# Practical Session Progress Discussion

Julio C. S. Jacques Junior

# Codalab (T.1)

- 22 participants
- 171 submissions



|    |               |         |                    |           | Resu            | lts               |                    |                |                |
|----|---------------|---------|--------------------|-----------|-----------------|-------------------|--------------------|----------------|----------------|
|    | User          | Entries | Date of Last Entry | Ranking 🔺 | Gender (bias) 🔺 | Expression (bias) | Ethnicity (bias) 🔺 | Age (bias) 🔺   | MAE 📥          |
| 1  | adegaray      | 7       | 03/11/22           | 2.600000  | 0.131069 (3)    | 0.222518 (6)      | 0.038951 (1)       | 2.070795 (2)   | 4.299231 (1)   |
| 2  | QJ            | 8       | 03/12/22           | 6.200000  | 0.044955 (1)    | 0.162736 (3)      | 0.539348 (13)      | 3.056905 (5)   | 6.340045 (9)   |
| 3  | arturxe       | 1       | 03/10/22           | 6.600000  | 0.520513 (16)   | 0.198511 (4)      | 0.263101 (9)       | 1.803695 (1)   | 5.763641 (3)   |
| 4  | Marcos        | 13      | 03/10/22           | 6.600000  | 0.178582 (5)    | 0.099530 (1)      | 0.330383 (10)      | 4.313029 (12)  | 5.947065 (5)   |
| 5  | johnnynunez   | 40      | 03/13/22           | 7.600000  | 0.210905 (6)    | 0.350365 (12)     | 0.116024 (4)       | 3.700477 (10)  | 6.103415 (6)   |
| 6  | arseniyy123   | 20      | 03/12/22           | 8.000000  | 0.105597 (2)    | 0.259403 (9)      | 1.198257 (19)      | 3.414286 (8)   | 5.458959 (2)   |
| 7  | pere_luis     | 6       | 03/11/22           | 8.800000  | 0.294312 (10)   | 0.481102 (17)     | 0.097265 (3)       | 2.522612 (3)   | 6.479792 (11)  |
| 8  | AlvaroLC      | 3       | 03/13/22           | 9.600000  | 0.714722 (18)   | 0.140125 (2)      | 0.654923 (15)      | 3.225240 (6)   | 6.220692 (7)   |
| 9  | inaki_erregue | 6       | 03/10/22           | 9.600000  | 0.853547 (20)   | 0.266028 (10)     | 0.228667 (7)       | 3.388354 (7)   | 5.785490 (4)   |
| 10 | jha138        | 7       | 03/12/22           | 10.000000 | 0.411101 (14)   | 0.206496 (5)      | 0.082441 (2)       | 5.907411 (17)  | 6.663322 (12)  |
| 11 | Iker          | 14      | 03/10/22           | 10.200000 | 0.243386 (9)    | 0.357067 (13)     | 0.203853 (6)       | 5.209423 (13)  | 6.340726 (10)  |
| 12 | Volokin       | 7       | 03/13/22           | 10.800000 | 0.508896 (15)   | 0.403236 (15)     | 0.462716 (12)      | 2.663317 (4)   | 6.319689 (8)   |
| 13 | ammtomi       | 4       | 03/13/22           | 11.600000 | 0.242992 (8)    | 0.722199 (19)     | 0.259435 (8)       | 3.543867 (9)   | 7.070488 (14)  |
| 14 | mdlt          | 5       | 03/13/22           | 11.600000 | 0.139774 (4)    | 0.421380 (16)     | 0.622958 (14)      | 3.763480 (11)  | 6.779570 (13)  |
| 15 | xavidejuan    | 5       | 03/09/22           | 11.600000 | 0.323289 (12)   | 0.230054 (7)      | 0.141708 (5)       | 5.466550 (16)  | 7.466782 (18)  |
| 16 | lorenzovigo   | 1       | 03/08/22           | 12.800000 | 0.319109 (11)   | 0.253672 (8)      | 0.358137 (11)      | 5.448703 (15)  | 9.240306 (19)  |
| 17 | mertmecit     | 1       | 03/13/22           | 15.000000 | 0.235272 (7)    | 0.658474 (18)     | 0.777892 (16)      | 6.300268 (18)  | 7.241075 (16)  |
| 18 | e1307685      | 12      | 03/13/22           | 15.200000 | 0.781770 (19)   | 0.280844 (11)     | 0.890152 (17)      | 5.299491 (14)  | 7.149036 (15)  |
| 19 | rudiboi       | 6       | 03/10/22           | 16.400000 | 0.380944 (13)   | 0.384031 (14)     | 0.940844 (18)      | 9.023186 (20)  | 7.451245 (17)  |
| 20 | juliojj       | 1       | 02/28/22           | 19.800000 | 0.628002 (17)   | 0.819692 (20)     | 2.447512 (22)      | 8.988890 (19)  | 11.141265 (21) |
| 21 | aa.dudek5     | 2       | 03/10/22           | 20.600000 | 2.000426 (21)   | 1.568660 (21)     | 1.806945 (20)      | 13.798619 (21) | 10.791063 (20) |
| 22 | noahjadallah  | 2       | 03/10/22           | 21.800000 | 4.417457 (22)   | 2.949319 (22)     | 2.223809 (21)      | 19.004131 (22) | 14.001426 (22) |

#### Your feedback is important

- Did you find the problem interesting?
- Is there anything that could be improved/changed in this process?



- Quick feedback w.r.t Task 1
- Take the notes into account when delivering Task 2 (and the optional task)



- The code should complement the report
  - The report document should contain all the details required to understand the proposed solution and results.
    - Do not assume I know the model you use "we include a new dropout layer just after the last FC layer"
      - What model?
    - Do not assume I know the training strategy: "we applied training strategy 2"

Imagine you are reporting a procedure that should be reproducible from the provided information



- What most of you did that is not a standard in research
  - Find the best model / hyperparameters <u>base on the evaluation performed on the **Test set.**</u>
  - The search of the best model / hyperparameters should use the train/validation set.
  - Test set should be used only after the model is trained and hyperparameters defined.
- Perform general and high level comments like:
  - Model X obtained overall lower bias score and MAE
    - Be curious!
    - What could explain that?
    - Did you solution addressed the problem well?
    - Could it be related with the fact that you augmented category 1 only?
    - You can go be beyond simple and general explanations.





- Things you could have done before start playing with data augmentation
  - Compare different backbones (VGG vs. Resnet)
  - Compare the same model with/without transfer learning
  - Compare the same model with transfer learning from different datasets (imagenet, faces)
  - Fix the backbone, include new layers or regularizers
     and compare (results, time, etc)
  - Different losses: MSE vs MAE
  - Different optimizers (Adam vs SGD)
  - Computational time vs. number of parameters vs. result

#### Available models

| Model             | Size<br>(MB) | Top-1<br>Accuracy | Top-5<br>Accuracy | Parameters  | Depth | Time (ms)<br>per<br>inference<br>step (CPU) | Time (ms)<br>per<br>inference<br>step (GPU) |
|-------------------|--------------|-------------------|-------------------|-------------|-------|---------------------------------------------|---------------------------------------------|
| Xception          | 88           | 79.0%             | 94.5%             | 22.9M       | 81    | 109.4                                       | 8.1                                         |
| VGG10             | 528          | 71.3%             | 90.1%             | 138.4M      | 10    | 69.5                                        | 4.2                                         |
| VGG19             | 549          | 71.3%             | 90.0%             | 143.7M      | 19    | 84.8                                        | 4.4                                         |
| Franklin 600      | 200          | 746.0000          | :9K.1PR           | 786688      | 1100  | 1869                                        | 46                                          |
| ResNet50V2        | 98           | 76.0%             | 93.0%             | 25.6M       | 103   | 45.6                                        | 4.4                                         |
| ResNet101         | 171          | 76.4%             | 92.8%             | 44.7M       | 209   | 89.6                                        | 5.2                                         |
| ResNet101V2       | 171          | 77.2%             | 93.8%             | 44.7M       | 205   | 72.7                                        | 5.4                                         |
| ResNet152         | 232          | 76.0%             | 93.1%             | 50.4M       | 311   | 127.4                                       | 0.5                                         |
| ResNet152V2       | 232          | 78.0%             | 94.2%             | 60.4M       | 307   | 107.5                                       | 0.0                                         |
| inceptionV3       | 92           | 77.9%             | 93.7%             | 23.9M       | 189   | 42.2                                        | 6.9                                         |
| InceptionResNetV2 | 215          | 80,3%             | 95.3%             | 55.9M       | 449   | 130.2                                       | 10.0                                        |
| MobileNet         | 10           | 70.4%             | 89.5%             | 4.3M        | 55    | 22.6                                        | 3.4                                         |
| MobileNetV2       | 14           | 71.3%             | 90.1%             | 3.5M        | 105   | 25.9                                        | 3.8                                         |
| DenseNet121       | 33           | 75.0%             | 92.3%             | 8.1M        | 242   | 77.1                                        | 5.4                                         |
| DenseNet169       | 57           | 76.2%             | 93.2%             | 14.3M       | 338   | 96.4                                        | 0.3                                         |
| DenseNet201       | 80           | 77.3%             | 93.6%             | 20.2M       | 402   | 127.2                                       | 6.7                                         |
| NASNetMobile      | 23           | 74.4%             | 91.9%             | 5.3M        | 389   | 27.0                                        | 6.7                                         |
| NASNetLarge       | 343          | 82.5%             | 96.0%             | 88.9M       | 533   | 344.5                                       | 20.0                                        |
| EfficientNetB0    | 29           | 77.1%             | 93.3%             | 5.3M        | 132   | 46.0                                        | 4.9                                         |
| EfficientNetB1    | 31           | 79.1%             | 94.4%             | 7.9M        | 180   | 60.2                                        | 5.0                                         |
| EfficientNetB2    | 36           | 80.1%             | 94.9%             | 9.2M        | 186   | 80.8                                        | 0.5                                         |
| EfficientNetB3    | 48           | 81.0%             | 95.7%             | 12.3M       | 210   | 140.0                                       | 8.8                                         |
| EfficientNetB4    | 75           | 82.9%             | 96.4%             | 19.5M       | 258   | 308.3                                       | 15.1                                        |
| EfficientNetB5    | 118          | 83.0%             | 96.7%             | 30.6M       | 312   | 579.2                                       | 25,3                                        |
| EfficientNetBö    | 100          | 84.0%             | 90.8%             | 43.3M       | 360   | 958.1                                       | 40.4                                        |
| EfficientNetB7    | 250          | 84.3%             | 97.0%             | 66.7M       | 438   | 1578.9                                      | 61.6                                        |
| EfficientNetV2B0  | 29           | 0.787             | 0.943             | 7,200,312   | -     |                                             |                                             |
| EfficientNetV2B1  | 34           | 0.798             | 0.950             | 8,212,124   |       | 84                                          | - 6                                         |
| EfficientNetV2B2  | 42           | 0.805             | 0.951             | 10,178,374  | -     |                                             |                                             |
| EfficientNetV2B3  | 59           | 0.820             | 0.958             | 14,467,622  |       |                                             |                                             |
| EfficientNetV25   | 88           | 0.839             | 0.967             | 21,612,360  |       | 184                                         | - 62                                        |
| EfficientNetV2M   | 220          | 0.853             | 0.974             | 54,431,388  | -     |                                             |                                             |
| EfficientNetV2L   | 479          | 0.857             | 0.975             | 119,027,848 |       |                                             |                                             |
| fficientNetV2B0   | 29           | 0.787             | 0.943             | 7,200,312   |       |                                             |                                             |
| EfficientNetV2B1  | 34           | 0.798             | 0.950             | 8,212,124   | -     |                                             |                                             |
| EfficientNetV2B2  | 42           | 0.805             | 0.951             | 10,178,374  | -     |                                             |                                             |
| EfficientNetV2B3  | 59           | 0.820             | 0.958             | 14,467,622  |       |                                             |                                             |
| EfficientNetV2S   | 88           | 0.839             | 0.967             | 21.612.360  |       | S-0                                         |                                             |
| EfficientNetV2M   | 220          | 0.853             | 0.974             | 54,431,388  |       |                                             |                                             |
| EfficientNetV2L   | 479          | 0.857             | 0.975             | 119,027,848 | -     |                                             |                                             |

- Totally avoid using the starting kit as it is, and just change some parameters
  - Same model architecture

```
# Using the FC layer before the 'classifier_low_dim' layer as feature vector
fc_512 = model.get_layer('dim_proj').output

# adding a dropout layer to minimize overfiting problems
dp_layer = Dropout(0.5)(fc_512)

# adding a few hidden FC layers to learn hidden representations
fc_128 = Dense(128, activation='relu', name='f_128')(fc_512)
fc_32 = Dense(32, activation='relu', name='f_32')(fc_128)

# Includint an additional FC layer with sigmoid activation, used to regress
the apparent age
output = Dense(1, activation='sigmoid', name='predict')(fc_32)
```



- Just changing the hyperparameters (learning rate, batch size, num of epochs, etc)
- Applying **exactly the same training strategy** (e.g., *new layers + half of the network*)
- Just changing the parameters of data transformation (e.g., filter size of Gaussian blur)

```
X_train_augmented.append(cv2.GaussianBlur(X_train[i], (5,5),1.0))
X_train_augmented.append(cv2.GaussianBlur(X_train[i], (7,7),1.0))
```

### Page limits

- Please, do not exceed the page limit
  - Unfair with those who delivered a 4 pages report
  - Requires more time to evaluate
    - 12 groups



#### Help the reader (proposed solution and experiments)

- Main points to be detailed in the report before discussing the results
  - Model architecture (backbone? Adaptation?)
  - Training strategy (1 or multiple stages?)
    - Hyperparameters, optimizer and loss?
  - o Data augmentation
    - **Transformations** (flip, rotation, etc) ← "standard, but not in the case of this exercise"
    - Categories (age, gender, etc)
    - Defined **strategy** (randomly, based on data distribution, etc)

- Custom loss (Task 2)
- o Data augmentation & Custom loss (optional exercise), if this will be the case

### Optimize your report → avoid redundancy (you have 4pg)

|   | F        | Ranking | Gender bias | Expression bias    | Ethnicity<br>bias   | Age bias          | MAE      |      |
|---|----------|---------|-------------|--------------------|---------------------|-------------------|----------|------|
| , | /        | 4.4     | 0.22        | 0.43               | 0.39                | 3.86              | 10.5     |      |
|   | R        | anking  | Gender bias | Expression<br>bias | Ethnicity<br>bias   | Age bias          | MAE      |      |
| / | /        | 4.4     | 0.32        | 0.25               | 0.36                | 5.45              | 9.24     |      |
| / | R        | anking  | Gender bias | Expression<br>bias | Ethnicity<br>bias   | Age bias          | MAE      |      |
|   |          | 3.8     | 0.32        | 0.23               | 0.14                | 5.47              | 7.47     |      |
|   | Model    | Data    | a Aug.      | Gender<br>bias     | Expressio<br>n bias | Ethnicity<br>bias | Age bias | MAE  |
|   | Baseline | А       | .ge         | 0.22               | 0.43                | 0.39              | 3.86     | 10.5 |
|   | Tuned    | Α       | .ge         |                    |                     |                   |          |      |
|   |          | _       |             | 0.32               | 0.25                | 0.36              | 5.45     | 9.24 |
|   | Baseline | Con     | nplete      | 0.02               | 0.20                | 0.00              |          |      |

### Help the reader (e.g., highlight best results)

| Model | Age bias | Gender<br>bias | Ethnicity<br>bias | Expression bias | MAE   |
|-------|----------|----------------|-------------------|-----------------|-------|
| 1     | 9.51     | 1.33           | 3.25              | 1.86            | 20.09 |
| 2     | 6.43     | 0.16           | 1.53              | 0.34            | 12.31 |
| 3     | 7.47     | 0.16           | 0.76              | 1.09            | 9.42  |
| 4     | 2.52     | 0.29           | 0.09              | 0.48            | 6.47  |

#### Which option help us to identify the "best" solution easier?

| Model | Age bias | Gender<br>bias | Ethnicity<br>bias | Expression bias | MAE   |
|-------|----------|----------------|-------------------|-----------------|-------|
| 1     | 9.51     | 1.33           | 3.25              | 1.86            | 20.09 |
| 2     | 6.43     | 0.16           | 1.53              | 0.34            | 12.31 |
| 3     | 7.47     | 0.16           | 0.76              | 1.09            | 9.42  |
| 4     | 2.52     | 0.29           | 0.09              | 0.48            | 6.47  |

| Model | Age bias | Gender<br>bias | Ethnicity<br>bias | Expression bias | MAE   |
|-------|----------|----------------|-------------------|-----------------|-------|
| 1     | 9.51     | 1.33           | 3.25              | 1.86            | 20.09 |
| 2     | 6.43     | 0.16           | 1.53              | 0.34            | 12.31 |
| 3     | 7.47     | 0.16           | 0.76              | 1.09            | 9.42  |
| 4     | 2.52     | 0.29           | 0.09              | 0.48            | 6.47  |

| Model | Learning rate | Data augmentation | Regularizers | Dropout | Train all layers |
|-------|---------------|-------------------|--------------|---------|------------------|
| 1     | 1e-5          | No                | No           | No      | No               |
| 2     | 1e-5          | Yes               | No           | No      | No               |
| 3     | 1e-4          | Yes               | Yes          | Yes     | No               |
| 4     | 1e-5          | Yes               | Yes          | Yes     | Yes              |

Additional information can help and support the analysis.

| Model | Learning<br>rate<br>(initial) | Batch size | Epochs | # images | Gender<br>bias | Expressio n bias | Ethnicity<br>bias | Age bias | MAE   |
|-------|-------------------------------|------------|--------|----------|----------------|------------------|-------------------|----------|-------|
| A_s1  | 3E-05                         | 16         | 50     | 9560     | 0.55           | 3.11             | 3.68              | 13.74    | 16.12 |
| A_s2  | 1E-05                         | 16         | 30     | 10710    | 0.09           | 0.58             | 1.01              | 5.73     | 8.24  |
| A_s3  | 1E-05                         | 16         | 3      | 10710    | 0.41           | 0.60             | 1.7               | 4.46     | 7.84  |
| B_s1  | 3E-05                         | 16         | 50     | 9560     | 0.12           | 1.77             | 1.45              | 8.46     | 11.68 |
| B_s2  | 1E-05                         | 12         | 50     | 8590     | 0.17           | 0.25             | 1.10              | 6.52     | 8.97  |
| B_s3  | 1E-05                         | 12         | 21     | 6885     | 0.41           | 0.63             | 0.88              | 5.19     | 6.77  |
| C_s1  | 3E-05                         | 16         | 50     | 9560     | 1.17           | 2.64             | 2.41              | 14.74    | 15.51 |
| C_s2  | 1E-05                         | 12         | 50     | 8590     | 0.30           | 0.75             | 0.95              | 6.04     | 8.40  |
| C_s3  | 1E-05                         | 12         | 50     | 6885     | 0.18           | 0.10             | 0.33              | 4.31     | 5.95  |

All together + extensive set of experiments

| Data<br>augm. | Learning rate | Batch<br>size | Loss<br>function | Gender<br>bias | Expression bias | Ethnicity bias | Age bias | MAE      |
|---------------|---------------|---------------|------------------|----------------|-----------------|----------------|----------|----------|
| E             | 1e-5          | 32 - 16       | MSE              | 0.994277       | 0.401712        | 0.140987       | 2.711542 | 6.257771 |
| 1             | 1e-5          | 64 - 16       | MSE              | 0.438000       | 0.537266        | 1.082621       | 2.969890 | 6.348123 |
| I             | 1e-5          | 64 - 32       | MSE              | 0.359906       | 0.461378        | 0.848432       | 6.928862 | 7.937758 |
| L             | 1e-4          | 64 - 32       | MSE              | 0.246278       | 0.434221        | 0.870553       | 7.132548 | 7.913878 |
| II            | 1e-5          | 32 - 16       | MSE              | 0.508897       | 0.403237        | 0.462716       | 2.663317 | 6.319689 |
| II            | 1e-5          | 32 - 16       | MAE              | 0.714722       | 0.140125        | 0.654923       | 3.225239 | 6.220692 |
| II            | 1e-5          | 64 - 32       | MSE              | 0.067334       | 0.322087        | 0.606145       | 5.052895 | 7.252613 |
| 11            | 1e-4          | 32 - 16       | MSE              | 0.686798       | 0.362448        | 0.566761       | 3.598495 | 6.071322 |
| II            | 1e-4          | 32 - 16       | MAE              | 0.681565       | 0.653679        | 0.996174       | 3.846475 | 6.805394 |

In your opinion, what is the best model?

All together + extensive set of experiments

| Bias                      | Pre-trained | Α       | В       | С       |
|---------------------------|-------------|---------|---------|---------|
| Age bias (Ba)             | 8,98889     | 7,34068 | 5,69922 | 4,44693 |
| Gender bias (Bg)          | 0,62800     | 1,12575 | 0,12704 | 0,13599 |
| Ethnicity bias (Be)       | 2,44751     | 1,73011 | 0,33787 | 0,67792 |
| Face Expression bias (Bf) | 0,81969     | 0,43297 | 0,66389 | 1,14408 |

Best vs. Worst results

| Model | Learning<br>rate | Training<br>strategy | Gender<br>bias | Expression bias | Ethnicity<br>bias | Age bias | MAE      |
|-------|------------------|----------------------|----------------|-----------------|-------------------|----------|----------|
| X     | 1e-5             | 2                    | 0.509502       | 1.384053        | 1.063591          | 8.491639 | 7.507680 |
| Y     | 1e-5             | 2                    | 0.105597       | 0.259403        | 1.198257          | 3.414286 | 5.458959 |
| Z     | 1e-4             | 2                    | 0.293883       | 0.436619        | 0.855126          | 4.192811 | 6.455369 |
| L     | 1e-5             | 2                    | 0.590356       | 0.446444        | 0.692233          | 6.787660 | 5.285532 |

#### Additional information **could** support the analysis.

|   | Model | Learning rate | Data augmentation | Regularizers | Dropout | Train all layers |
|---|-------|---------------|-------------------|--------------|---------|------------------|
|   | 1     | 1e-5          | No                | No           | No      | No               |
| Ī | 2     | 1e-5          | Yes               | No           | No      | No               |
| Ī | 3     | 1e-4          | Yes               | Yes          | Yes     | No               |
|   | 4     | 1e-5          | Yes               | Yes          | Yes     | Yes              |

| Method                                                      | MAE         | Age bias          | Gender Bias | Ethnicity Blas                          | Face expression bias |
|-------------------------------------------------------------|-------------|-------------------|-------------|-----------------------------------------|----------------------|
| Connected methods small dataset: flip, blur and translation | 16.40483976 | 4.374016125996907 | 0.35525894  | 0.8886521657307943                      | 0.664334774017334    |
|                                                             | **********  |                   |             | * ************************************* |                      |

| Method                                                                | MAE         | Age bias           | Gender Bias | Ethnicity Bias     | Face expression bias |
|-----------------------------------------------------------------------|-------------|--------------------|-------------|--------------------|----------------------|
| Basic whole dataset model (4k observations) with no data augmentation | 13.77970156 | 4.298641204833984  | 0.1668024   | 0.5610771179199219 | 1.2939891815185547   |
| Totally augumented dataset (4k)                                       | 13.54146676 | 6.9638926188151045 | 0.42714214  | 0.5652459462483724 | 0.6126677195231119   |
| "Half-augmented" model (2k real photos+ 2k augmented)                 | 13.59614196 | 6.295828501383464  | 0.5167999   | 1.237823486328125  | 1.2830932935078938   |
| Basik 2k model with no augumented data                                | 15.35284666 | 5.085680643717448  | 0.47130203  | 1.5034319559733074 | 1.035815715789795    |



Low resolution in the report



Do not show an image (or table) if you are not going to **discuss it in the text!** 

"As it can be seen in Figure x..."



#### Simple yet effective solutions

| Model | 1 <sup>st</sup> Stage | 2 <sup>nd</sup> Stage | Gender<br>bias | Expression bias | Ethnicity<br>bias | Age bias | MAE     |
|-------|-----------------------|-----------------------|----------------|-----------------|-------------------|----------|---------|
| M1    | No DA                 | No DA                 | 0.6280         | 0.8197          | 2.4475            | 8.9889   | 11.1413 |
| M2    | No DA                 | Small DA              | 0.5132         | 0.8045          | 1.3245            | 8.0390   | 9.8163  |
| МЗ    | Full DA               | Full DA               | 0.3442         | 0.3673          | 0.4700            | 2.2580   | 4.1436  |
| M4    | Full DA               | No DA                 | 0.1310         | 0.2225          | 0.0389            | 2.0707   | 4.2992  |
| M5    | Full DA               | No DA                 | 0.2550         | 0.0923          | 1.0313            | 2.0837   | 4.3221  |

Data augmentation when having less parameters to train (backbone is frozen)

#### Go deep to provide better explanations

|                  | Model 1 | Model 2 | Model 3 | Model 4 |                        |
|------------------|---------|---------|---------|---------|------------------------|
| Age Bias         | 9.51    | 6.43    | 7.47    | 2.52    |                        |
| Group 1 MAE      | 14.04   | 14.05   | 12.40   | 7.08    |                        |
| Group 2 MAE      | 19.18   | 9.24    | 5.94    | 5.29    | Should you go deeper?  |
| Group 3 MAE      | 23.00   | 14.54   | 10.97   | 7.39    |                        |
| Group 4 MAE      | 31.80   | 21.95   | 20.41   | 10.23   | Group n                |
| Gender Bias      | 1.33    | 0.16    | 0.16    | 0.29    | Oloup II               |
| Female MAE       | 20.73   | 12.23   | 9.33    | 6.62    | Famala Mala            |
| Male MAE         | 19.40   | 12.39   | 9.50    | 6.32    | Female Male            |
| Ethnicity Bias   | 3.25    | 1.53    | 0.76    | 0.09    |                        |
| Asian MAE        | 15.65   | 10.21   | 8.36    | 6.52    | •                      |
| Afroamerican MAE | 15.81   | 10.52   | 8.90    | 6.38    | Asian Afro-Am Cauc     |
| Caucasian MAE    | 20.54   | 12.51   | 9.51    | 6.47    | $\sim$                 |
| Expression Bias  | 1.86    | 0.34    | 1.09    | 0.48    |                        |
| Happy MAE        | 20.84   | 12.56   | 9.56    | 6.67    |                        |
| S. Happy MAE     | 20.88   | 12.11   | 9.17    | 6.66    | Happy S. Happy Neutral |
| Neutral MAE      | 19.38   | 12.18   | 9.16    | 6.21    | παρρή Ο. παρρή πεαιταί |
| Other MAE        | 17.65   | 12.66   | 11.23   | 5.96    |                        |

It is up to you. But why not?

#### Important parameters need to be discussed

| Strategy         | Age          | Factor |
|------------------|--------------|--------|
| By age intervals | (40,60)      | 0.8    |
|                  |              |        |
| By age metadata  | Metadata     | Factor |
|                  | Other        | 0.8    |
|                  | Asian        | 0.7    |
|                  | Afroamerican | 1      |
|                  |              |        |
| By Subsets       | Age Interval | Factor |
| Asian            | (0,20)       | 0.9    |
| Asian            | (40,100)     | 0.9    |
| Afroamerican     | (0,100)      | 1      |
| Caucasian        | (10,20)      | 0.2    |
| Caucasian        | (60,100)     | 0.2    |
|                  |              |        |

#### Ex:

 parameters were empirically defined based on data distribution;



Graphical illustration of the proposed model



In your opinion, what else could be done here to increase variability?



+ random (horizontal) flip would increase variability

Data augmentation 1:

30000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3000 - 3

Metadata distribution

Data augmentation 2:



What do you "miss" here?

Original distribution  $\rightarrow$ 



Data augmentation 1:



Data augmentation 2:



#### You have limited space

```
mae: 0.0762 - val loss: 0.1937 - val mae: 0.0955
Epoch 6/50
255/255 [============= ] - 17s 68ms/step - loss: 0.1882
- mae: 0.0719 - val loss: 0.1936 - val mae: 0.0941
Epoch 7/50
255/255 [============= ] - 17s 68ms/step - loss: 0.1875
- mae: 0.0690 - val loss: 0.1934 - val mae: 0.0936
Epoch 8/50
255/255 [============ ] - 15s 60ms/step - loss: 0.1866
- mae: 0.0642 - val loss: 0.1936 - val mae: 0.0942
Epoch 9/50
- mae: 0.0609 - val loss: 0.1941 - val mae: 0.0954
Epoch 10/50
- mae: 0.0567 - val loss: 0.1932 - val mae: 0.0931
Epoch 11/50
- mae: 0.0551 - val loss: 0.1935 - val mae: 0.0938
Epoch 12/50
255/255 [============= ] - 16s 61ms/step - loss: 0.1842
- mae: 0.0520 - val loss: 0.1942 - val mae: 0.0961
Epoch 13/50
- mae: 0.0488 - val loss: 0.1942 - val mae: 0.0956
Epoch 14/50
- mae: 0.0474 - val loss: 0.1946 - val mae: 0.0964
Epoch 15/50
- mae: 0.0460 - val loss: 0.1938 - val mae: 0.0949
Epoch 15: early stopping
```

# **Avoid** showing training history in the report document.

- Not attractive
- Use of space

#### Unexpected transformations for the problem at hand



original



vertical flip



wide angle rotation

### Divide to conquer

#### Attribute-based analysis

|                      | Baseline | Shearing &<br>Cropping | Illumination<br>Changes | Horizontal<br>Flip | Blur  | Translation | Rotation |
|----------------------|----------|------------------------|-------------------------|--------------------|-------|-------------|----------|
| Age Bias             | 8.99     | 7.20                   | 6.19                    | 8.13               | 7.84  | 8.50        | 7.10     |
| Gender Bias          | 0.63     | 0.61                   | 0.33                    | 0.34               | 0.44  | 0.98        | 0.40     |
| Ethnicity Bias       | 2.45     | 0.84                   | 1.00                    | 0.98               | 1.09  | 1.40        | 0.74     |
| Face Expression Bias | 0.82     | 0.39                   | 0.41                    | 0.34               | 0.30  | 0.41        | 0.33     |
| Test MAE             | 11.14    | 10.33                  | 10.04                   | 10.36              | 10.33 | 14.10       | 10.47    |





|                      | Age Analysis |         |         |         |       | Gender Analysis |  |  |
|----------------------|--------------|---------|---------|---------|-------|-----------------|--|--|
|                      | Group 1      | Group 2 | Group 3 | Group 4 | Male  | Female          |  |  |
| Baseline             | 11.29        | 8.09    | 12.66   | 25.62   | 10.84 | 11.47           |  |  |
| Shearing & Cropping  | 11.09        | 7.58    | 11.44   | 22.71   | 10.04 | 10.65           |  |  |
| Illumination Changes | 11.24        | 7.76    | 10.50   | 20.08   | 9.84  | 10.25           |  |  |
| Horizontal Flip      | 9.79         | 7.65    | 12.47   | 23.02   | 10.19 | 10.53           |  |  |
| Blur                 | 11.84        | 7.44    | 11.03   | 22.86   | 10.12 | 10.56           |  |  |
| Translation          | 12.39        | 11.53   | 16.78   | 27.07   | 13.63 | 14.60           |  |  |
| Rotation             | 10.72        | 7.95    | 11.93   | 21.75   | 10.28 | 10.68           |  |  |

#### We cannot fine-tune our model using the Test set



#### Very interesting finding

• "We had a model with an <u>age bias</u> of 4.88 (almost half of the baseline) but a <u>Test MAE</u> of 17.76 (MAE baseline = 11.14) which showed us that we can decrease the age bias by predicting the age equally bad for each subgroup."

What could be a possible limitation (or weak point), taking into account our average ranking metric?

#### Be curious and investigate any possible source of problem



- Unusual behavior (left)
- Trained for very few epochs (inconclusive).
- Both models were still learning.

#### Revisit Task 2 & the optional exercise

- Task 2
  - CUSTOM LOSS
  - WITHOUT data augmentation
  - Which give you better results, data augmentation or custom loss?
    - Baseline (starting-kit) vs. Task 1 vs. Task 2

Do not wait for the last week to start playing with Task 2

- Optional exercise
  - Exploit your creativity as much as you can
  - Which give you better results, data augmentation or custom loss or all together?
    - Baseline (starting-kit) vs. Task 1 vs. Task 2 vs. "Task 3"

#### **Deadlines:**

- Task 2: Apr-1st Apr-3rd
- **Optional:** Apr-10

