Numerical Optimization

Until now, we have discussed evaluating likelihoods.

• We've seen that in many cases maximizing a likelihood can be challenging and require numerical procedures.

Given that we can compute the value of a likelihood, for a $\vec{\theta}$ and \vec{y} we will now discuss numerical optimization techniques.

- Numerical methods typically won't find the exact MLE.
- We will need to set a tolerance level for the quality of our approximation.

Grid Search

Let our parameter vector $k \vec{\theta} \in \mathbb{R}^k$. We define a k-dimensional "grid" or hypercube of points, \bigoplus

- We can define a univariate grid, $(\mathbf{P})^{(w)}$ for $\theta_1 \in \vec{\theta}.\{\theta_{i,1}, \theta_{i,2}, \dots, \theta_{i,m_i}\}$
- $\bullet \ \ \textcircled{H} = \textcircled{H}^{(1)}x \textcircled{H}^{(2)}x \dots x \textcircled{H}^{(k)}$
- Ex: $N(\mu, \sigma^2)$

$$-5$$
 . μ . 5

$$\sigma^2$$

• Often such a grid search is simply equally spaced, but this is not required

Ex. AR(1)

Suppose
$$c = 0$$
 and $\sigma^2 = 1$. $\vec{\theta} = \phi \implies k = 1$

- The grid can be a set of values equally spaced between -0.99 and 0.99
- Given a data set \vec{y} , we can compute the exact or conditional likelihood for each ϕ_i in the grid and pick the one that yields the highest value of the log likelihood: ϕ^* .
- Refine the grid search around ϕ^* until our tolerance is reached.

If the likelihood is concave, then we can use a more efficient algorithm:

- Binary search
 - 1. Pick two adjacent points, θ_j and θ_{j+1} , in the middle of the grid and evaluate the likelihood

1

- 2. If $\mathcal{L}(\theta_{j+1}) < \mathcal{L}(\theta_j)$, set the lower bound of the grid to be θ_j and otherwise set the upper bound to be θ_{j+1} .
- 3. Return to step 1, until the lower and upper bounds of the grid are sperated by no more than one point.

• Golden Search: see Heer and Maussner

Grid search is very ineffective when k is large because the number of grid points grows exponentially: doubling the number of points in each dimension results in 2^k as many points.

• This is called the curse of dimensionality.

Newton-Raphson

Define:

$$\begin{split} \vec{g}(\vec{\theta}) &= \nabla \ell(\vec{\theta}) = \frac{\gamma \ell(\vec{\theta})}{\gamma \vec{\theta}} \\ H(\vec{\theta}) &= \nabla^2 \ell(\vec{\theta}) = \nabla \vec{g}(\vec{\theta}) = \frac{\gamma^2 \ell(\vec{\theta})}{\gamma \vec{\theta} \vec{\theta}'} \end{split}$$

Suppose $H(\vec{\theta})$ is positive definite:

$$\vec{x}'H(\vec{\theta})\vec{x} > 0 \quad \vec{x} \in \mathbb{R}^k$$

We can approximate $\ell H(\vec{\theta})$ with a 2nd order Taylor expansion around $\vec{\theta}^{(0)}$:

$$\tilde{\ell}(\vec{\theta}) = \ell(\vec{\theta}^{(0)}) + \vec{g}(\vec{\theta}^{(0)})'(\vec{\theta} - \vec{\theta}^{(0)}) + \frac{1}{2}(\vec{\theta} - \vec{\theta}^{(0)})'H(\vec{\theta}^{(0)})(\vec{\theta} - \vec{\theta}^{(0)})$$

The Newton-Raphson method chooses $\vec{\theta}^{(1)}$ to maximize $\tilde{\ell}(\vec{\theta})$:

$$\begin{split} \frac{\gamma \tilde{\ell}(\vec{\theta})}{\gamma \vec{\theta}} \bigg|_{\vec{\theta} = \vec{\theta}^{(1)}} &= \vec{g}(\vec{\theta}^{(0)}) + H(\vec{\theta}^{(0)})(\vec{\theta}^{(1)} - \vec{\theta}^{(0)}) = 0 \\ \implies \vec{\theta}^{(1)} - \vec{\theta}^{(0)} &= -H(\vec{\theta}^{(0)})^{-1} \vec{g}(\vec{\theta}^{(0)}) \\ \implies \vec{\theta}^{(1)} &= \vec{\theta}^{(0)} - H(\vec{\theta}^{(0)})^{-1} \vec{q}(\vec{\theta}^{(0)}) \end{split}$$

Newton-Raphson begins with a guess $\vec{\theta}^{(0)}$ and iteratively computes:

$$\begin{aligned} \vec{\theta}^{(i+1)} &= \vec{\theta}^{(i)} - H(\vec{\theta}^{(i)})^{-1} \vec{g}(\vec{\theta}^{(i)}) \\ \text{until } ||\vec{\theta}^{(i+1)} - \vec{\theta}^{(i)}|| < \tau \end{aligned}$$

where τ is some tolerance level.

- Newton-Raphson converges fast if the likelihood is concave and the initial guress is good enough.
- A modified version of NR computes:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - sH(\vec{\theta}^{(i)})^{-1}\vec{g}(\vec{\theta}^{(i)})$$

for various values of s and chooses $\vec{\theta}^{(i+1)}$ that yields the biggest log likelihood.

• Various modified NR methods have been proposed which substitute other positive definite matrices for H^{-1} .

2

- \bullet These are advantageous if H is not possible to compute or invert.
- \bullet Typically these are slower but more robust.

If analytical derivatives are not possible, numerical derivatives are an option.

- e.g. the *i*th element of $\vec{g}(\vec{\theta})$ can be approximated with $g_i(\vec{\theta}) = \frac{1}{\Delta} \left(\ell(\theta_1, \dots, \theta_i + \Delta, \dots, \theta_k) \ell(\theta_1, \dots, \theta_i, \dots, \theta_k) \right) \text{ for some small } \Delta.$
- \bullet The Hessian can be computed numerically from \vec{g} in a similar fashion.