实验二 模型机组合部件的实现(一)(实验报告格式案例)

班级 <u>信安 2101</u> 姓名 <u>杨华</u> 学号<u>202108060121</u>

一、实验目的

- 1. 了解简易模型机的内部结构和工作原理。
- 2. 熟悉译码器、运算器的工作原理。
- 3. 分析模型机的功能,设计指令译码器。
- 4. 分析模型机的功能,设计 ALU。

二、实验内容

- 1. 用 VERILOG 语言设计指令译码器;
- 2. 用 VERILOG 语言设计 ALU。

三、实验过程

1、指今译码器

A)创建工程(选择的芯片为 family=Cyclone II; name=EP2C5T144C8) 左上角 file->New Project Wizard->选择工程位置和工程名->选择芯片 Cyclone II, available device 中选择 EP2C5T144C8->点击 next->最后点击 finish 完成创建工程 B) 编写源代码

```
ins_decode.v
             module ins_decode(
---
              input en,
input [7:0] ir,
ďά
              output reg mova,movb,movc,add,sub,andl,notl,rsr,rsl,jmp,jz,jc,inl,outl,nop,halt);
parameter yes=1'bl,no=1'b0;
Ĉ.¦<sub>B</sub>
             ■always @(*) begin
{}
                    {mova, movb, movc, add, sub, andl, notl, rsr, rsl, jmp, jz, jc, inl, outl, nop, halt} = no;
ŧ
賃
             case (ir[7:41)
             1
        11
                                if(ir[3:2]==2'bll) movb=en&yes;
                                 else if(ir[1:0]==2'bll) movc=en&yes;
        12
%
        13
                                else mova=en&yes;
%
        14
×
             4'b1001 : begin
        16
                                add=en&yes;
0
                            4'b0110 : begin
        18
             \overline{Z}
        19
                                sub=en&yes;
20
             в
                            4'b1011 : begin
        21
267
268
                                andl=en&yes
        23
ab/
                            4'b0101 : begin
25
                                notl=en&yes;
        26
.....
                            4'h1010 : hegin
             =
=
                                if(ir[1:0]==2'b00) rsr=en&yes;
        28
        29
                                 else if(ir[1:0]==2'b11) rsl=en&yes;
2
                                //else begin end
        30
                            4'b0011 : begin
            32
                                 if(ir[3:0]==4'b0000) jmp=en&yes;
                                else if(ir[3:0]==4'b0001) jz=en&yes;
else if(ir[3:0]==4'b0010) jc=en&yes;
        34
        35
        36
                                 //else begin end
        38
                            4'b0010 : begin
        39
                                inl=en&yes;
                            4'b0100 : begin
        41
            42
                                outl=en&yes;
        43
                            end
            4'b0111 : begin
        44
        45
                                 if(ir[3:0]==4'b0000) nop=en&yes;
        46
                                //else begin end;
                            4'b1000 : begin
        48
            if(ir[3:0]==4'b0000) halt=en&yes;
        50
                                //else begin end;
        51
        52
                            default: begin end
        53
                        endcase
                   end
              end
        55
```

C) 编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗)错误与警告信息:

```
Type / Message

Info: Longest tpd from source pin "ir[4]" to destination pin "jc" is 15.847 ns

Info: Quartus II Classic Timing Analyzer was successful. 0 errors, 0 warnings

Info: Quartus II Full Compilation was successful. 0 errors, 4 warnings

Warning: Feature LogicLock is not available with your current license

Warning: No exact pin location assignment(s) for 25 pins of 25 total pins

Warning: Found 16 output pins without output pin load capacitance assignment

Warning: The Reserve All Unused Pins setting has not been specified, and will default to 'As output driving ground'.

✓
```

资源消耗:

```
Flow Status
                                   Successful - Tue Nov 22 15:29:31 2022
Quartus II Version
                                   9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Revision Name
                                   ins_decode
Top-level Entity Name
                                   ins_decode
Family
                                   Cyclone II
Device
                                   EP2C5T144C8
Timing Models
                                   Final
Met timing requirements
                                   Yes
                                   30 / 4,608 ( < 1 % )
Total logic elements
   Total combinational functions 30 / 4,608 ( < 1 % )
   Dedicated logic registers
                                   0 / 4,608 (0%)
Total registers
                                   0
                                   25 / 89 ( 28 % )
Total pins
Total virtual pins
                                   0 / 119,808 ( 0 % )
Total memory bits
Embedded Multiplier 9-bit elements 0 / 26 ( 0 % )
Total PLLs
                                   0/2(0%)
```

D) RTL 视图

视图分析及结论:

分析:由视图分析可知,左侧为输入,右侧为输出。其中连接有一系列的元器件。比如比较器: 当输入相等时输出 1,不相等时输出 0;还有大部分的 2-1 选择器构成,当控制信号为 0 时,输出第一位,控制信号为 1 时,输出第二位。图中输入信号为 ir 和 en,输出信号包 括 add 等 16 种情况。各个输出端口之间通过导线相连。

结论: 电路结构比较复杂, 最后的输出往往要经过多重门

E)功能仿真波形

结果分析及结论:

结果分析: 功能仿真也被称作 RTL 级行为仿真,前仿真,目的是分析设计电路逻辑关系的 正确性。功能仿真不带有任何的门延时、线延时等等,只是理想情况下的仿真。

当 en 为 0 时, 无论 ir 为何值时, 16 个输出全为 0.

当 en 为 1 时,

ir=11000000 时, mova 输出为 1

ir=11001100 时, movb 输出为 1

ir=11000111 时, movc 输出为 1

ir=10011001 时, add 输出为 1

ir=01100100 时, sub 输出为 1

ir=10110100时, and1 输出为 1

ir=01010010时, not1输出为1

ir=10100100时, rsr 输出为 1

ir=10100111 时, rsl 输出为 1

ir=00110001 时, jz 输出为 1

ir=00110010 时, jc 输出为 1

ir=00100111 时, in1 输出为 1

ir=01001101 时, out1 输出为 1

ir=01110000 时, nop 输出为 1

ir=00000001 时, halt 输出为 1

结论:

功能仿真操作简单,仿真速度快,但是功能仿真仅仅关注输出和输入的逻辑关系是否正确,不考虑时间延时信息,与实际情况可能会有一定误差。仿真结果与电路设计的真值表的结果相对应。

F) 时序仿真波形

结果分析及结论:

分析:时序仿真是在布线后进行,了解实现的功能是否满足真实器件运行的要求,与特定的器件有关。时序仿真输入改变后,输出并未立刻改变,而是出现了延迟。同时由于输入电路的改变,有可能会出现冒险,使得输入结果与实际输出结果有所不同。

结论: 时序仿真不仅关注输出和输入的逻辑关系是否正确, 同时还计算了时间延时信息。

G) 时序分析

操作方法是:编译后,在compilation report 中选择【timing analysis】-【summary】和【tpd】

Ti	iming Analyzer Summary									
	Туре	Slack	Required Time	Actual Time	From	To	From Clock	To Clock	Failed Paths	
1	Worst-case tpd	N/A	None	15.847 ns		jc			0	
2	Total number of failed paths								0	

A						
tpd	Slack	Required	Actual P2P	From	То	
1	N/A	P2P Time None	15.847 ns	ir[4]	jc	
2	N/A N/A	None	15.785 ns 15.700 ns	ir[4]	move	
4	N/A N/A	None	15.700 ns 15.615 ns	ir[6] ir[4]	halt	
5	N/A	None	15.583 ns	ir[6]	je	
6 7	N/A N/A	None	15.480 ns 15.440 ns	ir[5] ir[4]	nove	
8	N/A	None	15.433 ns	ir[6]	halt	
9 10	N/A N/A	None None	15.419 ns 15.360 ns	ir[5] ir[4]	jc jmp	
11	N/A	None	15.320 ns	ir[5]	halt	
12 13	N/A N/A	None	15.272 ns 15.209 ns	ir[6] ir[4]	rsl	
14	N/A	None	15.096 ns	ir[6]	jmp	
15 16	N/A N/A	None	15.050 ns 15.038 ns	ir[4] ir[6]	rsl	
17	N/A	None	15.009 ns	ir[5]	nop	
18 19	N/A N/A	None	14.984 ns 14.965 ns	ir[4] ir[6]	jz movb	
20	N/A	None	14.932 ns	ir[5]	jmp	
21 22	N/A N/A	None None	14.900 ns 14.834 ns	ir[5] ir[1]	rsl	
23	N/A	None	14.745 ns	ir[5]	movb	
24 25	N/A N/A	None	14.742 ns 14.720 ns	ir[4] ir[6]	rsr	
26	N/A	None	14.571 ns	ir[6]	rsr	
27 28	N/A N/A	None None	14.556 ns 14.433 ns	ir[5] ir[5]	rsr	
29	N/A	None	14.392 ns	en	jc	
30 31	N/A N/A	None	14.373 ns 14.288 ns	ir[4] ir[6]	mova mova	
32	N/A	None	14.281 ns	en	halt	
33 34	N/A N/A	None	14.236 ns 14.229 ns	ir[4] ir[4]	not1 out1	
35	N/A	None	14.152 ns	ir[6]	out1	
36 37	N/A N/A	None None	14.109 ns 14.084 ns	ir[4] ir[6]	in1 not1	
38	N/A	None	14.068 ns	ir[5]	mova	
39 40	N/A N/A	None	13.995 ns 13.948 ns	en en	nop	
41	N/A	None	13.927 ns	ir[6]	in1	
42 43	N/A N/A	None None	13.909 ns 13.884 ns	en ir[5]	jmp out1	
41 42	N/A N/A	None	13.927 ns 13.909 ns	ir[6]	in1	
43	N/A	None None	13.884 ns	en ir[5]	imp out1	
44 45	N/A	None	13.855 ns	ir[4]	sub	
46	N/A N/A	None None	13.803 ns 13.778 ns	ir[5] ir[6]	not1 sub	
47 48	N/A	None	13.777 ns 13.765 ns	ir[1]	je :1	
49	N/A N/A	None None	13.765 ns	ir[5] en	in1 movb	
50 51	N/A N/A	None	13.733 ns 13.587 ns	ir[1]	rsl halt	
52	N/A	None	13.520 ns	ir[1] en	jz	
53 54	N/A N/A	None None	13.502 ns 13.502 ns	ir[4]	and1 sub	
55	N/A	None	13.497 ns	ir[5] en	rsi	
56 57	N/A N/A	None	13.384 ns 13.254 ns	ir[1] ir[1]	mova nop	
58	N/A	None	13.227 ns	ir[6]	and1	
59 60	N/A N/A	None None	13.214 ns 13.185 ns	ir[1] en	jmp not1	
61	N/A	None	13.168 ns	ir[1]	rsr	
62 63	N/A N/A	None None	13.138 ns 13.114 ns	en ir[5]	in1 and1	
64	N/A	None	13.062 ns	ir[4]	add	
65 66	N/A N/A	None	13.027 ns 12.835 ns	en ir[1]	rsr jz	
67	N/A	None	12.806 ns	ir[6]	add	
65 66	N/A N/A	None	13.027 ns 12.835 ns	en ir[1]	is	
67	N/A	None	12.806 ns	ir[6]	add	
68	N/A N/A	None	12.679 ns 12.548 ns	ir[5] en	add mova	
70	N/A	None	12.481 ns	en	and1	
71 72	N/A N/A	None None	12.468 ns 12.460 ns	en en	out1 sub	
73	N/A	None	12.057 ns	en	add	
74 75	N/A N/A	None	11.031 ns 10.980 ns	ir[7] ir[7]	jc	
76	N/A	None	10.874 ns	ir[7]	halt	
77 78	N/A N/A	None None	10.555 ns 10.493 ns	ir[7] ir[7]	imp	
79	N/A	None	10.478 ns	ir[7]	rsl	
80 81	N/A N/A	None	10.450 ns 10.296 ns	ir[2] ir[7]	move	
82 83	N/A N/A	None None	10.117 ns 10.041 ns	ir[7]	jz	
84	N/A	None	10.011 ns	ir[3] ir[7]	rsr	
85 86	N/A N/A	None None	9.930 ns 9.653 ns	ir[0]	move	
87	N/A	None	9.619 ns	ir[2] ir[7]	jc mova	
88 89	N/A N/A	None	9.542 ns 9.438 ns	ir[2]	halt out1	
90	N/A	None None	9.373 ns	ir[7] ir[7]	out1 not1	
91 92	N/A N/A	None None	9.326 ns 9.318 ns	ir[7] ir[3]	in1 jc	
93	N/A	None	9.209 ns	ir[2]	nop	
94 95	N/A N/A	None None	9.207 ns 9.170 ns	ir[3]	halt	
96	N/A	None	9.124 ns	ir[2] ir[0]	rsl	
97 98	N/A N/A	None	9.106 ns 9.060 ns	ir[2]	movb	
99	N/A N/A	None None	9.042 ns	ir[7] ir[2]	sub mova	
100	N/A N/A	None	8.922 ns 8.874 ns	ir[0]	jc	
101 102	N/A N/A	None None	8.835 ns	ir[3]	imp	
103 104	N/A N/A	None	8.804 ns 8.781 ns	ir[0]	halt	
104	N/A N/A	None	8.781 ns 8.694 ns	ir[2] ir[3]	jz movb	
106	N/A	None	8.665 ns	ir[7]	and1	
107 108	N/A N/A	None None	8.633 ns 8.540 ns	ir[3] ir[0]	rsr	
109	N/A	None	8.480 ns	ir[0]	mova	
110 111	N/A N/A	None	8.477 ns 8.446 ns	ir[0]	nop jz	
112	N/A	None	8.431 ns	ir[0]	jmp	
113 114	N/A N/A	None None	8.248 ns 8.050 ns	ir[7] ir[0]	add jz	
				-		

结果分析及结论:由图可得,Timing Analyzer Summmary 总结所有经典定时分析的结果,并报告每个定时特性的最坏情况定时。

结论:实际连接图中个元器件连接之间是存在时间延迟的,而且不同的元器件之间的时间延迟也不相同。

2、算术逻辑单元 ALU

A)创建工程(选择的芯片为 family=FLEX10K; name=EPF10K20TI144-4) 步骤:

左上角 file->New Project Wizard->选择工程位置和工程名->选择芯片 FLEX10K, available device 中选择 EPF10K20TI144-4->点击 next->最后点击 finish 完成创建工程

B)编写源代码

```
module simple(m,s,a,b,t,cf,zf);
 input [7:0] a;
 input [7:0] b;
 input [3:0] s;
 input m;
 output [7:0] t;
 output cf,zf;
 reg cf,zf;
 reg [7:0] t;
 always@(m,s,a,b)
■begin
 t=8'b0;
 cf=1'b0;
 zf=1'b0;
 if (m==1)
■begin
 if(s==4'b1001)
■begin
 {cf,t}=a+b;
 if(t==0)
 zf=1'b1;
 else
 zf=0;
 end
 else if(s==4'b0110)
begin
 {cf,t}=a-b;
 if(t==0)
 zf=1'b1;
 else
 zf=0;
 end
 else if(s==4'b1011)
 t=a&b;
 else if(s==4'b0101)
 t=~b;
 else if(s==4'b1010||s==4'b0100)
 t=b;
 else
 t=a;
 end
 else t=a;
 endmodule
```

C) 编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗) 警告信息

资源消耗:

| Flow Status | Successful = Tue Nov 22 20:37:14 2022 | Quartus II Version | 9.0 Build 184 04/29/2009 SP 1 SJ Web Edition

Revision Name simple
Top-level Entity Name simple
Family FLEX10K
Device EPF10K20TC144-4

Timing Models Final
Met timing requirements Yes

Total logic elements 76 / 1,152 (7 %)
Total pins 31 / 102 (30 %)
Total memory bits 0 / 12,288 (0 %)

D) RTL 视图

结果分析及结论:

结果分析:

由视图分析可知,左侧为输入,右侧为输出。其中连接有一系列的元器件。比如比较器: 当

输入相等时输出 1,不相等时输出 0;还有大部分的 2-1 选择器构成,当控制信号为 0 时,输出第一位,控制信号为 1 时,输出第二位。 结论:

一个功能实现需要经过多重门的处理,而且每个元件内部结构十分复杂

E) 功能仿真波形

_/	- / / [,,,	120000										
		v Value D ps		10	0.0 ns	20. 0 ns 30. 0		0 ns 40.		0 ns 50.			
	None	9.28		9.275	ns								
		_						_					
■ 0		В										\neg	
m≥ 1	∓ s	B 10	10	001) O1	110	0101	1010	1100	0100	1011	\rightarrow	
₽ 6	# a	B 1000	1000	01111	00101100	10001110	11001001	00110000	11000	101	00101110	\rightarrow	
1 5 €	ж Ъ	B 0111	00110101	01110001	10001101	10001110	01001001	11000000	01010	011	01101100	\longrightarrow	
	± t	B 000C	11000100	11000100 00000000 10011111		00000000	10110110	00110000 11000101		00101100	\rightarrow		
	of	В											
ഈ 34	zf	В											

结果分析及结论:

当m为1时:

```
s{=}1001, \;\; a{=}1000111, \;\; b{=}00110101, \;\; t{=}11000100, \;\; cf{=}0, \;\; zf{=}0;
```

$$s{=}1001, \ a{=}1000111, \ b{=}11000100, \ t{=}00000000, \ cf{=}1, \ zf{=}1;$$

$$s{=}0110,\ a{=}00101100,\ b{=}10001110,\ t{=}11000100,\ cf{=}0,\ zf{=}0;$$

 $s{=}1011, \quad a{=}00101110, \quad b{=}01101100, \quad t{=}00101100, \quad cf{=}0, \quad zf{=}0;$

当m为0时:

```
s=0101, a=11001001, b=01001001, t=10110110, cf=0, zf=0;
```

s=1100, a=11000101, b=01010011, t=01010011, cf=0, zf=0;

s=0100, a=11000101, b=01010011, t=01010011, cf=0, zf=0;

F) 时序仿真波形

结果分析及结论:

结果分析:时序仿真是在布线后进行,了解实现的功能是否满足真实器件运行的要求,与特定的器件有关。时序仿真输入改变后,输出并未立刻改变,而是出现了延迟。同时由于输入 电路的改变,有可能会出现冒险,使得输入结果与实际输出结果有所不同。

结论: 时序仿真不仅关注输出和输入的逻辑关系是否正确,同时还计算了时间延时信息。

G)时序分析

Ti	ming Analyzer Summary									
	Туре	Slack	Required Time	Actual Time	From	To	From Clock	To Clock	Failed Paths	
1	Worst-case tpd	N/A	None	30.600 ns	s[0]	t[O]			0	
2	Total number of failed paths								0	

	Slack	Required P2P Time	Actual P2P Time	From	То	
1	N/A	None	30.600 ns	s[0]s	f[0]	
2	N/A N/A	None None	30.200 ns 29.600 ns	s[0]	t[1] t[2]	
	N/A	None	29.200 ns	s[0]	t[4]	
5	N/A N/A	None None	29.200 ns 28.800 ns	s[0]s	t[3]	
	N/A	None	28.600 ns	b[2]	H 77]	
3	N/A N/A	None	28.600 ns 28.600 ns	s[0] b[2]	t[6]	
10	N/A	None	28.500 ns	a[1]	zi	
12	N/A N/A	None None	28.500 ns 28.500 ns	b[2] a[1]	zi t[7]	
13	N/A	None	28.500 ns	s[0]	t[5]	
14	N/A N/A	None None	28.500 ns 28.400 ns	a(1) b(2)	t[5]	
16	N/A	None	28.400 ns	a[0]	fOl	
17	N/A N/A	None None	28.300 ns 28.300 ns	a(1) b(0)	f(0)	
19	N/A	None	28.200 ns	b[3]	zí	
20	N/A N/A	None None	28.200 ns 28.200 ns	a(3)	년 년7]	
22	N/A	None	28.200 ns	a[3]	t[5]	
23	N/A N/A	None None	28.100 ns 28.100 ns	b(1)	# (7)	
%	N/A N/A	None	28.100 ns 28.100 ns	b[3]	t[7]	
26	N/A N/A	None None	28.100 ns 28.100 ns	b(3)	t[5]	
28	N/A N/A	None	28.100 ns	b[2]	t[4]	
29 30	N/A	None None	28.100 ns 28.100 ns	s[2] s[1]	4(0) 4(0)	
31	N/A N/A	None None	28.100 ns 28.000 ns	s[3]	f(0)	
33	N/A	None	28.000 ns	a(3) a(1)	t[4]	
34	N/A N/A	None None	27.900 ns 27.900 ns	b(1)	4(6)	
95 96	N/A	None	27.800 ns	b[3] b[2]	t[6]	
37 35	N/A N/A	None None	27.700 ns 27.900 ns	a(3)	t[4] t[6]	
36	N/A	None	27.800 ns	b[2]	t[2]	
37	N/A N/A	None None	27.700 ns 27.600 ns	a(3) b(1)	t[4] t[4]	
39	N/A	None	27.600 ns	b[3]	t[4]	
10	N/A N/A	None None	27.600 ns 27.500 ns	a(1)	t[2] t[1]	
12	N/A	None	27.400 ns	b[2]	1[3]	
13	N/A N/A	None None	27.300 ns	a(1) b(1)	t[3] t[2]	
15	N/A	None	27.200 ns	s[2]	(1)	
16	N/A N/A	None None	27.200 ns 27.100 ns	a[3] a[2]	t[1] zí	
18	N/A	None	27.100 ns	a[4]	ø	
19	N/A N/A	None None	27.100 ns 27.100 ns	a[2] a[2]	t[7] t[5]	
51	N/A	None	27.100 ns	a[3]	1[3]	
52 53	N/A N/A	None None	27.100 ns 27.000 ns	b(1) a(4)	t[1] t[7]	
54	N/A	None	27.000 ns 27.000 ns	a[4]	t[5]	
95 96	N/A N/A	None None	26.900 ns	b[3] b[4]	t[3]	
57 58	N/A N/A	None None	26.900 ns 26.900 ns	b(4) a(2)	t[7]	
39	N/A	None	26.900 ns	b[4]	ųεj ψ5]	
30 31	N/A N/A	None None	26.900 ns 26.800 ns	b[1] a[4]	f[6]	
32	N/A	None	26.700 ns	b[4]	f[6]	
33 34	N/A N/A	None None	26.700 ns 26.700 ns	b[5]	t[5]	
55	N/A	None	26.700 ns	a(5)	ų:ij ų:ij	
96 97	N/A N/A	None None	26.600 ns 26.600 ns	b(5)	zi zi	
88	N/A	None	26.600 ns	b(5)	t[7]	
70	N/A N/A	None None	26.600 ns 26.600 ns	a[5]	t[7]	
'n	N/A	None	26.600 ns	a[4]	t[4]	
2	N/A N/A	None None	26.600 ns 26.600 ns	s[2]	t[2]	
4	N/A	None	26.500 ns	a[7]	t[7]	
75	N/A N/A	None None	26.500 ns 26.400 ns	b[4] b[5]	t[4]	
77	N/A	None	26.400 ns	a[5]	t[6]	
18	N/A N/A	None None	26.300 ns 26.300 ns	a[7] a[2]	zí t[2]	
90	N/A	None	26.200 ns	a[0]	t[7]	
31	N/A N/A	None None	26.200 ns 26.200 ns	a[0]	t[5]	
33	N/A	None	26.200 na	s[3]	t[4]	
34	N/A N/A	None None	26.200 ns 26.200 ns	s[2] s[3]	f[3]	
36	N/A	None	26.100 ns	a[0]	zf	
37	N/A N/A	None None	26.100 ns 26.100 ns	b[7]	t[7] t[2]	
39	N/A N/A	None	26.000 ns	6[0]	ಶ	
90	N/A N/A	None None	26.000 ns 26.000 ns	P(0)	t[7] t[6]	
32	N/A N/A	None None	26.000 ns 25.900 ns	b[0]	t[5] zi	
90	N/A	None	25.900 ns	b[7] a[2]	([3]	
32	N/A	None	26.000 ns	b[0]	t[5]	
33	N/A N/A	None None	25.900 ns 25.900 ns	b[7] a[2]	f(3)	
95	N/A N/A	None None	25.800 ns 25.800 ns	b[6]	zí t[7]	
96 97	N/A	None	25.800 ns	s[3]	[7]	
98	N/A N/A	None None	25.800 ns 25.700 ns	P[0]	t[6]	
100	N/A	None	25.700 ns	a[0]	1[4]	
101	N/A N/A	None None	25.700 ns 25.700 ns	s[1]	t[4] t[3]	
103	N/A	None	25,600 ns	s[1] s[2]	4[6]	
04 105	N/A N/A	None None	25.600 ns 25.600 ns	n[3]	f[6]	
106	N/A	None	25.500 ns	a[6]	zf	
107	N/A N/A	None None	25.500 ns 25.500 ns	s[2]	t[5]	
109	N/A	None	25.500 ns 25.400 ns	6[0]	1[4]	
110 111	N/A N/A	None None	25.300 ns	a(6)	t[7] t[7]	
112	N/A N/A	None	25.300 ns	a[6]	46]	
113 114	N/A	None None	25.300 ns 25.100 ns	a[0]	t[2]	
115	N/A N/A	None None	25.100 ns 25.100 ns	P(0)	t[2] t[1]	
116 117	N/A	None	25.000 ns	a(0)	t[5]	
118	N/A N/A	None None	25.000 ns 24.900 ns	a(0)	(3) (1)	
17	N/A	None	25.000 ns	s[1]	t[5]	
118	N/A N/A	None None	25.000 ns 24.900 ns	9(0)	t[3] t[1]	
20	N/A	None	24.800 ns	H(0)	f[3]	
121	N/A N/A	None None	24.500 ns 24.000 ns	s[0]	cf t[0]	
122 123	N/A	None	23.700 na	a[1]	cf	
24 25	N/A N/A	None None	23.700 ns 23.500 ns	b[2]	cf zł	
126	N/A	None	23.400 ns	b[3]	cf	
127 128	N/A N/A	None None	23.400 ns 23.400 ns	a(3)	of ([1]	
29	N/A	None	23.300 na	m b(1)	cf	
130 131	N/A N/A	None None	22.800 ns 22.400 ns	m	t[2] t[4]	
132	N/A	None	22.400 ns	m	t[3]	
33	N/A N/A	None None	22.300 ns 22.300 ns	a[2] a[4]	cf cf	
135	N/A	None	22.100 ns	b[4]	cf	
136 137	N/A N/A	None None	22.000 ns 22.000 ns	s[2]	of cf	
38	N/A	None	22.000 na	s[1] s[3]	cf	
139	N/A N/A	None None	22.000 ns 21.800 ns	m b(5)	t[7] cf	
40 41	N/A	None	21.800 ns	b(5) a(5)	cf	
42	N/A N/A	None	21.800 ns	m	f[6]	
43 44	N/A	None None	21.700 ns 21.600 ns	m a(7)	t[5] cf	
45	N/A	None	21.300 ns	a[0]	cf	
46	N/A N/A	None None	21.200 ns 21.200 ns	b[0]	cf cf	
	N/A	None None	21.000 ns	s[2]	zí	
48	\$1.41		21.000 ns	s[1]	ø	
48 49	N/A N/A	None	21.000 ns	s[3]	zf	
47 48 49 50 51	N/A	None None None	21.000 ns 20.900 ns 20.600 ns	9[6] 8[3]	of cf	

结果分析及结论:

由图可得,Timing Analyzer Summmary 总结所有经典定时分析的结果,并报告每个 定时特性的最坏情况定时。如从 m 到 zf 最大延迟为 18.100ns,而 a[0]到 t[7]延迟则为 31.100ns。结论:实际连接图中个元器件连接之间是存在时间延迟的,而且不同的元器件之间的时间延迟也不相同。

四、思考题

- 1. 指令译码器必须要 16 个输出吗?可否将一些输出合并,哪些可以合并,为什么?不必须。jmp 和 add 可以合并起来,因为 jmp 是将 add 后的结果写入 pc 中,则可以进 行 add 操作后直接进行写入操作。Add 和 sub 和 and 操作可以合并,因为这三个操作类似,且输出为使能信号,故可以用一个合并使能信号来作为三个输出的共同使能信号
- 2. ALU 中的 S[3..0]控制信号是来自哪里或者说与什么信息相同? 来自 ir 的前四位
- 3、为何 S[3..0]等于 1100 或 0100 时将输入 a 传给 t,S[3..0]等于 1010 时将输入 b 传给 t? S[3..0]为控制信号,当 S[3..0]输入为 1100 时,控制输出 t 等于 a,S[3..0]等于 1010 或 0100 时,t 等于 b,此时 ALU 相当于选择器。

五、实验总结、必得体会及建议

1、从需要掌握的理论、遇到的困难、解决的办法以及经验教训等方面进行总结。

基本了解了简易模型机的内部结构,工作原理和功能。同时熟悉了译码器、ALU 的工作原理。学会使用 Verilog 语言编写电路。

遇到的困难:不会使用波形功能仿真功能,通过百度解决,在编写代码的时候语言对 always, case 等语法不熟,通过学习代码解决。

2、对本实验内容、过程和方法的改进建议(可选项)。

无