Løsningsforslag matematikk 3-termin våren 2017

Oppgave 1

Innsetting av koordinatene til punktene i likningen for linjen gir:

-3a=-7+b, 2a=8+b. Innsetting av b=2a-8 i den første likningen gir -3a=-7+2a-8 eller 5a=15, dvs. a=3, b=-2.

Oppgave 2

a) Ved å bruke regelen for å derivere en potensfunksjon finnes

$$y' = \frac{2}{3}x^{-2/3} - \frac{2}{3}x^{-5/3} = \frac{2}{3}x^{-5/3}(x-1).$$

b) Ved minimum spunktet er y' = 0 som gir x = 1. Innsetting i uttrykket for y gir y = 3. Det betyr at minimum spunktet er (1,3).

Oppgave 3

I tangeringspunktet har linjen og parabelen samme verdi både av y og y'. Den deriverte av funksjonen for linjen er y'=6, og den deriverte av funksjonen for parabelen er: y'=2x. I tangeringspunktet må da 2x=6, dvs. x=3. Innsetting i likningen for linjen gir $y=6\cdot 3+4=22$ i tangeringspunktet. Det betyr at linjen tangerer parabelen i punktet (3,22). Innsetting i parabellikningen gir 22=9+k, dvs. k=13.

Oppgave 4

- a) $I_1 = \int (x+2)e^{x^2+4x}dx$. Her innføres ny variabel $u=x^2+4x$ som gir du=2(x+2)dx. Dermed kan integralet skrives $I_1 = (1/2)\int e^u du = (1/2)e^u + C = \underline{(1/2)}e^{x^2+4x} + C$.
- b) $I_2 = \int_0^1 \frac{x^{1/2}}{1+x^{3/2}} dx$. Innfører ny variabel $u = x^{3/2}$, $du = (3/2)x^{1/2} dx$. Dermed tar integralet formen $I_2 = \frac{2}{3} \int_0^1 \frac{du}{1+u} = \frac{2}{3} \Big[\ln(1+u) \Big]_0^1 = \frac{2}{3} \ln 2$.

c) $I_3 = \int x^2 \ln x \, dx$. Vi bruker delvis integrasjon og får: $I_3 = \frac{1}{3} x^3 \ln x - \frac{1}{3} \int x^2 \, dx = \frac{1}{3} x^3 \ln x - \frac{1}{9} x^3 + C = \frac{1}{3} x^3 \left(\ln x - \frac{1}{3} \right) + C.$

Oppgave 5

a) Derivasjon gir $f'(x)=3x^2-1$, g'(x)=2x+1. Ny derivasjon gir f''(x)=6x, g''(x)=2. Siden f''(x)>0 for x>0 og f''(x)<0 for x<0, krummer grafen til f(x) oppover for x>0 og nedover for x<0. Grafen til g(x) krummer oppover for alle verdier av x. I ekstremalpunktene er den deriverte lik null. f'(x)=0 gir $x_1=-\frac{1}{\sqrt{3}}$, $x_2=\frac{1}{\sqrt{3}}$. Det betyr at i x_1 er det maksimalpunkt og i x_2 er det minimalpunkt. Betingelsen g'(x)=0 gir $x_3=-\frac{1}{2}$. Her er det et minimalpunkt. Funksjonsverdiene i disse punktene er $f(x_1)=3+\frac{1}{\sqrt{3}}-\frac{1}{3\sqrt{3}}\approx 3$, 4 og $f(x_2)=3-\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{3}}\approx 2$, 6 og $g(x_3)=\frac{11}{4}=2$,75. Dette betyr at f(x) har maksimalpunkt i $\left(-\frac{1}{\sqrt{3}},3+\frac{1}{\sqrt{3}}-\frac{1}{3\sqrt{3}}\right)$ og minimalpunkt i $\left(-\frac{1}{\sqrt{3}},3-\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{3}}\right)$, og g(x) har minimalpunkt i $\left(-\frac{1}{2},\frac{11}{4}\right)$.

Skjæringspunktene mellom kurvene er gitt ved $x^3-x+3=x^2+x+3$, dvs. $x^3-x^2-2x=0$ eller $x(x^2-x-2)=0$. En løsning er $x_4=0$. De to andre finnes av $x^2-x-2=0$ som gir $x_5=-1$, $x_6=2$.

Grafene til funksjonene f(x) og g(x) er plottet nedenfor.

b) Arealet mellom grafene til venstre for y-aksen er

$$A_1 = \int_{-1}^{0} \left(x^3 - x^2 - 2x \right) dx = \left[\frac{1}{4} x^4 - \frac{1}{3} x^3 - x^2 \right]_{-1}^{0} = -\frac{1}{4} - \frac{1}{3} + 1 = \frac{5}{\underline{12}}.$$

Arealet mellom grafene til høyre for y-aksen er

$$A_2 = \int_0^2 \left(x^2 + 2x - x^3\right) dx = \left[\frac{1}{3}x^3 + x^2 - \frac{1}{4}x^4\right]_0^2 = \frac{1}{3}8 + 4 - \frac{1}{4}16 = \frac{8}{3}.$$

Oppgave 6

Volumet av rotasjonslegemet er $V = \pi \int_{0}^{\pi/4} \tan^2 x \, dx = \pi \left[\tan x - x \right]_{0}^{\pi/4} = \pi \left(1 - \frac{\pi}{4} \right).$

Kommentar. Det var ikke krevd å regne ut integralet, men til orientering viser jeg hvordan det enkelt kan finnes.

Vi bruker at integrasjon er antiderivert og at den deriverte av $\tan x$ står i formelarket: $(\tan x)^{1} = 1 + \tan^{2} x$.

Integrasjon gir: $\tan x = \int (1 + \tan^2 x) dx = x + \int \tan^2 x dx$ som gir $\int \tan^2 x dx = \tan x - x$.

Oppgave 7

Linjen skjærer x-aksen i punktet (-3,0) og y-aksen i (0,4). Følgelig er vektoren [3,4] parallell med linjen og har lengde $\sqrt{3^2+4^2}=5$.

Oppgave 8

Vi skal finne vinkelen mellom vektorene $\vec{A} = \begin{bmatrix} -3, 1, 2 \end{bmatrix}$ og $\vec{B} = \begin{bmatrix} 1, 2, 3 \end{bmatrix}$. Fra formelen for skalarprodukt av to vektorer får vi $\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}|\cos\theta$ som gir

$$\cos\theta = \frac{\vec{A} \cdot \vec{B}}{\left|\vec{A}\right| \left|\vec{B}\right|} = \frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2} \sqrt{B_x^2 + B_y^2 + B_z^2}} = \frac{\left(-3\right) \cdot 1 + 1 \cdot 2 + 2 \cdot 3}{\sqrt{\left(-3\right)^2 + 1^2 + 2^2} \sqrt{1^2 + 2^2 + 3^2}} = \frac{5}{14}$$

som leder til $\theta = 69$ grader = 1,2 radianer.

Oppgave 9

Med de gitte vektorene er $t\vec{u} + 2\vec{v} = t[1,0,1] + 2[0,1,1] = [t,0,t] + [0,2,2] = [t,2,t+2]$.

- a) Dersom denne vektoren er vinkelrett på $\vec{w} = [1, 2, 3]$ er skalarproduktet av vektoren og \vec{w} lik null. Det gir likningen t+4+3(t+2)=0 eller 4t+10=0. Dvs. t=-5/2.
- b) Metode 1: Hvis vektorene $t\vec{u} + 2\vec{v} = [t, 2, t+2]$ og $\vec{w} = [1, 2, 3]$ er parallelle, kan vi sette dem lik hverandre. Det gir $\underline{t} = \underline{1}$.

Metode 2: Dersom denne vektoren er parallell med \vec{w} er vektorproduktet av vektoren og \vec{w}

lik null. Det gir vektorlikningen
$$\begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ t & 2 & t+2 \\ 1 & 2 & 3 \end{vmatrix} = 0$$
. Dvs. $\begin{vmatrix} 2 & t+2 \\ 2 & 3 \end{vmatrix} \vec{e}_x - \begin{vmatrix} t & t+2 \\ 1 & 3 \end{vmatrix} \vec{e}_y + \begin{vmatrix} t & 2 \\ 1 & 2 \end{vmatrix} \vec{e}_z = 0$

eller $2(1-t)\vec{e}_x - 2(t-1)\vec{e}_y + 2(t-1)\vec{e}_z = 0$. For at en vektor skal være lik null, må alle komponentene være lik null. Dette er her oppfylt for $\underline{t=1}$.