

Dominant Strategies

Game Theory Course: Jackson, Leyton-Brown & Shoham

Domination

- Bayesian Normal-form auctions
 Bayesian Normal-form auctions
 Bayesian Normal-form auctions
 Product Incompared to the common auctions
 Analy equilibrium class jeffer product Incompared to the common auction auctions auction auction auction auction auctions auction auction auction auctions auction auction
- Let s_i and s'_i be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players
 - What's a "strategy"?
 - For now, just choosing an action ("pure strategy")

Domination

- Bayesian Normal-form auctions Bayesian Normal-form auctions Bayesian Normal-form auctions are seen a seen and a seen and a seen and a seen and a seen a seen
- Let s_i and s'_i be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players
 - What's a "strategy"?
 - For now, just choosing an action ("pure strategy")

Definition

 s_i strictly dominates s_i' if $\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

Definition

 s_i very weakly dominates s_i' if $\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) \geq u_i(s_i', s_{-i})$

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.

Equilibria and dominance

Bayesian Normal-form auctions—
Bayesian Normal-form auctions—
Game rapedy of the common produce the common p

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.

	C	D
C	-1, -1	-4, 0
D	0, -4	-3, -3