

Budapest University of Technology and Economics Department of Artificial Intelligence and Systems Engineering

Artificial intelligence – VIMIAC16-EN, VIMIAC10

2024 Fall Semester

Dr. Gábor Hullám

Deep neural networks

- In the mid-2000s, there were hardly any articles on neural networks that were accepted
- 2004 − G. Hinton CIFAR (Canadian Institute for Advanced Research)
 - New packaging for neural networks: deep learning
- 2006 Hinton, Osindero, Yee-Whye Teh: A fast learning algorithm for deep belief nets
 - New breakthrough: teaching deep belief nets layer by layer,
 - Restarts research

Deep learning – ImageNet

2009 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei:

ImageNet: A Large-Scale Hierarchical Image Database

high-resolution images, 14M images, 10k+ categories http://www.image-net.org/about-stats

Deep learning - ILSVRC

- 2012 Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton: Imagenet classification with deep convolutional neural networks
 - This is the first purely neural network solution to achieve the best result of the year (SVM until then)
 - From there, deep learning becomes mainstream

AI - ML - DL

https://steemkr.com/technology/@neurallearner/ai-vs-machine-learning-vs-deep-learning

AI - ML - DL

AI - ML - DL

https://www.cargroup.org/behind-headlines-artificial-intelligence-challenges-using-ai-automotive-industry/

Background requirement: compute power

Deep reinforcement learning

- 2013 DeepMind: Playing Atari with Deep Reinforcement Learning
- 2016 DeepMind: AlphaGo beats Go World Champion Lee Sedol

Go

- Google DeepMind
- Monte Carlo tree search
- > 2016: 9 dan
- 2017: wins against human champion

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver^{1*}, Aja Huang^{1*}, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Deep learning - outcomes

Caption generation for images

- A. Karpathy, L. Fei-Fei: "Deep Visual-Semantic Alignments for Generating Image Descriptions"
- https://research.googleblog.com/2014/11/a-picture-is-worth-thousand-coherent.html

side of the road.

a parking lot.

on a couch.

across a dry grass field.

Deep learning - outcomes

Style 'learning'

https://github.com/jcjohnson/neural-st
 https://imgur.com/gallery/4LTaQ

Deep learning - outcomes

Comprehension

■ Xiong, W. et al. (2016). Achieving human parity in conversational speech recognition

Speech generation

 Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).

Image classification

■ C. Szegedy et al. (2014): GoogLeNet – "Going Deeper with Convolutions"

Types of neural networks

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Types of neural networks 2.

What makes deep neural networks "better"?

 Humans also detect features of various levels of abstraction A Solution – Deep Belief Networks (Hinton et al. 2006)

- These from a hierarchy OR
- There is some form of highlighting = feature subset selection
- These principles should be applied
 - New action for compression / essence highlighting
 - Layer-by-layer weight training
 - Regularization

Alexnet 2012

ImageNet Classification with Deep Convolutional Neural Networks 2012

UNIVERSITY OF

Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	~	~	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	Υ_	-1
-1	_	-1
-1	-1	1

Filter 1

Filter 2

: :

Each filter identifies a simple pattern(3 x 3).

6 x 6 image

	multiplication
)	3 (-1)
)	
)	
)	

1	Υ_	-1
-1	1	-1
-1	-1	1

Filter 1

Convolution

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

3 -3

1	-1	-1
1	~	-1
-1	-1	1

Filter 1

6 x 6 image

Convolution

Filter 1

stride=1

6 x 6 image

-2

-2

https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture5CNN.ppt

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

For all filters

two 4 x 4 images from a 2 x 4 x 4 matrix

Max Pooling

https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture5CNN.ppt

CNN

cat dog

