FYS4150 - Computational Physics

PROSJEKT 4

Isingmodellen, Monte Carlo og parallellisering

Kandidat 72

Dato: 31. oktober 2015

Sammendrag

Introduksjon

Teori

Metode

Resultat

I _{Legendre}	I_{Laguerre}	$\epsilon_{ ext{Legendre}}$	$\epsilon_{ ext{Laguerre}}$	n
0.129834	0.181567	0.326466	0.058093	10
0.199475	0.195887	0.034804	0.016192	15
0.177065	0.195636	0.081449	0.014892	20
0.189110	0.195240	0.018967	0.012837	25
0.185796	0.195070	0.036158	0.011955	30

Tabell 1: Resultat fra kjøringer av begge GK-metodene. Ingen av de er spesielt gode sammenliknet med Monte Carlo-metodene. Når vi hadde ti integrasjonspunkter så betydde det 10⁶ utregninger siden det var en seksdobbel løkke, en lite effektiv måte å angripe problemet på.

Numerisk stabilitet og presisjon

Konklusjon