ARMA-X Analysis

Contents

	2	2
ad Base Data		2
latility		2
mber of Posts		3
ımmy for Social Media Post	4	4
umber of Tweets Mentioning Tariffs	4	4
umber of Tweets Mentioning Trade	4	4
erge	4	4
IA-X Models	Ę	5
nd Number of Lags		5
veet Count on Volatility by hour	7	7
veet Dummy on Volatility by hour	8	3

Data

Load Base Data

```
# 1. Load Political Social Media
#contains posts from Twitter & TruthSocial
social <- read.csv(here("data/mothership", "social.csv"))</pre>
social_hourly <- read.csv(here("data/mothership", "socialhourly.csv"))</pre>
# 2. Load Financial
#S&P500
SPY <- read.csv(here("data/mothership", "SPY.csv"))</pre>
#STOXX50
VGK <- read.csv(here("data/mothership", "VGK.csv"))</pre>
#CSI 300 (China)
ASHR <- read.csv(here("data/mothership", "ASHR.CSV"))
#make posixct
SPY$timestamp = as.POSIXct(SPY$timestamp,format = "%Y-%m-%d %H:%M:%S")
VGK$timestamp = as.POSIXct(VGK$timestamp,format = "%Y-%m-%d %H:%M:%S")
ASHR$timestamp = as.POSIXct(ASHR$timestamp,format = "%Y-%m-%d %H:%M:%S")
social$timestamp = as.POSIXct(social$timestamp,format = "%Y-%m-%d %H:%M:%S")
social hourly$timestamp = as.POSIXct(social hourly$timestamp,format = "%Y-%m-%d %H:%M:%S")
```

Volatility

Number of Posts

```
#find count
tweetcount_alltime = dplyr::select(social_hourly,timestamp,N)
#select time period
tweetcount = filter(tweetcount_alltime,
                  between (timestamp,
                          as.Date('2019-01-01'),
                          as.Date('2025-04-10')))
#plot
ggplot(tweetcount_alltime, aes(x = timestamp, y = N)) +
    geom_point(color = "#253494", size = 1) +
   scale_x_datetime(date_labels = "%b %Y", date_breaks = "9 month") +
   labs(title = "Trump Social Media Count",
         x = NULL,
         y = "number of tweets/truths") +
   theme_minimal(base_size = 14) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1),
          plot.title = element_text(face = "bold", hjust = 0.5))
```

Warning: Removed 1172 rows containing missing values or values outside the scale range
(`geom_point()`).

Trump Social Media Count

Dummy for Social Media Post

Number of Tweets Mentioning Tariffs

Number of Tweets Mentioning Trade

Merge

```
#merge our dependant and independant vars
armax_data = left_join(SPY_volatility, tweetcount, by="timestamp")
armax_data = left_join(armax_data, tweetdummy, by="timestamp")
armax_data = left_join(armax_data, tariff, by="timestamp")
armax_data = left_join(armax_data, trade, by="timestamp")

#convert NA to zeroes
armax_data$N[is.na(armax_data$N)] = 0
armax_data$dummy[is.na(armax_data$dummy)] = 0
armax_data$total_tariff[is.na(armax_data$total_tariff)] = 0
armax_data$total_trade[is.na(armax_data$total_trade)] = 0
```

ARMA-X Models

Find Number of Lags

```
nb.lags \leftarrow 3 #r
count_lags <- embed(armax_data$N, nb.lags + 1)</pre>
dummy_lags <- embed(armax_data$dummy, nb.lags + 1)</pre>
tariff_lags <- embed(armax_data$total_tariff, nb.lags + 1)</pre>
trade_lags <- embed(armax_data$total_trade, nb.lags + 1)</pre>
#colnames(count_lags) <- pasteO("Lag_", O:nb.lags)</pre>
#align volatility to match count rows (for lag)
vol aligned <- tail(armax data$r vol h, nrow(count lags))</pre>
#choosing how many lags
# fit an ARMA(0,0,0) model with lm (with r set above)
eq <- lm(vol aligned ~ count lags)
eq2 <- lm(vol_aligned ~ dummy_lags)
eq3 <- lm(vol_aligned ~ tariff_lags)
eq4 <- lm(vol_aligned ~ trade_lags)
#compute Newey-West HAC standard errors for count
var.cov.mat1 <- NeweyWest(eq, lag = 7, prewhite = FALSE)</pre>
robust_se1 <- sqrt(diag(var.cov.mat1))</pre>
#for dummy
var.cov.mat2 <- NeweyWest(eq2, lag = 7, prewhite = FALSE)</pre>
robust_se2 <- sqrt(diag(var.cov.mat2))</pre>
var.cov.mat3 <- NeweyWest(eq3, lag = 7, prewhite = FALSE)</pre>
robust se3 <- sqrt(diag(var.cov.mat3))</pre>
#for trade
var.cov.mat4 <- NeweyWest(eq4, lag = 7, prewhite = FALSE)</pre>
robust_se4 <- sqrt(diag(var.cov.mat4))</pre>
#output table; significant lags are how many we choose
stargazer(eq, eq, type = "latex",
          column.labels = c("(no HAC)", "(HAC)"), keep.stat = "n",
          se = list(NULL, robust_se1), no.space = TRUE)
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:42:17

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:42:17

Table 1:

	Dependent variable: vol_aligned	
	(no HAC)	(HAC)
	(1)	(2)
count_lags1	-0.001^*	-0.001***
	(0.001)	(0.0002)
$count_lags2$	-0.001	-0.001^*
	(0.001)	(0.0003)
$count_lags3$	0.0002	0.0002
	(0.001)	(0.0004)
count_lags4	-0.0002	-0.0002
	(0.001)	(0.0002)
Constant	0.036***	0.036***
	(0.001)	(0.002)
Observations	11,036	11,036

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2:

	(no HAC)	(HAC)
	(1)	(2)
dummy_lags1	-0.001	-0.001
	(0.003)	(0.003)
$dummy_lags2$	-0.003	-0.003
	(0.003)	(0.002)
dummy_lags3	0.006**	0.006^{*}
	(0.003)	(0.003)
$dummy_lags4$	0.004	0.004
	(0.003)	(0.003)
Constant	0.033^{***}	0.033***
	(0.002)	(0.001)
Observations	11,036	11,036

Note:

*p<0.1; **p<0.05; ***p<0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:42:17

Table 3:

	Dependent variable: vol_aligned	
	(no HAC)	(HAC)
	(1)	(2)
tariff_lags1	0.038	0.038
	(0.024)	(0.026)
tariff_lags2	0.057**	$0.057^{'}$
	(0.024)	(0.045)
tariff_lags3	0.050**	$0.050^{'}$
	(0.024)	(0.033)
tariff_lags4	0.075***	0.075^{**}
	(0.024)	(0.031)
Constant	0.034***	0.034***
	(0.001)	(0.002)
Observations	11,036	11,036
A T 1	* -0.1 ** -	0.05 *** .0.01

Note: *p<0.1; **p<0.05; ***p<0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:42:17

Tweet Count on Volatility by hour

Table 4:

	(no HAC)	(HAC)
	(1)	(2)
$trade_lags1$	0.006	0.006
	(0.020)	(0.014)
$trade_lags2$	0.023	0.023
	(0.020)	(0.025)
$trade_lags3$	0.008	0.008
_	(0.020)	(0.015)
trade_lags4	$0.016^{'}$	0.016
	(0.020)	(0.019)
Constant	0.034***	0.034***
	(0.001)	(0.002)
Observations	11,036	11,036
Note:	*n/0.1· **n/0.05· ***n/0.01	

Note: p<0.1; **p<0.05; ***p<0.01

Tweet Dummy on Volatility by hour