Capítulo 3

Derivadas de funções vectoriais

3.1 Derivada direccional, diferencial e matriz Jacobiana

A teoria da derivação para funções vectoriais é uma extensão directa da das funções escalares.

Definição 3.1 Sejam $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{a} \in \text{int } D$ e \mathbf{v} um vector qualquer de \mathbb{R}^n . Se $f = (f_1, f_2, ..., f_m)$ diz-se que f tem derivada em \mathbf{a} segundo o vector \mathbf{v} se existem as derivadas $f'_k(\mathbf{a}; \mathbf{v})$ para qualquer $k \in \{1, 2, ..., m\}$, e escreve-se

$$f'(\mathbf{a}; \mathbf{v}) = (f'_1(\mathbf{a}; \mathbf{v}), f'_2(\mathbf{a}; \mathbf{v}), ..., f'_m(\mathbf{a}; \mathbf{v})).$$

Observação 3.2 Qualquer que seja o ponto $\mathbf{a} \in \operatorname{int} D$ e o vector $\mathbf{v} \in \mathbb{R}^n$, a derivada $f'(\mathbf{a}; \mathbf{v})$ é sempre um vector de \mathbb{R}^m .

Observação 3.3 Evitando a definição rigorosa de diferenciabilidade no caso vectorial notamos que uma aplicação $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$, com $f = (f_1, f_2, ..., f_m)$, é diferenciável (resp. continuamente diferenciável) num ponto $\mathbf{a} \in \operatorname{int} D$ sse todas as funções $f_1, f_2, ..., f_m$ são diferenciáveis (resp. continuamente diferenciáveis) em \mathbf{a} , e o diferencial de f em \mathbf{a} é uma aplicação linear $\mathbb{R}^n \to \mathbb{R}^m$ que a cada $\mathbf{v} \in \mathbb{R}^n$ associa o vector

$$df\left(\mathbf{a}\right)\left(\mathbf{v}\right) = \left(df_1\left(\mathbf{a}\right)\left(\mathbf{v}\right), df_2\left(\mathbf{a}\right)\left(\mathbf{v}\right), ..., df_m\left(\mathbf{a}\right)\left(\mathbf{v}\right)\right).$$

Como qualquer operador linear de \mathbb{R}^n em \mathbb{R}^m se pode definir à custa de uma matriz \mathcal{M} de ordem $m \times n$, podemos representar

$$df(\mathbf{a})(\mathbf{v}) = \mathcal{M} \cdot \mathbf{v},$$

onde o ponto significa o produto da matriz pelo vector. Veremos abaixo que \mathcal{M} é a matriz das derivadas parciais $\frac{\partial f_k}{\partial x_i}(\mathbf{a}),\ k=1,2,...,m$ e i=1,2,...,n.

Chegamos assim à seguinte definição

Definição 3.4 Sejam $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ e $\mathbf{a} \in \text{int } D$. Se existem as derivadas parciais $\frac{\partial f_k}{\partial x_i}(\mathbf{a})$ para todo $k \in \{1, 2, ..., m\}$ e $i \in \{1, 2, ..., n\}$, a matriz constituída pelas n derivadas parciais de

cada uma das m funções escalares que compõem f, calculadas em \mathbf{a} , chama-se matriz Jacobiana (ou matriz de Jacobi) de f em \mathbf{a} e denota-se por Jac f (\mathbf{a}):

$$\operatorname{Jac} f\left(\mathbf{a}\right) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}\left(\mathbf{a}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(\mathbf{a}\right) & \dots & \frac{\partial f_{1}}{\partial x_{n}}\left(\mathbf{a}\right) \\ \frac{\partial f_{2}}{\partial x_{1}}\left(\mathbf{a}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(\mathbf{a}\right) & \dots & \frac{\partial f_{2}}{\partial x_{n}}\left(\mathbf{a}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}\left(\mathbf{a}\right) & \frac{\partial f_{m}}{\partial x_{2}}\left(\mathbf{a}\right) & \dots & \frac{\partial f_{m}}{\partial x_{n}}\left(\mathbf{a}\right) \end{bmatrix}.$$

Se n=m chama-se Jacobiano ao determinante da matriz Jacobiana, e denota-se por J(f) ou $\frac{\partial (f_1,f_2,...,f_n)}{\partial (x_1,x_2,...,x_n)}$.

Observamos que a linha i da matriz Jac $f(\mathbf{a})$ é o gradiente da função f_i calculado em \mathbf{a} .

Da mesma forma que tinhamos para o gradiente no caso de funções escalares, temos agora o seguinte para a matriz Jacobiana

Observação 3.5 Se a aplicação $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$, com $f = (f_1, f_2, ..., f_m)$, é diferenciável em $\mathbf{a} \in \text{int } D$, então

(i) a derivada $f'(\mathbf{a}; \mathbf{v})$ existe para qualquer \mathbf{v} em \mathbb{R}^n e tem-se

$$f'(\mathbf{a}; \mathbf{v}) = df(\mathbf{a})(\mathbf{v}) = \operatorname{Jac} f(\mathbf{a}) \cdot \mathbf{v},$$

onde Jac $f(\mathbf{a}) \cdot \mathbf{v}$ representa o produto da matriz Jac $f(\mathbf{a})$ pelo vector \mathbf{v} .

(ii) f é contínua em a.

3.2 Derivada da aplicação composta

Teorema 3.6 Sejam $D \subset \mathbb{R}^p$ e $W \subset \mathbb{R}^n$ conjuntos abertos, $f: D \to \mathbb{R}^m$ e $g: W \to \mathbb{R}^p$ aplicações tais que $g(W) \subset D$. Se g é diferenciável em $\mathbf{a} \in W$ e f é diferenciável em $g(\mathbf{a})$, então a aplicação composta $\varphi: W \to \mathbb{R}^m$, $\varphi(\mathbf{x}) = f(g(\mathbf{x})) = (f \circ g)(\mathbf{x})$ é diferenciável em \mathbf{a} e tem-se

$$\operatorname{Jac}\varphi\left(\mathbf{a}\right) = \operatorname{Jac}f\left(g\left(\mathbf{a}\right)\right)\operatorname{Jac}g\left(\mathbf{a}\right),\tag{3.1}$$

onde a parte direita da igualdade representa o produto de matrizes.

Demonstração:

Representamos a função vectorial φ pelas suas coordenadas $(\varphi_1,...,\varphi_m)$. A diferenciabilidade de todas as funções

$$\varphi_i(x_1,...,x_n) = f_i(q_1(x_1,...,x_n),...,q_n(x_1,...,x_n))$$

sai da diferenciabilidade da função composta (ver Secção 2.4). Para calcular uma das derivadas parciais de φ_i usamos a regra da cadeia (ver (2.18)):

$$\frac{\partial \varphi_i}{\partial x_j}(\mathbf{a}) = \sum_{k=1}^p \frac{\partial f_i}{\partial g_k} \left(g(\mathbf{a}) \right) \frac{\partial g_k}{\partial x_j}(\mathbf{a})$$

e vemos que na parte direita desta fórmula está o produto da i-ésima linha da matriz Jacobiana de f calculada em $g(\mathbf{a})$ pela j-ésima coluna da matriz Jacobiana de g calculada em \mathbf{a} . Daqui sai a fórmula (3.1).

Exemplo 3.7 Consideremos as funções $f(u,v) = (\ln u, ve^{-u})$ $e \ g(x,y,z) = (x^2 + 1, y + z)$. Temos

$$D_f =]0, +\infty[\times \mathbb{R}, \quad D_g = \mathbb{R}^3 \quad e \quad D_{f \circ g} = \mathbb{R}^3.$$

A matriz Jacobiana de f num ponto $(u, v) \in D_f$ é

$$\operatorname{Jac} f(u, v) = \begin{bmatrix} \frac{1}{u} & 0 \\ -ve^{-u} & e^{-u} \end{bmatrix}.$$

A matriz Jacobiana de f num ponto g(x, y, z) é

$$\operatorname{Jac} f(g(x, y, z)) = \operatorname{Jac} f(x^{2} + 1, y + z) = \begin{bmatrix} \frac{1}{x^{2} + 1} & 0\\ -(y + z) e^{-(x^{2} + 1)} & e^{-(x^{2} + 1)} \end{bmatrix}.$$

A matriz Jacobiana de g num ponto (x, y, z) é

$$\operatorname{Jac} g\left(x,y,z\right) = \left[\begin{array}{ccc} 2x & 0 & 0 \\ 0 & 1 & 1 \end{array} \right].$$

Então a matriz Jacobiana de $f \circ g$ num ponto (x, y, z) é o produto das duas últimas matrizes:

$$\operatorname{Jac} f \left(g \left(x, y, t \right) \right) = \begin{bmatrix} \frac{1}{x^2 + 1} & 0 \\ -(y + z) e^{-(x^2 + 1)} & e^{-(x^2 + 1)} \end{bmatrix} \begin{bmatrix} 2x & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \\
= \begin{bmatrix} \frac{2x}{x^2 + 1} & 0 & 0 \\ -2x \left(y + z \right) e^{-(x^2 + 1)} & e^{-(x^2 + 1)} & e^{-(x^2 + 1)} \end{bmatrix}.$$

3.3 Teorema da aplicação implícita

O Teorema da função implícita (Teorema 2.32) pode ser extendido a funções vectoriais. Nomeadamente,

Teorema 3.8 Se $F_i: X \times Y \to \mathbb{R}$, i = 1, 2, ..., m, com $X \subset \mathbb{R}^n$ e $Y \subset \mathbb{R}^m$ conjuntos abertos, são funções continuamente diferenciáveis numa vizinhança de um ponto $(\mathbf{x}^0, \mathbf{y}^0) \in X \times Y$, tais que $F_i(\mathbf{x}^0, \mathbf{y}^0) = 0$ para todo $i \in \{1, 2, ..., m\}$, e

$$\frac{\partial (F_1, ..., F_m)}{\partial (y_1, ..., y_m)} (\mathbf{x}^0, \mathbf{y}^0) \neq 0,$$

então existem vizinhanças $U(\mathbf{x}^0)$ e $V(\mathbf{y}^0)$, nos espaços \mathbb{R}^n e \mathbb{R}^m , respectivamente, tais que para cada $\mathbf{x} \in U(\mathbf{x}^0)$ existe um e um só $\mathbf{y} \in V(\mathbf{y}^0)$ tal que $F_i(\mathbf{x}, \mathbf{y}) = 0$, i = 1, 2, ..., m. Se f é a função definida em $U(\mathbf{x}^0)$ tal que a cada $\mathbf{x} \in U(\mathbf{x}^0)$ associa esse único vector \mathbf{y} (i.e., $y_i = f_i(\mathbf{x})$, i = 1, 2, ..., m), então f é uma função continuamente diferenciável, $\mathbf{y}^0 = f(\mathbf{x}^0)$, e a matriz Jacobiana de f em \mathbf{x}^0 pode ser encontrada aplicando a regra da cadeia às equações

$$F_i(x_1,...,x_n,f(x_1,...,x_n))=0.$$

Exemplo 3.9 (n = m = 2) Mostremos que as equações

$$x^3u + yv^3 = 2$$
 e $xu^3 + y^3v = 2$

definem u e v implicitamente como funções de x e y numa vizinhança do ponto (1,1,1,1), isto é que a cada par (x,y) próximo de (1,1) corresponde um único (u,v):

$$u = u(x,y);$$

$$v = v(x,y),$$

na vizinhança de (1,1) tal que o quadruplo (x,y,u,v) satisfaz às equações acima. Além disso, calculemos $\operatorname{Jac} f(x,y)$ no ponto (x,y)=(1,1), onde f(x,y)=(u(x,y),v(x,y)).

Seja $F: \mathbb{R}^{2+2} \to \mathbb{R}^2$ definida por

$$F(x, y, u, v) = (x^{3}u + yv^{3} - 2, xu^{3} + y^{3}v - 2),$$

e sejam

$$F_1(x, y, u, v) = x^3 u + yv^3 - 2$$
 e $F_2(x, y, u, v) = xu^3 + y^3 v - 2$.

A função F é de classe C^1 em \mathbb{R}^{2+2} (justifique!), F(1,1,1,1)=0. Determinemos o Jacobiano da aplicação F relativamente às variáveis u e v:

$$\frac{\partial (F_1, F_2)}{\partial (u, v)} (1, 1, 1, 1) = \begin{vmatrix} \frac{\partial F_1}{\partial u} (x, y, u, v) & \frac{\partial F_1}{\partial v} (x, y, u, v) \\ \frac{\partial F_2}{\partial u} (x, y, u, v) & \frac{\partial F_2}{\partial v} (x, y, u, v) \end{vmatrix}_{(1, 1, 1, 1)}$$

$$= \begin{vmatrix} x^3 & 3yv^2 \\ 3xu^2 & y^3 \end{vmatrix}_{(1, 1, 1, 1)} = \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = -8 \neq 0.$$

Portanto, o Teorema da função implícita aplica-se e(u,v) = f(x,y) nalguma vizinhança de (x,y,u,v) = (1,1,1,1).

Determinemos agora $\operatorname{Jac} f(x,y)$ no ponto (x,y)=(1,1) aplicando a regra da cadeia às equações

$$F_1(x, y, u, v) = x^3 u + yv^3 - 2 = 0$$
 e $F_2(x, y, u, v) = xu^3 + y^3 v - 2 = 0$,

onde u = u(x, y) e v = v(x, y), ou seja, às equações

$$x^{3}u(x,y) + yv^{3}(x,y) - 2 = 0$$
 e $xu^{3}(x,y) + y^{3}v(x,y) - 2 = 0.$ (3.2)

Derivando estas equações em ordem a x obtemos o sequinte sistema de duas equações lineares:

$$\begin{cases} 3x^2u + x^3\frac{\partial u}{\partial x} + 3yv^2\frac{\partial v}{\partial x} = 0; \\ u^3 + 3xu^2\frac{\partial u}{\partial x} + y^3\frac{\partial v}{\partial x} = 0. \end{cases}$$

Tendo em conta que u(1,1) = v(1,1) = 1, resulta que

$$\begin{cases} \frac{\partial u}{\partial x}(1,1) + 3\frac{\partial v}{\partial x}(1,1) = -3; \\ 3\frac{\partial u}{\partial x}(1,1) + \frac{\partial v}{\partial x}(1,1) = -1. \end{cases}$$

Resolvendo este sistema, obtemos

$$\begin{cases} \frac{\partial u}{\partial x}(1,1) = 0; \\ \frac{\partial v}{\partial x}(1,1) = -1. \end{cases}$$

Analogamente, derivando as equações em (3.2) em ordem a y e procedendo de forma análoga, obtemos

$$\begin{cases} \frac{\partial u}{\partial y}(1,1) = -1; \\ \frac{\partial v}{\partial y}(1,1) = 0. \end{cases}$$

Assim,

$$\operatorname{Jac} f(1,1) = \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right].$$

Observação 3.10 Podemos obter uma fórmula para a matriz Jacobiana da aplicação $\mathbf{y} = f(\mathbf{x})$, definida implicitamente à custa da equação $F(\mathbf{x}, f(\mathbf{x})) = 0$, através do produto de matrizes:

$$\operatorname{Jac} f\left(\mathbf{x}^{0}\right) = -\left(\operatorname{Jac}_{\mathbf{y}} F\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)\right)^{-1} \operatorname{Jac}_{\mathbf{x}} F\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right), \tag{3.3}$$

onde

$$\operatorname{Jac}_{\mathbf{y}} F\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) = \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}} \left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) & \dots & \frac{\partial F_{1}}{\partial y_{m}} \left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}} \left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) & \dots & \frac{\partial F_{m}}{\partial y_{m}} \left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) \end{bmatrix},$$

e $\operatorname{Jac}_{\mathbf{x}} F(\mathbf{x}^0, \mathbf{y}^0)$ define-se da mesma forma mas relativamente às variáveis $x_1, ..., x_n$, e $\left(\operatorname{Jac}_{\mathbf{y}} F(\mathbf{x}^0, \mathbf{y}^0)\right)^{-1}$ representa a inversa da matriz quadrada $\operatorname{Jac}_{\mathbf{y}} F(\mathbf{x}^0, \mathbf{y}^0)$. Notemos ainda que as matrizes $\operatorname{Jac}_{\mathbf{x}} F(\mathbf{x}^0, \mathbf{y}^0)$ e $\operatorname{Jac} f(\mathbf{x}^0)$ podem não ser quadradas (o que acontece quando $n \neq m$).

Assim, a matriz $\operatorname{Jac} f(1,1)$ do exemplo anterior pode ser determinada pela fórmula (3.3), nomeadamente, como

$$(\operatorname{Jac}_{\mathbf{y}} F(1,1,1,1))^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{1}{8} & \frac{3}{8} \\ \frac{3}{8} & -\frac{1}{8} \end{bmatrix}$$

e

$$\operatorname{Jac}_{\mathbf{x}} F(1,1,1,1) = \begin{bmatrix} 3x^{2}u & v^{3} \\ u^{3} & 3y^{3}v \end{bmatrix}_{(1,1,1,1)} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

 $ent\~ao$

$$\operatorname{Jac} f(1,1) = - \begin{bmatrix} -\frac{1}{8} & \frac{3}{8} \\ \frac{3}{8} & -\frac{1}{8} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

3.4 Aplicação inversa

Se \mathcal{I} é a aplicação identidade em \mathbb{R}^n , isto é $\mathcal{I}(\mathbf{x}) = \mathbf{x} = (x_1, ..., x_n)$, $\forall \mathbf{x} \in \mathbb{R}^n$, então $\operatorname{Jac} \mathcal{I}(\mathbf{x}) = I_n$, onde I_n representa a matriz identidade de ordem n, e portanto o seu Jacobiano é igual a 1.

Agora consideremos uma aplicação $f: D \to \mathbb{R}^n$, f(D) = E, onde $D, E \subset \mathbb{R}^n$ são conjuntos abertos. Suponhamos que f tem inversa $g: E \to D$ diferenciável, ou seja g é tal que

$$g \circ f = \mathcal{I} = f \circ g$$
.

Então $\operatorname{Jac}(g \circ f) = \operatorname{Jac} g \operatorname{Jac} f = I_n$, donde sai que os Jacobianos de ambas as aplicações f e g são diferentes de zero. Por outro lado, se a aplicação f é diferenciável num ponto $\mathbf{x}^0 \in D$ e $J(f)(\mathbf{x}^0) \neq 0$ então existe uma vizinhança do ponto $\mathbf{y}^0 = f(\mathbf{x}^0)$ onde a função inversa g está bem definida, é contínua e diferenciável. Se isto acontece em todos os pontos do conjunto aberto D então a aplicação f diz-se um difeomorfismo em D. A matriz Jacobiana da aplicação inversa g é a inversa da matriz Jacobiana de f:

$$\operatorname{Jac} g(\mathbf{y}^0) = (\operatorname{Jac} f)^{-1}(\mathbf{x}^0).$$