Package 'thamesmix'

June 26, 2025

Type Package	
Title Truncated Harmonic Mean Estimator of the Marginal Likelihood for Mixtures	
Version 0.1.2	
Description Implements the truncated harmonic mean estimator (THAMES) of the reciprocal marginal likelihood for uni- and multivariate mixture models using posterior samples and unnormalized log posterior values via reciprocal importance sampling. Metodiev, Irons, Perrot-Dockès, Latouche & Raftery (2025) <doi:10.48550 arxiv.2504.21812="">.</doi:10.48550>	
License GPL (>= 3)	
Encoding UTF-8	
RoxygenNote 7.3.2	
Imports uniformly, stats, sparsediscrim, quadprog, igraph, gor, Rfast, mvtnorm, combinat, withr	
VignetteBuilder knitr	
Suggests multimode, knitr, bayesmix, label.switching, LaplacesDemon, markdown	
NeedsCompilation no	
Author Martin Metodiev [aut, cre, cph] (ORCID:	
Maintainer Martin Metodiev <m.metodiev@tutanota.com></m.metodiev@tutanota.com>	
Repository CRAN	
Date/Publication 2025-06-26 13:40:02 UTC	
Contents	
alltopsorts_recursion	2

2 alltopsorts_recursion

compute_nobi	le_id	lentit	y															
overlapgraph																		
hames_mixtu	res																	

Index 10

alltopsorts_recursion all topological orderings of a DAG

Description

This function computes all topological orderings of a graph using the recursive algorithm described in Knuth and Szwarcfiter (1974).

Usage

```
alltopsorts_recursion(n, adj_list)
```

Arguments

n number of nodes in the DAG adj_list edges given as an adjacency list

Value

Returns a list of topological orderings.

References

Knuth, D. E. and J. L. Szwarcfiter (1974). A structured program to generate all topological sorting arrangements. Information Processing Letters 2(6), 153–157.

```
n = 4
alltopsorts_recursion(n, list(c(1,3),c(2,4)))
```

```
compute_nobile_identity
```

Nobile's identity for the marginal likelihood

Description

This function uses the identity from Nobile (2004, 2007) to compute an estimate of the marginal likelihood for a mixture model with G components given an estimate of the marginal likelihood for a mixture model with G-1 components and an estimate of the proportion of empty components.

Usage

```
compute_nobile_identity(logZhatGminus1, p0hat_value, G, dirichlet_vec, n)
```

Arguments

logZhatGminus1 estimate of the marginal likelihood for G-1
p0hat_value estimate of the proportion of empty components
number of components
hyperparameter-vector of the dirichlet prior
size of the data

Value

estimate of the marginal likelihood for G

References

Nobile, A. (2004). On the posterior distribution of the number of components in a finite mixture. The Annals of Statistics 32(5), 2044–2073.

Nobile, A. (2007). Bayesian finite mixtures: a note on prior specification and posterior computation.arXiv preprint arXiv:0711.0458.

Martin Metodiev, Nicholas J. Irons, Marie Perrot-Dockès, Pierre Latouche, Adrian E. Raftery. "Easily Computed Marginal Likelihoods for Multivariate Mixture Models Using the THAMES Estimator." arXiv preprint arXiv:2504.21812.

```
# computes log marginal likelihood of the Swiss banknote dataset
# for G=4, given the settings in Metodiev et al. (2025)
compute_nobile_identity(logZhatGminus1 = -909.49,
p0hat_value = 1/4,
dirichlet_vec = rep(1,4),
n=200)
```

4 overlapgraph

overlapgraph

Estimator of the overlap graph

Description

This function computes the overlap graph for mixture models.

Usage

```
overlapgraph(sims)
```

Arguments

sims

n_simul x G x (u+1) array of parameters sampled from the posterior, where n_simul is the number of simulations from the posterior, G is the number of components, u is the number of mixture component parameters (parameter u+1 is the mixture weight)

Value

Returns a named list with the following elements:

```
graph, the overlap graph co, the criterion of overlap
```

References

Martin Metodiev, Nicholas J. Irons, Marie Perrot-Dockès, Pierre Latouche, Adrian E. Raftery. "Easily Computed Marginal Likelihoods for Multivariate Mixture Models Using the THAMES Estimator." arXiv preprint arXiv:2504.21812.

```
# toy sample from the posterior
mus = rbind(c(17.67849, 21.46734),
            c(17.67849, 21.46734),
            c(16.98067, 21.11391),
            c(20.58628, 21.22104),
            c(17.38332, 21.37224),
            c(16.43644, 21.19085),
            c(19.49676, 21.28964),
            c(17.82287, 21.22475),
            c(18.06050, 21.36945),
            c(18.70759, 21.60244),
            c(15.93795, 21.04681),
            c(16.23184, 20.96049))
sigmasqus = rbind(c(46.75089, 3.660171),
                  c(58.44208, 3.026577),
                  c(63.19334, 4.090872),
```

```
c(87.02758, 2.856063),
                  c(82.34268, 3.760550),
                  c(50.92386, 2.380784),
                  c(49.51412, 3.605798),
                  c(38.67681, 3.362407),
                  c(49.59170, 3.130254),
                  c(63.41569, 2.475669),
                  c(65.95225, 3.927501),
                  c(47.22989, 5.465702))
taus = rbind(c(0.2653882, 0.7346118),
             c(0.2560075, 0.7439925),
             c(0.2371868, 0.7628132),
             c(0.2998265, 0.7001735),
             c(0.3518301, 0.6481699),
             c(0.2840316, 0.7159684),
             c(0.2060193, 0.7939807),
             c(0.2859257, 0.7140743),
             c(0.2420695, 0.7579305),
             c(0.2466622, 0.7533378),
             c(0.2726186, 0.7273814),
             c(0.2738916, 0.7261084))
sims = array(dim=c(12,2,3))
sims[,,1] = mus
sims[,,2] = sigmasqus
sims[,,3] = taus
overlapgraph(sims)$co
```

thames_mixtures

THAMES estimator of the reciprocal log marginal likelihood for mixture models

Description

This function computes the THAMES estimate of the reciprocal log marginal likelihood for mixture models using posterior samples and unnormalized log posterior values.

Usage

```
thames_mixtures(
  logpost,
  sims,
  n_samples = NULL,
  c_opt = NULL,
  type = "simple",
  seed = NULL,
  lps = NULL,
  lps_unif = NULL,
  max_iters = Inf
)
```

Arguments

logpost function logpost(sims,G) to compute lps with input "sims"

sims $n_{simul} \times G \times (u+1)$ array of parameters sampled from the posterior, where

n_simul is the number of simulations from the posterior, G is the number of components, u is the number of mixture component parameters (parameter u+1

is the mixture weight)

n_samples integer, number of posterior samples

c_opt radius of the ellipsoid used to compute the THAMES

type THAMES variant ("simple", "permutations", or "standard")

seed a seed

lps values of the unnormalized log posterior density

lps_unif values of the unnormalized log posterior density, evaluated on a uniform sample

on the posterior ellipsoid

max_iters maximum number of shrinkage iterations

Value

Returns a named list with the following elements:

theta_hat, posterior mean

sigma_hat, posterior covariance matrix

log_det_sigma_hat, log-determinant of sigma_hat

logvolA, log-volume of the ellipsoid

log zhat inv, log-reciprocal-marginal likelihood

log_zhat_inv_L, lower bound

log_zhat_inv_U, upper bound

alpha, HPD-region correction

len_perms, number of permutations evaluated

log_cor, log-correction of the volume of the ellipsoid

etas, Monte-Carlo sample on the ellipsoid

graph, the overlap graph for G

se, standard_error

phi, ar(1) model parameter

c_opt, radius of the ellipsoid

d_par, dimension of the parameter

G, number of mixture components

scaling, list of fit of QDA (means, covariances)

co, the criterion of overlap

References

Martin Metodiev, Nicholas J. Irons, Marie Perrot-Dockès, Pierre Latouche, Adrian E. Raftery. "Easily Computed Marginal Likelihoods for Multivariate Mixture Models Using the THAMES Estimator." arXiv preprint arXiv:2504.21812.

```
y = c(9.172, 9.350, 9.483, 9.558, 9.775, 10.227, 10.406, 16.084, 16.170,
  18.419, 18.552, 18.600, 18.927, 19.052, 19.070, 19.330, 19.343, 19.349,
  19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856, 19.863,
  19.914, 19.918, 19.973, 19.989, 20.166, 20.175, 20.179, 20.196, 20.215,
  20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 20.986, 21.137,
  21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209, 22.242, 22.249,
  22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241,
  23.263, 23.484, 23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285,
  24.289, 24.366, 24.717, 24.990, 25.633, 26.690, 26.995, 32.065, 32.789,
  34.279)
R <- diff(range(y))</pre>
m <- mean(range(y))</pre>
# likelihood
loglik_gmm <- function(sims,G){</pre>
  mus = sims[,,1]
  sigma_squs = sims[,,2]
  pis = sims[,,3]
  log_single_y = Vectorize(function(x)
    log(rowSums(sapply(1:G,
      function(g) pis[,g]*dnorm(x,mus[,g],sqrt(sigma_squs[,g]))))
  )
  res = suppressWarnings(rowSums(log_single_y(y)))
  return(rowSums(log_single_y(y)))
# prior
logprior_gmm_marginal <- function(sims,G) {</pre>
  mus = sims[,,1]
  sigma_squs = sims[,,2]
  pis = sims[,,3]
  l_mus <- rowSums(sapply(1:G, function(g) dnorm(mus[,g], mean = m, sd = R,</pre>
                                                     log = TRUE)))
  l_pis <- LaplacesDemon::ddirichlet(1:G/G, rep(1,G),log=TRUE)</pre>
  l_sigma_squs \leftarrow lgamma(2*G+0.2) - lgamma(0.2) +
    0.2 \times \log(10/R^2) - (2 \times G + 0.2) \times \log(rowSums(sigma_squs^{-1})) + 10/R^2) -
    3*rowSums(log(sigma_squs))
  return(l_mus + l_pis + l_sigma_squs)
# unnormalized log-posterior density
logpost = function(sims){
  G = dim(sims)[2]
```

```
mus = sims[,1:G,1]
 # apply exp transform
 sims[,1:G,2] = sims[,1:G,2]
 sigma_squs = sims[,1:G,2]
 pis = sims[,1:G,3]
 # set to 0 outside of support
 if(G>2){
   mask = (((pis > 0) & (rowSums(pis[,1:(G-1)]) <= 1)) & (sigma_squs>0))
 }else{
   mask = (((pis > 0) & (pis[,1] \le 1)) & (sigma_squs>0))
 1_total = suppressWarnings(loglik_gmm(sims,G)+
    logprior_gmm_marginal(sims,G))
 l_total[exp(rowSums(log(mask)))==0] = -Inf
 return(l_total)
}
# toy sample from the posterior
mus = rbind(c(17.67849, 21.46734),
            c(17.67849, 21.46734),
            c(16.98067, 21.11391),
            c(20.58628, 21.22104),
            c(17.38332, 21.37224),
            c(16.43644, 21.19085),
            c(19.49676, 21.28964),
            c(17.82287, 21.22475),
            c(18.06050, 21.36945),
            c(18.70759, 21.60244),
            c(15.93795, 21.04681),
            c(16.23184, 20.96049))
sigmasqus = rbind(c(46.75089, 3.660171),
                  c(58.44208, 3.026577),
                  c(63.19334, 4.090872),
                  c(87.02758, 2.856063),
                  c(82.34268, 3.760550),
                  c(50.92386, 2.380784),
                  c(49.51412, 3.605798),
                  c(38.67681, 3.362407),
                  c(49.59170, 3.130254),
                  c(63.41569, 2.475669),
                  c(65.95225, 3.927501),
                  c(47.22989, 5.465702))
taus = rbind(c(0.2653882, 0.7346118),
             c(0.2560075, 0.7439925),
             c(0.2371868, 0.7628132),
             c(0.2998265, 0.7001735),
             c(0.3518301, 0.6481699),
             c(0.2840316, 0.7159684),
             c(0.2060193, 0.7939807),
             c(0.2859257, 0.7140743),
             c(0.2420695, 0.7579305),
             c(0.2466622, 0.7533378),
```

Index

```
alltopsorts_recursion, 2
compute_nobile_identity, 3
overlapgraph, 4
thames_mixtures, 5
```