ML Approaches to Paediatric Febrile Illness

Annex C - Data Preprocessing and Outcome Construction Protocol

Outcome Classification Protocol

Spot Sepsis Statistical Analysis Plan Outcome Definitions

$$\boxed{\text{Category I (Severe)}} \qquad \text{I}_i \ = \ \begin{cases} 1, \text{ if (Days to Death} \le 2) \ \lor \text{(Days to Organ Support} \le 2)} \\ \lor \text{(Discharged Home to Die} \le 2), \\ \\ 0, \text{ otherwise.} \\ \\ \boxed{\text{Category II (Probable Severe)}} \qquad \text{II}_i \ = \ \begin{cases} 1, & \text{if } \left[\text{(Days to Death}_i > 2 \ \land \text{Days to Death}_i \le 28) \ \lor \text{(Length of Stay}_i > 2)} \right] \ \land \ \text{I}_i = 0, \\ \\ 0, & \text{otherwise.} \end{cases}$$

$$\boxed{\text{Category III (Probable Non-Severe)}} \qquad \text{III}_i \ = \ \begin{cases} 1, & \text{if } \left[\left(\texttt{Admitted}_i = 1 \ \land \ \texttt{Length of Stay}_i \leq 2 \right) \ \land \ \texttt{I}_i = 0 \ \land \ \texttt{III}_i = 0 \right] \\ & \lor \left(\texttt{Admitted}_i = 0 \ \land \ \texttt{Ongoing Symptoms at Day 28}_i = 1 \right), \\ 0, & \text{otherwise.} \end{cases}$$

Four-level Outcome Classification (new)

$$\text{Outcome}_i^{(4)} = \begin{cases} \text{Severe (onset < 24 h)} & \text{if child classified Severe and } \textit{days to developing severe illness} = 0, \\ \text{Severe (onset } \geq 24 \text{ h)} & \text{if child classified Severe and } \textit{days to developing severe illness} \geq 1, \\ \text{Probable Severe} & \text{if child classified Probable Severe,} \\ \text{Probable Non-Severe} & \text{if child classified Probable Non-Severe.} \end{cases}$$

Machine Learning Grid Search

Outcomes Across Severity Categories

Figure 1: Flow of Outcome Severity Classifications

Model Algorithm	Engine	Tuned Hyperparameter	Grid Type & Size
Decision Tree	rpart	cost_complexity	Regular $(4\times4\times4)$, 64 combos
		tree_depth	
		min_n	
Random Forest	ranger	mtry	Regular (8×8) , 64 combos
		min_n	
Gradient Boosting (XGBoost)	xgboost	mtry	Random, 64 combos
		min_n	
		tree_depth	
		learn_rate	
		sample_size	
Support Vector Machine (RBF)	kernlab	cost	Random, 64 combos
		rbf_sigma	
Penalised Regression	glmnet	penalty	Regular (8×8) , 64 combos
		mixture	

^{*}The performance of each parameter combination was evaluated using a 5-repeat, 5-fold stratified cross-validation on the training data.