	 separately, therefore it can serve as a useful tool to help you debug your code if you are not sure of what part of your implementa might have an issue. For the "HW2 - Non-programming" part, you will download your jupyter notbook as html and submit it as a PDF on Gradescope. To download the notebook as PDF, click on "File" on the top left corner of this page and select "Download a PDF". The non-programming part corresponds to Q2, Q3.3 (both your response and the generated images with your implementation) and Q4.2 When submitting to Gradescope, please make sure to mark the page(s) corresponding to each problem/sub-problem. O Set up
]:[This notebook is tested under python 3.*.* , and the corresponding packages can be downloaded from miniconda . You may also want get yourself familiar with several packages: jupyter notebook numpy. matplotlib Please implement the functions that have "raise NotImplementedError", and after you finish the coding, please delete or comment "ra NotImplementedError". ###################################
	<pre>####################################</pre>
	<pre>from tqdm import tqdm import math print('Version information') print('python: {}'.format(sys.version)) print('matplotlib: {}'.format(matplotlibversion)) print('numpy: {}'.format(npversion)) # Set random seed so output is all same np.random.seed(1) # Load image import imageio</pre>
	Version information python: 3.8.3 (default, Jul 2 2020, 11:26:31) [Clang 10.0.0] matplotlib: 3.2.2 numpy: 1.18.5 1. KMeans Clustering [5 + 30 + 10 + 5 + 10 pts] KMeans is trying to solve the following optimization problem: $\arg\min_{S} \sum_{i=1}^{K} \sum_{x_{i} \in S_{i}} x_{j} - \mu_{i} ^{2}$
	where one needs to partition the N observations into K clusters: $S = \{S_1, S_2, \dots, S_K\}$ and each cluster has μ_i as its center. 1.1 pairwise distance [5pts] In this section, you are asked to implement pairwise_dist function. Given $X \in \mathbb{R}^{N \times D}$ and $Y \in \mathbb{R}^{M \times D}$, obtain the pairwise distance matrix $dist \in \mathbb{R}^{N \times M}$ using the euclidean distance metric, where $dist_{i,j} = X_i - Y_j _2$. DO NOT USE FOR LOOP in your implementation they are slow and will make your code too slow to pass our grader. Use array broadcasting instead.
	1.2 KMeans Implementation [30pts] In this section, you are asked to implement _init_centers [5pts], _update_assignment [10pts], _update_centers [10pts] and _get_loss function [5pts]. For the function signature, please see the corresponding doc strings. 1.3 Find the optimal number of clusters [10 pts] In this section, you are asked to implement find_optimal_num_clusters function. You will now use the elbow method to find the optimal number of clusters. 1.4 Autograder test to find centers for data points [5 pts] To obtain these 5 points, you need to be pass the tests set up in the autograder. These will test the centers created by your implementation. Be sure to upload the correct files to obtain these points. class KMeans (object): def init (self): #No need to implement
	<pre>def pairwise_dist(self, x, y): # [5 pts] """ Args:</pre>
	<pre>euclidean = np.sqrt(np.sum(np.square(reshaped_x - y), axis=2)) return euclidean definit_centers(self, points, K, **kwargs): # [5 pts] """ Args: points: NxD numpy array, where N is # points and D is the dimensionality K: number of clusters kwargs: any additional arguments you want Return: centers: K x D numpy array, the centers. """ # raise NotImplementedError _, D = np.shape(points) options = points.flatten()</pre>
	<pre>centersArray = np.random.choice(options, (K, D)) return centersArray def _update_assignment(self, centers, points): # [10 pts] """ Args: centers: KxD numpy array, where K is the number of clusters, and D is the dimension points: NxD numpy array, the observations Return: cluster_idx: numpy array of length N, the cluster assignment for each point Hint: You could call pairwise_dist() function. """</pre>
	<pre># raise NotImplementedError distanceArray = self.pairwise_dist(points, centers) cluster_idx = np.argmin(distanceArray, axis=1) return cluster_idx def _update_centers(self, old_centers, cluster_idx, points): # [10 pts] """ Args: old_centers: old centers KxD numpy array, where K is the number of clusters, and D is t imension cluster_idx: numpy array of length N, the cluster assignment for each point points: NxD numpy array, the observations Return:</pre>
	<pre>Return:</pre>
	<pre>def _get_loss(self, centers, cluster_idx, points): # [5 pts] """ Args: centers: KxD numpy array, where K is the number of clusters, and D is the dimension cluster_idx: numpy array of length N, the cluster assignment for each point points: NxD numpy array, the observations Return: loss: a single float number, which is the objective function of KMeans. """ K, _ = np.shape(centers) loss = 0.0 for k in range(K):</pre>
	<pre>idxes = np.where(cluster_idx == k)[0] if idxes.size > 0: members = points[idxes] center = centers[k] loss += np.sum(np.square(members - center)) return loss defcall(self, points, K, max_iters=100, abs_tol=1e-16, rel_tol=1e-16, verbose=False, **kwa): """ Args: points: NxD numpy array, where N is # points and D is the dimensionality K: number of clusters</pre>
	<pre>max_iters: maximum number of iterations (Hint: You could change it when debugging) abs_tol: convergence criteria w.r.t absolute change of loss rel_tol: convergence criteria w.r.t relative change of loss verbose: boolean to set whether method should print loss (Hint: helpful for debugging) kwargs: any additional arguments you want Return: cluster assignments: Nx1 int numpy array cluster centers: K x D numpy array, the centers loss: final loss value of the objective function of KMeans """ centers = selfinit_centers(points, K, **kwargs) for it in range(max_iters): cluster_idx = selfupdate_assignment(centers, points)</pre>
	<pre>centers = selfupdate_centers(centers, cluster_idx, points) loss = selfget_loss(centers, cluster_idx, points) K = centers.shape[0] if it: diff = np.abs(prev_loss - loss) if diff < abs_tol and diff / prev_loss < rel_tol: break prev_loss = loss if verbose: print('iter %d, loss: %.4f' % (it, loss)) return cluster_idx, centers, loss def find_optimal_num_clusters(self, data, max_K=15): # [10 pts]</pre>
	<pre>"""Plots loss values for different number of clusters in K-Means Args: image: input image of shape(H, W, 3) max_K: number of clusters Return: losses: an array of loss denoting the loss of each number of clusters """ # raise NotImplementedError x_values = [] y_values = [] for k in range(1, max_K + 1): x_values.append(k) _, _, loss = selfcall(data, k)</pre>
	<pre>y_values.append(loss) plt.plot(x_values, y_values) return np.array(y_values) # Helper function for checking the implementation of pairwise_distance fucntion. Please DO NOT chan his function # TEST CASE x = np.random.randn(2, 2) y = np.random.randn(3, 2) print("*** Expected Answer ***") print("""==x== [[1.62434536 -0.61175641]</pre>
	<pre>[[1.0243436 -0.01173641]</pre>
	<pre>print("==y==") print(y) print("==dist==") print(KMeans().pairwise_dist(x, y)) *** Expected Answer *** ==x== [[1.62434536 -0.61175641] [-0.52817175 -1.07296862]] ==y== [[0.86540763 -2.3015387] [1.74481176 -0.7612069] [0.3190391 -0.24937038]] ==dist==</pre>
	[[1.85239052 0.19195729 1.35467638] [1.85780729 2.29426447 1.18155842]] *** My Answer *** ==x== [[1.62434536 -0.61175641] [-0.52817175 -1.07296862]] ==y== [[0.86540763 -2.3015387] [1.74481176 -0.7612069] [0.3190391 -0.24937038]] ==dist== [[1.85239052 0.19195729 1.35467638]
]:	<pre>[1.85780729 2.29426447 1.18155842]] # test kmeans np.random.seed(1) points = np.random.randn(100, 2) cluster_idx2, centers2, loss2 = KMeans() (points, 2) cluster_idx5, centers5, loss5 = KMeans() (points, 5) print("*** Expected Answer ***") print("""==centers2== [[-0.23265213 0.66957783] [0.61791745 -0.59496966]]</pre>
	==centers5== [[0.94945532 -1.42382563] [0.64137518 0.09830081] [-0.51672295 -0.35410285] [-0.07747868 1.08896449] [1.93010934 0.48561944]] ==loss2== 105.06622377653986 ==loss5== 53.0865571656247""") print("\n*** My Answer ***") print("=centers2==")
	<pre>print (centers2) print ("==centers5==") print (centers5) print ("==loss2==") print (loss2) print ("==loss5==") print (loss5) *** Expected Answer *** ==centers2== [[-0.23265213 0.66957783] [0.61791745 -0.59496966]] ==centers5== [[0.94945532 -1.42382563]</pre>
	[0.64137518 0.09830081] [-0.51672295 -0.35410285] [-0.07747868 1.08896449] [1.93010934 0.48561944]] ==loss2== 105.06622377653986 ==loss5== 53.0865571656247 *** My Answer *** ==centers2== [[0.35647907 -0.77810103] [0.10192294 0.72155234]]
]:[==centers5== [[0.83959261 -1.65541692] [-0.87735744 0.75994955] [-0.24569191 -0.46721266] [0.99043328 -0.1441221] [0.61753564 0.98757263]] ==loss2== 104.93750103699625 ==loss5== 44.980763304237215 def image_to_matrix(image_file, grays=False):
	<pre>Convert .png image to matrix of values. params: image_file = str grays = Boolean returns: img = (color) np.ndarray[np.ndarray[float]]] or (grayscale) np.ndarray[np.ndarray[float]] """ img = plt.imread(image_file) # in case of transparency values if len(img.shape) == 3 and img.shape[2] > 3: height, width, depth = img.shape</pre>
	<pre>negnt, width, depth = img.snape new_img = np.zeros([height, width, 3]) for r in range(height): for c in range(width): new_img[r, c, :] = img[r, c, 0:3] img = np.copy(new_img) if grays and len(img.shape) == 3: height, width = img.shape[0:2] new_img = np.zeros([height, width]) for r in range(height): for c in range(width): new_img[r, c] = img[r, c, 0] img = new_img return img</pre>
	<pre>image_values = image_to_matrix('./images/bird_color_24.png') r = image_values.shape[0] c = image_values.shape[1] ch = image_values.shape[2] # flatten the image_values image_values = image_values.reshape(r*c,ch) k = 6 # feel free to change this value cluster_idx, centers, loss = KMeans()(image_values, k) updated_image_values = np.copy(image_values)</pre>
	<pre># assign each pixel to cluster mean for i in range(0,k): indices_current_cluster = np.where(cluster_idx == i)[0] updated_image_values[indices_current_cluster] = centers[i] updated_image_values = updated_image_values.reshape(r,c,ch) plt.figure(None, figsize=(9,12)) plt.imshow(updated_image_values) plt.show()</pre>
	50 - 100 - 150 - 1
l	250
	2920.43061066, 2368.59752655, 2106.70523071, 1952.51284027, 1851.87907028, 1707.80400848, 1552.42409134]) 25000 15000
	Silhouette Coefficient Evaluation [10 pts] The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data inst is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighbouring cluster. The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). The silhouette ranges from -1 to +1, where a high value indicates that the object is well matched to its own cluster and poorly matched to
:	neighboring clusters. If most objects have a high value, then the clustering configuration is appropriate. If many points have a low or negative value, then the clustering configuration may have too many or too few clusters. def intra_cluster_dist(cluster_idx, data, labels): # [4 pts] """ Calculates the average distance from a point to other points within the same cluster Args: cluster_idx: the cluster index (label) for which we want to find the intra cluster distance data: NxD numpy array, where N is # points and D is the dimensionality labels: 1D array of length N where each number indicates of cluster assignement for that po Return:
	<pre>intra_dist_cluster: 1D array where the i_th entry denotes the average distance from point i</pre>
	<pre>def inter_cluster_dist(cluster_idx, data, labels): # [4 pts] """ Calculates the average distance from one cluster to the nearest cluster Args: cluster_idx: the cluster index (label) for which we want to find the intra cluster distance data: NxD numpy array, where N is # points and D is the dimensionality labels: 1D array of length N where each number indicates of cluster assignement for that po Return: inter_dist_cluster: 1D array where the i-th entry denotes the average distance from point i cluster</pre>
	<pre>members = data[members_idxes] n, d = np.shape(members) reshaped_members = np.reshape(members, (n, 1, d)) clusters = np.unique(labels) clusters = np.delete(clusters, cluster_idx) inter_dist_cluster = np.full(n, math.inf) for cluster in clusters: neigh_idxes = np.where(labels == cluster) neigh = data[neigh_idxes] inter_dist = np.sqrt(np.sum(np.square(reshaped_members - neigh), axis=2)) inter_dist_cluster_holder = np.mean(inter_dist, axis=1) inter_dist_cluster = np.minimum(inter_dist_cluster_holder, inter_dist_cluster) return inter_dist_cluster</pre>
	<pre>def silhouette_coefficient(data, labels): #[2 pts] """ Finds the silhouette coefficient of the current cluster assignment Args: data: NxD numpy array, where N is # points and D is the dimensionality labels: 1D array of length N where each number indicates of cluster assignement for that po Return: silhouette_coefficient: Silhouette coefficient of the current cluster assignment """ # raise NotImplementedError</pre>
]:[<pre>s_clusters = np.unique(labels) N, _ = np.shape(data) sum = 0.0 for s_cluster in s_clusters: intra_dist = intra_cluster_dist(s_cluster, data, labels) inter_dist = inter_cluster_dist(s_cluster, data, labels) max_denominator = np.maximum(intra_dist, inter_dist) coeff_array = (inter_dist - intra_dist) / max_denominator sum += np.sum(coeff_array) return sum / N</pre> def plot_silhouette_coefficient(data, max_K=15): """
	<pre>Plot silhouette coefficient for different number of clusters, no need to implement """ clusters = np.arange(2, max_K+1) silhouette_coefficients = [] for k in range(2, max_K+1): labels, _, _ = KMeans() (data, k) silhouette_coefficients.append(silhouette_coefficient(data, labels)) plt.plot(clusters, silhouette_coefficients) return silhouette_coefficients</pre> data = np.random.rand(200,3) * 100
	plot_silhouette_coefficient(data) [0.25176411625992784,
	0.27464539194634896, 0.2788395422930645, 0.2899429875436111]
	Limitation of K-Means One of the limitations of K-Means Clustering is that it dependes largely on the shape of the dataset. A common example of this is trying cluster one circle within another (concentric circles). A K-means classifier will fail to do this and will end up effectively drawing a line we crosses the circles. You can visualize this limitation in the cell below.
]:	<pre># visualize limitation of kmeans, do not have to implement from sklearn.datasets.samples_generator import (make_circles, make_moons) X1, y1 = make_circles(factor=0.5, noise=0.05, n_samples=1500) X2, y2 = make_moons(noise=0.05, n_samples=1500) def visualise(X, C, K): # Visualization of clustering. You don't need to change this function fig, ax = plt.subplots() ax.scatter(X[:, 0], X[:, 1], c=C,cmap='rainbow') plt.title('Visualization of K = '+str(K), fontsize=15) plt.show() pass</pre>
	<pre>cluster_idx1, centers1, loss1 = KMeans()(X1, 2) visualise(X1, cluster_idx1, 2) cluster_idx2, centers2, loss2 = KMeans()(X2, 2) visualise(X2, cluster_idx2, 2) /Users/vicenteblat/anaconda3/lib/python3.8/site-packages/sklearn/utils/deprecation.py:143: FutureWaing: The sklearn.datasets.samples_generator module is deprecated in version 0.22 and will be remove in version 0.24. The corresponding classes / functions should instead be imported from sklearn.datasets. Anything that cannot be imported from sklearn.datasets is now part of the private API. warnings.warn(message, FutureWarning) Visualization of K = 2</pre>
	10 - 0.5 - 0.0 - 0.5 0.0 0.5 10
	Visualization of K = 2 100 0.75 0.50 0.25 0.00 -0.25
	2. EM algorithm [20 pts] 2.1 Performing EM Update [10 pts] A univariate Gaussian Mixture Model (GMM) has two components, both of which have their own mean and standard deviation. The m
	is defined by the following parameters: $\mathbf{z} \sim Bernoulli(\theta)$ $\mathbf{p}(\mathbf{x} \mathbf{z}=0) \sim \mathcal{N}(\mu,\sigma)$ $\mathbf{p}(\mathbf{x} \mathbf{z}=1) \sim \mathcal{N}(2\mu,3\sigma)$ For a dataset of N datapoints, find the following: $2.1.1. \text{ Write the marginal probability of x, i.e. } \mathbf{p}(\mathbf{x}) \text{ [2pts]}$ $\mathbf{p}(\mathbf{x}) = \sum^{Z} p(z)p(x z) = \sum^{K} p(z_k)\mathcal{N}(x \mu_k,\sigma_k)$ $2.1.2. \text{ E-Step: Compute the posterior probability, i.e, } p(z^i=k x^i), \text{ where } \mathbf{k} = \{0,1\} \text{ [2pts]}$
	2.1.2. E-Step: Compute the posterior probability, i.e, $p(z^i = k x^i)$, where $k = \{0,1\}$ [2pts] $p(z^i = k x^i) = \frac{p(z^i = k)p(x^i z^i = k)}{\sum_{j=1}^K p(z^i = k_j)p(x^i z^i = k_j)} = \frac{p(z^i = k)\mathcal{N}(x^i \mu_k, \sigma_k)}{\sum_{j=1}^K p(z^i = k_j)\mathcal{N}(x^i \mu_{k_j}, \sigma_{k_j})}$ for $k = 0$: $p(z^i = 0 x^i) = \frac{p(z^i = 0)\mathcal{N}(x^i \mu_0, \sigma_0)}{\sum_{j=1}^K p(z^i = k_j)\mathcal{N}(x^i \mu_{k_j}, \sigma_{k_j})} = \frac{\theta \mathcal{N}(x^i \mu, \sigma)}{\theta \mathcal{N}(x^i \mu, \sigma) + (1 - \theta)\mathcal{N}(x^i 2\mu, 3\sigma)}$ for $k = 1$: $p(z^i = 1 x^i) = \frac{p(z^i = 1)\mathcal{N}(x^i \mu_1, \sigma_1)}{\sum_{j=1}^K p(z^j = k_j)\mathcal{N}(x^i \mu_{k_j}, \sigma_{k_j})} = \frac{(1 - \theta)\mathcal{N}(x^i 2\mu, 3\sigma)}{\theta \mathcal{N}(x^i \mu, \sigma) + (1 - \theta)\mathcal{N}(x^i 2\mu, 3\sigma)}$
	2.1.3. M-Step: Compute the updated value of μ (You can keep σ fixed for this) [3pts] $l(x \theta) = \sum^{N} \sum^{Z} p(z_{k} x_{n}, \theta_{old}) \ln \left[p(x_{n}, z_{k} \theta) \right] = \sum^{N} \sum^{Z} p(z_{k} x_{n}, \theta_{old}) \ln \left[p(z_{k}) \mathcal{N}(x_{n} \mu_{k}, \sigma_{k}) \right]$ $l(x \theta) = \sum^{N} \sum^{Z} p(z_{k} x_{n}, \theta_{old}) \ln \left[p(z_{k}) \frac{1}{\sqrt{2\pi\sigma_{k}^{2}}} e^{\frac{-(x_{n}-\mu_{k})^{2}}{2\sigma_{k}^{2}}} \right]$ $l(x \theta) = \sum^{N} \sum^{Z} p(z_{k} x_{n}, \theta_{old}) [\ln p(z_{k}) + \ln \frac{1}{\sqrt{2\pi\sigma_{k}^{2}}} - \frac{(x_{n}-\mu_{k})^{2}}{2\sigma_{k}^{2}}]$
	$\frac{\partial l(x \theta)}{\partial \mu_k} = \sum_{k=1}^{N} p(z_k x_n, \theta_{old}) \left[-\frac{2(x_n - \mu_k)(-1)}{2\sigma_k^2} \right] = 0$ $\sum_{k=1}^{N} p(z_k x_n, \theta_{old}) \left[\frac{(x_n - \mu_k)}{\sigma_k^2} \right] = 0$ $\sum_{k=1}^{N} p(z_k x_n, \theta_{old}) (x_n - \mu_k) = 0$ $\sum_{k=1}^{N} p(z_k x_n, \theta_{old}) \mu_k^{new} = \sum_{k=1}^{N} p(z_k x_n, \theta_{old}) x_n$ $\mu_k^{new} = \frac{\sum_{k=1}^{N} p(z_k x_n, \theta_{old}) x_n}{\sum_{k=1}^{N} p(z_k x_n, \theta_{old}) x_n}$
	2.1.4. M-Step: Compute the updated value for σ (You can keep μ fixed for this) [3pts] $l(x \theta) = \sum^{N} \sum^{Z} p(z_{k} x_{n}, \theta_{old}) [\ln p(z_{k}) + \ln \frac{1}{\sqrt{2\pi\sigma_{k}^{2}}} - \frac{(x_{n} - \mu_{k})^{2}}{2\sigma_{k}^{2}}]$ $l(x \theta) = \sum^{N} \sum^{Z} p(z_{k} x_{n}, \theta_{old}) [\ln p(z_{k}) - \ln \sqrt{2\pi\sigma_{k}^{2}} - \frac{(x_{n} - \mu_{k})^{2}}{2\sigma_{k}^{2}}]$ $\frac{\partial l(x \theta)}{\partial \sigma_{k}} = \sum^{N} p(z_{k} x_{n}, \theta_{old}) [\frac{(x_{n} - \mu_{k})^{2}}{\sigma_{k}^{3}} - \frac{1}{\sigma_{k}}] = 0$
	$ \frac{\sum^{N} p(z_{k} x_{n},\theta_{old})[(x_{n}-\mu_{k})^{2}-\sigma_{k}^{2}]}{\sigma_{k}^{3}} = 0 $ $ \sum^{N} p(z_{k} x_{n},\theta_{old})\sigma_{k}^{2} = \sum^{N} p(z_{k} x_{n},\theta_{old})(x_{n}-\mu_{k})^{2} $ $ \sigma^{new} = \sqrt{\frac{\sum^{N} p(z_{k} x_{n},\theta_{old})(x_{n}-\mu_{k})^{2}}{\sum^{N} p(z_{k} x_{n},\theta_{old})}} $

	A OA B BB B BO B OB O OO AB AB In a research experiment, scientists wanted to model the distribution of the genotypes of the population. They collected the phenotype information from the participants as this could be directly observed from the individual's blood group. The scientists, however want to use this data to model the underlying genotype information. In order to help them obtain an understanding, you suggest using the EM
	algorithm to find out the genotype distribution. You know that the probability of that an allele is present in an individual is independent of the probability of any other allele, i.e, $P(AO) = P(OA) = P(A) * P(O)$ and so on. Also note that the genotype pairs: (AO, OA) and (BO, OB) are identical and can be treated as AO, BO respectively. You also know that the alleles follow a multinomial distribution. $p(O) = 1 - p(A) - p(B)$ Let n_A , n_B , n_O , n_{AB} be the number of individuals with the phenotypes A, B, O and AB respectively.\ Let n_{AA} , n_{AO} , n_{BB} , n_{BO} , n_{AB} be the numbers of individuals with genotypes AA, AO, BB, BO and AB respectively.\ The satisfy the following conditions: $n_A = n_{AA} + n_{AO}$ $n_B = n_{BB} + n_{BO}$ $n_A + n_B + n_O + n_{AB} = n$ Given: $p_A = p_B = p_O = \frac{1}{3}$ $n_A = 186$, $n_B = 38$, $n_O = 284$, $n_{AB} = 13$
	$n_{A} = 160, n_{B} = 36, n_{O} = 264, n_{AB} = 13$ 2.2.1. In the E step, compute the value of $n_{AA}, n_{AO}, n_{BB}, n_{BO}$. [5pts] $p(AA A) = \frac{p(AA,A)}{p(A)} = \frac{p(AA)p(A)}{p(A,AA) + 2p(A,AO)} = \frac{p(AA)p(A)}{p(A)p(AA) + 2p(A)p(A)} = \frac{p(AA)}{p(AA) + 2p(A)}$ $p(AA A) = \frac{p(AA)}{p(AA) + 2p(AO)} = \frac{\frac{1}{9}}{\frac{1}{9} + \frac{2}{9}} = \frac{\frac{1}{9}}{\frac{3}{9}} = \frac{1}{3}$ $n_{AA} = p(AA A)n_{A} = \frac{1}{3}186 = 62$ $p(AO A) = \frac{p(AO)}{p(AA) + 2p(AO)} = \frac{\frac{1}{9}}{\frac{1}{9} + \frac{2}{9}} = \frac{\frac{1}{9}}{\frac{3}{9}} = \frac{1}{3}$ $n_{AO} = 2p(AO A)n_{A} = \frac{2}{3}186 = 124$ $p(BB B) = \frac{p(BB)}{p(BB) + 2p(BO)} = \frac{\frac{1}{9}}{\frac{1}{9} + \frac{2}{9}} = \frac{\frac{1}{9}}{\frac{3}{9}} = \frac{1}{3}$
	$n_{BB} = p(BB B)n_B = \frac{1}{3}38 = 12.667 \approx 13$ $p(BO B) = \frac{p(BO)}{p(BB) + 2p(BO)} = \frac{\frac{1}{9} + \frac{2}{9}}{\frac{1}{9} + \frac{2}{9}} = \frac{\frac{1}{9}}{\frac{3}{9}} = \frac{1}{3}$ $n_{BO} = 2p(BO B)n_B = \frac{2}{3}38 = 25.333 \approx 25$ 2.2.2. In the M step, find the new value of p_A , p_B given the updated values from E-step above. (Round off the answer to 3 decimal places [5pts] $l(p \theta) = \sum_{AA} \ln[p_{AA}] + n_{AO} \ln[p_{AO}] + n_{BB} \ln[p_{BB}] + n_{BO} \ln[p_{BO}] + n_{AB} \ln[p_{AB}] + n_{OO} \ln[p_{OO}]$ $l(p \theta) = n_{AA} \ln[p_A] + n_{AO} \ln[2p_Ap_B] + n_{BB} \ln[p_B^2] + n_{BO} \ln[2p_Bp_O] + n_{AB} \ln[p_Ap_B] + n_{OO} \ln[p_O^2]$ $\mathcal{L}(p, A) = l(p \theta) + \lambda(p_A + p_B + p_O)$
	$\begin{split} \mathcal{Z}(p,\lambda) &= l(p \theta) + \lambda(p_A + p_B + p_O) \\ \frac{\partial \mathcal{Z}(p,\lambda)}{\partial p_A} &= \frac{2n_{AA} + n_{AO} + n_{AB}}{p_A} + \lambda = 0 \\ \frac{\partial \mathcal{Z}(p,\lambda)}{\partial p_B} &= \frac{2n_{BB} + n_{BO} + n_{AB}}{p_B} + \lambda = 0 \\ \frac{\partial \mathcal{Z}(p,\lambda)}{\partial p_O} &= \frac{n_{AO} + n_{BO} + 2n_{OO}}{p_O} + \lambda = 0 \\ \frac{\partial \mathcal{Z}(p,\lambda)}{\partial \lambda} &= p_A + p_B + p_O - 1 = 0 \end{split}$ We can find λ by taking the sum of the first three partials, given that $p_A = p_B = p_O = \frac{1}{3}$ and $n = n_{AA} + n_{AO} + n_{AB} + n_{BB} + n_{BO} + n_{OO}$: $\frac{2(n_{AA} + n_{AO} + n_{AB} + n_{BB} + n_{BO} + n_{OO})}{\frac{1}{3}} = -3\lambda$ $2n = -\lambda$
	$\lambda = -2n$ To find p_A^{new} we solve for p_A in the partial with respect to p_A : $\frac{2n_{AA}+n_{AO}+n_{AB}}{p_A^{new}}-2n=0$ $\frac{2n_{AA}+n_{AO}+n_{AB}}{p_A^{new}}=2n$ $p_A^{new}=\frac{2n_{AA}+n_{AO}+n_{AB}}{2n}=\frac{124+124+13}{1042}=0.2505$ To find p_B^{new} we solve for p_B in the partial with respect to p_B : $\frac{2n_{BB}+n_{BO}+n_{AB}}{p_B^{new}}-2n=0$ $\frac{2n_{BB}+n_{BO}+n_{AB}}{p_B^{new}}=2n$
	$p_B^{new} = \frac{2n_{BB} + n_{BO} + n_{AB}}{2n} = \frac{26 + 25 + 13}{1042} = 0.0614$ 3. GMM implementation [40 + 10 + 5(bonus) pts] A Gaussian Mixture Model(GMM) is a probabilistic model that assumes all the data points are generated from a mixture of a finite number of Gaussian Distribution. In a nutshell, GMM is a soft clustering algorithm in a sense that each data point is assigned to a cluster with a probability. In order to do that, we need to convert our clustering problem into an inference problem. Given N samples $X = [x_1, x_2, \dots, x_N]^T$, where $x_i \in \mathbb{R}^D$. Let π be a K-dimentional probability distribution and $(\mu_k; \Sigma_k)$ be the mean and covariance matrix of the k^{th} Gaussian distribution in \mathbb{R}^d . The GMM object implements EM algorithms for fitting the model and MLE for optimizing its parameters. It also has some particular hypothesis on how the data was generated: • Each data point x_i is assigned to a cluster k with probability of π_k where $\sum_{k=1}^K \pi_k = 1$
	• Each data point x_i is assigned to a cluster k with probability of π_k where $\sum_{k=1} \pi_k = 1$ • Each data point x_i is generated from Multivariate Normal Distribution $\mathcal{N}(\mu_k, \Sigma_k)$ where $\mu_k \in \mathbb{R}^D$ and $\Sigma_k \in \mathbb{R}^{D \times D}$ Our goal is to find a K -dimension Gaussian distributions to model our data X . This can be done by learning the parameters π , μ and Σ through likelihood function. Detailed derivation can be found in our slide of GMM. The log-likelihood function now becomes: $ \ln p(x_1, \dots, x_N \pi, \mu, \Sigma) = \sum_{i=1}^N \ln \Big(\sum_{k=1}^K \pi(k) \mathcal{N}(x_i \mu_k, \Sigma_k) \Big) $ From the lecture we know that MLEs for GMM all depend on each other and the responsibility τ . Thus, we need to use an iterative algorithm (the EM algorithm) to find the estimate of parameters that maximize our likelihood function. All detailed derivations can be found in the lecture slide of GMM. • E-step: Evaluate the responsibilities In this step, we need to calculate the responsibility τ , which is the conditional probability that a data point belongs to a specific cluster k we are given the datapoint, i.e. $P(z_k x)$. The formula for τ is given below:
	$\tau(z_k) = \frac{\pi_k N(x \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x \mu_j, \Sigma_j)}, \text{for } k = 1, \dots, K$ Note that each data point should have one probability for each component/cluster. For this homework, you will work with $\tau(z_k)$ which has a size of $N \times K$ and you should have all the responsibility values in one matrix. We use gamma as τ in this homework. • M-step: Re-estimate Paramaters After we obtained the responsibility, we can find the update of parameters, which are given below: $\mu_k^{new} = \frac{\sum_{n=1}^N \tau(z_k) x_n}{N_k}$ $\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \tau(z_k)^T (x_n - \mu_k^{new})^T (x_n - \mu_k^{new})$ $\pi_k^{new} = \frac{N_k}{N}$
	where $N_k = \sum_{n=1}^N \tau(z_k)$. Note that the updated value for μ_k is used when updating Σ_k . The multiplication of $\tau(z_k)^T(x_n - \mu_k^{new})^T$ is element-wise so it will preserve the dimensions of $(x_n - \mu_k^{new})^T$. • We repeat E and M steps until the incremental improvement to the likelihood function is small. Special Notes • For undergraduate students: you may assume that the covariance matrix Σ is a diagonal matrix, which means the features are independent. (i.e. the red intensity of a pixel is independent of its blue intensity, etc). • For graduate students: please assume a full covariance matrix. • The class notes assume that your dataset X is (D, N) . However, the homework dataset is (N, D) as mentioned on the instructions so the formula is a little different from the lecture note in order to obtain the right dimensions of parameters. Hints 1. DO NOT USE FOR LOOPS OVER N. You can always find a way to avoid looping over the observation data points in our homework problem. If you have to loop over D or K , that would be fine. 2. You can initiate $\pi(k)$ the same for each k , i.e. $\pi(k) = \frac{1}{K}$, $\forall k = 1, 2,, K$. 3. In part 3 you are asked to generate the model for pixel clustering of image. We will need to use a multivariate Gaussian because each image will have N pixels and $D = 3$ features, which correspond to red, green, and blue color intensities. It means that each image is a $(N \times 3)$ dataset matrix. In the following parts, remember $D = 3$ in this problem. 4. To avoid using for loops in your code, we recommend you take a look at the concept Array Broadcasting in Numpy. Also, some calculations that required different shapes of arrays can be achieved by broadcasting. 5. Be careful of the dimensions of your parameters. Before you test anything on the autograder, please look at the instructions below on the shapes of the variables you need to output. This could enhance the functionality of your code and help you debug. Also notice the a numpy array in shape $(N,$
	 a numby array in snape (N, 1) is NOT the same as that in snape (N,) so be careful and consistent on what you are using. You can see the detailed explanation here. Difference between numpy.array shape (R, 1) and (R,) The dataset X: (N, D) μ: (K, D). Σ: (K, D, D) τ: (N, K) π: array of length K II_joint: (N, K) 3.1 Helper functions [15 pts] To facilitate some of the operations in the GMM implementation, we would like you to implement the following three helper functions. In these functions, "logit" refers to an input array of size (N, D). Remember the goal of helper functions is to facilitate our calculation so DO NOT USE FOR LOOP ON N.
	3.1.1. softmax [5 pts] Given $logit \in \mathbb{R}^{N \times D}$, calculate $prob \in \mathbb{R}^{N \times D}$, where $prob_{i,j} = \frac{\exp(logit_{i,j})}{\sum_{d=1}^{D} \exp(logit_{i,d})}$. Note: it is possible that $logit_{i,j}$ is very large, making $\exp(\cdot)$ of it to explode. To make sure it is numerically stable, you need to subtract the maximum for each row of $logits$, and then add it back in your result. 3.1.2. $logsumexp$ [5 pts] Given $logit \in \mathbb{R}^{N \times D}$, calculate $s \in \mathbb{R}^{N}$, where $s_i = \log\left(\sum_{j=1}^{D} \exp(logit_{i,j})\right)$. Again, pay attention to the numerical problem. You may want to use similar trick as in the softmax function. Note: This function is used in the call() function which is given, so you will not need it your own implementation. It helps calculate the loss of log-likehood.
	3.1.3. Multivariate Gaussian PDF [5 pts] You should be able to write your own function based on the following formula, and you are NOT allowed to use outside resource package other than those we provided. (for undergrads only) normalPDF Using the covariance matrix as a diagonal matrix with variances of the individual variables appearing on the main diagonal of the matrix and zeros everywhere else means that we assume the features are independent. In this case, the multivariate normal density function simplifies to the expression below: $\mathcal{N}(x:\mu,\Sigma) = \prod_{i=1}^D \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{1}{2\sigma_i^2}(x_i-\mu_i)^2\right)$ where σ_i^2 is the variance for the i^{th} feature, which is the diagonal element of the covariance matrix. (for grads only) multinormalPDF Given the dataset $X \in \mathbb{R}^{N \times D}$, the mean vector $\mu \in \mathbb{R}^D$ and covariance matrix $\Sigma \in \mathbb{R}^{D \times D}$ for a multivariate Gaussian distrubution, calculate the probability $p \in \mathbb{R}^N$ of each data. The PDF is given by
	calculate the probability $p \in \mathbb{R}^N$ of each data. The PDF is given by $\mathcal{N}(X:\mu,\Sigma) = \frac{1}{(2\pi)^{D/2}} \Sigma ^{-1/2}\exp\left(-\frac{1}{2}(X-\mu)\Sigma^{-1}(X-\mu)^T\right)$ where $ \Sigma $ is the determinant of the covariance matrix. Hints • If you encounter "LinAlgError", you can mitigate your number/array by summing a small value before taking the operation, e.g. np.linalg.inv(\$\Sigma_k\$ + 1e-32). You can arrest and handle such error by using Try and Exception Block in Python. • In the above calculation, you must avoid computing a (N,N) matrix. Using the above equation for large N will crash your kernel and/or give you a memory error on Gradescope. Instead, you can do this same operation by calculating $(X-\mu)\Sigma^{-1}$, a (N,D) matrix, transpose it to be a (D,N) matrix and do an element-wise multiplication with $(X-\mu)^T$, which is also a (D,N) matrix. Lastly, you will need to sum over the 0 axis to get a $(1,N)$ matrix before proceeding with the rest of the calculation. This uses the far that doing an element-wise multiplication and summing over the 0 axis is the same as taking the diagonal of the (N,N) matrix from the matrix multiplication. • In Numpy implementation for μ , you can either use a 2-D array with dimension $(1,D)$ for each Gaussian Distribution, or a 1-D array with length D . Same to other array parameters. Both ways should be acceptable but pay attention to the shape mismatch problem
	 3.2 GMM Implementation [25 pts] Things to do in this problem: 3.2.1. Initialize parameters in _init_components() [5 pts] Examples of how you can initialize the parameters. 1. Set the prior probability π the same for each class. 2. Initialize μ by randomly selecting K numbers of observations as the initial mean vectors, and initialize the covariance matrix with np.eye() for each k. For grads, you can also initialize the Σ by K diagonal matrices. It will become a full matrix after one iteration, as long as you adopt the correct computation.
	3.2.2. Formulate the log-likelihood function _II_joint() [5 pts] The log-likelihood function is given by: $\ell(\theta) = \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi(k) \mathcal{N}(x_i \mu_k, \Sigma_k) \right)$ In this part, we will generate a (N, K) matrix where each datapoint $x_i, \forall i = 1, \dots, N$ has K log-likelihood numbers. Thus, for each $i = 1, \dots, N$ and $k = 1, \dots, K$, log-likelihood[i, k] = $\log \pi_k + \log \mathcal{N}(x_i \mu_k, \Sigma_k)$ Hints:
	 If you encounter "ZeroDivisionError" or "RuntimeWarning: divide by zero encountered in log", you can mitigate your number/array by summing a small value before taking the operation, e.g. np.log(\$\pi_k\$ + 1e-32). You need to use the Multivariate Normal PDF function you created in the last part. Remember the PDF function is for each Gaussian Distribution (i.e. for each k) so you need to use a for loop over K. 3.2.3. Setup Iterative steps for EM Algorithm [5+10 pts] You can find the detail instruction in the above description box. Hints: For E steps, we already get the log-likelihood at _II_joint() function. This is not the same as responsibilities (τ), but you should be able to finish this part with just a few lines of code by using _II_joint() and softmax() defined above.
n [11]:	 For undergrads: Try to simplify your calculation for Σ in M steps as you assumed independent components. Make sure you are only taking the diagonal terms of your calculated covariance matrix. class GMM(object): definit(self, X, K, max_iters = 100): # No need to change
	<pre>self.D = self.points.shape[1] #number of features self.K = K #number of components/clusters #Helper function for you to implement def softmax(self, logit): # [5pts] """ Args: logit: N x D numpy array Return: prob: N x D numpy array. See the above function. """ # raise NotImplementedError max_logits = np.amax(logit, axis=1) max_logits = np.reshape(max_logits, (max_logits.size, 1)) logit_norm = logit - max_logits logit_exp = np.exp(logit_norm) denominator = np.sum(logit_exp, axis=1) prob = logit_exp / np.reshape(denominator, (denominator.size, 1)) return prob</pre>
	<pre>def logsumexp(self, logit): # [5pts] """ Args: logit: N x D numpy array Return: s: N x 1 array where s[i,0] = logsumexp(logit[i,:]). See the above function """ # raise NotImplementedError max_logits = np.amax(logit, axis=1) max_logits_r = np.reshape(max_logits, (max_logits.size, 1)) logit_norm = logit - max_logits_r logit_exp = np.exp(logit_norm) logit_sum = np.sum(logit_exp, axis=1) s = np.log(logit_sum) s = s + max_logits return np.reshape(s, (s.size, 1)) #for undergraduate student def normalPDF(self, logit, mu_i, sigma_i): #[5pts]</pre>
	Args: logit: N x D numpy array mu_i: lxD numpy array (or array of lenth D), the center for the ith gaussian. sigma_i: lxDxD 3-D numpy array (or DxD 2-D numpy array), the covariance matrix of the ith aussian. Return: pdf: lxN numpy array (or array of length N), the probability distribution of N data for t. ith gaussian Hint: np.diagonal() should be handy. """ # raise NotImplementedError N, D = np.shape(logit) if len(np.shape(sigma_i)) == 2: sigma_i = np.diagonal(sigma_i) else: sigma_i = np.diagonal(sigma_i[0])
	pdf = np.ones((1, N)) for i in range(D): exponent = ((-2 * sigma_i[i]) **-1) * np.square(logit[:, i] - mu_i[i]) pdf *= ((2 * np.pi * sigma_i[i]) **-0.5) * np.exp(exponent) return np.reshape(pdf, (N,)) #for grad students def multinormalPDF(self, logits, mu_i, sigma_i): #[5pts] """ Args: logit: N x D numpy array mu_i: 1xD numpy array (or array of lenth D), the center for the ith gaussian. sigma_i: 1xDxD 3-D numpy array (or DxD 2-D numpy array), the covariance matrix of the ith aussian. Return: pdf: 1xN numpy array (or array of length N), the probability distribution of N data for the gaussian. ith gaussian
	<pre>Hint:</pre>
	<pre>logit_shuffle = np.copy(self.points) np.random.shuffle(logit_shuffle) mu = logit_shuffle[:self.K, :] sigma = np.identity(self.D) sigma = np.stack([sigma]*self.K) return pi, mu, sigma def _ll_joint(self, pi, mu, sigma, **kwargs): # [10 pts] """ Args: pi: np array of length K, the prior of each component mu: KxD numpy array, the center for each gaussian. sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. You will have xDxD numpy array for full covariance matrix case Return: ll(log-likelihood): NxK array, where ll(i, k) = log pi(k) + log NormalPDF(points_i mu[k] sigma[k])</pre>
	<pre># raise NotImplementedError log_likelihood = np.zeros((self.N, self.K)) for k in range(self.K): pdf = self.normalPDF(self.points, mu[k], np.reshape(sigma[k], (1, self.D, self.D))) log_likelihood[:, k] = np.log(pi[k] + 1e-32) + np.log(pdf + 1e-32) return log_likelihood def _E_ step(self, pi, mu, sigma, **kwargs): # [5pts] """ Args: pi: np array of length K, the prior of each component mu: KxD numpy array, the center for each gaussian. sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. You will have a DxD numpy array for full covariance matrix case Return:</pre>
	gamma(tau): NxK array, the posterior distribution (a.k.a, the soft cluster assignment) fo each observation. Hint: You should be able to do this with just a few lines of code by using _ll_joint() and soft x() defined above. """ # raise NotImplementedError ln_likelihood = selfll_joint(pi, mu, sigma) return self.softmax(ln_likelihood) def _M_step(self, gamma, **kwargs): # [lOpts] """ Args: gamma(tau): NxK array, the posterior distribution (a.k.a, the soft cluster assignment) fo each observation. Return: pi: np array of length K, the prior of each component mu: KxD numpy array, the center for each gaussian. sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. You will have xDxD numpy array for full covariance matrix case
	There are formulas in the slide and in the above description box. """ # raise NotImplementedError N, K = np.shape(gamma) tau_max = np.argmax(gamma, axis=1) pi = np.zeros(K) mu = np.zeros((K, self.D)) sigma = np.zeros((K, self.D, self.D)) for k in range(K): idxes = np.where(tau_max == k) X = self.points[idxes, :] tau_k = gamma[:, k] N_k = np.sum(tau_k, axis=0) mu_k = np.matmul(tau_k, self.points) / N_k mu[k] = mu_k pi_k = N_k / N pi[k] = pi_k sigma_k = np.diagonal(np.matmul(np.transpose(tau_k) * np.transpose(self.points - mu_k), (self.points - mu_k)) / N_k) np.fill_diagonal(sigma[k], sigma_k)
	<pre>defcall(self, abs_tol=le-16, rel_tol=le-16, **kwargs): # No need to change</pre>
	<pre>pi, mu, sigma = selfinit_components(**kwargs) pbar = tqdm(range(self.max_iters)) for it in pbar: # E-step gamma = selfE_step(pi, mu, sigma) # M-step pi, mu, sigma = selfM_step(gamma) # calculate the negative log-likelihood of observation joint_ll = selfll_joint(pi, mu, sigma) loss = -np.sum(self.logsumexp(joint_ll)) if it: diff = np.abs(prev_loss - loss) if diff < abs_tol and diff / prev_loss < rel_tol: break prev loss = loss</pre>
	pbar.set_description('iter %d, loss: %.4f' % (it, loss)) return gamma, (pi, mu, sigma) 3.3 Japanese art and pixel clustering [10pts + 5pts] Ukiyo-e is a Japanese art genre predominant from the 17th through 19th centuries. In order to produce the intricate prints that came to represent the genre, artists carved wood blocks with the patterns for each color in a design. Paint would be applied to the block and late transfered to the print to form the image. In this section, you will use your GMM algorithm implementation to do pixel clustering and estimate how many wood blocks were likely used to produce a single print. That is to say, how many wood blocks would appropriatly produce the original paint. (Hint: you can justify your answer based on visual inspection of the resulting images or on a different metric of your choosing) You do NOT need to submit your code for this question to the autograder. Instead you should include whatever images/information you find relevant in the report.
n [12]:	
n [13]:	<pre>gmm_img = np.reshape(centers[cluster_ids], (im_height, im_width, im_channel)) return gmm_img # helper function for plotting images. You don't have to modify it def plot_images(img_list, title_list, figsize=(20, 10)): assert len(img_list) == len(title_list) fig, axes = plt.subplots(1, len(title_list), figsize=figsize) for i, ax in enumerate(axes): ax.imshow(img_list[i] / 255.0) ax.set_title(title_list[i]) ax.axis('off') import imageio # pick 2 of the images in this list: url0 = 'https://upload.wikimedia.org/wikipedia/commons/b/b1/Utagawa_Kunisada_I_%28c1832%29_Dawn_at_itami-ga-ura.jpg'</pre>
	<pre>urll = 'https://upload.wikimedia.org/wikipedia/commons/9/95/Hokusai_%281828%29_Cuckoo_and_Azaleas.jpg urll = 'https://upload.wikimedia.org/wikipedia/commons/7/74/Kitao_Shigemasa_%281777%29_Geisha_and_a_sc vant_carrying_her_shamisen_box.jpg' urll = 'https://upload.wikimedia.org/wikipedia/commons/1/10/Kuniyoshi_Utagawa%2C_Suikoden_Series_4.jpc # example of loading image from url0 image1 = imageio.imread(imageio.core.urlopen(urll).read()) image3 = imageio.imread(imageio.core.urlopen(urll).read()) # this is for you to implement def find_n_woodblocks(image, min_clusters=5, max_clusters=15): """ Using the helper function above to find the optimal number of woodblocks that can appropriatly proceed a single image. You can simply examinate the answer based on your visual inspection (i.e. looking at the resulting images) or provide any metrics you prefer. Args: image: input image of shape(H, W, 3)</pre>
	min_clusters, max_clusters: the minimum and maximum number of clusters you should test with. fault are 5 and 15. (Usually the maximum number of clusters would not exceed 15) Return: plot: comparison between original image and image pixel clustering. optional: any other information/metric/plot you think is necessary. """ # raise NotImplementedError img_array = [] for k in range(min_clusters, max_clusters + 1): clustered img = cluster pixels_gmm(image, k) img_array.append(clustered_img) plot_images([image] + img_array, ['image', 'k = 5', 'k = 6', 'k = 7', 'k = 8', 'k = 9', 'k = 10', 'k = 11', 'k = 12', 'k = 13', 'k = 14', 'k = 15']) find_n_woodblocks(image1) iter 99, loss: 10137364.4335: 100%
	iter 99, loss: 9491260.5116: 100% 100/100 [03:26<00:00, 2.07s/it]
	By visually inspecting the reconstructed images using GMM with increasing clusters from 5 to 15, we can see how the prints would look like if only that number of color wood blocks was used to create them. In order to decide which was the number of wood blocks used for the original we must inspect each reconstructed image with the original by increasing number of clusters until we reach the first one that fully represents all colors in the original. For the first image selected this happens at k = 13, meaning that for that print they probably used around 13 wood blocks. For the second one, it looks like they used 11 wood blocks (or 11 clusters in the case of the GMM algorithm). (Bonus for All) [5 pts] Compare the full covariance matrix with the diagonal covariance matrix in GMM. Can you explain why the images are different with the same clusters? Note: You will have to implement both multinormalPDF and normalPDF, and add a few arguments in the original _IL_joint() and _Mstep() function to indicate which matrix you are using. You will earn full credit only if you implement both functions AND explain the reason.
[14]:	<pre>def compare_matrix(image, K): """ Args: image: input image of shape(H, W, 3) K: number of components Return: plot: comparison between full covariance matrix and diagonal covariance matrix. """ raise NotImplementedError</pre> compare_matrix(image1, 5)
	NotImplementedError <pre></pre>
	to fix data using concepts that you have already learned in the prior questions. The two solutions covered: KNN Algorithm Approach EM Algorithm Approach You are a consultant assigned to a company which refines raw materials. To refine the raw materials necessary for their operations, the company owns a vast fleet of machines. Stressing the importance of having minimum down time for refining, you have been tasked to fir a way to predict whether a machine will need to be repaired or not. In order to aid you on the task, the company has supplied you with historical telemetric data from all of the machines. The features range from averages of temperature, frequencies, and other salient observations of the units. The specifics of the features are not pertinent to the classification; it can be assured that each feature is statistically significant. A unit is given a 1 if it is broken and a 0 otherwise. However, due to a software bug in logging the telemetric data, 20% of the entries are missing labels and 30% are missing characterization.
	data. Since simply removing the corrupted entries would not reflect the true variance of the data, your job is to implement a solution to clean the data so it can be properly classified. Your job is to assist the company in cleaning their data and implementing a semi-supervised learning framework to help them create a general classifier. You are given two files for this task: • telemetry_data.csv: the entire dataset with complete and incomplete data • validation_data.csv: a smaller, fully complete dataset made after the software bug had been fixed 4.1.a Data Cleaning The first step is to break up the whole dataset into clear parts. All the data is randomly shuffled in one csv file. In order to move forward, the data needs to be split into three separate arrays: • labeled_complete: containing the complete characterization data and corresponding labels (broken = 1 and OK = 0)
[n []:	 labeled_incomplete: containing partial characterization data and corresponding labels (broken = 1 and OK = 0) unlabeled_complete: containing only complete material characterization results def complete_(data): """ Args:

Ret Ret def	<pre>gs: x: N x D numpy array y: M x D numpy array turn: dist: N x M array, where dist2[i, j] is the euclidean distance between x[i, :] and y[j, :] " ise NotImplementedError call(self, incomplete_points, complete_points, K, **kwargs): # [10pts]</pre>
ion on Ret oth complet	incomplete_points: N_incomplete x (D+1) numpy array, the incomplete labeled observations complete_points: N_complete x (D+1) numpy array, the complete labeled observations K: integer, corresponding to the number of nearest neighbors you want to base your of kwargs: any other args you want turn: clean_points: (N_incomplete + N_complete) x (D-1) X D numpy array of length K, contate points and recently filled points nts: (1) You want to find the k-nearest neighbors within each class separately; (2) There are missing values in all of the features. It might be more convenient eature at a time.
Below is a good the right track. complete_daincomplete_ clean_data print("*** print("""==	<pre>ata = np.array([[1.,2.,3.,1],[7.,8.,9.,0],[16.,17.,18.,1],[22.,23.,24.,0]]) _data = np.array([[1.,np.nan,3.,1],[7.,np.nan,9.,0],[np.nan,17.,18.,1],[np.nan,23.,24. = CleanData()(incomplete_data, complete_data, 2) Expected Answer - k = 2 ***") =complete data==</pre>
[7. 8.	9. 0.] 18. 1.] 24. 0.]] te data== 3. 1.] 9. 0.] 18. 1.] 24. 0.]] ta== 3. 1.] 9. 0.]
[22. 23. [14.5 23. [7. 15.5 [8.5 17. [1. 9.5]]	18. 1.] 24. 0.] 24. 0.] 5 9. 0.] 18. 1.] 5 3. 1.]]""") ** My Answer - k = 2***") n_data) g acquainted with semi-supervised learning approaches. [5pts]
You will impler using EM" by law write a brief so white a brief with a brief white a brief with a brie	ment a version of the algorithm presented in Table 1 of the paper "Text Classification from Labeled and Unlabeled D Nigam et al. (2000). While you are recommended to read the whole paper this assignment focuses on items 1–5.2 nummary of three interesting highlights of the paper (50-word maximum). The menting the EM algorithm. [10 pts] The mentation of the EM algorithm proposed by Nigam et al. (2000) on Table 1, you will use a Gaussian Naive Bayes (GN pposed to a naive Bayes (NB) classifier. (Hint: Using a GNB in place of an NB will enable you to reuse most of the pon you developed for GMM in this assignment. In fact, you can successfully solve the problem by simply modifying the content of the problem by simply modifying the problem by the problem by simply modifying the problem by the problem by the
defi pas def sof	<pre>ftmax(self,logits): # [0 pts] - can use same as for GMM gs: gits: N x D numpy array " ise NotImplementedError</pre>
Ret Ret rai def _ir	<pre>gs: logits: N x D numpy array turn: s: N x 1 array where s[i,0] = logsumexp(logits[i,:]) " ise NotImplementedError nit_components(self, points, K, **kwargs): # [5 pts] - modify from GMM</pre>
Hi:	<pre>points: Nx(D+1) numpy array, the observations K: number of components kwargs: any other args you want turn: pi: numpy array of length K, prior mu: KxD numpy array, the center for each gaussian. sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. nt: The paper describes how you should initialize your algorithm. " ise NotImplementedError</pre>
Arg Rei	<pre>gs: points: NxD numpy array, the observations pi: np array of length K, the prior of each component mu: KxD numpy array, the center for each gaussian. sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. turn: ll(log-likelihood): NxK array, where ll(i, j) = log pi(j) + log NormalPDF(points_i </pre>
independer "" rai def E	This allows you to treat it as a product of univariate gaussians. "ise NotImplementedError step(self, points, pi, mu, sigma, **kwargs): # [0 pts] - can use same as for GMM "gs: points: NxD numpy array, the observations pi: np array of length K, the prior of each component mu: KxD numpy array, the center for each gaussian.
observatio Hin max() defin "" ra i	<pre>sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. turn: gamma: NxK array, the posterior distribution (a.k.a, the soft cluster assignment) fo on. nt: You should be able to do this with just a few lines of code by using _ll_joint() a ned above. " ise NotImplementedError step(self, points, gamma, **kwargs): # [0 pts] - can use same as for GMM</pre>
observation Red	gs: points: NxD numpy array, the observations gamma: NxK array, the posterior distribution (a.k.a, the soft cluster assignment) for on. turn: pi: np array of length K, the prior of each component mu: KxD numpy array, the center for each gaussian. sigma: KxDxD numpy array, the diagonal standard deviation of each gaussian. nt: There are formulas in the slide. "
defcodify from	
observation raise. 4.4 Demon	(pi, mu, sigma): (1xK np array, KxD numpy array, KxD numpy array), mu and sigma. "ise NotImplementedError istrating the performance of the algorithm. [5pts] classification error based on the Gaussian Naive Bayes (GNB) classifier you implemented following the Nigam et al.
you are allowed learn.org/stable from sklear from sklear class Compa	he performance of a GNB classifier trained using only labeled data. Since you have not covered supervised learning and to use the scikit learn library for training the GNB classifier based only on labeled data: https://scikit-nle/modules/generated/sklearn.naive_bayes.GaussianNB.html . **Trnaive_bayes import GaussianNB **Trmetrics import accuracy_score **arePerformance(object): init(self): #No need to implement **ss
Arg dimensiona data. ast column	gs: points: Nx(D+1) numpy array, where N is the number of points in the training set, D ality, the last column represents the labels (when available) or a flag that allows you to separate the unl independent: Nx(D+1) numpy array, where N is # points and D is the dimensionality an are the correct labels turn:
def acc "" Arg s in the to	<pre>curacy_GNB_onlycomplete(self, points, independent, n=8): gs: points: Nx(D+1) numpy array, where N is the number of only initially complete labele raining set, D is the dimensionality, the last column represents the labels. independent: Nx(D+1) numpy array, where N is # points and D is the dimensionality are the correct labels</pre>
Ret """ rai def acc	<pre>turn: accuracy: floating number " ise NotImplementedError curacy_GNB_cleandata(self, points, independent, n=8):</pre>
rai from sklear from sklear # Load and telemetry =	<pre>are the correct labels turn: accuracy: floating number " ise NotImplementedError rn.naive_bayes import GaussianNB rn.metrics import accuracy_score clean data for the next section = np.loadtxt('data/telemetry.csv', delimiter=',')</pre>
labeled_indunlabeled = clean_data # load unlabeled_funlabeled = unlabeled = # =================================	<pre>mplete = complete_(telemetry) complete = incomplete_(telemetry) = unlabeled_(telemetry) = CleanData()(labeled_incomplete, labeled_complete, 7) abeled set nlabeled flag flag = -1*np.ones((unlabeled.shape[0],1)) = np.concatenate((unlabeled, unlabeled_flag), 1) = np.delete(unlabeled, -1, axis=1)</pre>
points = ng # train mod (pi, mu, si # ====================================	raining data p.concatenate((clean_data, unlabeled),0) del igma) = SemiSupervised()(points, 7)
# classify classificat classificat # ======= print("""== print("""Se ependent)) print("""St	<pre>t = np.loadtxt('data/validation.csv', delimiter=',') test data tion = SemiSupervised()E_step(independent[:,:8], pi, mu, sigma) tion = np.argmax(classification,axis=1) ==================================</pre>
print("""Sı	<pre>plete, independent)) upervised with only complete data: GNB Accuracy:""", ComparePerformance().accuracy_GNE data, independent))</pre>