

OUR TEAM

81K VILLES PROPOSÉES

8,7 MILLIONS

70 MILLIARDS \$

PROBLÉMATIQUE

SATISFACTION DES VOYAGEURS ANNUEL

OPTIMISATION DU CHIFFRE D'AFFAIRES

MORE PROFIT

DISPARITÉ DES LOGEMENTS À NEW YORK

TOOLS

EN 2019

MANHATTAN MONOPOLISE LA GAMME LUXE PLUS QUE 5000\$/RÉSERVATION

MANHATTAN ET BROOKLYN OCCUPENT LE MARCHÉ DU NEW YORK

+85,4%

EN 2019

LES PRIX SE VARIENT ENTRE 50 ET 150 \$ DANS TOUS LES GRANDS QUARTIERS

Densité et distribution des prix par chaque groupe de quartier (prix < 500)

Logement autours du place toursitiques (prix > 250\$)

CROISSANCE DU PRIX DÉPEND DES PLACES TOURISTIQUES LES PLUS VISITÉES

EN 2019

"ENTIRE HOME/APT" EST LE TYPE DE LOGEMENTS PRÉFÉRÉS POUR LES CLIENTS

52%

LES LOGEMENTS À COURTE RESERVATION (ENTRE1 ET 5 NUITS) ET LES PRIX (ENTRE 100 ET 250) ONT UN NOMBRE D'AVIS PLUS IMPORTANT

LA LONGITUDE EST ANTICORRÉLÉE (15%) AVEC LE PRIX, BRONX ET QUEENS SONT LES MOINS CHÈRES

				Matric	e de corre	elation			
host_id	1.00	0.02	0.13	0.02	-0.02	-0.14	0.30	0.15	0.20
latitude	0.02	1.00	0.08	0.03	0.02	-0.01	-0.01	0.02	-0.01
longitude	0.13	0.08	1.00	-0.15	-0.06	0.05	0.15	-0.11	0.08
price	0.02	0.03	-0.15	1.00	0.04	-0.04	-0.03	0.06	0.08
minimum_nights	-0.02	0.02	-0.06	0.04	1.00	-0.07	-0.12	0.13	0.14
number_of_reviews	-0.14	-0.01	0.05	-0.04	-0.07	1.00	0.55	-0.06	0.19
reviews_per_month	0.30	-0.01	0.15	-0.03	-0.12	0.55	1.00	-0.01	0.19
alculated_host_listings_count	0.15	0.02	-0.11	0.06	0.13	-0.06	-0.01	1.00	0.23
availability_365	0.20	-0.01	0.08	0.08	0.14	0.19	0.19	0.23	1.00
	host_id	latitude	longitude	price	nimum_nights	ar_of_reviews	s_per_month	listings_count	railability_365

L'UTILISATION DES MOTS TECHNIQUES AUGMENTE LES RÉSERVATIONS

- 0.24

- 0.16

- 0.08

MODELING

- 1- PREPROCESSING
- 2- METRICS
- 3- LINEAR REGRESSION
- 4- XGBOOST
- 5- DECISION TREE REGRESSION

1- PREPROCESSING

	Quartier	Latitude	Longitude	Type_chambre	Prix	Minimum_nuit	Avis_par_mois	Nombre_list_hote	Depart_Brooklyn	Depart_Manhattan	Depart_Queens	Depart_Staten Island		Disponabilitie_365_scale	Nomb
ld															
2539	109	40.64749	-73.97237	2	149	1	0.21	6	0	1	0	0	0	2.77	
2595	128	40.75362	-73.98377	1	225	1	0.38	2	0	0	1	0	0	2.70	
3647	95	40.80902	-73.94190	2	150	3	0.00	1	0	0	1	0	0	2.77	
3831	42	40.68514	-73.95976	1	89	1	4.64	1	0	1	0	0	0	1.47	
5022	62	40.79851	-73.94399	1	80	10	0.10	1	0	0	1	0	0	0.00	
36484665	14	40.67853	-73.94995	2	70	2	0.00	2	0	1	0	0	0	0.07	
36485057	29	40.70184	-73.93317	2	40	4	0.00	2	0	1	0	0	0	0.27	
36485431	95	40.81475	-73.94867	1	115	10	0.00	1	0	0	1	0	0	0.21	
36485609	96	40.75751	-73.99112	3	55	1	0.00	6	0	0	1	0	0	0.02	
36487245	96	40.76404	-73.98933	2	90	7	0.00	1	0	0	1	0	0	0.17	

2- METRICS

RACINE D'ERREUR QUADRATIQUE MOYENNE RMSE

Plus la valeur rmse est basse, plus la valeur prédite est correcte

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

R² SCORE

Plus le score est proche de 1, plus la valeur prédite est égale à la valeur initial

$$\hat{R}^2 = 1 - \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^n (Y_i - \bar{Y}_i)^2} = 1 - \frac{\frac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y}_i)^2}$$

3- LINEAR REGRESSION

RMSE: 227,44

R² SCORE: 0,05

POUR PRIX < 500\$

RMSE: 73,04

R² SCORE: 0,26

4-XGB00ST

XGBOOST EST PLUS RAPIDE PAR RAPPORT AUX AUTRES IMPLÉMENTATIONS DE GRADIENT BOOST

"As the winner of an increasing amount of Kaggle competitions, XGBoost showed us again to be a great all-round algorithm worth having in your toolbox."

Dato Winners' Interview, Mad Professors

4-XGBOOST

IMPLÉMENTATION

4- XGB00ST

RÉSULTAT

AVEC HYPERPARAMÉTRATION, ON A CONFIGURE LE MODÈLE POUR QU'IL PUISSE TROUVER LE MEILLEURE ENTRAINEMENT (LEARNING)

300 ITERATIONS (BOOSTS) LE RMSE DIMINUE JUSQU'À SE STABILISER

5- DECISION TREE REGRESSION

EN UTILISANT UN AUTRE MODÈLE DU GRADIANT TREE BOOST, ON VOIT QUE LES RÉSULTATS NE SONT PAS BONS

- STABILITÉ EN PHASE TEST SANS DÉGRADATION
- DIMINUTION EN PHASE ENTRAINTEMENT DANS LE RMSE

Mauvais modèle utilisé dans notre cas

RECOMMANDATION

SUSTAINABILITY

PLUS LES <u>AVIS SONT NOMBREUX</u> SUR LES PRIX LES <u>PLUS BAS</u>, PLUS LES VOYAGEURS <u>RÉSERVENT</u>

A <u>Date de réservation</u> améliore l*a* Prédiction pour une meilleure Optimisation

TO THE NEXT AIRBNB 2020

