Lecture 6: Representing Words

Kai-Wei Chang
CS @ UCLA
kw@kwchang.net

Couse webpage: https://uclanlp.github.io/CS269-17/

Bag-of-Words with N-grams

N-grams: a contiguous sequence of n tokens from a given piece of text

http://recognize-speech.com/language-model/n-gram-model/comparison

Language model

Probability distributions over sentences (i.e., word sequences)

$$P(W) = P(w_1 w_2 w_3 w_4 \dots w_k)$$

Can use them to generate strings

$$P(w_k \mid w_2 w_3 w_4 \dots w_{k-1})$$

- Rank possible sentences
 - ❖ P("Today is Tuesday") > P("Tuesday Today is")
 - ❖ P("Today is Tuesday") > P("Today is Los Angeles")

N-Gram Models

- ❖ Unigram model: $P(w_1)P(w_2)P(w_3) ... P(w_n)$
- * Bigram model: $P(w_1)P(w_2|w_1)P(w_3|w_2) ... P(w_n|w_{n-1})$
- Trigram model:

$$P(w_1)P(w_2|w_1)P(w_3|w_2,w_1) \dots P(w_n|w_{n-1}w_{n-2})$$

❖ N-gram model:

$$P(w_1)P(w_2|w_1)...P(w_n|w_{n-1}w_{n-2}...w_{n-N})$$

Random language via n-gram

http://www.cs.jhu.edu/~jason/465/PowerPo int/lect01,3tr-ngram-gen.pdf

Collection of n-gram

https://research.googleblog.com/2006/08/al l-our-n-gram-are-belong-to-you.html

N-Gram Viewer

https://books.google.com/ngrams

How to represent words?

N-gram -- cannot capture word similarity

- Word clusters
 - Brown Clustering
 - Part-of-speech tagging

- Continuous space representation
 - Word embedding

Brown Clustering

- Similar to language model But, basic unit is "word clusters"
- Intuition: similar words appear in similar context
- Recap: Bigram Language Models

$$P(w_0, w_1, w_2, ..., w_n)$$

$$= P(w_1 | w_0) P(w_2 | w_1) ... P(w_n | w_{n-1})$$

$$= \prod_{i=1}^{n} P(w_i | w_{i-1})$$

 w_0 is a dummy word representing "begin of a sentence"

"a dog is chasing a cat"

❖
$$P(w_0, "a", "dog", ..., "cat")$$

= $P("a" | w_0)P("dog" | "a") ... P("cat" | "a")$

Assume Every word belongs to a cluster

Cluster 3
a
the

cluster 46 dog cat fox rabbit bird boy

Cluster 64 is was chasing following biting...

- Assume every word belongs to a cluster
 - "a dog is chasing a cat"

- Assume every word belongs to a cluster
 - "a dog is chasing a cat"

- Assume every word belongs to a cluster
 - "the boy is following a rabbit"

- Assume every word belongs to a cluster
 - "a fox was chasing a bird"

Brown Clustering

- Let C(w) denote the cluster that w belongs to
 "a dog is chasing a cat"
- **C3 C8** C46 **C3** C46 C64 chasing cat dog is а P(cat | C(cat)) P(C(dog) | C(a)) Cluster 3 Cluster 64 dog cat chasing is fox rabbit following the was bird boy biting...

Brown clustering model

- P("a dog is chasing a cat")
 - = $P(C("a")|C_0) P(C("dog")|C("a")) P(C("dog")|C("a"))...$ P("a"|C("a"))P("dog"|C("dog"))...

Brown clustering model

P("a dog is chasing a cat")

```
= P(C("a")|C_0) P(C("dog")|C("a")) P(C("dog")|C("a"))...
P("a"|C("a"))P("dog"|C("dog"))...
```

In general

```
P(w_0, w_1, w_2, ..., w_n)
= P(C(w_1) | C(w_0)) P(C(w_2) | C(w_1)) ... P(C(w_n) | C(w_{n-1}))
P(w_1 | C(w_1) P(w_2 | C(w_2)) ... P(w_n | C(w_n))
= \prod_{i=1}^{n} P(C(w_i) | C(w_{i-1})) P(w_i | C(w_i))
```


Model parameters

$$P(w_0, w_1, w_2, ..., w_n)$$
= $\prod_{i=1}^{n} P(C(w_i) \mid C(w_{i-1})) P(w_i \mid C(w_i))$

Model parameters

```
P(w_0, w_1, w_2, ..., w_n)
= \prod_{i=1}^{n} P(C(w_i) \mid C(w_{i-1})) P(w_i \mid C(w_i))
```

- ❖ A vocabulary set W
- A function $C: W \rightarrow \{1, 2, 3, ... k\}$
 - A partition of vocabulary into k classes
- \bullet Conditional probability $P(c' \mid c)$ for $c, c' \in \{1, ..., k\}$
- ❖ Conditional probability $P(w \mid c)$ for $c, c' \in \{1, ..., k\}, w \in c$

heta represents the set of conditional probability parameters C represents the clustering

Log likelihood

```
LL(\theta, C) = \log P(w_0, w_1, w_2, ..., w_n \mid \theta, C)
= \log \Pi_{i=1}^n P(C(w_i) \mid C(w_{i-1})) P(w_i \mid C(w_i))
= \sum_{i=1}^n [\log P(C(w_i) \mid C(w_{i-1})) + \log P(w_i \mid C(w_i))]
```

- * Maximizing $LL(\theta, C)$ can be done by alternatively update θ and C
 - 1. $\max_{\theta \in \Theta} LL(\theta, C)$
 - 2. $\max_{C} LL(\theta, C)$

$\max_{\theta \in \Theta} LL(\theta, C)$

$$LL(\theta, C) = \log P(w_0, w_1, w_2, ..., w_n \mid \theta, C)$$

$$= \log \Pi_{i=1}^n P(C(w_i) \mid C(w_{i-1})) P(w_i \mid C(w_i))$$

$$= \sum_{i=1}^n [\log P(C(w_i) \mid C(w_{i-1})) + \log P(w_i \mid C(w_i))]$$

$$P(c' \mid c) = \frac{\#(c',c)}{\#c}$$

$$P(w \mid c) = \frac{\#(w,c)}{\#c}$$

$\max_{C} LL(\theta, C)$

$$\max_{C} \sum_{i=1}^{n} [\log P(C(w_i) \mid C(w_{i-1})) + \log P(w_i \mid C(w_i))]$$

$$= n \sum_{c=1}^{k} \sum_{c'=1}^{k} p(c, c') \log \frac{p(c, c')}{p(c)p(c')} + G$$

where G is a constant

Here,

$$p(c,c') = \frac{\#(c,c')}{\sum_{c,c'} \#(c,c')}$$
 , $p(c) = \frac{\#(c)}{\sum_{c} \#(c)}$

$$*\frac{p(c,c')}{p(c)p(c')} = \frac{p(c|c')}{p(c)}$$
 (mutual information)

$$\max_{C} LL(\theta, C)$$

$$\max_{C} \sum_{i=1}^{n} \left[\log P(C(w_i) \mid C(w_{i-1})) + \log P(w_i \mid C(w_i)) \right]$$

$$= n \sum_{c=1}^{k} \sum_{c'=1}^{k} p(c,c') \log \frac{p(c,c')}{p(c)p(c')} + G$$

Algorithm 1

- Start with |V| clusters each word is in its own cluster
- The goal is to get k clusters
- ❖ We run |V|-k merge steps:
 - Pick 2 clusters and merge them
 - \clubsuit Each step pick the merge maximizing $LL(\theta, C)$
- * Cost? (can be improved to $O(|V|^3)$) $O(|V|-k) \quad O(|V|^2) \quad O(|V|^2) = O(|V|^5)$ #Iters #pairs compute LL

Algorithm 2

- m: a hyper-parameter, sort words by frequency
- * Take the top m most frequent words, put each of them in its own cluster $c_1, c_2, c_3, ... c_m$
- ❖ For i = (m + 1) ... |V|
 - \diamond Create a new cluster c_{m+1} (we have m+1 clusters)
 - ❖ Choose two cluster from m+1 clusters based on $LL(\theta, C)$ and merge ⇒ back to m clusters
- Carry out (m-1) final merges ⇒ full hierarchy
- Running time $O(|V|m^2 + n)$, n=#words in corpus

Example clusters (Brown+1992)

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
people guys folks fellows CEOs chaps doubters commies unfortunates blokes
down backwards ashore sideways southward northward overboard aloft downwards adrift
water gas coal liquid acid sand carbon steam shale iron
great big vast sudden mere sheer gigantic lifelong scant colossal
man woman boy girl lawyer doctor guy farmer teacher citizen
American Indian European Japanese German African Catholic Israeli Italian Arab
pressure temperature permeability density porosity stress velocity viscosity gravity tension
mother wife father son husband brother daughter sister boss uncle
machine device controller processor CPU printer spindle subsystem compiler plotter
John George James Bob Robert Paul William Jim David Mike
anyone someone anybody somebody

feet miles pounds degrees inches barrels tons acres meters bytes

director chief professor commissioner commander treasurer founder superintendent dean custodian

liberal conservative parliamentary royal progressive Tory provisional separatist federalist PQ had hadn't hath would've could've should've must've might've asking telling wondering instructing informing kidding reminding bothering thanking deposing that the theat

head body hands eyes voice arm seat eye hair mouth

Example Hierarchy (Miller+2004)

1awyer

John

Consuelo

Jeffrey

Phillip

Kenneth

newspaperman

пемэрарегшан	100000110100100
stewardess	100000110100101
stewardess toxicologist	10000011010011
slang	1000001101010
babysitter	100000110101100
conspirator	1000001101011010
womanizer	1000001101011011
mailman	10000011010111
salesman	100000110110000
bookkeeper	1000001101100010
troubleshooter	10000011011000110
bouncer	10000011011000111
technician	1000001101100100
janitor	1000001101100101
saleswoman	1000001101100110
NIN	101101110010010101011100
Nike	10110111001001010111100
Maytag	101101110010010101111010
Generali	101101110010010101111011
Gap	10110111001001010111110
	101101110010010101111110
Enfield	1011011100100101011111110
genus	1011011100100101011111111
Microsoft	10110111001001011000
Ventritex	101101110010010110010
Tractebel	1011011100100101100110
Synopsys	1011011100100101100111
WordPerfect	1011011100100101101000

101110010000000000 101110010000000001

101110010000000010

10111001000000001100

101110010000000011010

1000001101000 100000110100100

26