Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri, m muchii, m>n și un vârf s.

Să se afișeze muchiile a doi arbori parțiali ai grafului, T1 și T2, dintre care unul, T1, este arbore de distante față de s ($d_{T1}(s, u) = d_G(s, u)$ pentru orice vârf u din G), iar celălalt, T2, nu este arbore de distanțe față de s. Se va afișa în plus un vârf u pentru care $d_{T2}(s, u) \neq d_G(s, u)$.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii
- pe ultima linie este vârful s

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	Iesire pe ecran (solutia nu este unica)
45	T1:
12	12
13	13
23	2 4
2 4	T2:
3 4	12
1	2 3
	2 4
	u = 3

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- Pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- Pe penultima linie este un număr natural b
- Pe ultima linie este un număr s reprezentând un nod sursă în graf.

În punctul s se află un călător care are bugetul b.

- a) Să se determine un cel mai depărtat nod v din graf la care călătorul poate ajunge din s printr-un drum (elementar) de cost cel mult b, cât să se încadreze în buget (acel vârf pentru care se obține $\max\{d(s,u)|\ d(s,u)\leq b,\ u\ vârf\ în\ V\}$ și să se afișeze un drum de cost minim de la s la v. Dacă sunt mai multe astfel de noduri se va alege cel cu indicele cel mai mic.
- b) Observând că un circuit este format totuși dintr-un drum și un arc, călătorul va mai roagă să determinați în plus dacă poate face un traseu de cost cel mult b care pornește din s și se termina tot în s fără a trece de mai multe ori prin același vârf, altfel spus să determinați dacă există un circuit elementar în G de cost mai mic sau egal cu b care conține s și, în caz afirmativ, să afisati un astfel de circuit. **Complexitate O(mlog(n))**

graf.in	lesire pe ecran
6 10	a)
151	v=3
1 6 10	1543
212	b)
413	1541
5 2 20	
5 4 4	
427	
435	
231	
623	
11	
1	

d(1, 2) = 12
d(1, 3) = 10
d(1, 4) = 5
d(1, 5) = 5
d(1, 6) = 1
d(1, 7) = 10
b = 11 => cele mai mari distanțe mai
mici sau egale cu 11 sunt d(1, 3) și
d(1, 7)

Subjectul 3

Se dau n depozite de frigidere numerotate 1...n și m magazine numerotate n+1,...,n+m. Pentru fiecare depozit i se cunoaște c(i) = câte frigidere există în depozit, iar pentru fiecare magazin j se cunoaște c(j) = numărul de frigidere de care are nevoie la momentul actual. Fiecare magazin are contracte cu anumite depozite. In contractul dintre magazinul j și depozitul i este trecută cantitatea maximă de frigidere care poate fi livrată de la depozitul i la magazinul j la un anumit moment, notată w(i,j). Datele se vor citi din fișierul magdep.in cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe a doua linie este un şir de n numere naturale reprezentând cantitatea de frigidere existente în fiecare dintre cele n depozite
- pe a treia linie este un șir de m numere naturale reprezentând numărul de frigidere de care are nevoie fiecare dintre cele m magazine
- pe a patra linie este un număr natural k reprezentând numărul de contracte dintre magazine și depozite
- pe următoarele k linii sunt triplete de numere naturale i j w (separate prin spatiu) cu semnificatia: de la depozitul i la magazinul j se pot transporta maxim w frigidere.

Să se determine, dacă există, o modalitate de a livra frigidere de la depozite la magazine respectând condițiile din contracte, astfel încât toate magazinele să primească cantitatea de frigidere de care are nevoie. Complexitate $O((n+m)k^2)$

Rezultatul se va afișa sub forma prezentată în exemplul de mai jos.

Observație: Putem modela problema cu un graf bipartit depozite-magazine (cu vârfuri corespunzătoare depozitelor și magazinelor și muchii reprezentând existența unui contract între magazin și depozit). Dacă c(i) = 1 pentru fiecare depozit, c(j)=1 pentru fiecare magazin și w(i, j)=1 pentru orice contract, atunci problema se reduce la a determina un cuplaj de cardinal maxim în graful bipartit depozite-magazine și a verifica dacă orice vârf magazin este saturat.

Se acorda 1p dacă se rezolvă doar problema pentru c(i) = 1 pentru fiecare depozit, c(j)=1 pentru fiecare magazin și w(i, j)=1 pentru orice contract

magdep.in	lesire pe ecran (solutia nu este unica)
3 3	156
656	2 4 2
781	252
7	261
146	3 4 5
156	
2 4 3	
252	
263	
3 4 8	
362	

