参赛队代码:			
装	订	线	

能量回馈的变流器负载试验装置 设计论文

摘要

本方案电路由基于 STM32H723ZGT6 的控制回路、基于 INN650TA030AH 的宽禁带器件功率回路及相关外围电路组成,实现了可以能量回馈的、具备电压 闭环、电流闭环和零序环流抑制功能的低功耗三相变流器负载试验装置。系统首 先通过线电压采样和坐标变换,并调节变流器 1 输出实现了电压闭环。随后,本系统通过电流反馈,并利用变流器 2 输出对基波电流进行闭环控制,对零序环流进行抑制。本系统可稳定输出线电压 32.0V、频率 50.0Hz 的三相交流电,实测总谐波失真为 0.3%,远小于 2%的设计要求,负载调整率为 0.189%,同时具备±1.0Hz 步进的调频能力。本系统各项技术指标均达到赛题要求,实现了高效能量回馈,具有控制精度高、谐波少、稳定性高的特点。

关键词: 坐标变化; 闭环控制; 零序环流抑制; 能量回馈

目 录

一、	总体方案设计1
	1. 电路总体设计 1
	2. 技术方案比较
	(1) 软控模块 - 信号坐标系设立1
	(2) 软控模块 - 跟踪算法选择
	(3) 综合模块 - 电压合成算法选择2
=,	理论分析与计算
	1. 能量回馈原理
	2. LCL 电路参数计算
三、	核心电路与程序设计4
	1. 系统原理框图4
	2. 核心电路4
	(1) 功率半桥模块4
	(2) 电压采样模块5
	(3) 电流采样模块5
	3. 程序设计
	(1) 三相 SPWM 脉冲调制6
	(2) 坐标变换6
	(3) 基波控制与零序环流抑制6
	(4) 软件程序流程图6
四、	测试结果与分析7
	1. 基础要求的测试
	(1) 输出特性测试
	(2) 总谐波失真(THD)测试7
	(3) 负载调整率测试
	(4) 调频功能测试
	2. 发挥部分的测试
	(1) 能量回馈测试
	(2) 附加功能
	3 成效总体对比 8

一、总体方案设计

1. 电路总体设计

系统总体设计框图如图 1-1 所示:

图 1-1 系统总体设计框图

电路整体分为软件主控与硬件受控部分组成。软件主控基于 STM32H723ZGT6作为核心板。硬件受控部分则是由INN650TA030AH 晶体管所构成的半桥与电压/电流采样板所组成。

软件主控实现 SPWM 控制。PI 调节功能。半桥实现 SPWM,提供其所需的电压向量以合成所需电压。电压,流采样板对应进行采样,实现反馈数据的收集。

软件通过 SPWM 作用于半桥,电压,电流采样通过 ADC 将数据输入至主控 板之中

2. 技术方案比较

(1) 软控模块-信号坐标系设立

方案一: ABC 三项建立自然坐标系。在这种情况下,直接以 ABC 三项进行合成分解。该坐标系建立简单。但在这种坐标系下,ABC 三项会随时间变化,呈z 正弦波形式,计算量大。不利于参数调试。

方案二: clarck 变换,clarck 变换后将自然 ABC 三项坐标系转换为 α , β 两轴坐标,减少了控制器数目,但该情况下。 α , β 两坐标轴仍保持静止。所监测的电压在 α , β 上的分量仍保持为正弦波形式,随时间变化,不利于参数调试。

方案三: clarck-park 变换。在 clarck 变换的基础之上,我们将得到的 α , β 两 坐标轴进行更进一步的变换,令我们得到的 α , β 两坐标轴以与所检测的电压相同的角速度进行旋转得到动态的d,q 坐标轴,这种情况之下。我们所检测的电压与d,q 坐标轴保持相对静止。其在d,q 坐标轴上的投影量为直流量,不随时间变化。因此问题转换为在一旋转坐标系下直流信号跟踪问题

综上可知,方案一与方案二涉及到交流信号跟踪问题,交流信号跟踪所使用的 PR 算法复杂且难以调控,因此采用方案三,将问题转换为直流信号跟踪问题,可以使用 PI 算法,使得调节相对简单且常用。综合考虑后选择**方案三**。

(2) 软控模块-跟踪算法选择

方案一:比例-积分(PI)控制,PI 控制包括比例项(P)和积分项(I),比例项反应当前误差,积分项反应历史误差。通过动态修正使得输出稳定值预定值。其具有操作简单且速率较快的优点。但与此同时,当我们使用 PI 控制器跟踪正弦信号时,由于 PI 算法的基本原理,会导致产生无法消除的正弦稳态误差。影响跟踪效果。

方案二: 比例谐振(PR)控制。PR 控制的特性为,在所设定的频率处增益非常大。其他频段的增益为固定增益。因此相对于 PI 控制,PR 可以很好的处理交流信号。并且不会有无法消除的正弦稳态误差影响。但其调节参数相对 PI 控制多,且调节难度高。

综上所述,鉴于我们已使用 clarck-park 变换,将问题转化为直流信号跟踪问题,在这个前提之下,PI 控制更适用于我们的需求,PR 控制调节难度相对较高。综合考虑后采用方案一。

(3) 综合模块-电压合成算法选择

方案一: SPWM: 以输入一端幅值等效的方波从而来等效正弦波,这里使用自然采样法,即使用三角波与正弦波进行对比。根据三角波当前时刻超过/低于正弦波从而改变方波高\低电平。从而进行模拟,其操作相对简单,但是其峰值不可超过供电峰值1/2,易发生超调现象。

方案二: SVPWM: 空间矢量脉宽调制算法,借助半桥结构,通过三组板桥的开关 从而形成 2^3 个不同方向的电压向量。再通过不同的电流向量不同时间的搭配,从而以多个向量构成我们所需要的电压向量。其操作相对复杂且会引入零序分量(三次谐波),但其相对于 SPWM 需要更小的电压峰值 $\sqrt{3}/3$ 利用率提高了15.47%。

综上所述, 因为 SVPWM 会引入零序分量导致环流,效率降低,且在本设计当中,所拥有的直流电源电压范围大。可满足我们的实际需求(60.0V)合理选择电压后。可避免发生超调,则采用 SPWM 方式进行模拟。

二、理论分析与计算

1. 能量回馈原理

电流通过连接单元后,通过变流器 2(AC-DC)将原本的交流电整流升压,并将产生的直流电源端输入的 DC 电压幅值,再重新传输至变流器 1(DC-AC)的输入极。通过这种方式实现"变流器 1-连接单元-变流器 2-变流器 1"的能量回馈。

在具体的变流器 2: AC-DC 当中。逆向使用变流器 1: DC-AC 的方式,从而实现 AC-DC 且前后电压变化近似一致。减少能量在回馈过程中的劣化。

2. LCL 电路参数

在逆变器 LCL 滤波电路之中,参考标准 LCL 滤波电路构型,相关参数如表 2-1 表 2-1 LCL 滤波电路相关参数

V_{in}	T_{sw}	$\lambda_{{\scriptscriptstyle L}_1}$	$I_{\scriptscriptstyle L}$	P_o	U_{g}
输入电压	载波周期	纹波系数	额定电流	单相有功功率	输出电压
32.0	5*10 ⁻⁵ s	0.1	2.0A	64.0W	32.0V

且要求谐振频率频率约为 1.0KHZ 可、避开由 SPWM 所产生的 3,5 倍谐波干扰,且在电流环控制范围内。

1) 高频电感*L*₁:

其需满足
$$\Delta i_{in} = \frac{V_{in} - V_c}{L_1} T_{on}, L_1$$
代入公式 $L_{min} = \frac{V_{in} T_{sw}}{4 \lambda_{I1} I_I} \approx 2.0 \text{mH}$

2) 低频电感 L,:

由谐振角频率
$$\omega_r = \sqrt{\frac{L_1 + L_2}{L_1 L_2 C}}$$
,考虑 LC 并联影响后, $L_2 = \frac{9L_1}{4\pi^2 * f_{sw}^2 L_1 C - 9} = 2.0 \mathrm{mH}$

滤波电容 *C*:一般滤波电容所引入的无功功率为理论上单项额定有功的 5.0%。但在实际实践当中为了稳定取 10.0%-20.0%。代入公式求得

$$C_{max} = \frac{P_o}{\omega * U_g^2} * 12.5\% = 25.0 \text{uf}$$

在此参数之下幅频特性如下,其谐振频率为f=1005Hz,可实现避开 3,5 次谐波的设计要求。满足设计需求

图 2-2 LCL 电路幅频特性图

三、核心电路与程序设计

1. 系统原理框图

系统原理框图如图 3-1 所示。该框图核心由变流器 1 和变流器 2 两个功能单元构成。变流器 1 工作在逆变工况,并通过采集线电压,然后利用坐标变换和 PI 控制器实现电压闭环控制。变流器 2 工作在整流工况,通过反馈采样电流实现了电流闭环控制。同时由于系统中存在零序环流通路,故设计了零序环流抑制算法,对系统中的零序电流进行抑制,使得系统具备更高的效率。

图 3-1 系统原理框图

2. 核心电路

(1) 功率半桥模块

功率半桥模块由滤波前端,驱动电路,GaN 半桥所组成。驱动电路使用UCC21220ADR 驱动芯片增强驱动能力以精准控制 GaN 开关管。半桥结构采用INN650TA030AH 功率晶体管.以实现响应 PWM,实现半桥开关。

图 3-2 功率半桥及其驱动模块电路

2. 电压采样模块

电压采样模块前端使用 AMC1311BDWVR 隔离放大器实现电气隔离放大并 在后侧采用运放放大器实现放大,从而实现精准线性采集电路电压效果。

图 3-3 电压采样模块电路

3. 电流采样模块

利用 TMCS1107A3BQDR 隔离霍尔电流传感器进行电流采样,实现工作范围内精确线性采样。

图 3-4 电路采样模块电路

4. 程序设计

(1) 三相 SPWM 脉冲调制:

SPWM 即为将一标准三角波与调制正弦波进行对比.当三角波低于正弦波时输出高电平,当三角波高于正弦波时输出低电平,以此通过电压均值来模拟我们所需要的正弦电压.在实际交互环节当中通过生成的 PWM 注入半桥,板桥内部的驱动器接受 PWM 从而调节 GaN 开关管的开关,进而实现高电压幅度下的电压调制,从而在电路中实现 AC-DC 与 DC-AC 的变流器作用。通过三相的互差 120度的 SPWM 调制即可产生三相 SPWM 的脉冲调制,进而实现三相 AC-DC 与 DC-AC 的变流。

(2) 坐标变化:

通过 clark-park 变换,将 ABC 三相静止的坐标系下的交流分量转为 dq 坐标系下的直流分量。因静止坐标系获取电压会得到变化的交流值,如果坐标系实现同角速度动态变化,则得到的电压值为静态的直流值,直流分量的幅值可以直接反映交流分量的幅值,也可用通过 PI 控制器对直流分量进行控制。

(3) 基波控制与零序环流抑制:

基波控制采用双变流器协同策略:变流器 1 通过电压闭环控制实现直流母线稳压,其 d 轴电压环采用 PI 调节器跟踪指令电压,q 轴电压置零以实现单位功率因数运行;变流器 2 则通过电流闭环控制精确跟踪指令电流,采用电流环 PI 调节器结合 P 控制器实现快速动态响应。由于该电路存在零序环流通路,故两变流器通过中央零序环流抑制模块动态耦合,该模块实时检测并联支路的零序电流分量,通过闭环补偿算法生成反相抑制信号,有效消除因参数不对称或开关动作引起的环流扰动。

(4) 程序软件流程图:

程序流程框图如图 3-5 所示,程序启动后,首先通过按键选择题目确定运行模式,随后执行 ADC 校正确保采样精度。系统核心采用中断响应机制:由启动/停止按键和过流保护触发中断。过流时强制打开三相桥下桥臂紧急停机;正常启动后则进入运行状态。在启动运行阶段,流程分为并行两路:基础部分:进行电压电流采样。扩展部分:实现能量反馈。

四、测试结果与分析

1. 基础要求的测试

表 5-1 测试条件

供电电源 RIGOL 普源 DP832A 直流电源		RIGOL 普源 DP832A 直流电源		
	测量设备	tektronix MDO3024 示波器、fluke 434 series II 质量分析仪		
供电条件 直流供电 55.0V		直流供电 55.0V		

(1)输出特性测试:

基础要求(1)测试如表 5-2, $U = 32 \pm 0.5 \text{V}$, I = 2A, f = 50Hz满足题目要求。

表 5-2 基础要求 (1) 测试数据

线电压	线电压 U/V	线电流 I/A	频率 f Hz
U_1	32.09	2.032	50.0
U_2	32.11	1.968	50.0
U_3	32.12	1.885	50.0

(2) 总谐波失真(THD)测试:

基础要求(2)测试如表 5-3, 总 THD 为 0.3%, 小于要求 2.0%满足题目要求

表 5-3 基础要求 (2) 测试数据

	总 THD
谐波含量	0.3%

(3) 负载调整率测试:

基础要求(3)测试如表 5-4, 负载调整率为 0.189%, 满足题目要求

表 5-4 基础要求 (3) 测试数据

电流 I ₁ /A	线电压 <i>U</i> ₁ /V	负载调整率 <i>S</i> ₁₁ %	
0.0	32.22	0.10007	
2.0	32.16	0.189%	

(4) 调频功能测试:

系统输出频率可在 20-100Hz 范围内 1Hz 步进变化,满足题目要求。

2. 发挥部分的测试

(1) 能量回馈测试:

能量回馈的数据如表 5-5 所示。在实现能量回馈的情况下,直流电源供电功率约 12.155W。

线电压 线电流 频率 直流电源电压 直流电源电流 直流电源功率 $U_{\scriptscriptstyle 1}$ $I_{\scriptscriptstyle 1}$ f $U_{_d}$ I_d ____ P_{d} 31.97V 2.04A 50.0Hz 55.0V 0.221A 12.155W

表 5-5 能量回馈测试数据

(2) 附加功能:

本作品在基本要求,发挥部分的基础上,元器件采型使用 GaN 晶体管,在整体上实现了低功耗,低散热等功效。降低了能量消耗。

3. 成效总体对比

本文设计了一个具有能量反馈的变流器负载电路,在直流电源为 56.0V 条件下,使得电路在实现输出频率 50 Hz ,线电压 U_1 = 32V ± 0.25V ,额定线电流 I_1 = 2A 的三相对称正弦交流电 THD 为 0.3%,负载调整率 S_{11} = 0.189% 并可以实现 20Hz ~ 100Hz 范围内一 1.0Hz 为步进调频。同时实现了能量回馈,能量回馈过程当中,变流器 1 输出频率 50.0Hz,线电压 U_1 = 32V ± 0.25V,额定线电流 I_1 = 2A,直流电源输出功率 P_d = 12.155W。