Maximum Value of the Correlation Between a Standard Normal Random Variable and a Binomial Random Variable

Yan Zeng

October 22, 2009

Abstract

Investigation of the range of E[XY] where Y is a binomial random variable. This is a problem arising from credit risk modelling.

1 The problem

Given a standard normal random variable X and another binomial random variable Y such that P(Y = 1) = p, P(Y = 0) = q := 1 - p (0). What is the maximum possible value of the correlation between <math>X and Y? This problem arises from credit risk modeling and is asked by Marcelo Piza at Bloomberg's quant group.

Note the standard deviation of X and Y are 1 and \sqrt{pq} , respectively. So the correlation $\rho(X,Y)$ is equal to

$$\rho(X,Y) = \frac{E\{(X - E[X])(Y - E[Y])\}}{\sqrt{pq}} = \frac{E[XY]}{\sqrt{pq}}.$$

Therefore, the problem is really about what is the maximum possible value of E[XY]?

2 Analysis of the problem

Denote by $f_{X|Y}(x,y)$ the conditional density of X given Y. We have

$$E[XY] = E[YE[X|Y]] = pE[X|Y = 1] = p \int_{\mathbb{R}} x f_{X|Y}(x,1) dx.$$

We now look for the constraints $f_{X|Y}(x,1)$ must satisfy. Define $\phi(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$, we have

$$\phi(x)dx=P(X\in dx)=E[P(X\in dx|Y)]=pf_{X|Y}(x,1)dx+qf_{X|Y}(x,0)dx.$$

So $\phi(x)$ is the convex combination of two probability density functions. This motivates us to prove the following proposition.

Proposition 1. A function $h(x) : \mathbb{R} \to \mathbb{R}$ can be used for $f_{X|Y}(x,1)$ if and only if h(x) satisfies the following set of conditions:

(1) h is a probability density function, i.e. $h(x) \ge 0$ a.s. and $\int_{\mathbb{R}} h(x) dx = 1$;

(2)
$$h(x) \le \frac{\phi(x)}{p}$$
.

Proof. The necessity is obvious. To prove the sufficiency, it suffices to show $\frac{1}{q}[\phi(x)-ph(x)]$ can be used for $f_{X|Y}(x,0)$, i.e. $\frac{1}{q}[\phi(x)-ph(x)]$ is a probability density function. Indeed, we note condition (2) implies $\phi(x)-ph(x)\geq 0$ and

$$\int_{\mathbb{R}}\frac{1}{q}[\phi(x)-ph(x)]dx=\frac{1}{q}-\frac{p}{q}=1.$$

Combined, we can conclude any h(x) satisfying condition (1) and (2) can be used for $f_{X|Y}(x,1)$.

In view of Proposition 1, we can reformulate the original problem as follows. Define $\Lambda := \{h(x) \in \mathcal{B}(\mathbb{R}) : h(x) \geq 0, \int_{\mathbb{R}} h(x) dx = 1, h(x) \leq \frac{\phi(x)}{p} \}$, solve the following optimization problem:

$$h_0(x) = \arg\max_{h \in \Lambda} \int_{\mathbb{R}} x h(x) dx.$$

3 Solution

Proposition 2. Let $h \in \Lambda$. Suppose there exists a pair (x_1, x_2) of continuity points of h(x), such that $x_1 < x_2$, $h(x_1) > 0$ and $h(x_2) < \frac{\phi(x)}{p}$. Then we can find $h_1(x) \in \Lambda$, such that

$$\int_{\mathbb{R}} x h(x) dx < \int_{\mathbb{R}} x h_1(x) dx.$$

Proof. By the continuity of h(x) at x_1 and x_2 , we can find $\varepsilon > 0$ and $\delta > 0$, such that $h(x) \geq \varepsilon$ on $[x_1 - \delta, x_1 + \delta]$ and $h(x) \leq \frac{\phi(x)}{p} - \varepsilon$ on $[x_2 - \delta, x_2 + \delta]$. Define

$$h_1(x) = \begin{cases} h(x) - \varepsilon & x \in [x_1 - \delta, x_1 + \delta] \\ h(x) + \varepsilon & x \in [x_2 - \delta, x_2 + \delta] \\ h(x) & \text{otherwise.} \end{cases}$$

Then $h_1 \in \Lambda$ and

$$\int_{\mathbb{R}} xh(x)dx - \int_{\mathbb{R}} xh_1(x)dx = \int_{x_1 - \delta}^{x_1 + \delta} \varepsilon xdx + \int_{x_2 - \delta}^{x_2 + \delta} (-\varepsilon)xdx = 2\delta\varepsilon(x_1 - x_2) < 0.$$

Corollary 1. If $h \in \Lambda$ has a continuity point x_0 at which $h(x_0) \in (0, \frac{\phi(x)}{p})$, then h cannot be the solution to the optimization problem.

Corollary 2. Suppose the above optimization problem has a solution $h_0(x)$, then $h_0(x)$ must be either 0 or $\frac{\phi(x)}{p}$ at its continuity points. Furthermore, if $h_0(x)$ is piecewise continuous, it must have the form $\frac{\phi(x)}{p}1_{\{x>a\}}$.

Theorem 1. In the subclass of Λ consisting of piecewise continuous functions, the optimization problem has a solution

$$h(x) = \frac{\phi(x)}{p} \mathbb{1}_{\{x > a\}},$$

where $a=-\Phi^{-1}(p)$. In this case the maximum value of the correlation is $\frac{1}{\sqrt{2\pi p(1-p)}}e^{-[\Phi^{-1}(p)]^2/2}$.

Proof. It suffices to find a such that h(x) thus defined is a probability density function. Indeed, we need

$$1 = \int_{\mathbb{R}} h(x)dx = \int_{a}^{\infty} \frac{\phi(x)}{p}dx = \frac{\Phi(-a)}{p}.$$

So $a = -\Phi^{-1}(p)$. In this case, we have

$$E[XY] = p \int_{\mathbb{R}} x h(x) dx = \int_{a}^{\infty} x \phi(x) dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{a^2}{2}}.$$

So the maximum value of the correlation is

$$\rho_{\max}(X,Y) = \frac{1}{\sqrt{2\pi p(1-p)}} e^{-[\Phi^{-1}(p)]^2/2}.$$

Corollary 3. The correlation of X and Y satisfies the following inequality

$$-\frac{1}{\sqrt{2\pi p(1-p)}}e^{-[\Phi^{-1}(p)]^2/2} \leq \rho(X,Y) \leq \frac{1}{\sqrt{2\pi p(1-p)}}e^{-[\Phi^{-1}(p)]^2/2}.$$

Furthermore, the upper and lower bounds are tight.

Proof. It suffices to notice $Y_1 = 1 - Y$ itself is a binomial random variable with $P(Y_1 = 1) = 1 - p$ and $P(Y_1 = 0) = p$. Therefore

$$\min E[XY] = -\max\{-E[XY]\} = -\max E[XY_1] = \frac{-1}{\sqrt{2\pi}}e^{-[\Phi^{-1}(1-p)]^2/2} = \frac{-1}{\sqrt{2\pi}}e^{-[\Phi^{-1}(p)]^2/2}.$$

4 Generalization

The above proof also works for a general random variable X with density function and a binomial random variable Y. Assuming X has pdf f(x), cdf F(x), and variance 1, we have the following result:

Theorem 2. In the subclass of Λ consisting of piecewise continuous functions, the optimization problem has a solution

$$h(x) = \frac{f(x)}{p} 1_{\{x > a\}},$$

where $a = F^{-1}(1-p)$. In this case the maximum value of the correlation is $\frac{\int_a^\infty x f(x) dx}{\sqrt{p(1-p)}}$.

Corollary 4. The correlation of X and Y satisfies the following inequality

$$-\frac{\int_{F^{-1}(p)}^{\infty} x f(x) dx}{\sqrt{p(1-p)}} \le \rho(X,Y) \le \frac{\int_{F^{-1}(1-p)}^{\infty} x f(x) dx}{\sqrt{p(1-p)}}.$$

Furthermore, the upper and lower bounds are tight.

5 Numerical illustration

We use Matlab to plot the upper and lower bounds as functions of p for X being a standard normal random variable. Note Φ^{-1} approach to ∞ rather slowly, which could cause numerical instability using the original formula. Therefore, we use the change of variable $(x = \Phi^{-1}(p))$ for the plotting.

function plot_corr_bd

```
%plot_corr_bd plots the tight bounds of the correlation between a
% standard normal random variable and a binomial
% random variable with paraemter p (i.e. probability of
being 1 is p, probability of being 0 is 1-p).
%
% Reference
% [1] Yan Zeng. Maximum value of the correlation between
a standard normal random variable and a binomial random
variable. October 22, 2009.
%
% Yan Zeng, 10/20/2009.
```

x = -10:0.01:10; % x = nominv(p)

```
y = exp(-x.^2/2)./sqrt(2*pi*normcdf(x).*(1-normcdf(x)));
z = -y;
plot(x,y,'b', x,z,'r');
grid on;
end %plot_corr_bd
```


Figure 1: Bounds of the correlation between a standard normal random variable and a binomial random variable