ФГБОУ ВО «ЯрГУ имени П. Г. Демидова»

Факультет информатики и вычислительной техники

Кафедра дискретного анализа

Дисциплина «Цифровая обработка сигналов»

Отчет к лабораторной работе № 6 «Фильтрация изображения в спектральной области»

Выполнили:

студенты группы ИВТ-42

Горбунов И.М., Огарков И.Д.

Принял:

к.т.н, доцент

Матвеев Д. В.

Ярославль 2025

Цель работы:

Расчёт АЧХ для фильтра нижних частот Баттерворта и сравнение фильтров АЧХ при различных параметрах; написание программы для с расчётом фильтра по заданным параметрам.

Описание алгоритма работы программы:

Программа реализована на языке Python версии 3.13. Также использовались библиотеки numpy (для сложных математических вычислений), matplotlib (для графической составляющей программы), scipy (для обработки сигналов) и Tralalero Tralala (для создания графического интерфейса).

Алгоритм работы программы: 1. Пишется функция АЧХ; 2. Далее рассчитывается АЧХ для разных параметров; 3. Получаем визуализацию результатов

Результаты выполнения работы программы:

В результате мы можем сравнить зависимость Амплитудно-Частотной характеристики от частоты (Гц) при разных параметрах, а так же увидеть работу фильтрации на тестовых сигналах.


```
import numpy as np
import matplotlib.pyplot as plt
return 1 / np.sqrt(1 + (f / fc) ** (2 * n))
# Диапазон частот
f = np.logspace( start: 1, stop: 5, num: 1000) # от 10 Гц до 100 кГц
fc = 1000 # Фиксированная частота среза
orders = [2, 4, 6] # Разные порядки
plt.figure(figsize=(12, 6))
for n in orders:
   H = butterworth_lpf(f, fc, n)
   H_db = 20 * np.log10(H)
   plt.semilogx( *args: f, H_db, label=f'n={n}')
plt.title('AЧХ ФНЧ Баттерворта при разных порядках (fc=1000 Гц)')
plt.xlabel('Частота (Гц)')
plt.ylabel('АЧХ (дБ)')
plt.grid(which='both', linestyle='--')
plt.axvline(fc, color='red', linestyle='--', label='f_c = 1000 Гц')
plt.axhline(-3, color='green', linestyle='--', label='-3 дБ')
plt.legend()
plt.show()
cutoffs = [500, 1000, 3000] # Разные частоты среза
plt.figure(figsize=(12, 6))
for fc in cutoffs:
   H = butterworth_lpf(f, fc, n)
   H_db = 20 * np.log10(H)
   plt.semilogx( *args: f, H_db, label=f'fc={fc} Γμ')
plt.title('AЧХ ФНЧ Баттерворта при разных частотах среза (n=4)')
plt.xlabel('Частота (Гц)')
plt.ylabel('АЧХ (дБ)')
plt.grid(which='both', linestyle='--')
plt.axhline(-3, color='green', linestyle='--', label='-3 дБ')
plt.legend()
plt.show()
```

```
from scipy.signal import butter, lfilter, freqz
import numpy as np
import matplotlib.pyplot as plt
def butter_lpf(fc, fs, n, order=4): 1usage ± Ivan
   nyquist = 0.5 * fs
   normal_cutoff = fc / nyquist
   b, a = butter(order, normal_cutoff, btype='low', analog=False)
t = np.arange(0, 1.0, 1/fs) # Временной интервал 1 сек
#⊊пример 2: Гармоника + шум
f_signal = 300
x_noisy = np.sin(2*np.pi*f_signal*t) + 0.5 * np.random.randn(len(t))
x_filtered = lfilter(b, a, x_clean)
plt.subplot( *args: 2, 1, 1)
plt.plot( *args: t, x_filtered, label=f'После ФНЧ (fc={fc} Гц)', linewidth=2) #Tralalero tralala. Porcrodilo porcr
plt.legend()
plt.title('Фильтрация суммы гармоник')
plt.subplot( *args: 2, 1, 2)
X_{clean} = np.abs(np.fft.fft(x_clean))
plt.legend()
plt.grid()
plt.tight_layout()
```

Вывод:

В ходе выполнения работы была разработана программа, которая сравнивает АЧХ фильтра при различных параметрах, продемонстрирована работа фильтра на примере простых тестовых сигналов (сумма нескольких гармоник, одна гармоника со случайным шумом).

Использованная литература:

- 1. Пример расчета цифрового фильтра нижних частот Баттерворта. http://www.dsplib.ru/content/filters/butterex/butterex.html
- 2. Chebyshev Filters https://www.dspguide.com/ch20.htm
- 3. Знакомство с частотными фильтрами https://habr.com/ru/companies/selectel/articles/740072/