Hoy: Transformala le Fourier
Hoy: Transformala le Fourier $C[G] = \{f: G \longrightarrow C\}$ (C[G] f^*)
Idea: Gracias a la Teo de reps el álgeba C[9]
tiene una base distruguida. Si f E C[9]
$C = \sum_{i \in J} c_{ij} s_{ij}$
t - Land de Forier
f = \(\tilde{C}_1 \) St tenspade de Fourier. Los coeparetus pernite ethal V propredades
de f de mea simple.
j ai men simpe.
Hay to a D
Hay was formes de person en C[9] henos visto dos:
$C(9) = \{f: G \rightarrow C\}$ $(CG) = \{e_g: geg\}$
(C[C] CM)
$(C[4], 5^{m})$ $e \cdot e := e$ $f \cdot pod del$ $g w po$
$g\omega_{p0}$
$g(t): \mathbb{C}_q \longrightarrow \mathbb{C}_q$
$Cq \qquad e_{h} \mapsto \stackrel{?}{\stackrel{?}{\sim}} e_{h}$
mult. port
Salsemos que hay un isom de reps:
ison de
4 L 4 → L 4
$f \mapsto \sum f(q)C_q$
$g \in Q$
Cómo es la multiplica aut de Cy en C[9].
,
Deg: Si P. Q: 4 -> (de finimos
la convolvaise de Py Q P*Q: 9-
7
$(P_*Q)(h) = \sum_{g \in q} P(hg^{-1}) Q(g)$
369

Dem. Sen fi fe
$$\in$$
 G

Acc: $Y(f_1f_2) = Y(f_1)^0 Y(f_2)$
 $Y(f_1f_2) (\mathcal{C}_{+}) = (f_1 \cdot f_2) \cdot \mathcal{C}_{+} = f_1 \cdot (f_2 \cdot \mathcal{C}_{+})$
 $Y(f_1f_2) (\mathcal{C}_{+}) = M_{f_1} (M_{f_1} \mathcal{C}_{+})$
 $= Y(f_1)^0 Y(f_2) (\mathcal{C}_{+})$

(2) Conects: En el domaro:

Si $f_1, f_2 \in G$ G
 $(f_1, f_2) = \frac{1}{14} \sum_{f_1, f_2} f_1(g_1) f_2(g_1)$

nota que, bajo el isan G
 $(f_1, f_2) = \frac{1}{14} \sum_{f_1, f_2} f_2(g_1) f_2(g_2)$
 $(f_1, f_2) = \frac{1}{14} \sum_{f_1, f_2} f_2(g_1) f_2(g_2)$

