EE910: Digital Communication Systems-I

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

April 11, 2022

Lecture #1B: Communication channels and models

Communication Channels

- Channel is the transmission medium over which we transmit information bits.
- Examples
 - Wireline channel
 - Wireless channel
 - Underwater acoustic channel
 - Storage channel

Binary Symmetric Channel

Model for Binary Symmetric Channel

- It is a binary input, binary output symmetric channel.
- ullet denotes the crossover probability.

Binary Erasure Channel

Model for Binary Erasure Channel

- It is a binary input, ternary output symmetric channel.
- ullet δ denotes the erasure probability.

FF910: Digital Commu

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

Binary Symmetric Erasure Channel

Model for Binary Symmetric Erasure Channel

- It is a binary input, ternary output symmetric channel.
- ullet denotes the crossover probability.
- \bullet δ denotes the erasure probability.

Additive Noise Channel

Model for Additive Noise Channel

- In this model, transmitted signal s(t) is corrupted by an additive random noise process n(t).
- Typically, noise is characterized statistically as a Gaussian noise process.
- Noise that has constant power spectral density is known as white noise.
- Additive white Gaussian noise (AWGN) channel is used to model a broad class of physical communication channels.

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

EE910: Digital Communication Systems-

Linear Filter Channel

Model for Linear Filter Channel

• If channel input is s(t), output r(t) is given by

$$r(t) = \int_{-\infty}^{\infty} h(\tau)s(t-\tau)d\tau + n(t)$$
 (1)

where h(t) is the impulse response of the linear filter, n(t) is the additive random noise process.

Linear Time-Variant Filter Channel

Model for Linear Time-Variant Filter Channel

- In this case, the linear filter is characterized by time-variant channel impulse response $h(t, \tau)$.
- A typical time-variant channel impulse response $h(t,\tau)$ is of the form

$$h(t,\tau) = \sum_{i=1}^{L} a_k(t)\delta(\tau - \tau_k)$$
 (2)

where the $\{a_k(t)\}$ represents the time-variant attenuation factors for the L multipath propagation paths and $\{ au_k\}$ are the corresponding time delays.