这些规则只有当包被发送到端口80的时候,才会允许进入地址是207.68.160.190的机器,这个机器的其他端口都是被禁止的并且发送给这些端口的包都会被防火墙自动丢弃。同样,只有发送给端口25和21的包才可以进入其他两个机器。所有其他的网络流都是禁止的。这个规则集使得攻击者除了提供的三个公共的服务以外,很难访问到局域网。

虽然有了防火墙,局域网还是可能会受到攻击。例如,如果Web服务器是Apache并且攻击者找到了一个可以利用的Apache的bug,那么他可以发送一个很长的URL到207.68.160.190的端口80,然后制造一个缓冲区溢出,进而控制由防火墙保护的一台机器,通过这个机器可以发动对局域网内其他机器的攻击。

另一种潜在的攻击是写一个多人游戏,发布这个游戏并且让它得到广泛的接受。这个游戏的软件需要某个端口来和其他的玩家联系,所以游戏设计者会选择一个端口,比如9876,并且告诉玩家来改变防火墙的设置,来允许在这个端口网络流的进出。打开端口的人现在也容易受到这个端口上的攻击。即使这个游戏是合法的,那么它也可能包含一些可以利用的bug。打开越多的端口,被成功攻击的机会就越大。防火墙上的每一个端口都增加了攻击通过的可能。

除了无状态防火墙以外,还有一种跟踪连接以及连接状况的防火墙。这些防火墙能够更好地防止某些类型的攻击,特别是那些和建立连接有关的攻击。另外,一些其他类型的防火墙实现了入侵检测系统 (Intrusion Detection System, IDS),利用IDS防火墙不仅可以检测包的头部还可以用检测包的内容来查找可疑的内容。

软件防火墙,有时也叫做个人防火墙,和硬件防火墙具有同样的功能,只不过是通过软件方式实现的。它们是附加在操作系统内核的网络代码上的过滤器,是和硬件防火墙工作机制一样的过滤数据包。

9.8.2 反病毒和抑制反病毒技术

正如上文所提到的,防火墙会尽量地阻止人侵者进入电脑,但是在很多情况下防火墙会失败。在这种情况下,下一道防线是由反恶意软件的程序(antimalware program)组成的。尽管这种反恶意软件的程序同样可以对抗蠕虫和间谍软件,但是它们通常称做反病毒程序(antivirus program)。病毒尽量地隐藏自己,而用户则是努力地发现它们,这就像是一个猫捉老鼠的游戏。在这方面,病毒很像rootkit,不同的地方是病毒的制造者更强调的是病毒的传播速度而不是像rookit一样注重于捉迷藏。现在,让我们来看看反病毒软件所使用的技术,以及病毒的制造者Virgil是怎么应对这些技术的。

1. 病毒扫描器

显然,一般用户没有去查找竭尽全力藏身的大多数病毒,所以市场上出现了反病毒软件。下面我们将讨论一下反病毒软件的工作原理。反病毒软件公司拥有一流的实验室,在那里许多专家长时间地跟踪并研究不断涌现出的新病毒。第一步是让病毒感染不执行任何操作的程序,这类程序叫做诱饵文件,然后获取病毒的完整内容。下一步是列出病毒的完全代码表把它输入已知病毒的数据库。公司之间为其数据库的容量而竞争。发现新的病毒就放到数据库中与体育竞赛是完全不同的。

一旦反病毒软件安装在用户的计算机里,第一件事就是在硬盘里扫描所有可执行文件,看看是否能发现病毒库里已知的病毒。大多数反病毒公司都建有网站,从那里客户可以下载新发现病毒的特征码到自己的病毒库里。如果用户有10 000个文件,而病毒库里有10 000种病毒,当然需要一些高效的代码使得程序得以更快地运行。

由于有些已知病毒总是在不断发生细微变化,所以人们需要一种模糊查询软件,这样即便3个字节的改变也不会让病毒逃避检测。但是,模糊查询不仅比正常查询慢,而且容易导致错误报警(误测)。7年前在巴基斯坦,有些合法的文件恰巧包含了与病毒代码极为相像的字符,结果导致了病毒报警。用户这时往往会看到下面的信息:

WARNING! File xyz.exe may contain the lahore-9x virus. Delete?

数据库里的病毒越多,扫描标准越宽松,误报警的可能性就越大。如果出现了太多的误报警,用户会因为厌烦而放弃使用。但是如果病毒扫描器坚持严格匹配病毒码,它就会错过许多变形病毒。解决办法是要达到一种微妙的平衡,完美的扫描软件应该识别病毒的核心代码,这些核心代码不会轻易改变,从而能够作为病毒的特征签名来查找。

由于磁盘里的文件上周被宣布无病毒感染后并不意味着现在仍未被感染,所以人们需要经常使用病