Def x* este punt fix pentre
$$\phi$$
 doca $\phi(x^*) = x^*$

Thm. $\phi: [a,b] \rightarrow [a,b] \text{ cont.} \Rightarrow \exists x^* \in [a,b] \text{ pct. } f \times \text{ pendru } \phi.$ Data $\exists K \in (q_1)$ $|\phi'(x)| \leq K < 1 \quad \forall x \Rightarrow \exists ! \quad \neg I \longrightarrow \mathbb{R}$ Mai mult, rink $(x n)_n$, $\{x_{n+1} = \phi(x_n), x_n \xrightarrow{n \to \infty} x^*\}$

 $|\chi^* - \chi_n| \leq |\chi^* - \chi_0|$ $|\chi^* - \chi_n| \leq |\chi^* - \chi_0|$ $|\chi_n = |\chi(\chi_{n-1})|$ $|\chi_n = |\chi(\chi_{n-1})|$ $|\chi_n = |\chi(\chi_{n-1})|$ $|\chi_n = |\chi_n| \leq |\chi_n|$ $|\chi_n = |\chi_n|$ $|\chi_n = |\chi_n| \leq |\chi_n|$ $|\chi_n = |\chi_n|$ $|\chi_n = |\chi_n| \leq |\chi_n|$ $|\chi_n = |\chi_n|$ $|\chi_n$

Thu. $f \in C^2[a_1b]$, $f(a) \cdot f(b) < 0$. $Da\bar{\omega} \neq e[a_1b] \quad a.\uparrow \cdot f(\neq^*) = 0$, $f'(x^*) \neq 0$

 $\Rightarrow \exists \text{ o recinatede } [x^* - f, x^* + f]^*, \forall \exists x \in \mathcal{E}$ $\text{ simul } (x_n) \text{ generat co in } (x), \exists x_n \xrightarrow[n \to \infty]{} x^* \text{ col. pt. } f(x) = 0.$

Obs.
$$X_0 \in [x^* - S_1 \times + f] = X_0 \xrightarrow{n \to \infty} x^*$$

Dar mu stiu uit du mic e $f!$

Cond. suficientà: - alig un interval "bun": f cont, f schimba semull f', f" = 0

