Appunti di Analisi Matematica I

Ettore Forigo

Chapter 1

1.1 Insiemi Famosi

```
\mathbb{N} = \text{Numeri Naturali} = \{0, 1, 2, 3, ...\}
```

 $\mathbb{Z}=$ Numeri Interi

 $\mathbb{Q} = \text{Numeri Razionali}$

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}$

Su \mathbb{Q} è definita una relazione d'ordine totale (\leq)

Gli insiemi con relazioni d'ordine totale si chiamano totalmente ordinati.

1.2 Dimostrazioni

1.2.1 Componenti delle Dimostrazioni

I 3 termini seguenti, in ordine di importanza crescente, sono abbastanza sinonimi; cambia solo l'importanza nell'ambito dell'esposizione di una teoria formale:

Lemma

Proposizione

Teorema

Congettura dimostrata.

Corollario

Dimostrato a partire da un teorema.

1.2.2 Forma dei Teoremi

$$A \implies B$$

Dove A è detta ipotesi e B è detta tesi.

Implicazioni

$$P \implies Q$$

Dove P è detto antecedente e Q è detto conseguente.

1.2.3 Dimostrazione di una Implicazione

Si assume l'antecedente (o premessa) e si dimostra il conseguente.

1.2.4 Dimostrazione per Assurdo

Si suppone l'ipotesi e per assurdo si suppone il contrario della tesi, e si trova una contraddizione.

1.3 Definizione del Principio di Induzione

$$(P(n_0) \wedge P(n) \implies P(n+1)) \implies \forall n \in \mathbb{N}. P(n)$$

(\implies ha precedenza su \land)

Il caso base nell'induzione può essere anche un numero $\neq 0$.

1.4 Campo Ordinato dei Razionali

 (\mathbb{Q}, \leq) formano un Campo Ordinato.

1.5 Definizione di Completezza di un Campo

Un campo totalmente ordinato (\mathbb{K}, \leq) si dice completo se vale il seguente assioma di completezza (Assioma di Dedekin):

$$\forall A,B,A\subseteq\mathbb{K},B\subseteq K,A\neq\varnothing,B\neq\varnothing$$

$$\forall x\in A,\forall y\in B.\,x\leq y\implies \exists c\in\mathbb{K}:\forall x\in A,\forall y\in B.\,x\leq c\leq y$$

Chiamiamo c elemento separatore tra gli insiemi A e B.

Il campo (\mathbb{Q}, \leq) è totalmente ordinato ma non completo.

1.6 Definizione dei Numeri Reali

 $\mathbb R$ è una estensione di $\mathbb Q$ tale che il campo $(\mathbb R,\leq)$ è totalmente ordinato e completo.

1.6.1 Interpretazione Geometrica

Ogni numero reale può essere univocamente associato ad un punto della retta reale e viceversa

1.7 Definizione Numeri Irrazionali

 $\mathbb{R} \setminus \mathbb{Q} = \text{Numeri Irrazionali}$

1.8 Definizione di Massimi e Minimi

$$\begin{split} \mathbb{E} &\subseteq \mathbb{R}, \mathbb{E} \neq \varnothing \\ \exists a \in \mathbb{E} : \forall x \in \mathbb{E}. \ a \leq x \implies a \ \text{\`e} \ \text{un minimo di } \mathbb{E} \\ \exists b \in \mathbb{E} : \forall x \in \mathbb{E}. \ x \leq b \implies b \ \text{\`e} \ \text{un massimo di } \mathbb{E} \\ \min(\mathbb{E}) &= a \\ \max(\mathbb{E}) &= b \end{split}$$

Esistono insiemi limitati che non ammettono né massimo né minimo.

$$\mathbb{E} = \{ x \in \mathbb{R} : 0 < x < 1 \}$$

1.8.1 Lemma: Unicità di min e max

Se $\mathbb{E} \subseteq \mathbb{R}$ ammette minimo o massimo, allora è unico.

1.9 Definizione di Maggioranti e Minoranti

$$\mathbb{E}\subseteq\mathbb{R}, \mathbb{E}\neq\varnothing$$

$$a\in\mathbb{R}$$
è un maggiorante di \mathbb{E} se $\forall x\in\mathbb{E}.~a\leq x$
$$b\in\mathbb{R}$$
è un maggiorante di \mathbb{E} se $\forall x\in\mathbb{E}.~x\leq b$

Non sono unici!

 $M(\mathbb{E}) =$ Insieme dei maggioranti di \mathbb{E} $m(\mathbb{E}) =$ Insieme dei minoranti di \mathbb{E}

1.10 Definizione di Insieme Limitato

 $E \subseteq \mathbb{R}, \mathbb{E} \neq \emptyset$

 $M(\mathbb{E}) \neq \varnothing \implies \mathbb{E}$ è superiormente limitato $m(\mathbb{E}) \neq \varnothing \implies \mathbb{E}$ è inferiormente limitato $M(\mathbb{E}) \neq \varnothing \land m(\mathbb{E}) \neq \varnothing \implies \mathbb{E}$ è limitato

1.11 Teorema

 $\mathbb{E} \subseteq \mathbb{R}, \mathbb{E} \neq \emptyset$

 \mathbb{E} è superiormente limitato $\Longrightarrow M(\mathbb{E})$ ammette minimo (estremo superiore di \mathbb{E})

 \mathbb{E} è inferiormente limitato $\implies m(\mathbb{E})$ ammette massimo (estremo inferiore di \mathbb{E})

1.12 Definizione di Estremo Superiore ed Inferiore

 $\mathbb E$ è superiormente limitato $\implies sup(\mathbb E) = sup\mathbb E = min(M(\mathbb E))$

 $\mathbb E$ è inferiormente limitato $\implies inf(\mathbb E) = inf\mathbb E = max(m(\mathbb E))$

1.12.1 Proprietà

 $\begin{array}{l} \sup \ \mathbb{E} \in \mathbb{E} \implies \sup \ \mathbb{E} = \max \ \mathbb{E} \\ \inf \ \mathbb{E} \in \mathbb{E} \implies \inf \ \mathbb{E} = \min \ \mathbb{E} \\ \sup \ \mathbb{E} \ \mathrm{e} \ \inf \ \mathbb{E} \ \mathrm{sono \ unici.} \end{array}$

1.13 Caratterizzazione di sup e inf

 $\mathbb{E} \subseteq \mathbb{R}, \, \mathbb{E} \neq \emptyset, \, \mathbb{E}$ superiormente limitato

1.13.1 Caratterizzazione di sup

 $\iota = \sup \, \mathbb{E} \iff \forall x \in \mathbb{E} : x \leq \iota \, \wedge \, \forall \varepsilon > 0 \, \, \exists x \in \mathbb{E} : x > \iota - \varepsilon$

5

1.13.2 Caratterizzazione di inf

$$\iota = \inf \, \mathbb{E} \iff \forall x \in \mathbb{E} : \iota \leq x \, \land \, \forall \varepsilon > 0 \, \, \exists x \in \mathbb{E} : x < \iota + \varepsilon$$

1.14 Definizione di $\bar{\mathbb{R}}$

Insieme dei numeri reali estesi:

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

1.14.1 Relazione d'ordine \leq e le operazioni somma e prodotto su $\overline{\mathbb{R}}$

Relazione \leq

$$\forall x \in \overline{\mathbb{R}} : -\infty \leq x \leq +\infty \\ \forall x \in \mathbb{R} : -\infty < x < +\infty$$

1.14.2 Somma

$$\forall x \in \mathbb{R} : x + \infty = +\infty$$
$$\forall x \in \mathbb{R} : x + (-\infty) = -\infty$$

1.14.3 Prodotto

$$\forall x > 0, x \in \mathbb{R}$$

$$x \cdot (+\infty) = +\infty$$

$$x \cdot (-\infty) = -\infty$$

$$\forall x < 0, x \in \mathbb{R}$$

$$x \cdot (+\infty) = -\infty$$

$$x \cdot (-\infty) = +\infty$$

N.B.

Non sono definite le operazioni:

$$0 \cdot (\pm \infty), +\infty - \infty$$

1.15 Intervalli

 $I \subseteq \overline{\mathbb{R}} : \forall x, y \in I : x < z < y \implies z \in I$

I è un detto intervallo.

$$a, b \in \overline{\mathbb{R}}, a < b$$

1.15.1 Intervallo aperto di estremi a e b

$$(a,b) =]a,b[= \{x \in \overline{\mathbb{R}} : a < x < b\}$$

1.15.2 Intervallo semi-aperto a destra di estremi $a \in b$

$$[a,b) = \left\{ x \in \overline{\mathbb{R}} : a \le x < b \right\}$$

1.15.3 Intervallo semi-aperto a sinistra di estremi $a \in b$

$$(a,b] = \left\{ x \in \overline{\mathbb{R}} : a < x \le b \right\}$$

1.15.4 Intervallo chiuso di estremi a e b

$$[a,b] = \left\{ x \in \overline{\mathbb{R}} : a \le x \le b \right\}$$

1.15.5

$$\mathbb{E}\subseteq\mathbb{R},\,\mathbb{E}\neq\varnothing,\,M(\mathbb{E})=\varnothing$$

$$\sup\,\mathbb{E}=+\infty$$

$$\mathbb{E}\subseteq\mathbb{R},\,\mathbb{E}\neq\varnothing,\,m(\mathbb{E})=\varnothing$$

$$\inf~\mathbb{E}=-\infty$$

1.16 Funzioni

Una funzione è definita da una terna (f, A, B) dove:

$$A \subseteq \overline{\mathbb{R}}, B \subseteq \overline{\mathbb{R}}, A \neq \emptyset, B \neq \emptyset$$

fè una legge che ad ogni elemento $x \in A$ associa univocamente un elemento $f(x) \in B.$

Notazione:

$$A = dom(f)$$
 (dominio di f)
 $B = codom(f)$ (codominio di f)

Si scrive: $f: A \to B$

N.B.

Il codominio B non è determinato univocamente da f.

Se B è codominio di f e $B \subseteq C$ allora anche C è codominio di f.

Due funzioni
$$f_1: A_1 \to \mathbb{R}$$
 e $f_2: A_2 \to \mathbb{R}$
sono uguali $\iff A_1 = A_2 \land \forall x \in A_1 = A_2: f_1(x) = f_2(x)$

1.16.1 Definizione di Insieme Immagine

$$f: A \to B$$

$$im(f) = f[A] = Imf = \{ y \in B : \exists x \in A : y = f(x) \}$$

$$im(f) \subseteq codom(f)$$

1.16.2 Definizione di Iniettività

Una funzione da A a B si dice **iniettiva** se:

$$\forall x, x' \in A. f(x) = f(x') \implies x = x'$$

1.16.3 Definizione di Suriettività

$$im(f) = codom(f)$$

Interpretazione Geometrica

 $\forall y_0 \in codom(f)$ la retta $y = y_0$ interseca il grafico di f in almeno un punto.

Equivalentemente:

$$\forall y \in codom(f)$$
$$f^{-1}(y) \neq \varnothing$$

Se $f:A\to B$ non è suriettiva si può rendere suriettiva restringendo il suo codominio alla sua immagine (Troncatura).

Si può restringere anche il dominio per rendere la funzione iniettiva (Restrizione).

1.16.4 Definizione di Biiettività

Una funzione si dice **biiettiva** (o biiezione, o anche corrispondenza 1 a 1 o biunivoca) se è sia iniettiva che suriettiva.

1.17 Definizione di Invertibilità

 $\forall y \in B \ \exists ! x \in A : y = f(x) \implies f : A \to B \ \text{\'e} \ \text{invertibile}.$

 $f:A\to B$ è invertibile $\implies f^{-1}:im(f)\to dom(f)$ è la funzione inversa di f.

$$\forall y \in (B = im(f)) : y = f(x) \iff x = f^{-1}(y)$$

Osservazione:

$$\forall y \in im(f) : y = f(f^{-1}(y))$$

f è invertibile $\iff f$ è biiettiva

Il grafico della funzione inversa:

$$graf(f^{-1}) = \{(y,x) \in B \times A : x = f^{-1}(y)\}$$

$$= \{(y,x) \in B \times A : y = f(x)\}$$

$$= \{(y,x) \in B \times A : (x,y) \in graf(f)\}$$

$$(y,x) \in graf(f^{-1}) \iff (x,y) \in graf(f)$$

 $graf(f^{-1})$ è simmetrico di graf(f) rispetto alla retta y=x

1.18 Definizione di Restrizione

$$f: A \to B, E \subseteq A$$

$$f|_E : E \to B$$

$$f|_E(x) = f(x) \ \forall x \in E$$

 $f|_E$ è chiamata restrizione di f ad E.

Una funzione non iniettiva si può rendere iniettiva considerandone opportune restrizioni.