Computer Systems: Network Programming (Sockets)

Vivek Shah

Based on slides by Randal E. Bryant and David R. O'Halloran

A Programmer's View of the Internet

- 1. Hosts are mapped to a set of 32-bit *IP addresses*
 - **128.2.203.179**
- 2. The set of IP addresses is mapped to a set of identifiers called Internet domain names
 - 128.2.217.3 is mapped to www.cs.cmu.edu
- 3. A process on one Internet host can communicate with a process on another Internet host over a connection

Global IP Internet (upper case)

- Most famous example of an internet
- Based on the TCP/IP protocol family
 - IP (Internet Protocol) :
 - Provides basic naming scheme and unreliable delivery capability of packets (datagrams) from host-to-host
 - UDP (Unreliable Datagram Protocol)
 - Uses IP to provide unreliable datagram delivery from process-to-process
 - TCP (Transmission Control Protocol)
 - Uses IP to provide reliable byte streams from processto-process over connections
- Accessed via a mix of Unix file I/O and functions from the sockets interface

IP Addresses

- 32-bit IP addresses are stored in an IP address struct
 - IP addresses are always stored in memory in network byte order (big-endian byte order)
 - True in general for any integer transferred in a packet header from one machine to another.
 - E.g., the port number used to identify an Internet connection.

```
/* Internet address structure */
struct in_addr {
    uint32_t s_addr; /* network byte order (big-endian) */
};
```

Dotted Decimal Notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8002C2F2 = 128.2.194.242
- Use inet_ntop, inet_pton functions for converting between dotted decimal notation and IP addresses
 - Use hton1, htons, ntohl and ntohs functions for network byte order conversions
- Use getaddrinfo and getnameinfo functions (described later) to convert between IP addresses and dotted decimal format.

(3) Internet Connections

- Clients and servers communicate by sending streams of bytes over connections. Each connection is:
 - Point-to-point: connects a pair of processes.
 - Full-duplex: data can flow in both directions at the same time,
 - Reliable: stream of bytes sent by the source is eventually received by the destination in the same order it was sent.
- A socket is an endpoint of a connection
 - Socket address is an IPaddress:port pair
- A port is a 16-bit integer that identifies a process:
 - Ephemeral port: Assigned automatically by client kernel when client makes a connection request.
 - Well-known port: Associated with some service provided by a server (e.g., port 80 is associated with Web servers)

Sockets

- What is a socket?
 - To the kernel, a socket is an endpoint of communication
 - To an application, a socket is a file descriptor that lets the application read/write from/to the network
 - Remember: All Unix I/O devices, including networks, are modeled as files
- Clients and servers communicate with each other by reading from and writing to socket descriptors

The main distinction between regular file I/O and socket I/O is how the application "opens" the socket descriptors

Socket Address Structures

- Generic socket address:
 - For address arguments to connect, bind, and accept
 - Necessary only because C did not have generic (void *)
 pointers when the sockets interface was designed
 - For casting convenience, we adopt the Stevens convention: typedef struct sockaddr SA;

```
struct sockaddr {
  uint16_t sa_family; /* Protocol family */
  char sa_data[14]; /* Address data. */
};
```


Family Specific

Socket Address Structures

- Internet (IPv4) specific socket address:
 - Must cast (struct sockaddr_in *) to (struct sockaddr *) for functions that take socket address arguments.

Host and Service Conversion: getaddrinfo

- getaddrinfo is the modern way to convert string representations of hostnames, host addresses, ports, and service names to socket address structures.
 - Replaces obsolete gethostbyname and getservbyname funcs.

Advantages:

- Reentrant (can be safely used by threaded programs).
- Allows us to write portable protocol-independent code
 - Works with both IPv4 and IPv6

Disadvantages

- Somewhat complex
- Fortunately, a small number of usage patterns suffice in most cases.

Host and Service Conversion: getaddrinfo

- Given host and service, getaddrinfo returns result that points to a linked list of addrinfo structs, each of which points to a corresponding socket address struct, and which contains arguments for the sockets interface functions.
- Helper functions:
 - freeadderinfo frees the entire linked list.
 - gai_strerror converts error code to an error message.

Linked List Returned by getaddrinfo

- Clients: walk this list, trying each socket address in turn, until the calls to socket and connect succeed.
- Servers: walk the list until calls to socket and bind succeed.

addrinfo Struct

- Each addrinfo struct returned by getaddrinfo contains arguments that can be passed directly to socket function.
- Also points to a socket address struct that can be passed directly to connect and bind functions.

Host and Service Conversion: getnameinfo

- getnameinfo is the inverse of getaddrinfo, converting a socket address to the corresponding host and service.
 - Replaces obsolete gethostbyaddr and getservbyport funcs.
 - Reentrant and protocol independent.

Conversion Example

```
#include "csapp.h"
int main(int argc, char **argv)
{
   struct addrinfo *p, *listp, hints;
   char buf[MAXLINE];
   int rc, flags;
    /* Get a list of addrinfo records */
   memset(&hints, 0, sizeof(struct addrinfo));
   hints.ai family = AF INET; /* IPv4 only */
   hints.ai socktype = SOCK STREAM; /* Connections only */
    if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
        fprintf(stderr, "getaddrinfo error: %s\n", gai strerror(rc));
       exit(1);
                                                             hostinfo
```

Conversion Example (cont)

Do-it-yourself Recap: System-level I/O

- What is the difference between the Unix I/O and the book's robust I/O APIs?
- When can short counts be returned by I/O functions? Why?
- What did each of the following functions do?
- ssize t rio writen(int fd, void *usrbuf, size t n);
- ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
- ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Socket Programming Example

- Echo server and client
- Server
 - Accepts connection request
 - Repeats back lines as they are typed
- Client
 - Requests connection to server
 - Repeatedly:
 - Read line from terminal
 - Send to server
 - Read reply from server
 - Print line to terminal

Echo Client: Main Routine

```
#include "csapp.h"
int main(int argc, char **argv)
    int clientfd;
    char *host, *port, buf[MAXLINE];
    rio t rio;
   host = arqv[1];
   port = argv[2];
    clientfd = Open clientfd(host, port);
   Rio readinitb(&rio, clientfd);
    while (Fgets(buf, MAXLINE, stdin) != NULL) {
     Rio writen(clientfd, buf, strlen(buf));
     Rio readlineb(&rio, buf, MAXLINE);
     Fputs(buf, stdout);
    Close(clientfd);
    exit(0);
                                                echoclient.
```

Iterative Echo Server: Main Routine

```
#include "csapp.h"
void echo(int connfd);
int main(int argc, char **argv)
    int listenfd, connfd;
    socklen t clientlen;
    struct sockaddr storage clientaddr; /* Enough room for any addr */
    char client hostname[MAXLINE], client port[MAXLINE];
    listenfd = Open listenfd(argv[1]);
    while (1) {
     clientlen = sizeof(struct sockaddr storage); /* Important! */
     connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
     Getnameinfo((SA *) &clientaddr, clientlen,
                    client hostname, MAXLINE, client port, MAXLINE, 0);
     printf("Connected to (%s, %s)\n", client hostname, client port);
     echo(connfd);
     Close (connfd);
                                                             echoserveri.
    exit(0);
```


Sockets Interface: socket

Clients and servers use the socket function to create a socket descriptor:

```
int socket(int domain, int type, int protocol)
```

Example:

Protocol specific! Best practice is to use getaddrinfo to generate the parameters automatically, so that code is protocol independent.

Sockets Interface: bind

A server uses bind to ask the kernel to associate the server's socket address with a socket descriptor:

```
int bind(int sockfd, SA *addr, socklen_t addrlen);
Recall: typedef struct sockaddr SA;
```

- Process can read bytes that arrive on the connection whose endpoint is addr by reading from descriptor sockfd
- Similarly, writes to sockfd are transferred along connection whose endpoint is addr

Best practice is to use getaddrinfo to supply the arguments addr and addrlen.

Sockets Interface: listen

- By default, kernel assumes that descriptor from socket function is an active socket that will be on the client end of a connection.
- A server calls the listen function to tell the kernel that a descriptor will be used by a server rather than a client:

```
int listen(int sockfd, int backlog);
```

- Converts socked from an active socket to a listening socket that can accept connection requests from clients.
- backlog is a hint about the number of outstanding connection requests that the kernel should queue up before starting to refuse requests.

Sockets Interface: accept

Servers wait for connection requests from clients by calling accept:

```
int accept(int listenfd, SA *addr, int *addrlen);
```

- Waits for connection request to arrive on the connection bound to listenfd, then fills in client's socket address in addr and size of the socket address in addrlen.
- Returns a connected descriptor that can be used to communicate with the client via Unix I/O routines.

Sockets Interface: connect

A client establishes a connection with a server by calling connect:

```
int connect(int clientfd, SA *addr, socklen_t addrlen);
```

- Attempts to establish a connection with server at socket address addr
 - If successful, then clientfd is now ready for reading and writing.
 - Resulting connection is characterized by socket pair (x:y, addr.sin addr:addr.sin port)
 - x is client address
 - y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments addr and addrlen.

accept Illustrated

1. Server blocks in accept, waiting for connection request on listening descriptor

2. Client makes connection request by calling and blocking in connect

3. Server returns connfd from accept. Client returns from connect. Connection is now established between clientfd and connfd

Connected vs. Listening Descriptors

Listening descriptor

- End point for client connection <u>requests</u>
- Created once and exists for lifetime of the server

Connected descriptor

- End point of the <u>connection</u> between client and server
- A new descriptor is created each time the server accepts a connection request from a client
- Exists only as long as it takes to service client

Why the distinction?

- Allows for concurrent servers that can communicate over many client connections simultaneously
 - E.g., Each time we receive a new request, we fork a child to handle the request

Sockets Helper: open_clientfd

Establish a connection with a server

Sockets Helper: open_clientfd (cont)

```
/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p->ai next) {
    /* Create a socket descriptor */
    if ((clientfd = socket(p->ai family, p->ai socktype,
                           p->ai protocol)) < 0)</pre>
        continue; /* Socket failed, try the next */
    /* Connect to the server */
    if (connect(clientfd, p->ai addr, p->ai addrlen) != -1)
        break; /* Success */
    Close(clientfd); /* Connect failed, try another */
/* Clean up */
Freeaddrinfo(listp);
if (!p) /* All connects failed */
    return -1;
else /* The last connect succeeded */
    return clientfd;
```


Sockets Helper: open_listenfd

Create a listening descriptor that can be used to accept connection requests from clients.

Sockets Helper: open_listenfd (cont)

```
/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai next) {
    /* Create a socket descriptor */
    if ((listenfd = socket(p->ai family, p->ai socktype,
                           p->ai protocol)) < 0)</pre>
        continue; /* Socket failed, try the next */
    /* Eliminates "Address already in use" error from bind */
    Setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
               (const void *)&optval , sizeof(int));
    /* Bind the descriptor to the address */
    if (bind(listenfd, p->ai addr, p->ai addrlen) == 0)
       break: /* Success */
    Close(listenfd); /* Bind failed, try the next */
                                                        csapp.
```

Sockets Helper: open_listenfd (cont)

```
/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai next) {
    /* Create a socket descriptor */
    if ((listenfd = socket(p->ai family, p->ai socktype,
                           p->ai protocol)) < 0)</pre>
        continue; /* Socket failed, try the next */
    /* Eliminates "Address already in use" error from bind */
    Setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
               (const void *)&optval , sizeof(int));
    /* Bind the descriptor to the address */
    if (bind(listenfd, p->ai addr, p->ai addrlen) == 0)
       break: /* Success */
    Close(listenfd); /* Bind failed, try the next */
                                                        csapp.
```

Summary

- Sockets used to communicate across processes over a network (even same network card)
 - TCP sockets Listening vs connecting sockets
 - Quirks in structs representing network addresses.
 - Use getaddrinfo() or fill up the struct yourself.
 - Usage of rio library for buffered I/O.

Testing Servers Using telnet

- The telnet program is invaluable for testing servers that transmit ASCII strings over Internet connections
 - Our simple echo server
 - Web servers
 - Mail servers

Usage:

- linux> telnet <host> <portnumber>
- Creates a connection with a server running on <host> and listening on port <portnumber>

Iterative Servers

Iterative servers process one request at a time

Where Does Second Client Block?

Second client attempts to connect to iterative server

Client

Call to connect returns

- Even though connection not yet accepted
- Server side TCP manager queues request
- Feature known as "TCP listen backlog"
- Call to rio_writen returns
 - Server side TCP manager buffers input data
- Call to rio_readlineb blocks
 - Server hasn't written anything for it to read yet.

Fundamental Flaw of Iterative Servers

- Solution: use concurrent servers instead
 - Concurrent servers use multiple concurrent flows to serve multiple clients at the same time

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based

- Kernel automatically interleaves multiple logical flows
- Each flow has its own private address space

2. Event-based

- Programmer manually interleaves multiple logical flows
- All flows share the same address space
- Uses technique called I/O multiplexing.

3. Thread-based

- Kernel automatically interleaves multiple logical flows
- Each flow shares the same address space
- Hybrid of of process-based and event-based.

Approach #1: Process-based Servers

Spawn separate process for each client

Process-Based Concurrent Echo Server

```
int main(int argc, char **argv)
  int listenfd, connfd;
  socklen t clientlen;
  struct sockaddr storage clientaddr;
  Signal(SIGCHLD, sigchld_handler);
  listenfd = Open_listenfd(argv[1]);
  while (1) {
     clientlen = sizeof(struct sockaddr_storage);
     connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
     if(Fork() == 0) {
       Close(listenfd); /* Child closes its listening socket */
       echo(connfd); /* Child services client */
       Close(connfd); /* Child closes connection with client */
       exit(0):
               /* Child exits */
     Close(connfd); /* Parent closes connected socket (important!) */
                                                                  echoserverp
```

Process-Based Concurrent Echo Server (cont)

```
void sigchld_handler(int sig)
{
    while (waitpid(-1, 0, WNOHANG) > 0)
    ;
    return;
}
```

Reap all zombie children

Issues with Process-based Servers

- Listening server process must reap zombie children
 - to avoid fatal memory leak
- Parent process must close its copy of connfd
 - Kernel keeps reference count for each socket/open file
 - After fork, refcnt (connfd) = 2
 - Connection will not be closed until refent (connfd) = 0

Pros and Cons of Process-based Servers

- + Handle multiple connections concurrently
- + Clean sharing model
 - descriptors (no)
 - file tables (yes)
 - global variables (no)
- + Simple and straightforward
- Additional overhead for process control
- Nontrivial to share data between processes
 - Requires IPC (interprocess communication) mechanisms
 - FIFO's (named pipes), System V shared memory and semaphores

Approach #2: Event-based Servers

- Server maintains set of active connections
 - Array of connfd's

Repeat:

- Determine which descriptors (connfd's or listenfd) have pending inputs
 - e.g., using select or epoll functions
 - arrival of pending input is an event
- If listenfd has input, then accept connection
 - and add new connfd to array
- Service all connfd's with pending inputs
- Details for select-based server in book

Pros and Cons of Event-based Servers

- + One logical control flow and address space.
- + Can single-step with a debugger.
- + No process or thread control overhead.
 - Design of choice for high-performance Web servers and search engines. e.g., Node.js, nginx, Tornado
- Significantly more complex to code than process- or thread-based designs.
- Hard to provide fine-grained concurrency
 - E.g., how to deal with partial HTTP request headers
- Cannot take advantage of multi-core
 - Single thread of control

Approach #3: Thread-based Servers

- Very similar to approach #1 (process-based)
 - ...but using threads instead of processes

Threads vs. Processes

How threads and processes are similar

- Each has its own logical control flow
- Each can run concurrently with others (possibly on different cores)
- Each is context switched

How threads and processes are different

- Threads share all code and data (except local stacks)
 - Processes (typically) do not
- Threads are somewhat less expensive than processes
 - Process control (creating and reaping) twice as expensive as thread control
 - Linux numbers:
 - ~20K cycles to create and reap a process
 - $-\sim$ 10K cycles (or less) to create and reap a thread

Posix Threads (Pthreads) Interface

- Pthreads: Standard interface for ~60 functions that manipulate threads from C programs
 - Creating and reaping threads
 - pthread create()
 - pthread join()
 - Determining your thread ID
 - pthread self()
 - Terminating threads
 - pthread cancel()
 - pthread exit()
 - exit() [terminates all threads], RET [terminates current thread]
 - Synchronizing access to shared variables
 - pthread mutex init
 - pthread mutex [un]lock

Thread-Based Concurrent Echo Server

```
int main(int argc, char **argv)
{
  int listenfd, *connfdp;
  socklen_t clientlen;
  struct sockaddr storage clientaddr;
  pthread t tid;
  listenfd = Open listenfd(argv[1]);
  while (1) {
    clientlen=sizeof(struct sockaddr_storage);
    connfdp = Malloc(sizeof(int));
    *connfdp = Accept(listenfd,
          (SA *) &clientaddr, &clientlen);
    Pthread create(&tid, NULL, thread, connfdp);
                                        echoservert.c
```

malloc of connected descriptor necessary to avoid deadly race

Thread-Based Concurrent Server (cont)

```
/* Thread routine */
void *thread(void *vargp)
{
   int connfd = *((int *)vargp);
   Pthread_detach(pthread_self());
   Free(vargp);
   echo(connfd);
   Close(connfd);
   return NULL;
}
   echoservert.c
```

- Run thread in "detached" mode.
 - Runs independently of other threads
 - Reaped automatically (by kernel) when it terminates
- Free storage allocated to hold connfd.
- Close connfd (important!)

Thread-based Server Execution Model

- Each client handled by individual peer thread
- Threads share all process state except TID
- Each thread has a separate stack for local variables

Pre-threaded Server Model

- Clients handled using a thread-pool architecture
- Bounded/Unbounded buffer can be used for synchronization

Pros and Cons of Thread-Based Designs

- + Easy to share data structures between threads
 - e.g., logging information, file cache
- + Threads are more efficient than processes
- Unintentional sharing can introduce subtle and hard-to-reproduce errors!
 - The ease with which data can be shared is both the greatest strength and the greatest weakness of threads
 - Hard to know which data shared & which private
 - Hard to detect by testing
 - Probability of bad race outcome very low
 - But nonzero!

Summary: Approaches to Concurrency

Process-based

- Hard to share resources: Easy to avoid unintended sharing
- High overhead in adding/removing clients

Event-based

- Tedious and low level
- Total control over scheduling
- Very low overhead
- Cannot create as fine grained a level of concurrency
- Does not make use of multi-core

Thread-based

- Easy to share resources: Perhaps too easy
- Medium overhead
- Not much control over scheduling policies
- Difficult to debug
 - Event orderings not repeatable

Code references can be found at

http://csapp.cs.cmu.edu/3e/code.html

Assignment A6

Build client server portion of a distributed chat service

