10 Гауссовские процессы

Вариант определяется остатком по модулю 3+1.

- 1. Построить частичные суммы в представлении Винера (в виде тригонометрических сумм) для броуновского движения. Проверить, что полученный процесс имеет независимые нормальные приращения измерить значения процесса в моменты i/n, найти приращения, построить Θ и проверить ее на нормальность.
- 2. Построить траекторию броуновского движения, і) броуновского моста, іі) броуновской извилины и ііі) броуновской экскурсии, используя то, что:
 - фрагмент броуновского движения от 0 до последнего нуля τ_0 совпадает по распределению (после растяжения) с броуновским мостом;
 - \bullet фрагмент броуновского движения от τ_0 до 1 совпадает по распределению (после растяжения) с броуновской извилиной.
 - фрагмент броуновского движения от τ_0 до первого нуля после точки 1 совпадает по распределению (после растяжения) с броуновской экскурсией

Под растяжением подразумевается, что траектория растягивается по горизонтали в c раз до длины 1 и по вертикали в \sqrt{c} раз.

- 3. Исследовать закон арксинуса для і) последнего пересечения нуля іі) момента достижения максимума ііі) время выше оси для случайного блуждания с шагами а) $\mathcal{N}(0,1)$, б) (1)-1, в) $X=\delta\varepsilon$, $\mathbf{P}(\delta=1)=\mathbf{P}(\delta=-1)=1/2$, $\mathbf{P}(\varepsilon>x)=1/x^{7/6}$, $x\geq 1$, где δ,ε предполагаются независимыми.
- 4. * Исследовать распределение времени, проведенного выше оси броуновским мостом, используя случайное блуждание, возвращающееся в ноль (как эффективно моделировать такое блуждание?).

_