

Computer System and Network Administration

Department of Computer Science & Information Engineering National Cheng Kung University 2016 Fall

History of DNS

- Before DNS
 - ARPAnet
 - HOSTS.txt contains all the hosts' information
 - Maintained by SRI's Network Information Center
 - In SRI-NIC host
 - Problems: Not scalable!
 - Traffic and Load
 - Name Collision
 - Consistency

RFC Sourcebook:

http://www.networksorcery.com/enp/default0304.htm

- Domain Name System
 - Administration decentralization
 - 1984
 - Paul Mockapetris (University of Southern California)
 - RFC 882, 883 → 1034, 1035
 - 1034: Concepts
 - 1035: Implementation and Specification

DNS Introduction – DNS Specification

- Make domain name system as
 - Tree architecture
 - Each subtree → "domain"
 - Domain can be divided in to "subdomain"
 - Distributed database
 - Each site maintains segment of DB
 - Each site open self information via network
 - Client-Server architecture
 - Name servers provide information (Name Server)
 - Clients make queries to server (Resolver)

DNS Introduction

Domain and Subdomain

DNS database

- DNS Namespace
 - A tree of domains
- Domain and subdomain

 Each domain has a "domain name" to identify its position in database

• EX: ncku.edu.tw

• EX: csie.ncku.edu.tw

The DNS Namespace (1)

- An inverted tree (Rooted tree)
 - Root with label "."

- Domain level
 - Top-level or First level
 - Child of the root
 - Second-level
 - Child of a First-level domain
- Domain name limitation
 - 63-characters in each component and
 - Up to 255-characters in a complete name

The DNS Namespace (2)

- gTLDs
 - generic Top-Level Domains, including:
 - com: commercial organization, such as <u>ibm.com</u>
 - edu: educational organization, such as <u>purdue.edu</u>
 - gov: government organization, such as <u>nasa.gov</u>
 - mil: military organization, such as navy.mil
 - net: network infrastructure providing organization, such as <u>hinet.net</u>
 - org: noncommercial organization, such as <u>x11.org</u>
 - int: International organization, such as <u>nato.int</u>

The DNS Namespace (3)

New gTLDs launched in year 2000:

aero: for air-transport industry

biz: for business

coop: for cooperatives

info: for all uses

museum: for museum

name: for individuals

pro: for professionals

The DNS Namespace (4)

- Other than US, ccTLD
 - country code TLD (ISO 3166)
 - Taiwan → tw
 - Japan → jp
 - Follow or not follow US-like scheme
 - US-like scheme example
 - edu.tw, com.tw, gov.tw
 - Other scheme
 - co.jp, ac.jp

DNS Namespace (5)

How DNS Works - DNS Delegation

- Administration delegation
 - Each domain can delegate responsibility to subdomain

How DNS Works – DNS query process

- Recursive query process
 - Ex: query <u>lair.cs.colorado.edu</u> → <u>vangogh.cs.berkeley.edu</u>, name server "ns.cs.colorado.edu" has no cache data

DNS Delegation– Administrated Zone

- Zone
 - Autonomously administered piece of namespace
 - Once the subdomain becomes a zone, it is independent to it's parent
 - Even parent contains NS' s A record

DNS Delegation - Administrated Zone

- Zone
 - Autonomously administered piece of namespace
- Two kinds of zone files
 - Forward Zone files
 - Hostname-to-Address mapping
 - Ex:
 - hungwei.imslab.org. 10800 IN A 140.116.82.246
 - Reverse Zone files
 - Address-to-Hostname mapping
 - Ex:
 - 246.82.116.140 IN PTR imslab.csie.ncku.edu.tw.

The Name Server Taxonomy (1)

- Categories of name servers
 - Based on a name server's source of data
 - Authoritative: official representative of a zone
 - Master: get zone data from disk
 - Slave: copy zone data from master
 - Nonauthoritative: answer a query from cache
 - caching: caches data from previous queries
 - Based on the type of data saved
 - Stub: a slave that copy only name server data (no host data)
 - Based on the type of answers handed out
 - Recursive: do query for you until it return an answer or error
 - Nonrecursive: refer you to the authoritative server
 - Based on the query path
 - Forwarder: performs queries on behalf of many clients without cache

The Name Server Taxonomy (2)

- Nonrecursive referral
 - Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
 - Ex:
 - Query lair.cs.colorado.edu from a nonrecursive server
 - Whether cache has
 - Name servers of cs.colorado.edu, colorado.edu, edu, root
 - The resolver libraries do not understand referrals mostly.
 They expect the local name server to be recursive

The Name Server Taxonomy (3)

Caching

- Positive cache
- Negative cache
 - No host or domain matches the name queried
 - The type of data requested does not exist for this host
 - The server to ask is not responding
 - The server is unreachable of network problem

Negative cache

- 60% DNS queries are failed
- To reduce the load of root servers, the authoritative negative answers must be cached

The Name Server Taxonomy (4)

Caching and forwarder DNS servers

The Name Server Taxonomy (5)

- How to arrange your DNS servers?
 - Ex:

The Name Server Taxonomy (6)

Root name servers list in named.root file of BIND

ı		3600000	IN NS	A.ROOT-SERVERS.NET.
1	A.ROOT-SERVERS.NET.	3600000	A	198.41.0.4
1	•	3600000	NS	B.ROOT-SERVERS.NET.
1	B.ROOT-SERVERS.NET.	3600000	A	192.228.79.201
1		3600000	NS	C.ROOT-SERVERS.NET.
1	C.ROOT-SERVERS.NET.	3600000	Α	192.33.4.12
1	•	3600000	NS	D.ROOT-SERVERS.NET.
1	D.ROOT-SERVERS.NET.	3600000	A	128.8.10.90
1	•	3600000	NS	E.ROOT-SERVERS.NET.
1	E.ROOT-SERVERS.NET.	3600000	Α	192.203.230.10
1	•	3600000	NS	F.ROOT-SERVERS.NET.
1	F.ROOT-SERVERS.NET.	3600000	A	192.5.5.241
1	•	3600000	NS	
1	G.ROOT-SERVERS.NET.	3600000	A	192.112.36.4
1		3600000	NS	H.ROOT-SERVERS.NET.
1	H.ROOT-SERVERS.NET.	3600000	A	128.63.2.53
1		3600000	NS	I.ROOT-SERVERS.NET.
1	I.ROOT-SERVERS.NET.	3600000	A	192.36.148.17
1		3600000	NS	J.ROOT-SERVERS.NET.
1	J.ROOT-SERVERS.NET.	3600000	A	192.58.128.30
1	, boom applied hem	3600000	NS	K.ROOT-SERVERS.NET.
1	K.ROOT-SERVERS.NET.	3600000	A	193.0.14.129
4	I DOOM GEDLEDG NEW	3600000	NS	L.ROOT-SERVERS.NET.
	L.ROOT-SERVERS.NET.	3600000	A	198.32.64.12
	M DOOT GEDVEDG NET	3600000	NS	
	M.ROOT-SERVERS.NET.	3600000	A	202.12.27.33

DNS Client

- /etc/resolv.conf
 - nameserver, domain, search
- /etc/host.conf
- /etc/hosts

> cat /etc/resolv.conf

domain imslab.org

nameserver 140.116.246.2

nameserver 140.116.245.253

nameserver 8.8.4.4

search imslab.org csie.ncku.edu.tw

ncku.edu.tw

> cat /etc/host.conf

Auto-generated from nsswitch.conf

hosts

dns

