Data Cleaning and Processing Procedure

Step 1: Load the Dataset

- 1. Import necessary libraries such as pandas and numpy.
- 2. Load the dataset using pd.read_csv().

Step 2: Initial Data Examination

- 1. Display the first few rows of the dataset using df.head().
- 2. Check the data types of each column using df.dtypes.
- 3. Identify missing values using df.isnull().sum().

Step 3: Handle Missing Values

- 1. **Categorical Columns**: Fill missing values with the mode (most frequent value) of the column.
- 2. **Numerical Columns**: Fill missing values with the median of the column.

Step 4: Remove Outliers

- 1. Use the Interquartile Range (IQR) method to identify outliers.
 - o Calculate Q1 (25th percentile) and Q3 (75th percentile) for each numerical column.
 - o Compute IQR = Q3 Q1.
 - o Determine lower bound as Q1 1.5 * IQR and upper bound as Q3 + 1.5 * IQR.
- 2. Filter out rows where numerical column values fall outside the lower and upper bounds.

Step 5: Standardize Data Formats

1. Convert date columns to datetime format using pd.to_datetime().

Step 6: Correct Errors and Remove Duplicates

- 1. Identify and correct any known errors in the data.
- Remove duplicate rows using df.drop_duplicates().

Step 7: Feature Engineering

- 1. Create new features based on existing columns to enhance predictive power.
 - Example: If relevant columns are present, create a new column Yards_per_Second by dividing Yards.Gained by TimeSecs.

Step 8: Data Transformation

- 1. Normalize or scale numerical columns to bring them onto a similar scale.
 - Use StandardScaler or MinMaxScaler from sklearn.preprocessing to standardize numerical columns.

Step 9: Data Exploration

- 1. Visualize the distribution of numerical columns using histograms or KDE plots.
- 2. Explore relationships between variables using pair plots or correlation matrices.