Question 4

Analyse de construire_noeud

Notons que cette fonction possède un fonction privée récursive (build_node) et que la seule appel de la fonction construire_noeud est à appel à cette fonction privée. Nous évalurons donc la fonction build_node.

Taille de l'instance

La taille de l'instance est n, le nombre d'éléments compris entre l'index beginIndex et l'index endIndex inclusivement. (n = endIndex - beginIndex + 1)

Opération de base

Nous allons choisir comme opération de base l'appel à la comparaison nbPoints == 1

Cet opération est l'opération la plus effectué dans la fonction, car il n'y a pas de boucle itérative suivant cet opération et qu'elle n'est pas imbriqué dans des conditionnels.

Le nombre d'opération est dépendant uniquement dans la valeur de n.

Analyse de la récusion

La récurence peut être donnée par la fonction suivante

$$C(n) = \begin{cases} 1 & \text{si } n \le 1\\ 1 + C(\lceil \frac{n}{2} \rceil) + C(\lfloor \frac{n}{2} \rfloor) & \text{si } n > 1 \end{cases}$$

Nous la modifirons ainsi :

$$C(n) = \begin{cases} 1 & \text{si } n \leq 1 \\ 1 + C(\left\lceil \frac{n}{2} \right\rceil) + C(\left\lfloor \frac{n}{2} \right\rfloor) & \text{si } n > 1 \end{cases}$$

$$\Rightarrow \qquad \langle \text{ En supposant que } n = 2^k \rangle$$

$$C(2^k) = \begin{cases} 1 & \text{si } k = 0 \\ 1 + C(\left\lceil \frac{2^k}{2} \right\rceil) + C(\left\lfloor \frac{2^k}{2} \right\rfloor) & \text{si } k \geq 1 \end{cases}$$

$$\Rightarrow \qquad \langle \text{ Puisque } \frac{2^k}{2} \text{ est toujours un entier } \rangle$$

$$C\left(2^k\right) = \begin{cases} 1 & \text{si } k = 0 \\ 1 + 2 \cdot C(\frac{2^k}{2}) & \text{si } k \geq 1 \end{cases}$$

$$\Rightarrow \qquad \langle \text{ Rammener sur } n \rangle$$

$$C\left(n\right) = \begin{cases} 1 & \text{si } n \leq 1 \\ 1 + 2 \cdot C(\frac{n}{2}) & \text{si } n > 1 \wedge n = 2^k \forall k \in \mathbb{N}^+ \end{cases}$$
 Nous avons ainsi une forme où le théorème général avec
$$r = 2 \wedge b = 2 \wedge f\left(n\right) = n^0 \wedge d = 0$$
 Nous obtenons la forme 3 du théorème général
$$r = 2 > 1 = 2^0 = b^d$$
 donc

Conclusion

 $C\left(n\right)\in\Theta\left(n^{log_{2}2}\right)\equiv C\left(n\right)\in\Theta\left(n\right)$

La fonction construire_noeud s'exécute donc en temps linéaire par rapport au nombre de points.