Ecuaciones y datos útiles

Ecua. de cinemática (α =cte)	Momento de Inercia	Torca	Condición de Rodamiento
$\omega_z = \omega_{0z} + \alpha_z t$	$I = \sum m_i r_i^2$	$ au_z = Fl au_z = Frsen\theta$	(Rodar sin resbalar)
$\theta = \theta_0 + \omega_{0z}t + \frac{1}{2}\alpha_z t^2$	_		$v_{cm} = R\omega$
$\theta = \theta_0 + \frac{1}{2}(\omega_z + \omega_{0z})t$	$I = \int r^2 dm$	$\vec{\tau} = \vec{r} \times \vec{F}$ $\sum \tau_z = I\alpha_z$	$a_{cm} = R\alpha$
$\omega_z^2 = \omega_{0z}^2 + 2\alpha_z(\theta - \theta_0)$	J		
Cantidades angulares y lineales	Energía cinética	Teor. de ejes paralelos	Presión $P = F_{\perp}/A$
$v = R\omega$	Rotacional		Presión en fluido
$a = R\alpha$	$K = \frac{1}{2}I\omega^2$	$I_p = I_{cm} + Md^2$	$P = P_0 + \rho g h$
Ecuación de continuidad $A_1v_1 = A_2v_2$			Constantes
			$P_o = 1 \text{ atm} = 1.013 \times ^5 Pa$
Ecuación de Bernoulli	$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$		$ ho_{ m agua~dulce}{=}1000~{ m Kg/m^3}$
			$ ho_{ m agua~salada}{=}1030~{ m kg/m^3}$

Momentos de inercia

Tabla 12.1 Densidades de algunas sustancias comunes

Material	Densidad (kg/ m^3)*	Material	Densidad (kg/m³)*
Aire (1 atm, 20°C)	1.20	Hierro, acero	7.8×10^{3}
Etanol	0.81×10^{3}	Bronce	8.6×10^{3}
Benceno	0.90×10^{3}	Cobre	8.9×10^{3}
Hielo	0.92×10^{3}	Plata	10.5×10^{3}
Agua	1.00×10^{3}	Plomo	11.3×10^{3}
Agua de mar	1.03×10^{3}	Mercurio	13.6×10^{3}
Sangre	1.06×10^{3}	Oro	19.3×10^{3}
Glicerina	1.26×10^{3}	Platino	21.4×10^{3}
Cemento	2×10^3	Estrella enana blanca	10^{10}
Aluminio	2.7×10^{3}	Estrella de neutrones	10^{18}

^{*}Para obtener la densidad en gramos por centímetro cúbico, simplemente divida entre 10³.