Image Interpolation

Today: back to images

• This photo is too small:

Might need this for forensics:

Zooming

• First consider a black and white image (one intensity value per pixel)

 We want to blow it up to poster size (say, zoom in by a factor of 16)

 First try: repeat each row 16 times, then repeat each column 16 times

Zooming: First attempt

Image Interpolation

Interpolation — Process of using known data to estimate unknown values

e.g., zooming, shrinking, rotating, and geometric correction

Interpolation (sometimes called *resampling*) — an imaging method to increase (or decrease) the number of pixels in a digital image.

Some digital cameras use interpolation to produce a larger image than the sensor captured or to create digital zoom

Introduction

Image interpolation

An image f(x,y) tells us the intensity values at the integral lattice locations, i.e., when x and y are both integers

- Image interpolation refers to the "guess" of intensity values at missing locations, i.e., x and y can be arbitrary
- Note that it is just a guess (Note that all sensors have finite sampling distance)

Motivations

Why do we need image interpolation?

- We want BIG images
 - When we see a video clip on a PC, we like to see it in the full screen mode
- We want GOOD images
 - If some block of an image gets damaged during the transmission, we want to repair it
- We want COOL images
 - Manipulate images digitally can render fancy artistic effects as we often see in movies

- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

Neighbors of a pixel p at coordinates (x,y)

- > 4-neighbors of p, denoted by $N_4(p)$: (x-1, y), (x+1, y), (x,y-1), and (x, y+1).
- > 4 diagonal neighbors of p, denoted by $N_D(p)$: (x-1, y-1), (x+1, y+1), (x+1,y-1), and (x-1, y+1).
- > 8 neighbors of p, denoted $N_8(p)$ $N_8(p) = N_4(p) \cup N_D(p)$

Adjacency

Let V be the set of intensity values

- \triangleright 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in the set N₄(p).
- >8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set $N_8(p)$.

Adjacency

Let V be the set of intensity values

>m-adjacency: Two pixels p and q with values from V are m-adjacent if

(i) q is in the set $N_4(p)$, or

(ii) q is in the set $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V.

Path

 \triangleright A (digital) path (or curve) from pixel p with coordinates (x₀, y₀) to pixel q with coordinates (x_n, y_n) is a sequence of distinct pixels with coordinates

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where (x_i, y_i) and (x_{i-1}, y_{i-1}) are adjacent for $1 \le i \le n$.

- > Here *n* is the *length* of the path.
- ightharpoonup If $(x_0, y_0) = (x_n, y_n)$, the path is **closed** path.
- > We can define 4-, 8-, and m-paths based on the type of adjacency used.

 $V = \{1, 2\}$

0 1 1

0 1 1

0 1 1

0 2 0

0 2 0

0 2 0

0 0 1

0 0 1

0 0 1

$$V = \{1, 2\}$$

0	1	1	0	1	1	0 : 11
0	2	0	0	2	0	0 2 0 0 1
0	0	1	0	0	1	0 0 1

8-adjacent

$$V = \{1, 2\}$$

0 1 1

0 1 1

0 1...1

0 2 0

0 2 0

0 2 0

0 0 1

0 0 1

0 0 1

m-adjacent

$$V = \{1, 2\}$$

 $0_{1,1}$ $1_{1,2}$ $1_{1,3}$

0 1 1

0 1 1

 $0_{2,1}$ $2_{2,2}$ $0_{2,3}$

0 2 0

0.20

 $0_{3,1}$ $0_{3,2}$ $1_{3,3}$

0 0 1

0 0 1

8-adjacent

m-adjacent

The 8-path from (1,3) to (3,3):

- (i) (1,3), (1,2), (2,2), (3,3)
- (ii) (1,3), (2,2), (3,3)

The m-path from (1,3) to (3,3): (1,3), (1,2), (2,2), (3,3)

Connected in S

Let S represent a subset of pixels in an image. Two pixels p with coordinates (x_0, y_0) and q with coordinates (x_n, y_n) are said to be **connected in S** if there exists a path

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where

$$\forall i, 0 \le i \le n, (x_i, y_i) \in S$$

Let S represent a subset of pixels in an image

- For every pixel p in S, the set of pixels in S that are connected to p is called a connected component of S.
- If S has only one connected component, then S is called *Connected Set*.
- We call R a **region** of the image if R is a connected set
- Two regions, R_i and R_i are said to be *adjacent* if their union forms a connected set.
- Regions that are not to be adjacent are said to be disjoint.

Boundary (or border)

- The **boundary** of the region R is the set of pixels in the region that have one or more neighbors that are not in R.
- ➤ If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and last rows and columns of the image.

Foreground and background

An image contains K disjoint regions, R_k , k = 1, 2, ..., K. Let R_u denote the union of all the K regions, and let $(R_u)^c$ denote its complement.

All the points in R_u is called **foreground**;

All the points in $(R_u)^c$ is called **background**.

Scenario I: Resolution Enhancement

Scenario II: Image Inpainting

Scenario III: Image Warping

Nearest Neighbors Interpolation

Nearest Neighbors Interpolation

Also Known as "Pixel Replication" and "1D Zero-order"

(Original image rows * zooming factor, Original Image cols * zooming factor)

Nearest Neighbors Interpolation

Original Image

1	2
3	4

Row wise replication

1	1	2	2
3	3	4	4

Column wise replication

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Nearest Neighbors Interpolation

Original Image

Nearest Neighbors Interpolation

Nearest Neighbors Interpolation

- Advantage:
 - Fast
 - Simple
- Disadvantage:
 - Jagged results
 - Result in fully blurred image

1D First-order Interpolation (Linear)

Heuristic: the closer to a pixel, the higher weight is assigned Principle: line fitting to polynomial fitting (analytical formula)

1D First-order Interpolation (Linear)

$$\frac{x - x_w}{x_e - x_w} = \frac{v - v_w}{v_e - v_w}$$

• Isolating v in the above equation:

$$v = \alpha v_e + (1 - \alpha) v_w$$

where
$$\alpha = \frac{x - x_w}{x_e - x_w}$$

Note: when $\alpha=0.5$, we simply have the average of two

1D First-order Interpolation (Linear)

```
f(n) = [0,120,180,120,0]
\downarrow \quad \text{Interpolate at 1/2-pixel}
f(x) = [0,60,120,150,180,150,120,60,0], \ x=n/2
\downarrow \quad \text{Interpolate at 1/3-pixel}
f(x) = [0,20,40,60,80,100,120,130,140,150,160,170,180,...], \ x=n/6
```

Bilinear interpolation

- What about in 2D?
 - Interpolate in x, then in y
- Example
 - We know the red values.
 - Linear interpolation in x between red values gives us the blue values
 - Linear interpolation in y between the blue values gives us the green value

1D Third order Interpolation (Cubic)

Nearest Neighbor Interpolation

Bilinear Interpolation

Bicubic Interpolation

Extrapolation

- Suppose you only know the values f(1), f(2), f(3), f(4) of a function
 - What is f(5)?

- This problem is called extrapolation
 - Much harder than interpolation: what is outside the image?

Image Extrapolation

Computed using a database of millions of photos