The ${\tt okicmd}$ and ${\tt okithm}$ Packages

Taihei Oki

January 30, 2020

1 The okicmd Package

1.1 Alphabets

Input	Output
1	ℓ
\ell	l
\epsilon	arepsilon
$\vert varepsilon$	ϵ
\phi	arphi
\varphi	ϕ

1.2 Parenthesis

Input	Output
\prn{\cdot}	(·)
\prn[\big]{\cdot}	(\cdot)
\prn[\Big]{\cdot}	(\cdot)
\prn[\bigg]{\cdot}	(\cdot)
\prn[\Bigg]{\cdot}	$\left(\cdot\right)$
\curl{\cdot}	$\{\cdot\}$
\sqbr{\cdot}	$[\cdot]$
\agbr{\cdot}	$\langle \cdot \rangle$
\dbbr{\cdot}	$\llbracket \cdot rbracket$
\abs{\cdot}	-
\norm{\cdot}	$\ \cdot\ $
\floor{\cdot}	$\lfloor \cdot floor$
$\c)$	$\lceil \cdot \rceil$

1.3 Logic

Input	Output
\bigland	\wedge
\biglor	V
a \defeq b	$a \coloneqq b$
b \eqdef a	b =: a
P \defiff Q	$P \stackrel{\mathrm{def}}{\Longleftrightarrow} Q$

1.4 Sets

Input	Output
\set{a \in S}	$\{a \in S\}$
$\left(S\right) = 1$	$\{a \in S \mid a^2 = 1\}$
\intset{n}	[n]
\setN	\mathbb{N}
\setZ	$\mathbb Z$
\setQ	$\mathbb Q$
\setR	\mathbb{R}
\setC	$\mathbb C$
\setH	\mathbb{H}
\setF	${\mathbb F}$
\setK	\mathbb{K}
\setZp	$\mathbb{Z}_{\geq 0}$
\setQp	$\mathbb{Q}_{\geq 0}$
\setRp	$\mathbb{R}_{\geq 0}$

1.5 Maps

Input	Output
\doms{X}{Y}	$X \to Y$
$\int \int (X)^{Y}$	$f\colon X\to Y$
\restr{f}{S}	$f _S$
\id_K	id_K^{\sim}
\dom f	$\operatorname{dom} f$
\cod f	$\operatorname{cod} f$
\supp f	$\operatorname{supp} f$

1.6 Lattices

Input	Output
x \meet y	$x \wedge y$
x \join y	$x \vee y$
\bigmeet	\wedge
\bigjoin	V

1.7 Algebra

Input	Output
\Hom(G)	$\operatorname{Hom}(G)$
∖End R	$\operatorname{End} R$
\Aut_k K	$\operatorname{Aut}_k K$
$\gcd a, b$	$\langle a,b \rangle$
$\gen{a, b}[ab = e]$	$\langle a, b \mid ab = e \rangle$
\abel{G}	$G_{ m ab}$
$\operatorname{Comm}\{G\}$	[G,G]
\sym_n	\mathfrak{S}_n
$\sim (\sigma)$	$\operatorname{sgn}(\sigma)$
\mathbf{R}	$R^{ imes}$
$M_{m,n}(R)$	$M_{m,n}(R)$
$\GL_n(R)$	$\mathrm{GL}_n(R)$
$\SL_n(R)$	$\mathrm{SL}_n(R)$
\0(n)	$\mathrm{O}(n)$
\SO(n)	SO(n)
$\U(n)$	$\mathrm{U}(n)$
\SU(n)	SU(n)

1.8 Number Theory

Input	Output
a \coprime b	$a \perp b$
a \divides b	$a \mid b$
a \ndivides b	$a \nmid b$

1.9 Linear Algebra

Input	Output
\tr A	$\operatorname{tr} A$
\rank A	$\operatorname{rank} A$
\trank A	$\operatorname{t-rank} A$
$\widetilde{a_1}, \cdot dots, a_n$	$\operatorname{diag}(a_1,\ldots,a_n)$
\blockdiag(A_1, \ldots, A_n)	block-diag (A_1,\ldots,A_n)
\vec(A)	$\operatorname{vec}(A)$
\Row(A)	Row(A)
\Col(A)	$\mathrm{Col}(A)$
\onevec	1
\trsp{A}	$A^{ op}$
\adjo{A}	A^*
\inpr{x}{y}	$\langle x,y angle$

1.10 Analysis

Input	Output
\e	e
\d	d
$\displaystyle \left\{ f\right\} \left\{ x\right\} $	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\left\{f\right\}\left\{x\right\}$	$\frac{\partial \widetilde{f}}{\partial x_{c}}$
$\displaystyle ddif\{f\}\{x\}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\dpdif\{f\}\{x\}$	$\frac{\partial f}{\partial x}$

1.11 Complex Analysis

Input	Output
\i	i
\Re z	$\operatorname{Re} z$
\Im z	$\operatorname{Im} z$
\Arg z	$\operatorname{Arg} z$
\Log z	$\operatorname{Log} z$
\Sin z	$\operatorname{Sin} z$
\Cos z	$\cos z$
\Tan z	$\operatorname{Tan} z$
$\Res_{z=0} f(z)$	$\operatorname{Res}_{z=0} f(z)$

1.12 Optimization

Input	Output
<pre>\argmin_{x \in S} f(x) \argmax_{x \in S} f(x) \Order(n) \order(n)</pre>	$ \begin{array}{c} \arg\min_{x \in S} f(x) \\ \arg\max_{x \in S} f(x) \\ O(n) \\ o(n) \end{array} $

2 The okithm Package

2.1 Theorems

If the option language = Japanese is given, okithm will translate all the environment titles (Theorem, Definition, etc.) into Japanese. You can disable theorems by setting the option notheorem.

- Input
- Input
- begin{theorem}[Awesome theorem]
 The square root \$\sqrt{2}\$ of two is irrational.
\end{theorem}

Output -

Theorem 2.1 (Awesome theorem). The square root $\sqrt{2}$ of two is irrational.

```
\begin{definition}[Coprime]
  Integers $a$ and $b$ are said to be \emph{coprime} if their greatest
  common divisor is one.
\end{definition}
Output —
Definition 2.2 (Coprime). Integers a and b are said to be coprime if their greatest common
divisor is one.
- Input -
\begin{lemma}
  If $a$ and $b$ are coprime, so are $a^2$ and $b^2$.
\end{lemma}
Output ——
Lemma 2.3. If a and b are coprime, so are a^2 and b^2.
- Input —
\begin{proposition}
  If \frac{2} = a/b, then a^2 = 2b^2.
\end{proposition}
Output —
Proposition 2.4. If \sqrt{2} = a/b, then a^2 = 2b^2.
- Input —
\begin{corollary}
  If \$\sqrt{2} = a/b with $a$ and $b$ being coprime, then $a$ is even.
\end{corollary}
Output —
Corollary 2.5. If \sqrt{2} = a/b with a and b being coprime, then a is even.
Input —
\begin{example}
  If a = 2 and b = 1, then a is even but \frac{2}{n} \le a/b.
\end{example}
Example 2.6. If a = 2 and b = 1, then a is even but \sqrt{2} \neq a/b.
                                                                                Input —
\begin{remark}
  Note that $a$ and $b$ must be integers.
\end{remark}
```

Input -

Output

Remark 2.7. Note that a and b must be integers.

```
Input
\begin{proof}
Suppose to the contrary that $\sqrt{2} = a/b$ with coprime $a$ and $b$.
Then both $a$ and $b$ are even, which contradicts the assumption.
\end{proof}
```

Output -

Proof. Suppose to the contrary that $\sqrt{2} = a/b$ with coprime a and b. Then both a and b are even, which contradicts the assumption.

2.2 Algorithms

You can disable algorithms by setting the option noalgorithm.

```
Input

\begin{algorithm}[htbp]
\begin{algorithmic}[1]
\Input{$n \in \setN$}
\Output{$n(n+1)/2$}
\State{$s \gets 0$}
\ForTo{$i = 1$}{$n$}
\State{$s \gets s + i$}
\EndFor
\State{\Return $s$}
\end{algorithmic}
\end{algorithm}
```

```
Output: n \in \mathbb{N}
Output: n(n+1)/2
1: s \leftarrow 0
2: for i = 1 to n do
3: s \leftarrow s + i
4: return s
```

2.3 Optimization Problems

You can change minimize, maximize and subject to into min, max and s.t., respectively, by setting the option optstyle=short.

```
Input

\Minimize[name={(P)}]{
   \sum_{\condit{x \in S}[x^2 = 1]} w(x) + \sum_{i=1}^n (p_i + q_i)
}{
   S \subseteq V, \\
   p_i \ge 0 & (i = 1, \ldots, n), \\
   q_i \ge 0 & (i = 1, \ldots, n)
}
```

- Output -

(P) minimize
$$\sum_{\substack{x \in S: x^2 = 1 \\ \text{subject to } S \subseteq V, \\ p_i \ge 0 \quad (i = 1, \dots, n), \\ q_i \ge 0 \quad (i = 1, \dots, n)}$$