NWEN 242

Pipelining Overview and Datapath Review

Agenda

- Review of datapath
- What is pipelining?
- Why do pipelining?
 - Single-cycle vs. pipelined performance
- What the pipeline registers do

R-type and I-type Instruction Classes

Single-cycle design OR ???

- Single-cycle processors
 - Easy to design
 - Everything happens during one processor clock period
 - But cycle length must accommodate longest instruction
 - e.g. lw takes 5 functional steps, beq takes 3 or 4 functional steps
- Multi-cycle processors
 - Several cycles are used for each instruction and longer instructions take more clock cycles
 - Require more complex control, but avoid idling
- Pipelining supports multi-cycle design and achieves instruction-level parallelism

Overview of the cycles

- To execute an R-type, I-type, or J-type instruction
 - Cycle 1: instruction fetch (IF)
 - Cycle 2: instruction decode (ID)
 - decode instruction, read registers, sign extension of the immediate field
 - Cycle 3: execution (EX)
 - Compute branch target, test condition, and GOTO cycle 1
 - Compute memory address
 - Execute R-type
 - Cycle 4: memory access (MEM)
 - Perform memory access (if sw GOTO cycle 1)
 - Write result of R-type to register and GOTO cycle 1
 - Cycle 5: write back (WB)
 - Write result of memory access to register and GOTO cycle 1
 - Iw only

Multiple cycles on single cycle datapath

Operations in multi-cycle time division

Introduction to pipelining

- Involves having several instructions in the processor all at once
 - Each at a different stage of its execution
 - Analogous to a pipelined laundry
 - Several tasks in the laundry at the same time
 - Each task is using a different facility and therefore at a different stage

Introduction to pipelining

- ** Involves having several instructions in the processor all at once
 - Analogous to a pipelined laundry
 - Several tasks in the laundry at the same time
 - Each task is using a different facility and therefore at a different stage

Benefits of pipelining

- Pipelining gives better performance than single-cycle design
- Individual instructions take the same time
- Improved throughput

Summary

- A five-stage pipeline (IF/ID/EX/MEM/WB)
- Pipelined processors are generally faster than single-cycled processors

But the latency of an individual instruction may be greater than for a single-cycled datapath

