VQ-VAE に基づく解釈可能な アクセント潜在変数を用いた多方言音声合成

山内一輝, 齋藤 佑樹, 猿渡洋(東京大学)

音声サンプルはこちら↑

概要:方言音声合成の課題&提案手法

- 方言音声合成
 - ■標準語と異なる韻律体系をもつ方言の音声合成を目指す
 - ■課題: 話者数が限られた方言のアクセント辞書不足
- ■提案手法
 - ■方言に応じたアクセント潜在変数(ALV)予測
 - ■任意話者による参照音声を用いた ALV transfer

Pitch-Accent (Osaka dialect) Speaker ID Accent embedding arigatou Phoneme embedding

提案手法:方言に応じたALV予測と任意話者によるALV transfer

Reference encoder

- ■参照音声からアクセント潜在変数(ALV)[1]を抽出
 - ■音声の韻律特徴量を4クラスに量子化
 - ■日本語のアクセントは4段階と考えられている
- ■Bottleneck (BN) 特徴量[2]を利用
 - ■単語の弁別にはアクセント情報が必要
 - ■話者性に関する情報をあまり含まない

ALV predictor

- ■テキストのみから方言に応じて ALV を予測
 - ■Phoneme-Level BERT[3]を活用
 - ■現状の方言音声コーパスのサイズは限定的
 - ■テキスト(Wikipediaコーパス)で事前学習
 - ■書記素(単語)予測タスクで事前学習
 - ■方言IDを入力することで目的方言を指定

推論時は,参照音声を入力する ALV transfer か, テキストからのALV予測 (TTS) が可能.

提案モデルのアーキテクチャ. 学習は2段階に分けられる. Stage1でReference encoderとTTSモデルが, Stage2でALV predictorが学習される.

実験的評価とALVの分析

実験条件 ■JSUT[4]: 標準語音声コーパス(約7700発話) データセット ■JMD[5]: **多方言**音声コーパス(各**1300**発話) ■CPJD[6]:多方言音声コーパス(各250発話)

■TTSモデル: FastSpeech2[7] モデル設定

■Vocoder: HiFi-GAN[8] UNIVERSAL V1

■ASRモデル: Whisper-v2[9]

■FS2: Original FastSpeech2 比較モデル ■FS2-AP: ALV PredictorでALV予測

■FS2-REF: 参照音声からALVを抽出

■N-MOS: 音声の自然性(5段階) 主観評価 ■D-MOS: アクセントの目的方言らしさ(5段階)

Intra-dialect TTS: 目的方言が目的話者の母方言と同じ

実験結果

手法	話者(方言)	N-MOS	D-MOS
FS2	JMD(大阪)	2.91 ± 0.120	3.15 ± 0.145
FS2-AP	JMD(大阪)	2.91 ± 0.120	3.15 ± 0.151
FS2-REF	JMD(大阪)	2.88 ± 0.131	3.26 ± 0.153
REF	CPJD(大阪)	4.39 ± 0.105	4.18 ± 0.132

Cross-dialect TTS: 目的方言が目的話者の母方言と異なる

手法	話者(方言)	N-MOS	D-MOS
FS2	JSUT(標準語)	3.48 ± 0.114	2.46 ± 0.141
FS2-AP	JSUT(標準語)	3.44 ± 0.100	3.04 ± 0.156
FS2-REF	JSUT(標準語)	3.49 ± 0.104	3.11 ± 0.154
REF	CPJD(大阪)	4.08 ± 0.114	4.10 ± 0.130

- ※目的方言は大阪方言. MOS 評価の受聴者数は35人, 1人の評価回数は24
- ■評価結果まとめ
 - ■Intra-dialect TTSにおいて, アクセントのカス ケードモデリングによる性能劣化は起きなかった
 - ■Cross-dialect TTSにおいて, 合成音声の大阪方 言らしさが向上
 - ■未知話者による音声を用いたALV transferにより 合成音声の大阪方言らしさが向上
- ■今後の展望: Human Feedbackを用いた ALV predictorの継続改善
- ■謝辞: 本研究は, JST, ACT-X, JPMJAX23CB の支援を受けたものである

韻律特徵量: FO vs. BN

特徴	N-MOS	D-MOS	
FO	3.33 ± 0.109 3.49 ± 0.104	2.87 ± 0.143	
BN	3.49 ± 0.104	3.11 ± 0.154	

- ■BN特徴量の方がN-MOS, D-MOSともに高い
- ■F0は話者非依存な特徴量に するため発話単位で正規化 → 性能劣化の要因の1つ

※コードブック崩壊解消の工夫後

ALV class ID

ALVの分析

ALVクラスID毎のlog F0の分布