

Genomic effects of domestication in Gossypium hirsutum

M. C. Melania Vega August 2019

Gossypium hirsutum: specie with economic importance

- → It is cultivated for fiber and seed oil
- → Generates ~ US\$ 50 billion
- → The mexican codices are evidence that the cotton was used since prehispanic time
- → The begining of domestications of cotton 5000 years ago

Distribution of mexican cotton

Research of domestication process with molecular data

Category	Upstream	Exonic	Intronic	Downstream	Upstream/Downstream	Intergenic
SNP	149,469	132,271	283,859	123,958	7,742	5,931,601
InDel	43,047	3,952	51,547	32,258	2,066	589,730

Upstream: 1kb upstream region of a given gene; Downstream: 1kb downstream region of a given gene; Upstream/Downstream: 1kb upstream region of one gene, and meanwhile 1kb downstream region of another gene.

Wang et al. 2014; Bao et al. 2018; Zhuang et al. 2019

New sequencing technologies = more information

- Gain or loss of long-fragment sequences
- Chromosomal rearrangements
- Copy Number Variations
- Deleterious variants
- Differentiation in gene expression
- Frequency of specific alleles

Alteration of the phenotype

Ecological effects

Objective

Identify the genomic structural variant that define each component of the complex wild-to-crop of *G. hirsutum* to describe the domestication process of the specie.

Particular objectives

 Analyze introgressed genomic regions between parts of wild-crop complex to describe introgression events and their possible structural effects.

 Characterize the structural variant of genomes in the neighborhood of transgene insertion to analyze their possible effects on transcription.

Plant materials

Wild Landraces Domesticated

Nayarit
BCS
Yucatán
yucatanense

Verde
Coyuchi
TM-1 USA
China

N= 11 genomes

Methods

Characteristics of data

- → Sequencing with Illumina NovaSeq 6000
- → Library TruSeq DNA PCR free
- → Paired-end

Summary

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Basic Statistics

Measure	Value		
Filename	GhY3-1_R2.fastq.gz		
File type	Conventional base calls		
Encoding	Sanger / Illumina 1.9		
Total Sequences	335981690		
Sequences flagged as poor quality	0		
Sequence length	151		
%GC	34		

Per base sequence quality

Position in read (bp)

Produced by FastQC (version 0.11.8)


```
mel@mel-X510UAR:~/Descargas/BBMap_38.49/bbmap/resources$ ls
adapters.fa
                                     phix adapters.fa.gz
adapters no transposase.fa.qz
                                     pJET1.2.fa
blacklist nt species 500.sketch
                                     polyA.fa.gz
blacklist prokprot merged.sketch
                                     primes.txt.gz
blacklist_refseq_species_250.sketch
                                     remote_files_old.txt
blacklist silva merged.sketch
                                     remote files.txt
contents.txt
                                     sample1.fq.qz
crelox.fa.qz
                                     sample2.fq.qz
favicon.ico
                                     sequencing artifacts.fa.gz
kapatags.L40.fa
                                     short.fa
lambda.fa.qz
                                     ssu_15mers.fa.gz
lfpe.linker.fa.gz
                                     tax server.html
lsu 15mers.fa.gz
                                     tRNA 10mers.fa.gz
model.pqm
                                     tRNA 11mers.fa.gz
mtst.fa
                                     tRNA 8mers.fa.gz
nextera.fa.gz
                                     tRNA 9mers.fa.gz
nextera_LMP_adapter.fa.gz
                                     truseq.fa.qz
nextera LMP linker.fa.gz
                                     truseq rna.fa.gz
phix174_ill.ref.fa.gz
```

GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTTCCGTATCTCGTATGCCGTCTTCTGCTTG

GATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGAATCTCGTATGCCGTCTTCTGCTTG

>TruSeq Adapter Index 15

>TruSeq Adapter Index 16 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGTCCCGATCTCGTATGCCGTCTTCTGCTTG >TruSeq Adapter Index 18 7 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCACATCTCGTATGCCGTCTTCTGCTTG >TruSeq Adapter Index 19 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGAAACGATCTCGTATGCCGTCTTCTGCTTG >TruSeq Adapter Index 20 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTGGCCTTATCTCGTATGCCGTCTTCTGCTTG >TruSeq Adapter Index 21 <u>GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTTTCGGAATCTCGTATGCCGTCTTCTGCTTG</u> >TruSeq Adapter Index 22 >TruSeq Adapter Index 23 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTG >TruSeq Adapter Index 25 GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATCTCGTATGCCGTCTTCTGCTTG >TruSeq Adapter Index 27 <u>GATCGGAAGAGCACACGTCTGAACTCCAGTCACATTCCTTTATCTCGTATGCCGTCTTCTGCTTG</u> >I5 Nextera Transposase 1 CTGTCTCTTATACACATCTGACGCTGCCGACGA >I7 Nextera Transposase 1 CTGTCTCTTATACACATCTCCGAGCCCACGAGAC >I5_Nextera_Transposase_2 CTGTCTCTTATACACATCTCTGATGGCGCGAGGGAGGC >I7 Nextera Transposase 2 CTGTCTCTTATACACATCTCTGAGCGGGCTGGCAAGGC >I5 Primer Nextera XT and Nextera Enrichment [N/S/E]501 GACGCTGCCGACGAGCGATCTAGTGTAGATCTCGGTGGTCGCCGTATCATT >I5 Primer Nextera XT and Nextera Enrichment [N/S/E]502 GACGCTGCCGACGAATAGAGAGGTGTAGATCTCGGTGGTCGCCGTATCATT >I5 Primer Nextera XT and Nextera Enrichment [N/S/E]503

mel@mel-X510UAR: ~/Descargas/BBMap 38.49/bbmap/resources

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	375479	0.11175579240642547	No Hit

How to remove those sequences?

bwa mem -t 4 -M /data/references/genome/reference.fasta sample.fastq.gz sample.fastq.gz > sample.sam

samtools index sample.bam

A 4 · 23 Oct 2013 | Kanemoto K, Moran D, Lenzen M et al. (2013) <u>International trade undermines national emission reduction targets:</u> New evidence from air pollution Global Environmental Change

▲ 5 · 23 October 2013 | Saw JHW, Schatz M, Brown MV et al. (2013) <u>Cultivation and Complete Genome</u>
<u>Sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kīlauea Caldera, Hawai'i</u> PLoS One
8:e76376.

▲ 6 · 17 Oct 2013 | Ye L, Amberg J, Chapman D et al. (2013) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish The ISME journal