Ensemble machine learning for record linkage

Daniel Casey

Things I'll be talking about

- 1. How record linkage works (I think)
- 2. My use case
- 3. Data cleaning and training
- 4. Ensemble modelling
- 5. Results
- 6. Some comparisons to fastLink and multilink
- 7. Final musings, including thoughts on child-rearing

An illustrated guide to record linkage

With words this time

- 1. Clean data
- 2. Identify variables shared between datasets that might indicate a match
- 3. Generate lists of possible pairs using blocking (a priori restrictions on whether any two records can be a match, more on this later)
- 4. Compute distance metrics for the variables specified in #3 between Person A and Person B in the pair
- 5. With the variables of #4 as your dataset, do some math to guess whether the A and B represent the same person

#3 - #5 is usually obscured from view by record linkage interfaces (e.g. fastLink or multilink).

Review ?stringdist::stringdist for all the lovely permutations various scholars have devised

Linking CHS EPIC data and WIC records (the point)

- Community Health Services (CHS) provides medical and support services to residents of King County. This client base is maintained/logged via EPIC
- CHS also administers Women Infant and Children (WIC) program on behalf of the state/Feds in King County, but in the Cascades data system
- It is difficult to tell how many clients served by CHS are also on WIC because the datasystems don't like each other
- The following machine learning approach was designed to link WIC data with CHS EPIC data
- Potential matches are mostly children under 5 years old and their women/mothers (WIC client criteria)

Mission Really Quite Possible

Cleaning data (ugh)

- Names (first, last, and middle initial): YOU GET AN UPPER CASE AND YOU GET AN UPPERCASE. YOUALSOLOSEALLNONLETTERCHARACTERS
 - Also, if your name is TRUE or 1, your name gets changed to True
- ZIP code: first five numbers
- dob: check to see if swapping month and day results in a legitimate date. Also, make sure the column is literally a date.
- Make telephone numbers all numeric
- Send addresses through the kcgeocode address cleaning and geocoding process

It's dangerous to go alone! Take this.

I am writing a R package called hyrule to help with data cleaning and other tasks related to ML record linkage.

The main cleaning function, hyrule::prep_data_for_linkage cleans relatively standard administration data fields (e.g. name, dob, and ZIP).

Blocking

- Blocking is the a-priori exclusion of possible pairings
- It is possible to block on all sorts of things: age, gender, SSN, favorite conspiracy theory, etc. if you have the data for it.
- You can do multiple rounds of blocking, but then you probably have to reconcile things at the end.
- It is best to block on variables with relatively low missingness
- This process blocked on year of birth and required one of the following:
 - day of birth for Person A == day of birth for Person B
 - month of birth for Person A == month of birth for Person B
 - day of birth for Person A == month of birth for Person B
 - Either person's birthday is Jan 1st

Boring variables, part 1

- dob_ham: Hamming distance between DOBs
- fn_cos2: Cosine bigram distance between first names.
- fn_jw: Jaro-winkler distance between first names
- fn_sx: First name soundex comparison
- ln_cos2: Last name cosine bigram distance
- ln_jw: Jaro-winkler distance between last names
- ln_sx: Last name soundex comparison
- cn_cos: Complete name (FIRSTNAMELASTNAME) trigram distance
- daymonth: binary flag indicating a shared day and month

These were created with hyrule::compute_variables

Boring variables, part 2

- sex_disagree: Explicit disagreement in sex between the pair
- midinitmatch: Explicit agreement in middle initials
- midinitna: One of the middle initials is missing
- cn_cos adjuted to be FIRSTNAMEMIDDLENAMELASTNAME trigram distance in case that
 is better

Generating variables, the cool ones

- 1. zip_Mm: minimum mega-meter distance between ZIP code centriods given a pair's address history
- 2. exact_address: whether the minimum distance between a pair's address history is less than 10 feet
- 3. phone_dist: minimum hamming distance between phone numbers
- 4. nphonepeeps: minimum number of people associated with a phone number associated with the person. This metric is computed per dataset-phone number combination and the minimum value between datasets for a given pair is used. Phone numbers with >10 people associated with it (usually garbage numbers) and NA values are imputed with the average non-NA <10 value
- 5. pos_twins: Whether someone with the same phone number has the same birthday in one of the datasets.

Making a training dataset

- 1. Generate possible pairs
- 2. Figure out some way to sort them by probability of match
 - 1. I used a model fit on fake data (and now you can ask me for a model fit on real data)
 - 2. fastLink or multilink
 - 3. Trigram cosine difference
- 3. Sample possible pairs, ideally in strata (deciles?) to create a training dataset (200 400 instances)
- 4. Load them up in hyrule::matchmaker and identify some matches!
 - 1. Some are obvious
 - 2. Some are vibes/maybes/an existential question

ROCKY TRAINING MONTAGE

Iterate, iterate, iterate

Some ways to make your model better:

- Add more training data by manually reviewing pairs that the machines are unsure about
- Add more variables
- Conduct test/train validation
- Compare with probabilistic linkages to identify discordance and manually review those cases

DO NOT BE AFRAID OF VIBES:

- Making training data
- Deciding what children models to use
- Match cutoff
- Manually identifying/determining matches

Results

- 166,627 records in the CHS/EPIC/clinic data were matched against 66,074 records in the WIC data. Both datasets cover Q3 2019 Q4 2022 (and maybe a little more for the CHS data)
- The main machine learning approach identified 38,420 pairs

Number of matches

Machine Learning	ML Subset	multilink	fastLink
38,420	38,295	37,233	33,241

Cage Match, set up!

- Conduct similar matching using multilink and fastLink
 - Blocking by year of birth
 - First name, last name, sex, ZIP and data of birth
 - Fancy variables were omitted for being a pain
 - ML Subset is a machine learning model fit without the fancy variables

Cage Match, fight!

Match comparison

MachineLearning	multilink	fastLink	N
0	0	1	101
0	1	0	89
0	1	1	42
1	0	0	553
1	0	1	765
1	1	0	4,769
1	1	1	32,333

Cage Match, decision!

15 pairs from each of the various permutations of fastLink vs. multilink vs. machine learning (see previous table) were manually evaluated for matchy-matchyness.

Test/train

status	True	False Negative	True Positive	False Positive	Correct
	Negative				%
test	80	9	135	0	96
train	230	33	412	0	95

Assuming Correct % is higher for test then train when you see this: That is weird/unusual (a model should be better at predicting data its already seen). I'm chalking this up to a feisty random number generator.

Some advice on children and their names

- 1. Don't have multiple children at once
- 2. If you ignore #1, please name them different things. Consider not sharing any letters and/or varying the length of their names
- 3. Do not name your children (or yourself) after logical statements (e.g. True). While the name might be nice, computers hate it and computers are our overlords

Merci

- 1. CHS: Nathan Dye, Leif Layman, and Lee Thornhill
- 2. APDE: Danny Colombara, Eli Kern, Alastair Matheson, and Precious Esie
- 3. DOH: Sean Coffinger
- 4. Dearly departed (from PHSKC): Tigran Avoundijan
- 5. Loving audience
- 6. Other people I forgot