ITP20004

Open-Source Software Labs

Charmgil Hong Shin Hong

{charmgil, hongshin}@handong.edu

Spring, 2023
Handong Global University

Agenda

- Course Overview
- Course Motivation
- Administrivia

Course: ITP20004 Open-Source Software Labs

Section #1 (English): Mon/Thur 4:00-5:15pm

Instructors

• Charmgil Hong (홍참길)

• Office: NTH201

• Email: charmgil@handong.edu

• Shin Hong (홍신)

• Office: OH313

• Email: hongshin@handong.edu

- Course: ITP20004 Open-Source Software Labs
 - Section #1 (English): Mon/Thur 4:00-5:15pm
- Teaching Assistant: TBD
 - Email: -

- Course objectives:
 - Students can articulate Linux, an open-source operating system in operating and writing programs

- Course objectives:
 - Students can articulate Linux, an open-source operating system in operating and writing programs
 - Students are equipped with basic skills of contemporary software development tools

- Course objectives:
 - Students can articulate Linux, an open-source operating system in operating and writing programs
 - Students are equipped with basic skills of contemporary software development tools
 - Students understand the nature and the process of open-source projects

- Course objectives:
 - Students can articulate Linux, an open-source operating system in operating and writing programs
 - Students are equipped with basic skills of contemporary software development tools
 - Students understand the nature and the process of open-source projects
 - Students know how to find and use open-source software fitted for their needs

- Prerequisite: C Programming
 - Recommended: Data Structures, Java Programming
- Textbooks
 - William Shotts. *The Linux Command Line*. 5th Internet Edition. 2019. https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
 - Robert G. Plantz. *Introduction to Computer Organization: ARM Assembly Language Using the Raspberry Pi.* 2017.
 - https://bob.cs.sonoma.edu/IntroCompOrg-RPi/intro-co-rpi.html
 - Robert C. Seacord. Effective C: An Introduction to Professional C Programming. No Starch Press. 2020.
 - https://www.oreilly.com/library/view/effective-c/9781098125677/

- This course is offered in English
 - Use English in your <u>homework</u>, <u>exams</u>, and <u>all communication</u> in class
 - You will get no credit for your submission if it is not in English

Agenda

- Course Overview
- Course Motivation
- Administrivia

- A brief computer history
 - First generation (~ mid-1940s)
 - Computers handled a single task each time
 - There was no operating system

Atanasoff-Berry Computer (ABC) 1937

-- the first electronic computer

Colossus 1943

-- the first fixed program electronic computer

Electronic Numerical Integrator and Computer 1946 (ENIAC) -- the first general-purpose computer

- A brief computer history
 - Second generation (mid-1940s ~ mid-1960s)
 - Transistors made computers smaller
 - Computers had memory and operating systems
 - Storage devices (tape or disk) and printers were introduced
 - Over 100 programming languages were developed

1951 Universal Automatic Computer (UNIVAC)

-- the first commercial computer

The IBM 650 Series, 700 Series

- -- the magnetic drum calculator (MDC)
- -- the "mainframe" computers

- A brief computer history
 - Third generation (mid-1960s ~ present)
 - "Modern computing era"
 - Integrated circuit (IC) made computers much smaller but powerful

The PC revolution

1980

1981

1976

Mainframes were alive and well

"Hello everybody out there... I'm doing a (free) operating system (just a hobby, won't be anything big and professional like gnu)...it probably will never support anything other than AT-hard disks, as that's all I have..."

* Image src: https://www.youtube.com/watch?v=5ocq6_3-nEw (by the Linux Foundation)

^{*} Image src: https://www.youtube.com/watch?v=5ocq6_3-nEw (by the Linux Foundation)

- Linux is everywhere
 - Behind tons of online services
 - Running 95% of supercomputers
 - Running 75% stock exchanges worldwide
 - In your living room
 - In your pocket

Learning Components

- 1. Understanding the Linux environment and system
- 2. Writing and managing code on Linux
 - C Programming Reviews
- 3. Working in collaborations
- 4. Launching services with Linux

Agenda

- Course Overview
- Course Motivation
- Administrivia

Schedule (tentative)

Week	Plans
1-3	 Getting started Course overview, motivation, administrivia Computer organization and Linux environment CPR: C Programming Review
4-5	 Interacting with Linux Basic Linux commands + Writing code on Linux Linux command-line tools Accessing files and directories
6-9	Project management - make - Exploring standard libraries - Project: BASIC interpreter - Debugging with GDB, Unit testing with gtest

Week	Plans
9-11	Computer network and services - Computer network basics - Linux network commands - Linux machine as a server + Web services
12-16	Running projects in collaboration - Using Github - Project: Developing a multi-user game

Lectures and Labs

- **Lecture**: learn about modern computing systems and environments in a regular lecture format
- Lab: one to three quests that are closely related to the topics from the lectures
 - You will be <u>teamed up</u> with another student to conquer the quests
 - Teams will be re-assigned monthly by the instructors
 - Prelab assignment: prior to each lab session, a prelab assignment will be given with a reading assignment
 - Postlab report: Check in and out with TA that you have started and completed the quests

Administrivia

Grading

Attendance: 10%

• Midterm: 15%

• Final: 15%

Lab (Prelab & Postlab Reports): 60%

- Make sure to submit your work before each deadline
- Late submissions will be accepted within 24 hours after the deadline with a penalty of -20% of the assignment grade
 - Submissions made after 24 hours from the deadline will be rejected
- For additional extensions, reasonable excuse should be submitted before the deadline

Honor Code

- Please review HGU CSEE Standard
 - 한국어: https://drive.google.com/file/d/0B9iQGS7v1k9ORGhXSHNyTkpvQW8/view
 - English: https://drive.google.com/file/d/089iQGS7v1k9Ob0oxTExmMjhPU28/view
- Any of the followings will result in failure (F):
 - Conducting any form of cheating or academic dishonesty
 - Not appearing in lectures & labs for more than 6 times
 - Three times of tardiness will be countered as one absence
 - Not participating in more than 2 lab sessions
 - Skipping midterm exam or final presentation

Honor Code

Please review HGU CSEE Standard

- 한국어: https://drive.google.com/file/d/089iQGS7v1k9ORGhXSHNyTkpvQW8/view
- English: https://drive.google.com/file/d/089iQGS7v1k9Ob0oxTExmMjhPU28/view

Attendance

 Marking her/his own attendance sheet without attending the class or marking other student's attendance sheet who is absent is regarded as cheating.

Assignments

- Submitting assignments or program codes written by others or acquired from the internet without explicit approval of the professor is regarded as cheating.
- Showing or lending one's own homework to other student is also considered cheating that disturbs fair evaluation and hinders the academic achievement of the other student.
- It is regarded as cheating if two or more students conduct their homework together and submit it individually when the homework is not a group assignment.

Laboratory

 It is cheating if students conduct an experiment or practical exercise by referring to other students' pre-report/code (in case of team project, referring other team's report/code) while doing experiment and practice.

Sounds cool? Let's dive in!

