

q -ANALOG OF TABLEAU CONTAINMENT

JANG SOO KIM

ABSTRACT. We prove a q -analog, which is valid if q is a positive real number, of the following: the probability that, when n tends to infinity, a randomly chosen standard Young tableau of size n contains a fixed standard Young tableau of shape $\lambda \vdash k$ is equal to $\frac{f^\lambda}{k!}$ (Journal of Combinatorial Theory Series A, volume 97, 117–128, 2002). We also consider pairs of tableaux.

1. INTRODUCTION

Let \mathfrak{S}_n denote the set of permutations of $[n] = \{1, 2, \dots, n\}$. Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation in \mathfrak{S}_n . Let $\pi_{\leq k}$ (resp. $\pi_{>k}$) denote the permutation obtained from π by taking integers $i \leq k$ (resp. $i > k$) and by order-preserving relabeling. Let $\pi^{\leq k}$ (resp. $\pi^{>k}$) denote the permutation obtained from $\pi_1 \pi_2 \cdots \pi_k$ (resp. $\pi_{k+1} \pi_{k+2} \cdots \pi_n$) by order-preserving relabeling. For example, if $\pi = 513697428$, then $\pi_{\leq 4} = 1342$, $\pi_{>4} = 12534$, $\pi^{\leq 4} = 3124$ and $\pi^{>4} = 53214$. If $\sigma = \pi_{\leq k}$ for some k , then we say that π contains σ .

Let \mathfrak{I}_n denote the set of involutions in \mathfrak{S}_n . For a permutation $\sigma \in \mathfrak{S}_k$, let $\mathfrak{I}_n(\sigma)$ denote the set of involutions in \mathfrak{I}_n containing σ , i.e.,

$$\mathfrak{I}_n(\sigma) = \{\pi \in \mathfrak{I}_n : \pi_{\leq k} = \sigma\}.$$

Let n be a nonnegative integer. A *partition* $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ of n , denoted by $\lambda \vdash n$, is a weakly decreasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r$ summing to n . The *Ferres diagram* of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ is the left-justified array of squares such that the i -th row has λ_i squares. We will identify a partition with its Ferres diagram. Let λ and μ be partitions such that the Ferres diagram of μ is contained in the Ferres diagram of λ . Then the *skew shape* λ/μ is the set-theoretic difference $\lambda \setminus \mu$, and we denote $\lambda/\mu \vdash n - m$ if $\lambda \vdash n$ and $\mu \vdash m$. A partition λ is also considered as the skew shape λ/\emptyset . A *standard Young tableau*, or a *SYT* for short, of shape $\lambda/\mu \vdash n$ is a filling of λ/μ with integers $1, 2, \dots, n$ such that entries are increasing along rows and columns. If T is a SYT of shape $\lambda/\mu \vdash n$, then we write $sh(T) = \lambda/\mu$ and we say that T is of size n .

Let T be a SYT of shape λ . Let $T_{\leq k}$ (resp. $T_{>k}$) denote the SYT obtained from T by taking squares with integer $i \leq k$ (resp. $i > k$) and by order-preserving

relabeling. For example, if $T = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 6 & \\ \hline 8 & 9 & & \\ \hline \end{array}$, then $T_{\leq 5} = \begin{array}{|c|c|c|} \hline 1 & 2 & 4 \\ \hline 3 & 5 & \\ \hline & & \\ \hline \end{array}$ and $T_{>5} = \begin{array}{|c|} \hline 2 \\ \hline & \\ \hline & \\ \hline \end{array}$.

If $U = T_{\leq k}$ for some k , then we say that T contains U .

Let A be a fixed SYT of shape $\alpha \vdash a$. Let $\mathcal{T}_n(A)$ denote the set of SYTs of size n containing A . We denote $\mathcal{T}_n = \mathcal{T}_n(\emptyset)$.

We will assume reader's familiarity with the Robinson-Schensted correspondence, for reference, see [6, 8]. If π corresponds to (P, Q) in the Robinson-Schensted correspondence, then we write $\pi \xrightarrow{\text{RS}} (P, Q)$, and also write $P(\pi) = P$ and $Q(\pi) = Q$. If π is an involution, then we write $\pi \xleftrightarrow{\text{RS}} P$.

Date: December 6, 2008.

Let π be an involution and $\pi \xrightarrow{\text{RS}} T$. We can easily see that T contains A if and only if π contains σ for some $\sigma \in \mathfrak{S}_a$ with $P(\sigma) = A$. Thus the Robinson-Schensted correspondence induces a bijection

$$(1) \quad RS : \mathcal{T}_n(A) \rightarrow \bigcup_{\sigma: P(\sigma)=A} \mathfrak{I}_n(\sigma).$$

McKay, Morse and Wilf [5] proved that if $\sigma \in \mathfrak{S}_a$, then

$$(2) \quad \lim_{n \rightarrow \infty} \frac{|\mathfrak{I}_n(\sigma)|}{|\mathfrak{I}_n|} = \frac{1}{a!}.$$

As a corollary, they obtained that the probability that, when n goes to infinity, a random SYT of size n contains A equals $\frac{f^\alpha}{a!}$, i.e.,

$$(3) \quad \lim_{n \rightarrow \infty} \frac{|\mathcal{T}_n(A)|}{|\mathcal{T}_n|} = \frac{f^\alpha}{a!},$$

where f^α denotes the number of SYTs of shape α .

Jaggard [2] defined the ‘ j -set’ $J(\pi)$ of a permutation π and found the following exact formula for $|\mathfrak{I}_{n+a}(\sigma)|$. For given $\sigma \in \mathfrak{S}_a$,

$$(4) \quad |\mathfrak{I}_{n+a}(\sigma)| = \sum_{\substack{j \in J(\sigma) \\ k=n-a+j}} \binom{n}{k} t_k,$$

where $t_k = |\mathfrak{I}_k|$, the number of involutions in \mathfrak{S}_k .

In this paper we find q -analogs of (2), (3) and (4).

Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A *descent* of π is an integer i such that $\pi_i > \pi_{i+1}$. Let T be a SYT. A *descent* of T is an integer i such that $i+1$ is in a row lower than the row containing i in T . Let $D(\pi)$ (resp. $D(T)$) denote the set of all descents of π (resp. T). Let $\text{maj}(\pi)$ (resp. $\text{maj}(T)$) denote the sum of all descents of π (resp. T).

Let $\pi \xrightarrow{\text{RS}} (P, Q)$. It is well known that $D(\pi^{-1}) = D(P)$ and $D(\pi) = D(Q)$, see [8]. Thus $q^{\text{maj}((\pi^{-1})^{>a})} = q^{\text{maj}(P^{>a})}$ and $q^{\text{maj}(\pi^{>b})} = q^{\text{maj}(Q^{>b})}$ for any nonnegative integers a and b .

Let us define

$$\begin{aligned} \text{imaj}(\pi) &= \text{maj}(\pi^{-1}), \quad A_n(p, q) = \sum_{\pi \in \mathfrak{S}_n} p^{\text{imaj}(\pi)} q^{\text{maj}(\pi)}, \\ t_n(q) &= \sum_{\pi \in \mathfrak{I}_n} q^{\text{maj}(\pi)}, \quad f^{\lambda/\mu}(q) = \sum_{sh(T)=\lambda/\mu} q^{\text{maj}(T)}, \\ [n]_q! &= (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}), \quad \left[\begin{matrix} n \\ k \end{matrix} \right]_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}. \end{aligned}$$

Now we state our main results.

Theorem 1.1. *Let a be an integer and let $\sigma \in \mathfrak{S}_a$. Then*

$$\sum_{\pi \in \mathfrak{I}_{n+a}(\sigma)} q^{\text{maj}(\pi^{>a})} = \sum_{\substack{j \in J(\sigma) \\ k=n-a+j}} q^{\text{maj}(\sigma^{>j})} \left[\begin{matrix} n \\ k \end{matrix} \right]_q t_k(q).$$

For a real number $r > 0$, let us denote $\bar{r} = \min(r, r^{-1})$.

Theorem 1.2. *Let a be an integer and $\sigma \in \mathfrak{S}_a$. If $q > 0$, then*

$$\lim_{n \rightarrow \infty} \frac{\sum_{\pi \in \mathfrak{I}_n(\sigma)} q^{\text{maj}(\pi^{>a})}}{\sum_{\pi \in \mathfrak{I}_n} q^{\text{maj}(\pi^{>a})}} = \frac{q^{\text{maj}(\sigma)} + (1-\bar{q})C}{[a]_q! + (1-\bar{q})D},$$

where C and D are polynomials of q and \bar{q} . (See Theorem 2.6 for exact value.)

Theorem 1.3. *Let A be a SYT of shape $\alpha \vdash a$. If $q > 0$, then*

$$\lim_{n \rightarrow \infty} \frac{\sum_{T \in \mathcal{T}_n(A)} q^{\text{maj}(T_{>a})}}{\sum_{T \in \mathcal{T}_n} q^{\text{maj}(T_{>a})}} = \frac{f^\alpha(q) + (1 - \bar{q})E}{[a]_q! + (1 - \bar{q})D},$$

where E and D are polynomials of q and \bar{q} . (See Theorem 3.3 for exact value.)

Similarly, we can consider pairs of SYTs. Let A and B be SYTs of shape $\alpha \vdash a$ and $\beta \vdash b$ respectively. For a pair (P, Q) of SYTs, we say that (P, Q) contains (A, B) if both P and Q contain A and B respectively. Let $\mathcal{T}_n(A, B)$ denote the set of pairs (P, Q) of SYTs of the same shape of size n containing (A, B) . Let $\pi \xrightarrow{\text{RS}} (P, Q)$. It is easy to see that (P, Q) contains (A, B) if and only if $\pi_{\leq a} = \sigma$ and $\pi^{\leq b} = \tau$ for some $\sigma \in \mathfrak{S}_a$ and $\tau \in \mathfrak{S}_b$ with $P(\sigma) = A$ and $Q(\tau) = B$. Let $\mathfrak{S}_n|_\sigma^\tau$ denote the set of $\pi \in \mathfrak{S}_n$ such that π contains σ and π^{-1} contains τ^{-1} , i.e.,

$$\mathfrak{S}_n|_\sigma^\tau = \{\pi \in \mathfrak{S}_n : \pi_{\leq a} = \sigma, \pi^{\leq b} = \tau\}.$$

Then the Robinson-Schensted correspondence induces the following bijection.

$$(5) \quad RS : \mathcal{T}_n(A, B) \rightarrow \bigcup_{\substack{\sigma: P(\sigma)=A \\ \tau: Q(\tau)=B}} \mathfrak{S}_n|_\sigma^\tau.$$

We define the ‘ j_2 -set’ $J(\sigma, \tau)$ of a pair (σ, τ) of permutations, and prove the following analogs of Theorem 1.1, 1.2 and 1.3.

Theorem 1.4. *Let a, b, n, m and ℓ be integers with $a + m = b + n = \ell$. Let $\sigma \in \mathfrak{S}_a, \tau \in \mathfrak{S}_b$. Then*

$$\sum_{\pi \in \mathfrak{S}_\ell|_\sigma^\tau} p^{\text{imaj}(\pi_{>a})} q^{\text{maj}(\pi^{>b})} = \sum_{\substack{j \in J(\sigma, \tau) \\ k=n-a+j}} p^{\text{imaj}(\tau_{>j})} q^{\text{maj}(\sigma^{>j})} \begin{bmatrix} m \\ k \end{bmatrix}_p \begin{bmatrix} n \\ k \end{bmatrix}_q A_k(p, q).$$

Setting $p = q = 1$, we get the size of $\mathfrak{S}_\ell|_\sigma^\tau$.

Corollary 1.5. *Let a, b, n, m and ℓ be integers with $a + m = b + n = \ell$. Let $\sigma \in \mathfrak{S}_a, \tau \in \mathfrak{S}_b$. Then the number of elements of $\mathfrak{S}_\ell|_\sigma^\tau$ is equal to*

$$\sum_{\substack{j \in J(\sigma, \tau) \\ k=n-a+j}} \binom{m}{k} \binom{n}{k} k!.$$

Theorem 1.6. *Let a, b be integers and let $\sigma \in \mathfrak{S}_a, \tau \in \mathfrak{S}_b$. If $p, q > 0$, then*

$$\lim_{n \rightarrow \infty} \frac{\sum_{\pi \in \mathfrak{S}_n|_\sigma^\tau} p^{\text{imaj}(\pi_{>a})} q^{\text{maj}(\pi^{>b})}}{\sum_{\pi \in \mathfrak{S}_n} p^{\text{imaj}(\pi_{>a})} q^{\text{maj}(\pi^{>b})}} = \frac{p^{\text{imaj}(\tau)} q^{\text{maj}(\sigma)} + (1 - \bar{p})(1 - \bar{q})C'}{[b]_p! [a]_q! + (1 - \bar{p})(1 - \bar{q})D'},$$

where C' and D' are polynomials of p, \bar{p}, q and \bar{q} . (See Theorem 2.7 for exact value). Specially, if $p = 1$ or $p = q = 1$, then we have

$$\lim_{n \rightarrow \infty} \frac{\sum_{\pi \in \mathfrak{S}_n|_\sigma^\tau} q^{\text{maj}(\pi^{>b})}}{\sum_{\pi \in \mathfrak{S}_n} q^{\text{maj}(\pi^{>b})}} = \frac{q^{\text{maj}(\sigma)}}{b! [a]_q!},$$

$$\lim_{n \rightarrow \infty} \frac{|\mathfrak{S}_n|_\sigma^\tau|}{|\mathfrak{S}_n|} = \frac{1}{a!b!}.$$

Theorem 1.7. *Let A, B be SYTs of shape $\alpha \vdash a, \beta \vdash b$ respectively. If $p, q > 0$, then*

$$\lim_{n \rightarrow \infty} \frac{\sum_{(P,Q) \in \mathcal{T}_n(A,B)} p^{\text{maj}(P_{>a})} q^{\text{maj}(Q_{>b})}}{\sum_{(P,Q) \in \mathcal{T}_n(\emptyset, \emptyset)} p^{\text{maj}(P_{>a})} q^{\text{maj}(Q_{>b})}} = \frac{f^\beta(p) f^\alpha(q) + (1 - \bar{p})(1 - \bar{q})E'}{[b]_p! [a]_q! + (1 - \bar{p})(1 - \bar{q})D'},$$

where E' and D' are polynomials of p, \bar{p}, q and \bar{q} . (See Theorem 3.4 for exact value). Specially, if $p = 1$ or $p = q = 1$, then we have

$$\lim_{n \rightarrow \infty} \frac{\sum_{(P,Q) \in \mathcal{T}_n(A,B)} q^{\text{maj}(Q_{>b})}}{\sum_{(P,Q) \in \mathcal{T}_n(\emptyset,\emptyset)} q^{\text{maj}(Q_{>b})}} = \frac{f^\beta f^\alpha(q)}{b! [a]_q!},$$

$$\lim_{n \rightarrow \infty} \frac{|\mathcal{T}_n(A,B)|}{|\mathcal{T}_n(\emptyset,\emptyset)|} = \frac{f^\alpha f^\beta}{a! b!}.$$

The rest of this paper is organized as follows. In Section 2, we define j_2 -sets and prove Theorem 1.1, 1.2, 1.4 and 1.6. In Section 3, we prove Theorem 1.3 and 1.7. In Section 4, we find a simple method to determine a j_2 -set.

2. PERMUTATION CONTAINMENT

Let $\pi = \pi_1 \pi_2 \cdots \pi_n \in \mathfrak{S}_n$. Recall the definitions of $\pi^{\leq k}$, $\pi^{>k}$, $\pi_{\leq k}$ and $\pi_{>k}$. These are easy to remember using the following argument. We can consider a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$ as a collection of bi-letters $\begin{smallmatrix} i \\ j \end{smallmatrix}$ as follows:

$$\pi = \left\{ \begin{smallmatrix} 1 & 2 & \dots & n \\ \pi_1 & \pi_2 & \dots & \pi_n \end{smallmatrix} \right\}.$$

Then $\pi_{\leq k}$ (resp. $\pi_{>k}$, $\pi^{\leq k}$ and $\pi^{>k}$) is the permutation obtained from π by taking bi-letters $\begin{smallmatrix} i \\ j \end{smallmatrix}$ with $j \leq k$ (resp. $j > k$, $i \leq k$ and $i > k$) and by order-preserving relabeling. It is easy to see that $(\pi^{\leq k})^{-1} = (\pi^{-1})_{\leq k}$.

Jaggard [2] defined the j -set as follows. For a permutation π , the j -set $J(\pi)$ of π is defined to be the set of integers $j \geq 0$ such that $\pi^{\leq j}$ is an involution, i.e,

$$J(\pi) = \{j : \pi^{\leq j} = (\pi^{-1})_{\leq j}\}.$$

Note that $\pi^{\leq 0} = \emptyset$, the empty permutation, which we consider as an involution. Thus, we always have $0 \in J(\pi)$. Kim and Kim [3] found a criterion for a j -set.

Definition 2.1. Let σ and τ be permutations. The j_2 -set $J(\sigma, \tau)$ is defined to be

$$J(\sigma, \tau) = \{j : \sigma^{\leq j} = \tau_{\leq j}\}.$$

Note that we always have $0 \in J(\sigma, \tau)$. Since $J(\pi) = J(\pi, \pi^{-1})$, every j -set is also a j_2 -set. In Section 4, we will find a criterion for a j_2 -set.

For $\pi \in \mathfrak{S}_n$, the *permutation matrix* $M(\pi)$ is the $n \times n$ matrix whose (i, j) -entry

is 1 if $\pi_i = j$; and 0 otherwise. For example, $M(4132) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

Let M be a 0-1 matrix such that each row and column contains at most one 1. Then, there exists a unique permutation π whose permutation matrix is obtained from M by removing the rows and columns consisting of zeroes. In that case, we write $\pi \sim M$. If $\pi \sim M$ and $\pi \sim N$, then we also write $M \sim N$. For example,

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \sim 213.$$

For an $n \times m$ matrix M , let $\text{row}(M)$ (resp. $\text{col}(M)$) denote the word $\mathbf{r} = r_1 r_2 \cdots r_n$ (resp. $\mathbf{c} = c_1 c_2 \cdots c_m$) of integers such that r_i (resp. c_i) is the sum of elements in the i -th row (resp. column) of M . If M is the second matrix above, then $\text{row}(M) = 1011$ and $\text{col}(M) = 11010$.

$$M(\pi) = \left(\begin{array}{cc|ccccc} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{array} \right).$$

FIGURE 1. The decomposition of $\pi = 7152436$ for $\phi_{2,3}$.

Let a, b, m, n , and ℓ be fixed integers such that $a + m = b + n = \ell$. Let $\pi \in \mathfrak{S}_\ell$. We divide the permutation matrix of π as follows:

$$M(\pi) = \frac{a}{n} \begin{pmatrix} M_{(1,1)} & M_{(1,2)} \\ M_{(2,1)} & M_{(2,2)} \end{pmatrix},$$

where the numbers outside the matrix indicate the sizes of the block matrices.

Assume that $M_{(1,1)}$ contains j 1's. Then $M_{(1,2)}$, $M_{(2,1)}$ and $M_{(2,2)}$ contain $b - j$, $a - j$ and $n - a + j$ 1's respectively. Let $k = n - a + j$. Let $\pi_{(r,s)}$ be the permutation satisfying $\pi_{(r,s)} \sim M_{(r,s)}$ for $r = 1, 2$ and $s = 1, 2$. Let $\mathbf{c}_1 = \text{col}(M_{(2,1)})$, $\mathbf{c}_2 = \text{col}(M_{(2,2)})$, $\mathbf{r}_1 = \text{col}(M_{(1,2)})$ and $\mathbf{r}_2 = \text{col}(M_{(1,1)})$. Then we define the map

$$\phi_{a,b} : \mathfrak{S}_\ell \rightarrow \bigcup_{\substack{0 \leq j \leq a \\ k=n-a+j}} \mathfrak{S}_j \times \mathfrak{S}_{b-j} \times \mathfrak{S}_{a-j} \times \mathfrak{S}_k \times \binom{[a]}{a-j} \times \binom{[b]}{b-j} \times \binom{[m]}{k} \times \binom{[n]}{k}$$

by

$$\phi_{a,b}(\pi) = (\pi_{(1,1)}, \pi_{(1,2)}, \pi_{(2,1)}, \pi_{(2,2)}, \mathbf{c}_1, \mathbf{r}_1, \mathbf{c}_2, \mathbf{r}_2),$$

where $\binom{[n]}{k}$ denotes the set of words consisting of k 1's and $n - k$ 0's.

For example, if $\pi = 7152436$ then, see Figure 1, we have

$$\phi_{2,3}(\pi) = (1, 21, 1, 213, 01, 101, 11010, 0111).$$

It is easy to see that $\phi_{a,b}$ is a bijection.

Let $\sigma \in \mathfrak{S}_a$, $\tau \in \mathfrak{S}_b$ and $\mathbf{r} \in \binom{[a+b]}{b}$. The *shuffle* $\text{sf}(\sigma, \tau; \mathbf{r})$ is the permutation in \mathfrak{S}_{a+b} obtained from \mathbf{r} by replacing the i -th 0 to σ_i and the j -th 1 to $a + \tau_j$ for $1 \leq i \leq a$ and $1 \leq j \leq b$. For example, $\text{sf}(3142, 231; 0010110) = 3164752$. The following lemma is due to Garsia and Gessel [1].

Lemma 2.2. *Let a, b be integers and let $\sigma \in \mathfrak{S}_a$, $\tau \in \mathfrak{S}_b$. Then*

$$\sum_{\mathbf{r} \in \binom{[a+b]}{b}} q^{\text{maj}(\text{sf}(\sigma, \tau; \mathbf{r}))} = q^{\text{maj}(\sigma) + \text{maj}(\tau)} \begin{bmatrix} a+b \\ b \end{bmatrix}_q.$$

Now we can prove Theorem 1.1 and 1.4. Recall that

$$t_n(q) = \sum_{\pi \in \mathcal{I}_n} q^{\text{maj}(\pi)}, \quad A_k(p, q) = \sum_{\pi \in \mathfrak{S}_k} p^{\text{imaj}(\pi)} q^{\text{maj}(\pi)},$$

and $\mathfrak{S}_n|_\sigma^\tau = \{\pi \in \mathfrak{S}_n : \pi_{\leq a} = \sigma, \pi^{\leq b} = \tau\}$.

Theorem 2.3. Let a be an integer and let $\sigma \in \mathfrak{S}_a$. Then

$$\sum_{\pi \in \mathfrak{I}_{n+a}} q^{\text{maj}(\pi^{>a})} = \sum_{\substack{0 \leq j \leq a \\ k=n-a+j}} t_j \binom{a}{j} [a-j]_q! \begin{bmatrix} n \\ k \end{bmatrix}_q t_k(q),$$

$$\sum_{\pi \in \mathfrak{I}_{n+a}(\sigma)} q^{\text{maj}(\pi^{>a})} = \sum_{\substack{j \in J(\sigma) \\ k=n-a+j}} q^{\text{maj}(\sigma^{>j})} \begin{bmatrix} n \\ k \end{bmatrix}_q t_k(q).$$

Proof. Similar to the proof of the following theorem. \square

Theorem 2.4. Let a, b, n, m and ℓ be integers with $a + m = b + n = \ell$. Let $\sigma \in \mathfrak{S}_a, \tau \in \mathfrak{S}_b$. Then

$$\sum_{\pi \in \mathfrak{S}_\ell} p^{\text{imaj}(\pi^{>a})} q^{\text{maj}(\pi^{>b})} = \sum_{\substack{0 \leq j \leq a \\ k=n-a+j}} j! \binom{a}{j} \binom{b}{j} [b-j]_p! [a-j]_q! \begin{bmatrix} m \\ k \end{bmatrix}_p \begin{bmatrix} n \\ k \end{bmatrix}_q A_k(p, q),$$

$$\sum_{\pi \in \mathfrak{S}_\ell | \sigma^\tau} p^{\text{imaj}(\pi^{>a})} q^{\text{maj}(\pi^{>b})} = \sum_{\substack{j \in J(\sigma, \tau) \\ k=n-a+j}} p^{\text{imaj}(\tau^{>j})} q^{\text{maj}(\sigma^{>j})} \begin{bmatrix} m \\ k \end{bmatrix}_p \begin{bmatrix} n \\ k \end{bmatrix}_q A_k(p, q).$$

Proof. Let $0 \leq j \leq a$. Consider a permutation $\pi \in \mathfrak{S}_\ell$ such that $\pi_{(1,1)} \in \mathfrak{S}_j$, where

$$\phi_{a,b}(\pi) = (\pi_{(1,1)}, \pi_{(1,2)}, \pi_{(2,1)}, \pi_{(2,2)}, \mathbf{c}_1, \mathbf{r}_1, \mathbf{c}_2, \mathbf{r}_2).$$

Then $(\pi^{>a})^{-1} = \text{sf}(\pi_{(1,2)}^{-1}, \pi_{(2,2)}^{-1}; \mathbf{c}_2)$ and $\pi^{>b} = \text{sf}(\pi_{(2,1)}, \pi_{(2,2)}; \mathbf{r}_2)$. Thus

$$(6) \quad p^{\text{imaj}(\pi^{>a})} q^{\text{maj}(\pi^{>b})} = p^{\text{maj}(\text{sf}(\pi_{(1,2)}^{-1}, \pi_{(2,2)}^{-1}; \mathbf{c}_2))} q^{\text{maj}(\text{sf}(\pi_{(2,1)}, \pi_{(2,2)}; \mathbf{r}_2))}.$$

Let $k = n - a + j$. By Lemma 2.2, the sum of (6) over all $\pi_{(2,2)} \in \mathfrak{S}_k$, $\mathbf{c}_2 \in \binom{[m]}{k}$ and $\mathbf{r}_2 \in \binom{[n]}{k}$ equals

$$(7) \quad p^{\text{imaj}(\pi_{(1,2)})} q^{\text{maj}(\pi_{(2,1)})} \begin{bmatrix} m \\ k \end{bmatrix}_p \begin{bmatrix} n \\ k \end{bmatrix}_q A_k(p, q).$$

Summing (7) over all j , $\pi_{(1,1)} \in \mathfrak{S}_j$, $\pi_{(1,2)} \in \mathfrak{S}_{b-j}$, $\pi_{(2,1)} \in \mathfrak{S}_{a-j}$, $\mathbf{c}_1 \in \binom{[a]}{a-j}$ and $\mathbf{r}_1 \in \binom{[b]}{b-j}$, and using the well known result $\sum_{\pi \in \mathfrak{S}_n} q^{\text{maj}(\pi)} = [n]_q!$, we get the first identity.

If $\pi \in \mathfrak{S}_\ell | \sigma^\tau$, then $\text{sf}(\pi_{(1,1)}, \pi_{(1,2)}; \mathbf{r}_1) = \tau$ and $\text{sf}(\pi_{(1,1)}^{-1}, \pi_{(2,1)}^{-1}; \mathbf{c}_1) = \sigma^{-1}$, which implies $\pi_{(1,1)} = \sigma^{\leq j} = \tau_{\leq j}$, $\pi_{(1,2)} = \tau_{>j}$ and $\pi_{(2,1)} = \sigma^{>j}$. Thus we have $j \in J(\sigma, \tau)$, and j determines $\pi_{(1,1)}$, $\pi_{(1,2)}$, $\pi_{(2,1)}$, \mathbf{c}_1 and \mathbf{r}_1 . Then we get the second identity by summing (7) over all $j \in J(\sigma, \tau)$. \square

Recall that for a real number $r > 0$, we denote $\bar{r} = \min(r, r^{-1})$.

The proof of the following lemma is in Section 5.

Lemma 2.5. Let $p, q > 0$. Then

$$\lim_{n \rightarrow \infty} \frac{\frac{t_{n+1}(q)}{[n+1]_q!}}{\frac{t_n(q)}{[n]_q!}} = 1 - \bar{q}, \quad \lim_{n \rightarrow \infty} \frac{\frac{A_{n+1}(p,q)}{[n+1]_p![n+1]_q!}}{\frac{A_n(p,q)}{[n]_p![n]_q!}} = (1 - \bar{p})(1 - \bar{q}).$$

Theorem 1.2 is a consequence of the following theorem.

Theorem 2.6. Let a be an integer and let $\sigma \in \mathfrak{S}_a$. If $q > 0$, then

$$\lim_{n \rightarrow \infty} \frac{\sum_{\pi \in \mathfrak{I}_n(\sigma)} q^{\text{maj}(\pi^{>a})}}{\sum_{\pi \in \mathfrak{I}_n} q^{\text{maj}(\pi^{>a})}} = \frac{\sum_{j \in J(\sigma)} q^{\text{maj}(\sigma^{>j})} \begin{bmatrix} a \\ j \end{bmatrix}_q [j]_q! (1 - \bar{q})^j}{\sum_{j=0}^a [a]_q! t_j \binom{a}{j} (1 - \bar{q})^j}.$$

Proof. By Theorem 2.3, the left hand side is equal to

$$(8) \quad \lim_{n \rightarrow \infty} \frac{\sum_{\pi \in \mathfrak{I}_{n+a}(\sigma)} \frac{q^{\text{maj}(\pi > a)}}{[n]_q!}}{\sum_{\pi \in \mathfrak{I}_{n+a}} \frac{q^{\text{maj}(\pi > a)}}{[n]_q!}} = \lim_{n \rightarrow \infty} \frac{\sum_{j \in J(\sigma)} \frac{q^{\text{maj}(\sigma > j)}}{[a-j]_q!} \frac{t_{n-a+j}(q)}{[n-a+j]_q!}}{\sum_{j=0}^a t_j \binom{a}{j} \frac{t_{n-a+j}(q)}{[n-a+j]_q!}}.$$

By Lemma 2.5, we have

$$\lim_{n \rightarrow \infty} \frac{\frac{t_{n-a+j}(q)}{[n-a+j]_q!}}{\frac{t_{n-a}(q)}{[n-a]_q!}} = (1 - \bar{q})^j.$$

Then, we get the theorem by dividing the numerator and denominator of the right hand side of (8) by $\frac{t_{n-a}(q)}{[n-a]_q!}$, and by multiplying them by $[a]_q!$. \square

Similarly, we can prove the following theorem, which implies Theorem 1.6.

Theorem 2.7. *Let a, b be integers and let $\sigma \in \mathfrak{S}_a$, $\tau \in \mathfrak{S}_b$. If $p, q > 0$, then*

$$\begin{aligned} & \lim_{n \rightarrow \infty} \frac{\sum_{\pi \in \mathfrak{S}_n | \tau} p^{\text{imaj}(\pi > a)} q^{\text{maj}(\pi > b)}}{\sum_{\pi \in \mathfrak{S}_n} p^{\text{imaj}(\pi > a)} q^{\text{maj}(\pi > b)}} \\ &= \frac{\sum_{j \in J(\sigma, \tau)} p^{\text{imaj}(\tau > j)} q^{\text{maj}(\sigma > j)} \binom{b}{j} \binom{a}{j} [j]_p! [j]_q! (1 - \bar{p})^j (1 - \bar{q})^j}{\sum_{j=0}^a [b]_p! [a]_q! j! \binom{a}{j} \binom{b}{j} (1 - \bar{p})^j (1 - \bar{q})^j}. \end{aligned}$$

3. TABLEAU CONTAINMENT

Jaggard [2] proved that for a SYT A of shape α ,

$$(9) \quad \#\{\sigma : P(\sigma) = A, j \in J(\sigma)\} = \sum_{\mu \vdash j} f^{\alpha/\mu}.$$

The following is a generalization of (9).

Lemma 3.1. *Let A be SYT of shape α . Let j be a fixed nonnegative integer. Then*

$$\sum_{\substack{\sigma: \\ \left\{ \begin{array}{l} P(\sigma)=A \\ j \in J(\sigma) \end{array} \right.}} q^{\text{maj}(\sigma > j)} = \sum_{\mu \vdash j} f^{\alpha/\mu}(q).$$

Proof. Similar to the proof of the following lemma. \square

We can also consider pairs of SYTs.

Lemma 3.2. *Let A and B be SYTs of shape α and β respectively. Let j be a fixed nonnegative integer. Then*

$$\sum_{(\sigma, \tau): \left\{ \begin{array}{l} P(\sigma)=A \\ Q(\tau)=B \\ j \in J(\sigma, \tau) \end{array} \right.} p^{\text{imaj}(\tau > j)} q^{\text{maj}(\sigma > j)} = \sum_{\mu \vdash j} f^{\beta/\mu}(p) f^{\alpha/\mu}(q).$$

Proof. Let $X = \{(\sigma, \tau) : P(\sigma) = A, Q(\tau) = B, j \in J(\sigma, \tau)\}$ and $Y = \{(U, V) : \mu \vdash j, sh(U) = \beta/\mu, sh(V) = \alpha/\mu\}$. It is sufficient to find a bijection $\psi : X \rightarrow Y$ such that if $\psi(\sigma, \tau) = (U, V)$, then $\text{imaj}(\tau > j) = \text{maj}(U)$ and $\text{maj}(\sigma > j) = \text{maj}(V)$.

We define $\psi(\sigma, \tau) = (U, V)$ by $U = P(\tau)_{>j}$ and $V = Q(\sigma)_{>j}$. Then we have $\text{imaj}(\tau > j) = \text{maj}(U)$ and $\text{maj}(\sigma > j) = \text{maj}(V)$.

To prove ψ is a bijection, it is sufficient to show that for $(U, V) \in Y$ there exists a unique pair $(\sigma, \tau) \in X$ satisfying $\psi(\sigma, \tau) = (U, V)$. Let $\alpha \vdash a$. Since $P(\sigma) = A$, $Q(\sigma)_{>j} = V$, by reversing the insertion algorithm $a-j$ times, we can find $\sigma_a, \sigma_{a-1}, \dots, \sigma_{j+1}$ and $P(\sigma^{\leq j})$. Since $P(\tau)_{\leq j} = P(\tau_{\leq j}) = P(\sigma^{\leq j})$ and $P(\tau)_{>j} = U$, we can determine $P(\tau)$. Thus we get τ , from which we can determine $\sigma^{\leq j} = \tau_{\leq j}$. Thus we get σ , and there is a unique pair $(\sigma, \tau) \in X$ with $\psi(\sigma, \tau) = (U, V)$. \square

Now we can prove the following theorem, which implies Theorem 1.3.

Theorem 3.3. *Let A be a fixed SYT of shape $\alpha \vdash a$. If $q > 0$, then*

$$\lim_{n \rightarrow \infty} \frac{\sum_{T \in \mathcal{T}_n(A)} q^{\text{maj}(T > a)}}{\sum_{T \in \mathcal{T}_n} q^{\text{maj}(T > a)}} = \frac{\sum_{j=0}^a [a]_q [j]_q! (1 - \bar{q})^j \sum_{\mu \vdash j} f^{\alpha/\mu}(q)}{\sum_{j=0}^a [a]_q! t_j \binom{a}{j} (1 - \bar{q})^j}.$$

Proof. By the Robinson-Schensted correspondence (1), we have

$$\lim_{n \rightarrow \infty} \frac{\sum_{T \in \mathcal{T}_n(A)} q^{\text{maj}(T > a)}}{\sum_{T \in \mathcal{T}_n} q^{\text{maj}(T > a)}} = \lim_{n \rightarrow \infty} \frac{\sum_{\sigma: P(\sigma) = A} \sum_{\pi \in \mathfrak{I}_n(\sigma)} q^{\text{maj}(\pi > a)}}{\sum_{\pi \in \mathfrak{I}_n} q^{\text{maj}(\pi > a)}},$$

which is, by Theorem 2.6, equal to

$$\frac{\sum_{\sigma: P(\sigma) = A} \sum_{j \in J(\sigma)} q^{\text{maj}(\sigma > j)} [a]_q [j]_q! (1 - \bar{q})^j}{\sum_{j=0}^a [a]_q! t_j \binom{a}{j} (1 - \bar{q})^j}.$$

The numerator is equal to

$$\sum_{j=0}^a \left[\begin{matrix} a \\ j \end{matrix} \right]_q [j]_q! (1 - \bar{q})^j \sum_{\sigma: \left\{ \begin{matrix} P(\sigma) = A \\ j \in J(\sigma) \end{matrix} \right\}} q^{\text{maj}(\sigma > j)}.$$

By Lemma 3.1, we are done. \square

Similarly, we get the following, which implies Theorem 1.7.

Theorem 3.4. *Let A and B be SYTs of shape $\alpha \vdash a$ and $\beta \vdash b$ respectively. If $p, q > 0$, then*

$$\begin{aligned} & \lim_{n \rightarrow \infty} \frac{\sum_{(P,Q) \in \mathcal{T}_n(A,B)} p^{\text{maj}(P > a)} q^{\text{maj}(Q > b)}}{\sum_{(P,Q) \in \mathcal{T}_n(\emptyset,\emptyset)} p^{\text{maj}(P > a)} q^{\text{maj}(Q > b)}} \\ &= \frac{\sum_{j=0}^a \left[\begin{matrix} b \\ j \end{matrix} \right]_p \left[\begin{matrix} a \\ j \end{matrix} \right]_q [j]_p! [j]_q! (1 - \bar{p})^j (1 - \bar{q})^j \sum_{\mu \vdash j} f^{\beta/\mu}(p) f^{\alpha/\mu}(q)}{\sum_{j=0}^a [b]_p! [a]_q! j! \binom{a}{j} (1 - \bar{p})^j (1 - \bar{q})^j}. \end{aligned}$$

Using (9), Jaggard [2] proved the following theorem of Sagan and Stanley [7]:

$$(10) \quad \sum_{\lambda / \alpha \vdash n} f^{\lambda/\alpha} = \sum_{k \geq 0} \binom{n}{k} t_k \sum_{\alpha / \mu \vdash n-k} f^{\alpha/\mu}.$$

We can prove a q -analog of (10).

Theorem 3.5. *Let α be a fixed partition. Then*

$$\sum_{\lambda / \alpha \vdash n} f^{\lambda/\alpha}(q) = \sum_{k \geq 0} \left[\begin{matrix} n \\ k \end{matrix} \right]_q t_k(q) \sum_{\alpha / \mu \vdash n-k} f^{\alpha/\mu}(q).$$

Proof. Let $\alpha \vdash a$. Let A be a SYT of shape α . Then the left hand side is equal to

$$\begin{aligned}
\sum_{T \in \mathcal{T}_{n+a}(A)} q^{\text{maj}(T_{>a})} &= \sum_{\sigma: P(\sigma)=A} \sum_{\pi \in \mathfrak{I}_{n+a}(\sigma)} q^{\text{maj}(\pi^{>a})} \\
&= \sum_{\sigma: P(\sigma)=A} \sum_{\substack{j \in J(\sigma) \\ k=n-a+j}} q^{\text{maj}(\sigma^{>j})} \begin{bmatrix} n \\ k \end{bmatrix}_q t_k(q) \quad (\text{by Theorem 2.3}) \\
&= \sum_{\substack{0 \leq j \leq a \\ k=n-a+j}} \begin{bmatrix} n \\ k \end{bmatrix}_q t_k(q) \sum_{\sigma: \substack{P(\sigma)=A \\ j \in J(\sigma)}} q^{\text{maj}(\sigma^{>j})} \\
&= \sum_{\substack{0 \leq j \leq a \\ k=n-a+j}} \begin{bmatrix} n \\ k \end{bmatrix}_q t_k(q) \sum_{\mu \vdash j} f^{\alpha/\mu}(q) \quad (\text{by Lemma 3.1}) \\
&= \sum_{k \geq 0} \begin{bmatrix} n \\ k \end{bmatrix}_q t_k(q) \sum_{\alpha/\mu \vdash n-k} f^{\alpha/\mu}(q).
\end{aligned}$$

□

Sagan and Stanley [7] also proved the following:

$$(11) \quad \sum_{\substack{\lambda/\alpha \vdash m \\ \lambda/\beta \vdash n}} f^{\lambda/\alpha} f^{\lambda/\beta} = \sum_{k \geq 0} \binom{m}{k} \binom{n}{k} k! \sum_{\substack{\beta/\mu \vdash m-k \\ \alpha/\mu \vdash n-k}} f^{\beta/\mu} f^{\alpha/\mu}.$$

Using the same argument of Theorem 3.5, we can prove a q -analog of (11).

Theorem 3.6. *Let α and β be fixed partitions. Then*

$$\sum_{\substack{\lambda/\alpha \vdash m \\ \lambda/\beta \vdash n}} f^{\lambda/\alpha}(p) f^{\lambda/\beta}(q) = \sum_{k \geq 0} \begin{bmatrix} m \\ k \end{bmatrix}_p \begin{bmatrix} n \\ k \end{bmatrix}_q A_k(p, q) \sum_{\substack{\beta/\mu \vdash m-k \\ \alpha/\mu \vdash n-k}} f^{\beta/\mu}(p) f^{\alpha/\mu}(q).$$

We note that Theorem 3.5 and Theorem 3.6 can also be proved using the following identities of skew Schur functions:

$$\begin{aligned}
\sum_{\lambda} s_{\lambda/\alpha}(\mathbf{x}) &= \sum_{\mu} s_{\alpha/\mu}(\mathbf{x}) \prod_i (1-x_i)^{-1} \prod_{i < j} (1-x_i x_j)^{-1}, \\
\sum_{\lambda} s_{\lambda/\alpha}(\mathbf{x}) s_{\lambda/\beta}(\mathbf{y}) &= \prod_{i,j} (1-x_i y_j)^{-1} \sum_{\mu} s_{\beta/\mu}(\mathbf{x}) s_{\alpha/\mu}(\mathbf{y}).
\end{aligned}$$

4. CRITERION FOR A j_2 -SET

Kim and Kim [3] found the following a criterion for a j -set.

Theorem 4.1. *Let J be a j -set with the largest element $m \geq 2$. Then, for $n > m$, $J \cup \{n\}$ is a j -set if and only if $n = m + 1$ or $n - m \geq m - \max(J \cap [m-2])$.*

Since $J(\sigma) = J(\sigma, \sigma^{-1})$, a j -set is also a j_2 -set. But the converse is not true. In this section we will find a criterion for a j_2 -set. Our proof is similar to the proof of Theorem 4.1 in [3], but easier than that.

We start with a simple observation.

Proposition 4.2. *Let J be a j_2 -set with the largest element n . Then there is a permutation in \mathfrak{S}_n such that $J(\pi, \pi) = J$.*

Proof. Let (σ, τ) be a pair with $J = J(\sigma, \tau)$. Since $\sigma^{\leq n} = \tau_{\leq n}$, if we set $\pi = \sigma^{\leq n}$, then we have $J(\pi, \pi) = J$. □

To prove the criterion theorem we need the following four lemmas. Recall that, for 0-1 matrices M and N , we write $M \sim N$ if the matrices obtained from M and N by removing rows and columns consisting of zeroes are the same.

For the rest of this section, we assume that n and k are positive integers.

Lemma 4.3. *Let m be an integer greater than 1. Let J be a j_2 -set such that the three largest elements of J are $n - k$, n and $n + m$. Then $m \geq k$.*

Proof. Let π be a permutation in \mathfrak{S}_{n+m} satisfying $J(\pi, \pi) = J$. Let A, B, C and D be the $n \times n$, $n \times m$, $m \times n$ and $m \times m$ matrices respectively such that $M(\pi) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Since $n \in J(\pi, \pi)$, we have $(A \ B) \sim \begin{pmatrix} A \\ C \end{pmatrix}$. Let $\sigma = \pi^{\leq n} = \pi_{\leq n}$. Let B have s nonzero entries. Then C also has s nonzero entries. If $s = 0$, then we get $n + 1 \in J(\pi, \pi)$ because $\pi^{\leq n+1} \sim \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \sim \pi_{\leq n+1}$. But this is a contradiction to $m > 1$. Thus $s \geq 1$. Since $\sigma^{\leq n-s} \sim A \sim \sigma_{\leq n-s}$, we get $\sigma^{\leq n-s} = \sigma_{\leq n-s}$. Thus

$$\pi^{\leq n-s} = (\pi^{\leq n})^{\leq n-s} = \sigma^{\leq n-s} = \sigma_{\leq n-s} = (\pi_{\leq n})_{\leq n-s} = \pi_{\leq n-s}$$

and we get $n - s \in J(\pi, \pi)$. Since $n - k$ is the largest element in $J \cap [n - 1]$, we get $n - s \leq n - k$. Since B has at most m nonzero entries, we get $k \leq s \leq m$. \square

Lemma 4.4. *Let J be a j_2 -set such that the two largest elements of J are $n - k$ and n . Then $J \cup \{n + k\}$ is a j_2 -set.*

Proof. If $k = 1$, then it is clear. Assume $k \geq 2$. Let σ be a permutation in \mathfrak{S}_n with $J(\sigma, \sigma) = J$. Let $\pi \in \mathfrak{S}_{n+k}$ be the permutation satisfying

$$(12) \quad M(\pi) = \begin{pmatrix} A & C \\ B & \mathbf{0} \end{pmatrix},$$

where A, B and C are the matrices of size $n \times n$, $k \times n$ and $n \times k$ respectively such that $M(\sigma) \sim \begin{pmatrix} A \\ B \end{pmatrix} \sim (A \ C)$. Since $J(\pi, \pi) \cap [n] = J$ and $n + k \in J(\pi, \pi)$, it is sufficient to show that $n + s \notin J(\pi, \pi)$ for all $1 \leq s < k$. Suppose $n + s \in J(\pi, \pi)$ for some $1 \leq s < k$. Then we have

$$(13) \quad \begin{pmatrix} A & C \\ B' & \mathbf{0} \end{pmatrix} \sim \begin{pmatrix} A & C' \\ B & \mathbf{0} \end{pmatrix},$$

where B' (resp. C') is the matrix consisting of the first s rows of B (resp. columns of C). Removing the last $k - s$ nonzero rows and columns of the matrices in both sides of (13), we get $\sigma^{\leq n-k+s} = \sigma_{\leq n-k+s}$, i.e., $n - k + s \in J(\sigma, \sigma) = J$, which is a contradiction to the assumption that $n - k$ and n are the two largest element of J . \square

Lemma 4.5. *Let J be a j_2 -set such that the two largest elements of J are $n - k$ and n . If $k \geq 2$, then $(J \setminus \{n\}) \cup \{n + 1\}$ is a j_2 -set.*

Proof. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n$ be a permutation in \mathfrak{S}_n with $J(\sigma, \sigma) = J$. Since $n - 1 \notin J(\sigma, \sigma)$, we have $\sigma_n \neq n$. Let $\pi \in \mathfrak{S}_{n+1}$ be the permutation such that

$$\pi_i = \begin{cases} \sigma_i & \text{if } i < n \text{ and } \sigma_i < n, \\ n + 1 & \text{if } i < n \text{ and } \sigma_i = n, \\ n & \text{if } i = n, \\ \sigma_n & \text{if } i = n + 1. \end{cases}$$

Then $M(\sigma)$ and $M(\pi)$ are decomposed as follows:

$$M(\sigma) = \begin{array}{|c|c|} \hline A & C \\ \hline B & 0 \\ \hline \end{array}, \quad M(\pi) = \begin{array}{|c|c|c|} \hline A & 0 & C \\ \hline \vdots & \vdots & \vdots \\ \hline 0 & \cdots & 0 & 1 & 0 \\ \hline B & 0 & 0 \\ \hline \end{array},$$

where A , B and C are $(n-1) \times (n-1)$, $1 \times (n-1)$ and $(n-1) \times 1$ matrices respectively. It is not difficult to see that $J(\pi, \pi) = (J \setminus \{n\}) \cup \{n+1\}$. \square

Lemma 4.6. *Let J be a j_2 -set such that the two largest elements of J are $n-1$ and n . Then $J \cup \{n+k\}$ is a j_2 -set for any positive integer k .*

Proof. It is clear if $k=1$. Assume $k \geq 2$. Let $\sigma \in \mathfrak{S}_{n-1}$ with $J(\sigma, \sigma) = J \setminus \{n\}$. Let $\pi \in \mathfrak{S}_{n+k}$ such that $M(\pi) = \begin{pmatrix} M(\sigma) & \mathbf{0} \\ \mathbf{0} & A \end{pmatrix}$, where $A = \begin{pmatrix} \mathbf{0} & I_{k-1} \\ 1 & \mathbf{0} \end{pmatrix}$ and I_{k-1} is the $(k-1) \times (k-1)$ identity matrix. Then $J(\pi, \pi) = J \cup \{n+k\}$. \square

Summarizing the above four lemmas, we obtain the following criterion theorem.

Theorem 4.7. *Let J be a j_2 -set such that the two largest elements of J are $n-k$ and n . Then $J \cup \{n+m\}$ is a j_2 -set if and only if $m=1$ or $m \geq k$.*

It is easy to see that if J is a j_2 -set, then $J \cap [k]$ is also a j_2 -set for any integer k . Using Theorem 4.7, we can find a simple method to check whether a given set is a j_2 -set or not.

Let $S = \{s_0, s_1, s_2, \dots, s_n\}$ be a set of integers such that $s_0 < s_1 < \dots < s_n$. We define $\Delta(S)$ as follows. Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ be the sequence such that $a_i = s_{n-i+1} - s_{n-i}$. Let $\mathbf{i} = \{i_1, i_2, \dots, i_k\}$ be the set of integers such that $1 \leq i_1 < i_2 < \dots < i_k \leq n$ and $a_j = 1$ if and only if $j \in \mathbf{i}$ and let $i_0 = 0$. Then $\Delta(S)$ is the sequence $(\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k)$, where $\mathbf{s}_j = (a_{i_{j-1}+1}, a_{i_{j-1}+2}, \dots, a_{i_j})$.

Example 4.8. Let $S = \{0, 1, 3, 6, 7, 8, 12, 13, 14, 15, 17\}$. Then $\mathbf{a} = \{2, 1, 1, 1, 4, 1, 1, 3, 2, 1\}$. Thus $\Delta(S) = ((2, 1), (1), (1), (4, 1), (1), (3, 2, 1))$.

Corollary 4.9. *Let $S = \{s_0, s_1, s_2, \dots, s_n\}$ be a set of integers such that $s_0 < s_1 < \dots < s_n$ and $\Delta(S) = (\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k)$. Then S is a j_2 -set if and only if $s_0 = 0$, $s_1 = 1$ and \mathbf{s}_i is a partition with exactly one part equal to 1 for all $i \in [k]$.*

Proof. It is a straightforward verification using Theorem 4.7. \square

By Corollary 4.9, the set S in Example 4.8 is a j_2 -set. Using Corollary 4.9, we can easily get the generating function for the number of j_2 -sets.

Corollary 4.10. *Let $j_2(n)$ be the number of j_2 -sets with the largest element n . Then*

$$\sum_{n \geq 0} j_2(n)x^n = \frac{x \prod_{i \geq 2} \frac{1}{1-x^i}}{1-x \prod_{i \geq 2} \frac{1}{1-x^i}} = \frac{x}{\prod_{i \geq 2} (1-x^i) - x},$$

$$\{j_2(n)\}_{n \geq 1} = \{1, 1, 2, 4, 8, 15, 29, 55, 105, 200, 381, 725, 1381, 2629, 5005, \dots\}.$$

5. PROOF OF LEMMA 2.5

Lemma 5.1. *We have*

$$\frac{t_n(q^{-1})}{[n]_{q^{-1}}!} = \frac{t_n(q)}{[n]_q!},$$

$$\frac{A_n(p^{-1}, q)}{[n]_{p^{-1}}! [n]_q!} = \frac{A_n(p, q^{-1})}{[n]_p! [n]_{q^{-1}}!} = \frac{A_n(p^{-1}, q^{-1})}{[n]_{p^{-1}}! [n]_{q^{-1}}!} = \frac{A_n(p, q)}{[n]_p! [n]_q!}.$$

Proof. Let T be a SYT of size n . Then $\text{maj}(T) + \text{maj}(T') = \binom{n}{2}$, where T' denotes the transpose of T . Thus

$$t_n(q^{-1}) = \sum_{T \in \mathcal{T}_n} q^{-\text{maj}(T)} = q^{-\binom{n}{2}} \sum_{T \in \mathcal{T}_n} q^{\text{maj}(T')} = q^{-\binom{n}{2}} t_n(q).$$

Since $q^{-\binom{n}{2}} / [n]_{q^{-1}}! = 1 / [n]_q!$, we get $\frac{t_n(q^{-1})}{[n]_{q^{-1}}!} = \frac{t_n(q)}{[n]_q!}$. The rest identities can be proved similarly. \square

Lemma 5.2. *If $0 < q < 1$, then*

$$\log \left(\prod_{i \geq 1} (1 - q^i)^{-i} \right) < \left(1 + \frac{q}{(1-q)^2} \right) \left(1 + \log \frac{1}{1-q} \right).$$

Proof. The left hand side is equal to

$$\begin{aligned} \sum_{i \geq 1} i \log \left(\frac{1}{1 - q^i} \right) &= \sum_{i \geq 1} i \sum_{j \geq 1} \frac{q^{ij}}{j} \\ &= \sum_{i,j \geq 2} \frac{i q^{ij}}{j} + \sum_{i \geq 1} i q^i + \sum_{j \geq 1} \frac{q^j}{j} - 1 \\ &< \sum_{i,j \geq 2} \frac{i q^{i+j}}{j} + \sum_{i \geq 1} i q^i + \sum_{j \geq 1} \frac{q^j}{j} \\ &< \left(1 + \sum_{i \geq 1} i q^i \right) \left(1 + \sum_{j \geq 1} \frac{q^j}{j} \right) = \left(1 + \frac{q}{(1-q)^2} \right) \left(1 + \log \frac{1}{1-q} \right). \end{aligned}$$

\square

Let $\mathbf{x} = (x_1, x_2, \dots)$ and $\mathbf{y} = (y_1, y_2, \dots)$ be two infinite sequences of independent variables. Let $s_\lambda(\mathbf{x})$ denote the Schur function in the variables \mathbf{x} . The following formulas are well known, see [4, 8].

$$(14) \quad \sum_{n \geq 0} \sum_{\lambda \vdash n} s_\lambda(\mathbf{x}) z^n = \prod_{i \geq 1} (1 - x_i z)^{-1} \prod_{1 \leq i < j} (1 - x_i x_j z^2)^{-1},$$

$$(15) \quad \sum_{n \geq 0} \sum_{\lambda \vdash n} s_\lambda(\mathbf{x}) s_\lambda(\mathbf{y}) z^n = \prod_{i,j \geq 1} (1 - x_i y_j z)^{-1}.$$

It is also known, see [8, Proposition 7.19.11], that if $x_i = q^{i-1}$, then

$$s_\lambda(1, q, q^2, \dots) = \frac{f^\lambda(q)}{(1-q)^n [n]_q!}.$$

Thus we get the following.

$$(16) \quad \sum_{\lambda \vdash n} s_\lambda(1, q, q^2, \dots) = \frac{t_n(q)}{(1-q)^n [n]_q!}$$

$$(17) \quad \sum_{\lambda \vdash n} s_\lambda(1, p, p^2, \dots) s_\lambda(1, q, q^2, \dots) = \frac{A_n(p, q)}{(1-p)^n (1-q)^n [n]_p! [n]_q!}$$

Lemma 5.3. *Let $0 < p, q < 1$. Then*

$$\lim_{n \rightarrow \infty} \sum_{\lambda \vdash n} s_\lambda(1, q, q^2, \dots) = \prod_{i \geq 1} (1 - q^i)^{-1} \prod_{0 \leq i < j} (1 - q^{i+j})^{-1},$$

$$\lim_{n \rightarrow \infty} \sum_{\lambda \vdash n} s_\lambda(1, p, p^2, \dots) s_\lambda(1, q, q^2, \dots) = \prod_{\substack{i,j \geq 0 \\ i+j > 0}} (1 - p^i q^j)^{-1}.$$

Proof. Let $\xi_n(q) = \sum_{\lambda \vdash n} s_\lambda(1, q, q^2, \dots)$. By (14), we have

$$\sum_{n \geq 0} \xi_n(q) z^n = \prod_{i \geq 0} (1 - q^i z)^{-1} \prod_{0 \leq i < j} (1 - q^{i+j} z^2)^{-1},$$

equivalently,

$$\sum_{n \geq 0} (\xi_n(q) - \xi_{n-1}(q)) z^n = \prod_{i \geq 1} (1 - q^i z)^{-1} \prod_{0 \leq i < j} (1 - q^{i+j} z^2)^{-1},$$

where $\xi_{-1}(q) = 0$.

Then

$$\lim_{N \rightarrow \infty} \xi_N(q) = \lim_{N \rightarrow \infty} \sum_{n=0}^N (\xi_n(q) - \xi_{n-1}(q)) = \prod_{i \geq 1} (1 - q^i)^{-1} \prod_{0 \leq i < j} (1 - q^{i+j})^{-1}$$

converges, because

$$\prod_{i \geq 1} (1 - q^i)^{-1} < \prod_{0 \leq i < j} (1 - q^{i+j})^{-1} = \prod_{i \geq 1} (1 - q^i)^{-\lceil \frac{i}{2} \rceil} < \prod_{i \geq 1} (1 - q^i)^{-i},$$

where $\prod_{i \geq 1} (1 - q^i)^{-i}$ converges by Lemma 5.2. Thus we get the first limit. Similarly, we can prove the second limit. \square

Proof of Lemma 2.5. We will only prove the first limit. The second can be proved similarly. Using the well known asymptotic behavior of $t_n \sim \frac{1}{\sqrt{2}} n^{n/2} \exp(-\frac{n}{2} + \sqrt{n} - \frac{1}{4})$, we can easily see that it holds for $q = 1$. Assume $q \neq 1$. By Lemma 5.1, it is sufficient to show that for $0 < q < 1$,

$$\lim_{n \rightarrow \infty} \frac{\frac{t_{n+1}(q)}{[n+1]_q!}}{\frac{t_n(q)}{[n]_q!}} = 1 - q.$$

Since $\frac{t_n(q)}{[n]_q!} = (1 - q)^n \sum_{\lambda \vdash n} s_\lambda(1, q, q^2, \dots)$, we are done by Lemma 5.3. \square

ACKNOWLEDGEMENTS

I would like to thank Professor Richard Stanley for helpful comments. I would also like to thank Professor Ron King for pointing out an error in Lemma 5.3.

REFERENCES

- [1] A. M. Garsia and I. Gessel. Permutation statistics and partitions. *Adv. in Math.*, 31(3):288–305, 1979.
- [2] Aaron D. Jaggard. Subsequence containment by involutions. *Electron. J. Combin.*, 12:Research Paper 14, 15 pp. (electronic), 2005.
- [3] Dongsu Kim and Jang Soo Kim. The initial involution patterns of permutations. *Electron. J. Combin.*, 14(1):Research Paper 2, 15 pp. (electronic), 2007.
- [4] I. G. Macdonald. *Symmetric functions and Hall polynomials*. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
- [5] Brendan D. McKay, Jennifer Morse, and Herbert S. Wilf. The distributions of the entries of Young tableaux. *J. Combin. Theory Ser. A*, 97(1):117–128, 2002.
- [6] Bruce E. Sagan. *The symmetric group*, volume 203 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 2001. Representations, combinatorial algorithms, and symmetric functions.
- [7] Bruce E. Sagan and Richard P. Stanley. Robinson-Schensted algorithms for skew tableaux. *J. Combin. Theory Ser. A*, 55(2):161–193, 1990.
- [8] Richard P. Stanley. *Enumerative combinatorics. Vol. 2*, volume 62 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

DEPARTMENT OF MATHEMATICAL SCIENCES, KOREA ADVANCED INSTITUTE OF SCIENCE AND
TECHNOLOGY, DAEJEON 305-701, KOREA
E-mail address: `jskim@kaist.ac.kr`