

VECTOR QUANTILE REGRESSION

Computational Optimal Transport

Delanoue Pierre

ENS Paris Saclay, MVA Master

Motivations

Optimal Transport Approach

Quantile Function Properties

Extension Idea

Results

Problem to be solved

Implementation

Discretization

Computation

Use Case

Engel's Data

Questions

Mean vs Quantile

Breaking out of the dictatorship of the average.

Mean

- No information on the heterogeneity of the data
- Sensitive to extreme values and outliers

Quantile

- Distinguishes the impacts on each decile
- Robust

Quantile Function in $\mathbb R$

For $\alpha \in (0,1)$, the α -th quantile of a random variable **y** on $\mathbb R$ is defined by:

$$q_{\mathbf{y}}(\alpha) = \inf\{x \in \mathbb{R}, F_{\mathbf{y}}(x) \ge \alpha\}$$

where $F_{\boldsymbol{y}}$ is the distribution function of \boldsymbol{y} .

Optimal Transport Approach

Optimal transport approach proposed by G. Carlier, V. Chernozhukov and A. Galichon:

[1] G. Carlier, V. Chernozhukov, and A. Galichon. Vector quantile regression: An optimal transport approach. *The Annals of Statistics*, 44(3):1165–1192, 2016.

Quantile Function Properties

- ullet (i) $lpha\longmapsto q_{\mathbf{y}}(lpha)$ is non-decreasing
- ullet (ii) If $U\sim \mathcal{U}([0,1])$, then $q_{f y}(U)={f y}$ with probability one.

Extension Idea

Built a deterministic function $(u,z) \longmapsto Q_{Y|Z}(u,z)$ from $[0,1]^d \times \mathbb{R}^q$ to \mathbb{R}^d where :

• (I) $(u, z) \mapsto Q_{Y|Z}(u, z)$ being monotone with respect to u, in the sense of being a gradient of a convex function :

$$(Q_{Y|Z}(u,z) - Q_{Y|Z}(u',z))^T(u-u') \ge 0 \quad \forall (u,u') \in [0,1]^d \times [0,1]^d, z \in \mathbb{R}^q$$
 (1)

(II) Having with probability one:

$$Y = Q_{Y|Z}(U,Z), \qquad U|Z \sim \mathcal{U}([0,1]^d)$$
 (2)

Linear Model

Univariate:

$$\forall \alpha \in (0,1), \ \exists \beta_{\alpha} \in \mathbb{R}^q \qquad q_{\alpha}(y|X) = \beta_{\alpha}^T X$$
 (3)

Multivariate:

$$Q_{Y|X}(U,X) = \beta_0(U)^T X, \qquad U|X \sim \mathcal{U}([0,1]^d)$$
(4)

where $u \longmapsto \beta(u)$ is a function from $[0, 1]^d$ to $\mathbb{R}^{q \times d}$.

Problem to be solved

$$\max_{U} \{ \mathbb{E}[U^{T}Y] : U \sim \mathcal{U}([0,1]^{d}) \text{ and } \mathbb{E}[X|U] = \mathbb{E}[X] \}$$
 (5)

Dual

$$\inf_{(\psi,b)} \mathbb{E}[\psi(X,Y)] + \mathbb{E}[b(U)]^T \mathbb{E}[X] : \psi(x,y) + b(u)^T x \ge u^T y \qquad \forall (y,x,u) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$$
 (6)

Solution of Dual Gives

$$\forall (u, x) \in \mathbb{R}^d \times \mathbb{R}^q, \quad \beta_0(u)^T x = \nabla_u(b^*(u)^T x)$$
 (7)

Discretization

 $D_n = \{(Y_1, Z_1), ..., (Y_n, Z_n)\}$ and m points $(U_i)_{i \in \llbracket 1, m \rrbracket}$ of $[0.1]^d$ spaced evenly.

Discrete form of our transportation problem:

$$\max_{P\succeq 0} \sum_{i,j} P_{i,j} Y_j^T U_i \quad s.t. \quad P^T \mathbf{1}_m = \nu[\psi], \ PX = \mu \nu^T X[b]$$
 (8)

where the square brackets indicate the associated Lagrange multiplier.

To find:

$$\widehat{b^*} = \begin{pmatrix} b^*(U_1) \\ \vdots \\ b^*(U_m) \end{pmatrix} = \begin{pmatrix} b_1^*(U_1) \dots b_q^*(U_1) \\ \vdots \\ b_1^*(U_m) \dots b_q^*(U_m) \end{pmatrix}$$
(9)

Computation

$$\beta_0(u) = \nabla b^*(u) \approx \left(\frac{b_j^*(u^{(i)} + \epsilon, u^{-(i)}) - b_j^*(u^{(i)}, u^{-(i)})}{\epsilon}\right)_{i \in [\![1,d]\!], j \in [\![1,q]\!]}$$
(10)

where $u=\left(u^{\left(1\right)},...,u^{\left(d\right)}\right)$ and $\epsilon>0$

$$\forall i \in \llbracket 1, m \rrbracket, \widehat{\beta}(U_i) := \left(\frac{b_j^*(U_i^{(n:k)}) - b_j^*(U_i)}{\epsilon}\right)_{k \in \llbracket 1, d \rrbracket, j \in \llbracket 1, q \rrbracket} \tag{11}$$

Engel's Data: One dimensional Case

Engel's Data: Two dimensional Case

Research Perspectives

- Tests and confidence intervals
- Examples of relevant applications in large dimensions
- Overcome the dimension curse

Thank You for Listening.