A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH*

JIANXING HAN[†] AND MINGHUA CHEN[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 8 **Key words.** example, LATEX
- 9 **MSC codes.** ????????????????
- 10 **1. Introduction.** For $\Omega = (0, 2T), 1 < \alpha < 2$

11 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

12 where

$$(1.2) \qquad (-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

14

16

2

3

15 (1.3)
$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

- 2. Preliminaries: Numeric scheme and main results.
 - 2.1. Numeric Format.

17 (2.1)
$$x_i = \begin{cases} T\left(\frac{i}{N}\right)^r, & 0 \le i \le N \\ 2T - T\left(\frac{2N-i}{N}\right)^r, & N \le i \le 2N \end{cases}$$

where $r \geq 1$. And let

19 (2.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

And then, define the piecewise linear interpolant of the true solution u to be

24 (2.4)
$$\Pi_h u(x) := \sum_{j=1}^{2N-1} u(x_j) \phi_j(x)$$

^{*}Submitted to the editors DATE.

[†]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (hanjx2023@mail.lzu.edu.cn).

[‡]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (chen@mail.lzu.edu.cn).

For convience, we denote 25

26 (2.5)
$$I^{2-\alpha}u(x) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha}u(y)dy$$

and 27

28 (2.6)
$$D_h^2 u(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} u(x_{i-1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) u(x_i) + \frac{1}{h_{i+1}} u(x_{i+1}) \right)$$

Now, we discretise (1.1) by replacing u(x) by a continuous piecewise linear func-29

tion 30

31 (2.7)
$$u_h(x) := \sum_{j=1}^{2N-1} u_j \phi_j(x)$$

whose nodal values u_i are to be determined by collocation at each mesh point x_i for 32

33
$$i = 1, 2, ..., 2N - 1$$
:

34 (2.8)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) := -\kappa_{\alpha} D_h^2 I^{2-\alpha} u_h(x_i) = f(x_i) =: f_i$$

Here.

36 (2.9)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{i=1}^{2N-1} -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i) \ u_j = \sum_{i=1}^{2N-1} a_{ij} \ u_j$$

where 37

38 (2.10)
$$a_{ij} = -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i)$$
 for $i, j = 1, 2, ..., 2N - 1$

We have replaced $(-\Delta)^{\alpha/2}u(x_i) = f(x_i)$ in (1.1) by $-\kappa_\alpha D_h^\alpha u_h(x_i) = f(x_i)$ in

(2.8), with truncation error

41 (2.11)
$$\tau_i := -\kappa_\alpha \left(D_h^\alpha \Pi_h u(x_i) - \frac{d^2}{dx^2} I^{2-\alpha} u(x_i) \right) \quad \text{for} \quad i = 1, 2, ..., 2N - 1$$

where
$$-\kappa_{\alpha}D_{h}^{\alpha}\Pi_{h}u(x_{i}) = \sum_{j=1}^{2N-1} -\kappa_{\alpha}D_{h}^{\alpha}\phi_{j}(x_{i})u(x_{j}) = \sum_{j=1}^{2N-1} a_{ij}u(x_{j}).$$
The discrete equation (2.8) can be written in matrix form

43

44 (2.12)
$$AU = F$$

where
$$A = (a_{ij}) \in \mathbb{R}^{(2N-1)\times(2N-1)}$$
, $U = (u_1, \dots, u_{2N-1})^T$ is unknown and $F = (f_1, \dots, f_{2N-1})^T$.

46

We can deduce a_{ij} , 47

$$a_{ij} = -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i)$$

$$= -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

where 49

50 (2.14)
$$I^{2-\alpha}\Pi_h u(x_i) = \sum_{i=1}^{2N-1} I^{2-\alpha} \phi_j(x_i) u(x_j) = \sum_{i=1}^{2N-1} \tilde{a}_{ij} u(x_j)$$

51 and
$$(2.15)$$

$$\tilde{a}_{ij} = I^{2-\alpha}\phi_i(x_i)$$

$$= \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_{j-1}|^{3-\alpha}}{h_j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) |x_i - x_j|^{3-\alpha} + \frac{|x_i - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

2.2. Regularity of the true solution. For any $\beta > 0$, we use the standard notation $C^{\beta}(\bar{\Omega})$, $C^{\beta}(\mathbb{R})$, etc., for Hölder spaces and their norms and seminorms. When no confusion is possible, we use the notation $C^{\beta}(\Omega)$ to refer to $C^{k,\beta'}(\Omega)$, where k is the greatest integer such that $k < \beta$ and where $\beta' = \beta - k$. The Hölder spaces $C^{k,\beta'}(\Omega)$ are defined as the subspaces of $C^k(\Omega)$ consisting of functions whose k-th order partial derivatives are locally Hölder continuous[1] with exponent β' in Ω , where $C^k(\Omega)$ is the set of all k-times continuously differentiable functions on open set Ω .

60 61

58

53

54

DEFINITION 2.1 (delta dependent norm [2]).

62 (2.16)
$$\delta(x) = dist(x, \partial\Omega) = \begin{cases} x, & 0 < x \le T \\ 2T - x, & T < x < 2T \end{cases}, \quad x \in \Omega$$

64 (2.17)
$$\delta(x,y) = \min\{\delta(x), \delta(y)\}, \quad x, y \in \Omega$$

65 66

LEMMA 2.2. Let
$$f \in C^{\beta}(\Omega), \beta > 2$$
 be such that $||f||_{\beta}^{(\alpha/2)} < \infty$, then for $l = 0, 1, 2$

67 (2.18)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \delta(x)^{-l-\alpha/2}$$

68

- THEOREM 2.3 (Regularity up to the boundary [2]). Let Ω be a bounded domain, and $\beta > 0$ be such that neither β nor $\beta + \alpha$ is an integer. Let $f \in C^{\beta}(\Omega)$ be such that $\|f\|_{\beta}^{(\alpha/2)} < \infty$, and $u \in C^{\alpha/2}(\mathbb{R}^n)$ be a solution of (1.1). Then, $u \in C^{\beta+\alpha}(\Omega)$ and
- 72 (2.19) $||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$
- 73 where C is a constant depending only on Ω , α , and β .
- COROLLARY 2.4. Let u be a solution of (1.1) where $f \in L^{\infty}(\Omega)$ and $||f||_{\beta}^{(\alpha/2)} < \infty$. Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

76 (2.20)
$$|u^{(l)}(x)| \le ||u||_{\beta + \alpha}^{(-\alpha/2)} \delta(x)^{\alpha/2 - l}$$

And in this paper bellow, without special instructions, we allways assume that

78 (2.21)
$$f \in L^{\infty}(\Omega) \cap C^{\beta}(\Omega)$$
 and $||f||_{\beta}^{(\alpha/2)} < \infty$, with $\alpha + \beta > 4$

2.3. Main results. Here we state our main results; the proof is deferred to section 3 and section 4.

Let's denote $h = \frac{1}{N}$, we have

Theorem 2.5 (Local Truncation Error). If u(x) is a solution of the equation

83 (1.1) where f satisfy the regular condition (2.21), then there exists $C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$

and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$, such that the truncation error (2.11) satisfies

$$|\tau_i| := |-\kappa_\alpha D_h^\alpha \Pi_h u(x_i) - f(x_i)|$$

$$\leq C_1 h^{\min\{\frac{r_\alpha}{2}, 2\}} \delta(x_i)^{-\alpha} + C_2(r-1)h^2 (T - \delta(x_i) + h_N)^{1-\alpha}$$

86

Theorem 2.6 (Global Error). The discrete equation (2.8) has sulction and there 87

exists a positive constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies 88

89

90 (2.23)
$$\max_{1 \le i \le 2N-1} |u_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$. 91

Remark 2.7. ... 93

- 3. Local Truncation Error. We shall first introduce some notations. 94
- For convenience, we use the notation \simeq . That $x_1 \simeq y_1$, means that $c_1 x_1 \leq y_1 \leq$

96 C_1x_1 for some positive constants c_1 and c_1 that are independent of N.

And for $1 \leq j \leq 2N$, we define 97

98 (3.1)
$$y_i^{\theta} = (1 - \theta)x_{j-1} + \theta x_j, \quad \theta \in (0, 1)$$

Then we have 99

Lemma 3.1. For $1 \le i \le 2N-1$ 100

101 (3.2)
$$h_i \simeq h_{i+1} \simeq h\delta(x_i)^{1-1/r}, \quad \delta(x_i) \simeq \delta(x_{i+1}) \simeq \delta(y_{i+1}^{\theta})$$

- Since $i^r (i-1)^r \simeq i^{r-1}$, for $i \ge 1$, where $\theta \in (0,1)$. 102
- Meanwhile, let's define kernel functions 103

104 (3.3)
$$K_y(x) := \frac{|y - x|^{1 - \alpha}}{\Gamma(2 - \alpha)}$$

3.1. Proof of Theorem 2.5. The truncation error of the discrete format can 106 be written as 107

105

$$-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i}) = -\kappa_{\alpha} (D_{h}^{2} I^{2-\alpha} \Pi_{h} u(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha} u(x_{i}))$$

$$= -\kappa_{\alpha} D_{h}^{2} I^{2-\alpha} (\Pi_{h} u - u)(x_{i}) - \kappa_{\alpha} (D_{h}^{2} - \frac{d^{2}}{dx^{2}}) I^{2-\alpha} u(x_{i})$$
109

THEOREM 3.2. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that 110

111 (3.5)
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha} u(x_i) \right| \le C h^2 \delta(x_i)^{-\alpha/2 - 2/r}$$

Proof. Since $f \in C^2(\Omega)$ and 112

113 (3.6)
$$\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}u(x)) = f(x), \quad x \in \Omega,$$

we have $I^{2-\alpha}u \in C^4(\Omega)$. Therefore, using equation (A.2) of Lemma A.1, for $1 \le i \le$

2N-1, we have

(3.7)

$$-\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}u(x_{i}) = \frac{h_{i+1} - h_{i}}{3}f'(x_{i})$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} f''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^{3}}{3!} dy\right)$$

- By Lemma B.1, Lemma 2.2 and Lemma B.2, we get the result.
- And now define

119 (3.8)
$$R_i := D_h^2 I^{2-\alpha} (u - \Pi_h u)(x_i), \quad 1 \le i \le 2N - 1$$

- We have some results about the estimate of R_i
- THEOREM 3.3. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

122 (3.9)
$$|R_i| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 (x_i^{-1 - \alpha} \ln(i) + \ln(N)), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

- THEOREM 3.4. For $N/2 \le i \le N$, there exists constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$
- 125 such that

123

126 (3.10)
$$|R_i| \le C(r-1)h^2(T-x_i+h_N)^{1-\alpha} + \begin{cases} Ch^2, & \alpha/2-2/r+1>0\\ Ch^2\ln(N), & \alpha/2-2/r+1=0\\ Ch^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

- 127 And for $N < i \le 2N 1$, it is symmetric to the previous case.
- 128 Combine Theorem 3.2, Theorem 3.3 and Theorem 3.4, and for $1 \le i \le N$, we
- 129 have

130 (3.11)
$$h^2 x_i^{-\alpha/2 - 2/r} \le T^{\alpha/2 - 2/r} h^{\min\{\frac{r\alpha}{2}, 2\}} x_i^{-\alpha/2 - 2/r}$$

131 (3.12)
$$h^{r\alpha/2+r}x_i^{-1-\alpha} \le T^{-1}h^{r\alpha/2}x_i^{-\alpha}$$

132 (3.13)
$$h^r x_i^{-1} \ln(i) = T^{-1} \frac{\ln(i)}{i^r} \le T^{-1}, \quad h^r \ln(N) = \frac{\ln(N)}{N^r} \le 1$$

- the proof of Theorem 2.5 completed.
- 134 We prove Theorem 3.3 and Theorem 3.4 in next subsections.
- 3.2. Outlines and Mesh Transport Functions. For convience, let's denote DEFINITION 3.5.

136 (3.14)
$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy, \quad i = 0, \dots, 2N, \ j = 1, \dots, 2N$$

137 Also, we denote vertical difference quotients of T_{ij}

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

$$= \int_{x_{i-1}}^{x_i} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

139 And skew difference quotients of T_{ij}

140 (3.16)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j-1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j+1} \right)$$

then $R_i = \sum_{j=1}^{2N} V_{ij}$. Our main idea is to depart R_i by V_{ij} and S_{ij} . For $3 \le i < N/2$, let's denote $k = \lceil \frac{i}{2} \rceil$, and take some suitable integer m, then 142 143

$$R_{i} = \sum_{j=1}^{2N} V_{ij}$$

$$= \sum_{j=1}^{k-1} V_{ij} + \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{m-1} S_{ij} + \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,m} + T_{i-1,m-1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,m} \right)$$

$$+ \sum_{j=m+1}^{2N} V_{ij}$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

Fig. 1. The departure of R_i for $i \geq 3$

145 and discuss i = 1, 2 separately, where

146 (3.18)
$$R_1 = \sum_{i=1}^{3} V_{1,j} + \sum_{i=4}^{N} V_{i,j}, \quad R_2 = \sum_{i=1}^{4} V_{1,j} + \sum_{i=5}^{N} V_{i,j}$$

The difficulty for esitmating S_{ij} is that $T_{i-1,j-1}, T_{i,j}$ and $T_{i+1,j+1}$ have different 147 integral region. We first make them normalized. 148

LEMMA 3.6. For $y \in (x_{j-1}, x_j)$, we can rewrite $y = y_j^{\theta}$, from (3.14), and Lemma A.2, 149

$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_0^1 (u(y_j^{\theta}) - \Pi_h u(y_j^{\theta})) \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j d\theta$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} h_j^3 u''(y_j^{\theta}) \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^2 u'''(\eta_{j1}^{\theta}) - (1-\theta)^2 u'''(\eta_{j2}^{\theta})) d\theta$$

151 where $\eta_{j1}^{\theta} \in (x_{j-1}, y_j^{\theta}), \eta_{j2}^{\theta} \in (y_j^{\theta}, x_j).$

Since j changes with i at indices of elements in S_{ij} by (3.16), we create some functions satisfy the property.

154 155

Definition 3.7 (Mesh Transport Functions). For $1 \le i, j \le 2N - 1$.

$$y_{i,j}(x) = \begin{cases} (x^{1/r} + Z_{j-i})^r & i < N, j < N \\ \frac{x^{1/r} - Z_i}{Z_1} h_N + x_N & i < N, j = N \\ 2T - (Z_{2N-(j-i)} - x^{1/r})^r & i < N, j > N \\ \left(\frac{Z_1}{h_N} (x - x_N) + Z_j\right)^r & i = N, j < N \end{cases}$$

$$x, & i = N, j = N$$

$$2T - \left(\frac{Z_1}{h_N} (2T - x - x_N) + Z_{2N-j}\right)^r & i = N, j > N \\ (Z_{2N+j-i} - (2T - x)^{1/r})^r & i > N, j < N \\ \frac{Z_{2N-j} - (2T - x)^{1/r}}{Z_1} h_N + x_N & i > N, j = N \\ 2T - ((2T - x)^{1/r} - Z_{j-i})^r & i > N, j > N \end{cases}$$

157 where $Z_j := T^{1/r} \frac{j}{N}$. And

158 (3.21)
$$h_{i,j}(x) = y_{i,j}(x) - y_{i,j-1}(x)$$

159

160 (3.22)
$$y_{i,j}^{\theta}(x) = (1 - \theta)y_{i,j-1}(x) + \theta y_{i,j-1}(x), \quad \theta \in (0,1)$$

161

162 (3.23)
$$P_{i,j}^{\theta}(x) = (h_{i,j}(x))^3 \frac{|y_{i,j}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i,j}^{\theta}(x))$$

163

164 (3.24)
$$Q_{i,j;l}^{\theta}(x) = (h_{i,j}(x))^l \frac{|y_{i,j}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

165 Obviously,

166 (3.25)
$$y_{i,j}(x_{i-1}) = x_{j-1}, \quad y_{i,j}(x_i) = x_j, \quad y_{i,j}(x_{i+1}) = x_{j+1}$$

167 (3.26)
$$h_{i,j}(x_{i-1}) = h_{j-1}, \quad h_{i,j}(x_i) = h_j, \quad h_{i,j}(x_{i+1}) = h_{j+1}$$

168 (3.27)
$$y_{i,j}^{\theta}(x_{i-1}) = y_{j-1}^{\theta}, \quad y_{i,j}^{\theta}(x_i) = y_j^{\theta}, \quad y_{i,j}^{\theta}(x_{i+1}) = y_{j+1}^{\theta}$$

And now we can rewrite T_{ij}

Lemma 3.8.

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{i,j}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} Q_{i,j;l}^{\theta}(x_{i}) \left[\theta^{2} u'''(\eta_{j,1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j,2}^{\theta})\right] d\theta$$

Interpolately, we can see from (3.16) and Lemma 3.6 that For $1 \le i \le 2N-1$, $2 \le j \le 2N-1$,

$$S_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{h}^{2} P_{i,j}^{\theta}(x_{i}) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i,j;4}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{i,j;4}^{\theta}(x_{i}) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i,j;4}^{\theta}(x_{i}) u'''(\eta_{j,1}^{\theta}) - Q_{i,j;4}^{\theta}(x_{i-1}) u'''(\eta_{j-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i,j;4}^{\theta}(x_{i}) u'''(\eta_{j+1,2}^{\theta}) - Q_{i,j;4}^{\theta}(x_{i}) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i,j;4}^{\theta}(x_{i}) u'''(\eta_{j,2}^{\theta}) - Q_{i,j;4}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_{i}} \right) d\theta$$

We give some properties of mesh transport functions.

175 LEMMA 3.9. For $2 \le i, j \le 2N - 2$ and $\xi \in (x_{i-1}, x_{i+1})$

176 (3.30)
$$\xi \simeq x_i, \quad \delta(y_{i,j}(\xi)) \simeq \delta(x_j), \quad h_{i,j}(\xi) \simeq h_j$$

177

178 (3.31)
$$|y_{i,j}(\xi) - \xi| \simeq |x_j - x_i|, \quad |y_{i,j-1}(\xi) - \xi| \simeq |x_{j-1} - x_i|$$

179 then

180 (3.32)
$$|y_{i,j}^{\theta}(\xi) - \xi| = (1 - \theta)|y_{i,j-1}(\xi) - \xi| + \theta|y_{i,j}(\xi) - \xi| \simeq |y_j^{\theta} - x_i|$$

181 since $y_{i,j-1}(\xi) - \xi$, $y_{i,j}(\xi) - \xi$ have the same sign $(\geq 0 \text{ or } \leq 0)$

Lemma 3.10.

$$y'_{i,j}(x) = \begin{cases} y_{i,j}^{1-1/r}(x)x^{1/r-1} & i < N, j < N \\ \frac{h_N}{rZ_1}x^{1/r-1} & i < N, j = N \\ (2T - y_{i,j}(x))^{1-1/r}x^{1/r-1} & i < N, j > N \\ y_{i,j}^{1-1/r}(x)\frac{rZ_1}{h_N} & i = N, j < N \\ 1 & i = N, j = N \end{cases}$$

183

184 (3.34)
$$y_{i,j}''(x) = \frac{1-r}{r} \begin{cases} y_{i,j}^{1-2/r}(x)x^{1/r-2}Z_{j-i} & i < N, j < N \\ \frac{h_N}{rZ_1}x^{1/r-2} & i < N, j = N \\ (2T - y_{i,j}(x))^{1-2/r}x^{1/r-2}Z_{2N-j+i} & i < N, j > N \\ -y_{i,j}^{1-2/r}(x)\left(\frac{rZ_1}{h_N}\right)^2 & i = N, j < N \\ 0 & i = N, j = N \end{cases}$$

LEMMA 3.11. For
$$2 \le i \le N, 2 \le j \le 2N-2, \xi \in (x_{i-1}, x_{i+1})$$

186 (3.35)
$$|h'_{i,j}(\xi)| \le C(r-1)Z_1 x_i^{1/r-1} \delta(x_j)^{1-2/r} \le C(r-1)h_j x_i^{1/r-1} \delta(x_j)^{-1/r}$$

188 (3.36)
$$|(y_{i,j}(\xi) - \xi)'| \le Cx_i^{-1}|x_j - x_i|$$

189 Proof. From (3.21) and Lemma 3.10, we can see that (3.37)

$$h'_{i,j}(x) = y'_{i,j}(x) - y'_{i,j-1}(x)$$

$$= \begin{cases} x^{1/r-1}(y^{1-1/r}_{i,j}(x) - y^{1-1/r}_{i,j-1}(x)) & i < N, j < N \\ x^{1/r-1}(\frac{h_N}{rZ_1} - y^{1-1/r}_{i,N-1}(x)) & i < N, j = N \end{cases}$$

$$= \begin{cases} x^{1/r-1}(\frac{h_N}{rZ_1} - y^{1-1/r}_{i,N-1}(x)) & i < N, j = N \\ x^{1/r-1}\left((2T - y_{i,N+1}(x))^{1-1/r} - \frac{h_N}{rZ_1}\right) & i < N, j = N+1 \\ x^{1/r-1}\left((2T - y_{i,j}(x))^{1-1/r} - (2T - y_{i,j-1}(x))^{1-1/r}\right) & i < N, j > N+1 \\ \frac{rZ_1}{h_N}\left(y^{1-1/r}_{N,j}(x) - y^{1-1/r}_{N,j-1}(x)\right) & i = N, j < N \\ \frac{rZ_1}{h_N}\left(\frac{h_N}{rZ_1} - y^{1-1/r}_{N,N-1}(x)\right) & i = N, j = N \end{cases}$$

191 While for $2 \le i \le N$, if $2 \le j < N$, $\xi \in (x_{i-1}, x_{i+1})$,

$$y_{i,j}^{1-1/r}(\xi) - y_{i,j-1}^{1-1/r}(\xi) \le x_{j+1}^{1-1/r} - x_{j-2}^{1-1/r}$$

$$= T^{1-1/r}N^{1-r}\left((j+1)^{r-1} - (j-2)^{r-1}\right)$$

$$\le CT^{1-1/r}(r-1)N^{1-r}j^{r-2} = C(r-1)Z_1x_j^{1-2/r}$$

193 if j = N, $\xi \in (x_{i-1}, x_{i+1})$, we have $y_{i,N-1}(\xi) \in (x_{N-2}, x_N)$. And

194 (3.39)
$$\frac{h_N}{rZ_1} = T^{1-1/r} \frac{1 - (1-h)^r}{rh} = \eta^{1-1/r} \simeq x_N^{1-1/r}, \quad \eta \in (x_{N-1}, x_N)$$

195 Then

187

196 (3.40)
$$|\frac{h_N}{rZ_1} - y_{i,N-1}^{1-1/r}(\xi)| \le x_N^{1-1/r} - x_{N-2}^{1-1/r} \simeq (r-1)Z_1 x_N^{1-2/r}$$

- and similar for $j \geq N+1$. Combine with Lemma 3.1, Lemma 3.9, $\eta \simeq x_N$, we get
- 198 the first result.
- 199 For the second estimate, we have

200 (3.41)
$$(y_{i,j}(x) - x)' = y'_{i,j}(x) - 1$$

201 Then, for $2 \le i < N$, if $2 \le j < N$, $\xi \in (x_{i-1}, x_{i+1})$, by Lemma A.5

202 (3.42)
$$\xi^{1/r} |y_{i,j}^{1-1/r}(\xi) - \xi^{1-1/r}| \le |y_{i,j}(\xi) - \xi|$$

203 j > N is symmetric to it, that is

$$\xi^{1/r}|(2T - y_{i,j}(\xi))^{1-1/r} - \xi^{1-1/r}| \le |2T - y_{i,j}(\xi) - \xi|$$

$$\le |2T - x_j - x_i| + |y_{i,j}(\xi) - x_j| + |\xi - x_i| \le |2T - x_j - x_i| + 2h_N$$

$$\le |x_j - T| + |T - x_i| + 2h_N \le 2|x_j - x_i|$$

205 But if j = N, with (3.39) and Lemma A.5,

$$\eta^{1/r} \left| \frac{h_N}{rZ_1} - \xi^{1-1/r} \right| \le |\eta - \xi|, \quad \eta \in (x_{N-1}, x_N)$$

$$\le |x_N - x_i| + |h_N| + |h_{i+1}| \le 3|x_N - x_i|$$

For i = N, if j < N, similarly with (3.44), 207

208 (3.45)
$$\eta^{1/r} |y_{N,j}^{1-1/r}(\xi) - \frac{h_N}{rZ_1}| \le C|x_j - x_N|$$

- And if j = N, it is obviously $\equiv 0$. 209
- Similarly, by Lemma 3.10 and Lemma 3.9, we get the second result. 210
- LEMMA 3.12. For $2 \le i \le N, 2 \le j \le 2N 2, \xi \in (x_{i-1}, x_{i+1})$ 211

$$|y_{i,j}''(\xi)| \le C(r-1) \begin{cases} x_j^{-1/r} x_i^{1/r-2} |x_j - x_i| & i < N, j < N \\ x_N^{1-1/r} x_i^{1/r-2} & i < N, j = N \\ \delta(x_j)^{1-2/r} x_i^{1/r-2} x_N^{1/r} & i < N, j > N \\ \delta(x_j)^{1-2/r} x_N^{2/r-2} & i = N, j \neq N \\ 0 & i = N, j = N \end{cases}$$

And $2 \le i \le N, 3 \le j \le 2N - 2, \xi \in (x_{i-1}, x_{i+1})$

$$|h_{i,j}''(\xi)| \le C(r-1) \begin{cases} Z_1 x_i^{1/r-2} x_j^{-2/r} (|x_j - x_i| + x_j) & i < N, j < N \\ x_i^{1/r-2} x_N^{1-1/r} & i < N, j = N, N+1 \\ Z_1 x_i^{1/r-2} \delta(x_j)^{1-3/r} x_N^{1/r} & i < N, j > N+1 \\ Z_1 x_N^{2/r-2} \delta(x_j)^{1-3/r} & i = N, j < N \text{ or } j > N+1 \\ x_N^{-1} & i = N, j = N \end{cases}$$

Proof. Since by Lemma A.5, for 2 < i, j < N215

216 (3.48)
$$x_j^{1-1/r}|Z_{j-i}| = x_j^{1-1/r}|x_j^{1/r} - x_i^{1/r}| \le |x_j - x_i|$$

217 and by (3.39),
$$\frac{h_N}{rZ_1} \simeq x_N^{1-1/r}$$
. And

$$218 (3.49) Z_{2N-i+i} \le Z_{2N} = 2T^{1/r}$$

- Then by Lemma 3.10 and Lemma 3.9, we get the first result. 219
- For the second part, by Lemma 3.10 220

221 (3.50)
$$h_{i,j}''(x) = y_{i,j}''(x) - y_{i,j-1}''(x)$$

while for $2 \le i < N$, if $3 \le j < N$, $\xi \in (x_{i-1}, x_{i+1})$, 222

223
$$y_{i,j}^{1-2/r}(\xi)Z_{j-i} - y_{i,j-1}^{1-2/r}(\xi)Z_{j-i-1} = \left(y_{i,j}^{1-2/r}(\xi) - y_{i,j-1}^{1-2/r}(\xi)\right)Z_{j-i} + y_{i,j-1}^{1-2/r}(\xi)Z_{1}$$

where $y_{i,j}^{1-2/r}(\xi) - y_{i,j-1}^{1-2/r}(\xi) \simeq (r-2)Z_1x_j^{1-3/r}$ similar with (3.38). Combine with (3.48), we get 224

225

226 (3.52)
$$|y_{i,j}^{1-2/r}(\xi)Z_{j-i} - y_{i,j-1}^{1-2/r}(\xi)Z_{j-i-1}| \le CZ_1\left(|r-2|x_j^{-2/r}|x_j - x_i| + x_j^{1-2/r}\right)$$

227 if
$$j = N$$
,

228 (3.53)
$$|h_{i,N}''(x)| \le |y_{i,N}''(x)| + |y_{i,N-1}''(x)| \le C(r-1)x_i^{1/r-2}x_N^{1-1/r}$$

- similarly if j = N + 1.
- However, if j > N + 1, similar with (3.51), we get (3.54)

$$(2T - y_{i,j}(\xi))^{1-2/r} Z_{2N-(j-i)} - (2T - y_{i,j-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)}$$

$$= \left((2T - y_{i,j}(\xi))^{1-2/r} - (2T - y_{i,j-1}(\xi))^{1-2/r} \right) Z_{2N-(j-i)} - (2T - y_{i,j-1}(\xi))^{1-2/r} Z_1$$

232 thus, (3.55)

$$\begin{aligned}
& \left| (2T - y_{i,j}(\xi))^{1-2/r} Z_{2N-(j-i)} - (2T - y_{i,j-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} \right| \\
& \leq CZ_1 \left(|r - 2| (2T - x_j)^{1-3/r} x_N^{1/r} + (2T - x_j)^{1-2/r} \right) \leq CZ_1 (2T - x_j)^{1-3/r} x_N^{1/r}
\end{aligned}$$

- For i = N, it's obvious. Combine with Lemma 3.10 and Lemma 3.9, we get the second
- 235 result.
- 3.3. Proof of Theorem 3.3. Then we esrimate each part of (3.17). And We take m = 2i for $3 \le i < N/2$, and $m = N \lceil N/2 \rceil + 1$ for $N/2 \le i \le N$.
- For I_5
- LEMMA 3.13. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that
- 240 Case 1. For $1 \le i < N/2$,

241 (3.56)
$$\sum_{j=\max\{2i+1,4\}}^{N} |V_{ij}| \le Ch^2 x_i^{-\alpha/2-2/r}$$

242 Case 2. For $1 \le i < N/2$,

243 (3.57)
$$\sum_{j=N+1}^{2N} |V_{ij}| \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

244 Case 3. For $N/2 \le i \le N$,

245 (3.58)
$$\sum_{j=N-\lceil \frac{N}{2} \rceil+2}^{2N} |V_{ij}| \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

246 Proof. For i, j in each case, by (3.15), Lemma A.3 and Lemma B.3, we have

$$|V_{ij}| \le Ch^2 \int_{x_{i-1}}^{x_j} \delta(y)^{\alpha/2 - 2/r} |y - x_i|^{-1 - \alpha} dy$$

248 For Case 1, with $x_i \simeq x_{2i}$,

$$\sum_{j=\max\{2i+1,4\}}^{N} |V_{ij}| \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le Ch^2 x_i^{-\alpha/2-2/r}$$

250 For Case 2, by (3.15), Lemma A.3, Lemma B.3 and $y-x_i \simeq T$

$$|V_{ij}| \le Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

252

$$\sum_{j=N+1}^{2N-1} |V_{ij}| \le CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\le CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

254 And by Lemma A.4

$$|V_{i,2N}| \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

256 Summarizes, we get the result. Similar for Case 3.

257 For i = 1, 2.

258 Lemma 3.14. From (3.18), by Lemma B.4, Lemma 3.13 and ?? we get for i = 1, 2

259 (3.62)
$$|R_i| \le Ch^2 x_i^{-\alpha/2 - 2/r} + \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

260

LEMMA 3.15. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i \le N, k = \lceil \frac{i}{2} \rceil$

263 (3.63)
$$|I_1| = |\sum_{j=1}^{k-1} V_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

264 *Proof.* by (3.15), Lemma A.4, Lemma B.3

265 (3.64)
$$|V_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} |x_i - y|^{-1-\alpha} dy \simeq x_1^{\alpha/2+1} x_i^{-1-\alpha} = T^{\alpha/2+1} h^{r\alpha/2+r} x_i^{-1-\alpha}$$

266 For $2 \le j \le k-1$, by Lemma A.3 and Lemma B.3 with $x_i - y \simeq x_i$, we have

$$|V_{ij}| \le Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} x_i^{-1 - \alpha} dy$$

268 Therefore,

269 (3.66)
$$\sum_{i=2}^{k-1} |V_{ij}| \le Ch^{r\alpha/2+r} x_i^{-1-\alpha} + Ch^2 x_i^{-1-\alpha} \int_{x_1}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

But $x_{\lceil \frac{i}{2} \rceil - 1} \leq 2^{-r} x_i$, so we have

271 (3.67)
$$\int_{x_1}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r} x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0 \\ \ln(2^{-r} x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0 \\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

272 Combine the results above, we get the lemma.

273

- LEMMA 3.16. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that
- 275 Case 1. For $3 \le i < N, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\},\$

$$|D_h^2 P_{i,j}^{\theta}(x_i)| \le C h_j^3 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2-4}$$

277 Case 2. For $N/2 \le i \le N, j = N, N+1$

278
$$(3.69)$$
 $|D_h^2 P_{i,j}^{\theta}(\xi)| \le Ch_j^3 |y_j^{\theta} - x_i|^{1-\alpha} + C(r-1)h_j^2 (|y_j^{\theta} - x_i|^{1-\alpha} + h_j |y_j^{\theta} - x_i|^{-\alpha})$

279 Case 3. For $N/2 \le i \le N$, $N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil$,

280 (3.70)
$$|D_h^2 P_{i,j}^{\theta}(\xi)| \le C h_j^3 \Big(|y_j^{\theta} - x_i|^{1-\alpha} + (r-1)|y_j^{\theta} - x_i|^{-\alpha} \Big)$$

- 281 Proof. Since $sign(y_{i,j}^{\theta}(\xi) \xi)$ is independent of ξ , we can derivate it. Then by
- 282 Lemma A.1

283 (3.71)
$$D_h^2 P_{i,j}^{\theta}(x_i) = P_{i,j}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

- From (3.23), using Leibniz formula and chain rules, and Lemma 3.9, Lemma 3.10,
- 285 Lemma 3.11, Lemma 3.12, Corollary 2.4, Lemma 3.1
- For every case, we have $x_i \simeq \delta(x_i)$, so we have

287 (3.72)
$$h_{i,j}(\xi) \le Ch_j, \quad |h'_{i,j}(\xi)| \le C(r-1)h_j x_i^{-1}$$

288

289 (3.73)
$$|y_{i,j}^{\theta}(\xi) - \xi| \le C|y_j^{\theta} - x_i|, \quad \left| (y_{i,j}^{\theta}(\xi) - x_i)' \right| \le C|y_j^{\theta} - x_i|x_i^{-1}$$

290 (3.74)

$$|u''(y_{i,j}^{\theta}(\xi))| \le Cx_i^{\alpha/2-2}, \quad \left| \left(u''(y_{i,j}^{\theta}(\xi)) \right)' \right| \le Cx_i^{\alpha/2-3}, \quad \left| \left(u''(y_{i,j}^{\theta}(\xi)) \right)'' \right| \le Cx_i^{\alpha/2-4}$$

- By Lemma 3.12, we have
- For Case 1,

294 (3.75)
$$|h_{i,j}''(\xi)| \le C(r-1)h_j x_i^{-2}, \quad |(y_{i,j}^{\theta}(\xi) - x_i)''| \le C(r-1)|y_j^{\theta} - x_i|x_i^{-2}$$

For Case 2, since $x_i \simeq x_i \simeq T$

296 (3.76)
$$|h_{i,j}''(\xi)| \le C(r-1), \quad |(y_{i,j}^{\theta}(\xi) - x_i)''| \le C(r-1)$$

For Case 3, since $x_i \simeq \delta(x_i) \simeq T$, we have

298 (3.77)
$$|h_{i,j}''(\xi)| \le C(r-1)h_j, \quad |(y_{i,j}^{\theta}(\xi) - x_i)''| \le C(r-1)$$

299 Combine them, we get the result.

Lemma 3.17. There exists a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for $2\leq i\leq N,\ 2\leq j\leq 2N-2,$

(3.78)

$$303 \quad \left| \frac{Q_{i,j;l}^{\theta}(x_{i+1})u^{(l-1)}(\eta_{j+1}^{\theta}) - Q_{i,j;l}^{\theta}(x_{i})u^{(l-1)}(\eta_{j}^{\theta})}{h_{i+1}} \right| \leq Ch_{j}^{l} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{-1} \delta(x_{j})^{\alpha/2 - l + 1 - 1/r} (x_{i}^{1/r} + \delta(x_{j})^{1/r})$$

304 And

$$305 \quad \left| \frac{Q_{i,j;l}^{\theta}(x_i)u^{(l-1)}(\eta_j^{\theta}) - Q_{i,j;l}^{\theta}(x_{i-1})u^{(l-1)}(\eta_{j-1}^{\theta})}{h_i} \right| \leq Ch_j^l \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{-1} \delta(x_j)^{\alpha/2 - l + 1 - 1/r} (x_i^{1/r} + \delta(x_j)^{1/r})$$

306 where $\eta_j^{\theta} \in (x_{j-1}, x_j)$.

Proof.

$$(3.80) \qquad \frac{Q_{i,j;l}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{i,j;l}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} = \frac{Q_{i,j;l}^{\theta}(x_{i+1}) - Q_{i,j;l}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{i,j;l}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

308 Using mean value theorem

309 (3.81)
$$D_h Q_{i,j;l}^{\theta}(x_i) := \frac{Q_{i,j;l}^{\theta}(x_{i+1}) - Q_{i,j;l}^{\theta}(x_i)}{h_{i+1}} = Q_{i,j;l}^{\theta'}(\xi), \quad \xi \in (x_i, x_{i+1})$$

310 From (3.24) and Leibniz rule, by Lemma 3.9, Lemma 3.11 and Lemma 3.1, we have

311 (3.82)
$$|Q_{i,j,l}^{\theta'}(\xi)| \le Ch_j^l \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} (x_i^{-1} + x_i^{1/r-1} \delta(x_j)^{-1/r})$$

312

313 (3.83)
$$Q_{i,j;l}^{\theta}(x_i) = h_j^l \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)}$$

314 With Lemma 3.1 and Corollary 2.4

$$|u^{(l-1)}(\eta_{i+1}^{\theta})| \le C(\eta_{i+1}^{\theta})^{\alpha/2-l+1} \simeq \delta(x_i)^{\alpha/2-l+1}$$

316 and by Lemma 3.1

$$\frac{|u^{(l-1)}(\eta_{j+1}^{\theta}) - u^{(l-1)}(\eta_{j}^{\theta})|}{h_{i+1}} = |u^{(l)}(\eta)| \frac{\eta_{j+1}^{\theta} - \eta_{j}^{\theta}}{h_{i+1}}, \quad \eta \in (x_{j-1}, x_{j+1})$$

$$\leq C\delta(\eta)^{\alpha/2 - l} \frac{x_{j+1} - x_{j-1}}{h_{i+1}} = C\delta(\eta)^{\alpha/2 - l} \frac{h_{j+1} + h_{j}}{h_{i+1}}$$

$$\simeq x_{i}^{1/r - 1} \delta(x_{j})^{\alpha/2 - l + 1 - 1/r}$$

Combine the results above, we get the first term. While, the later is similar.

319

320 Lemma 3.18. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that for 321 $3 \le i \le N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\},$

$$|S_{ij}| \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

323 *Proof.* Since (3.29), by $x_i \simeq x_j$, Lemma 3.1, Lemma 3.16, Lemma 3.17, we get the result immediately.

THEOREM 3.19. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i \le N-1, k = \lceil \frac{i}{2} \rceil$,

328 (3.85)
$$\sum_{j=k+1}^{\min\{2i-1,N-1\}} |S_{ij}| \le Ch^2 x_i^{-\alpha/2-2/r}$$

329 Proof. By Lemma 3.18, while $x_k \simeq x_i \simeq x_{\min\{2i-1,N-1\}}$, we have

330 (3.86)
$$\sum_{k+1}^{\min\{2i-1,N-1\}} |S_{ij}| \le Ch^2 \int_{x_k}^{x_{\min\{2i-1,N-1\}}} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2-2-2/r} dy$$

$$\le Ch^2 x_i^{2-\alpha} x_i^{\alpha/2-2-2/r} = Ch^2 x_i^{-\alpha/2-2/r}$$

Now we study I_2 , I_4 .

LEMMA 3.20. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

333
$$3 \le i \le N, k = \lceil \frac{i}{2} \rceil,$$

325

$$I_{2} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

335 And for $3 \le i < N/2$,

336
$$I_4 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

337 *Proof.* In fact.

338 (3.89)
$$\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k}$$
$$= \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i}) T_{i,k}$$

339 While, by Lemma A.3, Lemma B.3, Lemma 3.1 and $x_k \simeq x_i$, we have

$$\frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - \Pi_h u(y)) D_h K_y(x_i) dy$$

$$\leq C h_k^2 x_k^{\alpha/2 - 2} h_k |x_i - x_k|^{-\alpha} \leq C h^2 x_i^{-\alpha/2 - 2/r} h_k$$

Thus, 341

342 (3.91)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} |T_{i+1,k} - T_{i,k}| \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

From (3.14), Lemma A.2 and normalizzation, we have 343

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{Q_{i,k;3}^{\theta}(x_{i+1})u''(\eta_{k+1}^{\theta}) - Q_{i,k;3}^{\theta}(x_i)u''(\eta_k^{\theta})}{h_{i+1}} d\theta$$

where $\eta_k^{\theta} \in (x_{k-1}, x_k)$ and $\eta_{k+1}^{\theta} \in (x_k, x_{k+1})$. And with Lemma 3.17, we can get

346 (3.93)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} |T_{i+1,k+1} - T_{i,k}| \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

For the third term, by Lemma 3.1, Lemma B.1, Lemma A.3 and $x_k \simeq x_i$, we have 347

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} C h_k^3 x_k^{\alpha/2-2} |x_k - x_i|^{1-\alpha}$$

$$\le C h^2 x_i^{-\alpha/2-2/r}$$

349 Summarizes, we have

350 (3.95)
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

The case for I_4 is similar. 351

Now combine Lemma 3.14, Lemma 3.15, Lemma 3.20, Theorem 3.19, Lemma 3.13 and ??, we get Theorem 3.3. 353

For $N/2 \le i < N$, we take $m = 2N - \lceil \frac{N}{2} \rceil + 1$. And depart I_3 to three parts: 354

355 (3.96)
$$I_{3} = \sum_{j=k+1}^{m} S_{ij} = \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{m-1} S_{ij}$$
$$= I_{3}^{1} + I_{3}^{2} + I_{3}^{3}$$

We have estimated I_3^1 in Theorem 3.19. Combine ??, ?? and formula (3.29) for $i \leq N-1, j \geq N+2$, we have 357

Lemma 3.21. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 358

 $N/2 \le i \le N-1, \ N+2 \le j \le 2N-\lceil \frac{N}{2} \rceil + 1$

360 (3.97)
$$S_{ij} \le Ch^2 \int_{x_{i-1}}^{x_j} \left(|y - x_i|^{1-\alpha} + (r-1)|y - x_i|^{-\alpha} \right) dy$$

We can esitmate I_3^3 Now. 361

Lemma 3.22. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For 362

 $N/2 \le i \le N-1$, we have 363

364 (3.98)
$$I_3^3 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} S_{ij} \le Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{3}^{3} = \sum_{j=N+2}^{2N-\lceil\frac{N}{2}\rceil} S_{ij}$$

$$\leq Ch^{2} \int_{x_{N+1}}^{x_{2N-\lceil\frac{N}{2}\rceil}} \left(|y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha} \right) dy$$
366
$$I_{3}^{3} \leq Ch^{2} \int_{x_{N+1}}^{x_{2N-\lceil\frac{N}{2}\rceil}} |y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{N+1} - x_{i}|^{1-\alpha})$$

$$= Ch^{2} + C(r-1)h^{2}|T - \delta(x_{i}) + h_{N}|^{1-\alpha}$$

- For I_3^2 , we have
- Theorem 3.23. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that, for
- $370 \quad N/2 \le i \le N-1$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,N+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESIM

- I_4 , I_5 is easy. Similar with Lemma 3.20 and ??, we have
- Now we can conclude a part of the theorem Theorem 3.4 at the beginning of this
- 374 section.
- 375 By Lemma 3.15, Lemma 3.20, ??, Theorem 3.23, Lemma 3.22, ??, ??, we have
- THEOREM 3.24. there exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for
- 377 $N/2 \le i \le N-1$,

$$R_i = I_1 + I_2 + I_3^1 + I_3^2 + I_3^3 + I_4 + I_5$$

(3.102)
$$\leq C(r-1)h^2|T-x_{i-1}|^{1-\alpha} + \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0\\ Ch^2\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

and with Theorem 3.24 we prove the Theorem 3.4

- 380 4. Convergence analysis.
- **4.1. Properties of some Matrices.** Review subsection 2.1, we have got (2.10).
- Definition 4.1. We call one matrix an M matrix, which means its entries are
- positive on major diagonal and nonpositive on others, and strictly diagonally dominant
- 384 in rows.
- Now we have
- Lemma 4.2. Matrix A defined by (2.12) where (2.13) is an M matrix. And there
- exists a constant $C_A = C(T, \alpha, r)$ such that

388 (4.1)
$$S_i := \sum_{j=1}^{2N-1} a_{ij} \ge C_A(x_i^{-\alpha} + (2T - x_i)^{-\alpha})$$

389 *Proof.* From (2.15), we have

$$\sum_{i=1}^{2N-1} \tilde{a}_{ij} = \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_0|^{3-\alpha} - |x_i - x_1|^{3-\alpha}}{h_1} + \frac{|x_{2N} - x_i|^{3-\alpha} - |x_{2N-1} - x_i|^{3-\alpha}}{h_{2N}} \right)$$

391 Let

392 (4.3)
$$g(x) = g_0(x) + g_{2N}(x)$$

393 where

394
$$g_0(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x-x_0|^{3-\alpha} - |x-x_1|^{3-\alpha}}{h_1}$$

$$g_{2N}(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x_{2N} - x|^{3-\alpha} - |x_{2N-1} - x|^{3-\alpha}}{h_{2N}}$$

396 Thus

395

$$-\kappa_{\alpha} \sum_{i=1}^{2N-1} \tilde{a}_{ij} = g(x_i)$$

398 Then

$$S_{i} := \sum_{j=1}^{2N-1} a_{ij}$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= D_{h}^{2} g_{0}(x_{i}) + D_{h}^{2} g_{2N}(x_{i})$$

When i = 1

$$D_h^2 g_0(x_1) = \frac{2}{h_1 + h_2} \left(\frac{1}{h_2} g_0(x_2) - (\frac{1}{h_1} + \frac{1}{h_2}) g_0(x_1) + \frac{1}{h_1} g_0(x_0) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_1^{3-\alpha} + h_2^{3-\alpha} + 2h_1^{2-\alpha} h_2 - (h_1 + h_2)^{3-\alpha}}{(h_1 + h_2)h_1 h_2}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_1^{3-\alpha} + h_2^{3-\alpha} + 2h_1^{2-\alpha} h_2 - (h_1 + h_2)^{3-\alpha}}{(h_1 + h_2)h_1^{1-\alpha} h_2} h_1^{-\alpha}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha}}{2^r (2^r - 1)} h_1^{-\alpha}$$

402 but

403 (4.6)
$$1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha} > 0$$

While for $i \geq 2$

$$D_{h}^{2}g_{0}(x_{i}) = g_{0}''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

$$= -\kappa_{\alpha} \frac{|\xi - x_{0}|^{1-\alpha} - |\xi - x_{1}|^{1-\alpha}}{\Gamma(2-\alpha)h_{1}}$$

$$= \frac{\kappa_{\alpha}}{-\Gamma(1-\alpha)} |\xi - \eta|^{-\alpha}, \quad \eta \in [x_{0}, x_{1}]$$

$$\geq \frac{\kappa_{\alpha}}{-\Gamma(1-\alpha)} x_{i+1}^{-\alpha} \geq \frac{\kappa_{\alpha}}{-\Gamma(1-\alpha)} 2^{-r\alpha} x_{i}^{-\alpha}$$

406 So

$$407 \quad (4.8) \qquad \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_0(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_0(x_i) + \frac{1}{h_i} g_0(x_{i-1}) \right) \ge C x_i^{-\alpha}$$

408 symmetricly,

$$\begin{array}{ll}
(4.9) & \square \\
409 & \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_{2N}(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_{2N}(x_i) + \frac{1}{h_i} g_{2N}(x_{i-1}) \right) \ge C(\alpha, r) (2T - x_i)^{-\alpha}
\end{array}$$

410 Let

411 (4.10)
$$\delta(x) = \begin{cases} x, & 0 < x \le T \\ 2T - x, & T < x < 2T \end{cases}$$

412 And define

413 (4.11)
$$G = \operatorname{diag}(\delta(x_1), ..., \delta(x_{2N-1}))$$

414 Then

LEMMA 4.3. The matrix B := AG, the major diagnal is positive, and nonpositive

on others. And there is a constant C_{AG} , $C = C(\alpha, r)$ such that

417 (4.12)
$$M_i := \sum_{j=1}^{2N-1} b_{ij} \ge -C_{AG}(x_i^{1-\alpha} + (2T - x_i)^{1-\alpha}) + C(T - \delta(x_i) + h_N)^{1-\alpha}$$

Proof.

$$b_{ij} = a_{ij}\delta(x_j) = -\kappa_\alpha \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{a}_{i+1,j} - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) \tilde{a}_{i,j} + \frac{1}{h_i} \tilde{a}_{i-1,j} \right) \delta(x_j)$$

419 Since

$$\delta(x) \equiv \Pi_h \delta(x)$$

421 by (2.14) and (2.5), we have

$$\tilde{M}_{i} := \sum_{j=1}^{2N-1} \tilde{b}_{ij} := \sum_{j=1}^{2N-1} \tilde{a}_{ij} \delta(x_{j})$$

$$= \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} \Pi_{h} \delta(y) dy = \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} \delta(y) dy$$

$$= \frac{-2}{\Gamma(4-\alpha)} |T - x_{i}|^{3-\alpha} + \frac{1}{\Gamma(4-\alpha)} (x_{i}^{3-\alpha} + (2T - x_{i})^{3-\alpha})$$

$$:= w(x_{i}) = p(x_{i}) + q(x_{i})$$

423 Thus,

$$M_{i} := \sum_{j=1}^{2N-1} b_{ij} = \sum_{j=1}^{2N-1} a_{ij} \delta(x_{j})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{M}_{i+1} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) \tilde{M}_{i} + \frac{1}{h_{i}} \tilde{M}_{i-1} \right)$$

$$= D_{h}^{2}(-\kappa_{\alpha} p)(x_{i}) - \kappa_{\alpha} D_{h}^{2} q(x_{i})$$

425 for $1 \le i \le N - 1$, by Lemma A.1 (4.16)

$$D_{h}^{2}(-\kappa_{\alpha}p)(x_{i}) := -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} p(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) p(x_{i}) + \frac{1}{h_{i}} p(x_{i-1}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(2 - \alpha)} |T - \xi|^{1-\alpha} \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\geq \frac{2\kappa_{\alpha}}{\Gamma(2 - \alpha)} (T - \delta(x_{i}) + h_{N})^{1-\alpha}$$

427

$$D_{h}^{2}(-\kappa_{\alpha}p)(x_{N}) := -\kappa_{\alpha} \frac{2}{h_{N} + h_{N+1}} \left(\frac{1}{h_{N+1}} p(x_{N+1}) - (\frac{1}{h_{N}} + \frac{1}{h_{N+1}}) p(x_{N}) + \frac{1}{h_{N}} p(x_{N-1}) \right)$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha) h_{N}^{2}} h_{N}^{3-\alpha} = \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha)} (T - \delta(x_{N}) + h_{N})^{1-\alpha}$$

Symmetricly for $i \geq N$, we get

430 (4.18)
$$D_h^2(-\kappa_{\alpha}p)(x_i) \ge \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} (T - \delta(x_i) + h_N)^{1-\alpha}$$

431 Similarly, we can get

$$D_h^2 q(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} q(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) q(x_i) + \frac{1}{h_i} q(x_{i-1}) \right)$$

$$\leq \frac{2^{r(\alpha - 1) + 1}}{\Gamma(2 - \alpha)} (x_i^{1 - \alpha} + (2T - x_i)^{1 - \alpha}), \quad i = 1, \dots, 2N - 1$$

- 433 So, we get the result.
- Notice that

435 (4.20)
$$x_i^{-\alpha} \ge (2T)^{-1} x_i^{1-\alpha}$$

436 We can get

THEOREM 4.4. There exists a real $\lambda = \lambda(T, \alpha, r) > 0$ and $C = C(T, \alpha, r) > 0$ 438 such that $B := A(\lambda I + G)$ is an M matrix. And

439 (4.21)
$$M_i := \sum_{i=1}^{2N-1} b_{ij} \ge C(x_i^{-\alpha} + (2T - x_i)^{-\alpha}) + C(T - \delta(x_i) + h_N)^{1-\alpha}$$

440 Proof. By Lemma 4.2 with C_A and Lemma 4.3 with C_{AG} , it's sufficient to take

441 $\lambda = (C + 2TC_{AG})/C_A$, then

442 (4.22)
$$M_i \ge C\left((x_i^{-\alpha} + (1 - x_i)^{-\alpha}) + (T - \delta(x_i) + h_N)^{1-\alpha}\right)$$

443 **4.2. Proof of Theorem 2.6.** For equation

444 (4.23)
$$AU = F \Leftrightarrow A(\lambda I + G)(\lambda I + G)^{-1}U = F \text{ i.e. } B(\lambda I + G)^{-1}U = F$$

445 which means

446 (4.24)
$$\sum_{j=1}^{2N-1} b_{ij} \frac{\epsilon_j}{\lambda + \delta(x_j)} = -\tau_i$$

447 where $\epsilon_i = u(x_i) - u_i$.

448 And if

$$|\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}| = \max_{1 \le i \le 2N-1} |\frac{\epsilon_i}{\lambda + \delta(x_i)}|$$

Then, since $B = A(\lambda I + G)$ is an M matrix, it is Strictly diagonally dominant. Thus,

$$|\tau_{i_0}| = |\sum_{j=1}^{2N-1} b_{i_0,j} \frac{\epsilon_j}{\lambda + \delta(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_j}{\lambda + \delta(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}|$$

$$= \sum_{j=1}^{2N-1} b_{i_0,j} |\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}|$$

$$= M_{i_0} |\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}|$$

By Theorem 2.5 and Theorem 4.4,

We knwn that there exists constants $C_1(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$,

454 and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

455 (4.27)
$$|\frac{\epsilon_i}{\lambda + \delta(x_i)}| \le |\frac{\epsilon_{i_0}}{\lambda + \delta(x_{i_0})}| \le C_1 h^{\min\{\frac{r\alpha}{2}, 2\}} + C_2(r-1)h^2$$

456 as $\lambda + \delta(x_i) \leq \lambda + T$

So, we can get

$$|\epsilon_i| \le C(\lambda + T)h^{\min\{\frac{r\alpha}{2}, 2\}}$$

The convergency has been proved.

460 Remarks:

5. Experimental results.

462 **5.1.**
$$f \equiv 1$$
.

5.2. $f = x^{\gamma}, \gamma < 0$. Appendix A. Approximate of difference quotients.

LEMMA A.1. If $g(x) \in C^2(\Omega)$, there exists $\xi \in (x_{i-1}, x_{i+1})$ such that

465 (A.1)
$$D_h^2 g(x_i) = g''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

466 And if $g(x) \in C^4(\Omega)$, then

$$D_h^2 g(x_i) = g''(x_i) + \frac{h_{i+1} - h_i}{3} g'''(x_i) + \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy + \frac{1}{h_{i+1}} \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy \right)$$

Proof.

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in (x_{i-1}, x_i)$$

469
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in (x_i, x_{i+1})$$

470 Substitute them in the left side of (A.1), we have

$$D_h^2 g(x_i) = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} (g(x_{i+1}) - g(x_i) + \frac{1}{h_i} (g(x_{i-1}) - g(x_i)) \right)$$

$$= \frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2)$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

474 And the last equation can be obtained by

$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$476 \quad g(x_{i+1}) = g(x_i) + h_{i+1}g'(x_i) + \frac{h_{i+1}^2}{2}g''(x_i) + \frac{h_{i+1}^3}{3!}g'''(x_i) + \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

477 Expecially,

$$\int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy = \frac{h_i^4}{4!} g''''(\eta_1)$$

$$\int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy = \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

479 where
$$\eta_1 \in (x_{i-1}, x_i), \eta_2 \in (x_i, x_{i+1}).$$

480 LEMMA A.2. Denote
$$y_j^{\theta} = (1 - \theta)x_{j-1} + \theta x_j, \theta \in (0, 1),$$

481 (A.4)
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in (x_{j-1}, x_j)$$

483
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!} h_j^3 (\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

484 where
$$\eta_1 \in (x_{j-1}, y_j^{\theta}), \eta_2 \in (y_j^{\theta}, x_j).$$

485 *Proof.* By Taylor expansion, we have

486
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in (x_{j-1}, y_j^{\theta})$$
487
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta) h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in (y_j^{\theta}, x_j)$$

488 Thus

$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 (\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

490 The second equation is similar,

491
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$
492
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta) h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

493 where
$$\eta_1 \in (x_{j-1}, y_j^{\theta}), \eta_2 \in (y_j^{\theta}, x_j)$$
. Thus

$$u(y_{j}^{\theta}) - \Pi_{h}u(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

Lemma A.3. By Lemma A.2, Corollary 2.4 and Lemma 3.1, There is a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)}) \ for \ 2\leq j\leq 2N-1,$

497 (A.6)
$$|u(y) - \Pi_h u(y)| \le h_j^2 \max_{\xi \in [x_{j-1}, x_j]} |u''(\xi)| \le Ch^2 \delta(y)^{\alpha/2 - 2/r}, \quad \text{for } y \in (x_{j-1}, x_j)$$

498 LEMMA A.4. For $x \in [x_{j-1}, x_j]$

$$|u(x) - \Pi_h u(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

500 If $x \in [0, x_1]$, with Corollary 2.4, we have

501 (A.8)
$$|u(x) - \Pi_h u(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2} = C \frac{2}{\alpha} h_1^{\alpha/2}$$

502 Similarly, if $x \in [x_{2N-1}, 1]$, we have

503 (A.9)
$$|u(x) - \Pi_h u(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} h_{2N}^{\alpha/2}$$

Lemma A.5

504 (A.10)
$$b^{1-\theta}|a^{\theta}-b^{\theta}| \le |a-b|$$
 (also $a^{1-\theta}|a^{\theta}-b^{\theta}| \le |a-b|$), $a,b \ge 0, \ \theta \in [0,1]$

Appendix B. Proofs of some technical details. Review that $h = \frac{1}{N}$ and the defination of \simeq in subsection 2.1

Lemma B.1. There is a constant C such that for $i = 1, 2, \dots, 2N - 1$

509 (B.1)
$$|h_{i+1} - h_i| \le Ch^2 \delta(x_i)^{1-2/r}$$

510 *Proof.* By (2.2),

(B.2)

507

$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

512 Since

513 (B.3)
$$(i+1)^r - 2i^r + (i-1)^r \simeq r(r-1)i^{r-2}, \text{ for } i \ge 1$$

514 We get the result.

LEMMA B.2. there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\frac{2}{h_i + h_{i+1}} \left| \frac{1}{h_i} \int_{x_{i-1}}^{x_i} f''(y) \frac{(y - x_{i-1})^3}{3!} dy + \frac{1}{h_{i+1}} \int_{x_i}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^3}{3!} dy \right| \\
\leq Ch^2 \delta(x_i)^{-\alpha/2 - 2/r}$$

517 *Proof.* By Lemma 2.2, we have for $1 \le i \le N$

$$\left| \int_{x_{i-1}}^{x_i} f''(y) \frac{(y - x_{i-1})^3}{3!} dy \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3!} \int_{x_{i-1}}^{x_i} y^{-\alpha/2 - 2} (y - x_{i-1})^3 dy$$

519 For i = 1

$$\int_{x_{i-1}}^{x_i} y^{-\alpha/2-2} (y - x_{i-1})^3 dy = \int_0^{x_1} y^{1-\alpha/2} dy = \frac{1}{2 - \alpha/2} x_1^{2-\alpha/2} = \frac{1}{2 - \alpha/2} x_1^{-\alpha/2-2} h_1^4$$

521 And for $2 \le i \le N$, since $x_i \simeq x_{i-1} \le y \le x_i$, we have

$$\int_{x_{i-1}}^{x_i} y^{-\alpha/2-2} (y - x_{i-1})^3 dy \simeq \int_{x_{i-1}}^{x_i} x_i^{-\alpha/2-2} (y - x_{i-1})^3 dy = \frac{1}{4!} x_i^{-\alpha/2-2} h_i^4$$

523 So for $1 \le i \le N$, we have

$$\left| \int_{x_{i-1}}^{x_i} f''(y) \frac{(y - x_{i-1})^3}{3!} dy \right| \le C x_i^{-\alpha/2 - 2} h_i^4$$

525 and similarly,

526 (B.7)
$$\left| \int_{x_i}^{x_{i+1}} f''(y) \frac{(x_{i+1} - y)^3}{3!} dy \right| \le C x_i^{-\alpha/2 - 2} h_{i+1}^4$$

Thus for $1 \le i \le N$, with Lemma 3.1 we have

$$\frac{2}{h_{i} + h_{i+1}} \left| \frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} f''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^{3}}{3!} dy \right| \\
\leq C x_{i}^{-\alpha/2 - 2} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} + h_{i+1}^{3}) \simeq x_{i}^{-\alpha/2 - 2} h_{i}^{2} \simeq x_{i}^{-\alpha/2 - 2} h^{2} x_{i}^{2 - 2/r} \\
= C h^{2} x_{i}^{-\alpha/2 - 2/r}$$

- 529 It's symmetric for $N < i \le 2N 1$.
- LEMMA B.3. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i \le 2N 1$,
- 531 $1 \le j \le 2N$ s.t. $\min\{|j-i|, |j-1-i|\} \ge 2$ and $y \in [x_{i-1}, x_i]$, we have

532 (B.9)
$$D_h K_u(x_i) \simeq |y - x_i|^{-\alpha}, \quad D_h^2 K_u(x_i) \simeq |y - x_i|^{-1-\alpha}$$

533 *Proof.* Since $y - x_{i-1}, y - x_i, y - x_{i+1}$ have the same sign, by mean value theorem 534 and Lemma A.1,

$$D_h K_y(x_i) = \frac{|y - \xi|^{-\alpha}}{\Gamma(1 - \alpha)}, \quad \xi \in (x_i, x_{i+1})$$

$$D_h^2 K_y(x_i) = \frac{|y - \xi|^{-1 - \alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

536 however, $|y - \xi| \simeq |y - x_i|$, we get the result.

LEMMA B.4. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

538 (B.10)
$$\sum_{i=1}^{3} V_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

539 (B.11)
$$\sum_{j=1}^{4} V_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

540 Proof. For $0 \le i \le 3, 1 \le j \le 4$, by Lemma A.4, Lemma A.3 and (3.14)

541 (B.12)
$$T_{ij} \le Cx_1^{2-\alpha/2} \simeq h_1^2 h^2 x_1^{-\alpha/2-2/r} \simeq h_1^2 h^2 x_2^{-\alpha/2-2/r}$$

542 Therefore, by (3.15), we get the result.

Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

REFERENCES

[1] D. GILBARG AND N. S. TRUDINGER, Poisson's Equation and the Newtonian Potential, 546 Springer Berlin Heidelberg, Berlin, Heidelberg, 1977, pp. 50-67, https://doi.org/10.1007/ 547548

978-3-642-96379-7-4, https://doi.org/10.1007/978-3-642-96379-7-4.

[2] X. Ros-Oton and J. Serra, Journal de Mathématique Pures et Appliquées, 101 (2014), 549550 pp. 275-302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www. 551552 sciencedirect.com/science/article/pii/S0021782413000895.