1.7	Suppose M, 2 th, M≤2, and M + 2. Then M, ≤2, Caleb DeBose
120	Suppose m, 2 th, m=2, and m ≠ 2. Then m, = 2, Caleb DeBose m, + m2 ≤ 2, + 22, etc. Assume m=2, and m, + m2 = 2, + 22.
10/10	The are to Sintend will a then the 2 1 2 1 2 1 2
	Then pro= 22. Similarly assume M, + M2+M3 = 2+ 2+ 13. Then pro= 23. Suppose we confirme making assumptions in this
	fashion until we reach M+M3+m+Mn < 2+ 229m + 2ng
	where n= 2(m)= 2(2). We can't have pro+pro= 21+ ls+n+1n
	because then Mi= 2, for ; GCn T, which mouns M= 2, which in
	contradicts He initial supposition. Thus prot pagentus = 2,+22+,+2n,
	So Mn Zon, so M3/2.
	Suppose x = l(n) \neq l(1) = y, \and assime that u; = 2; for 442 ad is
4)	i < min (xyy). If x > y, Hen my < ly, otherwise pr will hat be a partition of n since myin, my x are unacconted for This prid
	hat be a partition of in since jugit, in jux are unacconted for This just it
TX.	Then the reasoning to the Sporte,
	50 M=2 rwhich is a contradiction. Therefore there must be
	Good. (And as I mentioned during your presentation, one way to avoid considering the length of the partitions is to pad them with parts of 0's so that they have the same length.)
<u></u>	M= 24, 4, 2, 2, 23, 2= {4,4,3,1,1/3, m32, but we have
	hether $\mu \leq \lambda$ for $\mu \geq \lambda$. Good.
0	where & is dominance order
2	Clam: p2 = da m2 + m22 apmy for coeffs. of 6 6. Consider
9/10	Expapaling PR=(x, +x3++,)(x++x3+m)m(x,x+x2+m). It is clear
	That we can of am a term of x, x, in x/k, so an + O. Addiginally,
	he need only consider M = & pecause the exponent years so any
	in other than N can be obtained by summing parts of L, and Thus
	Yes, "summing" or "combining" parts of lambda.
7.0	Coulder a manding of sex x x + Vxx x + Vxx
	greatest monomial in dominante order to comit Malie x 25 25 = B 26
1 378	& of Bu to Alein 15 & It Is a con build is of the interpret
	Could say a bit more here: the idea is basically the same as with the power sums, but with
	combining columns instead of rows of the partition (i.e., parts of the conjugate instead of parts of the original partition.) [-1pt]

