TEST REPORT

海市计量测试技术研究 院 华 量 东 家 计 测 试 中 玉 中 海 测 试 中 玉

检测报告

委 托 者 Customer	Queclink Wireless Solutions Co., Ltd
委托者地址 Address of customer	Room 501, Building 9, No. 99 TianZhou Road, Shanghai, China
样 品 名 称 Name of sample	GPS Locator
制 造 厂 Manufacturer	Queclink Wireless Solutions Co., Ltd
型号/规格 Model/Specification	CP100
样品编号 No. of sample	1#

地址: 上海市张衡路 1500 号(总部) Address No.1500 Zhangheng Road, Shanghai(headquarters) 电话: 021-38839800

传真: 021-50798390

邮编: 201203

客户咨询电话: 800-820-5172 Inquire line

投诉电话: 021-50798262

Tel. for complaint

国家法定计量检定机构计量授权证书号(中心/院): (国)法计(2007)01039 号/(2007)01019 号 The number of the Certificate of Metrological Authorization to The Legal Metrological Verification Institution is No. (2007) 01039 / No. (2007) 01019

中国合格评定国家认可委员会实验室认可证书号: No. CNAS L0134 The number of the certificate accredited by CNAS is No.L0134

中国国家认证认可监督管理委员会资质认定计量认证证书(CMA)号: 2009000597E The number of the metrology accreditation certificate by CNCA is No. 2009000597E

本次检测所依据的技术规范(代号、名称): Reference documents for the test (code , name)

FCC part 22: 2009 Part 22: Public Mobile Services

FCC part 24: 2009 Part 24: Personal Communications Services

本次检测所使用的主要测量仪器: Main measuring instruments used in this test

Refer to Attachment 1

检测地点及环境条件: Location and environmental condition for the test

地点:

SIMT EMC, No.716, Yishan Road Shanghai

(19-22) ℃; 温度: 湿度: (40-50)其它: / %RH: Relative humidity

检测结果/说明: Results of test and additional explanation

The testing results are in compliance with FCC part 22: 2009, FCC part 24: 2009 (see the

continued pages)

(Test date: 2011.03.12-2011.05.04)

(Date of report: 2011.05.09)

Results of test and additional explanation (continued page)

Contents

1.	Test Summary	5
2.	General Information	6
2.1	EUT Description	6
2.2	Operational Description	6
2.3	Configuration of Tested System	7
2.4	General Information of Test Site	7
3.	Peak Output Power Test	8
3.1	Test setup	8
3.2	Limits	8
3.3	Test procedure	8
3.4	Test results	9
3.5	Test Instrumentation (Test date: 2011.03.30)	15
3.6	Test Photograph	15
4.	Carrier Radiated Power Test	16
4.1	Test setup	16
4.2	Limits	16
4.3	Test procedure	16
4.4	Test results	18
4.5	Test Instrumentation (Test date: 2011.03.17)	18
4.6	Test Photographs	
5.	Occupied Bandwidth Test	
5.1	Test setup	
5.2	Limits	
5.3	Test procedure	22
5.4	Test results	
5.5	Test Instrumentation (Test date: 2011.03.17)	
5.6	Test Photograph	
6.	Band Edge Test	
6.1	Test setup	30
6.2	Limits	
6.3	Test procedure	
6.4	Test results	
6.5	Test Instrumentation (Test date: 2011.04.21)	
6.6	Test Photograph	
7.	Spurious Conducted Emission Test	
7.1	Test setup	
7.2	Limits	
7.3	Test procedure	
7.4	Test results	
7.5	Test Instrumentation (Test date: 2011.03.29)	61

Results of test and additional explanation (continued page)

7.6	Test Photograph	61
8.	Spurious Radiation Emission Test	62
8.1	Test setup	62
8.2	Limits	62
8.3	Test procedure	62
8.4	Test results	63
8.5	Test Instrumentation (Test date: 2011.03.12-2011.03.14)	65
8.6	Test Photographs	66
9.	Frequency Deviation Test	69
9.1	Test setup	69
9.2	Limits	69
9.3	Test procedure	69
9.4	Test results	
9.5	Test Instrumentation (Test date: 2011.04.21)	72
9.6	Test Photographs	72
Attach	hment 1: Main measuring instruments used in this test	
Attach	hment 2: EUT photographs	77

Results of test and additional explanation (continued page)

1. Test Summary

FCC Rule	Description of Test	Result
§ 2.1046 § 22.913 § 24.232	Peak Output Power	Pass
§ 22.913 § 24.232	Carrier Radiated Power	Pass
§ 2.1049 § 22.917 § 24.238(b)	Occupied Bandwidth	Pass
§ 2.1051 § 22.917 § 24.238(b)	Band Edge	Pass
§ 2.1051 § 22.917 § 24.238(b)	Spurious Conducted Emission	Pass
§ 2.1053 § 22.917 § 24.238(b)	Spurious Radiated Emission	Pass
§ 2.1046 § 22.355 § 24.235	Frequency Deviation	Pass

Results of test and additional explanation (continued page)

2. General Information

2.1 EUT Description

Product Name	GPS Locator
Trade Name	Queclink
Model No.	GL200
Type of modulation	GMSK
Antenna type	Soldered on PCB
Ty Fraguency	824.2MHz~848.8MHz (GSM 850)
Tx Frequency	1850.2MHz ~ 1909.8MHz (PCS 1900)
Dy Fraguency	869.2MHz~893.8MHz (GSM 850)
Rx Frequency	1930.2MHz ~ 1989.8MHz (PCS 1900)
Channel bandwidth	200kHz
FCC ID	YQD-CP100

2.2 Operational Description

SIMT EMC has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode	GSM 850 + GPRS CLASS 12(4up,1down)
r est Mode	PCS 1900 + GPRS CLASS 12(4up,1down)

Results of test and additional explanation (continued page)

2.3 Configuration of Tested System

(1) Configuration of Radiated measurement

(2) Configuration of Conducted measurement

2.4 General Information of Test Site

Site Name: SIMT EMC Lab.

Site Address: 716 Yi Shan Road. Shanghai. China

Tel: 8621-6470-1390 / Fax: 8621-6451-4252

E-Mail: EMC@SIMT.com.cn

3. Peak Output Power Test

3.1 Test setup

3.2 Limits

No specific requirement.

3.3 Test procedure

After a radio link has been established between EUT and Base station, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. Then the test data can be read at the tester screen. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration.

The measurement will be conducted at three channels Bottom, middle and top channels.

Results of test and additional explanation (continued page)

3.4 Test results

Test mode: GSM 85 12(4up,1down)	60 + GPRS CLASS	Power source: DC: 3.7	'V
Test Frequency (MHz)	Cable Loss (dB)	Carrier Power (dBm)	Test results
824.2 (channel 128)	16.40	29.59	Pass
836.4 (channel 189) 16.40		29.55	Pass
848.8 (channel 251)	16.40	29.58	Pass

824.2MHz (channel 128)

Results of test and additional explanation (continued page)

836.4MHz (channel 189)

Results of test and additional explanation (continued page)

848.8MHz (channel 251)

Date: 30.MAR.2011 11:24:23

Results of test and additional explanation (continued page)

Test mode: PCS 1900 + GPI	Power source: DC: 3.7V		
Test Frequency (MHz)	Cable Loss (dB)	Carrier Power (dBm)	Test results
1850.2 (channel 512)	16.60	27.38	Pass
1880.0 (channel 661)	16.60	27.18	Pass
1909.8 (channel 810)	16.70	27.11	Pass

1850.2MHz (channel 512)

Date: 30.MAR.2011 10:56:29

Results of test and additional explanation (continued page)

1880.0MHz (channel 661)

Results of test and additional explanation (continued page)

1909.8MHz (channel 810)

Date: 30.MAR.2011 11:01:31

3.5 Test Instrumentation (Test date: 2011.03.30)

Name/Model	Number	Due date
Universal Radio Communication Tester / CMU 200	容-026-01	2011.06.22
Spectrum Analyzer / FSU 26	容-026-45	2011.12.05
Power Splitter / 11667C	容-030-11	2011.07.21

3.6 Test Photograph

Results of test and additional explanation (continued page)

4. Carrier Radiated Power Test

4.1 Test setup

4.2 Limits

GSM 850	E.R.P<38.5dBm
PCS 1900	E.I.R.P<33.0dBm

4.3 Test procedure

Step 1:

EUT was placed on a 1.5 meters high non-conductive table in a fully anechoic chamber. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is 1.5m. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A Peak detector is used and RBW is set to 1MHz. Then turn table rotation is adjusted from 0 degree to 360 degree until the maximum power value is founded on spectrum analyzer or receiver.

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The EIRP or ERP of the EUT can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading value of the spectrum analyzer or receiver.

Results of test and additional explanation (continued page)

Step 3:

Calculation: ERP/EIRP = Ps + Et – Es + Gs = Ps + Rt – Rs + Gs

Ps (dBm): Input power to substitution antenna.

Ps= PG-Lc

PG (dBm): output level of Signal generator

Lc(dB): Loss of the cable from Signal generator to substitution antenna

Gs (dBi or dBd): Substitution antenna Gain.

Et = Rt + AF

Es = Rs + AF

AF (dB/m): Receive antenna factor

Rt: The highest received signal in Spectrum Analyzer for EUT.

Rs: The highest received signal in spectrum analyzer for substitution antenna.

According to the Step 1 and Step 2, Rt= Rs ERP/EIRP = PG-Lc + Gs

Results of test and additional explanation (continued page)

4.4 Test results

Test mode: GSM 850 + GPRS CLASS 12(4up,1down)				Power source: Do	C 3.7V
Test Frequency (MHz)	Generator output (dBm)	Cable Loss (dB)	Antenna gain (dBd)	Carrier radiated power (ERP) (dBm)	Test results
824.2 (channel 128)	19.574	1.21	4.88	23.24	Pass
836.4 (channel 189)	19.254	1.29	4.86	22.82	Pass
848.8 (channel 251)	17.355	1.43	4.84	20.77	Pass

Test mode: PCS 1900 + GPRS CLASS 12(4up,1down)				Power source: Do	C 3.7V
Test Frequency (MHz)	Generator output (dBm)	Cable Loss (dB)	Antenna gain (dBi)	Carrier radiated power (EIRP) (dBm)	Test results
1850.2 (channel 512)	18.169	2.30	10.13	25.99	Pass
1880.0 (channel 661)	13.161	2.56	10.08	20.68	Pass
1909.8 (channel 810)	11.348	2.70	10.04	18.69	Pass

4.5 Test Instrumentation (Test date: 2011.03.17)

Name/Model	Number	Due date
Spectrum Analyzer / FSU 26	1 Ø-001-33 1 2011 UN	
Microwave Signal Generator / SMR 20	容-001-02	2012.01.06
Universal Radio Communication Tester / CMU 200	容-026-01	2011.06.22
Double-Ridged Waveguide Horn Antenna / HF 906		2011.06.17
Ultra Broadband Antenna / HL 562	容-001-03	2011.06.14
VHA 9103 without telescopic rods for use with biconical broad-band elements BBA 9106 / BBA 9106 + VHA 9103	容-001-39	2011.06.14
Logarithmic Periodic Broadband Antenna / UHALP 9108 A	容-001-40	2011.06.14
Double-Ridged Waveguide Horn Antenna / 3115	容-030-03	2011.06.17

4.6 Test Photographs

X orientation

Y orientation

Z orientation

5. Occupied Bandwidth Test

5.1 Test setup

5.2 Limits

No specific occupied bandwidth requirements.

5.3 Test procedure

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 3 kHz on spectrum analyzer. The bandwidth of 99% power can be read on spectrum analyzer. The measurement will be conducted at Bottom, middle and top three channels.

Results of test and additional explanation (continued page)

5.4 Test results

Test mode: GSM 850 + GPRS CLASS 12(4up,1down)		
Power source: DC 3.7V		
Test Frequency (MHz)	Test level (kHz)	Test results
824.2 (channel 128)	246.8	Pass
836.4 (channel 189)	248.8	Pass
848.8 (channel 251)	246.0	Pass

824.2 MHz (channel 128)

Date: 17.MAR.2011 04:28:01

Results of test and additional explanation (continued page)

836.4MHz (channel 189)

Date: 17.MAR.2011 04:26:50

Results of test and additional explanation (continued page)

848.8MHz (channel 251)

Date: 17.MAR.2011 04:24:56

Results of test and additional explanation (continued page)

Test mode: PCS 1900 + GPRS CLASS 12(4up,1down)		
Power source: DC 3.7V		
Test Frequency (MHz)	Test level (kHz)	Test results
1850.2 (channel 512)	249.2	Pass
1880.0 (channel 661)	246.8	Pass
1909.8 (channel 810)	246.8	Pass

1850.2MHz (channel 512)

Results of test and additional explanation (continued page)

1880.0MHz (channel 661)

Date: 17.MAR.2011 04:19:19

Results of test and additional explanation (continued page)

1909.8MHz (channel 810)

Date: 17.MAR.2011 04:17:29

5.5 Test Instrumentation (Test date: 2011.03.17)

Name/Model	Number	Due date
Universal Radio Communication Tester / CMU 200	容-026-01	2011.06.22
Spectrum Analyzer / FSU 26	容-026-45	2011.12.05
Power Splitter / 11667C	容-030-11	2011.07.21

5.6 Test Photograph

Results of test and additional explanation (continued page)

6. Band Edge Test

6.1 Test setup

6.2 Limits

V	51 2 26		
	Limits	<-13dBm	

6.3 Test procedure

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be increased until the output power of the EUT reach a maximum value. In the first 1.0 MHz band immediately outside and adjacent to the licensee's frequency block, the power of emissions per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in watts) by at least 43 + 10 log(P).

Results of test and additional explanation (continued page)

6.4 Test results

Test mode: GSM 850 + GPRS CLASS 12(4up,1down)			
Power source: DC 3.7V			
Item Test Frequency (MHz)		Test level (dBm)	Test results
Right band edge 848.8 (channel 251)		-15.97	Pass
Left band edge	824.2 (channel 128)	-14.67	Pass

Right band edge, 848.8MHz (channel 251)

Date: 21.APR.2011 04:40:16

Results of test and additional explanation (continued page)

Left band edge, 824.2MHz (channel 128)

Results of test and additional explanation (continued page)

Test mode: PCS 1900 + GPRS CLASS 12(4up,1down)			
Power source: DC 3.7V			
Item Test Frequency (MHz)		Test level (dBm)	Test results
Right band edge 1909.8 (channel 810)		-18.99	Pass
Left band edge	1850.2 (channel 512)	-19.43	Pass

Results of test and additional explanation (continued page)

Left band edge, 1850.2MHz (channel 512)

检测报告续页专用

Continued page of test report

Date: 21.APR.2011 04:52:16

6.5 Test Instrumentation (Test date: 2011.04.21)

Name/Model	Number	Due date
Spectrum Analyzer / FSU 26		2011.12.05
Power Splitter / 11667C		2011.07.21
Universal Radio Communication Tester		2011.11.23

6.6 Test Photograph

Results of test and additional explanation (continued page)

7. Spurious Conducted Emission Test

7.1 Test setup

7.2 Limits

Limits	<-13dBm

7.3 Test procedure

The EUT was connected to Spectrum Analyzer and Base Station via power divider.

The middle channel for the highest RF power within the transmitting frequency was measured.

The conducted spurious emission for the whole frequency range was taken.

Results of test and additional explanation (continued page)

7.4 Test results

Power source: DC 3.7V

7.4.1 Test mode: GSM 850 + GPRS CLASS 12(4up,1down) 824.2MHz (channel 128), (20~30)MHz

Date: 3.MAY.2011 | 10:04:20

Results of test and additional explanation (continued page)

824.2MHz (channel 128), (30~1000)MHz.

Note: The signal beyond the limit is carrier

Results of test and additional explanation (continued page)

824.2MHz (channel 128), (1000~6000)MHz

Date: 29.MAR.2011 11:07:27

Results of test and additional explanation (continued page)

824.2MHz (channel 128), (6000~20000)MHz

Results of test and additional explanation (continued page)

836.4MHz (channel 189), (20~30)MHz

Date: 3.MAY.2011 10:02:33

Results of test and additional explanation (continued page)

836.4MHz (channel 189), (30~1000)MHz

Note: The signal beyond the limit is carrier

Results of test and additional explanation (continued page)

836.4MHz (channel 189), (1000~6000)MHz

Results of test and additional explanation (continued page)

836.4MHz (channel 189), (6000~20000)MHz

Date: 30.MAR.2011 09:55:46

Results of test and additional explanation (continued page)

848.8MHz (channel 251), (20~30)MHz

Date: 3.MAY.2011 10:06:21

Results of test and additional explanation (continued page)

848.8MHz (channel 251), (30~1000)MHz

Note: The signal beyond the limit is carrier

Results of test and additional explanation (continued page)

848.8MHz (channel 251), (1000~6000)MHz

Results of test and additional explanation (continued page)

848.8MHz (channel 251), (6000~20000)MHz

Results of test and additional explanation (continued page)

7.4.2 Test mode: PCS 1900 + GPRS CLASS 12(4up,1down)

1850.2MHz (channel 512), (20~30)MHz

Date: 3.MAY.2011 | 10:10:44

Results of test and additional explanation (continued page)

1850.2MHz (channel 512), (30~1000)MHz

Results of test and additional explanation (continued page)

1850.2MHz (channel 512), (1000~6000)MHz

Note: The signal beyond the limit is carrier

Results of test and additional explanation (continued page)

1850.2MHz (channel 512), (6000~20000)MHz

Date: 30.MAR.2011 10:08:17

Results of test and additional explanation (continued page)

1880.0MHz (channel 661), (20~30)MHz

Date: 3.MAY.2011 | 10:11:49

Results of test and additional explanation (continued page)

1880.0MHz (channel 661), (30~1000)MHz

Results of test and additional explanation (continued page)

1880.0MHz (channel 661), 1000~6000MHz

Note: The signal beyond the limit is carrier

Results of test and additional explanation (continued page)

1880.0MHz (channel 661), (6000~20000)MHz

Results of test and additional explanation (continued page)

1909.8MHz (channel 810), (20~30)MHz

Date: 3.MAY.2011 10:13:29

Results of test and additional explanation (continued page)

1909.8MHz (channel 810), (30~1000)MHz

Results of test and additional explanation (continued page)

1909.8MHz (channel 810), (1000~6000)MHz

Note: The signal beyond the limit is carrier

Results of test and additional explanation (continued page)

1909.8MHz (channel 810), (6000~20000)MHz

7.5 Test Instrumentation (Test date: 2011.03.29)

Name/Model	Number	Due date
Spectrum Analyzer / FSU 26	容-026-45	2011.12.05
Power Splitter / 11667C	容-030-11	2011.07.21
Universal Radio Communication Tester / CMU 200	容-026-01	2011.06.22

7.6 Test Photograph

Results of test and additional explanation (continued page)

8. Spurious Radiation Emission Test

8.1 Test setup

8.2 Limits

Limits	<-13dBm
--------	---------

8.3 Test procedure

Test procedure:

Step 1:

EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the test receive antenna. The height of receiving antenna is 1.5m. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reaching a maximum value. The measurement is carried out using a spectrum analyzer or receiver. The spectrum analyzer scans from the lowest radio frequency signal generated in the equipment to 20GHz (higher than the 10th harmonic of the carrier). The peak detector is used and RBW is set to 1MHz for more than 1GHz and 10KHz for less than 1GHz on spectrum analyzer. Then the antenna height and turn table rotation is adjusted until the maximum power value is founded on spectrum analyzer or receiver. A notch filter is necessary in the band near to the carrier frequency. A high pass filter is needed to avoid the distortion of the testing equipment in the band above the carrier frequency.

Results of test and additional explanation (continued page)

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

Step 3:

Repeat step 1 and step 2 for receiving antenna the other polarization.

Step 4:

Repeat step 1, step 2 and step 3 for EUT the other two orientations.

8.4 Test results

Power source: DC 3.7V

8.4.1 Test mode: GSM 850 + GPRS CLASS 12(4up,1down)

Receiving antenna polarization	Frequency	Signal generator level	Cable loss	Gain	ERP	Limit	Result
polarization	(MHz)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	
	32.328	-49.83	0.46	-19.59	-69.88	-13	pass
	578.729	40.77	2.07	-80.25	-41.55	-13	pass
	743.532	-74.86	2.53	5.46	-71.93	-13	pass
Н	876.131	-77.58	2.72	5.48	-74.82	-13	pass
	1672.900	-56.63	3.39	23.97	-36.05	-13	pass
	2459.300	-51.48	4.40	26.33	-29.55	-13	pass
	5019.000	-79.17	6.26	34.01	-51.42	-13	pass
	36.499	-52.03	0.51	-17.02	-69.56	-13	pass
	280.066	-77.88	1.38	-2.35	-81.61	-13	pass
	743.241	-78.14	2.53	5.46	-75.21	-13	pass
V	900.090	-66.91	2.80	5.61	-64.10	-13	pass
	1672.900	-60.53	3.39	23.97	-39.95	-13	pass
	2459.600	-52.79	4.40	26.33	-30.86	-13	pass
	5018.400	-77.91	6.26	34.01	-50.16	-13	pass

^{1.}All configurations of EUT have been investigated, the worst case mode has been listed.

^{2.} Compliance was verified from 26 MHz up to 30MHz.

Results of test and additional explanation (continued page)

8.4.2 Test mode: PCS 1900 + GPRS CLASS 12(4up,1down)

Receiving antenna	Frequency	Signal generat or level	Cable loss	Gain	EIRP	Limit	Result
polarization	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	
	32.425	-47.67	0.46	-17.35	-65.48	-13	pass
	578.050	-80.49	2.07	6.88	-75.68	-13	pass
Н	890.584	-77.07	2.77	7.70	-72.14	-13	pass
	979.436	-87.50	2.95	20.74	-69.71	-13	pass
	3759.900	-58.75	5.79	31.12	-33.42	-13	pass
	36.208	-50.04	0.51	-15.06	-65.61	-13	pass
	224.194	-69.18	1.24	-0.18	-70.60	-13	pass
V	890.584	-73.65	2.77	7.70	-68.72	-13	pass
	971.288	-87.96	2.93	19.41	-71.48	-13	pass
	3759.900	-61.54	5.79	31.12	-36.21	-13	pass

^{1.}All configurations of EUT have been investigated ,the worst case mode has been listed.

^{2.} Compliance was verified from 26 MHz up to 30MHz.

Results of test and additional explanation (continued page)

8.5 Test Instrumentation (Test date: 2011.03.12-2011.03.14)

Name/Model	Number	Due date
Spectrum Analyzer / FSU 26	容-026-45	2011.12.05
Microwave Signal Generator / SMR 20	容-001-02	2012.01.06
Universal Radio Communication Tester / CMU 200	容-026-01	2011.06.22
Notch Filter / GSM 1900 UL	容-026-25	2011.06.17
Notch Filter / GSM 850	容-026-35	2011.06.17
Pre-Amplifier / AFS42-00101800	容-026-19	2012.01.19
Ultra Broadband Antenna / HL 562	容-001-03	2011.06.14
VHA 9103 without telescopic rods for use with biconical broad-band elements BBA 9106 / BBA 9106 + VHA 9103	容-001-39	2011.06.14
Logarithmic Periodic Broadband Antenna / UHALP 9108 A	容-001-40	2011.06.14
Double-Ridged Waveguide Horn Antenna / HF 906	容-001-04	2011.06.17
Double-Ridged Waveguide Horn Antenna / 3115	容-030-03	2011.06.17

8.6 Test Photographs

X orientation

Y orientation

Z orientation

9. Frequency Deviation Test

9.1 Test setup

9.2 Limits

The carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances 2.5ppm.

9.3 Test procedure

Step 1: Frequency Stability vs. Temperature variations

The EUT and test equipment were set up as shown on the following section. With all power removed, the temperature was decreased to -30° C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was note within one minute. With power OFF, the temperature was raised in 10° C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute. The temperature tests were performed for the worst case.

Step 2: Frequency Stability vs. voltage variations

The EUT was placed in a temperature chamber at 25 ± 5 ° C and connected as the following section. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT. The variation in frequency was measured for the worst case.

Results of test and additional explanation (continued page)

9.4 Test results

Test mode: GSN	M 850 + G	Power source: D	C 3.7V	
Temperature	Voltage	Reference frequency	Test level	Test
(℃)	(V)	(MHz)	(ppm)	results
, ,	3.7	824.2 (channel 128)	-1.82 x10 ⁻²	Pass
-30	3.7	836.4 (channel 189)	-1.55 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.41 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.58 x10 ⁻²	Pass
-20	3.7	836.4 (channel 189)	-1.67 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.65 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.46 x10 ⁻²	Pass
-10	3.7	836.4 (channel 189)	-1.32 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.06 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.21 x10 ⁻²	Pass
0	3.7	836.4 (channel 189)	-1.20 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.77 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.70x10 ⁻²	Pass
10	3.7	836.4 (channel 189)	-1.43 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.65 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.82 x10 ⁻²	Pass
20	3.7	836.4 (channel 189)	-1.67 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.89 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.58 x10 ⁻²	Pass
30	3.7	836.4 (channel 189)	-1.43 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.77 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.58 x10 ⁻²	Pass
40	3.7	836.4 (channel 189)	-1.67 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.89 x10 ⁻²	Pass
	3.7	824.2 (channel 128)	-1.58 x10 ⁻²	Pass
50	3.7	836.4 (channel 189)	-1.67 x10 ⁻²	Pass
	3.7	848.8 (channel 251)	-1.53 x10 ⁻²	Pass
	3.4	824.2 (channel 128)	-1.70 x10 ⁻²	Pass
21	3.4	836.4 (channel 189)	-1.67 x10 ⁻²	Pass
	3.4	848.8 (channel 251)	-1.41 x10 ⁻²	Pass
	4.2	824.2 (channel 128)	-1.82 x10 ⁻²	Pass
21	4.2	836.4 (channel 189)	-1.79 x10 ⁻²	Pass
	4.2	848.8 (channel 251)	-1.65 x10 ⁻²	Pass

Results of test and additional explanation (continued page)

Test mode: 12(4up,1down		1900 +	GPRS	CLASS	Power source:	DC 3.7V
Temperature (°C)	Voltage (V)	Refer	ence frequ (MHz)	ency	Test level (ppm)	Test results
, ,	3.7	1850.	2 (channe	512)	-1.24 x10 ⁻²	Pass
-30	3.7		0 (channe		-1.28 x10 ⁻²	Pass
	3.7		8 (channe		-9.95 x10 ⁻²	Pass
	3.7		2 (channe		-5.40x10 ⁻²	Pass
-20	3.7		0 (channe		-7.45 x10 ⁻²	Pass
	3.7		8 (channe		-7.86 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-8.65x10 ⁻²	Pass
-10	3.7	1880.	0 (channe	661)	-9.04 x10 ⁻²	Pass
	3.7		8 (channe		-7.86 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-1.08 x10 ⁻²	Pass
0	3.7	1880.	0 (channe	661)	-9.57 x10 ⁻²	Pass
	3.7	1909.	8 (channe	810)	-9.95 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-1.14 x10 ⁻²	Pass
10	3.7	1880.	0 (channe	661)	-1.06 x10 ⁻²	Pass
	3.7	1909.	8 (channe	810)	-1.20 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-1.14 x10 ⁻²	Pass
20	3.7	1880.	0 (channe	661)	-1.17 x10 ⁻²	Pass
	3.7	1909.	8 (channe	810)	-1.20 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-1.35x10 ⁻²	Pass
30	3.7	1880.	0 (channe	661)	-1.33 x10 ⁻²	Pass
	3.7	1909.	8 (channe	810)	-1.36 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-1.57 x10 ⁻²	Pass
40	3.7	1880.	0 (channe	661)	-1.38 x10 ⁻²	Pass
	3.7	1909.	8 (channe	810)	-1.47 x10 ⁻²	Pass
	3.7	1850.	2 (channe	512)	-1.41 x10 ⁻²	Pass
50	3.7	1880.	0 (channe	661)	-1.17 x10 ⁻²	Pass
	3.7	1909.	8 (channe	810)	-1.36 x10 ⁻²	Pass
	3.4	1850.	2 (channe	512)	-1.19 x10 ⁻²	Pass
21	3.4	1880.	0 (channe	661)	-1.22 x10 ⁻²	Pass
	3.4	1909.	8 (channe	810)	-1.05 x10 ⁻²	Pass
	4.2		2 (channe		-1.51 x10 ⁻²	Pass
21	4.2	1880.	0 (channe	661)	-1.33 x10 ⁻²	Pass
	4.2	1909.	8 (channe	810)	-1.15 x10 ⁻²	Pass

9.5 Test Instrumentation (Test date: 2011.04.21)

Name/Model	Number	Due date
Universal Radio Communication Tester / CMU 200	容-026-01	2011.06.22
Spectrum Analyzer / FSU 26	容-026-45	2011.12.05
Power Splitter / 11667C	容-030-11	2011.07.21
Cold-heat climate test chamber / GDW-60B	容-011-44	2012.01.03
Voltage Drop Simulator 60V/100A / VDS 200 B3	容-011-26	2011.06.14

9.6 Test Photographs

Results of test and additional explanation (continued page)

Results of test and additional explanation (continued page)

Attachment 1: Main measuring instruments used in this test

本次检测所使用的主要测量仪器: Main measuring instruments used in this test

Main measuring instruments used in this test						
名称/型号 Name/Model	编号 Number	证书编号/有效期限 Certificate No./Due date	测量范围/准确度 Measuring range/accuracy			
Microwave Signal Generator / SMR 20	容-001-02	2011F33-10-000107 / 2012.01.06	10 MHz ~ 20 GHz, Frequency Resolution 1kHz, 1GHz~18 GHz:> 10dBm,18GHz~20GHz:> 8dBm			
Ultra Broadband Antenna / HL 562	容-001-03	XDdj2010-1295 / 2011.06.14	30 MHz ~ 3000 MHz, Cross Polarisation Suppression > 20dB,Input Impedance:50 Ω,VSWR typ.<2,GAIN:8dBi / Gain:8dBi(typ.)from 200 MHz			
Double-Ridged Waveguide Horn Antenna / HF 906	容-001-04	XDdj2010-1297 / 2011.06.17	1 GHz \sim 18 GHz, Nominal Impedance: 50 Ω , VSWR < 1.5,Gain: 7dB(typ.) \sim 14 dB(typ.) / Gain:7dB typ \sim 14dB typ.			
Broad-band Horn Antenna / BBHA 9120D	容-001-06	XDdj2010-1298 / 2011.06.17	1 GHz \sim 18 GHz, GAIN : 6 dBi \sim 18 dBi,Antenna Factor: 24dB/m \sim 42dB/m / f<10GHz:± 1.5 dB,10GHz \sim 20GHz:± 2.0 dB			
Spectrum Analyzer / FSU 26	容-001-33	2010F33-10-001506 / 2011.06.24	20 Hz ~ 26.5 GHz,1dB compression point(0 dB RF attenuaton):+13 dBm;Displayed average noise level with preamplifier ON,1GHz,10Hz RBW:<-152 dBm / Total measurement error, f<3.6 GHz:0.3 dB			
VHA 9103 without telescopic rods for use with biconical broad-band elements BBA 9106 / BBA 9106 + VHA 9103	容-001-39	XDdj2010-1294 / 2011.06.14	25MHz ~ 300 MHz;max.power 15W(30W short-time);Element extension range:0.485m ~ 4.85 m balun;reflon coax/ferrite 1:1(50Ω);Antenna factors(50Ω):-1.9dB/m ~ 18.3 dB/m;Antenna Gain over Isotropic:ca.+1dBi			
Logarithmic Periodic Broadband Antenna / UHALP 9108 A	容-001-40	XDdj2010-1292 / 2011.06.14	250 MHz \sim 2.4 GHz; 1kW			

Results of test and additional explanation (continued page)

名称/型号 Name/Model	编号	证书编号/有效期限 Certificate No./Due date	测量范围/准确度 Measuring range/accuracy
Voltage Drop Simulator 60V/100A / VDS 200 B3	容-011-26	XDdj2010-1307 / 2011.06.14	60V/100A 150A for maximum 500ms.source impedance < 10mΩ, Ripple voltage: Ur<0.2Vp-p,frequency min.400Hz, Voltage deviation:<1V at any load(including inrush current)recovering 63% of its maximum excursion within 100μs, Bandwidth: Vpp Max 12V up to 10kHz; Vpp Max 10V up to 30kHz; Vpp Max 6V up to 50kHz / ±10 %
Cold-heat climate test chamber / GDW-60B	容-011-44	2010G40-10-400026 / 2012.01.03	Temperature Adjustment Range: -60 degree ~ +130 degree; Power Source: AC 380V, Total Power: 5.5 kW; Temperature Fluctuation: ±0.5 degree; Average Temperature Drop/Increase Rate: 0.7 degree ~ 1.0 degree/min, Temperature Deviation: ≤±2 degree, Time Adjustment Range: 0 ~ 9999/H, Dimension: 400*400*375mm
Universal Radio Communication Tester / CMU 200	容-026-01	2010F44-10-000433 / 2011.06.22	100 kHz ~ 2700 MHz, Frequency resolution: 0.1 Hz
Pre-Amplifier / AFS42-00101800	容-026-19	2011J10-10-901009 / 2012.01.19	1 GHz \sim 18 GHz,35 dB Gain,N.F:2.5dB
Notch Filter / GSM 1900 UL	容-026-25	2010F11-10-005101 / 2011.06.17	Notch Filter for GSM 1900 UL
Notch Filter / GSM 850	容-026-35	2010F11-10-005096 / 2011.06.17	Notch Filter for GSM 850
Spectrum Analyzer / FSU 26	容-026-45	2010F33-10-002620 / 2011.12.05	20 Hz~26.5 GHz;Displayed average noise level with preamplifier ON,1GHz,10Hz RBW:<-152 dBm / Total measurement error, f<3.6 GHz:0.3 dB
Universal Radio Communication Tester / CMU 200	容-026-48	2010F44-10-000856 / 2011.11.23	100 kHz∼2700 MHz,Frequency resolution: 0.1 Hz

Results of test and additional explanation (continued page)

名称/型号	编号	证书编号/有效期限 Certificate No./Due date	测量范围/准确度
Double-Ridged Waveguide Horn Antenna / 3115	容-030-03	XDdj2010-1291 / 2011.06.17	750 MHz ~ 18 GHz, VSWR Ratio (AVG) < 1.5: 1, Max.Continuous Power: 300W, Peak Power: 500W, Front to Back Ratio: 20dB, Cross Polarization: 20 dB minimum
Power Splitter / 11667C	容-030-11	2010J10-10-907001 / 2011.07.21	DC ~ 50 GHz, Maximum input power: +27 dBm, 0.5W MAX.Input Return Loss (SWR): 12 dB (1.65), Equivalent Output SWR: 1.65, Output Tracking: 0.40 dB

Results of test and additional explanation (continued page)

Attachment 2: EUT photographs

Battery & mainboard

Front & USB cable

Results of test and additional explanation (continued page)

Mainboard

Results of test and additional explanation (continued page)

Rear & adapter

End