实验报告

衍射实验

李佩哲 PB21051049 2022 年 4 月 24 日

1 实验目的

观察不同光学元件的夫琅禾费衍射图样,寻找规律并计算单双缝的缝宽.

2 原理

单缝的 k 级暗条纹到中央主极大的距离与单缝缝宽 a 关系为

$$\frac{k\lambda}{a} = \frac{x_k}{L}$$

双峰的条纹宽度与双缝中心间距 d 关系为

$$x_k = \frac{L}{d}\lambda$$

由此可计算单缝缝宽 a 与双缝中心间距 d.

3 实验仪器

光学导轨, He-Ne 激光器, 衰减片, 衍射元件, CCD 等.

4 测量记录

原始数据见附件.

整理如下

 $L = 33.00 \text{ cm}, \ \lambda = 632.8 \text{ nm}.$

k	坐标/mm	k	坐标/mm	k	坐标/mm	坐标/mm	坐标/mm	坐标/mm
+4	21.523	+4	17.198	+4	15.684	18.635	17.262	15.305
+3	19.430	+3	16.121	+3	14.977	16.972	16.258	14.286
+2	17.352	+2	15.024	+2	14.298	15.949	15.572	13.239
+1	15.078	+1	13.987	+1	13.585	14.852	14.854	12.149
0	13.968	0	12.926	0	12.840	12.406	12.975	11.150
-1	10.742	-1	11.802	-1	12.095	10.475	11.727	10.255
-2	8.563	-2	10.788	-2	11.918	8.938	10.613	9.728
-3	6.557	-3	9.669	-3	10.698	7.868	9.855	7.795
-4	4.366	-4	8.669	-4	9.978			

— 表 4: 100 μm 表 5: 150 μm 表 6: 190 μm

表 1: $100 \, \mu \text{m}$ 单缝 表 2: $200 \, \mu \text{m}$ 单缝 表 3: $300 \, \mu \text{m}$ 单缝 双缝

双缝

双缝

5 分析与讨论

5.1 图样特点

单缝:中央有一条亮条纹,其余亮条纹亮度、宽度向两侧依次递减.

双缝:各条纹亮度、宽度基本不变,但偶尔会出现缺级,出现缺级处满足的条件为 $\frac{a}{k} = \frac{d}{a}$.

小孔:中心有一个大的亮斑,而后其余亮条纹呈环状,亮度向外侧依次递减.

5.2 变化规律

单缝: 随着缝宽增加,条纹宽度、间距减小.

双缝: 随着双缝中心间距增加,条纹宽度、间距减小.

小孔: 随着孔径增加,条纹宽度、间距减小.

5.3 单缝缝宽与双缝中心间距的计算

选取表1与表6为例, 计算各自的 x_k 如下

k	x_k/mm	
+4	7.555	x_k/mm
+3	5.462	1.019
+2	3.384	1.047
+1	1.110	1.090
0	0.000	0.999
-1	-3.226	0.895(舍)
-2	-5.405	0.527(舍)
-3	-7.411	1.933(舍)
-4	-9.602	± 0, 100 7

表 8: 190 µm 双缝

图 1: $k - x_k$ 图

表 7: 100 µm 单缝

对表7作 $k-x_k$ 图如图1,得 $\frac{lL}{a}=2.1527\pm0.01255$ mm,从而 $a\approx 97.01\pm0.5656$ μ m. 误差为 2.990%. 对表8求 $\overline{x_k}=1.010\pm0.05446$ mm= λ_d^L , 从而 $d=201.0\pm10.85$ μ m. 误差为 5.789%.

5.4 思考题

当光通过小孔时的图案为中心有一个大的亮斑,而后其余亮条纹呈环状,亮度向外侧依次递减.当小 孔直径较大而不足以发生明显衍射时,光屏上的像为光源倒立的形状.

白光照射到单缝时会发生色散,不同波长的光各自发生衍射,体现为中央亮条纹为白色,两侧的条纹为叠加的彩色.如下图

