

Presentation of the team

Julian Valencia
Programmer

Marco Gomez
Programmer

Andrea SernaLiterature review

Mauricio ToroData preparation

Problem Statement

Streets of Medellín, Origin and Destination

Three paths that reduce both the risk of harassment and distance

Solution Algorithm

Explanation of the algorithm

Dijkstra's algorithm

We used python dictionaries to create the graph, and in our case, we have the key which is the unique origins (in polar cords), and the content which are all the adjacent nodes of the vertex. In that way, we can define a graph.

