Mathematical Logic Homework 9

Abraham Murciano

January 19, 2020

1. Define the following three propositions.

$$\begin{split} \varphi_1 &= \forall x \exists y (R(x,y) \lor R(y,x)) \\ \varphi_2 &= \forall x (\exists y R(x,y) \lor \exists y R(y,x)) \\ \varphi_3 &= (\forall x \exists y R(x,y)) \lor (\forall x \exists y R(y,x)) \end{split}$$

(a) i. First we will show that $\varphi_1 \to \varphi_2$.

1.	$\forall x \exists y (R(x,y) \lor R(y,x))$	premise
2.	$\exists y (R(a,y) \lor R(y,a))$	1, universal elimination
3.	$R(a,b) \vee R(b,a)$	assumption
4.	R(a,b)	assumption
5.	$ \mid \exists y R(a,y)$	4, existential introduction
6.	$\exists y R(a,y) \lor \exists y R(y,a)$	5, disjunction introduction
7.	R(b,a)	assumption
8.	$\exists y R(y,a)$	7, existential introduction
9.		8, disjunction introduction
10.	$\exists y R(a,y) \lor \exists y R(y,a)$	3, 4–6, 7–9 disjunction elimination
11.	$\exists y R(a,y) \lor \exists y R(y,a)$	2, 3–10, existential elimination

Therefore by the deduction theorem we have

$$\forall x \exists y (R(x,y) \lor R(y,x)) \to \forall x (\exists y R(x,y) \lor \exists y R(y,x))$$

 $\forall x(\exists y R(x,y) \lor \exists y R(y,x))$ 11, universal introduction

ii. Now we must show that $\varphi_2 \to \varphi_1$.

12.

1.	$\forall x (\exists y R(x,y) \lor \exists y R(y,x))$	premise
2.	$\exists y R(a,y) \vee \exists y R(y,a)$	1, universal elimination
3.	$\exists y R(a,y)$	assumption
4.	R(a,b)	assumption
5.	$R(a,b) \vee R(b,a)$	4, disjunction introduction
6.	$\exists y (R(a,y) \lor R(y,a))$	5, existential introduction
7.	$\exists y (R(a,y) \lor R(y,a))$	3, 4–6, existential elimination
8.	$\exists y R(y, a)$	assumption
9.	R(b,a)	assumption
10.	$R(a,b) \vee R(b,a)$	9, disjunction introduction
11.	$\exists y (R(a,y) \lor R(y,a))$	10, existential introduction
12.	$\exists y (R(a,y) \lor R(y,a))$	8, 9–11, existential elimination
13.	$\exists y (R(a,y) \lor R(y,a))$	2, 3–7, 8–12 disjunction elimination
14.	$\forall x \exists y (R(x,y) \vee R(y,x))$	13, universal introduction

Therefore by the deduction theorem we have

$$\forall x (\exists y R(x,y) \lor \exists y R(y,x)) \to \forall x \exists y (R(x,y) \lor R(y,x))$$

Since $\varphi_1 \to \varphi_2$ and $\varphi_2 \to \varphi_1$, therefore φ_1 and φ_2 are equivalent.

(b) i. Now we will demonstrate that $\varphi_2 \not\to \varphi_3$ by stating a counterexample model. Let the universe for x and y be the real numbers in the interval [0,1], and let the predicate R(x,y) be x < y.

In this example, φ_2 means that "for all numbers in [0,1], there is a number in [0,1] which is smaller than it, or there is a number in [0,1] which is greater than it." In this case, φ_2 is true, because 0 is smaller than every number in the interval except for 0 itself, and every number in the interval is greater than 0, except for 0 itself.

However, φ_3 means that "either every number in [0, 1] has a number greater than it, or every number in [0, 1] has a number smaller than it." However this is not true, because there is no number in [0, 1] which is greater than 1, so the first part of the proposition is false. The second part is also false, because there is no number in [0, 1] which is less than 0. Therefore $\varphi_2 \not\to \varphi_3$.

- ii. Now we will show that $\varphi_3 \to \varphi_2$.
 - 1. $(\forall x \exists y R(x,y)) \lor (\forall x \exists y R(y,x))$ premise

2.	$\forall x \exists y R(x,y)$	assumption
3.	$\exists y R(a,y)$	2, universal elimination
4.	$\exists y R(a,y) \lor \exists y R(y,a)$	3, disjunction introduction
5.	$\forall x \exists y R(y, x)$	assumption
6.	$\exists y R(y,x)$	5, universal elimination
7.	$\exists y R(a,y) \lor \exists y R(y,a)$	6, disjunction introduction
0	¬ D(),(¬ D()	1 0 4 5 0 1: : : : : : :

- 8. $\exists y R(a,y) \lor \exists y R(y,a)$
- 1, 2–4, 5–8 disjunction elimination
- 9. $\forall x(\exists y R(x,y) \lor \exists y R(y,x))$
- 8, universal introduction

Therefore by the deduction theorem we have

$$(\forall x \exists y R(x,y)) \lor (\forall x \exists y R(y,x)) \rightarrow \forall x (\exists y R(x,y) \lor \exists y R(y,x))$$

- (c) i. Since $\varphi_1 \leftrightarrow \varphi_2$ and $\varphi_2 \not\rightarrow \varphi_3$, therefore $\varphi_1 \not\rightarrow \varphi_3$.
 - ii. Since $\varphi_3 \to \varphi_2$ and $\varphi_2 \to \varphi_1$, therefore $\varphi_3 \to \varphi_1$.
- 2. (b)

$$\begin{aligned} &\exists x (P(x) \land Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x)) \\ &= \forall x ((P(x) \land Q(x)) \rightarrow \forall y (P(y) \rightarrow Q(y))) \\ &= \forall x \forall y ((P(x) \land Q(x)) \rightarrow (P(y) \rightarrow Q(y))) \end{aligned}$$

3. Given the following propositions

$$\alpha = \exists x (P(x) \to Q(x))$$
$$\beta = \forall x P(x) \to \exists x Q(x)$$

(b) It is true that $\beta \to \alpha$. A proof goes as follows.

1.	$\forall x P(x) \to \exists x Q(x)$	premise
2.	$\neg \forall x P(x) \vee \exists x Q(x)$	1, material implication
3.	$\neg \forall x P(x)$	assumption
4.	$\exists x \neg P(x)$	3, universal negation
5.	$\neg P(a)$	assumption
6.	$\neg P(a) \lor Q(a)$	5, disjunction introduction
7.	$P(a) \to Q(a)$	6, material implication
8.	$\exists x (P(x) \to Q(x))$	7, existential introduction
9.	$\exists x (P(x) \to Q(x))$	4, 5–8 existential elimination
10.	$\exists x Q(x)$	assumption
11.	Q(a)	assumption
12.	$\neg P(a) \to Q(a)$	11, disjunction introduction
13.	$P(a) \to Q(a)$	12, material implication
14.	$\exists x (P(x) \to Q(x))$	13, existential introduction
15.	$\exists x (P(x) \to Q(x))$	10, existential elimination
16.	$\exists x (P(x) \to Q(x))$	2, 3–9, 10–16 existential elimination

4. (a) We must prove the following implication.

$$\exists x P(x) \to \forall x Q(x) \vdash \forall x (P(x) \to Q(x))$$

- $\exists x P(x) \to \forall x Q(x)$ 1. premise $\neg \exists x P(x) \lor \forall x Q(x)$ 2. 1, material implication 3. $\neg \exists x P(x)$ assumption 4. $\forall x \neg P(x)$ 3, existential negation 5. $\neg P(a)$ 4, universal elimination $\neg P(a) \lor Q(a)$ 5, disjunction introduction 6. $P(a) \to Q(a)$ 7. 6, material implication 8. $\forall x (P(x) \to Q(x))$ 7, universal introduction 9. $\forall x Q(x)$ assumption 10. Q(a)9, universal elimination 11. $\neg P(a) \lor Q(a)$ 10, disjunction introduction $P(a) \to Q(a)$ 12. 11, material implication $\forall x (P(x) \to Q(x))$ 13. 12, universal introduction $\forall x (P(x) \to Q(x))$ 14. 2, 3-8, 9-13 disjunction elimination QED
- (b) We must prove that the following implication does not hold. We will do so by demonstrating a counterexample model.

$$\forall x (P(x) \to Q(x)) \vdash \exists x P(x) \to \forall x Q(x)$$

Let the universe for x be \mathbb{Z} . Let the proposition P(x) mean that "x is a multiple of 4", and the proposition Q(x) mean that "x is even".

It is true that for every number, if said number is a multiple of four, then it must be even. However it is untrue that if there exists a multiple of four — which there does — then all integers must be even.

Therefore
$$\forall x (P(x) \to Q(x)) \nvdash \exists x P(x) \to \forall x Q(x)$$
.