Predictive Indicators

SLIDE 1

MESA Software

John Ehlers

e-mail: ehlers@mesasoftware.com

AGENDA

- Exponential Moving Averages
 - · Why lag is important
 - How to compute the EMA constant to produce a given lag
- Higher order filters
 - Let your computer do a superior job of smoothing
- Essence of Predictive Filters
- Linear Kalman Filters
- Nonlinear Kalman Filters
- **Theoretically Optimum Predictive Filters**
- Zero Lag smoothing

Fundamental Concept of Predictive Filters

SLIDE 3

In the trend mode price difference is directly related to time lag

- Procedure to generate a predictive line:
 - Take an EMA of price (better, a 3 Pole filter)
 - Take the difference (delta) between the price and its EMA
 - Form the predictor by adding delta to the price
 - equivalent to adding 2*delta to EMA

A Simple Predictive Trading System

SLIDE 4

Rules:

- Buy when Predictor crosses EMA from bottom to top
- Sell when Predictor crosses EMA from top to bottom
- Usually produces too many whipsaws to be practical

Secrets of Predictive Filters

- All averages lag (and smooth)
- All differences lead (and are more noisy)
- The objective of filters is to eliminate the unwanted frequency components
- The range of trading frequencies makes a single filter approach impractical
- A better approach divides the market into two modes
 - Cycle Mode
 - Trend Mode
 - A Trend can be a piece of a longer cycle

Simple and Exponential Moving Averages

- EMA constant is usually related to the length of an SMA
 - "Filter Price Data", J.K. Hutson, TASAC Vol. 2, page 102
 - The equation is $\alpha = 2 / (\text{Length } +1)$

- Only delay and amplitude smoothing are important
 - Delay is the most important criteria for traders
 - An EMA has superior rejection for a given delay

Relating Lag to the EMA Constant

SLIDE 7

An EMA is calculated as:

$$g(z) = \alpha^* f(z) + (1 - \alpha)^* g(z - 1)$$
where
$$g() \text{ is the output}$$

$$f() \text{ is the input}$$

$$z \text{ is the incrementing variable}$$

Assume the following for a trend mode

- f() increments by 1 for each step of z
 - has a value of "i" on the "i th" day
- k is the output lag

$$i - k = \alpha^* i + (1 - \alpha)^* (i - k - 1)$$

= $\alpha^* i + (i - k) - 1 - \alpha^* i + \alpha^* (k + 1)$
 $0 = \alpha^* (k + 1) - 1$
Then $k = 1/\alpha - 1$ OR $\alpha = 1/(k + 1)$

Relationship of Lag and EMA Constant

SLIDE 8

$\underline{\alpha}$	k (Lag
.5	1
.4	1.5
.3	2.33
.25	3
.2	4
.1	9
.05	19

■ Small α cannot be used for short term analysis due to excessive lag

EMA is a Low Pass Filter

SLIDE 9

$$g(z) = \alpha^* f(z) + (1 - \alpha)^* g(z - 1)$$

Use Z Transform notation (unit lag = 1/z)

$$g = \alpha *f + (1 - \alpha)*g/z$$

Solving the algebra: $g = \alpha *f*z / (z - (1 - \alpha))$

- Output is related to input by a first order polynomial
- Called 1 Pole filter because response goes to infinity when z = 1 - \(\alpha \)
- Higher order polynomials produce better filtering
 - Second order: $g = kf / (z^2 + az + b)$
 - Third order: $g = kf / (z^3 + az^2 + bz + c)$

Higher Order Filters Give Better Filtering

SLIDE 10

Smoothing increases with filter order High Frequencies (short cycles) are more sharply rejected

Higher Order Filter Design Equations

SLIDE 11

- Delay = N * P / π^2 (N is order, P is cutoff period)
- Second Order Butterworth equations:

```
a = \exp(-1.414*\pi/P)

b = 2*a*Cos(1.414*\pi/P)

g = b*g[1] - a*a*g[2] + ((1 - b + a*a)/4)*(f + 2*f[1] + f[2])
```

Third Order Butterworth equations:

```
a = \exp(-\pi/P)
b = 2*a*Cos(1.732*\pi/P)
c = \exp(-2*\pi/P)
g = (b + c)*g[1] - (c + b*c)*g[2] + c*c*g[3]
+ ((1 - b + c)*(1 - c) / 8)*(f + 3*f[1] + 3*f[2] + f[3])
```

where g is output, f is input

14 Bar Cutoff 1, 2, & 3 Pole LowPass Filters

SLIDE 12

Increased Lag is the penalty for increased smoothing

1 & 3 Pole LowPass Filters Equalized for 2 Bar Lag

SLIDE 13

 Higher Order filters give better fidelity for an equal amount of lag

Linear Kalman Filters

- Originally used to predict ballistic trajectories
- Basic ideal is to correct the previous estimate using the current error to modify the estimate
- Procedure for a Linear Kalman Filter:
 - Previous estimate is the EMA
 - Estimate Lag error based on price change
 - Multiply the price rate of change by the lag-related constant

$$g(z) = \alpha * f(z) + (1 - \alpha) * g(z - 1) + \gamma * (f(z) - f(z - 1))$$

Computing Kalman Coefficients

SLIDE 15

■ As before, increment f() by 1 for each step of z

$$i - k = \alpha^* i + (1 - \alpha)^* (i - k - 1) + \gamma^* (i - (i - 1))$$

= $\alpha^* i + (i - k) - 1 - \alpha^* i + \alpha^* (k + 1) + \gamma$
 $0 = \alpha^* (k + 1) - 1 + \gamma$
 $\gamma = 1 - \alpha^* (k + 1)$

$$\frac{K}{1 \text{ (Lag)}}$$
 $\frac{\gamma}{1 - 2*\alpha}$
0
1 - α
-1 (Lead)
1
-2

- Now lag is under control for any EMA constant
- Leading functions are too noisy to be useful

Linear Kalman Filter 1 Day Lag

Nonlinear Kalman Filter

- Take EMA of price (better, a 3 Pole filter)
- Take the difference (delta) between Price and its EMA
- Take an EMA of delta (or a 3 Pole filter)
 - Smoothing will help reduce whipsaws
 - Ideally, smoothing introduces no major trend mode lag because delta is detrended
- Add the smoothed delta to EMA for a zero lag curve.
- Add 2*(smoothed delta) to EMA for a smoother predictive line

Zero Lag Nonlinear Kalman Filter Example

Theoretically Optimum Predictive Filters

- Optimum predictive filters are solutions to the generalized Wiener-Hopf integral equation
 - "Statistical Theory of Communication", Y.W. Lee, John Wiley and Sons, 1960
- Optimum Predictive filters pertain only to the market cycle mode (Must use detrended waveforms)
- Two solutions are of interest to traders
 - Pure predictor (noise free case)
 - See "The BandPass Indicator", John Ehlers, TASAC,
 September 1994, page 51
 - Predicting in the presence of noise
 - See "Optimum Predictive Filters", John Ehlers, TASAC, June 1995, Page 38

Pure Predictor

- Calculations start by taking two 3 Pole Low Pass filters for smoothing
 - Period1 = .707 * Dominant Cycle
 - Period2 = 1.414 * Dominant Cycle
- Ratio of the two periods is 2:1
 - The second filter has twice the lag of the first
- Take the difference of the two filter outputs
 - The difference detrends the information
 - The resultant is in phase with the cycle component of the price
- A very smooth (noise-free) replica of the cycle component of the price is established. This is the BandPass Filter output.

Sinewave "momentum" phase leads by 90 degrees

SLIDE 21

"Momentum" is similar to a calculus derivative.

d (Sin(ω *t)) / dt = ω * Cos(ω *t)

 $1/\omega = P/(2*\pi)$ must be used as an amplitude normalizer.

Computing the Noise-Free Predictor

- Take the "momentum" of the BandPass Filter output (simple one day difference).
- Normalize amplitude by multiplying the "momentum" by P_o / (2* π)
- Produce 30 degree leading function
 - Multiply normalized "momentum" by .577 (tan(30) = .577)
 - Add product to BandPass Filter output
- Reduce leading function amplitude
 - Multiply by .87 to normalize vector amplitude
 - Multiply again by .75 to reduce amplitude below BandPass amplitude.
 - Crossover entry signal always leads by 1/8th of a cycle

Noise-Free Predictor Vector Construction

The Complete BandPass Indicator

SLIDE 24

The BandPass Indicator is automatically tuned in:

- MESA for Windows
- 3D for Windows

BandPass Indicator Crossings Give Buy/Sell Signals

Optimum Predictive Filter in the Presence of Noise

- Start with RSI or Stochastic Indicator
 - Provides detrended waveform
 - Adjust length until the waveform resembles a sinewave
- Technique is useful only when the waveform has a Poisson probability distribution
 - The midpoint crossings must be relatively regular
- Take an EMA of the RSI
 - \square α = .25 is nominally correct (gives a 3 day lag)
- Subtract the EMA from the RSI to produce the predictor
 - Remember the fundamental premise in constructing predictive filters?

RSI and Optimum Predictive Filter

Zero Lag Filters

SLIDE 28

- Zero Lag filters are constructed using cycle theory
- A phasor accurately depicts cyclic amplitude and phase characteristics

Phasors ignore the cyclic rotation and examine only relative lead and lag relationships

Zero Lag Filter Construction

- Phasor A has a lag of DominantCycle/16
- Phasor B has twice the lag of Phasor A
- Subtract B from A by reversing B and adding
- Resultant is detrended leading angle Phasor C
- Vector add C to A
- Resultant is zero lag, non-detrended Phasor D

Zero Lag Filter Example

A Zero Lag Filter Application

- Take a 3 Pole zero lag filter of price highs
- Take a 3 Pole zero lag filter of price lows
- Calculate statistics of the high and low variations
 - Add 2 Standard Deviations to the Highs Zero Lag Filter
 - Subtract 2 Standard Deviations to the Lows Zero Lag Filter
- Resultant channels can be used as stop values for a stop-and-reverse system
- Remove the +/- Std Deviations near cycle turns
- SUMMIT for Windows uses this procedure

SUMMARY

SLIDE 32

What you have learned:

- How to relate filter lag to EMA constant
- How to compute Higher Order Butterworth Filters
- How to control lag using a Linear Kalman Filter
- How to compute a Nonlinear Kalman Filter
 - Possible start for a crossover system
- How to compute Optimum Predictive Filters for the cycle mode
 - Pure Predictor (Noise-Free, using higher order filters)
 - With RSI or Stochastics
- How to compute a zero lag filter