Package 'tester'

April 4, 2024

```
Type Package
Title Tests and Checks Characteristics of R Objects
Version 0.2.0
Date 2024-04-04
Author Frederic Bertrand [cre] (<a href="https://orcid.org/0000-0002-0837-8281">https://orcid.org/0000-0002-0837-8281</a>),
      Gaston Sanchez [aut]
Maintainer Frederic Bertrand < frederic.bertrand@utt.fr>
Description Allows users to test characteristics of common R objects.
Encoding UTF-8
LazyLoad yes
NeedsCompilation no
RoxygenNote 7.2.3
URL https://fbertran.github.io/tester/,
      https://github.com/fbertran/tester/
BugReports https://github.com/fbertran/tester/issues/
License GPL-3
Depends R (>= 3.0)
Suggests testthat, knitr
VignetteBuilder knitr
Collate 'has-dimension.r' 'has_factors.r' 'has-missing.r'
      'has-names.r' 'is-class.r' 'is-dataframe.r' 'is-decimal.r'
      'is-integer.r' 'is-matrix.r' 'is-multiple.r' 'is-natural.r'
      'is-positive-negative.r' 'is-string.r' 'is-tabular.r'
      'is-triangular.r' 'is-vector.r' 'is_square_matrix.r'
      'list-of-vectors.r' 'list-with-vectors.r' 'odd-even.r'
      'true-false.r' 'same-class.r' 'same-dim.r' 'same-length.r'
      'same-mode.r' 'same-type.r' 'is-one-dim.r' 'is-single.r'
      'is-scalar.r' 'is_rectangular_matrix.r'
Repository CRAN
```

Date/Publication 2024-04-04 08:00:05 UTC

R topics documented:

hac	dimensio	gion	
11as_	ummensic	SIOII	

Index		3 9
	same_type	38
	same_nrow	37
	same_mode	37
	same_length	36
	same_dim	
	same_class	35
	list_with_vectors	34
	list_of_vectors	
	is_vector	33

has_dimension

Has dimension?

Description

has_dimension and has_dim test if an object has dimension (i.e. dim) lacks_dimension and lacks_dim test if an object lacks dimension

Usage

has_dimension(x)

Arguments

Х

an R object

```
m = matrix(1:12, 4, 3)
a = as.array(letters)
has_dim(m) # TRUE
has_dimension(a)
has_dimension(iris) # TRUE
has_dim(matrix(1:10, 10, 1)) # TRUE
has_dim(matrix(1:10, 1, 10)) # TRUE
has_dim(1) # FALSE
lacks_dim(1) # TRUE
has_dim(1:10) # FALSE
has_dimension("dimension") # FALSE
```

4 has_missing

has_factors

Has factors?

Description

Whether a data frame or list has factors

Usage

```
has_factors(x)
```

Arguments

Х

an R object

Examples

```
has_factors(iris) # TRUE
has_factors(iris[,1:4]) # FALSE
has_factors(list(iris$Species, 1:150)) # TRUE
```

has_missing

Has missing values, NA, NaN, Inf

Description

has_missing and has_NA tests if there are missing values (NA) has_infinite and has_Inf tests if there are infinite values (Inf, -Inf) has_not_a_number and has_NaN tests if there are 'Not a Number' (NaN) has_nas tests if there are any of the previous ones

Usage

```
has_missing(x)
```

Arguments

Х

an R object

has_names 5

Examples

```
has_missing(1:5) # FALSE
has_missing(c(1, 2, 3, 4, NA)) # TRUE

has_infinite(c(1, 2, Inf, 1/0))
has_infinite(c(-Inf, "infinite"))

has_not_a_number(c(1, 2, 3)) # FALSE
has_not_a_number(c(1, 0/0, 3)) # TRUE
has_not_a_number(c(NaN, pi, log(1))) # TRUE
```

has_names

Has or lacks names?

Description

has_names tests if an object has names lacks_names tests if an object lacks names

Usage

```
has_names(x)
```

Arguments

Х

an R object

See Also

has_rownames

```
set.seed(1)
x <- y <- runif(10)
names(x) = letters[1:10]
has_names(x) # TRUE
has_names(y) # FALSE
lacks_names(x) # FALSE
lacks_names(y) # TRUE</pre>
```

is_class

has_rownames

Has or lacks row/column names?

Description

has_rownames tests if an object has row names has_colnames tests if an object has column names has_dimnames tests if an object has dimnames lacks_rownames tests if an object lacks row names lacks_colnames tests if an object lacks column names lacks_dimnames tests if an object lacks dimnames

Usage

```
has_rownames(x)
```

Arguments

Χ

an R object

See Also

has_names

Examples

```
has_rownames(iris) # TRUE
has_colnames(iris) # TRUE

lacks_rownames(letters[1:10]) # TRUE
lacks_colnames(letters[1:10]) # TRUE

A = matrix(1:10)
has_dimnames(A) # FALSE
lacks_dimnames(A) # TRUE
```

is_class

Is class

Description

Tests if an object is of a given class

Usage

```
is_class(x, name = NULL)
```

is_dataframe 7

Arguments

```
x an R objectname string giving the class to be tested
```

Examples

```
is_class("test_me", "character") # TRUE
is_class(1:10, "numeric") # TRUE

y = 'hello'
class(y) = "hello"
is_class(y, 'hello')
```

 $is_dataframe$

Is data frame

Description

```
is_dataframe tests if an object is a data frame is_numeric_dataframe tests if an object is a numeric data frame is_string_dataframe tests if an object is a string data frame is_factor_dataframe tests if an object is a factor data frame is_not_dataframe tests if an object is not a data frame
```

Arguments

an R object

```
is_dataframe(iris) # TRUE
is_dataframe(1:10) # FALSE

is_numeric_dataframe(iris) # FALSE
is_numeric_dataframe(iris[,1:4]) # TRUE

DF = matrix(letters[1:24], 6, 4)
DF1 = data.frame(DF)
DF2 = data.frame(DF, stringsAsFactors=FALSE)

is_string_dataframe(DF1) # FALSE
is_string_dataframe(DF2) # TRUE

is_factor_dataframe(DF1) # TRUE
is_factor_dataframe(DF2) # FALSE
```

8 is_diagonal

is_decimal

Is decimal

Description

Test if is a decimal number

Usage

```
is_decimal(x)
```

Arguments

Χ

an R object

Details

decimal is any number in the intervals (-1,0) and (0,1)

See Also

```
is_integer
```

Examples

```
is_decimal(0.01) # TRUE
is_decimal(-0.01) # TRUE
is_decimal(0) # FALSE
is_decimal(1) # FALSE
is_decimal(runif(5))
is_decimal(rnorm(5))

M = matrix(seq(-2, 2, length.out=10), 5, 2)
is_decimal(M)
```

is_diagonal

Is diagonal matrix

Description

Test if an object is a diagonal matrix (or not) (i.e. square matrix with zeros above and below the diagonal)

Usage

```
is_diagonal(x)
```

is_even 9

Arguments

Χ

an R object

See Also

```
is_matrix, is_square_matrix
```

Examples

```
m1 = diag(1:3, 3, 3)
m2 = matrix(1:9, 3, 3)

is_diagonal(m1) # TRUE
is_diagonal(m2) # FALSE
is_not_diagonal(m2) # TRUE
```

is_even

Is even

Description

Test if an object is an even number is_not_even tests the opposite condition

Usage

```
is_even(x)
```

Arguments

х

an R object

See Also

is_odd

```
is_even(2)
is_even(1)
is_even(seq(-5, 5))

is_even(iris$Species)
is_even(iris)
is_even(list(1, 0, -1, iris))

set.seed(999)
M = matrix(1:12, 4, 3)
is_even(M)
```

is_matrix

is_integer

Is integer

Description

Test if a number is an integer
Use is_not_integer to test the opposite condition

Usage

```
is_integer(x)
```

Arguments

Х

an R object

See Also

```
is_natural
```

Examples

```
is_integer(1) # TRUE
is_integer(-3) # TRUE
is_integer(pi) # FALSE
is_integer(iris$Species)

M = matrix(seq(-3, 2), 2, 3)
is_integer(M)
```

is_matrix

Is matrix

Description

```
is_matrix tests if an object is a matrix is_numeric_matrix tests if an object is a numeric matrix is_string_matrix tests if an object is a string matrix is_logical_matrix tests if an object is a logical matrix is_not_matrix tests if an object is not a matrix
```

Arguments

Х

an R object

is_multidim 11

Examples

```
A = matrix(1:10, 5, 2)
B = matrix(letters[1:10], 5, 2)
C = 1:10

is_matrix(A) # TRUE
is_matrix(C) # FALSE
is_not_matrix(C) # TRUE

is_numeric_matrix(A) # TRUE
is_numeric_matrix(B) # FALSE
is_string_matrix(A) # FALSE
is_string_matrix(B) # TRUE
```

 $is_multidim$

Test if an object is multi-dimensional

Description

Returns TRUE if an object is a matrix or data frame with at least 2 rows and at least 2 columns, FALSE otherwise

Usage

```
is_multidim(x)
```

Arguments

Х

an R object

Value

whether x is multi-dimensional

See Also

```
is_one_dim
```

```
# general matrix (nrow>1, ncol>1)
is_multidim(matrix(1:9, 3, 3)) # TRUE
# general data frame
is_multidim(iris) # TRUE
# vector
is_multidim(1:5) # FALSE
```

is_natural

```
# factor
is_multidim(iris$Species) # FALSE

# one row matrix
is_multidim(matrix(1:5, 1, 5)) # FALSE

# one column matrix
is_multidim(matrix(1:5, 5, 1)) # FALSE
```

 $is_multiple$

Is multiple

Description

Tests if x is multiple of a given number

Usage

```
is_multiple(x, of)
```

Arguments

```
x a numeric object of a given number
```

Examples

```
is_multiple(5, of = 5) # TRUE
is_multiple(15, of = 5) # TRUE
is_multiple(3, of = 5) # FALSE
is_multiple(2*pi, of = pi) # TRUE
is_multiple(matrix(1:6, 2, 3), of = 2)
```

is_natural

Is natural

Description

Test if is a natural number

Usage

```
is_natural(x)
```

Arguments

Χ

an R object

is_negative 13

Details

Zero is not included in the set of natural numbers

See Also

```
is_negative
```

Examples

```
is_natural(1)
is_natural(0)
is_natural(seq(-2, 3))
is_natural(iris$Species)

M = matrix(seq(-3, 2), 2, 3)
is_natural(M)
```

is_negative

Is negative

Description

Test if an object is negative

Usage

```
is_negative(x)
```

Arguments

Х

an R object

See Also

```
is_positive
```

```
is_negative(1)
is_negative(0)
is_negative(-1)
is_negative(iris$Species)
is_negative(iris)
is_negative(list(1, 0, -1, iris))

set.seed(999)
M = matrix(rnorm(12), 4, 3)
is_negative(M)
```

is_negative_integer

Description

Test if is a negative decimal

Usage

```
is_negative_decimal(x)
```

Arguments

x an R object

Examples

```
is_negative_decimal(0.0001)
is_negative_decimal(-0.0003)
is_negative_decimal(0)
is_negative_decimal(pi)
is_negative_decimal(-exp(1))
```

is_negative_integer

Is negative integer

Description

Test if is a positive integer

Usage

```
is_negative_integer(x)
```

Arguments

Χ

an R object

```
is_negative_integer(-1) # TRUE
is_negative_integer(1) # FALSE
is_negative_integer(0) # FALSE
is_negative_integer(pi) # FALSE
is_negative_integer(2.2) # FALSE
```

is_odd 15

is_odd

Is even

Description

Test if an object is an even number is_not_odd tests the opposite condition

Usage

```
is\_odd(x)
```

Arguments

Х

an R object

See Also

```
is_even
```

Examples

```
is_odd(2)
is_odd(1)
is_odd(seq(-5, 5))

is_odd(iris$Species)
is_odd(iris)
is_odd(list(1, 0, -1, iris))

set.seed(999)
M = matrix(1:12, 4, 3)
is_odd(M)
```

is_one_dim

Test if an object has one-dimension

Description

Returns TRUE if an object is a vector or a one-dimensional matrix, FALSE otherwise

Usage

```
is_one_dim(x)
```

Arguments

Х

an R object

is_positive

Value

whether x is one-dimensional

See Also

```
is_multidim
```

Examples

```
# vector
is_one_dim(1:5) # TRUE

# factor
is_one_dim(iris$Species) # TRUE

# one row matrix
is_one_dim(matrix(1:5, 1, 5)) # TRUE

# one column matrix
is_one_dim(matrix(1:5, 5, 1)) # TRUE

# general matrix (nrow>1, ncol>1)
is_one_dim(matrix(1:9, 3, 3)) # FALSE

# general data frame
is_one_dim(iris) # FALSE
```

 $is_positive$

Is positive

Description

Test if an object is positive

Usage

```
is_positive(x)
```

Arguments

Χ

an R object

See Also

```
is_negative
```

is_positive_decimal 17

Examples

```
is_positive(1)
is_positive(0)
is_positive(-1)
is_positive(iris$Species)
is_positive(iris)
is_positive(list(1, 0, -1, iris))

set.seed(999)
M = matrix(rnorm(12), 4, 3)
is_positive(M)
```

is_positive_decimal

Is positive decimal

Description

Test if is a positive decimal

Usage

```
is_positive_decimal(x)
```

Arguments

Х

an R object

Examples

```
is_positive_decimal(0.0001)
is_positive_decimal(-0.0003)
is_positive_decimal(pi)
is_positive_decimal(-exp(1))
```

is_positive_integer

Is positive integer

Description

Test if is a positive integer

Usage

```
is_positive_integer(x)
```

is_rectangular_matrix

Arguments

x an R object

Examples

```
is_positive_integer(1) # TRUE
is_positive_integer(0) # FALSE
is_positive_integer(pi) # FALSE
is_positive_integer(2.2) # FALSE
is_positive_integer(-1) # FALSE
```

is_rectangular_matrix Is rectangular matrix

Description

is_rectangular_matrix(x) tests whether x is a rectangular matrix (i.e. number of rows different from number of columns)

 $is_tall_matrix(x)$ tests whether x is a matrix with more rows than columns $is_wide_matrix(x)$ tests whether x is a matrix with more columns than rows

Usage

```
is_rectangular_matrix(x)
```

Arguments

an R object

See Also

```
is_matrix, is_square_matrix
```

```
rec = matrix(1:12, 4, 3)
tall = matrix(1:21, 7, 3)
wide = matrix(1:21, 3, 7)
sqr = matrix(1:9, 3, 3)

is_rectangular_matrix(rec) # TRUE
is_rectangular_matrix(sqr) # FALSE
is_not_rectangular_matrix(sqr) # TRUE

is_tall_matrix(tall) # TRUE
is_tall_matrix(wide) # FALSE
is_tall_matrix(sqr) # FALSE
is_tall_matrix(sqr) # FALSE
```

is_scalar 19

```
is_wide_matrix(tall) # FALSE
is_wide_matrix(sqr) # FALSE
```

is_scalar

Is scalar

Description

Tests if an object is a scalar number is_scalar tests if an object is a scalar is_not_scalar tests if an object is not a scalar is_positive_scalar tests if an object is a positive scalar is_negative_scalar tests if an object is a negative scalar

Arguments

v

an R object

See Also

```
is_single_number
```

```
is_scalar(1) # TRUE
is_scalar(pi) # TRUE
is_scalar(1:5) # FALSE
is_scalar(matrix(runif(4), 2, 2)) # FALSE
is_not_scalar(1:5) # TRUE
is_not_scalar(NULL) # TRUE
is_not_scalar(matrix(runif(4), 2, 2)) # TRUE
is_positive_scalar(1.0) # TRUE
is_positive_scalar(0) # FALSE
is_positive_scalar(-10) # FALSE
is_positive_scalar("hoskdflksfd") # FALSE
is_positive_scalar(NA) # FALSE
is_negative_scalar(-1) # TRUE
is_negative_scalar(0) # FALSE
is_negative_scalar(10) # FALSE
is_negative_scalar("hoskdflksfd") # FALSE
is_negative_scalar(NA) # FALSE
```

20 is_single_decimal

is_single

Is single

Description

Tests if an object is single (i.e. of length 1)

Usage

```
is_single(x)
```

Arguments

Χ

an R object

See Also

```
is\_single\_number, is\_single\_string, is\_single\_logical
```

Examples

```
is_single("hoskdflksfd") # TRUE
is_single("1.0") # TRUE
is_single(1:5) # FALSE
is_single(matrix(runif(4), 2, 2)) # FALSE
```

is_single_decimal

Is single decimal

Description

Tests if an object is a single decimal number

Usage

```
is_single_decimal(x)
```

Arguments

Х

an R object

See Also

```
is_single
```

is_single_even 21

Examples

```
is_single_decimal(0.01) # TRUE
is_single_decimal(-3/4) # TRUE
is_single_decimal("hoskdflksfd") # FALSE
is_single_decimal("1.0") # FALSE
is_single_decimal(1:5) # FALSE
```

is_single_even

Is single even

Description

Tests if an object is a single even number

Usage

```
is_single_even(x)
```

Arguments

х

an R object

See Also

```
is_single, is_single_odd
```

Examples

```
is_single_even(2) # TRUE
is_single_even(5) # FALSE
is_single_even(c(1.0,2)) # FALSE
is_single_even(-1.0) # FALSE
is_single_even(0) # TRUE
is_single_even(NA) # FALSE
```

is_single_false

Is single false

Description

Tests if an object is a single FALSE

Usage

```
is_single_false(x)
```

is_single_logical

Arguments

```
x an R object
```

See Also

```
is_single, is_single_true
```

Examples

```
is_single_false(FALSE) # TRUE
is_single_false(TRUE) # FALSE
is_single_false(c(TRUE, FALSE)) # FALSE
is_single_false(-1.0) # FALSE
is_single_false(0) # FALSE
is_single_false(NA) # FALSE
```

```
is_single_logical
```

Is single logical

Description

Tests if an object is a single logical

Usage

```
is_single_logical(x)
```

Arguments

Χ

an R object

See Also

```
is_single, is_single_true, is_single_false
```

```
is_single_logical(TRUE) # TRUE
is_single_logical(FALSE) # TRUE
is_single_logical(c(TRUE, FALSE)) # FALSE
is_single_logical(-1.0) # FALSE
is_single_logical(0) # FALSE
is_single_logical(NA) # FALSE
```

is_single_negative 23

is_single_negative

Is single negative number

Description

Tests if an object is a single negative number

Usage

```
is_single_negative(x)
```

Arguments

Х

an R object

See Also

```
is_single, is_single_positive
```

Examples

```
is_single_negative(1.0) # FALSE
is_single_negative(-1.0) # TRUE
is_single_negative(c(-1.0,-2)) # FALSE
is_single_negative(0) # FALSE
is_single_negative(NA) # FALSE
```

```
is_single_negative_decimal
```

Is single negative decimal

Description

Tests if an object is a single positive decimal

Usage

```
is_single_negative_decimal(x)
```

Arguments

Χ

an R object

See Also

```
is_single, is_single_negative, is_single_positive_decimal
```

24 is_single_number

Examples

```
is_single_negative_decimal(-3/4) # TRUE
is_single_negative_decimal(0.01) # FALSE
is_single_negative_decimal("hoskdflksfd") # FALSE
is_single_negative_decimal("1.0") # FALSE
is_single_negative_decimal(1:5) # FALSE
```

```
is_single_negative_integer
                         Is single negative integer
```

Description

Tests if an object is a single negative integer

Usage

```
is_single_negative_integer(x)
```

Arguments Х

an R object

See Also

```
is_single, is_single_positive_integer
```

Examples

```
is_single_negative_integer(-1.0) # TRUE
is_single_negative_integer(1.0) # FALSE
is_single_negative_integer(c(1.0,2)) # FALSE
is_single_negative_integer(0) # FALSE
is_single_negative_integer(NA) # FALSE
```

```
is_single_number
```

Is single number

Description

Tests if an object is a single number

Usage

```
is_single_number(x)
```

is_single_odd 25

Arguments

x an R object

See Also

```
is_single
```

Examples

```
is_single_number(1.0) # TRUE
is_single_number("hoskdflksfd") # FALSE
is_single_number("1.0") # FALSE
is_single_number(1:5) # FALSE
```

is_single_odd

Is single odd

Description

Tests if an object is a single odd number

Usage

```
is_single_odd(x)
```

Arguments

Χ

an R object

See Also

```
is_single, is_single_even
```

```
is_single_odd(1.0) # TRUE
is_single_odd(2) # FALSE
is_single_odd(c(1.0,2)) # FALSE
is_single_odd(2) # FALSE
is_single_odd(0) # FALSE
is_single_odd(NA) # FALSE
```

is_single_positive

Is single positive number

Description

Tests if an object is a single positive number

Usage

```
is_single_positive(x)
```

Arguments

Χ

an R object

See Also

```
is_single, is_single_negative
```

Examples

```
is_single_positive(1.0) # TRUE
is_single_positive(c(1.0,2)) # FALSE
is_single_positive(-1.0) # FALSE
is_single_positive(0) # FALSE
is_single_positive(NA) # FALSE
```

```
is\_single\_positive\_decimal
```

Is single positive decimal

Description

Tests if an object is a single positive decimal

Usage

```
is_single_positive_decimal(x)
```

Arguments

Х

an R object

See Also

```
is_single, is_single_positive, is_single_negative_decimal
```

Examples

```
is_single_positive_decimal(0.01) # TRUE
is_single_positive_decimal(-3/4) # FALSE
is_single_positive_decimal("hoskdflksfd") # FALSE
is_single_positive_decimal("1.0") # FALSE
is_single_positive_decimal(1:5) # FALSE
```

```
is_single_positive_integer
                         Is single positive integer
```

Description

Tests if an object is a single positive integer

Usage

```
is_single_positive_integer(x)
```

Arguments Х

an R object

See Also

```
is_single, is_single_negative_integer
```

Examples

```
is_single_positive_integer(1.0) # TRUE
is_single_positive_integer(c(1.0,2)) # FALSE
is_single_positive_integer(-1.0) # FALSE
is_single_positive_integer(0) # FALSE
is_single_positive_integer(NA) # FALSE
```

```
is_single_string
```

Is single string

Description

Tests if an object is a single string

Usage

```
is_single_string(x)
```

28 is_single_true

Arguments

x an R object

See Also

```
is_single
```

Examples

```
is_single_string(1.0) # FALSE
is_single_string("hoskdflksfd") # TRUE
is_single_string(c("1.0", "sd")) # FALSE
```

is_single_true

Is single true

Description

Tests if an object is a single TRUE

Usage

```
is_single_true(x)
```

Arguments

Х

an R object

See Also

```
is_single, is_single_false
```

```
is_single_true(TRUE) # TRUE
is_single_true(FALSE) # FALSE
is_single_true(c(TRUE, FALSE)) # FALSE
is_single_true(-1.0) # FALSE
is_single_true(0) # FALSE
is_single_true(NA) # FALSE
```

is_square_matrix 29

is_square_matrix

Is square matrix

Description

Test if an object is a square matrix (or not) (i.e. same number of rows as number of columns)

Usage

```
is_square_matrix(x)
```

Arguments

Χ

an R object

See Also

```
is_matrix, is_square_numeric_matrix is_rectangular_matrix
```

Examples

```
m1 = matrix(1:9, 3, 3)
m2 = matrix(1:12, 4, 3)

is_square_matrix(m1) # TRUE
is_square_matrix(m2) # FALSE
is_not_square_matrix(m2) # TRUE
```

```
is_square_numeric_matrix
```

Is square numeric matrix

Description

Test if an object is a square numeric matrix (or not) (i.e. same number of rows as number of columns)

Usage

```
is_square_numeric_matrix(x)
```

Arguments

Х

an R object

is_string

See Also

```
is_matrix, is_square_matrix
```

Examples

```
# numeric matrices
m1 = matrix(1:9, 3, 3)
m2 = matrix(1:12, 4, 3)

is_square_numeric_matrix(m1)  # TRUE
is_square_numeric_matrix(m2)  # FALSE
is_not_square_numeric_matrix(m2)  # TRUE

# non-numeric matrices
str_mat = matrix(letters[1:9], 3, 3)
log_mat = matrix(rep_len(c(TRUE, FALSE), 9), 3, 3)

is_square_numeric_matrix(str_mat)  # FALSE
is_square_numeric_matrix(log_mat)  # FALSE
is_not_square_numeric_matrix(str_mat)  # TRUE
```

is_string

Is string

Description

Tests if an object is a character string is_not_string() tests the opposite condition

Usage

```
is_string(x)
```

Arguments

Х

an R object

```
is_string("test_me") # TRUE
is_string(1:10) # FALSE
```

is_tabular 31

is_tabular

Is tabular

Description

```
is_tabular tests if an object has a tabular format (i.e. a matrix or data frame) is_not_tabular tests if an object doesn't have a tabular format (i.e. not matrix nor data frame) is_numeric_tabular tests if an object is a numeric table (i.e. a numeric matrix or data frame) is_string_tabular tests if an object is a string table
```

Arguments

Х

an R object

Examples

```
A = matrix(1:10, 5, 2)
B = matrix(letters[1:10], 5, 2)
C = 1:10

is_tabular(A) # TRUE
is_tabular(iris) # TRUE

is_numeric_tabular(A) # TRUE
is_numeric_tabular(iris) # FALSE
is_numeric_dataframe(iris[,1:4]) # TRUE
```

Description

```
is_lower_triangular tests if a matrix is lower triangular is_upper_triangular tests if a matrix is upper triangular is_triangular_matrix tests if a matrix is triangular (both lower or upper triangular)
```

Arguments

```
x a matrix
diag should the diagonal be included? (FALSE by default)
```

is_TRUE

Examples

```
some_matrix = matrix(1:9, 3, 3)
lower_matrix <- upper_matrix <- some_matrix
lower_matrix[upper.tri(some_matrix)] <- 0
upper_matrix[lower.tri(some_matrix)] <- 0

is_triangular_matrix(some_matrix) # TRUE
is_triangular_matrix(lower_matrix) # TRUE
is_triangular_matrix(upper_matrix) # TRUE

is_lower_triangular(some_matrix) # FALSE
is_lower_triangular(lower_matrix) # FALSE
is_lower_triangular(some_matrix) # FALSE
is_upper_triangular(some_matrix) # FALSE
is_upper_triangular(lower_matrix) # FALSE
is_upper_triangular(lower_matrix) # FALSE
is_upper_triangular(upper_matrix) # FALSE
is_upper_triangular(upper_matrix) # FALSE</pre>
```

 $\verb"is_TRUE"$

If TRUE or FALSE

Description

```
is_TRUE and is_true tests if x is TRUE
is_FALSE and is_false tests if x is FALSE
true_or_false returns whether the condition is true or false
```

Arguments

Х

an R object

```
is_true(TRUE)
is_true(FALSE)
is_false(TRUE)
is_false(FALSE)
true_or_false(TRUE)
true_or_false(FALSE)
is_true(1) # FLASE
is_false("FALSE") # FALSE
```

is_vector 33

is_vector

Is vector

Description

```
is_vector tests if an object is a vector is_numeric_vector tests if an object is a numeric vector is_string_vector tests if an object is a string vector is_logical_vector tests if an object is a logical vector is_not_vector tests if an object is not a vector
```

Arguments

Х

an R object

Examples

```
a = 1:10
b = letters[1:10]
d = matrix(1:10, 5, 2)

is_vector(a) # TRUE
is_vector(b) # TRUE
is_vector(d) # FALSE
is_not_vector(d) # TRUE

is_numeric_vector(a) # TRUE

is_numeric_vector(b) # FALSE
is_string_vector(a) # TRUE
```

list_of_vectors

List of vectors

Description

```
list_of_vectors checks if an object is a list of vectors
list_of_numeric_vectors checks if an object is a list of numeric vectors
list_of_string_vectors checks if an object is a list of string vectors list_of_logical_vectors
checks if an object is a list of logical vectors
```

Arguments

Χ

an R object

34 list_with_vectors

See Also

```
is_vector, list_with_vectors
```

Examples

```
a = list(1:3, letters[1:3], c(exp(1), pi), NA)
b = list(1:3, c(exp(1), pi))
d = list(letters[1:3], 'bonjour a tous')
e = list(matrix(1:6, 2, 3), a, b)

list_of_vectors(a) # TRUE
list_of_vectors(b) # TRUE
list_of_vectors(d) # TRUE
list_of_vectors(e) # FALSE

list_of_numeric_vectors(a) # FALSE
list_of_numeric_vectors(b) # TRUE

list_of_string_vectors(a) # FALSE
list_of_logical_vectors(d) # TRUE

list_of_logical_vectors(d) # TRUE
```

list_with_vectors

List with vectors

Description

list_with_vectors checks if an object is a list with vectors list_with_numeric_vectors checks if an object is a list with numeric vectors list_with_string_vectors checks if an object is a list with string vectors

Arguments

(

an R object

See Also

```
is_vector, list_of_vectors
```

```
a = list(1:3, letters[1:3], c(exp(1), pi), NA)
b = list(1:3, c(exp(1), pi))
d = list(letters[1:3], 'bonjour a tous')
e = list(matrix(1:6, 2, 3), a, b)
list_with_vectors(1:10) # FALSE
```

same_class 35

```
list_with_vectors(b) # TRUE
list_with_vectors(d) # TRUE
list_with_numeric_vectors(a) # TRUE
list_with_numeric_vectors(b) # TRUE
list_with_string_vectors(d) # FALSE
list_with_string_vectors(a) # TRUE
list_with_string_vectors(d) # TRUE
list_with_string_vectors(b) # FALSE
```

same_class

Same Class

Description

```
same_class() tests if two objects have the same class
different_class() tests if two objects have different class
```

Usage

```
same\_class(x, y)
```

Arguments

```
x an R object
y an R object
```

Examples

```
same_class(letters[1:3], "class") # TRUE
same_class(1:3, "class") # FALSE
```

same_dim

Same Dimension

Description

```
same_dim() tests if two matrices have same dimension
different_dim() tests if two matrices have different dimension
```

Usage

```
same_dim(x, y)
```

36 same_length

Arguments

```
x a matrix
y a matrix
```

See Also

```
same_nrow
```

Examples

```
a = matrix(1:15, 5, 3)
same_dim(a, a) # TRUE
same_dim(a, t(a)) # FALSE
different_dim(a, a) # FALSE
different_dim(a, t(a)) # TRUE
```

 ${\tt same_length}$

Same Length

Description

```
same_length() tests if two objects have same length
different_length() tests if two objects have different length
```

Usage

```
same_length(x, y)
```

Arguments

```
x a matrix
y a matrix
```

```
same_length(1:10, letters[11:20]) # TRUE
same_length(1:10, letters[11:19]) # FALSE

a = matrix(1:15, 5, 3)
same_length(a, a) # TRUE
same_length(a, t(a)) # TRUE

different_length(t(a), a) # FALSE
different_length(1:10, a) # TRUE

different_length(a, "a") # TRUE
```

same_mode 37

same_mode

Same Mode

Description

```
same_mode() tests if two objects have the same mode
different_mode() tests if two objects have different mode
```

Usage

```
same_mode(x, y)
```

Arguments

```
x an R object
y an R object
```

Examples

```
same_mode(letters[1:3], "class") # TRUE
same_mode(1:3, "class") # FALSE
```

same_nrow

Same Number of Rows / Columns

Description

```
same_nrow() tests if two matrices have same number of rows
different_nrow() tests if two matrices have different number of rows
same_ncol() tests if two matrices have same number of columns
different_ncol() tests if two matrices have different number of columns
```

Usage

```
same_nrow(x, y)
```

Arguments

```
x a matrix
y a matrix
```

See Also

```
same_dim
```

38 same_type

Examples

```
a = matrix(1:15, 5, 3)
same_nrow(a, a) # TRUE
same_nrow(a, t(a)) # FALSE
same_ncol(a, a) # TRUE
same_ncol(a, t(a)) # FALSE
different_nrow(a, a) # FALSE
different_nrow(a, t(a)) # TRUE
different_ncol(a, a) # FALSE
different_ncol(a, t(a)) # TRUE
```

same_type

Same Type

Description

```
same_type() tests if two objects have the same type
different_type() tests if two objects have different type
```

Usage

```
same_type(x, y)
```

Arguments

```
x an R object
y an R object
```

```
same_type(letters[1:3], "class") # TRUE
same_type(1:3, "class") # FALSE

different_type(1, 1L) # TRUE
different_type(1, 1.0) # FALSE
```

Index

different_class (same_class), 35 different_dim (same_dim), 35 different_length (same_length), 36 different_mode (same_mode), 37 different_ncol (same_nrow), 37 different_nrow (same_nrow), 37 different_type (same_type), 38 has_colnames (has_rownames), 6 has_dim (has_dimension), 3 has_dimension, 3 has_dimension, 3 has_dimnames (has_rownames), 6 has_factors, 4 has_Inf (has_missing), 4 has_missing, 4 has_missing, 4 has_nas(has_missing), 4 has_names, 5, 6 has_NaN (has_missing), 4 has_nas (has_missing), 4 has_not_a_number (has_missing), 4 has_rownames, 5, 6 is_class, 6 is_class, 6 is_dataframe, 7 is_decimal, 8 is_diagonal, 8 is_even, 9, 15 is_factor_dataframe (is_dataframe), 7 is_FALSE (is_TRUE), 32 is_false (is_TRUE), 32 is_integer, 8, 10 is_logical_matrix (is_matrix), 10 is_logical_vector (is_vector), 33 is_lower_triangular_matrix), 31	is_negative, 13, 13, 16 is_negative_decimal, 14 is_negative_integer, 14 is_negative_scalar (is_scalar), 19 is_not_dataframe (is_dataframe), 7 is_not_decimal (is_decimal), 8 is_not_diagonal (is_diagonal), 8 is_not_even (is_even), 9 is_not_integer (is_integer), 10 is_not_matrix (is_matrix), 10 is_not_natural (is_natural), 12 is_not_negative (is_negative), 13 is_not_odd (is_odd), 15 is_not_positive (is_positive), 16 is_not_rectangular_matrix
<pre>is_logical_vector(is_vector), 33</pre>	is_positive_integer, 17
(is_triangular_matrix), 31	is_rectangular_matrix, 18, 29
is_matrix, 9, 10, 18, 29, 30	is_scalar, 19
is_multidim, 11, 16	is_single, 20, 20, 21–28
is_multiple, 12	is_single_decimal, 20
is_natural, <i>10</i> , 12	is_single_even, 21, 25

40 INDEX

is_single_false, 21, 22, 28	same_class, 35
is_single_logical, 20, 22	same_dim, 35, <i>37</i>
is_single_negative, 23, 23, 26	same_length, 36
is_single_negative_decimal, 23, 26	same_mode, 37
is_single_negative_integer, 24, 27	<pre>same_ncol(same_nrow), 37</pre>
is_single_number, <i>19</i> , <i>20</i> , 24	same_nrow, 36, 37
is_single_odd, 21, 25	same_type, 38
is_single_positive, 23, 26, 26	2 3 7 2 7
is_single_positive_decimal, 23, 26	<pre>true_or_false(is_TRUE), 32</pre>
is_single_positive_integer, 24, 27	, ,
is_single_string, 20, 27	
<u> </u>	
is_single_true, 22, 28	
is_square_matrix, 9, 18, 29, 30	
is_square_numeric_matrix, 29, 29	
is_string, 30	
is_string_dataframe(is_dataframe),7	
is_string_matrix (is_matrix), 10	
<pre>is_string_tabular(is_tabular), 31</pre>	
is_string_vector(is_vector), 33	
is_tabular, 31	
<pre>is_tall_matrix(is_rectangular_matrix),</pre>	
18	
is_triangular_matrix,31	
is_TRUE, 32	
is_true(is_TRUE), 32	
is_upper_triangular	
(is_triangular_matrix), 31	
is_vector, 33, 34	
<pre>is_wide_matrix(is_rectangular_matrix),</pre>	
18	
lacks_colnames (has_rownames), 6	
<pre>lacks_dim(has_dimension), 3</pre>	
<pre>lacks_dimension (has_dimension), 3</pre>	
lacks_dimnames (has_rownames), 6	
lacks_names (has_names), 5	
lacks_rownames (has_rownames), 6	
list_of_logical_vectors	
(list_of_vectors), 33	
list_of_numeric_vectors	
(list_of_vectors), 33	
list_of_string_vectors	
(list_of_vectors), 33	
list_of_vectors, 33, 34	
list_with_numeric_vectors	
(list_with_vectors), 34	
list_with_string_vectors	
(list_with_vectors), 34	
list_with_vectors, 34, 34	