Purbanchal University

Faculty of Engineering, Biratnagar, Nepal Syllabus

Level: Bachelor

Program: Bachelor in Biomedical/Civil/Computer/Electrical/Electronics Comm. & Automation/Geomatic Engineering

Subject: BSH---- MATHEMATICS III

1 (41 - 11					Schiester. III						
Teaching Schedule Hours/Week				rs/Week	Examination Schedule						Total
					Final				Internal Assessment		Marks
					Theory		Practical		Theory Marks	Practical Marks	
Credit Hours	L	Т	Р	Total	Duration	Marks	Duration	Marks	40	848	100
3	3	3		6	3 Hrs.	60					

Note: L: Lecture T: Tutorial P: Practical

OBJECTIVES: The main objective of this course is to provide students a sound knowledge of Linear Algebra, Laplace Transform, Vector Calculus with Integral Theorems, Fourier series and Linear Programming Problems with respective applications.

1. Determinants and Matrices

11 Hrs

- 1.1 Review of Matrices: types, transpose and inverse with properties (without proof) and applications
- 1.2 Review of Determinants: Introduction, Properties (without proof), applications
- 1.3 Vector spaces: Introduction, Dependent and independent Vectors, Linear transformation
- 1.4 System of linear equation and techniques to solve it (Gauss elimination method only), Elementary row operations, Gauss-Jordan method to find inverse of a matrix.
- 1.5 Rank of the matrix: Echelon Form and Normal Form, Application of the Rank
- 1.6 Eigen values and Eigen Vectors of matrix with applications, Cayley-Hamilton Theorem and its applications in finding inverse of a matrix

2. Laplace Transform

10 Hrs

- 2.1 Introduction
- 2.2 Laplace Transforms of elementary functions
- 2.3 Properties of Laplace Transform
- 2.4 Inverse Laplace transforms
- 2.5 Application of Laplace Transform in solving differential equations with initial conditions
- 2.6 Convolution of Laplace transform, Inverse of Laplace transform using convolution

3. Line Integrals, Surface Integrals and Volume Integrals

13 Hrs

- 3.1 Line Integrals: Introduction, evaluation, application as work done, independent of Path, Conservative fields
- 3.2 Surface Integrals: Introduction, evaluation, application as flux
- 3.3 Volume Integrals: Introduction, evaluation, Dirichlet's Integral
- 3.4 Integral Theorems
 - Green's Theorem in the plane (without proof), its applications.
 - · Stoke's Theorem (without proof), its applications.
 - Gauss' Divergence Theorem (without proof), its applications.

4. Fourier Series 6 Hrs

4.1 Introduction, Periodic Functions, odd and even functions

- 4.2 Fourier Series: Introduction, evaluation (Period 2π and arbitrary period)
- 4.3 Half Range Fourier (sine and cosine) Series: Introduction, evaluation
- 4.4 Parseval's Formula

5. Linear Programming Problem

5 Hrs

- 5.1 Review of Simplex method and duality (Converting in to dual)
- 5.2 Big-M Method and Two Phase Method

Text Book

- Zill D., Wright W. S. and M. R. Cullen, Advanced Engineering Mathematics, Jones and Bartlett Publishers Inc.
- Kreyszig, E. (1999), Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons.
- 3. Peter V. O'Neil, Advanced Engineering Mathematics, 8th Edition, University of Alabama at Birmingham

Evaluation Scheme

Internal Assessment: 40 Final Examination: 60

Chapter-wise Marks Division for Final Exam

Unit	Chapter Name	Short questions (2 marks)	Long questions (4 marks)	Total Marks	
1	Determinants and Matrices	4	2	16	
2	Laplace Transform	3	2	14	
3	Line Integrals, Surface Integrals and Volume Integrals	1	4	18	
4	Fourier Series	2	1	8	
5	Linear Programming Problem	-	1	4	
	Total	10	10	60	

NOTE: There may be at most one OR question from each unit 1, unit 2 and unit 3. There will be altogether three OR questions in the final question paper.

