- 23. Existe un algoritmo para determinar si una palabra u tiene más de un árbol de derivación en una gramática independiente del contexto G.
- 24. La intersección de dos lenguajes independientes de contexto con un número finito de palabras produce siempre un lenguaje regular.
- 25. El complementario de un lenguaje con un número finitos de palabras es siempre libre de contexto. \bigvee
- 26. Todo lenguaje aceptado por un autómata con pila por el criterio de estados finales cumple la condición que aparece en el lema de bombeo para lenguajes libres de contexto.
- 27. No existe algoritmo que para toda gramática libre de contexto G nos indique si el lenguaje generado por esta gramática L(G) es finito o infinito.
- 28. Si L_1 y L_2 son lenguajes independientes de contexto, entonces $(L_1L_2 \cup L_1)^*$ puede ser representado por un autómata con pila. \checkmark
- 29. Existe un algoritmo para determinar si un autómata con pila es determinista.
- 30. La demostración del lema de bombeo para lenguajes independientes del contexto se basa en que si las palabras superan una longitud determinada, entonces en el árbol de derivación debe de aparecer una variable como descendiente de ella misma. V
- 31. La unión de dos lenguajes independientes contexto puede ser siempre aceptada por un autómata con pila.
- 32. El complementario de un lenguaje libre de contexto con una cantidad finita de palabras no tiene porque producir otro lenguaje libre de contexto.
- 33. El lema de bombeo para lenguajes libres de contexto es útil para demostrar que un lenguaje determinado no es libre de contexto.
- 34. La intersección de dos lenguajes independientes del contexto da lugar a un lenguaje aceptado por un autómata con pila determinista.
- 35. No existe algoritmo que reciba como entrada una gramática independiente del contexto y nos devuelva si el lenguaje generado por esta gramática es finito o infinito.
- 36. En el algoritmo de Cocke-Younger-Kasami si $A \in V_{1,2}$ y $B \in V_{3,2}$ y $C \to AB$, podemos deducir que $C \in V_{1,4}$.
- 37. Si L es independiente del contexto, entonces L^{-1} es independiente del contexto.
- 38. No existe un algoritmo que nos diga si son iguales los lenguajes generados por dos gramáticas independientes del contexto G_1 y G_2 .
- 39. La intersección de dos lenguajes infinitos da lugar a un lenguaje independiente del contexto.
- 40. La unión de dos lenguajes independientes del contexto puede ser aceptado por un autómata con pila. 🗸
- 41. El lenguaje $L = \{0^i 1^j 2^k \mid 1 \le i \le j \le k\}$ es independiente del contexto \models
- 42. Si L_1 y L_2 son independientes del contexto, no podemos asegurar que $L_1 \cap L_2$ también lo sea. \bigvee
- 43. Si un lenguaje satisface la condición necesaria del lema de bombeo para lenguajes regulares, entonces