МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа 3.4.2

Закон Кюри - Вейсса

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

1. Цель работы.

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

2. В работе используются.

Катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, *LC*-автогенератор, термопара медь–константан.

3. Теоретические сведения.

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом. При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает по закону Кюри — обратно пропорционально температуре

$$\chi \propto \frac{1}{T}$$
 (1)

Некоторые парамагнетики при понижении температуры испытывают фазовый переход в ферромагнитное состояние. При малых температурах тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. Благодаря обменному взаимодействию, имеющему электростатическую ферромагнетиках самопроизвольное упорядочение природу, В магнитных моментов возможно при довольно высоких температурах. Температуру фазового перехода парамагнетик—ферромагнетик называют *температурой Кюри* Θ_{K} . Температурная зависимость магнитной восприимчивости у ферромагнетиков выше точки Кюри с удовлетворительной точностью описывается законом Кюри - Вейсса

$$\chi \propto \frac{1}{(T-\theta_p)}$$
, (2)

Рис. 1: Зависимость обратной величины магнитной восприимчивости от температуры

,где Θ_p — параметр с размерностью температуры, называемый иногда парамагнитной точкой Кюри. Величина Θ_p близка к Θ_K , но не совпадает с ней. Непосредственно вблизи Θ_K закон Кюри — Вейсса (2) нарушается. На практике наблюдается зависимость, изображённая на рис. 1.

4. Экспериментальная установка.

В работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в диапазоне комнатных температур.

Рис. 2: Схема экспериментальной установки

Схема установки для проверки закона Кюри—Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора (генератора колебаний с самовозбуждением).

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ($\sim 50~\rm k\Gamma u$), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата 5.

Коэффициент самоиндукции катушки L пропорционален магнитной проницаемости μ заполняющей его среды: $L \propto \mu$. Тогда разность самоиндукций катушки с образцом L и без него L0 будет пропорциональна восприимчивости образца γ :

$$L-L_0 \propto \mu-1=\chi$$

При изменении индуктивности образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C — ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau = 2\pi\sqrt{L_0C}$$

Отсюда находим

$$L-L_0\propto au^2- au_0^2$$

и, следовательно,

$$\chi \propto \tau^2 - \tau_0^2 \tag{3}$$

Из формул (2) и (3) следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \theta_p \tag{4}$$

Измерения проводятся в интервале температур от 14 °C до 40 °C. С целью экономии времени следует начинать измерения с низких температур.

Температура исследуемого образца всегда несколько отличается от температуры воды в термостате. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6, один из спаев которой находится в тепловом контакте с образцом, а другой погружён в воду. Чувствительность термопары указана на установке. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится меньше 0,5 °C (более точному измерению температур мешают паразитные ЭДС, возникающие в цепи термопары).

5. Ход работы

Зная температурный коэффициент термопары (к) , оценим допустимую ЭДС термопары, если допустимая разность температур образца и рабочей жидкости $\Delta T = 0.5$ °C:

$$\kappa = 24 \frac{{}^{\circ}C}{{}_{M}B}$$

$$U = \frac{\Delta T}{\kappa} = \frac{0.5}{24} \simeq 0.21 \, {}_{M}B$$

Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T — по показаниям дисплея и цифровому вольтметру (ΔU с учётом знака). Термопара подключена так, что при знаке «+» на табло вольтметра температура образца выше температуры рабочей жидкости. Измерения проведем в диапазоне от 14 °C до 40 °C. Полученные данные занесем в Таблицу 1.

Температуру образца найдем по формуле:

$$T_{obp} = \kappa \Delta U + T_{med}$$
 ,

где $T_{\text{терм}}$ температура рабочей жидкости (внутри термостата)

Таблица 1

т, мкс	7,9407	7,8725	7,7443	7,5497	7,3400	7,1702	7,1015	7,0656	7,0445	7,0301
T _{терм} , °С	14,11	16,13	18,18	20,16	22,12	25,11	28,09	31,09	34,08	37,08
ΔU, мкВ	-6	-7	-2	-2	-3	-1	-8	-6	-8	-6
T _{обр} , °С	13,97	15,96	18,13	20,11	22,05	25,09	27,90	30,95	33,89	36,94
$1/(\tau^2-\tau_0^2)$, (MKC) ⁻²	0,065	0,070	0,082	0,108	0,163	0,272	0,371	0,458	0,530	0,593

 au_0 =6,9092 *мкс* - период колебаний без образца

По данным Таблицы 1 построим график зависимости $1/(\tau^{2} - \tau_{0}^{2}) = f(T_{oбp})$:

Рис. 3: Зависимость $1/(\tau^{2} - \tau_0^2) = f(T_{\text{обр}})$

Отбросим точки выбивающиеся из линейной зависимости и оценим парамагнитную точку Кюри для гадолиния. Из линейной зависимости получаем, что точка Кюри для гадолиния $\Theta_p \approx \Theta \approx 16.2~^{\circ}\mathrm{C}$

Рис. 4: Линейная зависимость $T_{oбp} = 1/(\tau^2 - {\tau_0}^2)$

6. Оценим погрешности.

Из технического описания приборов:

$$\sigma(\Delta U)=$$
 1,2 мк B $\sigma(T_{\textit{mерм}})=$ 0,01 ° C $\sigma(au)=$ 0,0001 мк c

Оценим погрешности $T_{\text{обр}}$ и $1/(\tau^2 - \tau_0^2)$:

$$\begin{split} \sigma(T_{\rm odp}) &= \sqrt{(\sigma^2(T_{\rm mepm}) + \kappa^2 \sigma^2(\Delta U))} = 0.03 \, ^{\circ}C \\ \sigma(\frac{1}{(\tau^2 - \tau_0^2)}) &= \sigma\left(\tau\right) \frac{2\tau}{(\tau^2 - \tau_0^2)^3} \end{split}$$

Из МНК оценим погрешность для точки Кюри (у = $T_{\text{обр}}$, x = 1/($au^2 - au_0^2$)):

$$\sigma(k) = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}} = 2,75 \frac{^{\circ}C}{\text{MKC}^{-2}}$$
$$\sigma(\Theta_p) = \sigma(k) * \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = 0,8 ^{\circ}C$$

7. Выводы.

- 1.Изучили температурную зависимость магнитной восприимчивости ферромагнетика выше точки Кюри
- 2. Получили значение для точки Кюри $\Theta_p=16,2\pm0,8$ °C, что отличается от теоретического ($\Theta=19$ °C) на 11%