

EE 046202 - Technion - Unsupervised Learning & Data Analysis

Formerly 046193

Tal Daniel

Tutorial 03 - Classical Methods in Statistical Inference - Hypothesis Testing 1

Agenda

- · Hypothesis Testing
 - Steps
- · Error Types
- Example Body Weight Z-Statistic

```
In [1]: # imports for the tutorial
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  %matplotlib notebook
```


Hypothesis Testing

Let's begin with an example: consider a radar system that uses radio waves to detect aircrafts. The system receives a signal, and based on the received signal, it needs to decide whether an aircraft is present or not. We formulate two hypotheses:

- 1. H_0 : No aircraft is present.
- 2. H_1 : An aircraft is present.

 H_0 is called the **null hypothesis** (also: the *default hypothesis*) and H_1 is called the **alternative hypothesis**. We initially assume that H_0 is **true** and based on the observed data we need to decide whether or not to accept H_1 or reject it.

Hypothesis Testing Steps

Step 1

Null & Alternative Hypotheses - Formulate the null hypothesis H_0 : $\theta \in \Theta_0$ (that the observations are the result of pure chance) and the alternative hypothesis H_1 : $\theta \in \Theta_1$ (that the observations show a real effect combined with a component of chance variation).

Step 2

Test Statistic - Identify a test statistic that can be used to assess the truth of the null hypothesis. It is a value computed from sample data. The test statistic is used to assess the strength of evidence in support of a null hypothesis.

- A **statistic** is a real-valued function of the data. For example, the sample mean: $W(X_1, X_2, \dots, X_n) = \frac{X_1 + X_2 + \dots + X_n}{n}$ is a statistic.
- . A test satistic is a statistic on we which we build our test.
- Acceptence Region A A $set\ A\subset\mathbb{R}$ is defined to be the set of all possible values of the test statistic for which we accept H_0 .
- Rejection Region R A set $R=\mathbb{R}-A$ is defined to be the set of all possible values of the test statistic for which we reject H_0 and accept H_1 .

Step 3

P-value & Interpretation - Compute the P-value, which is the probability that a test statistic, at least as significant as the one observed, would be obtained assuming that the null hypothesis were true. The smaller the P-value, the stronger the evidence against the null hypothesis.

Step 4

Significance Level - Compare the p-value to an acceptable significance value α (sometimes called an α value, a probability threshold below which the null hypothesis will be rejected. Common values are 5% and 1%.). If $p \leq \alpha$ (the observed effect is statistically significant), the null hypothesis is ruled out, and the alternative hypothesis is valid.

The Two Competing Theories

- ullet NULL Hypothesis H_0 any observed deviation from what we expect to see is due to chance variability.
- ALTERNATIVE Hypothesis H_a 'claim', or a theory you wish to test (the reason for the observed statistic).

 H_0 is assumed **true** until enough evidence goes against it (we then refute it and believe the alternative H_a).

False Positive

False Negative

- Type I Error (False Positive) the incorrect rejection of a true null hypothesis. Usually a type I error leads one to conclude that a supposed effect or relationship exists when in fact it doesn't.
 - For example, a test that shows a patient to have a disease when in fact the patient does not have the disease, a fire alarm going on indicating a fire when in fact there is no fire, or an experiment indicating that a medical treatment should cure a disease when in fact it does not
 - The chance of **rejecting the null hypthesis** H_0 , **when it is TRUE**, denoted by α
 - ullet o the chance of **accepting the null hypthesis** H_0 , **when it is TRUE** is 1-lpha
 - Formally:
 - \circ Denote a *test statistic* as W
 - $P(\text{Type 1 Error}|\theta) = P(\text{Reject } H_0|\theta) = P(W \in R|\theta), \theta \in \Theta_0$
 - If $P(\text{Type 1 Error}|\theta) \leq \alpha, \forall \theta \in \Theta_0$, we say that the test has significance level α .
- Type II Error (False Negative) the failure to reject a false null hypothesis.
 - For example, a blood test failing to detect the disease it was designed to detect, in a patient who really has the disease; a fire breaking out and the fire alarm does not ring; or a clinical trial of a medical treatment failing to show that the treatment works when really it does.
 - The chance of **not rejecting the null hypothesis** H_0 , **when it is FALSE**, denoted by eta
 - ullet the chance of **rejecting the null hypthesis** H_0 , **when it is FALSE** is 1-eta (also called **power**)
 - Since the alternative hypothesis, H_1 , usually contains more than one value of θ , the probability of type II error is usually a **function of** θ , and denoted by β .
 - Formally: $\beta(\theta) = P(\operatorname{Accept} H_0 | \theta), \text{ for } \theta \in \Theta_1$

롣 Example - Error Types

- · Hypothesis: "A patient's symptoms improve after treatment A more rapidly than after a placebo treatment."
- Null hypothesis (H_0) : "A patient's symptoms after treatment A are indistinguishable from a placebo."
- · A Type I error would falsely indicate that treatment A is more effective than the placebo, whereas a Type II error would be a failure to demonstrate that treatment A is more effective than placebo even though it actually is more effective.

Example - Body Weight - Hypothesis Testing for the Mean

The following example will be used to demonstrate the statistic process:

In the 1970s, 20–29 year old men in the U.S. had a mean μ body weight of 170 pounds (77 kg). Standard deviation σ was 40 pounds (18 kg). We test whether mean body weight in the population is bigger now.

1- Null & Alternative Hypotheses

• Under the **null hypothesis** there is no difference in the mean body weight between then and now, in which case μ would still equal 170 pounds:

$$H_0: \mu = 170$$

• Under the alternative hypothesis, the mean weight has increased:

$$H_a: \mu > 170$$

- This statement of the alternative hypothesis is one-sided. That is, it looks only for values larger than stated under the null hypothesis.
- There is another way to state the alternative hypothesis. We could state it in a "two-sided" manner, looking for values that are either higher- or lower-than expected. For the current illustrative example, the two-sided alternative is $H_a: \mu
 eq 170$. Although for the current illustrative example, this seems unnecessary, two-sided alternative offers several advantages and are much more common in practice.

2- Test Statistic (TS)

- It is a measure of how far the observed data is from what is expected under the null hypothesis H_0
 - Compute the value of a test statistic (TS) from the data
- The particular TS computed depends on the tested parameter
 - For example, to test the population mean, the TS is the sample mean (or standardized sample mean), if the variance is known.
- The null hypothesis H_0 is rejected if the TS falls in a user-specified rejection region.
- Different hypothesis tests use different test statistics based on the probability model assumed in the null hypothesis. Common tests and their test statistics include:

Hypothesis Test	Test Statistic	
Z-test	Z-statistic	
t-tests	t-statistic	
ANOVA	F-statistic	
Chi-square tests	Chi-square statistic	

Example - TS - Z-statistic

The Z-statistic has the standard normal distribution under the null hypothesis. It is a **mean** test when σ is known. We will use this statistic to test the problem:

$$z_{stat} = rac{\overline{x} - \mu_0}{\sigma_{\overline{x}}}$$

Assumptions:

- μ_0 is the **population mean** assuming H_0 is true
- $\overline{x}=\frac{x_1+x_2+...+x_n}{n}$ is the sample mean. $\sigma_{\overline{x}}=\frac{\sigma}{\sqrt{\overline{n}}}$

Solve for the "Body Weight" problem:

- $\mu_0 = 170$
- $\sigma=40$
- We'll take sample size of n=64 samples, $o \sqrt{n}=8$
- $\sigma_{\overline{x}} = \frac{40}{8} = 5$
 - lacksquare If the variance is unknown (the variance of X_i): we use the sample standard deviation S instead of σ

$$S = \sqrt{rac{1}{n-1}\sum_{k=1}^{n}(X_k - \overline{X})^2} = \sqrt{rac{1}{n-1}ig(\sum_{k=1}^{n}X_k^2 - n\overline{X}^2ig)}$$

Now, let's assume we found a sample mean of 173, then:

•
$$z_{stat} = rac{ar{x} - \mu_0}{\sigma_{ar{x}}} = rac{173 - 170}{5} = 0.6$$

Now, let's assume we found a sample mean of 185, then:

$$ullet z_{stat}=rac{\overline{x}-\mu_0}{\sigma_{ar{x}}}=rac{185-170}{5}=3$$

(A) Reminder: The Central Limit Theorem (CLT)

The CLT states that given a sufficiently large sample size from a population with a finite level of variance, the mean of all samples from the same population will be approximately equal to the mean of the population. When n is large, the distribution of the sample means will approach a normal distribution. More formally:

If X_1, X_2, \ldots, X_n is a random sample of size n taken from a population with mean μ and variance σ^2 , and if \overline{X} is the sample mean, the limiting form of the distribution:

$$Z = rac{\overline{X} - \mu}{rac{\sigma}{\sqrt{n}}}$$

as $n o \infty$, is the **standard normal distribution**

CLT DEMO (http://onlinestatbook.com/stat_sim/sampling_dist/)

Reasoning Behind z_{stat}

Sampling distribution of \overline{x} under H_0 :

3 - P-value & Interpretation

- · All hypothesis tests ultimately use a p-value to weigh the strength of the evidence (what the data are telling you about the population). The pvalue is a number between 0 and 1, and is the probability of the observed test statistic (or one more extreme) when H_0 is true
 - **P-value** is the *lowest* significance level α that results in rejecting the null hypothesis.
- It corresponds to the **Area Under the Curve (AUC)** in the tail of the Standard Normal Distribution beyond the z_{stat}
- Converting Z-statistics to P-value:

$$For H_1: \mu > \mu_0
ightarrow P = Pr(Z>z_{stat}) = \mathit{right-tail beyond} \ z_{stat}$$

Standard Normal Model $H_a: p < p_o$ Left-tailed P-value $H_a: p > p_o$ Right-tailed P-value P-value is twice this area $H_a: p > p_o$ Right-tailed P-value $H_a: p > p_o$ Two-tailed P-value

(image from <u>lumenlearning.com</u> (<u>https://courses.lumenlearning.com/wmopen-concepts-statistics/chapter/hypothesis-test-for-a-population-proportion-2-of-3/)</u>)

```
In [3]: # let's see for the body weight problem
x = np.linspace(140, 200, 64)
mu = 170 # H_0 is true!
sigma = 5 # calcualted for 64 samples
f_x = (1 / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp(- (x - mu) ** 2 / (2 * sigma ** 2))
x_normed = (x - mu) / sigma
```



```
In [9]: # Let's see for the body weight problem
                               x = np.linspace(140, 200, 64)
                              mu = 170 # H_0 is true!
                               sigma = 5 # calcualted for 64 samples
                               f_x = (1 / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp(- (x - mu) ** 2 / (2 * sigma ** 2))
                               x_normed = (x - mu) / sigma
                              def plot_p_auc():
                                              fig = plt.figure(figsize=(10,6))
                                              ax = fig.add_subplot(1,1,1)
                                              ax.plot(x, f_x, label='Standard Normal Distribution')
                                              ax.fill\_between(x[np.where(x.astype(int)==185)[0][0]:], y1=f\_x[np.where(x.astype(int)==185)[0][0]:], y1=f\_x[np.where(x.astype(int)==185)[0]:], y1
                                                                                                        color='red', label="P-value")
                                              ax.grid()
                                              ax.legend()
                                              ax.set_xlim([170, 195])
                                              ax.set_ylim([0, 0.05])
                                              ax.set_xlabel('x')
                                              ax.set_title('P-Value and AUC for z-stat = 3.0')
                                              p\_val = np.sum(f\_x[np.where(x.astype(int)==185)[0][0]:])
                                              print('p-val (AUC) = {:.3f}'.format(p_val))
```

In [10]: plot_p_auc()

p-val (AUC) = 0.001

Interpretation

- A small p-value (typically \leq 0.05) indicates strong evidence against the null hypothesis H_0 , so you reject the null hypothesis.
- A large p-value (> 0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis.
- p-values very close to the cutoff (0.05) are considered to be marginal (could go either way).

4- Significance Level (α)

- It is the degree of certainty required in order to **reject** the null hypothesis H_0 .
- A test statistic, TS, with p-value less than some pre-determined false positive (or size) is said to be statistically significant at that level.
- · Commonly used p-values:

P-Value	Wording	
p>0.05	Not Significant	
$0.01 \leq p \leq 0.05$	Significant	
$0.001 \leq p < 0.01$	Very Significant	
p<0.001	Extremely Significant	

Formalization

Let's design a level α test to choose between:

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

 $H_0: \mu=\mu_0 \\ H_1: \mu\neq\mu_0$ We initially assume H_0 , thus $z_{stat}\sim\mathcal{N}(0,1).$ We will choose a threshold c. If $|z_{stat}|\leq c$, we **accept** H_0 , and if $|z_{stat}|>c$, accept $H_1.$

To choose c:

$$P(|z_{stat}| > c|H_0) = \alpha$$

Since the standard normal PDF is **symetric** around 0, we have:

$$P(|z_{stat}|>c|H_0)=2P(z_{stat}>c|H_0)
ightarrow P(z_{stat}>c|H_0)=rac{lpha}{2}
ightarrow c=z_{rac{lpha}{2}}$$

Therefore, we accept H_0 if

$$|rac{\overline{X}-\mu_0}{\sqrt{n}}| \leq z_{rac{lpha}{2}}$$

and reject it otherwise.

Relation to Confidence Intervals

Notice that saying we accept H_0 if

$$|rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}| \leq z_{rac{lpha}{2}}$$

can be interpreted as the following **acceptance region** for μ_0 :

$$\mu_0 \in ig[\overline{X} - z_{rac{lpha}{2}} rac{\sigma}{\sqrt{n}}, \overline{X} + z_{rac{lpha}{2}} rac{\sigma}{\sqrt{n}}ig]$$

Which is the $(1-\alpha)$ confidence interval for μ_0 .

Exercise - Hypothesis Testing

We continue with the radar example. Recall that the system receives a signal and based upon that signal it decides whether an aircraft is present or not. We denote:

- X the received signal
- · We suppose that:

$$X=W, ext{ if no aircraft is present} \ X=1+W, ext{ if an aircraft is present} \ W\sim \mathcal{N}(0,\sigma^2=rac{1}{2})$$

· We can write instead:

$$X = \theta + W$$

where $\theta=0$ if there is no aircraft and $\theta=1$ otherwise.

- · The hypotheses:
 - H_0 (null): No aircraft is present
 - H₁ (alternative): An aircraft is present
- 1. Write H_0 and H_1 in terms of possible values of θ .
- 2. Suggest a *simple* test statistic with level lpha=0.05 to decide between H_0 and H_1 .
- 3. Find the probability of missing a present aircraft, that is, find β (the probability of type 2 error).
- 4. If we observe X=0.6, is there enough evidence to reject H_0 at a significance level lpha=0.01?
- 5. For a probability less than 5% to miss a present aircraft, what is the **smallest** significance level that we can achieve?
- · Reminder:

$$W \sim \mathcal{N}(\mu, \sigma^2)
ightarrow rac{W - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

Section 1

The hypotheses:

- H_0 (null): No aircraft is present: heta=0
- H_1 (alternative): An aircraft is present : heta=1

Section 2

The *observed* data is a random variable X. Under H_0 we have $X \sim \mathcal{N}(0, \frac{1}{9})$ and under H_1 we have $X \sim \mathcal{N}(1, \frac{1}{9})$. We suggest the following test: set a threshold c. If the observed value of X is less than c, choose H_0 ($\theta = \mathbb{E}[X] = 0$), otherwise, choose H_1 ($\theta = \mathbb{E}[X] = 1$). To find the best c we use the required α , that is, we demand:

$$P(\text{type I error}) = P(\text{Reject } H_0 | H_0) = P(X > c | H_0) = P(W > c) = 1 - \phi(3c)$$

(the last transition is due to the fact that we assume H_0 and $X \sim \mathcal{N}(0, \frac{1}{9})$, which is not the standard distribution). It holds that $P(\text{type I error}) = \alpha$, thus we get:

$$c = \frac{1}{3}\phi^{-1}(1-\alpha) = \frac{1}{3}\phi^{-1}(1-0.05) = \frac{1}{3}\phi^{-1}(0.95) = 0.548$$

Section 3

Note that the *alternative* hypothesis is simple, that is, it contains only one value ($\theta = 1$), so $\beta(\theta) = \beta$ and we can write:

$$\beta = P(\text{type II error}) = P(\text{Accept } H_0|H_1) = P(X < c|H_1) = P(1 + W < c) = P(W < c - 1) = \phi(3(c - 1))$$
 Since we found out that for the given α , $c = 0.548$ then $\beta = 0.088$.

Section 4

For $\alpha = 0.01$ we get $c = \frac{1}{3}\phi^{-1}(1-\alpha) = \frac{1}{3}\phi^{-1}(1-0.01) = \frac{1}{3}\phi^{-1}(0.99) = 0.775$, which is **larger** than 0.6. Thus, we **cannot** reject H_0 at significance level $\alpha = 0.01$.

Section 5

We want $\beta=0.05$, and from (3) we deduce that $c=1+\frac{1}{3}\phi^{-1}(\beta)=0.452$. Thus, we need $c\leq0.452$ to obtain $\beta\leq0.05$). Let's calculate α : $P(\text{type I error})=P(\text{Reject }H_0|H_0)=1-\phi(3c)=0.0875$

which means that the smallest significance level that we can achieve is 0.0875.

Hypothesis Testing for the Mean Summary

All expansions can be found HERE (https://www.probabilitycourse.com/chapter8/8_4_3_hypothesis_testing_for_mean.php).

- 2-sided hypothesis testing for the mean: $H_0: \mu = \mu_0, H_1: \mu
eq \mu_0$

Case	lest Statistic	Acceptance Region
$X_i \sim \mathcal{N}(\mu, \sigma), \sigma$ known	$W = rac{\overline{X} - \mu_0}{rac{\sigma}{\sqrt{n}}}$	$ W \leq z_{rac{lpha}{2}}$
n large, $\boldsymbol{X_i}$ non-normal	$W=rac{\overline{X}-\mu_0}{rac{S}{\sqrt{n}}}$	$ W \leq z_{rac{lpha}{2}}$

- 1-sided hypothesis testing for the mean: $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$

Case	Test Statistic	Acceptance Region
$X_i \sim \mathcal{N}(\mu, \sigma), \sigma$ known	$W=rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}$	$W \leq z_{rac{lpha}{2}}$
n large, X_i non-normal	$W=rac{\overline{X}-\mu_0}{rac{S}{\sqrt{\overline{n}}}}$	$W \leq z_{rac{lpha}{2}}$

- The only difference is the $\ensuremath{\textit{absolute}}$ sign on W

Recommended Videos

- These videos do not replace the lectures and tutorials.
- · Please use these to get a better understanding of the material, and not as an alternative to the written material.

Video By Subject

- Hypothesis Testing Hypothesis Testing Statistics Problems & Examples (https://www.youtube.com/watch?v=VK-rnA3-41c)
- p-Value <u>Understanding the p-value Statistics Help (https://www.youtube.com/watch?v=eyknGvncKLw)</u>
- Test Statistics (t-stat is covered in the next tutorial):
 - Test Statistics: Crash Course Statistics (https://www.youtube.com/watch?v=QZ7kgmhdlwA)
 - Z-statistics vs. T-statistics (https://www.youtube.com/watch?v=5ABpqVSx33I)

- Examples, exercises and definitions from <u>Introduction to Probability, Statistics and Random Processes (https://probabilitycourse.com/)</u> https://probabilitycourse.com/) https://probabilitycourse.com/)
- Icons from Icon8.com (https://icons8.com/) https://icons8.com (https://icons8.com)
- Datasets from Kaggle (https://www.kaggle.com/) https://www.kaggle.com/ (https://www.kaggle.com/)