

ganon: scalable and efficient DNA classification against large sets of reference sequences

Vitor C. Piro

Research Scientist - Data Analytics & Computational Statistics
Hasso Plattner Institute, Germany

DNA Sequencing and data growth

- Decreasing sequencing costs
- More genomic available
- More resources needed
- Higher energy consumption

DNA based studies

Microbiome study example:

- Hundreads to thousands of samples:
 - Subjects, time, treatment and control, replicates
- Discover contents of each sample
 - Compare with <u>reference genome sequences</u>
 - The more the better, if possible everything
 - Every day collection grows
- Example gut microbiome:
 - 188 samples: 1.299.921.211 bp
 - **References**: 723.003.822.007 bp (as of Dec. 2020)
 - Doubles every 18 months

Efficient algorithms and data structures

Indexing

- Organize and compress
- Reference sequences have to be indexed for quick search
- DNA search has to be flexible
 - Sequencing errors, mutations...

Solutions

- BWT, FM-Index, k-mer, Bloom Filters, ...
 - Specialized to solve specific problems
- Bloom Filter
 - Probabilistic data structure / trade-offs
 - Set membership

https://redislabs.com/blog/rebloom-bloom-filter-datatype-redis/

Microbiome profiling and the Interleaved Bloom Filter

Microbiome Profiling

- Hundreads/Thousands of species
- What is in the sample? How much?

Interleaved Bloom Filter

- Fast indexing (as in the Bloom Filter)
- Several Bloom Filters, interleaved
- Fast searching

DREAM-Yara: an exact read mapper for very large databases with short update time

Temesgen Hailemariam Dadi^{1,*}, Enrico Siragusa², Vitor C. Piro^{3,4},
Andreas Andrusch⁵, Enrico Seiler¹, Bernhard Y. Renard³ and Knut Reinert¹

Bioinformatics, 36, 2020, i12-i20 doi: 10.1093/bioinformatics/btaa458 ISMB 2020

Bioinformatics, 34, 2018, i766-i772 doi: 10.1093/bioinformatics/btv567

ganon

 Enables fast indexing, updating as searching in large reference sequence set ganon: precise metagenomics classification against large and up-to-date sets of reference sequences

Vitor C. Piro^{1,2,3}, Temesgen H. Dadi⁴, Enrico Seiler⁴, Knut Reinert⁴ and Bernhard Y. Renard^{1,3,*}

Efficiency

- Interleaved Bloom Filter
- C++, SeqAn and multithreading

Further

- Updatability of indices
 - Incrementally grow
 - Remove sequences
 - Keep-up with new data

Reference	Method	Time	Memory	Index size
RefSeq-OLD	Centrifuge	02:51:03	98	4
	Ganon	00:02:22	30	23
	Krakenuniq	02:06:41	87	73
RefSeq-CG	Centrifuge	12:32:08	428	20
	Ganon	00:10:49	100	93
	Krakenuniq	08:54:56	321	190
RefSeq-ALL	Ganon	02:30:47	493	501

- Up to 75 faster on indexing
- Allow usage of more data
- Only methods allowing updates no re-indexing

Conclusion

DNA Sequencing

■ Fast data growth

Microbiome analysis

- Huge data comparisons
- More data = better results

Sas con cos de la constante de

Efficient solutions

- Efficient indexing, quick search
- Ganon and the interleaved bloom filter
 - Ultra-fast indexing
 - Update avoids redundant re-indexing

= less computations, better results

