Prepared by Asif Bhat

Data Visualization With Plotly (Part - 1)

```
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.offline as po
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import matplotlib.pyplot as plt
import dash
import plotly.express as px
import random
import plotly.figure_factory as ff
```

Loading Datasets

In [2]: pokemon = pd.read_csv("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/pokemon_updated.csv")
pokemon.head(10)

Out[2]:

	#	Name	Type 1	Type 2	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary	Total
0	1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False	318
1	2	lvysaur	Grass	Poison	60	62	63	80	80	60	1	False	405
2	3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False	525
3	3	VenusaurMega Venusaur	Grass	Poison	80	100	123	122	120	80	1	False	625
4	4	Charmander	Fire	NaN	39	52	43	60	50	65	1	False	309
5	5	Charmeleon	Fire	NaN	58	64	58	80	65	80	1	False	405
6	6	Charizard	Fire	Flying	78	84	78	109	85	100	1	False	534
7	6	CharizardMega Charizard X	Fire	Dragon	78	130	111	130	85	100	1	False	634
8	6	CharizardMega Charizard Y	Fire	Flying	78	104	78	159	115	100	1	False	634
9	7	Squirtle	Water	NaN	44	48	65	50	64	43	1	False	314

In [3]: | stdperf = pd.read_csv("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/studentp.csv")
stdperf.head(10)

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
5	female	group B	associate's degree	standard	none	71	83	78
6	female	group B	some college	standard	completed	88	95	92
7	male	group B	some college	free/reduced	none	40	43	39
8	male	group D	high school	free/reduced	completed	64	64	67
9	female	group B	high school	free/reduced	none	38	60	50

Out[4]:

	Country	Confirmed	Recovered	Deaths
Date				
2020-01-22	Afghanistan	0	0	0
2020-01-22	Albania	0	0	0
2020-01-22	Algeria	0	0	0
2020-01-22	Andorra	0	0	0
2020-01-22	Angola	0	0	0
2020-01-22	Antigua and Barbuda	0	0	0
2020-01-22	Argentina	0	0	0
2020-01-22	Armenia	0	0	0
2020-01-22	Australia	0	0	0
2020-01-22	Austria	0	0	0

In [5]: spotify = pd.read_csv("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/spotify.csv" , index_colspotify.head(10)

Out[5]:

Date					
2017-01-06	12287078	NaN	NaN	NaN	NaN
2017-01-07	13190270	NaN	NaN	NaN	NaN
2017-01-08	13099919	NaN	NaN	NaN	NaN
2017-01-09	14506351	NaN	NaN	NaN	NaN
2017-01-10	14275628	NaN	NaN	NaN	NaN
2017-01-11	14372699	NaN	NaN	NaN	NaN
2017-01-12	14148108	NaN	NaN	NaN	NaN
2017-01-13	14536236	275178.0	NaN	NaN	NaN
2017-01-14	14173311	1144886.0	NaN	NaN	NaN
2017-01-15	12889849	1288198.0	NaN	NaN	NaN

Shape of You Despacito Something Just Like This HUMBLE. Unforgettable

In [6]: housing = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/housing.csv')
housing.tail()

Out[6]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_pr
20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	78100.0	
20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	77100.0	
20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	92300.0	
20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	84700.0	
20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	89400.0	

In [7]: insurance = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/insurance.csv')
insurance.head(10)

Out[7]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
6	46	female	33.440	1	no	southeast	8240.58960
7	37	female	27.740	3	no	northwest	7281.50560
8	37	male	29.830	2	no	northeast	6406.41070
9	60	female	25.840	0	no	northwest	28923.13692

In [8]: employment = pd.read_excel("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/unemployment.xlsx")
employment.head(10)

Out[8]:

	Age	Gender	Period	Unemployed
0	16 to 19 years	Men	2005-01-01	91000
1	20 to 24 years	Men	2005-01-01	175000
2	25 to 34 years	Men	2005-01-01	194000
3	35 to 44 years	Men	2005-01-01	201000
4	45 to 54 years	Men	2005-01-01	207000
5	55 to 64 years	Men	2005-01-01	101000
6	65 years and over	Men	2005-01-01	33000
7	16 to 19 years	Women	2005-01-01	38000
8	20 to 24 years	Women	2005-01-01	90000
9	25 to 34 years	Women	2005-01-01	142000

In [9]: helpdesk = pd.read_csv("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/helpdesk.csv")
helpdesk.head(10)

Out[9]:

	ticket	requestor	RequestorSeniority	ITOwner	FiledAgainst	TicketType	Severity	Priority	daysOpen	Satisfaction
0	1	1929	1 - Junior	50	Systems	Issue	2 - Normal	0 - Unassigned	3	1 - Unsatisfied
1	2	1587	2 - Regular	15	Software	Request	1 - Minor	1 - Low	5	1 - Unsatisfied
2	3	925	2 - Regular	15	Access/Login	Request	2 - Normal	0 - Unassigned	0	0 - Unknown
3	4	413	4 - Management	22	Systems	Request	2 - Normal	0 - Unassigned	20	0 - Unknown
4	5	318	1 - Junior	22	Access/Login	Request	2 - Normal	1 - Low	1	1 - Unsatisfied
5	6	858	4 - Management	38	Access/Login	Request	2 - Normal	3 - High	0	0 - Unknown
6	7	1978	3 - Senior	10	Systems	Request	2 - Normal	3 - High	9	0 - Unknown
7	8	1209	4 - Management	1	Software	Request	2 - Normal	0 - Unassigned	15	0 - Unknown
8	9	887	2 - Regular	14	Software	Request	2 - Normal	2 - Medium	6	1 - Unsatisfied
9	10	1780	3 - Senior	46	Access/Login	Request	2 - Normal	1 - Low	1	1 - Unsatisfied

In [10]: fish= pd.read_csv("Fish.csv")
fish.head(10)

Out[10]:

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340
5	Bream	450.0	26.8	29.7	34.7	13.6024	4.9274
6	Bream	500.0	26.8	29.7	34.5	14.1795	5.2785
7	Bream	390.0	27.6	30.0	35.0	12.6700	4.6900
8	Bream	450.0	27.6	30.0	35.1	14.0049	4.8438
9	Bream	500.0	28.5	30.7	36.2	14.2266	4.9594

Out[11]:

	id	diet	pulse	time	kind
0	1	low fat	85	1 min	rest
1	1	low fat	85	15 min	rest
2	1	low fat	88	30 min	rest
3	2	low fat	90	1 min	rest
4	2	low fat	92	15 min	rest
5	2	low fat	93	30 min	rest
6	3	low fat	97	1 min	rest
7	3	low fat	97	15 min	rest
8	3	low fat	94	30 min	rest
9	4	low fat	80	1 min	rest

Out[12]: suicides/100k HDI for gdp_per_capita countrygdp_for_year age suicides_no population generation country year sex year pop year (\$) (\$) 15-24 2,156,624,900 Albania 1987 21 312900 6.71 Albania1987 796 0 male NaN Generation X years 35-54 796 Albania 1987 16 308000 5.19 Albania1987 2,156,624,900 Silent male NaN years 15-24 1987 14 Albania1987 Albania 289700 4.83 2,156,624,900 796 2 female NaN Generation X years G.I. 796 Albania 1987 1 21800 4.59 Albania1987 2,156,624,900 male 75+ years NaN Generation 25-34 796 9 274300 Albania 1987 3.28 Albania1987 2,156,624,900 male NaN Boomers years G.I. 75+ years 796 Albania 1987 1 35600 2.81 Albania1987 2,156,624,900 female NaN Generation 35-54 6 796 Albania 1987 278800 2.15 Albania1987 2,156,624,900 Silent female NaN years 25-34 796 Albania 1987 257200 1.56 Albania1987 2,156,624,900 female NaN Boomers years 55-74 G.I. 1987 1 137500 0.73 Albania1987 2,156,624,900 796 8 Albania male NaN years Generation Albania 1987 female 5-14 years 0 311000 0.00 Albania1987 NaN 2,156,624,900 796 Generation X In [13]: iris = pd.read_csv("iris.csv") iris.head() Out[13]: Petal Length (cm) ld Sepal Length (cm) Sepal Width (cm) Petal Width (cm) **Species** 0 1 Iris-setosa 1.4 0.2 2 4.9 1.4 3.0 0.2 Iris-setosa 1 4.7 3.2 1.3 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5 5.0 3.6 1.4 0.2 Iris-setosa canada = pd.read_csv("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/canada.csv") In [14]: canada.head() Out[14]: Coverage OdName AREA AreaName REG RegName DEV DevName 1980 2004 2005 2006 2007 2008 2009 2010 201 Southern Developing Foreigners Afghanistan 935 5501 902 2978 3436 3009 2652 2111 1746 1758 220 0 Immigrants 16 Asia Asia regions Developed Southern 901 Albania 908 925 1450 1223 856 702 560 716 561 1 Immigrants Foreigners Europe Europe regions Northern Developing 903 912 902 3616 3626 4807 3623 4005 5393 4752 432 2 Immigrants Foreigners Algeria Africa Africa regions American Developing 909 957 Polynesia 902 0 0 0 0 0 0 Immigrants Foreigners Oceania Samoa regions Southern Developed Andorra 908 925 901 0 0 0 0 0 Immigrants Foreigners Europe 1 1 Europe regions 5 rows × 43 columns canada.columns In [15]: Out[15]: Index(['Type', 'Coverage', 'OdName', 'AREA', 'AreaName', 'REG', 'RegName', 'DEV', 'DevName', '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1998', '1999' '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013'], dtype='object') canada.drop(columns=['AREA' , 'DEV', 'DevName' , 'REG', 'Type', 'Coverage' , 'AreaName', 'RegName'], inplace=True) In [16]: canada.head() Out[16]: OdName 1980 1981 1982 1983 1984 1985 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 1986 0 Afghanistan 340 496 741 828 ... 2978 3436 3009 2652 2111 1746 1758 2203 2635 2004 16 39 39 47 71 2 ... 1450 1 Albania 1 0 0 0 0 0 1 1223 856 702 560 716 561 539 620 603 242 ... 3616 2 80 67 71 69 63 44 69 132 3626 4807 3623 4005 5393 4752 4325 3774 4331 Algeria American Samoa 0 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 2 Andorra 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 1

53

suicide = pd.read_csv("C:/Users/DELL/Documents/GitHub/Public/Data-Visualization/Plotly/Datasets/suicide.csv")

In [12]:

suicide.head(10)

5 rows × 35 columns

canada.set_index(canada.Country,inplace=True) canada.head() Out[17]: Country 1980 1981 1982 1983 1984 1985 1986 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Country Afghanistan Afghanistan ... 2978 2 ... 1450 1223 **Albania** Albania Algeria Algeria **American** American Samoa Samoa 0 ... **Andorra** Andorra 5 rows × 35 columns In [18]: canada2 = canada.copy() canada2.head() Out[18]: 1981 1982 1983 1984 1985 1986 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Country 1980 Country Afghanistan Afghanistan **Albania** Albania 2 ... Algeria Algeria American American Samoa Samoa Andorra Andorra 5 rows × 35 columns

canada.rename(columns={'OdName':'Country'} , inplace=True)

In [19]: canada.index.name=None

canada.head()

Out[19]:

In [17]:

	Country	1980	1981	1982	1983	1984	1985	1986	1987	1988	 2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Afghanistan	Afghanistan	16	39	39	47	71	340	496	741	828	 2978	3436	3009	2652	2111	1746	1758	2203	2635	2004
Albania	Albania	1	0	0	0	0	0	1	2	2	 1450	1223	856	702	560	716	561	539	620	603
Algeria	Algeria	80	67	71	69	63	44	69	132	242	 3616	3626	4807	3623	4005	5393	4752	4325	3774	4331
American Samoa	American Samoa	0	1	0	0	0	0	0	1	0	 0	0	1	0	0	0	0	0	0	0
Andorra	Andorra	0	0	0	0	0	0	2	0	0	 0	0	1	1	0	0	0	0	1	1

5 rows × 35 columns

del canada['Country'] In [20]: canada.head()

Out[20]:

. <u> </u>	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	 2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Afghanistan	16	39	39	47	71	340	496	741	828	1076	 2978	3436	3009	2652	2111	1746	1758	2203	2635	2004
Albania	1	0	0	0	0	0	1	2	2	3	 1450	1223	856	702	560	716	561	539	620	603
Algeria	80	67	71	69	63	44	69	132	242	434	 3616	3626	4807	3623	4005	5393	4752	4325	3774	4331
American Samoa	0	1	0	0	0	0	0	1	0	1	 0	0	1	0	0	0	0	0	0	0
Andorra	0	0	0	0	0	0	2	0	0	0	 0	0	1	1	0	0	0	0	1	1

5 rows × 34 columns

In [21]: canada = canada.transpose()

In [22]: canada.head()

Out[22]:

03 1191
17 1829
74 2162
24 3404
42 7583
1 1 1

5 rows × 197 columns

Scatter Plot

```
In [23]:
          #Simple Scatter Plot
          random_x = np.random.randint(1,100,50)
          random_y = np.random.randint(1,100,50)
          data = [go.Scatter(
                              x = random_x
                              y = random_y,
                              mode = 'markers'
                 ]
          layout = go.Layout(
                              xaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                        ),
                             yaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                       ),
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```



```
In [24]:
          # Changing Marker size , shape & color using Marker parameter
           x_val = np.random.randint(1,100,50)
           y_val = np.random.randint(1,100,50)
           data = [go.Scatter(
                                x = x_val,
                                y = y_val,
                                mode = 'markers',
                                marker = dict(
                                                 size = 10,
                                                color = '#91bd3a', #color of marker
symbol = 'circle', # Shape of scatter plot
                                                 line = dict(width = 1) #width of boundary
                                              )
                               )
                  ]
           layout = go.Layout(
                                xaxis=dict(
                                            showgrid=False, # Hide Gridlines
                                            showline=False, # Hide X-Axis
                                           ),
                               yaxis=dict(
                                            showgrid=False, # Hide Gridlines
                                            showline=False, # Hide X-Axis
                                          ),
                                )
           fig = go.Figure(data=data,layout=layout)
           iplot(fig)
```



```
In [25]:
          # Defining Labels (X-Axis & Y-Axis label , Graph tile)
          x_{val} = np.random.randint(1,100,50)
          y_val = np.random.randint(1,100,50)
          data = [go.Scatter(
                              x = x_val,
                              y = y_val,
                              mode = 'markers',
                              marker = dict(
                                             size = 10,
                                             color = '#4ED700',
                                             symbol = 'circle',
                                             line = dict(width = 1,color = '#0E8700')
                            )
          layout = go.Layout(
                              title = '$Scatter Plot$', # Title
                              xaxis = dict(title = '$X-Axis$',showgrid=False,showline=False), # x-axis Label
                              yaxis = dict(title = '$Y-Axis$',showgrid=False,showline=False), # y-axis label
          fig = go.Figure(data=data, layout=layout)
          iplot(fig)
```

ScatterPlot


```
x_values = np.linspace(0, 100, 100) # 100 evenly spaced values
In [26]:
          y_values = np.random.randn(100) # 100 random values
          trace0 = go.Scatter(
                              x = x_values,
                              y = y_values,
                              mode = 'markers',
                              marker = dict(
                                             size = 7,
                                             color = '#F4D03F',
                                             symbol = 'circle',
                                             line = dict(width = 1,color = '#0E8700')
                              )
          trace1 = go.Scatter(
                              x = x_values,
                              y = y_values-5,
                              mode = 'markers',
                              marker = dict(size = 7,
                                             color = '#A9DFBF',
                                             symbol = 'circle',
                                            line = dict(width = 1,color = '#0E8700')
                              )
          data = [trace0, trace1]
          layout = go.Layout(
                              xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                         ),
                             yaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                        ),
                              )
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```



```
Out[27]:
                            bmi children smoker
                                                   region
                                                              charges
              age
                     sex
                                                 southwest 16884.92400
                  female 27.900
           0
               19
                                      0
                                             yes
               18
                    male 33.770
                                                 southeast
                                                            1725.55230
                    male 33.000
           2
               28
                                      3
                                                 southeast
                                                           4449.46200
                                             no
                    male 22.705
               33
                                      0
                                                 northwest 21984.47061
           3
                                                           3866.85520
               32
                    male 28.880
                                      0
                                                 northwest
                                             no
               31
                                                           3756.62160
                  female 25.740
                                                 southeast
                                                           8240.58960
               46 female 33.440
                                                 southeast
                                             no
                  female 27.740
                                                           7281.50560
               37
                                      3
                                                 northwest
               37
                    male 29.830
                                      2
                                                           6406.41070
                                                  northeast
                  female 25.840
                                      0
                                                 northwest 28923.13692
               60
In [28]:
           data = [go.Scatter(
                                  x = insurance.bmi,
                                  y = insurance.charges,
                                  mode = 'markers',
                                  marker = dict(size = 7,
                                                  color = '#4ED700',
                                                  symbol = 'circle',
                                                  line = dict(width = 1,color = '#0E8700')
                                )
                   ]
           layout = go.Layout(
                                 title = '$Insurance$', # Chart Title
                                 xaxis = dict(title = '$BMI$',showgrid=False,showline=False), # x-axis Label
                                 yaxis = dict(title = '$Charges$',showgrid=False,showline=False), # y-axis Label
           fig = go.Figure(data=data, layout=layout)
```

Insurance

iplot(fig)

In [27]:

insurance.head(10)


```
In [29]: | data = [go.Scatter(
                               x = insurance.bmi,
                               y = insurance.charges,
                               mode = 'markers',
                               marker = dict(size = 7,
                                              color = '#4ED700',
                                              symbol = 'circle',
                                              line = dict(width = 1,color = '#0E8700')
                             )
                 ]
          layout = go.Layout(
                              title = '$Insurance$', # Title
                              xaxis = dict(title = '$BMI$',showgrid=False,showline=False), # x-axis label
                              yaxis = dict(title = '$Charges$',showgrid=False,showline=False), # y-axis Label
          fig = go.Figure(data=data, layout=layout)
          # Updating Traces
          fig.update_traces(
                            marker=dict(color="#e6e56c"),
          iplot(fig)
```

Insurance


```
In [30]:
          # trace0 will capture all smokers
          trace0 = go.Scatter(
                                x = insurance[insurance.smoker=='yes'].bmi,
                                y = insurance[insurance.smoker=='yes'].charges,
                                mode = 'markers',
                                name = 'Smoker',
                              marker = dict(size = 7, color = '#F39C12', symbol = 'circle', line = dict(width = 1))
          # trace1 will capture all non-smokers
          trace1 = go.Scatter(
                               x = insurance[insurance.smoker=='no'].bmi,
                               y = insurance[insurance.smoker=='no'].charges,
                               mode = 'markers',
                               name = 'Non-Smoker',
                               marker = dict(size = 7, color = '#8BC34A',symbol = 'circle',line = dict(width = 1))
          layout = go.Layout(
                              title = '$Scatter Plot$', # Title
                              xaxis = dict(title = '$BMI$',showgrid=False,showline=False), # x-axis Label
                              yaxis = dict(title = '$Charges$',showgrid=False,showline=False), # y-axis Label
          data = [trace0, trace1]
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```

Scatter Plot


```
In [31]:
         # trace0 will capture all smokers
          trace0 = go.Scatter(
                                x = insurance[insurance.smoker=='yes'].bmi,
                                y = insurance[insurance.smoker=='yes'].charges,
                                mode = 'markers',
                                name = 'Smoker',
                                marker = dict(size = 14, color = '#9ca4c4',symbol = 'circle',
                                               line = dict(width = 1,color = '#5D6D7E')
                              )
          # trace1 will capture all non-smokers
          trace1 = go.Scatter(
                               x = insurance[insurance.smoker=='no'].bmi,
                               y = insurance[insurance.smoker=='no'].charges,
                               mode = 'markers',
                               name = 'Non-Smoker',
                               marker = dict(size = 14, color = '#cbcbcb', symbol = 'circle',
                                             line = dict(width = 1,color = '#626567')
                              )
          #Layout Setting
          layout = go.Layout(
                              title=dict(text = "Insurance Data",x=0.5,y=0.95),
                              title_font_size=30,
                              title_font_color='#F1C40F',
                              xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=True, # Show X-Axis
                                          linecolor='black', # Color of X-axis
                                          tickfont_color='black', #Color of ticks
                                          showticklabels=True, #Show X Labels
                                          dtick=5,
                                          ticks='outside',
                                          tickcolor='black',
                             yaxis=dict(
                                          showgrid=False,
                                          showline=True,
                                          linecolor='black',
                                          tickfont_color='black',
                                          showticklabels=True,
                                          ticks='outside',
                                          tickcolor='black',
                             legend=dict(
                                           font_size=15,
                                           yanchor='bottom',
                                          xanchor='right',
                                          ),
                              paper_bgcolor='white',
                              plot_bgcolor='white',
                              hovermode='closest',
                              width=970,
                              height=800,
          data = [trace0, trace1]
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```



```
In [32]:
         # Display multiple Scatter plots in one figure using Subplots
          from plotly.subplots import make_subplots
          #Subplot initialization
          fig = make_subplots(
                               rows=1,
                               cols=2,
                               subplot_titles=("Subplot-1", "Subplot-2")
          # Subplot - 1 (Add graph object trace to a figure)
          fig.add_trace(go.Scatter
                              x = x_val,
                              y = y_val,
                              mode = 'markers',
                              marker = dict(size = 10, color = 'crimson', symbol = 'circle', line = dict(width = 1, color = '#0E8700')
                             ),
                        row=1, col=1
                        )
          # Add graph object trace to a figure (Subplot-2)
          fig.add_trace(go.Scatter
                              x = x_val,
                              y = y_val,
                              mode = 'markers',
                              marker = dict(size = 10, color = 'gold',symbol = 'circle',line = dict(width = 1))
                              ),
                        row=1, col=2
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```



```
In [33]:
         # Display multiple Scatter plots in one figure using Subplots
          from plotly.subplots import make_subplots
          #Subplot initialization
          fig = make_subplots(
                               rows=1,
                               cols=2,
                               subplot_titles=("Subplot-1", "Subplot-2")
          # Subplot - 1 (Add graph object trace to a figure)
          fig.add_trace(go.Scatter
                              x = x_val,
                              y = y_val,
                              mode = 'markers',
                              marker = dict(size = 10, color = '#4ED700', symbol = 'circle', line = dict(width = 1, color = '#0E8700')
                             ),
                        row=1, col=1
          # Add graph object trace to a figure
          fig.add_trace(go.Scatter
                              x = x_val,
                              y = y_val,
                              mode = 'markers',
                              marker = dict(size = 10, color = '#FFC107', symbol = 'circle', line = dict(width = 1))
                             ),
                        row=1, col=2
          #Update traces in Suplots
          fig.update_traces(
                            marker=dict(color="#5DADE2"),
                            col=1,
                            row = 1
          #Update traces in Suplots
          fig.update_traces(
                            marker=dict(color="#E67E22"),
                            col=2,
                            row = 1
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```


Scatter Plot using Plotly Express


```
In [57]: | fig = px.scatter(
                             insurance,
                             x=insurance.bmi,
                             y= insurance.charges,
                             color="smoker", # Show groups with different colors using "color" parameter
                             size=insurance.charges
          fig.update_layout(
                               xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                         ),
                              yaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                        ),
                              )
          fig.show()
```



```
In [46]: | fig = px.scatter(insurance,
                           x=insurance.bmi,
                           y= insurance.charges,
                           color="smoker", # Show groups with different colors using "color" parameter
                           size=insurance.charges,
                           color_discrete_map={"yes": "#FF5722","no": "#7CB342"} #Map colors to data values
          fig.update_layout(
                              xaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                        ),
                             yaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                       ),
                              )
          fig.show()
```


Insurance Data


```
In [54]: # Using facet_row and or facet_col arguments to create Sub plots
          fig = px.scatter(insurance,
                           x=insurance.bmi,
                           y=insurance.charges,
                           color=insurance.smoker,
                           facet_col=insurance.region, # Using facet_col argument to create Sub plots
                           facet_row=insurance.sex, # Using facet_row argument to create Sub plots
                           color_discrete_map={"yes": "#FF5722","no": "#7CB342"},
                           width=950,
                           height=800,
                           title="Insurance Data")
          fig.update_layout(
                              plot_bgcolor= "#dcedc1",
                              paper_bgcolor="#FFFDE7",
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```

Insurance Data

yes

```
In [55]: # Using facet_row and or facet_col arguments to create Sub plots
          fig = px.scatter(insurance,
                           x=insurance.bmi,
                           y=insurance.charges,
                           color=insurance.smoker,
                           facet_col=insurance.region,
                           facet_row=insurance.sex,
                           color_discrete_map={"yes": "#FF5722","no": "#7CB342"},
                           width=950,
                           height=800,
                           title="Insurance Data")
          fig.update_layout(
                              plot_bgcolor= "#dcedc1",
                              paper_bgcolor="#FFFDE7",
          # Updating Traces using "selector" argument
          fig.update_traces(
                            marker_color="#339900",
                            selector=dict(marker_color="#7CB342")
          # Updating Traces using "selector" argument
          fig.update_traces(
                            marker_color="#FF3333",
                            selector=dict(marker_color="#FF5722")
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
          #po.plot(fig)
```

Insurance Data

Line Plot

```
In [59]: #Simple Line Plot
          x_values = np.linspace(0, 100, 100) # 100 evenly spaced values
          y_values = np.random.randn(100) # 100 random values
          # create traces
          trace0 = go.Scatter(
                              x = x_values,
                              y = y_values,
                              mode = 'lines',
          layout = go.Layout(
                              xaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                        ),
                             yaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                       ),
                              )
          fig = go.Figure(data=trace0,layout=layout)
          iplot(fig)
```


In [350]:

canada.head()

Out[350]:

	Afghanistan	Albania	Algeria	American Samoa	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	 Uzbekistan	Vanuatu	Venezuela (Bolivarian Republic of)	Viet Nam
1980	16	1	80	0	0	1	0	368	0	702	 0	0	103	1191
1981	39	0	67	1	0	3	0	426	0	639	 0	0	117	1829
1982	39	0	71	0	0	6	0	626	0	484	 0	0	174	2162
1983	47	0	69	0	0	6	0	241	0	317	 0	0	124	3404
1984	71	0	63	0	0	4	42	237	0	317	 0	0	142	7583

5 rows × 197 columns

```
In [61]:
          # Plot Immigrants from China
          china = go.Scatter(
                              x = canada.index.values,
                              y = canada['China'],
                              mode = 'lines',
                              name = 'China'
          #Plot Immigrants from India
          india = go.Scatter(
                              x = canada.index.values,
                              y = canada['India'],
                              mode = 'lines',
                              name = 'India'
                             )
          #Plot Immigrants from Pakistan
          pakistan = go.Scatter(
                                   x = canada.index.values,
                                  y = canada['Pakistan'],
                                  mode = 'lines',
                                   name = 'Pakistan'
                               )
          # Layout setting
          layout = go.Layout(
                              title = '$Immigrants$', # Title
                              xaxis = dict(title = 'Year',showgrid=False,showline=False), # x-axis Label
                              yaxis = dict(title = 'Number of Immigrants', showgrid=False, showline=False), # y-axis Label
                            )
          data = [china, india,pakistan]
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```

Immigrants


```
In [63]:
          # Plot Immigrants from China
          china = go.Scatter(
                              x = canada.index.values,
                              y = canada['China'],
                              mode = 'lines',
                              name = 'China'
          # Plot Immigrants from India
          india = go.Scatter(
                              x = canada.index.values,
                              y = canada['India'],
                              mode = 'lines',
                              name = 'India'
                             )
          # Plot Immigrants from Pakistan
          pakistan = go.Scatter(
                                   x = canada.index.values,
                                  y = canada['Pakistan'],
                                  mode = 'lines',
                                   name = 'Pakistan'
                               )
          layout = go.Layout(
                              title = '$Immigrants$', # Title
                              xaxis = dict(title = 'Year',showgrid=False,showline=False), # x-axis Label
                              yaxis = dict(title = 'Number of Immigrants', showgrid=False, showline=False), # y-axis Label
                              paper_bgcolor= '#FFFDE7' # Paper background color
                           )
          data = [china, india,pakistan]
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```

Immigrants


```
In [64]:
          # Plot Immigrants from China
          china = go.Scatter(
                              x = canada.index.values,
                              y = canada['China'],
                              mode = 'lines',
                              name = 'China'
          # Plot Immigrants from India
          india = go.Scatter(
                              x = canada.index.values,
                              y = canada['India'],
                              mode = 'lines',
                              name = 'India'
                             )
          # Plot Immigrants from Pakistan
          pakistan = go.Scatter(
                                   x = canada.index.values,
                                   y = canada['Pakistan'],
                                  mode = 'lines',
                                   name = 'Pakistan'
                               )
          layout = go.Layout(
                              title=dict(text = "Immigration Data",x=0.5,y=0.95),
                              xaxis = dict(title = 'Year', showgrid=False, showline=False), # x-axis Label
                              yaxis = dict(title = 'Number of Immigrants', showgrid=False, showline=False), # y-axis Label
                              paper_bgcolor= '#FFFDE7',
                              plot_bgcolor= '#FFFDE7'
                             )
          data = [china, india,pakistan]
          fig = go.Figure(data=data,layout=layout)
          iplot(fig)
```

Immigration Data


```
In [65]:
    canada1 = canada.copy()
    del canada1['Unknown']
    del canada1['Total']
    canada1.head()
```

Out[65]:

	Afghanistan	Albania	Algeria	American Samoa	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	 United States of America	Uruguay	Uzbekistan	Vanuatu
1980	16	1	80	0	0	1	0	368	0	702	 9378	128	0	С
1981	39	0	67	1	0	3	0	426	0	639	 10030	132	0	О
1982	39	0	71	0	0	6	0	626	0	484	 9074	146	0	О
1983	47	0	69	0	0	6	0	241	0	317	 7100	105	0	О
1984	71	0	63	0	0	4	42	237	0	317	 6661	90	0	О

5 rows × 195 columns

In [66]: canada.head()

Out[66]:

	Afghanistan	Albania	Algeria	American Samoa	Andorra	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	 Uzbekistan	Vanuatu	Venezuela (Bolivarian Republic of)	Viet Nam
1980	16	1	80	0	0	1	0	368	0	702	 0	0	103	1191
1981	39	0	67	1	0	3	0	426	0	639	 0	0	117	1829
1982	39	0	71	0	0	6	0	626	0	484	 0	0	174	2162
1983	47	0	69	0	0	6	0	241	0	317	 0	0	124	3404
1984	71	0	63	0	0	4	42	237	0	317	 0	0	142	7583

5 rows × 197 columns

```
#Immigrants from all countires using for loop
In [68]:
            traces = [] # Initiate trace
            for i in canada1.columns:
                traces.append(
                     go.Scatter(
                                    x=canada1.index.values,
                                    y=canada1[i],
                                    mode='lines',
                                    name = i,
                                    connectgaps=True,
                                 )
            layout = go.Layout(
                                   title = 'Immigrants', # Title
                                   title_font=dict(size=20),
                                   xaxis = dict(title = 'Year',showgrid=False,showline=False), # x-axis Label
yaxis = dict(title = 'Number of Immigrants',showgrid=False,showline=False), # y-axis Label
                                   font=dict(size=10),
                                   width=1230,
                                   height=650
            fig = go.Figure(data=traces, layout=layout)
            fig.show()
```

Immigrants


```
In [71]:
         from plotly.subplots import make_subplots
          #Subplot initialization
          fig = make_subplots(
                               rows=1,
                               cols=2,
                               subplot_titles=("Immigration Data", "Insurance Data")
          # Subplot - 1 (Add graph object trace to a figure)
          fig.add_trace(go.Scatter(
                                    x = canada.index.values,
                                    y = canada['China'],
                                    mode = 'lines',
                                    name = 'China'
                        row=1, col=1
          # Add graph object trace to a figure
          fig.add_trace(go.Scatter(
                                    x = canada.index.values,
                                    y = canada['India'],
                                    mode = 'lines',
                                    name = 'India'
                        row=1, col=1
          # Add graph object trace to a figure
          fig.add_trace(go.Scatter(
                                    x = canada.index.values,
                                    y = canada['Pakistan'],
                                    mode = 'lines',
                                    name = 'Pakistan'
                        row=1, col=1
                        )
          # Subplot - 2 (Add graph object trace to a figure)
          fig.add_trace(go.Scatter(
                                       x = insurance[insurance.smoker=='yes'].bmi,
                                       y = insurance[insurance.smoker=='yes'].charges,
                                       mode = 'markers',
                                       name = 'Smoker',
                                       marker = dict(size = 7, color = '#F39C12',symbol = 'circle',line = dict(width = 1))
                        row=1, col=2
          # Add graph object trace to a figure
          fig.add_trace(go.Scatter(
                                       x = insurance[insurance.smoker=='no'].bmi,
                                       y = insurance[insurance.smoker=='no'].charges,
                                       mode = 'markers',
                                       name = 'Non-Smoker',
                                       marker = dict(size = 7, color = '#8BC34A',symbol = 'circle',line = dict(width = 1))
                        row=1, col=2
          # Changing X & Y Axis properties
          fig.update_xaxes(title_text="Year", row=1, col=1,showgrid=False,showline=False)
          fig.update_yaxes(title_text="Number of Immigrants", row=1, col=1, showgrid=False, showline=False)
          fig.update_xaxes(title_text="BMI" ,row=1, col=2,showgrid=False,showline=False)
          fig.update_yaxes(title_text="Charges", row=1, col=2,showgrid=False,showline=False)
          #Changing plot & figure background
          fig.update_layout(
                               paper_bgcolor= '#FFFDE7',
                               plot_bgcolor= '#FFFDE7',
                               title=dict(text = "Sub Plots", x=0.5, y=0.95),
                               title_font_size=30
                             )
          fig.show()
```

Sub Plots

Line Plot using Plotly Express

Sine Plot


```
In [74]:  # Plot Immigrants from India
          fig = px.line(
                        x=canada1.index.values,
                        y= canada1['India']
          # Plot Immigrants from Pakistan
          fig.add_scatter(
                           x=canada1.index.values,
                           y= canada1['Pakistan'],
                           name = 'Pakistan',
                           line={'color': 'green'}
          # Plot Immigrants from Bangladesh
          fig.add_scatter(
                           x=canada1.index.values,
                           y= canada1['Bangladesh'] ,
                           name = 'Bangladesh',
                           line={'color': 'red'}
          fig.update_layout(title_text='Immigrants')
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```

Immigrants

Bar Plot

```
In [75]:
          # Use go.Bar to plot Bar charts in Plotly
          x = np.arange(1,10)
          y = np.arange(20,110,10)
          data = go.Bar(
                       X= Χ,
                       y= y,
          layout = go.Layout(
                            title = 'Simple Bar Chart',
                             xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                             yaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                        ),
                            )
          fig = go.Figure(data=data,layout=layout)
          fig.show()
```



```
In [76]: | # Use go.Bar to plot Bar charts in Plotly
           x1 = [1,2,3,3,3,4,5]
y1 = [10,20,30,40,50,60,65]
           data = go.Bar(
                         x= x1,
                         y=y1,
           layout = go.Layout(
                              title = 'Simple Bar Chart',
                               xaxis=dict(
                                            showgrid=False, # Hide Gridlines
                                            showline=False, # Hide X-Axis
                                           ),
                               yaxis=dict(
                                            showgrid=False, # Hide Gridlines
                                            showline=False, # Hide X-Axis
                                          ),
                              )
           fig = go.Figure(data=data,layout=layout)
           fig.show()
```



```
In [77]:
         #Changing color of Bar plot
          x = np.arange(1,10)
          y = np.arange(20,130,10)
          data = go.Bar(
                       X= Χ,
                       y= y,
                       marker={'color' : '#FFA726'} # changing color of bar plot
          layout = go.Layout(
                            title = 'Simple Bar Chart',
                            width=970,
                            height=650,
                             xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                         ),
                             yaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                       ),
                            )
          fig = go.Figure(data=data,layout=layout)
          fig.show()
```



```
In [78]:
         # Changing width of Bar Plot
          x = np.arange(1,10)
          y = np.arange(20,130,10)
          wid = [0.2,]*9
          data = go.Bar(
                       X = X,
                       marker={'color' : '#FFA726'}, # Changing color of bars
                       width=wid # Changing width of Bars
          layout = go.Layout(
                            title = 'Simple Bar Chart',
                            width=970,
                            height=650,
                            xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                         ),
                             yaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                        ),
                             )
          fig = go.Figure(data=data,layout=layout)
          fig.show()
```



```
In [79]: x = \text{np.arange}(1,10)
          y = np.arange(20,130,10)
          data = go.Bar(
                        X = X,
                        marker_color= '#FFA726', # Changing color of Bars
                        marker_line_color = '#A04000', # Changing color of border
                        marker_line_width = 2, # Changing width of border
                        opacity=0.7 # Changing opacity of Bars
          layout = go.Layout(
                             title = 'Simple Bar Chart',
                             width=970,
                             height=650,
                              xaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                         ),
                              yaxis=dict(
                                          showgrid=False, # Hide Gridlines
                                          showline=False, # Hide X-Axis
                                        ),
                             )
          fig = go.Figure(data=data,layout=layout)
          fig.show()
```

Simple Bar Chart


```
In [80]: # Simple Horizontal Bar Plot (Using orientation='h')
          x = np.arange(1,10)
          y = np.arange(20,130,10)
          data = go.Bar(
                       х= у,
                       y= x,
                       marker={'color' : '#FFA726'},
                       orientation='h'
          layout = go.Layout(
                            title = 'Simple Bar Chart',
                            width=970,
                            height=650,
                             xaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                             yaxis=dict(
                                         showgrid=False, # Hide Gridlines
                                         showline=False, # Hide X-Axis
                                       ),
                            )
          fig = go.Figure(data=data,layout=layout)
          fig.show()
```

Simple Bar Chart


```
In [81]:
          Assignee = ['Asif', 'Basit', 'John', 'Charles', 'Vignesh', 'Arun', 'Ashish', 'Varun']
          Tickets_Closed = np.array([52,42,60,35,48,45,28,54])
          per = (Tickets_Closed/sum(Tickets_Closed))*100
          per = np.round(per, decimals=2)
          #Create dataframe
          helpdesk = pd.DataFrame({'Assignee' : Assignee, 'Tickets Closed' :Tickets_Closed , 'Percentage': per})
          helpdesk = helpdesk.sort_values(by='Percentage')
          #Initialize the figure
          fig = go.Figure()
          #Plot Closure percentage using Horizontal Bar plot
          fig.add_trace(go.Bar(
                               x=helpdesk.Percentage,
                               y=helpdesk.Assignee,
                               orientation='h',
                               marker=dict(
                                             color='rgba(70, 171, 100, 0.6)',
                                             line=dict(color='rgba(70, 171, 100, 1.0)',width=1),
                                            ),
                               )
          #Update Layout
          fig.update_layout(
                             title=dict(text = "Ticket Closure Summary",x=0.46,y=0.95,font_size=20),
                             yaxis=dict(
                                         showticklabels=True, showgrid=False, showline=False
                                         ),
                             xaxis=dict(
                                           showticklabels=False,
                                           domain=[0, 0.6],
                                           showgrid=False, showline=False
                                        ),
                             margin=dict(1=300, r=20, t=70, b=70),
                             paper_bgcolor='rgb(248, 248, 255)',
                             plot_bgcolor='rgb(248, 248, 255)',
          annotations = [] #Initialize anotation object
          # Labels
          for perc, asg in zip(helpdesk.Percentage, helpdesk.Assignee):
              # Displaying label bar percentage
              annotations.append(dict(xref='x',
                                      yref='y',
                                       y=asg,
                                       x=perc + 2,
                                       text=str(perc) + '%',
                                       font=dict(family='Arial', size=12,color='#004D40'),
                                       showarrow=False))
             # Displaying Footer
              annotations.append(dict(xref='paper',
                                       yref='paper',
                                       x=1,
                                       y = -0.17
                                       text='Help Desk ' +'Closure Statistics, ' +'Year 2020',
                                       font=dict(family='Arial', size=11, color='#9E9E9E'),
                                       showarrow=False
                                  )
          fig.update_layout(annotations=annotations)
          fig.show()
```

Ticket Closure Summary

Ashish 7.69%

```
In [82]:
          x1=[1,3,5,7]
          x2=[2,4,6,8]
          y1 = [7,7,7,7]
          y2= [17,18,29,40]
          trace0 = go.Bar(
                       x= x1,
                       y= y1,
                       marker= dict (color ='#FFA726' )
          trace1 = go.Bar(
                       x= x2,
                       y= y2,
                       marker={'color' : '#94E413'}
          data = [trace0,trace1]
          fig = go.Figure(data=data)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```


Stacked Vertical Bar

```
In [83]: | x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                       y= y1,
                       marker= dict (color ='#FF6F00' ),
                       name = 'Open Tickets'
          trace1 = go.Bar(
                       y= y2,
                       marker={'color' : '#FFB300'},
                        name = 'Closed Tickets'
          trace2 = go.Bar(
                       X= Χ,
                       marker={'color' : '#F7DC6F'},
                        name = 'Cancelled Tickets'
          layout = go.Layout(
                             title= 'Open Tickets by Status',
                             barmode = 'stack',
                             width=900,
                             height=800
                            )
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```



```
In [84]: | #Displaying values in bar plot using "text" and "textposition" parameter
          x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                       X = X
                       y=y1,
                       marker= dict (color ='#FF6F00' ),
                       name = 'Open Tickets',
                       text=y1,
                       textposition='auto'
          trace1 = go.Bar(
                       y= y2,
                       marker={'color' : '#FFB300'},
                       name = 'Closed Tickets',
                       text=y2,
                       textposition='auto'
                        )
          trace2 = go.Bar(
                       y= y3,
                       marker={'color' : '#F7DC6F'},
                       name = 'Cancelled Tickets',
                       text=y3,
                       textposition='auto'
          layout = go.Layout(
                             title= 'Open Tickets by Status',
                             barmode = 'stack',
                             width=900,
                             height=800
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```


Stacked Horizontal Bar

```
In [85]: | x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                        x = y1,
                        y= x,
                        marker= dict (color ='#FF6F00'),
                        name = 'Open Tickets',
                        orientation='h',
                        text=y1,
                        textposition='auto'
          trace1 = go.Bar(
                        x= y2,
                        y= x,
                        marker={'color' : '#FFB300'},
                        name = 'Closed Tickets',
                        orientation='h',
                        text=y2,
                        textposition='auto'
                         )
          trace2 = go.Bar(
                        x = y3,
                        y= x,
                        marker={'color' : '#F7DC6F'},
                        name = 'Cancelled Tickets',
                        orientation='h',
                        text=y3,
                        textposition='auto'
          layout = go.Layout(
                              title= 'Open Tickets by Status',
                              barmode = 'stack',
                              width=990,
                              height=550
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```

Open Tickets by Status

Cancelled ⁻

Closed Tick Open Tick

```
In [86]: | x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                       x=y1,
                       y= x,
                       marker= dict (color = '#FF9800',line=dict(color='#F4511E',width=2)),
                        name = 'Open Tickets',
                        orientation='h',
                        text=y1,
                        textposition='auto',
                        opacity=0.8,
          trace1 = go.Bar(
                        x = y2
                        y= x,
                       marker= dict (color = '#7CB342', line=dict(color='#2E7D32', width=2)),
                        name = 'Closed Tickets',
                        orientation='h',
                        text=y2,
                        textposition='auto',
                        opacity=0.8,
          trace2 = go.Bar(
                        x = y3
                       y= x,
                       marker= dict (color = '#1E88E5', line=dict(color='#3F51B5', width=2)),
                        name = 'Cancelled Tickets',
                        orientation='h',
                        text=y3,
                        textposition='auto',
                        opacity=0.7,
          layout = go.Layout(
                              title= 'Open Tickets by Status',
                              barmode = 'stack',
                              width=990,
                             height=600
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```


Cancelled

Closed Tick

Grouped Bar Chart

```
In [87]: | x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                        X = X,
                        y= y1,
                        marker= dict (color ='#FF6F00' ),
                        name = 'Open Tickets',
          trace1 = go.Bar(
                        X = X,
                        y= y2,
                        marker={'color' : '#FFB300'},
                        name = 'Closed Tickets'
          trace2 = go.Bar(
                        X = X,
                        y= y3,
                        marker={'color' : '#F7DC6F'},
                         name = 'Cancelled Tickets'
          layout = go.Layout(
                              title= 'Open Tickets by Status',
                              width=980,
                              height=800
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```



```
In [88]:
         # Grouped Bar Chart with values displayed outside the bar (Using textposition='outside')
          x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                       X = X,
                       y=y1,
                       marker= dict (color ='#FF6F00' ),
                       name = 'Open Tickets',
                       text=y1,
                       textposition='outside'
          trace1 = go.Bar(
                       y= y2,
                       marker={'color' : '#FFB300'},
                       name = 'Closed Tickets',
                       text=y2,
                       textposition='outside'
                        )
          trace2 = go.Bar(
                       y=y3,
                       marker={'color' : '#F7DC6F'},
                       name = 'Cancelled Tickets',
                       text=y3,
                       textposition='outside'
          layout = go.Layout(
                             title= 'Open Tickets by Status',
                             barmode = 'group',
                             width=900,
                             height=800,
                             xaxis_tickangle=-45
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```



```
In [89]:
         # Grouped Bar Chart with values displayed inside the bar using "auto" textposition
          x = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
          y1 = [17,18,29,33,38,39,42]
          y2 = [20,21,22,23,21,28,25]
          y3 = [5,13,11,12,13,11,16]
          trace0 = go.Bar(
                       X = X,
                       y=y1,
                       marker= dict (color ='#FF6F00' ),
                       name = 'Open Tickets',
                       text=y1,
                        textposition='auto'
          trace1 = go.Bar(
                       y= y2,
                       marker={'color' : '#FFB300'},
                       name = 'Closed Tickets',
                        text=y2,
                        textposition='auto'
          trace2 = go.Bar(
                       y= y3,
                       marker={'color' : '#F7DC6F'},
                       name = 'Cancelled Tickets',
                       text=y3,
                       textposition='auto'
          layout = go.Layout(
                              title=dict(text = "Tickets by Status", x=0.5, y=0.95, font_size=25),
                              barmode = 'group',
                             width=980,
                             height=800,
                             xaxis_tickangle=-45,
                              xaxis_tickfont_size=14,
                              yaxis=dict(
                                          title='Number of Tickets',
                                          titlefont_size=16,
                                          tickfont_size=14,
                                         ),
                              xaxis=dict(
                                          title='Assignee',
                                          titlefont_size=16,
                                          tickfont_size=14,
                            legend=dict(
                                          x=0,
                                          bgcolor='rgba(255, 255, 255, 0)',
                                          bordercolor='rgba(255, 255, 255, 0)'
                            bargap=0.15, # gap between bars of adjacent location coordinates.
                            bargroupgap=0.08 # gap between bars of the same location coordinate.
                            )
          data = [trace0,trace1,trace2]
          fig = go.Figure(data=data, layout=layout)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
```

Tickets by Status

fig.show()

Bar Plot using Plotly Express

```
In [90]: #Simple Bar plot using px.bar

x = np.arange(1,10)
y = np.arange(20,110,10)
fig = px.bar(x=x, y=y)

# Hide grid Lines
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)

fig.show()
```



```
In [91]:
    x = np.arange(1,10)
    y = np.arange(20,110,10)
    fig = px.bar(x=x, y=y,color=y)
    fig.layout.title.text = "Bar Plot - Plotly Express"
    fig.update_traces(textposition='outside')

# Hide grid Lines
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)

fig.show()
```

Bar Plot - Plotly Express

Bar Plot - Plotly Express

Out[93]:

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
Python	428	111	70	101	80
Java	370	222	80	104	70
Julia	298	121	90	102	60
C++	310	141	100	109	56
С	400	121	110	107	78

Out[94]:

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total
Python	428	111	70	101	80	790
Java	370	222	80	104	70	846
Julia	298	121	90	102	60	671
C++	310	141	100	109	56	716
С	400	121	110	107	78	816

Out[95]:

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
Python	428	111	70	101	80	790	NaN	NaN	NaN	NaN	NaN
Java	370	222	80	104	70	846	NaN	NaN	NaN	NaN	NaN
Julia	298	121	90	102	60	671	NaN	NaN	NaN	NaN	NaN
C++	310	141	100	109	56	716	NaN	NaN	NaN	NaN	NaN
С	400	121	110	107	78	816	NaN	NaN	NaN	NaN	NaN

Out[96]:

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
Python	428	111	70	101	80	790	54.18	14.05	8.86	12.78	10.13
Java	370	222	80	104	70	846	43.74	26.24	9.46	12.29	8.27
Julia	298	121	90	102	60	671	44.41	18.03	13.41	15.20	8.94
C++	310	141	100	109	56	716	43.30	19.69	13.97	15.22	7.82
С	400	121	110	107	78	816	49.02	14.83	13.48	13.11	9.56

```
In [100]: | fig = go.Figure()
           # Trace to plot "Strongly Agree" percentage
           fig.add_trace(
                           go.Bar(
                                   x= rating['Strongly Agree (%)'],
                                   y= rating.index,
                                   marker= dict (color = '#2E7D32', line=dict(color='#2E7D32', width=2)),
                                   name = 'Strongly Agree (%)',
                                   orientation='h',
                                   textposition='auto',
                         )
           # Trace to plot "Agree" percentage
           fig.add_trace(
                           go.Bar(
                                   x= rating['Agree (%)'],
                                   y= rating.index,
                                   marker= dict (color = '#8BC34A', line=dict(color='#8BC34A', width=2)),
                                   name = 'Agree (%)',
                                   orientation='h',
                                   textposition='auto',
                         )
           # Trace to plot "Neutral" percentage
           fig.add_trace(
                           go.Bar(
                                   x= rating['Neutral (%)'],
                                   y= rating.index,
                                   marker= dict (color ='#D4E157',line=dict(color='#D4E157',width=2)),
                                   name = 'Neutral (%)',
                                   orientation='h',
                                   textposition='auto',
                         )
           # Trace to plot "Disagree" percentage
           fig.add_trace(
                           go.Bar(
                                   x= rating['Disagree (%)'],
                                   y= rating.index,
                                   marker= dict (color = '#FFB300',line=dict(color='#FFB300',width=2)),
                                   name = 'Disagree (%)',
                                   orientation='h',
                                   textposition='auto',
                                  )
                         )
           # Trace to plot "Strongly Disagree" percentage
           fig.add_trace(
                          go.Bar(
                                   x= rating['Strongly Disagree (%)'],
                                   y= rating.index,
                                   marker= dict (color = '#FF7043', line=dict(color='#FF7043', width=2)),
                                   name = 'Strongly Disagree (%)',
                                   orientation='h',
                                   textposition='auto',
                                  )
                         )
           # Layout setting
           fig.update_layout(
                               title=dict(text = "Best Programming Language", x=0.44, y=0.95, font_size=20),
                               barmode = 'stack',
                               width=1000,
                               height=500,
                               margin=dict(1=70, r=0, t=70, b=70),
                               paper_bgcolor='rgb(248, 248, 255)',
                              plot_bgcolor='rgb(248, 248, 255)',
           annotations =[]
           # Displaying bar percentage label for "Strongly Agree"
           for perc, lang in zip(rating.iloc[:,6],rating.index):
               # labeling the bar percentage
               annotations.append(dict(xref='x',
                                        yref='y',
                                        y=lang,
                                        x=perc/2,
                                        text=str(perc) + ' %',
                                        font=dict(family='Arial', size=12,color='white'),
```

```
showarrow=False))
# Displaying bar percentage label for "Agree"
i=0
for perc, lang in zip(rating.iloc[:,7],rating.index):
    # labeling the bar percentage
    annotations.append(dict(xref='x',
                            yref='y',
                            y=lang,
                            x=perc/2 + rating.iloc[i,6],
                            text=str(perc) + ' %',
                            font=dict(family='Arial', size=12,color='white'),
                            showarrow=False))
    i+=1
# Displaying bar percentage label for "Neutral"
for perc, lang in zip(rating.iloc[:,8],rating.index):
    # labeling the bar percentage
    annotations.append(dict(xref='x',
                            yref='y',
                            y=lang,
                            x=perc/2 + rating.iloc[i,6]+rating.iloc[i,7],
                            text=str(perc) + ' %',
                            font=dict(family='Arial', size=12,color='black'),
                            showarrow=False))
    i+=1
# Displaying bar percentage label for "Disagree"
for perc, lang in zip(rating.iloc[:,9],rating.index):
    # labeling the bar percentage
    annotations.append(dict(xref='x',
                            yref='y',
                            y=lang,
                            x=perc/2 + rating.iloc[i,6]+rating.iloc[i,7]+rating.iloc[i,8],
                            text=str(perc) + ' %',
                            font=dict(family='Arial', size=12,color='black'),
                            showarrow=False))
    i+=1
# Displaying bar percentage label for "Strongly Disagree"
for perc, lang in zip(rating.iloc[:,10],rating.index):
    # labeling the bar percentage
    annotations.append(dict(xref='x',
                            yref='y',
                            y=lang,
                            x=perc/2 + rating.iloc[i,6]+rating.iloc[i,7]+rating.iloc[i,8] + rating.iloc[i,9],
                            text=str(perc) + ' %',
                            font=dict(family='Arial', size=12,color='black'),
                            showarrow=False))
    i+=1
fig.update_layout(annotations=annotations)
# Hide grid lines
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
fig.show()
```

Best Programming Language

Strongly Di Disagree (9

Neutral (%) Agree (%) Strongly Ag

←

```
In [99]:
          #Optimized code for above visualization
          fig = go.Figure()
          cols = ['#2E7D32' , '#8BC34A' , '#D4E157' , '#FFB300' , '#FF7043']
          for i in range (0,5):
              fig.add_trace(
                         go.Bar(
                                 x= rating.iloc[:,6+i],
                                 y= rating.index,
                                 marker= dict (color =cols[i],line=dict(color=cols[i],width=2)),
                                 name = 'Strongly Agree (%)',
                                 orientation='h',
                                 textposition='auto',
                           )
          fig.update_layout(
                              title=dict(text = "Best Programming Language",x=0.44,y=0.95,font_size=20),
                             barmode = 'stack',
                             width=1000,
                             height=500,
                             margin=dict(1=70, r=0, t=70, b=70),
                             paper_bgcolor='rgb(248, 248, 255)',
                             plot_bgcolor='rgb(248, 248, 255)',
          annotations =[]
          i=0
          for j in range(1,6):
              if j==1:
                  for perc, lang in zip(rating.iloc[:,5+j],rating.index):
                      # labeling the bar percentage
                      annotations.append(dict(xref='x',
                                      yref='y',
                                      y=lang,
                                       x=perc/2,
                                       text=str(perc) + ' %',
                                       font=dict(family='Arial', size=12,color='white'),
                                       showarrow=False))
                  sum1 = rating.iloc[:,5+j]
              else:
                  for perc, lang in zip(rating.iloc[:,5+j],rating.index):
                      # labeling the bar percentage
                      annotations.append(dict(xref='x',
                                       yref='y',
                                       y=lang,
                                       x=perc/2 + sum1[i],
                                       text=str(perc) + ' %',
                                       font=dict(family='Arial', size=12,color='black'),
                                       showarrow=False))
                  sum1 = sum1+ rating.iloc[:,5+j]
          fig.update_layout(annotations=annotations)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```

Best Programming Language

Strongly Strongly

Strongly Strongly Strongly

Pie & Donut Chart

Tickets by Priority

Lc

Hi


```
In [233]: | # Changing Label orientation using "insidetextorientation" paramter
             tickets = [48 , 30 , 20 , 15]
status = ['Low' , 'Medium' , 'High' , 'Critical']
colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
             data = go.Pie(
                              values= tickets,
                              labels= status,
                              marker=dict(colors=colors,line=dict(color='#797D7F', width=1.5)),
                              textinfo='percent',
                              hoverinfo='label+value',
                              textfont_size=15,
                              insidetextorientation='radial'
                              )
             layout = go.Layout(
                                    title=dict(text = "Tickets by Priority", x=0.46, y=0.95, font_size=20),
                                   width=800,
                                   height=650
             fig = go.Figure(data=data,layout=layout)
             fig.show()
```



```
In [234]:
             #Explode 4th Slice using "pull" parameter
             tickets = [48 , 30 , 20 , 15]
status = ['Low' , 'Medium' , 'High' , 'Critical']
colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
             data = go.Pie(
                               values= tickets,
                               labels= status,
                               marker=dict(colors=colors),
                              textinfo='label+value+percent',
                               pull=[0, 0, 0, 0.2] #Explode 4th Slice
                               )
             layout = go.Layout(
                                    title=dict(text = "Tickets by Priority", x=0.46, y=0.95, font_size=20),
                                    width=800,
                                    height=650
             fig = go.Figure(data=data,layout=layout)
             fig.show()
```



```
In [235]:
             #Explode 3rd & 4th Slice using "pull" parameter
             tickets = [48 , 30 , 20 , 15]
status = ['Low' , 'Medium' , 'High' , 'Critical']
colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
             data = go.Pie(
                               values= tickets,
                               labels= status,
                               marker=dict(colors=colors),
                               textinfo='label+value+percent',
                               pull=[0, 0, 0.2, 0.2]
                               )
             layout = go.Layout(
                                     title=dict(text = "Tickets by Priority", x=0.46, y=0.95, font_size=20),
                                     width=800,
                                    height=650
             fig = go.Figure(data=data,layout=layout)
             fig.show()
```



```
In [236]:
            # Simple Donut Chart
             tickets = [48 , 30 , 20 , 15]
status = ['Low' , 'Medium' , 'High' , 'Critical']
colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
             data = go.Pie(
                               values= tickets,
                               labels= status,
                               marker=dict(colors=colors),
                               textinfo='label+value+percent',
                               hole=.4
                               )
             layout = go.Layout(
                                     title=dict(text = "Tickets by Priority", x=0.46, y=0.95, font_size=20),
                                     width=800,
                                     height=650
             fig = go.Figure(data=data,layout=layout)
             fig.show()
```



```
In [237]:
             #Explode 4th Slice using "pull" parameter
             tickets = [48 , 30 , 20 , 15]
status = ['Low' , 'Medium' , 'High' , 'Critical']
colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
             data = go.Pie(
                               values= tickets,
                               labels= status,
                               marker=dict(colors=colors),
                               textinfo='label+value+percent',
                               hole=.4,
                               pull=[0, 0, 0, 0.2]
             layout = go.Layout(
                                     title=dict(text = "Tickets by Priority", x=0.46, y=0.95, font_size=20),
                                     width=800,
                                     height=650
             fig = go.Figure(data=data,layout=layout)
             fig.show()
```


In [401]: | employment.head()

Out[401]:

	Age	Gender	Period	Unemployed
0	16 to 19 years	Men	2005-01-01	91000
1	20 to 24 years	Men	2005-01-01	175000
2	25 to 34 years	Men	2005-01-01	194000
3	35 to 44 years	Men	2005-01-01	201000
4	45 to 54 years	Men	2005-01-01	207000

Unemployment Data

In [403]: suicide

suicide.head()

Out[403]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	country- year	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)	generation
0	Albania	1987	male	15-24 years	21	312900	6.71	Albania1987	NaN	2,156,624,900	796	Generation X
1	Albania	1987	male	35-54 years	16	308000	5.19	Albania1987	NaN	2,156,624,900	796	Silent
2	Albania	1987	female	15-24 years	14	289700	4.83	Albania1987	NaN	2,156,624,900	796	Generation X
3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	2,156,624,900	796	G.I. Generation
4	Albania	1987	male	25-34 years	9	274300	3.28	Albania1987	NaN	2,156,624,900	796	Boomers

Suicide Data


```
In [242]:
          # Display multiple Pie plots in one figure using Subplots
           tickets = [48 , 30 , 20 , 15]
           status = ['Low' , 'Medium' , 'High' , 'Critical']
           colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
           Assignee = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
           Open = [17,18,29,33,38,39,42]
           #Subplot initialization
           fig = make_subplots(
                                 rows=1,
                                 cols=2,
                                 subplot_titles=("Tickets by Priority", "Tickets by Assignee"),
                                specs=[[{'type':'domain'}, {'type':'domain'}]]
           # Subplot - 1 (Add graph object trace to a figure)
           fig.add_trace(go.Pie(
                                 values= tickets,
                                 labels= status,
                                marker=dict(colors=colors),
                                textinfo='label+value+percent'
                                ),
                          row=1, col=1
           fig.add_trace(go.Pie(
                                 values= Open,
                                labels= Assignee,
                                marker=dict(colors=colors),
                                 textinfo='label+value+percent'
                                ),
                          row=1, col=2
           fig.update_layout(
                                paper_bgcolor= '#FFFDE7',
                                plot_bgcolor= '#FFFDE7',
                                title=dict(text = "Help Desk", x=0.5, y=0.95),
                                title_font_size=30
                              )
           fig.show()
```

Help Desk


```
In [243]:
          # Display multiple Donut charts in one figure using Subplots
           tickets = [48 , 30 , 20 , 15]
           status = ['Low' , 'Medium' , 'High' , 'Critical']
           colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
           Assignee = ['Asif', 'Basit', 'John', 'Batista', 'Gabriel', 'Paul', 'Ravi']
           Open = [17,18,29,33,38,39,42]
           #Subplot initialization
           fig = make_subplots(
                                 rows=1,
                                 cols=2,
                                 subplot_titles=("Tickets by Priority", "Tickets by Assignee"),
                                 specs=[[{'type':'domain'}, {'type':'domain'}]]
           # Subplot - 1 (Add graph object trace to a figure)
           fig.add_trace(go.Pie(
                                 values= tickets,
                                 labels= status,
                                 hole = .4,
                                marker=dict(colors=colors),
                                 textinfo='label+value+percent',
                                hoverinfo='label'
                                ),
                          row=1, col=1
           fig.add_trace(go.Pie(
                                 values= Open,
                                labels= Assignee,
                                hole = .4,
                                 marker=dict(colors=colors),
                                 textinfo='label+value+percent',
                                hoverinfo='label'
                          row=1, col=2
           fig.update_layout(
                                paper_bgcolor= '#FFFDE7',
                                plot_bgcolor= '#FFFDE7',
                                title=dict(text = "Help Desk", x=0.5, y=0.95),
                                title_font_size=30
           fig.show()
```

Help Desk


```
In [407]:
           # Display multiple Pie & Donut plots in one figure using Subplots
            tickets = [48 , 30 , 20 , 15]
           priority = ['Low' , 'Medium' , 'High' , 'Critical']
colors = ['#8BC34A','#D4E157','#FFB300','#FF7043']
           group = ['Service Desk' , 'Problem' , 'Application' , 'Change']
           status = ['Assigned', 'Pending', 'New', 'In Progress']
            severity = ['Sev-4' , 'Sev-3' , 'sev-2' , 'sev-1']
            #Subplot initialization
           fig = make_subplots(
                                 rows=2,
                                 cols=2,
                                 subplot_titles=("Tickets by Priority", "Tickets by Severity",
                                                   "Tickets by Group", "Tickets by Status"),
                                  specs=[[{'type':'domain'}, {'type':'domain'}],[{'type':'domain'}, {'type':'domain'}]]
            #Change Subplot title font size
           for i in fig['layout']['annotations']:
                i['font']['size'] = 17
            # Subplot - 1 (Add graph object trace to a figure)
           fig.add_trace(go.Pie(
                                 values= tickets,
                                 labels= priority,
                                 marker=dict(colors=colors),
                                 textinfo='label+value+percent',
                                 hoverinfo='label',
                                ),
                          row=1, col=1
            # Subplot - 2 (Add graph object trace to a figure)
           fig.add_trace(go.Pie(
                                 values= Open,
                                 labels= severity,
                                 marker=dict(colors=colors),
                                 textinfo='label+value+percent',
                                 hoverinfo='label',
                                ),
                          row=1, col=2
            # Subplot - 3 (Add graph object trace to a figure)
           fig.add_trace(go.Pie(
                                 values= tickets,
                                 labels= group,
                                 hole = .4,
                                 marker=dict(colors=colors),
                                 textinfo='label+value+percent',
                                 hoverinfo='label'
                                ),
                          row=2, col=1
            # Subplot - 4 (Add graph object trace to a figure)
           fig.add_trace(go.Pie(
                                 values= Open,
                                 labels= status,
                                 hole = .4,
                                 marker=dict(colors=colors),
                                 textinfo='label+value+percent',
                                 hoverinfo='label'
                          row=2, col=2
            fig.update_layout(
                                 paper_bgcolor= '#FFFDE7',
                                 plot_bgcolor= '#FFFDE7',
                                 title=dict(text = "Help Desk", x=0.49, y=0.97, font_size=30),
                                 width=950,
                                height=900,
                                 showlegend=False
                              )
            fig.show()
```

Help Desk

Pie Chart using Plotly Express

In [408]: su:

suicide.head()

Out[408]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	country- year	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)	generation
0	Albania	1987	male	15-24 years	21	312900	6.71	Albania1987	NaN	2,156,624,900	796	Generation X
1	Albania	1987	male	35-54 years	16	308000	5.19	Albania1987	NaN	2,156,624,900	796	Silent
2	Albania	1987	female	15-24 years	14	289700	4.83	Albania1987	NaN	2,156,624,900	796	Generation X
3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	2,156,624,900	796	G.I. Generation
4	Albania	1987	male	25-34 years	9	274300	3.28	Albania1987	NaN	2,156,624,900	796	Boomers

Suicide Data

Bubble Chart


```
In [104]:
          x = np.arange(1,10)
           y = np.random.randint(1,100,9)
           op = np.random.uniform(0.2,1,9)
           hexval = [hex(x) for x in np.random.randint(0,16777215,10)]
           hexval = ['#' + hexval[i][2:] for i in range(0,10)] #Generate Hex color list
           data = go.Scatter(
                             X = X
                             y = y,
                             mode = 'markers',
                             marker = dict(size = y,color = hexval) # Changing color & size of bubbles
           fig = go.Figure(data=data)
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
           fig.show()
```


In [105]: | suicide.head()

Out[105]:

_	•	country	year	sex	age	suicides_no	population	suicides/100k pop	country- year	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)	generation
	0	Albania	1987	male	15-24 years	21	312900	6.71	Albania1987	NaN	2,156,624,900	796	Generation X
	1	Albania	1987	male	35-54 years	16	308000	5.19	Albania1987	NaN	2,156,624,900	796	Silent
	2	Albania	1987	female	15-24 years	14	289700	4.83	Albania1987	NaN	2,156,624,900	796	Generation X
	3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	2,156,624,900	796	G.I. Generation
	4	Albania	1987	male	25-34 years	9	274300	3.28	Albania1987	NaN	2,156,624,900	796	Boomers

Area Plot

```
In [108]: # Simple Area plot
x = np.arange(1,31)
y = np.random.normal(10,11,size=30)
y = np.square(y)
fig = go.Figure()
fig.add_trace(go.Scatter(x=x, y=y, fill='tozeroy')) # fill down to xaxis

# Hide grid Lines
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
fig.show()
```



```
In [110]: #Changing color of area plot using marker color
x = np.arange(1,31)
y = np.random.normal(10,11,size=30)
y = np.square(y)
fig = go.Figure()
fig.add_trace(go.Scatter(x=x, y=y, fill='tozeroy',marker = dict(color = 'gold'))) # fill down to xaxis

# Hide grid Lines
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
fig.show()
```



```
x=np.arange(1,7)
          y1 = np.array([1,5,9,3,17,1])
          y2 = np.array([2,6,12,4,19,2])
          y3 = np.array([3,7,16,5,22,1])
          y4 = np.array([4,8,18,6,25,2])
          fig = go.Figure()
          fig.add_trace(go.Scatter(
                                  X=Χ,
                                  y=y1,
                                  marker = dict(color = '#00b159'),
                                  stackgroup='one' # The stackgroup parameter is used to create a Stacked Area Chart
          fig.add_trace(go.Scatter(
                                   X=Χ,
                                  y=y2,
                                  marker = dict(color = '#ffc425'),
                                  stackgroup='one'
          fig.add_trace(go.Scatter(
                                  X=Χ,
                                  marker = dict(color = '#3498DB'),
                                  stackgroup='one'
          fig.add_trace(go.Scatter(
                                  y=y4,
                                  marker = dict(color = '#ff3b30'),
                                  stackgroup='one'
          fig.update_layout(width = 980 , height = 600)
          # Hide grid lines
          fig.update_xaxes(showgrid=False)
          fig.update_yaxes(showgrid=False)
          fig.show()
```



```
In [113]: #Stacked Area Chart
           x=['A','B','C','D','E']
           y1 = np.array([30,10,40,20,60])
           y2 = np.array([10,20,10,20,10])
           y3 = np.array([5,10,5,10,5])
           y4 = np.array([10,5,10,5,10])
           fig = go.Figure()
           fig.add_trace(go.Scatter(
                                     x=x,
                                     y=y1,
                                     marker = dict(color = '#00b159'), # Color of trace0
                                     stackgroup='one' # The stackgroup parameter is used to create a Stacked Area Chart
           fig.add_trace(go.Scatter(
                                     X=Χ,
                                     y=y2,
                                     marker = dict(color = '#ffc425'),
                                     stackgroup='one'
           fig.add_trace(go.Scatter(
                                     X=Χ,
                                     marker = dict(color = '#3498DB'),
                                     stackgroup='one'
           fig.add_trace(go.Scatter(
                                     y=y4,
                                     marker = dict(color = '#ff3b30'),
                                     stackgroup='one'
           fig.update_layout(width = 980 , height = 600)
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
```

fig.show()


```
In [114]: | #Stacked Area Chart Without Boundary Lines (Using mode = 'none')
           x=['A','B','C','D','E']
           y1 = np.array([30,10,40,20,60])
           y2 = np.array([10,20,10,20,10])
           y3 = np.array([5,10,5,10,5])
           y4 = np.array([10,5,10,5,10])
           fig = go.Figure()
           fig.add_trace(go.Scatter(
                                      x=x,
                                      y=y1,
                                      mode='none',
                                      stackgroup='one'
           fig.add_trace(go.Scatter(
                                      X=Χ,
                                     y=y2,
                                     mode='none',
                                     stackgroup='one'
           fig.add_trace(go.Scatter(
                                     X=Χ,
                                     y=y3,
                                     mode='none',
                                     stackgroup='one'
           fig.add_trace(go.Scatter(
                                     y=y4,
                                     mode='none',
                                     stackgroup='one'
           fig.update_layout(width = 980 , height = 600)
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
           fig.show()
```



```
In [115]: | #100 Percent Stacked Area Chart (Using groupnorm parameter)
           x=['A','B','C','D','E']
           y1 = np.array([30,10,40,20,60])
           y2 = np.array([10,20,10,20,10])
           y3 = np.array([5,10,5,10,5])
           y4 = np.array([10,5,10,5,10])
           fig = go.Figure()
           fig.add_trace(go.Scatter(
                                      X=Χ,
                                      y=y1,
                                      marker = dict(color = '#00b159'),
                                      stackgroup='one',
                                      groupnorm='percent' #normalization for the sum of the stackgroup
           fig.add_trace(go.Scatter(
                                      X=Χ,
                                      y=y2,
                                      marker = dict(color = '#ffc425'),
                                      stackgroup='one',
                                      groupnorm='percent'
                         )
           fig.add_trace(go.Scatter(
                                      X=Χ,
                                      y=y3,
                                      marker = dict(color = '#3498DB'),
                                      stackgroup='one',
                                      groupnorm='percent'
                         )
           fig.add_trace(go.Scatter(
                                      y=y4,
                                      marker = dict(color = '#ff3b30'),
                                      stackgroup='one',
                                      groupnorm='percent'
           fig.update_layout(
                              width = 990,
                             height = 650,
                             xaxis_type='category',
                             yaxis=dict(
                                          range=[1, 100],
                                          ticksuffix='%'
                             )
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
           fig.show()
```



```
10%
```

```
In [116]:
          # Area Chart with interioir filling using fill='tonexty'
           x=['A','B','C','D','E']
           y1 = np.array([30,10,40,20,60])
           y2 = np.array([10,20,10,20,10])
           fig = go.Figure()
           fig.add_trace(go.Scatter(
                                     X=Χ,
                                     y=y1,
                                     marker = dict(color = '#00b159'),
                                     fill = None
           fig.add_trace(go.Scatter(
                                     X=Χ,
                                     y=y2,
                                     fill='tonexty', # fill to trace0 y
                                     marker = dict(color = '#ffc425'),
                        )
           fig.update_layout(width = 980 , height = 600)
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
           fig.show()
```


Tables & Figure Factory Tables

```
In [117]: rating
```

Out[117]:

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
Python	428	111	70	101	80	790	54.18	14.05	8.86	12.78	10.13
Java	370	222	80	104	70	846	43.74	26.24	9.46	12.29	8.27
Julia	298	121	90	102	60	671	44.41	18.03	13.41	15.20	8.94
C++	310	141	100	109	56	716	43.30	19.69	13.97	15.22	7.82
С	400	121	110	107	78	816	49.02	14.83	13.48	13.11	9.56

```
In [118]:
           #Basic table in Plotly
            fig = go.Figure(data=[go.Table(
                                              header=dict(
                                                            values=list(rating.columns),
                                                           ),
                                               cells=dict(values=[
                                                                   rating['Strongly Agree'] ,
                                                                   rating['Agree'] ,
rating['Neutral'] ,
                                                                   rating['Disagree'] ,
                                                                   rating['Strongly Disagree'],
                                                                   rating['Total'],
                                                                   rating['Strongly Agree (%)'],
                                                                   rating['Agree (%)'],
                                                                   rating['Neutral (%)'],
                                                                   rating['Disagree (%)'],
                                                                   rating['Strongly Disagree (%)']
                                                                  ],
                                                           )
                                                  )
                                     ]
                            )
            fig.show()
```

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
428	111	70	101	80	790	54.18	14.05	8.86	12.78	10.13
370	222	80	104	70	846	43.74	26.24	9.46	12.29	8.27
298	121	90	102	60	671	44.41	18.03	13.41	15.2	8.94
310	141	100	109	56	716	43.3	19.69	13.97	15.22	7.82
400	121	110	107	78	816	49.02	14.83	13.48	13.11	9.56

```
In [119]: | # Styled Table in Plotly
           fig = go.Figure(data=[go.Table(
                                              header=dict(
                                                            values=list(rating.columns),
                                                            fill_color='paleturquoise',
                                                            align='left'
                                                           ),
                                              cells=dict(values=[
                                                                   rating['Strongly Agree'] ,
                                                                   rating['Agree'] ,
rating['Neutral'] ,
                                                                   rating['Disagree'] ,
                                                                   rating['Strongly Disagree'],
                                                                   rating['Total'],
                                                                   rating['Strongly Agree (%)'],
                                                                   rating['Agree (%)'],
                                                                   rating['Neutral (%)'],
                                                                   rating['Disagree (%)'],
                                                                   rating['Strongly Disagree (%)']
                                             fill_color='lavender',
                                             align='center'))
                                 ]
           fig.update_layout(width=990, height=350)
           fig.show()
```

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
428	111	70	101	80	790	54.18	14.05	8.86	12.78	10.13
370	222	80	104	70	846	43.74	26.24	9.46	12.29	8.27
298	121	90	102	60	671	44.41	18.03	13.41	15.2	8.94
310	141	100	109	56	716	43.3	19.69	13.97	15.22	7.82
400	121	110	107	78	816	49.02	14.83	13.48	13.11	9.56

4 ■

```
In [120]: | # Styled Table in Plotly
           fig = go.Figure(data=[go.Table(
                                            header=dict(
                                                         values=list(insurance.columns), # Header values
                                                         line_color='black', # Line Color of header
                                                         fill_color='orange', # background color of header
                                                         align='center', # Align header at center
                                                         height=40, # Height of Header
                                                         font=dict(color='white', size=18), # Font size & color of header text
                                            cells=dict(values=[
                                                                insurance.age , # Column values
                                                                insurance.sex,
                                                                insurance.bmi,
                                                                insurance.children,
                                                                insurance.smoker,
                                                                insurance.region,
                                                                insurance.charges
                                                               ],
                                                       line_color='darkgrey', # Line color of the cell
                                                       fill_color='lightcyan', # Color of the cell
                                                       align='left' # Align text to left in cell
                                          )
                                ]
           fig.show()
```

age	sex	bmi	children	smoker	region	charges
19	female	27.9	0	yes	southwest	16884.924
18	male	33.77	1	no	southeast	1725.5523
28	male	33	3	no	southeast	4449.462
33	male	22.705	0	no	northwest	21984.47061
32	male	28.88	0	no	northwest	3866.8552
31	female	25.74	0	no	southeast	3756.6216
46	female	33.44	1	no	southeast	8240.5896
37	female	27.74	3	no	northwest	7281.5056
37	male	29.83	2	no	northeast	6406.4107
60	female	25.84	0	no	northwest	28923.13691999999
25	male	26.22	0	no	northeast	2721.3208
62	female	26.29	0	yes	southeast	27808.7251
23	male	34.4	0	no	southwest	1826.842999999999
56	female	39.82	0	no	southeast	11090.7178
27	male	42.13	0	yes	southeast	39611.7577

```
In [143]: | # Styled Table in Plotly
           rowEvenColor = 'lightgrey'
           rowOddColor = 'white'
           fig = go.Figure(data=[go.Table( columnwidth = [80,80,80,80,80,80,120,80,80,120],
                                             header=dict(
                                                          values=[
                                                                  '<b>Strongly Agree</b>',
                                                                  '<b>Agree</b>',
                                                                  '<b>Neutral</b>',
                                                                  '<b>Disagree</b>',
                                                                  '<b>Strongly Disagree</b>',
                                                                  '<b>Total</b>',
                                                                  '<b>Strongly Agree (%)</b>',
                                                                  '<b>Agree (%)</b>',
                                                                  '<b>Neutral (%)</b>',
                                                                  '<b>Disagree (%)</b>',
                                                                  '<b>Strongly Disagree (%)</b>'
                                                                 ],
                                                          fill_color='#8BC34A',
                                                          line = dict(color = '#689F38'), width = 4),
                                                          align='center',
                                                          font_size=12,
                                                          font_color = 'white'
                                             cells=dict(values=[
                                                                 rating['Strongly Agree'] ,
                                                                 rating['Agree'] ,
                                                                 rating['Neutral'] ,
                                                                 rating['Disagree'] ,
                                                                 rating['Strongly Disagree'],
                                                                 rating['Total'],
                                                                 rating['Strongly Agree (%)'],
                                                                 rating['Agree (%)'],
                                                                 rating['Neutral (%)'],
                                                                 rating['Disagree (%)'],
                                                                 rating['Strongly Disagree (%)']
                                                                ],
                                                         fill_color = [[rowOddColor,rowEvenColor]*5],
                                                         line = dict(color = 'lightgreen' , width = 4),
                                                         align ='center',
                                                         font_size=12,
                                                         font = dict(color = 'darkslategray', size = 11),
                                                         height=40
                                                        )
                                            )
                                 ]
           fig.update_layout(width=990, height=500)
           fig.show()
```

Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree	Total	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
428	111	70	101	80	790	54.18	14.05	8.86	12.78	10.13
370	222	80	104	70	846	43.74	26.24	9.46	12.29	8.27
298	121	90	102	60	671	44.41	18.03	13.41	15.2	8.94
310	141	100	109	56	716	43.3	19.69	13.97	15.22	7.82
400	121	110	107	78	816	49.02	14.83	13.48	13.11	9.56

In [31]: # Create simple table using create_table function

fig = ff.create_table(insurance.tail(5)) fig.show()

age	sex	bmi	children	smoker	region	charges
50	male	30.97	3	no	northwest	10600.5483
18	female	31.92	0	no	northeast	2205.9808
18	female	36.85	0	no	southeast	1629.8335
21	female	25.8	0	no	southwest	2007.945
61	female	29.07	0	yes	northwest	29141.3603

In [266]: # Create simple table using create_table function

fig = ff.create_table(insurance.tail(5),height_constant=50) fig.show()

age	sex	bmi	children	smoker	region	charges
50	male	30.97	3	no	northwest	10600.5483
18	female	31.92	0	no	northeast	2205.9808
18	female	36.85	0	no	southeast	1629.8335
21	female	25.8	0	no	southwest	2007.945
61	female	29.07	0	yes	northwest	29141.3603

In [47]: # Using color scales in table

colorscale = [[0, 'red'],[.5, '#DCE775'],[1, '#C0CA33']] fig = ff.create_table(insurance.tail(5),height_constant=50,colorscale=colorscale) fig.show()

age	sex	bmi	children	smoker	region	charges
50	male	30.97	3	no	northwest	10600.5483
18	female	31.92	0	no	northeast	2205.9808
18	female	36.85	0	no	southeast	1629.8335
21	female	25.8	0	no	southwest	2007.945
61	female	29.07	0	yes	northwest	29141.3603

```
In [50]: # Changing font color

colorscale = [[0, 'red'],[.5, '#DCE775'],[1, '#C0CA33']]
font=['white', '#212121' , 'red']
fig = ff.create_table(insurance.tail(5),height_constant=50,colorscale=colorscale,font_colors=font)
fig.show()
```

age	sex	bmi	children	smoker	region	charges
50	male	30.97	3	no	northwest	10600.5483
18	female	31.92	0	no	northeast	2205.9808
18	female	36.85	0	no	southeast	1629.8335
21	female	25.8	0	no	southwest	2007.945
61	female	29.07	0	yes	northwest	29141.3603

```
In [269]: # Changing font size using "fig.layout.annotations[i].font.size"

colorscale = [[0, 'red'],[.5, '#DCE775'],[1, '#C0CA33']]
font=['white', '#212121' , 'red']
fig = ff.create_table(insurance.tail(5),height_constant=50,colorscale=colorscale,font_colors=font)
for i in range(len(fig.layout.annotations)):
    fig.layout.annotations[i].font.size = 17
fig.show()
```

age	sex	bmi	children	smoker	region	charges
50	male	30.97	3	no	northwest	10600.548
18	female	31.92	0	no	northeast	2205.9808
18	female	36.85	0	no	southeast	1629.8335
21	female	25.8	0	no	southwest	2007.945
61	female	29.07	0	yes	northwest	29141.360

```
In [44]:
    colorscale = [[0, 'red'],[.5, '#DCE775'],[1, '#C0CA33']]
    font=['white', '#212121' , 'red']
    fig = ff.create_table(insurance.tail(5),height_constant=50,colorscale=colorscale,font_colors=font)
    for i in range(len(fig.layout.annotations)):
        fig.layout.annotations[i].font.size = 12
    fig.show()
```

age	sex	bmi	children	smoker	region	charges
50	male	30.97	3	no	northwest	10600.5483
18	female	31.92	0	no	northeast	2205.9808
18	female	36.85	0	no	southeast	1629.8335
21	female	25.8	0	no	southwest	2007.945
61	female	29.07	0	yes	northwest	29141.3603

In [52]: canada.loc[:, ['India', 'Pakistan', 'China']].head(6)

Out[52]:

	India	Pakistan	China
1980	8880	978	5123
1981	8670	972	6682
1982	8147	1201	3308
1983	7338	900	1863
1984	5704	668	1527
1985	4211	514	1816

```
In [121]: | # Displaying tables along with graphs
           import plotly.graph_objs as go
           import plotly.figure_factory as ff
           # Add table data
           table_data = canada.loc[:, ['India', 'Pakistan', 'China']].head(6)
           # Initialize a figure with ff.create_table(table_data)
           fig = ff.create_table(table_data, height_constant=60)
           # Make traces for graph
           fig.add_trace( go.Scatter(
                               x = canada.index.values,
                               y = canada['China'],
                               mode = 'lines',
                               name = 'China',
                               xaxis='x2', yaxis='y2'
                         )
           # Make traces for graph
           fig.add_trace( go.Scatter(
                               x = canada.index.values,
                               y = canada['India'],
                               mode = 'lines',
                               name = 'India',
                               xaxis='x2', yaxis='y2'
                         )
           # Make traces for graph
           fig.add_trace( go.Scatter(
                                   x = canada.index.values,
                                   y = canada['Pakistan'],
                                   mode = 'lines',
                                   name = 'Pakistan',
                                   xaxis='x2', yaxis='y2'
                         )
           fig.update_layout(
                                title=dict(text = "Immigration Data", x=0.5, y=0.98), # Figure title along with Alignment values
                                paper_bgcolor= '#dbdbdb', # Figure background
                               margin = {'t':50, 'b':100},
                               xaxis = {'domain': [0, .5] , 'title' : 'Migrants'},
                               xaxis2 = {'domain': [0.6, 1.] , 'title' : 'Year'},
                               yaxis2 = {'anchor': 'x2', 'title': 'Count'},
                               width = 990,
                               height = 600
                              )
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
```

Immigration Data

India	Pakistan	China
8880	978	5123
8670	972	6682
8147	1201	3308
7338	900	1863
5704	668	1527
4211	514	1816

fig.show()

Migrants

◀			>

```
In [122]: | # Displaying tables along with graphs
           import plotly.graph_objs as go
           import plotly.figure_factory as ff
           # Add table data
           table_data = canada.loc[:, ['India', 'Pakistan', 'China', 'Australia', 'Germany', 'Austria']].head(6)
           # Initialize a figure with ff.create_table(table_data)
           fig = ff.create_table(table_data, height_constant=60)
           # Make traces for graph
           fig.add_trace( go.Scatter(
                               x = canada.index.values,
                               y = canada['China'],
                               mode = 'lines',
                               name = 'China',
                               xaxis='x2', yaxis='y2'
                         )
           fig.add_trace( go.Scatter(
                               x = canada.index.values,
                               y = canada['India'],
                               mode = 'lines',
                               name = 'India',
                               xaxis='x2', yaxis='y2'
           fig.add_trace( go.Scatter(
                                    x = canada.index.values,
                                   y = canada['Pakistan'],
                                   mode = 'lines',
                                   name = 'Pakistan',
                                   xaxis='x2', yaxis='y2'
                        )
           fig.update_layout(
               title_text = '2016 Hockey Stats',
               height = 800,
               margin = {'t':50, 'l':20},
               yaxis = {'domain': [0, .3]},
               yaxis2 = {'domain': [.4, 1], 'anchor': 'x2', 'title': 'Goals'},
               xaxis2 = {'anchor': 'y2'},
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
           fig.show()
```

2016 Hockey Stats

India	Pakistan	China	Australia	Germany	Austria
8880	978	5123	702	1626	234

8670	972	6682	639	1977	238	
8147	1201	3308	484	3062	201	
7338	900	1863	317	2376	117	
5704	668	1527	317	1610	127	

Color scales in Plotly Express

In [23]: #Sequential Color scales
fig = px.colors.sequential.swatches()
fig.update_layout(width = 990 , height = 1760)
fig.show()

plotly.colors.sequential

In [313]:

#Cyclical Color scales
fig = px.colors.cyclical.swatches_cyclical()
fig.show()

plotly.colors.cyclical

In [314]:

#Cyclical Color scales
fig = px.colors.cyclical.swatches()
fig.show()

plotly.colors.cyclical

In [315]:

#Diverging Color scales
fig = px.colors.diverging.swatches().update_layout(margin_b=10)
fig.show()

plotly.colors.diverging

In [318]: #

#Qualitative Color scales
fig = px.colors.qualitative.swatches()
fig.show()

plotly.colors.qualitative

Sunburst Chart

In [273]:

insurance = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/insurance.csv')
insurance.head(10)

Out[273]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
6	46	female	33.440	1	no	southeast	8240.58960
7	37	female	27.740	3	no	northwest	7281.50560
8	37	male	29.830	2	no	northeast	6406.41070
9	60	female	25.840	0	no	northwest	28923.13692

In [274]: # Simple Sunburst Chart

fig = px.sunburst(insurance, path=['region', 'smoker', 'sex'], values='charges')
fig.update_layout (height = 800, width = 800)
fig.show()

Out[65]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	country- year	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)	generation
0	Albania	1987	male	15-24 years	21	312900	6.71	Albania1987	NaN	2,156,624,900	796	Generation X
1	Albania	1987	male	35-54 years	16	308000	5.19	Albania1987	NaN	2,156,624,900	796	Silent
2	Albania	1987	female	15-24 years	14	289700	4.83	Albania1987	NaN	2,156,624,900	796	Generation X
3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	2,156,624,900	796	G.I. Generation
4	Albania	1987	male	25-34 years	9	274300	3.28	Albania1987	NaN	2,156,624,900	796	Boomers
5	Albania	1987	female	75+ years	1	35600	2.81	Albania1987	NaN	2,156,624,900	796	G.I. Generation
6	Albania	1987	female	35-54 years	6	278800	2.15	Albania1987	NaN	2,156,624,900	796	Silent
7	Albania	1987	female	25-34 years	4	257200	1.56	Albania1987	NaN	2,156,624,900	796	Boomers
8	Albania	1987	male	55-74 years	1	137500	0.73	Albania1987	NaN	2,156,624,900	796	G.I. Generation
9	Albania	1987	female	5-14 years	0	311000	0.00	Albania1987	NaN	2,156,624,900	796	Generation X

Sankey Diagram


```
In [125]: | #Simple Sankey Diagram
           fig = go.Figure(
                            go.Sankey(
                                       node = {
                                                "label": ["Married: NO", "Married: Yes",
                                                          "Pet: No", "Pet: Yes",
                                                          "Happy: Yes", "Happy: No"],
                                                 "color" : px.colors.qualitative.Set3 # Node color
                                              },
                                       link = dict(
                                                    source = [0, 0, 1, 1, 2, 2, 3, 5],
                                                    target = [2, 3, 2, 3, 5, 4, 4, 3],
                                                    value = [200, 300, 400, 600, 150, 350,700],
                                                    color = px.colors.qualitative.Set2 # Color of links
                                     )
                          )
           # Hide grid lines
           fig.update_xaxes(showgrid=False)
           fig.update_yaxes(showgrid=False)
           fig.show()
```


END