Segnali modulati

Modulazioni analogiche

AM-classica	$s(t) = [1 + k_a m(t)] A_c \cos(2\pi f_c t)$
AM-DSB	$s(t) = m(t)A_c \cos(2\pi f_c t)$
AM-SSB	$s(t) = m(t)A_c \cos(2\pi f_c t) - \hat{m}(t)A_c \sin(2\pi f_c t)$
FM	$s(t) = A_c \cos\left(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(u) du\right)$
PM	$s(t) = A_c \cos(2\pi f_c t + k_p m(t))$

Modulazioni digitali

M-PAM	$s_k(t) = \left[2k - (M+1)\right] \sqrt{\frac{E_g}{T}} rect \left(\frac{t - T/2}{T}\right) \qquad k = 1M$
M-ASK	$s_k(t) = \left[2k - (M+1)\right]\sqrt{\frac{2E_g}{T}}\cos(2\pi f_c t)rect\left(\frac{t - T/2}{T}\right) \qquad k = 1M$
M-QAM	$s_{k}(t) = \left[2k - (\sqrt{M} + 1)\right]\sqrt{\frac{2E_{g}}{T}}\cos(2\pi f_{c}t)rect\left(\frac{t - T/2}{T}\right) + \left[2k - (\sqrt{M} + 1)\right]\sqrt{\frac{2E_{g}}{T}}\sin(2\pi f_{c}t)rect\left(\frac{t - T/2}{T}\right)$ $k = 1\sqrt{M}$
M DDM	
M-PPM	$s_k(t) = \sqrt{\frac{ME_s}{T}} rect \left(\frac{t - T/2M - kT/M}{T/M} \right) \qquad k = 0M - 1$
M-FSK	$s_k(t) = \sqrt{\frac{2E_s}{T}} \cos\left(2\pi f_c t + 2\pi \frac{k}{2T}t\right) rect\left(\frac{t - T/2}{T}\right) \qquad k = 0M - 1$
M-PSK	$s_k(t) = \sqrt{\frac{2E_s}{T}} \cos\left(2\pi f_c t + 2\pi \frac{k}{M}\right) rect\left(\frac{t - T/2}{T}\right) \qquad k = 0M - 1$