Algorithme des k-Moyennes

Charlotte Pelletier

05 février2020

Plan

Introduction

Supervisé VS Non-Supervisé

Clustering

Applications

k-Moyennes

Principe de fonctionnement

Algorithme

Un problème d'inertie

Éviter un minimum loca

Choix du nombre de clusters

Conclusions

Apprentissage supervisé

Données d'apprentissage $\{\mathbf x_i, y_i\}_{i=1}^m$

- ullet observations : $\mathbf{x}_i \in \mathbb{R}^d$ de dimension d
- valeurs à prédire (classe) : $y_i \in \mathcal{Y}$

Apprentissage supervisé

Données d'apprentissage $\{\mathbf x_i, y_i\}_{i=1}^m$

- observations : $\mathbf{x}_i \in \mathbb{R}^d$ de dimension d
- valeurs à prédire (classe) : $y_i \in \mathcal{Y}$

Objectif: trouver une fonction pour prédire la classe (\bullet/\bullet) de nouvelles observations.

Apprentissage non-supervisé

Données d'apprentissage $\{\mathbf x_i\}_{i=1}^m$

ullet observations : $\mathbf{x}_i \in \mathbb{R}^d$ de dimension d

Apprentissage non-supervisé

Données d'apprentissage $\{\mathbf{x}_i\}_{i=1}^m$

• observations : $\mathbf{x}_i \in \mathbb{R}^d$ de dimension d

Applications

- Estimation de densité de probabilité
- Réduction de dimension
- Clustering

Apprentissage non-supervisé

Données d'apprentissage $\{\mathbf{x}_i\}_{i=1}^m$ Applications

• observations : $\mathbf{x}_i \in \mathbb{R}^d$ de dimension d • Clustering

Objectif: grouper les observations qui se ressemblent.

Clustering [Rappel - Introduction]

Objectif

- Organiser les exemples d'apprentissage par groupes.
- $\{\mathbf{x}_i\}_{i=1}^m \Rightarrow \{\hat{y}_i\}_{i=1}^m$ où $\hat{y} \in \mathcal{Y}$ représente un groupe (un cluster) $\{1, \dots, k\}$
- Paramètres :
 - ullet k nombre de groupes
 - mesure de similarité (caractériser les similarités entre les observations)

Méthodes

- k-Means (k-Moyennes).
- Mélange de gaussiennes
- Clustering hiérarchique

Exemples

- Taxonomie d'animaux
- Regroupement de gènes
- Réseaux sociaux

Clustering

Hypothèses

- il existe une structure sur les données
- ullet chaque observation ${f x}_i$ est utilisée pour définir la structure

Objectifs

- Rechercher une typologie, une segmentation, un clustering des données
- Constituer des groupes homogènes et différenciés, i.e.,
 - dans un même groupe les individus doivent se ressembler le plus (critère de compacité)
 - dans deux groupes différents les individus doivent être aussi dissemblables que possible (critère de séparabilité)

Applications

Réseaux sociaux

- recommandation
- compréhension de contenu

Marketting

- analyse du comportement de clients
- regroupement des clients similaires

Bio-médical

High Rhood Pressure

Formation des galaxies

Plan

Introduction

Supervisé VS Non-Supervisé

Clustering

Applications

$k ext{-}\mathsf{Moyennes}$

Principe de fonctionnement

Algorithme

Un problème d'inertie

Éviter un minimum loca

Choix du nombre de clusters

Conclusions

Étape 0 : initialiser des centro $\ddot{\text{ides}}^*$ de manière aléatoire

 * centroïde := barycentre

Étape 1a : affecter à chaque observation la classe la plus proche

Étape 1b : recalculer la position des centroïdes

k-Moyennes

Principe de fonctionnement

Répéter l'étape 1 avec les nouveaux centroïdes

Étape 2a : affecter à chaque observation la classe la plus proche

Étape 2b : recalculer la position des centroïdes

k-Moyennes

Principe de fonctionnement

Répéter l'étape 2 pour les nouveaux centroïdes

Étape 3a : affecter à chaque observation la classe la plus proche

Étape 3b : recalculer la position des centroïdes

k-Moyennes

Principe de fonctionnement

Répéter l'étape 3 pour les nouveaux centroïdes

Étape 4a : affecter à chaque observation la classe la plus proche

Étape 4b : recalculer la position des centroïdes

k-Moyennes

Principe de fonctionnement

Convergence : les centroïdes sont identiques à ceux calculés précédemment

Entrées

- *k* nombre de groupes (*clusters*)
- ullet données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Entrées

- *k* nombre de groupes (*clusters*)
- données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Algorithme

Étape 0 Initialiser k centroïdes de manière aléatoire : $\{m{\mu}_1, m{\mu}_2, \cdots, m{\mu}_k\}$

Entrées

- *k* nombre de groupes (*clusters*)
- ullet données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Algorithme

Étape 0 Initialiser k centroïdes de manière aléatoire : $\{m{\mu}_1, m{\mu}_2, \cdots, m{\mu}_k\}$

Répéter jusqu'à convergence

Étape itera pour chaque observation x_i (pour i allant de 1 à m)

affecter \hat{y}_i (le numéro de cluster de 1 à k) pour l'observation x_i

 \hat{y}_i correspond au cluster dont le centroïde est le plus proche de \mathbf{x}_i

Entrées

- *k* nombre de groupes (*clusters*)
- ullet données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Algorithme

Étape 0 Initialiser k centroïdes de manière aléatoire : $\{m{\mu}_1, m{\mu}_2, \cdots, m{\mu}_k\}$

Répéter jusqu'à convergence

Étape itera pour chaque observation x_i (pour i allant de 1 à m)

affecter \hat{y}_i (le numéro de cluster de 1 à k) pour l'observation x_i \hat{y}_i correspond au cluster dont le centroïde est le plus proche de \mathbf{x}_i $\hat{y}_i = \underset{c \in \{1, \cdots, k\}}{\arg\min} ||\mathbf{x}_i - \boldsymbol{\mu}_c||^2$

Algorithme¹

Entrées

- *k* nombre de groupes (*clusters*)
- données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Algorithme

Étape 0 Initialiser k centroïdes de manière aléatoire : $\{m{\mu}_1, m{\mu}_2, \cdots, m{\mu}_k\}$

Répéter jusqu'à convergence

Étape itera pour chaque observation x_i (pour i allant de 1 à m)

affecter \hat{y}_i (le numéro de cluster de 1 à k) pour l'observation x_i \hat{y}_i correspond au cluster dont le centroïde est le plus proche de \mathbf{x}_i $\hat{y}_i = \arg\min \ ||\mathbf{x}_i - \boldsymbol{\mu}_c||^2$

 $\hat{y}_i = \operatorname*{arg\,min}_{c \in \{1, \cdots, k\}} ||\mathbf{x}_i - \boldsymbol{\mu}_c||^2$

Étape iter**b** pour chaque cluster (pour c allant de 1 à k) recalculer μ_c le centroïde du cluster c

recalculer μ_c le centroide du cluster c

 μ_c correspond à la moyenne des observations affectées au cluster c

Entrées

- k nombre de groupes (clusters)
- données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Algorithme

Étape 0 Initialiser k centroïdes de manière aléatoire : $\{\mu_1, \mu_2, \cdots, \mu_k\}$

Répéter jusqu'à convergence

Étape itera pour chaque observation x_i (pour i allant de 1 à m)

affecter \hat{y}_i (le numéro de cluster de 1 à k) pour l'observation x_i \hat{y}_i correspond au cluster dont le centroïde est le plus proche de \mathbf{x}_i $\hat{y}_i = \arg\min ||\mathbf{x}_i - \boldsymbol{\mu}_c||^2$

 $c \in \{1, \dots, k\}$

Étape $iter\mathbf{b}$ pour chaque cluster (pour c allant de 1 à k)

recalculer μ_c le centroïde du cluster c

 μ_c correspond à la moyenne des observations affectées au cluster c $\mu_c=rac{1}{m_c}\sum_{\mathbf{x}_i|\hat{y}_i=c}\mathbf{x}_i$, avec m_c le nombre d'observations qui appartiennent au cluster c

Entrées

- k nombre de groupes (clusters)
- données d'apprentissage : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$ (centrée-réduite)

Algorithme

Étape 0 Initialiser k centroïdes de manière aléatoire : $\{\mu_1, \mu_2, \cdots, \mu_k\}$

Répéter jusqu'à convergence

Étape itera pour chaque observation x_i (pour i allant de 1 à m)

affecter \hat{y}_i (le numéro de cluster de 1 à k) pour l'observation x_i \hat{y}_i correspond au cluster dont le centroïde est le plus proche de \mathbf{x}_i $\hat{y}_i = \arg\min ||\mathbf{x}_i - \boldsymbol{\mu}_c||^2$

$$\hat{y}_i = \operatorname*{arg\,min}_{c \in \{1, \cdots, k\}} ||\mathbf{x}_i - \boldsymbol{\mu}_c||^2$$

Étape iter**b** pour chaque cluster (pour c allant de 1 à k)

recalculer μ_c le centroïde du cluster c

 μ_c correspond à la moyenne des observations affectées au cluster c $\mu_c=rac{1}{m_c}\sum_{\mathbf{x}_i|\hat{y}_i=c}\mathbf{x}_i$, avec m_c le nombre d'observations qui appartiennent au cluster c

Critère d'arrêt (convergence)

- lorsque les centroïdes sont identiques : les affectations ne changent plus
- on a atteint un nombre pré-défini d'itérations : $iter > ITER_MAX$

Activité 1

Implémentez votre version des k-Moyennes.

Inertie

L'**inertie** \mathcal{I}_T d'un nuage des points est représentée par la distance au carré des points à leur centroïde

- données (d'apprentissage) : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$
- ullet centroïde : $oldsymbol{\mu} = rac{1}{m} \sum_i^m \mathbf{x}_i$
- ullet inertie : $\mathcal{I}_T = \sum\limits_{\mathbf{x}_i} ||\mathbf{x}_i oldsymbol{\mu}||^2$

Inertie

L'**inertie** \mathcal{I}_T d'un nuage des points est représentée par la distance au carré des points à leur centroïde

- données (d'apprentissage) : $\{\mathbf{x}_i\}_{i=1}^m$ avec $\mathbf{x}_i \in \mathbb{R}^d$
- ullet centroïde : $oldsymbol{\mu} = rac{1}{m} \sum_i^m \mathbf{x}_i$
- ullet inertie : $\mathcal{I}_T = \sum\limits_{\mathbf{x}_i} ||\mathbf{x}_i oldsymbol{\mu}||^2$

Remarque : l'inertie totale dépend uniquement des données (et pas des clusters auxquels appartiennent les observaitions)

Inertie

Formule de décomposition de l'inertie : théorème de Huygens

$$\label{eq:local_local_local} \begin{split} \text{Inertie totale} &= \text{Inertie inter-classe} \\ &+ \text{Inertie intra-classe} \end{split}$$

$$\mathcal{I}_T = \mathcal{I}_B + \mathcal{I}_W$$

Formule de décomposition de l'inertie : théorème de Huygens

 $\begin{aligned} \text{Inertie totale} &= \text{Inertie inter-classe} \\ &+ \text{Inertie intra-classe} \end{aligned}$

$$\mathcal{I}_T = \mathcal{I}_B + \mathcal{I}_W$$

$$\sum_{\mathbf{x}_i} ||\mathbf{x}_i - \boldsymbol{\mu}||^2 = \sum_{c=1}^k m_c ||\boldsymbol{\mu}_c - \boldsymbol{\mu}||^2$$

Inertie totale

Indicateur de séparabilité des classes : dispersion des centroïdes des clusters autour du centroïde global

Indicateur de compacité des classes : dispersion à l'intérieur de chaque cluster

Formule de décomposition de l'inertie : théorème de Huygens

 $\begin{aligned} \text{Inertie totale} &= \text{Inertie inter-classe} \\ &+ \text{Inertie intra-classe} \end{aligned}$

$$\mathcal{I}_T = \mathcal{I}_B + \mathcal{I}_W$$

$$\sum_{\mathbf{x}_i} ||\mathbf{x}_i - \boldsymbol{\mu}||^2 = \sum_{c=1}^k m_c ||\boldsymbol{\mu}_c - \boldsymbol{\mu}||^2$$

Inertie totale

Indicateur de séparabilité des classes : dispersion des centroïdes des clusters autour du centroïde global

Indicateur de compacité des classes : dispersion à l'intérieur de chaque cluster

Double objectif

- ullet avoir des groupes homogènes : $\min \mathcal{I}_W$
- ullet avoir des groupes séparés les uns des autres : $\max \mathcal{I}_B$

Affinez votre version de l'algorithme des k-Moyennes pour qu'elle retourne la valeur de l'inertie intra-classe I_W .

Plan

Introduction

Supervisé VS Non-Supervisé

Clustering

Applications

k-Moyennes

Principe de fonctionnement

Algorithme

Un problème d'inertie

Éviter un minimum local

Choix du nombre de clusters

Conclusions

Nouvel exemple: 3 clusters

Étape 0 : initialiser des centroïdes de manière aléatoire

Nouvel exemple: 3 clusters

Étape 1a : affecter à chaque observation la classe la plus proche

Nouvel exemple: 3 clusters

Étape 1b : recalculer la position des centroïdes

Nouvel exemple: 3 clusters

Répéter l'étape 1 avec les nouveaux centroïdes

Nouvel exemple: 3 clusters

Étape 2a : affecter à chaque observation la classe la plus proche

Nouvel exemple: 3 clusters

Étape 2b : recalculer la position des centroïdes

Nouvel exemple: 3 clusters

Convergence : les centroïdes sont identiques à ceux calculés précédemment

Nouvel exemple: 3 clusters

Étape 0 : initialiser des centroïdes de manière aléatoire

Nouvel exemple: 3 clusters

Étape 1a : affecter à chaque observation la classe la plus proche

Nouvel exemple: 3 clusters

Étape 1b : recalculer la position des centroïdes

Nouvel exemple: 3 clusters

Répéter l'étape 1 avec les nouveaux centroïdes

Nouvel exemple: 3 clusters

Étape 2a : affecter à chaque observation la classe la plus proche

Nouvel exemple: 3 clusters

Étape 2b : recalculer la position des centroïdes

Nouvel exemple: 3 clusters

Convergence : les centroïdes sont identiques à ceux calculés précédemment

Dans votre implémentation, modifiez l'initialisation des centroïdes pour qu'ils soient sélectionnés aléatoirement parmi les données d'apprentissage.

Choix des centroïdes initiaux

• Le choix des centroïdes se fait parmi les données d'apprentissage

Éviter un minimum local

- ullet Répéter t fois l'algorithme des k-Moyennes avec différentes initialisations
- ullet Calculer l'inertie inter-classe \mathcal{I}_W^t pour chaque itération t
- ullet Sélectionner le partitionnement pour lequel \mathcal{I}_W est minimal : $\mathcal{I}_W = \min_{t} \mathcal{I}_W^t$

Éviter un minimum local

- ullet Répéter t fois l'algorithme des k-Moyennes avec différentes initialisations
- ullet Calculer l'inertie inter-classe \mathcal{I}_W^t pour chaque itération t
- ullet Sélectionner le partitionnement pour lequel \mathcal{I}_W est minimal : $\mathcal{I}_W = \min_t \mathcal{I}_W^t$

46 / 61

Activité 4

Répéter plusieurs fois l'algorithme des k-Moyennes et garder le résultat qui donne l'inertie intra-classe minimale.

Plan

Introduction

Supervisé VS Non-Supervisé

Clustering

Applications

k-Moyennes

Principe de fonctionnement

Algorithme

Un problème d'inertie

Éviter un minimum loca

Choix du nombre de clusters

Conclusions

Comment	choisir	le	nombre	de	clusters?

• Manuellement : en pratique souvent la meilleure des techniques

- Manuellement : en pratique souvent la meilleure des techniques
- ullet Automatiquement : étudier les valeurs d'inertie intra-classe en fonction du nombre de clusters k

Automatiquement

 ${\mathbb R}^2$: la proportion de variance expliquée par les clusters

$$R^2 = \frac{\mathcal{I}_B}{\mathcal{I}_T} = 1 - \frac{\mathcal{I}_W}{\mathcal{I}_T}$$

Automatiquement

 ${\cal R}^2$: la proportion de variance expliquée par les clusters

$$R^2 = \frac{\mathcal{I}_B}{\mathcal{I}_T} = 1 - \frac{\mathcal{I}_W}{\mathcal{I}_T}$$

Méthode d'Elbow (le coude)

Automatiquement

 ${\cal R}^2$: la proportion de variance expliquée par les clusters

Limitation : généralement aucun coude n'est visible

Pseudo-F : mesure de séparation entre toutes les classes Pseudo-F = $\frac{\frac{R}{R-1}}{\frac{1-R^2}{m-k}}$

Pseudo-F : mesure de séparation entre toutes les classes Pseudo-F = $\frac{\frac{R-1}{1-R^2}}{\frac{1-R^2}{m-k}}$

Et d'autres encore :

- Cubic Clustering Criterion (CCC)
- le coefficient de silhouette (cohésion et séparation)

Activité 5

- Testez un ou plusieurs critères pour sélectionnez au mieux le nombre de clusters.
- Qu'en pensez-vous?

Plan

Introduction

Supervisé VS Non-Supervisé

Clustering

Applications

k-Moyennes

Principe de fonctionnement

Algorithme

Un problème d'inertie

Éviter un minimum loca

Choix du nombre de clusters

Conclusions

Détection uniquement de formes sphériques

Sensible aux données aberrantes

Détection de clusters avec des densités proches

Détection de clusters avec des tailles proches

Conclusions

Avantages

- Algorithme simple à mettre en oeuvre
- Utilisable pour m grand (mais pas trop grand)
- Complexité calculatoire en $O(k \cdot m \cdot d)$

Limitations

- ullet le nombre de clusters k doit être fixé a priori
- détecte uniquement des formes sphériques
- des clusters peuvent être vides ou ne contenir que des données aberrantes
- ne marche pas bien si les clusters ont des densités différentes ou si ils sont de tailles différentes

Conclusions

Variantes

- pour des données non-quantitatives
- pour trouver plus rapidement une solution otpimale
- pour trouver des propriétés particulières recherchées

Comparez les résultats à ceux obtenus avec la librairie Scikit-Learn.