

Theory of Computation (CS F351)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

Context Free Grammars And Context Free Languages

(Chapter-3)

Concepts

Language Recognizer: A device that accepts valid strings. Finite Automata are type of language Recognizers.

Language Generators: Devices that produce valid strings.

Ex: Regular Expressions.

Now we study certain types of formal language generators.

Language Generators

- ☐ That device begins when a signal to start is given to construct the string.
- ☐ It operation determined by a set of rules.
- Eventually this process halts and produces the completed string.
- ☐ The language defined by the device is set of all strings that it can produce.
- ☐ It is difficult to produce a recognizer for English language.

- ☐ We are interested in generators of artificial languages such as Regular Languages and CFL.
- Regular Expressions can be viewed as Language generators.

a(a*U b*)b

How to generate a string according to the above RE

- ☐ First output an *G*. Then do the following two.
- $oldsymbol{\square}$ Either output a number of $oldsymbol{a}$ s or output number of $oldsymbol{b}$ s.
- \Box Finally output a b

□ The language associated with this language generator is set of all strings that can be produced by the process above.

- Now we study more complex language generators called as Context Free Grammars (CFGs).
- ☐ CFGs are based on more complete understanding of the structure of the strings belonging to the language.

If I be the String in the and M be the Symbol for the Obviously it is either string of a's or stry of b's be express this by adding a rule M-> A

A? are new bymbols that stand for B! Strings of as or b's respectively.

What is a string of a's, it can be e' also.

A > e

A > e

B > 6B

Then the language denoted by RE a(a*vb*) b Can be defined alternatively by the following language generator -

- 1 Start with the string containing the symbol S.
- 2. Find a symbol in the current string that appear to the left of '->' in one of the rules above.
- 2 Replace an occurrence of this symbol with the solving that appears to the right of '->' In the same rule.

 Repeat this process switil no such symbol can be found.

CFG

- ☐ In CFG symbols that do not appear on the LHS of a production rule are known as terminal symbols.
- In the process of producing a string, by using CFG, we see only terminal symbols in the string. Then we stop further replacements and the result is a valid string according to the language.

innovate achieve lea

CFG Definition

- \square A CFG $G = (V, \Sigma, R, S)$
- V is an alphabet
- \sum is set of terminal symbols and subset of V
- R set of rules where each rule $(V-\sum)XV^*$
- S is the start symbol and is an element of $(V-\sum)$

innovate achieve lead

CFG Definition

```
CFG for L = \{a^n b^n : n \ge 0\} // it is not a Regular Language CFG G = (V, \sum, R, S)
```

```
V = \{S, a, b\}

\sum = \{a,b\}

R = \{S \rightarrow aSb; S \rightarrow e\}

S = is the start symbol
```

innovate achieve lead

CFG Definition

- \square A derivation in G of w_n from w_0 may be any string in V^* , and n is the length of the derivation, may be any natural number including zero.
- \square We say that the derivation has n steps.

CFG Definition


```
CFG for L = \{a^n b^n : n \ge 0\}   CFG G = (V, \sum, R, S)

V = \{S, a, b\}   \sum = \{a, b\}

R = \{S \rightarrow aSb; S \rightarrow e\}   S = is the start symbol
```

One possible derivation:

S \rightarrow aSb \rightarrow aaSbb \rightarrow aaaSbbb \rightarrow aaabbb w_0 w_1 w_2 w_3 w_4 Here the length of derivation is 4

CFG and PL

- ☐ Computer programs written in any language must satisfy some rigid criteria in order to be syntactically correct, and therefore amenable for mechanical interpretation.
- ☐ The syntax of most of the languages can be captured by CFG
- ☐ If a programming language is described by CFG, it will be easy for parsing.
- ☐ Parsing is the process of analyzing a program to find the syntax.

RL and CFL

All RLs are CFL.

```
M= (K, \Sigma, \delta, s, F) and corresponds to a Regular language L

G(M) = (V, \Sigma, R, S)

V = K U \Sigma

S = s

R = \{Q \rightarrow aP \mid \delta(Q, a) = P \} U \{Q \rightarrow e \text{ if } Q \in F\}
```

innovate achieve lead

Summary

- ☐ Language generators and Recognizers.
- What is CFL and CFG
- ☐ Significance of CFG
- ☐ Formal description of CFG
- Derivation
- ☐ CFL / CFG and RL
- Constructing CFG for FA