Bayes Theorem Example

Heath Blackmon

1/30/2020

Example Problem

Imagine that we have a disease that is present in 1 in a million people in the general population. We have developed a test for this disease that is 99.9% correct in returning a positive result when someone is truly infected. However, it has a false positive rate of 5%. Lets use Bayes Theorem to calculate the probability that a random individual chosen from the population that tests positive actually has the disease.

Bayes Theorem

We will use hyp to represent our hypothesis that someone has the disease and we will use post to represent a positive test. Also remember that p is read as probability and the | character is read as given that. So the equation $P(hyp|post) = \frac{P(post|hyp)P(hyp)}{P(post)}$ would be read as the probability that a person has the disease given that they tested positive is equal to the probability that you get a positive test given that someone has the disease times the probability of someone having the disease (this is the prior) divided by the probability of getting a positive test. Remember that there are two kinds of positive tests: true positives and false positives and both must be accounted for.

Lets use our quickly building R skills to work out this example question in R. I will use the variables posthyp, hyp, and post to hold the probabilities of each of the 3 values on the right side of Bayes Theorem

```
# first the probability of getting positive test given the test subject is infected
posthyp <- .999

# then the probability of a random person being infected
hyp <- 1/1000000

# the the probability of a positive test
false.pos <- .05 * 999999/1000000
true.pos <- .999 * 1/1000000
post <- false.pos + true.pos

# now we combine these in Bayes Theorem
prob.having.disease.if.test.positive <- posthyp * hyp / post</pre>
```

The chance that a random person who tests positive has the disease is 1.9979621×10^{-5} .