

Sequence Listing

<10> Chen, Jian
Filvaroff, Ellen
Fong, Sherman
Goddard, Audrey
Godowski, Paul L.
Grimaldi, J.Christopher
Gurney, Austin
Li, Hanzhong
Hillan, Kenneth J.
Hymowitz, Sarah
Tumas, Daniel
Starovasnik, Melissa.
VanLookeren, Menno
Vandlen, Richard
Watanabe, Colin
Williams, P.Mickey
Wood, William
Yansura, Daniel

<120> IL-17 HOMOLOGOUS POLYPEPTIDES AND THERAPEUTIC USES THEREOF

<130> P1381R1C1P4 (US)

<140> US 10/000,157

<141> 2001-10-30

<150> 60/085579

<151> 1998-05-15

<150> 60/113621

<151> 1998-12-23

<150> 60/130232

<151> 1999-04-21

<150> 60/131022

<151> 1999-04-26

<150> 60/134287

<151> 1999-05-14

<150> 60/138387

<151> 1999-06-09

<150> 60/172096

<151> 1999-12-23

<150> 60/175481

<151> 2000-01-11

<150> 60/191007

<151> 2000-03-21

<150> 60/213807

<151> 2000-06-22

<150> 60/242837
<151> 2000-10-24

<150> 60/244072
<151> 2000-10-26

<150> 60/253646
<151> 2000-11-28

<150> 09/311832
<151> 1999-05-14

<150> 09/380138
<151> 1999-08-25

<150> 09/380142
<151> 1999-08-25

<150> 09/644848
<151> 2000-08-22

<150> 09/747259
<151> 2000-12-20

<150> 09/816744
<151> 2001-03-22

<150> 09/854208
<151> 2001-05-10

<150> 09/854280
<151> 2001-05-10

<150> 09/874503
<151> 2001-06-05

<150> 09/908827
<151> 2001-07-18

<150> 09/918585
<151> 2001-07-30

<150> 09/929404
<151> 2001-08-13

<150> 09/931836
<151> 2001-08-16

<150> PCT/US99/05028
<151> 1999-03-08

<150> PCT/US99/10733
<151> 1999-05-14

<150> PCT/US99/31274
<151> 1999-12-30

<150> PCT/US00/04341
<151> 2000-02-18

<150> PCT/US00/05601
<151> 2001-03-01

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/07532
<151> 2000-03-21

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/30873
<151> 2000-11-10

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US00/34956
<151> 2000-12-20

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735
<151> 2001-07-09

<160> 39

<210> 1

<211> 687
<212> DNA

<213> Homo Sapien

<400> 1

aggcgggcag cagctgcagg ctgaccttgc agcttggcgg aatggactgg 50
cctcacaacc tgctgttct tcttaccatt tccatcttcc tggggctggg 100
ccagcccagg agccccaaaa gcaagaggaa ggggcaaggg cggcctggc 150
ccctggcccc tggccctcac caggtgccac tggacctggc gtcacggatg 200
aaaccgtatg cccgcatgga ggagtatgag aggaacatcg aggagatgg 250
ggcccagctg aggaacagct cagagctggc ccagagaaag tgtgaggtca 300
acttgcatgt gtggatgtcc aacaagagga gcctgtctcc ctggggctac 350
agcatcaacc acgaccccaag ccgtatcccc gtggacctgc cggaggcacf 400
gtgcctgtgt ctgggctgtg tgaaccctt caccatgcag gaggaccgca 450
gcatggtgag cgtgccggtg ttccagccagg ttccctgtgcg ccgcccgcctc 500
tgcccgccac cgccccgcac agggccttgc cgccagcgcg cagtcatgga 550
gaccatcgct gtgggctgca cctgcacatt ctgaatcacc tggcccagaa 600
gccaggccag cagcccgaga ccattccttgc tgcacctttg tgccaagaaa 650
ggcctatgaa aagtaaacac tgactttga aagcaag 687

<210> 2

<211> 180

<212> PRT

<213> Homo Sapien

<400> 2

Met	Asp	Trp	Pro	His	Asn	Leu	Leu	Phe	Leu	Leu	Thr	Ile	Ser	Ile
1						5			10					15
Phe	Leu	Gly	Leu	Gly	Gln	Pro	Arg	Ser	Pro	Lys	Ser	Lys	Arg	Lys
					20				25					30
Gly	Gln	Gly	Arg	Pro	Gly	Pro	Leu	Ala	Pro	Gly	Pro	His	Gln	Val
					35				40					45
Pro	Leu	Asp	Leu	Val	Ser	Arg	Met	Lys	Pro	Tyr	Ala	Arg	Met	Glu
					50				55					60
Glu	Tyr	Glu	Arg	Asn	Ile	Glu	Glu	Met	Val	Ala	Gln	Leu	Arg	Asn
					65				70					75
Ser	Ser	Glu	Leu	Ala	Gln	Arg	Lys	Cys	Glu	Val	Asn	Leu	Gln	Leu
					80				85					90
Trp	Met	Ser	Asn	Lys	Arg	Ser	Leu	Ser	Pro	Trp	Gly	Tyr	Ser	Ile
					95				100					105

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg
110 115 120
Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp
125 130 135
Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg
140 145 150
Arg Arg Leu Cys Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln
155 160 165
Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe
170 175 180

<210> 3
<211> 1047
<212> DNA
<213> Homo Sapien

<400> 3
gccaggtgtg caggccgctc caagcccagc ctgccccgct gccgcaccca 50
tgacgctcct ccccgccctc ctgtttctga cctggctgca cacatgcctg 100
gccccaccatg acccctccct cagggggcac ccccacagtc acggtacccc 150
acactgctac tcggctgagg aactgcccct cggccaggcc ccccccacacc 200
tgctggctcg aggtgccaag tgggggcagg cttgcctgt agccctggtg 250
tccagcctgg aggcagcaag ccacaggggg aggcacgaga ggcctcagc 300
tacgaccagg tgcccggtgc tgccggccga ggaggtgttgg gaggcagaca 350
ccaccaggcg ctccatctca ccctggagat accgtgtgga cacggatgag 400
gaccgctatc cacagaagct ggccttcgcc gagtgccctgt gcagaggctg 450
tatcgatgca cggacgggcc gcgagacagc tgcgctcaac tccgtgcggc 500
tgctccagag cctgctggtg ctgcggccgc ggcctgctc ccgcgacggc 550
tcggggctcc ccacacctgg ggccttgcc ttccacacccg agttcatcca 600
cgccccgtc ggctgcacct gctgctgccc ccgttcagtg tgaccgcccga 650
ggccgtgggg ccccttagact ggacacgtgt gctccccaga gggcacccccc 700
tatttatgtg tattttatgt tatttatatg cctcccccaa cactaccctt 750
ggggtgtggg cattccccgt gtctggagga cagccccca ctgttctcct 800
catctccagc ctcagtagtt ggggttagaa ggagctcagc acctcttcca 850
gcccttaaag ctgcagaaaa ggtgtcacac ggctgcctgt accttggctc 900
cctgtcctgc tcccgccctc ccttacccta tcactggct caggccccgc 950

aggctgcctc ttcccaacct ccttggaaat acccctgttt cttaaacaat 1000

tatttaagtg tacgtgtatt attaaactga tgaacacatc cccaaaa 1047

<210> 4

<211> 197

<212> PRT

<213> Homo Sapien

<400> 4

Met Thr Leu Leu Pro Gly Leu Leu Phe Leu Thr Trp Leu His Thr
1 5 10 15

Cys Leu Ala His His Asp Pro Ser Leu Arg Gly His Pro His Ser
20 25 30

His Gly Thr Pro His Cys Tyr Ser Ala Glu Glu Leu Pro Leu Gly
35 40 45

Gln Ala Pro Pro His Leu Leu Ala Arg Gly Ala Lys Trp Gly Gln
50 55 60

Ala Leu Pro Val Ala Leu Val Ser Ser Leu Glu Ala Ala Ser His
65 70 75

Arg Gly Arg His Glu Arg Pro Ser Ala Thr Thr Gln Cys Pro Val
80 85 90

Leu Arg Pro Glu Glu Val Leu Glu Ala Asp Thr His Gln Arg Ser
95 100 105

Ile Ser Pro Trp Arg Tyr Arg Val Asp Thr Asp Glu Asp Arg Tyr
110 115 120

Pro Gln Lys Leu Ala Phe Ala Glu Cys Leu Cys Arg Gly Cys Ile
125 130 135

Asp Ala Arg Thr Gly Arg Glu Thr Ala Ala Leu Asn Ser Val Arg
140 145 150

Leu Leu Gln Ser Leu Leu Val Leu Arg Arg Arg Pro Cys Ser Arg
155 160 165

Asp Gly Ser Gly Leu Pro Thr Pro Gly Ala Phe Ala Phe His Thr
170 175 180

Glu Phe Ile His Val Pro Val Gly Cys Thr Cys Val Leu Pro Arg
185 190 195

Ser Val

<210> 5

<211> 1320

<212> DNA

<213> Homo Sapien

<400> 5

ggcttgctga aaataaaatc aggactccca acctgctcca gtcagcctgc 50
ttccacgagg cctgtcagtc agtgcccac ttgtgactga gtgtcagtg 100
ccccagcatgt accaggtcag tgcagagggc tgctgaggg ctgtgctgag 150
agggagagga gcagagatgc tgctgagggt ggagggaggo caagctgcc 200
ggtttggggc tggggccaa gtggagttag aaactggat cccaggggga 250
gggtgcagat gagggagcga cccagattag gtgaggacag ttctctcatt 300
acccctttcc tacaggttgt tgcattcttgc acaatggtca tggaaaccc 350
cacctacagc cactggccca gctgctgccc cagcaaaggc caggacacct 400
ctgaggagct gctgaggtgg agcaactgtgc ctgtgcctcc cctagagcct 450
gctaggccca accgccaccc agagtcctgt agggccagtg aagatggacc 500
cctcaacagc agggccatct cccctggag atatgagttg gacagagact 550
tgaaccggct cccccaggac ctgtaccacg cccgttgct gtgcccgcac 600
tgcgtcagcc tacagacagg ctcccacatg gaccccccggg gcaactcgga 650
gctgctctac cacaaccaga ctgtcttcta caggcggcca tgccatggcg 700
agaaggcac ccacaaggc tactgcctgg agcgcaggct gtaccgtgtt 750
tccttagctt gtgtgtgtgt gcggccccgt gtatggct agccggaccc 800
gctggaggct ggtcccttt tggaaacccct ggagccaggt gtacaaccac 850
ttgccatgaa gggccaggat gcccaagatgc ttggcccttgc tgaagtgtc 900
tctggagcag caggatcccg ggacaggatg gggggctttg gggaaaacct 950
gcacttctgc acatttgaa aagagcagct gctgcttagg gccgcccggaa 1000
gctgggtgtcc tgtcattttc tctcaggaaa gttttcaaa gttctgccc 1050
tttctggagg ccaccactcc tgtctttcc tctttccca tccctgcta 1100
ccctggccca gcacaggcac tttctagata tttccccctt gctggagaag 1150
aaagagcccc tggtttatt tggttttta ctcactactc agttagcatc 1200
tactttgggt gcattctagt gtagttacta gtctttgac atggatgatt 1250
ctgaggagga agctgttatt gaatgtatag agatttatcc aaataaatat 1300
ctttatataa aaatgaaaaa 1320

<210> 6
<211> 177
<212> PRT
<213> Homo Sapien

<400> 6
Met Arg Glu Arg Pro Arg Leu Gly Glu Asp Ser Ser Leu Ile Ser
1 5 10 15

Leu Phe Leu Gln Val Val Ala Phe Leu Ala Met Val Met Gly Thr
20 25 30

His Thr Tyr Ser His Trp Pro Ser Cys Cys Pro Ser Lys Gly Gln
35 40 45

Asp Thr Ser Glu Glu Leu Leu Arg Trp Ser Thr Val Pro Val Pro
50 55 60

Pro Leu Glu Pro Ala Arg Pro Asn Arg His Pro Glu Ser Cys Arg
65 70 75

Ala Ser Glu Asp Gly Pro Leu Asn Ser Arg Ala Ile Ser Pro Trp
80 85 90

Arg Tyr Glu Leu Asp Arg Asp Leu Asn Arg Leu Pro Gln Asp Leu
95 100 105

Tyr His Ala Arg Cys Leu Cys Pro His Cys Val Ser Leu Gln Thr
110 115 120

Gly Ser His Met Asp Pro Arg Gly Asn Ser Glu Leu Leu Tyr His
125 130 135

Asn Gln Thr Val Phe Tyr Arg Arg Pro Cys His Gly Glu Lys Gly
140 145 150

Thr His Lys Gly Tyr Cys Leu Glu Arg Arg Leu Tyr Arg Val Ser
155 160 165

Leu Ala Cys Val Cys Val Arg Pro Arg Val Met Gly
170 175

<210> 7
<211> 1754
<212> DNA
<213> Homo Sapien

<400> 7
atgctggtag ccggcttcct gctggcgctg cgcggagct gggccgcggg 50
cgcccccagg gcgggcaggc gccccgcgcg gccgcggggc tgcgcggacc 100
ggccggagga gctactggag cagctgtacg ggccgcctggc ggccggcgtg 150
ctcagtgcct tccaccacac gctgcagctg gggccgcgtg agcaggcgcg 200
caacgcgagc tgcccgccag gggcaggcc cggcgaccgc cgcttccggc 250
cgcccaccaa cctgcgcagc gtgtcgccct gggcctacag aatctcctac 300
gacccggcga ggtacccag gtacctgcct gaagcctact gcctgtgccg 350
gggctgcctg accgggctgt tcggcgagga ggacgtgcgc ttccgcagcg 400

ccccctgtata catgcccacc gtcgtcctgc gccgcacccc .cgccctgcgcc 450
ggcggccgtt ccgtctacac cgaggcctac gtcaccatcc ccgtgggctg 500
cacctgcgtc cccgagccgg agaaggacgc agacagcatc aactccagca 550
tcgacaaaaca gggcgccaag ctccctgtgg gccccaaacga cgcccccgc 600
ggcccccgtag gccggtcctg ccccgagg tctccccggc ccgcattcccg 650
aggcgcccaa gctggagccg cctggagggc tcggtcggcg acctctgaag 700
agagtgcacc gagcaaacc a gtgccggag caccagcgcc gcctttccat 750
ggagactcgt aagcagcttc atctgacacg ggcattccctg gcttgctttt 800
agctacaagc aagcagcgtg gctgaaagct gatggaaac gaccggcac 850
gggcattccctg tgtgcggccc gcatggaggg tttggaaaag ttcacggagg 900
ctccctgagg agcctctcag atcggctgct gccccgtgcag ggctgtactc 950
accgctgggt gcttgccaaa gagataggga cgcataatgct ttttaaagca 1000
atctaaaaat aataataagt atagcgacta tatacctact tttaaaatca 1050
actgtttga atagaggcag agctattta tattatcaa tgagagctac 1100
tctgttacat ttcttaacat ataaacatcg tttttactt cttctggtag 1150
aatttttaa agcataattg gaatccttgg ataaattttg tagctggtag 1200
actctggcct gggctctga attcagcctg tcaccgatgg ctgactgtac 1250
aaatggacac gtctcatctg acccactctt cttccactg aaggcttca 1300
cgggcctcca ggtggaccaa agggatgcac aggccgtcg catgccccag 1350
ggccagctaa gagttccaaa gatctcagat ttggtttag tcatgaatac 1400
ataaacagtc tcaaactcgc acaattttt ccccttttgc aaagccactg 1450
gggccaattt gtggtaaga ggtggtgaga taagaagtgg aacgtgacat 1500
ctttgccagt tgtcagaaga atccaagcag gtattggctt agttgttaagg 1550
gctttaggat caggctgaat atgaggacaa agtggccac gttagcatct 1600
gcagagatca atctggaggc ttctgtttct gcattctgcc acgagagcta 1650
ggtccttgat cttttctta gattgaaagt ctgtctctga acacaattat 1700
ttgtaaaagt tagtagttct ttttaaattc attaaaagag gcttgctgaa 1750
ggat 1754

<210> 8
<211> 202

<212> PRT
<213> Homo Sapien

<400> 8
Met Leu Val Ala Gly Phe Leu Leu Ala Leu Pro Pro Ser Trp Ala
1 5 10 15

Ala Gly Ala Pro Arg Ala Gly Arg Arg Pro Ala Arg Pro Arg Gly
20 25 30

Cys Ala Asp Arg Pro Glu Glu Leu Leu Glu Gln Leu Tyr Gly Arg
35 40 45

Leu Ala Ala Gly Val Leu Ser Ala Phe His His Thr Leu Gln Leu
50 55 60

Gly Pro Arg Glu Gln Ala Arg Asn Ala Ser Cys Pro Ala Gly Gly
65 70 75

Arg Pro Gly Asp Arg Arg Phe Arg Pro Pro Thr Asn Leu Arg Ser
80 85 90

Val Ser Pro Trp Ala Tyr Arg Ile Ser Tyr Asp Pro Ala Arg Tyr
95 100 105

Pro Arg Tyr Leu Pro Glu Ala Tyr Cys Leu Cys Arg Gly Cys Leu
110 115 120

Thr Gly Leu Phe Gly Glu Glu Asp Val Arg Phe Arg Ser Ala Pro
125 130 135

Val Tyr Met Pro Thr Val Val Leu Arg Arg Thr Pro Ala Cys Ala
140 145 150

Gly Gly Arg Ser Val Tyr Thr Glu Ala Tyr Val Thr Ile Pro Val
155 160 165

Gly Cys Thr Cys Val Pro Glu Pro Glu Lys Asp Ala Asp Ser Ile
170 175 180

Asn Ser Ser Ile Asp Lys Gln Gly Ala Lys Leu Leu Leu Gly Pro
185 190 195

Asn Asp Ala Pro Ala Gly Pro
200

<210> 9
<211> 559
<212> DNA
<213> Homo Sapien

<400> 9
caactgcacc tcggttctat cgatagccac cagcgcaaca tgacagtcaa 50
gaccctgcatt ggcggcagcca tggtaagta cttgctgctg tcgatattgg 100
ggcttgcatt tctgagtgag gcggcagctc ggaaaatccc caaagtagga 150

catactttt tccaaaagcc tgagagttgc ccgcctgtgc caggaggtag 200
tatgaagctt gacattggca tcatcaatga aaaccagcgc gttccatgt 250
cacgtaacat cgagagccgc tccacccccc cctggaatta cactgtcact 300
tgggacccca accggtaccc ctcggaagtt gtacaggccc agtgttaggaa 350
cttgggctgc atcaatgctc aaggaaagga agacatctcc atgaattccg 400
ttcccatcca gcaagagacc ctggtcgtcc ggaggaagca ccaaggctgc 450
tctgtttctt tccagttgga gaaggtgctg gtgactgttg gctgcacctg 500
cgtcacccct gtcatccacc atgtgcagta agaggtgcat atccactcag 550
ctgaagaag 559

<210> 10
<211> 163
<212> PRT
<213> Homo Sapien

<400> 10
Met Thr Val Lys Thr Leu His Gly Pro Ala Met Val Lys Tyr Leu
1 5 10 15

Leu Leu Ser Ile Leu Gly Leu Ala Phe Leu Ser Glu Ala Ala Ala
20 25 30

Arg Lys Ile Pro Lys Val Gly His Thr Phe Phe Gln Lys Pro Glu
35 40 45

Ser Cys Pro Pro Val Pro Gly Gly Ser Met Lys Leu Asp Ile Gly
50 55 60

Ile Ile Asn Glu Asn Gln Arg Val Ser Met Ser Arg Asn Ile Glu
65 70 75

Ser Arg Ser Thr Ser Pro Trp Asn Tyr Thr Val Thr Trp Asp Pro
80 85 90

Asn Arg Tyr Pro Ser Glu Val Val Gln Ala Gln Cys Arg Asn Leu
95 100 105

Gly Cys Ile Asn Ala Gln Gly Lys Glu Asp Ile Ser Met Asn Ser
110 115 120

Val Pro Ile Gln Gln Glu Thr Leu Val Val Arg Arg Lys His Gln
125 130 135

Gly Cys Ser Val Ser Phe Gln Leu Glu Lys Val Leu Val Thr Val
140 145 150

Gly Cys Thr Cys Val Thr Pro Val Ile His His Val Gln
155 160

<210> 11

<211> 1515
<212> DNA
<213> Homo Sapien

<400> 11
ccggcgatgt cgctcgtgct gctaaggctg gccgcgtgt gcaggagcgc 50
cgtacccoga gagccgaccg ttcaatgtgg ctctgaaact gggccatctc 100
cagagtggat gctacaacat gatctaattcc ccggagactt gagggacctc 150
cgagtagaaac ctgttacaac tagtgttgca acaggggactt attcaatttt 200
gatgaatgta agctgggtac tccggcaga tgccagcatc cgcttggta 250
aggccaccaa gatttgttg acggggaaaa gcaacttcca gtcctacagc 300
tgtgtgaggt gcaattacac agaggccttc cagactcaga ccagaccctc 350
tgggtgtaaa tggacatttt cctacatcggtt cttccctgtt gagctgaaca 400
cagtctattt cattggggcc cataatattt ctaatgcataa tatgaatgaa 450
gatggccctt ccatgtctgt gaatttcacc tcaccaggct gcctagacca 500
cataatgaaa tataaaaaaaa agtgtgtcaa ggccggaagc ctgtgggatc 550
cgaacatcac tgcttgtaag aagaatgagg agacagttaga agtgaacttc 600
acaaccactc ccctggaaa cagatacatg gctcttatcc aacacacac 650
tatcatcggtt ttttcagg tgtttgagcc acaccagaag aaacaaacgc 700
gagcttcagt ggtgatttcca gtgactgggg atagtgagg tgctacggtg 750
cagctgactc catatttcc tacttggc agcgactgca tccgacataa 800
aggaacagtt gtgctctgcc cacaacagg cgtcccttcc cctctggata 850
acaacaaaag caagccggga ggctggctgc ctctcctcct gctgtctctg 900
ctgggtggcca catgggtgtt ggtggcaggg atctatctaa tgtggaggca 950
cgaaaggatc aagaagactt cttttctac caccacacta ctgccccca 1000
ttaaggttct tgtggtttac ccatctgaaa tatgtttcca tcacacaatt 1050
tgttacttca ctgaatttct tcaaaaccat tgcaagaatg aggtcatcct 1100
tgaaaagtgg cagaaaaaga aaatagcaga gatgggtcca gtgcagtggc 1150
ttgccactca aaagaaggca gcagacaaag tcgtcttcct tctttccaaat 1200
gacgtcaaca gtgtgtgcga tggtacctgt ggcaagagcg agggcagtcc 1250
cagtgagaac tctcaagacc tcttccccct tgcctttaac cttttctgca 1300
gtgatctaag aagccagatt catctgcaca aatacgtggt ggtctacttt 1350

. agagagattg atacaaaaga cgattacaat gctctcagtg tctgccccaa 1400
 gtaccaccc tcatggatg ccactgcctt ctgtcagaa cttctccatg 1450
 tcaaggcagca ggtgtcagca ggaaaaagat cacaaggctg ccacgatggc 1500
 tgctgctcct tgtag 1515

<210> 12
 <211> 502
 <212> PRT
 <213> Homo Sapien

<400> 12
 Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala
 1 5 10 15

Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro
 20 25 30

Ser Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu
 35 40 45

Arg Asp Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly
 50 55 60

Asp Tyr Ser Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp
 65 70 75

Ala Ser Ile Arg Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly
 80 85 90

Lys Ser Asn Phe Gln Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr
 95 100 105

Glu Ala Phe Gln Thr Gln Thr Arg Pro Ser Gly Gly Lys Trp Thr
 110 115 120

Phe Ser Tyr Ile Gly Phe Pro Val Glu Leu Asn Thr Val Tyr Phe
 125 130 135

Ile Gly Ala His Asn Ile Pro Asn Ala Asn Met Asn Glu Asp Gly
 140 145 150

Pro Ser Met Ser Val Asn Phe Thr Ser Pro Gly Cys Leu Asp His
 155 160 165

Ile Met Lys Tyr Lys Lys Cys Val Lys Ala Gly Ser Leu Trp
 170 175 180

Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu Glu Thr Val Glu
 185 190 195

Val Asn Phe Thr Thr Pro Leu Gly Asn Arg Tyr Met Ala Leu
 200 205 210

Ile Gln His Ser Thr Ile Ile Gly Phe Ser Gln Val Phe Glu Pro
 215 220 225

His	Gln	Lys	Lys	Gln	Thr	Arg	Ala	Ser	Val	Val	Ile	Pro	Val	Thr
					230				235				240	
Gly	Asp	Ser	Glu	Gly	Ala	Thr	Val	Gln	Leu	Thr	Pro	Tyr	Phe	Pro
					245				250				255	
Thr	Cys	Gly	Ser	Asp	Cys	Ile	Arg	His	Lys	Gly	Thr	Val	Val	Leu
					260				265				270	
Cys	Pro	Gln	Thr	Gly	Val	Pro	Phe	Pro	Leu	Asp	Asn	Asn	Lys	Ser
					275				280				285	
Lys	Pro	Gly	Gly	Trp	Leu	Pro	Leu	Leu	Leu	Ser	Leu	Leu	Val	
					290				295				300	
Ala	Thr	Trp	Val	Leu	Val	Ala	Gly	Ile	Tyr	Leu	Met	Trp	Arg	His
					305				310				315	
Glu	Arg	Ile	Lys	Lys	Thr	Ser	Phe	Ser	Thr	Thr	Thr	Leu	Leu	Pro
					320				325				330	
Pro	Ile	Lys	Val	Leu	Val	Val	Tyr	Pro	Ser	Glu	Ile	Cys	Phe	His
					335				340				345	
His	Thr	Ile	Cys	Tyr	Phe	Thr	Glu	Phe	Leu	Gln	Asn	His	Cys	Arg
					350				355				360	
Ser	Glu	Val	Ile	Leu	Glu	Lys	Trp	Gln	Lys	Lys	Lys	Ile	Ala	Glu
					365				370				375	
Met	Gly	Pro	Val	Gln	Trp	Leu	Ala	Thr	Gln	Lys	Lys	Ala	Ala	Asp
					380				385				390	
Lys	Val	Val	Phe	Leu	Leu	Ser	Asn	Asp	Val	Asn	Ser	Val	Cys	Asp
					395				400				405	
Gly	Thr	Cys	Gly	Lys	Ser	Glu	Gly	Ser	Pro	Ser	Glu	Asn	Ser	Gln
					410				415				420	
Asp	Leu	Phe	Pro	Leu	Ala	Phe	Asn	Leu	Phe	Cys	Ser	Asp	Leu	Arg
					425				430				435	
Ser	Gln	Ile	His	Leu	His	Lys	Tyr	Val	Val	Val	Tyr	Phe	Arg	Glu
					440				445				450	
Ile	Asp	Thr	Lys	Asp	Asp	Tyr	Asn	Ala	Leu	Ser	Val	Cys	Pro	Lys
					455				460				465	
Tyr	His	Leu	Met	Lys	Asp	Ala	Thr	Ala	Phe	Cys	Ala	Glu	Leu	Leu
					470				475				480	
His	Val	Lys	Gln	Gln	Val	Ser	Ala	Gly	Lys	Arg	Ser	Gln	Ala	Cys
					485				490				495	
His	Asp	Gly	Cys	Cys	Ser	Leu								
					500									

<211> 2380
<212> DNA
<213> Homo Sapien

<400> 13
acactggcca aacaaaaacg aaagcactcc gtgctggaaag taggaggaga 50
gtcaggactc ccaggacaga gagtgacaaa actacccagc acagccccct 100
ccgccccctc tggaggctga agagggattc cagccccctgc cacccacaga 150
cacgggctga ctgggggtgc tgccccctt gggggggggc agcacagggc 200
ctcaggcctg ggtgccacct ggcacctaga agatgcctgt gccctggttc 250
ttgctgtcct tggcaactggg ccgaagccca gtggtccttt ctctggagag 300
gcttgtgggg cctcaggacg ctacccactg ctctccggc ctctcctgcc 350
gcctctggga cagtacata ctctgcctgc ctggggacat cgtgcctgct 400
ccggggcccg tgctggcgcc tacgcacctg cagacagagc tggtgctgag 450
gtgccagaag gagaccgact gtgacctctg tctgcgtgtg gctgtccact 500
tggccgtgca tggcaactgg gaagagcctg aagatgagga aaagtggaa 550
ggagcagctg actcaggggt ggaggagcct aggaatgcct ctctccaggc 600
ccaagtcgtg ctctccttcc aggccctaccc tactgcccgc tgctgtcctgc 650
tggaggtgca agtgcctgct gcccttgtgc agtttggtca gtctgtggc 700
tctgtggat atgactgctt cgaggctgcc cttagggagtg aggtacgaat 750
ctggtcctat actcagccca ggtacgagaa ggaactcaac cacacacagc 800
agctgcctgc cctgcccgg ctcaacgtgt cagcagatgg tgacaacgtg 850
catctggttc tgaatgtctc tgaggagcag cacttcggcc tctccctgta 900
ctggaatcag gtccaggggcc ccccaaaaacc ccgggtggcac aaaaacctga 950
ctggaccgca gatcattacc ttgaaccaca cagacctggt tccctgcctc 1000
tgtattcagg tgtggctct ggaacctgac tccgttagga cgaacatctg 1050
ccccttcagg gaggacccccc gcgcacacca gaacctctgg caagccgccc 1100
gactgcgact gctgaccctg cagagctggc tgcgtggacgc accgtgctcg 1150
ctgcccggcag aagcggcaact gtgctggcgg gctccgggtg gggacccctg 1200
ccagccactg gtcccaccgc ttccctggaa gaacgtcaact gtggacaagg 1250
ttctcgagtt cccattgctg aaaggccacc ctaacctctg tggtcaggtg 1300
aacagctcgg agaagctgca gctgcaggag tgcttgggg ctgactccct 1350

ggggcctctc aaagacgatg tgctactgtt ggagacacga ggccccagg 1400
acaacagatc cctctgtgcc ttggaaccca gtggctgtac ttcactaccc 1450
agcaaaggct ccacgaggc agctcgccct ggagagtact tactacaaga 1500
cctgcagtca ggccagtgtc tgcagctatg ggacgatgac ttgggagcgc 1550
tatgggcctg ccccatggac aaatacatcc acaagcgctg ggccctcgta 1600
tggctggcct gcctactctt tgccgctgag ctttccctca tcctccttct 1650
caaaaaggat cacgcgaaag ggtggctgag gctcttggaaa caggacgtcc 1700
gctcgaaaaa ggccgcccagg ggccgcgcgg ctctgctctt ctactcagcc 1750
gatgactcgg gtttcgagcg cctggggcgc gcccctggcgt cggccctgtg 1800
ccagctgccc ctgcgcgtgg ccgttagaccc gtggagccgt cgtgaactga 1850
gcgcgcaggg gcccgtggct tggttcacg cgacgcggcg ccagaccctg 1900
caggagggcg cggtgggtt cttgctcttc tctccgggtg cgggtggcgt 1950
gtgcagcggag tggctacagg atgggggtgtc cggggccggg ggcacggcc 2000
cgcacgacgc ctcccgcc tcgctcagct gcgtgctgac cgacttcttgc 2050
cagggccggg cgcggccag ctacgtgggg gcctgttccg acaggctgct 2100
ccacccggac gccgtacccg ccctttccg caccgtgccc gtctcacac 2150
tgccctccca actgccagac ttccctgggg ccctgcagca gcctcgcc 2200
ccgcgttccg ggccggctcca agagagagcg gagcaagtgt cccggccct 2250
tcagccagcc ctggatagct acttccatcc cccggggact cccgcgcgg 2300
gacgcggggtt gggaccaggg gcgggacccg gggcggggggaa cgggacttaa 2350
ataaaaggcag acgctgtttt tctaaaaaaaa 2380

<210> 14
<211> 705
<212> PRT
<213> Homo Sapien

<400> 14
Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser
1 5 10 15

Pro Val Val Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala
20 25 30

Thr His Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp
35 40 45

Ile Leu Cys Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val

50	55	60
Leu Ala Pro Thr His Leu Gln Thr Glu	Leu Val	Leu Arg Cys Gln
65	70	75
Lys Glu Thr Asp Cys Asp Leu Cys	Leu Arg Val Ala Val His Leu	
80	85	90
Ala Val His Gly His Trp Glu	Glu Pro Glu Asp Glu Glu Lys	Phe
95	100	105
Gly Gly Ala Ala Asp Ser Gly Val Glu	Glu Pro Arg Asn Ala Ser	
110	115	120
Leu Gln Ala Gln Val Val Leu Ser Phe	Gln Ala Tyr Pro Thr Ala	
125	130	135
Arg Cys Val Leu Leu Glu Val Gln Val	Pro Ala Ala Leu Val Gln	
140	145	150
Phe Gly Gln Ser Val Gly Ser Val Val	Tyr Asp Cys Phe Glu Ala	
155	160	165
Ala Leu Gly Ser Glu Val Arg Ile Trp	Ser Tyr Thr Gln Pro Arg	
170	175	180
Tyr Glu Lys Glu Leu Asn His Thr Gln	Gln Leu Pro Ala Leu Pro	
185	190	195
Trp Leu Asn Val Ser Ala Asp Gly Asp	Asn Val His Leu Val Leu	
200	205	210
Asn Val Ser Glu Glu Gln His Phe Gly	Leu Ser Leu Tyr Trp Asn	
215	220	225
Gln Val Gln Gly Pro Pro Lys Pro Arg	Trp His Lys Asn Leu Thr	
230	235	240
Gly Pro Gln Ile Ile Thr Leu Asn His	Thr Asp Leu Val Pro Cys	
245	250	255
Leu Cys Ile Gln Val Trp Pro Leu Glu	Pro Asp Ser Val Arg Thr	
260	265	270
Asn Ile Cys Pro Phe Arg Glu Asp Pro	Arg Ala His Gln Asn Leu	
275	280	285
Trp Gln Ala Ala Arg Leu Arg Leu	Leu Thr Leu Gln Ser Trp Leu	
290	295	300
Leu Asp Ala Pro Cys Ser Leu Pro Ala	Glu Ala Ala Leu Cys Trp	
305	310	315
Arg Ala Pro Gly Gly Asp Pro Cys Gln	Pro Leu Val Pro Pro Leu	
320	325	330
Ser Trp Glu Asn Val Thr Val Asp Lys	Val Leu Glu Phe Pro Leu	
335	340	345

Leu Lys Gly His Pro Asn Leu Cys Val Gln Val Asn Ser Ser Glu
 350 360

 Lys Leu Gln Leu Gln Glu Cys Leu Trp Ala Asp Ser Leu Gly Pro
 365 370 375

 Leu Lys Asp Asp Val Leu Leu Leu Glu Thr Arg Gly Pro Gln Asp
 380 385 390

 Asn Arg Ser Leu Cys Ala Leu Glu Pro Ser Gly Cys Thr Ser Leu
 395 400 405

 Pro Ser Lys Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu Tyr Leu
 410 415 420

 Leu Gln Asp Leu Gln Ser Gly Gln Cys Leu Gln Leu Trp Asp Asp
 425 430 435

 Asp Leu Gly Ala Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His
 440 445 450

 Lys Arg Trp Ala Leu Val Trp Leu Ala Cys Leu Leu Phe Ala Ala
 455 460 465

 Ala Leu Ser Leu Ile Leu Leu Lys Lys Asp His Ala Lys Gly
 470 475 480

 Trp Leu Arg Leu Leu Lys Gln Asp Val Arg Ser Gly Ala Ala Ala
 485 490 495

 Arg Gly Arg Ala Ala Leu Leu Tyr Ser Ala Asp Asp Ser Gly
 500 505 510

 Phe Glu Arg Leu Val Gly Ala Leu Ala Ser Ala Leu Cys Gln Leu
 515 520 525

 Pro Leu Arg Val Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser
 530 535 540

 Ala Gln Gly Pro Val Ala Trp Phe His Ala Gln Arg Arg Gln Thr
 545 550 555

 Leu Gln Glu Gly Gly Val Val Val Leu Leu Phe Ser Pro Gly Ala
 560 565 570

 Val Ala Leu Cys Ser Glu Trp Leu Gln Asp Gly Val Ser Gly Pro
 575 580 585

 Gly Ala His Gly Pro His Asp Ala Phe Arg Ala Ser Leu Ser Cys
 590 595 600

 Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Pro Gly Ser Tyr Val
 605 610 615

 Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp Ala Val Pro Ala
 620 625 630

 Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser Gln Leu Pro

635	640	645
Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg Ser Gly		
650	655	660
Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln Pro		
665	670	675
Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Thr Pro Ala Pro Gly		
680	685	690
Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr		
695	700	705

<210> 15
<211> 2138
<212> DNA
<213> Homo Sapien

<400> 15
cgagggctcc tgctggtaact gtgttcgttg ctgcacagca aggcacctgcc 50
acccaccttc aggccatgca gccatgttcc gggagcccta attgcacaga 100
agcccatggg gagctccaga ctggcagccc tgctcctgcc tctcctcctc 150
atagtcatcg acctctctga ctctgctggg attggcttcc gccacctgcc 200
ccactggAAC acccgctgtc ctctggcctc ccacacggat gacagttca 250
ctggaagtcc tgcctatacc cttggccgca cctggggggc cctcttctcc 300
acaAAAGCCTT ggtgtgtgcg agtctggcac tggcccgct gtttgtgcca 350
gcattctgtg tcaggtggct caggtcttca acggggcctc ttccacccctcc 400
tgggtcagaa atccaaaaag tcttccacat tcaagttcta taggagacac 450
aagatGCCAG cacctgctca gaggaagctg ctgcctcgTC gtcacccgtc 500
tgagaagAGC catcacattt ccatccccctc cccagacatc tcccacaagg 550
gacttcgctc taaaaggacc caaccttcgg atccagagac atggaaagt 600
cttcccagat tggactcaca aaggcatgga ggacccgagt tctccttga 650
tttgcgtcct gagggccggg ctattcggtt gaccatatct tcaggccctg 700
aggtcagcgt gcgtctttgt caccagtggg cactggagtg tgaagagctg 750
agcagtcctt atgatgtcca gaaaattgtg tctgggggccc acactgtaga 800
gctgccttat gaattccttc tgccctgtct gtgcataAGAG gcatcctacc 850
tgcaagagga cactgtgagg cgcaaaaaat gtcccttcca gagctggcca 900
gaaggctatg gctcggaactt ctggaaagtca gtgcacttca ctgactacag 950

ccagcacact cagatggtca tggccctgac actccgctgc ccactgaagc 1000
tggaagctgc cctctgccag aggcacgact ggcataccct ttgcaaagac 1050
ctccccgaatg ccacggctcg agagtcagat gggtggtatg ttttggagaa 1100
ggtggacctg caccccccagc tctgcttcaa gttctctttt ggaaacagca 1150
gccatgttga atgcacccac cagactgggt ctctcacatc ctggaatgta 1200
agcatggata cccaagccca gcagctgatt cttcacttct cctcaagaat 1250
gcatgccacc ttcagtgctg cctggagcct cccaggcttg gggcaggaca 1300
ctttggtgcc ccccggtgtac actgtcagcc aggcccgggg ctcaagccca 1350
gtgtcaactag acctcatcat tcccttcctg aggccagggt gctgtgtct 1400
ggtgtggcgg tcagatgtcc agtttgccctg gaagcacctc ttgtgtccag 1450
atgtctctta cagacacacccg gggcttttga tcctggact gctggccctc 1500
ctcaccctac tgggtgttgt tctggccctc acctgcccggc gcccacagtc 1550
aggcccgggc ccagcgcggc cagtgcctct cctgcacgcg gcggactcgg 1600
aggcgcagcg ggcgcctggtg ggagcgcgtt ctgaactgct acgggcagcg 1650
ctggcgcggc ggcgcgcacgt gatcgtggac ctgtgggagg ggaggcacgt 1700
ggcgcgcgtg ggcccgctgc cgtggctctg ggccggcgcgg acgcgcgttag 1750
cgccggagca gggactgtg ctgctgtgt ggagcggcgc cgacccctcgc 1800
ccggtcagcg gccccgaccc cggcgccgcg cccctgctcg ccctgctcca 1850
cgctgccccg cgcccgctgc tgctgctcgc ttacttcgt cgccctctcgc 1900
ccaagggcga catccccccg cggctgcgcg ccctgcccgc ctaccgcctg 1950
ctgcgcgacc tgccgcgtct gctgcggcgc ctggacgcgc ggccttcgc 2000
agaggccacc agctggggcc gccttggggc gcggcagcgc aggcagagcc 2050
gccttagagct gtgcagccgg cttgaacgag aggccgccccg acttgcagac 2100
ctagtttag cagagctcca ccgcagtcgg gggtgtct 2138

<210> 16

<211> 667

<212> PRT

<213> Homo Sapien

<400> 16

Met	Gly	Ser	Ser	Arg	Lle	Ala	Ala	Lle	Lle	Lle	Pro	Lle	Lle	Lle
1					5				10				15	

Ile Val Ile Asp Lle Ser Asp Ser Ala Gly Ile Gly Phe Arg His

20	25	30
Leu Pro His Trp Asn Thr Arg Cys Pro	Leu Ala Ser His Thr Asp	
35	40	45
Asp Ser Phe Thr Gly Ser Ser Ala Tyr Ile Pro Cys Arg Thr Trp		
50	55	60
Trp Ala Leu Phe Ser Thr Lys Pro Trp Cys Val Arg Val Trp His		
65	70	75
Cys Ser Arg Cys Leu Cys Gln His Leu Leu Ser Gly Gly Ser Gly		
80	85	90
Leu Gln Arg Gly Leu Phe His Leu Leu Val Gln Lys Ser Lys Lys		
95	100	105
Ser Ser Thr Phe Lys Phe Tyr Arg Arg His Lys Met Pro Ala Pro		
110	115	120
Ala Gln Arg Lys Leu Leu Pro Arg Arg His Leu Ser Glu Lys Ser		
125	130	135
His His Ile Ser Ile Pro Ser Pro Asp Ile Ser His Lys Gly Leu		
140	145	150
Arg Ser Lys Arg Thr Gln Pro Ser Asp Pro Glu Thr Trp Glu Ser		
155	160	165
Leu Pro Arg Leu Asp Ser Gln Arg His Gly Gly Pro Glu Phe Ser		
170	175	180
Phe Asp Leu Leu Pro Glu Ala Arg Ala Ile Arg Val Thr Ile Ser		
185	190	195
Ser Gly Pro Glu Val Ser Val Arg Leu Cys His Gln Trp Ala Leu		
200	205	210
Glu Cys Glu Glu Leu Ser Ser Pro Tyr Asp Val Gln Lys Ile Val		
215	220	225
Ser Gly Gly His Thr Val Glu Leu Pro Tyr Glu Phe Leu Leu Pro		
230	235	240
Cys Leu Cys Ile Glu Ala Ser Tyr Leu Gln Glu Asp Thr Val Arg		
245	250	255
Arg Lys Lys Cys Pro Phe Gln Ser Trp Pro Glu Ala Tyr Gly Ser		
260	265	270
Asp Phe Trp Lys Ser Val His Phe Thr Asp Tyr Ser Gln His Thr		
275	280	285
Gln Met Val Met Ala Leu Thr Leu Arg Cys Pro Leu Lys Leu Glu		
290	295	300
Ala Ala Leu Cys Gln Arg His Asp Trp His Thr Leu Cys Lys Asp		
305	310	315

Leu Pro Asn Ala Thr Ala Arg Glu Ser Asp Gly Trp Tyr Val Leu
 320 325 330

 Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Phe Ser Phe
 335 340 345

 Gly Asn Ser Ser His Val Glu Cys Pro His Gln Thr Gly Ser Leu
 350 355 360

 Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala Gln Gln Leu Ile
 365 370 375

 Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser Ala Ala Trp
 380 385 390

 Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro Val Tyr
 395 400 405

 Thr Val Ser Gln Ala Arg Gly Ser Ser Pro Val Ser Leu Asp Leu
 410 415 420

 Ile Ile Pro Phe Leu Arg Pro Gly Cys Cys Val Leu Val Trp Arg
 425 430 435

 Ser Asp Val Gln Phe Ala Trp Lys His Leu Leu Cys Pro Asp Val
 440 445 450

 Ser Tyr Arg His Leu Gly Leu Leu Ile Leu Ala Leu Leu Ala Leu
 455 460 465

 Leu Thr Leu Leu Gly Val Val Leu Ala Leu Thr Cys Arg Arg Pro
 470 475 480

 Gln Ser Gly Pro Gly Pro Ala Arg Pro Val Leu Leu Leu His Ala
 485 490 495

 Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly Ala Leu Ala Glu
 500 505 510

 Leu Leu Arg Ala Ala Leu Gly Gly Arg Asp Val Ile Val Asp
 515 520 525

 Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu Pro Trp
 530 535 540

 Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr Val
 545 550 555

 Leu Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro
 560 565 570

 Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro
 575 580 585

 Arg Pro Leu Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys
 590 595 600

 Gly Asp Ile Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu

() ()

605 .	610	615
Leu Arg Asp Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro		
620	625	630
Phe Ala Glu Ala Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg		
635	640	645
Arg Gln Ser Arg Leu Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala		
650	655	660
Ala Arg Leu Ala Asp Leu Gly		
665		

<210> 17
<211> 2319
<212> DNA
<213> Homo Sapien

<400> 17
gccaggccct atctccctgc caggaggccg gagtggggga ggtcagacgg 50
ggcggttggaa gggggaggga tgccacgcgc ttctgcctca ggtgttcctg 100
cgttgttgtt cagtggagag cagggagtgg ggccagccag cagaaacagt 150
gggctgtaca acatcacctt caaatatgac aattgtacca cctacttgaa 200
tccagtgaaa aagcatgtga ttgctgacgc ccagaataatc accatcagcc 250
agtatgcttgc ccatgaccaa gtggcagtca ccattcttgc gtccccaggg 300
gccctcgcca tcgaattcct gaaaggattt cggtaatac tggaggagct 350
gaagtcggag ggaagacagt gccaacaact gattctaaag gatccgaagc 400
agctcaacag tagcttcaaa agaactggaa tggaatctca acctttcctg 450
aatatgaaat ttgaaacgga ttatccgtt aaggttgcctt cttttccccc 500
cattaaaaac gaaagcaatt accacccttt ctcttttaga acccgagcct 550
gtgacctgtt gttacagccg gacaatcttag ctgtaaacc cttctggaaag 600
cctcggaacc tgaacatctggac ccagcatggc tcggacatgc aggtgtcctt 650
cgaccacgca cccgatggct cggacatgca ggtgtccccc gaccacgcac 700
cgcacaaactt cggcttccgt ttcttctatc ttcactacaa gctcaagcac 750
gaaggacctt tcaagcgaaa gacctgttaag caggagcaaa ctacagagat 800
gaccagctgc ctccttcaaa atgtttctcc aggggattat ataattgagc 850
tgggtggatga cactaacaca acaagaaaag tgatgcatta tgccttaaag 900
ccagtgcact ccccggtggc cgggcccattc agagccgtgg ccatcacagt 950

gccactggta gtcataatcg cattcgccgac gctttcact gtgatgtgcc 1000
gcaagaagca acaagaaaaat atatattcac atttagatga agagagctct 1050
gagtcttcca catacaactgc agcaactccca agagagaggc tccggccgac 1100
gccgaaggtc tttctctgct attccagtaa agatggccag aatcacatga 1150
atgtcgttcca gtgtttcgcc tacttcctcc aggacttctg tggctgtgag 1200
gtggctctgg acctgtggga agacttcagc ctctgttagag aagggcagag 1250
agaatgggtc atccagaaga tccacgagtc ccagttcatc attgtggttt 1300
gttccaaagg tatgaagtac tttgtggaca agaagaacta caaacacaaa 1350
ggaggtggcc gaggctcgaa gaaaggagag ctcttcctgg tggcgggtgc 1400
agccattgcc gaaaaagctcc gccaggccaa gcagagttcg tccggccgac 1450
tcagcaagtt tatcgccgtc tactttgatt attcctgcga gggagacgtc 1500
cccggtatcc tagaccttag taccaagtac agactcatgg acaatcttcc 1550
tcagctctgt tcccacctgc actccccaga ccacggccctc caggagccgg 1600
ggcagcacac ggcacaggc agcagaagga actactccg gagcaagtca 1650
ggccggtccc tatacgtcgc catttgcaac atgcaccagt ttattgacga 1700
ggagcccgac tgggtcgaaa agcagttcgt tcccttccat ctcctccac 1750
tgcgctaccg ggagccagtc ttggagaaaat ttgattcgaa cttggttta 1800
aatgatgtca tgtcaaacc agggccttag agtgacttct gcctaaagg 1850
agaggccgct gttcttgggg caaccggacc agccgactcc cagcacgaga 1900
gtcagcatgg gggcctggac caagacgggg aggcccggcc tgcccttgac 1950
ggtagcggccg ccctgcaacc cctgctgcac acggtaaaag ccggcagccc 2000
ctcggacatg ccggggact caggcatcta tgactcgtct gtgcctcat 2050
ccgagctgtc tctgccactg atggaaggac tctcgacggc ccagacagaa 2100
acgtcttccc tgacggagag cgtgtcctcc tcttcaggcc tgggtgagga 2150
ggaaccttcc tcccttcctt ccaagctctt ctcttcggg tcatgaaag 2200
cagatcttgg ttgccgcagc tacactgatg aactccacgc ggtcgccct 2250
ttgtaaacaaa acgaaagagt ctaaggattt ccactttaaa aaaaaaaaaa 2300
aaaaaaaaaaa aaaaaaaaaa 2319

<210> 18
<211> 728

<212> PRT

<213> Homo Sapien

<400> 18

Met	Pro	Arg	Ala	Ser	Ala	Ser	Gly	Val	Pro	Ala	Leu	Phe	Val	Ser	
1				5					10						15
Gly	Glu	Gln	Gly	Val	Gly	Pro	Ala	Ser	Arg	Asn	Ser	Gly	Leu	Tyr	
				20					25						30
Asn	Ile	Thr	Phe	Lys	Tyr	Asp	Asn	Cys	Thr	Thr	Tyr	Leu	Asn	Pro	
									40						45
Val	Gly	Lys	His	Val	Ile	Ala	Asp	Ala	Gln	Asn	Ile	Thr	Ile	Ser	
					50				55						60
Gln	Tyr	Ala	Cys	His	Asp	Gln	Val	Ala	Val	Thr	Ile	Leu	Trp	Ser	
					65				70						75
Pro	Gly	Ala	Leu	Gly	Ile	Glu	Phe	Leu	Lys	Gly	Phe	Arg	Val	Ile	
					80				85						90
Leu	Glu	Glu	Leu	Lys	Ser	Glu	Gly	Arg	Gln	Cys	Gln	Gln	Leu	Ile	
					95				100						105
Leu	Lys	Asp	Pro	Lys	Gln	Leu	Asn	Ser	Ser	Phe	Lys	Arg	Thr	Gly	
					110				115						120
Met	Glu	Ser	Gln	Pro	Phe	Leu	Asn	Met	Lys	Phe	Glu	Thr	Asp	Tyr	
					125				130						135
Phe	Val	Lys	Val	Val	Pro	Phe	Pro	Ser	Ile	Lys	Asn	Glu	Ser	Asn	
					140				145						150
Tyr	His	Pro	Phe	Phe	Arg	Thr	Arg	Ala	Cys	Asp	Leu	Leu			
					155				160						165
Gln	Pro	Asp	Asn	Leu	Ala	Cys	Lys	Pro	Phe	Trp	Lys	Pro	Arg	Asn	
					170				175						180
Leu	Asn	Ile	Ser	Gln	His	Gly	Ser	Asp	Met	Gln	Val	Ser	Phe	Asp	
					185				190						195
His	Ala	Pro	His	Gly	Ser	Asp	Met	Gln	Val	Ser	Phe	Asp	His	Ala	
					200				205						210
Pro	His	Asn	Phe	Gly	Phe	Arg	Phe	Phe	Tyr	Leu	His	Tyr	Lys	Leu	
					215				220						225
Lys	His	Glu	Gly	Pro	Phe	Lys	Arg	Lys	Thr	Cys	Lys	Gln	Glu	Gln	
					230				235						240
Thr	Thr	Glu	Met	Thr	Ser	Cys	Leu	Leu	Gln	Asn	Val	Ser	Pro	Gly	
					245				250						255
Asp	Tyr	Ile	Ile	Glu	Leu	Val	Asp	Asp	Thr	Asn	Thr	Thr	Arg	Lys	
					260				265						270

Val Met His Tyr Ala Leu Lys Pro Val His Ser Pro Trp Ala Gly
 275 280 285
 Pro Ile Arg Ala Val Ala Ile Thr Val Pro Leu Val Val Ile Ser
 290 295 300
 Ala Phe Ala Thr Leu Phe Thr Val Met Cys Arg Lys Lys Gln Gln
 305 310 315
 Glu Asn Ile Tyr Ser His Leu Asp Glu Glu Ser Ser Glu Ser Ser
 320 325 330
 Thr Tyr Thr Ala Ala Leu Pro Arg Glu Arg Leu Arg Pro Arg Pro
 335 340 345
 Lys Val Phe Leu Cys Tyr Ser Ser Lys Asp Gly Gln Asn His Met
 350 355 360
 Asn Val Val Gln Cys Phe Ala Tyr Phe Leu Gln Asp Phe Cys Gly
 365 370 375
 Cys Glu Val Ala Leu Asp Leu Trp Glu Asp Phe Ser Leu Cys Arg
 380 385 390
 Glu Gly Gln Arg Glu Trp Val Ile Gln Lys Ile His Glu Ser Gln
 395 400 405
 Phe Ile Ile Val Val Cys Ser Lys Gly Met Lys Tyr Phe Val Asp
 410 415 420
 Lys Lys Asn Tyr Lys His Lys Gly Gly Arg Gly Ser Gly Lys
 425 430 435
 Gly Glu Leu Phe Leu Val Ala Val Ser Ala Ile Ala Glu Lys Leu
 440 445 450
 Arg Gln Ala Lys Gln Ser Ser Ala Ala Leu Ser Lys Phe Ile
 455 460 465
 Ala Val Tyr Phe Asp Tyr Ser Cys Glu Gly Asp Val Pro Gly Ile
 470 475 480
 Leu Asp Leu Ser Thr Lys Tyr Arg Leu Met Asp Asn Leu Pro Gln
 485 490 495
 Leu Cys Ser His Leu His Ser Arg Asp His Gly Leu Gln Glu Pro
 500 505 510
 Gly Gln His Thr Arg Gln Gly Ser Arg Arg Asn Tyr Phe Arg Ser
 515 520 525
 Lys Ser Gly Arg Ser Leu Tyr Val Ala Ile Cys Asn Met His Gln
 530 535 540
 Phe Ile Asp Glu Glu Pro Asp Trp Phe Glu Lys Gln Phe Val Pro
 545 550 555
 Phe His Pro Pro Pro Leu Arg Tyr Arg Glu Pro Val Leu Glu Lys

560 .	565	570
Phe Asp Ser Gly Leu Val Leu Asn Asp Val Met Cys Lys Pro Gly		
575	580	585
Pro Glu Ser Asp Phe Cys Leu Lys Val Glu Ala Ala Val Leu Gly		
590	595	600
Ala Thr Gly Pro Ala Asp Ser Gln His Glu Ser Gln His Gly Gly		
605	610	615
Leu Asp Gln Asp Gly Glu Ala Arg Pro Ala Leu Asp Gly Ser Ala		
620	625	630
Ala Leu Gln Pro Leu Leu His Thr Val Lys Ala Gly Ser Pro Ser		
635	640	645
Asp Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser		
650	655	660
Ser Glu Leu Ser Leu Pro Leu Met Glu Gly Leu Ser Thr Asp Gln		
665	670	675
Thr Glu Thr Ser Ser Leu Thr Glu Ser Val Ser Ser Ser Ser Gly		
680	685	690
Leu Gly Glu Glu Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser		
695	700	705
Ser Gly Ser Cys Lys Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp		
710	715	720
Glu Leu His Ala Val Ala Pro Leu		
725		

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 19

atccacagaa gctggccttc gccg 24

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 20

gggacgtgga tgaactcggt gtgg 24

<210> 21

<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 21
tatccacaga agctggcctt cgccgagtgc ctgtgcagag 40

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 22
gttgcattct tggcaatggc catggga 27

<210> 23
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 23
ggtccatgtg ggagcctgtc tgta 24

<210> 24
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 24
cagcagctcc tcagaggtgt cctgcccttt gctggggcag cagct 45

<210> 25
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 25
gctcagtgcc ttccaccaca cgc 23

<210> 26
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 26
ctgcgtcctt ctccggctcg g 21

<210> 27
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 27
cgttccgtct acaccgaggc ctacgtcacc atccccgtgg gctgc 45

<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 28
actccatatt ttcctacttg tggca 25

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 29
cccaaagtga cctaagaac 19

<210> 30
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 30
tcactgaatt tcttcaaaac cattgca 27

<210> 31
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 31
tgtggcagcg actgcacccg acataaagga acagttgtgc tctgccccaca 50

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 32
ccgacttctt gcagggccgg 20

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 33
gcagcacgca gctgagcgag 20

<210> 34
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 34
agcgagtggc tacaggatgg ggtgtccggg ccc 33

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 35
cgttgttgt cagtggagag caggg 25

<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 36
caggaacacc tgaggcagaa gcg 23

<210> 37
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 37
ctatctccct gccaggaggc cggagtgggg gaggtcagac 40

<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 38
ctgtacctcg agggtgac 21

<210> 39
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 39
cccaagcttg ggtcaatgat gatgatgatg atgatgatgc cacagggca 50

tgttgtcc 58