

复变函数与积分变换试题(一)

一、填空题

$$(1)$$
 $\left(\frac{1+\sqrt{3}i}{2}\right)^3$ 的模为____,辐角主值为____。

(2) Ln(-1)的值为______

$$e^{-3+\frac{\pi}{4}i}$$
的值为______

- (3) 映射 $w = z^3 z$ 在 z = i 处的旋转角为____,伸缩率为____。
- (4) 函数 f(z) = u(x, y) + iv(x, y) 在区域 D 内解析的 充要条件为

(5) $\frac{1}{z(4-3z)}$ 在 $z_0 = 1 + i$ 处展开成泰勒级数的

收敛半径为____。

(7)
$$\oint_{|z|=\frac{1}{4}} \frac{e^z}{(z-\pi)^3(z+1/2)} dz = \underline{\hspace{1cm}} \circ$$

(8) 已知
$$f(t) = \frac{1}{2} \left[\delta(t+t_0) + \delta(t-t_0) + \delta(t+\frac{t_0}{2}) + \delta(t-\frac{t_0}{2}) \right]$$
,

求
$$\mathcal{F}[f(t)] =$$

二、验证 u(x, y) = 2(x-1)y 是调和函数,并求以 u(x, y) 为 实部的解析函数 f(z), 使 f(2) = -i.

三、将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 分别在 z=1与 z=2 处展开 为洛朗级数。

四、计算下列各题。

1.
$$\frac{1}{2\pi i} \oint_{|z|=1} \frac{e^z \sin z}{z^3} dz$$
. 2. $\oint_{|z|=2} z e^{\frac{1}{z-1}} dz$.

$$2. \oint_{|z|=2} z e^{\frac{1}{z-1}} dz.$$

3.
$$\int_0^{\pi} \frac{\mathrm{d}\theta}{1+\sin^2\theta}.$$

4.
$$\int_0^{+\infty} \frac{\cos x}{(x^2+1)(x^2+9)} \, \mathrm{d}x.$$

5. 已知
$$f_1(t) = e^{-t} u(t)$$
, $f_2(t) = t u(t)$, 求 $f_1(t) * f_2(t)$.

五、求区域 $D=\{z: \operatorname{Re} z>0, 0<\operatorname{Im} z<1\}$ 在映射 $w=\frac{i}{z}$ 下的像。

六、设区域 $D = \{z: |z+i| < 2, \text{Im } z > 0\}$,求一共形映射将 D 映射为单位圆域。_

七、利用 Laplace 变换求解微分方程:

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = -2$.

八、设函数 f(z) 在 $|z| \leq R$ 上解析,证明:

$$\frac{R^2-|z|^2}{2\pi i}\oint_{|\xi|=R}\frac{f(\xi)}{(\xi-z)(R^2-\overline{z}\xi)}\,\mathrm{d}\xi=f(z),\ (|z|< R).$$

复变函数与积分变换试题(一)解答

一、填空题

$$(1)$$
 $\left(\frac{1+\sqrt{3}i}{2}\right)^3$ 的模为 1,辐角主值为 π 。

(2) $\operatorname{Ln}(-1)$ 的值为 $(2k+1)\pi i, k=0,\pm 1,\pm 2,\cdots$,

$$e^{-3+\frac{\pi}{4}i}$$
的值为 $e^{-3}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)$ 。

- (3) 映射 $w = z^3 z$ 在 z = i 处的旋转角为_ π _,伸缩率为_4_。
- (4) 函数 f(z) = u(x, y) + iv(x, y) 在区域 D 内解析的 充要条件为 u, v 在 D 内可微,且满足 C-R 方程 。

(5)
$$\frac{1}{z(4-3z)}$$
 在 $z_0 = 1 + i$ 处展开成泰勒级数的

√10收敛半径为3。

(6)
$$z = 0$$
 是 $f(z) = \frac{1}{e^z - 1} - \frac{1}{z}$ 的何种类型的奇点? 可去奇点。_

(7)
$$\oint_{|z|=\frac{1}{4}} \frac{e^z}{(z-\pi)^3(z+1/2)} dz = \underline{0} .$$

(8) 已知
$$f(t) = \frac{1}{2} \left[\delta(t+t_0) + \delta(t-t_0) + \delta(t+\frac{t_0}{2}) + \delta(t-\frac{t_0}{2}) \right],$$

$$求 \mathcal{F}[f(t)] = \frac{\cos \omega t_0 + \cos \frac{\omega t_0}{2}}{2} .$$

二、验证 u(x, y) = 2(x-1)y 是调和函数,并求以 u(x, y) 为 实部的解析函数 f(z),使 f(2) = -i.

解 (1) 由 $u_{xx} = 0$, $u_{yy} = 0$, $\Rightarrow u_{xx} + u_{yy} = 0$, 故 u(x, y) 为<u>调和函数</u>。

(2) 方法1 利用偏积分法求解。_

$$\Rightarrow \varphi(x) = -x^2 + 2x + c$$

即得 $v(x, y) = -x^2 + 2x + y^2 + c$.

2002

7

二、验证 u(x, y) = 2(x-1)y 是调和函数,并求以 u(x, y) 为 实部的解析函数 f(z),使 f(2) = -i.

解 (2) 方法2 利用全微分法求解。_

有
$$dv = (-2x+2)dx + 2ydy = d(-x^2 + 2x + y^2)$$
,

即得 $v(x, y) = -x^2 + 2x + y^2 + c$.

(3)
$$f(z) = 2(x-1)y + i(-x^2 + 2x + y^2 + c)$$
.

即得
$$f(z) = 2(x-1)y + i(-x^2 + 2x + y^2 - 1)$$
.

三、将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 分别在 z=1与 z=2 处展开 为洛朗级数。

解 (1) 在 z=1 处展开。

① 当 0 < |z-1| < 1 时,

$$f(z) = -\frac{1}{z-1} \cdot \frac{1}{1-(z-1)}$$

$$= -\frac{1}{z-1} \sum_{n=0}^{+\infty} (z-1)^n$$

$$=-\sum_{n=0}^{+\infty}(z-1)^{n-1}.$$

三、将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 分别在 z=1与 z=2 处展开 为洛朗级数。

解 (1) 在 z=1 处展开。

$$f(z) = \frac{1}{z-1} \cdot \frac{1}{(z-1)-1}$$

$$= \frac{1}{(z-1)^2} \cdot \frac{1}{1 - \frac{1}{z-1}}$$

$$=\frac{1}{(z-1)^2}\sum_{n=0}^{+\infty}\frac{1}{(z-1)^n}=\sum_{n=0}^{+\infty}\frac{1}{(z-1)^{n+2}}.$$

三、将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 分别在 z=1与 z=2 处展开 为洛朗级数。

解 (2) 在 z = 2 处展开。(简略)

① 当 0 < |z-2| < 1 时,

$$f(z) = \sum_{n=0}^{+\infty} (-1)^n (z-2)^{n-1}.$$

② 当 |z-2| > 1 时,

$$f(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{1}{(z-2)^{n+2}}.$$

四、1.
$$\frac{1}{2\pi i} \oint_{|z|=1} \frac{e^z \sin z}{z^3} dz.$$

解 方法1 利用留数求解。

在
$$|z| < 1$$
内, $z = 0$ 为 二阶极点,

原式 =
$$\frac{1}{2\pi i} \cdot 2\pi i \lim_{z \to 0} (z^2 \frac{e^z \sin z}{z^3})' = 1.$$

方法2 利用高阶导数公式求解。

原式 =
$$\frac{1}{2!}$$
 (e^z sin z)" | z=0 = 1.

四、2. $\oint_{|z|=2} z e^{\frac{1}{z-1}} dz$.

解 在 |z| < 2 内, z = 1 为 本性 奇点,

$$ze^{\frac{1}{z-1}} = [(z-1)+1](1+\frac{1}{z-1}+\frac{1}{2!(z-1)^2}+\frac{1}{3!(z-1)^3}+\cdots)$$

$$=\cdots+(\frac{1}{2!}+1)\frac{1}{z-1}+\cdots,$$

原式 =
$$2\pi i \cdot \frac{3}{2} = 3\pi i$$
.

四、3. $\int_0^{\pi} \frac{\mathrm{d}\theta}{1+\sin^2\theta}.$

解 (1) 原式 =
$$\int_0^{\pi} \frac{d\theta}{1 + \frac{1 - \cos 2\theta}{2}} = \int_0^{\pi} \frac{d(2\theta)}{3 - \cos 2\theta} = \int_0^{2\pi} \frac{d\theta}{3 - \cos \theta}$$

$$\Leftrightarrow z = e^{i\theta}, \quad \text{if } \cos\theta = \frac{z^2 + 1}{2z}, \quad d\theta = \frac{dz}{iz},$$

原式 =
$$\oint_{|z|=1} \frac{\mathrm{d}z}{\left(3-\frac{z^2+1}{2z}\right)iz} = 2i\oint_{|z|=1} \frac{\mathrm{d}z}{z^2-6z+1}$$
.

四、3. $\int_0^{\pi} \frac{d\theta}{1+\sin^2\theta}.$

(2) 记
$$f(z) = \frac{1}{z^2 - 6z + 1}$$
, 则 $f(z)$ 有两个简单极点:

$$z_1 = 3 - 2\sqrt{2}$$
, $z_2 = 3 + 2\sqrt{2}$. $(z_2 \times A = |z| < 1 \text{ p})$

原式 =
$$2i \cdot 2\pi i \operatorname{Res}[f(z), z_1] = -4\pi \cdot \frac{1}{2z-6} \bigg|_{z=z_1} = \frac{\pi}{\sqrt{2}}.$$

四、4.
$$\int_0^{+\infty} \frac{\cos x}{(x^2+1)(x^2+9)} dx$$
.

在上半平面有两个简单极点: $z_1 = i$, $z_2 = 3i$.

Res
$$[f(z), z_1] = \frac{e^{iz}}{[(z^2+1)(z^2+9)]'}\Big|_{z=i} = \frac{e^{-1}}{16i},$$

Res
$$[f(z), z_2] = \frac{e^{-3}}{-48i}$$

原式 =
$$\frac{1}{2}$$
Re $\left[2\pi i\left(\frac{e^{-1}}{16i} - \frac{e^{-3}}{48i}\right)\right] = \frac{\pi(3e^{-1} - e^{-3})}{48}$.

 $f_1(\tau)$

 $f_2(\tau)$

四、5. 已知 $f_1(t) = e^{-t} u(t)$, $f_2(t) = t u(t)$, 求 $f_1(t) * f_2(t)$.

 $\mathbf{f}_{1}(t) * f_{2}(t) = \int_{-\infty}^{+\infty} f_{1}(\tau) \underline{f_{2}(t-\tau)} \, \mathrm{d}\tau$ $\mathbf{f}^{+\infty} f_{1}(\tau) \cdot f_{2}(\tau) \cdot f_{3}(\tau) \cdot f_{$

$$=\int_{-\infty}^{+\infty}f_1(\tau)\underline{f_2[-(\tau-t)]}\,\mathrm{d}\tau.$$

(1) 当 $t \le 0$ 时,

$$f_1(t) * f_2(t) = 0.$$

(2) 当 t > 0 时,

$$f_1(t) * f_2(t) = \int_0^t e^{-\tau} (t - \tau) d\tau$$
$$= (t - 1) + e^{-t}.$$

五、求区域 $D = \{z: \text{Re}z > 0, 0 < \text{Im}z < 1\}$ 在映射 $w = \frac{l}{\tau}$ 下的像。

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta \ C_1 & \left\{ egin{aligned} \infty &
ightarrow & 0 \ 1+i &
ightarrow & (1+i)/2 \ i &
ightarrow & 1 \end{aligned}
ight\} egin{aligned} \Gamma_1 & & & & i \ i &
ightarrow & i/2 \end{array} \end{aligned}$$

$$C_{2} \left\{ \begin{array}{c} i \rightarrow 1 \\ i/2 \rightarrow 2 \\ 0 \rightarrow \infty \end{array} \right\} \Gamma_{2}$$

$$C_{3} \left\{ \begin{array}{c} 0 \to \infty \\ 1 \to i \\ \infty \to 0 \end{array} \right\} \Gamma_{3}$$

(w)

 (z_2)

六、设区域 $D = \{z: |z+i| < 2, \text{Im } z > 0\}$,求一共形映射将 D 映射为单位圆域。

解

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = -2$.

解 (1) 令 $Y(s) = \mathcal{L}[y(t)]$,

对方程两边取 Laplace 变换,得

$$s^{2}Y(s)-sy(0)-y'(0)+Y(s)=\frac{1}{s^{2}},$$

代入初值,得

$$s^2Y(s)-s+2+Y(s)=\frac{1}{s^2}$$
,

求解即得:

$$Y(s) = \frac{s-2}{s^2+1} + \frac{1}{s^2(s^2+1)} = \frac{s^3-2s+1}{s^2(s^2+1)}.$$

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = -2$.

解 (2) 求 Laplace 逆变换。

方法1 利用查表法求解。

$$Y(s) = \frac{s}{s^2 + 1} - \frac{2}{s^2 + 1} + \frac{1}{s^2} - \frac{1}{s^2 + 1}$$

$$= \frac{1}{s^2} + \frac{s}{s^2 + 1} - \frac{3}{s^2 + 1},$$

$$\Rightarrow y(t) = t + \cos t - 3\sin t.$$

$$Y(s) = \frac{s-2}{s^2+1} + \frac{1}{s^2(s^2+1)} = \frac{s^3-2s+1}{s^2(s^2+1)}.$$

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = -2$.

解 (2) 求 Laplace 逆变换。

方法2 利用留数求解。

$$Y(s)$$
有一个二阶极点 $s=0$, 两个一阶极点 $s=\pm i$.

Res
$$[Y(s) e^{st}, 0] = \lim_{s \to 0} \frac{d}{ds} \left(\frac{s^3 - 2s^2 + 1}{s^2 + 1} e^{st} \right) = t.$$

$$Y(s) = \frac{s-2}{s^2+1} + \frac{1}{s^2(s^2+1)} = \frac{s^3-2s+1}{s^2(s^2+1)}.$$

$$y'' + y = t$$
, $y(0) = 1$, $y'(0) = -2$.

解 (2) 求 Laplace 逆变换。

方法2 利用留数求解。

Y(s)有一个<u>二阶极点</u> s=0, 两个<u>一阶极点</u> $s=\pm i$.

Res
$$[Y(s) e^{st}, \pm i] = \left(\frac{s^3 - 2s^2 + 1}{s^2(s \pm i)} e^{st}\right)\Big|_{s = \pm i}$$

$$= \left(\frac{1}{2} \mp \frac{3}{2i}\right) e^{\pm it}.$$

$$y(t) = t + \left(\frac{1}{2} - \frac{3}{2i}\right)e^{it} + \left(\frac{1}{2} + \frac{3}{2i}\right)e^{-it} = t + \cos t - 3\sin t$$
.

八、设函数 f(z) 在 $|z| \leq R$ 上解析,证明:

$$\frac{|R^2 - |z|^2}{2\pi i} \oint_{|\xi| = R} \frac{f(\xi)}{(\xi - z)(R^2 - \overline{z}\xi)} d\xi = f(z), \quad (|z| < R).$$

证明 (1) <u>被积函数</u>有两个<u>一阶极点</u> $\xi_1 = z$, $\xi_2 = \frac{R^2}{\overline{z}}$, 由于 |z| < R,故 ξ_2 不在 $|\xi| = R$ 之内。

$$(2) \frac{R^2 - |z|^2}{2\pi i} \oint_{|\xi| = R} \frac{f(\xi)}{(\xi - z)(R^2 - \overline{z}\xi)} \,\mathrm{d}\xi$$

$$=\frac{R^2-|z|^2}{2\pi i}\cdot 2\pi i\cdot \left(\frac{f(\xi)}{R^2-\overline{z}\xi}\right)\bigg|_{\xi=z}=f(z).$$

2002

Ric Sough

放松一下吧!