第五章 半导体存储电路

主要内容:

- 各种半导体存储电路的结构,原理和使用方法。
- 基本存储单元
- 寄存器
- 随机存储器和只读存储器

5.5 存储器

主要要求:

- □ 了解存储器的分类及每类存储器的特点及工作原理。
- 掌握存储器的扩展方法。
- 掌握存储器设计组合逻辑电路的方法。

分类:

- 1、从存/取功能分:
 - ①只读存储器 (ROM) (Read-Only-Memory)
 - ②随机读/写 (RAM) (Random-Access-Memory)
- 2、从工艺上分:
 - ①双极型
 - ②MOS型

5.5.1 只读存储器ROM

只读存储器在工作时其存储内容是<mark>固定不变的,因此,只能读出,不能随时写入,所以称为只读存储器。</mark>

固定ROM

可编程ROM: PROM

可擦写可编程: EPROM, E2PROM, FLASH

只读存储器ROM (Read-Only Memory)

只读存储器ROM (Read-Only Memory)

例如1K×4、2K×8和64K×1的存储器, 其容量分别是 1024×4位、 2048×8位 和 65536×1位。

1. 二极管ROM电路结构

1. 二极管ROM电路结构

1. 二极管ROM电路结构

二极管与门

设V_{cc} = 5V 加到A,B的 V_{IH}=3V V_{IL}=0V 二极管导通时 V_D=0.7V

	$A \longrightarrow Y$
А —	Y
В —	

A	В	Y
OV	OV	
OV	3V	
3V	OV	
3V	3V	

规定3V以上为1

0.7V以下为0

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

二极管或门

设V_{CC} = 5V 加到A,B的 V_{IH}=3V V_{IL}=0V 一极等导通时

二极管导通时

 $V_D = 0.7V$

A	В	Y
OV	OV	OV
OV	3V	2. 3V
3V	OV	2. 3V
3V	3V	2. 3V

规定2.3V以上为1

0V以下为0

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

二极管ROM电路结构

2. 用MOS管构成的存储矩阵

存储矩阵的每个交叉 点是一个"存储单元", 存储单元中有器件存入 "1",无器件存入"0"

两个概念:

- 1. 存储矩阵的每个交叉点是一个"存储单元",存储单元 中有器件存入"1",无器件存入"0"
- 2. 存储器的容量: "字数 x 位数"

掩模ROM的特点:

出厂时信息已经固定,不能更改,适合大量生产,简单,便宜,存储的信息不容易丢失。

可编程ROM (PROM)

PROM在出厂时,存储的内容为全 0(或全 1),用户根据需要,可将某些单元改写为 1(或 0)。这种ROM采用熔丝或PN结击穿的方法编程,由于熔丝烧断或PN结击穿后不能再恢复, 因此PROM只能改写一次。

PROM总体结构与掩膜ROM一样,但存储单元不同。

PROM的结构图

熔丝型PROM的存储单元

- *熔丝由易熔合金制成。
- *出厂时,每个结点上都有熔丝。
- *编程时将不用的熔断!
- 是一次性编程,不能改写。

可擦除可编程ROM(EPROM)

EPROM中存储的数据可以擦除重写,因而用在经常需要改写ROM中内容的场合。

一、用紫外线擦除的EPROM (UVEPROM)

二、电可擦除的可编程ROM(E2PROM)

E²PROM 只需在高电压脉冲或在工作电压下就可以进行擦除,而不要借助紫外线照射,所以比EPROM更灵活方便。

5.5.2 随机存储器RAM

静态随机存储器 (SRAM)

一、SRAM的结构与工作原理

1024 4位 RAM的结构图

5.5.4 存储器容量的扩展

位扩展方式

适用于每片RAM, ROM字数够用而位数不够时

接法: 将各片的地址线、读写线、片选线并联即可。

例:用八片1024 x 1位→ 1024 x 8位的RAM

字扩展方式

适用于每片RAM, ROM位数够用而字数不够时

例:用四片256×8位→1024×8位 RAM

数据线: $I/O_0 \sim I/O_7$

地址线: $A_0 \sim A_7$

读/写信号: R/W'

片选信号: CS'

数据线: $I/O_0 \sim I/O_7$

地址线: $A_0 \sim A_7, A_8, A_9$

读/写信号:R/W'

用存储器实现组合逻辑函数

7.5 用存储器实现组合逻辑函数

简化画存储器内部结构

地	址	数		据	
A_1	A_0	D_3	D_2	D_1	D_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	0

用存储器实现组合逻辑函数

简化画存储器内部结构

地	址	数		据	
A_1	A_0	D_3	D_2	D_1	D_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	0

ROM的与阵列和或阵列图

用ROM实现逻辑函数一般按以下步骤进行:

- (1) 根据逻辑函数的输入、输出变量数,确定ROM容量, 选择合适的ROM。
- (2) 写出逻辑函数的最小项表达式, 画出ROM阵列图。
- (3) 根据阵列图对ROM进行编程。

二、举例

用ROM产生:

$$\begin{cases} Y_1 = A'BC + A'B'C \\ Y_2 = AB'CD' + BCD' + A'BCD & B \\ Y_3 = ABCD' + A'BC'D' & C \\ Y_4 = A'B'CD' + ABCD & D \end{cases}$$

$$\begin{cases} Y_1 = \sum m(2,3,6,7) \\ Y_2 = \sum m(6,7,10,14) \\ Y_3 = \sum m(4,14) \\ Y_4 = \sum m(2,15) \end{cases}$$

八段数据显示器

练习6:

- 1、某RAM芯片的存储容量为256×4位,该芯片的外部引脚有几根地址线?几根数据线? 8根地址线,4根数据线
- 2、若已知某RAM芯片引脚中有11条地址线,8条数据线,那么该芯片的存储容量是多少? 2¹¹×8位=2K×8位
- 3、将一个16384个存储单元的存储电路设计成8位的RAM,试问该有几根地址线? 几根数据线? 8根数据线, 16384/8=2048=2¹¹, 所以有11根地址线。
- 4、用RAM2114芯片(容量为1K×4位)组成4K×8位的存储器,需要多少片这样的芯片?需要8片。