CHAPITRE I: Réseau de pétri

Introduction

Définition

Réseaux de Pétri (RDP) : outil qui permet :

- la modélisation des systèmes de différents domaines d'application (Informatique, Production, ...);
- l'étude de systèmes dynamiques et discrets.
- d'obtenir une représentation mathématique modélisant le système.

- * L'analyse de cette représentation peut révéler des caractéristiques importantes du système concernant sa structure et son comportement dynamique.
- * RDP est défini par Carl Adam Pétri dans les années 60.
- Carl Adam Pétri est un mathématicien allemand et un informaticien

Les concepts du modèle

Condition: un prédicat logique d'un **état** du système. Elle est soit **vraie**, soit **fausse**.

Evénement : action qui se déroule dans le système.

Déclenchement, pré-condition, post-condition:

Les **conditions** nécessaires au **déclenchement** d' un **événement** sont les **pré-conditions** de l'événement.

Lorsqu'un événement se produit, d'autres conditions, appelées post-conditions de l'événement deviennent vraies.

Les concepts du modèle

Condition: les places

• **Evénement**: les transitions

- Les arcs
- Satisfaction d'une condition : Les jetons ●
- Condition vraie : Les marquages
- Un Réseau de Petri (RdP) est une structure graphique comportant un ensemble de places et de transitions, reliées par des arcs orientés, éventuellement porteurs de poids.

Exemple

Un processus à deux états(Arrêt, Marche)

Le **passage** d'un état à l'autre **mobilise** une **ressource**, symbolisée par le jeton.

Remarque

Chaque place va contenir un nombre entier de jetons (ou marques)

- Le marquage du réseau est constitué de toutes les marques présentées dans le réseau à un instant donné.
- L'état initial du réseau est caractérisé par le marquage initial.
- Un état de l'automate est un marquage, c'est à dire un ensemble de places marquées.

Franchissement d'une transition

Consiste à retirer un nombre de jetons de chacune des places d'entrée et à rajouter un nombre de jetons à chacune des places de sortie de la même transition.

Transition est **franchissable** ou **validée**

Si chacune des **places** en en **entrée** de cette transition contient **suffisamment** de **jetons** (>= au poids de l'arc).

Situation avant...

Situation après...

Exemple

Le tir de la transition enlève un /plusieurs jeton (s) de chaque place d'entrée et ajoute un /plusieurs jeton (s) à (aux) place(s) de sortie(s).

Exemple

Un processus à deux états(Arrêt, Marche)

Le **passage** d'un état à l'autre **mobilise** une **ressource**, symbolisée par le jeton.

Séquentiel

Si dans le RDP, plusieurs transitions sont valides, leur tir doit être successive.

Conflit

Si 2 ou plusieurs transitions peuvent être validées simultanément à partir d'une même place d'entrée (place partagée), il y a conflit si la place partagée ne possède qu'un jeton.

Il faut définir une règle de priorité.

Partage de ressource (Exclusion mutuelle)

Exclusion mutuelle

Le sémaphore

Le sémaphore est utilisé lorsqu'un processus ne peut avancer que si l'autre a déjà franchi une transition donnée.

Le parallélisme

- La décomposition parallèle signifie qu'un processus peut se décomposer en deux processus s'exécutant indépendamment l'un de l'autre.
- Pour que le processus soit considéré comme terminé il faut que les deux sousprocessus soient terminés, quel qu'ait été l'ordre de leur exécution.

Rendez-vous

Arc inhibiteur

- Un arc inhibiteur est un arc orienté qui part d'une place pour aboutir à une transition (et non l'inverse).
- Son extrémité est marquée par un petit cercle.
- La présence d'un arc inhibiteur entre une place Pi et une transition Tj signifie que la transition Tj n'est validée que si la place Pi ne contient aucun jeton.
- Le franchissement de la transition Tj consiste à retirer un jeton dans chaque place située en amont de la transition à l'exception de la place Pi, et à ajouter un jeton dans chaque place située en aval de la transition.

Définition

RdP est composé de deux types de nœuds:

- Les places (Pi) qui permettent de décrire les états du système modélisé.
 L'ensemble de ces places est noté P={P1, P2, ...}.
- Les transitions (Ti) qui représentent les changements d'états.
 L'ensemble de ces transitions est noté T={T1, T2, ...}.
- Un marquage est un vecteur $M: P \rightarrow N$ qui assigne à chaque place un entier non négatif de jetons;

Le marquage d'une place p est indiqué comme M(p).

МО	2 0 0
M1	0 1 0
M2	

$$P = \{p_1, p_2, p_3, p_4\}$$

$$T = \{t_1, t_2, t_3, t_4\}$$

$$M(p_1) = 1$$
, $M(p_2) = 2$, $M(p_3) = 0$, $M(p_4) = 1$

$$M_0 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

Exemple

Tir de t2

Exemple

Tir de t4

Définitions

RdP est un quadruplet N = (P, T, Pré, Post) tel que :

- $P = \{Pi\}, i \in \{1,...,n\}$: ensemble de **places**
- T = {Tj}, $j \in \{1,...,m\}$: ensemble de **transitions**
- **Pré** est une application de P X T $\rightarrow \mathbb{N}$: dite **d'incidence avant**.
- **Post** est une application de P X T $\rightarrow \mathbb{N}$: dite **d'incidence arrière**.

Matrice Post-incidence

Matrice Post-incidence:

• Chaque élément de cette matrice Post (Pi, Tj) correspond au nombre de jetons à rajouter dans Pi en franchissant Tj.

Matrice Pré-incidence

Matrice Pré-incidence:

• Chaque élément de cette matrice **Pré (Pi, Tj)** correspond au **nombre de jetons** à **enlever** de Pi en franchissant Tj.

Matrice Post-incidence

$$Pre = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

$$Post = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

Matrice d'incidence

• Chaque élément de cette matrice **C(Pi, Tj)** correspond au **nombre de jetons à rajouter moins celui à enlever dans** Pi en franchissant Tj.

Matrice d'incidence

$$P = \{p_1, p_2, p_3, p_4\}$$
$$T = \{t_1, t_2\}$$

$$Post = \begin{pmatrix} ? \\ - \end{pmatrix}$$

Matrice d'incidence

$$P = \{p_1, p_2, p_3, p_4\}$$
$$T = \{t_1, t_2\}$$

$$Pre = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{array}\right)$$

$$Post = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$C = \left(\begin{array}{cc} -2 & 0 \\ 1 & -1 \\ 1 & -1 \\ 0 & 2 \end{array}\right)$$

Evolution du marquage

Principe

❖ Le franchissement d'une transition t de T validée dans le marquage M conduit au marquage M1 :

$$\forall p \in P, \ \forall t \in T, \ M1(p) = M(p) + C(p, t)$$

Exercice

- Représenter le modèle producteur/consommateur qui correspond à une situation où l'un des processus produit des ressources nécessaires à l'autre.
- On utilise une place « tampon » pour matérialiser le nombre de ressource produites mais pas encore consommées.
- On peut limiter la capacité du tampon pour éviter que le producteur ne « prenne trop d'avance » sur le consommateur.

Exercice

