Detecting Al generated text

Amr Kandil, Lukas Donner, Mohamad Hussen Chamsi

Detecting AI vs. Human-Written Text

Introduction

- Al and large language models (LLMs) like GPT-3, PaLM, and ChatGPT are rapidly advancing.
- These models can answer complex questions on topics like science, math, and history.
- Newer models can even gather realtime data from the internet, making them highly useful.

Challenges

- It's becoming harder to tell if content was written by a human or Al.
- Problems caused by Al-generated text:
 - Plagiarism
 - Fake information
 - Misinformation

Supported SDGs

SDG 4: Quality Education

- Helps schools and universities detect Algenerated content.
- Ensures academic integrity and fairness in education.

SDG 16: Peace, Justiceand Strong Institutions

- Limits the spread of false information.
- Builds trust and transparency for peaceful societies.

Supported SDGs

SDG 9: Industry, Innovation, and Infrastructure

Our project support responsible AI development by creating systems to manage its risks Our project share to building strong and trust digital infrastructures.

SDG 17: Partnerships for the Goals

Collaborates with educational institutions and tech companies.

Dataset Overview

Kaggele Base Dataset

Dataset Structure:

- Essays written in response to one of seven essay prompts.
- Training set contains essays from two prompts; other five prompts are part of the hidden test set.

The target column indicates whether an essay is:

- Student-written (0)
- Al-generated (1)

Files Provided:

train_essays.csv: Training data, including essays and metadata. train_prompts.csv: Instructions and source text for prompts. test_essays.csv: Contains dummy test data for validation.

Sample:

"Cars. Cars have been around since they became famous in the 1900s, when Henry Ford created and built the first ModelT. Cars have played a major role in our every day lives since then. But now, people are starting to question if limiting car usage would be a good thing. To me, limiting the use of cars might be a good thing to do."

Kaggele Base Dataset

train_data.head()

	id	${\tt prompt_id}$	text	generated
0	0059830c	0	Cars. Cars have been around since they became	0
1	005db917	0	Transportation is a large necessity in most co	0
2	008f63e3	0	"America's love affair with it's vehicles seem	0
3	00940276	0	How often do you ride in a car? Do you drive a	0
4	00c39458	0	Cars are a wonderful thing. They are perhaps o	0

train_prompts.head()

	prompt_id	prompt_name	instructions	source_text
0	0	Car-free cities	Write an explanatory essay to inform fellow ci	# In German Suburb, Life Goes On Without Cars
1	1	Does the electoral college work?	Write a letter to your state senator in which	# What is the Electoral College? by the Office

Dataset Imbalance

Initial Imbalance:

- Limited number of Algenerated essays
- Skewed distribution favors student-written essays (class 0)

Dataset Imbalance

Solution - Data Augmentation:

- Generated additional Al-written essays using OpenAl's GPT-3.5-turbo-0125 model.
- Augmentation replicates the original process:Prompts and source text used as inputs.
- Outputs simulated essays similar to student-written responses.

Data visualisation

Dataset Preprocessing

Data cleaning 1/2

Data Cleaning is a crucial step in data preprocessing to ensure text data is clean, consistent, and suitable for machine learning models.

Key Steps:

- Removing special characters
- · Removing emojis
- Removing URLs
- Retaining periods, question marks, and exclamation marks
- Removing unnecessary white spaces
- Expanding contractions

Result after cleaning:

- 2 "America's love affair with it's vehicles seem...
- 3 How often do you ride in a car? Do you drive a...
- 4 Cars are a wonderful thing. They are perhaps o...

cleaned_text

- 0 cars. cars have been around since they became \dots
- 1 transportation is a large necessity in most co...
- e americas love affair with its vehicles seems t...
- 3 how often do you ride in a car? do you drive a...
- 4 cars are a wonderful thing. they are perhaps o...

Data cleaning 2/2

Stop-Words:

- •Words like "and," "is," or "the" may be irrelevant for some tasks.
- •Their removal depends on the problem context.

Result after cleaning:

- cleaned_text
 0 cars. cars around since became famous s, henry...
- 1 transportation large necessity countries world...
- 2 americas love affair vehicles seems cooling sa...
- 3 often ride car? drive one motor vehicle work? ...
- 4 cars wonderful thing, perhaps one worlds great...

Feature Extraction

Feature Extraction

- Text must be converted into numerical format to feed into machine learning models
- These methods capture word importance, relationships, or context, enabling models to make more accurate predictions.
- Popular Feature extraction tools include
- Bag of Words
- TF-IDF
- Embeddings
- In this Notebook we will explore two methods:
- 1. TF-IDF
- 2. Contextual Embeddings with BERT
- - This will be explained and implemented in section 9.2 of the notebook

Bag of Words

TF-IDF

Term Frequency (TF): TF measures the frequency of a term within a document

$$TF(t,d) = \frac{\text{Number of times term } t \text{ appears in document } d}{\text{Total number of terms in document } d}$$

Inverse Document Frequency (IDF): IDF measures the rarity of a term across a collection of documents

$$IDF(t,D) = \log\left(\frac{\text{Total number of documents in the corpus }N}{\text{Number of documents containing term }t}\right)$$

Combining TF and IDF: TF-IDF

TF-IDF is a numerical statistic that reflects the significance of a word within a document relative to a collection of documents

$$TF-IDF(t,d,D)=TF(t,d)\times IDF(t,D)$$

TF-IDF

Index —	→ 0	1	2	3	4	5	6	7	8
	and	document	first	is	one	second	the	third	this
"This is the first document."	0	0.46979139	0.58028582	0.38408524	0	0	0.38408524	0	0.38408524
"This document is the second document."	0	0.6876236	0	0.28108867	0	0.53864762	0.28108867	0	0.28108867
"And this is the third one."	0.51184851	0	0	0.26710379	0.51184851	0	0.26710379	0.51184851	0.26710379
"Is this the first document?"	0	0.46979139	0.58028582	0.38408524	0	0	0.38408524	0	0.38408524

- The terms are ranked by their overall importance
- > This importance score is typically calculated as the sum of TF-IDF values for a term across all documents.
- ➤ We pick the top 100 features/words in the Text corpus

Classification

1. Classical ML (using TFIDF)

Classification

2. Deep NN (using Word Embeddings)

DistilBERTForSequenceClassification

- Transformer-based language model
- Freeze the parameters of Core Distil-BERT
- Only train the classification Head

Phase 1: Analysis

Logistic Regression

Accuracy: 0.9964028776978417							
Classification Report: precision recall f1-score support							
0 1	1.00 1.00	1.00 1.00	1.00 1.00	413 421			
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	834 834 834			

Random Forrest

Training Accuracy: 9	99.76%			
pı	recision	recall	f1-score	support
0	1.00	1.00	1.00	413
1	1.00	1.00	1.00	421
accuracy			1.00	834
macro avg	1.00	1.00	1.00	834
weighted avg	1.00	1.00	1.00	834

KNN

Training Accuracy: 99.74% Test Accuracy: 99.52% Classification Report: precision recall f1-score support							
0 1	1.00 1.00	1.00 1.00	1.00 1.00	413 421			
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	834 834 834			

SVM

SVM Training Acc		95%		
SVM Test Accurac	y: 99.76%			
SVM Classificati	ion Report:			
I	recision	recall	f1-score	support
0	1.00	1.00	1.00	413
	1.00	1.00	1.00	421
accuracy			1.00	834
macro avg	1.00	1.00	1.00	834
weighted avg	1.00	1.00	1.00	834

Phase 1: Analysis

Distil-BERT

Accuracy: 1.00 Precision: 1.00 Recall: 1.00 F1 Score: 1.00

- Models are achieving very high accuracies.
- The dataset is relatively small.
- Data leakage is occurring due to similarities between training and test datasets.

Proposals

- Increase the dataset size by appending a more varied and larger dataset.
- This approach aims to reduce repetitiveness and mitigate data leakage issues.

Phase 2

New Dataset: "Al vs Human Text"

- Around 500K essays
- Consists of AI and written by Human.

Visualization of Concatinated Datasets

Phase 2: Analysis

Logistic Regression

K	NI	V
---	----	---

Accuracy: 0.8900710184756877						
Classification	Report: precision	recall	f1-score	support		
0 1	0.89 0.88	0.93 0.82	0.91 0.85	92152 54852		
accuracy macro avg weighted avg	0.89 0.89	0.87 0.89	0.89 0.88 0.89	147004 147004 147004		

Random Forrest

SVM

Phase 2: Analysis

Distil-BERT

Accuracy: 0.98

Precision: 0.97

Recall: 0.98

F1 Score: 0.98

Phase 2: Analysis

Logistic Regression:

- Good results considering the model complexity
- Good when the dataset features are well-engineered.
- Can struggle to capture complex patterns in text

Random Forest:

- Very High Accuracy, due to its ensemble nature, combining the outputs of multiple decision trees for better generalization.
- Fast Training Time
- Good for feature Selection

DistilBertForClassification

- Accuracy slightly lower than Random Forest,
- Excels in understanding contextual information
- Long Training time

Conclusion

While a Deep NN approach can capture the context of text better, it:

- Takes a lot of training time
- Computationally expensive

On the other hand, A classical ML model like Random Forest proves to be more practical and efficient as it

- Much faster in training
- Interpretable
- Generalizes well

References

- https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501
- https://zilliz.com/learn/tf-idf-understanding-term-frequency-inverse-document-frequency-in-nlp
- https://medium.com/@abhishekjainindore24/tf-idf-in-nlp-term-frequency-inverse-document-frequency-e05b65932f1d
- https://ayselaydin.medium.com/4-bag-of-words-model-in-nlp-434cb38cdd1b
- <u>image link</u>
- E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn, "Detectgpt: Zero-shot machine-generated text detection using probability curvature," PMLR, https://proceedings.mlr.press/v202/mitchell23a.html (accessed Nov. 12, 2024).
- (Mitchell et al., 2023)
- M. Guo, Z. Han, H. Chen, and J. Peng, "A Machine-Generated Text Detection Model Based on Text Multi-Feature Fusion," Notebook for the PAN Lab at CLEF 2024, 2024.
- (Guo et al., 2024)
- X. Liu and L. Kong, "Al Text Detection Method Based on Perplexity Features with Strided Sliding Window," Notebook for the PAN Lab at CLEF 2024, 2024.
- (Liu & Kong, 2024)