CONVOLUTIONAL NEURAL NETWORKS FOR RECOGNIZING COVID-INDUCED PNEUMONIA IN LUNG X-RAY SCANS

PROJECT PROPOSAL

RYAN DIVIGALPITIYA

HEATHER HARTLEY

MOHAMMED ALANBARY

04.05.2021

AGENDA

TOPIC OVERVIEW

RELATED WORK

DATA SET OVERVIEW

METHODOLOGIES

PRELIMINARY RESULTS

IMPROVEMENT STRATEGIES

EVALUATION METRICS

Healthy

Viral Pneumonia

Bacterial Pneumonia

COVID-19 Pneumonia

TOPIC OVERVIEW

- COVID-19 has plagued our world for over a year
- Al community continuously looking for better ways to detect pneumonia caused by COVID
- We seek to implement a CNN that can differentiate between a healthy patient, a patient that has COVID-induced pneumonia and a patient that has non-COVID pneumonia (3 classes in total)
- Practical use of a CNN that detects COVID-19 pneumonia cases extends to:
 - Treatment decision making
 - Outcome prediction
 - Severity of illness

RELATED WORK

- Why Convolutional Neural Networks?
- Studies show they are more effective at detecting chest diseases than other network types
- Abiyev, Rahib H, and Mohammad Khaleel Sallam Ma'aitah. "Deep Convolutional Neural Networks for Chest Diseases Detection." Journal of healthcare engineering vol. 2018 4168538. 1 Aug. 2018, doi:10.1155/2018/4168538
 - "[...] the CNN has achieved the highest recognition rate for [detecting chest disease type], compared to other employed networks."

TWO GOALS

1

First, see if we can build a model that can distinguish between a healthy patient versus a patient with pneumonia (any kind)

2

If we are successful, then we'll try to build a model that attempts to distinguish between healthy patients versus COVID-induced pneumonia versus non-COVID-induced pneumonia

DATASET CHALLENGES

Different Anatomical Planes

Transverse

Coronal

Sagittal

Bad Cropping

Empty Space

Off-Centered

Differing Sizes

Aspect-Ratios

Dimensions

Pre-processing pipeline will have to remove all of these differences in the images

DATASET OVERVIEW

Healthy (10,000 images)

COVID (3,600 images)

Bacterial Pneumonia (6,000 images)

Viral Pneumonia (1,300 images)

First, see if we can build a model that can distinguish between a healthy patient versus a patient with pneumonia (any kind)

2

If we are successful, then we'll try to build a model that attempts to distinguish between healthy patients versus COVID-induced pneumonia versus non-COVID-induced pneumonia

Preliminary Neural Net Architecture

Preliminary Neural Net Architecture

Preliminary Results

1

Binary Classification (Healthy Patient | Patient with Pneumonia (any kind))

Training Accuracy	Validation Accuracy
91%	88%

Multi-Classification (3 Classes: Healthy Patient | Patient with COVID | Patient with Non-COVID Pneumonia)

Training Accuracy Validation Accuracy

88%

82%

Performance Boosting Strategies

- Pre-processing:
 - Same intensity/brightness range?
 - Did not normalize. We will do that next time to help converge faster

Performance Boosting Strategies

- Tuning Architecture of Network:
 - Tune number of convolution layers
 - Tune number of dense layers
 - Will have to employ Cross-Validation + evaluation of a
 Test Set to guard against overfitting

Performance Boosting Strategies

- Simply increase number of epochs (to an extent)
 - GPU Training

Future Evaluation Metrics

Lesser of two evils:

If we have to choose between higher false positive rate and higher false negative rate, we would want to choose the former: for medical diagnosis, lower false-negative rate should be prioritized

We will explore making use of the following evaluation metrics to properly assess model performance:

- 1. Multi-Classification Confusion Matrix
- 2. Receiver Operator Curve
- 3. Precision
- 4. Recall
- 5. F1-Scores
- 6. Specificity
- 7. Sensitivity
- 8. Balanced Accuracy

