Advanced Calculus II: Assignment 3

Chris Hayduk

February 27, 2020

Problem 1.

Let $L_1, L_2, L_3 \in L(\mathbb{R}^n, \mathbb{R}^m)$. Then all of these functions are linear transformation from \mathbb{R}^n to \mathbb{R}^m . We will now use these properties to show that $L(\mathbb{R}^n, \mathbb{R}^m)$ is a vector space:

1. Associativity of addition

$$(L_1 + L_2)(x) + L_3(x) = L_1(x) + L_2(x) + L_3(x)$$

= $L_1(x) + (L_2 + L_3)(x)$

2. Commutativity of addition

$$(L_1 + L_2)(x) = L_1(x) + L_2(x)$$

We have that $L_1(x), L_2(x) \in \mathbb{R}^m$ for every $x \in \mathbb{R}^n$. Since \mathbb{R}^m is a vector space, we must have that,

$$(L_1 + L_2)(x) = L_1(x) + L_2(x)$$

= $L_2(x) + L_1(x)$
= $(L_2 + L_1)(x)$

as required.

3. Identity element of addition

Let L_0 be the function that assigns the 0 vector in \mathbb{R}^m to every vector in \mathbb{R}^n . We must first show that this is a linear transformation.

Let $u, v \in \mathbb{R}^n$ and let $c \in \mathbb{R}$. Then,

$$L_0(u+v) = 0 = L_0(u) + L_0(v)$$

and,

$$L_0(cu) = 0 = c0 = cL(u)$$

Thus $L_0 \in L(\mathbb{R}^n, \mathbb{R}^m)$. Now to show that it is the identity element of addition in that set:

$$(L_0 + L_1)(x) = L_0(x) + L_1(x)$$

= 0 + L_1(x)
= L_1(x)

4. Inverse elements of addition

First we will show that $-L_1(x)$ is a linear transformation.

Let $u, v \in \mathbb{R}^n$ and let $c \in \mathbb{R}$. Then,

$$-L_1(u+v) = -(L_1(u) + L_1(v))$$

= $-L_1(u) + -L_1(v)$

and,

$$c(-L_1(u)) = (-c)L_1(u) = -L_1(cu)$$

Thus $-L_1 \in L(\mathbb{R}^n, \mathbb{R}^m)$. Now to show that it is the inverse element of addition in that set:

$$(L_1 + -L_1)(x) = L_1(x) + -L_1(x)$$

= 0

5. Compatibility of scalar multiplication with field multiplication

Let $a, b \in \mathbb{R}$. Then, using properties of linear transformations, we have

$$a(bL_1(x)) = a(L_1(bx))$$

$$= L_1(a(bx))$$

$$= L_1((ab)x)$$

$$= (ab)L_1(x)$$

6. Identity element of scalar multiplication

Let $1 \in \mathbb{R}$. Since \mathbb{R}^n is a vector space with 1 as the scalar multiplication identity, we have that 1x = x for every $x \in \mathbb{R}^n$. Moreover, by properties of linear transformations, we have,

$$(1)L_1(x) = L_1(1x) = L_1(x)$$

7. Distributivity of scalar multiplication with respect to vector addition Let $c \in \mathbb{R}$. Since $L_1(u), L_2(v) \in \mathbb{R}^m$ and \mathbb{R}^m is an \mathbb{R} vector space, we must necessarily have that

$$c(L_1(x) + L_2(x)) = cL_1(x) + cL_2(x)$$

8. Distributivity of scalar multiplication with respect to field addition Let $a, b \in \mathbb{R}$. Moreover, let d = a + b. Then,

$$(a+b)L_1(x) = dL_1(x)$$

$$= L_1(dx)$$

$$= L_1((a+b)x)$$

$$= L_1(ax + bx)$$

$$= L_1(ax) + L_1(bx)$$

$$= aL_1(x) + bL_1(x)$$

Hence, $L(\mathbb{R}^n, \mathbb{R}^m)$ together with the standard addition and scalar multiplication is an \mathbb{R} vector space.

Problem 2.

We will show that $||T|| = \sup\{||T(x)|| : ||x|| \le 1\}$ defines a norm on $L(\mathbb{R}^n, \mathbb{R}^m)$.

Let $T_1, T_2 \in L(\mathbb{R}^n, \mathbb{R}^m)$. We must check the three norm properties:

1. We have that,

$$||T_1 + T_2|| = \sup\{||(T_1 + T_2)(x)|| : ||x|| \le 1\}$$

= \sup\{||T_1(x) + T_2(x)|| : ||x|| \le 1\}

Since $T_1(x), T_2(x) \in \mathbb{R}^m$ for every $x \in \mathbb{R}^n$, we have that $||T_1(x) + T_2(x)|| \le ||T_1(x)|| + ||T_2(x)||$ for any valid norm on \mathbb{R}^m . Hence, we have,

$$||T_1 + T_2|| = \sup\{||T_1(x) + T_2(x)|| : ||x|| \le 1\}$$

$$\le \sup\{||T_1(x)|| + ||T_2(x)|| : ||x|| \le 1\}$$

$$= ||T_1|| + ||T_2||$$

2. Let $a \in \mathbb{R}$. By properties of norms and supremum, we have

$$||aT_1|| = \sup\{||aT_1(x)|| : ||x|| \le 1\}$$

$$= \sup\{|a| \cdot ||T_1(x)|| : ||x|| \le 1\}$$

$$= |a| \sup\{||T_1(x)|| : ||x|| \le 1\}$$

$$= |a| \cdot ||T_1||$$

3. Suppose ||T|| = 0. Then need to show that $T = \mathbf{0}$ where $\mathbf{0}$ is the 0 vector in \mathbb{R}^m . We have,

$$||T|| = \sup\{||T(x)|| : ||x|| \le 1\}$$

Since any valid norm on \mathbb{R}^m is non-negative and the supremum of ||T(x)|| with $||x|| \le 1$ is 0, we must have that ||T(x)|| = 0 for all $||x|| \le 1$ and hence T(x) = 0 for all $||x|| \le 1$.

Now suppose $\exists x_1$ with $||x_1|| > 1$ and $||T(x_1)|| \neq 0$ (that is, $T(x_1) = 0$).

Write x_1 as a linear combination of basis vectors. Hence, $x_1 = c_1e_1 + c_2e_2 + \cdots + c_ne_n$. Then we have,

$$||T(x_1)|| = ||T(c_1e_1 + c_2e_2 + \dots + c_ne_n)||$$

$$= ||T(c_1e_1) + \dots + T(c_ne_n)||$$

$$= ||c_1T(e_1) + \dots + c_nT(e_n)|| = ||c_1(0) + \dots + c_n(0)||$$

$$= ||0|| = 0$$

However, we supposed that $||T(x_1)|| \neq 0$, a contradiction. Thus, T(x) = 0.

Thus, the operator norm defines a valid norm on $L(\mathbb{R}^n, \mathbb{R}^m)$.

Problem 3.

Problem 4.

Suppose f is even and differentiable. Then,

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$$

$$= -\lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

$$= -f'(x)$$

Hence, f' is odd.

Problem 5.

We have,

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h}$$
$$= \lim_{h \to 0} h \sin(1/h)$$

We have that $|\sin(1/h)| \le 1$ for every value of h. Hence,

$$|h\sin(1/h)| \le |h|$$

Thus,

$$\begin{split} -\lim_{h\to 0}|h| &\leq \lim_{h\to 0}h\sin(1/h) \leq \lim_{h\to 0}|h|\\ \Longrightarrow 0 &\leq \lim_{h\to 0}h\sin(1/h) \leq 0\\ \Longrightarrow &\lim_{h\to 0}h = 0 \end{split}$$

Hence, f'(0) exists and equals 0.

Now need to show that f' is not continuous at 0. We have that,

$$f'(x) = \begin{cases} 2x\sin(1/x) - \cos(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$

Observe that,

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \sin(1/x) - \cos(1/x)$$
$$= \lim_{x \to 0} 2x \sin(1/x) - \lim_{x \to 0} \cos(1/x)$$
$$= -\lim_{x \to 0} \cos(1/x)$$

This limit is undefined, and so $f'(0) \neq \lim_{x\to 0} f'(x)$. Hence, f'(x) is not continuous at 0.