CS181 Practice Questions: Max-Margin Classification

When maximizing the margin, we seek to learn linear functions of the form

$$f(x, w, b) = w^{\mathsf{T}} \phi(x) + b$$

where w is an M-dimensional column vector of weights and $\phi(x)$ is a collection of feature maps (like the regression and neural network case). The training data set comprise of N input vectors x_1, x_2, \ldots, x_N with the corresponding target labels t_1, t_2, \ldots, t_N , where $t_n \in \{-1, +1\}$.

1. Computing the Margin

What is the perpendicular distance from a data point x_n to the decision boundary $y_w(x)$?

\sim	-	•			•		- D	1 1	
',	Кэ	CIC	N /	2V1	m 17	211A1	ı Pro	h	Δm
	1)a	716		1 <i>a</i> x i		auvi		.,,	

What is the optimization problem we write for maximizing the margin?

3. Constrained Minimization

What is the corresponding constrained quadratic minimization problem for maximizing the margin?

4. Equivalence

Explain (at a high level) why the constrained quadratic minimization of question (3) is equivalent to the unconstrained maximization in (2)

5. **Tightness**

What happens to the inequalities $t_n(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b) \geq 1$ for the optimal solution?

6. Kernels

What is kernel function?