

TRANSMISSION GATE-BASED 8T SRAM CELL FOR BIOMEDICAL APPLICATIONS

C J ADITHYAN (TKM20EC039)

ROHITH S (TKM20EC106)

ANAGHA V (LTKM20EC132)

MOHAMMED SANOOF T (TKM20EC080)

Guided by,

Prof. Amal Mole S

Date: 6-05-24

CONTENTS

- INTRODUCTION
- OBJECTIVES
- METHODOLOGY
- WORK FLOW
- CIRCUIT DIAGRAM
- RESULTS
- RESULT COMPARISON
- CONCLUSION
- MAPPING
- REFERENCES

INTRODUCTION

- Noise is an integral parameter of memory circuits used in biomedical applications
- Biomedical devices often handle critical data. Noise in SRAM cells can corrupt this data, leading to errors in analysis, diagnosis, or treatment.
- Transmission gate based SRAM circuit is designed and simulated that reduces noise to a great extend.

OBJECTIVES

- To design, simulate, and evaluate a transmission gate-based 8T SRAM cell optimized for biomedical applications.
- To develop a robust and low-noise SRAM cell.
- To reliably store and retrieve data in scenarios relevant to biomedical devices.
- To achieve high data integrity and energy efficiency

METHODOLOGY

fig no.1:Block diagram

WORK FLOW

- ☐ Initially we designed the circuit in LTSPICE using cmos, referring the research paper we referred.
- We designed the circuit successfully and ensured its proper working using simulation.
- ■We could only evaluate the parameters at the nodes and couldn't evaluate as a whole, also we couldn't do different simulations in LTSPICE. Thus we switched to CADENCE virtuoso tool.

6

WORK FLOW

- ☐ In cadence, we designed a transmission gate using nmos and pmos of 45 nm technology.
- We decided to build and design a new circuit using this transmission gate similar to our initial design.
- ■We designed SRAM circuit using 8 transmission gates. Also designed a SRAM circuit using 6 transmission gates for comparison.
- ☐ To make the comparison more precise we designed a 8T SRAM circuit and 6T SRAM circuit using CMOS.

7

WORK FLOW

- We compared the noise, power and dc analysis as parameters using the 4 circuits designed.
- With the data values received, we concluded that the circuit is efficient in terms of Noise. Thus we concluded noise as our final parameter. The proposed circuit is thus proposed as an efficient SRAM circuit that could be used in biomedical applications.

8

INITIAL CIRCUIT DIAGRAM

fig no.2:Circuit diagram

PROPOSED CIRCUIT DIAGRAM

fig no.3: SRAM circuit using 8 transmission gates

COMPARISON CIRCUITS

fig no.4 : SRAM circuit using 6 transmission gates

COMPARISON CIRCUITS

fig no.5:8T SRAM circuit using CMOS

COMPARISON CIRCUITS

fig no.6: 6T SRAM circuit using CMOS

OUTPUT OF PROPER WORKING

fig no.7 :CADENCE result

fig no.8:8T transmission gate based circuit noise output graph

fig no.9: 8T CMOS gate based circuit noise output graph

fig no.10:6T transmission gate based circuit noise output graph

fig no.11: 6T CMOS gate based circuit noise output graph

COMPARISON RESULT

PARAMETER	8T TRANSMISSION	6T TRANSMISSION	8T CMOS	6T CMOS
NOISE average(getData("/out" ?result "noise"))	4.40E-09	5.62E-09	15.1 E- 09	16.1E-09
POWER average(getData(":pwr" ?result "tran"))	354.9E-6	134.5 E- 6	10.95 E-9	5.088 E-09

From the comparison values obtained from the cadence virtuoso, we concluded that the circuit is efficient in terms of noise parameter. Also other parameters are not changed to a great extend.

CONCLUSION

- ☐ Effective SRAM with 8 transmission gate based circuit
- ☐ Performance Assessment with Cadence tool
- ☐ Less Noise and Data stability
- ☐ Thus increasing the efficiency of memory circuit

MAPPING

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
C01	X	×									
C02	X	×	×		×	×					
C03										×	
C04								×		×	×
C05								×		X	×

PO1 & PO2

- Area of technology for project development has been identified.
- > Significant problems in ECE domains has been recognized.

PO3

Changes has been incorporated into the existing technology

PO5

>Studied and gained sufficient knowledge in the software used for implementation.

PO6

Applied the domain knowledge to address societal issues.

PO8

Has valued the intellectual property rights and avoided the use of other's work.

PO9

- Accomplished team coordination for the completion of the assigned tasks.
- Achieved effective sharing of technical information and ideas in presentations throughout the project.

PO10

>Appropriate organization of papers has been achieved.

PO11

- Efficient and detailed planning, job division and scheduling the work.
- >Accomplished proper budget estimation and planning.

PO12

Satisfactory presentation of literature review and formulation of problem based on literature gap.

REFERENCES

- [1] N. Maroof and B.-S. Kong, "10T SRAM using Half- VDD precharge and row-wise dynamically powered read port for low switching power and ultralow RBL leakage," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 4, pp. 1193–1203, Apr. 2017.
- [2] Liang Wen, Xu Cheng, Keji Zhou, Shudong Tian, and Xiaoyang Zeng, "Bit-Interleaving-Enabled 8T SRAM With Shared Data-Awareand Reference-Based Sense Amplifier", IEEE Transactions on Circuits and Systems, vol. 63, No. 7, July 2016.
- [3] J. P. Kulkarni and K. Roy, "Ultralow-voltage process- variation tolerant Schmitt-trigger-based SRAM design," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp. 319–332, Feb. 2012.

THANK YOU