Efficient Bayesian Hierarchical Small Area Population Estimation using INLA-SPDE: Integrating Multiple Data Sources and Spatial-Autocorrelation

Chibuzor Christopher Nnanatu^{1,3}, Ortis Yankey¹, Anaclet Désiré Dzossa², Thomas Abbott¹, Assane Gadiaga¹, Attila Lazar¹, Andrew J Tatem¹

¹WorldPop, School of Geography and Environmental Science, University of Southampton, SO17 1BJ, UK

²National Institute of Statistics (NIS)- Cameroon

³Nnamdi Azikiwe University, Awka-Nigeria

Corresponding Author's email: cc.nnanatu@soton.ac.uk

SUPPLEMENTARY MATERIAL

S1: Application to Cameroon Household listing Datasets

Below, we outline the various steps undertaken with respect to the data cleaning activities.

The outcome of interest in the household listing dataset was household size. For each household listing dataset, first we selected only the households with observed household size for recruiting the training dataset. This means that all other households (or rows) within a given EA which have no household size information or simply NA, where NA means 'Not Available' were dropped at this stage for the purpose of model training. The assumption here was that the households were simply not visited and that the missingness is completely at random.

Other forms of missingness were addressed using mean imputation (e.g., Little & Rubin, 2002). For example, 99 or 98 were commonly used as missing data codes within the data. According to the Cameroon NIS, these codes were used for inaccessible households which were not visited by the enumerators. Thus, the missing household sizes were imputed using mean imputation which assumes that missingness is either missing completely at random (MCAR) or simply missing at random (MAR). This simply entails calculating the average household size within each EA and then imputing the missing household size with the average household size of the EA. In the end, a total of 348 791 people were imputed across the entire dataset, i.e., 15% of the total surveyed population. These were implemented in R statistical programming software.

Given that the spatial scale or unit of our model is at the EA (or cluster) level, we summed the total number of people in each household for each cluster to form the cluster total as the response variable of our model.

To create uniform EA id that would be matching with those within the shapefiles across the various surveys, we concatenated the arrondisement (subdivision) ID and cluster ID of each cluster as unique ids. This makes it a lot straightforward to join the shapefiles of the datasets.

The shapefiles for the household listing were cleaned separately. First, the shapefiles were mapped and assessed for any potential boundary or information anomaly. Although there were no major

issues in the shapefiles with respect to their geometry and they were also not corrupted. A few points with invalid geometry mainly due to misalignment was deleted from the shapefiles.

The joining of the shapefiles was done just by using the ids of the clusters and arrondisements within the shapefiles and concatenating them to create a unique cluster level id that would match those of the household listing dataset.

The summarised household listing datasets were joined to their respective EA shapefiles. All the datasets were combined into one. For duplicated clusters, i.e. exactly same cluster surveyed across the 5 datasets, only the household size value for most recent data was used. For example, the most recent data was CMIS, followed by EESI 3, and ECAM5, hence where we have observations for CMIS and EESI 3, we maintained only CMIS since CMIS is more recent. Also, where we have observations for EESI 3 and ECAM5, we have maintained EESI 3 and dropped ECAM5.

Figure S1.1. Distribution of Building count (left) and Settlement types (right) across Cameroon. The building counts were obtained from the building footprint layer provided by the Digitize Africa project of Ecopia AI and Maxar Technologies ('year 2', 2020/2021; Ecopia.AI and Maxar Technologies, 2020). The settlement type classification was obtained from the Global Human Settlement (GHS) degree of urbanization layer (Schiavina, 2022), which was re-classified into four settlement types namely: cities, small urban, towns and villages.

Table S1. Descriptions of the geospatial covariates considered in the statistical models.

Covariate name	Source	Forma t	Resoluti on	Link
Distance to ACLED battles data				. ,, ,
2021	ACLED	Raster	100m	https://acleddata.com/

-	1		1	
Distance to ACLED conflict data 2021	ACLED	Raster	100m	https://acleddata.com/
Distance to ACLED explosions 2021	ACLED	Raster	100m	https://acleddata.com/
Distance to ACLED protests 2021	ACLED	Raster	100m	https://acleddata.com/
Distance to ACLED riots 2021	ACLED	Raster	100m	https://acleddata.com/
Distance to ACLED strategic				
developments 2021	ACLED	Raster	100m	https://acleddata.com/
Motorized friction surface 2020	MAP	Raster	100m	https://malariaatlas.org /research- project/accessibility-to- healthcare/
Malking frighting surface 2020	MAD	Doctor	100	https://malariaatlas.org /research- project/accessibility-to- healthcare/
Walking friction surface 2020	MAP	Raster	100m	
Distance to cities 2015	MAP	Raster	100m	https://malariaatlas.org /research- project/accessibility-to- cities/
Distance to places of education 2022	OSM	Raster	100m	https://www.geofabrik. de/data/download.htm l
Distance to Health providers 2022	OSM	Raster	100m	https://www.geofabrik. de/data/download.htm
Distance to marketplaces 2022	OSM	Raster	100m	https://www.geofabrik. de/data/download.htm l
Distance to places of worship				https://www.geofabrik. de/data/download.htm
2022	OSM	Raster	100m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.514		100	https://www.geofabrik. de/data/download.htm
Distance to local roads 2022	OSM	Raster	100m	<u> </u>
Distance to receive the 2002	OSNA	D	100	https://www.geofabrik. de/data/download.htm
Distance to main roads 2022	OSM	Raster	100m	https://www.goofshalls
Distance to Water bodies 2022	OSM	Raster	100m	https://www.geofabrik. de/data/download.htm
Distance to Water Bounes 2022	33.11	Raster	100111	https://www.geofabrik.
Distance to railway stations 2022	OSM	Raster	100m	de/data/download.htm

				hattan a . / /
				https://www.worldpop.
Distance to primary road				org/geodata/listing?id=
intersections 2016	WorldPop	Raster	100m	33
				https://www.worldpop.
Distance to cultivated areas				org/project/categories?
2015	WorldPop	Raster	100m	<u>id=14</u>
				https://www.worldpop.
				org/project/categories?
Distance to woody areas 2015	WorldPop	Raster	100m	<u>id=14</u>
				https://www.worldpop.
Distance to shrub area edges				org/project/categories?
2015 (130)	WorldPop	Raster	100m	id=14
				https://www.worldpop.
Distance to herbaceous areas				org/project/categories?
2015	WorldPop	Raster	100m	id=14
2013	vvoriar op	Nastei	100111	https://www.worldpop.
B				org/project/categories?
Distance to sparse vegetation	NA/ - ul alD - u	Da atau	100	
areas 2015	WorldPop	Raster	100m	<u>id=14</u>
				https://www.worldpop.
Distance to aquatic vegetation				org/project/categories?
areas 2015	WorldPop	Raster	100m	<u>id=14</u>
				https://www.worldpop.
				org/project/categories?
Distance to Urban area 2015	WorldPop	Raster	100m	<u>id=14</u>
				https://www.worldpop.
				org/project/categories?
Distance to bare areas 2015	WorldPop	Raster	100m	<u>id=14</u>
				https://cds.climate.cop
				ernicus.eu/cdsapp#!/da
				taset/reanalysis-era5-
Current average total annual				land-monthly-
precipitation 2020	Copernicus	Raster	100m	means?tab=form
				https://cds.climate.cop
				ernicus.eu/cdsapp#!/da
				taset/reanalysis-era5-
Current average annual				land-monthly-
Current average annual temperature 2020	Copernicus	Pactor	100m	means?tab=form
temperature 2020	Coperficus	Raster	100111	
				https://www.worldpop.
				org/project/categories?
Slope 2000	Worldpop	Raster	100m	<u>id=14</u>
				https://www.worldpop.
				org/project/categories?
Elevation 2000	WorldPop	Raster	100m	<u>id=15</u>
				https://www.worldpop.
				org/project/categories?
Distance to coastline 2000-2020	WorldPop	Raster	100m	<u>id=16</u>

				https://www.worldpop.
				org/project/categories?
Nighttime lights 2020 VIIRS	WorldPop	Raster	100m	id=17
	·			https://www.worldpop.
Distance to CAT1 protected				org/project/categories?
areas 2017	Worldpop	Raster	100m	id=18
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings area 2020	Ecopia	Raster	100m	1
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings length 2020	Ecopia	Raster	100m	<u>1</u>
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings mean area 2020	Ecopia	Raster	100m	1
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings mean length 2020	Ecopia	Raster	100m	1
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings total area 2020	Ecopia	Raster	100m	1
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings total length 2020	Ecopia	Raster	100m	1
				https://wopr.worldpop.
	WorldPop/			org/?CMR/Buildings/v1.
Buildings density 2020	Ecopia	Raster	100m	1
				https://bub.worldnon.org
Distance to built settlement				https://hub.worldpop.org /geodata/summary?id=1
areas worldpop 2020	WorldPop	Raster	100m	7090
a. 525 11011apop 2020	оа. ор			. 550

S2. Posterior Simulation and grid cell prediction

In this Section, we give the motivation for the posterior resampling and later provide the step-bystep approach utilised in the posterior simulation and uncertainty quantifications for both mean values and aggregated estimates. **Background**

Let $\pi(w,\theta|y)$ denote the (approximate) joint posterior distribution of the latent field and hyperparameters given the data, in Bayesian statistical inference, the main goal is usually to evaluate the desire summary statistics such as the mean or the standard deviation and quantify uncertainty in these estimates as 95% credible interval, say, of the posterior samples from $\pi(w,\theta|y)$. However, while it could be quite straightforward to obtain the estimates of uncertainty using relevant INLA functions, it is more complicated to obtain estimates of aggregated total populations in area/administrative units of interest because quantiles cannot be summed since the total of quantiles is not the same as the quintile of the totals.

To address this challenge, first, we obtain a sampling distribution of the mean totals generated from the joint posterior distribution $\pi(w, \theta|y)$. Once a large enough mean totals sample has been constructed, it becomes straightforward to obtain the desired statistics such as mean, standard deviation, and 95% credible intervals. The 95% credible interval is obtained as quantiles at 2.5% for lower bound and at 97.5% for the upper bound. The idea here is that drawing samples from the conditional distribution of a given parameter θ_1 , say, and then averaging over all the iterations will normally improve the estimation of the posterior marginal distribution $\pi(\theta_1|\theta_2,y)$, and may be viewed as synonymous to the Rao-Blackwellization theory since group averaged estimators cannot increase the variance (Robert & Roberts, 2021; Blackwell, 1947; Rao, 1945).

The five key steps for drawing samples (simulation) from the joint posterior density are listed below:

Posterior Simulation steps

- 1) Specify and fit the INLA model using the **inla()** function. Setting **config = TRUE** within the **control.compute** argument allows INLA to draw samples from the (approximate) joint posterior distribution $\pi(\widetilde{w}, \widetilde{\theta}|\widetilde{y})$ obtained, whenever required.
- 2) Using the (approximate) joint posterior distribution obtained in step 1, draw T samples of the latent field $\{\widetilde{\boldsymbol{w}}_t\}_{t=1}^T$ and hyperparameters $\{\widetilde{\boldsymbol{\theta}}_t\}_{t=1}^T$ via the **inla.posterior.sample()** function of the R-INLA package. This entails refitting the INLA model N times whilst allowing some variabilities within the random parameters. Note that the number of iterations T is variable, however, the larger the better. Note that computational cost would also increase with T.
- 3) For the G $100m \times 100m$ square grid cells, define a $G \times D$ projection matrix $\widetilde{A} = (\widetilde{A}_{g,d})$ to project the grid cell level values at the D mesh nodes.
- 4) For t in 1 to T, do the following:
 - (a) Select the *t*-th sample from the joint posterior sample $\{\widetilde{\boldsymbol{w}}_t, \widetilde{\boldsymbol{\theta}}_t\}$
 - (b) Using the scaled grid cell values of the covariates which were used in the model fitting stage at step 1, along with the intercept and the associated estimates of fixed effects coefficients , $\boldsymbol{\beta}=(\hat{\beta}_0,\hat{\beta}_1,\dots,\hat{\beta}_8)$, and the estimates of the random effects, predict the population density $\widehat{D}_{g,t}$ ($g=1,\dots,G$) for each pixel as outlined in the main manuscript. The random effects values are simulated from their respective posterior means, that is,

$$\gamma_{gt} \sim Normal(0, \hat{\sigma}_{\gamma})$$
 (S1)

where $\gamma \in \{f_m, f_p, f_{rp}, \epsilon\}$ and $\hat{\sigma}_{\gamma} > 0$ is the estimated variance for each random effect obtained in step 1.

(c) Using the predicted density and the observed building counts B_g within a given grid cell, obtain the predicted population counts as

$$\hat{y}_{g,t} = \widehat{D}_{g,t} \times B_g \tag{S2}$$

- (d) Repeat sub-steps (a) to (c) until a sample of the desired size is obtained.
- (e) Store the *G by T* matrices of the sampling distributions of the predicted population density and population count across the grid cells.

- 5) From the stored simulated posterior samples, generate the various summary statistics such as:
 - (i) **Mean grid cell level population density** is obtained as the average predicted population densities across the entire sample of size *T* for the *g*-th grid cell.

$$\overline{D}_g = \frac{1}{T} \sum_{t=1}^{T} \widehat{D}_{g,t} \tag{S3}$$

(ii) **Mean grid cell population count** is obtained as the average predicted population count across the entire sample of size *T* for the *g*-th grid cell.

$$\bar{y}_g = \frac{1}{T} \sum_{t=1}^T \hat{y}_{g,t} \tag{S4}$$

(iii) **Grid cell level uncertainties** in the estimates of the grid cell population density and population count are based on the 95% credible interval obtained by taking the 2.5% and 97.5% quantiles of the g-th grid cell samples $\hat{y}_{g,1}, \hat{y}_{g,2}, \dots, \hat{y}_{g,T}$ and $\hat{D}_{g,1}, \hat{D}_{g,2}, \dots, \hat{D}_{g,T}$ for population count and population density, respectively. Alternatively, the pixel level 95% upper and lower bounds estimate of uncertainties could be obtained as confidence intervals using for example, the lower bound can be calculated as

$$lower^{(g)} = \overline{w}_g - 2\sigma_g \tag{S5}$$

while the upper bound is given by

$$upper^{(g)} = \overline{w}_g + 2\sigma_g \tag{S6}$$

The grid cell level standard deviation, σ_g , is given by

$$\sigma_g = \sqrt{\frac{1}{T-1} \sum_{t=1}^{T} (\widehat{w}_{g,t} - \overline{w}_g)^2}$$
 (S7)

$$\widehat{w}_{g,t} \in \{\widehat{D}_{g,t}, \widehat{y}_{g,t}\} \text{ and } \overline{w}_g \in \left\{\overline{D}_g, \overline{y}_g\right\}.$$

The lower and upper bounds of the estimates provide an indication of the variability around the posterior estimates. A unique measure of $uncertainty^{(g)}$ may then be derived as the average deviation given by

$$uncertainty^{(g)} = \frac{upper^{(g)} - lower^{(g)}}{\overline{w}_g}$$
 (S8)

(iv) Obtain a distribution of the population totals at the various administrative levels: For each iteration, obtain the total population \hat{y}_t by summing the predicted count over all the grid cells, that is,

$$\hat{y}_t = \sum_{g=1}^G \hat{y}_{g,t} \tag{S9}$$

Thus, the administrative level summary statistics of interest will then be obtained from the distribution of the total counts for all the T iterations $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T$, so that the **mean total count** within a given administrative unit \bar{y}_{admin} is given by

$$\bar{y}_{admin} = \frac{1}{T} \sum_{t=1}^{T} \hat{y}^{(t)}$$
 (S10)

The **standard deviation** σ_{admin} is given by

$$\sigma_{admin} = \sqrt{\frac{1}{T-1} \sum_{i=1}^{T} (\hat{y}_t - \bar{y}_{admin})^2}$$
 (S11)

Similarly, the measures of uncertainty are then obtained as the 95% credible intervals using the **quantile()** function of base R set at 2.7% for the lower bound and at 97.5% for the upper bound. The **uncertainty** can also be given as confidence intervals using,

$$lower = \bar{y}_{admin} - 2\sigma_{admin} \tag{S12}$$

while the upper bound is given by

$$upper = \bar{y}_{admin} + 2\sigma_{admin} \tag{S13}$$

Note that for the lower administrative levels, subsets of samples belonging to the admin level of interest are first obtained from the overall samples below applying the various steps described above). In addition, a unique measure of *uncertainty* may be obtained for the lower administrative units as

$$uncertainty = \frac{upper - lower}{\bar{y}_{admin}}$$
 (S14)

Alternatively, coefficient of variation which is the ratio between the standard deviation and the mean could be used as a measure of prediction uncertainty. Like the usual posterior sampling using methods such as MCMC, one may wish to view the mixing and distribution of the posterior samples across the parameter space using trace plots and histograms. However, unlike in the MCMC where these graphs are used to check convergence of the Markov chains, within INLA the graphs are for descriptive statistics because the samples are drawn from the 'true' joint posterior density.

The final estimates produced from the posterior simulations can be obtained in various formats as data tables, maps or raster files

S3. Simulation Study.

Figure S3.1. Simulation study scheme showing the A) 11,008 10km-by-10km grid cells, B) grid cells cropped to the national boundary of Cameroon C) Mesh – discretization of the spatial domain with 534 triangular vertices (D) Simulated counts across the entire grid cells with 100% observations and low spatial variance ($\sigma_{\xi} = 0.01$).

Figure S3.2: Scatter plots of the log-transformed simulated population count versus the log-transformed predicted population counts at A) low spatial variance ($\sigma_{\zeta}^2=0.01$); B) medium spatial variance ($\sigma_{\zeta}^2=0.1$), and C) high spatial variance ($\sigma_{\zeta}^2=1$).Low spatial variance (high spatial dependence) produced the highest prediction accuracy