Funkce ledvin

- 1) Homeostatické udržování stálosti vnitřního prostředí
 - a) vodní hospodářství
 - b) elektrolytové hospodářství
 - c) pH
 - d) osmotické poměry
- 2) Hlavní cesta eliminace
 - a) produktů metabolismu
 - b) toxických látek, katabolitů, farmak
- 3) Dlouhodobé regulace SAT
- 4) Endokrinní funkce (renin, erytropoetin, kalcitriol)

pouzdro

dutina Bowmanova pouzdra

glomerulus

Bowmanovo pouzdro

FUNKČNÍ STRUKTURA LEDVIN A RENÁLNÍHO KREVNÍHO PRŮTOKU

TLAKOVÉ POMĚRY V NEFRONU A V LEDVINÁCH

V dutině Bowmanova pouzdra	2,4
V distálním tubulu	1,3
Tlak renálního intersticia	0,8
Koloidně osmotický tlak krevní plazmy	3,3
	4,8

Látka	Profiltrováno	Vyloučeno	
	(mmol/den)	(mmol/den)	
sodík	26 000	150	
draslík	900	150	
kalcium	270	3,5	
hořčík	200	6	
chlorid	19 000	200	
sulfát	65	25	
urea	900	440	
kys. močová	30	4	
glokosa	900	<5	

Opracování různých složek plazmy u dospělého zdravého člověka při vyvážené stravě

Látka	Za 24 hodin				Resorbovaný	Lokalizace
Latka	Filtrováno	Resorbováno	Secerováno	Vyloučeno	podíl	Lokalizace
Na ⁺ (meq)	26,000	25,850		150	99,4	P,L,D,C
K ⁺ (meq)	600	560 ²	50 ²	90	93,3	P,L,D,C
Cl ⁻ (meq)	18,000	17,850		150	99,2	P,L,D,C
HCO-3	4,900	4,900		0	100	P,D
Urea (mmol)	870	460 ³		410	53	P,L,D,C
Creatinine(mmol)	12	14	14	12		
Kys. močová	50	49	4	5	98	Р
Glukosa (mmol)	800	800		0	100	Р
Total solute (mosm)	54,000	53,400	100	700	98,9	P,L,D,C
Voda (mL)	180,000	179,000		1000	99,4	P,L,D,C

¹ P- proximální tubulus, L - Henleova klička, D- distální tubulus, C-sběrací kanálek

Draslíkové ionty jsou resorbovány i secerovány

³ Močovina se pohybuje oběma směry – z nefronu do intersticia a naopak

⁴ Proměnlivá sekrece a pravděpodobná reabsorpce kreatininu u člověka

Koncentrace některých fysiologicky významných látek v moči a krvi

1 41.0	Konce	Poměr		
Látka	moči (U)	plasmě (P)	U/P	
Glukosa (mg/100ml)	0	100	0	
Na+ (mekv/l)	90	150	0,6	
Urea (mg/100ml)	900	15	60	
Kreatinin (mg/100ml)	150	1	150	

Autoregulace v ledvinách

Glomerulární filtrát

125ml/min

RESORPCE

H₂O

Proximální tub.

Henleova klička

Distální tub.

Sběrací kanál

Definit. moč

65

15

10

9,3

0,7

Odpověď ledviny na stupňované dráždění renálních nervů

Frekvence dráždění (Hz)	RSR	U _{Na} V	GF	PKL
0,25	Žádný vliv na bazální hodnoty; zvyšuje RSR nikoli nervovým mechanismem	0	0	0
0,50	Zvýšena báze změn U _{Na} V, GF či PKL	0	0	0
1,0	Zvýšena; pokles U _{Na} V beze změny GF či PKL		0	0
2,50	Zvýšena; pokles U _{Na} V, GF a PKL	1	1	

ZÁKLADNÍ PROCESY RENÁLNÍCH FUNKCÍ:

- 1) Glomerulární filtrace
- 2) Tubulární resorpce
- 3) Tubulární sekrece
- 4) Průtok krve ledvinami

GLOMERULÁRNÍ FILTRACE

dutina Bowmanova pouzdra

glomerulus

Bowmanovo pouzdro

kapilára

slepý konec kanálu

vas afferens

vas efferens

bazální membrána endotelová buňka podocyt lumen kapiláry podocyt

BAZÁLNÍ MEMBRÁNA

KREV

Endotelové buňky

Podocyt

Mesanagiální buňka

Látky, vyvolávající kontrakci či relaxaci mesagiálních buněk

Kontrakce	Relaxace
Angiotensin II	ANP
Vasopresin	Dopamin
Destičky aktivující faktor(PAF)	PGE ₂
Thromboxan A ₂	
PGF ₂	
Leukotrieny C a D	
Histamin	

TLAKOVÉ POMĚRY URČUJÍCÍ GLOMERULÁRNÍ FILTRACI

Permeabilita filtračního endotelu 500x vetší než u systémových kapilár permeability inulinu = 1

Tlak v glomerulárních kapilárách Tlak v Bowmanově pouzdře Koloidně osmotický tlak krevní plasmy Průměrný efektivní filtrační tlak

+8 kPa

- 2,39 kPa

- 3,3 kPa

2-2,3 kPa

FAKTORY URČUJÍCÍ VELIKOST GF

změny systémového krevního tlaku

tlak v glomerulárních kapilárách

stupeň vasokonstrikce (vasodilatace) ve vas afferens et efferens

inervace hladké cévní svaloviny v ledvinách

hydrostatický tlak v Bowmanově pouzdře

koncentrace plasmatických proteinů

tlak v ledvinném pouzdře

permeabilita filtračníhch kapilár

funkce mesangiálních buněk

velikost filtračního povrchu

vliv uzávěru intrarenálních, resp. extrarenálních cest (kupříkladu ucpávání

ureteru)

otok ledviny

Тур	Tkáň	účinky
	Většina inervované cévní hladké svaloviny	Kontrakce
	Musculus dilator pupilae	Kontrakce (mydriáza)
Alfa ₁	Pilomotorická hladká svalovina	Vzpřímení vlasů a chlupů
	Játra potkana	Glykogenoláza
	Srdce	Zvětšení síly stahu
	Postsynaptické adrenergní mnohotné	Pravděpodobně receptory CNS
	Trombocyty	Agregace
Alfa ₂	Adrenergní a cholinergní nervová zakotvení	Inhibice uvolnění přenašeče
	Cévní hladká svalovina v některých lokalizacích	Kontrakce
	Tukové buňky	Inhibice lipolýzy
Beta ₁	Srdce	Zvýšení síly a frekvence stahů
	Hladká svalovina dělohy a respiračního traktu	Vyvolává relaxaci hladké svaloviny
Beta ₂	Kosterní svalovina	Vyvolává vychytávání draslíku do buněk
	Játra člověka	Aktivace glokogenolýzy