0.) Import the US Perminent Visas using zip extractor

```
In [34]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

```
In [35]: df = pd.read_csv("/Users/snehilshandilya/Desktop/us_perm_visas.csv")
```

/var/folders/sv/s309_3dd79s_59j12prhgcd00000gn/T/ipykernel_47368/4005682600.py:1: DtypeWarning: Columns (0,1,2,3,4,5,6,7,10,11,16,17,20,21,22,25,26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,47,48,49,50,51,52,53,55,56,57,58,59,60,61,63,64,65,66,68,69,70,71,72,73,74,77,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,100,101,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,153) have mixed types. Specify dtype option on import or set low_memory=False. df = pd.read_csv("/Users/snehilshandilya/Desktop/us_perm_visas.csv")

In [36]: df

Out [36]:

 add_these_pw	/_job_title_9089	agent_city	agent_firm_name	agent_state	application_type	case_no	case_number	case_received_date
0	NaN	NaN	NaN	NaN	PERM	A- 07323- 97014	NaN	NaN
1	NaN	NaN	NaN	NaN	PERM	A- 07332- 99439	NaN	NaN
2	NaN	NaN	NaN	NaN	PERM	A- 07333- 99643	NaN	NaN
						A-		

Econ 441B In-Class Assignment 5 - Jupyter Notebook 10/02/23, 9:33 PM

3	NaN	NaN	NaN	NaN	PERM	07339- 01930	NaN	NaN
4	NaN	NaN	NaN	NaN	PERM	A- 07345- 03565	NaN	NaN
		•••						
374357	NaN	Buena Park	Law Offices of Yohan Lee	CA	NaN	NaN	A-16363- 85407	2016-12-29
374358	NaN	Seattle	MacDonald Hoague & Bayless	WA	NaN	NaN	A-16271- 56745	2016-12-30
374359	NaN	Schaumburg	International Legal and Business Services Grou	IL	NaN	NaN	A-16354- 82345	2016-12-30
374360	NaN	LOS ANGELES	LAW OFFICES OF JAMES S HONG	CA	NaN	NaN	A-16357- 84250	2016-12-30
374361	NaN	Phoenix	Fragomen, Del Rey, Bernsen & Loewy, LLP	AZ	NaN	NaN	A-16279- 59292	2016-12-30

374362 rows × 154 columns

```
In [4]: #import zipfile
#df = pd.read_csv(zf.open('us_perm_visas.csv'))
```

1.) US perm Visas csv from cycle using zip extractor

In []:

In []:

2.) Choose 4 features you think are important. Case_status is your target variable

```
In [37]: df_select = df[["class_of_admission", "case_status", "country_of_citzenship","job_info_work_city","job_i
In [38]: df select
```

Out[38]:

	class_of_admission	case_status	country_of_citzenship	job_info_work_city	job_info_work_state
0	J-1	Certified	ARMENIA	New York	NY
1	B-2	Denied	POLAND	New York	NY
2	H-1B	Certified	INDIA	Lutherville	MD
3	B-2	Certified	SOUTH KOREA	Flushing	NY
4	L-1	Certified	CANADA	Albany	NY
374357	NaN	Withdrawn	NaN	Anaheim	CA
374358	L-1	Withdrawn	NaN	Cambridge	MA
374359	H-1B	Withdrawn	NaN	Ypsilanti	MI
374360	B-2	Withdrawn	NaN	Phoenix	AZ
374361	H-1B	Withdrawn	NaN	Fort Collins	CO

374362 rows × 5 columns

```
In [41]: X = pd.get_dummies(df_select, prefix=[ "class_of_admission", "country_of_citzenship" ,"job_info_work_cit
X = X.drop(['case_status'], axis =1)
y = df_select["case_status"]
```

In [42]: X

Out[42]:

	class_of_admission_A- 3	class_of_admission_A1/A2	class_of_admission_AOS	class_of_admission_AOS/H- 1B	class_of_admission_B- 1	class_(
0	0	0	0	0	0	
1	0	0	0	0	0	
2	0	0	0	0	0	
3	0	0	0	0	0	
4	0	0	0	0	0	
374357	0	0	0	0	0	
374358	0	0	0	0	0	
374359	0	0	0	0	0	
374360	0	0	0	0	0	
374361	0	0	0	0	0	

374362 rows × 9747 columns

```
In [43]: y
Out[43]: 0
                   Certified
                      Denied
                   Certified
                   Certified
                   Certified
         374357
                   Withdrawn
         374358
                   Withdrawn
         374359
                   Withdrawn
         374360
                   Withdrawn
         374361
                   Withdrawn
         Name: case_status, Length: 374362, dtype: object
In [ ]:
```

3.) Clean your data for a decision tree

In [44]: import pandas as pd
Handle missing values
df_select.dropna()

Out[44]:

class_of_admission	case_status	country_of_citzenship	job_info_work_city	job_info_work_state
J-1	Certified	ARMENIA	New York	NY
B-2	Denied	POLAND	New York	NY
H-1B	Certified	INDIA	Lutherville	MD
B-2	Certified	SOUTH KOREA	Flushing	NY
L-1	Certified	CANADA	Albany	NY
H-2B	Certified	MEXICO	Minturn	CO
EWI	Withdrawn	MEXICO	Los Angeles	CA
E-2	Withdrawn	SOUTH KOREA	Everett	WA
Not in USA	Denied	CHINA	Winesburg	ОН
B-2	Certified-Expired	UNITED KINGDOM	Chino	CA
	J-1 B-2 H-1B B-2 L-1 H-2B EWI E-2 Not in USA	J-1 Certified B-2 Denied H-1B Certified B-2 Certified L-1 Certified H-2B Certified EWI Withdrawn E-2 Withdrawn Not in USA Denied	J-1 Certified ARMENIA B-2 Denied POLAND H-1B Certified INDIA B-2 Certified SOUTH KOREA L-1 Certified CANADA H-2B Certified MEXICO EWI Withdrawn MEXICO E-2 Withdrawn SOUTH KOREA Not in USA Denied CHINA	J-1 Certified ARMENIA New York B-2 Denied POLAND New York H-1B Certified INDIA Lutherville B-2 Certified SOUTH KOREA Flushing L-1 Certified CANADA Albany H-2B Certified MEXICO Minturn EWI Withdrawn MEXICO Los Angeles E-2 Withdrawn SOUTH KOREA Everett Not in USA Denied CHINA Winesburg

19363 rows × 5 columns

In []:	
In []:	
In []:	

```
In []:

In []:

In []:
```

4.) Fit and plot a decision tree of depth 3

```
In [45]: from sklearn import tree
In [46]: | clf = tree.DecisionTreeClassifier(max depth = 3)
         clf.fit(X.v)
Out[46]: DecisionTreeClassifier(max depth=3)
In [51]: |plt.figure(figsize = (30,10))
         tree.plot tree(clf, max depth = 3, rounded = True, feature names = X.columns)
Out[51]: [Text(0.5, 0.875, 'class_of_admission_H-1B <= 0.5\ngini = 0.599\nsamples = 262053\nvalue = [127185, 104</pre>
         300, 17805, 12763]'),
          Text(0.25, 0.625, 'class of admission L-1 <= 0.5\ngini = 0.641\nsamples = 63896\nvalue = [29881, 22219]
         , 7905, 3891]'),
          Text(0.125, 0.375, 'class of admission EWI \leq 0.5\ngini = 0.659\nsamples = 49887\nvalue = [22825, 1608]
         4, 7521, 3457]'),
          Text(0.0625, 0.125, 'qini = 0.656\nsamples = 48522\nvalue = [22458, 15710, 6946, 3408]'),
          Text(0.1875, 0.125, 'gini = 0.674\nsamples = 1365\nvalue = [367, 374, 575, 49]'),
          Text(0.375, 0.375, 'job info work city College Station <= 0.5\ngini = 0.553\nsamples = 14009\nvalue =
         [7056, 6135, 384, 434]'),
          Text(0.3125, 0.125, 'gini = 0.553\nsamples = 12827\nvalue = [6720, 5302, 381, 424]'),
          Text(0.4375, 0.125, 'gini = 0.422\nsamples = 1182\nvalue = [336, 833, 3, 10]'),
          Text(0.75, 0.625, 'country of citzenship INDIA \leq 0.5\ngini = 0.583\nsamples = 198157\nvalue = [97304,
```

```
82081, 9900, 8872]'),
Text(0.625, 0.375, 'job_info_work_city_Redmond <= 0.5\ngini = 0.582\nsamples = 191587\nvalue = [93356, 80422, 9367, 8442]'),
Text(0.5625, 0.125, 'gini = 0.582\nsamples = 188155\nvalue = [92108, 78415, 9335, 8297]'),
Text(0.6875, 0.125, 'gini = 0.524\nsamples = 3432\nvalue = [1248, 2007, 32, 145]'),
Text(0.875, 0.375, 'job_info_work_city_Rosemont <= 0.5\ngini = 0.564\nsamples = 6570\nvalue = [3948, 1 659, 533, 430]'),
Text(0.8125, 0.125, 'gini = 0.563\nsamples = 6539\nvalue = [3945, 1631, 533, 430]'),
Text(0.9375, 0.125, 'gini = 0.175\nsamples = 31\nvalue = [3, 28, 0, 0]')]
```


5.) Write your interpretation of the largest (by sample size) leaf node

Node 1: For the first node, at the very top, we see that the leaf node which has the largest sample size is that of categorization according to the citizenship of the country INDIA. Here, we see that since it says '<= 0.5' that means it is not India. It says that there are about 198157 people who are NOT FROM India and out of them about 97000 of them got an H1B Visa.

Node 2: The node just below that, we see that the sample size is greater for the city of Redmond. We interpret this is as the one WHO ARE NOT FROM INDIA. Hence, people who reside in the city of Redmond, are not citizens of India but HAVE APPLIED an H1B visa are about 93,356.

Node 3: In the last node, we see that there are about 188155 people who DO NOT RESIDE in Redmond and ARE NOT INDIAN CITIZENS, and ones who APPLIED for an H1B visa are about 92,108, ones who were denied are about 78415, 9335 are certified-expersed and 8297 have withdrawn.

In []:

6.) Using a for loop, make your own train-test split and determine the best max_depth for out-of sample accuracy

In [48]: from sklearn.model_selection import train_test_split

```
In [49]: from sklearn.metrics import accuracy score
         outputs = []
         \max depths = [1,2,3]
         X train, X test, y train, y test = train test split(X,y), test size = 0.3)
         for md in max depths:
             clf = tree.DecisionTreeClassifier(max_depth = md)
             clf.fit(X_train, y_train)
             v pred = clf.predict(X test)
             accuracy = accuracy_score(y_test, y_pred)
             outputs.append(accuracy)
In [55]: outputs
Out [55]: [0.4874765156844064, 0.4874765156844064, 0.49377164786437416]
         This shows that 3 level of depths shows the highest accuracy.
In [54]: accuracy
Out [54]: 0.49377164786437416
In [ ]:
In [ ]:
```