ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2020-2021 ——•OO-——-

Môn thi: Phương trình đạo hàm riêng 1

Mã môn học: MAT2306-(1,3)

Số tín chỉ: 3

Đề số: **2**

Dành cho sinh viên khoá: **K63**

Ngành học: Toán học - Toán SP

Thời gian làm bài **120 phút** (không kể thời gian phát đề)

Câu 1. (2.5 điểm) (a) Chứng minh rằng hàm điều hòa u trên toàn mặt phẳng \mathbb{R}^2 có các đạo hàm riêng cấp 1 đều bị chặn khi và chỉ khi u là đa thức bậc nhất, nghĩa là

$$u(x,y) = ax + by + c$$
, với a, b, c là các hằng số.

(b) Tìm một hàm u điều hòa trên nửa mặt phẳng phải $\{(x,y) \in \mathbb{R}^2 : x > 0\}$ không phải là đa thức bậc nhất mà các đạo hàm riêng cấp 1 của nó đều bị chặn.

Câu 2. (2.5 điểm) Xét bài toán Cauchy cho phương trình truyền sóng

$$u_{tt}(x, y, z, t) = 9\Delta u(x, y, z, t), (x, y, z) \in \mathbb{R}^3, t > 0,$$

với các điều kiên ban đầu

$$u(x,y,z,0) = \varphi(x,y,z) = 0 \text{ và } u_t(x,y,z,0) = \psi(x,y,z) = \begin{cases} -1 & \text{khi } (x,y,z) \in D_1, \\ 1 & \text{khi } (x,y,z) \in D_2, \\ 0 & \text{còn lại,} \end{cases}$$

trong đó $D_1 = \{(x,y,z) \in \mathbb{R}^3: x < 0\} \setminus B_2(-3,0,0), D_2 = B_1(-3,0,0),$ với $B_r(x,y,z)$ là hình cầu tâm (x,y,z) bán kính r. Hãy tính u(100,0,0,t), t > 0.

Câu 3. (3.5 điểm) Xét bài toán biên cho phương trình Poisson trong hình vuông

$$u_{xx}(x,y) + u_{yy}(x,y) = 1$$
, khi $0 < x, y < 1$,

với điều kiện biên Neumann $u_y(x,0) = u_y(x,1) = 0$ khi 0 < x < 1, và $u_x(0,y) = y$, $u_x(1,y) = C$ khi 0 < y < 1, trong đó C là hằng số.

(a) Tìm $v(x,y) = \alpha x^2 + \beta xy + \gamma y^2$ thỏa mãn $v_{xx}(x,y) + v_{yy}(x,y) = 1$, $v_y(x,0) = v_y(x,1) = 0$. Đặt w = u - v. Hỏi w thỏa mãn bài toán nào?

(b) Tìm C để bài toán đã cho có nghiệm. Với C vừa tìm, giải bài toán đã cho.

Câu 4. (3.5 điểm) Xét bài toán biên - ban đầu cho phương trình

$$u_t(x,t) = 2u_{xx}(x,t) + u_x(x,t), 0 < x < 1, t > 0,$$

với điều kiện biên u(0,t)=u(1,t)=0, $t\geq 0$, điều kiện ban đầu u(x,0)=1, $0\leq x\leq 1$.

- (a) Sử dụng tích phân năng lượng dạng $I(t)=\int_0^1 u^2(x,t)dx$ để chứng minh bài toán đã cho có duy nhất nghiệm.
- (b) Tìm các hằng số thực α , β để hàm $v(x,t)=e^{\alpha x+\beta t}u(x,t)$ thỏa mãn $v_t(x,t)=2v_{xx}(x,t)$. Khi đó hàm v(x,t) thỏa mãn bài toán nào?
- (c) Giải bài toán cho hàm v(x,t) ở câu (b). Từ đó giải bài toán ban đầu.

Chú ý: Sinh viên được sử dụng tài liệu.

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2020-2021 Môn thi: Phương trình đạo hàm riêng 1

Mã môn học: **MAT2306-(1,3)** Số tín chỉ: 3 Đề số: **2** Dành cho sinh viên khoá: **K63** Ngành học: **Toán học - Toán SP**

Lời giải 1. [2.5 điểm]

(a) Với a, b, c là hằng số, hàm $u(x, y) = ax + by + c$ có	0.5
$u_x = a, u_y = b, u_{xx} = u_{yy} = 0$	
	0.5
nên u điều hòa và các đạo hàm riêng cấp 1 của nó là hằng nên bị chặn trên toàn mặt phẳng.	0.5
Giả sử u điều hòa và các đạo hàm riêng cấp 1 của nó bị chặn trên \mathbb{R}^2 . Khi đó u_x , u_y là các hàm điều hòa và bị chặn trên \mathbb{R}^2 . Theo Liouville tồn tại các hằng số a , b sao cho	0.5
$u_x = a, u_y = b \text{ trên } \mathbb{R}^2.$	
Khi đó $u(x,y) = ax + f(y)$ và $f'(y) = b$. Do đó tồn tại hằng số c sao cho	0.5
f(y) = by + c hay u(x,y) = ax + by + c.	
(b) Chọn $u(x,y) = \ln((x+1)^2 + y^2)$ có	0.5
$u_x = \frac{2(x+1)}{(x+1)^2 + y^2}, u_{xx} = \frac{2}{(x+1)^2 + y^2} - \frac{4(x+1)^2}{((x+1)^2 + y^2)^2},$	
$u_y = \frac{2y}{(x+1)^2 + y^2}, u_{yy} = \frac{2}{(x+1)^2 + y^2} - \frac{4y^2}{((x+1)^2 + y^2)^2}.$	
Dễ thấy u được chọn là hàm cần tìm.	

Lời giải 2. [2.5 điểm]

Sử dụng công thức Kirchhoff:	0.5
$u(100,0,0,t) = \frac{1}{36\pi t} \iint_{\partial B_{3t}(100,0,0)} \psi(x,y,z) dS = \frac{ \partial B_{3t}(100,0,0) \cap D_2 - \partial B_{3t}(100,0,0) \cap D_1 }{36\pi t}.$	
Khi $0 < 3t < 100$ ta có $u(100, 0, 0, t) = 0$.	0.5
Khi $100 < 3t < 101$ hoặc $3t > 105$ ta có	0.5
$u(100,0,0,t) = -\frac{6\pi t(3t - 100)}{36\pi t} = \frac{100 - 3t}{6}.$	

Khi $101 < 3t < 102$ hoặc $104 < 3t < 105$ ta có	0.5
$u(100,0,0,t) = \frac{100 - 3t}{6} + \frac{1}{36\pi t} \times \frac{3\pi t(4 - (3t - 103)^2)}{103}.$	
Khi $102 < 3t < 104$ ta có	0.5
$u(100,0,0,t) = \frac{100 - 3t}{6} + \frac{1}{36\pi t} \times \frac{3\pi t(4 - (3t - 103)^2)}{103} + \frac{1}{36\pi t} \times \frac{3\pi t(1 - (3t - 103)^2)}{103}.$	

Lời giải 3. [3.5 điểm]

(a) Hàm $v(x,y) = x^2/2$.	0.5
Đặt $w=u-v$ thỏa mãn bài toán	0.5
$\Delta w = 0, 0 < x, y < 1,$	
với điều kiện biên $w_y(x,0)=w_y(x,1)=0$ khi $0< x<1$, và $w_x(0,y)=y$, $w_x(1,y)=C-1$, khi $0< y<1$.	
(b) Từ PT và điều kiện biên $w_y(x,0)=w_y(x,1)=0$ ta có chuỗi nghiệm	0.5
$w(x,y) = a_0 + b_0 x + \sum_{k=1}^{\infty} \left(a_k \cosh(k\pi x) + b_k \cosh(k\pi (1-x)) \right) \cos(k\pi y).$	
Từ điều kiện biên $w_x(0,y)=y$ ta có	0.5
$b_0 = \int_0^1 y dy = 1/2, b_k = -\frac{2}{k\pi \sinh(k\pi)} \int_0^1 y \cos(k\pi y) dy = \frac{2((-1)^k - 1)}{(k\pi)^3 \sinh(k\pi)} \text{ khi } k \neq 0.$	
Từ điều kiện biên $w_x(1,y) = C - 1$ ta có	0.5
$b_0=C-1, a_k=0$ khi $k\neq 0.$	
Như vậy a_0 bất kỳ và hằng số C cần tìm $C = b_0 + 1 = 3/2$.	0.5
Vậy nghiệm cần tìm	0.5
$u(x,y) = \frac{x^2 + x}{2} + a_0 - \frac{4}{\pi^3} \sum_{n=0}^{\infty} \frac{\cosh((2n+1)\pi(1-x))}{(2n+1)^3 \sinh((2n+1)\pi)} \cos((2n+1)\pi y).$	

Lời giải 4. [3.5 điểm]

(a) Giả sử
$$u_1,u_2$$
 là hai nghiệm của bài toán. Khi đó $w=u_1-u_2$ là nghiệm của
$$w_t(x,t)=2w_{xx}(x,t)+w_x(x,t), 0< x<1, t>0,$$
 với điều kiện biên $w(0,t)=w(1,t)=0, t\geq 0$, điều kiện ban đầu $w(x,0)=0, 0\leq x\leq 1$. Xét $I(t)=\int_0^1 w^2(x,t)dx$. Do $w(x,0)=0$ nên $I(0)=0$.

Lai có	0.5
$I'(t) = 2\int_0^1 u(x,t)u_t(x,t)dx = 4\int_0^1 u du_x + 2\int_0^1 u u_x dx$	
$=4\left(uu_{x}\Big _{x=0}^{x=1}-\int_{0}^{1}u_{x}^{2}dx+u^{2}\Big _{x=0}^{x=1}\right)$	
mà $u(0,t) = u(1,t) = 0$ nên $I'(t) \le 0, t > 0$. Do đó	
$0 \le I(t) \le I(0) = 0, \forall t > 0$	
hay $I(t) = 0, t > 0$. Như vậy $w = 0$ hay $u_1 = u_2$. (b) Hàm $v(x,t) = e^{\alpha x + \beta t} u(x,t)$ có	
(b) Hàm $v(x,t) = e^{\alpha x + \beta t} u(x,t)$ có	0.5
$v_t = \beta v + e^{\alpha x + \beta t} u_t, v_{xx} = \alpha^2 v + e^{\alpha x + \beta t} (2\alpha u_x + u_{xx}).$	
Mà $u_t = 2u_{xx} + u_x$ nên để $v_t = 2v_{xx}$ ta có $\alpha = 1/4, \beta = 1/8$.	0.5
Bài toán cho hàm $v(x,t)$	0.5
$v_t = 2v_{xx}, 0 < x < 1, t > 0,$	
với điều kiện biên $v(0,t)=v(1,t)=0$, điều kiện ban đầu $v(x,0)=e^{x/4}$.	
(c) Chuỗi nghiệm	0.5
$v(x,t) = \sum_{n=1}^{\infty} a_n e^{-2n^2 \pi^2 t} \sin(n\pi x).$	
n=1	
Thay vào điều kiện ban đầu $v(x,0) = e^{x/4}$ ta có	0.5
$a_n = 2 \int_0^1 e^{x/4} \sin(n\pi x) dx = \frac{16n\pi(1 - (-1)^n e^{1/4})}{1 + 16n^2\pi^2}.$	
Vậy nghiệm	
$u(x,t) = e^{-x/4 - t/8} \sum_{n=1}^{\infty} \frac{16n\pi(1 - (-1)^n e^{1/4})e^{-2n^2\pi^2 t}}{1 + 16n^2\pi^2} \sin(n\pi x).$	

Hà Nội, ngày 30 tháng 06 năm 2021 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

TS. Đặng Anh Tuấn