- (a) For any hypothesis h, the quantity $\varepsilon_0(h)$ can be calculated as a function of $\varepsilon_{\tau}(h)$ and τ . Write down a formula for $\varepsilon_0(h)$ in terms of $\varepsilon_{\tau}(h)$ and τ , and justify your answer.
- (b) Let |H| be finite, and suppose our training set $S = \{(x^{(i)}, y^{(i)}); i = 1, ..., m\}$ is obtained by drawing m examples IID from the corrupted distribution \mathcal{D}_{τ} . Suppose we pick $h \in H$ using empirical risk minimization: $\hat{h} = \arg\min_{h \in H} \hat{\varepsilon}_S(h)$. Also, let $h^* = \arg\min_{h \in H} \varepsilon_0(h)$.

Let any $\delta, \gamma > 0$ be given. Prove that for

$$\varepsilon_0(\hat{h}) \le \varepsilon_0(h^*) + 2\gamma$$

to hold with probability $1 - \delta$, it suffices that

$$m \ge \frac{1}{2(1-2\tau)^2\gamma^2}\log\frac{2|H|}{\delta}.$$

Remark. This result suggests that, roughly, m examples that have been corrupted at noise level τ are worth about as much as $(1-2\tau)^2m$ uncorrupted training examples. This is a useful rule-of-thumb to know if you ever need to decide whether/how much to pay for a more reliable source of training data. (If you've taken a class in information theory, you may also have heard that $(1-\mathcal{H}(\tau))m$ is a good estimate of the information in the m corrupted examples, where $\mathcal{H}(\tau) = -(\tau \log_2 \tau + (1-\tau) \log_2 (1-\tau))$ is the "binary entropy" function. And indeed, the functions $(1-2\tau)^2$ and $1-\mathcal{H}(\tau)$ are quite close to each other.)

(c) Comment **briefly** on what happens as τ approaches 0.5.