SME0809 - Inferência Bayesiana - Distribuição Normal

Grupo 13 - Francisco Miranda - 4402962 - Heitor Carvalho - $11833351\,$

Outubro 2021

Caso 1: μ desconhecido e σ conhecido

$$f(x|\theta) = e^{-x^2}$$

• a) Faça um esboço do gráfico das distribuições prioris dos dois físicos em um mesmo sistema cartesiano.

Temos $\theta_A \sim N(900, 20^2)$ e $\theta_B \sim N(900, 80^2).$ Assim:

Distribuição a priori da grandeza estimada pelos físicos

• b) Encontre a distribuição a posteriori para o físico A e para o físico B.

Como $X|\theta \sim N(\theta,\sigma^2)$ com σ^2 conhecido e $\theta \sim N(\mu_0,\tau_0^2)$ então $\theta|x \sim N(\mu_1,\tau_1)$, sendo

$$\mu_1 = \frac{\tau_0^2 \mu_0 + \sigma^{-2} x}{\tau_0^{-2} + \sigma^{-2}}, \text{ e } \tau_1^{-2} = \tau_0^{-2} + \sigma^{-2}$$

Assim, para 100 observações temos:

$$\theta_A \sim N(884.314, 15.3846), \ \theta_B \sim N(883.7272, 15.9601)$$

Enquanto que para uma única observação, a posteriori é:

$$\theta_A \sim N(898.4, 320), \quad \theta_B \sim N(893.6, 1280)$$

Distribuição a posteriori da grandeza estimada pelos físicos

 c) Faça um esboço do gráfico das distribuições: a priori e a posteriori de cada um dos dois físicos em um mesmo sistema cartesiano.

Distribuição da grandeza estimada pelos físicos

Distribuição da grandeza estimada pelos físicos

d) Observando o gráfico, qual físico aprendeu mais com o experimento? Justifique.

Aumentos nas precisões a posteriori em relação às precisões a priori com 100 observações:

- para o físico A: precisão(θ) passou de $\tau_0^{-2}=0.0025$ a $\tau_1^{-2}=0.004225008$ (aumento de 70%). para o físico B: precisão(θ) passou de $\tau_0^{-2}=0.00015625$ a $\tau_1^{-2}=0.003926$ (aumento de 2500%)

Com 1 observação:

- para o físico A: precisão(θ) passou de $\tau_0^{-2} = 0.0025$ a $\tau_1^{-2} = 6.1035 * 10^{-7}$.
- para o físico B: precisão(θ) passou de $au_0^{-2}=0.00015625$ a $au_1^{-2}=9.7656*10^{-6}.$
- e) Construa uma tabela que contenha o resumo a priori e o resumo a posteriori.

Fisico	Media.pri	Media.pos.100	Media.pos.1	SD.pri	SD.pos.100	SD.pos.1
A	900	884.3140	898.4	20	15.3846	320
В	900	883.7272	893.6	80	15.9601	1280

f) Encontre a distribuição preditiva e faça um esboço de seu gráfico.

A distribuição preditiva é dada por:

$$X \sim N(\mu_0, \tau_0^2 + \sigma^2)$$

Distribuição da grandeza estimada pelos físicos

Caso 2: μ conhecido e σ desconhecido

Distribuições a priori

Seja Y_i uma amostra aleatória simples de uma distribuição $Y \sim N(0, \sigma^2)$.

Primeiramente, vamos encontrar a função de verossimilhança de σ^2 .

$$\mathcal{L}(y|\sigma^2) = \prod_{i=1}^n \frac{1}{2\pi} \frac{1}{\sigma} e^{-y_i^2/2\sigma^2} \propto \frac{1}{\sigma^n} e^{-2\sigma^{-2} \sum_{i=1}^n y_i^2} \propto \sigma^{-n} e^{-2\sigma^{-2} \sum_{i=1}^n y_i^2}$$

Prioris Conjulgadas

Antes de prosseguir, vamos relembrar alguns resultados:

Se $X \sim \text{Gama}(\alpha, \beta)$ então

$$f_X(x|\alpha,\beta) = \frac{\beta^{\alpha} x^{(\alpha-1)} e^{-\beta x}}{\Gamma(\alpha)} \propto x^{(\alpha-1)} e^{-\beta x}$$

Se $X \sim \text{Gama-Inv}(\alpha, \beta)$ então

$$f_X(x|\alpha,\beta) = \frac{\beta^{\alpha} x^{(\alpha-1)} e^{-\beta/x}}{\Gamma(\alpha)} \propto x^{(\alpha-1)} e^{-\beta/x}$$

Se $X \sim \chi^2(\nu)$ então

$$f_X(x|\nu) = \frac{x^{(\nu/2)-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)} \propto x^{(\nu/2)-1}e^{-x/2}$$

Note que, desprezadas as constantes não informativas, as três distribuições são da forma x elevado a uma potência vezes a exponencial de x vezes algo. Dessa forma, as três distribuições servem como conjulgada natural da Normal, em nosso caso. Para explicitar os parâmetros de cada uma delas, vamos substituir o x por σ e ver o que acontece: