Równania różniczkowe zwyczajne

Opracowanie zagadnień na egzamin

Kacper Grabczak Kacper Kurowski

Spis treści

1.	Twie	erdzenia	3
	1.1.	Ciągła zależność od parametrów	3
	1.2.	Różniczkowalna zależność od parametrów	4
	1.3.	Rozwiązania przez szeregi potęgowe wokół punktu regularnego	6
	1.4.	Twierdzenie spektralne dla funkcji analitycznych	9
	1.5.	Twierdzenie o asymptotycznym zachowaniu $ e^{At} $	10
	1.6.	Twierdzenie o minimach funkcji Lapunowa i stabilności	11
2.	Zaga	adnienia	13
	2.1.	Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone (otwarte)	13
	2.2.	Metoda Frobeniusa (metoda)	14
	2.3.	Rozwiązania układów liniowych jednorodnych (otwarte)	16
	2.4.	Rozwiązywanie równań liniowych niejednorodnych	17
	2.5.	Hiperboliczność i stabilność punktów równowagi	18
	2.6.	Zagadnienia brzegowe	18
3.	Przy	kłady	19
	3.1.	Rozwiązywanie równań metodą szeregów potęgowych	19
	3.2.	Równania na wariację	19
	3.3.	Potoki - policzenie i zastosowanie własności w konkretnych sytuacjach	19
	3.4.	Wzory Liouville'a i Abela	19
	3.5.	Zastosowania twierdzenia spektralnego, macierze spektralne	19
	3.6.	Całki pierwsze, funkcje Lapunowa - zastosowanie do badania stabilności	19

1.1. Ciagła zależność od parametrów

Twierdzenie 1.1.1 (O ciągłej zależności od parametru). Niech

$$y' = f(y, t, \lambda), \qquad f: \mathbb{R}^{m+1} \times \mathbb{R}^l \supset U \times B_l(\lambda_0, c) \longrightarrow \mathbb{R}^m,$$

gdzie f jest funkcją ciągłą oraz c>0. Niech $y(t,\lambda_0)$ będzie rozwiązaniem równania $y'=f(y,t,\lambda_0)$ z warunkiem początkowym (y_0,t_0) określonym na zwartym przedziałe I zawierającym t_0 . Wybierzmy b>0 i rozważmy zbiór

$$R_b = \{(y, t) : t \in I \text{ oraz } ||y - y(t, \lambda_0)|| < b\}.$$

Załóżmy dalej, że

a) istnieje $L \geq 0$, że dla wszystkich $(y_1,t), (y_2,t) \in R_b$ zachodzi

$$||f(y_1, t, \lambda_0) - f(y_2, t, \lambda_0)|| \le L \cdot ||y_1 - y_2||,$$

b) dla dowolnego $\varepsilon > 0$ istnieje $\delta > 0$, że dla $(y,t) \in R_b$ oraz każdej λ jest

$$\|\lambda - \lambda_0\| < \delta \implies \|f(y, t, \lambda) - f(y, t, \lambda_0)\| < \varepsilon.$$

Wówczas istnieje stała $c^* > 0$ taka, że

- 1. jeśli $\|\lambda \lambda_0\| < c^*$, to $y(t, \lambda)$ jest określone na I,
- 2. jeśli $\lambda_n \to \lambda_0$, to $y(t, \lambda_n) \rightrightarrows y(t, \lambda_0)$ na I.

Dowód. W dowodzie wykorzystamy lemat pomocniczy.

LEMAT 1.1.2. Przy założeniach twierdzenia przypuśćmy, że na $J \subset I$ mamy

- 1. dla wszystkich $t \in J$ jest $(y(t, \lambda), t) \in R_b$,
- 2. dla każdego $\varepsilon > 0$ oraz $(y,t) \in R_b$ zachodzi $||f(y,t,\lambda) f(y,t,\lambda_0)|| \le \varepsilon$.

Wtedy dla każdego $t \in J$ prawdziwa jest nierówność

$$||y(t,\lambda) - y(t,\lambda_0)|| \le \varepsilon \cdot e^{L|t-t_0|} \cdot |t-t_0|.$$

Dowód.

$$\begin{aligned} \|y(t,\lambda) - y(t,\lambda_0)\| &= \left\| \int_{t_0}^t f(y(u,\lambda), u, \lambda) du - \int_{t_0}^t f(y(u,\lambda_0), u, \lambda_0) du \right\| \\ &\leq \left| \int_{t_0}^t \left\| f(y(u,\lambda), u, \lambda) - f(y(u,\lambda_0), u, \lambda_0) \right\| du \right| \\ &\leq \left| \int_{t_0}^t \left\| f(y(u,\lambda), u, \lambda) - f(y(u,\lambda), u, \lambda_0) \right\| du \right| + \\ &+ \left| \int_{t_0}^t \left\| f(y(u,\lambda), u, \lambda_0) - f(y(u,\lambda_0), u, \lambda_0) \right\| du \right| \\ &\leq \left| \int_{t_0}^t \varepsilon du \right| + \left| \int_{t_0}^t L \cdot \|y(u,\lambda) - y(u,\lambda_0)\| du \right| \\ &\leq \underbrace{\varepsilon \cdot |t - t_0|}_{t_0} + \left| \int_{t_0}^t L \cdot \|y(u,\lambda) - y(u,\lambda_0)\| du \right|. \end{aligned}$$

Z nierówności Gronwalla ze stałą K wynika teza.

Wybierzmy $\varepsilon > 0$ taki, że $\varepsilon \cdot |I| \cdot e^{L|I|} \leq \frac{b}{2}$ oraz oznaczmy $c^* = \min(c, \delta_{\varepsilon})$. Weźmy $\lambda > 0$ taką, że $\|\lambda - \lambda_0\| < c^*$. Niech J będzie maksymalnym podprzedziałem I, na którym dla każdego $t \in J$ zachodzi:

$$(y(t,\lambda),t) \in R_b.$$

Wtedy z lematu 1.1.2, dla wszystkich $t \in J$ jest

$$||y(t,\lambda) - y(t,\lambda_0)|| \le \frac{b}{2}.$$

Przypuśćmy, że jeden z końców J, nazwijmy go α , należy do wnętrza I. Wówczas z twierdzenia o przedłużaniu przez koniec, $y(t,\lambda)$ przedłuża się na przedział zawierający α we wnętrzu. Co więcej, ponieważ $\|y(t,\lambda)-y(t,\lambda_0)\|$ jest funkcją ciągłą względem t, to pozostaje mniejsza od b na pewnym otoczeniu α . Zatem J nie był przedziałem maksymalnym, chyba że J=I. Pokazaliśmy więc pierwszą część tezy.

Jeśli $\lambda_n \to \lambda_0$, to z założenia b) istnieje ciąg $\varepsilon_n \to 0$ taki, że

$$||f(y,t,\lambda) - f(y,t,\lambda_0)|| < \varepsilon_n$$

dla każdego n oraz wszystkich $(y,t) \in R_b$. Z lematu 1.1.2, dla $t \in I$ jest

$$||y(t,\lambda) - y(t,\lambda_0)|| \le \varepsilon_n \cdot |I| \cdot e^{L|I|} \xrightarrow{n \to \infty} 0,$$

co dowodzi drugiej części tezy.

1.2. Różniczkowalna zależność od parametrów

Twierdzenie 1.2.1 (O różniczkowalnej zależności od parametru). Niech

$$y' = f(y, t, \lambda), \qquad f: \mathbb{R}^{m+1} \times \mathbb{R} \supset U \times (\lambda_0 - c, \lambda_0 + c) \longrightarrow \mathbb{R}^m,$$

gdzie f jest funkcją ciągłą względem y,t,λ oraz klasy C^1 względem y,λ . Ustalmy warunek początkowy (y_0,t_0) i oznaczmy przez $y(t,\lambda)$ rozwiązanie równania

$$\frac{\partial y(t,\lambda)}{\partial t} = f(y,t,\lambda)$$

z warunkiem początkowym $y(t_0, \lambda) = y_0$, określone na ustalonym i zwartym przedziałe I. Wówczas na przedziałe I istnieje ciągła funkcja

$$z(t, \lambda_0) = \frac{\partial y(t, \lambda)}{\partial \lambda} \bigg|_{\lambda = \lambda_0}$$

oraz zachodzi równość

$$\left. \frac{\partial z(t, \lambda_0)}{\partial t} = \left. \frac{\partial^2 y(t, \lambda)}{\partial t \partial \lambda} \right|_{\lambda = \lambda_0} = \left. \frac{\partial^2 y(t, \lambda)}{\partial \lambda \partial t} \right|_{\lambda = \lambda_0}.$$

Dowód. Niech $y_{\lambda}(t) \in R_b$. Oznaczmy

$$w_{\lambda}(t) := \frac{y_{\lambda}(t) - y_{\lambda_0}(t)}{\lambda - \lambda_0}$$

dla $\lambda \neq \lambda_0$. Wtedy

$$\partial_t w_{\lambda}(t) = \frac{\partial_t y_{\lambda}(t) - \partial_t y_{\lambda_0}(t)}{\lambda - \lambda_0} = \frac{f_{\lambda}(y_{\lambda}(t), t) - f_{\lambda_0}(y_{\lambda_0}(t), t)}{\lambda - \lambda_0} = \frac{f_{\lambda}(y_{\lambda_0}(t) + (\lambda - \lambda_0)w_{\lambda}(t), t) - f_{\lambda_0}(y_{\lambda_0}(t), t)}{\lambda - \lambda_0}.$$

Rozważmy dalej funkcję

$$F_{\lambda}(w,t) := \frac{f_{\lambda}(y_{\lambda_0}(t) + (\lambda - \lambda_0)w, t) - f_{\lambda_0}(y_{\lambda_0}(t), t)}{\lambda - \lambda_0}.$$

Zwróćmy uwagę, że w w definicji F jest symbolem argumentu, a nie funkcji.

Pokażemy, że istnieje taka stała $c^* > 0$, że o ile $|\lambda - \lambda_0| \le c^*$, to dziedzina funkcji F dla każdego λ spełniającego ten warunek jest zbiorem zwartym, a ponadto $w_{\lambda}(t)$ zawiera się w tej dziedzinie dla każdego $t \in I$.

LEMAT 1.2.2. Przy założeniach takich jak powyżej, istnieją stałe $c_1, k_1 > 0$ takie, że

$$|\lambda - \lambda_0| \le c_1 \implies ||w_{\lambda}(t)|| \le k_1.$$

Dowód. Weźmy wpierw pewne $c_1\colon 0< c_1< c$. Możemy zawęzić dziedzinę f do $\lambda\in [\lambda_0-c_1,\lambda+c_1]$. Wtedy f jest funkcją klasy C^1 względem λ zdefiniowaną na zbiorze zwartym (względem λ), a więc jest ona lipszycowska względem λ ze stałą L_λ . Weźmy $\lambda\neq\lambda_0$ z tego zbioru. Możemy zatem wziąć w 1.1.2 $\varepsilon=L_\lambda|\lambda-\lambda_0|$. Zgodnie z tym lematem, zachodzi wtedy:

$$||w_{\lambda}(t)|| = \frac{||y_{\lambda}(t) - y_{\lambda_0}(t)||}{|\lambda - \lambda_0|} \le L_{\lambda} \cdot e^{L|t - t_0|} \cdot |t - t_0| =: k_1$$

Dla tak zdefiniowanego k_1 teza lematu jest spełniona. (Uwaga: dla każdego λ bierzemy inny ε , ale wciąż uzyskujemy to samo ograniczenie dla $||w_{\lambda}(t)||$). \square

Weźmy takie c_1 i k_1 . Z kolei jeśli $|\lambda - \lambda_0| \le \frac{b}{2k_1}$, to dla w takich, że $||w|| \le 2k_1$ zachodzi

$$||y_{\lambda_0}(t) + (\lambda - \lambda_0)w - y_{\lambda_0}(t)|| = ||(\lambda - \lambda_0)w|| = |\lambda - \lambda_0| \cdot ||w|| \le \frac{b}{2k_1} \cdot 2k_1 = b.$$

Oznacza to, że dla każdego $t \in J$ (przy takich λ) jest

$$(y_{\lambda_0}(t) + (\lambda - \lambda_0)w, t) \in R_b.$$

Niech $c^* = \min(c_1, \frac{b}{2K_1})$. Wtedy F jest zdefiniowana na zbiorze

$$\overline{B}(0,2K_1) \times I \times ((\lambda_0 - c^*, \lambda_0 + c^*) \setminus {\lambda_0}).$$

Zdefiniujmy F dla $\lambda = \lambda_0$ tak, by była ciągła względem λ w tym punkcie. Wtedy

$$\lim_{\lambda \to \lambda_0} F_{\lambda}(w, t) = \lim_{\lambda \to \lambda_0} \frac{f_{\lambda}(y_{\lambda_0}(t) + (\lambda - \lambda_0)w, t) - f_{\lambda_0}(y_{\lambda_0}(t), t)}{\lambda - \lambda_0}$$

$$= \lim_{\lambda \to \lambda_0} \frac{f_{\lambda}(y_{\lambda_0}(t) + (\lambda - \lambda_0)w, t) - f_{\lambda}(y_{\lambda_0}(t), t)}{w(\lambda - \lambda_0)} \cdot w +$$

$$+ \lim_{\lambda \to \lambda_0} \frac{f_{\lambda}(y_{\lambda_0}(t), t) - f_{\lambda_0}(y_{\lambda_0}(t))}{\lambda - \lambda_0}$$

$$= D_y f_{\lambda_0}(y, t)|_{y = y_{\lambda_0}(t)} \cdot w + \partial_{\lambda} f_{\lambda}(y_{\lambda_0}(t), t)|_{\lambda = \lambda_0}, \qquad (1.2.1)$$

przy czym powyższe pochodne istnieją, gdyż z założenia funkcja f jest klasy C^1 względem zmiennych y oraz λ . Niech

$$F_{\lambda_0}(w,t) \coloneqq \lim_{\lambda \to \lambda_0} F_{\lambda}(w,t).$$

Wtedy F jest zdefiniowana na zbiorze

$$\overline{B}(0,2K_1) \times I \times (\lambda_0 - c^*, \lambda_0 + c^*),$$

który jest zwarty dla każdego ustalonego λ .

LEMAT 1.2.3. Funkcja F zdefiniowana powyżej spełnia założenia twierdzenia o ciągłej zależności od parametru przy równaniu różniczkowym $\partial_t w = F_{\lambda}(w, t)$.

Dowód. Nadobowiązkowy dowód Czytelnik wykona samodzielnie.

Zauważmy, że na mocy powyższego lematu oraz poprzednich rozważań funkcja $F_{\lambda_0}(w,t)$ jest ciągłą funkcją określoną na zbiorze zwartym, więc z Twierdzenia Peano istnieje rozwiązanie w_{λ_0} równania $\partial_t w = F_{\lambda_0}(w,t)$ określone w pewnym przedziale $J \subset I$ (dla ustalenia uwagi, niech J będzie maksymalnym możliwym).

Rozwiązanie to jest jednoznaczne, gdyż dla każdego ciągu $\lambda_n \to \lambda_0$ zachodzi $w_{\lambda_n}(t) \rightrightarrows w_{\lambda_0}(t)$. Gdybyśmy mieli dwa ciągi $\lambda_{n_1}, \lambda_{n_2} \to \lambda_0$, dla których $w_{\lambda_{n_1}}(t) \to w_{\lambda_0,1}(t)$ oraz $w_{\lambda_{n_2}}(t) \to w_{\lambda_0,2}(t)$, to ciąg λ_n z wyrazami na przemian z λ_{n_1} i λ_{n_2} również byłby zbieżny do λ_0 , więc w_{λ_n} także byłby zbieżny do jakiegoś rozwiązania. To zaś z jednoznaczności granicy oznacza, że $w_{\lambda_{n_1}}(t) = w_{\lambda_{n_2}}(t)$ dla każdego t. Stąd:

$$w_{\lambda_0}(t) = \lim_{n \to \infty} w_{\lambda_n}(t) = \lim_{\lambda \to \lambda_0} w_{\lambda}(t) = \lim_{\lambda \to \lambda_0} \frac{y_{\lambda}(t) - y_{\lambda_0}(t)}{\lambda - \lambda_0} = \partial_{\lambda} y_{\lambda}(t) \Big|_{\lambda = \lambda_0}.$$

Ponadto J=I. Przypuśćmy przeciwnie, że tak nie jest i bez straty ogólności załóżmy, że α jest prawym krańcem J, ale nie I. Skoro F_{λ_0} spełnia założenia 1.1.1, to jest ciągła i lipszycowska względem w_{λ_0} , a więc też jest lokalnie lipszycowska. Skoro $\|w_{\lambda}(t)\| \leq k_1$, to po przejściu z nierównością do granicy także $\|w_{\lambda_0}(t)\| \leq k_1$. Wreszcie w_{λ_0} jest funkcją ciągłą, więc istnieje pewne otoczenie U_{α} punktu α , dla którego $t \in U_{\alpha} \implies \|w_{\lambda}(t)\| \leq 2k_1$, więc istnieje zbiór zwarty K oraz $\delta > 0$ takie, że

$$\forall t \in Dmw_{\lambda_0} \cap [\alpha - \delta, \alpha + \delta] \quad (w_{\lambda_0}(t), t) \in K.$$

Zatem z 2.1.5 w_{λ_0} rozszerza się na przedział zawierajacy α we wnętrzu, co przeczyłoby maksymalności J.

Na mocy powyższych rozważań w_{λ_0} jest szukaną funkcją zz tezy twierdzenia. Równość w twierdzeniu zachodzi, gdyż

$$F_{\lambda_0}(w,t) = \partial_t \, w_{\lambda_0}(t) = \partial_t \, \partial_\lambda \, y_\lambda(t) \Big|_{\lambda = \lambda_0} \stackrel{(\star)}{=} \partial_\lambda \, \partial_t \, y_\lambda(t) \Big|_{\lambda = \lambda_0} = \partial_\lambda \, f_\lambda(y_\lambda,t) \Big|_{\lambda = \lambda_0},$$

gdzie równość (*) zachodzi na mocy Twierdzenia Schwarza, gdyż $F_{\lambda_0}(w,t)$ jest ciągła (spełnia 1.1.1) i f jest C^1 względem y i λ z założenia. Czyli istotnie $\partial_t w_{\lambda_0}(t) = \partial_\lambda \partial_t y_\lambda(t)\big|_{\lambda=\lambda_0}$.

Wreszcie, poprzez podstawienie $w=w_{\lambda_0}(t)$ w (1.2.1) otrzymujemy tzw. równanie na wariację:

$$\partial_t w_{\lambda_0}(t) = D_y f_{\lambda_0}(y, t) \big|_{y = y_{\lambda_0}(t)} \cdot w_{\lambda_0}(t) + \partial_\lambda f_\lambda(y_{\lambda_0}(t), t) \big|_{\lambda = \lambda_0},$$

z warunkiem początkowym $w_{\lambda_0}(t_0) = 0$.

1.3. Rozwiązania przez szeregi potęgowe wokół punktu regularnego

Rozważmy równanie

$$a_2(t)y'' + a_1(t)y' + a_0(t)y = 0,$$
 (1.3.1)

gdzie a_2, a_1, a_0 są analityczne w pewnym punkcie t_0 .

Definicja 1.3.1. Powiemy, że t_0 jest punktem regularnym wtedy i tylko wtedy, gdy $a_2(t_0) \neq 0$. W przeciwnym wypadku t_0 nazwiemy punktem osobliwym.

W przypadku regularnym równanie (1.3.1) sprowadza się do

$$y'' + p(t)y' + q(t)y = 0, (1.3.2)$$

gdzie p i q są analityczne w punkcie t_0 , czyli

$$p(t) = \sum_{n=0}^{\infty} p_n (t - t_0)^n, \qquad q(t) = \sum_{n=0}^{\infty} q_n (t - t_0)^n.$$

Twierdzenie 1.3.2. Każde rozwiązanie równania (1.3.2) jest analityczne w kole, w którym oba szeregi p(t) i q(t) zbiegają. Co więcej, analityczna funkcja

$$y(t) = \sum_{n=0}^{\infty} c_n (t - t_0)^n$$

jest rozwiązaniem wtedy i tylko wtedy, gdy

$$c_{n+2} = -\frac{1}{(n+1)(n+2)} \left(\sum_{k=0}^{n} c_{k+1}(k+1) p_{n-k} + \sum_{k=0}^{n} c_k q_{n-k} \right).$$
 (1.3.3)

Dowód. Dla ustalenia uwagi niech $t_0=0$ oraz $y(t)=\sum_{n=0}^{\infty}c_nt^n$. Wtedy

$$y'(t) = \sum_{n=0}^{\infty} (n+1)c_{n+1}t^n, \qquad y''(t) = \sum_{n=0}^{\infty} (n+1)(n+2)c_{n+2}t^n.$$

Z iloczynu Cauchy'ego¹ dostajemy

$$p(t)y'(t) = \left(\sum_{n=0}^{\infty} p_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} (n+1)c_{n+1}t^n\right) = \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} (k+1)c_{k+1}p_{n-k},$$

$$q(t)y(t) = \left(\sum_{n=0}^{\infty} q_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} c_n t^n\right) = \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} c_k q_{n-k}.$$

Rozpisując lewą stronę równania (1.3.2), otrzymujemy

$$\sum_{n=0}^{\infty} t^n \left((n+1)(n+2)c_{n+2} + \sum_{k=0}^{n} (k+1)c_{k+1}p_{n-k} + \sum_{k=0}^{n} c_k q_{n-k} \right) = 0.$$

Z analityczności, dla każdego $n \ge 0$ jest

$$(n+1)(n+2)c_{n+2} + \sum_{k=0}^{n} (k+1)c_{k+1}p_{n-k} + \sum_{k=0}^{n} c_k q_{n-k} = 0,$$

co dowodzi wzoru (1.3.3).

Wzór rekurencyjny (1.3.3) zadaje współczynniki c_n dla $n \geq 2$, jeśli wybrane zostały c_0 , c_1 . Zauważmy, że $c_0 = y(t_0)$, $c_1 = y'(t_0)$. Zatem dobierając c_0 oraz c_1 możemy otrzymać dowolny warunek początkowy dla y, co pozwala uzyskać każde rozwiązanie wysycone. Pozostaje pokazać, że przy dowolnym wyborze c_0 , c_1 wzór (1.3.3) prowadzi do szeregu Taylora funkcji analitycznej w kole $D(t_0, R)$.

Wybierzmy 0 < r < R. Wtedy funkcje p, q są zbieżne bezwzględnie w $\overline{D}(t_0, r)$, więc istnieją stałe L_p oraz L_q takie, że dla dowolnego $n \ge 0$ jest

$$|p_n|r^n \le L_p, \qquad |q_n|r^n \le L_q.$$

 $[\]frac{1}{1} \left(\sum_{n=0}^{\infty} a_n \right) \cdot \left(\sum_{n=0}^{\infty} b_n \right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$

Niech $0 < \rho < r$ oraz $\gamma_n = |c_n|\rho^n$, $\Gamma_n = \max\{\gamma_j : j = 1, \dots, n\}$. Wtedy

$$\begin{split} |\gamma_{n+2}| &\leq \frac{\rho^{n+2}}{(n+1)(n+2)} \Biggl(\sum_{k=0}^{n} (k+1) \cdot |c_{k+1}| \cdot |p_{n-k}| + \sum_{k=0}^{n} |c_{k}| \cdot |q_{n-k}| \Biggr) \\ &\leq \frac{\rho^{n+2}}{(n+1)(n+2)} \Biggl(\sum_{k=0}^{n} (n+1) \cdot \frac{\gamma_{k+1}}{\rho^{k+1}} \cdot \frac{L_{p}}{r^{n-k}} + \sum_{k=0}^{n} \frac{\gamma_{k}}{\rho^{k}} \cdot \frac{L_{q}}{r^{n-k}} \Biggr) \\ &\leq \frac{\rho^{n+2}}{(n+1)(n+2)} \Biggl((n+1) \sum_{k=0}^{n} \frac{\Gamma_{n+1}}{\rho^{k-n}\rho^{n+1}} \cdot \frac{L_{p}}{r^{n-k}} + \sum_{k=0}^{n} \frac{\Gamma_{n}}{\rho^{k-n}\rho^{n}} \cdot \frac{L_{q}}{r^{n-k}} \Biggr) \\ &\leq \frac{\rho L_{p}}{n+2} \Gamma_{n+1} \sum_{k=0}^{n} \Biggl(\frac{\rho}{r} \Biggr)^{n-k} + \frac{\rho^{2} L_{q}}{(n+1)(n+2)} \Gamma_{n} \sum_{k=0}^{n} \Biggl(\frac{\rho}{r} \Biggr)^{n-k} \\ &\leq \Biggl(\frac{\rho L_{p}}{n+2} + \frac{\rho^{2} L_{q}}{(n+2)(n+1)} \Biggr) \Gamma_{n+1} \sum_{k=0}^{n} \Biggl(\frac{\rho}{r} \Biggr)^{n-k} \\ &\leq \underbrace{\Biggl(\frac{\rho L_{p}}{n+2} + \frac{\rho^{2} L_{q}}{(n+2)(n+1)} \Biggr) \cdot \Biggl(\frac{1}{1-\frac{\rho}{r}} \Biggr) \Gamma_{n+1}. \end{split}$$

Wyrażenie α_n zbiega do zera, gdy $n \to \infty$. Istnieje n_0 , że $\alpha_n < 1$ dla $n \ge n_0$. Zatem dla każdego $n \ge n_0$ zachodzi $\gamma_{n+2} \le \Gamma_{n+1}$, co jest równoważne temu, że $\Gamma_{n+2} = \Gamma_{n+1}$, czyli ciąg Γ_n jest stały od pewnego miejsca i ograniczony przez pewne $\overline{\Gamma}$. Stąd, jeśli $|t| < \rho$, to z kryterium Cauchy'ego jest

$$\sqrt[n]{|c_n|\cdot|t|^n} = \sqrt[n]{|c_n|\cdot\rho^n}\cdot\sqrt[n]{\frac{|t|^n}{\rho^n}} \le \sqrt[n]{\overline{\Gamma}}\cdot\left|\frac{t}{\rho}\right| < 1,$$

o ile n jest dostatecznie duże. Wobec tego szereg $\sum_{n=0}^{\infty} c_n t^n$ jest zbieżny w kole o promieniu ρ . Ponieważ ρ może być dowolnie bliskie R, to suma kół wypełnia koło otwarte o promieniu R, co kończy dowód.

1.4. Twierdzenie spektralne dla funkcji analitycznych

Definicja 1.4.1. Widmem macierzy A nazywamy zbiór jej wartości własnych wraz z krotnościami i oznaczamy sp(A).

Twierdzenie 1.4.2 (Hamilton-Cayley). Dla każdej macierzy A zachodzi $\chi_A(A) = 0$, gdzie χ_A jest wielomianem charakterystycznym macierzy A.

Twierdzenie 1.4.3 (Spektralne dla wielomianów). Niech A będzie macierzą o wartościach własnych $\lambda_1, \ldots, \lambda_n$ z krotnościami q_1, \ldots, q_n . Wtedy istnieją macierze $M_{k,l}$ dla $1 \le k \le n$, $0 \le l \le q_k - 1$, zwane spektralnymi takie, że dla każdego wielomianu f stopnia m zachodzi:

$$f(A) = \sum_{k=1}^{n} \sum_{l=0}^{q_k-1} M_{k,l} \cdot f^{(l)}(\lambda_k).$$

Dowód. W celu udowodnienia twierdzenia będzie potrzebny lemat pomocniczy.

LEMAT 1.4.4. Macierze $M_{k,l}$ są jednoznacznie wyznaczone przez tezę twierdzenia spektralnego dla wielomianów postaci $f(z) = z^r$, gdzie $r = 0, \ldots, m-1$.

Dowód. Otrzymujemy układ równań z niewiadomymi $M_{k,l}$, czyli

$$A^{r} = \sum_{k=1}^{n} \sum_{l=0}^{q_{k}-1} M_{k,l} \cdot r(r-1) \cdots (r-l+1) \cdot \lambda_{k}^{r-l}.$$

Teza lematu oznacza, że układ ten jest oznaczony. Pokażemy liniową niezależność wierszy. Wybierzmy współczynniki c_r dla $r=0,\ldots,m-1$, tak aby kombinacja liniowa wierszy z tymi współczynnikami wynosiła 0, czyli dla każdych $k=1,\ldots,n$ oraz $l=0,\ldots,q_k-1$ jest

$$\sum_{r=0}^{m-1} c_r \cdot r(r-1) \cdots (r-l+1) \lambda_k^{r-l} = 0.$$

Rozważmy teraz wielomian

$$w(z) = \sum_{r=0}^{m-1} c_r z^r.$$

Otrzymaliśmy, że $w^{(l)}(\lambda_k) = 0$, czyli λ_k jest zerem z krotnością co najmniej q_k , a zatem suma krotności zer wielomianu w jest równa co najmniej $\sum_{k=1}^{n} q_k = m$, co jest sprzecznością, bo stopień wielomianu był co najwyżej m-1.

Twierdzenie zostanie udowodnione indukcyjnie ze względu na stopień f.

Przypuśćmy, że twierdzenie zachodzi dla wielomianów stopnia mniejszego od m+r, gdzie $r\geq 0$. Z lematu 1.4.4 teza zachodzi dla r=0. Zwróćmy uwagę, że obie strony twierdzenia są liniowe względem f. Wystarczy więc pokazać je dla układu rozpinającego przestrzeń wielomianów stopnia mniejszego niż m+r. W celu pokazania, że twierdzenie zachodzi również dla wielomianów stopnia m+r, wystarczy pokazać dla $f_r(z)=z^r\chi_A(z)$, bo każdy wielomian

$$f(z) = a_{m+r}z^{m+r} + \dots + a_1z + a_0$$

można zapisać jako

$$f(z) = a_{m+r} f_r(z) + P(z),$$

gdzie P jest wielomianem stopnia mniejszego niż m+r. Zauważmy, że

$$L = f_r(A) = A^r \cdot \chi_A(A) \stackrel{1.4.2}{=} 0, \qquad P = \sum_{k=1}^n \sum_{l=0}^{q_k - 1} M_{k,l} \cdot f^{(l)}(\lambda_k),$$

a ponadto $f_r(z) = (z - \lambda_k)^{q_k} \cdot Q(z)$. Pochodne rzędu niższego od q_k składają się z sum członów, w których $(z - \lambda_k)$ występuje w dowolnej potędze, więc zerują się przy podstawieniu $z = \lambda_k$.

Twierdzenie 1.4.5 (Spektralne dla funkcji analitycznych). Niech

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad |z| < R.$$

Załóżmy, że $\operatorname{sp}(A) \subset D(0,R)$. Wówczas szereg f(A) zbiega i zachodzi teza twierdzenia spektralnego dla wielomianów:

$$f(A) = \sum_{k=1}^{n} \sum_{l=0}^{q_k-1} M_{k,l} \cdot f^{(l)}(\lambda_j).$$

Dowód. Oznaczmy

$$f_N(z) = \sum_{n=0}^N a_n z^n.$$

Korzystając z twierdzenia spektralnego dla wielomianów, dostajemy

$$f(A) = \lim_{N \to \infty} f_N(A) = \lim_{N \to \infty} \sum_{k=1}^n \sum_{l=0}^{q_k-1} M_{k,l} \cdot f_N^{(l)}(\lambda_j) =$$

$$= \sum_{k=1}^n \sum_{l=0}^{q_k-1} M_{k,l} \cdot \lim_{N \to \infty} f_N^{(l)}(\lambda_j) = \sum_{k=1}^n \sum_{l=0}^{q_k-1} M_{k,l} \cdot f^{(l)}(\lambda_j).$$

1.5. Twierdzenie o asymptotycznym zachowaniu $||e^{At}||$

Definicja 1.5.1. Wykładnikiem Lapunowa macierzy A nazywamy liczbę

$$\overline{\lambda} = \max\{\operatorname{Re} \lambda_k : k = 1, \dots, n\}.$$

Definicja 1.5.2. Potęgą Lapunowa macierzy A nazywamy liczbę

$$\overline{l} = \max\{l \ge 0 : \exists k \in \{1, \dots, n\} \mid \operatorname{Re} \lambda_k = \overline{\lambda} \land M_{k,l} \ne 0\}.$$

Lemat 1.5.3 (Wzór Leibniza).

$$D^{n}(fg) = \sum_{k=0}^{n} \binom{n}{k} D^{k} f \cdot D^{n-k} g.$$
 (1.5.1)

Twierdzenie 1.5.4. Dla każdej macierzy A zachodzą nierówności:

$$0<\liminf_{t\to\infty}\frac{\|e^{At}\|}{t^{\bar{l}}e^{\bar{\lambda}t}}\leq \limsup_{t\to\infty}\frac{\|e^{At}\|}{t^{\bar{l}}e^{\bar{\lambda}t}}<\infty.$$

Dowód. Nierówność środkowa jest oczywista. Zaczniemy wobec tego od prawej.

$$\limsup_{t \to \infty} \frac{\|e^{At}\|}{t^{\overline{l}}e^{\overline{\lambda}t}} = \limsup_{t \to \infty} \frac{\left\| \sum_{k=1}^{n} \sum_{l=0}^{q_k-1} M_{k,l} \cdot t^l e^{\lambda_k t} \right\|}{t^{\overline{l}} \exp(\overline{\lambda}t)}$$

$$\leq \sum_{k=1}^{n} \sum_{l=0}^{q_k-1} \|M_{k,l}\| \cdot \limsup_{t \to \infty} \frac{t^l e^{(\operatorname{Re}\lambda_k)t}}{t^{\overline{l}}e^{\overline{\lambda}t}}$$

$$= \sum_{k=1}^{n} \sum_{l=0}^{q_k-1} \|M_{k,l}\| \cdot \limsup_{t \to \infty} t^{l-\overline{l}}e^{(\operatorname{Re}\lambda_k-\overline{\lambda})t}$$

Zauważmy, że Re $\lambda_k - \overline{\lambda} \leq 0$, a jeśli Re $\lambda_k - \overline{\lambda} = 0$ oraz $M_{k,l} \neq 0$, to $l \leq \overline{l}$. Wobec tego, dla każdej kombinacji k i l jest

$$\limsup_{t \to \infty} t^{l-\overline{l}} \exp((\operatorname{Re} \lambda_k - \overline{\lambda})t) \le 1.$$

Bez utraty ogólności możemy przyjąć $\overline{\lambda}=\lambda_1,\,M_{1,\overline{l}}\neq 0$ oraz

$$w(z) = \prod_{k=2}^{n} (z - \lambda_k)^{q_k} = \frac{\chi_A(z)}{(z - \lambda_1)^{q_1}}.$$

Niech $f(z)=w(z)\cdot e^{zt}$. Wtedy dla k>0 oraz $l< q_k$ jest $f^{(l)}(\lambda_k)=0$, bo pochodna jest sumą członów ze wzoru (1.5.1), gdzie $(z-\lambda_k)$ występuje w potędze dodatniej. Niechaj teraz k=1 oraz $\varphi(z)=e^{zt}$, $\psi(z)=w(z)$. Wtedy

$$(\varphi \cdot \psi)^{(l)}(\lambda_1) = \sum_{i=0}^{l} {l \choose i} t^i e^{\lambda_1 t} w^{(l-i)}(\lambda_i) = e^{\lambda_1 t} \cdot p_l(t),$$

gdzie p_l jest wielomianem stopnia co najwyżej l. Wtedy $p_{\overline{l}}$ ma postać

$$t^{\overline{l}}e^{\lambda_1 t}w(\lambda_1) + \widetilde{p}_{\overline{l}}(t)e^{\lambda_1 t},$$

gdzie stopień $\widetilde{p}_{\overline{l}}$ jest mniejszy od $\overline{l}.$ Z twierdzenia spektralnego jest

$$\begin{split} & \liminf_{t \to \infty} \frac{\left\|w(A)e^{At}\right\|}{t^{\overline{l}}e^{\lambda_1 t}} = \liminf_{t \to \infty} \frac{\left\|\sum_{l=0}^{l-1} M_{1,l}e^{\lambda_1 t}p_l(t) + M_{1,\overline{l}}e^{\lambda_1 t}\left(t^{\overline{l}}w(\lambda_1) + \widetilde{p}_{\overline{l}}(t)\right)\right\|}{t^{\overline{l}}e^{\lambda_1 t}} \\ & = \liminf_{t \to \infty} \frac{\left\|e^{\lambda_1 t}\right\| \cdot \left\|\sum_{l=0}^{\overline{l}-1} M_{1,l}p_l(t) + M_{1,\overline{l}}\left(t^{\overline{l}}w(\lambda_1) + \widetilde{p}_{\overline{l}}(t)\right)\right\|}{t^{\overline{l}}e^{\lambda_1 t}} \\ & \geq \liminf_{t \to \infty} \frac{\left\|M_{1,\overline{l}}\right\| \cdot \left|t^{\overline{l}}w(\lambda_1) + \widetilde{p}_{\overline{l}}(t)\right| - \sum_{l=0}^{\overline{l}-1} \|M_{1,\overline{l}}\| \cdot \|p_l(t)\|}{t^{\overline{l}}} \\ & \geq \liminf_{t \to \infty} \|M_{1,\overline{l}}\| \cdot \left|w(\lambda_1) + \frac{\widetilde{p}_{\overline{l}}(t)}{t^{\overline{l}}}\right| - \limsup_{t \to \infty} \sum_{l=0}^{\overline{l}-1} \|M_{1,l}\| \cdot \left|\frac{p_l(t)}{t^{\overline{l}}}\right| \\ & = \|M_{1,\overline{l}}\| \cdot \underbrace{\left|w(\lambda_1)\right|}_{>0}. \end{split}$$

Ostatecznie

$$\liminf_{t\to\infty}\frac{\left\|w(A)e^{At}\right\|}{t^{\overline{l}}e^{\lambda_1t}}\geq\frac{1}{\left\|w(A)\right\|}\cdot \liminf_{t\to\infty}\frac{\left\|w(A)e^{At}\right\|}{t^{\overline{l}}e^{\overline{\lambda}t}}\geq\frac{\left\|M_{1,\overline{l}}\right\|\cdot\left|w(\lambda_1)\right|}{\left\|w(A)\right\|}>0.\quad\blacksquare$$

1.6. Twierdzenie o minimach funkcji Lapunowa i stabilności

Definicja 1.6.1. Niech y' = f(y), $f \in C^1(U)$. Funkcję $G: U \to \mathbb{R}$ nazywamy całką pierwszą, jeśli dla każdego rozwiązania y(t), złożenie G(y(t)) jest stałe.

Lemat 1.6.2. G jest całką pierwszą wtedy i tylko wtedy, gdy $\langle \nabla G, f \rangle \equiv 0$.

Definicja 1.6.3. Funkcją Lapunowa nazywamy funkcję L taką, że w warunku całki powyżej zastępujemy L(y(t)) = const przez L(y(t)) nierosnące. W terminach potoków ten warunek wyrażony jest przez $t_1 > t_2 \implies L(\varphi^{t_1}(y_0)) \le L(\varphi^{t_2}(y_0))$.

Twierdzenie 1.6.4. Niech y'=f(y), gdzie $f\in C^1(U)$, zaś L jest funkcją Lapunowa na U, przy czym L ma ścisłe minimum globalne w $y_0\in U$. Wtedy y_0 jest stabilnym (w sensie Lapunowa) położeniem równowagi.

Dowód. Pokażemy, że dla każdego $t \geq 0$ zachodzi $\varphi^t(y_0) = y_0$. Jeśliby tak nie było, to dla pewnego t > 0 mielibyśmy $\varphi(t)(y_0) \neq y_0$. Wtedy jednak $L(\varphi^t(y_0)) > L(y_0) = \varphi^{t_0}(y_0)$, co przeczyłoby, że L jest funkcją Lapunowa. Zatem y_0 jest położeniem równowagi.

Pokażemy, że

$$\forall_{\varepsilon>0}\,\exists_{\delta>0}\,\forall_{t\geq0}\,\|y-y_0\|\leq\delta\wedge\varphi^t(y_0)\,istnieje\implies\|\varphi^t(y_0)-y_0\|\leq\varepsilon.$$

Ustalmy $\varepsilon > 0$. Bez straty ogólności załóżmy, że $\overline{B}(y_0,\varepsilon) \subset U$ (jeśliby tak nie było, wystarczy wziąć mniejszy ε) oraz $L(y_0) = 0$. Wtedy zbiór $\{y \in U : \|y - y_0\| = \varepsilon\}$ jest zbiorem zwartym. Wobec tego $\mu \coloneqq \inf\{L(y) : \|y - y_0\| = \varepsilon\}$ jest przyjmowane w pewnym punkcie y_{\min} oraz $\mu = L(y_{\min}) > L(y_0) = 0$.

Z ciągłości L w 0 istnieje $\delta>0$ taka, że jeśli $\|y-y_0\|\leq \delta$, to $L(y)>\mu$. Gdyby dla pewnego t>0 zachodziło $\|\varphi^t(y)-y_0\|\geq \varepsilon$, to z własności Darboux istnieje $\tau\in[0,t]$ takie, że $\|\varphi^\tau(y)-y_0\|=\varepsilon$. Wtedy jednak $L(\varphi^\tau(y))\geq\mu>L(y)=L(\varphi^0(y))$, co jest sprzecznością z założeniem, ze L to funkcja Lapunowa. Otrzymujemy zatem, że dla każdego t>0 zachodzi $\|\varphi^t(y)-y_0\|<\varepsilon$.

Pozostaje pokażać, że $\varphi^t(y) = y(t)$ jest określone dla każdego $t \geq 0$. Jeśli $\alpha \geq 0$, to $y([0,\alpha]) \subset \overline{B}(y_0,\varepsilon)$. Skoro $\overline{B}(y_0,\varepsilon)$ jest zbiorem zwartym, to y(t) przedłuża się na pewne prawostronne otoczenie α z lematu o przedłużaniu prze koniec. Tym samym prawym końcem dziedziny rozwiązania wysoconego y(t) jest $+\infty$.

2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone (otwarte)

Twierdzenie 2.1.1 (Peano). Niech y' = f(y,t), gdzie $y(t_0) = y_0$ oraz

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła i oznaczmy

$$M = \sup \{ ||f(y,t)|| : (y,t) \in H \}.$$

Wówczas dla $\alpha = \min(a, b/M)$ istnieje rozwiązanie y(t) określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$, spełniające warunek początkowy $y(t_0) = y_0$.

Twierdzenie 2.1.2 (Picard-Lindelöf). Niech $y' = f(y,t), y(t_0) = y_0,$ gdzie

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła oraz lipszycowska ze względu na y, to znaczy

$$\exists L \ \forall (y_1, t), (y_2, t) \in H \quad ||f(y_1, t) - f(y_2, t)|| \le L \cdot ||y_1 - y_2||.$$

Oznaczmy ponadto

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla dowolnego $\alpha < \min(a, b/M, 1/L)$ istnieje dokładnie jedno rozwiązanie zagadnienia Cauchy'ego z warunkiem początkowym $y(t_0) = y_0$ określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$.

Lemat 2.1.3 (o zgodności rozwiązań). Niech y' = f(y,t), gdzie funkcja $f: U \to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Niech $(y_0, t_0) \in U$. Jeśli $y_1(t), y_2(t)$ są rozwiązaniami określonymi odpowiednio na I_1, I_2 , spełniającymi ten sam warunek początkowy $y_1(t_0) = y_2(t_0) = y_0$, to $y_1 \equiv y_2$ na $I_1 \cap I_2$.

Lemat 2.1.4 (o przedłużaniu przez koniec). Niech y'=f(y,t), gdzie funkcja $f\colon \mathbb{R}^{m+1}\supset U\to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Niech y(t) – rozwiązanie, T – koniec $\operatorname{Dm} y$, granica $\lim_{t\to T} y(t)=y_T$ istnieje oraz $(y_T,T)\in U$. Wówczas y rozszerza się na przedział zawierający T we wnętrzu.

Twierdzenie 2.1.5 (o przedłużaniu przez koniec). Niech y'=f(y,t), gdzie $f\colon \mathbb{R}^{m+1}\supset U\to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y. Załóżmy, że rozwiązanie y(t) jest określone na pewnym przedziale, którego końcem jest $T\in \mathbb{R}$. Załóżmy dalej, że istnieje zbiór zwarty $K\subset U$ oraz $\varepsilon>0$, taki, że

$$\forall t \in \text{Dm } y \cap [T - \varepsilon, T + \varepsilon] \quad (y(t), t) \in K.$$

Wtedy y rozszerza się na przedział zawierający T we wnętrzu.

Twierdzenie 2.1.6 (o rozwiązaniu wysyconym). Niech y'=f(y,t), gdzie funkcja $f\colon \mathbb{R}^{m+1}\supset U\to \mathbb{R}^m$ jest ciągła i lokalnie lipszycowska względem y oraz $(y_0,t_0)\in U$. Wówczas istnieje rozwiązanie y_{\max} zwane wysyconym, określone na przedziałe otwartym, spełniające warunek początkowy $y_{\max}(t_0)=y_0$ i takie, że jeśli y jest dowolnym rozwiązaniem spełniającym warunek $y(t_0)=y_0$, to $\mathrm{Dm}\,y\subset\mathrm{Dm}\,y_{\max}$ oraz y jest obcięciem y_{\max} .

2.2. Metoda Frobeniusa (metoda)

Rozważmy regularne¹ równanie różniczkowe postaci

$$a_2(t)y'' + a_1(t)y' + a_0(t)y = 0.$$
 (2.2.1)

Definicja 2.2.1. Punkt t_0 nazwiemy regularnie osobliwym, jeśli funkcja $\frac{a_2(t)}{(t-t_0)^2}$ jest analityczna w t_0 i nie znika w t_0 , a funkcja $\frac{a_1(t)}{t-t_0}$ jest analityczna w t_0 .

W przypadku punktu regularnie osobliwego równanie (2.2.1) sprowadza się do

$$(t - t_0)^2 y'' + (t - t_0)p(t)y' + q(t)y = 0. (2.2.2)$$

Rozwiązań będziemy szukali jedynie poza $t_0,\,t>t_0.$

Metoda Frobeniusa. Niech $t_0 = 0$. Szukamy rozwiązań w postaci

$$y(t) = t^{\lambda} \sum_{n=0}^{\infty} c_n t^n,$$

gdzie $c_0 \neq 0$. Różniczkując stronami, dostajemy

$$ty'(t) = t^{\lambda} \sum_{n=0}^{\infty} c_n(n+\lambda)t^n, \qquad t^2y''(t) = t^{\lambda} \sum_{n=0}^{\infty} c_n(n+\lambda)(n+\lambda-1)t^n.$$

Niech $p(t) = \sum_{n=0}^{\infty} p_n t^n$ oraz $q(t) = \sum_{n=0}^{\infty} q_n t^n$. Wtedy

$$tp(t)y'(t) = t^{\lambda} \left(\sum_{n=0}^{\infty} p_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} c_n (n+\lambda) t^n\right) = t^{\lambda} \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} c_k (k+\lambda) p_{n-k} =$$

$$= t^{\lambda} \sum_{n=0}^{\infty} t^n \left(c_n (n+\lambda) p_0 + \sum_{k=0}^{n-1} c_k (k+\lambda) p_{n-k}\right),$$

$$q(t)y(t) = t^{\lambda} \left(\sum_{n=0}^{\infty} q_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} c_n t^n\right) = t^{\lambda} \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} c_k q_{n-k} =$$

$$= t^{\lambda} \sum_{n=0}^{\infty} t^n \left(c_n q_0 + \sum_{k=0}^{n-1} c_k q_{n-k}\right).$$

Wstawiamy wynik do równania (2.2.2), otrzymując

$$t^{\lambda} \sum_{n=0}^{\infty} t^{n} ((n+\lambda)(n+\lambda-1)c_{n} + (n+\lambda)p_{0}c_{n} + q_{0}c_{n}) + t^{\lambda} \sum_{n=0}^{\infty} t^{n} \underbrace{\left(\sum_{k=0}^{n-1} (k+\lambda)c_{k}p_{n-k} + \sum_{k=0}^{n-1} c_{k}q_{n-k}\right)}_{-X_{n}(c_{0},\dots,c_{n-1})} = 0.$$

Dla każdej naturalnej liczby n>0zachodzi:

$$c_n((n+\lambda)(n+\lambda-1)+(n+\lambda)p_0+q_0)=X_n(c_0,\ldots,c_{n-1})$$

oraz $X_0=0$ dla n=0. Zdefiniujmy wielomian indeksowy P wzorem

$$P(s) = s(s-1) + p_0 s + q_0.$$

Wtedy otrzymujemy

$$c_n P(n+\lambda) = X_n(c_0, \dots, c_{n-1}).$$

 $a_2(t) \neq 0$

Stąd wynika, że $c_0P(\lambda)=0$. Założyliśmy, że $c_0\neq 0$, więc λ musi być pierwiastkiem wielomianu indeksowego. Dla n=0 mamy $X_0=0$, więc dla n>0 rekurencja przyjmuje postać

$$c_n = \frac{X_n(c_0, \dots, c_{n-1})}{P(n+\lambda)}.$$

To pozwala wyliczyć współczynniki c_n dla n > 0, chyba że $P(n + \lambda) = 0$ dla pewnego n, czyli $n + \lambda$ jest pierwiastkiem wielomianu indeksowego.

Przypadek podstawowy. Wielomian indeksowy ma dwa pierwiastki rzeczywiste λ_1, λ_2 nieróżniące się o liczbę całkowitą. Wówczas otrzymujemy dwa liniowo niezależne rozwiązanie przyjmując $\lambda = \lambda_1, \lambda_2$.

Przypadek zespolony. Bierzemy jeden z nich, dostając rozwiązanie zespolone

$$y(t) = t^{\lambda} \sum_{n=0}^{\infty} c_n t^n = e^{t \operatorname{Re} \lambda} \left(\cos(t \operatorname{Im} \lambda) + i \sin(t \operatorname{Im} \lambda) \right) \sum_{n=0}^{\infty} c_n t^n.$$

Rozwiązaniami są $\operatorname{Re} y(t)$ oraz $\operatorname{Im} y(t)$, i są liniowo niezależne.

Przypadek pierwiastków różniących się o liczbę całkowitą. Niech λ oraz $\lambda + r$ będą pierwiastkami, gdzie $r \in \mathbb{Z}$. Jeśli r = 0, to mamy pierwiastek podwójny. W przeciwnym przypadku otrzymujemy jedno rozwiązanie postaci

$$y_0(t) = t^{\lambda+r} \sum_{n=0}^{\infty} c_n t^n.$$
 (2.2.3)

Drugiego rozwiązania szukamy w postaci

$$y(t) = t^{\lambda} \sum_{n=0}^{\infty} d_n t^n + \gamma y_0(t) \ln t,$$

gdzie γ to stała, którą wyznaczymy. Wstawiając do równania, otrzymujemy

$$t^{\lambda} \sum_{n=0}^{\infty} t^{n} (P(n+\lambda) \cdot d_{n} - X_{n}(d_{0}, \dots, d_{n-1})) +$$
$$+ \gamma t^{2} (y_{0}(t) \ln t)'' + \gamma t p(t) (y_{0}(t) \ln t)' + \gamma q(t) y_{0}(t) \ln t = 0.$$

Zajmijmy się składnikami zawierającymi γ . Po zróżniczkowaniu, dostajemy

$$\gamma \ln t \left(t^2 y_0''(t) + t p(t) y_0'(t) + q(t) y_0(t) \right) + \gamma \left(2t y_0'(t) + \left(p(t) - 1 \right) y_0(t) \right) = \dots$$

Pierwszy człon się zeruje, bo y_0 jest rozwiązaniem. Wstawiając (2.2.3), mamy

$$\begin{split} \dots &= \gamma \bigg(2t \cdot \sum_{n=0}^{\infty} (n+\lambda + r) c_n t^{n+\lambda + r-1} + \Big(p(t) - 1 \Big) \cdot \sum_{n=0}^{\infty} c_n t^{n+\lambda + r} \bigg) \\ &= \gamma t^{\lambda + r} \bigg(\sum_{n=0}^{\infty} 2(n+\lambda + r) c_n t^n + p(t) \sum_{n=0}^{\infty} c_n t^n - \sum_{n=0}^{\infty} c_n t^n \Big) \\ &= \gamma t^{\lambda + r} \bigg(\sum_{n=0}^{\infty} 2(n+\lambda + r) c_n t^n + \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} c_k p_{n-k} - \sum_{n=0}^{\infty} c_n t^n \Big) \\ &= \gamma t^{\lambda + r} \sum_{n=0}^{\infty} t^n \bigg(2(n+\lambda + r) c_n + \sum_{k=0}^{n} c_k p_{n-k} - c_n \bigg) \\ &= \gamma t^{\lambda + r} \sum_{n=0}^{\infty} t^n \bigg(2(n+\lambda + r) c_n + (p_0 - 1) c_n + \sum_{k=0}^{n-1} c_k p_{n-k} \bigg) = \dots \end{split}$$

Zauważmy, że $P'(n + \lambda + r) = 2(n + \lambda + r) + p_0 - 1$. Stad

$$\dots = \gamma t^{\lambda+r} \sum_{n=0}^{\infty} t^n \left(P'(n+\lambda+r)c_n - Y_n(c_0,\dots,c_{n-1}) \right) = \dots$$

gdzie $-Y_n(c_0,\ldots,c_{n-1})=\sum_{k=0}^{n-1}c_kp_{n-k}$. Przesuwając indeksy, dostajemy

$$\dots = \gamma t^{\lambda} \sum_{n=r}^{\infty} t^n \left(c_{n-r} P'(n+\lambda) - Y_{n-r}(c_0, \dots, c_{n-r-1}) \right).$$

Otrzymaliśmy zatem

$$\sum_{n=0}^{\infty} t^{n+\lambda} (P(n+\lambda)d_n - X_n(d_0, \dots, d_{n-1})) +$$

$$+ \gamma \sum_{n=r}^{\infty} t^{n+\lambda} (P'(n+\lambda)c_{n-r} - Y_{n-r}(c_0, \dots, c_{n-r-1})) = 0.$$

Przyrównujemy do zera współczynniki przy $t^{n+\lambda}$. Jeśli $0 \le n < r$, to

$$P(n+\lambda)d_n = X_n(d_0, \dots, d_{n-1}).$$

Z kolei jeśli $n \geq r$, to mamy

$$P(n+\lambda)d_n + \gamma P'(n+\lambda)c_{n-r} = X_n(d_0, \dots, d_{n-1}) + \gamma Y_{n-r}(c_0, \dots, c_{n-r-1}).$$

PRZYPADEK 1. Niech r>0. Wybieramy dowolne d_0 , byle tylko różne od zera. Dla $n=1,\ldots,r-1$ otrzymujemy d_n z rekurencji. Jeśli n=r, to

$$\gamma P'(\lambda + r)c_0 = X_r(d_0, \dots, d_{r-1}).$$

Kładziemy

$$\gamma = \frac{X_r(d_0, \dots, d_{r-1})}{c_0 P'(\lambda + r)}.$$

Powyższe wyrażenie ma sens, bo $\lambda + r$ nie jest pierwiastkiem podwójnym, więc $P'(\lambda + r) \neq 0$. Ponadto nie otrzymaliśmy warunku na d_r , więc d_r może być dowolne (nawet 0). W końcu, jeśli n > r, to

$$d_n = \frac{X_n(d_0, \dots, d_{n-1}) + Y_{n-r}(c_0, \dots, c_{n-r-1}) - \gamma P'(n+\lambda)c_{n-r}}{P(\lambda+r)}.$$

PRZYPADEK 2. Niech r=0. Wtedy $P(\lambda)=P'(\lambda)=0$. Kładziemy dowolne $d_0\neq 0$ oraz $\gamma\neq 0$. Dla n>0 kolejne współczynniki wyznaczamy tak samo, jak w przypadku poprzednim (n>r).

2.3. Rozwiązania układów liniowych jednorodnych (otwarte)

Definicja 2.3.1. Równaniem liniowym nazywamy równanie postaci

$$y' = A(t)y + B(t),$$

gdzie A(t) jest macierzą $m \times m$, B(t) wektorem z \mathbb{R}^m , a ich współczynniki są funkcjami ciągłymi określonymi na przedziale otwartym $I \subset \mathbb{R}$.

Lemat 2.3.2. Dla dowolnego warunku początkowego (y_0, t_0) , gdzie $y_0 \in \mathbb{R}^m$ oraz $t_0 \in I$, dziedziną rozwiązania wysyconego jest I.

Definicja 2.3.3. Równanie y' = A(t)y nazywamy jednorodnym, a równanie y' = A(t)y + B(t) (odpowiadającym) niejednorodnym.

Twierdzenie 2.3.4. Zbiór rozwiązań równania jednorodnego jest podprzestrzenią liniową $C^0(I, \mathbb{R}^m)$, a zbiór rozwiązań równania niejednorodnego jej warstwą.

Niech V oznacza zbiór rozwiązań wysyconych równania y' = A(t)y.

Stwierdzenie 2.3.5. Niech $\{y_1, \ldots, y_n\} \subset V$. Poniższe warunki są równoważne:

- 1. Zbiór $\{y_1, \ldots, y_n\}$ jest liniowo niezależny.
- 2. Dla dowolnego $t \in I$ zbiór $\{y_1(t), \dots, y_n(t)\}$ jest liniowo niezależny w \mathbb{R}^m .
- 3. Istnieje $t \in I$, że zbiór $\{y_1(t), \dots, y_n(t)\}$ jest liniowo niezależny w \mathbb{R}^m .

Stwierdzenie 2.3.6. Niech $\{y_1,\ldots,y_k\}\subset V$. Wtedy

- 1. Jeśli $\{y_1, \ldots, y_k\}$ jest liniowo niezależny, to $k \leq m$.
- 2. Jeśli $\{y_1, \ldots, y_k\}$ rozpina V, to $k \geq m$.

Wniosek 2.3.7. dim V = m.

Definicja 2.3.8. Ukladem fundamentalnym nazwiemy dowolną bazę V.

Definicja 2.3.9. *Macierzą rozwiązującą* będziemy nazywali macierz, której kolumny tworzą układ fundamentalny.

Stwierdzenie 2.3.10. M(t) jest macierzą rozwiązującą wtedy i tylko wtedy, gdy jest nieosobliwa dla każdego (równoważnie pewnego) $t \in I$ oraz spełnia

$$\frac{d}{dt}M(t) = A(t) \cdot M(t).$$

Uwaga 2.3.11. Jeśli M(t) jest macierzą rozwiązującą, a P macierzą o m wierszach i stałych współczynnikach, to

$$\frac{d}{dt}M(t)P = A(t)M(t)P.$$

Jeśli P jest nieosobliwa, to M(t)P jest macierzą rozwiązującą.

$$\frac{d}{dt}M(t)P = \frac{dM(t)}{dt}P = A(t)M(t)P = A(t)(M(t)P).$$

Jeśli $\mathcal{C} \in \mathbb{R}^m$, to $\mathcal{C} \cdot M(t)$ jest rozwiązaniem ogólnym.

Jeśli M(t) jest macierzą rozwiązującą, zaś $t_0 \in I$, to

$$M(t, t_0) = M(t) \cdot \left[M(t_0) \right]^{-1}$$

jest macierzą rozwiązującą oraz $M(t_0, t_0) = E$. Ponadto $M(t_0, t_0)y_0$ jest rozwiązaniem równania z warunkiem początkowym $y(t_0) = y_0$.

2.4. Rozwiązywanie równań liniowych niejednorodnych

Rozpatrzmy równanie

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0.$$

Możemy je zapisać jako

$$\begin{bmatrix} y' \\ y'' \\ \vdots \\ y^{(n)} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & & \ddots & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{n-1} \end{bmatrix} \cdot \begin{bmatrix} y \\ y' \\ \vdots \\ y^{(n-1)} \end{bmatrix}.$$

Wielomian odpowiadający temu równaniu ma postać

$$\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 = 0.$$

Rozwiązań równania różniczkowego będziemy szukali w zależności od pierwiastków wielomianu. Niech $\lambda_1,\ldots,\lambda_n$ będą owymi pierwiastkami.

- 1. Jeśli λ_i jest rzeczywistym pierwiastkiem jednokrotnym, to $e^{\lambda_i x}$ jest rozwiązaniem,
- 2. Jeśli λ_i jest rzeczywistym pierwiastkiem p-krotnym, to $x^i e^{\lambda_i x}$, są rozwiązaniami dla $i = 0, \dots, p-1$,
- 3. Jeśli λ_i jest zespolonym pierwiastkiem jednokrotnym, to rozwiązaniami są $e^{\operatorname{Re}(\lambda_i)x}\cos(\operatorname{Im}(\lambda_i)x)$ oraz $e^{\operatorname{Re}(\lambda_i)x}\sin(\operatorname{Im}(\lambda_i)x)$,
- 4. Jeśli λ_i jest zespolonym pierwiastkiem p-krotnym, to rozwiązaniami są $x_i e^{\operatorname{Re}(\lambda_i)x} \cos\left(\operatorname{Im}(\lambda_i)x\right)$ oraz $x^i e^{\operatorname{Re}(\lambda_i)x} \sin\left(\operatorname{Im}(\lambda_i)x\right)$ dla $i=0,\ldots,p-1$.

Rozwiązaniami ogólnymi będą kombinacje liniowe powyższych.

Rozważmy teraz odpowiadające równanie niejednorodne

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x).$$

Rozwiązanie będzie zależało od postaci części niejednorodnej.

1. Jeśli niejednorodność jest postaci $f(x) = Q_n(x)e^{\lambda x}$, gdzie Q_n jest wielomianem stopnia n, to rozwiązanie szczególne ma postać

$$y_s(x) = x^p P_n e^{\lambda x},$$

przy czym P_n jest wielomianem stopnia co najwyżej n, a p jest krotnością λ jako pierwiastka wielomianu.

2. Jeśli niejednorodność ma postać

$$f(x) = e^{\alpha x} (Q_n(x) \cos(\beta x) + P_m(x) \sin(\beta x)),$$

to rozwiązanie szczególne jest postaci

$$y_s(x) = x^p e^{\alpha x} (P_N \cos(\beta x) + Q_N \sin(\beta x)),$$

gdzie $N = \max(\deg Q_n, \deg P_m)$, a p jest krotnością $\lambda = \alpha + \beta i$ jako pierwiastka wielomianu.

3. W przeciwnym przypadku stosujemy metodę uzmienniania stałej. Wtedy

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix} \cdot \begin{bmatrix} c'_1(x) \\ c'_2(x) \\ \vdots \\ c'_n(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ f(x) \end{bmatrix}.$$

Wówczas

$$y_s = c_1 y_1 + \ldots + c_n y_n.$$

Twierdzenie 2.4.1 (Zasada Duhamela). Jeśli y' = A(t)y + B(t), to rozwiązania są dane wzorem

$$y_0(t) = \int_{t_0}^t M(t, u)B(u)du,$$

gdzie M(t,u) jest macierzą rozwiązującą równania y'=A(t)y taką, że M(t,t)=E.

2.5. Hiperboliczność i stabilność punktów równowagi

2.6. Zagadnienia brzegowe

3. Przykłady

- 3.1. Rozwiązywanie równań metodą szeregów potęgowych
- 3.2. Równania na wariację
- 3.3. Potoki policzenie i zastosowanie własności w konkretnych sytuacjach
- 3.4. Wzory Liouville'a i Abela
- ${\bf 3.5.}\ {\bf Zastosowania}\ {\bf twierdzenia}\ {\bf spektralnego},\ {\bf macierze}\ {\bf spektralne}$
- 3.6. Całki pierwsze, funkcje Lapunowa zastosowanie do badania stabilności