

FIGURE 1 – Organigramme de calcul de la division entière

Cours MOdélisation, Vérification et Expérimentations
Exercices
Série A Annotation, modélisation, vérification - Validation en TLA⁺
par Dominique Méry
17 mars 2025

TD1

Exercice 1 (malgtd1ex1)

Le PGCD de deux nombres vérifie les propriétés suivantes :

- $-- \forall a, b \in \mathbb{N}.pgcd(a, b) = pgcd(b, a)$

mov

- Ecrire une spécification TLA⁺ calculant le PGCD de deux nombres donnés.
- Donner une explication ou une justification de la correction de cette solution

Exercice 2 (malgtd1ex2)

L'accès à une salle est contrôlé par un système permettant d'observer les personnes qui entrent ou qui sortent de cette salle. Ce système est un ensemble de capteurs permettant d'identifier le passage d'une personne de l'extérieur vers l'intérieur et de l'intérieur à l'extérieur. Le système doit garantir qu'au plus max personnes soient dans la salle. Ecrire un module TLA+ permettant de modéliser un tel système respectant la propriété attendue.

Exercice 3 (malgtd1ex3)

On considère l'algorithme suivant décrit par un organigramme ou flowchart de la figure 1. Cet algorithme calcule le reste et le quotient de la division de x_1 par $x_2 : 0 \le z_2 \le x_2 \wedge x_1 = z_1 \cdot x_2 + z_2$. On suppose que x_1 et x_2 sont positifs et non nuls.

Question 3.1 Donner la précondition et la postcondition associées à cet algorithme.

FIGURE 2 - Flowchart du calcul de la fonction de McCarthy

Question 3.2 Traduire cet algorithme sous forme d'un module TLA+.

Question 3.3 Tester les valeurs des variables à l'exécution.

Question 3.4 Montrer que cet algorithme est partiellement correct par rapport à sa précondition et à sa postcondition qu'il faudra énoncer.

TD2

Exercice 4 (malgtd1ex4)

La fonction de McCarthy f91 est définie pour tout entier x f91(x) = if x > 100 then x-10 else 91 fi.

Question 4.1 Définir le contrat é'tablissant la correction partielle de l'algorithme ALG91 de la figure 2 qui est réputé calculer la fonction f91

Question 4.2 Construire un module TLA⁺ modélisant les différents pas de calcul.

Question 4.3 Evaluer l'algorithme en posant des questions de sûreté suivantes :

- 1. l'algorithme est partiellement correct.
- 2. l'algorithme n'a pas d'erreurs à l'exécution.

FIGURE 3 - Flowchart pour le test de primalité

Exercice 5 (malgtd1ex5 et inmalgtd1ex5)

Soit le schéma de la figure 3 définissant un calcul déterminant, si un nombre entier naturel est premier ou non.

Question 5.1 Ecrire un module TLA/TLA⁺ modélisant ce schéma de calcul et montrer que le modèle est sans blocage.

Question 5.2 Définir la propriété prime(x) qui est vraie si x est premier et faux sinon.

Question 5.3 Ecrire le contrat présumé du calcul du flowchart de la figure 3

Question 5.4 Vérifier la correction partielle

Question 5.5 Vérifier l'absence d'erreurs à l'exécution.

Exercice 6 Dans cet exercice, il est question de découvrir les modules de base de TLA Toolbox comme TLC, Integers, Naturals . . . afin de découvrir les fonctions qui sont prédéfinies.

TD3

Exercice 7 (Utilisation de ToolBox et TLA pour un labyrinthe, malgtd1ex7) Le module truc permet de résoudre un problème très classique en informatique : trouver un chemin entre un sommet input et des sommets output supposés être des sommets de sortie.

Question 7.1 Pour trouver un chemin de input à l'un des sommets de output, il faut poser une question de sûreté à notre système de vérification. Donner une question de sûreté à poser permettant de trouver un chemin de input vers un sommet de output.

Question 7.2 On désire utiliser cette technique pour trouver un chemin dans un labyrinthe. Un labyrinthe est représenté par une matrice carrée de taille n. On définit ensuite pour chaque élément << i, j>> de la matrice les voisins communiquant à l'aide de la fonction lab qui associe à << i, j>> les éléments qui peuvent être atteints en un coup. Par exemple, le mouvement possible à partir de << 1, 1>> est << 2, 1>>, ou le mouvement possible à partir de << 2, 2>> est << 2, 3>> ou << 3, 2>> ou << 2, 1>>, ...

Modifier le module truc pour traiter ce problème et donner la question à poser pour trouver une sortie.

```
- MODULE truc ---
EXTENDS Integers, TLC
VARIABLES p
CONSTANTS input, output
n \triangleq 10
nodes \triangleq 1..n
l \triangleq [i \in 1..n \mapsto \text{IF } i = 1 \text{ THEN } \{4, 5\} \text{ ELSE }
                      If i=2 then \{6,7,10\} else
                      If i = 4 then \{7, 8\} else
                      IF i = 5 THEN \{\} ELSE
                      IF i = 6 THEN \{4\} ELSE
                      IF i = 7 THEN \{5\} ELSE
                      IF i = 8 THEN \{5, 2\} ELSE
                      {}
Init \triangleq p = 1
M(i) \triangleq \wedge i \in l[p]
          \wedge p' = i
Next \triangleq \exists i \in 1..n : M(i)
```


FIGURE 4 – Labyrinthe

Exercice 8 (malgtd1ex10, malgtd1ex10bis, malgtd1ex10ter, malgtd1ex10last)

Pour montrer que chaque annotation est correcte ou incorrecte, on propose de procéder comme suit :

- Traduire cette annotation sous la forme d'un contrat.
- Vérifier les conditions de vérification du contrat

$$\ell_1: P_{\ell_1}(v)$$

$$\mathsf{v} := \mathsf{f}(\mathsf{v},\mathsf{c})$$

$$\ell_2: P_{\ell_2}(v)$$

$$\begin{split} & - pre(v_0) \equiv P_{\ell_1}(v_0) \\ & - post(v_0, v_f) \equiv P_{\ell_2}(v_f). \\ & - Q_{\ell_1}(v_0, v) \equiv P_{\ell_1}(v) \land v = v_0 \\ & - Q_{\ell_2}(v_0, v) \equiv P_{\ell_2}(v) \end{split}$$

 $\begin{array}{c} \text{variables v} \\ \text{requires } pre(v_0) \\ \text{ensures } post(v_0, v_f) \\ \\ \begin{bmatrix} \text{begin} \\ \ell_1 : Q_1(v_0, v) \\ \text{v} := \text{f(v, c)} \\ \ell_2 : Q_2(v_0, v) \\ \text{end} \\ \end{bmatrix}$

On rappelle qu'un contrat est valide si les trois conditions suivantes sont valides :

- (init) $pre(v_0) \wedge v = v_0 \Rightarrow Q_1(v_0, v)$
- (concl) $pre(v_0) \wedge Q_2(v_0, v) \Rightarrow post(v_0, v)$
- (induct) $pre(v_0) \wedge Q_1(v_0, v) \wedge cond_{\ell_1, \ell_2}(v) \wedge v' = f(v, c) \Rightarrow Q_2(v_0, v')$

Les deux propriétés (init) et (CONCI) sont valides par construction et la seule propriété à montrer correcte ou incorrecte est la propriété (induct).

Question 8.1 (malgtd1ex10)

$$\ell_1: x = 3 \ \land \ y = z + x \ \land z = 2 \cdot x$$

$$y:= z + x$$

$$\ell_2: x = 3 \ \land \ y = x + 6$$

Question 8.2 (malgtd1ex10bis)

Pour les deux exemples qui suivent, on considère dex cas et on doit donner une interprétation.

$$\ell_1 : x = 2^4 \land y = 2 \land x \cdot y = 2^6$$

$$x := y + x + 2^x$$

$$\ell_2 : x = 2^{10} \land y = 2$$

$$\ell_1 : x = 2^4 \land y = 2 \land x \cdot y = 2^5$$

$$x := y + x + 2^x$$

$$\ell_2 : x = 2^{10} \land y = 2$$

Question 8.3 (malgtd1ex10ter.tla)

$$\ell_1 : x = 1 \land y = 12$$

 $x := 2 \cdot y + x$
 $\ell_2 : x = 1 \land y = 25$

Question 8.4 (malgtd1ex10last.tla)

$$\begin{array}{l} \ell_1: x = 11 \ \land \ y = 13 \\ z:= x; x:= y; y:= z; \\ \ell_2: x = 26/2 \ \land \ y = 33/3 \end{array}$$

TD4

Exercice 9 (malgtd1ex11,pluscal_max.tla)

```
 \begin{array}{c} \textbf{Variables} : X,Y,Z \\ \textbf{Requires} \ : x_0,y_0 \in \mathbb{N} \ \land z_0 \in \mathbb{Z} \\ \textbf{Ensures} \ : z_f = max(x_0,y_0) \\ \\ \ell_0 : \{\ldots\} \\ \textbf{if} \ X < Y \ \textbf{then} \\ & \left| \begin{array}{c} \ell_1 : \{\ldots\} \\ Z := Y; \\ \ell_2 : \{\ldots\} \end{array} \right| \\ \textbf{else} \\ & \left| \begin{array}{c} \ell_3 : \{\ldots\} \\ Z := X; \\ \ell_4 : \{\ldots\} \end{array} \right| \\ \\ \vdots \\ \\ \vdots \\ \end{array}
```

Algorithme 1: maximum de deux nombres non annotée

Question 9.1 alg 9

Ecrire un module TLA^+ qui traduit la relation de transition de cet algorithme selon les instructions. Pour cela, vous utiliserez la fonctionnalité offerte par la tradution d'un algorithme PlusCal en TLA^+ . La figure est intitul \tilde{A} ©e maximum de deux nombres non annotée.

Algorithme 2: maximum de deux nombres non annotée

Question 9.2 Compléter l'algorithme intitulé maximum de deux nombres non annotée en l'annotant.

Question 9.3 Vérifier que l'annotation est correcte.

Question 9.4 Enoncer et vérifier la correction partielle et montrer que le contrat de correction partielle est satisfait.

Question 9.5 Compléter le module TLA⁺ en définissant l'invariant construit avec les annotations et vérifier le contrat.

Exercice 10 Montrer que chaque annotation est correcte ou incorrecte selon les conditions de vérifications énoncées comme suit

$$\forall x, y, x', y'. P_{\ell}(x, y) \land cond_{\ell, \ell'}(x, y) \land (x', y') = f_{\ell, \ell'}(x, y) \Rightarrow P_{\ell'}(x', y')$$

$$- \begin{bmatrix} \ell_1 : x = 10 \land y = z + x \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 10 \land y = x + 2 \cdot 10 \end{bmatrix} - \begin{bmatrix} \ell_1 : x = 1 \land y = 12 \\ x := 2 \cdot y \\ \ell_2 : x = 1 \land y = 24 \end{bmatrix}$$

$$- \underbrace{ \begin{cases} 0 \\ 1 : x = 2 \\ 0 \end{cases} \land y = 2^{p+1} \land x \cdot y = 2^{2 \cdot p+1} \\ x := y + x + 2^x \\ annol_2 : x = 5 \cdot 2^p \land y = 2^{p+1} \end{cases} }_{2p+1}$$

$$- \underbrace{ \begin{cases} \ell_1 : x = 1 \land y = 13 \\ z := x; x := y; y := z; \\ \ell_2 : x = 26/2 \land y = 33/3 \end{cases} }_{2p+1}$$

On rappelle qu'un contrat pour la correction partielle d'un petit programme est donné par les éléments ci-dessou en colonne de gauche et que les conditions de vérification associées sont définies par le texte de la colonne de droite.

Contrat de la correction partielle

```
variables type X
definitions
                                      Conditions de vérification
def1 \stackrel{def}{=} text1
                                           -pre(x_0) \wedge x = x_0 \Rightarrow P_0(x_0, x)
                                           -- pre(x_0) \wedge P_f(x_0, x) \Rightarrow post(x_0, x)
requires pre(x_0)
                                           — Pour toutes les paires \ell, \ell', telles que \ell \longrightarrow \ell', on
                                               vérifie que, pour toutes les valeurs x, x' \in \mathbf{MEMORY}
ensures post(x_0, x_f)
                                                       pre(x_0) \wedge P_{\ell}(x_0, x))
\wedge cond_{\ell, \ell'}(x) \wedge x' = f_{\ell, \ell'}(x)
          begin
          0: P_0(x_0, x)
          instruction_0
          1:P_i(x_0,x)
          instruction_1
          f: P_f(x_0, x)
          end
```

Exercice 11 (*prog23-4.c*)

Soit le contrat suivant qui met en jeu les variables X,Y, Z,C,R.

```
 \begin{array}{l} \pmb{VARIABLES} \text{ int } X,Y,Z,C,R \\ \hline \pmb{REQUIRES} \ x_0,y_0,z_0,c_0,r_0 \in \mathbb{Z} \\ \hline \pmb{ENSURES} \ r_f = 0 \\ \hline \\ \pmb{SURES} \ r_f = 0 \\ \hline \\ & (X,Z,Y) := (49,2 \cdot C,(2 \cdot C + 1) \cdot (2 \cdot C + 1)); \\ 1: x = 49 \land z = 2 \cdot c \land y = (z+1) \cdot (z+1) \\ Y: = X + Z + 1; \\ 2: x = 49 \land z = 2 \cdot c \land y = (c+1) \cdot (c+1) \\ \pmb{END} \end{array}
```

Question 11.1 Ecrire les conditions de vérification associée au contrat ci-dessus en vous aidant du rappel de la définition de ces conditions de vérification.

Question 11.2 Simplifier les conditions de vérification et préciser les conditions que doivent vérifier les valeurs initiales des variables X,Y,Z,C,R pour que les conditions de vérification soient toutes vraies. En particulier, il faudra s'assurer que la précondition est satisfaisable.

Exercice 12 ()

On considère le petit programme se trouvant à droite de cette colonne. Nous allons poser quelques questions visant à compléter les parties marquées en gras et visant à définir la relation de calcul.

On notera $pre(n_0, x_0, b_0)$ l'expression $n_0, x_0, b_0 \in \mathbb{Z}$ et $in(n, b, n_0, x_0, b_0)$ l'expression $n = n_0 \land b = b_0 \land pre(n_0, x_0, b_0)$

Question 12.1 Donner l'assertion Requires en complétant ce qui est déjà mentionné et en reportant le texte complet de cette assertion Requires dans votre copie.

On rappelle que la relation de transition de ℓ vers ℓ' , notée $a(\ell, \ell')$, est définie par une relation de la forme $cond_{\ell,\ell'}(v) \wedge v' = f_{\ell,\ell'}(v)$.

Question 12.2 Ecrire les relations de transition entre les étiquettes successives : $a(\ell_0, \ell_1)$, $a(\ell_1, \ell_2)$, $a(\ell_2, \ell_3)$, $a(\ell_3, \ell_6)$, $a(\ell_1, \ell_4)$, $a(\ell_4, \ell_5)$, $a(\ell_5, \ell_6)$.

```
VARIABLES int N, X, B
REQUIRES n_0, x_0, b_0 \in \mathbb{Z}
                     n_0 < b_0 \Rightarrow x_f = question1
                    n_0 \geq b_0 \Rightarrow x_f = \boldsymbol{question1}
ENSURES
                    n_f = n_0 \wedge b_f = b_0
         BEGIN
         \ell_0:
            X := N;
         \ell_1:
         IF X < B THEN
         X := X \cdot X + 2 \cdot B \cdot X + B \cdot B;
            \ell_3:
         ELSE
            \ell_{4}:
               X := B;
            \ell_5:
         FΙ
         \ell_6:
         END
```

Exercice 13 (squareroot)

On considère l'algorithme squareroot calculant la racine carrée entière d'un nombre naturel $x \in \mathbb{N}$.

```
VARIABLES X, Y1, Y2, Y3, Z
pre(x0, y10, y20, y30, z0) \stackrel{def}{=}
U \stackrel{def}{=} (X, Y1, Y2, Y3, Z)
u0 \stackrel{def}{=} (x0, y10, y20, y30, z0)
post(x0, y10, y20, y30, z0, xf, y1f, y2f, y3f, zf) \stackrel{def}{=}
REQUIRES pre(x0, y10, y20, y30, z0)
ENSURES post(x0, y10, y20, y30, z0, xf, y1f, y2f, y3f, zf)
\ell_0: pre(u0) \wedge u = u0
(Y1, Y2, Y3) := (0, 1, 1)
\ell_1: pre(u0) \land x = x0 \land z = z0 \land y2 = (y1+1) \cdot (y1+1) \land y3 = 2 \cdot y1 + 1 \land y1 \cdot y1 \le x
WHILE Y2 \le X DO
  (Y1, Y2, Y3) := (Y1+1, Y2+Y3+2, Y3+2);
\ell_3: OD;
\ell_4:
Z := Y1;
\ell_5:
```

Question 13.1 Définir les deux assertions pre et post qui établissent le contrat de cet algorithme.

Question 13.2 Complétez cet algorithme en proposant trois assertions :

```
 - P_{\ell_2}(u0, u) 
 - P_{\ell_3}(u0, u) 
 - P_{\ell_4}(u0, u) 
 - P_{\ell_5}(u0, u)
```

Pour cela, le plus efficace est de définir clairement les les conditions de vérifications : pour chaque paire (ℓ,ℓ') d'étiquettes correspondant à un pas élémentaire ; on vérifie la propriété suivante :

```
P_{\ell}(u0,u) \wedge cond_{\ell,\ell'}(u) \wedge u' = f_{\ell,\ell'}(u) \Rightarrow P_{\ell'}(u')

Enoncez\ et\ v\'erifiez\ cette\ propri\'et\'e\ pour\ les\ paires\ d'\'etiquettes\ suivantes\ : (\ell_1,\ell_2)\ ; (\ell_1,\ell_4)\ ; (\ell_2,\ell_3)\ ; (\ell_3,\ell_2)\ ; (\ell_3,\ell_4)\ ; (\ell_4,\ell_5)\ ;
```

Question 13.3 Finalisez les vérifications an montrant que les conditions de vérification pour un contrat sont toutes vérifiées.

Question 13.4 On suppose que toutes les conditions de vérifications associées aux paires d'étiquettes successives de l'algorithme sont vérifiées. Quelles sont les deux conditions à montrer pour déduire que l'algorithme est partiellement correct par rapport aux pré et post conditions ? Vous donnerez explicitement les conditions et vous expliquerez pourquoi elles sont correctes. <

Question 13.5 Expliquer que cet algorithme est sans erreurs à l'exécution, si les données initiales sont dans un domaine à définir inclus dans le domaine des entiers informatiques c'est-à-dire les entiers codables sur n bits. L'ensemble des entiers informatiques sur n bits est l'ensemble noté \mathbb{Z}_n et défini par $\{i|i\in\mathbb{Z}\ \land\ -2^{n-1}\le i\ \land\ i\le 2^{n-1}-1\}$.