(18)	Oppgave 1
•	a) Man påtrykker systemet en enhetspuls, S(n) = { o n + o , n
•	b) hun er et hausalt filter siden hun = 0 for nco. (fordi u(n) = 0 for nco):
3	et filter. Filteret er BIBO-stabilt hvis
	(1) Ixini & M<00 th => 1 yini <00 th dvs. hvis filter responsen på et vilkarlig signal med begrenset amplitude har begrenset amplitude
	(Et tilstrekkelig krav for BIBO-stabilitet er for et hausalt system er I Ihin <00 n=0
)	For filteret i denne oppgaven har vi $ \sum_{n=0}^{\infty} h(n) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n u(n) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1-2} = 2 < \infty $ $ \Rightarrow \text{ filteret er stabilt} $
	(Dette uneves the: kravet $Z h(n) k = 0$ where $ x(n) = x(n) + h(n) = x(n-k) = x(n-k) + x(n-k) $
	$\leq \frac{\sum_{k=0}^{\infty} h(m) \chi(n-k) \leq M}{\sum_{k=0}^{\infty} h(m) }$ $= \frac{\sum_{k=0}^{\infty} h(m) \chi(n-k) \leq M}{\sum_{k=0}^{\infty} h(m) }$ $= \frac{\sum_{k=0}^{\infty} h(m) \chi(n-k) \leq M}{\sum_{k=0}^{\infty} h(m) }$
	$\Rightarrow hvis $

2 og null fas	1.		
Signalet på utg	angen ow et L	-1 filter må hade s	amu
frehvenshompon	entene (dus. c	0=0 og w=11), men	dere
amplitude og	fase vil bli	endret i henhold til	
amphitude og	faseresponsen		
		1 og \$(w) i w=0 o	9 6
	sina 1H(w)		
0 1	0 2	0	
π -1	0 3	Ф	
Utgangssigholet	vil derfor von	e	
y(n) = 1.2 +	$2 \cdot \frac{2}{3} \cdot \cos(\pi n) =$	2+ 4 GOS (TIN)	
Alternativt:			
x(h) = 1 + 2cos	$(\pi n) = 1 + e^{j\pi n}$	ejun	
		rm ejun vil vi få ejun	
		v 3 slike ledd der $w = 0$, π	09 -
Derfor vil ut	gangs signaled	iore:	
yan) = 1. H(0) + ejan - H (a) +	e-jTU H (-TT)	
	ej#n. = + e-j		
$= 2 + \frac{2}{3}$	· 2 cos(11/n) =	2+ 3 cos (TIN)	

(3) a)
$$V_S(t) = V_C(t) + V_R(t)$$
 (1)

$$i(t) = \frac{Valt}{R}$$
 (2)

$$i(t) = \frac{R}{R}$$

$$i(t) = \frac{dV_{c}(t)}{dt}$$
(2)

$$(1) \Rightarrow \frac{dV_{s}(t)}{dt} = \frac{dV_{c}(t)}{dt} + \frac{dV_{c}(t)}{dt}$$

Differensialligningen som beskriver systemet er derfor gitves

$$\frac{1}{RC} V_R(t) + \frac{dV_R(t)}{dt} = \frac{dV_S(t)}{dt}$$

Frehvensresponsen finnes ved à fouriertransformère diffiguinger 6)

$$H(so) = \frac{V_R(so)}{V_S(so)} = \frac{j so}{rc} + j so = \frac{j so Rc}{1 + j so Rc}$$

I whedningen har jeg brukt at I { dx(+) } = jsv X(so)

$$\Rightarrow \frac{dx(t)}{dt} = \frac{1}{2\pi} \int \chi(so)(jso) e^{jso} dso$$

$$\Rightarrow \int \frac{dx(t)}{dt} = \int \frac{dx(t)}{dt} =$$

$$\frac{dx(t)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dx(t)}{dt} \int_{-\infty}^{\infty} \frac{dx(t)}{dt} \int_{-\infty}^{\infty} \frac{dx(t)}{dt}$$

- (4) a) 41. hendelser med liten sannsynlighet inneholder mer informasjon enn hendelser med stor sann synlighet.

 Sikre hendelser inneholder ingen informasjon
 - informasjonsmengden i to havbeingige hendelser med sannsynligheter prog propor summeres, og dette er ivaretætt ved bruk av denne formellen fordi

| PIPE | 1092 PIPE = 1092 / + 1092 / = 1 PI + 1 PZ

- Entropien til en dishvet kilde er definert som gjennomsnittlig informasjon generert av hilden. Hus en hilde
 genererer N forshjellige symboler med sannsynligheter $p_1, p_2, \dots, p_N \text{ da vil entropien (gjennomsnittlig informasjon)}$ være: $H = \sum_{i=1}^{N} p_i I_i = \sum_{i=1}^{N} p_i \log_2 p_i = -\sum_{i=1}^{N} p_i \log_2 p_i$
- (2) b) signalet har kontinuerlig amplitude og dermed uendelig entropi (vi vil trenge uendelig mange bit for å representere signalet elisakt)

(G) (c) A fx(x)

Approlisi masjons formeten for kvantrsering strong effekten for en uniform kvantiserer, $5\frac{1}{4} = \frac{\Delta^2}{12}$ der Δ er storrelsen på kvantisering sintervaller kan brukes når vi har stort antall måer L ($L \ge 8$). Denne formel en gjelder imidlertrå eksakt hvis $f_X(x)$ er konstant i hvert kvantisering sintervall, noe som er til felle i denne oppgaven. Derfor her vi at $\frac{\Delta^2}{4} = \frac{\Delta^2}{12} = \frac{4}{12} = \frac{4}{12}$ (fordi $\Delta = 2$)

