Álgebra Folha 1

1. Diga, justificando, se as expressões seguintes definem operações binárias nos conjuntos indicados:

- (a) x * y = x y em $\mathbb{Z} \setminus \{0\}$
- (b) $x * y = x|y| \text{ em } \mathbb{Z}$
- (c) x * y = x + y + xy em $\mathbb{R} \setminus \{-1\}$
- (d) $x * y = \frac{x+y}{2}$ em N

Quais das operações binárias encontradas são comutativas?

- 2. Seja X um conjunto com 2 elementos. Quantas operações binárias é possível definir em X? Quantas destas são comutativas? E se X tiver n elementos com $n \ge 1$?
- 3. Para cada um dos seguintes casos, verifique se $(\mathbb{R}, *)$ é um semigrupo.
 - (a) $x * y = \frac{x+y}{2}$
 - (b) x * y = x + y 1
 - (c) x * y = |x + y|
 - (d) x * y = |x|y

Quais dos semigrupos encontrados são monóides?

4. Seja (G, *) um grupóide com elemento neutro tal que

$$\forall a, b, c, d \in G \quad (a * b) * (c * d) = (a * d) * (b * c).$$

Mostre que G é um monóide comutativo.

- 5. Seja S um conjunto com pelo menos dois elementos. Considere a operação * definida em $S \times S$ por (a,b)*(c,d)=(a,d). Mostre que $(S \times S,*)$ é um semigrupo sem elemento neutro.
- 6. Sejam S um semigrupo e $a, b \in S$ tais que ab = ba. Mostre que para qualquer inteiro $n \ge 1$, $a^nb = ba^n$ e $(ab)^n = a^nb^n$.
- 7. Dê exemplo de um semigrupo S no qual existem dois elementos $a \in b$ tais que $(ab)^2 \neq a^2b^2$.
- 8. Considere o grupóide (M,*) em que $M=\{(x,y,z)\in\mathbb{R}^3\,|\,x+y+z=1\}$ e a operação * é dada por

$$(x, y, z) * (a, b, c) = (xa, b + ya, c + za).$$

Mostre que (M, *) é um monóide e que um elemento $(x, y, z) \in M$ é invertível se e só se $x \neq 0$. Se $(x, y, z) \in M$ é invertível, qual é o seu inverso?

- 9. Sejam M um monóide e $a,b \in M$. Diga, justificando, quais das seguintes afirmações são verdadeiras e quais são falsas:
 - (a) Se a é invertível e ab = e, então $b = a^{-1}$.
 - (b) Se a é invertível à esquerda, então para quaisquer dois elementos $x, y \in M$, $ax = ay \Rightarrow x = y$.
 - (c) Se para quaisquer dois elementos $x, y \in M$, $ax = ay \Rightarrow x = y$, então a é invertível à esquerda.