Lògica en la Informàtica Definició de Lògica de Primer Ordre (LPO)

José Miguel Rivero

Dept. Ciències de la Computació Universitat Politècnica de Catalunya (UPC)

Primavera 2025

Crèdits

El material utilitzat en aquesta presentació ha estat extret del elaborat pel professor Robert Nieuwenhuis (Dept. CS, UPC) per l'assignatura *Lògica en la Informàtica* de la FIB.

En particular, del llibre *Lógica para informáticos* - Farré, R. [et al.], Marcombo, 2011. ISBN: 9788426716941.

Lògica en la Informàtica

Temari

- 1. Introducció i motivació
- 2. Definició de Lògica Proposicional (LProp)
- 3. Deducció en Lògica Proposicional
- 4. Pefinició de Lògica de Primer Ordre (LPO)
- 5. Deducció en Lògica de Primer Ordre
- 6. Programació Lògica (Prolog)

Sumari

- Exercici 21 [Expressar límit inferior de la mida dels models] 2 Exercici 22 [Expressar mida infinita del models] 3 Exercici 23 [Existència de models de mida superior] Lògica de Primer Ordre amb Igualtat (LPOI) 5 Exercici 24 [Expressar límit superior de la mida dels models] 6 Exercici 26 [Expressar mida exacta dels models] Exercici 27 [Monoide. Exemples de monoides] [Grup. Exemples de grups] 8 Exercici 28
- Exercici 32 [Fórmula que discrimina dues interpretacions]

Definició de la Lògica de Primer Ordre

Una fórmula *F* "EXPRESSA" coses: les propietats dels seus models.

- Exercicis: 21, 22, 23
 - 21 Expressar límit inferior de la mida dels models
 - 22 Expressar mida infinita del models
 - 23 Existència de models de mida superior
- Lògica de Primer Ordre amb Igualtat (LPOI)
- Exercicis de LPOI: 24, 26, 27, 28, 32

21. (dificultat 3) Dona una fórmula F_3 tal que tot model de F_3 tingui almenys 3 elements. Generalitza-ho a n qualsevol.

Ajuda: defineix la propietat reflexiva d'un símbol de predicat binari p, i a més expressa que hi ha parells d'elements e_i i e_j en el domini tals que $p_I(e_i, e_i) = 0$.

Comencem així. Sigui F la fórmula:

$$\forall x \, p(x, x)$$
 (reflexivitat)
 \land
 $\exists x \, \exists y \, \neg p(x, y)$

Qualsevol model I de F tindrà almenys DOS elements:

$$\begin{aligned} D_I &= \{e_1, e_2\} \\ p_I(e_1, e_1) &= 1 \\ p_I(e_1, e_2) &= 0 \\ p_I(e_2, e_1) &= 0 \\ p_I(e_2, e_2) &= 1 \end{aligned} \quad \text{(PER REFLEXIVITAT)}$$

21. (dificultat 3) Dona una fórmula F_3 tal que tot model de F_3 tingui almenys 3 elements. Generalitza-ho a n qualsevol.

Ajuda: defineix la propietat reflexiva d'un símbol de predicat binari p, i a més expressa que hi ha parells d'elements e_i i e_j en el domini tals que $p_I(e_i, e_i) = 0$.

Comencem així. Sigui F la fórmula:

$$\forall x \ p(x,x)$$
 (reflexivitat)
 \land
 $\exists x \exists y \neg p(x,y)$

Perquè si hi hagués només un:

$$D_I = \{e1\}$$
 tindríem $p_I(e_1,e_1) = 1$ (PER REFLEXIVITAT) i no es compliria la part $\exists x \, \exists y \, \neg p(x,y)$.

21. (dificultat 3) Dona una fórmula F_3 tal que tot model de F_3 tingui almenys 3 elements. Generalitza-ho a n qualsevol.

Ajuda: defineix la propietat reflexiva d'un símbol de predicat binari p, i a més expressa que hi ha parells d'elements e_i i e_j en el domini tals que $p_I(e_i, e_j) = 0$.

Ho podem generalitzar a tres o més elements, així:

Sigui F la formula:

$$\forall x \, p(x, x) \qquad \text{(reflexivitat)}$$

$$\land \qquad \qquad \land$$

$$\exists x \, \exists y \, \exists z \, (\neg p(x, y) \land \neg p(x, z) \land \neg p(y, z))$$

21. (dificultat 3) Dona una fórmula F_3 tal que tot model de F_3 tingui almenys 3 elements. Generalitza-ho a n qualsevol.

Ajuda: defineix la propietat reflexiva d'un símbol de predicat binari p, i a més expressa que hi ha parells d'elements e_i i e_j en el domini tals que $p_I(e_i, e_j) = 0$.

I en general per a mínim n elements en el domini:

```
\forall x \ p(x,x) \qquad \text{(reflexivitat)} \\ \land \\ \exists x_1 \cdots \exists x_n \left( \neg p(x_1,x_2) \land \neg p(x_1,x_3) \land \cdots \land \neg p(x_{n-1},x_n) \right) \\ \text{(una fórmula de mida quadràtica)}
```

22. (dificultat 5) Escriu una fórmula F tal que si $I \models F$ llavors D_I té infinits elements. Ajuda: pensa en la relació "ser estrictament menor que" i expressa (entre altres coses) que "no hi ha màxim" tal com ocorre en els naturals.

Definició: un **ordre estricte** és una relacion binària irreflexiva i transitiva.

Usem un símbol binari p que té aquestes dues propietats. Sigui F la fórmula:

```
\forall x \neg p(x,x) \qquad \text{(irreflexivitat)}
\land \qquad \forall x \forall y \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z)). \qquad \text{(transitivitat)}
\text{equivalentment:} \quad \forall x \forall y \forall z \ (\neg p(x,y) \lor \neg p(y,z) \lor p(x,z))
```


22. (dificultat 5) Escriu una fórmula F tal que si $I \models F$ llavors D_I té infinits elements. Ajuda: pensa en la relació "ser estrictament menor que" i expressa (entre altres coses) que "no hi ha màxim" tal com ocorre en els naturals.

Sigui F la fórmula:

$$\forall x \neg p(x, x) \qquad \text{(irreflexivitat)}$$

$$\land \qquad \qquad \forall x \forall y \ \forall z \ (p(x, y) \land p(y, z) \rightarrow p(x, z)). \qquad \text{(transitivitat)}$$

En qualsevol model I de F, tenim que p_I és una relacion d'ordre estricte sobre D_I .

Això fa que necessitem que D_I sigui infinit en qualsevol model I de F? No, perquè tindríem el model de F:

$$D_I = \{a\}$$
$$p_I(a, a) = 0$$

22. (dificultat 5) Escriu una fórmula F tal que si $I \models F$ llavors D_I té infinits elements. Ajuda: pensa en la relació "ser estrictament menor que" i expressa (entre altres coses) que "no hi ha màxim" tal com ocorre en els naturals.

```
Per això afegim: \forall x \exists y \ p(x,y) a la nostra F:
\forall x \neg p(x,x) \qquad \text{(irreflexivitat)}
\land \qquad \forall x \forall y \ \forall z \ (p(x,y) \land p(y,z) \rightarrow p(x,z)) \qquad \text{(transitivitat)}
\land \qquad \forall x \exists y \ p(x,y) \qquad \text{("existència de successors")}
```

Per què aquesta F només té models infinits?

➤ Reducció a l'absurd.

22. (dificultat 5) Escriu una fórmula F tal que si $I \models F$ llavors D_I té infinits elements. Ajuda: pensa en la relació "ser estrictament menor que" i expressa (entre altres coses) que "no hi ha màxim" tal com ocorre en els naturals.

Suposem que existís un model finit *I*, amb:

$$D_I = \{e_1 \dots e_k\}$$

Per la part $\forall x \exists y \ p(x,y)$, necessito que $p_I(e_1,e)=1$ per a algun element "e" de D_I . Diguem-li e_2 a aquest element e.

També necessito

 $p_I(e_2,e)=1$ per a algun element "e" de D_I . No pot ser e_2 , ni tampoc e_1 : tindriem $p_I(e_1,e_2)$ i $p_I(e_2,e_1)$ i per transitivitat tindríem $p_I(e_1,e_1)$ que contradiu la irreflexivitat. Per tant, el successor de e_2 ha de ser un element al qual podem anomenar e_3 .

22. (dificultat 5) Escriu una fórmula F tal que si $I \models F$ llavors D_I té infinits elements. Ajuda: pensa en la relació "ser estrictament menor que" i expressa (entre altres coses) que "no hi ha màxim" tal com ocorre en els naturals.

Suposem que existís un model finit *I*, amb:

$$D_I = \{e_1 \dots e_k\}$$

També necessito

 $p_I(e_3, e) = 1$ per a algun element "e" de D_I . Per les mateixes raons, no pot ser e_3 ni e_2 , ni tampoc e_1 .

22. (dificultat 5) Escriu una fórmula F tal que si $I \models F$ llavors D_I té infinits elements. Ajuda: pensa en la relació "ser estrictament menor que" i expressa (entre altres coses) que "no hi ha màxim" tal com ocorre en els naturals.

Suposem que existís un model finit *I*, amb:

$$D_I = \{e_1 \dots e_k\}$$

Una vegada hem entès això, (per inducció) podem demostrar (no ho farem aquí) que no podem introduir "cicles" en la relacion p_I , del tipus:

$$p_I(e_1, e_2) \wedge p_I(e_2, e_3) \wedge \cdots \wedge p_I(e_n, e_1)$$

La qual cosa ens porta a una contradicció, perquè... qui serà el successor de e_k ?

Ningú!

23. (dificultat 5) Demostra que si una fórmula té models amb n elements, també té models amb m elements per a qualsevol m > n i fins i tot models infinits.

Això és una altra manera de dir que NO podem expressar amb una fórmula F, que els models de F tindran com a màxim 2 elements, o com a màxim k elements, per a alguna k.

23. (dificultat 5) Demostra que si una fórmula té models amb n elements, també té models amb m elements per a qualsevol $m \ge n$ i fins i tot models infinits.

Exemple de com "clonar" un element "a" de D_I : tinc p de aritat 2, i tinc la interpretació I amb:

$$D_I = \{a, b\}$$

 $p_I(a, a) = 1$
 $p_I(a, b) = 0$
 $p_I(b, a) = 1$
 $p_I(b, b) = 0$

23. (dificultat 5) Demostra que si una fórmula té models amb n elements, també té models amb m elements per a qualsevol $m \ge n$ i fins i tot models infinits.

Sigui F qualsevol formula tal que $I \models F$.

Clonar l'element a, afegint el seu clon a' obtenint una I' de manera que $I' \models F$:

```
D_{l'} = \{a, b, a'\}
p_{l'}(a, a) = 1
p_{l'}(a, b) = 0
p_{l'}(a, a') = 1 \longleftrightarrow \text{amb } a', p_{l'} \text{ es comporta igual que amb } a
p_{l'}(b, a) = 1
p_{l'}(b, b) = 0
p_{l'}(b, a') = 0
p_{l'}(a', a) = 0
p_{l'}(a', a) = 0
p_{l'}(a', a) = 0
p_{l'}(a', a') = 0
```


23. (dificultat 5) Demostra que si una fórmula té models amb n elements, també té models amb m elements per a qualsevol m > n i fins i tot models infinits.

Sigui F qualsevol formula tal que $I \models F$.

Clonar l'element a, afegint el seu clon a' obtenint una I' de manera que $I' \models F$:

```
\begin{array}{llll} D_{l'} = \{a,b,a'\} \\ p_{l'}(a,a) & = & 1 \\ p_{l'}(a,b) & = & 0 \\ p_{l'}(a,a') & = & & 1 \\ p_{l'}(b,a) & = & 1 \\ p_{l'}(b,b) & = & 0 \\ p_{l'}(b,a') & = & & 1 \\ p_{l'}(a',a) & = & & 1 \\ p_{l'}(a',b) & = & & 0 \\ p_{l'}(a',a') & = & & 1 \end{array}
```


- En els exercicis 21 i 22 vam veure que en LPO podem expressar que hi ha ALMENYS k elementos en el domini.
- Però en l'exercici 23, veiem que en LPO NO podem expressar que hi ha COM A MOLT k elements en el domini.
- Això és el que ens motiva a introduir una lògica més expressiva, la LPOI.

Expressivitat d'una lògica: quines situacions de la vida real podem descriure o distingir?

Per exemple, en LProp $\mathcal{P} = \{plou, fa_sol, esta_ennuvolat\}$ cada I "modela" una sitacion de la vida real: per exemple, NO plou, NO fa_sol i SÍ $esta_ennuvolat$. Una F el que fa és distingir un subconjunt de les I's: els MODELS de F.

Expressivitat d'una lògica: quines situacions de la vida real podem descriure o distingir?

En LPO el mateix, però les interpretacions són molt més complexes: quin domini hi ha, com s'interpreten els símbols.

Amb una F podem distingir les I's que tenen almenys 2 elements en el seu D_I . O infinits elements.

Però NO podem expressar que hi ha com a màxim 2 (o k) elements (exercici 23).

Això ens motiva a introduir una altra lògica que estén la LPO, que és la LPOI, que sí que permet expressar aquest tipus de coses.

Què és la LPOI?

Sintaxi: F: és com LPO, però hi ha un simbolo de predicat

"predefinit" binari eq²

Semantica: 1: és com LPO, però eq₁ sempre serà "ser el mateix

element del domini"

 $eq_I(e_1, e_1) = 1$ per a tot element e_1 de D_I

 $eq_I(e_1, e_2) = 0$ si e_1 i e_2 són elements diferents de D_I

 $I \models F \ (eval_I(F)) \ \text{com LPO}.$

Exercicis de LPOI

- Exercici 24 Expressar límit superior de la mida dels models
- Exercici 26 Expressar mida exacta dels models
- Exercici 27 Monoide. Exemples de monoides
- Exercici 28 Grup. Exemples de grups
- Exercici 32 Fórmula que discrimina dues interpretacions

- 24. (dificultat 2) Escriu una fórmula F de LPOI que expressi que per a tot model I de F:
 - a) hi ha com a màxim 1 element en el domini d'I
 - b) hi ha com a màxim 2 elements en el domini d'I
 - c) hi ha com a màxim n elements en el domini d'I, per a una n donada
 - d) hi ha exactament n elements en el domini d'I, per a una n donada

- 24. (dificultat 2) Escriu una fórmula F de LPOI que expressi que per a tot model I de F:
 - a) hi ha com a màxim 1 element en el domini d' $\it I$

Tres maneres alternatives de fer-ho:

$$\forall x \, \forall y \, eq(x, y)$$
 amb l'altra notació: $\forall x \, \forall y \, x = y$
 $\forall x \, eq(x, a)$ $\forall x \, x = a$
 $\exists x \, \forall y \, eq(x, y)$ $\exists x \, \forall y \, x = y$

- 24. (dificultat 2) Escriu una fórmula F de LPOI que expressi que per a tot model I de F:
 - b) hi ha com a màxim 2 elements en el domini d'I

Tres maneres alternatives de fer-ho:

$$\forall x \forall y \forall z \ (eq(x,y) \lor eq(x,z) \lor eq(y,z))$$
$$\forall x \ (eq(x,a) \lor eq(x,b))$$
$$\exists x \exists y \forall z \ (eq(x,z) \lor eq(y,z))$$

- 24. (dificultat 2) Escriu una fórmula F de LPOI que expressi que per a tot model I de F:
 - c) hi ha com a màxim n elements en el domini d'I, per a una n donada

Tres maneres alternatives de fer-ho:

$$\forall x_1 \cdots \forall x_{n+1} \ (\bigvee_{1 \leq i < j \leq n+1} eq(x_i, x_j))$$
 (una fórmula de mida quadràtica) $\forall x \ (eq(x, a_1) \lor \cdots \lor eq(x, a_n))$ (una fórmula de mida lineal) $\exists x_1 \cdots \exists x_n \forall y \ (eq(y, x_1) \lor \cdots \lor eq(y, x_n))$ (una fórmula de mida lineal)

- 24. (dificultat 2) Escriu una fórmula F de LPOI que expressi que per a tot model I de F:
 - d) hi ha exactament n elements en el domini d'I, per a una n donada

```
 \begin{array}{c} \left( \, \forall x \; (eq(x,a_1) \vee \cdots \vee eq(x,a_n)) \, \right) & \text{(maxim } n) \\ \wedge \\ \left( \, \bigwedge_{1 \leq i < j \leq n} \neg eq(a_i,a_j) \, \right) \\ \text{(com a mínim } n: \; \text{una formula de mida quadratica)} \\ \neg eq(a_1,a_2) \wedge \neg eq(a_1,a_3) \wedge \cdots \wedge \neg eq(a_{n-1},a_n) \end{array}
```

26. (dificultat 2)

a) Sigui p un símbol de predicat unari. Escriu una fórmula F de LPOI que expressi que hi ha un únic element que compleix p. (en mates a vegades s'escriu $\exists ! x \, p(x)$). Això vol dir: que expressi que per a tot model I de F hi ha un únic element a en D_I amb $p_I(a) = 1$.

$$\exists x \ (p(x) \land \forall y \ (\neg eq(x,y) \to \neg p(y)))$$

Una altra manera, amb una constant a:

$$p(a) \land \forall x (\neg eq(a, x) \rightarrow \neg p(x))$$

- 26. (dificultat 2)
 - b) Escriu una altra F expressant que hi ha exactament 2.

$$p(a) \land p(b) \land \neg eq(a,b) \land \forall x (\neg eq(a,x) \land \neg eq(b,x) \rightarrow \neg p(x)))$$

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad [\cdot \text{ es associatiu}]$$

$$\forall x \, x \cdot e = x \qquad [e \text{ és l'element neutre per la dreta}]$$

$$\forall x \, e \cdot x = x \qquad [e \text{ és l'element neutre per l'esquerra}]$$

on \cdot és un símbol de funció binària i e és un símbol de constant. Observa que hem usat notació infix (com fem amb el símbol = per a la igualtat). Amb la notació habitual (i amb f en comptes de \cdot) la fórmula $\forall x \forall y \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$ s'escriuria $\forall x \forall y \forall z \ f(f(x,y),z) = f(x,f(y,z))$.

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad \qquad [\cdot \text{ es associatiu}]$$

$$\forall x \, x \cdot e = x \qquad \qquad [e \text{ és l'element neutre per la dreta}]$$

$$\forall x \, e \cdot x = x \qquad \qquad [e \text{ és l'element neutre per l'esquerra}]$$
Notació:
$$eq(x,y) \quad x = y$$
Notació:
$$\cdot (x,y) \quad x \cdot y \qquad \text{símbol de funció binari.}$$
En notació prefix la associativitat seria:
$$\forall x \, \forall y \, \forall z \, \cdot (\cdot (x,y),z) = \cdot (x,\cdot (y,z))$$

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad \qquad [\cdot \text{ es associatiu}]$$

$$\forall x \, x \cdot e = x \qquad \qquad [e \text{ és l'element neutre per la dreta}]$$

$$\forall x \, e \cdot x = x \qquad \qquad [e \text{ és l'element neutre per l'esquerra}]$$

Exemples de monoides:

i tots aquests amb \times , 1

$$\begin{array}{lll} D_I = \mathbb{N} & \text{els naturals} & D_I = \mathbb{Q} & \text{els racionals} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ i_I = + & \vdots & \vdots & \vdots \\ e_I = 0 & e_I = 0 & & \\ D_I = \mathbb{Z} & \text{els enters} & D_I = \mathbb{R} & \text{els reals} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ i_I = + & \vdots & \vdots & \vdots \\ e_I = 0 & e_I = 0 & & \\ \end{array}$$

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad [\cdot \text{ es associatiu}]$$

$$\forall x \, x \cdot e = x \qquad [e \text{ és l'element neutre per la dreta}]$$

$$\forall x \, e \cdot x = x \qquad [e \text{ és l'element neutre per l'esquerra}]$$
c)

c)
$$D_I = \mathcal{P}(\mathbb{N}) \quad \text{els conjunts de naturals} \\ \cdot_I = \cap \quad \text{intersecci\'o} \\ e_I = \mathbb{N}$$

 $e_{l} = \lambda$

27. (dificultat 2) Un *monoide* és un model de la següent fórmula: $\forall x \forall y \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$ [· es associatiu] $\forall x \ x \cdot e = x$ [e és l'element neutre per la dreta] [e és l'element neutre per l'esquerra | $\forall x \ e \cdot x = x$ d) Els strings amb concatenació i l'string buit ($\lambda =$ "lambda") $D_I = \text{cadenes de 0s i 1s}$ $y_1 = \text{concatenaci}$ ó (S1 @ S2) @ S3 = S1 @ (S2 @ S3)on @ és la concatenació

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad \qquad [\cdot \text{ es associatiu}]$$

$$\forall x \, x \cdot e = x \qquad \qquad [e \text{ és l'element neutre per la dreta}]$$

$$\forall x \, e \cdot x = x \qquad \qquad [e \text{ és l'element neutre per l'esquerra}]$$

$$D_I = \{\alpha, \beta\}$$

$$D_{I} = \{\alpha, \beta\}$$

$$\cdot_{I}(\alpha, \alpha) = \alpha$$

$$\cdot_{I}(\alpha, \beta) = \beta$$

$$\cdot_{I}(\beta, \alpha) = \beta$$

$$\cdot_{I}(\beta, \beta) = \alpha$$

f)

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
 [· es associatiu]

$$D_{I} = \{\alpha, \beta\}$$

$$\cdot_{I}(\alpha, \alpha) = \alpha$$

$$\cdot_{I}(\alpha, \beta) = \beta$$

$$\cdot_{I}(\beta, \alpha) = \beta$$

$$\cdot_{I}(\beta, \beta) = \alpha$$

s'haurien de fer els 8 casos

(1) com a exemple, comprobarem aquest cas

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \,\forall y \,\forall z \,(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $[\,\cdot\;\text{es associatiu}\,]$

f)
$$D_{I} = \{\alpha, \beta\}$$

$$\cdot_{I}(\alpha, \alpha) = \alpha$$

$$\cdot_{I}(\alpha, \beta) = \beta$$

$$\cdot_{I}(\beta, \alpha) = \beta$$

$$\cdot_{I}(\beta, \beta) = \alpha$$

$$\underbrace{\alpha \cdot \beta \cdot \alpha}_{\beta} \cdot \underbrace{\alpha}_{\beta} = \underbrace{\alpha \cdot \beta \cdot \alpha}_{\beta}$$

27. (dificultat 2) Un monoide és un model de la següent fórmula:

$$\forall x \ x \cdot e = x$$
 [e és l'element neutre per la dreta]
$$\forall x \ e \cdot x = x$$
 [e és l'element neutre per l'esquerra]

f)
$$D_{I} = \{\alpha, \beta\} \qquad e_{I} = \alpha$$

$$\gamma_{I}(\alpha, \alpha) = \alpha \qquad \text{s'han de comprovar els casos:}$$

$$\gamma_{I}(\alpha, \beta) = \beta \qquad \gamma_{I}(\beta, \alpha) = \beta \qquad \gamma_{I}(\beta, e_{I}) = \beta$$

$$\gamma_{I}(\beta, \beta) = \alpha \qquad \gamma_{I}(e_{I}, \alpha) = \alpha$$

$$\gamma_{I}(e_{I}, \beta) = \beta$$

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

Quines de les interpretacions anteriors eren grups?

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

Una altra manera de definir els grups és fent explícita l'operació unària invers *i*:

$$\forall x (x \cdot i(x) = e \land i(x) \cdot x = e)$$

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

Exemples de grups:

 $e_i = 0$

$$D_I = \mathbb{N}$$
 els naturals $D_I = \mathbb{Z}$ els enters $y_I = y_I = 0$ NO és grup, perquè $y_I = y_I = 0$ no hi ha invers $y_I = y_I = 0$ $y_I = y_I = 0$ $y_I = y_I = 0$ els reals $y_I = y_I = y_I = y_I$ els reals $y_I = y_I = y_I$

 $e_i = 0$

 $i_I = -n$ SÍ és grup

I tots aquests amb \times , 1?

 $i_1 = -n$ SÍ és grup

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

 $D_I = \mathbb{Z}$ els enters

 $\cdot_I = \times$

 $e_l = 1$

NO és grup, perquè no hi ha invers

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

$$D_I=\mathbb{Q}$$
 els racionals $\cdot_I= imes$ $e_I=1$ $i_I(n)=1/n$ SÍ és grup si traiem el zero del domini: $D_I=\mathbb{Q}\setminus\{0\}$

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

$$D_I=\mathbb{R}$$
 els reals $\cdot_I= imes$ $e_I=1$ $i_I(n)=1/n$ SÍ és grup si traiem el zero del domini: $D_I=\mathbb{R}\setminus\{0\}$

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

c)

$$D_I = \mathcal{P}(\mathbb{N})$$
 els conjunts de naturals $e_I = \mathbb{N}$ la intersecció

NO és grup. NO hi ha invers.

Perquè fos grup, necessitaríem que per a tot conjunt de naturals x hagués un altre, i(x), tal que $x \cap i(x) = \mathbb{N}$. I això no existeix.

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

d)

```
D_I = 	ext{cadenes de 0s i 1s}

c_I = 	ext{concatenació} (S1 @ S2) @ S3 = S1 @ (S2 @ S3)

on @ és la concatenació

e_I = \lambda (lambda, la cadena buida)
```

NO és grup perquè no hi ha invers NO és grup commutatiu

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

f)
$$\begin{aligned} D_I &= \{\alpha, \beta\} \\ \cdot_I(\alpha, \alpha) &= \alpha \\ \cdot_I(\alpha, \beta) &= \beta \\ \cdot_I(\beta, \alpha) &= \beta \\ \cdot_I(\beta, \beta) &= \alpha \\ e_I &= \alpha \\ i_I(\alpha) &= \alpha \qquad \alpha \cdot i_I(\alpha) = i_I(\alpha) \cdot \alpha = e_I = \alpha \\ i_I(\beta) &= \beta \qquad \beta \cdot i_I(\beta) = i_I(\beta) \cdot \beta = e_I = \alpha \\ \text{SI \'es grup amb aquesta interpretaci\'o de l'invers} \\ \text{SI \'es grup commutatiu} \end{aligned}$$

28. (dificultat 2) un grup és un monoide que a més satisfà:

$$\forall x \,\exists y \, (x \cdot y = e \, \wedge \, y \cdot x = e)$$

i diu que "y és l'invers de x".

Un altre possible exemple:

$$D_I = \mathbb{N}$$

._I(n, m) = mcd(n, m)

Això és associatiu, perquè

$$mcd(x, mcd(y, z)) = mcd(mcd(x, y), z)$$
.

Però no hi ha element neutre, per tant no és monoide.

- 32. Per als conjunts de símbols i parells d'interpretacions següents, escriu una fórmula F de LPOI sobre el vocabulari (els símbols) donat, tal que F és certa en una d'elles i falsa en l'altra.
 - a) (dificultat 2) Conjunt de símbols de funció: $\{f^2\}$, I_1 té com a domini els naturals $\mathbb N$ i f s'interpreta com el producte I_2 té com a domini $\mathcal P(\mathbb N)$ i f s'interpreta com la intersecció

```
Si F és la fórmula \forall x f(x,x) = x llavors I_1 \not\models F però I_2 \models F
Si F és la fórmula \neg \forall x f(x,x) = x llavors I_1 \models F però I_2 \not\models F
```

- 32. Per als conjunts de símbols i parells d'interpretacions següents, escriu una fórmula F de LPOI sobre el vocabulari (els símbols) donat, tal que F és certa en una d'elles i falsa en l'altra.
 - b) (dificultat 2) Conjunt de símbols de funció: $\{f^1\}$, I_1 té domini els naturals $\mathbb N$ I_2 té domini els enters $\mathbb Z$ En tots dos casos el símbol f s'interpreta com la funció "següent", és a dir, $f_I(n) = n + 1$.

```
Si F és la fórmula \forall x \exists y \ f(y) = x llavors I_1 \not\models F però I_2 \models F
```


- 32. Per als conjunts de símbols i parells d'interpretacions següents, escriu una fórmula F de LPOI sobre el vocabulari (els símbols) donat, tal que F és certa en una d'elles i falsa en l'altra.
 - c) (dificultat 4) $\{f^2, g^2\}$, I_1 té domini els reals \mathbb{R} I_2 té domini els racionals \mathbb{Q} En tots dos casos f i g s'interpreten com la suma i el producte respectivament.

Ajuda: fabrica el dos i expressa que arrel de dos existeix.

$$\exists x \, \forall y \, g(x,y) = y$$
 (això expressa que x és el 1, i per això $f(x,x)$ serà 2)

Afegim alguna cosa i tenim:

Si
$$F$$
 és la fórmula $\exists x \exists z (\forall y g(x, y) = y \land g(z, z) = f(x, x))$
llavors $l_1 \models F$ però $l_2 \not\models F$

Definició de la Lògica de Primer Ordre

Per al proper dia de classe:

Comença a estudiar el capítol 5: Deducció en LPO.
 p5.pdf

