Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 1

Тема: Расписание

Дисциплина: Системный анализ и принятие решений.

Выполнил студент гр. 5130901/10101	(подпись)	_ M.T. Непомнящий		
Руководитель	(полпись)	А.Г. Сиднев		

Санкт-Петербург 2024

Оглавление

1.	Усл	овие	3
	1.1.	Условие варианта:	3
	1.2.	Задание:	3
2.	Ход	решения	5
	2.1. програ	Определение наиболее ранних моментов методом математического аммирования	5
	2.2.	Определить наибольшие ранние моменты начала работ и их интенсивности	6
	перем	Самостоятельно распределить работы м/у заданным числом исполнителей и зулировать задачу мат. программирования с бинарными индикаторами енными. Определить число бинарных переменных и доп. ограничений в этой и дать содержательную формулирову части ограничений с бинарными енными.	9
	2.3. прег Опр		
		Найти характеристики ti *, ti ** и rij расписания выполнения комплекса работ с взованием метода динамического программирования. Привести соответствующие вения Беллмана. Определить критические пути на графе1	,
		Найти характеристики ti *, ti ** и rij расписания выполнения комплекса работ с ьзованием метода динамического программирования. Привести соответствующие ения Беллмана. Определить критические пути на графе1	,
	2.6. време	Определить помимо полных резервов времени $Fn=rij$ работ ij резервыни, относящиеся к событиям j сетевого графа, а именно F нз 1 , F с, F нз 2	7
	2.7.	Рассмотреть вероятностную постановку задачи анализа расписания	8
		Представить пошаговую процедуру имитационного моделирования расписания ме событий с учетом числа исполнителей и решающего правила ранжирования из числа возможных. По результатам моделирования построить диаграмму1	9
3.	Вын	вод и анализ проделанной работы2	5
4.	При	ложения	6

1. Условие

1.1. Условие варианта:

Вариант	Граф	Число	Решающее правило
		исполнителей ¹	
6	6	4	3 (Работы с минимальным
			резервом - вперед)

Согласно варианту, имеем следующий граф:

Рис. 1 – Исходный граф

1.2. Задание:

Выполнить следующие разделы:

- 1. Определить наиболее ранние моменты начала работ с использованием метода математического программирования.
- 2. Определить наиболее ранние моменты начала работ и их интенсивности, если длительность равна интенсивности выполнения работ, а суммарная интенсивность не превышает 75% от общего числа выполняемых работ.
- 3. Самостоятельно распределить работы между заданным числом исполнителей и сформулировать задачу математического программирования с бинарными индикаторными переменными. Определить число бинарных переменных и дополнительных ограничений в этой задаче и дать содержательную формулировку части ограничений с бинарными переменными.
 - 3.1. Изменить формулировку задачи так, чтобы число бинарных переменных не превышало 10. Решить полученную задачу с использованием команды **intlinprog**. Определить мощность множества бинарных переменных задачи и дать содержательную интерпретацию полученному решению.
- 4. Найти характеристики t_i^* , t_i^{**} и r_{ij} расписания выполнения комплекса работ с использованием метода динамического программирования. Привести соответствующие уравнения Беллмана. Определить критические пути на графе.

¹ Число исполнителей – определяет число одновременно исполняемых заданий при имитационном моделировании расписания.

- 5. Найти те же характеристики t_i^* , t_i^{**} и r_{ij} расписания выполнения комплекса работ с использованием математического программирования.
- 6. Определить помимо полных резервов времени $F_n = r_{ij}$ работ ij резервы времени, относящиеся к событиям j сетевого графа, а именно $F_{\rm H31}$, $F_{\rm c}$, $F_{\rm H32}$.
- 7. Рассмотреть вероятностную постановку задачи анализа расписания. Считать СКО времен выполнения работ равными 5% от их длительностей. Предполагая неизменным, критический путь (оценить справедливость этого предположения) найти вероятность того, что время выполнения комплекса работ не превысит найденного для детерминированной задачи в п.1 на 10%.

Представить пошаговую процедуру имитационного моделирования расписания по схеме событий с учетом числа исполнителей и решающего правила ранжирования работ из числа возможных. По результатам моделирования построить диаграмму Гантта.

2. Ход решения

2.1. Определение наиболее ранних моментов методом математического программирования.

Для графа, представленного на Рис. 1, составим систему неравенств для последующего решения с помощью методов линейного программирования. Обозначим за t_{ij} наиболее ранний момент начала работы ij, а за t_{end} — наиболее ранний момент окончания всех работ.

$t_{23} \ge t_{12} + 7$	$t_{46} \ge t_{24} + 4$	$t_{57} \ge t_{45} + 5$	$t_{67} \ge t_{56} + 7$
$t_{24} \ge t_{12} + 7$	$t_{56} \ge t_{15} + 3$	$t_{58} \ge t_{15} + 3$	$t_{68} \ge t_{36} + 4$
$t_{25} \ge t_{12} + 7$	$t_{56} \ge t_{25} + 3$	$t_{58} \ge t_{25} + 3$	$t_{68} \ge t_{46} + 4$
$t_{36} \ge t_{13} + 6$	$t_{56} \ge t_{45} + 5$	$t_{58} \ge t_{45} + 5$	$t_{68} \ge t_{56} + 7$
$t_{36} \ge t_{23} + 7$	$t_{57} \ge t_{15} + 3$	$t_{67} \ge t_{36} + 4$	$t_{78} \ge t_{57} + 5$
$t_{45} \ge t_{24} + 4$	$t_{57} \ge t_{25} + 3$	$t_{67} \ge t_{46} + 4$	$t_{78} \ge t_{67} + 5$

Задача оптимизации заключается в минимизации следующей функции:

$$min(\sum\nolimits_{i,j}t_{i,j}+t_{end})$$

Решим эту задачу с помощью функции Matlab linprog. Для этого преобразуем полученные ранее ограничения в матрицу A (строки матрицы — количество неравенств системы, столбцы — используемые аргументы $t_{i,j}$) и вектор b (длительности перехода от вершины к вершине):

```
t12 t13 t15 t23 t24 t25 t36 t45 t46 t56 t57 t58 t67 t68 t78
                                         0 -1 0
                                                -1
12
13
14
15
17
18
19
                                              0
                                                            -1
20
22
23
24
                                  0
                                      0
                                          0
                                              0
                                                      0
                                                          0
                                                              0
25
26
27
         b = -[7; 7; 7; 6; 7; 4; 4; 3; 3; 5; 3; 3; 5; 3; 5; 4; 4; 7; 4; 4; 7; 5; 5];
28
29
30
          f = ones(15, 1);
31
         lb = zeros(15, 1);
32
         linprog(f, A, b, [], [], 1b, []);
33
```

Рис. 2 – Преобразование данных в матричный вид

После того, как составили матрицу, вызовем функцию linprog как показано ниже:

Рис. 3 — Вызов функции linprog

Полученный результат отображается в окне ans и выглядит следующим образом:

Табл. 1 – Время начала всех работ

t ₁₂	t ₁₃	t ₁₅	t_{23}	t_{24}	t_{25}	t ₃₆	t_{45}	t ₄₆	t_{56}	t ₅₇	t_{58}	t ₆₇	t ₆₈	t ₇₈
0	0	0	7	7	7	14	11	11	16	16	16	23	23	28

Теперь мы знаем минимальное время начала каждой работы. Для получения информации о времени выполнения всех работ необходимо к времени начала работы t_{78} (Табл. 1) прибавить время их время выполнения, т. е. 6 соответственно (Рис. 1).

*Время начала работы t_{78} включает в себя времена начала работ t_{58} и t_{68} , поэтому при вычислении итогового времени их прибавлять не нужно.

Итого время выполнения всех работ:

$$\sum\nolimits_{i,j} t_{i,j} + t_{end} = t_{78} + 6 = 28 + 6 = 34$$

2.2. Определить наибольшие ранние моменты начала работ и их интенсивности

Мы сможем увеличить время выполнения всех работ за счет добавления интенсивностей работ, отличных от 1 – некоторые работы ускорим (интенсивность > 1), а некоторые замедлим (интенсивность < 1), если это потребуется.

Изменим исходную систему неравенств согласно правилу:

$$\min \left\{ \sum_{i,j} t_{ij} \right\}$$

$$\begin{cases} t_{ij} \ge \tau_{li} + \frac{Q_{li}}{m_{li}}, i = \overline{1, M - 1}; l \in G^{-}(i) \\ \sum_{i,j} m_{ij} \le 0,75 * 15, l \in G^{-}(M) \\ t_{ij} \ge 0 \end{cases}$$

где m_{ij} – интенсивность ij работы.

Задавая эти условия, мы стараемся минимизировать время начала всех работ при интенсивности $\leq 75\%$ от числа выполняемых работ, т. е. 15.

Создадим набор всех «работ» (Рис. 4), т. е. ребер графа и массив троек значений, где закодируем систему неравенств, созданную ранее:

```
function [] = task_2()
1 -
2
           works = [12 14 15 16 23 36 37 45 47 56 58 67 68 78 89 99];
 4
             % te - время конца работы
 5
             % tb - время начала работы
 6
             % td - длительность работы
             % te tb td
 8
               23 12 6 % 1
               24 12 7 % 2
11
               25 12 7 % 3
12
               36 13 6 % 4
13
               36 23 7 % 5
               45 24 4 % 6
14
               46 24 4 % 7
15
               56 15 3 % 8
16
17
               56 25 3 % 9
18
               56 45 5 % 10
19
               57 15 3 % 11
20
               57 25 3 % 12
               57 45 5 % 13
21
22
               58 15 3 % 14
23
               58 25 3 % 15
24
               58 45 5 % 16
25
               67 36 4 % 17
26
               67 46 4 % 18
               67 56 7 % 19
27
               68 36 4 % 20
28
29
               68 46 4 % 21
               68 56 7 % 22
31
32
               78 67 5 % 24
33
               % работы "фальшивки"
34
35
               88 58 7
               88 68 7
36
               88 78 6
```

Рис. 4 – Набор всех работ

Стоит заметить, что появилась работа-фальшивка. Это необходимо, чтоб MATLAB оптимизировал также и путь из 8 в 9 вершину и выводил нам результат этой оптимизации.

Создадим необходимые параметры для fmincon, а также функцию, которая разделит заданные нам тройки в требуемые для fmincon значения и выведем результат выполнения на экран:

```
39
           x0 = ones(length(works) * 2 - 1, 1);
           lb = zeros(length(works) * 2 - 1, 1);
40
41
           fun = @(x) sum(x(1:length(works)));
42
43
44
           res = fmincon(fun, x0, [], [], [], [], lb, [], @funs);
45
46
           function [c, ceq] = funs(x)
47
               c = [];
48
               for i = 1:length(conds)
49
                   t1 = find(works == conds(i, 1));
                   t2 = find(works == conds(i, 2));
50
                   q = conds(i, 3);
51
                   m = length(works) + t2;
52
                   c(end + 1) = -x(t1(1)) + x(t2(1)) + q / x(m);
53
54
               ceq = sum(x(length(works) + 1:end)) - 0.75 * (length(works) - 1);
55
56
57
58
           t_res = res(1:length(works));
59
           m_res = res(length(works) + 1:end);
60
           sum_m_res = sum(m_res);
           mean_m_res = mean(m_res);
61
62
63
           disp(t_res);
64
           disp(m_res);
65
           disp(sum_m_res);
66
           disp(mean_m_res);
```

Рис. 5 – Функция разделение троек значений, а также задание fmincon

В результате компиляции программы получим следующие значения:

Моменть	Моменты начала работ							
t ₁₂	0.0000							
t ₁₄	0.0000							
t ₁₅	0.0000							
t ₁₆	2.4888							
t ₂₃	2.9036							
t ₃₆	2.9036							
t ₃₇	10.5164							
t_{45}	5.8212							
t ₄₇	5.8212							
t ₅₆	9.9445							
t ₅₈	9.9445							
t ₆₇	9.9445							
t ₆₈	17.1642							
t ₇₈	17.1642							
t ₈₉	24.5330							
t_{end}	36.3162							

Интенсивности						
m_{12}	2.4108					
m_{14}	0.5705					
m_{15}	0.3017					
m_{16}	0.8720					
m_{23}	1.3710					
m_{36}	0.4261					
m_{37}	0.6017					
m_{45}	1.2126					
m_{47}	0.3526					
m_{56}	0.9696					
m_{58}	0.3427					
m_{67}	0.2654					
m_{68}	0.6785					
m_{78}	0.3655					
m_{89}	0.5092					

Сумма интенсивностей равна 11.25, что составляет ровно 75% от числа исполняемых работ, как и требовалось в задании. Стоит отметить, что общее время работы возрастало до 48.5 с 43, т. е. на 5.5 секунды (или в 1,13 раза). Это связано с тем, что при уменьшении интенсивности, некоторые работы стали работать дольше.

2.3. Самостоятельно распределить работы м/у заданным числом исполнителей и сформулировать задачу мат. программирования с бинарными индикаторами переменными. Определить число бинарных переменных и доп. ограничений в этой задаче и дать содержательную формулировку части ограничений с бинарными переменными.

Самостоятельно распределим 15 работ, представленных на Рис. 1 по четырём исполнителям следующим образом (каждый исполнитель будет иметь по 3—4 задачи):

Рис. 6 – Граф самостоятельного распределения

Таким образом синий цвет – первый исполнитель (3 задачи), жёлтый цвет – второй (4 задачи), красный цвет – третий исполнитель (4 задачи), зелёный цвет – четвёртый исполнитель (4 задачи).

Составим следующую систему для каждой пары работ $\{ij, lm\}$:

$$\begin{cases} (M + \tau_{lm}) Y_{ij,lm,k} + (t_{ij} - t_{lm}) \ge \tau_{lm}, \\ (M + \tau_{ij}) Y_{lm,ij,k} + (t_{lm} - t_{ij}) \ge \tau_{ij}, \\ Y_{ij,lm,k} + Y_{lm,ij,k} = 1 \end{cases}$$

, где $|M|\gg \sum_{\{ij\}} \tau_{ij}=$ тогда число дополнительных ограничений задачи с бинарными переменными будет равно $3(C_3^2+C_4^2+C_4^2+C_4^2)=3(3+6+6+6)=63$, а число бинарных переменных $2(C_3^2+C_4^2+C_4^2+C_4^2)=2(3+6+6+6)=42$.

2.3.1. Изменить формулировку задачи так, чтобы число бинарных переменных не превышало 10. Решить полученную задачу с использованием команды intlinprog. Определить мощность множества бинарных переменных задачи и дать содержательную интерпретацию полученному решению.

Упростим поставленную задачу, пусть только некоторые задачи выполняются определенным исполнителем, а над остальными может работать неограниченное число исполнителей:

Рис. 7 – Граф с задачами, часть которых распределена по исполнителям

Т. о., синий цвет – первый исполнитель (3 задачи), жёлтый цвет – второй (4 задачи), красный цвет – третий исполнитель (4 задачи), зелёный цвет – четвёртый исполнитель (4 задачи). Это дает нам $2(C_2^2+C_2^2+C_2^2+C_2^2)=2(1+1+1+1)=8$ дополнительных бинарных переменных и $3(C_2^2+C_2^2+C_2^2+C_2^2)=3\cdot 4=12$ дополнительных ограничений:

$$\begin{cases} (M+\tau_{12})Y_{15,12,1}+(t_{15}-t_{12})\geq \tau_{12},\\ (M+\tau_{14})Y_{12,15,1}+(t_{12}-t_{15})\geq \tau_{14},\\ Y_{15,12,1}+Y_{12,15,1}=1 \end{cases}$$

$$\begin{cases} (M+\tau_{23})Y_{23,25,2}+(t_{25}-t_{23})\geq \tau_{23},\\ (M+\tau_{25})Y_{25,23,2}+(t_{23}-t_{25})\geq \tau_{25},\\ Y_{23,25,2}+Y_{25,23,2}=1 \end{cases}$$

$$\begin{cases} (M+\tau_{46})Y_{67,46,3}+(t_{67}-t_{46})\geq \tau_{46},\\ (M+\tau_{67})Y_{46,67,3}+(t_{46}-t_{67})\geq \tau_{567},\\ Y_{46,67,3}+Y_{67,46,3}=1 \end{cases}$$

$$\begin{cases} (M+\tau_{57})Y_{58,57,4}+(t_{58}-t_{57})\geq \tau_{57},\\ (M+\tau_{58})Y_{57,58,4}+(t_{57}-t_{58})\geq \tau_{58},\\ Y_{57,58,4}+Y_{58,57,4}=1 \end{cases}$$

После чего решим задачу Matlab с использованием функции intlinprog. Для начала зададим наш граф, как делали это ранее, также добавим пары для новых ограничений и длины путей на каждой из задач:

```
1 -
       function [] = task_3_1()
           works = [12 13 15 23 24 25 36 45 46 56 57 58 67 68 78 88];
 2
 3
           conds = [
 4
             % te tb td
 5
               23 12 6 % 1
               24 12 7 % 2
 6
               25 12 7 % 3
 8
               36 13 6 % 4
 9
               36 23 7 % 5
10
               45 24 4 % 6
11
               46 24 4 % 7
12
               56 15 3 % 8
13
               56 25 3 % 9
14
               56 45 5 % 10
15
               57 15 3 % 11
16
               57 25 3 % 12
               57 45 5 % 13
17
18
               58 15 3 % 14
19
               58 25 3 % 15
20
               58 45 5 % 16
21
               67 36 4 % 17
22
               67 46 4 % 18
23
               67 56 7 % 19
24
               68 36 4 % 20
               68 46 4 % 21
25
26
               68 56 7 % 22
27
               78 57 5 % 23
28
               78 67 5 % 24
29
               ];
30
31
           pairs = [
32
               12 15 7 3
               23 25 7 3
33
34
               46 67 4 5
35
               57 58 5 7
36
           ];
```

Рис. 8 – Пары для новых ограничений и длины путей на каждой из задач

Далее создадим массив, как в пункте 2.1**Ошибка! Источник ссылки не найден.**, но используя наши объявления:

```
cond_len = length(conds) + 2 * length(pairs);
38
           x_len = length(works) + 2 * length(pairs);
39
           f = ones(x_len, 1);
40
           f(length(works) + 1:end) = 0;
41
           A = zeros(cond_len, x_len);
42
           b = zeros(1, cond_len);
43
           for i = 1:length(conds)
44
              t1 = find(works == conds(i, 1));
45
               t2 = find(works == conds(i, 2));
46
              A(i, t1) = -1;
              A(i, t2) = 1;
47
              b(1, i) = -conds(i, 3);
48
49 -
```

Рис. 9 – Создание массива, используя объявления

Теперь необходимо создадим уравнения, которые добавились дополнительными ограничениями:

```
Aeq = zeros(length(pairs), x_len);
52
           beq = ones(1, length(pairs));
53
54
           for i = 1:length(pairs)
55
               t1 = find(works == pairs(i, 1));
               t2 = find(works == pairs(i, 2));
56
57
               tau1 = pairs(i, 3);
               tau2 = pairs(i, 4);
58
               Y1 = length(works) + 2 * i - 1;
59
               Y2 = length(works) + 2 * i;
60
61
               M = 1000;
62
               idx = length(conds) + 2 * i - 1;
63
               A(idx, Y1) = -(M + tau2);
               A(idx, t1) = -1;
65
66
               A(idx, t2) = 1;
67
               b(1, idx) = -tau2;
68
               idx = idx + 1;
A(idx, Y2) = -(M + tau1);
69
70
71
               A(idx, t1) = 1;
               A(idx, t2) = -1;
72
               b(1, idx) = -tau1;
73
74
               Aeq (i, Y1) = 1;
75
76
               Aeq (i, Y2) = 1;
77
```

Рис. 10 – Создание уравнений с ограничениями

Все необходимые переменные были созданы, теперь запустим intlinprog и посмотрим на результат:

Рис. 11 – Объявление функции initlingprog

В результате компиляции программы были получены следующие значения:

Табл. 2 – результат компиляции программы

Моменты начала работ						
t ₁₂	0					
t ₁₃	0					
t ₁₅	7					
t ₂₃	6					
t ₂₄	7					
t ₂₅	13					
t ₃₆	13					
t ₄₅	11					
t ₄₆	11					
t_{56}	16					

Бинарные переменные						
0						
1						
0						
1						
0						
1						
0						
1						

t ₅₇	16
t_{58}	21
t ₆₇	23
t ₆₈	23
t_{78}	28
t_{end}	34

Как мы видим по значениям бинарных переменных и времени начала работы наши условия выполняются.

Первый исполнитель выполняет сначала работу 12, а потом 15 (т. к. значение t_{12} =0, а t_{15} =7)

Второй исполнитель начинает с работы 23 (т. к. до неё первой доходит очередь), далее решается работа 25.

Третий исполнитель начинает с работы 46, а продолжает работой 67 (аналогичный предыдущей паре работ принцип действия).

Четвёртый исполнитель начинает работу с работы 57, а заканчивает работой 58.

2.4. Найти характеристики t_i^* , t_i^{**} и r_{ij} расписания выполнения комплекса работ с использованием метода динамического программирования. Привести соответствующие уравнения Беллмана. Определить критические пути на графе.

Каждому узлу на графе можно сопоставить два момента: минимальное время, когда событие будет осуществлено t_i^* и наиболее поздний момент t_i^{**} .

Воспользуемся методом динамического программирования и определим наиболее ранние моменты t_i^* для каждого узла графа, представленного на Рис. 1. Для удобства представим исходный граф ещё раз ниже:

Самое ранее время начала выполнения работы – время, когда выполнятся все работы, предшествующие заданной:

$$t_1^*=0$$

$$t_2^* = t_1^* + \tau_{12} = 7$$

$$t_3^* = \max\{t_1^* + \tau_{13}; \ t_2^* + \tau_{23}\} = \max\{6; \ 14\} = 14$$

$$t_{4}^{*} = t_{2}^{*} + \tau_{24} = 11$$

$$t_{5}^{*} = max\{t_{1}^{*} + \tau_{15}; \ t_{2}^{*} + \tau_{25}; \ t_{4}^{*} + \tau_{45}\} = max\{3; \ 10; \ 16\} = 16$$

$$t_{6}^{*} = max\{t_{3}^{*} + \tau_{36}; \ t_{4}^{*} + \tau_{46}; \ t_{5}^{*} + \tau_{56}\} = max\{18; 15; 23\} = 23$$

$$t_{7}^{*} = max\{t_{5}^{*} + \tau_{57}; \ t_{6}^{*} + \tau_{67}\} = max\{21; 28\} = 28$$

$$t_{8}^{*} = t_{7}^{*} + \tau_{58} + \tau_{68} + \tau_{78} = 28 + 6 = 34$$

Полученные значение совпадают с полученными в предыдущих пунктах, что свидетельствует о корректности проделанной работы.

Теперь используя полученные значения определим наиболее поздние моменты времени t_i^{**} :

$$\begin{split} t_{8}^{**} &= 34 \\ t_{7}^{**} &= t_{8}^{**} - \tau_{78} = 48 - 6 = 28 \\ t_{6}^{**} &= \min\{t_{7}^{**} - \tau_{67}; \ t_{8}^{**} - \tau_{68}\} = \min\{23; 27\} = 23 \\ t_{5}^{**} &= \min\{t_{6}^{**} - \tau_{56}; \ t_{7}^{**} - \tau_{57}; \ t_{8}^{**} - \tau_{58}\} = \min\{16; 23; 27\} = 16 \\ t_{4}^{**} &= \min\{t_{5}^{**} - \tau_{45}; \ t_{6}^{**} - \tau_{46}\} = \min\{11; 19\} = 11 \\ t_{3}^{**} &= t_{6}^{**} - \tau_{36} = 19 \\ t_{2}^{**} &= \min\{t_{3}^{**} - \tau_{23}; \ t_{4}^{**} - \tau_{24}; \ t_{5}^{**} - \tau_{25}\} = \min\{12; 7; 13\} = 7 \\ t_{1}^{**} &= \min\{t_{2}^{**} - \tau_{12}; \ t_{3}^{**} - \tau_{13}; \ t_{5}^{**} - \tau_{15}\} = \min\{0; 13; 13\} = 0 \end{split}$$

Воспользуемся формулой $r_{ij} = t_j^{**} - (t_i^* + \tau_{ij})$ определим резервы времени выполнения всех работ:

$$r_{12} = t_2^{**} - (t_1^* + \tau_{12}) = 0$$
 $r_{13} = t_3^{**} - (t_1^* + \tau_{13}) = 13$
 $r_{15} = t_5^{**} - (t_1^* + \tau_{15}) = 2$
 $r_{23} = t_3^{**} - (t_2^* + \tau_{23}) = 5$
 $r_{24} = t_4^{**} - (t_2^* + \tau_{24}) = 0$
 $r_{25} = t_5^{**} - (t_2^* + \tau_{25}) = 6$
 $r_{36} = t_6^{**} - (t_3^* + \tau_{36}) = 12$
 $r_{45} = t_5^{**} - (t_4^* + \tau_{45}) = 0$
 $r_{46} = t_6^{**} - (t_5^* + \tau_{56}) = 0$
 $r_{57} = t_7^{**} - (t_5^* + \tau_{57}) = 7$
 $r_{58} = t_8^{**} - (t_5^* + \tau_{58}) = 11$
 $r_{67} = t_7^{**} - (t_6^* + \tau_{67}) = 0$
 $r_{68} = t_8^{**} - (t_6^* + \tau_{68}) = 4$

$$r_{78} = t_8^{**} - (t_7^* + t_{78}) = 0$$

Работы, у которых резерв равен 0 – критический путь. Их длительность напрямую влияет на продолжительность выполнения всех работ.

Рис. 12 – Граф критического пути

2.5. Найти характеристики t_i^* , t_i^{**} и r_{ij} расписания выполнения комплекса работ с использованием метода динамического программирования. Привести соответствующие уравнения Беллмана. Определить критические пути на графе.

Оптимизационная задача для поиска наиболее ранних моментов t_i^* может быть сформулирована следующим образом:

$$\min \left\{ \sum_{j=1}^{n} t_j^* \right\}$$

$$t_i^* - t_j^* \le -\tau_{ij}, j = \overline{1, n}$$

Для исходного графа (Рис. 1) получим следующую оптимизационную задачу:

$$\min \left\{ \sum_{j=1}^{t} t_{j}^{*} \right\}$$

$$t_{1}^{*} - t_{2}^{*} \leq -7$$

$$t_{2}^{*} - t_{5}^{*} \leq -3$$

$$t_{5}^{*} - t_{7}^{*} \leq -5$$

$$t_{1}^{*} - t_{3}^{*} \leq -6$$

$$t_{3}^{*} - t_{6}^{*} \leq -4$$

$$t_{5}^{*} - t_{8}^{*} \leq -7$$

$$t_{1}^{*} - t_{5}^{*} \leq -3$$

$$t_{4}^{*} - t_{5}^{*} \leq -5$$

$$t_{2}^{*} - t_{3}^{*} \leq -7$$

$$t_{2}^{*} - t_{3}^{*} \leq -7$$

$$t_{2}^{*} - t_{4}^{*} \leq -4$$

$$t_{5}^{*} - t_{6}^{*} \leq -7$$

$$t_{5}^{*} - t_{6}^{*} \leq -7$$

$$t_{7}^{*} - t_{8}^{*} \leq -6$$

$$t_{j}^{*} \geq 0, j = \overline{1,8}$$

Запишем эти выражения в массивы:

```
function [] = task_5_1()
1 🗐
2
          times = [1 2 3 4 5 6 7 8];
3
          conds = [
4
              1 2 -7
5
             1 3 -6
6
             1 5 -3
7
              2 3 -7
8
              2 4 -4
9
              2 5 -3
10
              3 6 -4
11
              4 5 -5
              4 6 -4
12
13
              5 6 -7
14
              5 7 -5
15
              5 8 -7
16
              6 7 -5
17
              6 8 -7
18
              7 8 -6
19
          ];
```

Рис. 13 – Запись выражений в массив троек

Запишем эти выражения в виде, подходящем для linprog и вычислим:

```
f = ones(length(times), 1);
20
21
           A = zeros(length(conds), length(times));
22
           b = zeros(1, length(conds));
23 -
           for i = 1:length(conds)
              t1 = find(times == conds(i, 1));
24
              t2 = find(times == conds(i, 2));
26
              A(i, t1) = 1;
              A(i, t2) = -1;
27
28
               b(1, i) = conds(i, 3);
29
30
31
           lb = zeros(length(times), 1);
32
33
           t = linprog(f, A, b, [], [], lb);
34
35
```

Рис. 14 – Запись выражений и формирование функции linprog

Полученный результат выглядит следующим образом (Табл. 3):

Табл. 3 – Результат компиляции программы

t_1^*	t_2^*	t_3^*	t_4^*	t_5^*	t_6^*	t_7^*	t_8^*
0	7	14	11	16	23	28	34

Заметим, что полученные результаты совпадают с теми, которые были получены ранее другим способом.

Оптимизационная задача для поиска наиболее поздних моментов t_i^{**} может быть сформулирована следующим образом (стр. 10):

$$\max \left\{ \sum_{j=1}^{n} t_{j}^{**} \right\}$$

$$t_{i}^{**} - t_{j}^{**} \le -\tau_{ij}, j = \overline{1, n}$$

$$-t_{1}^{**} + t_{9}^{**} = 43$$

$$t_{1}^{**} = 0$$

Для решения поставленной задачи необходимо чуть-чуть изменить вызов функции, объявления условий останется аналогичным:

```
f = ones(length(times), 1);
21
           A = zeros(length(conds), length(times));
22
           b = zeros(1, length(conds));
23
           for i = 1:length(conds)
               t1 = find(times == conds(i, 1));
25
               t2 = find(times == conds(i, 2));
26
               A(i, t1) = 1;
27
               A(i, t2) = -1;
               b(1, i) = conds(i, 3);
28
29
30
           lb = zeros(length(times), 1);
31
           Aeq = zeros(2, length(times));
32
33
           Aeq(1, 1) = 1;
34
           Aeq(2, 1) = -1;
35
           Aeq(2, length(times)) = 1;
36
           beq = [0; 43];
37
38
           t = linprog(-f, A, b, Aeq, beq, lb);
40
```

Рис. 15 – Изменённый вывод функции

Результатом выполнения будет следующим:

Табл. 4 – Результат компиляции модифицированной программы

t_1^{**}	t_2^{**}	t_3^{**}	t_4^{**}	t_5^{**}	t_6^{**}	t_7^{**}	t_8^{**}
0	7	19	11	16	23	28	34

Как можно заметить, эти значения идентичны посчитанным ранее (Табл. 3). Очевидно, что значение r_{ij} будет аналогично равно посчитанному ранее.

2.6. Определить помимо полных резервов времени $F_n = r_{ij}$ работ ij резервы времени, относящиеся к событиям j сетевого графа, а именно $F_{\rm H31}$, $F_{\rm c}$, $F_{\rm H32}$.

По формуле $F_{j
m H31} = t_{j}^{**} - t_{j}^{*}$ определим независимые резервы 1-го порядка

Табл. 5 – Независимый резерв 1-го порядка

j	1	2	3	4	5	6	7	8	9
t_j^*	0	7	14	11	16	23	28	34	0
t_j^{**}	0	7	19	11	16	23	28	34	0
F_{jH31}	0	0	5	0	0	0	0	0	0

По формуле $F_{ijC} = t_i^* - (t_i^* + \tau_{ij})$ определим свободные резервы времени:

$$F_{12C} = t_2^* - (t_1^* + \tau_{12}) = 7 - (0 + 7) = 0$$

$$F_{13C} = t_3^* - (t_1^* + \tau_{13}) = 14 - (0 + 6) = 8$$

$$F_{15C} = t_5^* - (t_1^* + \tau_{15}) = 16 - (0 + 3) = 13$$

$$F_{23C} = t_3^* - (t_2^* + \tau_{23}) = 14 - (7 + 3) = 4$$

$$F_{24C} = t_4^* - (t_2^* + \tau_{24}) = 11 - (7 + 4) = 0$$

$$F_{25C} = t_5^* - (t_2^* + \tau_{25}) = 16 - (7 + 3) = 6$$

$$F_{36C} = t_6^* - (t_3^* + \tau_{36}) = 23 - (14 + 4) = 5$$

$$F_{45C} = t_5^* - (t_4^* + \tau_{45}) = 16 - (11 + 5) = 0$$

$$F_{46C} = t_6^* - (t_4^* + \tau_{46}) = 23 - (11 + 4) = 8$$

$$F_{56C} = t_6^* - (t_5^* + \tau_{56}) = 23 - (16 + 7) = 0$$

$$F_{57C} = t_7^* - (t_5^* + \tau_{57}) = 28 - (16 + 5) = 7$$

$$F_{58C} = t_8^* - (t_5^* + \tau_{58}) = 34 - (16 - 7) = 25$$

$$F_{67C} = t_7^* - (t_6^* + \tau_{67}) = 28 - (23 + 5) = 0$$

$$F_{68C} = t_8^* - (t_6^* + \tau_{68}) = 34 - (23 + 7) = 4$$

$$F_{78C} = t_8^* - (t_7^* + \tau_{78}) = 34 - (28 + 6) = 0$$

По формуле $F_{ijH32} = t_i^* - (t_i^{**} + \tau_{ij})$ определим независимые резервы 2-го порядка:

$$F_{12C} = t_2^* - (t_1^{**} + \tau_{12}) = 7 - (0 + 7) = 0$$

$$F_{13C} = t_3^* - (t_1^{**} + \tau_{13}) = 14 - (0 + 6) = 8$$

$$F_{15C} = t_5^* - (t_1^{**} + \tau_{15}) = 16 - (0 + 3) = 13$$

$$F_{23C} = t_3^* - (t_2^{**} + \tau_{23}) = 14 - (7 + 3) = 4$$

$$F_{24C} = t_4^* - (t_2^{**} + \tau_{24}) = 11 - (7 + 4) = 0$$

$$F_{25C} = t_5^* - (t_2^{**} + \tau_{25}) = 16 - (7 + 3) = 6$$

$$F_{36C} = t_6^* - (t_3^{**} + \tau_{36}) = 23 - (19 + 4) = 0$$

$$F_{45C} = t_5^* - (t_4^{**} + \tau_{45}) = 16 - (11 + 5) = 0$$

$$F_{46C} = t_6^* - (t_4^{**} + \tau_{46}) = 23 - (11 + 4) = 8$$

$$F_{56C} = t_6^* - (t_5^{**} + \tau_{56}) = 23 - (16 + 7) = 0$$

$$F_{57C} = t_7^* - (t_5^{**} + \tau_{57}) = 28 - (16 + 5) = 7$$

$$F_{58C} = t_8^* - (t_5^{**} + \tau_{58}) = 34 - (16 + 7) = 11$$

$$F_{67C} = t_7^* - (t_6^{**} + \tau_{67}) = 28 - (23 + 5) = 0$$

$$F_{68C} = t_8^* - (t_7^{**} + \tau_{78}) = 34 - (28 + 6) = 0$$

2.7. Рассмотреть вероятностную постановку задачи анализа расписания.

Пояснение к заданию: Считать СКО времен выполнения работ равными 5% от их длительностей. Предполагая неизменным, критический путь (оценить справедливость этого предположения) найти вероятность того, что время выполнения комплекса работ не превысит найденного для детерминированной задачи в п.1 на 10%.

Оценим справедливость неизменности критического пути. Среднее значение длительности работ в графе равно $\frac{7+6+3+7+4+3+4+5+4+7+5+7+6}{15} \approx 15.33(3)$ временных единиц. По условию СКО равно 5%, то есть 15.33(3)*0.05 = 0.766(6). Следовательно, значение длительности работы может отклониться более чем на 1 с очень маленькой

вероятностью (по правилу трех сигм). Так как минимальные временной резерв у работы, не лежащей на критическом пути равен 1, то вероятность изменения критического пути очень мала.

Рис. 16 – Граф критического пути

Математическое ожидание суммы случайных величин равно сумме математических ожиданий:

$$\sum M_{ij} = \sum t_{ij} = 7 + 4 + 5 + 7 + 5 + 6 = 34$$

Дисперсия суммы равна сумме дисперсий:

$$\sum D_{ij} = 0.05^2 * (7^2 + 4^2 + 5^2 + 7^2 + 5^2 + 6^2) = 0.5$$

Для суммы случайных величин длительностей работ имеем:

 $P(T \ge 1.1M(T)) = 0.5 - \Phi\left(\frac{e}{\vartheta T}\right)$, где Φ – это функция Лапласа (табулированный интеграл вероятности):

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$$

По условию время выполнения комплекса работ не должно превышать детерминированное значение на 10%, то есть на e = 34 * 0.1 = 3.4.

$$P(T \ge 1.1M(T)) = 0.5 - \Phi\left(\frac{e}{\vartheta T}\right) = 0.5 - \Phi\left(\frac{3.4}{\sqrt{0.5}}\right) = 0.5 - \Phi(4.808) \approx 0.5 - 0.042 \approx 0$$

Результат показывает, что шанс отклониться от математического ожидания времени выполнения более чем на 10% крайне мал.

2.8. Представить пошаговую процедуру имитационного моделирования расписания по схеме событий с учетом числа исполнителей и решающего правила ранжирования работ из числа возможных. По результатам моделирования построить диаграмму.

Правило выбора работ:

- Решающее правило: Работы с минимальным резервом вперед. Для наглядности график с резервами представлен на Рис. 17 ниже (резервы указаны в квадратах)
- Число исполнителей: 4

Параметры:

- T системное время.
- $\Omega_{\rm p}(T)$ ранжированный список возможных работ.
- N(T) список выполняемых на момент времени T работ: начатых, но не завершенных к этому моменту.
- Z(T) список времен освобождения ресурсов на момент времени Т.
- B(T) список выполненных на момент времени Т работ.
- I(T) список осуществленных событий.
- *IJ* множество дуг-работ, исходящих из осуществленных событий.
- r_{SIOB} список работ, выполняемых ресурсом s.
- r_{sSTART} список моментов начала работ, выполняемых ресурсом s.
- $r_{sFINISH}$ список моментов окончания работ, выполняемых ресурсом s.

Рис. 17 – Граф со свободными резервами времени

T T	$\Omega_{ m P}(T)$	N(T)	Z(T)	B(T)	I(T)	IJ	r_{sJOB}	r_{sSTART}	$r_{sFINISH}$
	Что доступно	Выполняется выполнение в		Список выполненных	Какие узлы закрыли	Все осущ работы+ доступ	Кто и что делает		
0	12, 13, 15	Ø	Ø	Ø	1	12, 13, 15	Ø	Ø	Ø
0	Ø	12 13 15	7 6 3	Ø	1	12, 13, 15	1: 12 2: 13 3: 15 4: Ø	0 0 0 Ø	7 6 3 Ø
3	Ø	12 13	7 6	15	1	12, 13, 15	1: 12 2: 13 3: Ø 4: Ø	0 0 Ø Ø	7 6 Ø Ø
6	Ø	12	7	15, 13	1	12, 13, 15	1: 12 2: Ø 3: Ø 4: Ø	0 Ø Ø Ø	7 Ø Ø Ø
7	23, 24, 25	Ø	Ø	15, 13, 12	1, 2	12, 13, 15	Ø	Ø	Ø
7	Ø	24 23 25	4 7 3	15, 13, 12	1, 2	12, 13, 15, 23, 24, 25	1: 24 2: 23 3: 25 4: Ø	7 7 7 Ø	11 14 10 Ø
10	Ø	24 23	4 7	15, 13, 12, 25	1, 2	12, 13, 15, 23, 24, 25	1: 24 2: 23 3: Ø 4: Ø	7 7 Ø Ø	11 14 Ø Ø
11	45, 46	23	7	15, 13, 12, 25, 24	1, 2, 4	12, 13, 15, 23, 24, 25, 45, 46	1: Ø 2: 23 3: Ø	Ø 7 Ø	Ø 14 Ø

							4: Ø	Ø	Ø
		45	5				1: 45	11	16
11	Ø	23	5 7	15, 13, 12, 25, 24	1, 2, 4	12, 13, 15, 23, 24,	2: 23	7	14
11	Ų	46	4	13, 13, 12, 23, 24	1, 2, 4	25, 45, 46	3: 46	11	15
		40	4				4: Ø	Ø	Ø
							1: 45	11	16
14	36	45	5	15, 13, 12, 25, 24,	1, 2, 3, 4	12, 13, 15, 23, 24,	2: Ø	Ø	Ø
14	30	46	4	23	1, 2, 3, 4	25, 45, 46, 36	3: 46	11	15
							4: Ø	Ø	Ø
		45	5				1: 45	11	16
14	Ø	36	5 4	15, 13, 12, 25, 24,	1, 2, 3, 4	12, 13, 15, 23, 24,	2: 36	14	18
14	V	46	4	23	1, 2, 3, 4	25, 45, 46, 36	3: 46	11	15
		40					4: Ø	Ø	Ø
	Ø						1: 45	11	16
15		45	5	15, 13, 12, 25, 24,	1, 2, 3, 4	12, 13, 15, 23, 24,	2: 36	14	18
13		36	4	23, 46	1, 2, 5, 1	25, 45, 46, 36	3: Ø	Ø	Ø
							4: Ø	Ø	Ø
						12, 13, 15, 23, 24,	1: Ø	Ø	Ø
16	56, 57, 58	36	4	15, 13, 12, 25, 24,	1, 2, 3, 4, 5	25, 45, 46, 36, 56,	2: 36	14	18
10	30, 37, 30			23, 46, 45	1, 2, 3, 4, 3	57, 58	3: Ø	Ø	Ø
						37, 30	4: Ø	Ø	Ø
		56	7			12, 13, 15, 23, 24,	1: 56	16	23
16	Ø	36	4	15, 13, 12, 25, 24,	1, 2, 3, 4, 5	25, 45, 46, 36, 56,	2: 36	14	18
10	ý	57	5 7	23, 46, 45	1, 2, 3, 4, 3	57, 58	3: 57	16	21
		58	7			57, 50	4: 58	16	23
		56	7			12, 13, 15, 23, 24,	1: 56	16	23
18	Ø	57	5	15, 13, 12, 25, 24,	1,2, 3, 4, 5	25, 45, 46, 36, 56,	2: Ø	Ø	Ø
10	v	58	7 5 7	23, 46, 45, 36	1,2, 3, 7, 3	57, 58	3: 57	16	21
		30				37,30	4: 58	16	23

		1		1	1			ı	1
21	Ø	56 58	7 7	15, 13, 12, 25, 24, 23, 46, 45, 36, 57	1, 2, 3, 4, 5	12, 13, 15, 23, 24, 25, 45, 46, 36, 56,	1: 56 2: Ø 3: Ø	16 Ø Ø	23 Ø Ø
			,	23, 10, 13, 30, 57		57, 58	4: 58	16	23
23	67, 68	Ø	Ø	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58	1, 2, 3, 4, 5, 6	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68	Ø	Ø	Ø
23	Ø	67 68	5 7	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58	1, 2, 3, 4, 5, 6	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68	1: 67 2: 68 3: Ø 4: Ø	23 23 Ø Ø	28 30 Ø Ø
28	78	68	7	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67	1, 2, 3, 4, 5, 6,	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68, 78	1: Ø 2: 68 3: Ø 4: Ø	Ø 23 Ø Ø	Ø 30 Ø Ø
28	Ø	78 68	6 7	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67	1, 2, 3, 4, 5, 6,	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68, 78	1: 78 2: 68 3: Ø 4: Ø	30 23 Ø Ø	36 30 Ø
30	Ø	78	6	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68	1, 2, 3, 4, 5, 6,	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68, 78	1: 78 2: Ø 3: Ø 4: Ø	30 Ø Ø Ø	36 Ø Ø Ø
36	Ø	Ø Ø		12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68, 78	1, 2, 3, 4, 5, 6, 7, 8	12, 13, 15, 23, 24, 25, 45, 46, 36, 56, 57, 58, 67, 68, 78	Ø	Ø	Ø
				I(36) = I - коне	ц работы				

Исходя из результатов, полученных в таблице выше, составим диаграмму Ганта. Для удобства в ячейку, занятую работой, будем вписывать данные в формате: ij [F_{ijC}], где i – исходная вершина графа, j – конечная точка, а F_{ijC} – свободные резервы времени (отметим их, чтобы наглядно увидеть что выполняется Решающее правило: Работы с минимальным резервом – вперед). Например, запись 12 [0] означает, что на промежутке времени, выделенном цветом, совершается работа 12 с резервом времени = 0.

Исполнители	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	12 [0]																																				
2	13 [8]																																				
3	15 [13]																																				
1									24 [0]																												
2											23	[4]																									
3								2	25 [6]																												五
1														45 [0]																							Конец работы
3													46	[8]																							т ра
2																36	[5]																				эне
1																				56 [0]																	호
3																			57 [7]																		
4																			ļ	58 [25]																
1																										67 [0]										
2																										68 [4]											
1																																	78 [[0]			

3. Вывод и анализ проделанной работы

Лабораторная работа предоставила широкий взгляд на применение методов математического и динамического программирования в управлении проектами. Анализируя результаты, можно выделить эффективность метода математического программирования для определения ранних моментов начала работ и интенсивностей. Этот подход обеспечивает балансировку рабочих нагрузок и более точное планирование.

Разработанная математическая модель с бинарными переменными для распределения работ между исполнителями предоставляет оптимальные решения, учитывая ограничение на число бинарных переменных. Это важно для эффективного использования ресурсов.

Исследование времен выполнения работ через методы динамического и математического программирования выделяет критические пути и резервы времени. Это существенно для управления временными рамками проекта.

Вероятностная постановка задачи анализа расписания с учетом стандартного отклонения времен выполнения работ предоставляет реалистичные сценарии завершения проекта. Имитационное моделирование с числом исполнителей и решающим правилом ранжирования работ предоставляет ценные предсказания, визуализируемые через диаграмму Гантта.

Эти результаты предоставляют комплексный инструментарий для эффективного управления проектами, оптимизации ресурсов и минимизации рисков, что делает этот подход актуальным и полезным в реальных условиях управления проектами.

4. Приложения

1. Листинг программного кода, вспомогательные файлы // GitHub URL: https://github.com/MatNepo/SystemAnalysis/tree/main/Lab1%20-%20%D0%A0%D0%B0%D0%B8%D0%B5 (дата обращения: 26.02.2024)