The RATS Control Protocol (RCP)

Perry A. Blackmore

Communications Division Electronics and Surveillance Research Laboratory

DSTO-TN-0355

ABSTRACT

RATS is the real-time scheduler used in the server of the DSTO Theatre Broadcast System demonstrator. This document describes the RATS Control Protocol which is used for all communications with RATS. RCP is based on the User Datagram Protocol (UDP) and is used for all user requests, management requests, and control activity performed by RATS.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE DEFENCE SCIENCE & TECHNOLOGY ORGANISATION

20010822 144

AQ-FOI-11-2353

Published by

DSTO Electronics and Surveillance Research Laboratory PO Box 1500 Salisbury South Australia 5108 Australia

Telephone: (08) 8259 5555 Fax: (08) 8259 6567 © Commonwealth of Australia 2001-05-11 AR-011-854

AR-011-854 May 2001

APPROVED FOR PUBLIC RELEASE

The RATS Control Protocol (RCP)

Perry A. Blackmore

DSTO-TN-0355

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

The RATS Control Protocol (RCP)

Executive Summary

At the heart of the DSTO Theatre Broadcast System (TBS) information management system is an application called RATS (Real Time Scheduler). RATS is responsible for managing the flow of traffic broadcast over the TBS. Its main functions include accepting scheduling requests from users and other system components and performing real time optimisations in order to deliver the maximum military utility of information broadcast. This report describes a protocol developed for communications to and from RATS called the RATS Control Protocol (RCP). RCP is used by users to submit scheduling requests to RATS, by agents to perform management functions on RATS, and by RATS to deliver control information to various entities within the TBS server.

Contents

	INTRODUCTION	
1.1	Background	. 1
1.2	Future Work	. 1
2.	THE RCP PROTOCOL	. 2
2.2	Message Types	. 3
	2.1.1 NULL Message	. 3
	2.1.1 RESPONSE Message	. 4
	2.1.3 INIT Message	. 7
	2.1.4 CLOSE Message	. 8
	2.1.5 RATE Message	. 8
	2.1.6 FILE_DELIVER Message	. 8
	2.1.7 FRAME_RATE Message	. 9
	2.1.8 ENCODER Message	10
	2.1.9 QUALITY Message	10
	2.1.10 REQUEST Message	
	2.1.11 KILL Message	13
	2.1.12 LOGIN Message	
	2.1.13 LOGOUT Message	
	2.1.14 GET_ACCOUNTS Message	
	2.1.15 SET_ACCOUNTS Message	
	2.1.16 COMPLETE Message	
	2.1.17 GET_PARAMS Message	
	2.1.18 GET_PROG Message	
	2.1.19 PARAMS Message	
	2.1.20 PROG Message	
	2.1.21 TRACE Message	
	2.1.22 STREAM Message	
	2.1.23 TERMINATE Message	20

1. Introduction

DSTO, under Joint Project 2008 Phase 3C, has developed a Theatre Broadcast System (TBS) Demonstrator. It is based on commercial hardware (MPEG encoders, Integrated Receive Devices, Digital Video Broadcast modulators), military grade encrytion devices (KIV-7, KIV-19) and DSTO developed software. One of the key software components is RATS (Real Time Scheduler) which is responsible for scheduling all information to be passed over the TBS.

RATS accepts requests from users and other system components and performs a real time optimisation in order to deliver the maximum military utility of information broadcast. RATS implements the schedule by communicating it to the system applications. All communications to and from RATS are done via a protocol called the RATS Control Protocol (RCP). This document describes this protocol.

1.1 Background

Work on RATS began in September 1996 under Project Awareness. It was initially intended as a tool to investigate QoS issues in heterogenous networks. It quickly became evident that RATS was ideal from controlling streams on broadcast networks. A UDP (User Datagram Protocol) based protocol was developed for communications with RATS which would evolve into RCP. The initial intention of the development of RCP was to provide a protocol to be used solely for communications to and from RATS. However it is now used for communication between most entities within the TBS demonstrator system.

RCP has evolved through versions 0.0, 0.1, 1.0, 1.1, and 1.2. The version 1.1 was fixed in October 1998, and the current version 1.2 was fixed in March 2000.

1.2 Future Work

A complete rewrite of RCP is desirable at a future date. This is required because:

- 1. RCP has developed in a rather adhoc manner and as a result a number of inefficiencies and redundancies exist in the current version, and
- 2. A TCP based protocol has been developed for communications between client applications.

The new protocol would be suitable for operation over TCP (Transport Control Protocol) and UDP. This protocol would be used by all entities within the TBS.

2. The RCP Protocol

The RCP protocol (version 1.2) is described in this section. Note that all packet and message coding is according to network byte order (MSB order).

Packet Format

0 1 2 3 4 5 6 7 PASSWORD	9 9 10 11 12 13 14 15 VERSION
CATE	GORY
MSG 1	MSG 2
•••	MSG N
C	RC
C	RC

PASSWORD: variable

RCP password. Each RCP packet is encoded in one UDP packet. Each RCP packet commences with a password to avoid conflicting with other packets that may be on the network. Currently the password used is "smartfish".

VERSION: 8 bits

Version number. The version is in the form of "x.y" where "x" is encoded in the most significant 4 bits (bit positions 8-11 in the above diagram) and "y" is encoded in the least significant 4 bits (12-15). For example "00010010" would represent RCP version 1.2.

CATEGORY: 16 bits

Device category. A 2 octet bit-field specifies the type of device that the RCP packet is intended for. The codes are:

bit position	category code	Category description
15	rcpCAT_SCHEDULER = 0	scheduler
14	$rcpCAT_PROXY = 1$	proxy
14	$rcpCAT_REQUESTOR = 2$	requestor
13	rcpCAT_MANAGER = 3	manager
12	rcpCAT_FILE_DEVICE = 4	file transfer device
11	rcpCAT_AUDIO_DEVICE = 5	audio device
10	rcpCAT_VIDEO_DEVICE= 6	video device
9	rcpCAT_REPLAY_DEVICE = 7	videoclip replay device
8	rcpCAT_STREAM_DEVICE = 8	stream based device
70	reserved	

MSG: variable

RCP messages. Each RCP packet contains one or more RCP variable length messages. These follow the CATEGORY field.

ERROR: 8 bits

Error condition. Encoded as an unsigned 8 bit integer.

A type 1 RESPONSE message has the following structure:

OPCODE 0	9 9 10 11 12 13 14 HANDLE
	TYPE
RESPONSE	ERROR
Al	RG 1

OPCODE, HANDLE, TYPE, RESPONSE, ERROR As per RESPONSE type 0 message.

ARG 1: 32 bits

Unsigned 32 bit integer.

A type 2 RESPONSE message has the following structure:

0 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	TYPE
RESPONSE	ERROR
ARG 1	NULL

OPCODE, HANDLE, TYPE, RESPONSE, ERROR As per RESPONSE type 0 message.

ARG 1: variable Character array.

NULL: 8 bits

Zero field used to terminate ARG 1.

A type 3 RESPONSE message has the following structure:

0 1 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	TYPE
RESPONSE	ERROR
A	RG 1
A	RG 2

OPCODE, HANDLE, TYPE, RESPONSE, ERROR As per RESPONSE type 0 message.

ARG 1: 32 bits

Unsigned 32 bit integer.

ARG 2: 16 bits

Unsigned 16 bit integer.

A type 4 RESPONSE message has the following structure:

OPCODE OPCODE	9 9 10 11 12 13 14 15 HANDLE
RESPONSE	TYPE ERROR
	RG 1
. AI	RG 2
AI	RG 3
AI	RG 4

OPCODE, HANDLE, TYPE, RESPONSE, ERROR As per RESPONSE type 0 message.

ARG 1: 32 bits

Unsigned 32 bit integer.

ARG 2: 32 bits

Real.1

ARG 3: 32 bits

Unsigned 32 bit integer.

ARG 4: 16 bits

Unsigned 16 bit integer.

A type 5 RESPONSE message has the following structure:

 $^{^{1}}$ To enable cross platform compatibility real numbers are encoded as signed 32 bit integers by first multiplying by 1000 and truncating.

0 1 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	TYPE
RESPONSE	ERROR
LEN	GTH
AR	G1
AR	G 2
AR	G 3

OPCODE, HANDLE, TYPE, RESPONSE, ERROR

As per RESPONSE type 0 message.

LENGTH: 16 bits

Length of ARG 1 field. Encoded as a 16 bit unsigned integer.

ARG 1: variable

Character array.

ARG 2: 32 bits

Unsigned 32 bit integer.

ARG 3: 16 bits

Unsigned 16 bit integer.

2.1.3 INIT Message

The INIT message is used by RATS to initialise a data stream within an application, for example to request a file transfer application to prepare to deliver a file.

	9 9 10 11 12 13 14 15
OPCODE	HANDLE
	TXS
LOC_NAME	NULL
REM_NAME	NULL

OPCODE, HANDLE

As per NULL message.

TXS: 8 bits

The number of transmissions required. Encoded as an unsigned 8 bit integer.

LOC_NAME: variable

Character array specifying local name of file to be delivered.

NULL: 8 bits

Zero field used to terminate character arrays.

REM_NAME: variable

Character array specifying remote name of file to be delivered.

2.1.4 CLOSE Message

The INIT message is used by RATS to initialise a data stream within an application, for example to request a file transfer application to prepare to deliver a file.

0 1 2 3 4 5 6 7	9 9 10 11 12 13 14 15
OPCODE	HANDLE

OPCODE, HANDLE

As per NULL message.

2.1.5 RATE Message

The RATE message is used by RATS to set the data rate of a data stream within an application.

HANDLE
RATE

OPCODE, HANDLE

As per NULL message.

RATE: 32 bits

New rate for data stream. Encoded as an unsigned 32 bit integer.

2.1.6 FILE_DELIVER Message

The FILE_DELIVER message is used by RATS to request the delivery of a file by a file transfer application. It has not been used in versions of RATS beyond 2.0.

0 1 1 2 1 3 4 5 6 7	9 9 1 10 1 11 1 12 1 13 1 14 1 15
OPCODE	HANDLE
	IP
	PORT
	LOC_NAME
NULL	REM_NAME
NULL	

As per NULL message.

IP: 32 bits

The IP address of the destination host. Encoded as an unsigned 32 bit integer.

PORT: 16 bits

The UDP port of the destination host. Encoded as an unsigned 16 bit integer.

LOC_NAME: variable

Character array specifying local name of file to be delivered.

NULL: 8 bits

Zero field used to terminate character arrays.

REM_NAME: variable

Character array specifying remote name of file to be delivered.

2.1.7 FRAME_RATE Message

The FRAME_RATE message is used by RATS to set the frame rate of a video stream

0 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
·	RATE
	KAIE

OPCODE, HANDLE

As per NULL message.

RATE: 16 bits

New frame rate for video stream. Encoded as an unsigned 16 bit integer.

2.1.8 ENCODER Message

The ENCODER message is used by RATS to set the coding scheme for a real-time application.

0 1 2 3 4 5 6 7	9 9 10 11 12 13 14 15
OPCODE	HANDLE
	CODE

OPCODE, HANDLE

As per NULL message.

CODE: 8 bits

New coding scheme. The encoder types and their values are as follows:

value	on codor codo	
varue	encoder code	code description
0	rcpCOD_H261	h261 video encoding
1	rcpCOD_JPEG	JPEG video encoding
2	rcpCOD_NV	NV video encoding
3	rcpCOD_NVDCT	NVDCT video encoding
4	rcpCOD_CELLB	CELLB video encoding
5	rcpCOD_PCM	PCM audio encoding
6	rcpCOD_PCM2	PCM audio encoding (version 2)
7	rcpCOD_PCM4	PCM audio encoding (version 4)
. 8	rcpCOD_DVI	DVI audio encoding
9	rcpCOD_DVI2	DVI audio encoding (version 2)
10	rcpCOD_DVI4	DVI audio encoding (version 4)
11	rcpCOD_GSM	GSM audio encoding
12	rcpCOD_LPC4	LPC audio encoding

2.1.9 QUALITY Message

The QUALITY message is used by RATS to set the quality of a video stream

OPCODE, HANDLE

As per NULL message.

QUAL: 16 bits

New quality for video stream. Encoded as an unsigned 16 bit integer.

2.1.10 REQUEST Message

The REQUEST message is used to submit scheduling requests to RATS.

0 1 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE						
	US	SER					
	ID	TYPE					
VALUE	I	P					
	PC	ORT					
	STA	ART					
		X					

OPCODE, HANDLE

As per NULL message.

USER: 32 bits

Hashed user name and password. The user name and password are appended and then a CRC-32 is calculated. Encoded as an unsigned 32 bit integer.

ID: 4 bits

Application identifier.

TYPE: 4 bits

Application type. This is encoded as follows:

Application type	Code
NULL	0 - 3
FILE_DEVICE	rcpCAT_FILE_DEVICE = 4
AUDIO_DEVICE	rcpCAT_AUDIO_DEVICE = 5
VIDEO_DEVICE	rcpCAT_VIDEO_DEVICE = 6
REPLAY_DEVICE	rcpCAT_REPLAY_DEVICE = 7

VALUE: 8 bits

User perceived value of request. Encoded as an unsigned 8 bit integer.

IP: 32 bits

The IP address of the requesting agent. Encoded as an unsigned 32 bit integer.

PORT: 16 bits

The UDP port of the requesting agent. Encoded as an unsigned 16 bit integer.

START: 32 bits

The requested start time. Encoded as a real.

X: variable

Fields dependent on TYPE.

For TYPE = FILE_DEVICE, X has the form:

REM_N	JAME	NULL
	······································	
TML	PREC	SIZE

LOC_NAME: variable

Character array specifying local name of file to be delivered.

NULL: 8 bits

Zero field used to terminate character arrays.

REM_NAME: variable

Character array specifying remote name of file to be delivered.

TML: 4 bits

Timeliness requirement of file request. This is encoded as follows:

Timeliness	Code
NO_SLACK	0
SOME_SLACK	1
LOTS_OF_SLACK	2

PREC: 4 bits

Precedence of file request. This is encoded as follows:

Precedence	Code
ROUTINE	0
PRIORITY	1
IMMEDIATE	2
FLASH	3

SIZE: 32 bits

Size of requested file in bytes. Encoded as an unsigned 32 bit integer.

For TYPE = AUDIO_DEVICE and TYPE = VIDEO_DEVICE, X has the form:

	0	ı	1	1	2	1	3	4	. 1	.5	1	. 6	1	7	. 1	9	1	9	 _10	_1_	11	1	12	13	1.	14	15
Г]	LE	NC	TH	[
																			-								

LENGTH: 32 bits

Length is the requested time for broadcast of the real-time stream. Encoded as an unsigned 32 bit integer.

For TYPE = REPLAY_DEVICE, X has the form:

	13 4 5 6 7	9 9 10 11 12 13 14 15								
NAME NULL										
RATE										

NAME: variable

Character array specifying local name of file to be replayed.

NULL: 8 bits

Zero field used to terminate character arrays.

RATE: 32 bits

Rate at which requested file is to be replayed at. Encoded as an unsigned 32 bit integer.

2.1.11 KILL Message

The KILL message is used to request a task be removed from the RATS schedule.

0 1 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
0.002	
	USER
	IP IP
	PORT

OPCODE, HANDLE

As per NULL message.

USER: 32 bits

Hashed user name and password. The user name and password are appended and then a CRC-32 is calculated. Encoded as an unsigned 32 bit integer.

IP: 32 bits

The IP address of the requesting agent. Encoded as an unsigned 32 bit integer.

PORT: 16 bits

The UDP port of the requesting agent. Encoded as an unsigned 16 bit integer.

2.1.12 LOGIN Message

The LOGIN message is used to remotely login to RATS to perform management operations.

0 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	USER
	IP
	PORT

OPCODE, HANDLE, USER, IP, PORT As per KILL message.

2.1.13 LOGOUT Message

The LOGOUT message is used to remotely logout of RATS after a logging in.

HANDLE
USER
IP
PORT

OPCODE, HANDLE, USER, IP, PORT As per KILL message.

2.1.14 GET_ACCOUNTS Message

The GET_ACCOUNTS message is used to request RATS to send the current user accounts to the requesting agent.

OPCODE 0	9 9 10 11 12 13 14 15 HANDLE
	USER
	IP
	PORT

OPCODE, HANDLE, USER, IP, PORT As per KILL message.

2.1.15 SET_ACCOUNTS Message

The SET_ACCOUNTS message is used to request RATS to update the current user accounts.

0 1 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	USER
	IP
	PORT
	LENGTH ACCOUNTS

OPCODE, HANDLE, USER, IP, PORT As per KILL message.

LENGTH: 16 bits

Length of ACCOUNTS field. Encoded as a 16 bit unsigned integer.

ACCOUNTS: variable

Character array with accounts information.

2.1.16 COMPLETE Message

The COMPLETE message is used to inform applications of the completion of a task. It has been used by MUSTAFA to inform WEB_AGENT of the arrival of a file.

0 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	STATUS
NAME	NULL

As per NULL message.

STATUS: 8 bits

Field to specify the status of the task at completion. Encoded as an 8 bit unsigned integer. Currently 0 = unsuccessful completion, 1 = successful completion.

NAME: variable

Character array with task information such as a file name.

NULL: 8 bits

Zero field used to terminate NAME.

2.1.17 GET_PARAMS Message

The GET_PARAMS message is used by RATS to request MUSTAFA for its current operational parameters.

0 1 2 3 4 5 6 7	9 9 10 11 12 13 14 15		
OPCODE	HANDLE		

OPCODE, HANDLE

As per NULL message.

2.1.18 GET_PROG Message

The GET_PROG message is used by RATS to request MUSTAFA for its current file status.

0 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	TIME

As per NULL message.

TIME: 64 bits

Time to send file progress express in elapsed seconds since 00:00 Universal Coordinated Time, January 1, 1970. Encoded as a double precision real. Currently not used.

2.1.19 PARAMS Message

The PARAMS message is used by MUSTAFA to respond to a GET_PARAMS request.

0 1 1 2 3 4 5 6 7 OPCODE	9 9 10 11 12 13 14 15 HANDLE
	PL
	FO
	DA
	PO

OPCODE, HANDLE

As per NULL message.

PL: 16 bits

Payload length used in MUSTAFA data packets. Encoded as a unsigned 16 bit integer.

FO: 16 bits

File information overhead in MUSTAFA file information packets. Encoded as a unsigned 16 bit integer.

DA: 16 bits

Data overhead in MUSTAFA data packets. Encoded as a unsigned 16 bit integer.

PO: 16 bits

Layer 1 & 2 overhead in MUSTAFA packets. Encoded as a unsigned 16 bit integer.

2.1.20 PROG Message

The PROG message is used by MUSTAFA to respond to a GET_PROG request.

0 1 1 2 3 4 5 6 7	9 9 10 11 12 13 14 15
OPCODE	HANDLE
	NFILES
	ID 1
	F 1 BYTES 1
	ID 2
	F 2 BYTES 2
	•••
	IDN
	FN BYTES N
	J DIILDIV
	T
	_

As per NULL message.

NFILES: 16 bits

The number of files which progress information is supplied. Encoded as an unsigned 16 bit integer.

NFILES: 16 bits

Payload length used in MUSTAFA data packets. Encoded as an unsigned 16 bit integer.

ID: 32 bits

File identifier. Encoded as an unsigned 32 bit integer.

F: 1 bit

File completion indicator. If bit is set then the file has completed.

BYTES: 31 bit

Number of bytes left to transmit for given file. Encoded as an unsigned 31 bit integer.

2.1.21 TRACE Message

The TRACE message is used to set the output trace level of various TBS applications including RATS.

	9 9 10 11 12 13 14 15
OPCODE	HANDLE
	TR
	11
NULL	

As per NULL message.

TR: variable

Character array with trace string.

NULL: 8 bits

Zero field used to terminate TR.

2.1.22 STREAM Message

The STREAM message is used by RATS to establish a new stream in a MUSTAFA process.

LOC_PORT
REM_PORT
REM_HOST

OPCODE, HANDLE

As per NULL message.

LOC_PORT: 16 bits

The UDP port for the stream on the local host. Encoded as an unsigned 16 bit integer.

REM_PORT: 16 bits

The UDP port for the stream on the destination host. Encoded as an unsigned 16 bit integer.

REM_HOST: 32 bits

The IP address of the stream destination host. Encoded as an unsigned 32 bit integer.

2.1.23 TERMINATE Message

The TERMINATE message is used to terminate a process.

0 1 2 3 4 5 6 7	9 9 10 11 12 13 14 15
OPCODE	HANDLE

OPCODE, HANDLE As per NULL message.

DISTRIBUTION LIST

The RATS Control Protocol (RCP)

Perry A Blackmore

AUSTRALIA

DEFENCE ORGANISATION

Task Sponsor

Director General C3I Development

S&T Program

Chief Defence Scientist

FAS Science Policy

shared copy

AS Science Corporate Management

Director General Science Policy Development

Counsellor Defence Science, London (Doc Data Sheet)

Counsellor Defence Science, Washington (Doc Data Sheet)

Scientific Adviser to MRDC Thailand (Doc Data Sheet)

Scientific Adviser Policy and Command

Navy Scientific Adviser

Scientific Adviser - Army

Air Force Scientific Adviser

Director Trials

Aeronautical and Maritime Research Laboratory

Director

Electronics and Surveillance Research Laboratory

Director (Doc Data Sheet and distribution list only)

Chief of Communications Division

Research Leader, Military Information Networks

Head Network Architectures Group

Perry Blackmore (3 copies)

Task Manager - Philip Stimson

DSTO Library

Library Fishermans Bend

Library Maribyrnong (Doc Data Sheet only)

Library Salisbury

Australian Archives

Library, MOD, Pyrmont (Doc Data sheet only)

US Defense Technical Information Center, 2 copies

UK Defence Research Information Centre, 2 copies

Canada Defence Scientific Information Service, 1 copy

NZ Defence Information Centre, 1 copy

National Library of Australia, 1 copy

Capability Systems Staff

Director General Maritime Development (Doc Data Sheet only)
Director General Aerospace Development (Doc Data Sheet only)

Knowledge Staff

Director General Command, Control, Communications and Computers (DGC4) (Doc Data Sheet only)

Director General Intelligence, Surveillance, Reconnaissance, and Electronic Warfare (DGISREW)R1-3-A142 CANBERRA ACT 2600 (Doc Data Sheet only)

Director General Defence Knowledge Improvement Team (DGDKNIT) R1-5-A165, CANBERRA ACT 2600 (Doc Data Sheet only)

Army

ASNSO ABCA, Puckapunyal (4 copies)

SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet only)

NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool Military Area, NSW 2174 (Doc Data Sheet only)

Intelligence Program

DGSTA Defence Intelligence Organisation Manager, Information Centre, Defence Intelligence Organisation

Corporate Support Program

OIC TRS, Defence Regional Library, Canberra Officer in Charge, Document Exchange Centre (DEC), 1 copy

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University

OTHER ORGANISATIONS

NASA (Canberra) Info Australia (formerly AGPS) State Library of South Australia Parliamentary Library, South Australia

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS

INSPEC: Acquisitions Section Institution of Electrical Engineers Library, Chemical Abstracts Reference Service Engineering Societies Library, US Materials Information, Cambridge Scientific Abstracts, US Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS

Acquisitions Unit, Science Reference and Information Service, UK Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (5 copies)

Total number of copies: 53

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION							
DOCUMENT CONTROL DATA			PRIVACY MARKING/CAVEAT (OF DOCUMENT)				
				ITY CLASSIFICATION			
The RATS Control Protocol (RCP)		REPORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION)					
		Document (U)			• •		
		1	Title (U) Abstract (U)				
			` '				
4. AUTHOR(S)				5. CORPORATE AUTHOR			
Perry A. Blackmore				Electronics and Surveillance Research Laboratory PO Box 1500			
					SA 5108 Australia		
(DOTO NUMBER		6b. AR NUMBER		40 TVDE	OF REPORT	[7 D(OCUMENT DATE
6a. DSTO NUMBER DSTO-TN-0355		AR-011-854		Technica		7. DOCUMENT DATE May 2001	
8. FILE NUMBER	9 TA	SK NUMBER	10. TASK SP	ONSOR	11. NO. OF PAGES		12. NO. OF
E8709/4/15/2	99/1		DGFD (Join	-	20		REFERENCES .
13. URL ON WORLDWIDE V	WEB	N	1		14. RELEASE AUTHO	ORITY	
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TN-03			O355.pdf Chief, Communications Division				
15. SECONDARY RELEASE	STATE	MENT OF THIS DOCU	JMENT				
Approved for public release							
OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE, DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600							
16. DELIBERATE ANNOUN			•				
No Limitations							
17. CASUAL ANNOUNCEN		***************************************	Yes				
18. DEFTEST DESCRIPTORS							
Real time data processing,	Decis	sion making - data pr	rocessing, Co	mmunicatio	ons networks, Sched	uling,	Military
communications							
19. ABSTRACT	1	4.1		h a DOTO	Thookso Dans 1	ot Cr	atom
RATS is the real-time							
demonstrator. This document describes the RATS Control communications with RATS. RCP is based on the User Da		er Datagr	am Protocol (UD	P) an	d is used for all		
user requests, management requests, and control activity performed by			ormed by RATS.	,			
Page classification: UNCLASSIFIED							