Биномиальные коэффициенты: мотивация

Допустим, вы хотите провести A/B тест и понять, увеличивает ли вашу прибыль некоторая фича в приложении. Первый шаг — из всех пользователей сформировать две случайные непересекающиеся выборки фиксированного размера.

Пусть у вашего приложения миллион пользователей по всей России. Вы хотите сформировать две выборки размером 1000, выбирая равномерно среди всех пользователей. То есть у всех пользователей вероятность попасть в каждую из двух выборок одинаковая. После этого можно задаваться следующими вопросами:

- 1. Сколько существует способов это сделать?
- 2. Допустим, 20000 пользователей вашего приложения живут в Калуге. Какова вероятность, что хотя бы в одной из ваших выборок окажется пользователь из Калуги?
- 3. Допустим, 1000 ваших пользователей старше 90 лет. Какова вероятность, что в каждой из ваших выборок окажется пользователь старше 90 лет? и т.д

Заметим, что все эти вопросы крутятся вокруг числа способов выбрать некоторое подмножество из другого большего множества (возможно, с некоторыми ограничениями на выбираемое множество). Биномиальные коэффициенты помогут нам решить эти задачи. Их мы и будем изучать в этом уроке.

Пример 1

Итак, нас интересует число способов выбрать подмножество фиксированного размера из другого большего множества. Давайте посмотрим на следующую задачу.

Сколько есть способов выбрать 2 котов из множества, состоящего из 3 котов?

Пусть рассматриваемые три кота это белый, серый и рыжий.

Решение 1. Ясно, что есть ровно 3 способа выбрать двух котов из этих трёх котов. Вот эти способы:

- 1. Выбрать белого и серого
- 2. Выбрать белого и рыжего
- 3. Выбрать серого и рыжего

То есть ответ – есть три способа. К сожалению, такое решение сложно обобщить. Давайте попробуем решить по-другому.

Решение 2. Попробуем решить задачу комбинаторными методами, которые мы прошли на предыдущих уроках. Нам нужно выбрать пару котов. Выберем первого кота – есть 3 варианта для этого выбора. Затем выберем второго кота – есть 2 варианта для второго выбора. Итого есть $3 \cdot 2 = 6$ возможных вариантов.

Будет ли это число ответом в нашей задаче? Нет, и вот почему. Посмотрим на те шесть пар, которые мы получили (сначала мы пишем цвет первого кота, потом цвет второго кота):

- 1. Белый, серый
- 2. Белый, рыжий
- 3. Серый, белый
- 4. Серый, рыжий,
- 5. Рыжий, белый
- 6. Рыжий, серый

Почему этих пар получилось шесть, а не три (как в Решении 1)? Потому что эти пары упорядоченные. В частности, есть пара "Белый, серый" и есть пара "Серый, белый". Мы посчитали их как разные пары. Но в задаче нас спрашивали про неупорядоченные пары (в задаче ничего не говорилось о порядке среди двух выбранных котов). Поэтому пары "Белый, серый" и "Серый, белый" нужно засчитать как один способ выбрать двух котов (а не как два). Видно, что каждой неупорядоченной паре соответствуют две упорядоченные пары. Поэтому ответ в задаче это 6/2=3.

Пример 2

Усложним задачу.

Сколько есть способов выбрать 3 котов из множества, состоящего из 10 котов?

Построить аналог Решения 1 из предыдущего шага будет уже сложно (нужно выписать все варианты, а их много). Поэтому будем сразу строить аналог Решения 2.

Решение. Как и раньше, попробуем решить задачу комбинаторными методами. Нам нужно выбрать трёх котов. Выберем первого кота — есть 10 вариантов для этого выбора. Затем выберем второго кота — есть 9 вариантов для второго выбора. Выберем третьего кота — есть 8 вариантов. Итого мы получили $10 \cdot 9 \cdot 8$ возможных вариантов.

Как и раньше, у нас возникла проблема – мы нашли число <u>упорядоченных</u> троек, а нас спрашивали про <u>неупорядоченные</u> тройки. Найдём, сколько упорядоченных троек соответствует одной неупорядоченной тройке.

(В прошлом примере одной неупорядоченной паре соответствовало две упорядоченные пары)

Начнём с неупорядоченной тройки. Пусть она состоит из чёрного, пятнистого и бежевого кота (мы их выписали в каком-то порядке, но считаем, что на них никакого порядка нет). Сколько можно сделать упорядоченных троек из этих котов? Другими словами, сколько есть способов раздать этим котам билеты с номерами 1,2,3? Мы умеем отвечать на такие вопросы – ответ $3\cdot 2\cdot 1=6$. Вот эти шесть упорядоченных троек:

- 1. Чёрный, пятнистый, бежевый
- 2. Чёрный, бежевый, пятнистый,
- 3. Пятнистый, чёрный, бежевый
- 4. Пятнистый, бежевый, чёрный
- 5. Бежевый, чёрный, пятнистый,
- 6. Бежевый, пятнистый, чёрный.

То есть каждой неупорядоченной тройке соответствует $3 \cdot 2 \cdot 1 = 6$ упорядоченных троек. Мы уже посчитали, что упорядоченных троек ровно $10 \cdot 9 \cdot 8$. Значит, неупорядоченных троек ровно $\frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120$.

Биномиальные коэффициенты - общая формула

Пусть дано множество S размера n. Найдем число способов выбрать из него подмножество размера k (мы считаем что $0 \le k \le n$).

Как и раньше, сначала посмотрим на упорядоченные наборы из k элементов. Упорядоченных наборов длины k из различных элементов множества S ровно $n\cdot (n-1)\cdot (n-2)\cdot \ldots (n-k+1)$. Потому что есть n вариантов для первого элемента, (n-1)вариант для второго, . . . , (n-k+1) вариантов для k-ого элемента.

Пусть A это любое подмножество S, такое что в A ровно k элементов. Сколько упорядоченных наборов соответствует A? Ясно, что ровно k! наборов. Потому что есть ровно k! способов упорядочить элементы A. Другими словами, есть ровно k! способов раздать элементам A билеты с номерами от 1 до k (так чтобы каждому элементу A достался один билет).

Пример. На прошлом шаге мы показали, что есть 3! = 6 способов упорядочить подмножество из трёх котов.

Тем самым, каждому подмножеству размера k соответствует k! упорядоченных наборов. Упорядоченных наборов всего столько:

$$n \cdot (n-1) \cdot (n-2) \cdot \dots (n-k+1)$$
.

Значит, подмножеств размера k в k! раз меньше, то есть столько:

$$\frac{n\cdot (n-1)\cdot (n-2)\cdot \dots (n-k+1)}{k!}.$$

Это и есть искомый ответ.

Пример 1. Подставим в формулу n=3 и k=2, и получим результат из примера с предпоследнего шага: $\frac{3\cdot 2}{2\cdot 1}=3$

Пример 2. Подставим в формулу n=10 и k=3, и получим результат из примера с последнего шага: $\frac{10\cdot 9\cdot 8}{3\cdot 9\cdot 1}=120$.

Более красивая запись

В выражении $rac{n\cdot (n-1)\cdot (n-2)\cdot \ldots (n-k+1)}{k!}$ домножим и числитель и знаменатель на (n-k)! и получим более короткую запись того же выражения:

$$\frac{n \cdot \dots (n-k+1)}{k!} = \frac{n \cdot \dots (n-k+1) \cdot (n-k)!}{k!(n-k)!} = \frac{n \cdot \dots (n-k+1) \cdot ((n-k) \cdot \dots \cdot 2 \cdot 1)}{k!(n-k)!} = \frac{n!}{k!(n-k)!}.$$

Итак, число способов выбрать подмножество размера k из множества размера n равно $\frac{n!}{k!(n-k)!}$.

Биномиальные коэффициенты – определение

Определение. Число $\frac{n!}{k!(n-k)!}$ обозначается $\binom{n}{k}$ и читается "n по k". Определено для целых неотрицательных n и k таких, что $n\geqslant k$. Все числа такого вида называются биномиальными коэффициентами.

Почему это числа называются "биномиальные коэффициенты" мы объясним чуть позже в этом уроке.

Комментарий. В русскоязычной литературе также используется обозначение C_n^k (цэ из n по k), но оно постепенно выходит из употребления, поэтому мы будем использовать $\binom{n}{l}$.

Ясно, что мы хотим, чтобы выполнялось равенство $1=\binom{n}{n}$ (есть ровно один способ выбрать подмножество размера n из множества размера n). Аналогично, мы хотим, чтобы выполнялось равенство $1=\binom{n}{0}$ (есть ровно один способ выбрать пустое подмножество из множества размера n). Поэтому естественно договориться, что 0!:=1 – тогда мы можем использовать наши формулы с факториалами:

•
$$\binom{n}{n} = \frac{n!}{n! \cdot 0!} = \frac{n!}{n! \cdot 1} = 1,$$

• $\binom{n}{0} = \frac{n!}{0! \cdot n!} = \frac{n!}{1 \cdot n!} = 1.$

•
$$\binom{n}{0} = \frac{n!}{0! \cdot n!} = \frac{n!}{1 \cdot n!} = 1.$$

Выберите все подходящие ответы из списка

$$\binom{178}{0} = 0$$

$$\binom{7}{4} = 35$$

$${\binom{178}{0}} = 0$$

$${\binom{7}{4}} = 35$$

$${\binom{30}{2}} = 870$$

$${\binom{1000}{1000}} = 1$$

$$\binom{1000}{1000} = 1$$

Перестановки

Давайте познакомимся с понятием *перестановок*. На самом деле, мы уже много раз пользовались этим понятием, просто не называли его так. Так что в этом шаге мы ничего концептуально нового не узнаем, а только научимся использовать название "перестановки".

Определение. Перестановка чисел от 1 до k — это некоторая упорядоченная последовательность чисел от 1 до k, где каждое число встречается ровно один раз.

Обозначение. Перестановки мы будем записывать так: внутри круглых скобок будем писать упорядоченную последовательность из предыдущего определения. Иногда можно встретить и другие способы записи перестановок, но мы будем использовать именно такой.

Пример 1. Существует всего две перестановки чисел $\{1,2\}$ — это (1,2) и (2,1).

Пример 2. А вот для чисел $\{1,2,3\}$ перестановок уже шесть: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

Ясно, что всего перестановок чисел от 1 до k ровно k!. Можно считать, что числа от 1 до k это зрители, которым мы раздаём билеты. А на билетах написаны номера $1, 2, \ldots, k$. Если числу достался билет с номером i, то число будет стоять на i-ом месте (надеемся, вас не запутало то, что у зрителей и у билетов одинаковые имена).

Комментарий. Есть ещё одно определение перестановки — функция из множества $\{1,2,\ldots,n\}$ в множество $\{1,2,\ldots,n\}$, такая, что значение функции для двух различных чисел не может совпадать. Действительно, перестановке (3,1,2) естественным образом соответствует функция, которая ставит в соответствие порядковому номеру элемент: $1 \to 3, \ 2 \to 1, \ 3 \to 2$.

Где мы уже встречали перестановки

Иногда говорят о перестановках не множества $\{1, 2, \dots, k\}$, а элементов какого-то другого множества.

Например, вот всевозможные перестановки элементов множества $\{a,b,c\}$:

abc, acb, bac, bca, cba, cab,

их, конечно же, ровно 6 = 3!.

Определение. Перестановка элементов некоторого множества это способ упорядочить элементы этого множества (так чтобы каждый элемент встретился ровно один раз).

Пример 1. На этом шаге про зрителей и билеты мы искали количество перестановок множества {Даша, Катя, Миша}.

Пример 2. На этом шаге про котов мы считали количество перестановок множества {чёрный, пятнистый, бежевый}.

Пример 3. На <u>этом</u> шаге про биномиальные коэффициенты мы считали количество упорядоченных наборов элементов множества A. Эти наборы и были перестановками элементов множества A. То есть мы считали количество перестановок множества A (их оказалось ровно k!).

Задачи

Сейчас мы начнём решать задачи на вероятность при помощи биномиальных коэффициентов. Принцип решения у нас будет такой же, как и в решении других комбинаторных задач на вероятность. Чтобы найти вероятность события A мы будем

- находить общее количество исходов $|\Omega|$,
- находить количество исходов в A, то есть |A|,
- ullet делить второе на первое, получая $P(A) = rac{|A|}{|\Omega|}$

Пример 1

В колоде 26 красных карт и 26 чёрных. Мы вытягиваем 3 карты. Какова вероятность, что все три карты будут красными?

Решение. Обозначим за A событие "все три вытащенные карты красные."

- ullet Чему равно количество способов вынуть 3 любых карты из колоды, то есть чему равно $|\Omega|$? Оно равно $|\Omega|={52\choose 3}$
- ullet Чему равно количество способов вынуть 3 красных карты, то есть чему равно |A|? Так как красных карт 26, получаем |A|=
- Значит, ответ

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\binom{26}{3}}{\binom{52}{2}} = \frac{\frac{26!}{3! \cdot 23!}}{\frac{52!}{3! \cdot 40!}}$$

Пример 2

У нас есть коробка, в которой лежат 5 красных и 6 чёрных носков. Мы вытаскиваем из неё 4 носка. Какова вероятность того, что два из них будут чёрными и два красными?

Решение. Обозначим за A событие "два вытащенных носка красные и два чёрные."

- Чему равно количество способов вынуть 4 любых носка из этой коробки, то есть чему равно $|\Omega|$? Оно равно $|\Omega| = {5+6 \choose 4} = {11 \choose 4}$ Чему равно количество способов вынуть 2 красных носка и 2 чёрных носка, то есть чему равно |A|? Оно равно $|A| = {5 \choose 2} \cdot {6 \choose 2}$.
- Первый множитель отвечает за выбор двух красных, а второй за выбор двух чёрных носков.
- Значит, ответ

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\binom{5}{2} \cdot \binom{6}{2}}{\binom{11}{4}} = \frac{\frac{5!}{2! \cdot 3!} \cdot \frac{6!}{2! \cdot 4!}}{\frac{11!}{4!7!}} \approx 0.454545$$

Пример 3

У нас есть 10000 пользователей. Среди них 3000 живут в Калуге. Мы делаем выборку размера 200. Какова вероятность того, что в выборку попадёт хотя бы один житель Калуги?

Решение. Обозначим за A событие "в выборку попал хотя бы один житель Калуги." Сначала найдём $P(ar{A})$, то есть вероятность того, что в выборку не попал ни один житель Калуги.

- ullet Сколько у нас всего возможных выборок, то есть чему равно $|\Omega|$? По определению биномиальных коэффициентов, это число равно $\binom{10000}{200}$
- ullet Сколько у нас выборок, в которых нет ни одного жителя Калуги, то есть чему равно $|ar{A}|$? Нужно взять множество всех пользователей не из Калуги (их 10000-3000=7000) и выбрать из них 200 человек. То есть $|ar{A}|={7000\choose 200}$
- ullet Значит, $P(ar{A})=rac{|ar{A}|}{|\Omega|}=rac{inom{7000}}{10000}$.
- Следовательно $P(A)=1-P(ar{A})=1-rac{inom{7000}{200}}{inom{10000}{900}}$ (это число окажется очень маленьким, поэтому вычислять его явно мы не будем)

В колоде 36 карт (18 красных и 18 чёрных), вам сдают 6 карт. Какова вероятность, что вам достанется 3 черных карты и 3 красных карты?

Ответ округлите до тысячных.

Введите численный ответ

Ввелите число

Вы идете в поход компанией из 12 человек. На завтра вам нужно выбрать тройку дежурных, которые разведут утром костер и приготовят кашу. Крупа для каш распределена между 5 людьми из вашей компании. Какова вероятность, что хотя бы у одного из дежурных будет крупа в рюкзаке при условии, что тройка выбирается равновероятно по всем вариантам?
Ответ округлите до 3 знаков после запятой.
Введите численный ответ
Введите численный ответ Введите число

Задача с проверкой. Биномиальные коэффициенты 1

Докажите, что для любых n и k таких, что $1 \leq k \leq n$ выполнено соотношение $\binom{n}{k} = \binom{n}{n-k}$.

Попробуйте доказать двумя способами: явно через формулу и через комбинаторный смысл.

Выберите все подходящие ответы из списка

$$\binom{30}{0} = \binom{50}{0}$$

$$\binom{40}{27} = \binom{40}{13}$$

$$\binom{12}{9} = \binom{7}{9}$$

Почему биномиальные коэффициенты так называются?

Со школы, возможно, вы помните, так называемые формулы сокращенного умножения. Например:

$$(a+b)^2 = a^2 + 2ab + b^2$$
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Оказывается, что биномиальные коэффициенты — это коэффициенты, которые получаются, если раскрыть скобки и привести подобные слагаемые в выражении $(a+b)^n$. Сама формула для $(a+b)^n$ называется бином Ньютона, отсюда и название — биномиальные коэффициенты.

Бином Ньютона

Для начала поймем, какие будут мономы в выражении $(a+b)^n$, если раскрыть скобки. Это будут выражения вида a^kb^m с какимито коэффициентами. Заметим также, что k+m всегда равняется n. Действительно,

$$(a+b)^n = \underbrace{(a+b)(a+b)\dots(a+b)}_n$$

Думать про это можно так: из каждой скобки мы берем либо сомножитель a, либо сомножитель b. Поскольку всего скобок n, то суммарная степень будет n. А значит, в результате получатся только мономы вида a^kb^{n-k} . Осталось для каждого k понять, какой коэффициент будет при мономе a^kb^{n-k} .

Например, если из каждой скобки взять a, то получится a^n . Причем это единственный способ получить a^n , а значит, после раскрытия скобок коэффициент перед a^n будет 1.

А вот $a^{n-1}b$ можно получить n способами:

- ullet $\underbrace{aa\ldots a}_{n-1}b$ то есть из первых n-1 скобки взять a и из последней b
- $\underbrace{aa\dots a}_{n-2}ba$ из предпоследней скобки берем b, из остальных a
- $\underbrace{aa\ldots a}_{n-3}baa$ из пред предпоследней скобки берем b, из остальных a
- $\underbrace{baa \dots a}_{n-1}$ из первой скобки берем b, из остальных a

Для произвольного k получится так. Коэффициент при a^kb^{n-k} — это в точности число последовательностей букв a и b длиной n таких, что в них k букв a.

Пример

Раскроем скобки в выражении $(a+b)^3$, получим:

$$(a+b)^3 = (a+b)(a+b)(a+b) = aaa + aab + aba + baa + abb + bab + abb + bbb.$$

Мономы aab, aba и baa превращаются в a^2b , мономы abb, bab, bba превратятся в ab^2 .

Биномиальные коэффициенты в общем случае

Посчитаем число последовательностей букв a и b длиной n таких, что в них k букв a. Всего есть n букв, выберем позиции, на которых будут стоять буквы a. Заметим, что это то же самое, что выбрать подмножество размера k из множества $\{1,2,\ldots,n\}$.

Следовательно, коэффициент при $a^k b^{n-k}$ равен числу способов выбрать подмножество размера k из множества $\{1,2,\ldots,n\}$. Как мы знаем, это число способов равняется $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Значит, формула бинома Ньютона в общем случае будет такой:

$$(a+b)^n = \binom{n}{n} a^n + \binom{n}{n-1} a^{n-1} b + \binom{n}{n-2} a^{n-2} b^2 + \dots + \binom{n}{k} a^k b^{n-k} + \dots + \binom{n}{1} a b^{n-1} + \binom{n}{0} b^n.$$

Комментарий. Как мы помним, мы договаривались что $\binom{n}{n}=1$ и $\binom{n}{0}=1$.

Задача. Биномиальные коэффициенты 2

Докажите, что для всех $n\in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{n} + \binom{n}{n-1} + \binom{n}{n-2} + \dots + \binom{n}{k} + \dots + \binom{n}{1} + \binom{n}{0} = 2^n$$

Это можно сделать двумя способами соответствующими двум интерпретациями биномиальных коэффициентов: коэффициенты в биноме Ньютона и число способов выбрать подмножество фиксированного размера. Попробуйте придумать оба.

Что мы прошли на этом уроке

- Мы познакомились с биномиальными коэффициентами: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ это число подмножеств размера k множества размера n.
- Доказали несколько полезных свойств и обсудили их комбинаторный смысл.
- Порешали задачи на связь биномиальных коэффициентов и теории вероятностей.
- Убедились, что биномиальные коэффициенты появляются в формуле бинома Ньютона.

Что нас ждёт на следующем уроке

На следующем уроке мы

- определим понятие случайной величины
- узнаем, что такое математическое ожидание
- докажем некоторые свойства математического ожидания