10. Nombres réels

Exercice 1. (c) Soient A et B deux parties non vides de \mathbb{R} telles que $\forall (a,b) \in A \times B, \ a \leq b$.

Montrer que $\sup(A)$ et $\inf(B)$ existent et que $\sup(A) \leq \inf(B)$. A-t-on égalité?

Exercice 2. (m) Soit A une partie bornée de $\mathbb R$ non vide. On note $D=\{|x-y|,\ x,y\in A\}.$

- 1) Montrer que D est non vide et majorée et que $\sup(D) \leq \sup(A) \inf(A)$.
- 2) Montrer que $\sup(D) = \sup(A) \inf(A)$. Que peut-on dire de $\inf(D)$?

Exercice 3. (m) Soient A et B deux parties non vides bornées de \mathbb{R} .

- 1) Montrer que $A \cup B$ est bornée et que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
- 2) Enoncer et montrer un résultat analogue pour $\inf(A \cup B)$.
- 3) Qu'en est-il de $A \cap B$?

Exercice 4. (i) Soit A une partie bornée non vide de \mathbb{R} et $\lambda \in \mathbb{R}$.

Que pensez-vous de $\sup(\lambda A)$ et $\inf(\lambda A)$ où $\lambda A = \{\lambda a, a \in A\}$? Le démontrer.

Exercice 5. (m) Soit $n \in \mathbb{N}^*$. On pose $f_n : \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{n}{x} + x \end{cases}$.

- 1) Tracer le graphe de f_n . En déduire que $\left\{\frac{n}{k} + k, \ k \in \mathbb{N}^*\right\}$ admet une borne inférieure que l'on note a_n et vérifier que $a_n \geq 2\sqrt{n}$.
- 2) Préciser la valeur de a_1 . Étudier l'existence et la valeur éventuelle de $\inf_{n \in \mathbb{N}^*} (a_n)$ et de $\sup_{n \in \mathbb{N}^*} (a_n)$.

Exercice 6. © Déterminer les bornes supérieures/inférieures des ensembles suivants, si elles existent. On précisera également si ce sont des maxima/minima :

- 1) $\left\{a+\frac{b}{n}, n \in \mathbb{N}^*\right\}$ où $a,b \in \mathbb{R}_+^*$.
- $2) \left\{ \frac{\ln(n)}{n}, \ n \in \mathbb{N}^* \right\}.$
- $3) \ \{ne^n, \ n \in \mathbb{Z}\}.$
- 4) $\left\{\frac{(-1)^n}{n}, n \in \mathbb{N}^*\right\}$.
- 5) $\left\{ (-1)^n (1 \frac{1}{n}), n \in \mathbb{N}^* \right\}$.
- 6) $\left\{\frac{1}{n} \frac{1}{p}, (n, p) \in (\mathbb{N}^*)^2\right\}$.

Exercice 7. (m) Soient I_1 et I_2 deux intervalles de \mathbb{R} tels que $I_1 \cap I_2 \neq \emptyset$. Montrer que $I_1 \cap I_2$ et $I_1 \cup I_2$ sont des intervalles de \mathbb{R} .

Exercice 8. (i) Montrer que $\sqrt{2} + \sqrt{3}$ est irrationnel puis que $\sqrt{2} + \sqrt{3} + \sqrt{6}$ est irrationnel.

Exercice 9. (m) Soit $\lambda \in [0,1[$. Montrer qu'il existe un unique $n \in \mathbb{N}^*$ tel que

$$\frac{n-1}{n} \le \lambda < \frac{n}{n+1}.$$

Exercice 10. (m) Soient $x, y \in \mathbb{R}$. Montrer que $\lfloor x \rfloor + \lfloor x + y \rfloor + \lfloor y \rfloor \leq \lfloor 2x \rfloor + \lfloor 2y \rfloor$.

Exercice 11. (m) Soit $n \in \mathbb{N}^*$ et soit $x \in \mathbb{R}$. Montrer que $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$.

Exercice 12. (i) Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Montrer que $\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor$.

Exercice 13. (i) Soit $n \in \mathbb{N}^*$.

- 1) Démontrer qu'il existe deux entiers p_n et q_n tels que $(2+\sqrt{3})^n=p_n+\sqrt{3}q_n$.
- 2) Démontrer que pour ces mêmes entiers, on a $(2-\sqrt{3})^n=p_n-\sqrt{3}q_n$.
- 3) En déduire que $\left| (2+\sqrt{3})^n \right|$ est impair.

Exercice 14. (i) Montrer que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \left\lfloor \frac{2k}{3} \right\rfloor = \left\lfloor \frac{n^2}{3} \right\rfloor$.

Exercice 15. (i) Montrer que tout disque ouvert du plan contient un point à coordonnées rationnelles.

Exercice 16. © Montrer que toute partie A contenant une partie dense de \mathbb{R} est dense.

Exercice 17. (m) Montrer que $\{x^3, x \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Exercice 18. (m) Soient A et B deux parties de \mathbb{R} . On note :

$$A+B=\{a+b,\ (a,b)\in A\times B\} \text{ et }AB=\{ab,\ (a,b)\in A\times B\}.$$

Montrer que si A et B sont denses dans \mathbb{R} , il en est de même pour A + B et AB.

Exercice 19. (m) Soit $f: \mathbb{R} \to \mathbb{R}$ croissante telle que $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y).

- 1) Montrer que $\forall n \in \mathbb{N}, \ f(n) = nf(1)$, puis que $\forall n \in \mathbb{Z}, \ f(n) = nf(1)$.
- 2) En déduire que $\forall q \in \mathbb{Q}, \ f(q) = qf(1).$
- 3) Montrer enfin que $\forall x \in \mathbb{R}, \ f(x) = xf(1).$

Exercice 20. (i) Soit $x \in \mathbb{R}$. Montrer que le développement décimal de x est périodique à partir d'un certain rang si et seulement si x est rationnel.

Exercice 21. (*) Soit $f:[0,1] \to [0,1]$ une application croissante. On pose $A = \{x \in [0,1] / f(x) \ge x\}$.

- 1) Montrer que A admet une borne supérieure.
- 2) Montrer que $\sup(A)$ est un point fixe de f. On rappelle que α est un point fixe de f si $f(\alpha) = \alpha$.