Propositional Logic Proofs Part1

Dr. Igor Ivkovic

iivkovic@uwaterloo.ca

[with material from "Mathematical Logic for Computer Science", by Zhongwan, published by World Scientific]

Objectives

- Axiomatic Deduction Systems
- The Hilbert System
- Proofs using Axiomatic Deduction

Deduction Rule:

■ A tuple $\langle A_1, ... A_k \rangle$ where $k \ge 1$ and $A_i \in Form(L^p)$ for all k

Axioms:

A deduction rule where k = 1; formally provable formula

Inference Rule:

A deduction rule where k > 1

■ Deduction System S for Form (L^p) :

- A set of deduction rules; that is, a set of axioms and inference rules
- The Hilbert System (H) is an example of a deduction system for the set of propositional logic formulas

Formal Deduction Proof (of a Deduction System S):

■ A sequence $\langle B_0, ... B_n \rangle$ where $n \ge 1$ and $B_i \in Form (L^p)$ for all i, such that for every B_i there is a rule $\langle A_1, ... A_{k-1}, B_i \rangle \in S$ where $\{A_1, ... A_{k-1}\} \subseteq \{B_0, ... B_{i-1}\}$

Theorem (of a Deduction System S):

- A formula B for which a proof $\langle B_0, ..., B_n, B \rangle$ exists in S
- Denoted as \vdash_S B (denoted as \vdash in the textbook)

Deducible Theorem:

Given B ∈ Form (L^p) and a set ∑ ⊆ Form (L^p),
B is deducible from ∑, denoted as ∑ ⊢_S B, if B is a theorem of S ∪ {⟨A⟩ | A ∈ ∑}

Definition 3.1. The Hilbert System (H):

- A deduction system for the propositional logic formulas
- Ax1: $\langle (A \Rightarrow (B \Rightarrow A)) \rangle$
- $Ax2: \langle ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))) \rangle$
- $Ax3: \langle (((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)) \rangle;$
- R1: From A ⇒ B and A infer B
 - Also known as Modus Ponens (MP)
- (A WFF) A₁ is formally provable by H iff ⊢_H A₁ holds

■ Textbook Deduction System (T): (Section 4.1)

- Ax1 Ax12 and R1
- (A WFF) A₂ is formally provable by T iff ⊢_T A₂ holds
 - □ Also written as $\emptyset \vdash A_2$ in the textbook

Prove that ⊢_H (A ⇒ A) holds

- 1. $(A \Rightarrow ((A \Rightarrow A) \Rightarrow A))$ (by Ax1)
- 2. $((A \Rightarrow ((A \Rightarrow A) \Rightarrow A)) \Rightarrow ((A \Rightarrow (A \Rightarrow A)) \Rightarrow (A \Rightarrow A)))$ (by Ax2)
- 3. $((A \Rightarrow (A \Rightarrow A)) \Rightarrow (A \Rightarrow A))$ (by R1, (1), (2))
- 4. $(A \Rightarrow (A \Rightarrow A))$ (by Ax1)
- 5. $(A \Rightarrow A)$ (by R1, (3), (4))
- The proof is similar for ⊢_T A ⇒ A

- Theorem 3.1. $\{(A \Rightarrow B), (B \Rightarrow C)\} \vdash_H (A \Rightarrow C)$ Proof:
 - 1. $(B \Rightarrow C)$ (by Assumptions)
 - 2. $((B \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C)))$ (by Ax1)
 - 3. $(A \Rightarrow (B \Rightarrow C))$ (by R1, (1), (2))
 - 4. $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$ (by Ax2)
 - 5. $((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$ (by R1, (3), (4))
 - 6. $(A \Rightarrow B)$ (by Assumptions)
 - 7. $(A \Rightarrow C)$ (by R1, (5), (6))
- The theorem can be used as an extra deduction rule

■ Prove that $S \cup \{Th3-1\} \vdash_H ((\neg A) \Rightarrow (A \Rightarrow B))$ holds:

- 1. $((\neg A) \Rightarrow ((\neg B) \Rightarrow (\neg A)))$ (by Ax1)
- 2. $(((\neg B) \Rightarrow (\neg A)) \Rightarrow (A \Rightarrow B))$ (by Ax3)
- 3. $((\neg A) \Rightarrow (A \Rightarrow B))$ (by Theorem 3.1)

■ Prove: If $\Sigma \vdash_H A$ and $\Sigma \vdash_H (\neg A)$ then $\Sigma \vdash_H B$ for any B

- 1. $(\neg A)$ (by Assumptions)
- 2. $((\neg A) \Rightarrow ((\neg B) \Rightarrow (\neg A)))$ (by Ax1)
- 3. $((\neg B) \Rightarrow (\neg A))$ (by R1, (1), (2))
- 4. $(((\neg B) \Rightarrow (\neg A)) \Rightarrow (A \Rightarrow B))$ (by Ax3)
- 5. $(A \Rightarrow B)$ (by R1, (3), (4))
- 6. A (by Assumptions)
- 7. B (by R1, (5), (6))

Theorem 3.2. Deduction Theorem:

- For A, B ∈ Form (L^p) and $\Sigma \subseteq$ Form (L^p) , $\Sigma \vdash_H A \Rightarrow B$ iff $\Sigma \cup \{A\} \vdash_H B$
- Prove that $\vdash_H ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$:
 - First, prove {(B \Rightarrow C), (A \Rightarrow B), A} \vdash_H C using \langle (B \Rightarrow C), (A \Rightarrow B), A, B, C \rangle
 - Then, use the Deduction Theorem to derive

$$(1) \{(B \Rightarrow C), (A \Rightarrow B)\} \vdash_{H} (A \Rightarrow C)$$

$$(2) \{(\mathsf{B} \Rightarrow \mathsf{C})\} \vdash_{\mathsf{H}} ((\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow (\mathsf{A} \Rightarrow \mathsf{C}))$$

$$(3) \vdash_{\mathsf{H}} ((\mathsf{B} \Rightarrow \mathsf{C}) \Rightarrow ((\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow (\mathsf{A} \Rightarrow \mathsf{C})))$$

Definition 3.2. Extensions to the Hilbert System:

- $((A \Rightarrow (B \Rightarrow (A \land B)))) \land (\land introduction)$
- $(((A \land B) \Rightarrow A)), \langle ((A \land B) \Rightarrow B) \rangle$
- $((A \Rightarrow (A \lor B))), \langle (A \Rightarrow (B \lor A)) \rangle (\lor introduction)$
- $(((A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \lor B \Rightarrow C)))$

Definition 3.3. Formula Consistency: (Definition 5.2.2)

- A set $\Sigma \subseteq$ Form (L^p) is consistent iff there is no $A \in$ Form (L^p) such that $\Sigma \vdash_H A$ and $\Sigma \vdash_H (\neg A)$
- Theorem 3.3. Formula Consistency: (Exercise 5.2.2)
 - A set $\Sigma \subseteq$ Form (L^p) is consistent iff there is A ∈ Form (L^p) such that $\Sigma \vdash_{\mathsf{H}} \mathsf{A}$ does not hold

Soundness of the Hilbert System:

- For $A \in \text{Form } (L^p)$ and $\Sigma \subseteq \text{Form } (L^p)$, $\Sigma \vdash_H A \Rightarrow \Sigma \vDash A$
- Completeness of the Hilbert System:
 - For $A \in \text{Form } (L^p)$ and $\Sigma \subseteq \text{Form } (L^p)$, $\Sigma \vDash A \Rightarrow \Sigma \vdash_H A$
- More details about the above in the next lecture

Food for Thought

Read:

- Chapters 4 and 5 (Section 5.2) from Zhongwan
 - Read proofs discussed in class in more detail
 - □ Skip the material not related to propositional logic
- Answer the following exercises:
 - Exercises 5.2.1, 5.2.2 and 5.2.4
- (Optional) Read:
 - Chapter 5 from Nissanke (applied to the Hilbert System)
 - Complete at least a few exercises from each section