Chapitre 4

June 10, 2023

1

2

3

4

4.1 Définition

Une formule de quadrature à s étages est donné par:

$$\int_0^1 g(t)dt \simeq \sum_{i=1}^s b_i \cdot g(c_i)$$

Les c_i , supposés distincts, sont appelés les noeuds et les b_i sont appelés les poids.

4.2

4.3 Définition

La formule de quadrature est dite d'ordre p si elle est exacte pour tous les polynômes d'ordre \leq p - 1. En d'autres termes, si:

$$\int_0^1 g(t)dt = \sum_{i=1}^s b_i \cdot g(c_i) \ \forall g \in \mathbb{P}_{p-1}$$

4.4 Théorème

Soit $\sum_{i=1}^s b_i \cdot g(c_i)$ une formule de quadrature symétrique, c'est à dire:

$$c_i = 1 - c_{s-i+1}, \quad b_i = b_{s-i+1}$$

qui est exacte pour les polynômes de degré $\leq 2m,$ alors elle est automatiquement exacte pour les polynômes de degré 2m+1

4.5 Lemme

Considérons une formule de quadrature d'ordre p. Si $f:[x_0,x_0+h]\to\mathbb{R}$ est p fois continûment dérivable, alors:

$$|E_s(f, x_0, h)| \le C \cdot h^{p+1} \max_{0 \le t \le 1} |f^{(p)}(x_0 + t \cdot h)|$$

où C ne dépend pas de f et de h, avec:

$$E_s(f, x_0, h) = h(\int_0^1 f(x_0 + t \cdot h)dt - \sum_{i=1}^s b_i \cdot f(x_0 + c_i \cdot h))$$

4.6 Théorème

Soit $f:[a,b]\to\mathbb{R}$ une fonction p fois continûment dérivable et soit l'ordre de la formule de quadrature égal à p. Alors l'erreur satisfait:

$$err \le C \cdot h^p(b-a) \max_{a \le x \le b} |f^{(p)}(x)|$$

avec C qui ne dépend pas de f, ni de h et $h = \max_{j=1,\dots,N} |h_j|$

4.7 Lemme (Jacobi 1826)

Soit $(b_i, c_i)_{i=1}^s$ une formule de quadrature d'ordre $p \geq s$. Alors elle est d'ordre $\geq m + s$ si et seulement si:

$$\int_0^1 M(t)q(t) = 0$$

$$\forall q \in \mathbb{P}_{m-1} \ et \ M(t) = (t - c_1) \dots (t - c_s)$$

4.8 Théorème

L'ordre d'une formule à 2 étages est $\leq 2s$.

4.9 Théorème

Le polynôme de Legendre P_k existe $\forall k \geq 0$ et son degré est exactement égal à k. En plus, les P_0, \ldots, P_k forment une base orthogonale pour \mathbb{P}_k avec:

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$$

4.10 Théorème

Les polynômes de Legendre avec $P_k(1) = 1$ satisfont:

- $P_0(t) = 1$
- $P_1(t) = t$
- $(k+1)P_{k+1}(t) = (2k+1) \cdot t \cdot P_k(t) kP_{k-1}(t), \ \forall k \ge 1$

4.11

4.12 Théorème

Toutes les racines de P_k sont réelles, simples et dans (-1,1).

4.13

4.14 Théorème (Formules de quadrature de Gauss, 1814)

Pour chaque entier positif s, il existe une formule de quadrature à s étages d'ordre p=2s. Elle est donnée par:

$$\sum_{i=1}^{s} b_i \cdot g(c_i) \simeq \int_0^1 g(t)dt$$

où:

- Les noeuds c_1, \ldots, c_s sont les racines distinctes de $P_s(2t-1)$
- \bullet Les poids b_i sont donnés par:

$$b_i = \int_0^1 l_i(t)dt, \quad l_i(t) = \prod_{j=1, j \neq i}^s \frac{t - c_j}{c_i - c_j}$$