Nearest neighbor for handwritten digit recognition

In this notebook we will build a classifier that takes an image of a handwritten digit and outputs a label 0-9. We will look at a particularly simple strategy for this problem known as the **nearest neighbor classifier**.

To run this notebook you should have the following Python packages installed:

- numpy
- matplotlib
- sklearn

1. The MNIST dataset

MNIST is a classic dataset in machine learning, consisting of 28x28 gray-scale images handwritten digits. The original training set contains 60,000 examples and the test set contains 10,000 examples. In this notebook we will be working with a subset of this data: a training set of 7,500 examples and a test set of 1,000 examples.

```
In [1]: %matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
    import time

## Load the training set
    train_data = np.load('MNIST/train_data.npy')
    train_labels = np.load('MNIST/train_labels.npy')

## Load the testing set
    test_data = np.load('MNIST/test_data.npy')
    test_labels = np.load('MNIST/test_labels.npy')
In [2]: ## Print out their dimensions
```

```
In [2]: ## Print out their dimensions
print("Training dataset dimensions: ", np.shape(train_data))
print("Number of training labels: ", len(train_labels))
print("Testing dataset dimensions: ", np.shape(test_data))
print("Number of testing labels: ", len(test_labels))

('Training dataset dimensions: ', (7500, 784))
('Number of training labels: ', 7500)
('Testing dataset dimensions: ', (1000, 784))
('Number of testing labels: ', 1000)
```

```
In [3]: ## Compute the number of examples of each digit
    train_digits, train_counts = np.unique(train_labels, return_counts=Tru
e)
    print("Training set distribution:")
    print(dict(zip(train_digits, train_counts)))

test_digits, test_counts = np.unique(test_labels, return_counts=True)
    print("Test set distribution:")
    print(dict(zip(test_digits, test_counts)))

Training set distribution:
    {0: 750, 1: 750, 2: 750, 3: 750, 4: 750, 5: 750, 6: 750, 7: 750, 8:
    750, 9: 750}
    Test set distribution:
    {0: 100, 1: 100, 2: 100, 3: 100, 4: 100, 5: 100, 6: 100, 7: 100, 8:
    100, 9: 100}
```

2. Visualizing the data

Each data point is stored as 784-dimensional vector. To visualize a data point, we first reshape it to a 28x28 image.

```
## Define a function that displays a digit given its vector representa
In [4]:
        tion
        def show digit(x):
            plt.axis('off')
            plt.imshow(x.reshape((28,28)), cmap=plt.cm.gray)
            plt.show()
            return
        ## Define a function that takes an index into a particular data set ("
        train" or "test") and displays that image.
        def vis image(index, dataset="train"):
            if(dataset=="train"):
                show digit(train data[index,])
                label = train labels[index]
                show digit(test data[index,])
                label = test labels[index]
            print("Label " + str(label))
            return
        ## View the first data point in the training set
        vis image(0, "train")
        ## Now view the first data point in the test set
        vis image(0, "test")
```


Label 9

Label 0

3. Squared Euclidean distance

To compute nearest neighbors in our data set, we need to first be able to compute distances between data points. A natural distance function is *Euclidean distance*: for two vectors $x, y \in \mathbb{R}^d$, their Euclidean distance is defined as

$$||x - y|| = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}.$$

Often we omit the square root, and simply compute squared Euclidean distance:

$$||x - y||^2 = \sum_{i=1}^{d} (x_i - y_i)^2.$$

For the purposes of nearest neighbor computations, the two are equivalent: for three vectors $x, y, z \in \mathbb{R}^d$, we have $||x - y|| \le ||x - z||$ if and only if $||x - y||^2 \le ||x - z||^2$.

Now we just need to be able to compute squared Euclidean distance. The following function does so.

```
In [5]:
        ## Computes squared Euclidean distance between two vectors.
        def squared dist(x,y):
            return np.sum(np.square(x-y))
        ## Compute distance between a seven and a one in our training set.
        print("Distance from 7 to 1: ", squared dist(train data[4,],train data
        [5,]))
        ## Compute distance between a seven and a two in our training set.
        print("Distance from 7 to 2: ", squared dist(train data[4,],train data
        [1,]))
        ## Compute distance between two seven's in our training set.
        print("Distance from 7 to 7: ", squared_dist(train_data[4,],train data
        [7,]))
        ('Distance from 7 to 1: ', 5357193.0)
        ('Distance from 7 to 2: ', 12451684.0)
        ('Distance from 7 to 7: ', 5223403.0)
```

4. Computing nearest neighbors

Now that we have a distance function defined, we can now turn to nearest neighbor classification.

```
In [7]: ## A success case:
    print("A success case:")
    print("NN classification: ", NN_classifier(test_data[0,]))
    print("True label: ", test_labels[0])
    print("The test image:")
    vis_image(0, "test")
    print("The corresponding nearest neighbor image:")
    vis_image(find_NN(test_data[0,]), "train")
```

```
A success case:
('NN classification: ', 0)
('True label: ', 0)
The test image:
```


Label 0
The corresponding nearest neighbor image:

Label 0

```
In [8]: ## A failure case:
    print("A failure case:")
    print("NN classification: ", NN_classifier(test_data[39,]))
    print("True label: ", test_labels[39])
    print("The test image:")
    vis_image(39, "test")
    print("The corresponding nearest neighbor image:")
    vis_image(find_NN(test_data[39,]), "train")
```

```
A failure case:
('NN classification: ', 2)
('True label: ', 3)
The test image:
```


Label 3
The corresponding nearest neighbor image:

Label 2

5. For you to try

The above two examples show the results of the NN classifier on test points number 0 and 39.

Now try test point number 100.

- What is the index of its nearest neighbor in the training set? Record the answer: you will enter it as part of this week's assignment.
- Display both the test point and its nearest neighbor.
- What label is predicted? Is this the correct label?

6. Processing the full test set

Now let's apply our nearest neighbor classifier over the full data set.

Note that to classify each test point, our code takes a full pass over each of the 7500 training examples. Thus we should not expect testing to be very fast. The following code takes about 100-150 seconds on 2.6 GHz Intel Core i5.

```
In [9]: ## Predict on each test data point (and time it!)
    t_before = time.time()
    test_predictions = [NN_classifier(test_data[i,]) for i in range(len(test_labels))]
    t_after = time.time()

## Compute the error
    err_positions = np.not_equal(test_predictions, test_labels)
    error = float(np.sum(err_positions))/len(test_labels)

print("Error of nearest neighbor classifier: ", error)
    print("Classification time (seconds): ", t_after - t_before)

('Error of nearest neighbor classifier: ', 0.046)
    ('Classification time (seconds): ', 103.47288608551025)
```

7. Faster nearest neighbor methods

Performing nearest neighbor classification in the way we have presented requires a full pass through the training set in order to classify a single point. If there are N training points in \mathbb{R}^d , this takes O(Nd) time.

Fortunately, there are faster methods to perform nearest neighbor look up if we are willing to spend some time preprocessing the training set. scikit-learn has fast implementations of two useful nearest neighbor data structures: the *ball tree* and the *k-d tree*.

```
In [10]: from sklearn.neighbors import BallTree
         ## Build nearest neighbor structure on training data
         t before = time.time()
         ball tree = BallTree(train data)
         t_after = time.time()
         ## Compute training time
         t training = t after - t before
         print("Time to build data structure (seconds): ", t training)
         ## Get nearest neighbor predictions on testing data
         t before = time.time()
         test neighbors = np.squeeze(ball tree.query(test data, k=1, return dis
         tance=False))
         ball_tree_predictions = train_labels[test_neighbors]
         t after = time.time()
         ## Compute testing time
         t testing = t after - t before
         print("Time to classify test set (seconds): ", t testing)
         ## Verify that the predictions are the same
         print("Ball tree produces same predictions as above? ", np.array equal
         (test predictions, ball tree predictions))
         ('Time to build data structure (seconds): ', 0.6710259914398193)
         ('Time to classify test set (seconds): ', 6.873594045639038)
```

('Ball tree produces same predictions as above? ', True)

```
In [11]: from sklearn.neighbors import KDTree
         ## Build nearest neighbor structure on training data
         t before = time.time()
         kd tree = KDTree(train data)
         t_after = time.time()
         ## Compute training time
         t training = t after - t before
         print("Time to build data structure (seconds): ", t training)
         ## Get nearest neighbor predictions on testing data
         t before = time.time()
         test neighbors = np.squeeze(kd tree.query(test data, k=1, return dista
         nce=False))
         kd_tree_predictions = train_labels[test_neighbors]
         t after = time.time()
         ## Compute testing time
         t testing = t after - t before
         print("Time to classify test set (seconds): ", t testing)
         ## Verify that the predictions are the same
         print("KD tree produces same predictions as above? ", np.array equal(t
         est predictions, kd tree predictions))
         ('Time to build data structure (seconds): ', 0.6729860305786133)
         ('Time to classify test set (seconds): ', 12.384800910949707)
         ('KD tree produces same predictions as above? ', True)
```