Perfect Observability is a Myth: Restraining Bolts in the Real World

Robonauts: Akkamahadevi Hanni, Rashmeet Kaur Nayyar, Naman Shah, and Mudit Verma CSE 574: Planning and Learning in Artificial Intelligence

Introduction

- A restraining bolt often assumes a fully observable setting where it models aspects of the world distinct from an agent's observations.
- We disentangle observations from inference of symbols over those observations which can be noisy.
- Contributions:
 - Impose constraints on an agent in a world with noisy observations.
 - Allow for image observations for the agent as well as the bolt.
 - Flexible Codebase that works for different LTL configurations & openAl gym envs.

Approach

Algorithm 1: Transitioning over augmented DFA

Result: Reward, Next state over augmented DFA Input: Original DFA D, Current DFA state q, Probabilities of Fluents C; if $C(e) \geq 0.5$ then Truth(e) = TTruth(e) = Fend $E_list = D.get_edges(q)$; $E = e \text{ in } E \text{_list s.t. } \delta(q, Truth, e) = 1;$ initialize r=0; **for** symbols in e **do** if $0.5 \le C(symbol) \le 0.9$ then r = r - d.LowConfidenceCost; end end if e is a terminal state then r = r + d.TerminalRewardend

Results

- Domains : Gridworld, breakout
- DRL Algorithms: PPO, A2C, DQN.
- 5 restraint specifications

LTL: F(on_edge)

LTL specification	Algorithm	R_{max}^c	R_{π}	N_{steps}	N_{frames}	Constraint followed
	PPO	94	79.48	90	25k	✓
G(o)	A2C	94	63.64	75	80k	✓
	DQN	92	74.42	82	4k	√
!F(t)	A2C	82	80.71	60	50k	✓
	DQN	82	79	59	4k	√
	PPO	92	77.78	87.13	133k	√
F(t and X(!(F(t))))	A2C	92	74.54	104.2	165k	√
(F(t and X(!(F(t)))) and !F(b))						
or (F(b and X(!(F(b)))) and !F(t))	A2C	92	78.42	78	20k	✓
F(c)	DQN	_	-240	2900	2.8m	×

return r, e;

Table 1: Results for Gridworld domain where e = on_edge, t = top_right_corner, b = bottom_left_corner, and u = facing_upwards, and Breakout domain where c = brick_clear_left. Here, e, t, b, u, and c are fluents used to specify the LTL specifications.