# 1주차 3차시 정보의 표현과 저장

### [학습목표]

- 1. 컴퓨터가 한 번에 처리할 수 있는 데이터의 양에 대해서 설명할 수 있다.
- 2. 진법 변환을 예를 들어 설명할 수 있다.

### 학습내용1 : 컴퓨터 정보의 표현과 저장

### 1. 컴퓨터에서 정보의 표현

〈컴퓨터에서는 데이터 1비트를 기본으로 0, 1 두 개의 숫자를 표시하는 2진법을 사용함〉

#### 1) 비트(Bit)

- 2진수에서 데이터를 표현하는 단위
- 2진수의 조합은 2<sup>n</sup>만큼의 조합을 가질 수 있고, n은 비트의 수

#### 2) 중세의 계산기

- 정보처리를 위해 사용되는 비트의 집합으로 8bit를 1byte로 규정

#### 3) 워드(word)

- 컴퓨터가 한 번에 처리할 수 있는 데이터의 양
- 컴퓨터 종류에 따라 2바이트, 4바이트, n바이트 등으로 구성되며, 일반적으로 32비트(4바이트)가 가장 많이 쓰이고 있음

4) 비트당 사용 가능한 2진수의 조합 : 2<sup>n</sup>

| 비트당 사용 가능한 2진수의 조합 |              |     |              |
|--------------------|--------------|-----|--------------|
| 비트수                | 사용가능한 2진수 조합 | 비트수 | 사용가능한 2진수 조합 |
| 1                  | 2            | 5   | 32           |
| 2                  | 4            | 6   | 64           |
| 3                  | 8            | 7   | 128          |
| 4                  | 16           | 8   | 256          |

#### 5) 디지털 정보의 표현 단위(비트)

| 이름   | 약어 | 크기                                  |
|------|----|-------------------------------------|
| kilo | к  | 210 = 1,024                         |
| Mega | М  | 2 <sup>20</sup> = 1,048,576         |
| Giga | G  | 2 <sup>30</sup> = 1,073,741,824     |
| Tera | Т  | 2 <sup>40</sup> = 1,099,511,627,776 |

# 학습내용2 : 수의 진법

#### 1. 10진법(Decimal Notation)

〈인간이 사용하는 수의 체계로 0, 1, 2, 3, 4, 5, 6, 7, 8, 9의 열 가지의 기호를 이용하여 수를 표현〉

- 각 자리에서 9 다음에 자리 올림이 발생
- $\rightarrow$  이때 자리 올림으로 생성된 각 자리의 단위는 10의 지수 승 $(10^N)$ 이 됨
- 10진수의 표시
- :  $(528)_{10} = 5 \times 10^2 + 2 \times 10^1 + 8 \times 10^0$

# 2. 2진법(Binary notation)

〈컴퓨터에서 사용하는 수 체계로 0과 1만을 가지고 수를 표현〉

- 각 자리에서 1 다음에 자리 올림이 발생
- $\rightarrow$  이때 자리올림으로 생성되는 각 자리의 단위는 2의 지수 승 $(2^N)$ 이 됨
- 다른 진법과 구별을 하기 위해서 첨자로 2를 표시함
  - 2진수 101은 (101)₂로 표현
- 2의 지수 승 분해함
  - $-(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

### 3. 10진수와 2진수의 비교

| 10 진수 | 2진수  | 10진수 | 2진수  |
|-------|------|------|------|
| 0     | 0000 | 5    | 0101 |
| 1     | 0001 | 6    | 0110 |
| 2     | 0010 | 7    | 0111 |
| 3     | 0011 | 8    | 1000 |
| 4     | 0100 | 9    | 1001 |

### 4. 8진법(Octal notation)

〈숫자들이 0, 1, 2, 3, 4, 5, 6, 7 등 8가지의 문자를 이용하여 구성함〉

- 각 자리에서 7 다음에 자리 올림이 발생함
- $\rightarrow$  이때 자리올림으로 생성되는 각 자리의 단위는 8의 지수 승 $(8^N)$ 이 됨
- 8진수의 표현은 8의 아래 첨자를 이용해서 표현함
  - 예 : (27)<sub>8</sub>
- 8의 지수 승으로 분해하면 다음과 같음
  - $-(27)_8 = 2 \times 8^1 + 7 \times 8^0$

| 10진수, 2진수, 8진수와의 관계 |              |     |  |
|---------------------|--------------|-----|--|
| 10진수                | 2진수(2진화 8진수) | 8진수 |  |
| 0                   | 000          | 0   |  |
| 1                   | 001          | 1   |  |
| 2                   | 010          | 2   |  |
| 3                   | 011          | 3   |  |
| 4                   | 100          | 4   |  |
| 5                   | 101          | 5   |  |
| 6                   | 110          | 6   |  |

| 10진수, 2진수, 8진수와의 관계 |              |     |  |
|---------------------|--------------|-----|--|
| 10진수                | 2진수(2진화 8진수) | 8진수 |  |
| 7                   | 111          | 7   |  |
| 8                   | 001000       | 10  |  |
| 9                   | 001001       | 11  |  |
| 10                  | 001010       | 12  |  |
| 11                  | 001011       | 13  |  |
| 12                  | 001100       | 14  |  |
| 13                  | 001101       | 15  |  |

### 5. 16진법(Hexadecimal Notation)

〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9와 A, B, C, D, E, F 기호를 사용함〉

- 10진법의 10~15까지의 수가 16진법에서는 A, B, C, D, E, F로 표현
- 각 자리에서 15 다음에 자리 올림이 발생함
- $\rightarrow$  이때 자리올림으로 생성되는 각 자리의 단위는 16의 지수 승 $(16^N)$ 이 됨
- 16진수의 표현은 16의 아래 첨자를 이용해서 표현 : (12FF)<sub>16</sub>
- 16의 지수 승으로 분해
  - $-(12FF)_{16} = 1 \times 16^3 + 2 \times 16^2 + F \times 16^1 + F \times 16^0$

| <b>16</b> <sup>5</sup> | 16 <sup>4</sup> | 16³ | 16 <sup>2</sup> | 16 <sup>1</sup> | 16º |
|------------------------|-----------------|-----|-----------------|-----------------|-----|
| 0                      | 0               | 1   | 2               | F               | F   |

### 6. 2진수, 10진수, 16진수와의 관계

| 10진수 | 2진 <del>수</del> (2진화 16진 <del>수</del> ) | 16진수 |
|------|-----------------------------------------|------|
| 0    | 0000                                    | 0    |
| 1    | 0001                                    | 1    |
| 2    | 0010                                    | 2    |
| 3    | 0011                                    | 3    |
| 4    | 0100                                    | 4    |
| 5    | 0101                                    | 5    |
| 6    | 0110                                    | 6    |

| 10진수 | 2진 <del>수(</del> 2진화 16진 <del>수</del> ) | 16진수 |
|------|-----------------------------------------|------|
| 7    | 0111                                    | 7    |
| 8    | 1000                                    | 8    |
| 9    | 1001                                    | 9    |
| 10   | 1010                                    | Α    |
| 11   | 1011                                    | В    |
| 12   | 1100                                    | С    |
| 13   | 1101                                    | D    |

| 10진수 | 2진 <del>수(</del> 2진화 16진수) | 16진수 |
|------|----------------------------|------|
| 14   | 1110                       | E    |
| 15   | 1111                       | F    |
| 20   | 0001 0100                  | 14   |
| 50   | 0011 0010                  | 32   |
| 248  | 1111 1000                  | F8   |

학습내용3 : 진법 변환

- 1. 10진법과 2진법 간의 변환
- 각 진법에서 진수를 진법의 지수 승으로 표현하게 되면
- $\rightarrow$  M  $\times$  B<sup>E</sup>
- \* 가수(significand) M
- 10진법에서는 0 ~ 9까지의 값, 2진법에서는 0과 1의 값
- 8진법에서는 0 ~ 7까지의 값, 6진법에서는 0 ~ F까지의 값
- \* 기수(base) B
- 10진법에서는 10이 되며, 2진법에서는 2가 됨
- 또한 8진법에서는 8이고 16진법에서는 16이 됨

지수(exponent) E 정수의 값

#### 2. 2진법과 10진법으로 변환

- 2진법에서 10진법으로 변환함
- → 이진수를 2의 지수 승으로 분해하고 그 합을 구하면 10진수가 얻어짐
- \* 예시

 $(11001011001)_2$ 

$$= 1 \times 2^{10} + 1 \times 2^{9} + 0 \times 2^{8} + 0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 1024 + 512 + 64 + 16 + 8 + 1$$

 $= (1625)_{10}$ 

### 3. 10진법에서 2진법으로 변환

$$-10^{n} + 10^{n-1} + \cdots + 10^{0}$$
로 표현되는 수 체계가  $2^{m} + 2^{m-1} + \cdots + 2^{1} + 2^{0}$ 로 표현되는 수 체계로 변환

\* 예시

 $(1463)_{10}$ 

$$= 1 \times 10^{3} + 4 \times 10^{2} + 6 \times 10^{1} + 3 \times 10^{0}$$
$$= A_{m} \times 2^{m} + A^{m-1} \times 2^{m-1} + \cdots + A_{1} \times 2^{1} + A_{0} \times 2^{0}$$

$$(1463)_{10}$$

$$=1\times2^{10} + 0\times2^9 + 1\times2^8 + 1\times2^7 + 0\times2^6 + 1\times2^5 + 1\times2^4 + 0\times2^3 + 1\times2^2 + 1\times2^1 + 1\times2^0$$

- 결과적으로 화살표 방향으로 읽으면 2진수 (10110110111)<sub>2</sub>을 구할 수 있음
- $-(1463)_{10} = (10110110111)_2$

#### 4. 10진법과 8진법 간의 변환

- 10진법에서 8진법으로 변환

$$(314)_{10} = 3 \times 10^{2} + 1 \times 10^{1} + 4 \times 10^{0}$$

$$= A_{m} \times 8^{m} + A_{m-1} \times 8^{m-1} + \cdots + A_{1} \times 8^{1}$$

$$+ A_{0} \times 8^{0}$$

$$(314)_{10} = 4 \times 8^{2} + 7 \times 8^{1} + 2 \times 8^{0} = (472)_{8}$$

#### 5. 10진법과 16진법 간의 변환

$$(4832)10 = 4 \times 10^{3} + 8 \times 10^{2} + 3 \times 10^{1} + 2 \times 10^{0}$$
  
=  $1 \times 16^{3} + 2 \times 16^{2} + 14 \times 16^{1} + 0 \times 16^{0}$   
=  $(12E0)_{16}$ 

- 10진법에서 16진법으로 변환

$$(958)_{10} = 9 \times 10^{2} + 5 \times 10^{1} + 8 \times 10^{0}$$
  
=  $1 \times 16^{3} + 2 \times 16^{2} + 14 \times 16^{1} + 0 \times 16^{0}$   
=  $(12E0)_{16}$   
=  $3 \times 16^{2} + 8 \times 16^{1} + E \times 16^{0} = (3BE)_{16}$ 



#### 6. 2진법과 8진법 간의 변환

1) 2진법에서 8진법으로 변환: (110010111110)2

① 1단계: 3비트씩 그룹화 - (110 010 111 110)<sub>2</sub>

② 2단계 : 각 3비트씩 10진수로 변환 - (1100101111110)<sub>2</sub> = (6276)<sub>8</sub>

2) 8진법에서 2진법으로 변환: (1374)8

① 1단계 : 각 자리별로 2진수로 변환 - (1374)<sub>8</sub> = (001 011 111 100)<sub>2</sub>

② 2단계 : 3비트씩 구분된 2진수를 하나의 비트열로 만듦 -  $(001\ 011\ 111\ 100)_2$  =  $(10111111100)_2$ 

### 7. 2진법과 16진법 간의 변환

1) 2진법에서 16진법으로 변환: (0011001011111000)2

① 1단계: 4비트씩 그룹화 - (0011 0010 1111 1000)<sub>2</sub>

② 2단계: 4비트 단위로 10진수로 변환 - (110 010 111 110)<sub>2</sub> = (3 2 15 8)<sub>10</sub>

③ 3단계: 중간 단계의 10진수를 각각 16진수로 변경 - (1100101111110)<sub>2</sub> = (3 2 15 8)<sub>10</sub> = (3 2 F 8)<sub>16</sub>

- 2) 16진법에서 2진법으로 변환: (C4D2)<sub>16</sub>
- ① 1단계: 각 자리별로 10진수로 변환
- $(C4D2)_{16} = (12 \ 4 \ 13 \ 2)_{10}$
- ② 2단계: 변환된10진수를 각 자리별로 2진수로 변환
- $-(C4D2)_{16} = (12 \ 4 \ 13 \ 2)_{10} = (1100 \ 0100 \ 1101 \ 0010)_{2}$
- ③ 3단계: 변환된 2진수를 16비트의 비트열로 만듦
- $-(C4D2)_{16} = (1100010011010010)_2$
- 8. 8진법과 16진법 간의 변환
- 1) 8진법에서 16진법으로 변환: (5323)8
- ① 1단계: 8진수의 각 자리별로 3비트의 2진수로 변환
- $-(5323)_8 = (101\ 011\ 010\ 011)_2$
- ② 2단계 : 변환된 2진수를 4비트 단위로 재분할하고 10진수로 변환
- $-(101\ 011\ 010\ 011)_2 = (1010\ 1101\ 0011)_2 = (10\ 13\ 3)_{10}$
- ③ 3단계: 중간 단계의 10진수를 16진수로 변경
- $(101\ 011\ 010\ 011)_2 = (10\ 13\ 3)_{10} = (A\ D\ 3)_{16}$
- 2) 16진법에서 8진법으로 변환: (4B2)<sub>16</sub>
- ① 1단계 : 각 자리별로 10진수로 변환
- $(4B2)_{16} = (4 \ 11 \ 2)_{10}$
- ② 2단계 : 변환된 10진수를 각 자리별로 4비트의 2진수로 변환
- $-(4B2)_{16} = (4 \ 11 \ 2)_{10} = (0100 \ 1011 \ 0010)_2$
- ③ 3단계: 변환된 2진수를 3비트씩 재분할하고 8진수로 변환
- $-(0100\ 1011\ 0010)_2 = (010\ 010\ 110\ 010)_2 = (2262)_8$

### [학습정리]

- 1. 컴퓨터는 기본적으로 0과 1만 인식하는 2진법의 체계를 갖추었기 때문에 2진수를 기본으로 인지한다.
- 2. 진법 간의 변환에 대해 개념을 확실하게 이해하여야 한다.