1 Auswertung

1.1 Bestimmung der Brennweiten durch Messung der Gegenstands- und Bildweite

Die gemessenen Werte für die Bild- und Gegenstandsweiten der beiden Sammellinsen sind in Tabelle 1 und Tabelle 2 dargestellt. Die Brennweiten lassen sich nach ?? berechnen.

Tabelle 1: Sammellinse f=150mm

g in cm	b in cm	f in cm
17	101,5	14,561
19	60,8	14,476
21	48,8	14,646
23	41,2	14,760
25	34,8	$14,\!548$
27	31,2	$14,\!474$
29	28,9	$14,\!475$
31	27,0	$14,\!431$
33	26,0	$14,\!542$
35	$24,\!5$	$14,\!412$

Tabelle 2: Sammellinse f=50mm

g in cm	b in cm	f in cm
44	6,0	5,280
42	6,1	$5,\!326$
40	6,1	$5,\!293$
38	6,2	$5,\!330$
36	6,3	$5,\!362$
34	6,4	$5,\!386$
32	6,4	$5,\!333$
30	$6,\!5$	5,342
28	$6,\!5$	$5,\!275$
26	6,7	$5,\!327$

Die Brennweiten werden zu

$$f_{150\text{mm}} = (145 \pm 3) \,\text{mm}$$
 (1)

$$f_{50\text{mm}} = (53 \pm 1) \,\text{mm}$$
 (2)

1.2 Bestimmung der Brennweite nach der Methode von Bessel

Die Messwerte der Bildweiten b_1 und b_2 ,
der Gegenstandsweiten g_1 und g_2 und dem Abstand
 e zwischen Schirm und Gegenstand sind aus Tabelle 3 zu entnehmen. Wie bei der ersten Messung, wurde auch für diesen Teil des Versuchs eine Sammellinse mit der Brennweite $f=150\,\mathrm{mm}$ verwendet. Mithilfe von Formel () lässt sich der Linsenabstand ermitteln. Die Fehler für f werden nicht weiter berücksichtigt, da diese um zwei Größenordnungen kleiner sind. Die Brennweite wird anschließend zu

Tabelle 3: Messdaten der Methode nach Bessel

e in cm	b_1 in cm	b_2 in cm	g_1 in cm	g_2 in cm	d in cm	f in cm
71	51,4	20,5	19,6	50,5	$30,90 \pm 0,90$	14,388
73	53,3	19,9	19,7	53,1	$33,40 \pm 0,20$	14,430
75	56,0	19,6	19,0	55,4	$36,40 \pm 0,60$	14,333
77	58,2	19,5	18,8	57,5	$38,70 \pm 0,70$	$14,\!387$
79	60,3	19,2	18,7	59,8	$41{,}10 \pm 0{,}50$	14,404
81	62,4	18,8	18,6	62,3	$43,65 \pm 0,15$	$14,\!369$
83	64,8	18,8	18,2	64,2	$46,00 \pm 0,60$	$14,\!377$
85	66,6	18,6	18,4	66,4	$48,00 \pm 0,20$	$14,\!474$
87	69,0	18,5	18,0	68,5	$50,\!50 \pm 0,\!50$	$14,\!422$
89	71,0	18,3	18,0	70,7	$52,70 \pm 0,30$	$14,\!449$

$$f = (144,03 \pm 0,20) \,\text{cm} \tag{3}$$

gemittelt.

Die Werte für die chromatischen Abberration sind in Tabelle 4 für blaues Licht und in Tabelle 5 für rotes Licht aufgetragen. Die Berechnung des Linsenabstands und der Brennweite werden wie oben berechnet.

Tabelle 4: blau

e in cm	b_1 in cm	b_2 in cm	g_1 in cm	g_2 in cm	d in cm	f in cm
75	56,0	19,9	19,0	55,1	$24,0 \pm 1,1$	18,630
73	$53,\!6$	19,8	19,4	$53,\!2$	34.6 ± 0.8	18,131
71	50,9	20,6	20,1	50,4	$30,3 \pm 0,5$	17,643
69	48,8	20,8	20,2	48,2	$28,0 \pm 0,6$	17,149
67	46,2	21,5	20,8	45,4	24.7 ± 0.7	16,658

Daraus folt für die Brennweiten

$$f_{\text{blau}} = (176,42 \pm 3,48) \,\text{mm}$$
 (4)

$$f_{\text{rot}} = (175,89 \pm 4,89) \,\text{mm}.$$
 (5)

Tabelle 5: blau

e in cm	b_1 in cm	b_2 in cm	g_1 in cm	g_2 in cm	d in cm	f in cm
67	45,7	21,7	21,3	45,3	$24,0 \pm 0,6$	16,660
69	48,7	20,8	20,3	48,2	$28,9 \pm 0,5$	17,145
71	51,1	20,4	19,9	50,6	30.7 ± 0.5	17,642
73	$53,\!5$	19,9	19,5	53,1	$33,6 \pm 0,4$	$18,\!135$
75	$55,\!6$	20,0	19,4	55,0	$35{,}6\pm0{,}6$	18,631

1.3 Bestimmung des Brennweite des Linsensystems nach der Methode von Abbe

Die Messwerte für das Linsenpaar sind in Tabelle 6 zu finden. Zusätzlich wurde mit Gleichung () die unterschiedlichen V berechnet.

Die Gegenstandsgröße G beträgt $3\,\mathrm{cm}$.

Tabelle 6: Messdaten der Methode nach Abbe

Bildgröße B in cm	b' in cm	g' in cm	V
2,0	14,95	9,05	0,67
1,3	14,05	12,05	$0,\!43$
1,0	13,95	$14,\!15$	$0,\!33$
0,9	13,85	$16,\!25$	$0,\!30$
0,8	$13,\!45$	18,65	$0,\!27$
0,7	$13,\!45$	18,65	$0,\!23$
$0,\!6$	$13,\!45$	$20,\!65$	$0,\!20$
$0,\!6$	12,05	24,75	$0,\!20$
$0,\!5$	$13,\!25$	$26,\!85$	$0,\!20$
0,5	12,95	30,05	$0,\!20$

Anhand der linearen Regressionen in Abbildungen 1 und 2 werden die gesuchten Größen h und f bestimmt. Diese werden mit Formel () und () bestimmt.

Abbildung 1: Lineare Regression für g'

Abbildung 2: Lineare Regression für b'

Für die Lage der Hauptebenen im Abstand zum Referenzpunkt A ergeben sich die Werte

$$h=-(60\pm13)\,\mathrm{mm}$$

$$h'=(52\pm12)\,\mathrm{mm}.$$

Für die Brennweiten folgt

$$f_{\rm g} = (44.9 \pm 2.5) \, {\rm mm}$$

$$f_{\rm b} = (41 \pm 10) \, {\rm mm}.$$

Aus den beiden Brennweiten ergibt sich ein Mittelwert von

$$f_{
m Mittel} = (42,95 \pm 1,95) \, {
m mm}.$$