# Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра системного анализа и автоматического управления

#### ОТЧЕТ О ПРАКТИКЕ

«Программные средства математического моделирования. Вариант №9»

студента 2 курса факультета компьютерных наук и информационных технологий направления 27.03.03 «Системный анализ и управление»

Черневского Алексея Дмитриевича

Саратов, 2017

### 2.1 Детерминированные системы. Спящий полицейский

Автомобиль движется по ровной дороге и наезжает на искусственное препятствие — «спящий полицейский». Исследовать кинематику и динамику движения автомобиля

Ограничимся рассмотрением наезда на препятствие только одного колеса. Горизонтальная составляющая скорости автомобиля не меняется. Воздействие препятствия сводится только к возбуждению вертикального перемещения автомобиля. Колесо при движении полностью повторяет профиль препятствия. Подвеска состоит из упругой пружины и демпфера.

Математическая модель.

В соответствии со вторым законом Ньютона уравнение движения рассматриваемой системы имеет вид:

$$M\frac{d^2y}{dt^2} = B\left(\frac{dx}{dt} - \frac{dy}{dt}\right) + K(x - y),$$

$$\frac{d^2y}{dt^2} + \frac{B}{M}\frac{dy}{dt} + \frac{K}{M}y = \frac{B}{M}\frac{dx}{dt} + \frac{K}{M}x.$$

Вертикальное ускорение кузова автомобиля  $d^2y/dt^2$  является функцией скорости автомобиля в горизонтальном направлении, так как горизонтальное перемещение вследствие неровности сопровождается вертикальным перемещением. При этом профиль дороги (кривизна, ширина, высота) играет существенную роль.

Выберем в качестве математической модели неровности дороги функцию:

$$x(s) = \frac{H}{2} (1 - \cos(\frac{2\pi s}{L})), 0 \le s \le L,$$

где H – высота, а L – ширина неровности.

При постоянной скорости  $V_0$  автомобиля в горизонтальном направлении  $s\!=\!V_0t$  , функция профиля дороги и ее производная принимают вид:

$$x(t) = \frac{H}{2} (1 - \cos(\frac{2\pi V_0 t}{L})), 0 \le t \le L/V_0,$$

$$\frac{dx}{dt} = \frac{H}{L} \pi V_0 \sin(\frac{2\pi V_0 t}{L}).$$

#### Задание 1.

Решите систему дифференциальных уравнений и постройте графики зависимости перемещения, скорости и ускорения вдоль вертикальной оси от времени.

#### Решение.

Подставив dx/dt в уравнение движения и выполнив соответствующую замену переменных, получим систему двух дифференциальных уравнений первого порядка, решив которую, можно построить графики зависимости перемещения, скорости, ускорения вдоль вертикальной оси от времени.



Рисунок 1 – График зависимости перемещения от времени.



Рисунок 2 – График зависимости скорости от времени.



Рисунок 3 – График зависимости ускорения от времени.

#### Задание 2.

Измените массу автомобиля — увеличьте до 980 кг. Как изменилась амплитуда вертикального перемещения? Скорость? Ускорение?

Решение.

Изменив значение M и решив заново систему дифференциальных уравнений, получим следующие три графика.



Рисунок 4 — График зависимости перемещения от времени при  $M\!=\!980$  , в сравнении с аналогичным графиком при  $M\!=\!450$  .



Рисунок 5 — График зависимости скорости от времени при  $M\!=\!980$  , в сравнении с аналогичным графиком при  $M\!=\!450$  .



Рисунок 6 – График зависимости ускорения от времени при  $M\!=\!980$  , в сравнении с аналогичным графиком при  $M\!=\!450$  .

Вывод.

Из графиков видно, что автомобиль с большей массой обладает большей инертностью, и поэтому гораздо медленнее набирает вертикальное перемещение, скорость и ускорение.

# 2.2 Стохастические системы. Планирование в атомной энергетике

Решается вопрос, как много атомных станций строить в стране каждые пять лет. Стоимость строительства атомной станции составляет  $20 \cdot 10^6$  денежных ед., а содержание станции  $5 \cdot 10^6$  ед. Если станция работает в течение пятилетнего периода, то к началу следующего периода она будет работать только с вероятностью 0,6. В стране может быть построено и/или работать не более трех атомных станций. Производительности одной атомной станции достаточно, чтобы удовлетворить потребности страны в энергии, иначе обеспечение в течение пяти лет альтернативных ресурсов энергии будет стоить  $60 \cdot 10^6$  ед.

# Математическая модель

| i | k | $p_{i1}^k$ | $p_{i2}^k$ | $p_{i3}^k$ | $p_{i4}^k$ | $q_i^k$ |
|---|---|------------|------------|------------|------------|---------|
| 1 | 0 | 1          | 0          | 0          | 0          | -60     |
|   | 1 | 0          | 1          | 0          | 0          | -80     |
|   | 2 | 0          | 0          | 1          | 0          | -100    |
|   | 3 | 0          | 0          | 0          | 1          | -120    |
| 2 | 0 | 0.4        | 0.6        | 0          | 0          | -5      |
|   | 1 | 0          | 0.4        | 0.6        | 0          | -25     |
|   | 2 | 0          | 0          | 0.4        | 0.6        | -45     |
| 3 | 0 | 0.16       | 0.48       | 0.36       | 0          | -10     |
|   | 1 | 0          | 0.16       | 0.48       | 0.36       | -30     |
| 4 | 0 | 0.064      | 0.288      | 0.432      | 0.216      | -15     |

#### Задание 2.

Предположим, что в пятилетний период в стране может быть построена только одна атомная станция. Чему равны в этом случае полные ожидаемые затраты за 10 лет, 20 лет, 30 лет, если в начальный момент времени в стране не было работающих атомных станций? была одна работающая атомная станция?

#### Решение.

Полные ожидаемые затраты  $v_i(n)$  за n последующих шагов, если в начальный момент марковский процесс с доходами находится в состоянии i, определяется рекуррентным соотношением:

$$\nu(n) \! = \! q \! + \! P \, \nu(n \! - \! 1) \, , n \! = \! 1, 2, 3, \ldots ,$$
 где  $\nu_i(0) \! = \! 0, \quad j \! \in \! I$  .

# Результат работы программы:

```
N = 30

(5: -80; -25; -30; -15;)

(10: -105; -53; -53.8; -43.52;)

(15: -133; -78.48; -79.9712; -69.6259;)

(20: -158.48; -104.375; -106.008; -95.701;)

(25: -184.375; -130.355; -132.036; -121.67;)

(30: -210.355; - 156.364; -158.035; -147.663;)
```



Рисунок 7 — Графики зависимости полных ожидаемых затрат от времени.

Вывод.

Как видно из рисунка и результатов, затраты на содержание и постройку атомных станций постоянно растут. Если в начальный момент в стране не было работающих атомных станций, то к 30 году общие ожидаемые затраты составят  $210.355 \cdot 10^6$ . В случае, если в начальный момент в стране была одна работающая атомная станция, к 30 году общие ожидаемые затраты составят  $156.364 \cdot 10^6$ .

#### Задание 5.

Определите оптимальную стационарную стратегию строительства атомных станций в стране при длительном плановом периоде времени и оптимальные средние затраты за пятилетний период в этом случае.

Решение.

Данная задача решается с помощью метода полного перебора.

Шаг 1. Построить множество  $\Delta$  — множество всех возможных векторов управления  $\delta = (\delta_i)$  ,  $i \in I$  ,  $\delta_i \in K(i)$  .

# Шаг 2. Для всех $\delta \in \Delta$ вычислить

$$g^{\delta} = \pi^{\delta} q^{\delta}$$

где  $\pi^{\delta}$  и  $q^{\delta}$  — вектор-строка предельных вероятностей и векторстолбец ожидаемых доходов, соответствующие вектору управления  $\delta$  .

# Шаг 3. Определить

$$g^* = \max_{\delta \in \Delta} g^{\delta}$$
,

$$\delta^* = \arg\max_{\delta \in \Delta} g^{\delta} .$$

# Результат работы программы:

```
g = -22.216

dopt =
2
2
1
1
```

Из результатов видно, что оптимальной стационарной стратегией является постройка одной атомной станции в 1 и 2 состояниях, и отказ от постройки станций в 3 и 4 состояниях. При этом убыток составит  $22.216 \cdot 10^6$ .