CS213/293 Data Structure and Algorithms 2024

Lecture 9: Pattern matching

Instructor: Ashutosh Gupta

IITB India

Compile date: 2024-09-13

Topic 9.1

Pattern matching problem

Pattern matching

Definition 9.1

In a pattern-matching problem, we need to find the position of all occurrences of a pattern string P in a string T.

Usage:

- ► Text editor
- DNA sequencing

Example: Näive approach for pattern matching

Example 9.1

Consider the following text T and pattern P. We try to match the pattern in every position.

Wasteful attempts of matching.

Should we have tried to match the pattern at the second and third positions?

No.

Commentary: In the drawing i is 2. However, we have named the position i to illustrate the argument using symbolic expressions.

Let us suppose we failed to match at position i of T and position 2 of P.

- ▶ We know that T[i-1] = y. Therefore, there is no matching starting at i-1. (Why?)

Shifting the pattern

Let us suppose at position i of T and j of P the matching fails.

Let us suppose we want to resume the search by only updating j.

If we assign j some value k, we are shifting the pattern forward by j - k.

Exercise 9.1

What is the meaning of k = j - 1, k = 0, or k = -1?

Side note: out-of-bounds access of P

If k takes value -1 or |P|, P[k] is accessing the array out of bounds.

For consistency of the definitions, we will say P[-1] = P[|P|] = Null.

However, the algorithms will be carefully written and there will be no out-of-bound access in them.

Definition 9.2

Let P[i:j] indicates the array containing elements P[i], P[j].

What is a good value of k?

We know T[i - j : i - 1] = P[0 : j - 1] and $T[i] \neq P[j]$.

We must have P[0: k-1] = P[j-k: j-1] and $P[j] \neq P[k]_{(Why?)}$.

Exercise 9.2

Should we choose the largest k or smallest k?

©(9)(9)(9)

CS213/293 Data Structure and Algorithms 2024

The largest k implies the minimum shift

We choose the largest k such that

$$P[0:k-1] = P[j-k:j-1] \text{ and } P[j] \neq P[k].$$

k only depends on P and j. Since P is typically small, we pre-compute array h such that h[j] = k.

Example 9.2

We can compute h in O(|P|) time. We will discuss this later.

Exercise 9.3

a. Show that $i > h(i) \ge -1$ for each $i \in [0..|P|)$

b. Show that $|P| > h(|P|) \ge 0$ if |P| > 0. Is it true if |P| = 0? c. If we drop condition $P[i] \neq P[k]$, what may go wrong? CS213/293 Data Structure and Algorithms 2024

Commentary: Answer of b: Since P[|P|] = null, we are guaranteed that $P[|P|] \neq P[0]$. Since we have P[0:-1] = P[j:j-1]. k = 0 will satisfy the condition for P[|P|]. Since we are looking the largest k. P[|P|] > 0

Knuth-Morris-Pratt algorithm

Algorithm 9.1: KMP(string T,string P)

```
1 assume(|P| > 0);
2 i := 0; i := 0; found i := \emptyset;
\mathbf{3} \ h := \mathrm{KMPTABLE}(\mathsf{P});
4 while i < |T| do
       if P[i] = T[i] then
           i := i + 1; \quad i := i + 1;
           if i = |P| then
                found.insert(i - i);
               i := h[i]:
       else
10
           i := h[i];
11
            if j < 0 then
12
             i := i + 1; \ j := j + 1;
13
```

Running time complexity:

- ▶ Since no. of increments of $i \le |T|$, the line 6 and 13 will execute $\le |T|$ times in total.
- ► How do we bound the number of iterations when the **else** branch does not increment *i*?
 - 1. The **else** branch reduces j because h[j] < j.
 - 2. Since every time at the loop head $j \ge 0$ (Why?), no. of reductions of $j \le$ no. of increments of j.
 - 3. Since i and j are always incremented together, no. of reductions of $j \le no$. of increments of i.
 - 4. no. of reductions of $j \leq |T|$.
- ightharpoonup O(|T|) algorithm

Commentary: The step two is bounding the number of reductions over all iterations of the loop (needs some thinking). It is called amortized complexity. Note that the argument does not guarantee a constant bound over the number of consecutive reduction steps.

IITB India

Example: KMP execution

Example 9.3

Consider the following text T and pattern P. Let us suppose, we have h.

Topic 9.2

How to compute array h?

Recall: the definition of h

For a pattern P, h[i] is the largest k such that

$$P[0:k-1] = P[i-k:i-1]$$
 and $P[i] \neq P[k]$.

We use KMP like algorithm again to compute h.

When we compute h[i], we assume we have computed h[i'] for each $i' \in [0, i)$.

Self-matching: use KMP again for computing h

We run two indexes i and j on P such that j < i.

We assume that for each
$$k \in (j, i), \neg (P[0:k-1] = P[i-k:i-1] \land P[i] \neq P[k])$$
.

We will be computing h[i]. Let j be the current running match,i.e, P[i-j:i-1]=P[0:j-1].

- When we consider position i, we have two cases.
 - 1. $P[i] \neq P[j]$ 2. P[i] = P[i]
- In both the cases, we need to update h[i] and may update j.

We ensure that j is largest by updating j conservatively.

Case 1: $P[i] \neq P[j]$

We assign h[i] := j, since j meets the requirements.

We have found the shift position for i.Now, we need to prepare for the next index i + 1.

Now we need to move the pattern forward as little as possible.

Case 1 (continued): $P[i] \neq P[j]$

After the mismatch, we move the pattern forward as little as possible such that we have a match at position i and are ready for the next iteration.

We must have computed h for earlier indexes. We set j := h[j]. We need to keep reducing j until P[j] = P[i] or $j \le 0$.

Exercise 9.4

a. Why the value of h[j] be available? b. Prove that $\forall k \in (h[i],j]: \neg (P[0:k-1] = P[i-k:i-1] \land P[i] \neq 0$ CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta

16

Case 2: P[i] = P[j]

Let us consider the case when matching continues. How should we assign h[i]?

We may use h[i] := j, but it does not meet the requirement $P[i] \neq P[j]$. (Why?)

Let us jump to h[j], which will meet the requirements. (Why?) We assign h[i] := h[j].

Computing h array

Algorithm 9.2: KMPTABLE(string P)

```
i := 1; i := 0; h[0] := -1;
```

```
while i < |P| do
   if P[i] \neq P[i] then
```

```
h[i] := j;
```

while
$$j \ge 0$$
 and $P[j] \ne P[i]$ do $j := h[j]$;

else h[i] := h[j];

$$i := i + 1; \quad j := j + 1;$$

Give proof of correctness of the algorithm.

// Prepare for the next iteration

Commentary: Let prop(i, k) = $(P[0:k-1] = P[i-k:i-1] \land P[i] \neq P[k])$ The loop invariant at the head of the outer loop is P[i-i:i-1] = P[0:i-1].

 $\forall k \in (i, i), \neg prop(i, k), \text{ and }$ $\forall l < i \ prop(h[l], l) \land \forall k \in (h[l], l), \neg prop(l, k)$

We prove the correctness by proving the validity of the

loop invariant.

h[|P|] := j;

return h

Example: computing h

Example 9.4

Consider the following pattern P and the first iteration of the outer loop, which is case 1.

We need to update j := h[j]. Therefore, j = -1.

Afterwards, we increment both j and i. Therefore, i = 2; j = 0;.

Example: computing h (cotinued) (2)

Let us consider the second and third iteration of the outer loop, which are case 2.

After the third iteration, the loop exits since $i \ge |P|$.

Example: computing h (cotinued) (3)

After the third iteration, the loop exists and we update h[|P|].

Topic 9.3

Tutorial problems

Exercise: compute h

Exercise 9.6

Compute array h for pattern "babbaabba".

Exercise: version of KMPTABLE

Exercise 9.7

Is the following version of KMPTABLE *correct?*

```
Algorithm 9.3: KMPTABLEV2(string P)
```

Exercise: compute h(i)

Exercise 9.8

Suppose that there is a letter z in P of length n such that it occurs in only one place, say k, which is given in advance. Can we optimize the computation of h?

End of Lecture 9

