

COMP90014

Algorithms for Bioinformatics

Week 11B: Model Selection | Tuning | Validation

Supervised Learning

- Our goal: <u>Generalization</u>
- Underfitting and Overfitting
- Learning Algorithms
 - K-nearest neighbours (KNN)
 - Naïve Bayes
 - Decision Trees
 - Support Vector Machines (SVMs)
 - Ensemble methods

- Model validation
 - Hold-out & Cross-validation
- Evaluation Metrics
 - Classification
 - Confusion matrix
 - Type I/II errors
 - ROC curves
 - Imbalanced data
 - Regression
 - Correlation coefficient
 - Mean Squared Error
- Tools and Packages

Performance Estimation

Overfitting and underfitting

- Bias
 - Difference between prediction and real outcome
- Variance
 - Variability of predictions

Performance Estimation

- Overfitting
 - Low bias, high variance
- Underfitting
 - High variance, low bias

Performance estimation

- How do we know that it generalizes well to unseen data rather than simply memorize the training data?
 - And how do we select a good predictive model?
 - Perhaps a different algorithm would be more appropriate?
 - O Do we need more (or higher quality) data?
 - O Do we need to investigate different features?

Performance Estimation

- Avoid overfitting and underfitting
 - A robust validation strategy
 - Choosing the right performance metrics
- We want to estimate the generalization performance
 - Predictive performance on unseen data
- We need to be able to compare predictive models to choose the best/most appropriate one
 - Assessing different algorithms,
 - Parameters and
 - Feature combinations

Model Selection and Validation

Model Validation: Holdout

Holdout Validation

- You can't use the same data to train and test the model
 - That would be cheating!

Raw data & Feature Engineering Predict Feature Engineering Predict Target Target

- Test a model on different data than it was trained on
 - Provides an unbiased estimate of learning performance
- Holdout: dataset is randomly divided into <u>three subsets</u>
 - Training set to build predictive models
 - Validation set to assess performance in training and to fine-tune parameters
 - Independent test set (blind test) to assess the likely performance on unseen data
 - What if performance on training is much better than on the test set?

HOLDOUT STRATEGY

Model Evaluation

- **Holdout Strategy Limitation**
 - Prone to selection bias
- Solution
 - Repeated Holdout Validation
 - 100x, 1000x
 - **Bootstrapping**
 - Resampling with replacement

Real World **Distribution**

Distribution Dataset

Sample

Sample 2

Sample

Model Validation: K-fold Cross Validation

K-fold Cross Validation

- Partition the dataset into <u>k equal size subsamples</u> (folds)
- We will iteratively use one of the subsets as validation and the other k-1 subsets are put together to form a training set
- Performance estimation is averaged over all k iterations
- Every data point gets to be in a validation set exactly once and gets to be in a training set k-1 times
- Reduces bias
 - Most of the data for training
- Reduces variance
 - All data is eventually used for validation

 We still need a independent test set

K-FOLD STRATEGY

TRAIN

TEST

Cross Validation

1 2 3 4 5 6 7 8 9 10

training

Leave-one-out Cross Validation (LOOCV)

1 2 3 4 5 6 7 8 9 10

6

8

8 |

5

- K-fold Cross Validation when K equals the number of data points we have for training/validation
- 1 2 3 4 5 6 7 8 9 10

- Per round, each data point is considered individually in the validation/evaluation set
- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

- Maximizes the amount of information available for training
- 1 2 3 4 5 6 7 8 9 10

■ Good for small data sets

1 2 3 4 5 6 7 8 9 10

Computationally intensive

- 1 2 3 4 5 6 7 8 9 10
- 1 2 3 4 5 6 7 8 9 10

evaluation

Predictive Performance Metrics

- To select the **best performing model** we need o be able to **compare them**
- Predictive performance metrics
 - On the validation set
 - On an independent test set
 - Make sure they are consistent
- There are multiple metrics for classification and regression
- Classification
 - We can derive several metrics from a confusion matrix

Statistical Classification Metrics

Confusion Matrix

- Table layout that allows visualisation of predictive performance
 - Rows represent the instances in a predicted class
 - Columns represent the instances in an actual class
- For binary classification (two classes, positive and negative)
- True Positives (TP)
 - Correctly predicted as belonging to the positive class
 - A cancer test correctly identifying a patient who has cancer
- True Negatives (TN)
 - Correctly predicted as belonging to the negative class
 - A cancer test correctly identifying a patient who doesn't have cancer

Confusion Matrix

- False Positives (FP) Type I Error
 - Incorrectly predicted as belonging to the positive class
 - A cancer test saying a patient has cancer, while they actually don't
- False Negatives (FN) Type II Error
 - Incorrectly predicted as belonging to the negative class
 - A cancer test saying a patient doesn't have cancer, while they actually do
- We want to:
 - Minimize False* & Maximize True* cases
 - O Which Type Error is worse?
 - Depends on the <u>problem</u>

TP: True Positive FP: False Positive FN: False Negative TN: True Negative

Type I and II errors

- Which Type Error is worse?
 - Fire alarm

- Type I:
 - Fire alarm rings when there is no fire
- Type II:
 - Fire alarm fails to ring when there is fire

• Which Type Error is worse in this case?

Accuracy

- Accuracy is the number of correct predictions made by the model over all predictions made
 - O Accuracy = (TP+TN) / (TP+TN+FP+FN)
- When can I use Accuracy?
 - Accuracy is a good measure when the target classes in the data are nearly balanced
 - Similar number of data points belonging to each class
- When NOT to use Accuracy?
 - Imbalanced data sets
 - e.g., 95% of the data belong to class A, 5% to class B
 - A predictor that only guesses class A has 95% accuracy

Accuracy

Spam filter (25 spam messages, 125 not spam)

• 73.3%

	Spam	Not spam
Pred. spam	10 (TP)	25 (FP)
Pred. not-spam	15 (FN)	100 (TN)

83.3%

	Spam	Not spam
Pred. spam	0 (TP)	25 (FP)
Pred. not-spam	0 (FN)	125 (TN)

Precision

- Precision is the proportion of predicted positives that truly are positives
 - o Precision = (TP) / (TP+FP)
- Takes into account Type I Error
- Precision is a valid choice of evaluation metric when we want to be very sure of our positive class prediction.
 - e.g., if we want to to predict if we should decrease the credit limit on a particular account
 - We want minimum FP otherwise it may result in customer dissatisfaction
 - Maximise precision

Precision

Spam filter (10 spam messages, 90 not spam)

	Spam	Not spam
Pred. spam	1 (TP)	0 (FP)
Pred. not-spam	9 (FN)	90 (TN)

- What's the **precision** for the spam class?
 - o **100%**

Recall or Sensitivity

- Recall is the proportion of actual positives that are correctly classified
 - \circ Recall = (TP) / (TP+FN)
- Takes into account Type II Error
- Recall is used when we want to recover as many positives as we can
 - e.g., If we want to predict if a patient has a disease or not, we want to capture the disease even if we are not very sure
 - We want minimum FN otherwise we might discharge a patient that needs treatment - maximise recall

- Caveat
 - If we predict everything as positive, recall will be 100%

Recall or Sensitivity

Spam filter (10 spam messages, 90 not spam)

	Spam	Not spam
Pred. spam	10 (TP)	90 (FP)
Pred. not-spam	0 (FN)	0 (TN)

- What's the recall for the spam class?
 - o **100%**

F1-score or F1-measure

- How to find a compromise between precision and recall?
 - Does simply taking their arithmetic mean work?
 - \circ e.g., a predictive model with 20% recall and 100% precision
 - mean(Precision+Recall) = 60%
- F1-score is the harmonic mean of precision and recall
 - o F1 = 2*(Precision*Recall)/(Precision+Recall)
 - \circ For the example: F1 = 33%
- F1-score will penalise large discrepancies between precision and recall

Receiver Operating Characteristic Curves

ROC curves

- Is a graph showing the performance of a classification model at different thresholds
 - *i.e.*, class probabilities from our classifier
- Y-axis: true positive rate (recall)
- X-axis: false positive rate (1-specificity)
 - Specificity = TN/(TN+FP)
- AUC (Area Under the ROC Curve)
 - Varies from 0 to 1
 - A random binary classifier: AUC of 0.5

Check it out! (StatQuest Channel) https://www.youtube.com/watch?v=4jRBRDbJemM

Matthews Correlation Coefficient (MCC)

- Matthews Correlation Coefficient (MCC) takes into account true and false positives and negatives
 - It is considered a balanced metric
- Very good metric for imbalanced data sets
 - Even classes are of very different in sizes
 - In contrast with accuracy
- Ranges between -1 and 1
 - 1 shows a perfect prediction
 - 0 equals to the random prediction
 - -1 indicates total disagreement between predicted and actual labels

Matthews Correlation Coefficient

$$MCC = \frac{TP \times TN - FN \times FP}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$

Evaluating regression models

- Mean Square Error (MSE)
 - The average of squared differences between the predicted predicted and the actual values
- Pearson Correlation Coefficient
 - A measure of the linear correlation between two variables (predicted vs. actual)

 $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

60

80

100

200

180

Which models is the best one?

Metric	MODEL1	MODEL2
Recall	0.6667	0.8333
Specificity	0.8333	0.6667
Precision	0.8000	0.7143
Accuracy	0.7500	0.7500
F1 Score	0.7273	0.7692
MCC	0.5071	0.5071

Model 1

To minimise Type I Error (better precision)

Model 2

To minimise Type 2 Error (better recall)

MODEL 1	Actual disease	Actual healthy
Predicted disease	200	50
Predicted healthy	100	250

MODEL 2	Actual disease	Actual healthy
Predicted disease	250	100
Predicted healthy	50	200

Benign vs. malignant cancer hypothetical cases

Tools and Packages

Scikit Learn

- Machine Learning in Python
- Data analysis
- Built on NumPy, SciPy, and matplotlib
- Open source

TensorFlow

- Python
- Developed by Google
- Deep Learning

Weka

- GUI
- Java

Thank you!

Today: Model selection, tuning, validation

Next time: Recap I