

Source constraints	$r_0^{#2} == 0$	$\tau_{0^+}^{\#_1} - 2 \bar{l} k \sigma_{0^+}^{\#_1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} =$	$t_1^{\#1}{}^{\alpha} == 0$ $-\#1{}^{\alpha\beta} \qquad = 0$	$ \frac{1}{1+} - 2 \pi R O_1 + = $ $ \frac{1}{2} \frac{1}$	$\frac{1}{1+\alpha\beta}$. '2+ - 2" ^ 2+ - Total #:
$f_{1^-}^{\#2}\alpha$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{#2} \alpha f_{1}^{#1} \alpha f_{1}^{#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_1^{\#1}$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2 t_1}{3}$	0	0	0	0
$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$ $\omega_{1}^{\#2}$ $\omega_{1}^{\#1}$	$-\frac{t_1}{3\sqrt{2}}$	<u>11</u> ع	$-\frac{1}{3}ikt_1$	0	0	0	0
$\omega_1^{\#1}{}_+^{lphaeta}$	t 1 6	$-\frac{t_1}{3\sqrt{2}}$	$\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$

<u>m</u>

0 ==

 \sim

 \sim

0 ==

 $^{\circ}$

 $^{\alpha\beta}+\,\sigma_{1}^{\#2\,\alpha\beta}==0$

T

 \vdash

						$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	ω	#1 2 αβ	χ
$\alpha eta \chi$	0	0	$\frac{2}{2k^2r_1+t_1}$	$\omega_{2}^{\#1}$ †	αβ	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$		0	
$\sigma_{2}^{\#1}$			2 / 2	$f_{2}^{#1}$ †	αβ	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$		0	
$ au_2^{\#1}_+ lpha eta$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	$\omega_{2}^{#1} + c$	ιβχ	0	0	k ²	r ₁ + -	† <u>1</u> 2
	i					$\omega_{0^{+}}^{#1}$	$f_{0+}^{#1}$		$f_{0+}^{#2}$	u
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$2i\sqrt{2}k$ $(1+2k^2)^2t_1$	0	$\omega_{0^{+}}^{#1}$ †		-t ₁	ī √2 k	$< t_1$	0	
0	•	•		$f_{0}^{#1} \dagger$	- <i>[</i> [$\sqrt{2} kt_1$	$-2k^2$	t_1	0	
	$^{1}_{1}$	$^{1}_{1}$	$+_{\alpha \beta X}$	$f_{0}^{#2}$ †		0	0		0	
	$\sigma_{2}^{\#1}$	$\tau_{2}^{\#1}$	$\sigma_{2}^{\#1}$	$\omega_0^{\#1}$ †		0	0		0	k

0

0

0

 $k^2 r_2$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} \uparrow$	$\sigma_{0}^{\#1}$ †

	Massive partic	ve particle		
? /	Pole residue:	 r		
$J^P = 2^-$	Polarisations:	5		
	Square mass:			
?	Spin:	2		
	Parity:	0		

$-\frac{1}{-} > 0$ le residue: r_1

larisations: $\frac{t_1}{2r_1} > 0$ quare mass: oin:

Parity:

Odd

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$