Внешние формы

Пусть $V=\mathbb{R}^n$ — векторное пространство с базисом $\{e_1,\ldots,e_n\}$, а V^* — пространство *линейных функционалов* на V с двойственным базисом $\{f_1,\ldots,f_n\}$, то есть $f_i(e_j)$ равно 1 при i=j и 0 иначе.

Bнешняя k-форма на V — это кососимметрическая k-линейная функция. Пространство внешних k-форм

$$\Lambda^k(V) = \langle f_{j_1} \wedge \ldots \wedge f_{j_k} \mid j_1 < \ldots < j_k \rangle$$

имеет размерность C_n^k .

Звезда Ходжа $\star\colon \mathring{\Lambda}^k(V)\to \Lambda^{n-k}(V)$ — это изоморфизм линейных пространств, заданный формулой

$$\star (f_{j_1} \wedge \ldots \wedge f_{j_k}) = \operatorname{sgn} \sigma_{j_1,\ldots,j_n} \cdot f_{j_{k+1}} \wedge \ldots \wedge f_{j_n},$$

где σ_{j_1,\dots,j_n} — перестановка n различных чисел.

ГКП-6, упр.1. Пусть k нечётно, а ω^k — внешняя k-форма в \mathbb{R}^n . Докажите, что $\omega^k \wedge \omega^k = 0$.

ГКП-6, упр.2. Пусть a,b — векторы в \mathbb{R}^3 . Обозначим $\omega_a^1(x)=(a,x)$. Докажите, что отображение $a\mapsto \omega_a^1$ — изоморфизм пространств $\mathbb{R}^3\cong \Lambda^1(\mathbb{R}^3)$. Проверьте, что $\omega_a^1=a_1f_1+a_2f_2+a_3f_3$.

ГКП-6, упр.3. Пусть $\omega_1 = f_1 + f_2 + f_3, \ \omega_2 = f_1 - f_2 + 2f_3 \in \Lambda^1(\mathbb{R}^3).$ Вычислите $\star\omega_1, \star\omega_2$ и $\star(\omega_1 \wedge \omega_2).$

ГКП-6, упр.4. Пусть $\omega \in \Lambda^1(\mathbb{R}^n)$.

- (a) Покажите, что $\star(\star\omega)=-\omega$ для n=2 и $\star(\star\omega)=\omega$ для n=3.
- (b) Покажите, что $\star(\star\omega) = (-1)^{n+1}\omega$ для любого $n \ge 2$.
- (c*) Что можно сказать про $\star(\star\omega)$, если ω внешняя k-форма?

Дифференциальные формы

На многообразии M в точке p касательное пространство $\mathbf{T}_p(M)$ имеет базис $\left\{\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_n}\right\}$, а двойственное ему *кокасательное* пространство $\mathbf{T}_p^*(M)$ имеет двойственный базис $\{dx_1,\dots,dx_n\}$.

Дифференциальная к-форма

$$\omega = \sum_{j_1 < \dots < j_k} \omega_{j_1 \dots j_k}(x) dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

— это набор k-форм в касательных пространствах к M, гладко зависящий от точки: $\omega_{j_1...j_k}(x)$ — гладкие функции. Внешний дифференциал $d\colon \Lambda^k(V)\to \Lambda^{k+1}(V)$ переводит k-форму ω в k+1-форму

$$d\omega = \sum_{j_1 < \dots < j_k} d\omega_{j_1 \dots j_k}(x) dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

ГКП-6, упр.5. Докажите, что

- (b) $d^2\omega = d \circ d(\omega) = 0$ для всех ω .
- (c) $d(\omega_1^k \wedge \omega_2^m) = d\omega_1^k \wedge \omega_2^m + (-1)^k \omega_1^k \wedge d\omega_2^m$.

ГКП-6, упр.6. Кодифференциал δ переводит $\omega \in \Lambda^k(M)$ в $\delta\omega := \star(d(\star\omega))$.

- (a) Докажите, что если k=0, то $\delta\omega=0$.
- (b) Докажите, что если $\omega \in \Lambda^k(M)$, то $\delta \omega \in \Lambda^{k-1}(M)$.
- (c) Вычислите $\delta \omega$ для $\omega = e^y dx + (x+y)^2 dy \in \Lambda^1(\mathbb{R}^2)$.

ГКП-6, упр.7. Обобщённый Лапласиан на k-формах задаётся по формуле

$$\Delta := \delta d + d\delta = \star d \star d + d \star d \star$$
.

- (a) Пусть $f(x,y) = xy + 2y^2$. Вычислите Δf , используя формулу выше и стандартную формулу из анализа. Сравните результат.
- (b) Вычислите $\Delta \omega$ для $\omega = xdx + zdy ydz \in \Lambda^1(\mathbb{R}^3)$.

ГКП-6, упр.8. Пусть $\omega = 2dx + xdy$ — дифференциальная 1-форма на \mathbb{R}^2 , A = (0,0), B = (1,1). Проинтегрируйте ω вдоль ориентированных отрезков AB и BA. Как соотносятся эти два значения?