Theorem 1.1. In a planar triangulation let n_i be the number of vertices of degree i. Then,

$$\sum_{i \in \mathbb{N}} (6 - i) n_i = 12$$

Lemma 1.1.1. Let G = (V, E) and $G' = (V \cup \{v\}, E \cup E')$ be planar triangulations. Then |E'| = 3 and all edges in E' are indicent to v.

Proof. Since any planar triangulation of n vertices and e_n edges satisfies $e_n = 3n - 6$, we see inductively that

$$e_n = e_{n-1} + 3$$
 $(n > 3)$
 $e_3 = 3$

Since G' has exactly one vertex more than G and both are planar triangulations, |E'| = 3.

Next, we will show that the degree of v exceeds or is equal to 3 and thus, all edges of E' have to be indicent to v.

By Kuratowski, G' is not a topological minor of $K_{3,3}$ or K_5 and any planar triangulation is edge-maximal. By Lemma 4.4.5 (any edge-maximal graph without topological minors $K_{3,3}$, K_5 is 3-connected), G' is 3-connected.

If the degree of v deceeded 3, then G' would not be 3-connected (it could be isolated by removing two vertices).

Hence, all three edges of E' are indicent to v.

We will show by induction on the number of vertices n of a planar triangulation G with n_i vertices of degree i $(i \in \mathbb{N})$ that

$$T_G := \sum_{i \in \mathbb{N}} (6-i)n_i = 12$$

• Base n = 3

Then, the graph is a triangle and the condition is satisifed:

$$T_{K_3} = \sum_{i \in \mathbb{N}} (6-i)n_i = (6-2) \cdot 3 = 4 \cdot 3 = 12$$

• Step n > 4

Any n-vertex planar triangulation G = (V, E) has a subgraph H = (V', E') which is a (n-1)-vertex planar triangulation.

By Lemma 1.1.1, there is a vertex $v \in V \setminus V'$ of degree 3. Furthermore, the degree of exactly three other vertices $v_i, v_j, v_k \in V$ is increased. Thus $E \setminus E' = \{\{v, v_i\}, \{v, v_i\}, \{v, v_k\}\}$ and for T_G :

$$\begin{split} T_G = & T_H \\ & + (6-3) \\ & + (6-(d(v_i)+1)) - (6-d(v_i))) \\ & + (6-(d(v_j)+1)) - (6-d(v_j)) \\ & + (6-(d(v_k)+1)) - (6-d(v_k)) \\ = & T_H + 3 - 1 - 1 - 1 \\ = & T_H \\ = & 12 \end{split} \tag{by induction}$$