Prop1	Prop2	Conjunção	Disjunção	Negação	Implicação	Equivalência
р	q	pΛq	pvq	~ p	p→q	
٧	٧	٧	٧	F	٧	
٧	F	F	٧	F	F	
F	٧	F	٧	٧	٧	
F	F	F	F	٧	٧	

Aula04: Álgebra da Lógica Proposicional

Disciplina: Matemática Discreta

Profa. Kênia Arruda kenia.costa@uniube.br

Uniube – Álgebra da Lógica Proposicional

- Utilizada para a simplificação e a manipulação de expressões lógicas com vistas à prova da validade de argumentos.
- Existem várias leis:
 - $\alpha \land \neg \alpha \equiv \text{falso} \rightarrow \text{Lei da contradição}$
 - $\alpha \vee \neg \alpha \equiv \text{verdade} \rightarrow \text{Lei do meio excluído}$
 - $\alpha \wedge \text{verdade} \equiv \alpha \rightarrow \text{Leis da identidade}$
 - $\alpha \vee \text{falso} \equiv \alpha \rightarrow \text{Leis da identidade}$
 - α ∧ falso ≡ falso → Leis da dominação
 - $\alpha \vee \text{verdade} \equiv \text{verdade} \rightarrow \text{Leis da dominação}$

Uniube - Álgebra da Lógica Proposicional

- Utilizada para a simplificação e a manipulação de expressões lógicas com vistas à prova da validade de argumentos.
- Existem várias leis:
 - $\alpha \land \alpha \equiv \alpha \rightarrow$ Leis idempotentes
 - $\alpha \vee \alpha \equiv \alpha \rightarrow$ Leis idempotentes
 - $\neg(\neg\alpha) \equiv \alpha \rightarrow \text{Lei da dupla negação}$
 - $\alpha \wedge \beta \equiv \beta \wedge \alpha \rightarrow \text{Leis comutativas}$
 - $\alpha \vee \beta \equiv \beta \vee \alpha \rightarrow$ Leis comutativas
 - $(\alpha \land \beta) \land \gamma \equiv \alpha \land (\beta \land \gamma) \rightarrow$ Leis associativas
 - $(\alpha \lor \beta) \lor \gamma \equiv \alpha \lor (\beta \lor \gamma) \rightarrow$ Leis associativas

Uniube - Álgebra da Lógica Proposicional

- Utilizada para a simplificação e a manipulação de expressões lógicas com vistas à prova da validade de argumentos.
- Existem várias leis:
 - $\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \rightarrow$ Leis distributivas
 - $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \rightarrow \text{Leis distributivas}$
 - $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta \rightarrow$ Leis de De Morgan
 - $\neg (α \lor β) ≡ ¬α ∧ ¬β → Leis de De Morgan$

Uniube - Idempotente (tanto para conjunção como disjunção)

- Uma proposição composta pela mesma proposição simples é equivalente à proposição simples
 - $p \vee p \Leftrightarrow p$
 - $p \land p \Leftrightarrow p$

р	рур
V	٧
F	F

р	р^р
V	٧
F	F

Uniube - Comutativa (tanto para conjunção como disjunção)

- A ordem das proposições não altera a tabela verdade
 - \circ p \land q \Leftrightarrow q \land p
 - \circ pvq \Leftrightarrow qvp

р	q	p ^ q	q^p
V	V	V	V
V	F	F	F
F	V	F	F
F	F	F	F

р	q	pvq	qvp
V	V	V	٧
٧	F	V	٧
F	٧	V	V
F	F	F	F

- Associativa (tanto para conjunção como disjunção)

- Usando um mesmo conectivo a ordem da resolução não altera a tabela verdade

р	q	r	(q v r)	p v (q v r)	(p v q)	(p v q) v r
V	٧	٧	V	V	V	V
V	٧	F	V	V	V	V
٧	F	٧	V	V	V	V
٧	F	F	F	V	V	V
F	٧	٧	V	V	V	V
F	٧	F	V	V	V	V
F	F	٧	V	V	F	V
F	F	F	F	F	F	F

р	q	r	(q ^ r)	p ^ (q ^ r)	(p ^ q)	(p ^ q) ^ r
٧	٧	٧	V	V	V	V
٧	V	F	F	F	V	F
٧	F	V	F	F	F	F
٧	F	F	F	F	F	F
F	٧	V	V	F	F	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

Uniube - Distributiva (tanto para conjunção como disjunção)

- Ao usar o conectivo E e OU podemos distribuir o conectivo fora do parênteses para dentro:
 - o $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

$$p v (q ^r) \le (p v q) ^ (p v r)$$

$$p v (q ^r) \le (p v q) ^ (p v r)$$

$$p v (q ^r) \le (p v q) ^ (p v r)$$

Uniube - Distributiva (tanto para conjunção como disjunção)

- Ao usar o conectivo E e OU podemos distribuir o conectivo fora do parênteses para dentro:
 - o $p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$

- Transforme nas equivalentes as seguintes proposições
 - \circ (p v q) \wedge (p v r)
 - o (p v q) v r
 - \circ pvp \wedge (pvr)
 - o qvqvqvq∧r

- A identidade apresenta um elemento neutro da operação
- Qual seria o elemento neutro do E?
 - o $p \wedge V \iff p (V \in o \text{ elemento neutro, o resultado depende de } p)$
 - o $p \land F \iff p (p \notin o elemento neutro, o resultado depende de F)$
- Qual seria o elemento neutro do OU?
 - o pvF <=> p (Fé o elemento neutro, o resultado depende de p)
 - o pvV <=> p (pé o elemento neutro, o resultado depende de V)

- Estabelece a seguinte equivalência:
 - o $p \land (p \lor q) \Leftrightarrow p \rightarrow o p \notin que define$

o $p \vee (p \wedge q) \Leftrightarrow p \rightarrow o p \notin que define$

- $\bigcirc \neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
 - "A negação de uma conjunção é a disjunção das negações"
- - "A negação de uma disjunção é a conjunção das negações"

Será, montem a tabela verdade.

- Qual a negação da proposição?
 - É inteligente e estuda
 - o p(é inteligente) ∧ q (estuda)
 - Não é inteligente ou não estuda
 - \circ $\neg p \lor \neg q$

- Qual a negação da proposição?
 - É médico ou professor
 - o p(é médico) ∨ q (é professor)
 - Não é médico e não é professor
 - o ¬p ∧ ¬q

- Aplique as propriedades para simplificar as seguintes proposições:
 - \circ pv(p \wedge q)
 - \circ p \wedge T \wedge (q \vee p)
 - $(p \rightarrow q) \land \neg p$
 - \circ $\neg (p \lor q)$
 - o $(p \lor q) \rightarrow q$

Um procedimento usualmente adotado quando da manipulação de expressões é a substituição (com base no princípio de substituição) de expressões envolvendo o conectivo condicional (→) e o bicondicional (↔) por suas equivalentes expressões lógicas

(α→β)	Ш	$ eg a \lor \beta$	(1)
$(a \leftrightarrow \beta)$	Ш	$(\alpha \longrightarrow \beta) \wedge (\beta \longrightarrow \alpha)$	(2)
$(a \leftrightarrow \beta)$	≡	$(a \rightarrow \beta) \land (\beta \rightarrow a)$ $(\neg a \lor \beta) \land (\neg \beta \lor a)$	(3)

	α	β	¬α	$(\alpha \rightarrow \beta)$	(¬α∨β)	$(\alpha \to \beta) \leftrightarrow (\neg \alpha \lor \beta)$
I ₁	v	v	f	V	V	V
l ₂	v	f	f	f	f	v
l ₃	f	v	v	V	v	v
l ₄	f	f	V	V	V	V

- Prove a equivalências
 - $(\alpha \leftrightarrow \beta) \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$
 - $(\alpha \leftrightarrow \beta) \equiv (\alpha \to \beta) \land (\beta \to \alpha) \equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$

Prove a equivalências

$$(\alpha \leftrightarrow \beta) \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$$

$$(\alpha \leftrightarrow \beta) \equiv (\alpha \to \beta) \land (\beta \to \alpha) \equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$$

	α	β	⊐α	$(\alpha \to \beta)$	(¬α∨β)	$(\alpha \to \beta) \leftrightarrow (\neg \alpha \lor \beta)$
I ₁	v	V	f	V	v	v
l ₂	v	f	f	f	f	v
l ₃	f	v	v	v	v	v
l ₄	f	f	v	v	v	v

Prove a equivalências

$$(\alpha \leftrightarrow \beta) \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$$

$$(\alpha \leftrightarrow \beta) \equiv (\alpha \to \beta) \land (\beta \to \alpha) \equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$$

	α	β	⊸α	¬β	$(\alpha \leftrightarrow \beta)$	(¬α∨β)	(¬β∨α)	(¬α∨β)∧(¬β∨ α)	$(\alpha \leftrightarrow \beta) \leftrightarrow (\neg \alpha \lor \beta) \land (\neg \beta \lor \beta)$
I ₁	v	v	f	f	V	v	v	v	v
l ₂	v	f	f	V	f	f	v	f	v
l ₃	f	v	V	f	f	v	f	f	v
l ₄	f	f	V	V	V	v	v	V	v

Resumo

- Comutativa
 - p ^ q <=> q ^ p
 - p v q <=> q v p
- Idempotente
 - p ^ p <=> p
 - p v p <=> p
- Associativa
 - (pvq)vr <=> pv(qvr)
- De Morgan
 - ~(pvq) <=> (~p ^ ~q)

- Distributiva
 - p v (q ^ r) <=> (p v q) ^ (p v r)
- Identidade (Elemento Neutro)
 - p v C <=> p
 - p ^ T <=> p
- Absorção
 - p ^ (p v q) <=> p
 - p v (p ^ q) <=> p
- Equivalência da condicional
 - $p \rightarrow q \leq p v q$

- - Simplifique as proposições, em cada passo aponte a propriedade que foi usada.
 - \circ pvp
 - \circ pv(q \wedge r)
 - p ∧ ¬p
 - o p v (q v r)
 - o pvqvp
 - o p \rightarrow q
 - $o (p \lor q)$
 - \circ pvT
 - o q v (p v -p)
 - \circ rv(r \wedge s)
 - \circ $(p \lor q) \rightarrow r$
 - \circ $(p \lor p) \rightarrow r$

- Comutativa
 - p ^ q <=> q ^ p
 - pvq<=>qvp
- Idempotente
 - p ^ p <=> p
 - pvp <=>p
- Associativa
 - (pvq)vr <=> pv(qvr)
- De Morgan
 - ~(pvq) <=> (~p ^ ~q)

- Distributiva
 - pv(q^r) <=> (pvq)^(pvr)
- Identidade (Elemento Neutro)
 - p v C <=> p
 - p ^ T <=> p
- Absorção
 - p ^ (p v q) <=> p
 - p v (p ^ q) <=> p
- Equivalência da condicional
 - p → q <=> ~p v q

Simplifique as proposições, em cada passo aponte a propriedade que foi usada.

$$o \rightarrow p \land (q \rightarrow p)$$

$$o \neg (p \rightarrow q)$$

$$o$$
 $p \land \neg(p \rightarrow q)$

$$(q \lor r) \to (\neg q \land r)$$

$$(p \lor q) \to (\neg p \land \neg q)$$

$$(p \lor p) \land \neg (\neg p \land \neg q)$$

$$\circ$$
 q \wedge (q \vee r)

$$(q \lor (q \land r)) \lor \neg q$$

$$^{\circ} \neg ((p \rightarrow q) \lor (p \land \neg q))$$

$$((p \lor p) \land r \lor (p \lor \neg p)) \rightarrow p \land (q \lor p)$$

Idempotente

Absorção