אלגברה רלציונית

Query 1

```
select distinct supply_location from book
inner join supply
on book.supply_id = supply.supply_id
and book_title= ?
where supply.supply_location='store' or supply.supply_location='storage';

π distinct σ ((book) ⋈ book.supply_id = supply.supply_id (supply) AND book
title = ? (supply.supply_location='store' or
supply.supply_location='storage')(book))
```

Query 2

select person_first_name,person_last_name,min(customer_join_date) from customer

inner join person on person.person_id = customer.person_id;

 π person_first_name, person_last_name,min(customer_join_date) σ ((customer) \bowtie person_person_id = customer.person_id)

Query 3

```
select book_title,book_author,min(supply_date) from supply
inner join book on supply.supply_id = book.supply_id
where supply_location='store' or supply_location='storage';

π book_title,book_author,min(supply_date) σ ((supply) ⋈ supply.supply_id = book.supply_id(supply_location='store' or supply_location='storage')
```

select

 $book.book_title,book.book_author,person_first_name,person_last_name,o$ $rder_date$

from _order

inner join book on _order.book_id = book.book_id

inner join customer on customer.customer_id = _order.customer_id
inner join person on person.person_id = customer.person_id
order by order_date;

π(book.book_title,book.book_author,person_first_name,person_last_name,order _date) σ((_order) ⋈ _order.book_id = book.book_id(book) ⋈ customer.customer_id = _order.customer_id(customer) ⋈ person.person_id = customer.person_id

Query 5

(person)) τ order_date

select book_title,book_author,count(book.book_title)

from book

inner join buy_book_store on book.book_id = buy_book_store.book_id
and book.book_title= ?;

 π (book_title,book_author,count(book.book_title)) σ ((buy_book_store) \bowtie book.book_id = buy_book_store.book_id and book.book_title = ? (book))

```
Query 6
```

SELECT book.book_author,
max(supply.supply_sold)

FROM book

INNER JOIN _order

ON book.book_id = _order.order_id

INNER JOIN supply

ON book.supply_id = supply.supply_id

WHERE supply_supply_date BETWEEN ? AND ?;

π book.book_author,max(supply_sold) σ ((_order) ⋈ book.book_id = _order.order_id (supply) ⋈ book.supply_id = supply.supply_id (supply_supply_date BETWEEN ! AND !)(book))

Query 7

Select

person.person_first_name,person.person_last_name,sum(transactions.tran sactions_book_sold)

from transactions

inner join customer on transactions.customer_id = customer.customer_id
inner join person on person.person_id = customer.person_id
group by transactions.customer_id
order by sum(transactions.transactions_book_sold) desc
limit 3;

 π (person_person_first_name,person_person_last_name,sum(transactions.transactions_book_sold) σ ((customer) \bowtie transactions.customer_id = customer.customer_id (person) \bowtie person_person_id = customer.person_id) γ transactions.customer_id τ sum(transactions.transactions_book_sold) desc limit 3(transactions))

Query 8

SELECT book.book_title,publisher.publisher_translator_name count(publisher.publisher_translator_name)

FROM book

INNER JOIN supply

ON supply_supply_id = book.supply_id and

supply.supply_location = 'store' or supply.supply_location =

'storge'

INNER JOIN publisher

ON publisher.book_id = publisher.publisher_id

GROUP BY publisher_translator_name

ORDER BY count(publisher.publisher_translator_name)

desc

limit 1;

π book.book_title,publisher_publisher_translator_namecount

(publisher.publisher_translator_name) σ ((supply) ⋈ supply.supply_id =

book.supply_id and and

supply_supply_location = 'store' or supply.supply_location = 'storge' (publisher)

⋈ publisher.book_id = publisher.publisher_id γ

publisher.publisher_translator_name τ

count(publisher.publisher_translator_name) desc limit 1 (book))

```
Query 9
```

```
select book.book title, date (transaction date), store. store book price sell
from transactions
inner join customer on customer.customer_id = transactions.customer_id
inner join person on person.person_id = customer.person_id
inner join delivery on delivery.transactions_id =
transactions.transactions_id
inner join buy_book_store on buy_book_store.transactions_id =
transactions.transactions id
inner join book on book.book_id = buy_book_store.book_id or
book.book_id = delivery.book_id
inner join store on store.buy_book_store_id =
buy_book_store.buy_book_store_id
or store.delivery_id = delivery.delivery_id
where person_person_first_name = 'nahman' and
person.person_last_name= 'nahamani'
group by book_title
order by transactions.transaction_date;
π book.book_title,date(transaction_date), store.store_book_price_sell
σ(transactions)
⊠customer_id = transactions.customer_id
⋈person.person_id = customer.person_id
⋈buy_book_store.transactions_id = transactions.transactions_id
```

select person.person_first_name,person.person_last_name,book.book_title, date(order_date),supply_location,

transactions.transactions_id

from _order

INNER JOIN customer ON customer.customer_id = _order.customer_id

inner join person on person.person_id = customer.person_id

INNER JOIN book ON book.book_id = _order.book_id

INNER JOIN supply ON supply.supply_id = book.supply_id

INNER JOIN buy_book_store ON buy_book_store.book_id = book.book_id

INNER JOIN delivery ON delivery.book_id = book.book_id

INNER JOIN transactions on customer.customer_id = transactions.customer_id

where customer_id='2' and supply_supply_location='store' or supply_supply_location='storge'

group by order_id

order by order_date;

```
π person.person_first_name, person.person_last_name, book.book_title,
date(order_date), supply_location, transactions_transactions_id σ(_order)
⊠customer_id = _order.customer_id
⋈person.person_id = customer.person_id
⋈book.book_id = _order.book_id
⋈supply.supply_id = book.supply_id
⋈buy_book_store.book_id = book.book_id
⋈delivery.book_id = book.book_id
⊠customer_id = transactions.customer_id
customer_id='?' and supply_supply_location='store' or
supply_location='storge'
group by order_id \leftarrow \tau order_date;
Query 11
select distinct delivery_tracking_number,book.book_author,
book_details.book_details_book_weight, book_details_book_weight*2 as
delivery_price from delivery
inner join book on book.book_id = delivery.book_id
```

inner join book_details on book_details.book_details_id =

book_details.book_details_id

where book_title = ?

group by delivery_id;

```
π delivery_tracking_number,book.book_author,

book_details.book_details_book_weight σ(delivery) ⋈ book.book_id =

delivery.book_id

⋈ book_details.book_details_id = book_details.book_details_id

book_title = '?' OR book_title ='?'

group by delivery_id;
```

select person.person_first_name,person.person_last_name,date(transaction_date),

transactions_price,transactions_book_sold, delivery.delivery_id,
count(delivery.delivery_id)

from transactions

inner join customer on customer.customer_id = transactions.customer_id

inner join person on person_id = customer.person_id

inner join delivery on delivery.transactions_id =
transactions.transactions id

where customer_id=?

group by transactions.transactions_id

#group by delivery.delivery_id

having count(delivery.delivery_id) >1;

 π person_person_first_name, person_person_last_name , date(transaction_date), transactions_price, transactions_book_sold, delivery.delivery_id, count(delivery_id) σ (transactions)

⋈ customer_id = transactions.customer_id

```
    person.person_id = customer.person_id

    delivery.transactions_id = transactions.transactions_id

    customer.customer_id= ?

group by transactions.transactions_id

count(delivery.delivery_id) >1;
```

```
select delivery_tracking_number,delivery_status

from delivery where delivery_tracking_number = ?;

π delivery_tracking_number ,delivery_status

σ(delivery) delivery_tracking_number='?';
```

Query 14

select

month(transaction_date),transactions_book_sold,sum(transactions_price) from transactions

```
inner join delivery on delivery.transactions_id =
transactions.transactions_id
```

inner join post_type on delivery.post_type_id = post_type.post_type_id
where post_type_company = 'Xpress' and month(transaction_date) = ?;

 π month(transaction_date), transactions_book_sold, sum(transactions_price) σ (transactions)

⋈ delivery.transactions_id = transactions.transactions_id(delivery)

⋈ delivery.post_type_id = post_type.post_type_id(post_type)

```
post_type_company = 'Xpress' and month(transaction_date) = ?;
```

select month(transaction_date), sum(transactions_price) from transactions

WHERE transactions_payment_method = 'Bit'

and month(transaction_date) = ?;

 π month(transaction_date), sum(transactions_price) σ (transactions)

transactions_payment_method = 'Bit'

AND month(transaction_date) = ?;

Query 16

select

 $transactions.transactions_id, transactions.transactions_book_sold, transactions_transaction_date,$

sum(store_book_price_sell-store_book_price_buy) as sum_transactions from store

INNER JOIN buy_book_store ON buy_book_store.buy_book_store_id = store.buy_book_store_id

INNER JOIN delivery ON delivery_id = store.delivery_id

INNER JOIN transactions ON delivery.transactions_id = transactions.transactions_id

or buy_book_store.transactions_id = transactions.transactions_id group by store_id

having transaction_date >= date_sub(now(), interval 12 month)
and sum_transactions >

```
(select avg(store_book_price_sell-store_book_price_buy) as avg_store from store);
```

p(sum_transactions) π(transactions.transactions_id, transactions.transactions_book_sold, transactions.transaction_date, sum(store_book_price_sell-store_book_price_buy)) σ(store)

buy_book_store.buy_book_store_id = store.buy_book_store_id

⋈ delivery_id = store.delivery_id

⋈ delivery.transactions_id = transactions.transactions_id

OR buy_book_store.transactions_id = transactions.transactions_id group by store_id

transaction_date >= date_sub(now(), interval 12 month)

AND sum_transactions >

(select avg(store_book_price_sell-store_book_price_buy) as avg_store from store);

Query 17

select post_type_company,count(post_type_company)

FROM post_type

INNER JOIN delivery

ON post_type.post_type_id = delivery.post_type_id

INNER JOIN transactions

ON transactions.transactions_id= delivery.transactions_id where transaction_date >= date_sub(now(), interval 12 month) group by post_type_company;

π post_type_company, count(post_type_company) σ (post_type)

select count(publisher_name),delivery_id,book_title,publisher_name from delivery

INNER JOIN book

ON delivery.book_id = book.book_id

INNER JOIN publisher

ON book.book_id = publisher.book_id

group by book_title

having count(publisher_name) > 1;

 π count(publisher_name),delivery_id,book_title,publisher_name σ (delivery)

⋈ delivery.book_id = book.book_id

⋈book.book_id = publisher.book_id

group by book_title

count(publisher_name) > 1;

Query 19

select person_first_name,person_last_name

from transactions

inner join customer on transactions.customer_id = customer.customer_id

```
inner join person on customer.person id = person.person id
where transaction date <?
group by person.person_id;
\pi person_first_name,person_last_name \sigma (transactions)
⋈ transactions.customer_id = customer.customer_id
⊠customer.person_id = person.person_id
transaction_date < '2018-07-30'
group by person.person_id;
Query 20
select person.person_first_name,person.person_last_name,
DATEDIFF(order_date_arrive, transactions.transaction_date)
from order
inner join customer on _order.customer_id = customer.customer_id
inner join person on person.person_id = customer.person_id
inner join transactions on transactions.transactions id =
order.transactions id
where DATEDIFF(order_date_arrive, transactions.transaction_date) > 14;
π person_person_first_name, person_person_last_name,
DATEDIFF(order date arrive, transactions. transaction date) \sigma (order)
⋈_order.customer_id = customer.customer_id
⋈person.person_id = customer.person_id
DATEDIFF(order_date_arrive, transactions.transaction_date) > 14;
```

```
Query 21
```

```
SELECT
```

supply_location, YEAR(supply_date), MONTH(supply_date), sum(supply_q uantity)

FROM supply

where supply_location= 'storage'

GROUP BY YEAR(supply_date), MONTH(supply_date)

ORDER BY YEAR(supply_date);

 π supply_location ,YEAR(supply_date), MONTH(supply_date), sum(supply_quantity) σ (supply) supply_location= 'storage'

GROUP BY YEAR(supply_date), MONTH(supply_date) $\leftarrow \tau$ YEAR(supply_date);

Query 22

select book_in_store_date between ? and ? ,

count(book.book_id),sum(store.store_book_price_buy)

from book_in_store

inner join store on store.store_id = book_in_store.store_id

inner join book on book.book_id = book_in_store.book_id

where book_in_store_date between ? and ? ;

π book_in_store_date between '?' AND '?', count(book.book_id),

sum(store.store_book_price_buy)

σ (book_in_store)

⋈ store.store_id = book_in_store.store_id

```
⋈book.book_id = book_in_store.book_id
book_in_store_date between '?' and '?';
```

```
Query 23
select sum_pay_month,sum_sell_month.sum_sell_month-sum_pay_month
as profit from
(select sum(store_payment_electric_bill) + sum(store_payment_water_bill)
+ sum(store_payment_rent)
+ sum(store_payment_tax)
+ sum(store_payment_other) + sum(store_payment_home_number) +
sum(store_payment_phone_number)
AS sum_pay_month,
sum(store_book_price_sell)-sum(store_book_price_buy) +
sum(transactions_price) AS sum_sell_month
from store_payment
inner join store on store_payment.store_id = store.store_id
inner join buy_book_store on buy_book_store.buy_book_store_id =
store.buy_book_store_id
inner join delivery on delivery.delivery_id = store.delivery_id
inner join transactions on transactions.transactions id =
delivery.transactions_id
or buy_book_store.transactions_id = transactions.transactions_id
where store_payment_month = ? and store_payment_year = ?) as a;
ρ(profit) π (sum_pay_month, sum_sell_month, sum_sell_month-
sum_pay_month)
```

```
σ (ρ(sum_pay_month, sum(store_book_price_sell)-sum(store_book_price_buy) +
sum(transactions_price)) (π sum(store_payment_electric_bill) +
sum(store_payment_water_bill) + sum(store_payment_rent)
+ sum(store_payment_tax) + sum(store_payment_other) +
sum(store_payment_home_number) + sum(store_payment_phone_number))
ρ(sum_sell_month)
σ (store_payment)

✓ store_payment.store_id = store.store_id

✓ buy_book_store.buy_book_store_id = store.buy_book_store_id

✓ delivery.delivery_id = store.delivery_id

✓ transactions.transactions_id = delivery.transactions_id

OR buy_book_store.transactions_id = transactions.transactions_id
ρ(a) store_payment_month = 4 and store_payment_year = 2007);
```

SELECT YEAR(transaction_date), MONTH(transaction_date), AVG(transactions_price)

FROM transactions

GROUP BY YEAR(transaction_date), MONTH(transaction_date)
ORDER BY YEAR(transaction_date);

 π (transaction_date),MONTH(transaction_date), AVG(transactions_price) σ (transactions)

GROUP BY YEAR(transaction_date), MONTH(transaction_date) $\leftarrow \tau$ YEAR(transaction_date);

```
Query 25
```

```
select person_first_name, person_last_name,
sum(employee_working_hours)*30 from person
```

INNER JOIN employee

ON person_id = employee.person_id

WHERE person_person_first_name=? and

person.person_last_name= ?;

 π person_first_name, person_last_name, sum(employee_working_hours)*30 σ (person)

⋈person_person_id = employee.person_id

person.person_first_name= '?' AND person.person_last_name= '?';

Query 26

select person_first_name,person_last_name,count(transactions_id) from person

INNER JOIN employee

ON person_id = employee.person_id

INNER JOIN transactions

ON employee.employee_id =

transactions.employee_id

where month(transaction_date) = ?

having max(transactions_id);

 π person_first_name,person_last_name,count(transactions_id) σ (person)

⋈person.person_id = employee.person_id