Characterising representable positive relation algebras via Priestley duality

Daniel Rogozin

1 Distributive lattice representation and Priestley duality

Lemma 1. Let $h: \mathcal{L} \to \mathcal{R}$ be a representation, then then

$$h^{-1}[x] = \{ a \in \mathcal{L} \mid x \in h(a) \}$$

is prime filter in \mathcal{L} .

Proof. Let $c \in h^{-1}[x]$ and $c \leq d$, then $x \in h(c)$, but h is order-preserving, so $x \in h(d)$. If $c, d \in h^{-1}[x]$, then $x \in h(c)$ and $x \in h(d)$, so $x \in h(c) \cap h(d)$, then $x \in h(c \cdot d)$, so $c \cdot d \in h^{-1}[x]$. Let $c + d \in h^{-1}[x]$, then $x \in h(c + d) = h(c) \cup h(d)$, so either $x \in h(c)$ or $x \in h(d)$, so either $c \in h^{-1}[x]$ or $d \in h^{-1}[x]$.

- 1.1 Priestley duality
- 2 Representatiting positive relation algebras
- 3 Spectral spaces for positive relation algebras
- 4 Complete representability
- 4.1 Completely representable distibutive lattices

TODO: read [EH12]

4.2 Completely representable positive relation algebras

5 The main result

For that we need such model theoretic notions as saturation and types, see [Hod93, Section 6.3].

Definition 1. Let \mathcal{M} be a first-order structure of a signature L and $S \subseteq \mathcal{M}$. Let L(S) be an extension of L with copies of elements from S as additional constants. We assume that Cnst(L) and S are disjoint.

1. Let $n < \omega$, an n-type over S is a set \mathcal{T} of L(S) formulas $A(\overline{x})$, where \overline{x} is a fixed n-tuple of elements from S. Notation: $\mathcal{T}(\overline{x})$. A type is an n-type for some $n < \omega$.

- 2. An n-type $\mathcal{T}(\overline{x})$ is realised in \mathcal{M} , if there exists $\overline{m} \in \mathcal{M}^n$ such that $\mathcal{M} \models A(\overline{m})$ for every $A \in \mathcal{T}(\overline{x})$. \mathcal{M} omits $\mathcal{T}(\overline{x})$, if $\mathcal{T}(\overline{x})$ is not realised in \mathcal{M} .
- 3. $\mathcal{T}(\overline{x})$ is finitely satisfied in \mathcal{M} , if every finite subtype $\mathcal{T}_0(\overline{x}) \subseteq \mathcal{T}(\overline{x})$ is realised in \mathcal{M} . We can reformulate that as $\mathcal{M} \models \exists \overline{a} \bigwedge_{A \in \mathcal{T}_0} A(\overline{a})$.
- 4. Let T be a theory, then a type \mathcal{T} over the empty set of constants is T-consistent, if there exists a model $\mathcal{M} \models T$ such that \mathcal{T} is finitely satisfied in \mathcal{M} .
- 5. Let κ be a cardinal, then \mathcal{M} is κ -saturated, if for every $S \subseteq \mathcal{M}$ with $|S| < \kappa$ every finitely satisfied 1-type \mathcal{T} is realised in \mathcal{M} .

By default, a saturated model is an ω -saturated model for us.

The useful facts, they are from [CK90] and [Hod93]:

Fact 1. Let \mathcal{M} be an FO-structue and κ a cardinal, then:

- 1. \mathcal{M} is κ -saturated iff every finitely satisfiable α -type (an arbitrary $\alpha \leq \kappa$) with fewer than κ parameters is realised in \mathcal{M} .
- 2. If \mathcal{M} is κ -saturated, then \mathcal{M} is λ -saturated for every $\lambda < \kappa$.
- 3. Every consistent theory has a κ -saturated model and every model has an elementary κ -saturated extension.
- 4. Let $(\mathcal{M}_i)_{i<\omega}$ a family of structures of the (at most) countable signature and D a non-principal ultrafilter over ω , then $\Pi_D \mathcal{M}_i$ is ω_1 -saturated.

Let \mathcal{A} be a positive relation algebra, define the first-order relational language of the form

$$\mathcal{L}(\mathcal{A}) = (=, \{R_a^2\}_{a \in \mathcal{A}})$$

The $\mathcal{L}(\mathcal{A})$ -theory $T_{\mathcal{A}}$ consists of the following statements:

- $\sigma_1 = \forall x \forall y (\mathbf{1}'(x, y) \leftrightarrow (x = y))$
- $\sigma_+(R, S, T) = \forall x \forall y (R(x, y) \leftrightarrow S(x, y) \lor T(x, y))$
- $\sigma.(R, S, T) = \forall x \forall y (R(x, y) \leftrightarrow S(x, y) \land T(x, y))$
- $\sigma_1(R, S, T) = \forall x \forall y (R(x, y) \leftrightarrow \exists z (S(x, z) \land T(z, y)))$
- $\sigma_{\smile}(R,S) = \forall x \forall y (R(x,y) \leftrightarrow S(y,x))$
- $\sigma_{\neq 0} = \exists x \exists y R(x,y)$ for any R_a such that $a \neq 0$
- $\sigma_0 = \neg \exists x \exists y 0(x,y)$
- $\sigma_1 = \forall x \forall y (R(x,y) \to \mathbf{1}(x,y))$

Proposition 1. T_A is satisfiable whenever A is representable.

Theorem 1. Let A be a positive relation algebra, then R is representable iff $(R_+)^+$ is completely representable.

Theorem 2. RPRA is a canonical variety.

References

- [AM11] Hajnal Andréka and Szabolcs Mikulás. Axiomatizability of positive algebras of binary relations. *Algebra universalis*, 66(1-2):7, 2011.
- [BJ11] Guram Bezhanishvili and Ramon Jansana. Priestley style duality for distributive meetsemilattices. *Studia Logica*, 98:83–122, 2011.
- [CK90] Chen Chung Chang and H Jerome Keisler. Model theory. Elsevier, 1990.
- [EH12] Robert Egrot and Robin Hirsch. Completely representable lattices. *Algebra universalis*, 67(3):205–217, 2012.
- [Hod93] Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
- [Jón82] Bjarni Jónsson. Varieties of relation algebras. Algebra universalis, 15(3):273–298, 1982.