i.i.d	examples are drawn independently from the same distribution – and this same distribution is used to generate both the training set and the test data.
overfitting	when a model learns to replicate noise or spurious patterns in the training data. An overfit model may closely match training data but may fail to
	generalize to unseen test data.
underfitting	when a model is too simple. informed by too few features or regularized too much, and can not adequately capture the underlying structure of the data.
Supervised	Has a clear objective, and the model's performance
learning	can be quantitatively measured using metrics. Overfitting risks and labeled data may be time- consuming to obtain.
Unsupervise d learning	Does not require labeled data, and may lead to insights that were not seen in supervised learning. Not always have a clear semantic meaning, and may not be suited for tasks that require precise categorization or prediction without labeled examples.
Reinforceme nt Learning	Agents and environments, rewards and punishments. ML paradigm where an agent learns to make decisions by interacting with an environment.
Neural Networks	A computational model inspired by the structure and functioning of the human brain. Perceptrons, activation functions, feedforward and backpropagation
Deep Learning	Convolutional Neural Networks, Recurrent Neural Networks: a subset of machine learning that involves the use of artificial neural networks with multiple layers
Evaluation Metrics	quantitative measures used to assess the performance of a machine learning model
Ensemble learning	Boosting(ada boost)
Bias and Variance	There is a trade-off between bias and variance, and finding the right balance is crucial for building models that generalize well.
Bias	High bias can lead the model to underfit the data, meaning it is too simplistic and fails to capture the underlying patterns in the training data.
Variance	High variance can lead to overfitting, where the model performs well on the training data but fails to generalize to new, unseen data.
Regularizatio	L1 and L2 regularization. a technique used in
n	machine learning to prevent overfitting and improve the generalization performance of a model.
Clustering Algorithms	K-Means, hierarchical clustering, algorithms are used to group similar data points into clusters. Unsupervised learning
PCA(主成分 分析)	Dimensionality reduction technique. The goal is to retain the most important information in the data while reducing its dimensionality.
Deployment	process of taking a trained machine-learning model and making it available for use in a real- world environment

Ch. 2 Bayes' rule

		P(x y) = P(y x)P(x)/P(y)	
Posterior	P(x y)	Likelihood	P(y x)
Prior	P(x)	Normalization constant	P(v)

Assume we have a HHHTTHHT

Maximum likelihood estimate for h: 5/8

Prior density for the various values of $h \in [0,1]$ give the formula for the posterior probability density p(h|HHHTTHHT) using the prior p(h)

$$p(h|HHHTTHHT) = \frac{p(HHHTTHHT|h)p(h)}{p(HHHTTHHT)}$$

Marginal likelihood: $p(HHHTTHHT) = \int_0^1 q^5 (1-q)^3 p(q) dq$

$$=\frac{h^5(1-h)^3p(h)}{\int_0^1 q^5(1-q)^3p(q)dq}$$

Conditional probability: containing the word "payment", given that the email is a spam email, is 72%. Suppose that the conditional probability of an email being spam, given that it contains the word "payment", is 8%. Find the ratio of the probability that an email is spam to the probability that an email contains the word "payment" payment = p(a), spam = p(b) p(a|b) = 0.72 = p(a^b)/p(b), p(b|a) = 0.08 = p(a^b)/p(a) p(b|a)/p(a|b) = p(b)/p(a) = 0.72/0.08 = 9/1

There are two boxes. Box 1 contains three red and five white balls and box 2 contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and a ball chosen at random from this box turns out to be red. What is the posterior probability that the red ball came from box 1?

 $\begin{array}{l} P(box=1|red)=? \\ P(red|box1) = (3/8)/(1/2) = 3/4 \\ P(box1|red) = p(red|box1)*p(box1)/p(red)=(3/4*1/2)/(37/56) \end{array}$

Ch. 3 Regularized Least Squares

Regularized least squares	Distance metrics using norm. L1 is $ x+y = 1$ (square), L2 is $\sqrt{(x^2+y^2)}$ (circle)
Curse of Dimensional	The volume of space increases as the dimensionality increase

Ch. 4 Loss Function, Linear classification, SGD

Lilleal Classification	on, the goal is to find the infeat decision bound	Jai,
Loss function	Serves as a quantitative measure of how	
	well the model is performing on a given	
	task by comparing its predictions to the	
	actual (ground truth) values.	

$$MSE = \frac{1}{N} \Sigma_{i=1}^{N} (y_i - ^i)^2$$

 y_i : actual value for sample i, i : predicted value

Classification loss functions: Binary Cross-Entropy Loss

$$-\frac{1}{N} \sum_{i=1}^{N} [y_i \log(^i + (1 - y_i) \log (1 - ^i)]$$

Linear Regression	used to predict the value of a variable based on the value of another variable
Linear regression	formula: $y_i = f(x_i, \beta) + e_i$

Ch 5 Dorgontron

Cn. 5 Fercept	TOIL
perceptron	One of the simplest neural network architectures

Binary input: x, weight: w, bias; b

Linear decision boundary: $z = w^*x + b = 0$

x_0	x_1	x_2	y	
-1	2	1	-1	
1	1	1	+1	
-2	3	2	-1	
2	-1	-1	+1	

Initially, w = (-1, 1, 1)

Linear decision boundary: $z = w^*x + b = 0$ Passes the weighted sum through an activation function to produce a binary output. Converges on linearly separable data.

Simulate one pass through the following data with the perceptron algorithm described in the lecture and homework.

Start with w = (-1, 1, 1) and show the resulting weight vector after each example. (Assume that the perceptron algorithm predicts incorrectly when $w \cdot x = -1$ algorithm predicts incorrectly when $\mathbf{w} \cdot \mathbf{x} =$

0, and ignore the bias term.) -first example: $w \cdot x = 4$, wrong, w = w + yx = (-1, 1, 1) - (-1, 2, 1) = (0, -1, 0) -second example $w \cdot x = -1$, wrong, w = w + yx = (0, -1, 0) + (1, 1, 1) = (1, 0, 1)

-third example $w \cdot x = 0$, wrong, w = w + yx = (1, 0, 1) - (-2, 3, 2) = (3, -3, -1)-fourth example, $w \cdot x = 10$, correct no update.

Ch. 6 SVMs (support vector machines)

The support vectors are the closest points to the boundaries. Are the

points that lie or	the margin boundaries $wx+b=1$ and $wx+b=-1$
SVM and perceptron difference	while both perceptrons and SVMs are linear classifiers, SVMs emphasize maximizing the margin and provide more flexibility through the use of kernels for handling nonlinear separation
SVM	Classification algorithm that finds the maximum margin separating hyperplane
Optimization for SVM	Maximizing γ . Constraints will be that all training instances are correctly classified.
Properties	w is a linear combination of the support vectors/ pos and neg examples contribute equally to w
Hard margin	Hard constraint ↑ w (and b) depend only on support vectors
Soft margin	Allow it to make some errors but it will have to pay a price for each error…this price is slack

Ch. 7 Kernels

$$x = < x_1, x_2 > \rightarrow \Phi(x) = < x_1^2, \sqrt{2}x_1x_2, x_2^2 > \Phi(x) * \Phi(z) = (x * z)^2$$

Cn. 7 Kernels $x = < x_1, x_2 > \rightarrow \Phi(x) = < x_1^2, \sqrt{2}x_1x_2, x_2^2 > \Phi(x) * \Phi(z) = (x*z)^2$ This is calculated by inserting the method inside the given function Kernelized SVM Prediction: (Duality) Functional margin: $y(w^*x + b)$ Geometric margin: $y(w^*x + b)/||w||_2$ \rightarrow maximizing this is equiv to

 $\min_{w,h} ||w||_2$ subject to $y_i(w * x_i + b) \ge 1$ for all i, and $\min_{w,h} \frac{1}{2}(w*w)$ subject to $1-y_i(w*x_i+b) \leq 0$ for all i $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$ means **w** is a weighted sum of examples (if without*)

$$b = -\frac{1}{2}(\min_{i:y_i = +1}(w^* * x_i) + \max_{j:y_i = -1}(w^* * x_j))$$

Support vectors: (1,0) ,(0,1), (1,1) Equation for maximizing margin: y=wx+b, w=-1 so x+y-b=0 Therefore $|x+y-b|/\sqrt{(1+1)}$, $b=3/2 \rightarrow y=-x+3/2$ Geometric margin: $|2-2/3|/\sqrt{(2)}=\sqrt{(2)/4}$

Mercer's condition	ensures the positive definiteness of a kernel function. a necessary and sufficient condition for a function to be a valid kernel.
-----------------------	---

Ch. 8 Naïve Bayes

Naïve Bayes	Assume that the features are conditionally independent given t the class.
	$p(x_1, x_2 y) = p(x_1 y) p(x_2 y)$
m- m- v (lo	$p(x_1, x_2 y) = p(x_1 y) p(x_2 y)$

x_1	x_2	y (label)
1	1	+
1	0	+
0	1	+
0	0	_
0	0	_
1	1	_
1	1	_

Naive Bayes estimates: p(y = +) = 3/7; $p(y = -) = 4/7$;
p(x1=1 y=+)=2/3; p(x1=1 y=-)=1/2;
$p(x_1-1)y=+2/3, p(x_1-1)y=-2/2, p(x_1-1)y=-2$
$p(x_1 = 0 y = +) = 1/3, p(x_1 = 0 y = -) = 1/2,$ $p(x_1 = 1, x_2 = 0 y = +) = 2/3 \cdot 1/3 = 2/9$
$p(x_1-1, x_2-0)y-1 - 2/3 \cdot 1/3 - 2/3$ $p(x_1=1, x_2=0) - 1/2 \cdot 1/2 = 1/4$
Thus Naive Bayes estimates
$p(+ x) \propto 3/7 \cdot 2/9 = 2/21$, and
$p(+ x) \propto 3/7 \cdot 2/9 = 2/21$, and $p(- x) \propto 4/7 \cdot 1/4 = 3/21$

Ch. 9 K-Nearest-Neighbors

Is a non-parametric method. Normalize dimensions (distance

Decision boundaries change with k(ex, change distance metrics) Noise can cause problems; 10 % chance of fail

Ch. 10 Unsupervised learning(k-means)

Steps to finding k

- Randomly initialize center for a kth cluster
- assign example n to the closest center
- points assigned to cluster k
- re-estimate center of cluster k
- return cluster assignments

Ch. 11 Gaussian Distribution, Expectation Maximization

om 11 Guaddian Biotribution, Expectation maximization			
E step (P2)	Find the expectation of where the new point would be assigned to $\mathbb{P}(\mathbf{Z} \mathbf{X}, \pi^{\text{current}})$		
M step (P1)	Change clusters to a different location $\pi^{\text{new}} = \operatorname{argmax}_{\pi} \sum_{\mathbf{Z}} \mathbb{P}(\mathbf{Z} \mathbf{X}, \pi^{\text{current}}) \cdot \ln \mathbb{P}(\mathbf{Z}, \mathbf{X} \pi)$		

Ch. 12 Supervised learning (Entropy)

Cii. 12 Supervised learning (Entropy)				
Entropy	An amount of information in something			
Decision Tree	Small and simple trees are better			

$$H(s) = -p_{+} \log(p_{+}) - p_{-} \log(p_{-})$$

Ch. 13 Reinforcement Learning: Markov Decision Processes

(MD13)				
Utilities	How much it is worth can be different in			
	people; additive or discounted utility			
Optimal	Bellman Equations; values change over time			
utility	but the rewards don't change.			
ModelBased	algorithm builds a model of the underlying			
Learning	structure or patterns in the data during the			
_	training process			
Model Free	learning optimal strategies or policies directly			
learning	from observed data, rather than creating an			
	internal representation of the system.			

Optimal value function

$$V^*(s) = \max_{a} Q^*(s, a)$$

Optimal value action function

$$Q^*(s, a) = \Sigma_{s'}T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$$

Optimal policy

$$\pi^*(s) = \operatorname{argmax} Q^*(s, a)$$

Value iteration update equations

$$V_{i+1}(s) \max_{\alpha} \Sigma_{s'} T(s, \alpha, s') [R(s, \alpha, s') + \gamma V_i(s')]$$

- Transition probability function: T(s,a,s')
- Probability of transitioning from s to s' under a
- Reward function: R(s,a,s') Immediate reward obtained when trasitioning from s to s' by a

Discount factor: γ

Parameter to determine the importance of future rewards in decision making process

Action taken by an agent in a given state: a

Current state: :

Q-learning: $Q(s,a)=(1-\alpha)\cdot Q(s,a)+\alpha\cdot (R(s,a,s')+\gamma \max_a$ $\widetilde{Q}(s',a))$

Ch. 14 Ensemble Methods and Boosting

on. I I bhochibic Mcthodo and booting				
Ensemble Methods	avoid overfitting, increase weights of the misclassified dots			
AdaBoost	Give misclassified instances a higher weight. Add up the weak classifiers			
	H _{Band} = sign (0.42 + 0.65 + 0.92 + 0.92 + 0.92			
('h 1E l\oom ooming				

Ch. 15 Deep Learning

Multilayer perceptron: neurons are arranged in layers (input, hidden, output)

update parameters by propagating the Backpropagation error backward through the network

$$\delta_1 = \frac{dL}{da_1} = \frac{dL}{dz_1} * \frac{dz_1}{da_1} = \frac{dL}{dz_1} * f(a_1)(1 - f(a_1))$$

 $\frac{dL}{dW_2} = \frac{dL}{dZ_1} * \frac{dZ_1}{dw_2}$

$$\delta_2 = \frac{dL}{da_2} = \frac{dL}{dz_1} * \frac{dz_1}{dz_2} * \frac{dz_2}{da_2} = f'(a_2) * w_2^1 * \delta_1$$

$$\delta_5 = \delta_2 * w_5^2 + \delta_3 * w_5^3 + \delta_4 * w_5^4$$

$$a_2 = w_5^2 * z_5, z_2 = f(a_2), a_1 = w_2^1 sigmoid(z_2) + \dots + w_4^1 sigmoid(z_4)$$

$$z = \Sigma_i sigmoid(a_i)$$
 where $i = [2,3,4]$

$$z = sigmoid(w_2^1 sigmoid(f(w_5^2 * z_5)) + \cdots$$

$$+ w_4^1 sigmoid \left(f(w_5^4 * z_5) \right)$$