Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Introducción

Motivación

¿Es posible hacer que las redes neuronales sean capaces de ver?

- 1 Localidad
- 2 Invarianza al movimiento
- 3 Composición jerárquica

- 1 Localidad: Detectar características que componen un objeto.
- 2 Invarianza al movimiento
- 3 Composición jerárquica

- 1 Localidad: Detectar características que componen un objeto.
- 2 Invarianza al movimiento: Misma salida si la posición del objeto de entrada cambia.
- 3 Composición jerárquica

- 1 Localidad: Detectar características que componen un objeto.
- 2 Invarianza al movimiento: Misma salida si la posición del objeto de entrada cambia.
- 3 Composición jerárquica: Combinar características simples y aprender otras complejas.

Introducción: Historia

¿Cómo funciona nuestra visión?

En 1981, David Hubel y Torsten Wiesel reciben el Nobel de medicina por sus contribuciones en el campo de la neurociencia y su investigación sobre el procesamiento visual en el cerebro.

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Introducción: Historia

Neocognitron

En 1980, Fukushima propone una forma de implementar el modelo jerárquico del sistema nervioso visual de Hubel y Wiesel utilizando redes neuronales.

- Creado a partir de convoluciones.
- Capaz de detectar composiciones jerárquicas.
- Algoritmo de entrenamiento ineficiente

Introducción: Historia

Convolutional networks

En 1990, LeCun entrena una red convolucional utilizando backpropagation. Aboga por el aprendizaje de características end-to-end en la clasificación de imágenes.

Convolutional Neural Networks (CNNs)

Convoluciones

Codificación de imágenes

Las imágenes son matrices de **pixels**. Cada uno posee un valor entre [0,255] que representan la intensidad.

- Si la imagen es en escala de grises, solo tendremos una matriz.
- Si es en color, tendremos tres matrices, una por cada canal (Rojo, Verde y Azul).

Procesamiento dentro de una red

No pueden ser tratados como vectores "no estructurados" normales, han de ser invariantes al movimiento.

Además, los modelos resultantes tendrían un tamaño enorme:

ullet Una pequeña imagen en escala de grises de 100 imes 100 generaría un vector de 10000.

Procesamiento dentro de una red

No pueden ser tratados como vectores "no estructurados" normales, han de ser invariantes al movimiento.

Además, los modelos resultantes tendrían un tamaño enorme:

• Una pequeña imagen en escala de grises de 100×100 generaría un vector de 10000.

Definición

Operación matemática capaz de extraer características o patrones de unos datos de entrada, típicamente imágenes o señales.

Compuesta por:

- Datos de entrada x.
- Uno o varios **kernels** o filtros **u**.
- Uno o varios bias b.
- Salida o.

Convolutional Neural Networks (CNNs)

Convoluciones 1D

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m + b$$

Las convoluciones pueden aplicar diferentes kernels o filtros.

Por ejemplo, en una señal eléctrica, podemos aplicar un filtro para buscar incrementos de voltaje (en 1 unidad):

$$(0,0,0,0,1,2,3,3) \circledast (-1,1) = (0,0,0,1,1,1,0)$$

Convolutional Neural Networks (CNNs)

Convoluciones 2D

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

Tendremos por tanto:

- Matriz 2D de entrada $\mathbf{x} \in \mathbb{R}^{W \times H}$
- Matriz 2D kernel $\mathbf{u} \in \mathbb{R}^{w \times h}$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Matriz 2D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1} \times H-h+1$

La operación de convolución en 2D sería:

$$\mathbf{o}_{j,i} = (\mathbf{x} \circledast \mathbf{u})[j,i] = \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{n+j,m+i} \cdot \mathbf{u}_{n,m} + b$$

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

Las dimensiones del barrido definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, utilizamos convoluciones 2D.

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello seguiremos aplicando convoluciones 2D.

Tendremos por tanto:

- Tensor 3D de entrada $\mathbf{x} \in \mathbb{R}^{C \times W \times H}$
- Tensor 3D kernel $\mathbf{u} \in \mathbb{R}^{C \times w \times h}$
- Escalar $\mathbf{b} \in \mathbb{R}$
- Tensor 2D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1} \times H-h+1$

La operación de convolución en 2D sería:

$$\mathbf{o}_{j,i} = \sum_{c=0}^{C-1} (\mathbf{x}_c \circledast \mathbf{u}_c)[j,i] = \sum_{c=0}^{C-1} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{c,n+j,m+i} \cdot \mathbf{u}_{c,n,m} + b$$

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

¿Y si trabajamos con imágenes en color?

Como ya hemos mencionado, las imágenes RGB están formadas por 3 matrices de $W \times H$, es decir, un **volumen o tensor**. A pesar de ello **seguiremos aplicando convoluciones 2D.**

La operación de convolución se puede aplicar en múltiples dimensiones, pero las más comunes son 1D, 2D y 3D.

¡Muy importante!

Los valores de **u** y **b** son los únicos **parámetros** de la convolución, es decir, se aprenden durante el entrenamiento del modelo.

El propio modelo decide que filtros son más adecuados para la tarea que se pretende resolver.

Convoluciones: Interpretación

Ejemplo donde la red aprende un filtro para detectar lineas verticales¹:

$$\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$$

¹Se ha normalizado en el rango [-1,1] la imagen de entrada.

Convolutional Neural Networks (CNNs)

Convoluciones: Hiperparámetros

Aunque la operación de convolución es siempre la misma, existen **múltiples hiperparámetros** que podemos ajustar.

Los más relevantes:

- Número D de filtros o kernels.
- Tamaño $w \times h$ de cada kernel.
- Padding de la convolución.
- Stride de la convolución.

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

- La idea es extraer más conocimiento de cada convolución.
- En 2 o 3 dimensiones, con D filtros, el tamaño de **o** será: $D \times W w + 1 \times H h + 1$

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

- La idea es extraer más conocimiento de cada convolución.
- En 2 o 3 dimensiones, con D filtros, el tamaño de **o** será: $D \times W w + 1 \times H h + 1$

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

- La idea es extraer más conocimiento de cada convolución.
- En 2 o 3 dimensiones, con D filtros, el tamaño de \mathbf{o} será: $D \times W w + 1 \times H h + 1$

Número de kernels

En los ejemplos anteriores siempre aplicamos 1 filtro por simplificar. Normalmente este número de filtros D suele ser mayor.

Al incluir D filtros, la operación de convolución en 2D sería:

$$\mathbf{o}_{j,i}^d = \sum_{c=0}^{C-1} (\mathbf{x}_c \circledast \mathbf{u}_c^d)[j,i] = \sum_{c=0}^{C-1} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{c,n+j,m+i} \cdot \mathbf{u}_{c,n,m}^d + b^d$$

para d = 1, 2, ..., D.

Número de bias

Hay que tener en cuenta que vamos a tener tantos términos independientes (bias) como filtros existan

Tamaño de cada kernel

El tamaño $w \times h$ de cada filtro de la convolución, es otro hiperparámetro que podemos alterar.

- Suelen ser cuadrados w = h.
- Si hay más de uno, los *D* han de tener el mismo tamaño.
- Influyen directamente en el tamaño de la salida. Para w = h = 2:

Tamaño de cada kernel

El tamaño $w \times h$ de cada filtro de la convolución, es otro hiperparámetro que podemos alterar.

- Suelen ser cuadrados w = h.
- Si hay más de uno, los D han de tener el mismo tamaño.
- Influyen directamente en el tamaño de la salida. Para w = h = 3:

Tamaño de cada kernel

El tamaño $w \times h$ de cada filtro de la convolución, es otro hiperparámetro que podemos alterar.

- Suelen ser cuadrados w = h.
- Si hay más de uno, los D han de tener el mismo tamaño.
- Influyen directamente en el tamaño de la salida. Para w = h = 4:

Padding

Al aplicar una convolución, vemos que la salida es de menor tamaño que la entrada. El **padding** nos permite evitarlo.

- El padding añade un "marco" de píxels a la entrada. El grosor es un hiperparámetro.
- El valor por defecto de estos nuevos píxels suele ser zero (zero padding).

Padding

Al aplicar una convolución, vemos que la salida es de menor tamaño que la entrada. El **padding** nos permite evitarlo.

- El padding añade un "marco" de píxels a la entrada. El grosor es un hiperparámetro.
- El valor por defecto de estos nuevos píxels suele ser zero (zero padding).

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

¿Que sucede si cambiamos el tamaño del stride a tres?:

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

¿Que sucede si cambiamos el tamaño del stride a tres?:

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

¿Que sucede si cambiamos el tamaño del stride a tres?:

 $x \circledast u = o$

Stride

En los ejemplos anteriores, siempre movemos el filtro **u** de **una en una unidad** sobre la entrada **x** en cada dirección, pero esto no tiene por que ser siempre así.

- Ese valor es lo que se conoce como stride.
- Al igual que el padding, influye en el tamaño de salida.

¿Que sucede si cambiamos el tamaño del stride a tres?:

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Tamaño de la salida

Como acabas de ver, el padding y el stride también influyen en el tamaño de la salida o.

- Si llamamos s al tamaño del stride.
- Y p al tamaño del padding.

El tamaño de la salida sería el siguiente:

$$\left(\frac{W+2p-w}{s}+1\right) \times \left(\frac{H+2p-h}{s}+1\right)$$

Convolutional Neural Networks (CNNs)

Pooling

Si observamos la arquitectura de **LeNet5** propuesta por Yann LeCun podemos ver que, además de convoluciones, existe otro tipo de operación, el **pooling**.

Pooling

El objetivo de esta operación es reducir el volumen de entrada agrupando valores y conservando la estructura global.

Funciona de manera muy similar a la convolución pero esta operación **no tiene parámetros**. En este caso no hay filtros, hay una ventana que se comporta de manera similar.

Hiperparámetros:

- Tamaño de la ventana.
- Stride.
- Operación.

Operaciones más típicas:

- Max pooling: Máximo de los valores.
- Average pooling: Media de los valores.
- Min pooling: Mínimo de los valores.

Funciona de manera muy similar a la convolución pero esta operación **no tiene parámetros**. En este caso no hay filtros, hay una ventana que se comporta de manera similar.

Ejemplo¹ con ventana de tamaño 2 y stride de 2 (valores más típicos):

¹Se muestran 3 operaciones para ejemplificar, pero se ha de seleccionar solo una de ellas.

Funciona de manera muy similar a la convolución pero esta operación **no tiene parámetros**. En este caso no hay filtros, hay una ventana que se comporta de manera similar.

Ejemplo¹ con ventana de tamaño 2 y stride de 2 (valores más típicos):

¹Se muestran 3 operaciones para ejemplificar, pero se ha de seleccionar solo una de ellas.

Funciona de manera muy similar a la convolución pero esta operación **no tiene parámetros**. En este caso no hay filtros, hay una ventana que se comporta de manera similar.

Ejemplo¹ con ventana de tamaño 2 y stride de 2 (valores más típicos):

¹Se muestran 3 operaciones para ejemplificar, pero se ha de seleccionar solo una de ellas.

Funciona de manera muy similar a la convolución pero esta operación **no tiene parámetros**. En este caso no hay filtros, hay una ventana que se comporta de manera similar.

Ejemplo¹ con ventana de tamaño 2 y stride de 2 (valores más típicos):

¹Se muestran 3 operaciones para ejemplificar, pero se ha de seleccionar solo una de ellas.

Funciona de manera muy similar a la convolución pero esta operación **no tiene parámetros**. En este caso no hay filtros, hay una ventana que se comporta de manera similar.

Ejemplo¹ con ventana de tamaño 2 y stride de 2 (valores más típicos):

¹Se muestran 3 operaciones para ejemplificar, pero se ha de seleccionar solo una de ellas.

Global pooling

Cuando se quiere transformar el volumen de la entrada en un vector de longitud igual a la profundidad, se utiliza el **Global Pooling**.

- Al igual que el pooling tradicional tiene diferentes operaciones.
- Resume cada matriz de la entrada en un solo número.
- No existe el tamaño de ventana ni stride.

Global pooling

Cuando se quiere transformar el volumen de la entrada en un vector de longitud igual a la profundidad, se utiliza el **Global Pooling**.

- Al igual que el pooling tradicional tiene diferentes operaciones.
- Resume cada matriz de la entrada en un solo número.
- No existe el tamaño de ventana ni stride.

Convolutional Neural Networks (CNNs)

Arquitecturas

Arquitecturas

Red Neuronal Convolucional

Además de las ya vistas capas convolucionales (CONV), y de pooling (POOL), una CNN también está compuesta por rectificadores lineales (ReLU) y capas totalmente conectadas (FC).

Arquitecturas

La arquitectura CNN más común sigue este patrón:

$$\mathtt{INPUT} \to [[\mathtt{CONV} \to \mathtt{ReLU}] * \mathcal{N} \to \mathtt{POOL?}] * \mathcal{M} \to [\mathtt{FC} \to \mathtt{ReLU}] * \mathcal{K} \to \mathtt{FC}$$

Donde:

- * indica repetición.
- POOL? indica una capa de pooling opcional.
- $N \ge 0$ (y normalmente $N \le 3$), $M \ge 0$, $K \ge 0$ (y típicamente K < 3).
- La última capa FC contiene la salida del modelo (p.ej. las probabilidades de cada clase).

Arquitecturas

Algunas de las arquitecturas típicas que siguen este patrón:

- INPUT \rightarrow FC, básicamente un modelo lineal (N = M = K = 0).
- INPUT \rightarrow [FC \rightarrow ReLU]* $K \rightarrow$ FC, es decir, un K-layer MLP.
- INPUT \rightarrow CONV \rightarrow ReLU \rightarrow FC.
- INPUT \rightarrow [CONV \rightarrow ReLU \rightarrow POOL]*2 \rightarrow FC \rightarrow ReLU \rightarrow FC.
- $\bullet \ \mathtt{INPUT} \to [[\mathtt{CONV} \to \mathtt{ReLU}] * 2 \to \mathtt{POOL}] * 3 \to [\mathtt{FC} \to \mathtt{ReLU}] * 2 \to \mathtt{FC}.$

Arquitecturas conocidas: LeNet-5

LeNet-5 (LeCun et al, 1998)

Compuesta de dos capas CONV + POOL, seguidas por un bloque de capas fully-connected.

Arquitecturas conocidas: AlexNet

AlexNet (Krizhevsky et al, 2012)

Red convolucional de 8 capas junto a un perceptrón de 3 capas.

La implementación original estaba dividida en dos partes para poder funcionar en dos GPUs.

LeNet vs. AlexNet

Arquitecturas conocidas: VGG

VGG (Simonyan and Zisserman, 2014)

Red compuesta de 5 bloques VGG cada uno con capas ${\tt CONV} + {\tt POOL}$. La red finaliza con un bloque de capas FC .

La profundidad de la red se incrementó hasta 19 capas mientras el tamaño de los filtros se redujo a 3.

AlexNet vs. VGG

Arquitecturas conocidas: GoogLeNet

GoogLeNet (Szegedy et al, 2014)

Compuesta de dos capas ${\tt CONV+POOL},$ una serie de 9 bloques "inception" y una capa de global average pooling.

Cada bloque "inception" es a su vez una CNN con 4 caminos paralelos.

Arquitecturas conocidas: ResNet

ResNet (He et al, 2015)

Compuesta inicialmente similar a GoogLeNet, una serie de 4 bloques residuales y una capa global average pooling. Algunas extensiones proponen más bloques residuales, hasta 152 (ResNet-152).

Bloque ResNet regular vs. bloque ResNet con convolución 1×1 .

Arquitecturas conocidas: ResNet

El entrenamiento de redes de esta profundidad es posible gracias a las *skip connections* de los bloques residuales. Permiten a los gradientes acortar las capas y atravesarlas sin desvanecerse.

Convolutional Neural Networks (CNNs)

Referencias

Referencias

- 1 Convolutional Neural Networks
- 2 Modern Convolutional Neural Networks
- 3 Lecture 5: Convolutional networks
- 4 A guide to convolution arithmetic for deep learnings