Algoritmos

Lista de Exercícios de Strings e Funções

1.	Escreva um programa que leia uma string e, em seguida, imprima a inversa da string lida. Exemplo de entrada:						
	Tangamandapio						
	Impressão esperada:						
	oipadnamagnaT						
2.	Escreva um programa que leia uma string e, em seguida, imprima a string lida removendo todos os espaços. Exemplo de entrada:						
	Out of the night that covers me						
	Impressão esperada:						
	Outofthenightthatcoversme						
3.	Escreva um programa que leia uma string e imprima a string lida removendo os espaços extras entre as palavras, ou seja, entre as palavras deve haver apenas um único espaço. Exemplo de entrada:						
	Out of the night that covers me						
	Impressão esperada:						
	Out of the night that covers me						
4.	Faça um programa que leia duas strings e elimine, da segunda string, todas as ocorrências dos caracteres da primeira string. Por fim, seu programa deve imprimir a segunda string. Exemplo de entrada:						
	AMOR MARESIA						
	Impressão esperada:						
	ESI						
5.	Faça um programa que leia duas palavras e verifique se uma delas é subsequência da outra, ou seja, a primeira pode ser obtida por meio da remoção de letras da segunda. A ordem das letras não pode ser alterada.						

	Exemplo de entrada:
	moda moradia
	Impressão esperada:
	moda é uma subsequência de moradia
	Exemplo de entrada:
	cereja cerveja
	Impressão esperada:
	cereja é uma subsequência de cerveja
	Exemplo de entrada:
	teste triste
	Impressão esperada:
	teste não é uma subsequência de triste
6.	Escreva um programa que leia duas palavras e determine se a segunda é um <i>anagrama</i> da primeira. Uma palavra é um anagrama de outra se todas as letras de uma ocorrem na outra, <i>em mesmo número, independente da posição</i> .
	Exemplo de entrada:
	ROMA AMOR
	Impressão esperada:
	Anagramas!
	Exemplo de entrada:
	regalia alegria
	Impressão esperada:
	Anagramas!
	Exemplo de entrada:
	xzxyxz yzxyzx
	Impressão esperada:
	Não são anagramas!

7. Considere o código em Python abaixo:

```
j = 1
def main():
  if a % 2 == 0:
   a = 2
  else:
    a = 3
  print(fun1(2,4))
  for i in range(3):
    for j in range(3):
      print(fun1(a, i+j))
def fun1(a, b):
  p = 1
  for i in range(b):
   p = p * a
  return p+j
main()
```

- (a) Determine quais são as variáveis locais e globais deste programa. Para cada variável local identifique a que função ela pertence.
- (b) Mostre o que será impresso na tela do computador quando for executado este programa.
- 8. Escreva uma função que receba dois números inteiros positivos *a* e *b* como parâmetro e determine se eles são amigos ou não, devolvendo Truecaso sejam amigos e Falsecaso contrário.

Dois números são amigos se cada número é igual à soma dos divisores próprios do outro (os divisores próprios de um número m são os divisores estritamente menores que m). Por exemplo, os divisores próprios de 220 são 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 e 110, cuja soma

é 284; e os divisores próprios de 284 são 1, 2, 4, 71 e 142, cuja soma é 220. Logo, 220 e 284 são números amigos.

A seguinte função deve ser implementada:

```
def amigos(a, b):
```

9. Escreva uma função que receba um valor inteiro positivo n como parâmetro e devolva o menor valor inteiro b, tal que $b^k = n$ para algum inteiro k. Por exemplo, se n = 27 então o valor devolvido deve ser 3. Já se n = 12, o valor devolvido deve ser 12.

A seguinte função deve ser implementada:

```
def menor_base_log(n):
```

- 10. Um inteiro positivo n é **pitagórico** se existem inteiros positivos a e b tais que $a^2+b^2=n$. Por exemplo, 13 é pitagórico, pois $2^2+3^2=13$.
 - (c) Escreva uma função que receba como parâmetro três inteiros a, b e n, e devolva True caso $a^2 + b^2 = n$ e False, caso contrário.

A seguinte função deve ser implementada:

def teste(a, b, n):

(d) Utilize a runção do item anterior e escreva uma outra runção que receba como para- metro um inteiro positivo *n* e verifique se *n* é pitagórico, devolvendo True caso *n* seja pitagórico e False, caso contrário.

A seguinte função deve ser implementada:

def pitagorico(n):

11. Escreva uma função que receba uma lista de números reais e devolva a média aritmética dos números da lista.

A seguinte função deve ser implementada:

def media(v):

12. Escreva uma função que receba uma lista de números reais e devolva o desvio padrão dos números da lista usando a seguinte fórmula:

$$\sqrt{\frac{1}{n-1}(\sum_{i=1}^{n}x_{i}^{2} - \frac{1}{n}(\sum_{i=1}^{n}x_{i})^{2})}$$

Onde *n* é o número de elementos.

A seguinte função deve ser implementada:

def desvio padrao(v):

13. Escreva uma função chamada sanduiche_primo que receba como parâmetro um inteiro n e devolva uma tupla com dois valores inteiros p1 e p2, onde p1 é o maior número primo que é menor do que n e p2 é o menor número primo que é maior do que n.

A seguinte função deve ser implementada:

def sanduiche_primo(n)

14. Escreva uma função que receba como parâmetro uma lista de inteiros. A função deve devolver uma tupla com dois valores inteiros f1 e f2, onde f1 é o elemento da lista com menor frequência (menor número de ocorrências na lista) e f2 é o elemento com maior frequência. Dica: use um dicionário para computar as frequências dos elementos da lista.

def frequencias(v)

15. Suponha que uma matriz binária mat represente ligações entre cidades, onde, se uma posição mat[i][j] possui o valor 1, então há uma estrada da cidade i para a cidade j. Seja o seguinte exemplo de matriz:

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Neste caso, há estradas da cidade 0 para as cidades 1 e 2, e da cidade 2 para a cidade 0. Para cada item abaixo escreva uma função verifica(mat) que receba como parâmetro uma matriz quadrada mat, indicando as estradas entre as cidades, e devolva uma lista resposta.

- Escreva uma função para determinar as cidades com estradas chegando, mas sem estradas saindo da cidade, indicando isto na lista resposta, tal que resposta[i] recebe True caso a cidade isatisfaça esta propriedade e False, caso contrário.
- Escreva uma função para determinar as cidades com estradas saindo, mas sem es-tradas

- chegando na cidade, indicando isto na lista resposta, tal que resposta[i] recebe Truecaso a cidade isatisfaça esta propriedade e False, caso contrário.
- Escreva uma função para determinar as cidades isoladas (sem estradas chegando ou saindo da cidade), indicando isto na lista resposta, tal que resposta[i] recebe True caso a cidade isatisfaça esta propriedade e False, caso contrário.
- 16.No jogo Sudoku temos uma matriz 9 × 9 dividida em 9 quadrados de 3 × 3 preenchidos previamente com alguns números entre 1 e 9 (veja o exemplo à esquerda abaixo). Uma solução para uma instância do jogo consiste no preenchimento de todas as posições vazias com números entre 1 e 9 respeitando-se as seguintes regras:
 - (e) Não pode haver números repetidos em um mesmo quadrado, ou seja, cada número entre 1 e 9 deve aparecer exatamente uma vez em cada quadrado.
 - (f) Não pode haver números repetidos em nenhuma linha da matriz.
 - (g) Não pode haver números repetidos em nenhuma coluna da matriz.

Escreva uma função que receba uma matriz 9 × 9 como parâmetro, que represente uma proposta de solução para um Sudoku, e teste se a matriz é uma solução válida para o jogo, devolvendo Trueem caso verdadeiro e False, caso contrário.

A seguinte função deve ser implementada:

def solucao(mat):

Veja abaixo um exemplo (à direita) de uma solução para um Sudoku.

		2		5		1		9	
	8			2		3			6
		3			6			7	
			1				6		
	S	4						1	9
			2				<u> </u>		
		9			3			8	
	2			8		4			7
		1		9		7		6	
7	udolau não rogolario							-: 4	

Sudoku não resolvido

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	\circ	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	80	2	1	4	9	<u> </u>	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2
Solução								