Приведение кубики к нормальной форме Вейерштрасса

Для нашей кубики

$$F(x,y,z) = x^3 + y^3 + z^3 + (1-N)(x^2y + x^2z + y^2x + y^2z + z^2x + z^2y) + (3-2N)xyz$$

рациональная точка P = (1:-1:0) является также точкой перегиба (проверяется непосредственно подстановкой в Гессиан).

• Шаг 1. Переведём точку P = (1:-1:0) в точку (0:1:0) некоторым проективным преобразованием. Например, подойдёт такое:

$$\lambda \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

или

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix}.$$

Тогда наше уравнение преобразуется в следующее:

$$\widetilde{F}(\widetilde{x}, \widetilde{y}, \widetilde{z}) = (\widetilde{z})^3 - (N+2)(\widetilde{x})^2 \widetilde{y} + (1-N)(\widetilde{x})^2 \widetilde{z} + (N+2)\widetilde{x}(\widetilde{y})^2 + (1-N)\widetilde{x}(\widetilde{z})^2 + (\widetilde{x})^3 + \widetilde{x}\widetilde{y}\widetilde{z} - (\widetilde{y})^2 \widetilde{z}.$$

• Шаг 2. Теперь мы хотим сделать преобразование, сохраняющее точку O=(0:1:0), так, чтобы прямая z=0 была касательной к кубике \widetilde{F} в точке O, то есть сделать преобразование $(\widetilde{x}:\widetilde{y}:\widetilde{z}) \to (x':y':z')$, такое что для F'(x',y',z') будет выполнено:

$$\frac{\partial F'}{\partial x'}(O) = \frac{\partial F'}{\partial y'}(O) = 0, \quad \frac{\partial F'}{\partial z'}(O) \neq 0.$$

Пусть имеет место соотношение

$$\begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}.$$

Так как точка O должна быть неподвижна, то:

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

откуда $c_{12} = 0, c_{22} = 1, c_{32} = 0.$

Кроме того, поскольку $F'(x',y',z')=\widetilde{F}(\widetilde{x}(x',y',z'),\widetilde{y}(x',y',z'),\widetilde{z}(x',y',z')),$ то мы имеем:

$$\begin{split} \frac{\partial F'}{\partial x'}(O) &= \frac{\partial \widetilde{F}}{\partial \widetilde{x}}(\widetilde{x}(O), \widetilde{y}(O), \widetilde{z}(O)) \frac{\partial \widetilde{x}}{\partial x'}(O) + \frac{\partial \widetilde{F}}{\partial \widetilde{y}}(\widetilde{x}(O), \widetilde{y}(O), \widetilde{z}(O)) \frac{\partial \widetilde{y}}{\partial x'}(O) \\ &+ \frac{\partial \widetilde{F}}{\partial \widetilde{z}}(\widetilde{x}(O), \widetilde{y}(O), \widetilde{z}(O)) \frac{\partial \widetilde{z}}{\partial x'}(O) \\ &= \frac{\partial \widetilde{F}}{\partial \widetilde{x}}(c_{12}, c_{22}, c_{32})c_{11} + \frac{\partial \widetilde{F}}{\partial \widetilde{y}}(c_{12}, c_{22}, c_{32})c_{21} + \frac{\partial \widetilde{F}}{\partial \widetilde{z}}(c_{12}, c_{22}, c_{32})c_{31} \\ &= \frac{\partial \widetilde{F}}{\partial \widetilde{x}}(0, 1, 0)c_{11} + \frac{\partial \widetilde{F}}{\partial \widetilde{y}}(0, 1, 0)c_{21} + \frac{\partial \widetilde{F}}{\partial \widetilde{z}}(0, 1, 0)c_{31} = (2 + N)c_{11} - c_{31}. \end{split}$$

Аналогично получаем:

$$\frac{\partial F'}{\partial y'}(O) = \left(\frac{\partial \widetilde{F}}{\partial \widetilde{x}}\frac{\partial \widetilde{x}}{\partial y'} + \frac{\partial \widetilde{F}}{\partial \widetilde{y}}\frac{\partial \widetilde{y}}{\partial y'} + \frac{\partial \widetilde{F}}{\partial \widetilde{z}}\frac{\partial \widetilde{z}}{\partial y'}\right)\Big|_{O} = (2+N)\frac{\partial \widetilde{x}}{\partial y'}(O) - \frac{\partial \widetilde{z}}{\partial y'}(O) = (2+N)c_{12} - c_{32}$$

$$\frac{\partial F'}{\partial z'}(O) = \left(\frac{\partial \widetilde{F}}{\partial \widetilde{x}}\frac{\partial \widetilde{x}}{\partial z'} + \frac{\partial \widetilde{F}}{\partial \widetilde{y}}\frac{\partial \widetilde{y}}{\partial z'} + \frac{\partial \widetilde{F}}{\partial \widetilde{z}}\frac{\partial \widetilde{z}}{\partial z'}\right)\Big|_{O} = (2+N)\frac{\partial \widetilde{x}}{\partial z'}(O) - \frac{\partial \widetilde{z}}{\partial z'}(O) = (2+N)c_{13} - c_{33}.$$

Итак, мы получаем следующие условия на матрицу $C = (c_{ij})$:

$$(2+N)c_{11} - c_{31} = 0$$

$$(2+N)c_{12} - c_{32} = 0$$

$$(2+N)c_{13} - c_{33} \neq 0$$

$$c_{12} = c_{32} = 0$$

$$c_{22} = 1.$$

Итого, получаем, что в качестве искомой матрицы можно взять следующую:

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2+N & 0 & N+1 \end{pmatrix}.$$

А тогда наше преобразование будет иметь вид:

$$\lambda \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -N-1 & 0 & 1 \\ -1 & 1 & 0 \\ N+2 & 0 & -1 \end{pmatrix} \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \end{pmatrix}.$$

• Шаг 3. После второго преобразования, наше уравнение приняло вид:

$$F'(x', y', z') = (2N^2 + 11N + 15)(x')^3 + (5N^2 + 24N + 28)(x')^2 z + (4N^2 + 17N + 18)x(z')^2 + (N^2 + 4N + 4)(z')^3 + xyz + (y')^2 z + y(z')^2.$$