Лекция 11

Ilya Yaroshevskiy

16 января 2021 г.

Содержание

1	тепенные ряды
	1 Метод Абеля. Суммирование числовых рядов
	2 Экспонента(комплексной переменной)
2	еория меры
	1 Cuctembi mhoжectb

Степенные ряды 1

$$f(z) = \sum a_n (z - z_0)^n \quad |z - z_0| < R \tag{1}$$

$$f'(z) = \sum na_n(z - z_0)^{n-1} \quad |z - z_0| < R$$
 (2)

Следствие 1.0.1. $f = \sum a_n (z-z_0)^n, \ 0 < R < +\infty$ Тогда $f \in C^\infty(B(z_0,R))$ и все производные можно найти почленным дифференцированием

Теорема 1.1 (из ТФКП). f - комплексно дифференцируема в z_0 Тогда $f = \sum a_n (z-z_0)^n R =$ рассстояние от z_0 до ближайшей особой точки функции

Следствие 1.1.2. $f(x) \sum_{n=0}^{+\infty} a_n (x - x_0)^n, \ a_n, x_0, x \in \mathbb{R}$ Тогда:

- 1. $\sum \frac{a_n}{n+1} (x-x_0)^{n+1}$ тот же радиус сходимости
- 2. $\int_{x_0}^{x} f(t)dt = \sum_{n=1}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$ 3ameuanue. $\int_{x_0}^{x} f(t)dt = \sum_{n=1}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1} + \text{const}$

Доказательство.

- 1. Продифференцируем ряд $\sum \frac{a_n}{n+1}(x-x_0)^{n+1}$. По теореме он имеет тотже радиус сходимости что и ряд $\sum a_n(z-z_0)^n$
- 2. Мы можем вычислить производные левой и правой части, они совпадают, при $x=x_0$ ясно что константа нулевая \Rightarrow левая и правая части равны

Пример.

$$f(x) = \operatorname{arcctg} x$$

Продифференцируем:

$$f' = \frac{-1}{1+x^2} = -1 + x^2 - x^4 + \dots$$

1

Проинтегрируем:

$$\operatorname{arcctg} x = C - x + \frac{x^3}{3} - \frac{x^5}{5} + \dots$$

Находим C подставляя x=0 $\operatorname{arcctg} 0=\frac{\pi}{2},$ итого:

$$arcctg = \frac{\pi}{2} - x + \frac{x^3}{3} + \frac{x^5}{5}$$

1.1 Метод Абеля. Суммирование числовых рядов

Теорема 1.2 (Абеля). $\sum_{n=0}^{+\infty} C_n$ — сходящийся $C_n \in \mathbb{C}$ $f(x) = \sum_{n=0}^{\infty} C_n x^n$, $n \geq 1$, $n < 1 \leq 1$ Тогда $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} C_n$

Доказательство. Ряд $\sum C_n x^n$ равномерно сходится на [0,1] по признаку Абеля признак Абеля

 $\sum a_n(x)b_n(x) \ a_n \in \mathbb{C} \ b_n \in \mathbb{R}$

- 1. $\sum a_n(x)$ равномерно сходится на $\langle \alpha, \beta \rangle$
- 2. $\forall x\ b_n(x)$ монотонна по n $b_n(x)$ равномерно ограничена $\exists C_b:\ \forall n\ \forall x\quad |b_n(x)|\leq C_b$

Тогда ряд сходится

 $a_n(x) := C_n \quad b_n(x) := x^n \Rightarrow$ этот ряд сходится

 Φ ункции $C_n x^n$ — непрерывны на $[0,1] \Rightarrow$ (по т. Стокса-Зайдля) $\sum C_n x^n$ — непрервны на [0,1]

Следствие 1.2.3.
$$\sum a_n=A, \ \sum b_n=B, \ C_n=a_0b_n+a_1b_{n-1}+\cdots+a_nb_0$$
 Пусть $\sum C_n=C$ Тогда $C=A\cdot B$

Доказательство. $f(x) = \sum a_n x^n \quad g(x) = b_n x^n \quad h(x) = \sum c_n x^n \quad x \in [0,1]$ x < 1 Есть абсолютная сходимость $a_n, b_n \Rightarrow$ можно перемножать: f(x)g(x) = h(x), тогда при переход в пределе $x \to 1 - 0 \Rightarrow A \cdot B = C$

1.2 Экспонента(комплексной переменной)

Определение. $\sum \frac{z^n}{n!}$ $A=\infty$ $\exp(z):=\sum_{n=0}^{+\infty}\frac{z^n}{n!}$ Свойства:

- 1. $\exp(0) = 1$
- 2. $\exp'(z) = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{k=0}^{+\infty} \frac{z^k}{k!} = \exp(z)$
- 3. f_0 показательная функция, удовлетворяет f(x+y)=f(x)f(y) $\lim_{x\to 0}\frac{f_0(x)-1}{x}=1$ $f_0(x):=\exp(x)$ $\lim_{x\to 0}\frac{\exp(x)-1}{x}=\exp'(0)=1$
- 4. $\overline{\exp(z)} = \exp(\overline{z})$

Доказательство. $\overline{w_1 + w_2} = \overline{w_1} + \overline{w_2}$

Потому что коэффицент вещественный:

$$\sum_{n=0}^{N} \frac{z^n}{n!} = \sum_{n=0}^{N} \frac{(\overline{z})^n}{n!}$$
 (3)

Теорема 1.3. $\forall z, w \in \mathbb{C}$, тогда $\exp(z+w) = \exp(z) \exp(w)$

2 Теория меры

2.1 Системы множеств

Обозначение. A_i — множества, попарно не пересекаются \leftrightarrow A_i — дизьюнкты(dis) $\bigsqcup_i A_i$ — дизьюнктное объедиение

Определение. X — множество, 2^X — система всевозможных подмножеств в X $\mathcal{P} \subset 2^X$ — полукольцо елси:

- 1. $\emptyset \in \mathcal{P}$
- 2. $\forall A, B \in \mathcal{P} \quad A \cap B \in \mathcal{P}$
- 3. $\forall A,A'\in\mathcal{P}$ \exists конечное $B_1,\ldots,B_2\in\mathcal{P}$ дизьюнктны $A\setminus A'=\bigsqcup_{i=1}^n B_i$

 Π ример. 2^X — полукольцо

 $\Pi pumep. \ X = \mathbb{R}^2 \ \mathcal{P}$ — ограниченые подмножества(в том числе \emptyset)

$$[a,b) = \{x \in \mathbb{R}^m | \forall i \ x_i \in [a_i,b_i)\}$$

 $\Pi pumep.$ \mathcal{P}^m — множество ячеек в \mathbb{R}^m Утверждается, что \mathcal{P}^m — полукольцо

Доказательство. m=2

- 1. очев
- 2. $A\cap B=[a,a')\cap [b,b')=\{(x_1,x_2)\in \mathbb{R}^m\big| \forall i=1,2\ \max(a_i,b_i)\leq x_i<\min(a_i',b_i')\}$ т.е. пересечние очевидно тоже ячейка

3. $A \setminus A' = \bigsqcup_{i=1}^{n} B_i$

3

Заштрихованная ячейка — A', большая ячейка — A в \mathbb{R}^m 3^m-1 часть

Пример. $A = \{1, 2, 3, 4, 5, 6\}$

$$\forall i \ A_i = A$$

$$X = \bigoplus_{i=1}^{+\infty} A_i = \{(a_1, a_2, \dots) | \forall i \ a_i \in A_i\}$$

Обозначим
$$\sigma-\left(\begin{array}{cccc}i_1&i_2&\ldots&i_k\\\alpha_1&\alpha_2&\ldots&\alpha_k\end{array}\right)$$
: $k\in\mathbb{N}\quad\forall l:\ 1\leq l\leq k\quad\alpha_l\in A_{i_l}$

$$\mathcal{P} = \{X_{\sigma}\}_{\sigma}, X_{\sigma} = \{a \in X | a_{i_1} = \alpha_1, \dots, a_{i_k} = \alpha_k\}$$

Утверждение: \mathcal{P} — полукольцо

Доказательство.

1.
$$\emptyset = X$$
, $\sigma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

2.
$$\sigma, \sigma' \quad X_{\sigma} \cap X_{\sigma'} = X_{\sigma \cup \sigma'}$$

3.
$$X_{\sigma} \setminus X_{\sigma'}$$

Примечание. Свойства:

1. Как показывают примеры:

(a)
$$A \subset \mathcal{P} \not\Rightarrow A^C = X \setminus A \in \mathcal{P}$$

(b)
$$A, B \in \mathcal{P} \not\Rightarrow$$

•
$$A \cup B \in \mathcal{P}$$

•
$$A \setminus B \in \mathcal{P}$$

•
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

2. Модернизируем 3-е свойство полукольца: $A, A_1, \dots, A_n \in \mathcal{P}$ Тогда $A \setminus (A_1 \cup A_2 \cup \dots \cup A_n)$ — представима в виде дизъюнктного объединения элементов \mathcal{P}

Доказательство. Индукция по
 п. База n=1 — аксиома 3 полукольца Переход:

$$A \setminus (A_1 \cup \dots \cup A_n) = (A \setminus (A_1 \cup \dots \cup A_n)) \setminus A_n =$$

$$= (\bigsqcup_{i=1}^k B_i) \setminus A_n = \bigsqcup_{i=1}^k (B_i \setminus A_n) = \bigsqcup_{i=1}^k \bigsqcup_{j=1}^{L_i} D_{ij}$$

Определение. $\mathfrak{A}\subset 2^X$ — алгебра подмножеств в X:

1.
$$\forall A, B \in \mathfrak{A}$$
 $A \setminus B \in \mathcal{A}$

$$2. X \in A$$

 $Ceo\breve{u}cmea$

1.
$$\emptyset = X \setminus X \in \mathfrak{A}$$

2.
$$A \cap B = A \setminus (A \setminus B) \in \mathfrak{A}$$

3.
$$A^C = X \setminus A \in \mathfrak{A}$$

4.
$$A \cup B \in \mathfrak{A}$$
, потому что $(A \cup B)^C = A^C \cap B^C$

5.
$$A_1,\dots,A_n\in\mathfrak{A}\Rightarrow \bigcup_{i=1}^nA_i,\ \bigcap_{i=1}^nA_i\in\mathcal{A}$$
— по индукции

6. Всякая алгебра есть полукольцо, обратное не верно