ESCUELA POLITECNICA NACIONAL

Nombre: Kevin Eduardo Garcia Rodríguez

Fecha: 29/10/2025

Conjunto de ejercicios 1

Resuelva los siguientes ejercicios tomando en cuenta que debe mostrar el desarrollo completo del ejercicio.

1. Calcule los errores absoluto y relativo en las aproximaciones de p por p*

a.
$$p = \pi$$
, $p * = 22/7$

Error Absoluto	Error Relativo
$Error_{abs} = p-p^* $ $Error_{abs} = \pi-22/7 $	$Error_{rel} = \left rac{Error_{abs}}{p} \right $
$Error_{abs} = 10^{\circ} 22/7$ $Error_{abs} = 0.001264489$	$Error_{rel} = \left \frac{0.001264489}{3.1416} \right $
	$Error_{rel} = 0.0004011$

b.
$$p = \pi$$
, $p * = 3.1416$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = \pi - 3.1416 $.0.0000072461
$Error_{abs} = 0.000007346$	$Error_{rel} = \left \frac{0.00007346}{\pi} \right $
	$Error_{rel} = 0.000002338$

c.
$$p = e, p * = 2.718$$

Error Absoluto	Error Relativo
$Error_{abs} = p-p^* $ $Error_{abs} = e-2.718 $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = e^{-2.718} $ $Error_{abs} = 0.000281845$	$Error_{rel} = \left rac{0.000281845}{e} ight $
	$Error_{rel} = 0.00010367889$

d.
$$p = \sqrt{2}$$
, $p * = 1.414$

Error Absoluto	Error Relativo
$Error_{abs} = p-p^* $ $Error_{abs} = \sqrt{2-1.414} $ $Error_{abs} = 0.00021356237$	$Error_{rel} = \left rac{Error_{abs}}{p} ight $ $Error_{rel} = \left rac{0.00021356237}{\sqrt{2}} ight $
	$Error_{rel} = 0.00015101140222$

2. Calcule los errores absoluto y relativo en las aproximaciones de p por p *.

a.
$$p = e^{10}$$
 , $p * = 22000$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $ $Error_{abs} = e^{10} - 22000 $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = e^{$	$Error_{rel} = \left \frac{0.00021356237}{e^{10}} \right $
	$Error_{rel} = 0.0012015452253$

b.
$$p=10^\pi$$
 , $p*=1400$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $	$Error_{rel} = \left rac{Error_{abs}}{p} ight $
$Error_{abs} = e^{10} - 1400 $	126.46579480671
$Error_{abs} = 26,4657948067$	$Error_{rel} = \left rac{26,4657948067}{e^{10}} ight $
	$Error_{rel} = 0.01049783105$

c.
$$p = 8!$$
, $p * = 39900$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $	$Error_{rel} = \left rac{Error_{abs}}{p} ight $
$Error_{abs} = 8! - 39900 $	
$Error_{abs} = 420$	$Error_{rel} = \left rac{420}{8!} \right $
	$Error_{rel} = = 0.01041666666$

d.
$$p = 9!$$
, $p * = \sqrt{18\pi(9/e)^9}$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = 9! - \sqrt{18\pi(9/e)^9} $	$Error_{rel} = \left \frac{3343, 1273634670}{9!} \right $
$Error_{abs} = 3343, 1273634670$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$Error_{rel} = = 0,0092127627961$

3. Encuentre el intervalo más largo en el que se debe encontrar p * paraaproximarse a p con error relativo máximo de 10-4 para cada valor de p.

Para determinar los limites inferiores y superiores vamos a dejar expresada de la manera correcta la formula del valor relativo.

$$Error_{rel} = \left| \frac{p - p^*}{p} \right| = 10^{-4}$$
$$\left| \frac{p - p^*}{p} \right| = 10^{-4}$$
$$p^* = p \pm p * 10^{-4}$$

Usaremos para tener nuestro intervalo lo siguiente:

•
$$p_{infe}^* = p - p * 10^{-4}$$

• $p_{supe}^* = p + p * 10^{-4}$

•
$$p_{supe}^* = p + p * 10^{-4}$$

Letra	Valor	Intervalo posible (± error)	Límite inferior	Límite superior
a)	π	[3.1413 – 3.1419]	3.1413	3.1419
b)	е	[2.7180 - 2.7185]	2.7180	2.7185
c)	√2	[1.4140 - 1.4144]	1.4140	1.4144
d)	√7	[1.9128 – 1.9131]	1.9128	1.9131

4. Use la aritmética de redondeo de tres dígitos para realizar lo siguiente. Calcule los errores absoluto y relativo con el valor exacto determinado para por lo menos cinco dígitos.

Literales (Valor Real)	Valor a 3 dígitos redondeados	Error Absoluto a 5 dígitos	Error Relativo a 5 dígitos
$\frac{\frac{13}{14} - \frac{5}{7}}{2e - 5.4}$	5.86	0.00062042	$6.2042 * 10^{-2}$
$-10\pi + 6e$ $-\frac{3}{61}$	-15.2	0.044584	0.0029418
$\frac{2}{9} * \frac{9}{11}$	0.182	0.00018182	0.001
$\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$	24	0.041739	0.0017422

5.- Los primeros tres términos diferentes a cero de la serie de Maclaurin para la función arco tangente son: $x - \frac{1}{3}x^3 + \frac{1}{5}x^5$

Calcule los errores absoluto y relativo en las siguientes aproximaciones de " π " mediante el polinomio en lugar del arco tangente:

a)
$$4\left[tan^{-1}\left(\frac{1}{2}\right)+tan^{-1}\left(\frac{1}{3}\right)\right]$$

Tenemos valores para X1= 1/2 y X2= 1/3.

Para X1 = 1/2

$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5$$

$$\frac{1}{2} - \left(\frac{1}{3}\right)\left(\frac{1}{2}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{2}\right)^5 = 0.46458 \text{ a. 1}$$

Para X2 = 1/3

$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5$$

$$\frac{1}{3} - \left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{3}\right)^5 = 0.32181 \text{ a. 2}$$

Remplazamos los resultados **a.1** y **a.2** en la formula **a)** para obtener la aproximación.

$$4[0.46458 + 0.32181] = 3.14556 \frac{aprox}{}$$

Error Absoluto Error Relativo
$$Error_{abs} = |p-p^*| \qquad Error_{rel} = \left|\frac{Error_{abs}}{p}\right|$$

$$Error_{abs} = |\pi-3.14556| \qquad Error_{rel} = \left|\frac{0.0039673}{\pi}\right|$$

$$Error_{rel} = 0.0012628$$

b)
$$\left[16tan^{-1}\left(\frac{1}{5}\right) - 4tan^{-1}\left(\frac{1}{239}\right)\right]$$

Tenemos valores para X1= 1/5 y X2= 1/239.

Para X1 = 1/5

$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5$$

$$\frac{1}{5} - \left(\frac{1}{3}\right)\left(\frac{1}{5}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{5}\right)^5 = 0.197397 \ b.1$$

Para X1 = 1/239

$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5$$

$$\frac{1}{239} - \left(\frac{1}{3}\right)\left(\frac{1}{239}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{239}\right)^5 = 0.0041841 \ b. 2$$

Remplazamos los resultados **b.1** y **b.2** en la formula **b)** para obtener la aproximación.

$$[16(0.197397) - 4(0.0041841)] = 3.14162 \frac{aprox}{}$$

Error Absoluto	Error Relativo	
$Error_{abs} = p - p^* $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $	
$Error_{abs} = \pi - 3.14162 $	$Error_{rel} = \left \frac{0.000027346}{\pi} \right $	
$Error_{abs} = 0.000027346$	π $Error_{rel} = 0.0000087046$	

6. El número e se puede definir por medio de $e = \sum_{n=0}^{\infty} \left(\frac{1}{n!}\right)$, donde n! =n(n-1)···2·1 para n $\neq 0$ y 0! = 1. Calcule los errores absoluto y relativo en la siguiente aproximación de e:

a)
$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right)$$

$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right) = \frac{1}{5!} + \frac{1}{4!} + \frac{1}{3!} + \frac{1}{2!} + \frac{1}{1!} + \frac{1}{0!} = 2.71766666667$$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $ $Error_{abs} = e - 2.71766666667 $ $Error_{abs} = 0.00161516145$	$Error_{rel} = \left rac{Error_{abs}}{p} ight $ $Error_{rel} = \left rac{0.00161516145}{e} ight $
	$Error_{rel} = 0.00059418469$

a)
$$\sum_{n=0}^{10} \left(\frac{1}{n!}\right)$$

$$\sum_{n=0}^{10} \left(\frac{1}{n!}\right) = 2.717$$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = e - 2.718281801 $ $Error_{abs} = 0.0000002745$	$Error_{rel} = \left rac{0.0000002745}{e} ight $
	$Error_{rel} = 0.0000000101$

- 7. Suponga que dos puntos (x0,y0) y (x1,y1) se encuentran en línea recta con $y1 \neq y0$. Existen dos fórmulas para encontrar la intersección x de la línea:
- a.- Use los datos (x0,y0) = (1.31, 3.24) y (x1,y1) = (1.93, 5.76) y la aritmética de redondeo de tres dígitos para calcular la intersección con x de ambas maneras. ¿Cuál método es mejor y por qué?

PRIMER METODO:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_{1-} y_0}$$

$$x = \frac{(1.31)(5.76) - (1.93)(3.24)}{5.76 - 3.24}$$

$$x = \frac{1.3}{2.52} = 0.516 \frac{aprox}{}$$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $ $Error_{abs} = 0.5128571429 - 0.516 $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = 0.003142857$	$Error_{rel} = \left rac{0.003142857}{0.5128571429} \right $
	$Error_{rel} = 0.006128$

SEGUNDO METODO:

$$x = x_0 - \frac{(x_1 - x_0)y_0}{y_{1-}y_0}$$

$$x = 1.31 - \frac{(1.93 - 1.31) * 3.24}{5.76 - 3.24}$$

$$x = 1.31 - \frac{2.01}{2.52} = 0.512$$

Error Absoluto	Error Relativo
$Error_{abs} = p - p^* $ $Error_{abs} = 0.5128571429 - 0.512 $	$Error_{rel} = \left \frac{Error_{abs}}{p} \right $
$Error_{abs} = 0.00085714$	$Error_{rel} = \left rac{0.00085714}{0.5128571429} ight $
	$Error_{rel} = 0.00167131$

RESULTADO:

La mejor formula es con el segundo método. Tenemos un error relativo y absoluto mucho mas pequeño que en el primer método, lo cual representa más cercanía al valor real.