#### TMA 4190 Introduction to Topology

Lecturer: Gereon Quick Lecture 04<sup>1</sup>

#### 4. Tangent spaces and derivatives

Let us get back to the derivative of a smooth map  $f: \mathbb{R}^n \to \mathbb{R}^m$ . Let x be a point in the domain of f and  $h \in \mathbb{R}^n$  be any vector in  $\mathbb{R}^n$ . Then the **derivative** of f in the direction h can be defined as the limit

$$df_x(h) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t}.$$

Hence for a fixed x, the derivative is a map

$$df_x \colon \mathbb{R}^n \to \mathbb{R}^m$$

sending a vector  $h \in \mathbb{R}^n$  to the vector  $df_x(h) \in \mathbb{R}^m$ . In Calculus we learned that this map is **linear** (which means  $df_x(h+g) = df_x(h) + df_x(g)$  and  $df_x(\lambda h) = \lambda df_x(h)$  for all  $h,g \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}$ ). Note that  $df_x$  is **defined on all of**  $\mathbb{R}^n$  **even if** f is **not**.

# The derivative is a linear approximation

The derivative of f is a map on its own. We think of the parallel translate of  $df_x$  to x, i.e.  $h \mapsto x + df_x(h)$  as the best **linear approximation** of f at x.

Note that if  $f = L : U \to \mathbb{R}^m$  is a itself a **linear map**, then

$$df_x = L$$
 for all  $x \in U$ .

In particular, the derivative of the inclusion map  $U \subseteq \mathbb{R}^n$  at any point  $x \in U$  is the identity map on  $\mathbb{R}^n$ .

<sup>&</sup>lt;sup>1</sup>Following the books of Guillemin and Pollack: Differential Topology, and Milnor: Topology from the differentiable viewpoint.

### $df_x$ and the tangent line

In Calculus 1, we visualized the derivative by saying that f'(x) is the slope of the tangent line at the graph of f at the point (x, f(x)). But the derivative f'(x) really is the linear map  $df_x : \mathbb{R} \to \mathbb{R}$  given by multiplying with the real number f'(x). The tangent line at (x, f(x)) corresponds to the parallel translate of the linear map  $df_x$ , whose graph is the line through the origin with slope f'(x).

We observe that, in order to get a **vector space**, the tangent space to the graph of f at (x, f(x)) is the **image of**  $\mathbb{R}$  **under**  $df_x$  **in**  $\mathbb{R}^2$ .



We are going to use this picture of parallel translates to define the tangent space of a manifold at a point.

Let  $X \subseteq \mathbb{R}^N$  be k-dimensional manifold and  $x \in X$  a point. Let  $\phi \colon U \to X$  be a **local parametrization around** x (i.e. there is an open subset  $V \subseteq X$  containing x and an open subset  $U \subseteq \mathbb{R}^k$  together with a diffeomorphism  $\phi \colon U \to V$ ; we then also write  $\phi \colon U \to X$  for the composite  $U \xrightarrow{\phi} V \hookrightarrow X$ ). We assume  $\phi(0) = x$ .

## Tangent space

Then the **best linear approximation** to  $\phi: U \to X$  at 0 is the map  $u \mapsto \phi(0) + d\phi_0(u) = x + d\phi_0(u)$ .

We define the **tangent space**  $T_x(X)$  of X at x to be **the image of the linear map**  $d\phi_0 \colon \mathbb{R}^k \to \mathbb{R}^N$ . Note that  $T_x(X)$  is a **vector subspace of**  $\mathbb{R}^N$ .

Its parallel translate  $x + T_x(X)$  is the best linear approximation to X through the point x.

By this definition, a **tangent vector** to  $X \subseteq \mathbb{R}^N$  at x is a point  $v \in \mathbb{R}^N$  that lies in the vector subspace  $T_x(X)$  of  $\mathbb{R}^N$ . However, we usually picture v geometrically as the arrow running from x to x+v in the translate  $x+T_x(X)$ .



In order to define  $T_x(X)$  we made a **choice** of a parametrization  $\phi$ . We have to check what happens if we choose a different parametrization. Are we getting the same tangent space?

#### $T_x(X)$ is well-defined

So let  $\psi: V \to X$  be **another local parametrization** around x with  $\psi(0) = x$ . By shrinking both U and V we

can assume 
$$\phi(\mathbf{U}) = \psi(\mathbf{V})$$

(replace U by  $\phi^{-1}(\phi(U) \cap \psi(V)) \subset U$  and V by  $\psi^{-1}(\phi(U) \cap \psi(V)) \subset V$ ). Then the map

$$\theta := \psi^{-1} \circ \phi \colon U \to V$$

is a diffeomorphism (its the composite of two diffeomorphisms). By definition of  $\theta$ , we have  $\phi = \psi \circ \theta$ . Differentiating yields

$$d\phi_0 = d\psi_0 \circ d\theta_0$$

(where we have used the chain rule). This implies that the image of  $d\phi_0$  is contained in the image of  $d\psi_0$ :

$$\mathbf{d}\phi_{\mathbf{0}}(\mathbb{R}^{\mathbf{k}}) \subseteq \mathbf{d}\psi_{\mathbf{0}}(\mathbb{R}^{\mathbf{k}}) \text{ in } \mathbb{R}^{\mathbf{N}}.$$

By switching the roles of  $\phi$  and  $\psi$  in the argument, we also get:

$$\mathbf{d}\psi_{\mathbf{0}}(\mathbb{R}^{\mathbf{k}}) \subseteq \mathbf{d}\phi_{\mathbf{0}}(\mathbb{R}^{\mathbf{k}}) \text{ in } \mathbb{R}^{\mathbf{N}}.$$

**Hence**  $d\phi_0(\mathbb{R}^k) = d\psi_0(\mathbb{R}^k)$  in  $\mathbb{R}^N$ . This shows that whatever local parametrization around x we start with, the vector subspace  $T_x(X) \subseteq \mathbb{R}^N$  is always the same. In mathematical terms we say that  $T_x(X)$  is well-defined.

# Dimension of $T_x(X)$

If X is a k-dimensional manifold, then  $T_x(X)$  is a k-dimensional vector space over  $\mathbb{R}$ . (For we know from Calculus that the derivative of a diffeomorphism is a linear isomorphism. Hence  $d\phi_0$  is an isomorphism of vector spaces  $d\phi_0 : \mathbb{R}^k \xrightarrow{\cong} T_x(X)$ .)

# Example: Tangent space at the unit circle

Let  $p = (a,b) \in S^1$  be a point with b > 0. A local parametrization around p with  $\phi(0) = p$  is given by

$$\phi \colon (-\epsilon, \epsilon) \to S^1, \, x \mapsto (t+a, \sqrt{1-(x+a)^2}).$$

The derivative at x is the linear map

$$d\phi_x \colon \mathbb{R} \to \mathbb{R}^2, \ d\phi_x = (1, -\frac{x+a}{\sqrt{1-(x+a)^2}}).$$

Hence the image of  $\mathbb{R}$  under  $d\phi_0$  in  $\mathbb{R}^2$  is the line spanned by (-b,a) (writing  $b = \sqrt{1-a^2}$ ).

## Example: Tangent space at $S^2$

Let p=(a,b,c) be point on  $S^2$  which is not the north pole. Then we use the stereographic projection  $\phi_N \colon \mathbb{R}^2 \to S^2$  as a local parametrization. (We do not need to translate first to get  $\phi_N(0) = p$ . That is up to us.) Recall that

$$\phi_N(x,y) = \frac{1}{1 + x^2 + y^2} (2x, 2y, x^2 + y^2 - 1).$$

The derivative at (x,y) is the linear map  $d\phi_N \colon \mathbb{R}^2 \to \mathbb{R}^3$  defined by the matrix (in the standard basis):

$$d(\phi_N)_{(x,y)} = \frac{2}{(1+x^2+y^2)^2} \begin{pmatrix} 1-x^2+y^2 & -2xy \\ -2xy & 1+x^2-y^2 \\ 2x & 2y \end{pmatrix}.$$

The image of  $\mathbb{R}^2$  under the linear map  $d(\phi_N)_{(x,y)}$  is the tangent space  $T_{\phi_N(x,y)}S^2$ . This image is spanned by the two column vectors of the matrix  $d(\phi_N)_{(x,y)}$ . Let us check that we get the space we would have expected, i.e. a plane which is orthogonal to the vector  $\phi_N(x,y)$  (neglecting the first factors):

$$(2x,2y,x^2+y^2-1) \cdot \begin{pmatrix} 1-x^2+y^2\\ -2xy\\ 2x \end{pmatrix}$$

$$= 2x(1-x^2+y^2) - 2xy^2 + 2x(x^2+y^2-1)$$

$$= 2x - 2x^3 + 2xy^2 - 4xy^2 + 2x^3 + 2xy^2 - 2x$$

$$= 0.$$

Similarly,

$$(2x,2y,x^{2} + y^{2} - 1) \cdot \begin{pmatrix} -2xy \\ 1 + x^{2} - y^{2} \\ 2y \end{pmatrix}$$

$$= -4x^{2}y + 2y(1 + x^{2} - y^{2}) + 2y(x^{2} + y^{2} - 1)$$

$$= -4x^{2}y + 2y + 2x^{2}y - 2y^{3} + 2x^{2}y + 2y^{3} - 2y$$

$$= 0$$

Hence the plane spanned by the column vectors is orthogonal to  $\phi_N(x,y)$ .

#### The induced derivative

Now let  $f: X \to Y$  be a smooth map from a k-dimensional smooth manifold  $X \subseteq \mathbb{R}^N$  to an l-dimensional smooth manifold  $Y \subseteq \mathbb{R}^M$ . We would like to define a map **best linear approximation of** f **at a point** x. For y = f(x), this should result in a **linear map** of vector spaces

$$T_x(X) \to T_y(Y)$$
.

Suppose that  $\phi \colon U \to X$  is a local parametrization around x with  $U \subseteq \mathbb{R}^k$ , and  $\psi \colon V \to Y$  a local parametrization around y with  $V \subseteq \mathbb{R}^l$ . We can assume  $\phi(0) = x$  and  $\psi(0) = y$ . Then we define a map  $\theta \colon U \to V$  by the following commutative diagram (which means that it does not matter which way we walk around from U to Y):

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \downarrow^{\phi} & & \uparrow^{\psi} \\ U & \xrightarrow{\theta = \psi^{-1} \circ f \circ \phi} & V. \end{array}$$

# Define $df_x$

Taking derivatives yields a diagram of linear maps and we define  $df_x$  to be the linear map which makes the diagram commutative:

$$T_x(X) \xrightarrow{df_x} T_y(Y)$$

$$\downarrow^{d\phi_0} \qquad \qquad \uparrow^{d\psi_0}$$

$$\mathbb{R}^k \xrightarrow{d\theta_0} \mathbb{R}^l.$$

Since  $d\phi_0$  is an isomorphism, we have to **define**  $df_x$  as

$$\mathbf{df_x} := \mathbf{d}\psi_0 \circ \mathbf{d}\theta_0 \circ \mathbf{d}\phi_0^{-1}.$$

We call  $df_x$  also the **derivative of** f **at** x.

Again, we need to check that our definiton of  $df_x$  does not depend on the choices of parametrizations. This is left as an exercise. (See below.)

#### Tangent space of products

Given two smooth manifolds  $X \subseteq \mathbb{R}^N$  and  $Y \subseteq \mathbb{R}^M$  and points  $x \in X$ ,  $y \in Y$ , then the tangent space of the product X and Y is the product of the tangent spaces, i.e.

$$T_{(x,y)}(X \times Y) = T_x(X) \times T_y(Y).$$

This follows from the fact that we can choose neighborhoods in  $X \times Y$  by taking the product of neighborhoods in X and Y, respectively.

Moreover, it is easy to check that if  $: X \to X'$  and  $g: Y \to Y'$  are smooth maps, then the derivative of the product map is the product of the derivatives, i.e.

$$d(f \times g)_{(x,y)} = df_x \times dg_y$$

for all  $(x,y) \in X \times Y$ .

Finally, we would like to have that the new derivative satisfies the chain rule. So let  $g \colon Y \to Z$  be another smooth map. Let  $\eta \colon W \to Z$  be a local parametrization around z = g(y) with an open subset  $W \subseteq \mathbb{R}^m$  and  $\eta(0) = z$ . Then we have a commutative diagram

which gives us the commutative square



Thus, by definition,

$$d(g \circ f)_x = d\eta_0 \circ d(\iota \circ \theta)_0 \circ d\phi_0^{-1}.$$

The Chain Rule from Calculus 2 for maps of open sets of Euclidean spaces, then gives

$$d(\iota \circ \theta)_0 = (d\iota_0) \circ (d\theta_0).$$

Thus

$$d(g \circ f)_x = (d\eta_0 \circ d\iota_0 \circ d\psi_0^{-1}) \circ (d\psi_0 \circ d\theta_0 \circ d\phi_0^{-1}) = dg_y \circ df_x.$$

Hence we have in fact the desired rule.

#### Chain Rule

If  $X \xrightarrow{f} Y \xrightarrow{g} Z$  are smooth maps of manifolds, then

$$d(g \circ f)_x = dg_{f(x)} \circ df_x.$$

Let  $\phi' \colon U \to X$  and  $\psi' \colon V' \to Y$  be another choice of local parametrizations around x and y, respectively. Again by shrinking both U and U', both V and V' accordingly we can assume that  $\phi(U) = \phi'(U') \subseteq X$  and  $\psi(V) = \psi'(V') \subseteq Y$ . Then  $d\phi_0$  and  $d\phi'_0$  differ by a linear isomorphism of  $\mathbb{R}^k$ , say  $\alpha \colon d\phi_0 = d\phi'_0 \circ \alpha$ . Similarly, there is a linear isomorphism  $\beta$  of  $\mathbb{R}^l$  such that  $d\psi_0 = d\psi'_0 \circ \beta$ . Let  $\theta' \colon U \to V$  be defined similarly to  $\theta$ , i.e.  $\theta' = \psi'^{-1} \circ f \circ \phi'$ . This gives us the following diagram in which each square commutes



Hence we get the desired identity

$$d\psi_0' \circ d\theta_0' \circ d\phi_0'^{-1} = d\psi_0 \circ d\theta_0 \circ d\phi_0^{-1} = df_x.$$

For more examples of tangent spaces have a look at the exercises.