CS 7545: Machine Learning Theory

Fall 2021

Lecture 6: Robust Estimation

Instructor: Santosh Vempala Lecture date: 09/15/2021

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

6.1 Introduction

There are many examples of learning from data. What if not all the data is generated by the model? Consider the case when $(1 - \epsilon)$ fraction of data points are from the model and ϵ fraction are arbitrary (adversarial). Is it still possible to estimate the model parameters?

Low-degree sample moments are not robust estimators. For example,

- Mean: Adding a point really far from the samples will significantly change the mean.
- Singular vectors/eigenvectors: Consider samples with e_1 as the top singular vector. Adding a point $(0, Me_2), M \gg 1$, will significantly move the top singular vector.

Consider the problem of estimating a single Gaussian. For a 1-d Gaussian distribution, $N(\mu, \sigma^2)$, the median of the sample points, \hat{m} is a robust estimator of the mean. $|\mu - \hat{m}| = O(\epsilon)\sigma$ w.h.p. This is the best possible estimate in 1-d. In dimension d, what is a robust estimate for the mean such that the error does not grow with d?

Tukey Ellipsoid: Tukey ellipsoid is the minimum volume ellipsoid that contains half of the data points. The center of Tukey ellipsoid is a good estimate for the mean. However, it is NP-hard to compute.

[2016] For a large class of distributions, the mean and covariance can be estimated to within error of information theoretic bound.

$$\left\| \Sigma^{-1/2}(\bar{\mu} - \mu) \right\|_2 = O(\epsilon \sqrt{\log(1/\epsilon)}).$$

Two algorithms for robust mean estimation:

- 1. Iterative Filtering
- 2. Recursive Dimension Halving

Lemma 6.1. For an ϵ -corrupted Gaussian, $N(\mu, I)$ with additive corruptions, if the sample covariance, $\hat{\Sigma}$ satisfies $\|\hat{\Sigma}\|_2 \leq 1 + \epsilon$, then $\|\hat{\mu} - \mu\|_2 = O(\epsilon)$.

Proof. Without loss of generality, let $\mu = 0$. Let $S = G \cup B$ where G is set of samples from the Gaussian and B is added corrupted points. With enough samples, the sample mean of G, $\mu_G \approx \mu$ and the sample variance of G, $\Sigma_G \approx \Sigma$.

Let $\mu_B = \sum_{x \in B} x/|B|$ and $\Sigma_B = \sum_{x \in B} xx^\top/|B| - \mu_B \mu_B^\top$. The sample mean $\hat{\mu}$ and the sample covariance $\hat{\Sigma}$, Then

$$\hat{\mu} = \epsilon \mu_B$$
.

$$\hat{\Sigma} = (1 - \epsilon)I + \epsilon \Sigma_B + (\epsilon - \epsilon^2)\mu_B \mu_B^{\mathsf{T}}. \tag{6.1}$$

For $v = \mu_B / \|\mu_B\|$,

$$1 + \epsilon \ge v^{\top} \hat{\Sigma}_B v \ge 1 - \epsilon + (\epsilon - \epsilon^2) \|\mu_B\|^2$$
.

Therefore, $\|\mu_B\| \leq 2/(1-\epsilon) = O(1)$ and $\|\hat{\mu}\| = O(\epsilon)$.

For general noise, $\|\hat{\mu} - \mu\| = O(\epsilon \sqrt{\log(1/\epsilon)})$.

Due to Gaussian concentration, $||x - \mu|| \le C\sqrt{d\log(N/\tau)}$ for all sample points $x \in G$ w.h.p. So, we can remove all points x_i with $||x_i - \mu|| \ge C\sqrt{d\log(N/\tau)}$.

Lemma 6.2. After removing all points x with $||x|| \ge C\sqrt{d\log(N/\tau)}$ from the sample, $\lambda_{\min}(\hat{\Sigma}) \ge 1 - \epsilon$ and $\operatorname{Tr}\hat{\Sigma} = (1 + O(\epsilon))d$.

Proof. For any $v \in \mathbb{R}^d$ with ||v|| = 1, $v^{\top} \hat{\Sigma} v \geq (1 - \epsilon)$, therefore $\lambda_{\min}(\hat{\Sigma}) \geq (1 - \epsilon)$. After removing points with $||x||_2 \geq C\sqrt{d\log(N/\tau)}$,

$$\operatorname{Tr}\hat{\Sigma} = (1 - \epsilon)d + \epsilon \left(\operatorname{Tr}\Sigma_B + (1 - \epsilon)\mu_B \mu_B^{\top}\right)$$

$$\leq (1 - \epsilon)d + \epsilon \sum_{x \in B} \|x\|_2^2 / |B|$$

$$\leq (1 - \epsilon)d + \epsilon C^2 d = (1 + O(\epsilon))d.$$

 $\lambda_{\min}(\hat{\Sigma}) \geq 1 - \epsilon$ and $\operatorname{Tr}\hat{\Sigma} = (1 + O(\epsilon))d$ imply $\lambda_{d/2}(\hat{\Sigma}) = 1 + O(\epsilon)$. So, in the span of the bottom d/2 eigenvectors of $\hat{\Sigma}$, sample mean is a good approximation of the true mean.

Algorithm 1: Recursive Dimension Halving

Given corrupted samples S:

- 1. Let $m = \text{coordinate-wise median}(\{x : x \in S\}).$
- 2. Remove all points, x with $||x m||_2 \ge C\sqrt{d\log(N/\tau)}$ from the samples.
- 3. Find eigendecomposition of $\hat{\Sigma}$. Let W be the span of bottom d/2 eigenvectors and V be the span of top d/2 eigenvectors. Then $\|\hat{\mu}_W \mu_W\|_2 \leq O(\epsilon)$.
- 4. Recurse on V.

In step 2, we don't know the true mean μ but $\|\mu - m\|_2 \leq O(\epsilon \sqrt{d \log(N/\tau)})$ w.h.p. So, for any point $x \in G$, $\|x - \mu\| \leq \|x - m\| + \|\mu - m\| = O(\sqrt{d \log(N/\tau)})$. There are $\log(d)$ levels of recursion and the total error is $O(\epsilon \sqrt{\log(d)})$.

Idea 2: Remove points so that $\|\hat{\Sigma}\|_2$ is close to 1.

Let N = |S|. Using a union bound, w.p. $\tau/3$, for all $x \in G$ we have

$$||x - \mu||_2 = O(\sqrt{d\log(N/\tau)}).$$

The number of samples N is at least $\Omega(\frac{d^2}{\epsilon^2}\log(d/\epsilon\tau))$. Let $\alpha=\frac{1}{\log(d\log(\frac{d}{\epsilon\tau}))}$. The next 2 lemmas prove the correctness of Algorithm 2.

Lemma 6.3. If $\|\hat{\Sigma}\|_2 \ge 1 + C\epsilon\sqrt{\log(1/\epsilon)}$, then there exists $v \in \mathbb{R}^d$, $\|v\| = 1$ and t > 0 such that

$$\Pr_{S}(|v^{\top}x - v^{\top}\mu| > t + 2) > 8e^{-t^{2}/2} + \frac{8\epsilon\alpha}{t^{2}}.$$
(6.2)

Proof. Without loss of generality, let $\mu = 0$. Let v be the top eigenvector of $\hat{\Sigma}$. If $\Pr_S(|v^\top x| > t+2) \leq 8e^{-t^2/2}$ for all t > 0, then

$$v^{\top} \Sigma_B v = \mathbb{E}_B[(v^{\top} (x - \mu_B))^2] = \mathbb{E}_B[(v^{\top} x)^2] - (v^{\top} \mu_B)^2$$

$$\leq 2 \int_{t=0}^{\infty} t \Pr_{B}(|v^{\top}x| \geq t) \ dt = 2 \int_{t=0}^{O(\sqrt{d \log(N/\tau)})} t \Pr_{B}(|v^{\top}x| \geq t) \ dt.$$

We can restrict to $|v^{\top}x| \leq ||x|| \leq \sqrt{d\log(N/\tau)}$ after naively pruning. Note that $\Pr_B(|v^{\top}x| \geq t) \leq \frac{|S|}{|B|} \Pr_S(|v^{\top}x| \geq t)$.

$$v^{\top} \Sigma_{B} v \leq 2 \int_{t=0}^{O(\sqrt{\log(1/\epsilon)})} t \, dt + \frac{2}{\epsilon} \int_{O(\sqrt{\log(1/\epsilon)})}^{O(\sqrt{d\log(N/\tau)})} t \Pr_{S}(|v^{\top}x - \mu| \geq t) \, dt$$

$$\leq \log(1/\epsilon) + \frac{16}{\epsilon} \int_{O(\sqrt{\log(1/\epsilon)})}^{O(\sqrt{d\log(N/\tau)})} t e^{-\frac{(t-2)^{2}}{2}} \, dt + 16 \int_{O(\sqrt{\log(1/\epsilon)})}^{O(\sqrt{\log(N/\tau)})} \frac{\alpha}{t} \, dt$$

$$\leq \log(1/\epsilon) + \frac{16}{\epsilon} \int_{O(\sqrt{\log(1/\epsilon)})}^{O(\sqrt{d\log(N/\tau)})} (t - 2) e^{-\frac{(t-2)^{2}}{2}} \, dt + \frac{32}{\epsilon} \int_{O(\sqrt{\log(1/\epsilon)})}^{O(\sqrt{\log(N/\tau)})} e^{-\frac{(t-2)^{2}}{2}} \, dt + O(1)$$

$$\leq \log(1/\epsilon) + O(\epsilon) + O(1)$$

Using equation (6.1),

$$v^{\top} \hat{\Sigma} v \le (1 - \epsilon) + \epsilon \log(1/\epsilon) + O(\epsilon),$$

which is a contradiction.

The idea is to remove all points with $|v^{\top}x| > t+2$ from the sample and iterate. The next lemma implies that at least half of the removed points are from B. In the end, $\|\hat{\Sigma}\|_2$ is small and at most 2ϵ fraction of the points are removed.

Lemma 6.4. For all unit vectors $v \in \mathbb{R}^d$ and t > 0,

$$\Pr_{G}(|v^{\top}x - \mu^{\top}v| > t) \le 2e^{-t^{2}/2} + \frac{\epsilon\alpha}{t^{2}}$$
(6.3)

with probability at least $1-\tau$.

Proof. Wlog, let $\mu = 0$. Let $\delta = \epsilon \alpha$. Let $n = |G| \ge (1 - \epsilon)N$. We will prove that for any $v \in \mathbb{R}^d$ with ||v|| = 1 and t > 0,

$$|\Pr_{G}(|v^{\top}x| > t) - \Pr_{x \sim N(0,1)}(|v^{\top}x| > t)| \le \frac{\delta}{t^2}$$

Since the VC-dimension of the set of all halfspaces is d+1, if $t<\sqrt{C\log(1/\delta)}$, this bound is true with probability at least $1-\tau/3$ if we have more than $\Omega(\frac{d\log(1/\delta)^2}{\delta^2})$ samples using the VC inequality from [devroye2012combinatorial].

We only need to consider the case when $t \ge \sqrt{C \log(1/\delta)}$. Let E_i denote the event that $|v^\top x_i| > t$. Then $\Pr(E_i) \le 2e^{-\frac{t^2}{2}}$ and E_i 's are mutually independent. Note that $\Pr_G(|v^\top x| > t) = \sum_i 1_{E_i}/n$. Therefore,

$$\mathbb{E}[e^{\frac{T^2n}{3}\Pr_G(|v^\top x| > t)}] \le (1 + e^{-t^2/2}e^{\frac{t^2}{3}})^n = (1 + e^{-\frac{t^2}{6}})^n \le (1 + \delta^2)^n \le e^{\delta^2n}.$$

Using Markov's inequality,

$$\Pr(\Pr_G(|v^\top x| > t) \ge \delta/T^2) \le \frac{\mathbb{E}[e^{\frac{T^2 n}{3}\Pr_G(|v^\top x| > t)}]}{e^{\frac{\delta n}{3}}} \le e^{n\delta^2 - \frac{n\delta}{3}} \le e^{-\frac{n\delta}{6}}.$$

Let \mathcal{C} be a 1/2-net for unit vectors in \mathbb{R}^d . Then $|\mathcal{C}| = 2^{O(d)}$. From equation , $|v^\top x| \leq O(\sqrt{d\log(n/\tau)})$. Let $R = c\sqrt{d\log(n/\tau)}$ for some large constant c and let D be set of all powers of 2 between $\sqrt{C\log(1/\delta)}$ and R. Since $n = \Omega(\frac{d}{\epsilon}\log(1/\tau))$, for any $v' \in \mathcal{C}$ and $t' \in D$, with probability at least

$$1 - e^{-\frac{n\delta}{6}} |\mathcal{C}| \cdot |D| \ge 1 - \tau/2$$

we have

$$\Pr_{S}(|v'^{\top}x| > t') \le \frac{\delta}{t'^2}.$$

For any unit vector $v \in \mathbb{R}^d$ and $t \in [\sqrt{C \log(1/\delta)}, R)$. Then, there exists $t' \in D$ such that $t \leq t' \leq 2t$ and $v' \in C$ such that $|v^\top x| \leq 2|v'^\top x|$. So, $|v^\top x| > t$ implies $|v'^\top x| > t'$, and

$$\Pr_{S}(|v^{\top}x| > t) \le \Pr_{S}(|v'^{\top}x| > t') \le \frac{\delta}{Ct'^2} \le \frac{\delta}{Ct^2}.$$

From equations (6.2) and (6.3), in each iteration, we remove more corrupted than uncorrupted points.

Algorithm 2: Iterative Filtering

- 1. Naively prune points with large norms.
- 2. If $|\hat{\Sigma}|_2 \leq 1 + C\epsilon \sqrt{\log(1/\epsilon)}$, output $\hat{\mu}$.
- 3. Let v be the top eigenvector of $\hat{\Sigma}$ and $m = \text{median}(\{v^{\top}x : x \in S\})$.
- 4. Find t > 0 such that

$$\Pr_{S}(|v^{\top}x - m)| > t + 2) > 8e^{-t^2/2}.$$

5. Recurse on $S' = \{x \in S : |v^{\top}x - m| \le t + 2\}$

In step 2, we don't know the value of $v^{\top}\mu$ but $|v^{\top}\mu - m| \leq O(\epsilon)$ w.h.p. So, for any point $x \in G$,

$$|v^{\top}x - v^{\top}\mu| < |v^{\top}x - m| + |v^{\top}\mu - m| = O(1).$$

References

[1] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer Science & Business Media, 2012.