Lógica del Proposiciones

Paulo González

9 de agosto de 2019

1. Lógica proposicional

1.1. Sintáxis de lógica de proposiciones

En lógica de predicados, el alfabeto es la unión de:

- Un conjunto P de letras de proposiciones
- Un conjunto C de conectivas $\{\land, \lor, \neg, \supset, \equiv\}$
- Un conjunto V de de constantes que representano los valores de verdad

Definición Literal: Un literal es un átomo o un átomo negado.

1.2. Formula bien formada

- Si $p \in P$, entonces p es una fbf (átomo).
- Si φ es fbf, entonces $\neg \varphi$ es fbf.
- Si φ y ψ son fbf, entonces $(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \supset \psi)$ y $(\varphi \equiv \psi)$ son fbf.
- No hay más fbf.

Definición Teoría: Una teoría es un conjunto de clausulas o fórmulas bien formadas que deben ser verdaderas simultáneamente.

1.3. Reglas para la Satisfacibilidad

Un modelo o una evaluación σ satisface una fórmula (se escribe $\sigma \models \varphi$), de acuerdo a lo siguiente:

- $\sigma \models p \text{ ssi } \sigma(p) = 1$
- $\quad \bullet \quad \sigma \models \neg \varphi \text{ ssi } \sigma \nvDash \varphi$
- \bullet $\sigma \models \varphi \land \psi \text{ ssi } \sigma \models \varphi \land \sigma \models \psi$
- $\sigma \models \varphi \lor \psi \text{ ssi } \sigma \models \varphi \lor \sigma \models \psi$
- $\sigma \models \varphi \supset \psi \text{ ssi } \sigma \nvDash \varphi \vee \sigma \models \psi$
- $\bullet \ \sigma \models \varphi \equiv \psi \text{ ssi } \sigma \models (\varphi \supset \psi) \land \sigma \models (\psi \supset \varphi)$

1.4. Tabla de verdad

φ	ψ	$\neg \varphi$	$\neg \psi$	$\varphi \lor \psi$	$\varphi \wedge \psi$	$\varphi\supset\psi$	$\varphi \equiv \psi$
0	0	1	1	0	0	1	1
0	1	1	0	1	0	1	0
1	0	0	1	1	0	0	0
1	1	0	0	1	1	1	1

1.5. Programación del tipo booleano

En lo que sigue, se implementarán los operadores del tipo booleano de acuerdo a las reglas presentadas en la sección 1.3 para generar una tabla de verdad presentada en 1.4.

Implementación en C:

```
#include<stdio.h>
int neg(int);
int disyuncion(int, int);
int conjunction(int, int);
int implicancia(int, int);
\mathbf{int} \ \ \mathbf{equivalencia} \ (\mathbf{int} \ , \ \ \mathbf{int} \ ) \ ;
#define verdadero 1
#define falso 0
void main(void){
   // instrucciones para imprimir tabla de verdad
int neg(int p){
  if(p = falso)
    return verdadero;
  return falso;
int disyuncion(int p, int q){
  if(p = falso)
    return q;
  return verdadero;
int conjunction(int p, int q){
  if(p = falso)
    return falso;
  return q;
int implicancia (int p, int q) {
  if(p = falso)
    return verdadero;
  return q;
```

```
int equivalencia(int p, int q){
  if(p == falso)
    return neg(q);
  return q;
}
```

Implementación Clase Booleanos en Python:

```
class Booleanos:
  def __init__(self):
    self.\_verdadero = 1
    self._-falso = 0
  def neg(self,p):
    if(p = self.\_falso):
      return self.__verdadero
    return self.__falso
  def disyuncion (self, p, q):
    if(p = self._-falso):
      return q
    return self.__verdadero
  def conjuncion (self, p, q):
    if(p = self._-falso):
      return self.__falso
    return q
  \mathbf{def} implicancia (self, p, q):
    if(p = self.\_falso):
      return self.__verdadero
    return q
  def equivalencia (self, p, q):
    if(p = self.\_falso):
      return self.neg(q)
    return q
```

Implementación Clase Booleanos en Matlab:

```
classdef Booleanos < handle
     properties (SetAccess = private)
            verdadero;
            falso;
     end
     methods
            function bool = Booleanos()
                 bool.inicializar();
            function res = neg(bool, p)
                 if (p == bool.falso)
                        res = bool.verdadero;
                 else
                        res = bool.falso;
                 \mathbf{end}
            end
            \mathbf{function} \hspace{0.2cm} \mathtt{res} \hspace{0.2cm} = \hspace{0.2cm} \mathtt{disyuncion} \hspace{0.2cm} (\hspace{0.2cm} \mathtt{bool} \hspace{0.2cm}, \hspace{0.2cm} \mathtt{p} \hspace{0.2cm}, \hspace{0.2cm} \mathtt{q})
```

```
if (p == bool.falso)
                              res = q;
                     _{
m else}
                              res = bool.verdadero;
                     end
               \mathbf{end}
               \mathbf{function} \hspace{0.2cm} \mathtt{res} \hspace{0.2cm} = \hspace{0.2cm} \mathtt{conjuncion} \hspace{0.2cm} (\hspace{0.2cm} \mathtt{bool} \hspace{0.2cm}, \hspace{0.2cm} \mathtt{p} \hspace{0.2cm}, \hspace{0.2cm} \mathtt{q})
                     if (p == bool.falso)
                             res = bool.falso;
                     _{
m else}
                              res = q;
                     \mathbf{end}
               \mathbf{end}
               function res = implicancia(bool, p, q)
                     if (p == bool.falso)
                             res = bool.verdadero;
                     _{\mathbf{else}}
                              res = q;
                     \quad \mathbf{end} \quad
               \mathbf{end}
               \mathbf{function} \hspace{0.2cm} \mathtt{res} \hspace{0.1cm} = \hspace{0.1cm} \mathtt{equivalencia} \hspace{0.1cm} (\hspace{0.1cm} \mathtt{bool} \hspace{0.1cm}, \hspace{0.1cm} \mathtt{p} \hspace{0.1cm}, \hspace{0.1cm} \mathtt{q})
                     if (p == bool.falso)
                              res = bool.neg(q);
                     else
                              res = q;
                     \quad \mathbf{end} \quad
               end
      \mathbf{end}
      methods (Access = private)
               function inicializar (bool)
                       bool.verdadero = 1;
                       bool.falso = 0;
               end
      \mathbf{end}
\mathbf{end}
```