

Supports du formateur Chapitre 7 : Adressage IP

CCNA Routing and Switching, Introduction to Networks v6.0

Cisco Networking Academy® Mind Wide Open®

Supports du formateur – Chapitre 7 Guide de planification

Cette présentation PowerPoint est divisée en deux parties :

- Guide de planification du formateur
 - Informations destinées à vous familiariser avec le chapitre
 - Outils pédagogiques
- 2. Présentation en classe pour le formateur
 - Diapositives facultatives que vous pouvez utiliser en classe
 - Commence à la diapositive 14

Remarque : retirez le guide de planification de cette présentation avant de la partager avec quiconque.

Introduction to Networks v6.0 Guide de planification Chapitre 7 : Adressage IP

Cisco Networking Academy® Mind Wide Open®

Chapitre 7: exercices

Quels sont les exercices associés à ce chapitre ?

N° de page	Type d'exercice	Nom de l'exercice	Facultatif ?	
7.0.1.2	Exercice en classe	Modélisation de l'Internet of Everything (IoE)	En option	
7.1.1.4	Exercice interactif	Conversions du format binaire au format décimal	Recommandé	
7.1.1.7	Vidéo	Conversions du format décimal au format binaire	-	
7.1.1.8	Exercice interactif	Conversions du format décimal au format binaire	Recommandé	
7.1.1.9	Exercice interactif	Jeu sur le système binaire	En option	
7.1.2.4	Exercice interactif	Utilisation de l'opération AND pour déterminer l'adresse réseau	En option	
7.1.2.7	Démonstration vidéo	Réseau, hôte et adresses de diffusion	-	
7.1.2.8	Travaux pratiques	Utilisation de la calculatrice Windows pour les adresses réseau	En option	
7.1.2.9	Travaux pratiques	Conversion des adresses IPv4 au format binaire	Recommandé	
7.1.3.7	Exercice interactif	Monodiffusion, diffusion ou multidiffusion	En option	
7.1.3.8	Packet Tracer	Analyser du trafic de monodiffusion, de diffusion et de multidiffusion	En option	

Le mot de passe utilisé dans le cadre des exercices Packet Tracer de ce chapitre est : PT_ccna5

Chapitre 7 : exercices (suite)

Quels sont les exercices associés à ce chapitre ?

N° de page	Type d'exercice	Nom de l'exercice	Facultatif ?	
7.1.4.2	Exercice interactif	Autoriser ou bloquer les adresses IPv4	En option	
7.1.4.7	Exercice interactif	Adresses IPv4 publiques ou privées	En option	
7.1.4.9	Travaux pratiques	Identification des adresses IPv4	En option	
7.2.1.3	Exercice interactif	Problèmes et solutions IPv4	En option	
7.2.2.4	Exercice interactif	Entraînement sur les représentations d'adresses IPv6	Recommandé	
7.2.3.5	Exercice interactif	Identifier les types d'adresses IPv6	En option	
7.2.4.2	Contrôleur de syntaxe	Configuration de l'IPv6 sur un routeur	Recommandé	
7.2.4.8	Contrôleur de syntaxe	Vérifier la configuration des adresses IPv6	Recommandé	
7.2.4.9	Packet Tracer	Configuration des adresses IPv6	Recommandé	
7.2.5.3	Travaux pratiques	Identification des adresses IPv6	En option	
7.2.5.4	Travaux pratiques	Configuration des adresses IPv6 sur des périphériques réseau	Recommandé	

Le mot de passe utilisé dans le cadre des exercices Packet Tracer de ce chapitre est : PT_ccna5

Chapitre 7 : exercices (suite)

Quels sont les exercices associés à ce chapitre ?

N° de page	Type d'exercice	Nom de l'exercice	Facultatif ?	
7.3.2.5	Packet Tracer	Contrôle de l'adressage IPv4 et IPv6	En option	
7.3.2.6	Packet Tracer	Envoi des requêtes ping et traçage de route pour tester le chemin	En option	
7.3.2.7	Travaux pratiques	Test de connectivité réseau à l'aide des commandes Ping et Traceroute	En option	
7.3.2.8	Travaux pratiques	Carte d'Internet	Recommandé	
7.3.2.9	Packet Tracer	Résolution des problèmes d'adressage IPv4 et IPv6	Recommandé	
7.4.1.1	Exercice en classe	L'Internet of Everything évidemment !	En option	
7.4.1.2	Packet Tracer	Intégration des compétences	Recommandé	

Le mot de passe utilisé dans le cadre des exercices Packet Tracer de ce chapitre est : PT_ccna5

- Une fois qu'ils ont terminé le chapitre 7, les élèves doivent se soumettre à l'évaluation correspondante.
- Les questionnaires, les travaux pratiques, les exercices dans Packet Tracer, ainsi que les autres activités peuvent servir à évaluer, de manière informelle, les progrès des élèves.

Chapitre 7: bonnes pratiques

- Avant d'enseigner le contenu du chapitre 7, le formateur doit :
 - terminer la partie « Évaluation » du chapitre 7.
- Section 7.1
 - Rappelez aux élèves la valeur de position de la numération pondérée dans la notation décimale pour bien expliquer les valeurs de position binaires (reportez-vous à la vidéo 7.1.1.7).
 - Demandez aux élèves de créer leur propre diagramme de valeurs de position pour le format binaire.
 - Encouragez les élèves à s'entraîner à faire des conversions jusqu'à ce qu'ils soient assez à l'aise pour se passer de la calculatrice. En effectuant les conversions manuellement, ils apprendront à manipuler les bits pour produire l'équivalent binaire d'une valeur décimale. Les calculatrices sont interdites lors des examens de certification CCNA.
 - Conseillez-leur le jeu sur le système binaire pour tester leurs compétences dans la conversion binaire/décimale.

http://forums.cisco.com/CertCom/game/binary_game_page.htm

Chapitre 7 : bonnes pratiques (suite)

- Section 7.1 (suite)
 - Expliquez la structure hiérarchique d'une adresse IP en utilisant des analogies telles que l'adresse postale et les numéros de téléphone.
 - Expliquez l'opération AND.
 - Recommandez l'exercice 7.1.2.4 et la vidéo 7.1.2.7.
 - Les élèves doivent connaître les blocs d'adresses privées.
 - Recommandez-leur d'effectuer l'exercice 7.1.4.7.
 - Présentez le schéma d'adressage utilisé chez eux et dans votre établissement.
 - Ancien système d'adressage par classe.
 - Ne perdez pas trop de temps sur ce sujet.
 - Il est utile d'étudier les fondements de l'adressage IPv4 et les raisons qui expliquent la pénurie d'adresses.

Chapitre 7 : bonnes pratiques

Section 7.2

- Décrivez la structure d'une adresse IPv6.
 - Les adresses IPv6 ont une longueur de 128 bits et sont représentées par des valeurs hexadécimales.
 - Quatre bits peuvent être représentés par une seule valeur hexadécimale.
 4 chiffres hexadécimaux = un hextet.
 - La longueur de préfixe est utilisée pour indiquer la partie réseau d'une adresse IPv6; comprise entre 0 et 128. La longueur de préfixe d'un LAN est généralement de /64.
- Encouragez les élèves à utiliser l'exercice 7.2.4.4 pour s'entraîner à représenter des adresses IPv6.
- Mettez en avant les fonctionnalités importantes de l'adresse de liaison locale IPv6.
 - Permet à un appareil de communiquer avec d'autres terminaux IPv6 sur la même liaison.
 - Chaque interface réseau IPv6 doit avoir une adresse de liaison locale.
 - Si elle n'est pas configurée manuellement sur une interface, elle est créée automatiquement.
 - Les adresses de liaison locale se trouvent dans la plage FE80::/10.

- Présentez les composants d'une adresse de monodiffusion globale IPv6 et établissez une comparaison avec IPv4.
 - Le préfixe de routage global est la partie réseau de l'adresse attribuée par le fournisseur, par exemple un fournisseur d'accès à Internet (FAI).
 - L'ID de sous-réseau est utilisé par une entreprise pour identifier les sous-réseaux sur son site.
 - L'ID d'interface est l'équivalent de la partie hôte d'une adresse IPv4.
- Découvrez les principes fondamentaux d'une adresse IPv6 à cette URL.

https://www.youtube.com/watch?v=rljkNMySmuM

Apprenez à configurer IPv6 à cette URL.

https://www.youtube.com/watch?v=FVf-GvUVm5U

Découvrez la configuration automatique des adresses IPv6 sans état (SLAAC) à cette URL.

https://www.youtube.com/watch?v=zbkBa8ZI568

Section 7.3

- Utilisez Packet Tracer pour expliquer la vérification de l'adressage IPv4 et IPv6 à la section 7.3.2.5.
- Utilisez Packet Tracer pour expliquer l'utilisation de ping et Traceroute pour tester la connectivité à la section 7.3.2.6.

Chapitre 7 : aide supplémentaire

- Pour obtenir davantage d'aide sur les stratégies d'enseignement, notamment les plans de cours, l'utilisation d'analogies pour expliquer des concepts difficiles et les sujets de discussion, consultez la communauté CCNA à l'adresse https://www.netacad.com/group/communities/community-home
- Les bonnes pratiques du monde entier relatives au programme CCNA Routing and Switching sont disponibles à l'adresse https://www.netacad.com/group/communities/ccna-blog
- Si vous souhaitez partager des plans de cours ou des ressources, téléchargez-les sur le site de la communauté CCNA afin d'aider les autres formateurs.

Cisco | Networking Academy[®] | Mind Wide Open™

Chapitre 7 : Adressage IP

CCNA Routing and Switching, Introduction to Networks v6.0

Cisco | Networking Academy® | Mind Wide Open®

Chapitre 7 – Sections et objectifs

7.1 Adresses réseau IPv4

- Convertir des valeurs entre les systèmes de numération binaire et décimale
- Décrire la structure d'une adresse IPv4, y compris la partie hôte, la partie réseau et le masque de sous-réseau
- Comparer les caractéristiques et les utilisations des adresses IPv4 de monodiffusion, de diffusion et de multidiffusion
- Expliquer ce que sont les adresses IPv4 publiques, privées et réservées

7.2 Adresses réseau IPv6

- Expliquer la nécessité de l'adressage IPv6
- Décrire la représentation d'une adresse IPv6
- Décrire les types d'adresses réseau IPv6
- Configurer les adresses de monodiffusion globale
- Décrire les adresses de multidiffusion

7.3 Vérification de la connectivité

- Expliquer comment le protocole ICMP sert à tester la connectivité réseau
- Utiliser les utilitaires ping et traceroute pour tester la connectivité réseau

7.1 Adresses réseau IPv4

Cisco | Networking Academy® | Mind Wide Open®

La conversion du format binaire au format décimal

- Adresses IPv4
 - Est composée d'une chaîne de 32 bits divisée en quatre parties appelées octets.
 - Chaque octet contient 8 bits séparés par un point.
- Conversion du format binaire au format décimal
 - Utilisez le tableau pour vous aider à effectuer les conversions.

192.168.10.10 est une adresse IP attribuée à un ordinateur.

Valeur de position	128	64	32	16	8	4	2	1
Nombre binaire								
Calcul	x 128	x 64	x 32	x 16	x 8	x 4	x 2	× 1
Additionnez-les								
Résultat								

La structure d'une adresse IPv4

- Parties réseau et hôte
- Masque de sous-réseau
- Logique AND (ET)
 - Quelle est l'adresse réseau dans la figure ?
- Longueur de préfixe
 - Quelle est la longueur de préfixe dans la figure ?
- Réseau, hôte et adresses de diffusion
 - Adresse réseau ?
 - Plage d'hôtes valides ?
 - Adresse de diffusion ?

IPv4 Network Addresses

Les adresses IPv4 de monodiffusion, de diffusion et de multidiffusion

- Attribution d'une adresse IPv4 à un hôte
 - Statique : saisie manuelle
 - Dynamique : protocole DHCP (Dynamic Host Configuration Protocol)
- Communication IPv4
 - Monodiffusion : envoyer des paquets d'un hôte à un autre
 - Diffusion : envoyer des paquets d'un hôte à tous les hôtes du réseau
 - Multidiffusion : envoyer un paquet d'un hôte à un groupe d'hôtes en particulier, situés sur le même réseau ou sur des réseaux différents
 - Quels types de communications sont représentés dans la figure à droite ?

Adresses réseau IPv4

Les types d'adresses IPv4

- Adresses IPv4 publiques et privées
 - Les adresses privées ne sont pas acheminées sur Internet
 - Adresses privées :
 - 10.0.0.0/8 ou 10.0.0.0 à 10.255.255.255
 - 172.16.0.0 /12 ou 172.16.0.0 à 172.31.255.255
 - 192.168.0.0 /16 ou 192.168.0.0 à 192.168.255.255
- Adresses IPv4 d'utilisateurs spéciaux
 - Adresses de bouclage
 - 127.0.0.0 /8 ou 127.0.0.1 à 127.255.255.254
 - Adresses de liaison locale ou adresses APIPA (Automatic Private IP Addressing)
 - 169.254.0.0 /16 ou 169.254.0.1 à 169.254.255.254
 - Adresses TEST-NET
 - 192.0.2.0 /24 ou 192.0.2.0 à 192.0.2.255
- Adressage sans classe
 - Routage interdomaine sans classe
 - Adresses IPv4 attribuées en fonction de la longueur de préfixe
- Attribution des adresses IP

7.2 Adresses réseau IPv6

Cisco | Networking Academy® | Mind Wide Open®

Adresses réseau IPv6

Les problèmes IPv4

- Ce qui rend IPv6 nécessaire
 - Pénurie d'espace d'adressage IPv4
 - Internet of Everything
- La coexistence des protocoles IPv4 et IPv6
 - Double pile : IPv4 et IPv6 sur le même réseau
 - Tunnellisation : des paquets IPv6 dans des paquets IPv4
 - Traduction : un paquet IPv6 est traduit en un paquet IPv4, et inversement

Réseau uniquement IPvi

Réseau uniquement IPv6

L'adressage IPv6

- Représentation de l'adresse IPv6
 - x:x:x:x:x:x:x; où x représente 4 valeurs hexadécimales
- Appliquez les règles pour simplifier ces adresses IPv6
 - Règle n° 1 : omettre les zéros en début de segment
 - Règle n° 2 : omettre les segments composés uniquement de zéros

Les types d'adresses IPv6

- Types d'adresses IPv6
 - Monodiffusion
 - Multidiffusion
 - Anycast
- Longueur de préfixe IPv6
 - Indique la partie réseau
 - Format : adresse IPv6 /longueur de préfixe
 - La longueur de préfixe est comprise entre 0 et 128
 - La longueur est généralement de /64
- Types courants d'adresses IPv6
 - Adresses de monodiffusion
 - Adresses uniques routables sur Internet
 - Configurées de manière statique ou attribuées dynamiquement
 - Adresses de monodiffusion de liaison locale
 - Pour communiquer avec d'autres appareils IPv6 sur la même liaison
 - L'appareil crée sa propre adresse de liaison locale sans serveur DHCP
 - Adresses locales uniques
 - Adresses de monodiffusion locales uniques
 - Adresses utilisées pour l'adressage local sur un site ou entre un nombre limité de sites

Adresses réseau IPv6

Les adresses de monodiffusion IPv6

- La structure d'une adresse de monodiffusion globale IPv6
 - Préfixe de routage global
 - ID de sous-réseau
 - ID d'interface
- La configuration statique d'une adresse de monodiffusion globale
 - ipv6 address ipv6-address/prefix-length
- Configuration dynamique
 - SLAAC
 - DHCPv6
- Adresses link-local
 - Dynamique ou statique
- Vérifier la configuration des adresses IPv6
 - show ipv6 interface brief


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ipv6 address 2001:db8:acad:1::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ipv6 address 2001:db8:acad:2::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config-if) #exit
R1 (config-if) #ipv6 address 2001:db8:acad:3::1/64
R1 (config-if) #ipv6 address 2001:db8:acad:3::1/64
R1 (config-if) #clock rate 56000
R1 (config-if) #no shutdown
```


Un préfixe de routage /48 + un ID de sous-réseau de 16 bits = un préfixe /64.

Les adresses de multidiffusion IPv6

- Les adresses de multidiffusion IPv6 attribuées
 - Les adresses de multidiffusion IPv6 ont le préfixe FF00::/8
 - FF02::1 Groupe de multidiffusion avec tous les nœuds
 - FF02::2 Groupe de multidiffusion avec tous les routeurs
- Les adresses de multidiffusion IPv6 de nœud sollicité

7.3 Vérification de la connectivité

Cisco | Networking Academy® Mind Wide Open®

ICMP

- ICMPv4 et ICMPv6
 - Confirmation de l'hôte
 - Destination ou service inaccessible
 - Dépassement du délai
 - Redirection du routeur
- Les messages de sollicitation et d'annonce de routeur ICMPv6
 - Messages envoyés entre un routeur IPv6 et un périphérique IPv6 :
 - Message de sollicitation de routeur (RS)
 - Message d'annonce de routeur (RA)
 - Messages envoyés entre des périphériques IPv6 :
 - Message de sollicitation de voisin
 - Messages d'annonce de voisin
 - Détection des adresses dupliquées (DAD)

Vérification de la connectivité

Test et vérification

- Ping
 - Test de la pile locale
 - 127.0.0.1 (IPv4) ou ::1 (IPv6)
 - Test de la connectivité au réseau local
 - Test de la connectivité au réseau distant
- Traceroute
 - Test du chemin
 - Durée de transmission ou RTT (Round Trip Time)
 - TTL IPv4 et limite du nombre de tronçons IPv6

7.4 Synthèse du chapitre

Cisco | Networking Academy® Mind Wide Open®

- Expliquer en quoi l'utilisation des adresses IPv4 assure la connectivité des réseaux de PME
- Configurer des adresses IPv6 permettant de fournir la connectivité dans des réseaux de PME
- Appliquer des utilitaires de test pour vérifier la connectivité réseau

Cisco | Networking Academy[®] | Mind Wide Open™

. | | 1 . 1 | 1 . CISCO

Section 7.1

Nouveaux termes/commandes

- Opération AND
- Système binaire
- Diffusion
- Adresse de diffusion
- Domaine de diffusion
- Classe A
- Classe B
- Classe C
- Classe D
- Classe E
- Routage interdomaine sans classe (CIDR)
- Serveur DHCP
- Attribution dynamique du client DHCP
- Diffusion dirigée

- Format décimal à point
- Protocole DHCP
- Adresse de l'hôte
- Internet Assigned Numbers Authority (IANA)
- Fournisseurs de services Internet
- Adresse de bouclage IPv4
- Diffusion limitée
- Adresses link-local
- Transmission multidiffusion
- Multidiffusion
- Adresses de multidiffusion
- Adresse réseau

- Octet
- Numération pondérée
- Longueur de préfixe
- Adresse privée
- Adresse publique
- Base
- Organismes d'enregistrement Internet locaux
- RFC 1918
- Notation de barre oblique
- Adressage IP statique
- Masque de sous-réseau
- Adresses TEST-NET
- Monodiffusion

Section 7.2

Nouveaux termes/commandes

- Résolution d'adresse
- Adresses de multidiffusion attribuées
- Destination ou service inaccessible
- Double pile
- Détection des adresses dupliquées
- Méthode EUI-64
- FF02::1 Groupe de multidiffusion avec tous les nœuds
- FF02::2 Groupe de multidiffusion avec tous les routeurs
- Adresse de monodiffusion globale
- Hextet
- Confirmation de l'hôte

- ICMPv6
- Durée de vie (TTL) IPv4
- IPv6
- Anycast IPv6
- Limite du nombre de sauts IPv6
- Adresse link-local IPv6
- Adresse de bouclage IPv6
- Multidiffusion IPv6
- Longueur de préfixe IPv6
- IPv6 monodiffusion
- Zéros du début
- Adresse link-local
- Traduction d'adresses réseau (NAT64)

- Durée de transmission ou RTT (Round Trip Time)
- Redirection de la route
- Annonce de routeur
- La sollicitation de routeur
- Show ipv6 interface brief
- Show ipv6 route
- Adresses de multidiffusion de nœud sollicité
- Configuration automatique des adresses sans état (SLAAC)
- Délai dépassé
- Transmission tunnel
- Adresse locale unique
- Adresse non spécifiée