Math 4580: Abstract Algebra I

Lecturer: Professor Michael Lipnowski

Notes by: Farhan Sadeek

Spring 2025

1 January 6, 2025

We didn't have any, but Dr. Lipnowski did post a module on <u>carmen</u> about the syllabus and the course. This semester we will be covering the first few chapters of the book *Abstract Algebra: Theory and Applications* by Thomas Judson.

Definition 1

Set: A collection of distinct objects, considered as an object in its own right.

Axioms: A collection of objects S with assumed structural rules is defined by axioms.

Statement: In logic or mathematics, an assertion that is either true or false.

Hypothesis and Conclusion: In the statement "If P, then Q", P is the hypothesis and Q is the conclusion.

Mathematical Proof: A logical argument that verifies the truth of a statement.

Proposition: A statement that can be proven true.

Theorem: A proposition of significant importance.

Lemma: A supporting proposition used to prove a theorem or another proposition.

Corollary: A proposition that follows directly from a theorem or proposition with minimal additional proof.

2 January 8, 2025

Professor Lipnowski discussed Sam Lloyd's 15 puzzle. Each lecture will include a mystery digit, contributing up to 5% bonus to the final grade based on correct guesses.

Certain course expectations:

- · All assignments (one every two weeks) and exams (one midterm and one final exam) will be take-home.
- · All the problems from the course textbook.
- Collaboration is encouraged, but the work should be your own.
- For the exams, we are not supposed to talk to other friends.

2.1 Functions

Definition 2

Let A and B be sets. A function $f: A \to B$ assigns exactly one output $f(a) \in B$ to every input $a \in A$.

- The set A is called the **domain** of f.
- The set *B* is called the **codomain** of *f*.

Fact 3

The domain A, codomain B, and the assignment of outputs f(a) to every input $a \in A$ are all part of the data defining a function. Just writing a formula like $f(x) = e^x$ does not determine a function, as the domain and codomain are not specified.

For example:

- $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$.
- $f: \mathbb{Q} \to \mathbb{Q}, f(x) = e^x$.

Although these functions use the same formula, their meanings are completely different because their domains and codomains differ.

2.2 Graphs

A function $f: A \to B$ is often identified with its **graph** in $A \times B$:

$$graph(f) = \{(a, b) \in A \times B : b = f(a)\}.$$

Lemma 4

Let $f:A\to B$ be a function. Its graph, graph(f), passes the **vertical line test**: For every $a\in A$, $V_a:=\{(a,b)\in A\times B:b\in B\}$ intersects graph(f) in exactly one element.

Proposition 5

Let $G \subseteq A \times B$ be any subset passing the vertical line test, i.e., for all $a \in A$, $V_a \cap G$ consists of exactly one element. Then G = graph(f) for a unique function $f : A \to B$.

Proof. If $G = \{(a, b) \mid b \in B\}$ satisfies the vertical line test, define $f : A \to B$ by f(a) = b. Then G = graph(f).

Definition 6

A subset $R \subseteq A \times B$ is called a **relation**. The vertical line test distinguishes graphs of functions from more general relations.

2.3 Examples

- Let $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (the unit circle). This is a relation but not the graph of a function because it fails the vertical line test: The vertical line x = 0 intersects the circle at two points.
- Visual depiction of a unit circle:

- Let $A = \{1, 2, 3\}$, $B = \{4, 5\}$. The number of functions from A to B is $2^3 = 8$, corresponding to the 8 associated graphs in $A \times B$.
- The number of relations from A to B is $2^{|a|\cdot|b|}=2^{3\cdot 2}=64$, containing the 8 graphs of functions from A to B.

Fact 7

The notion of relation is much more permissive than the notion of functions.

2.4 Visualizing Functions as Directed Edges

A function $f: A \to B$ can be visualized as a collection of directed edges $(a, f(a)) \in A \times B$. Each element of A has exactly one outgoing edge in the graph.

3 January 10, 2025

3.1 More about function

 $f: A \rightarrow B$ is a function.

- injective (one-to-one)
- surjective (onto)
- bijective (one-to-one and onto)

Definition 8

Let $f: A \to B$ be a function. f is injective if for all $x, y \in A$, if f(x) = f(y) then x = y.

Example 9

Consider the function $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ defined by the following assignments:

$$f(1) = a$$
, $f(2) = b$, $f(3) = c$

This function is bijective because it is both injective and surjective.

Example 10

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 3. We claim that f is injective.

To prove this, suppose f(a) = f(b) for some $a, b \in \mathbb{R}$. Then:

$$2a + 3 = 2b + 3$$

Subtracting 3 from both sides, we get:

$$2a = 2b$$

Dividing both sides by 2, we obtain:

$$a = b$$

Therefore, f is injective.

Example 11

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. We claim that f is not injective.

To see this, observe that f(2) = 4 and f(-2) = 4. Since f(2) = f(-2) but $2 \neq -2$, the function f is not injective.

Example 12

Consider the sets $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. Define the function $f : A \to B$ by the following assignments:

$$f(1) = 4$$
, $f(2) = 5$, $f(3) = 4$

This function is not injective because f(1) = f(3) = 4 but $1 \neq 3$.

Here we have two elements in set B but there are three elements in input in set A. That's why there has to be a collision. Since |a| > |b|, there must be a collision. If f(1), f(2), $f(3) \in B$, and |b| = 2 Tow of those must be the same. That means that f is not one-to-one.

Definition 13

A function $f: A \to B$ is called **surjective** (or **onto**) if for every element $b \in B$, there exists at least one element $a \in A$ such that f(a) = b.

Example 14

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x. This function is surjective because for every $y \in \mathbb{R}$, we can find an $x \in \mathbb{R}$ such that f(x) = y (specifically, x = y).

Example 15

Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. This function is not surjective because there is no $x \in \mathbb{R}$ such that f(x) = -1.

Example 16

Consider the sets $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. Define the function $f : A \to B$ by the following assignments:

$$f(1) = 4$$
, $f(2) = 4$, $f(3) = 4$

This function is surjective because every element in B is mapped to by at least one element in A. However, it is not injective because f(1) = f(2) = f(3) = 4 but $1 \neq 2 \neq 3$.

Example 17

Consider the sets $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. Define the function $f : A \to B$ by the following assignments:

$$f(1) = 4$$
, $f(2) = 4$, $f(3) = 5$

This function is surjective because every element in B is mapped to by at least one element in A. However, it is not injective because f(1) = f(2) = 4 but $1 \neq 2$.

Example 18

Consider the sets $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$. Define the function $f : A \to B$ by the following assignments:

$$f(1) = 4$$
, $f(2) = 5$, $f(3) = 6$

This function is neither injective nor surjective. It is not injective because |a| < |b|, and it is not surjective because the element $7 \in B$ is not mapped to by any element in A.

Definition 19

A function $f: A \to B$ is called **range** if it is the set of all possible outputs of f. Formally, the range of f is defined as:

$$range(f) = \{ f(a) \mid a \in A \}$$

Fact 20

The range of a function $f: A \to B$ is a subset of the codomain B. A function is surjective if and only if its range is equal to its codomain.

Example 21

Consider the function $f: \{1, 2, 3\} \rightarrow \{4, 5\}$ defined by the following assignments:

$$f(1) = 4$$
, $f(2) = 5$, $f(3) = 4$

The range of f is $\{4,5\}$, which is equal to the codomain $\{4,5\}$. Therefore, f is surjective.

Example 22

Consider the function $f: \{1, 2, 3\} \rightarrow \{4, 5, 6\}$ defined by the following assignments:

$$f(1) = 4$$
, $f(2) = 5$, $f(3) = 4$

The range of f is $\{4, 5\}$, which is a subset of the codomain $\{4, 5, 6\}$ but not equal to it. Therefore, f is not surjective.

Fact 23

f is surjective means that the range of f is equal to the codomain of f.

Definition 24

A function $f: A \to B$ is called **bijective** (or a **bijection**) if it is both injective and surjective or (one-to-one correspondence). This means that every element in B is mapped to by exactly one element in A.

Example 25

Consider the function $f: \{1, 2, 3\} \rightarrow \{4, 5, 6\}$ defined by the following assignments:

$$f(1) = 5$$
, $f(2) = 4$, $f(3) = 6$

This function is bijective because it is both injective (no two elements in A map to the same element in B) and surjective (every element in B is mapped to by some element in A).

Here we can notice that we have a matching between the elements of A and B, every element of set A has one and only mapping into the set B.

Example 26

Consider the function $f: \mathbb{N} \to \mathbb{Z}$ defined by f(x) = x, where \mathbb{N} is the set of natural numbers and \mathbb{Z} is the set of integers. We claim that f is injective but not surjective.

To prove that f is injective, suppose f(a) = f(b) for some $a, b \in \mathbb{N}$. Then:

$$a = b$$

Therefore, f is injective because no two different elements in \mathbb{N} map to the same element in \mathbb{Z} .

However, f is not surjective because there are elements in \mathbb{Z} that are not in the range of f. For example, there is no $x \in \mathbb{N}$ such that f(x) = -1. Therefore, f is not surjective.

Example 27

Consider the function $f: \mathbb{Z} \to \mathbb{N}$ defined by:

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0\\ 2|n| - 1 & \text{if } n < 0 \end{cases}$$

We claim that f is bijective.

To prove that f is injective, suppose f(a) = f(b) for some $a, b \in \mathbb{Z}$. We need to show that a = b.

- If $a \ge 0$ and $b \ge 0$, then f(a) = 2a and f(b) = 2b. Since f(a) = f(b), we have 2a = 2b, which implies a = b.
- If a < 0 and b < 0, then f(a) = 2|a| 1 and f(b) = 2|b| 1. Since f(a) = f(b), we have 2|a| 1 = 2|b| 1, which implies |a| = |b| and hence a = b.
- If $a \ge 0$ and b < 0, then f(a) = 2a and f(b) = 2|b| 1. Since f(a) = f(b), we have 2a = 2|b| 1, which is a contradiction because 2a is even and 2|b| 1 is odd. Therefore, this case cannot occur.
- If a < 0 and $b \ge 0$, then f(a) = 2|a| 1 and f(b) = 2b. Since f(a) = f(b), we have 2|a| 1 = 2b, which is a contradiction because 2|a| 1 is odd and 2b is even. Therefore, this case cannot occur.

Therefore, f is injective.

To prove that f is surjective, let $m \in \mathbb{N}$. We need to find $n \in \mathbb{Z}$ such that f(n) = m.

- If m is even, say m=2k for some $k \in \mathbb{N}$, then f(k)=2k=m.
- If *m* is odd, say m = 2k+1 for some $k \in \mathbb{N}$, then f(-(k+1)) = 2|-(k+1)|-1 = 2(k+1)-1 = m.

Therefore, f is surjective.

Since f is both injective and surjective, it is bijective.

Example 28

Consider the function $f: \mathbb{Z} \to \mathbb{N}$ defined by:

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0\\ 2(-n-1) + 1 & \text{if } n < 0 \end{cases}$$

We claim that f is bijective.

Example 29

Consider the function $f: \mathbb{Z} \to \mathbb{N}$ defined by:

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0 \\ 2(-n-1) + 1 & \text{if } n < 0 \end{cases}$$

We claim that f is bijective.