7.1ª lista de exercícios de Programação e Estruturas de Dados II

Problema 1 - (ENADE 2017).

QUESTÃO 03 =

O sistema de tarifação de energia elétrica funciona com base em três bandeiras. Na bandeira verde, as condições de geração de energia são favoráveis e a tarifa não sofre acréscimo. Na bandeira amarela, a tarifa sofre acréscimo de R\$ 0,020 para cada kWh consumido, e na bandeira vermelha, condição de maior custo de geração de energia, a tarifa sofre acréscimo de R\$ 0,035 para cada kWh consumido. Assim, para saber o quanto se gasta com o consumo de energia de cada aparelho, basta multiplicar o consumo em kWh do aparelho pela tarifa em questão.

Disponível em: http://www.aneel.gov.br. Acesso em: 17 jul. 2017 (adaptado).

Na tabela a seguir, são apresentadas a potência e o tempo de uso diário de alguns aparelhos eletroeletrônicos usuais em residências.

Aparelho	Potência (kW)	Tempo de uso diário (h)	kWh
Carregador de celular	0,010	24	0,240
Chuveiro 3 500 W	3,500	0,5	1,750
Chuveiro 5 500 W	5,500	0,5	2,250
Lâmpada de LED	0,008	5	0,040
Lâmpada fluo rescente	0,015	5	0,075
Lâmpada incandescente	0,060	5	0,300
Modem de internet em stand-by	0,005	24	0,120
Modem de internet em uso	0,012	8	0,096

Disponível em: https://www.educandoseubolso.blog.br. Acesso em: 17 jul. 2017 (adaptado).

Considerando as informações do texto, os dados apresentados na tabela, uma tarifa de R\$ 0,50 por kWh em bandeira verde e um mês de 30 dias, avalie as afirmações a seguir.

- Em bandeira amarela, o valor mensal da tarifa de energia elétrica para um chuveiro de 3 500 W seria de R\$ 1,05, e de R\$ 1,65, para um chuveiro de 5 500 W.
- II. Deixar um carregador de celular e um modem de internet em stand-by conectados na rede de energia durante 24 horas representa um gasto mensal de R\$ 5,40 na tarifa de energia elétrica em bandeira verde, e de R\$ 5,78, em bandeira amarela.
- III. Em bandeira verde, o consumidor gastaria mensalmente R\$ 3,90 a mais na tarifa de energia elétrica em relação a cada lâmpada incandescente usada no lugar de uma lâmpada LED.

É correto o que se afirma em

- A II, apenas.
- III, apenas.
- O I e II, apenas.
- I e III, apenas.
- (3) I, II e III.

QUESTÃO DISCURSIVA 04

A figura a seguir representa uma plantação de café com x colunas e y linhas. Nessa figura, as regiões com os cafeeiros plantados são as que estão com os espaços preenchidos, e as regiões com falhas de plantios são as que apresentam seus espaços vazios.

Considerando uma solução algorítmica para contar a quantidade de falhas de plantio do cafezal representado na figura, faça o que se pede nos itens a seguir.

- a) Indique o tipo de estrutura de dados utilizada na solução, justificando a sua resposta. (valor: 4,0 pontos)
- b) Escreva o algoritmo da solução em pseudo código ou em linguagem de programação. (valor: 6,0 pontos)

QUESTÃO 20 =

Em uma seleção para uma vaga de programador, o setor de recursos humanos de uma empresa criou três sentenças essenciais para a escolha do candidato, representadas pelas variáveis proposicionais p, q e r:

- p: o candidato tem experiência com a linguagem Python;
- q: o candidato tem experiência com a linguagem Java;
- r: o candidato é pouco experiente como programador.

A partir das três sentenças criadas, foi gerada uma proposição composta \mathbb{S} para avaliação dos candidatos: $\mathbb{S} = (p \vee q) \wedge (q \wedge \neg r)$.

Assinale a opção que representa corretamente a tabela-verdade do cálculo proposicional S.

	p	q	r	(p v q)	$(q \land \neg r)$	S
,	٧	٧	٧	V	V	٧
,	V	٧	F	V	V	V
	V	F	V	V	F	F
A	V	F	F	V	V	V
	F	V	V	V	V	V
	F	V	F	V	F	F
	F	F	V	F	F	F
	F	F	F	F	V	F
	p	q	r	(p v q)	$(q \land \neg r)$	S
	V	V	V	V	V	V
	V	V	F	V	F	F
	V	F	٧	V	F	F
B	V	F	F	V	F	F
	F	V	V	V	V	V
	F	٧	F	V	F	F
	F	F	٧	F	F	F
	F	F	F	F	F	F
	P	q	r	(p v q)	$(q \land \neg r)$	S
	V	V	V	V	V	V
	V	V	F	V	V	V
	V	F	V	F	F	F
Θ	V	F	F	F	V	V
	F	V	V	F	V	V
	F	V	F	F	V	V
	F	F	V	F	F	F
	F	F	F	F	V	V

	р	q	r	(p v q)	(q∧¬r)	S
,	V	٧	V	V	F	٧
,	V	V	F	V	V	V
	V	F	V	V	F	٧
0	V	F	F	V	F	٧
	F	V	V	V	F	٧
	F	٧	F	V	V	٧
	F	F	٧	F	F	F
	F	F	F	F	F	F
	р	q	r	(p v q)	$(q \land \neg r)$	S
	V	٧	٧	V	F	F
	V	٧	F	V	V	٧
	V	F	٧	V	F	F
(3	V	F	F	V	F	F
	F	٧	٧	V	F	F
	F	V	F	V	V	٧
	F	F	V	F	F	F
	F	F	F	F	F	F

QUESTÃO 26

Algumas linguagens de programação obedecem a uma ordem específica no que diz respeito à avaliação de operadores. A precedência dos operadores aritméticos, relacionais e booleanos é demonstrada na tabela a seguir, na qual os operadores ++ e --, pré ou pós-fixados, respectivamente, incrementam ou decrementam a variável, como no exemplo: variável x com valor 0, resultado de ++x é igual a 1 e o de --x é igual a -1.

Ordem de precedência (do maior para o menor)	Operadores
1	++ e pós-fixados
2	+ e – unários, ++ e pré-fixados, !
3	*, /, %
4	+ e - binários
5	<, >, <=, >=
6	=, !=
7	&&
8	П

SEBESTA, R. W. Conceitos de linguagens de programação. Porto Alegre: Bookman, 2011 (adaptado).

Considerando essas informações e sabendo que as variáveis a, b e c têm, em determinado momento, os valores 1, 2 e 0, respectivamente, assinale a opção em que o resultado da expressão apresentada corresponde ao da expressão -a * ++b - --c.

Área livre =

QUESTÃO 35 =

O coordenador geral de um comitê olímpico solicitou a implementação de um aplicativo que permita o registro dos recordes dos atletas à medida que forem sendo quebrados, mantendo a ordem cronológica dos acontecimentos, e possibilitando a leitura dos dados a partir dos mais recentes.

Considerando os requisitos do aplicativo, a estrutura de dados mais adequada para a solução a ser implementada é

- O deque: tipo especial de lista encadeada, que permite a inserção e a remoção em qualquer das duas extremidades da fila e que deve possuir um nó com a informação (recorde) e dois apontadores, respectivamente, para os nós próximo e anterior.
- a fila: tipo especial de lista encadeada, tal que o primeiro objeto a ser inserido na fila é o primeiro a ser lido; nesse mecanismo, conhecido como estrutura FIFO (First In First Out), a inserção e a remoção são feitas em extremidades contrárias e a estrutura deve possuir um nó com a informação (recorde) e um apontador, respectivamente, para o próximo nó.
- a pilha: tipo especial de lista encadeada, na qual o último objeto a ser inserido na fila é o primeiro a ser lido; nesse mecanismo, conhecido como estrutura LIFO (Last In First Out), a inserção e a remoção são feitas na mesma extremidade e a estrutura deve possuir um nó com a informação (recorde) e um apontador para o próximo nó.
- a fila invertida: tipo especial de lista encadeada, tal que o primeiro objeto a ser inserido na fila é o primeiro a ser lido; nesse mecanismo, conhecido como estrutura FIFO (First In First Out), a inserção e a remoção são feitas em extremidades contrárias e a estrutura deve possuir um nó com a informação (recorde) e um apontador, respectivamente, para o nó anterior.
- a lista circular: tipo especial de lista encadeada, na qual o último elemento tem como próximo o primeiro elemento da lista, formando um ciclo, não havendo diferença entre primeiro e último, e a estrutura deve possuir um nó com a informação (recorde) e um apontador, respectivamente, para o próximo nó.

•		
Λ,	203	vre
м	-	 vie

Maratona de Programação da SBC – ACM ICPC – 2017

Problema A

Fatorial

O fatorial de um número inteiro positivo N, denotado por N!, é definido como o produto dos inteiros positivos menores do que ou iguais a N. Por exemplo $4! = 4 \times 3 \times 2 \times 1 = 24$.

Dado um inteiro positivo N, você deve escrever um programa para determinar o menor número ktal que $N = a_1! + a_2! + \ldots + a_k!$, onde cada a_i , para $1 \le i \le k$, é um número inteiro positivo.

Por exemplo, para N=10 a resposta é 3, pois é possível escrever N como a soma de três números fatoriais: 10 = 3! + 2! + 2!. Para N = 25 a resposta é 2, pois é possível escrever N como a soma de dois números fatoriais: 25 = 4! + 1!.

Entrada

A entrada consiste de uma única linha que contém um inteiro N $(1 \le N \le 10^5)$.

Saída

25

Seu programa deve produzir uma única linha com um inteiro representando a menor quantidade de números fatoriais cuja soma é igual ao valor de N.

Exemplo de entrada 1	Exemplo de saída 1	
10	3	
Exemplo de entrada 2	Exemplo de saída 2	

2

1

2

Problema B

Jogo de Estratégia

Um jogo de estratégia, com J jogadores, é jogado em volta de uma mesa. O primeiro a jogar é o jogador 1, o segundo a jogar é o jogador 2 e assim por diante. Uma vez completada uma rodada, novamente o jogador 1 faz sua jogada e a ordem dos jogadores se repete novamente. A cada jogada, um jogador garante uma certa quantidade de Pontos de Vitória. A pontuação de cada jogador consiste na soma dos Pontos de Vitória de cada uma das suas jogadas.

Dado o número de jogadores, o número de rodadas e uma lista representando os Pontos de Vitória na ordem em que foram obtidos, você deve determinar qual é o jogador vencedor. Caso mais de um jogador obtenha a pontuação máxima, o jogador com pontuação máxima que tiver jogado por último é o vencedor.

Entrada

A entrada consiste de duas linhas. A primeira linha contém dois inteiros J e R, o número de jogadores e de rodadas respectivamente ($1 \le J, R \le 500$). A segunda linha contém $J \times R$ inteiros, correspondentes aos Pontos de Vitória em cada uma das jogadas feitas, na ordem em que aconteceram. Os Pontos de Vitória obtidos em cada jogada serão sempre inteiros entre 0 e 100, inclusive.

Saída

Seu programa deve produzir uma única linha, contendo o inteiro correspondente ao jogador vencedor.

Exemplo de entrada 1	Exemplo de saída 1
3 3	3
1 1 1 1 2 2 2 3 3	
	I
Exemplo de entrada 2	Exemplo de saída 2
2 3	1
0 0 1 0 2 0	

3

Problema C

Teleférico

A turma da faculdade vai fazer uma excursão na serra e todos os alunos e monitores vão tomar um teleférico para subir até o pico de uma montanha. A cabine do teleférico pode levar C pessoas no máximo, contando alunos e monitores, durante uma viagem até o pico. Por questão de segurança, deve haver pelo menos um monitor dentro da cabine junto com os alunos. Por exemplo, se cabem C=10 pessoas na cabine e a turma tem A=20 alunos, os alunos poderiam fazer três viagens: a primeira com 8 alunos e um monitor; a segunda com 6 alunos e um monitor; e a terceira com 6 alunos e um monitor.

Dados como entrada a capacidade C da cabine e o número total A de alunos, você deve escrever um programa para calcular o número mínimo de viagens do teleférico.

Se você estiver com muita preguiça hoje, não se preocupe: virando a página você encontra soluções para este problema.

Entrada

A primeira linha da entrada contém um inteiro C, representando a capacidade da cabine ($2 \le C \le 100$). A segunda linha da entrada contém um inteiro A, representando o número total de alunos na turma ($1 \le A \le 1000$).

Saída

Seu programa deve imprimir uma linha contendo um número inteiro representando o número mínimo de viagens do teleférico para levar todos os alunos até o pico da montanha.

Exemplo de entrada 1	Exemplo de saída 1	
10	3	
20		
	I	
Exemplo de entrada 2	Exemplo de saída 2	
12	5	
55		
Exemplo de entrada 3	Exemplo de saída 3	
100	1	
87		