⑲ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭62 - 202735

Mint Cl.

識別記号

庁内整理番号

❸公開 昭和62年(1987)9月7日

B 32 B 27/28

102

7112-4F

審査請求 未請求 発明の数 1 (全3頁)

49発明の名称

レトルト殺菌用積層材

到特 願 昭61-45604

23出 願 昭61(1986)3月3日

⑫発 明 者

秀 樹 本

東京都台東区台東1丁目5番1号 凸版印刷株式会社内 東京都台東区台東1丁目5番1号 凸版印刷株式会社内

饱発 明 者

藤 武 男 סל

山

凸版印刷株式会社 ⑪出 願 人 東京都台東区台東1丁目5番1号

> 睋 細

1. 発明の名称

レトルト殺菌用積層材

2. 特許請求の範囲

エチレン含有率が20~60モル%、けん化度 が90%以上のエチレンービニルアルコール共重 合樹脂層の両側をポリオレフィン樹脂層を設けた 基材の片側に、エチレン含有 塞が 2 0 ~ 6 0 モル %、けん化度が90%以上のエチレンーピニルア ルコール共重合樹脂層を設けたレトルト殺歯用機 盾材。

3.発明の詳細な説明

〔産業上の利用分野〕

本発明はレトルト殺菌時およびレトルト殺菌侵 の食品の保存性の優れたレトルト殺菌用積層材に 関するものである。

"〔従来技術〕

従来から、食品、医薬品等の包装用材料として は、包装する食品等の嵌化および芳香の飛散、浸

透性液の浸透による変質を防止するため、ガスパ リアー性、水底気パリアー性の優れたものが要求 されていた。

このため、レトルト殺歯用機膚材としては、ア ルミ箔を用いた横層材が一般的に用いられている。 アルミ箔を用いた横層材は、ガスパリアー性、水 蒸気バリアー性が使れているのTCC食品保存の点から 好ましい。しかし、アルミ箔は、不透明であるた め、内容物を確認できず、消費者は購入後、開封 して初めて確認できるものであった。

一方、透明な積層材としては、ガスパリアー性 の優れたエチレンーピニルアルコール共重合樹脂 を用いた機層材が多数提示されている。

このエチレンービニルアルコール共重合計能は、 湿度により、ガスパリアー性が変化し、高湿度下 では、ガスパリアー性が着しく低下することは知 られており、一般的にはエチレン-ピニルアルコ ール共重合歯脂層の両側にポリエチレン。ポリブ ロピレン等のポリオレフィン増を設け、ガスパリ アー性、防湿性、ヒートシール性を付与し、実用

されている。

しかしながら、上記材料をレトルト殺菌用の包 装材料として用いると、レトルト殺菌中、材料は、 高温蒸気中、または熱水中に晒されるため、ポリ オレフィン暦でも水蒸気の透過量が多くなってし まい、エチレン・ピニルアルコール共重合樹脂が 吸湿してしまい、レトルト殺菌後も、この吸湿し た状態が両側に設けたポリオレフィン暦により長 く続き、ガスパリアー性の低い状態となってしま っていた。

[解決しようとする問題点]

エチレン・ピニルアルコール共重合樹脂を用いた透明な積層材で、レトルト殺菌前、レトルト殺菌を必要を 歯後もガスパリアー性が優れ、食品等の保存性を 向上させたレトルト殺菌用機層材を得ることである。

[問題点を解決するための手段]

エチレン含有率が20~60%が多けん化度が 90%以上のエチレンービニルアルコール共重合 団脂温の両側にポリオレフィン樹脂層を設けた基

%以上のエチレンービニルアルコール共重合樹脂 層(4)を設けたレトルト殺菌用積層材である。

第1 図に示した積層材を使用する時は、第2 図に示すように、エチレンービニルアルコール共重合体層(4)を外側にしてそのまま袋状にして用いてもよいし、また、第3 図に示すように、積層材をエチレンービニルアルコール共重合樹脂層(4)を外側にして熱成形し、容器状にして用いてもよい。

また、本発明の積層材の積層方法としては、ドライラミネーション法。エクストルージョンラミネーション法。エクストルージョンラミネーション法。エクストルージョンラミネーション法との一種のコーエクストルージョン方法がある。 接着性関節(2)(2)/はポリオレフィン層(3)(3)/をドラン法をは、エクストルージョン法をは、エクストルージョン法をより 積層する場合は、ウッション法により 積層 利からなり、コーエクストルージョン系の接着利からなり、コートは、ポリオレフィン層(3)(3)/と 接着性の優れた 変性ポリオレフィン。また、数条で変性した変性ポリオレフィン。また、

材の片側に、エチレン含有率が20~60モル%、けん化度が90%以上のエチレンービニルアルコール共重合樹脂層を設けることにより解決した。

(作用)

レトルト殺菌前は、基材に設けたエチレンーピニルアルコール共重合樹脂層により、所定のガスパリアー性を保ち、また、レトルト殺菌時に、基材中および基材の片側に設けたエチレンーピニルアルコール樹脂層が吸湿してガスパリアー性が低下しても、基材の片側に設けたエチレンーピニルアルコール共重合樹脂層のガスパリアー性の回復が強く、保存性が良好な状態とすることができる。

[寒施例]

第1図は、本発明の債階材の一実施例を示す新面図で、中間に設けたエチレン含有率が20~60 モル%、けん化度が90%以上のエチレンービニルアルコール共重合樹脂増(1)の両側に接着性樹脂(2)が分にてポリエチレン、ポリプロピレン等のポリオレフィン層(3)(3)を設けた基材(A)の片側にエチレン含有率が20~60モル%、けん化度が90

は、変性ポリオレフィンを未変性ポリオレフィン に混合した樹脂からなる。

次に本発明の 積層材を比較例と比較して説明する。

本発明の下記積層材を共押出し法により製造した。

<本発明>

ポリオレフィン層 ※	4 C O #
接着性樹脂槽 ※2	20μ
エチレンピニルアルコール共重合樹脂層	3 O µ
接着性樹脂屬 ※2	20μ
ポリオレフィン暦 ※1	400#
接着性做脂瘤 ※2	20μ <i>※</i> 3
エチレンーピニルアルコール共重合樹脂層	3 0 A
#1	920 #

※1 ポリプロピレン三菱油化構製ノープレンEC9

M I = 0.5

※2 三井石油化学工業(構製 アドマーQB530

MI = 14

※5 ㈱クラレ製 EVAL F101A(エチレン含有率 MI=40 52%) 上記と同じ材料を用い 5 層からなる比較の積層材を共押出し法により 2 種製造した。

/ LL to MI 4				•
<比較例1>	٠.			ا تو
ポリオレフィン廣感1	٠4	2	0	Д
接着性樹脂增长 2		2	5	μ
エチレンーピニルアルコール共重合樹脂層※3		3	0	μ
接着性樹脂增 ※ 2		2	5	μ
ポリオレフィン層※1	4	2	0	μ
81	9	2	0	μ
< 比較例 2 >				
ポリオレフィン層※1	6	4	0	μ
接着性樹脂層 ※ 2		2	5	μ
エチレンーピニルアルコール共重合樹脂屬※3	•	3	0	μ
接着性樹脂嘈淡 2		2	5	μ
ポリオレフィン層※1	2	0	0	μ
ii t	9	2	0	μ

前記3 種類の模様材をそれぞれ1 2 0 ℃、3 0 分間のレトルト処理後、温度が 2 0 ℃、湿度が65 %の環境下で保存し、一定時間毎に、酸素透過率 を測定した。

大きいエチレン・ビニルアルコール共重合歯脂層 を防湿性の優れたポリオレフィン磨間に設けるだ けでなく、外層にも設けることにより、レトルト 殺菌後の保存性が得ることができる。

4. 図面の簡単な説明

第1図は、本発明の一実施例を示す断面図、第 2図は、本発明の積層材の使用例を示す断面説明 図、第3図は、他の使用例を示す断面説明図である。

- 1、4…エチレンーピニルTルコール共重合側脂層
- 2、2…接着性樹脂層
- 3. 31…ポリオレフィン層

A … 基材

特 許 出 顯 人 凸版 印 刷 株 式 会 社 代表者 鈴 木 和 夫

	直後	5 日後	10日後	3 0 日後	90日後
本発明	8.2	7. 5	5. 3	0.6	0.2
比較例1	1 2 7	1 1. 2	1 0.3	5.1	1.8
此較例 2	2 2 3	1 7.4	1 2.9	1, 9	0.3

単位 cc/m · 24 hrs·atm

[効果]

本発明の積層材は、外層と中間層とにエチレンービニルアルコール共重合樹脂層を有するので、レトルト殺菌直接は、外層のエチレンービニルアルコール共重合樹脂層は、吸湿のため、耐酸素透過率が低下するが、中間層のエチレンービニルアルコール共重合樹脂層は、吸湿が小さく耐酸素透過率が維持される。

その後、中間層のエチレンービニルアルコール 共重合歯脂層の耐酸素透過率の回復は遅いが、外 層のエチレンービニルアルコール共重合歯脂層の 耐酸素透過率の回復が速く、高い耐酸素透過率が 得られる。

このように吸湿により、耐酸素透過率の低下の

第 2 図

第 3 図