Ggplot2: Grammaire des graphique de la base au maîtrise

ASRI Ayoub 04/01/2020

Outline

- 1 Introduction
- **2** Grammaire des graphiques
- La base de données utilisée
- 4. Les packages complémentaires
- 5 Utilisation des graphiques

1

Introduction

Le processus de data science

Source: https://academy.vertabelo.com/blog/agile-data-science-improve-workflow-with-scrum/

2

Grammaire des graphiques

Les éléments de Grammaire essentiels

Données La base de données Les échelles du graphiques esthétiques Les éléments visuels Géométries

Tous les éléments de Grammaire

Données esthétiques Géométries **Facettes** Statistiques Coordonnées Thèmes

La base de données

Les échelles du graphiques

Les éléments visuels

Graphique pour chaque cas

Représentation différente des données

L'espace du dessin

les éléments non relatifs aux données

Couche: données (Data)

```
Observations: 1,458,644
Variables: 42
$ id
                   <chr> "id2875421", "id2377394", "id3858529", "id350...
$ vendor_id
                   <fct> 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, ...
$ pickup_datetime
                   <dttm> 2016-03-14 17:24:55, 2016-06-12 00:43:35, 20...
$ dropoff_datetime
                   <dttm> 2016-03-14 17:32:30, 2016-06-12 00:54:38, 20...
$ passenger_count
                   <fct> 1, 1, 1, 1, 1, 6, 4, 1, 1, 1, 1, 4, 2, 1, 1, ...
$ pickup_longitude
                  <db7> -73.98215, -73.98042, -73.97903, -74.01004, -...
$ pickup_latitude
                   <db1> 40.76794, 40.73856, 40.76394, 40.71997, 40.79...
$ dropoff_longitude
                  <db7> -73.96463, -73.99948, -74.00533, -74.01227, -...
$ dropoff_latitude
                   <db7> 40.76560, 40.73115, 40.71009, 40.70672, 40.78...
$ trip_duration
                   <int> 455, 663, 2124, 429, 435, 443, 341, 1551, 255...
$ dist
                   <db7> 1500.1995, 1807.5298, 6392.2513, 1487.1625, 1...
$ bearing
                   <db7> 99.932546, -117.063997, -159.608029, -172.709...
```

Data

Couche : esthétiques (Aesthetics)

Couche: esthétiques (Aesthetics)

Esthétiques	Discription
X	Position de l'axe X
Υ	Position de l'axe Y
color, col, colour	Couleur des points ou des autres formes
fill	Couleur de remplissage
size	Diamètre des points, épaisseur des lignes
alpha	Transparence
linetype	Style d'une ligne
Labels	Texte sur le graphe ou sur les axes
shape	Forme

Couche: esthétiques (Aesthetics)

Scale Functions

- scale_x...
- scale_y...
- scale_color...
- scale_fill...
- scale_color...
- scale_shape...
- scale_linetype...

Couche : géométries (Geometries)

Couche : géométries (Geometries)

abline	density2d	line	rect	vline
area	dotplot	linerange	ribbon	
bar	errorbar	map	rug	
bin2d	errorbarh path segment		ent	
blank	freqpoly point smooth		oth	
boxplot	hex	pointrange	ste	p
contour	histogram	polygon	tex	ct
crossbar	hline	quantile	til	е
density	jitter	raster	vio	in

Couche: facettes (Facets)

Scatterplot with smoother and Facets

Couche: statistiques (Statistics)

Couche: statistiques (Statistics)

stat_	geom_
stat_bin()	<pre>geom_histogram(), geom_bar(), geom_freqpoly()</pre>
stat_smooth()	geom_smooth()
stat_bindot()	geom_dotplot()
stat_boxplot()	geom_boxplot()
stat_bin2d()	geom_bin2d()
stat_binhx()	geom_hex()

Stat_	Description
stat_summary()	Statistiques sommaires des valeurs de y pour des valeurs choisies de x
stat_function()	Calcule des valeurs de y à partir d'une fonction des valeurs de x
stat_qq()	Calculs pour qq-plot

Couche: coordonnées (Coordinates)

Couche: thèmes (Theme)

Couche: thèmes (Theme)

text

```
element line()
                                       line
                                       rectangle
                                                       element rect()
theme( text = element text()
                                       theme( line = element line()
         title =
                                                                          theme( rect = element rect()
                                               axis.ticks =
         plot.title =
                                                                                  legend.background =
                                               axis.ticks.x =
         legend.text =
                                               axis.ticks.v =
                                                                                  legend.key =
         legend.title =
                                               axis line =
         axis.title =
                                                                                  panel.background =
                                               axis.line.x =
         axis.title.x =
                                                                                  panel.border =
                                               axis.line.y =
         axis.title.y =
                                               panel.grid =
                                                                                  plot.background =
         axis.text =
                                               panel.grid.major =
                                                                                  strip.background =
                                               panel.grid.minor =
         axis.text.x =
                                               panel.grid.major.x =
         axis.text.y =
                                               panel.grid.major.y =
         strip.text =
                                               panel.grid.minor.x =
         strip.text.x =
                                               panel.grid.minor.y =
         strip.text.y =
```

element text()

3

La base de données utilisée

NYC taxi trip duration dataset

1,5 Millions observations sur une période 6 mois

Compétition kaggle

11 variables dans la base principale

Pickup/dropoff time, passenger count, pickup/dropoff location, trip duration, vendor id, ...

Plusieurs données externes combinées, 42 variables

Weather, fastest routes, feature engineering

4

Les packages complémentaires

packages

ggMarginal() ggExtra ggcorrplot() ggcorrplot plot_grid(), ggDraw(), cowplot theme_cowplot() gganimate() gganimate

5

Application: utilisation des graphiques sur la base de données

Diagramme en bâton

• geom col()

- scale_y_sqrt()
- theme_bw()

Histogramme

```
train %>%
  ggplot(aes(trip_duration)) +
  geom_histogram(fill = "red", bins = 150) +
  scale_x_log10() +
  scale_y_sqrt() +
  theme_bw() +
  labs(title = "Histogramme",
       subtitle = "trip duration",
       caption = "source : kaggle",
       x = "Trip duration")
```

- geom histogram()
- scale_y_log10()

Histogramme (II)

```
title <- ggdraw() +
p1 <- train %>%
                                                         draw_label(
  ggplot(aes(pickup_datetime)) +
                                                           "Histogram of pickup and dropoff dates",
  geom_histogram(fill = "red", bins = 120) +
                                                           fontface = 'bold'.
  labs(x = "Pickup dates")
                                                           x = 0.
                                                           hjust = 0
p2 <- train %>%
  ggplot(aes(dropoff_datetime)) +
                                                         theme(
  geom_histogram(fill = "blue", bins = 120) +
                                                           # add margin on the left of the drawing canvas,
  labs(x = "Dropoff dates")
                                                           # so title is aligned with left edge of first plot
                                                           plot.margin = margin(0, 0, 0, 7)
```

 $plot_qrid(title, p1, p2, nrow = 3, rel_heights = c(0.1, 0.45, 0.45))$

- ggDraw()
- Plot_grid()

Histogram of pickup and dropoff dates

Nuage de Points

- geom point()
- theme_minial_ grid()

Nuage de Points

Diagramme linéaire

```
p1 <- train %>%
  mutate(hpick = hour(pickup_datetime),
         Month = factor(month(pickup_datetime, label = TRUE))) %>%
  group_by(hpick, Month) %>%
  count() %>%
                                                                           geom line()
  ggplot(aes(hpick, n, color = Month)) +
  geom_line(size = 1.5) +
                                                                           theme gray()
  labs(x = "Hour of the day", y = "count")+
  theme_gray()
p2 <- train %>%
  mutate(hpick = hour(pickup_datetime),
         wday = factor(wday(pickup_datetime, label = TRUE))) %>%
  group_by(hpick, wday) %>%
  count() %>%
  ggplot(aes(hpick, n, color = wday)) +
  geom_line(size = 1.5) +
  \bar{l}abs(x = "Hour of the day", y = "count")+
  theme_grav()
```


Statistiques et Facettes

- geom smooth()
- facet wrap()
- Theme_half_open()

Scatterplot with smoother and Facets

Boite à Moustaches (Boxplot)

```
train %>%
   ggplot(aes(passenger_count, trip_duration, color = passenger_count))
   geom_boxplot() +
   scale_y_log10() +
   facet_wrap(~ vendor_id) +
   labs(y = "Trip duration [s]", x = "Number of passengers",
        title = "Boxplot with Facets",
        subtitle = "Trip Duration per Number of passengers and vendor")
   theme_light() +
   theme(legend.position = "none")
```

- geom boxplotl()
- theme light()

Boxplot with Facets

Trip Duration per Number of passengers and vendor

Densités

```
train %>%
  ggplot(aes(trip_duration, fill = vendor_id)) +
  geom_density(position = "stack") +
  scale_x_log10() +
  labs(x = "Trip duration",
        title = "density",
        subtitle = "Trip duration per vendor") +
  theme_dark()
```

- geom_density()
- theme_dark()

Nuage de Points

- geom point()
- theme_bw()

Nuage de Points (Jitter) à distribution marginale

Trip Duration vs Direct Distance for 5000 sampled obsevrations

Nuage de Points (Jitter) à distribution marginale (II)

ggMarginal(p1, type = "boxplot", fill ="blue")

ggMarginal(p1, type = "densigram", fill ="transparent")

Scatterplot

Trip Duration vs Direct Distance for 5000 sampled obsevrations

ggMarginal(p1, type = "violin", fill ="blue")

Scatterplot

Trip Duration vs Direct Distance for 5000 sampled obsevrations

Scatterplot

Trip Duration vs Direct Distance for 5000 sampled obsevrations

ggmarginal(pi, type = density , fill = blue)

Scatterplot

Trip Duration vs Direct Distance for 5000 sampled obsevrations

Alternatives au nuage de points : bins

```
train %>%
  filter(trip_duration < 3600 & trip_duration > 120) %>%
  filter(dist > 100 & dist < 100e3) %>%
  ggplot(aes(dist, trip_duration)) +
  geom_bin2d(bins = c(500,500)) +
  scale_x_log10() +
  scale_y_log10() +
  labs(x = "Direct distance [m]", y = "Trip duration [s]",
        title = "2D Bins",
        subtitle = "Trip Duration vs Direct Distance for filtred data")
  theme_cowplot()
```

2D Bins

geom_bin2d()

theme cowplot()

Cartes thématiques (Heat maps)

- · geom tile()
- Scale_fill_distiller()

Scale fill continuous()

Utilisation des coordonnées : polaires

- scale x continuous()
- coord polar()

2D bins with polar coordinates

Bearing Vs Direct Distance

Bearing

2D bins with polar coordinates

Utilisation des boucles pour dessiner un graphique des différents itinéraires

```
p1 + ggtitle("Longer than
a day trips in
relation to
Manhattan")
```

- geom polygon()
- Theme_classic()
- ggtitle()

Utilisation des boucles pour dessiner un graphique des différents itinéraires (II)

Matrice de Corrélation

Correlation Matrix

Surface

Utilisation de la couche « statistiques »

Summary statistics

Thanks Q&A