Plan

·Preview Assignment 7

- · Dynamic Programming problem solving
 - 4 HS2Z, T3

L FS21, T3

*Exercise Templates are uploaded (QR-code)

New Groups

Siro Aebersold	saebersold@student.ethz.ch	1
Yathusan Anpalagan	yanpalagan@student.ethz.ch	7
Benedikt Baumgarten	bbaumgarten@student.ethz.ch	2
Beatrice Bold	bebold@student.ethz.ch	5
Yilmaz Bozkan	ybozkan@student.ethz.ch	16
Thomas Bundi	tbundi@student.ethz.ch	8
Cara Cerny	ccerny@student.ethz.ch	4
Adrian Efford Fernandez	aefford@student.ethz.ch	10
Ehad Evgin	eevgin@student.ethz.ch	14
Franco Fierro Brandes	ffierro@student.ethz.ch	15
Fabio Filipponi	ffilipponi@student.ethz.ch	9
Cyril Gremaud	cgremaud@student.ethz.ch	12
Julian Isser	jisser@student.ethz.ch	1
Maximilian Käfer	mkaefer@student.ethz.ch	6
Ashley Kellenberger	akellenberge@student.ethz.ch	16
Alex Lanz	lanzal@student.ethz.ch	7
Ruilai Li	ruilli@student.ethz.ch	13
Anna Limpaset	alimpaset@student.ethz.ch	3
Hafiz Ullah Mija Khel	hmijakhel@student.ethz.ch	10
Yannick Niederer	yniederer@student.ethz.ch	8
Nikol Nikolova	nnikolova@student.ethz.ch	3
Jannis Piekarek	jpiekarek@student.ethz.ch	14
Kiyan Rassouli	krassouli@student.ethz.ch	11
Lars Schell	laschell@student.ethz.ch	5
Camil Schmid	camschmid@student.ethz.ch	9
Dominik Schwaiger	dschwaiger@student.ethz.ch	15
Raoul Sidler	sidlerr@student.ethz.ch	2
Jonathan Soemer	jsoemer@student.ethz.ch	13
Kristof Szadeczky-Kardoss	kszadeczky@student.ethz.ch	12
Vinzenz Wolf	wolfvi@student.ethz.ch	11
Helena Yan	helyan@student.ethz.ch	4
Guohong Zhang	zhanggu@student.ethz.ch	6

Correctures Assignments 566

- -both will come this week! (sorry for delay)
- · Assignment 6 has rather harsh grading (by order of the Head-TA)

Preview Assignment 7

- ·only DP 😊
- · I can recommend exercise 7.2 & 7.3 (3-dimensional DP for 7.3 > good practice), even if they're not bonus
- · Address the same 5/6 aspects as we do in todays class &


```
Theory Task T3 (HS22)
 An array of non-negative integers A=[an,...,an] is called summy if and only if, for all iE{2,...,n}, there exists a (passibly empty) set
 Ic 81,..., i-is such that a; = \subseteq 9
 ⇒ Every integer except the first one must be a sum the sum of (distinct) integers that precede it in the array.
Examples: -[2,2,4,6,0,12] is summy, because 2=2, 4=2+2, 6=2+4, 12=2+4+6
          ·[2,2,4,6,0,72] is not summy, since 13 can't be written as a sum of integers from £2,2,4,6,03
Input: Array A of length n
Output: True if the array is summy, and False otherwise
For full points: Oh maxA) runtime, where maxA is the max value of entries in A
Address the following aspects (given in exam):
                                                                                     Approach: Understand the examples
 1.) Definition of DP-Table (dimensions/meaning of entry, indexing!)
                                                                                                · Look at dependencies ⇒ extract dimensions for DP
 2.) Computation of an entry (base cases/computation of other entries)
                                                                                                 · Find DP-Recursion
 3.) Calculation Order
                                                                                                 ·Rest
 4.) Extracting the solution
 5.) Running time: Provide in 8-notation in terms of n and maxA, justify your answer
   Size of DP-Table / Number of entries: DP-Table is 2-dimensional with indices &1..., n3 x &0, ..., max AB. The total number of entries is (n+1) (max A+1)
   Meaning of DP-Table: DP[][] is true if and only if there Exists I⊆ £1,... if such that j= ∑ak
                                                          · DP[6][i] = (i == 0) out-of-bounds check
   Computation of an entry (initialization and recursion):
                                                             · DP[i][0] = True
                                                             · DP[][i] = DP[i-1][i] || (j-ai >0 && DP[i-1][i-ai])
  Order of computation: In increasing order of i and i eg for i = 0, ..., n
                                                                   for j= 0, ... , max A
                                                                        DP[i][j] = ...
  Extracting the result: Check for all a; with izz if DP[i-1][ai] == True (logical and between all) > result is \ DP[i-1][ai]
                          e.g. for i=1,..., n-1
                                      if (DP[] [A[i]] == false) return false
                                  return true
  Running time: Initialization takes O(n)+O(maxA)
                 · Computation of an entry takes O(1), we have (n+1)·(max4+1) entries > O(n·maxA)
                 · Extracting the result takes O(n)
                 > Total runtime is \theta(n) + \theta(\max A) + \theta(n \cdot \max A) + \theta(n) = \theta(n \cdot \max A)
```


a;	<u>/'</u>	0	1	2	3	4	5	6		a;	1/2	0	1	2	3	4	5	6
(0)	0	Т	F	F	F	F	F	F	After 2nd row is computed	(o)	0	Т.	F	F	F	F	F	F
2	1	T								2	1	Ţ	F	Т.	F	F	F	F
2	2	Т								2	2	Т						
4	3	Т								4	3	Т						
6	4	Т								6	4	т						
0	5	7								0	s	7						
a:	1/1	0	1	2	3	4	5	6	an all	a:	1/2	0	1	2	3	4	5	6

After 6th row is computed

	a:	1/2	0	1	2	3	4	S	6	
ed	(o) 2 2 4 6	0	Т	F	F	F	F	F	F	
	2	1	T	F	Τ.	F	F	F	F	
	2	2	Т	F	Т	F	T	F	F	
	4	3	Т							
	6	4	Т							
	0	s	T							

	a:	1/2	0	1	2	3	4	5	6
d	(o) 2 2 4 6	0	Т	F	F	F	F	F	F
	2	1	T	F	Т	F	F	F	F
	2	2	Т	F	Τ, .	F	Ţ	F	F
	4	3	Т	F	T	F	T	F) T
	6	4	Τ						
	0	5	T						

aci Sik	a:	أن	0	1	2	3	4	5	6	
After 5th row is computed	(0)	0	Т	F	F	F	F	F	F	
	2	1	T .	F	Т	F	F	F	F	
	Z	2	т.	F	Т	F	T	F	F	
	4	3	Т	F	Ţ	F	Ţ	F	,T	
	6	4	т	F	Т	F	T	F	T	
	0	5	Т							

a:	1/3	0	1	2	3	4	5	6
(o) 2 2 4 6	0	Т	F	F	F	F	F	F
2	1	T	F	Т	F	F	F	F
Z	2	Т	F	Т	F	Т	F	F
4	3	Т	F	T	F	Т	F	Т
6	4	Т	F	Ţ	F	T	F	,T
0	5	T	F	T	F	T	F	ī
		•						

Extracting	a;	1/1	0	1	2	3	4	5	6	
the result:	(0)	0	Т	F	F	F	F	F	F	
	2	1	Т	F	T	F	F	F	F	
	2	2	Т	F	T	F	T	F	F	
	9	3	Т	F	T	F	Т	F	1	٩
	6	4	(T)	F	Τ	F	T	F	T	
	0	5	T	F	Т	F	T	F	7	

Theory Task T3 (FS21)

Given a square Matrix MEIN^{nxn} of non-negative integers, with n≥1, the goal is to compute the longest snake within it. The top-left element is M11. Mij denotes the j-th entry in the i-th row.

A smake is a sequence of entries M, i.e., $s=(s_1,...,s_k)$ (with $s_0=M_{i_0}$, j_0) with $i_0,j_0\in E_1,...,m_0$ and $0\in E_1,...,k_0$, that satisfies that the next entry S_{mm} is either below the current one or to its left. This means that there are no cycles. Additionally, the corresponding matrix entries are required to differ exactly by 1, i.e., s satisfies $|s_m-s_{m+1}|=1$, for all $m\in E_1,...,k-1$. The length of a snake $s=(s_1,...,s_k)$ is equal to its sequence length, which in this case is k.

Input: Matrix MEN non negative integers

Output: Longest snake s= (S1,...,Sk). If there are multiple options return only one of them.

Example:

1	3	2	5	7
4	q	1	4	3
8	7	6	5	1
9	8	5	4	3
6	7	2	2	3

For full points: O(n2) runtime

Address the following aspects (given in exam): (same as prev. task)

Size of DP-Table / Number of entries: DP-Table is 2-dimensional with indices &,... n3 x &1,...,n3. The total number of entries is n2. 1-indexing!

Meaning of DP-Table: DP[][] contains the length of the longest snake that ends at Mij

Computation of an entry (initialization and recursion): DP[]][]=1

all other entries (assuming we check for out of bounds):

if $|\Lambda_{i,j+1}^{-1} - \Lambda_{i,j}^{-1}| = 1$ and $|\Lambda_{i-1,j}^{-1} - \Lambda_{i,j}^{-1}| \neq 1$ if $|\Lambda_{i,j+1}^{-1} - \Lambda_{i,j}^{-1}| \neq 1$ and $|\Lambda_{i-1,j}^{-1} - \Lambda_{i,j}^{-1}| = 1$ if $|\Lambda_{i,j+1}^{-1} - \Lambda_{i,j}^{-1}| = 1$ and $|\Lambda_{i-1,j}^{-1} - \Lambda_{i,j}^{-1}| = 1$

Order of computation: From top-right to bottom-left, so row-by-row, right to left, e.g. for i=1 ..., n

for j=n,...1

DP[i][i]=...

else

Extracting the result: We extract the snake through backtracking.

· Look for largest entry in DP-Table, let's assume it is k = DP[i][j]. ⇒ Sk = 1;j

- Backtrack S1,..., Sk-1 by checking how we arrived at next sequenc entry.

$$\Rightarrow S_{k,1} = \begin{cases} \bigwedge_{i \rightarrow i,j} & \text{if } DP[i][j] = DP[i-1][j] + 1 \text{ and } \left[\bigwedge_{i,j} - \bigwedge_{i\rightarrow i,j}\right] = 1 \\ \bigwedge_{i,j+1} & \text{if } DP[i][j] = DP[i][j+1] + 1 \text{ and } \left[\bigwedge_{i,j} - \bigwedge_{i,j+1}\right] = 1 \end{cases}$$

and so on

Running time: Initialization takes 09)

· Computation takes O(1) per entry = O(n2)

· Backtracking takes O(n2) (finding max) + O(1) O(n) (backtracking) > O(n2) total

 \Rightarrow Total runtime is $O(1) + O(n^2) + O(n^2) = O(n^2)$

3 2 5 9 1 4 7 6 5 8 5 9 7 2 2	e 7 3 1 3 3				
Buse Case:	1	After 1st row is computed	1 2-1 1		
After 2nd row is computed	1 2 1 1 1 1 1 1 3 2 2 1		1 2 1 1 7 1 3 2 2 7 6 5 6 4 3 7	1	
After 4th row is computed	1 2 1 1 1 1 3 2 2 1 6 5 4 3 1 7 6 5 4 1		1 2 1 1 7 1 3 2 2 1 6 5 4 3 7 7 6 5 4 1 8 7 1 2 1		
Backtracking	1 2 1 1 1 1 3 2 2 1 6 5 9 3 1 7 6 5 4 1 8 7 1 2 1				