

Instruction Learning with Large Language Models

Xubin Ren, Yiming Zhang 2023/09/29

Logistics

- Background and Motivation
- Paper presentation:
 - Multitask Prompted Training Enables Zero-Shot Task Generalization
 - SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions
 - How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
 - One Embedder, Any Task: Instruction-Finetuned Text Embeddings
- Discussion

ChatGPT is a real generalist.

brain storming

explain complex concepts

coding design

•••

Question: What makes the large language model so powerful?

What gives the robust capabilities of LLMs in handling a various of downstream tasks?

 Pretrained on an extensive corpus sourced from the vast expanses of the internet.

 fine-tunes models like GPT-3 and GPT-4 using human-labeled data

Fine-tuning (InstructGPT*: 44K examples)

ten million times smaller

One model, only one task

"Instance-level generalization within one task."

Sentiment Analysis Model:

What a lovely day.

Question-Answering Model:

Can you recommend any song?

Machine Translation Mode:

You're so smart.

One model, but many tasks:

Sentiment Analysis Model: <Positive> What a lovely day. Question-Answering Model: Model Love Story Can you recommend any song? Machine Translation Mode: 你真聪明 You're so smart.

One model, but many tasks:

Sentiment Analysis task

Question-Answering task

Machine Translation task

Sentiment Analysis task

Question-Answering task

Machine Translation task

Trained

Unseen

Summarization

Sentence Completion

Model cannot generalize to the "unseen" task bacause it doesn't know what the task is.

Paper list:

- Multitask Prompted Training Enables Zero-Shot Task Generalization
- SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions
- How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
- One Embedder, Any Task: Instruction-Finetuned Text Embeddings

Paper 1: Multitask Prompted Training Enables Zero-Shot Task Generalization

TO, a model with zero-shot generalization ability.

- An encoder-decoder based model.
- To could provide reasonable answer in unseen task, like natural language inference in this picture.

Experiment Setup

- T0 is trained on the multitask mixture detailed in Yellow tasks (8 tasks).
- Evaluate zero-shot generalization on the Green tasks

Compare T0 with GPT3 and T5+LM

• TO achieves a general good performance in **unseen tasks**

Prompt Robustness

- More prompts leads to better performance
- Generally lower interquartile range

Takeways

- 1. Instruction Learning could significantly **improve the performance of zero-shot task generalization**.
- 2. Adding **more number of prompts** will improve Zero-Shot generalization performance.
- 3. Thinking: In this era of prompting, perhaps more attention should be directed towards the efficient design of prompts, such as automating instruction discovery.

Paper 2. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions

Pipeline of Instruction Generation

1. Manually design instructions. Put in the task pool.

2. Generate the instruction

3. Manually design instructions. Put in the task pool.

Pipeline of Instruction Generation

4. Instance Generation

5. Filtering

Pipeline of Instruction Generation

Evaluation results on unseen tasks from SUPERNI

- 1. Self-instruct **boosts** GPT3 by 33.1%
- 2. **Nearly matches** the performance of InstructGPT.
- 3. Complementary **improvement** to the existing human-labeled training set.

Model	# Params	ROUGE-L
Vanilla LMs		
T5-LM	11B	25.7
GPT3	175B	6.8
Instruction-tuned w/o SUPERNI		
1) T0	11B	33.1
GPT3 + T0 Training	175B	37.9
GPT3 _{SELF-INST} (Ours)	175B	39.9
2) (InstructGPT ₀₀₁	175B	40.8
Instruction-tuned w/ SUPERNI		
Tk-Instruct	11B	46.0
GPT3 + SUPERNI Training	175B	49.5
GPT3 _{SELF-INST} + SUPERNI Training (Ours)	175B	51.6

Evaluation based on Human Experts

Impact of the Quality of Instructions

Improving the **instruction quality** (using instructGPT) can significantly boost the performance

Takeways

- You don't need a huge amount of labeled data to get good initial instructionfollowing ability.
- LLMs themselves know many tasks/skills.
- One aspect of instruction tuning is to elicit these skills (i.e., alignment).
- Self-instruct is applicable to a broad range of LLMs, both vanilla and instruction-tuned.
- More broadly, humans & Al should collaborate in building datasets.

Paper 3. How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources

Various Instruction Dataset

Table 1: Instruction datasets investigated in this work. CoT and FLAN V2 are sampled to 100K to match the sizes of other datasets. We report the average number of rounds (\bar{N}_{rounds}), average length of prompts (\bar{L}_{prompt}), average length of completion ($\bar{L}_{completion}$).

Datasets	Sourced from	# Instances	\bar{N}_{rounds}	$\bar{L}_{\textit{prompt}}$	$ar{L}_{completion}$
SuperNI [42]	NLP datasets + Human-written Instructions	96,913	1.0	291.1	38.7
CoT [44]	NLP datasets + Human-written CoTs	100,000	1.0	266.0	53.2
Flan V2 [26]	NLP datasets + Human-written Instructions	100,000	1.0	355.7	31.2
Dolly [12]	Human-written from scratch	15,011	1.0	118.1	91.3
Open Assistant 1 [23]	Human-written from scratch	34,795	1.6	34.8	212.5
Self-instruct [41]	Generated w/ vanilla GPT3 LM	82,439	1.0	41.5	29.3
Unnatural Instructions [21]	Generated w/ Davinci-002	68,478	1.0	107.8	23.6
Alpaca [38]	Generated w/ Davinci-003	52,002	1.0	27.8	64.6
Code-Alpaca [6]	Generated w/ Davinci-003	20,022	1.0	35.6	67.8
GPT4-Alpaca [31]	Generated w/ Davinci-003 + GPT4	52,002	1.0	28.0	161.8
Baize [46]	Generated w/ ChatGPT	210,311	3.1	17.6	52.8
ShareGPT ³	User prompts + outputs from various models	168,864	3.2	71.0	357.8

Various Instruction Dataset

An example, ShareGPT

- Collect from users' interactions with
 GPT
- Users' input prompts contain instructions
- A fusion of human-written data and GPT-generated data

<|user|>

Explain the fault-tolerance of the reaction control system on the Space Shuttle.

<|assistant|>

The reaction control system (RCS) on the Space Shuttle was designed to be fault-tolerant, meaning it was able to continue functioning even if one or more of its components failed. The RCS consisted of two sets of ... </s>

<|user|>

Did the RCS have any on-orbit failures?

<|assistant|>

There were several instances where the reaction control system (RCS) on the Space Shuttle experienced failures or malfunctions during on-orbit missions. These ... </s>

Dataset Selection and Performance Analysis

Should we combine all the datasets or use a specific dataset that serves as a comprehensive source?

- Not a single best instruction tuning dataset across all tasks
- Achieve the best overall (average) performance when combining all the data

	MMLU (factuality)	GSM (reasoning)	BBH (reasoning)	TydiQA (multilinguality)	Codex-Eval (coding)	AlpacaFarm (open-ended)	Average
	EM (0-shot)	EM (8-shot, CoT)	EM (3-shot, CoT)	F1 (1-shot, GP)	P@10 (0-shot)	Win % vs Davinci-003	
Vanilla LLaMa 13B	42.5	14.0	36.9	47.4	26.6	=	-
+SuperNI	49.8	4.0	2.8	51.4	13.1	5.0	21.0
+CoT	44.5	39.5	39.0	52.2	23.3	4.7	33.9
+Flan V2	50.7	21.0	39.2	47.5	16.2	5.3	30.0
+Dolly	45.3	17.0	26.0	46.8	31.4	18.3	30.8
+Open Assistant 1	43.1	16.0	38.5	38.3	31.8	55.2	37.1
+Self-instruct	30.3	9.0	29.6	40.4	13.4	7.3	21.7
+Unnatural Instructions	46.2	7.5	32.8	39.3	24.8	10.8	26.9
+Alpaca	45.1	8.0	34.5	32.8	27.6	33.2	30.2
+Code-Alpaca	42.6	12.0	36.6	41.3	34.5	21.3	31.4
+GPT4-Alpaca	47.0	14.0	38.3	24.4	32.5	63.6	36.6
+Baize	43.5	8.5	36.7	33.9	27.3	33.9	30.6
+ShareGPT	49.2	16.0	40.1	30.1	31.6	69.1	39.3
+ Human data mix	50.4	36.5	39.4	49.8	23.7	38.5	39.7
+Human+GPT data mix.	49.2	36.5	42.8	46.1	35.0	57.2	44.5

Impact of the Base Model

The better the quality of the base model, the better performance it will achieve.

Table 4:	Table 4: Performance of different base models after training on the Human+GPT data mixture.									
	MMLU (factuality)	GSM (reasoning)	BBH (reasoning)	TydiQA (multilinguality)		AlpacaFarm (open-ended)				
	EM (0-shot)	EM (8-shot, CoT)	EM (3-shot, CoT)	F1 (1-shot, GP)	P@10 (0-shot)	Win % vs Davinci-003				
Pythia 6.9B	34.6	15.5	27.8	33.4	21.4	9.3	23.7			
OPT 6.7B	34.9	15.5	27.9	27.2	7.9	14.5	21.3			
LLAMA7B	44.5	27.0	39.2	45.7	27.8	48.6	38.8			

Put it Together!

All the Insturction data + open-source **state-of-the-art** LLMs

	MMLU (factuality)	GSM (reasoning)	BBH (reasoning)	TydiQA (multilinguality)	Codex-Eval (coding)	AlpacaFarm (open-ended)	Average
	EM (0-shot)	EM (8-shot, CoT)	EM (3-shot, CoT)	F1 (1-shot, GP)	P@10 (0-shot)	Win % vs Davinci-003	
		Vanil	la LLaMa mo	dels ↓			
LLaMa 7B	31.0	9.0	33.3	39.1	18.3	-	
LLaMa 13B	42.5	14.0	36.9	47.4	26.6	-	-
LLaMa 30B	54.1	33.5	48.5	57.5	42.9	-	-
LLaMa 65B	58.7	50.5	57.1	57.4	42.9	-	-
	65]	B models train	ed on alternat	e data mixtures↓			
ShareGPT 65B	61.5 (+2.8)	42.0 (-8.5)	52.1 (-5.0)	33.5 (-23.9)	53.5 (+10.6)	72.8	52.6
Human mix. 65B	60.7 (+2.0)	57.5 (+7.0)	52.7 (-4.4)	58.5 (+1.1)	43.2 (+0.3)	47.4	53.3
	ℰ ′ model	s trained on o	ur final Huma	n+GPT data mix	ture ↓		
TÜLU <equation-block> 7B</equation-block>	44.5 (+13.5)	27.0 (+18.0)	39.2 (+5.9)	45.7 (+6.6)	27.8 (+9.5)	48.3	38.8
TÜLU <equation-block> 13B</equation-block>	49.2 (+6.7)	36.5 (+22.5)	42.8 (+5.9)	46.1 (-1.3)	35.0 (+8.4)	53.9	44.5
TÜLU <equation-block> 30B</equation-block>	57.7 (+3.6)	51.0 (+17.5)	48.7 (+0.2)	58.2 (+0.7)	46.0 (+3.1)	63.5	54.1
Tülu <equation-block> 65B</equation-block>	59.2 (+0.5)	60.0 (+9.5)	53.5 (-3.6)	51.8 (-5.6)	45.9 (+3.0)	62.7	55.7
		Pro	prietary mode	els ↓			
ChatGPT	67.9	76.0	66.1	51.9	88.4	84.4	72.2
GPT-4	82.4	92.5	88.0	70.8	94.1	91.6	86.8

Other Evaluation Metrics

Are there other evaluation metrics? (e.g, model-based evaluation or human-based evaluation)

Model-based Evaluation

- Utilize a LLMs like GPT-4 to determine which is better
- Tuning with ShareGPT achieves the best results
- The model prefer the long and diverse answers

Training Dataset \downarrow	7B	13B	30B	65B
SuperNI	5.7	6.2	-	-
CoT	4.2	5.6	-	-
Flan V2	4.6	5.5	-	-
Dolly	12.7	16.2	-	-
Open Assistant 1	47.8	53.5	-	-
Self-instruct (original)	7.5	6.8	-	-
Unnatural Instructions	8.2	10.9	-	-
Alpaca	21.1	28.7	-	-
Code-Alpaca	17.5	19.4	-	-
GPT4-Alpaca	57.0	61.1	-	-
Baize	23.5	28.7	-	-
ShareGPT	58.3	68.9	70.2	72.8
Human mix.	29.4	36.3	44.6	46.5
TÜLU 💇	48.3	53.9	63.5	62.7

Table 6: Win-rate (%) of LLAMA models of varying sizes fine-tuned on the given dataset against Davinci-003 using AlpacaFarm [16].

Figure 2: Win-rate scores of 13B models (trained on different datasets) given by GPT-4 strongly correlate with the average numbers of unique tokens in the model responses (Pearson r = 0.96).

Other Evaluation Metrics

Are there other evaluation metrics? (e.g, model-based evaluation or <u>human-based evaluation</u>)

Human-based Evaluation

- Consistent with prior findings
- Larger models show greater improvements

Paper 4. One Embedder, Any Task: Instruction-Finetuned Text Embeddings

What is Text Embedding

Text embeddings are numerical representations of concepts

Applications of Text Embedding

Model Transferability Challenges

One Embedder trained with specific task can't be transferred to a new task

Apply Instruction in Text Embedding!

Text embeddings adjusted to different downstream applications using **task** and domain descriptions

MEDI: Multitask Embedding Data with Instructions

Task type	# of Datasets	Task	Instruction
Retrieval	15	Natural Question (BEIR)	Query instruction: Represent the Wikipedia question for retrieving supporting documents:, Doc instruction: Represent the Wikipedia document for retrieval:
Reranking	4	MindSmallReranking	Query instruction: Represent the News query for retrieving articles: Doc instruction: Represent the News article for retrieval:
Clustering	11	MedrxivClusteringS2S	Represent the Medicine statement for retrieval:

Architecture and Training Method

1. Create Pos/Neg Pairs

$$(x,I_x,y,I_y)$$

2. Calculate Similarity Score

$$s(x,y) = \cos(\mathbf{E}_I(I_x \oplus x), \mathbf{E}_I(I_y \oplus y))$$

3. Contrastive Training

$$\mathcal{L} = \frac{e^{s(x,y^+)/\gamma}}{\sum_{y \in \mathcal{B}} e^{s(x,y)/\gamma}},$$

Overall Comparison

Achieving SOTA performance on various benchmarks with Instruction

Benchmark		MTEB							Billboard	Prompt	Avg.
Task category	Retri.	Rerank	Cluster	Pair.	Class.	STS	Sum.	Avg.	Text Eval.	Retri.	
# datasets	15	4	11	3	12	10	1	56	3	11	70
Small Models for reference	e (<500M)	0								7	
SimCSE (110M)	21.9	47.5	33.4	73.7	67.3	79.1	23.3	48.7	29.4	58.3	48.2
coCondenser (110M)	33.0	51.8	37.6	81.7	64.7	76.5	29.5	52.4	31.5	59.6	51.8
Contriever (110M)	41.9	53.1	41.1	82.5	66.7	76.5	30.4	56.0	29.0	57.3	53.2
GTR-Large (335M)	47.4	55.4	41.6	85.3	67.1	78.2	29.5	58.3	31.2	59.8	55.
INSTRUCTOR (335M)	47.6	57.5	45.3	85.9	73.9	83.2	31.8	61.6	36.9	63.2	58.4
Relative gain (%)	+0.4	+4.5	+8.9	+0.7	+10.1	+6.4	+7.8	+5.7	+18.3	+5.7	+5.
Large Models for reference	e(≥500M)										
Sent-T5-XXL (4.8B)	42.2	56.4	43.7	85.1	73.4	82.6	30.1	59.5	33.9	61.5	56.
GTR-XXL (4.8B)	48.1	56.7	42.4	86.1	67.4	78.4	30.6	58.9	32.0	60.8	55.
SGPT-NLI (5.8B)	32.3	52.3	37.0	77.0	70.1	80.5	30.4	53.7	29.6	57.9	51.
GTR-XL (1.5B)	48.0	56.0	41.5	86.1	67.1	77.8	30.2	58.4	32.0	60.4	55.:
INSTRUCTOR-XL (1.5B)	49.3	57.3	44.7	86.6	73.2	83.1	32.0	61.8	34.1	68.6	58.
Relative gain (%)	+2.7	+2.3	+7.7	+0.6	+9.1	+6.9	+6.0	+5.8	+6.6	+13.6	+5.

The Necessity of Instructions

Without instructions, the model cannot be trained with the whole dataset.

Complexity of Instuctions & Model Size

Questions to Discuss

Can we directly provide instructions to LLMs instead of tuning them?

 Have tasks outside of NLP utilized instruction tuning with LLMs to address problems?

 Are there other forms or approaches that can incorporate the idea of instruction tuning, similar to Instructor?

Thank You.