DS-GA 1018: Homework 2

Due Monday October $15^{\rm th}$ at $5:00~{\rm pm}$

Problem 1 (20 points): Consider a causal AR(2) process of the form:

$$X_t = \phi_2 X_{t-2} + W_t, \tag{1}$$

with $0 < \phi_2 < 1$ and $W_t \sim \mathcal{N}(0, \sigma_w^2)$.

- i. (6 points): Assume that we have observations $\{x_1, x_2\}$. Derive the mean and variance of a future observation x_t with t > 2. (Hint: you'll need your solutions from Problem 4 of Homework 1.)
- ii. (2 points): What is the mean for t=3 and t=4. Explain the intuition behind this result.
- iii. (2 points): What is the covariance for t = 3 and t = 4. Explain the intuition behind this result.
- iv. (2 points): What is the mean and variance of x_t as $t \to \infty$? Explain the intuition behind this result.
- **v.** (6 points): Assume that we have observations x_1 . Derive the mean vector and covariance matrix of a future set of observations $\{x_t, x_{t+1}\}$ with t > 1.
- vi. (2 points): What is the mean vector and covariance matrix of $\{x_t, x_{t+1}\}$ for t = 2? Explain the intuition behind this result.

Problem 2 (10 points): Consider the generalization of ARCH(1) model given by:

$$R_t = \delta + Y_t \tag{2}$$

$$Y_t = \sigma_t W_t, \quad W_t \sim N(0, 1) \tag{3}$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 Y_{t-1}^2,\tag{4}$$

where $\alpha_0 > 0$, $1 > \alpha_1 > 0$, and δ is a constant value.

- i. (2 points): Derive the mean μ_{R_t} .
- ii. (6 points): Derive the covariance $\gamma_{R_t,R_{t+h}}$.
- iii. (2 points): Is R_t a (weak) stationary process? Justify your answer quantitatively.

Problem 3 (10 points): Consider the latent space model we presented in class defined by:

$$\mathbf{z}_t = \mathbf{A}\mathbf{z}_{t-1} + \mathbf{w}_t \tag{5}$$

$$\mathbf{x}_t = \mathbf{C}\mathbf{z}_t + \mathbf{v}_t \tag{6}$$

where the latent space \mathbf{z} is has dimension d and the data \mathbf{x} has dimension n. Our noise is being drawn from $\mathbf{w}_t \sim \mathcal{N}(0, \mathbf{Q})$ and $\mathbf{v}_t \sim \mathcal{N}(0, \mathbf{R})$.

- i. (4 points): Assume that, n=d and that we have $C=\alpha\mathbb{I}$ and $R=\sigma_v^2\mathbb{I}$. Write the mean $\mu_{t|t}=\mu_{\mathbf{z}_t|\mathbf{z}_{t-1},\mathbf{x}_t}$ and covariance $\Sigma_{t|t}$ in terms of the mean $\mu_{t|t-1}=\mu_{\mathbf{z}_t|\mathbf{z}_{t-1}}$ and covariance $\Sigma_{t|t-1}$. Simplify as much as possible.
- ii. (2 points): What happens in the limit $\sigma_v \to 0$? Demonstrate the answer quantitatively and explain the intuition behind this limit.
- iii. (2 points): What happens in the limit $\sigma_v \to \infty$? Demonstrate the answer quantitatively and explain the intuition behind this limit.
- iv. (2 points): What happens in the limit $\alpha \to 0$? Demonstrate the answer quantitatively and explain the intuition behind this limit.

Problem 4 (5 points): Consider a modified version of our latent space model that depends on a set of **observed** values y_t as follows:

$$\mathbf{z}_t = \mathbf{A}\mathbf{z}_{t-1} + \mathbf{B}\mathbf{y}_t + \mathbf{w}_t, \tag{7}$$

otherwise all the other components are identical to those described in Problem 3.

i. (5 points): Derive how this new process changes the filtering step of our Kalman filtering.