Shuai Tang

Cognitive Science, UC San Diego

Brief Self-Introduction

- PhD student in Cognitive Science
- Learning representations of language by exploiting the context information

- Related work
 - (organized based on my understanding)

My research

Why?

Local Representations

The simplest way to represent things with neural networks is to dedicate **one** neuron to **each** thing.

One-hot Encoding

Clustering

Distributed Representations

Each concept is represented by many neurons, and each neuron participates in the representation of many concepts.

Continuous Bag-of-words

Recurrent Neural Networks

Local Representations

Distributed Representations

Efficient usage of space.

Better at capturing componential structure in data.

Sentence Vector

We communicate in sentences, and they convey our thoughts.

Sentence — Vector

If we convert a sentence into a vector that captures the meaning of the sentence, then Google can do much better searches; they can search based on what's being said in a document. (Hinton, 2015)

Natural Reasoning

How to evaluate?

Evaluating Representations of Sentences

- Supervised Evaluation
 - Sentiment Analysis (MR, CR, SUBJ, MPQA, SST, TREC)
 - Paraphrase Detection (MSRP)
 - Caption-Image Retrieval (COCO)
 - Semantic Relatedness (STSBenchmark, SICK)
 - Entailment/Natural Language Inference (SNLI, MultiNLI, SICK)

Evaluating Representations of Sentences

- Supervised Evaluation
 - Sentiment Analysis (MR, CR, SUBJ, MPQA, SST, TREC)
 - Paraphrase Detection (MSRP)
 - Caption-Image Retrieval (COCO)
 - Semantic Relatedness (STSBenchmark, SICK)
 - Entailment/Natural Language Inference (SNLI, MultiNLI, SICK)
- Unsupervised Evaluation
 - Semantic Textual Similarity (STS14, STS15)

Evaluating Representations of Sentences

- Supervised Evaluation
 - Sentiment Analysis (MR, CR, SUBJ, MPQA, SST, TREC)
 - Paraphrase Detection (MSRP)
 - Caption-Image Retrieval (COCO)
 - Semantic Relatedness (STSBenchmark, SICK)
 - Entailment/Natural Language Inference (SNLI, MultiNLI, SICK)
- Unsupervised Evaluation
 - Semantic Textual Similarity (STS14, STS15)
- Future...
 - Large-scale NLP tasks (Machine Translation, Amazon/Yelp Rating Prediction, etc.)
 - Human Evaluation

• ... from unlabeled data (Context-based)

• ... from labeled data

...from unlabeled data

Distributional Hypothesis

(Harris, 1954; Altmann & Steedman, 1988)

... from unlabeled data (Context-based)

Generative Objective

- CBOW & Skip-gram → Paragraph Vectors
- ullet Skip-thought Vectors ullet FastSent ullet CNN-LSTM ullet Our RNN-CNN mode
- Seq2Seq -> Sequential (Denoising) Auto-encoder
- BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

... from unlabeled data (Context-based)

- Generative Objective
 - CBOW & Skip-gram → Paragraph Vectors
 - Skip-thought Vectors → FastSent → CNN-LSTM → Our RNN-CNN model
 - Seq2Seq -> Sequential (Denoising) Auto-encoder
 - BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

CBOW & Skip-gram

CBOW & Skip-gram -> Paragraph Vectors

... from unlabeled data (Context-based)

- Generative Objective
 - CBOW & Skip-gram → Paragraph Vectors
 - Skip-thought Vectors → FastSent → CNN-LSTM → Our RNN-CNN model
 - Seq2Seq -> Sequential (Denoising) Auto-encoder
 - BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

Skip-thought Vectors

Skip-thought -> FastSent (Log-bilinear)

Composite Model

Hierarchical Model

Composite Model

Hierarchical Model

Skip-thought -> Our Skip-thought Neighbor

- Neighborhood Hypothesis
- Given the current sentence, inferring the previous sentence and inferring the next sentence both provide same supervision power.

Skip-thought -> Our Trimmed Skip-thought

- Neighborhood Hypothesis
- Given the current sentence, inferring the previous sentence and inferring the next sentence both provide same supervision power.

Skip-thought -> Our RNN-CNN Model

- Neighborhood Hypothesis
- Given the current sentence, inferring the previous sentence and inferring the next sentence both provide same supervision power.

Our RNN-CNN model

Our RNN-CNN model

Encoder: Bi-directional GRU

Explicit usage of word order information

Our RNN-CNN model

Our RNN-CNN model

Decoder: 3-layer ConvNet

Our RNN-CNN model

- Generative Objective
 - CBOW & Skip-gram → Paragraph Vectors
 - ullet Skip-thought Vectors o FastSent o CNN-LSTM o Our RNN-CNN model
 - Seq2Seq → Sequential (Denoising) Auto-encoder
 - BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

Seq2Seq

Seq2Seq → Sequential (D) Auto-Encoder

Noise is applied on the source sentences.

- In a randomly selected training sentence,
 - Each word has 10% probability of being deleted.
 - Each word has 10% probability of being swapped with the next one.

Generative Objective

- CBOW & Skip-gram → Paragraph Vectors
- Skip-thought Vectors → FastSent → CNN-LSTM → Our RNN-CNN model
- Seq2Seq → Sequential (Denoising) Auto-encoder
- BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

BYTE multiplicative-LSTM

- Character-level Language Modeling
- Multiplicative-LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Generative Objective
 - CBOW & Skip-gram → Paragraph Vectors
 - Skip-thought Vectors → FastSent → CNN-LSTM → Our RNN-CNN model
 - Seq2Seq → Sequential (Denoising) Auto-encoder
 - BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

Distributional Hypothesis

(Harris, 1954; Altmann & Steedman, 1988)

- Generative Objective
 - CBOW & Skip-gram → Paragraph Vectors
 - ullet Skip-thought Vectors ullet FastSent ullet CNN-LSTM ullet Our RNN-CNN mode
 - Seq2Seq

 Sequential (Denoising) Auto-encoder
 - BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

Siamese CBOW

Siamese CBOW → DiscSent

Sentence Pair	Label
He had a point.	RETURN
For good measure, I pouted.	(Still)
It doesn't hurt at all.	STRENGTHEN
It's exhilarating.	(In fact)
The waterwheel hammered on.	CONTRAST
There was silence.	(Otherwise)

Siamese CBOW → DiscSent → Quick-thought

- Generative Objective
 - CBOW & Skip-gram → Paragraph Vectors
 - Skip-thought Vectors → FastSent → CNN-LSTM → Our RNN-CNN model
 - Seq2Seq → Sequential (Denoising) Auto-encoder
 - BTYE m-LSTM
- Discriminative Objective
 - Siamese CBOW → DiscSent → Quick-Thought Vectors

Data

- BookCorpus (Zhu et al., ICCV2015)
 - Romance, Fantasy, Science fiction, Teen, etc.
- Wikipedia
 - Scientific description
- Amazon Review Data (McAuley et al., SIGIR2015)
 - Reviews with relatively strong personal preference

...from labeled data

... from labeled data

- Natural Language Inference (NLI) datasets
 - Stanford NLI (Bowman et al., EMNLP2015)
 - Multi-genre NLI (Williams et al., ArXiv2017)

A man inspects the uniform of a figure in some East Asian country.	contradiction C C C C C	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.
A black race car starts up in front of a crowd of people.	contradiction C C C C C	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment EEEEE	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

... from labeled data

- Natural Language Inference (NLI) datasets
 - Stanford NLI (Bowman et al., EMNLP2015)
 - Multi-genre NLI (Williams et al., ArXiv2017)

	#Examples		
Genre	Train	Dev.	Test
SNLI	550,152	10,000	10,000
FICTION	77,348	2,000	2,000
GOVERNMENT	77,350	2,000	2,000
SLATE	77,306	2,000	2,000
TELEPHONE	83,348	2,000	2,000
TRAVEL	77,350	2,000	2,000
9/11	0	2,000	2,000
FACE-TO-FACE	0	2,000	2,000
LETTERS	0	2,000	2,000
OUP	0	2,000	2,000
VERBATIM	0	2,000	2,000
MultiNLI Overall	392,702	20,000	20,000

Bowman et al., EMNLP2015

Sentence model	Train	Test
100d Sum of words	79.3	75.3
100d RNN	73.1	72.2
100d LSTM RNN	84.8	77.6

Conneau et al., EMNLP2017

Figure 3: Inner Attention network architecture.

Lin et al., ICLR2017

Zhao et al., IJCAI2015

Figure 4: Hierarchical ConvNet architecture.

Bi-LSTM-Max

Model		NLI	
	dim	dev	test
LSTM	2048	81.9	80.7
GRU	4096	82.4	81.8
BiGRU-last	4096	81.3	80.9
BiLSTM-Mean	4096	79.0	78.2
Inner-attention	4096	82.3	82.5
HConvNet	4096	83.7	83.4
BiLSTM-Max	4096	85.0	<u>84.5</u>

Learning Distributed Representations of Sentences

- ... from unlabeled data (Context-based)
 - Generative Objective
 - Discriminative Objective

- ... from labeled data
 - Natural Language Inference (NLI) datasets

• Evaluation

To conclude:

• Unlabeled data is enormous, thus building efficient algorithms for representation learning is critical.

 The usage of the context information is not sufficient, so we still need to come up with new ways of exploiting context information.

There lacks a unified framework/guide for model design.

 Supervised transfer learning is promising, but labeling is costly and time-consuming.

To conclude again...

Russ Salakhutdinov updated his status.

May 14 ⋅ 🚱

To all of us working on unsupervised learning --Quote from my former student working in industry.

Q: How do you make unlabeled data useful?

A: Send it to the data annotation team. 🐸 👆

Thank you!