

Aplicação de Visual Question Answering em dados médicos - Projeto Ciência de Dados V

Bruno Petrocchi de Sena Azevedo Carlos Dias Maia Nicolau Machado de Carvalho Ranier Pereira Nunes de Melo Samuel Fernandes Teixeira Lages

Introdução

Visual Question Answering (VQA):

- Combina processamento de linguagem natural (NLP) e visão computacional.
- Responde perguntas sobre imagens ao detectar características presentes nas imagens e perguntas.

VQA-Med:

- Aplica técnicas de VQA para interpretar imagens médicas.
- Responde questões fundamentais para diagnósticos e tratamentos.
- Enfrenta complexidade devido à diversidade das perguntas e à integração de informações visuais e textuais.

Desafios do VQA-Med:

- Perguntas variam de binárias (sim/não) a contextuais e complexas.
- Necessidade de evitar simplificações excessivas de perguntas complexas e complicações desnecessárias de perguntas simples.

Trabalhos Relacionados

Hierarquização e Fusões de Atributos:

- Gupta et al. 2021: Importância de hierarquizar perguntas com SVM antes de integrá-las em redes neurais multimodais.
- Vaswani et al. 2023: Adaptação de modelos com base na distribuição de dados médicos específicos e uso de fusão de atributos desde as primeiras camadas.
- Kornuta et al. 2019: Adaptação do modelo com base em análise estatística do conjunto de dados e uso de fusão de atributos na entrada dos modelos.

Redes de Atenção:

 Yu et al. 2019: Abordagem de Rede Modular de Co-Atenção Profunda (MCAN) com camadas de Co-Atenção Modular (MCA) em cascata, modelando auto-atenção das perguntas e das imagens, além de atenção orientada das imagens.

Metodologia do Presente Trabalho:

- Utilização de mecanismos de atenção baseados em Vaswani et al. 2023, aplicados especificamente em Bazi et al. 2023.
- Arquitetura de codificador-decodificador com características da imagem extraídas pelo modelo ViT (Vision Transformer) e perguntas incorporadas por meio de um codificador textual transformer.
- Representações visuais e textuais concatenadas e alimentadas em um decodificador multimodal para geração autoregressiva da resposta.

Arquitetura da Rede Neural

Arquitetura da Rede Neural

- A arquitetura utiliza redes neurais profundas para extrair características visuais e textuais dos dados de entrada, que são combinadas por meio de um modulo de fusão;
- Utiliza-se 2 redes ResNet50 pré-treinadas e soma os gradientes, concatenando a saída de ambas e utilizando como entrada para o módulo de fusão;
- Para processamento da linguagem natural, utilizamos um modelo BERT (Bidirectional Encoder Representations for Transformers)
- Processo de Extração e Fusão de Características: Após concatenar as características, aplicase Multi-Head Attention para capturar relações complexas e finaliza com uma camada linear para uma representação combinada.

Resultados

Modelo - Sem Fine-Tuning				
Epochs	Train Loss	Train Accuracy	Validation Loss	Validation Accuracy
1	1.7290	0.5801	2.9945	0.5120
2	0.9214	0.7091	3.0827	0.5460
3	0.7648	0.7497	3.1916	0.5410
4	0.6373	0.7867	3.3331	0.5575
Modelo - Com Fine-Tuning				
Epochs	Train Loss	Train Accuracy	Validation Loss	Validation Accuracy
1	1.6288	0.6031	2.3341	0.5210
2	0.8421	0.7671	2.0421	0.5550
3	0.7306	0.7897	2.6785	0.5521
4	0.5934	0.8068	3.7896	0.5625

Validação e Treino - Métricas

Acertos do modelo

Erros do modelo

Possíveis Melhorias

- Pré-processamento de dados
- Batch Normalization
- Ensemble de modelos
- Alteração no tipo de saída
- Mitigar o problema da perda de validação