

c. A graph G= (VE) is said to be isomorphic to a graph H= (V, E') if there exists a ligedine function of from the vertices of G to the vertices of H such that for two adjacent vertices in G, u and v the corresponding vertices in the four and for are adjacent. Civen the two araphs G = (files). (i.e., i.e., {(-20), (a2)}, show that a is isomorphic to H f: G -> H The function f: G > H is byective if and only if it is invertible.
Therefore to show that f has an inverse, it suffices that f is bijective. Assumption: f(u) = f(v) for any u, v, e a [in order to find the inverse] Apply f - 1 to both sides: f - 1 (E(u)) = f - 1 (f(v)) Therefore we can assume that u = v as for any $x \cdot f^{-1}(f(x)) = x$ As we have proved that I has an inverse, we can therefore conclude that f is byective.

3.	Let A be an array of 15 integers and B be an array of 10 integers. The arrays A and B are indexed from 1 to 15 and 1 to 10 respectively. Construct predicates to assert that:
	The arrays A and B are indexed from 170 15 and 170 10
	LESPECTIVELY CONSTROCT PLEGICUIES TO OBSELLING.
	(a) The third element of A is larger than all elements of B.
i e	VI 1 & 1 & 10, A[8] > B[i]
~	(b) The elements of B form a consecutive sequence within A
	VI, 1 & i & 10, 3 i 1 & j & 10, 8 [i] = A [j] A B [i + 1] = A [j + 1]
	(c) if x is an element of A then -x is an element of B
- A - , -	31, 1 ≤ i ≤ 10, 3j 1 ≤ j ≤ 15, A[j] = X ⇒ B[i] = - X
	(d.) The value 7 only occurs once in A
3 N	71, 1 < 1 < 15. V) 1 < 1 < 15, A [i] = 7, A [j] + 7, i + j
4	
<u> </u>	Let of y & Z Prove by construction that the sum of x+y is even
	when:
	(i) X and Y are both even
an i	Assumption: Let a and Y both be even
	$\chi = 2K$ $\chi = 2N$ therefore $\chi + y = 2K + 2N$
	= 2 (K+n)
	K+n is any number.
	TWO-LIMES any number is even
	: therefore x+y is even

