Seatwork 6.1 Exploratory Data Analysis on Your Own Dataset

Detchosa, Ralph Christian D. CPE22S3

Computational Thinking with Python Dr. Roman Richard

Data Set: Distribution of road traffic deaths by type of road user (%)

Country-collected data on road traffic deaths broken down by road user groups.

Data were collected from several different sectors and stakeholders in each country and were submitted to the World Health Organization.

Reformat

Mean

v Os	[83]	df[6	55:80]					
			Country	Year	4-wheeled	2 or 3-wheeled	Cyclists	Pedestrians
		66	Kazakhstan	2016	59.8	4.3	1.7	30.9
		67	Kenya	2016	36.4	24.2	2.4	37.0
		68	Kiribati	2016	40.0	20.0	0.0	40.0
		69	Kyrgyzstan	2016	27.6	2.1	0.2	40.0
		70	Latvia	2016	44.9	12.0	4.4	34.8
		71	Lebanon	2016	42.4	20.7	NaN	37.0
		72	Libya	2016	75.0	1.9	2.3	20.8
		73	Lithuania	2016	46.4	5.7	8.9	38.0
		74	Luxembourg	2016	62.5	9.4	3.1	25.0
		75	Madagascar	2016	52.9	NaN	NaN	47.1
		76	Malawi	2016	31.1	3.2	16.0	49.6
		77	Maldives	2016	0.0	75.0	0.0	25.0
		78	Mali	2016	27.9	42.3	2.4	11.5
		79	Malta	2016	18.2	40.9	4.5	27.3
		80	Marshall Islands	2013	33.3	66.7	NaN	NaN

Median, Variance, Standard Deviation

```
[91] # data frame for not removing the NaN or null values columns = ['4-wheeled', '2 or 3-wheeled', 'Cyclists', 'Pedestrians']

for column in columns:
    df[column] = pd.to_numeric(df[column], errors='coerce')
    mean_value = df[column].mean()
    print(f"The Mean of {column}: {mean_value}")

The Mean of 4-wheeled: 39.435074626865664
The Mean of 2 or 3-wheeled: 20.76796875
The Mean of Cyclists: 5.58968253968254
The Mean of Pedestrians: 27.116176470588236
```

```
[93] # Data frame for replacing the NaN with zeros of each columns
    columns = ['4-wheeled', '2 or 3-wheeled', 'Cyclists', 'Pedestrians']

for column in columns:
    df2[column] = pd.to_numeric(df2[column], errors='coerce')
    mean_value = df2[column].mean()
    print(f"The Mean of {column}: {mean_value}")

The Mean of 4-wheeled: 35.70472972972973
The Mean of 2 or 3-wheeled: 17.96148648648649
The Mean of Cyclists: 4.758783783783784
The Mean of Pedestrians: 24.91756756756757
```

```
<mark>√</mark> [95] # Median
         columns = ['4-wheeled', '2 or 3-wheeled', 'Cyclists', 'Pedestrians']
         for column in columns:
            df2[column] = pd.to numeric(df2[column], errors='coerce')
            median value = df2[column].median()
            print(f"The Median of {column}: {median_value}")
        The Median of 4-wheeled: 40.15
         The Median of 2 or 3-wheeled: 13.2
        The Median of Cyclists: 2.6
        The Median of Pedestrians: 24.75
         # Variance
         columns = ['4-wheeled', '2 or 3-wheeled', 'Cyclists', 'Pedestrians']
         for column in columns:
             df2[column] = pd.to numeric(df2[column], errors='coerce')
             variance value = df2[column].var()
             print(f"The sample variance of {column}: {variance value}")
        The sample variance of 4-wheeled: 455.95800468836177
         The sample variance of 2 or 3-wheeled: 377.0659215848502
         The sample variance of Cyclists: 43.28352776245634
         The sample variance of Pedestrians: 221.58281853281855
         # Standard Deviation
         columns = ['4-wheeled', '2 or 3-wheeled', 'Cyclists', 'Pedestrians']
          for column in columns:
              df2[column] = pd.to numeric(df2[column], errors='coerce')
              standev value = df2[column].std()
              print(f"The Standard Deviation of {column}: {standev value}")
        The Standard Deviation of 4-wheeled: 21.353173176096377
         The Standard Deviation of 2 or 3-wheeled: 19.41818533192147
         The Standard Deviation of Cyclists: 6.579021793736234
          The Standard Deviation of Pedestrians: 14.885658149131954
```

Data Analysis

50

Mean

Median

Standard Deviation

- Variation in Road User Types
- Central Tendency
- Conclusion

Thank you for listening!