Tema 9 Sistemas iterativos I Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

- Introducción: sistemas basados en métodos iterativos
- Preliminares de dinámica compleja
- Método de Newton
 - Descripción del método de Newton
 - Método de Newton sobre polinomios cuadráticos
 - Método de Newton sobre polinomios cúbicos
- Métodos basados en el método de Newton
 - Método de Halley
 - Método de Chebyshev

Introducción: sistemas basados en métodos iterativos

Sistemas dinámicos discretos

Procesos iterativos en los que, partiendo de una semilla x_0 , se itera la función hasta que la órbita alcanza un punto fijo atractor o diverge

Expresión general: $x_{k+1} = f(x_k)$

Sistemas dinámicos discretos

Procesos iterativos en los que, partiendo de una semilla x_0 , se itera la función hasta que la órbita alcanza un punto fijo atractor o diverge

Expresión general: $x_{k+1} = f(x_k)$

Método iterativo

Métodos numéricos que sirven para resolver ecuaciones, generalmente no lineales o cuya solución no se puede obtener a partir de una expresión analítica.

Sistemas dinámicos discretos

Procesos iterativos en los que, partiendo de una semilla x_0 , se itera la función hasta que la órbita alcanza un punto fijo atractor o diverge

Expresión general: $x_{k+1} = f(x_k)$

Método iterativo

Métodos numéricos que sirven para resolver ecuaciones, generalmente no lineales o cuya solución no se puede obtener a partir de una expresión analítica.

...Hasta ahora

- $f \Rightarrow expresión algebraica$
- Estudio dinámico sobre f

Novedades...

- $lue{F} \Rightarrow$ función de iteración (método iterativo)
- Estudio dinámico sobre F

La función de iteración ${\cal F}$ trata de obtener la solución de la función f

Notación

- Ecuación no lineal: *f*
- Método iterativo aplicado a la ecuación no lineal: F(f)
- **E**xpresión general: $x_{x+1} = F(x_k, f(x_k))$
- Soluciones en el dominio de los números reales: f(x), $x \in \mathbb{R}$
- Soluciones en el dominio de los números complejos: f(z), $z \in \mathbb{C}$

2

Preliminares de dinámica compleja

Operador de punto fijo

Dado un método iterativo con expresión general

$$x_{k+1} = F(x_k, f(x_k)),$$

el operador de punto fijo asociado, O_f , mantiene la estructura de la expresión general, pero sus variables están en el dominio continuo:

$$O_f(x) = F(x, f(x)).$$

Operador de punto fijo

Dado un método iterativo con expresión general

$$x_{k+1} = F(x_k, f(x_k)),$$

el operador de punto fijo asociado, O_f , mantiene la estructura de la expresión general, pero sus variables están en el dominio continuo:

$$O_f(x) = F(x, f(x)).$$

Las características dinámicas del método iterativo se definen a partir de O_f .

Puntos fijos: $O_f(x^*) = x^*$

Operador de punto fijo

Dado un método iterativo con expresión general

$$x_{k+1} = F(x_k, f(x_k)),$$

el operador de punto fijo asociado, O_f , mantiene la estructura de la expresión general, pero sus variables están en el dominio continuo:

$$O_f(x) = F(x, f(x)).$$

- Puntos fijos: $O_f(x^*) = x^*$
- Dinámica de los puntos fijos:
 - $|O_f'(x^*)| < 1 \Rightarrow \mathsf{Atractor}$
 - $|O_f'(x^*)| > 1 \Rightarrow \mathsf{Repulsor}$
 - $|O_f'(x^*)| = 1 \Rightarrow \mathsf{Neutral}$
 - $|O_f'(x^*)| = 0 \Rightarrow \mathsf{Superatractor}$

Operador de punto fijo

Dado un método iterativo con expresión general

$$x_{k+1} = F(x_k, f(x_k)),$$

el operador de punto fijo asociado, O_f , mantiene la estructura de la expresión general, pero sus variables están en el dominio continuo:

$$O_f(x) = F(x, f(x)).$$

- Puntos fijos: $O_f(x^*) = x^*$
- Dinámica de los puntos fijos:
 - $|O_f'(x^*)| < 1 \Rightarrow \mathsf{Atractor}$
 - $|O_f'(x^*)| > 1 \Rightarrow \mathsf{Repulsor}$
 - $|O_f'(x^*)| = 1 \Rightarrow \mathsf{Neutral}$
 - $|O_f'(x^*)| = 0 \Rightarrow \mathsf{Superatractor}$
- Puntos críticos: $O'_f(x^C) = 0$

Operador de punto fijo

Dado un método iterativo con expresión general

$$x_{k+1} = F(x_k, f(x_k)),$$

el operador de punto fijo asociado, O_f , mantiene la estructura de la expresión general, pero sus variables están en el dominio continuo:

$$O_f(x) = F(x, f(x)).$$

- Puntos fijos: $O_f(x^*) = x^*$
- Dinámica de los puntos fijos:
 - $|O_f'(x^*)| < 1 \Rightarrow \mathsf{Atractor}$
 - $|O_f'(x^*)| > 1 \Rightarrow \mathsf{Repulsor}$
 - $|O_f'(x^*)| = 1 \Rightarrow \mathsf{Neutral}$
 - $|O_f'(x^*)| = 0 \Rightarrow \mathsf{Superatractor}$
- Puntos críticos: $O'_f(x^C) = 0$
- lacksquare Puntos críticos libres: puntos críticos de O_f que no coinciden con los puntos fijos.

Orden de convergencia

Definición

Sea $\{x_k\}$ una sucesión convergente a un límite $\alpha.$ Si existe una constante $C\in]0,1[$ tal que

$$\lim_{k \to +\infty} \frac{|\alpha - x_{k+1}|}{|\alpha - x_k|^p} = C,$$

entonces la sucesión converge a α con orden de convergencia p.

- p = 1: convergencia lineal
- p=2: convergencia cuadrática
- $\blacksquare 1 : convergencia superlineal$

Orden de convergencia

Definición

Sea $\{x_k\}$ una sucesión convergente a un límite $\alpha.$ Si existe una constante $C\in]0,1[$ tal que

$$\lim_{k \to +\infty} \frac{|\alpha - x_{k+1}|}{|\alpha - x_k|^p} = C,$$

entonces la sucesión converge a α con orden de convergencia p.

- p = 1: convergencia lineal
- p=2: convergencia cuadrática
- 1 : convergencia superlineal

Orden de convergencia computacional aproximado (ACOC)

$$\rho = \frac{\log \left| \frac{x_{k+1} - x_k}{x_k - x_{k-1}} \right|}{\log \left| \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}} \right|}$$

Conjugación topológica

Objetivo

Conocer el comportamiento dinámico de una familia de funciones a partir del estudio de casos particulares:

Caso particular ⇒ Caso general

Definición

Dos funciones $f:D\longrightarrow D$ y $g:E\longrightarrow E$ son topológicamente conjugadas si existe un homeomorfismo (aplicación continua con inversa continua) $\varphi:D\longrightarrow E$ tal que

$$\varphi\circ f=g\circ \varphi$$

Conjugación topológica

Objetivo

Conocer el comportamiento dinámico de una familia de funciones a partir del estudio de casos particulares:

Caso particular ⇒ Caso general

Definición

Dos funciones $f:D\longrightarrow D$ y $g:E\longrightarrow E$ son topológicamente conjugadas si existe un homeomorfismo (aplicación continua con inversa continua) $\varphi:D\longrightarrow E$ tal que

$$\varphi\circ f=g\circ \varphi$$

Propiedades

Sean f y g topológicamente conjugadas por φ , entonces:

- f y g también son topológicamente conjugadas por φ^{-1}
- $\varphi \circ f^k = q^k \circ \varphi, \ \forall k \in \mathbb{N}$
- x^P es punto periódico de $f \Leftrightarrow \varphi(x^P)$ es punto periódico de g. Además:
 - $\mathbf{x}^P \vee \varphi(x^P)$ tienen el mismo periodo
 - \blacksquare Si φ' no se anula en la órbita de x^P , entonces x^P y $\varphi(x^P)$ tienen el mismo carácter
 - $A(\varphi(x^P)) = \varphi(A(x^P))$

Conjugación topológica

Ejemplo 1. Calcula los parámetros $\alpha, \beta \in \mathbb{R}$ para que $f_{\lambda}(x) = \lambda x(1-x)$ y $g_{\mu}(x) = x^2 + \mu$ sean topológicamente conjugadas a partir de $\varphi = \alpha x + \beta$:

Por definición, f_{λ} y g_{μ} son topológicamente conjugadas si

$$g_{\mu} = \varphi^{-1} \circ f_{\lambda} \circ \varphi$$

Como $\varphi^{-1}(x) = \frac{x-\beta}{\alpha}$, entonces:

$$\varphi^{-1}(f_{\lambda}(\varphi(x))) = \varphi^{-1}(f_{\lambda}(\alpha x + \beta)) = \varphi^{-1}(\lambda(\alpha x + \beta)(1 - \alpha x - \beta))$$

$$= \frac{\lambda(\alpha x + \beta)(1 - \alpha x - \beta) - \beta}{\alpha}$$

$$= -\lambda \alpha x^{2} + (\lambda - 2\lambda \beta)x + \frac{\lambda \beta - \lambda \beta^{2} - \beta}{\alpha}$$

$$g_{\mu}(x) = \varphi^{-1}(f_{\lambda}(\varphi(x))) \Leftrightarrow \begin{cases} \lambda \alpha & = 1 \\ \lambda - 2\lambda \beta & = 0 \\ \frac{\lambda \beta - \lambda \beta^{2} - \beta}{\alpha} & = \mu \end{cases} \Leftrightarrow \alpha = -\frac{1}{\lambda}, \ \beta = \frac{1}{2}, \ \mu = \frac{\lambda(2 - \lambda)}{4}$$

$$\varphi(x) = -\frac{1}{\lambda}x + \frac{1}{2}$$

3

Método de Newton

Contenidos

- Introducción: sistemas basados en métodos iterativos
- Preliminares de dinámica compleja
- Método de Newton
 - Descripción del método de Newton
 - Método de Newton sobre polinomios cuadráticos
 - Método de Newton sobre polinomios cúbicos
- 4 Métodos basados en el método de Newton

Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Orden de convergencia: p = 2

Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Operador de punto fijo:

$$N_f(x) = x - \frac{f(x)}{f'(x)}$$

Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Operador de punto fijo:

$$N_f(x) = x - \frac{f(x)}{f'(x)}$$

■ Puntos fijos:

$$N_f(x) = x \Leftrightarrow x - \frac{f(x)}{f'(x)} = x \Leftrightarrow f(x) = 0$$

 \Rightarrow Los puntos fijos de N_f son las raíces de f(x)

Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Operador de punto fijo:

$$N_f(x) = x - \frac{f(x)}{f'(x)}$$

■ Puntos fijos:

$$N_f(x) = x \Leftrightarrow x - \frac{f(x)}{f'(x)} = x \Leftrightarrow f(x) = 0$$

- \Rightarrow Los puntos fijos de N_f son las raíces de f(x)
- Estabilidad de los puntos fijos:

$$N'_f(x) = \frac{f(x)f''(x)}{(f'(x))^2}$$

Si $f(x) = 0 \Rightarrow N_f'(x) = 0 \Rightarrow$ Los puntos fijos son superatractores

Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Operador de punto fijo:

$$N_f(x) = x - \frac{f(x)}{f'(x)}$$

■ Puntos fijos:

$$N_f(x) = x \Leftrightarrow x - \frac{f(x)}{f'(x)} = x \Leftrightarrow f(x) = 0$$

 \Rightarrow Los puntos fijos de N_f son las raíces de f(x)

■ Estabilidad de los puntos fijos:

$$N'_f(x) = \frac{f(x)f''(x)}{(f'(x))^2}$$

Si $f(x) = 0 \Rightarrow N'_f(x) = 0 \Rightarrow$ Los puntos fijos son superatractores

■ Puntos críticos: $N'_f(x) = 0 \Leftrightarrow f(x)f''(x) = 0$

 \Rightarrow Los puntos críticos son las raíces de f(x)f''(x)

Contenidos

- Introducción: sistemas basados en métodos iterativos
- Preliminares de dinámica compleja
- Método de Newton
 - Descripción del método de Newton
 - Método de Newton sobre polinomios cuadráticos
 - Método de Newton sobre polinomios cúbicos
- 4 Métodos basados en el método de Newton

Método de Newton sobre polinomios cuadráticos

Expresión general de los polinomios cuadráticos:

$$f(z) = z^2 + az + b$$

■ Operador del método de Newton sobre f(z):

$$N_f(z) = \frac{z^2 - b}{2z - a}$$

- \Rightarrow Depende de 2 parámetros: a y b
- Objetivo: reducir la cantidad de parámetros por medio de una conjugación topológica

Método de Newton sobre polinomios cuadráticos

Reducción del operador del método de Newton sobre polinomios cuadráticos

$$f(z)=z^2+az+b$$
 y $g(z)=z^2+\lambda$ son topológicamente conjugadas a partir de

$$\varphi(z) = \alpha z + \beta \implies \alpha? \ \beta?$$

■ Calcular α y β de modo que $\varphi^{-1} \circ f \circ \varphi = g$:

$$\varphi^{-1}(f(\varphi(z))) = \varphi^{-1}(f(\alpha z + \beta)) = \varphi^{-1}((\alpha z + \beta)^2 + (\alpha z + \beta)z + b)$$
$$= \alpha z^2 + (2\beta + a)z + \frac{\beta^2 - \beta + a\beta + b}{\alpha}$$

$$\varphi^{-1}(f(\varphi(z))) = g(z) \Leftrightarrow \begin{cases} \alpha = 1 \\ 2\beta + a = 0 \\ \frac{\beta^2 - \beta + a\beta + b}{\alpha} = \lambda \end{cases} \Leftrightarrow \begin{cases} \alpha = 1 \\ \beta = -\frac{a}{2} \\ \lambda = b - \frac{a^2}{4} + \frac{a}{2} \end{cases}$$

$$\varphi(z) = z - \frac{a}{2}$$

Todos los comportamientos dinámicos asociados a $g(z)=z^2+\lambda$ son generalizables para cualquier polinomio cuadrático

Método de Newton sobre polinomios cuadráticos $>> f_{\lambda}(z) = z^2 + \lambda$

■ Operador de punto fijo del método de Newton asociado a polinomios cuadráticos:

$$N_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f'_{\lambda}(z)} = \frac{z^2 - \lambda}{2z}$$

Método de Newton sobre polinomios cuadráticos $>> f_{\lambda}(z)=z^2+\lambda$

Operador de punto fijo del método de Newton asociado a polinomios cuadráticos:

$$N_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f_{\lambda}'(z)} = \frac{z^2 - \lambda}{2z}$$

■ Puntos fijos:

$$N_{\lambda}(z) = z \Leftrightarrow \frac{z^2 - \lambda}{2z} = z \Leftrightarrow z^2 + \lambda = 0 \Leftrightarrow z^* = \pm i\sqrt{\lambda}$$

Método de Newton sobre polinomios cuadráticos $>> f_{\lambda}(z)=z^2+\lambda$

Operador de punto fijo del método de Newton asociado a polinomios cuadráticos:

$$N_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f_{\lambda}'(z)} = \frac{z^2 - \lambda}{2z}$$

Puntos fijos:

$$N_{\lambda}(z) = z \Leftrightarrow \frac{z^2 - \lambda}{2z} = z \Leftrightarrow z^2 + \lambda = 0 \Leftrightarrow z^* = \pm i\sqrt{\lambda}$$

Comportamiento dinámico de los puntos fijos:

$$N'_{\lambda}(z) = \frac{1}{2} + \frac{\lambda}{2z^2} \quad \Rightarrow \quad N'_{\lambda}(z^*) = \frac{1}{2} + \frac{\lambda}{2(\pm\sqrt{\lambda})^2} = \frac{1}{2} - \frac{\lambda}{2\lambda} = 0$$

 $\Rightarrow z^* = \pm i \sqrt{\lambda}$ son puntos fijos superatractores

Método de Newton sobre polinomios cuadráticos $>> f_{\lambda}(z) = z^2 + \lambda$

• Operador de punto fijo del método de Newton asociado a polinomios cuadráticos:

$$N_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f_{\lambda}'(z)} = \frac{z^2 - \lambda}{2z}$$

Puntos fijos:

$$N_{\lambda}(z) = z \Leftrightarrow \frac{z^2 - \lambda}{2z} = z \Leftrightarrow z^2 + \lambda = 0 \Leftrightarrow z^* = \pm i\sqrt{\lambda}$$

Comportamiento dinámico de los puntos fijos:

$$N_{\lambda}'(z) = \frac{1}{2} + \frac{\lambda}{2z^2} \quad \Rightarrow \quad N_{\lambda}'(z^*) = \frac{1}{2} + \frac{\lambda}{2(\pm\sqrt{\lambda})^2} = \frac{1}{2} - \frac{\lambda}{2\lambda} = 0$$

 $\Rightarrow z^* = \pm i\sqrt{\lambda}$ son puntos fijos superatractores

■ Puntos críticos:

$$N'_{\lambda}(z) = 0 \Leftrightarrow \frac{1}{2} + \frac{\lambda}{2z^2} = 0 \Leftrightarrow z^2 + \lambda = 0$$

 $\Rightarrow \nexists$ puntos críticos libres $\Rightarrow \nexists$ plano de parámetros

Método de Newton sobre polinomios cuadráticos $>> f_{\lambda}(z)=z^2+\lambda$

$$z_1^* = i\sqrt{\lambda} \implies \mathcal{A}(z_1^*)$$

$$z_2^* = -i\sqrt{\lambda} \quad \Rightarrow \quad \mathcal{A}(z_2^*)$$

Contenidos

- Introducción: sistemas basados en métodos iterativos
- Preliminares de dinámica compleja
- Método de Newton
 - Descripción del método de Newton
 - Método de Newton sobre polinomios cuadráticos
 - Método de Newton sobre polinomios cúbicos
- 4 Métodos basados en el método de Newton

Método de Newton sobre polinomios cúbicos

Expresión general de los polinomios cúbicos:

$$f(z) = z^3 + az^2 + bz + c$$

Operador del método de Newton sobre f(z):

$$N_f(z) = \frac{2z^3 + az^2 - c}{3z^2 + 2az + b}$$

 \Rightarrow Depende de 3 parámetros: a, b y c

Reducción del operador del método de Newton sobre polinomios cúbicos

La función $f(z)=z^3+az^2+bz+c$ es topológicamente conjugada a

$$q_{\lambda}(z) = z(z-1)(z-\lambda)$$

El estudio dinámico sobre $q_{\lambda}(z)$ se puede generalizar a cualquier polinomio cúbico

Operador de punto fijo del método de Newton asociado a polinomios cúbicos:

$$N_{\lambda}(z) = z - \frac{q_{\lambda}(z)}{q'_{\lambda}(z)} = \frac{2z^3 - (\lambda + 1)z^2}{3z^2 - 2(\lambda + 1)z + \lambda}$$

Operador de punto fijo del método de Newton asociado a polinomios cúbicos:

$$N_{\lambda}(z) = z - \frac{q_{\lambda}(z)}{q'_{\lambda}(z)} = \frac{2z^3 - (\lambda + 1)z^2}{3z^2 - 2(\lambda + 1)z + \lambda}$$

Puntos fijos:

$$N_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*\} = \{0, 1, \lambda\}$$

Operador de punto fijo del método de Newton asociado a polinomios cúbicos:

$$N_{\lambda}(z) = z - \frac{q_{\lambda}(z)}{q'_{\lambda}(z)} = \frac{2z^3 - (\lambda + 1)z^2}{3z^2 - 2(\lambda + 1)z + \lambda}$$

Puntos fijos:

$$N_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*\} = \{0, 1, \lambda\}$$

Comportamiento dinámico de los puntos fijos:

$$N'_{\lambda}(z) = \frac{q_{\lambda}(z)q''_{\lambda}(z)}{[q'_{\lambda}(z)]^2} = \frac{2z(z-1)(z-\lambda)(3z-\lambda-1)}{(3z^2-2(\lambda+1)z+\lambda)^2} \Rightarrow \begin{cases} N'_{\lambda}(z_1^*) & = & 0\\ N'_{\lambda}(z_2^*) & = & 0\\ N'_{\lambda}(z_3^*) & = & 0 \end{cases}$$

⇒ Todos los puntos fijos son superatractores

Operador de punto fijo del método de Newton asociado a polinomios cúbicos:

$$N_{\lambda}(z) = z - \frac{q_{\lambda}(z)}{q'_{\lambda}(z)} = \frac{2z^3 - (\lambda + 1)z^2}{3z^2 - 2(\lambda + 1)z + \lambda}$$

Puntos fijos:

$$N_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*\} = \{0, 1, \lambda\}$$

Comportamiento dinámico de los puntos fijos:

$$N'_{\lambda}(z) = \frac{q_{\lambda}(z)q''_{\lambda}(z)}{[q'_{\lambda}(z)]^2} = \frac{2z(z-1)(z-\lambda)(3z-\lambda-1)}{(3z^2-2(\lambda+1)z+\lambda)^2} \Rightarrow \begin{cases} N'_{\lambda}(z_1^*) &= 0\\ N'_{\lambda}(z_2^*) &= 0\\ N'_{\lambda}(z_3^*) &= 0 \end{cases}$$

- ⇒ Todos los puntos fijos son superatractores
- Puntos críticos libres:

$$N'_{\lambda}(z) = 0 \Leftrightarrow q''_{\lambda}(z) = 0 \Leftrightarrow z^{C} = \frac{\lambda + 1}{3}$$

Plano de parámetros

$$\mathcal{A}(z_1^*)$$
 $\mathcal{A}(z_2^*)$ $\mathcal{A}(z_3^*)$

Planos dinámicos

$$\mathcal{A}(z_1^*)$$
 $\mathcal{A}(z_2^*)$ $\mathcal{A}(z_3^*)$

Planos dinámicos

$$\mathcal{A}(z_1^*)$$
 $\mathcal{A}(z_2^*)$ $\mathcal{A}(z_3^*)$

4

Métodos basados en el método de Newton

Contenidos

- Introducción: sistemas basados en métodos iterativos
- 2 Preliminares de dinámica compleja
- Método de Newton
- Métodos basados en el método de Newton
 - Método de Halley
 - Método de Chebyshev

Método de Halley

Expresión iterativa del método de Halley

$$x_{k+1} = x_k - \frac{2f(x_k)f'(x_k)}{2[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

• Operador del método de Halley asociado al polinomio cuadrático $f_{\lambda}(z)=z^2+\lambda$:

$$H_{\lambda}(z) = z - \frac{2f_{\lambda}(z)f'_{\lambda}(z)}{2[f'_{\lambda}(z)]^2 - f_{\lambda}(z)f''_{\lambda}(z)} = \frac{z(z^2 - 3\lambda)}{3z^2 - \lambda}$$

Método de Halley

Expresión iterativa del método de Halley

$$x_{k+1} = x_k - \frac{2f(x_k)f'(x_k)}{2[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

■ Operador del método de Halley asociado al polinomio cuadrático $f_{\lambda}(z) = z^2 + \lambda$:

$$H_{\lambda}(z) = z - \frac{2f_{\lambda}(z)f'_{\lambda}(z)}{2[f'_{\lambda}(z)]^2 - f_{\lambda}(z)f''_{\lambda}(z)} = \frac{z(z^2 - 3\lambda)}{3z^2 - \lambda}$$

■ Puntos fijos:

$$H_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*\} = \{-i\sqrt{\lambda}, 0, i\sqrt{\lambda}\}$$

Método de Halley

Expresión iterativa del método de Halley

$$x_{k+1} = x_k - \frac{2f(x_k)f'(x_k)}{2[f'(x_k)]^2 - f(x_k)f''(x_k)}$$

■ Operador del método de Halley asociado al polinomio cuadrático $f_{\lambda}(z) = z^2 + \lambda$:

$$H_{\lambda}(z) = z - \frac{2f_{\lambda}(z)f'_{\lambda}(z)}{2[f'_{\lambda}(z)]^2 - f_{\lambda}(z)f''_{\lambda}(z)} = \frac{z(z^2 - 3\lambda)}{3z^2 - \lambda}$$

■ Puntos fijos:

$$H_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*\} = \{-i\sqrt{\lambda}, 0, i\sqrt{\lambda}\}\$$

Comportamiento dinámico de los puntos fijos:

$$H'_{\lambda}(z) = \frac{3(z^2 + \lambda)^2}{(-3z^2 + \lambda)^2} \Rightarrow \begin{cases} H'_{\lambda}(z_1^*) &= 0 \\ H'_{\lambda}(z_2^*) &= 3 \\ H'_{\lambda}(z_3^*) &= 0 \end{cases}$$

 $\Rightarrow z_1^*$ y z_3^* son superatractores y z_2^* es repulsor

Método de Halley >> Planos dinámicos

Contenidos

- Introducción: sistemas basados en métodos iterativos
- Preliminares de dinámica compleja
- Método de Newton
- Métodos basados en el método de Newton
 - Método de Halley
 - Método de Chebyshev

Método de Chebyshev

Expresión iterativa del método de Chebyshev

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \left(1 + \frac{f(x_k)f''(x_k)}{2[f'(x_k)]^2} \right)$$

Operador del método de Chebyshev asociado al polinomio cuadrático $f_{\lambda}(z) = z^2 + \lambda$:

$$C_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f_{\lambda}'(z)} \left(1 + \frac{f_{\lambda}(z)f_{\lambda}''(z)}{2[f_{\lambda}'(z)]^2} \right) = \frac{3z^4 - 6\lambda z^2 - \lambda^2}{8z^3}$$

Método de Chebyshev

Expresión iterativa del método de Chebyshev

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \left(1 + \frac{f(x_k)f''(x_k)}{2[f'(x_k)]^2} \right)$$

Operador del método de Chebyshev asociado al polinomio cuadrático $f_{\lambda}(z) = z^2 + \lambda$:

$$C_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f_{\lambda}'(z)} \left(1 + \frac{f_{\lambda}(z)f_{\lambda}''(z)}{2[f_{\lambda}'(z)]^2} \right) = \frac{3z^4 - 6\lambda z^2 - \lambda^2}{8z^3}$$

■ Puntos fijos:

$$C_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*, z_4^*\} = \left\{-i\sqrt{\lambda}, i\sqrt{\lambda}, -i\sqrt{\frac{\lambda}{5}}, i\sqrt{\frac{\lambda}{5}}\right\}$$

Método de Chebyshev

Expresión iterativa del método de Chebyshev

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \left(1 + \frac{f(x_k)f''(x_k)}{2[f'(x_k)]^2} \right)$$

• Operador del método de Chebyshev asociado al polinomio cuadrático $f_{\lambda}(z)=z^2+\lambda$:

$$C_{\lambda}(z) = z - \frac{f_{\lambda}(z)}{f_{\lambda}'(z)} \left(1 + \frac{f_{\lambda}(z)f_{\lambda}''(z)}{2[f_{\lambda}'(z)]^{2}} \right) = \frac{3z^{4} - 6\lambda z^{2} - \lambda^{2}}{8z^{3}}$$

■ Puntos fijos:

$$C_{\lambda}(z) = z \Leftrightarrow z^* = \{z_1^*, z_2^*, z_3^*, z_4^*\} = \left\{-i\sqrt{\lambda}, i\sqrt{\lambda}, -i\sqrt{\frac{\lambda}{5}}, i\sqrt{\frac{\lambda}{5}}\right\}$$

Comportamiento dinámico de los puntos fijos:

$$C'_{\lambda}(z) = \frac{3(z^2 + \lambda)^2}{8z^4} \Rightarrow \begin{cases} C'_{\lambda}(z_1^*) = C'_{\lambda}(z_2^*) = 0\\ C'_{\lambda}(z_3^*) = C'_{\lambda}(z_4^*) = 6 \end{cases}$$

 $\Rightarrow z_1^*$ y z_2^* son superatractores, z_3^* y z_4^* son repulsores

lacksquare \sharp puntos críticos libres \Rightarrow \sharp plano de parámetros

Método de Chebyshev >> Planos dinámicos

Para finalizar...

- Ejercicios recomendados del tema
- Lección magistral: Entrevista sobre la dinámica de una variante del método de Newton ⇒ Aula Virtual
- Estudio de la dinámica del método de Newton amortiguado
 - https://dialnet.unirioja.es/descarga/tesis/38821.pdf

...Y por supuesto:

TEST DE APRENDIZAJE!!

