Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$N = \log_2 6 - \log_2 9 + \log_2 24 = \log_2 \frac{6 \cdot 24}{9} =$	3 p
	$=\log_2 16 = 4$, care este număr natural	2p
2.	$f(x) = 2 \Leftrightarrow x^2 - x + 2 = 2 \Leftrightarrow x^2 - x = 0$	2p
	Cum ecuația $x^2 - x = 0$ are două soluții reale și distincte, obținem că dreapta $y = 2$ intersectează graficul funcției f în două puncte distincte	3p
3.	$x^2 - 5 = 3x - 1 \Rightarrow x^2 - 3x - 4 = 0$	2p
	x = -1, care nu convine, $x = 4$, care convine	3p
4.	Mulțimea A are C_n^2 submulțimi cu 2 elemente, unde $n \in \mathbb{N}$, $n \ge 2$, este numărul de	2p
	elemente ale lui A	
	$C_n^2 = 15$, deci $\frac{n(n-1)}{2} = 15$, de unde obținem că mulțimea A are 6 elemente	3 p
5.	M mijlocul lui $BC \Rightarrow \overline{AM} = \frac{1}{2} \left(\overline{AB} + \overline{AC} \right)$	2p
	M mijlocul lui $NP \Rightarrow \overrightarrow{AM} = \frac{1}{2} \left(\overrightarrow{AN} + \overrightarrow{AP} \right)$, deci $\overrightarrow{AM} + \overrightarrow{AN} + \overrightarrow{AP} = 3\overrightarrow{AM} = \frac{3}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$	3 p
6.	$2\sin x \cos x + 2\sin^2 x = 0 \Leftrightarrow 2\sin x (\cos x + \sin x) = 0$	2p
	Cum $x \in (0, \pi)$, obţinem $x = \frac{3\pi}{4}$	3 p

SUBIECTUL al II-lea (30 de puncte)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1.a)	$A(0,1,2) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 0 \end{pmatrix} \Rightarrow \det(A(0,1,2)) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 0 \end{vmatrix} = $ $= 0 + 0 + 4 - 2 - 0 - 0 = 2$	2p 3p
b)	$\det(A(a,b,c)) = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ac & ab \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ bc & -c(b-a) & -b(c-a) \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ bc & ac-bc & ab-bc \end{vmatrix} = $ $= \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ bc & -c(b-a) & -b(c-a) \end{vmatrix} = (b-a)(c-a)(c-b), \text{ pentru orice numere reale } a, b \text{ și } c$	2p
c)	$\begin{vmatrix} bc & -c(b-a) & -b(c-a) \end{vmatrix}$ $\det(A(m,n,p)) = (n-m)(p-m)(p-n) \text{ si, cum } m, n \text{ si } p \text{ sunt numere naturale, cu}$ $m < n < p, \text{ obținem } p-m > p-n > 0 \text{ si } p-m > n-m > 0$	3p
	Cum $\det(A(m,n,p))$ este număr prim, obținem $p-n=n-m=1$, deci numerele m , n și p sunt termeni consecutivi ai unei progresii aritmetice	2 p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

2.a)	$f = X^4 + X^3 + \hat{2}X + \hat{2}$, deci $f(\hat{0}) = \hat{2}$ și $f(\hat{2}) = \hat{0}$	3 p
	$f(\hat{0}) + f(\hat{2}) = \hat{2} + \hat{0} = \hat{2}$	2 p
b)	f este divizibil cu $X + \hat{2} \Leftrightarrow f(\hat{1}) = \hat{0}$, deci $a + b = \hat{0}$	3 p
	Cum $a, b \in \mathbb{Z}_3$, perechile sunt $(\hat{0}, \hat{0})$, $(\hat{1}, \hat{2})$ și $(\hat{2}, \hat{1})$	2p
c)	$f(\hat{0}) + f(\hat{1}) + f(\hat{2}) = \hat{2}$, pentru orice $a, b \in \mathbb{Z}_3$	3 p
	Dacă $f(\hat{0})$, $f(\hat{1})$ și $f(\hat{2})$ ar fi distincte două câte două, atunci $f(\hat{0}) + f(\hat{1}) + f(\hat{2}) = 0$	
	$=\hat{0}+\hat{1}+\hat{2}=\hat{0}$, ceea ce este fals, deci pentru orice $a,b\in\mathbb{Z}_3$, există $x,y\in\mathbb{Z}_3$, cu $x\neq y$,	2p
	astfel încât $f(x) = f(y)$	

SUBI	SUBIECTUL al III-lea (30 de pun	
1.a)	$f'(x) = \frac{(e^x + xe^x)(e^x + 2) - xe^{2x}}{(e^x + 2)^2} =$	3 p
	$= \frac{e^{2x} + 2e^x + 2xe^x}{\left(e^x + 2\right)^2} = \frac{e^x \left(e^x + 2x + 2\right)}{\left(e^x + 2\right)^2}, \ x \in \mathbb{R}$	2 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^x}{e^x + 2} = 1$	2 p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{xe^x - x(e^x + 2)}{e^x + 2} = \lim_{x \to +\infty} \frac{-2x}{e^x + 2} = 0, \text{ deci dreapta de ecuație } y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3 p
c)	$g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^x + 2x + 2$ este strict crescătoare și, cum g este continuă, $\lim_{x \to -\infty} g(x) = -\infty$ și $\lim_{x \to +\infty} g(x) = +\infty$, există un unic număr real c , astfel încât $g(c) = 0$	3p
	$f'(x) < 0$, pentru orice $x \in (-\infty, c) \Rightarrow f$ este strict descrescătoare pe $(-\infty, c)$ și $f'(x) > 0$, pentru orice $x \in (c, +\infty) \Rightarrow f$ este strict crescătoare pe $(c, +\infty)$ și, cum f este continuă, obținem că f are un unic punct de extrem	2 p
2.a)	$\int_{0}^{1} f(x)\sqrt{x^{2} + 4x + 5} dx = \int_{0}^{1} 2(x + 3) dx = (x^{2} + 6x) \Big _{0}^{1} = $ $= 1 + 6 - 0 - 0 = 7$	3p 2p
b)	$\int_{0}^{1} \left(f^{2}(x) - 4 \right) dx = \int_{0}^{1} \frac{4(x+3)^{2} - 4(x^{2} + 4x + 5)}{x^{2} + 4x + 5} dx = 4 \int_{0}^{1} \frac{2x + 4}{x^{2} + 4x + 5} dx =$	2p
	$=4\int_{0}^{1} \frac{\left(x^{2}+4x+5\right)'}{x^{2}+4x+5} dx = 4\ln\left(x^{2}+4x+5\right) \Big _{0}^{1} = 4\ln 2$	3 p
c)	Cum $f^2(x) - 4 = \frac{4(2x+4)}{x^2 + 4x + 5} \ge 0$ și $f(x) \ge 0$, pentru orice $x \in [0, +\infty)$, obținem $f(x) \ge 2$, deci $f^n(x) \ge 2^n$, pentru orice $x \in [0, +\infty)$ și orice număr natural nenul n	2 p
	Cum $0 \le a < b$, $I_n = \int_a^b f^n(x) dx \ge 2^n (b-a)$, pentru orice număr natural nenul n și, cum $\lim_{n \to +\infty} 2^n = +\infty$, obținem că $\lim_{n \to +\infty} I_n = +\infty$	3 p

Probă scrisă la matematică *M_mate-info*

Model