NO | P模拟赛

题目 	英文题目名	时间限制	空间限制
过河	river	1 S	128 MB
距离	dis	1 S	128 MB
维护数据库	database	1 S	256 MB
快速排序	sort	1 S	256 MB

过河

题目描述

前面有一条河,有 n 个人想要过河,岸的这边有一条船。

操作一条船最少需要 L 个人, 而船最多能载 R 个人。

划船是个非常令人疲惫的事情,每次用这艘船运送一群人到河的另一边时,船上所有的人都必须有大于0的精力值,并且到达后船上所有人的精力值会减少1。

最初,第i个人的精力值为 h_i 。

你需要判断用这艘船是否可以把所有人运到对岸。

输入格式

第一行一个整数 T 表示数据组数。

对于每组数据,

第一行输入三个整数 $n,L,R(1 \le L < R \le n \le 5*10^5)$,分别表示人的数量,每次使用一条船的最少和最多的人数。

第二行输入 n 个整数 $h_1, h_2, \ldots, h_n (1 \le h_i \le 5 * 10^5), h_i (1 \le i \le n)$ 表示第 i 个人的初始精力值。

输出格式

对于每组数据,如果可以用这艘船将所有人运到对岸,输出"Yes"(不含引号),否则输出"No"(不含引号)

样例#1

样例输入#1

1 4 1 2 1 2 5 10

样例输出#1

Yes

样例#2

样例输入#2

```
1
5 1 2
1 1 1 1 5
```

样例输出#2

No

样例#3

见下发文件。

数据范围

对于 20% 的数据, 保证 $n \leq 10$

对于 50% 的数据,保证 $n \leq 2000$

对于另外 20% 的数据,保证 L=n-2, R=n-1

对于100%的数据,保证

 $1 \le L < R \le n \le 5*10^5$, $1 \le h_i \le 5*10^5$, $T \le 10$, $\sum n \le 10^6$

距离

题目描述

闪电麦昆正在和哈德逊医生在温泉小镇进行训练,温泉小镇可以看成是一张 n 个点 m 条边的无向图。

为了拿下下一届活塞杯冠军,哈德逊决定每天给闪电麦昆指定一条简单路径作为练习赛道。由于下届比赛群贤毕至,少长咸集,竞争压力非常大,练习时赛道显然是越长越好。又由于温泉小镇某些地方地形非常特殊,特别考验赛车选手的某些技巧,于是哈德逊医生想找经过某个节点的赛道。作为前活塞杯冠军,哈德逊大黄蜂当然知道怎么对闪电麦昆进行训练,但是在指定路径的过程中,哈德逊犯了难。

哈德逊医生想知道,对于每一个节点,经过他的最长的简单路径长度为多少。而你作为温泉小镇唯一的编程选手,哈德逊医生将这个问题交给了你。

注: 简单路径是指图中路径上的顶点都不相同的路径。

输入格式

第一行两个整数 n, m,表示图的点数和边数。

接下来m行,每行两个整数x,y,表示节点x和y间有边相连。

保证图是一张连通图, 且无重边无自环。

输出格式

一行n个整数,第i个整数表示经过第i个点的一条最长的简单路径的长度。

样例#1

样例输入#1

8	7					
1	2					
2	3					
2	4					
4	6					
5	4					
5	7					
5	8					

样例输出#1

 $4 \ \ 4 \ \ 4 \ \ 4 \ \ 4 \ \ 3 \ \ 4 \ \ 4$

样例 #2

样例输入#2

8	8	
1	2	
	3	
2	4	
4	6	
5	4	
5	7	
5	8	
3	6	

样例输出#2

6 6 6 6 6 6 6

样例#3

见下发文件。

数据范围

测试点编号	$n \leq$	m =
$1\sim 2$	$2 imes10^3$	n-1
$3\sim 6$	$2 imes10^3$	n
$7\sim12$	10^5	n-1
$13\sim 20$	10^5	n

维护数据库

题目描述

头还我爷爷为了训练七娃的编程能力,于是让大娃、二娃、三娃、四娃、五娃和六娃给七娃出一道 数据库练习题。

六娃说,我给你一个初始包含 n 个整数的数据库,即 a_1, a_2, \ldots, a_n 。然后大哥、二哥、三哥、四哥和五哥会对数据库进行 m 次操作。操作分别为:

- 1 × , 大娃会向数据库里加入一个整数 x 。
- 2 \times , 二娃会将数据库中每个整数或上x。
- 3 \times , 三娃会将数据库中每个整数与上x。
- 4 x, 四娃会将数据库中每个整数异或上x。
- 5 x, Ξ decay and Δ decay are Δ so Δ decay and Δ decay are Δ decay are Δ decay and Δ decay are Δ decay are

七娃并不会这道题,于是他用葫芦抓住了你,你现在需要帮他解决这一难题。

输入格式

第一行两个整数 n, m,表示初始整数数目和操作次数。

第二行 n 个整数,表示初始的每个整数。

接下来m行,每行两个整数opt,x,表示操作种类与参数x。

输出格式

对于每个5类型操作,输出一行一个整数,表示答案。

样例#1

样例输入#1

```
7 10
1 9 1 9 8 1 0
1 1
4 5
1 4
5 6
4 5
5 3
3 2
5 1
2 9
5 7
```

样例输出#1

11			
11			
1			
14			

样例 #2

见下发文件。

数据范围

测试点编号	$n \le$	$m \leq$	特殊性质
1	$2 imes 10^3$	$2 imes 10^3$	无
2	10^5	10^5	$opt \in \{1,5\}$
3	10^5	10^5	$opt \in \{4,5\}$
4	10^5	10^5	$opt \in \{1,4,5\}$
$5\sim7$	10^5	10^5	$opt \in \{2,3,5\}$
$8\sim 10$	10^5	10^5	无

对于 100% 的数据, $1 \leq n, m \leq 10^5$, $1 \leq opt \leq 5$, $0 \leq a_i, x < 2^{31}$ 。

快速排序

题目描述

请注意,本题中部分名词含义和常见含义有所区别,请注意分辨。

定义一次冒泡排序为:

```
void bubble_sort(a) {
   for( int i = 0; i < a.size() - 1; i ++ )
      if( a[i] > a[ i + 1 ] )
        std::swap( a[i], a[ i + 1 ] );
}
```

即,从该数组的第一个位置开始,设当前进行到的位置为i,若 $A_i > A_{i+1}$ 则交换。

定义一次快速排序为:

```
void quick_sort(a) {
   if( a.size() == 1 )
      return ;
   while( a has no partition points ) {
      cnt += a.size()
      bubble_sort(a)
   }
   divide a at all partition points;
   do quick_sort for each_part
}
```

即, 对于当前递归到的区间 [l,r], 定义一个位置 i 为分割点, 当且仅当 $\forall x \in [l,i], y \in [i+1,r], A_x < A_y$ 。

快速排序的过程是这样的,对于当前的区间 [l,r],若该区间长度为 1,直接返回;

否则, 若该区间中存在分割点, 则找出所有分割点, 递归两两相邻分割点中的区间。

```
即, 若当前递归区间为 [l,r], 分割点为 p_1,p_2,\cdots,p_k, \forall p_i \in [l,r] 则递归 [l,p_1],[p_1+1,p_2],\ldots,[p_{k-1}+1,p_k],[p_k+1,r]。
```

若不存在分割点,则执行多次冒泡,每一次冒泡将cnt的值加上当前数组长度,直至出现分割点,执行递归。

给出两个正整数 L,R,对所有的 $n\in [L,R]$ 分别求出所有长度为 n 的排列的 cnt 值之和对 998244353 取模的结果。

输入格式

一行两个正整数 L,R,意义同题目描述。

输出格式

为减少输出量, 仅输出一个整数表示所有答案的异或和。

样例#1

样例输入#1

2 8

样例输出#1

920329

样例#2

样例输入#2

17 26

样例输出#2

206664280

样例#3

样例输入#3

60103 201518

样例输出#3

919666446

数据范围与提示

测试点编号	R-L+1	R
$1\sim 2$	≤ 10	≤ 8
$3\sim 4$	≤ 10	≤ 20
$5\sim 6$	≤ 10	≤ 500
$7\sim 8$	≤ 5000	≤ 5000
$9\sim 10$	$\leq 10^7$	$\leq 10^7$