Efficient Computation of Centroidal Voronoi Tessellations

Zichao Di Department of Mathematical Sciences George Mason University

> Advisors: Maria Emelianenko Stephen G. Nash

> > June 19, 2011

Outline

Outline

- Introduction to Centroidal Voronoi Tesselations (CVT)
 - CVT:concepts
 - List of applications
- Commonly used CVT construction algorithm
 - Lloyd iteration
 - Some results concerning Lloyd
- Multigrid-based Optimization for CVT construction
 - Multigrid Optimization (MG/OPT) algorithm: background
 - Application of MG/OPT to 1-D CVT problem
- Summary and discussion

Concept of the Voronoi tessellation

- Given
 - a set S
 - elements $z_i, i = 1, 2, ..., K$
 - a distance function $d(z, w), \forall z, w \in S$
- The Voronoi set V_j is the set of all elements belonging to S that are closer to z_j than to any of the other elements z_i , that is

$$V_i = \{ w \in S \mid d(w, z_i) < d(w, z_i), i = 1, ..., K, i \neq j \}$$

- $\{V_1, V_2, \dots, V_k\}$ is a Voronoi tessellation of S
- $\{z_i\}$ are generators of the Voronoi tessellation

CVT: facts and definitions

- Center of Mass: $C = \frac{\displaystyle\int_{V} \rho(y)ydy}{\displaystyle\int_{V} \rho(y)dy}$, where $\rho(y)$ is a density function
- Define the Voronoi sets $V_i, i = 1, ..., K$ corresponding to the given $\{z_i\}$ generators
 - we can define the associated centroids

$$z_i^*, i=1,\ldots,K$$

• In general, the centroids of the Voronoi sets don't coincide with the generators of the Voronoi sets, but if they do, i.e.

$$z_i = z_i^*, i = 1, \dots, K$$

we call this kind of tessellation Centroidal Voronoi Tessellation (CVT)

Examples of CVT

tessellations of a square

tessellations on a sphere

Range of applications

- Location optimization:
 - optimal allocation of resources
 - mailboxes, bus stops, etc. in a city
 - distribution/manufacturing centers
- Grain/cell growth
- Crystal structure
- Territorial behavior of animals
- Data analysis:
 - · image compression, computer graphics, sound denoising etc
 - clustering gene expression data, stock market data
- Engineering:
 - vector quantization etc
 - Statistics (k-means):
 - · classification, minimum variance clustering
 - data mining
- Numerical methods
 - Atmospheric and ocean modeling
 - Various other PDE solvers

Lloyd's algorithm to construct CVT's

- **1** Start with the initial set of points $\{z_i\}_{i=1}^K$
- ② Construct the Voronoi tessellation $\{V_i\}_{i=1}^K$ of Ω associated with the points $\{z_i\}_{i=1}^K$
- **②** Construct the centers of mass of the Voronoi regions $\{V_i\}_{i=1}^K$ found in Step 2; take centroids as the new set of points $\{z_i\}_{i=1}^K$
- Go back to Step 2. Repeat until some convergence criterion is satisfied

Note:Steps 2 and 3 can both be costly to effect

Illurstration of Lloyd's method

Convergence result of Lloyd's method

- Lloyd method has linear convergence rate: $||error_{k+1}|| \approx r ||error_k||$
- For strongly log-concave densities,

$$r \approx 1 - \frac{C}{K^2}$$

• very slow if K large.

Is speedup possible?

Multilevel approach to construct CVT

• Given generators $\{\mathbf{z}_i\}_{i=1}^k$ and the corresponding tessellation $\{V_i\}_{i=1}^k$, define the energy functional

$$\mathcal{G}\left(\{\mathbf{z}_i\}_{i=1}^k\right) = \sum_{i=1}^k \int_{V_i} \rho(\mathbf{y}) |\mathbf{y} - \mathbf{z}_i|^2 d\mathbf{y}.$$

- \bullet The minimizer of $\mathcal G$ necessarily forms a CVT
- We treat CVT as a minimization problem and apply a multilevel optimization framework called MG/OPT to this functional
- \bullet The multilevel framework uses coarse approximations to $\mathcal G$ to accelerate a traditional optimization algorithm (OPT)

Multilevel Algorithm: MG/OPT [S.G.Nash 2000]

- Given:
 - Traditional optimization algorithm OPT
 - Downdate and update operators
 - Integers k_1 and k_2 satisfying $k_1 + k_2 > 0$
- One iteration of MG/OPT:
 - Pre-smoothing: Apply k_1 iterations of OPT to the fine energy function
 - Recursion:
 - Downdate the generators
 - Apply MG/OPT to a shifted version of the coarse energy function
 - Use result to update the generators on the fine level
 - Post-smoothing: Apply k_2 iterations of OPT to the fine energy function

Convergence result of MG/OPT on 1-D CVT

Red: Opt; Blue: MG/OPT; $\rho(x) = 1$

Convergence result of MG/OPT on 1-D CVT

Red: Opt; Blue: MG/OPT; $\rho(x) = 1$

For more information, please read our paper: "Truncated Newton-based multigrid algorithm for centroidal Voronoi calculation", Z. Di, M. Emelianenko and S. Nash

Discussion

Results and challenges:

- CVT is in the heart of many applications and the number is growing: computer science, physics, social sciences, biology, engineering ...
- The main advantage of MG/OPT is its superior convergence speed when compared to other existing approaches.
- The simplicity of its design and the results of preliminary tests suggest that the method is generalizable to higher dimensions, which is the subject of current investigations
- Future work also includes application of this technique to various scientific and engineering applications, including image analysis and grid generation.

Discussion

Results and challenges:

- CVT is in the heart of many applications and the number is growing: computer science, physics, social sciences, biology, engineering ...
- The main advantage of MG/OPT is its superior convergence speed when compared to other existing approaches.
- The simplicity of its design and the results of preliminary tests suggest that the method is generalizable to higher dimensions, which is the subject of current investigations
- Future work also includes application of this technique to various scientific and engineering applications, including image analysis and grid generation.

THANKS!