IPRJ - Laboratório de Física 1 Experimento 5 – Grupo 10

Experimento: Colisões em 2D

Gustavo Dias de Oliveira

Matrícula: 2020-1-00785-11

Nome do aluno: Thiago Bastos da Silva

Matrícula: 2020-1-00760-11

Objetivos do Experimento

Esse experimento tem o objetivo de verificar a conservação de momento, observando se o momento inicial é igual ao momento final, no eixo x e y, e o quão longe esses valores divergem.

1. Introdução e Desenvolvimento Teórico

Temos definido que o momento linear é igual ao produto entre a massa e a velocidade de um corpo, dado por [1]:

$$\vec{p} = m \cdot \vec{v}$$

A partir disso sabemos que para o momento ser conservado, precisamos ter o momento inicial igual ao momento final, tendo então:

$$p_i = p_f$$

$$m_i \cdot v_i = m_f \cdot v_f$$

No caso, como é uma colisão em duas dimensões devemos separar as equações para o eixo x e o eixo y, sabendo que o segundo corpo está em repouso e o primeiro corpo antes da colisão só tem movimento em x, temos que:

$$p_{1i} = p_{1f} \cdot \cos \theta_1 + p_{2f} \cdot \cos \theta_2$$
 para o eixo x 3

$$0 = p_{1f} \cdot \operatorname{sen} \theta_1 - p_{2f} \cdot \operatorname{sen} \theta_2 \qquad \text{para o eixo y} \qquad 4$$

Obs: Analisando a equação 4, o momento em y após a colisão, observamos que o sinal negativo indica que os corpos, após a colisão tem direção contrária.

Como no nosso experimento a massa dos dois corpos são bem parecidas, podemos considerar as massas iguais, logo, podemos descartar a massa do cálculo, teremos:

$$m_1 \cdot v_{1i} \cdot \cos \alpha = m_1 \cdot v_{1f} \cdot \cos \theta_1 + m_2 \cdot v_{2f} \cdot \cos \theta_2$$

$$v_{1i} \cdot \cos \alpha = v_{1f} \cdot \cos \theta_1 + v_{2f} \cdot \cos \theta_2 \quad \text{para o eixo x}$$
 5

$$0 = m_1 \cdot v_{1f} \cdot \sin \theta_1 - m_2 \cdot v_{2f} \cdot \sin \theta_2$$

$$0 = v_{1f} \cdot \sin \theta_1 - v_{2f} \cdot \sin \theta_2 \qquad \text{para o eixo y} \qquad 6$$

[2] Colisão entre dois corpos

Para achar a velocidade usamos a seguinte equação:

$$s = s_0 + vt 7$$

Como essa equação apresenta comportamento linear, podemos compara-la a uma equação de 1º grau, da forma:

$$y = a + bx$$

Onde $y \to s$, $x \to t$, $s_0 \to a$ é o coeficiente linear e $v \to b$ é o coeficiente angular. Assim, usaremos a equação 8 nas análises dos dados para verificar o comportamento dos corpos antes e depois da colisão e encontrar o valor de v.

2. Materiais Utilizados e Roteiro Experimental

Materiais utilizados:

- Duas bolinhas de gude para realizar a colisão;
- Papel para deixar o plano uniforme;
- Régua para ter noção de espaço no Tracker;
- Celular para realizar a gravação e colocar no Tracker;
- Transferidor online para fazer a medição dos ângulos.

Materiais utilizados no experimento.

Transferidor Online.

Primeiro colocar a folha no plano para deixar mais uniforme, colocar a regua de uma forma que não atrapalhe o movimento e realizar o choque entre as bolinhas de gude, filmar esse processo com o celular.

Após isso colocar o video gravado pelo celular no Tracker para obter os dados (x, y , t) das bolinhas antes e após a colisão.

Usamos um transferidor online para ver os angulos em relação aos eixos, usamos o online pois não possuimos um trasferidor.

Usando o SciDAVIs, plotar os dados pegos no Tracker e gerar os graficos de y[t], x[t] e y[x] para o momento antes e após a colisão, depois, analisar e tirar as conclusões sobre os resultados.

3. Apresentação e Análise dos Dados Experimentais

Os dados retirados do Tracker juntamente ao SciDAVIs :

Tabela do Momento Inicial (Pi)

t(s)	x(m)	y(m)
0,0000	0,0122	-0,0754
0,0330	0,0128	-0,0487
0,0670	0,0128	-0,0230

Gráfico dos dados experimentais do Momento

Tabela Bolinha A após colisão

t(s)	x(m)	y(m)
0,1000	0,0187	-0,0093
0,1330	0,0259	-0,0008
0,1660	0,0335	0,0126
0,2000	0,0401	0,0233
0,2330	0,0467	0,0315
0,2660	0,0536	0,0415
0,3000	0,0602	0,0522
0,3330	0,0675	0,0606
0,3660	0,0744	0,0706
0,3990	0,0807	0,0796
0,4330	0,0877	0,0863
0,4660	0,0947	0,0955

Movimento de x em A

Gráfico do movimento da Bolinha A em relação a x.

Gráfico do movimento da Bolinha A em relação a y.

Gráfico de y em relação a x da bolinha A

Tabela Bolinha B após colisão

t(s)	x(m)	y(m)
0,0670	0,0010	-0,0005
0,1000	-0,0036	0,0070
0,1330	-0,0083	0,0154
0,1660	-0,0136	0,0227
0,2000	-0,0194	0,0292
0,2330	-0,0244	0,0358
0,2660	-0,0293	0,0417
0,3000	-0,0336	0,0485
0,3330	-0,0379	0,0553
0,3660	-0,0420	0,0614
0,3990	-0,0459	0,0668
0,4330	-0,0498	0,0721

Movimento de x em B

Gráfico do movimento da Bolinha B em relação a x.

Movimento de y em B

Gráfico de y em relação a x da bolinha B.

4. Resultados e Conclusões

Utilizando agora as fórmulas 5 e 6 e com os devidos valores das velocidades podemos calcular o quão próximo chegamos de uma colisão, no qual o momento é conservado, temos então:

$$v_{1i} \cdot cos\alpha = v_{1f} \cdot \cos\theta_1 + v_{2f} \cdot \cos\theta_2$$
 com θ_1 = 45°, θ_2 = 35° e α = 9°, pelo transferidor online, logo:
$$0,0098 \cdot \cos9 = 0,206 \cdot cos45 + (-0,140) \cdot cos35$$

$$0,0096 = 0,145 - 0,115$$

$$0,0096 \cong 0,030$$

Para o eixo x, já para o eixo y, teremos:

$$0 = v_{1f} \cdot \sin \theta_1 + v_{2f} \cdot \sin \theta_2$$
$$0 = 0,202 - 0,111$$
$$0 \approx 0,091$$

E o esperado para os ângulos seriam:

$$\theta_1 + \theta_2 = 90^{\circ}$$

E obtemos:

$$\theta_1 + \theta_2 = 80^{\circ}$$

Logo, pela seguinte fórmula da acurácia podemos calcular a exatidão do ângulo:

$$100\% - \left| \frac{\bar{x} - x_{ref}}{x_{ref}} * 100 \right|$$

Então teremos que a medida de $\theta_1+\theta_2$ é 88,89% exato.

Podemos concluir então que, chegamos perto de uma colisão no qual o momento é conservado, levando-se em consideração que o experimento realizado não estava nas condições perfeitas para a realização, e se os resultados foram próximos, podemos dizer que a energia cinética do sistema estará próxima de um sistema conservado, no qual a energia cinética inicial é igual a final.

5. Bibliografia

- [1] Fundamentos de Física Volume 1; D. Halliday, R, Resnick, J. Walker; LTC Editora (2006).
- [2] Exp5 Física Experimental 1 Moodle.