Chris Fenton CNC - Formal Languages Assignment 1

Chapter 6

14. Use the pumping lemma to show that each of the following sets is not regular.

(a) The set of palindromes over {a, b}.

To Prove: the set of palindromes over {a,b} is not regular

Let L = the set of palindromes over $\{a,b\}$, assume L is regular Let k be the number from the pumping lemma Let s = $a^{k+1}ba^{k+1}$

By the pumping lemma s = uvw where $v \neq \lambda$ and $|uv| \leq k$

Since $|uv| \le k$, uv must consist of a Since $v \ne \lambda$, v must consist of one or more a and u is the empty string Suppose we pump

By the pumping lemma

s = uvvw, u = λ , vv = aa, w = ba, s= aaba aaba IS NOT a palindrome Contradiction! L is not regular

(b) $\{a^nb^m | n < m\}$

To Prove: $\{a^nb^m \mid n < m\}$ is not regular

Let L = $\{a^nb^m \mid n < m\}$, assume L is regular Let k be the number from the pumping lemma Let s = a^kb^m where k < m^i

By the pumping lemma s = uvw where $v \neq \lambda$ and $|uv| \leq k$

Let $u = \lambda$ and $v = a^k$ and w = so that $|uv| \le k$ and $v \ne \lambda$ Suppose we pump once starting from s = abb

By the pumping lemma

s = aabb

The number of a's is not less than the numbers of b's. Contradiction! L is not regular.

(c) $\{a^ib^jc^{2j} \mid i \ge 0, j \ge 0\}$

To Prove: $\{a^ib^jc^{2j} \mid i \ge 0, j \ge 0\}$ is not regular

Let L = $\{a^ib^jc^{2j} \mid i \ge 0, j \ge 0\}$, assume L is regular Let k be the number from the pumping lemma Let s = abcc

By the pumping lemma s = uvw where $v \neq \lambda$ and $|uv| \leq k$

Let $v = a^i b^j c^{2j}$ Suppose we pump once

By the pumping lemma

s = abccabcc

Contradiction! L is not regular.