

TEOREMA ESPECTRAL PARA OPERADORES COMPLEXOS

<u>ILHA, Freddy da Paz</u>¹; BALBONI, Mauricio Dorneles Caldeira²; AFONSO, Reginaldo Fabiano da Silva³; BECK, Vinicius Carvalho⁴.

^{1,2} Alunos do Curso de Ciência da Computação - UFPEL <u>freddyilha @gmail.com</u> Autor

³ Licenciado em Matemática - UFPEL Mestrando do Programa de Pós-Graduação em Matemática Pura - UFRGS Co-autor regis.fab@gmail.com

⁴ Licenciado em Matemática - UFPEL Professor do Departamento de Matemática e Estatística - UFPEL Orientador vonoco@gmail.com

RESUMO

O teorema espectral afirma a existência, em um espaço vetorial complexo, de uma base ortonormal formada apenas por autovetores de um operador normal. O objetivo deste trabalho é apresentar uma demonstração do teorema espectral de operadores complexos, no contexto de matrizes complexas. A idéia é apresentar uma demonstração objetiva e puramente matricial.

Palavras-chave: operadores hermitianos, teorema espectral, autovetores.

1. INTRODUÇÃO

Ao escrever seu o livro "Finite Dimensional Vector Spaces", Halmos (1958) revitalizou a teoria dos espaços vetoriais. Desde então, cresceram o número de aplicações, o que exigiu (e continua exigindo) esforços por parte dos matemáticos puros em aprimorar a teoria e construir generalizações cada vez mais precisas dos conceitos já conhecidos para o caso real.

No caso da matrizes complexas, podemos dizer que elas desempenham um papel fundamental na física moderna (BARAVIERA, 2010), engenharia elétrica e eletrônica (LEON, 2010). O que existe hoje na literatura é uma versão complexa da álgebra linear (HOFFMAN, 1971). A seguir, serão apresentadas algumas definições e resultados básicos sobre operadores complexos.

Definição 1: Seja E um espaço vetorial complexo. Dizemos que uma aplicação $<,>:E\times E\to\mathbb{C}$ é um *produto interno*, se as seguintes condições são satisfeitas para quaisquer $u,v,w\in E$ e quaisquer $\lambda,\mu\in\mathbb{C}$:

(i)
$$< \lambda u + \mu v, w > = \bar{\lambda} < u, w > +\bar{\mu} < v, w >$$

(ii)
$$\langle u, v \rangle = \overline{\langle v, u \rangle}$$

(iii)
$$\langle u, u \rangle \geq 0$$

(iv)
$$\langle u, u \rangle = 0 \Leftrightarrow u = 0$$

Como consequência imediata destas propriedades, tem-se $< \lambda u, w > = \bar{\lambda} < u, w >$, e também $< u, \lambda w > = \lambda < u, w >$. A partir de agora, vamos considerar apenas espaços vetoriais complexos com produto interno definido.

Definição 2: Dizemos que dois vetores u e v são ortogonais, se < u, v > = 0.

Definição 3: Sejam E e F espaços vetoriais complexos. Dizemos que uma aplicação $T: E \to F$ é uma transformação linear complexa, se as seguintes condições são satisfeitas para quaisquer $u, v \in E$ e qualquer $\lambda \in \mathbb{C}$:

- (i) $T(\lambda u) = \lambda T(u)$
- (ii) T(u+v) = T(u) + T(v)

Definição 4: Chama-se operador linear complexo uma transformação linear complexa $T: E \to E$, isto é, uma transformação linear complexa que leva um espaço vetorial complexo nele mesmo.

Definição 5: Seja $T: E \to E$ um operador linear complexo. Chamamos de operador adjunto de T, o operador $T^*: E \to E$ tal que $< Tu, v > = < u, T^*v >$, para quaisquer $u, v \in E$.

Conforme descrito por Lima (1998), o adjunto de um operador linear é unicamente determinado, isto é, para todo operador $T: E \to E$, existe um único $T^*: E \to E$ tal que $\langle Tu, v \rangle = \langle u, T^*v \rangle$.

Definição 6: Dizemos que um operador linear $T: E \to E$ é hermitiano quando $T(v) = T^*(v)$, para todo $v \in E$. (Lima (1998) também utiliza a denominação matrizes auto-adjuntas para designar matrizes hermitianas).

Definição 7: Dizemos que um operador linear $T: E \to E$ é *normal* quando $< Tu, T^*v > = < T^*u, Tv >$, para quaisquer $u, v \in E$.

Definição 8: Seja $T: E \to E$ um operador linear complexo. Dizemos que um vetor $v \neq 0 \in E$ é um *autovetor* de T, se existe $\lambda \in \mathbb{C}$ tal que $T(v) = \lambda v$. Neste caso dizemos que λ é um *autovalor* de T associado ao autovetor v.

Sabemos, da álgebra linear real, que existe uma forte ligação entre matrizes e transformações lineares. Na verdade, toda transformação linear está associada a uma matriz e vice-versa. Analogamente ao reais, os operadores complexos também são associados com matrizes complexas. Por isto vale a pena definir mais precisamente alguns conceitos relativos a matrizes com elementos em C.

Definição 9: Dizemos que uma matriz A é uma matriz complexa, se A pode ser escrita como A = B + iC, onde i é a unidade imaginária, e B e C são matrizes reais.

Definição 10: Seja A = B + iC uma matriz complexa. Sendo assim, dizemos que a matriz $\bar{A} = B - iC$ é a *matriz conjugada* de A.

Definição 11: Uma matriz complexa $A = [a_{jk}]$, com $a_{jk} \in \mathbb{C}$ é dita ser uma matriz diagonal, se $a_{jk} = 0$ para todo $j \neq k$.

Definição 12: Seja A uma matriz complexa e $A^H = (\bar{A})^t$, onde o sobreíndice t significa a matriz transposta. Dizemos que A é *hermitiana*, se $A = A^H$.

Definição 13: Dizemos que uma matriz complexa A é *unitária*, se $AA^H = A^HA = I$, ou ainda, A é unitária se seus vetores coluna formam um conjunto ortonormal em \mathbb{C}^n (LEON, 2010).

Definição 14: Dizemos que uma matriz complexa A é *normal*, se $AA^H = A^HA$. Uma relação interessante que pode-se destacar entre matrizes e

transformações complexas é que a composição de transformações lineares, pode ser reduzida ao produto usual de matrizes (neste caso, o produto de matrizes

complexas, que não difere muito do produto de matrizes reais, pois as multiplicações de elementos são multiplicações de número complexos, e portanto, bem definidas).

2. MATERIAL E MÉTODOS

Utilizando propriedades matriciais das matrizes hermitianas, mostra-se que o teorema espectral pode ser enunciado e demonstrado utilizando apenas argumentos matriciais do caso complexo. A metodologia é semelhante a encontrada em Lima (1998), ou seja, substituí-se a composição pelo produto usual de matrizes e os operadores auto-adjuntos por matrizes hermitianas (o que na verdade são coisas totalmente equivalentes, porém, no caso matricial a notação é menos carregada).

3. RESULTADOS E DISCUSSÃO

Teorema Espectral para Operadores Complexos: Seja E um espaço vetorial complexo munido de produto interno. Então um operador $T: E \to E$ é normal, se e somente se, existe em E uma base ortonormal formada apenas por autovetores de T.

Versão Matricial do Teorema Espectral: Seja $A_{n\times n}$ uma matriz complexa. Então A é normal se, e somente se, existe uma matriz unitária U tal que $D=U^HAU$ seja diagonal.

Demonstração: Supomos A normal. Sabe-se que todo operador linear complexo é triangularizável (LIMA, 1998, pág. 300). Matricialmente isto significa que existe uma matriz unitária U tal que $T = U^HAU$ é triangular. Assim, $T^H = U^HA^HU$. Logo, $TT^H = U^HAUU^HA^HU = U^HAA^HU$. Por outro lado, $T^HT = U^HA^HUU^HAU = U^HA^HAU$. Como $AA^H = A^HA$, logo, $TT^H = T^HT$, ou seja T é normal. Mas se T é triangular e normal, necessariamente deve ser diagonal, pois o produto dos elementos fora da diagonal de TT^H vai ser sempre nulo. Assim, tem-se que $T = U^HAU$ é diagonal, ou seja, podemos tomar $T = D = U^HAU$.

```
Reciprocamente, D = U^H A U diagonal \Rightarrow D D^H = D^H D

\Rightarrow U^H A U U^H A^H U = U^H A^H U U^H A U \Rightarrow U^H A A^H U = U^H A^H A U

\Rightarrow U U^H A A^H U = U U^H A^H A U \Rightarrow A A^H U = A^H A U

\Rightarrow A A^H U U^H = A^H A U U^H \Rightarrow A A^H = A^H A, isto é, A é normal.
```

CQD.

4. CONCLUSÃO

A partir dos conceitos e resultados apresentados, concluí-se que um operador complexo $T: E \to E$ é normal, se e somente se, existe em E uma base ortonormal formada apenas por autovetores de T.

REFERÊNCIAS BILIOGRÁFICAS

BARAVIERA, Alexandre T. **Introdução à Mecânica Quântica**. Publicações do 1º Colóquio de Matemática da Região Sul, Editora Pallotti, Santa Maria - RS, 2010.

HALMOS, Paul. **Finite Dimensional Vector Spaces**. Van Nostrand Reinhold Company, New York, 1958.

HOFFMAN, K; KUNZE, R. Álgebra Linear. Editora Polígono, São Paulo, 1971.

LEON, Steven J. **Linear Algebra With Applications**. 8th edition. Pearson Education Inc., Dartmounth, 2010.

LIMA, Elon Lages. **Álgebra Linear**. 3º edição. Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 1998.