Parameter estimation – Homework 2

Deadline: 26th of March, 23:59:59

Solutions should be submitted via Moodle

Task 1

Implement the Least Squares (LSQ) estimator function, which given the matrix of inputs $X \in \mathbf{R}^{n \times p}$ and the vector of outcomes $Y \in \mathbf{R}^n$ estimates the parameter vector $\theta \in \mathbf{R}^p$ (where n is the number of measurements and p is the number of parameters). Use the formula derived at the lecture:

$$\hat{\theta}_{LS} = (X^{\top}X)^{-1}X^{\top}Y$$

Task 2

Test the LSQ estimator function created in Task 1.

- 1. Generate n data points using the equation: $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon})$. (Note: you can rewrite the equation as a vector product: $y = (1 \ x_1 \ x_2) \cdot (\theta_0 \ \theta_1 \ \theta_2)^{\top} = \mathbf{x} \cdot \boldsymbol{\theta}$). You can choose arbitrary nonzero, distinct $\boldsymbol{\theta}$ values.
- 2. Plot the generated data points (this should be a 3D plot).
- 3. Use least square estimation to estimate the parameters. You should get something similar to your values chosen in 1.
- 4. Calculate the loss function $L(\hat{\theta}_{LS}) = (Y X\hat{\theta}_{LS})^{\top}(Y X\hat{\theta}_{LS})$ for your estimation.
- 5. Show how the loss function depends on the amplitude of the noise. Run steps 1-4 for different σ_{ϵ} values, and plot the results.
- 6. Show how the loss function depends on the sample size. Run steps 1-4 for different n values and plot the results.
- 7. Create a 3D plot from the computations 5-6, showing the loss in function of the noise amplitude and sample size.