

Communication Systems Design

Lab 3: Packet Transmission using USRP

Dr. Wu Guang

wug@sustech.edu.cn

Electrical & Electronic Engineering Southern University of Science and Technology

Software-Defined Radio (SDR)

Why SDR?

Wideband RF Transceiver Benefits

Lowest Power Consumption Reduce thermal density, enable lower SWAP radios Lowest possible power dissipation Highest power consumption blocks operate at minimum bandwidth RF converter BW

Highest Level of Integration

Enables higher density radio architectures e.g. M-MIMO

2x2 Radio Foot Print Comparison - Discrete vs. Integrated

Lowest System Cost

Re-use of architecture used in handsets

- Components such as IF filters are eliminated
- RF filters are simplified enabled by the elimination of out-of-band images or aliases

Wideband RF Transceiver Portfolio Released on RadioVerse™

Part #	Applications	Bandwidth	Functionality	RF Tuning Range	Rx Image Rejection*	Rx NF/IIP3**	Tx OIP3*	EVM	Package Size	Data Interface	Price
AD9361	3G/4G Picocell, SDR, Pt- Pt, Satcom, IoT Aggregator	56 MHz	2 Rx, 2 Tx	70 MHz to 6 GHz	50B	3dB/-14dBm	+19dBm	-40 dB	10 mm × 10 mm	CMOS/LVDS	\$175
AD9364	3G/4G Picocell, SDR	56 MHz	1 Rx, 1 Tx	70 MHz to 6 GHz	50dB	3dB/-14dBm	+19dBm	-40 dB	10 mm × 10 mm	CMOS/LVDS	\$130
AD9363	3G/4G Femtocell, UAV, Wireless Surveillance	20 MHz	2 Rx, 2 Tx	325 MHz to 3.8 GHz	50dB	3dB/-14dBm	+19dBm	-34 dB	10 mm × 10 mm	CMOS/LVDS	\$80
AD9371	3G/4G Macro BTS, Massive MIMO, SDR	100MHx Rx, 250MHz Tx	2Tx, 2Rx Orx & SnRx	300 MHz to 6GHz	75dB	1.6dB/+2dBm	+27dBm	-40 dB	12 mm × 12 mm	6GHz JESD204B	\$245
AD9375	3G/4G Small Cell, 3G/4G Massive MIMO	100MHx Rx, 250MHz Tx	2Tx, 2Rx Orx & SnRx	300 MHz to 6GHz	75dB	1.6dB/+2dBm	+27dBm	-40 dB	12 mm × 12 mm	6GHz JESD204B	\$325
ADRV9009	3G/4G/5G TDD macro cell, Massive MIMO, Phased array radar	200MHx Rx, 450MHz Tx	2Tx, 2Rx Orx	75 MHz to 6GHz	75dB	1.6dB/+2dBm	+27dBm	-43 dB	12 mm × 12 mm	12GHz JESD204B	\$319

^{*} typical performance @ 2.6GHz

^{**} AD9371 cascaded analysis with external LNA NF = 1.1dB, Gain = 19.5dB, IIP3 = 33dB (HMC8175A broadband LNA). Typical Performance @ 2.6GHz

^{**} AD9361 assumes internal LNA, typical performance @ 2.6GHz

Daughter board	Frequency range
SBX	400 - 4400MHz
WBX	50 - 2200MHz
XCVR2450	2400 - 2500MHz
Basic	1 - 250MHz

DDC architectures

Digital Down Converter

USRP Connection

"Here, then, we have, in the very beginning, the groundwork for something more than a mere guess."

- Edgar Allan Poe, The Gold Bug

5 steps to connect a USRP

- Step 1. Install Support Package for USRP® Radio
- Step 2. Configure Host Computer
- Step 3. Verify Hardware Connection
- Step 4. Load FPGA and firmware images for USRP® radio
- · Step 5. Verify MATLAB Connection to USRP® Radio

Step 1. Install Support Package for USRP® Radio

Successful Installation

Step 2. Configure Host Computer

Step 3. Verify Hardware Connection

>>ping 192.168.10.2

```
■ 管理员: C:\WINDOWS\system32\cmd.exe

                                                                                  - - X
Microsoft Windows [版本 6.1.7601]
 版权所有 (c) 2009 Microsoft Corporation。保留所有权利。
C:\Users\Administrator\ping 192.168.10.2
 E在 Ping 192.168.10.2 具有 32 字节的
   自 192.168.10.2 的回复: 字节=32 时间=1ms TTL=32
自 192.168.10.2 的回复: 字节=32 时间=1ms TTL=32
  百 192.168.10.2 的回复: 字节=32 时间=1ms TTL=32
192.168.10.2 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 1ms, 最长 = 1ms, 平均 = 1ms
C:\Users\Administrator>
```

Step 4. Load FPGA and firmware images for USRP® radio

命令行窗口

>> sdruload('Device','n210_r4')

```
to n210_r4 device at 192.168.10.2. Would you like to continue? [yes/no]: yes
Writing images using usrp_simple_net_burner.py ...
==== Start messages from third party application ====
USRP-N2XX found.
Hardware type: n210 r4
Flash size: 4194304
Sector size: 65536
Begin FPGA write: this should take about 1 minute...
Erasing 1572864 bytes at 1572864
Writing image
Verifying data
Read back 1311644 bytes
Success.
Time elapsed: 52.356000 seconds
Begin firmware write: this should take about 1 second...
Erasing 31744 bytes at 3145728
Writing image
Verifying data
Read back 16383 bytes
Success.
Time elapsed: 1.173000 seconds
==== End messages from third party application ====
```

Step 5. Verify MATLAB Connection to USRP® Radio

>> findsdru

```
ans =

IPAddress: '192.168.10.2'

Status: 'Success'
```

>> probesdru

```
RX Dboard: A
ID: SBX (0x0054)
Serial: F3D7CA
       RX Frontend: 0
    Name: SBXv3 RX
    Antennas: IX/RX, RX2, CAL
    Sensors: lo locked
   Freq range: 400.000 to 4400.000 Mhz
   Gain range PGAO: 0.0 to 31.5 step 0.5 dB
   Connection Type: IQ
    Uses LO offset: No
       RX Codec: A
    Name: ads62p44
    Gain range digital: 0.0 to 6.0 step 0.5 dB
    Gain range fine: 0.0 to 0.5 step 0.1 dB
```

```
Device: USRP2 / N-Series Device
    Mboard: N210r4
hardware: 2577
mac-addr: 00:80:2f:0a:d8:aa
ip-addr: 192.168.10.2
subnet: 255, 255, 255, 255
gateway: 255.255.255.255
gpsdo: none
serial: F3C1F3
FW Version: 12.3
FPGA Version: 10.0
Time sources: none, external, _external_, mimo
Clock sources: internal, external, mimo
Sensors: mimo_locked, ref_locked
        RX DSP: 0
    Freq range: -50.000 to 50.000 Mhz
        RX DSP: 1
    Freq range: -50,000 to 50,000 Mhz
```

>> help sdru

```
命令行窗口
  >> help sdru
    Communications System Toolbox Support Package for USRP(R) Radio
    Documentation for USRP(R) Radio
    Functions
                           - Find USRP(R) radios connected to host computer and report status
      findsdru
      getSDRuDriverVersion - UHD(R) driver version on the host computer
                           - Detailed USRP(R) radio information
      probesdru
      sdruexamples
                           - Open index of USRP(R) Radio examples
                           - FPGA and firmware image loader for USRP(R) radios
      sdruload
                           - Set USRP(R) radio IP address
      setsdruip
    System Objects
      comm. SDRuTransmitter - Send data to the USRP(R) Radio
      comm. SDRuReceiver
                          - Receive data from the USRP(R) Radio
    Blocks
      sdrulib
                           - Open the block library for USRP(R) Radio
    USRP, USRP2, UHD, and Ettus Research are trademarks of National Instruments Corp.
```

Frequency Scanning

Flow Graph

Configuration Parameters

Create Objects

Loop Write/Read

Release Resources

```
fc = 1890e6; % Center frequency (Hz)
FrontEndSampleRate = 2e6; % Samples per second
FrameLength = 40000;

hSDRu = comm.SDRuReceiver('192.168.10.2', ...
'CenterFrequency', fc, ...
'Gain', 30, ...
'DecimationFactor', 50, ...
'SampleRate', FrontEndSampleRate, ...
```

'OutputDataType', 'double'); hSpectrum = dsp.SpectrumAnalyzer(... 'Actual Frequency Offset',... 'Name', 'Actual Frequency Offset', ... 'Title', 'SpectrumType', 'Power density',... 'FrequencySpan', 'Full', ... 'SampleRate', FrontEndSampleRate, ... 'YLimits', [-130,-60],... 'SpectralAverages', 50, ... 'FrequencySpan', 'Start and stop frequencies', ... 'StartFrequency', -1000e3, ... 'StopFrequency', 1000e3,... 'Position', figposition([50 30 30 40]));

'FrameLength', FrameLength, ...

Configuration Parameters

Create Objects

Loop Write/Read

Release Resources

```
radio = findsdru(hSDRu.IPAddress);
if strncmp(radio.Status, 'Success', 7)
e=0;
```

```
% Loop Read
while (true)
   [data, len] = step(hSDRu);
   if len < FrameLength
     e=e+1;
     disp ('Not enough samples returned!');
     disp(e)
   else
     Ti = [0:20/FrameLength:20-10/FrameLength];
     plot (Ti,abs(data));
     drawnow;
     data = data - mean(data); step(hSpectrum, data);
   end
end
```

```
end
```

```
% Release all System objects release(hSDRu); release(hSpectrum);
```

USRP Implementation

"I never am really satisfied that I understand anything; because, understand it well as I may, my comprehension can only be an infinitesimal fraction of all I want to understand."

- Ada Lovelace

Transmitter Flow Graph

SDRu transmitter parameters

%SDRu transmitter parameters

TSimParams.USRPCenterFrequency = 900e6;

TSimParams.USRPGain = 25;

TSimParams.USRPInterpolation = 1e8/TSimParams.Fs;

TSimParams.USRPFrameLength =

TSimParams.Upsampling*TSimParams.FrameSize*TSimParams.RxBufferedFrames;

Create and configure the SDRu object ThSDRu

%Create and configure the ThSDRu

```
ThSDRu = comm.SDRuTransmitter('192.168.10.2', ...
'CenterFrequency', prmQPSKTransmitter.US RPCenterFrequency, ...
'Gain', prmQPSKTransmitter.USRPGain, ...
'InterpolationFactor', prmQPSKTransmitter.USRPInterpolation);
```

Receiver Flow Graph

SDRu receiver parameters

%SDRu receiver parameters

SimParams.USRPCenterFrequency = 900e6;

SimParams.USRPGain = 31;

SimParams.USRPDecimationFactor = SimParams.MasterClockRate/SimParams.Fs;

SimParams.USRPFrontEndSampleRate = 1/SimParams.Fs;

SimParams.USRPFrameLength =

SimParams.Upsampling*SimParams.FrameSize*SimParams.RxBufferedFrames;

Create and configure the SDRu object RhSDRu

```
RhSDRu = comm.SDRuReceiver(...
'IPAddress', prmQPSKReceiver.Address, ...
'CenterFrequency', prmQPSKReceiver.USRPCenterFrequency, ...
'Gain', prmQPSKReceiver.USRPGain, ...
'DecimationFactor', prmQPSKReceiver.USRPDecimationFactor, ...
'FrameLength', prmQPSKReceiver.USRPFrameLength, ...
'OutputDataType', 'double');
```


Hello world Transmission

Assignments

- > 4/16/64-QAM simulation (Lab2)
- > Text recover with Pre-Recorded data.

subfunction

Revision

sdruqpskreceiver_init.m

 \longleftrightarrow

hRx = sdruQPSKRxR(...

'DesiredAmplitude', 1, ...
'ModulationOrder', prmQPSKReceiver.M, ...
'DownsamplingFactor', prmQPSKReceiver.Downsampling, ...

runSDRuQPSKReceiver.m

 \longleftrightarrow

% Rx parameters
SimParams.BarkerLength = 13; % Number of Barker code symbols
SimParams.DataLength = (SimParams.FrameSize - SimParams.BarkerLength)*4;
SimParams.MessageLength = 112; % Number of message bits per frame, 7 ASCI
SimParams.FrameCount = 100;

QPSKCoarseFrequencyCompensator.m

 \longleftrightarrow

```
obj.pCoarseFreqEst = comm.QAMCoarseFrequencyEstimator()...
'FrequencyResolution', obj.CoarseCompFrequencyResolution, ...
'SampleRate', currentSampleRate);
```

Question ?

