

Théorème de Stone-Weierstrass - Théorème d'Ascoli

Théorème de Stone-Weierstrass

Exercice 1

Soit $f \in \mathscr{C}([a,b],\mathbb{R})$ telle que

$$\forall n \in \mathbb{N} \quad \int_a^b f(t)t^n dt = 0.$$

Montrer que f est la fonction nulle.

Indication ▼ Correction ▼

[002408]

Exercice 2

Montrer qu'une fonction de $\mathscr{C}(\mathbb{R},\mathbb{R})$ admettant une limite finie en $+\infty$ n'est pas limite uniforme de polynômes de $\mathbb{R}[x]$.

Indication ▼ [002409]

Exercice 3

Soit E un espace compact. Soit f_i , $i=1,\ldots,n$ une famille de n élements de $\mathscr{C}(E,\mathbb{R})$ qui sépare les points de E. Montrer que E est homéomorphe à une partie de \mathbb{R}^n .

Indication \blacktriangledown

Correction ▼

[002410]

Exercice 4

Soient X et Y deux espaces métriques compacts. Soit $\mathscr A$ l'ensembles des combinaisons linéaires finies $f \in \mathscr C(X \times Y, \mathbb R)$ de la forme :

$$f(x,y) = \sum_{i \in I} \lambda_i u_i(x) \cdot v_i(y), \quad \text{avec } u_i \in \mathcal{C}(X,\mathbb{R}), v_i \in \mathcal{C}(Y,\mathbb{R}), \lambda_i \in \mathbb{R}, I \text{ fini.}$$

Montrer que toute fonction de $\mathscr{C}(X \times Y, \mathbb{R})$ est limite uniforme de suites d'éléments de \mathscr{A} .

Indication ▼

Correction ▼

[002411]

Théorème d'Ascoli

Exercice 5

- 1. Soit k > 0 et \mathscr{F} l'ensemble des fonctions différentiables $f : [a,b] \to \mathbb{R}$ telles que $|f'(t)| \le k$ pour tout $t \in]a,b[$. Montrer que \mathscr{F} est une famille équicontinue.
- 2. Si L > 0 et $f_n : \mathbb{R}^n \to \mathbb{R}^n$ est une suite d'applications L-lipschitziennes avec $||f_n(0)|| = \sqrt{2}$, alors montrer que l'on peut extraire une sous-suite convergente de (f_n) .

Indication ▼

Correction ▼

[002412]

Exercice 6

Soient E, F des espaces normés et (f_n) une suite d'applications de E dans F équicontinue en $a \in E$. Montrer que, si la suite $(f_n(a))$ converge vers b, alors $(f_n(x_n))$ converge également vers b, si (x_n) est une suite de E telle que $\lim_{n\to\infty} x_n = a$.

L'équicontinuité est-elle nécessaire ici?

Indication \blacktriangledown

Correction ▼

[002413]

Exercice 7

Soient E, F des espaces normés et (f_n) une suite d'applications équicontinues de E dans F. Montrer que l'ensemble des $x \in E$, pour lesquels $(f_n(x))$ est une suite de Cauchy dans F, est un fermé.

Correction ▼ [002414]

Exercice 8

Soient (E,d) un espace métrique et \mathcal{H} une famille équicontinue d'applications de E dans \mathbb{R} . Établir :

- 1. L'ensemble A des $x \in E$ pour lesquels $\mathcal{H}(x)$ est borné est ouvert et fermé.
- 2. Si E est compact et connexe et si $\mathscr{H}(x_0)$ est borné pour un point quelconque $x_0 \in E$, alors \mathscr{H} est relativement compact dans $\mathscr{C}(E,\mathbb{R})$.

Indication ▼

Correction ▼

[002415]

Exercice 9

On considère la suite de fonctions $f_n(t) = \sin(\sqrt{t + 4(n\pi)^2}), t \in [0, \infty[$.

- 1. Montrer qu'il s'agit d'une suite de fonctions équicontinues convergent simplement vers $f \equiv 0$.
- 2. La suite (f_n) est elle relativement compacte dans $(\mathscr{C}([0,\infty[),\|.\|_{\infty}))$? Que dit le théorème d'Ascoli?

Indication ▼

Correction ▼

[002416]

Exercice 10

Soit $K: \mathscr{C}([a,b]) \to \mathscr{C}([a,b])$ donné par $(Kf)(s) = \int_a^b k(s,t)f(t)\,dt, \, k \in \mathscr{C}([a,b] \times [a,b])$, et soit (f_n) une suite bornée de $X = (\mathscr{C}([a,b]), \|.\|_{\infty})$.

- 1. Rappeler pourquoi k est uniformément continue.
- 2. En déduire l'équicontinuité de (Kf_n) .
- 3. Montrer que (Kf_n) contient une sous-suite convergente dans X.

Correction ▼ [002417]

Indication pour l'exercice 1 ▲

Approcher f par une suite de polynômes, et se rappeler que si l'intégrale d'une fonction positive et continue est nulle alors...

Indication pour l'exercice 2

Raisonner par l'absurde.

Indication pour l'exercice 3 ▲

Considérer l'application $\Phi : E \to \mathbb{R}^n$ définie par $\Phi = (f_1, \dots, f_n)$.

Indication pour l'exercice 4 ▲

Appliquer le théorème de Stone-Weierstrass.

Indication pour l'exercice 5 ▲

Pour la deuxième question :

- 1. Montrer que $\{f_n \mid n \in \mathbb{N}\}$ est équicontinue.
- 2. Montrer que $\{f_n(x) \mid n \in \mathbb{N}\}$ est borné.
- 3. Applique le théorème d'Acoli sur le compact $\bar{B}(0,R)$.
- 4. Utiliser le procédé diagonal de Cantor (R = 1, 2, 3, ...).

Indication pour l'exercice 6 ▲

Démarrer avec l'inégalité :

$$|f_n(x_n) - b| \le |f_n(x_n) - f_n(a)| + |f_n(a) - b|.$$

Si (f_n) n'est pas équicontinue le résultat peut être faux. Prendre $f_n(x) = (1+x)^n$ et $x_n = \frac{1}{n}$.

Indication pour l'exercice 8 ▲

- 1. Pour ouvert et fermé, écrire l'équicontinuité pour $\varepsilon = 1$ en un point x (à fixer).
- 2. Ascoli...

Indication pour l'exercice 9 \(\text{\(\)}

- 1. Pour l'équicontinuité utiliser le théorème des accroissement finis. Pour la convergence simple montrer que pour t fixé : $f_n(t) = \sin(\frac{t}{4n\pi}) + o(\frac{1}{n})$.
- 2. Montrer que (f_n) ne converge par vers la fonction nulle pour la norme $\|.\|_{\infty}$ (c'est-à-dire il y a convergence simple mais pas convergence uniforme). Le théorème d'Acoli serait-il faux ?

Soit $P(x) = a_d x^d + \dots + a_1 x + a_0 \in \mathbb{R}[x]$ alors par linéarité de l'intégrale et grâce à la relation de l'énoncé :

$$\int_{a}^{b} f(t) \cdot P(t) dt = 0.$$

La fonction f est continue sur le compact [a,b] donc par le théorème de Weierstrass il existe une suite de polynômes qui converge uniformément vers f. Fixons $\varepsilon > 0$. Soit P tel que $||f - P||_{\infty} \le \varepsilon$. Alors

$$\begin{aligned} \left| \int_{a}^{b} f(t)^{2} dt \right| &= \left| \int_{a}^{b} f(t)^{2} dt - \int_{a}^{b} f(t) \cdot P(t) dt \right| \\ &= \left| \int_{a}^{b} f(t) \cdot (f(t) - P(t)) dt \right| \\ &\leq \int_{a}^{b} |f(t)| \cdot ||f - P||_{\infty} dt \\ &\leq \varepsilon \int_{a}^{b} |f| \end{aligned}$$

Mais $C = \int_a^b |f|$ est une constante (indépendante de ε et P). Donc on vient de montrer que $|\int_a^b f(t)^2 dt| \le \varepsilon C$ avec pour tout $\varepsilon > 0$ donc $\int_a^b f^2 = 0$, or f^2 est une fonction continue et positive, son intégrale est nulle donc f est la fonction nulle.

Correction de l'exercice 3

Soit $\Phi: E \to \mathbb{R}^n$ définie par $\Phi = (f_1, \dots, f_n)$ alors Φ est continue car les f_i sont continues. Φ est injective : en effet si $x \neq y$ alors comme $\{f_i\}$ sépare les points on a $\Phi(x) \neq \Phi(y)$, par contraposition Φ est injective. Notons $F = \Phi(E)$ l'image directe de E. Alors $\Phi: E \to F$ est continue et bijective. Comme E est compact alors Φ est un homéomorphisme. Donc E est homéomorphe à E qui est une partie de E.

Rappel: Si $\Phi: E \to F$ est continue et bijective et E est un espace compact alors Φ est un homéomorphisme. La preuve est simple: soit K un ensemble fermé de E, comme E est compact alors K l'est aussi. Comme Φ est continue alors $\Phi(K)$ est un compact de E donc un fermé. Mais en écrivant ceci à l'aide de l'application Φ^{-1} nous venons de montrer que pour tout fermé E de E, l'image réciproque de E par E0 (qui est E1) est un fermé. Donc E1 est continue. Donc E2 est un homéomorphisme.

Correction de l'exercice 4 A

On cherche à vérifier les hypothèses du théorème de Stone-Weierstrass.

- Tout d'abord $X \times Y$ est compact, car c'est un produit d'espaces compacts.
- Ensuite \mathscr{A} est une sous-algèbre de $\mathscr{C}(X \times Y, \mathbb{R})$: en effet pour $f, g \in \mathscr{A}$ et $\lambda \in \mathbb{R}$ on a:

$$f + g \in \mathcal{A}$$
, $\lambda \cdot f \in \mathcal{A}$ et $f \times g \in \mathcal{A}$.

- \mathscr{A} sépare les points : soient $(x_1, y_1) \neq (x_2, y_2) \in X \times Y$. Supposons que $x_1 \neq x_2$, soit $u \in \mathscr{C}(X, \mathbb{R})$ tel que $u(x_1) \neq u(x_2)$ (clairement une telle fonction existe!), soit v la fonction sur Y constante égale à 1. Alors f définie par $f(x, y) = u(x) \cdot v(y)$ est dans \mathscr{A} et $f(x_1, y_1) = u(x_1) \neq u(x_2) = f(x_2, y_2)$. Si $x_1 = x_2$ alors nécessairement $y_1 \neq y_2$ et on fait un raisonnement similaire.
- Pour tout $(x,y) \in X \times Y$ il existe une fonction $f \in \mathscr{A}$ telle que $f(x) \neq 0$: prendre la fonction f constante égale à 1 qui est bien dans \mathscr{A} .

Par le théorème de Stone-Weierstrass \mathscr{A} est dense dans $\mathscr{C}(X \times Y, \mathbb{R})$ pour la norme uniforme.

Correction de l'exercice 5

1. Pour $f \in \mathscr{F}$, par le théorème des accroissements finis, pour tout $t_0, t \in [a,b]$ il existe $c \in]t_0,t[$ tel que $|f(t)-f(t_0)|=|f'(c)||t-t_0|$. Donc $|f(t)-f(t_0)|\leq k|t-t_0|$. Fixons $t_0\in [a,b]$. Soit $\varepsilon>0$, soit $\eta=\frac{\varepsilon}{k}$ alors

$$\forall t \in [a,b]$$
 $|t-t_0| \le \eta \implies |f(t)-f(t_0)| \le k|t-t_0| \le \varepsilon.$

Ce qui est exactement l'équicontinuité de \mathscr{F} en t_0 . Comme nous pouvons prendre pour t_0 n'importe quel point de [a,b] alors \mathscr{F} est équicontinue.

- 2. (a) Notons $\mathscr{H} = \{f_n \mid n \in \mathbb{N}\}$. Pour $x_0, x \in \mathbb{R}^n$, $||f_n(x) f_n(x_0)|| \le L||x x_0||$. Donc en posant $\eta = \frac{\varepsilon}{L}$ comme ci-dessus on prouve l'équicontinuité de \mathscr{H} en x_0 , puis partout.
 - (b) Notons $\mathscr{H}(x) = \{f_n(x) \mid n \in \mathbb{N}\}$. Alors par hypothèse, $\mathscr{H}(0) \subset \bar{B}(0,\sqrt{2})$. Donc $\bar{\mathscr{H}}(0)$ est un fermé de $\bar{B}(0,\sqrt{2})$ qui est compact (nous somme dans \mathbb{R}^n), donc $\bar{\mathscr{H}}(0)$ est aussi compact, d'où $\mathscr{H}(0)$ relativement compact. Maintenant nous avons $||f_n(x) f_n(0)|| \le L||x 0||$. Donc $||f_n(x)|| \le L||x|| + \sqrt{2}$. Donc pour x fixé, $f_n(x) \in \bar{B}(0,L||x|| + \sqrt{2})$ ce qui implique que $\mathscr{H}(x)$ est relativement compact.
 - (c) Comme \mathbb{R}^n n'est pas compact on ne peut pas appliquer directement le théorème d'Ascoli. Soit $B_R = \bar{B}(0,R)$ qui est un compact de \mathbb{R}^n . Notons $\mathscr{H}_R = \{f_{n|B_R} \mid n \in \mathbb{N}\}$ la restriction de \mathscr{H} à B_R . Alors par le théorème d'Ascoli, \mathscr{H}_R est relativement compact. Donc de la suite $(f_{n|B_R})_n$ on peut extraire une sous-suite convergente (sur B_R).
 - (d) Pour R=1 nous extrayons de $(f_n)_n$ une sous-suite $(f_{\phi_1(n)})_n$ qui converge sur B_1 . Pour R=2, nous extrayons de $(f_{\phi_1(n)})_n$ une sous-suite $(f_{\phi_2(n)})_n$ qui converge sur B_2 . Puis par récurrence pour R=N, nous extrayons de $(f_{\phi_{N-1}(n)})_n$ une sous-suite $(f_{\phi_N(n)})_n$ qui converge sur B_N . Alors la suite $(f_{\phi_n(n)})_n$ converge sur \mathbb{R}^n . C'est le procédé diagonal de Cantor. En effet soit $x\in\mathbb{R}^n$ et soit $N\geq \|x\|$. Alors $x\in B_N$ donc $(f_{\phi_N(n)}(x))_n$ converge vers f(x), mais $(f_{\phi_n(n)})_{n\geq N}$ est extraite de $(f_{\phi_N(n)})_n$ donc $(f_{\phi_n(n)}(x))_n$ converge également vers f(x). Nous venons de montrer que $(f_{\phi_n(n)})_n$ converge simplement vers f sur tout \mathbb{R}^n .

Correction de l'exercice 6 ▲

1. (a) Soit (x_n) une suite convergeant vers a, alors

$$|f_n(x_n) - b| < |f_n(x_n) - f_n(a)| + |f_n(a) - b|.$$

- (b) Soit $\varepsilon > 0$, il existe N_1 tel que pour $n \ge N_1$ on ait $|f_n(a) b| < \frac{\varepsilon}{2}$.
- (c) (f_n) est équicontinue en a, donc il existe $\eta > 0$ tel que pour tout $n \in \mathbb{N}$ et tout $x \in E$, $(|x-a| < \eta \Rightarrow |f_n(x) f_n(a)| < \frac{\varepsilon}{2})$.
- (d) Comme $x_n \to a$ alors il existe N_2 tel que pour $n \ge N_2$ on ait $|x_n a| < \eta$.
- (e) Donc pour $n \ge \max(N_1, N_2)$ on a $|f_n(x_n) b| \le |f_n(x_n) f_n(a)| + |f_n(a) b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Donc $(f_n(x_n))$ converge vers b.
- 2. Soit des fonctions réelles définies par $f_n(x) = (1+x)^n$. Prenons $x_n = \frac{1}{n}$, alors $x_n \to a = 0$. Par contre $f_n(a) = f_n(0) = 1$ pour tout n. Mais $f_n(x_n) = f_n(\frac{1}{n}) = (1+\frac{1}{n})^n$ converge vers e. L'équicontinuité est donc bien nécessaire.

Correction de l'exercice 7 A

Notons G l'ensemble des $x \in E$, pour lesquels $(f_n(x))$ est une suite de Cauchy dans F. Soit (x_n) une suite d'éléments de G qui converge vers $x \in E$. Il faut montrer $x \in G$, c'est-à-dire que $(f_n(x))$ est une suite de Cauchy de F. Écrivons pour $p,q,n \in \mathbb{N}$,

$$||f_p(x) - f_q(x)|| \le ||f_p(x) - f_p(x_n)|| + ||f_p(x_n) - f_q(x_n)|| + ||f_q(x_n) - f_q(x)||.$$

Soit $\varepsilon > 0$, comme (f_n) est équicontinue en x, il existe $\eta > 0$ tel que

$$\forall n \in \mathbb{N} \quad \forall y \in E \quad ||x - y|| < \eta \quad \Rightarrow ||f_n(x) - f_n(y)|| < \frac{\varepsilon}{3}.$$

Comme $x_n \to x$ il existe $N \ge 0$ tel que $||x_N - x|| < \eta$. Donc

$$\forall p,q \geq N \quad \|f_p(x_N) - f_p(x)\| < \frac{\varepsilon}{3} \quad \text{ et } \quad \|f_q(x_N) - f_q(x)\| < \frac{\varepsilon}{3}.$$

Enfin N étant fixé, $x_N \in G$, la suite $(f_n(x_N))_n$ est une suite de Cauchy, donc il existe $N' \ge N$ tel que pour $p, q \ge N'$ on a,

$$||f_p(x_N)-f_q(x_N)||<\frac{\varepsilon}{3}.$$

Le bilan de toute ces inégalités est donc

$$\forall p, q \ge N' \quad ||f_p(x) - f_q(x)|| < \varepsilon.$$

Donc $(f_n(x))_n$ est une suite de Cauchy, donc $x \in G$ et G est fermé.

Correction de l'exercice 8 ▲

1. (a) Montrons que A est ouvert. Soit $x \in A$, alors $\mathcal{H}(x) = \{f(x) \mid f \in \mathcal{H}\}$ est bornée, notons M une borne. Écrivons l'équicontinuité pour $\varepsilon = 1$, il existe $\eta > 0$ tel que

$$\forall f \in \mathcal{H} \quad \forall y \in E \quad (\|x - y\| < \eta \Rightarrow |f(x) - f(y)| < 1).$$

Or si |f(x) - f(y)| < 1 alors $|f(y)| < |f(x)| + 1 \le M + 1$. On a donc montré

$$\forall f \in \mathcal{H} \quad \forall y \in E \quad (y \in B(x, \eta) \Rightarrow |f(y)| < M + 1).$$

Donc $B(x, \eta) \subset A$. Donc A est ouvert.

- (b) Montrons que A est fermé. Soit (x_n) une suite d'éléments de A qui converge vers $x \in E$. On reprend $\varepsilon = 1$ et on obtient un η par équicontinuité. Comme $x_n \to x$ alors il existe N tel que $||x_N x|| < \eta$. Donc pour tout f dans \mathscr{H} , $|f(x) f(x_N)| < 1$; donc $|f(x)| < |f(x_N)| + 1$. Or $x_N \in A$, il existe M tel $|f(x_N)|$ soit bornée par M pour tout f dans \mathscr{H} . Donc pour tout $f \in \mathscr{H}$, |f(x)| < M + 1. Donc $x \in A$. Donc A est fermé.
- 2. $x_0 \in A$ donc A est non vide, comme A est ouvert et fermé et E est connexe alors A = E. donc pour tout $x \in E$, $\mathscr{H}(x)$ est borné dans \mathbb{R} , donc $\overline{\mathscr{H}(x)}$ est un compact de \mathbb{R} . Par le théorème d'Ascoli, \mathscr{H} étant équicontinue et E étant compact alors $\overline{\mathscr{H}}$ est compact.

Correction de l'exercice 9

1. (a) Pour $t \ge 0$ fixé, alors

$$f_n(t) = \sin \sqrt{t + 4(n\pi)^2}$$

$$= \sin 2n\pi \sqrt{1 + \frac{t}{4n^2\pi^2}}$$

$$= \sin 2n\pi (1 + \frac{1}{2} \frac{t}{4n^2\pi^2} + o(\frac{1}{n^2}))$$

$$= \sin(2n\pi + \frac{t}{4n\pi} + o(\frac{1}{n}))$$

$$= \sin(\frac{t}{4n\pi}) + o(\frac{1}{n})$$

Donc quand $n \to +\infty$ alors $f_n(t) \to 0$. Donc (f_n) converge simplement vers 0.

(b) Pour $n \ge 1$,

$$|f_n'(t)| = \frac{1}{2} \frac{1}{\sqrt{t + 4n^2\pi^2}} \cos\sqrt{t + 4n^2\pi^2} \le \frac{1}{2} \frac{1}{\sqrt{t + 4\pi^2}} \le \frac{1}{4\pi}.$$

Pour $t \ge 0$ fixé et $\varepsilon > 0$ donné, on pose $\eta = 4\pi\varepsilon$, alors par l'inégalité des accroissement finis

$$\forall n \geq 1 \quad |t-t'| < \eta \Rightarrow |f_n(t) - f_n(t')| \leq \frac{1}{4\pi} |t-t'| < \varepsilon.$$

Donc (f_n) est une famille équicontinue.

2. Notons $\mathscr{H} = \{f_n \mid n \in \mathbb{N}^*\}$, $\mathscr{H}(t) = \{f_n(t) \mid n \in \mathbb{N}^*\}$, alors d'après la convergence simple, $\overline{\mathscr{H}(t)} = \mathscr{H}(t) \cup \{0\}$. Mais (f_n) ne converge pas uniformément (i.e. pour la norme $\|.\|_{\infty}$) vers f = 0. En effet pour n impair prenons $t_n = 5n^2\pi^2$, alors $f_n(t_n) = \sin\sqrt{9n^2\pi^2} = \sin 3n\pi = \pm 1$. Pour n pair on prend $t_n = 5(n+1)^2\pi^2 - 4n^2\pi^2$ alors $f_n(t_n) = \pm 1$. Donc pour tout n, $\|f_n - f\|_{\infty} = 1$. Supposons que \mathscr{H} soit relativement compact alors de la suite (f_n) on peut extraire une sous-suite qui converge, nécessairement la limite est f = 0, mais comme pour tout n, $\|f_n - f\|_{\infty} = 1$, nous obtenons une contradiction.

Bien sûr le théorème d'Ascoli n'est pas mis en défaut, car toutes les hypothèses sont vérifiées sauf $E = [0, +\infty[$ qui n'est pas compact.

Correction de l'exercice 10

1. k est continue sur le compact $[a,b] \times [a,b]$ donc est uniformément continue. Écrivons cette continuité uniforme dans le cas particulier où les secondes coordonnées sont égales :

$$\forall \varepsilon' > 0 \quad \exists \eta > 0 \quad \forall x, y, t \in [a, b] \qquad |x - y| < \eta \Rightarrow |k(x, t) - k(y, t)| < \varepsilon'.$$

2. Comme (f_n) est bornée il existe M>0 tel que pour tout $n\in\mathbb{N}, \|f_n\|_{\infty}\leq M$. Fixons $x\in[a,b]$. Soit $\varepsilon>0$, posons $\varepsilon'=\frac{\varepsilon}{M(b-a)}$, par l'uniforme continuité de k, on obtient un $\eta>0$ avec pour $|x-y|<\eta$, $|k(x,t)-k(y,t)|<\varepsilon'=\frac{\varepsilon}{M(b-a)}$.

Donc pour $|x-y| < \eta$,

$$|Kf_n(x) - Kf_n(y)| \le \int_a^b |k(x,t) - k(y,t)| ||f_n||_{\infty} dt$$

$$\le M \int_a^b |k(x,t) - k(y,t)| dt$$

$$\le M \int_a^b \frac{\varepsilon}{M(b-a)} dt$$

$$\le \varepsilon$$

Ce qui est l'équicontinuité de (Kf_n) en x. Comme ceci est valable quelque soit $x \in [a,b]$ alors (Kf_n) est équicontinue.

3. Notons $\mathscr{H}=(Kf_n)_n$. Alors pour x donné $\mathscr{H}(x)$ est borné car $|\int_a^b k(x,t)f_n(t)dt| \leq M\int_a^b |k(x,t)|dt$ est bornée indépendamment de $n \in \mathbb{N}$. Donc $\overline{\mathscr{H}(x)}$ est un fermé borné de \mathbb{R} donc un compact.

Nous avons toutes les hypothèses pour appliquer le théorème d'Ascoli, donc $\mathcal{H}=(Kf_n)_n$ est relativement compact. Donc de la suite (Kf_n) on peut extraire une sous-suite convergente. (Attention la limite de cette sous-suite est dans $\overline{\mathcal{H}} \subset X$ et pas nécessairement dans \mathcal{H} .)