6 Convergence concepts. Asymptotics of OLS.

6.1 Convergence concepts

Definition 6.1.1: Convergence in probability

A sequence of random scalars $\{z_i\}_{i=1}^{\infty}$ converges in probability to z iff $\forall \varepsilon > 0$, $\lim_{n \to \infty} P(|z_n - z| \ge \varepsilon) = 0$, or equivalently $\lim_{n \to \infty} P(|z_n - z| < \varepsilon) = 1$. Written as $z_n \stackrel{p}{\to} z$ or $z_n - z = o_p(1)$ or $\lim_{n \to \infty} z_n = z$.

This definition is extended to a sequence of random vectors or random matrices by requiring element-by-element convergence in probability. That is, a sequence of K-dimensional vectors \mathbf{z}_n converges in probability to a K-dimensional vector \mathbf{z} if, for any $\varepsilon > 0$

$$\lim_{n \to \infty} P(|z_{nk} - z_k| > \varepsilon) = 0 \quad \text{for all } k = 1, 2, ..., K$$

where z_{nk} is the k-th element of $\mathbf{z_n}$ and z_k the k-th element of \mathbf{z} .

Exercise 6.1.1. Let X_n be an IID sequence of continuous random variables having a uniform distribution over support

$$R_{X_n} = \left[-\frac{1}{n}, \frac{1}{n} \right]$$

with pdf

$$f_{X_n}(x) = \begin{cases} \frac{n}{2} & \text{if } x \in \left[-\frac{1}{n}; \frac{1}{n} \right] \\ 0 & \text{if } x \notin \left[-\frac{1}{n}; \frac{1}{n} \right] \end{cases}$$

Find the probability limit (if it exists) of the sequence X_n .

Solution:-

Intuitively as $n \to \infty$ the probability density becomes concentrated around x = 0; it seems reasonable to conjecture $X_n \stackrel{p}{\to} X = 0$. To show this formally, for any $\varepsilon > 0$:

$$\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = \lim_{n \to \infty} P(|X_n - 0| > \varepsilon)$$

$$= \lim_{n \to \infty} [1 - P(-\varepsilon \le X_n \le \varepsilon)]$$

$$= 1 - \lim_{n \to \infty} \int_{-\varepsilon}^{\varepsilon} f_{X_n}(x) dx$$

$$= 1 - \lim_{n \to \infty} \int_{\max(-\varepsilon, -1/n)}^{\min(\varepsilon, 1/n)} \frac{n}{2} dx \quad (f(x) \text{ has no density outside } [-\frac{1}{n}, \frac{1}{n}])$$

$$= 1 - \lim_{n \to \infty} \int_{-1/n}^{1/n} \frac{n}{2} dx \quad (\text{when } n \text{ becomes large, } \frac{1}{n} < \varepsilon)$$

$$= 1 - \lim_{n \to \infty} 1$$

$$= 0$$

Definition 6.1.2: Convergence in distribution

A sequence of random scalars $\{z_i\}_{i=1}^{\infty}$ converges in distribution to z iff, $\lim_{n\to\infty}F_{z_n}(z)=F_z(z)$ at all points where F_z is continuous. Written as $z_n\stackrel{d}{\to} z$ or $z_n-z=O_p(1)$ or as "z is the limiting distribution of z_n ".

Convergence in distribution is also known as weak convergence or the convergence in law.

Theorem 6.1.1. $\mathbf{z_n} \stackrel{d}{\to} \mathbf{z}$ iff $\mathbb{E}f(\mathbf{z_n}) \to \mathbb{E}f(\mathbf{z})$ for all bounded, continuous functions f.

Claim 6.1.1. Convergence in probability implies convergence in distribution but not vice versa. The reverse only holds when the limit in distribution is a constant.

Example $(z_n \xrightarrow{d} z \not\Rightarrow z_n \xrightarrow{p} z)$. Let $z \sim N(0,1)$. Let $z_n = -z$ for $n = 1, 2, 3, \ldots$; hence $z_n \sim N(0,1)$. z_n has the same distribution function as z for all n so, trivially, $\lim_{n\to\infty} F_n(x) = F(x)$ for all x. Therefore, $z_n \xrightarrow{d} z$. But $P(|z_n - z| > \varepsilon) = P(|2z| > \varepsilon) = P(|z| > \varepsilon/2) \neq 0$. So z_n does not tend to z in probability.

The extension to a sequence of random vectors is immediate: $\mathbf{z_n} \stackrel{d}{\to} \mathbf{z}$ if the joint c.d.f. F_n of the random vector $\mathbf{z_n}$ converges to the joint c.d.f. F of \mathbf{z} at every continuity point of F. However, element-by-element convergence does not necessarily imply convergence for the vector sequence (unlike with convergence in probability). Intuitively this is because different c.d.f.'s can have the same marginals.

A common way to establish the connection between scalar convergence in distribution and vector convergence in distribution is for every linear combination of z_{nk} to converge to the linear combination of z_n . Formally:

Definition 6.1.3: Cramer-Wold device

 $\mathbf{z_n} \stackrel{d}{\to} \mathbf{z}$ if and only if $\lambda' \mathbf{z_n} \stackrel{d}{\to} \lambda' \mathbf{z}$ for every $\lambda \in \mathbb{R}^k$ with $\lambda' \lambda = 1$.

🛉 Note:- 🛉

Big O Little o notation

- Roughly speaking, a function is o(z) iff it's of lower asymptotic order than z.
- f(n) = o(g(n)) iff $\lim_{n\to\infty} f(n)/g(n) = 0$.
- If $\{f(n)\}\$ is a sequence of random variables, then $f(n) = o_p(g(n))$ iff $p\lim_{n\to\infty} f(n)/g(n) = 0$.
- We write $X_n X = o_p(n^{-\gamma})$ iff $n^{\gamma}(X_n X) \xrightarrow{p} 0$.
- Roughly speaking, a function is O(z) iff it's of the same asymptotic order as z.
- f(n) = O(g(n)) iff |f(n)/g(n)| < K for all n > N and some positive integer N and some constant K > 0.
- If $\{f(n)\}\$ is a sequence of random variables, then $f(n) = o_p(g(n))$ iff $p\lim_{n\to\infty} f(n)/g(n) = 0$.

Definition 6.1.4: Continuous mapping theorem (CMT)

Let f be continuous at every point $a \in C$ where $P(z \in C) = 1$. Then

- 1. If $\mathbf{z_n} \xrightarrow{p} \mathbf{z}$, then $f(\mathbf{z_n}) \xrightarrow{p} f(\mathbf{z})$
- 2. If $\mathbf{z_n} \stackrel{d}{\to} \mathbf{z}$, then $f(\mathbf{z_n}) \stackrel{d}{\to} f(\mathbf{z})$

Example. The CMT allows f to be discontinuous only if the probability of being at a discontinuity point is zero.

Consider $f(u) = u^{-1}$ is discontinuous at u = 0, but if $z_n \stackrel{d}{\to} z \sim N(0,1)$ then P(z = 0) = 0 so

Corollary 6.1.1 (Slutsky's theorem). If $z_n \stackrel{d}{\to} z$ and $c_n \stackrel{p}{\to} c$ as $n \to \infty$, then

- 1. $z_n + c_n \stackrel{d}{\to} z + c$ 2. $z_n c_n \stackrel{d}{\to} zc$
- 3. $\frac{z_n}{c_n} \stackrel{d}{\to} \frac{z}{c}$ if $c \neq 0$.

The requirement that c_n converges to a constant is important. If it were to converge to a non-degenerate random variable, the theorem would be no longer valid. For example, let z_n \sim Uniform(0,1) and $c_n = -z_n$. The sum $z_n + c_n = 0$ for all values of n. Moreover, $c_n \stackrel{d}{\to} c$ where $z \sim \text{Uniform}(0,1), c \sim \text{Uniform}(-1,0), \text{ and } z \text{ and } c \text{ are independent.}$

Note:-

The theorem remains valid if we replace all convergences in distribution with convergences in probability.

Proof. This theorem follows from the fact that if z_n converges in distribution to z and c_n converges in probability to a constant c, then the joint vector (z_n, c_n) converges in distribution to (z,c).

Next we apply the continuous mapping theorem, recognising the functions g(z,c) such as g(z,c)=z+c, g(z,c)=zc, and $g(z,c)=zc^{-1}$ are continuous (for the last function to be continuous, c has to be invertible).

Definition 6.1.5: Khinchine's law of large numbers

If Y_i are i.i.d. with finite mean $\mathbb{E}Y_i = m < \infty$ then $\frac{1}{n} \sum_{i=1}^n Y_i \stackrel{p}{\to} m$

Lemma 6.1.1 (Markov's inequality). Let ξ be a non-negative random variable and let $\varepsilon > 0$ be a positive number. Then for any real number p > 0, the following inequality holds:

$$P(|\xi| \ge \varepsilon) \le \frac{E[|\xi|^p]}{\varepsilon^p}.$$

Proof. Let ξ be a non-negative random variable and $\varepsilon > 0$. For any positive integer p:

$$E[|\xi|^p] = \int_0^\infty x^p f_\xi(x) \, dx \qquad \text{(expectation definition)}$$

$$= \int_0^\varepsilon x^p f_\xi(x) \, dx + \int_\varepsilon^\infty x^p f_\xi(x) \, dx \qquad \text{(splitting the integral)}$$

$$\geq \int_\varepsilon^\infty \varepsilon^p f_\xi(x) \, dx \qquad \text{(since } x^p \geq \varepsilon^p \text{ for } x \geq \varepsilon)$$

$$= \varepsilon^p P(|\xi| \geq \varepsilon) \qquad \text{(definition of probability)}$$

$$P(|\xi| \geq \varepsilon) \leq \frac{E[|\xi|^p]}{\varepsilon^p} \qquad \text{(Markov's inequality)}$$

Lemma 6.1.2 (Chebyshev's inequality). Let η be a random variable with $\mathbb{E}[\eta] = m$ and $\text{Var}(\eta) < \infty$. Then for any $\varepsilon > 0$,

$$P(|\eta - \mathbb{E}[\eta]| \ge \varepsilon) \le \frac{\operatorname{Var}(\eta)}{\varepsilon^2}.$$

Proof. Using Markov's inequality, for any random variable η with finite expectation $E[\eta]$ and finite non-zero variance $Var(\eta)$, and for any $\varepsilon > 0$, we have:

$$\begin{split} P(|\eta - E[\eta]| &\geq \varepsilon) = P((\eta - E[\eta])^2 \geq \varepsilon^2) & \text{(squaring both sides)} \\ &\leq \frac{E[(\eta - E[\eta])^2]}{\varepsilon^2} & \text{(applying Markov's inequality)} \\ &= \frac{\text{Var}(\eta)}{\varepsilon^2}. & \text{(variance definition)} \end{split}$$

Definition 6.1.6: Chebyshev's law of large numbers

If Y_i are uncorrelated, and $\mathbb{E}Y_i = m < \infty$, $Var(Y_i) = \sigma_i^2 < \infty$ and $\frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \to 0$, then $\frac{1}{n} \sum_{i=1}^n (Y_i - m) \stackrel{p}{\to} 0$

Proof. Let Y_1, Y_2, \ldots, Y_n be uncorrelated random variables with $E[Y_i] = m$ and $Var(Y_i) = \sigma_i^2 < \infty$. Assume that $\frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \to 0$ as $n \to \infty$. Define $S_n = \frac{1}{n} \sum_{i=1}^n (Y_i - m)$. We want to show that $S_n \to 0$ in probability. By Chebyshev's inequality, for any $\varepsilon > 0$,

$$P(|S_n - E[S_n]| \ge \varepsilon) \le \frac{\operatorname{Var}(S_n)}{\varepsilon^2}.$$

Since $E[S_n] = 0$ and the Y_i 's are uncorrelated, we have

$$\operatorname{Var}(S_n) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^n (Y_i - m)\right) = \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}(Y_i - m) = \frac{1}{n^2}\sum_{i=1}^n \sigma_i^2.$$

$$\Rightarrow P(|S_n| \ge \varepsilon) \le \frac{1}{n^2}\frac{\sum_{i=1}^n \sigma_i^2}{\varepsilon^2}.$$

Since $\frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \to 0$, it follows that for any $\varepsilon > 0$,

$$P(|S_n| \ge \varepsilon) \to 0 \text{ as } n \to \infty.$$

Hence, $S_n \to 0$ in probability.

Definition 6.1.7: Univariate Lindeberg-Lévy Central Limit Theorem

If Y_i are i.i.d. random variables with finite mean m and variance σ^2 , then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}-m\right)\stackrel{d}{\to}N(0,\sigma^{2})$$

Definition 6.1.8: Multivariate Lindeberg-Lévy Central Limit Theorem

If Y_i are i.i.d. with mean m and variance-covariance Σ , then

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}-m\right)\stackrel{d}{\to}N(0,\Sigma).$$

Proof. Set $\mathbf{c} \in \mathbb{R}^k$ with $\mathbf{c}'\mathbf{c} = 1$ and define $u_i = \mathbf{c}'(\mathbf{y}_i - \mathbf{m})$. The u_i are i.i.d. with $E(u_i^2) = \mathbf{c}' \Sigma \mathbf{c} < \infty$. By the univariate CLT,

$$\mathbf{c}'\sqrt{n}(\bar{\mathbf{y}} - \mathbf{m}) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} u_i \stackrel{d}{\to} N(0, \mathbf{c}' \Sigma \mathbf{c})$$

Notice that if $\mathbf{z} \sim N(0, \mathbf{\Sigma})$ then $\mathbf{c}'\mathbf{z} \sim N(0, \mathbf{c}'\mathbf{\Sigma}\mathbf{c})$. Thus

$$\mathbf{c}'\sqrt{n}(\mathbf{\bar{y}}-\mathbf{m}) \stackrel{d}{\to} \mathbf{c}'\mathbf{z}.$$

Since this holds for all \mathbf{c} , we can use the Cramer-Wold device:

$$\sqrt{n}(\bar{\mathbf{y}} - \mathbf{m}) \stackrel{d}{\to} \mathbf{z} \sim N(0, \mathbf{\Sigma})$$

6.2 OLS in large samples

(OLS0) (y_i, x_i) is an i.i.d. sequence

(OLS1) $E(x_i x_i')$ is finite non-singular (GM1) rank $\mathbf{X} = k$

(OLS2) $E(y_i|x_i) = x_i'\beta$ (GM2) $E(\mathbf{Y}|\mathbf{X}) = \mathbf{X}'\beta$

(OLS3) $\operatorname{Var}(y_i|x_i) = \sigma^2$ (GM3) $\operatorname{Var}(\mathbf{Y}|\mathbf{X}) = \sigma^2 \mathbf{I}$

(OLS4) $E\varepsilon_i^4 < \infty, \quad E||x_i||^4 < \infty$

Remarks

(OLS0): Equivalent to random sampling, tells us that the pairs (x_i, y_i) are independent across i.

(OLS1): Ensures $\mathbf{X}'\mathbf{X}$ is invertible, or comparatively in sample $\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'$ exists.

(OLS2): Since all other x's are independent, this is equivalent to conditioning on all x's

(OLS3): Homoskedasticity and no serial correlation

(OLS4): Implies the existence of $\mathbb{E}(\varepsilon_i^2 x_i x_i')$ via Cauchy-Schwartz. This is required to use the CLT.

Lemma 6.2.1 (Expectation inequality). For any random vector $Y \in \mathbb{R}^m$ with $\mathbb{E}||Y|| < \infty$ then

$$\|\mathbb{E}[Y]\| \le E\|Y\|$$

Lemma 6.2.2 (Holder's inequality). If p > 1 and q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then for any random $m \times n$ matrices X and Y,

$$(\mathbb{E}||X'Y||) \le (\mathbb{E}||X||^p)^{1/p} (\mathbb{E}||Y||^q)^{1/q}$$

Corollary 6.2.1 (Cauchy-Schwartz inequality). For any random $m \times n$ matrices X and Y,

$$(\mathbb{E}||X'Y||) \le (\mathbb{E}||X||^2)^{1/2} (\mathbb{E}||Y||^2)^{1/2}$$

To see that the elements of $\mathbb{E}(\varepsilon_i^2 x_i x_i')$ are finite:

$$\|\mathbb{E}(\varepsilon_{i}^{2}x_{i}x_{i}')\| \leq \mathbb{E}\|\varepsilon_{i}^{2}x_{i}x_{i}'\| \qquad \text{(using Lemma 6.2.1)}$$

$$= \mathbb{E}(\varepsilon_{i}^{2}\|x_{i}\|^{2})$$

$$\leq \mathbb{E}\left(\varepsilon_{i}^{4}\right)^{1/2} \mathbb{E}\left(\|x_{i}\|^{4}\right)^{1/2} \qquad \text{(using Corollary 6.2.1)}$$

$$< \infty \qquad \qquad \text{(using OLS4)}$$

Theorem 6.2.1. Under OLS0-4:

- 1. $\hat{\beta}_{OLS} \xrightarrow{p} \beta$
- 2. $\sqrt{n}(\hat{\beta}_{OLS} \beta) \stackrel{d}{\to} N(0, \sigma^2[\mathbb{E}(x_i x_i')]^{-1})$

Proof. 1. We only require OLS0-2 for consistency a

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'Y$$

$$= \beta + (X'X)^{-1}X'\varepsilon$$

$$= \beta + \left(\frac{1}{n}\sum_{i=1}^{n} x_i x_i'\right)^{-1} \frac{1}{n}\sum_{i=1}^{n} x_i \varepsilon_i$$

Since $x_i \varepsilon_i$ is i.i.d. by OLS0^b we can use Khinchine's LLN

$$\frac{1}{n} \sum_{i=1}^{n} x_i x_i' \xrightarrow{p} \mathbb{E}(x_i x_i') \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^{n} x_i \varepsilon_i \xrightarrow{p} \mathbb{E}(x_i \varepsilon_i)$$

$$= \mathbb{E}(\mathbb{E}(x_i \varepsilon_i | x_i))$$

$$= 0 \quad \text{(using OLS2)}$$

By the Continuous Mapping Theorem,

$$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1} \stackrel{p}{\to} [\mathbb{E}(x_{i}x_{i}')]^{-1} \quad \text{(exists due to OLS1)}$$

$$\Rightarrow \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1} \frac{1}{n}\sum_{i=1}^{n}x_{i}\varepsilon_{i} \stackrel{p}{\to} 0$$

2.

$$\hat{\beta}_{OLS} - \beta = (X'X)^{-1}X'\varepsilon = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}x_{i}\varepsilon_{i}$$

$$\Rightarrow \sqrt{n}\left(\hat{\beta}_{OLS} - \beta\right) = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i}\varepsilon_{i}$$

Using the CLT:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i \varepsilon_i \stackrel{d}{\to} N(0, Var(x_i \varepsilon_i)) = N\left(0, \sigma^2 \mathbb{E}(x_i x_i')\right)$$

Where the second equality follows from:

$$Var(x_i\varepsilon_i) = E[x_i\varepsilon_i\varepsilon_i'x_i'] - E[x_i\varepsilon_i]E[x_i\varepsilon_i]'$$

$$= E[\varepsilon_i^2x_ix_i'] - E[x_i\varepsilon_i]E[x_i\varepsilon_i]' \quad \text{(since } \varepsilon_i \text{ scalar)}$$

$$= E[E(\varepsilon_i^2x_ix_i'|x_i)] - E[E(x_i\varepsilon_i|x_i)]E[x_i\varepsilon_i]' \quad \text{(first expectation exists by OLS4)}$$

$$= E[E(\varepsilon_i^2|x_i)x_ix_i'] - E[x_iE(\varepsilon_i|x_i)]E[x_i\varepsilon_i]'$$

$$= \sigma^2 E[x_ix_i']. \quad \text{(using OLS2)}$$

Using the CMT:

$$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i}\varepsilon_{i} \stackrel{d}{\to} \left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}N\left(0,\sigma^{2}\mathbb{E}(x_{i}x_{i}')\right)
\sim N\left(0,\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}\sigma^{2}\mathbb{E}(x_{i}x_{i}')\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}\right)
\sqrt{n}\left(\hat{\beta}_{OLS}-\beta\right) \stackrel{d}{\to} N\left(0,\sigma^{2}\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}\right)$$

Theorem 6.2.2. Under OLS0-4:

1.
$$\hat{\sigma}^2 \stackrel{p}{\rightarrow} \sigma^2$$

2.
$$W \stackrel{d}{\to} \chi^2(p)$$

3.
$$t \stackrel{d}{\rightarrow} N(0,1)$$

Proof. 1.a

$$\hat{\sigma}^2 = \frac{1}{n-k} \varepsilon' M_X \varepsilon$$

$$= \frac{1}{n-k} \varepsilon' (I - X(X'X)^{-1}X') \varepsilon$$

$$= \frac{1}{n-k} \varepsilon' \varepsilon - \frac{1}{n-k} \varepsilon' X(X'X)^{-1}X' \varepsilon$$

$$= \frac{n}{n-k} \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 - \frac{n}{n-k} \frac{1}{n} \sum_{i=1}^n x_i \varepsilon_i \left(\frac{1}{n} \sum_{i=1}^n x_i x_i'\right)^{-1} \frac{1}{n} \sum_{i=1}^n x_i' \varepsilon_i$$

^aStrictly we only need OLS0,1,2': $\mathbb{E}(x_i\varepsilon_i) = 0$ ^b $x_i\varepsilon_i = x_i(y_i - x_i'\beta)$ and we know (y_i, x_i) i.i.d.

Using Khinchine's LLN:

$$\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}^{2}\overset{p}{\to}\mathbb{E}[\varepsilon_{i}^{2}],\quad \frac{1}{n}\sum_{i=1}^{n}x_{i}\varepsilon_{i}\overset{p}{\to}\mathbb{E}[x_{i}\varepsilon_{i}]=0,\quad \frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\overset{p}{\to}\mathbb{E}(x_{i}x_{i}'),\quad \frac{1}{n}\sum_{i=1}^{n}x_{i}'\varepsilon_{i}\overset{p}{\to}\mathbb{E}[x_{i}'\varepsilon_{i}]=0$$

Using CMT and Slutsky:

$$\hat{\sigma}^2 \xrightarrow{p} \frac{n}{n-k} \mathbb{E}[\varepsilon_i^2] + \frac{n}{n-k} \times 0$$
$$= \mathbb{E}[\varepsilon_i^2] \quad (\text{as } n \to \infty)$$
$$= \sigma^2$$

$$W = \frac{\sqrt{n} \left(R \hat{\beta} - q \right)' \left(\sigma^2 R \left(\frac{1}{n} X' X \right)^{-1} R' \right)^{-1} \sqrt{n} \left(R \hat{\beta} - q \right)}{\hat{\sigma}^2 / \sigma^2}$$

$$\sqrt{n} \left(R \hat{\beta} - q \right) = \sqrt{n} (\hat{\beta} - \beta) \quad \text{(since } H_0 : R\beta = q)$$

$$\stackrel{d}{\to} RN \left(0, \sigma^2 [\mathbb{E}(x_i x_i')]^{-1} \right)$$

$$= N \left(0, \sigma^2 R [\mathbb{E}(x_i x_i')]^{-1} R' \right)$$

$$= \left(\sigma^2 R [\mathbb{E}(x_i x_i')]^{-1} R' \right)^{1/2} N(0, I_p)$$

Since $\frac{1}{n}X'X \stackrel{p}{\to} \mathbb{E}[x_ix_i']$, by the CMT,

$$\left(\sigma^2 R \left(\frac{1}{n} X' X\right)^{-1} R'\right)^{-1} \stackrel{p}{\to} \left(\sigma^2 R \left[\mathbb{E}(x_i x_i')\right]^{-1} R'\right)^{-1}$$

$$\left(\sigma^{2}R\left(\frac{-X'X}{n}\right) R'\right) \xrightarrow{\mathcal{L}} \left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{-1}$$

$$\Rightarrow W \xrightarrow{d} \frac{\left(\left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{1/2}N(0,I_{p})\right)'\left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{-1}\left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{-1/2}N(0,I_{p})}{1}$$

$$= (N(0,I_{p}))'\left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{1/2}\left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{-1}\left(\sigma^{2}R\left[\mathbb{E}(x_{i}x_{i}')\right]^{-1}R'\right)^{1/2}N(0,I_{p})$$

$$= (N(0,I_{p}))'I_{p}N(0,I_{p})$$

$$= \chi^{2}(p)$$

$$t = \frac{\hat{\beta}_j - \beta}{\sqrt{\hat{\sigma}^2 (X'X)_{jj}^{-1}}}$$

$$= \frac{(\hat{\beta}_j - \beta)/\sqrt{\sigma^2 (X'X)_{jj}^{-1}}}{\sqrt{\hat{\sigma}^2/\sigma^2}}$$

$$= \frac{\stackrel{d}{\rightarrow} N(0,1)}{\sqrt{\stackrel{p}{\rightarrow}} 1} \quad (\hat{\sigma}^2 \stackrel{p}{\rightarrow} \sigma^2 \text{ and Theorem 6.2.1-2})$$

$$\stackrel{d}{\rightarrow} N(0,1) \quad \text{(by Slutsky)}$$

^aSee Lecture 5 for derivation of the first step

The distribution of the Wald statistic is as expected, recall $W/p|x \sim F(p, n-k)$ under normal regression, and thus we see $W|x \sim pF(p, n-k) \stackrel{d}{\to} \chi^2(p)$. Why?

$$p \times F = p \frac{\chi^2(p)/p}{\chi^2(n-k)/(n-k)}$$
$$= \frac{\chi^2(p)}{\chi^2(n-k)/(n-k)}$$
$$\frac{\chi^2(n-k)}{n-k} = \frac{1}{n-k} \sum_{i=1}^{n-k} Z_i^2 \stackrel{p}{\to} \mathbb{E}[Z_i^2] = 1$$
$$\Rightarrow pF \stackrel{d}{\to} \chi^2(p)$$

Asymptotic confidence intervals and sets

Since $t \stackrel{d}{\to} N(0,1)$ we can build asymptotic confidence intervals for β_j . From the critical values of N(0,1):

$$Pr\left(\left|\frac{\sqrt{n}(\hat{\beta}_{j}-\beta)}{\sqrt{\hat{\sigma}^{2}(\frac{1}{n}X'X)_{jj}^{-1}}}\right| \leq 1.96\right) \approx 0.95$$

$$\Rightarrow Pr\left(\left|\hat{\beta}_{j}-\beta\right| \leq 1.96\sqrt{\hat{\sigma}^{2}(X'X)_{jj}^{-1}}\right) \approx 0.95 \quad \text{(cancel n's and rearrange)}$$

$$\Rightarrow \left[\hat{\beta}_{j}-1.96\sqrt{\hat{\sigma}^{2}(X'X)_{jj}^{-1}}, \hat{\beta}_{j}+1.96\sqrt{\hat{\sigma}^{2}(X'X)_{jj}^{-1}}\right] \quad \text{Asymptotic confidence interval}$$

This gives us the set all all values of β_j that are not rejected by he t-test with asymptotic size 5%. We say that the confidence interval is obtained by inversion of the test. We can similarly invert the Wald test, consider a test of the entire vector $\beta = b$ (i.e. $R = I_p$):

$$W = (\hat{\beta} - b)'(\hat{\sigma}^{2}(X'X^{-1}))^{-1}(\hat{\beta} - b)$$
$$= \frac{(\hat{\beta} - b)'X'X(\hat{\beta} - b)}{\hat{\sigma}^{2}}$$

The asymptotic 95% confidence set for β is the ellipsoid with centre $\hat{\beta}$:

$$\Rightarrow \left\{ \beta : \frac{(\hat{\beta} - \beta)' X' X (\hat{\beta} - \beta)}{\hat{\sigma}^2} \le \chi_{0.95}^2(k) \right\}$$

6.3 Delta method

Sometimes we need to know confidence intervals or sets for some (possibly nonlinear) function of regression parameters. We can do this with the delta method.

Definition 6.3.1: Delta method

Suppose $\hat{\theta}$ is a k-dimensional vector where $\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \xi$, and suppose $g : \mathbb{R}^k \to \mathbb{R}$ has continuous first derivatives. Denote by $G(\theta)$ the $r \times k$ matrix of first derivatives evaluated at θ : $G(\theta) \equiv \frac{\partial g(\theta)}{\partial \theta'}$ then as $n \to \infty$

$$\sqrt{n}(g(\hat{\theta}) - g(\theta)) \stackrel{d}{\to} G(\theta)\xi$$

. In particular, if $\xi \sim N(0, V)$ then as $n \to \infty$

$$\sqrt{n}(g(\hat{\theta}) - g(\theta)) \stackrel{d}{\to} N(0, GVG')$$

Proof. By the mean value theorem, there exists a k-dimensional vector $\bar{\theta}$ between $\hat{\theta}$ and θ such that

$$g(\hat{\theta}) - g(\theta) = G(\bar{\theta})(\hat{\theta} - \theta)$$

$$r \times k k \times 1$$

$$\Rightarrow \sqrt{n}(g(\hat{\theta}) - g(\theta)) = G(\bar{\theta})\sqrt{n}(\hat{\theta} - \theta)$$

Since $\bar{\theta}$ is between $\hat{\theta}$ and θ and since $\hat{\theta} \xrightarrow{p} \theta$ we know $\bar{\theta} \xrightarrow{p} \theta$. G() is assumed continuous, so by CMT:

$$G(\bar{\theta}) \xrightarrow{p} G(\theta)$$

$$\Rightarrow \sqrt{n}(g(\hat{\theta}) - g(\theta)) = G(\bar{\theta})\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{p} G(\theta)\xi$$

Exercise 6.3.1. Let $\{\hat{\theta}_n\}$ be a sequence of 2x1 random vectors satisfying $\sqrt{n}(\hat{\theta}_0 - \theta_0) \stackrel{d}{\to} N(0, V)$ where the asymptotic mean is $\theta_0 = [0, 1]'$ and the asymptotic covariance matrix is I_2 . Denote the two entries of $\hat{\theta}_n$ by $\hat{\theta}_{n,1}$ and $\hat{\theta}_{n,2}$. Derive the asymptotic distribution of the sequence of products $\{\hat{\theta}_{n,1}\hat{\theta}_{n,2}\}$

Solution:-

We can apply the delta method because the function

$$g(\theta) = g(\theta_1, \theta_2) = \theta_1 \theta_2$$

is continuously differentiable. The asymptotic mean of the transformed sequence is

$$g(\theta_0) = \theta_{0.1}\theta_{0.2} = 0 \times 1 = 0$$

The Jacobian of the function is

$$G(\theta) = \begin{bmatrix} \frac{\partial g(\theta_1, \theta_2)}{\partial \theta_1} & \frac{\partial g(\theta_1, \theta_2)}{\partial \theta_2} \end{bmatrix} = [\theta_2, \theta_1]$$

By evaluating at θ_0 we obtain $G(\theta_0) = [1, 0]$.

Therefore the asymptotic covariance matrix is

$$G(\theta_0)VG(\theta_0)' = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$$

And we can write $\sqrt{n}\hat{\theta}_{n,1}\hat{\theta}_{n,2} \stackrel{d}{\to} N(0,1)$

Example (Nerlove's returns to scale).

$$\log TC_i = \beta_1 + \beta_2 \log Q_i + \beta_3 \log p_{C_i} + \beta_4 \log p_{L_i} + \beta_5 \log p_{F_i} + \varepsilon_i$$

Suppose we want to study the asymptotic confidence region of the normalised regression with coefficients $\alpha = (\beta_3/\beta_2, \beta_4/\beta_2, \beta_5/\beta_2)'$ (i.e. the powers of the Cobb-Douglas production

function). Define

$$g(\beta) = \begin{bmatrix} \beta_3/\beta_2 \\ \beta_4/\beta_2 \\ \beta_5/\beta_2 \end{bmatrix}$$

$$G(\beta) = \frac{\partial g(\beta)}{\partial \theta'} = \begin{bmatrix} 0 & -\beta_3/\beta_2^2 & 1/\beta_2 & 0 & 0\\ 0 & -\beta_4/\beta_2^2 & 0 & 1/\beta_2 & 0\\ 0 & -\beta_5/\beta_2^2 & 0 & 0 & 1/\beta_2 \end{bmatrix}$$

Thus considering the Wald statistic with $H_0: \hat{\alpha} = \alpha$, i.e.: $R = I_3, q = \alpha$:

$$W = \frac{\left(R\hat{\beta} - q\right)' \left(\sigma^2 R \left(X'X\right)^{-1} R'\right)^{-1} \left(R\hat{\beta} - q\right)}{\hat{\sigma}^2/\sigma^2}$$

$$= \frac{\sqrt{n} \left(\hat{\alpha} - \alpha\right)' \left(\sigma^2 R \left(\frac{1}{n} X'X\right)^{-1} R'\right)^{-1} \sqrt{n} \left(\hat{\alpha} - \alpha\right)}{\hat{\sigma}^2/\sigma^2}$$

$$\stackrel{d}{\to} [N(0, I_3)]' I_3 N(0, I_3) \quad \text{(using theorem 6.2.2)}$$

$$= \chi^2(3)$$

Hence the asymptotic 95% confidence set for α is the ellipsoid

$$\left\{\alpha: (\hat{\alpha} - \alpha)' \left(G(\hat{\beta}) \hat{\sigma}^2 (X'X)^{-1} G(\hat{\beta})' \right) (\hat{\alpha} - \alpha) \le \chi_{0.95}^2(3) \right\}$$