1. Множества – основни понятия. Операции с множества.

Ангел Василев Дичев ditchev@fmi.uni-sofia.bg

Основното помощно помагало(учебник), който ще използуваме този семестър е

УВОД В ДИСКРЕТНАТА МАТЕМАТИКА

от Красимир Манев

Приемно време за консултации(зимен семестър)

Време:

понеделник 12 – 13

сряда 12 – 13

Място:

Физически факултет, сграда Б, втори етаж, каб. 242

През семестъра ще има две конролни с по две части.

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-годямо

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с оценки ≥ 3 гарантира допускане до изпит на частта задачи с обща оценка средноаритметично от двете контролни.

Втората част е теория с точки и в листа с условията ще бъде отбелязано колко точки са достатъчни за успешен тест. За всеки тест се получава оценка ДА или НЕ. Оценка ДА на двете контролни гарантира оценка 3 за теорията. Оценка НЕ на поне една част означава, че на този етеп не сте допуснат до изпит.

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с оценки > 3 гарантира допускане до изпит на частта задачи с обща оценка средноаритметично от двете контролни. Втората част е теория с точки и в листа с условията ще бъде отбелязано колко точки са достатъчни за успешен тест. За

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с оценки > 3 гарантира допускане до изпит на частта задачи с обща оценка средноаритметично от двете контролни. Втората част е теория с точки и в листа с условията ще бъде отбелязано колко точки са достатъчни за успешен тест. За всеки тест се получава оценка ДА или НЕ. Оценка ДА на

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с оценки > 3 гарантира допускане до изпит на частта задачи с обща оценка средноаритметично от двете контролни. Втората част е теория с точки и в листа с условията ще бъде отбелязано колко точки са достатъчни за успешен тест. За всеки тест се получава оценка ДА или НЕ. Оценка ДА на двете контролни гарантира оценка 3 за теорията. Оценка НЕ

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с оценки > 3 гарантира допускане до изпит на частта задачи с обща оценка средноаритметично от двете контролни. Втората част е теория с точки и в листа с условията ще бъде отбелязано колко точки са достатъчни за успешен тест. За всеки тест се получава оценка ДА или НЕ. Оценка ДА на двете контролни гарантира оценка 3 за теорията. Оценка НЕ на поне една част означава, че на този етеп не сте допуснат до изпит.

През семестъра ще има две конролни с по две части. Първата част е задачи с оценка от 2 до 6. Оценка по-голямо или равно на 3 на всяка една от частите означава допускане до изпит по тази част за задачи. Двете части от задачи с оценки > 3 гарантира допускане до изпит на частта задачи с обща оценка средноаритметично от двете контролни. Втората част е теория с точки и в листа с условията ще бъде отбелязано колко точки са достатъчни за успешен тест. За всеки тест се получава оценка ДА или НЕ. Оценка ДА на двете контролни гарантира оценка 3 за теорията. Оценка НЕ на поне една част означава, че на този етеп не сте допуснат до изпит.

На изпита ще има доказателства на теореми и там ще получите оценка над 3.

Окончателната оценка се формира като средно аритметично от задачи и теория.

Оценките след приключване на сесията не важат. Така, ако се явите на септемврийската поправителна сесия се явявате на всички чати теория и задачи.

На изпита ще има доказателства на теореми и там ще получите оценка над 3.

Окончателната оценка се формира като средно аритметично от задачи и теория.

Оценките след приключване на сесията не важат. Така, ако се явите на септемврийската поправителна сесия се явявате на всички чати теория и задачи.

На изпита ще има доказателства на теореми и там ще получите оценка над 3.

Окончателната оценка се формира като средно аритметично от задачи и теория.

Оценките след приключване на сесията не важат. Така, ако се явите на септемврийската поправителна сесия се явявате на всички чати теория и задачи.

На изпита ще има доказателства на теореми и там ще получите оценка над 3.

Окончателната оценка се формира като средно аритметично от задачи и теория.

Оценките след приключване на сесията не важат. Така, ако се явите на септемврийската поправителна сесия се явявате на всички чати теория и задачи.

На изпита ще има доказателства на теореми и там ще получите оценка над 3.

Окончателната оценка се формира като средно аритметично от задачи и теория.

Оценките след приключване на сесията не важат. Така, ако се явите на септемврийската поправителна сесия се явявате на всички чати теория и задачи.

На изпита ще има доказателства на теореми и там ще получите оценка над 3.

Окончателната оценка се формира като средно аритметично от задачи и теория.

Оценките след приключване на сесията не важат. Така, ако се явите на септемврийската поправителна сесия се явявате на всички чати теория и задачи.

Уводни бележки

- Дискретна математика
- Теория на множествата

Уводни бележки

- Дискретна математика
- Теория на множествата

Означение

C a ∈ A означаваме, че елемента а принадлежи на множеството A.

С а $\not\in$ A означаваме, че елемента а не принадлежи на множеството A.

Дефиниция

Казваме, че множеството A е подмножество на множеството B (пишем $A \subseteq B$) \iff всеки елемент на A е елемент и на $B \iff [\forall x (x \in A \Rightarrow x \in B)].$

Означение

C a ∈ A означаваме, че елемента а принадлежи на множеството A.

C a ∉ A означаваме, че елемента а не принадлежи на множеството A.

Дефиниция

Казваме, че множеството A е подмножество на множеството B (пишем $A \subseteq B$) \iff всеки елемент на A е елемент и на $B \iff [\forall x (x \in A \Rightarrow x \in B)].$

Означение

C a ∈ A означаваме, че елемента а принадлежи на множеството A.

C a ∉ A означаваме, че елемента а не принадлежи на множеството A.

Дефиниция

Казваме, че множеството A е подмножество на множеството B (пишем $A \subseteq B$) \iff всеки елемент на A е елемент и на $B \iff [\forall x (x \in A \Rightarrow x \in B)].$

Дефиниция

Казваме, че множеството A е равно на множеството B (пишем A = B) \iff всеки елемент на A е елемент и на B и обратно, всеки елемент на B е елемент и на $A \iff [\forall x (x \in A \Leftrightarrow x \in B)].$

Дефиниция

Казваме, че множеството A е строго (собствено) подмножество на множеството B (пишем $A \subset B$) $\iff A \subseteq B$ и $A \neq B$.

Означение

Едно специално множество, което няма никакви елементи, се нарича празно множество и се означава с ∅.

Дефиниция

Казваме, че множеството A е равно на множеството B (пишем A = B) \iff всеки елемент на A е елемент и на B и обратно, всеки елемент на B е елемент и на $A \iff [\forall x (x \in A \Leftrightarrow x \in B)].$

Дефиниция

Казваме, че множеството A е строго (собствено) подмножество на множеството B (пишем $A \subset B$) $\iff A \subseteq B$ и $A \neq B$.

Означение

Едно специално множество, което няма никакви елементи, се нарича празно множество и се означава с \emptyset .

Дефиниция

Казваме, че множеството A е равно на множеството B (пишем A = B) \iff всеки елемент на A е елемент и на B и обратно, всеки елемент на B е елемент и на $A \iff [\forall x (x \in A \Leftrightarrow x \in B)].$

Дефиниция

Казваме, че множеството A е строго (собствено) подмножество на множеството B (пишем $A \subset B$) $\iff A \subseteq B$ и $A \neq B$.

Означение

Едно специално множество, което няма никакви елементи, се нарича празно множество и се означава с **∅**.

За да опишем едно множество използуваме няколко начина. Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три

елемента a_1,a_2,a_3 се записва така: $A=\{a_1,a_2,a_3\}$ или $A=\{a_1,a_2,a_1,a_3\}.$

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто(предикат).

За да опишем едно множество използуваме няколко начина. Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1,a_2,a_3 се записва така: $A=\{a_1,a_2,a_3\}$

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто(предикат).

За да опишем едно множество използуваме няколко начина. Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1, a_2, a_3 се записва така: $A = \{a_1, a_2, a_3\}$ или $A = \{a_1, a_2, a_1, a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто(предикат).

Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1, a_2, a_3 се записва така: $A = \{a_1, a_2, a_3\}$ или $A = \{a_1, a_2, a_1, a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно }\}$ или $A = \{x | \mathcal{P}(x) = \text{tt}\}$ или просто $A = \{x | \mathcal{P}(x)\}$, където \mathcal{P} е някакво свойсто (предикат).

Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1, a_2, a_3 се записва така: $A = \{a_1, a_2, a_3\}$ или $A = \{a_1, a_2, a_1, a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто (предикат).

Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1, a_2, a_3 се записва така: $A = \{a_1, a_2, a_3\}$ или $A = \{a_1, a_2, a_1, a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто (предикат).

Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1, a_2, a_3 се записва така: $A = \{a_1, a_2, a_3\}$ или $A = \{a_1, a_2, a_1, a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто (предикат).

Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1, a_2, a_3 се записва така: $A = \{a_1, a_2, a_3\}$ или $A = \{a_1, a_2, a_1, a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто (предикат).

Първият начин е да изредим (изброим) всичките му елементи. Например, множеството A, което има три елемента a_1,a_2,a_3 се записва така: $A=\{a_1,a_2,a_3\}$ или $A=\{a_1,a_2,a_1,a_3\}$.

Втори начин е следният: $A = \{x | \mathcal{P}(x) \text{ е вярно } \}$ или $A = \{x | \mathcal{P}(x) = \text{tt} \}$ или просто $A = \{x | \mathcal{P}(x) \}$, където \mathcal{P} е някакво свойсто (предикат).

Сечение

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на сечението на множествата A и B (пишем $x \in A \cap B$) $\iff x \in A$ и $x \in B$.

Сечение.

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на сечението на множествата A и B (пишем $x \in A \cap B$) $\iff x \in A$ и $x \in B$.

Сечение.

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на сечението на множествата A и B (пишем $x \in A \cap B$) $\iff x \in A$ и $x \in B$.

Сечение.

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на сечението на множествата A и B (пишем $x \in A \cap B$) $\iff x \in A$ и $x \in B$.

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент х принадлежи на сечението на множествата A_1, \ldots, A_n (пишем $x \in A_1 \cap \cdots \cap A_n$) $\iff x \in A_1 \cup \ldots \cup x \in A_n$.

Така, $A_1 \cap \cdots \cap A_n = \{x | x \in A_1 \ \text{и} \ldots \ \text{и} \ x \in A_n \}.$ Освен означението за сечение на n множества $A_1 \cap \cdots \cap A_n$, се използува и

$$\bigcap_{i=1}^{n} A_{i}.$$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент x принадлежи на сечението на множествата A_1, \ldots, A_n (пишем $x \in A_1 \cap \cdots \cap A_n$) $\Longleftrightarrow x \in A_1$ и ... и $x \in A_n$.

Така, $A_1 \cap \cdots \cap A_n = \{x | x \in A_1 \ \text{и} \dots \ \text{и} \ x \in A_n \}.$ Освен означението за сечение на n множества $A_1 \cap \cdots \cap A_n$, се използува и

$$\bigcap_{i=1}^{n} A_{i}.$$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент x принадлежи на сечението на множествата A_1, \ldots, A_n (пишем $x \in A_1 \cap \cdots \cap A_n$) $\iff x \in A_1$ и ... и $x \in A_n$.

Така, $A_1 \cap \dots \cap A_n = \{x | x \in A_1 \ \text{и} \dots \ \text{и} \ x \in A_n \}.$ Освен означението за сечение на п множества $A_1 \cap \dots$

$$\bigcap_{i=1}^{n} A_i$$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент х принадлежи на сечението на множествата A_1, \ldots, A_n (пишем $x \in A_1 \cap \cdots \cap A_n$) $\iff x \in A_1$ и ... и $x \in A_n$.

Така, $A_1 \cap \dots \cap A_n = \{x | x \in A_1 \ \text{и} \dots \text{ и} \ x \in A_n \}.$ Освен означението за сечение на n множества $A_1 \cap \dots \cap A_n$, се използува и

$$\bigcap_{i=1}^{n} A_i$$

Обединение

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на обединението на множествата A и B (пишем $x \in A \cup B$) $\iff x \in A$ или $x \in B \iff x$ принадлежи на поне едно от множествата A, B.

С други думи, А∪В = {x|x ∈ А или x ∈ В}. Аналогично, дефиницията за обединение може да бъде обобщена за повече множества.

Обединение

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на обединението на множествата A и B (пишем $x \in A \cup B$) $\iff x \in A$ или $x \in B \iff x$ принадлежи на поне едно от множествата A, B.

C други думи, $A \cup B = \{x | x \in A$ или $x \in B\}$.

Аналогично, дефиницията за обединение може да бъде обобщена за повече множества.

Обединение

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на обединението на множествата A и B (пишем $x \in A \cup B$) $\iff x \in A$ или $x \in B \iff x$ принадлежи на поне едно от множествата A, B.

С други думи, A∪B = {x|x ∈ A или x ∈ B}. Аналогично, дефиницията за обединение може да бъде обобщена за повече множества.

Нека A_1,\ldots,A_n са множества. Казваме, че един елемент х принадлежи на обединението на множествата A_1,\ldots,A_n (пишем $x\in A_1\cup\cdots\cup A_n$) $\Longleftrightarrow x\in A_1$ или \ldots или $x\in A_n \Longleftrightarrow x$ принадлежи на поне едно от множествата A_1,\ldots,A_n .

Така, $A_1 \cup \cdots \cup A_n = \{x | x \in A_1 \text{ или } \ldots \text{ или } x \in A_n\}$. Освен означението за обединение на n множества $A_1 \cup \cdots \cup A_n$, се използува и

Нека A_1,\ldots,A_n са множества. Казваме, че един елемент х принадлежи на обединението на множествата A_1,\ldots,A_n (пишем $x\in A_1\cup\cdots\cup A_n$) $\Longleftrightarrow x\in A_1$ или \ldots или $x\in A_n \Longleftrightarrow x$ принадлежи на поне едно от множествата A_1,\ldots,A_n .

Така, $A_1 \cup \cdots \cup A_n = \{x | x \in A_1 \text{ или } \ldots \text{ или } x \in A_n\}.$ Освен означението за обединение на п множества $A_1 \cup \cdots \cup A_n$, се използува и

Нека A_1,\ldots,A_n са множества. Казваме, че един елемент х принадлежи на обединението на множествата A_1,\ldots,A_n (пишем $x\in A_1\cup\cdots\cup A_n$) $\Longleftrightarrow x\in A_1$ или \ldots или $x\in A_n \Longleftrightarrow x$ принадлежи на поне едно от множествата A_1,\ldots,A_n .

Така, $A_1 \cup \cdots \cup A_n = \{x | x \in A_1$ или ... или $x \in A_n\}$. Освен означението за обединение на n множества $A_1 \cup \cdots \cup A_n$, се използува и

$$\bigcup_{i=1}^{n} A_{i}.$$

Ако имаме една безкрайна редица от множества A_0, A_1, A_2, \ldots аналогично можем да определим обединение на всички множества A_0, A_1, A_2, \ldots по следния начин:

$$\bigcup_{i=0}^{\infty}A_{i}=\{x|\exists i(i\in N\&x\in A_{i})\}$$

Тъй като най-много ще използуваме операцията обединение ще обобщим операцията обединение за произволна фамилия.

Ако имаме една безкрайна редица от множества A_0, A_1, A_2, \ldots аналогично можем да определим обединение на всички множества A_0, A_1, A_2, \ldots по следния начин:

$$\bigcup_{i=0}^{\infty}A_{i}=\{x|\exists i(i\in N\&x\in A_{i})\}$$

Тъй като най-много ще използуваме операцията обединение ще обобщим операцията обединение за произволна фамилия.

Ако имаме една безкрайна редица от множества A_0, A_1, A_2, \ldots аналогично можем да определим обединение на всички множества A_0, A_1, A_2, \ldots по следния начин:

$$\bigcup_{i=0}^{\infty}A_{i}=\{x|\exists i (i\in N\&x\in A_{i})\}$$

Тъй като най-много ще използуваме операцията обединение ще обобщим операцията обединение за произволна фамилия.

Нека I произволно множество и на всяко $i \in I$ сме съпоставили множество A_i . Често това множество I се нарича индексно множество. Тогава можем да разгледаме фамилията от множества $\{A_i|i\in I\}$.

Обединение на фамилията от множества $\{A_i|i\in I\}$ се определя по следния начин: $\bigcup_{i\in I}A_i=\{x|\exists i(i\in I\&x\in A_i)\}.$

Нека I произволно множество и на всяко $i \in I$ сме съпоставили множество A_i . Често това множество I се нарича индексно множество. Тогава можем да разгледаме фамилията от множества $\{A_i|i\in I\}$.

Обединение на фамилията от множества $\{A_i|i\in I\}$ се определя по следния начин: $\bigcup_{i\in I}A_i=\{x|\exists i(i\in I\&x\in A_i)\}.$

Нека I произволно множество и на всяко $i \in I$ сме съпоставили множество A_i . Често това множество I се нарича индексно множество. Тогава можем да разгледаме фамилията от множества $\{A_i|i\in I\}$.

Обединение на фамилията от множества $\{A_i|i\in I\}$ се определя по следния начин: $\bigcup_{i\in I}A_i=\{x|\exists i(i\in I\&x\in A_i)\}.$

Разлика

Дефиниция

Нека A и B са множества. Казваме, че един елемент х принадлежи на разликата на множествата A и B (пишем $x \in A \setminus B$) $\iff x \in A$ и $x \notin B$.

C други думи, $A \setminus B = \{x | x \in A \text{ и } x \notin B\}.$

Разлика

Дефиниция

Нека A и B са множества. Казваме, че един елемент х принадлежи на разликата на множествата A и B (пишем $x \in A \setminus B$) $\iff x \in A$ и $x \notin B$.

C други думи, $A \setminus B = \{x | x \in A \ u \ x \notin B\}.$

Разлика

Дефиниция

Нека A и B са множества. Казваме, че един елемент х принадлежи на разликата на множествата A и B (пишем $x \in A \setminus B) \iff x \in A$ и $x \notin B$.

C други думи, $A \setminus B = \{x | x \in A \text{ и } x \notin B\}.$

Симетрична разлика

Дефиниция

Нека A и B са множества. Симетричната разлика на множествата A и B се определя с равенството: $A \wedge B = (A \setminus B) \cup (B \setminus A)$

Симетрична разлика

Дефиниция

Нека A и B са множества. Симетричната разлика на множествата A и B се определя с равенството: $A \triangle B = (A \setminus B) \cup (B \setminus A)$

Дефиниция

Нека x, y са произволни елементи. Наредена двойка от елементите x, y се означава с (x, y) и тя означава, че елемента x е означен като първи, а y като втори. Така за двете двойки $(x_1, y_1), (x_2, y_2)$ ще считаме, че са равни(cъвпадат) точно тогава, когато $x_1 = x_2$ и $y_1 = y_2$.

Аналогично, за произволни елементи x_1,\dots,x_n се определя наредена n-торка на елементите x_1,\dots,x_n , която се означава с (x_1,\dots,x_n) .

Дефиниция

Нека x, y са произволни елементи. Наредена двойка от елементите x, y се означава с (x, y) и тя означава, че елемента x е означен като първи, а y като втори. Така за двете двойки $(x_1, y_1), (x_2, y_2)$ ще считаме, че са равни (съвпадат) точно тогава, когато $x_1 = x_2$ и $y_1 = y_2$.

Аналогично, за произволни елементи x_1, \ldots, x_n се определя наредена n-торка на елементите x_1, \ldots, x_n , която се означава с (x_1, \ldots, x_n) .

Дефиниция

Нека x, y са произволни елементи. Наредена двойка от елементите x, y се означава с (x, y) и тя означава, че елемента x е означен като първи, а y като втори. Така за двете двойки $(x_1, y_1), (x_2, y_2)$ ще считаме, че са равни(cъвпадат) точно тогава, когато $x_1 = x_2$ и $y_1 = y_2$.

Аналогично, за произволни елементи x_1, \ldots, x_n се определя наредена n-торка на елементите x_1, \ldots, x_n , която се означава с (x_1, \ldots, x_n) .

Дефиниция

Нека x, y са произволни елементи. Наредена двойка от елементите x, y се означава с (x, y) и тя означава, че елемента x е означен като първи, а y като втори. Така за двете двойки $(x_1, y_1), (x_2, y_2)$ ще считаме, че са равни(cъвпадат) точно тогава, когато $x_1 = x_2$ и $y_1 = y_2$.

Аналогично, за произволни елементи x_1, \dots, x_n се определя наредена n-торка на елементите x_1, \dots, x_n , която се означава с (x_1, \dots, x_n) .

Дефиниция

Нека x, y са произволни елементи. Наредена двойка от елементите x, y се означава с (x, y) и тя означава, че елемента x е означен като първи, а y като втори. Така за двете двойки $(x_1, y_1), (x_2, y_2)$ ще считаме, че са равни(съвпадат) точно тогава, когато $x_1 = x_2$ и $y_1 = y_2$.

Аналогично, за произволни елементи x_1, \dots, x_n се определя наредена n-торка на елементите x_1, \dots, x_n , която се означава с (x_1, \dots, x_n) .

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на декартовото произведение на множествата A и B (пишем $x \in A \times B$) $\Longleftrightarrow x$ е наредена двойка и x = (a, b) и $a \in A$ и $b \in B$.

С други думи, $A \times B = \{x | x \text{ е наредена двойка и } x = (a, b) \text{ и } a \in A \text{ и } b \in B\}$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент х принадлежи на **декартовото произведение** на множествата A_1, \ldots, A_n (пишем $x \in A_1 \times \cdots \times A_n$) \iff х е наредена n-торка и $x = (a_1, \ldots, a_n)$ и $a_1 \in A_1$ и \ldots и $a_n \in A_n$.

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на декартовото произведение на множествата A и B (пишем $x \in A \times B$) $\Longleftrightarrow x$ е наредена двойка и x = (a, b) и $a \in A$ и $b \in B$.

С други думи,

 $A \times B = \{x | x \text{ е наредена двойка и } x = (a, b) \text{ и } a \in A \text{ и } b \in B\}$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент х принадлежи на декартовото произведение на множествата A_1, \ldots, A_n (пишем $x \in A_1 \times \cdots \times A_n$) \Longleftrightarrow х е наредена n-торка и $x = (a_1, \ldots, a_n)$ и $a_1 \in A_1$ и ... и $a_n \in A_n$.

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на декартовото произведение на множествата A и B (пишем $x \in A \times B$) $\Longleftrightarrow x$ е наредена двойка и x = (a, b) и $a \in A$ и $b \in B$.

С други думи,

 $A \times B = \{x | x \text{ е наредена двойка и } x = (a, b) \text{ и } a \in A \text{ и } b \in B\}.$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент х принадлежи на **декартовото произведение** на множествата A_1, \ldots, A_n (пишем $x \in A_1 \times \cdots \times A_n$) \iff x е наредена $x \in A_1 \times \cdots \times A_n$ и $x \in A_n \times \cdots \times A_n$ и $x \in A_n \times \cdots \times A_n$ и $x \in A_n \times \cdots \times A_n$ е наредена $x \in A_n \times \cdots \times A_n$ и $x \in A_n \times \cdots \times A_n$ и $x \in A_n \times \cdots \times A_n \times \cdots \times A_n$

Дефиниция

Нека A и B са множества. Казваме, че един елемент x принадлежи на декартовото произведение на множествата A и B (пишем $x \in A \times B$) $\Longleftrightarrow x$ е наредена двойка и x = (a, b) и $a \in A$ и $b \in B$.

С други думи,

 $A \times B = \{x | x \ e$ наредена двойка и x = (a, b) и $a \in A$ и $b \in B\}.$

Дефиниция

Нека A_1, \ldots, A_n са множества. Казваме, че един елемент х принадлежи на декартовото произведение на множествата A_1, \ldots, A_n (пишем $x \in A_1 \times \cdots \times A_n$) \iff х е наредена n-торка и $x = (a_1, \ldots, a_n)$ и $a_1 \in A_1$ и \ldots и $a_n \in A_n$.

Така, $A_1 \times \cdots \times A_n = \{x | x \text{ е наредена n-торка и } x = (a_1, \dots, a_n)$ и $a_1 \in A_1$, и . . . и $a_n \in A_n\}$.

Ако $A_1 = \cdots = A_n = A$, то означаваме $A_1 \times \cdots \times A_n = A^n$ и тази декартова степен наричаме n-та декартова степен на A

Така, $A_1 \times \cdots \times A_n = \{x | x \text{ е наредена n-торка и } x = (a_1, \dots, a_n) \text{ и } a_1 \in A_1, \text{ и } \dots \text{ и } a_n \in A_n \}.$

Ако $A_1 = \cdots = A_n = A$, то означаваме $A_1 \times \cdots \times A_n = A^n$ и тази декартова степен наричаме n-та декартова степен на A.

Множество от подмножества на дадено множество

Дефиниция

Нека A е дадено множество. С $\mathcal{P}(A)$, или още с 2^A , ще означаваме множеството от всички подмножества на A, т.е. $\mathcal{P}(A) = \{B|B \subset A\}$.

Нека A е дадено множество. С $\mathcal{P}(A)$, или още с 2^A , ще означаваме множеството от всички подмножества на A, т.е. $\mathcal{P}(A) = \{B | B \subseteq A\}$.

Разбиване на множество

Дефиниция

Нека A е непразно множество. Казваме, че фамилията от множества $\{A_1,\ldots,A_n\}$ е разбиване на множеството A, ако са изпълнени условията:

- (i) A_i са непразни подмножества на A за всички $i, 1 \leq i \leq n;$
- $(ii)\ A_i\cap A_j=\emptyset,\, 1\leq i,j\leq n,\, i\neq j;$
- (iii) $\bigcup_{i=1}^{n} A_i = A$.

Нека A е непразно множество. Казваме, че фамилията от множества $\{A_1,\dots,A_n\}$ е разбиване на множеството A, ако са изпълнени условията:

- (i) A_i са непразни подмножества на A за всички $i, 1 \leq i \leq n;$
- (ii) $A_i \cap A_j = \emptyset$, $1 \le i, j \le n$, $i \ne j$;
- (iii) $\bigcup_{i=1}^{n} A_i = A$.

Нека A е непразно множество. Казваме, че фамилията от множества $\{A_1,\ldots,A_n\}$ е разбиване на множеството A, ако са изпълнени условията:

- (i) A_i са непразни подмножества на A за всички $i, 1 \leq i \leq n;$
- $(ii)\ A_i\cap A_j=\emptyset,\, 1\leq i,j\leq n,\, i\neq j;$
- (iii) $\bigcup_{i=1}^{n} A_i = A$.

Нека A е непразно множество. Казваме, че фамилията от множества $\{A_1,\dots,A_n\}$ е разбиване на множеството A, ако са изпълнени условията:

- (i) A_i са непразни подмножества на A за всички $i, 1 \leq i \leq n;$
- $(ii)\ A_i\cap A_j=\emptyset,\, 1\leq i,j\leq n,\, i\neq j;$
- (iii) $\bigcup_{i=1}^{n} A_i = A$.

Нека A е непразно множество. Казваме, че фамилията от множества $\{A_1,\ldots,A_n\}$ е разбиване на множеството A, ако са изпълнени условията:

- (i) A_i са непразни подмножества на A за всички $i, 1 \leq i \leq n;$
- $(ii)\ A_i\cap A_j=\emptyset,\, 1\leq i,j\leq n,\, i\neq j;$
- (iii) $\bigcup_{i=1}^{n} A_i = A$.

Дефиниция

Нека A е непразно множество и I произволно множество.

Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subseteq A.$

- (i) A_i са непразни подмножества на A за всички $i \in I_i$
- (ii) $A_i \cap A_j = \emptyset$, $i, j \in I$, $i \neq j$;
- (iii) $\bigcup_{i\in I} A_i = A$.

Дефиниция

Нека A е непразно множество и I произволно множество. Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subset A$.

- (i) A_i са непразни подмножества на A за всички $i \in I_i$
- (ii) $A_i \cap A_j = \emptyset$, $i, j \in I$, $i \neq j$;
- (iii) $\bigcup_{i \in I} A_i = A$.

Дефиниция

Нека A е непразно множество и I произволно множество.

Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subseteq A.$

- (i) A_i са непразни подмножества на A за всички $i \in I_i$
- (ii) $A_i \cap A_j = \emptyset$, $i, j \in I$, $i \neq j$;
- (iii) $\bigcup_{i \in I} A_i = A$.

Дефиниция

Нека A е непразно множество и I произволно множество.

Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subseteq A.$

- (i) A_i са непразни подмножества на A за всички $i \in I;$
- (ii) $A_i \cap A_j = \emptyset$, $i, j \in I$, $i \neq j$;
- (iii) $\bigcup_{i \in I} A_i = A$.

Дефиниция

Нека A е непразно множество и I произволно множество.

Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subseteq A.$

- (i) A_i са непразни подмножества на A за всички $i \in I;$
- $(ii)\ A_i\cap A_j=\emptyset,\, i,j\in I,\, i\neq j;$
- (iii) $\bigcup_{i \in I} A_i = A$

Дефиниция

Нека A е непразно множество и I произволно множество.

Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subseteq A.$

- (i) A_i са непразни подмножества на A за всички $i \in I;$
- $(ii)\ A_i\cap A_j=\emptyset,\, i,j\in I,\, i\neq j;$
- (iii) $\bigcup_{i \in I} A_i = A$.

Дефиниция

Нека A е непразно множество и I произволно множество.

Нека освен това на всяко $i \in I$ сме съпоставили множество $A_i, A_i \subseteq A.$

- (i) A_i са непразни подмножества на A за всички $i \in I;$
- $(ii)\ A_i\cap A_j=\emptyset,\, i,j\in I,\, i\neq j;$
- (iii) $\bigcup_{i \in I} A_i = A$.

. Нека \mathcal{P} е свойство на естествените числа и са изпълнени

- а) $\mathcal{P}(0)$ е вярно:
- б) За всяко естествено $n(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно). Тогава за всяко естествено $n(\mathcal{P}(n))$ е вярно).

. Нека ${\mathcal P}$ е свойство на естествените числа и са изпълнени

- а) $\mathcal{P}(0)$ е вярно
- б) За всяко естествено $n(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно). Тогава за всяко естествено $n(\mathcal{P}(n))$ е вярно).

. Нека ${\mathcal P}$ е свойство на естествените числа и са изпълнени

- а) $\mathcal{P}(0)$ е вярно;
- б) За всяко естествено $n(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно). Тогава за всяко естествено $n(\mathcal{P}(n))$ е вярно).

. Нека ${\mathcal P}$ е свойство на естествените числа и са изпълнени

- а) $\mathcal{P}(0)$ е вярно;
- б) За всяко естествено $n(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно). Тогава за всяко естествено $n(\mathcal{P}(n))$ е вярно).

. Нека ${\mathcal P}$ е свойство на естествените числа и са изпълнени

- а) $\mathcal{P}(0)$ е вярно;
- б) За всяко естествено $n(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно). Тогава за всяко естествено $n(\mathcal{P}(n))$ е вярно).

. Нека \mathcal{P} е свойство на естествените числа и за фиксирано

естествено число k са изпълнени следните две свойства:

- a) $\mathcal{P}(k)$ е вярно;
- б) За всяко естествено $n, n \ge k(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ є вярно).

. Нека ${\cal P}$ е свойство на естествените числа и за фиксирано естествено число k са изпълнени следните две свойства:

- а) $\mathcal{P}(\mathbf{k})$ е вярно;
- б) За всяко естествено $n, n \ge k(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ є вярно).

- . Нека \mathcal{P} е свойство на естествените числа и за фиксирано естествено число k са изпълнени следните две свойства: а) $\mathcal{P}(k)$ е вярно;
- б) За всяко естествено $n,n \geq k(\mathcal{P}(n)$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ є вярно).

- . Нека ${\cal P}$ е свойство на естествените числа и за фиксирано естествено число k са изпълнени следните две свойства:
- а) $\mathcal{P}(k)$ е вярно;
- б) За всяко естествено $n, n \ge k(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно).

. Нека \mathcal{P} е свойство на естествените числа и за фиксирано

естествено число k са изпълнени следните две свойства:

- а) $\mathcal{P}(k)$ е вярно;
- б) За всяко естествено $n, n \ge k(\mathcal{P}(n))$ е вярно $\Longrightarrow \mathcal{P}(n+1)$ е вярно).

Вариант на математическата индукция е пълната

математическа индукция. Нека \mathcal{P} е свойство на естествените числа и са изпълнени следното свойства:

*) За всяко естествено $n(\mathcal{P}(k))$ е вярно за всяко $k < n \Longrightarrow \mathcal{P}(n)$ е вярно)

Вариант на математическата индукция е пълната математическа индукция. Нека \mathcal{P} е свойство на естествените числа и са изпълнени следното свойства:

*) За всяко естествено $n(\mathcal{P}(k))$ е вярно за всяко $k < n \Longrightarrow \mathcal{P}(n)$ е вярно).
Тогава за всяко естествено $n(\mathcal{P}(n))$ е вярно)

Вариант на математическата индукция е пълната математическа индукция. Нека \mathcal{P} е свойство на естествените числа и са изпълнени следното свойства:

*) За всяко естествено $n(\mathcal{P}(k)$ е вярно за всяко $k < n \Longrightarrow \mathcal{P}(n)$ е вярно).

Вариант на математическата индукция е пълната математическа индукция. Нека \mathcal{P} е свойство на естествените числа и са изпълнени следното свойства:

*) За всяко естествено $n(\mathcal{P}(k))$ е вярно за всяко $k < n \Longrightarrow \mathcal{P}(n)$ е вярно).