Coq cheat sheet

Definitions	
Name	Description
Expr	Mathematical expression
Hw-name	New hypothesis name
He-name	Existing hypothesis name
	repetition with an 'and' or ', '
	(optional)

Symboles	
A	Forall
3	Exist
\rightarrow	Implication
==	Equal
≡	Equivalence
٨	and
V	or
	not

Verbose	
Command	Effect
Let's fix (Hw-name)	Used to introduce Forall statements
Assume (Hw-name): (expr)	Used to introduce Implications state-
(). ()	ments
Assume for contradiction (Hw-name):(expr)	Used to introduce Contradiction in Im-
('' ') (' '' ')	plications statements
Let's prove (expr) by proving (expr)	Used to proving the current goal
By definition of (expr) we get (expr)	Used to unfold definitions
Let's prove (expr) by proving (expr) and (expr)	Used to prove Conjunctions and Equiv-
	alence statements
Let's prove that (expr) works ie (expr)	Used to prove a mathematical expres-
	sion containing an Exists with the ex-
	pression
Let's prove that (expr) fits	Used to prove a mathematical expres-
	sion containing an Exists
Let's prove the disjunction by proving (expr)	Used to prove a Disjunction
By (expr) it suffices to prove (expr)	Applying an existing hypothesis to the
	goal
By applying $(\text{He}_n ame)$ on the hypothesis $(expr)$ we obtain (Apply) ing an existing hypothesis to an	
	hypothesis
By (He-name) we obtain (Hw-name)	Used in order to break down a hypoth-
	esis
We have (He-name):(expr) such that we get (expr)	Used in order to assert a new hypothesis
By cases on (He-name)	Used in order apply the law of excluded
	middle
Rewrite (He-name) by using (He-name)	Used to rewrite a hypothesis by using
	another one
By rewriting using the hypothesis (He-name) we ob-	Used to rewrite the goal by using a hy-
tain (expr)	pothesis
By symmetry, using (expr) we obtain (expr)	Used in order to reverse the element of
	an equal statement
By transitivity using (expr) such that we get (expr)	Used in order to rewrite the goal by in-
and (expr)	troducing a middle man
Let's prove by exfalso	Used in order to prove false
This is a contradiction	Used in order to prove a contradiction
By using reflexivity	Used to conclude equal statements
We compute	Used to conclude basic statements
It is trivial	Used to prove trivial statements (simi-
T .1 110	lar to reflexivity)
Let's simplify	Used to simplify a statement
Helper	Used in order to ask help about the cur-
	rent goal and hypothesis