Adaptive Time Stepping

Luke Sellmayer

APPM 4610

April 29, 2024

Why Vary Step Size?

- By making the step size as small as possible, we reduce local truncation error (and therefore global error)
- But, smaller step size means more mesh points, meaning more computational work
- By varying the step size, we can minimize the number of mesh points used while keeping the local truncation in check
- I.e. how can we get the most bang for our buck?

Variable Step Size for One Step Taylor Methods

$$w_0 = \alpha$$

$$w_{i+1} = w_i + h\phi(t_i, w_i, h)$$

Local Truncation Error (LTE)

$$\tau_{i+1}(h) = \frac{y(t_{i+1}) - y(t_i)}{h} - \phi(t_i, y_i, h)$$

- Ideally, we'd have $|\tau_{i+1}(h)| < \epsilon$ at each mesh point
- But, we don't know the exact solution y(t)
- How can we approximate $\tau_{i+1}(h)$?
- Solution: use two separate Taylor methods of different orders

Approximating LTE

nth order Taylor method

$$w_0 = \alpha$$

$$w_{i+1} = w_i + h\phi(t_i, w_i, h)$$

$$\tau_{i+1}(h) = O(h^n)$$

$$\approx \frac{1}{h} (y(t_{i+1}) - w_{i+1})$$

$$(n+1)$$
th order Taylor method

$$\widetilde{w}_0 = \alpha$$

$$\widetilde{w}_{i+1} = \widetilde{w}_i + h\widetilde{\phi}(t_i, \widetilde{w}_i, h)$$

$$\tilde{\tau}_{i+1}(h) = O(h^{n+1})$$

$$\approx \frac{1}{h}(y(t_{i+1}) - \widetilde{w}_{i+1})$$

Approximating LTE

nth order Taylor method

$$\tau_{i+1}(h) = \frac{1}{h} (y(t_{i+1}) - w_{i+1})$$

$$= \frac{1}{h} (y(t_{i+1}) - \widetilde{w}_{i+1} + \widetilde{w}_{i+1} - w_{i+1})$$

$$= \widetilde{\tau}_{i+1}(h) + \frac{1}{h} (\widetilde{w}_{i+1} - w_{i+1})$$
*

$$\Rightarrow \tau_{i+1} (h) \approx \frac{1}{h} (\widetilde{w}_{i+1} - w_{i+1})$$

 $\frac{(n+1)\text{th order Taylor method}}{\tilde{\tau}_{i+1}(h) = \frac{1}{h}(y(t_{i+1}) - \tilde{w}_{i+1})}$

*since
$$\tilde{\tau}_{i+1}(h) = O(h^{n+1})$$
 while $\tau_{i+1}(h) = O(h^n)$

- Given previous step size h_i , construct $h_{i+1} = qh_i$
- Goal: determine q such that:

$$|\tau_{i+1}(h_{i+1})| = |\tau_{i+1}(qh_i)| \le \epsilon$$

$$= |C(qh_i)^n| \le \epsilon$$

$$= |q^n(Ch_i^n)| \le \epsilon$$

$$\approx |q^n\tau_{i+1}(h_i)| \le \epsilon$$

*assuming $\tau_{i+1}(h) = Ch^n$ since $\tau_{i+1}(h) = O(h^n)$

$$|\tau_{i+1}(h_{i+1})| \approx |q^n \tau_{i+1}(h_i)| \le \epsilon$$

$$\approx \left| q^n \frac{\widetilde{w}_{i+1} - w_{i+1}}{h} \right| \le \epsilon$$

$$|\tau_{i+1}(h_{i+1})| \approx \left| q^n \frac{\widetilde{w}_{i+1} - w_{i+1}}{h} \right| \le \epsilon$$

So, we choose q such that*

$$q \le \left(\frac{\epsilon h_i}{|\widetilde{w}_{i+1} - w_{i+1}|}\right)^{\frac{1}{n}}$$

$$q \le \left(\frac{\epsilon h_i}{|\widetilde{w}_{i+1} - w_{i+1}|}\right)^{\frac{1}{n}}$$

In summary:

- Use nth and (n+1)th order Taylor methods to create w_{i+1} and \widetilde{w}_{i+1} (respectively) using h_i
- Choose a desired tolerance ϵ
- Recalculate w_{i+1} with the nth order Taylor method, this time using $h_{i+1}=qh_i$

$$1 \le t \le 2$$

$$y' = t + y$$

$$y(1) = 1$$

Exact solution: $y = 3e^{t-1} - t - 1$

$$\epsilon = 0.1$$
$$h_0 = 0.1$$

 $\epsilon = 0.001$ $h_0 = 0.1$

 $\epsilon = 0.001$ $h_0 = 0.001$

Independent Extension: The DASSL Algorithm

Overview

The **D**ifferential / **A**lgebraic **S**ystem **S**o**L**ver (DASSL) approximates solutions to implicit systems of differential/algebraic equations of the form

$$\vec{F}(t, \vec{y}, \vec{y}') = \vec{0}$$

$$\vec{y}(t_0) = \vec{y}_0$$

$$\vec{y}'(t_0) = \vec{y}'_0$$

$$t_0 \le t \le t_f$$

Why?

• May not be able to explicitly solve for $\vec{y}' = f(t, \vec{y})$, or may be impractical to do so

Overview

$$\vec{F}(t, \vec{y}, \vec{y}') = \vec{0}$$

$$\vec{y}(t_0) = \vec{y}_0$$

$$\vec{y}'(t_0) = \vec{y}'_0$$

$$t_0 \le t \le t_f$$

What's with the initial conditions?

• DASSL allows input of partial data for $\vec{y}'(t_0)$ if you have it, but it is not needed

Basic Algorithm Outline

- 1) Choose a step size h_j and order k_j
- 2) Create an initial guess for $\vec{w}^{(0)}_{j+1}$ using $\{t_0,\cdots,t_j\}$ and $\{\vec{w}_0,\cdots,\vec{w}_j\}$
 - 1) Done by evaluating the *predictor* polynomial, $\vec{\omega}_{j+1}^P(t)$, that interpolates the nodes $\left\{ \left(t_{j-k_j-1}, \vec{w}_{j-k_j-1} \right), \cdots, \left(t_j, \vec{w}_j \right) \right\}$ at $t = t_{j+1}$ 1) $\vec{w}^{(0)}_{j+1} = \vec{\omega}_{j+1}^P(t_{j+1})$
- 3) Improve the initial guess using Newton's method
 - 1) Run Newton's method on $\vec{F}\left(t_{j+1}, \vec{w}_{j+1}, \alpha \vec{w}_{j+1} + \vec{\beta}\right)$ with initial guess $\vec{w}^{(0)}_{j+1}$ to obtain the final approximation
- 4) Adjust h_j and k_j so that the final approximation \overrightarrow{w}_{j+1} satisfies error bounds

Basic Algorithm Outline

Steps 1) and 4): choosing/adjust h_j and k_j

- \vec{w}_{i+1} needs to satisfy both:
 - LTE bounds
 - Interpolating polynomial $\left(\overrightarrow{\omega}_{j+1}^{I}(t) \right)$ error bounds

•
$$\vec{\omega}_{j+1}^{I}(t) = \vec{w}_{j+1} + (t - t_{j+1})[\vec{w}_{j+1}, \vec{w}_{j}] + (t - t_{j+1})(t - t_{j})[\vec{w}_{j+1}, \vec{w}_{j}, \vec{w}_{j-1}] + \cdots + (t - t_{j+1})(t - t_{j}) \cdots (t - t_{j-k_{j}+2})[\vec{w}_{j+1}, \vec{w}_{j}, \cdots \vec{w}_{j-k_{j}+1}]$$

- General adjustments:
 - Increase k_i and h_i for the first few iterations
 - Decrease h_j after an iteration fails
 - Continue to decrease k_i and h_i after multiple iteration failures.
 - After any successful iteration, increase k_j and h_j

Basic Algorithm Outline

Step 2): creating $\vec{w}^{(0)}_{j+1}$

• Also constructed using Newton divided differences

Step 3) Running Newton's method

- Instead of running the method on $\vec{F}(t_{j+1}, \vec{w}_{j+1}, \vec{w}'_{j+1})$, we approximate \vec{w}'_{j+1} as $\alpha \vec{w}_{j+1} + \vec{\beta}$
- α and $\vec{\beta}$ chosen according to order k_j , which approximate \vec{w}'_{j+1} using the k_j th order backwards differentiation formula
 - ullet e.g for $k_i=1$, we get the backward Euler method
 - $\overrightarrow{w}_{j+1} \overrightarrow{w}_j = h_j \overrightarrow{w}'_{j+1}$

Some Disappointing Results:(

What's Going Wrong?

Elements that definitely work

- Newton's method implementation
- Creating the interpolating polynomials
- Creating initial guesses
- Adjusting k_j and h_j based on errors

Elements that probably don't work

- Finding the LTE
- Finding the interpolation error

References

- [1] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, 14, SIAM, 1996.
- [2] Richard L. Burden, J. Douglas Faires, and Annette M. Burden, Numerical analysis, tenth edition, Cengage Learning, 2014.
- [3] Fred T. Krogh, Recurrence relations for computing with modified divided differences, Mathematics of Computation 33 (1979), no. 148, 1265–1271.
- [4] Linda Petzold, A description of dassl: A differential/algebraic system solver, 01 1982.