Chapitre X - Droites du plan

I - Caractérisation analytique d'une droite

<u>Définition</u>: Le plan est muni d'un repère.

Soient $A(x_A\,;\,y_A)$ et $B(x_B\,;\,y_B)$ deux points quelconques d'une droite $\mathscr D$ non parallèle à l'axe des ordonnées.

(AB) a ainsi une équation de la forme y=mx+p où :

- est le coefficient directeur de la droite \mathscr{D} .
- L'ordonnée du point d'intersection de la droite $\mathscr D$ d'équation y=mx+p avec l'axe des ordonnées est égale à $\boldsymbol p$ et est appelée **ordonnée à l'origine** de la droite $\mathscr D$.
- Tout vecteur \overrightarrow{v} non nul colinéaire au vecteur \overrightarrow{AB} est appelé \dots

<u>Définition</u>: Le plan est muni d'un repère.

Soient $A(x_A\,;\,y_A)$ et $B(x_B\,;\,y_B)$ deux points quelconques d'une droite $\mathscr D$ non parallèle à l'axe des ordonnées.

(AB) a ainsi une équation de la forme y=mx+p où :

- $m=rac{y_B-y_A}{x_B-x_A}$ est le coefficient directeur de la droite $\mathscr{D}.$
- L'ordonnée du point d'intersection de la droite $\mathscr D$ d'équation y=mx+p avec l'axe des ordonnées est égale à $\boldsymbol p$ et est appelée **ordonnée à l'origine** de la droite $\mathscr D$.
- Tout vecteur \overrightarrow{v} non nul colinéaire au vecteur \overrightarrow{AB} est appelé \dots

L'ordonnée du point d'intersection de la droite \mathscr{D} d'équation y=mx+p avec l'axe des ordonnées est égale à p et est appelée **ordonnée** à l'origine de la droite \mathscr{D} .

Tout vecteur \overrightarrow{v} non nul colinéaire au vecteur \overrightarrow{AB} est appelé

Tout vecteur \overrightarrow{v} non nul colinéaire au vecteur \overrightarrow{AB} est appelé **vecteur directeur** de la droite (AB).

Conséquences:

- Si dans un repère, une droite ${\mathscr D}$ a pour équation y=mx+p, alors .
- Dans un repère, si le vecteur $\overrightarrow{u} \binom{1}{m}$ est un vecteur directeur d'une droite \mathscr{D} , alors m est le coefficient directeur de \mathscr{D} , cette identification n'étant possible que **pour un vecteur directeur d'abscisse 1**.
- Si dans un repère deux points distincts A et B ont la même **ordonnée**, alors la droite (AB) est parallèle à l'axe des abscisses. Son coefficient directeur est alors égal à 0, et une équation de (AB) est de la forme : $y = y_A$.

Si dans un repère, une droite \mathscr{D} a pour équation y=mx+p, alors

Si dans un repère, une droite \mathscr{D} a pour équation y=mx+p, alors

Si dans un repère, une droite \mathscr{D} a pour équation y=mx+p, alors le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ m \end{pmatrix}$ est un vecteur directeur de \mathscr{D} .

Dans un repère, si le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ m \end{pmatrix}$ est un vecteur directeur d'une droite \mathscr{D} , alors m est le coefficient directeur de \mathscr{D} , cette identification n'étant possible que pour un vecteur directeur d'abscisse 1.

Si dans un repère deux points distincts A et B ont la même **ordonnée**, alors la droite (AB) est parallèle à l'axe des abscisses. Son coefficient directeur est alors égal à 0, et une équation de (AB) est de la forme : $y=y_A$.

