

Team Contest Reference Team:

Roland Haase Thore Tiemann Marcel Wienöbst

System.out.println(42);

Contents

1	Aigo	or trinis	4
	1.1	Binary Search	2
	1.2	Held Karp	2
	1.3	LongestIncreasingSubsequence	2
	1.4	LongestIncreasingSubsequence	3
	1.5	NextPermutation	3
2	Gra	phs	3
	2.1	BellmanFord	3
	2.2	BipartiteGraphCheck	3
	2.3	Dijkstra	4
	2.4	EdmondsKarp	4
	2.5	FenwickTree	4
	2.6	FloydWarshall	5
	2.7	BFS AdjMtrx Iterativ	5
	2.8	Topologische Sortierung	
3	Mat	h	5
	3.1	GrahamScan	5
4	Java	a Knowhow	7
	4.1	System.out.printf() und String.format()	7
	4.2	Speed up IO	7

\overline{n}	Runtime $100 \cdot 10^6$ in 3s
[10, 11]	$\mathcal{O}(n!)$
< 22	$\mathcal{O}(n2^n)$
≤ 100	$\mathcal{O}(n^4)$
≤ 400	$\mathcal{O}(n^3)$
≤ 2.000	$\mathcal{O}(n^2 \log n)$
≤ 10.000	$\mathcal{O}(n^2)$
$\leq 1.000.000$	$\mathcal{O}(n\log n)$
$\leq 100.000.000$	$\mathcal{O}(n)$

byte (8 Bit, signed): -128 ...127

short (16 Bit, signed): -32.768 ...23.767

integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647

long (64 Bit, signed): $-2^{63}...2^{63} - 1$

MD5: cat <string>| tr -d [:space:] | md5sum

1 Algorithms

1.1 Binary Search

Binary searchs for an element in a sorted array.

```
public static boolean BinarySearch(int[] array, int N, 40
    int lo = 0;
     int hi = N-1;
    while(lo <= hi) {</pre>
       int mid = (int) (((lo + hi) / 2.0) + 0.6);
       if(array[mid] < a) {</pre>
         lo = mid+1;
       } else {
         hi = mid-1;
10
    }
11
    if(lo < N && array[lo] == a) {
12
       return true;
13
    } else {
       return false;
16
                                                              55
17 }
```

MD5: bb87f09a50f05e688706641c26759706 | $\mathcal{O}(logn)$

1.2 Held Karp

Algorithm for TSP

```
64
   public static int[] tsp(int[][] graph) {
                                                               65
     int n = graph.length;
     if(n == 1) return new int[]{0};
      //C stores the shortest distance to node of the
          second dimension
      //first dimension is the bitstring of included
          nodes on the way
     int[][] C = new int[1<<n][n];</pre>
     int[][] p = new int[1<<n][n];</pre>
      //initialize
      for(int k = 1; k < n; k++) {</pre>
         C[1<< k][k] = graph[0][k];
10
11
      for(int s = 2; s < n; s++) {
12
         for(int S = 1; S < (1<<n); S++) {</pre>
13
            if(Integer.bitCount(S)!=S || (S&1) == 1)
14
                continue;
15
            for(int k = 1; k < n; k++) {</pre>
16
                     if((S & (1 << k)) == 0)
17
                          continue;
19
                //Smk is the set of nodes without k
20
                int Smk = S ^ (1 << k);
21
22
                int min = Integer.MAX_VALUE;
23
                int minprev = 0;
24
                for(int m=1; m<n; m++) {</pre>
25
                   if((Smk & (1<<m)) == 0)
26
                      continue;
27
                   //distance to m with the nodes in Smk + _{18}
28
                         connection from m to k
                   int tmp = C[Smk][m] +graph[m][k];
                                                               26
                   if(tmp < min) {</pre>
                                                               21
                      min = tmp;
31
                      minprev = m;
32
33
```

```
C[S][k] = min;
            p[S][k] = minprev;
      }
   }
   //find shortest tour length
   int min = Integer.MAX_VALUE;
   int minprev = -1;
   for(int k = 1; k < n; k++) {</pre>
      //Set of all nodes except for the first + cost
           from 0 to k
      int tmp = C[(1 << n) - 2][k] + graph[0][k];
      if(tmp < min) {</pre>
         min = tmp;
         minprev = k;
      }
   }
   //Note that the tour has not been tested yet, only
       the correctness of the min-tour-value
   //backtrack tour
   int[] tour = new int[n+1];
   tour[n] = 0;
   tour[n-1] = minprev;
   int bits = (1<<n)-2;
   for(int k = n-2; k>0; k--) {
      tour[k] = p[bits][tour[k+1]];
      bits = bits ^ (1<<tour[k+1]);
   tour[0] = 0;
   return tour;
}
```

MD5: 233d98980b1f4dae50ac892d7112dafb | $\mathcal{O}(2^n n^2)$

1.3 LongestIncreasingSubsequence

57

58

60

61 62

63

Computes the longest increasing subsequence and is easy to be adapted.

```
//This has not been tested yet (adapted from tested C
    ++ Murcia Code)
public static int longestInc(int[] array, int N) {
   int[] m = new int[N];
   for (int i = N - 1; i >= 0; i--) {
      m[i] = 1;
      for (int j = i + 1; j < N; j++) {
         if (array[j] > array[i]) {
            if (m[i] < m[j] + 1) {</pre>
                m[i] = m[j] + 1;
         }
      }
   int longest = 0;
   for (int i = 0; i < N; i++) {</pre>
      if (m[i] > longest) {
         longest = m[i];
      }
   }
   return longest;
}
```

MD5: 7ee618a580f2736226054b5e106d5635 | $\mathcal{O}(n^2)$

1.4 LongestIncreasingSubsequence

Computes the longest increasing subsequence using binary search.

```
public static int[] LongestIncreasingSubsequencenlogn(
       int[] a, int[] p) {
      int[] m = new int[a.length+1];
      int l = 0;
      for(int i = 0; i < a.length; i++) {</pre>
         int lo = 1;
         int hi = l;
         while(lo <= hi) {</pre>
             int mid = (int) (((lo + hi) / 2.0) + 0.6);
             if(a[m[mid]] < a[i]) {
                lo = mid+1;
10
             } else {
11
                hi = mid-1;
12
             }
13
         }
14
         int newL = lo;
15
         p[i] = m[newL-1];
16
         m[newL] = i;
17
         if(newL > l) {
18
             l = newL;
19
         }
20
21
      int[] s = new int[l];
22
                                                                12
      int k = m[l];
23
                                                                13
      for(int i= l-1; i>= 0; i--) {
24
                                                                14
         s[i] = a[k];
25
                                                                15
         k = p[k];
26
                                                                16
27
                                                                17
28
      return s;
29
  }
```

MD5: e4b7591a2e204809f3e105521a616f70 | $\mathcal{O}(n * logn)$

1.5 NextPermutation

n Returns true if there is another permutation. Can also be used to²⁴ compute the nextPermutation of an array.

```
public static boolean nextPermutation(char[] a) {
      int i = a.length - 1;
      while(i > 0 && a[i-1] >= a[i]) {
         i--;
      if(i <= 0) {
         return false;
      int j = a.length - 1;
      while (a[j] <= a[i-1]) {
10
11
         j--;
12
      char tmp = a[i - 1];
13
      a[i - 1] = a[j];
14
      a[j] = tmp;
15
16
      j = a.length - 1;
17
      while(i < j) {</pre>
18
         tmp = a[i];
19
                                                                12
         a[i] = a[j];
20
                                                                13
         a[j] = tmp;
21
                                                                14
         i++;
                                                                15
22
         j--;
23
                                                                16
24
                                                                17
      return true:
25
```

MD5: ca6266722db16f2dc8eae5a6cc5fcacf | $\mathcal{O}(?)$

2 Graphs

2.1 BellmanFord

DESCRIPTION MISSING

```
public static boolean bellmanFord(Vertex[] vertices) {
   //source is 0
   vertices[0].mindistance = 0;
   //calc distances
   for(int i = 0; i < vertices.length-1; i++) {</pre>
      for(int j = 0; j < vertices.length; j++) {</pre>
         for(Edge e: vertices[j].adjacencies) {
            if(vertices[j].mindistance != Integer.
                MAX VALUE
                && e.target.mindistance > vertices[j].
                    mindistance + e.distance) {
                e.target.mindistance = vertices[j].
                    mindistance + e.distance;
            }
         }
      }
   //check for negative-length cycle
   for(int i = 0; i < vertices.length; i++) {</pre>
      for(Edge e: vertices[i].adjacencies) {
         if(vertices[i].mindistance != Integer.
             MAX_VALUE && e.target.mindistance >
             vertices[i].mindistance + e.distance) {
            return true;
         }
      }
   }
   return false;
```

MD5: 36561a7913a81baf7b7c79b606683819 | $\mathcal{O}(????)$

2.2 BipartiteGraphCheck

DESCRIPTION MISSING

```
public static boolean bipartiteGraphCheck(ArrayList<</pre>
    ArrayList<Integer>> graph, int N) {
   int[] color = new int[N];
   for(int i = 0; i < N; i++) color[i] = -1;</pre>
   color[0] = 1;
   Queue<Integer> q = new LinkedList<Integer>();
   q.add(0);
   while(!q.isEmpty()) {
      int u = q.poll();
      for(int i : graph.get(u)) {
         if(color[i] == -1) {
            color[i] = 1-color[u];
            q.add(i);
         } else if(color[u] == color[i]) {
            return false;
      }
   return true;
```

```
MD5: 5cb4622cf75e4ea5ffae51b0b48abf2b | \mathcal{O}(???)
```

2.3 Dijkstra

Finds the shortest paths from one vertex to every other vertex in the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from result.

To get a different shortest path when edges are ints, add an $\epsilon = \frac{1}{k+1}$ on each edge of the shortest path of length k, run again.

Input: A source vertex s and an adjacency list G.

Output: Modified adj. list with distances from s and predcessons vertices set.

```
public static void dijkstra(Vertex[] vertices, int src ; s
      ) {
     vertices[src].mindistance = 0;
     PriorityQueue<Vertex> queue = new PriorityQueue<
          Vertex>();
                                                             22
     queue.add(vertices[src]);
                                                             23
     while(!queue.isEmpty()) {
        Vertex u = queue.poll();
         if(u.visited)
                                                             25
            continue;
                                                             26
        u.visited = true;
         for(Edge e : u.adjacencies) {
10
            Vertex v = e.target;
11
            if(v.mindistance > u.mindistance + e.distance
29
12
                ) {
               v.mindistance = u.mindistance + e.distance _{31}
13
               queue.add(v):
14
                                                             33
            }
15
         }
16
17
18 }
19 class Vertex implements Comparable<Vertex> {
     public int id;
20
     public int mindistance = Integer.MAX_VALUE;
21
     public LinkedList<Edge> adjacencies = new
22
          LinkedList<Edge>();
     public boolean visited = false;
23
24
     public int compareTo(Vertex other) {
25
26
         return Integer.compare(this.mindistance, other.
             mindistance);
27
28
29
  class Edge {
     public Vertex target;
30
     public int distance;
31
32
     public Edge (Vertex target, int distance) {
33
         this.target = target;
         this.distance = distance;
35
36
37
  }
```

MD5: d6882162849418a2541cfc7f6c3ddc58 $\mid \mathcal{O}(|E|\log|V|)$

2.4 EdmondsKarp

Finds the greatest flow in a graph.

```
public static boolean BFS(int[][] graph, int s, int t,
     int[] parent) {
   int N = graph.length;
   boolean[] visited = new boolean[N];
   for(int i = 0; i < N; i++) {</pre>
      visited[i] = false;
   Queue<Integer> queue = new LinkedList<Integer>();
   queue.add(s);
   visited[s] = true;
   parent[s] = -1;
   while(!queue.isEmpty()) {
      int u = queue.poll();
      if(u == t) return true;
      for(int v= 0; v < N; v++) {</pre>
         if(visited[v] == false && graph[u][v] > 0) {
             queue.add(v);
            parent[v] = u;
            visited[v] = true;
         }
      }
   7
   return (visited[t]);
}
public static int fordFulkerson(int[][] graph, int s,
    int t) {
   int N = graph.length;
   int[][] rgraph = new int[graph.length][graph.length
   for(int u = 0; u < graph.length; u++) {</pre>
      for(int v = 0; v < graph.length; v++) {</pre>
         rgraph[u][v] = graph[u][v];
   int[] parent = new int[N];
   int maxflow = 0;
   while(BFS(rgraph, s, t, parent)) {
      int pathflow = Integer.MAX_VALUE;
      for(int v = t; v!= s; v = parent[v]) {
         int u = parent[v];
         pathflow = Math.min(pathflow, rgraph[u][v]);
      for(int v = t; v != s; v = parent[v]) {
         int u = parent[v];
         rgraph[u][v] -= pathflow;
         rgraph[v][u] += pathflow;
      maxflow += pathflow;
   }
   return maxflow;
}
```

MD5: 8d85785d45794f20303d9b9f920e80dd | $\mathcal{O}(???)$

2.5 FenwickTree

Can be used for computing prefix sums.

```
int[] fwktree = new int[m + n + 1];
public static int read(int index, int[] fenwickTree) {
   int sum = 0;
   while (index > 0) {
      sum += fenwickTree[index];
      index -= (index & -index);
   }
```

MD5: 97fd176a403e68cb76a82196191d5f19 | $\mathcal{O}(\log n)$

2.6 FloydWarshall

Finds all shortest paths. Paths in array next, distances in ans.

```
public static void floydWarshall(int[][] graph, int
       [][] next, int[][] ans) {
      for(int i = 0; i < ans.length; i++) {</pre>
         for(int j = 0; j < ans.length; j++) {</pre>
             ans[i][j] = graph[i][j];
         }
      for (int k = 0; k < ans.length; k++) {</pre>
         for (int i = 0; i < ans.length; i++) {</pre>
             for (int j = 0; j < ans.length; j++) {</pre>
                if (ans[i][k] + ans[k][j] < ans[i][j]</pre>
10
                && ans[i][k] < Integer.MAX_VALUE && ans[k
11
                    [j] < Integer.MAX_VALUE) {</pre>
                    ans[i][j] = ans[i][k] + ans[k][j];
                                                                 21
12
                   next[i][j] = next[i][k];
                                                                 22
13
                }
                                                                 23
14
15
             }
                                                                 24
16
         }
                                                                 25
17
      }
18
  }
```

MD5: 4faf8c41a9070f106e68864cc131706d | $\mathcal{O}(n^3)$

2.7 BFS AdjMtrx Iterativ

Iterative BFS on adjacency matrix. Returns true or false, depending on whether there is a connection between s and g or not.

```
public static boolean BFSWithoutPathForAdjMatr(int s,
      int g, int[][] graph) {
     //s being the start and g the goal
     boolean[] visited = new boolean[graph.length];
     for(int i = 0; i < visited.length; i++)</pre>
        visited[i] = false;
     Queue<Integer> queue = new LinkedList<Integer>();
     queue.add(s);
     visited[s] = true;
     while(!queue.isEmpty()) {
        int node = queue.poll();
10
        if(node == g)
11
            return true;
12
         for(int i = 0; i < graph.length; i++) {</pre>
13
            if(graph[node][i] > 0 && !visited[i]) {
14
                                                             11
               queue.add(i);
15
               visited[i] = true;
16
            }
17
        }
18
19
     return false;
```

```
MD5: 754e7dfa0a691a2511464e16104b8880 | \mathcal{O}(V+E?)
```

2.8 Topologische Sortierung

Sorts a graph (represented as adjMtrx) topologically

```
// l enthaelt alle Knoten topologisch sortiert (Start:
     0, Ende= n)
int[] l = new int[n];
int idx = 0;
// s enthaelt alle Knoten, die keine eingehende Kante
ArrayList<Integer> s = new ArrayList<Integer>();
// initialisiere s
for (int i = 0; i < n; i++) {</pre>
if (edgesIn[i] == 0) {
s.add(i);
}
}
// Algo Beginn
while (!s.isEmpty()) {
   int node = s.remove(0);
   l[idx++] = node;
   for (int i = 0; i < n; i++) {</pre>
      if (adjMtrx[node][i]) {
         adjMtrx[node][i] = false;
         edgesIn[i] -= 1;
         if (edgesIn[i] == 0) {
             s.add(i);
      }
   }
}
```

MD5: 01974f4bab4e48916ecdc48531a79c84 | $\mathcal{O}(O(V+E))$

3 Math

3.1 GrahamScan

GrahamScan finds convex hull. Still has collinear point problematic at the last diagonal.

```
public static int ccw(Point src, Point q1, Point q2) {
   return (q1.x - src.x) * (q2.y - src.y) - (q2.x -
       src.x) * (q1.y - src.y);
}
public static boolean isColl(Point a, Point b, Point c
   if((b.y - a.y) * (c.x - b.x) == (c.y - b.y) * (b.x)
        - a.x)) {
      return true:
   } else {
      return false;
   }
}
public static double calcDist(Point src, Point target)
   return Math.sqrt((src.x + target.x) * (src.x +
       target.x) + (src.y + target.y) * (src.y *
       target.y));
```

```
15 }
17 //Expects a array sorted with PolarComp as Comparator
18 //IMPORTANT! before sorting put lowest, and if two are
        the same leftmost, element at position 0 in array
public static void grahamScan(Point[] points) {
     int m = 1;
      for(int i = 2; i < points.length; i++) {</pre>
21
         while(ccw(points[m-1], points[m], points[i]) <</pre>
             0) {
            if(m > 1) m--;
            else if(i == points.length) break;
            else i++;
25
         }
27
         m++;
         Point tmp = points[i];
29
         points[i] = points[m];
         points[m] = tmp;
30
31
32 }
33
34 class Point {
35
     int x;
36
     int y;
     public Point(int x, int y) {
37
38
        this.x = x;
         this.y = y;
39
     }
40
41 }
42
43 class PolarComp implements Comparator<Point> {
     Point src;
44
45
     public PolarComp(Point source) {
46
         src = source;
47
48
49
     public double calcDist(Point q1, Point q2) {
50
         return Math.sqrt((q1.x - q2.x) * (q1.x - q2.x) +
51
               (q1.y - q2.y) * (q1.y - q2.y));
52
53
     public int ccw(Point q1, Point q2) {
54
         return (q1.x - src.x) * (q2.y - src.y) - (q2.x - src.y)
55
              src.x) * (q1.y - src.y);
56
57
     public int compare(Point q1, Point q2) {
58
         int res = ccw(q1, q2);
59
         double dist1 = calcDist(src, q1);
60
         double dist2 = calcDist(src, q2);
61
         if(res > 0) return -1;
62
         else if(res < 0) return 1;</pre>
63
         else if(res == 0 && dist1 < dist2) return 1;</pre>
64
         else if(res == 0 && dist1 > dist2) return -1;
65
         else return 0;
66
67
```

MD5: 97ad3ab5efa1cbfa7374a86aa2db7f62 | $\mathcal{O}(????)$

4 Java Knowhow

4.1 System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv] flags: left-justify (default: right) always output number sign zero-pad numbers (space) space instead of minus for pos. numbers group triplets of digits with, width specifies output width precision is for floating point precision conv: byte, short, int, long d f float, double char (use C for uppercase)

4.2 Speed up IO

String (use S for all uppercase)

Use BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
Use Double.parseDouble(Scanner.next())

	${f Theoretical}$	Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1 $i=1$ $i=1$ In general:
$f(n) = \Theta(g(n))$		$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \geq n_0$.	Geometric series:
$\sup S$	least $b \in$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \text{ such that } b \leq s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n\to\infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \}.$	Harmonic series: $n = n + 1 =$
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\left[egin{array}{c} n \\ k \end{array} \right]$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n-1} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	13. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$
1	• •	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1,$ $17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
		$\begin{bmatrix} n \\ -1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n} \right\rangle$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ -1 \end{pmatrix}$	$\binom{n}{n-1-k}, \qquad 24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle,$
$25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0} \right\}$	if $k = 0$, otherwise 26. $\binom{n}{1}$	$\binom{n}{1} = 2^n - n - 1,$ $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
		$\sum_{k=0}^{n} \binom{n+1}{k} (m+1-k)^n (-1)^k, 30. m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{k}{n-m},$
		32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,
$34. \left\langle \!\! \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \!\! \right\rangle = (k + 1)^n$	$+1$ $\left\langle \left\langle \left$	
$36. \left\{ \begin{array}{c} x \\ x - n \end{array} \right\} = \frac{1}{k}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $ $2n$	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k},$

Identities Cont.

$$\mathbf{38.} \begin{bmatrix} n+1\\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n\\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k\\ m \end{bmatrix} n^{\frac{n-k}{2}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k\\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x\\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n\\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \choose m} = \sum_{k=0}^{m} k {n+k \choose k},$$

44.
$$\binom{n}{m} = \sum_{k} \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix} \begin{bmatrix} k \\ m \end{bmatrix} (-1)^{m-k},$$

46.
$${n \choose n-m} = \sum_{k} {m \choose m+k} {m+n \choose n+k} {m+n \choose k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$
 49.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

46.
$${n \choose n-m}^{k} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$
 47.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

$$\mathbf{49.} \, \begin{bmatrix} n \\ \ell+m \end{bmatrix} \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} = \sum_{k} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} \begin{pmatrix} n \\ k \end{pmatrix}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \ldots, d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
$$\vdots \qquad \vdots \qquad \vdots$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

 $3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

			Theoretical Computer Science Cheat	Sheet
	$\pi \approx 3.14159,$	$e \approx 2.7$	1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	J_a then p is the probability density function of
4	16	7	Change of base, quadratic formula:	X. If
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$
6	64	13	Su	then P is the distribution function of X . If
7	128	17	Euler's number e : $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then
8	256	19	2 0 24 120	$P(a) = \int_{-a}^{a} p(x) dx.$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$\sigma = \infty$
10	1,024	29	$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.	Expectation: If X is discrete
11	2,048	31	(117	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$
$\frac{15}{16}$	32,768	47		Variance, standard deviation:
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$
18	262,144	61	Factorial, Stirling's approximation:	For events A and B: $P_{\mathbf{p}}[A \setminus B] = P_{\mathbf{p}}[A] + P_{\mathbf{p}}[B] = P_{\mathbf{p}}[A \wedge B]$
19	524,288	67 71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ $\Pr[A \land B] = \Pr[A] \cdot \Pr[B]$
$\frac{20}{21}$	1,048,576	71 73	1, 2, 0, 24, 120, 120, 3040, 40320, 302000,	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$ iff A and B are independent.
22	2,097,152 4,194,304	73 79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	
23	8,388,608	83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
$\frac{23}{24}$	16,777,216	89	Ackermann's function and inverse:	For random variables X and Y :
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
26	67,108,864	101	$\begin{cases} a(i-1,a(i,j-1)) & i,j \geq 2 \end{cases}$	if X and Y are independent.
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X + Y] = E[X] + E[Y],
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X].
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q=1-p,$	Bayes' theorem:
30	1,073,741,824	113	$11[A - h] - \binom{k}{p} q \qquad , \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i] \Pr[A_i]}{\sum_{i=1}^{n} \Pr[A_i] \Pr[B A_i]}.$
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\sum_{j=1} \Pr[A_j] \Pr[B A_j]$ Inclusion-exclusion:
32	4,294,967,296	131	$\mathbb{E}[\mathbb{F}_1] = \sum_{k=1}^n \binom{k}{p} q = np.$	n n
	Pascal's Triangl	e	Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	1-1 1-1
	1 1		Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$
	1 2 1			
	1 3 3 1		$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:
	$1\ 4\ 6\ 4\ 1$		The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$
	1 5 10 10 5 1		random coupon each day, and there are n different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$
	1 6 15 20 15 6 1		tion of coupons is uniform. The expected] , \
	1 7 21 35 35 21 7		number of days to pass before we to col-	Geometric distribution: $\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$
	1 8 28 56 70 56 28		lect all n types is	\sim
	9 36 84 126 126 84		nH_n .	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$
$1\ 10\ 45$	5 120 210 252 210 1	20 45 10 1		k=1 P

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:

Identities:
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{\pi}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

 $\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y}$

 $\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$ $\sin 2x = 2\sin x \cos x,$

 $\cos 2x = \cos^2 x - \sin^2 x$, $\cos 2x = 2\cos^2 x - 1$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$ $\cos 2x = 1 - 2\sin^2 x,$

 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$ $\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$

 $\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$

 $\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

sseiden@acm.org http://www.csc.lsu.edu/~seiden

v2.01 ©1994 by Steve Seiden

Matrices

Multiplication:

$$C = A \cdot B, \quad c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Determinants: det $A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$= \begin{array}{c} aei + bfg + cdh \\ - ceg - fha - ibd. \end{array}$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

 $\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$ $\coth^2 x - \operatorname{csch}^2 x = 1,$ $\sinh(-x) = -\sinh x,$ $\cosh(-x) = \cosh x,$ $\tanh(-x) = -\tanh x,$ $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$ $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$ $\sinh 2x = 2\sinh x \cosh x,$ $\cosh 2x = \cosh^2 x + \sinh^2 x,$ $\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$ $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$ $2 \sinh^2 \frac{x}{2} = \cosh x - 1, \quad 2 \cosh^2 \frac{x}{2} = \cosh x + 1.$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	1	0	∞

 \dots in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

Law of cosines: $c^2 = a^2 + b^2 - 2ab\cos C.$

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}$$

Heron's formula:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

 $\cos x = \frac{e^{ix} + e^{-ix}}{2},$

 $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\sin x = \frac{\sinh ix}{i}$

 $\cos x = \cosh ix$

 $\tan x = \frac{\tanh ix}{i}$

Number of components

Induced subgraph

Maximum degree

Minimum degree

Chromatic number

Complement graph

Complete graph

Ramsey number

Geometry

(x, y, z), not all x, y and z zero.

 $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$

Projective

(x, y, 1)

(m, -1, b)

(1,0,-c)

Distance formula, L_p and L_{∞}

 $\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$,

 $[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$

 $\lim_{n\to\infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$

Area of triangle $(x_0, y_0), (x_1, y_1)$

 $\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.

 (x_2, y_2) ℓ_2 $(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$

Line through two points (x_0, y_0)

Angle formed by three points:

Projective coordinates:

Edge chromatic number

Complete bipartite graph

Notation:

Edge set

Vertex set

Degree of v

E(G)

V(G)

c(G)

G[S]

deg(v)

 $\Delta(G)$

 $\delta(G)$

 $\chi(G)$

 G^c

 K_n

 $\chi_E(G)$

 K_{n_1,n_2}

 $r(k,\ell)$

Cartesian

y = mx + b

and (x_2, y_2) :

(x, y)

x = c

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: LoopAn edge connecting a vertex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. Graph with no loops or Simple: : : multi-edges. $C \equiv r_n \mod m_n$ WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. if m_i and m_j are relatively prime for $i \neq j$. TrailA walk with distinct edges. Pathtrail $_{ m with}$ distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ Componentmaximalconnected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \mod b$. DAGDirected acyclic graph. EulerianGraph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p.$ Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of xCut-setA minimal cut. Cut edge A size 1 cut. $S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ k-Connected A graph connected with the removal of any k-1vertices. Perfect Numbers: x is an even perfect num- $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. k-Tough $k \cdot c(G - S) \le |S|.$ Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1.\\ 0 & \text{if } i \text{ is not square-free.}\\ (-1)^r & \text{if } i \text{ is the product of}\\ r & \text{distinct primes.} \end{cases}$ have degree k. k-Factor k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. CliqueA set of vertices, all of Tf which are adjacent. $G(a) = \sum_{d|a} F(d),$ Ind. set A set of vertices, none of which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding

 $+O\left(\frac{n}{\ln n}\right)$

 $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$

 $+O\left(\frac{n}{(\ln n)^4}\right).$

0 90 - 0.
$ x_0 y_0 1 = 0.$
$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$

If G is planar then n-m+f=2, so

f < 2n - 4, m < 3n - 6.

Any planar graph has a vertex with de-

gree < 5.

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

and (x_1, y_1) :

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)} \right]_{x=a}.$$

For a repeated factor

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.** $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}$, **6.** $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 - u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

$$\frac{d(\operatorname{arccosh} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{1}{dx}$$

$$29. \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$
30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

1.
$$\int cu\,dx = c\,\int u\,dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x$

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

$$\mathbf{29.} \ \int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln\left|\tanh \frac{x}{2}\right|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \left\{ \begin{aligned} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{aligned} \right.$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

$$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2-x^2}\,dx = -\frac{1}{3}(a^2-x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathbf{E} \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1$

$$x^{\underline{n}}=\frac{1}{(x+1)\cdot\cdot\cdot(x+|n|)},\quad n<0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{0} = 1$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$= 1/(x + 1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$= 1/(x - 1)^{\underline{-n}},$$

$$x^n = \sum_{k=1}^n {n \brace k} x^{\underline{k}} = \sum_{k=1}^n {n \brack k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^n {n \brack k} (-1)^{n-k} x^k,$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \left\lfloor k \right\rfloor (-1)^{n-k} x^{k}$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} x^i i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n-2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{120}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{\sqrt{1-4x}} = \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{\sqrt{1-4x}} = \frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ni}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theore:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers: all the rest is the work of man. - Leopold Kronecker

Escher's Knot

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \binom{i}{n} x^i, \\ x^{\overline{n}} = \sum_{i=0}^{\infty} \binom{n}{i} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n!x^i}{i!}, \\ \left(\ln \frac{1}{1-x}\right)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n!x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}, \\ \tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i}, \\ \frac{1}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{i=1}^{\infty} \frac{1}{1-p^{-x}}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \quad \text{where } d(n) = \sum_{d|n} 1, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \quad \text{where } S(n) = \sum_{d|n} d, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \quad \text{where } S(n) = \sum_{d|n} d, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \text{If } G \text{ is continuous in the } \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{x^i}, \qquad S \\ \zeta(x) =$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_a^b G(x) dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

If the integrals involved exis

$$\int_{a}^{b} \left(G(x) + H(x) \right) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d\left(F(x) + H(x) \right) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d\left(c \cdot F(x) \right) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

Cramer's Rule

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$
.

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 $00 \ \ 47 \ \ 18 \ \ 76 \ \ 29 \ \ 93 \ \ 85 \ \ 34 \ \ 61 \ \ 52$ 86 11 57 28 70 39 94 45 02 63 $59 \ 96 \ 81 \ 33 \ 07 \ 48 \ 72 \ 60 \ 24 \ 15$ $73 \ 69 \ 90 \ 82 \ 44 \ 17 \ 58 \ 01 \ 35 \ 26$ $68 \ 74 \ 09 \ 91 \ 83 \ 55 \ 27 \ 12 \ 46 \ 30$ $37\ \ 08\ \ 75\ \ 19\ \ 92\ \ 84\ \ 66\ \ 23\ \ 50\ \ 41$ $14 \ 25 \ 36 \ 40 \ 51 \ 62 \ 03 \ 77 \ 88 \ 99$ 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$