

1. Algorytmy genetyczene z wykorzystaniem pakietu FT3PAK.

Algorytmy genetyczne poszukują rozwiązania w ustalonym obszarze zmienności parametrów. Rozwiązywanie zadań optymalizacji metodą algorytmów genetycznych odbywa się zgodnie z poniższym algorytmem [1], [2],[3].

ETAP I zdefiniowanie zadania

Krok 1

Zdefiniowanie funkcji celu.

Krok 2

Zdefiniowanie parametrów (fenotypów) i ich ograniczeń.

Krok 3

Zdefiniowanie wielkości populacji, parametrów operatorów genetycznych, metody selekcji, strategii elitarnej i ilości generacji.

Krok 4

Konwersja fenotypów na genotypy przy pomocy operatora kodowania. Kodowanie parametrów w postaci chromosomu wymaga ustalenia zakresu zmian parametru i jego rozdzielczości w celu określenia długości ciągu binarnego. Zdefiniowane genotypy są formowane w łańcuch chromosomu, z których powstaje populacja.

ETAP II rozwiazanie zadania

Krok 5

Iteracyjne wykonywanie generacji pokoleń z zastosowaniem operatorów genetycznych, których ideę działania przedstawiono poniżej.

Selekcja

Metoda ruletki wybiera rodziców losowo proporcjonalnie do wartości funkcji przystosowania. Metoda ta powoduje szybka eliminację osobników słabych.

Metoda turniejowa dzieli osobniki na podgrupy, a następnie wybiera z nich najlepiej przystosowanych.

Metoda rankingowa szereguje osobniki według funkcji przystosowania przypisując im kolejne wartości, a następnie na podstawie zdefiniowanej funkcji wybiera odpowiednią liczbę kopii danego osobnika.

Operatory genetyczne

Operacja krzyżowania polega na wylosowaniu punktu krzyżowania (lub kilku punktów w przypadku krzyżowania wielopunktowego) i dokonaniu zamiany odpowiednich fragmentów chromosomu.

Operacja mutacji polega na wymianie elementu chromosomu w losowo wybranym punkcie.

Strategia elitarna ma na celu ochronę najlepiej przystosowanych osobników w kolejnych generacjach - nie podlegają oni zmianom przy przejściu do kolejnej generacji.

Pakiet FT3PAK należy uruchomić poleceniem *ft3pak*, a następnie wybrać moduł algorytmów ewolucyjnych EA. Postać okna pakietu przedstawia poniższy rysunek.

Zdefiniowanie zadania, którego rozwiązania będziemy poszukiwać metodą algorytmów genetycznych sprowadza się do określenia następujących parametrów:

• nazwa skryptu MATLAB-a z funkcja celu,

liczba parametrów,

zakresy i rozdzielczość parametrów,

• typ kryterium

• minimum,

• maksimum.

parametry rekombinacji

• prawdopodobieństwo krzyżowania,

♦ liczba punktów krzyżowania

• prawdopodobieństwo mutacji,

rodzaj selekcji

♦ koło ruletki,

♦ turniejowa,

♦ rankingowa,

parametry algorytmu

♦ ilość generacji,

♦ rozmiar populacji

• rozmiar populacji elitarnej,

ilość rozwiązań

...Browse

of Params

Min, Max, Resolution

Minimization

Maximization

Prob of Xover

of Xover Pts

Prob of Mutation

Roulette Wheel

Tournament

Ranking

of Gen

Pop Size

SS Pop Size

of Peaks

Wybranie opcji Min, Max, Resolution powoduje przełączenie pakietu do MATLAB Command Window. Należy wówczas podać kolejno wartość lub transponowany wektor wartości (liczba parametrów) maksymalnych, minimalnych i rozdzielczości.

W menu FT-Tool dostępne są opcje umożliwiające zapis (Save) i odczyt (Load) zdefiniowanych parametrów zadania i algorytmu. Dane te są zapisywane do plików typu mat. Ważna jest kolejność w jakiej się zapisuje i odczytuje. Zaleca się używanie nazw plików identyfikujących jednoznacznie, czy są to parametry funkcji czy algorytmu.

Wywołanie obliczeń z linii poleceń MATLAB-a:

gdzie:

fun_parmat plik z parametrami funkcjiga_parmat plik z parametrami algorytmufunkcjaskrypt MATLAB-a z funkcja celu

Jmax największe wartości funkcji przystosowania Jmin najmniejsze wartości funkcji przystosowania

Javg średnie wartości przystosowania

BestPI rozwiązanie

PI Wartość funkcji przystosowania dla ostatniej generacji

Przykładowa postać skryptu MATLAB-a

function PI=DeJongaF1(x)
PI=
$$x(1)^2+x(2)^2+x(3)^2$$
;

2. Zadania do rozwiązania

Zad. 1.

Znajdź wartość minimalną funkcji De Jonga F1 postaci:

$$Q = \sum_{i=1}^{3} x_i^2 \qquad -5,12 \le x_i \le 5,12 \quad \text{dla} \quad i = 1,2,3$$

Zad. 2.

Znajdź wartość minimalną funkcji De Jonga F2 postaci:

$$Q = 100(x_1^2 - x_2)^2 + (1 - x_1)^2$$
 $-2,048 \le x_i \le 2,048$ dla $i = 1,2,3$

Zad. 3.

Znajdź wartość minimalną funkcji grzbietu wielbłąda sześciogarbnego postaci:

$$Q = \left(4 - 2, 1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + \left(-4 + 4x_2^2\right)x_2^2 \qquad -3 \le x_1 \le 3 \quad i - 2 \le x_2 \le 2$$

Sprawdzić czy istnieje rozwiązanie globalne w dwóch punktach.

Zad. 4.

Znaleźć maksimum funkcji

$$F = \left[e^{\frac{0.1x}{\pi}} \cdot \left| \sin(4x) \right| \right] \cdot \left[e^{\frac{0.1y}{\pi}} \cdot \left| \sin(3y) \right| \right], \text{ gdzie } x \in \langle 0, \pi \rangle, \ y \in \langle 0, \pi \rangle$$

Zad. 5. "Wybijanie os".

Zadanie polega na rozmieszczeniu 3 pojemników ze środkiem owadobójczym pośród 12 gniazd os na obszarze kwadratu o boku 100, tak aby wytępić maksymalną ilość os. Poniżej przedstawiono rozmieszczenie gniazd os i ich liczebność. Każde gniazdo os posiada określone położenie za pomocą współrzędnych (Wx_i, Wy_i) i liczbę os określoną przez wartość W_i . Każdy pojemnik posiada swoje współrzędne rozmieszczenia (Cx_i, Cy_i) .

Liczba Os	Położenie gniazd	
$\mathbf{W}_{\mathbf{i}}$	Wx_i	Wyi
100	25	65
200	23	8
327	7	13
440	95	53
450	3	3
639	54	56
650	67	78
678	32	4
750	24	76
801	66	89
945	84	4
967	34	23

$$F = 100 \cdot \frac{\sum_{i=1}^{12} K_i}{\sum_{i=1}^{12} W_i}$$

gdzie:

$$K_i = \begin{cases} k_1 + k_2 + k_3, \text{ jeżeli } k_1 + k_2 + k_3 < W_i \\ W_i, & \text{w przeciwnym przypadku} \end{cases}$$
 $i=1,2,...,12$

 $k_{j}\,$ - liczba os wytępionych za pomocą pojemnika $j{=}1,2,3$ jest zdefiniowana następująco :

$$k_{j} = \frac{W_{i} \cdot 141.42}{20 \cdot \sqrt{\left(Wx_{i} - Cx_{j}\right)^{2} + \left(Wy_{i} - Cy_{j}\right)^{2} + 0.0001}}$$

Zmienne:

współrzędne pojemników : Cx₁, Cy₁; Cx₂, Cy₂; Cx₃, Cy₃.

Zaobserwować rezultaty dla jednego, dwóch i trzech pojemników oraz wpływ parametrów genetycznych na rozwiązanie.

3. Sposób rozwiązania zadań

- 1. Przed przystąpieniem do ćwiczeń dla zadań 1 ÷ 4 znaleźć rozwiązania analitycznie i z wykorzystaniem przybornika MATLAB-a *Optimization Toolbox* w celu późniejszego porównania wyników.
- 2. Narysować wykres funkcji celu.
- 3. Zdefiniować skrypt MATLAB-a.
- 4. Zdefiniować parametry algorytmu.
- 5. Określić wpływ metody selekcji i parametrów rekombinacji oraz rozmiaru populacji, ilości generacji, wielkości populacji elitarnej na rozwiązanie zadania.

4. Literatura

- [1] David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, W-wa 1995.
- [2] Zbigniew Michalewicz, *Algorytmy genetyczne* + *struktury danych* = *programy ewolucyjne*, WNT, W-wa 1996.