} = 0$$
 • R² - 100%

•
$$W_0 - 32$$

•
$$W_1 - 1.8$$

•
$$R^2 - 100\%$$

$$\frac{8877.6 - 0}{8877.6} = 1$$

R² – Example

X	у	ŷ
75	167	142.5
35	95	82.5
0	32	30
-35	-31	-22.5
-75	-103	-82.5

$$\frac{1}{5} \begin{pmatrix} (167-142.5)^2 + (95-82.5)^2 \\ +(32-30)^2 + (-31+22.5)^2 \\ +(-103+82.5)^2 \end{pmatrix} = 250.6 \quad \text{R}^2 - 97.17\%$$

•
$$W_0 - 30$$

•
$$W_1 - 1.5$$

•
$$R^2 - 97.17\%$$

$$\frac{8877.6 - 250.6}{8877.6} = 0.9717$$

Adjusted R²

- R²
 - Increase independent variables Increase R²
 - Increase independent variables Constant R²
- Adjusted R²
 - Increase independent variables (then)
 - Increase model accuracy (then only)
 - Increase adjusted R2

Adjusted R²

Adjusted R² =
$$1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$

- N Number of samples
- p Number of independent variables
- Degree of freedom for model

Questions?

Thank you