特 許 庁 玉 JAPAN PATENT OFFICE

10.11.2004

REC'D 13 JAN 2005

PCT WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年11月 5日

号 番 出 願 Application Number:

人

特願2003-375603

[ST. 10/C]:

[JP2003-375603]

願 出

杉山 治夫

Applicant(s):

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月22日


```
特許願
【書類名】
              190507
【整理番号】
              平成15年11月 5日
【提出日】
              特許庁長官殿
【あて先】
              C12N 5/00
【国際特許分類】
              A61K 35/12
【発明者】
               大阪府箕面市船場西2-19-30
  【住所又は居所】
               杉山 治夫
  【氏名】
【特許出願人】
               595090392
   【識別番号】
               大阪府箕面市船場西2-19-30
   【住所又は居所】
               杉山 治夫
   【氏名又は名称】
【代理人】
               100068526
   【識別番号】
   【弁理士】
   【氏名又は名称】
               田村 恭生
               06-6949-1261
   【電話番号】
   【ファクシミリ番号】
                 06-6949-0361
【選任した代理人】
               100103230
   【識別番号】
   【弁理士】
               高山 裕貢
   【氏名又は名称】
               06-6949-1261
   【電話番号】
                  06-6949-0361
   【ファクシミリ番号】
【選任した代理人】
   【識別番号】
               100087114
   【弁理士】
               齋藤 みの里
   【氏名又は名称】
               06-6949-1261
   【電話番号】
   【ファクシミリ番号】 06-6949-0361
【手数料の表示】
   【予納台帳番号】
               223643
               21,000円
   【納付金額】
【提出物件の目録】
               特許請求の範囲 1
   【物件名】
   【物件名】
               明細書 1
               図面 1
   【物件名】
   【物件名】
               要約書 1
   【包括委任状番号】
                0203207
```

【書類名】特許請求の範囲

【請求項1】

配列番号:1に記載のヒトWT1のアミノ酸配列における連続する10~25アミノ酸からなるペプチドであって、HLA-DRB1 *0405 に結合してヘルパーT細胞を誘導するペプチド。

【請求項2】

配列番号:2~23のいずれか記載のアミノ酸配列を含有する、請求項1記載のペプチド。

【請求項3】

配列番号:24に記載のアミノ酸配列からなる、請求項2記載のペプチド。

【請求項4】

配列番号: $2\sim2$ 3のいずれか記載のアミノ酸配列の第1位、第4位、第6位および/または第9位のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含有する $10\sim2$ 5アミノ酸からなるペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するペプチド。

【請求項5】

配列番号:2~23のいずれか記載のアミノ酸配列の第1位、第4位、第6位および/ または第9位のアミノ酸残基がそれぞれ以下の中から選択されるいずれかのアミノ酸残基 に置換されたアミノ酸配列を含有する、請求項4記載のペプチド:

第1位:フェニルアラニン、チロシン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン;

第4位:バリン、イソロイシン、ロイシン、メチオニン、アスパラギン酸、グルタミン酸;

第6位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸;

第9位:アスパラギン酸、グルタミン酸、グルタミン。

【請求項6】

配列番号:24に記載のアミノ酸配列の第3位、第6位、第6位および/または第11位のアミノ酸残基がそれぞれ以下の中から選択されるいずれかのアミノ酸残基に置換されたアミノ酸配列からなる、請求項5記載のペプチド:

第3位:フェニルアラニン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン、

第6位:バリン、イソロイシン、メチオニン、アスパラギン酸、グルタミン酸、

第8位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸、

第11位:アスパラギン酸、グルタミン酸、グルタミン。

【請求項7】

請求項1~6のいずれか記載のペプチドと癌抗原ペプチドとを含有するペプチド。

【請求項8】

請求項1~7のいずれか記載のペプチドをコードするポリヌクレオチド。

【請求項9】

請求項8記載のポリヌクレオチドを含有する発現ベクター。

【請求項10】

請求項9記載の発現ベクターを含有する細胞。

【請求項11】

請求項10記載の細胞を、ペプチドの発現可能な条件下で培養することを特徴とする、 請求項1~7いずれか記載のペプチドの製造方法。

【請求項12】

請求項1~6のいずれか記載のペプチドに特異的に結合する抗体。

【請求項13】

請求項1~7のいずれか記載のペプチド、請求項9記載の発現ベクター、または請求項10記載の細胞と、薬学的に許容される担体とを含有する医薬組成物。

【請求項14】

ヘルパーT細胞を誘導するための、請求項13記載の医薬組成物。

【請求項15】

癌ワクチンの作用を増強させるための、請求項13記載の医薬組成物。

【書類名】明細書

【発明の名称】WT1由来のHLA-DR結合性抗原ペプチド

【技術分野】

[0001]

本発明は、WT1由来のHLA-DRB1*0405結合性抗原ペプチドに関する。 【背景技術】

[0002]

WT1遺伝子(Wilms' tumor gene 1)は、小児の腎腫瘍であるWilms腫瘍の原因遺伝子の1つとして同定された(非特許文献1および2を参照)。WT1遺伝子は、細胞の増殖・分化・アポトーシスおよび臓器の形成などに関する重要な働きをする転写因子WT1をコードしている(非特許文献3を参照)。当初、WT1遺伝子は、癌抑制遺伝子と位置付けられていたが、その後の研究により白血病および肺癌や乳癌を含む種々の固形癌で発現が認められ、むしろ癌の増殖を促進する癌遺伝子としての作用を有することが示された。また、WT1由来のペプチドでHLA-A*0201陽性またはHLA-A*2402陽性の末梢血単核球をin vitroで刺激することにより、ペプチド特異的な細胞傷害性T細胞(CTL)が誘導され、これらのCTLは、内因性にWT1を発現する白血病や固形癌の癌細胞を傷害することが示された。これらの結果より、WT1は癌免疫療法(癌ワクチン療法)の有望な標的分子であることが示された(非特許文献4を参照)。

[0003]

CTLが有効に誘導されるためには、癌抗原に特異的なヘルパーT細胞の存在が重要であることが報告されている(非特許文献5を参照)。

ヘルパーT細胞(CD4陽性T細胞)は、抗原提示細胞のMHCクラスII分子と抗原ペプチドとの複合体を認識して誘導(増殖)・活性化される。活性化されたヘルパーT細胞はIL-2、IL-4、IL-5、IL-6、あるいはインターフェロンなどのサイトカインを産生し、B細胞の増殖、分化、成熟を介助する。また活性化ヘルパーT細胞は、T細胞の他のサブセット(Tc、TD細胞など)の増殖、分化、成熟を促進する機能を有する。このように活性化ヘルパーT細胞はB細胞、T細胞の増殖・活性化を促進することにより免疫系を活性化する機能を有することから、癌免疫療法(癌ワクチン療法)において、MHCクラスII結合性の抗原ペプチド(ヘルパーペプチドとも言う)の作用を受けヘルパーT細胞の機能を増強し、癌ワクチンの効果を増強することは有用であると考えられている(非特許文献6を参照)。

WT1に関しては、MHCクラスII分子のサブタイプの1種であるHLA-DRB1*0401に結合する1種類の抗原ペプチドに関する報告(非特許文献7を参照)があるが、それ以外のサブタイプについては報告されていない。

【非特許文献1】Cell 60: 509, 1990

【非特許文献 2】 Nature 343: 774, 1990

【非特許文献 3 】 Int. Rev. Cytol. 181: 151, 1998

【非特許文献 4】 Int. J. Hematol 76: 127, 2002

【非特許文献 5】 Cancer. Res. 62:6438, 2002

【非特許文献 6】 J. Immunother., 24:195, 2001

【非特許文献7】Cancer. Immunol. Immunother. 51:271, 2002

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明の目的は、WT1由来のHLA-DRB1*0405結合性抗原ペプチド、および当該ペプチドの癌ワクチン作用増強剤としての使用を提供することにある。

【課題を解決するための手段】

[0005]

本発明者は、癌免疫療法において癌ワクチンの作用を増強できる、WT1由来のMHCクラスII結合性抗原ペプチド (ヘルパーペプチド) につき鋭意検討を行った。その結果、WT1には、多数存在するMHCクラスIIサプクラスのうち、HLA-DRB1*0405に結合してヘルパーT細

胞を誘導する作用を持つ抗原ペプチド部分が存在していることを初めて見出した。そしてこの知見により、HLA-DRB1*0405陽性の癌患者に対し、WT1特異的ヘルパーT細胞を誘導・増強することのできる新たな治療法が可能となった。

本発明はこのような知見に基づき完成するに至ったものである。

[0006]

すなわち本発明は、

- (1) 配列番号: 1 に記載のヒトWT1のアミノ酸配列における連続する 10~25 アミノ酸からなるペプチドであって、HLA-DRB1*0405 に結合してヘルパーT細胞を誘導するペプチド、
- (2) 配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列を含有する、前記(1)記載のペプチド、
 - (3) 配列番号:24に記載のアミノ酸配列からなる、前記(2)記載のペプチド、
- (4) 配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列の第1位、第4位、第6位および/または第9位のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含有する10~25アミノ酸からなるペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するペプチド、
- (5) 配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列の第1位、第4位、第6位および/または第9位のアミノ酸残基がそれぞれ以下の中から選択されるいずれかのアミノ酸残基に置換されたアミノ酸配列を含有する、前記(4)記載のペプチド:第1位:フェニルアラニン、チロシン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン、

第4位:バリン、イソロイシン、ロイシン、メチオニン、アスパラギン酸、グルタミン酸

· 第6位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸、

第9位:アスパラギン酸、グルタミン酸、グルタミン、

(6) 配列番号:24に記載のアミノ酸配列の第3位、第6位、第8位および/または第11位のアミノ酸残基がそれぞれ以下の中から選択されるいずれかのアミノ酸残基に置換されたアミノ酸配列からなる、前記(5)記載のペプチド:

第3位:フェニルアラニン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン、

第6位:バリン、イソロイシン、メチオニン、アスパラギン酸、グルタミン酸、

第8位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸、

第11位:アスパラギン酸、グルタミン酸、グルタミン、

- (7) 前記 (1) \sim (6) いずれか記載のペプチドと癌抗原ペプチドとを含有するペプチド、
 - (8) 前記(1)~(7)いずれか記載のペプチドをコードするポリヌクレオチド、
 - (9) 前記(8)記載のポリヌクレオチドを含有する発現ベクター、
 - (10) 前記(9)記載の発現ベクターを含有する細胞、
- (11) 前記(10)記載の細胞を、ペプチドの発現可能な条件下で培養することを特徴とする、前記(1)~(7)いずれか記載のペプチドの製造方法、
 - (12) 前記 (1) ~ (6) いずれか記載のペプチドに特異的に結合する抗体、
- (13) 前記(1)~(7)いずれか記載のペプチド、前記(9)記載の発現ベクターまたは前記(10)記載の細胞と、薬学的に許容される担体とを含有する医薬組成物、
- (14) ヘルパーT細胞の誘導剤として使用される、前記(13)記載の医薬組成物、ならびに
- (15) 癌ワクチンの作用増強剤として使用される、前記(13)記載の医薬組成物、 に関する。

【発明の効果】

[0007]

本発明により、WT1由来のHLA-DRB1*0405結合性抗原ペプチド、当該ペプチドをコードす 出証特2004-3117077 るポリヌクレオチド、これらペプチドやポリヌクレオチドを含むヘルパーT細胞の誘導剤などが提供される。本発明のヘルパーT細胞の誘導剤は、癌ワクチンの作用増強剤として有用である。本発明の癌ワクチンの作用増強剤は、HLA-DRB1*0405陽性の多くの癌患者に適用可能であり、特にWT1ワクチンの作用増強剤として有用である。

【発明を実施するための最良の形態】

[0008]

本発明は、配列番号:1に記載のヒトWT1のアミノ酸配列における連続する10~25アミノ酸からなるペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するペプチドを提供する。本発明のペプチドは、そのN末端アミノ酸残基および/またはC末端のアミノ酸残基が修飾されていても良く、特定アミノ酸残基が改変されていてもよい。以下「ヘルパーT細胞を誘導するペプチド」のことを「ヘルパーペプチド」と称するこ

ともある。 配列番号:1に記載のヒトWT1のアミノ酸配列は、Cell, 60:509, 1990、NCBIデータベー スAccession No. XP_034418およびAccession No. P19544に記載された公知の配列である。 【0009】

本発明のペプチドは、配列番号:1に記載のヒトWT1のアミノ酸配列における連続する10~25アミノ酸からなるWT1の部分ペプチドである。ここで「10~25アミノ酸」との定義は、MHCクラスII結合性ペプチドが、一般的に10~25アミノ酸からなることに基づく(Immun ogenetics, 41,178-228(1995)、Biochimica et Biophysica Acta 1316, 85-101 (1996)、Immunology,96,1-9 (1999)、Peptides, Vol.19, 179-198 (1998)、immunobiology, 5th Edt., 116-117, Garland Publishing (2001))。好ましくは、ヒトWT1のアミノ酸配列における連続する13~17アミノ酸からなるペプチドが挙げられる。

本発明のペプチドは、配列番号:1 に記載のアミノ酸配列における連続する $10\sim25$ アミノ酸からなるペプチド(候補ペプチド)を合成し、該ペプチドがHLA-DRB1 * 0405に結合してヘルパーT細胞を誘導できるか否かをアッセイすることにより、同定することができる。

[0010]

ここで、ペプチドの合成については、通常のペプチド化学において用いられる方法に準じて行うことができる。該合成方法としては、文献(ペプタイド・シンセシス(Peptide Synthesis), Interscience, New York, 1966; ザ・プロテインズ(The Proteins), Vol 2, Academic Press Inc., New York, 1976; ペプチド合成, 丸善(株), 1975; ペプチド合成の基礎と実験、丸善(株), 1985; 医薬品の開発 続 第14巻・ペプチド合成, 広川書店, 1991)などに記載されている方法が挙げられる。

[0011]

候補ペプチドがHLA-DRB1*0405に結合してヘルパーT細胞を誘導することは、例えばCancer. Immunol. Immunother. 51:271 (2002) に記載の方法や、以下に記載の方法により調べることができる。

[0012]

まず、HLA-DRB1*0405陽性のヒトから末梢血単核球(PBMC)を回収し、浮遊細胞を除去することにより樹状細胞(付着細胞)を調製する。また別途、同一のHLA-DRB1*0405陽性のヒトから Ficoll-Paqueの密度勾配遠心法等によりヘルパーT細胞 (CD4陽性T細胞)を調製する。

次に、前記樹状細胞に対して候補ペプチドを添加して培養した後、この樹状細胞と前記 ヘルパーT細胞とを混合培養する。その後ヘルパーT細胞を回収し、これを候補ペプチドを パルスした樹状細胞で同様に何回か刺激する。ペプチド刺激に反応してヘルパーT細胞が 誘導 (活性化) されたことは、例えば(1)当該ヘルパーT細胞の増殖活性や、(2)ヘルパーT細胞によるサイトカイン産生活性を測定することにより、調べることができる。ここで(1)の増殖活性としては、具体的にはヘルパーT細胞内に取り込まれた[3 H]-チミジン量を測定することにより調べることができる。また(2)のサイトカイン産生活性は、活性化ヘルパーT細胞が産生するIL-2、IL-4、IL-5、IFNなどのサイトカインの量を酵素免疫測定法(ELISA)等により測定することによって調べることができる。

[0013]

MHCクラスI分子やMHCクラスII分子に結合して提示される抗原ペプチドの配列には規則 性(モチーフ)が存在している。MHCクラスI分子と結合するペプチドの両端には、MHC分 子と結合するために重要なアミノ酸残基が存在するが、MHCクラスII分子に結合するペプ チドの両端には、そのようなものは存在せず、この部分はMHCクラスII分子とは結合して いない。しかし、ペプチドはMHCクラスII分子のペプチド収容溝に沿って細長くはまり込 み、固定される。ペプチドがペプチド収容溝の中に固定されるのは、ペプチド収容溝にペ プチド上のアミノ酸残基の側鎖が結合することと、すべてのMHCクラスII分子のペプチド 収容溝によく保存されたアミノ酸残基の側鎖とペプチド主鎖とが結合することによる。ペ プチド収容溝はMHCクラスII分子ごとに、ペプチド収容溝にある大小のポットを構成する アミノ酸残基に多型性がある。

[0014]

今までのX線結晶構造解析からは、最小のMHCクラスII結合性ペプチドの第1、4、6、9 番目のアミノ酸残基の側鎖が、これらの結合ポケットにはまり込んでいることが示されて いる。

異なる対立遺伝子由来のMHCクラスII分子のそれぞれについて、結合するペプチドに共 通するアミノ酸残基のパターンを解析することにより、MHCクラスII分子のペプチド収容 溝のポケット部分に結合するペプチドのアミノ酸残基のモチーフを推定できる。結合モチ ーフをもった約9個のアミノ酸残基からなるペプチドがペプチド収容溝の中に結合し、ペ プチドの両端は溝の両端からはみ出すことができるために、MHCクラスII分子に結合でき るペプチドの長さには原則的に制限はないと考えられている。しかし多くの場合、長いペ プチドはペプチダーゼで切られ、13~17個のアミノ酸の長さになっていることが多い(im munobiology, 5th Edt., 116-117, Garland Publishing (2001)) .

[0015]

HLA-DRB1*0405に結合性を有するペプチドに関しては、9アミノ酸からなるHLA(MHC)結 合部分のうちの第1、4、6、9番目のアミノ酸残基が、以下に示す規則性(モチーフ)を有 することが予測されている (Immunogenetics, 41,178-228(1995)、Biochimica et Biophy sica Acta 1316, 85-101 (1996)参照)。

[0016]

第1位:フェニルアラニン(F)、チロシン(Y)、トリプトファン(W)、バリン(V)、イソロ イシン(I)、ロイシン(L)、メチオニン(M)、

第4位:バリン(V)、イソロイシン(I)、ロイシン(L)、メチオニン(M)、アスパラギン酸(D)、グルタミン酸(E)、

第6位:アスパラギン(N)、セリン(S)、スレオニン(T)、グルタミン(Q)、リジン(K)、ア スパラギン酸(D)、

第9位:アスパラギン酸(D)、グルタミン酸(E)、グルタミン(Q)。

[0017]

近年、これらの規則性に基づき、MHCクラスII抗原に結合可能と予想されるペプチド配 列を、インターネット上、MHCクラスII結合配列予測プログラムProPred (Bioinformatics 17: 1236, 2001) を使用することにより検索することができる。

[0018]

本発明は、WT1 (配列番号:1) がHLA-DRB1*0405 (MHCクラスIIの1種) に結合してヘル パーT細胞を誘導する抗原ペプチド部分を有していることを見出したものであるが、当該W T1のアミノ酸配列のうち、HLA-DRB1*0405に結合性を有すると予測される前記9アミノ酸部 分としては、例えば配列番号:2~23に記載のWT1の9アミノ酸部分を挙げることができる 。すなわち本発明のペプチドの具体例としては、配列番号:2~配列番号:23のいずれか に記載のアミノ酸配列を含有し、かつHLA-DRB1*0405に結合してヘルパーT細胞を誘導する ペプチドが挙げられる。

[0019]

当該ペプチドは、配列番号:2~23のいずれか記載のアミノ酸配列を含有するWT1の部分 出証特2004-3117077

ペプチドであり、かつHLA-DRB1*0405に結合してヘルパーT細胞を誘導する活性を有する限り、その長さは特に限定されない。前述のように、当該結合モチーフ構造を有する約9個のアミノ酸残基からなるペプチドがペプチド収容溝の中に結合し、ペプチドの両端は溝の両端からはみ出すことができるために、MHCクラスII分子に結合できるペプチドの長さには原則的に制限はない。しかしながら長いペプチドはペプチダーゼで切断されるため、現在までに報告されているMHCクラスII結合性ペプチドは10~25アミノ酸程度の長さを有している(Immunogenetics, 41,178-228(1995)、Biochimica et Biophysica Acta 1316,85-101 (1996)、Immunology,96,1-9 (1999)、Peptides, Vol.19,179-198 (1998)、immunobiology,5th Edt.,116-117、Garland Publishing (2001))。これと同様に、本発明のペプチドは10~25アミノ酸程度の長さであることが好ましく、13~17アミノ酸程度の長さであることがより好ましい。

[0020]

従って、配列番号:2~配列番号:23のいずれか記載のアミノ酸配列を含有する本発明のペプチドの好ましい形態としては、配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列を含有する10~25アミノ酸(好ましくは13~17アミノ酸)からなるWT1の部分ペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導する活性を有するペプチドが挙げられる。

[0021]

より好ましい形態としては、配列番号:12に記載のアミノ酸配列を含有する10~25アミノ酸 (好ましくは13~17アミノ酸) からなるWT1の部分ペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導する活性を有するペプチドが挙げられる。さらに好ましい形態としては、配列番号:12に記載のアミノ酸配列を含有する16アミノ酸からなるWT1の部分ペプチド (配列番号:24) が挙げられる。また当該配列番号:24に記載のアミノ酸配列を含有する16~25アミノ酸からなるWT1の部分ペプチドであっても良い。

[0022]

本発明のペプチドは、活性を保持する範囲内で、適宜改変されていても良い。ここでアミノ酸残基の「改変」とは、アミノ酸残基の置換、欠失および/または付加(ペプチドのN末端、C末端へのアミノ酸の付加も含む)を意味し、好ましくはアミノ酸残基の置換が挙げられる。アミノ酸残基の置換に係る改変の場合、置換されるアミノ酸残基の数および位置は、ヘルパーペプチドとしての活性が維持される限り、任意であるが、前記したように通常、HLAクラスII分子に結合するペプチドの長さが10~25アミノ酸程度であることから、1個から数個の範囲が好ましい。

[0023]

当該置換に係るアミノ酸残基の改変においては、HLA-DRB1*0405に対する結合モチーフ構造を有する9個のアミノ酸からなるペプチドのうちの、第1位、第4位、第6位および/または第9位のアミノ酸残基の置換が好ましい。

このような本発明の置換に係るペプチドの具体的な態様としては、配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列の第1位、第4位、第6位および/または第9位のアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含有する10~25アミノ酸からなるペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するペプチドが挙げられる。

[0024]

好ましくは、配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列の第1位、第4位、第6位および/または第9位のアミノ酸残基が、

第1位:フェニルアラニン、チロシン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン、

第4位:バリン、イソロイシン、ロイシン、メチオニン、アスパラギン酸、グルタミン酸

、 第6位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸、

第9位:アスパラギン酸、グルタミン酸、グルタミン、

の中から選択されるいずれかのアミノ酸残基に置換されたアミノ酸配列を含有する $10\sim25$ アミノ酸からなるペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するペプチドが挙げられる。

[0025]

当該第1位、第4位、第6位および/または第9位のアミノ酸残基の置換は、例えば前記に示したWT1の部分配列からなる本発明の天然型のヘルパーペプチドにおいて、そのHLA-DRB 1^*0405 への結合性を高める、若しくは活性を増強する目的で行うことができる。置換を施した第1位、第4位、第6位および/または第9位以外の部分は、天然型の配列のまま(すなわちWT1の部分配列のまま)であっても良く、また活性を保持する限りさらなる改変を施しても良い。

[0026]

より好ましくは、配列番号:12に記載のアミノ酸配列の第1位、第4位、第6位および/または第9位のアミノ酸残基が、

第1位:フェニルアラニン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン、

第4位:バリン、イソロイシン、メチオニン、アスパラギン酸、グルタミン酸、

第6位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸、

第9位:アスパラギン酸、グルタミン酸、グルタミン、

の中から選択されるいずれかのアミノ酸残基に置換されたアミノ酸配列を含有する $10\sim25$ アミノ酸からなるペプチドであって、HLA-DRB1 * 0405に結合してヘルパーT細胞を誘導するペプチドが挙げられる。

[0027]

さらに好ましくは、配列番号:12に記載のアミノ酸配列を含有する16アミノ酸からなるWT1の部分ペプチド(配列番号:24)において、その第3位、第6位、第8位および/または第11位のアミノ酸残基が、

第3位:フェニルアラニン、トリプトファン、バリン、イソロイシン、ロイシン、メチオニン、

第6位:バリン、イソロイシン、メチオニン、アスパラギン酸、グルタミン酸、

第8位:アスパラギン、セリン、スレオニン、グルタミン、リジン、アスパラギン酸、

第11位:アスパラギン酸、グルタミン酸、グルタミン、

の中から選択されるいずれかのアミノ酸残基に置換されたアミノ酸配列からなるペプチドが例示される。また当該配列番号:24の置換アミノ酸配列を含有する16~25アミノ酸からなるペプチドであっても良い。

[0028]

本発明はまた、前記本発明のヘルパーペプチド(天然型ペプチド、改変ペプチド)と癌 抗原ペプチドとを含有するペプチド(いわゆる「エピトープペプチド」)を提供する。

[0029]

近年、癌抗原ペプチド(CTLエピトープとも言う)とヘルパーペプチド(ヘルパーエピトープとも言う)とを連結させたエピトープペプチドにより、効率的にCTLが誘導されることが報告されている。すなわち、ヘルパーペプチドにより活性化されたヘルパーT細胞(CD4陽性T細胞)は、CTLの分化の誘導や維持、およびマクロファージなどのエフェクター細胞の活性化作用を発揮するため、癌抗原によるCTLの誘導をより増強すると考えられている。このようなヘルパーペプチドと癌抗原ペプチドとを連列したペプチドの具体例として、例えばJournal of Immunology 1999, 162: 3915–3925には、HBV由来HLA-A2拘束性抗原ペプチド6種類、HLA-A11拘束性抗原ペプチド3種類、およびヘルパーペプチドより構成されるエピトープペプチドをコードするDNA(ミニジーン)が、イン・ビボでそれぞれのエピトープに対するCTLを効果的に誘導したことが記載されている。また実際に、CTLエピトープ(メラノーマ抗原gp100の第280位~288位からなる癌抗原ペプチド)とヘルパーエピトープ(破傷風毒素由来Tヘルパーエピトープ)とを連結したペプチドが臨床試験に供されている(Clinical Cancer Res., 2001,7:3012-3024)。

[0030]

このような本発明のヘルパーペプチドと癌抗原ペプチドとを含有するエピトープペプチドも、本発明のペプチドの具体例として例示することができる。

ここで癌抗原ペプチドとしては、従来公知の如何なる癌抗原ペプチドも用いることができるが、好ましくはWT1由来の癌抗原ペプチド(天然型ペプチド、改変ペプチド) が挙げられる。具体的にはWT1由来のHLA-A1, -A0201, -A0204, -A0205, -A0206, -A0207, -A11, -A24, -A31, -A6801, -B7, -B8, -B2705, -B37, -Cw0401, -Cw0602などに拘束性の癌抗原ペプチドが挙げられる。

[0031]

当該WT1由来の癌抗原ペプチドとしては、例えば国際公開第2000/18795号パンフレットのTableII~TableXLVIに列挙されたペプチドおよびその改変ペプチドのうち癌抗原ペプチドとしての活性 (HLA抗原に結合してCTLを誘導する活性)を有するペプチドが挙げられる

[0032]

より具体例には、例えば以下の癌抗原ペプチドが例示される:

Cys Met Thr Trp Asn Gln Met Asn Leu (配列番号:27)

Cys Tyr Thr Trp Asn Gln Met Asn Leu (配列番号:28)

Arg Met Phe Pro Asn Ala Pro Tyr Leu (配列番号:29)

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:30)

Ser Tyr Thr Trp Asn Gln Met Asn Leu (配列番号:31)

Ala Tyr Thr Trp Asn Gln Met Asn Leu (配列番号:32)

Abu Tyr Thr Trp Asn Gln Met Asn Leu (配列番号:33)

Arg Tyr Thr Trp Asn Gln Met Asn Leu (配列番号:34)

Lys Tyr Thr Trp Asn Gln Met Asn Leu (配列番号:35)

[0033]

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:36)

Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:37)

Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:38)

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:39)

Arg Val Pro Gly Val Ala Pro Thr Leu (配列番号:40)

Arg Tyr Pro Ser Ser Gln Lys Lys Phe (配列番号:41)

Arg Tyr Pro Ser Ala Gln Lys Lys Phe (配列番号:42)

Arg Tyr Pro Ser Abu Gln Lys Lys Phe (配列番号:43)

(ここでAbuは α-アミノ酪酸である)

[0034]

このうち配列番号:27および配列番号:29に記載のペプチドはHLA-A24抗原およびHLA-A2抗原に結合性のペプチドであり、またそれ以外のペプチドはHLA-A24抗原に結合性のペプチドである。

好ましくは、前記配列番号:27、配列番号:28、配列番号:29および配列番号:30のいずれかに記載の癌抗原ペプチドが挙げられる。

[0035]

本発明のエピトープペプチドとして、より具体的には、例えば配列番号:2~配列番号:23のいずれかに記載のアミノ酸配列を含有する10~25アミノ酸よりなるWT1の部分ペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するヘルパーペプチドと、前記配列番号:27~43のいずれかに記載の癌抗原ペプチドとを含有するエピトープペプチドが挙げられる。

好ましくは、配列番号:24に記載のアミノ酸配列からなるヘルパーペプチドと、配列番号:27~43のいずれかに記載の癌抗原ペプチドとを含有するエピトープペプチドが挙げられる。

より好ましくは、配列番号:24に記載のアミノ酸配列からなるヘルパーペプチドと、配出証券2004-3117077

列番号:27~30のいずれかに記載の癌抗原ペプチドとを含有するエピトープペプチドが挙 げられる。

[0036]

このようなエピトープペプチドは、前述のように一般的なペプチド合成法によって製造することができる。またこれら複数のエピトープを連結させたエピトープペプチドをコードするポリヌクレオチドの配列情報に基づいて、通常のDNA合成および遺伝子工学的手法を用いて製造することもできる。すなわち、当該ポリヌクレオチドを周知の発現ベクターに挿入し、得られた組換え発現ベクターで宿主細胞を形質転換して作製された形質転換体を培養し、培養物より目的の複数のエピトープを連結させたエピトープペプチドを回収することにより製造することができる。これらの手法は、前述のように文献記載の方法(Molecular Cloning, T. Maniatis et al., CSH Laboratory(1983)、DNA Cloning, DM. Glover, IRL PRESS(1985))や後述の方法などに準じて行うことができる。

[0037]

当該エピトープペプチドがヘルパーペプチドとしての活性を有することは、前述の方法にて確認することができる。また前記エピトープペプチドが癌抗原ペプチドとしての活性を有することは、例えば WO 02/47474 号公報および Int J. Cancer:100,565-570 (2002)に記述のヒトモデル動物に供すること等により確認することができる。

[0038]

以上に示した本発明のペプチド(天然型ペプチド、改変ペプチドおよびエピトープペプチド)のN末端アミノ酸のアミノ基、またはC末端アミノ酸のカルボキシル基は、修飾されていても良い。すなわち、当該N末端のアミノ酸残基および/またはC末端のアミノ酸残基が修飾されたペプチドも、本発明のペプチドの範疇に含まれる。

[0039]

ここでN末端アミノ酸のアミノ基の修飾基としては、例えば1~3個の炭素数1から6のアルキル基、フェニル基、シクロアルキル基、アシル基が挙げられ、アシル基の具体例としては炭素数1から6のアルカノイル基、フェニル基で置換された炭素数1から6のアルカノイル基、炭素数5から7のシクロアルキル基で置換されたカルボニル基、炭素数1から6のアルキルスルホニル基、フェニルスルホニル基、炭素数2から6のアルコキシカルボニル基、フェニル基で置換されたアルコキシカルボニル基、炭素数5から7のシクロアルコキシで置換されたカルボニル基、フェノキシカルボニル基等が挙げられる。

[0040]

C末端アミノ酸のカルボキシル基を修飾したペプチドとしては、例えばエステル体およびアミド体が挙げられ、エステル体の具体例としては、炭素数 1 から 6 のアルキルエステル、フェニル基で置換された炭素数 0 から 6 のアルキルエステル、炭素数 5 から 7 のシクロアルキルエステル等が挙げられ、アミド体の具体例としては、アミド、炭素数 1 から 6 のアルキル基の 1 つまたは 2 つで置換されたアミド、フェニル基で置換された炭素数 0 から 6 のアルキル基の 1 つまたは 2 つで置換されたアミド、アミド基の窒素原子を含んで 5 から 7 員環のアザシクロアルカンを形成するアミド等が挙げられる。

[0041]

本発明はまた、前記本発明のペプチド(天然型ペプチド、改変ペプチドまたはエピトープペプチド)をコードするポリヌクレオチドを提供する。本発明のペプチドをコードするポリヌクレオチドは、DNAの形態であってもRNAの形態であっても良い。これら本発明のポリヌクレオチドは、本発明のペプチドのアミノ酸配列情報およびそれによりコードされるDNAの配列情報に基づき容易に製造することができる。具体的には、通常のDNA合成やPCRによる増幅などによって、製造することができる。

[0042]

具体的には、例えば前記エピトープペプチドをコードするポリヌクレオチドが挙げられる。より具体的には、例えば配列番号: $2\sim$ 配列番号:23のいずれかに記載のアミノ酸配列を含有する $10\sim25$ アミノ酸よりなるWT1の部分ペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するヘルパープチドと、前記配列番号: $27\sim43$ のいずれかに記

載の癌抗原ペプチドとを含有するエピトープペプチドをコードするポリヌクレオチドが挙 げられる。

好ましくは、配列番号:24に記載のアミノ酸配列からなるヘルパーペプチドと、配列番号:27~43のいずれかに記載の癌抗原ペプチドとを含有するエピトープペプチドをコードするポリヌクレオチドが挙げられる。

より好ましくは、配列番号:24に記載のアミノ酸配列からなるヘルパーペプチドと、配列番号:27~30のいずれかに記載の癌抗原ペプチドとを含有するエピトープペプチドをコードするポリヌクレオチドが挙げられる。

[0043]

前記で作製された本発明のポリヌクレオチドを発現ベクターに組み込むことにより、本 発明のペプチドを発現するための組換え発現ベクターを作製することができる。

ここで用いる発現ベクターとしては、用いる宿主や目的等に応じて適宜選択することができ、プラスミド、ファージベクター、ウイルスベクター等が挙げられる。

[0044]

例えば、宿主が大腸菌の場合、ベクターとしては、pUC118、pUC119、pBR322、pCR3等のプラスミドベクター、 λ ZAPII、 λ gt11などのファージベクターが挙げられる。宿主が酵母の場合、ベクターとしては、pYES2、pYEUra3などが挙げられる。宿主が昆虫細胞の場合には、pAcSGHisNT-Aなどが挙げられる。宿主が動物細胞の場合には、pKCR、pCDM8、pGL2、pcDNA3.1、pRc/RSV、pRc/CMVなどのプラスミドベクターや、レトロウイルスベクター、アデノウイルスベクター、アデノ関連ウイルスベクターなどのウイルスベクターが挙げられる。

[0045]

前記ベクターは、発現誘導可能なプロモーター、シグナル配列をコードする遺伝子、選択用マーカー遺伝子、ターミネーターなどの因子を適宜有していても良い。

また、単離精製が容易になるように、チオレドキシン、Hisタグ、あるいはGST(グルタチオンS-トランスフェラーゼ)等との融合タンパク質として発現する配列が付加されていても良い。この場合、宿主細胞内で機能する適切なプロモーター(lac、tac、trc、trp、CMV、SV40初期プロモーターなど)を有するGST融合タンパクベクター(pGEX4Tなど)や、Myc、Hisなどのタグ配列を有するベクター(pcDNA3.1/Myc-Hisなど)、さらにはチオレドキシンおよびHisタグとの融合タンパク質を発現するベクター(pET32a)などを用いることができる。

[0046]

前記で作製された発現ベクターで宿主を形質転換することにより、当該発現ベクターを 含有する形質転換細胞を作製することができる。

ここで用いられる宿主としては、大腸菌、酵母、昆虫細胞、動物細胞などが挙げられる。大腸菌としては、 $E.coli\ K-12$ 系統のHB101株、C600株、JM109株、DH5 α 株、AD494 (DE3) 株などが挙げられる。また酵母としては、サッカロミセス・セルビジエなどが挙げられる。動物細胞としては、L929細胞、BALB/c3T3細胞、C127細胞、CH0細胞、COS 化

[0047]

宿主細胞への発現ベクターの導入方法としては、前記宿主細胞に適合した通常の導入方法を用いれば良い。具体的にはリン酸カルシウム法、DEAE-デキストラン法、エレクトロポレーション法、遺伝子導入用リピッド(Lipofectamine、Lipofectin; Gibco-BRL社)を用いる方法などが挙げられる。導入後、選択マーカーを含む通常の培地にて培養することにより、前記発現ベクターが宿主細胞中に導入された形質転換細胞を選択することができる。

[0048]

以上のようにして得られた形質転換細胞を好適な条件下で培養し続けることにより、本発明のペプチドを製造することができる。得られたペプチドは、一般的な生化学的精製手段により、さらに単離・精製することができる。ここで精製手段としては、塩析、イオン

交換クロマトグラフィー、吸着クロマトグラフィー、アフィニティークロマトグラフィー 、ゲルろ過クロマトグラフィー等が挙げられる。また本発明のポリペプチドを、前述のチ オレドキシンやHisタグ、GST等との融合タンパク質として発現させた場合は、これら融合 タンパク質やタグの性質を利用した精製法により単離・精製することができる。

[0049]

本発明は、本発明のペプチドに特異的に結合する抗体を提供する。本発明の抗体は、そ の形態に特に制限はなく、本発明のペプチドを免疫原とするポリクローナル抗体であって も、またモノクローナル抗体であっても良い。

本発明の抗体は前記のように本発明のペプチドに特異的に結合するものであれば特に制 限されないが、具体的には、配列番号:2~配列番号:23のいずれかに記載のアミノ酸配 列を含有する10~25アミノ酸よりなるWT1の部分ペプチドであって、HLA-DRB1*0405に結合 してヘルパーT細胞を誘導するヘルパーペプチドに特異的に結合する抗体を挙げることが できる。好ましくは、配列番号:24に記載のアミノ酸配列からなるヘルパーペプチドに特 異的に結合する抗体を挙げることができる。

[0050]

これらの抗体の製造方法は、すでに周知であり、本発明の抗体もこれらの常法に従って 製造することができる (Current protocols in Molecular Biology edit. Ausubel et al . (1987) Publish. John Wiley and Sons. Section 11.12~11.13, Antibodies; A Labor atory Manual, Lane, H, D.ら編, Cold Spring Harber Laboratory Press 出版 New York 1989) 。

[0051]

具体的には、本発明のペプチドを免疫原として用い、家兎等の非ヒト動物を免疫し、該 免疫動物の血清から常法に従って得ることが可能である。一方、モノクローナル抗体の場 合には、本発明のペプチドをマウス等の非ヒト動物に免疫し、得られた脾臓細胞と骨髄腫 細胞とを細胞融合させて調製したハイブリドーマ細胞の中から得ることができる(Curren t protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley and Sons. Section 11.4~11.11) o

[0052]

本発明のペプチドに対する抗体の作製は、宿主に応じて種々のアジュバントを用いて免 疫学的反応を高めることによって行うこともできる。そのようなアジュバントには、フロ イントアジュバント、水酸化アルミニウムのようなミネラルゲル、並びにリゾレシチン、 プルロニックポリオル、ポリアニオン、ペプチド、油乳剤、キーホールリンペットヘモシ アニンおよびジニトロフェノールのような表面活性物質、BCG(カルメットーゲラン桿 菌) やコリネバクテリウム-パルヴムなどのヒトアジュバントなどがある。

[0053]

以上のように本発明のペプチドを用いて常法により適宜動物を免疫することにより、ペ プチドを認識する抗体、さらにはその活性を中和する抗体が容易に作製できる。抗体の用 途としては、アフィニティークロマトグラフィー、免疫学的診断等が挙げられる。免疫学 的診断は、イムノブロット法、放射免疫測定法(RIA)、酵素免疫測定法(ELISA)、蛍光あるいは発光測定法等より適宜選択できる。このような免疫学的診断は、WT1遺 伝子が発現している癌、すなわち胃癌、大腸癌、肺癌、乳癌、胚細胞癌、皮膚癌、膀胱癌 、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の診断において有効である。

[0054]

本発明は、本発明のペプチド(天然型ペプチド、改変ペプチド、エピトープペプチド) 、本発明のポリヌクレオチドを含有する発現ベクター、または本発明の発現ベクターを含 有する細胞と、薬学的に許容される担体とを含有する医薬組成物を提供する。当該医薬組 成物は、ヘルパーT細胞の誘導剤、癌ワクチンの作用増強剤として有効に使用できる。以 下具体的に説明する。

[0055]

(1) 本発明のペプチドを有効成分とするヘルパーT細胞の誘導剤(癌ワクチンの作用増強

剤)

本発明のペプチドは、ヘルパーT細胞の誘導能を有するものであり、誘導されたヘルパーT細胞は、CTLの分化の誘導や維持、およびマクロファージなどのエフェクター細胞の活性化作用を介して癌ワクチンの作用であるCTL誘導活性をさらに増強することができる。すなわち本発明は、本発明のペプチドを有効成分として含有する癌ワクチンの作用増強剤(癌ワクチンの作用増強剤としての医薬組成物)を提供する。本発明の作用増強剤をHLA-DRB1*0405陽性かつWT1陽性の患者に投与すると、抗原提示細胞のHLA-DRB1*0405抗原に本発明のペプチドが提示され、ペプチドとHLA-DRB1*0405抗原との複合体を認識する特異的ヘルパーT細胞(CD4陽性T細胞)が誘導・活性化されてCTLの分化の誘導や維持、およびマクロファージなどのエフェクター細胞の活性化作用を発揮することができ、従って、癌ワクチンの作用であるCTL誘導活性を増強することができる。

[0056]

本発明の癌ワクチン作用増強剤は、WT1遺伝子の発現レベルの上昇を伴う癌、例えば白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫などの血液性の癌や、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、肝癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌の予防または治療において使用することができる。

[0057]

本発明の癌ワクチンの作用増強剤は、癌ワクチンと同時に投与することもできれば、癌ワクチン投与前または癌ワクチン投与後に投与することも可能である。

[0058]

本発明のペプチドを有効成分とする癌ワクチン作用増強剤は、単一のヘルパーペプチドを有効成分とするものであっても、また癌抗原ペプチド(CTLエピトープ)と連結したエピトープペプチドを有効成分とするものであっても良い。前述したように近年、癌抗原ペプチド(CTLエピトープ)とヘルパーペプチド(ヘルパーエピトープ)とを連結させたエピトープペプチドにより、効率的にCTLが誘導されることが示されている。このようなエピトープペプチドの形態で投与した場合、抗原提示細胞内に取り込まれ、その後、細胞内分解を受けて生じた個々の抗原ペプチドのうち、ヘルパーペプチドはMHCクラスII抗原(HLA-DRB1*0405)と、また癌抗原ペプチドはMHCクラスI抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示される。HLA-DRB1*0405抗原とヘルパーペプチドとの複合体をヘルパーT細胞が認識し、CTLの分化の誘導や維持、およびマクロファージなどのエフェクター細胞の活性化作用を介して癌ワクチンの作用であるCTL誘導活性をさらに増強する。一方、癌抗原ペプチドとMHCクラスI抗原との複合体をCTLが認識して増殖し、癌細胞を破壊する。従って、本発明のエピトープペプチドを有効成分とする医薬組成物は、癌ワクチンの作用増強剤として使用されると共に、癌ワクチンそのものとして使用される。

[0059]

本発明のペプチドを有効成分とする癌ワクチンの作用増強剤は、細胞性免疫が効果的に成立するように、医薬として許容されるキャリアー、例えば適当なアジュバントとともに投与したり、粒子状の剤型にして投与することができる。アジュバントとしては、文献(Clin. Microbiol.Rev., 7:277-289, 1994)に記載のものなどが応用可能であり、具体的には、菌体由来成分、サイトカイン、植物由来成分、海洋生物由来成分、水酸化アルミニウムの如き鉱物ゲル、リソレシチン、プルロニックポリオールの如き界面活性剤、ポリアニオン、ペプチド、または油乳濁液(エマルジョン製剤)などを挙げることができる。また、リポソーム製剤、直径数 μ m のビーズに結合させた粒子状の製剤、リピッドを結合させた製剤なども考えられる。

[0060]

投与方法としては、皮内投与、皮下投与、筋肉内投与、静脈内投与などが挙げられる。 製剤中の本発明のペプチドの投与量は、治療目的の疾患、患者の年齢、体重等により適宜 調整することができるが、通常0.0001mg~1000mg、好ましくは 0.001mg~1000mg、より好 ましくは0.1mg~10mgであり、これを数日ないし数月に1回投与するのが好ましい。 [0061]

(2) 本発明の発現ベクターを有効成分とするヘルパーT細胞の誘導剤(癌ワクチンの作用 増強剤)

前記本発明のペプチドのみならず、当該ペプチドをコードするポリヌクレオチドを含有する発現ベクターもまた、ヘルパーT細胞誘導活性を有し、癌ワクチンの作用増強剤の有効成分とすることができる。すなわち本発明は、本発明のペプチドをコードするポリヌクレオチドを含有する発現ベクターを有効成分として含有する癌ワクチンの作用増強剤(癌ワクチンの作用増強剤としての医薬組成物)を提供する。

[0062]

近年、癌抗原ペプチド (CTLエピトープ)とヘルパーペプチド (ヘルパーエピトープ)とを連結させたエピトープペプチドをコードするポリヌクレオチドが、in vivoで効率的にCTL誘導活性を有することが示されている。例えばJournal of Immunology 1999, 162: 3915-3925には、HBV由来HLA-A2拘束性抗原ペプチド6種類、HLA-A11拘束性抗原ペプチド3種類、およびヘルパーエピトープを連結したエピトープペプチドをコードするDNA(ミニジーン)が、イン・ビボでそれぞれのエピトープに対するCTLを効果的に誘導したことが記載されている。

[0063]

従って、前記本発明のエピトープペプチドをコードするポリヌクレオチドを、適当な発 現ベクターに組み込むことにより、癌ワクチン作用増強剤の有効成分とすることができる

[0064]

本発明のポリヌクレオチドを含有する発現ベクターを癌ワクチン作用増強剤の有効成分として適用する際には、以下の方法が使用され得る。

本発明のポリヌクレオチドを含有する発現ベクターを細胞内に導入する方法として、ウイルスベクターによる方法およびその他の方法(日経サイエンス,1994年4月号,20-45頁、月刊薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等)のいずれの方法も適用することができる。

[0065]

ウイルスベクターによる方法としては、例えばレトロウイルス、アデノウイルス、アデノ関連ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス等のDNAウイルスまたはRNAウイルスに本発明のDNAを組み込んで導入する方法が挙げられる。この中で、レトロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルス等を用いた方法が特に好ましい。

その他の方法としては、発現ベクターを直接筋肉内に投与する方法(DNAワクチン法)、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。

[0066]

本発明の発現ベクターを実際に医薬として作用させるには、当該発現ベクターを直接体内に導入する in vivo法、およびヒトからある種の細胞を採集し体外で発現ベクターを該細胞に導入しその細胞を体内に戻す ex vivo法がある (日経サイエンス, 1994年4月号, 20-45頁、月刊薬事, 36(1), 23-48(1994)、実験医学増刊, 12(15), (1994)、およびこれらの引用文献等)。 in vivo法がより好ましい。

[0067]

in vivo法により投与する場合は、治療目的の疾患、症状等に応じた適当な投与経路により投与され得る。例えば、静脈、動脈、皮下、皮内、筋肉内等に投与することができる。in vivo法により投与する場合は、例えば、液剤等の製剤形態をとりうるが、一般的には有効成分である本発明の発現ベクターを含有する注射剤等とされ、必要に応じて、慣用の担体を加えてもよい。また、本発明の発現ベクターを含有するリポソームまたは膜融合リポソーム (センダイウイルス (HVJ) -リポソーム等) においては、懸濁剤、凍結剤、遠

心分離濃縮凍結剤等のリポソーム製剤の形態とすることができる。

製剤中の本発明の発現ベクターの含量は、治療目的の疾患、患者の年齢、体重等により 適宜調整することができるが、通常、0.0001mg~100mg、好ましくは0.001mg~10mgの本発 明の発現ベクターを、数日ないし数月に1回投与するのが好ましい。

[0068]

以上のような本発明の発現ベクターをHLA-DRB1*0405陽性かつWT1陽性の患者に投与すると、抗原提示細胞のHLA-DRB1*0405抗原に本発明のペプチドが提示され、ペプチドとHLA-DRB1*0405抗原との複合体を認識する特異的ヘルパーT細胞(CD4陽性T細胞)が誘導・活性化されてCTLの分化の誘導や維持、およびマクロファージなどのエフェクター細胞の活性化作用を発揮することができ、従って、癌ワクチンの作用であるCTL誘導活性を増強することができる。本発明のポリヌクレオチドを含有する発現ベクターを有効成分とする癌ワクチン作用増強剤は、WT1遺伝子の発現レベルの上昇を伴う癌、例えば白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫などの血液性の癌や、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、肝癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌の予防または治療のために使用することができる。

[0069]

前記においてエピトープペプチドをコードするポリヌクレオチドを含有する発現ベクターを投与した場合、抗原提示細胞内に取り込まれ、その後、細胞内分解を受けて生じた個々の抗原ペプチドのうち、ヘルパーペプチドはMHCクラスII抗原(HLA-DRB1*0405)と、また癌抗原ペプチドはMHCクラスI抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示される。HLA-DRB1*0405抗原とヘルパーペプチドとの複合体をヘルパーT細胞が認識し、CTLの分化の誘導や維持、およびマクロファージなどのエフェクター細胞の活性化作用を介して癌ワクチンの作用であるCTL誘導活性をさらに増強する。一方、癌抗原ペプチドとMHCクラスI抗原との複合体をCTLが認識して増殖し、癌細胞を破壊する。従って、本発明のエピトープペプチドをコードするポリヌクレオチドを含有する発現ベクターを有効成分とする医薬組成物は、癌ワクチンの作用増強剤として使用されると共に、癌ワクチンそのものとして使用される。

[0070]

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。

【実施例】

[0071]

実施例1

1. 樹状細胞の調製

HLA-DRB1*0405陽性の健常人ボランティアから採取した血液からFicoll-Paqueの密度勾配遠心法により末梢血単核球 (PBMC) を回収した。得られた 8×10^6 個のPBMCを1%のAB血清を含むX-VIVO 15^{TM} 培養液 (Camblex社) 2m1に懸濁し、6穴培養プレートに播種して2時間培養した。培養後、浮遊細胞を除去し、Hanks液で付着細胞を洗った。付着細胞は、1%のAB血清、1000U/m1のIL-4および1000U/m1のGM-CSFを含むX-VIVO 15^{TM} 培養液を用いて培養した。2日目と4日目に培養液の半量を除き、新しい培養液を加えた。6日目に100U/m1となるようにTNF- α を添加した。7日目の細胞を樹状細胞として実験に使用した。

[0072]

2. CD4陽性T細胞(ヘルパーT細胞)の調製

上記(1)と同一の健常人ボランティアからから採取した血液を用いた。RPMI培養液で2倍に希釈した血液約100mlにCD4陽性T細胞分離用抗体カクテルのロゼットセップ(Stemcell社)を添加して室温で20分間放置した。その後、Ficoll-Paqueの密度勾配遠心法によりCD4陽性T細胞を回収した。

[0073]

3. WT1ペプチドに特異的なCD4陽性T細胞の誘導

WT1蛋白質のアミノ酸配列 (NCBIデータベース Accession No. P19544、XP_034418、配

列番号:1)よりHLA-DRB1*0405に結合する可能性のあるペプチドを予測プログラムProPred (Bioinformatics 17: 1236, 2001)を用いて3種類選んで、合成した。それらの配列は、WT1アミノ酸配列の第172位から186位のPNHSFKHEDPMGQQG(WT1172-186、配列番号:25)、第225位から243位のNLYQMTSQLECMTWNQMNL(WT1225-243、配列番号:26)、第332位から第347位のKRYFKLSHLQMHSRKH(WT1332-347、配列番号:24)であった。

[0074]

上記 (1) で調製した樹状細胞を24穴培養プレートに1穴当たり 3×10^5 個播種し、配列番号:24 のペプチドを 50μ g/mlになるように添加して4時間培養した後、25GyのX線を照射して細胞の増殖を止めた。次に(2)で調製したCD4陽性細胞を1穴当たり 3×10^6 個添加して樹状細胞と混合培養した。培養液は、1%のAB血清を含むX-VIVO 15^{TM} 培養液を用いた。培養開始から2日おきに培養液を半量交換するとともに20U/mlになるようにIL-2を添加した。培養開始から7日目、14日目にT細胞を回収し、24穴プレートに1 穴当たり 3×10^6 個に調整して播種し、 20μ g/mlのペプチド(配列番号:24)でパルスした後25GyでX線照射した樹状細胞を 3×10^5 個添加して混合培養を行った。培養液は1%のAB血清、20U/mlのIL-2を含むX-VIVO 15^{TM} 培養液を用いた。

[0075]

3回目の刺激をした後のT細胞を回収し、96穴培養プレートに1穴当たり 3×10^4 個播種した。さらに 20μ g/mlのペプチド(配列番号:24)でパルスした後25GyでX線照射した樹状細胞を 3×10^4 個加えて混合培養した。陰性対照としてペプチドをパルスしていない樹状細胞をT細胞と混合培養した群、陽性対照として樹状細胞の代わりに0.2%のPHAを添加した群を設定した。80時間培養後、1穴当たり37kBqの $[^3H]$ -チミジンを添加して更に16時間培養を行った後、細胞に取り込まれた $[^3H]$ -チミジンを β -シンチレーションカウンターにて測定した。結果を図1に示した。WT1の第332位から347位のペプチド(WT $1_332-347$ 、配列番号:24)で刺激したCD4陽性T細胞は、WT $1_332-347$ をパルスした樹状細胞と混合培養することにより増殖反応を示した。また、このCD4陽性T細胞は、ペプチドをパルスしていない樹状細胞、配列の異なる配列番号25や配列番号26のペプチドをパルスした樹状細胞との混合培養では増殖反応が認められなかった。これらの結果より、配列番号24のペプチドWT $1_332-347$ は、抗原ペプチドとして特異的CD4陽性T細胞を誘導していることが明らかになった。

[0076]

実施例 2

WT1ペプチドに特異的なCD4陽性T細胞株の樹立

実施例1に記載の方法で調製した樹状細胞を96穴プレートに1穴当たり 10^4 個ずつ播種し、さらに配列番号24のペプチドWT $1_{332-347}$ で誘導したCD4陽性T細胞を96穴プレートに1穴当たり、 10^3 個ずつ播種した。培養液は、1%のAB血清、20U/m1のIL-2、 5μ g/mlのPHAを含む X-VIVO 15^{TM} 培養液を用いた。培養を続けることにより、CD4陽性T細胞株を樹立し、G2細胞株と命名した。ペプチドをパルスした樹状細胞に対するG2細胞株の反応性を実施例1と同様の方法で測定した。結果を図2に示す。G2細胞株は、WT $1_{332-347}$ のペプチドをパルスした樹状細胞と混合培養することにより増殖反応を示したが、ペプチドをパルスしていない樹状細胞との混合培養では増殖反応が認められなかった。

これらの結果より、G2細胞株は、WT1332-347のペプチドに特異的なCD4陽性T細胞株であることが明らかとなった。

[0077]

実施例3

WT1ペプチドのHLA-DR分子への抗原提示

実施例1と同様の方法で、HLA-DRB1*0405陽性の健常人ボランティアから採取した血液からFicoll-Paqueの密度勾配遠心法により末梢血単核球(PBMC)を回収した。PBMCを24穴プレートに1穴当たり10⁷個播種した。培養液は、10%のFCS、55μMの2MEを含むRPMI1640培養液を用いた。エプスタイン-バーウイルス(Epstein-Barr virus: EBV)を含む培養液を添加して、4週間培養し、EBVでトランスフォームされたB細胞株を樹立し、B-LCL(一)細胞と命名した。EBVは、EBVを産生する細胞株B95-8(JCRB細胞バンクNo. 9123)の培養

上清より調製した。B-LCL(-)細胞を 3×10^7 個/凪に調整し、WT1遺伝子を発現するウイルスを含む培養液を添加後、更にポリプレンを最終濃度が 8μ g/凪になるように添加して、24穴プレートに1皿ずつ播種した。16時間培養した後に新しい培養液を1皿ずつ添加して培養を継続した。G418(ネオマイシン)を 0.7μ g/凪で添加し、 $5\sim7$ 日間培養し、遺伝子が導入された細胞を選択した。このようにして選択されたWT1を発現するB細胞株をB-LCL(+)細胞と命名した。B-LCL(-)細胞とB-LCL(+)細胞のWT1遺伝子の発現量をRT-PCR法で測定した。方法は、文献(Blood,89:1405,1997)に従い、陽性コントロールのK562細胞の発現量を1として換算した。その結果、B-LCL(-)細胞は、 1.6×10^{-4} であるのに対して、B-LCL(+)細胞は3.2であり、WT1遺伝子が高発現しているのが確認された。B-LCL(+)細胞に対するG2細胞の反応性を実施例 2と同様の方法で検討した。HLA-DR拘束性を確認するためにG2細胞と混合する前にB-LCL(+)を抗HLA-DR抗体で処理した群も設定した。結果を図3に示す。ペプチド特異的CD4陽性T細胞株G2は内因的にWT1遺伝子を発現しているB-LCL(+)細胞との混合培養で増殖反応を示すこと、また、この反応は抗HLA-DR抗体により阻害されることが示された。これらの結果より、WT1332-347のペプチドが細胞内でWT1蛋白質から生じ、内因性にHLA-DR分子に抗原提示されていることが示された。

【産業上の利用可能性】

[0078]

本発明により、WT1由来のHLA-DRB1*0405結合性抗原ペプチド、当該ペプチドをコードするポリヌクレオチド、これらペプチドやポリヌクレオチドを含むヘルパーT細胞の誘導剤などが提供される。本発明のヘルパーT細胞の誘導剤は、癌ワクチンの作用増強剤として有用である。本発明の癌ワクチンの作用増強剤は、HLA-DRB1*0405陽性の多くの癌患者に適用可能であり、特にWT1ワクチンの作用増強剤として有用である。

【図面の簡単な説明】

[0079]

【図1】WT1由来のペプチドWT1332-347で刺激したCD4陽性T細胞(ヘルパーT細胞)と各種樹状細胞との反応性を調べた結果を示す。図中、「無処理」はペプチドをパルスしていない樹状細胞との反応性を、「PHA」は樹状細胞の代わりにPHAで処理したCD4陽性T細胞の結果を、「WT1172-186パルス」はWT1172-186ペプチドをパルスした樹状細胞との反応性を、「WT1225-243パルス」はWT1225-243ペプチドをパルスした樹状細胞との反応性を、「WT1332-347パルス」はWT1332-347ペプチドをパルスした樹状細胞との反応性をそれぞれ示す。また縦軸は、CD4陽性T細胞に取り込まれた[3 H]-チミジン量(cpm)を示す。

【図2】WT1由来のペプチドWT1 $_{332-347}$ をパルスした樹状細胞に対するG2細胞株の反応性を調べた結果を示す。図中、「無処理」はペプチドをパルスしていない樹状細胞を用いた結果を、「WT1 $_{332-347}$ パルス」はWT1 $_{332-347}$ をパルスした樹状細胞を用いた結果を示す。また縦軸は、G2細胞株に取り込まれた[3 H]-チミジン量(cpm)を示す

【図3】WT1遺伝子を発現するB-LCL(+)細胞に対するG2細胞株の反応性を調べた結果を示す。図中、「B-LCL(-)」はWT1遺伝子を発現していないB-LCL(-)細胞を用いた結果を、「B-LCL(+)」はWT1遺伝子を発現するB-LCL(+)細胞を用いた結果を、また「B-LCL(+)+抗HLA-DR抗体」は抗<math>HLA-DR抗体で処理したB-LCL(+)を用いた結果を示す。また縦軸は、G2細胞株に取り込まれた[3H]-チミジン量 (cpm)を示す。

【配列表】

SEQUENCE LISTING

<110> Haruo, Sugiyama

<120> HLA-DR binding antigen peptide derived from WT1

<130> 190507

<160> 43

<170> PatentIn Ver. 2.1

<210> 1

<211> 449

<212> PRT

<213> Homo sapiens

<400> 1

Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro 1 5 10 15

Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala 20 25 30

Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr 35 40 45

Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro 55 60

Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly 65 70 75 80

Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe 85 90 95

Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe 100 100 110

Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe 115 120 125

Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile 130 135 140

Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr 145 150 150

Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe

165

170

175

Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln 180 185 190

Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser 195 200 205

Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp 210 215 220

Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln 225 230 235 240

Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser 255

Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu 260 265 270

Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile 275 280 285

His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro 290 295 300

Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys 305 310 320

Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys 325 330 335

Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro 340 345 350

Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp 355 360 365

Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln 370 375 380

Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr 385 390 395 400

His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys 405 410 415

Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
420 425 430

Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala 435 440 445 .

Leu

```
<210> 2
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 2
Leu Val Arg His His Asn Met His Gln
<210> 3
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 3
Leu Tyr Gln Met Thr Ser Gln Leu Glu
<210> 4
<211> 9
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 4
 Phe Lys His Glu Asp Pro Met Gly Gln
```

1

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic
      Peptide
<400> 5
Leu Val Arg Ser Ala Ser Glu Thr Ser
<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 6
Met Gly Gln Gln Gly Ser Leu Gly Glu
 <210> 7
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 7
 Val Tyr Gly Cys His Thr Pro Thr Asp
   1
 <210> 8
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
```

```
<400> 8
Leu Arg Thr Pro Tyr Ser Ser Asp Asn
<210> 9
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 9
Phe Ile Lys Gln Glu Pro Ser Trp Gly
<210> 10
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic
      Peptide
<400> 10
Trp Gly Gly Ala Glu Pro His Glu Glu
                   5
 <210> 11
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 11
 Phe Lys Leu Ser His Leu Gln Met His
 <210> 12
 <211> 9
 <212> PRT
```

```
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 12
 Tyr Phe Lys Leu Ser His Leu Gln Met
                    5
 <210> 13
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       Peptide
 <400> 13
 Leu Glu Cys Met Thr Trp Asn Gln Met
<210> 14
  <211> 9
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence:Synthetic
        Peptide
  <400> 14
  Phe Arg Gly Ile Gln Asp Val Arg Arg
  <210> 15
  <211> 9
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence:Synthetic
        Peptide
  <400> 15
  Leu Leu Pro Ala Val Pro Ser Leu Gly
```

5

```
<210> 16
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 16
Leu Ser Ala Phe Thr Val His Phe Ser
<210> 17
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic
      Peptide
<400> 17
Met Asn Leu Gly Ala Thr Leu Lys Gly
 <210> 18
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 18
 Val Arg Ser Ala Ser Glu Thr Ser Glu
 <210> 19
 <211> 9
 <212> PRT
 <213> Artificial Sequence
```

```
特願2003-375603
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 19
Leu Pro Ala Val Pro Ser Leu Gly Gly
                  5
<210> 20
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 20
Tyr Gly Cys His Thr Pro Thr Asp Ser
                  5
<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence:Synthetic
      Peptide
 <400> 21
Phe Ser Gly Gln Phe Thr Gly Thr Ala
 <210> 22
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
```

Phe Met Cys Ala Tyr Pro Gly Cys Asn 1 5

Peptide

<400> 22

```
<210> 23
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 23
Tyr Gln Met Thr Ser Gln Leu Glu Cys
                  5
<210> 24
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 24
Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His
                                                           15
                                       10
                   5
 <210> 25
 <211> 15
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       Peptide
 <400> 25
 Pro Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gly
                                                            15
                                       10
 <210> 26
 <211> 19
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
```

```
Peptide
```

Met Asn Leu

```
<210> 27
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic Peptide
<400> 27
```

Cys Met Thr Trp Asn Gln Met Asn Leu

1

5

<210> 28 <211> 9 <212> PRT <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Peptide

<400> 28
Cys Tyr Thr Trp Asn Gln Met Asn Leu
1 5

<210> 29
<211> 9
<212> PRT
<213> Artificial Sequence
<220>

<223> Description of Artificial Sequence:Synthetic
 Peptide

<400> 29
Arg Met Phe Pro Asn Ala Pro Tyr Leu
1 5

```
<210> 30
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic
      Peptide
<400> 30
Arg Tyr Pro Ser Cys Gln Lys Lys Phe
<210> 31
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 31
Ser Tyr Thr Trp Asn Gln Met Asn Leu
                   5
 <210> 32
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 32
 Ala Tyr Thr Trp Asn Gln Met Asn Leu
 <210> 33
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
```

```
<223> Description of Artificial Sequence: Synthetic
      Peptide
<223> Xaa at 1 position stands for Abu.
<400> 33
Xaa Tyr Thr Trp Asn Gln Met Asn Leu
                  5
  1
<210> 34
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 34
Arg Tyr Thr Trp Asn Gln Met Asn Leu
                   5
<210> 35
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 35
Lys Tyr Thr Trp Asn Gln Met Asn Leu
 <210> 36
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 36
 Arg Tyr Phe Pro Asn Ala Pro Tyr Leu
```

```
<210> 37
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic
      Peptide
<400> 37
Arg Tyr Pro Gly Val Ala Pro Thr Leu
                  5
<210> 38
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 38
Ala Tyr Leu Pro Ala Val Pro Ser Leu
 <210> 39
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <400> 39
 Asn Tyr Met Asn Leu Gly Ala Thr Leu
 <210> 40
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
```

```
Peptide
```

```
<400> 40
Arg Val Pro Gly Val Ala Pro Thr Leu
<210> 41
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Synthetic
      Peptide
<400> 41
Arg Tyr Pro Ser Ser Gln Lys Lys Phe
<210> 42
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
       Peptide
 <400> 42
 Arg Tyr Pro Ser Ala Gln Lys Lys Phe
 <210> 43
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:Synthetic
       Peptide
 <223> Xaa at 5 position stands for Abu.
 <400> 43
 Arg Tyr Pro Ser Xaa Gln Lys Lys Phe
```

14

【図2】

刺激細胞処理方法

刺激樹状細胞

【要約】

【課題】 WT1由来のHLA-DRB1*0405結合性抗原ペプチド、当該ペプチドをコードするポリヌクレオチド、これらペプチドやポリヌクレオチドを含むヘルパーT細胞の誘導剤などを提供すること。

【解決手段】 配列番号:1に記載のヒトWT1のアミノ酸配列における連続する10~25アミノ酸からなる部分ペプチドであって、HLA-DRB1*0405に結合してヘルパーT細胞を誘導するペプチド、当該ペプチドをコードするポリヌクレオチド、またはこれらペプチドやポリヌクレオチドを含むヘルパーT細胞の誘導剤等。

【選択図】なし

出願人履歴情報

識別番号

[595090392]

1. 変更年月日 1995年 6月 1日

[変更理由]

新規登録

住 所

大阪府箕面市船場西2-19-30

杉山 治夫 氏 名