Back to Normal

Some results in Probability and Statistics

Aniruddha Deb

IIT Delhi

September 24, 2021

1/14

Normal Random Variables

- Normal Random Variables
- Moment generating functions

$$M_{x}(t) = E(e^{tx})$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) dx$$
need not converge!!
$$+ t \quad (-h, h)$$

Aniruddha Deb (IIT Delhi)

- Normal Random Variables
- Moment generating functions
- Characteristic functions

$$\Rightarrow \phi_{\underline{x}}(t) = |E(e^{itx})| \leq \frac{2}{e^{itx}f(\underline{a})} dx \Rightarrow \forall t$$

* Two RV's are identically distributed if $\phi_{x}(t) = \phi_{y}(t) + t \in \mathbb{R}$.

(□ > ←□ > ← E > ← E > _ E _ ∽ Q (~

- Normal Random Variables
- Moment generating functions
- Characteristic functions
- Gamma function

$$\Gamma(m) = \int_0^\infty x^{m-1} e^{-x} dx$$

$$\Gamma(m) = (m-1)!, m \in \mathbb{N}.$$

Aniruddha Deb (IIT Delhi)

- Normal Random Variables
- Moment generating functions
- Characteristic functions
- Gamma function

Power Series and Real Analyticness

$$\Rightarrow f^{(n)}(x) \text{ exists } \forall x \\
0 \leftarrow e^{\frac{1}{x}}, x \neq 0$$

Aniruddha Deb (IIT Delhi)

Before we begin

Theorem

If X and Y are two random variables such that $(M_X^{(k)}(t))$ and $M_Y^{(k)}(t)$ exist, are equal to each other and are real analytic over some neighbourhood (-h,h) containing 0, then the probability distributions of X and Y are the same.

Before we begin

y = f(X11/2111)

$$B(m,p) \sim \sum_{i=0}^{m} B \text{ ernoulli}_{i}(p)$$

*Theorem

If X and Y are two random variables such that $M_X^{(k)}(t)$ and $M_Y^{(k)}(t)$ exist, are equal to each other and are real analytic over some neighbourhood (-h,h) containing 0, then the probability distributions of X and Y are the same.

Proof.

A (complicated) proof can be found in Billingsley's *Probability and Measure*, sec. 30.1, pp. 388-89, but the gist of the proof is that you can express the characteristic function as

 $\varphi(t+x) = \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(t)}{k!} x^k$, |x| < h. Then taking t = 0, $h - \epsilon$, $-h + \epsilon$, $2h - \epsilon$, $-2h + \epsilon \cdots$ causes the characteristic functions of X and Y to agree in (-h,h), (-2h,2h), (-3h,3h) and so on. Hence, X and Y have the same distribution.

Simple results on Normal Random Variables

Theorem

If $X \sim N(\mu, \sigma^2)$, then $bX \sim N(b\mu, b^2\sigma^2)$

Simple results on Normal Random Variables

Variables
$$\chi \sim N(\mu, \sigma)$$
; $\chi - k \sim N(\mu - k, \sigma)$

Theorem

If
$$X \sim N(\mu, \sigma^2)$$
, then $bX \sim N(b\mu, b^2\sigma^2)$

Proof.

Simple transformation of variables;

$$f_{bX}(x) = \frac{1}{b} f_X\left(\frac{x}{b}\right)$$
$$f_{bX}(x) = \frac{1}{\sqrt{2\pi}b\sigma} e^{\frac{(x-b\mu)^2}{2b^2\sigma^2}}$$

which is normally distributed with mean $b\mu$ and variance $b^2\sigma^2$

Aniruddha Deb (IIT Delhi)

Linearity of Normal Random Variables I

Theorem

If X_1, \dots, X_n is a sequence of independent random variables such that $X_i \sim N(\mu_i, \sigma_i^2)$, then any linear combination

$$Y = \sum_{i=1}^{n} b_i X_i$$

is also a normal random variable. In particular,

$$Y \sim N\left(\sum_{i=1}^{n} b_{i}\mu_{i}, \sum_{i=1}^{n} b_{i}^{2}\sigma_{i}^{2}\right)$$

Linearity of Normal Random Variables II

Proof.

Let $\mu = \sum_{i=1}^{n} b_i \mu_i$ and $\sigma^2 = \sum_{i=1}^{n} b_i^2 \sigma_i^2$ for simplicity. Proceed by comparing the MGF's of Y and $N(\mu, \sigma^2)$.

$$M_{Y}(t) = E(e^{t(b_{1}X_{1} + \dots + b_{n}X_{n})})$$

$$= \prod_{i=1}^{n} E(e^{tb_{i}X_{i}})$$

$$= \prod_{i=1}^{n} e^{b_{i}\mu_{i}t + b_{i}^{2}\sigma_{i}^{2}t^{2}/2}$$

$$= e^{t\sum_{i=1}^{n} b_{i}\mu_{i}} + \frac{c^{2}}{2} \sum_{i=1}^{n} b_{i}^{2}\sigma_{i}^{2}$$

$$M_{Y}(t) = e^{t\mu + t^{2}\sigma^{2}/2}$$

$$M_{Y}(t) = M_{N(\mu,\sigma^{2})}(t)$$

And by the uniqueness of MGF, Y and $N(\mu, \sigma)$ are identically distributed.

The χ^2 distribution

Definition

If a Random Variable X has the PDF

$$f_X(x) = \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}$$

Gamma distrib.

for nonnegative x and 0 otherwise, then X is said to follow a χ_k^2 distribution with k degrees of freedom.

7 / 14

The χ^2 distribution

Definition

If a Random Variable X has the PDF

$$f_X(x) = \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}$$

for nonnegative x and 0 otherwise, then X is said to follow a χ^2_k distribution with k degrees of freedom.

this is not very useful in and of itself, so we'll explore the relationship between the exponential and the χ^2 distributions.

7 / 14

Theorem

If X_1, \dots, X_n is a sequence of n iid random variables such that $X_i \sim N(0,1)$, then $Y = \sum_{i=1}^n X_i^2$ has a χ_n^2 distribution with n degrees of freedom

Theorem

If X_1, \dots, X_n is a sequence of n iid random variables such that $X_i \sim N(0,1)$, then $Y = \sum_{i=1}^n X_i^2$ has a X_i distribution with n degrees of freedom

Proof.

Proceed by comparing the moment generating functions of the χ_n^2 distribution and the sum of n iid standard normal random variables.

$$M_{\chi_n^2}(t) = \int_0^\infty \frac{x^{n/2 - 1} e^{\left(t - \frac{1}{2}\right)x}}{2^{n/2} \Gamma(n/2)} dx$$

$$= \frac{1}{\left(\frac{1}{2} - t\right)^{n/2}} \int_0^\infty \frac{\left(\left(\frac{1}{2} - t\right)x\right)^{n/2 - 1} e^{\left(t - \frac{1}{2}\right)x}}{2^{n/2} \Gamma(n/2)} \left(\frac{1}{2} - t\right) dx$$

$$M_{\chi_n^2}(t) = \frac{1}{(1 - 2t)^{n/2}}$$

Theorem

If X_1, \dots, X_n is a sequence of n iid random variables such that $X_i \sim N(0,1)$, then $Y = \sum_{i=1}^n X_i^2$ has a χ_n^2 distribution with n degrees of freedom

Proof.

$$M_{Y}(t) = E(e^{tY})$$

$$= \prod_{i=1}^{n} E(e^{tX_{i}^{2}})$$

$$= (M_{X_{1}^{2}}(t))^{n}$$

$$f_{X_{1}^{2}}(x) = \begin{cases} \frac{1}{\sqrt{2\pi x}} e^{-x/2} & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

8/14

The PDF of X_1^2 is given by

Theorem

If X_1, \dots, X_n is a sequence of n iid random variables such that $X_i \sim N(0,1)$, then $Y = \sum_{i=1}^n X_i^2$ has a χ_n^2 distribution with n degrees of freedom

Proof.

Hence, the MGF of X_1^2 is

$$M_{X_{1}^{2}}(t) = \int_{0}^{\infty} \frac{x^{\frac{1}{2} - 1} e^{\left(t - \frac{1}{2}\right)x}}{\sqrt{2\pi}} dx$$

$$= \frac{1}{\left(\frac{1}{2} - t\right)^{\frac{1}{2}}} \int_{0}^{\infty} \frac{\left(\left(\frac{1}{2} - t\right)x\right)^{\frac{1}{2} - 1} e^{\left(t - \frac{1}{2}\right)x}}{\sqrt{2\pi}} \cdot \left(\frac{1}{2} - t\right) dx$$

$$M_{X_{1}^{2}}(t) = \frac{1}{\sqrt{1 - 2t}} \qquad \frac{1}{\left(1 - \frac{1}{2}\right)^{\frac{1}{2}}} = M_{X_{1}^{2}}(t)$$

Theorem

If X_1, \dots, X_n is a sequence of n iid random variables such that $X_i \sim N(0,1)$, then $Y = \sum_{i=1}^n X_i^2$ has a χ_n^2 distribution with n degrees of freedom

Proof.

This implies that the MGF of Y is $\frac{1}{(1-2t)^{n/2}}$, which is the same as χ_n^2 . Equivalence of distributions of Y and χ_n^2 follows from (1). Note that the MGF exists only when |t| < 1/2, which, as proven by (1), is a sufficient condition for the distributions to be the same.

8 / 14

The t distribution

Definition

If a random variable X has the probability distribution given by

$$f_X(x) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{
u\pi}\;\Gamma\left(rac{
u}{2}
ight)}\left(1+rac{x^2}{
u}
ight)^{-rac{
u+1}{2}}$$

then X is said to follow the t-distribution with $\widehat{\psi}$ degrees of freedom.

$$V \rightarrow \infty$$
, $t \xrightarrow{P} N(0,1)$

Aniruddha Deb (IIT Delhi)

The t distribution

Definition

If a random variable X has the probability distribution given by

$$f_X(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \; \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

then X is said to follow the t-distribution with ν degrees of freedom.

Again, this gives us no intuition about the t distribution. To motivate the distribution, we will need to explore sampling first.

(□ > ∢∰ > ∢ ≣ > ∢ ≣ > ○ Q (°)

Definition

If the random variables X_1, \ldots, X_n are independent and identically distributed, then these random variables constitute a random sample of size n from the common distribution, which has a mean μ and a standard deviation σ^2

We define the sample mean as

and the sample variance as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \longrightarrow N(\mu, \sigma^2)$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

bound is
$$\frac{S^2}{n-1} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \left(\frac{S}{S} \right)^2$$

$$(x,\sigma^2)$$
 $\frac{\chi_i}{\chi_i} \sim N(\mu,\sigma^2)$

$$\sum_{i=1}^{n} \frac{x_i}{m} \sim N(\mu, \frac{\delta}{m})$$

The denominator here is n-1 instead of n so that $E(S^2)=\sigma^2$, that is, to ensure that the sample variance is unbiased.

Z scores and Z tests

Definition

The Standard score (or Z score) of a sample \underline{X} is the standardized ratio of the sample mean from the mean

$$Z = \frac{\overline{X} - \mu}{0 / \sqrt{n}}$$

This can be used to estimate how far off X is from the mean if the mean is known, or give error bounds for the mean is unknown. ELL101 flashbacks for some of you

$$\overline{X} \sim N\left(\kappa, \frac{\sigma^2}{m}\right)$$
 $\overline{X} - \mu \sim N\left(0, \frac{\sigma^2}{m}\right)$
 $\overline{X} - \mu \sim N\left(0, 1\right)$

11 / 14

Z scores and Z tests

milk dilution

Definition

The Standard score (or Z score) of a sample X is the standardized ratio of the sample mean from the mean

$$Z = \frac{\overline{X} - \widehat{\mu}}{\widehat{\theta} / \sqrt{n}} - \underbrace{\lambda (0, 1)}_{\text{odd}}$$

This can be used to estimate how far off X is from the mean if the mean is known, or give error bounds for the mean is unknown. ELL101 flashbacks for some of you

Definition

The Z test is used to see how far off a sample is from the mean, assuming that the distribution of the population is standard normal (this is assumed to be true given a large population because of the central limit theorem). For a one-tailed test, $\Phi(Z)$ or $1 - \Phi(Z)$ gives the probability of the event that a given sample is picked.

The t score

$$100 \rightarrow \overline{\chi}, \vec{s} \rightarrow \mu, \vec{\sigma}$$

Note that the Z test only works when the sample mean and variance are known, or can be approximated easily. For small samples (of size 5-10), the variance cannot be approximated easily, and comparatively 'larger' error bounds are needed if the mean is to be calculated. To account for this, we simply replace the standard deviation $\underline{\sigma}$ with the sample standard deviation \underline{S} , and the corresponding random variable

is called the T score.

$$\underline{\underline{T}} = \frac{\overline{X} - \underline{u}}{5/\sqrt{n}}$$
2 Normal X

Aniruddha Deb (IIT Delhi)

The t distribution and the t test

Definition

The Probability density function of the random variable $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ is a t distribution with n-1 degrees of freedom.

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{m}} \sim N(0, 1)$$

$$\frac{\overline{X} - \mu}{\overline{X} - \mu} \rightarrow N \sim \frac{N(0, 1)}{\sqrt{\frac{\chi_{n-1}}{m}}} \sim +$$

13 / 14

The t distribution and the t test

Definition

The Probability density function of the random variable $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ is a t distribution with n-1 degrees of freedom.

Definition

The t test is similar to the Z test, but rather than use the CDF of the standard normal, we now use the CDF of the t distribution, because the t score obeys a t distribution. The t distribution is more 'heavy-tailed', with the distribution converging to the standard normal as $n \to \infty$.

References

- Billingsley, Patrick. Probability and Measure. 3rd ed, Wiley, 1995.
- Hogg, Robert V., et al. Introduction to Mathematical Statistics. 7th ed, Pearson, 2013.
- Scholz, Fritz. Elements of Statistical methods: slides from Stat311 course at University of Washington. 2010.
- Student. "The Probable Error of a Mean." *Biometrika*, vol. 6, no. 1, Mar. 1908, p. 1. DOI.org (Crossref), https://doi.org/10.2307/2331554. (This is the original paper by Gosset, a readable copy can be found here)
- Too many Wikipedia articles

14 / 14