Лекции курса «Алгебра», лектор Р. С. Авдеев

 Φ КН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Лекция 4

Теорема о согласованных базисах. Алгоритм приведения целочисленной матрицы к диагональному виду. Строение конечно порождённых абелевых групп. Конечные абелевы группы.

В теории абелевых групп операция прямого произведения конечного числа групп обычно называется прямой суммой и обозначается символом \oplus , так что пишут $A_1 \oplus A_2 \oplus \ldots \oplus A_n$ вместо $A_1 \times A_2 \times \ldots \times A_n$. Дадим более точное описание подгрупп свободных абелевых групп.

Теорема о согласованных базисах. Для всякой подгруппы N свободной абелевой группы L ранга n найдётся такой базис e_1, \ldots, e_n группы L и такие натуральные числа $u_1, \ldots, u_m, \ m \leqslant n$, что u_1e_1, \ldots, u_me_m — базис группы N и $u_i|u_{i+1}$ при $i=1,\ldots,m-1$.

Замечание 1. Числа u_1, \ldots, u_p , фигурирующие в теореме о согласованных базисах, называются *инвариантными множителями* подгруппы $N \subseteq L$. Можно показать, что они определены по подгруппе однозначно.

Следствие 1. В условиях теоремы о согласованных базисах имеет место изоморфизм

$$L/N \cong \mathbb{Z}_{u_1} \times \ldots \times \mathbb{Z}_{u_m} \times \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n-m}.$$

Доказательство. Рассмотрим изоморфизм $L\cong\mathbb{Z}^n=\underbrace{\mathbb{Z}\times\ldots\times\mathbb{Z}}_{r}$, сопоставляющий произвольному эле-

менту $s_1e_1+\ldots+s_ne_n\in L$ набор $(s_1,\ldots,s_n)\in\mathbb{Z}^n.$ При этом изоморфизме подгруппа $N\subseteq L$ отождествляется с подгруппой

$$u_1\mathbb{Z} \times \ldots \times u_m\mathbb{Z} \times \underbrace{\{0\} \times \ldots \times \{0\}}_{n-m} \subseteq \mathbb{Z}^n.$$

Теперь требуемый результат получается применением теоремы о факторизации по сомножителям.

Теперь вернемся к доказательству теоремы о согласованных базисов. Однако это требует некоторой подготовки.

Определение 1. *Целочисленными элементарными преобразованиями строк* матрицы называются преобразования следующих трёх типов:

- 1) прибавление к одной строке другой, умноженной на целое число;
- 2) перестановка двух строк;
- 3) умножение одной строки на -1.

Аналогично определяются целочисленные элементарные преобразования столбцов матрицы.

Прямоугольную матрицу $C = (c_{ij})$ размера $n \times m$ назовём диагональной и обозначим $\operatorname{diag}(u_1, \dots, u_p)$, если $c_{ij} = 0$ при $i \neq j$ и $c_{ij} = u_i$ при $i = 1, \dots, p$, где $p = \min(n, m)$.

Предложение 1. Всякую прямоугольную целочисленную матрицу $C = (c_{ij})$ с помощью элементарных преобразований строк и столбцов можно привести к виду $diag(u_1, \ldots, u_p)$, где $u_1, \ldots, u_p \geqslant 0$ и $u_i|u_{i+1}$ при $i=1,\ldots,p-1$.

Доказательство. Если C=0, то доказывать нечего. Если $C\neq 0$, но $c_{11}=0$, то переставим строки и столбцы и получим $c_{11}\neq 0$. Умножив, если нужно, первую строку на -1, добьёмся условия $c_{11}>0$. Теперь будем стремиться уменьшить c_{11} .

Если какой-то элемент c_{i1} не делится на c_{11} , то разделим с остатком: $c_{i1} = qc_{11} + r$. Вычитая из i-й строки 1-ю строку, умноженную на q, и затем переставляя 1-ю и i-ю строки, уменьшаем c_{11} . Повторяя эту процедуру, в итоге добиваемся, что все элементы 1-й строки и 1-го столбца делятся на c_{11} .

Если какой-то c_{ij} не делится на c_{11} , то поступаем следующим образом. Вычтя из i-й строки 1-ю строку с подходящим коэффициентом, добьёмся $c_{i1} = 0$. После этого прибавим к 1-й строке i-ю строку. При этом c_{11} не изменится, а c_{1j} перестанет делиться на c_{11} , и мы вновь сможем уменьшить c_{11} .

В итоге добьёмся того, что все элементы делятся на c_{11} . После этого обнулим все элементы 1-й строки и 1-го столбца, начиная со вторых, и продолжим процесс с меньшей матрицей.

Теперь мы готовы доказать теорему о согласованных базисах.

Доказательство теоремы о согласованных базисах. Мы знаем, что N является свободной абелевой группой ранга $m\leqslant n$. Пусть e_1,\ldots,e_n — базис в L и f_1,\ldots,f_m — базис в N. Тогда $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)C$, где C — целочисленная матрица размера $n\times m$ и ранга m. Покажем, что целочисленные элементарные преобразования строк (столбцов) матрицы C — это в точности элементарные преобразования над базисом в L (в N). Для этого рассмотрим сначала случай строк. Заметим, что каждое из целочисленных элементарных преобразований строк реализуется при помощи умножения матрицы C слева на квадратную матрицу P порядка n, определяемую следующим образом:

- (1) в случае прибавления к i-й строке j-й, умноженной на целое число z, в матрице P на диагонали стоят единицы, на (ij)-м месте число z, а на остальных местах нули;
- (2) в случае перестановки i-й и j-й строк имеем $p_{ij} = p_{ji} = 1$, $p_{kk} = 1$ при $k \neq i, j$, а на остальных местах стоят нули;
- (3) в случае умножения i-й строки на -1 имеем $p_{ii} = -1$, $p_{jj} = 1$ при $j \neq i$, а на остальных местах стоят нули.

Теперь заметим, что равенство $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)C$ эквивалентно равенству $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)P^{-1}PC$. Таким образом, базис (f_1,\ldots,f_m) выражается через новый базис $(e'_1,\ldots,e'_n):=(e_1,\ldots,e_n)P^{-1}$ при помощи матрицы PC.

В случае столбцов всё аналогично: каждое из целочисленых элементарных преобразований столбцов реализуется при помощи умножения матрицы C справа на некоторую квадратную матрицу Q порядка m (определяемую почти так же, как P). В этом случае имеем $(f_1, \ldots, f_m)Q = (e_1, \ldots, e_n)CQ$, так что новый базис $(f'_1, \ldots, f'_m) := (f_1, \ldots, f_m)Q$ выражается через (e_1, \ldots, e_n) при помощи матрицы CQ.

Воспользовавшись предложением 1, мы можем привести матрицу C при помощи целочисленных элементарных преобразований строк и столбцов к диагональному виду $C'' = \mathrm{diag}(u_1,\ldots,u_m)$, где $u_i|u_{i+1}$ для всех $i=1,\ldots,m-1$. С учётом сказанного выше это означает, что для некоторого базиса e_1'',\ldots,e_n'' в L и некоторого базиса f_1'',\ldots,f_m'' в N справедливо соотношение $(f_1'',\ldots,f_m'')=(e_1'',\ldots,e_n'')C''$. Иными словами, $f_i''=u_ie_i''$ для всех $i=1,\ldots,m$, а это и требовалось.

Определение 2. Конечная абелева группа A называется npumaphoй, если её порядок равен p^k для некоторого простого числа p.

Замечание 2. В общем случае (когда группы не предполагаются коммутативными) конечная группа G с условием $|G| = p^k \ (p-$ простое) называется p-группой.

Следствие 1 лекции 3 показывает, что каждая конечная циклическая группа разлагается в прямую сумму примарных циклических подгрупп.

Теорема 1. Всякая конечно порождённая абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, т. е.

(1)
$$A \cong \mathbb{Z}_{p_s^{k_1}} \oplus \ldots \oplus \mathbb{Z}_{p_s^{k_s}} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z},$$

где p_1, \ldots, p_s — простые числа (не обязательно попарно различные) и $k_1, \ldots, k_s \in \mathbb{N}$. Кроме того, число бесконечных циклических слагаемых, а также число и порядки примарных циклических слагаемых определено однозначно.

Сразу выделим некоторые следствия из этой теоремы.

Следствие 2. Абелева группа A является конечно порождённой тогда и только тогда, когда A разлагается в прямую сумму циклических подгрупп.

Доказательство. В одну сторону следует из теоремы. В другую сторону: пусть $A = A_1 \oplus \ldots \oplus A_m$, где $A_i -$ циклическая подгруппа, то есть $A_i = \langle a_i \rangle, \ a_i \in A$. Тогда $\{a_1, \ldots, a_m\}$ — набор порождающих элементов для группы A.

Следствие 3. Всякая конечная абелева группа разлагается в прямую сумму примарных циклических подгрупп, причём число и порядки примарных циклических слагаемых определено однозначно.

Теперь преступим к доказательству самой теоремы.

Доказательство. Пусть a_1, \dots, a_n — конечная система порождающих группы A. Рассмотрим гомоморфизм

$$\varphi \colon \mathbb{Z}^n \to A, \quad (s_1, \dots, s_n) \mapsto s_1 a_1 + \dots + s_n a_n.$$

Ясно, что φ сюръективен. Тогда по теореме о гомоморфизме получаем $A \cong \mathbb{Z}^n/N$, где $N = \operatorname{Ker} \varphi$. По теореме о согласованных базисах существует такой базис e_1, \ldots, e_n группы \mathbb{Z}^n и такие натуральные числа $u_1, \ldots, u_m, m \leqslant n$, что u_1e_1, \ldots, u_me_m — базис группы N. Тогда имеем

Применяя теорему о факторизации по сомножителям, мы получаем

$$\mathbb{Z}^n/N \cong \mathbb{Z}/u_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/u_m\mathbb{Z} \oplus \underbrace{\mathbb{Z}/\{0\} \oplus \ldots \oplus \mathbb{Z}/\{0\}}_{n-m} \cong \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m}.$$

Чтобы добиться разложения (1), остаётся представить каждое из циклических слагаемых \mathbb{Z}_{u_i} в виде прямой суммы примарных циклических подгрупп, воспользовавшись следствием 1 из лекции 3.

Перейдём к доказательству единственности разложения (1). Пусть $\langle c \rangle_q$ обозначает циклическую группу порядка q с порождающей c. Пусть имеется разложение

(2)
$$A = \langle c_1 \rangle_{p_s^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}} \oplus \langle c_{s+1} \rangle_{\infty} \oplus \ldots \oplus \langle c_{s+t} \rangle_{\infty}$$

(заметьте, что мы просто переписали в другом виде правую часть соотношения (1)). Рассмотрим в A так называемую noderpynny $\kappa pyuenus$

Tor
$$A := \{a \in A \mid ma = 0$$
 для некоторого $m \in \mathbb{N}\}.$

Иными словами, $\operatorname{Tor} A$ — это подгруппа в A, состоящая из всех элементов конечного порядка. Выделим эту подгруппу в разложении (2). Рассмотрим произвольный элемент $a \in A$. Он представим в виде

$$a = r_1c_1 + \ldots + r_mc_m + r_{m+1}c_{m+1} + \ldots + r_nc_n$$

для некоторых целых чисел r_1, \ldots, r_n . Легко видеть, что a имеет конечный порядок тогда и только тогда, когда $r_{m+1} = \ldots = r_m = 0$. Отсюда получаем, что

(3)
$$\operatorname{Tor} A = \langle c_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}}.$$

Применяя опять теорему о факторизации по сомножителям, мы получаем $A/\operatorname{Tor} A \cong \mathbb{Z}^t$, где t — количество бесконечных циклических подгрупп в разложении (1). Отсюда следует, что число t однозначно выражается в терминах самой группы A (как ранг свободной абелевой группы $A/\operatorname{Tor} A$). Значит, t не зависит от разложения (2).

Однозначность числа и порядков примарных циклических групп будет доказана на следующей лекции.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 9, \S 1)
- [2] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 2, § 3)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 60)