Deep Q-Networks Playing Atari Games

Chris Barrick, Rajeswari Sivakumar, Layton Hayes AML Spring 2017

Overview:

- Can modern Al models improve the state of the art in reinforcement learning on Atari 2600 video games?
- Replicate DeepMind's Deep Q Network (DQN) paper
- Attempt to improve by applying a Differentiable Neural Computer (DNC) to the same problem

Background

- Neural Networks
 - Convolutional neural networks
 - Type of feed forward neural network
- Reinforcement Learning
 - Means of evaluating policy
 - Solving games

Environment

- Simulator: Open Al Atari simulator
 - Download from gym and atari packages
- Models built and trained using Tensorflow
 - Coded in Python 3

Methods: Preprocessing

- Obtain raw frames from Atari simulator
- De-flicker
- Obtain Y channel and use to convert black and white
- Limit to 84 x 84
 - Input layer of convolutional neural net
- Obtain up to next m frames (in this case 4)

Methods: Model

- Input layer: 84x 84 convolutional neural net
- 1st hidden layer: 32 8x8 filters with stride of 4, rectifier nonlinearity
- 2nd hidden layer:64 4x4 filters with stride of 2, rectifier nonlinearity
- 3rd hidden layer: fully connected layer with 512 rectifier units
- Output layer: fully connected layer that maps each potential action to an expected output.

Methods: Training

- Initialize replay memory and action-values
- Initialize state sequence with each episode.
- Select an action randomly or according to Q-function
- Update transition function
- Sample random minibatch transitions from replay memory and use to update expected output.

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
  Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
  For t = 1,T do
       With probability \varepsilon select a random action a,
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_i, a_j, r_j, \phi_{j+1}) from D
                                                    if episode terminates at step j+1
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset Q = Q
  End For
End For
```

Memory Augmented Neural Network

- Enables long term memory preservation
- Enables neural networks to write algorithms for themselves

(a) Task setup

- Is advancing the state of the art in many complex tasks
- Capable of rapid adaptation -- meta / transfer learning

	INSTANCE (% CORRECT)					
MODEL	1 ST	2 ND	3 RD	4 TH	5 TH	10 TH
HUMAN	34.5	57.3	70.1	71.8	81.4	92.4
FEEDFORWARD	24.4	19.6	21.1	19.9	22.8	19.5
LSTM	24.4	49.5	55.3	61.0	63.6	62.5
MANN	36.4	82.8	91.0	92.6	94.9	98.1

Learning to learn videogames

- Each episode consists of a number of trails on a single game
- The game being played is swapped every episode
 - Would need a lot of different games
 - Perhaps alter controls, or change something about the input, to make one game into many
- Reward per episode is total score earned in each trial

