### Estatística

### Conceitos

Estatística Descritiva: apresenta métricas sobre os dados. Estatística Inferencial: realiza previsões a partir dos dados existentes.

| C/qual conjunto será trabalhado? |                  |  |
|----------------------------------|------------------|--|
| Conj. Completo                   | Conj. Incompleto |  |
| População                        | Amostra          |  |
| Censo                            | Amostragem       |  |
| Parâmetro                        | Estimativa       |  |

| Tipos de variáveis        |                                    |                          |                          |  |
|---------------------------|------------------------------------|--------------------------|--------------------------|--|
| Quantitativas Qualitativa |                                    |                          |                          |  |
| Discretas                 | Continuas                          | Nominais                 | Ordinais                 |  |
| valores inteiros          | valores inteiros e<br>Fracionários | s/ordem entre<br>valores | c/ordem entre<br>valores |  |
| Qtd. objetos              | Altura, peso.                      | Gênero, cor,<br>país     | Grau de<br>escolaridade  |  |

| Métricas      |                             |                                      |  |
|---------------|-----------------------------|--------------------------------------|--|
| Elemento      | População                   | Amostra                              |  |
|               | Parâmetro<br>populacional θ | Estimadores do<br>par.populacional 0 |  |
| Média         | μ                           | X                                    |  |
| Variância     | $\sigma^2$                  | S <sup>2</sup>                       |  |
| Desvio Padrão | σ                           | S                                    |  |
| Tamanho       | Ν                           | n                                    |  |
| Proporção     | Р                           | p                                    |  |

### Propriedades dos estimadores:

- não viesado: na média, acerta o parâmetro populacional
  eficiente: não viesado e o mais preciso possível (menor variância possível)
- consistente: à medida que a amostra cresce, será convergido
- para valor do parâmetro Máxima verossimilhança: estimador mantém a mesma distribuição de probabilidade da população

### Estatística Descritiva

1. Formas de apresentação dos dados

Dados brutos:listagem de todos os dados (0.5, 10, 15, 15, 15, 20, 20, 30)

### ☐ Dados ponderados:tabela de frequência sem intervalo

\* n de classes: amplitude/n

\* n de intervalos:  $\sqrt{n}$ 

| Valor<br>Observado (X <sub>i</sub> ) | Frequência<br>Absoluta (f <sub>i</sub> ) | Frequência<br>Relativa (fr <sub>i</sub> ) | Frequência<br>Acumulada<br>(F <sub>i</sub> ) | Frequência<br>Acumulada<br>Relativa (Fr <sub>i</sub> ) |
|--------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------------------|
| 0 10                                 | 2                                        | 2/9 ≅ 22%                                 | 2                                            | 2/9 ≅ 22%                                              |
| 10 1 20                              | 4                                        | 4/9 ≅ 44%                                 | 6                                            | 6/9 ≅ 67%                                              |
| 20⊣30                                | 3                                        | 3/9 ≅ 33%                                 | 9                                            | 9/9 = 100%                                             |
| Soma (Σ <sub>i</sub> )               | 9                                        | 9/9 = 100%                                | -                                            | -                                                      |

### Dados agrupados: tabela de frequência com intervalo

| Valor<br>Observado (X <sub>i</sub> ) | Frequência<br>Absoluta (f <sub>i</sub> ) | Frequência<br>Relativa (fr <sub>i</sub> ) | Frequência<br>Acumulada<br>(F <sub>i</sub> ) | Frequência<br>Acumulada<br>Relativa (Fr <sub>i</sub> ) |
|--------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------------------|
| 0 10                                 | 2                                        | 2/9 ≅ 22%                                 | 2                                            | 2/9 ≅ 22%                                              |
| 10 1 20                              | 4                                        | 4/9 ≅ 44%                                 | 6                                            | 6/9 ≅ 67%                                              |
| 20⊣30                                | 3                                        | 3/9 ≅ 33%                                 | 9                                            | 9/9 = 100%                                             |
| Soma (Σ <sub>i</sub> )               | 9                                        | 9/9 = 100%                                | -                                            | -                                                      |

| Como calcular o número de classes?                   |  |  |  |  |
|------------------------------------------------------|--|--|--|--|
| Op. 1: regra de Sturges                              |  |  |  |  |
| Como calcular a amplitude do intervalo de classe(h)? |  |  |  |  |
| $h = \frac{(Xm\acute{a}x - Xmin)}{nc}$               |  |  |  |  |

| Formas de apresentação dos dados                                                                                                                                                                                      |                                                                                                                                                                                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Uma variável                                                                                                                                                                                                          | Duas ou mais variáveis                                                                                                                                                                                              |  |  |
| <ul> <li>Gráfico de frequência</li> <li>Gráfico de barras</li> <li>Histograma</li> <li>Diagrama de pontos</li> <li>Polígono de frequência</li> <li>Curva de frequência</li> <li>Diagrama de ramos e folhas</li> </ul> | <ul> <li>Tabelas</li> <li>Gráfico de colunas</li> <li>Gráfico de barras</li> <li>Gráfico de setores (pizza)</li> <li>Gráfico de dispersão</li> <li>Gráfico de linhas</li> <li>Diagrama de ramos e folhas</li> </ul> |  |  |

### Estatística Descritiva

### \*Quais dados devem ser ordenados? mediana, separatrizes

### 2. Medidas descritivas

### A. Medidas de Dispersão:

Al Absoluta: amplitude total, amplitude interquartílica, desvio quartil, desvio médio , desvio padrão.

A2 Relativa: coeficiente de variação, coeficiente de variação quartil.

#### B. Medidas de Posição:

B.I Separatrizes: mediana(dados ordenados), decis, quartis, percentis.

B.2 Tendência central: média, mediana,, moda

#### C. Medidas de Forma:

C.I Assimetria

C.2 Curtose

### Transformação uniforme de dados:

Medidas de posição: acompanham a transformação do conjunto de dados (+,-,\*,/)

Média, Mediana, Moda, Separatrizes (quartis e decis) Medidas de dispersão: + e - não afetam

variância e desvio padrão: \* e / sofre modificações
 (pendente)

Coeficiente de variação: sofre alteração + ou -, \* e / não afetam

coeficiente de variação

### A. Medidas de dispersão

Al Absolutas: amplitude total, amplitude interquartílica, desvio quartil, desvio padrão, desvio médio.

| Coeficiente de<br>variação<br>interquartílica                                             | Amplitude/ Intervalo<br>interquartil (Aq):<br>Amplitude<br>semi-quartilica (As): | Desvio Quartil (Dg)                            |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|
| $\frac{Q3 - Q1}{Q3 + Q1} = \frac{Aq}{Q3 + Q1}$                                            | $A_q = Q_1 - Q_3$ $A_s = mediana$                                                | $D_q = (Q_3 - Q_1)/2$                          |
| Amplitude total (At):                                                                     | Desvio:                                                                          | Desvio médio                                   |
| $A_t = X_{m\acute{a}x} - X_{min}$                                                         | Desvio = $x_i$ - $\mu$                                                           | $D_m = \sum  x_i - \mu /n$                     |
| Variância:                                                                                | Desvio padrão: amostro                                                           | Desvio padrão população                        |
| $\sigma^{2} = \sum (x_{i} - \bar{x})/n$ $\sigma u$ $s^{2} = \sum (x_{i} - \bar{x})/n - 1$ | $D_{p.} = \sqrt[3]{\sum (x_i - \overline{x})/n - 1}$                             | $D_{p.} = \sqrt{2 \sum_{i} (x_i - \bar{x})/n}$ |

Pq o desvio médio deve ser apresentado em módulo?

| x/            | Xi - μ         | Desvio | Desvio    |
|---------------|----------------|--------|-----------|
| 2             | 2 - 6,4 = -4,4 | -4,4   | Soma -6,2 |
| 5             | 5 - 6,4 = -1,4 | -11,4  |           |
| 6             | 6-6,4 = -0,4   | -0,4   |           |
| 9             | 9-6,4 = 2,6    | 2,6    | Soma +6,2 |
| 10            | 10-6,4 = 3,6   | 3,6    |           |
| Soma (Xi – µ) | 0              | 0      |           |

Ao somarmos os valores de desvio o resultado será O. Por conta disso, calcularemos o valor do desvio com <u>módulo</u> para dar continuidade ao cálculo.

| xl        | Desvio       | Xi - μ |
|-----------|--------------|--------|
| 2         | -4,4         | 4,4    |
| 5         | -11, 4       | 14     |
| 6         | -O, <b>4</b> | 0,4    |
| 9         | 2,6          | 2,6    |
| Ю         | 3,6          | 13,6   |
| Somatório | 0            | 12,4   |

 $D_m = 12,4 / 5 = 2,48$ 

B.2 Relativas: coeficiente de variação, coeficiente de variação quartil.

Coeficiente de variação: analisa a dispersão mas não depende de

### Coeficiente de variação interquartil (pendente)

### B. Medidas de posição

### B.I Separatrizes





Comparativo entre as separatrizes

Me = Q2 = D5 = P50

Figura 2. Relação de Histograma com Box Plot



### a. Média

Considere  $x = \{1,2,3\}$ 

### Aritmética

$$\bar{x}$$
 = 1+3+9 / 3 = 13/3 = 4,33

### Geométrica:

$$\overline{G} = \sqrt[3]{1.3.9} = \sqrt[2]{27} = 3$$

### Harmônica:

| H=<br>27 | 3                  | 3    | 3.9 |    |
|----------|--------------------|------|-----|----|
|          | =                  |      |     | =  |
| = 2      | .08<br> /  +½ + /9 | 13/9 | 13  | 13 |

Importante 
$$\overline{X} \ge \overline{G} \ge \overline{H}$$

### Média aritmética para dados brutos Cálculo padrão

### Média aritmética para dados ponderados

| Cálculo                                                                   | Nota | Peso |
|---------------------------------------------------------------------------|------|------|
| $\overline{X}_{p.} = 7.3+6.3+8.2+9.1+7.1$ $\overline{X}_{p.} = 71/10=7,1$ | 7    | 3    |
|                                                                           | 6    | 3    |
|                                                                           | 8    | 2    |
|                                                                           | 9    | 1    |
|                                                                           | 7    | 1    |

### Média aritmética para dados agrupados

| media ar ilmetica par a                                                                 | Media ar itmetica para dados agrupados                           |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Passo I: calcular o<br>ponto médio para<br>cada classe                                  | Passo 2: repetir<br>cálculo aplicado<br>para dados<br>ponderados |  |  |
| $Pm_1 = \frac{10+0}{2} = 5$ $Pm_2 = \frac{20+10}{2} = 15$ $Pm_3 = \frac{30+20}{2} = 25$ | X = 5.2 + 15.4 +25.3<br>                                         |  |  |

| V<br>observado | Frea<br>Absoluta | Freq<br>Relativa |
|----------------|------------------|------------------|
| 0-10           | 2                | 2/9              |
| 10-20          | 4                | 4/9              |
| 20-30          | 3                | 3/9              |
| Somatório      | 9                | 9/9              |

# b. Mediana: valor central Dados devem estar ordenados

### Mediana para dados brutos

 $X = \{15, 20, 10, 30, 20, 15, 0, 5, 15\}$  n = 9  $X = \{0, 5, 10, 15, 15, 15, 20, 20, 30\}$  (Rol crescente) Me = 15

### Mediana para dados ponderados

Identificar a classe central através da fórmula n/2.. O valor da moda é o valor observado para a classe.

| V. Observado | F. Acumulada | F. Relativa |
|--------------|--------------|-------------|
| 0            | 1            | 11%         |
| 5            | 2            | 22%         |
| 10           | 3            | 33%         |
| 15 (Mediana) | 6            | 67%         |
| 20           | 8            | 89%         |
| 30           | 9            | 100%        |

### Medida para dados agrupados

Passo 1: Identificar a classe central através da fórmula n/2.. O valor da moda é o valor observado para a classe.

| V. Observado           | F. Acumulada | F. Relativa |
|------------------------|--------------|-------------|
| 0 -10                  | 2            | 22%         |
| 10 - 20 (Classe modal) | 6            | 67%         |
| 20 - 30                | 9            | 100%        |

Passo 2: calcular o valor da interpolação linear para calcular a mediana.

$$\frac{20-10}{6-2} = \frac{Me-10}{4,5-2}$$

$$\frac{10}{4} = \frac{Me-10}{2,5}$$

$$2,5 = \frac{Me-10}{2,5}$$

$$2,5.2,5 = Me-10$$

$$6,25+10 = Me$$

$$Me = 16,25$$

### c. Moda: valor que mais se repete

Valor que mais se repete.

>Unimodal:

$$x = \{2,3,4,4,4,5,8\}$$

>Bimodal:

>Amodal:

$$x=\{2,4,7,8,9,10,15\}$$
 ()

### Moda para dados brutos

Passo 1: observar o valor que mais se repete no conjunto de dados

 $X = \{0,5,10,15,15,20,20,30\}$ 

Mo = 15 kg/ semana

### Moda para dados ponderados

Observar o valor que mais se repete no conjunto de dados através da Frequência absoluta (Fi). A moda é o valor observado relativo à Frequência

### Moda para dados agrupados

Passo 1: observar o valor que mais se repete no conjunto de dados através da frequência absoluta (fi).

Passo 2: calcula-se o valor pontual da moda através. Há quatro métodos possíveis:

$$Mo = \frac{20+30}{2} = 25 \, kg/semana$$

Moda de Czuber

$$Mo = Li + h \frac{fmodas - fant}{2fModas - (fAnt + fPost)}$$

Moda de Pearson

$$Mo = 3Me - 2x$$

Moda de King

$$Mo = Li + h \frac{fpost}{(fant + fpost)}$$

### Distribuição simétrica



### Distribuição Assimétrica



### Distribuição Assimétrica a/ esquerda (negativa)



### Assimetria

As > 0 (ass. positiva)

As = 0 (simétrica)

As < 0 (ass. negativa)

$$Q2 - Q1 = Q3 - Q2$$

### Q3 - Q2> Q2 - Q1

### C.2 Curtose

Mesocúrtica

# Leptocúrtica --- Mesocúrtica --- Platicúrtica

### Cálculo de Curtose (C)

$$C = Q3 - Q1 / 2.(P90-P10)$$

ou

$$C = Q3 - Q1 / 2(D9 - D1)$$

# Distribuição de probabilidade discreta (adicionargeométrica)

| Distribuição               | Caso geral                                                                                  | Bernoulli                                   | Binomial (*)                    | Poisson                                                                  | Hipergeométrica (*)                                          |
|----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|
| Como<br>identificar        | Situações que podem ser<br>quantificadas de forma<br>discreta, isto é, valores<br>inteiros. | 1 tentativa<br>2 resultados (0 / 1)         | "n" Bernoulli<br>-independentes | "n" Bernoulli<br>-independentes<br>-intervalo contínuo<br>(tempo/espaço) | "n" Bernoulli<br>-dependentes                                |
| Valor Esperado<br>(média)  | $\Xi(x) = \sum_{i=1}^{n} x_i . P(x_i)$                                                      | $\Xi(x) = p$                                | $\Xi(x) = np$                   | $\Xi(x) = \lambda$                                                       | $\Xi(x) = np$<br>$\Xi(x) = sp$                               |
| Variância                  | $\Xi(x) = \Xi(x_i - E(x)^2) P(x_i)$<br>$\Xi(x) = \Xi(x^2) - [E(x)]^2$                       | $\Xi(x) = p.q$                              | $\Xi(x) = \text{n.p.q}$         | $Var(x) = \Xi(x) = \lambda$                                              | $Var(x) = \text{np.q.}(\frac{N-n}{N-1})$<br>+ fator correção |
| Desvio padrão              | $\sqrt[2]{variância}$                                                                       | $\sqrt[2]{variância}$                       | √variância                      | $\sqrt[2]{variância}$                                                    | √variância                                                   |
| Coef. de<br>Variação       | $rac{Desvio\ padrão}{\Xi(x)}$ . IOO                                                        | $rac{	extit{Desvio padrão}}{\Xi(x)}$ . IOO | Desvio padrão<br>∃(x) . IOO     | $\frac{\textit{Desvio padr}$ ao $\Xi(x)$ . IOO                           | $\frac{\textit{Desvio padr}$ and $\Xi(x)$ . IOO              |
| Função de<br>Probabilidade | $\sum_{i=1}^{n} = P(x = x_i)$                                                               | $p^s * q^{1-s}$                             | $C_{n,s}.p^s.(q)^{n-k}$         | e <sup>-λ</sup> λ <sup>k</sup>                                           | $\frac{C_x^r.c_{n-x}^{N-r}}{c_n^N}$                          |

### Para todos os casos



# Distribuição de probabilidade contínua

| Distribuição                              | Caso geral                                                                                                                                                                                                             | Uniforme                                                | Normal                                                                | Exponencial                                                                                                                                                                                                                      |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Como identificar                          | Situações que podem ser<br>quantificadas de forma<br>contínua, isto é, valores<br>decimais.                                                                                                                            | Probabilidade<br>igualmente distribuida<br>no intervalo |                                                                       | - Similar: a Poison, diferen porque queremos saber o 'tempo/ unidade continua' em vez de qtd. de ocorrências - Eventos independentes - número de ocorrências por intervalo de tempo deve ser cte λ tempo médio entre ocorrências |
| Valor Esperado<br>(média)                 |                                                                                                                                                                                                                        | Xmax - Xmin<br>2.                                       | $\Xi(x) = \mu$                                                        | $E(x) = Dp(x) = 1/\lambda$<br>- $E(x) = dp(x)$                                                                                                                                                                                   |
| Variância                                 |                                                                                                                                                                                                                        | $(Xmax - Xmin)^2$                                       | $\Xi(x) = \sigma^2$                                                   | $E(x) = 1/\lambda^2$                                                                                                                                                                                                             |
| Desvio padrão                             | $\sqrt[2]{variância}$                                                                                                                                                                                                  | $\sqrt[2]{variância}$                                   | $\sqrt[2]{variância}$                                                 | $\sqrt[2]{variância} = 1/\lambda$                                                                                                                                                                                                |
| COeficiente de<br>variação                | Desvio padrão<br>Ξ(x) . IOO                                                                                                                                                                                            | Desvio padrão<br>Ξ(x) . IOO                             | $\frac{Desvio\ padrão}{\Xi(x)}$ . IOO                                 | $\frac{\text{Desvio padrão}}{\Xi(x)} \cdot  OO  = \frac{1/\lambda}{1/\lambda} = 1$                                                                                                                                               |
| Função de<br>Probabilidade<br>(densidade) | $f(x) = P(x)/x_{max} - x_{min}$<br>Probabilidade no ponto = 0<br>Caso haja necessidade de<br>calcular a probabilidade de<br>intervalo utiliza-se integral e<br>derivada. Normalmente, utilizamos<br>valores tabelados. | Xmax =Xmin                                              | $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ | $f(x) = \lambda e^{\lambda x}$ Função acumulada de probabilidade: $f(x) = 1 - e^{-\lambda x}$                                                                                                                                    |

### PARA DISTRIBUIÇÃO UNIFORME E NORMAL

# UNIFORME EXPONENCIAL

Função Densidade de Probabilidade <mark>Atenção: em variáveis contínuas não há Função</mark> Massa de probabilidade



Função Densidade de Probabilidade



Função Densidade de Probabilidade



Função de distribuição acumulada de probabilidade



Função densidade acumulada de probabilidade



Função densidade acumulada de probabilidade



Atenção: além das distribuições apresentadas acima, há outras distribuições como T de Student , Qui Quadrado, entre outros.

# Sobre a distribuição normal

Além de ser utilizada para explicar a probabilidade de variáveis continuas, também explica intervalos de segurança, teste de hipótese e tamanho amostral.



- Simétrica ( $\overline{X} = Me = Mo$ )
- $-P(x<\mu) = P(x>\mu) = 50%$
- É sempre unimodal
- Mesocúrtica
- Quartis equidistantes (Q2-Q1 = Q3-Q2)
- É especificada pela média e desvio padrão (raiz quadrada da variância)





Como aplicar a transformação normal nos dados:

I - Transformar os valores para distribuição de probabilidade normal padrão (Z)

Z: indica o número de desvios padrões a partir da média

$$Z = \frac{X - \mu}{\sigma}$$

Quando aplicamos o teste Z

- 2 Identificar a área de Z sobre a distribuição normal.
- 3 Encontrar valor tabelado que representa a probabilidade da área determinada..

O valor final de Z indica a quantidade de desvios padrão em relação à média.

Testes para verificar a normalidade dos dados:

### Numéricos:

- -Shapiro-Wilk (limite de 5.000 amostras)
- -Kolmogorov-Smirnov (Teste de lilliefors independe do tamanho de amostras)
- -Anderson-Darling

(14:31

https://www.udemy.com/course/estatistica-para-analise-de-dados-com-python/learn/lecture/25824976?start=90#questions)

### Gráficos:

- -Histograma
- -Qaplot

### Estatística Inferencial



proporção amostral = probabilidade amostral

# Técnicas de amostragem

- Não probabilística (não aleatória)
- Probabilística (aleatória)
- a. Simples
- -Todas as unidades amostrais devem ter a mesma probabilidade de serem sorteadas
- -Seleção das amostras deve permitir ser realizada com ou sem reposição
- b. Estratificada
  - -proporcional
  - -não proporcional
- \* Apenas deve-se usar o processo de amostragem estratificada quando houver diferença significativa entre as médias dos estratos, caso contrário, utiliza-se amostragem simples. Nesse caso a amostragem estratificada aumentará a precisão em relação a amostragem simples.
- c. Conglomerados: selecionar 2 de 10 turmas de uma escola
- d. Sistemática: seleciona elementos com base em frequência pré-definida

Fração amostral =  $\frac{tamanho da amostra}{tamanho da população}$ 

Estatística inferencial

OBS: Necessário saber qual o tipo de distribuição que os dados sequem

- a Estudar distribuição amostral
- b Calcular estimadores
- c Calcular Intervalo de confiança
- d Calcular tamanho da amostra
- e Calcular erro amostral
- f Teste de hipótese

Importante: como trabalhamos com amostras, os valores de  $\overline{x}$ ,  $s^2$ ,  $\overline{p}$ ,  $\overline{s}$  são variáveis aleatórias

Importante: as variáveis aleatórias são quantitativas, não aceitam dados descritivos.

### Teorema do Limite central

A amostra de dados tende a distribuição normal.m mesmo que a população apresente outra distribuição



| realizar interencias sobre a amostra. |                        |                      |  |
|---------------------------------------|------------------------|----------------------|--|
|                                       | Parâmetro<br>população | Estimador<br>amostra |  |

مقموا ممصاممة

مناحمهما

| I. Média                                                                           | méd. população                                       | =        | méd. amostra                                                                    |
|------------------------------------------------------------------------------------|------------------------------------------------------|----------|---------------------------------------------------------------------------------|
| 2. Variância da<br>média<br>(rever e<br>comparar<br>com variância<br>da população) | var. população                                       | <b>≠</b> | var. amostra                                                                    |
| Variância da<br>média das<br>amostras                                              | $\sigma^2 = \sum (x_i - \bar{x})/n$ (var. população) | <b>≠</b> | var. amostra = σ <sup>2</sup> /n<br>(variância da média da<br>amostra)          |
|                                                                                    | $\sigma^2 = \sum (x_i - \bar{x})/n$                  | ≠        | $\frac{s_{-}^{2}}{s} = \frac{\sigma^{2}}{n}$ (variância da média da amostra)    |
| 3.<br>Desvio padrão<br>da média                                                    | $\sigma = \sqrt[2]{\sum (x_i - \overline{x})/n}$     | <b>≠</b> | $s=\sigma/\sqrt{n}$ (desvio padrão da media das amostras) "erro média amostral" |
| 4.<br>Probabilidade                                                                | p = interesse/<br>total                              | =        | p = interesse/ total<br>p = proporção                                           |

| 4.<br>Probabilidade<br>e proporção<br>"estimativa<br>pontual" | p = interesse/<br>total<br>p = probabilidade | 11 | p = interesse/ total<br>p = proporção |
|---------------------------------------------------------------|----------------------------------------------|----|---------------------------------------|
| 4.1 Esperança                                                 | esperança<br>população                       | =  | esperança amostra                     |

| Proporção            |                   |          |                                                                                                                                |  |
|----------------------|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------|--|
| 4.2<br>Variância     | var = (p.q)       | <b>≠</b> | var = (p.q)/n<br>"variância da<br>proporção amostral"                                                                          |  |
| 4.3 Desvio<br>padrão | $dp = \sqrt{p,q}$ | <b>≠</b> | $dp = \sqrt{\frac{p \cdot q}{n}} = \frac{\sqrt{p \cdot q}}{\sqrt{n}}$ "erro padrão da proporção amostral" "erro da "estimativa |  |

Para o valor máximo da proporção amostral adota-se p = 50%

de probabilidade!""

TEOREMA DO LIMITE CENTRAL X LEI DOS GRANDES NÚMEROS

Lei dos grandes números: quanto maior a amostra, maior a probabilidade de se acertar o parâmetro populacional

- >> Forte: converge <u>quase certamente</u> para a média
- >> Fraca: converge <u>em probabilidade</u> para a média

: A lei dos grandes números não tem relação com a distribuição normal

| Converter média amostral para forma normalizada                                                                               |                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dist. Normal                                                                                                                  | Dist. Tde Student                                                                                                                                                          |  |
| $Z = (X - \mu_{\overline{x}}) / \sigma_{\overline{x}}$ $Z = (X - \mu_{\overline{x}}) / \sigma / \sqrt{n}$                     | $T = (X - \mu_{\overline{x}}) / s_{\overline{x}}$ $T = (X - \mu_{\overline{x}}) / s / \sqrt{n}$ obs: $s = n - 1$                                                           |  |
| Quando usar a normal  - Desvio padrão populacional é conhecido  - desvio padrão populacional é desconhecido, porém amostra>30 | Quando usar t de Student: - desvio padrão desconhecido - amostras de n<30) ! Difere da normal porque possui distribuição de probabilidade para cada grau de liberdade (GL) |  |

Quando usar T de Student?

- dp populacional desconhecido
- amostra de tamanho pequeno

IMPORTANTE: tanto a distribuição normal como a distribuição t de Student tem média = 0. Na dist. normal o desvio padrão é igual a 1.

| Intervalo de confiança                                      |                                                     |                                                          |                                        |  |
|-------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------|--|
| P/ a média amost                                            | ral (z   t)                                         | P/ a proporção am                                        | ostral (z)                             |  |
| $\overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$                |                                                     | $\hat{p} \pm Z\sqrt{\frac{\hat{p}.(1-\hat{p})}{n}}$      |                                        |  |
| P/média<br>amostral                                         | Intervalo de<br>confiança p/<br>média               | Erro de<br>estimativa<br>(margem de erro)<br>p/média (*) | Erro<br>padrão p/<br>média (*)         |  |
| - P/ qlqr tamanho<br>de amostra<br>- D.p. pop.<br>conhecido | $\overline{X} \pm Z \frac{\sigma}{\sqrt{n}}$        | $Z\frac{\sigma}{\sqrt{n}}$                               | $\frac{\sigma}{\sqrt{n}}$              |  |
| - amostra >=30<br>- D.p. pop. desc.                         | $\overline{X} \pm Z \frac{s}{\sqrt{n}}$             | $Z\frac{s}{\sqrt{n}}$                                    | $\frac{s}{\sqrt{n}}$                   |  |
| - amostra <30<br>- D.p. pop. desc.                          | $\overline{X} \pm t \frac{s}{\sqrt{n}}$             | $t \frac{s}{\sqrt{n}}$                                   | $\frac{s}{\sqrt{n}}$                   |  |
| P/ proporção<br>amostral (b)                                | Intervalo de<br>confiança p/<br>média               | Erro de<br>estimativa<br>(margem de erro)<br>p/média (*) | Erro<br>padrão (*)                     |  |
|                                                             | $\hat{p} \pm Z\sqrt{\frac{\hat{p}.(1-\hat{p})}{n}}$ | $Z\sqrt{\frac{\hat{p}.(1-\hat{p})}{n}}$                  | $\sqrt{\frac{\hat{p}.(1-\hat{p})}{n}}$ |  |

| Tamanho   | طم | amachea |
|-----------|----|---------|
| i amarino | aa | amostra |

$$E = Z \frac{\sigma}{\sqrt{n}}$$

$$\sqrt{n}. E = Z\sigma$$

$$\sqrt{n}. E = Z\sigma$$

$$\sqrt{n}. E = \frac{Z \cdot \sigma}{E}$$

$$n = (Z \frac{\sigma}{E})^{2}$$

### Teste de Hipótese <u>para uma amostra</u> (utiliza valor Z ou T)

- As hipóteses são sempre calculadas para parâmetros populacionais

-Não precisa ser realizado com toda a população

-Similar a intervalo de confiança, no entanto, retorna sim ou não

-Coleta amostra e verifica se há compatibilidade com o valor informado

 $H_1 = Hip ext{o}tese$  alternativa = desigualdade

 $\mu \neq Mo$  - bilateral

 $\mu > Mo$  - Unilateral à direita

 $\mu < Mo$  - unilateral à esquerda

- Nível de significância: probabilidade do erro. Definido pelo investigador, assim sendo, trata-se de parâmetro subjetivo. Área determinada pelo Z calculado. (chamado nível crítico). "Probabilidade máxima permitida para cometer erro do tina."
- Nível de confiança: complemento do nível de significância (lembrando que o total é 1)

| Teste de hipótese                                         |                                                      |                                                                |  |
|-----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|--|
| Para a média<br>(permite Z ou T)                          |                                                      | Para a proporção<br>(permite apenas Z)                         |  |
| $Z_{cal} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ | $t_{cal} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$ | $Z_{cal} \frac{\hat{p} - \rho_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$ |  |
| $Z_{cal}$ = Estatística do teste                          |                                                      |                                                                |  |

Etapas para a aplicação:

- 1. Calcula <mark>Z tabelado</mark>: define a área de rejeição/aceitação (costuma-se usar o valor de 5%, Z= 1,96)
- 2. Calcula <mark>Z. calculado</mark> para a média : verifica posicionamento do valor dentro da distribuição normal

Tipos de erro no teste de hipótese:

Erro do tipo I: rejeita  $H_0$  quando deveria aceitar

 $[\alpha = 1 - nivel de confiança]$ 

Erro do tipo 2: aceita  $H_0$  quando deveria rejeitar

 $[\beta = 1 - potência do teste]$ 

Valor - Р (Ф)

Importante: o valor o também chamado de: probabilidade de significância do teste ou nível descritivo do teste (Varia de O a I) O nível de significância é o α (determinado pelo pesquisador)

Nivel crítico: apresenta nivel de aceitação/ rejeição. Valor-p: é a área projetada pelo Z calculado. Representa a probabilidade de a amostra pertencer a distribuição do valor

populacional testado. Pode ser utilizado como uma forma alternativa para que não se calcule a estatística de teste.

Quanto menor o valor de P, maior a probabilidade de rejeitar  $H_0$ 

área valor p > área nível de significância: aceita  $H_0$ .

área valor p  $\leqslant$  área nível de significância: não aceita  $H_0$ .

Para encontrar o valor P busca-se na tabela t/z

Teste de hipótese Qui - Quadrado

Variáveis qualitativas <mark>ou discretas</mark>

-Observações independentes entre si

-Observação contabilizada por contagem. Frequência e proporções -Cada observação pertence a apenas uma classe

-Não pode ser aplicada a amostra inferior a S observações por classe

Hipóteses do teste Qui - Quadrado

HO: Fobs = Fesp

H: Fobs = Fesp

χ tabelado = encontrado na tabel

χ calculado = calculado pela fórmula

Teste qui- quadrado: não utiliza Z e nem t. Utiliza Qui-Quadrado

$$\chi^2 = \sum_{i} Z_i^2$$

-Qui- quadrado tabelado

-Qui- quadrado calculado

Fo: frequência observada

Fe: frequência esperada

HO: Fo - Fe

H: Fo ≠Fe

### Tipos de teste Qui-quadrado

Aplicado apenas para variável categórica ou discreta, não pode ser aplicado em amostras muito pequenas. N<5

| Teste de adequação de             | Teste de independência: 2 ou +               |
|-----------------------------------|----------------------------------------------|
| ajustamento: I variável           | variáveis qualitativas                       |
| qualitativa                       |                                              |
|                                   |                                              |
| $\chi^2$ tabelado =GL<br>GL = n-I | $\chi^2$ tabelado =GL<br>GL = (col-1)(lin-1) |

$$\chi^2 calculado = \sum \frac{(Fo - Fe)^2}{Fe}$$

Desvio = Fo - Fe (no entanto, o resultado dessa equação seria zero. Então, elevamos ao quadrado.

Desvio quadrado =  $(Fo - Fe)^2$ 

Proporção:  $(Fo - Fe)^2/Fe$ 

I - seleciona a variável com menor número de classes, calcula o % e desenvolve a tabela de valor esperado. Covariância: + infinito a - infinito

Correlação: +1 a -1 (indica grau de similaridade entre variáveis diferentes) Variância : apenas assume valores positivos

Coeficiente de determinação R^2: apresenta apenas variação de O a 1

### Distribuição de probabilidade conjunta e marginal

| ×     | 0       | I                                | Total |
|-------|---------|----------------------------------|-------|
| I     | 1/3.1/4 | <sup>2</sup> / <sub>3.</sub> I/4 | 1/4   |
| 2     | 1/3.1/4 | <sup>2</sup> / <sub>3.I</sub> /4 | 1/4   |
| 3     |         |                                  | 1/4   |
| 4     |         |                                  | 1/4   |
| Total | 1/3     | 2/3                              |       |

| Conjunta |
|----------|
| Marginal |

Probabilidade de variáveis discretas independentes

Como saber se as variáveis são independentes?

A probabilidade conjunta deve ser o resultado da multiplicação das respectivas marginais.

Nosse caso P(x) = P(x). p(y)

| Probabilidade de variáveis discretas          |                                                                                                                |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| dependentes independentes                     |                                                                                                                |  |
| $P_{(x=3 y=1)} = \frac{P(x=3 e y=1)}{P(y=1)}$ | $P_{(x,y)} = p(x). \ p(y)$ $p'$ todos os pares x e y. Em variáveis independentes a covariância é igual a zero. |  |

Como saber se as variáveis são dependentes?

A probabilidade conjunta <mark>não</mark> é o resultado da multiplicação das respectivas marginais.

Covariância [valor positivo ou negativo]

- -: direção contrária
- O: variáveis independentes OU desvios se anulam
- +: mesma direção
- \* Não possui valor mínimo nem máximo

Medida descritiva que indica a relação de dependência entre duas variáveis. Pode ser aplicada tanto em estatística descritiva quanto inferencial.

Covariância como variável descritiva: a covariância é similar a variância, a diferença é que aqui analisamos 2 ou mais variáveis, enquanto na variância analisamos apenas uma.

| × | У | (x - x) | (y - y) | $(x - \bar{x}). (y - \bar{y})$ |
|---|---|---------|---------|--------------------------------|
| 2 | 5 | -3      | -4      | 12                             |

| 3 | 7  | -2 | -2 | 4   |
|---|----|----|----|-----|
| 6 | 8  | 1  | -1 | -1  |
| 9 | 16 | 4  | 7  | 28  |
|   |    |    |    | 4-3 |

 $Cov(x,y) = \frac{43}{4}$  unidade: dominador/ denominado

$$Cov(x,y) = \frac{\sum (x-\bar{x}).(y-\bar{y})}{n}$$

Lembre-se de verificar se é n ou se é n-l

| Fórmula alternativa da covariância<br>Cov(X,Y) = Média Produto XY - Produto da média X e Y |    |     |  |
|--------------------------------------------------------------------------------------------|----|-----|--|
| x y Produto X e Y                                                                          |    |     |  |
| 2                                                                                          | 5  | Ю   |  |
| 3                                                                                          | 7  | 21  |  |
| 6                                                                                          | 8  | 48  |  |
| 9                                                                                          | 16 | 144 |  |

OBS: se fosse amostra seria n-1

Para corrigir a unidade de medida usamos a correlação.

Lembre-se: se as variáveis são independentes se a covariância é O.

Covariância =0 não indica necessariamente que as variáveis são independentes!

Qual o problema da covariância? variáveis estão em unidades diferentes. Para solucionar o problema calculamos o coeficiente de correlação.

### Covariância como variável aleatória

Correlação (r) [valor entre -1 e +1]: indica a "força" que mantém unidas duas variáveis.

$$r = \frac{Cov(X,Y)}{s_y.s_y}$$

$$r = \frac{\sum (x_i - \bar{x}).(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \cdot \sum (y_i - \bar{y})^2}}$$

| Coeficiente de<br>correlação (r) | Correlação<br>Positiva | Coeficiente de<br>correlação (r) | Correlação<br>Negativa |
|----------------------------------|------------------------|----------------------------------|------------------------|
| <u>r</u> = 1                     | Perfeita               | r = - 1                          | Perfeita               |
| 0,95 ≤ r < 1                     | Muito forte            | - 0,95 ≤ r < -1                  | Muito forte            |
| 0,8 ≤ r < 0,95                   | Forte                  | -0,8 ≤ r < -0,95                 | Forte                  |
| 0,5 ≤ r < 0,8                    | Moderada               | -0,5 ≤ r < -0,8                  | Moderada               |
| 0 ≤ r < 0,5                      | Fraca                  | 0 ≤ r < -0,5                     | Fraca                  |

1: variação da variável A é explicada por B

O: não há variação entre as variáveis

-1: correlação negativa entre as variáveis

"Força que mantém unidos dois conjuntos de valores, por ser adimensional podemos comparar os valores (o que não ocorre na covariância)" 0,0019 a 0,19 - muito fraca 0,20 a 0,39 - fraca 0,40 a 0,69 - moderada 0,70 a 0,89 - forte 0,90 a 1 - muito forte

### IMPORTANTE: correlação não é causa!

 $r(x,y) = \frac{Cov(x,y)}{s_y s_y}$  [remove unidades de medidas]

O: não possuem dependência ou a correlação não é linear s: desvio padrão de x e desvio padrão de y

A covariância não permite realizar comparações por conta da unidade de medida, nesse caso, utilizamos a correlação para poder comparar as variáveis. Dessa forma, como a correlação é adimensional, podemos realizar comparações.

-Costuma usar gráfico de dispersão/ correlação



correlação positiva

Pesquisar sobre roat mean square error (RMSE)

- Interpretação facilitada

Pendente:

coeficiente de determinação:(coeficiente de correlação)

Correlações paramétricas:

Pearson

Correlação não paramétrica

Sperman: permite uso para dados lineares e não lineares Kendall: utilizado para amostras de até 30 elementos ou para população com grande quantidade de empates

Teste de hipótese para correlação linear

$$t = \frac{r}{\sigma_r} = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

### Graus de liberdade

$$gl = n - 2$$

Coeficiente de Determinação:

Porcentagem da variação de y que pode ser explicada pela relação entre x e v

$$r^2 \Rightarrow \frac{Variação\ encontrada}{Variação\ total}$$

$$r^2 = \rho^2$$

$$y = m.x + b$$

### Coeficientes

$$m = \frac{\sum (x_i - \bar{x}). (y_i - \bar{y})}{\sum (y_i - \bar{y})^2}$$

$$b = \bar{y} - m\bar{x}$$

### Cálculo do Coeficiente de Spearman

$$r_R=1 ext{-}rac{6\Sigma_i {d_i}^2}{n(n^2\!-\!1)}$$

n = número amostras.

di = diferença de alcance de cada elemento.

| Coeficiente de<br>correlação (r <sub>R</sub> )                                                                            | Correlação<br>Positiva | Coeficiente de<br>correlação (r <sub>R</sub> ) | Correlação<br>Negativa |
|---------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|------------------------|
| r <sub>R</sub> = 1                                                                                                        | Perfeita               | r <sub>R</sub> = - 1                           | Perfeita               |
| $0.95 \le r_R < 1$                                                                                                        | Muito forte            | - 0,95 ≤ r <sub>R</sub> < -1                   | Muito forte            |
| $0.8 \le r_R < 0.95$                                                                                                      | Forte                  | $-0.8 \le r_R < -0.95$                         | Forte                  |
| $0.5 \le r_R < 0.8$                                                                                                       | Moderada               | $-0.5 \le r_R < -0.8$                          | Moderada               |
| u≤r <sub>R</sub> <u,5< td=""><td>ггаса</td><td><math display="block">0 \le r_R &lt; -0.5</math></td><td>Fraca</td></u,5<> | ггаса                  | $0 \le r_R < -0.5$                             | Fraca                  |

### Cálculo do Coeficiente de Kendall

 $r=rac{x_i>x_j ext{ e } y_i>y_j ext{ ou se } x_i< x_j ext{ e } y_i< y_j}{ ext{ (quantidade de pares concordantes)}- ext{ (quantidade de pares discordantes)}}{n(n-1)/2}$ 

| Coeficiente de<br>correlação (τ) | Correlação<br>Positiva | Coeficiente de<br>correlação (τ) | Correlação<br>Negativa |
|----------------------------------|------------------------|----------------------------------|------------------------|
| τ = 1                            | Perfeita               | τ = - 1                          | Perfeita               |
| $0.95 \le \tau < 1$              | Muito forte            | - 0,95 ≤ τ < -1                  | Muito forte            |
| $0.8 \le \tau < 0.95$            | Forte                  | -0,8 ≤ τ < -0,95                 | Forte                  |
| $0.5 \le \tau < 0.8$             | Moderada               | $-0.5 \le \tau < -0.8$           | Moderada               |
| 0 ≤ τ < 0,5                      | Fraca                  | 0 ≤ τ < -0,5                     | Fraca                  |

### Análise de Regressão Linear

(explica o formato da regressão)

REGRESSÃO LINEAR SIMPLES

Variável X: 1 independente Variável Y: 1 dependente y = a + bx + e

REGRESSÃO LINEAR MÚLTIPLA

Variável X: n variáveis x Variável y: 1 variável y y = a + b1 + b2 + ... + bn + e

OBS: ao comparar mais de 3 variáveis, não é possível representar graficamente a: constante da regressão, coeficiente linear, intercepto valor de x que intercepta y

b: coeficiente de regressão, coeficiente angular, inclinação da reta. Indica a inclinação da reta representa o crescimento de y a cada uma unidade de x Indica se a reta será /, \ ou -.

#### Como calcular o valor de A e B?

Estimadores dos mínimos quadrados  $b = \frac{Cov\left(x,y\right)}{s_{x}^{2}} \quad \text{unidade x/ unidade y}$   $a = \overline{Y} - b\overline{X}$ 

| FRRC | 1      | 0-6   |                           | -8- |
|------|--------|-------|---------------------------|-----|
| HKK( | 15 11A | K H/T | $\kappa \vdash \varsigma$ | SAI |

ERROS DA REGRESSÃO

$$e = y_i - \hat{y}_i$$

VARIAÇÃO TOTAL Explicada:  $\hat{y} = a + bx$  Não explicada:  $e = y = \hat{y}$ 



### Erros da regressão:

$$(y - \overline{y}) = (\widehat{y} - \overline{y}) + (y - \widehat{y})$$
  
 $\Xi(y - \overline{y})^2 = \Xi(\widehat{y} - \overline{y})^2 + \Xi(y - \widehat{y})$   
 $SQT = SQE + SQR$   
 $Var. total = Var. explicada + Var. erro$   
 $Variação = soma dos quadrados$ 

Variância dos erros da regressão

$$se^2 = \frac{\sum (yi - \hat{y}i)^2}{n-2}$$

Desvio padrão dos erros da regressão ('Erro padrão da estimativa da regressão)

$$se = \sqrt{se^2} = \frac{\sqrt{\sum (yi - \hat{y}i)^2}}{\sqrt{n-2}}$$

### Teste de hipótese da regressão (usa apenas teste t):

Ho: não existe regressão linear

HI: existe regressão linear

$$tcal = \frac{\bar{X} - \mu}{s_x} = \frac{b - 0}{s_b} = \frac{b}{s_b} = \frac{se^2}{\sqrt{(x - x)^2}}$$

### Coeficiente de Determinação (r):

$$r^2 = \frac{SQE}{SQT} = \frac{explicada}{total}$$

### Análise de variância: (usa f de Snedecor):

 $f \ de \ Snedecor = \frac{QME \ (explicada)}{QMR \ (residual)}$ 

Indica qtas vezes a explicada é maior q a residual.

### Teste de hipótese dos erros da regressão:

Ho: valor explicado = valor residual ½ não há linearidade entre x e y HI: variância explicada > variância residual

### Covariância x Correlação

Covariância: unidade medida em min/kg : não podemos comparar. Para comparar utilizamos a correlação. ®.

$$\frac{\Xi(x-x)\cdot(y-y)}{(n)\ ou\ (n-1)}=\Xi\ xy\ -\ ((\ \Xi x\ .\ \Xi y)/n)$$
 Probabilidade =  $\Xi\ \epsilon(xy)\ -\ \Xi\epsilon(x)\ .\ \Xi\epsilon(y)$ 

Correlação: (r): + 1 a - 1

$$r = \frac{Cov(x,y)}{\frac{S_x^Z}{x^Y}} =$$

Propriedades da covariância:

(+ e - ): não altera

(\* e /): \* ou /

Variáveis dependentes:

$$Var(x \pm y) = Var(x) \pm Var(y) \pm 2 Cov(x, y)$$

Variáveis independentes:

$$Var(x \pm y) = Var(x) + Var(y)$$

Propriedades da Correlação (s):

só pode ser alterada pela \* ou / de valores negativos.

:. altera apenas o sinal.

Teste paramétrico: analisam variáveis dependentes com distribuição conhecida. Costuma-se dizer que os testes paramétricos são utilizados para distribuição normal por conta do Teorema do Limite.

### Pré-requisitos:

a. Dados em intervalo (variável dependente precisa ser numérica, discreta ou contínua)

| Dados estão em intervalo |     |       | Dados não estão em<br>intervalo |       |  |
|--------------------------|-----|-------|---------------------------------|-------|--|
| Cat 1                    | 7,2 | Catı  |                                 | Sete  |  |
| Cat 2                    | 6   | Cat 2 | -                               | Seis  |  |
| Cat 3                    | 5,4 | Cat 3 | 3                               | Cinco |  |

### b. Independência dos dados amostrais

#### c. Normalidade

Testes para verificar normalidade:

- >> Kolmovrov-Smirnov (amostra>50)
- >> Shapiro-Wilk (amostra<50)
- >> Anderson Darling
- >> entre outros

Ho: distribuição é igual à normal (p>0.05)

HI: distribuição é diferente da normal (p<0.05)

(em caso de H1 usa-se testes não paramétricos ou realiza-se a transformação dos dados)

### d.Homogeneidade da variância

>>Para verificar homogeneidade aplica-se teste de Levene Ho: variância é homogênea (p>0.05)

H:1: variância não é homogênea (p<0.05)

(em caso de H1 pode-se aplicar a correção de Weich)

### Teste paramétrico: analisam variáveis dependentes com distribuição NÃO conhecida

Grupo Pareado: teste do mesmo grupo em intervalo de tempo ou submetido a diferentes testes. *Nesse caso, as amostras devem ser de tamanho iqual*.

Grupo Independente: grupos iniciais são diferentes, ex: feminino e masculino. Nesse caso as amostras podem ser de tamanhos diferentes.

## Testes paramétricos: análise descritiva realizada com média e desvio padrão

Testes não paramétricos: análise descritiva realizada com média (2 quartil), e variabilidade (1 e 3 quartil)

lpara calcular o intervalo de confiança é necessário saber a distribuição dos dados.

Variável dependente: resposta

Variável independente: variável de grupamento

! Dados qualitativos não podem ser descritos com média e desvio padrão :. só pode ser descrita por mediana, primeiro e terceiro quartil.

! Na análise pareada o grupo deve ser do mesmo tamanho

! Em grupos independentes os grupos não precisam ser do mesmo tamanho

comumente utilizado quando uma suposição do teste paramétrico foi violada. Possuem menor probabilidade para detectar um efeito e não possuem intervalo de confiança.

Ideal para dados distorcidos, ou que não estão em distribuição normal ou que apresentam ou

| Qual o melhor<br>teste de | Para uma amostra                                      |                                                              |                         |  |
|---------------------------|-------------------------------------------------------|--------------------------------------------------------------|-------------------------|--|
| comparação?               | Testes paramétricos                                   |                                                              | Testes não paramétricos |  |
|                           | Teste Z Desvio padrão populacional conhecido ou n>=30 | Teste t<br>Desvio padrão populacional<br>desconhecido e n<30 | Teste de sinais         |  |

|                            | Qual o melhor<br>teste de<br>comparação? |                  | VARIÁVEL INDEPENDENTE                                            |                                      |                                         |                                                |
|----------------------------|------------------------------------------|------------------|------------------------------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------------|
|                            |                                          |                  | Qualitativa nominal                                              |                                      |                                         |                                                |
| V<br>A                     | Q<br>U                                   | grupo            | 2 grupos                                                         |                                      | 3 grupos ou mais                        |                                                |
| R<br>I<br>A                | A<br>L                                   | Distribuiçã<br>o | Independentes e<br>não pareados                                  | dependentes<br>/pareados             | independente e não<br>pareado           | dependentes/ pareados                          |
| V<br>E                     | Т                                        | Teste            | Qui-quadrado/<br>Fisher                                          | MC Nemar                             | Qui-quadrado/Fisher                     | Q de Cochram                                   |
| _                          |                                          |                  |                                                                  |                                      | Qualitativa Ordinal                     |                                                |
| D<br>E                     | Q<br>U<br>A<br>L<br>I<br>T               | grupo            | 2 grupos                                                         |                                      | 3 grupos ou mais                        |                                                |
| P<br>E<br>N<br>D<br>E<br>N |                                          | Distribuiçã<br>o | Independentes e<br>não pareados                                  | dependentes<br>/pareados             | Independentes e não<br>pareados         | dependentes<br>/pareados                       |
|                            |                                          | Teste            | Mann - Whitney<br>(versão não<br>paramétrica do T<br>de Student) | Wilcoxon                             | Kruskal - walls<br>+comparação múltipla | <u>Friedman</u><br><u>+comparação múltipla</u> |
| E                          |                                          |                  | Discreta/Cont                                                    |                                      |                                         |                                                |
|                            | Q<br>U<br>A<br>N                         | grupo            | 2 grupos                                                         |                                      | 3 grupos ou mais                        |                                                |
|                            |                                          | Distribuiçã<br>o | Independentes e<br>não pareados                                  | dependentes<br>/pareados             | independente e não<br>pareado           | dependentes/ pareados                          |
|                            | T<br>I<br>T                              | Teste            | - Paramétrico<br>T de Student                                    | -Paramétrico<br>T de Student Pareado | - Paramétrico:<br>ANOVA                 | - Paramétrico<br>ANOVA de medidas repetidas    |

| A<br>T<br>I<br>V<br>A | - Não paramétrico<br>Teste de Mann-<br>Whitney ("T de<br>Student não<br>paramétrico")                                                             | -Não paramétrico<br>Teste de Wilcoxon ("Teste T<br>pareado não paramétrico") | +comp. múltipla (Tukey)  - Não paramétrico Kruska Walls + comp. múltipla (Dunn's)                                                                   | +comp. múltipla (Tukey)  - Não paramétrico Eriedman + comp. múltipla (*Rever porque foi usado Tukey em vez de Dunn's - https://www.youtube.com/watch?v=piC-hsYaz8 k) |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | OBS: teste de Mann- Whitney e podem ser aplicados<br>tanto a variáveis quantitativas não paramétricas<br>quanto a variáveis qualitativas ordinais |                                                                              | OBS: teste de Kruska Walls e Friedman podem ser aplicados tanto a variáveis quantitativas não paramétricas quanto a variáveis qualitativas ordinais |                                                                                                                                                                      |

Estudo pendente: Análise de Variância (ANOVA) a dois critérios (SigmaPlot 12.0) +Tukey [Revisar] fator 1: 2, 3 ou + grupos; fator 2: 2, 3 ou + grupos Alguns testes de comparação múltipla: Tukey, Bonferroni, Dunn, Dunnet, Fisher LSD, Sidak, Student-Newman-Keuls, Duncan, Scheffé

| Qual o melhor teste de correlação a ser utilizado? |                                   |                                                                                                                                                                                                             |  |  |
|----------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Teste de correlação de Pearson                     | não há variáveis<br>independentes | 2 variáveis dependentes quantitativas (apenas 2)<br>*Cada unidade amostral deve ser analisada pelas duas variáveis dependentes                                                                              |  |  |
| Teste de correlação de Spearman                    |                                   | 2 variáveis dependentes, sendo:<br>- quantitativa + qualitativa ordinal ou<br>- qualitativa ordinal + qualitativa ordinal<br>pelo menos uma variável avaliada não tem distribuição normal (ex: qualitativa) |  |  |

| Comparação,<br>correlação ou regressão? |                      | Variável Dependente |                                                              |                                                    |  |
|-----------------------------------------|----------------------|---------------------|--------------------------------------------------------------|----------------------------------------------------|--|
|                                         |                      | Qualitativa nominal | Quantitativa nominal                                         | Qualitativa                                        |  |
| Var<br>iáv                              | Qualitativa nominal  | Associação          | Comparação não paramétrica                                   | Comparação paramétrica ou<br>Regressão Logística   |  |
| el<br>Ind<br>epe                        | Quantitativa ordinal | Regressão logistica | Correlação não paramétrica ou<br>Regressão logistica ordinal | Comparação não paramétrica ou<br>Regressão simples |  |
| nde<br>nte                              | Quantitativa         | Regressão logística | Regressão logística ordinal                                  | Correlação paramétrica ou<br>Regressão simples     |  |