Lyapunov Stability

1. Definitions in Lyapunov stability analysis

 Lyapunov's approach to stability Relevant tools
 Lyapunov stability theorems Instability theorem
 Discrete-time case

3. Recap

Let $v \in \mathbb{R}^n$. A norm is:

Let $v \in \mathbb{R}^n$. A norm is:

► a metric in vector space: a function that assigns a real-valued length to each vector in a vector space

Let $v \in \mathbb{R}^n$. A norm is:

- ► a metric in vector space: a function that assigns a real-valued length to each vector in a vector space
- e.g., 2 (Euclidean) norm: $||v||_2 = \sqrt{v_1^T v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$

Let $v \in \mathbb{R}^n$. A norm is:

- a metric in vector space: a function that assigns a real-valued length to each vector in a vector space
- ▶ e.g., 2 (Euclidean) norm: $||v||_2 = \sqrt{v^T v} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$ default in this set of notes: $||\cdot|| = ||\cdot||_2$

For an *n*-th order unforced system

$$\dot{x}=f\left(x,t\right),\ x(t_0)=x_0$$

For an *n*-th order unforced system

$$\dot{x} = f(x, t), x(t_0) = x_0$$

an equilibrium state/point x_e is one such that

$$f(x_e,t)=0, \ \forall t$$

For an *n*-th order unforced system

$$\dot{x} = f(x, t), x(t_0) = x_0$$

an equilibrium state/point x_e is one such that

$$f(x_{e},t)=0, \ \forall t$$

▶ the condition must be satisfied by all $t \ge 0$

For an *n*-th order unforced system

$$\dot{x} = f(x, t), x(t_0) = x_0$$

an equilibrium state/point x_e is one such that

$$f(x_{e},t)=0, \ \forall t$$

- ▶ the condition must be satisfied by all $t \ge 0$
- ▶ if a system starts at equilibrium state, it stays there

Equilibrium state of a linear system

For a linear system

$$\dot{x}(t) = A(t)x(t), \ x(t_0) = x_0$$

Equilibrium state of a linear system

For a linear system

$$\dot{x}(t) = A(t)x(t), \ x(t_0) = x_0$$

ightharpoonup origin $x_e = 0$ is always an equilibrium state

Equilibrium state of a linear system

For a linear system

$$\dot{x}(t) = A(t)x(t), \ x(t_0) = x_0$$

- ightharpoonup origin $x_e = 0$ is always an equilibrium state
- \blacktriangleright when A(t) is singular, multiple equilibrium states exist

► The equilibrium state 0 of $\dot{x} = f(x, t)$ is stable in the sense of Lyapunov (s.i.L) if

► The equilibrium state 0 of $\dot{x} = f(x, t)$ is stable in the sense of Lyapunov (s.i.L) if for all $\epsilon > 0$, and t_0 , there exists $\delta(\epsilon, t_0) > 0$

The equilibrium state 0 of $\dot{x} = f(x, t)$ is stable in the sense of Lyapunov (s.i.L) if for all $\epsilon > 0$, and t_0 , there exists $\delta(\epsilon, t_0) > 0$ such that $\|x(t_0)\|_2 < \delta$ gives $\|x(t)\|_2 < \epsilon$ for all $t \ge t_0$

The equilibrium state 0 of $\dot{x} = f(x,t)$ is stable in the sense of Lyapunov (s.i.L) if for all $\epsilon > 0$, and t_0 , there exists $\delta(\epsilon, t_0) > 0$ such that $\|x(t_0)\|_2 < \delta$ gives $\|x(t)\|_2 < \epsilon$ for all $t \ge t_0$

Figure: Stable s.i.L: $||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \epsilon \ \forall t \geq t_0$.

The equilibrium state 0 of $\dot{x} = f(x, t)$ is asymptotically stable if

The equilibrium state 0 of $\dot{x} = f(x, t)$ is asymptotically stable if

▶ it is stable in the sense of Lyapunov, and

The equilibrium state 0 of $\dot{x} = f(x, t)$ is asymptotically stable if

- ▶ it is stable in the sense of Lyapunov, and
- ▶ for all $\epsilon > 0$ and t_0 , there exists $\delta(\epsilon, t_0) > 0$ such that $\|x(t_0)\|_2 < \delta$ gives $x(t) \to 0$

The equilibrium state 0 of $\dot{x} = f(x, t)$ is asymptotically stable if

- ▶ it is stable in the sense of Lyapunov, and
- ▶ for all $\epsilon > 0$ and t_0 , there exists $\delta(\epsilon, t_0) > 0$ such that $\|x(t_0)\|_2 < \delta$ gives $x(t) \to 0$

Figure: Asymptotically stable i.s.L: $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| \to 0$.

- 1. Definitions in Lyapunov stability analysis
- 2. Lyapunov's approach to stability
 Relevant tools
 Lyapunov stability theorems
 Instability theorem
 Discrete-time case

3. Recap

the stability of the equilibrium point 0 for $\dot{x} = Ax$ or x(k+1) = Ax(k) can be concluded immediately based on $\lambda(A)$:

the stability of the equilibrium point 0 for $\dot{x} = Ax$ or x(k+1) = Ax(k) can be concluded immediately based on $\lambda(A)$:

► the response $e^{At}x(t_0)$ involves modes such as $e^{\lambda t}$, $te^{\lambda t}$, $e^{\sigma t}\cos\omega t$. $e^{\sigma t}\sin\omega t$

the stability of the equilibrium point 0 for $\dot{x} = Ax$ or x(k+1) = Ax(k) can be concluded immediately based on $\lambda(A)$:

- ▶ the response $e^{At}x(t_0)$ involves modes such as $e^{\lambda t}$, $te^{\lambda t}$, $e^{\sigma t}\cos\omega t$, $e^{\sigma t}\sin\omega t$
- ▶ the response $A^k x(k_0)$ involves modes such as λ^k , $k \lambda^{k-1}$, $r^k \cos k\theta$, $r^k \sin k\theta$

the stability of the equilibrium point 0 for $\dot{x} = Ax$ or x(k+1) = Ax(k) can be concluded immediately based on λ (A):

- ▶ the response $e^{At}x(t_0)$ involves modes such as $e^{\lambda t}$, $te^{\lambda t}$, $e^{\sigma t}\cos\omega t$, $e^{\sigma t}\sin\omega t$
- ▶ the response $A^k x(k_0)$ involves modes such as λ^k , $k \lambda^{k-1}$, $r^k \cos k\theta$, $r^k \sin k\theta$
- $ightharpoonup e^{\sigma t} o 0 \text{ if } \sigma < 0; e^{\lambda t} o 0 \text{ if } \lambda < 0$
- $\lambda^k \to 0$ if $|\lambda| < 1$; $r^k \to 0$ if $|r| = |\sqrt{\sigma^2 + \omega^2}| = |\lambda| < 1$

The direct method of Lyapunov to stability problems:

The direct method of Lyapunov to stability problems:

no need for explicit solutions to system responses

The direct method of Lyapunov to stability problems:

- ▶ no need for explicit solutions to system responses
- ▶ an "energy" perspective

The direct method of Lyapunov to stability problems:

- no need for explicit solutions to system responses
- ► an "energy" perspective
- fit for general dynamic systems (linear/nonlinear, time-invariant/time-varying)

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x_1 : position; x_2 : velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

 \blacktriangleright λ (A)'s are in the left-half s-plane \Rightarrow asymptotically stable

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

- λ (A)'s are in the left-half s-plane \Rightarrow asymptotically stable
- total energy

$$\mathcal{E}(t) = \text{potential energy} + \text{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$$

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

- λ (A)'s are in the left-half s-plane \Rightarrow asymptotically stable
- ▶ total energy

$$\mathcal{E}\left(t\right)=\mathsf{potential}\;\mathsf{energy}\;+\;\mathsf{kinetic}\;\mathsf{energy}=rac{1}{2}kx_{1}^{2}+rac{1}{2}mx_{2}^{2}$$

energy dissipates / is dissipative:

$$\dot{\mathcal{E}}(t) = kx_1\dot{x}_1 + mx_2\dot{x}_2 = -bx_2^2 \le 0$$

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

- λ (A)'s are in the left-half s-plane \Rightarrow asymptotically stable
- ▶ total energy

$$\mathcal{E}\left(t\right)=\mathsf{potential}\;\mathsf{energy}\;+\;\mathsf{kinetic}\;\mathsf{energy}=rac{1}{2}kx_{1}^{2}+rac{1}{2}mx_{2}^{2}$$

energy dissipates / is dissipative:

$$\dot{\mathcal{E}}(t) = kx_1\dot{x}_1 + mx_2\dot{x}_2 = -bx_2^2 \le 0$$

 \triangleright $\dot{\mathcal{E}} = 0$ only when $x_2 = 0$.

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

- λ (A)'s are in the left-half s-plane \Rightarrow asymptotically stable
- total energy

$$\mathcal{E}(t) = \text{potential energy} + \text{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$$

energy dissipates / is dissipative:

$$\dot{\mathcal{E}}(t) = kx_1\dot{x}_1 + mx_2\dot{x}_2 = -bx_2^2 \le 0$$

 $\dot{\mathcal{E}} = 0$ only when $x_2 = 0$. As $[x_1, x_2]^T = 0$ is the only equilibrium, the motion will not stop at $x_2 = 0$, $x_1 \neq 0$.

Stability from an energy viewpoint: Example

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

- ▶ $\lambda(A)$'s are in the left-half s-plane ⇒ asymptotically stable
- total energy

$$\mathcal{E}(t) = \text{potential energy} + \text{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$$

energy dissipates / is dissipative:

$$\dot{\mathcal{E}}(t) = kx_1\dot{x}_1 + mx_2\dot{x}_2 = -bx_2^2 \le 0$$

▶ $\dot{\mathcal{E}} = 0$ only when $x_2 = 0$. As $[x_1, x_2]^T = 0$ is the only equilibrium, the motion will not stop at $x_2 = 0$, $x_1 \neq 0$. Thus energy will keep decreasing toward 0

Stability from an energy viewpoint: Example

Consider spring-mass-damper systems:

$$\dot{x}_1=x_2$$
 (x₁: position; x₂: velocity) $\dot{x}_2=-rac{k}{m}x_1-rac{b}{m}x_2,\ b>0$ (Newton's law)

- λ (A)'s are in the left-half s-plane \Rightarrow asymptotically stable
- ▶ total energy

$$\mathcal{E}(t) = \text{potential energy} + \text{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$$

energy dissipates / is dissipative:

$$\dot{\mathcal{E}}(t) = kx_1\dot{x}_1 + mx_2\dot{x}_2 = -bx_2^2 \le 0$$

▶ $\dot{\mathcal{E}} = 0$ only when $x_2 = 0$. As $[x_1, x_2]^T = 0$ is the only equilibrium, the motion will not stop at $x_2 = 0$, $x_1 \neq 0$. Thus energy will keep decreasing toward 0 which is achieved at the origin.

$$\dot{x}(t) = f(x(t), t), \ x(t_0) = x_0$$

 $x(k+1) = f(x(k), k), \ x(k_0) = x_0$

Consider unforced, time-varying, nonlinear systems

$$\dot{x}(t) = f(x(t), t), \ x(t_0) = x_0$$

 $x(k+1) = f(x(k), k), \ x(k_0) = x_0$

assume the origin is an equilibrium state

$$\dot{x}(t) = f(x(t), t), \ x(t_0) = x_0$$

 $x(k+1) = f(x(k), k), \ x(k_0) = x_0$

- assume the origin is an equilibrium state
- ightharpoonup energy function \Rightarrow Lyapunov function: a scalar function of x and t

$$\dot{x}(t) = f(x(t), t), \ x(t_0) = x_0$$

 $x(k+1) = f(x(k), k), \ x(k_0) = x_0$

- assume the origin is an equilibrium state
- ▶ energy function \Rightarrow Lyapunov function: a scalar function of x and t (or x and k)

$$\dot{x}(t) = f(x(t), t), \ x(t_0) = x_0$$

 $x(k+1) = f(x(k), k), \ x(k_0) = x_0$

- assume the origin is an equilibrium state
- ▶ energy function \Rightarrow Lyapunov function: a scalar function of x and t (or x and k)
- goal is to relate properties of the state through the Lyapunov function

$$\dot{x}(t) = f(x(t), t), \ x(t_0) = x_0$$

 $x(k+1) = f(x(k), k), \ x(k_0) = x_0$

- assume the origin is an equilibrium state
- ▶ energy function \Rightarrow Lyapunov function: a scalar function of x and t (or x and k)
- goal is to relate properties of the state through the Lyapunov function
- main tool: matrix formulation, linear algebra, positive definite functions

Quadratic functions

intrinsic in energy-like analysis, e.g.

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 = \frac{1}{2}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} k & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Quadratic functions

intrinsic in energy-like analysis, e.g.

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 = \frac{1}{2}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} k & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

convenience of matrix formulation:

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{m}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Quadratic functions

intrinsic in energy-like analysis, e.g.

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 = \frac{1}{2}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} k & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

convenience of matrix formulation:

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{m}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 + c = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{m}{2} & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Quadratic functions

▶ intrinsic in energy-like analysis, e.g.

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 = \frac{1}{2}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} k & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

convenience of matrix formulation:

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{m}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2 + x_1x_2 + c = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}^T \begin{bmatrix} \frac{k}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{m}{2} & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

general quadratic functions in matrix form

$$Q(x) = x^T P x, P^T = P$$

Symmetric matrices

- recall: a real square matrix A is
 - ightharpoonup symmetric if $A = A^T$
 - ightharpoonup skew-symmetric if $A = -A^T$

Symmetric matrices

- recall: a real square matrix A is
 - \triangleright symmetric if $A = A^T$
 - \triangleright skew-symmetric if $A = -A^T$
- examples:

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]$$

Symmetric matrices

- recall: a real square matrix A is
 - ightharpoonup symmetric if $A = A^T$
 - \triangleright skew-symmetric if $A = -A^T$
- examples:

$$\left[\begin{array}{cc}1&2\\2&1\end{array}\right],\,\left[\begin{array}{cc}1&2\\-2&1\end{array}\right],\,\left[\begin{array}{cc}0&2\\-2&0\end{array}\right]$$

► Any real square matrix can be decomposed as the sum of a symmetric matrix and a skew-symmetric matrix:

Symmetric matrices

- ▶ recall: a real square matrix A is
 - ightharpoonup symmetric if $A = A^T$
 - \triangleright skew-symmetric if $A = -A^T$
- examples:

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]$$

Any real square matrix can be decomposed as the sum of a symmetric matrix and a skew-symmetric matrix:

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$$

Symmetric matrices

- recall: a real square matrix A is
 - ightharpoonup symmetric if $A = A^T$
 - \triangleright skew-symmetric if $A = -A^T$
- examples:

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]$$

Any real square matrix can be decomposed as the sum of a symmetric matrix and a skew-symmetric matrix:

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$$

general case:
$$P = \frac{P + P^T}{2} + \frac{P - P^T}{2}$$

Symmetric matrices

▶ a real square matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = AA^T = I$

Symmetric matrices

- ▶ a real square matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = AA^T = I$
- ightharpoonup meaning that the columns of A form a orthonormal basis of \mathbb{R}^n

$$A = \left[\begin{array}{cccc} | & | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | & | \end{array} \right]$$

Symmetric matrices

- ▶ a real square matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = AA^T = I$
- ightharpoonup meaning that the columns of A form a orthonormal basis of \mathbb{R}^n

$$A = \left[\begin{array}{cccc} | & | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | & | \end{array} \right]$$

$$A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \dots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \dots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \dots & a_{n}^{T}a_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Symmetric matrices

- ▶ a real square matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = AA^T = I$
- ightharpoonup meaning that the columns of A form a orthonormal basis of \mathbb{R}^n

$$A = \left[\begin{array}{cccc} | & | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | & | \end{array} \right]$$

$$A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \dots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \dots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \dots & a_{n}^{T}a_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

namely, $a_j^T a_j = 1$ and $a_j^T a_m = 0 \ \forall j \neq m$.

The eigenvalues of symmetric matrices are all real.

The eigenvalues of symmetric matrices are all real.

Proof: $\forall : A \in \mathbb{R}^{n \times n}$ with $A^T = A$.

Eigenvalue-eigenvector pair: $Au = \lambda u$

The eigenvalues of symmetric matrices are all real.

Proof: \forall : $A \in \mathbb{R}^{n \times n}$ with $A^T = A$.

Eigenvalue-eigenvector pair: $Au = \lambda u \Rightarrow \overline{u}^T A u = \lambda \overline{u}^T u$, where \overline{u} is the complex conjugate of u.

The eigenvalues of symmetric matrices are all real.

Proof: \forall : $A \in \mathbb{R}^{n \times n}$ with $A^T = A$.

Eigenvalue-eigenvector pair: $Au = \lambda u \Rightarrow \overline{u}^T A u = \lambda \overline{u}^T u$, where \overline{u} is the complex conjugate of u. $\overline{u}^T A u$ is a real number, as

$$\overline{u}^{T}Au = u^{T}\overline{A}\overline{u}$$

$$= u^{T}A\overline{u} \quad \therefore A \in \mathbb{R}^{n \times n}$$

$$= u^{T}A^{T}\overline{u} \quad \therefore A = A^{T}$$

$$= \lambda u^{T}\overline{u} \quad \therefore (Au)^{T} = (\lambda u)^{T}$$

$$= \lambda \overline{u}^{T}u \quad \therefore u^{T}\overline{u} \in \mathbb{R}$$

$$= \overline{u}^{T}Au \quad \therefore Au = \lambda u$$

The eigenvalues of symmetric matrices are all real.

Proof: \forall : $A \in \mathbb{R}^{n \times n}$ with $A^T = A$.

Eigenvalue-eigenvector pair: $Au = \lambda u \Rightarrow \overline{u}^T A u = \lambda \overline{u}^T u$, where \overline{u} is the complex conjugate of u. $\overline{u}^T A u$ is a real number, as

$$\overline{u}^{T}Au = u^{T}\overline{A}\overline{u}$$

$$= u^{T}A\overline{u} \quad \therefore A \in \mathbb{R}^{n \times n}$$

$$= u^{T}A^{T}\overline{u} \quad \therefore A = A^{T}$$

$$= \lambda u^{T}\overline{u} \quad \therefore (Au)^{T} = (\lambda u)^{T}$$

$$= \lambda \overline{u}^{T}u \quad \therefore u^{T}\overline{u} \in \mathbb{R}$$

$$= \overline{u}^{T}Au \quad \therefore Au = \lambda u$$

Also, $\overline{u}^T u \in \mathbb{R}$.

The eigenvalues of symmetric matrices are all real.

Proof: $\forall : A \in \mathbb{R}^{n \times n}$ with $A^T = A$.

Eigenvalue-eigenvector pair: $Au = \lambda u \Rightarrow \overline{u}^T A u = \lambda \overline{u}^T u$, where \overline{u} is the complex conjugate of u. $\overline{u}^T A u$ is a real number, as

$$\overline{u}^{T}Au = u^{T}\overline{A}\overline{u}$$

$$= u^{T}A\overline{u} \quad \therefore A \in \mathbb{R}^{n \times n}$$

$$= u^{T}A^{T}\overline{u} \quad \therefore A = A^{T}$$

$$= \lambda u^{T}\overline{u} \quad \therefore (Au)^{T} = (\lambda u)^{T}$$

$$= \lambda \overline{u}^{T}u \quad \therefore u^{T}\overline{u} \in \mathbb{R}$$

$$= \overline{u}^{T}Au \quad \therefore Au = \lambda u$$

Also, $\overline{u}^T u \in \mathbb{R}$. Thus $\lambda = \frac{\overline{u}^T A u}{\overline{u}^T u}$ must also be a real number.

Example

$$\blacktriangleright \left[\begin{array}{cc} 0 & 2 \\ 2 & 0 \end{array}\right] : \ \lambda = \pm 2$$

Example

Example

$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} : \lambda = \pm 2$$

$$\begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \end{bmatrix}$$

import numpy as np #larger-scale Python example N = 100 $P = np.random.randint(-200,200,size=(N,N)) \\ P_symm = (P + P.T)/2 \\ lambdas, _ = np.linalg.eig(P_symm) \\ print(lambdas)$

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

$$\blacktriangleright \left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array} \right] : \ \lambda = \pm 2j$$

```
import numpy as np N = 100 \\ P = np.random.randint(-200,200,size=(N,N)) \\ P\_symm = (P - P.T)/2 \\ lambdas, \_ = np.linalg.eig(P\_symm) \\ print(lambdas)
```

All eigenvalues of an orthogonal matrix have a magnitude of 1.

All eigenvalues of an orthogonal matrix have a magnitude of 1.

All eigenvalues of an orthogonal matrix have a magnitude of 1.

```
import numpy as np
from scipy.linalg import qr
n = 3
H = np.random.randn(n, n)
Q, _ = qr(H)
print (np.dot(Q,Q.T))
print (np.dot(Q.T,Q))
```

Important properties of symmetric matrices

Theorem

The eigenvalues of symmetric matrices are all real.

Theorem

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem

All eigenvalues of an orthogonal matrix have a magnitude of 1.

Important properties of symmetric matrices

Theorem

The eigenvalues of symmetric matrices are all real.

Theorem

The eigenvalues of skew-symmetric matrices are all imaginary or zero.

Theorem

All eigenvalues of an orthogonal matrix have a magnitude of 1.

matrix structure	analogy in complex plane
symmetric	real line
skew-symmetric	imaginary line
orthogonal	unit circle

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \wedge U^{-1}$.

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \wedge U^{-1}$. When A is symmetric, things are even better:

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \Lambda U^{-1}$. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}} = U \Lambda U^{\mathsf{T}} \tag{1}$$

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \Lambda U^{-1}$. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

 $\forall: A \in \mathbb{R}^{n \times n}, \ A^T = A$, there always exist $\lambda_i \in \mathbb{R}$ and $u_i \in \mathbb{R}^n$, s.t.

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}} = U \Lambda U^{\mathsf{T}} \tag{1}$$

 $\triangleright \lambda_i$'s: eigenvalues of A

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \Lambda U^{-1}$. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}} = U \Lambda U^{\mathsf{T}} \tag{1}$$

- $\triangleright \lambda_i$'s: eigenvalues of A
- \triangleright u_i : eigenvector associated to λ_i , normalized to have unity norms

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \Lambda U^{-1}$. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}} = U \Lambda U^{\mathsf{T}} \tag{1}$$

- $\triangleright \lambda_i$'s: eigenvalues of A
- \triangleright u_i : eigenvector associated to λ_i , normalized to have unity norms
- $V = [u_1, u_2, \cdots, u_n]$ is orthogonal: $U^T U = U U^T = I$

When $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, we can do diagonalization $A = U \Lambda U^{-1}$. When A is symmetric, things are even better:

Theorem (Symmetric eigenvalue decomposition (SED))

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}} = U \Lambda U^{\mathsf{T}} \tag{1}$$

- $\triangleright \lambda_i$'s: eigenvalues of A
- \triangleright u_i : eigenvector associated to λ_i , normalized to have unity norms
- $V = [u_1, u_2, \cdots, u_n]$ is orthogonal: $U^T U = U U^T = I$
- $ightharpoonup \Lambda = diagonal(\lambda_1, \lambda_2, \dots, \lambda_n)$

Theorem

 $\forall: A \in \mathbb{R}^{n \times n} \text{ with } A^T = A$,

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let $Au_i = \lambda_i u_i$ and $Au_j = \lambda_j u_j$.

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let $Au_i = \lambda_i u_i$ and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$.

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$.

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$.
But $\lambda_i \neq \lambda_j$. It must be that $u_i^T u_j = 0$.

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$.
But $\lambda_i \neq \lambda_j$. It must be that $u_i^T u_j = 0$.

SED now follows:

► If A has distinct eigenvalues,

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$.
But $\lambda_i \neq \lambda_j$. It must be that $u_i^T u_j = 0$.

SED now follows:

▶ If A has distinct eigenvalues, then $U = [u_1, u_2, \dots, u_n]$ is orthogonal after normalizing all the eigenvectors to unity norm.

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$.
But $\lambda_i \neq \lambda_j$. It must be that $u_i^T u_j = 0$.

SED now follows:

- ▶ If A has distinct eigenvalues, then $U = [u_1, u_2, \dots, u_n]$ is orthogonal after normalizing all the eigenvectors to unity norm.
- ▶ If A has r(< n) distinct eigenvalues,

Theorem

 $\forall: A \in \mathbb{R}^{n \times n}$ with $A^T = A$, then eigenvectors of A, associated with different eigenvalues, are **orthogonal**.

Proof.

Let
$$Au_i = \lambda_i u_i$$
 and $Au_j = \lambda_j u_j$. Then $u_i^T A u_j = u_i^T \lambda_j u_j = \lambda_j u_i^T u_j$.
Also, $u_i^T A u_j = u_i^T A^T u_j = (Au_i)^T u_j = \lambda_i u_i^T u_j$. So $\lambda_i u_i^T u_j = \lambda_j u_i^T u_j$.
But $\lambda_i \neq \lambda_j$. It must be that $u_i^T u_j = 0$.

SED now follows:

- ▶ If A has distinct eigenvalues, then $U = [u_1, u_2, \dots, u_n]$ is orthogonal after normalizing all the eigenvectors to unity norm.
- ▶ If A has r(< n) distinct eigenvalues, we can *choose* multiple orthogonal eigenvectors for the eigenvalues with none-unity multiplicities.

With the spectral theorem, next time we see a symmetric matrix A, we immediately know that

 $\triangleright \lambda_i$ is real for all i

- $\triangleright \lambda_i$ is real for all i
- \triangleright associated with λ_i , we can always find a real eigenvector

- $\triangleright \lambda_i$ is real for all i
- \triangleright associated with λ_i , we can always find a real eigenvector
- ▶ \exists an orthonormal basis $\{u_i\}_{i=1}^n$, which consists of the eigenvectors

- $\triangleright \lambda_i$ is real for all i
- \triangleright associated with λ_i , we can always find a real eigenvector
- ▶ \exists an orthonormal basis $\{u_i\}_{i=1}^n$, which consists of the eigenvectors
- ▶ if $A \in \mathbb{R}^{2\times 2}$, then if you compute first λ_1 , λ_2 and u_1 , you won't need to go through the regular math to get u_2 ,

- $\triangleright \lambda_i$ is real for all i
- \triangleright associated with λ_i , we can always find a real eigenvector
- ▶ \exists an orthonormal basis $\{u_i\}_{i=1}^n$, which consists of the eigenvectors
- ▶ if $A \in \mathbb{R}^{2\times 2}$, then if you compute first λ_1 , λ_2 and u_1 , you won't need to go through the regular math to get u_2 , but can simply solve for a u_2 that is orthogonal to u_1 with $||u_2|| = 1$.

Example:
$$A = \begin{bmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 7 \end{bmatrix}$$

$$\det \begin{bmatrix} 5 - \lambda & \sqrt{3} \\ \sqrt{3} & 7 - \lambda \end{bmatrix} = 35 - 12\lambda + \lambda^2 - 3 = (\lambda - 4)(\lambda - 8) = 0$$
$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = 8$$

Example:
$$A = \begin{bmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 7 \end{bmatrix}$$

$$\det \begin{bmatrix} 5 - \lambda & \sqrt{3} \\ \sqrt{3} & 7 - \lambda \end{bmatrix} = 35 - 12\lambda + \lambda^2 - 3 = (\lambda - 4)(\lambda - 8) = 0$$
$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = 8$$

first normalized eigenvector:

$$(A - \lambda_1 I) t_1 = 0 \Rightarrow \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{bmatrix} t_1 = 0 \Rightarrow t_1 = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 7 \end{bmatrix}$$

$$\det \begin{bmatrix} 5 - \lambda & \sqrt{3} \\ \sqrt{3} & 7 - \lambda \end{bmatrix} = 35 - 12\lambda + \lambda^2 - 3 = (\lambda - 4)(\lambda - 8) = 0$$
$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = 8$$

first normalized eigenvector:

$$(A - \lambda_1 I) t_1 = 0 \Rightarrow \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{bmatrix} t_1 = 0 \Rightarrow t_1 = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

ightharpoonup A is symmetric \Rightarrow eigenvectors are orthogonal to each other:

Example:
$$A = \begin{bmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 7 \end{bmatrix}$$

$$\det \begin{bmatrix} 5 - \lambda & \sqrt{3} \\ \sqrt{3} & 7 - \lambda \end{bmatrix} = 35 - 12\lambda + \lambda^2 - 3 = (\lambda - 4)(\lambda - 8) = 0$$
$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = 8$$

first normalized eigenvector:

$$(A - \lambda_1 I) t_1 = 0 \Rightarrow \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{bmatrix} t_1 = 0 \Rightarrow t_1 = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

▶ A is symmetric \Rightarrow eigenvectors are orthogonal to each other: $choose \ t_2 = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$.

Example:
$$A = \begin{bmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 7 \end{bmatrix}$$

$$\det \begin{bmatrix} 5 - \lambda & \sqrt{3} \\ \sqrt{3} & 7 - \lambda \end{bmatrix} = 35 - 12\lambda + \lambda^2 - 3 = (\lambda - 4)(\lambda - 8) = 0$$
$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = 8$$

first normalized eigenvector:

$$(A - \lambda_1 I) t_1 = 0 \Rightarrow \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{bmatrix} t_1 = 0 \Rightarrow t_1 = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

 \triangleright A is symmetric \Rightarrow eigenvectors are orthogonal to each other:

choose
$$t_2=\left[\begin{array}{c} \frac{1}{2}\\ \frac{\sqrt{3}}{2} \end{array}\right]$$
 . No need to solve $(A-\lambda_2 I)\,t_2=0!$

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{\mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \neq 0} \frac{\mathbf{x}^T A \mathbf{x}}{\|\mathbf{x}\|_2^2} \tag{3}$$

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{3}$$

Proof.

Perform SED to get $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{3}$$

Proof.

Perform SED to get $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ where $\{u_i\}_{i=1}^{n}$ spans \mathbb{R}^n .

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$
 (3)

Proof.

Perform SED to get $A = \sum_{i=1}^n \lambda_i u_i u_i^T$ where $\{u_i\}_{i=1}^n$ spans \mathbb{R}^n . Then any vector $x \in \mathbb{R}^n$ can be decomposed as $x = \sum_{i=1}^n \alpha_i u_i$.

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$
 (3)

Proof.

Perform SED to get $A = \sum_{i=1}^n \lambda_i u_i u_i^T$ where $\{u_i\}_{i=1}^n$ spans \mathbb{R}^n . Then any vector $x \in \mathbb{R}^n$ can be decomposed as $x = \sum_{i=1}^n \alpha_i u_i$. Thus

$$\max_{x \neq 0} \frac{x^T A x}{\|x\|_2^2} = \max_{\alpha_i} \frac{\left(\sum_i \alpha_i u_i\right)^T \sum_i \lambda_i \alpha_i u_i}{\sum_i \alpha_i^2}$$

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2}$$
 (3)

Proof.

Perform SED to get $A = \sum_{i=1}^n \lambda_i u_i u_i^T$ where $\{u_i\}_{i=1}^n$ spans \mathbb{R}^n . Then any vector $x \in \mathbb{R}^n$ can be decomposed as $x = \sum_{i=1}^n \alpha_i u_i$. Thus

$$\max_{x \neq 0} \frac{x^T A x}{\|x\|_2^2} = \max_{\alpha_i} \frac{\left(\sum_i \alpha_i u_i\right)^T \sum_i \lambda_i \alpha_i u_i}{\sum_i \alpha_i^2} = \max_{\alpha_i} \frac{\sum_i \lambda_i \alpha_i^2}{\sum_i \alpha_i^2}$$

Theorem (Eigenvalues of symmetric matrices)

If $A = A^T \in \mathbb{R}^{n \times n}$, then the eigenvalues of A satisfy

$$\lambda_{\max} = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{2}$$

$$\lambda_{\min} = \min_{\mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T A \mathbf{x}}{\|\mathbf{x}\|_2^2} \tag{3}$$

Proof.

Perform SED to get $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ where $\{u_i\}_{i=1}^{n}$ spans \mathbb{R}^n . Then any vector $x \in \mathbb{R}^n$ can be decomposed as $x = \sum_{i=1}^{n} \alpha_i u_i$. Thus

$$\max_{x \neq 0} \frac{x^T A x}{\|x\|_2^2} = \max_{\alpha_i} \frac{\left(\sum_i \alpha_i u_i\right)^T \sum_i \lambda_i \alpha_i u_i}{\sum_i \alpha_i^2} = \max_{\alpha_i} \frac{\sum_i \lambda_i \alpha_i^2}{\sum_i \alpha_i^2} = \lambda_{\max}$$

ightharpoonup eigenvalues of symmetric matrices are real \Rightarrow we can order the eigenvalues

- ightharpoonup eigenvalues of symmetric matrices are real \Rightarrow we can order the eigenvalues
- a symmetric matrix P is called positive-definite if all its eigenvalues are positive

- ightharpoonup eigenvalues of symmetric matrices are real \Rightarrow we can order the eigenvalues
- a symmetric matrix P is called positive-definite if all its eigenvalues are positive
- equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is called **positive-definite**, written $P \succ 0$,

- ightharpoonup eigenvalues of symmetric matrices are real \Rightarrow we can order the eigenvalues
- a symmetric matrix P is called positive-definite if all its eigenvalues are positive
- equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is called **positive-definite**, written $P \succ 0$, if $x^T P x > 0$ for all $x \not (\neq 0) \in \mathbb{R}^n$.

- ightharpoonup eigenvalues of symmetric matrices are real \Rightarrow we can order the eigenvalues
- a symmetric matrix P is called positive-definite if all its eigenvalues are positive
- equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is called **positive-definite**, written $P \succ 0$, if $x^T P x > 0$ for all $x \not (\neq 0) \in \mathbb{R}^n$.

P is called **positive-semidefinite**, written $P \succeq 0$, if $x^T P x \geq 0$ for all $x \in \mathbb{R}^n$

- ightharpoonup eigenvalues of symmetric matrices are real \Rightarrow we can order the eigenvalues
- a symmetric matrix P is called positive-definite if all its eigenvalues are positive
- equivalently:

Definition (Positive Definite Matrices)

A symmetric matrix $P \in \mathbb{R}^{n \times n}$ is called **positive-definite**, written $P \succ 0$, if $x^T P x > 0$ for all $x \not (\neq 0) \in \mathbb{R}^n$.

P is called **positive-semidefinite**, written $P \succeq 0$, if $x^T P x \geq 0$ for all $x \in \mathbb{R}^n$

▶ $P \succ 0$ $(P \succeq 0) \Leftrightarrow P$ can be decomposed as $P = N^T N$ where N is nonsingular (singular)

Negative definite matrices

Definition

A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is called **negative-definite**, written $Q \prec 0$, if $-Q \succ 0$, i.e., $x^T Q x < 0$ for all $x \neq 0 \in \mathbb{R}^n$.

Negative definite matrices

Definition

A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is called **negative-definite**, written

 $Q \prec 0$, if $-Q \succ 0$, i.e., $x^T Q x < 0$ for all $x \neq 0 \in \mathbb{R}^n$.

Q is called **negative-semidefinite**, written $Q \leq 0$, if $x^T Q x \leq 0$ for all $x \in \mathbb{R}^n$

all $x \in \mathbb{R}^n$

Updated matrix analogies

matrix structure	eigenvalues	analogy in complex plane
symmetric	real	real axis
skew-symmetric	on imaginary axis	imaginary axis
orthogonal	magnitude 1	unit circle
positive definite	positive	\mathbb{R}_+ axis
negative definite	negative	\mathbb{R} axis

positive-definite matrices can have negative entries:

positive-definite matrices can have negative entries:

Example

$$P = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 is positive-definite, as $P = P^T$ and take any $v = [x, y]^T$, we have

$$v^{T}Pv = \begin{bmatrix} x \\ y \end{bmatrix}^{T} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2x^{2} + 2y^{2} - 2xy$$
$$= x^{2} + y^{2} + (x - y)^{2} \ge 0$$

positive-definite matrices can have negative entries:

Example

$$P = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 is positive-definite, as $P = P^T$ and take any $v = [x, y]^T$, we have

$$v^{T}Pv = \begin{bmatrix} x \\ y \end{bmatrix}^{T} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2x^{2} + 2y^{2} - 2xy$$
$$= x^{2} + y^{2} + (x - y)^{2} \ge 0$$

and the equality sign holds only when x = y = 0.

conversely, matrices whose entries are all positive are not necessarily positive-definite:

Example

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 is not positive-definite:

conversely, matrices whose entries are all positive are not necessarily positive-definite:

Example

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 is not positive-definite:

$$\left[\begin{array}{c} 1 \\ -1 \end{array}\right]^{T} \left[\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array}\right] \left[\begin{array}{c} 1 \\ -1 \end{array}\right] = -2 < 0$$

Theorem

For a symmetric matrix P, $P \succ 0$ if and only if all the eigenvalues of P are positive.

Theorem

For a symmetric matrix P, $P \succ 0$ if and only if all the eigenvalues of P are positive.

Proof.

Since P is symmetric, we have

$$\lambda_{\max}(P) = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{4}$$

$$\lambda_{\min}(P) = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{5}$$

Theorem

For a symmetric matrix P, $P \succ 0$ if and only if all the eigenvalues of P are positive.

Proof.

Since P is symmetric, we have

$$\lambda_{\max}(P) = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x' Ax}{\|x\|_2^2} \tag{4}$$

$$\lambda_{\min}(P) = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{x^T A x}{\|x\|_2^2} \tag{5}$$

which gives
$$x^T A x \in [\lambda_{\min} ||x||_2^2, \ \lambda_{\max} ||x||_2^2]$$
. Thus $x^T A x > 0, \ x \neq 0 \Leftrightarrow \lambda_{\min} > 0$.

Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to check positive (semi-)definiteness:

Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to check positive (semi-)definiteness:

▶ $P \succ 0$ ($P \succeq 0$) \Leftrightarrow the leading principle minors defined below are positive (nonnegative)

Checking positive definiteness of a matrix.

We often use the following necessary and sufficient conditions to check positive (semi-)definiteness:

▶ $P \succ 0$ ($P \succeq 0$) \Leftrightarrow the leading principle minors defined below are positive (nonnegative)

Definition

The leading principle minors of
$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$$
 are defined as

$$p_{11}$$
, det $\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$, det P .

Checking positive definiteness of a matrix.

Example

None of the following matrices are positive definite:

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right], \ \left[\begin{array}{cc} -1 & 1 \\ 1 & 2 \end{array}\right], \ \left[\begin{array}{cc} 2 & 1 \\ 1 & -1 \end{array}\right], \ \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right]$$

Recap

Recap

Recap

Definition (Positive Definite Functions)

A continuous time function $W: \mathbb{R}^n \to \mathbb{R}_+$, called to be PD, satisfying

- Varrow W(x) > 0 for all $x \neq 0$
- V W(0) = 0
- ▶ $W(x) \to \infty$ as $|x| \to \infty$ uniformly in x

Definition (Positive Definite Functions)

A continuous time function $W: \mathbb{R}^n \to \mathbb{R}_+$, called to be PD, satisfying

- Varrow W(x) > 0 for all $x \neq 0$
- V W(0) = 0
- ▶ $W(x) \to \infty$ as $|x| \to \infty$ uniformly in x

In the 3D space, positive definite functions are "bowl-shaped"

Definition (Positive Definite Functions)

A continuous time function $W: \mathbb{R}^n \to \mathbb{R}_+$, called to be PD, satisfying

- Varrow W(x) > 0 for all $x \neq 0$
- V W(0) = 0
- $W(x) \to \infty$ as $|x| \to \infty$ uniformly in x

In the 3D space, positive definite functions are "bowl-shaped", e.g., $W\left(x_1,x_2\right)=x_1^2+x_2^2$.

Definition (Locally Positive Definite Functions)

A continuous time function $W : \mathbb{R}^n \to \mathbb{R}_+$, called to be LPD, satisfying

- ightharpoonup W(x) > 0 for all $x \neq 0$ and |x| < r
- V(0) = 0

Definition (Locally Positive Definite Functions)

A continuous time function $W : \mathbb{R}^n \to \mathbb{R}_+$, called to be LPD, satisfying

- ightharpoonup W(x) > 0 for all $x \neq 0$ and |x| < r
- V(0) = 0

In the 3D space, locally positive definite functions are "bowl-shaped" locally

Definition (Locally Positive Definite Functions)

A continuous time function $W: \mathbb{R}^n \to \mathbb{R}_+$, called to be LPD, satisfying

- ightharpoonup W(x) > 0 for all $x \neq 0$ and |x| < r
- V(0) = 0

In the 3D space, locally positive definite functions are "bowl-shaped" locally, e.g., $W(x_1, x_2) = x_1^2 + \sin^2 x_2$ for $x_1 \in \mathbb{R}$ and $|x_2| < \pi$

Exercise

Let $x = [x_1, x_2, x_3]^T$. Check the positive definiteness of the following functions

1.
$$V(x) = x_1^4 + x_2^2 + x_3^4$$

Exercise

Let $x = [x_1, x_2, x_3]^T$. Check the positive definiteness of the following functions

- 1. $V(x) = x_1^4 + x_2^2 + x_3^4$ (PD)
- 2. $V(x) = x_1^2 + x_2^2 + 3x_3^2 x_3^4$

Exercise

Let $x = [x_1, x_2, x_3]^T$. Check the positive definiteness of the following functions

- 1. $V(x) = x_1^4 + x_2^2 + x_3^4$ (PD)
- 2. $V(x) = x_1^2 + x_2^2 + 3x_3^2 x_3^4$ (LPD for $|x_3| < \sqrt{3}$)

- 1. Definitions in Lyapunov stability analysis
- 2. Lyapunov's approach to stability
 Relevant tools
 Lyapunov stability theorems
 Instability theorem
 Discrete-time case

3. Recap

Lyapunov stability theorems

recall the spring mass damper example in matrix form

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Lyapunov stability theorems

recall the spring mass damper example in matrix form

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

energy function is PD:

$$\mathcal{E}(t) = \text{potential energy} + \text{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$$

Lyapunov stability theorems

recall the spring mass damper example in matrix form

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• energy function is PD: $\mathcal{E}(t) = \text{potential energy} + \text{kinetic energy} = \frac{1}{2}kx_1^2 + \frac{1}{2}mx_2^2$ and its derivative is NSD:

$$\dot{\mathcal{E}}(t) = \left[\frac{\partial \mathcal{E}}{\partial x_1}, \frac{\partial \mathcal{E}}{\partial x_2}\right] \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = k_1 x_1 \dot{x}_1 + m x_2 \dot{x}_2$$

$$= k_1 x_1 x_2 + m x_2 \left(-\frac{k}{m} x_1 - \frac{b}{m} x_2 \right) = \left[\frac{\partial \mathcal{E}}{\partial x_1}, \frac{\partial \mathcal{E}}{\partial x_2} \right] Ax (7)$$

$$= -b x_2^2$$

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x, t)

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x, t) such that $\dot{V}(x, t) \leq 0$ for all $t \geq t_0$

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x,t) such that $\dot{V}(x,t) \leq 0$ for all $t \geq t_0$ and all x in a local region x: |x| < r for some r > 0.

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x,t) such that $\dot{V}(x,t) \leq 0$ for all $t \geq t_0$ and all x in a local region x: |x| < r for some r > 0.

ightharpoonup such a V(x,t) is called a Lyapunov function

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x,t) such that $\dot{V}(x,t) \leq 0$ for all $t \geq t_0$ and all x in a local region x: |x| < r for some r > 0.

- ightharpoonup such a V(x,t) is called a Lyapunov function
- ▶ i.e., V(x) is PD and $\dot{V}(x)$ is negative semidefinite in a local region |x| < r

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x,t) such that $\dot{V}(x,t) \leq 0$ for all $t \geq t_0$ and all x in a local region x: |x| < r for some r > 0.

- ightharpoonup such a V(x,t) is called a Lyapunov function
- ▶ i.e., V(x) is PD and $\dot{V}(x)$ is negative semidefinite in a local region |x| < r

Theorem

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>locally</u> asymptotically stable if

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>stable in</u> the sense of Lyapunov if there exists a locally positive definite function V(x,t) such that $\dot{V}(x,t) \leq 0$ for all $t \geq t_0$ and all x in a local region x: |x| < r for some r > 0.

- ightharpoonup such a V(x,t) is called a Lyapunov function
- ▶ i.e., V(x) is PD and $\dot{V}(x)$ is negative semidefinite in a local region |x| < r

Theorem

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is <u>locally asymptotically stable</u> if there exists a Lyapunov function V(x) such that $\dot{V}(x)$ is locally negative definite.

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is globally asymptotically stable if

The equilibrium point 0 of $\dot{x}(t) = f(x(t), t)$, $x(t_0) = x_0$ is globally asymptotically stable if there exists a Lyapunov function V(x) such that V(x) is positive definite and $\dot{V}(x)$ is negative definite.

▶ for linear system $\dot{x} = Ax$, a good Lyapunov candidate is the quadratic function $V(x) = x^T P x$ where $P = P^T$ and $P \succ 0$

- ▶ for linear system $\dot{x} = Ax$, a good Lyapunov candidate is the quadratic function $V(x) = x^T P x$ where $P = P^T$ and $P \succ 0$
- the derivative along the state trajectory is then

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$$

$$= (Ax)^T P x + x^T P A x$$

$$= x^T (A^T P + P A) x$$

- ▶ for linear system $\dot{x} = Ax$, a good Lyapunov candidate is the quadratic function $V(x) = x^T P x$ where $P = P^T$ and $P \succ 0$
- ▶ the derivative along the state trajectory is then

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$$

$$= (Ax)^T P x + x^T P A x$$

$$= x^T (A^T P + P A) x$$

▶ such a $V(x) = x^T P x$ is a Lyapunov function for $\dot{x} = A x$ when $A^T P + P A < 0$

- ▶ for linear system $\dot{x} = Ax$, a good Lyapunov candidate is the quadratic function $V(x) = x^T P x$ where $P = P^T$ and $P \succ 0$
- ▶ the derivative along the state trajectory is then

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$$

$$= (Ax)^T P x + x^T P A x$$

$$= x^T (A^T P + P A) x$$

- ▶ such a $V(x) = x^T P x$ is a Lyapunov function for $\dot{x} = A x$ when $A^T P + P A \prec 0$
- and the origin is stable in the sense of Lyapunov

Theorem (Lyapunov stability theorem for linear systems) For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$,

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^T P + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^T P + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

Observations:

 \triangleright $A^TP + PA$ is a linear operation on P

Observations:

 \triangleright $A^TP + PA$ is a linear operation on P: e.g.,

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \ Q = \begin{bmatrix} | & | & | \\ q_1 & q_2 \\ | & | & | \end{bmatrix}, \ P = \begin{bmatrix} | & | & | \\ p_1 & p_2 \\ | & | & | \end{bmatrix}$$
$$A^T \begin{bmatrix} | & | & | \\ p_1 & p_2 \\ | & | & | \end{bmatrix} + \begin{bmatrix} | & | & | \\ p_1 & p_2 \\ | & | & | \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = - \begin{bmatrix} | & | & | \\ q_1 & q_2 \\ | & | & | \end{bmatrix}$$

Observations:

 \triangleright $A^TP + PA$ is a linear operation on P: e.g.,

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \ Q = \begin{bmatrix} | & | \\ q_1 & q_2 \\ | & | \end{bmatrix}, \ P = \begin{bmatrix} | & | \\ p_1 & p_2 \\ | & | \end{bmatrix}$$
$$A^T \begin{bmatrix} | & | \\ p_1 & p_2 \\ | & | \end{bmatrix} + \begin{bmatrix} | & | \\ p_1 & p_2 \\ | & | \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = -\begin{bmatrix} | & | \\ q_1 & q_2 \\ | & | \end{bmatrix}$$

$$A^{T}p_{1} + a_{11}p_{1} + a_{21}p_{2} = -q_{1}$$

 $A^{T}p_{2} + a_{12}p_{1} + a_{22}p_{2} = -q_{2}$

Observations: with now

$$A^{\mathsf{T}}P + PA = Q \Leftrightarrow egin{cases} A^{\mathsf{T}}p_1 + a_{11}p_1 + a_{21}p_2 &= -q_1 \ A^{\mathsf{T}}p_2 + a_{12}p_1 + a_{22}p_2 &= -q_2 \end{cases}$$

Observations: with now

$$A^{\mathsf{T}}P + PA = Q \Leftrightarrow egin{cases} A^{\mathsf{T}}p_1 + a_{11}p_1 + a_{21}p_2 &= -q_1 \ A^{\mathsf{T}}p_2 + a_{12}p_1 + a_{22}p_2 &= -q_2 \end{cases}$$

ightharpoonup can stack the columns of $A^TP + PA$ and Q to yield

$$\begin{bmatrix} A^{T} & 0 \\ 0 & A^{T} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} = -\begin{bmatrix} q_{1} \\ q_{2} \end{bmatrix}$$

$$\underbrace{\left\{ \begin{bmatrix} A^{T} & 0 \\ 0 & A^{T} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \right\}}_{I = 1} \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} = -\begin{bmatrix} q_{1} \\ q_{2} \end{bmatrix}$$

$$L_A(P) = A^T P + PA$$

▶ L_A is invertible if and only if $\lambda_i + \lambda_j \neq 0$ for all eigenvalues of A

$$L_A(P) = A^T P + PA$$

- ▶ L_A is invertible if and only if $\lambda_i + \lambda_j \neq 0$ for all eigenvalues of A:
 - $\blacktriangleright \text{ let } A^T u_i = \lambda_i u_i \text{ and } A^T u_j = \lambda_j u_j$

$$L_A(P) = A^T P + PA$$

- ▶ L_A is invertible if and only if $\lambda_i + \lambda_j \neq 0$ for all eigenvalues of A:
 - $\blacktriangleright \text{ let } A^T u_i = \lambda_i u_i \text{ and } A^T u_j = \lambda_j u_j$
 - $L_A\left(u_iu_j^T\right) = u_iu_j^TA + A^Tu_iu_j^T = u_i\left(\lambda_ju_j\right)^T + \lambda_iu_iu_j^T = (\lambda_i + \lambda_j)u_iu_j^T$

$$L_A(P) = A^T P + PA$$

- ▶ L_A is invertible if and only if $\lambda_i + \lambda_j \neq 0$ for all eigenvalues of A:
 - $\blacktriangleright \text{ let } A^T u_i = \lambda_i u_i \text{ and } A^T u_j = \lambda_j u_j$
 - $L_A\left(u_iu_j^T\right) = u_iu_j^TA + A^Tu_iu_j^T = u_i\left(\lambda_ju_j\right)^T + \lambda_iu_iu_j^T = (\lambda_i + \lambda_j)u_iu_i^T$
 - ightharpoonup so $\lambda_i + \lambda_j$ is an eigenvalue of the operator $L_A(\cdot)$

$$L_A(P) = A^T P + PA$$

- ▶ L_A is invertible if and only if $\lambda_i + \lambda_j \neq 0$ for all eigenvalues of A:
 - $\blacktriangleright \text{ let } A^T u_i = \lambda_i u_i \text{ and } A^T u_j = \lambda_j u_j$
 - $L_A\left(u_iu_j^T\right) = u_iu_j^TA + A^Tu_iu_j^T = u_i\left(\lambda_ju_j\right)^T + \lambda_iu_iu_j^T = (\lambda_i + \lambda_j)u_iu_j^T$
 - \blacktriangleright so $\lambda_i + \lambda_j$ is an eigenvalue of the operator $L_A(\cdot)$
 - if $\lambda_i + \lambda_j \neq 0$, the operator is invertible

The Lyapunov operator: eigenvalues

$$L_{A} = \left[\begin{array}{cc} A^{T} & 0 \\ 0 & A^{T} \end{array} \right] + \left[\begin{array}{cc} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{array} \right]$$

▶ can simply write $L_A = \underbrace{I \otimes A^T + A^T \otimes I}_{\text{mirror symmetric}}$ using the Kronecker

product notation
$$B \otimes C = \left[\begin{array}{cccc} b_{11}C & b_{11}C & \dots & b_{11}C \\ b_{21}C & b_{22}C & \dots & b_{2n}C \\ \vdots & \vdots & \dots & \vdots \\ b_{m1}C & b_{m2}C & \dots & b_{mn}C \end{array} \right]$$

The Lyapunov operator: eigenvalues

$$L_{A} = \begin{bmatrix} A^{T} & 0 \\ 0 & A^{T} \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix}$$

$$\bullet \text{ e.g., } A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$

$$L_{A} = I \otimes A^{T} + A^{T} \otimes I = \begin{bmatrix} A^{T} + a_{11}I & a_{21}I \\ a_{12}I & A^{T} + a_{22}I \end{bmatrix}$$

$$= \begin{bmatrix} -1 - 1 & -1 & | -1 & 0 \\ 1 & 0 - 1 & | 0 & -1 \\ 1 & 0 & | -1 & -1 \\ 0 & 1 & | 1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 & | -1 & 0 \\ 1 & -1 & | 0 & -1 \\ 1 & 0 & | -1 & -1 \\ 0 & 1 & | 1 & 0 \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$
, $\lambda_{1,2} = -0.5 \pm i\sqrt{3}/2$

$$L_A = I \otimes A^T + A^T \otimes I = \begin{bmatrix} -2 & -1 & -1 & 0 \\ 1 & -1 & 0 & -1 \\ \hline 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$
, $\lambda_{1,2} = -0.5 \pm i\sqrt{3}/2$

$$L_A = I \otimes A^T + A^T \otimes I = \begin{bmatrix} -2 & -1 & -1 & 0 \\ 1 & -1 & 0 & -1 \\ \hline 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

The eigenvalues of L_A are -1, -1, $-1-\sqrt{3}$, $-1+\sqrt{3}$, which are precisely $\lambda_1 + \lambda_1$, $\lambda_1 + \lambda_2$, $\lambda_2 + \lambda_1$, $\lambda_2 + \lambda_2$.

```
import numpy as np A = [[-1,1],[-1,0]]; \ l2=np.eye(2); \ AT=np.transpose(A) \\ L_A=np.kron(l2,AT)+np.kron(AT,l2) \\ eigLA,_=np.linalg.eig(L_A) \\ eigA,_=np.linalg.eig(A) \\ print(eigLA) \\ print(eigA)
```

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$,

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^TP + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

For $\dot{x}=Ax$ with $A\in\mathbb{R}^{n\times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q\succ 0$, the Lyapunov equation

$$\boxed{A^T P + PA = -Q}$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

"
$$\Rightarrow$$
": $\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x}$

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^T P + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

"\Rightarrow":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{\left(\lambda_Q\right)_{\min}}{\left(\lambda_P\right)_{\max}}}_{\triangleq \alpha}$$

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$\boxed{A^T P + PA = -Q}$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

"\Rightarrow":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{(\lambda_Q)_{\min}}{(\lambda_P)_{\max}}}_{\triangleq \alpha} \Longrightarrow V(t) \le e^{-\alpha t} V(0).$$

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$\boxed{A^T P + PA = -Q}$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

"⇒":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{(\lambda_Q)_{\min}}{(\lambda_P)_{\max}}}_{\triangleq \alpha} \Rightarrow V(t) \le e^{-\alpha t} V(0). \ Q \succ 0 \text{ and}$$

$$P \succ 0 \Rightarrow$$

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^T P + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

"⇒":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{(\lambda_Q)_{\min}}{(\lambda_P)_{\max}}}_{\triangleq \alpha} \Longrightarrow V(t) \le e^{-\alpha t} V(0). \ Q \succ 0 \text{ and}$$

$$P \succ 0 \Rightarrow (\lambda_Q)_{\min} > 0 \text{ and } (\lambda_P)_{\max} > 0.$$

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$\boxed{A^T P + PA = -Q}$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

Proof.

"⇒":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{\left(\lambda_Q\right)_{\min}}{\left(\lambda_P\right)_{\max}}}_{\triangleq_Q} \Longrightarrow V(t) \le e^{-\alpha t} V(0). \ Q \succ 0 \text{ and}$$

 $P \succ 0 \Rightarrow (\lambda_Q)_{\min} > 0$ and $(\lambda_P)_{\max} > 0$. Thus $\alpha > 0$; V(t) decays exponentially to zero.

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^TP + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

Proof.

"⇒":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{(\lambda_Q)_{\min}}{(\lambda_P)_{\max}}}_{\triangleq \alpha} \Rightarrow V(t) \le e^{-\alpha t} V(0). \ Q \succ 0 \text{ and}$$

 $P \succ 0 \Rightarrow (\lambda_Q)_{\min} > 0$ and $(\lambda_P)_{\max} > 0$. Thus $\alpha > 0$; V(t) decays exponentially to zero. $V(x) \succ 0 \Rightarrow V(x) = 0$ only at x = 0.

For $\dot{x} = Ax$ with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if for any symmetric positive definite matrix $Q \succ 0$, the Lyapunov equation

$$A^T P + PA = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

Proof.

"⇒":
$$\frac{\dot{V}}{V} = -\frac{x^T Q x}{x^T P x} \le -\underbrace{\frac{(\lambda_Q)_{\min}}{(\lambda_P)_{\max}}}_{\triangleq \alpha} \Rightarrow V(t) \le e^{-\alpha t} V(0). \ Q \succ 0 \text{ and}$$

 $P \succ 0 \Rightarrow (\lambda_Q)_{\min} > 0$ and $(\lambda_P)_{\max} > 0$. Thus $\alpha > 0$; V(t) decays exponentially to zero. $V(x) \succ 0 \Rightarrow V(x) = 0$ only at x = 0.

Therefore, $x \to 0$ as $t \to \infty$, regardless of the initial condition.

"\(= \)": if 0 of $\dot{x} = Ax$ is asymptotically stable,

" \Leftarrow ": if 0 of $\dot{x} = Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts.

" \Leftarrow ": if 0 of $\dot{x} = Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts. For any Q, the Lyapunov equation has a unique solution P.

" \Leftarrow ": if 0 of $\dot{x}=Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts. For any Q, the Lyapunov equation has a unique solution P. Note $x(t)=e^{At}x_0\to 0$ as $t\to \infty$. We have

$$\frac{x^{T}(\infty)Px(\infty) - x^{T}(0)Px(0) = \int_{0}^{\infty} \frac{d}{dt}x^{T}(t)Px(t)dt = \int_{0}^{\infty} x^{T}(t)(A^{T}P + PA)x(t)dt}{\Rightarrow x^{T}(0)Px(0) = \int_{0}^{\infty} x^{T}(t)Qx(t)dt = \int_{0}^{\infty} x^{T}(0)e^{A^{T}t}Qe^{At}x(0)dt}$$

" \Leftarrow ": if 0 of $\dot{x}=Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts. For any Q, the Lyapunov equation has a unique solution P. Note $x(t)=e^{At}x_0\to 0$ as $t\to\infty$. We have

$$\underbrace{x^{T}(\infty)PX(\infty) - x^{T}(0)PX(0)}_{0} = \int_{0}^{\infty} \frac{d}{dt}x^{T}(t)PX(t)dt = \int_{0}^{\infty} x^{T}(t)\left(A^{T}P + PA\right)X(t)dt$$

$$\Rightarrow x^{T}(0)PX(0) = \int_{0}^{\infty} x^{T}(t)QX(t)dt = \int_{0}^{\infty} x^{T}(0)e^{A^{T}t}Qe^{At}X(0)dt$$

If $Q \succ 0$, there exists a nonsingular N matrix: $Q = N^T N$. Thus $x^T(0) Px(0) = \int_0^\infty \|Ne^{At}x(0)\|^2 dt \ge 0$ $x^T(0) Px(0) = 0$ only if $x_0 = 0$

" \Leftarrow ": if 0 of $\dot{x}=Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts. For any Q, the Lyapunov equation has a unique solution P. Note $x(t)=e^{At}x_0\to 0$ as $t\to \infty$. We have

$$\underbrace{x^{T}(\infty)PX(\infty) - x^{T}(0)PX(0)}_{0} = \int_{0}^{\infty} \frac{d}{dt}x^{T}(t)PX(t)dt = \int_{0}^{\infty} x^{T}(t)\left(A^{T}P + PA\right)X(t)dt$$

$$\Rightarrow x^{T}(0)PX(0) = \int_{0}^{\infty} x^{T}(t)QX(t)dt = \int_{0}^{\infty} x^{T}(0)e^{A^{T}t}Qe^{At}X(0)dt$$

If $Q \succ 0$, there exists a nonsingular N matrix: $Q = N^T N$. Thus $x^T(0) Px(0) = \int_0^\infty \|Ne^{At}x(0)\|^2 dt \ge 0$ $x^T(0) Px(0) = 0$ only if $x_0 = 0$

Thus $P \succ 0$.

" \Leftarrow ": if 0 of $\dot{x}=Ax$ is asymptotically stable, then all eigenvalues of A have negative real parts. For any Q, the Lyapunov equation has a unique solution P. Note $x(t)=e^{At}x_0\to 0$ as $t\to\infty$. We have

$$x^{T}(\infty)PX(\infty) - x^{T}(0)PX(0) = \int_{0}^{\infty} \frac{d}{dt}x^{T}(t)PX(t)dt = \int_{0}^{\infty} x^{T}(t)(A^{T}P + PA)x(t)dt$$

$$\Rightarrow x^{T}(0)PX(0) = \int_{0}^{\infty} x^{T}(t)QX(t)dt = \int_{0}^{\infty} x^{T}(0)e^{A^{T}t}Qe^{At}x(0)dt$$

If $Q \succ 0$, there exists a nonsingular N matrix: $Q = N^T N$. Thus $x^T(0) Px(0) = \int_0^\infty \|N e^{At} x(0)\|^2 dt \ge 0$ $x^T(0) Px(0) = 0$ only if $x_0 = 0$

Thus $P \succ 0$. Furthermore

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

- 1. Given A, select an arbitrary positive-definite symmetric matrix Q (e.g., I).
- 2. Find the solution matrix P to the Lyapunov equation $A^TP + PA = -Q$.

- 1. Given A, select an arbitrary positive-definite symmetric matrix Q (e.g., I).
- 2. Find the solution matrix P to the Lyapunov equation $A^TP + PA = -Q$.
- 3. If a solution P cannot be found, the origin is not asymptotically stable.

- 1. Given A, select an arbitrary positive-definite symmetric matrix Q (e.g., I).
- 2. Find the solution matrix P to the Lyapunov equation $A^TP + PA = -Q$.
- 3. If a solution P cannot be found, the origin is not asymptotically stable.
- 4. If a solution is found:
 - ▶ if P is positive-definite, then A is Hurwitz stable and the origin is asymptotically stable;

- 1. Given A, select an arbitrary positive-definite symmetric matrix Q (e.g., I).
- 2. Find the solution matrix P to the Lyapunov equation $A^TP + PA = -Q$.
- 3. If a solution P cannot be found, the origin is not asymptotically stable.
- 4. If a solution is found:
 - ▶ if P is positive-definite, then A is Hurwitz stable and the origin is asymptotically stable;
 - ▶ if *P* is not positive-definite, then *A* has at least one eigenvalue with a positive real part and the origin is an unstable equilibrium.

Lyapunov stability theorems

Example

$$\dot{x}=Ax,\ A=\left[\begin{array}{cc} -1 & 1 \\ -1 & 0 \end{array}\right]$$
 . The Lyapunov equation is

$$\begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}^{T} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{P} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{Q}$$

Lyapunov stability theorems

Example

$$\dot{x}=Ax,\ A=\left[\begin{array}{cc} -1 & 1 \\ -1 & 0 \end{array}\right]$$
 . The Lyapunov equation is

$$\begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}^{T} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{P} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{Q}$$

We need

$$\begin{cases}
-2p_{11} - 2p_{12} = -1 \\
-p_{12} - p_{22} + p_{11} = 0 \\
2p_{12} = -1
\end{cases} \Rightarrow \begin{cases}
p_{11} = 1 \\
p_{22} = 3/2 \\
p_{12} = -1/2
\end{cases}$$

Lyapunov stability theorems

Example

$$\dot{x}=Ax,\ A=\left[\begin{array}{cc} -1 & 1 \\ -1 & 0 \end{array}\right]$$
 . The Lyapunov equation is

$$\begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}^{T} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}}_{P} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = -\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{Q}$$

We need

$$\begin{cases}
-2p_{11} - 2p_{12} = -1 \\
-p_{12} - p_{22} + p_{11} = 0 \\
2p_{12} = -1
\end{cases} \Rightarrow \begin{cases}
p_{11} = 1 \\
p_{22} = 3/2 \\
p_{12} = -1/2
\end{cases}$$

Leading principle minors: $p_{11} > 0$, $p_{11}p_{22} - p_{12}^2 > 0$ $\Rightarrow P \succ 0 \Rightarrow$ asymptotically stable

Lyapunov analysis with Matlab

$$\dot{x} = Ax, \ A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}.$$

$$A = [-1,1;-1,0]$$

$$Q = eye(2)$$

$$P = Iyap(A',Q)$$

$$w = eig(P)$$

Lyapunov analysis with Python

$$\dot{x} = Ax$$
, $A = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$.

```
import control as ct
import numpy as np
A = np.array([[-1,1],[-1,0]])
Q = np.identity(2)
P = ct.lyap(A.transpose(),Q)
print(P)
w = np.linalg.eigvals(P)
print(f'eigenvalues of P: {w}')
```

For linear systems we can let Q=I and check whether the resulting P is positive definite. If it is, then we can assert the asymptotic stability:

For linear systems we can let Q = I and check whether the resulting P is positive definite. If it is, then we can assert the asymptotic stability:

▶ take any $Q \succ 0$. there exists $Q = N^T N$, where N is invertible, yielding

$$A^{T}P + PA = -I$$

$$\downarrow \downarrow$$

$$\underbrace{N^{T}A^{T}N^{-T}}_{\tilde{A}^{T}}\underbrace{N^{T}PN}_{\tilde{P}} + \underbrace{N^{T}PN}_{\tilde{P}}\underbrace{N^{-1}AN}_{\tilde{A}} = -N^{T}N$$

For linear systems we can let Q = I and check whether the resulting P is positive definite. If it is, then we can assert the asymptotic stability:

▶ take any $Q \succ 0$. there exists $Q = N^T N$, where N is invertible, yielding

$$A^{T}P + PA = -I$$

$$\downarrow \downarrow$$

$$\underbrace{N^{T}A^{T}N^{-T}}_{\tilde{A}^{T}}\underbrace{N^{T}PN}_{\tilde{P}} + \underbrace{N^{T}PN}_{\tilde{P}}\underbrace{N^{-1}AN}_{\tilde{A}} = -N^{T}N$$

 $\tilde{A} = N^{-1}AN$ and A are similar matrices and have the same eigenvalues.

For linear systems we can let Q=I and check whether the resulting P is positive definite. If it is, then we can assert the asymptotic stability:

▶ take any $Q \succ 0$. there exists $Q = N^T N$, where N is invertible, yielding

$$A^{T}P + PA = -I$$

$$\updownarrow$$

$$\underbrace{N^{T}A^{T}N^{-T}}_{\tilde{A}^{T}}\underbrace{N^{T}PN}_{\tilde{P}} + \underbrace{N^{T}PN}_{\tilde{P}}\underbrace{N^{-1}AN}_{\tilde{A}} = -N^{T}N$$

- $\tilde{A} = N^{-1}AN$ and A are similar matrices and have the same eigenvalues.
- $\tilde{P} = N^T P N$ and P have the same definiteness. If we can find a positive definite solution P then the \tilde{P} will also be positive definite. Vise versa.

Instability theorem

for nonlinear systems, Lyapunov function can be nontrivial to find

Instability theorem

- for nonlinear systems, Lyapunov function can be nontrivial to find
- ▶ failure to find a Lyapunov function does not imply instability

Instability theorem

- for nonlinear systems, Lyapunov function can be nontrivial to find
- ▶ failure to find a Lyapunov function does not imply instability

Theorem

The equilibrium state 0 of $\dot{x} = f(x)$ is unstable if there exists a function W(x) such that

- $\dot{W}(x)$ is PD locally: $\dot{W}(x) > 0 \ \forall |x| < r$ for some r and $\dot{W}(0) = 0$
- V(0) = 0
- ► there exist states x arbitrarily close to the origin such that W(x) > 0

Discrete-time case: key concept of Lyapunov

For the discrete-time system

$$x(k+1) = Ax(k)$$

we consider a quadratic Lyapunov function candidate

$$V(x) = x^T P x, P = P^T \succ 0$$

Discrete-time case: key concept of Lyapunov

For the discrete-time system

$$x(k+1) = Ax(k)$$

we consider a quadratic Lyapunov function candidate

$$V(x) = x^T P x, P = P^T \succ 0$$

and compute $\Delta V(x)$ along the trajectory of the state

$$V(x(k+1)) - V(x(k)) = x^{T}(k) \underbrace{(A^{T}PA - P)}_{\triangleq -Q} x(k)$$

Discrete-time case: key concept of Lyapunov

For the discrete-time system

$$x(k+1) = Ax(k)$$

we consider a quadratic Lyapunov function candidate

$$V(x) = x^T P x, P = P^T \succ 0$$

and compute $\Delta V(x)$ along the trajectory of the state

$$V(x(k+1)) - V(x(k)) = x^{T}(k) \underbrace{(A^{T}PA - P)}_{\triangleq -Q} x(k)$$

Asymptotic stability desires $\Delta V(x)$ to be negative.

Theorem

For system x (k+1) = Ax (k) with $A \in \mathbb{R}^{n \times n}$, the origin is asymptotically stable if and only if $\exists Q \succ 0$, such that \underline{the} discrete-time Lyapunov equation

$$A^T P A - P = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

The DT Lyapunov Eq.

$$A^T P A - P = -Q$$

► Solution to the DT Lyapunov equation, when asymptotic stability holds (*A* is Schur stable), comes from:

$$V(x(\infty))^{-1}V(x(0)) = \sum_{k=0}^{\infty} x^{T}(k) \left[A^{T}PA - P\right] x(k)$$

$$= -\sum_{k=0}^{\infty} x^{T}(0) \left(A^{T}\right)^{k} QA^{k} x(0)$$

$$\Rightarrow P = \sum_{k=0}^{\infty} \left(A^{T}\right)^{k} QA^{k}$$

The DT Lyapunov Eq.

$$A^T PA - P = -Q$$

► Solution to the DT Lyapunov equation, when asymptotic stability holds (*A* is Schur stable), comes from:

$$V(x(\infty))^{-1} V(x(0)) = \sum_{k=0}^{\infty} x^{T}(k) [A^{T}PA - P] x(k)$$

$$= -\sum_{k=0}^{\infty} x^{T}(0) (A^{T})^{k} QA^{k} x(0)$$

$$\Rightarrow P = \sum_{k=0}^{\infty} (A^{T})^{k} QA^{k}$$

riangleright can show that the DT Lyapunov operator $L_A = A^T P A - P$ is invertible if and only if $\forall i, j \ (\lambda_A)_i \ (\lambda_A)_i \ne 1$

DT Lyapunov analysis with MATLAB

Example

$$x(k+1) = Ax(k), A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.275 & -0.225 & -0.1 \end{bmatrix}$$

% MATLAB

$$A = [0\ 1\ 0;\ 0\ 0\ 1;\ 0.275\ -0.225\ -0.1]$$

$$Q = eye(3)$$

P = dlyap(A',Q) % check function definition in Matlab help eig(P)

DT Lyapunov analysis with Python

Example

$$x(k+1) = Ax(k), A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.275 & -0.225 & -0.1 \end{bmatrix}$$

```
#Python
import control as ct
import numpy as np
from numpy.linalg import eig
A = np.array([[0,1,0],[0,0,1],[0.275,-0.225,-0.1]])
Q = np.identity(3)
P = ct.dlyap(A.transpose(),Q)
w,v = eig(P)
print(w)
```

Recap

- ► Internal stability
 - ▶ Stability in the sense of Lyapunov: ε , δ conditions
 - Asymptotic stability
- ► Stability analysis of linear time invariant systems ($\dot{x} = Ax$ or x(k+1) = Ax(k))
 - ▶ Based on the eigenvalues of *A*
 - ► Time response modes
 - Repeated eigenvalues on the imaginary axis
 - Routh's criterion
 - No need to solve the characteristic equation
 - Discrete time case: bilinear transform $(z = \frac{1+s}{1-s})$

Recap

Lyapunov equations

Theorem: All eigenvalues of A have negative real parts iff for any given $Q \succ 0$, the Lyapunov equation

$$A^T P + PA = -Q$$

has a unique solution P and $P \succ 0$.

Given Q, the Lyapunov equation $A^TP + PA = -Q$ has a unique solution when $\lambda_{A,i} + \lambda_{A,j} \neq 0$ for all i and j.

Theorem: All eigenvalues of A are inside the unit circle iff for any given $Q \succ 0$, the Lyapunov equation

$$A^T PA - P = -Q$$

has a unique solution P and $P \succ 0$.

Given Q, the Lyapunov equation $A^T PA - P = -Q$ has a unique solution when $\lambda_{A,i}\lambda_{A,j} \neq 1$ for all i and j.

Recap

- ► *P* is positive definite if and only if any one of the following conditions holds:
 - 1. All the eigenvalues of P are positive.
 - 2. All the leading principle minors of P are positive.
 - 3. There exists a nonsingular matrix N such that $P = N^T N$.