Midterm Exam S2 Computer Architecture

Duration: 1 hr. 30 min.

Exercise 1 (5 points)

Let us consider the following 13-bit binary number: 1001001001110₂.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 9-bit binary representation of the following signed number: -255₁₀.
- 5. Write down the 9-bit binary representation of the following signed number: -256₁₀.
- 6. Determine the minimum number of bits required to encode the following unsigned number: 2,048.
- 7. Determine the minimum number of bits required to encode the following signed number: 2,048.
- 8. Determine the minimum number of bits required to encode the following signed number: -2,048.
- 9. How many bytes does the value 4 Mib contain? Use a power-of-two notation.
- 10. How many bits does the value 256 MiB contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the numerical value will be as small as possible.

Exercise 2 (7 points)

- 1. Convert the numbers below into their **single-precision** IEEE-754 representation. Write down the final result in its binary form and **specify the three fields**. **Show all calculations**.
 - 78.25
 - 0.09375
- 2. Convert the **double-precision** IEEE-754 numbers below into their associated representation. **Show** all calculations.
 - 403D 4800 0000 0000₁₆
 - 0000 2800 0000 0000₁₆
 - FFFF FFFF FFFF FFFF₁₆
- 3. Show that the smallest positive denormalized floating-point number can be written down 2^n . Give explicitly the numerical value of n. Show all calculations.
- 4. Show that the largest positive **denormalized** floating-point number can be written down $(1 2^{nl}).2^{n2}$. Give explicitly the numerical values of n1 and n2. Show all calculations.

Midterm Exam S2

Exercise 3 (6 points)

- 1. Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for a gated RS latch (Q0), a positive-edge-triggered RS flip-flop (Q1), a negative-edge-triggered RS flip-flop (Q2) and a master-slave RS flip-flop (Q3).
- 2. Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Exercise 4 (2 points)

- 1. Draw the circuit diagram of a divide-by-two circuit by using only one D flip-flop (no logical gates). Answer on the answer sheet.
- 1. Draw the circuit diagram of a divide-by-two circuit by using only one JK flip-flop (no logical gates). Answer on the <u>answer sheet</u>.

Midterm Exam S2 2/4

Last name: Group: Group:

ANSWER SHEET TO BE HANDED IN WITH THE SCRIPT

Exercise 3

Timing diagram of figure 1

Timing diagram of figure 2

Computer Architecture – EPITA – S2 – 2015/2016 Exercise 4 Divide-by-two circuit (one D flip-flop): Divide-by-two circuit (one JK flip-flop):

Contrôle S2 Architecture des ordinateurs

Durée: 1 h 30

Exercice 1 (5 points)

Soit le mot binaire sur 13 bits suivant : 10010010011102.

- 1. Donnez sa représentation hexadécimale.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 3. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 4. Donnez la représentation binaire sur 9 bits signés du nombre -255₁₀.
- 5. Donnez la représentation binaire sur 9 bits signés du nombre -256₁₀.
- 6. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2 048 ?
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 2 048 ?
- 8. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre –2 048 ?
- 9. Donnez, en puissance de deux, le nombre d'octets contenus dans 4 Mib.
- 10. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **256 Mio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (7 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les nombres ci-dessous dans le format flottant <u>simple précision</u>. Vous exprimerez le résultat final, sous forme binaire, <u>en précisant chacun des champs</u>.
 - 78,25
 - . 0,09375
- En détaillant chaque étape, donnez la représentation associée aux nombres codés en double précision suivants :
 - 403D 4800 0000 0000₁₆
 - 0000 2800 0000 0000₁₆
 - FFFF FFFF FFFF FFFF₁₆
- 3. <u>En justifiant vos calculs</u>, démontrez que le plus petit flottant positif du format simple précision à mantisse dénormalisée, peut s'écrire sous la forme : 2ⁿ. Vous préciserez clairement la valeur numérique de n.
- 4. En justifiant vos calculs, démontrez que le plus grand flottant positif simple précision à mantisse dénormalisée, peut s'écrire sous la forme : $(1 2^{nl}) \cdot 2^{n2}$. Vous préciserez clairement les valeurs numériques de n1 et de n2.

Contrôle S2

Exercice 3 (6 points)

- 1. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) selon que la bascule RS est synchronisée sur état haut (Q0), sur front montant (Q1), sur front descendant (Q2) et sur impulsion (Q3).
- 2. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

Exercice 4 (2 points)

- 1. Sur le <u>document réponse</u>, donnez le schéma de câblage d'un diviseur de fréquence par deux avec uniquement une bascule D (pas de porte logique).
- 2. Sur le <u>document réponse</u>, donnez le schéma de câblage d'un diviseur de fréquence par deux avec uniquement une bascule JK (pas de porte logique).

Contrôle S2 2/4

Nom: Classe:

DOCUMENT RÉPONSE À RENDRE AVEC LA COPIE

Exercice 3

Bascules RS

Chronogramme relatif au montage de la figure 1

Chronogramme relatif au montage de la figure 2

Architecture des ordinateurs – EPITA – S2 – 2015/2016 Exercice 4 Diviseur de fréquence par deux (une bascule D) : Diviseur de fréquence par deux (une bascule JK) :

NOM : Prénom :

Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (6 points – pas de point négatif)

Entourez la bonne réponse.

Soit une tension sinusoïdale $u(t) = U \cdot \sin(\omega t + \varphi)$

Par convention, *U* est une grandeur réelle positive, sans unité.

a. VRAI

b. FAUX

Q2. Que représente ω ?

a. la pulsation

c. La période

b. La fréquence

d. La phase à l'origine

Q3. φ correspond à

a. La fréquence du signal

c. La période du signal

b. La phase à l'origine

d. La pulsation.

Q4. Quelle relation est correcte ? T représente la période de u(t) et f, sa fréquence.

a.
$$\omega = 2.\pi, T$$

c.
$$\omega = 2.\pi.f$$

b.
$$\omega f = 2.\pi$$

d.
$$\frac{\omega}{T} = \frac{2.\pi}{f}$$

Soit les signaux sinusoïdaux $s(t) = S.\cos(\omega t + \theta)$ et $s'(t) = S'.\sin(\omega t + \theta')$.

Le déphasage de s par rapport à s' vaut :

a.
$$\theta - \theta'$$

c.
$$\theta - \theta' - \frac{\pi}{2}$$

b.
$$\theta' - \theta$$

d.
$$\theta - \theta' + \frac{\pi}{2}$$

Q6. Les amplitudes complexes de ces signaux sont :

a.
$$\underline{S} = S. e^{j\theta}$$
 et $\underline{S'} = S'. e^{j\theta'}$

c.
$$\underline{S} = S \cdot e^{j\theta}$$
 et $S' = S' \cdot e^{j(\theta' + \pi)}$

b.
$$\underline{S} = S.e^{j\theta}$$
 et $\underline{S'} = S'.e^{j(\theta' + \frac{\pi}{2})}$

d.
$$\underline{S} = S \cdot e^{j\theta}$$
 et $\underline{S'} = S' \cdot e^{j(\theta' - \frac{\pi}{2})}$

Q7. Que représente le module d'une amplitude complexe d'un signal sinusoïdal ?

- a. Le quotient des valeurs max
- c. La valeur max du signal
- b. La valeur instantanée du signal
- d. La phase à l'origine

Q8. Que représente l'argument d'une impédance complexe d'un dipole ?

- a. Le quotient des valeurs max
- c. Le déphasage de la tension par rapport
- b. Le déphasage du courant par rapport à la tension.
- d. La phase à l'origine

au courant.

Pour les questions Q9& Q10, on cherche à identifier un dipôle. Pour cela, on mesure le courant i(t) qui le traverse et la tension u(t) à ses bornes, et on obtient :

$$u(t) = 20\cos(\omega t)$$
 et $i(t) = 5.10^{-3}\cos(\omega t + \phi)$ avec $\omega = 1000 \ rad. \ s^{-1}$

Q9. Si $\phi = 0$, ce dipôle est :

- a. Une bobine d'inductance $L=4\,H$
- c. Une résistance $R=4k\Omega$
- b. Une résistance $R = 0.25\Omega$
- d. Un condensateur de capacité $C=0.25 \mu F$

Q10. Si $\phi = \frac{\pi}{2}$, ce dipôle est :

- a. Une bobine d'inductance $L=0.25\,H$
- c. Un condensateur de capacité $C = 4\mu F$
- b. Une bobine d'inductance $L=4\,H$
- d. Un condensateur de capacité $C=0.25 \mu F$

Q11. Une bobine L et un condensateur C sont en parallèle. L'impédance équivalente à ces 2 composants vaut :

a.
$$Z = -\frac{LC\omega^2}{jL\omega + 1/jC\omega}$$

c.
$$Z = \frac{jL\omega}{1-LC\omega^2}$$

b.
$$Z = -\frac{LC\omega^2}{jL\omega + jC\omega}$$

d.
$$Z = \frac{1/jC\omega}{1-LC\omega^2}$$

Q12. Quelle est l'unité du produit $L\omega$?

- a. Des Henry
- b. Des Hertz
- c. Des Ampères
- d. Des Ohms

<u>Exercice 2.</u> Valeurs moyennes et efficaces (6 points)

Donner l'expression de u(t) pour $t \in [0;T]$ (T = Période du signal) avant de déterminer (en la justifiant) la valeur moyenne et la valeur efficace du signal suivant :

<u>Exercice 3.</u> Régime sinusoïdal et théorèmes de l'électronique (8 points)

Soit le montage ci-dessous :

On donne : $\begin{cases} e(t) = Ecos(\omega t) \\ e'(t) = Esin(\omega t) \\ i(t) = Icos(\omega t) \end{cases}$

1. Déterminer les amplitudes complexes associées à e(t), e'(t) et i(t).

2. En utilisant la méthode de votre choix, déterminer l'expression de la tension $\mathbf{u}(t)$

-				
			 •	

EPITA / InfoS2

Mars 2016

First name:.....

March 2016 Group:.....

Mid-term exam of Electronics

Calculators and documents are not allowed. The number of points per question is indicative.

Answers to be written on this document only. If you need more space, you can use the back of the sheets.

Exercise 1. MCQ (6 points – without negatives points)

Choose the correct answer.

We consider the following sinusoidal voltage : $u(t) = U \cdot \sin(\omega t + \varphi)$

Q1. By convention, U is a positive real quantity, without unit.

a. RIGHT

b. FALSE

Q2. ω represents:

a. The angular velocity

c. The period

b. The frequency

d. The phase angle at t=0

Q3. φ represents:

a. The frequency

c. The period

b. The phase angle at t=0

d. The angular velocity

Q4. What is the correct relationship? T represents the period of u(t) and f its frequency.

a.
$$\omega = 2.\pi.T$$

c.
$$\omega = 2.\pi.f$$

b.
$$\omega f = 2.\pi$$

d.
$$\frac{\omega}{T} = \frac{2.\pi}{f}$$

We consider the following sinusoidal signals:

$$s(t) = S.\cos(\omega t + \theta)$$
 and $s'(t) = S'.\sin(\omega t + \theta')$.

Q5. The phase shift of s compared to s' is:

a.
$$\theta - \theta'$$

c.
$$\theta - \theta' - \frac{\pi}{2}$$

b.
$$\theta' - \theta$$

d.
$$\theta - \theta' + \frac{\pi}{2}$$

Q6. The complex notations of s and s' are :

a.
$$\underline{S} = S.e^{j\theta}$$
 and $\underline{S'} = S'.e^{j\theta'}$

c.
$$\underline{S} = S.e^{j\theta}$$
 and $\underline{S'} = S'.e^{j(\theta' + \pi)}$

b.
$$\underline{S} = S.e^{j\theta}$$
 and $\underline{S'} = S'.e^{j(\theta' + \frac{\pi}{2})}$

d.
$$\underline{S} = S.e^{j\theta}$$
 and $\underline{S'} = S'.e^{j(\theta' - \frac{\pi}{2})}$

Q7. The modulus of the complex notation of a sinusoidal signal represents:

- a. The quotient of maximum amplitudes
- b. The instantaneous value of the signal
- c. The maximum amplitude of the signal
- d. The phase angle at t=0

Q8. The argument of the complex impedance of a two-terminals element represents:

- a. The quotient of maximum amplitudes
- b. The phase shift of the current compared to the voltage
- c. The phase shift of the voltage compared to the current
- d. The phase angle at t=0

For the questions Q9 and Q10, we measure the current i(t) flowing through the element and the voltage u(t) across the terminals of the element in order to determine which element we have. The obtained volatge and current are given by:

$$u(t) = 20\cos(\omega t)$$
 and $i(t) = 5.10^{-3}\cos(\omega t + \phi)$ where $\omega = 1000 \, rad. \, s^{-1}$

Q9. If $\phi = 0$, the element is :

a. An inductor L = 4 H

c. A resistor $R = 4k\Omega$

b. A resistor $R = 0.25 \Omega$

d. A capacitor $C = 0.25 \mu F$

Q10. If $\phi = \frac{\pi}{2}$, the element is :

- a. An inductor L = 0.25 H
- c. A capacitor $C = 4\mu F$

b. An inductor L = 4 H

d. A capacitor $C = 0.25 \mu F$

Q11. An inductor L and a capacitor C are in parallel. The equivalente impedance is :

a. $Z = -\frac{LC\omega^2}{jL\omega + 1/jC\omega}$

c. $Z = \frac{jL\omega}{1-LC\omega^2}$

b. $Z = -\frac{LC\omega^2}{jL\omega + jC\omega}$

d. $Z = \frac{1/jC\omega}{1-LC\omega^2}$

Q12. What is the unit of the product $L\omega$?

- a. Henry
- b. Hertz
- c. Amperes
- d. Ohms

Exercise 2. Average and RMS values (6 points)

Give the expression of u(t) for $t \in [0;T]$ (T = Period of the signal) then compute the average and the RMS (Root Mean Square) values of the signal (you have to justify the obtained results):

Exercise 3. Sinusoidal regime and electronics theorems (8 points)

We consider the following circuit:

Given :
$$\begin{cases} e(t) = Ecos(\omega t) \\ e'(t) = Esin(\omega t) \\ i(t) = Icos(\omega t) \end{cases}$$

1. Give the complex notation of e(t), e'(t) and i(t).

2. Determine the expression of the voltage u(t)

EPITA / InfoS2

March 2016

EPITA /S₂		Mars 2016
NOM :	PRFNOM:	GROUPE :

Contrôle n°2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (6 points)

Partie A

On considère deux masses m₁ et m₂ reliées entre elles par un fil "inextensible" et de masse négligeable. La masse m₁ glisse sur un plan horizontal sans frottement, la masse m₂ se déplace verticalement, comme le montre le schéma ci-dessous. La tension est la même en norme en chaque point du fil.

- 1- Représenter sur le schéma les forces appliquées sur les masses m₁ et m₂.
- 2- Appliquer le principe fondamental de la dynamique aux masses m_1 et m_2 pour en déduire leur accélération en fonction de g, m_1 et m_2 . (L'accélération de m_1 est égale à celle de m_2).

L	 		

Partie B

On considère un objet de masse M qui se déplace sans frottement sur le plan incliné d'un angle α , la poulie est de masse négligeable, les fils sont de masses négligeables et inextensibles et donc la tension est la même en norme en chaque point du fil.

1- Représenter sur le schéma ci-dessous les forces extérieures appliquées sur les masses M et m.

2- Appliquer le principe fondamental de la dynamique aux masses M et m, pour en déduire leur accélération en fonction de g, M, m et α. (L'accélération de M est égale à celle de m).

(Penser à projeter sur l'axe (Ox) parallèle au plan incliné pour M et sur l'axe (Oy) pour m).

Exercice 2 (9 points)

Partie A

Un système (ressort, masse m) peut osciller sans frottement sur un plan horizontal. On pose x(t) la position de la masse à un instant t quelconque et k le coefficient de raideur du ressort.

1- Représenter sur le schéma les forces appliquées sur la masse m.

2- a) Exprimer l'énergie mécanique totale E_m du système, en fonction de x et x .
b) Sans faire de calcul, que doit vérifier $\frac{dE_m}{dt}$? Justifier votre réponse.
c) Utiliser cette dernière propriété pour en déduire l'équation différentielle du mouvement de la masse m. En déduire la pulsation propre de l'oscillateur.

d) Donner la solution générale de cette équation, sachant qu'à $t_0 = 0$, $x = x_0$ et $x = 0$.
e) Exprimer la période d'oscillation T en fonction de k et de m. Faire le calcul pour $m = 4$ et $k = 10 \text{ N.m}^{-1}$.
Partie B
Le système (ressort, masse m) oscille horizontalement en présence de la force de frotten
d'expression $\vec{f} = -\alpha \dot{x} \vec{u}_x$, α est un coefficient de frottement positif. On montre dans ce cas
l'équation différentielle du mouvement s'écrit $x + \frac{\alpha}{m}x + \frac{k}{m}x = 0$.
Exprimer l'énergie mécanique E_m , en déduire $\frac{dE_m}{dt}$ en fonction de x . Commenter ce dernier résu

Exercice 3 Les questions 1 et 2 sont indépendantes (5 points)

On rappelle l'expression du moment d'inertie pour une distribution linéaire de masse :

$$I_{(\Delta)} = \int_{l} r^{2} \lambda . dl$$

1- a) Calculer le moment d'inertie d'une barre homogène, de masse M et de longueur L, par rapport à un axe de rotation (Δ) passant par son milieu. (A exprimer en fonction de M et L).

b) En déduire le moment d'inertie de la barre, par rapport à un axe de rotation (Δ ') parallèle à l'axe (et passant par une de ses extrémités, en utilisant le théorème de Huygens.							

2- On considère un anneau homogène de rayon R, d'axe (Oz) et de masse M.

Calculer le moment d'inertie par rapport à l'axe (Oz) passant le centre de masse G de l'anneau, donner l'expression en fonction de M et R.

Control n°2 - Physics

Calculator and documents are not allowed.

Answers must be written exclusively on the subject.

Exercise 1 (6 points) Part A

Let's consider two masses m_1 and m_2 of respective center G_1 and G_2 which are linked together thanks to an unextensible rope of negligible mass. The mass m_1 slides on an horizontal plane without friction as shown on the drawing beside.

It is also supposed that the contact between the rope and the pulley is without friction which means that the tension is the same, in norm, at any point of the rope.

2- Express t	Express the acceleration of the complete system as a function of m ₁ , m ₂ and g.				

Part B

A solid of mass m is sliding on the inclined plane which makes an angle α with the horizontal axis. The pulley is of negligible mass and the thread as well. The later is also unextensible so that the tension is of same norm along the total length.

1- Represent on the drawing hereunder the external forces applied on the masses M and m.

function	y the Fundamental Principle of Dynamics at the mass M and m to deduce the acceleration as a α of β , M, m et α . (Acceleration of M is equal to acceleration of m)
	to use the axis parallel to the inclined plane and the vertical one in order to project what be relatively to mass M and m).

A system (spring + mass m) can oscillate **without friction** on a horizontal plane. Let's write x(t), the position of the mass m at any time and k the stiffness coefficient of the spring.

1- Represent all the forces applied on mass m

2- a)	Express	the total	mechanical energy	E_m	of the system as a function of x and	х	
-------	---------	-----------	-------------------	-------	--------------------------------------	---	--

b) Without doing any calculus, what should verify	$\frac{dE_m}{dt}$? Justify your answer.
c) Use the later property to deduce the differential en	quation of the movement of the mass m.
d) Give the general solution of that equation, knowing	$\frac{1}{x^2} = 0, x = x_0 \text{ and } \dot{x} = 0.$

Express the oscillation period T as a function of k and m. Do the numerical application for $m = 400g$ and $k = 10 \text{ N.m}^{-1}$.	
Part B The system (spring + mass m) is oscillating horizontally but now there is a friction force which is a system as $\vec{f} = -\alpha \dot{x} \vec{u_x}$, α being a positive friction coefficient. The differential equation of the	s ie
novement of this system is: $\ddot{x} + \frac{\alpha}{m}\dot{x} + \frac{k}{m}x = 0$	
Express the mechanical energy E_m and $\frac{dE_m}{dt}$ as a function of \dot{x} . Comment this result.	
Exercise 3 Questions 1 and 2 are independent (5 points)	
et's recall that the moment of inertia for a lineic distribution of mass is $I_{d} = \int \lambda r^{2} dr$.	
 a) Calculate the moment of inertia of a homogeneous rod of mass M and length L with re to an axis of rotation (Δ) passing at the middle of the rod. 	sp

b) Use the Huygens theorem to deduce the moment of inertia of the same system with respecto an axis of rotation (Δ') passing at one end and parallel to the axis (Δ).
2- Let's consider a homogeneous ring of radius R, axis (Oz) and mass M. Calculate the moment of inertia with respect to the axis (Oz) passing through the center of mass G. Write the expression as a function of M and R.

Midterm exam n°2

Duration: three hours

Documents and calculators not allowed

Name:

First Name:

Class:

Instructions:

- No sheets other than the stapled ones provided for answers shall be corrected.
- Answers written using lead pencils shall not be corrected.

Exercise 1 (3 points)

1. Calculate $I = \int_e^{e^2} \frac{\mathrm{d}t}{t (\ln(t))^3}$ by making the substitution $u = \ln(t)$.

2. Calculate $J = \int_{-1}^{0} \frac{\mathrm{d}x}{x^2 + 2x + 2}$ by making the substitution u = x + 1.

Exercise 2 (3 points)

Let us consider the three following integrals I, J and K: $I = \int_0^1 \frac{xe^x}{(1+x)^2} dx$, $J = \int_0^1 \frac{e^x}{1+x} dx$ et $K = \int_0^1 \frac{e^x}{(1+x)^2} dx$.

1. Prove that I = J - K.

2. Calculate I using an integration by parts on K.

Exercise 3 (3 points)

Let (u_n) and (v_n) be the two sequences defined by $u_0 = 3$ and, for every $n \in \mathbb{N}$,

$$u_{n+1} = \frac{6+u_n}{2+u_n}$$
 and $v_n = \frac{u_n-2}{u_n+3}$

1. Prove that (v_n) is a geometric sequence, giving its ratio q and first term v_0 .

		···				····
xpress u_n as a	function of n and det	ermine its limit.				
) so and (a)	> a be the two sequen	nces defined by : a				
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	ices defined by : u	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	$(1)^2$	$3n^2$	
$)_{n\geqslant 2}$ and $(v_n)_n$	v_n) are adjacent.	nces defined by : v	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	1)2	3n²	
cise 4 (3) $u_n)_{n\geqslant 2}$ and $(v_n)_n$ u_n that (u_n) and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : 1	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	1)2	3n ²	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : 1	$n = \sum_{k=1}^{n} \overline{k^2(k+1)}$	1)2	3n ²	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : u	$n = \sum_{k=1}^{n} \overline{k^2(k+1)}$	1)2	3n2	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : u	$n = \sum_{k=1}^{n} \overline{k^2(k+1)}$	1)2	3n2	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : u	$n = \sum_{k=1}^{n} \overline{k^2(k+1)}$	1)2	3n2	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : u	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	1)2	3n2	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : 1	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	1)2	3n2	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : a	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	1)2	3n2	
$(v_n)_{n\geqslant 2}$ and $(v_n)_n$	$_{i\geqslant 2}$ be the two sequen	nces defined by : a	$n = \sum_{k=1}^{\infty} \overline{k^2(k+1)}$	1)2	3n2	

Exercise 5 (3 points)

Let $a \in \mathbb{R}$.

1. Determine $\lim_{n\to+\infty} \left(1-\frac{a}{n}\right)^n$.

2. Determine a Taylor expansion in the neighbourhood of $+\infty$ of $\left(1-\frac{a}{n}\right)^{\sin\left(\frac{1}{n}\right)}$ at order 2.

Exercise 6 (3 points)

Let (u_n) be the numerical sequence defined for every $n \in \mathbb{N}^*$ by $u_n = \frac{1 \times 3 \times \cdots \times (2n-1)}{2 \times 4 \times \cdots \times (2n)}$.

1. Study the monotonicity of (u_n) .

Is the sequence							
(
Datawaina	ab that	(2n)!	is a function o	٠		····	
Determine a su	cn that $u_n = \frac{1}{2}$	$\frac{(2n)!}{a(n!)^2}$, where a	is a function o	1 71.			

		uch that (vo) a	and (u_{2n}) are c	onvergent, resi	nectively to ℓ a	nd ℓ' . Prove	that $\ell = \ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell = \ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell = \ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell = \ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd l'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	(u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ' . Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
rcise 7 (2		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell$
		uch that (u_{2n}) a	and (u_{3n}) are c	onvergent, resp	pectively to ℓ a	nd ℓ'. Prove	that $\ell=\ell'$

Contrôle 2

Durée: trois heures

Documents et calculatrices non autorisés

Nom:

Prénom:

Classe:

Entourer votre professeur de TD : Mme Boudin / Mme Daadaa / M. Goron / Mme Trémoulet

Consignes:

- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.

Exercice 1 (3 points)

1. Calculer $I = \int_e^{e^2} \frac{\mathrm{d}t}{t (\ln(t))^3}$.

N.B. : on pourra effectuer le changement de variable $u=\ln(t)$.

2. Calculer $J = \int_{-1}^{0} \frac{\mathrm{d}x}{x^2 + 2x + 2}$

N.B. : on pourra effectuer le changement de variable u=x+1.

Exercice 2 (3 points)

Considérons les trois intégrales I, J et K suivantes : $I = \int_0^1 \frac{xe^x}{(1+x)^2} dx$, $J = \int_0^1 \frac{e^x}{1+x} dx$ et $K = \int_0^1 \frac{e^x}{(1+x)^2} dx$.

1. Montrer que I = J - K.

2. Calculer I en intégrant par parties K.

Exercice 3 (3 points)

Soient (u_n) et (v_n) deux suites définies par $u_0 = 3$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{6+u_n}{2+u_n}$$
 et $v_n = \frac{u_n-2}{u_n+3}$

1. Montrer que (v_n) est géométrique en donnant sa raison q et v_0 .

2. Exprimer v_n en fonction de n et déterminer la limite de v_n .	
3. Exprimer u_n en fonction de n et déterminer la limite de u_n .	

Exercice 4 (3 points) Soient $(u_n)_{n\geqslant 2}$ et $(v_n)_{n\geqslant 2}$ deux suites définies par : $u_n=\sum_{k=1}^{n-1}\frac{1}{k^2(k+1)^2}$ et $v_n=u_n+\frac{1}{3n^2}$.

Exercice 5 (3 points)

Soit $a \in \mathbb{R}$.

1. Déterminer $\lim_{n\to+\infty} \left(1-\frac{a}{n}\right)^n$.

2. Déterminer un développement limité au voisinage de $+\infty$ de $\left(1-\frac{a}{n}\right)^{\sin\left(\frac{1}{n}\right)}$ à l'ordre 2.

Exercice 6 (3 points)

Soit (u_n) la suite réelle définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1 \times 3 \times \cdots \times (2n-1)}{2 \times 4 \times \cdots \times (2n)}$.

1. Étudier la monotonie de (u_n) .

	(2n)!				
Déterminer a te	$1 \text{ que } u_n = \frac{(2n)!}{a(n!)^2} \text{ où}$	a dépend de n .			
	4000				
rcice 7 (2	points)				
$u_n)$ une suite ré	elle telle que (u_{2n}) et	t (u_{3n}) convergent	respectivement ver	s ℓ et ℓ' . Montrer qu	$e \ell = \ell'.$
1990	Market 1991				