

<u>הנדסת תוכנה</u> Software Engineering *מערכות משובצות מחשב (קורס מס׳ 10110* <u>)</u>

הרצאה מספר 5 – המרה של ערך אנלוגי לערך דיגיטלי

PIC32

בקורס מערכות משובצות מחשב

כתב: ד"ר מנחם אפשטיין

COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

TABLE 22-1: ADC SFR SUMMARY

IADLE Z	2-1. ADC	SFK.	SUMMAR	ı						
Virtual Address	Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
BF80_9000	AD1CON1	31:24	_	_	_	_	_	_	_	_
		23:16	_	_	_	_	_	_	_	_
		15:8	ON	FRZ	SIDL	_	_	FORM2	FORM1	FORM0
		7:0	SSRC2	SSRC1	SSRC0	CLRASAM	_	ASAM	SAMP	DONE
BF80_9004	AD1CON1CLR	31:0		Write	clears selected	bits in AD1C0	DN1, read yield	ls undefined va	alue	
BF80_9008	AD1CON1SET	31:0		Write sets selected bits in AD1CON1, read yields undefined value						
BF80_900C	AD1CON1INV	31:0		Write i	nverts selecte	d bits in AD1C	ON1, read yield	ds undefined v	alue	
BF80_9010	AD1CON2	31:24	_	_	_	_	_	_	_	_
		23:16	_	_	_	_	_	_	_	_
		15:8	VCFG2	VCFG1	VCFG0	OFFCAL	_	CSCNA	_	_
		7:0	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
BF80_9014	AD1CON2CLR	31:0		Write	clears selected	bits in AD1C0	DN2, read yield	s undefined va	alue	
BF80_9018	AD1CON2SET	31:0		Write sets selected bits in AD1CON2, read yields undefined value						
BF80_901C	AD1CON2INV	31:0		Write inverts selected bits in AD1CON2, read yields undefined value						
BF80_9020	AD1CON3	31:24	_	_	_	_	_	_	_	_
		23:16	_	_	_	_	_	_	_	_
		15:8	ADRC	_	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
		7:0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
BF80_9024	AD1CON3CLR	31:0		Write	clears selected	bits in AD1C0	DN3, read yield	ls undefined va	alue	•
BF80_9028	AD1CON3SET	31:0		Write	sets selected	bits in AD1CO	N3, read yields	s undefined val	lue	
BF80_902C	AD1CON3INV	31:0		Write i	nverts selecte	d bits in AD1C	ON3, read yield	ds undefined v	alue	
BF80_9040	AD1CHS	31:24	CH0NB	_	_	_	CH0SB3	CH0SB2	CH0SB1	CH0SB0
		23:16	CH0NA	_	_	_	CH0SA3	CH0SA2	CH0SA1	CH0SA0
		15:8	_	_	_	_	_	_	_	_
		7:0	_	_	_	_	_	_	_	_
BF80_9044	AD1CHSCLR	31:0		Write	clears selecte	d bits in AD1C	HS, read yield:	s undefined va	lue	
BF80_9048	AD1CHSSET	31:0		Write	e sets selected	bits in AD1CH	IS, read yields	undefined valu	ie	
BF80_904C	AD1CHSINV	31:0		Write	inverts selecte	d bits in AD1C	HS, read yield	s undefined va	lue	
BF80_9060	AD1PCFG	31:24	_	_	_	_	_	_	_	_
		23:16	_	_	_	_	_	_	_	_
		15:8	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
		7:0	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
BF80_9064	AD1PCFGCLR	31:0		Write	clears selected	bits in AD1P0	CFG, read yield	ls undefined va	alue	•
BF80_9068	AD1PCFGSET	31:0		Write	sets selected	bits in AD1PC	FG, read yields	undefined val	ue	
BF80_906C	AD1PCFGINV	31:0		Write	inverts selecte	d bits in AD1P0	CFG, read yield	ds undefined va	alue	
BF80_9050	AD1CSSL	31:24	_	_	_	_	_	_	_	_
]	23:16	_	_	_	_	_	_	_	_
		15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
		7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 r-x r-x r-x r-x r-x r-x bit 31 bit 24

r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
_	_	_	_	_	_	_	_
bit 23	•	•					bit 16

R/W-0	R/W-0	R/W-0	r-x	r-x	R/W-0	R/W-0	R/W-0
ON	FRZ	SIDL	_	_		FORM<2:0>	
bit 15		•					bit 8

R/W-0	R/W-0	R/W-0	R/W-0	r-x	R/W-0	R/W-0	R/C-0
	SSRC<2:0>		CLRASAM	_	ASAM	SAMP	DONE
bit 7			•				bit 0

Legend:

R = Readable bit r = Reserved bit W = Writable bit P = Programmable bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-16 Reserved: Write 'o'; ignore read

הפעלה bit 15 ON: ADC Operating Mode bit

1 = A/D converter module is operating

o = A/D converter is off

bit 14 FRZ: Freeze in Debug Exception Mode bit

1 = Freeze operation when CPU enters Debug Exception mode

0 = Continue operation when CPU enters Debug Exception mode

Note: FRZ is writable in Debug Exception mode only. It reads '0' in Normal mode.

bit 13 SIDL: Stop in Idle Mode bit

הסבר בהמשך 1 = Discontinue module operation when device enters Idle mode

c = Continue module operation in Idle mode

bit 12-11 Reserved: Write 'o'; ignore read

bit 10-8

תוצאה FORM<2:0>: Data Output Format bits

011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 sada adda daoo 0000)

010 = Fractional 16-bit (DOUT = 0000 0000 0000 dada dada dado 0000)

000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 000d dddd dddd)

111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)

101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

111 = Internal counter ends sampling and starts conversion (auto-convert)

110 = Reserved

101 = Reserved

100 = Reserved

011 = Reserved

הסבר בהמשך

צורות בהפעלת

דיבאגר

010 = Timer 3 period match ends sampling and starts conversion

001 = Active transition on INTO pin ends sampling and starts conversion

000 = Clearing SAMP bit ends sampling and starts conversion

SIDL: Stop in Idle Mode bit

1= להפסיק את פעולת המודול כאשר המכשיר נכנס למצב המתנה 0 = פעולת המשך מודול במצב המתנה

SSRC<2:0>: Conversion Trigger Source Select bits

111- דגימה מסתיים ומתחיל המרה (המרה אוטומטית)

TIMER3 -010 שולטת על תהליך הדגימה וקובעה את תחילת המרה

INTO -001 שולטת על תהליך הדגימה וקובעה את תחילת המרה

ססתיים ומתחיל המרה SAMP ביקוי SAMP

REGISTER	22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)
bit 4	CLRASAM: Stop Conversion Sequence bit (when the first A/D converter interrupt is generated) 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated. 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
bit 3	Reserved: Write 'o'; ignore read
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit 1 = The ADC SHA is sampling 0 = The ADC sample/hold amplifier is holding When ASAM = 0, writing '1' to this bit starts sampling. When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
bit 0	DONE: A/D Conversion Status bit 1 = A/D conversion is done 0 = A/D conversion is not done or has not started Clearing this bit will not affect any operation in progress. Note: The DONE bit is not persistent in automatic modes. It is cleared by hardware at the beginning of the next sample.

REGISTER 22	2-2: AD1CC	N2: ADC CC	ONTROL RE	GISTER 2			
r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
_	_	_	_	_	_	_	_
bit 31				•	•		bit
r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
_	_	_	_	_	_	_	_
bit 23							bit
R/W-0	R/W-0	R/W-0	R/W-0	r-x	R/W-0	r-x	r-x
	VCFG<2:0>		OFFCAL	<u> </u>	CSCNA	_	_
bit 15							bi
R-0	r-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	_		SMP	1<3:0>		BUFM	ALTS
bit 7							bi
Legend:							
R = Readable	bit	W = Writable	bit	P = Program	mable bit	r = Reserved	bit
U = Unimpleme	ented bit	-n = Bit ∀alue	at POR: ('0', '	1', x = Unkno	wn)		
bit 31-16 bit 15-13		rite 'ɑ'; ignore r Voltage Refere		tion bits			
		ADC	: VR+	ΑC	OC VR-		
	000	AV	/DD	A	AVss		
	001	External '	VREF+ pin	AVss		1	
	010	A۷	DD	External VREF- pin		1	
	011	External '	VREF+ pin	External VREF- pin]	
	1xx	A٧	DD	A	√SS	1	
bit 12	OFFCAL: Inp	ut Offset Calibr	ration Mode Se	elect bit		-	
	VINH and V	fset Calibratior ViNL of the SH∧ ffset Calibratio s to the SHA a	A are connecte n mode		תח יחוס AD1CSSL	נ	
bit 11	Reserved: W	rite '0'; ignore r	ead				
bit 10	CSCNA: Scar 1 = Scan inpu 0 = Do not sca	ts		ו HA Input for י <mark>קה של הכנ</mark>	MUX A Input Mul סרי	tiplexer Settin	g bit
bit 9-8	Reserved: W	rite '0'; ignore i	ead				
bit 7	BUFS: Buffer	Fill Status bit			ה	סטר תוצאו	רגי
	1 = ADC is cu	, .	uffer 0x8-0xF, ı	iser should a)-0x7	
bit 6	Reserved: W	rite '0'; ignore i	read				

REGISTER 2	22-2: AD1CON2: ADC CONTROL REGISTER 2 (CONTINUED)
bit 5-2	SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits 1111 = Interrupts at the completion of conversion for each 16 th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15 th sample/convert sequence
	0001 = Interrupts at the completion of conversion for each 2 nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence
bit 1	BUFM: ADC Result Buffer Mode Select bit
	 1 = Buffer configured as two 8-word buffers, ADC1BUF(70), ADC1BUF(158) 0 = Buffer configured as one 16-word buffer ADC1BUF(150.)
bit 0	ALTS: Alternate Input Sample Mode Select bit
	 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples 0 = Always use MUX A input multiplexer settings MUX-שימוש ב-MUX-שימוש ב-MUX A input multiplexer settings

REGISTER 22	2-3: AD1C	ON3: ADC CC	NTROL RE	GISTER 3			
r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
	_	_	_	_	_	_	
bit 31							bit
r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
_	_	_	-	_	_	_	_
bit 23							bit
R/W-0	r-x	r-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_	_			SAMC<4:0>		
bit 15							bi
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0>			
bit 7							bi
Legend:							
R = Readable I	oit	W = Writable	bit	P = Program	mable bit	r = Reserved	bit
U = Unimpleme	ented bit	-n = Bit ∀alue	at POR: ('0',	1', x = Unkno			
-							
bit 31-16	Reserved: V	Vrite 'o'; ignore r	ead				
bit 15	ADRC: ADC	Conversion Clo	ck Source bit				
	1 = ADC inte	rnal RC clock			: המרה	קצב	
	0 = Clock de	rived from Perip	heral Bus Clo	ck (PBClock)			
bit 14-13	Reserved: V	Vrite '0'; ignore r	ead				
bit 12-8	SAMC<4:0>	: Auto-Sample T	ime bits				
	11111 = 31	TAD					
	· · · · · ·	· _					
	00001 = 1 T	^{AD} AD (Not allo wed)	,				
bit 7-0		: ADC Conversion		rt hite			
DIL 7-0		TPB • (ADCS<7			ND.		
		5 (7.1550 17	,	• · = · · · · · ·			

00000000 = TpB • (ADCS<7:0> + 1) • 2 = 2 • TpB = TAD

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

R/W-0	r-x	r-x	r-x	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NB	_	_	_	CH0SB<3:0>				
bit 31				•			bit 24	

R/W-0	r-x	r-x	r-x	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NA	_	_	_	CH0SA<3:0>				
bit 23		,	,				bit 16	

r-x	r-x	г-х	r-x	r-x	г-х	r-x	г-х
_	_	_	_	_	_	_	_
bit 15	•						bit 8

r-x	r-x	г-х	r-x	r-x	г-х	r-x	r-x
_	_	_	_	_	_	_	_
bit 7	-	-	-		-	-	bit 0

Legend:

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31 CH0NB: Negative Input Select for MUX B bit

1 = Channel 0 negative input is AN1

0 = Channel 0 negative input is VR-

bit 30-28 Reserved: Write '0'; ignore read

bit 27-24 CH0SB<3:0>: Positive Input Select for MUX B bits

1111 = Channel 0 positive input is AN15 1110 = Channel 0 positive input is AN14 1101 = Channel 0 positive input is AN13

0001 = Channel 0 positive input is AN1

bit 23 CHONA: Negative Input Select for MUX A Multiplexer Setting bit(2)

1 = Channel 0 negative input is AN1

0 = Channel 0 negative input is VR-

bit 22-20 Reserved: Write '0'; ignore read

bit 19-16 CH0SA<3:0>: Positive Input Select for MUX A Multiplexer Setting bits

1111 = Channel 0 positive input is AN15 1110 = Channel 0 positive input is AN14 1101 = Channel 0 positive input is AN13

.

0001 = Channel 0 positive input is AN1 0000 = Channel 0 positive input is AN0

bit 15-0 Reserved: Write '0'; ignore read

REGISTER 22-5: AD1PCFG: ADC PORT CONFIGURATION REGISTER

r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
_	_	_	_	_	_	_	_
bit 31							bit 24

r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
_	_	_	-	1	ı	1	_
bit 23							bit 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-16 Reserved: Reserved for future use, maintain as '0'

bit 15-0 PCFG<15:0>: Analog Input Pin Configuration Control bits

- 1 = Analog input pin in Digital mode, port read input enabled, ADC input multiplexer input for this analog input connected to AVss
- 0 = Analog input pin in Analog mode, digital port read will return as a '1' without regard to the voltage on the pin, ADC samples pin voltage

PIC32MX3XX/4XX

REGISTER 22-6: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
_	_	_	_	_	_	_	_
bit 31							bit 24

r-x	r-x	r-x	r-x	r-x	r-x	r-x	r-x
_	_	_	_	_	_	_	_
bit 23							bit 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW	R/W-0
CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0
bit 7	•						bit 0

Legend:

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-16 Reserved: Write '0'

bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits

1 = Select ANx for input scan 0 = Skip ANx for input scan

TABLE 22-3: PINS ASSOCIATED WITH THE ADC MODULE

Pin Name	Module Control	Controlling Bit Field	Pin Type	Buffer Type	TRIS	Description
AN0	ON	AD1PCFG<0>	Α	_	Input	Analog Input
AN1	ON	AD1PCFG<1>	Α	_	Input	Analog Input
AN2	ON	AD1PCFG<2>	Α	_	Input	Analog Input
AN3	ON	AD1PCFG<3>	Α	_	Input	Analog Input
AN4	ON	AD1PCFG<4>	Α	_	Input	Analog Input
AN5	ON	AD1PCFG<5>	Α	_	Input	Analog Input
AN6	ON	AD1PCFG<6>	Α	_	Input	Analog Input
AN7	ON	AD1PCFG<7>	Α	_	Input	Analog Input
AN8	ON	AD1PCFG<8>	Α	_	Input	Analog Input
AN9	ON	AD1PCFG<9>	Α	_	Input	Analog Input
AN10	ON	AD1PCFG<10>	Α	_	Input	Analog Input
AN11	ON	AD1PCFG<11>	Α	_	Input	Analog Input
AN12	ON	AD1PCFG<12>	Α	_	Input	Analog Input
AN13	ON	AD1PCFG<13>	Α	_	Input	Analog Input
AN14	ON	AD1PCFG<14>	Α	_	Input	Analog Input
AN15	ON	AD1PCFG<15>	Α	_	Input	Analog Input
VREF+	ON	AD1CON2<15:13>	Р	_	_	Positive Voltage Reference
VREF-	ON	AD1CON2<15:13>	Р	_	_	Negative Voltage Reference

Legend: ST = Schmitt Trigger input with CMOS levels

I = Input

O = Output

A = Analog

P = Power


```
* File: adc.c
* Author: MenachemE
* Created on July 13, 2019, 4:41 PM
#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
#pragma config JTAGEN = OFF
#pragma config FWDTEN = OFF
#pragma config FNOSC = FRCPLL
#pragma config FSOSCEN =OFF
#pragma config POSCMOD =EC
#pragma config OSCIOFNC =ON
#pragma config FPBDIV = DIV 1
#pragma config FPLLIDIV =DIV 2
#pragma config FPLLMUL =MUL 20
#pragma config FPLLODIV = DIV_1
void ADC Init()
  AD1CON1 =0:
  AD1CON1bits.SSRC = 7; // Internal counter ends sampling and starts conversion (auto convert)
  AD1CON1bits.FORM = 0; // Integer 16-bit
            // Setup for manual sampling
  AD1CSSL =0:
  AD1CON3 =0x0002; // ADC Conversion Clock Select bits: TAD = 6 TPB
  AD1CON2 =0:
  AD1CON2bits.VCFG = 0; // Voltage Reference Configuration bits: VREFH = AVDD and VREFL = AVSS
            // Turn on ADC
  AD1CON1bits.ON = 1;
```

```
ADC_AnalogRead
               Parameters:
                               unsigned char analogPIN - the number of the analog pin that must be read
               Return Value:
                               - the 16 LSB bits contain the result of analog to digital conversion of the analog value of the specified pin
**
               Description:
**
                               This function returns the digital value corresponding to the analog pin,
     as the result of analog to digital conversion performed by the ADC module.
unsigned int ADC_AnalogRead(unsigned char analogPIN)
  int adc_val = 0;
  IEC0bits.T2IE = 0;
  AD1CHS = analogPIN << 16;
                                  // AD1CHS<16:19> controls which analog pin goes to the ADC
  AD1CON1bits.SAMP = 1;
                                 // Begin sampling
  while( AD1CON1bits.SAMP );
                                  // wait until acquisition is done
  while(! AD1CON1bits.DONE); // wait until conversion is done
  adc_val = ADC1BUF0;
  IEC0bits.T2IE = 1;
  return adc val;
void main(void)
  int x;
  TRISA &= 0xff00;
  TRISBbits.TRISB2 = 1;
  ANSELBbits.ANSB2 = 1;
  ADC Init();
  while(1)
    x= ADC_AnalogRead(2);//IN analog RB2
    PORTA=x/4;
```

FIGURE 22-6: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs ≤ 5 kΩ.

Legend

CPIN = input capacitance VT = threshold voltage

Rss = sampling switch resistance Ric = interconnect resistance

Rs = source resistance CHOLD = sample/hold capacitance (from DAC)

ILEAKAGE = leakage current at the pin due to various junctions

a/d

»end