Solution Approach

Step 1: Setup completion to run the pipeline completely

- Ran "make -f Makefile" command
- Ran "make run" command
- Added a dummy column "accept_freq" and populated it with some random value in "driver_historical_completed_bookings" function of "transformations.py". Just to run the pipeline.
- Added the "accuracy" metric in "evaluate" function of "classifier.py". Just to run the pipeline, no logic behind adding accuracy metric for judging the performance of model.
- By making the above changes, I was able to run the pipeline and generate the file in submission folder.

Step 2: Change in driver_historical_completed_bookings to add a column with values of drivers acceptance history.

- Idea was to get the percentage of orders accepted out of all sent.
- Selected only the ACCEPTED, REJECTED and IGNORED related rows.
- For current_order_id of a driver, filtered the corresponding previous ordered data based on current timestamp. Then calculated the percentage of acceptance by dividing total accepted orders divided by total order request sent.
- One row operations are given below.

current_time	driver_id	current_order_id	Status
2:00 AM	d1	120	Accepeted
3:00 AM	d1	121	Rejected
1:00 AM	d1	122	Rejected
5:00 AM	d2	123	Accepeted
6:00 AM	d2	124	Accepeted

Current_time data			all prev data for that driver			
current_ti	ime	driver_id	current_order_id	prev_time	prev_order_id	Prev Status
3:00 AN	А	d1	121	1:00 AM	122	Rejected
3:00 AN	И	d1	121	2:00 AM	120	Accepeted

			results		
current_time	driver_id	current_order_id	prev accepted	prev req sent	accept_freq
3:00 AM	d1	121	1	2	0.5

- For the first order of the driver, I am filling it with 0.4(40% acceptance percentage). Ideally change is 50% for both acceptance and rejection but to start with, given 0.4. If the driver performs well in its first few orders it will improve.
- Since no historical data is present in the test data so added the *try and except* block to run this script only in training cases.
- Adding try-except block is a bit risky. Just did it for assignment completion purposes. Better we should
 pass a parameter in apply_feature_engineering function that will let us know whether it is a train or test
 transformation.
- If I need to do it in production for live cases. I would have integrated this logic with ETL so that for every driver accept_freq will get updated at the end of the day and we will use it for the next day.
- Performing these historical operations is a time taking task and this we should do in our sql ETL script.
- Better do it for the last 10 orders or last one month orders. For example how many he accepted out of the last 10 requests sent to him.

Step 3: Training the base model

- Filtered the resulted data (Accepted, Ignored and Rejected) for training purposes.
- Used the ROC_AUC_SCORE metrics instead of Accuracy because the data was highly imbalanced for training. Only ~18k cases are present of not-acceptance in training data.

```
df.is_completed.value_counts()
is_completed
1   180703
0   18782
Name: count, dtype: int64
```

• With the initial parameters mentioned in the config file I got the below mentioned results on the unseen data. It's predicting almost every record as 1 (acceptance). We definitely need to improve the model performance.

]]]	54 93 :	3736] 36014]]						
			precision	recall	f1-score	support		
		0	0.37	0.01	0.03	3790		
		1	0.91	1.00	0.95	36107		
	accui	acy			0.90	39897		
r	macro	avg	0.64	0.51	0.49	39897		
wei	ghted	avg	0.85	0.90	0.86	39897		

Accuracy: 0.9040278717698073 Recall: 0.997424322153599 Precision: 0.9060125786163522 AUC/ROC: 0.5058361716308892

Step 4: Hyperparameter tuning

- From initial observations we are already aware that the data was highly imbalanced. So definitely we need to take care of that somehow. To work upon this, I have used the "class_weight" parameter,I am setting it to "balanced". This means the classes will be weighted inversely proportional to how frequently they appear in the data.
- I have used the "RandomizedSearchCV" to find the best parameters with 5 fold validation.
- Final Parameters used are: n_estimators=250,max_depth=15,n_jobs=-1,random_state=33,bootstrap=false, class weight="balanced"
- Final model performance on unseen data is mentioned below. ROC_AUC_SCORE has improved from ~0.50 to ~0.61 and also started getting the balanced results of rejection and acceptance both.

[[1827 [9591 :		-			
		precision	recall	f1-score	support
	0	0.16	0.48	0.24	3778
	1	0.93	0.73	0.82	36119
accui	racy			0.71	39897
macro	avg	0.55	0.61	0.53	39897
weighted	avg	0.86	0.71	0.77	39897

Accuracy: 0.7107050655437752 Recall: 0.7344610869625405 Precision: 0.9314933810878191 AUC/ROC: 0.6090251437988987

Step 5: Further improvement thoughts

- We should definitely include the drivers acceptance percentage of last x orders.
- We should include additional information.
 - Average distance of orders accepted/rejected in the last x days: Few drivers do not like to go too far so they reject it.
 - Average monetary value of rejected and accepted order: Accept only orders of high amount.
 - Ratings
 - Current Weather condition Cloudy, Raining etc.
- Some enhancements on execution level
 - Numbers of drivers available under 2km radius: We should definitely send the request if very few drivers are available even if the model is telling he will reject.
 - A/B testing before deployment to enhance it further and cover the corner cases.