Рассмотрим множество \mathbb{C} , состоящее из формальных выражений вида z=x+yi, где x и y — вещественные числа (вещественная и мнимая части, соответственно), а i — вспомогательный символ (мнимая единица). Стандартное обозначение: $x=\operatorname{Re} z$ и $y=\operatorname{Im} z$. Элементы \mathbb{C} называются компле́ксными числами и для них вводятся арифметические операции как для многочленов переменной i с одним дополнительным условием: $i^2=-1$. Для числа z его сопряжённым называется число $\overline{z}=x-yi$, а модулем — число $|z|=\sqrt{x^2+y^2}$. Числа x+yi и x_1+y_1i считаются равными, если и только если $x_1=x$ и $y_1=y$.

- 1. Выполните действия **a**) (2+3i)+(3-2i); **b**) $(0+1i)\cdot(0+1i)$; **c**) $(2+3i)\cdot(1-i)$.
- 2. Докажите, что для любого комплексного числа $x + yi \neq 0 + 0i$ существует единственное обратное комплексное число x' + y'i такое, что (x + yi)(x' + y'i) = 1 + 0i.

Результат предыдущей задачи показывает, как для комплексных чисел определить деление: это просто умножение на обратное. При этом $\mathbb C$ становится полем, содержащим $\mathbb R$, если отождествить каждое вещественное число $x \in \mathbb R$ с числом x + 0i.

3. Проверьте очевидные равенства:

$$\mathbf{a})\overline{(\overline{z})} = z; \ \mathbf{b})z \cdot \overline{z} = |z|^2; \ \mathbf{c})\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2; \ \mathbf{d})\overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2; \ \mathbf{e})\overline{z_1/z_2} = \overline{z}_1/\overline{z}_2.$$

4. Проверьте очевидные импликации:

a) Im
$$z = 0 \iff z = \overline{z}$$
; b) Re $z = 0 \iff z = -\overline{z}$; c) $z_1/z_2 \in \mathbb{R} \iff z_1\overline{z}_2 = \overline{z}_1z_2$.

5. Докажите, что если $(a+bi)^n = x + yi$, то $(a^2 + b^2)^n = x^2 + y^2$.

Решение квадратных уравнений

Оказывается¹, что в \mathbb{C} любой многочлен степени n имеет ровно n корней с учётом кратности. Это утверждение мы вскоре докажем, а пока убедимся в его справедливости для многочленов второй степени. Во-первых, в \mathbb{C} любое квадратное уравнение с вещественными коэффициентами имеет решение:

- 6. Решите уравнение $x^2 + 1 = 0$.
- 7. Докажите, что в С любое квадратное уравнение с вещественными коэффициентами имеет ровно два корня с учётом кратности.

Во-вторых, в С решаются квадратные уравнение с комплексными коэффициентами:

- 8. Вычислите: \mathbf{a}) $\sqrt{3-4i}$; \mathbf{b}) $\sqrt{\sqrt{2}+\sqrt{2}i}$; \mathbf{c}) $\sqrt[4]{-1}$; \mathbf{d}) $\sqrt[3]{1}$.
- 9. Выведите явную формулу квадратного корня из комплексного числа.
- 10. Докажите, что в С любое квадратное уравнение с комплексными коэффициентами имеет ровно два корня с учётом кратности.
- 11. Решите уравнение $z^2 (3+2i)z + 6i = 0$.

Немного про расширения

Мы построили поле $\mathbb C$ как минимальное подполе, содержащее $\mathbb R$, в котором многочлен x^2+1 имеет корень. Опишем эту конструкцию в общем виде. Пусть $\mathcal F$ — поле характеристики нуль, а $p\in\mathcal F[x]$ — неприводимый многочлен степени n. Рассмотрим множество $\mathcal K$, состоящее из формальных выражений вида $z=a_0+a_1i+\ldots+a_{n-1}i^{n-1}$, где $a_0,a_1,\ldots,a_{n-1}\in\mathcal F$, а i — вспомогательный символ. Выражения будем складывать и умножать как многочлены от i, причём после умножения будем заменять результат на его остаток от деления на многочлен p. Очевидно, что $\mathcal K$ — кольцо.

- 12. Докажите, что \mathcal{K} поле.
- 13. Отождествим каждый элемент $a \in \mathcal{F}$ с элементом $a + 0i + \ldots + 0i^{n-1}$. Докажите, что \mathcal{K} такое расширение поля \mathcal{F} , в котором многочлен p имеет корень.

¹Это утверждение называется **основной теоремой алгебры**.

Упражнения

- 14. Докажите, что число, являющееся произведением нескольких сумм квадратов пар целых чисел, представимо в виде суммы квадратов двух целых чисел.
- 15. Докажите, что, если комплексное число z является корнем многочлена с вещественными коэффициентами, то и число \overline{z} тоже является его корнем.
- 16. Решите уравнения: \mathbf{a}) $z^4 + (z-2)^4 = 32$; \mathbf{b}) $z^4 4z^3 + 6z^2 4z 15 = 0$.

Задачи

Пусть $\mathcal{F} \subset \mathcal{K}$ — расширение полей. Элемент $a \in \mathcal{K}$ называется алгебраическим, если он является корнем некоторого ненулевого многочлена $p \in \mathcal{F}[x]$. Минимальным многочленом алгебраического числа a называется приведённый многочлен $p \in \mathbb{F}[x]$ наименьшей степени, такой что p(a) = 0, а deg p называется cmenehbo числа a.

- 17. Докажите, что минимальный многочлен алгебраического числа неприводим над \mathcal{F} .
- 18. Докажите, что, если число алгебраическое число $a \in \mathcal{K}$ является корнем многочлена $q \in \mathbb{F}[x]$, то q делится на минимальный многочлен числа a.
- 19. Пусть ${}^2\mathcal{F}=\mathbb{Q}$, а $\mathcal{K}=\mathbb{R}$. Докажите, что минимальный многочлен алгебраического числа не имеет кратных корней в \mathcal{K} .

²На самом деле, это уточнение несущественно для полей характеристики нуль.