

1/11

Fig. 1

5` -ATGAGGT CAGAAGCCTTGCTGCTATATTCACACTGCTACACTTGCTGG 50  
 GGCTGGTTCCCAGAACAGATTCTGAGCCAATCAGTATTGCATGGCAACT 100  
 ATACAAAACAGTATCCGGTGTGTTGCCACAAGCCAGGACGGAACACC 150  
 ACACAGAGGCACAGGCTGGACATCCAGATGATTATGATCATGAACGGAAC 200  
 CCTCTACATTGCTGCTAGGGACCATATTTACTGTTGATATAGACACAT 250  
 CACACACGGAAGAAATTATTGTAGCAAAAAACTGACATGGAAATCTAGA 300  
 CAGGCCGATGTAGACACATGCAGAACATGAAGGGAAAACATAAGGATGAGTG 350  
 CCACAACATTATTAAAGTTCTTCTAAAGAAAAACGATGATGCATTGTTG 400  
 TCTGTGGAACTAATGCCTCAACCCCTCCTGCAGAAACTATAAGATGGAT 450  
 ACATTGGAACCATTGGGGATGAATT CAGCGGAATGCCAGATGCCATA 500  
 TGATGCCAACATGCCAACGTTGCACTGTTGCAGATGGAAAACATATACT 550  
 CAGCCACAGTGACTGACTTCCTGCCATTGACGCAGTCATTACCGGAGT 600  
 CTTGGAGAAAGCCCTACCCCTGCGGACCGTCAAGCACGATTCAAATGGTT 650  
 GAAAGAACCATCTTGTCAAGCCGTGGATTACGGAGATTATATCTACT 700  
 TCTTCTCAGGGAAATAGCAGTGGAGTATAACACCATGGAAAGGTAGTT 750  
 TTCCCAAGAGTGGCTCAGGTTGTAAGAATGATATGGGAGGATCTCAAAG 800  
 AGTCCTGGAGAAACAGTGGACGTCGTTCTGAAGGGCGCTGAAGTCTG 850  
 CAGTTCTGGAGACTCTCATTTTATTCAACATTCCAGGCAGTTACA 900  
 GATGTGATTGATCAACGGCGTGTGATGTTGCTGGCAACGTTTCTAC 950  
 ACCTTATAACAGCATCCCTGGGCTGCAGTCTGCTATGACATGCTG 1000  
 ACATTGCCAGTGTTTACTGGGAGATTCAAGGAACAGAACAGTCTCCTGAT 1050  
 TCCACCTGGACACCAGTTCTGATGAACGAGTCTCTGAAGGCCAGGCCAGG 1100  
 TTGCTGTGCTGGCTCATCCTCCTTAGAAAGATATGCAACCTCCAATGAGT 1150  
 TCCCTGATGATACCCCTGAACCTCATCAAGAGCAGCACCGCTCATGGATGAG 1200  
 GCAGTGCCTCCATCTCAACAGGCCATGGTCTGAGAACAAATGGTCAG 1250  
 ATACCGCCTTACCAAATTGCAAGTGGACACAGCTGCTGGCCATATCAGA 1300  
 ATCACACTGTGGTTTCTGGGATCAGAGAACAGGAATCATCTGAAGTT 1350  
 TTGGCCAGAACAGGAAATAGTGGTTCTAAATGACAGCCTTCTGGA 1400  
 GGAGATGAGTGTGTTACAACCTCTGAAAAATGCAGCTATGATGGAGTCGAAG 1450  
 ACAAAAGGATCATGGGCATGCAGCTGGACAGAGCAAGCAGCTCTGTAT 1500  
 GTTGCCTCTACCTGTGTGATAAAGGTTCCCTGGCCGGTGTGAACG 1550  
 ACATGGGAAGTGTAAAAAAACCTGTATTGCCTCCAGAGACCCATATTGTG 1600  
 GATGGATAAAGGAAGGTGGTGCCTGCAGCCATTATCACCCAACAGCAGA 1650

2/11

Fig. 1 (cont.)

|                                                      |      |
|------------------------------------------------------|------|
| CTGACTTTGAGCAGGACATAGAGCGTGGCAATACAGATGGTCTGGGGGA    | 1700 |
| CTGTCACAATTCTTGTGGCACTGAATGGCATTCCAGTTCCCTCTTGC      | 1750 |
| CCAGCACAAACCACATCAGATTGACGGCTAAGAGGGTATGAGTCTAGG     | 1800 |
| GGAGGAATGCTGGACTGGAAGCATCTGCTTACTCACCTGACAGCACAGA    | 1850 |
| CCCTTGGGGCAGTGTCTCCCATAATCACCAAGACAAGAAGGGAGTGA      | 1900 |
| TTCGGAAAGTTACCTCAAAGGCCACGACCAGCTGGTCCCGTACCCCTC     | 1950 |
| TTGGCCATTGCAGTCATCCTGGCTTCGTATGGGGCCGTCTCTCGGG       | 2000 |
| CATCACCGTCTACTGCGTCTGTGATCATGGCGCAAAGACGTGGCTGTGG    | 2050 |
| TGCAGCGCAAGGAGAAGGAGCTACCCACTCGCGCCGGGCTCCATGAGC     | 2100 |
| AGCGTCACCAAGCTCAGCGGCCTTTGGGACACTCAATCAAAGACCC       | 2150 |
| AAAGCCGGAGGCCATCCTCACGCCACTCATGCACAACGGCAAGCTGCCA    | 2200 |
| CTCCCGGCAACACGCCAAGATGCTCATTAAGCAGACCAGCACCACCTG     | 2250 |
| GACCTGACGGCCCTCCCCACCCAGAGTCAACCCAACGCTGCAGCAGAA     | 2300 |
| GCGGAAGGCCAGCCGGCAGCCGAGCTGGGAGAGGAACCAGAACCTCA      | 2350 |
| TCAATGCCTGCACAAAGGACATGCCCATGGCTCCCTGTGATTCCC        | 2400 |
| ACGGACCTGCCCTGCGGGCTCCCCAGCCACATCCCCAGCGTGGTGGT      | 2450 |
| CCTGCCCATACGCAGCAGGGCTACCAGCATGAGTACGTGGACCAGCCA     | 2500 |
| AAATGAGCGAGGTGGCCAGATGGCGTGGAGGACCAGGCCACACTG        | 2550 |
| GAGTATAAGACCATCAAGGAACATCTCAGCAGCAAGAGTCCAAACCATGG   | 2600 |
| GGTGAACCTTGTGGAGAACCTGGACAGCCTGCCCTGTCTCAGACCAGGTCTA | 2650 |
| GGGAGGCCCTCCCTGGTCCCCGGAGCCTCCCTGTCTCAGACCAGGTCTA    | 2700 |
| AGCAAGCGCTGGAAATGCACCACTCCTCTTCCCTACGGGTTGACTATAA    | 2750 |
| GAGGAGCTACCCACGAACCTCGCTACGAGAAGGCCACCAGGCCACACTC    | 2800 |
| TCAAAAGAAACAACACTAACCTCCAATT CCTCTCACCTCTCCAGAAC     | 2850 |
| CAGAGCTTGGCAGGGAGACAACCCGCCGCCGCCAGAGGGTGG           | 2900 |
| CTCCATCCAGGTGCACAGCTCCAGCCATCTGGCCAGGCCGTACTGTCT     | 2950 |
| CGAGGCAGCCAGCCTAACGCCTACAACTCACTGACAAGGTGGGGCTG      | 3000 |
| AAGCGTACGCCCTCGCTAAAGCCGGACGTACCCCCAAACCATCCTTGC     | 3050 |
| TCCCCTTCCACATCCATGAAGCCAATGATGCGTGTACATAA-3`         | 3093 |

3/11

Fig. 2

|                                                                |      |
|----------------------------------------------------------------|------|
| ggcacgaggctgcagccaaactccgtccccgcgcactcggctgccaggcgctcgga       | 57   |
| acccagcagcggcgctcctccgcgggtccgcgtcgcccgatgcccgttagcagcgtgt     | 117  |
| agcagcggccagcatcaccacacccgcggcaccgcgtgcgcggccgcagagccggccag    | 177  |
| agccttgcggcccccctcccccagccccccccccccccccctgaaatgacttgttaatc    | 237  |
| ggcgagacaccaccaaggggactcaccgaagtggaatccaagtggaatttgatttgg      | 297  |
| gaagagttcttgaacatTTacccttcccttgcgttttttttttttttttttttttttttt   | 357  |
| ttttttttggcttctttttcccttcgcgtcattggagatgaacacatc               | 417  |
| gcgttgcattccagaaagttagtcgcgcgactattccccaaagagacaagcacacat      | 477  |
| gttagaatgacaaaggcttgcgaaggagagagccgcagccgcggccggagatccccct     | 537  |
| cgataatggattactaatggatacacgcgttgcgtccgagccccggccgc             | 597  |
| tgcgtcgatgcaccggaaaagggtgaagtagagaaaatgtctcccgctgaactact       | 657  |
| <br>ATGAGGTCAAGAAGCCTGCTGCTATATTCACACTGCTACACTTGCTGGGGCTGGTTTC | 717  |
| M R S E A L L Y F T L L H F A G A G F                          |      |
| CCAGAAAGATTCTGAGCCAATCAGTATTCGCATGGCAACTATACAAAACAGTATCCGGTG   | 777  |
| P E D S E P I S I S H G N Y T K Q Y P V                        |      |
| TTTGTGGGCCACAAGCCAGGACCGAACACCACACAGAGGCACAGGCTGGACATCAGATG    | 837  |
| F V G H K P G R N T T Q R H R L D I Q M                        |      |
| ATTATGATCATGAACGGAACCTCTACATTGCTGCTAGGGACCATAATTATACTGTTGAT    | 897  |
| I M I M N G T L Y I A A R D H I Y T V D                        |      |
| ATAGACACATCACACACCGAAGAAATTATTGTAGCAAAAAACTGACATGGAAATCTAGA    | 957  |
| I D T S H T E E I Y C S K K L T W K S R                        |      |
| CAGGCCGATGTAGACACATGCAGAATGAAGGGAAACATAAGGATGAGTGCCACAACTTT    | 1017 |
| Q A D V D T C R M K G K H K D E C H N F                        |      |
| ATTAAAGTTCTTCTAAAGAAAAACGATGATGCATTGTTGCTGTGGAACATAATGCCTTC    | 1077 |
| I K V L L K K N D D A L F V C G T N A F                        |      |
| AACCTTCCTGCAGAAACTATAAGATGGATACATTGGAACCATTGGGGATGAATTCAAGC    | 1137 |
| N P S C R N Y K M D T L E P F G D E F S                        |      |
| GGAATGGCCAGATGCCATATGATGCCAACATGCCAACGTTGCACTGTTGCAGATGGA      | 1197 |
| G M A R C P Y D A K H A N V A L F A D G                        |      |
| AAACTATACTCAGCCACAGTGACTGACTTCCTGCCATTGACGCAGTCATTACCGGAGT     | 1237 |
| K L Y S A T V T D F L A I D A V I Y R S                        |      |
| CTTGGAGAAAGCCCTACCCCTGCGGACCGTCAAGCACGATTCAAATGGTTGAAAGAACCA   | 1297 |
| L G E S P T L R T V K H D S K W L K E P                        |      |
| TACTTTGTTCAAGCCGTGGATTACGGAGATTATATCTACTTCTTCTCAGGGAAATAGCA    | 1357 |
| Y F V Q A V D Y G D Y I Y F F F R E I A                        |      |
| GTGGAGTATAACACCATGGAAAGGTAGTTTCCCAAGAGTGGCTCAGGTTGTAAGAAT      | 1417 |
| V E Y N T M G K V V F P R V A Q V C K N                        |      |
| GATATGGGAGGATCTCAAAGAGTCCTGGAGAAACAGTGGACGTCGTTCTGAAGGCGCGC    | 1477 |
| D M G G S Q R V L E K Q W T S F L K A R                        |      |
| TTGAACTGCTCAGTTCTGGAGACTCTCATTTCACATTCTCCAGGCAGTTACA           | 1537 |
| L N C S V P G D S H F Y F N I L Q A V T                        |      |
| GATGTGATTCGTATCAACGGGCGTGTGATGTTGTCCTGGCAACGTTTCTACACCTTATAAC  | 1597 |
| D V I R I N G R D V V L A T F S T P Y N                        |      |
| AGCATCCCTGGGTCTGCAGTCTGTGCCTATGACATGCTTGACATTGCCAGTGTGTTTACT   | 1657 |
| S I P G S A V C A Y D M L D I A S V F T                        |      |

4/11

Fig. 2 (cont.)

GGGAGATTCAAGGAACAGAACAGAAGTCCTGATTCCACCTGGACACCAGTCCTGATGAACGA 1717  
 G R F K E Q K S P D S T W T P V P D E R  
 GTTCCTAAGCCCAGGCCAGGTTGCTGTGCTGGCTCATCCTCCTAGAAAGATATGCAACC 1777  
 V P K P R P G C C A G S S S L E R Y A T  
 TCCAATGAGTCCCTGATGATAACCTGAACCTCATCAAGACGCACCCGCTCATGGATGAG 1837  
 S N E F P D D T L N F I K T H P L M D E  
 GCAGTGCCTCCATCTTCAACAGGCCATGGTCCCTGAGAACAAATGGTCAGATACCGCCTT 1897  
 A V P S I F N R P W F L R T M V R Y R L  
 ACCAAAATTGCAGTGGACACAGCTGCTGGCCATATCAGAACACTGTGGTTTTCTG 1957  
 T K I A V D T A A G P Y Q N H T V V F L  
 GGATCAGAGAACAGGAATCATCTTGAAGTTTGCCAGAACATAGGAAATAGTGGTTTCTA 2017  
 G S E K G I I L K F L A R I G N S G F L  
 AATGACAGCCTTTCTGGAGGAGATGAGTGTACAACACTGTGAAAAATGCAGCTATGAT 2077  
 N D S L F L E E M S V Y N S E K C S Y D  
 GGAGTCGAAGAACAAAAGGATCATGGCATGCAGCTGGACAGAGCAAGCAGCTCTGTAT 2137  
 G V E D K R I M G M Q L D R A S S S L Y  
 GTTGCCTCTCACCTGTGTGATAAAAGGTTCCCTGGCCGGTGTGAACGACATGGGAAG 2197  
 V A F S T C V I K V P L G R C E R H G K  
 TGTAACACACTGTATTGCCTCCAGAGACCCATATTGTGGATGGATAAAGGAAGGTGGT 2257  
 C K K T C I A S R D P Y C G W I K E G G  
 GCCTGCAGCCATTATCACCAACAGCAGACTGACTTTGAGCAGGACATAGAGCGTGGC 2317  
 A C S H L S P N S R L T F E Q D I E R G  
 AATACAGATGGTCTGGGGACTGTCACAATTCTTGTGGACTGAATGGCATTCCAGT 2377  
 N T D G L G D C H N S F V A L N G H S S  
 TCCCTCTTGCCCCAGCACAAACCATCAGATTGACGGCTCAAGAGGGTATGAGTCTAGG 2437  
 S L L P S T T T S D S T A Q E G Y E S R  
 GGAGGAATGCTGGACTGGAAGCATCTGCTTGACTCACCTGACAGCACAGACCCCTTGGG 2497  
 G G M L D W K H L L D S P D S T D P L G  
 GCAGTGTCTTCCCATAATCACCAAGACAAGAAGGGAGTGATTGGAAAGTTACCTCAA 2557  
 A V S S H N H Q D K K G V I R E S Y L K  
 GGCCACGACCAGCTGGTCCCGTCACCTCTGGCATTGCAGTCATCCTGGCTTCGTC 2617  
 G H D Q L V P V T L L A I A V I L A F V  
 ATGGGGGCCGTCTCTGGCATCACCGTCTACTGCGTCTGTGATCATGGCGCAAAGAC 2677  
 M G A V F S G I T V Y C V C D H R R K D  
 GTGGCTGTGGTGCAGCGCAAGGAGAACGGAGCTCACCCACTCGCGCCGGGCTCCATGAGC 2737  
 V A V V Q R K E K E L T H S R R G S M S  
 AGCGTCACCAAGCTCAGCGGCCTTTGGGGACACTCAATCAAAGACCCAAAGCCGGAG 2797  
 S V T K L S G L F G D T Q S K D P K P E  
 GCCATCCTCACGCCACTCATGCACAACGGCAAGCTGCCACTCCGGCAACACGGCCAAG 2857  
 A I L T P L M H N G K L A T P G N T A K  
 ATGCTCATTAAAGCAGACCAGCACCACTGGACCTGACGGCCCTCCCCACCCCAAGAGTC 2917  
 M L I K A D Q H H L D L T A L P T P E S  
 ACCCCAAACGCTGCAGCAGAACGGAGGCCAGCCGGCAGCCGCGAGTGGAGAGGAAC 2977  
 T P T L Q Q K R K P S R G S R E W E R N  
 CAGAACCTCATCAATGCCCTGCACAAAGGACATGCCCCCATGGCTCCCTGTGATTCCC 3037  
 Q N L I N A C T K D M P P M G S P V I P

5/11

Fig. 2 (cont.)

ACGGACCTGCCCTGCAGGGCTCCCCAGCCACATCCCCAGCGTGGTGGTCTGCCCATC 3097  
 T D L P L R A S P S H I P S V V V V L P I  
 ACGCAGCAGGGCTACCAGCATGAGTACGTGGACCAGCCCCAAATGAGCGAGGTGGCCCAG 3157  
 T Q Q G Y Q H E Y V D Q P K M S E V A Q  
 ATGGCGCTGGAGGACCAGGCCACACTGGAGTATAAGACCATCAAGGAACATCTCAGC 3217  
 M A L E D Q A A T L E Y K T I K E H L S  
 AGCAAGAGTCCAACCATTGGGTGAACCTTGTGGAGAACCTGGACAGCCTGCCAAAAA 3277  
 S K S P N H G V N L V E N L D S L P P K  
 GTTCCACAGCGGGAGGCCTCCCTGGTCCCCGGAGCCTCCGTCTCAGACCGGTCTA 3337  
 V P Q R E A S L G P P G A S L S Q T G L  
 AGCAAGCGGCTGGAAATGCACCACTCCTCTTACGGGTTGACTATAAGAGGAGCTAC 3397  
 S K R L E M H H S S S Y G V D Y K R S Y  
 CCCACGAACTCGCTCACGAGAACCGACCAGGCCACACTCTAAAAGAAACAACACTAAC 3457  
 P T N S L T R S H Q A T T L K R N N T N  
 TCCTCCAATTCTCTCACCTCTCAGAAACAGAGCTTGGCAGGGAGACAACCGCCG 3517  
 S S N S S H L S R N Q S F G R G D N P P  
 CCCGCCCGCAGAGGGTGGACTCCATCCAGGTGCACAGCTCCAGCCATCTGCCAGGCC 3577  
 P A P Q R V D S I Q V H S S Q P S G Q A  
 GTGACTGTCTCGAGGCAGCCAGCCTCAACGCCTACAAACTCACTGACAAGGTGGGCTG 3637  
 V T V S R Q P S L N A Y N S L T R S G L  
 AAGCGTACGCCCTCGCTAAAGCCGGACGTACCCCCAAACCATCCTTGCTCCCCTTCC 3697  
 K R T P S L K P D V P P K P S F A P L S  
 ACATCCATGAAGCCAATGATGCGTGTACATAAtcccagggggaggggggtcaggtgtcga 3757  
 T S M K P N D A C T \*  
 accagcaggcaaggcgagggtgccgctcagctcagcaaggttctcaactgcctcgagtac 3817  
 ccaccagacaagaaggcctgcggc

6/11

Fig. 3



7/11

**(MMU)Sema6A-1 Distribution  
in Mouse Adult  
and Embryonic Tissues**

09/856681-090301



Fig. 4

8/11

(HSA)SEMA6A-1: Expression, Protein-Size and Dimerization

Fig. 5

9/11

Fig. 6

**Sequence-Alignment: SEMA6A-1 / Zyxin**

SEMA6A-1

(6a)

PPPAPQRVDSIQVHSSQPSGQAVTVSRQPSLNAYNSLTRSGLKRTPLKPD-VPPKPSFAPLSTS MKPND ACT

\* \* \*\*\* + \* \* \*\* + \* \* \* + + + \* + \* + \* + \* + \* + \* + \* + \*

PPPQPQRKPQVQLH-VQPQAKP-HVQPQP-VSSANTQPRGPLSQAPTPAPKFAPVAPKFTPVVS KFSP

zyxin (6b)

**Identity: 33%****Similarity: 49%**

09/856681 09/30/1

10/11

**A.****B.**

Fig. 7

11/11

Fig. 8

**From Membrane to Cytoskeleton: Enabling a Connection**  
(Hu and Reichardt, Neuron, Vol. 22; March 1999)



to  
se  
cha  
nd  
y (200