

Wide field microscopy, resolution and restoration.

Chris Gell. Jan. 2018

Widefield images.

What is the resolution, in practice, of a microscope?

What is a wide field microscope?

Why are the images blurry?

What can we do about it?

Fundamentals for a good image: Resolution and contrast.

Resolution

Contrast

Theoretical resolution vs 'real' measurements

Lateral resolution (nm)		Object (nm)
	Theoretical	FWHM
WF	250	
Confocal	170	

axial (z)

Cell

Cover glass

Axial resolution (nm)		Object (nm)
	Theoretical	FWHM
WF	590	
Confocal	420	

Maximum resolution is dependant on wavelength and numerical aperture (assuming no aberrations). Axially also more on n.

wf. $lateral = 0.61\lambda$ / NA

wf. $axial = 2\lambda n / NA^2$

conf. $lateral = 0.37\lambda / NA$

conf. $axial = 1.4\lambda n / NA^2$

NA – numerical aperture = 1.4

n - refractive index = 1

 λ - wavelength = 594 nm

Theoretical vs 'real' resolution

18 January 2019 11:08 PSF profiler report on C1-20170125_60x_res_02_R3D.ome_crop.ome - C=0-1

Profile view:

100nm bead

lateral (x,y)

cover glass

Microscope infos:

Microscope: WideField Wavelength: 594.0 nm

NA: 1.42

Sampling rate: 0.106x0.106x0.2 μm

Resolution table:

January 17, 2017 10:02 AM PSF profiler report on TRITC

Profile view:

Microscope infos:

Microscope: Confocal Wavelength: 590.0 nm

NA: 1.4

Sampling rate: 0.054x0.054x0.361 μm

Pinhole: 1.0 Airy Units

Resolution table:

	FWHM	Theoretical resolution
X	0.214 μm	0.169 μm
y	0.296 µm	0.169 μm
z	0.404 μm	0.421 μm

You need contrast to get good resolution.

Object FWHM Lateral (nm)		
WF 260		
Confocal	250	

axial (z) Cell	
lateral (x,y)	cover glass

Object FWHM Axial (nm)		
WF 1400		
Confocal	400	

Maximum resolution assumes ideal conditions (esp. SNR/SBR) – 'perfect' contrast.

Wide field microscopes have reduced contrast which leads to an apparently poorer resolution.

Contrast

What is a widefield microscope?

What is a widefield microscope?

Widefield

Confocal

What is a widefield microscope

Wide field

Confocal

Scanned to a detector via a pinhole

Same issue for the beads

18 January 2019 11:08 PSF profiler report on C1-20170125_60x_res_02_R3D.ome_crop.ome - C=0-1

Profile view:

Microscope infos:

Microscope: WideField Wavelength: 594.0 nm

NA: 1.42

Sampling rate: 0.106x0.106x0.2 μm

Resolution table:

100nm bead

lateral (x,y)

cover glass

January 17, 2017 10:02 AM PSF profiler report on TRITC

Profile view:

Microscope infos:

Microscope: Confocal Wavelength: 590.0 nm

NA: 1.4

Sampling rate: 0.054x0.054x0.361 μm

Pinhole: 1.0 Airy Units

Resolution table:

	FWHM	Theoretical resolution
X	0.214 μm	0.169 μm
y	0.296 µm	0.169 μm
Z	0.404 μm	0.421 μm

Measured resolution (object FWHM)

Object FWHM Lateral (nm)		
WF	260	
Confocal	250	

Object FWHM Axial (nm)		
WF 1400		
Confocal	400	

The 'poor' practical (measured) resolution in wide field is largely due to a lack of contrast as signal is collected from a 'wide' volume of the sample.

Anything we can do to improve WF performance?

Sample type dictates relative results

Thick and dense – difficult via wide field

Disperse monolayer – better results via WF

cover glass

- reduce background
- brighter stains
- lower wavelength, higher NA, higher n mounting/immersion (ignoring aberrations)

Contrast in widefield fluorescence.

Wide field

z

- Fluorescence from nearby moieties (mostly above and below plane of focus): secondary fluorescence.
- This reduces contrast, thereby reducing effective resolution.
- Also makes data much less quantitative.

BPAE cells with MitoTracker Red, Alexa Fluor 488 Phalloidin, and DAPI (Chris Gell).

Restoration (aka deconvolution) can ameliorate this.

Wide field fluorescence vs Wide field restoration

More resolution (contrast) and quantitative results.

BPAE cells with MitoTracker Red, Alexa Fluor 488 Phalloidin, and DAPI (Chris Gell).

Image deconvolution

A microscope is a diffraction limited imaging system. Diffraction of light (and other effects) leads to "blur".

Knowing the system response to a point light source (PSF), the object can restored from image.

Deconvolution

Iterative deconvolution

10 µm

Iteration 1

Iterative deconvolution

10 µm

Iteration *n*

Deconvolution can extended to 'restore' signal

Real Object

Measured

Restored

Reassigns secondary fluorescence

Quantitative results, enhanced contrast.

Deconvolution/Restoration Methods

Accuracy

Blind de-blurring.	Imprecise. No reassignment. Removes information. Affected by noise and aberrations.
Non-blind iterative.	Needs a measured PSF. Potentially very precise (but often not). Affected by aberrations.
Adaptive iterative blind.	No measured PSF. Good with aberrations. Very computer intensive.

Does it restoration really improve resolution?

18 January 2019 11:08 PSF profiler report on C1-20170125_60x_res_02_R3D.ome_crop.ome - C=0-1

Profile view:

Microscope infos:

Microscope: WideField Wavelength: 594.0 nm

NA: 1.42

Sampling rate: 0.106x0.106x0.2 μm

Resolution table:

Unrestored

	FWHM	Theoretical resolution
x	0.25 μm	0.255 μm
y	0.267 μm	0.255 μm
z	1.39 µm	0.589 µm

18 January 2019 11:07 PSF profiler report on C1-20170125_60x_res_02_R3D.ome_crop_decon_2.ome - C=0-1

Profile view:

Microscope infos:

Microscope: WideField Wavelength: 594.0 nm

NA: 1.42

Sampling rate: $0.106x0.106x0.2 \mu m$

Resolution table:

Restored

	FWHM	Theoretical resolution
X	0.201 μm	0.255 μm
y	0.207 μm	0.255 μm
z	0.652 um	0.589 um

Maximum vs FWHM vs restored FWHM

Lateral resolution (nm)		Object FWHM (nm)	
	Theoretical	FWHM	FWHM (Restored)
WF	250	260	205
Confocal	170	240	-

Axial resolution (nm)		Object FWHM (nm)	
	Theoretical	FWHM	FWHM (Restored)
WF	590	1400	652
Confocal	420	400	-

The 'poor' resolution in wide field is really a contrast issue.

Restoration can help.

Practical considerations for restoration

- Data collection (setting a good exposure, correct sampling).
- Sample (staining, structure).
- Understanding of parameters (RI, NA, coverslip parameters, wavelengths, x-y-z voxel sizes).
- Which algorithm / software?
- Time consuming, but off-line.
- Do you actually need it?!

Fiji (ImageJ)

Huygens

Restored Images – contrast, reduced background.

Z-stack viewed in 'extended focus' (MIP), fixed cell.

Intensity quantitation

School of Life Sciences University of Nottingham

Z-stack viewed in 3D, fixed cell.

Proteins p62 and LC3 in NSC34 cells (Alice Goode/Rob Layfield/Chris Gell).

Background suppression

Single slice, time lapse, live cell.

MEF cells stably transfected with mCherry-GFP-LC3 as a marker of autophagy (Alice Goode/Rob Layfield/Chris Gell).

Wide field restoration -Summary

- Wide field fluorescence microscopes collect light from a large volume, typically this results in low contrast.
- Maximum resolution (in any conventional scope) is defined by NA and λ , but is limited by contrast (and aberrations).
- Contrast is affected by many things: Labelling, lens, sample thickness, filters, camera etc. (Anything that affects SNR/SBR.)
- Restoration is a post-acquisition method to increase image information content.
- Need to acquire z-stacks to be a useful method.
- Images need structure useless for diffuse staining (eg. cytosolic).
- Still limited by image quality (noise, aberrations): Structures must be visible!
- Can also be used to improve confocal data (esp. if pinhole was opened).
- Very useful for some subsequent analyses (eg. co-localisation, intensity quantitation, more accurate spatial measurement).

"Deconvolution is not photoshopping, it's a systematic error correction."

Someone on Twitter

More information:

https://www.ibiology.org/speakers/jeff-lichtman/

4 – talks: Huygens Wavelets, resolution (2), PSF

https://www.ibiology.org/talks/deconvolution-microscopy/ David Agard UCSF