Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Different programming languages support different styles of programming (called programming paradigms). Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. There exist a lot of different approaches for each of those tasks. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Computer programmers are those who write computer software. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Programmable devices have existed for centuries. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams.