Defending Against Malicious Reorgs in Tezos Proof-of-Stake

Michael Neuder Daniel J. Moroz Rithvik Rao David C. Parkes

School of Engineering and Applied Sciences Harvard University

ACM Advances in Financial Technology
October 2020

Introduction

Contributions

- Describe reorg attacks in Tezos.
 - Selfish mining and double spend attacks.
- Calculate the probability of attacks based on length of reorg and attacker strength.
- Examine how protocol modifications impact the probability of attacks.
- Present a method to detect potentially vulnerable chain states.[†]

[†] Not discussed in presentation. See paper.

Introduction

Related Work

- o Eyal and Gün Sirer (2013) present "Selfish Mining".
- Brown-Cohen et al. (2019) demonstrate theoretical weaknesses in longest-chain PoS, which we instatiate in Tezos.
 - * Predictable selfish mine.
 - * Predictable double spend.
- Neuder, Moroz, Rao, Parkes (2020) examines length-2 malicious reorgs to accomplish selfish mining in Tezos.
- Nomadic Labs (2020) blog post explores similar questions, but using different methodology.

Tezos

Proof-of-Stake Basics

- Two roles in block creation: bakers (miners) and endorsers.
 - * [baker₀, baker₁, ...] ordered list of eligible bakers.
 - * [endorser₀, endorser₁, ..., endorser₃₁] unordered group of 32 endorsers.

- o $\mathcal{D}(p, e) = 60 + 40 \cdot p + 8 \cdot \max(24 e, 0).$
- If p = 0 and $e \ge 24$, $\mathcal{D} = 60$.
- Baking and endorsing rights are randomly allocated proportionally to the amount of stake owned, but are known far in advance.

Malicious Reorgs

Model

Key result: malicious reorgs caused by a private attacker fork.

- Rate of block creation on each of the forks is a function of:
 - * h_i the highest priority amongst honest bakers at slot i.
 - * a_i the highest priority owned by the attacker at slot i.
 - * e_i the number of endorsements owned by the attacker at slot i.
- These are random variables that together create the random process that we study.

Malicious Reorgs

Results

 Using Monte Carlo and importance sampling methods, we calculate the probability of reorgs as a function of attacker stake.

 Confidence intervals (red error bars) are 99% Clopper-Pearson and importance sampling.

Protocol Modifications

Parameters

$$\mathcal{D}(p,e) = 60 + \frac{d_p}{p} \cdot p + \frac{d_e}{m} \cdot \max(e_i - e, 0). \tag{1}$$

- o d_p The time penalty for each drop in baker priority.
- o d_e The time penalty for missing attestation (past e_i).
- \circ e_i The number of endorsements needed to avoid any missing endorsement penalties.
- Current implementation is $d_p = 40, d_e = 8, e_i = 24$.

Protocol Modifications

Current Implementation

- Let $\lambda = (d_p, d_e, e_i)$.
- Then define* $g(\beta) = (1 \beta) \cdot \Pr[\operatorname{sm}|\lambda] + \beta \cdot \Pr[\operatorname{dr}|\lambda]$
- For $\beta = 0.5$, we obtain the average of the two probabilities.

^{*}sm = Selfish mine & dr = deep reorg

Protocol Modifications

Selfish mining vs deep reorgs

- $\circ \ g(\beta) = (1 \beta) \cdot \Pr[\operatorname{sm}|\lambda] + \beta \cdot \Pr[\operatorname{dr}|\lambda].$
- We vary β to modify weighting of selfish mining and deep reorgs.

Conclusion

- Summary
 - * Tezos Proof-of-Stake
 - * Malicious Reorgs
 - * Protocol Modifications
 - * Detection Metric (see paper)
- Future work
 - Other PoS protocols.
 - * Ensemble attacks.
 - * Alternative delay functions.

Thanks!