

Trasformaciones geométricas

GRADO 7

Contenido

- Trasformaciones
- Plano cartesiano
- Traslación
- Reflexión
- Homotecia
- Rotación
- Actividad

Trasformaciones geométricas

Son...

Definición geométrica

- Movimientos que ocurren sobre un objeto geométrico donde puede modificar o no su forma.
- 1. Desplazamientos traslaciones
- 2. Reflejos *reflexiones*
- 3. Giros rotaciones
- 4. Deformaciones homotecias
- El objeto inicial se denomina primitivo(a) y el objeto final transformado(a).

Ejemplos

Plano cartesiano

Arreglo bidimensional que permite ubicar cualquier punto del plano respecto a un par de rectas perpendiculares llamados ejes cartesianos.

abscisa

• (x,y)

ordenada

Plano cartesiano

- Es importante escribir los ejes correcta y ordenadamente. A continuación describir la pareja de puntos en cada figura.
- (x,y) -> x: dirección horizontal, y: dirección vertical

Traslación

- Consiste en desplazar o empujar un objeto geométrico en cada punto en una dirección, sentido y magnitud.
- El objeto trasformado no gira, no se deforma.
- Requisitos

Dirección	Sentido	Magnitud
Horizontal	Izquierda(-) Derecha(+)	1 unidad, 1 cm 1 Km,
Vertical	Arriba(+) Abajo(-)	1 unidad, 1 cm, 1 Km,

- Como se hace?
- 1. Debe tener una dirección, sentido y magnitud.
- Según la dirección se adiciona (+/-) la magnitud a cada punto del objeto.

Ejemplo. Trasladar el objeto 3 unidades izquierda y 8 unidades abajo

Composición de traslaciones

Una traslación se puede aplicar sucesivamente, es decir, un objeto puede trasladarse varías veces.

Reflexión

- Consiste en ubicar el objeto frente a un espejo, es decir que cada punto quede opuesto respecto a un eje de simetría.
- El objeto reflejado no se deforma.
- Requisitos
 - Opuesto de un entero: es el número con signo opuesto.

Eje simetría	Opuesto	Fijo
Horizontal	Ordenada	Abscisa
Vertical	Abscisa	Ordenada

- Como se hace?
 - Cada punto del plano se refleja con el opuesto.
- Composición: es posible realizar más de una reflexión.

Ejemplo. Reflejar el objeto respecto al eje horizontal.

Homotecia

- Consiste en deformar el objeto respecto a un punto fijo llamado <u>centro de homotecia</u>, conservando la forma pero cambiando de tamaño.
- El objeto transformado tiene ángulos congruentes y lados proporcionales.
- Requisitos

Un factor de ampliación o de reducción **k**.

Homotecia	K	Centro
Ampliación	Mayor a 1	Origen
Reducción	Menor a 1	Origen

Como se hace?Cada punto del plano se multiplica por el factor k.

Ejemplo. Realizar una homotecia de ampliación al doble.

Rotación

- Consiste en girar una figura alrededor de un punto fijo que se denomina centro de <u>rotación</u> o de <u>giro</u>.
- El objeto rotado no se deforma. Las rotaciones pueden ser horarias (en sentido de las agujas del reloj) o anti-horarias.
- Requisitos

Un compás y/o transportador para amplitudes no tan comunes.

Centro giro	Orientación	Amplitud
Origen	Horaria (-)	Grado, vuelta
Origen	Antihoraria (+)	Grado, vuelta

Como se hace?

Cada punto del plano gira respecto al centro según la amplitud.

Tabla de algunas rotaciones simples o comunes

Los grados	Tamaño de la rotación en palabras	Ejemplo
90	Un cuarto de círculo	
180	Medio círculo	
270	Tres cuartos de círculo	9
360	Círculo completo	

Rotación

Tabla práctica de rotaciones comunes en el plano cartesiano.

Punto inicial	Ángulo de giro	Punto final
(y,y)	900	(-y,x)
(y,x)	1800	(-×,-y)
(y,y)	2700	(y,-x)
(×,y)	3600	(×,y)
(y,x)	450°	(-y,y-)

Ejemplo. Rotar el objeto geométrico ¾ de vuelta.

Actividad 1

- Teniendo en cuenta el polígono de la figura, resolver:
- 1) Mencionar el nombre del polígono y su clase (cóncavo, convexo, simple,...)
- 2) Trasladar el objeto primitivo en dirección horizontal 6 unidades izquierda y luego vertical 6 unidades abajo.
- 3) Rotar el objeto primitivo ¼ de vuelta en sentido antihorario (90°).
- 4) Realizar una homotecia de reducción a la mitad del objeto primitivo.

Actividad 2

- Para el polígono de la figura, realiza:
- 1) Clasificación del polígono.
- 2) Trasladar el objeto primitivo en dirección horizontal 6 unidades izquierda y luego vertical 7 unidades abajo.
- 3) Rotar el objeto primitivo ½ vuelta en sentido antihorario (90°).
- 4) Realizar una homotecia de ampliación del doble del objeto primitivo.
- 5) Reflejar el objeto primitivo respecto al eje y.

 Presentar la actividad en hoja examen,
 debidamente marcada en los plazos de
 tiempo establecidos.

