Anexos

Reid Prausnitz & Poling, 1987, pp 42, 43

3-6 Cubic Equations of State

The term "cubic equation of state" implies an equation which, if expanded, would contain volume terms raised to either the first, second, or third power. Many of the common two-parameter cubic equations can be expressed by the equation

$$P = \frac{RT}{V - b} - \frac{a}{V^2 + ubV + wb^2}$$
 (3-6.1)

An equivalent form of Eq. (3-6.1) is

$$Z^{3} - (1 + B^{*} - uB^{*})Z^{2} + (A^{*} + wB^{*2} - uB^{*} - uB^{*2})Z$$

$$- A^{*}B^{*} - wB^{*2} - wB^{*3} = 0$$
(3-6.2)

where
$$A^* = \frac{aP}{R^2T^2}$$
 (3-6.3)

and $B^* = \frac{bP}{RT}$ (3-6.4)

TABLE 3-5 Constants for Four Common Cubic Equations of State

Equation	и	w	b	а
van der Waals	0	0	$\frac{RT_c}{8P_c}$	$\frac{27}{64} \frac{R^2 T_c^2}{P_c}$
Redlich- Kwong	1	0	$\frac{0.08664RT_c}{P_c}$	$\frac{0.42748R^2T_c^{2.5}}{P_cT^{1/2}}$
Soave	1	0	$\frac{0.08664RT_c}{P_c}$	$\frac{0.42748R^2T_c^2}{P_c}[1+f\omega(1-T_r^{1/2})]^2$ where $f\omega = 0.48 + 1.574\omega - 0.176\omega^2$
Peng-Robinson	2	-1	$\frac{0.07780RT_c}{P_c}$	$\frac{0.45724R^2T_c^2}{P_c} [1+f\omega(1-T_r^{1/2})^2]$ where $f\omega = 0.37464 + 1.54226\omega - 0.26992\omega^2$

Reid Prausnitz & Poling, 1987, pp 102

Cubic, Secs. 3-6 and 4-5

$$P = \frac{RT}{V - b} - \frac{a}{V^2 + uVb + wb^2}$$

$$A - A^\circ = \frac{a}{b\sqrt{u^2 - 4w}} \ln \frac{2Z + B^*(u - \sqrt{u^2 - 4w})}{2Z + B^*(u + \sqrt{u^2 - 4w})} - RT \ln \frac{Z - B^*}{Z} - RT \ln \frac{V}{V^\circ}$$

$$S - S^\circ = R \ln \frac{Z - B^*}{Z} + R \ln \frac{V}{V^\circ} - \frac{1}{b\sqrt{u^2 - 4w}} \frac{\partial a}{\partial T} \ln \frac{2Z + B^*(u - \sqrt{u^2 - 4w})}{2Z + B^*(u + \sqrt{u^2 - 4w})}$$
where
$$\frac{\partial a}{\partial T} = -\frac{R}{2} \left(\frac{\Omega_a}{T}\right)^{1/2} \sum_i \sum_j y_i y_j (1 - \overline{k}_{ij}) \left[f\omega_j \left(\frac{a_i T_{cj}}{P_{cj}}\right)^{1/2} + f\omega_i \left(\frac{a_j T_{cj}}{P_{cj}}\right)^{1/2} \right]$$

For the Soave Equation

$$f\omega_i = 0.480 + 1.574\omega_i - 0.176\omega_i^2$$

 $\Omega_a = 0.42748$

For the Peng-Robinson Equation

$$f\omega_i = 0.37464 + 1.54226\omega_i - 0.26992\omega_i^2$$

 $\Omega_a = 0.45724$

Note: u, w, a, a, and b are given in Table 3-5 and Eqs. (4-5.1) and (4-5.2).

Smith, van Ness & Abbott, 2007, pp 67

Figura 3.11 Isotermas fornecidas por uma equação de estado cúbica.

Smith, van Ness & Abbott, 2007, pp 507, 508, 509

Tabela B.1: Propriedades Características de Espécies Puras

	Massa					v_c	
	molar	ω	T_c/K	Pc/bar	Z_c	${\rm cm}^3~{\rm mol}^{-1}$	T_n/K
Metano	16,043	0,012	190,6	45,99	0,286	98,6	111,4
Etano	30,070	0.100	305,3	48,72	0,279	145,5	184,6
Propano	44,097	0.152	369,8	42,48	0,276	200.0	231,1
n-Butano	58,123	0,200	425,1	37,96	0,274	255,	272,7
n-Pentano	72,150	0,252	469,7	33,70	0,270	313,	309,2
n-Hexano	86,177	0,301	507,6	30,25	0.266	371,	341,9
n-Heptano	100,204	0,350	540,2	27,40	0,261	428,	371,6
n-Octano	114,231	0.400	568,7	24,90	0,256	486,	398,8
n-Nonano	128,258	0,444	594,6	22,90	0.252	544,	424,0
n-Decano	142,285	0,492	617,7	21,10	0,247	600,	447,3
Isobutano	58,123	0,181	408,1	36,48	0,282	262,7	261,4
Isooctano	114,231	0,302	544,0	25,68	0,266	468,	372,4
Ciclopentano	70,134	0,196	511,8	45,02	0,273	258,	322,4
Ciclo-hexano	84,161	0,210	553,6	40,73	0.273	308,	353,9
Metilciclopentano	84,161	0,230	532,8	37,85	0,272	319,	345,0 (Contin

Tabela B.1: Propriedades Características de Espécies Puras (Continuação)

	Massa					v_c	
	molar	ω	T _c /K	P _c /bar	Z_c	cm ³ mol ⁻¹	T _n /K
Metilciclo-hexano	98,188	0,235	572,2	34,71	0,269	368,	374,
Etileno	28,054	0,087	282,3	50,40	0,281	131,	169,4
Propileno	42,081	0,140	365,6	46,65	0,289	188,4	225,5
1-Buteno	56,108	0,191	420,0	40,43	0,277	239,3	266,9
cis-2-Buteno	56,108	0,205	435,6	42,43	0,273	233,8	276,9
trans-2-Buteno	56,108	0,218	428,6	41,00	0,275	237,7	274,0
1-Hexeno	84,161	0,280	504,0	31,40	0,265	354,	336,3
Isobutileno	56,108	0,194	417,9	40,00	0,275	238,9	266,
1,3-Butadieno	54,092	0,190	425,2	42,77	0,267	220,4	268,
Ciclo-hexeno	82,145	0,212	560,4	43,50	0,272	291,	356,
Acetileno	26,038	0,187	308,3	61,39	0,271	113,	189,
Benzeno	78,114	0,210	562,2	48,98	0,271	259,	353,
Tolueno	92,141	0,262	591,8	41,06	0,264	316,	383,
Etilbenzeno	106,167	0,303	617,2	36,06	0,263	374,	409,
Cumeno	120,194	0,326	631,1	32,09	0,261	427,	425,
o-Xileno	106,167	0,310	630,3	37,34	0,263	369,	417,
m-Xileno	106,167	0,326	617,1	35,36	0,259	376,	412,
p-Xileno	106,167	0,322	616,2	35,11	0,260	379,	411,
Estireno	104,152	0,297	636,0	38,40	0,256	352,	418,
Naftaleno	128,174	0,302	748,4	40,51	0,269	413,	491,
Bifenil	154,211	0,365	789,3	38,50	0,295	502,	528,
Formaldeído	30,026	0,282	408,0	65,90	0,223	115,	254,
Acetaldeído	44,053	0,291	466,0	55,50	0,221	154,	294,0
Acetato de metila	74,079	0,331	506,6	47,50	0,257	228,	330,
Acetato de etila	88,106	0,366	523,3	38,80	0,255	286,	350,
Acetona	58,080	0,307	508,2	47,01	0,233	209,	329,4
Metiletilcetona	72,107	0,323	535,5	41,50	0,249	267,	352,8

Éter dietílico	74,123	0,281	466,7	36,40	0,263	280,	307,6	
Éter metil-t-butílico	88,150	0,266	497.1	34,30	0,273	329,	328,4	
Me*anol	32,042	0,564	512,6	80,97	0,224	118,	337,9	
Etanol	46,069	0,645	513,9	61,48	0,240	167,	351,4	
1-Propanol	60,096	0,622	536,8	51,75	0,254	219,	370,4	
1-Butanol	74,123	0,594	563.1	44,23	0,260	275,	390,8	
1-Hexanol	102,177	0,579	611.4	35,10	0,263	381,	430,6	
2-Propanol	60,096	0,668	508,3	47,62	0,248	220,	355,4	
Fenol	94,113	0,444	694,3	61,30	0,243	229.	455,0	
Etileno glicol	62,068	0,487	719,7	77,00	0,246	191,0	470,5	
Ácido acético	60,053	0,467	592,0	57,86	0,211	179,7	391,1	
Ácido n-butírico	88,106	0,681	615,7	40,64	0,232	291,7	436,4	
Ácido benzóico	122,123	0,603	751,0	44,70	0,246	344,	522,4	
Acetonitrila	41.053	0,338	545,5	48,30	0,184	173,	354,8	
Metilamina	31,057	0,281	430,1	74,60	0,321	154,	266,8	
Etilamina	45,084	0,285	456,2	56,20	0,307	207,	289,7	
Nitrometano	61,040	0,348	588,2	63,10	0,223	173,	374,4	
Tetracloreto de carbono	153,822	0,193	556,4	45,60	0,272	276,	349,8	
Clorofórmio	119,377	0.222	536,4	54,72	0,293	239,	334,3	
Diclorometano	84,932	0.199	510,0	60,80	0,265	185,	312,9	
Cloreto de metila	50,488	0,153	416,3	66,80	0,276	143.	249,1	
Cloreto de etila	64,514	0,190	460,4	52,70	0,275	200,	285,4	
Clorobenzeno	112,558	0,250	632,4	45,20	0,265	308,	404,9	
Tetrafluoroetano	102,030	0.327	374,2	40,60	0,258	198,0	247,1	
Argônio	39,948	0,000	150,9	48,98	0,291	74.6	87,3	
Criptônio	83,800	0,000	209,4	55,02	0,288	91,2	119,8	
Xenônio	131,30	0,000	289,7	58,40	0,286	118,0	165,0	
Hélio 4	4,003	-0,390	5,2	2,28	0,302	57,3	4,2	
Hidrogênio	2,016	-0,216	33,19	13,13	0,305	64,1	20,4	
Oxigênio	31,999	0,022	154,6	50,43	0,288	73,4	90,2	
							(Continua)	

Smith, van Ness & Abbott, 2007, pp 48

Figura 3.1 Diagrama PT para uma substância pura.

Smith, van Ness & Abbott, 2007, pp 512

Tabela C.1: Capacidades Caloríficas de Gases no Estado de Gás Ideal†

Constantes da equação $C_P^{gi}/R = A + BT + CT^2 + DT^{-2}$

T (kelvins), de 298 K até $T_{máx}$

Espécies químicas		T_{\max}	$C_{P_{298}}^{gi}/R$	A	$10^3 B$	10 ⁶ C	$10^{-5} D$
Parafinas:	•						
Metano	CH_4	1500	4,217	1.702	9,081	-2,164	
Etano	C_2H_6	1500	6,369	1,131	19,225	-5,561	
Propano	C_3H_8	1500	9,011	1,213	28,785	-8,824	
n-Butano	C_4H_{10}	1500	11,928	1,935	36,915	-11,402	
iso-Butano	C_4H_{10}	1500	11,901	1,677	37,853	11,945	
n-Pentano	C_5H_{12}	1500	14,731	2,464	45,351	-14,111	
п-Нехапо	C_6H_{14}	1500	17,550	3,025	53,722	-16,791	
n-Heptano	C7H16	1500	20,361	3,570	62,127	-19,486	
n-Octano	C ₈ H ₁₈	1500	23,174	4,108	70,567	-22,208	
1-Alcenos:							
Etileno	C_2H_4	1500	5,325	1,424	14,394	-4,392	
Propileno	C_3H_6	1500	7,792	1,637	22,706	-6,915	
1-Buteno	C_4H_8	1500	10,520	1,967	31,630	-9,873	
1-Penteno	C ₅ H ₁₀	1500	13,437	2,691	39,753	-12,447	
1-Hexeno	C_6H_{12}	1500	16,240	3,220	48,189	-15,157	
I-Hepteno	C7H14	1500	19,053	3,768	56,588	-17,847	
1-Octeno	C ₈ H ₁₆	1500	21,868	4,324	64,960	-20,521	

Vários orgânicos:							
Acetaldeído	C_2H_4O	1000	6,506	1,693	17,978	-6,158	
Acetileno	C_2H_2	1500	5,253	6,132	1,952		-1,299
Benzeno	C_6H_6	1500	10,259	-0,206	39,064	-13,301	,
1,3-Butadieno	C_4H_6	1500	10,720	2,734	26,786	-8,882	
Ciclo-hexano	C_6H_{12}	1500	13,121	-3,876	63,249	-20,928	
Etanol	C ₂ H ₆ O	1500	8,948	3,518	20,001	-6,002	
Etilbenzeno	C_8H_{10}	1500	15,993	1,124	55,380	18,476	
Óxido de etileno	C_2H_4O	1000	5,784	-0,385	23,463	-9,296	
Formaldeído	CH ₂ O	1500	4,191	2,264	7,922	-1.877	
Metanol	CH_4O	1500	5,547	2,211	12,216	-3,450	
Estireno	C_8H_8	1500	15,534	2,050	50,192	-16,662	
Tolueno	C_7H_8	1500	12,922	0,290	47,052	-15,716	
Vários inorgânicos:							
Ar		2000	3,509	3,355	0,575		-0,016
Amônia	NH_3	1800	4,269	3,578	3,020		-0.186
Bromo	Br ₂	3000	4,337	4,493	0,056		-0.154
Monóxido de carbono	CÕ	2500	3,507	3,376	0,557		-0.031
Dióxido de carbono	CO_2	2000	4,467	5,457	1,045		-1,157
Dissulfeto de carbono	CS ₂	1800	5,532	6,311	0,805		-0,906
Cloro	Cl ₂	3000	4,082	4,442	0,089		-0,344
Hidrogênio	H_2	3000	3,468	3,249	0,422		0,083
Dissulfeto de hidrogênio	H_2S	2300	4,114	3,931	1,490		-0,232
Cloreto de hidrogênio	HCl	2000	3,512	3,156	0,623		0,151
Cianeto de hidrogênio	HCN	2500	4,326	4,736	1,359		-0.725
Nitrogênio	N_2	2000	3,502	3,280	0,593		0,040
Óxito nitroso	N_2O	2000	4,646	5,328	1,214		-0.928
Óxito nítrico	NO	2000	3,590	3,387	0,629		0.014
Dióxido de nitrogênio	NO_2	2000	4,447	4,982	1,195		-0.792
Tetraóxido de dinitrogênio	N_2O_4	2000	9,198	11,660	2,257		-2,787
Oxigênio	O_2	2000	3,535	- 3,639	0,506		-0.227
Dióxido de enxofre	SO_2	2000	4,796	5,699	0,801		-1.015
Trióxido de enxofre	SO_3	2000	6,094	8,060	1,056		-2,028
Água	H_2O	2000	4,038	3,470	1,450		0,121

[†]Retirados de H.M. Spencer, Ind. Eng. Chem., vol. 40, pp. 2152-2154, 1948; K.K. Kelley, U.S. Bur. Mines Bull. 584, 1960; L.B. Pankratz, U.S. Bur. Mines Bull. 672, 1982.

Referências recomendadas

- Reid, R. C., Prausnitz, J. M. and Poling, B. E., 1987. The Properties of Gases and Liquids. 4th ed., McGraw-Hill. [ISBN: 0070517991, 9780070517998] (https://books.google.com.br/books?id=AcRTAAAAMAAJ)
- 2. Smith, J. M., van Ness, H. C. and Abbott, M. M., 2007. Introdução a termodinâmica da engenharia química. 7a ed., LTC. [ISBN: 8521615531, 9788521615538] (https://books.google.com.br/books?id=TzeQPgAACAAJ)
- 3. Sandler S., 2006, Chemical, Biochemical, and Engineering Thermodynamics, 4th ed. John Wiley & Sons [ISSN: 0471661740, 9780471661740](https://books.google.com.br/books?id=4MXDAgAAQBAJ)