Drops of LTSpice

How to use the Arbitrary Voltage Source

LTSpice contains a very interesting component...

The Arbitrary Behavioral Voltage Source

It looks like a standard voltage source.

But notice the V=F(...)

By editing the component, it is possible to add a mathematical function

Орен Зуньо	I: C:\Users\fsacco\AppData\Local	I\L I spice \lib\sym\bv.asy
Thi	s is the second attribute to appear or	the netlist line.
Attribute	Value	Vis.
Prefix	В	
InstName	B1	X
SpiceModel		
Value	V=F()	X
Value2		
SpiceLine		
SpiceLine2		

This function will define the voltage behavior.

In the software's help window you can get details of all the functions that can be used, searching for Waveform Arithmetic

But I will demonstrate some of them.

There are some constants that you can use. The pi, for example.

Name	Value	
E	2.7182818284590452354	
pi	3.14159265358979323846	
K	1.3806503e-23	
Q	1.602176462e-19	

time is another important keyword!

To have a 1kHz sinusoidal signal, the function is

V=sin(2 * PI * time * 1000)

And to have a cosine...

V=cos(2*PI*time*1000)

LTSpice allows advanced functions

V=sin(2*PI*100*time**2)

Very advanced functions.

Here we use an arbitrary source to calculate the error, and the result is fed to another to perform a Pl.

Francesco Sacco linkedin.com/in/saccofrancesco