Index
· Fact
· Thm 1
· Thm 2
· Function with discontinuous integrable ?
· Thm 3
· 7hm 4
· Def of measure

Fact: For any
$$S > 0$$
, we can find a partition $P = \{t_0, t_1, \dots t_n\}$ of $[a,b]$ $S.t.$ $t_i - t_{i-1} < S$ $\forall i$

Thm 1:
$$f$$
 is integrable \Leftrightarrow For any $\epsilon>0$, there is a partition P of $[a,b]$ s.t. $U(f,P)-L(f,P)<\epsilon$

$$\begin{array}{l}
\mathcal{A} & \text{$\alpha, y \in [t_{i-1}, t_i]} \\
\Rightarrow & |f(\alpha) - f(y)| < \varepsilon
\end{array}$$

Thm 2: If $f: [a,b] \rightarrow \mathbb{R}$ is <u>continuous</u>, then f is <u>integrable</u>

Proof: Apply 7hm 1: For any E>0

1) Since f is U.C., then there is a 8 > 0 s.t.

$$|x-y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b-a}$$

2) By Fact, there is partition $P = \{t_0, t_1, \dots, t_n\}$ s.t.

$$0 < t_i - t_{i-1} < S$$
 for $\forall i = 1, \dots, n$

 $\pi_i, y_i \in [t_{i-1}, t_i]$

 $\mathcal{M}_i = \sup f([t_{i-1}, t_i]) = f(x_i)$

Compute $m_i = \inf f([t_{i-1}, t_i]) = f(y_i) \longrightarrow \text{Extreme Value Thm}$

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} M_{i} (t_{i} - t_{i-1}) - \sum_{i=1}^{n} m_{i} (t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} (M_{i} - m_{i})(t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} (f(x_{i}) - f(y_{i}))(t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} |f(x_{i}) - f(y_{i})|(t_{i} - t_{i-1}) \qquad (*)$$

since $x_i, y_i \in [t_{i-1}, t_i] \Rightarrow |x_i - y_i| < 8$

$$(*) < \sum_{i=1}^{n} \frac{\varepsilon}{b-a} (t_i - t_{i-1}) = \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (t_i - t_{i-1}) = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon$$

$$\Rightarrow U(f,P) - L(f,P) < \varepsilon$$

$$ightharpoonup \underline{Q}$$
: What about function with discontinuous?

Case 1: Suppose
$$f: [a,b] \rightarrow \mathbb{R}$$
 is continuous everywhere except at $x=b$ (same argument holds for $x=a$)

Proof: Apply
$$\frac{7hm 1}{1}$$
: For any $\epsilon > 0$

Step 1: Take a point
$$c \in (a,b)$$
 s.t. $b-c = \frac{\varepsilon}{2(M-m)}$

Step 2: Since
$$f: [a,c] \rightarrow \mathbb{R}$$
 cont., then f is integrable over $[a,c]$

 $M = \sup f([a,b])$

 $m = \inf f([a,b])$

 $Mn = \sup f([c,b])$

 $m_n = \inf f([c,b])$

$$\mathcal{U}(f,P') - \mathcal{L}(f,P') < \frac{\varepsilon}{2}$$

$$\mathcal{L}(f,P') = \mathcal{L}(f,P') + \frac{\varepsilon}{2}$$

=
$$(U(f,P') + M_n(t_n-t_{n-1})) - (L(f,P') + M_n(t_n-t_{n-1}))$$

=
$$(U(f,P') + U_n(b-c)) - (L(f,P') + m_n(b-c))$$

$$= (U(f,P') - L(f,P')) + (M_n(b-c) - m_n(b-c))$$

$$<\frac{\varepsilon}{2}+(MM)\cdot\frac{\varepsilon}{2(M-m)}=\varepsilon$$

We get
$$U(f,P) - L(f,P) < \varepsilon$$

Case 2: What if $f: [a,b] \rightarrow \mathbb{R}$ has m discontinuous, with m > 1? Apply induction and use the following Thm Thm 3: Let $f: [a,b] \rightarrow \mathbb{R}$ be bounded and let $c \in (a,b)$ Then, f is integrable over $[a,b] \iff f$ is integrable over [a,c] & [c,b]In this case, $\int_a^b f dx = \int_a^c f dx + \int_c^b f dx$ But, what if $f: [a,b] \rightarrow \mathbb{R}$ is discontinuous at infinite countably many points? A: les, it is integrable Thm 4: $f: [a,b] \to \mathbb{R}$ is integrable \iff The set of discontinuity points has <u>measure 0</u> Def of measure 0: $X \subseteq \mathbb{R}$ has measure 0 if , for any $\varepsilon > 0$, we can find a countable collection of open intervals {(an bn)}new s.t. $1) X \leq \bigcup_{n=1}^{\infty} (a_n, b_n)$ 2) $\sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon$

Exercise in Homework 4:

Show that any countable set the measure O

Wint: Use the series $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$