Teste - Versão 1 08/05/2025

Aprendizagem Automática 90 minutos

Nome:	 	 	
ID:			

Problema	Valores	Classificação
1	5	
2	2.5	
3	2	
4	2	
5	2	
6	2	
7	2	
8	3	
Total	20.5	

Problema 1 (Escolha Múltipla - 5 Valores)

- 1.) Para cada uma das seguintes questões circula a opção correta.
- 1.1) Por que é importante aplicar *scaling* aos dados antes de usar algoritmos como k-NN ou SVM?
 - a) Para reduzir o tempo de treino
 - b) Porque estes algoritmos são muito sensíveis à escala das variáveis
 - c) Para melhorar a interpretabilidade dos dados
 - d) Porque melhora a codificação de variáveis categóricas
- 1.2) Qual das alternativas abaixo é mais apropriada para lidar com valores omissos em conjuntos de dados numéricos?
 - a) Excluir todos os dados do conjunto de treino
 - b) Preencher com zero, sempre
 - c) Usar imputação, como média ou mediana, dependendo da distribuição
 - d) Substituir por valores aleatórios
- 1.3) Qual das alternativas a seguir descreve corretamente um método do tipo filtro (filter) para seleção de atributos (feature selection)?
 - a) Treinar um modelo e observar os coeficientes das variáveis
 - b) Utilizar medidas estatísticas como correlação ou teste qui-quadrado
 - c) Aplicar um algoritmo de busca recursiva por subconjuntos
 - d) Usar regularização L1 para eliminar atributos irrelevantes
- 1.4) Qual das opções abaixo é um sintoma típico de overfitting?
 - a) Performance baixa no treino e alta no teste
 - b) Performance alta tanto no treino quanto no teste
 - c) Performance muito alta no treino e baixa no teste
 - d) Performance constante em todos os conjuntos

- 1.5) Num pipeline supervisionado típico de *Machine Learning*, qual das seguintes sequências de etapas é mais adequada para garantir um bom e justo desempenho na generalização do modelo?
- a) Recolha dos dados → Divisão treino/teste → Treino do modelo → Préprocessamento completo (inclusive imputação e *scaling*) → Avaliação com dados de teste
- b) Recolha dos dados → Pré-processamento completo (inclusive imputação e scaling) → Divisão treino/teste → Treino do modelo → Avaliação com dados de teste
- c) Recolha dos dados → Divisão em treino/teste → Pré-processamento completo (inclusive imputação e scaling) → Treino do modelo → Avaliação com dados de teste
- d) Recolha dos dados → Divisão em treino/teste → Pré-processamento completo (inclusive imputação e scaling) → Avaliação com dados de teste → Treino do modelo

Problema 2 (Verdadeiro ou Falso - 2.5 Valores)

1 Toblema 2 (Vendadeno od ratoo – 2.5 Vatores)
2.) Para cada uma das afirmações seguintes diz se esta é verdadeira (V) ou falsa (F).
2.1) Um modelo com alta variância tende a apresentar overfitting
2.2) Para um problema de deteção de fraudes em cartões de crédito, onde a classe de fraude é muito rara, a <i>accuracy</i> é a melhor métrica a ser utilizada
2.3) Ao aplicar PCA, os componentes principais são sempre ortogonais entre si.
2.4) No método de <i>clustering</i> hierárquico aglomerativo, cada ponto de dados começa como um cluster e, a cada iteração, os clusters são combinados
2.5) Num problema de classificação com SVM, os vetores de suporte são os pontos mais distantes do hiperplano de separação

Problema 3 (Clustering - 2 Valores)

3.1) Usa a matriz de distâncias apresentada na Tabela 1 para efetuar o agrupamento hierárquico pelo método de ligação simples (*single linkage*). O resultado deve ser apresentado através de um dendrograma, o qual deverá indicar claramente a ordem de agrupamento dos pontos.

Tabela 1 – Matriz de distâncias.

	P1	P2	P3	P4	P5
P1	0.00	0.10	0.41	0.55	0.35
P2	0.10	0.00	0.64	0.47	0.98
P3	0.41	0.64	0.00	0.44	0.85
P4	0.55	0.47	0.44	0.00	0.76
P5	0.35	0.98	0.85	0.76	0.00

Problema 4 (Naïve Bayes - 2 Valores)

4.) Com base nos dados de treino da tabela abaixo (Tabela 2), prevê a classe para o novo exemplo seguinte, utilizando o classificador Naïve Bayes:

idade<=30, rendimento=médio, estudante=sim, avaliação_de_crédito=razoável

#	idade	rendimento	estudante	avaliação_de_	Classe:
				credito	comprar_computador
1	<=30	alto	não	razoável	não
2	<=30	alto	não	excelente	não
3	>30; <= 40	alto	não	razoável	sim
4	>40	médio	não	razoável	sim
5	>40	baixo	sim	razoável	sim
6	>40	baixo	sim	excelente	não
7	>40	baixo	sim	excelente	sim
8	<=30	médio	não	razoável	não
9	<=30	baixo	sim	razoável	sim
10	>40	médio	sim	razoável	sim
11	<=30	médio	sim	excelente	sim
12	>30; <= 40	médio	não	excelente	sim
13	>30; <= 40	alto	sim	razoável	sim
14	>40	médio	não	excelente	não

Problema 5 (Árvores de Decisão - 2 Valores)

5.1) Calcula a entropia do dataset seguinte. (0.5 Valores)

5.2) Qual dos seguintes *splits* iniciais escolherias? Apresenta todos os cálculos efetuados. (1.5 valores)

Problema 6 (KNN - 2 Valores)

6.1) Na figura seguinte estão representados dados de treino e um único ponto de teste para a tarefa de classificação dados dois atributos contínuos X1 e X2. Para cada valor de k, circule a previsão do classificador k-nearest neighbors para o ponto de teste representado (*). (1 Valor)

- 6.1.1) Previsão para k=1: (0.5 Valores)
 - a. positive (+)
 - b. negative (o)
- 6.1.2) Previsão para k=3: (0.5 Valores)
 - a. positive (+)
 - b. negative (o)
- 6.1.3) Previsão para k=7: (0.5 Valores)
 - a. positive (+)
 - b. negative (o)

6.2) Supõe que a figura anterior se trata de um problema de regressão. Usando um KNN com k=3 os exemplos mais próximos do exemplo de teste (*) estão representados na tabela seguinte (Tabela 3). Qual será a previsão do modelo? (1 Valor)

Tabela 3 – Vizinhos mais próximos.

	x1	x2	у
Vizinho 1	5	3	10
Vizinho 2	7	5	20
Vizinho 3	6	6	15

Problema 7 (Regressão Linear - 2 Valores)

7.) Considera a tabela abaixo (Tabela 4). Supõe que queremos prever a variavel y sabendo as features x1, x2 usando um modelo de regressão linear $\hat{y} = \beta 1x1 + \beta 2x2$.

Tabela 4

x1	x2	У
1	1	1
-2	1	-5
3	0	6

7.1) Quais os valores dos coeficientes $\beta = (\beta 1, \beta 2)$ que minimizam a soma dos erros ao quadrado $(\sum (y-\hat{y})^2)$? (1 Valor)

- a. (2, -1)
- b. (3, -1)
- c. (-1, 2)
- d. (-1, 3)
- e. nenhuma das anteriores

7.2) Usando os coeficientes da alínea anterior qual o valor da variável y tendo em conta que x1=3 e x2=3. Apresenta todos os cálculos efetuados. (1 Valor)

Problema 8 (Perguntas de Desenvolvimento - 3 Valores)

8.1) Supõe que estás a utilizar um SVM para classificar dados que claramente não são linearmente separáveis. De forma muito breve responde às seguintes questões.
8.1.1) O que aconteceria se usasses um <i>kernel</i> linear? (0.5 Valores)
8.1.2) Qual solução poderias aplicar para melhorar a performance do modelo? (0.5 Valores)
8.2) Qual a principal diferença entre bagging e boosting? (1 Valor)
8.3) Por que se deve usar um conjunto de validação separado do teste final durante a otimização de hiperparâmetros?