Short Answer Type Questions

Q1. If $A = \{-1, 2, 3\}$ and $B = \{1, 3\}$, then determine

(i) AxB (ii) BxC (c) BxB (iv) AxA

Sol: We have $A = \{-1,2,3\}$ and $B = \{1,3\}$

(i)
$$A \times B = \{(-1, 1), (-1, 3), (2, 1), (2, 3), (3, 1), (3, 3)\}$$

(ii)
$$BxA = \{(1, -1), (1, 2), (1, 3), (3, -1), (3, 2), (3, 3)\}$$

(iii)
$$BxB = \{(1,1), (1,3), (3,1), (3,3)\}$$

(iv) A
$$\times$$
A = {(-1, -1), (-1, 2), (-1, 3), (2, -1), (2, 2), (2, 3), (3, -1), (3, 2), (3,3)}

Q2. If P = $\{x : x < 3, x \in N\}$, Q= $\{x : x \le 2, x \in W\}$. Find $(P \cup Q) \times (P \cap Q)$, where W is the set of whole numbers.

Sol: We have, $P=\{x: x<3, x \in N\} = \{1,2\}$

And $Q = \{x : x \le 2, x \in W\} = \{0,1,2\}$

 $PUQ = \{0, 1, 2\}$ and $P \cap Q = \{1, 2\}$

$$(P \cup Q) \times (P \cap Q) = \{0,1,2\} \times \{1,2\}$$

$$= \{(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)\}$$

Q3. If $A = \{x: x \in W, x < 2\}$, $5 = \{x: x \in N, 1 < x < 5\}$, $C = \{3, 5\}$. Find

(i) $Ax(B \cap Q)$ (ii) $Ax(B \cup C)$

Sol: We have, $A = \{x : x \in W, x < 2\} = \{0, 1\};$

B =
$$\{x : x \in \mathbb{N}, 1 < x < 5\} = \{2, 3, 4\}; \text{ and } C = \{3, 5\}$$

(i)
$$B \cap C = \{3\}$$

$$A \times (B \cap C) = \{0, 1\} \times \{3\} = \{(0, 3), (1, 3)\}$$

$$A \times (B \cup C) = \{0, 1\} \times \{2, 3, 4, 5\}$$

$$= \{(0,2), (0,3), (0,4), (0,5), (1,2), (1,3), (1,4), (1,5)\}$$

Q4. In each of the following cases, find a and b. (2a + b, a - b) = (8, 3) (ii) (a/4, a - 2b) = (0, 6 + b)

Sol: (i) We have, (2a + b,a-b) = (8,3)

$$=> 2a + b = 8$$
 and $a - b = 3$

On solving, we get a = 11/3 and b = 2/3

(ii) We have,
$$\left(\frac{a}{4}, a - 2b\right) = (0, 6 + b)$$

$$\Rightarrow \frac{a}{4} = 0 \Rightarrow a = 0$$

and
$$a-2b=6+b$$

$$\Rightarrow$$
 0-2b=6+b

$$\Rightarrow$$
 $b=-2$.

$$\therefore a=0, b=-2$$

Q5. Given A = $\{1,2,3,4,5\}$, S= $\{(x,y): x \in A, y \in A\}$. Find the ordered pairs which satisfy the conditions given below

x+y = 5 (ii) x+y<5 (iii) x+y>8

Sol: We have, $A = \{1,2,3,4,5\}$, $S = \{(x,y) : x \in A, y \in A\}$

- (i) The set of ordered pairs satisfying x + y = 5 is $\{(1,4), (2,3), (3,2), (4,1)\}$
- (ii) The set of ordered pairs satisfying x+y < 5 is $\{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)\}$
- (iii) The set of ordered pairs satisfying x + y > 8 is $\{(4, 5), (5, 4), (5, 5)\}$.

Q6. Given R = $\{(x,y): x,y \in W, x^2 + y^2 = 25\}$. Find the domain and range of R

Sol: We have, $R = \{(x,y): x,y \in W, x^2 + y^2 = 25\}$

$$= \{(0,5), (3,4), (4,3), (5,0)\}$$

Domain of R = Set of first element of ordered pairs in R = $\{0,3,4,5\}$

Range of R = Set of second element of ordered pairs in R = {5,4, 3, 0}

Q7. If $R_1 = \{(x, y) | y = 2x + 7, \text{ where } x \in R \text{ and } -5 \le x \le 5\}$ is a relation. Then find the domain and range of R_1 .

Sol: We have, $R_1 = \{(x, y)|y = 2x + 7, where x∈ R and -5 ≤ x ≤ 5\}$

Domain of $R_1 = \{-5 \le x \le 5, x \in R\} = [-5, 5]$

$$x \in [-5, 5]$$

$$=> 2x \in [-10,10]$$

Range is [-3, 17]

Q8. If $R_2 = \{(x, y) \mid x \text{ and } y \text{ are integers and } x^2 + y^2 = 64\}$ is a relation. Then find R_2

Sol: We have, $R_2 = \{(x, y) \mid x \text{ and } y \text{ are integers and } x^2 + y^2 - 64\}$

Clearly,
$$x^2 = 0$$
 and $y^2 = 64$ or $x^2 = 64$ and $y^2 = 0$

$$x = 0 \text{ and } y = \pm 8$$

or
$$x = \pm 8$$
 and $y = 0$

$$R_2 = \{(0, 8), (0, -8), (8,0), (-8,0)\}$$

Q9. If $R_3 = \{(x, |x|) \mid x \text{ is a real number}\}\$ is a relation. Then find domain and range

Sol: We have, $R_3 = \{(x, |x)\} \mid x \text{ is real number}\}$

Clearly, domain of $R_3 = R$

Now, $x \in R$ and $|x| \ge 0$.

Range of R_3 is $[0,\infty)$

Q10. Is the given relation a function? Give reasons for your answer.

- (i) h={(4,6), (3,9), (-11,6), (3,11)}
- (ii) $f = \{(x, x) \mid x \text{ is a real number}\}$
- (iii) g = {(n, 1 In)| nis a positive integer}
- (iv) $s = \{(n, n^2) \mid n \text{ is a positive integer}\}$
- (v) $t = \{(x, 3) \mid x \text{ is a real number}\}$

Sol: (i) We have, $h = \{(4,6),(3,9),(-11,6),(3,11)\}.$

Since pre-image 3 has two images 9 and 11, it is not a function.

(ii) We have, $f = \{(x, x) \mid x \text{ is a real number}\}$

Since every element in the domain has unique image, it is a function.

(iii) We have, $g = \{(n, 1/n) \mid nis \text{ a positive integer}\}\$

For n, it is a positive integer and 1/n is unique and distinct. Therefore, every element in the domain has unique image. So, it is a function.

(iii) We have, $s = \{(n, n^2) \mid n \text{ is a positive integer}\}$

Since the square of any positive integer is unique, every element in the domain has unique image. Hence, ibis a function.

(iv) We have, $t = \{(x, 3) | x \text{ is a real number}\}$.

Since every element in the domain has the image 3, it is a constant function.

Q11. If f and g are real functions defined by $f(x) = x^2 + 7$ and g(x) = 3x + 5, find each of the following

(i)
$$f(3) + g(-5)$$

(ii)
$$f(1/2) \times g(14)$$

(iii)
$$f(-2) + g(-1)$$

(iv)
$$f(t) - f(-2)$$

(v)
$$\frac{f(t) - f(5)}{t - 5}$$
, if $t \neq 5$

Sol. Given that, f and g are real functions defined by $f(x) = x^2 + 7$ and g(x) = 3x + 5.

(i)
$$f(3) = (3)^2 + 7 = 9 + 7 = 16$$

and $g(-5) = 3(-5) + 5 = -15 + 5 = -10$
 $f(3) + g(-5) = 16 - 10 = 6$

(ii)
$$f(1/2) = (1/2)^2 + 7 = (1/4) + 7 = 29/4$$

and $g(14) = 3(14) + 5 = 42 + 5 = 47$
 $f(1/2) \times g(14) = (29/4) \times 47 = 1363/4$

(iii)
$$f(-2) = (-2)^2 + 7 = 4 + 7 = 11$$

and $g(-1) = 3(-1) + 5 = -3 + 5 = 2$
 $f(-2) + g(-1) = 11 + 2 = 13$

(iv)
$$f(t) = t^2 + 7$$
 and $f(-2) = (-2)^2 + 7 = 4 + 7 = 11$

$$f(t) - f(-2) = t^2 + 7 - 11 = t^2 - 4$$

(v)
$$f(t) = t^2 + 7$$
 and $f(5) = 5^2 + 7 = 25 + 7 = 32$

$$\therefore \frac{f(t)-f(5)}{t-5}, \text{ if } t \neq 5$$

$$= \frac{t^2 + 7 - 32}{t - 5}$$

$$= \frac{t^2 - 25}{t - 5} = \frac{(t - 5)(t + 5)}{(t - 5)} = t + 5 \quad [\because t \neq 5]$$

Q12. Let f and g be real functions defined by f(x) = 2x + 1 and g(x) = 4x - 7.

- (i) For what real numbers x,f(x)=g(x)?
- (ii) For what real numbers x,f(x) < g(x)?

Sol: We have, f(x) = 2x + 1 and g(x) = 4x-7

(i) Now
$$f(x) = g(x)$$

$$=> 2x+l=4x-7$$

$$=> 2x = 8 => x = 4$$

(ii)
$$f(x) < g(x)$$

$$=> 2x + 1 < 4x - 7$$

$$=> x > 4$$

Q13. If f and g are two real valued functions defined as f(x) = 2x + 1, $g(x) = x^2 + 1$, then find.

(i)
$$f+g$$

(i)
$$f+g$$
 (ii) $f-g$

(iv)
$$\frac{f}{g}$$

Sol. We have, f(x) = 2x + 1 and $g(x) = x^2 + 1$

(i)
$$(f+g)(x) = f(x) + g(x)$$

= $2x + 1 + x^2 + 1 = x^2 + 2x + 2$

(ii)
$$(f-g)(x) = f(x) - g(x)$$

= $(2x+1) - (x^2+1) = 2x + 1 - x^2 - 1 = 2x - x^2$

(iii)
$$(fg)(x) = f(x) \cdot g(x)$$

= $(2x+1)(x^2+1) = 2x^3 + 2x + x^2 + 1 = 2x^3 + x^2 + 2x + 1$

(iv)
$$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{2x+1}{x^2+1}$$

Q14. Express the following functions as set of ordered pairs and determine their range.

 $f:X->R,f(x) = x^3 + 1$, where $X = \{-1,0,3,9,7\}$

Sol: We have, $f:X \rightarrow R, flx) = x^3 + 1$.

Where $X = \{-1, 0, 3, 9, 7\}$

Now $f(-1) = (-1)^3 + 1 = -1 + 1 = 0$

$$f(0) = (0)^3 + |= 0 + |= 1$$

$$f(3) = (3)^3 + 1 = 27 + 1 = 28$$

$$f(9) = (9)^3 + 1 = 729 + 1 = 730$$

$$f(7) = (7)^3 + 1 = 343 + 1 = 344$$

 $f = \{(-1, 0), (0, 1), (3, 28), (9, 730), (7, 344)\}$

Range of f= {0, 1, 28, 730, 344}

Q15. Find the values of x for which the functions $f(x) = 3x^2 - 1$ and g(x) = 3 + x are equal.

Sol:
$$f(x) = g(x)$$

$$=> 3x^2-1=3+x => 3x^2-x-4=0 => (3x-4)(x+1)-0$$

x = -1,4/3

Q16. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? Justify. If this is described by the relation, g(x) = x +, then what values should be assigned to and?

Sol:We have, $g = \{(1, 1), (2, 3), (3, 5), (4,7)\}$

(i)

Since, every element has unique image under g. So, g is a function.

Now, g(x) = x + For (1,1), g(I) = a(I) + P

For
$$(2, 3)$$
, $g(2) = (2) +$

$$=>$$
 3 = 2 + (ii)

On solving Eqs. (i) and (ii), we get = 2, = -l

$$f(x) = 2x-1$$

Also, (3, 5) and (4, 7) satisfy the above function.

Q17. Find the domain of each of the following functions given by

(i)
$$f(x) = \frac{1}{\sqrt{1-\cos x}}$$

(ii)
$$f(x) = \frac{1}{\sqrt{x + |x|}}$$

(iii)
$$f(x) = x|x|$$

(iv)
$$f(x) = \frac{x^3 - x + 3}{x^2 - 1}$$

(v)
$$f(x) = \frac{3x}{28 - x}$$

Sol. (i) We have,
$$f(x) = \frac{1}{\sqrt{1-\cos x}}$$

Now
$$-1 \le \cos x \le 1$$

$$\Rightarrow$$
 $-1 \le -\cos x \le 1$

$$\Rightarrow 0 \le 1 - \cos x \le 1$$

So, f(x) is defined, if $1 - \cos x \neq 0$

- $\therefore \cos x \neq 1$
- $\therefore x \neq 2n\pi, n \in \mathbb{Z}$
- \therefore Domain of f is $R \{2n\pi : n \in Z\}$

(ii) We have,
$$f(x) = \frac{1}{\sqrt{x+|x|}}$$

If
$$x > 0$$
, $x + |x| = x + x = 2x > 0$

If
$$x < 0$$
, $x + |x| = x - x = 0$

Clearly, x = 0 is not possible.

- \therefore Domain of $f = R^+$
- (iii) We have, f(x) = x|x|

We know that 'x' and '|x|' are defined for all real values.

Clearly, f(x) is defined for and $x \in R$.

- \therefore Domain of f = R
- (iv) We have, $f(x) = \frac{x^3 x + 3}{x^2 1}$

f(x) is not defined, if $x^2 - 1 = 0$

$$\Rightarrow$$
 $(x-1)(x+1)=0$

- $\Rightarrow x=-1, 1$
- $\therefore \quad \text{Domain of } f = R \{-1, 1\}$
- (v) We have, $f(x) = \frac{3x}{28 x}$

Clearly, f(x) is not defined, if 28 - x = 0

- $\Rightarrow x \neq 28$
- $\therefore \quad \text{Domain of } f = R \{28\}$

Q18. Find the range of the following functions given by

(i)
$$f(x) = \frac{3}{2-x^2}$$

(ii)
$$f(x) = 1 - |x - 2|$$

(iii)
$$f(x) = |x - 3|$$

(iv)
$$f(x) = 1 + 3 \cos 2x$$

Sol. (i) We have,
$$f(x) = \frac{3}{2 - x^2} = y$$
 (let)

$$\Rightarrow$$
 $2-x^2 = \frac{3}{y}$ \Rightarrow $x^2 = 2 - \frac{3}{y}$

Since
$$x^2 \ge 0$$
, $2 - \frac{3}{y} \ge 0$

$$\Rightarrow \frac{2y-3}{y} \ge 0$$

$$\Rightarrow$$
 2y - 3 \ge 0 and y > 0 or 2y - 3 \le 0 and y < 0

$$\Rightarrow y \ge 3/2 \text{ or } y < 0$$

$$\Rightarrow y \in (-\infty, 0) \cup [3/2, \infty)$$

$$\therefore$$
 Range of f is $(-\infty, 0) \cup [3/2, \infty)$

(ii) We know that,
$$|x-2| \ge 0$$

$$\Rightarrow -|x-2| \le 0$$

$$\Rightarrow -|x-2| \le 0$$
$$\Rightarrow 1-|x-2| \le 1$$

$$\Rightarrow f(x) \le 1$$

$$\therefore$$
 Range of f is $(-\infty, 1]$

(iii) We know that,
$$|x-3| \ge 0$$

$$\Rightarrow f(x) \ge 0$$

$$\therefore$$
 Range of $f = [0, \infty)$

(iv) We know that,
$$-1 \le \cos 2x \le 1$$

$$\Rightarrow$$
 $-3 \le 3 \cos 2x \le 3$

$$\Rightarrow$$
 $-2 \le 1 + 3 \cos 2x \le 4$

$$\Rightarrow -2 \le f(x) \le 4$$

$$\therefore$$
 Range of $f = [-2, 4]$

Q19. Redefine the function f(x) = |x-2| + |2+x|, $-3 \le x \le 3$

Sol.
$$f(x) = \begin{cases} -(x-2) - (2+x), & -3 \le x < -2 \\ -(x-2) + (2+x), & -2 \le x < 2 \\ (x-2) + (2+x), & 2 \le x \le 3 \end{cases}$$
$$= \begin{cases} -2x, & -3 \le x < -2 \\ 4, & -2 \le x < 2 \\ 2x, & 2 \le x \le 3 \end{cases}$$

When $-3 \le x \le -2$, $4 \le -2x \le 6$

When $2 \le x \le 3$, $4 \le 2x \le 6$

Thus range is [4, 6].

20. If $f(x) = \frac{x}{x+1}$, then show that

(i)
$$f\left(\frac{1}{x}\right) = -f(x)$$

(ii)
$$f\left(-\frac{1}{x}\right) = \frac{-1}{f(x)}$$

Sol. We have, $f(x) = \frac{x-1}{x+1}$

(i)
$$f\left(\frac{1}{x}\right) = \frac{\frac{1}{x} - 1}{\frac{1}{x} + 1} = \frac{\frac{1 - x}{x}}{\frac{1 + x}{x}} = \frac{1 - x}{1 + x} = -f(x)$$

(ii)
$$f\left(-\frac{1}{x}\right) = \frac{-\frac{1}{x} - 1}{-\frac{1}{x} + 1} = \frac{-1 - x}{-1 + x} = \frac{1 + x}{1 - x} = \frac{-1}{f(x)}$$

$$\therefore f\left(-\frac{1}{x}\right) = -\frac{1}{f(x)}$$

Q21. Let f (x) = \sqrt{x} and g(x) = xbe two functions defined in the domain R⁺ \cup {0}. Find

- (i) (f+g)(x)
- (ii) (f-g)(x)
- (iii) (fg)(x)
- (iv) f/g(x)

Sol. We have, $f(x) = \sqrt{x}$ and g(x) = x be two function defined in the domain $R^+ \cup \{0\}$

(i)
$$(f+g)(x) = f(x) + g(x) = \sqrt{x} + x$$

(ii)
$$(f-g)(x) = f(x) - g(x) = \sqrt{x} - x$$

(ii)
$$(f-g)(x) = f(x) - g(x) = \sqrt{x} - x$$

(iii) $(fg)(x) = f(x).g(x) = \sqrt{x} \cdot x = x^{\frac{3}{2}}$

(iii)
$$(fg)(x) = f(x) \cdot g(x) = \sqrt{x} \cdot x - x$$

(iv) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$

22. Find the domain and Range of the function $f(x) = \frac{1}{\sqrt{x-5}}$.

Sol. We have,
$$f(x) = \frac{1}{\sqrt{x-5}}$$

Clearly, f(x) is defined, if $x - 5 > 0 \implies x > 5$

Thus, domain of f is $(5, \infty)$.

For
$$x-5>0$$
, $\sqrt{x-5}>0$

$$\therefore \frac{1}{\sqrt{x-5}} > 0$$

Hence, range of f is $(0, \infty)$

Q23. If f(x) = y = ax-b/cx-a then prove that f(y) = x

Sol. We have,
$$f(x) = y = \frac{ax - b}{cx - a}$$

$$f(y) = \frac{ay - b}{cy - a} = \frac{a\left(\frac{ax - b}{cx - a}\right) - b}{c\left(\frac{ax - b}{cx - a}\right) - a}$$

$$= \frac{a(ax - b) - b(cx - a)}{c(ax - b) - a(cx - a)}$$

$$= \frac{a^2x - ab - bcx + ab}{acx - bc - acx + a^2} = \frac{a^2x - bcx}{a^2 - bc} = \frac{x(a^2 - bc)}{(a^2 - bc)}$$

$$f(y) = x$$

Objective Type Questions

Q24. Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is

- (a) mⁿ
- (b) n^m- 1
- (c) mn 1
- (d) $2^{mn} 1$

Sol: (d) We have, n(A) = m and n(B) = n

 $n(A \times B) = n(A)$. n(B) = mn

Total number of relation from A to B = Number of subsets of $AxB = 2^{mn}$

So, total number of non-empty relations = $2^{mn} - 1$

Q25. If $[x]^2 - 5[x] + 6 = 0$, where [.] denote the greatest integer function, then

- (a) $x \in [3,4]$
- (b) $x \in (2, 3]$
- (c) x∈ [2, 3]
- (d) $x \in [2, 4)$

Sol: (d) We have $[x]^2 - 5[x] + 6 = 0 => [(x - 3)([x] - 2) = 0]$

$$=> [x] = 2.3$$
.

For
$$[x] = 2, x \in [2, 3)$$

For
$$[x] = 3, x \in [3,4)$$

$$x \in [2, 3) \cup [3,4)$$

Or $x \in [2,4)$

26. Range of
$$f(x) = \frac{1}{1 - 2\cos x}$$
 is

(a)
$$\left[\frac{1}{3},1\right]$$

(b)
$$\left[-1,\frac{1}{3}\right]$$

(c)
$$(-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$$

(d)
$$\left[-\frac{1}{3},1\right]$$

Sol. (c) We know that, $-1 \le \cos x \le 1$

$$\Rightarrow$$
 $-1 \le -\cos x \le 1$

$$\Rightarrow$$
 $-2 \le -2 \cos x \le 2$

$$\Rightarrow -2 \le -2 \cos x \le 2$$

$$\Rightarrow -1 \le 1 - 2 \cos x \le 3$$

Now
$$f(x) = \frac{1}{1 - 2\cos x}$$
 is defined if

$$-1 \le 1 - 2 \cos x < 0 \text{ or } 0 < 1 - 2 \cos x \le 3$$

$$\Rightarrow -1 \ge \frac{1}{1 - 2\cos x} > -\infty \text{ or } \infty > \frac{1}{1 - 2\cos x} \ge \frac{1}{3}$$

$$\Rightarrow \frac{1}{1-2\cos x} \in (-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$$

27. Let $f(x) = \sqrt{1 + x^2}$, then

(a)
$$f(xy) = f(x) \times f(y)$$

(b) $f(xy) \ge f(x) \times f(y)$

(c)
$$f(xy) \le f(x) \times f(y)$$

(d) None of these

Sol. (c) We have, $f(x) = \sqrt{1 + x^2}$

$$f(xy) = \sqrt{1 + x^2 y^2}$$

$$f(x) \cdot f(y) = \sqrt{1 + x^2} \cdot \sqrt{1 + y^2} = \sqrt{(1 + x^2)(1 + y^2)} = \sqrt{1 + x^2 + y^2 + x^2 y^2}$$

Now
$$\sqrt{1+x^2y^2} \le \sqrt{1+x^2+y^2+x^2y^2}$$

$$\Rightarrow f(xy) \le f(x) \times f(y)$$

28. Domain of $\sqrt{a^2 - x^2}$ (a > 0) is

(a)
$$(-a, a)$$

(b)
$$[-a, a]$$

(c)
$$[0, a]$$

(d) (-a, 0]

Sol. (b) We have $f(x) = \sqrt{a^2 - x^2}$

Clearly f(x) is defined, if $a^2 - x^2 \ge 0$

$$\Rightarrow$$

$$x^2 \le a^2$$

$$\Rightarrow$$

$$-a \le x \le a$$

 $[\because a > 0]$

٠.

Domain of f is [-a, a]

Q29. If fx) ax+ b, where a and b are integers, f(-1) = -5 and f(3) - 3, then a and b are equal to

(b)
$$a = 2, b = -3$$

(c)
$$a = 0, b = 2$$

(d)
$$a = 2, b = 3$$

Sol. (b) We have, f(x) = ax + b

$$f(-1) = a(-1) + b$$

$$\Rightarrow -5 = -a + b$$
(i)

Also,
$$f(3) = a(3) + b$$

$$\Rightarrow \qquad 3 = 3a + b \tag{ii}$$

On solving Eqs. (i) and (ii), we get

$$a = 2$$
 and $b = -3$

30. The domain of the function f defined by $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$ is equal to

(a) $(-\infty, -1) \cup (1, 4]$

(b) $(-\infty, -1] \cup (1, 4]$

(c) $(-\infty, -1) \cup [1, 4]$

(d) $(-\infty, -1) \cup [1, 4)$

Sol. (a) We have, $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$

f(x) is defined if $4-x \ge 0$ and $x^2-1>0$

- \Rightarrow $x-4 \le 0$ and (x+1)(x-1) > 0
- \Rightarrow $x \le 4$ and (x < -1 or x > 1)
- \therefore Domain of $f = (-\infty, -1) \cup (1, 4]$

31. The domain and range of the real function f defined by $f(x) = \frac{4-x}{x-4}$ is

- (a) Domain = R, Range = $\{-1, 1\}$
- (b) Domain = $R \{1\}$, Range = R
- (c) Domain = $R \{4\}$, Range = $\{-1\}$
- (d) Domain = $R \{-4\}$, Range = $\{-1, 1\}$

Sol. (c) We have, $f(x) = \frac{4-x}{x-4} = -1$, for $x \ne 4$

32. The domain and range of real function f defined by $f(x) = \sqrt{x-1}$ is given by

(a) Domain = $(1, \infty)$, Range = $(0, \infty)$ (b) Domain = $[1, \infty)$, Range = $(0, \infty)$

(c) Domain = $[1, \infty)$, Range = $[0, \infty)$ (d) Domain = $[1, \infty)$, Range = $[0, \infty)$

Sol. (d) We have, $f(x) = \sqrt{x-1}$

Clearly, f(x) is defined if $x - 1 \ge 0$

 $x \ge 1$

Domain of $f = [1, \infty)$

Now for $x \ge 1$, $x - 1 \ge 0$

 $\sqrt{x-1} \ge 1$ \Rightarrow

Range of $f = [0, \infty)$

33. The domain of the function f given by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ is

(a) $R - \{3, -2\}$ (b) $R - \{-3, 2\}$ (c) R - [3, -2] (d) R - (3, -2)

Sol. (a) We have, $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$

f(x) is not defined, if $x^2 - x - 6 = 0$

 $\Rightarrow (x-3)(x+2) = 0$ $\therefore x = -2, 3$

Domain of $f = R - \{-2, 3\}$

34. The domain and range of the function f given by f(x) = 2 - |x - 5| is

(a) Domain = R+, Range = $(-\infty, 1]$ (b) Domain = R, Range = $(-\infty, 2]$

(c) Domain = R, Range = $(-\infty, 2)$

(d) Domain = R+, Range = $(-\infty, 2]$

Sol. (b) We have, f(x) = 2 - |x - 5|

Clearly, f(x) is defined for all $x \in R$.

Domain of f = R...

Now, $|x-5| \ge 0$, $\forall x \in R$

 $\Rightarrow -|x-5| \le 0$

 \Rightarrow $2-|x-5| \le 2$

 $f(x) \leq 2$

 \therefore Range of $f = (-\infty, 2]$

35. The domain for which the functions defined by $f(x) = 3x^2 - 1$ and g(x) = 3 + xare equal is

(a) $\left\{-1, \frac{4}{3}\right\}$ (b) $\left[-1, \frac{4}{3}\right]$ (c) $\left(-1, -\frac{4}{3}\right)$ (d) $\left[-1, -\frac{4}{3}\right]$

Sol. (a) We have, $f(x) = 3x^2 - 1$ and g(x) = 3 + x

f(x) = g(x)

 $3x^2 - 1 = 3 + x \implies 3x^2 - x - 4 = 0 \implies (3x - 4)(x + 1) = 0$

 $x = -1, \frac{4}{3}$

Fill in the Blanks Type Questions

Q36. Let f and g be two real functions given by $f = \{(0, 1), (2,0), (3,-4), (4,2), (5,1)\}$

 $g = \{(1,0), (2,2), (3,-1), (4,4), (5,3)\}$ then the domain of f x g is given by_____.

Sol: We have, $f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 1)\}$ and $g = \{(1, 0), (2, 2), (3, 1), (4, 4), (5, 3)\}$

Domain of $f = \{0, 2, 3, 4, 5\}$

And Domain of $q = \{1, 2, 3, 4, 5\}$

Domain of $(f \times g) = (Domain \ of \ f) \cap (Domain \ of \ g) = \{2, 3, 4, 5\}$

Matching Column Type Questions

Q37. Let $f = \{(2,4), (5,6), (8,-1), (10,-3)\}$ and $g = \{(2,5), (7,1), (8,4), (10,13), (11,5)\}$ be two real functions. Then match the following:

Column I		Column II	
(a) $f-g$		(i) ·	$\left\{ \left(2, \frac{4}{5}\right), \left(8, \frac{-1}{4}\right), \left(10, \frac{-3}{13}\right) \right\}$
(b) f+g		(ii)	{(2, 20), (8, -4), (10, -39)}
(c) $f \times g$		(iii)	$\{(2,-1),(8,-5),(10,-16)\}$
(d) $\frac{f}{g}$		(iv)	{(2, 9), (8, 3), (10, 10)}

Sol. Domain of f(x) is $\{2, 5, 8, 10\}$.

Domain of g(x) is $\{2, 7, 8, 10, 11\}$.

Thus, domain of $f \pm g$, $f \times g$ and f/g is $\{2, 8, 10\}$.

For function y = f(x), we have f(2) = 4, f(8) = -1 and f(10) = -3

For function y = g(x), we have g(2) = 5, g(8) = 4 and g(10) = 13

$$(f-g)(2) = f(2) - g(2) = 4 - 5 = -1$$

$$(f-g)(8) = f(8) - g(8) = -1 - 4 = -5$$

$$(f-g)(10) = f(10) - g(10) = -3 - 13 = -16$$
Thus, $(f-g)(x) = \{(2, -1), (8, -5), (10, -16)\}$

$$(f+g)(2) = f(2) + g(2) = 4 + 5 = 9$$

$$(f+g)(8) = f(8) + g(8) = -1 + 4 = 3$$

$$(f+g)(10) = f(10) + g(10) = -3 + 13 = 10$$
Thus, $(f+g)(x) = \{(2, 9), (8, 3), (10, 10)\}$

$$(f \cdot g)(2) = f(2) \cdot g(2) = 4 \cdot 5 = 20$$

$$(f \cdot g)(8) = f(8) \cdot g(8) = (-1) \cdot 4 = -4$$

$$(f \cdot g)(10) = f(10) \cdot g(10) = (-3) \cdot 13 = -39$$
Thus $(f \cdot g)(x) = \{(2, 20), (8, -4), (10, -39)\}$

$$(f'g)(2) = f(2)/g(2) = 4/5 = 4/5$$

$$(f'g)(8) = f(8)/g(8) = (-1)/4 = -1/4$$

$$(f'g)(10) = f(10)/g(10) = (-3)/13 = -3/13$$
Thus $(f'g)(x) = \{(2, 4/5), (8, -1/4), (10, -3/13)\}$
So, correct matching is: (a) $-(iii)$, (b) $-(iv)$, (c) $-(ii)$ and (d) $-(ii)$

True/False Type Questions

Q38. The ordered pair (5,2) belongs to the relation R ={(x,y): y = x - 5, $x,y \in Z$ }

Sol: False

We have, $R = \{(x, y): y = x - 5, x, y \in Z\}$

When x = 5, then y = 5-5=0 Hence, (5, 2) does not belong to R.

Q39. If $P = \{1, 2\}$, then $P \times P \times P = \{(1, 1, 1), (2, 2, 2), (1, 2, 2), (2, 1, 1)\}$

Sol:False

We have, $P = \{1, 2\}$ and n(P) = 2

 $n(P \times P \times P) = n(P) \times n(P) \times n(P) = 2 \times 2 \times 2$

= 8 But given P x P x P has 4 elements.

Q40. If A= $\{1,2,3\}$, 5= $\{3,4\}$ and C= $\{4,5,6\}$, then $(A \times B) \cup (A \times C) = \{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6)\}$.

Sol: True

We have $.4 = \{1,2,3\}, 5 = \{3,4\} \text{ and } C = \{4,5,6\}$

 $AxB = \{(1, 3), (1,4), (2, 3), (2,4), (3, 3), (3,4)\}$

And A x C = $\{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$

 $(A \times B) \cup (A \times C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3,3), (3,4), (3, 5), (3,6)\}$

41. If $(x-2, y+5) = \left(-2, \frac{1}{3}\right)$ are two equal ordered pairs, then x = 4, $y = \frac{-14}{3}$. Sol. False

We have,
$$(x-2, y+5) = \left(-2, \frac{1}{3}\right)$$

$$\Rightarrow x-2=-2, y+5=\frac{1}{3}$$

$$\Rightarrow \qquad x = 0, y = \frac{-14}{3}$$

Q42. If Ax B= $\{(a, x), (a, y), (b, x), (b, y)\}$, thenM = $\{a, b\}$,B= $\{x, y\}$.

Sol: True

We have, $AxB = \{(a, x), (a, y), (b, x), (b, y)\}$

A = Set of first element of ordered pairs in $A \times B = \{a, b\}$

B = Set of second element of ordered pairs in A x B = $\{x, y\}$