ક્રમચય અને સંચય

7.1 પ્રાસ્તાવિક

વ્યવહારમાં આપણી સમક્ષ ગણતરી અને પસંદગી કરવા નીચે આપ્યા છે તેવા કેટલાક પ્રશ્નો ઉપસ્થિત થાય છે.

આપણે ત્રણ અંકોની સંખ્યા બનાવવી છે, જેમાં માત્ર 1, 2 અને 3નો જ ઉપયોગ કરવાનો છે. જો અંકોનું પુનરાવર્તન ન કરવાનું હોય તો આવી કેટલી સંખ્યા મળે ? 1, 2 અને 3માંથી પ્રથમ અંક પસંદ

થયા બાદ બીજા અંકની પસંદગી માટે 1, 2 અને 3માંથી માત્ર બે જ વિકલ્પ રહે છે. તે પછી છેલ્લા સ્થાનમાં બાકી વધેલ અંક મૂકવો પડે. વૃક્ષાકૃતિ 7.1 જુઓ.

આમ 123, 132, 213, 231, 312, 321 છ સંખ્યાઓ મળે છે.

ઋચા પાસે બે ટૉપ અને તેની સાથે યોગ્ય જોડ બને તેવા ત્રણ પેન્ટ્સ (પાટલૂન) અને બે જોડી બૂટ છે. એક પાર્ટીમાં જવા તે ડ્રેસની પસંદગી કેટલા પ્રકારે

જો ટૉપને T_1 અને T_2 તથા પેન્ટ્સને P_1 , P_2 , P_3 તથા બૂટને S_1 અને S_2 તરીકે દર્શાવીએ, તો આકૃતિ 7.2 પ્રમાણે વૃક્ષાકૃતિ મળે.

પોશાકની શક્ય પસંદગી $T_1P_1S_1$, $T_1P_1S_2$, $T_1P_2S_1$, $T_1P_2S_2$, $T_1P_3S_1$, $T_1P_3S_2$, $T_2P_1S_1$, $T_2P_1S_2$, $T_2P_2S_1$, $T_2P_2S_2$, $T_2P_3S_1$, $T_2P_3S_2$ તરીકે થાય. આમ કુલ 12 પ્રકારે તૈયાર થઈ તે પાર્ટીમાં જઈ શકે.

દેવ પાસે ત્રણ દક્ષ્તર, બે નાસ્તાના ડબ્બા અને બે બૉલપેન છે. આ પ્રત્યેકમાંથી એક-એક વસ્તુ પસંદ કરી કેટલી રીતે દક્ષ્તર તૈયાર કરીને શાળાએ જઈ શકે ? જો આપેલ દક્ષ્તરને B_1 , B_2 , B_3 વડે, નાસ્તાના ડબ્બાને C_1 , C_2 વડે અને બૉલપેનને P_1 , P_2 વડે દર્શાવીએ.

તેથી શક્ય પસંદગીઓ $B_1C_1P_1$, $B_1C_1P_2$, $B_1C_2P_1$, $B_1C_2P_2$, $B_2C_1P_1$, $B_2C_1P_2$, $B_2C_2P_1$, $B_2C_2P_2$, $B_3C_1P_1$, $B_3C_1P_2$, $B_3C_2P_1$, $B_3C_2P_2$. આમ કુલ 12 પ્રકારે પસંદગી થાય.

પરંતુ દરેક વખતે આ રીતે પસંદગીઓની સંખ્યા કંટાળાજનક છે અને હંમેશાં વ્યવહારુ પણ નથી. કમ્પ્યૂટરની એક ફાઇલ ખોલવા માટે એક પાસવર્ડની જરૂર પડે છે. આ પાસવર્ડ છ ભિન્ન અંકોનો બનેલો છે. કેટલા પ્રયત્નોની જરૂર પડશે ? અલબત્ત $10 \times 9 \times 8 \times 7 \times 6 \times 5 = 151200$ રીતે ! આ પ્રકારની ગણતરીના પ્રશ્નોનો ઉકેલ ગણતરીના મૂળભૂત સિદ્ધાંત કે ગુણાકારના સિદ્ધાંત વડે

મેળવવામાં આવે છે. ગણતરીનો મૂળભૂત સિદ્ધાંત : જો એક ક્રિયા *m* ભિન્ન રીતે થઈ શકે તથા તેની આનુશંગિક બીજી ક્રિયા *p* ભિન્ન રીતે થઈ શકે તો બંને ક્રિયા કરવાના પ્રકારોની સંખ્યા *mp* છે.

જો A પ્રથમ ઘટના બને તેના ઘટકોનો ગણ તથા B આનુશંગિક બીજી ઘટના બને તેના ઘટકોનો ગણ હોય, તો આપણે જાણીએ છીએ કે, $n(A)=m,\ n(B)=p.$ આથી, $n(A\times B)=mp.$

આ જ રીતે જો પ્રથમ ઘટના p પ્રકારે, તેને આનુશંગિક બીજી ઘટના q પ્રકારે અને આ બંનેને આનુશંગિક ત્રીજી ઘટના r પ્રકારે થઈ શકે તો ત્રણેય ક્રિયા સાથે pqr પ્રકારે થાય.

અગાઉના ઉદાહરણમાં જોયું કે ઋચાની ટૉપ માટેની પસંદગી 2 રીતે, પાટલૂનની પસંદગી 3 રીતે તથા બૂટની પસંદગી 2 રીતે થઈ શકે. આમ કુલ $3 \times 2 \times 2 = 12$ રીતે તૈયાર થઈ પાર્ટીમાં જઈ શકે છે. તે જ રીતે દેવ શાળામાં $3 \times 2 \times 2 = 12$ રીતે વસ્તુઓ લઈ જઈ શકે. આમ, ગણતરીના મૂળભૂત સિદ્ધાંતના આધારે સરળતાથી પ્રશ્નોનો ઉકેલ મેળવી શકાય છે.

ઉકેલ : અહીં આપણે આપેલા 5 અંકો પૈકીનો કોઈ એક અંક એકમ, દશક, શતક અને હજારના સ્થાનમાં મૂકી સંખ્યા બનાવવાની

છે. પ્રથમ સ્થાનમાં 5 અંકોમાંથી કોઈ પણ એક અંક મૂકી શકાય. આથી તે સ્થાન 5 પ્રકારે ભરી શકાય. હવે અંકોનું પુનરાવર્તન ન કરવાનું હોવાથી બીજું સ્થાન બાકીના 4 અંકો વડે ભરી શકાય. તે જ રીતે ત્રીજું સ્થાન 3 અને ચોથું સ્થાન 2 રીતે ભરી શકાય. આમ 1, 2, 4, 6 અને 8 અંકોનો પુનરાવર્તનરહિત

ઉપયોગ કરી ચાર અંકોની કુલ સંખ્યા $5 \times 4 \times 3 \times 2 = 120$ પ્રકારે બનાવી શકાય.

ઉદાહરણ 2 : KENY શબ્દમાં આવતા બધાં મૂળાક્ષરોનો ઉપયોગ કરી ચાર અક્ષરવાળા કેટલા શબ્દો બને ? (મૂળાક્ષરોનું પુનરાવર્તન કરવાનું નથી તથા બનતા શબ્દનો ભાષાકીય અર્થ નીકળે તે જરૂરી નથી) જેમાં E પ્રથમ હોય તેવા કુલ કેટલા શબ્દો બને ?

ઉકેલ: K, E, N, Yનો ઉપયોગ કરી ચાર અક્ષરવાળા શબ્દો કુલ $4 \times 3 \times 2 \times 1$ મળે. એટલે કુલ 24 શબ્દો બને. હવે ચાર અક્ષરોવાળા શબ્દોમાં પ્રથમ સ્થાને E હોય, એટલે કે \boxed{E} માળખું બને. અહીં બાકીના સ્થાન K, N, Y વડે $3 \cdot 2 \cdot 1 = 6$ રીતે ભરી શકાય. આમ પ્રથમ સ્થાને E હોય તેવા કુલ 6 શબ્દો મળે.

0

ઉદાહરણ 3: અંકોનું પુનરાવર્તન ન કરવાનું હોય, તો 0, 1, 2,..., 9 અંકોનો ઉપયોગ કરી ત્રણ અંકોની કેટલી યુગ્મ સંખ્યાઓ બને ?

ઉકેલ : સંખ્યા યુગ્મ બને તે માટે છેલ્લાં અંક 0, 2, 4, 6 કે 8 હોય તે આવશ્યક છે.

અહીં સૌપ્રથમ એકમના સ્થાને શૂન્ય લેતાં દશકનું સ્થાન 9 તેમજ શતકનું સ્થાન 8 રીતે ભરી શકાય. આમ કલ $9 \times 8 = 72$ સંખ્યા બને.

જો એકમનો અંક 2 હોય, તો શતકનું સ્થાન 8 રીતે (શૂન્ય સિવાય) તથા દશકનું સ્થાન બાકીના 8 અંકોથી ભરી શકાય. આમ કુલ 64 સંખ્યાઓ બને અને તે જ રીતે 4, 6, 8 પ્રત્યેક દ્વારા 64 સંખ્યા બને. આમ કુલ 72 + 64 + 64 + 64 + 64 = 328 સંખ્યાઓ મળે. (કુલ સંખ્યાઓ કેટલી મળે ? અયુગ્મ સંખ્યાઓ કેટલી બને ?)

ઉદાહરણ 4 : જેમાં 2 કોઈ પણ સ્થાને ન આવે એવી ત્રણ અંકોની કેટલી સંખ્યાઓ મળે ? 2 ઓછામાં ઓછી એક વખત આવે તેવી કેટલી સંખ્યા મળે ? 2 વધુમાં વધુ એક જ વખત આવે તેવી કેટલી સંખ્યા મળે ? (અંકોનું પુનરાવર્તન કરી શકાય.)

ઉકેલ: ત્રણ અંકની સંખ્યામાં પ્રથમ અંક 1, 3, 4, 5,..., 9 પૈકીનો કોઈ પણ હોઈ શકે છે. બીજો અને ત્રીજો અંક 0, 1, 3, 4, 5,..., 9 પૈકીનો કોઈ પણ એક અંક હોઈ શકે.

- .. માટે જેમાં 2 ન હોય તેવી ત્રણ અંકની કુલ સંખ્યાઓ $8 \times 9 \times 9 = 648$ મળે. (i) ત્રણ અંકો ધરાવતી કુલ સંખ્યા $9 \times 10 \times 10 = 900$ મળે. (પ્રથમ અંક શૂન્યેતર હોય.)
- \therefore 2 ઓછામાં ઓછી એક જ વખત આવે તેવી કુલ સંખ્યાઓ = 900 648 = 252 (ii) 2 વધુમાં વધુ એક જ વખત આવે તેવી સંખ્યાઓ એટલે કે 2 એક જ વખત આવે અને એક પણ વખત ન આવે એવી સંખ્યાઓ અથવા 900 (કુલ) (2 બધા સ્થાને હોય + 2 બરાબર બે સ્થાને આવે)

2 બધા જ સ્થાને આવે તેવી સંખ્યા 222 મળે. (એક જ સંખ્યા)

2 એ બે સ્થાને આવે તેવી સંખ્યા 2 2 , 2 2 મળે. (પરંતુ બધા સ્થાને 2 નહિ.)

અહીં ખાલી સ્થાન અનુક્રમે 9, 8, 9 રીતે ભરી શકાય. આમ કુલ 9 + 8 + 9 = 26 સંખ્યા મળે.

- ∴ 2 એ ઓછામાં ઓછા બે સ્થાને આવે તેવી કુલ સંખ્યાઓ 27 થાય.
- \therefore 2 વધુમાં વધુ એક જ વખત આવે તેવી કુલ સંખ્યાઓ 900 27 = 873 મળે.

ઉદાહરણ 5: મૂળભૂત રંગો લાલ (R), વાદળી (B) અને પીળો (Y)નો ઉપયોગ કરી ઉપર્યુક્ત આકૃતિ 7.3 માં દર્શાવેલ નાના ત્રિકોણો (ABP, BQC, BPQ અને PQR) માં કેટલી રીતે રંગ પૂરી શકાય ? (બે પાસપાસેના ત્રિકોણોમાં સમાન રંગ પૂરવાનો નથી.)

ઉંકેલ : ΔBPQની ત્રણે બાજુઓ બીજા ત્રિકોણના પ્રદેશોને સ્પર્શે છે. આ ત્રિકોણમાં ત્રણ રંગોનો ઉપયોગ કરી 3 રીતે રંગ ભરી શકાય.

178 ગણિત

બાકીના ત્રિકોણોને બીજા બે રંગોથી રંગી શકાય. આમ બાકીના ત્રિકોણમાં રંગ પૂરવાના કુલ પ્રકારની સંખ્યા $2 \times 2 \times 2 = 8$ મળે.

ચારેય ત્રિકોશમાં રંગ પૂરવાના પ્રકારની કુલ સંખ્યા $3 \times 8 = 24$ છે.

ઉદાહરણ 6 : પાંચ અંકોના પાસવર્ડમાં પ્રથમ ત્રણ અંકો અંગ્રેજી મૂળાક્ષરો અને પછીના બે અંકો 0થી 9 પૈકીના કોઈ બે અંકનો ઉપયોગ કરીને કેટલા પાસવર્ડ બનાવી શકાય ? (પુનરાવર્તનની છૂટ છે.) ઉકેલ : પ્રથમ ત્રણ અંકો 26 × 26 × 26 પ્રકારે ભરી શકાય.

તે જ રીતે બાકીના અંકો 10 × 10 પ્રકારે ભરી શકાય.

પાસવર્ડની કુલ સંખ્યા $26 \times 26 \times 26 \times 10 \times 10 = 1757600$ પ્રકાર

સ્વાધ્યાય 7.1

- એક હારમાં ઊભા કરેલા શિરોલંબ ધ્વજસ્તંભ પર ભિન્ન રંગના પાંચ ધ્વજ દ્વારા કેટલા સિગ્નલ (સંકેત) બને ? દરેક સિગ્નલમાં ભિન્ન રંગના બે અથવા બેથી વધુ ધ્વજ હોઈ શકે.
- 2. ચાર અંકની અયુગ્મ સંખ્યાઓ કેટલી હોય ? (અંકોના પુનરાવર્તન સિવાય)
- 3. TULSI શબ્દના બધા જ અક્ષરોનો ઉપયોગ કરી કેટલા શબ્દો બનાવી શકાય ? T થી શરૂ થતા કેટલા શબ્દો બને ? છેલ્લે I હોય તેવા કેટલા શબ્દો બને ? (કોઈ પણ શબ્દમાં અક્ષરનું પુનરાવર્તન કરવાનું નથી.)
- 4. 5 ની ગુણિત હોય તેવી ત્રણ અંકની કેટલી સંખ્યાઓ બને ? (અંકના પુનરાવર્તન સિવાય)
- 5. GJ-X-AB-abcd નંબર પ્લેટ ધરાવતી કેટલી કાર હોઈ શકે ? અહીં X એ 1થી 9 પૈકીનો કોઈ એક અંક છે. A = H અને B ના સ્થાને અંગ્રેજીનો કોઈ પણ મૂળાક્ષર હોઈ શકે. abcd એ ચાર અંકની સંખ્યા છે. (a શૂન્ય હોઈ શકે.)
- 6. (i) છેલ્લો અંક 0 (શૂન્ય) હોય. (ii) છેલ્લો અંક 5 હોય. (iii) સંખ્યા 4 વડે વિભાજય હોય. (iv) સંખ્યા 2 વડે વિભાજય હોય પણ 4 વડે વિભાજય ન હોય તેવી 99થી 1000 વચ્ચેની કેટલી સંખ્યાઓ હોય ?
- 7. દેવ પોતાના ઇ-મેલમાં પાંચ અક્ષરોનો પાસવર્ડ નીચેની શરતોને આધીન બનાવવા માગે છે :
 - (1) પ્રથમ ત્રણ અંગ્રેજી મૂળાક્ષરમાં તેના નામમાં આવેલ હોય તેવો કોઈ પણ અંગ્રેજી મૂળાક્ષર નહિ લેવાનો. (DEV નામ છે.)
 - (2) છેલ્લા બે અંક 0થી 9 પૈકીના કોઈ પણ અંક કે જેથી બનતી સંખ્યા તેની ઉંમર ન દર્શાવે. આવા કુલ કેટલા પાસવર્ડ બને ? તેની ઉંમર 12 વર્ષની છે.

7.2 ક્રમચયો

આપણે વસ્તુઓને ચોક્કસ ક્રમમાં કેટલી રીતે ગોઠવી શકાય એવાં ઉદાહરણોનો અભ્યાસ કર્યો. 1, 2, 3, 4 અંકોનો ઉપયોગ કરી ત્રણ ભિન્ન અંકની સંખ્યાઓ બનાવવાની હોય તો 123, 124, 234,... વગેરે રીતે બનાવીએ છીએ. અહીં ક્રમચયો માટે ચાર અંકોમાંથી 3 અંકોનો ઉપયોગ પુનરાવર્તન સિવાય કરવાનો હોય છે. તેના કુલ પ્રકાર $4 \times 3 \times 2 = 24$ થાય. (ગણતરીનો મૂળભૂત સિદ્ધાંત)

*

વ્યાખ્યા : આપેલ ભિન્ન વસ્તુઓમાંથી અમુક અથવા બધી જ વસ્તુઓની ચોક્કસ ગોઠવણીને ક્રમચય (Permutation) કહે છે. n વસ્તુઓમાંથી એકી સાથે r વસ્તુઓ પસંદ કરી તેમને હારમાં ગોઠવવાથી મળતા કુલ સુરેખ ક્રમચયોની સંખ્યાને $_nP_r$ વડે દર્શાવાય છે, જ્યાં $1 \le r \le n$, r અને $n \in \mathbb{N}$. પુનરાવર્તન સિવાયની સુરેખ ગોઠવણીને સુરેખ ક્રમચય કહે છે.

પ્રમેય
$$1: {}_{n}P_{r} = n(n-1)(n-2)....(n-r+1)$$

n ભિન્ન વસ્તુઓની નીચે દર્શાવેલ r ખાલી જગ્યાઓમાં પુનરાવર્તન સિવાયની ગોઠવણી કરવામાં આવે છે :

પ્રથમ સ્થાનમાં n વસ્તુઓમાંથી કોઈ એક વસ્તુ મૂકી શકાય. તે n પ્રકારે શક્ય છે. પુનરાવર્તન કરવાનું નથી માટે બાકીની (n-1) વસ્તુઓમાંથી બીજું સ્થાન (n-1) પ્રકારે ભરી શકાય. તે જ રીતે બાકીની (n-2) વસ્તુઓમાંથી ત્રીજું સ્થાન (n-2) પ્રકારે ભરી શકાય વગેરે. છેલ્લું r મું સ્થાન n-(r-1) પ્રકારે ભરી શકાય. (અગાઉ (r-1) સ્થાન ભરાઈ ગયા છે.)

.. ગણતરીના મૂળભૂત સિદ્ધાંતના આધારે

$$_{n}P_{r} = n(n-1)(n-2)...(n-r+1)$$

n થી શરૂ કરી પ્રત્યેક વખતે 1 અંક ઘટાડી ક્રમશઃ r પૂર્ણાંકો લખો અને તે તમામનો ગુણાકાર કરો. ઉદાહરણ તરીકે $_7\mathrm{P}_3=7\times6\times5=210$

$$_{n}P_{n} = n(n-1)(n-2)...(n-n+1)$$

= $n(n-1)(n-2)...1$

પ્રાકૃતિક સંખ્યાઓના ગુણાકાર n(n-1)(n-2)...1 ને **ક્રમગુણિત (Factorial)** n કહે છે. તેને સંકેતમાં n! (વાંચો : n factorial) અથવા |n| (વાંચો : factorial n) વડે દર્શાવાય છે.

તેથી,
$${}_{n}P_{n} = n!$$
 $1! = 1, \ 2! = 2 \cdot 1 = 2, \ 3! = 3 \cdot 2 \cdot 1 = 6, \ 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \ \text{વગેરે}.$

હવે, $n! = n(n-1)(n-2)...1$
 $= n(n-1)!$
 $= n(n-1)(n-2)!$
 $\therefore n! = n(n-1)...(n-r+1)(n-r)!$
 $\therefore n(n-1)...(n-r+1) = \frac{n!}{(n-r)!}$

1 $\leq r < n$

$$_{n}P_{r}=n(n-1)...(n-r+1)$$
નો ઉપયોગ કરતાં

$$\therefore \quad {}_{n}\mathsf{P}_{r} = \frac{n!}{(n-r)!}$$
 $1 \le r < n$

પરંતુ જો r = n તો $_{n}P_{n} = n! = \underline{n}$.

આપણે 0! વ્યાખ્યાયિત કરીએ.

વ્યાખ્યા : 0! = 1

$$\therefore n^{\mathbf{p}_r} = \frac{n!}{(n-r)!}$$

 $1 \le r \le n$

પ્રમેય 2:n ભિન્ન વસ્તુઓની r સ્થાનમાં પુનરાવર્તન સહિત ગોઠવણીના પ્રકારોની સંખ્યા n^r છે. સાબિતી : r સ્થાનમાંથી પ્રત્યેક સ્થાન n

પ્રકારે ભરી શકાય.

માટે ક્રમચયના પ્રકારની કુલ સંખ્યા $= n \times n \times n....r$ વખત $= n^r$.

1	2	3			r
n	n	n	n	n	 n

ઉદાહરણ 7 : જો $\frac{1}{8!}$ + $\frac{1}{9!}$ = $\frac{x}{10!}$, તો x શોધો.

$$634: \frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$$

$$\therefore \quad \frac{1}{8!} \ \left(1 + \frac{1}{9}\right) = \frac{x}{10!}$$

 $(9! = 9 \cdot 8!)$

$$\therefore \quad \frac{1}{8!} \ \left(\frac{10}{9}\right) = \frac{x}{10!}$$

$$\therefore x = \frac{10(10!)}{9 \cdot 8!}$$
$$= \frac{10 \cdot 10 \cdot 9!}{9!}$$

 $(10! = 10 \cdot 9!, 9! = 9 \cdot 8!)$

$$\therefore x = 100$$

ઉદાહરણ 8 : જો $\frac{n-1P_3}{nP_4} = \frac{1}{9}$ તો n શોધો.

634:
$$\frac{n-1P_3}{nP_4} = \frac{(n-1)(n-2)(n-3)}{n(n-1)(n-2)(n-3)} = \frac{1}{9}$$

$$\therefore \quad \frac{1}{n} = \frac{1}{9}. \text{ આથી } n = 9$$

ઉદાહરણ 9 : જો 5 $_4P_r = 6 _5P_{r-1}$ તો r શોધો.

$$\therefore \frac{5(4!)}{(4-r)!} = \frac{6(5!)}{(5-r+1)!}$$

$$\left({}_{n}P_{r} = \frac{n!}{(n-r)!} \right)$$

$$\therefore \frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{(4-r)!} = \frac{6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{(6-r)!}$$

$$\therefore \frac{(6-r)!}{(4-r)!}=6$$

$$\therefore \frac{(6-r)(5-r)(4-r)!}{(4-r)!} = 6$$

[n! = n(n-1)(n-2)!]

$$(6-r)(5-r)=6$$

$$r^2 - 11r + 30 = 6$$

$$r^2 - 11r + 24 = 0$$

પરંતુ $r \neq 8$ કારણ કે $1 \leq r \leq 4$ અને $1 \leq r-1 \leq 5$

$$\therefore r = 3$$

ઉદાહરણ 10 : જો ${}_{5}P_{r} = {}_{6}P_{r-1}$ તો r શોધો.

$$634: {}_{5}P_{r} = {}_{6}P_{r-1}.$$

$$\therefore \frac{5!}{(5-r)!} = \frac{6!}{(7-r)!}$$

(6-r+1=7-r)

$$\therefore \frac{(7-r)!}{(5-r)!} = \frac{6(5!)}{5!} = 6$$

$$\therefore (7-r)(6-r)\frac{(5-r)!}{(5-r)!}=6$$

$$r^2 - 13r + 42 = 6$$

$$\therefore r^2 - 13r + 36 = 0$$

પરંતુ $1 \le r \le 5$ અને $1 \le r - 1 \le 6$

$$\therefore$$
 $r=4$

ઉદાહરણ 11 : 0, 1, 2,..., 9 અંકોનો ઉપયોગ કરી ત્રણ અંકોની (એટલે કે 100 અને 999 વચ્ચેની) કેટલી સંખ્યાઓ બને ? (સંખ્યામાં અંકોના પુનરાવર્તન સિવાય અંકોની પસંદગી કરવાની છે.)

ઉકેલ: 10 અંકોની ત્રણ સ્થાનમાં ગોઠવણીના કુલ પ્રકાર $_{10}P_3=10\cdot 9\cdot 8=720$ છે.

0

પરંતુ 0 પ્રથમ સ્થાન પર લઈ ન શકાય.

 \square તેથી કુલ સંખ્યામાંથી જેમાં 0 પ્રથમ સ્થાને હોય તેવી $_9P_2=9\cdot 8=72$ સંખ્યાઓ બાદ કરવી પડે.

∴ 720 - 72 = 648 ત્રણ અંકોની કુલ સંખ્યા મળે.

ઉદાહરણ 12: એક વ્યવસ્થાપક સમિતિમાં 10 વ્યક્તિઓમાંથી પ્રમુખ, ઉપપ્રમુખ તથા મંત્રીની ચૂંટણી કરવાની છે કે જેમાં કોઈ પણ વ્યક્તિ એકથી વધુ હોદા પર ન આવે તો ચૂંટણી કેટલા પ્રકારે થઈ શકે ? ઉકેલ: આ પ્રશ્નમાં 10 વ્યક્તિઓને 3 સ્થાનમાં ગોઠવવાની છે. (પુનરાવર્તન સિવાય)

 $_{10}P_3 = 10 \cdot 9 \cdot 8 = 720$ પ્રકારે આ ચૂંટણી શક્ય છે.

અહીં દરેક જગ્યા અલગ છે. તેથી તે સુરેખ ક્રમચયનો પ્રકાર છે.

ઉદાહરણ 13 : TUESDAY શબ્દના બધા અક્ષરોની ગોઠવણીથી કેટલા નવા શબ્દો શક્ય છે ? કેટલા શબ્દો Tથી શરૂ થાય અને Yમાં અંત પામે ?

ઉકેલ : 7 અક્ષરોની ગોઠવણીના પ્રકાર $_{7}P_{7}=7!$.

હવે 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040

અહીં કુલ 5040 પ્રકારે ગોઠવણી શક્ય છે. તેમાંથી એક શબ્દ TUESDAY છે. આથી ગોઠવણીથી મળતા નવા શબ્દોની કુલ સંખ્યા 5039 બને.

જો T અને Yને તેમના સ્થાને ગોઠવવામાં આવે તો બાકીના પાંચ સ્થાનની ગોઠવણી 5! = 120 પ્રકારે થાય. આમ 120 શબ્દો T થી શરૂ થાય અને Y માં અંત પામે.

ઉદાહરણ 14 : TABLE શબ્દના બધા અક્ષરોને શબ્દકોશ પ્રમાણે ગોઠવતા TABLE શબ્દ કયા સ્થાને આવે ? કયો શબ્દ અંતિમ હશે ? (બનતા શબ્દનો અર્થ જરૂરી નથી.)

ઉકેલ : A અક્ષરથી શરૂ થતા શબ્દોની સંખ્યા = (5-1)! = 4! = 24. તે જ રીતે B, E, L દરેકથી શરૂ થતા શબ્દોની સંખ્યા 24 હશે. તે રીતે આગળ વધતાં તે TABLE શબ્દ તરફ આગળ વધી શકાય.

હવે Tથી શરૂ થતા શબ્દો મળશે. A, B, L અને Eને શબ્દકોશ પ્રમાણે ગોઠવતાં TABEL શબ્દ TABLE પહેલાં આવે. આમ TABLE શબ્દના અક્ષરોની શબ્દકોશ પ્રમાણે ગોઠવણી કરતાં તે (24+24+24+24+1+1)માં એટલે કે 98મા સ્થાને મળે. (5 અક્ષરોથી કુલ શબ્દો 5!=120 મળે.)

A, B, E, Lથી શરૂ થતા કુલ શબ્દો 96 મળે છે. ત્યાર બાદ Tથી શરૂ થતા શબ્દોમાં TA, TB, TEથી બનતા પ્રત્યેક શબ્દો 6 આવે. આમ કુલ શબ્દો 114 થાય. ત્યાર બાદ TLABE, TLAEB, TLBAE, TLBAE, TLBAB, TLEAB અને TLEBA. આમ TLEBA છેલ્લા સ્થાને આવે.

[હકીકતમાં બધા મૂળાક્ષરોના ઊલટા ક્રમમાં લખતાં TLEBA છેલ્લો શબ્દ મળે.]

ઉદાહરણ 15 : દેવ ચેસ, 100મી દોડ, એથલેટિક્સ અને બરછીફેંકમાં ભાગ લે છે. દરેક રમતમાં ત્રણ પદકો (ગોલ્ડ, સિલ્વર અને બ્રોન્ઝ) છે. તે કેટલા પ્રકારે પદકો મેળવી શકે ?

ઉકેલ : અહીં દરેક રમતમાં ત્રણ પદકો આવેલા છે. અહીં દરેક સ્થાન W_1, W_2, W_3, W_4 ત્રણ રીતે ભરી શકાય. આમ પુનરાવર્તન શક્ય હોવાથી દેવ કુલ 81 પ્રકારે પદકો મેળવી શકશે.

ઉદાહરણ 16: 5, 2, 3, 7, 8 અંકોનો ઉપયોગ કરી ચાર અંકોની કુલ કેટલી સંખ્યા મળે ?

ઉકેલ : અહીં ચાર સ્થાન છે અને દરેક સ્થાન 5 રીતે 5, 2, 3, 7 અથવા **8** વડે ભરી શકાય.

1				

આમ, કુલ સંખ્યાઓ $5^4 = 625$.

(જુઓ અહીં n=5 વસ્તુઓને r=4 સ્થાનમાં $n^r=5^4$ પ્રકારે ગોઠવી શકાય.)

જો આપણે 6 અંકની સંખ્યા મેળવવા માગતા હોઈએ તો $5^6 = 15625$ સંખ્યાઓ મળે. અહીં r > n શક્ય છે. ${}_n\mathrm{P}_r$ માં $r \le n$ છે તે નોંધીએ.

ઉદાહરણ 17 : DAUGHTER શબ્દના બધા જ અક્ષરોને પુનરાવર્તન સિવાય ગોઠવતાં કુલ કેટલા શબ્દો મળે ? જેમાં સ્વર અને વ્યંજનો તેમના સ્થાને જ આવે એવા કેટલા શબ્દો મળે ?

ઉક્રેલ : 8 ભિન્ન અક્ષરોથી બનેલ શબ્દ આપેલ છે.

તેમના કુલ ક્રમચયો 8! = 40320 થાય. હવે સ્વરો A, U, E અને વ્યંજનો D, G, H, T, R તેમના સ્થાને જ રહે છે. પરંતુ તેના અંદર-અંદર સ્થાન બદલાઈ શકે છે. તેમની આંતરિક ફેરબદલીથી મળતા ક્રમચયો $3! \times 5! = 6 \times 120 = 720$ છે.

ઉદાહરણ 18 : જો n(A)=m અને n(B)=n $(m,\ n\in N)$ તો Aથી B પરનાં કેટલાં વિધેયો શક્ય છે ?

ઉકેલ : અહીં ધારો કે, $A = \{x_1, x_2, x_3,...x_m\}$ અને $B = \{y_1, y_2, y_3,...y_n\}$

 $f = \{(x_i, y_j)\}$, જયાં $x_i \in A$, $y_j \in B$. અહીં કોઈ ક્રમયુક્ત જોડમાં x_i નું પુનરાવર્તન થતું નથી અને કોઈ x_i બાકી રહેતો નથી. તેથી પ્રત્યેક x_i એ કોઈક y_j સાથે કુલ n પ્રકારે સંગત થાય.

- \therefore ગણ f મેળવવા માટે કુલ $n \times n \times n...m$ વિકલ્પ મળે.
- $f: A \to B$ પ્રકારનાં n^m વિધેયો શક્ય છે.

🕶 નોંધ A = {1, 2, 3}, B = {a, b} લઈએ.

 $f_1 = \{(1, a), (2, a), (3, a)\}$ $f_2 = \{(1, b), (2, b), (3, b)\}$

 $f_3 = \{(1, a), (2, a), (3, b)\}$ $f_4 = \{(1, b), (2, b), (3, a)\}$ $f_5 = \{(1, a), (2, b), (3, a)\}$ $f_6 = \{(1, b), (2, a), (3, b)\}$

 $f_7 = \{(1, b), (2, a), (3, a)\}$ $f_8 = \{(1, a), (2, b), (3, b)\}$

 \therefore આમ $2^3 = 8$ વિધેય $f: A \rightarrow B$ મળે.

સ્વાધ્યાય 7.2

- **1.** કિંમત શોધો : (1) $_8P_4$ (2) $_9P_3$ (3) $_6P_6$ **2.** કિંમત શોધો : (1) 6! (2) $\frac{8!}{2!}$ (3) $\frac{9!}{7!}$
- 3. સાબિત કરો કે $_{n}P_{r} = _{n-1}P_{r} + r(_{n-1}P_{r-1})$
- **4.** r શોધો : (1) $\frac{15^{P_r}}{16^{P_r-1}} = \frac{3}{4}$ (2) $_{7}P_r = 7_{6}P_r$
- **5.** n શોધો : $7_n P_3 = 20_{n+1} P_2$ **6.** $\Re \frac{56 P_{r+6}}{54 P_{r+3}} = 30800$, તો r શોધો.
- 7. સાબિત કરો કે ${}_{n}P_{r}=n_{n-1}P_{r-1}$. 8. જો (n+1)!=12(n-1)!, તો n શોધો.
- 9. જો $\frac{n!}{2!(n-2)!}$: $\frac{n!}{4!(n-4)!}$ = 2, તો n શોધો.
- 10. 2468ના અંકોનો ઉપયોગ કરી ત્રણ અંકની કેટલી યુગ્મ સંખ્યાઓ બને ? (પુનરાવર્તન સહિત અને પુનરાવતેન સિવાય)
- 11. n પ્રશ્નો છે. પ્રત્યેકનો ઉત્તર સત્ય છે કે મિથ્યા તે રીતે આપવાનો છે. તો n પ્રશ્નોના ઉકેલ કેટલી રીતે આપી શકાય ?

184 ગણિત

- 12. બહુવિકલ્પ પ્રશ્નોમાં દરેક પ્રશ્નના જવાબ માટે ચાર વિકલ્પો આપેલા છે. 10 પ્રશ્નોના જવાબ કેટલી રીતે આપી શકાય ?
- 13. એક સમતોલ સિક્કાને 4 વખત ઉછાળવામાં આવે છે. તેનું પરિણામ છાપ (H) કે કાંટો (T) લખવામાં આવે છે. તો પરિણામો કેટલી રીતે શક્ય છે ?
- 14. એક સૂટકેસમાં આવેલા તાળામાં ચાર રિંગ આવેલ છે. સૂટકેસ ખોલવા માટે ચોક્કસ કૉડ નાખવો પડે છે. પહેલી બે રિંગમાં અંગ્રેજી મૂળાક્ષર આવેલા છે અને બાકીની બે રિંગમાં 0થી 9 સુધીના અંકો આવેલા છે. ચાર અંકના કેટલા કૉડ (1) પુનરાવર્તન સહિત (2) પુનરાવર્તન વગર. શક્ય છે ?
- 15. 6 પત્રોને 3 કુરિયર્સ દ્વારા કેટલી રીતે મોકલી શકાય ?
- 16. m પુરુષ અને n સ્ત્રી (m > n) એક હારમાં બેઠાં છે. કોઈ પણ બે સ્ત્રી પાસપાસેના સ્થાન પર નથી. આ ગોઠવણી કેટલા પ્રકારે શક્ય છે ?
- 17. n બાળકોની એક હારમાં કેટલી ગોઠવણીમાં (i) સીતા અને ગીતા હંમેશાં પાસપાસે હોય ? (ii) સીતા અને ગીતા એક હારમાં પાસપાસે ન હોય ?
- 18. પુનરાવર્તન વગર 1, 2, 3, 4, 5, 6 અંકોનો ઉપયોગ કરી 4 અંકોની 4 વડે વિભાજ્ય કેટલી સંખ્યા મળે ?
- 19. વ્યાસપીઠ પર બેઠેલા છ મહેમાનને પુષ્પગુચ્છ આપવા માટે છ વિદ્યાર્થિનીઓને શ્રેશીમાં ગોઠવવાની છે. મહામંત્રી રાની સૌપ્રથમ અતિથિ વિશેષને પુષ્પગુચ્છ અર્પણ કરશે. રિયા પાંચમા સ્થાને જશે તે નક્કી છે. કોઈ પણ ક્રમમાં ઐશ્વર્યા અને ઈશા ક્રમિક હશે. આ સિવાયની વિદ્યાર્થિનીઓ સ્નેહા અને સ્મૃતિ બાકીનાં બે સ્થાનમાં કોઈ પણ ક્રમમાં આવશે. આ ગોઠવણી કેટલા પ્રકારે શક્ય છે ?
- 20. ચાર છોકરા અને ચાર છોકરીઓને હારમાં કેટલી રીતે ગોઠવી શકાય કે જેથી (i) કોઈ બે છોકરીઓ સાથે ન હોય. (ii) બધા જ છોકરા સાથે હોય અને બધી છોકરીઓ સાથે હોય ?
- 21. છ છોકરા અને છ છોકરીઓ હારમાં વારાફરતે ઊભા છે. તેમાં છોકરી હારમાં પ્રથમ સ્થાને છે. આ ગોઠવણી કેટલી રીતે થઈ શકે ?
- 22. MONDAY શબ્દના મૂળાક્ષરોની પુનરાવર્તન સિવાયની ગોઠવણી નીચેના વિકલ્પોમાં કેટલી રીતે શક્ય છે ? (i) કોઈ પણ બે મૂળાક્ષર એક સમયે લેતાં. (ii) કોઈ પણ ચાર મૂળાક્ષરો એક સમયે લેતાં ? (પુનરાવર્તન સિવાય)
- 23. ZERO શબ્દના બધા અક્ષરોની પુનરાવર્તન સિવાય ગોઠવણી કરતાં કેટલા શબ્દો મળે ? શબ્દકોશ પ્રમાણે ગોઠવણી કરતાં ZERO શબ્દ કયા સ્થાનમાં આવે ?
- **24.** 0, 1, 2, 3, 4, 5 અંકોની પુનરાવર્તન સિવાય ગોઠવણી કરતાં 5 વડે વિભાજ્ય એવી 4 અંકોની કેટલી સંખ્યાઓ મળે ?
- 25. 2745 સંખ્યાના અંકોની પુનરાવર્તન સિવાય ગોઠવણી કરતાં 4 અંકોની કેટલી સખ્યાઓ મળે ? તે પૈકીની 3 વડે વિભાજય કેટલી સંખ્યાઓ મળે ? 9 વડે વિભાજય કેટલી સંખ્યાઓ હોય ?
- 26. VOWEL શબ્દના અક્ષરોનો ઉપયોગ કરી ચાર મૂળાક્ષરોવાળા કેટલા શબ્દો બને કે જેમાં સ્વરોના સ્થાને સ્વરો જ આવે.

સમસ્વરૂપ વસ્તુના ક્રમચય

ચાલો, આપણે TREE શબ્દના મૂળાક્ષરોના ક્રમચય જોઈએ. અહીં E બે વખત આવે છે. સરળતા ખાતર હંગામી રીતે તેને ${\rm E}_1$ અને ${\rm E}_2$ વડે દર્શાવીએ.

તેથી અહીં જો E_1 , E_2 ને ભિન્ન ગણીએ તો કુલ ક્રમચયો $_4P_4=4!=24$ મળે. પરંતુ E_1 અને E_2 સમાન હોવાથી આપણને $12=\frac{24}{2}=\frac{24}{2!}$ ક્રમચયો મળે છે.

ઊંડાણપૂર્વક અભ્યાસ માટે આપણે વધુ એક ઉદાહરણ જોઈએ. 1112 ના અંકોનું પુનરાવર્તન કર્યા વગર ચાર અંકોની કેટલી સંખ્યા મળે ?

અહીં 1 અંક ત્રણ વખત આવે છે. ત્રણ વખત 1 આવે છે તેને 1_a , 1_b , 1_c દર્શાવીએ.

તે જ રીતે 1121, 1211, 2111 દરેક માટે $\mathbf{1}_a\mathbf{1}_b\mathbf{1}_c$ ફેરબદલીથી છ સંખ્યાઓ મળે.

અહીં ત્રણ અંક 1ને ભિન્ન ગણીએ તો કુલ $_4P_4=24$ ક્રમચયો મળે. બધા 1 સમાન ગણીએ તો કુલ ચાર ક્રમચયો 1112, 1121, 1211, 2111 મળે. 1_a , 1_b , 1_c ના ક્રમચયો લઈએ દરેક સંખ્યા માટે 3!=6 સંખ્યાઓ મળે. અહીં આપણને કુલ $24=4\times 6$ ક્રમચયો મળે.

ખરેખર અંકોના ક્રમચયથી મળતી સંખ્યાઓ $4 = \frac{24}{6} = \frac{4P_4}{3!}$. તેથી આ પરિસ્થિતિ માટે નીચેનો પ્રમેય મળે.

પ્રમેય 3 : આપેલી n વસ્તુઓમાંથી p_1 સમસ્વરૂપ વસ્તુઓ છે. તેમનાથી ભિન્ન p_2 સમસ્વરૂપ વસ્તુઓ છે. તે જ રીતે આગળની વસ્તુઓથી ભિન્ન p_k સમસ્વરૂપ વસ્તુઓ છે તથા $n=p_1+p_2+...+p_k$ તો n વસ્તુઓના ભિન્ન ક્રમચયોની સંખ્યા,

$$\frac{n!}{p_1! p_2! p_3! \dots p_k!}$$

સાબિતી : ધારો કે આપણી પાસે n ભિન્ન વસ્તુઓ છે. તે પૈકીની સમસ્વરૂપ વસ્તુઓને $a_1, a_2,..., a_{p_1};$ $b_1, b_2,..., b_{p_2}; ...m_1, m_2,..., m_{p_k}$ દ્વારા દર્શાવીએ તો, કુલ ક્રમચયોની સંખ્યા n! છે.

પરંતુ આમાંથી પ્રત્યેક ક્રમચય $p_1!, p_2!, ..., p_k!$ એમ સમસ્વરૂપ વસ્તુઓના સમાન ક્રમચયોને ભિન્ન માનીને મેળવેલ છે. તેથી હવે જો આપેલી n વસ્તુઓના ભિન્ન ક્રમચયોની સંખ્યા m હોય, તો

 \therefore (ભિન્ન ક્રમચયોની સંખ્યા) \times $p_1!$ \times $p_2!$ $\times ...$ \times $p_k!$ = n!

$$\therefore m = \frac{n!}{p_1! p_2! \dots p_k!}$$

તેથી ઉપર્યુક્ત ઉદાહરણોનો જવાબ $\frac{4!}{2!} = 12$ અને $\frac{4!}{3!} = 4$ મળે.

ઉદાહરણ 19 : PERMUTATIONS શબ્દના બધા મૂળાક્ષરોનો ઉપયોગ કરી કેટલા ભિન્ન ક્રમચય મળે ? તેમાંથી, (i) કેટલા શબ્દો Pથી શરૂ થાય અને S માં અંત પામે ?

(ii) કેટલામાં બધા સ્વરો સાથે હોય ?

ઉકેલ : અહીં T બે વખત આવે એવા કુલ 12 અક્ષરો છે.

- \therefore મળતા ભિન્ન ક્રમચયોની સંખ્યા $\frac{12!}{2!}$.
- (i) જે શબ્દો Pથી શરૂ થાય અને જેના અંતમાં S આવે તેવા 10 મૂળાક્ષરોની ગોઠવણી કરતાં તેમાં T બે વખત આવતો હોવાથી,
 - :. કુલ શબ્દોની સંખ્યા $\frac{10!}{2!} = 1814400$
- (ii) પાંચ સ્વરો A, E, I, O, Uને સાથે લઈએ તો કુલ 8 અક્ષરોથી બનતા શબ્દો (7 વ્યંજન અને 1 સ્વર સમૂહ) 8! મળે. તેમાં T બે વખત આવે અને 5 સ્વરો 5! રીતે ગોઠવાય.
 - \therefore આમ મળતા કુલ શબ્દોની સંખ્યા $\frac{8!}{2!} \times 5! = 2419200$
- ઉદાહરણ 20 : MATHEMATICS શબ્દના બધા અક્ષરોનો ઉપયોગ કરી કેટલા ભિન્ન ક્રમચય મળે ? બધા સ્વરો સાથે હોય તેવા કેટલા શબ્દો મળે ?

ઉકેલ: 11 અક્ષરોથી બનેલા આ શબ્દમાં 2 વખત M, 2 વખત T અને 2 વખત A આવે છે.

:. ક્રમચયોની કુલ સંખ્યા $\frac{11!}{2!2!2!} = 4989600$

A, E, I એ સ્વરો છે. (A બે વખત આવે છે)

બાકીના M, T, C, S, H અક્ષરમાં M અને T બે વખત આવે છે.

સાત વ્યંજનો અને સ્વરો AEAIનું એક જૂથ - તેને એક અક્ષર લેતાં, કુલ 8 અક્ષરો મળે.

જૂથ સહિતના ક્રમચયો = $\frac{8!}{2! \, 2!}$ અને A, E, A, Iના કુલ ક્રમચયો $\frac{4!}{2!}$ પ્રકારે થાય.

$$\therefore$$
 ક્રમચયોની કુલ સંખ્યા = $\frac{8!}{2! \, 2!} \times \frac{4!}{2!}$
= $10080 \times 12 = 120960$

ઉદાહરણ 21 : 10,00,000 કરતાં મોટી 7 અંકની કેટલી સંખ્યા 1, 2, 0, 2, 4, 2, 4 બધાંનો ઉપયોગ કરી બનાવી શકાય ?

ઉકેલ : કુલ સાત અંકોનો ઉપયોગ કરવાનો છે, જેમાં 2 એ ત્રણ વખત અને 4 બે વખત આવે છે. પહેલો અંક 1, 2 અથવા 4 હોય તેવી સંખ્યાઓ મેળવીશ્ં.

∴ 2થી શરૂ થતી કુલ સંખ્યાઓ (ત્રણ પૈકીનો એક 2 નિયત છે.)

$$\frac{6!}{2! \, 2!} = \frac{720}{4} = 180$$

4થી શરૂ થતી કુલ સંખ્યાઓ $\frac{6!}{3!} = \frac{720}{6} = 120$

1થી શરૂ થતી કુલ સંખ્યાઓ $\frac{6!}{3!2!} = 60$

10,00,000 થી મોટી કુલ 360 સંખ્યાઓ 1, 2, 0, 2, 4, 2, 4ના ઉપયોગથી મળે.

(7 અંકોની કુલ સંખ્યાઓ = $\frac{7!}{3!2!}$ = $\frac{5040}{12}$ = 420

0 થી શરૂ થતી સંખ્યાઓ = $\frac{6!}{3! \, 2!} = \frac{720}{12} = 60$ છે.

 \therefore માગ્યા પ્રમાણેની કુલ સંખ્યાઓ = 420 - 60 = 360 થાય.)

ઉદાહરણ 22 : ALLAHABAD શબ્દના બધા અક્ષરોનો ઉપયોગ કરી કેટલા શબ્દો બને ?

- (i) યુગ્મ સ્થાને સ્વર હોય તેવા કેટલા શબ્દો બને ?
- (ii) બંને L સાથે ન હોય તેવા કેટલા શબ્દો બને ?

ઉકેલ : અહીં કુલ 9 અક્ષરો છે. તેમાં 4 વખત A અને 2 વખત L આવે છે.

- \therefore કુલ ક્રમચયો $\frac{9!}{4!2!} = 7560$ મળે.
- (i) ચાર સ્વરોમાં બધા જ A છે. તે યુગ્મ સ્થાને એટલે કે 2, 4, 6, 8 માં સ્થાને તેમની ગોઠવણી $\left(\frac{4!}{4!}=1\right)$ એક જ રીતે થાય છે. બાકીના 5 અક્ષરો જેમાં 2 વખત L આવે તેના ક્રમચયો $\frac{5!}{2!}=60$. આથી માગ્યા પ્રમાણે 60 ગોઠવણી શક્ય છે.
- (ii) ધારો કે Lને જૂથમાં લઈ 1 અક્ષર તરીકે લેતાં કુલ 8 અક્ષરોની ગોઠવણી કરવી પડે અને તેમાં A 4 વખત આવે.
- ∴ L સાથે હોય તેવા કુલ શબ્દો = $\frac{8!}{4!}$ = 1680
- ∴ L સાથે ન હોય તેવા કુલ શબ્દો = ગોઠવણીની કુલ સંખ્યા -

L સાથે હોય તેવી ગોઠવણીની કુલ સંખ્યા = 7560 – 1680 = 5880

ઉદાહરણ 23 : AGAIN શબ્દના બધા જ અક્ષરોની ગોઠવણીથી 50મા સ્થાને કયો શબ્દ આવે ? ઉકેલ : શબ્દકોશમાં શબ્દોની શરૂઆત A મૂળાક્ષરથી થાય છે. A પ્રથમ સ્થાને હોય તેવા શબ્દો

4! મળે. (G, A, I, N નો ઉપયોગ કરતાં).

ત્યાર બાદ Gથી શરૂ થતા શબ્દો $\frac{4!}{2!} = 12$

(જેમાં A બે વખત આવે)

તે જ રીતે 1થી શરૂ થતા શબ્દો $\frac{4!}{2!} = 12$ મળે.

આમ કુલ 48 શબ્દો થયા. ત્યાર બાદના શબ્દો NAA થી શરૂ થાય તેમાં GI પ્રથમ આવે અને ત્યાર બાદ IG વાળો શબ્દ NAAIG 50મા ક્રમે આવે.

🕶 નોંધ છેલ્લો અક્ષર કયો ? ગણતરી વગર શોધો.

સ્વાધ્યાય 7.3

- 1. BOOK શબ્દના બધા અક્ષરોની ગોઠવણી કરતાં BOOK શબ્દ કયા સ્થાને આવે ?
- AGAIN શબ્દના બધા અક્ષરોને શબ્દકોશ પ્રમાણે ગોઠવતા છેલ્લો શબ્દ કયો મળે ? તેનો ક્રમ કયો છે ?

- 3. એક રૂમમાં 7 મરક્યુરી ગોળા છે. તે પ્રત્યેક સ્વતંત્ર સ્વિચથી ચાલુ-બંધ થઈ શકે છે. તો રૂમ કેટલી રીતે પ્રકાશિત થઈ શકે ?
- 4. જેના બધા જ અંકો ભિન્ન હોય એવી 10,000 કરતાં નાની કેટલી ધનપૂર્ણાંક સંખ્યાઓ મળે ?
- 5. 2468 ના બધા જ અંકોનો એક જ વખત ઉપયોગ કરીને બનતી સંખ્યાઓનો સરવાળો શોધો.
- 6. જેમાં T અને E અંતમાં કોઈપણ ક્રમમાં આવે એવા TRIANGLE શબ્દના બધા અક્ષરોથી બનતા ક્રમચયો શોધો.
- 7. બંને R સાથે ન હોય તેવા ARROW શબ્દના બધા અક્ષરોની ગોઠવણીથી કેટલા શબ્દો બને ?
- 8. જેમાં બધા સ્વરો સાથે હોય તેવા EXERCISES ના કેટલા ક્રમચયો બને ?
- 9. 12,234 સંખ્યાના બધા અંકોનો ઉપયોગ કરી 10,000 અને 20,000 વચ્ચેની કેટલી સંખ્યાઓ મળે ? 11,000 કરતાં નાની કેટલી સંખ્યાઓ મળે ?
- 10. આ વાક્ય વાંચો : 'LOOK AND GO'. આ ભાતમાં શબ્દો લખીએ તો આપેલા મૂળાક્ષરોથી કેટલાં વાક્યો બને ? (પ્રથમ 4 અક્ષરોવાળો શબ્દ, 3 અક્ષરોવાળો શબ્દ અને 2 અક્ષરોવાળો શબ્દ) વાક્યનો અર્થ હોય તે જરૂરી નથી.
- 11. REKHA શબ્દના બધા અક્ષરોથી Rથી શરૂ થતા હોય તેવા કેટલા ક્રમચયો મળે ? શબ્દકોશ પ્રમાણે REKHA કયા સ્થાને આવે ?
- 12. $2^2 3^3 5^4$ ને ગુણાકારના સ્વરૂપમાં લખી તેના ક્રમચયો બનાવતાં કેટલા ભિન્ન ક્રમચયો મળે ? (ઉદાહરણ તરીકે $2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$)
- 13. INDEPENDENCE શબ્દના બધા અક્ષરોથી કેટલા ક્રમચયો મળે ?
- **14.** x વસ્તુઓની એક સાથે ગોઠવણી કરવાના પ્રકારોની સંખ્યા m છે. x-2 વસ્તુઓની એક સાથે n રીતે ગોઠવણી કરવામાં આવે છે. તે જ રીતે x-6 વસ્તુઓની ગોઠવણી એક સાથે p રીતે કરવામાં આવે અને જો m=30np હોય તો x શોધો.

*

વર્તુળાકાર ગોઠવણી :

ચાર વ્યક્તિઓ a, b, c, d ની જમવાના ગોળ ટેબલ પર કેટલી ગોઠવણી શક્ય છે ?

abcd, adcb, adbc, acbd, acdb, abdc. આમ કુલ છ પ્રકારે ગોઠવણી થઈ શકે. પરંતુ આપણે 4! = 24 રીતે ગોઠવણી થાય તેવું વિચારીએ છીએ પરંતુ અહીં $\frac{24}{4} = 6$ રીતે જ ગોઠવણી થાય છે. અહીં abcd, bcda, cdab, dabc ની એકબીજાને સાપેક્ષ ટેબલ ઉપરની ગોઠવણી સમાન થાય.

વ્યાખ્યા : n ભિન્ન વસ્તુઓને વર્તુળ પર ગોઠવવાની ક્રિયાને વર્તુળાકાર ક્રમચયો કહે છે. પ્રમેય 4:n ભિન્ન વસ્તુઓના વર્તુળાકાર ક્રમચયની સંખ્યા (n-1)! થાય.

સાબિતી : જો n વસ્તુઓ $a_1,\ a_2,\ a_3,...,\ a_n$ તરીકે લઈએ તો તેમની સુરેખ ગોઠવણી ${}_n\mathrm{P}_n=n!$ પ્રકારે થાય.

પરંતુ વર્તુળ પર a_1 , a_2 ,..., a_n ; a_2 , a_3 ,..., a_n , a_1 ; a_3 , a_4 ,..., a_n , a_1 , a_2 ; a_n , a_1 , a_2 ,..., a_{n-1} (n પ્રકારે) આ બધી ગોઠવણી વર્તુળ પર સમાન છે.

તેથી વર્તુળાકાર ક્રમચયોની સંખ્યા $\frac{n!}{n} = \frac{n(n-1)!}{n} = (n-1)!$

ઉદાહરણ 24 : સાત વ્યક્તિઓની કારોબારી સમિતિની વર્તુળાકાર ટેબલ પર ગોઠવણી કેટલી રીતે શક્ય છે ? જો ચૅરમૅનનું સ્થાન નિશ્ચિત હોય તો બાકીના વ્યક્તિઓની ગોઠવણી કેટલી રીતે થાય ? ઉકેલ : સાત વ્યક્તિઓની વર્તુળાકાર ગોઠવણી (7 – 1)! = 6! = 720 પ્રકારે થાય.

જો ચૅરમૅનનું સ્થાન નિશ્ચિત હોય, તો બાકીના 6 વ્યક્તિઓની રેખીય ગોઠવણી 6! = 720 પ્રકારે થાય. (હવે ગોઠવણી રેખીય થઈ જાય છે!)

∴ તેથી ચૅરમૅનનું સ્થાન નિશ્ચિત હોય તેવી કુલ ગોઠવણી 720 થાય.

7.3 સંચય

 $A = \{a, b, c, d\}$ ના જેમાં બે સભ્ય હોય તેવા કુલ કેટલા ઉપગણો મળે ? $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$ અને $\{c, d\}$. આમાં જેમાં બે સભ્યો હોય એવા કુલ 6 ઉપગણ મળે. અહીં $\{a, b\} = \{b, a\}$. ગણમાં ઘટકોનો ક્રમ મહત્ત્વનો નથી.

4 ઘટકો ધરાવતા ગણમાંથી કોઈ પણ 2 ઘટકોની પસંદગીના પ્રકારની સંખ્યાને $\binom{4}{2}$ અથવા $_4\mathrm{C}_2$ અથવા $^4\mathrm{C}_2$ અથવા $^4\mathrm{C}_2$ અથવા $^4\mathrm{C}_2$ અથવા $^4\mathrm{C}_3$ અથવા $^4\mathrm{C}_4$ અથવા $^4\mathrm{C}_4$

ઘટકો ભિન્ન હોય તેવી કુલ કેટલી ક્રમયુક્ત જોડ મળે ?(a, b), (b, a), (a, c), (a, d), (c, a), (d, a), (b, c), (c, b), (b, d), (d, b), (c, d), (d, c) એટલે કે કુલ <math>12 ક્રમયુક્ત જોડ મળે.

અહીં દરેક ઉપગણ પરથી બે ક્રમયુક્ત જોડ મળે છે. તેથી કુલ $\binom{4}{2} \times 2! = 12$ ક્રમયુક્ત જોડ મળે. પરંતુ ગણ Aના 4 ઘટકોમાંથી 2 ઘટકોની ગોઠવણીની સંખ્યા એટલે કે $_4P_2$ જ છે.

$$\therefore \quad {}_{4}P_{2} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \times 2!$$

તે જ રીતે 2, 4, 6, 8 અંકમાંથી ત્રણ અંકોની પસંદગી $\binom{4}{3} = 4$ પ્રકાર થાય.

2, 4, 6, 8 નો ઉપયોગ કરીને ત્રણ અંકોની કેટલી સંખ્યા બને ?

દરેક ત્રય 2, 4, 6 પરથી 6 સંખ્યાઓ મળે.

આમ, 2, 4, 6, 8 ત્રણ અંકોનો ઉપયોગ કરી ત્રણ અંકની કુલ સંખ્યાઓ

 $\binom{4}{3} \times 6 = 4 \times 6 = 24$ મળે. પરંતુ આ તો 4 અંકોની 3 સ્થાનમાં ગોઠવણીના પ્રકારોની સંખ્યા છે.

$$\therefore \quad {}_{4}P_{3} = {4 \choose 3} \times 6$$
 અથવા ${4 \choose 3} = \frac{{}_{4}P_{3}}{3!}$ (6 = 3!)

વ્યાખ્યા : n ભિન્ન વસ્તુઓ પૈકી r વસ્તુઓની પસંદગીને r વસ્તુઓનો સંચય કહે છે. તે $\binom{n}{r}$ અથવા $\binom{n}{r}$

પ્રમેય 5 :
$$\binom{n}{r} = \frac{n^{n}r!}{r!}$$
 $0 < r \le n$

સાબિતી : n ભિન્ન વસ્તુઓ આપેલ છે. તેમાંથી r વસ્તુઓની પસંદગી કરવામાં આવે છે. તે પસંદગી $\binom{n}{r}$ રીતે કરવામાં આવે છે. આ r વસ્તુઓને r સ્થાનમાં ગોઠવવામાં આવે તો તેમની ગોઠવણી $_rP_r=r!$ પ્રકારે કરવામાં આવે છે. આમ, દરેક $\binom{n}{r}$ પસંદગીમાંથી પ્રત્યેકમાંથી r! ક્રમચયો મળે એટલે કે કુલ $\binom{n}{r}\times r!$ ગોઠવણી મળે. પરંતુ n ભિન્ન વસ્તુઓની r સ્થાનમાં ગોઠવણીના પ્રકાર એ $_nP_r$ છે.

$$\therefore \quad {}_{n}P_{r} = \binom{n}{r} \times r!$$

$$\therefore \binom{n}{r} = \frac{n^{P_r}}{r!}$$

વ્યાખ્યા :
$$\binom{n}{0} = 1$$

આપણે અહીં $\binom{n}{0}=1$ વ્યાખ્યાયિત કરીએ છીએ. તેને તાર્કિક રીતે જોતાં આપેલ n વસ્તુઓમાંથી શૂન્ય ઘટકો અથવા એક પણ ઘટક નહિ તે રીતે પસંદગી અને તે માત્ર 1 રીતે જ શક્ય છે કે તમામ ઘટકોને ફગાવી દો.

$\binom{n}{r}$ નું સૂત્ર :

$${n \choose r} = \frac{n^{p_r}}{r!} \qquad 0 < r \le n$$

$$= \frac{n(n-1)(n-2)...(n-r+1)}{r!} \qquad 0 < r \le n$$

$$= \frac{n!}{(n-r)! r!} \qquad 0 < r \le n$$

વળી,
$$\binom{n}{0} = 1 = \frac{n!}{(n-0)! \, 0!}$$

$$\therefore \binom{n}{r} = \frac{n!}{(n-r)! \, r!} \qquad 0 \le r \le n$$

પ્રમેય 6 :
$$\binom{n}{r} = \binom{n}{n-r}$$
 $0 \le r \le n$

સાબિતી : $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

$$= \frac{n!}{(n-r)!r!}$$

$$= \frac{n!}{(n-r)![n-(n-r)]!}$$

$$= \binom{n}{n-r}$$
પ્રમેય 7 : $\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$

$$= \frac{n!}{r!(n-r)!} + \frac{n!}{(r-1)!(n-r+1)!}$$

$$= \frac{n!}{r!(n-r)!} + \frac{n!}{(r-1)!(n-r+1)!}$$

$$= \frac{n!}{(r-1)!(n-r)!} \left[\frac{1}{r} + \frac{1}{n-r+1} \right]$$

$$= \frac{n!}{(r-1)!(n-r)!} \left(\frac{n-r+1+r}{r(n-r+1)} \right)$$

$$= \frac{n!(n+1)!}{r!(n-r+1)!(n-r+1)!}$$

$$= \frac{(n+1)!}{r!(n-r+1)!}$$

$$= \binom{n+1}{r}$$

બીજી રીતે સાબિતી :

પ્રમેય 6 ની સાબિતી : જો n વસ્તુઓમાંથી r વસ્તુઓની પસંદગી એટલે કે બાકીની (n-r) વસ્તુઓનો અસ્વીકાર.

∴ જેટલી પસંદગી તેટલા જ અસ્વીકાર થાય.

$$\therefore \binom{n}{r} = \binom{n}{n-r}$$

ઉદાહરણ તરીકે ગણ A = {1, 2, 3, 4, 5}માંથી 2 ઘટકોવાળા ઉપગણોની પસંદગી

પસંદ કરો	અસ્વીકાર કરો	પસંદ કરો	અસ્વીકાર કરો
{1, 2}	{3, 4, 5}	{2, 4}	{1, 3, 5}
{1, 3}	$\{2, 4, 5\}$	{2, 5}	{1, 3, 4}
{1, 4}	{2, 3, 5}	{3, 4}	{1, 2, 5}
{1, 5}	{2, 3, 4}	{3, 5}	{1, 2, 4}
{2, 3}	{1, 4, 5}	{4, 5}	{1, 2, 3}

.. તેથી 2 ઘટકોના ઉપગણોની સંખ્યા એ 3 ઘટકો ધરાવતા ઉપગણોની સંખ્યા બરાબર થાય. $\binom{5}{2} = \binom{5}{3} = 10$

પ્રમેય 7 ની સાબિતી : ધારો કે $A = \{x_1, x_2, x_3, ..., x_{n+1}\}$

r ઘટકો ધરાવતા Aના ઉપગણોની સંખ્યા $inom{n+1}{r}$ થાય.

ઘટક x_1 પસંદ થયેલા ઉપગણોનો ઘટક હોય કે ન પણ હોય.

જો ઘટક x_1 એ r ઘટકોવાળા ઉપગણનો સભ્ય હોય, તો બાકીના (r-1) ઘટકોની પસંદગી $\binom{n}{r-1}$ પ્રકારે થાય.

જો x_1 એ r ઘટકોવાળા ઉપગણનો સભ્ય ન હોય, તો બધા જ r ઘટકોની પસંદગી n ઘટકોમાંથી $\binom{n}{r}$ રીતે થાય.

$$\therefore \binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$$

 $r=\frac{1}{2}$ (1) શરૂઆતમાં r વધે તો $r=\frac{n}{2}$ લેતાં $r=\frac{n}{2}$ લેતાં $r=\frac{n}{2}$ લેતાં $r=\frac{n}{2}$ અથવા $r=\frac{n-1}{2}$ અથવા $r=\frac{n+1}{2}$ લેતાં $r=\frac{n}{2}$ સહત્તમ મળે.

ત્યાર બાદ ક્રમિક રીતે આગળ વધતાં $\binom{n}{r}$ ની કિંમત ઘટે છે, કારણ કે $\binom{n}{r}=\binom{n}{n-r}$.

(2) $\binom{n}{r} = k, k \in \mathbb{N} \cup \{0\}$ ને મહત્તમ બે ઉકેલ છે.

ઉદાહરણ તરીકે $\binom{4}{r}=6$ નો એક ઉકેલ r=2.

 $\binom{4}{r}$ = 5નો ઉકેલ ન મળે.

 $\binom{4}{r}=4$ ના બે ઉકેલ r=1, 3 મળે.

ઉદાહરણ 25 : $\binom{2n}{r}$ ની કિંમત r=n માટે મહત્તમ હોય તેમ સાબિત કરો.

ઉકેલ : $\binom{2n}{r+1} > \binom{2n}{r} \iff \frac{(2n)!}{(r+1)!(2n-r-1)!} > \frac{(2n)!}{r!(2n-r)!}$

$$\Leftrightarrow \frac{(2n-r)!}{(2n-r-1)!} > \frac{(r+1)!}{r!}$$

$$\Leftrightarrow 2n-r > r+1$$

$$\Leftrightarrow r < n - \frac{1}{2}$$

$$\Leftrightarrow r \leq n-1$$

તેથી,
$$\binom{2n}{n}$$
 એ મહત્તમ હોય. $\binom{2n}{1} < \binom{2n}{2} < \dots < \binom{2n}{n-1} < \binom{2n}{n}$.

ત્યાર બાદ
$$\binom{2n}{n+1}=\binom{2n}{n-1}>\binom{2n}{n+2}=\binom{2n}{n-2}...$$

ઉદાહરણ $\mathbf{26}: \binom{n}{5} = \binom{n}{13}$ પરથી n શોધો. તે પરથી $\binom{n}{2}$ શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે, $\binom{n}{r}=\binom{n}{n-r}$

$$\therefore r = 5, n - r = 13$$

$$\therefore n-5=13$$

$$\therefore n = 18$$

$$\binom{n}{2} = \binom{18}{2} = \frac{18 \times 17}{2} = 153$$

ઉદાહરણ 27 : જો $\binom{2n}{3} = 11 \binom{n}{3}$ તો n તથા $\binom{n}{2}$ શોધો.

ઉકેલ :

$$\frac{2n(2n-1)(2n-2)}{3!} = \frac{11n(n-1)(n-2)}{3!} \qquad \left(\binom{n}{r} = \frac{n(n-1)(n-2)...(n-r+1)}{r!} \right)$$

$$\therefore$$
 4(2*n* - 1) = 11(*n* - 2)

$$\therefore$$
 8*n* - 4 = 11*n* - 22

$$\therefore 3n = 18$$

$$\therefore$$
 $n=6$

વળી,
$$\binom{n}{2} = \binom{6}{2} = \frac{6 \cdot 5}{2} = 15$$

ઉદાહરણ 28 : જો $\binom{n}{r-1} = 36$, $\binom{n}{r} = 84$, $\binom{n}{r+1} = 126$, તો n અને r શોધો.

ઉકેલ : અહીં
$$\binom{n}{r-1} = \frac{n!}{(r-1)!(n-r+1)!} = 36$$

તે જ રીતે,
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = 84$$

$$\binom{n}{r+1} = \frac{n!}{(r+1)!(n-r-1)!} = 126$$
 (iii)

(ii)ને (i) વડે અને (iii)ને (ii) વડે ભાગતાં,

$$\frac{n!}{r!(n-r)!} \frac{(r-1)!(n-r+1)!}{n!} = \frac{84}{36}$$
 (iv)

અને
$$\frac{n!}{(r+1)!(n-r-1)!} \frac{r!(n-r)!}{n!} = \frac{126}{84}$$
 (v)

∴ (iv) પરથી,
$$\frac{(r-1)!(n-r+1)(n-r)!}{r(r-1)!(n-r)!} = \frac{84}{36}$$

$$\therefore \frac{n-r+1}{r} = \frac{7}{3}$$

$$\therefore 3n - 3r + 3 = 7r$$

$$\therefore 10r - 3n = 3 \tag{vi}$$

(v) પરથી,
$$\frac{n-r}{r+1} = \frac{3}{2}$$
 અથવા $2n - 2r = 3r + 3$

$$\therefore 5r - 2n = -3 \tag{vii}$$

(vi) અને (vii) ઉકેલતાં,
$$n = 9, r = 3$$

ઉદાહરણ 29 : ઉકેલો : (1)
$$\binom{8}{r} = 28$$
 (2) $\binom{12}{r} = \binom{12}{r+2}$

$$634 : \binom{8}{r} = 28$$

$$r=4$$
 લેતાં $\binom{8}{4}$ નું મહત્તમ મૂલ્ય મળે. $\binom{8}{4}=\frac{8\times 7\times 6\times 5}{24}=70$

$$\therefore \quad {8 \choose 0} = {8 \choose 8} = 1 \neq 28$$

$$\therefore \binom{8}{1} = \binom{8}{7} = 8 \neq 28$$

$$\therefore {8 \choose 2} = {8 \choose 6} = \frac{8 \times 7}{2} = 28$$

આપણે જાણીએ છીએ કે, મહત્તમ બે જ ઉકેલ મળે. વળી, $\binom{8}{2}=\binom{8}{6}=28$. r=2 અથવા 6

$$(2) \quad \binom{12}{r} = \binom{12}{r+2}$$

$$r \neq r + 2$$

અહીં,
$$n=12$$
, $r+2=n-r=12-r$

$$\therefore 2r = 10$$

$$\therefore r = 5$$

ચકાસણી :
$$\binom{12}{5} = \binom{12}{7}$$

ઉદાહરણ 30 : ઉકેલો : $\binom{2n}{3}$ ÷ $\binom{n}{2}$ = 12

634:
$$\frac{2n(2n-1)(2n-2)}{3!} \times \frac{2!}{n(n-1)} = 12$$

$$\therefore \quad \frac{2(2n-1)\cdot 2}{3} = 12$$

$$\therefore 2n-1=9$$

$$\therefore$$
 $n=5$

ઉદાહરણ 31 :
$$n$$
 અને r શોધો : $\binom{n+1}{r+1}$: $\binom{n}{r}$: $\binom{n-1}{r-1}$ = 11 : 6 : 3.

ઉકેલ :
$$\binom{n+1}{r+1}$$
 : $\binom{n}{r}=\frac{11}{6}$ અને $\binom{n}{r}$: $\binom{n-1}{r-1}=\frac{6}{3}$

$$\therefore \frac{(n+1)!}{(r+1)!(n-r)!} \frac{r!(n-r)!}{n!} = \frac{11}{6} \text{ and } \frac{n!}{r!(n-r)!} \frac{(r-1)!(n-r)!}{(n-1)!} = \frac{6}{3}$$

$$\therefore \quad \frac{n+1}{r+1} = \frac{11}{6} \text{ and } \frac{n}{r} = 2$$

∴
$$6n + 6 = 11r + 11$$
 અને $n = 2r$

$$\therefore$$
 12r + 6 = 11r + 11

∴
$$r = 5$$
 અને $n = 2r = 10$

ઉદાહરણ 32 : સાબિત કરો કે n ક્રમિક પૂર્ણાકોનો ગુણાકાર n! વડે વિભાજ્ય છે.

ઉકેલ : ધારો કે n કમિક પૂર્ણાંકો r+1, r+2,..., r+n છે.

તેમનો ગુણાકાર
$$p = (r+1)(r+2)...(r+n)$$
$$= \frac{1 \cdot 2 \cdot 3.... r(r+1)....(r+n)}{1 \cdot 2 \cdot 3...r}$$

$$=rac{(n+r)!}{r!}=rac{(n+r)!}{r!\,n!} imes n!=inom{n+r}{r}n!$$
 અને તે $n!$ વડે વિભાજય છે.

ઉદાહરણ 33 : સાબિત કરો કે,
$$\binom{2n}{n} = \frac{2^n [1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)]}{n!}$$

634:
$$\binom{2n}{n} = \frac{(2n)!}{n! \, n!}$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \dots (2n)}{n! \, n!}$$

$$= \frac{[1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)] [2 \cdot 4 \cdot 6 \cdot 8 \dots 2n]}{n! \, n!}$$

$$= \frac{[1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)] 2^n [1 \cdot 2 \cdot 3 \cdot 4 \dots n]}{n! \, n!}$$

$$= \frac{2^n [1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)]}{n!}$$

ઉદાહરણ 34 : જો
$$_{n}P_{r}=_{n}P_{r+1}$$
 અને $\binom{n}{r}=\binom{n}{r-1}$, તો n , r શોધો.

ઉકેલ :
$$\frac{n!}{(n-r)!} = \frac{n!}{(n-r-1)!}$$
 અને $\frac{n!}{r!(n-r)!} = \frac{n!}{(r-1)!(n-r+1)!}$

$$(n-r)! = (n-r-1)! \ \text{અને} \ \frac{r!}{(r-1)!} = \frac{(n-r+1)!}{(n-r)!}$$

$$\therefore (n-r)(n-r-1)! = (n-r-1)! \text{ and } r = n-r+1$$

$$\therefore n-r=1 \text{ and } r=n-r+1$$

$$r = (n-r) + 1 = 1 + 1 = 2$$
 અને $n = r + 1 = 3$

ઉદાહરણ 35 : સાબિત કરો કે,
$$\binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} = \binom{n+2}{r}$$

ઉકેલ : ડા.બા.
$$= \binom{n}{r} + \binom{n}{r-1} + \binom{n}{r-1} + \binom{n}{r-2}$$

 $= \binom{n+1}{r} + \binom{n+1}{r-1}$
 $= \binom{n+2}{r} =$ %.બા.

ઉદાહરણ 36 : જો $\binom{n-1}{4}$, $\binom{n-1}{5}$, $\binom{n-1}{6}$ સમાંતર શ્રેણીમાં હોય, તો n શોધો.

ઉકેલ :
$$\binom{n-1}{4} + \binom{n-1}{6} = 2\binom{n-1}{5}$$
 (A.P.માં)

$$\therefore \binom{n-1}{4} + \binom{n-1}{5} + \binom{n-1}{5} + \binom{n-1}{6} = 4\binom{n-1}{5}$$

$$\therefore \binom{n}{5} + \binom{n}{6} = 4 \binom{n-1}{5}$$

$$\therefore \binom{n+1}{6} = 4 \binom{n-1}{5}$$

$$\therefore \frac{(n+1)n(n-1)(n-2)(n-3)(n-4)}{720} = \frac{4(n-1)(n-2)(n-3)(n-4)(n-5)}{120}$$

$$n^2 + n = 24(n-5)$$

$$n^2 - 23n + 120 = 0$$

સ્વાધ્યાય 7.4

1. કિંમત શોધો : (1)
$$\binom{8}{2}$$
 (2) $\binom{5}{3}$ (3) $\binom{10}{4}$

$$2. \quad \Re\binom{n}{8} = \binom{n}{6}, \text{ at } n \text{ with.}$$

3. ઉકેલ મેળવો : (1)
$$\binom{15}{r+3} = \binom{15}{r-2}$$
 (2) $\binom{16}{r+5} = \binom{16}{r-5}$

4. જો
$$_{n}P_{r}=1680$$
 અને $\binom{n}{r}=70$, તો n અને r શોધો.

5. જો
$$\binom{n-1}{r}$$
 : $\binom{n}{r}$: $\binom{n+1}{r}$ = 6 : 9 : 13, તો n અને r શોધો.

6. સાબિત કરો કે,
$$\binom{n}{r} \times \binom{r}{p} = \binom{n}{p} \times \binom{n-p}{r-p}$$
.

8. સાબિત કરો કે,
$$n {n-1 \choose r-1} = (n-r+1) {n \choose r-1}$$

*

ક્રમચય અને સંચયનાં વ્યાવહારિક ઉદાહરણો

ઉદાહરણ 37 : એક સમતલમાં 7 ભિન્ન બિંદુઓ આપેલાં છે. તે પૈકીનાં કોઈ પણ ત્રણ બિંદુઓ સમરેખ નથી. તો તેમનો ઉપયોગ કરી કેટલા રેખાખંડ રચી શકાય ?

ઉકેલ : કોઈ પણ બે બિંદુથી રેખાખંડ મળે છે અને $\overline{AB} = \overline{BA}$. તેથી પસંદગીમાં ક્રમનું મહત્ત્વ નથી. તેથી $\binom{7}{2} = \frac{7 \cdot 6}{2} = 21$.

∴ આપેલાં બિંદુઓથી કુલ 21 રેખાખંડ મળે.

ઉદાહરણ 38 : એક જ સમતલમાં આવેલાં 8 ભિન્ન બિંદુઓ પૈકીનાં 3 બિંદુઓ સમરેખ છે. તેમનો ઉપયોગ કરી કેટલા ત્રિકોણો રચી શકાય ? તે 8 બિંદુઓ પૈકી કોઈ પણ બે બિંદુઓમાંથી કેટલી રેખા પસાર થાય ? કેટલા રેખાખંડ મળે ? ABC

રખા પસાર થાય ? કટલા રખાખડ મળ ? A B C **ઉકેલ :** 8 બિંદુઓ $\binom{8}{3}$ ત્રિકોણ રચે છે. જેમકે ΔADE . પરંતુ A, B, C એ સમરેખ હોવાથી તેઓ $\binom{3}{3}$ ત્રિકોણ રચતા નથી D E F G મેં તેમનાથી કોઈ ત્રિકોણ મળે નહિ.

ત્રિકોણની સંખ્યા
$$\binom{8}{3} - \binom{3}{3} = \frac{8 \cdot 7 \cdot 6}{6} - 1 = 55$$

આકૃતિ 7.8

કોઈ પણ બે બિંદુઓ એક રેખા રચે છે. તેથી $\binom{8}{2}=28$ રેખાઓ મળી શકે.

પરંતુ, \overrightarrow{AB} , \overrightarrow{BC} તથા \overrightarrow{CA} ત્રણ રેખાઓ નથી. A, B, C સમરેખ હોવાથી તેમનાથી એક જ રેખા મળે છે. $\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CA} = l$

 \therefore 28 - 3 + 1 (રેખા l) = 26 રેખાઓ મળે.

બધા જ $\binom{8}{2}=\frac{8\cdot 7}{2}=28$ રેખાખંડ ભિન્ન હોય છે, કારણ કે $\overline{AB}\neq\overline{BC}$ વગેરે.

.. આપેલ બિંદુઓ દ્વારા 28 રેખાખંડ મળે.

ઉદાહરણ 39 : સ્વર્ણિમ ગુજરાતના કાર્યક્રમ માટે બનાવેલ ટુકડીઓ માટે 3 યુવાનો અને 2 યુવતીઓની પસંદગી કરવાની છે. 5 યુવાનો અને 4 યુવતીઓ સમાવિષ્ટ છે. તો કુલ કેટલી રીતે ટુકડીઓ બનશે ? ટુકડીમાં એક યુવાન કિરણની પસંદગી નિશ્ચિત હોય તેવી કેટલી ટુકડીઓ મળશે ? જેમાં રેશ્મા નામની યુવતી નિશ્ચિત સ્થાન ધરાવે એવી કેટલી ટુકડીઓ બને ?

ઉકેલ : 5 યુવાનોમાંથી 3 યુવાનો અને 4 યુવતીઓમાંથી 2 યુવતીઓની પસંદગી, ગણતરીના મૂળભૂત સિદ્ધાંત પરથી, $\binom{5}{3} \times \binom{4}{2}$ રીતે થાય.

હવે,
$$\binom{5}{3}\binom{4}{2} = \frac{5 \cdot 4 \cdot 3}{3!} \times \frac{4 \cdot 3}{2!} = 10 \times 6 = 60$$

∴ આમ કુલ 60 ટુકડીઓ મળે. (i)

હવે કિરણ નિશ્ચિત સ્થાન ધરાવતો હોવાથી બાકીના 4 યુવાનોમાંથી 2 યુવાનોની અને 4 યુવાતીઓમાંથી 2 યુવાતીઓની પસંદગી કરવી પડે.

∴ પસંદગીના પ્રકાર =
$$\binom{4}{2} \times \binom{4}{2} = \frac{4 \cdot 3}{2!} \times \frac{4 \cdot 3}{2!} = 6 \times 6 = 36$$
 કિરણ કુલ 36 સમિતિમાં હશે. (ii)

હવે રેશ્માની પસંદગી નિશ્ચિત હોય, તો બાકીના 5 યુવાનોમાંથી 3 યુવાનોની અને 3 યુવાતીઓમાંથી 1 યુવાતીની પસંદગી કરવી પડે.

$$\therefore$$
 પસંદગીના પ્રકાર = $\binom{5}{3} \times \binom{3}{1}$
= $10 \times 3 = 30$

રેશ્મા 30 સમિતિમાં હશે. (iii)

ઉદાહરણ 40 : સરખી રીતે ચીપેલાં 52 પત્તાઓમાંથી 3 પત્તાઓની પસંદગી કરવાની છે. (1) પસંદગી કેટલા પ્રકારે થઈ શકે ? (2) કેટલા પ્રકારે ચિત્રવાળાં પત્તાં પસંદ થાય ? (3) કેટલા પ્રકારે સમાન રંગોવાળાં પત્તાં પસંદ થાય ? (4) પસંદ થયેલ પત્તાં એક જ ભાતનાં હોય તે કેટલા પ્રકારે શક્ય છે ?

ઉકેલ : (1) 52 પત્તાંમાંથી 3 પત્તાંની પસંદગીના પ્રકાર
$$\binom{52}{3} = \frac{52 \cdot 51 \cdot 50}{3!} = \frac{52 \cdot 51 \cdot 50}{6} = 22,100$$

- ∴ 22,100 પ્રકારે ત્રણ પત્તાં પસંદ થાય.
- (2) 52 પત્તાંની થોકડીમાં કુલ 12 પત્તાં ચિત્રવાળાં હોય છે. તેમાંથી 3 પત્તાંની પસંદગી $\binom{12}{3}$ પ્રકારે થાય.

$$\binom{12}{3} = \frac{12 \cdot 11 \cdot 10}{3!} = 220$$

- ∴ પસંદ થયેલાં ત્રણેય પત્તાં ચિત્રવાળાં હોય તેના કુલ પ્રકાર 220 છે.
- (3) 52 પત્તાંમાંથી 26 પત્તાં લાલ રંગ (લાલ અને ચોકટ) તેમજ 26 પત્તાં કાળા રંગનાં (ફુલ્લી અને કાળી) હોય.
 - \therefore પસંદગીના પ્રકાર $\binom{26}{3}+\binom{26}{3}$ થાય.
 - $\therefore {26 \choose 3} = \frac{26 \cdot 25 \cdot 24}{6} = 2600$
 - ∴ પસંદ થયેલ પત્તાં લાલરંગનાં અથવા કાળા રંગનાં હોય તેવી પસંદગી 5200 થાય.

200 ગણિત

(4) 52 પત્તાંને 4 ભાતમાં વહેંચેલાં હોય છે. 4માંથી 1 જૂથની પસંદગી $\binom{4}{1}$ પ્રકારે થાય. તેમાંથી 3 પત્તાની પસંદગી $\binom{13}{3}$ પ્રકારે થાય.

$$\therefore$$
 પસંદગીના પ્રકારની સંખ્યા = $\binom{13}{3} \times \binom{4}{1} = \frac{13 \cdot 12 \cdot 11}{6} \times 4 = 1144$

ઉદાહરણ 41 : શાળાના વાર્ષિકોત્સવ કાર્યક્રમ નિમિત્તે 6 સભ્યોની સ્વાગત સમિતિ રચવાની છે. 8 કુમાર અને 5 કુમારીઓમાંથી સમિતિના સભ્યોની પસંદગી કરવાની છે. જેમાં (1) 4 કુમારીઓ હોય. (2) વધુમાં વધુ 2 કુમારીઓ (3) ઓછામાં ઓછી 3 કુમારીઓ હોય એવી કેટલી રીતે સમિતિની રચના થઈ શકે ?

ઉકેલ: (1) પસંદગીના 6 વિદ્યાર્થીઓમાં 5 કુમારીઓમાંથી 4 કુમારીઓ પસંદ કરીએ, તો 8 કુમારમાંથી બાકીના 2 કુમાર પસંદ કરવા પડે.

∴ પસંદગીના પ્રકારની સંખ્યા =
$$\binom{5}{4} \times \binom{8}{2}$$

= $\binom{5}{1} \times \binom{8}{2}$
= $\frac{5 \cdot 8 \cdot 7}{2!} = 140$

(2) વધુમાં વધુ 2 કુમારીઓ એટલે 2 અથવા 2 કરતાં ઓછી કુમારીઓ. તે માટે નીચેના વિકલ્પો શક્ય છે :

∴ પસંદગીના કુલ પ્રકારની સંખ્યા =
$$\binom{8}{4} \times \binom{5}{2} + \binom{8}{5} \times \binom{5}{1} + \binom{8}{6} \times \binom{5}{0}$$

= $\frac{8 \cdot 7 \cdot 6 \cdot 5}{24} \times \frac{5 \cdot 4}{2} + \frac{8 \cdot 7 \cdot 6}{6} \times 5 + \frac{8 \cdot 7}{2} \times 1$
[$\binom{8}{5} = \binom{8}{3}$ અને $\binom{8}{6} = \binom{8}{2}$]

$$= 700 + 280 + 28 = 1008$$

(3) ઓછામાં ઓછી ત્રણ કુમારીઓ એટલે કે ત્રણ કે ત્રણ કરતાં વધારે કુમારીઓ.

∴ પસંદગીના પ્રકારની કુલ સંખ્યા =
$$\binom{8}{3} \times \binom{5}{3} + \binom{8}{2} \times \binom{5}{4} + \binom{8}{1} \times \binom{5}{5}$$

= $\frac{8 \cdot 7 \cdot 6}{6} \times \frac{5 \cdot 4 \cdot 3}{6} + \frac{8 \cdot 7}{2} \times 5 + 8$ $\left[\binom{5}{4} = \binom{5}{1} = 5\right]$
= $560 + 140 + 8 = 708$

(ii)

ઉદાહરણ 42 : ત્રણ દંપતી એક થિયેટરમાં ચલચિત્ર જોવા જાય છે. ત્રણે દંપતી ક્રમિક રીતે સાથે બેસે તો તે કેટલા પ્રકારે શક્ય છે ? ત્રણે સ્ત્રીઓ સાથે બેસે તે કેટલી રીતે શક્ય છે ?

$$\begin{array}{cccc} C_1 & C_2 & C_3 \\ \hline \end{array}$$

ઉકેલ : જો દંપતીને C_1 , C_2 , C_3 તરીકે દર્શાવીએ તો તેમની ગોઠવણી 3!=6 રીતે થાય. યુગલમાં પતિ અને પત્નીના સ્થાનની આંતરિક ફેરબદલી $2!\times 2!\times 2!=8$ રીતે થાય.

.. આમ ગોઠવણી કુલ 48 પ્રકારે શક્ય છે. (i) ત્રણ પુરુષ અને સ્ત્રીઓનું જૂથ એમ 4 એકમની ગોઠવણી $_4P_4=4!=24$ રીતે થઈ શકે. સ્ત્રીઓની અંદરોઅંદરની ગોઠવણી $_3!=6$ રીતે થઈ શકે.

∴ ગોઠવણીના કુલ પ્રકાર = 24 × 6 = 144

સ્વાધ્યાય 7.5

- 1. એક જ સમતલમાં આવેલ 9 ભિન્ન બિંદુઓ પૈકી 4 બિંદુ સમરેખ છે. આ બિંદુઓનો ઉપયોગ કરી કેટલા ત્રિકોણ રચી શકાય ? તેમાંથી પસાર થતી કેટલી રેખાઓ મળે ?
- 2. સિટી ક્લબના સભ્યો 8 પુરુષો અને 6 સ્ત્રીઓમાંથી પસંદ કરી 4 પુરુષો અને 4 સ્ત્રીઓ ધરાવતી 8 સભ્યોની કેટલી સિમિતિ બનાવી શકાય ? ઓછામાં ઓછી 3 સ્ત્રીઓ હોય તેવી કેટલી સિમિતિ બને ? માત્ર બે જ સ્ત્રીઓ હોય તેવી કેટલી સિમિતિ બને ? વધુમાં વધુ 2 સ્ત્રીઓ હોય તેવી કેટલી સિમિતિ બને ?
- 3. 52 પત્તામાંથી 4 પત્તાંની પસંદગી કરવામાં આવે છે. (1) પસંદ થયેલ બધા જ પત્તાં અલગ અલગ જૂથનાં હોય. (2) પસંદ થયેલાં બધાં જ પત્તાં ચિત્રવાળાં હોય. (3) પસંદ થયેલ બધા જ પત્તાં સમાન રંગનાં હોય. તો પત્તાંની પસંદગી કેટલી રીતે થાય ?
- 4. 2 સફેદ, 3 લાલ અને 4 લીલા રંગની લખોટીઓ છે. યાદચ્છિક રીતે ત્રણ લખોટીઓ પસંદ કરવામાં આવે છે. લખોટીઓની પસંદગી કેટલા પ્રકારે થઈ શકે કે જેમાં ઓછામાં ઓછી 1 લખોટી લાલ રંગની હોય ?
- 5. 15 વિદ્યાર્થીઓમાંથી સમાન સભ્યસંખ્યા હોય તેવા ત્રણ જૂથ બનાવવા છે, તો જૂથની રચના કેટલી રીતે શક્ય છે ?
- 6. ઈનામ-વિતરણ સમારંભમાં બે વર્તુળાકાર ટેબલ પર 8 અને 4 વ્યક્તિઓ બેસી શકે તેવી વ્યવસ્થા કરેલ છે. 12 વ્યક્તિની ટેબલ પર ગોઠવણી કેટલી રીતે શક્ય છે ?
- 7. 2 ચોક્કસ વ્યક્તિઓ સાથે ન હોય તેવી n વ્યક્તિઓની કુલ ગોઠવણી કેટલી રીતે શક્ય છે ?
- 8. n બાજુવાળા બહિર્મુખ બહુકોણમાં કેટલા વિકર્ણો હોય ?
- 9. એક બહિર્મુખ બહુકોણના 44 વિકર્ણો છે તે બહુકોણને કેટલી બાજુઓ હશે ?
- 10. n બાજુવાળા બહિર્મુખ બહુકોશના શિરોબિંદુને જોડવાથી કેટલા ત્રિકોશ બને છે ? જેની એક બાજુ બહુકોશની બાજુ હોય તેવા કેટલા ત્રિકોશ બને ? જેની બે બાજુ બહુકોશની બાજુ હોય તેવા કેટલા ત્રિકોશ બને ? જેની બાજુ ન હોય તેવા કેટલા ત્રિકોશ બને ?

પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 43 : ધારો કે n! માં આવેલી અવિભાજય સંખ્યા p નો મહત્તમ ઘાતાંક $\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots$ છે. તે પરથી 25! માં 5નો મહત્તમ ઘાતાંક કેટલો મળે ?

ઉકેલ : 25!માં 5નો મહત્તમ ઘાતાંક $\left[\frac{25}{5}\right] + \left[\frac{25}{25}\right] = 5 + 1 = 6$

ઉદાહરણ 44 : 52!ના અંતમાં કેટલાં શૂન્યો આવેલાં છે ?

ઉકેલ : 52!માં 5નો મહત્તમ ઘાતાંક
$$\left[\frac{52}{5}\right] + \left[\frac{52}{25}\right] = 10 + 2 = 12$$

52!માં 2નો મહત્તમ ઘાતાંક = $\left[\frac{52}{2}\right] + \left[\frac{52}{4}\right] + \left[\frac{52}{8}\right] + \left[\frac{52}{16}\right] + \left[\frac{52}{32}\right]$
= $26 + 13 + 6 + 3 + 1 = 49$

∴ 52! માં 10 નો મહત્તમ ઘાતાંક 12 છે.

∴ 52! ના અંતમાં 12 શૂન્ય છે.

ઉદાહરણ 45 : ગણ A માં ત્રણ ઘટકો હોય અને ગણ B માં પાંચ ઘટકો હોય, તો $f: A \to B$ કેટલાં વિધેય મળે ? આ પૈકી કેટલાનો વિસ્તાર B હશે ?

ઉકેલ : ધારો કે A = $\{x_1, x_2, x_3\}$, B = $\{y_1, y_2, y_3, y_4, y_5\}$

વિધેય $f: A \to B$ માટે (x_i, y_j) પ્રકારની એવી ક્રમયુક્ત જોડ બનવી જોઈએ જેથી A માંથી કોઈ x_i નું પુનરાવર્તન ન થાય અને પ્રત્યેક x_i નો એક વખત ઉપયોગ થાય.

આથી $f=\{(x_1,\,y_p),\,(x_2,\,y_q),\,(x_3,\,y_r)\}$ એક $f:A\to B$ લાક્ષણિક વિધેય છે. $y_p,\,y_q,\,y_r$ ની પસંદગી $5\times 5\times 5=125$ રીતે થઈ શકે. આથી $f:A\to B$, 125 વિધેયો મળે.

આથી વિસ્તારમાં વધુમાં વધુ ત્રણ ઘટક આવશે. (y_p, y_q, y_r) ભિન્ન હોય તો). આથી વિસ્તારમાં ત્રણથી વધુ ઘટક ન હોય. આથી કોઈ પણ વિધેય $f: A \to B$ નો વિસ્તાર B ના હોય.

ઉદાહરણ 46 : 52 પત્તાંમાંથી 5 પત્તાંની પસંદગીમાં ઓછામાં ઓછી એક વખત એક્કો આવે તે કેટલી રીતે શક્ય છે ?

ઉકેલ : અહીં આપણે નીચે પ્રમાણે પસંદ કરી શકીએ :

એક્કોની સંખ્યા (4)	એક્કા સિવાયનાં બીજાં પત્તાં (48)
1	4
2	3
3	2
4	1

$$\therefore$$
 પસંદગીના કુલ પ્રકાર = $\binom{4}{1} \times \binom{48}{4} + \binom{4}{2} \times \binom{48}{3} + \binom{4}{3} \times \binom{48}{2} + \binom{4}{4} \times \binom{48}{1} = 8,86,656$

ઉદાહરણ 47:m શિરોલંબ રેખાઓ અને n સમક્ષિતિજ રેખાઓમાંથી કેટલા લંબચોરસ બને ?

ઉકેલ: લંબચોરસની રચના બે સમક્ષિતિજ અને બે શિરોલંબ રેખાની પસંદગી કરતાં મળે છે.

$$\therefore$$
 લંબચોરસની કુલ સંખ્યા $= {m \choose 2} \times {n \choose 2}$ $= \frac{m(m-1)}{2!} \times \frac{n(n-1)}{2!} = \frac{mn(m-1)(n-1)}{4}$

ઉદાહરણ 48: એક સમતલમાં 25 રેખાઓ પૈકી 15 રેખાઓ A આગળ સંગામી છે. 5 રેખાઓ B આગળ સંગામી છે. કોઈપણ બે રેખાઓ સમાંતર નથી. તે સિવાયની બીજી રેખાઓમાં કોઈપણ ત્રણ સંગામી નથી. રેખાઓ પરસ્પર કેટલાં બિંદુઓમાં છેદશે ?

ઉકેલ : 25 રેખાઓ $\binom{25}{2}$ બિંદુઓમાં છેદે પરંતુ $\binom{15}{2}$ છેદબિંદુના બદલે એક જ બિંદુ A અને $\binom{5}{2}$ છેદબિંદુના બદલે એક જ બિંદુ B મળે છે.

$$\therefore$$
 છેદબિંદુની કુલ સંખ્યા = $\binom{25}{2} - \binom{15}{2} - \binom{5}{2} + 2$
= $300 - 105 - 10 + 2 = 187$

ઉદાહરણ 49 : એક વિદ્યાર્થીએ પરીક્ષામાં 20 પ્રશ્નોના ઉત્તર આપવાના છે. વિભાગ A અને B પ્રત્યેકમાં 12 પ્રશ્નો છે. પ્રત્યેક વિભાગમાંથી ઓછામાં ઓછા આઠ પ્રશ્નોના ઉત્તર આપવા ફરજિયાત છે, તો વિદ્યાર્થી પરીક્ષામાં પ્રશ્નોની પસંદગી કેટલી રીતે કરી શકે ?

ઉકેલ : અહીં વિદ્યાર્થી પાસે પસંદગીના વિવિધ વિકલ્પો છે :

Aમાંથી પ્રશ્નોની પસંદગી	Bમાંથી પ્રશ્નોની પસંદર્ગ
8	12
9	11
10	10
11	9
12	8
(12માંથી)	(12માંથી)

ા∠નાયા) ∴ પરીક્ષામાં પસંદગીના કુલ પ્રકાર

$${\binom{12}{8}} {\binom{12}{12}} + {\binom{12}{9}} {\binom{12}{11}} + {\binom{12}{10}} {\binom{12}{10}} + {\binom{12}{11}} {\binom{12}{9}} + {\binom{12}{12}} {\binom{12}{8}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{2}} {\binom{12}{2}}$$

$$= 2 {\binom{12}{4}} + 2 {\binom{12}{3}} {\binom{12}{1}} + {\binom{12}{3}} {\binom{12}{2}} + {\binom{12}{3}} {\binom{12}{3}} + {\binom{$$

ઉદાહરણ 50 : 12 બિંદુઓ પૈકી 7 બિંદુ એક રેખા પર છે અને અન્ય 5 બિંદુ આ રેખાને સમાંતર બીજી રેખા પર છે. તો તેમના ઉપયોગથી કેટલા ત્રિકોણ બને ?

ઉકેલ : સ્પષ્ટ છે કે, ત્રિકોણોની સંખ્યા =
$$\binom{7}{2}\binom{5}{1} + \binom{5}{2}\binom{7}{1} = 21 \times 5 + 10 \times 7$$

= $105 + 70 = 175$

સ્વાધ્યાય 7

- સામાજિક કાર્યરત મિત્રોના એક જૂથમાં 8 છોકરા અને 5 છોકરીઓ છે. તેમાંથી 5 મિત્રોના જૂથને કેટલા પ્રકારે કામ સોંપાય કે જેમાં,
 - (1) જૂથમાં ઓછામાં ઓછો એક છોકરો અને ઓછામાં ઓછી એક છોકરી હોય.
 - (2) જૂથમાં એક પણ છોકરો ન હોય.
 - (3) જુથમાં ઓછામાં ઓછી 3 છોકરીઓ હોય.
 - (4) જૂથમાં વધુમાં વધુ બે છોકરા હોય.
- 2. પુનરાવર્તન સિવાય 2, 5, 6, 8, 9 અંકોનો ઉપયોગ કરી 7000 કરતાં મોટી કેટલી સંખ્યાઓ મળે ?
- 3. એક બહિર્મુખ બહુકોણને 54 વિકર્ણો છે. બહુકોણને કેટલાં શિરોબિંદુઓ હશે ?
- **4. 8** શિક્ષકો T_1 , T_2 , T_3 ,..., T_8 માં 5 શિક્ષકોને તાલીમ માટે પસંદ કરવાના છે. T_1 નવા શિક્ષક છે અને તેમણે તાલીમમાં જવાનું જ છે. T_8 એ આવતા વર્ષે નિવૃત્ત થવાના હોવાથી તેમણે તાલીમ માટે મોકલવાના નથી. શિક્ષકોની પસંદગી કેટલી રીતે થાય ? દરેક અઠવાડિયે એક શિક્ષકને તાલીમ માટે મોકલવામાં આવે, તો શિક્ષકોને કેટલી ક્રમિક રીતે મોકલી શકાય ? (તાલીમ 5 અઠવાડિયાની છે.)
- 5. જેમાં બે ચોક્કસ વસ્તુઓ એક સાથે પસંદ ન થાય તે રીતે n ભિન્ન વસ્તુઓમાંથી r વસ્તુઓની પસંદગી કરવાની છે. કેટલી રીતે આ શક્ય છે ?
- 6. a, e, i, o, u આ પાંચ સ્વરમાંથી કોઈ પણ એક સ્વરનું ઓછામાં ઓછી ત્રણ વખત પુનરાવર્તન થાય તેવા ચાર સ્વરોવાળા કેટલા શબ્દો બને ?
- 7. બહુવિકલ્પ પ્રશ્નોત્તરીની એક કસોટીમાં દરેક પ્રશ્ન માટે ચાર વિકલ્પ આપેલા છે. પ્રશ્નાવલીમાં 5 પ્રશ્નો છે. વિદ્યાર્થી સંપૂર્ણ સત્ય ઉકેલ આપવામાં નિષ્ફળ જાય તેની શક્યતાઓ કેટલી ?
- 8. એક સમતલમાં બે સમાંતર રેખાઓ l_1 અને l_2 આવેલી છે. રેખા l_1 પર m ભિન્ન બિંદુઓ \mathbf{A}_1 , \mathbf{A}_2 ,..., \mathbf{A}_m અને રેખા l_2 પર n ભિન્ન બિંદુઓ \mathbf{B}_1 , \mathbf{B}_2 ,..., \mathbf{B}_n આવેલાં છે. આ બિંદુઓ જેના શિરોબિંદુઓ હોય તેવા કેટલા ત્રિકોણ રચી શકાય ?
- 9. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલાં વિકલ્પો (a), (b), (c) અથવા (d)માંથી યોગ્ય વિકલ્પ પસંદ કરીને ____ માં લખો :

(1)
$$\Re \binom{n}{r} = \binom{n}{r+2}$$
, $\operatorname{dl} r = \dots (n \text{ you } \Theta)$.

(a) n (b) $n-1$ (c) 0 (d) $\frac{n-2}{2}$

(2)
$$\Re \binom{n}{8} = \binom{n}{12}$$
, $\operatorname{cli} n = \dots$

(a) 20 (b) 10 (c) 15 (d) અશક્ય

(3)
$$\binom{n}{r} = \frac{nPr}{k}$$
, $\operatorname{cl} k = \dots$

(a) r! (b) (n-r)! (c) (n-r)! r! (d) (r-1)!

(4)
$$\binom{n}{r} = \frac{n!}{k}$$
, $\operatorname{cli} k = \dots$

(a) r! (b) (n-r)! (c) (n-r)! r! (d) [r(n-1)]!

(5)	એક સમતોલ સિક્કાને <i>(</i> a) 32					
(6)	પુનરાવર્તન સિવાય 3, અંકનો સરવાળો	4, 5, 6 અંકોનો ઉપ છે.	યોગ કરી બનતી તમા [:]	મ સંખ્યાઓના એ	કમના 	
	(a) 24	(b) 108	(c) 72	(d) 96		
(7)	0, 1, 2, 3, 4 અંકોનો (a) 12		_			
(8)	એક સ્નેહમિલન સમાર વખત હાથ મીલાવવાન કેટલી હશે ?	ી પ્રક્રિયા બની હોય,	તો સમારંભમાં હાજર	વ્યક્તિઓની કુલ		
	(a) 12				_	
(9)	જેના બધા જ અંકો તિ		_			
	(a) 9!					
(10)	એક સમતલમાં આઠ હિ		`	ડુઓ સમરેખ છે. તે	ોમાંથી	
	પસાર થતી રેખાઓની	કુલ સખ્યા છે.	() 50	(1) 55		
	(a) 28					
(11)	એક સમતલમાં 12 બિંદુઓ આવેલાં છે જે પૈકીનાં છ-છ બિંદુઓ બે સમાંતર રેખા પર આવેલાં છે. આ બિંદુઓથી કેટલા ત્રિકોણ શક્ય બને ?					
	(a) 120	(b) 180	(c) 60	(d) 40		
(12)	$inom{100}{r}$ એ મહત્તમ હો	ય, તો $r =$				
	(a) 100		* *			
	10 સમક્ષિતિજ અને 8					
	(a) 1880					
(14)	સાત + ચિક્ષ અને ચાર આ રીતે શક્ય ધ		્હારમા ગોઠવો કે — l	ચેહ્ન પાસપાસે ન	આવે. 	
	(a) ₈ P ₄	(b) $\binom{7}{4}$	(c) $\binom{8}{4}$	(d) એક પણ ન	હિ.	
(15)	એક ગોળાકાર ડાઇનિંગ					
()	(a) 720			(d) 5040		
(16)	$\Re \binom{44}{r-2} = \binom{44}{r+2}$), તો <i>r</i> =				
	(a) 33	(b) 11	(c) 22	(d) 44		
(17)	એક દસકોણના વિકર્ણો	ની કુલ સંખ્યા	છે.			
` '	(a) 35	_		(d) 30		
(18)	$\widehat{\mathcal{A}}\binom{20}{r} = \binom{20}{r+2},$					
	(a) 11	(b) 9	(c) 45	(d) 36		

(19)
$$\Re \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{x}$$
, $\operatorname{cl} x = \dots$

- (a) n r (b) r + 1
- (d) n r + 1

(20)
$$\Re \left(\frac{a^2 + a}{3} \right) = \left(\frac{a^2 + a}{9} \right), \ \text{di } a =$$

(d) 6

- (b) 9
- (c) 12

$$(21) \begin{pmatrix} 10 \\ 1 \end{pmatrix} + \begin{pmatrix} 10 \\ 2 \end{pmatrix} + \begin{pmatrix} 11 \\ 3 \end{pmatrix} + \begin{pmatrix} 12 \\ 4 \end{pmatrix} + \begin{pmatrix} 13 \\ 5 \end{pmatrix} = \dots$$

- (a) $\begin{pmatrix} 14 \\ 6 \end{pmatrix}$ (b) $\begin{pmatrix} 13 \\ 7 \end{pmatrix}$ (c) $\begin{pmatrix} 13 \\ 6 \end{pmatrix}$
- (d) $\binom{14}{5}$

(22) જો
$$\binom{77}{r}$$
 મહત્તમ હોય તો $r =$

- (a) 35
- (b) 38.5
- (c) 39
- (d) 40

(23)
$$\binom{33}{10}$$
 $\binom{33}{8}$.

- (a) >
- (b) <
- (c) =
- $(d) \geq$

(24)
$$0$$
થી વચ્ચે r વધે તેમ $\binom{n}{r}$ વધે છે.

- (a) n
- (b) n-1 (c) $\frac{n}{2}$
- (d) $\left[\frac{n}{2}\right]$

(25)
$$\Re \binom{18}{10} = \binom{18}{k}$$
, $\operatorname{di} k = \dots (n > 10)$

- (a) n
- (b) 8
- (c) 0
- (d) n + 1

સારાંશ

- ગણતરીનો મૂળભૂત સિદ્ધાંત 1.
- રેખીય ક્રમચય અને સૂત્રો 2.
- પુનરાવર્તનયુક્ત ક્રમચય 3.
- સમસ્વરૂપ વસ્તુના ક્રમચય 4.
- વૃત્તીય ક્રમચય 5.
- સંચય, તેનાં સૂત્રો તથા પ્રમેયો 6.
- ક્રમચય તથા સંચયના વ્યાવહારિક પ્રશ્નો 7.