QUANTITATIVE MANAGEMENT MODELING HOMEWORK I

1. Decision Variables

The Number of collegiate (N) and mini (R) bags generated every week are the choice variables in the presented issue. It follows that there are two decision variables.

Objective Function

The objective function can be understood as maximised and projets. According to the problem, N makes a unit projet of 32\$ and R makes a projet of 24\$.

Maximize, Y = 32N + 24R

The problem has two constraints:

Resource Constraint:

Back savers receives 5000 sqft of rylon from their source. Each week, 3 sqft are reeded for each N, where as each R needs 2 sqft.

3N + 2R < 5000

Time Constraint:

Each N needs 45 minutes of labor to earn a profit of 32\$ while each R needs 40 minutes to earn a profit of 24.35\$ workers at back savers put in 40 hours a week of work each

Here, 35 * 40 = 1400 (labor hours) $45N + 40R \times = 84000 \text{ (labor mins)}$ LP Problem - Formulation in Mathematics;

Maximise, Y= 32N + 24R

Constraints,

$$N < = 1000, N7 = 0$$
 $R < = 1200, R > = 0$
 $3N + 2R < = 5000$
 $45N + 40R < = 84000$

2. Decision Variables:

The decision variables in the given problem are

No. of units (A)

No of plants (N)

Holds branch plants large, small, medium (R)

Thus, these aspects that influence decision-making

Objective Function:

We can interpret the objective function as maximusing the profits. As given in the problem Maximize , M = ?

$$M = 420 (A_12 + A_22 + A_32) + 360 (A_1m + A_2m + A_3m) + 300 (A_1S + A_2S + A_3S)$$

Constraints

$$A_{1}^{2} + A_{2}^{2} + A_{3}^{2} < = 750$$

$$A_{1}^{m} + A_{2}^{m} + A_{3}^{m} < = 900$$

$$A_{1}^{5} + A_{2}^{5} + A_{3}^{5} < = 450$$

we have a contribute of

Storage limite

 $20A_{3}2 + 15A_{1}m + 12A_{1}5 \le 13000$ $20A_{2}^{2} + 15A_{2}m + 12A_{2}5 \le 12000$ $20A_{3}^{2} + 15A_{3}m + 12A_{3}5 \le 5000$

Sales - Forcast indicates per day $A_{1}^{2} + A_{1}m + A_{1}s < = 900$ $A_{2}^{2} + A_{2}m + A_{2}s < = 1200$ $A_{3}^{2} + A_{3}m + A_{3}s < = 750$

Percentage avoid layoff $A_{1}^{2} + A_{1}^{m} + A_{1}^{5} / 750 * 100$ $A_{2}^{2} + A_{2}^{m} + A_{2}^{5} / 900 * 100$ $A_{3}^{2} + A_{3}^{m} + A_{3}^{5} / 450 * 100$