

Análisis Aplicado Tarea I Mínimos locales y direcciones de descenso Dr. Zeferino Parada

1. Encuentre el único mínimo de la función

$$f(x, y) = \frac{x+y}{x^2 + y^2 + 1}.$$

- 2. Muestre que $x^* = (0, 0, 0)^T$ es un mínimo local estricto de la función $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3 + (x_1^2 + x_2^2 + x_3^2)^2$.
- 3. Sea $A \in \mathbb{R}^{nxn}$. Considere la función $f : \mathbb{R}^n \to \mathbb{R}$ donde $f(x) = \frac{1}{2}x^TAx + c^Tx + d$. Pruebe que $\nabla f(x) = \frac{1}{2}(A + A^T)x + c$ y $\nabla^2 f(x) = \frac{1}{2}(A + A^T)$.
- 4. Decimos que $A \in \mathbb{R}^{nxn}$ es positiva definida en \mathbb{R}^n si y sólo si $x^T A x > 0$ para todo $x \in \mathbb{R}^n \{0\}$. Construya en forma general una matiz $A \in \mathbb{R}^{nxn}$ que sea positiva definida en \mathbb{R}^n y que no sea simétrica.
- 5. Sea $\hat{x} \in \mathbb{R}^n$ tal que $\nabla f(\hat{x}) \neq 0$. Construya una sucesión de direcciones $\{p_k\} \subset \mathbb{R}^n$ convergente a p^* tal que $||p_k||_2 = 1$ y $p_k \notin Gen(\nabla f(\hat{x}))$ para todo índice k y $\nabla f(\hat{x})^T p^* = 0$.
- 6. Sean \hat{x} , p, $s \in \mathbb{R}^n$ tales que $\nabla f(\hat{x})^T p = \alpha < \beta = \nabla f(\hat{x})^T s < 0$, $\|p\|_2 = \|s\|_2 = 1$. Para $\gamma \in (\alpha, \beta)$ construya un vector p^* tal que $\nabla f(\hat{x})^T p^* = \gamma$ y $\|p^*\|_2 = 1$.
- 7. Supongamos que n=2 y que

$$\nabla f(\hat{x}) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Sea $\theta \in (0, \pi/2)$. Construya un vector $p \in \mathbb{R}^2$ tal que $p^T \nabla f(x) < 0$ y el ángulo entre $p \vee -\nabla f(\hat{x})$ es θ .

 ξ Cómo podría generalizar este resultado a cualquier dimensión de n?

8. Demuestre que el problema

tiene como soluciones a los vectores canónico, $p^* = \pm e_i$, tales que $\nabla f(\hat{x})^T p^* = -\|\nabla f(\hat{x})\|_{\infty}$.

9. Demuestre que el problema

Minimizar
$$\nabla f(\hat{x})^T p$$

Sujeto a $||p||_{\infty} = 1$.

tiene como soluciones a los vectores p^* tales que $||p^*||_{\infty} = 1$ y $\nabla f(\hat{x})^T p^* = -||\nabla f(\hat{x})||_1$.

10. Sea $\hat{x} \in \mathbb{R}^n$ tal que $\nabla f(\hat{x}) \neq 0$ y $\nabla^2 f(\hat{x})$ es positiva definida. Sea $p^N = -(\nabla^2 f(\hat{x}))^{-1} \nabla f(\hat{x})$ la dirección de Newton. Demuestre que

$$\lambda_1 \le -\frac{\nabla f(\hat{x})^T p^N}{\|\nabla f(\hat{x})\|^2} \le \lambda_n,$$

donde λ_1 , λ_n son, respectivamente, el mínimo y máximo valor propio de $\nabla^2 f(\hat{x})^{-1}$.