Dynamic Programming	D
- Sequential decision making action . Stochastic problem: $\max_{a} \left[E\left[f(a, X) \right] \right]$	
If actions interleave healization of handom was a, a2(a,xi) a3() x1 x2 x7	² 55 15
Later actions can depend on realized rando - Stochastic DP - 5 components	
i) Horizon $T \Rightarrow$ discrete periods 1,2,, T ii) State - $s_t \in S = (concise)$ Summary of history of procoss (finite) $a_t \in A(s_t) = control$ in each periods	iad
iv) Randomness Disturbance Noise = X_t in period to - cletenmines transition $P(S_{t+1} S_t, a_t)$ v) Reward Cost = $R(S_t, a_t, X_t)$ or $R_t(S_{t+1} S_t)$	

· Backward induction

-
$$V_{t}(s) \stackrel{\triangle}{=} maximum possible total expected
Nalue function' Neward over Peniods t, t+1,..., T$$

$$V_{T}(s) = \max_{\alpha \in A(s)} \sum_{x \in S} P(x|s,\alpha) R(x|s,\alpha)$$
Bellman Eqn

$$\bigvee_{t}(s) = \max_{\alpha \in A(s)} \sum_{x \in s} P_{t}(x|s,\alpha) \left(R(x|s,\alpha) + \bigvee_{t+1}(x) \right)$$

$$V_{t}(s) = \max_{\alpha} \mathbb{E} \left[\mathbb{E$$