Tutorat 05

Analysis I Panajiotis Christoforidis

Aufgabe 1

Man prüfe die Injektivität und Surjektivität der folgenden Funktionen und bestimme ggf. die Umkehrfunktion

a)

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

Behauptung (1.1): f weder surjektiv noch injektiv

Beweis. nicht injektiv: -1, $1 \in \mathbb{R} - 1 \neq 1$ aber $f(1) = f(-1) \notin f$ injektiv nicht surjektiv: $\forall x \in \mathbb{R}x^2 \geq 0$ $\Rightarrow \operatorname{Bild}(f) \subseteq \mathbb{R}^{\geq 0} \Rightarrow \emptyset \neq \mathbb{R} \setminus \operatorname{Bild}(f) \subseteq \mathbb{R}^{<0}$ Also kann f gar nicht surjektiv sein. Da f weder surjektiv, injektiv \Rightarrow ex. keine Umkehrabbildung f^{-1}

b)

$$h: (-1, 1) \to \mathbb{R}, f(x) = \frac{x}{1 - |x|}$$

Behauptung (1.2): h bijektiv

Beweis. h injektiv:

Überlege zuerst:

$$x \ge 0 \Leftrightarrow f(x) \ge 0$$

$$x < 0 \Leftrightarrow f(x) < 0$$

Dann können wir folgender Fälle betrachten:

1.Fall: Seien $x, x' \geq 0$

$$f(x) = f(x')$$

$$\Leftrightarrow \frac{x}{1-|x|} = \frac{x'}{1-|x'|}$$

$$\Leftrightarrow x \cdot (1-x') = x' \cdot (1-x)$$

$$\Leftrightarrow x - x' \cdot x = x' - x \cdot x'$$

 $\Leftrightarrow x = x'$ 2. Fall x < 0 analog 3. Fall $x' < 0 \le x$

insbesondere $x \neq x'$ nach der Vorüberlegung folgt $h(x) \neq h(x')$

h surjektiv:

1. Fall Sei $a \ge 0$, definiere $x := \frac{a}{1+a}$

Dann ist
$$h(x) = h(\frac{a}{1+a}) = \frac{\frac{a}{1+x}}{1-\frac{a}{1+a}} = \frac{\frac{a}{1+a}}{\frac{1+a-a}{a+1}} = a$$
 und $-1 < 0 \le x < 1$ da $a < 1 + a \Leftrightarrow \frac{a}{1+x} < 1$ 2. Fall $a < 0$ Setze $x := \frac{a}{1-a}$
$$h(x) = h(\frac{a}{1-a}) = \frac{\frac{a}{1-a}}{1-\frac{a}{1-a}} = \frac{\frac{1-a}{1-a}}{\frac{1-a+a}{1-a}} = a$$
 Benutze: $h^{-1} : \mathbb{R} \to (-1, 1), x \mapsto \frac{x}{1+|x|}$ Da h bijektiv genügt es $h \circ h^{-1} = \mathrm{id}_{\mathbb{R}}$ oder $h \circ h^{-1} = \mathrm{id}_{(-1, 1)}$ zu prüfen.

Diese wurden bereits mit der Surjektivität gezeigt.

Aufgabe 2

Folgen
$$(a_n)_{n\in\mathbb{N}}$$
, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$. $\forall n\in\mathbb{N} \ a_n\leq b_n\leq c_n$ $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_n=:g$

Behauptung (2.3): $\lim_{n\to\infty} b_n = g$ existiert.

Beweis.
$$\lim_{n\to\infty} a_n = g \Leftrightarrow \forall \varepsilon < 0 \,\exists n_a \in \mathbb{N} \,\forall n > n_a$$