■ NetApp

Storage VM 管理 Cloud Volumes ONTAP

NetApp May 19, 2022

This PDF was generated from https://docs.netapp.com/zh-cn/cloud-manager-cloud-volumes-ontap/azure/task-managing-svms.html on May 19, 2022. Always check docs.netapp.com for the latest.

目录

Storage VM 管理 · · · · · · · · · · · · · · · · · ·	 	•
在 Cloud Manager 中管理 Storage VM · · · · · · · · · · · · · · · · · ·	 	•
在 Azure 中为 Cloud Volumes ONTAP 创建提供数据的 Storage VM·······························	 	3

Storage VM 管理

在 Cloud Manager 中管理 Storage VM

Storage VM 是在 ONTAP 中运行的虚拟机,可为客户端提供存储和数据服务。您可能会将其识别为 *svm* 或 *vserver* 。默认情况下, Cloud Volumes ONTAP 配置有一个 Storage VM ,但某些配置支持额外的 Storage VM 。

支持的 Storage VM 数量

某些配置支持多个Storage VM。转至 "《 Cloud Volumes ONTAP 发行说明》" 验证您的 Cloud Volumes ONTAP 版本支持的 Storage VM 数量。

使用多个 Storage VM

Cloud Manager 支持您通过 System Manager 或 CLI 创建的任何其他 Storage VM。

例如,下图显示了在创建卷时如何选择 Storage VM。

下图显示了在将卷复制到其他系统时如何选择 Storage VM。

修改默认 Storage VM 的名称

Cloud Manager 会自动为其为 Cloud Volumes ONTAP 创建的单个 Storage VM 命名。如果具有严格的命名标准,则可以修改 Storage VM 的名称。例如,您可能希望此名称与您为 ONTAP 集群命名 Storage VM 的方式一致。

如果您为 Cloud Volumes ONTAP 创建了任何其他 Storage VM ,则不能从 Cloud Manager 重命名这些 Storage VM 。您需要使用 System Manager 或命令行界面直接从 Cloud Volumes ONTAP 执行此操作。

步骤

- 1. 在工作环境中,单击菜单图标,然后单击*信息*。
- 2. 单击 Storage VM 名称右侧的编辑图标。

◆ Working Environment Information			
ONTAP			
Serial Number:			
System ID:	system-id-capacitytest		
Cluster Name:	capacitytest		
ONTAP Version:	9.7RC1		
Date Created:	Jul 6, 2020 07:42:02 am		
Storage VM Name:	svm_capacitytest		

3. 在修改 SVM 名称对话框中,更改名称,然后单击*保存*。

管理用于灾难恢复的 Storage VM

Cloud Manager 不为 Storage VM 灾难恢复提供任何设置或编排支持。您必须使用 System Manager 或 CLI。

- "《 SVM 灾难恢复准备快速指南》"
- "《 SVM 灾难恢复快速指南》"

在 Azure 中为 Cloud Volumes ONTAP 创建提供数据的 Storage VM

Storage VM 是在 ONTAP 中运行的虚拟机,可为客户端提供存储和数据服务。您可能会将 其识别为 *svm* 或 *vserver* 。默认情况下, Cloud Volumes ONTAP 配置有一个 Storage VM ,但在 Azure 中运行 Cloud Volumes ONTAP 时,支持其他 Storage VM 。

要创建其他提供数据的 Storage VM ,您需要在 Azure 中分配 IP 地址,然后运行 ONTAP 命令来创建 Storage VM 和数据 LIF 。

支持的 Storage VM 数量

从 9.9.0 版开始,特定 Cloud Volumes ONTAP 配置支持多个 Storage VM 。转至 "《 Cloud Volumes ONTAP 发行说明》" 验证您的 Cloud Volumes ONTAP 版本支持的 Storage VM 数量。

所有其他 Cloud Volumes ONTAP 配置均支持一个提供数据的 Storage VM 和一个用于灾难恢复的目标 Storage

VM 。如果源 Storage VM 发生中断,您可以激活目标 Storage VM 以进行数据访问。

在 Azure 中分配 IP 地址

在创建 Storage VM 和分配 LIF 之前,您需要在 Azure 中分配 IP 地址。

单节点系统

在创建 Storage VM 并分配 LIF 之前,必须在 Azure 中将 IP 地址分配给 nic0。所需的 IP 地址数量取决于存储协议。

iSCSI

- 一个用于 iSCSI 数据 LIF 访问的 IP 地址
- Storage VM (SVM)管理 LIF 的可选 IP 地址 此管理 LIF 可连接到 SnapCenter 等管理工具。

NFS

- 一个用于 NAS 数据 LIF 访问的 IP 地址
- Storage VM (SVM)管理 LIF 的可选 IP 地址 此管理 LIF 可连接到 SnapCenter 等管理工具。

SMB

- 一个用于 NAS 数据 LIF 访问的 IP 地址
- 一个 IP 地址,用于通过 iSCSI LIF 进行 DNS 和 SMB 通信
 为此,我们使用了 iSCSI LIF,因为它不会在故障转移时迁移。
- Storage VM (SVM)管理 LIF 的可选 IP 地址 此管理 LIF 可连接到 SnapCenter 等管理工具。

步骤

- 1. 登录到 Azure 门户并打开*虚拟机*服务。
- 2. 单击 Cloud Volumes ONTAP VM 的名称。
- 3. 单击 * 网络连接 * 。
- 4. 单击 nic0 的网络接口名称。
- 5. 在*设置*下,单击*IP配置*。
- 6. 单击*添加*。
- 7. 输入 IP 配置的名称,选择*动态*,然后单击*确定*。
- 8. 单击刚刚创建的 IP 配置的名称,将 * 分配 * 更改为 * 静态 * ,然后单击 * 保存 * 。

最好使用静态 IP 地址,因为静态 IP 可确保 IP 地址不会更改,这有助于防止应用程序发生不必要的中断。

- 9. 如果您使用的是 SMB ,请重复这些步骤为 DNS 和 SMB 通信创建其他 IP 地址。
- 10. 如果要创建 SVM 管理 LIF ,请重复这些步骤以创建其他 IP 地址。

复制刚刚创建的专用 IP 地址。在为新 Storage VM 创建 LIF 时,您需要指定这些 IP 地址。

HA 对

如何为 HA 对分配 IP 地址取决于您使用的存储协议。

iSCSI

在创建 Storage VM 和分配 LIF 之前,必须在 Azure 中将 iSCSI IP 地址分配给 nic0 。iSCSI 的 IP 分配给 nic0 ,而不是负载平衡器,因为 iSCSI 使用 ALUA 进行故障转移。

您需要创建以下 IP 地址:

- 一个 IP 地址, 用于从节点 1 访问 iSCSI 数据 LIF
- •一个 IP 地址,用于从节点 2 访问 iSCSI 数据 LIF
- Storage VM (SVM)管理 LIF 的可选 IP 地址

此管理 LIF 可连接到 SnapCenter 等管理工具。

步骤

- 1. 登录到 Azure 门户并打开*虚拟机*服务。
- 2. 单击节点 1 的 Cloud Volumes ONTAP VM 的名称。
- 3. 单击 * 网络连接 * 。
- 4. 单击 nic0 的网络接口名称。
- 5. 在*设置*下,单击*IP配置*。
- 6. 单击 * 添加 *。
- 7. 输入 IP 配置的名称,选择 * 动态 * ,然后单击 * 确定 * 。
- 8. 单击刚刚创建的 IP 配置的名称,将*分配*更改为*静态*,然后单击*保存*。

最好使用静态 IP 地址,因为静态 IP 可确保 IP 地址不会更改,这有助于防止应用程序发生不必要的中断。

- 9. 在节点 2 上重复上述步骤。
- 10. 如果要创建 SVM 管理 LIF ,请在节点 1 上重复这些步骤。

NFS

用于 NFS 的 IP 地址会在负载平衡器中分配,以便在发生故障转移事件时, IP 地址可以迁移到另一个节点。

您需要创建以下 IP 地址:

- 一个 IP 地址, 用于从节点 1 访问 NAS 数据 LIF
- 一个 IP 地址, 用于从节点 2 访问 NAS 数据 LIF
- Storage VM (SVM)管理 LIF 的可选 IP 地址

此管理 LIF 可连接到 SnapCenter 等管理工具。

步骤

- 1. 在 Azure 门户中,打开 * 负载平衡器 * 服务。
- 2. 单击 HA 对的负载平衡器的名称。

- 3. 为从节点 1 访问数据 LIF 创建一个前端 IP 配置,为从节点 2 访问数据 LIF 创建另一个前端 IP 配置,并为 Storage VM (SVM)管理 LIF 创建另一个可选前端 IP 。
 - a. 在*设置*下,单击*前端IP配置*。
 - b. 单击 * 添加 * 。
 - C. 输入前端 IP 的名称,为 Cloud Volumes ONTAP HA 对选择子网,并保持选中 * 动态 *。

d. 单击刚刚创建的前端 IP 配置的名称,将 * 分配 * 更改为 * 静态 * ,然后单击 * 保存 * 。

最好使用静态 IP 地址,因为静态 IP 可确保 IP 地址不会更改,这有助于防止应用程序发生不必要的中断。

- 4. 为刚刚创建的每个前端 IP 添加运行状况探测。
 - a. 在负载平衡器的*设置*下,单击*运行状况探针*。
 - b. 单击 * 添加 *。
 - c. 输入运行状况探测的名称,并输入介于 63005 和 65000 之间的端口号。保留其他字段的默认值。

端口号必须介于 63005 和 65000 之间,这一点很重要。例如,如果要创建三个运行状况探测,则可以输入端口号为 63005 , 63006 和 63007 的探测。

- 5. 为每个前端 IP 创建新的负载平衡规则。
 - a. 在负载平衡器的*设置*下,单击*负载平衡规则*。
 - b. 单击*添加*并输入所需信息:
 - * 名称 *: 输入规则的名称。
 - * IP 版本 *:选择 * IPv4 *。
 - * 前端 IP 地址 *: 选择刚刚创建的前端 IP 地址之一。
 - * 高可用性端口 *: 启用此选项。
 - * 后端池 *: 保留已选择的默认后端池。
 - *运行状况探测 *:选择为选定前端 IP 创建的运行状况探测。
 - ■*会话持久性*:选择*无*。
 - * 浮动 IP*: 选择 * 已启用 *。

6. 确保 Cloud Volumes ONTAP 的网络安全组规则允许负载平衡器为在上述步骤 4 中创建的运行状况探测 发送 TCP 探测。请注意,默认情况下允许这样做。

SMB

用于 SMB 数据的 IP 地址会在负载平衡器中分配,以便在发生故障转移事件时, IP 地址可以迁移到另一个节点。

您需要创建以下 IP 地址:

- 一个 IP 地址, 用于从节点 1 访问 NAS 数据 LIF
- 一个 IP 地址,用于从节点 2 访问 NAS 数据 LIF
- ・ 节点 1 上 iSCSI LIF 的一个 IP 地址
- 节点 2 上 iSCSI LIF 的一个 IP 地址

DNS 和 SMB 通信需要 iSCSI LIF。为此,我们使用了 iSCSI LIF ,因为它不会在故障转移时迁移。

• Storage VM (SVM)管理 LIF 的可选 IP 地址

此管理 LIF 可连接到 SnapCenter 等管理工具。

步骤

- 1. 在 Azure 门户中,打开*负载平衡器*服务。
- 2. 单击 HA 对的负载平衡器的名称。
- 3. 创建所需数量的前端 IP 配置:
 - a. 在 * 设置 * 下, 单击 * 前端 IP 配置 * 。
 - b. 单击 * 添加 * 。
 - C. 输入前端 IP 的名称,为 Cloud Volumes ONTAP HA 对选择子网,并保持选中*动态*。

d. 单击刚刚创建的前端 IP 配置的名称,将 * 分配 * 更改为 * 静态 * ,然后单击 * 保存 * 。

最好使用静态 IP 地址,因为静态 IP 可确保 IP 地址不会更改,这有助于防止应用程序发生不必要的中断。

- 4. 为刚刚创建的每个前端 IP 添加运行状况探测。
 - a. 在负载平衡器的*设置*下,单击*运行状况探针*。
 - b. 单击 * 添加 * 。
 - c. 输入运行状况探测的名称,并输入介于 63005 和 65000 之间的端口号。保留其他字段的默认值。

端口号必须介于 63005 和 65000 之间,这一点很重要。例如,如果要创建三个运行状况探测,则可以输入端口号为 63005 , 63006 和 63007 的探测。

- 5. 为每个前端 IP 创建新的负载平衡规则。
 - a. 在负载平衡器的*设置*下,单击*负载平衡规则*。
 - b. 单击*添加*并输入所需信息:
 - * 名称 *: 输入规则的名称。
 - * IP 版本 *:选择 * IPv4 *。
 - * 前端 IP 地址 *: 选择刚刚创建的前端 IP 地址之一。
 - * 高可用性端口 *: 启用此选项。
 - * 后端池 *: 保留已选择的默认后端池。
 - *运行状况探测 *:选择为选定前端 IP 创建的运行状况探测。
 - ■*会话持久性*:选择*无*。
 - * 浮动 IP*: 选择 * 已启用 *。

复制刚刚创建的专用 IP 地址。在为新 Storage VM 创建 LIF 时,您需要指定这些 IP 地址。

创建 Storage VM 和 LIF

在 Azure 中分配 IP 地址后,您可以在单节点系统或 HA 对上创建新的 Storage VM。

单节点系统

如何在单节点系统上创建 Storage VM 和 LIF 取决于所使用的存储协议。

iSCSI

按照以下步骤创建新的 Storage VM 以及所需的 LIF。

步骤

1. 创建 Storage VM 和指向 Storage VM 的路由。

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 创建数据 LIF:

network interface create -vserver <svm-name> -home-port e0a -address
<iscsi-ip-address> -lif <lif-name> -home-node <name-of-node1> -data
-protocol iscsi

3. 可选: 创建 Storage VM 管理 LIF。

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

4. 将一个或多个聚合分配给 Storage VM。

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

之所以需要执行此步骤,是因为新的 Storage VM 需要至少访问一个聚合,然后才能在 Storage VM 上创建卷。

NFS

按照以下步骤创建新的 Storage VM 以及所需的 LIF。

步骤

1. 创建 Storage VM 和指向 Storage VM 的路由。

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 创建数据 LIF:

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol cifs,nfs -address <nfs--ip-address> -netmask
-length <length> -home-node <name-of-node1> -status-admin up
-failover-policy disabled -firewall-policy data -home-port e0a -auto
-revert true -failover-group Default

3. 可选: 创建 Storage VM 管理 LIF。

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

4. 将一个或多个聚合分配给 Storage VM。

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

之所以需要执行此步骤,是因为新的 Storage VM 需要至少访问一个聚合,然后才能在 Storage VM 上创建卷。

SMB

按照以下步骤创建新的 Storage VM 以及所需的 LIF。

步骤

1. 创建 Storage VM 和指向 Storage VM 的路由。

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 创建数据 LIF:

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol cifs,nfs -address <nfs--ip-address> -netmask
-length <length> -home-node <name-of-nodel> -status-admin up
-failover-policy disabled -firewall-policy data -home-port e0a -auto
-revert true -failover-group Default

3. 创建提供 DNS 和 SMB 通信所需的 iSCSI LIF:

network interface create -vserver <svm-name> -home-port e0a -address
<iscsi-ip-address> -lif <lif-name> -home-node <name-of-node1> -data
-protocol iscsi

4. 可选: 创建 Storage VM 管理 LIF。

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

5. 将一个或多个聚合分配给 Storage VM。

vserver add-aggregates -vserver svm_2 -aggregates aggr1,aggr2

之所以需要执行此步骤,是因为新的 Storage VM 需要至少访问一个聚合,然后才能在 Storage VM 上创建卷。

HA 对

如何在 HA 对上创建 Storage VM 和 LIF 取决于所使用的存储协议。

iSCSI

按照以下步骤创建新的 Storage VM 以及所需的 LIF。

步骤

1. 创建 Storage VM 和指向 Storage VM 的路由。

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 创建数据 LIF:

a. 使用以下命令在节点 1 上创建 iSCSI LIF。

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode1> -data-protocol iscsi

b. 使用以下命令在节点 2 上创建 iSCSI LIF。

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode2> -data-protocol iscsi

3. 可选:在节点 1 上创建 Storage VM 管理 LIF。

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

此管理 LIF 可连接到 SnapCenter 等管理工具。

4. 将一个或多个聚合分配给 Storage VM。

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

之所以需要执行此步骤,是因为新的 Storage VM 需要至少访问一个聚合,然后才能在 Storage VM 上创建卷。

NFS

按照以下步骤创建新的 Storage VM 以及所需的 LIF。

步骤

1. 创建 Storage VM 和指向 Storage VM 的路由。

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 创建数据 LIF:

a. 使用以下命令在节点 1 上创建 NAS LIF。

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs--ip-address>
-netmask-length <length> -home-node <name-of-node1> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probe1>

b. 使用以下命令在节点 2 上创建 NAS LIF。

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs-cifs-ip-address>
-netmask-length <length> -home-node <name-of-node2> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probe2>

3. 可选: 在节点 1 上创建 Storage VM 管理 LIF。

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default -probe-port <port-number-for-azurehealth-probe3>

此管理 LIF 可连接到 SnapCenter 等管理工具。

4. 将一个或多个聚合分配给 Storage VM。

vserver add-aggregates -vserver svm_2 -aggregates aggr1,aggr2

之所以需要执行此步骤,是因为新的 Storage VM 需要至少访问一个聚合,然后才能在 Storage VM 上创建卷。

SMB

按照以下步骤创建新的 Storage VM 以及所需的 LIF。

步骤

1. 创建 Storage VM 和指向 Storage VM 的路由。

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 创建 NAS 数据 LIF:

a. 使用以下命令在节点 1 上创建 NAS LIF。

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs--ip-address>
-netmask-length <length> -home-node <name-of-node1> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probe1>

b. 使用以下命令在节点 2 上创建 NAS LIF。

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs-cifs-ip-address>
-netmask-length <length> -home-node <name-of-node2> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probe2>

- 3. 创建 iSCSI LIF 以提供 DNS 和 SMB 通信:
 - a. 使用以下命令在节点 1 上创建 iSCSI LIF。

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode1> -data-protocol iscsi

b. 使用以下命令在节点 2 上创建 iSCSI LIF。

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode2> -data-protocol iscsi

4. 可选:在节点 1 上创建 Storage VM 管理 LIF。

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default -probe-port <port-number-for-azurehealth-probe3>

此管理 LIF 可连接到 SnapCenter 等管理工具。

5. 将一个或多个聚合分配给 Storage VM。

vserver add-aggregates -vserver svm_2 -aggregates aggr1,aggr2

之所以需要执行此步骤,是因为新的 Storage VM 需要至少访问一个聚合,然后才能在 Storage VM 上创建卷。

在 HA 对上创建 Storage VM 后,最好等待 12 小时,然后再在该 SVM 上配置存储。从 Cloud Volumes ONTAP 9.10.1 版开始, Cloud Manager 会每 12 小时扫描一次 HA 对的负载平衡器设置。如果存在新的 SVM , Cloud

Manager 将启用一个设置,以缩短计划外故障转移时间。

Copyright Information

Copyright © 2022 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.