Timer Nedir?

- İşlemci içerisine kaydedilen bir süre ile geçen süreyi karşılaştırma,
- Belli bir süre sonunda kesme üretme,
- Sayıcı veya sayaç uygulamaları,
- Dışarıdan gelen pals değerlerini sayma, gibi işlemlerde kullanılmaktadır.

Wikroişlem

Timer Nedir?

- Timer modülleri birçok mikro denetleyicide bulunan ve temel görev zamanlama yapmak olan birimlerdir.
- Zamanlama da kullanılacağı gibi sayıcı olarak da kullanılabilmektedir.
- Belirli bir sayıdan aşağı birer birer düşer yada istenilen noktaya çıkartılabilir. Bu sayma işlemini clock hızına göre yapabildikleri gibi dışarıdan verilen işaretlerle de yönetilebilmektedir.
- İşlemci frekansına bağlı olarak çalışırlar.

2

PIC16F877 Timer Özellikleri

- Pic16f877 mikrodenetleyicisi 3 adet zamanlayıcı (timer) birimi bulundurmaktadır.
 - Timer0
 - Timer1
 - Timer2

4

Timer 0 Modülü

- 8 bit zamanlayıcı/sayıcı
- Yazılabilir ve okunabilir
- 8 bit yazılım ile programlanabilir Prescaler
- Dahili 4 Mhz ya da harici clock sinyali
- FF'ten 00'a taşma kesmesi
- Düşen yada yükselen kenar clock sinyali seçimi
- Option register ile ayarlamaları yapılmaktadır.

5

OPTION REGISTER (DURUM KAYDEDİCİSİ)

- Bu register değişik kontrol bitlerini içeren özel bir register'dır.
- B portunun çıkışlarını pull-up yapan, interrupt sinyalinin tetikleme kenarını seçen, TMRO ve WDT için frekans bölme sayısını belirten ve TMRO veya WDT seçme bayrağı bulunduran bir registerdir.

OPTION_REG REGISTER

RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0	RAV-1	RAV-1	RAV-1	RW-1	RAV-1	R/W-1	R/W-1	R/W-1
(NO 0 111/200 1000 1002 100 100	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

6

7. RBPU': PORTB pull-up aktif etme bayrağı

- 1 : PORTB pull-up' lar pasifleştirilir.
- 0 : PORTB pull-up' lar aktifleştirilir.

6. INTEGD : Interrupt kenarı seçme biti

- 1: Interruptlar RBO/INT sinyalin yükselen kenarında oluşur
- 0 : Interruptlar RBO/INT sinyalin düşen kenarında oluşur.

5. TOCS: TMR0 clock sinyali kaynağı seçme biti

- 1 : RA4/TOCKI pinden alınan clock sinyali
- 0 : Komut dizimi ile oluşturulan clock (CLKO)

4. TOSE: TMR0 harici clock sinyali kenar seçme biti

- 1 : Düşen kenarda artış
- 0 : Yükselen kenarda artış

3. PSA: Frekans bölücü seçme biti

- 1 : Prescaler (frekans bölme sayısı) değeri WDT için geçerli
- 0 : Prescaler değeri Timer0 için geçerli

2.PS2, 1.PS1, 0.PS0: Prescaler değeri seçme bitleri

PS2	PS1	PS0	TMR0 Değeri	WDT Değeri		
0	0	0	1/2	1/1		
0	0	1	1/4	1/2		
0	1	0	1/8	1/4		
0	1	1	1/16	1/8		
1	0	0	1/32	1/16		
1	0	1	1/64	1/32		
1	1	0	1/128	1/64		
1	1	1	1/256	1/128		

Mikro

Timer1 Modülü

- 16 bitlik zamanlayıcı/sayıcı
- Okunabilir ve yazılabilir 2 adet 8-bit yazmaç bulunmaktadır. (TMR1H, TMR1L)
- 8 bitlik programlanabilir prescaler değeri
- Dahili ve harici clock sinyali seçimi
- FFFFh'ten 0000h taşma kesmesi
- CCP modülünden resetleme,
- T1CON register ile ayarlamalar yapılmaktadır.

9

3. T1OSCEN: Timer1 osilatör kaynağı yetkilendirme bitidir.

- T1OSCEN 1ise osilatör kaynağı etkindir,
- 0 ise kullanım dışıdır.
- 2. T1SYNC: Harici clock kaynağının senkron kontrolünü yapan hittir
 - T1SYNC 1 ise harici kaynak ile Timer1 eşzamanlı çalışmaz,
 - 0 ise eşzamanlı bir çalışır.
- 1. TMR1CS:Timer 1 için clock kaynağının seçildiği bittir.
 - TMR1CS 1 ise clock kaynağı olarak RCO/T1OSO/T1CKI pininden gelen sinyalin yükselen kenarları seçilir.
- TMR1CS'nin 0 olması halinde ise dahili clock kaynağı kullanılır.
- **0. TMR1ON:**Timer1' e yetki veren bittir.
 - Timer1 kullanılır durumdadır,
 - 0 ise kullanım dışıdır.

[11]

T1CON Register TIMER1 Kontrol Kaydedicisi

- T1CON registeri timer1'in ayarlamalarının yapıldığı registerdir. Bu registerda sırası ile şu bitler bulunmaktadır;
- 7. ve 6. bitler boştur ve değer yazılamaz.

T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

 5. T1CKPS1 ve 4. T1CKPS20 bitleri prescaler değerinin ayarlandığı bitlerdir. Bu bitlerin aldıkları değerlere göre oluşan prescaler değeri aşağıdaki resimde görülmektedir.

bit 5-4

T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits

11 = 1:8 Prescale value 10 = 1:4 Prescale value

01 = 1:2 Prescale value

00 = 1:1 Prescale value

[10

Timer2 Modülü

- 8 bit zamanlayıcı (TMR2 kaydedici),
- 8 bit peryot kaydedici (PR2),
- Okunabilir ve yazılabilir,
- · Yazılım ile programlanabilir prescaler,
- TMR2, PR2 eşlemesinde kesme,
- Saat kaymasını üretmek için TMR2 çıkışının seçimli kullanımı SSP modülü,
- T2CON register ile ayarlamalar yapılmaktadır.

12

 T2CON registeri timer2'in ayarlamalarının yapıldığı registerdir. Bu registerda sırası ile şu bitler bulunmaktadır;

T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	ı
bit 7							bit 0	

- 7. bit boştur ve değer yazılamaz.
- 6-3 TOUTPS3:TOUTPS0: Timer2'de postscaler ayarlarının yapıldığı bitlerdir.
 - 0000 = 1:1 postscale
 - 0001 = 1:2 postscale
 - 0010 = 1:3 postscale
 - -
 - -
 - 1111 = 1:16 postscale
- 2.TMR2ON: Timer2' ye yetki veren bittir.
 - 1 = Timer2 is on
 - 0 = Timer2 is off
- 1-0 T2CKPS1:T2CKPS0: Timer2'de prescaler'in ayarlandığı bitlerdir.
 - 00 = Prescaler is 1
 - 01 = Prescaler is 4
 - 1x = Prescaler is 16

Timer 0 için prescaler zamanı hesabı; • Timer 0 8 bitliktir. Yani maksimum tutabileceği sayı değeri 255'tir. 1 x (256-TMR0) x Prescaler Osilatör frekansı/4 • Online Timer Hesabı

Prescaler Hesaplamaları

Timer Hesaplamaları Biz bu örnekte PIC saat kaynağını kullanacağız ve 4ms'lik bir kesme oluşturacağız. Dahili osilatörün frekansı 4MHZ. Fakat PIC işlem yaparken bunun 1/4'ünü kullanır. Bu yüzden benim frekansım 1Mhz oluyor. Yani mikrodenetleylci her 1 mikro saniyede (us) bir işlem yapamaktadır. Prescaler değerini 32 seçiyorum. Buradan 32*1us =32uS çıkıyor. Yani Timer0 32 mikro saniyede bir sayacak. Bizim istediğimiz süre 4 ms olduğuna göre Timer'ın kaç kez saydıktan sonra kesme oluşturacağını bulalım. 4000/32=125 kez sayması gerekiyor. Timer255'ten 256'ya geçerken kesme oluşturduğundan 256-125=131 çıkar. Yani biz TMR0 registerına 131 değerini yükleyeceğiz. Böylece TMR0, 131den saymaya başlayacak ve 256'ya gelince kesme oluşacak. Kesme oluştuğunda TMR0 içeriği 0 olur ve Timer0 Kesme bayrağı 1 olur(T0IF=1). Bizim tekrar kesme oluşturabilmemiz için, kesme altprogramı içinde bu bayrağı sıfırlamamız ve TMR0 içerisine tekrardan 131 değerini girmemiz gerekir.


```
MikroC Timer Örnekleri
 void interrupt() {
  if (TMR0IF_bit) {
                    // increment counter
   TMR0IF_bit = 0; // clear TMR0IF
   TMR0 = 6;
 void main() {
  OPTION_REG = 0x82; // Assign prescaler to TMR0
  ANSEL = 0;
                 // Configure AN pins as digital
  ANSELH = 0;
  C1ON_bit = 0;
                   // Disable comparators
  C2ON_bit = 0;
  TRISB = 0;
                // PORTB is output
  PORTB = 0xFF;
                   // Initialize PORTB
  TMR0 = 6;
                // Timer0 initial value
  INTCON = 0xA0;
                   // Enable TMRO interrupt
               // Initialize cnt
  cnt = 0;
   if (cnt >= 1000) {
    PORTB = ~PORTB; // Toggle PORTB LEDs
              // Reset cnt
    cnt = 0;
  } while(1);
```

Watchdog Timer • Watchdog, Türkçe karşılığı bekçi köpeği anlamına gelmektedir. • Peki mikrodenetleyicideki amacı nedir? • Mikrodenetleyici harici sebeplerden veya kodlardaki bir hata sebebiyle kilitlenebilir. • Mikrodenetleyici kilitlendiğinde yürüttüğü işlemleri durdurur. • Bu tür durumlarda mikrodenetleyicinin yeniden başlatılması veya resetlenmesi gereklidir. • İşte Watchdog timerlar burada devreye girerler. • Watchdog timerlar belirlenen bir süre sonunda sıfırlanırlar ve işlemciye reset attırırlar.

```
MikroC Timer Örnekleri
  void interrupt() {
  if (TMR1IF_bit) {
    cnt++; // increment counter
TMR1IF_bit = 0; // clear TMR0IF
    TMR1H = 0x80:
  void main() {
ANSEL = 0;
                       // Configure AN pins as digital
  ANSELH = 0;
C1ON_bit = 0;
                         // Disable comparators
   C2ON bit = 0:
   PORTB = 0xFF;
   TRISB = 0:
                       // PORTB is output
  T1CON = 1;
TMR1IF bit = 0;
                         // Timer1 settings
// clear TMR1IF
   TMR1H = 0x80;
TMR1L = 0x00;
                          // Initialize Timer1 register
   TMR1IE_bit = 1; // enable Timer1 interrupt
  unt = 0; // initialize cnt
INTCON = 0xCO; // Set C15
   do {
if (cnt >= 72) {
PORTB = ~PORTB; // Toggle PORTB LEDs
     cnt = 0;
```

