Algèbre linéaire et analyse 1

(HLMA101 - Année universitaire 2020-2021)

Feuille d'exercises 2 - CORRECTION

ÉCHAUFFEMENT

Question 1 (a) $1 \in \mathbb{N}$ (b) $\{2,3\} \subset \mathbb{N}$ (c) $\{1\} \subset \mathbb{N}$ (d) $1 \in \{1\}$ (e) $A \subset B \iff \forall y \in A, y \in B$ (f) $A = B \iff \forall y \in A, y \in B$ et $\forall y \in B, y \in A$.

Question 2 $A \cup B = \{1, 2, 3, 4\}, \ A \cup C = [-2, 4], \ B \cup C = [-2, 4], \ A \cap B = \{1, 4\}, \ A \cap C = \{1, 2\}, \ B \cap C = \{1, 3\}, \ A \setminus B = \{2\}, \ C \setminus A = [-2, 4[\setminus\{1, 2\} = [-2, 1[\ \cup\]1, 2[\ \cup\]2, 4[, \ C \cap \mathbb{Z} = \{-2, -1, 0, 1, 2, 3\}, \ C \cap \mathbb{N} = \{0, 1, 2, 3\}.$

Question 3 $\mathcal{P}(X) = \{\emptyset, \{\#\}, \{\diamond\}, \{\heartsuit\}, \{\#, \diamond\}, \{\#, \heartsuit\}, \{\diamond, \heartsuit\}, \{\#, \diamond, \heartsuit\}\}.$

Question 4 (a) $A \in \mathbb{N}$ Faux $(A \text{ n'est pas un élément de } \mathbb{N})$ (b) $A \in \mathcal{P}(\mathbb{N})$ Vrai $(A \text{ est un élément de } \mathcal{P}(\mathbb{N}))$ (c) $A \subset \mathcal{P}(\mathbb{N})$ Faux (les éléments de $A \text{ ne sont pas des éléments de } \mathcal{P}(\mathbb{N}))$ (d) $B \in \mathcal{P}(\mathbb{N})$ Faux $(B \text{ n'est pas un élément de } \mathcal{P}(\mathbb{N}))$ (e) $B \subset \mathcal{P}(\mathbb{N})$ Vrai (les éléments de $B \text{ sont des éléments de } \mathcal{P}(\mathbb{N}))$.

Question 5 (a) Faux. Par exemple, si nous prenons a = 10 et b = -5 alors |a - b| = |10 - (-5)| = |10 + 5| = |15| = 15 et |a| - |b| = |10| - |-5| = 10 - 5 = 5.

(b) Faux. Par exemple, si nous prenons x = 1,9 alors $E(2 \times 1,9) = E(3,8) = 3$ et $2E(1,9) = 2 \times 1 = 2$.

Travaux Dirigés

Exercice 1 Soient I et J deux intervalles de \mathbb{R} . Montrons que $I \cap J$ est un intervalle de \mathbb{R} . Pour cela il faut montrer que $\forall \alpha \in I \cap J, \forall \beta \in I \cap J, [\alpha, \beta] \subset I \cap J$. Soient alors α et β dans $I \cap J$.

Puisque α et β sont dans $I \cap J$, en particulier ils sont dans I, qui est un intervalle; d'après la définition d'un intervalle (donnée dans l'énoncé), $[\alpha,\beta] \subset I$. Le même argument en remplaçant I par J montre que $[\alpha,\beta] \subset J$. Par conséquent $[\alpha,\beta] \subset I \cap J$, ce qui montre que $I \cap J$ est un intervalle de \mathbb{R} .

Exercice 2

- 1. Faux : $[0,1] \cup [2,3]$ n'est pas un intervalle car $1 \in [0,1] \cup [2,3], 2 \in [0,1] \cup [2,3], 3/2$ est entre 1 et 2, mais $3/2 \notin [0,1] \cup [2,3]$.
- 2. Faux : $]-\infty,1]$ est majoré, $[0,+\infty[$ est minoré, mais la réunion des deux (qui est $\mathbb R$ tout entier) n'est pas bornée.
- 3. Vrai : soit $A \subset \mathbb{R}$ majoré, et soit $B \subset \mathbb{R}$ minoré. Soit M un majorant de A, et soit m un minorant de B. Alors tout élément de A, en particulier

tout élément de $A \cap B$, est $\leq M$. De même tout élément de B, en particulier tout élément de $A \cap B$, est $\geq m$. Par conséquent, pour tout élément x de $A \cap B$ (s'il en existe), on a $m \leq x \leq M$. Donc $A \cap B$ est borné.

Exercice 3

- 1. $\{f(x)/x \in [0,1]\}$
- 2. $\{y \in \mathbb{R}/f(y) = 1\}$
- 3. $\{x \in \mathbb{R}/\exists k \in \mathbb{N}, x = 2k \text{ et } f(x) \leq 5\}$

Exercice 4

- 1. L'ensemble des réels qui ont au moins deux antécédents distincts par f.
- 2. L'ensemble des réels dont l'ensemble des antécédents par f n'est pas majoré.
- 3. L'ensemble des entiers dont l'image par f est rationnelle et strictement comprise entre zéro et cinq.

Exercice 5 On procède par l'absurde. Supposons que la négation de l'assertion est vraie, c'est-à-dire que pour tout $i \in \{1, ..., n\}$ on a $a_i < \frac{C}{N}$. Alors,

$$a_1 + \dots + a_N < \underbrace{\frac{C}{N} + \dots + \frac{C}{N}}_{N\text{-fois}} = N \frac{C}{N} = C$$

d'où $a_1 + \cdots + a_N < C$ ce qui est faux car, d'après l'hypothèse, nous avons $a_1 + \cdots + a_N \ge C$. On conclut que la négation est fausse et donc l'assertion originale est vraie.

Exercice 6 Soient x et y des réels. Si $x \le y$ alors |x-y| = y-x. Nous avons

$$\frac{x+y+|x-y|}{2} = \frac{x+y+y-x}{2} = \frac{2y}{2} = y = \max\{x,y\}$$

et

$$\frac{x+y-|x-y|}{2} = \frac{x+y-(y-x)}{2} = \frac{2x}{2} = x = \min\{x,y\}.$$

Le cas x > y se traite de façon analogue.