Predavanje

Predmet

Metodi optimizacije

Tema

Statička optimizacija, numeričke metode jednodimenzione optimizacije

2017 godina

Statička optimizacija, numeričke metode jednodimenzione optimizacije

Da li su jednodimenzioni problemi laki? (Ponekad)

Da li se metodi višedimenzione optimizacije, mogu koristiti kod sistema sa jednom promenljivom? (Da) ali,

- 1. Postoji određen broj važnih jednodimenzionih problema.
- 2. Predstavljaju osnovu višediemnzione numeričke optimizacije.
- 3. Jednodimenziona optimizacija je često sastavni deo složenih optimizacionih problema i softvera!

Statička optimizacija, jednodimenziona optimizacija

Gradijentne metode

Osnovna ideja ovih metoda

Naći stacionarne tačke funkcije (f'(x)=0) (ako je funkcija diferencijabiln do reda koji nam je potreban).

Newton-Raphson Metod

f(x) se razvija u Taylor-ov red oko x_0

$$f(x) \approx g(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

g(x) je parabola čiji je ekstrem u x_1 , a uzima se kao polazna tačka za sledeću iteraciju

f(x) se razvija u Taylor-ov red oko x_0

$$f(x) \approx g(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

g(x) je parabola čiji je ekstrem u x_1 , a uzima se kao polazna tačka za sledeću iteraciju

$$g'(x_1) = 0$$

$$f'(x_0) + f''(x_0)(x_1 - x_0) = 0$$

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

$$f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$


```
function [x,fx,n]=newton(fun,dfun,d2fun,a,tol)
x = Inf;
n = 0;
while abs(x - a) > tol
    x = a;
    a = x - feval(dfun,x)/feval(d2fun,x);
    n = n + 1;
end
x = a;
fx = feval(fun,x);
```


Početno pogađanje

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

Iterativni postupak

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Kriterijum zaustavljanja

$$\mathcal{E}_{n+1} = \begin{vmatrix} \boldsymbol{x}_{n+1} - \boldsymbol{x}_n \\ \boldsymbol{x}_{n+1} \end{vmatrix}$$

Da li je uvek ovo kriterijum zaustavljanja

$$f(x) = x^{4} - 5x^{3} - 2x^{2} + 24x$$

$$f'(x) = 4x^{3} - 15x^{2} - 4x + 24$$

$$f''(x) = 12x^{2} - 30x - 4$$

$$x = [0,3]$$

Primer

1.0000

2.0000

3.0000

1.4091

1.3989

1.3989

```
[x,fx,n,rez] = newton('fun', 'dfun1', 'd2fun1', 1, 0.0001)
x =
    1.3989
fx =
   19.8016
n =
     3
rez =
```

1.0000 9.0000 -22.0000 0.4091

1.4091 -0.2282 -22.4463 -0.0102

1.3989 0.0002 -22.4839 0.0000

Konvergencija zavisi od dobrog početnog pogađanja

Konvergencija zavisi od dobrog početnog pogađanja

domaći

$$f(x)' = (x-1)^3 = 0$$

$$f(x)' = x^3 - 0.03x^2 + 2.4x10^{-6} = 0$$

$$f(x)' = Sin \ x = 0$$

$$f(x)' = x^2 + 2 = 0$$

Metod Sečice

Ako se drugi izvod zameni konačnom razlikom,

$$f''(x_k) \approx \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

Newton-va metoda postaje

$$x_{k+1} = x_k - f'(x_k) \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}$$
 k=1,2,...

tačke x₀, x₁ su proizvoljne

Metod Sečice


```
function [x,fx,n]=secica(fun,dfun,a,b,tol)
x = a;
a = Inf;
dfb = feval( dfun, b);
n = 0;
while abs(x - a) > tol
  a = x;
  dfa = feval( dfun, a );
  x = a - dfa * (a - b) / (dfa - dfb);
  dfb = dfa;
  b = a;
 n = n + 1;
end
fx = feval(fun, x);
```

Metod Sečice

$$x_2 = x_1 - f'(x_1) \frac{x_1 - x_0}{f'(x_1) - f'(x_0)}$$

Iterativni postupak
$$x_{k+1} = x_k - f'(x_k) \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}$$

Kriterijum zaustavljanja
$$\mathcal{E}_{n+1} = \left| \frac{oldsymbol{x}_{n+1} - oldsymbol{x}_n}{oldsymbol{x}_{n+1}} \right|$$

$$f(x) = x^{4} - 5x^{3} - 2x^{2} + 24x$$

$$f'(x) = 4x^{3} - 15x^{2} - 4x + 24$$

$$f''(x) = 12x^{2} - 30x - 4$$

$$x = [0,3]$$


```
[x,fx,n,rez] = secica('fun', 'dfun1', 0,3, 0.0001)
x =
   1.3989
fx =
  19.8016
n =
    5
rez =
   1.0000
                      3.0000
                             24.0000
                                       -15.0000
                                                  1.8462
                                                            1.8462
                 0
                              -9.3400 24.0000
   2.0000
             1.8462
                                                 -0.5172
                                                            1.3290
                           ()
             1.3290
   3.0000
                      1.8462 1.5805 -9.3400 0.0749
                                                            1.4038
   4.0000
             1.4038
                      1.3290
                             -0.1098 1.5805
                                                 -0.0049
                                                            1.3990
   5.0000
             1.3990
                      1.4038
                             -0.0005 -0.1098
                                                 -0.0000
                                                            1.3989
```


Metode direktnog pretraživanja

Metod direktnog pretraživanja su u osnovi metode jednodimenzione optimizacije

Smatraju ih "kičmom" nelinearnih optimizacionih algoritama Svode se na pretraživanje zatvorenog intervala

Često pretpostavljamo da je funkcija unimodalna

Detaljno pretraživanje zahteva N = (b-a)/ ϵ + 1 proračuna u interavalu sa slike, pri čemu je ϵ rezolucija.

unimodalnost

Pretraga da bi se našao $\min f(x)$:

- 0) pretpostaviti interval [a,b]
- 1) naći po nekoj formuli (npr x1 = a + (b-a)/2 ϵ /2 i x2 = a+(b-a)/2 + ϵ /2 gde je ϵ rezolucija).
- 2) porediti f(x1) i f(x2)
- 3) Ako je f(x1) < f(x2) tada eliminišemo x > x2 i b = x2Ako f(x1) > f(x2) tada eliminišemo x < x1 i a = x1Ako f(x1) = f(x2) tada biramo novi par tačaka
- 4) Nastaviti dok interval ne bude $< 2 \epsilon$

Metod direktnog pretraživanja

Fibonačijev Metod

Fibonačijevi brojevi:

1,1,2,3,5,8,13,21,34,... odnosno, suma dva prethodna

$$F_{n} = F_{n-1} + F_{n-2}$$

$$L1 = L2 + L3$$

Može se pokazati

$$L_n = (L1 + F_{n-2} \varepsilon) / F_n$$

1200 te...

Fibonači je postavio slično pitanje...

Leonardo Pisano (1170-1250)

Pretpostavimo da se tek rođeni par, mužjak i ženka, zečeva stavi u polje. Zečevi su u stanju da se razmnožavaju posle mesec dana i na kraju drugog meseca ženka može da dobije novi par zečeva. Pretpostavimo da zečevi ne umiru i da ženka uvek daje novi par (muško-žensko) svaki mesec od drugog meseca. Koliko će parova biti na kraju prve godine.

Fibonačijev metod

Fibonačijev metod

- Odrediti interval L₀ [a,b] (a<b), koji sadrži,tačku x* i specificirati rezolucijutačnost aproksimacije ε>0. Interval
- 2. Odrediti najmanji prirodan broj *n* koji zadovoljava uslov:

$$F_n > \frac{1}{\varepsilon} (b-a)$$
 ili $F_n > \frac{L_0}{\varepsilon}$

3. Izračunati prvi interval (prva iteracija)

$$x_1 = a + \frac{F_{n-2}}{F_n} (b - a)$$

$$x_2 = a + b - x_1$$

4. Izračunati k ti interval i ponavljati postupak (korak 4.) sve do k=n

Odrediti $f(x_1)$ i $f(x_2)$, pa napraviti novi set tačaka a i b po principu:

Ako je $f(x1) \le f(x2)$ tada eliminišemo x > x2 i b = x2, x2=x1, x1 = a + b - x1.

Ako f(x1) > f(x2) tada eliminišemo x < x1 i a = x1, x1=x2, x2 = a + b - x2

Ako f(x1) = f(x2) tada biramo novi par tačaka

```
function [x, fx] = fibonacijeva metoda(fun, a, b, tol)
% Fibonacci-jev postupak minimizacije funckcije FUN jedne
promenljive.
% Funkcija mora biti unimodalna nad intervalom [a, b].
% Tol je trazena sirina intervala u kome se nalazi minimum.
% Minimum je u X i ima vrednost FX
%% Korak 1 - Trazimo najmanji broj n koji zadovoljava uslov
n = 1;
while tol < (b-a) / fibonacci number(n)</pre>
    n = n + 1;
end
%% Korak 2 - Odredjujemo pocetne tacke
x1 = a + fibonacci number(n-2) / fibonacci number(n) * (b - a);
x2 = a + b - x1;
f1 = feval(fun, x1);
f2 = feval(fun, x2);
```

```
%% Korak 3 - Iteracije
% Radimo n-1 iteracija, posle cega je (b-a) < tol
for k = 2:n
    % Smanjujemo interval
    if f1 <= f2
       b = x2;
        x2 = x1; f2 = f1;
        x1 = a + b - x1; f1 = feval(fun, x1);
    else
        a = x1;
        x1 = x2; f1 = f2;
        x2 = a + b - x2; f2 = feval(fun, x2);
    end
    % Azuriramo resenje
    if f1 < f2
      x = x1; fx = f1;
    else
        x = x2; fx = f2;
    end
end
```

```
[x, fx] = fibonacijeva_metoda(@f, 0, 3, 0.0001)
x =
     1.3989
fx =
    -19.8016
```


2.618033988749

F(i)/F(i+2)

F(i+2)/F(i)

Posle 15 brojeva podudaraju se na 5 decimalnih mesta

$$\frac{F_n}{F_{n+2}} \approx \frac{3 - \sqrt{5}}{2}$$

Jedan od nedostataka Fibonačijeve metode sastoji se u tome da se odredi broj iteracija *n* koji garantuje da tačka optimuma leži unutar željenog intervala.

Da bi to izbegli stavljamo da je odnos

$$\frac{F_n}{F_{n+2}} \approx c = \frac{3 - \sqrt{5}}{2} = 0.38197$$

Tada algoritam postaje

- 1. Odrediti interval [a,b] (a<b), koji sadrži,tačku x* i specificirati rezoluciju-tačnost aproksimacije ε>0.
- 2. Izračunati

$$c = \frac{3 - \sqrt{5}}{2} \approx 0.38197$$

3. Izračunati prvi interval

$$x_1 = a + c(b - a)$$

4. Dok nije (b-a)< ε

$$x_2 = a + b - x_1$$

Odrediti $f(x_1)$ i $f(x_2)$, pa napraviti novi set tačaka a i b po principu:

Ako je $f(x1) \le f(x2)$ tada eliminišemo x > x2 i b = x2, x2 = x1, x1 = a + c*(b - a)Ako f(x1) > f(x2) tada eliminišemo x < x1 i a = x1, x1 = x2, x2 = b - c*(b - a)

Ako f(x1) = f(x2) tada biramo novi par tačaka


```
function [x, fx] = metoda zlatnog preseka(fun, a, b, tol)
% Zlatni presek - postupak minimizacije funckcije FUN jedne
promenljive.
% Funkcija mora biti unimodalna nad intervalom [a, b].
% Tol je trazena sirina intervala u kome se nalazi minimum.
% Minimum je u X i ima vrednost FX
%% Korak 1 - Odredjujemo pocetne tacke
% Odnos zlatnog preseka (celine prema manjem delu)
c = (3 - sqrt(5)) / 2;
% Racunamo pocetne tacke po zlatnom preseku
x1 = a + c * (b - a);
x2 = a + b - x1;
f1 = feval(fun, x1);
f2 = feval(fun, x2);
```

```
% %% Korak 2 - Iterativno smanjujemo interval dok ne dobijemo
zeljenu preciznost
while (b - a) > tol
    % Smanjujemo interval
    if f1 <= f2
       b = x2;
        x2 = x1; f2 = f1;
        x1 = a + c*(b - a); f1 = feval(fun, x1);
    else
       a = x1;
        x1 = x2; f1 = f2;
        x2 = b - c*(b - a); f2 = feval(fun, x2);
    end
    % Azuriramo resenje
    if f1 < f2
      x = x1; fx = f1;
    else
    x = x2; fx = f2;
    end
end
```

$$\gg$$
 [x, fx] = metoda_zlatnog_preseka(@f, 1, 3, 0.0001)

Metod Zlatnog Preseka

 $\mathbf{x} =$

1.3989

fx =

-19.8016

Metod Zlatnog Preseka

$$\frac{AC}{BC} = \frac{BC}{AB}$$

Proveriti za domaći

Ako: AC=1 BC=x AB=1-x

Tada je:
$$\frac{1}{x} = \frac{x}{1-x}$$

Rešiti kvadratnu jednačinu:

$$x^{2} = 1 - x$$
 $0 = x^{2} + x - 1$ $x = \frac{-1 \pm \sqrt{5}}{2}$

Kako je x negativnu vrednost eliminišemo pa dobijamo

$$x = \frac{\sqrt{5-1}}{2} = 0.618034$$

$$\frac{F_n}{F_{n+1}} \approx \frac{\sqrt{5} - 1}{2}$$

Metod Zlatnog Preseka

F(i)/F(i+1)

Simbolički

• Phi - "Fi" - Φ

$$\Phi = \frac{\sqrt{5} + 1}{2} = 1.6180...$$

• phi - "fi" - φ, φ

$$\phi = \frac{\sqrt{5} - 1}{2} = 0.6180...$$

• Tau - τ

Geometrijski

$$\Phi = \frac{a}{b} = 1.6180...$$

Metode aproksimacije polinomom

Osnovna ideja ovih metoda

f-ja se aproksimira polinomom y(x) na intervalu I koji sadrži optimum, odredi se minimum $min\ y(x)=xopt$, u okolini xopt se formira novi interval (manji od prethodnog) i vrši se nova aproksimacija

Metod Parabole

$$y(x) = a + b x + c x^2$$

$$y(x) = a + b x + c x^2$$

- traže se tri $x_1 < x_2 < x_3$ tačke tako da je $f(x_1) \ge f(x_2) \le f(x_3)$ tada je i $x_1 < x^* < x_3$
- Reši se sistem jednačina po a, b, c
 a+bx₁+cx₁²=f(x₁)
 a+bx₂+cx₂²=f(x₂)
 a+bx₃+cx₃²=f(x₃)
- Uslov minimuma parabole: y'(x)=0 da je

$$x_{opt} = -\frac{b}{2c}$$

- sada x_{opt} i dve susedne tačke od x₁, x₂, x₃ formiraju novu trojku i postupak se nastavlja. Uporediti x_{opt} i x₂ manja od njih dve je nova x₂ a tačke levo i desno čine x₁ i x₃.
- postupak se prekida kada je $|f(x_{opt}) y(x_{opt})| \le \xi$

Metod Parabole

$$y(x) = a + b x + c x^2$$

Optimum aproksimacije

$$x_2 = x_2$$

$$x_1 = x_1$$

$$x_3 = x^*$$

$$x^* = \frac{1}{2} \frac{(x_2^2 - x_3^2)f_1 + (x_3^2 - x_1^2)f_2 + (x_1^2 - x_2^2)f_3}{(x_2 - x_3)f_1 + (x_3 - x_1)f_2 + (x_1 - x_2)f_3}$$

```
function [x, fx, n] = parabola(fun, x1, x3, tol)
X = [x1 (x1+x3)/2 x3]';
Y = [1 1 1]' X X.*X];
F = feval(fun, X);
abc = Y \setminus F;
x = -abc(2) / 2 / abc(3);
fx = feval(fun, x);
n = 0;
while abs ( [1 \times x^2] * abc - fx ) > tol
  if (x > X(2)) & (x < X(3))
    if (fx < F(2)) & (fx < F(3))
      X = [X(2); x; X(3)]; F = [F(2); fx; F(3)];
    elseif (fx > F(2)) & (fx < F(3))
      X = [X(1); X(2); X]; F = [F(1); F(2); fX];
    else
     error('Greska: Fopt > min(F2,F3)')
    end
                                                    용...
```

```
용 . . .
  elseif (x > X(1)) & (x < X(2))
    if (fx < F(1)) & (fx < F(2))
     X = [X(1); x; X(2)]; F = [F(1); fx; F(2)];
    elseif (fx > F(2)) & (fx < F(1))
      X = [x; X(2); X(3)]; F = [fx; F(2); F(3)];
    else
    error('Greska: Fopt > min(F1,F2)')
    end
  else
      error('x lezi van granica')
  end
 Y = [1 1 1]' X X.*X];
  abc = Y \setminus F;
 x = -abc(2) / 2 / abc(3);
  fx = feval(fun, x);
 n = n + 1;
end
```

```
-19.80161279629130
n =
  3
rez =
Columns 1 through 5
        0
                     1.000000000000000
                                      2.000000000000000
                                                               0
                                   1.4000000000000 2.000000000000 -18.000000000000
 1.000000000000000
                  1.000000000000000
                  1.000000000000000
 2.000000000000000
                                   1.400000000000000
                                                     1.40774907749077 -18.000000000000000
 3.00000000000000 1.00000000000000
                                   1.39896822541732
                                                     1.4000000000000 -18.00000000000000
Columns 6 through 10
-18.00000000000000 -16.00000000000000
                                            0 -28.0000000000000 10.00000000000000
1.679999999994 -30.519999999999 10.839999999997
-19.80159999999999 -19.80073936314690
                                     2.34974619081601 -31.66813632711318 11.31839013629717
-19.80161279629130 -19.8015999999999
                                     2.35228740652486 -31.67249269689978 11.32020529037492
Columns 11 through 12
 1.40000000000000 0.2016000000000
 1.40774907749077
                  0.00065092250923
 1.39896822541732
                  0.00087268594479
 1.39893632158021 0.00000001152232
```

> [x,fx,n,rez] = parabola('fun', 0, 2, 0.0001)

 $\mathbf{x} =$

fx =

1.39893632158021

Metode aproksimacije polinomom

Kubna Metoda

$$y(x)=a+bx+cx^2+dx^3$$

$$f'(x_1) < 0$$
 $f'(x_2) > 0$ $x_1 < x_2$

algoritam

aproksimira f(x) polinomom 3. reda

$$y(x)=a+bx+cx^2+dx^3$$
 $f'(x_1)<0$ $f'(x_2)>0$ $x_1< x_2$

- Koeficijenti se mogu odrediti na 2 načina:
 - poznavanjem f(x) u 4 tačke ili
 - poznavanjem f(x) i f'(x) u 2 tačke.

$$a+bx_i+cx_i^2+dx_i^3=f(x_i)$$
, i=1,2
 $b+2cx_i+3dx_i^2=f'(x_i)$, i=1,2

 Kod rešavanja y'(x) =0 dobijaju se dva rešenja, a uzima se ono koje leži u intervalu [x₁,x₂] i ima manju vrednost (za minimum)

Ako je
$$f'(x_{opt}) < 0$$
, $x_1 = x_{opt}$ inače $x_2 = x_{opt}$

• postupak se prekida kada je $\left| f(x_{opt}) - y(x_{opt}) \right| \le \xi$

```
function [x, fx, n] = kubna (fun, dfun, x1, x2, tol)
X = [x1; x2];
Y = [[1; 1] \times X.^2 \times .^3]
   [0; 0] [1; 1] 2*X 3*X.^2];
F=[feval(fun,X); feval(dfun,X)];
abcd=Y\F; b=abcd(2); c=abcd(3); d=abcd(4);
D=sqrt (4*c*c-12*b*d);
xa = (-2*c-D)/6/d;
xb = (-2*c+D)/6/d;
if feval(fun,xa) < feval(fun,xb)</pre>
  x=xa;
else
  x=xb;
end
fx=feval(fun,x);
n=0;
```

```
while abs([1 \times x^2 \times^3]*abcd - fx))>tol
  if feval(fun,xa) < feval(fun,xb)</pre>
    X(2) = x; else X(1) = x; end
  Y = [[1; 1] \times X.^2 \times .^3]
      [0; 0] [1; 1] 2*X 3*X.^2];
  F=[feval(fun,X); feval(dfun,X)];
  abcd=Y\F; b=abcd(2); c=abcd(3); d=abcd(4);
  D = sart(4*c*c-12*b*d);
  xa = (-2*c-D)/6/d;
  xb = (-2*c+D)/6/d;
  if feval(fun,xa) < feval(fun,xb)</pre>
    x=xa;
  else
    x=xb:
  end
  n=n+1;
  fx=feval(fun,x);
end
```

```
>> [x,fx,n,rez] = kubna('fun', 'dfun1', 0, 2, 0.00001)
\mathbf{x} =
  1.39893257541003
fx =
-19.80161281065906
n =
   8
rez =
 Columns 1 through 5
 1.000000000000000
                           0 2.0000000000000 12.000000000000 20.78460969082653
 2.000000000000000
                           0 1.46410161513775 17.93335800641838 18.88286623804345
                           0 1.40838201847866 18.38965402090047 18.52766984613476
 3.000000000000000
 4.000000000000000
                           0 1.40032920221022 18.45340543137662 18.47381331793818
 5.000000000000000
                           0 1.39913947389076 18.46277783625626 18.46580251318223
 6.000000000000000
                           0 1.39896316507386 18.46416574522066 18.46461418913156
 7.000000000000000
                           0 1.39893702570757 18.46437149298518 18.46443798342407
 8.00000000000000
                           0 1.39893315005427 18.46440199847762 18.46441185703840
 Column 6
 1.46410161513775
 1.40838201847866
 1.40032920221022
 1.39913947389076
 1.39896316507386
 1.39893702570757
 1.39893315005427
 1.39893257541003
```

Osobine kubne metode

- optimum uvek leži u [x1,x2]
- brža je od metode parabole, ali zahteva više računarskih operacija (stepen konvergencije je superlinearan)
- Minimum y(x) na intervalu [x1,x2] se može izračunati direktno

$$x^* = x_2 - \frac{f_2' + w - z}{f_2' - f_1' + 2w} (x_2 - x_1)$$

$$z = 3\frac{f_1 - f_2}{x_2 - x_1} + f_1' + f_2'$$

$$w = \sqrt{z^2 - f_1' \cdot f_2'}$$