153_project

2022-04-05

```
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                   v purrr
                             0.3.4
## v tibble 3.1.6
                  v dplyr
                             1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr
          2.1.2
                 v forcats 0.5.1
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(TSA)
##
## Attaching package: 'TSA'
## The following object is masked from 'package:readr':
##
##
      spec
## The following objects are masked from 'package:stats':
##
      acf, arima
## The following object is masked from 'package:utils':
##
      tar
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
    method
    as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##
    method
                from
##
    fitted.Arima TSA
##
    plot.Arima
```

```
library(astsa)
##
## Attaching package: 'astsa'
## The following object is masked from 'package:forecast':
##
##
      gas
source('cleaning.R')
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
      date, intersect, setdiff, union
## New names:
## * '' -> ...1
## Rows: 1746661 Columns: 29
## -- Column specification ------
## Delimiter: ","
        (8): Address, State, County, City, NO2 Units, O3 Units, SO2 Units, CO ...
## chr
## dbl (20): ...1, State Code, County Code, Site Num, NO2 Mean, NO2 1st Max Va...
## date (1): Date Local
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## 'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.
```

Original data

```
ozone <- phoenix$o3
ozone = ozone - mean(ozone) # mean centered
plot(ozone, type ="l")</pre>
```


acf(ozone, lag.max = 30)

Series ozone

pacf(ozone)

Series ozone

1. The original data have clear sign of seasonality, but there seems to be linear upward trend. 2. The ACF PACF plot shows the strong sign of seasonality

Sinusoidal fitting

```
t = 1:length(ozone)
# Check the periodogram
periodo = periodogram(ozone,plot=TRUE,ylab="Periodogram", xlab="Frequency") # There is one significant
```



```
# Get the high magnitudes in descending order
order_spec = sort(periodo$spec,decreasing = TRUE)
# Get the frequency that gives max magnitude
first_max = order_spec[1]
first_maximizing_freq = periodo$freq[periodo$spec==first_max]
first_sin_max = sin(2*pi*first_maximizing_freq*t)
first_cos_max = cos(2*pi*first_maximizing_freq*t)
# Max Sinusoidal fitting
ozone_sinusoid_model = lm(ozone ~ first_sin_max*(1+t)+first_cos_max*(1+t))
print(ozone_sinusoid_model$coefficients)
##
       (Intercept)
                     first_sin_max
                                                     first_cos_max first_sin_max:t
##
     -3.009489e-03
                     -1.160248e-03
                                      4.163369e-05
                                                     -1.233604e-02
                                                                       1.963185e-06
## t:first_cos_max
     -1.058031e-05
##
# Overlay the sinusoidal fitting over the original plot
plot(ozone,type = "1")
lines(t,ozone_sinusoid_model$fitted.values,col = "red")
```



```
# Get the residual, hoping for removing seasonality
ozone_sinusoid_residual = ozone_sinusoid_model$residuals
plot(ozone_sinusoid_residual,type = "l") # residual seems to be stationary
```


stats::acf(ozone_sinusoid_residual)

Series ozone_sinusoid_residual

stats::pacf(ozone_sinusoid_residual)

Series ozone_sinusoid_residual

$$f(t) = -0.003 + 0.000042 * t - 0.0012 * sin(t) - 0.0123 * cos(t) + 0.000002 * t * sin(t) - 0.000011 * t * cos(t) + 0.000002 * t * sin(t) + 0.000011 * t * cos(t) + 0.0000011 *$$

- 1. There is one significant peak in the periodogram
- 2. The residual plot shows some seasonality but the plot seems to be AR process and possible seasonal ARMA

Residual Fitting: SARIMA(2,0,0)(1,0,1)12

```
model1 <- sarima(ozone_sinusoid_residual, p=2, d=0, q=0, P=1, D=0, Q=1, S=12) # fit the model
## initial
            value -5.921137
          2 value -6.020457
## iter
## iter
          3 value -6.079641
          4 value -6.085871
## iter
          5 value -6.091190
## iter
          6 value -6.095582
          7 value -6.095958
## iter
## iter
          8 value -6.095969
          9 value -6.095970
## iter
## iter
          9 value -6.095970
## iter
          9 value -6.095970
## final value -6.095970
## converged
```

```
## initial value -6.075290
## iter
          2 value -6.078754
          3 value -6.081474
## iter
          4 value -6.085882
## iter
  iter
          5 value -6.088012
## iter
          6 value -6.092257
## iter
          7 value -6.095296
          8 value -6.097651
## iter
## iter
          9 value -6.099009
         10 value -6.100678
## iter
  iter
         11 value -6.101042
         12 value -6.101155
  iter
         13 value -6.101161
   iter
         14 value -6.101163
         15 value -6.101163
## iter
## iter
         16 value -6.101166
         17 value -6.101167
  iter
         18 value -6.101167
         19 value -6.101168
## iter
         20 value -6.101168
## iter
         21 value -6.101169
         22 value -6.101169
         22 value -6.101169
## iter
## iter 22 value -6.101169
## final value -6.101169
## converged
```


Residual Fitting: SARIMA(1,0,0)(1,0,1)12

```
model2 \leftarrow sarima(ozone\_sinusoid\_residual, p=1, d=0, q=0, P=1, D=0, Q=1, S=12) \# fit the model = 1 model =
## initial value -5.924525
## iter 2 value -6.014280
## iter 3 value -6.072474
## iter 4 value -6.080884
## iter 5 value -6.087853
## iter
                       6 value -6.094164
## iter
                       7 value -6.094618
## iter
                       8 value -6.094677
                         9 value -6.094683
## iter
## iter 10 value -6.094683
## iter 11 value -6.094684
## iter 12 value -6.094684
## iter 12 value -6.094684
## iter 12 value -6.094684
## final value -6.094684
## converged
## initial value -6.075303
## iter
                        2 value -6.078312
## iter 3 value -6.083138
## iter 4 value -6.089196
## iter
                       5 value -6.092910
## iter
                       6 value -6.095028
## iter
                       7 value -6.096554
## iter
                       8 value -6.098751
## iter
                         9 value -6.100853
## iter 10 value -6.101030
## iter 11 value -6.101038
## iter 12 value -6.101038
## iter 13 value -6.101041
## iter 14 value -6.101048
## iter 15 value -6.101050
## iter 16 value -6.101052
## iter 17 value -6.101053
## iter 18 value -6.101054
```

iter 19 value -6.101055

```
## iter 20 value -6.101055
## iter 20 value -6.101055
## iter 20 value -6.101055
## final value -6.101055
## converged
```


Residual Fitting: SARIMA(2,1,1)(1,0,1)12

```
model3 <- sarima(ozone_sinusoid_residual, p=2, d=1, q=1, P=1, D=0, Q=1, S=12) # fit the model
## initial value -5.626415
## iter 2 value -5.817904</pre>
```

```
## iter
         3 value -5.967005
## iter
         4 value -6.000235
         5 value -6.022716
## iter
         6 value -6.038025
## iter
## iter
         7 value -6.061036
## iter
          8 value -6.062258
## iter
          9 value -6.063975
        10 value -6.065519
## iter
## iter
         11 value -6.066125
## iter
         12 value -6.066443
## iter
        13 value -6.067328
## iter
        14 value -6.067686
## iter
        15 value -6.067780
        16 value -6.067831
## iter
## iter
        17 value -6.067832
## iter
         18 value -6.067883
## iter
         19 value -6.067920
## iter
         20 value -6.067946
## iter
        21 value -6.067967
## iter
        22 value -6.068029
        23 value -6.068059
## iter
## iter
        24 value -6.068062
        25 value -6.068063
## iter
## iter
         25 value -6.068063
## iter 25 value -6.068063
## final value -6.068063
## converged
## initial value -6.049027
## iter
          2 value -6.063938
          3 value -6.069719
## iter
## iter
          4 value -6.077660
## iter
          5 value -6.081289
## iter
          6 value -6.083983
## iter
          7 value -6.086264
## iter
          8 value -6.089727
## iter
          9 value -6.093924
## iter
        10 value -6.097960
## iter
        11 value -6.098795
## iter
        12 value -6.099032
        13 value -6.099192
## iter
        14 value -6.099209
## iter
## iter
        15 value -6.099215
        16 value -6.099216
## iter
## iter
        17 value -6.099217
        18 value -6.099217
## iter
        19 value -6.099217
## iter
        20 value -6.099218
## iter
## iter
        21 value -6.099219
## iter
        22 value -6.099220
        23 value -6.099220
## iter
## iter 23 value -6.099220
## iter 23 value -6.099220
## final value -6.099220
## converged
```


Residual Fitting : SARIMA(2,0,1)(1,0,1)12

```
model4 <- sarima(ozone_sinusoid_residual, p=2, d=0, q=1, P=1, D=0, Q=1, S=12) # fit the model

## initial value -5.921137
## iter 2 value -6.021739
## iter 3 value -6.079075
## iter 4 value -6.085438
## iter 5 value -6.091319
## iter 6 value -6.095255</pre>
```

```
## iter
         7 value -6.095886
## iter
         8 value -6.095982
## iter
         9 value -6.095984
       10 value -6.095987
## iter
## iter
        11 value -6.095993
## iter
        12 value -6.096006
        13 value -6.096024
        14 value -6.096036
## iter
## iter
        15 value -6.096039
## iter
        16 value -6.096040
## iter
        17 value -6.096040
        18 value -6.096040
## iter
## iter
        19 value -6.096040
## iter
        19 value -6.096040
## iter 19 value -6.096040
## final value -6.096040
## converged
## initial
           value -6.075372
## iter
         2 value -6.077112
        3 value -6.080624
## iter
## iter
        4 value -6.083981
## iter
        5 value -6.086061
        6 value -6.091109
## iter
## iter
         7 value -6.094569
## iter
         8 value -6.096817
## iter
        9 value -6.097887
## iter
        10 value -6.099778
        11 value -6.100684
## iter
## iter
        12 value -6.101115
## iter
        13 value -6.101118
## iter
        14 value -6.101118
## iter
        15 value -6.101118
## iter
        16 value -6.101124
        17 value -6.101136
## iter
## iter
        18 value -6.101149
## iter
        19 value -6.101171
## iter 20 value -6.101187
## iter 21 value -6.101190
## iter
        22 value -6.101192
## iter 23 value -6.101197
        24 value -6.101201
## iter
## iter 25 value -6.101209
        26 value -6.101219
## iter
        27 value -6.101230
## iter
        28 value -6.101233
## iter
## iter
        29 value -6.101237
## iter
        29 value -6.101237
## iter 29 value -6.101237
## final value -6.101237
## converged
## Warning in sqrt(diag(fitit$var.coef)): NaNs produced
## Warning in sqrt(diag(fitit$var.coef)): NaNs produced
```


Evaluation Matrix

```
# AIC, AICc, BIC
eval<- function(model){
  return (c(model$AIC, model$AICc,model$BIC))
}

m1_evaludation = eval(model1)
m2_evaludation = eval(model2)
m3_evaludation = eval(model3)
m4_evaludation = eval(model4)</pre>
```

```
## AIC AICc BIC

## SARIMA(2,0,0)(1,0,1)12 -9.281128 -9.278109 -9.157386

## SARIMA(1,0,0)(1,0,1)12 -9.294789 -9.292790 -9.191670

## SARIMA(2,1,1)(1,0,1)12 -9.262661 -9.258342 -9.117626

## SARIMA(2,0,1)(1,0,1)12 -9.267376 -9.263118 -9.123010
```

The first two models, SARIMA(2,0,0)(1,0,1)12, SARIMA(1,0,0)(1,0,1)12 gives the lowest AIC,AICc,BIC

Cross Validation

Train : 2004 ~ 2011 Test : 2012 - 2015

```
sse1 = c()
sse2 = c()
test_years = seq(12,15,1)
for (year in test_years) {

train_index = 1:(12*(year-4))
test_index = (12*(year-4)+1):(12*(year-4+1))

train <- ozone_sinusoid_residual[train_index]
test <- ozone_sinusoid_residual[test_index]
m1_forecast <- sarima.for(train, p=2, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=12)$pred
m2_forecast <- sarima.for(train, p=1, d=0, q=0, P=1, D=0, Q=1, S=12, n.ahead=12)$pred

sse1 = c(sse1,sum((m1_forecast - test)^2))
sse2 = c(sse2,sum((m2_forecast - test)^2)) }</pre>
```



```
sse = rbind(sum(sse1), sum(sse2)) \\ rownames(sse) = c("SARIMA(2,0,0)(1,0,1)12", "SARIMA(1,0,0)(1,0,1)12") \\ colnames(sse) = c("SSE") \\ print(sse) \# The SSE for both model are low, but SARIMA(2,0,0)(1,0,1)12 is slighly better
```

```
## SSE
## SARIMA(2,0,0)(1,0,1)12 0.0002583248
## SARIMA(1,0,0)(1,0,1)12 0.0002598963
```