

Olimpiada Naţională de Matematică Etapa Naţională, Târgu Mureş, 3 aprilie 2024

CLASA a XI-a – soluţii şi bareme

Problema 1. Fie $I \subset \mathbb{R}$ un interval deschis şi $f: I \to \mathbb{R}$ o funcție de două ori derivabilă pe I, cu proprietatea $f(x) \cdot f''(x) = 0$, pentru orice $x \in I$. Arătați că f''(x) = 0, pentru orice $x \in I$.

Problema 2. Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice inversabilă.

- a) Arătați că matricea AA^T are valorile proprii reale, strict pozitive.
- b) Presupunem că există numerele naturale nenule și distincte p și q astfel ca $(AA^T)^p=(A^TA)^q$. Arătați că $A^T=A^{-1}$.

(Notație: A^T este transpusa matricei A.)

Solutie.

a) Demonstrația 1.

Fie $\lambda \in \mathbb{C}$ o valoare proprie a matricei AA^T şi $X \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{O_{n,1}\}$, astfel încât $AA^TX = \lambda X$. Transpunând şi conjugând relaţia anterioară, obţinem $\overline{X}^TAA^T = \overline{\lambda}\,\overline{X}^T$, de unde, prin înmulţire la dreapta cu X, rezultă $\overline{X}^TAA^TX = \overline{\lambda}\,\overline{X}^TX$. Astfel, $\overline{(A^TX)}^T(A^TX) = \overline{\lambda}\,(\overline{X}^TX)$. Dacă

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ si } A^T X = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

atunci egalitatea matriceală anterioară devine $\sum_{i=1}^{n} |y_i|^2 = \overline{\lambda} \sum_{i=1}^{n} |x_i|^2$. Cum

 $X \neq O_{n,1}$ şi A este inversabilă, deci $A^TX \neq O_{n,1}$, avem $\sum_{i=1}^n |x_i|^2 > 0$ şi

$$\sum_{i=1}^{n} |y_i|^2 > 0. \text{ Rezultă } \lambda \in (0, \infty).$$

Demonstrația 2.

Deoarece $(AA^T)^T = AA^T$, matricea reală simetrică AA^T are valorile proprii reale. Cum A^T este inversabilă, avem $A^TX \neq O_{n,1}, \ \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{O_{n,1}\}$. Atunci $X^T(AA^T)X = (A^TX)^T(A^TX) > 0, \ \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{O_{n,1}\}$, adică matricea AA^T este pozitiv definită. Rezultă că valorile proprii ale matricei AA^T sunt strict pozitive.

b) Matricele AA^T şi A^TA au acelaşi polinom caracteristic 1p Fie $0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_n$ valorile proprii comune ale matricelor AA^T şi A^TA . Matricele $(AA^T)^p$ şi $(A^TA)^q$ au valorile proprii $\lambda_1^p \le \lambda_2^p \le ... \le \lambda_n^p$ şi respectiv $\lambda_1^q \le \lambda_2^q \le ... \le \lambda_n^q$. Din $(AA^T)^p = (A^TA)^q$ rezultă $\lambda_i^p = \lambda_i^q$, de unde $\lambda_i^{p-q} = 1$, pentru i = 1, ..., n. Atunci $\lambda_1 = \lambda_2 = ... = \lambda_n = 1$ 2p Notăm $AA^T - I_n = B = (b_{ij})_{1 \le i,j \le n}$. Matricea B este are valorile proprii nule, deci B^2 are valorile proprii nule. Cum B este simetrică, obținem $\sum_{n=1}^{n} \sum_{i=1}^{n} b_{ij}^2 = \operatorname{Tr}(BB^T) = \operatorname{Tr}(B^2) = 0$. Rezultă $B = O_n$, adică $AA^T = I_n$.

Problema 3. Fie matricele $A, B \in \mathcal{M}_n(\mathbb{R})$. Considerăm funcția matriceală $f: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, definită prin $f(Z) = AZ + B\overline{Z}$, $Z \in \mathcal{M}_n(\mathbb{C})$, unde \overline{Z} este matricea având ca elemente conjugatele elementelor lui Z. Arătați că următoarele afirmații sunt echivalente:

- (1) funcția f este injectivă;
- (2) funcția f este surjectivă;
- (3) matricele A + B şi A B sunt inversabile.

Soluție. Pentru $Z \in \mathcal{M}_n(\mathbb{C})$, există $X, Y \in \mathcal{M}_n(\mathbb{R})$ astfel ca Z = X + iY, iar $\overline{Z} = X - iY$. Rezultă $f(Z) = (A + B)X + i(A - B)Y \dots \mathbf{1p}$

 $(1)\Rightarrow(3)$. Presupunem, prin absurd, că A+B este neinversabilă sau A-B este neinversabilă. Dacă matricea A+B este neinversabilă, atunci $\det(A+B)=0$, deci există $C\in\mathcal{M}_{n,1}(\mathbb{R})\setminus\{O_{n,1}\}$ astfel ca $(A+B)C=O_{n,1}$. Definim matricea $X\in\mathcal{M}_n(\mathbb{R}),\ X\neq O_n$, având cele n coloane egale cu C.

Obţinem $f(X) = (A + B)X = O_n = f(O_n)$, în contradicţie cu ipoteza (1). Dacă matricea A - B este neinversabilă, atunci $\det(A - B) = 0$, deci există $D \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{O_{n,1}\}$ astfel ca $(A - B)D = O_{n,1}$. Definim matricea $Y \in \mathcal{M}_n(\mathbb{R})$, $Y \neq O_n$, având cele n coloane egale cu D. Astfel, avem $f(iY) = i(A - B)Y = O_n = f(O_n)$, în contradicţie cu ipoteza (1).

 $(2)\Rightarrow(3)$. Presupunem, prin absurd, că A+B este neinversabilă sau A-B este neinversabilă. Dacă matricea A+B este neinversabilă, atunci $\det(A+B)=0$. Pentru $Z=X+iY\in\mathcal{M}_n(\mathbb{C})$, avem $\det((A+B)X)=0$. Rezultă $f(Z)\neq I_n, \ \forall Z\in\mathcal{M}_n(\mathbb{C})$, în contradicție cu ipoteza (2). Dacă matricea A-B este neinversabilă, atunci $\det(A-B)=0$. Pentru oricare $Z=X+iY\in\mathcal{M}_n(\mathbb{C})$, avem $\det((A-B)Y)=0$, $\det(f(Z)\neq iI_n)$, în contradicție cu ipoteza (2).

Notă. Pentru justificarea echivalenței (1) \Leftrightarrow (2) pe baza faptului că f este o aplicație liniară pe spațiul vectorial finit dimensional $\mathcal{M}_n(\mathbb{C})$ se acordă $\mathbf{3p}$, iar pentru demonstrarea uneia dintre echivalențele (1) \Leftrightarrow (3) sau (2) \Leftrightarrow (3) se acordă $\mathbf{4p}$.

Problema 4. Fie funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, unde $g(x) = 2f(x) + f(x^2)$, pentru $x \in \mathbb{R}$.

- a) Arătați că, dacă f este mărginită într-o vecinătate a originii, iar g este continuă în origine, atunci f este continuă în origine.
- b) Dați un exemplu de funcție f, discontinuă în origine, pentru care funcția g este continuă în origine.

Soluția 1.

a) Fie $\varepsilon > 0$, arbitrar. Conform ipotezei, există $\delta_1, M > 0$ astfel încât $|f(x)| < M, \ \forall x \in (-\delta_1, \delta_1)$. Cum g este continuă în origine, există $\delta_2 > 0$,

care depinde de ε , astfel încât $|g(x)-g(0)|<\frac{\varepsilon}{2},\ \forall\,x\in(-\delta_2,\delta_2).$ Definim $\delta = \min\{\delta_1, \delta_2, 1\}$. Din $0 < \delta \le 1$, deduce $a^2 < \delta$, $\forall a \in (-\delta, \delta)$.

Fie $x \in (-\delta, \delta)$. Deoarece $|x| < \delta \le \delta_2$, avem

$$|f(x) - f(0)| = \frac{|2f(x) - 2f(0)|}{2} \le \frac{|2f(x) + f(x^2) - 3f(0)| + |f(x^2) - f(0)|}{2}$$

$$= \frac{|g(x) - g(0)|}{2} + \frac{|f(|x|^2) - f(0)|}{2} < \frac{\varepsilon}{4} + \frac{|f(|x|^2) - f(0)|}{2}.$$

Prin inducție, obținem inegalitatea

$$|f(x) - f(0)| < \varepsilon \left(\frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n+1}}\right) + \frac{|f(|x|^{2^n}) - f(0)|}{2^n}, \ n \in \mathbb{N}^*.$$

Fie $p \in \mathbb{N}^*$ astfel încât $2^p > \frac{4M}{\varepsilon}$. Avem $|x|^{2^p} < \delta \le \delta_1$. Atunci

$$|f(x)-f(0)|<\frac{\varepsilon\left(1-\frac{1}{2^p}\right)}{2}+\frac{\left|f\left(|x|^{2^p}\right)\right|+|f(0)|}{2^p}\leq\frac{\varepsilon\left(1-\frac{1}{2^p}\right)}{2}+\frac{2M}{2^p}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

b) Fie $a \in (0,1)$ şi $A = \{\pm a^{2^n}, n \in \mathbb{Z}\}$. Definim funcţia

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{cc} (-1)^n 2^n, & |x| = a^{2^n}, \ n \in \mathbb{Z} \\ 0, & x \in \mathbb{R} \setminus A \end{array} \right.$$

Deoarece $\lim_{k\to\infty}a^{2^{2k}}=0$ și $\lim_{k\to\infty}f\left(a^{2^{2k}}\right)=\lim_{k\to\infty}2^{2k}=\infty,\,f$ este discontinuă în origine.

Dacă $x \in \mathbb{R} \setminus A$, atunci $x^2 \in \mathbb{R} \setminus A$ (reducere la absurd). Rezultă g(x) = 0. Dacă $x \in A$, atunci există $n \in \mathbb{Z}$ astfel încât $|x| = a^{2^n}$. Rezultă

$$g(x) = 2f(a^{2^n}) + f(a^{2^{n+1}}) = 2^{n+1}[(-1)^n + (-1)^{n+1}] = 0.$$

Prin urmare, g este funcția nulă, continuă în origine.....3p

Soluția 2

a) Fie limitele $L:=\limsup_{x\to 0}f(x)=\lim_{\varepsilon\searrow 0}(\sup\{f(x)|\ x\in(-\varepsilon,\varepsilon)\setminus\{0\}\})$ și $\ell:=\liminf_{x\to 0}f(x)=\lim_{\varepsilon\searrow 0}(\inf\{f(x)|\ x\in(-\varepsilon,\varepsilon)\setminus\{0\}\})$. Deoarece f este mărginită pe o vecinătate a originii, avem $\ell,L\in\mathbb{R},$ cu $\ell\leq L$ 1p

Există şirurile $(x_n)_{n\geq 1}$ şi $(y_n)_{n\geq 1}$, cu termenii nenuli, convergente la 0, astfel încât $\lim_{n\to\infty} f(x_n) = L$ şi respectiv $\lim_{n\to\infty} f(y_n) = \ell \dots \mathbf{1p}$ Din continuitatea lui g în origine şi proprietățile limitelor superioară şi inferioară, rezultă

$$g(0) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} (2f(x_n) + f(x_n^2)) = \liminf_{n \to \infty} (2f(x_n) + f(x_n^2))$$

$$\geq 2 \liminf_{n \to \infty} f(x_n) + \liminf_{n \to \infty} f(x_n^2) = 2 \lim_{n \to \infty} f(x_n) + \liminf_{n \to \infty} f(x_n^2) \geq 2L + \ell$$

şi

$$g(0) = \lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} (2f(y_n) + f(y_n^2)) = \limsup_{n \to \infty} (2f(y_n) + f(y_n^2))$$

$$\leq 2 \limsup_{n \to \infty} f(y_n) + \limsup_{n \to \infty} f(y_n^2) = 2 \lim_{n \to \infty} f(y_n) + \limsup_{n \to \infty} f(y_n^2) \leq 2\ell + L.$$

Cum $\ell \leq L$, din inegalitatea $2L + \ell \leq g(0) \leq 2\ell + L$, rezultă $L = \ell = \frac{g(0)}{3}$.

Prim urmare, f este continuă în origine, cu $\lim_{x\to 0} f(x) = \frac{g(0)}{3} = f(0) \dots 2p$ b) A se vedea Soluția 1.