Modelo Macroscopico

```
In [ ]: import numpy as np
                    import matplotlib.pyplot as plt
                     import imageio
                    # Parámetros del dominio
                    nx, ny = 100, 100
                     dx, dy = 1.0, 1.0
                     k = 1.0 # Permeabilidad
                    # Presión inicial
                     P = np.zeros((ny, nx))
                     # Condiciones de contorno (ejemplo: gradiente de presión en el borde izquierdo)
                    P[:, 0] = 100
                     # Función de simulación usando la ley de Darcy (diferencias finitas)
                    def simulate_darcy(P, k, dx, dy, nt):
                              images = []
                              for t in range(nt):
                                        Pn = P.copy()
                                        P[1:-1, 1:-1] = ((Pn[1:-1, 2:] + Pn[1:-1, 0:-2]) * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1]) * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[2:, 1:-1] * dy**2 + (Pn[2:, 1:-1] + Pn[2:, 1:-1] + Pn[
                                        # Visualizar y quardar la imagen
                                        fig, ax = plt.subplots()
                                        c = ax.pcolormesh(P, cmap='viridis')
                                        fig.colorbar(c, ax=ax)
                                        filename = f"./E2_images/temp_step_{t}.png"
                                        plt.savefig(filename)
                                        plt.close()
                                        images.append(imageio.imread(filename))
                              return images
                     images = simulate_darcy(P, k, dx, dy, nt=50)
                     # Convertir imágenes en GIF
                     imageio.mimsave('darcy_simulation.gif', images, duration=0.5, loop=0)
                    from IPython.display import display, Image
                    display(Image(filename="darcy simulation.gif"))
                 C:\Users\crist\AppData\Local\Temp\ipykernel_2336\3607093559.py:30: DeprecationWarnin
                 g: Starting with ImageIO v3 the behavior of this function will switch to that of ii
                 o.v3.imread. To keep the current behavior (and make this warning disappear) use `imp
                 ort imageio.v2 as imageio` or call `imageio.v2.imread` directly.
                      images.append(imageio.imread(filename))
                 <IPython.core.display.Image object>
```

Modelo Microscopico

```
In [ ]: import numpy as np
                                                import matplotlib.pyplot as plt
                                                import imageio
                                                # Parámetros del dominio
                                                nx, ny = 100, 100
                                                dx, dy = 1.0, 1.0
                                                # Parámetros físicos
                                                rho = 1.0 # Densidad
                                                nu = 0.1 # Viscosidad
                                                # Velocidades y presiones
                                                u = np.zeros((ny, nx))
                                                v = np.zeros((ny, nx))
                                                p = np.zeros((ny, nx))
                                                u_prev = np.zeros((ny, nx))
                                                v_prev = np.zeros((ny, nx))
                                                b = np.zeros((ny, nx))
                                                dt = 0.01 # Paso temporal
                                                def build_up_b(b, rho, dt, u, v, dx, dy):
                                                                       b[1:-1, 1:-1] = (rho * (1/dt * ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx) + (v[2:-1, 0:-2])) / (2 * dx) + (v[2:-1, 0:-2]) / (2 * dx
                                                                       return b
                                                def navier_stokes(u, v, p, rho, nu, dx, dy, dt, nt):
                                                                     u prev = u.copy()
                                                                       v_prev = v.copy()
                                                                       b = np.zeros((ny, nx)) # Inicialización de b dentro de la función
                                                                       images = []
                                                                       for n in range(nt):
                                                                                               u_prev = u.copy()
                                                                                             v_{prev} = v.copy()
                                                                                             b = build_up_b(b, rho, dt, u, v, dx, dy)
                                                                                             # Ecuación de presión (Poisson)
                                                                                             for q in range(25):
                                                                                                                     p_prev = p.copy()
                                                                                                                     p[1:-1, 1:-1] = (((p_prev[1:-1, 2:] + p_prev[1:-1, 0:-2]) * dy**2 + (p_prev[1:-1, 0:-2]) * 
                                                                                              # Ecuaciones de momentum
                                                                                             u[1:-1, 1:-1] = (u_prev[1:-1, 1:-1] - u_prev[1:-1, 1:-1] * dt / dx * (u_pre
                                                                                             v[1:-1, 1:-1] = (v_prev[1:-1, 1:-1] - u_prev[1:-1, 1:-1] * dt / dx * (v_prev[1:-1, 1:-1] * dx / dx / dx * (v_prev[1:-1, 1:-1] * (v_prev[1:-1, 1:-1] * dx / dx 
                                                                                             # Condiciones de frontera
                                                                                             u[0, :] = 0
                                                                                             u[:, 0] = 0
                                                                                             u[:, 0] = 1 # Inyectamos velocidad en el borde derecho
                                                                                             u[-1, :] = 0
                                                                                             v[0, :] = 0
                                                                                             v[-1, :] = 0
                                                                                             v[:, 0] = 0
```

```
v[:, -1] = 0
       # Visualizar y quardar la imagen
       fig, ax = plt.subplots()
       magnitude = np.sqrt(u[1:-1, 1:-1]**2 + v[1:-1, 1:-1]**2)
        c = ax.pcolormesh(magnitude, cmap='viridis')
       fig.colorbar(c, ax=ax)
        filename = f"./E2_images/temp_step_ns_{n}.png"
        plt.savefig(filename)
        plt.close()
        images.append(imageio.imread(filename))
   return images
images_ns = navier_stokes(u, v, p, rho, nu, dx, dy, dt, nt=50)
# Convertir imágenes en GIF
imageio.mimsave('navier_stokes_simulation.gif', images_ns, duration=0.5, loop=0)
from IPython.display import display, Image
display(Image(filename="navier_stokes_simulation.gif"))
```

<IPython.core.display.Image object>

Modelo Combinado

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        import imageio
        # Parámetros generales
        nx, ny = 100, 100
        nt = 50
        rho = 1
        nu = 0.1
        dt = 0.001
        k = 1.0 # Permeabilidad
        P = np.zeros((ny, nx))
        P[:, 0] = 100 # Condición de contorno inicial para presión
        # Función para resolver la ecuación de presión (Poisson)
        def pressure_poisson(p, dx, dy):
            pn = np.empty_like(p)
            pn = p.copy()
            for q in range(nt):
                 pn = p.copy()
                 p[1:-1, 1:-1] = ((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 +
                                 (pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) / (2 * (dx**2 + dy))
            return p
        # Simulación combinada
        def combined_simulation(nt, P, dx, dy, k):
            images = []
```

```
u = np.zeros((ny, nx))
   v = np.zeros((ny, nx))
   for n in range(nt):
        P = pressure_poisson(P, dx, dy) # Actualiza presión basada en Darcy
        un = u.copy()
       vn = v.copy()
        # Actualización basada en Navier-Stokes
        u[1:-1, 1:-1] = (un[1:-1, 1:-1] - un[1:-1, 1:-1] * dt / dx *
                        (un[1:-1, 1:-1] - un[1:-1, 0:-2]) - vn[1:-1, 1:-1] * dt / d
                        (un[1:-1, 1:-1] - un[0:-2, 1:-1]) - dt / (2 * rho * dx) *
                        (P[1:-1, 2:] - P[1:-1, 0:-2]) + nu * (dt / dx**2 *
                        (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) + dt
                        (un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])))
        v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - un[1:-1, 1:-1] * dt / dx *
                        (vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) - vn[1:-1, 1:-1] * dt / d
                        (vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) - dt / (2 * rho * dy) *
                        (P[2:, 1:-1] - P[0:-2, 1:-1]) + nu * (dt / dx**2 *
                        (vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) + dt
                        (vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))
        # Visualización
       fig, ax = plt.subplots()
        c = ax.pcolormesh(P, cmap='viridis')
       fig.colorbar(c, ax=ax)
       filename = f"./E2_images/temp_combined_{n}.png"
        plt.savefig(filename)
        plt.close()
        images.append(imageio.imread(filename))
   return images
# Generar las imágenes
images = combined_simulation(nt, P, dx, dy, k)
# Guardar Las imágenes como GIF
imageio.mimsave('combined_simulation.gif', images, duration=0.5, loop=0)
from IPython.display import display, Image
display(Image(filename="combined_simulation.gif"))
```

<IPython.core.display.Image object>

a. Diferencia entre enfoque multiescala concurrente y enfoque multiescala secuencial

El enfoque **multiescala concurrente** implica que se realizan simulaciones tanto a nivel macroscópico como microscópico simultáneamente, y ambos modelos intercambian información e influyen entre sí durante la simulación. Por otro lado, el enfoque **multiescala secuencial** generalmente implica que se realiza primero una simulación a nivel

macroscópico, y luego su resultado informa una simulación microscópica (o viceversa), pero no hay un intercambio continuo de información entre las dos escalas durante la simulación.

b. Información pasada del modelo macroscópico al microscópico

En las simulaciones que realizamos, el modelo macroscópico basado en la Ley de Darcy nos proporciona una distribución de presiones a lo largo del dominio. Esta distribución de presión se utiliza como condición inicial o de contorno en el modelo microscópico basado en las ecuaciones de Navier-Stokes. La presión afecta directamente la velocidad y el comportamiento del fluido en el nivel microscópico. Por lo tanto, cualquier cambio en el modelo macroscópico afectará directamente cómo se comporta el fluido a nivel microscópico.

c. Ventajas de utilizar modelado multiescala concurrente

- 1. **Mayor Precisión**: Al tener en cuenta las interacciones entre las escalas, el modelo puede capturar efectos que un modelo de una sola escala podría pasar por alto.
- 2. **Flexibilidad**: Se pueden realizar cambios en una escala y observar cómo afectan la otra, esto es útil para escenarios donde los cambios en el entorno a nivel macro pueden tener efectos importantes a nivel micro.
- 3. **Captura de Fenómenos Complejos**: Algunos fenómenos, especialmente en la mecánica de fluidos y en los medios porosos, no pueden ser completamente descritos solo a nivel macroscópico o microscópico entonces un enfoque multiescala permite una descripción más completa.
- 4. Optimización Computacional: En algunos casos, puede ser computacionalmente más eficiente simular ciertos fenómenos a una escala específica, ya que al utilizar un enfoque multiescala, podemos aprovechar la eficiencia de cada escala para diferentes partes del problema.