Design a low-voltage cascode current mirror with a 1:2.5 input current to output current ratio. The low frequency output impedance should be greater than 200 k Ω . Assume a 25 μA input current and Vout is 400 mV.

1. Design (Using gmoverid charts)

As large Rout is required \rightarrow Assume $L_1=180$ nm and bias it in SI $\left(\frac{g_m}{I_D}=10\right)$

$$W_1 = 2.142 \ um \rightarrow r_{o1} = 19.08 \ k\Omega$$

 $R_{out} = g_{m2} r_{o2} r_{o1} = 200 \ k\Omega$
 $g_{m2} r_{o2} = \frac{200 \ k\Omega}{19.08 \ k\Omega} = 10.5$

For cascode transistor bias it in MI $\left(\frac{g_m}{I_D} = 15\right)$

$$L_2 \geq 90 \ nm \rightarrow W_2 = 3.22 \ um$$

For the VB device $M3: V_{GS3} \ge V_{GS2} + V_1^*$

$$V_{GS3} \ge 628.9 \ mV \rightarrow \left(\frac{g_m}{I_D}\right)_3 = 5.9$$

$$L_3 = L_2 \rightarrow W_3 = 156 \, nm$$

 \square

 \square

2. Simulations

- <u>DC OP</u>

- <u>AC Output Impedance</u>

