

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Instalaci n Configuración y Comunicación de Sistemas Operativos Marco Polo Rodriguez Hernandez ICO10

Actividad el algoritmo de árbol de decisión (Tiempo estimado: 90 [minutos]) Actividad individual.

Objetivo de aprendizaje:

Habilidades:

Programar un algoritmo de predicción en múltiples variables en Python con el uso de las librerías de Scikit_Learn para crear un modelo de árbol de decisión.

Razonamiento lógico y sistémico.

Instrucciones:

1. Revisa las secciones 1 a 5 del siguiente link:

https://www.kaggle.com/learn/intro-to-machine-learning

- 2. Responde correctamente las siguientes preguntas guía:
 - a) Capturing patterns from data is called FITTING
 - b) The data used to fit the model is called TRAINING DATA
 - c) After the model has been fit, you can apply it to new data to PREDICT
 - d) You predict the price of any house by tracing through FEATURES
 - e) The point at the bottom where we make a prediction is called LEAF
 - f) Explica lo que representa cada fila de la siguiente tabla (revisa la sección 2)

COUNT: filas sin valores no-faltates

MEAN: la media

STD: desviacion estandar

MIN: minimo valor de cada columna

%: los valores se ordenan de forma ascendente

MAX: maximo valor de columna

	Rooms	Bathroom	Landsize	Lattitude	Longtitude
count	60.000000	60.000000	60.000000	60.000000	60.000000
mean	2.716667	1.566667	251.133333	-37.777957	144.939105
std	0.783120	0.620734	244.073028	0.048900	0.054444
min	1.000000	1,000000	0.000000	-37.848100	144.867900
25%	2.000000	1.000000	123.000000	-37.808125	144.878975
50%	3.000000	1.500000	165.500000	-37.801550	144.952150
75%	3.000000	2.000000	266.750000	-37.723775	144.995400
max	6.000000	3.000000	1063.000000	-37.716400	145.000400

- g) The column we want to predict, which is called PREDICTION TARGET
- h) The columns that are inputted into our model (and later used to make predictions) are called FEATURES
- i) The steps to building and using a model are: DEFINE, FIT, PREDICT, EVALUATE
- Observa cómo es la predicción de los precios tomando en cuenta cinco registros. NOTA: En realidad no son las primeras cinco en orden de aparición puesto que se excluyeron los registros que tienen celdas vacías en el archivo melb_data.csv ¿cuál sería el MAE para los datos predichos? 1035000. 1465000. 1600000. 1876000. 1636000

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Instalaci n Configuración y Comunicación de Sistemas Operativos Marco Polo Rodriguez Hernandez

ICO10

k)	¿Cómo se define el Error Medio Absoluto (MAE <i>Mean Absolute Error</i>)
	WITH THE MAE METRIC, WE TAKE THE ABSOLUTE VALUE OF EACH ERROR. THIS
	CONVERTS EACH ERROR TO A POSITIVE NUMBER. WE THEN TAKE THE AVERAGE OF
	THOSE ABSOLUTE ERRORS.

I)	¿Cuál es el MAE de tu entrenamiento con cinco registros	? (666.	6	6	66	6	6	6	66	6	6	6	6
----	---	-----	------	---	---	----	---	---	---	----	---	---	---	---

m)	Después de	dividir el	conjunto d	le datos	en las	variables	de e	entrenamie	nto y	valida	ción
	(train_X,	val_X,	train_y,	val_y)	, así co	mo despué	és de	entrenar n	uevam	nente,	cuá
	es el MAE q	ue obtiene	s? 33096	6.6666	66666	67					

- ${\bf 3.} \quad \hbox{En Google Colaboratory codifica el script que se adjunta a este documento}.$
- 4. En un repositorio en GitHub agrega el script y en los comentarios las preguntas y respuestas.

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Instalaci n Configuración y Comunicación de Sistemas Operativos Marco Polo Rodriguez Hernandez

ICO10

Recomendaciones al facilitador:

- Descarga el archivo melb_data.csv NOTA:
 el archivo original que puedes descargar
 en el minicurso, tiene más de 5000
 registros; Google Colaboratory no permite
 cargar archivos con demasiados registros,
 es por ello que se redujo a los primeros
 100.
- El documento en el enlace https://www.kaggle.com/learn/intro- tomachine-learning es un minicurso, el cual pretende hacer una breve introducción al aprendizaje de máquinas. Es importante que leas con detenimiento las secciones 1 a 5 para poder entender el script.

Recursos y materiales necesarios:

Cuenta de correo en Gmail Registro en Kaggle.com

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Instalaci n Configuración y Comunicación de Sistemas Operativos Marco Polo Rodriguez Hernandez ICO10

```
[12] import pandas as pd
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.metrics import mean_absolute_error
    from sklearn.model_selection import train_test_split
[13] from google.colab import files
    uploaded = files.upload()
Seleccionar archivos melb_data.csv
    . melb_data.csv(text/csv) - 13839 bytes, last modified: n/a - 100% done
    Saving melb data.csv to melb data.csv
[14] melbourne_data = pd.read_csv('melb_data.csv')
    melbourne_data.columns
dtype='object')
   melbourne_data = melbourne_data.dropna(axis=0)
    y=melbourne_data.Price
    melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']
    X = melbourne_data[melbourne_features]
    X.describe()
[ ] X.head()
[]
    melbourne_model = DecisionTreeRegressor(random_state=1)
    melbourne_model.fit(X, y)
    print("Making predictions for the following 5 houses:")
    print(X.head())
    print("The predictions are")
    print(melbourne_model.predict(X.head()))
```

[] predicted_home_prices = melbourne_model.predict(X)
 mean_absolute_error(y, predicted_home_prices)

val_predictions = melbourne_model.predict(val_X)
print(mean_absolute_error(val_y, val_predictions))

melbourne_model = DecisionTreeRegressor()
melbourne_model.fit(train_X, train_y)

train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 0)

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Instalaci n Configuración y Comunicación de Sistemas Operativos Marco Polo Rodriguez Hernandez ICO10

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

Instalaci n Configuración y Comunicación de Sistemas Operativos

instalaci ii comiguracion y comunicacion de distemas opera										
RÚBRICA DE EVALUACIÓN DE LA INFOGRAFÍA										
PUNTO A EVALUAR	MUY BIEN 10	BIEN 8	REGULAR 5	PUNTAJE OBTENIDO						
Información vertida en el documento	La información que se vierte en el documento es veraz y está en el contexto correcto.	La información que se vierte en el documento es veraz pero no está en el contexto correcto.	La información que se vierte en el documento no es veraz y no está en el contexto correcto.							
			TOTAL							