COTB29 ANURAG ABHAY PARGAONKAR ASSIGNMENT NO.06

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
iris = pd.read_csv("iris.csv")
iris.head(5)
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [3]:

iris.dtypes

Out[3]:

Id	int64
SepalLengthCm	float64
SepalWidthCm	float64
PetalLengthCm	float64
PetalWidthCm	float64
Species	object

dtype: object

In [4]:

```
from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc_iris = pd.DataFrame(enc.fit_transform(iris[['SepalLengthCm']]).toarray())
enc_iris
```

Out[4]:

	0	1	2	3	4	5	6	7	8	9	 25	26	27	28	29	30	31	32
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
145	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
146	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
147	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
148	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
149	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
150 rows × 35 columns																		
\triangleleft																		

In [5]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
iris['Species'] = le.fit_transform(iris['Species'])
newiris=iris
iris.head(7)
```

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	0
1	2	4.9	3.0	1.4	0.2	0
2	3	4.7	3.2	1.3	0.2	0
3	4	4.6	3.1	1.5	0.2	0
4	5	5.0	3.6	1.4	0.2	0
5	6	5.4	3.9	1.7	0.4	0
6	7	4.6	3.4	1.4	0.3	0

```
In [6]:
```

```
iris.isnull().head(5)
```

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False

In [7]:

```
x = iris.iloc[:, :-1].values
print(x)

[[1.00e+00 5.10e+00 3.50e+00 1.40e+00 2.00e-01]
  [2.00e+00 4.90e+00 3.00e+00 1.40e+00 2.00e-01]
  [3.00e+00 4.70e+00 3.20e+00 1.30e+00 2.00e-01]
  [4.00e+00 4.60e+00 3.10e+00 1.50e+00 2.00e-01]
  [5.00e+00 5.00e+00 3.60e+00 1.40e+00 2.00e-01]
  [6.00e+00 5.40e+00 3.90e+00 1.70e+00 4.00e-01]
  [7.00e+00 4.60e+00 3.40e+00 1.40e+00 3.00e-01]
  [8.00e+00 5.00e+00 3.40e+00 1.50e+00 2.00e-01]
  [9.00e+00 4.40e+00 2.90e+00 1.40e+00 2.00e-01]
  [1.00e+01 4.90e+00 3.70e+00 1.50e+00 1.00e-01]
  [1.10e+01 5.40e+00 3.70e+00 1.50e+00 2.00e-01]
  [1.20e+01 4.80e+00 3.40e+00 1.60e+00 2.00e-01]
  [1.30e+01 4.80e+00 3.00e+00 1.40e+00 1.00e-01]
```

In [8]:

```
y = iris.iloc[:, -1].values
print(y)
```

[1.40e+01 4.30e+00 3.00e+00 1.10e+00 1.00e-01] [1.50e+01 5.80e+00 4.00e+00 1.20e+00 2.00e-01] [1.60e+01 5.70e+00 4.40e+00 1.50e+00 4.00e-01] [1.70e+01 5.40e+00 3.90e+00 1.30e+00 4.00e-01] [1.80e+01 5.10e+00 3.50e+00 1.40e+00 3.00e-01] [1.90e+01 5.70e+00 3.80e+00 1.70e+00 3.00e-01]

In [9]:

```
x = iris.drop(['SepalLengthCm'], axis = 1)
y = iris['SepalLengthCm']
```

```
In [10]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import numpy as np
import pandas as pd
# Load the iris dataset
iris_data = pd.read_csv('iris.csv')
# Function
def train_test_rmse(x, y):
   x = iris_data[x]
   y = iris_data[y]
   x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_stat
   linreg = LinearRegression()
   linreg.fit(x_train, y_train)
   y_pred = linreg.predict(x_test)
   print(accuracy_score(y_test,y_pred))
   return np.sqrt(metrics.mean_squared_error(y_test, y_pred))
```

In [11]:

```
import numpy as np
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=4
```

In [12]:

```
import numpy as np
```

In [13]:

```
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
import numpy as np
x = np.array([[-1,-1],[-2,-1],[-3,-2],[1,1],[2,1],[3,2]])
y = np.array([1,1,1,2,2,2])
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
```

In [14]:

```
from sklearn.naive_bayes import GaussianNB
```

In [15]:

```
gaussian = GaussianNB()
gaussian.fit(x_train, y_train)
```

Out[15]:

GaussianNB()

```
In [16]:
y_pred = gaussian.predict(x_test)
In [17]:
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_sc
y_{true} = [2,0,2,2,0,1]
y_pred = [0,0,2,2,0,2]
confusion_matrix(y_true,y_pred)
Out[17]:
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]], dtype=int64)
In [18]:
ac = accuracy_score(y_true, y_pred)
print(ac)
0.66666666666666
In [19]:
ps = precision_score(y_true, y_pred, average='micro')
print(ps)
```

0.66666666666666

```
In [20]:
```

```
rs = recall_score(y_true, y_pred, average='micro')
print(rs)
```

0.666666666666666