Genetic Algorithm

Enthusiasm • Leadership • Innovation • Teamwork • Excellence

Genetic Algorithm

- Created by Holland (1975)
- Optimization problems from the industries and engineering are very complex in nature
 - Hard to solve by conventional optimization techniques:
 - ◆linear programming, mathematic programming, ...
- In 1960s, a trend of imitating living beings to solve hard optimization problems
 - Simulate the natural evolutionary process of human beings
 - Stochastic optimization techniques
 - Evolutionary algorithms
 - Three main categories of evolutionary algorithms
 - ◆GA, genetic algorithms
 - EP, evolutionary programming
 - ES, evolution strategies (solution search)

Well known applications in area of industrial engineering

- Scheduling and sequencing
- Reliability design
- Vehicle routing and scheduling
- Group technology
- Facility layout and location
- Transportation
- Machine Learning

General Structure of GA

- Stochastic search techniques based on the mechanism of natural selection and natural genetics
- Start with an initial set of random solutions
 - Population (a set of solution agents)
 - For simple problems
 - Each individual in the population is called a chromosome
 - Representing a solution to the problem
 - For complex problems
 - A set of chromosomes represents a solution
 - Called an organism
 - Each organism represents a solution to the complex problems

General Structure of GA

- Chromosome
 - A string of symbols
 - ◆Typically is a binary bit string
 - Evolve through successive iterations, called generation
 - Evaluated by a measure of fitness of the single chromosome or the set of chromosomes (the organism)

- New chromosomes are called offspring
 - Formed by merging two chromosomes
 - By using a crossover operator
 - Formed by modifying a chromosome
 - By using a mutation operator
- New generation (population)
 - Formed by selecting some of the parents and offspring and rejecting others
 - Fitter chromosomes (high fitness) have higher probabilities of being selected
- The algorithm converges to the best chromosome
 - The optimum or suboptimal solution to the problem

Genetic Algorithm

```
P(t): parents in current generation t
\bullet C(t): offspring in current generation t
   Begin
           t←0;
           initialize P(t)
           evaluate P(t);
           while( not termination condition ) do
                  recombine P(t) to yield C(t)
                  evaluate C(t);
                  select P(t+1) from P(t) and C(t);
                   t \leftarrow t+1;
           end
```


GA Solver Preview

Job assignment optimization problem: N jobs to be assigned to N machines A job can only be assigned to one machine; A machine can only process one job A linear programming problem \rightarrow should be solved by hard computing method 0-1 variables are used subject to the above assignment requirements $X_{ij} = 1$, job i is assigned to machine j

- Initialization
 - Usually, random initialization
- Recombination
 - Usually, via crossover and mutation operations
- Genetic operations
 - (1) Crossover and Mutation
 - (2) Selection
 - Mimic the process of heredity of genes
 - Mimic the Darwinian evolution

Crossover operation

- Main genetic operation
 - Operate on two chromosomes to generate offspring by combining parent's features
 - Simple way
 - Choose a random cut-point and generate offspring by combining the left segment of one parent with the right segment of the other parent

- Determine the performance of GA
- \bullet Crossover rate, P_c
 - Allow only P_c x pop_size chromosomes to perform crossover operation

Mutation Operation

- Produce random changes in various chromosomes
- Simple way
 - Alter one or more genes
- \clubsuit Mutation rate, P_m
 - The percentage of the total number of genes to be operated by the mutation
 - Control the rate at which new genes are introduced into the population

Solution Search

- Problems do not have priori information about the sequence of steps leading to a solution
 - Search is required
- Search
 - Blind strategy
 - Use no information about the problem
 - Heuristic strategy
 - Use additional information to guide the search along with the best search directions
- Two important issues in solution search
 - Exploitation (探究)
 - ◆ For the nearest best solution
 - Exploration (探索)
 - For the possible best solution

computer automation

Solution Searches

- Hill-climbing search (Steepest descent search)
 - Exploit the best solution for possible improvement, ignoring the exploration of the search space
- Random search
 - Explore the search space ignoring the exploitation of the promising regions

GA vs. Conventional Optimization and Search Procedures

- Work with a coding of solution set
 - Not the solutions themselves
- Solution search from a population of solutions
 - Not a single solution
- Uses payoff information (fitness function)
 - Not derivatives or auxiliary knowledge
- Use the probabilistic transition rules
 - Not deterministic rules

Solution Searches

- Genetic Search
 - A class of general-purpose search method
 - Combine directed and stochastic search
 - Initialization
 - Explore all solution space
 - Crossover operation
 - Explore the neighborhood of each chromosome
 - One can not always use simple operations for all kinds of Problem
 - Use information of the problem domain to design the operations
 - Otherwise, it is a blind search

Traditional Optimization Search (hard computing)

- Point-to-point
- Generate a deterministic sequence of computation based on the gradient or higherorder derivatives of objective function
- The point is improved along the deepest descending or ascending direction
- Risk of falling in local optima

Genetic search

- Population-to-population
 - ◆ Not point-to-point (single-to-single)
- Multiple directional search by a population of potential solutions
- Escape from local optima
- The population undergoes a simulated evolution
 - The relatively good solutions are reproduced
 - ◆The relatively bad solutions die
 - Use probabilistic transition rules

GA Optimization Method

- Previous Approach (Classic Approach)
 - Used as a generic tool for many difficult-to-solve problem
 - Chromosomes: Fixed-length binary strings
 - Simple binary crossover and mutation operators
 - Domain-independent
 - **Emphasis on the robust adaptive systems**
 - Difficult to apply directly and successfully into difficult-to-solve problem

GA Meta-Heuristic

- Current Approach
 - GA is used as a meta-heuristics
 - Nonstandard implementations are created for particular problem
 - **Various data structure for nature representation**
 - Various sets of genetic operators applied to these data structures

Advantages of GA

- Have little mathematical requirements about the optimization problem
 - Can handle any kind of objective functions and constraints (linear or nonlinear)
 - Discrete, continuous, or mixed solution space
- Genetic operators are very effective in performing global search
 - Traditional one (hard computing) performs local search by a stepwise procedure
- Flexibility to hybridize with domain-dependent heuristics to make an efficient implementation for a specific problem

Vocabulary of GA

Biologic organism

- One or more chromosomes specify the complete organism
- Genotype (基因型)→ the complete set of chromosomes
- Phenotype(顯形) → the organism
- Chromosome
 - Comprises a number of genes
- Gene
 - Represents a particular feature of human being
 - Encodes a particular feature of the organism and the location

Encoding Problem

- Coding Space vs. Solution Space
 - Coding space
 - Genetic operations work on
 - Solution space
 - Where the evaluation operation works on
 - Where the selection operation works on

Critical issues

- Legality of a chromosome
 - Whether a chromosome represents a solution?
 - Problem: No such a solution exists
- Feasibility of a chromosome
 - A solution decoded from a chromosome is a feasible solution?
 - Problem: The solution is infeasible
- Uniqueness of mapping
 - Whether a chromosome represents only one solution and the solutions is represented by the only one chromosome?
 - Problem: A chromosome represents many solutions
 - Problem: Several chromosomes represent the same solution

Strategies

- Illegality
 - Resulted from crossover and mutation operations
 - Rejecting method
 - Penalizing method
 - Repair method
 - Convert an illegal chromosome to a legal one
 - Better than rejecting and penalizing strategies
- Infeasibility
 - Penalty methods
 - Violation amounts are penalized and added to the objective function to degrade the fitness

26

- Uniqueness
 - 1-to-n
 - Hard to deal with; should avoid it
 - N-to-1
 - ◆Inefficient GA

Encoding Types

- Binary Representation and Encoding
- Integer Representation and Encoding
- Real Representation and Encoding
- Symbol Representation and Encoding

Binary Representation and Encoding

- Can be applied for various type of optimization problems
 - Binary Optimization Problem
 - Directly use binary encoding
 - Integer optimization problem
 - ◆ Find the required number of digitals for each integer variable
 - Encode the binary representation for the integer
 - If negative integers are involved, digital shifting operation is conducted
 - One special case of real number optimization problem
 - Real number optimization Problem
 - Compute the required numbers of digits to cover the range of each real variable, including the required decimal precision

Real Number Encoded as Binary Genes

 $l \le x \le u$;

n : number of desired digits in decimal part

m: required length of the binary string for x_i

$$2^{m-1} < (u-l) \times 10^n \le 2^m - 1$$

Binary string encording: m is calculated first

$$b = Encording(x, l, u, m) = B(\lceil (x-l)(2^m-1)/(u-l)\rceil, m)$$

B(i,m): Binary expression for integer i in m bits

Example:
$$-3 \le x = -2.6880 \le 12.1, n = 4$$
;

$$(12.1-(-3))\times10^4=151000$$

$$2^{17} = 131072 < 151000 \le 2^{18} = 262144; m = 18$$

$$b = Encording(-2.688, -3.12.1, 18) =$$

$$B(\lceil (-2.588+3)(2^{18}-1)/(12.1+3)\rceil,18) =$$

$$B(\lceil 5416.46 \rceil, 18) = B(5417, 18) = 000001010100101001$$

Decoding

Decording from binary string encording:

$$x = Decoding(b, l, u, m) = l + D(b) \frac{u - l}{2^m - 1}$$

D(b): Decimal value of a binary number b

Example:
$$x = Decoding(b, l, u, m)$$

Decoding (000001010100101001, -3, 12.1, 18)

$$x = -3.0 + D(000001010100101001) \frac{12.1 + 3}{2^{18} - 1}$$

$$= -3.0 + 5417 \times \frac{12.1 + 3}{2^{18} - 1} = -2.6879$$

Crossover Operations for Binary Representation

Binary Representation

- One-point
- **■** Two-point
- N-point

01110101000100101 **10010101001** 10010111010001010 **00101000100**

011101010<mark>00101001</mark>001000100 100101110<mark>1001001</mark>0010010101

011101010**1001010**001000100 100101110**001010001**010010101

Mutation Operation for Binary Representation

- Mutation Operator
 - Determine the number of genes to be mutated
 - Randomly determine the positions of these genes in the whole population
 - Duplicate the parents whose genes are selected as proto-children
 - Alter the genes' values to resulting new offspring

```
P_m=0.04

Pop \times length = 8x20 = 160

Number of mutated genes = 0.04x160= 6
```

Binary Encoding GA for Job Assignment

Integer Representation and Encoding

- For sequencing and grouping optimization problems
- Directly use integer symbols to encode the chromosomes
 - **E.g.**;
 - ◆[5 3 2 1 6 8 7 4 9] : for permutation encoding
 - ◆[2 2 1 3 3 1 1 2 4] : for object grouping problems

Crossover Operations for Integer Encoding

- Permutation representation (E.g., TSPs, JSPs, SAPs)
 - Canonical Approach:
 - Extension of two-point or multi point crossover
 - Repairing procedures are embedded
 - Based on blind random mechanism
 - No guarantee that offspring is better
 - Operators
 - Partial-mapped Crossover (PMX)
 - Order Crossover (OX)
 - Position-based Crossover
 - Order-based Crossover
 - Cycle Crossover (CX)
 - Subtour Exchange
 - Heuristic Approach
 - Problem-dependent Heuristic Crossovers

Partial-mapped Crossover PMX

- Proposed by Goldberg and Lingle
 - Step 1: Select two positions to obtain a substring (mapping section)
 - Step 2: Exchange the substring of parents to produce proto-children
 - Step 3: Determine the mapping relationship between two mapping sections
 - Step 4: Legalize offspring with the mapping relationship

Parent 1 1 2 3 4 5 6 7 8 9

Parent 2 6 4 5 7 9 8 3 1 2

Proto-child 2

Order Crossover (OX)

- Step 1: Select a substring from parent 1
- Step 2: Copying the substring into the corresponding position for proto-child 1
- Step 3: Mark out the genes in the parent 2
- Step 4: Add the unmarked genes left in parent2 sequentially into the void positions at protochild 1 to complete offspring 1
- Step 5: Repeat the same steps starting from parent 2 and against parent 1 to produce offspring 2

Parent 2 6 4 5 7 9 8 3 1 2

Position-based Crossover

- Step1: Randomly select a set of positions
- Step2: Coping genes at these positions to the same position to produce proto-child 1
- Step 3: Mark out the genes of these position in parent 2
- Step 4: Add the unmarked genes in parent2 sequentially into the void positions at protochild 1 to complete offspring 1
- Step 5: Repeat the same steps starting from parent 2 and against parent 1 to produce offspring 2

Parent 2 6 4 5 7 9 8 3 1 2

Order-based Crossover

- A variation of position-based crossover
- The order of genes in the selected position in parent 1 is imposed on the corresponding genes in parent 2

Cycle Crossover (CX)

- Step1: Find the cycle defined by the genes between parents
- Step2: Copy the genes in the cycle to a child with the corresponding positions of parent 1
- Step3: Mark out the genes of these position in parent 2
- Step 4: Add the unmarked genes in parent2 sequentially into the void positions at protochild 1 to complete offspring 1
- Step 5: Repeat the same steps starting from parent 2 and against parent 1 to produce offspring 2

Cycle 1: 1-6-8-1

Cycle 2: 2-4-7-3-5-9-2

Subtour Exchange Crossover

- Step1: Define a subtour length
- Setp2: Select subtour from parents that contains common cities
- Step3: Exchange subtour to produce two offspring

Parent 1 1 2 3 4 5 6 7 8 9

Parent 2 6 4 5 7 9 8 3 1 2

Offspring 1 123645789

Offspring 2 4 5 6 7 9 8 3 1 2 Subtour Length = 4:

Heuristic Crossover

- Problem dependent
- Follows the goal of maximizing the fitness
- For example: TSP
 - Step 1: For a pair of parents, pick a random city for the start
 - Step2: Choose the shortest edge leading from the current city which does not lead to cycle.
 - ◆ If two edges lead to a cycle, choose a random city to continue
 - Step3: If the tour is completed, stop; otherwise, goto step 2

Parent 1 1 2 3 4 5 6 7 8 9

Parent 2 6 4 5 7 9 8 3 1 2

- 3 (for offspring 1)
- 3-shortest(3-4, 3-2, 3-1, 3-8)
- 3-8
- 3-8-shortest(8-9,8-7)
- 3-8-7
- 3-8-7-shortest(7-6,7-9,7-5)
- 3-8-7-9
- 3-8-7-9-shortest(9-1)
- 3-8-7-9-1

computer automation

- 3-8-7-9-1-shortest(1-2)
- 3-8-7-9-1-2
- 3-8-7-9-1-2-shortest(2-6)

- 3-8-7-9-1-2-6
- 3-8-7-9-1-2-6-shortest(6-5,6-4)
- 3-8-7-9-1-2-6-5
- 3-8-7-9-1-2-6-5-shortest(5-4)
- 3-8-7-9-1-2-6-5-4
- Offspring 1 3 8 7 9 1 2 6 5 4
 - 7 (for offspring 2)
 - 7-shortest(7-9, 7-8, 7-6,)
 - . . .
- Offspring 2 7 6 4 3 1 2 9 8 5

Mutation Operators

- Inversion Mutation
 - Select two positions on a chromosome to invert the substring between these two positions

Parent 1 2 3 4 5 6 7 8 9

Child 1 2 6 5 4 3 7 8 9

- Insertion Mutation
 - Select a gene and insert it in a random position

Parent 1 2 3 4 5 6 7 8 9

Child 1 2 4 5 6 3 7 8 9

- Displacement Mutation
 - Select a subtour and insert it in a random position

Parent 1 2 3 4 5 6 7 8 9

Child 1 2 6 7 8 3 4 5 9

Reciprocal Exchange Mutation

Select two positions to swap the genes

Parent 1 2 3 4 5 6 7 8 9

Child 1 2 8 4 5 6 7 3 9

Heuristic Mutation

- Step1: pick up c genes
- Step2: generate neighbors from all possible permutations of the selected genes
- Step3: evaluate all neighbors and select the best one as offspring

computer automation

Neighbor 1	1	2	3	4	7	6	5	8	9
Neighbor 2	1	2	5	4	7	6	3	8	9
Neighbor 3	1	2	5	4	3	6	7	8	9
Neighbor 4	1	2	7	4	5	6	3	8	9
Neighbor 5	1	2	7	4	3	6	5	8	9

Children

Permutation Encoding GA for Job Assignment

Real Number Representation

- Directly use a serial of real numbers to represent genes of a chromosome which represents a solution
 - Each variable should have upper and lower bounds
- Crossover Operators
 - One point or two-point cuts to select segments of genes to be crossovered
 - Apply arithmetical operator on these genes

$$\mathbf{x}_1' = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2$$
$$\mathbf{x}_2' = \beta \mathbf{x}_1 + \alpha \mathbf{x}_2$$

- **♦** Convex crossover: α + β =1.0, α , β ≥0.0
- Affine crossover: $\alpha + \beta = 1.0$
- ♦ Linear crossover: α , β ∈ R

CALab Proposed Five Crossover Operators for Real Representation

- ◆ 大值分隔兩段式(Large Value Divided, LVD)
- ◆ 小值分隔兩段式(Small Value Divided, SVD)
- ◆ 中段和任一端段式(Middle and One End Segments, MOES)
- 兩端兩段式(Two End Segments, TES)
- ◆ 中段往復兩段式 (Forward and Backward Middle Segment, FBMS)

五種實數交配演算的交配值落點範圍

LVD 大值分隔兩段式

SVD 小值分隔兩段式

$$\tilde{b}_1 = \alpha b_{\min} + (1 - \alpha) b_s$$
 $\tilde{b}_2 = \alpha b_s + (1 - \alpha) b_{\max}$

五種實數交配演算的交配值落點範圍

MOES 中段和任一端段式

TES 兩端兩段式

FBMS 中段往復兩段式

$$\tilde{b}_1 = \alpha b_s + (1 - \alpha)b_l$$
 $\tilde{b}_2 = \alpha b_l + (1 - \alpha)b_s$

Mutation Operation for Real Number Representation

Dynamic Mutation (Uniform Mutation)

For fine tuning for high precision

$$\boldsymbol{x} = [x_1 x_2 \cdots x_n], \ \boldsymbol{x}' = [x_1 x_2 \cdots x_k' \cdots x_n]$$

$$x'_{k} = \begin{cases} x_{k} + d(t, x_{k}^{U} - x_{k}) \\ x_{k} - d(t, x_{k} - x_{k}^{L}) \end{cases}, d(t, y) = \sim U(0, 1) \cdot y \cdot \left(1 - \frac{t}{T}\right)^{b}$$

t: iteration index

T: total number of iterations

b: parameter determines the degree of nonuniformity

Real Number Encoding GA for Continuous Optimization Problems

Selection Operation (篩選)

- Darwinian natural selection
- A critical step in GA:
 - A inappropriate selection:
 - Search will terminate prematurely
 - Progress will be slower than necessary
- **♦** Low selection pressure ← at the start
 - **■** Favor for a wide exploration of search space
- ♣ High selection pressure ← at the end
 - To exploit the most promising region

Genetic Selection

- Regular sampling space for selection
 - Size: pop_size
 - Selection targets: parents
 - Holland's original GA
 - Randomly select chromosomes from the current generation
 - Parents are replaced by their offspring at once
 - ◆Replacement Strategies
 - select parents for reproduction & offspring replaces parents

Holland's Selection and Replacement

Enlarged sampling space

- Enlarged sampling space for selection
 - Size: pop_size + off_size
 - Selection targets: all parents and offspring
 - Both parents and offspring have the same chance of competing for survival
 - pop_size best out of offspring and parents are selected (off_size + pop_size)

Enlarged sampling space

Best Sampling Mechanism

- Stochastic Sampling
 - Number of copies of each chromosome is based on its survival probability
 - ◆ Either 0, 1, or multiple copies are selected for each chromosome
- Deterministic Sampling
 - The best *pop_size* chromosomes are selected from the sampling space
 - ◆ Either 0 or 1 copy is selected for each chromosome
- Mixed Sampling

Stochastic Sampling

- Probability proportionate selection
 - Roulette wheel selection
 - Selection probability for each chromosome proportional to the fitness value
 - Selection process is spinning the roulette wheel pop_size times

Roulette wheel selection

$$p_k = \frac{f_k}{\sum_{i=1}^{pop_size+off_size} f_i}, f_k > 0$$

$$q_k = \sum_{i=1}^{k} p_i, k \in \{1, 2, ..., pos_size + off_size\}$$

 q_2

1.0

 p_3

 q_3

for
$$i = 1$$
 to $pop _size$

$$q \leftarrow U(0,1)$$

$$k \rightarrow 1$$

while $(q > q_k)k \leftarrow k + 1$

select chromosome k

enfor

 p_{5}

Alternative

Only one roulette wheel turn to get

pop_size
chromosomes

$$e_k = p_k \times pop_size, \forall k = 1,2,..., pop_size + off_size$$
 $sum \leftarrow 0$
 $q \leftarrow U(0,1)$
 $count \leftarrow 0$
 $for k = 1 to (pos_size + off_size)$
 $sum \leftarrow sum + e_k$
 $while (sum > q \land count < pop_size)$
 $select chromosome k$
 $count \leftarrow count + 1$
 $q \leftarrow q + 1$
 $end while$
 $end for$

Demo

Sample (multiple)

Deterministic Sampling

- Best pop_size chromosomes are selected from the sampling space
- Truncation Selection
 - Threshold T is defined, T% best chromosomes are selected
 - Each receives 100/T copies
- Block Selection
 - The pop_size/s best chromosomes get s copies

Mixed Sampling

- Contain both random and deterministic features
- Tournament selection
 - Randomly choose tournament_size chromosomes and pick the best one
 - ◆Binary tournament: tournament_size = 2
- Stochastic tournament selection
 - Roulette wheel method but select two successive chromosomes and pick the best one

Selection Probability (fitness)

- Proportional Selection Approach
 - Selection probability is proportional to fitness
 - Best practice requirement:
 - ◆Earlier: require low selection pressure; few super chromosomes are recognized
 - ◆ Later: require high selection pressure; to exploit the promising solutions

$$f_1 = 1, f_2 = 2, f_3 = 3,$$

$$f_4 = 4, f_5 = 5$$

$$f_1 = 101, f_2 = 102, f_3 = 103,$$

 $f_4 = 104, f_5 = 105$

Improve methods

- Scaling mechanism
 - Maps raw objective values to positive real values as theirs fitnesses to determine the survival probability
- Ranking mechanism
 - ◆Ignores the actual objective values
 - Uses a ranking of chromosomes to determine the survival probability

Fitness Scaling

- Maintain a reasonable differential between relative fitness ratings of chromosomes
- Prevent a rapid takeover by some super chromosomes to limit competition early, but to stimulate it later

Scaled fitness:
$$\tilde{f}_k = g(f_k)$$

- **♣** Transformation function g(): linear scaling sigma truncation, power law scaling, logarithmic scaling, ...
 - Static scaling
 - Dynamic Scaling
 - According to the scatter situation of fitness values
 - According to the number of generations

Scaling

- \bullet Lineaf Scaling b
 - Parameters a and b are selected to let average chromosome receive one offspring and the best receives a specified number of copies (usually two)
- Dynamic linear scaling

$$\tilde{f}_k = a \cdot f_k + b_t$$

$$b_t = -f_{\min}$$

Sigma Truncation

- Improve linear scaling
- Deal with the negative values
- To incorporate the problem dependent information into the mapping

$$\tilde{f}_k = f_k - \left(f_{avg} - c \cdot \sigma \right)$$

 $lue{c}$ is a small integer, σ is the population standard deviation, f_{avg} is the average raw fitness

Power Law Scaling

$$\tilde{f}_k = f_k^{\ \alpha}$$

- The value α is problem-dependent, $\alpha = 1.005$ is suggested
- When α increases, the gap between the best and worst chromosomes increased
- Another power law scaling

$$\tilde{f}_k = \left(a \cdot f_k + b\right)^{\alpha}$$

Logarithmic scaling

For mapping the objective function of minimization problem

$$\tilde{f}_k = b - \log(f_k), b > \log(f_k)$$

Windowing

- Use a moving baseline technique
- Maintain constant selection pressure

$$\tilde{f}_k = f_k - f_w$$
, w: the window size $2 \sim 10$,

 f_w : the worst value observed in the w most recent generations

Normalizing

- One kind of dynamic scaling
- For maximization problems

$$\tilde{f}_k = \frac{f_k - f_{\min} + \gamma}{f_{\max} - f_{\min} + \gamma}, f_{\max} : \text{ the best raw fitness}$$

- \mathbf{P} is a small positive real number
 - ◆To prevent zero division
- Boltzmann Selection

$$\tilde{f}_k = e^{f_k/T}$$

Selection pressure is low when T is high

Ranking

- Sort the population from the best to the worst
- Assign probability according to the ranking but not its raw fitness
- Linear Ranking

$$p_{k} = q_{\text{max}} - (k-1) \cdot \frac{q_{\text{max}} - q_{\text{min}}}{pop _size - 1};$$

 $q_{\rm max}, q_{\rm min}$: the probability for the best and worst chromosomes

Exponential Ranking

$$(1) p_k = q - (1 - q)^{k-1}$$

Large q, stronger selective pressure

$$(2) p_k = q^{k-1}$$

q is typically 0.99; the best 1, the worest q^{pop_size-1}

Objective Values to Fitness

 o_k : objective value of chromosome k

 f_k : fitness of chromosome k

b: minimum fitness

 α : least fitness fraction, $0 < \alpha < 0.5$

$$o_{\max} = \max_{\forall k} \{o_k\}$$

$$o_{\min} = \min_{\forall k} \{ o_k \}$$

$$b = \max \{ \alpha (o_{\text{max}} - o_{\text{min}}), 10^{-5} \}$$

$$f_k = b + \begin{cases} o_k - o_{\min}, \text{ for maximization problem} \\ o_{\max} - o_k, \text{ for minimization problem} \end{cases}$$

GA Applications

- Optimization Problems
 - Multi-objective Optimization Problem
 - Stochastic Optimization Problem
 - Nonlinear Goal Programming
 - Interval Programming
 - Combinatorial Optimization Problem

Application Problems

- Reliability Optimization Problem
 - Network Reliability Design
 - Tree-Based Network Reliability and LAN Design
 - Multiobjective Reliability Design
- Word-Matching Problem
- Traveling Salesman Problem
- Quadratic Assignment Problem
- Film-Copy Deliverer Problem
- Location-Allocation Problem
- Obstacle Location-Allocation Problem

- Set-Covering Problem
 - Airline Crew Scheduling Problem
- Bin-Packing Problem
- Knapsack Problem
 - Binary Representation Approach
 - Order (permutation) Representation Approach
 - Variable-Length Representation Approach

- Minimum Spanning Tree Problem
 - Quadratic MSTP
 - Degree-Constrained MSTP
 - Bicriteria MSTP
- Fuzzy Optimization Problem
 - Fuzzy Linear Programming
 - Fuzzy Nonlinear Programming
 - Fuzzy Nonlinear Mixed-Integer Goal Programming
 - Fuzzy Multiobjective Integer Programming

Scheduling Problem

- Job-Shop Scheduling Problem
 - ◆IP Model
 - **◆LP Model**
 - Graph Model
- Flow-shop Sequencing Problem
- Grouped Job Scheduling Problem
- Resource-Constrained Project Scheduling Problem
- Single-Machine Scheduling Problem
- Earliness and Tardiness Machine Scheduling Problem
- Parallel Machine Scheduling Problem
- Multiprocessor Scheduling

computer automation

Transportation Problem

- Linear TP
- Bicriterial LP
- Bicriteria Solid Transportation Problem
- Fuzzy Multicriteria Solid Transportation Problem
- Advanced Transportation Problem
 - Multiobjective Transportation Problem
 - Fixed-Charge Transportation Problem
 - Capacitated Plant Location Problem
 - Bicriteria Transportation Problem with Fuzzy Coefficients

- Network Design and Routing Problem
 - Shortest path Problem
 - Adaptive Network Routing
 - Centralized Network Design Problem
 - Computer Network Expansion Problem
 - Multistage Process Planning
 - M/G/s Queuing Facility Location Problem
- Manufacturing Cell Design Problem
- Facility Layout Design Problem
 - Single-Row MLP
 - Multiple-Row MLP
 - Fuzzy Facility Layout Problem
- Fuzzy Vehicle Routing and Scheduling Problem
- Production Plan Problem

computer automation