概率论与数理统计

正态总体的抽样分布

主讲人:郑旭玲

信息科学与技术学院

> 抽样分布

- 统计推断通过抽样调查,从样本的统计值来估计总体的参数值,或检验关于总体特征的假设是否可接受。
- 研究统计量的分布,是统计推断中十分重要且基础的工作。
- 统计量是样本的函数,也是随机变量,统计量所服从的分布 称为抽样分布。

> 抽样分布

设总体X的均值为 μ , 方差为 σ^2 , X_1, X_2, \cdots, X_n 是来自总体的一个样本,则

样本均值
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 , $E(\bar{X}) = \mu$
样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, $E(S^2) = \sigma^2$

• 本节给出正态总体一些重要抽样分布定理

单个正态总体的 抽样分布

定理1

设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \bar{X} 是样本均值,则有

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 \mathbb{P} $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$
 ~ 正态分布
$$E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n}\sum_{i=1}^n E(X_i) = \mu$$

$$D(\bar{X}) = D(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n^2} \sum_{i=1}^{n} D(X_i) = \frac{\sigma^2}{n}$$

定理1

设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$

的样本, \bar{X} 是样本均值,则有

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 \mathbb{P} $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

【提示】在已知总体 μ , σ^2 时,可用本定理计算样本均值 $ar{X}$.

n 取不同值时样本均值 \bar{X} 的分布

例

设总体 $X \sim N(\mu, 4)$, 有样本 $X_1, X_2, ..., X_n$, 当样本容量 n 为多大时,使 $P(|\bar{X}-\mu| \leq 0.1)=0.95$ 。

解: 由定理1,
$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

$$P(|\bar{X} - \mu| \le 0.1) = P(\frac{-0.1}{2/\sqrt{n}} \le \frac{\bar{X} - \mu}{2/\sqrt{n}} \le \frac{0.1}{2/\sqrt{n}})$$

$$= \Phi(0.05\sqrt{n}) - \Phi(-0.05\sqrt{n}) = 2\Phi(0.05\sqrt{n}) - 1$$

因 $P(|\bar{X} - \mu| \le 0.1) = 0.95$,即 $2\Phi(0.05\sqrt{n}) - 1 = 0.95$

得 $\Phi(0.05\sqrt{n}) = (1+0.95)/2 = 0.975$

查标准正态分布表可知 $\Phi(1.96) = 0.975$, 即 $0.05\sqrt{n} = 1.96$

于是得 n = 1536.6 ≈ 1537

定理2

设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 和 S^2 分别为样本均值和样本方差,则有

(1)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(2) \bar{X} 与 S^2 独立.

【提示】在已知总体 σ^2 时,可用本定理计算样本方差 S^2 .

样本方差的分布

n 取不同值时 $\frac{(n-1)S^2}{\sigma^2}$ 的分布

例

从正态总体 $N(\mu, 0.5^2)$ 中抽取样本 X_1, \dots, X_{10} .

(1) 已知
$$\mu = 0$$
, 求概率 $p\left\{\sum_{i=1}^{10} X_i^2 \ge 4\right\}$;

(2)
$$\mu$$
 未知,求概率 $p\left\{\sum_{i=1}^{10}(X_i-\bar{X})^2\geq 2.85\right\}$.

解: (1) 由 $\mu = 0$, 有 $X_i/0.5 \sim N(0,1)$

$$I Y = \frac{1}{0.5^2} \sum_{i=1}^{10} X_i^2 \sim \chi^2(10)$$

$$p\left\{\sum_{i=1}^{10} X_i^2 \ge 4\right\} = p\left\{\frac{1}{0.5^2} \sum_{i=1}^{10} X_i^2 \ge \frac{4}{0.5^2}\right\} = p\left\{Y \ge 16\right\}$$

附表 $5 \chi^2$ 分布表

$$P\{\chi^2(n) > \chi^2_\alpha(n)\} = \alpha$$

n^{α}	0. 995	0.99	0.975	0.95	0.9	0. 1	0.05	0.025	0.01	0.005
1 2 3 4	0. 000 0. 010 0. 072 0. 207	0. 000 0. 020 0. 115 0. 297	0. 001 0. 051 0. 216 0. 484	0. 004 0. 103 0. 352 0. 711	0. 016 0. 211 0. 584 1. 064	2. 706 4. 605 6. 251 7. 779	3. 843 5. 992 7. 815 9. 488	5. 025 7. 378 9. 348 11. 143	6. 637 9. 210 11. 344 13. 277	7. 882 10. 597 12. 837 14. 860
5 6 7 8 9 10	0. 412 0. 676 0. 989 1. 344 1. 735 2. 156	0. 554 0. 872 1. 239 1. 646 2. 088 2. 558	0. 831 1. 237 1. 690 2. 180 2. 700 3. 247	1. 145 1. 635 2. 167 2. 733 3. 325 3. 940	_	9. 236 10. 645 12. 017 13. 362 14. 684	11. 070 12. 592 14. 067 15. 507 16. 919 18. 307	14. 440 16. 012 17. 534 19. 022	15. 085 16. 812 18. 474 20. 090 21. 665 23. 209	16. 748 18. 548 20. 276 21. 954 23. 587 25. 188

查表求
$$\chi_{\alpha}^{2}(10) = 16$$
, 可知 $\alpha = 0.1$

由此可得
$$p\left\{\sum_{i=1}^{10} X_i^2 \ge 4\right\} = 0.10$$

例

从正态总体 $N(\mu, 0.5^2)$ 中抽取样本 X_1, \dots, X_{10} .

(1) 已知
$$\mu = 0$$
, 求概率 $p\left\{\sum_{i=1}^{10} X_i^2 \ge 4\right\}$;

(2)
$$\mu$$
 未知,求概率 $p\left\{\sum_{i=1}^{10}(X_i-\bar{X})^2\geq 2.85\right\}$.

解: (2) 由题设及定理2, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

$$Z = \frac{9S^2}{0.5^2} = \frac{1}{0.5^2} \sum_{i=1}^{10} (X_i - \overline{X})^2 \sim \chi^2(9)$$

$$p\left\{\sum_{i=1}^{10} (X_i - \bar{X})^2 \ge 2.85\right\} = p\left\{\frac{1}{0.5^2} \sum_{i=1}^{10} (X_i - \bar{X})^2 \ge \frac{2.85}{0.5^2}\right\} = P\left\{Z \ge 11.4\right\}$$

利用Excel函数CHIDIST, 求 $\chi_{\alpha}^{2}(9) = 11.4$,

可得 $\alpha = 0.25$,

由此,可得
$$p\left\{\sum_{i=1}^{10}(X_i-\overline{X})^2\geq 2.85\right\}=0.25$$

当总体方差 σ^2 未知时,可以用 S^2 来代替,同样也可以得到样本均值的分布。

由定理1、2,可知

$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$
~ $N(0,1)$, $\frac{(n-1)S^2}{\sigma^2}$ ~ $\chi^2(n-1)$ 且相互独立

根据t分布的定义,可得 $\frac{X}{\sqrt{Y/n-1}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} / \sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}} \sim t(n-1)$

即
$$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

定理3

设 $X_1, X_2, ..., X_n$ 是取自正态总体 $N(\mu, \sigma^2)$ 的样本,

 \bar{X} 和 S^2 分别为样本均值和样本方差,

则有
$$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

【提示】在总体 σ^2 未知时,可用本定理计算样本均值X.

设总体 X 服从正态分布 $N(12,\sigma^2)$, 抽取容量为 25 的样本, 例 求样本均值 \bar{X} 大于 12.5 的概率。

如果 (1) 已知 $\sigma=2$; (2) σ 未知,但已知样本方差 $S^2=5.57$ 。

解: (1)由定理1,可知 $\frac{X-12}{2/\sqrt{25}} \sim N(0,1)$

故
$$P\{\bar{X} > 12.5\} = P\left\{\frac{\bar{X} - 12}{2/\sqrt{25}} > \frac{12.5 - 12}{2/\sqrt{25}}\right\}$$

$$= P\left\{\frac{\bar{X} - 12}{0.4} > 1.25\right\}$$

$$=1-\Phi(1.25)=1-0.8944=0.1056$$

并本均值的分布

例 设总体 X 服从正态分布 $N(12,\sigma^2)$, 抽取容量为 25 的样本 , 求样本均值 \bar{X} 大于 12.5 的概率。

如果 (1) 已知 $\sigma = 2$; (2) σ 未知,但已知样本方差 $S^2 = 5.57$ 。

解: (2)由定理3,可知
$$\frac{\bar{X}-\mu}{S/\sqrt{n}} = \frac{\bar{X}-12}{S/\sqrt{25}} \sim t(24)$$

故
$$P\{\bar{X} > 12.5\} = P\left\{\frac{\bar{X} - 12}{S/5} > \frac{12.5 - 12}{S/5}\right\}$$

$$= P\{T > 1.059\}$$

查表求 $t_{\alpha}(24) = 1.059$, 可知 $\alpha = 0.15$

故有
$$P\{\bar{X} > 12.5\} = 0.15$$

两个正态总体的 抽样分布

两总体样本均值差、样本方差比的分布

Q

定理4

设 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$), 且X与Y独立 , $X_1,X_2,...,X_{n_1}$ 是来自X的样本 , $Y_1,Y_2,...,Y_{n_2}$ 是取自Y的样本 , \bar{X} 和 \bar{Y} 分别是这两个样本的样本均值 , S_1^2 和 S_2^2 分别是这两个样本的样本方差 , 则有

(1)
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$$

(2)
$$\begin{subarray}{c} & \bar{X} - \bar{Y} - (\mu_1 - \mu_2) \\ & &$$

两总体样本均值差、样本方差比的分布

设总体 $X \sim N(6, \sigma_1^2)$, $Y \sim N(5, \sigma_2^2)$, 有 $n_1 = n_2 = 10$ 的独立样本 , 求二样本均值之差 $\bar{X} - \bar{Y}$ 小于 1.3 的概率。

如果 (1) 已知 $\sigma_1^2 = 1$, $\sigma_2^2 = 1$;

(2) σ_1^2 , σ_2^2 未知,但二者相同,样本方差分别为 $S_1^2=0.9130$, $S_2^2=0.9816$ 。

解: (1) 由定理1, 可知 $\bar{X} \sim N(\mu_1, \frac{\sigma_1^2}{n_1})$, $\bar{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_2})$

由正态分布的可加性,有 \bar{X} - \bar{Y} ~ $N(\mu_1$ - μ_2 , $\frac{\sigma_1^2}{n_1}$ + $\frac{\sigma_2^2}{n_2}$)

两总体样本均值差、样本方差比的分布

当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 时,有 $\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1)$

代入
$$\mu_1$$
=6, μ_2 =5, n_1 = n_2 =10, σ^2 =1时,有 $\frac{(\overline{X}-\overline{Y})-(6-5)}{\sqrt{\frac{1}{10}+\frac{1}{10}}}\sim N(0,1)$

故
$$P\{\bar{X} - \bar{Y} < 1.3\} = P\left\{\frac{(\bar{X} - \bar{Y}) - (6 - 5)}{\sqrt{\frac{1}{10} + \frac{1}{10}}} < \frac{1.3 - (6 - 5)}{\sqrt{\frac{1}{10} + \frac{1}{10}}}\right\} = P\{U < 0.67\}$$

$$=\Phi(0.67)=0.7486$$

两总体样本均值差、样本方差比的分布

例 设总体 $X \sim N(6, \sigma_1^2)$, $Y \sim N(5, \sigma_2^2)$, 有 $n_1 = n_2 = 10$ 的独立样本,求二样本均值之差 $\bar{X} - \bar{Y}$ 小于 1.3 的概率。

如果 (1) 已知 $\sigma_1^2 = 1$, $\sigma_2^2 = 1$;

(2) σ_1^2 , σ_2^2 未知,但二者相同,样本方差分别为 $S_1^2=0.9130$, $S_2^2=0.9816$ 。

解: (2) 由定理4(2),可知 $\frac{\overline{X}-\overline{Y}-(6-5)}{S_W\sqrt{\frac{1}{10}+\frac{1}{10}}} \sim t(18)$

其中, $S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{9 \times 0.9130 + 9 \times 0.9816}{18} = 0.9733^2$

两总体样本均值差、样本方差比的分布

故
$$P\{\bar{X} - \bar{Y} < 1.3\} = P\left\{\frac{(\bar{X} - \bar{Y}) - (6 - 5)}{0.9733\sqrt{\frac{1}{10} + \frac{1}{10}}} < \frac{1.3 - (6 - 5)}{0.9733\sqrt{\frac{1}{10} + \frac{1}{10}}}\right\}$$

= $P\{t(18) < 0.6884\}$

利用Excel函数T.DIST,可以求得 $P\{t(18) < 0.6884\} = 0.75$

故有
$$P\{\bar{X}-\bar{Y}<1.3\}=0.75$$

两总体样本均值差、样本方差比的分布

例 总体 $X\sim N(\mu,3)$, $Y\sim N(\mu,5)$ 中分别抽取 $n_1=10$, $n_2=15$ 的 独立样本,求两样本方差之比 S_1^2/S_2^2 大于1.272的概率。

解: 曲定理4(1) $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$

可知 $\frac{S_1^2}{S_2^2} \times \frac{5}{3} \sim F(9,14)$

故 $P\left\{\frac{S_1^2}{S_2^2} > 1.272\right\} = P\left\{\frac{S_1^2}{S_2^2} \times \frac{5}{3} > 1.272 \times \frac{5}{3}\right\} = P\left\{F(9,14) > 2.12\right\}$

查F分布表,求 $F_{\alpha}(9,14)$ =2.12,可得 α =0.1。即 $P\left\{\frac{S_{1}^{2}}{S_{2}^{2}}>1.272\right\}$ =0.1

> 小结

阜 单个正态总体的抽样分布

定理 $1 \sim 3$ 给出了样本均值 \bar{X} 和样本方差 S^2 的分布,可用于对正态总体的期望 μ 和方差 σ^2 进行统计推断(区间估计、假设检验)。

两个正态总体的抽样分布

定理 4 给出了样本均值差 $\bar{X} - \bar{Y}$ 和样本方差 比 S_1^2/S_2^2 的分布,可用于对正态总体的期望差 $\mu_1 - \mu_2$ 和方差比 σ_1^2/σ_2^2 进行统计推断。

谢谢大家