Relational translation - 1

Knowledge objectives

1. Name the two meanings of the NULL value

Understanding Objectives

- Explain the storage space problem generated by NULL values, and how DBMSs solve it
- Explain the access time problem generated by NULL values, and how we should take it into account in the DB design
- 3. Explain the general way to translate classes and associations into relational model

Application Objectives

 Translate a DB query from natural language into SQL, given a DB schema, taking into account the presence of NULL values

Which rows do we get?

SELECT *
FROM R
WHERE A=10 OR A<>10;

Null values

- Two meanings
- Reasons to use them:
 - Inserting a tuple with an unknown value
 - Adding a new attribute to a non-empty relation
 - Special aggregation cases
 - Avoiding exceptions in aggregations with unknown values
- Representation:
 - Different from any non-null value

Null values storage

Null values storage

Null values storage

Null values query

a) SELECT name
FROM People
WHERE #labour>0;

b) SELECT name FROM Women WHERE #labour>0;

Men	Women

```
NULL θ X -> UNKNOWN
NULL=NULL -> UNKNOWN
```

NULL θ X -> UNKNOWN NULL=NULL -> UNKNOWN

NOT	
Т	F
U	U
F	Т

NULL θ X -> UNKNOWN NULL=NULL -> UNKNOWN

NOT	
Т	F
U	U
F	Т

AND	Т	U	F
Т	Т	U	F
U	U	U	F
F	F	F	F

NULL θ X -> UNKNOWN NULL=NULL -> UNKNOWN

NOT	
Т	F
U	U
F	Т

AND	Т	J	F
Т	Т	J	F
U	U	J	F
F	F	Щ	F

OR	Т	U	F
Т	Τ	Т	Т
U	Т	U	U
F	Т	U	F

Consequences of ternary logic

- Queries
 - Return rows when the predicate is true
 - Do not return those evaluating unknown
- Constraints
 - Raise an exception when the predicate is false
 - Do not raise anything when evaluates unknown

Effect of null values in aggregates

- COUNT
 - With "*", counts all tuples
 - □ With "a", counts those with non-null value for the attribute
- SUM
 - Adds only non-null values
 - Returns null if there are not non-null values
- MIN/MAX
 - Returns null if there are not non-null values
- AVG
 - Its result always coincide with SUM(a)/COUNT(a)

Content	SUM(a)	COUNT(*)	COUNT(a)	AVG(a)	SUM(a) / COUNT(a)	SUM(a) / COUNT(*)	MIN(a)
empty	null	0	0	null	null	null	null
null	null	1	0	null	null	null	null
null 0 1	1	3	2	0.5	0.5	0.33333	0

Effect of null values in usual other cases

- V IN (X₁, X₂, ...) is the same as V = X₁ OR V = X₂ OR...
 NULL IN (X₁, X₂, ...) -> UNKNOWN
- GROUP BY
 - Null values are put onto a single group
- UNIQUE
 - Unique constraints treat null as different to everything (different to null and different to other values)
 - This makes every null a different null so that unique constraints accept multiple null values

Specific comparison for nulls

SELECT id FROM T WHERE a IS NULL;

VS

SELECT id FROM T WHERE a=NULL;

Specific comparison for nulls

SELECT id FROM T WHERE a IS NULL;

VS

SELECT id FROM T WHERE a=NULL;

Query examples with nulls

teachers living in a city where no student lives

```
SELECT id FROM teachers WHERE city NOT IN (SELECT city FROM students);
```

VS

```
SELECT id
FROM teachers
WHERE NOT EXISTS ( SELECT *
FROM students
WHERE teachers.city =
Alberto Abelló students.city);
```

Algebraic operations with nulls

```
R( A, B)
? ?
a ?
a 1
? 1
```

```
R ∪ S (A, B)
? ?
a ?
a 1
? 1
```

UML model and instantiation

Alberto Abelló 16

UML model and instantiation

Alberto Abelló 16

Relational model representation

```
Long
CREATE TABLE Projects (pro CHAR(25), ...);
CREATE TABLE Employees (id CHAR(9), ...);
CREATE TABLE Assignments (...);
Short
Projects(<u>pro</u>, →...)
Assignments(<u>empl,pro</u>,function)
Employees(id, ...)
```

ONLY CORRECT **INSTANTIATIONS OF UML DIAGRAM MUST** BE POSSIBLE TO REPRESENTIN THE RELATIONAL SCHEMA

WITHOUT OID!!!

Alberto Abelló 17

Summary

- Meaning of NULL values
- Consequences of NULL values
 - Space
 - Time
 - Writing queries
- General way to translate classes and associations

Bibliography

- Jaume Sistac et al. Disseny de bases de dades.
 Editorial UOC, 2002. Col·lecció Manuals, number 43
- J. Melton and A. Simon. SQL 1999. Morgan Kaufmann, 2002
- P. Gulutzan and T. Pelzer. SQL-99 Complete, really. R&D Books, 1999