Вопрос 1

Выполнен

Баллов: 1,00 из 1,00

Сколько каналов будет на выходе Inception блока?

Выберите один ответ:

- а. 30*20*10*10 = 60000 каналов, ведь каналы конкатенируются
- b. 70 каналов, ведь каналы конкатенируются
- 🔘 с. 1 канал, ведь конкатенация делает вектор из всех входов
- d. 70*128*128 = 1146880 каналов
- 🔾 е. 30, по количеству наибольших выходов

Ваш ответ верный.

вопрос Инфо
Bonpoc 2
Выполнен Баллов: 1,00 из 1,00
Мы изучили ещё один продвинутый трюк "bottleneck" или "свёртка 1x1". Отметьте действия, которые позволяет осуществить свёрточный слой 1x1 с активацией после него (без паддинга, со страйдом 1).
Выберите один или несколько ответов:
а. уменьшить размер изображения
 В. увеличить количество каналов свёртки, не меняя размера изображения □ с увеличить изображение добавив пола по крадм.
 с. увеличить изображение, добавив поля по краям d. применить нелинейную активацию к элементам изображения
 е. умножить каждый пиксель изображения на некоторое число
2.

Ваш ответ верный.

Вопрос Инфо
Вопрос 3
Выполнен
Баллов: 1,00 из 1,00
В каком случае градиент в сети ResNet всё-таки будет нулевым)?
Выберите один или несколько ответов:
 а. если на текущем батче градиент отрицательный b. если на текущем батче градиент равен нулю
с. если сеть нашла минимум лосс-функции
□ d. если соединено более 1000 слоёв
Ваш ответ верный.

Вопрос 4
Выполнен Баллов: 1,00 из 1,00
Почему в ResNet отказываются от полносвязанных слоёв?
Выберите один ответ:
○ a. очень глубокие сети хуже дискриминируют объекты если у них есть FC-слои
○ b. у создателей не хватало оперативной памяти чтобы разместить столько весов, и они отказались от FC-слоёв
 с. эти слои работают только если на выходе одномерный вектор
 Очень глубокие сети имеют тенденцию отлично дискриминировать объекты и без FC-слоёв
Ваш ответ верный.

Вопрос Инфо

Вопрос 5			
Выполнен Баллов: 1,0			
Баллов: 1,0	10 03 1,00		
-			
Получ	ается, что сети ResNet уже неважно, сколько пикселей во входном изображении, важен масштаб деталей. Почему?		
Выбер	ите один ответ:		
a.	при такой большой глубине, важные признаки всплывают сами, и мы отсекаем неважные		
b.	в конце сети тензор усредняется и таким образом масштабируется до размера полносвязанного слоя		
O c.	при такой большой глубине, сеть теряет информацию о количестве признаков в изображении		
O d.	в конце сети тензор разрезается на несколько, и мы берём среднее значение от всех частей		
Rauros	Ваш ответ верный.		
∪аШ 01	вет верпыи.		

Вопрос Инфо

Вопрос Инфо

Вопрос 6

Выполнен

Баллов: 1,00 из 1,00

Мы прошли впечатляющую историю нейросетей в машинном зрении, полную резких нововведений.

Вспомните, какой трюк появился в какой сети (по крайней мере, в нашем изложении).

 LeNet (1998)
 функция активации tanh, свёрточные слои и пулинг

 AlexNet (2012)
 каскад свёрток (увеличение receptive field) и функция активации ReLU

 VGG (2014)
 обучать урезанную версию сети, постепенно добавляя слои, а также свёртки 1х1

 GoogLeNet (2015)
 слои, где собирается тензор из нескольких свёрток разного размера

 ResNet (2015)
 обходные соединения, пробрасывающие градиент ошибки в обход свёртки

Ваш ответ верный.

◀ 5.4 Собери их все: AlexNet (2012) и VGG (2014)

Перейти на...