New Topic: Writing Recursive Functions (15. pat) very similar to (basically a special case of) proofs by induction: Usually want to prove a parameterized statement, $T(n) \cdot E.g. \quad \sum_{i=0}^{N-1} \left(\frac{1-r}{1-r} \right) \left(\frac{s_{n+1}}{1-r} \right)$ Want to show Ting true for all n 20 1) prove statement explicitly for small value of n. Induction: $T(0): \sum_{i=0}^{0} r^{i} = r^{0} = 1 = \frac{1-r^{0+1}}{1-r}$ (2) Assume T(n') is true for all n'< n. Use that to show T(n) must also be true. Jr = 1,+ Zr, = 1 + 1 - 1 $=\frac{(1-r)}{r^{(1-r)}+1-r^{(1-r)}}$

D Prove "base case" (mybe T(0))
explicitly.

2) Prove that $T(n-1) \Rightarrow T(n)$

3) Conclude T(n) true for all n20:

$$\begin{array}{c} T(3) \Rightarrow T(1) \Rightarrow T(2) \Rightarrow T(3) \Rightarrow \\ \textcircled{1} \end{array}$$

Contrast w/ "normal" proofs from may be your geonety class: Want A => E.

 $A \Rightarrow B$ (SAS theorem) $B \Rightarrow C$ (arithmetic) Proof: A >> B

(angle familie) (->))->E

Note: in a sense, inductive proofs are hind
of like proof generators. From pieces (1) (2)
a traditional proof could be derived for any when
a traditional proof could be derived for any whee do n but there is no bound on the length
Pecurs, on
Will asually have the following shape:
$\mathcal{L}_{\mathbf{u}}(\mathbf{u})$
$\{if(n<1)\}$
return << right answer >> ;
// else
11 we pretend our function of
11 works as it should on any smaller input.
11 call one given of assemble results to
11 call our own f assemble results to
$\alpha = \ell(n-1); b = \ell(n-3);$
return << som expression of a,b);

