Lab 6: House Price Prediction

- Public domain data set from kaggle.com
 - Sales of houses in the Seattle area from May, 2014 May, 2015.
- Inputs to the models you will develop
 - id#, prop_id identify each property not useful inputs
 - number of bedrooms
 - number of bathrooms
 - size in square feet
 - lot size in square feet
 - number of floors
 - condition small integer value
 - location zip code; latitude and longitude
 - etc.
- Output predicted price

Example house_data.csv

house_data <- read.csv("house_data.csv")
head(house_data)</pre>

	id date	price	bedrooms	bathro	oms sqft_livi	ng
1	7129300520	20141013T000000	221900	3	1.00	1180
2	6414100192	20141209T000000	538000	3	2.25	2570
3	5631500400	20150225T000000	180000	2	1.00	770
4	2487200875	20141209T000000	604000	4	3.00	1960
5	1954400510	20150218T000000	510000	3	2.00	1680
6	7237550310	20140512T000000	1230000	4	4.50	5420

. . .

Goal: Predict House Prices

- Divide data into training and testing sets
- Training set
 - All inputs plus price
- Testing set
 - Predict the price using the model you developed with the training set
- Compute error between your predicted price and the actual priced provided in data set.
 - Measure of overall error = RMSE

RMSE - Root Mean Square Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{predicted} - y_{actual})^{2}}{n}}$$

Models to Develop

- Backward elimination using all data
- Segment data by zip code
 - Train and test models for each zip code using specified predictors

Packages in R

- Package = library of functions developed by someone else for you to use
- In RStudio
 - Window in lower right quadrant
 - "Packages" tab □ "install" tab □ type "package name" in box

dplyr package

dplyr

- dplyr package
 - Set of functions to easily access and change dataframes
 - group, filter, select, summarize,
 - Much more functionality than we will be using
 - We will focus on segmentation and summarizing
 - "Packages" tab □ "install" tab □ type "dplyr" in box

head(house_data)

house_data <- read.csv("house_data.csv")</pre>

```
id
        date
                                 bedrooms bathrooms sqft living ...
                    price
7129300520 20141013T000000 221900
                                             1.00
                                                     1180
6414100192 20141209T000000 538000
                                             2.25
                                                     2570 ...
5631500400 20150225T000000 180000
                                             1.00
                                                     770
2487200875 20141209T000000 604000
                                             3.00
                                                     1960 ...
1954400510 20150218T000000 510000
                                             2.00
                                                     1680 ...
7237550310 20140512T000000 1230000
                                                     5420
                                             4.50
```

. . .

Segmentation by zipcode

```
house data <- read.csv("house data.csv")
data by zipcode <- house data %>%
group_by(zipcode) %>% ___
 summarize(
                                                 Pipeline operation
                                                 %>%
  count = n(),
  med_price = median(price),
                                                  New columns that
  med yr built = median(yr built),
                                                  we are generating
                                                  using summarize()
Data flow of the pipeline operations:
```

house_data \(\Bigcup_\text{by} \(\Bigcup_\text{by} \\ \Bigcup_\text{summarize} \(\Bigcup_\text{data_by_zipcode} \)

head(data_by_zipcode)

med_yr_built	med_pric e	count	Zipcode
1981	260000.0	362	98001
1966	235000.0	199	98002
1975	267475.0	280	98003
1965	1150000. 0	317	98004
1967	765475.0	168	98005
1978	760184.5	498	98006

Adding Your Predictions

```
house_data <- read.csv("house data.csv")</pre>
data by zipcode <- house data %>%
 group_by(zipcode) %>%
                                           Pipeline operation
 summarize(
                                           %>%
  count = n(),
                                         Column names from
  med price = median(price),
                                         house data
  med yr built = median(yr built),
  error = price prediction error(price, bedrooms,
sqft living, .....
```

Within your function, divide into training and testing sets and return rmse of your predictions.

head(data_by_zipcode)

error	med_yr_built	med_price	count	Zipcode
10238.2	1981	260000.0	362	98001
9896.7	1966	235000.0	199	98002
4524.4	1975	267475.0	280	98003
	1965	1150000.0	317	98004
	1967	765475.0	168	98005
	1978	760184.5	498	98006

Your computed rmse values for each zip code.

Your price prediction function

```
price prediction error <- function(price, bedrooms, bathroom, sqft_living, sqft_lot, grade,
yr built) {
  # Create a new data frame for the variables to be used in the price prediction
   house info <- data.frame(price, bedrooms, bathroom, sqft living, sqft lot, grade, yr built)
   # Separate the data into training and testing sets
     This is the same as last lab, but using house info
   # Compute the linear model
      This is the same as last lab, but using house info, and the parameters above
   # Use the model to predict the prices
      This is the same as last lab, but using house info
   # Compute the rmse of the predicted - actual values
   rmse <- compute rmse of (predicted – actual)
   return(rmse)
```

To do

Download and complete Lab 6