TP4: Table des matières, figures, bibliographie. Résolution d'un problème de la chaleur à symétrie radiale

I.Djerrar, L.Alem, L. Chorfi

Résumé

Dans ce travail on s'intéresse à un problème de la chaleur. On résout le problème direct qui servira à résoudre un problème inverse associé dans \mathbb{R} .

Table des matières

1	Position du problème		
	1.1 Construction de la solution à l'aide de la transformée de La-		
	place		
	1.2 Annexe	. 2	
2	Un exemple avec référence bibliographique		
3	Un exemple de tableau		
4	Un exemple d'insertion d'un graphe d'une fonction	3	

1 Position du problème

On considère la problème de la théorie de la chaleur, on coordonnée radiale suivant

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 r} + \frac{1}{r} \frac{\partial u}{\partial r}, & r \in (a,b), \quad t > 0 \\ u(a,t) = f(t), \frac{\partial u}{\partial r}(b,t) = 0 & t > 0 \\ u(r,0) = 0, & r \in (a,b) \end{cases}$$
(1)

Le but de ce travail est de résoudre ce problème par deux méthodes, analytique et approchée

1.1 Construction de la solution à l'aide de la transformée de Laplace

Soit f une fonction tel que $|f(t)| \le Ce^{\sigma T}$, $\sigma \ge 0$, La transformée de la place F(s) = L(f) est définie par:

$$F(s) = \int_0^{+\infty} f(t)e^{-st}dt, Re(s) \ge \sigma$$

La transformée inverse est donnée par[1]

$$f(t) = L^{-1}(F)(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st}ds$$

1.2 Annexe

Quelle que soit la valeur de x, la propriété suivante est toujours vérifie:

$$\sin^2 x + \cos^2 x = 1$$

On peut s'en douter en observant le tracé de la fonction illustrée

2 Un exemple avec référence bibliographique

Dans ce travail on a utilise quelques références¹ et on a demendé à $^{2}[1]$ et [2].

^{1.} Ces références sont dans la bibliothèque du département

²

3 Un exemple de tableau

n	x	y
x_n	5	8
$ e_n $	0.05	0.09
$x^2 - 1$	1	8

4 Un exemple d'insertion d'un graphe d'une fonction

Le graphe de la fonction $g(x) = x^2 + e^{x-1}$ sur [-1,1] est:

Fig. 1 – graphe de la fonction g(x).

Références

- [1] Ditkine V. Proudnikov A. Transformation intégrales et calcul opérationnel. Traduit du russe edition MIR.Moscow, 1978.
- [2] Herbin R., Analyse numérique des EDP. ENgineering school, Marseille 2011.