Name			

Student	Number	

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION

CHE333S - REACTOR DESIGN

APRIL 27, 2001

Exam Type: C

APPROVED PROGRAMMABLE AND NON-PROGRAMMABLE CALCULATORS ONLY

Examiner: B.A. Saville

DO ALL QUESTIONS

Question	Value	Grade
1	25	
2	25	
3	25	
4	25	
Total	100	

- 1. A reactor is to be designed for a liquid phase reaction A + 2B → C. The reaction is first order with respect to each reactant, with a rate constant of 0.075 L mol⁻¹ min⁻¹, and occurs isothermally and isobarically. The feed contains A at 0.50 mol/L, and B at 1.0 mol/L.
- a) Determine the time required to obtain 75% conversion of A.
- b) Determine the vessel volume required to produce 240 mol of C per day, if the plant operates 24 hours per day, and the down time is 20 minutes.
- c) As an alternative to the batch reactor designed in parts (a) and (b), a PFR was considered in the event continuous operation was feasible. What is the residence time required for a PFR to achieve the same conversion as in (a)?

Name	 Student Number

- 2. A reactor must be designed for a gas phase reaction $C_2H_6 \rightarrow C_2H_4 + H_2$. The reaction is first order with respect to C_2H_6 , with a rate constant of 0.534 s⁻¹. The feed contains 0.25 mol/L of C_2H_6 , at 25 L/s.
- a) Determine the vessel volume required for 80% conversion, if a single CSTR is used.
- b) Determine the total vessel volume required for 80% conversion, if two equal-sized CSTRs are used.
- c) Would the volume of a PFR be larger than, smaller than or the same as the volumes calculated in (a) and (b). Explain and JUSTIFY without calculations.

Name	Student Number
Tanic	Ottadolit / Gillott

3. An SO₂ converter is to be designed for a multistage unit to produce SO₃. The feed contains 9.5 mol% SO₂, 11.5% O₂, 79% N₂, and a trace of SO₃ at 100 kPa and 430°C. The feed rate of SO₂ is 120 mol/s, and 1.25 x 10⁻⁹ mol/s SO₃. The reaction occurs adiabatically and isobarically; the reaction enthalpy (ΔH_R) for this exothermic process is -100 kJ/(mol SO₂). Estimate the catalyst mass and bed volume required for the first stage of this unit, given that 60% conversion is obtained in this stage. Use a step size of 0.20 for the fractional conversion.

Data:

$$K_p = 8 \times 10^{-5} \text{ EXP}(12,100/T) \text{ MPa}^{-12}$$

$$(-r_{SO_1}) = k_{SO_1} \left(\frac{p_{SO_2}}{p_{SO_3}} \right)^{\frac{1}{2}} \left[p_{O_2} - \left(\frac{p_{SO_3}}{p_{SO_3} K_p} \right)^2 \right]$$

 $k_{SO2} = 1.8 \times 10^{11} \text{ EXP}(-26000/T) \text{ mol s}^{-1} \text{ MPa}^{-1} (\underline{g} \text{ cat})^{-1}$

 $c_P = 0.94 \text{ J g}^{-1} \text{ K}^{-1}$. Molar masses for S, O, and N are 32, 16, and 14 g/mol, respectively.

Name	Student Number
Extra Blank Page for Calculations	

Name	Student Number	
Manie	Stadelli Malliber	

4. Kinetics experiments were conducted using two different sizes of spherical pellets. The gas-phase reaction is 1^a order; in each test, the concentration of the reactant A was kept constant at 0.025 mol/L. A separate study established that the effective diffusivity, D_e , was 2.5×10^{-3} cm²/s. The following data were obtained from the kinetics experiments:

(-r _A) _{obs} , moles of A L ⁻¹ s ⁻¹	1.46 x 10 ⁻³	8.6 x 10 ⁻¹
particle radius, cm	0.060	0.12

- a) Determine the Thiele Modulus (\$\phi'\$) and effectiveness factor for each particle
- b) Determine the intrinsic reaction rate and rate constant for the intrinsic reaction (k_{λ})

Name	Student Number

Extra Blank Page for Calculations