南京理工大学博士学位论文答辩模板

答辩人: 张三 导师: 李四 教授

> 南京理工大学 ** 学院

****年**月**日

目录

- ① 引言 研究背景 论文研究动机和研究成果
- ② 第一部分 数值实验结果与分析
- 3 第二部分
- 4 第三部分
- 5 全文总结

- 1 引言
- 2 第一部分
- 3 第二部分
- 4 第三部分
- 5 全文总结

研究动机: 研究成果:

- 1 引言
- 2 第一部分
- 3 第二部分
- 4 第三部分
- 5 全文总结

基于二阶时空TGV和核范数的模型

针对动态 MR 图像,基于图像分解的思想,利用二阶时空 TGV 和核范数,提出模型:

$$\min_{L,S} \frac{1}{2} \|A(L+S) - B\|_{\mathrm{F}}^2 + \mathrm{TGV}_{\alpha}^2(S) + \beta \|L\|_*. \tag{1}$$

算法 1 二阶时空 TGV 和低秩分解模型的 Primal-Dual 算法

初始化: σ, τ, S_0, L_0 , $\Rightarrow L_0 = A^*B$, $S_0 = 0$;

迭代:根据以下步骤更新参数:

1.
$$p^{n+1} = \mathcal{P}_{\alpha_1}(p^n + \sigma(\nabla \bar{S}^n - \bar{w}^n));$$

2.
$$q^{n+1} = \mathcal{P}_{\alpha_0}(q^n + \sigma \mathcal{E}(\bar{w}^n))$$
;

3.
$$\lambda^{n+1} = (\lambda^n + \sigma(A(\bar{L}^n + \bar{S}^n) - B))/(1 + \sigma);$$

4.
$$S^{n+1} = S^n - \tau (A^* \lambda^{n+1} - \operatorname{div}_1 p^{n+1});$$

5.
$$w^{n+1} = w^n + \tau(\text{div}_2 q^{n+1} + p^{n+1});$$

6.
$$L^{n+1} = \mathcal{S}_{\beta}(L^n - \tau A^* r^{n+1})$$
;

7.
$$\bar{S}^{n+1} = 2\bar{S}^{n+1} - S^n$$
;

8.
$$\bar{w}^{n+1} = 2w^{n+1} - w^n$$
;

9.
$$\bar{L}^{n+1} = 2L^{n+1} - L^n$$
;

直到收敛、返回 x^{n+1}

数值实验结果

Table: 各个模型在不同数据上的重建结果(伪径向采样)

数据集 模型		躯干体模	心脏灌注	胸部1	胸部2	胸部3
Zerofilled	SER	20.54	14.80	11.32	11.57	14.85
	SSIM	0.8321	0.8855	0.4820	0.5897	0.7086
kt-SLR	SER	33.35	17.58	17.42	13.61	18.38
	SSIM	0.9880	0.9412	0.7712	0.6956	0.8461
kt-RPCA	SER	29.27	18.33	19.31	14.82	19.81
	SSIM	0.9700	0.9447	0.8857	0.7920	0.9068
L+S	SER	27.99	19.12	17.60	14.74	19.91
	SSIM	0.9514	0.9490	0.7675	0.7319	0.8791
ICTGV	SER	26.88	17.87	16.31	12.18	16.84
	SSIM	0.9435	0.9405	0.6735	0.6080	0.7693
Proposed	SER	32.74	19.57	20.56	16.24	21.08
	SSIM	0.9917	0.9514	0.9402	0.9091	0.9356

- 1 引言
- 2 第一部分
- 3 第二部分
- 4 第三部分
- 5 全文总结

引言 第一部分 第二部分 第三部分

- 1 引言
- 2 第一部分
- 3 第二部分
- 4 第三部分
- 5 全文总结

引言 第一部分 第二部分 **第三部分** 全文总结

- 1 引言
- 2 第一部分
- 3 第二部分
- 4 第三部分
- 5 全文总结

引言 第一部分 第二部分 第三部分 **全文总结** 引言 第一部分 第二部分 第三部分 全文总统

感谢各位专家、老师来参加我的博士论文学位答辩!