

EXERCICE DE COLLE 4 STATIQUE — ACTIONS MECANIQUES

Action de contact entre solides

Un arbre 2 est en liaison pivot glissant par rapport à un bâti 1. Il supporte une action mécanique de contact en M définit par $\overrightarrow{OM} = R\overrightarrow{u} + y\overrightarrow{y}$ et $\alpha = (\overrightarrow{x}, \overrightarrow{u})$. De plus $\{\mathcal{V}(2/1)\} = \{0\}$.

Hypothèse 1 : l'action de contact en M est due à une pression uniforme p pour $\alpha \in [0; \pi]$ indépendante de y.

- a. Donner la forme locale de l'effort de 1 sur 2.
- b. En déduire le torseur des actions de contact de 1 sur 2 en 0.

Hypothèse 2 : on suppose que l'action de contact en M est due à une pression p de loi sinusoïdale : $P(\alpha) = P \sin \alpha$ pour $\alpha \in [0; \pi]$ indépendante de y.

- a. Donner la forme locale de l'effort de 1 sur 2.
- b. En déduire le torseur des actions de contact de 1 sur 2 en 0.