Идентификация и диагностика. Лабораторная работа №6. Настройка алгоритмов диагностирования

Исходные данные:

- А) Используется система диагностирования, построенная с помощью структурных инвариантов, представляющих собой разность одноименных параметров различных информационных каналов (лабораторная работа №3);
- В) Используется система диагностирования, построенная с использованием фильтра Калмана, процесс авторегрессии 1 порядка (лабораторная работа №4);
- С) Используется система диагностирования, построенная с использованием фильтра Калмана, процесс авторегрессии 2 порядка (лабораторная работа №4).

Для обнаружения изменения параметров объекта диагностирования используется заданный алгоритм.

Программа работы (для каждого из заданных алгоритмов):

- 1. Аналитический расчет.
- 1.1. Для различных наборов параметров алгоритма рассчитать значения вероятности ложного обнаружения и среднего времени обнаружения, используя аналитические зависимости между выбранными показателями качества (вероятность ложного обнаружения, среднее время обнаружения) и параметрами алгоритмов.
- 1.2. Построить графики зависимостей вероятности ложного обнаружения от каждого параметра алгоритма.
- 1.3. Построить графики зависимостей среднего времени обнаружения от каждого параметра алгоритма.
- 1.4. Выбрать наборы параметров, соответствующие заданным уровням вероятности ложного обнаружения.
 - 2. Имитационное моделирование.
- 2.1. Составить план экспериментов, выбрать объем выборки и количество экспериментов, исходя из требуемого уровня доверительной вероятности для показателей качества обнаружения.
- 2.2. Для различных наборов параметров алгоритма определить методом моделирования значения вероятности ложного обнаружения. В качестве начальных наборов параметров использовать выбранные в п. 1.4.
- 2.3. Выбрать наборы параметров, соответствующие заданным уровням вероятности ложного обнаружения.
- 2.4. Построить графики зависимостей вероятности ложного обнаружения от каждого параметра алгоритма. Сравнить их с графиками, построенными с использованием аналитических зависимостей.
 - 3. Сформулировать выводы о проделанной работе, оформить отчет.

Вариант	Система диагностирования	Алгоритм 1	Алгоритм 2	Вероятность ложного	
				обнаружения	
1	A	Пейджа	АЭС	0,01	0,02
2	В	AKC	ГРШ	0,01	0,02
3	С	ACO	Сегена-Сандерсона	0,01	0,02
4	A	Интервальный	АКС-м	0,01	0,02
5	В	Невязок	Керра	0,01	0,02
6	С	Допусковый	Шьюхарта	0,01	0,02
7	A	AKC	Воробейчикова	0,01	0,02
8	В	Пейджа	АОД	0,01	0,02
9	С	Невязок	AHOM	0,01	0,02
10	A	Допусковый	Надлера-Роббинза	0,01	0,02
11	В	ACO	АКС-м2	0,01	0,02
12	С	Интервальный	AHOM	0,01	0,02
13	A	Пейджа	ГРШ	0,01	0,02
14	В	AKC	Шьюхарта	0,01	0,02
15	С	ACO	Керра	0,01	0,02
16	С	ACO	АКС-м2	0,01	0,02
17	В	Невязок	ГРШ	0,01	0,02