Construction d'analyseurs syntaxiques TL2 Ensimag 1A 2022-2023

Chapitre 4 Formalisation des analyses LL(1)

Xavier.Nicollin@grenoble-inp.fr
thanks Sylvain Boulmé et Lionel Rieg

Objectifs du chapitre

On formalise les intuitions données au chapitre 3

- Définition des directeurs et BNF LL(1)
- Algo pour décider si une BNF donnée est LL(1)
 Cet algo nécessite des calculs de + petit point fixe ou d'utiliser le lemme d'Arden
- ► Algo simple pour traduire BNF LL(1) en programme

Ici, on ne considère que des BNF réduites, i.e :

- ▶ sans non-terminal A improductifs : $\forall A, L(A) \neq \emptyset$
- ▶ sans non-terminal A inaccessibles : $\forall A, \exists \alpha_1, \alpha_2 \text{ in} V^* : S \Rightarrow^* \alpha_1 A \alpha_2$

Ces non-terminaux sont faciles à détecter et éliminer (cf. TL1)

Chapitre 4 Formalisation des analyses LL(1)

Définition des grammaires LL(1)

Calcul par itération de Kleene de + petits points fixes

Calculs des directeurs LL(1)

Génération de l'analyseur LL(1)

Rappels du chapitre 3

On a vu comment implémenter l'analyse de la BNF G_1 ci-dessous

```
(1) S \uparrow w ::= O \uparrow w_1 c w := w_1.a

(2) O \uparrow w ::= P \uparrow w_1 w := w_1.c

(3) | \varepsilon  w := \varepsilon

(4) P \uparrow w ::= b w := \varepsilon

(5) a P \uparrow w_1 c P \uparrow w_2 w := b.w_1.c.a.w_2
```

via l'interface

Mais si on remplace la règle (1) par « $S \to O$ a », alors l'analyse du mot "a" ne marche pas en suivant ce principe

Retour sur la notion de directeur LL(1)

Soit $\$ \notin V$: sentinelle de fin d'entrée (token END)

On pose
$$V_{T_\$} \stackrel{def}{=} V_T \cup \{\$\}$$

Intuition: $\mathrm{Dir}(X \to \alpha)$ est le sous-ensemble de $V_{T_\$}$ auquel doit appartenir current pour que parse_X puisse appliquer $X \to \alpha$ dans une dérivation depuis « S \$ » (avec S axiome)

Exemple des directeurs LL(1) de
$$G_1$$
 {a, b, c} S \rightarrow O c {a, b} O \rightarrow P {b} P \rightarrow b {c} O $\rightarrow \varepsilon$ {a} P \rightarrow a P c P

Si on remplace (1) par $S \to O$ a, alors $Dir(O \to \varepsilon) = \{a\}$ La grammaire n'est plus LL(1), car parse_0 ne peut plus choisir entre $O \to P$ et $O \to \varepsilon$ si current == a

Exo 1 Donner les directeurs LL(1) de la grammaire $S := a S b \mid \varepsilon$

Définition des grammaires LL(1) (Lewis/Stearns 1968)

Soit *G* une GHC **réduite** quelconque

Définition (Directeur
$$Dir(\rho)$$
 d'une règle $\rho = A \rightarrow \alpha$)

 $\operatorname{Dir}(\rho)$ est défini comme l'ensemble des $a \in V_{T_s}$ pour lesquels il existe $w_1 \in V_{T^*}$, w_2 et $w_3 \in V_{T_s}^*$ tels que

$$S \Longrightarrow^* w_1 \land w_2 \text{ et } \alpha \ w_2 \Rightarrow^* a \ w_3$$

Intuition: Dans une dérivation depuis « S \$ », une règle $A \rightarrow \alpha$

ne peut dériver «
$$a$$
 w » que si $a \in \mathrm{Dir}(A \to \alpha)$ NB : Dans la déf ci-dessus, on peut avoir $\alpha \Rightarrow^* \varepsilon$

G réduite implique $\mathrm{Dir}(
ho)
eq \emptyset$

Definition (Grammaire LL(1))

G est dite LL(1) ssi $\forall A \to \alpha$ et $A \to \beta$ distinctes (c.-à-d. $\alpha \neq \beta$) et de même membre gauche A, $Dir(A \to \alpha) \cap Dir(A \to \beta) = \emptyset$

NB : G LL(1) implique G non ambiguë

Calcul du directeur des règles

On décompose le calcul en :

$$Dir(A \to \alpha) \stackrel{def}{=} Prem(\alpha) \cup \mathcal{E}(\alpha).Suiv(A)$$

οù

- 1. $\operatorname{Prem}(\alpha) = \{ a \in V_T \mid \text{ il existe } w \in V_T^* \text{ tq } \alpha \Rightarrow^* a w \}$

Donc : si α peut dériver vers ε ($\mathcal{E}(\alpha) = \{\varepsilon\}$) alors on doit s'intéresser à $\mathrm{Suiv}(A)$

- sinon ce n'est pas la peine $(\operatorname{car} \emptyset.\operatorname{Suiv}(A) = \emptyset!)!$
- 3. Suiv(A) est l'ensemble des $a \in V_{T_s}$ tels qu'il existe $w_1 \in V_{T^*}$ et $w_2 \in V_{T_s}^*$ avec $S \ \Rightarrow^* w_1 \ A \ a \ w_2$

 $\grave{\mathsf{A}}$ venir calcul de \mathcal{E} , Prem et Suiv comme + petits point fixes

Chapitre 4 Formalisation des analyses LL(1)

Définition des grammaires LL(1)

Calcul par itération de Kleene de + petits points fixes

Calculs des directeurs LL(1)

Génération de l'analyseur LL(1)

Introduction aux + petits points fixes

Déf. Soit E un ensemble et f une application de $\mathcal{P}(E) \to \mathcal{P}(E)$ Un point fixe de f est un $X \subseteq E$ tq X = f(X)X + petit point fixe \Leftrightarrow X point fixe de fpour tout point fixe Y de f, on a $X \subseteq Y$

Exo 2 Soit $V \stackrel{def}{=} \{a, b\}$. Pour chacune des équations suivantes, quel est le + petit $X \subseteq V^*$ qui la vérifie?

- $X = \{a\}.X \cup \{b\}$

Autres exemples :

- ▶ les définitions inductives $(f(X) = constructeurs(X) \cup base)$
- le langage d'une grammaire ($f \approx \text{un pas de dérivation}$)

Thm des + petits points fixes de Kleene (1938)

Soit E un ensemble et f une application de $\mathcal{P}(E) \to \mathcal{P}(E)$

Définition (Fonction continue)

f est continue $\stackrel{def}{=}$ pour toute suite croissante $(A_i)_{i\in\mathbb{N}}$ de $\mathcal{P}(E)$ $(\forall i, A_i \subseteq A_{i+1})$, on a $f(\bigcup_{i \in \mathbb{N}} A_i) = \bigcup_{i \in \mathbb{N}} f(A_i)$

NB: f continue implique f croissante : $X \subseteq Y \Rightarrow f(X) \subseteq f(Y)$ Réciproquement, toutes les fonctions croissantes « usuelles » sont continues La composée de deux fonctions continues est continue

Théorème (Kleene, 1938) Si f est continue, alors le + petit point fixe de f est $\bigcup_{i \in \mathbb{N}} f^i(\emptyset)$

NB:

•
$$f$$
 croissante donne $f^i(\emptyset) \subseteq f^{i+1}(\emptyset)$ et $\bigcup_{0 \le i \le k} f^i(\emptyset) = f^k(\emptyset)$

S'il existe
$$k$$
 tq $f^k(\emptyset) = f^{k+1}(\emptyset)$, technique alors $\forall i \geq k, f^i(\emptyset) = f^k(\emptyset)$ et $\bigcup_{i \in \mathbb{N}} f^i(\emptyset) = f^k(\emptyset)$ de calcul En particulier, si E est de cardinal fini n , alors $k \leq n$

4 : Formalisation des analyses LL(1)

Exemples de points fixes

- ► Exemple 1 : pour $f: X \mapsto \{a\}.X.\{b\} \cup \{\varepsilon\}$ $f^{i}(\emptyset) = \{a^{k}.b^{k} \mid k < i\}$ et $\bigcup_{i \in \mathbb{N}} f^{i}(\emptyset) = \{a^{k}.b^{k} \mid k \in \mathbb{N}\}$
- ▶ Exemple 2 : les langages hors-contexte $f = \emptyset$ premier pas de dérivation \emptyset $= \emptyset$ le premier étage de l'arbre d'analyse \emptyset $f^i(\emptyset) = \text{mots dérivables par un arbre de hauteur } \emptyset$ $\bigcup_{i \in \mathbb{N}} f^i(\emptyset) = \text{mots dérivables par un arbre quelconque} = \mathcal{L}(G)$ Si $X \to w_1 \mid \dots \mid w_n$, $f : \mathcal{P}(V_T^*) \to \mathcal{P}(V_T^*)$

 $X\mapsto \mathcal{L}(w_1)\cup\cdots\cup\mathcal{L}(w_n)$ Et pour plusieurs non-terminaux?

Application aux systèmes d'équations ensemblistes

Applicable à f de $\mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n) \rightarrow \mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n)$ $\operatorname{car} \mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n) \simeq \mathcal{P}(\{1\} \times E_1 \cup \ldots \cup \{n\} \times E_n)$

Extension de \subseteq et \cup : composante par composante

Pour (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) de $\mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n)$, on a

$$(X_1,\ldots,X_n)\subseteq (Y_1,\ldots,Y_n)\stackrel{def}{=} \forall i,X_i\subseteq Y_i \ (X_1,\ldots,X_n)\cup (Y_1,\ldots,Y_n)\stackrel{def}{=} (X_1\cup Y_1,\ldots,X_n\cup Y_n)$$

Exemple Pour $V_T \stackrel{def}{=} \{a, b\}$,

D ::= a S

la BNF correspond au système $S := b \mid DD$ $\begin{pmatrix} S \\ D \end{pmatrix} = \begin{pmatrix} \{b\} \cup D.D \\ \{a\}.S \end{pmatrix}$

Le + petit point fixe de ce système sur
$$\mathcal{P}(V_T^*) \times \mathcal{P}(V_T^*)$$
 est

 (L_S, L_D) où L_S et L_D sont les langages engendrés par S et D

Le langage d'une grammaire HC s'exprime comme un point fixe

Calcul de l'image d'un + petit point fixe par commutation

Lemme de commutation

Pour $k \in \{1, 2\}$, soit f_k applications continues de $\mathcal{P}(E_k) \to \mathcal{P}(E_k)$ Soit g application continue de $\mathcal{P}(E_1) \to \mathcal{P}(E_2)$ avec

Soit
$$g$$
 application continue de $\mathcal{P}(E_1) \to \mathcal{P}(E_2)$ avec $g(\emptyset) = \emptyset$ et $g \circ f_1 = f_2 \circ g$

Alors, on a :
$$g(\bigcup_{i\in\mathbb{N}}f_1^i(\emptyset))=\bigcup_{i\in\mathbb{N}}f_2^i(\emptyset)$$

Application 1 : une autre démonstration du lemme d'Arden

Pour
$$A, B \subseteq V^*$$
, soient
$$\begin{cases} f_1(X) \stackrel{def}{=} A.X \cup \{\varepsilon\} \\ f_2(Y) \stackrel{def}{=} A.Y \cup B \\ g(X) \stackrel{def}{=} X.B \end{cases}$$

Par le lemme, $\bigcup_{i=\mathbb{N}} f_2^i(\emptyset) = g\left(\bigcup_{i=\mathbb{N}} f_1^i(\emptyset)\right) = g(A^*) = A^*.B$

Application 2 : décider $\varepsilon \in L$ avec L hors-contexte

On calcule $\mathcal{E}(L) \stackrel{\text{def}}{=} L \cap \{\varepsilon\}$ par commutation de + petit point fixe

Commençons par un exemple :

$$S := \mathbf{b} \mid DD$$
 $f_1 : \mathcal{P}(V^*) \times \mathcal{P}(V^*) \to \mathcal{P}(V^*) \times \mathcal{P}(V^*)$ $D := \mathbf{a} S$ $\begin{pmatrix} S \\ D \end{pmatrix} \mapsto \begin{pmatrix} \{\mathbf{b}\} \cup D.D \\ \{\mathbf{a}\}.S \end{pmatrix}$

On veut calculer $\mathcal{E}(\mathcal{L}(S))$ et $\mathcal{E}(\mathcal{L}(D))$.

On pose $g = \mathcal{E} : \mathcal{P}(V^*) \to \mathcal{P}(\{\varepsilon\})$ On vérifie que $\mathcal{E}(\emptyset) = \emptyset$.

On cherche $f_2: \mathcal{P}(\{\varepsilon\}) \to \mathcal{P}(\{\varepsilon\})$ ta

$$f_2(\mathcal{E}\begin{pmatrix} S \\ D \end{pmatrix}) = \mathcal{E}\begin{pmatrix} \{\mathbf{b}\} \cup D.D \\ \{\mathbf{a}\}.S \end{pmatrix} = \begin{pmatrix} \mathcal{E}(\{\mathbf{b}\}) \cup \mathcal{E}(D.D) \\ \mathcal{E}(\{\mathbf{a}\}) \cap \mathcal{E}(S) \end{pmatrix}$$

puis on calcule
$$\int f_2^i(\emptyset)$$
 { ε } est fini donc le calcul termine!

Application 2 : décider $\varepsilon \in L$ avec L hors-contexte

On calcule $\mathcal{E}(L) \stackrel{def}{=} L \cap \{\varepsilon\}$ par commutation de + petit point fixe

Système à résoudre obtenu en transformant chaque équation $\langle X_k \rangle := e_k \rangle$ de la BNF de L en équation $\langle \mathcal{E}(X_k) \rangle = \mathcal{E}(e_k) \rangle$ où $\mathcal{E}(X_k)$ est vue comme une variable et $\mathcal{E}(e_k)$ défini par induction structurelle sur e_k pour s'exprimer en fonction de $\mathcal{E}(X_1), \ldots, \mathcal{E}(X_n)$:

- **>** pour tout terminal a, $\mathcal{E}(a) = \emptyset$
- $\mathcal{E}(\alpha.\beta) = \mathcal{E}(\alpha) \cap \mathcal{E}(\beta)$
- $\triangleright \mathcal{E}(\alpha \mid \beta) = \mathcal{E}(\alpha) \cup \mathcal{E}(\beta)$

Calcul du + petit point fixe en au plus $|V_N|$ itérations

ou par éliminations successives en exploitant la propriété suivante : la + petite solution $de \quad X = (X \cap \alpha) \cup \beta \quad est \quad \beta$

(variante du lemme d'Arden!)

Construction d'analyseurs syntaxiques

Application de cet exemple

Exo 3 Appliquer cette méthode sur la BNF

```
S ::= K P L

K ::= P L | P a L | K L P

P ::= L b | K L

L ::= L c P K | \varepsilon
```

.

Exo 4 Idem en remplaçant l'équation de P ci-dessus par

$$P ::= L b \mid K L \mid L L$$

. . .

Chapitre 4 Formalisation des analyses LL(1)

Définition des grammaires LL(1)

Calcul par iteration de Kleene de + petits points fixe

Calculs des directeurs LL(1)

Génération de l'analyseur LL(1)

Calcul de Prem

Même méthode que ${\mathcal E}$ en ramenant le calcul à

$$Prem(L) = \{ a \in V_T \mid \exists w \in V_T^*, \ a w \in L \}$$

Système d'équations à résoudre

Transformation de chaque équation « $X_k := e_k$ » de la BNF en équation « $\operatorname{Prem}(X_k) = \operatorname{Prem}(e_k)$ » où $\operatorname{Prem}(e_k)$ est calculé par induction structurelle sur la syntaxe de e_k :

- ▶ Pour tout $a \in V_T$, Prem $(a) = \{a\}$
- $ightharpoonup \operatorname{Prem}(\varepsilon) = \emptyset$
- $ightharpoonup \operatorname{Prem}(\alpha \mid \beta) = \operatorname{Prem}(\alpha) \cup \operatorname{Prem}(\beta)$

Calcul de Suiv

Système d'équations variables $(Suiv(X))_{X \in V_N}$ d'équation

$$Suiv(X) = \text{ si } X \text{ axiome alors } \{\$\} \text{ sinon } \emptyset$$

$$\bigcup_{Y \to \alpha. X. \beta \in \mathcal{R}} \operatorname{Prem}(\beta) \cup \mathcal{E}(\beta). \operatorname{Suiv}(Y)$$

NB : Dans l'union ci-dessus des règles de la forme $Y \to \alpha.X.\beta$, une même règle de $\mathcal R$ est utilisée autant de fois que X apparaît dans le membre droit

Exemple Pour "
$$X=$$
 C", la règle Z \rightarrow a.C.d.C compte avec $Y=$ Z $\alpha=$ a $\beta=$ d.C et $Y=$ Z $\alpha=$ a.C.d $\beta=\varepsilon$.

Exemple

Exo 5 La BNF G_3 ci-dessous est-elle LL(1)?

...

••

Chapitre 4 Formalisation des analyses LL(1)

Définition des grammaires LL(1)

Calcul par itération de Kleene de + petits points fixe

Calculs des directeurs LL(1)

Génération de l'analyseur LL(1)

Cadre de la présentation (généralisant un peu le chapitre 3)

Petite généralisation : les tokens synthétisent un attribut (cf. « NAT†n » en TD) éventuellement None

Machine à états de l'analyseur

```
current # variable globale du token de pré-vision

def init_parser(stream): # init de 'current'

def parse_token(expected):
# vérifie 'current==expected'
# avance 'current' sur token suivant
# et retourne l'attribut synthétisé par
# consommation de 'expected'
```

Principe de l'analyseur récursif

Analyseur donné par procédures *mutuellement récursives* Intuition : arbre d'analyse reconnu = arbre des appels récursifs

Ainsi, pour tout non-terminal d'équation $X \downarrow h_1 \dots \downarrow h_n \uparrow s_1 \dots \uparrow s_m$,

```
def parse_X(h1, ..., hn):
```

reconnaît le +long préfixe de l'entrée qui correspond à X et retourne un m-uplet d'attributs synthétisés (s_1, \ldots, s_m)

Attention:

- parse_X lit le 1er token dans current En sortie, current sur le 1er token qui suit le préfixe reconnu
- ► Échec de parse_X ⇒ soit pas de préfixe de X dans l'entrée, soit +long préfixe pas suivi d'un token de Suiv(X)

Codage "automatique" des équations

Équation annotée avec directeurs

```
def parse_X(h):
    if current in [a1, ..., an]:
        s = parse_A()
        parse_token(c)
        return s
    elif current in [b1, ..., bm]:
        s0 = parse_C(h);
        s1 = parse_token(e);
        s2 = parse_D(s0, f(h, s1));
        return g(s1, s2)
    else:
        raise Error(...)
```

Incompatible avec dépendance droite/gauche dans calcul d'attributs Restriction correspondant aux "grammaires L-attribuées"

Exemple avec variation sur le message d'erreur

```
Pour l'équation
                     \{a\} X := a X b
                     \{b,\$\} | \varepsilon
```

3 choix d'implémen, qui changent juste les messages d'erreur

```
def parse_X():
                             def parse_X():
                                                           def parse_X():
  if current in [b,END]:
                               if current in [a]:
                                                             if current in [a]:
                                 parse_token(a)
                                                               parse_token(a)
    return
  else:
                                 parse_X()
                                                               parse_X()
    parse token(a)
                                                               parse token(b)
                                 parse token(b)
                               else:
                                                             elif current in [b,END]:
    parse X()
    parse_token(b)
                                  return
                                                               return
                                                             else:
```

Exemple d'erreur

```
aac
                                aac
                                      attend b
   <sup>↑</sup> attend a
```

```
raise Error("a b END")
```

aac ↑ attend a b END

Génération de l'analyseur LL(1)

Conclusion du chapitre

• Exemple complet de G_1 dans chap3.py sur Chamilo Les sélections coûteuses "if ... elif ... else: ..." sont remplaçables par un accès efficace dans un tableau de règles (créé via le mk_rules du chapitre 3)

 Généralisation possible à une analyse qui continue malgré erreurs de syntaxe
 Mais hors du cadre de TL2

• Prochain chapitre : comment construire des BNF LL(1)?