

Quantidade de Mov/ Energia/ choques. Aprof. de Física 04/08/2007 - Exatas.

Prof.: Rodolfo Ramos de Carvalho

1) Dois corpos esféricos de massa M e 5M e raios R e 2R, respectivamente, são liberados no espaço livre. Considerando que a única força interveniente seja a da atração gravitacional mútua, e que seja de 12R a distância de separação inicial entre os centros dos corpos, então, o espaço percorrido pelo corpo menor até a colisão será de:

a) 1,5R b) 2,5R c) 4,5R d) 7,5R e) 10,0R

2) Um vagão-caçamba de massa M se desprende da locomotiva e corre sobre trilhos horizontais com velocidade constante v = 72,0km/h (portanto, sem resistência de qualquer espécie ao movimento). Em dado instante, a caçamba é preenchida com uma carga de grãos de massa igual a 4M, despejada verticalmente a partir do repouso de uma altura de 6,00m (veja figura).

Supondo que toda a energia liberada no processo seja integralmente convertida em calor para o aquecimento exclusivo dos grãos, então, a quantidade de calor por unidade de massa recebido pelos grãos é:

- a) 15 J/kg
- b) 80 J/kg
- c) 100 J/kg

- d) 463 J/kg
- e) 578 J/kg

3) Um bloco A, de massa $m_A=0,50~kg$, é liberado do repouso na posição P_0 , indicada na figura, desce o trecho circular da pista, de raio R=5,0~metros, e colide com um outro bloco B, de massa $m_B=0,30~kg$, inicialmente em repouso na posição P_1 .

A colisão tem coeficiente de restituição igual a 0,80. O bloco B percorre o restante do trecho circular e perde o contato com a pista na posição P_2 , vindo a atingi-la,

novamente, na posição P₃. Despreze os atritos e a resistência do ar e considere $|\vec{g}| = 10.0m/s^2$. Calcule:

- a) módulo da velocidade do bloco B imediatamente após a colisão com o bloco A.
- b) o módulo da força normal exercida sobre o bloco B, na posição P_2 (imediatamente antes de perder o contato com a pista).
- c) a distância horizontal entre as posições P2 e P3.
- 4) Um garoto pode deslizar sobre um escorregador solidário com um barco, a partir de uma altura H. O plano do escorregador forma um ângulo 30° com o plano horizontal. A massa m do garoto é igual a metade da massa M do conjunto barco/escorregador. Supondo que o sistema inicialmente esteja em repouso e desprezando os atritos, no instante em que o garoto atingir o ponto A, a velocidade do barco será dada por:

5) Considera-se um bloco de massa \mathbf{m} sobre outro de massa \mathbf{M} . Inicialmente \mathbf{m} desliza sobre \mathbf{M} sem atrito, com uma velocidade $\mathbf{v_0}$. A partir do ponto p o coeficiente de atrito entre as duas superfícies em contato é nãonulo ($\mu \neq 0$). Se o bloco \mathbf{M} puder deslizar sobre o plano horizontal sem qualquer atrito, pode-se afirmar que a distância \mathbf{x} percorrida por \mathbf{m} sobre \mathbf{M} , contada a partir do ponto p, será dada por:

Resp:
$$x = \frac{1}{2}Mv_0^2/[\mu.(M+m)g]$$

6) O bloco 1 de massa igual a 1,0 kg e velocidade de 8,0 m/s colide com um bloco idêntico 2, inicialmente em repouso. Após a colisão ambos os blocos ficam grudados e sobem a rampa até comprimir a mola M de 0,10 m. Desprezando os atritos e considerando g = 10 m/s²; h = 0,50 m e θ = 30°, pergunta-se qual o valor da constante da mola?

7) (IME-75/76) O choque entre 2 esferas A e B, levou ao traçado do gráfico abaixo. Sendo dados: $m_A = 0.15$ kg, $m_B = 0.2$ kg e $t_2 - t_1 = 0.001$ s, determinar

- 1) o coeficiente de restituição
- 2) a natureza do choque
- 3) a força de impulsão

Resp: 1) e = 0.4 2) parcialmente elástico 3) $F = 3.10^3$

- 8) Duas bolas de bilhar, de mesmo tamanho e massa colidem, no plano horizontal, com as velocidades de aproximação e os sentidos mostrados na figura. Sabendo-se que o coeficiente de restituição é igual a 0,80, determinar:
- a) as velocidades de separação das duas bolas;
- b) a percentagem de energia mecânica dissipada no choque.

Resp:
$$v'_{1y} = 0$$
 $v'_{2y} = 5\sqrt{2}$ m/s $v'_{2x} = 3,79$ m/s $v'_{1x} = 5,86$ m/s $\Delta E_M/E_{M1} = 20,98$

9) Um corpo A de massa m desloca-se na direção de outro B, como se vê na figura abaixo. O corpo B de massa igual M está em repouso e o corpo A possui uma velocidade inicial v_0 . Se desprezarmos qualquer atrito e considerarmos a aceleração da gravidade g, a altura máxima que o corpo A subirá em B é:

Resp:
$$\frac{v_0^2}{2g} \left(1 - \frac{m}{m+M} \right)$$

10) A figura abaixo corresponde a um sistema que se compõe de um corpo de massa m, um prisma triangular deitado, de massa M e um plano horizontal sem atrito dotado de uma cavidade D. O plano inclinado forma com a horizontal um ângulo θ . É dada a distância CD = a. Abandonando o corpo em repouso, este desliza ao longo do plano e cai na cavidade D. Determinar a altura $\frac{h}{m}$ do plano inclinado.

11) Um bloco simétrico de massa m_1 , com um furo hemisférico de raio r na superfície superior, repousa sobre uma superfície horizontal e está encostado em uma parede vertical. Um pequeno corpo de massa m_2 desliza sem atrito desde sua posição inicial, como mostra a figura. Determine a velocidade máxima adquirida pelo bloco de massa m_1 , devido à interação com o corpo de massa m_2 .

12) Duas esferas de massas m_1 e m_2 movem-se em direções perpendiculares com velocidades v_1 e v_2 respectivamente. As duas esferas colidem e como resultado passam a se mover grudadas. Determine a quantidade \mathbf{Q} de calor liberada pela colisão.

Resp:
$$Q = \frac{m_1 m_2}{2(m_1 + m_2)} (v_1^2 + v_2^2)$$

13) As massas $m_1 = 3.0$ Kg e $m_2 = 1$ Kg foram fixadas nas extremidades de uma haste homogênea, de massa desprezível e 40 cm de comprimento. Este sistema foi colocado verticalmente sobre uma superfície plana, perfeitamente lisa, conforme mostra a figura, e abandonado. A massa m_1 colidirá com a superfície a uma distância x do ponto P dada por:

14) Um pêndulo A, de peso $P_A = 10$ N, é solto com velocidade nula de uma posição horizontal e oscila livremente até a posição vertical, atingindo o pêndulo B, de peso $P_B = 17$ N, que está inicialmente em repouso. Os pêndulos têm o mesmo comprimento I = 0,45 m. Devido ao choque (com coeficiente de restituição e = 0,8), o pêndulo B oscila até uma altura e desde a sua posição inicial. Calcule esta altura e Considere e = 10 m/s².

This document was cr The unregistered vers	reated with Win2PDF a ion of Win2PDF is for e	vailable at http://www.daevaluation or non-comm	aneprairie.com. nercial use only.