The Guide of the ARock Codebase

March 9, 2016

The fixed-point problem

- operator $T:\mathcal{H}\to\mathcal{H}$
- **problem:** find $x \in \mathcal{H}$ such that

$$x = Tx$$

- abstracts many problems:
 - linear equations
 - convex optimization
 - statistical regression
 - · optimal control

ARock¹: Async-parallel coordinate update

- $\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_m$
- p agents, possibly $p \neq m$
- each agent randomly picks $i \in \{1, \ldots, m\}$ and updates just x_i :

$$\begin{aligned} x_1^{k+1} &\leftarrow x_1^k \\ &\vdots \\ x_i^{k+1} &\leftarrow x_i^k - \eta_k S_i \hat{x}^k \\ &\vdots \\ x_m^{k+1} &\leftarrow x_m^k \end{aligned}$$

where S = I - T.

¹Peng-Xu-Yan-Y.'15

What's wrong with the old code?

- It is cluttered;
- It is not portable;
- Creating a new app is troublesome.

The goal of the new code base

- Be able to create a new app quickly;
- Be able to test new asynchronous ideas easily;
- Be portable and modularized;
- Academic friendly;

Features

- Vector and matrix classes (both dense and sparse);
- A customized and easy-to-use linear algebra library;
- A rich set of coordinate friendly operators (17 operators);
- Several interfaces for common operator splitting schemes;
- A rich set of applications built on top of ARock;
- A generic interface for controller;
- Matlab, Python and Julia interface (coming soon);
- Runs on Linux, Mac OS X and Windows;
- Approximately 5,000 lines of C++ source code.

Library

Matrix and Vector

- We use the sparse matrix and sparse vector classes from Eigen;
- We build our own dense matrix and dense vector classes based on std::vector;

Linear Algebra

- Naive implementation is under the MyAlgebra namespace;
- Interface for BLAS is under the BLASAlgebra namespace;

File I/O

- Matrix market format;
- LIBSVM format;
- Matlab format (coming soon)

Helpers

- Objective function;
- Input args parser;

Operator - template

```
struct functor_name {
  // the step_size that associated with the operator
   double step_size;
  // weight on the original function
   double weight;
  // returns the operator evaluated on v at the given index
   double operator() (Vector* v, int index);
  // returns the operator evaluated on val at the given index
   double operator() (double val, int index);
  // full update
  void operator() (Vector* v_in, Vector* v_out);
   // (Optional) update the cached variables
   void update_cache_vars (double old_x_i, double new_x_i,
                                       int index):
  // update the step size
   void update_step_size (double step_size_);
  // customized constructor
   functor_name (double step_size_, double weight_ = 1.);
   // default constructor
   functor_name () : step_size(0.), weight(1.) {}
};
```

Operator - Proximal

$$\mathbf{prox}_f(x) = \operatorname*{arg\,min}_y f(y) + \frac{1}{2\sigma} \|x - y\|^2$$

Name	Definition	Proximal operator	
ℓ_1 norm	$w x _{1}$	$shrink(x,w\cdot\sigma)$	
sum of squares	$\frac{w}{2} x _2^2$	$\frac{1}{1+w\cdot\sigma}x$	
ℓ_2 norm	$w x _2$	$\begin{cases} 0 & \text{if } \ x\ _2 \leq w\sigma \\ (1 - \frac{w\sigma}{\ x\ _2}) \cdot x & \text{otherwise} \end{cases}$	
Huber function	$\begin{cases} \frac{w}{2}x^2, & \text{if } -\delta \leq x \leq \delta \\ w\delta(x -\frac{\delta}{2}), & \text{otherwise} \end{cases}$	$\begin{cases} x - w\sigma\delta & \text{if } x \geq \delta + w\sigma\delta \\ \frac{x}{1 + \sigma w} & \text{otherwise} \\ x + w\sigma\delta & \text{if } x \leq -\delta - w\sigma\delta \end{cases}$	
elastic net	$w_1 x _1 + \frac{w_2}{2} x _2^2$	$\frac{1}{1+w_2\sigma} \cdot shrink(x, w_1\sigma)$	
log barrier	$-w\sum_{i}\log(x_{i})$	$\frac{1}{2}(x_i + \sqrt{x_i^2 + 4w\sigma}), \forall i$	

Operator - Projections

Name	Definition	Projection operator	
positive cone	$\{x \mid x \ge 0\}$	$\max(0, x_i), \forall i$	
box	$\{x\mid l\leq x\leq u\}, l,u\in R^n$	$\max(l_i, \min(x_i, u_i))$	
ℓ_1 ball	$\{x \mid x _1 \le r\}$	$O(n\log(n))$ method	
ℓ_2 ball	$\{x \mid x _2 \le r\}$	$\begin{cases} \frac{r}{\ x\ } \cdot x & \text{if } \ x\ _2 \ge r \\ x & \text{otherwise} \end{cases}$	
hyperplane	$\{x \mid a^T x = b\}$	$x + \frac{(b-a^Tx)}{a^Ta} \cdot a$	
probability simplex	$\{x \mid x \ge 0, \sum_{i} x_i = 1\}$	$O(n\log(n))$ method	

Operator - Forward gradient

Name	Definition	Forward gradient operator	
square loss	$\frac{w}{2} A^T x - b ^2$	$x - \sigma w A (A^T x - b)$	
quadratic function	$w(\frac{1}{2}x^TQx + c^Tx + d)$	$x - \sigma w(Qx + c)$	
logistic loss	$w \sum_{i} \log(1 + \exp(-b_i \cdot a_i^T x))$	$x + \sigma w \sum_{i} \frac{b_i}{1 + \exp(b_i \cdot a_i^T x)} \cdot a_i$	
square hinge loss	$\frac{w}{2} \sum \max(0, b_i(1 - a_i^T x))^2$	$x + \sigma w \sum b_i \max(0, b_i(1 - a_i^T x)) \cdot a_i$	
square huber loss	$w \sum huber(a_i^T x - b_i)$	$x - \sigma w \nabla huber(a_i^T x - b_i)$	

Other loss functions:

• error functions in neural networks (coming soon);

Splitting schemes

Splitting schemes templated on one or more than one operators. The following are the supported splitting schemes:

- proximal point algorithm;
- forward gradient algorithm;
- forward-backward splitting;
- backward-forward splitting;
- Peaceman-Rachford splitting;
- three operator splitting; (coming soon)
- primal-dual splitting; (coming soon)

Splitting schemes - example

```
template <typename Forward, typename Backward>
struct ForwardBackwardSplitting {
 Forward forward:
 Backward backward;
 Vector* x:
 double relaxation_step_size;
 // constructor
 ForwardBackwardSplitting(Vector*, Forward, Backward);
 // update parameters
 void update_params(Params* params) {
    forward.update_step_size(params->get_step_size());
    backward.update_step_size(params->get_step_size());
    relaxation_step_size = params->get_arock_step_size();
 // make update to x[index], and update the cached variables
 double operator() (int index);
};
```

The two roles: worker and controller

Worker

Worker takes a splitting scheme, and a range of indexes, then runs params->max_itrs of epochs. Other updating orders can be achieved through modifying the worker and the AROCK kernel.

Controller

- controller object: defines the interaction between controller and worker.
- controller loop: update FPR and dynamically update the step size.

ARock

Spawn a set of threads to execute the worker function and the controller loop function.

Implemented applications

1. find the intersection of two sets with PRS

$$\min_{x} \iota_{\{x|\|x\|_{2} \le 1\}} + \iota_{\{x|\|x\|_{\infty} \le 0.1\}}$$

2. gradient descent for least squares

$$\min_{x} \frac{1}{2} \|A^T x - b\|^2$$

3. FBS for LASSO

$$\min_{x} \lambda ||x||_1 + \frac{1}{2} ||A^T x - b||^2$$

4. generalized regularized logistic regression

$$\min_{x} \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|^2 + \sum^m \log(1 + \exp(-b_i \cdot a_i^T x))$$

5. BFS for simple quadratic constrained quadratic programming

$$\min \frac{1}{2} ||A^T x - b||^2$$
, s.t. $||x|| \le 1$

6. FBS for modified version of SVM (coming soon)

$$\min_{x} \frac{\lambda}{2} ||x||^2 + \sum_{i=1}^{m} \max(0, 1 - b_i \cdot a_i^T x)^2$$

Platform

- a node with two Intel Xeon Processors E5-2690 v2 (25M Cache, 3.00 GHz)
- 20 cores, 64 GB of RAM;

Speedup test - baseline tests

- Goal: test the speedup performance of a set of basic operations;
- They will serve as a performance guideline for applying ARock to different applications;
- We implemented the following tests:
 - dot product of two dense vectors;
 - evaluate $\log(1 + \exp(-5.))$;
 - calculate dot(A(i,:),x) for dense A;
 - calculate dot(A(i,:),x) for sparse A;

Speedup test - dot product of two dense vectors

• evaluate x^Ty for 3200 times.

Speedup test - evaluate logistic loss function

• evaluate $\log(1 + \exp(-8.8))$ for 32 million times.

Speedup test - calculate dot(A(i,:),x) for dense A;

Speedup test - calculate dot(A(i,:),x) for dense A;

Speedup test - sparse logistic regression

	old code		new code	
# cores	Time (s)	Speedup	Time (s)	Speedup
1	27.9	1.0	9.5	1.0
2	17.6	1.6	7.4	1.3
4	9.1	3.1	4.1	2.3
8	5.1	5.5	2.5	3.8
16	3.1	9.0	1.5	6.3
32	2.4	11.6	0.9	10.5

Table : Running times of ARock for the ℓ_1 regularized logistic regression on rcv1.

Future work

- Matlab API;
- Python API;
- more tests with the controller;
- image processing applications with PDS;
- improve the operator implementations;
- more controller schemes.