

RV College of Engineering Mysore Road, RV Vidyaniketan Post, Bengaluru 560059, Karnataka, India

NBA Accredited (UG - 6 Years)

Department of Electronics & Communication Engineering

Quiz - 1	Max. Marks: 10		
UG	Duration: 20 Mins		
circuits	Code: EC233AI		

210	Part A	M	BT	CO
4 10	The power budget of the circuit shown in fig 1.1 should be 2mW and the output impedance should be 50Ω . The transistor has $Kn' = 200\mu A/V^2$ with no CLM. Find the aspect ratio of the transistor to achieve the required output impedance.	2	2	1
	$-V_{DD} = 1.8 \text{ V}$			
	$V_{\text{in}} \longrightarrow V_{\text{out}}$ $R_{\text{G}} \stackrel{\text{\tiny def}}{=} R_{\text{D}} C_{2}$			
	$V_{\text{in}} \sim V_{\text{out}}$			
	Fig 1.1 Fig 1.2			
	Determine the current for the circuit shown in fig 1.2. The requirements are as below: Maximum voltage gain is to be achieved but with an aspect ratio less than 277.78. The maximum output impedance should only be 500Ω . Assume Vt=0.4V and no CLM.	2	2	1
	For the circuit given in Fig.1.3, if Vov =2V, I_D =2mA, V_A =100V, R_s =20k Ω , the exact output impedance of the circuit is =	2	2	2
	VB Rout			
	Fig.1.3			
1.1	Calculate the gain of a CS amplifier with current source load. Assume NMOS M1 behaves as the amplifier device and PMOS M2 behaves as a current source load. $r_{o1} = 10k\Omega$, $r_{o2} = 10k\Omega$, $g_{m1} = 2mA/V$ $g_{m2} = 2mA/V$.	2	3	1
	In enhancement type NMOS operating in saturation mode, drain current is found to be 2 mA when V_{DS} =4V is applied. Considering channel length modulation, find the modulation factor λ if drain current is found to be 2.05 mA for V_{DS} =5V while keeping V_{GS} as constant.		2	

Department of Electronics & Communication Engineering

ate: 21-10-2024	Test - 1	Max. Marks: 50		
emester: 03	UG	Duration: 90 Mins		
ourse: Analog Microelectronic circuits		Code: EC233AI		

1000				
No	Part B	M	В	C
. a	A circuit as shown in the Fig. 1a is connected and the transistor parameters are as given below: $\frac{w}{l} = \frac{20}{0.18}$, $\lambda = 0.1 v^{-1}$, $Kn' = 200 \mu A/V^2$, $V_t = 0.4V$. Find the voltage gain of the circuit.	5	T 2	1
	$V_{DD} = 1.8 \text{ V}$			
	1 kΩ ≥ Rs Vout Vin Win Win Win Win Win Win Win Win Win W			
Fo	Fig. 1 a			
awa	r the amplifier shown in Fig. 1b, find aspect ratio to achieve a voltage gain of 5 d output impedance of $1K\Omega$. The transistor is biased such that it operates 100mV ay from the triode region. The capacitors used are very large and Gate resistance d is $1M\Omega$. Let $Kn' = 200\mu A/V^2$ and $\lambda = 0$.	5	2	1
	the circuit shown in Fig 2 draw a small signal model and derive equations for age gain and output impedance by considering Channel length modulation.	10	3	2
	the circuit of CS amplifier with source degeneration given in Fig.3, determine gm,ro, mid frequency gain vo/vi, vo/vs, R _{in} and R _{out} . Given that, K _n ' W/L =2 V ² , Vt=1V, V _{DD} =15V and V _A =24V.	10	1	2
	Vs + 10K Cc1 NM1 Cc2 Vout C Rout			

er

10

3.

Department of Electronics & Communication Engineering

Design the circuit given in Fig. 4a to obtain a current I_D of 80 μA . Find the value for R and the dc voltage V_D . Let the nMOS transistor have $Vt=0.6\ V$, $K_n'=200\mu A/V^2$, L=0.8 μm , and $W=4$ μm . Neglect the channel length modulation effect.
$L=0.8 \mu m$, and $W=4 \mu m$. Neglect the channel length modulation effect.

Fig. 4 a

- Explain with a neat sketch and equations how a MOSFET exhibits finite output resistance in Saturation.
- The NMOS and PMOS transistors in the circuit of Fig. 5 are matched with $Kn'(Wn/Ln) = Kp'(Wp/Lp) = 200\mu A/V^2$ and Vtn = -Vtp = 1V. Assuming $\lambda = 0$ 2.5 V and -2.5 V

Fig. 5

Department of Electronics & Communication Engineering

Datas	Quiz - 1	Max. Marks: 10
Date: Semester: 03	UG	Duration: 20Mins
Semester. of Microelect	tronic circuits	Code:EC233AI

SCHEME & SOLUTIONS

[ON	Solutions with Scheme	Marks
S No	Aspect ratio = 900	02
2.	Id max = 0.8mA	02
3.	Output impedance = ro+Rs+gmroRs= 2.07MOhm	
4.	Av= -10	
5.	λ=0.0277 V ⁻¹	
S No	Solutions with Scheme	Marl
1.	Id=1.08mA (02) gm = 0.66mS, (01) r0=9.2K (01) Av = 0.372 (01)	05
b	gm=5mS -(01) Vd=1.5V - (02) Id=0.3mA(01) aspect ratio= 208(01)	05
S	Small signal model — (02)	10
	Deriving equation for voltage gain — (05)	
	$Av = \frac{-gm1 * ro1 * (\frac{1}{gm2} ro2)}{}$	
	$ro3 + gm1(ro3)(ro1) + ro1 + (\frac{1}{gm2} ro2)$	
De	eriving equation for output impedance $-(03)$	
1	Rout = (ro3) + gm1(ro3)(ro1) + ro1	
	=0.923mA —2M	
	all signal model ——-1M	
Av	= 1.92 m, $r0 = 26$ k —2M	4 1000
Avs	= vo=/vi= -gmRDro/(r0+RS+RD+gmroRS) = -32M = vi/vs=500k/510k = 0.981M	
Rou	tt = 76.92K - 1M	
	= 500K 1M	
Vov	=0.4 V, VD=1V, R=25 KΩ	
		- 100
Deri	vation of ID equation for CLM — 3M	
Skett	cn of CLM ————— 1M	
Outp	ut impedance — 1M	
v1=0	V: $idn = 0 \text{ mA}$, $idp = 0 \text{ mA}$ $v0 = 0 \text{ V}$	
V1=2.	5V: idn = 0.104 mA idn = 0 mA v0 = 1.04 V	
100	$\frac{1}{2}$ $\frac{1}$	
Circu	it diagram and analysis for three different cases 1 M	7
	and different cases	

a Design the circuit in Fig. 4a to obtain a current I _D of 80 μA. Find the value of R and the dc voltage V _D . Let the nMOS transistor have Vt= 0.6 V, K _n '=200μA/V ² , L=0.8 μm, and W = 4 μm. Neglect the channel length modulation effect.	5	2	1
$V_{DD} = +3 \text{ V}$ $I_{D} \downarrow \geqslant R$ 0 V_{D}			
Fig. 4 a			
Explain with a neat sketch and equations how a MOSFET exhibits finite output resistance in Saturation.	5	2	2
The NMOS and PMOS transistors in the circuit of Fig. 5 are matched with $Kn'(Wn/Ln) = Kp'(Wp/Lp) = 200\mu A/V^2$ and $Vtn = -Vtp = 1V$. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} and the voltage Vo for $V_I = 0V$, 2.5 V and -2.5 V	10	3	1
$\begin{array}{c} +2.5 \text{ V} \\ \downarrow i_{DN} \\ \downarrow i_{DP} \\ \downarrow Q_{P} \end{array} $			
Fig. 5		1	F TO