

BARROT&IVTW EcoSystem Confidentiality BARROT&IVTW EcoSystem Confidentiality BARROT&IVTW ECI482e i482e-s 应用笔记ty Confidentiality Confidentiality Confidentiality Confidentiality Confidentiality Confidentiality Confidentiality Confidentiality BARROT&IVTW EcoSystem Confid2017.11.8

变更记录

版本	变更记录	日期	修改人
1.0	初始版本	2014-07-20	黄瑞雪
1.1	添加AT指令说明	2014-07-30	刘丽华
1.2	添加状态描述	2014-08-11	刘丽华。
1.3	添加i482e-s	2014-08-21	黄瑞雪
1.4	添加7.串口流控 COSYSY	2014-09-24	刘丽华
BARRO	添加8.PIO定义 删除关于休眠和运行模式的 描述	w Co	nfidentialit
1.5	添加在不使用硬件流控时发 送数据的说明	2014-10-15	邱文庆
1.6 BARRO	增加管脚说明在7.3 连接和断开	2014-11-13	刘丽华名的社会
1.7	修改7.2 连接状态提示(PB2)	2015-02-03	刘丽华
	修改7.1 工作模组指示灯 (PB1)		-tidentialit
1.8 BARRC	修改文档格式	2017-11-8	吴凯月

目录

1.	简介.	4	
	1.1	串口应用场景4	
	1.2	GATT4	
	1.3	转义符4	
2.	BlueL	.et 固件介绍5	
3.		流程6	
4.		SPP	í
	4.1.	初始化7	
	4.2.	建立连接8	
	4.3.	发送/接收数据8	
	4.4.	断开连接	
5.	使用	GATT8	
	5.1.	初始化8	
	5.2.	建立连接9	
	5.3.	发送/接收数据	
	5.4.	版开连接	
1	5.5.	配置10	
6.	串口:	元 <u>一</u> 流控	
7.	PIO 5	定义11	
	7.1.	工作模组指示灯 (PBO, PB1)11	
	7.1. 7.2.	工作模组指示灯 (PBO, PB1)	
	7.2. 7.3	工作模组指示灯 (PBO, PB1)	
8.	7.2. 7.3. 蓝牙:	工作模组指示灯 (PBO, PB1)	
8. 9.	7.2. 7.3. 蓝牙:	工作模组指示灯 (PBO, PB1)	
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1)	1
9.	7.2. 7.3. 蓝牙 联系	工作模组指示灯 (PBO, PB1) 11 连接状态提示(PB2) 11 连接和断开(CONN/DISC) 11 技术最佳开发者 12 我们 12	1

1. 简介

本应用笔记介绍了串口应用场景(SPP)和通用属性应用场景(GATT)。介 绍使用 i482e 建立 SPP 或者 GATT 连接。手册同时适用于 i482e-s。

1.1 串口应用场景

SPP(串口应用场景)可以两个设备,而无需连接串行电缆而通过 SPP 发送和 接收数据。一个场景是使用两个设备,如手机和 i482e,作为虚拟串口,然后通 过蓝牙连接两个设备。

SPP 定义了两个角色, Device A 和 Device B。

- Device A: 是主动形式连接到另一个设备的设备(发起者),例如 Phone。
- Device B: 是等待被连接的设备(接受者),例如 i482e。

图 1: SPP 典型应用

在 i482e 使用 GATT 于 iOS 设备的数据传输。利用 GATT, 无需 MFI 就可以实 现 i482e 与 iPhone 和 ipad 发送、接收数据。

1.3 转义符尺0781

·个完整的AT指令以"\r"(0x0d)结尾,如果检查到"\r",会抛弃之后接收的数 据。使用Commix工具时,"\r"输入为"\CR".

i482e的串口默认设置为8位数据位,1位停止位,无校验位,使能硬件流控。

2. BlueLet 固件介绍

BlueLet 固件是运行在 RISC 处理器上的嵌入式固件。它实现了完整的蓝牙协议 栈和蓝牙应用场景: SPP 和 GATT。所有的软件层,包括应用软件,运行在 RISC 处理器。BlueLet 固件架构如下图 3 所示。

主机系统可以通过一个或多个物理接口,其也如上图 3 所示。最常见的接口 是通过 UART 接口使用的 ASCII 命令。使用这些 ASCII 命令, 主机可以访问蓝牙功 能,而无需支付任何注意蓝牙协议栈的复杂性。PIO接口,可用于监控事件和命 令的执行。

用户可以在主机处理器直接编写应用程序,使用 i482e 库函数控制 BlueLet 的 固件。以这种方式,很容易开发的蓝牙使能的应用程序。

3. 连接流程

使用 i482e 与远端设备(Adroid/iOS)建立 SPP 或与 GATT 连接的流程如下图描述。

4. 使用 SPP

4.1. 初始化

i482e 上电和初始化完成后,发送"IM READY",指示 i482e 正常工作状态,此 时 SPP 和 GATT 都处于可连接状态。i482e 运行时,在 PBO 管脚输出低电平。

以下是初始化完成指示信息。

(初始化完成,允许SPP和GATT **IM_READY**

连接请求)

4.2. 建立连接

- 当 i482e 处于正常工作状态,远端设备发送 SPP 连接请求, i482e 被动接 受远端设备连接请求。当 SPP 连接成功后, PB1 管脚周期性输出 1 秒低电平和 4 秒高电平。PB2 输出 500 毫秒的高电平。同时,GATT 处于不工作状态。
- 在 SPP 连接断开后, i482e 保存最近的连接设备信息。所以下次建立连接 时,不需要再次匹配。i482e 处于正常工作状态,当按下 CONN/DISC 管脚时,i482e 会主动连接上次保存的设备。

IM SPP

(SPP连接成功,可以收发数

据提示)

4.3. 发送/接收数据

连接建立成功后,即收到"IM SPP"后,可以与远端设备收发数据。

如果不使用硬件流控,为了保证数据传输完整,要求发送的每个数据包小于 ıfidentiality 等于 100 字节,发送间隔大于等于 20ms。

4.4. 断开连接

远端设备可以断开连接,同时 i482e 的 CONN/DISC 管脚也可以断开连接。

CONN/DISC 是一个输入管脚,上升沿会使能 i482e 断开当前连接。

连接断开时, PB2 管脚输出 100 毫秒的高电平。

Confic

SPP连接断开)

5. 使用 GATT

i482e 可以集成到感应器(血压计、血氧计)和其他外围设备。i482e 作为 GATT 场景中的外围设备使用。GATT 是 IVT 在 ATT 协议基础上的私有协议。

ECOSVS1

5.1. 初始化

i482e 上电和初始化完成后,发送"IM READY",指示正常工作状态,此时 SPP 和 GATT 都处于可连接状态。i482e 运行时,在 PBO 管脚输出低电平。

以下是初始化完成指示信息。

IM_READY		(初始化完成,允许SPP和GATT
	连接请求)	

5.2. 建立连接

当 i482e 处于正常工作状态,远端设备发送 GATT 连接请求,i482e 被动接受 远端设备连接请求。当 GATT 连接成功后, PB1 管脚周期性输出 1 秒低电平和 4 秒高电平。PB2输出 500毫秒的高电平。同时, SPP 处于不工作状态。

IM GATT (GATT连接建立成功,可以 收发数据)

5.3. 发送/接收数据

连接建立成功后,即收到"IM_GATT"后,可以与远端设备收发数据。

如果不使用硬件流控,为了保证数据传输完整,要求发送的每个数据包小于 W Ecosystem 等于100字节,发送间隔大于等于20ms。

5.4. 断开连接

远端设备可以断开连接,同时 i482e 的 CONN/DISC 管脚也可以断开连接。 CONN/DISC 是一个输入管脚,上升沿会使能 i482e 断开当前连接。

连接断开时, PB2 管脚输出 100 毫秒的高电平。

(当前 confidential)

BARROT&IVTW EcoSystem **IM READY**

5.5. 配置

i482e 的配置可以使用以下命令更改。所有的例子都是使用 Commix 工具。在 Commix 工具, \ r 转义\CR, \n 转义\LF。具体步骤参加 IVT BlueLet i482e 使用说 明.pdf

更多 AT 命令参见 IVT BlueLet E i482e i482e-s AT 指令集 V1.6.pdf 使用"AT+GVER\r"查询固件版本。

AT+GVER\CR (查询版本) \CR\LFBSE DAT 2.1.1.10\CR\LF (版本 BSE DAT 2.1.1.10) \CR\LFOK\CR\LF fidentiali

6. 串口流控

i482e 具有流量控制的选项,确保高速数据传输量是正确的。

使用硬件流控制时,MCU 的 MCU RTS 与 i482e 的 UART CTS 连接和 MCU 的 MCU CTS 与 i482e 的 UART RTS 连接。请参阅下面的图 6。

图 6: 串口硬件流控

当使用硬件流控时:

- 如果 MCU 可以接收数据, MCU RTS 需要设置为有效(低电平); 如果在某些情 况下 MCU 无法接收任何数据, MCU RTS 需要设置为无效(高电平), 然后 i482e 检测 UART CTS 设置为无效, i482e 将硬件流控制信息通知远端适配器, 远端适 配器将停止发送数据。
- 当 MCU 发送数据给 i482e 前,需要检测 i482e 的 UART RTS;

i482e 的 UART RTS 状态为低电平时, MCU 可以发送数据给 i482e;

i482e 的 UART RTS 状态为高电平时, MCU 不可以发送数据给 i482e, 需要等 待 UART RTS 为低电平时才能发送数据,否则会造成数据丢失;

7. PIO 定义

7.1. 工作模组指示灯 (PBO, PB1)

PBO 和 PB1 是输出,他们可以连接至 LED 灯用于指示 i482e 的工作状态。 默认情况为 PIO 低电平时, LED 亮。i482e 包括如下工作状态:

- 当 i482e 上电后, PBO 会一直输出低电平, PBO LED 一直亮;
- 当 i482e 处于可发现可连接状态时,PB1 会一直输出低电平,PB1 LED 直亮:
- 当 SPP 或 GATT 连接建立后, PB1 LED 以 20%灯亮和 80%灯灭周期性 闪烁, 当 i482e 进入空闲模式时, PB1 随机输出高电平或者低电平。请使用 PB2 来判断当前连接状态。 fidentiality

PB2 是输出,作为连接建立和断开的通知。当 PB2 满足图 7 的时序时,表明 i482e 已经与远端设备建立 SPP 或 GATT 连接。

图 7: 连接建立后, PB2 时序图

当 PB2 满足图 8 的时序图时,表明 i482e 已经与远端设备断开 SPP 或 GATT 连接。

连接断开后,PB2 时序图

7.3. 连接和断开(CONN/DISC)

CONN/DISC:输入管脚。

如果 i482e 当前不处于与远端设备连接状态, CONN/DISC 引脚上升沿会使 i482e 连接最后一次连接的 SPP 设备。SPP 连接断开后,i482e 保存设备作为最后 连接设备; GATT 连接断开后, i482e 删除最后连接设备记录。

如果 i482e 有 SPP 或 GATT 连接, 上升沿会使 i482e 释放当前连接。

使用连接和断开管脚注意事项:

如果连接和断开管脚外接轻触按键开关时,需要增加1uF电容消除按键抖动;

如果连接和断开管脚外接 PIO 管脚(例如单片机的 IO)时,不需要增加 1uF 电容。

8. 蓝牙技术最佳开发者

北京艾威梯互联技术有限公司(简称IVTW)是由蓝牙标准化组织SIG指定的 蓝牙技术最佳开发者之一,见下图。IVTW无线产品是一个完整的生态系统, 括蓝牙软件、模块和最终产品。

图 9: IVTW 是 SIG 认证的蓝牙技术最佳开发者之一 &IVTW Ecosystem

9. 联系我们

9.1. 北京

联系电话: +86 10 82898219

Fax: +86 10 82898219

ystem Confidentiality 地址: 北京市海淀区上地信息路 2 号上地国际创业园 C座 710室

市场邮件: marketing@ivtwireless.com

技术支持: support@ivtwireless.com

网址: www.ivtwireless.com

9.2. 深圳

联系电话: 13501475599

地址: 深圳市宝安区新安街道宝安 71 区新政工业园 B 栋 2 楼 A 区

技术支持: sales1@barrot.com.cn

网址: www.barrot.com.cn

版权 10.

Copyright ©1999-2017 IVT Wireless Limited

BARROT&IVTW EcoSystem Confidentiality BARROT&IVTW EcoSystem Confidentiality BARROT&IVTW EcoSystem Confidentiality BARROT&IVTW EcoSystem Confidentiality