CS 580 ALGORITHM DESIGN AND ANALYSIS

Approximation Algorithms: Part 1

Vassilis Zikas

SO FAR

- A wild problem appears
- So far:
 - 1. Find a polynomial time algorithm

2. Prove NP-completeness and give up

 But, what if I <u>really</u> need to solve the problem (even if it is NP-hard)?

- Three features:
 - Generality
 - Optimality
 - Polynomial time
- Pick two!

APPROXIMATION ALGORITHMS

- ρ -approximation algorithm
 - Runs in polynomial time
 - \circ The ratio of the true optimum to the output of the algorithm is within ρ

APPROXIMATION ALGORITHMS

- E.g., a 2-approximation algorithm for INDEPENDENT SET would return an independent set whose size is at least ½ the size of the maximum independent set (maximization problems)
- A 2-approximation algorithm for VERTEX COVER would return a vertex cover whose size is at most twice the size of the minimum vertex cover (minimization problems)

TODAY

- LOAD BALANCE (11.1)
- SET COVER (11.3)
- VERTEX COVER

• Input:

- \circ *m* machines: $M_1, ..., M_m$
- \circ *n* jobs: job *j* has processing time t_i

• Output:

- Assign jobs to machines so that machine loads are "balanced"
- Let A(i) be the set of jobs assigned to M_i
- Load of M_i is $T_i = \sum_{j \in A(i)} t_j$
- Goal: Minimize the makespan $T = \max_{i} T_{i}$

- Theorem: LOAD-BALANCING is NP-complete
 - \circ We will not show this, but notice that m=2 is essentially SUBSET SUM
- Our interest:
 - Find, in polynomial time, an assignment with good makespan

- Greedy algorithm:
 - Take an arbitrary job j
 - Assign it to the machine with the smallest load
 - Repeat

```
\label{eq:list-Scheduling} \begin{array}{lll} \text{List-Scheduling}(\textbf{m}, \ \textbf{n}, \ \textbf{t}_1, \textbf{t}_2, \dots, \textbf{t}_n) \ \{ & \text{for i} = 1 \ \text{to m} \ \{ & L_i \leftarrow 0 & \leftarrow \ \text{load on machine i} \\ & A(\textbf{i}) \leftarrow \phi & \leftarrow \ \text{jobs assigned to machine i} \\ \} & \\ & \text{for j} = 1 \ \text{to n} \ \{ & \\ & \textbf{i} = \text{argmin}_k \ L_k \\ & A(\textbf{i}) \leftarrow A(\textbf{i}) \cup \{ \textbf{j} \} \\ & L_i \leftarrow L_i + t_j \\ \} & \\ & \text{return A(1)}, \ \dots, \ A(\textbf{m}) \\ \} \end{array}
```

• <u>Theorem</u> [Graham 1966!]: **Greedy** is a 2-approximation

- Lemma 1: The optimal makespan T^* is at least $\max_i t_i$
- Proof:
 - Some machine must process the largest job

- Lemma 2: The optimal makespan T^* is at least $\frac{1}{m}\sum_j t_j$
- Proof:
 - The total processing time is $\sum_{j} t_{j}$
 - One of the m machines must have an at-least-average makespan $\frac{1}{m}\sum_{j}t_{j}$

PROOF OF 2-APPROXIMATION

- Let L_i be the load of machine M_i at the end of the algorithm
- Let z be the last job we added to M_i
- When we added z, M_i had the smallest load at that point
 - $\circ L_i t_z \le L_k$, for all other machines $k \ne i$
- Sum up over all k and divide by m:

$$\circ \ \frac{1}{m} \sum_{k} L_k \ge L_i - t_z$$

- But, $\sum_{k} L_{k} = \sum_{i} t_{i}$, the total load in the system
- By Lemma 2: $L_i t_z \leq T^*$
- Overall, $L_i = t_z + (L_i t_z) \le 2T^*$

TIGHT ANALYSIS

- Is the factor of 2 tight?
 - Does there exist an instance in which we output a solution exactly 2 times worse than the optimal one?
- Tight example:
 - m machines, n = m(m-1)+1 jobs
 - The first m(m-1) take time $t_j = 1$
 - The last job takes time $t_n = m$
 - OPT saves a machine for the last job
 - $^{\circ}$ Greedy evenly balances the first n-1 jobs, and then has to add the large job to an already loaded machine

TIGHT ANALYSIS

LOAD BALANCING: CAN WE DO BETTER?

- What went wrong in our tight example?
- We processed the largest job last!
 - Perhaps if we start from the large jobs we can get a better bound for the "damage" the smaller jobs can do
- New algorithm: Sorted-Balance
 - 1. Sort jobs in decreasing time $t_1 \ge \cdots \ge t_n$
 - 2. Run Greedy on the sorted jobs:
 - For j = 1 ... n:
 - $M_i = argmin_k T_k$
 - Assign job j to machine M_i
 - $T_i += t_i$

SORTED-BALANCE ANALYSIS

- If we have fewer than *m* jobs, then obviously Greedy and Sorted-Balance are optimal
- Claim: If n > m, then $T^* \ge 2t_{m+1}$
- Proof:
 - The first m jobs take time at least t_{m+1}
 - \circ There exists a machine assigned at least two of the first m+1 jobs
 - \circ That machine will have makespan at least $2t_{m+1}$

SORTED-BALANCE ANALYSIS

- <u>Theorem</u>: Sorted-Balance is a 3/2 approximation algorithm
- Proof:
 - Let M_i be the machine with the maximum load
 - Assume this machine has at least two jobs, and let j be the last job assigned to it
 - ∘ $j \ge m + 1$, since M_i has two jobs

$$L_i = t_j + (L_i - t_j) \le t_{m+1} + T^* \le \frac{3}{2}T^*$$

• If M_i has one job, then our schedule is optimal (since the optimal schedule would also need to put the single job in M_i somewhere)

SORTED-BALANCE

- Is the factor 3/2 tight?
- No!
- Theorem (Graham 1969): Sorted-Balance is a 4/3 approximation

- Is the factor 4/3 tight?
- Yes

SORTED-BALANCE

- 4/3 example
- m machines, n = 2m + 1 jobs
- 2 jobs of length m, 2 jobs of length m + 1,..., 2 jobs of length 2m 1
- 1 job of length *m*
- One machine gets 3 jobs (by pigeonhole)
- OPT: 3m
- Sorted-Balance:
 - All but one of the machines get two jobs, with processing time 3m-1
 - One machine gets an extra job of processing time m

• Input:

- A set *U* of *n* elements
- A list $S_1, ..., S_m$ of subsets of U, with associated weights $w_1, ..., w_m$

• Output:

 A collection of these subsets that covers *U* and has minimum weight

- Greedy approach: built up the solution one set at a time
- Which are good sets to include?
- Smaller weight is better
- More elements covered is better
- Pick by $w_i/|S_i|!$
- Almost...
- Pick by $\frac{w_i}{|S_i \cap R|}$, where R is the set of remaining elements (as the algorithm progresses)

- Greedy:
 - Start with R = U
 - While $R \neq \emptyset$:
 - Pick S_i that minimizes $w_i/|R \cap S_i|$
 - Let $c_S = w_i/|R \cap S_i|$ for all $s \in R \cap S_i$ (we'll need this line for the analysis)
 - Delete S_i from R

- Key question in approximation algorithms: what is our benchmark for OPT?
- Typically, we do not know clean expressions for OPT (otherwise, why would we need suboptimal algorithms in the first place?)
- For weighted set cover, what should we lower bound (it's a minimization problem)
 OPT by?
- On the flip side, what should we upper bound the performance of our algorithm by?

• Observation: If C is the set obtained by greedy, then $\sum_{S_i \in C} w_i = \sum_{S \in U} c_S$

- Lemma 1: For every set S_k , $\sum_{s \in S_k} c_s$ is at most $w_k \cdot H_{|S_k|}$
 - $H_n = \sum_{i=1}^n 1/i$ is the *n*-th harmonic number
- Proof:
 - $S_k = \{s_1, s_2, ..., s_d\}$ without loss of generality (and labeled in ordered in which they are assigned a cost)
 - s_i is covered by Greedy at some iteration
 - We know that $s_{j+1}, ..., s_d \in R$ in that iteration
 - ∘ Thus $|S_k \cap R| \ge d j + 1$
 - $\circ \quad \frac{w_k}{|S_k \cap R|} \le \frac{w_k}{d j + 1}$
 - Greedy selects the set with minimum average cost S_i

$$\circ \quad c_{S_j} = \frac{w_i}{|S_i \cap R|} \le \frac{w_k}{|S_k \cap R|} \le \frac{w_k}{d - j + 1}$$

$$\circ \sum_{S \in S_k} c_S \le w_k \cdot \sum_{j=1}^d \frac{1}{d-j+1} = w_k \cdot \sum_{j=1}^d \frac{1}{j} = w_k \cdot H_d$$

- Theorem: Greedy is a H_{d^*} approximation to OPT, where $d^* = \max_i |S_i|$
- Proof:
 - Let C* be the optimal set cover
 - $w^* = \sum_{S_i \in C^*} w_i$
 - For each set S_i Lemma 1 implies

$$w_i \ge \frac{\sum_{S \in S_i} c_S}{H_{|S_i|}} \ge \frac{\sum_{S \in S_i} c_S}{H_{d^*}}$$

- $\circ \sum_{S_i \in C^*} \sum_{S \in S_i} c_S \ge \sum_{S \in U} c_S$, since C^* is a cover
- Putting everything together

$$w^* \ge \sum_{S_i \in C^*} \frac{\sum_{S \in S_i} c_S}{H_{d^*}} \ge \frac{\sum_{S \in U} c_S}{H_{d^*}} = \frac{\sum_{S_i \in C} w_i}{H_{d^*}}$$

- Is this tight?
- Yes!
- Example:
 - Two tall columns of $\frac{n}{2}$ elements each
 - Two sets with weight $1 + \epsilon$ that can cover them
 - O(logn) sets of size $\frac{n}{2}, \frac{n}{4}, \dots$ with weight 1

- Can we do better?
- Probably not...
- Unless P = NP, there is no o(log(n)), i.e. better than order log(n), approximation algorithm that runs in polytime

VERTEX COVER

- Input: An undirected graph G = (V, E)
- Output: The smallest vertex cover, i.e. the smallest subset of vertices S such that for all $e = (u, v) \in E$, either $u \in S$ or $v \in S$
- VERTEX COVER is a special case of SET COVER
 - $U = E, S_i = \{u, v\} \text{ if } (u, v) \in E$
- Immediately gives a $O(\log(n))$ approximation for VERTEX COVER
 - Repeatedly delete the vertex with the largest degree and include it in the vertex cover

VERTEX COVER

- Can we do better?
- Yes!
- Repeatedly include both endpoints of an edge!

- Greedy:
 - $\circ C = \emptyset$
 - While there exists an edge e = (u, v) such that $u \notin C$ and $v \notin C$:
 - $C = C \cup \{u, v\}$

VERTEX COVER-ANALYSIS

- Observation: Any vertex cover is at least as large as any matching in *G*
 - A vertex cover has at least one vertex for every edge
 - In a matching, a vertex touches at most one edge
- Therefore, $OPT \ge |M|$, where OPT is the minimum vertex cover, and M is any matching
- Greedy selects a matching M_C !
 - It just puts both endpoints in
- $|C| = 2|M_C| \le 2OPT$

VERTEX COVER-ANALYSIS

- Can we do better?
- Probably not!
- If UGC (the Unique Games Conjecture) is true, then then minimum vertex cover cannot be approximated within any constant factor better than 2.

SUMMARY

- LOAD BALANCING (11.1)
- SET COVER (11.3)
- VERTEX COVER (DPV 9.2.1)