Anticipating Stochastic Integrals and Related Linear Stochastic Differential Equations

Sudip Sinha

Louisiana State University

March 21, 2022

Main contributions

- 1. Extension of Itô's isometry
- 2. Near-martingale optional stopping theorem
- 3. LSDEs with anticipating initial conditions
 - 3.1 Solutions
 - 3.2 Conditionals
- 4. LSDEs with anticipating coefficients
 - 4.1 Solutions in Ayed–Kuo theory
 - 4.2 Solutions via a novel braiding technique
 - 4.3 Large deviation principles

Doctoral Defense

Sudip Sinha

Background

'he Ayed–Ku ntegral

Essential ideas

sometry

Near-martingal

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating

Solutions via ansatz

Solutions via ansatz

novel braiding technique

Enilogue

Ephogue

Outline

Background

Doctoral Defense

Sudip Sinha

Background

Wiener process / Brownian motion

Doctoral Defense

Sudip Sinha

Background

The Ayed–Kı integral

Essential ideas

Extension of Itô's isometry

Near-martingales

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating oefficients

Solutions via ansatz

Solutions using a

novel braiding technique

Stochastic integration

Setup

- » $t \in [0,1]$ and $(\Omega, \Sigma, \mathcal{F}, \mathbb{P})$ is a filtered space
- W is a Wiener process on $(\Omega, \Sigma, \mathcal{F}, \mathbb{P})$
- » A stochastic process X is called adapted if X_t is \mathcal{F}_t -measurable $\forall t$

Integration with respect to W

- Naive integration: not possible
- Wiener's integral: deterministic integrands
- » Itô's integral: adapted integrands

Anticipating integrands

- Itô's idea of enlargement of filtration
- Skorokhod integral and Malliavin calculus
- White-noise distribution theory
- » Aved–Kuo integral

Doctoral Defense

Sudip Sinha

Background

Itô's integral (Itô 1944)

Basics

» Definition. Let $\Delta W_i = W_{t_i} - W_{t_{i-1}}$. For $X \in L^2_{\mathrm{ad}}([0,1] \times \Omega)$ as integrand: take $L^2(\Omega)$ limits of the left endpoint evaluation of Riemann sums

$$M_t \triangleq \int_0^t X_s \, \mathrm{d}W_s \triangleq \lim_{n \to \infty} \sum_{i=1}^n X_{t_{i-1}} \, \Delta W_i \quad \text{in } L^2(\Omega).$$

» Example. $\int_0^t W_s dW_s = \frac{1}{2} (W_t^2 - t)$.

Properties

- » Linearity
- » Mean: 0
- » Variance: $||M||_{L^2(\Omega)} = ||X||_{L^2_{ad}[[0,t]\times\Omega)}$ (Itô's isometry)
- » Martingale: $\mathbb{E}(M_t \mid \mathcal{F}_s) = M_s$ for any $s \leq t$

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku integral

Essential ideas

isometry

Near-martingale:

anticipating initial conditions

Solutions

Conditionals

SDEs with inticipating

Solutions via ans

Solutions via ansatz

novel braiding echnique

technique Large deviation

Linear stochastic differential equations (LSDEs)

» Linear differential equations incorporating "noise", for example

$$\frac{\mathrm{d}X_t}{\mathrm{d}t} = \beta_t X_t + \alpha_t X_t \, \dot{W}_t.$$

- » But \dot{W}_t is meaningless. Heuristically, we multiply by dt, write $\dot{W}_t dt = dW_t$, and interpret the second expression as an Itô integral.
- » Example. For adapted α and β , the following is an LSDE

$$\begin{cases} dX_t = \alpha_t X_t dW_t + \beta_t X_t dt, \\ X_0 = 1. \end{cases}$$

» The solution is given by the *exponential process*

$$\mathcal{E}_t = \exp\left(\int_0^t \alpha_s \, \mathrm{d}W_s + \int_0^t \left(\beta_s - \frac{1}{2}\alpha_s^2\right) \mathrm{d}s\right).$$

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku ntegral

Essential ideas

isometry

Near-martingales

LSDEs with anticipating initial conditions

Solutions

LSDEs with

nticipating pefficients

Solutions via ansatz

Solutions using a

novel braiding technique

incipies

Outline

The Ayed–Kuo integral

Essential ideas

Extension of Itô's isometry

Near-martingales

The Aved-Kuo integral

Doctoral Defense

Sudip Sinha

Outline

The Ayed–Kuo integral

Essential ideas

Doctoral Defense

Sudip Sinha

Essential ideas

Idea

» A stochastic process Y is called *instantly-independent* (i.i.) if Y^t and \mathcal{F}_t are independent $\forall t$.

- » Decompose the integrand into adapted and i.i. components.
- » Left endpoint evaluation for adapted processes.
- » Right endpoint evaluation for i.i. processes.

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku integral

Essential ideas

Extension of Itô's isometry

Near-martingale

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with

Solutions via ansatz

Solutions using a

novel braiding technique

Epilogue

Ephogue

Example

Aved and Kuo 2008, equation 1.6

$$N(t) = \int_0^t W_1 \, dW_s = \int_0^t \left[W_s + (W_1 - W_s) \right] dW_s$$

$$= \lim_{n \to \infty} \sum_{i=1}^n \left[W_{t_{i-1}} + (W_1 - W_{t_i}) \right] \Delta W_i$$

$$= \lim_{n \to \infty} \sum_{i=1}^n (W_1 - \Delta W_i) \Delta W_i$$

$$= W_1 \cdot \lim_{n \to \infty} \sum_{i=1}^n \Delta W_i - \lim_{n \to \infty} \sum_{i=1}^n (\Delta W_i)^2$$

$$= W_1 W_t - t.$$

Doctoral Defense

Sudip Sinha

Essential ideas

Definition (Ayed and Kuo 2008)

» For X adapted and Y instantly-independent, define

$$\int_0^1 X_t \, \mathbf{Y}^t \, \mathrm{d}W_t = \lim_{m \to \infty} \sum_{j=1}^m X_{t_{j-1}} \mathbf{Y}^{t_j} \, \Delta W_i \quad \text{in } L^2(\Omega).$$

Extend to linear combinations.

- » Let Z be a stochastic process such that a sequence $(Z_n)_{n=1}^{\infty}$ of stochastic processes each of the form above (or linear combinations thereof) satisfies
 - 1. $\int_0^1 |Z_n(t) Z(t)|^2 dt \to 0$ as $n \to \infty$ almost surely, and
 - 2. $\int_0^1 Z_n(t) dW_t$ converges in $L^2(\Omega)$ as $n \to \infty$.

Then the stochastic integral of Z is defined by the following (if it exists):

$$\int_0^1 Z(t) dW_t = \lim_{n \to \infty} \int_0^1 Z_n(t) dW_t \quad \text{in } L^2(\Omega).$$

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku ntegral

Essential ideas

Extension of Itô

Near-martingales

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating oefficients

Solutions via ansatz

Solutions using a

novel braiding technique

Differential formula

C.-R. Hwang, Kuo, Saitô, and Zhai 2016, theorem 3.2

type	definition	representation
Itô	$X_{\cdot} = X_{0} + \int_{0}^{\cdot} m_{t} dt + \int_{0}^{\cdot} \sigma_{t} dW_{t}$ $Y^{\cdot} = Y^{1} + \int_{\cdot}^{1} \eta_{t} dt + \int_{\cdot}^{1} \zeta_{t} dW_{t}$	$\mathrm{d}X_t = m_t \mathrm{d}t + \sigma_t \mathrm{d}W_t$
i.i.	$Y' = Y^1 + \int_{\cdot}^{1} \eta_t \mathrm{d}t + \int_{\cdot}^{1} \zeta_t \mathrm{d}W_t$	$\mathrm{d}Y^t = -\eta_t \mathrm{d}t - \zeta_t \mathrm{d}W_t$

Here η_t and ζ_t are i.i. such that Y is also i.i.

Assume $\theta(t, x, y) \in C^{1,2,2}([0,1] \times \mathbb{R} \times \mathbb{R})$. Then

$$d\theta(t, X_t, \mathbf{Y}^t) = \theta_t dt + \theta_x dX_t + \frac{1}{2}\theta_{xx} (dX_t)^2 + \theta_y d\mathbf{Y}^t - \frac{1}{2}\theta_{yy} (d\mathbf{Y}^t)^2,$$

where $(dW_t)^2 = dt$, all other products being zero.

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo ntegral

Essential ideas

Extension of Itô's isometry

Near-martingale

anticipating initial conditions

Solutions

Conditional

SDEs with nticipating

Solutions via ansat

Solutions using a

novel braiding technique

Enilogue

Outline

The Ayed–Kuo integral

Extension of Itô's isometry

Doctoral Defense

Sudip Sinha

Extension of Itô's

isometry

14

Identity for a simple case

Theorem (Kuo, Shrestha, and Sinha 2021a, theorem 3.1)

Suppose $f, \phi \in C^1(\mathbb{R})$ such that

$$f(W_t) \, \phi(\textcolor{red}{W_1} - \textcolor{red}{W_t}), \, f(W_t) \, \phi'(\textcolor{red}{W_1} - \textcolor{red}{W_t}), \, f'(W_t) \, \phi(\textcolor{red}{W_1} - \textcolor{red}{W_t}) \in L^2([0,1] \times \Omega).$$

Then $\mathbb{E}\left[\int_0^1 f(W_t) \phi(W_1 - W_t) dW_t\right] = 0$, and

$$\mathbb{E}\left[\left(\int_{0}^{1} f(W_{t}) \phi(W_{1} - W_{t}) dW_{t}\right)^{2}\right] = \int_{0}^{1} \mathbb{E}\left[f(W_{t})^{2} \phi(W_{1} - W_{t})^{2}\right] dt + 2 \int_{0}^{1} \int_{0}^{t} \mathbb{E}\left[f(W_{s}) \phi'(W_{1} - W_{s}) f'(W_{t}) \phi(W_{1} - W_{t})\right] ds dt.$$

Doctoral Defense

Sudip Sinha

Extension of Itô's

isometry

Identity for a simple case

Theorem (Kuo, Shrestha, and Sinha 2021a, theorem 3.1)

Suppose $f, \phi \in C^1(\mathbb{R})$ such that

$$f(W_t) \phi(W_1 - W_t), f(W_t) \phi'(W_1 - W_t), f'(W_t) \phi(W_1 - W_t) \in L^2([0, 1] \times \Omega).$$

Then $\mathbb{E}\left[\int_0^1 f(W_t) \phi(W_1 - W_t) dW_t\right] = 0$, and

$$\mathbb{E}\left[\left(\int_{0}^{1} f(W_{t}) \phi(W_{1} - W_{t}) dW_{t}\right)^{2}\right] = \int_{0}^{1} \mathbb{E}\left[f(W_{t})^{2} \phi(W_{1} - W_{t})^{2}\right] dt + 2 \int_{0}^{1} \int_{0}^{t} \mathbb{E}\left[f(W_{s}) \phi'(W_{1} - W_{s}) f'(W_{t}) \phi(W_{1} - W_{t})\right] ds dt.$$

Remark. The double integral term can take any real value (ibid., example 3.9).

Doctoral Defense

Sudip Sinha

Background

ne Ayed–Kuo itegral

Essential ideas

Extension of Itô's

isometry

Near-martingales

LSDEs with anticipating initial conditions

Conditionals

SDEs with

efficients

Solutions via ansatz

Solutions using a

technique Large deviation

- » Write integral as $L^2(\Omega)$ -limit of sums over partitions of [0,1].
- » Diagonal: Use quadratic variation of *W*.

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essential ideas

Extension of Itô's isometry

Near-martingale

LSDEs with anticipating initial conditions

Solutions

Conditionals

LSDEs with anticipating

Solutions via ansatz

Solutions via ansatz

novel braiding technique Large deviation

Epilogue

-1---8--

- » Write integral as $L^2(\Omega)$ -limit of sums over partitions of [0, 1].
- Diagonal: Use quadratic variation of W.
- » Off-diagonal: Use the expectation and approximation identities.

$$\bullet \ \mathbb{E}\left[f\left(W_{t_{i-1}}\right) \ \phi\left(\overline{W_b} - W_{t_i} - \Delta W_j\right) \ f\left(W_{t_{j-1}}\right) \ \phi\left(\overline{W_1} - W_{t_j}\right) \Delta W_i \ \Delta W_j\right] = 0.$$

•
$$\phi(W_b - W_{t_i}) - \phi(W_b - W_{t_i} - \Delta W_j) \simeq \phi'(W_b - W_{t_i} - \Delta W_j) \Delta W_j$$
.

• Conditioning w.r.t. $\mathcal{H}_{t_{i-1}}^{t_j}$, noting ΔW_j is independent of $\mathcal{H}_{t_{i-1}}^{t_j}$.

Doctoral Defense

Sudip Sinha

Extension of Itô's isometry

- » Write integral as $L^2(\Omega)$ -limit of sums over partitions of [0, 1].
- Diagonal: Use quadratic variation of W.
- » Off-diagonal: Use the expectation and approximation identities.

$$\bullet \ \mathbb{E}\Big[f\left(W_{t_{i-1}}\right) \ \phi\left(\overline{W_b} - W_{t_i} - \Delta W_j\right) \ f\left(W_{t_{j-1}}\right) \ \phi\left(\overline{W_1} - W_{t_j}\right) \Delta W_i \ \Delta W_j\Big] = 0.$$

•
$$\phi(W_b - W_{t_i}) - \phi(W_b - W_{t_i} - \Delta W_j) \simeq \phi'(W_b - W_{t_i} - \Delta W_j) \Delta W_j$$
.

• Conditioning w.r.t. $\mathcal{H}_{t_{i-1}}^{t_j}$, noting ΔW_j is independent of $\mathcal{H}_{t_{i-1}}^{t_j}$.

Doctoral Defense

Sudip Sinha

Extension of Itô's isometry

- » Write integral as $L^2(\Omega)$ -limit of sums over partitions of [0,1].
- » Diagonal: Use quadratic variation of W.
- » Off-diagonal: Use the expectation and approximation identities.

•
$$\mathbb{E}\left[f\left(W_{t_{i-1}}\right)\phi\left(W_{b}-W_{t_{i}}\right)f\left(W_{t_{i-1}}-\Delta W_{i}\right)\phi\left(W_{1}-W_{t_{i}}\right)\Delta W_{i}\Delta W_{j}\right]=0.$$

- $f(W_{t_{j-1}}) f(W_{t_{j-1}} \Delta W_i) \simeq f'(W_{t_{j-1}} \Delta W_i) \Delta W_i$.
- Conditioning w.r.t. $\mathcal{H}_{t_{i-1}}^{t_i}$, noting ΔW_i is independent of $\mathcal{H}_{t_{i-1}}^{t_i}$.

Sudip Sinha

Background

he Ayed–Kuo itegral

Essentiai ideas

Extension of Itô's isometry

Near-martingale

LSDEs with anticipating initial conditions

olutions

Conditionals

SDEs with nticipating oefficients

Solutions via ansatz

Solutions using a novel braiding technique

principles

- » Write integral as $L^2(\Omega)$ -limit of sums over partitions of [0, 1].
- Diagonal: Use quadratic variation of W.
- » Off-diagonal: Use the expectation and approximation identities.

•
$$\mathbb{E}\left[f\left(W_{t_{i-1}}\right)\phi\left(W_{b}-W_{t_{i}}\right)f\left(W_{t_{i-1}}-\Delta W_{i}\right)\phi\left(W_{1}-W_{t_{i}}\right)\Delta W_{i}\Delta W_{j}\right]=0.$$

- $f(W_{t_{i-1}}) f(W_{t_{i-1}} \Delta W_i) \simeq f'(W_{t_{i-1}} \Delta W_i) \Delta W_i$.
- Conditioning w.r.t. $\mathcal{H}_{t_{i-1}}^{t_i}$, noting ΔW_i is independent of $\mathcal{H}_{t_i}^{t_i}$.

Sudip Sinha

Extension of Itô's isometry

Discussion

- » Shown before under restrictive conditions (Kuo, Sae-Tang, and Szozda 2013, theorem 3.1).
- Vast improvement over the previous result.
- Minimal restrictions on f and ϕ .
- Short, direct, probabilistic proof.
- Utilize the left and right evaluation point definition of the integral.
- Introduce the separation σ -algebra as the canonical σ -algebra to condition on for the Ayed-Kuo integral.

Doctoral Defense

Sudip Sinha

Extension of Itô's isometry

General form (Kuo, Shrestha, and Sinha 2021a, theorem 3.6)

Let $\Theta(x, y)$, $\Lambda(x, y) \in C^1(\mathbb{R}^2)$ and assume that

1.
$$\Theta(W_t, W_1 - W_t)$$
, $\Theta_x(W_t, W_1 - W_t)$, $\Theta_y(W_t, W_1 - W_t) \in L^2([0, 1] \times \Omega)$, and

2.
$$\Lambda(W_t, W_1 - W_t), \Lambda_x(W_t, W_1 - W_t), \Lambda_y(W_t, W_1 - W_t) \in L^2([0, 1] \times \Omega).$$

Then

$$\mathbb{E}\left[\left(\int_{0}^{1} \Theta(W_{t}, W_{1} - W_{t}) \, dW_{t}\right) \left(\int_{0}^{1} \Lambda(W_{t}, W_{1} - W_{t}) \, dW_{t}\right)\right]$$

$$= \int_{0}^{1} \mathbb{E}\left[\Theta(W_{t}, W_{1} - W_{t}) \, \Lambda(W_{t}, W_{1} - W_{t})\right] \, dt$$

$$+ \int_{0}^{1} \int_{0}^{t} \mathbb{E}\left[\Theta_{y}(W_{s}, W_{1} - W_{s}) \, \Lambda_{x}(W_{t}, W_{1} - W_{t})\right] + \Theta_{x}(W_{t}, W_{1} - W_{t}) \, \Lambda_{y}(W_{t}, W_{1} - W_{t})\right] \, ds \, dt.$$

Doctoral Defense

Sudip Sinha

Background

ne Ayed–Kud ntegral

Extension of Itô's

isometry
Near-martingales

LSDEs with anticipating initial

Conditionals

SDEs with nticipating pefficients

Solutions via ansatz

Solutions via ansatz

novel braiding technique Large deviation

Outline

The Ayed–Kuo integral

Near-martingales

Doctoral Defense

Sudip Sinha

Near-martingales

19

Setup

Motivation

- » Process defined by Itô integrals $M_t = \int_0^t X_s dW_s$ are martingales.
- » Are Ayed-Kuo integrals martingales?
- » Example. $N(t) = \int_0^t W_1 dW_s = W_1 W_t t$. Now, $\mathbb{E}(N(t) \mid \mathcal{F}_s) = W_s^2 - s \neq W_1 W_s - s = N(s)$, so not a martingale. However, $\mathbb{E}(N(s) \mid \mathcal{F}_s) = W_s^2 - s = \mathbb{E}(N(t) \mid \mathcal{F}_s)$.

Doctoral Defense

Sudip Sinha

Background

'he Ayed–Ku ntegral

Essential ideas

isometry

Near-martingales

LSDEs with anticipating initial conditions

Solutions

Conditional

SDEs with nticipating

Solutions via ansatz

Solutions via ansatz Solutions using a

novel braiding technique Large deviatio

Enilogue

Setup

Motivation

- » Process defined by Itô integrals $M_t = \int_0^t X_s dW_s$ are martingales.
- » Are Aved-Kuo integrals martingales?
- Example. $N(t) = \int_0^t W_1 dW_s = W_1 W_t t$. Now, $\mathbb{E}(N(t) \mid \mathcal{F}_s) = W_s^2 - s \neq W_1 W_s - s = N(s)$, so not a martingale. However, $\mathbb{E}(N(s) \mid \mathcal{F}_s) = W_s^2 - s = \mathbb{E}(N(t) \mid \mathcal{F}_s)$.

Definition (C.-R. Hwang, Kuo, Saitô, and Zhai 2017, definition 2.1)

An integrable stochastic process N is called a *near-martingale* if $\mathbb{E}(N(t) - N(s) \mid \mathcal{F}_s) = 0$ almost surely for every s < t.

Doctoral Defense

Sudip Sinha

Near-martingales

Setup

Motivation

- » Process defined by Itô integrals $M_t = \int_0^t X_s dW_s$ are martingales.
- » Are Ayed-Kuo integrals martingales?
- » Example. $N(t) = \int_0^t W_1 dW_s = W_1 W_t t$. Now, $\mathbb{E}(N(t) \mid \mathcal{F}_s) = W_s^2 - s \neq W_1 W_s - s = N(s)$, so not a martingale. However, $\mathbb{E}(N(s) \mid \mathcal{F}_s) = W_s^2 - s = \mathbb{E}(N(t) \mid \mathcal{F}_s)$.

Definition (C.-R. Hwang, Kuo, Saitô, and Zhai 2017, definition 2.1)

An integrable stochastic process N is called a *near-martingale* if $\mathbb{E}(N(t) - N(s) \mid \mathcal{F}_s) = 0$ almost surely for every $s \leq t$.

Theorem (ibid., theorem 2.5)

A process N is a near-martingale if and only if the conditioned process M given by $M_t = \mathbb{E}(N(t) \mid \mathcal{F}_t)$ is a martingale.

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kud itegral

Essential ideas

Extension of Ito's isometry

Near-martingales

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating pefficients

Solutions via ansatz

Solutions using a

novel braiding echnique

Epilogue

1 0

Optional stopping theorem

Theorem (Kuo, Shrestha, Sinha, and Sundar 2022, theorem 3.3)

Suppose $\Theta: \mathbb{R}^2 \to \mathbb{R}$ is measurable. Then the processes

$$N(t) = \int_0^t \Theta(W_u, W_1 - W_u) dW_u \quad \text{and} \quad \widetilde{N}(t) = \int_t^1 \Theta(W_u, W_1 - W_u) dW_u$$

are near-martingales.

Theorem (ibid., theorem 3.10)

Let N be a near-submartingale with right-continuous sample paths. Suppose $\sigma \leq \tau$ are two bounded stopping. If N is either non-negative or uniformly integrable, then $N(\sigma)$ and $N(\tau)$ are integrable, and

$$\mathbb{E}(N(\tau) - N(\sigma) \mid \mathcal{F}_{\sigma}) \ge 0$$
 almost surely.

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essentiai ideas

isometry

Near-martingales

anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating oefficients

Solutions via ansatz

Solutions via ansatz

novel braiding technique

Enilogue

Outline

Solutions

Conditionals

LSDEs with anticipating initial conditions

Doctoral Defense

Sudip Sinha

LSDEs with anticipating initial

conditions

Outline

LSDEs with anticipating initial conditions

Solutions

Solutions

Doctoral Defense

Sudip Sinha

Motivation

For $x \in \mathbb{R}$, the solution of

$$\begin{cases} dX_t = X_t dW_t \\ X_0 = x \end{cases}$$

is
$$X_t = x \exp\left(W_t - \frac{1}{2}t\right)$$
.

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku integral

Essential ideas

isometry

CDE----it-

DES With ticipating initial nditions

Solutions

Conditionals

DEs with ticipating efficients

Solutions via ansatz

Solutions using a novel braiding technique

Large deviation

Motivation

For $x \in \mathbb{R}$, the solution of

$$\begin{cases} dX_t = X_t dW_t \\ X_0 = x \end{cases}$$

is
$$X_t = x \exp\left(W_t - \frac{1}{2}t\right)$$
.

However, the solution of

$$\begin{cases} dZ(t) = Z(t) dW_t \\ Z(0) = W_1 \end{cases}$$

is not
$$Z(t) = W_1 \exp\left(W_t - \frac{1}{2}t\right)$$
.

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo ntegral

Essential ideas

sometry

SDEs with

Solutions

Conditionals

SDEs with nticipating pefficients

olutions via ansatz

Solutions using a

Large devia

Non-intuitive nature

Example (Khalifa, Kuo, Ouerdiane, and Szozda 2013, section 3)

The solution of

$$\begin{cases} dZ(t) = Z(t) dW_t \\ Z(0) = W_1 \end{cases}$$

is given by
$$Z(t) = (W_1 - t) \exp\left(W_t - \frac{1}{2}t\right)$$
.

Doctoral Defense

Sudip Sinha

Background

'he Ayed–Ku ntegral

Essential ideas

isometry

Near-martingales

SDEs with nticipating initial onditions

Solutions

Conditionals

DEs with ticipating efficients

Solutions via ansatz

Solutions using a novel braiding echnique

principles

Non-intuitive nature

Example (Khalifa, Kuo, Ouerdiane, and Szozda 2013, section 3)

The solution of

$$\begin{cases} dZ(t) = Z(t) dW_t \\ Z(0) = W_1 \end{cases}$$

is given by
$$Z(t) = (W_1 - t) \exp\left(W_t - \frac{1}{2}t\right)$$
.

Example (Aved and Kuo 2008, example 4.1)

The solution of

$$\begin{cases} dZ(t) = Z(t) dW_t + \frac{1}{W_1} Z(t) dt \\ Z(0) = 1 \end{cases}$$

is given by
$$Z(t) = W_1 \exp\left(W_t - \frac{1}{2}t\right)$$
.

Doctoral Defense

Sudip Sinha

Solutions

Non-intuitive nature

Example (Khalifa, Kuo, Ouerdiane, and Szozda 2013, section 3)

The solution of

$$\begin{cases} dZ(t) = Z(t) dW_t \\ Z(0) = W_1 \end{cases}$$

is given by
$$Z(t) = (W_1 - t) \exp\left(W_t - \frac{1}{2}t\right)$$
.

Doctoral Defense

Sudip Sinha

Background

'he Ayed–Ku ntegral

Essential ideas

isometry

Near-martingales

SDEs with nticipating initial onditions

Solutions

Conditionals

DEs with ticipating efficients

Solutions via ansatz

Solutions using a novel braiding echnique

principles

Generalization

Theorem (Kuo, Sinha, and Zhai 2018, theorem 5.1)

Let $\alpha, h \in L^2[0,1], \beta \in L^1[0,1]$ and $\phi \in C^2(\mathbb{R})$. Then the solution of

$$\begin{cases} dZ(t) = \alpha(t) Z(t) dW_t + \beta(t) Z(t) dt, & t \in [0, 1] \\ Z(0) = \phi \left(\int_0^1 h(s) dW_s \right), \end{cases}$$

is given by

$$Z(t) = \phi \left(\int_0^1 h(s) \, \mathrm{d}W_s - \int_0^t \alpha(s) \, h(s) \, \mathrm{d}s \right) \mathcal{E}_t.$$

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essential ideas

isometry

Near-martingale

ANDES With Inticipating initial conditions

Solutions

Conditionals

DEs with ticipating

Solutions via ansatz

Solutions using a novel braiding

technique Large devi

Generalization

Theorem (Kuo, Sinha, and Zhai 2018, theorem 5.1)

Let $\alpha, h \in L^2[0,1], \beta \in L^1[0,1]$ and $\phi \in C^2(\mathbb{R})$. Then the solution of

$$\begin{cases} dZ(t) = \alpha(t) Z(t) dW_t + \beta(t) Z(t) dt, & t \in [0, 1] \\ Z(0) = \phi \left(\int_0^1 h(s) dW_s \right), \end{cases}$$

is given by

$$Z(t) = \phi \left(\int_0^1 h(s) \, dW_s - \int_0^t \alpha(s) \, h(s) \, ds \right) \mathcal{E}_t.$$

Proof idea. Use an ansatz and then apply the differential formula.

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essentiai ideas

isometry

Near-martinga

anticipating initial conditions

Solutions

Conditionals

SDEs with aticipating pefficients

Solutions via ansatz

Solutions via ansatz

Solutions using a

technique

Large deviat

Further generalization

Theorem (Kuo, Shrestha, and Sinha 2021b, theorem 4.2)

Let $\alpha \in L^2_{ad}([0,1] \times \Omega)$, $\beta \in L^1_{ad}([0,1] \times \Omega)$ be stochastic processes. Suppose $h \in L^2[0,1]$ and $\phi \in C^2(\mathbb{R})$ are deterministic functions. Then the solution of

$$\begin{cases} dZ(t) = \alpha_t Z(t) dW_t + \beta_t Z(t) dt, \\ Z(0) = \phi \left(\int_0^1 h(s) dW_s \right), \end{cases}$$

is given by

$$Z(t) = \phi \left(\int_0^1 h(s) \, dW_s - \int_0^t h(s) \, \alpha_s \, ds \right) \mathcal{E}_t.$$

Proof idea. Use an ansatz and then apply the differential formula.

Doctoral Defense

Sudip Sinha

Background

e Ayed–Kud egral

Essential ideas

isometry Near-martingales

SDFe with

anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating pefficients

olutions via ansatz

Solutions via ansatz

novel braiding technique Large deviation

Epilogue

Ephogue

Outline

LSDEs with anticipating initial conditions

Conditionals

Doctoral Defense

Sudip Sinha

Conditionals

Motivation and setup

For $\alpha \in L^2_{\mathrm{ad}}([0,1] \times \Omega)$, $\beta \in L^1_{\mathrm{ad}}([0,1] \times \Omega)$, and $h \in L^2[0,1]$, consider

$$\begin{cases} dZ(t) = \alpha_t Z(t) dW_t + \beta_t Z(t) dt \\ Z(0) = \phi \left(\int_0^1 h(s) dW_s \right), \end{cases}$$

and the conditioned process

$$X_t = \mathbb{E}(\mathbf{Z}(t) \mid \mathcal{F}_t).$$

Questions

- » What SDE does *X* satisfy?
- » What is the relationship between the SDEs of X and Z?
- » Is there a formula to obtain X from Z directly?

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku ntegral

Essential ideas

isomeny Near-martingales

Near-martinga

anticipating initial conditions

DOTULIOIIS

Conditionals

LSDEs with anticipating

Solutions via ansatz

Solutions via ansatz

Solutions using a novel braiding

nover braiding technique Large deviatio

Analytic functions (Kuo, Shrestha, and Sinha 2021b, theorem 5.1)

Let ϕ is an analytic function on \mathbb{R} with derivative ϕ' . Furthermore, let Z(t) be the solution of

$$dZ(t) = \alpha_t Z(t) dW_t + \beta_t Z(t) dt, \quad Z(0) = \phi \left(\int_0^1 h(s) dW_s \right),$$

and $X_t = \mathbb{E}(\mathbf{Z}(t) \mid \mathcal{F}_t)$ is the conditioned process. Then X satisfies

$$dX_t = \alpha_t X_t dW_t + \beta_t X_t dt + h(t) \widetilde{X}_t dW_t, \quad X_0 = \mathbb{E} \Big[\phi \Big(\int_0^1 h(s) dW_s \Big) \Big],$$

where $\widetilde{X}_t = \mathbb{E}(\widetilde{Z}(t) \mid \mathcal{F}_t)$, and \widetilde{Z} is the solution of

$$d\widetilde{Z}(t) = \alpha_t \, \widetilde{Z}(t) \, dW_t + \beta_t \, \widetilde{Z}(t) \, dt, \quad \widetilde{Z}(0) = \phi' \Big(\int_0^1 h(s) \, dW_s \Big).$$

Doctoral Defense

Sudip Sinha

Conditionals

Special case: the exponential function

Example (Kuo, Shrestha, and Sinha 2021b, example 5.3)

The solution of

$$\begin{cases} dX_t = (\alpha_t + h(t)) X_t dW_t + \beta_t X_t dt, \\ X_0 = 1. \end{cases}$$

is given by

$$X_t = \mathcal{E}_t \exp\Big(\int_0^t h(s) \, \mathrm{d}W_s - \int_0^t h(s) \, \alpha_s \, \mathrm{d}s\Big).$$

Doctoral Defense

Sudip Sinha

Background

ie Ayed–Ku tegral

Essential ideas

isometry

Near-martingales

anticipating initial conditions

Solutions

Conditionals

LSDEs with anticipating

Solutions via ansatz

Solutions using a novel braiding technique

Hermite polynomials

Kuo, Shrestha, and Sinha 2021b, theorem 5.5

For a fixed $n \in \mathbb{N}$, suppose Z is the solution of

$$dZ(t) = \alpha_t Z(t) dW_t + \beta_t Z(t) dt, \quad Z(0) = H_n \Big(\int_0^1 h(s) dW_s ; \int_0^1 h(s)^2 ds \Big).$$

Then $X_t = \mathbb{E}(\mathbf{Z}(t) \mid \mathcal{F}_t)$ is given by

$$X_t = H_n\left(\int_0^t h(s) \, \mathrm{d}W_s - \int_0^t h(s) \, \alpha_s \, \mathrm{d}s \, ; \int_0^t h(s)^2 \, \mathrm{d}s\right) \mathcal{E}_t.$$

Moreover, X_t satisfies

preover,
$$X_t$$
 satisfies
$$\begin{cases} \mathrm{d}X_t = \alpha_t X_t \, \mathrm{d}W_t + \beta_t X_t \, \mathrm{d}t \\ + n H_{n-1} \Big(\int_0^t h(s) \, \mathrm{d}W_s - \int_0^t h(s) \, \alpha_s \, \mathrm{d}s \, ; \int_0^t h(s)^2 \, \mathrm{d}s \Big) \, \mathcal{E}_t \, h(t) \, \mathrm{d}W_t \\ X_0 = 0. \end{cases}$$

Doctoral Defense

Sudip Sinha

Conditionals

Outline

LSDEs with anticipating coefficients

Large deviation principles

Solutions using a novel braiding technique

Solutions via ansatz

Doctoral Defense Sudip Sinha

LSDEs with

anticipating coefficients

33

Outline

LSDEs with anticipating coefficients

Solutions via ansatz

Doctoral Defense

Sudip Sinha

Solutions via ansatz

Motivation

» In Itô's theory, for an adapted process H_t , the solution of

$$\begin{cases} dX_t = H_t X_t dW_t \\ X_0 = 1 \end{cases}$$

is given by

$$X_t = \exp\left(\int_0^t H_s \,\mathrm{d}W_s - \frac{1}{2} \int_0^t H_s^2 \,\mathrm{d}s\right).$$

Doctoral Defense

Sudip Sinha

Background

integral

Essential ideas

isometry

Near-martingal

LSDEs with anticipating initial conditions

Solutions

Conditional

SDEs with aticipating sefficients

Solutions via ansatz

Solutions using a novel braiding technique

Motivation

» In Itô's theory, for an adapted process H_t , the solution of

$$\begin{cases} dX_t = H_t X_t dW_t \\ X_0 = 1 \end{cases}$$

is given by

$$X_t = \exp\left(\int_0^t H_s \,\mathrm{d}W_s - \frac{1}{2} \int_0^t H_s^2 \,\mathrm{d}s\right).$$

» On the other hand, the solution of

$$\begin{cases} dZ(t) = W_1 Z(t) dW_t \\ Z(0) = 1 \end{cases}$$

for the anticipating coefficient W_1 is not given by

$$Z(t) = \exp\left(\int_0^t W_1 \, dW_s - \frac{1}{2} \int_0^t W_1^2 \, ds\right) = \exp\left(W_1 \, W_t - t - \frac{1}{2} t W_1^2\right).$$

Doctoral Defense

Sudip Sinha

Background

ntegral

Essential ideas

isometry

ear-martingales

anticipating initial conditions

Conditionals

Conditionals

nticipating pefficients

Solutions via ansatz

Solutions using a novel braiding technique

Non-trivial nature

Example (C. R. Hwang, Kuo, and Saitô 2019, theorem 3.1)

The solution of

$$\begin{cases} dZ(t) = W_1 Z(t) dW_t \\ Z(0) = 1. \end{cases}$$

is given by

$$Z(t) = \exp\left[W_1 \int_0^t e^{-(t-s)} dW_s - t - \frac{1}{4} (1 - e^{-2t}) W_1^2\right].$$

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku ntegral

Essential ideas

isometry

Near-martingale

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating oefficients

Solutions via ansatz

Solutions using a novel braiding technique Large deviation

Non-trivial nature

Example (C. R. Hwang, Kuo, and Saitô 2019, theorem 3.1)

The solution of

$$\begin{cases} dZ(t) = W_1 Z(t) dW_t \\ Z(0) = 1. \end{cases}$$

is given by

$$Z(t) = \exp\left[W_1 \int_0^t e^{-(t-s)} dW_s - t - \frac{1}{4} (1 - e^{-2t}) W_1^2\right].$$

Example (ibid., theorem 3.3)

The process
$$Z(t) = \exp\left(W_1 W_t - t - \frac{1}{2}W_1^2 t\right)$$
 is a solution of
$$dZ(t) = W_1 Z(t) dW_t + W_1 (W_t - tW_t) Z(t) dt, \quad Z(0) = 1.$$

Doctoral Defense

Sudip Sinha

Background

integral

Essential ideas

isometry

Near-martingale

LSDEs with anticipating initial conditions

Conditionals

LSDEs with

nticipating pefficients

Solutions via ansatz

Solutions using a novel braiding technique
Large deviation

Non-trivial nature

Example (C. R. Hwang, Kuo, and Saitô 2019, theorem 3.1)

The solution of

$$\begin{cases} dZ(t) = W_1 Z(t) dW_t \\ Z(0) = 1. \end{cases}$$

is given by

$$Z(t) = \exp\left[W_1 \int_0^t e^{-(t-s)} dW_s - t - \frac{1}{4} (1 - e^{-2t}) W_1^2\right].$$

Doctoral Defense

Sudip Sinha

Background

integral

Essential ideas

isometry

Near-martingales

LSDEs with anticipating initial conditions

Conditionala

LSDEs with

pefficients

Solutions via ansatz

Solutions using a novel braiding technique

Large deviation

Generalization for anticipating drift

Kuo, Shrestha, Sinha, and Sundar 2022, theorem 4.2

Suppose $\sigma \in L^2_{\mathrm{ad}}([0,1] \times \Omega), \gamma \in L^2[0,1]$, and ξ is independent of W. Moreover, assume $f \in C^2(\mathbb{R})$ along with $f, f', f'' \in L^1(\mathbb{R})$. Then the solution of

$$\begin{cases} dZ(t) = f\left(\int_0^1 \gamma(s) dW_s\right) Z(t) dt + \sigma_t Z(t) dW_t \\ Z(0) = \xi \end{cases}$$

in the Ayed-Kuo theory is given by

$$Z(t) = \xi \exp\left[\int_0^t \sigma_s \, dW_s - \frac{1}{2} \int_0^t \sigma_s^2 \, ds + \int_0^t f\left(\int_0^1 \gamma(u) \, dW_u - \int_s^t \gamma(u) \, \sigma_u \, du\right) ds\right].$$

Proof idea. Use an ansatz and then apply the differential formula.

Doctoral Defense

Sudip Sinha

Background

Ayed-Ku

ssential ideas

ometry

ear-marting:

nticipating initial onditions

Conditional

SDEs with aticipating

oefficients

Solutions via ansatz

lutions using a wel braiding chnique

Epilogue

1 0

The squared process

Theorem (Kuo, Shrestha, Sinha, and Sundar 2022, theorem 4.3)

Under identical conditions as before,

$$\begin{cases} dV(t) = \left[\sigma_t^2 + f\left(\int_0^1 \gamma(s) dW_s\right) + 2\gamma(t) \sigma_t \int_0^t f'\left(\int_0^1 \gamma(u) dW_u - \int_s^t \gamma(u) \sigma_u du\right) ds\right] V(t) dt \\ + 2\sigma_t V(t) dW_t, \\ V(0) = \xi^2 \end{cases}$$

is solved by \mathbb{Z}^2 , where \mathbb{Z} is given as before.

Proof idea. Use an ansatz and then apply the differential formula.

Doctoral Defense

Sudip Sinha

Background

The Ayed–Ku ntegral

Essential ideas

isometry

Near-martingales

LSDEs with anticipating initial conditions

Solutions

Conditional

SDEs with nticipating oefficients

Solutions via ansatz

Solutions using a novel braiding technique

Epilogue

Outline

Sudip Sinha

Doctoral Defense

LSDEs with anticipating coefficients

Solutions using a novel braiding technique

novel braiding technique

Solutions using a

» Goal. Under reasonable conditions on γ , σ , f, and ξ , find the solution of

$$\begin{cases} dZ(t) = f\left(\int_0^1 \gamma(s) dW_s\right) Z(t) dt + \sigma(t) Z(t) dW_t \\ Z(0) = \xi. \end{cases}$$

» In Ayed-Kuo theory, the solution is

$$Z(t) = \xi \exp\left[\int_0^t \sigma(s) dW_s - \frac{1}{2} \int_0^t \sigma(s)^2 ds + \int_0^t f\left(\int_0^1 \gamma(u) dW_u - \int_s^t \gamma(u) \sigma(u) du\right) ds\right].$$

» Question. Can we do this without an ansatz?

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essential ideas

isometry

Near-martingale

anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating pefficients

Solutions via ansatz

Solutions using a novel braiding technique

principles

$$\begin{cases} dZ(t) = f\left(\int_0^1 \gamma(s) dW_s\right) Z(t) dt + \sigma(t) Z(t) dW_t \\ Z(0) = \xi. \end{cases}$$

» In Ayed-Kuo theory, the solution is

$$Z(t) = \xi \exp\left[\int_0^t \sigma(s) dW_s - \frac{1}{2} \int_0^t \sigma(s)^2 ds + \int_0^t f\left(\int_0^1 \gamma(u) dW_u - \int_s^t \gamma(u) \sigma(u) du\right) ds\right].$$

- » Question. Can we do this without an ansatz?
- » Inspiration. Trotter's product formula (Trotter 1959).

Sudip Sinha

Background

he Ayed–Kuo itegral

Essemuai ideas

isometry

Near-martingale

anticipating initial conditions

Solutions

Conditionals

SDEs with aticipating efficients

Solutions via ansatz

Solutions using a novel braiding

novel braiding technique

Enilogue

Skorokhod integral

- » The stochastic derivative Dallows us to differentiate certain random variables w.r.t. ω .
- » The *Skorokhod integral* δ is defined as the adjoint of D.
- $L^2_{\mathrm{ad}}([0,1]\times\Omega)\subset\mathrm{dom}(\delta)$, and for any $u\in L^2_{\mathrm{ad}}([0,1]\times\Omega)$, we have

$$\delta(u) = \int_0^1 u_t \, \mathrm{d}W_t,$$

where the right side is in the sense of Itô (Nualart 2006, proposition 1.3.4).

» Ayed–Kuo integral ≡ Skorokhod integral (Parczewski 2017, theorem 2.3).

Doctoral Defense

Sudip Sinha

Solutions using a novel braiding technique

Simple anticipating SDE

For $\sigma \in L^2[0,1]$, fix the family of translation $A_t: \mathcal{C}_0 \to \mathcal{C}_0$ in the Cameron–Martin direction

$$(A_t(\omega))_s = \omega_s - \int_0^{t \wedge s} \sigma(u) \, \mathrm{d}u.$$

Theorem (Kuo, Shrestha, Sinha, and Sundar 2022, lemma 4.8)

Suppose $\sigma \in L^2[0,1]$ and $\xi \in L^p(\Omega)$ for some p > 2. Then

$$\begin{cases} dZ(t) = \sigma(t) Z(t) dW_t \\ Z(0) = \xi, \end{cases}$$

in the Skorokhod sense has the unique solution

$$Z(t) = (\xi \circ A_t) \, \mathcal{E}_t.$$

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kud itegral

Essential ideas

Near-martingales

LSDEs with

Solutions

Conditionals

SDEs with inticipating

olutions via ansa

Solutions using a

novel braiding technique

ilomo

The braiding technique: idea

Kuo, Shrestha, Sinha, and Sundar 2022, section 4.2

For $u \in [t_{k-1}, t_k]$,

$$dY_u^{(k)} = \sigma(u) Y_u^{(k)} dW_u \qquad dX_u^{(k)} = f\left(\int_0^1 \gamma(u) dW_u\right) X_u^{(k)} ds$$
$$Y_{t_{k-1}}^{(k)} = X_{t_{k-1}}^{(k-1)} \qquad X_{t_{k-1}}^{(k)} = Y_{t_k}^{(k)}$$

Doctoral Defense

Sudip Sinha

Background

he Aved–Ku

Essential ideas

isometry

Near-martingales

LSDEs with anticipating initial conditions

Solutions

I SDEs with

SDEs with nticipating oefficients

Solutions via ansatz

Solutions using a novel braiding

novel braiding technique

Epilogue

Ephogue

The braiding technique: algorithm

Kuo, Shrestha, Sinha, and Sundar 2022, section 4.2

- 1. Consider a partition $\Delta_n = \{t_0 = 0, t_1, \dots, t_n = t\}$ of [0, t].
- 2. On each subinterval, iteratively solve the following:
 - 2.1 the SDE with only diffusion

$$\begin{cases} dY_u^{(k)} = \sigma(u) Y_u^{(k)} dW_u, & u \in [t_{k-1}, t_k], \\ Y_{t_{k-1}}^{(k)} = X_{t_{k-1}}^{(k-1)}, \text{ and} \end{cases}$$

2.2 the ODE with only the drift

$$\begin{cases} dX_u^{(k)} = f\left(\int_0^1 \gamma(u) dW_u\right) X_u^{(k)} ds, & u \in [t_{k-1}, t_k], \\ X_{t_{k-1}}^{(k)} = Y_{t_k}^{(k)}. \end{cases}$$

For the first step, use $Y_0^{(1)} = \xi$.

3. The limit of $X^{(n)}$ as $n \to \infty$ gives us the required solution Z.

Doctoral Defense

Sudip Sinha

Solutions using a novel braiding technique

Existence lemma

Kuo, Shrestha, Sinha, and Sundar 2022, lemma 4.9

Let $\xi \in L^p(\Omega)$ for some p > 2. Consider the kth subinterval $u \in [t_{k-1}, t_k]$ for any $k \in [n]$, and define $Y^{(k)}$ and $X^{(k)}$ as above. Then there exists a set $\Omega_k \subset \Omega$ with $\mathbb{P}(\Omega_k) = 1$ such that on Ω_k , we have

$$X_{t_k}^{(k)} = (\xi \circ A_0^{t_k}) E_0^{t_k} \prod_{i=1}^k (g_{t_{i-1}}^{t_i} \circ A_{t_i}^{t_k}),$$

where

$$g_u^{\upsilon} = \exp\left[\left(\upsilon - u\right) f\left(\int_0^1 \gamma(u) \, dW_u\right)\right], \quad \text{and}$$

$$E_u^{\upsilon} = \exp\left[\int_u^{\upsilon} \sigma(s) \, dW_s - \frac{1}{2} \int_u^{\upsilon} \sigma(s)^2 \, ds\right].$$

Sudip Sinha

Solutions using a

novel braiding technique

General result

Kuo, Shrestha, Sinha, and Sundar 2022, theorem 4.10

Suppose $\sigma, \gamma \in L^2[0,1], f : \mathbb{R} \to \mathbb{R}$, and $\xi \in L^p(\Omega)$ for some p > 2. Then the unique solution of

$$\begin{cases} dZ(t) = f\left(\int_0^1 \gamma(s) dW_s\right) Z(t) dt + \sigma(t) Z(t) dW_t \\ Z(0) = \xi. \end{cases}$$

in the Skorokhod sense is

$$Z(t) = (\xi \circ A_0^t) \exp\left[\int_0^t \sigma(s) dW_s - \frac{1}{2} \int_0^t \sigma(s)^2 ds + \int_0^t f\left(\int_0^1 \gamma(u) dW_u - \int_s^t \gamma(u) \sigma(u) du\right) ds\right].$$

Doctoral Defense

Sudip Sinha

Solutions using a

novel braiding technique

Outline

LSDEs with anticipating coefficients

Large deviation principles

Large deviation principles

Doctoral Defense

Sudip Sinha

Large deviation principles

Basics

- » Allows us to calculate probabilities of rare events that decay exponentially.
- » Heuristically, $\mathbb{P}\{X^{\epsilon} \in dx\} \simeq \exp\left(-\frac{I(x)}{\epsilon}\right) dx$.
- » More rigorously, $\epsilon \log \mathbb{P}\{X^{\epsilon} \in E\} \to -\inf_{E} I(x) \text{ as } \epsilon \to 0.$

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essential ideas

Extension of Itô' isometry

Near-martingale

LSDEs with anticipating initial conditions

olutions

Conditionals

SDEs with nticipating

Solutions via ansatz

Solutions using a

Large deviation

Large deviation principles

Basics

- » Allows us to calculate probabilities of rare events that decay exponentially.
- » Heuristically, $\mathbb{P}\{X^{\epsilon} \in dx\} \simeq \exp\left(-\frac{I(x)}{\epsilon}\right) dx$.
- » More rigorously, $\epsilon \log \mathbb{P}\{X^{\epsilon} \in E\} \to -\inf_{E} I(x) \text{ as } \epsilon \to 0.$

Define

- » $\mathcal{C}_{\kappa} = \{ f : [0,1] \to \mathbb{R} \mid f \text{ continuous}, f(0) = \kappa \}$
- $\mathcal{H}^1 = \{ f \in \mathcal{C}_0 \mid f' \in L^2[0, 1] \}$

Doctoral Defense

Sudip Sinha

Background

ne Ayed–Ku tegral

Essential ideas

isometry

Near-martingale

anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating

Solutions via ansatz

Solutions via ansat Solutions using a

Large deviation

Zniloguo

Large deviation principles

Basics

- » Allows us to calculate probabilities of rare events that decay exponentially.
- » Heuristically, $\mathbb{P}\{X^{\epsilon} \in dx\} \simeq \exp\left(-\frac{I(x)}{\epsilon}\right) dx$.
- » More rigorously, $\epsilon \log \mathbb{P}\{X^{\epsilon} \in E\} \to -\inf_{E} I(x) \text{ as } \epsilon \to 0.$

Define

- » $\mathcal{C}_{\kappa} = \{ f : [0,1] \to \mathbb{R} \mid f \text{ continuous}, f(0) = \kappa \}$
- $\mathcal{H}^1 = \{ f \in \mathcal{C}_0 \mid f' \in L^2[0, 1] \}$

Theorem (Schilder 1966)

The family $\left(\sqrt{\epsilon}W\right)_{\epsilon>0}$ on $\left(\mathcal{C}_{0},\left\|\cdot\right\|_{\infty}\right)$ satisfies LDP with rate function

$$I(\omega) = \begin{cases} \frac{1}{2} \int_0^1 |\omega'(t)|^2 dt & \text{if } \omega \in \mathcal{H}^1, \\ \infty & \text{otherwise.} \end{cases}$$

Doctoral Defense

Sudip Sinha

Background

e Ayed–Kud egral

Essential ideas

Extension of Itô isometry

Near-martingale

LSDEs with
anticipating initial

Solutions

Conditionals

SDEs with nticipating oefficients

Solutions via ans:

Solutions via ansatz

olutions using a ovel braiding

Large deviation

Constant initial conditions: setup

Suppose σ and γ are deterministic functions of bounded variation on [0,1]. Moreover, suppose $f \in C^2(\mathbb{R})$ is Lipschitz continuous along with $f, f', f'' \in L^1(\mathbb{R})$. For a fixed $\kappa \in \mathbb{R}$, consider the family of linear stochastic differential equations with parameter $\varepsilon > 0$ given by

$$\begin{cases} dZ_{\kappa}^{\epsilon}(t) = f\left(\sqrt{\epsilon} \int_{0}^{1} \gamma(s) dW_{s}\right) Z_{\kappa}^{\epsilon}(t) dt + \sqrt{\epsilon} \sigma(t) Z_{\kappa}^{\epsilon}(t) dW_{t} \\ Z_{\kappa}^{\epsilon}(0) = \kappa, \end{cases}$$

Then the unique solutions are given by

$$Z_{\kappa}^{\epsilon}(t) = \kappa \exp\left[\sqrt{\epsilon} \int_{0}^{t} \sigma(s) \, \mathrm{d}W_{s} - \frac{\epsilon}{2} \int_{0}^{t} \sigma(s)^{2} \, \mathrm{d}s + \int_{0}^{t} f\left(\sqrt{\epsilon} \int_{0}^{1} \gamma(u) \, \mathrm{d}W_{u} - \epsilon \int_{s}^{t} \gamma(u) \, \sigma(u) \, \mathrm{d}u\right) \mathrm{d}s\right].$$

Doctoral Defense

Sudip Sinha

Background

ie Ayed–Kuo tegral

Essential ideas

sometry

Near-martingales

anticipating initial conditions

Conditional

Conditionals

SDEs with nticipating pefficients

Solutions via ansatz

Solutions via ansatz

novel braiding

Large deviation

Constant initial conditions: large deviation principle

Theorem (Kuo, Shrestha, Sinha, and Sundar 2022, theorem 5.7)

The family $\left(\mathbf{Z}_{\kappa}^{\varepsilon}\right)_{\varepsilon>0}$ follows LDP on $\left(\mathcal{C}_{\kappa},\left\|\cdot\right\|_{\infty}\right)$ with the rate function

$$J(y) = \inf\{I \circ \theta^{-1}(y)\},\,$$

where *I* is the Schilder's rate function and the continuous function $\theta:\mathcal{C}_0\to\mathcal{C}_\kappa$ is defined by

$$\theta(x) = \kappa \exp\left[\int_0^t \sigma(s) \, \mathrm{d}x(s) - \frac{\epsilon}{2} \int_0^t \sigma(s)^2 \, \mathrm{d}s + \int_0^t f\left(\int_0^1 \gamma(u) \, \mathrm{d}x(u) - \epsilon \int_s^t \gamma(u) \, \sigma(u) \, \mathrm{d}u\right) \mathrm{d}s\right],$$

Doctoral Defense

Sudip Sinha

Background

ne Ayed–Ku

Essential ideas

isometry

Near-martinga

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating

Solutions via ansatz

Solutions using a

technique Large deviation

principles

Lphogue

Random initial conditions: setup

Suppose σ, γ, f are as before. Consider the family of linear stochastic differential equations with parameter $\epsilon>0$ given by

$$\begin{cases} \mathrm{d} Z_{\xi}^{\epsilon}(t) = f\left(\sqrt{\epsilon} \int_{0}^{1} \gamma(s) \, \mathrm{d} W_{s}\right) Z_{\xi}^{\epsilon}(t) \, \mathrm{d} t + \sqrt{\epsilon} \sigma(t) \, Z_{\xi}^{\epsilon}(t) \, \mathrm{d} W_{t} \\ Z_{\xi}^{\epsilon}(0) = \xi^{\epsilon}, \end{cases}$$

where each ξ^{ϵ} is a random variable independent of the Wiener process W. Then the unique solutions are given by

$$Z_{\xi}^{\epsilon}(t) = \xi^{\epsilon} \exp\left[\sqrt{\epsilon} \int_{0}^{t} \sigma(s) \, \mathrm{d}W_{s} - \frac{\epsilon}{2} \int_{0}^{t} \sigma(s)^{2} \, \mathrm{d}s + \int_{0}^{t} f\left(\sqrt{\epsilon} \int_{0}^{1} \gamma(u) \, \mathrm{d}W_{u} - \epsilon \int_{s}^{t} \gamma(u) \, \sigma(u) \, \mathrm{d}u\right) \mathrm{d}s\right].$$

Doctoral Defense

Sudip Sinha

Background

e Ayed–Kud egral

Essential ideas

isometry

Near-martingales

anticipating initial conditions

Solutions

Conditionals

SDEs with nticipating

olutions via ansatz

Solutions via ansatz

novel braiding technique Large deviation

principles

Random initial conditions: large deviation principle

Theorem (Kuo, Shrestha, Sinha, and Sundar 2022, theorem 5.8)

Let $\kappa \in \mathbb{R}$ and

$$\lim_{\epsilon \to 0} \epsilon \log \mathbb{E}(\xi^{\epsilon} - \kappa)^2 = -\infty.$$

Moreover, assume that the functions f, f', σ , γ are all bounded. Then the family $\left(Z_{\xi}^{\varepsilon}\right)_{\varepsilon>0}$ follows LDP on $\left(\mathcal{C}_{\kappa}, \|\cdot\|_{\infty}\right)$ with the rate function

$$J(y) = \inf\{I \circ \theta^{-1}(y)\},\,$$

where *I* is the Schilder's rate function and $\theta: \mathcal{C}_0 \to \mathcal{C}_{\kappa}$ is the continuous function shown before.

Doctoral Defense

Sudip Sinha

Background

e Ayed–Kud egral

Essential ideas

isometry

Near-martingales

anticipating initial conditions

olutions

Conditionals

SDEs with nticipating

Solutions via ansatz

Solutions via alisatz

Large deviation

principles

Ephogue

Outline

Epilogue

Epilogue

Doctoral Defense

Sudip Sinha

53

Summary

property	classical theory	Ayed-Kuo theory
definition	Itô's integral	Ayed–Kuo integral
well-defined	✓	✓
linearity	✓	✓
mean 0	✓	✓
isometry	Itô's isometry	extension
martingale	martingales	near-martingales
stopped processes	Doob's OST	near-martingale OST
differential equations	SDEs	anticipating SDEs
LDP	Freidlin-Wentzell theory	specific results
inequalities	Doob's martingale inequality	open problem
memory	Markov processes	open problem
measure equivalence	Girsanov's theorem	open problem

Doctoral Defense

Sudip Sinha

Near-martingales

Solutions via ansatz

novel braiding technique

Large deviation

Main contributions

- 1. Extension of Itô's isometry
- 2. Near-martingale optional stopping theorem
- 3. LSDEs with anticipating initial conditions
 - 3.1 Solutions
 - 3.2 Conditionals
- 4. LSDEs with anticipating coefficients
 - 4.1 Solutions in Ayed–Kuo theory
 - 4.2 Solutions via a novel braiding technique
 - 4.3 Large deviation principles

Doctoral Defense

Sudip Sinha

Background

he Ayed–Kuo itegral

Essential ideas

isometry

Near-martingal

LSDEs with anticipating initial conditions

Solutions

Conditionals

SDEs with

Solutions via ansatz

Solutions via ansatz

novel braiding technique Large deviation

Doctoral Defense

Sudip Sinha

Background

The Ayed–K ntegral

Essential ideas

isometry

Near-martingale

Thank you!

LSDEs with anticipating initial conditions

Solutions

Conditionals

DEs with ticipating efficients

olutions via ansatz

Solutions using a novel braiding technique Large deviation

Epilogue

56

- Hwang, Chii Ruey, Hui-Hsiung Kuo, and Kimiaki Saitô (2019). "Anticipating Exponential Processes and Stochastic Differential Equations". In: *Communications on Stochastic Analysis* 13.3. DOI: 10.31390/cosa.13.3.09.
- Hwang, Chii-Ruey, Hui-Hsiung Kuo, Kimiaki Saitô, and Jiayu Zhai (2016). "A general Itô formula for adapted and instantly independent stochastic processes". In: *Communications on Stochastic Analysis* 10.3. DOI: 10.31390/cosa.10.3.05.
- (2017). "Near-martingale Property of Anticipating Stochastic Integration". In: *Communications on Stochastic Analysis* 11.4. DOI: 10.31390/cosa.11.4.06.
- Itô, Kiyosi (1944). "Stochastic integral". In: *Proc. Imp. Acad.* 20.8, pp. 519–524. DOI: 10.3792/pia/1195572786. URL: https://doi.org/10.3792/pia/1195572786.
- Khalifa, Narjess, Hui-Hsiung Kuo, Habib Ouerdiane, and Benedykt Szozda (2013). "Linear stochastic differential equations with anticipating initial conditions". In: *Communications on Stochastic Analysis* 7.2. DOI: 10.31390/cosa.7.2.05.

References

Bibliography II

Kuo, Hui-Hsiung, Anuwat Sae-Tang, and Benedykt Szozda (2013). "An isometry formula for a new stochastic integral". In: *Quantum Probability and Related Topics*. Ed. by Luigi Accardi and Franco Fagnola. Vol. 29. QP-PQ: Quantum Probability and White Noise Analysis. World Scientific, pp. 222–232. DOI: 10.1142/9789814447546 0014.

Kuo, Hui-Hsiung, Pujan Shrestha, and Sudip Sinha (2021a). "An Intrinsic Proof of an Extension of Itô's Isometry for Anticipating Stochastic Integrals". In: *Journal of Stochastic Analysis* 2.4. DOI: 10.31390/josa.2.4.08.

— (2021b). "Anticipating Linear Stochastic Differential Equations with Adapted Coefficients". In: *Journal of Stochastic Analysis* 2.2. DOI: 10.31390/josa.2.2.05.

Kuo, Hui-Hsiung, Pujan Shrestha, Sudip Sinha, and Padmanabhan Sundar (2022). *On near-martingales and a class of anticipating linear SDEs.* arXiv: 2204.01932 [math.PR].

Kuo, Hui-Hsiung, Sudip Sinha, and Jiayu Zhai (2018). "Stochastic Differential Equations with Anticipating Initial Conditions". In: *Communications on Stochastic Analysis* 12.4. DOI: 10.31390/cosa.12.4.06.

Nualart, David (2006). *The Malliavin Calculus and Related Topics*. 2nd ed. Berlin, Heidelberg: Springer-Verlag. ISBN: 978-3-540-28329-4. DOI: 10.1007/3-540-28329-3.

Parczewski, Peter (2017). "Extensions of the Hitsuda–Skorokhod Integral". In: Communications on Stochastic Analysis 11.4. DOI: 10.31390/cosa.11.4.05.

Schilder, M. (1966). "Some Asymptotic Formulas for Wiener Integrals". In: *Transactions of the American Mathematical Society* 125.1, pp. 63–85. ISSN: 00029947. DOI: 10.2307/1994588.

Trotter, H. F. (1959). "On the Product of Semi-Groups of Operators". In: *Proceedings of the American Mathematical Society* 10.4, pp. 545–551. ISSN: 00029939, 10886826. DOI: 10.2307/2033649.

Appendix A: Malliavin calculus

- » Goal. Differentiate a stochastic process w.r.t. ω .
- » Formalized by Malliavin calculus.
- » Let $W(h) = \int_0^1 h(t) dW_t$. Let S denote the class of *smooth random variables* such that a random variable $F \in S$ has the form

$$F = f(W(h_1), \dots, W(h_n)),$$

where $f \in C_p^{\infty}(\mathbb{R}^n)$, and $h_1, \dots, h_n \in L^2[0, 1]$ for any natural number n.

» Then the *stochastic derivative* of $F \in \mathcal{S}$ is given by

$$DF = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (W(h_1), \dots, W(h_n)) h_i.$$

- $> Example \ 1. \ \mathrm{D}W_{\frac{1}{2}} = \mathbb{1}_{\left[0,\frac{1}{2}\right]}, \text{ since } W_{\frac{1}{2}} = \int_0^1 \mathbb{1}_{\left[0,\frac{1}{2}\right]} \, \mathrm{d}W_t.$
- » Example. DW(h) = h and $DW(h)^2 = 2W(h) h$.
- » (Integration-by-parts) For $F \in \mathcal{S}$ and $h \in L^2[0,1]$, we have

$$\mathbb{E}(\langle \mathrm{D}F, h \rangle) = \mathbb{E}(FW(h)).$$

References

» Let $F_i \in \mathcal{S}$ and $h_i \in L^2[0,1]$ for all $i \in [n]$. For $u(t) = \sum_{i=1}^n F_i h_i(t)$, we have

$$\delta(u) = \sum_{i=1}^{n} F_i W(h_i(t)) - \sum_{i=1}^{n} (DF_i)(t) h_i(t) dt.$$

» $L^2_{\mathrm{ad}}([0,1]\times\Omega)\subset\mathrm{dom}(\delta)$, and for any $u\in L^2_{\mathrm{ad}}([0,1]\times\Omega)$, we have

$$\delta(u) = \int_0^1 u_t \, \mathrm{d}W_t,$$

where the right side is in the sense of Itô (Nualart 2006, proposition 1.3.4).

» Ayed–Kuo integral \equiv Skorokhod integral (Parczewski 2017, theorem 2.3).