Introduction to Probability and Statistics

Session 1 Quiz

Israel Leyva-Mayorga

- 1) Which of the following statements are true?
 - (a) A histogram is a discrete approximation of a continuous probability density function.
 - b) A histogram is only valid to approximate discrete probability functions.
 - The larger the number of bins, the larger the sample size needed to get a smooth approximation for the continuous probability density function (PDF).
- 2) Through inferential statistics, we aim to:
 - a) Characterize the statistics of the sample.
 - b) Characterize the parameters of the population by observing similar populations.
 - c) Characterize the parameters of the population through the statistics of the sample.
- 3) Which of the following statements is false?
 - (a) Any sample (regardless its size or statistics) from a population is representative.
 - b) Each value X_i from a sample is a random variable drawn from the population distribution F.
 - c) The sample statistics may not be representative of the population parameters.
- 4) If X is a Gaussian random variable with mean μ_x and variance σ_x^2 and Y is another independent Gaussian random variable with mean μ_y and variance σ_y^2 , which of the following statements are true?
 - a) X and Y are completely characterized by their means μ_x and μ_y and by their standard deviations σ_x and σ_y .
 - b) The probability of a realization from X to be below a value ϵ is given by

$$P(X < \epsilon) = 1 - Q(\epsilon).$$

c) The random variable A = aX + Y, with a being a positive constant, is distributed as $A \sim \mathcal{N}(a\mu_x + \mu_y, a\sigma_x^2 + \sigma_y^2)$.

- 5) If X_1, \ldots, X_n for large n are independent random variables with mean μ and variance σ^2 , then the distribution of $Y = \sum_{i=1}^{n} X_i$ is given by:
 - a) A Gaussian random variable with mean $n\mu$ and variance σ^2/n .
 - b) A Gaussian random variable with mean $n\mu$ and variance $n\sigma^2$.
 - c) Will be Gaussian only if all X_i are Gaussian distributed.
- 6) What is the likelihood function?
 - a) The joint density function (JDF) of the sample $f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$
 - b) The JDF of the sample conditioned to parameter θ , given as $f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n;\theta)$
 - c) The density function of an arbitrary random variable (RV) $f_{X_i}(\boldsymbol{x_i})$
- 7) The Maximum Likelihood Estimator (MLE) is formally defined as

 - a) $\underset{\theta}{\arg\max} P_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n; \theta)$ b) $\underset{\theta}{\arg\max} \log (P_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n; \theta))$
 - c) Both are correct
- 8) Which of the following statements are true?
 - a) An estimator is less biased as the estimate is closer to the true value.
 - b) The estimator of a constant (deterministic) value cannot be a random variable.
 - c) The variance of the sample mean tends to zero as the sample size goes to infinity