I mage Denoising : Homewak 4

Realized by: Eya Ghamghi eya. ghamgai @ te locom-pois. fr

Exercice m 3.1: optimal convex combination of a blind_spot network and the noise image

We have images are contaminated with noise that :

(i) unbiased Ex (VIII) = 11 for all 11.

(11) Spatially independent. 1. Show that the TISE of F'(v) can be decomposed as: $E_{v,u} (||F'(v) - u||^2) = \lambda^2 E_{v,u} (||F(v) - u||^2) + (1 - \lambda) E_{v,u} (||u - v||^2)$ + 21 (1-1) Evin ((F(V) - 11, V-11)

We have F'(V) = > F(V) + (1-x) V The MSE of F'(v): $E_{V,u} \left(|| F'(v) - u ||^2 \right) = E_{V,u} \left(|| \lambda F(v) + (1-\lambda)v - u ||^2 \right)$ $= E_{u,v} \left(|| \lambda \left(F(v) - u \right) + (1-\lambda) \left(V - u \right) ||^2 \right)$ = Env () 1 F(v) - u 1 + (1-1) 11 v-u 12 + 21 (1-1) (F(v)-u, v-u)

Eury (IF(v)-ull) = 2 Eury (IF(v) - ull) + (1-1) Eury (IV-ull) + 21 (1-2) Eury (F(v) - u, v-u)

2 - Show that Evia ((F(v) - u, v-u >) =0

 $\exists v_{,u} \left(\langle F(v) - u, v - u \rangle \right) = \exists u \exists v \left(\langle F(v) - u, u - v \rangle | u \right)$ we have split the scalar product) = Eu Ev { [Jef (F(v)_J - u_J, u_J - v_J) | u]

portition

or Ex (< F(v) = Mj, Mj-Vg > Im)

= Evj, vje (< F(v) z - uz, luz - vz > lu)

Ende (End { < L(A) A - m2 m2 m2 m3 m3 - m3 (m)

= Evjc (F(v)j - uj, Evj { uj-vj | Vjc, u}

 $= E_{V_{J}^{c}} \{ \langle F(v)_{J} - u_{J}, u_{J} - E_{V_{J}} | u_{J} \rangle | u \} = 0$ This rusult because the moise in J is conditionally independent from the noise in J given it and unbiased. We found that : Ev (< F(v)_J - UJ, UJ - VJ> | U) = 0 Now, Eviu (F(v) - u, v-u) $= E_{u}\left(\frac{1}{Jef} E_{v}\left(\left\langle F(v)_{J} - u_{J}, u_{J} - v_{J}\right\rangle | u\right)\right) = 0$ 3. Deduce that the 1" minimizer the MSE is given by & $\lambda^* = \frac{E_u \{v\{v\{u\}\}\}}{E_{v,u} \{ ||F(v) - u||^2 \} + E_u\{v\{v\{u\}\}\}}$ $MSE = \lambda^{2} E_{V,u} \left\{ ||F(v) - u||^{2} \right\} + (1-\lambda)^{2} E_{V,u} \left\{ ||V - u||^{2} \right\} + 2\lambda (1-\lambda) \left\{ |E_{u,v}| \left\{ ||F(v) - u||^{2} \right\} \right\}$ = 18 Enu { 11 P(v) - u 112 } + (1-1)8 Enu } 11 v-u 112} Let's derive the bellow expression with suspect to 1: <u>∂ Evin (|| F^(v) - u || ²)</u> = 2/ Evin { || F(v) - u ||²} - 2 (1-1) Evin { || v - u ||²} =) $\lambda \left(E_{V_1} u \left\{ 11 F(V) - u \|^2 \right\} + E_{V_1} u \left\{ 11 V - u \|^2 \right\} \right) = E_{V_1} u \left\{ 11 V - u \|^2 \right\}$ or we have: Eyn (114-4112) = En (V{V/u}) (3.18) $=) \lambda = \underbrace{E_{u}(V\{v|u\})}$ Exia { 11 F(v) - a 112 } + Eu (W{V|u})

4- Supose now that the noise hab a variance \(\forall \) v|u| = d\(\tau^2 \)

for all u \(\epsilon \) R\(\frac{1}{2} \).

Use proposition 3.4 and express \(\lambda^* \) in terms of \(\tau^2 \) and the self. Supervised sink \(\tau \) Nx(\(\forall \)).

(32) * \(\text{Ev} \) (\(\lambda \) \(\text{F(v)} - u \rangle \right)^2 = \(\text{Ev}, u \) (\(\lambda \) \(\text{V} \) \(\text{V} \) \(\lambda \) \(\text{V} \) \(\text{

=) 1 = d v2
R Nas (4)

Exercice 3.2 : Bious - Variance de com position:

Given au estimator $\hat{u}(v)$ of u and v is a noisy version of u. Show that, for a given u, the HSE can be expressed as follow:

Ev ($||\hat{u}(v) - u||^2 |u| = ||\text{Ev} \{|\hat{u}(v)|u\} - u||^2 |u| \}$ Ev ($||\hat{u}(v) - \text{Ev} \{|\hat{u}(v)|u\}|^2 |u| \}$

we have :

 $\begin{aligned} \text{MSE} &= \text{E}_{V} \left(\| \hat{u}(v) - u \|^{2} \| u \right) \\ &= \text{E}_{V} \left(\| \hat{u}(v) - u \|^{2} \| u \right) \\ &= \text{E}_{V} \left(\| \hat{u}(v) - u \|^{2} + \| \hat{u}(v) - \text{E}_{V} \left\{ \hat{u}(v) \| u \right\} \|^{2} \right) \\ &= \text{E}_{V} \left(\| \text{E}_{V} \left\{ \hat{u}(v) \| u \right\} - u \|^{2} + \| \hat{u}(v) - \text{E}_{V} \left\{ \hat{u}(v) \| u \right\} \|^{2} \right) \\ &+ 2 \left\langle \text{E}_{V} \left\{ \hat{u}(v) \| u \right\} - u, \hat{u}(v) - \text{E}_{V} \left\{ \hat{u}(v) \| u \right\} \right\rangle |u| \end{aligned}$

= E_{V} ($||E_{V}(\hat{u}|u) - u||^{2}|u| + E_{V}(||u|(v)|u|) - E_{V}(\hat{u}(v)|u|)|^{2}|u|$ + $2E_{V}$ ($||E_{V}(\hat{u}(v)|u|) + u$) , $\hat{u}(v) - E_{V}(\hat{u}(v)|u|) > |u|$

* Ev (II Ev (û (v) In) - u 11° (u) = II Ev (û (v) In) - u 11° * The expectation is a limar function and the scalar product is bithiear:

$$E_{\mathbf{v}}(\langle E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) - \mathbf{u}, \hat{\mathbf{u}}(\mathbf{v}) - E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) \rangle |\mathbf{u})$$

$$= \langle E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) - \mathbf{u}, E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v}) - E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) |\mathbf{u}) \rangle$$

$$= \langle E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) - \mathbf{u}, E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) - E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) \rangle$$

$$= \langle E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) - \mathbf{u}, E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) - E_{\mathbf{v}}(\hat{\mathbf{u}}(\mathbf{v})|\mathbf{u}) \rangle$$

 $= \| E_{V} (\hat{u}(v) - u)^{2} \| u - u \|^{2} + E_{V} (\hat{u}(v) - E_{V} (\hat{u}(v) u))^{2} \|_{W}$