Homework III

Course: Machine Learning(CS405) - Professor: Qi Hao

Question 1

Consider a data set in which each data point t_n is associated with a weighting factor $r_n>0$, so that the sum-of-squares error function becomes

$$E_D(\mathbf{w}) = rac{1}{2} \sum_{n=1}^N r_n (t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n))^2.$$

Find an expression for the solution \mathbf{w}^* that minimizes this error function.

Give two alternative interpretations of the weighted sum-of-squares error function in terms of (i) data independent noise variance and (ii) replicated data points.

Question 2

We saw in Section 2.3.6 that the conjugate prior for a Gaussian distribution with unknown mean and unknown precision (inverse variance) is a normal-gamma distribution. This property also holds for the case of the conditional Gaussian distribution $p(t|\mathbf{x}, \mathbf{w}, \beta)$ of the linear regression model. If we consider the likelihood function,

$$p(\mathbf{t}|\mathbf{X}, \mathrm{w}, eta) = \prod_{n=1}^N \mathcal{N}(t_n|\mathrm{w}^\mathrm{T}\phi(\mathrm{x}_n), eta^{-1})$$

then the conjugate prior for \mathbf{w} and β is given by

$$p(\mathbf{w}, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \beta^{-1}\mathbf{S}_0)\mathrm{Gam}(\beta|a_0, b_0).$$

Show that the corresponding posterior distribution takes the same functional form, so that

$$p(\mathbf{w}, \beta | \mathbf{t}) = \mathcal{N}(\mathbf{w} | \mathbf{m}_N, \beta^{-1} \mathbf{S}_N) \operatorname{Gam}(\beta | a_N, b_N).$$

and find expressions for the posterior parameters \mathbf{m}_N , \mathbf{S}_N , a_N , and b_N .

Question 3

Show that the integration over w in the Bayesian linear regression model gives the result

$$\int \exp\{-E(\mathbf{w})\}\mathrm{d}\mathbf{w} = \exp\{-E(\mathbf{m}_N)\}(2\pi)^{M/2}|\mathbf{A}|^{-1/2}.$$

Hence show that the log marginal likelihood is given by

$$\ln p(\mathbf{t}|lpha,eta) = rac{M}{2} \ln lpha + rac{N}{2} \ln eta - E(\mathbf{m}_N) - rac{1}{2} \ln |\mathbf{A}| - rac{N}{2} \ln (2\pi)$$

Question 4

Consider real-valued variables X and Y. The Y variable is generated, conditional on X, from the following process:

$$\epsilon \sim N(0, \sigma^2)$$

$$Y = aX + \epsilon$$

where every ϵ is an independent variable, called a noise term, which is drawn from a Gaussian distribution with mean 0, and standard deviation σ . This is a one-feature linear regression model, where a is the only weight parameter. The conditional probability of Y has distribution $p(Y|X,a) \sim$ $N(aX,\sigma^2)$, so it can be written as

$$p(Y|X,a) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(Y - aX)^2)$$

Assume we have a training dataset of n pairs (X_i, Y_i) for i = 1...n, and σ is known.

Derive the maximum likelihood estimate of the parameter a in terms of the training example X_i 's and Y_i 's. We recommend you start with the simplest form of the problem:

$$F(a) = rac{1}{2} \sum_i (Y_i - aX_i)^2$$

Question 5

If a data point y follows the Poisson distribution with rate parameter θ , then the probability of a single observation y is

$$p(y| heta) = rac{ heta^y e^{- heta}}{y!}, ext{for } y = 0, 1, 2, \ldots$$

You are given data points y_1,\ldots,y_n independently drawn from a Poisson distribution with parameter θ . Write down the log-likelihood of the data as a function of θ .

Question 6

Suppose you are given n observations, X_1,\ldots,X_n , independent and identically distributed with a $Gamma(\alpha,\lambda)$ distribution. The following information might be useful for the problem.

- If $X\sim Gamma(\alpha,\lambda)$, then $\mathbb{E}[X]=rac{lpha}{\lambda}$ and $\mathbb{E}[X^2]=rac{lpha(lpha+1)}{\lambda^2}$ The probability density function of $X\sim Gamma(lpha,\lambda)$ is $f_X(x)=rac{1}{\Gamma(lpha)}\lambda^{lpha}x^{lpha-1}e^{-\lambda x}$, where the function Γ is only dependent on lpha and not λ

Suppose, we are given a known, fixed value for α . Compute the maximum likelihood estimator for λ .