Modified Spacetime Hypothesis (zmCP)

Arkadiusz Okupski

August 16, 2025

Abstract

We propose a model where effects attributed to dark matter emerge from the coupling between the distribution of chemical elements and spacetime geometry through a scalar field $\phi(x)$.

1 Key Balance Equation

For nuclear reactions:

$$Matter \leftrightarrow Energy + \Delta CP \tag{1}$$

• For $A_i < 56$ (e.g., H \rightarrow He fusion):

$$\Delta CP > 0$$
 (CP is "stretched") (2)

• For $A_i \geq 56$ (e.g., Ni formation from Fe):

$$\Delta CP < 0$$
 (CP is "compressed" or "consumed") (3)

2 Physical Consequences

2.1 Dark matter effect

Iron-rich regions (galactic cores, old stars) generate **local CP disturbances** that manifest as additional "dark" gravitational force.

2.2 Absence of dark matter in metal-poor galaxies

Where hydrogen dominates $(A_i \ll 56)$, $\phi \approx 0$ and standard GR applies.

3 Mathematical Model

3.1 Scalar field coupled to matter

$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + f(\phi) \mathcal{L}_m \right]$$
 (4)

where:

- $f(\phi) = 1 + \lambda \phi(x)$ coupling function
- $\phi(x) = \phi_0 \frac{\sum X_i(x)(A_i/A_{Fe})}{1+\sum X_i(x)(A_i/A_{Fe})}$ field dependent on chemical composition

3.2 Field equations

$$G_{\mu\nu} = 8\pi G \left[T_{\mu\nu}^{(\phi)} + f(\phi) T_{\mu\nu}^{(m)} \right]$$
 (5)

$$\Box \phi = \frac{\partial V}{\partial \phi} - \frac{\partial f}{\partial \phi} \mathcal{L}_m \tag{6}$$

4 Microscopic Interpretation

4.1 Fundamental field Ψ

We postulate a universal quantum field Ψ from which both matter and spacetime emerge:

• Material state (Ψ_m) :

$$\Psi_{\rm m} \sim \text{bound states of high energy density (e.g., fermions)}$$
 (7)

Example: Protons/neutrons in iron nuclei ($A_{Fe}=56$) represent "condensed" Ψ phase.

• Spacetime state (Ψ_{CP}) :

$$\Psi_{\rm CP} \sim \text{low-entropy geometric fluctuations}$$
 (8)

Example: Hydrogen-rich interstellar regions $(A_H=1)$ exhibit "dispersed" Ψ phase.

4.2 Phase transitions

Chemical composition changes induce transitions:

$$\Psi_{\rm m} \rightleftharpoons \Psi_{\rm CP} + E_{\rm binding}$$
 (9)

where:

- For $A_i < A_{Fe}$ (exothermic nucleosynthesis): $\Delta \Psi \rightarrow \Psi_{\rm CP}$ (CP expansion)
- For $A_i \geq A_{Fe}$ (endothermic): $\Psi_{\rm m} \to \Psi'_{\rm m} + {\rm CP}$ absorption

4.3 Relation to $\phi(x)$ model

The scalar field $\phi(x)$ measures local phase ratio:

$$\phi(x) \equiv \frac{|\Psi_{\rm CP}|^2}{|\Psi_{\rm m}|^2 + |\Psi_{\rm CP}|^2} \in [0, 1]$$
(10)

- $\phi \to 0$: Matter dominance (metallic regions)
- $\phi \to 1$: CP dominance (metal-poor regions)

5 Iron as Critical Reference Point

5.1 Nucleosynthesis and energy balance

Iron's key role $(A_{Fe}=56)$ stems from fundamental nuclear reaction properties:

$$\phi(x) = \phi_0 \frac{\sum X_i(x) (A_i / A_{Fe})}{1 + \sum X_i(x) (A_i / A_{Fe})}$$
(11)

where:

- $X_i(x)$ mass fraction of element i at point x
- A_i mass number of element i
- $A_{Fe} = 56$ iron mass number

5.2 Nuclear reaction physics

Iron demarcates:

• Exothermic reactions (A < 56):

$$^{4}He + ^{52}Cr \rightarrow ^{56}Fe + \gamma + 8.6 \,\text{MeV}$$
 (12)

• Endothermic reactions $(A \ge 56)$:

$$^{56}Fe + ^{4}He \rightarrow ^{60}Ni - 2.6 \,\text{MeV}$$
 (13)

5.3 Interpretation in zmCP model

Region Type	ϕ Value
Metal-poor $(A_i \ll 56)$ Iron-rich $(A_i \approx 56)$	$\phi \rightarrow 0$
Heavy element-rich $(A_i \approx 50)$	$ \phi \to \phi_0 \phi \to \phi_0/2 $

Table 1: ϕ parameter dependence on chemical composition

5.4 Observational consequences

- Young galaxies (H, He dominance): $\phi \approx 0$ minimal CP modification
- Mature galaxies (Fe-rich): $\phi \approx 0.5 1.0$ strong DM effects
- Population III stars (only H/He): $\phi \approx 0$ GR consistency

$$\frac{d\phi}{dt} \sim \frac{dZ}{dt} \approx \psi(t) - Z(t)\psi(t) + \dot{Z}_{in}$$
(14)

where $\psi(t)$ is star formation rate and Z is metallicity.

5.5 Dynamics of consumed spacetime

The proposed spacetime modification is non-local - consumed CP moves and disperses at cosmic scales. This resembles a river system where:

- Sources (iron-rich regions) "feed" the global CP ocean
- Cosmic expansion currents distribute modified CP
- Effects observed as dark matter depend on both local ϕ production and transport from surroundings

Mathematical description would require transport equations.

6 Physical Interpretation

- For $\phi \approx 0$ (metal-poor regions): $f(\phi) \approx 1$ (standard GR)
- For $\phi \to 1$ (iron-rich regions): $f(\phi) \approx 1 + \lambda$ (modified gravity)
- Effect: Variable effective matter-geometry coupling constant

7 Formal Advantages

- Maintains field equation covariance
- Satisfies equivalence principle (minimally coupled matter)
- Automatically preserves $\nabla^{\mu}T_{\mu\nu}^{(m)}=0$

8 Critical Analysis of zmCP Hypothesis

- Strengths:
 - 1. Conceptual boldness: +10 pts for originality. Combining nucleosynthesis with geometry is powerful.
 - 2. **Testability:** Challenges ΛCDM in specific observations (halo shape, voids).

3. Elegance: Avoids dark matter as "theory gap".

• Weaknesses:

- 1. **Energy problem:** No energy conservation in current formulation. Where does "consumed" CP go?
- 2. **Fine-tuning:** Constants ϕ_0 , Z_0 , λ are chosen ad hoc.

• Fatal flaws:

- 1. **Non-locality:** How does "CP current" know where to flow? Missing transport equations for ϕ .
- 2. Quantum neglect: If CP is active, where are its quantum fluctuations? Coupling to Higgs field?
- 3. **Data selectivity:** Focuses only on convenient anomalies (e.g., AGC 114905), ignores Λ CDM successes (cluster lensing, CMB).

• Final rating:

Criterion	Score (1-10)
Mathematical consistency	4
Observational agreement	6
Revolutionary potential	9
Probability of being correct	2
Intellectual entertainment value	11

Summary: "zmCP is a cosmically wild idea that's probably wrong, but **absolutely worth** chasing. Even if it fails, it may extract us from the DM vs. MOND epistemic deadlock. Just don't pretend GR is 'obsolete' - it simply **doesn't do poetry**."

References

[1] Verlinde, E. (2016) "Emergent Gravity and the Dark Universe", arXiv:1611.02269

- [2] McGaugh, S. et al. (2016) "The Radial Acceleration Relation in Rotationally Supported Galaxies", ApJ 830, 1
- [3] Damour, T., & Nordtvedt, K. (1993) "Tensor-scalar cosmological models", PRL 70, 2217
- [4] Porto, R.A. (2016) "The Tuning Fork: A New Plot to Study Galaxy Evolution", ApJ 832, 2
- [5] Tinsley, B.M. (1980) "Evolution of the Stars and Gas in Galaxies", FCPh 5, 287
- [6] Sanders, R.H. (2003) "Modified Newtonian dynamics as an alternative to dark matter", ARA&A 40, 263
- [7] Peebles, P.J.E. (2002) "The Standard Cosmological Model", in "Modern Cosmology in Retrospect", Cambridge UP