ECE 215 Spring 2025

Objective 2.6:
Signal
Conditioning

Objective 2.5

I can implement signal conditioning to avoid aliasing and clipping and to ensure maximum compatibility of the dynamic ranges between two devices.

ANALOG TO DIGITAL - BIG PICTURE

Encoding =00010100 00011110 00100011 ...

AVOIDING PITFALLS: SIGNAL CONDITIONING

- Aliasing → anti-aliasing filter
- Clipping → amplification/bias correction
- Maximize ADC input range → amplification/bias correction

Signal Conditioning

Signal Cond

AVOIDING PITFALLS: ANTI-ALIASING FILTER

- Can we always know what the highest frequency is to satisfy Nyquist?
- Can we safeguard against aliasing anyway?
- Of course...

f (kHz)

ADC ISSUES: CLIPPING

- Clipping happens when input signal is too large for ADC device
- Solution: properly design transducer interfaces

Output

AMPLIFIERS

- Do all transducers output the same voltage levels?
- What voltage level does our system need?
- Line up input signal's max and min with ADC V_{max} and V_{min}
- Amplifiers multiply the output of a transducer by a constant
- Gain $K = \frac{A_{out}}{A_{in}}$
- Same as when we calculated filter gain!

BIAS AND AMPLIFICATION

- What if a constant gain isn't sufficient?
- Remember y = m * x + b? We can use $V_{out} = KV_{in} + V_{bias}$

SIGNAL CONDITIONING EXAMPLE

- We want to digitize a signal with the following characteristics:
 - $f_{high} = 3 \text{ kHz}$
 - $V_{max} = 50 \text{mV}$
 - $V_{min} = -50 \text{mV}$
- Will this ADC work?
 - If not, how can we fix it?

$$V_{\text{max}} = 3.5V$$
 $V_{\text{min}} 0V$

- Check sampling frequency: anti-aliasing filter
- Check for clipping: amplification/bias correction
- Maximize ADC input range: amplification/bias correction

SIGNAL CONDITIONING EXAMPLE

- We want to digitize a signal with the following characteristics:
 - $f_{high} = 3 \text{ kHz}$
 - $V_{max} = 50 \text{mV}$
 - $V_{min} = -50 \text{mV}$
- Will this ADC work?
 - If not, how can we fix it?

$$V_{max} = 3.5V$$

V_{min} 0V

SIGNAL CONDITIONING EXAMPLE (CONT'D)

$$(50 \times 10^{-3})K + V_{bias} = 3.5$$

 $-(50 \times 10^{-3})K + V_{bias} = 0$

$$K = 35$$
 and $V_{bias} = 1.75V$