Міністерство освіти і науки, молоді та спорту України Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики Кафедра обчислювальної матаматики

# Звіт на тему:

## "Розв'язування задачі Діріхле-Неймана для рівняння Лапласа"

Виконали: студенти 4-го курсу групи ПМп-41 напрямку підготовки (спеціальності) 113 – "Прикладна математика" Бугрій Б.О. Середович В.В.

Перевірив: ст. в. Гарасим Я.С.

### Зміст

| Bo | ступ              | 9 |
|----|-------------------|---|
| 1  | Постановка задачі | 4 |

### Вступ

літературний огляд хто розглядав розв'язування цієї задачі які процеси описує мета - розв'язати якимось методом огляд наступних розділів

#### 1 Постановка задачі

Припускаємо, що деяке двовимірне тіло моделюється двозв'язною областю  $D\subset R$  з досить гладкою границею що складається з внутрішньої кривої  $\Gamma_1$  та зовнішньої  $\Gamma_2$ .

Нехай  $D_1\subset\mathbb{R}$  — обмеженна область з гладкою границею  $\Gamma_1\subset C^2$  та  $D_2\subset\mathbb{R}$  — обмеженна область з гладкою границею  $\Gamma_2\subset C^2$ . Тоді двузв'язна область матиме вигляд:  $D=D_2\setminus\overline{D}_1$  (Рис. 1)



Рис. 1:

Мішана задача Діріхле-Неймана для рівняння Лапласа полягає в знаходженні такої функції  $u(x_1,x_2)\in C^2(D)\cup C^1(\overline{D})$  що задовольняє

1. Умови рівняння Лапласа:

$$\Delta u = 0, \quad (x_1, x_2) \in D \tag{1}$$

2. Граничні умови:

$$u = f_1 \quad (x_1, x_2) \in \Gamma_1, \tag{2}$$

$$\frac{\partial u}{\partial v} = f_2 \quad (x_1, x_2) \in \Gamma_2 \tag{3}$$

, де v=v(x) - одиничний вектор зовнішньої нормалі, (2) є умовою Діріхле, а (3) є умовою Неймана.