

ЭТИКЕТКА

УП3.487.364 ЭТ

Микросхема интегральная 564 ЛН1В Функциональное назначение –

Шесть логических элементов «НЕ» с блокировкой и запретом

Климатическое исполнение УХЛ Схема расположения выводов Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход ХЗ	9	Выход Ү4
2	Выход ҮЗ	10	Вход Х4
3	Вход Х1	11	Выход Ү5
4	Вход «блокировка»	12	Вход «запрет»
5	Выход Ү1	13	Вход Х5
6	Вход Х2	14	Выход Ү6
7	Выход Ү2	15	Вход Х6
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, 10 \; B$	U _{OL}	-	0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{ОН}	4,99 9,99		
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,U_{IL}=1,5~B,U_{IH}=3,5~B$ $U_{CC}=10~B,U_{IL}=3,0~B,U_{IH}=7,0~B$	U _{OL max}	-	0,95 2,9	
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OH min}	3,6 7,2	1 1	
5. Входной ток низкого уровня, мкА, при: $U_{\rm CC}$ = 15 В	I_{IL}	-	/-0,1/	
6. Входной ток высокого уровня, мкА, при: $U_{\rm CC}$ = 15 В	I_{IH}	-	0,1	
7. Выходной ток низкого уровня, мА, при: $U_{\rm CC}=5~{\rm B},U_{\rm O}=0,4~{\rm B}$ $U_{\rm CC}=10~{\rm B},U_{\rm O}=0,5~{\rm B}$	I_{OL}	2,3 5,3	-	
8. Выходной ток высокого уровня, мА, при: $U_{\rm CC} = 5~{\rm B}, U_{\rm O} = 2,5~{\rm B}$ $U_{\rm CC} = 10~{\rm B}, U_{\rm O} = 9,5~{\rm B}$	І _{ОН}	/-1,0/ /-0,5/	-	

Продолжение таблицы 1					
1	2	3	4		
9. Ток потребления, мкА, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	I_{CC}		0,6 1,0 2,0		
10. Выходной ток низкого уровня в состоянии «выключено», мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{OZL}	-	0,1		
11. Выходной ток высокого уровня в состоянии «выключено», мкА, при: U_{CC} = 15 В	I_{OZH}	-	/-0,1/		
12. Время задержки распространения при включении, н C , при: U_{CC} = 5 B, C_L = 50 п Φ U_{CC} = 10 B, C_L = 50 п Φ	$t_{ m PHL}$	-	300 180		
13. Время задержки распространения при выключении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PLH}	-	600 230		

	1.2	Содержание	драгоценных	металлов в	1000 шт.	микросхем:
--	-----	------------	-------------	------------	----------	------------

золото г, серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ C - не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ, при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 <u>Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛН1В	соответствуют техническим	условиям бК0.347.064 ТУ 9	и признаны	голными для эксплуатации.

Приняты по	(извещение, акт и др.)	от		(дата)	
Место для шт					Место для штампа ВП
Место для шт	гампа «Перепроверка	произі	ведена	ı	(дата)
Приняты по	(извещение, акт и др.)	от		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.