

이론, 실습, 시뮬레이션 💯 디지털 논리회로 깨정3판

Chapter 04. 논리게이트

학습목표 및 목차

- 논리게이트와 논리 레벨의 기본 개념을 이해할 수 있다.
- 논리게이트의 동작 원리 및 진리표, 게이트 기호들을 이해하고 이를 활용할 수 있다.
- 정논리와 부논리에 대해 설명할 수 있다.
- 게이트들의 전기적인 특성을 이해하고 이를 활용할 수 있다.

01. 논리 레벨

02. NOT 게이트와 버퍼 게이트

03. AND 게이트

04. OR 게이트

05. NAND 게이트

06. NOR 게이트

07. XOR 게이트

08. XNOR 게이트

09. 정논리와 부논리

10. 게이트의 전기적 특성

01 논리 레벨

■ TTL과 CMOS 논리 레벨 정의 영역

Transistor

디지털 회로에서 전자스위치로 사용되는 반도체 소자. 베이스에 적 절 한 전 압을 인 가 하 여 컬렉터-에미터 접합이 개방 또는 단락된 스위치처럼 동작한다.

1. NOT 게이트

■ 한 개의 입력과 한 개의 출력을 갖는 게이트로 논리 부정을 나타낸다.

진리표	동작파형	논리기호
A F 0 1 1 0	입력 A 1 0 1 0 출력 F 0 1 0 1	A—— F

논리식	
$F = \overline{A} = A'$	

2. 버퍼

- 버퍼(buffer)는 입력된 신호를 변경하지 않고, 입력된 신호 그대로를 출력하는 게 이트로 단순한 전송을 의미한다.
- 입력 신호가 1인 경우에는 출력 신호는 1이 되고, 입력 신호가 0인 경우에는 출력 신호는 0이 된다.

■ 3상태(tri-state) 버퍼

■ 출력이 3개 레벨(High, Low, 하이 임피던스) 중의 하나를 갖는 논리소자

하이 임피던스 : 입력과 출력이 연결되어 있지 않은 상태

■ AND 게이트의 기본 개념(2입력)

■ 입력이 모두 1(on)인 경우에만 출력은 1(on)이 되고, 입력 중에 0(off)인 것이 하나라도 있을 경우에는 출력은 0(off)이 된다.

진리표	동작파형	논리기호
A B F 0 0 0 0 1 0	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	$A \longrightarrow F$
1 0 0	F 0 0 0 1 0	논리식
1 1 1		$F = AB = A \cdot B$

■ AND 게이트의 회로 표현과 IC

■ AND 게이트의 기본 개념(3입력)

■ AND 게이트를 이용한 자동차 좌석벨트 경보 시스템

- 점화스위치(A)가 켜지고(High) 좌석벨트(B)가 풀려있는 상태(High)를 감지
- 점화스위치가 켜지면 타이머가 작동되어 타이머 C가 30초 동안 High로 유지
- 점화 스위치가 켜지고, 좌석벨트가 풀려있고, 타이머가 작동하는 3가지 조건하에서 AND 게이트의 출력은 High가 되며, 운전자에게 주의를 환기시키는 경보음이울리게 된다.
- 30초간 경보음 동작 후에는 경보음은 울리지 않으며, 처음부터 좌석벨트가 채워 져 있으면 경보음은 울리지 않는다.

■ OR 게이트의 기본 개념(2입력)

■ 입력이 모두 0인 경우에만 출력은 0이 되고, 입력 중에 1이 하나라도 있으면, 출력은 1이 된다.

진리표		동작파형	논리식
A B	F	A 0 0 1 1 0	F = A + B
0 0	0		
0 1	1		논리기호
1 0	1	F 0 1 1 1 0	
1 1	1		$A \longrightarrow F$

■ OR 게이트의 회로 표현과 IC

■ OR 게이트의 회로 표현과 IC

진리표	동작파형	논리식
A B C F 0 0 0 0	A 0 0 0 0 1 1 1 1 0	F = A + B + C
0 0 1 1	B 0 0 1 1 0 0 1 1 0	
0 1 0 1	C 0 1 0 1 0 1 0 1 0	논리기호
0 1 1 1	$F = 0 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$	4
1 0 0 1		$B \longrightarrow F$
1 0 1 1		C—
1 1 0 1		
1 1 1 1		

■ OR 게이트를 이용한 침입 탐지 시스템

- 일반 가정에서 출입문 1개와 창문 2개가 있다고 가정
- 출입문과 창문에 설치된 각 센서는 자기 스위치(magnetic switch)로서 문이 열려 있을 때 High를 출력하고, 닫혀있을 때에는 Low를 출력한다.

■ NAND 게이트의 기본 개념(2입력)

- 입력이 모두 1인 경우에만 출력은 0이 되고, 그렇지 않을 경우에는 출력은 1이 된다.
- 이 게이트는 AND 게이트와는 반대로 작동하는 게이트로서, NOT AND의 의미로 NAND 게이트라고 부른다.

	진리표	E	동작파형	논리식
A	В	F	4 0 0 1 1 0	$F = \overline{AB} = \overline{A \cdot B}$
0	0	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0	1	1	B 0 1 0 1 0	논리기호
1	0	1		$A \longrightarrow F$
1	1	0	F 1 1 1 0 1	B————————————————————————————————————
				$A \longrightarrow F$

■ NAND 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 F 1 1 1 1 1 1 0 1	$F = \overline{ABC} = \overline{A \cdot B \cdot C}$ 논리기호 $A \longrightarrow F$ $C \longrightarrow F$
1 1 0 1		
1 1 1 0		

■ NAND 게이트의 IC

■ NOR 게이트의 기본 개념(2입력)

- 입력이 모두 0인 경우에만 출력은 1이 되고, 입력 중에 하나라도 1이 있는 경우는 출력은 0이 된다.
- 이 게이트는 OR 게이트와는 반대로 작동하는 게이트로, NOT OR의 의미로 NOR 게이트라고 부른다.

진리표	동작파형	논리식
A B F	4 0 0 1 1 0	$F = \overline{A + B}$
0 0 1	A 0 0 1 1 0	1 7171+
0 1 0	B 0 1 0 1 0	논리기호
1 0 0	F 1 0 0 0 1	$A \longrightarrow B \longrightarrow F$
1 1 0		
		$A \longrightarrow F$

■ NOR 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 1 0 0 0 0 0 0 0 1	$F = \overline{A + B + C}$ 본리기호 $A \longrightarrow C \longrightarrow C \longrightarrow F$
1 1 0 0 1 1 1 0		'

■ NOR 게이트 IC

07 XOR(eXclusive-OR) 게이트

■ XOR 게이트의 기본 개념(2입력)

- 입력 중 홀수 개의 1이 입력된 경우에 출력은 1이 되고 그렇지 않은 경우에는 출력은 0이 된다.
- 2입력 XOR 게이트의 경우, 두 개의 입력 중 하나가 1이면 출력이 1이 되고, 두 개의 입력 모두가 0이거나 또는 두 개의 입력 모두가 1이라면 출력은 0이 된다.

진리표	동작파형	논리식
A B F	A 0 0 1 1 0	$F = A \oplus B = \overline{AB} + A\overline{B}$
0 0 0	$B = 0 \boxed{1} 0 \boxed{1} 0$	논리기호
1 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \longrightarrow \bigcap$
1 1 0		$B \longrightarrow F$

07 XOR(eXclusive-OR) 게이트

■ XOR 게이트의 기본 개념

07 XOR(eXclusive-OR) 게이트

■ XOR 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 0 1 1 0 1 0 0 1 0	$F = A \oplus B \oplus C$ 본리기호 $A \longrightarrow F$

08 XNOR(eXclusive-NOR) 게이트

■ XNOR 게이트의 기본 개념(2입력)

- 입력 중 짝수 개의 1이 입력될 때 출력이 1이 되고, 그렇지 않은 경우에는 출력은 0이 된다.
- 출력값은 XOR 게이트에 NOT 게이트를 연결한 것이므로 XOR 게이트와 반대이다.
- 2입력 XNOR 게이트의 경우 두 개의 입력이 다를 때 출력이 0이 되고, 두 개의 입력이 같으면 출력은 1이 된다.

진리표	동작파형	논리식
A B F 0 0 1 0 1 0 1 0 0 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$F = \overline{AB} + AB$ $= \overline{A \oplus B}$ $= A \in B$
논리기호	$A \longrightarrow B \longrightarrow $	-F A B F

08 XNOR(eXclusive-NOR) 게이트

■ XOR 게이트의 기본 개념(3입력)

09 정논리와 부논리

■ 논리 개념

전압레벨	정논리	부논리		
+5V	High=1	High=0		
0V	Low=0	Low=1		

■ 정논리 AND = 부논리 OR

전압레벨				정논리 AND				부논리 OR		
A	В	F		A	В	F		A	В	F
L	L	L		0	0	0		1	1	1
$\mid L \mid$	H	$\mid L \mid$		0	1	0		$\frac{1}{2}$	0	$\begin{vmatrix} 1 \\ \cdot \end{vmatrix}$
H	L	$\mid L \mid$		1	0	0		0	1	1
H	H	H		1	1	1		0	0	0
<u> </u>										

09 정논리와 부논리

■ 정논리 NAND = 부논리 NOR

전압레벨				정논리 NAND				부논리 NOR			
A	В	F		A	В	F		A	В	F	
L	L	Н		0	0	1		1	1	0	
L	H	H		0	1	1		1	0	0	
H	$\mid L \mid$	H		1	0	1		0	1	0	
Н	H	$\mid L \mid$		1	1	0		0	0	1	

[☞] 표현 방법이 다를 뿐 실제로 정논리와 부논리는 논리적으로는 같다.

09 정논리와 부논리

■ 정논리와 부논리간의 게이트 대응

정논리	\leftrightarrow	부논리	정논리	\leftrightarrow	부논리
AND		OR	XOR		XNOR
OR		AND	XNOR		XOR
NAND		NOR	NOT		NOT
NOR		NAND			

전파지연시간

• 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작속도이다.

전력소모

• 게이트가 동작할 때 소모되는 전력량

잡음여유도

• 최대로 허용된 잡음 마진

팬-아웃

- 하나의 게이트의 출력으로부터 다른 여러 개의 입력들로 공급되는 전류
- 정상적인 동작으로 하나의 출력이 최대 몇 개의 입력으로 연결되는가를 나타낸다.

1. 전파지연시간(gate propagation delay time)

■ 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작 속도를 나타 낸다.

<입출력 전압 범위>

<LS-TTL의 입출력 레벨>

4. 팬-인(fan-in)과 팬-악옷(fan-out)

- 팬-아웃은 1 개의 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력단 의 수를 의미
- 팬-인은 1 개의 게이트에 입력으로 접속할 수 있는 단수를 의미

학습목표 및 목차

- 논리게이트와 논리 레벨의 기본 개념을 이해할 수 있다.
- 논리게이트의 동작 원리 및 진리표, 게이트 기호들을 이해하고 이를 활용할 수 있다.
- 정논리와 부논리에 대해 설명할 수 있다.
- 게이트들의 전기적인 특성을 이해하고 이를 활용할 수 있다.

01. 논리 레벨

02. NOT 게이트와 버퍼 게이트

03. AND 게이트

04. OR 게이트

05. NAND 게이트

06. NOR 게이트

07. XOR 게이트

08. XNOR 게이트

09. 정논리와 부논리

10. 게이트의 전기적 특성

감사합니다 ☺

