CS148: Introduction to Computer Graphics and Imaging

Image Compositing

Colbert Challenge

Key Concepts

Optical compositing and mattes

The alpha channel

Compositing operators

Premultipled alpha

Matte extraction

CS148 Lecture 11

Image Composition

Defn: Combine foreground element with background

Examples:

- Graphics arts: masking tape, friskets, stencils
- Animation: cels, multiplane camera
- Film: optical printing, blue screen matting
- Video: chroma-keying
- Computer graphics: alpha channel

CS148 Lecture 11

Multiplane Camera – Walt Disney

http://disneyandmore.blogspot.com/2007/09/walt-disney-multiplane-camera-and.html

CS148 Lecture 11

Pat Hanrahan, Winter 2008

Optical Printing

From: "Industrial Light and Magic," Thomas Smith (p. 181)

From: "Special Optical Effects," Zoran Perisic

CS148 Lecture 11

Foreground Traveling Matte

CS148 Lecture 11 Pat Hanrahan, Winter 2008

The Alpha Channel

The Alpha Channel

A alpha channel is an additional image that defines:

- The transparency or opacity of an image
- The presence or absence of imagery
 - Geometric coverage: soft-edge
- Or both coverage and transparency

Alpha channels may be

■ Masks: all or none, binary

■ Mattes: 0 to 1, n-ary

CS148 Lecture 11

Pat Hanrahan, Winter 2008

Fragment: Color + Coverage

Pixel

 $\alpha = A$

= Coverage

= Area

= Opacity

= 1 - Transparency

Color c of pixel is an area-weighted average of C

$$c = \alpha C$$

CS148 Lecture 11

Image Composition

OVER Operator

Composite color: $c = A_F C_F + A_B C_B = (\alpha_F C_F) + (1-\alpha_F) (\alpha_B C_B)$

Composite alpha: $\alpha = A_F + A_B = \alpha_F + (1-\alpha_F) \alpha_B$

CS148 Lecture 11 Pat Hanrahan, Winter 2008

Porter-Duff Compositing Algebra

How many ways can two pixels be combined?

Region 1: 1 possibility - 0

Region 2: 2 possibilities - A or 0

Region 3: 2 possibilities - B or 0

Region 4: 3 possibilities - A, B or 0

4 Regions

Operators: 12 total possibilities

CS148 Lecture 11

CS148 Lecture 11

Pat Hanrahan, Winter 2008

Porter-Duff Compositing Algebra

Operation	F_{\scriptscriptstyleA}	$F_{\scriptscriptstyle B}$
Clear	0	0
А	1	0
В	0	1
A over B	1	1- a
B over A	1- a _B	1
A in B	$\alpha_{_{_{\rm B}}}$	0
B in A	0	$\alpha_{_{_{A}}}$
A out B	1- $\alpha_{_{\rm B}}$	0
B out A	0	1- α _A
A atop B	$\alpha_{_{B}}$	1- a
B atop A	1- a _B	$\alpha_{_{_{A}}}$
A xor B	1- $\alpha_{_{B}}$	1- α _A

$$c = F_A C_A + F_B C_B$$

OpenGL blendfunction

Specify src and dst F's

0, 1, As, Ad, 1-As, 1-Ad, min(As,1-Ad), Cs, Cd, 1-Cs, 1-Cd,

Premultiplied Alpha

Represent as $c = \alpha C = (\alpha r, \alpha g, \alpha b, \alpha)$

One formula for compositing color and alpha

$$c = c_F + (1-\alpha_F) c_B$$

■ Less arithmetic

Associated: OVER (1 sub, 4 muls, 4adds)

Unassociated: OVER (1 sub, 7 muls, 4 adds)

- Closure
 - Recovering C from c would require divide by a
- Display c; c over $K = c + (1-\alpha_c) K = c$

CS148 Lecture 11

Pat Hanrahan, Winter 2008

Interpolation

Interpolate $c = (\alpha r, \alpha g, \alpha b, \alpha)$

Two ways of interpolating an image:

Compositing over the background and then interpolating

Interpolating and then compositing over the background

These should be the same!

Work it out (only works if interpolate c)

Similar reasoning applies to filtering, antialiasing, ...

CS148 Lecture 11

Matte Extraction

"Pulling a Matte" - Matte Creation

From digitized images

- Image processing
 - Set of colors marked transparent, region growing ...
 - **■** Demonstration: Photoshop Magic Wand
- Video or chroma-keying
 - Range of luminances marked transparent
- Blue-screen matting (Petro Vlahos)
 - Separate blue background from foreground image

CS148 Lecture 11

Pat Hanrahan, Winter 2008

Blue/Green-Screen Matte Extraction

Given:

C - Observed color

C_B - Backing color

Compute:

$$C_F = (\alpha_F R_F, \alpha_F G_F, \alpha_F B_F, \alpha_F)$$

Matte equation: $C = C_F + (1-\alpha_F) C_B$

Three equations (R, G, B) in four unknowns

$$R = R_F + (1-\alpha_F) R_B$$

$$G = G_F + (1-\alpha_F) G_R$$

$$B = B_F + (1-\alpha_F) B_B$$

CS148 Lecture 11

Petros Vlahos Algorithm

$$C = C_F + (1-\alpha_F) C_B \rightarrow C_F = C - (1-\alpha_F) C_B$$

A • C_F = A • C - (1-\alpha_F) A • C_B = 0

Things to Remember

Classic techniques: masks, mattes, optical printing Definition of the alpha channel as opacity/coverage Premultiplied alpha

Porter-Duff image compositing algebra Vlahos matte extraction algorithm

CS148 Lecture 11