Increasing the Action Gap: New Operators for Reinforcement Learning

By M. Bellemare et. al.

Presented by Chaitanya Patel, Kulin Shah

Subject: Topics in ML Prof.: Dr. Naresh Manwani TA: Sahil Chelaramani

Table of contents

- 1. Notations
- 2. Motivation
- 3. Consistent Bellman Operator
- 4. Family of Convergent Operators
- 5. Experiments
- 6. Project Scope and Tools
- 7. Proof of Main Theorem

Notations

Notations

- Consider a MDP $M := (\mathcal{X}, \mathcal{A}, P, R, \gamma)$.
 - $\mathcal{X} = \text{state space}$
 - \cdot $\mathcal{A} =$ finite action space
 - P(x'|x,a) = = Transition probability
 - R = reward function
 - γ = Discount factor
- + $\mathcal Q$ = Space of $\mathcal Q$ state-action value functions over $\mathcal X \times \mathcal A$
- V = Space of V state value functions over X.

Notations

- Bellman equation for deterministic policy π

$$Q^{\pi}(x,a) := R(x,a) + \gamma \mathbf{E}_{P}Q^{\pi}(x',\pi(x'))$$

where $\mathbf{E}_P = \mathbf{E}_{X' \sim P(.|X,a)}$.

· Bellman operator $\mathcal{T}:\mathcal{Q}\to\mathcal{Q}$

$$TQ(x,a) := R(x,a) + \gamma E_P \max_{b \in A} Q(x',b)$$

- Q^* is a unique fixed point of Bellman operator \mathcal{T} .
- Optimal policy π^* :

$$\pi^*(x) := \arg\max_{a \in \mathcal{A}} Q^*(x, a)$$

3

• Authors argue that the optimal Q-function is *inconsistent*, in the sense that for any suboptimal action a in state x, Bellman equation for $Q^*(x,a)$ describes the value of *nonstationary* policy.

Figure 1: A two-state MDP illustrating the non-stationary aspect of the Bellman operator. Here, p and r indicate transition probabilities and rewards, respectively. In state x_1 the agent may either eat cake to receive a reward of 1 and transition to x_2 with probability $\frac{1}{2}$, or abstain for no reward. State x_2 is a low-value absorbing state with $\epsilon > 0$.

4

· For this example,

$$Q^{\pi}(x_{1}, a_{1}) = \frac{\gamma}{2} V^{\pi}(x_{1}) - \epsilon$$
$$Q^{\pi}(x_{1}, a_{2}) = \gamma V^{\pi}(x_{1})$$

• $Q^{\pi}(x_1, a_1) < Q^{\pi}(x_1, a_2)$ for any policy π . Thus a_2 is optimal.

$$Q^*(x_1, a_2) = V^*(x_1) = 0$$

 $Q^*(x_1, a_1) = -\epsilon$

• Here, $Q^*(x_1, a_1)$ describes the value of a nonstationary policy which takes action a_1 in x_1 to start and then take action a_2 in subsequent turns.

5

- When the MDP can be solved exactly, this nonstationarity is not an issue since only the Q-value for optimal actions matter.
- In the presence of approximation, small error in the Q-function may result in erroneously identifying the optimal action.
- To address this issue, authors propose new operator which incorporates stationarity.

Consistent Bellman Operator

Consistent Bellman Operator

Authors describe a new Q-function,

$$Q_{\text{stat}}^{\pi}(x, a) := R(x, a) + \gamma \mathsf{E}_{P} \max_{b \in \mathcal{A}} Q_{\text{stat}}^{\pi'}(x', b)$$

where

$$\pi'(y) := \begin{cases} a & \text{if } y = x \\ \pi(y) & \text{otherwise.} \end{cases}$$

• As a practical approximation, authors propose the consistent Bellman operator, which preserves a local stationarity:

$$\mathcal{T}_{c}Q(x,a) := R(x,a) + \gamma \mathsf{E}_{P} \left[\mathbb{I}_{[x \neq x']} \max_{b \in \mathcal{A}} Q(x',b) + \mathbb{I}_{[x = x']} Q(x,a) \right]$$

· This operator is both optimality-preserving and gap-increasing.

Optimality Preserving and Gap Increasing Operator

• Optimality-preserving: An operator \mathcal{T}' is optimality-preserving if, for any $Q_0 \in \mathcal{Q}$ and $x \in \mathcal{X}$, letting $Q_{k+1} := \mathcal{T}'Q_k$,

$$\tilde{V}(x) := \lim_{k \to \infty} \max_{a \in \mathcal{A}} Q_k(x, a)$$

exists, is unique, $\tilde{V}(x) = V^*(x)$, and for all $a \in A$,

$$Q^*(x,a) < V^*(x) \Rightarrow \limsup_{k \to \infty} Q_k(x,a) < V^*(x).$$

• Gap Increasing: Let M be an MDP. An operator \mathcal{T}' for M is gap-increasing if for all $Q_0 \in \mathcal{Q}$, $x \in \mathcal{X}$, $a \in \mathcal{A}$, letting $Q_{k+1} := \mathcal{T}'Q_k$ and $V_k(x) := \max_b Q_k(x,b)$,

$$\liminf_{k\to\infty}[V_k(x)-Q_k(x,a)]\geq V^*(x)-Q^*(x,a).$$

Use of Consistent Bellman Operator in Aggregation Schemes

- An aggregation scheme for MDP M is (\mathcal{Z}, A, D)
 - \cdot $\mathcal Z$ is a set of aggregate state
 - \cdot A is a mapping from ${\mathcal X}$ to distributions over ${\mathcal Z}$
 - D is a mapping from ${\mathcal Z}$ to distributions over ${\mathcal X}$
- Define $E_D:=E_{X\sim D(.|Z)}$ and $E_A:=E_{Z'\sim A(.|X')}$. Define the aggregation Bellman operator \mathcal{T}_A as

$$\mathcal{T}_A Q(z, a) := \mathsf{E}_D \left[R(x, a) + \gamma \; \mathsf{E}_P \; \mathsf{E}_A \max_{b \in \mathcal{A}} Q(z', b) \right]$$

Use of Consistent Bellman Operator in Aggregation Schemes

 Authors define the Consistent Bellman operator for aggregation schemes as follows:

$$\mathcal{T}_{c}Q(z,a) := \mathsf{E}_{D}\left[R(x,a) + \gamma \mathsf{E}_{P}\mathsf{E}_{A}\left[\mathbb{I}_{[z \neq z']} \max_{b \in \mathcal{A}} Q(z',b) + \mathbb{I}_{[z=z']} \ Q(z,a)\right]\right]$$

- To get Q-values over \mathcal{X} from Q-value from \mathcal{Z} , one needs to invert D which is practically infeasible.
- Therefore, authors propose Q—value interpolation and corresponding Consistent Bellman operator.

$$Q(x,a) := \mathbf{E}_{z' \sim A(.|x)} \ Q(z',a)$$

Family of Convergent Operators

Family of Convergent Operators

- Authors describe the family of operators which are applicable to arbitrary Q-value approximation schemes.
- These operators are optimality-preserving and gap-increasing.
- More specifically, authors derive sufficient conditions for an operator to be optimality-preserving.
- They show that these operators need not be contractive, nor even guarantee convergence of the Q-values for suboptimal actions.

Main Result

Theorem

Let \mathcal{T} be the Bellman operator. Let \mathcal{T}' be an operator with the property that there exists an $\alpha \in [0,1)$ such that for all $Q \in \mathcal{Q}, x \in \mathcal{X}, a \in \mathcal{A}$ and letting $V(x) := \max_b Q(x,b)$,

- 1. $\mathcal{T}'Q(x,a) \leq \mathcal{T}Q(x,a)$
- 2. $\mathcal{T}'Q(x,a) \geq \mathcal{T}Q(x,a) \alpha \left[V(x) Q(x,a)\right]$

Then \mathcal{T}' is both optimality-preserving and gap-increasing.

Consistent Bellman Operator satisfies these conditions and hence it is a part of this family of operators.

Baird's Advantage Learning

- Baird's Advantage Learning is a method of increasing the gap between the optimal and suboptimal actions.
- From Consistent Bellman Operator equation,

$$\mathcal{T}_{c}Q(x,a) = \mathcal{T}Q(x,a) - \gamma P(x|x,a)[V(x) - Q(x,a)]$$

• Approximating $\gamma P(x|x,a)$ as constant α , we get

$$\mathcal{T}_{AL}Q(x,a) := \mathcal{T}Q(x,a) - \alpha[V(x) - Q(x,a)]$$

• It is similar to the operator of Baird's Advantage Learning and shares the same fixed point.

Persistent Advantage Learning

- In domains with high temporal resolution, it may be advantageous to encourage greedy policies which don't switch between actions too frequently.
- To achieve this *persistent* behaviour, authors define an operator which favours repeated actions,

$$\mathcal{T}_{PAL}Q(x,a) := \max \{ \mathcal{T}_{AL}Q(x,a), R(x,a) + \gamma E_P Q(x',a) \}$$

Experiments

Experiments

- Experiments are carried out using normal Bellman operator, advantage learning operator(AL) and persistent advantage learning operator(PAL) on Atari 2600 games.
- Gradient descent on the sample squared error on Q-function is performed as follows:

$$\Delta Q(x,a) := R(x,a) + \gamma V(x') - Q(x,a)$$

where (x, a, x') is observed transition.

· The gradient for new operators are defined as following

$$\begin{split} &\Delta Q_{AL}(x,a) := \Delta Q(x,a) - \alpha[V(x) - Q(x,a)], \\ &\Delta Q_{PAL}(x,a) := \max \left\{ \ \Delta Q_{AL}(x,a), \ \Delta Q(x,a) - \alpha[V(x') - Q(x',a)] \ \right\} \end{split}$$

Authors' Results

 Authors have shown improved performance of AL and PAL as compared to DQN with normal Bellman operator.

Our experiments

- We implemented DQN with 3 operators
 - · Normal Bellman operator
 - · Advantage Learning (AL)
 - Persistent Advantage Learning (PAL)
- We trained our agent on 10 million frames(Time \sim 20-25 hours) (relatively less training than author's 200 million frames).
- Results on 5 games: Pong, Asterix, Phoenix, Breakout and SpaceInvaders.

Results on Pong, Asterix and Phoenix

• In Pong, Asterix and Phoenix game, the exploration parameters decays from 1 to 0.05 in 2 million iterations.

Results on Pong, Asterix and Phoenix

Results on Pong, Asterix and Phoenix

Results on Breakout, SpaceInvaders

 In Breakout and SpaceInvaders game, the exploration parameters decays from 1 to 0.05 in 8 million iterations.

Results on Breakout, SpaceInvaders

Results Without Reward Clamping

- To back-propagate error, authors clamp the reward between -1 to 1 because the scale of reward can differ a lot.
- To see the effect of clamping in learning agent, we did an experiment with out clamping.
- · Observation: Unstable learning with very high variance.

Action Gap Analysis : Authors' Results

Action Gap Analysis : Our Experiments

Action Gap Analysis : Our Experiments

Project Scope and Tools

Project Scope and Tools

Phase 1

- · Understood the problem in original Bellman Operator
- · Understood the proposed solution-Consistent Bellman Operator
- Understood the sufficient conditions for optimality-preserving and gap-increasing operators proposed in main theorem

· Phase 2

- Implemented DQN, advantage learning, persistent advantage learning operator
- Evaluated performance on 5 Atari-2600 games for all the algorithms (Asterix, Phoenix, Pong, SpaceInvaders, Breakout)
- Evaluated action gap on all 5 Atari-2600 games for all the algorithms
- · Tools: PyTorch, OpenAI Gym

Proof of Main Theorem

Lemma 1

Lemma

Let $Q \in \mathcal{Q}$ and π^Q be the policy greedy with respect to Q. Let \mathcal{T}' be an operator with the properties that, for all $x \in \mathcal{X}$, $a \in \mathcal{A}$,

- 1. $\mathcal{T}'Q(x,a) \leq \mathcal{T}Q(x,a)$, and
- 2. $\mathcal{T}'Q(x,\pi^Q(x)) = \mathcal{T}Q(x,\pi^Q(x)).$

Consider the sequence $Q_{k+1} := \mathcal{T}'Q_k$ with $Q_0 \in \mathcal{Q}$, and let $V_k(x) := \max_a Q_k(x, a)$. Then the sequence $(V_k : k \in \mathbb{N})$ converges, and furthermore, for all $x \in \mathcal{X}$,

$$\lim_{k\to\infty}V_k(x)\leq V^*(x).$$

Lemma 2

Lemma

Let \mathcal{T}' be an operator satisfying the conditions of Lemma 1, and let $\|R\|_{\infty}:=\max_{x,a}R(x,a)$. Then for all $x\in\mathcal{X}$ and all $k\in\mathbb{N}$,

$$|V_k(x)| \le \frac{1}{1-\gamma} [2\|V_0\|_{\infty} + \|R\|_{\infty}].$$

Theorem 2

Theorem

Let \mathcal{T} be the Bellman operator. Let \mathcal{T}' be an operator with the property that there exists an $\alpha \in [0,1)$ such that for all $Q \in \mathcal{Q}$, $x \in \mathcal{X}$, $a \in \mathcal{A}$, and letting $V(x) := \max_b Q(x,b)$,

- 1. $T'Q(x,a) \leq TQ(x,a)$, and
- 2. $\mathcal{T}'Q(x,a) \geq \mathcal{T}Q(x,a) \alpha [V(x) Q(x,a)].$

Consider the sequence $Q_{k+1} := \mathcal{T}'Q_k$ with $Q_0 \in \mathcal{Q}$, and let $V_k(x) := \max_a Q_k(x, a)$. Then \mathcal{T}' is optimality-preserving and gap-increasing.

Proof Idea for Theorem 2

- 1. Note that given conditions imply the conditions of Lemma 1. Thus for all $x \in \mathcal{X}$, $(V_k(x) : k \in \mathbb{N})$ converges to the limit $\tilde{V}(x) \leq V^*(x)$.
- 2. We can prove,

$$\tilde{Q}(x,a) = \limsup_{k \to \infty} \mathcal{T}' Q_k(x,a) \le \limsup_{k \to \infty} \mathcal{T} Q_k(x,a) \le \mathcal{T} \tilde{Q}(x,a)$$
$$\tilde{V}(x) \ge \max_{a \in A} \mathcal{T} \tilde{Q}(x,a)$$

From above 2 equations, we can conclude that $\tilde{V}(x) = V^*(x)$.

3. Proof of gap increasing and optimality preserving from $\tilde{V}(x) = V^*(x)$.