

Design and Analysis of Algorithms I

Introduction Guiding Principles

Guiding Principle #1

"worst – case analysis": our running time bound holds for every input of length n.

-Particularly appropriate for "general-purpose" routines

```
As Opposed to
--"average-case" analysis
--benchmarks

REQUIRES DOMAIN
KNOWLEDGE
```

BONUS: worst case usually easier to analyze.

Guiding Principle #2

Won't pay much attention to constant factors, lower-order terms

Justifications

- 1. Way easier
- 2. Constants depend on architecture / compiler / programmer anyways
- 3. Lose very little predictive power (as we'll see)

Guiding Principle #3

<u>Asymptotic Analysis</u>: focus on running time for large input sizes n

Eg:
$$6n \log_2 + 6n$$
 "better than" $\frac{1}{2}n^2$

MERGE SORT INSERTION SORT

Justification: Only big problems are interesting!

What Is a "Fast" Algorithm?

This Course: adopt these three biases as guiding principles

fast \approx worst-case running time grows slowly with input size

<u>Usually</u>: want as close to linear (O(n)) as possible