

注:以ZX7-400STG-III焊机为基准

目录

- 1 焊机结构
- 2 主回路原理及器件
- 3 断电检测
- 4 通电检测
- 5 部件的拆卸与安装
- 6 故障维修
- 7 维护和保养

1 焊机结构

注意事项:

通用维修手册以ZX7-400STG-III焊机为基准,面向所有类型焊机,元器件标号可能与其他类型的焊机中的元器件标号不一致,元器件标号请参照各个系列的维修手册。

内容提示:

- 1.1前面板:
- 1.2 后面板:
- 1.3 俯视图:
- 1.4 右侧视图:
- 1.5 左侧视图:
- 1.6 维修工具:

1.1 前面板:

电流/电压开关KD2

氩弧/手弧开关KD3

工作指示灯 LED1

数显表SXB

保护指示灯 LED2

引弧电流给 定电位器W3

通风板

输出正极 OUTP

控制插座P20

自锁/非自锁 开关KD4

ZX7-4005TG

遥控/近控开 关KD1

焊接电流给 定电位器W1

推力电流/衰 减时间电位 器W2

> 输出负极 OUTN

出气铜嘴

1.2 后面板:

1.3 顶视图:

高漏抗变 压器**T3**

电流互 感板IFB 温度继 电器SW

高频引弧 板YHB

谐振电 感L3

谐振电 容**C29**

升压变 压器**T2**

分流器 FL IGBT阻容 吸收板 IGBTZRB

IGBT模 块M1

三相整 流模块 **D1**

风机启 动电容 **C6**

电磁阀 DF

隔离变压器T5

压敏电阻R1

滤波电容C4

1.5 左侧视图:

风机M

换流电感 L2

二极管阻 容吸收板 **EJGZRB**

快恢复二极 管模块D3

主变压 器T1

输出电 抗器L4

机架电 容板JJB

1.6 维修工具:

万用表Fluke-17B

扭力扳手4.5nm

万用表 MF-47

2 主回路原理及器件

2.1 a 主要元器件清单

标号	名称	物料编码
C4, C5	聚丙烯电容	711155142030
C29	聚丙烯电容	711155500420
D1	三相整流模块	716422100010
D3-D8	快恢复二极管模块	716299000080
DF	电磁阀	724300036010
F1	保险管	717100002090
FL	分流器	717300301075
IFB	电流互感器组件	201238192000
IGBTZRB	IGBT阻容吸收板	201305122000
K1	空气开关	722300040030
KD	船形开关	722200000270
L1	输入滤波电感	201268122000
L2	换流电感	201357122010
L3	谐振电感	201275122000
L4	输出电抗器	732030415100

2.1 b 主要元器件清单

标号	名称	物料编码
M	轴流风机	724111380120
M1, M2	IGBT模块	716122000040
QDB	驱动板	201420122000-122
R1	压敏电阻	712431102020
SW	温度继电器	724533070010
SXB	数显表	714333000009
T1	主变压器	201291122000
T2	升压变压器	201126122000
Т3	高漏抗变压器	732020122100
T4	电源变压器	732010122100
T5	隔离变压器	732020122200
W	电位器	712711103250
YHB	引弧板组件	201531122000
ZKB	主控板	201400122020

2.2 a 器件损坏后引起的故障及现象

故障器件	故 障 现 象				
→ 十口 車が ジズ 卡芸 L-h	断路导致缺相:焊接电流不稳;调不到最大				
三相整流模块	短路:空气开关跳闸				
压敏电阻	伴随爆炸声,同时有烟尘; 空气开关跳闸				
输入滤波电容	压敏电阻坏;输出电流不稳定、断弧				
风机	空气开关跳闸; 风机不转				
IGBT	空气开关跳闸,驱动板损坏;三相整流模块损坏;输出电流小、调不大或无输出(IGBT断路损坏时);IGBT阻容吸收板坏.				
快恢复二极管模 块	无输出电流,有轻微火星;无空载电压或空载电压明显低于正常值				
保险管	焊机无显示、不工作				
IFB电流互感板	输出电流小(电阻大); 达不到最大值;IGBT损坏(电阻小或二极管坏);				
电流不稳定 分流器					
) VILITIE	分流器电流反馈线断:输出电流不可调节; 电流输出不稳定; 显示数值不正常				

2.2 b 器件损坏后引起的故障及现象

器件	故障现象			
船形开关	功能失灵(断路时);功能时有时无(接触不良);功能紊乱(短路时)			
电位器	造成给定不可调、调节量很小、或调节时不能连续调节			
驱动板	焊机无输出电流; 焊机输出电流小; IGBT损坏; 空气开关跳闸			
数显表	无显示; 显示断码			
空气开关	跳闸;缺相,造成焊接电流不稳,调不到最大			
谐振电容	输出电流小; 无输出电流; 变压器偏磁			
换流电感	无输出电流;IGBT损坏			
主变压器	无输出;空气开关跳闸;空载电压高			
电源控制变压器	风机转,焊机无显示,不工作;控制失常;无输出电流;保险管烧			
焊接电缆	焊接电流不稳定, 焊接电压不稳定, 焊接电流小, 无焊接电流			

3 断电检测

警告:

- 1、三相电源电缆完全脱离电源后,才能开始检测 元器件。
- 2、将焊接电缆从输出端断开。
- 3、等待几分钟,测量输入电容两端电压,确保充分放电后开始检测,<mark>防止电击</mark>。

注意事项:

- 1、数字万用表状态在"二极管/电阻/电容"档。
- 2、测量限值已经给定。如使用不同的万用表, 按其准确度,数值也会有所变化。
- 3、等万用表上的读数稳定后再进行记录。
- 4、确保万用表表笔和检测点接触良好。
- 5、部分器件测量时需断开与控制板连接。

内容提示:

- 3.1a 三相整流模块D1--检测:
- 3.1b 三相整流模块D1--检测:
- 3.2 电源电缆DL--检测:
- 3.3 压敏电阻R1--检测:
- 3.4 输入滤波电容C4--检测:
- 3.5 风机M及启动电容C6--检测:
- 3.6a IGBT 检测(数字式万用表):
- 3.6b IGBT 检测(数字式万用表):
- 3.6c IGBT 检测(模拟式万用表):
- 3.6d IGBT 检测(模拟式万用表):
- 3.7a 快恢复二极管模块D3--检测:
- 3.7b 快恢复二极管模块D3--检测:

- 3.8 保险管F1--检测:
- 3.9a 电流互感板IFB--检测:
- 3.9b 电流互感板IFB--检测:
- 3.10 分流器电流反馈回路--检测:
- 3.11a 船形开关KD--检测:
- 3.11b 船形开关KD--检测:
- 3.12 电位器W--检测(以4.7KΩ为例):
- 3.13a 数字表检测驱动板(QDB)驱动线:
- 3.13b 模拟表检测驱动板(QDB)驱动线:
- 3.14 温度继电器SW:

DC(+)

万用表量程	红色表笔	黑色表笔	正确值	备注
	AC1			二极管正向导
	AC2	DC(-)	不通(.0L)	通,反向不通。
二极管档	AC3			
		AC1		
	DC(-)	AC2	通(0.3-0.5V)	
		AC3		

3.1b 三相整流模块D1--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
	AC1 AC2 AC3	DC(+)	通(0.3-0.5V)	二极管正向导 通,反向不通。
二极管档		AC1		
	DC(+)	AC2	不通(.0L)	
		AC3		

3.2 电源电缆DL--检测:

电源电缆DL(3)+1

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻档		AC1		空气开关闭合,
自动量程	DL	AC2	通(<0.5Ω)	将 3 根火线外部接 头短路。
,,,,,=,,=		AC3	(无断线)	大应时。
	DL (1)	DL (2)		空气开关断开,3
	DL (1)	DL (3)	不通(O.L)	根火线不短路。
	DL (2)	DL (3)	(无短路)	

3.3 压敏电阻R1--检测:

R1(2)

R1(1)

压敏电阻R1

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻	R1 (1)	R1 (2)	0.L	测量时断开
自动量程				R1 (2)

3.4 输入滤波电容C4--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
电容	C4(2)	C4(1)	19~21uF	测量时断开C4(1)
自动量程				与直流母线的连线

3.5a 风机M及启动电容C6--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻档	风机红线	风机蓝线	200-2K Ω	断开保险管和空开
	风机蓝线	风机黄线		
电容档	C6 (1)	C6(2)	电容标称值	断开与风机的连线

注: 不适用于数字化焊机中的风机检测。

3.6a IGBT 检测(数字式万用表):

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻	IGBT-4脚	IGBT-5脚	不通(0.L)	测量时拔下控制线。
二极管	IGBT-1脚	IGBT-3脚	0.33-0.37V	注意放静电,测量时 手不要触摸到控制线 端子4、5、6、7。

3.6b IGBT 检测(数字式万用表):

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻	IGBT-6脚	IGBT-7脚	不通(0.L)	测量时拔下控制线。
二极管	IGBT-2脚	IGBT-1脚	0.33-0.37V	注意放静电,测量时 手不要触摸到控制线 端子4、5、6、7。

3.6c IGBT 检测(模拟式万用表):

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻 x10K Ω	IGBT-5脚	IGBT-4脚	不通(0.L)	测量时拔下控制
电阻 x1 Ω	IGBT-1脚	IGBT-3脚	9-12 Ω	线。注意放静 电,测量时手
	IGBT-3脚	IGBT-1脚		不要触摸到控
电阻 x10K Ω	IGBT-7脚	IGBT-6脚	不通(0.L)	制线端子4、
电阻 x1 Ω	IGBT-1脚	IGBT-2脚	9-12 Ω	5、6、7。
	IGBT-2脚	IGBT-1脚		

3.6d IGBT 检测(模拟式万用表):

万用表量程		红色表笔	黑色表笔	正确值	备注
电阻 x1 Ω	将4-5	IGBT-1脚	IGBT-3脚	不通(0.L)	测量时拔下控制
	脚短路	IGBT-3脚	IGBT-1脚	9-12 Ω	线。注意放静电,
	将6-7	IGBT-2脚	IGBT-1脚	不通(0.L)	测量时手不要触
	脚短路	IGBT-1脚	IGBT-2脚	9-12 Ω	4、5、6、7。

3.7a 快恢复二极管模块D3--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
二极管	D3阳极	D3阴极	0.12-0.14V	
	D3阴极	D3阳极	不通(.0L)	

3.7b 快恢复二极管模块D3--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
二极管	正极	负极	不通(.0L)	NBC系列焊机不能这样判
	负极	正极	0.12-0.14 V	断。其他系列焊机测量时将 电流反馈线插头拔下。

3.8 保险管F1--检测:

F1(1)

F1(2)

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻档	F1(1)	F1(2)	通(<1 Ω)	

3.9a 电流互感板IFB--检测:

电流互感板IFB

驱动板插头P3

万用表量程	红色表笔	黑色表笔	正确值 (400A)	不同焊机的正确值
电阻档 自动量程	P3(1) 测量时料	P3(2) §驱动板P3:	9.5~10.5 Ω 插头拔下。	315A:11.4~12 .6 Ω 350/400A:9.5~10 .5 Ω 500/1000A:5.89~6.51 Ω
H /4 -12 1-2				630/1250A:4.845~5.355 Ω

3.9b 电流互感板IFB--检测:

万用表量程	红色表笔	黑色表笔	正确值	不同焊机的正确值
电阻 自动量程	R143 一端	R143 另 一端	9.5~10.5 Ω	315A:11.4~12 .6 Ω 350/400A:9.5~10 .5 Ω 500/1000A:5.89~6.51 Ω 630/1250A:4.845~5.355 Ω

注:测量二极管时,需将其从电路中断开挑起,再进行测量。

3.10 分流器电流反馈回路--检测:

万用表量程	红色表笔	黑色表笔	正确值	
电阻档	A7 (1)	A7 (2)	< 0.5 Ω	
自动量程				

3.11a 船形开关KD--检测:

3.11b 船形开关KD--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
	KD (2)	KD (1)	不通(0.L)	开关置"I"位测量
	KD (5)	KD (4)		时,良好接触即 可,不要施加多
	KD (3)	KD (2)	通(00)	余外力
中阻	KD (5)	KD (6)		
自动量程	KD (2)	KD (1)	通(00)	开关置"O"位
日知里性	KD (5)	KD (4)		测量时,良好接
	KD (3)	KD (2)	不通(0.L)	触即可,不要施 加多余外力
	KD (5)	KD (6)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

测量时,良好接触即可,不要施加多余外力.

3.12 电位器W--检测(以4.7KΩ为例):

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻档	W (2)	W (1)	0~4.7K Ω \pm 5%	测量时调节电位
自动量程	W (2)	W (3)	0~4.7K Ω ±5%	器 W ,应连续变

3.13a 数字表检测驱动板(QDB)驱动线:

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻档	G (红色)	E(黑色)	11-13 Ω	将驱动线从IGBT
自动量程	E(黑色)	G (红色)	11-13 Ω	拔下,分别测量 4 组驱动线。

确认是驱动板引起的故障后,直接更换驱动板,不要擅自维修。

3.13b 模拟表检测驱动板(QDB)驱动线:

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻X1档	G (红色)	E (黑色)	11~12 Ω	将驱动线从IGBT 拔下,分别测量4
	E(黑色)	G (红色)	5.5~7 Ω	组驱动线。

确认是驱动板引起的故障后,直接更换驱动板,不要擅自维修

3.14 温度继电器SW:

万用表量程	红色表笔	黑色表笔	正确值	备注
电阻档	SW (1)	SW (2)	通(<0.5Ω)	测量时继电器到
自动量程				主控板连线断开

4 通电检测

警告:

通电检测只在空气开关不跳闸时进行,如空气开关已 经跳闸,或开关闭合后空气开关跳闸,则应先进行断电 检测。

电击可致命:

- 1、机内最高电压达600V, 请勿接触带电部件。
- 2、确保身体和工件、地面相互之间绝缘。
- 3、请使用干燥的,无破损的绝缘手套等保护用品。 运动部件可对人体造成伤害:
- 1、旋转部件(如风机)会伤害手指或缠住宽松的衣服。
- 2、高空作业时,请使用安全网。

注意事项:

- 1、数字万用表状态在"AC/DC电压"档。
- 2、测量限值已经给定。如使用不同的万用表, 按其准确度,数值也会有所变化。
- 3、等万用表上的读数稳定后再进行记录。
- 4、确保万用表表笔和检测点接触良好。
- 5、本手册中所测数据是在供电电压为380V的情况下测出,如果现场测量的电压值与手册不符,请先确认供电电压。

内容提示:

- 4.1 交流AC输入电压及直流DC母线电压--检测:
- 4.2 分流器FL--检测:
- 4.3 主控板ZKB提供给驱动板QDB的电压信号--检测:
- 4.4 加40V测量IGBT 1脚的波形:
- 4.5 驱动信号波形检测:
- 4.6a 数显表SXB接线:
- 4.6b 数显表SXB输入信号检测:

4.1 交流AC输入电压及直流DC母线电压--检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
交流电压	AC1	AC2		在静态大负载状
自动量程	AC2	AC3	380V±10%	态下进行检测。
7,41,12	AC3	AC1		测量时身体请勿 接触带电部位
直流电压	DC(+)	DC(-)	520V ±10%	

4.2 分流器FL--检测:

万用表量程	红色表笔	黑色表笔	焊机规格	正确值	备注
直流电压	FL+	FL-	315.400A	50mV±0.5	负载,输
自动量程	连接在输		500.630A	30mV±0.5	出电流
	出负极		≥1000A	10mV±0.5	200A

4.3 主控板提供给驱动板QDB的电压信号--检测:

驱动板插头P2

万用表量程	红色表笔	黑色表笔	正确值	备注
直流电压	P2 (3)	P2 (4)	<0.4VDC	空载
自动量程	P2 (3)	P2 (4)	0.5-5VDC	焊接

4.4 加40VDC测量IGBT 1脚的波形:

4.将驱动板P2插座2、3脚短接,将示波器电压量程设为20V,周期10uS。

2. 将30-40V直流电源,连接在直流 母线上,电源的正极接直流母线的正 极,电源的负极接直流母线的负极。

3. 将示波器探头连接在两只IGBT 的1脚,接通三相输入电源。

4.5 驱动波形检测:

1.切断三相输入电源,断开三相整流 模块直流侧连线,保留压敏电阻与三 相整流模块的连接。

4. 将示波器电压量程设为20V,周期10uS。

2. 将驱动板P2插头的2-3号脚短路。

3. 将示波器探头连接在一组驱动线 上。接通三相输入电源。

4.6a 数显表SXB接线:

P 3	PD	小数点
短路		亮
断	开	灭

IN+ IN-小数点 电源

AC9V 置位端

4.6b 数显表SXB输入信号检测:

万用表量程	红色表笔	黑色表笔	正确值	备注
直流电压	SXB(4)	SXB(5)	0.0~1.25V	量程: 0±1.999V
交流电压	SXB(1)	SXB(2)	10V±5%	供电: AC10V

5 部件的拆卸与安装

警告:

- 1、焊机需由专业人员维修,任何错误的连接和安装都会损坏PCB或元器件。
- 2、电击可致命:更换元器件,必须在三相输入电缆完全脱离电源的情况下进行。切断电源后等待几分钟,测量直流母线上电容两端电压,确保充分放电后开始更换元器件。
- 3、 IGBT对静电敏感,携带和接线过程中造成的带电将会损坏模块。
- 4、大功率模块的多个安装螺丝应该均匀紧固,且接线端子的紧固要求使用力矩可控工具,否则会损坏模块。

注意事项:

- 1、IGBT对静电敏感,携带过程中GE间应短路,拔插控制线时应戴接地环。
- 2、更换大功率模块时,拆下旧模块后,先用干净的抹布将散热器上的导热硅脂清除干净,然后在模块底板上涂上适量的新的导热硅脂,将模块安装在相应的位置,模块上紧后底板周围应该都能看到少量的导热硅脂。
- 3、将各类大功率模块安装到散热器时,安装螺丝一定要均匀紧固好,让模块得到良好的散热效果。
- 4、拆除或者恢复模块上的连线时,必须采用扭力扳手等力矩可控工具,一般不超过4.5N·m。
- 5、主控板与驱动板在更换过程中,要注意各插头原有位置,一一插回。

内容提示:

- 5.1 三相整流桥D1拆卸与安装:
- 5.2 IGBTM1模块拆卸与安装:
- 5.3 快恢复二极管模D3块拆卸与安装:
- 5.4 主控板ZKB的拆卸与安装:
- 5.5 驱动板QDB的拆卸与安装:
- 5.6 换流电感L2的拆卸与安装:
- 5.7 前面板电位器W的拆卸和安装:
- 5.8 电源变压器T4的拆卸和安装:
- 5.9 风机M的拆卸和安装:
- 5.10 铜铝接头的拆卸和安装:
- 5.11a 驱动板(QDB)与IGBT模块连线:
- 5.11b 驱动板(QDB)与IGBT模块连线:

5.1 三相整流桥D1的拆卸与安装:

1 用扭力扳手将整流桥 上所有连线拆下。

6 用扭力扳手将整流桥 上所有连线恢复

2 用十字形起子将整 流桥的固定螺丝拆下

5 用十字形起子将整 流桥紧固在散热器上

3 用干净的抹布清除 散热器的导热硅脂

4 在新的整流桥散热板 上均匀涂抹导热硅脂

5.2 IGBT模块M1的拆卸与安装:

1 用扭力扳手将IGBT上所有螺钉 压接连线拆下,拔掉控制线。

2 用内六角扳手将IGBT的固定螺丝拆下.

3 用干净的抹布清除 散热器的导热硅脂

6 用扭力扳手将IGBT所有螺钉 压接连线恢复,取下控制极的 短路环,正确连接控制线。

5 用内六角扳手将IGBT紧固在散热器上

4 在新的IGBT散热板 上均匀涂抹导热硅脂

5.3 快恢复二极管模块D3的拆卸与安装:

1 用扭力扳手将二极管上所有螺钉 压接连线拆下,用十字形起子拆下 二极管阻容吸收板。

6 用扭力扳手将二极管上所有连线恢 复,用十字形起子将二极管阻容吸收 板固定在散热器上。

2 用内六角板手将二极管 的固定螺丝拆下。

5 用内六角板手将二极管 紧固在散热器上。

3 用干净的抹布清除散热 器的导热硅脂。

4 在新的二极管散热板上 均匀涂抹导热硅脂。

5.4 主控板ZKB的拆卸与安装:

1 将主控板A1-A7 插头连线全部拔下,拔插头时手应捏住插头,禁止用手直接拔插头连线。

4将主控板A1-A7 插头连线一一对应插回。

2 用十字形起子将固定主控板的盘头螺钉完全松开,取下主控板。

3用M4X35的盘头螺钉和 Φ 4的平垫将 主控板固定在中层板上,主控板与中 层板之间垫尼龙柱绝缘。

5.5 驱动板QDB的拆卸与安装:

1将驱动板上4组驱动线全部 拔下拔插针时手应捏住插针。

2 将驱动板上P1-P3插头线全部拔 下,拔插头时手应捏住插头。

3 用十字形起子将固定驱动板 的盘头螺钉完全松开, 取下驱 动板。

6将驱动板上4组驱动线全部一 对应插牢,注意极性不要插反, 不能松动。

5 将驱动板上P1-P3插头线全 部插上。

4 用盘头螺钉和 Φ 4 的平垫将驱 动板固定在中层板上, 驱动板 与中层板之间垫尼龙柱绝缘。

尼龙柱

5.6 换流电感L2的拆卸与安装:

1 拨开黄腊管,露出连接螺钉 组件:

2 用十字型起子和呆扳手将螺钉 组件拆开;

3 断开换流电感与主变压器绕 组连线;

6 可靠恢复换流电感与主变压 器的连线并套好黄腊管。

5 注意紧固螺钉必须采用铜制螺钉;紧 固过程必须均匀受力,以防损坏磁芯;

4用十字型起子拆下旧换流电感, 更换安装新的换流电感;

5.7 前面板电位器W的拆卸和安装:

用工具将旋纽与 电位器的固定螺 母松开或紧固。

电位器与控制 面板之间加装 绝缘垫圈

电位器与控制 面板之间加装 绝缘垫圈

安装电位器旋钮时, 先将电位器调到最小, 再使旋钮指针对准零点上紧。

5.8 电源变压器T4的拆卸和安装:

变压器的连线保留原来的 位置,更换变压器后一 对应恢复。

焊接时电烙铁不要在变压器 引脚处停留时间太长,防 止引出线脱焊。

安装电源变压器 时,注意屏蔽层接 地要可靠。

5.9 风机M的拆卸和安装:

5.10 铜铝接头的拆卸和安装:

注意: 2007年12月以后的焊机在铝电抗器两端分别加装铜铝接头。加装时保证铜-铜、铝-铝连接,铜铝不得有交叉接触。

注: IGBT模块1脚接电容的是超前臂,不接电容的是滞后臂。

6 故障维修

警告:

焊机需由专业人员维修,任何错误的连 接和安装都会损坏PCB或元器件。切断电源 后,需等待几分钟,输入电容充分放电经测 量确认后再开始维修,防止电击。

注意事项:

- 1、请务必遵守本手册规定的注意事项,否则 可能发生事故。
- 2、请有专业资格的人员对焊机进行检修。
- 3、避免焊接电缆和控制电缆破损、断线;防止焊机输出短路。
- 4、维修前,请先确认焊机外部的供电电源是否正常,供电电压、供电频率是否与焊机 铭牌标识的一致,供电电源容量是否满足 焊机的工作需求。

内容提示:

- 6.1 开机后,指示灯不亮,弧焊电源不工作
- 6.2 空气开关跳闸
- 6.3 在正常工作时,后面板上空气开关跳闸
- 6.4 气体不通(不通气或焊枪喷嘴处气流量小)
- 6.5 常通气
- 6.6 显示不正常(不显示或显示值不正常)
- 6.7 轴流风机坏
- 6.8 故障灯亮
- 6.9 IGBT模块坏
- 6.10 压敏电阻坏
- 6.11 三相整流桥坏

6.1 开机后,指示灯不亮,弧焊电源不工作

序号	故障原因	判别方法与处理
1	电源缺相?	检查三相电源#3.2 #4.1
2	空气开关坏(K1)?	更换空气开关
3	机内保险管断(F1)?	检查电源变压器是否完好#3.8 #参照各系列手册
4	机内断线?	检查并恢复连线
5	电源变压器坏 (T4)?	检查、紧固

6.2 空气开关跳闸

序号	故 障原因	判别方法与处理
1	空气开关坏(K1)?	更换空气开关
2	压敏电阻坏(R1)?	检查更换压敏电阻#3.3
3	IGBT坏(M1~M2)?	检查更换IGBT#3.6 #5.2
4	三相整流模块坏(D1)?	更换三相整流模块#3.1 #5.1
5	轴流风机坏(M)?	检查更换风机#3.5#5.9
6	主变压器原副边短路(T1)?	纠正接线

6.3 在正常工作时,后面板上空气开关跳闸

序号	故障原因	判别方法与处理
1	现场使用电流过大?	正确调节参数
2	空气开关坏(K1)?	检查更换
3	三相整流模块坏(D1)?	更换三相整流模块#3.1#5.1
4	压敏电阻坏(R1)?	检查更换压敏电阻#3.3
5	IGBT模块(M1, M2)?	检查更换IGBT模块#3.6 #5.2
6	线间短路?	检查修复
7	驱动板损坏(QDB)?	检查驱动板上的12Ω、5.1Ω电阻、 SR160是否损坏#3.13 #4.3,更换驱 动板#5.11。

6.4 气体异常(不通气或焊枪喷嘴处气流量小)

序号	故障原因	判别方法与处理
1	焊枪坏,漏气?	检查维修或更换
2	气瓶压力过低?	更换气瓶
3	气表坏?	更换气表
4	电磁阀断线(DF)?	重新连线
5	电磁阀内弹簧被卡住或进气口堵住?	检修电磁阀,清理异物
6	电磁阀线圈坏(DF)?	更换电磁阀#参照各系列手册
7	主控板损坏(ZKB)?	更换主控板#参照各系列手册

6.5 常通气

序号	故障原因	判别方法与处理
1	电磁阀被异物顶住常通(DF)?	清除异物
2	主控板坏(ZKB)?	检查更换#参照各系列手册#5.4
3	其他原因?	检查更换#参照各系列手册

6.6 显示不正常(不显示或显示值不正常)

序号	故障原因	判别方法与处理
1	电源缺相?	检查电源#3.2 #4.1
2	保险管坏(F1)?	检查更换保险管#3.8
3	数显表坏(SXB)?	更换数显表#4.6
4	电源变压器坏(T4)?	更换电源变压器#见各系列手册
5	主控板坏(ZKB)?	更换主控板#5.4
6	其他原因?	检查更换#参照各系列手册

6.7 轴流风机不转

序号	故障原因	判别方法与处理
1	风扇被堵转(M)?	清除异物
2	电源缺相?	检查电源#3.2 #4.1
3	启动电容坏(C6)?	检查更换电容#3.5
4	风机坏(M)?	检查更换风机#3.5

6.8 保护灯亮

序号	故障原因	判别方法与处理
1	通风不好,机内温度过高?	冷却
2	使用的负载持续率过高?	按照焊机负载率使用,参见焊机铭牌标识
3	温度继电器坏(SW)、连线断?	检查更换温度继电器#3.14重新连线
4	主控板坏(ZKB)?	更换主控板#5.4

6.9 IGBT模块损坏

序号	故障原因	判别方法与处理
1	散热器螺栓压接不紧?	紧固螺栓#5.2
2	导热硅脂未涂?	涂上导热硅脂#5.2
3	电网尖峰电压过高?	检查电源#3.2 #4.1
4	过流损坏?	检查二极管模块或分流器#3.10
5	过载输出?	调整焊接规范,减小负载
6	电流互感板坏或插反?	检查更换#3.9
7	阻容吸收板电容坏?	检查更换电容
8	谐振电容失效(C29)?	更换谐振电容#3.4
9	谐振电感短路(L3)?	检查纠正
10	换流电感坏(L2)?	更换#5.6
11	驱动板坏(QDB)?	检查更换#3.13#5.11

6.10 压敏电阻坏

序号	故障原因	判别方法与处理
1	输入电压不稳定?	排除不稳定因素
2	输入滤波电容容量低(C4, C5)?	检查更换滤波电容#3.4
3	压敏电阻型号不符(R1)?	更换合适压敏电阻#3.3

6.11 三相整流模块坏

序号	故障原因	判别方法与处理
1	直流母线短路?	检查排除
2	压敏电阻坏(R1)?	检查更换#3.3
3	IGBT 损 (M1, M2)?	检查更换IGBT#3.6 #5.2
4	三相整流模块参数不对(D1)?	检查更换#3.1#5.1

7 维护与保养

警告:

- 1、焊机需由专业人员维护保养。
- 2、电击可致命: 机内最高电压达600V, 请勿接触带电部件; 检测维护焊机内部元器件时, 必须在三相电源电缆完全脱离电源的情况下进行。切断电源后等待几分钟, 测量直流母线上电容两端电压, 确保充分放电后开始更换元器件。
- 3、 IGBT对静电敏感,接线过程中造成的带电将会损坏模块。
- 4、大功率模块的多个安装螺丝应该均匀紧固,且接线端子的紧固要求使用力矩可控工具,否则会损坏模块。

7.1 维护和保养

- 1、每3至6个月由专业维修人员用压缩空气为焊接电源除尘一次,同时注意检查机内有无紧固件松动现象。环境恶劣时,每1个月一次。
- 2、三相电源的线电压是否在340V-420V范围内,有无缺相。
- 3、保护接地是否正确可靠, 焊机绝缘是否可靠。
- 4、经常检查电缆是否破损、断线,调节旋钮是否松动,面板上元件是否损坏。
- 5、经常检查电缆与焊机接线端子的连接是否紧固可靠,避免损坏接线端子。
- 6、易损易耗器件或部件应及时更换,经常清理送丝通道,保证送丝通畅。
- 7、保持焊机通风良好,焊机内部保持干燥。