Лабораторна робота N°4

Моделювання хаотичних коливань

Мета роботи

Побудова математичної моделі осцилятора Лоренца, дослідження моделі із використанням комп'ютерного моделювання

4.1 Інформаційний матеріал

Детерміновано-хаотичні системи чутливі до малих впливів. Лоренц вивчав системи диференціальних рівнянь, що описують стан атмосфери, і виявив, що математична модель глобального клімату має два дивні атрактори¹, навколо яких групуються часткові рішення. При цьому система здатна перестрибувати від одного атрактора до іншого (наприклад, з нормального клімату до льодовикового періоду і назад) непередбачувано, внаслідок невідчутних змін вихідних параметрів. Графік, що зображує дві суміжні області рішень, що тяжіють до двох різних атракторів, через свою характерну форму отримав назву «метелик Лоренца».

4.1.1 Математична модель

Модель Лоренца² є реальним фізичним прикладом динамічних систем з хаотичним поведінкою, на відміну від різних штучно сконструйованих відображень ("зуб пилки", "тент", перетворення пекаря, відображення Фейгенбаума та інших.).

¹ https://www.wolframalpha.com/input?i=Lorenz+Attractor

² https://commons.wikimedia.org/wiki/Category:Lorenz_attractors?uselang=uk

Модель задається наступною нелінійною системою звичайних диференціальних рівнянь:

$$\left\{ egin{aligned} \dot{x} &= \sigma(y-x) \ \dot{y} &= x(r-z) - y \ \dot{z} &= xy - bz \end{aligned}
ight.$$

Ця система спочатку була введена як перше нетривіальне наближення для задачі про конвекцію морської води в плоскому шарі, чим і мотивувався вибір значень σ , r, b, але вона виникає також і в інших фізичних питаннях і моделях:

- конвекція у замкнутій петлі;
- обертання водяного колеса;
- модель одномодового лазера;
- дисипативний гармонічний осцилятор з інерційною нелінійністю.

4.1.2 Вихідні дані до роботи

Задано:

★ модель Лоренца (1);

★ значення параметрів моделі (1):

 $\sigma = 0, 10, 20, 30, 40, 50;$

r = 0, 10, 20, 30, 40, 50;

 $b = N^{\circ}$ варіанта (1, 2, 3, 4).

★ початкові умови: $(x, y, z)^{\mathrm{T}} = (10, 10, 10)^{\mathrm{T}}$.

4.2 Програма виконання роботи

- 1. Знайти розв'язки системи (1), використовуючи чисельні методи розв'язання систем диференціальних рівнянь, за допомогою вбудованих функцій пакетів прикладних програм та отримати часові характеристики коливань для заданих параметрів моделі.
- 2. Вивести графіки розв'язків у часі та у фазовому просторі для обраних початкових значень.
- 3. Виконати моделювання й оцінити поведінку осцилятора за різних значень параметрів, а також за різних початкових умов.
- 4. Надати характеристику отриманим коливанням (за яких значень параметрів маємо "ефект метелика", за яких автоколивання, за яких хаос, та ін.).
- 5. Усі результати, отримані в ході виконання роботи, занести до звіту. Зробити висновки.