Praca projektowa z przedmiotu Sztuczna Inteligencja

Bartłomiej Czajka 169522 2 EF-DI P1 Rzeszów, 2023

Spis treści

1	Opi	s projektu	2	
	1.1	Założenia projektowe	2	
	1.2	Zestaw danych	2	
	1.3	Przygotowanie danych		
2	Zag	adnienia teoretyczne	4	
	2.1	Wstęp do sieci neuronowych	4	
	2.2		4	
	2.3	Opis matematyczny sztucznego neuronu	4	
	2.4		4	
3	Realizacja sieci neuronowej			
		Opis skryptu	4	
4	Eks	perymenty	4	
	4.1	Eksperyment 1	4	
	4.2	Eksperyment 2		
	4.3	Eksperyment 3		
5	Wn	ioski	4	

1 Opis projektu

1.1 Założenia projektowe

Celem projektu jest realizacja sieci neuronowej uczonej za pomocą algorytmu sieci głębokiej, klasyfikującej chorobę Parkinsona oraz zbadanie wpływu parametrów sieci na proces uczenia. Projekt został zrealizowany w języku Python z wykorzystaniem biblioteki PyTorch.

1.2 Zestaw danych

Zestaw danych uczących został pobrany ze strony http://archive.ics.uci.edu/ml/datasets/Parkinsons. Zawiera on 197 instancji, 23 cechy oraz 2 klasy. Dane są nieuporządkowane, nie ma danych nieokreślonych. Dokładniejszy opis cech zestawu:

- name Nazwa badanego pacjenta w ASCII i numer nagrania.
- MDVP:Fo(Hz) Średnia częstotliwość podstawowa głosu.
- MDVP:Fhi(Hz) Maksymalna częstotliwość podstawowa głosu.
- MDVP:Flo(Hz) Minimalna częstotliwość podstawowa głosu.
- MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP
 Kilka miar zmienności częstotliwości podstawowej.

- MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA Kilka miar zmienności amplitudy.
- NHR, HNR Dwie miary stosunku szumu do składowych tonalnych w głosie.
- status Stan zdrowia badanego (jeden) chory na Parkinsona, (zero) zdrowy.
- RPDE, D2 Dwie miary złożoności dynamicznej nieliniowej.
- DFA Wykładnik skalowania fraktalnego sygnału.
- spread1, spread2, PPE Trzy nieliniowe miary zmienności częstotliwości podstawowej.

1.3 Przygotowanie danych

Sieć ma za zadanie sklasyfikować czy pacjent cierpi na chorobę Parkinsona. Wartość '1' oznacza osobę cierpiącą na chorobę Parkinsona, natomiast '0' oznacza osobę zdrową. Dane zostały uporządkowane i znormalizowane.

- 2 Zagadnienia teoretyczne
- 2.1 Wstęp do sieci neuronowych
- 2.2 Historia sieci neuronowych
- 2.3 Opis matematyczny sztucznego neuronu
- 2.4 Sieć głęboka
- 3 Realizacja sieci neuronowej
- 3.1 Opis skryptu
- 4 Eksperymenty
- 4.1 Eksperyment 1
- 4.2 Eksperyment 2
- 4.3 Eksperyment 3
- 5 Wnioski

Literatura

[1] Leslie Lamport, E^AT_EX: A Document Preparation System. Addison Wesley, Massachusetts, 2nd Edition, 1994.