

CHAPTER 6

Frequency Modulation

(Part 1 of 4)

Introduction

AM signal

Frequency constant Amplitude varies

FM signal

Amplitude constant Frequency varies

6.1 Basic concepts of FM

FM signal

$$V_{FM}(t) = V_{c}\cos\theta(t) = V_{c}\cos 2\pi \left(f_{c}t + k_{f}\int_{0}^{t}v_{s}(\tau)d\tau\right)$$

When $v_s(t)=0$, FM waveform becomes a pure sinusoidal carrier: $V_c cos(2\pi f_c t)$

Frequency of FM signal is constantly changing

The frequency at any instant in time is known as the instantaneous frequency $f_i(t)$.

$$f_i(t) = f_c + k_f v_s(t)$$

$$changing range$$

$$to$$

$$f_c + k_f [min v_s(t)]$$

$$f_c + k_f [max v_s(t)]$$

$$f_c + k_f [max v_s(t)]$$

$$Maximum$$

Relates frequency changes to instantaneous values of $v_s(t)$

6.1 Basic concepts of FM

Single-tone FM signal

Modulating signal: $v_s(t) = V_s \cos 2\pi f t = V_s \cos \omega_s t$

FM signal:
$$v_{FM}(t) = V_{c}\cos(\omega_{c}t + m_{f}\sin\omega_{s}t)$$

Modulation index

The instantaneous frequency:

$$f_i(t) = f_c + k_f v_s(t) = f_c + k_f V_s cos \omega_s t$$

$$f_i(t) = f_c + k_f v_s(t)$$
$$= f_c + k_f V_s cos \omega_s t$$

follows the changes in v_s(t)

From 0 to $t_1 (v_s(t) = 0V)$: $f_i(t) = f_c$

$$f_i(t) = f_c + k_f v_s(t)$$

= $f_c + k_f V_s cos \omega_s t$

follows the changes in v_s(t)

From 0 to $t_1 (v_s(t) = 0V)$: $f_i(t) = f_c$

From t_1 to t_2 : $f_i(t)$ increases from f_c to $f_c+k_fV_s$

$$f_i(t) = f_c + k_f v_s(t)$$

= $f_c + k_f V_s cos \omega_s t$

follows the changes in v_s(t)

From 0 to $t_1 (v_s(t) = 0V)$: $f_i(t) = f_c$

From t_1 to t_2 : $f_i(t)$ increases from f_c to $f_c+k_fV_s$

From t_2 to t_3 : $f_i(t)$ decreases from $f_c+k_fV_s$ to f_c

$$f_i(t) = f_c + k_f v_s(t)$$
$$= f_c + k_f V_s cos \omega_s t$$

follows the changes in v_s(t)

From 0 to $t_1 (v_s(t) = 0V)$: $f_i(t) = f_c$

From t_1 to t_2 : $f_i(t)$ increases from f_c to $f_c+k_fV_s$

From t_2 to t_3 : $f_i(t)$ decreases from $f_c+k_fV_s$ to f_c

From t_3 to t_4 : $f_i(t)$ decreases from f_c to f_c - k_fV_s

$$f_i(t) = f_c + k_f v_s(t)$$

= $f_c + k_f V_s cos \omega_s t$

follows the changes in v_s(t)

From 0 to $t_1 (v_s(t) = 0V)$: $f_i(t) = f_c$

From t_1 to t_2 : $f_i(t)$ increases from f_c to $f_c+k_fV_s$

From t_2 to t_3 : $f_i(t)$ decreases from $f_c+k_fV_s$ to f_c

From t_3 to t_4 : $f_i(t)$ decreases from f_c to f_c - k_fV_s

From t_4 to t_5 : $f_i(t)$ increases from $f_c-k_fV_s$ to f_c .

 $f_i(t)$ has the same shape as $v_s(t)$

Frequency deviation

The amount of frequency change away from f_c at any instant in time

Frequency Deviation = $k_f \times v_s(t)$

Proportional to the modulating voltage at that instant in time

Peak frequency deviation, Δ_f

The maximum frequency change on either side of carrier frequency f_c

 $\Delta_f = k_f x$ peak modulating voltage = $k_f V_S$

$$f_{i(max)}$$
 (t)= $f_C + \Delta_f$
 $f_{i(min)}$ (t) = $f_C - \Delta_f$

Frequency modulation index

Modulation index of signal-tone FM signal, m_f

$$\mathbf{m}_{\mathrm{f}} = \frac{\Delta_{\mathrm{f}}}{|\mathbf{f}_{\mathrm{S}}|}$$
 for $\mathbf{v}_{\mathrm{S}}(\mathbf{t}) = \mathbf{V}_{\mathrm{S}} \mathbf{cos} \omega_{\mathrm{S}} \mathbf{t}$,

AM	FM
$\mathbf{m} = \frac{V_s}{V_c}$	$\mathbf{m_f} = rac{\Delta_{f}}{ \mathbf{f_S} }$
expresses the size of the envelope	• expresses the amount ($\Delta_{\rm f}$) and speed (fS) of frequency change.
• m ≤ 1	• $\Delta_{\rm f}$ can be set independent of $\rm f_{\rm S}$ and therefore $\rm m_{\rm f}$ can be larger than 1.
	• $\Delta_{\rm f}$ must not be larger than ${\rm f_C}$.

Example 6.1

For the FM waveform shown below

- (i) calculate the instantaneous frequency at t = 50 μ s.
- (ii) determine Δ_f .
- (iii) determine $f_{i(max)}$ and specify when it occurs.
- (iv) determine $f_{i(min)}$ and specify when it occurs.
- (v) show how $f_i(t)$ changes with time.

(i) Calculate the instantaneous frequency at $t = 50 \mu s$.

At
$$t = 50 \mu s$$
, $v_s(t) = 0 V$

Therefore,
$$f_i = f_c = 100 \text{kHz}$$

(ii) Determine Δ_f .

$$\Delta_{\rm f} = k_{\rm f} V_{\rm s}$$

 $= 5kHz/V \times 2V = 10kHz$

(iii) determine f_{i(max)} and specify when it occurs

$$f_{i(max)} = f_C + \Delta_f = 100 + 10 = \underline{110 \text{ kHz}}$$
, when $v_s(t) = V_s$

Hence, $f_{i(max)}$ occurs at t = 25 μ s and 125 μ s

(iv) determine f_{i(min)} and specify when it occurs

$$f_{i(min)} = f_C - \Delta_f = 100 - 10 = \underline{90 \text{ kHz}}$$
, when $v_s(t) = -V_s$

Hence, $f_{i(min)}$ occurs at t = 75 μ s and 175 μ s

(v) show how $f_i(t)$ changes with time.

$$f_i(t) = f_c + k_f v_s(t)$$

 $f_i(t)$ changes in the same way as $v_s(t)$

End

CHAPTER 6

(Part 1 of 4)

