$$ax = c \Longrightarrow x = \frac{c}{a}$$
; $(a \ne 0)$ tek *lineer denklem* ve çözümü

$$ax + by = e$$

$$cx + dy = f$$

$$x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$
(ad - bc \neq 0) İki tane *lineer denklem* ve çözümü (Basit eliminasyon)

$$c_{11}x^{2}y + c_{12}ye^{x} = d_{1}$$

$$c_{21}xy^{3} + c_{22}\sin x \sqrt{y} = d_{2}$$

İki Tane Lineer Olmayan Denklem; Bilinmeyenler x ve y

Lineerlik:

- Denklemlerde tüm bilinmeyenler direk olarak sadece belli sabit katsayılarla çarpılıyorlar
- Her bir bilinmeyen ayrı ayrı gözüküyor
- Bilinmeyenlerin karesi, karekökü, üsleri, çeşitli fonksiyonları veya birbirleri ile çarpımları/bölümleri/üs işlemleri vb. yok

Lineerlik (Genel Tanım)

 $A: D \to R$ operatörü bir D kümesinin elemanlarını bir R kümesinin elemanlarına dönüştüren bir operatör olsun A operatörünün (işlemci) üzerine etkidiği iki büyüklük $x \in D$ ve $y \in D$ ve α ve β iki sabit olmak üzere $A(\alpha x + \beta y) = \alpha Ax + \beta Ay$ sağlanıyorsa A lineerdir.

Örnek: Reel fonksiyonların belirli bir aralıktaki Riemann anlamında belirli integrali bir operatör gibi düşünülebilir. Açıktır ki bu integral operatörü <u>Lineer</u>dir.

Örnek:
$$Lu=a_2\frac{d^2u}{dx^2}+a_1\frac{du}{dx}+a_0u$$
 diferansiyel operatörü Lineerdir

Örnek: T
$$u=u\frac{d^2u}{dx^2}+f(x)\frac{du}{dx}+u^2$$
 diferansiyel operatörü Lineer Değildir.

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_2 \end{array}$$

n tane bilinmeyen içeren n tane lineer denklem \implies Lineer Denklem Sistemi

Lineer Denklem Sisteminin Matris-Vektör Çarpımı Gösterilimi

$$Ax = b$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}; i, j = 1, 2, \dots, n$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}^T$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} b_1, b_2, \dots, b_n \end{bmatrix}^T$$
Matris

Vektör

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [x_1, x_2, \dots, x_n]^T$$
Vektör

$$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = [b_1, b_2, \dots, b_n]^T$$
 Vektör

Klasik Çözüm Tekniği: Eliminasyon

Eliminasyon Versiyonları:

- Gauss Eliminasyonu (Temel Yaklaşım)
- Gauss-Jordan
- > LU Faktörizasyon

 $det A \neq 0 \rightarrow c\ddot{o}z\ddot{u}m$: $x = A^{-1}b$

Lineer Denklem Sistemlerinin Çözümü için İteratif Yöntemler

1. Jacobi Yöntemi

2. Gauss-Seidel Yöntemi

$$9x_1 + x_2 + x_3 = b_1 (E1)$$

$$2x_1 + 10x_2 + 3x_3 = b_2 (E2)$$

$$3x_1 + 4x_2 + 11x_3 = b_3 (E3)$$

$$(E1) \to x_1 = \frac{1}{9} [b_1 - x_2 - x_3]$$

$$(E2) \to x_2 = \frac{1}{10} [b_2 - 2x_1 - 3x_3]$$

$$(E3) \to x_3 = \frac{1}{11} [b_3 - 3x_1 - 4x_2]$$

$$\mathbf{x}^{(\mathbf{0})} = \left[x_1^{(0)}, x_2^{(0)}, x_3^{(0)}\right]$$

Başlangıç değeri (Initial Guess)

$$x_1^{(k+1)} = \frac{1}{9} \left[b_1 - x_2^{(k)} - x_3^{(k)} \right]$$

$$x_2^{(k+1)} = \frac{1}{10} \left[b_2 - 2x_1^{(k)} - 3x_3^{(k)} \right] ; \quad k = 0,1,2,...$$

$$x_3^{(k+1)} = \frac{1}{11} \left[b_3 - 3x_1^{(k)} - 4x_2^{(k)} \right]$$

Jacobi İterasyonu

Vektör ve Matris Normu Tanımlar

Vektör Normu

 ${\it V}$ bir vektör uzayı ve ${\it F}$ reel veya kompleks sayılar cismini göstermek üzere

 $\rho: V \to \mathbb{R}$ fonksiyonu $\forall x, y \in V \ ve \ \forall \beta \in F \ için$

1.
$$\rho(x + y) \le \rho(x) + \rho(y)$$
 Alt Toplamsallık

2.
$$\rho(\beta x) = |\beta| \rho(x)$$
 PozitifHomojenlik

3.
$$\rho(x) = 0 \iff x = 0$$
 Pozitif Tanımlılık

Norm için kullanılan genel notasyon:

$$\rho(\mathbf{x}) = \|\mathbf{x}\|$$

Özelliklerini sağlıyorsa bir Norm dur

n boyutlu bir $\mathbf{z} = [z_1, z_2, ..., z_n]^T$ vektörü göz önüne alalım. Çeşitli **Vektör Normu** tanımları verilebilir:

$$\ell_1$$
 Norm: $\rho(\mathbf{z}) = ||\mathbf{z}|| = |z_1| + |z_2| + \cdots + |z_n|$ (Taxicab Norm (Manhatten Norm))

$$\ell_p \text{ Norm: } \rho(\mathbf{z}) = \|\mathbf{z}\| = (z_1^p + z_2^p + \cdots z_n^p)^{\frac{1}{p}}$$

$$\ell_{\infty}$$
 Norm veya Maximum Norm : $\rho(\mathbf{z}) = \|\mathbf{z}\| = \max_{1 \leq i \leq n} |z_i|$

Matris Normu

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = [a_{ij}]; i, j = 1, 2, \dots, n \quad matrisi \quad verilsin$$

$$A \text{ matrisinin norm} u : ||A|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Normun Özellikleri: y ve z iki vektör; A ve B matrisler olmak üzere

1.
$$||y + z|| \le ||y|| + ||z||$$

2.
$$||A + B|| \le ||A|| + ||B||$$

3.
$$||AB|| \le ||A|| \, ||B||$$

4.
$$||Az|| \le ||A|| \, ||z||$$
 Yakınsaklık/Hata analizinde Bu özelliği kullanacağız!!

Bu toplamların en büyüğü olan sayı A matrisinin normudur

1. Satir:
$$a_{11} \ a_{12} \ \dots \ a_{1n} \rightarrow \left| \sum_{j=1}^{n} |a_{1j}| \right|$$

n. Satir:
$$a_{n1} \ a_{n2} \ \dots \ a_{nn} \to \sum_{j=1}^{n} |a_{nj}|$$

Jacobi Yönteminin Sonuçları

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	hata	oran
0	0	0	0	2	_
1	1,1111	1,9000	0	1	0,5
2	0,9000	1,6788	-0,9939	3,22E-1	0,322
3	1,0351	2,0182	-0,8556	1,44E - 1	0,448
4	0,9819	1,9496	-1,0162	5,04E-2	0,349
5	1,0074	2.0085	-0,9768	2,32E-2	0,462
6	0,9965	1.9915	-1,0051	8,45E - 3	0,364
7	1,0015	2.0022	-0,9960	4,03E - 3	0,477
8	0,9993	1.9985	-1,0012	1,51E - 3	0,375
9	1,0003	2.0005	-0,9993	7,40E-4	0,489
10	0,9999	1.9997	-1,0003	2,83E-4	0,382
30	1,0000	2.0000	-1,0000	3,01E-11	0,447
31	1,0000	2.0000	-1,0000	1,35E-11	0,447

Örneğin
$$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 19 \\ 0 \end{bmatrix}$$

Vektör Normu Yardımıyla Hata Tanımı:

 $hata\ norm \ \coloneqq \|x - x^{(k)}\|; Vekt\"{or}\ Normu \ x$: Gerçek (Tam)Çözüm $x^{(k)}$: k'yıncı adımdaki yaklaşık çözüm

$$\|x - x^{(k)}\| = \max_{1 \le i \le n} |x_i - x_i^{(k)}|$$

 $oran \rightarrow 0.447 \iff k \gg 1$

$$oran = \frac{hata^{(k+1)}}{hata^{(k)}}$$

Gauss-Seidel Yöntemi:

$$9x_1 + x_2 + x_3 = b_1 (E1)$$

$$2x_1 + 10x_2 + 3x_3 = b_2$$
 (E2)

$$3x_1 + 4x_2 + 11x_3 = b_3$$
 (E3)

(E1)
$$\rightarrow x_1 = \frac{1}{9}[b_1 - x_2 - x_3]$$

$$(E2) \to x_2 = \frac{1}{10} [b_2 - 2x_1 - 3x_3]$$

$$(E3) \to x_3 = \frac{1}{11} [b_3 - 3x_1 - 4x_2]$$

2. Denklemde $x_1^{(k+1)}$ kullanılıyor

$$\mathbf{x}^{(0)} = \left[x_1^{(0)}, x_2^{(0)}, x_3^{(0)}\right]$$

Başlangıç değeri (Initial Guess)

$$x_1^{(k+1)} = \frac{1}{9} [b_1 - x_2^{(k)} - x_3^{(k)}]$$

$$x_2^{(k+1)} = \frac{1}{10} \left[b_2 - 2x_1^{(k+1)} - 3x_3^{(k)} \right]$$
; $k = 0,1,2,...$

$$x_3^{(k+1)} = \frac{1}{11} \left[b_3 - 3x_1^{(k+1)} - 4x_2^{(k+1)} \right]$$

Gauss-Seidel Yönteminde güncellenmiş değer hemen bir sonraki denklemde kullanılıyor!!!

3. Denklemde $x_1^{(k+1)}$ ve $x_2^{(k+1)}$ kullanılıyor

Gauss-Seidel Yöntemi:

$$x_1^{(k+1)} = \frac{1}{9} [b_1 - x_2^{(k)} - x_3^{(k)}]$$

$$x_2^{(k+1)} = \frac{1}{10} [b_2 - 2x_1^{(k+1)} - 3x_3^{(k)}]$$
; $k = 0,1,2,...$

$$x_3^{(k+1)} = \frac{1}{11} \left[b_3 - 3x_1^{(k+1)} - 4x_2^{(k+1)} \right]$$

Jacobi den daha hızlı yakınsadığı hemen görülüyor!!!

k	$x_1^{(k)}$	$x_2^{(k)}$	$\chi_3^{(k)}$	hata	þ ran
0	0	0	0	2	_
1	1,1111	1,6778	-0.9131	3,22E-1	0,161
2	1,0262	1,9687	-0,9958	3,13E-2	0,097
3	1,0030	1,9981	-1,0001	3,00E - 3	0,096
4	1,0002	2,000	-1,0001	2,24E-4	0,074
5	1,0000	2.0000	-1,0000	1,65E-5	0,074
6	1,0000	2.0000	-1,0000	2,58E-6	0,156

İteratif Yöntemlerin Genel Prensibi

Ax = b denklemini A = N - P olmak üzere Nx = b + Px formunda yazalım; Öyle ki burada N tekil olmayan (det $N \neq 0$) bir matris olup, Nz = f şeklindeki bir lineer sistemi herhangi genel bir f vektörü için kolayca çözmeye olanak veren bir matris olarak seçilir. Örneğin N diagonal veya tridiagonal olarak seçilebilir. Bu halde iterasyon şeması:

$$9x_1 + x_2 + x_3 = b_1$$
 (E1)
 $2x_1 + 10x_2 + 3x_3 = b_2$ (E2)
 $3x_1 + 4x_2 + 11x_3 = b_3$ (E3)

$$Nx^{(k+1)} = b + Px^{(k)}$$
; $k = 0,1,2,...$

Jacobi Yönteminde:

$$\mathbf{A} = \begin{bmatrix} 9 & 1 & 1 \\ 2 & 10 & 3 \\ 3 & 4 & 11 \end{bmatrix}; \mathbf{N} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 11 \end{bmatrix}; \mathbf{P} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 0 & -3 \\ -3 & -4 & 0 \end{bmatrix}$$

Gauss-Seidel Yönteminde:

$$\mathbf{A} = \begin{bmatrix} 9 & 1 & 1 \\ 2 & 10 & 3 \\ 3 & 4 & 11 \end{bmatrix}; \mathbf{N} = \begin{bmatrix} 9 & 0 & 0 \\ 2 & 10 & 0 \\ 3 & 4 & 11 \end{bmatrix}; \mathbf{P} = \begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Genel bir $A = [a_{ij}]$ matrisi için Jacobi Yönteminde N yi oluştururken A'nın diagonal elemanlarını alıp diğer elemanlar sıfır yapılır

$$N = \begin{bmatrix} a_{11} & 0 & 0 & 0 & \dots & \dots & 0 \\ 0 & a_{22} & 0 & 0 & \dots & \dots & 0 \\ & \dots & & & & \\ & 0 & 0 & 0 & \dots & \dots & a_{nn} \end{bmatrix}; \quad P = N - A$$

$$Nx^{(k+1)} = b + Px^{(k)} ; k = 0,1,2,\dots$$

Genel bir $A = [a_{ij}]$ matrisi için Gauss-Seidel Yönteminde N yi oluştururken A'nın diagonal ve altında kalan elemanlarını alıp diğer elemanlar sıfır yapılır

$$N = \begin{bmatrix} a_{11} & 0 & 0 & 0 & \dots & \dots & 0 \\ a_{21} & a_{22} & 0 & 0 & \dots & \dots & 0 \\ & & & \dots & & & \\ & & & \dots & & & \\ a_{n1} & a_{n2} & \dots & \dots & & a_{nn} \end{bmatrix}; \quad P = N - A$$

$$Nx^{(k+1)} = b + Px^{(k)} ; k = 0,1,2, \dots$$

Yakınsaklık ve Hata Analizi

$$Nx = b + Px$$

$$Nx^{(k+1)} = b + Px^{(k)}$$

$$N(x-x^{(k+1)})=P(x-x^{(k)}) \Rightarrow Ne^{(k+1)}=Pe^{(k)}$$
 $e^{(k)}=x-x^{(k)}$: k'yıncı adımdaki HATA $e^{(k+1)}=N^{-1}Pe^{(k)}$ $e^{(k+1)}=N^{-1}Pe^{(k)}$ $e^{(k+1)}=N^{-1}Pe^{(k)}$ $e^{(k+1)}=N^{-1}Pe^{(k)}$ $e^{(k)}=x-x^{(k)}$: k'yıncı adımdaki HATA $e^{(k)}=N^{-1}Pe^{(k)}$ $e^{(k)}=x-x^{(k)}$: k'yıncı adımdaki HATA

Yakınsaklık için $k \to \infty$ $halinde \|e^{(k)}\| \to \mathbf{0}$ olmalı $\|M\| = \|N^{-1}P\| < \mathbf{1}$

Yakınsaklık ve Hata Analizi

$$e^{(k)} = x - x^{(k)}$$
: k'yıncı adımdaki HATA $\|e^{(k)}\| \leq \|N^{-1}P\|^k \|e^{(0)}\|$

$$\|e^{(k)}\| \le \|N^{-1}P\|^k \|e^{(0)}\|$$

Jacobi Yönteminde:

$$\mathbf{N} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 11 \end{bmatrix}; \mathbf{P} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 0 & -3 \\ -3 & -4 & 0 \end{bmatrix} \Rightarrow \mathbf{M} = \mathbf{N}^{-1} \mathbf{P} = \begin{bmatrix} 0 & -\frac{7}{9} & -\frac{7}{9} \\ -\frac{2}{10} & 0 & -\frac{3}{10} \\ -\frac{3}{11} & -\frac{4}{11} & 0 \end{bmatrix} \Rightarrow ||\mathbf{M}|| = \frac{7}{11} < 1 \Rightarrow \text{Yakınsak!}$$

Gauss-Seidel Yönteminde:

$$\mathbf{N} = \begin{bmatrix} 9 & 0 & 0 \\ 2 & 10 & 0 \\ 3 & 4 & 11 \end{bmatrix}; \mathbf{P} = \begin{bmatrix} 0 & -1 & -1 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{M} = \mathbf{N}^{-1} \mathbf{P} = \begin{bmatrix} 0 & -\frac{1}{9} & -\frac{1}{9} \\ 0 & \frac{1}{45} & -\frac{5}{18} \\ 0 & -\frac{1}{45} & \frac{13}{99} \end{bmatrix} \Rightarrow \|\mathbf{M}\| = \mathbf{0}, 3 < \mathbf{1} \Rightarrow \text{Yakınsak}$$
(Hemde Daha Hızlı)!