```
In [1]: import pandas as pd
  import datetime as dt
  import matplotlib.pyplot as plt
  import seaborn as sns
  import numpy as np
  import yfinance as yf
  import pandas_datareader as pdr
  import datetime as dt
  import pandas as pd
  from sklearn.linear_model import LinearRegression
  import scipy.stats
```

https://www.learnpythonwithrune.org/calculate-the-market-sp-500-beta-with-python-for-any-stock/ https://blog.devgenius.io/how-to-calculate-the-daily-returns-and-volatility-of-a-stock-with-python-d4e1de53e53b https://stackoverflow.com/guestions/64506283/create-a-pandas-table

Table 1

Annualized Volatility (using trailing 3-months)

```
In [4]:
       ticker= "MSFT"
        MSFT = yf.download(ticker, start="2022-07-01", end="2022-10-01")
        MSFT['daily_returns']=(MSFT['Close'].pct_change())*100
        import math
        daily volatility MSFT = MSFT['daily returns'].std()
        print(daily_volatility_MSFT)
        annual_volatility_MSFT = math.sqrt(252) * daily_volatility_MSFT
        print(annual_volatility_MSFT)
        [******** 100%********* 1 of 1 completed
        1.851706500880833
        29.39492941447374
In [5]: ticker= "AAPL"
        AAPL = yf.download(ticker, start="2022-07-01", end="2022-10-01")
        AAPL['daily_returns']=(MSFT['Close'].pct_change())*100
        import math
        daily_volatility_AAPL = AAPL['daily_returns'].std()
        print(daily_volatility_AAPL)
        annual volatility AAPL = math.sqrt(252) * daily volatility AAPL
        print(annual volatility AAPL)
```

about:srcdoc Page 1 of 18

```
[********* 100%********* 1 of 1 completed
       1.851706500880833
       29.39492941447374
In [6]: ticker= "AMZN"
       AMZN = yf.download(ticker, start="2022-07-01", end="2022-10-01")
       AMZN['daily returns']=(AMZN['Close'].pct change())*100
       import math
       daily_volatility_AMZN = AMZN['daily_returns'].std()
       print(daily volatility AMZN)
       annual volatility AMZN = math.sqrt(252) * daily volatility AMZN
       print(annual volatility AMZN)
       [******** 100%********* 1 of 1 completed
       2.7597201518278105
       43.80919925921881
In [7]: ticker= "GOOG"
       GOOG = yf.download(ticker, start="2022-07-01", end="2022-10-01")
       GOOG['daily returns']=(GOOG['Close'].pct change())*100
       import math
       daily volatility GOOG = GOOG['daily returns'].std()
       print(daily volatility GOOG)
       annual_volatility_GOOG = math.sqrt(252) * daily_volatility_GOOG
       print(annual_volatility_GOOG)
       [******** 100%******** 1 of 1 completed
       2.3390790615485137
       37.13172896265428
In [8]: ticker= "NFLX"
       NFLX = yf.download(ticker, start="2022-07-01", end="2022-10-01")
       NFLX['daily_returns']=(NFLX['Close'].pct_change())*100
       import math
       daily volatility NFLX = NFLX['daily returns'].std()
       print(daily_volatility_NFLX)
       annual volatility NFLX = math.sqrt(252) * daily volatility NFLX
       print(annual volatility NFLX)
       [******** 100%******** 1 of 1 completed
       3.3093532039715403
       52.53435346910104
```

about:srcdoc Page 2 of 18

```
In [9]: ticker= "ACLS"
         ACLS = yf.download(ticker, start="2022-07-01", end="2022-10-01")
         ACLS['daily returns']=(ACLS['Close'].pct change())*100
         import math
         daily_volatility_ACLS = ACLS['daily_returns'].std()
         print(daily_volatility_ACLS)
         annual_volatility_ACLS = math.sqrt(252) * daily_volatility_ACLS
         print(annual_volatility_ACLS)
         [******** 100%******** 1 of 1 completed
         4.289293768617285
         68.09042767116217
        ticker= "TSLA"
In [10]:
         TSLA = yf.download(ticker, start="2022-07-01", end="2022-10-01")
         TSLA['daily_returns']=(TSLA['Close'].pct_change())*100
         import math
         daily volatility TSLA = TSLA['daily returns'].std()
         print(daily_volatility_TSLA)
         annual_volatility_TSLA = math.sqrt(252) * daily_volatility_TSLA
         print(annual volatility TSLA)
         [******** 100%********* 1 of 1 completed
         3.0928442835287693
         49.0973809083892
```

Beta against SPY (using trailing 12-months)

```
In [11]: tickers = ['MSFT', 'AAPL', 'AMZN', 'GOOG', 'NFLX', 'ACLS', 'TSLA', 'SPY',
    start = dt.datetime(2021, 10, 1)
    end = dt.datetime(2022, 10, 1)

data = pdr.get_data_yahoo(tickers, start, end, interval="d")

returns_data = data['Adj Close'].resample('W').ffill().pct_change()
    returns_data[1:]
```

Out[11]:	Symbols	MSFT	AAPL	AMZN	GOOG	NFLX	ACLS	TSLA
	Date							
	2021- 10-10	0.019889	0.001752	0.001633	0.026333	0.031819	-0.013177	0.013248
	2021- 10-17	0.031745	0.013576	0.036611	0.011560	-0.006907	0.046418	0.073254
	2021-							

about:srcdoc Page 3 of 18

10-24	0.016272	0.026581	-0.021552	-0.021528	0.058078	-0.001620	0.079060
2021- 10-31	0.072648	0.007465	0.011057	0.069580	0.038404	0.114425	0.224607
2021- 11-07	0.013389	0.011354	0.043458	0.006546	-0.064594	0.111597	0.097029
2021- 11-14	0.001964	-0.008527	0.001751	0.002710	0.057130	0.005732	-0.154383
2021- 11-21	0.020841	0.070405	0.042954	0.002052	-0.005582	0.018727	0.100288
2021- 11-28	-0.039142	-0.023295	-0.046786	-0.047658	-0.019387	0.004316	-0.048493
2021- 12-05	-0.020232	0.032077	-0.032749	-0.001999	-0.095412	-0.013847	-0.061881
2021- 12-12	0.060463	0.108811	0.016063	0.043183	0.015827	0.065203	0.002030
2021- 12-19	-0.054709	-0.046308	-0.012743	-0.039496	-0.040758	-0.042273	-0.083046
2021- 12-26	0.033632	0.030034	0.006182	0.030388	0.046631	0.077045	0.144150
2022- 01-02	0.004870	0.007318	-0.025437	-0.016739	-0.018971	0.095182	-0.009578
2022- 01-09	-0.066247	-0.030411	-0.024970	-0.053048	-0.101886	-0.078997	-0.028218
2022- 01-16	-0.012228	0.005227	-0.002559	0.020306	-0.028407	0.039610	0.022055
2022- 01-23	-0.045680	-0.061594	-0.120237	-0.069352	-0.243851	-0.159686	-0.100714
2022- 01-30	0.041313	0.048765	0.009359	0.024579	-0.033057	-0.015003	-0.103348
2022- 02-06	-0.007526	0.013384	0.094886	0.072973	0.067151	0.064309	0.090943
2022- 02-13	-0.035628	-0.021753	-0.027569	-0.062133	-0.045981	0.029575	-0.068579
2022- 02-20	-0.022081	-0.007946	-0.004514	-0.027306	-0.000051	0.043243	-0.003512
2022- 02-27	0.032577	-0.014644	0.007778	0.031058	-0.001252	0.027979	-0.054972
2022- 03-06	-0.025058	-0.010191	-0.052979	-0.017823	-0.074386	-0.112471	0.035092
2022- 03-13	-0.033775	-0.051725	-0.000800	-0.012462	-0.059188	0.028395	-0.051223
2022- 03-20	0.072696	0.059782	0.108064	0.048484	0.118359	0.270590	0.138354

about:srcdoc Page 4 of 18

2022- 03-27	0.010818	0.065496	0.021848	0.034503	-0.017735	-0.025084	0.116248
2022- 04-03	0.018901	-0.002347	-0.007365	-0.005805	-0.001016	-0.088651	0.073171
2022- 04-10	-0.040237	-0.024210	-0.055634	-0.047544	-0.047099	-0.174004	-0.054491
2022- 04-17	-0.057716	-0.028220	-0.017830	-0.050425	-0.041447	-0.045178	-0.039483
2022- 04-24	-0.020727	-0.021175	-0.048492	-0.060030	-0.368217	-0.028354	0.020355
2022- 05-01	0.012736	-0.025589	-0.139027	-0.038854	-0.116741	-0.006931	-0.133615
2022- 05-08	-0.010053	-0.000881	-0.076512	0.006032	-0.049328	0.068871	-0.005868
2022- 05-15	-0.049539	-0.064662	-0.014964	0.007397	0.036857	0.007732	-0.110969
2022- 05-22	-0.030529	-0.064714	-0.048330	-0.061816	-0.006875	-0.040921	-0.137333
2022- 05-29	0.081881	0.087579	0.070224	0.031890	0.047438	0.109156	0.144193
2022- 06-05	-0.011784	-0.028468	0.062559	0.015647	0.019417	-0.006411	-0.073825
2022- 06-12	-0.063069	-0.056748	-0.103801	-0.027378	-0.080611	-0.066946	-0.009751
2022- 06-19	-0.021108	-0.040618	-0.031281	-0.031967	-0.040614	-0.100795	-0.066615
2022- 06-26	0.080961	0.076771	0.096404	0.098943	0.087402	0.119016	0.133542
2022- 07-03	-0.030333	-0.019272	-0.059248	-0.079780	-0.057113	-0.176117	-0.075062
2022- 07-10	0.031127	0.058375	0.054582	0.101645	0.039066	0.090094	0.103404
2022- 07-17	-0.040873	0.021287	-0.017223	-0.061593	0.011392	0.075187	-0.042656
2022- 07-24	0.014179	0.026104	0.078115	-0.039081	0.165671	0.132562	0.134032
2022- 07-31	0.078276	0.054643	0.102353	0.076412	0.020232	0.104949	0.091487
2022- 08-07	0.007730	0.018889	0.043349	0.013546	0.008359	0.111617	-0.030220
2022- 08-14	0.031812	0.040822	0.019531	0.037473	0.099303	-0.016756	0.041156
2022-	-0.017651	-0.003370	-0.037060	-0.036934	-0.032651	-0.034474	-0.011210

about:srcdoc Page 5 of 18

```
08-21
2022-
        -0.063114 -0.046059
                              -0.054113 -0.057738
                                                    -0.074142 -0.026004
                                                                          -0.028910
08-28
2022-
       -0.044873
                  -0.047733 -0.024780
                                        -0.023540
                                                     0.012675
                                                                -0.123115
                                                                          -0.062064
09-04
2022-
        0.032805
                    0.010012
                               0.045173
                                          0.028524
                                                     0.032993
                                                                0.035021
                                                                           0.109063
09-11
2022-
       -0.074567
                                         -0.072911
                  -0.042384
                             -0.073085
                                                     0.028086
                                                              -0.066453
                                                                            0.012246
09-18
2022-
       -0.027866
                   -0.001792
                            -0.078928 -0.043038
                                                    -0.057136
                                                               -0.063837
                                                                          -0.092369
09-25
2022-
        -0.021100
                  -0.081300 -0.006855 -0.030453
                                                    0.039883
                                                                0.056156
                                                                           -0.036611
10-02
```

```
In [15]:
         cov = returns data.cov()
         var_SPY= returns_data['SPY'].var()
         BETA_SPY_MSFT = cov.loc['MSFT', 'SPY']/var_SPY
         BETA_SPY_AAPL = cov.loc['AAPL', 'SPY']/var_SPY
         BETA_SPY_AMZN = cov.loc['AMZN', 'SPY']/var_SPY
         BETA SPY GOOG = cov.loc['GOOG', 'SPY']/var SPY
         BETA SPY NFLX = cov.loc['NFLX', 'SPY']/var SPY
         BETA_SPY_ACLS = cov.loc['ACLS', 'SPY']/var_SPY
         BETA_SPY_TSLA = cov.loc['TSLA', 'SPY']/var_SPY
         print(BETA SPY MSFT)
         print(BETA SPY AAPL)
         print(BETA SPY AMZN)
         print(BETA_SPY_GOOG)
         print(BETA SPY NFLX)
         print(BETA_SPY_ACLS)
         print(BETA_SPY_TSLA)
```

```
1.195445039481341
1.1979784461498182
1.4862989616052085
1.1563175443100469
1.591874984386656
2.0088556218150484
2.0752340172620674
```

Beta against IWM (using trailing 12-months)

about:srcdoc Page 6 of 18

```
In [16]:
          cov = returns data.cov()
          var_IWM = returns_data['IWM'].var()
          BETA IWM MSFT = cov.loc['MSFT', 'IWM']/var IWM
          BETA_IWM_AAPL = cov.loc['AAPL', 'IWM']/var_IWM
          BETA_IWM_AMZN = cov.loc['AMZN', 'IWM']/var_IWM
          BETA_IWM_GOOG = cov.loc['GOOG', 'IWM']/var_IWM
BETA_IWM_NFLX = cov.loc['NFLX', 'IWM']/var_IWM
          BETA_IWM_ACLS = cov.loc['ACLS', 'IWM']/var_IWM
          BETA IWM_TSLA = cov.loc['TSLA', 'IWM']/var_IWM
          print(BETA IWM MSFT)
          print(BETA_IWM_AAPL)
          print(BETA_IWM_AMZN)
          print(BETA IWM GOOG)
          print(BETA IWM NFLX)
          print(BETA IWM ACLS)
          print(BETA_IWM_TSLA)
          0.8729752004985826
          0.7808002829401185
          1.2694868531279435
```

0.8573503111132128

1.3866730147303783

1.8308146973830595

1.6328417811945863

2.1745866698061405 2.1776280611910463

Beta against DIA (using trailing 12-months)

```
In [17]: cov = returns data.cov()
         var_DIA = returns_data['DIA'].var()
         BETA DIA MSFT = cov.loc['MSFT', 'DIA']/var DIA
         BETA_DIA_AAPL = cov.loc['AAPL', 'DIA']/var_DIA
         BETA_DIA_AMZN = cov.loc['AMZN', 'DIA']/var_DIA
         BETA_DIA_GOOG = cov.loc['GOOG', 'DIA']/var_DIA
         BETA_DIA_NFLX = cov.loc['NFLX', 'DIA']/var_DIA
         BETA DIA ACLS = cov.loc['ACLS', 'DIA']/var DIA
         BETA DIA TSLA = cov.loc['TSLA', 'DIA']/var DIA
         print(BETA DIA MSFT)
         print(BETA_DIA_AAPL)
         print(BETA_DIA_AMZN)
         print(BETA DIA GOOG)
         print(BETA_DIA_NFLX)
         print(BETA_DIA_ACLS)
         print(BETA_DIA_TSLA)
         1.3285854440981522
         1.364533991687657
         1.6310616228365191
         1.2159599501130256
         1.686898061014922
```

about:srcdoc Page 7 of 18

Average Weekly Drawdown (52-week Low minus 52-week High) / 52-week High

```
In [18]:
         data week = pdr.get data yahoo(tickers, start, end, interval="w")
         data week = data week['Adj Close']
In [19]: data weekly returns = data week
         data weekly returns = data weekly returns[1:]
         data weekly returns
         weekly_drawdowns = (data_weekly_returns[1:].min()-data_weekly_returns[1:]
         weekly drawdowns
         Symbols
Out[19]:
         MSFT
                -0.315637
         AAPL
                -0.264858
                -0.422179
         AMZN
         GOOG
                -0.358797
         NFLX
                -0.745752
                -0.404570
         ACLS
         TSLA
                -0.467895
                -0.239272
         SPY
         TWM
                -0.312754
         DIA
                -0.197648
         dtype: float64
In [20]:
         avg_wkl_drawdown_MSFT = weekly_drawdowns['MSFT']
         avg_wkl_drawdown_AAPL = weekly_drawdowns['AAPL']
         avg_wkl_drawdown_AMZN = weekly_drawdowns['AMZN']
         avg_wkl_drawdown_GOOG = weekly_drawdowns['GOOG']
         avg wkl drawdown NFLX = weekly drawdowns['NFLX']
         avg wkl drawdown ACLS = weekly drawdowns['ACLS']
         avg wkl drawdown TSLA = weekly drawdowns['TSLA']
         print(avg wkl drawdown MSFT)
```

-0.31563713626840245

Maximum Weekly Drawdown (52-week Low minus 52-week High) / 52-week High

```
In [21]: max_drawdown_MSFT = (data_weekly_returns.MSFT.min() - data_weekly_returns
    max_drawdown_AAPL = (data_weekly_returns.AAPL.min() - data_weekly_returns
    max_drawdown_AMZN = (data_weekly_returns.AMZN.min() - data_weekly_returns
    max_drawdown_GOOG = (data_weekly_returns.GOOG.min() - data_weekly_returns
    max_drawdown_NFLX = (data_weekly_returns.NFLX.min() - data_weekly_returns
    max_drawdown_ACLS = (data_weekly_returns.ACLS.min() - data_weekly_returns
    max_drawdown_TSLA = (data_weekly_returns.TSLA.min() - data_weekly_returns
```

Total Return (using trailing 10-years)

about:srcdoc Page 8 of 18

0.9854457534424093

Annualized Total Return (using trailing 10-years)

```
In [24]: annualized_ret_MSFT = data_ten_years_returns.MSFT.mean() * 252
annualized_ret_AAPL = data_ten_years_returns.AAPL.mean() * 252
annualized_ret_AMZN = data_ten_years_returns.AMZN.mean() * 252
annualized_ret_GOOG = data_ten_years_returns.GOOG.mean() * 252
annualized_ret_NFLX = data_ten_years_returns.NFLX.mean() * 252
annualized_ret_ACLS = data_ten_years_returns.ACLS.mean() * 252
annualized_ret_TSLA = data_ten_years_returns.TSLA.mean() * 252
annualized_ret_SPY = data_ten_years_returns.SPY.mean() * 252
annualized_ret_IWM = data_ten_years_returns.IWM.mean() * 252
annualized_ret_DIA = data_ten_years_returns.DIA.mean() * 252
```

Table

```
In [25]:

d = {
    'Tickers' : ['MSFT', 'AAPL', 'AMZN', 'GOOG', 'NFLX', 'ACLS', 'TSLA'],
    'Portfolio Weight in %' : [100/7,100/7,100/7,100/7,100/7,100/7,100/7,100/7,
    'Annualized Volatility':[annual_volatility_MSFT,annual_volatility_AAP
    'Beta against SPY':[BETA_SPY_MSFT,BETA_SPY_AAPL,BETA_SPY_AMZN,BETA_SP
    'Beta against IWM':[BETA_IWM_MSFT,BETA_IWM_AAPL,BETA_IWM_AMZN,BETA_IW
    'Beta against DIA':[BETA_DIA_MSFT,BETA_DIA_AAPL,BETA_DIA_AMZN,BETA_DI
    'Average Weekly Drawdown':[avg_wkl_drawdown_MSFT, avg_wkl_drawdown_AA
    'Maximum Weekly Drawdown':[max_drawdown_MSFT,max_drawdown_AAPL,max_dr
    'Total Return':[total_ret_MSFT,total_ret_AAPL,total_ret_AMZN,total_ret_Annualized_Total_Return':[annualized_ret_MSFT,annualized_ret_AAPL,an
}
df = pd.DataFrame(data=d)
df
```

about:srcdoc Page 9 of 18

Out[25]:		Tickers	Portfolio Weight in %	Annualized Volatility	Beta against SPY	Beta against IWM	Beta against DIA	Average Weekly Drawdown	Maximum Weekly Drawdown
	0	MSFT	14.285714	29.394929	1.195445	0.872975	1.328585	-0.315637	-0.315637
	1	AAPL	14.285714	29.394929	1.197978	0.780800	1.364534	-0.264858	-0.264858
	2	AMZN	14.285714	43.809199	1.486299	1.269487	1.631062	-0.422179	-0.422179
	3	GOOG	14.285714	37.131729	1.156318	0.857350	1.215960	-0.358797	-0.358797
	4	NFLX	14.285714	52.534353	1.591875	1.386673	1.686898	-0.745752	-0.745752
	5	ACLS	14.285714	68.090428	2.008856	1.830815	2.174587	-0.404570	-0.414131
	6	TSLA	14.285714	49.097381	2.075234	1.632842	2.177628	-0.467895	-0.467895

Table 2

Portfolio Return

```
In [26]: ticker = ['MSFT', 'AAPL', 'AMZN', 'GOOG', 'NFLX', 'ACLS', 'TSLA']
    start = dt.datetime(2021, 10, 1)
    end = dt.datetime(2022, 10, 1)

    data_port_cor = pdr.get_data_yahoo(ticker, start, end, interval="d")

    data_port_cor = data_port_cor['Adj Close']

    portfolio_007 = data_port_cor.pct_change()[1:]

    portfolio_007
```

about:srcdoc Page 10 of 18

Out[26]:	Symbols	MSFT	AAPL	AMZN	GOOG	NFLX	ACLS	TSLA
	Date							
	2021- 10-04	-0.020719	-0.024606	-0.028472	-0.019767	-0.015983	-0.047898	0.008140
	2021- 10-05	0.019957	0.014158	0.009788	0.018032	0.052142	0.009446	-0.001203
	2021- 10-06	0.015064	0.006307	0.012732	0.008643	0.006758	-0.001523	0.002767
	2021- 10-07	0.005936	0.009085	0.012391	0.013334	-0.011344	0.034438	0.013874
	2021- 10-08	0.000000	-0.002722	-0.004182	0.006254	0.001282	-0.005900	-0.010232
	•••							
	2022- 09-26	-0.001975	0.002260	0.012041	-0.003630	-0.010335	0.004011	0.002470
	2022- 09-27	-0.004380	0.006566	-0.006426	-0.007287	0.001294	0.036477	0.025108
	2022- 09-28	0.019712	-0.012652	0.031466	0.027016	0.092886	0.048768	0.017212
	2022- 09-29	-0.014809	-0.049119	-0.027201	-0.026305	-0.022390	0.000639	-0.068101
	2022- 09-30	-0.019368	-0.030039	-0.015679	-0.019778	-0.017813	-0.032897	-0.011036

251 rows × 7 columns

```
In [27]: w = [1/7, 1/7, 1/7, 1/7, 1/7, 1/7]
         weighted_returns = (w * portfolio_007)
         port_ret_007 = weighted_returns.sum(axis=1)
         port_ret_007
         Date
Out[27]:
         2021-10-04
                     -0.021329
         2021-10-05
                      0.017474
                       0.007250
         2021-10-06
         2021-10-07
                      0.011102
         2021-10-08
                     -0.002214
                         . . .
         2022-09-26
                       0.000692
         2022-09-27
                      0.007336
         2022-09-28
                      0.032058
         2022-09-29
                      -0.029612
         2022-09-30
                      -0.020944
         Length: 251, dtype: float64
```

about:srcdoc Page 11 of 18

Correlation against ETF

```
In [28]: tickers = ['MSFT', 'AAPL', 'AMZN', 'GOOG', 'NFLX', 'ACLS', 'TSLA']
         tickers1 = ['SPY', 'IWM', 'DIA']
         data week = pdr.get data yahoo(tickers, start, end, interval="w")
         data week adj = data week['Adj Close']
         data week adj['portfolio'] = data week adj.mean(axis=1)
         data_week_ETF = pdr.get_data_yahoo(tickers1, start, end, interval="w")
         data_week_ETF_adj = data_week_ETF['Adj Close']
         #print(data week adj['portfolio'])
         correlation port_SPY = scipy.stats.linregress(data_week_ETF_adj['SPY'], d
         correlation port_IWM = scipy.stats.linregress(data_week_ETF_adj['IWM'], d
         correlation port DIA = scipy.stats.linregress(data_week_ETF_adj['DIA'], d
         corr_port_SPY = correlation_port_SPY.rvalue
         corr port IWM = correlation port IWM.rvalue
         corr port DIA = correlation port DIA.rvalue
         print(corr port SPY)
         print(corr_port_IWM)
         print(corr_port_DIA)
         /var/folders/z2/909fbvdx5n1f z6b8 t fkmm0000gn/T/ipykernel 36670/21539209
         23.py:7: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-do
         cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
           data week adj['portfolio'] = data week adj.mean(axis=1)
         0.9219327545648938
         0.9610673432956548
         0.8831854174183175
```

Covariance of Portfolio against ETF

about:srcdoc Page 12 of 18

```
In [29]: tickers = ['MSFT', 'AAPL', 'AMZN', 'GOOG', 'NFLX', 'ACLS', 'TSLA']
         tickers1 = ['SPY', 'IWM', 'DIA']
         data week = pdr.get data yahoo(tickers, start, end, interval="w")
         data week adj = data week['Adj Close']
         data_week_adj['portfolio'] = data_week_adj.mean(axis=1)
         data_week_ETF = pdr.get_data_yahoo(tickers1, start, end, interval="w")
         data week ETF adj = data week ETF['Adj Close']
         np a = np.array([data week adj['portfolio'], data week ETF adj['SPY']])
         np_b = np.array([data_week_adj['portfolio'], data_week_ETF_adj['IWM']])
         np_c = np.array([data_week_adj['portfolio'], data_week_ETF_adj['DIA']])
         cov SPY port = np.cov(np a)
         cov IWM port = np.cov(np b)
         cov_DIA_port = np.cov(np_c)
         covariance SPY port = cov SPY port[0,1]
         covariance IWM port = cov IWM port[0,1]
         covariance_DIA_port = cov_DIA_port[0,1]
         print(covariance SPY port)
         print(covariance_IWM_port)
         print(covariance_DIA_port)
         /var/folders/z2/909fbvdx5n1f z6b8 t fkmm0000gn/T/ipykernel 36670/14534145
         05.py:7: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-do
         cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
           data week adj['portfolio'] = data week adj.mean(axis=1)
         1095.9104708173777
         749.3868339651088
```

Tracking Errors (using trailing 10-years)

618.253243860987

about:srcdoc Page 13 of 18

```
annualized ret port = ((1/7 * annualized ret MSFT) + (1/7 * annualized ret material)
print(annualized_ret_port)
total ret SPY = data ten years returns.SPY.sum()
annualized ret SPY = data ten years returns.SPY.mean() * 252
annualized std SPY = data ten years returns.SPY.std() * math.sqrt(252)
print(annualized std SPY)
print(annualized_ret_SPY)
total_ret_IWM = data_ten_years_returns.IWM.sum()
annualized ret IWM = data ten years returns.IWM.mean() * 252
annualized std IWM = data_ten_years_returns.IWM.std() * math.sqrt(252)
print(annualized_std_IWM)
print(annualized_ret_IWM)
total_ret_DIA = data_ten_years_returns.DIA.sum()
annualized ret DIA = data ten years returns.DIA.mean() * 252
annualized std DIA = data ten years returns.DIA.std() * math.sqrt(252)
print(annualized std DIA)
print(annualized_ret_DIA)
tracking err SPY = annualized ret port - annualized ret SPY
tracking_err_IWM = annualized_ret_port - annualized_ret_IWM
tracking err DIA = annualized ret port - annualized ret DIA
print(tracking err SPY)
print(tracking err IWM)
print(tracking_err_DIA)
0.2650794617239326
0.18151887636553363
0.027467943544457914
0.2175445837615394
0.06841135035149683
0.17231788952036992
0.036219783173826174
0.23761151817947468
0.19666811137243578
```

Sharper Ratio (using current risk-free rate)

0.22885967855010642

about:srcdoc Page 14 of 18

```
In [31]: risk free rate = 0.0334
         data week = pdr.get data yahoo(tickers, start, end, interval="w")
         data week adj = data week['Adj Close']
         data week adj['portfolio'] = data week adj.mean(axis=1)
         np data port = np.array(data week adj['portfolio'])
         std_port = np.std(np_data_port)
         sharpe SPY = (annualized_ret_SPY-0.0334)/ 0.21899271102199921
         sharpe IWM = (annualized_ret_IWM-0.0334)/ 0.26432103249126154
         sharpe_DIA = ( annualized_ret_DIA-0.0334)/ 0.1808008730298294
         sharpe_port = (annualized_ret_port-0.0334)/ 0.3979573000400954
         print(sharpe_SPY)
         print(sharpe IWM)
         print(sharpe DIA)
         print(sharpe port)
         -0.027087917346007795
         0.13245767853397858
         0.015596070564111456
         0.5821716593729785
         /var/folders/z2/909fbvdx5n1f z6b8 t fkmm0000gn/T/ipykernel 36670/19180428
         65.py:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-do
         cs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
           data_week_adj['portfolio'] = data_week_adj.mean(axis=1)
```

Annualized Volatility (252 days) Spread (Portfolio Volatility – ETF Volatility)

```
In [32]: spread_SPY = (0.3979573000400954- 0.21899271102199921)*100
    spread_DIA = (0.3979573000400954- 0.1808008730298294) * 100
    spread_IWM = (0.3979573000400954- 0.26432103249126154) * 100
    spread_port = 0

    np_data_port = np.array(data_week_adj['portfolio'])
    std_port = np.std(np_data_port)
    print(std_port)

39.79572964371205
```

about:srcdoc Page 15 of 18

```
In [33]:
    d = {
        'Tickers' : ['SPY','IWM','DIA','Portfolio'],
        'Correlation against ETF':[corr_port_SPY,corr_port_IWM,corr_port_DIA,
        'Covariance of Portfolio against ETF' :[covariance_SPY_port,covariance
        'Tracking Errors':[tracking_err_SPY,tracking_err_IWM,tracking_err_DIA
        'Sharpe Ratio':[sharpe_SPY,sharpe_IWM,sharpe_DIA,sharpe_port],
        'Annualized Volatility (252 days) Spread ':[spread_SPY,spread_IWM,spr
    }
    df = pd.DataFrame(data=d)
    df
```

Out[33]:

	Tickers	Correlation against ETF	Covariance of Portfolio against ETF	Tracking Errors	Sharpe Ratio	Annualized Volatility (252 days) Spread
0	SPY	0.921933	1095.910471	0.237612	-0.027088	17.896459
1	IWM	0.961067	749.386834	0.196668	0.132458	13.363627
2	DIA	0.883185	618.253244	0.22886	0.015596	21.715643
3	Portfolio	1	1	0	0.582172	0.000000

Correlation Matrix

```
In [34]: portfolio_007 ['Portfolio Return'] = port_ret_007
portfolio_007
```

about:srcdoc Page 16 of 18

Out[34]:	Symbols	MSFT	AAPL	AMZN	GOOG	NFLX	ACLS	TSLA
	Date							
	2021- 10-04	-0.020719	-0.024606	-0.028472	-0.019767	-0.015983	-0.047898	0.008140
	2021- 10-05	0.019957	0.014158	0.009788	0.018032	0.052142	0.009446	-0.001203
	2021- 10-06	0.015064	0.006307	0.012732	0.008643	0.006758	-0.001523	0.002767
	2021- 10-07	0.005936	0.009085	0.012391	0.013334	-0.011344	0.034438	0.013874
	2021- 10-08	0.000000	-0.002722	-0.004182	0.006254	0.001282	-0.005900	-0.010232
	•••							
	2022- 09-26	-0.001975	0.002260	0.012041	-0.003630	-0.010335	0.004011	0.002470
	2022- 09-27	-0.004380	0.006566	-0.006426	-0.007287	0.001294	0.036477	0.025108
	2022- 09-28	0.019712	-0.012652	0.031466	0.027016	0.092886	0.048768	0.017212
	2022- 09-29	-0.014809	-0.049119	-0.027201	-0.026305	-0.022390	0.000639	-0.068101
	2022- 09-30	-0.019368	-0.030039	-0.015679	-0.019778	-0.017813	-0.032897	-0.011036

251 rows × 8 columns

about:srcdoc Page 17 of 18

Out[35]:

Syı	mbols	MSFT	AAPL	AMZN	GOOG	NFLX	ACLS	TSLA	Porti Re
Syı	mbols								
	MSFT	1.000000	0.781685	0.717617	0.815703	0.491669	0.622194	0.588690	0.839
	AAPL	0.781685	1.000000	0.693581	0.738541	0.453638	0.646168	0.645906	0.836
1	AMZN	0.717617	0.693581	1.000000	0.712540	0.576695	0.580936	0.550923	0.832
(GOOG	0.815703	0.738541	0.712540	1.000000	0.523805	0.639043	0.548395	0.837
	NFLX	0.491669	0.453638	0.576695	0.523805	1.000000	0.426847	0.464509	0.726
	ACLS	0.622194	0.646168	0.580936	0.639043	0.426847	1.000000	0.578879	0.808
	TSLA	0.588690	0.645906	0.550923	0.548395	0.464509	0.578879	1.000000	0.795
	rtfolio Return	0.839288	0.836562	0.832043	0.837877	0.726203	0.808883	0.795283	1.000

about:srcdoc Page 18 of 18