Research

SN	Topic	Ref	Problem	Methodology	Outcome
			Statement		
1	Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity	Kuzlu, Murat, Corinne Fair, and Ozgur Guler. "Role of artificial intelligence in the Internet of Things (IoT) cybersecurity." Discover Internet of things 1, no. 1,pp.7, 2021.	IoT systems, with their multiple attack surfaces and lack of standardized security protocols, are highly vulnerable to cyberattacks. Traditional security measures are insufficient to address sophisticated threats such as man-in-the-middle attacks, false data injection, and botnets. This research investigates how AI can be used both as a defense mechanism to protect IoT systems and as a tool exploited by attackers, underlining the dualedged role of AI in IoT cybersecurity.	Analyze existing studies on AI and IoT cybersecurity, focusing on common attacks and defense mechanisms. Attack Analysis: Review different IoT attack methods, such as physical attacks, man-in-the-middle attacks, and botnets, to understand vulnerabilities. AI Techniques for Cybersecurity: Evaluate AI approaches, including:	 Development of robust AI-based models to enhance the security of IoT systems. Comprehensive understanding of common IoT attacks and their AI-driven countermeasures. Guidelines for integrating AI into IoT cybersecurity frameworks to address both existing and emerging threats. Insights into the risks posed by adversarial AI and strategies to mitigate its impact on IoT security. Contribution to the advancement of secure IoT ecosystems through the use of intelligent, scalable, and proactive cybersecurity measures.

 1
identifying
anomalies.
 Artificial
neural
networks
for
adaptive
threat
detection.
Experimental
Validation:
Test AI-based
detection and
mitigation models
against simulated
IoT attack
scenarios using
datasets like
CICIDS2017.
• Exploration of
Adversarial AI:
Tuvelburiur III.
Examine how
attackers use AI
for tasks like
automating
vulnerability
detection and
executing input
attacks.
• Defense Strategies:
Propose AI-
driven defensive
frameworks and
validate their
effectiveness
using benchmarks
such as accuracy,
false positive

	1		1		
				rates, and	
				response time.	
2	Data Science	Provost, Foster,	Despite its	Literature Review:	• Clear
	and its	and Tom	growing		understanding of the
	Relationship	Fawcett. "Data	popularity,	 Analyze 	relationship between
	to Big Data	science and its	data science is	foundational	data science, Big
	and Data-	relationship to	often	concepts in data	Data, and decision-
	Driven	big data and	misunderstood	science, Big Data	making.
	Decision	data-driven	or	technologies, and	 Identification of
	Making	decision	oversimplified,	data-driven	best practices for
		making." <i>Big</i>	leading to	decision-making	integrating data
		data 1, no.	challenges in	frameworks.	science
		1,pp.51-59, 2013.	its practical application.		methodologies into
		2013.	Organizations	• Case Studies:	organizational
			struggle to		processes.
			fully leverage	 Examine real- 	• Development of a
			data due to	world examples	comprehensive
			the	where data	framework that
			complexities of	science and Big	outlines how to
			managing Big	Data have been	systematically apply
			Data and	successfully	data science for
			integrating	integrated to	decision
			insights into	enhance decision-	optimization.
			decision-	making.	 Demonstration of
			making		the business value of
			processes. This	 Data Collection and 	data-driven
			research	Analysis:	approaches using
			addresses the		case studies and
			gap in	Use secondary	simulations.
			understanding	datasets to apply	1. •
			the	data science	Contribution
			fundamental	techniques for	to academic
			principles of data science	predictive	and industry
			and its	analysis and	discussions
			application in	decision-making	by offering
			optimizing	simulations.	fundamental
			decision-	• Enomo	principles and
			making	• Framework	applications of data
			through Big	Development:	science.
			Data.	• Davalon o	SCICILCE.
				Develop a structured	
				framework	
				connecting data science principles	
			1	science principles	

				to Big Data applications for decision-making improvements. • Evaluation: • Assess the effectiveness of the proposed framework through performance metrics like accuracy, ROI, and decision efficiency.	
3	Supervised machine learning algorithms: classification and comparison	Osisanwo, F. Y., J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, and J. Akinjobi. "Supervised machine learning algorithms: classification and comparison." International Journal of Computer Trends and Technology (IJCTT) 48, no. 3 ,pp.128-138, 2017.	With numerous supervised machine learning algorithms available, selecting the most appropriate one for a given task remains a challenge. Variations in data characteristics, such as size, dimensionality, and feature types, further complicate this decision. This research addresses the need for systematic classification and comparative	Analyze existing studies on supervised learning algorithms, focusing on their theoretical foundations and practical applications. Data Selection: Use a well-structured dataset (e.g., Pima Indians Diabetes dataset) containing both numerical and categorical features for classification tasks.	 Identification of the most accurate and efficient supervised learning algorithms for specific classification tasks. Insights into the trade-offs between computational complexity and prediction accuracy. Guidelines for selecting algorithms based on dataset characteristics such as size and feature distribution. Case studies demonstrating the practical implications of algorithm selection in realworld scenarios. Recommendations for improving machine learning workflows by integrating optimal

	analysis of	• Algorithm	classification
	supervised	Implementation:	techniques.
	learning	implementation.	teeninques.
	algorithms to	F 1 /	
	guide their	Evaluate seven	
	_	supervised	
	optimal use in	learning	
	predictive	algorithms:	
	modeling.	Decision Table,	
		Random Forest,	
		Naïve Bayes,	
		SVM, Neural	
		Networks, JRip,	
		and Decision Tree	
		(J48).	
		Perform	
		experiments using	
		the WEKA tool	
		for consistent and	
		reproducible results.	
		resuits.	
		7.5	
		• Performance Metrics:	
		 Measure 	
		accuracy,	
		precision, Kappa	
		statistic, Mean	
		Absolute Error	
		(MAE), and	
		computational	
		time for each	
		algorithm.	
		Analysis:	
		 Compare 	
		performance	
		metrics across	
		algorithms for	
		both large and	
		small datasets.	
		effect of varying	
		feature sets and	
		sample sizes on	

				algorithm	
				performance.	
				r	
4	Automating CI/CD Pipelines with Machine Learning Algorithms: Optimizing Build and Deployment Processes in DevOps Ecosystems	Tamanampudi, Venkata Mohit. "Automating CI/CD Pipelines with Machine Learning Algorithms: Optimizing Build and Deployment Processes in DevOps Ecosystems." Distributed Learning and Broad Applications in Scientific Research 5 ,pp. 810-849, 2019.	Traditional CI/CD pipelines are highly automated but rely heavily on predefined rules and manual interventions, limiting their ability to handle modern software complexities. Issues such as build failures, inefficient rollbacks, and rigid deployment strategies challenge the pace and reliability of software delivery. This creates a need for intelligent, data-driven systems that can optimize these processes and adapt dynamically to changing conditions.	• Predictive Failure Detection: Leveraging machine learning models such as decision trees, random forests, and neural networks to identify patterns indicating potential failures using historical build and deployment data. • Automated Rollbacks: Implementing AI-driven anomaly detection models and reinforcement learning techniques to detect deviations and trigger rollbacks without manual intervention. • Adaptive Deployment Strategies: Utilizing real- time monitoring of key performance indicators (KPIs) like latency and error rates, combined with reinforcement learning and anomaly detection, to adjust deployment processes dynamically. • Data Collection and Model Training: Employing robust data preprocessing and feature engineering for building accurate predictive models and conducting continuous training for	• Increased Reliability: Predictive models successfully reduce the frequency of failures and downtime by identifying and mitigating potential issues preemptively. • Efficiency Gains: Automated rollback mechanisms enhance stability and reduce manual effort, while adaptive strategies optimize resource usage and deployment efficiency. • Organizational Alignment: Encourages collaboration between data scientists, DevOps teams, and developers for seamless integration of AI into existing workflows. • Transformative Impact: AI-driven CI/CD pipelines accelerate delivery cycles, enhance software quality, and align with agile development
				adaptive capabilities.	practices.
_	Integrated	Guan, Bo, Jin	Traditional	• Integrated	• Performance
5	integrated	,			
5	Method of	Cao, Xingqi	speech	Framework Design:	Improvements:

Learning and
Large
Language
Model in
Speech
Recognition

Wang, Mingxiu Sui, and Zixiang Wang. "Integrated method of deep learning and large language model in speech recognition." In 2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT), pp. 487-490, 2024.

systems often struggle with complex contexts, accent variability, and background noise. Despite advancements in deep learning and LLMs, a cohesive integration of these technologies to fully utilize their respective strengths for improving system performance remains an

unresolved

challenge.

- Developed an LLM-HMM hybrid system that combines LLMs for acoustic signal feature extraction with HMM for state transition modeling.
- Incorporated CNN to enhance local feature capturing and DNN for posterior probability estimation.

• Data and Training:

- Used TIMIT, LibriSpeech, and Common Voice datasets for evaluation, representing various accents, noise conditions, and languages.
- Conducted pretraining on broad datasets (e.g., LibriSpeech) followed by finetuning on specific datasets like TIMIT.

• Performance Metrics:

 Evaluated the models on WER (word error rate) and RTF (realtime factor) to measure accuracy

- Significant reductions in WER across datasets: TIMIT (18.5% \rightarrow 15.2%), LibriSpeech (10.3% \rightarrow 8.4%), Common Voice (22.0% \rightarrow 17.8%).
- Enhanced RTF, demonstrating better realtime performance.

• Adaptability:

• The integrated model outperformed traditional approaches in handling diverse languages and accents, even in noisy environments.

• Future Potential:

 Establishes a foundation for refining speech recognition technologies through advanced integrations

	and processing efficiency.	of DL and LLMs.
	• Optimization Techniques:	
	Applied cross- entropy loss and expectation maximization (EM) algorithms for training and fine-tuning model parameters.	