Prove: $(b^{-1})^{-1} = b$ for any $b \ne 0$ in a field **F**.

Problem Solving - What are the terms/strategies I may need? What do I know?

Field Axioms:

name	addition	multiplication
associativity	(a+b)+c=a+(b+c)	(a b) c = a (b c)
commutativity	a+b=b+a	ab = ba
distributivity	a(b+c) = ab + ac	(a+b) c = a c + b c
identity	a+0=a=0+a	$a \cdot 1 = a = 1 \cdot a$
inverses	a + (-a) = 0 = (-a) + a	$a a^{-1} = 1 = a^{-1} a \text{ if } a \neq 0$

Prove: $(b^{-1})^{-1} = b$ for any $b \ne 0$ in a field **F**.

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

Let $b \neq 0$ be in **F**

Since $b \neq 0$ and **F** is a field, we know there is b^{-1} in **F** such that $b^{-1}b = bb^{-1} = 1$ (Multiplicative Inverse)

Let $a = b^{-1}$, we want to find $a^{-1} = (b^{-1})^{-1}$

That is, we want to find a c in \mathbf{F} such that ac = ca = 1 (if one exists)

Thus we want to find a c in F such that $(b^{-1})c = c(b^{-1}) = 1$

But we know that $b^{-1}b = bb^{-1} = 1$, thus if we let c = b, we get ac = ca = 1, and thus $c = a^{-1}$.

Since $a^{-1} = (b^{-1})^{-1}$ and c = b, we have $(b^{-1})^{-1} = b$.

We should note that the multiplicative inverse is unique, thus $(b^{-1})^{-1} = b$ is the only possibility (there is only one inverse for (b^{-1})).

Prove: $(b^{-1})^{-1} = b$ for any $b \ne 0$ in a field **F**.

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Why do we replace $a = b^{-1}$ to help us in this proof?

For Video Please click the link below:

<u>Video</u>