Electronic Circuits for Mechatronics (ELCT 609)

Spring 2021 Lecture 2: PN Junctions Applications

Course Instructor: Dr. Eman Azab

PN-Junction Applications

Practical Circuits

Course Instructor: Dr. Eman Azab

Power Supply Circuit using Diodes

- DC Power supply is implemented using diodes
 - Rectifiers are used to convert AC signal to DC signal

Figure from Sedra/Smith, Copyright © 2010 by Oxford University Press, Inc.

DC Power Supply Circuit Components

Course Instructor: Dr. Eman Azab

Rectifiers

Half-wave Rectifier

$$V_{inAvg.} = 0$$

$$V_{outAvg.} = \frac{V_{Peak}}{\pi}$$

Rectifiers

Full-wave Rectifier

$$V_{inAvg.}=0$$

$$V_{outAvg.} = \frac{2V_{Peak}}{\pi}$$

Course Instructor: Dr. Eman Azab
Contact: eman.azab@guc.edu.eg

Rectifiers

Full-wave Rectifier

Figure from Sedra/Smith, Copyright © 2010 by Oxford University Press, Inc.

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

Limiters (Clippers)

Limiters (Clippers)

- It is a Linear Circuit used for signal conditioning
- The circuit limits the output voltage to a predefined value
- Any connections with diodes can be employed (parallel!)

$$V_{out} = L_{-}$$

$$V_{in} < \frac{L_{-}}{K}$$

$$\frac{L_{-}}{K} < V_{in} < \frac{L_{+}}{K}$$

$$V_{out} = L_+$$

 $V_{out} = KV_{in}$

$$V_{in} > \frac{L_+}{K}$$

K is the proportionality Constant

General Transfer Function of a Limiter

Figure from Sedra/Smith, Copyright © 2010 by Oxford University Press, Inc.

Limiters (Clippers)

Limiters Example 1:

- Assume that the Diodes have V_{th}=0.7V
- Draw 'V_{out}', if 'V_{in}' is a sinusoidal signal with 10kHz and 10Vpp

For
$$V_{in} > -\frac{V_D}{K}$$

For
$$V_{in} > -\frac{V_D}{K}$$
 $V_{out} = KV_{in}$

For
$$V_{in} < -\frac{V_D}{K}$$

$$V_{out} = -V_D$$

$$K = \frac{R_L}{R_S + R_L}$$

Limiters (Clippers)

Limiter Example 2:

- Assume that the Diodes are ideal, Draw 'V_{out}' vs. 'V_{in}'
- Draw 'V_{out}', if 'V_{in}' is a sinusoidal signal with 10kHz and 10Vpp

Course Instructor: Dr. Eman Azab

Zener Diodes

Course Instructor: Dr. Eman Azab

Breakdown Phenomena (Breakdown Biased)

- Reverse biasing can cause the diodes to conduct in opposite direction under large reverse voltage value
 - Zener Effect
 - Avalanche Effect
- Breakdown is non-destructive
- Applications:
 - Shunt Regulator
 - Limiters

Course Instructor: Dr. Eman Azab Contact: eman.azab@quc.edu.eq

Zener Diode

I-V Characteristics modeling for Zener Diode

Forward Biased	Reverse Biased	Breakdown Biased
Assume	Assume	Assume
$V_D = V_{Th}$	$I_D=0$	$V_D = -V_Z - I_D R_B$
Verify	Verify	Verify
$I_D > 0$	$-V_Z < V_D < V_{Th}$	$I_D < 0$

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

Zener Diode I-V Characteristics

- I-V Characteristics modeling for Zener Diodes
 - Note: You can reverse the diode polarity in Breakdown

Zener Diode Application

Voltage Regulator

Course Instructor: Dr. Eman Azab

Zener Diode Example

- Draw the output voltage vs. the input voltage
 - Voltage limiter using Zener

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg