I. Funciones algebraicas y trascendentes

Prof. Misael Solorza Guzmán

2 de marzo de 2023

I.1.2 Funciones algebraicas.

Definición 1. Se llama función a un conjunto de pares ordenados de una ecuación en donde no existen dos pares ordenados diferentes con el mismo primer valor; se denota por

$$f = \{(x, y) | y = f(x) \}$$
 (1)

donde y representa la variable dependiente de la función y x la variable independiente. Se representa en dos formas:

Función Explícita. Es cuando la función tiene bien definida la variable dependiente; esto es,

$$y = f(x)$$
.

Función Implícita. Es cuando la función represente un formulismo algebraico o no tiene bien definida la variable dependiente.

Ejemplo 1. Dado el conjunto $f = \{ (x, y) \mid y = 1 - x \}$, determine si es una función.

Solución. Del conjunto, se tiene

$$y = 1 - x$$
 forma una función explícita, ya que $y = f(x)$.

Además

y = 1 - x representa pares ordenados (x, y) con valores diferentes de x.

Por lo tanto

$$f(x) = 1 - x$$
 es una función.

Ejemplo 2. Dado el conjunto $f = \{ (x, y) \mid x^2 + y^2 = 1 \}$, determine si es una función.

Solución. Del conjunto, se tiene

 $x^2 + y^2 = 1$ forma una función Implícita y expresa una ecuación algebraica.

del cual

$$y = \pm \sqrt{1 - x^2}$$

Representa dos pares ordenados diferentes (x, y) con el mismo valor de x. Por lo tanto

$$x^2 + y^2 = 1$$
 NO es una función.

Observación. Una función implícita No necesariamente representa una función; en consecuencia tener función *Multiforme*.

De $y = \pm \sqrt{1-x^2}$, como y = f(x), entonces se tiene una función multiforme; esto es,

$$f(x) = \sqrt{1 - x^2}$$
 y $g(x) = -\sqrt{1 - x^2}$.

Definición 2. Se define **Dominio de una función** (D $\{f\}$), al conjunto $S \subseteq \mathbb{R}$ de todos los valores de x que hacen verdadero los valores de y = f(x).

Ejemplo 3. Del conjunto

$$\left\{ \ (x,y) \mid \ y = \sqrt{x-2} \ \right\}$$

Determine si es una función y si lo es obten $D\{f(x)\}$.

Solución. Del conjunto, se tiene

$$y = \sqrt{x-2}$$
 forma una función explícita, ya que $y = f(x)$.

Además

$$y = \sqrt{x-2}$$
 representa pares ordenados (x, y) con valores diferentes de x .

luego

$$f(x) = \sqrt{x-2}$$
 es una función.

Ahora, tomando valores admisibles $x \in \mathbb{R}$ de $f(x) = \sqrt{x-2}$, se tiene que

$$x-2 \ge 0$$
 \Rightarrow $x \ge 2$ o $[2, \infty)$

por lo tanto

$$D\{f(x)\} = \left\{ x \in \mathbb{R} \mid x \ge 2 \right\} = [2, \infty)$$

Definición 3. Se le llama Contradominio de una función ($I\{f\}$), al conjunto que representa a todos los resultados de $y = f(x) \in \mathbb{R}$, para todo $x \in \mathbb{R}$ $y \ x \in D\{f(x)\}$.

Ejemplo 4. Determine el dominio y el contradominio de

$$y = \sqrt{4 - x^2}.$$

Solución. De la definición de función,

$$y = f(x)$$
 \Rightarrow $f(x) = \sqrt{4 - x^2}$.

El dominio $D\{f(x)\}$ con valores admisibles de $x \in \mathbb{R}$, se cumple si y solo si (ssi)

$$4 - x^2 \ge 0$$
 \Rightarrow $x^2 - 4 \le 0$ $(x+2)(x-2) \le 0$

en la cuales forman puntos críticos $x=-2,\ 2,\ \mathrm{nos}\ \mathrm{da}$

$$\therefore D\{f(x)\} = \left\{ x \in \mathbb{R} \mid -2 \le x \le 2 \right\} = [-2, 2]$$

Ahora el contradominio $I\{f(x)\}$ son $y \in \mathbb{R}$ para todo $x \in \mathbb{R}$ y $x \in D\{f(x)\}$, así

$$-2 \le x \le 2 \quad \land \quad y = \sqrt{4 - x^2} \in \mathbb{R} \quad \Rightarrow \quad 4 - x^2 > 0$$

luego

$$0 \le x \le 2 \quad \Rightarrow \quad 0 \le x^2 \le 4$$

multiplicando por (-1), nos da

$$-4 \le -x^2 \le 0 \quad \Rightarrow \quad 0 \le 4 - x^2 \le 4$$
$$0 \le \sqrt{4 - x^2} \le \sqrt{4} \quad \Rightarrow \quad 0 \le y \le 2$$
$$\therefore \qquad I\{f(x)\} = \left\{ y \in \mathbb{R} \mid 0 \le y \le 2 \right\} = [0, 2].$$

EJERCICIOS 1.1

En los ejercicios 1 a 4, determine si el conjunto es una función. Si es una función determine su dominio.

- 1. (a) $\{(x, y) \mid y = \sqrt{x-4}\}$
 - **(b)** $\{(x, y) \mid y = \sqrt{x^2 4}\}$
 - (c) $\{(x, y) \mid y = \sqrt{4 x^2}\}$
 - (d) $\{(x, y) \mid x^2 + y^2 = 4\}$
- **2.** (a) $\{(x, y) \mid y = \sqrt{x+1}\}$
 - **(b)** $\{(x, y) \mid y = \sqrt{x^2 1}\}$
 - (c) $\{(x, y) \mid y = \sqrt{1 x^2}\}$
 - (d) $\{(x, y) \mid x^2 + y^2 = 1\}$
- 3. (a) $\{(x, y) \mid y = x^2\}$ (b) $\{(x, y) \mid x = y^2\}$ (c) $\{(x, y) \mid y = x^3\}$ (d) $\{(x, y) \mid x = y^3\}$
- **4.** (a) $\{(x, y) \mid y = (x 1)^2 + 2\}$
 - **(b)** $\{(x, y) \mid x = (y 2)^2 + 1\}$
 - (c) $\{(x, y) \mid y = (x + 2)^3 1\}$
 - (d) $\{(x, y) \mid x = (y + 1)^3 2\}$
- 5. Dada f(x) = 2x 1, determine
 - (a) f(3); (b) f(-2); (c) f(0); (d) f(a + 1); (e) f(x + 1);
 - (f) f(2x); (g) 2 f(x); (h) f(x + h); (i) f(x) + f(h);
 - $(\mathbf{j}) \ \frac{f(x+h)-f(x)}{h}, h \neq 0.$
- **6.** Dada $f(x) = \frac{3}{x}$, calcule (a) f(1); (b) f(-3); (c) f(6);
 - (d) $f(\frac{1}{3})$; (e) $f(\frac{3}{a})$; (f) $f(\frac{3}{x})$; (g) $\frac{f(3)}{f(x)}$; (h) f(x-3);
 - (i) f(x) f(3); (j) $\frac{f(x+h) f(x)}{h}$, $h \neq 0$.

- 7. Dada $f(x) = 2x^2 + 5x 3$, determine (a) f(-2); **(b)** f(-1); **(c)** f(0); **(d)** f(3); **(e)** f(h + 1); **(f)** $f(2x^2)$; (g) $f(x^2 - 3)$; (h) f(x + h); (i) f(x) + f(h);
 - (j) $\frac{f(x+h)-f(x)}{h}$, $h \neq 0$.
- **8.** Dada $g(x) = 3x^2 4$, calcule (a) g(-4); (b) $g(\frac{1}{2})$; (c) $g(x^2)$; (d) $g(3x^2 4)$; (e) g(x h); (f) g(x) g(h);
 - (g) $\frac{g(x+h)-g(x)}{h}$, $h \neq 0$.
- 9. Dada $F(x) = \sqrt{x+9}$, encuentre (a) F(x+9);
 - **(b)** $F(x^2 9)$; **(c)** $F(x^4 9)$; **(d)** $F(x^2 + 6x)$;
 - (e) $F(x^4 6x^2)$; (f) $\frac{F(x+h) F(x)}{h}$, $h \neq 0$.
- **10.** Dada $G(x) = \sqrt{4 x}$, determine **a**) G(4 x);
 - ((b) $G(4-x^2)$; (c) $G(4-x^4)$; (d) $G(4x-x^2)$;
 - (e) $G(-x^4 4x^2)$; (f) $\frac{G(x+h) G(x)}{h}$, $h \neq 0$.