Uitwerking opdracht

Opdracht: *luchthavens*

Weeknummer: 6

Studentnummer: s1060679

Naam student : Dion van den Berg

Specialisatie: *MEDT*Pogingnummer: 1

1. Vraagstelling

Zet een set luchthavens om naar de afstand ertussen

2. Specificatie

Invoer

De gebruiker voegt 2 luchthavens in

Uitvoer

De gebruiker krijgt terug hoever ze uit elkaar liggen

Verband tussen in- en uitvoer

De uitvoer wordt gemaakt door de ingevoerde set aan luchthavens

Beperkingen

Foutieve invoer kan ingevoerd worden.

Voorbeelden (testscenario's)

Test 1

Invoer:

luchthavens['ADK']

Uitvoer:

(51.88, 176.65, 'Adak', 'AK')

3. Ontwerp

Hoe maak ik het bestand open?

Door het te openen met open() en daarna uit te lezen met .read()

Hoe ga ik alles omzetten?

Door alles in het bestand te splitsen op de spaties.

Hoe laat ik alles uiteindelijk zien?

in een print statement de uitvoer te plakken

4. Pseudocode

Functie leesLuchthavens (bestandLocatie)

Open het bestand

Loop door het gehele bestand heen en vervang alle spaties

Voeg alles toe aan een lijst

Functie afstand (locatie1, locatie2, lijst)

Bereken de afstand tussen de 2 locaties

Gebruik de opgegeven formulie van de vraag website

Functie tussenlanding (locatie1, locatie2, lijst)

Kijk wat de snelste route is met 1 tussenlanding

Loop door alle luchthavens heen en bereken de kortste afstand.

5. Code

```
import math
def leesLuchthavens(file):
    bestand = open(file)
    lijst = {}
         sep = l.split("\t")
         if sep[0] == "Airport":
         lijst[sep[0].replace("[", '').replace("]", '')] = (float(sep[1]),
float(sep[2]), sep[3], sep[4].rstrip())
    return lijst
def afstand(c1, c2, lijst):
    b1 = math.radians(lijst[c1][0])
    b2 = math.radians(lijst[c2][0])
    12 = math.radians(lijst[c2][1])
    y = math.sqrt(math.pow(math.cos(b2) * math.sin(l1 - l2), 2) + math.pow(
        math.cos(b1) * math.sin(b2) - math.sin(b1) * math.cos(b2) *
math.cos(11 - 12), 2))
math.cos(11 - 12)
def tussenlanding(c1, c2, 1, r=4000):
    if afstand(c1, c2, 1) <= 4000:
        return None
    woordenboekArray = {}
         if afstand(c1, key, 1) <= r and afstand(c2, key, 1) <= r:</pre>
             woordenboekArray[afstand(c1, key, 1) + afstand(c2, key, 1)] =
key
    if len(woordenboekArray) > 0:
         return woordenboekArray[min(woordenboekArray.keys())]
    return None
luchthavens = leesLuchthavens('luchthavens.txt')
print(luchthavens)
print(luchthavens['ADK'])
print(luchthavens['DCA'])
print(luchthavens['40M'])
print(afstand('P60', 'MSN', luchthavens))
print(afstand('ADK', 'DCA', luchthavens))
print(tussenlanding('ADK', 'DCA', luchthavens, 4000))
```

6. Test

```
Test 1
luchthavens = leesLuchthavens('luchthavens.txt')
print(luchthavens['ADK'])
print(luchthavens['DCA'])
print(luchthavens['40M'])
print(afstand('P60', 'MSN', luchthavens))
print(afstand('ADK', 'DCA', luchthavens))
print(tussenlanding('ADK', 'DCA', luchthavens, 4000))

{'AGN': (57.83, 134.97, 'Angoon', 'AK'), ...}
(51.88, 176.65, 'Adak', 'AK')
(38.85, 77.04, 'Washington/Natl', 'DC')
(48.42, 119.53, 'Omak', 'WA')
1694.545549951611
7295.503556775978
40M
```