

STM32 Graphics

PC & mobile user experience revolution ______

Comes to everyday products

Towards enhanced user experience

- Smarter and richer application
- **Advanced User interfaces**
- Extended connectivity
- Security

Hardware setup

Microcontroller setup – Low cost, low power consumption and low complexity

- Graphical system consists of 4 elements
 - A frame buffer (or GRAM) is a linear chunk of memory containing the desired pixel values
 - The display glass must be continuously updated(~50/60 Hz typ.) even if the pixels do not change

Display hardware setup 5

Four hardware configurations for display

STM32 + Display Module + 1 NOR Flash (opt.)

STM32 + GFX Controller + Display + 1 NOR Flash (opt.)

STM32 (GRAM + Disp.Ctrl) + Display + 1 NOR Flash (opt.)

STM32 + (Disp.Ctrl) + PSRAM/SDRAM + Display + 1 NOR **Flash**

System hardware setup

MCU Ressources

Microcontroller

- Internal LCD-TFT Controller
- Internal Flash (< 2048 kB)
- Internal RAM (< 512/1024 kB)
- External NOR Flash (~8/32 MB)
- External PSRAM or SDRAM (~1-2/4 MB)

Frame buffer

- LCD-TFT Controller updates the display with a constant frequency(~17ms / 60Hz)
- Effective frame rate depends on the rendering time
- · Single vs. double buffering
- **Size**: #pixels x color depth x #buffers
- Example (WQVGA): 480x272 x 2 Bytes x 2 = 510KB

Evaluation of library on the market ______

HMI oriented benchmark

Menu bench (HMI with animation)

- Checks level of DMA2D support (All operation can be performed w/ DMA2D)
- Checks level of integration of DMA2D in the code (shall be 0 CPU load)
- Check font rendering methods

Needle bench (tachometer)

- Check rotation speed (all done by SW)
- Check rasterisation algorithm

Coverflow

Advanced HMI with geometrical transformations

Select the best solutions _____

Two clear technical positioning

New STM32CubeMX Version 4.25

Graphics integration in STM32CubeMX

- Code generation for the supported stacks:
 - To choose the graphics stack to use
 - To configure the parameters and generate the project

Graphics Selector:

- To select the right MCU basing on customer graphics criteria
- Fully integrated in the current MCU Selector

Graphics Simulator:

- To simulate graphics configurations using a set of relevant parameters
- Evaluate performance of simulation graphic configuration
- To apply the simulation data to the current user configuration in STM32CubeMX

STM32CubeMX with Graphics support: STemWIN now, TouchGFX & **Embedded Wizard soon**

STM32CubeMX Graphics Selector

Graphics Selector main features (1/2)

- Fully integrated in MCU Selector
- New filter added "Graphics Choice"
- Click on "Enable" checkbox to display the list of graphics criteria
- Graphics criteria can be combined with other MCU Selector Criteria

Graphics Selector main features (2/2)

Graphics Criteria 14

- Display Resolution
 - Predefined size
 - User defined size with width & height size in slider below
- Display interface
- Product Memories
 - GFX RAM
 - GFX Flash

Graphics stacks integration in STM32CubeMX

Graphics stacks integration (1/2) 16

 Graphics module is represented in STM32cubeMX as a middleware that integrates three different graphics frameworks: STemWin, ST-EmbeddedWizard and ST-TouchGFX.

Coming

Coming

Graphics stacks integration (2/2)

- The goal is to have only one hardware initialization file for all the graphics frameworks with a wrapper file for each stack.
 - Hardware initialization (HW Init)
 - Add the configuration files (STemWin_wrapper..) for the project to ensure a specific settings for each stack
 - Initialize the graphic library
 - Generate the final project

STemWin

Pinout View

Configuration View 20

Project Settings 21

STemWin Configuration View

GUIBuilder Tool

The GUIBuilder will start with the same values of the parameters "Graphical application category (FrameWindow or Window)" and "Physical Display Size (xsize, ysize)" configured in STM32CubeMx.

Project Generation (1/2)

The GUIBuilder will generate a file that can be either customized or integrated into the final project generated by STM32CubeMx according to your configuration.

Project Generation (2/2)

```
#define XSTZE PHYS
#define YSIZE PHYS
                     320
#define ZONES
                     2 /* expected value 2.4 */
Ad-fine Uncr
                     XSIZE PHYS/ZONES /* SCREEN DIVIDED INTO TWO AREAS */
#define NUM BUFFERS
                         1 /* Number of multiple buffers to be used */
#define NUM VSCREENS
                         1 /* Number of virtual screens to be used */
#define COLOR CONVERSION 0
                            GUICC 565
#define DISPLAY DRIVER 0
                            GUIDRV LIN 16
                                                                                                     at contains the configuration of STemWin
#define COLOR CONVERSION 1
                           GUICC 8888
#define DISPLAY DRIVER 1
                            GUIDRV LIN 32
                                                                                                     apper.h/c" . the hardware initialization in
#define LCD LAYERO FRAME BUFFER
                                   ((uint32 t)0x0) /* LTDC Laver 0 frame buffer */
#define LCD LAYER1 FRAME BUFFER
                                  ((uint32 t)0x0) /* LTDC Laver 0 frame buffer */
                                                                                                     those generated by the GUIBuilder).
#define DSI MASK TE() (GPIOJ->AFR[0] &= (0xFFFFF0FFU))
                                                                      /* Mask DSI TearingEffect Pin*/
#define DSI UNMASK TE() (GPIOJ->AFR[0] |= ((uint32 t) (GPIO AF13 DSI) << 8)) /* UnMask DSI TearingEffect Pin*/
extern LTDC HandleTypeDef hltdc:
                                                                                                               a main.h
                                                                                                                                                        - 0
extern DSI_HandleTypeDef hdsi;
extern volatile GUI TIMER TIME OS TimeMS;
                                                                                                               a stm32f4xx_hal_conf.h
                                                                                                                                                                   Q
uint8 t pPage[]
                  = {0x00, 0x00, 0x01, 0xDF}; /* 0 -> 479 */
                                                                                                               stm32f4xx_it.h
 /* Constant .. To be generated with OTM8009 LCD driver */
                                                                                                                                                    ₩ -
uint8 t pCols[ZONES][4] =
#if (ZONES == 4 )
                                                                                                               main.c
 {0x00, 0x00, 0x00, 0xC7}, /* 0 -> 199 */
 {0x00, 0xC8, 0x01, 0x8F}, /* 200 -> 399 */
 {0x01, 0x90, 0x02, 0x57}, /* 400 -> 599 */
                                                                                                                  stm32f4xx hal msp.c
 {0x02, 0x58, 0x03, 0x1F}, /* 600 -> 799 */
#elif (ZONES == 2 )
                                                                                                                 stm32f4xx it.c
 {0x00, 0x00, 0x01, 0x8F}, /* 0 -> 399 */
                                                                                                      12/01/2
 {0x01, 0x90, 0x03, 0x1F}
                                                                                                               system_stm32f4xx.c
#endif
                                                                                                      12/01/2
                                                                                                                                                11 KB
                                                                                                      12/01/20
                                                                                                                                                 9 KB
static
              LCD LayerPropTypedef
                                         layer prop[GUI NUM LAYERS];
                                                                                                                                                 8 KB
volatile
              int32 t LCD ActiveRegion
                                       = 1:
                                                                                                                    GUI_App.c
 volatile
              int32 t LCD Refershing
volatile char TransferInProgress = 0;
                                                                                                                GUI_App.h
static const LCD API COLOR CONV * apColorConvAPI[] =
                                                                                                                    WindowDLG.c
                                                                                                                                                            Select a file
 COLOR CONVERSION 0.
#if GUI NUM LAYERS > 1
                                                                                                                                                            to preview.
 COLOR CONVERSION 1,
#endif
                                                                                                                GUIConf.c
U32 LCD Addr[GUI NUM LAYERS] = {LCD LAYER0 FRAME BUFFER};
                                                                                                               GUIConf.h
U32 LCD Addr[GUI NUM LAYERS] = {LCD LAYER0 FRAME BUFFER, LCD LAYER1 FRAME BUFFER};
                                                                                                                 HW Init.c
#endif
              DSI IROHandler (void);
void
                                                                                                              HW Init.h
              LCD SetUpdateRegion(int idx);
                                                                                                                  STemwin_wrapper.c
                           STemWin wrapper.c
                                                                                                               STemwin_wrapper.h
                                         6 items
```


STM32CubeMX Graphics Simulator

STM32CubeMX Graphics Simulator 27

Fully integrated in STM32CubeMX for F429/F469/F746/F769.

- New button added "GFXSimulator" on configuration tab
 - Add new vertical section "Application"
- Customer able Now to:
 - Simulate graphics configurations using a set of parameters
 - Evaluate performance of simulation graphic configuration

Current Configuration Benchmark Results Window

Demo

STemWin Graphics Demo

TouchGFX Graphics Demo

Embedded Wizard Graphics Demo

Further examples based on STemWin

To start with

- "STemWin Getting started" application note: AN4323
- STemWin user and reference guide:

STM32Cube FW\Middlewares\ST\STemWin\Documentation\STemWin540.pdf

STemWin demonstration in STM32Cube MCU firmware package

STM32Cube FW\Projects\STM32469I-Discovery\Demonstration

STemWin applications in STM32Cube MCU firmware package

STM32Cube FW\Projects\STM32469I-Discovery\Applications\STemWin

Online support http://my.st.com

