

江西理工大学 园区网络课程设计

小组成员: 刘开凯(1520163771)、吴福林(1520163763)、

<u>汪茂森(1520163769)、周昊文</u>

(1120160008)

指导老师:	张浩
学院:	信息工程学院
专业班级:	信安 161 班
实验时间:	2019/1/9

1、前言

计算机网络特别是 INTERNET 的产生和发展在现代科技技术史上 具有划时代的意义和影响, 计算机网络的飞速发展日新月异, 计算机 网络彻底改变了人们的工作方式和生活方式, 改变了企事业单位的运 营和管理模式。

信息时代的发展,影响着世界的每一个角落。每个人的生活和工作几乎都与计算机密切相关。在速度越来越快的计算机硬件和日益更新的软件背后,网络作为中枢神经把我们联系在一起。也正是因为网络的出现与发展,使 Internet 为主要标志的网络技术构成了我们现代文化的重要组成部分,联系上亿人的 Internet 将我们带入了一个新的网络时代。

在现今的网络建设中,企业网的建设是非常重要的,企业网内部各种不同业务的开展是企业网发展迅速的最主要原因。从早期的企业网主要是简单的数据共享,简单数据库的共享到现在内部全方位的数据共享,从过去单一的企业到现在多个分支公司的全部互连,因而对网络的覆盖面要求越来越广。这一要求最早还只局限于各分支企业内部,现在则已是整个企业、整个行业,甚至整个 Internet 的共同要求。

正因为网络应用的如此广泛,又在生活中扮演很重要的角色,所以其安全性是不容忽视的,它是网络能否经历考验的关键,如果安全性不好会给人们带来很多麻烦。网络信息交流现已是生活中必不可少的一个环节,然而信息安全却得不到相应的重视。本文就网络信息的发展,组成,与安全问题的危害做一个简单的探讨。

实习期间,老师教授我们路由和交换安全技术,rip配置,vrrp配置,VLAN划分,IP规划等等知识,最终目标通过网络拓扑图完成企业园区网以及广域网设计与实现,实验实现园区网综合实验。

2、园区网络综合实验

2.1 网络拓扑及拓扑描述

2.2 网络实验要求

- 1、清空设备配置 clear startup 并断电重启
- 2、所有设备命名、IP地址按图示标注
- 3、按照图示要求配置 VLAN 信息
- 3、使用 STP 解决环路, 并要求 SW1 为根交换机
- 4、使用 VRRP 技术,保障网关冗余,且 VLAN10 和 VLAN100 的默认网关设备为 SW1, VLAN20 和 VLAN200 的默认网关设备为 SW2
- 5、VLAN10与 VLAN20的终端自动获取 IP地址
- 6、业务验证,确认所有 PC 机之间可以相互访问

2.3 实现思路及团队分工

学生姓名	分工
刘开凯	配置交换机 SW1,及其接口与 VLAN 配置,结果测试,实验报告制作。
吴福林	配置交换机 SW2, 及其接口与 VLAN 配置, 结果测试, 实验报告制作。
汪茂森	配置交换机 SW3, 及其接口与 VLAN 配置, 结果测试
周昊文	配置交换机 SW4, 及其接口与 VLAN 配置, 结果测试

2.4 业务实现

2.4.1 网络设备连线及描述

Sw1 sw2 g0/0-0/1

Sw1 sw3 g0/2

Sw1 sw4 g0/3

Sw2 sw4 g0/2

连线实物图 (灰色线连 pc 蓝色线链路汇聚 黄色线连交换机)

图片描述

2.4.2VLAN 技术

NO. VID VLAN-Name	Owner Mode Interface
1 1 DEFAULT	static Untagged giO/2 giO/3 link-aggregation 1
2 10 VLAN0010	static Tagged giO/3 link-aggregation 1
3 20 VLAN0020	static Tagged giO/3 link-aggregation 1
4 100 VLAN0100	static Tagged giO/2 link-aggregation 1
5 200 VLAN0200	static Tagged giO/2 link-aggregation 1
6 1000 VLAN1000	static noport
7 2000 VLAN2000	static Untagged giO/4
sw2#show vlan	
	Owner Mode Interface
1 1 DEFAULT	
2 10 VLAN0010	static Tagged gi0/2 link-aggregation 1
3 20 VLAN0020	static Tagged gi0/2 link-aggregation 1
4 100 VLAN0100	static Tagged gi0/3 link-aggregation 1
5 200 VLAN0200	static Tagged gi0/3 link-aggregation 1
sw3#show vlan	-
NO. VID VLAN-Name	Owner Mode Interface
1 1 DEFAULT	static Untagged gi0/2 gi0/3
2 100 VLAN0100	static Tagged gi0/2 gi0/3 Untagged gi0/0
3 200 VLAN0200	static Tagged gi0/2 gi0/3 Untagged gi0/1
4 1000 VLAN1000	static noport
5 2000 VLAN2000	static Untagged gi0/4
sw4#show vlan	
NO. VID VLAN-Name	Owner Mode Interface
1 1 DEFAULT	Owner Mode Interface
	22 2 1
2 10 VLAN0010	static Tagged gi0/2 gi0/3 Untagged gi0/0
3 20 VLAN0020	static Tagged gi0/2 gi0/3 Untagged gi0/1
4 1000 VLAN1000	static noport
5 2000 VLAN2000	static Untagged giO/4

2.4.3 链路聚合技术

sw1#show link-aggregation

link-aggregation 1 configuration information Description : Enabled Status Link : Up : 2000 Act Speed Act Duplex : Full Port Type : Nni Pvid : 1 sw2#show link-aggregation link-aggregation 1 configuration information

Description :
Status : Enabled
Link : Up
Act Speed : 2000
Act Duplex : Full
Port Type : Nni
Pvid : 1

2.4.4 生成树技术

sw2#show spanning-tree

Spanning-tree enabled protocol mstp

Interface	Role	Sts	Cost	Prio.Nbr	Туре
J	Desg Alte Root	DIS		128.003 128.004 128.006	P2P

```
sw1#show spanning-tree
```

Spanning-tree enabled protocol mstp

```
MST Instance 00 vlans mapped: 1-4094
Bridge address 0001.7a93.bd29 priority 4096
Region root address 0001.7a93.bd29 priority 4096
Designated root address 0001.7a93.bd29 priority 4096
root: 0, rpc: 0, epc: 0, hop: 20
Operational hello time 2, forward time 15, max age 20
Configured hello time 2, forward time 15, max age 20, max hops 20, hold count 6
Flap guard: admin false, max count 5, detect period 10s, recovery period 30s
Tc protection: admin true, threshold 3, interval 2s, rxTcCnt 0, status:NORMAL
Bpdu length-check: false, bpdu illegal length packets count: 0
Autoedge swap-check: true
Swap-delay time: 30
MST Instance 00
   Swap-delay time: 30
Configured timer factor: 3
Topology Change Count:6, last change occured:0 hour 54 minutes 32 seconds(3272 seconds)
                                  Interface Role Sts
                                                                                                                     Cost Prio.Nbr Type
                                                                  Desg FWD 20000 128.003 P2P
Desg FWD 20000 128.004 P2P
Desg FWD 18000 128.006 P2P
gi0/2
gi0/3
link-aggregation 1
```

2.5 业务验证

2.5.1 相关业务 ping 验证

SW3

```
::\Windows\system32>ping 192.168.1.1
         Ping 192.168.1.1 具有 32 字节的数据:
192.168.1.1 的回复:字节=32 时间=1ms TTL=63
192.168.1.1 的回复:字节=32 时间<1ms TTL=63
192.168.1.1 的回复:字节=32 时间<1ms TTL=63
192.168.1.1 的回复:字节=32 时间<1ms TTL=63
192.168.1.1 的 Pins 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

```
C:\Windows\system32>ping 192.168.100.1
正在 Ping 192.168.100.1 具有 32 字节的数据:
来自 192.168.100.1 的回复: 字节=32 时间<1ms TTL=63
来自 192.168.100.1 的回复: 字节=32 时间<1ms TTL=63
来自 192.168.100.1 的回复: 字节=32 时间<1ms TTL=63
```

SW4

```
C:\Users\23333>ping 192.168.200.1
   在 Ping 192.168.200.1 具有 32 字节的数据:
:自 192.168.200.1 的回复: 字节=32 时间<1ms TTL=63
:自 192.168.200.1 的回复: 字节=32 时间=1ms TTL=63
:自 192.168.200.1 的回复: 字节=32 时间<1ms TTL=63
:自 192.168.200.1 的回复: 字节=32 时间=1ms TTL=63
  92.168.200.1 的 Ping 统计信息:
数据包: 已发送 = 4.已接收 = 4,丢失 = 0 (0% 丢失),
E返行程的估计时间(以毫秒为单位):
最短 = Oms,最长 = 1ms,平均 = Oms
```

```
\Users\23333>ping 192.168.2.1
          Ping 192.168.2.1 具有 32 字节的数据:
192.168.2.1 的回复: 字节=32 时间=1ms TTL=63
192.168.2.1 的回复: 字节=32 时间=1ms TTL=63
192.168.2.1 的回复: 字节=32 时间=1ms TTL=63
192.168.2.1 的回复: 字节=32 时间<1ms TTL=63
192.168.2.1 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

2.5.2 生成树切换验证

```
:\Users\23333>ping 192.168.200.1
          Ping 192.168.200.1 具有 32 字节的数据:
192.168.200.1 的回复: 字节=32 时间(1ms TTL=63
192.168.200.1 的回复: 字节=32 时间(1ms TTL=63
192.168.200.1 的回复: 字节=32 时间=1ms TTL=63
192.168.200.1 的回复: 字节=32 时间(1ms TTL=63
                                                                                                                                                                                                                                   时间<1ms TTL=63
时间<1ms TTL=63
时间<1ms TTL=63
时间<1ms TTL=63
时间<1ms TTL=63
                                                                                                                                                                 8.1.1 的 Ping 统计信息:
据包: 已发送 = 4. 已接收 = 4, 丢失 = 0 (0% 丢失),
程的估计时间(以毫秒为单位):
最长 = Oms, 平均 = Oms
192.168.200.1 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

2.5.3VRRP 切换验证

```
swl#show vrrp
Interface vlan10 (Flags 0x1)
Pri-addr : 192.168.1.252
Vrf : 0
Virtual router : 1
    Virtual IP address : 192.168.1.254
    Virtual MAC address : 00-00-5e-00-01-01
    Depend prefix:192.168.1.252/24
    State : Master
    Normal priority : 150
    Currnet priority : 150
    Priority reduced : 0
    Preempt-mode : YES
    Advertise-interval : 1 s
    Authentication Mode : None

Interface vlan20 (Flags 0x1)
    Pri-addr : 192.168.2.252
    Vrf : 0
    Virtual router : 2
    Virtual IP address : 192.168.2.254
    Virtual MAC address : 00-00-5e-00-01-02
    Depend prefix:192.168.2.252/24
    State : Backup
    Master addr : 192.168.2.253
    Normal priority : 150
    Currnet priority : 150
    Priority reduced : 0
    Preempt-mode : YES
    Advertise-interval : 1 s
    Authentication Mode : None
```

2.6 设备配置备份

2.7 故障处理过程

在实现汇聚的时候,由于没有和同学沟通好,一个同学使用的手动汇聚一个同学使用的协议汇聚,在重新实现汇聚后,实验能够正常进行。还有要注意的是,一定要把电脑自带的防火墙功能全部关闭,否则在进行 ping 操作时,就无法与目标 poping 通。

3、课程设计总结

通过本次实验,我们小组在老师的带领下完成了实验,从网络设备的认知到实验的总配置,中间穿插rip 配置,vrrp 配置,VLAN 划分,IP 规划,net 地址转换、Dhcp 自动分配 IP,等等知识。这次实训,主要是为了提高团队能力外,还有就是自身独立思考的能力,以及思路的清晰,这些都需要我们通过每个人去思考,练习每一个小实验,才能明白这些技术的意义。总体来说,本次实训进步是比较大的,小到从各个路由器交换机的连线,大到根据要求配置各个路由器交换机需要的命令,都是通过我们每个人的集思广益思考出来的。这次实训课程设计使我们都更加了解实验是检验真理的唯一标准,只有理论知识是不行的,现在的时代是需要动手能力强的人才,只有把所学的理论知识与实践相结合起来,从实践中得出结论,才能真正提高自己的实际动手能力和独立思考的能力,才能成为现在这个世界所需要的人才。