Estimation of Distribution Algorithm Based on Mixture

Qingfu Zhang, Jianyong Sun, Edward Tsang, and John Ford Department of Computer Science, University of Essex CO4 3SQ, Colchester, Essex, U.K.

8th May, 2002, last modified: 13, May

Abstract

Keywords Random EDA, Mixture EDA

1 Introduction

Consider the following binary optimization problem:

$$\max f(x) \tag{1}$$

where $x = (x_1, x_2, \dots, x_n) \in \Omega = \{0, 1\}^n$, and the objective function $f: \Omega \to R^+$. This problem arises naturally in many applications. Estimation of Distribution Algorithms (EDAs) for solving this problem have attracted a lot of attention in evolutionary computation community in the past several years. The instances of EDAs include the Univariate Marginal Distribution Algorithm (UMDA) and the Population Based Incremental Learning (PBIL). Mutual Information Maximization for Input Clustering (MIMIC), Combining Optimizers with Mutual Information Trees (COMIT), Factorized Distribution Algorithm (FDA) and Bayesian Optimization Algorithm (BOA), to name only a few.

Like other evolutionary algorithms, EDAs maintain and improve a population of trail points in the search space Ω . Let Pop(t) be the population at generation t. EDAs work in the following recursive way:

Step 1 Selection Select a set of better solutions with higher objective function values from Pop(t) to form the parent set Q(t) by a selection method

Step 2 Modelling Build a new probabilty function p(x) based on the statistical information extracted from the points in Q(t).

Step 3 Sampling Randomly generate new trial points from the search space Ω according to the probability model p(x), and creat a new population Pop(t+1) by replacing points in Pop(t) with new generated points fully or partially.

In the case where the size of population is infinite, if p(x) is the same as the actual probability distribution of the points in Q(t) and proportional, tournament or truncation selection is used in Step 2, then population will converge to the global optimal solutions. Therefore, in the design of EDAs, p(x) should approximate the actual probability distribution of the points in Q(t) as closely as possible. On the other hand, p(x) should be as simple as possible so that it can be easily constructed and used to sample new trail points. Several different models for p(x) have been proposed. In Univariate Marginal Distribution Algorithm (UMDA) and the Population Based Incremental Learning (PBIL), all the variables in p(x) are independent, i.e.

$$p(x) = p(x_1)p(x_2)\cdots p(x_n,)$$

where $p(x_i)$ is the estimated marginal probability of x_i of the points in Q(t). In order to sample a point $x' = (x'_1, x'_2, \dots, x'_n)$ from the above p(x), one can simply generate each x_i' from $p(x_i)$ independently. UMDA and PBIL igore all the variable dependencies in the probability distribution of points in Q(t). These algorithms work well for the objective function f(x) without significant interactions among the variables in f(x). However, if there are high variable interactions in f(x), UMDA and PBIL may fail in locating the global optimal point. To overcome this shortcoming, De. Bonet et al developed Mutual Information Maximation for Input Clustering (MIMIC) that utilizes the pair-wise dependencies in modelling p(x). In MIMIC, The conditional dependencies of p(x) is defined by a Markovian chain in which each variable is conditioned on the previous one. Very naturally, MIMIC attempts to find a optimal Markovian chain to minimize the cross-entropy between p(x) and actural probability distribution of points in Q(t). However, it is very time-consuming to find the global optimal tree. Therefore, MIMIC uses a greedy search to generate a chain. Bayesian Optimization Algorithm (BOA) can be regarded as an extension of MIMIC. It use a Bayesian network to model p(x). However, finding a "optimal network" is often very timeconsuming. As in MIMIC, heuristics have to be employed in learning the network struture in the implementation of BOA. We observed that MIMIC and BOA can utilize only part of pair-wise dependencies. Therefore, no

matter what search methods are used in learning the network struture, the resulted p(x) cannot approximate the actural probability of points in Q(t) properly in these algorithms. In other words, the "optimal" structure should have little help in improving the performace of these algorithms.

In this paper, we propose a new EDA for problem (1), called EDA Based on Mixtures (EDAM), in which the mixture of chains is used to model p(x). We randomly pick several chains and set their mixture as the model of p(x). Since EDAM does not involve any search for the optimal structure, the overhead at each iteration is reasonable small. We EDAM and MIMIC on a number of test functions. Our results show that the actual performance of EDAM is very similar to that of MIMIC.

2 Algorithms

2.1 MIMIC

In MIMIC, the probability model p(x) in Step 2 is defined by is $\pi = i_1 i_2 \cdots i_n$, a permutation of $1, 2, \cdots, n$, In the following, we write it as $p_{\pi}(x)$. $p_{\pi}(x)$ is of the form:

$$p_{\pi}(x) = p(x_{i_1}|x_{i_2}) \cdots p(x_{i_{n-1}}|x_{i_n})p(x_{i_n})$$

where $p(x_{i_{k-1}}|x_{i_k})$ is the estimated conditional probability of variable $x_{i_{k-1}}$ conditioned on $x_{i_{k-1}}$ of the points in Q(t). The dependency structure of $p_{\pi}(x)$ is the chain in which x_{i_k} is the k-th node. MIMIC seeks the permutation π that minimizes the Kullback-Liebler distance $d(p_{\pi}, p_{true})$ between $p_{\pi}(x)$ and the actural probability $p_{true}(x)$. $d(p_{\pi}, p_{true})$ is defined as

$$d(p_{\pi}, p_{true}) = \sum_{x \in \Omega} p_{true}(x) [\ln p_{true}(x) - \ln p_{\pi}(x)]$$

Finding the exact optimal permutation π is very computational expensive. Therefore, De Bonet et al proposed to use a heuristic algorithm to search a near-optimal π . The time complexity of their heuristic algorithm is $O(n^2)$.

There are $\frac{n(n-1)}{2}$ pairwise dependencis in p_{true} MIMIC can make use of only n-1 pairwise dependencis. Therefore, the gap between $p_{\pi}(x)$ and $p_{true}(x)$ cannot be eliminated in theory.

2.2 EDAM

In EDAM, we model p(x) as a mixture of several chain based probabilities:

$$p(x) = \frac{1}{M} \sum_{j=1}^{M} p_{\pi_j}(x)$$
 (2)

where $\pi_j = i_{j1}i_{j2}\cdots i_{jn}$ $(j=1,2,\cdots,M)$ are M different permutations, $p_{\pi_i}(x)$ is:

$$p_{\pi_i}(x) = p(x_{i_{i1}}|x_{i_{i2}}) \cdots p(x_{i_{i(n-1)}}|x_{i_{in}})p(x_{ji_n})$$

 $p(x_{i_{j1}}|x_{i_{j2}})$ and $p(x_{ji_n})$ are estimated conditional probabilities and marginal probabilities of the points in Q(t), respectively. To reduce the computational cost, we randomly generate M permutations in each iteration of EDAM. The sampling in Step 3 of EDAM is also very simple. To sample a point from the model (2), we can randomly pick a component probability function $p_{\pi_j}(x)$ with equal probability, then sample a point from $p_{\pi_j}(x)$.

3 Expirical Results

Jianyong, please clarify the following issues:

- (1) the detailed information of the selection?
- (2) how many runs per instances.

We have performed experiments to compare the performance of MIMIC and EDAM. In our experiments, we used trunction selection for both MIMIC and EDAM. For all the runs, the r% best points in Pop(t) are selected to enter into Q(t) in Step 2. M is set to 10 in EDAM.

3.1 Test Problem

We used binary quadractic optimization problems as test problems. Binary quadractic optimization problems are of form:

$$\max f(x) = x^T A x \tag{3}$$

where $A = (a_{ij})$ is an $n \times n$ symmetric matrix. These problems are known to be NP-hard. In our experiments, we randomly generated a_{ij} from (10, -10).

3.2 Comparision

The following is the test results for problem 10. The matrix A is generated randomly. We generated different As which include different dimensions and zero percents and stored in some data files. For example, data file a30.100.dat denotes that this matrix has dimension 30 and 10 zero-percentages and the last 0 of 100 means the index of the data files with dimension 30 and zero percentages 10. For every zero percentage (10, 30, 50, 70, 90), we have 10 randomly-generated data files. And there are two classes of data files of dimension 30 and 60. The data files are numbered from 1 to 100.

The following table lists the results when testing a30.500.dat.

	a30.500.dat
MIMIC	5%
Random EDA	(1) 5% (2) 30% (3) 30% (4) 30%
Mixture EDA	30%

The percents in the table denote the percentages of best solutions found by these algorithms. For a30.500.dat, the best solution found is 522.1920. In the row of Random EDA, (1), (2), (3), (4) denote different chains used in the algorithm, which are 1, 5, 10, 100, 1000 (Mixture EDA), respectively in order to see the influence of different numbers of chains used. We can see that along with the increase of chains, the performance of Random EDA becomes better, then preserves constant, and 10 is the crucial point.

Random-Tree EDA: The previous Random EDA and Mixture EDA algorithm all use randomly-generated chains to generate new points in the next population. The Random-Tree EDA uses some randomly-generated trees to generate new points. Through doing some experiments (a30.*.dat, a60.*.dat), we find that the performance of Random-Tree EDA has no big difference with EDA who adopts randomly generated chains. Also, we find that EDA algorithms no matter using randomly-generated chains or trees has the similar performance as MIMIC algorithm.

The following tables list the best fitness values found by MIMIC and Random-EDA of problem 10 with different matrix As.

	1	2	3	4	5
MIMIC	1254.2859	411.3617	617.0026	502.4735	570.0186
Random EDA	1254.2859	411.3617	617.2584	502.4735	570.0186

	6	7		8			9			10					
MIMIC	395.2712	89	9.7845	539.8989		457	457.7609		487.8002)2				
Random EDA	395.2712	89	9.7845	539.		.8989	457	7.7	7609	487	.800)2			
	11	12		13	3		14			15					
MIMIC	411.1794	46	2.8862	59	97	7.8094 25		9.1725		546	.305	57			
Random EDA	411.1794	46	2.8862	59	97.8094		259	259.1725		546	.305	57			
	16	17		18	8 19		20								
MIMIC	408.9334	38	1.5863	40)8	.0520	20 462.832		3328	485	.152	26			
Random EDA	408.9334	38	1.5863	40)8	.0520	462.8328		485	.152	26				
	21	22		23	3		24		25						
MIMIC	522.1920	37	3.0384	32	22	.3348	330	330.1824		387.907		73			
Random EDA	522.1920	37	3.0384	32	22	.3348	330).]	1824	387	.907	73			
	26	27		28	3		29			30					
MIMIC	400.7901	41	6.5165	36	66	.0421	315	5.]	1369	361	.823	86			
Random EDA	400.7901	41	6.5165	36	66	.0421	315	5.]	1369	361.823		86			
	31	32		33	3		34			35					
MIMIC	275.9103	26	2.0890	23	38	.9798	287	7.2588		244	.824	12			
Random EDA	275.9103	26	2.0890	23	238.9798 28		287	287.2588		244.824		12			
	36	37		38	8 39		39	39		40					
MIMIC	316.5128	45	3.3962	23	238.6005		282.3145		343.458		32				
Random EDA	316.5128	45	3.3962	23	38.6005		282.3145		343.458		32				
	41	42		43	3		44		45						
MIMIC	116.4867	16	2.0989	13	32	.4285	100.1149		164.905		51				
Random EDA	116.4867	16	2.0989	13	32	.4285	100.1149		164.905		51				
	46	47		48	3		49		50						
MIMIC	127.3539	10	9.6411	19	98	.8599	129.6940		6940	177.05		13			
Random EDA	127.3539	10	9.6411	19	98	.8599	129	9.6	6940	177.054		13			
	51	5	2		5	3	54		4	55					
MIMIC	1720.7623	1	487.330	0	1	693.68	55 1500.9		500.9	9944 16		18.6	859		
Random EDA	1720.7623	1	487.330	0	1	693.68	55 1500.9		500.9	9944 161		18.6	859		
	56		57		58		<u>'</u>		59		60				
MIMIC	1158.6860		1350.986		64 1784.747		7479	479 1221.		1.0650 1		14	57.03	314	
Random EDA	1162.626	7	1350.986		4 1784.747		7479	$479 \mid 1208$		08.3145		14	57.03	314	
	61	6	2	$\overline{}$	63			64			65				
MIMIC	1286.4973	1	420.242	3	1	527.15	575 161		619.0	619.0562			1195.7518		
Random EDA	1286.4973	1	420.242	3 1527.15			75 1619.0		562 1195.			518			

	66	67	67		68			70		
MIMIC	1377.433	0 1150.33	1150.3335		1444.7603		651	51 1296.		1625
Random EDA	1373.2068	1150.33	35	1444.7603		1513.965		51 1296.		1625
	71	72		73	73			75		
MIMIC	1019.3873	1102.79	91	1281.7289		1300.16		39 898.		.3020
Random EDA	1020.287	3 1102.79	91	1278.8395		1300.16		639 906		6.6753
	76	77		78	78			80		
MIMIC	1139.5620	1352.214	6	1094.170	1094.1706		9	100	438	
Random EDA	1139.5620	1352.214	6	1094.170	1094.1706 9		9	1056.97		56
	81	82	83		84		85			
MIMIC	875.5979	919.0432	89	9.0190	9.0190 1122		.0436 600		0.1423	
Random EDA	875.5979	919.0432	89	9.0190 112		22.0436 6		00.1423		
	86	87	87 88		89		90	00		
MIMIC	925.6242	598.2206	85	1.8573 84		43.4505 6		304.5557		
Random EDA	925.6242	598.2206	86	0.9593 84		43.4505 5		599.6567		
	91	92	93		94	94		95		
MIMIC	421.9731	577.4069	33	1.3233	47	5.1880	54	8.7	675	
Random EDA	421.9731	577.4069	33	1.3233	474	.0643	54	8.7	675	
	96	97	98	,	99)	10	0		
MIMIC	538.1555	490.2890	48	38.0883	52	26.8893	55	6.6	000	
Random EDA	538.1555	490.2890	48	7.2258	52	26.8893	55	6.6	000	

The bold number in the tables show the better fitness value found. From the above table, we can find that the best fitness values obtained by MIMIC and Random EDA are about the same. The following figures show the evolution graph of MIMIC and Random EDA for some different data. It also can be seen from these figures that the performance of MIMIC and Random EDA is about the same.

4 Conclusion

Many EDA algorithms assume that the structure of solutions reflects complex relationships between the different input parameters. Hence, many of the search work in EDAs is paid for finding the optimal structure out. In many cases, to find the optimal structure is a NP-hard problem. And obviously, no one tell us if the search for optimal structure is necessary. We also doubt if the structure can be clearly expressed by a single optimal structure like chain or tree.

In this paper, we empirically claim that the optimal chain is not necessary.

Figure 1: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a30.100.dat

Figure 2: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a30.100.dat

Figure 3: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a30.300.dat

Figure 4: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a30.308.dat

Figure 5: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a30.500.dat

Figure 6: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a30.708.dat

Figure 7: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a60.100.dat

Figure 8: Evolution Graph of $F(x)=x^TAx$ for different algorithm (MIMIC and Random-EDA) with data file a60.308.dat

By comparison of the proposed Random EDA and MIMIC (a well-known EDA algorithm), we find that the performance of these two algorithms is about the same.

In the future work, we will devote to exploit if there exists some optimal structures (for example, some structures designed by uniform Latin squares or orthogonal Latin squares or golfer permutation) which can include enough complex relationships between the input parameters.

References

- [1] Pelikan, M., Goldberg, D.E., & Cantu-Paz, E. (1998). Linkage problem, distribution estimation, and Bayesian networks (Technical Report 98013). Urbana, IL: University of Illinois at Urbana-Champaign.
- [2] Pelikan, M., Goldberg, D.E., & Cantu-Paz, E. (1999). *Boa: The bayesian optimization algorithm* (Technical Report 99003). Urbana, IL: University of Illinois at Urbana-Champaign.
- [3] Pelikan, M., & Muhlenbein, H. (1999). The bivariate marginal distribution algorithm. In Roy, R., Furuhashi, T. & Chawdhry, P.K. (Eds.), Advances in Soft Computing Engineering Design and Manufacturing (pp. 521-535). London: Springer-Verlag.
- [4] De Bonet, J.S., Isbell, L.S Jr., Viola, P. (1997). MIMIC: Finding Optima by Estimating Probability Densities. Advances in Neural Information Processing Systems 1997 MIT Press, Cambridge, MA.
- [5] Baluja, S. (1994). Population=Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, (Carnegie Mellon Report, CMU-CS-94-163).
- [6] Muhlenbein, H. (1998). The Equation for Response to Selection and its Use for Prediction, Evolutionary Computation 5, 303-346.
- [7] Muhlenbein, H. and Paaβ, G. (1996). From Recombination of Genes to the Estimation of Distributions I. Binary Parameters, in H.M. Voigt, et al., eds., Lecture Notes in Computer Science 1411: Parallel Problem Solving from Nature - PPSN IV, 178-187.
- [8] Muhlenbein, H. and Mahning, T. (1999b). The Factorized Distribution Algorithm for Additively Decomposed Functions, Second Symposium on Artificial Intelligence. Adaptive Systems. CIMAF99, 301-313, La Habana