Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

United States
Department of
Agriculture

Forest Service

Intermountain Research Station Ogden, UT 84401

General Technical Report INT-196

December 1985

User's Guide to the Event Monitor: An Addition to the Prognosis Model

Nicholas L. Crookston

MAR 17 '86

USDA LIBRARY

IF

PAI LT MAI

Then harvest, prepare site,

and plant Douglas-fir

THE AUTHOR

NICHOLAS L. CROOKSTON is an Operations Research Analyst at the Intermountain Research Station, Forestry Sciences Laboratory, in Moscow, ID. During the time this work was completed. Mr. Crookston was a research associate, College of Forestry, Wildlife and Range Sciences, University of Idaho, working on the Canada/U.S. Spruce Budworms Program under a cooperative agreement between the Pacific Northwest Forest and Range Experiment Station and the University of Idaho, Mr. Crookston received his B.S. in botany in 1973 from Weber State College and his M.S. in forest resources in 1977 from the University of Idaho. His principal professional activities have concerned the dynamics of the mountain pine beetle/ lodgepole ecosystem, the Douglas-fir tussock moth/ forest ecosystem, and the western spruce budworm/ forest ecosystem.

ACKNOWLEDGMENTS

Discussions with A. R. Stage led to the development of the Event Monitor. I thank him for providing me with ideas, support, and encouragement. Reviews by W. R. Wykoff, D. E. Ferguson, R. L. Dezellem, R. J. Johnson, R. G. Buchman, and D. Schroeder are gratefully acknowledged.

The developments reported here were financed by the Canada/U.S. Spruce Budworms Program-West and the Intermountain Research Station, Forest Service, U.S. Department of Agriculture.

RESEARCH SUMMARY

The Event Monitor is a programmed procedure for dynamically invoking management activities to be simulated by the Prognosis Model. Activities include simulated thinnings, harvesting, plantings, or any other activity that the simulation model can mimic. The Event Monitor accepts policy statements expressed as conditions to be met and a set of activities to be simulated after the conditions are met. Thus, policy statements may be evaluated using Prognosis Model without users foretelling the development of each stand in an analysis and manually scheduling activities.

The Event Monitor enhances control of the Prognosis Model and the operation of several model extensions, notably the Regeneration Establishment Model and the Parallel Processing Extensions (PPE). As a part of the PPE, the monitor can generate decision trees of management alternatives.

CONTENTS

Pa	ge
Introduction	1
Using the Event Monitor	2
Overview	2
IF, THEN, and ENDIF	2
Generating Decision Trees	5
Detailed Instructions	7
Keyword Summary	7
Order of Computations	
Coding Logical Expressions10	0
Summary	1
References1	1
Appendix: Output Examples	2

User's Guide to the Event Monitor: An Addition to the Prognosis Model

Nicholas L. Crookston

INTRODUCTION

The decision to perform a management activity in a stand is often contingent upon several factors. Thinning may be called for if the stand is too dense, or spraying may be required if an insect population is causing too much damage. Usually, users of stand-growth simulation models must foretell when stand conditions that require management action will occur and preschedule the program options that represent those actions.

The Event Monitor offers an alternative method of scheduling activities: You specify a set of conditions that must occur, or thresholds that must be reached. During the simulation, the specified conditions are monitored and, in the event they occur, the management activities you specify are scheduled. For example, suppose you wish to schedule a thinning only if the stand crown competition factor (Krajicek and others 1961) exceeds 150, trees per acre exceed 500, and age is greater than 20 and less than 60 years. Using the Event Monitor, the conditions are specified via a logical expression followed by the activities (represented by Prognosis Model options) that are to be invoked when that expression is true.

Taken together, an event and the management activities may be viewed as a policy statement. Thus, policy statements may be evaluated using Prognosis Model without users foretelling the development of each stand in an analysis and manually scheduling activities.

The monitor is part of Version 5 of the Prognosis Model (Stage 1973; Wykoff and others 1982); as a component of that model, it serves the following purposes:

- Permits the inclusion of policy statements in a simulation run. Thus emphasis may be placed on the specification of a policy applicable to a class of stands, rather than on a prescription for individual stands.
- Offers an additional mechanism to control the operation of extensions to the Prognosis Model such as the Regeneration Establishment Model (Ferguson and Crookston 1984).
- Provides a way to create decision trees within the Parallel Processing Extension (Crookston in preparation). Decision trees are useful for systematically evaluating the response of forest growth to random catastrophic events (insect epidemics or forest fires, for example) and alternative management practices given equal starting conditions.

Specific examples will show how to use the program. The rules that govern its operation are implicitly presented in the examples and then explicitly presented in a subsequent section. This order is designed to give you a general understanding of the program's use before you are presented with specific

details. How you apply the rules to your own problems is left to your imagination. Be bold! If you can't find an example that meets your requirements, invent one.

I assume that you are familiar with the Prognosis Model. Terms, operational rules, and concepts explained in the Prognosis Model user's guide (Wykoff and others 1982) are used here without explanation.

USING THE EVENT MONITOR

Overview

An event is designated by an IF keyword record, followed by a logical expression. The expression is coded on one or more supplemental data records. It may contain constants, arithmetic operators, parentheses, relational and logical operators (greater than (GT), less than (LT), equal (EQ), AND, OR, etc.), and certain variables. Following the logical expression, a THEN keyword record is entered; it signals the end of the logical expression and the beginning of the activities that will be scheduled only when the expression is true. Any Prognosis Model keyword-option (including those found in extensions) that can be scheduled by entering a cycle number or year in the first numeric field can be scheduled by the Event Monitor. The value in Field 1 of the activity keyword record is added to the year the event occurs, the sum becomes the year the activity is scheduled to occur. An ENDIF keyword is entered to signal that normal activity processing should resume.

IF, THEN, and ENDIF

Example 1.—The example presented in the Introduction is elaborated on in the context of a complete Prognosis Model keyword file. The policy for this example is as follows: If before-thinning crown competition factor (BCCF) is greater than 150, before-thinning trees per acre (BTPA) is greater than 500, and age is greater than 20 and less than 60, then thin from below to a residual stand density of 300 trees per acre.

							Keyw	oro	d record							
Reference line	Keyword	Field	1	Fiel	d 2	? F	ield	3	Field	4	Field	5	Field	6	Field	7
1	STANDID															
2	EXAMPLE1	EVENT	MONI	TOR	USE	R'S	GUI	DΕ	EXAMPLE	1.						
3	INVYEAR	1972	2 .													
4	NUMCYCLE	1 () .													
5	l F	999	ð .													
6	BCCF G	T 150 /	AND B	TPA	GΤ	500	AND	ΑC	GE &							
7	GT 20	AND AGE	E LT	60												
8	THEN															
9	THINBTA		0.	3 0	0.											
1 0	ENDIF															
1 1	STDINFO	1.8	3.	7 1	0 .		10.		4 .		5 .		56.			
1 2	PROCESS															
1 3	STOP															

Some of the output created by running this example is in the appendix; further explanation of the input file follows:

Lines 1 and 2: Enter the stand identification and a run title.

Line 3: Specify the inventory year.

Line 4: Specify the number of cycles.

Line 5: IF signals that a logical expression follows and that the minimum delay time between responses to this event is 999 years.

Lines 6 and 7: The logical expression is coded "free form" (that is, characters need not be placed in specific columns) on one or more supplemental data records that follow the IF keyword. The ampersand ("&") at the end of line 6 signals that the expression is continued on the following record.

Line 8: THEN signals that the activities (options specified by date or cycle) that follow will not be scheduled until after the event happens; that is, when the logical expression is true.

Line 9: THINBTA is a thinning option that will be scheduled in the same year that the event happens; thus, a zero is coded in field 1. The residual trees per acre are coded in field 2.

Line 10: ENDIF marks the end of the conditionally specified options.

Line 11: Enter data specific to the stand such as the forest code.

Line 12: Signals that all of the keywords have been entered and that the stand should be processed.

Line 13: Stop the Prognosis Model.

Minimum delay time.—It is possible to specify a logical expression that could remain true for several consecutive cycles. If you intend to schedule a response to the event on longer intervals than each succeeding cycle, you may enter a minimum number of years between responses in field 1 of the IF keyword.

Example 2.—This example illustrates:

- the Event Monitor's use with the Regeneration Establishment Model (Ferguson and Crookston 1984) and, by implication, other Prognosis Model extensions;
- that more than one activity may be specified after a THEN keyword;
- that more than one policy statement may be specified; and
- that the minimum delay time can be set to control the frequency at which activities are scheduled.

The first policy statement concerns the regeneration harvest guides and reads as follows: When the culmination of mean annual increment (MAI) is reached, clearcut the stand, broadcast burn the next year, and, in the second year after harvest, plant 300 spruce and 300 larch per acre. The date of culmination is detected by monitoring periodic annual increment (PAI, 10-year period) and MAI. When periodic annual increment (PAI) is less than MAI, the stand has reached culmination of MAI.

The second policy statement concerns scheduling some thinnings to control density: When the stand basal area (BBA) exceeds 150 ft² per acre, thin from below to 130 ft². These thinnings should not occur more frequently than every 20 years.

The keyword file used to run this example is listed below; output is in the appendix.

				Keyword	record			
Reference Line	Keyword	Field	1 Field 2	Field 3	Field 4	Field 5	Field 6	Field
1	STANDID							
2	EXAMPLE2	EVENT	MONITOR USER	'S GUIDE,	EXAMPLE	2		
3	INVYEAR	1972.						
4	NUMCYCLE	15.						
5 6 7	l F	999.						
6	PAI LT MAI							
7	THEN							
8 9	THINATA	0.	0.	1.				
9	ESTAB							
1 0	BURNPREP	1.	80.					
11	MECHPREP	1.	20.					
1 2	PLANT	2 .	2 .	300.	90.			
1 3	PLANT	2.	8.	300.	90.			
1 4	STOCKADJ	9.	−1 .					
15	RESETAGE	0.	0.					
1 6	END							
1-7	ENDIF							
1 8	l F	20.			-			
19	BBA GT150	AND AG	E LT 130					
2 0	THEN							
2 1	THINBBA	0.	130.					
2 2	ENDIF							
2 3	STDINFO	18.	680.	150.	8.	5.	53.	
2 4	PROCESS							
2 5	STOP							

Lines 1 to 4: Like example 1.

Line 5: Specify that the logical expression follows and that the minimum delay time between responses to this event is 999 years.

Lines 6 and 7: Specify the event: IF the PAI is less than the MAI, THEN.

Line 8: The management activity is to cut (using a Prognosis Model thinning option) all of the trees. Note that the residual stand density coded in field 2 is zero, and that the cutting effectiveness coded in field 3 is 1.0.

Line 9: Signals the Prognosis Model that Regeneration Establishment Model options follow.

Lines 10 through 15: Specify the site preparation assumptions and the plantings. Line 14 contains a command that limits establishment of trees to only those planted. Line 15 causes the stand age to be reset to zero years (the number coded in field 2). Consult Ferguson and Crookston (1984) for a complete description of these keywords.

Line 16: Signals the Establishment Model that Prognosis Model options follow.

Line 17: Signals the end of the activities that will only be scheduled when PAI is less than MAI.

Lines 18 to 22: A second policy is entered with a minimum delay time between responses set to 20 years (field 1 of line 18). The before-thin basal area is compared to 150, area is compared to 130 (line 19), and a thinning from below to 130 ft² is requested in line 21.

Generating Decision Trees

Decision trees are used to evaluate several different management responses to one event. For a description of this and other applications of decision trees see Stage (1975), Talerico and others (1978), Crookston (1978), Stage and others (in press), and the Parallel Processing Extension user's guide (PPE) (Crookston in preparation). Because the creation of decision trees (fig. 1) in the PPE is controlled by the Event Monitor, an example has been included to illustrate how to use the PPE and the Event Monitor together.

The branches of the decision tree are defined by specifying more than one group of activities following a single logical expression. The first activity (or activity group) follows the THEN keyword record; each subsequent group of activities follows an ALSOTRY keyword record. Each alternative group defines a branch of the decision tree. You may specify one to nine alternative groups of activities for each event. Remember, this option may only be used with the PPE.

Figure 1.—The decision tree generated by the PPE when the logical expression in example 3 is true. The black circle is the **node**; in this case three **branches** stem from the node.

Example 3: ALSOTRY.—Let's reconsider example 1. A thinning from below to 300 trees per acre will be scheduled when the event happens. Using the PPE in conjunction with the Event Monitor you may ALSOTRY another alternative, say thinning from below to 400 trees per acre. A third alternative is not to thin at all. The PPE simulates and reports the results of trying all three alternatives. Keyword records needed to accomplish this objective are as follows (those needed in addition to example 1 are at lines 0.1, 9.1-9.3, and 12.1-12.3):

				Keyword	record			
Referenc								
line	Keyword	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6	Field 7
0.1	ADDSTAND							
1	STANDID							
2	EXAMPLE3	EVENT MON	NITOR USER	'S GUIDE	EXAMPLE 3			
2 3 4	INVYEAR	1972.						
4	NUMCYCLE	10.						
	l F	999.						
5 6 7	BCCF G	T 150 AND	BTPA GT 5	00 AND AG	E &			
7	GT 20	AND AGE L	Γ 60					
8	THEN							
8 9	THINBTA	0 .	300.					
9.1	ALSOTRY							
9.2	THINBTA	0 .	400.					
9.3	ALSOTRY							
1 0	ENDIF							
1 1	STDINFO	18.	710.	10.	4 .	5.	56.	
1 2	PROCESS							
12.1	PROJECT							
12.2	NOCOMPOS							
12.3	YIELDS							
13	STOP							

Output created by running this example may be found in the appendix. An explanation of the input file follows:

Line 0.1: ADDSTAND is a PPE keyword that signals that Prognosis Model keywords follow. See Crookston (in preparation) for an additional explanation.

Lines 1 through 9: Like example 1.

Line 9.1: ALSOTRY signals that another group of activity keywords follows.

Line 9.2: THINBTA is entered with a residual of 400 trees per acre.

Line 9.3: Another ALSOTRY that is followed immediately by an ENDIF signals that one alternative is no management.

Lines 10 through 12: Same as in example 1.

Line 12.1: PROJECT is a PPE keyword that signals that all of the stands (in this case there is only one stand) have been entered and the projection may start.

Line 12.2: NOCOMPOS is a PPE keyword that suppresses the calculation of the composite yield table.

Line 12.3: YIELDS is a PPE keyword that triggers the printing of the yield statistics.

Line 13: Same as in example 1.

You can see the results of the branching and scheduling by carefully reading the Activity Summary tables printed by the PPE for the three management alternatives (output is in the appendix). Each summary table corresponds to one branch of the decision tree (fig. 1). The Activity Summaries list the activities that were scheduled and accomplished and correspond with the Summary Statistics tables printed above them. Consult Wykoff and others (1982) for an additional description of these tables, and Crookston (in preparation) for a description of the PPE.

DETAILED INSTRUCTIONS

The first section of this report describes the purpose and potential use of the Event Monitor and its position within the Prognosis Model. The following section offers additional details that will enable you to make full use of the Event Monitor.

This section is organized as follows: a keyword summary describes the keywords used by the event monitor. A section titled "Order of Computations" will help you understand how the order of calculations within the Prognosis Model influences the Event Monitor. The rules you need to follow when coding logical expressions are described in a section called "Coding Logical Expressions."

Keyword Summary

IF

Signals that the logical expression follows on one or more supplemental data records. You may enter several policies by entering a set of IF, THEN, activity keywords, and an ENDIF

for each policy.

Field 1: The minimum waiting time before the event may happen again, default is zero years.

THEN Signals that the activities that follow will be scheduled when the

event happens.1

ALSOTRY Used in conjunction with the PPE to generate decision trees.

Signals that a second or subsequent group of activities follow.¹

ENDIF Signals the end of a set of Event Monitor keywords.

Several program options that represent activities may follow one THEN or ALSOTRY keyword. (The actual number depends on many factors; a realistic upper limit is about 100.)

Any Prognosis Model options that may be scheduled (that is, a date or cycle is entered in field 1 of the keyword record), may alternatively be entered as conditional activities, that is, they may follow a THEN or ALSOTRY. Prognosis Model options that do not contain a date in field 1 may not be made conditional. For example, a NUMCYCLE keyword entered between a THEN and an ENDIF keyword will be processed normally.

Order of Computations

When expressions are evaluated.—The Event Monitor evaluates all logical expressions at each of two different times during a growth cycle (see fig. 1 in Wykoff and others 1982): once at the beginning of the growth cycle prior to thinnings, and once after thinnings. Therefore, a logical expression that tests on before-thin density can be used to trigger a thinning during the same cycle.

The Regeneration Establishment Model is called near the end of a cycle. Thus, it is possible to trigger a regeneration tally as a response to a before-thin or an after-thin density.

You can schedule a thinning in response to detecting that a thinning has occurred. However, the conditionally scheduled thinning cannot be simulated during the same cycle the event is detected because the event is, itself, another thinning. You can specify that the conditionally scheduled thinning be scheduled 10 years after the event occurs by coding "10" in field 1 of the desired thinning keyword record. If the cycle length is 10 years, the conditionally scheduled thinning will thus be simulated in the following cycle.

¹The numeric fields on the THEN and ALSOTRY keywords are reserved for future use by the PPE.

When Event Monitor variables are defined.—The variables that can be used in logical expressions are divided into four groups (table 1) depending on when the variables are defined. If any variable is undefined when the expression is evaluated, the expression is deemed false.

Table 1.—Variables that can be used within logical expressions

Variable name	Description
	Group 1, always defined
YEAR	Beginning year of a cycle
AGE	Age at beginning of a cycle
ВТРА	Before-thin trees per acre
BTCUFT	Before-thin total cubic foot volume
BMCUFT	Before-thin merchantable cubic foot volume
BBDFT	Before-thin Scribner board foot volume
BBA	Before-thin basal area per acre
BCCF	Before-thin crown competition factor
BCCFWP	Before-thin crown competition factor for white pine
BCCFL	Before-thin crown competition factor for larch
BCCFDF	Before-thin crown competition factor for Douglas-fir
BCCFGF	Before-thin crown competition factor for grand fir Before-thin crown competition factor for western hemlock
BCCFWH BCCFC	Before-thin crown competition factor for western redcedar
BCCFLP	Before-thin crown competition factor for western redecast
BCCFS	Before-thin crown competition factor for spruce
BCCFAF	Before-thin crown competition factor for alpine fir
BCCFPP	Before-thin crown competition factor for ponderosa pine
BCCFOTR	Before-thin crown competition factor for other species
ВТОРНТ	Before-thin average top height
BADBH	Before-thin quadratic mean d.b.h.
RANN	A random number between 0 and 1
YES	The constant 1.
NO	The constant 0.
NUMTREES	Number of tree records stored by the model
CYCLE	Cycle number
	Group 2, defined only after thinning each cycle
ATPA	After-thin trees per acre
ATCUFT	After-thin total cubic foot volume
AMCUFT	After-thin merchantable cubic foot volume
ABDFT	After-thin Scribner board foot volume
ABA	After-thin basal area per acre
ACCF ACCFWP	After-thin crown competition factor After-thin crown competition factor for white pine
ACCFL	After-thin crown competition factor for write pine
ACCFDF	After-thin crown competition factor for Douglas-fir
ACCFGF	After-thin crown competition factor for grand fir
ACCFWH	After-thin crown competition factor for western hemlock
ACCFC	After-thin crown competition factor for western redcedar
ACCFLP	After-thin crown competition factor for lodgepole pine
ACCFS	After-thin crown competition factor for spruce
ACCFAF	After-thin crown competition factor for alpine fir
ACCFPP	After-thin crown competition factor for ponderosa pine
ACCFOTR	After-thin crown competition factor for other species
ATOPHT	After-thin average top height
AADBH	After-thin quadratic mean d.b.h.
RTPA	Removed trees per acre
RTCUFT	Removed total cubic foot volume Removed Scribner board foot volume
RMBDFT	nemoved Scholler board root volume

Variable name	Description
	Group 3, defined when cycle 2 starts
ACC MORT	Accretion from last cycle, cubic feet/acre/year Mortality from last cycle, cubic feet/acre/year
PAI	Periodic annual increment last cycle, cubic feet per acre
MAI	Mean annual increment last cycle, cubic feet
DTPA	Number of trees per acre at the beginning of current cycle minus the number at the beginning of previous cycle
DTPA%	Trees per acre at the beginning of current cycle divided by the number at the beginning of previous cycle; then multi- plied times 100
DBA	Basal area per acre at the beginning of current cycle minus the basal area at the beginning of previous cycle
DBA%	Basal area per acre at the beginning of current cycle divided by the basal area at the beginning of previous cycle; then multiplied times 100
DCCF	Crown competition factor at the beginning of current cycle minus the factor at the beginning of previous cycle
DCCF%	Crown competition factor at the beginning of current cycle divided by the factor at the beginning of previous cycle; then multiplied times 100
Gr	oup 4, defined by extensions to the Prognosis Model
TM%STND	The stand average tree defoliation level caused by the Douglas-fir tussock moth during the previous cycle (Monserud and Crookston 1982)
TM%DF	The average tree defoliation on Douglas-fir
TM%GF	The average tree defoliation on grand fir
МРВТРАК	The number of trees per acre killed by the mountain pine beetle during the previous cycle
BW%STND	The stand defoliation level caused by the western spruce budworm during the previous cycle
SELECTED	Takes on the value YES if the stand has been selected for harvest by the PPE's harvest allocation logic. The value is NO if the stand has not been selected.

Variables listed in group 1 are always known; you can include them in logical expressions either by themselves or with those listed in the other groups.

Group 2 variables are only known after thinning. They are correctly defined even though no thinnings are done in a given cycle, but they are undefined when the Event Monitor evaluates expressions prior to thinnings each cycle.

Group 3 variables are not defined until after the first cycle. For example, the stand accretion is computed after the second time the Event Monitor evaluates logical expressions each cycle. Therefore, the stand accretion variable is assigned the accretion from the previous cycle. Variables that measure change, such as DBA (delta basal area, the change in basal area from cycle to cycle), are computed by the monitor by subtracting the value stored from the previous cycle from the current value. These variables are also undefined until the beginning of the second Prognosis Model cycle. After the second cycle starts, group 3 variables can be used any time.

Group 4 variables are assigned values by Prognosis Model extensions. The value of these variables remains unknown unless the appropriate extension is being used.

Coding Logical Expressions

Logical expressions consist of variables (table 1), constants, parentheses, and logical and arithmetic operators (table 2). When coding logical expressions, follow these rules:

- Variable names, constants, and function names must be separated from logical operators by one or more blanks or parentheses.
- A parenthesis, constant, or variable must separate two arithmetic operators: AGE*-2.5 is invalid, AGE*(-2.5) is valid, -2.5*AGE is also valid.
- Operators are executed in order of precedence given in table 2, or parentheses may be used to control the precedence of evaluation.
- When equally ranked operations are found, evaluation proceeds from left to right.
- Constants are treated as floating point numbers whether or not a decimal point is coded. A value coded as an integer is converted to floating point by adding decimal point: 300 is converted to 300.0.
- An ampersand (&) signals that the expression is continued on the next line.
 Characters that follow the ampersand are ignored and may be used to enter comments.

The following are valid (and equivalent) expressions:

(BTPA*2 GE 1000 OR AGE GT 50.) (NOT BTPA LT 500) OR (NOT AGE LE 50.0) NOT (BTPA LT 500 AND AGE LE 50)

The following are invalid:

(ATPA .LT. 500.)—the inclusion of the periods before and after the less-than operator is valid in FORTRAN but **not** in the Event Monitor. (NOT ((BTPA LT 50))—unbalanced parentheses.

Table 2.—Operators that can be used in logical expressions

Precedence ¹	Operator	Description	Example of usage
_		Arithmetic functions	
1 st	SQRT	Square root	SQRT(A)
1 st	EXP	e raised to power A	EXP(A)
1 st	ALOG	Natural logarithm	ALOG(A)
1 st	ALOG10	Common logarithm	ALOG10(A)
1 st	INT	Truncate fractional part ²	INT(A/B)
1 st	FRAC	Truncate integer part ³	FRAC(A/B)
		Arithmetic operators	
2 nd		Change sign	– A
3 _{rd}	* *	Exponentiate	A**B
4 th	*	Multiply	A*B
4 th	/	Divide	A/B
5 th	+	Add	A + B
5 th	_	Subtract	A - B
		Logical operators	
6 th	EQ	Equal	A EQ B
6 th	NE	Not equal	ANEB
6 th	LT	Less than	A LT B
6 th	GT	Greater than	A GT B
6 th	LE	Less than or equal	A LE B
6 th	GE	Greater than or equal	A GE B
7 th	NOT	Logical not	NOT (A GT B)
8 th	AND	Logical and	(A GT B) AND (A LT C)
9 th	OR	Logical or	(A GT B) OR (A LT C)

¹Operators are executed in order of precedence within parenthetical groups. For example consider the following: ALOG(A)**2.+5/C, the log is taken first, the result is raised to the power of 2, then 5 is divided by C and added to the previous result.

²For example: INT(3.4) is equal to 3.0. ³For example: FRAC(3.4) is equal to 0.4.

SUMMARY

Using the Event Monitor, logical relations between stand variables generated by the Prognosis Model can be evaluated during the simulation. When the logical relation is true, activities which the model is capable of simulating will be invoked.

This document describes how to use the Event Monitor to schedule Prognosis Model options such as thinnings and Establishment Model options and how to create decision trees using the PPE.

REFERENCES

- Crookston, N. L. User's guide to the Parallel Processing Extension of the Stand Prognosis Model. 1984. Draft manuscript on file with Project Leader, RWU 1351, at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Forestry Sciences Laboratory, Moscow, ID.
- Crookston, N. L.; Roelke, R. C.; Burnell, D. G.; Stage, A. R. Evaluation of management alternatives for lodgepole pine stands by using a stand projection model. In: Berryman, A. A. [and others], eds. Mountain pine beetle-lodgepole pine management: proceedings of a symposium; 1978 April 25-27; Pullman, WA. Moscow, ID: University of Idaho, Forestry, Wildlife and Range Experiment Station; 1978: 114-122.
- Ferguson, D.; Crookston, N. L. User's guide to the Regeneration Establishment Model—a Prognosis Model Extension. General Technical Report INT-161. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1984. 23 p.
- Krajicek, J.; Brinkman, K.; Gingrich, S. Crown competition—a measure of density. Forest Science. 7(1): 35-42; 1961.
- Monserud, R. A.; Crookston, N. L. A user's guide to the combined Stand Prognosis and Douglas-fir Tussock Moth Outbreak Model. General Technical Report INT-127. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1982. 49 p.
- Stage, A. R. Prognosis model for stand development. Research Paper INT-137. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1973. 32 p.
- Stage, A. R. Forest stand prognosis in the presence of pests: developing the expectations. In: Baumgartner, D. M., ed. Management of lodgepole pine ecosystems. Pullman, WA: Washington State University, Cooperative Extension Service; 1975: 233-245.
- Stage, A. R.; Johnson, R.; Colbert, J. J. Selecting management tactics. Chapter 5. In: Brookes, Martha H.; Colbert, J. J.; Mitchell, Russel G.; Stark, R. W., eds. Managing trees and stands susceptible to western spruce budworm. Technical Bulletin 1695. Washington, DC: U.S. Department of Agriculture, Forest Service; [in press].
- Talerico, R. L.; Newton, C. M.; Valentine, H. T. Pest control decisions by decision-tree analysis. Journal of Forestry. 76(1): 16-19; 1978.
- Wykoff, W. R.; Crookston, N. L.; Stage, A. R. User's guide to the Stand Prognosis Model. General Technical Report INT-133. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1982. 112 p.

APPENDIX: OUTPUT EXAMPLES

VERSION 5.0 -- INLAND EMPIRE (TEST)

STAND GROWTH PROGNOSIS SYSTEM

Example 1.

	OPTIONS SELECTED BY DEFAULT	(23X, 14, 3X, F2.0, 11, A3, F3.1, F2.1, 3X, 211, T66, 211, 13, 211)	INVYEAR NUMCYCLE IF THINBTA THINBTA ENDIF STDINFO	STAND ID= EXAMPLE1 EVENT MONITOR USER'S GUIDE EXAMPLE 1. INVENTORY YEAR= 1972 NUMBER OF CYCLES= 10 MINIMUM DELAY TIME BETWEEN RESPONSES TO THE EVENT = 999 BCCF GT 150 AND BIPA GT 500 AND AGE & GT 20 AND AGE LGO GT 20 AND AG
OPTIONS SELECTED BY DEFAULT		(23X, 14, 3X, F2.0, 11, A3, F3.1, F2.1, 3X, F3.0, T63, F3.0	PROCESS	

=	
SCHEDULE	
CH	
_	
ACT I VI	
AC1	
ì	

EVENT MONITOR USER'S GUIDE EXAMPLE 1. MANAGEMENT ID= NONE

STAND ID= EXAMPLE1

PARAMETERS;												
DATE PARAMETERS:												1 1 1 1 1 1 1 1 1 1
DATE												
DATE		1972	1982	1992	2002	2012	2022	2032	2042	2052	2062	
CYCLE	!	_	2	3	4	5	9	7	8	6	10	

CALIBRATION STATISTICS:

	4 P	WP	AF		S
NUMBER OF RECORDS PER SPECIES	2	5	19	5	N
NUMBER OF RECORDS CODED AS RECENT MORTALITY	0	0	0	0	0
NUMBER OF RECORDS WITH MISSING HEIGHTS	0	0	-	-	C
NUMBER OF RECORDS WITH BROKEN OR DEAD TOPS	0	0	0	0	0
NUMBER OF RECORDS WITH MISSING CROWN RATIOS	0	0	0	0	0
NUMBER OF RECORDS AVAILABLE FOR SCALING THE DIAMETER INCREMENT MODEL	0	0	-	0	_
RATIO OF STANDARD ERRORS (INPUT DBH GROWTH DATA : MODEL)	1.00	1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00
WEIGHT GIVEN TO THE INPUT GROWTH DATA WHEN DBH GROWTH MODEL SCALE FACTORS WERE COMPUTED	00.00	0.00 0.00 0.00 0.00 0.00	00.00	00.00	0.00
INITIAL SCALE FACTORS FOR THE DBH INCREMENT MODEL	1.00	1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00
NUMBER OF RECORDS AVAILABLE FOR SCALING THE SMALL TREE HEIGHT INCREMENT MODEL	0	0	0	0	0
INITIAL SCALE FACTORS FOR THE SMALL TREE HEIGHT INCREMENT MODEL	1.00	1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00

Example 1. (Con.)

STAND GROWTH PROGNOSIS SYSTEM

VERSION 5.0 -- INLAND EMPIRE (TEST)

MANAGEMENT CODE: NONE STAND ID: EXAMPLE1

EVENT MONITOR USER'S GUIDE EXAMPLE 1.

STAND COMPOSITION (BASED ON STOCKABLE AREA)

			- 1	S 	SIAND CO	4808111	ON (BASE	(BASED ON STOCKABLE AREA)	ABLE AKE	A)			
		DISTRI	8	PERCENTILE PO	OINTS IN THE ND ATTRIBUTES	THE BUTES BY	У ОВН	TOTAL/ACRI	CRE	DISTRIB		AND ATTRIBUTES	FS BY
YEAR		10	ı	50	7.0	6	00	- 1	TES	SPECIES AND 3	AND 3 USER-DEFINITION OF THE PROPERTY OF THE P	DEFINED SUBCLASSE	LASSES
) 	(DBH IN	INCHES)	ı	 			 			
1972	TREES	0.1	0.1	0.1	0.1	0.1	19.9	1916. TREES	EES	70.% AF2,	11.% AF1,	4.%1,	4.% WP1
	VOLUME: TOTAL MERCH MERCH	11.2	11.2	19.9 19.9 19.9	19.9 19.9 19.9	19.9 19.9	19.9 19.9 19.9	161. CUFT 137. CUFT 777. BDFT	111	63.% S2, 62.% S2, 70.% S2,	37.% AF2, 38.% AF2, 30.% AF2,	0.% AF1, 0.%, 0.%,	0.%% 0.%% 0.%%
	ACCRETION MORTALITY	0.1	0.1	3.2	3.2	19.9	19.9	14. CU 0. CU	CUFT/YR CUFT/YR	62.% AF2, 72.% AF2,	34.% S2, 21.% S2,	1.% AF1, 6.% AF1,	1.%2
1982	TREES VOLUME: TOTAL MERCH MERCH	0.1 1.4 12.8 12.8	0.7 6.2 14.6 14.6	0.8 12.8 20.6 21.4	1.2 21.4 21.4 21.4	1.5 23.1 23.1 23.1	23.1 23.1 23.1 23.1	1654. TREE 297. CUFT 188. CUFT 1095. BDFT	EES FT FT FT	70.% AF2, 50.% S2, 57.% S2, 65.% S2,	11.% AF1, 49.% AF2, 43.% AF2, 35.% AF2,	μ.%1, 1.% AF1, 0.%, 0.%,	4. % WP1
	ACCRETION MORTALITY	0.9	1.4	1.5	4.0	12.8	23.1	35. CU 1. CU	CUFT/YR CUFT/YR	72.% AF2, 75.% AF2,	21.% S2, 12.% S2,	2.% AF1, 6.% AF1,	2.% WP2 2.%2
1992	TREES VOLUME: TOTAL MERCH MERCH	0.8 2.2 8.2 13.5	1.2 3.3 14.4 16.1	2.0 6.6 16.2 22.1	2.4 15.3 22.9 22.9	3.6 23.7 24.6 24.6	26.2 26.2 26.2 26.2	1401. TREE 644. CUFT 287. CUFT 1583. BDFT	EE S FT FT FT FT	72.% AF2, 61.% AF2, 59.% S2, 64.% S2,	11.% AF1, 34.% S2, 41.% AF2, 36.% AF2,	11, 2.% AF1, 0.% AF1, 0.%,	1.% WP1
	ACCRETION MORTALITY	1.6	2.2	 	3.6	14.4 21.3	26.2	56. CU 3. CU	CUFT/YR CUFT/YR	75.% AF2, 68.% AF2,	16.% S2, 18.% S2,	2.% AF1, 5.% AF1,	2.% WP2 2.%2 (con.)

32 00 23 33 48 PT	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	10.% WP1 8.% WP1 10.% WP1 0.% WP2 0.% WP2	5.% WP1 10.% WP1 1.% WP1 1.% WP1 5.% WP1 (COn.)
3.3.3.4.4.00.3.4.4.4.5.4.4.4.5.4.4.4.5.4.4.4.5.4.4.5.4.4.5.4.4.5.4.4.5.4.4.5.4.4.5.4.4.5.4.4.5.4.4.5.4.4.4.4.5.4.4.4.5.4.4.4.5.4	3 00.5% % %%%% % WP1.	12.% WP1, 12.% AF1, 10.% WP1, 4.% AF1, 0.%AF1,	9.% AF1, 10.% AF1, 2.% AF1, 1.% AF1, 10.% AF1, 8.% AF1,
10.% AF1, 26.% S2, 37.% AF2, 36.% AF2, 14.% S2, 19.% S2,	9.% AF1, 48.% S2, 49.% AF2, 4.% WP2, 0.% UP2, 0.% UP2,	32.% AF2, 20.% S2, 29.% S2, 31.% AF1, 31.% S2, 35.% S2, 39.% S2,	25.% \$2, 26.% \$2, 31.% AF1, 29.% \$2, 32.% \$2, 14.% \$2, 24.% \$2,
73.% AF2, 68.% AF2, 64.% S2, 64.% S2, 78.% AF2, 69.% AF2,	75.% AF2, 52.% AF2, 51.% AF2, 92.% AF2, 0.% AF2, 0.%,	33.% AF1, 68.% AF2, 41.% AF2, 37.% AF2, 60.% AF2, 64.% AF2,	57.% AF2, 58.% AF2, 38.% AF2, 63.% AF2, 60.% AF2, 59.% AF2,
. TREES . CUFT . CUFT . BDFT . CUFT/YR . CUFT/YR	CUFT CUFT CUFT CUFT BDFT TREES CUFT CUFT	CUFT/YR CUFT/YR TREES CUFT CUFT CUFT BDFT	CUFT/YR TREES CUFT CUFT CUFT BDFT CUFT/YR CUFT/YR
1222 1175 434 2332 80 10	1047 1879 761 3982 747 870 0	300 75 5 253 1714 1425 7415	62 230 2248 1920 10096
27.5 27.5 27.5 27.5 27.5 27.5	28.66 28.66 66.33 66.33	28.6 28.6 28.6 30.7 30.7 30.7	30.7 30.7 31.8 31.8 31.8 31.8 31.8
5.2 25.1 25.3 25.3 11.8	26.28 6.3 26.33 5.9 5.9 5.9	9.6 14.3 25.0 15.4 15.4 28.2 28.2 28.2	16.4 23.8 27.4 29.0 17.0 23.8
4.0 10.8 24.0 25.1 5.7 6.4	5.8 22.6 22.6 5.7 5.7 0.00	6.6 14.3 17.4 18.3	15.4 11.4 17.0 17.0 17.0
3.2 19.2 19.3 4.9	4.3 17.5 17.5 17.5 0.0	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	15.1 7.1 17.0 17.0 17.0
2.2 4.9 14.3 15.7 3.8	2.2 3.0 3.0 0.00	2. 4 5.2 172.5 15.4	9.0 9.0 14.1 16.3 16.5 8.7
1.5 0.5.2 2.5 2.5 2.5 3.5	2 2 88 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.6 4.4 2.8 2.7 7.7 7.7 9.0	3.6 3.6 7.5 11.4 6.0
TREES VOLUME: TOTAL MERCH MERCH ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH MERCH MERCH VOLUME: TOTAL MERCH MERCH	ACCRETION MORTALITY TREES VOLUME: TOTAL MERCH	ACCRETION MORTALITY TREES VOLUME: TOTAL MERCH MERCH MERCH MERCH MORTALITY
2002	2012	2022	2032

10.% WP1 22.% WP1 1.% WP1 3.% WP1 6.% WP1	9.% WP1 2.%% WP1 1.% WP1	3.% WP1 5.% WP1	8.% WP1 3.% WP1 2.% WP1 2.% WP1	3.% WP1 6.% WP1	8.% WP1 3.% WP1 2.% WP1 2.% WP1 (con.)
11.% S2, 7.% AF1, 3.% AF1, 3.% AF1, 9.% AF1, 9.% AF1,	12.% S2, 7.% AF1, 5.% AF1, 4.% AF1,	10.% AF1, 9.% AF1,	12.% S2, 8.% AF1, 7.% AF1, 5.% AF1,	12.% AF1, 11.% AF1,	13.% S2. 8.% AF1, 8.% AF1, 6.% AF1,
30.% AF1, 25.% S2, 27.% S2, 32.% S2, 14.% S2,	30.% AF1, 23.% S2, 23.% S2, 24.% S2,	13.% S2, 20.% S2,	30.% AF1. 20.% S2, 21.% S2, 23.% S2,	14.% S2, 18.% S2,	29.% AF1, 19.% S2, 20.% S2, 22.% S2,
39.% AF2, 66.% AF2, 63.% AF2, 70.% AF2,	41.% AF2, 65.% AF2, 67.% AF2, 69.% AF2,	71.% AF2, 61.% AF2,	42.% AF2, 66.% AF2, 68.% AF2, 68.% AF2,	68.% AF2, 60.% AF2,	44.% AF2, 67.% AF2, 68.% AF2, 68.% AF2,
CUFT CUFT BDFT BDFT CUFT/YR CUFT/YR	. TREES . CUFT . CUFT	. CUFT/YR	. TREES . CUFT . CUFT	. CUFT/YR . CUFT/YR	. TREES . CUFT . BDFT
200 2873 2558 13325 86	3496 3496 3178 19178	35	152 4141 3851 22021	33	134 4624 4357 24626
32 333 3 33 333 3 34 35 35 3	33.4 33.4 33.4 33.4 4.5 8	33.4 33.4	35.1 35.1 35.1	35.1	35.7 35.7 35.7 35.7
19.2 24.9 25.2 28.6 19.2 24.9	21.6 25.1 25.7 25.7	21.6	24.3 24.3 24.3	24.3 24.3	25.7 25.7 25.7 25.7
13.8 19.2 19.2 19.2 19.2 19.2	15.6 21.6 21.6 21.6	21.6	18.2 24.3 24.3 24.3	24.3	20.0 25.7 25.7 25.7
9.2 19.2 19.2 19.2 17.5	11.0 21.6 21.6 21.6	21.6	12.0 24.3 24.3 24.3	18.3 20.4	13.3 25.7 25.7 25.7
6.4 14.3 14.7 15.2 13.8	7.6 15.6 16.4 18.3	15.6	8.9 18.1 18.2	15.6	10.3 18.8 19.4 20.0
4.7 8.1 11.0 11.9 7.8	5.9 9.3 11.0	8.9	6.6 10.8 12.0 12.3	9.9	7.6
TREES VOLUME: TOTAL MERCH MERCH ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH MERCH	ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH MERCH	ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH MERCH
2042	2052		2062		2072

VERSION 5.0 -- INLAND EMPIRE (TEST) EVENT MONITOR USER'S GUIDE EXAMPLE 1. STAND GROWTH PROGNOSIS SYSTEM MANAGEMENT CODE: NONE STAND ID; EXAMPLE1

SELECTED SAMPLE TREES ADDITIONAL STAND LIVE PAST DBH BASAL TREES QUADRATIC IGHT CROWN GROWTH AREA PER STAND MEAN DBH EET) RATIO (INCHES) %TILE ACRE AGE (INCHES)	IBUTES OF SELECTED SAMPLE TREES LIVE PAST DBH BASAL TREES QUADRATIC OBH HEIGHT CROWN GROWTH AREA PER STAND MEAN DBH CHES) (FEET) RATIO (INCHES) %TILE AGE (INCHES)	SELECTED SAMPLE TREES LIVE PAST DBH BASAL TREES QUADRATIC IGHT CROWN GROWTH AREA PER STAND MEAN DBH EET) RATIO (INCHES) %TILE ACRE AGE (INCHES)	ED SAMPLE TREES VE PAST DBH BASAL TREES ROWN GROWTH AREA PER STAND MEAN DBH ATIO (INCHES) %TILE ACRE AGE	TREES ADDITIONAL STAND DBH BASAL TREES QUADRATIC WTH AREA PER STAND MEAN DBH SHES) %TILE ACRE AGE (INCHES)	BASAL TREES QUADRATIC AREA PER STAND MEAN DBH %TILE ACRE AGE (INCHES)	ADDITIONAL STAND QUADRATIC STAND MEAN DBH AGE (INCHES)	ONAL STAND QUADRATIC MEAN DBH (INCHES)	1 1		ATTRIBUTES TREES PER ACRE	S (BASED BASAL AREA (SQFT/A)	ON STOCKAB TOP HEIGHT LARGEST 40/A (FT)	CROWN COMP FACTOR
%TILE SPECIES (INCHES) (FEET) RATIO (INCHES) %TILE AGRE AGE (IN YRS)	s) (FEET) RATIO (INCHES) %TILE ACRE AGE	EET) RATIO (INCHES) %TILE ACRE AGE	(INCHES) %TILE ACRE AGE	%TILE ACRE AGE	ACRE AGE	AGE			HES)	ACRE	\ 1	~ .	Fl
10 LP1 0.10 2.00 35 0.00 0.1 27.27 30 AF2 0.10 4.62 45 0.09 0.5 545.45 50 AF2 0.10 1.00 45 0.00 0.8 272.73 70 AF2 0.10 2.00 55 0.00 1.0 327.27 90 WP1 0.10 1.00 45 0.00 1.1 27.27 190 S2 19.90 70.00 65 2.30 100.0 1.68	0.10 2.00 35 0.00 0.1 27.27 0.10 4.62 45 0.09 0.5 545.45 0.10 1.00 45 0.00 1.0 327.27 0.10 2.00 55 0.00 1.0 327.27 0.10 45 0.00 1.1 27.27 0.10 65 2.30 100.0 1.68 10 0.	2.00 35 0.00 0.1 27.27 4.62 45 0.09 0.5 545.45 1.00 45 0.00 0.8 272.73 2.00 55 0.00 1.0 327.27 1.00 45 0.00 1.1 27.27 0.00 65 2.30 100.0 1.68 10 0.	0.00 0.1 27.27 0.09 0.5 545.45 0.00 0.8 272.73 0.00 1.0 327.27 2.30 100.0 1.68 10 0.	.00 0.1 27.27 .09 0.5 545.45 .00 0.8 272.73 .00 1.0 327.27 .00 1.1 27.27 .30 100.0 1.68 10 0.	1 27.27 8 245.45 8 272.73 0 327.27 1 27.27 1 68 10 0.	27 45 73 27 27 10 0.	. 0		_	1916.	.6	18.9	
(10 YRS)	0 YR	0 YR	0 YR	0 YR									
10 LP1 0.82 6.16 35 0.70 5.8 22.11 30 AF2 1.50 10.77 45 1.31 37.7 472.89 50 AF2 0.10 3.03 45 0.00 0.0 236.45 70 AF2 0.89 7.07 55 0.74 10.1 283.74 90 WP1 0.10 4.21 45 0.00 0.1 22.67 100 S2 21.44 73.62 65 1.48 94.2 1.68 20 1.5	0.82 6.16 35 0.70 5.8 22.11 1.50 10.77 45 1.31 37.7 472.89 0.10 3.03 45 0.00 0.0 236.45 0.89 7.07 55 0.74 10.1 283.74 0.10 4.21 45 0.00 0.1 22.67 1.44 73.62 65 1.48 94.2 1.68 20 1.	6.16 35 0.70 5.8 22.11 0.77 45 1.31 37.7 472.89 3.03 45 0.00 0.0 236.45 7.07 55 0.74 10.1 283.74 4.21 45 0.00 0.1 22.67 3.62 65 1.48 94.2 1.68 20 1.	0.70 5.8 22.11 1.31 37.7 472.89 0.00 0.0 236.45 0.74 10.1 283.74 0.00 0.1 22.67 1.48 94.2 1.68 20 1.	.70 5.8 22.11 37.7 472.89 .00 0.0 236.45 .74 10.1 283.74 .00 0.1 22.67 .48 94.2 1.68 20 1.	22.11 472.89 236.45 283.74 22.67 1.68 20 1.	.11 .45 .45 .67 .68 .20 1.	-	•		1654.	21.	25.1	27
(10 YRS)	0 YR	0 YR	0 YR	0 YR									
10 LP1 1.61 11.51 35 0.77 7.4 16.94 32 3.26 16.77 60 1.65 49.6 451.65 50 45.65 50 5.77 57.02 65 1.40 95.5 1.68 30 2.77	1.61 11.51 35 0.77 7.4 16.94 3.26 16.77 60 1.65 49.6 451.65 0.96 7.54 45 0.80 2.1 183.30 2.17 13.13 55 1.20 16.8 241.64 1.68 13.65 45 1.52 8.2 16.32 2.91 77.02 65 1.40 95.5 1.68 30 2.	1.51 35 0.77 7.4 16.94 6.77 60 1.65 49.6 451.65 7.54 45 0.80 2.1 183.30 3.13 55 1.20 16.8 241.64 3.65 45 1.52 8.2 16.32 7.02 65 1.40 95.5 1.68 30 2.	0.77 7.4 16.94 1.65 49.6 451.65 0.80 2.1 183.30 1.20 16.8 241.64 1.52 8.2 16.32 1.40 95.5 1.68 30 2.	77 7.4 16.94 .65 49.6 451.65 .80 2.1 183.30 .20 16.8 241.64 .52 8.2 16.32 .40 95.5 1.68 30 2.	4 16.94 6 451.65 1 183.30 8 241.64 2 16.32 5 1.68 30 2.	94 30 65 64 32 68 30 2.	Š			1401.	54.	31.2	74
(10 YRS)	≺R	≺R	≺R	≺R									
10 LP1 3.05 21.16 56 1.39 13.2 13.34 30 AF2 4.93 19.72 64 1.56 56.1 433.12 50 AF2 1.74 11.34 45 0.74 2.8 153.01 70 AF2 3.20 17.00 84 0.96 18.2 224.83 90 WP1 2.92 19.72 45 1.20 10.2 15.34 100 S2 25.06 80.66 66 2.06 97.7 1.64 40 3.9	3.05 21.16 56 1.39 13.2 13.34 4.93 19.72 64 1.56 56.1 433.12 1.74 11.34 45 0.74 2.8 153.01 3.20 17.00 84 0.96 18.2 224.83 2.92 19.72 45 1.20 10.2 15.34 5.06 80.66 66 2.06 97.7 1.64 40 3.	1.16 56 1.39 13.2 13.34 9.72 64 1.56 56.1 433.12 1.34 45 0.74 2.8 153.01 7.00 84 0.96 18.2 224.83 9.72 45 1.20 10.2 15.34 0.66 66 2.06 97.7 1.64 40 3.	1.39 13.2 13.34 1.56 56.1 433.12 0.74 2.8 153.01 0.96 18.2 224.83 1.20 10.2 15.34 2.06 97.7 1.64 40 3.	.39 13.2 13.34 .56 56.1 433.12 .74 2.8 153.01 .96 18.2 224.83 .20 10.2 15.34 .06 97.7 1.64 40 3.	13.34 1433.12 8 153.01 2 224.83 2 15.34 7 1.64 40 3.	13.34 33.12 53.01 24.83 15.34 1.64 40 3.	, w	•		1222.	101.	36.5	132
(10 YRS)	0 YR	0 YR	0 YR	0 YR									
10 LP1 4,31 26,34 56 1,22 12,4 11,98 30 AF2 5,90 24,45 57 0,91 59.5 400,35 50 AF2 2,71 16,38 45 0,90 4,8 124,77 70 AF2 5,72 20,41 85 2,36 34,2 199,24 90 WP1 3,34 24,82 63 0,41 9,1 13,65	.31 26.34 56 1.22 12.4 11. .90 24.45 57 0.91 59.5 400. .71 16.38 45 0.90 4.8 124. .72 20.41 85 2.36 34.2 199. .34 24.82 63 0.41 9.1 13.	6.34 56 1.22 12.4 11. 4.45 57 0.91 59.5 400. 6.38 45 0.90 4.8 124. 6.41 85 2.36 34.2 199. 4.82 63 0.41 9.1 13.	1.22 12.4 11. 0.91 59.5 400. 0.90 4.8 124. 2.36 34.2 199. 0.41 9.1 13.	.22 12.4 11. .91 59.5 400. .90 4.8 124. .36 34.2 199. .41 9.1 13.	11. 400. 124. 199.								
0	6.32 83.61 59 1.20 98.5 1.55 50 5 RESIDUAL: 6	3.61 59 1.20 98.5 1.55 50 5 RESIDUAL: 6	1.20 98.5 1.55 50 5 RESIDUAL: 6	.20 98.5 1.55 50 5 RESIDUAL: 6	1.55 50 5 RESIDUAL: 6	.55 50 5 RESIDUAL: 6			212	1047.	152.	37.7	189

_
$\overline{}$
2
0
C
~
-
_
P
2
\simeq
-
CT.
2
111

	114.2		134.0		155.4		171.0		183.8			189.6
	41.5		45.7		51.0		56.3		61.6			65.8
	113.		137.		162.		182.		200.			210.
	253.		230.		200.		176.		152.			134.
	9.0		10.4		12.2		13.8		15.5			16.9
	09		70		80		06		100			110
	10.81 7.28 2.19 3.84 9.80 1.50		10.07 5.99 1.90 3.61 9.13		8.82 5.39 1.75 3.40 7.86		7.43 4.49 1.58 3.14 5.96		6.47 3.69 1.18 2.87 4.64		5.94 3.26 0.98 2.67 3.44	
	10.0 11.5 2.5 12.0 7.6		11.0 12.4 4.5 29.5 7.7		11.6 12.0 5.5 28.7 6.1		10.7 9.1 3.7 34.3 5.1		11.2 8.3 2.8 33.3 100.0		8.4 7.1 2.9 35.1 3.7	
(10 YRS)	1.60 0.52 0.91 1.46 1.56	(10 YRS)	1.08 0.96 1.49 4.39 0.96 1.48	(10 YRS)	0.91 0.60 1.17 1.64 0.54 1.58	(10 YRS)	1.07 0.56 0.36 2.02 0.62 1.30	(10 YRS)	1.42 0.90 0.68 2.08 0.51 2.25	(10 YRS)	0.31 0.59 0.70 1.50 0.94	
	59 46 87 87 65		58 57 44 90 64 62		53 62 62 59		55 50 38 84 61		54 48 36 82 60 55		52 47 35 81 60	
	33.60 28.94 18.43 27.71 32.30 86.81		38.56 33.84 24.00 34.44 39.15		43.15 38.66 27.32 40.07 44.89		47.89 43.20 31.65 46.01 49.85		52.93 48.23 35.50 51.90 55.34 98.01		56.05 52.58 40.23 57.11 61.05	
	5.95 6.46 3.68 7.28 4.96 28.20		7.07 7.48 5.26 11.97 5.96 29.75		8.01 8.12 6.51 13.72 6.52 31.40		9.12 8.72 6.89 15.87 7.17		10.59 9.68 7.62 18.09 7.70 35.11		10.91 10.31 8.37 19.69 8.67 35.72	
	LP1 AF2 AF2 WP1 S2		LP1 AF2 AF2 WP1 S2		LP1 AF2 AF2 WP1 S2		LP1 AF2 AF2 WP1 S2		LP1 AF2 AF2 WP1 S2		LP1 AF2 AF2 WP1 S2	,
	10 30 50 70 90		10 30 50 70 90 100		10 30 50 70 90 100		10 30 50 70 90		10 30 50 70 90		10 30 70 90 100)
2022		2032		2045		2052		2062		2072		

AREA)
STAND
TOTAL
NO O
(BASED
ICS
IST
STATISTICS
SUMMARY

ERS	MGMT	NONE NONE NONE NONE	NONE NONE NONE					00.666	
IDENTIFIERS	STAND	EXAMPLE1 EXAMPLE1 EXAMPLE1 EXAMPLE1 EXAMPLE1 EXAMPLE1	EXAMPLE1 EXAMPLE1 EXAMPLE1 EXAMPLE1					00.00	
STAND SAMPLE	WEIGHT	888888			Е 1.				
MOR	CUFT/YR	0000000			EXAMPLE			0.98	
~ 1					GUIDE E				
TOP HT PR	FT YRS	00-98-				PARAMETERS		300.00	
	CCF F	10 - 10 - 10 0 0	95 105 116	SUMMA	USER	PARAM		က	
BA/ ACRE	SQFT		99 111 122 128	ACTIVITY SUMMARY	NITOR	NO -			
RCH		000000	0000	ACTI	EVENT MONITOR USER'S	DISPOSITION			
0 1		000000	00000		EVE			IN 2012	
REMOVALS ES TOTAL	CU FT	232	00000		Щ	ACT IV I TY		DONE	
1 1.1		5	0000		ID= NONE	DATE		2012	
ACRE MERCH	BD FT	66 66 142 142 453	6170 8143 11720 13457 15049		EMENT	KEYWORD		THINBTA	
PER		115 175 175 465 871			MANAGEMENT	1		Ħ	
VOLUN TOTAL	CU FT	98 181 393 718 1149	1374 1756 2136 2531 2825		PLE1	EXTENSION		BASE	
TREES	/ACRE	1171 1011 856 747 640 155	141 122 108 93 82		EXAMPLE1	1	72 92 92	12	22222
 		200 200 200 200 200 200 200 200 200 20			=Q I	DATE	1972 1982 1992 2002	201	2022 2032 2042 2042 2052 2052
		1972 1982 1992 2002 2012 2012			STAND	CYCLE	t 35 7	70	9 6 1 0 1 0 1

OPTIONS SELECTED BY INPUT

1	
KEYWORD	PARAMETERS:
STDIDENT	STAND ID= EXAMPLE2 EVENT MONITOR USER'S GUIDE, EXAMPLE 2
INVYEAR	INVENTORY YEAR= 1972
NUMCYCLE	NUMBER OF CYCLES= 15
<u></u>	MINIMUM DELAY TIME BETWEEN RESPONSES TO THE EVENT = 999
THER	PAI LT MAI ACTIVITIES WHICH FOLLOW WILL NOT BE SCHEDULED UNTIL THE EVENT HAPPENS (WHEN THE LOGICAL EXPRESSION IS TRUE).
THINATA	DATE/CYCLE

REGENERATION ESTABLISHMENT OPTIONS: 1; % GROUND= ESTAB

BURNPREP DATE/CYCLE= 1; % GROUND= 80.0 MECHPREP DATE/CYCLE= 1; % GROUND= 20.0

2; SPECIES= 2.; TREES/ACRE= 300.; % SURVIVAL= 90.00 DATE/CYCLE= DATE/CYCLE= MECHPREP

2; SPECIES= 8.; TREES/AGRE= 300.; % SURVIVAL= 90.00 DATE/CYCLE= PLANT PLANT DATE/CYCLE= 9; MULTIPLIER= -1.00
NATURAL REGENERATION IS CANCELLED -- ONLY PLANTED TREES ARE TALLIED. STOCKADJ

REGENERATION TALLY ONE SCHEDULED FOR 9, AND TALLY TWO FOR 19 YEARS AFTER 1F-EVENT IS TRUE. END OF ESTABLISHMENT KEYWORDS 0 D; NEW AGE= DATE/CYCLE= RESETAGE

ENDIF ACTIVITIES WHICH FOLLOW WILL BE SCHEDULED.

MINIMUM DELAY TIME BETWEEN RESPONSES TO THE EVENT = BBA GT 150 AND AGE LT 130 '

ACTIVITIES WHICH FOLLOW WILL NOT BE SCHEDULED UNTIL THE EVENT HAPPENS (WHEN THE LOGICAL EXPRESSION IS TRUE). THEN

20

DATE/CYCLE= 0; RESIDUAL= 130,00; PROPORTION OF SELECTED TREES REMOVED= 0.980 DBH OF REMOVED TREES WILL RANGE FROM 0.0 TO 999.0 INCHES THINBBA

8.; SLOPE CODE= FOREST CODE= 18; HABITAT TYPE=680; AGE= 150; ASPECT CODE= ELEVATION(100'S FEET)= 53.0; SITE INDEX= 0. STDINFO

ACTIVITIES WHICH FOLLOW WILL BE SCHEDULED.

ENDIF

5

(con.

PROCESS PROCESS THE STAND.

Example 2. (Con.)

CALIBRATION STATISTICS:

	DF	WP	S	GF	AF	LP	-
NUMBER OF RECORDS PER SPECIES	19	9	2	5	9	2	33
NUMBER OF RECORDS CODED AS RECENT MORTALITY	0	0	0	0	0	0	0
NUMBER OF RECORDS WITH MISSING HEIGHTS	0	0	0	0	0	0	0
NUMBER OF RECORDS WITH BROKEN OR DEAD TOPS	0	0	-	0	0	0	0
NUMBER OF RECORDS WITH MISSING CROWN RATIOS	0	0	0	0	0	0	0
NUMBER OF RECORDS AVAILABLE FOR SCALING THE DIAMETER INCREMENT MODEL	18	5	2	83	4	2	8
RATIO OF STANDARD ERRORS (INPUT DBH GROWTH DATA : MODEL)	1.12	1.17	1.00	1.00	1.00	1.12 1.17 1.00 1.00 1.00 1.00 1.00	1.00
WEIGHT GIVEN TO THE INPUT GROWTH DATA WHEN DBH GROWTH MODEL SCALE FACTORS WERE COMPUTED	0.73	0.89	00.00	00.00	00.00	0.73 0.89 0.00 0.00 0.00 0.00 0.00	00.00
INITIAL SCALE FACTORS FOR THE DBH INCREMENT MODEL	1.14	1.54	1.00	1.00	1.00	1.14 1.54 1.00 1.00 1.00 1.00 1.00	1.00
NUMBER OF RECORDS AVAILABLE FOR SCALING THE SMALL TREE HEIGHT INCREMENT MODEL	0	0	0	0	0	0	0
INITIAL SCALE FACTORS FOR THE SMALL TREE HEIGHT INCREMENT MODEL	1.00	1.00	1.00	1.00	1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00

EVENT MONITOR USER'S

OF STAND ATTRIBUTES BY USER-DEFINED SUBCLASSES 5.7.9 6.7.9 7.86% 10.% 12.5 10.9 7. 7. 969 1. ζ. 96.6 <u>ښ</u> ₽. DF2, AF2, LP2, WP2, AF2, LP2, Ξ, AF2, LP2, GF2, 12.% 14.% 13.3% 13.% 12.% 9.% 3.22 12.9 14.% 12.1.2 8686 14.% 9 4 GF1, WP2, GF2, WP2, WP2, WP2, DF1, WP2, WP2, WP2, GF2, GF2, 18.% 17.% 13.% 20.% DISTRIBUTION SPECIES AND 3 20.% 18. 19.% 18.%% 18.% 17.% 19.% 17.% 18 . 18 . 18 . 18 . 8 . 8 . 8 . 8 . 8 . 8 . 15.% 15.% % <u>.</u> DF1, AF2, AF2, AF2, AF2, N 22.% 39.% 40.% 42.% 32.% 20.% 38.% 39.% 41.% 30.% 17.% 37.% 38.% 40.% 30.% 30.% %.91 37.% 37.% 39.% 27.% 30.% GUIDE, EXAMPLE AREA CUFT/YR CUFT/YR CUFT/YR CUFT/YR CUFT/YR CUFT/YR CUFT/YR CUFT/YR STOCKABLE TOTAL/ACRE OF STAND ATTRIBUTES 371. TREES TREES TREES CUFT CUFT BDFT CUFT CUFT BDFT CUFT CUFT BDFT CUFT CUFT BDFT 7552. 7271. 38004. 6229. 5841. 30364. 93. 280. 98. 35. 218. 8053. 7798. 41171. 95. 6918. 6619. 34384. 97 NO STAND COMPOSITION (BASED 32.8 32.8 32.8 34.8 34.8 34.8 34.8 34.8 32.8 8 6 999 9 34.8 35.4 35.4 35.4 35.4 35.4 35.4 DBH 33.6 32. 8888 33. 100 ВҮ 28.5 PERCENTILE POINTS IN THE DISTRIBUTION OF STAND ATTRIBUTES 27.5 28.3 31.2 31.2 31.4 31.9 31.9 29.4 31.6 9 ららら 444 N 6 90 29. 30. 16. 6 22 (DBH IN INCHES) 7.7 25.8 25.8 26.0 21.9 11.0 26.0 26.3 26.3 22.7 23.4 26.5 26.5 26.8 23.5 24.4 27.1 27.3 27.4 23.2 6 8 70 ∾ NONE 17.6 17.7 21.8 21.9 22.1 22.3 22.6 22.8 17.1 23.1 23.1 23.5 11.6 23.4 23.5 23.9 16.7 3 9 MANAGEMENT CODE: 20 8 10.5 13.3 1.9 17.9 18.0 19.6 18.1 18.3 18.8 18.6 18.7 18.9 13.4 0.1 988 2 8 3 ω 30 7. 18. 22 ď 7.7 11.1 22.0 9.9 13.3 13.4 9.5 10.1 11.3 12.4 0.7 0.1 6 0, 80 **EXAMPLE2** ATTRIBUTES ACCRETION MORTALITY ACCRETION MORTALITY ACCRETION MORTALITY ACCRETION MORTALITY TREES VOLUME: TOTAL MERCH MERCH STAND STAND ID: 1972 1992 2002

GF2 DF2

2694

LP2 LP2 LP2

93933

Ξ

%

GF2 GF2 GF2

989898

WP2

%

GF1 L1

2494

GF2 GF2 GF2

249494

DF1

%

GF1 L1

GF2 GF2 GF2

 \Box

%

\$2 DF2

9494

(:1
Con
2.
ple
am
Exi

13.% GF2 7.% GF2 7.% GF2 7.% GF2 12.% AF2 9.% L1	12.% L1 7.% GF2 7.% GF2 7.% GF2 7.% GF2 7.% GF2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 00 00 00 00 00 00 00 00 00 00 00 0
13.% L1, 10.% DF2, 11.% DF2, 13.% WP2, 9.% DF2,	13.% S2, 10.% DF2, 10.% DF2, 10.% DF2, 10.% DF2, 10.% DF2,	0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15.% AF2, 17.% WP2, 17.% WP2, 16.% WP2, 14.% GF1, 20.% WP2,	15.% AF2, 16.% WP2, 15.% WP2, 15.% WP2, 16.% WP2, 16.% WP2,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49.% L1, 0.%, 44.% L1, 49.% L1, 0.%, 0.%, 43.% S1,
17.% DF1, 36.% DF1, 37.% DF1, 38.%% DF1, 26.% DF1, 30.% DF1,	18.36.37 DF1, 336.38 % DF1, 346.38 DF1, 356.39 DF1, 356.39 DF1, 378.36 DF1, 376.39 DF1, 37	100.% L1, 100.% L1, 50.% L1, 100.% L1, 100.% L1,	51.% S1, 100.% L1, 56.% S1, 100.% L1, 100.% L1, 57.% L1, 54.% L1,
CUFT CUFT BDFT CUFT/YR CUFT/YR	TREES CUFT BDFT TREES CUFT CUFT BDFT	CUFT/YR CUFT/YR TREES CUFT CUFT BDFT	CUFT/YR CUFT CUFT CUFT BDFT BDFT CUFT CUFT CUFT CUFT
150. 8504. 8255. 44133. 96.	129. 8912. 8665. 46789. 129. 8912. 8665.	.0 0. 540. 0.0.0	3. 0. 34. 0. 0. 0.
35.7 35.7 35.7 35.7 35.7	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.5 7.5 8.9 8.9 8.9	88 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
25.0 32.8 33.0 33.0 30.1	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7.5 7.5 7.5 8.9 8.9	00 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
16.3 27.6 27.7 28.0 24.1 26.0	18.9 28.1 28.3 28.3 18.9 18.9 28.2 28.2 28.3	7.5. 7.5. 7.5. 8.9 9.8	0.4 8.1 1.6 9.6 9.6 9.6 1.7
13.6 24.1 24.2 24.2 18.2 21.9	14.7 24.3 24.6 24.6 14.7 14.7 24.3 24.3	7.5 7.5 7.5 7.5 8.9 8.9	0.4 8.1 1.7 1.7 9.6 9.6
9 .3 .19 .15 .4 .15 .4 .15 .4	10.8 19.22 10.8 19.22 19.23 19.24	7.5 7.5 7.5 7.5 8.1 8.1 1.8	4. 1 699 1 1 80. 1. 1 2. 2. 4. 1 2. 1 4. 1 4. 1 4. 1 4.
2.3 13.8 14.0 14.0 12.8	3.4 14.5 14.6 15.0 15.0 3.4 14.5 17.6	7.5 7.5 7.5 7.5 7.5 8.1	0.3 9.7.2 0.0 0.0 0.0 0.0
TREES VOLUME: TOTAL MERCH MERCH ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH MERCH VOLUME: TOTAL MERCH MERCH	RESIDUAL ACCRETION MORTALITY TREES VOLUME: TOTAL MERCH MERCH	ACCRETION MORTALITY TREES VOLUME: TOTAL MERCH MERCH ACCRETION MORTALITY
2012	2022	2032	2042

% %%%	%. 0 . % 0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%.0 %%.0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.%.0	% %%% . 0 0 0 0	% %%%	0.%	0.% 0.% (con.)
% %% % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 8%% 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.%%	% %%%% 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.%	0.% 0.% 0.%
44.% L1, 44.% S1, 0.%; 0.%	47.% L1, 35.% S1,	43.% L1, 50.% L1, 34.% L1, 37.% L1,	37.% L1, 32.% S1,	42.% L1, 43.% L1, 40.% L1, 39.% L1,	27.% L1, 44.% S1,	41.% L1, 35.% L1, 34.% L1, 31.% L1,	43.% S1, 32.% S1, 30.% S1, 30.% S1,	32.% L1,	17.% L1, 43.% L1,
56.% S1, 56.% L1, 100.% L1,	53.% S1, 65.% L1,	57.% S1, 50.% S1, 66.% S1, 63.% S1,	63.% S1, 68.% L1,	58.% S1, 57.% S1, 60.% S1, 61.% S1,	73.% S1, 56.% L1,	59.% S1, 65.% S1, 66.% S1, 69.% S1,	57.% L1, 62.% L1, 68.% L1, 70.% L1,	68.% S1,	83.% S1, 57.% S1,
7. TREES 5. CUFT 0. BDFT	4. CUFT/YR 1. CUFT/YR	73. TREES 8. CUFT 99. CUFT 4. BDFT	3. CUFT/YR 2. CUFT/YR	58. TREES 86. CUFT 71. CUFT 00. BDFT	28. CUFT/YR 9. CUFT/YR	36. TREES 79. CUFT 22. CUFT 38. BDFT	11. CUFT 59. BDFT	18. TREES	4. CUFT/YR 1. CUFT/YR
10.5 38 10.5 24 10.5	10.5 10.5	13.4 77 13.4 161 15.4 161	13.4 9	15.0 35; 15.0 168 15.0 107 15.0 4400	15.0 12	16.7 33 16.7 287 16.7 242 16.7 1133	8.3 12 8.3 55 8.3 32 8.3 125	16.7 20	16.7 116.7
4.7 5.3 10.5	5.1 4.5	7.4 7.5 8.0 8.0	7.9 7.4	9.3 10.1 11.3	10.6	12.2 13.9 13.9	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13.3	13.9 13.9
3.9 10.5 10.5	4.2	6.0 6.9 7.7 7.7	6.9	8.3 9.2 9.2 9.2	9.2	10.0	7.6 7.7 8.0 8.0	11.4	12.2
3.3 4.0 10.5	3.8	5.4 7.5 7.5	5.8	7.2 8.2 8.9 9.0	8.3	8.9 10.0 10.5	7.3	6.6	11.4
2.6 3.7 10.1	3.2	4.8 7.5 7.4 7.4	5.3	6.5 7.2 8.1 8.2	7.3	7.7 8.9 9.5	6.7 7.1 7.4 7.4	9.4	9.7
1.9 2.8 10.1	2.5	3.6 4.7 7.2 7.2	4.2	5.4 7.3 7.4	5.8	6.5 7.5 8.0 8.2	5.5 6.0 7.3	8.6	8.7
TREES VOLUME: TOTAL MERCH MERCH	ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH	ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH	ACCRETION MORTALITY	TREES VOLUME: TOTAL MERCH	REMOVAL VOLUME: TOTAL MERCH	RESIDUAL	ACCRETION MORTALITY
2052		2062		2072		2082			

TRE VOL	MERCH MERCH ACCRETION MORTALITY	TREES	TOTAL MERCH MERCH ACCRETION	MORTALI	VOLUME: TOTAL MERCH MERCH	REMOVAL	VOLUME: TOTAL MERCH MERCH	RESIDUAL	ACCRETION MORTALITY	TREES	VOLUME: TOTAL MERCH MERCH
TREES VOLUME: TOTAL	_,		N	<u>></u>					NO Y		
9.8	10.2	11.0	11.1	10.9 11.4	12.3 12.4 12.4	11.3	11.3	17.0	17.1	17.9	18.6 18.6 18.6
10.5	11.2	11.8	13.2	12.0	14.9 14.9 15.6	12.3	12.4 12.4 12.6	17.2	17.3	18.6	19.0 19.0 19.6
3	13.3	13.4	14.6 15.5 14.9	7 5	17.1 17.1 17.2	13.3	13.5 13.5	17.8	18.9	19.6	20.5 20.5 20.5
	14.4 14.6 14.2 13.5	. 4	16.8 17.2 16.8	6.	18.9 18.9 19.0	14.3	14.9 14.9 15.5	19.0	21.7	20.5	23.2
. 80	18.5 17.8 17.8	. 6	20.7		23.8 23.8 23.8	16.2	16.6 16.6 16.6	23.8	23.8 23.8	26.3	26.3 26.3 26.3
9.	19.2	. .	21.5		25.0 25.0 25.0	16.9	16.9 16.9 16.9	25.0	25.0 25.0	26.3	26.3 26.3 26.3
198 358	3101. 16558. 136. 25.	18	4469. 4192. 24100. 143.	9	5537. 5243. 31222.	102.	2365. 2221. 11871.	64.	76.	63.	3857. 3691. 23940.
	. CUFT/YR . CUFT/YR . CUFT/YR	EES	CUFT BDFT CUFT/YR	CUFI/Y TREES	CUFT CUFT BOFT	. TREES	CUFT CUFT BDFT	. TREES	. CUFT/YR	. TREES	CUFT CUFT BDFT
. 6	80°8 80°8 80°8 80°8	- ·	8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, S	83.% 83.% 87.%	55.%	61.% 61.% 67.%	%.66	100.% 97.%	% 66	99.% 99.% 100.%
	S1, S1,		S1, S1,		S1, S1,	\$1,	\$1, \$1,	S1,	S1,	\$1,	S1, S1,
- 4:	20.% 14 .%%	. 6	20.3 15.3 11. 5.3 13.3 13.3 14.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15	, %	17.%	45.%	33.6% 33.6% 33.6%	1.%	3.%	1.%	0 0
1, 1,	:: ::	. []	:i: i:i:		555	L1,	1,1,1	L1,	11,	L1,	1,1,
6% 6%	%% %%	· · · · · ·		·	0.0000000000000000000000000000000000000	0.%,	% 0 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.%,	0.%	0.%,	0.00 %%% 0.00 0.00
6% 6%	 %% %%	. % &	000 00 6888 88	% %.	0.00 %%0 0.00 	%:0	0.00 %.00 .00%	0.%	0.% 0.% 0.%	%:0	0.% 0.% 0.% (con.)

STAND GROWTH PROGNOSIS SYSTEM

VERSION 5.1 -- INLAND EMPIRE

EVENT MONITOR USER'S GUIDE, EXAMPLE 2 MANAGEMENT CODE: NONE STAND ID; EXAMPLE2

			TTRIBUTE	OF SELE	CTED	SAMPLE TREES	1	1	ADDITIONAL	STAND	ATTR1BUTE	S (BASED	18	1 1
YEAR	INITIAL TREES/A %TILE	SPECIES	DBH (INCHES)	HE1GHT (FEET)	LIVE CROWN RATIO	PAST DBH GROWTH (INCHES)	BASAL AREA %TILE	TREES PER ACRE	STAND	QUADRATIC MEAN DBH (INCHES)	TREES PER ACRE	BASAL T AREA (SQFT/A)	OP HE LARG 40/A	CROWN COMP FACTOR
1972						(10 YRS)								
	10 30 50 70 90	AF2 GF2 WP2 L1 DF2	0.10 0.10 2.30 7.70 16.60	1.00 1.00 8.00 52.00 105.00	45 335 35 35 35 35	0.00 0.00 0.53 1.20 0.60 0.90	0.0 0.0 11.6 41.1	33.33 33.33 33.33 13.74 2.96 0.76	150	9.1	371.	166.	114.6	146.0
1982						(10 YRS)								
	10 20 10 100	AF2 GF2 GF2 WP2 L1 DF2	0.10 0.10 2.30 8.35 17.08 33.27	3.05 2.93 10.68 59.04 108.14 150.83	45 35 35 14 35 35	0.00 0.00 0.00 0.63 0.41	0.0 0.0 0.0 10.2 39.5 99.4	18.16 19.60 25.07 13.12 2.77 0.74	160	10.8	280.	179.	116.7	153.8
1992						(10 YRS)								
	10 30 50 70 100	AF2 GF2 GF2 WP2 L1 DF2	0.10 0.10 2.30 8.93 17.53 33.72	4.29 4.03 14.11 65.80 111.12	45 33 33 35 35 35	0.00 0.00 0.00 0.55 0.38 0.39	0.0 0.0 0.4 7.2 39.2 98.9	9.75 11.38 16.74 11.59 2.47 0.71	170	12.7	218.	190.	119.3	160.4
2002						(10 YRS)								
	100 200 100 100	AF2 GF2 GF2 WP2 L1	0.73 0.86 2.47 9.25 18.17 34.16	5.67 6.28 17.69 69.50 114.80	45 35 12 35 35 35	0.59 0.70 0.15 0.31 0.55	0.0 0.0 0.2 0.2 39.0 99.0	5.18 6.54 11.02 10.00 2.17 0.68	180	14.3	177.	197.	122.5	164.0
2012						(10 YRS)								
	10 30 50 70 90	AF2 GF2 WP2 L1	0.92 1.29 2.96 9.68 18.63	7.26 9.49 20.98 73.99 117.69	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.17 0.39 0.45 0.39 0.39	0.0 0.0 0.2 5.0 39.7	3.33 4.87 7.16 7.97 1.96 0.64						
		1	` :) , ,	k I				190	15.8	150.	203.	124.8	166.8

		135.5		129.2		148.3		162.4 84.9		6.46	(con.)
		4.64 4.64		56.4		64.5		70.5		76.4	
		164. 130.		167.		202.		231. 130.		149.	.D.
		336. 208.		198.		182.		166. 64.		63.	WERE SELECTED
		9.5		12.5		14.3		16.0		20.9	TREES
		60 RESIDUAL:		70		80		90 ESIDUAL:		100	NEW SAMPLE
	1.34 1.56 4.29 4.39 2.87 0.00	RES		0.02 0.02 4.09 4.22 0.04		0.02 0.02 3.97 0.04		0.01 3.57 3.65 0.03 0.00		0.00	
	0.2 0.1 27.7 77.9 4.0 92.9			0.0 0.0 17.8 64.2 0.1 78.5		0.0 16.3 44.5 0.1 69.0		0.0 0.0 11.1 33.5 0.0 65.0		0.0 0.0 0.3 1.1 32.7	ESTABLISHMENT,
(10 YRS)	0.58 0.41 1.26 2.85 0.30 0.35		(10 YRS)	0.67 0.78 1.72 1.29 0.59	(10 YRS)	0.29 0.42 1.16 0.68 0.57 0.56	(10 YRS)	0.64 0.12 0.65 1.19 0.30	(10 YRS)	0.46 0.52 0.82 1.07 1.14	EGENERATION E
	36 40 81 50 54			36 80 80 20 50 54		35 39 76 19 52		35 172 18 18 20		35 77 76 18 53	OR REGE
	30.67 34.91 41.08 48.44 52.87			35.31 39.90 48.31 54.04 59.77		39.46 44.34 53.96 57.51 64.11		44.50 46.24 57.58 62.47 67.91		48.50 52.84 61.72 66.89 76.72	COMPRESSION, O
	4.37 4.27 8.66 12.18 6.67 14.38			5.15 5.19 10.46 13.53 7.37		5.49 5.68 11.67 14.24 8.03 16.31		6.24 5.82 12.35 15.49 8.38 17.76		6.78 6.43 13.21 16.61 9.72	
	1128811			1128811		1128211		233111		1128811	E TO HARVEST
	10 30 50 70 90 100			10 30 50 70 90 100		10 30 50 70 90		10 30 50 70 90 100		10 30 50 70 90	re: DUE
2082			2092		2102		2112		2122		TON **

-
- 5
=
0
65
\sim
_
\circ
1.4
a)
Distance
Ω.
~
-
-
ω
-10
ш
-

										(000)
1 6	MCMT	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ			00.866			00.666		00.666
1 :	STAND	XXAMPL XXAMPL XXAMPL XXAMPL XXAMPL XXAMPL XXAMPL XXAMPL XXAMPL XXAMPL			0.00			00.		00.
	STAND SAMPLE WEIGHT		2		88			0		0
		00000000000000000000000000000000000000	EXAMPLI		000.00			96.0		0.98
OWI	ACC	97 98 98 995 995 111 1114 1143 76	EX		300					
I I	PRD YRS		GUIDE	& I I	00000000	00		00		00
	HT FT	1115 1115 1117 1128 113 128 133 133 149 149 149 149 149 149 149 149 149 149	S	PARAMETER	0.00 80.00 20.00 2.00 2.00 -1.00 -1.00 2022.00	2022.00		130,00		130.00
	CCF	146 1 154 1 160 1	USER	PARA 		ęv.				
		100 170 190 190 190 190 190 190 190 190 190 19	TOR	N I						
ACRE	MERCH BD FT	6789 6789 6789 00 00 1259 1871 ACTI	VENT MONITOR	DISPOSITION	2022 2023 2023 2024 2024 2024 2031 2031	2041		2082		112
PER /	ERC	32 32 66	EV		XXXXXXXX	IN 24		200		N .
OVALS	TOTAL CU FT	8912 8912 0 0 0 0 551 551 2365	NE	ACT 1 V 1 T Y	DONE DONE DONE DONE DONE DONE DONE DONE	DONE		DONE		DONE
REM	TREES /ACRE	1200 000 1200 000 000 000 000 000	NON = QI	DATE	2022 2023 2024 2024 2024 2031 2031	2041		2082))	2112
ACRE	EH O	30364 34384 38004 41171 44133 46789 0 0 0 0 11338 16558 24100 31222	SEMENT	KEYWORD	THINATA BURNPREP MECHPREP PLANT STOCKADJ RESETAGE TALLYONE	ALLYTWO		THINBRA		THINBBA
PER	1 22	58471 56847 7271 7271 7271 7271 7271 1071 1072 3101 4192 3691	MANAGE	z ı	TEST CEST	TA		TH.		H
VOLUME	TAL	00000000000000000000000000000000000000	PLE2	TENS	BASE ESTB ESTB ESTB ESTB ESTB ESTB	ESTB		RACE		BASE
	TREES /ACRE	2371 2371 2371 2373 3373 3373 1828 1828 63	EXAM	ATE EX 9972	2022	032	2042 2052 2062 2072	2082	092	112
	<	150 1750 1760 1760 1760 1760 1760 1760 1760	21	0100	্ম	20	5555	2	NN	2
	لنا	2012 2002 2002 2003 2003 2004 2005 2005 2005 2102 2102	STAND	CYCLE	ý	7	9 01 11	12	13	15

* REGENERATION ESTABLISHMENT MODEL VERSION 1.0 * * * * * * * * * * * *

THE PRESCRIPTION FOR STAND: EXAMPLE2 MANAGEMENT ID: NONE

NUMBER OF PLOTS	BY HABITAT TYPE	520 530 570 620		6 0 0 0
ENT		PCT	-	80
PERC	1 1	BURN PCT		2023
QN/	1	_ _		
,	į	PC	1	20
DATE		MECH PCT	1111	2023
SITE PREP, DAIE, AND PERCENT		NONE PCT		0
SITE	i	NONE		2022
DATE OF	DISTURB-	ANCE		2022

CUMULATIVE PROBABILITY OF STOCKING IS 0.0000 IN THE FALL OF 2031 NOTE: REPORTED PROBABILITY OF STOCKING DOES NOT INCLUDE PLANTED TREES. SPECIES PLANTED: L S

REGENERATION(<3"DBH) BEING PROJECTED BY THE PROGNOSIS MODEL.	% OF TOTAL SPECIES		50. 0. DF									
REGENER BEING PI THE PRO	TREES /ACRE	0.0	2/0.		0.	0.	0.	270.	0.	0.		540.
SUBSAMPLE OF "BEST" TREES REGENERATING DURING THIS TALLY.	AVERAGE HEIGHT	0.0	ر ت د	0.0	0.0	0.0	0.0	3.2	0.0	0.0		
MPLE OF REGENE G THIS	% OF TOTAL		50.									
SUBSA TREES DURIN	TREES /ACRE	0.	270.		0.	0.0	0.	270.	0.	0.	1 1 1 1	540.
ONAL RATION ALLY.	% OF TOTAL	0.	50.		0.	0	0	50.	0.	0.		
ADDITIONAL REGENERATIO THIS TALLY.	TREES /ACRE	0.	270.		0.	0	0.	270.	0	0		540.
TALLYONE	SPECIES	WP	_ _ _	200	HM	ပ	ГЪ	S	AF	РР		

CUMULATIVE PROBABILITY OF STOCKING IS 0.0000 IN THE FALL OF 2041

TALLYTWO	ADDITIONAL REGENERATIO THIS TALLY.	ONAL RATION ALLY.	SUBSAMP TREES R DURING	PLE OF REGENE THIS	SUBSAMPLE OF "BEST" TREES REGENERATING DURING THIS TALLY.	REGENE BEING THE PR	REGENERATION(<3"DB! BEING PROJECTED BY THE PROGNOSIS MODEI	<3"DBH) ED BY MODEL.
SPECIES	TREES /ACRE	% OF TOTAL	TREES %	% OF TOTAL	AVERAGE HEIGHT	TREES /ACRE	% OF TOTAL	SPECIES
WP	0	0.	0.	0.	0.0	0.	0.	WP
_	0.	0.	0.	0	0.0	188.	44.	_
DF	0.	0.	0.	0.	0.0	0.	0.	DF
GF	0	0.	0.	0	0.0	0.	0.	GF
H.M.	0	0.	0.	0	0.0	0.	0.	MH
ပ	0	0.	0.	0	0.0	0.	0.	ပ
LP	0	0.	0.	0	0.0	0.	0.	LP
S	0	0.	0.	0	0.0	236.	56.	S
AF	0	0.	0.	0	0.0	0.	0.	AF
РР	0.	0.	0.	0.	0.0	0.	0.	РР
	1 1 1 1							
	_		0			424.		

PARALLEL PROCESSING EXTENSION -- VERSION 1.0

STAND GROWTH PROGNOSIS SYSTEM

OPTIONS SELECTED BY INPUT

KEYWORD	PARAMETERS:
ADDSTAND	ADD ONE STAND TO THE DATA BASE.
STDIDENT	STAND ID= EXAMPLE3 EVENT MONITOR USER'S GUIDE EXAMPLE 3.
INVYEAR	INVENTORY YEAR= 1972
NUMCYCLE	NUMBER OF CYCLES= 10
I.F.	MINIMUM DELAY TIME BETWEEN RESPONSES TO THE EVENT = 999
	BCCF GT 150 AND BTPA GT 500 AND AGE & GT 20 AND AGE LT 60
THEN	ACTIVITIES WHICH FOLLOW WILL NOT BE SCHEDULED UNTIL THE EVENT HAPPENS (WHEN THE LOGICAL EXPRESSION IS TRUE)
THINBTA	DATE/CYCLE= 0; RESIDUAL= 300.00; PROPORTION OF SELECTED TREES REMOVED= 0.980 DBH OF REMOVED TREES WILL RANGE FROM 0.0 TO 999.0 INCHES
ALSOTRY	ACTIVITIES WHICH FOLLOW WILL NOT BE SCHEDULED UNTIL THE EVENT HAPPENS (WHEN THE LOGICAL EXPRESSION IS TRUE).

ACTIVITIES WHICH FOLLOW WILL NOT BE SCHEDULED UNTIL THE EVENT HAPPENS (WHEN THE LOGICAL EXPRESSION IS TRUE). DATE/CYCLE= 0; RESIDUAL= 400.00; PROPORTION OF SELECTED TREES REMOVED= 0.980 DBH OF REMOVED TREES WILL RANGE FROM 0.0 TO 999.0 INCHES ACTIVITIES WHICH FOLLOW WILL BE SCHEDULED. ALSOTRY ENDIF

5 10; ASPECT CODE= μ .; SLOPE CODE= 0. FOREST CODE= 18; HABITAT TYPE=710; AGE=ELEVATION(100'S FEET)= 56.0; SITE INDEX= SIDINFO

PROCESS THE STAND. PROCESS

OPTIONS SELECTED BY DEFAULT

TREEFMT	(23x, 14,3x, F2.0,11, A3,F3.1,F2.1,3x,F3.0,T63,F3.0 ,T60,F3.1,T48, 11,3x, 12, 211,T66,211,13, 211)
DESIGN	BASAL AREA FACTOR= 40.0; INVERSE OF FIXED PLOT AREA= 300.0; BREAK DBH= 5.0 NUMBER OF PLOTS= 18; NON-STOCKABLE PLOTS= 7; STAND SAMPLING WEIGHT= 18.00000 STAND ATTRIBUTES ARE CALCULATED PER ACRE OF STOCKABLE AREA. STAND STATISTICS IN SUMMARY TABLE ARE MULTIPLIED BY 0.611 TO INCLUDE TOTAL STAND AREA.

(con.)

ALSOTRY THINBTA

-1
SCHEDULE
=
≍
_
I
()
· 70
• •
>
_
_
>
2
AC-
=
٩

EVENT MONITOR USER'S GUIDE EXAMPLE 3.

MANAGEMENT ID= NONE

STAND ID= EXAMPLE3

RAMETERS:											
AT	!										
EYWORD	! ! ! !										
XTENSIO	 										
DATE	! ! !	1972	1982	1992	2002	2012	2022	2032	2042	2052	2062
ζ	 	-	2	က	7	5	9	7	80	6	10

CALIBRATION STATISTICS:

	d ¦	M H	AF-	:	s !
NUMBER OF RECORDS PER SPECIES	2	5	19	5	2
NUMBER OF RECORDS CODED AS RECENT MORTALITY	0	0	0	0	0
NUMBER OF RECORDS WITH MISSING HEIGHTS	0	0	-	-	0
NUMBER OF RECORDS WITH BROKEN OR DEAD TOPS	0	0	0	0	0
NUMBER OF RECORDS WITH MISSING CROWN RATIOS	0	0	0	0	0
NUMBER OF RECORDS AVAILABLE FOR SCALING THE DIAMETER INCREMENT MODEL	0	0	-	0	-
RATIO OF STANDARD ERRORS (INPUT DBH GROWTH DATA : MODEL)	1.00	1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00
WEIGHT GIVEN TO THE INPUT GROWTH DATA WHEN DBH GROWTH MODEL SCALE FACTORS WERE COMPUTED	00.00	0.00 0.00 0.00 0.00 0.00	00.00	00.00	0.00
INITIAL SCALE FACTORS FOR THE DBH INCREMENT MODEL	1.00	1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00
NUMBER OF RECORDS AVAILABLE FOR SCALING THE SMALL TREE HEIGHT INCREMENT MODEL	0	0	0	0	0
INITIAL SCALE FACTORS FOR THE SMALL TREE HEIGHT INCREMENT MODEL	1.00	1.00 1.00 1.00 1.00 1.00	1.00	1.00	1.00

Example 3. (Con.)

SUMMARY UP TO MASTER STARTING YEAR:

	DENTIFIEDS		EXAMPLE3	VERSION 5.0 INLAND EMPIRE (TEST)	PARALLEL PROCESSING EXTENSION VERSION 1.0
(EA)	ROWTH	PRD ACC MOR YRS CUFT/YR	84 475 0 0 0 0 5 5 19 0 0 0	VERSION 5.0	PARALLEL PROCESSING EXTENSION VERSION 1.0
L STAND AR	TOB	T CCF FT	5 5 19	EΜ	TENSION
SUMMARY STATISTICS (BASED ON TOTAL STAND AREA)	ACRE BA/	TREES TOTAL MERCH TREES TOTAL MERCH MERCH ACRE YEAR AGE /ACRE CU FT CU FT BD FT /ACRE CU FT CU FT SQFT	0 0	STAND GROWTH PROGNOSIS SYSTEM	OCESSING EX
TISTICS (BA	REMOVALS PER ACRE	TREES TOTAL MERC	0	GROWTH PRO	PARALLEL PR
MARY STA	KE RE	CH TREES FT /ACRE	175 0	STAND	
	2	MERCH MERCH CU FT BD FT	184		
	VOLUME PE	TREES TOTAL MERC	96		
		TREES E /ACRE	0 117		
	 	YEAR AG	1972 10 1171		

OPTIONS SELECTED BY INPUT

	KEYWORD	PARAMETERS:
	PROJECT	THEKE AKE I STANDS TO PROJECT.
_	NOCOMPOS	HOCOMPOS COMPOSITE YIELD TABLES WILL NOT BE GENERATED.
	YIELDS	YIELDS PROCESS YIELD TABLES.

VERSION 5.0 -- INLAND EMPIRE (TEST) 18.00000 SAMPLING WEIGHT: 1; STAND ID: EXAMPLE3 MGMT ID: NONE STAND GROWTH PROGNOSIS SYSTEM NOTE: PROCESSING STAND NUMBER: BRANCHING: NODE=1, BRCH=1

SUMMARY STATISTICS (BASED ON TOTAL STAND AREA)

300	MCMI		NONE										
SENTIFIED	O T D D D D D D D D D D D D D D D D D D	0.000	EXAMPLE3										
CTAND	SAMPLE	1 1 1 1 1 1	18	18	18	18	18	18	18	18	18	18	18
_	MOR	< I	0	0	2	9	3	7	-	14	21	20	0
SROWTH	ACC	- 1	8	22	34	49	94	38	64	52	61	50	0
GR	PRD	2 1	10	10	10	10	10	10	10	10	10	10	0
100	- -	-	19	25	31	36	38	41	94	51	99	62	99
	7		5	17	45	81	45	70	82	95	105	112	116
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ACRE	- 1	5	13	33	62	42	69	83	66	11	122	128
₹ 	MERCH	- !	0	0	0	0	0	0	0	0	0	0	0
PER ACRE	MERCH N		0	0	0	0	0	0	0	0	0	0	0
REMOVALS PER	TOTAL	- 1	0	0	0	0	532	0	0	0	0	0	0
REM	TREES		0	0	0	0	457	0	0	0	0	0	0
ACRE	MERCH	11111	475	699	196	1425	2433	4531	6170	8143	11720	13457	15049
WE PER	MERCH	- 1	84	115	175	265	465	871	1173	1545	1942	2354	2663
VOLUM	TOTAL		98	181	393	718	1149	1048	1374	1756	2136	2531	2825
	TREES	ACN	1171	1011	856	747	049	155	141	122	108	93	82
	7	1 2 1	10	20	30	04	50	09	20	80	90	100	110
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1972	1982	1992	2002	2012	2022	2032	2042	2052	2062	2072

ACTIVITY SUMMARY

EVENT MONITOR USER'S GUIDE EXAMPLE 3.

MANAGEMENT ID= NONE

STAND ID= EXAMPLE3

		999.00	
		00.00	
		0.98	
PARAMETERS:		300.00	
KEYWORD DATE ACTIVITY DISPOSITION PARAMETERS:		THINBTA 2012 DONE IN 2012	
DATE		2012	
KEYWORD		THINBTA	
EXTENSION		BASE	
DATE	1972 1982 1992 2002	2012	2022 2032 2042 2042 2052 2062
CYCLE	た 3 2 7	5	68 99 10

VERSION 5.0 -- INLAND EMPIRE (TEST) 1; STAND ID: EXAMPLE3 MGMT ID: NONE SAMPLING WEIGHT: 18.00000 STAND GROWTH PROGNOSIS SYSTEM NOTE: PROCESSING STAND NUMBER: BRANCHING: NODE=1, BRCH=2

;	v	 	NE	Ä Ä	W W	Ä	NONE	Ā	Ψ	Ä	W W	Ä N	M N
	FIFRS	MGM	_	3 80	3 NO	~	~	<u>~</u>	~	~	9 8	3 NO	9 8
	PENT		XAMPLE3	MPLE	MPLE	XAMPLE	EXAMPLE	MPLE	MPLE	MPLE	MPLE	MPLE	MPLE
		ST	EXA	EXA	EXA	EXA	EXA	EXA	EXA	EXA	EXA	EXA	EXA
	CTAND	SAMPLE	18	18	18	18	18	18	18	18	18	18	18
	_	MOR /YR	0	0	7	9	5	10	14	15	56	24	0
	SROWTH	ACC CUFT	8	22	34	64	49	† †	55	42	63	57	0
AREA)	GR	PRD	10	10	10	10	10	10	10	10	10	10	0
	401	- H - H	19	25	31	36	38	42	94	51	55	9	65
STAND		CCF	5	17	45	81	61	84	98	111	116	123	126
TAL	\ \ \ \ \ \	ACRE SQFT	5	13	33	62	54	80	95	111	117	127	134
N TO		동타	0	0	0	0	0	0	0	0	0	0	0
SED (ACRE	MERCH BD F1		_	_	_	_	_	_	_	_	_	_
STATISTICS (BASED ON TOTAL	PER A	MERCH CU FT		0	0	0	0	0	0	0	0	0	0
TICS	REMOVALS	TOTAL CONTRACT	0	0	0	0	407	0	0	0	0	0	0
ATIS	EMOV	1	 0	0	0	0	9	0	0	0	0	0	0
	<u>~</u>	TREES /ACRE					396						
SUMMARY	ACRE	MERCH BD FT	475	699	196	1425	2433	9844	6531	8641	10187	13363	14796
	JME PER	MERCH CU FT	84	115	175	265	465	865	1304	1701	1994	2380	2710
		TOTAL CU FT	86	181	393	718	1149	1181	1519	1923	2197	2568	2891
		TREES /ACRE											
	! ! !	AGE	10	20	30	07	50	09	7.0	80	90	100	110
		YEAR											

Example 3. (Con.)

ACTIVITY SUMMARY

EVENT MONITOR USER'S GUIDE EXAMPLE 3.

MANAGEMENT 1D= NONE

STAND ID= EXAMPLE3

		00.666	
		00.00	
		0.98	
PARAMETERS;		400.00	
DATE EXTENSION KEYWORD DATE ACTIVITY DISPOSITION PARAMETERS:		THINBTA 2012 DONE IN 2012	
DATE		2012	
KEYWORD		THINBTA	
EXTENSION		BASE	
DATE	1972 1982 1992 2002	2012	2022 2032 2042 2052 2052
CYCLE	4387	5	9 8 8 10

VERSION 5.0 -- INLAND EMPIRE (TEST) 18,00000 1; STAND ID: EXAMPLE3 MGMT ID: NONE SAMPLING WEIGHT: STAND GROWTH PROGNOSIS SYSTEM NOTE: PROCESSING STAND NUMBER: BRANCHING: NODE=1, BRCH=3

		ERS	1 1 1 1	MGMT	1 6 1	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
		IDENTIFIERS	1 1 1 1 1 1	STAND	1	EXAMPLE3	EXAMPLE3	EXAMPLE3	EXAMPLE3	EXAMPLE3						
		STAND	SAMPLE	WEIGHT		18	18	18	18	18	18	18	18	18	18	18
		-	MOR	γR	1	0	0	2	9	16	26	30	40	35	42	0
	GROWTH		ACC 1	CUFT	1	8	22	34	64	63	09	09	75	57	68	0
AREA)	GR		PRD	YRS	1	10	10	10	10	10	10	10	10	10	10	0
		TOP	H	ΕŢ	1	19	25	31	36	38	41	94	51	55	58	62
STAND				CCF	1	5	17	45	81	116	142	153	159	162	159	156
OTAL		BA/	ACRE	SQFT	1 1 1	5	13	33	62	93	121	135	144	151	152	153
STATISTICS (BASED ON TOTAL	RE			BD FT	1 1 1 1	0	0	0	0	0	0	0	0	0	0	0
(BASE	PER AC	1	MERCH	CU FT	1 1 1 1	0	0	0	0	0	0	0	0	0	0	0
.ISTICS	10VALS	REMOVALS PER ACRE	TOTAL	CU FT	1 1 1 1	0	0	0	0	0	0	0	0	0	0	0
	REP		RE	TREES	/ACRE	1	0	0	0	0	0	0	0	0	0	0
SUMMARY	ACRE		MERCH	BD FT	1	475	699	196	1425	2433	4644	6862	8746	11924	13021	14287
	VOLUME PER		MERCH	CU FT	1	84	115	175	265	465	914	1490	1866	2274	2517	2798
	VOLUP		TOTAL	CU FT	1 1 1	98	181	393	718	1149	1621	1959	2258	2607	2824	3074
			TREES	/ACRE	1 1 1 1											
				AGE	1	10	20	30	047	50	09	7.0	80	90	100	110
	 			YEAR	1 1	1972	1982	1992	2002	2012	2022	2032	2042	2052	2062	2072

Crookston, Nicholas L. User's guide to the Event Monitor: an addition to the Prognosis Model. General Technical Report INT-196. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station; 1985. 36 p.

Describes how to use the Event Monitor for scheduling Prognosis Model (Wykoff and others 1982) and Establishment Model (Ferguson and Crookston 1984) options, and for creating decision trees using the Parallel Processing Extension (Crookston in preparation). The program monitors certain statistics within the Prognosis Model and, when specified values are reached, schedules options that represent management activities.

KEYWORDS: simulation, forest, management, policy, growth

The Intermountain Research Station, headquartered in Ogden, Utah, is one of eight Forest Service Research stations charged with providing scientific knowledge to help resource managers meet human needs and protect forest and range ecosystems.

The Intermountain Station's primary area includes Montana, Idaho, Utah, Nevada, and western Wyoming. About 231 million acres, or 85 percent, of the land area in the Station territory are classified as forest and rangeland. These lands include grasslands, deserts, shrublands, alpine areas, and well-stocked forests. They supply fiber for forest industries; minerals for energy and industrial development; and water for domestic and industrial consumption. They also provide recreation opportunities for millions of visitors each year.

Several Station research units work in additional western States, or have missions that are national in scope.

Field programs and research work units of the Station are maintained in:

Boise, Idaho

Bozeman, Montana (in cooperation with Montana State University)

Logan, Utah (in cooperation with Utah State University)

Missoula, Montana (in cooperation with the University of Montana)

Moscow, Idaho (in cooperation with the University of Idaho)

Ogden, Utah

Provo, Utah (in cooperation with Brigham Young University)

Reno, Nevada (in cooperation with the University of Nevada)

