Etapa 4

Rezolvarea analitică a problemei de interferență studiate pe baza modelelor Markov

Stati Andreea Grupa:1310A

1. Prezentarea metodei de studiu

În această etapă se va rezolva problema de interferență pentru câteva cazuri mai simple, pe baza unor modele Markov. Scopul acestui studiu analitic este acela de a verifica rezultatele simulării, în special pentru cazul cu modul de rezervă unde testarea programului este deficitară.

2. Cazuri studiate

Pentru verificarea rezultatelor simulării de la etapa 3 se vor rezolva analitic următoarele cazuri:

A. S=1, cu rezervă la modulul B;

a. fără întreruperea remedierii în curs

$$A = \begin{bmatrix} 0 & 0 & \sqrt{6} & -he \\ (1+\alpha) \sqrt{6} & 0 & -he \\ \sqrt{6} & \sqrt{6} & -he & 0 \\ \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} & 0 \\ \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} \\ \sqrt{6} & \sqrt{6} & \sqrt{6} & \sqrt{6} \\ \sqrt{6} & \sqrt{6} & \sqrt{6} &$$

Codul sursa:

```
clc
lambdaA = 0.2023;
lambdaB = 0.1917;
miuA = 3.6015;
miuB = 2.1835;
for a = 0:0.5:1
    fprintf('\nalpha = %g\n', a)
    A = [-(lambdaA + (1 + a) * lambdaB) miuA miuB 0 0;
          lambdaA -miuA 0 miuB 0;
          (1 + a) * lambdaB 0 -(lambdaA + lambdaB) 0 miuB;
          0 0 lambdaA -miuB 0;
          0 0 lambdaB 0 -miuB];
    %display(A);
    B = [1 0 0 0 0]';
    P= inv(A) * B;
    sum(P);
    D = (P(1) + P(3)) * 100;
    0 = (1 - P(1)) * 100;
    fprintf('D = %g \n0 = %g\n', D, 0);
end
```

Alpha	0	0.5	1	
Disponibilitate(%)	94.1285	78.0183	69.9632	
Grad de ocupare(%) 51.6696		67.7797	75.8348	

b. cu întrerupere

b) at the transfer e

$$A = \begin{pmatrix} -(\lambda_A + (\lambda + \alpha)\lambda_B) & PA & PB & O & O \\ \lambda_A & -PA & O & O & O \\ (\lambda + \alpha) \lambda_B & O & -(\lambda_A + \lambda_B + \beta_B) & PA & PB \\ O & O & \lambda_B & -PA & O \\ O & O & \lambda_B & O & -PB \end{pmatrix}$$

CS Seanned with CamScanner

Codul sursa:

```
clc
lambdaA = 0.2023;
lambdaB = 0.1917;
miuA = 3.6015;
miuB = 2.1835;
for a = 0:0.5:1
    fprintf('\nalpha = %g\n', a)
    A = [-(lambdaA + (1 + a) * lambdaB), miuA, miuB, 0, 0;
          lambdaA, -miuA, 0, 0, 0;
          (1 + a) * lambdaB, 0, -(lambdaA + lambdaB + miuB), miuA, miuB;
          0, 0, lambdaA, -miuA, 0;
          %0, 0, lambdaB, 0, -miuB
          1, 1, 1, 1, 1];
    B = [0 \ 0 \ 0 \ 0 \ 1]';
    P = inv(A) * B;
    sum(P);
    D = (P(1) + P(3)) * 100;
    0 = (1 - P(1)) * 100;
    fprintf('D = %g \n0 = %g\n', D, 0);
end
```

Alpha	0	0.5	1	
Disponibilitate(%)	94.0507	93.7745	93.5205	
Grad de ocupare(%) 13.5401		17.1378	20.448	

B. S=2, fără rezervă

0	azul S=2	fara reze	serva Se Se	53	Su	Ss	50
So	7. -2 (na + no)	pa ya	γm	0	0	0	0
+	-2/2A	- (na+not) (O,	Y4	0	ho	0_
Sa	270	- (7, Ocap	- (NA+NO+40)	0	VA.	0	Pro
Sa	0	X _A	0	- pa	0	o	0
Su	0	No	- pa	0	0	0	0
35	0.	- 40	λ_{A}	0	0	0	0
36	0	0	NB	0	0	0	- 4º 62

Codul sursa:

clc

```
lambdaA = 0.2023;
lambdaB = 0.1917;
miuA = 3.6015;
miuB = 2.1835;
A = [-2*(lamA+lamB), miuA,miuB, 0, 0, 0, 0;
    2*lamA,-(lamA+lamB+miuA),0,miuA,0,miuB,0;
    2*lamB,0,-(miuB+lamA+lamB),0,miuA,0,miuB;
    0, lamA, 0, -miuA, 0, 0;
    0, lamB,0,0,-miuA, 0, 0;
    0, 0, lamB, 0, 0, -miuB, 0;
    %0, 0, lamB, 0, 0, 0, -miuB];
    1,1,1,1,1,1];
B = [0 0 0 0 0 0 1]';
P= inv(A) * B;
```

```
sum(P);
D = (P(1) + P(3)) * 100;
O = (1 - P(1)) * 100;
fprintf('D = %g \nO = %g\n', D, O);
```

Disponibilitate(%)	84.9308		
Grad de ocupare(%)	29.4746		