Differentiaalvergelijkingen Lessenpakket 2016 - 2017

Uitkomsten – Extra oefenmateriaal – Hoofdstuk 7

nico.scheerlinck@cs.kuleuven.be

1. (a)

(b)

(c)
$$\mathbf{x}'(t) = \begin{pmatrix} 0 & 1 \\ -\frac{2}{t^2} & \frac{2}{t} \end{pmatrix} \mathbf{x}(t)$$

2. (a)

(b)

(c)
$$\mathbf{x}'(t) = \begin{pmatrix} 0 & 1 \\ \frac{1}{1-t} & -\frac{t}{1-t} \end{pmatrix} \mathbf{x}(t)$$

3. kritisch punt is (asymptotisch) onstabiel, ongeacht de waarde van α .

4.

5. • $\alpha < 0$: spiraal, asymptotisch stabiel;

• $\alpha = 0$: knoop (improper node), asymptotisch stabiel;

• $0 < \alpha < 1$: knoop, asymptotisch stabiel;

• $\alpha = 1$: one indig veel kritische punten, asymptotisch stabiel;

• $\alpha > 1$: zadelpunt, asymptotisch onstabiel.

6. de gegeven matrix heeft een dubbele eigenwaarde (met dimensie van de eigenruimte gelijk aan 1); oplossingsmethode werd in deze cursus niet gezien/besproken. Je kan eventueel de oefening eens maken voor een andere matrix (zonder dubbele eigenwaarde).

7.
$$\mathbf{x}(t) = \begin{pmatrix} (t+1) e^t \\ \sin(2t) e^t \\ -\cos(2t) e^t \end{pmatrix}$$

8.
$$\mathbf{x}(t) = \begin{pmatrix} e^{-t} \left(-3\sin t + \cos t \right) \\ e^{-t} \left(-\sin t + \cos t \right) \\ e^{-2t} \left(-10\sin t + 2\cos t \right) \\ e^{-2t} \left(-6\sin t - 4\cos t \right) \end{pmatrix}$$

9.

- 10. (a) $y(t) = \frac{2}{3}e^{-t} + \frac{1}{12}e^{2t} + \frac{1}{4}e^{-2t}$ $z(t) = \frac{1}{3}e^{-t} \frac{1}{3}e^{2t}$
 - (b) $y(t) = 2e^t$ $z(t) = 3e^{-t}$
 - (c) $y(t) = e^t \frac{1}{3}e^{-3t} \frac{2}{3}$ $z(t) = \frac{3}{2}e^t + \frac{1}{6}e^{-3t} - \frac{2}{3}$
 - (d) $y(t) = e^{-t}(2\cos t \sin t)$ $z(t) = e^{-t}(1 - \cos t + 3\sin t)$
 - (e) $y(t) = 1 e^{-t}$ $z(t) = e^{-t}$
 - (f) $x(t) = 1 e^{-t} + e^{-2t}$ $y(t) = -1 + e^{-t}$ $z(t) = -\frac{1}{2} + 2e^{-t} - \frac{3}{2}e^{-2t}$
 - (g) $x(t) = 2A\cos t + 2B\sin t$ $y(t) = A(-2\cos t \sin t) + B(-2\sin t + \cos t) + Ce^{t}$ $z(t) = A\cos t + B\sin t + Ce^{t}$
- 11. (a) stabiel voor $(0 < \lambda < 1)$ & $(\forall \mu \in \mathbb{R})$
 - (b) niet stabiel $\forall \lambda, \mu \in \mathbb{R}$
 - (c) stabiel voor $(\lambda < -2)$ & $(\mu < 2\lambda)$
 - (d) stabiel voor $(-1 < \lambda < \frac{1}{2})$ & $(\mu < 0)$