

# 实验报告

| 课程名称: | 电路与电子技术实验        |
|-------|------------------|
| 学生姓名: |                  |
| 学生学号: |                  |
| 学生专业: |                  |
| 开课学期: | 2019-2020 学年第二学期 |

电气信息及控制实验教学中心 电力学院实验教学中心 2019 年 12 月

### 学生实验守则

实验时应保证人身安全,设备安全,爱护国家财产,培养科学作风。为此,在本实验室应遵守以下守则:

- 一、学生进入实验室做实验必须严格遵守实验室的规章制度,服从授课教师 和实验技术人员的指导。
- 二、实验前必须做好预习,明确实验的目的、内容和步骤,了解仪器设备的 操作规程和实验物品的特性。
- 三、实验课不得迟到、旷课, 衣冠不整不得进入实验室, 不准把与实验课无 关的东西带进实验室。
  - 四、在实验室内不准喧哗、打闹和吸烟,不准乱吐乱丢杂物。
- 五、实验过程中,应正确操作,认真观察并如实记录,实验结果须经实验教 师检查并签名。
- 六、实验时要注意安全,防止发生意外。若发生事故,应及时向实验指导人 员报告,并采取相应的措施,减少事故造成的损失。
- 七、爱护仪器设备,节约用水、用电和实验材料。不许动用与本实验无关的 仪器设备及其它物品,不准私自将公物拿出实验室。

八、实验完毕,应做好仪器设备的复位工作以及关闭相关的水源、电闸和气源,清洁实验台面和仪器设备,打扫室内卫生并得到实验指导人员允许后方可离开实验室。

九、对违反实验室规章制度和实验操作规程造成事故和损失的,视其情节对责任者按章处理。

### 实验课安全知识须知

- 1. 规范着装。为保证实验操作过程安全、避免实验过程中意外发生,学生禁止 穿拖鞋进入实验室。
- 2. 实验前必须熟悉实验设备参数、掌握设备的技术性能以及操作规程。
- 3. 实验时人体不可接触带电线路,接线或拆线都必须在切断电源的情况下进行。
- 4. 实验中如设备发生故障,应立即切断电源,经查清问题和妥善处理故障后, 才能继续进行实验。

特别提醒:实验过程中违反以上任一须知,需再次进行预习后方可再来参加实验。

### 实验报告撰写要求

- 1. 预习报告部分列出该次实验使用的仪器设备,绘制实验线路图,并注明元件参数。绘制数据记录表格。回答预习思考题。
- 2. 实验总结与思考部分一方面参考思考题要求,对实验数据进行分析和整理, 说明实验结果与理论是否符合;另一方面根据实测数据和在实验中观察和发 现的问题,经过自己研究或分析讨论后写出的心得体会。
- 3. 在数据处理中,曲线的绘制必须用坐标纸画出曲线,曲线要用曲线尺或曲线 板连成光滑曲线,不在曲线上的点仍按实际数据标出其具体坐标。
- 4. 本课程实验结束后,将各次的实验报告按要求装订,并在首页写上实验台号。

温馨提示:实验报告撰写过程中如遇预留空白不足,请在该页背面空白接续。

上课学生签名: 实验教师签名:

# 实验六 RLC 串联谐振电路的研究

| 专业/年级:  |            | 姓 名:     |  |
|---------|------------|----------|--|
| 地 点:    | B7- 室 号实验台 | 考 勤:     |  |
| 实验日期与时间 | :          | <br>评 分: |  |
| 预习检查纪录  | :          | 实验教师:    |  |

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备

四、实验注意事项

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出电路图和实验数据记录表格,记录实验数据。)

#### 表 2-6-1

#### RLC 串联电路谐振点测试

|             |                          | 测量数:            | 据               |               | -  | 计算值                      |   |            |
|-------------|--------------------------|-----------------|-----------------|---------------|----|--------------------------|---|------------|
| $R(\Omega)$ | $f_0$ (kH <sub>Z</sub> ) | $U_{\rm R}$ (V) | $U_{\rm L}$ (V) | $U_{\rm C}$ ( | V) | $f_0$ (kH <sub>Z</sub> ) | Q | $BW(kH_Z)$ |
| 200         |                          |                 |                 |               |    |                          |   |            |
|             |                          |                 |                 |               |    |                          |   |            |

表 2-6-2

#### RLC 串联电路谐振曲线测试

| $R(\Omega)$ | 序号                   | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_0$ | $f_7$ | $f_8$ | $f_9$ | $f_{10}$ | $f_{11}$ | $f_{12}$ |
|-------------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| K ( 52 )    | f (kHz)              |       |       |       |       |       |       |       |       |       |       |          |          |          |
| 200         | $U_{R1}(\text{mV})$  |       |       |       |       |       |       |       |       |       |       |          |          |          |
| 200         | $I_1=U_{\rm R1}/R_1$ |       |       |       |       |       |       |       |       |       |       |          |          |          |
|             | $U_{R2}(\text{mV})$  |       |       |       |       |       |       |       |       |       |       |          |          |          |
|             | $I_2=U_{R2}/R_2$     |       |       |       |       |       |       |       |       |       |       |          |          |          |

#### 六、实验过程与实验数据

(按教材中实验报告要求画出相关曲线并回答思考题)

(1)整理实验数据,用方格纸在同一坐标平面上画出不同 Q 值得两条电流谐振曲线。说明品质因数 Q 对谐振曲线的影响。



(2)

| 实验名称:    | 学生姓名: |  |
|----------|-------|--|
| 实验日期与时间: | 实验台号: |  |

# 实验八 RL 串联电路及功率因数的提高

| 专业/年级:   |          |      | 姓    | 名:  |  |
|----------|----------|------|------|-----|--|
| 地 点:     | B7-535 室 | 号实验台 | 考    | 勤:  |  |
| 实验日期与时间: |          |      | 评    | 分:  |  |
| 预习检查纪录:  |          |      | _ 实验 | 教师: |  |

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备

四、实验注意事项

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据。)

#### 表 2-8-1

#### 电压及功率测量

| U | /V | $U_{\mathrm{D}}\left(\mathbf{V}\right)$ | $U_{\rm rL}$ (V) | $I_{\mathrm{D}}\left(\mathbf{A}\right)$ | P (W) |
|---|----|-----------------------------------------|------------------|-----------------------------------------|-------|
|   |    |                                         |                  |                                         |       |

#### 表 2-8-2

#### 功率因数的提高

| 测量次序 | <i>C</i> (µF) | P (W) | <i>I</i> (A) | $I_{\mathrm{D}}\left(\mathbf{A}\right)$ | <i>I</i> <sub>C</sub> (A) | cos ¢ |
|------|---------------|-------|--------------|-----------------------------------------|---------------------------|-------|
| 1    | 0             |       |              |                                         |                           |       |
| 2    | 0.47          |       |              |                                         |                           |       |
| 3    | 1             |       |              |                                         |                           |       |
| 4    | 1.47          |       |              |                                         |                           |       |
| 5    | 4.7           |       |              |                                         |                           |       |
| 6    | 5.17          |       |              |                                         |                           |       |
| 7    | 5.7           |       |              |                                         |                           |       |
| 8    | 6.17          |       |              |                                         |                           |       |

#### 六、实验总结及思考

(按教材中实验报告要求画出相关曲线并回答思考题)

(1) 整理实验数据,并用坐标纸画出 I = f(C) 曲线和  $\cos \varphi = f(C)$  曲线。



(2)

| 实验名称:    | 学生姓名: |  |
|----------|-------|--|
| 实验日期与时间: | 实验台号: |  |

# 实验十三 晶体管共射极放大电路

| 牵亚   | 少年级:  |     |   |      | _ 姓 | 名:  |  |  |
|------|-------|-----|---|------|-----|-----|--|--|
| 地    | 点:    | B7- | 室 | 号实验台 | _ 考 | 勤:  |  |  |
| 实验日期 | 月与时间: |     |   |      | _ 评 | 分:  |  |  |
| 预习检? | 查纪录:  |     |   |      | 实验  | 教师: |  |  |

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据,计算、分析电路性能指标。)

| 衣 3-13- | l |
|---------|---|
|---------|---|

#### 静态工作点( $V_{\rm C}$ =7V)

| 测量值            | $U_{\rm B}$ (V)                          | $U_{\rm E}$ (V)                          | $U_{\rm C}$ (V) | $R_{\rm B2}  ({\bf k}  \Omega)$ |
|----------------|------------------------------------------|------------------------------------------|-----------------|---------------------------------|
|                |                                          |                                          |                 |                                 |
| 11. <b>答</b> 店 | $U_{\mathrm{BE}}\left(\mathbf{V}\right)$ | $U_{\mathrm{CE}}\left(\mathbf{V}\right)$ | $I_{\rm C}$ (m  | nA)                             |
| 计 算 值<br>      |                                          |                                          |                 |                                 |

表 3-13-2

输入 / 输出电阻

| 负载电阻       | 测 量 值                               | (mV)        | 计 算 值(kΩ)                                                                              |
|------------|-------------------------------------|-------------|----------------------------------------------------------------------------------------|
| $R_{ m S}$ | $u_{\scriptscriptstyle \mathrm{S}}$ | $u_{\rm i}$ | $r_i=R_S u_i / (u_S - u_i)$                                                            |
| 1k Ω       |                                     |             |                                                                                        |
| $R_{ m L}$ | $u_{\rm oc}$                        | $u_{ m OL}$ | $r_{\mathrm{o}} = R_{\mathrm{L}}(u_{\mathrm{OC}} - u_{\mathrm{OL}}) / u_{\mathrm{OL}}$ |
| 5.1 kΩ     |                                     |             |                                                                                        |

表 3-13-3

电压放大倍数

| 测试条件                        | 测 u <sub>i</sub> /mV | 测 <i>u</i> 。/mV | $A_{ m u}$ |
|-----------------------------|----------------------|-----------------|------------|
| $R_{\rm L}=5.1$ k $\Omega$  |                      |                 |            |
| $R_{\rm L}=10{\rm k}\Omega$ |                      |                 |            |
| $R_{\rm L} = \infty$        |                      |                 |            |

表 3-14-4

静态工作点 Q 变化对输出波形的的影响

| 测试条件                                                         | 输 出 波 形   | 失真类型 |
|--------------------------------------------------------------|-----------|------|
| $R_{\rm P}$ 适中, $Q$ 点合适,输出波形无失真                              |           |      |
| <i>R</i> <sub>P</sub> 太小, <b>Q</b> 点偏高                       | $u_0$ $t$ |      |
| <i>R</i> <sub>P</sub> 太大, Q 点<br>偏低                          |           |      |
| R <sub>P</sub> 适中, Q 点         合适,         输入信号幅值         太大 |           |      |

六、实验总结

| 实验名称:    | 学生姓名: |  |
|----------|-------|--|
| 实验日期与时间: | 实验台号: |  |

# 实验十四 多级阻容耦合放大电路与射极跟随器

| 专业/年级:   |     |   |      | 姓  | 名:  |  |
|----------|-----|---|------|----|-----|--|
| 地 点:     | B7- | 室 | 号实验台 | 考  | 勤:  |  |
| 实验日期与时间: |     |   |      | 评  | 分:  |  |
| 预习检查纪录:  |     |   |      | 实验 | 教师: |  |

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备

计算机及电路仿真软件 Multisim

#### 四、预习要求

- 1. 复习射极跟随器的特点及应用。
- 2. 了解多级放大电路的工作原理及电路中各元件的作用。
- 3. 熟悉多级放大电路总电压放大倍数与各级电压放大倍数的关系。
- 4. 熟悉输入电阻及输出电阻的多种测试方法。
- 5. 阅读附录 B.1,了解 Multisim 仿真软件的基本使用方法。

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出记录实验数据的表格,记录实验数据。)

#### 表 3-14-1

#### 各级输入/输出电压和电压放大倍数

| $u_{\rm i}$ (mV) | $u_{o1}$ (V) | $A_{\mathrm{u}1}$ | $u_{i2}$ (V) | $u_{02}$ (V) | $A_{\mathrm{u2}}$ | $u_{i3}$ (V) | $u_{03}$ (V) | $A_{\mathrm{u}3}$ | $A_{\mathrm{u}}$ |
|------------------|--------------|-------------------|--------------|--------------|-------------------|--------------|--------------|-------------------|------------------|
|                  |              |                   |              |              |                   | _            | _            | _                 |                  |
|                  |              |                   |              |              |                   |              |              |                   |                  |

六、实验总结 (回答指导书中的思考题)

| 实验名称:    | 学生姓名:     |
|----------|-----------|
| 实验日期与时间: | <br>实验台号: |

# 实验十五 集成运算放大器的基本运算电路

| 专业  | <b>//年级:</b>  |     |   |      | 姓  | 名:  | <br> |
|-----|---------------|-----|---|------|----|-----|------|
| 地   | 点:            | B7- | 室 | 号实验台 | 考  | 勤:  |      |
| 实验日 | 期与时间:         |     |   |      | 评  | 分:  |      |
| 预习检 | <b>查</b> 查纪录: |     |   |      | 实验 | 教师: |      |

一、实验目的

#### 二、实验原理

(重点简述实验原理,画出设计电路原理图,计算出各电路参数,并标注在电路原理图上。)

三、实验设备

#### 四、实验注意事项

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出记录实验数据的表格,记录实验数据。)

| $\rightarrow$ | 实验思考题    | i |
|---------------|----------|---|
| / \ \ \       | <b>大</b> | ż |

1. 比较测量数据与理论计算值的差异,并分析其成因。

2. 讨论运算放大电路的线性区间与电源电压的关系。

| 实验名称:    | 学生姓名:     |
|----------|-----------|
| 实验日期与时间: | <br>实验台号: |

# 实验十六 集成运算放大器的非线性运用

| 专业/年级:   |     |   |      | _ 姓  | 名:  |  |
|----------|-----|---|------|------|-----|--|
| 地 点:     | В7- | 室 | 号实验台 | _ 考  | 勤:  |  |
| 实验日期与时间: |     |   |      | _ 评  | 分:  |  |
| 预习检查纪录:  |     |   |      | _ 实验 | 教师: |  |

(简述实验原理, 画出原理图。)

三、实验设备

一、实验目的

二、实验原理

| 四、实验内容           |                         |
|------------------|-------------------------|
| (叙述具体实验过程的步骤和方法, | 画出电压比较器的输入输出波形以及传输特性曲线。 |
|                  |                         |

五、实验总结

| 实验名称:    | 学生姓名: |  |
|----------|-------|--|
| 实验日期与时间: | 实验台号: |  |

# 实验十七 整流、滤波、稳压电路

| 专业  | 少年级:          |     |   |      | 姓  | 名:  |  |
|-----|---------------|-----|---|------|----|-----|--|
| 地   | 点:            | В7- | 室 | 号实验台 | 考  | 勤:  |  |
| 实验日 | 期与时间:         |     |   |      | 评  | 分:  |  |
| 预习机 | <b>俭查纪录</b> : |     |   |      | 实验 | 教师: |  |

一、实验目的

三、实验原理

(重点简述实验原理, 画出各电路原理图。)

#### 三、实验设备

四、预习及思考(回答思考题3、4)

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出记录实验数据的表格,记录实验数据。)

表 3-17-1

测量输入输出电压及波形

| <b>₹ 3-17-1</b> | 侧重栅八栅山电压及仪形 |            |        |                  |                                 |  |  |  |
|-----------------|-------------|------------|--------|------------------|---------------------------------|--|--|--|
|                 | 输入电压        |            | 输出电压   | 输入输出波形 (对齐画)<br> |                                 |  |  |  |
| 测量对象            | 实测值         | 实测负载电<br>压 | 计算负载电压 | 误差/%             | $\omega_{\mathbf{t}}$           |  |  |  |
| 整流              |             |            |        |                  | $u_{\circ}$ $w_{\circ}$ $w_{t}$ |  |  |  |
| 整流滤波            |             |            |        |                  | $u_{0}$ $\omega$ t              |  |  |  |
| 整流滤波稳压          |             |            |        |                  | $u_{\circ}$ $\omega$ $t$        |  |  |  |

表 3-17-2

直流稳压电源的外特性

| $R_{\rm L}({ m k}\Omega)$ | ∞ | 3 | 2 | 1 |
|---------------------------|---|---|---|---|
| $U_{ m L}({ m V})$        |   |   |   |   |
| $I_{\rm L}({ m mA})$      |   |   |   |   |

#### 六、实验总结及思考

- (1) 引起稳压电源输出电压不稳定的主要原因是什么?
- (2) 整理实验数据, 计算直流稳压电源的等效内阻, 画出直流稳压电源的外特性曲线。



| 实验名称:    | 学生姓名:     |
|----------|-----------|
| 实验日期与时间: | <br>实验台号: |

# 实验二十 组合逻辑电路设计

| 专业/年级:   |     |   |      | 姓    | 名:  |  |
|----------|-----|---|------|------|-----|--|
| 地 点:     | B7- | 室 | 号实验台 | _ 考  | 勤:  |  |
| 实验日期与时间: |     |   |      | _ 评  | 分:  |  |
| 预习检查纪录:  |     |   |      | _ 实验 | 教师: |  |

(重点简述实验原理,画出原理图。)

三、实验设备

电子实验箱

一、实验目的

二、实验原理

#### 四、实验预习及思考

画出各设计电路逻辑电路图或接线图。

#### 五、实验过程

(列出各设计任务逻辑真值表。写出逻辑表达式(或卡诺图),再用卡诺图或代数法化简以得到最简逻辑表达式,最后用给定的逻辑门电路实现,画出逻辑电路图并连接电路验证。)

#### 六、问题思考

(回答指导书中的思考题;实验过程的注意事项。)

| 实验名称:    | 学生姓名:     |
|----------|-----------|
| 实验日期与时间: | <br>实验台号: |

# 实验二十三 计数、译码、显示电路

| 专业/年级: |       |     |   |      | _ 姓  | 名:  |  |
|--------|-------|-----|---|------|------|-----|--|
| 地      | 点:    | В7- | 室 | 号实验台 | 考    | 勤:  |  |
| 实验日    | 期与时间: |     |   |      | 评    | 分:  |  |
| 预习检    | 查纪录:  |     |   |      | _ 实验 | 教师: |  |

三、实验设备

电子实验箱

一、实验目的

二、实验原理 (重点简述实验原理。)

#### 四、实验预习要求

预习集成电路 74LS47、74LS160 的逻辑功能及使用方法,在 74LS160 的十进制计数器电路的基础上,通过改变电路连接,利用清零端 CLR 或置数端 LD 的功能,分别设计一个五进制计数器,显示 0, 1, 2, 3, 4 五位数码。(提示:可利用与非门),分别画出逻辑电路图。

#### 五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据。)

表 4-23-2

十进制计数器测试

| ~~~~ | T ZETIVO VI SKIRIOVI MA |     |          |                     |                       |          |          |    |
|------|-------------------------|-----|----------|---------------------|-----------------------|----------|----------|----|
| 输入   | 74LS47 辅助输入端            |     | 74       | 74LS160、8421 码输出端状态 |                       |          |          |    |
| 脉冲   |                         | 状   | 态        |                     |                       |          |          | 字型 |
| CP   |                         |     | <u></u>  | $Q_3(D)$            | $Q_1(C)$              | $Q_2(B)$ | $Q_0(A)$ | 显示 |
|      | LT                      | RBI | RI / RBO | $L_4$               | <i>L</i> <sub>3</sub> | $L_2$    | $L_1$    |    |
| 0    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 1    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 2    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 3    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 4    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 5    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 6    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 7    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 8    | 1                       | ×   | 1        |                     |                       |          |          |    |
| 9    | 1                       | ×   | 1        |                     |                       |          |          |    |
|      |                         |     |          |                     |                       |          |          |    |

| 实验名称:    | 学生姓名: |
|----------|-------|
| 实验日期与时间: | 实验台号: |

# 自选综合设计实验

# 实验名称——

| 专业  | /年级:  |     |   |      | _ 姓  | 名:  | <br> |
|-----|-------|-----|---|------|------|-----|------|
| 地   | 点:    | B7- | 室 | 号实验台 | _ 考  | 勤:  | <br> |
| 实验日 | 期与时间: |     |   |      | _ 评  | 分:  | <br> |
| 预习检 | `查纪录: |     |   |      | _ 实验 | 教师: |      |

一、实验目的

二、设计任务与要求

三、设计原理

(重点叙述设计电路原理, 画出设计电路图)

四、实验设备

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出记录实验数据的表格,记录实验数据。)

| 实验名称:    | 学生姓名:     |
|----------|-----------|
| 实验日期与时间: | <br>实验台号: |

# 本课程实验小结

(自己的体会,包括成功或失败的实验经验;遇到故障或出现问题的处理方法;针对该实验的具体建议,例如实验的参数如何设置更合理、实验内容的难易程度是否合适等。)

### 实验报告毫米方格作图纸

| 姓名 | 学号 | 实验名称 |
|----|----|------|
|    |    | ·    |

