Chapter 5: Estimation

(Ott & Longnecker Sections: 5.8)

Duzhe Wang

https://dzwang91.github.io/stat324/

Part 5

Summary and motivation

• General form of CI:

 $L = \text{estimator} - \text{critical value} \times \text{standard error of the estimator},$

 $U = \text{estimator} + \text{critical value} \times \text{standard error of the estimator}$

• CI for population mean:

Population Distribution	$X \sim N(\mu, \sigma^2)$		$X \nsim N(\mu, \sigma^2)$	
subcase	σ is known	σ is unknown	n is large (like $n>30$)	n is small

Summary and motivation

General form of CI:

 $L = \text{estimator} - \text{critical value} \times \text{standard error of the estimator},$

 $U = \text{estimator} + \text{critical value} \times \text{standard error of the estimator}$

Cl for population mean:

Population Distribution	$X \sim N(\mu, \sigma^2)$		$X \sim N(\mu, \sigma^2)$	
subcase	σ is known	σ is unknown	n is large (like n>30)	n is small

How do we make a CI when the population is not normal and the sample size is small?

Our goal is to build a CI for μ .

Does the sample come from a normal distribution?

Does the sample come from a normal distribution?

Does the sample come from a normal distribution?

• It looks pretty bad.

Does the sample come from a normal distribution?

• It looks pretty bad.

Can we use CLT?

Does the sample come from a normal distribution?

• It looks pretty bad.

Can we use CLT?

• Too small sample size.

• If $X_1, ..., X_n \sim N(\mu, \sigma^2)$ i.i.d., then

$$\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}\sim t_{n-1}.$$

Therefore,

$$\mathbb{P}(-t_{n-1,\frac{\alpha}{2}} \leq \frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \leq t_{n-1,\frac{\alpha}{2}}) = 1-\alpha.$$

• Therefore,

$$\mathbb{P}(\bar{X}-t_{n-1,\frac{\alpha}{2}}\frac{S}{\sqrt{n}}\leq \mu\leq \bar{X}+t_{n-1,\frac{\alpha}{2}}\frac{S}{\sqrt{n}})=1-\alpha.$$

What is the distribution of $\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$ when sample doesn't come from the Normal distribution?

What is the distribution of $\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$ when sample doesn't come from the Normal distribution?

Use simulations and get the empirical distribution!

What is the distribution of $\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$ when sample doesn't come from the Normal distribution?

• Use simulations and get the empirical distribution!

How can we sample in each simulation?

What is the distribution of $\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$ when sample doesn't come from the Normal distribution?

• Use simulations and get the empirical distribution!

How can we sample in each simulation?

Bootstrap!

Given the original data set: $x_1, x_2, ..., x_n$. (*n* is small)

1. Compute the sample mean \bar{X} and sample standard deviation S of the original data.

Given the original data set: $x_1, x_2, ..., x_n$. (*n* is small)

1. Compute the sample mean \bar{X} and sample standard deviation S of the original data.

One run of bootstrap

- 2. Draw n data points from the original data set with replacement. Call these new observations x_1^* , x_2^* , ..., x_n^* .
- 3. Compute the mean and standard deviation of the resampled data. Call them \bar{X}^* and S^* .
- 4. Compute the realization of statistic $\hat{t} = \frac{\bar{X}^* \bar{X}}{\frac{\bar{S}^*}{\sqrt{n}}}$.

Given the original data set: $x_1, x_2, ..., x_n$. (*n* is small)

1. Compute the sample mean \bar{X} and sample standard deviation S of the original data.

One run of bootstrap

- 2. Draw n data points from the original data set with replacement. Call these new observations x_1^* , x_2^* , ..., x_n^* .
- 3. Compute the mean and standard deviation of the resampled data. Call them \bar{X}^* and S^* .
- 4. Compute the realization of statistic $\hat{t} = rac{ar{X}^* ar{X}}{rac{ar{S}^*}{\sqrt{n}}}$.
- 5. Repeat steps 2-4 a large number of times(say 1000 times), and compute \hat{t} from each one. Put these values of \hat{t} in order and throw them into a histogram.

This is an approximation to the true sampling distribution of $\frac{X-\mu}{\frac{S}{\sqrt{n}}}$

How do we make a CI using the histogram from bootstrap?

How do we make a CI using the histogram from bootstrap?

- 6. After step 1-5, find the $\alpha/2$ and $1-\alpha/2$ critical values of the approximate sampling distribution you've generated with all these \hat{t} . Call these critical values $\hat{t}_{(\alpha/2)}$ and $\hat{t}_{(1-\alpha/2)}$. (What is $\alpha/2$ critical value?)
- 7. An approximate $100(1-\alpha)\%$ CI for μ is

$$(\bar{X}-\hat{t}_{(\alpha/2)}\frac{S}{\sqrt{n}},\bar{X}-\hat{t}_{(1-\alpha/2)}\frac{S}{\sqrt{n}}).$$

Step 1: Create the original data set

Step 2: Calculate the sample mean and sample standard deviation of the original data set

```
xbar = mean(data)
s = sd(data)
```


Step 3 (a): Build a bootstrap function

```
bootest=function(data,b) {
  bootstat=NULL
  truemean=mean(data)
  for(i in 1:b) {
    samp=sample(data, size = length(data), replace = T)
    bootmean=mean(samp)
    bootsd=sd(samp)
    bootstat[i]=(bootmean - truemean)/(bootsd/sqrt(n))
  }
  return(bootstat)
}
```


Step 3 (b): Run boostrap b times

```
b = 1000  # number of bootstrap samples
bootdata=bootest(data,b)
hist(bootdata, breaks = 20)
```

Histogram of bootdata

This distribution is not very symmetric, and thus quite unlike a t or normal.

Step 4: Calculate critical values

```
alpha=0.05 # 95% CI
\hat{t}_{1-\alpha/2}:
lower=quantile(bootdata, probs=alpha/2)
lower
        2.5%
##
## -2.71855
\hat{t}_{\alpha/2}:
upper=quantile(bootdata, probs=1-alpha/2)
upper
##
       97.5%
## 1.802621
```


Step 5: Build a CI

```
CI_lower=xbar-upper*s/sqrt(n)
CI_upper=xbar-lower*s/sqrt(n)
print(c(CI_lower, CI_upper))
```

```
## 97.5% 2.5%
## 63.90435 175.50433
```

What's the next?

We'll start hypothesis testing in the next lecture.