f(t)	$Laplace\{f(t)\}$	Trasformata Z
h(t)	$\frac{1}{s}$	$\frac{z}{z-1}$
t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$
$\frac{t^2}{2}$	$\frac{1}{s^3}$	$\frac{T^2z(z+1)}{2(z-1)^3}$
t^{k-1}	$\frac{(k-1)!}{s^k}$	$\lim_{a \to 0} (-1)^{k-1} \frac{\partial^{k-1}}{\partial a^{k-1}} \left[\frac{z}{z - e^{-aT}} \right]$
e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$
te ^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$

$t^k e^{-at}$	$\frac{k!}{(s+a)^{k+1}}$	$(-1)^k \frac{\partial^k}{\partial a^k} \left[\frac{z}{z - e^{-aT}} \right]$
$1-e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$
$t - \frac{1 - e^{-at}}{a}$	$\frac{a}{s^2(s+a)}$	$\frac{z[(aT-1+e^{-aT})z+(1-e^{-aT}-aTe^{-aT})]}{a(z-1)^2(z-e^{-aT})}$
$1 - (1 + at)e^{-at}$	$\frac{a^2}{s (s+a)^2}$	$\frac{z}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}z}{(z - e^{-aT})^2}$
$e^{-at} - e^{-bt}$	$\frac{b-a}{(s+b)(s+a)}$	$\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
sin(at)	$\frac{a}{s^2 + a^2}$	$\frac{z\sin(aT)}{z^2 - 2z\cos(aT) + 1}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$	$\frac{z(z-\cos(aT))}{z^2 - 2z\cos(aT) + 1}$

$e^{-at}\sin(bt)$	$\frac{b}{\left(s+a\right)^2+b^2}$	$\frac{ze^{-aT}\sin(bT)}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
$e^{-at}\cos(bt)$	$\frac{s+a}{\left(s+a\right)^2+b^2}$	$\frac{z^2 - ze^{-aT}\cos(bT)}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}}$
$1 - e^{-at}(\cos(bt) + \frac{a}{b}\sin(bt))$	$\frac{b^2 + a^2}{s[(s+a)^2 + b^2]}$	$\frac{(Az+B)z}{(z-1)(z^2-2ze^{-aT}\cos(bT)+e^{-2aT})}$ $A = 1 - e^{-aT}(\cos(bT) + \frac{a}{b}\sin(bT))$ $B = e^{-2aT} + e^{-aT}(\frac{a}{b}\sin(bT) - \cos(bT))$
$\frac{1}{ab} + \frac{e^{-at}}{a(a-b)} + \frac{e^{-bt}}{b(b-a)}$	$\frac{1}{s(s+a)(s+b)}$	$\frac{(Az+B)z}{(z-1)(z-e^{-aT})(z-e^{-bT})}$