

GEOMETRÍA

3rd SECONDARY SESIÓN II

Asesoría Primer Bimestre

1.En una recta se ubican los puntos consecutivos A, B. C y D, de modo que AB + CD = 3(BC) y AC + BD = 40. Calcule BC.

2.En la figura, halle el valor de x.

$$7x + \alpha + \beta = 180^{\circ}$$

$$10x = 180^{\circ}$$

 $(Reemplazando)_{X = 10^{\circ}}$

3.En la figura, el ángulo MON es agudo. Hallar el mínimo

valor entero de x.

5. Si L1 // L2, halle el valor de x.

•
$$80^{\circ}$$
- $\beta = 4\alpha + 3\beta$
 $80^{\circ} = 4\alpha + 4\beta$
 $20^{\circ} = \alpha + 4\beta$
 $5x \beta = 2\alpha - x + 32^{\circ} + \beta$

$$6x = 2\alpha + 2\beta + 32^{\circ}$$
 $3x = (\alpha + \beta) + 36^{\circ} = (20^{\circ}) + 36^{\circ} = 36^{\circ}$
 $x = 36^{\circ}$

6.Si L1 // L2 // L3, halle el valor de x.

$$2\alpha = 80^{\circ}$$
$$\alpha = 40^{\circ}$$

ÁNGULOS ALTERNOS INTERNOS

$$\alpha + 5x = 180^{\circ}$$
 $40^{\circ} + 5x = 180^{\circ}$
 $5x = 140^{\circ}$
 $x = 28^{\circ}$

7. Si los lados de un triangulo miden 5x , 2x y 42, halle la suma de los valores enteros que puede tomar x

Teorema de la existencia

$$b-c < a < b+c$$

 $x = 7; \ 6+; 9; 10; 11; 12;$

ω + φ + γ = 180°

8. En la figura, hallar el valor de x.

9.En un triángulo rectángulo ABC, recto en B, se traza la altura \overline{BH} y la bisectriz \overline{BD} del $\angle HBC$. Si AH = 7 y HD = 4, halle AB.

10.En la figura, calcular el valor de x.

Por teorema:

$$x = \frac{\theta}{2}$$

Entonces: m \(\delta \) ABC = 2

En el
$$\Delta$$
EBF: $3x + 2x + x = 180^{\circ}$
 $6x = 180^{\circ}$

$$x = 30^{\circ}$$