Product Designof Data Science

User Experience, Visualization and Storytelling with data

Before we start

Let's think about some experiences when analyzing data.

Have you ever

- Developed perfect data science projects but nobody needs.
- Wanted to generate some innovative big data projects.

What we do?

As a data scientist/engineer

All of us are familiar with designing researches, processes, infrastructures and architectures.

We know a lot of math&statistic, computer science&programming skills and domain know-how.

And we develop some kick ass big data projects.

Maybe we can

- Fine tune hyperparameter
- Changing model
- Improving efficiency
- Enhancing stability

How?

Is data science, the extremely quantitative methodology, can solve any real world problem?

I doubt.

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ★ Experiment design
- ☆ Bayesian inference
- ☆ Supervised learning: decision trees, random forests, logistic regression
- ☆ Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative, innovative and collaborative

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Statistical computing package e.g. R
- ☆ Databases SQL and NoSQL
- ☆ Relational algebra
- ☆ Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ☆ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- Able to engage with seni management
- ☆ Story telling skills
- Translate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

Storytelling

User Experience

User Experience

qualitative methodology

research, ethnography...etc.

User Experience

User Oriented

User oriented means empathy and standing with user, not sympathy.

User Needs

Finding what users want, even they don't know they they want.

There are some connections between these two, user oriented, creativity and innovation.

Quantitative

Data Science

Qualitative

User Experience

There must be some ways to integrate both ends of the balance scales.

We are not a designer, but we can think like a designer.

Design Thinking process

Double Diamond model

What I found

Three level of good design

01

Visceral experience(視覺)

Concerns itself with appearances. Shapes, colors, styles.

02

Behavioral level(行為)

Has to do with the pleasure, effectiveness and usability of use.

03

Reflective experience(投射)

Can I tell a story about it? Does it appeal to my self-image, to my pride? The highest level of emotional design.

Good design makes you happy.
-Don Norman

UX for data scientist

Using data to find what users need, then solve the issues by data.

Visualization

Data Visualization

To explore and to realize

Visualization is a way to help us finding user needs and exploring insights of data.

We have to realize our data as more as possible before developing any application.

Data Vis Processes

1 Define intent with users

4 Structure and style

2 Understand and clean data

5 Test and iterate

Model data and check for visual validity

6 Refine and implement

Human-Centered Reflection

Purpose

- Where are you starting from—a user need, a data set, a request from a manager or exec?
- What problem why will data visualization help to solve it?
- What goals do you hope to accomplish with the vis?
- What is the nature of your intention—to make a point, tell a story, provide deep exploration?

Data

- Do you have a usable data set?
- Are you designing mockups with real data?
- Will the visualization need to get periodically updated?
- What is your plan to make the visualization accessible?
- What is your strategy for language support?

Audience

- Who is the target user for your data vis?
- What does your user want to do with their data?
- What cultural, domain, or industry-specific needs does your user have for the visualization?
- What user outcomes will indicate you've been successful?

Context

- Where will the data vis live

 in software or a
 website, a report or
 presentation, an article or
 blog post?
- Where will your user be when viewing or exploring the data vis?
- Is it going to be static or dynamic, passively consumed or interactive?

Categories of Visualization

- Comparison (比較)
- Distribution (分佈)
- Relationship (關係)
- Composition (組成)

Visualizations

Which one is larger?

Which one is larger?

Which one is larger?

Which one is better?

Other Examples

- IBM Design Language
- Where science meet art

Storytelling

Presentation

- Clear
- Abundant content

Storytelling

- Reflective, inspiring
- Feeling the same feeling

How to tell a story?

Golden circle from Simon Sinek

Even designing a data science project

"Design is not just what it looks like and feels like.

Design is how it works."

-Steve Jobs

Becoming an user-oriented data scientist together!