1 平面ベクトル

演習 $\mathbf{1.1}$ $\mathbf{a}_1=\begin{pmatrix}1\\-3\end{pmatrix}$, $\mathbf{a}_2=\begin{pmatrix}2\\4\end{pmatrix}$ とする.このとき,次の(1)~(3) のベクトルが $c_1\mathbf{a}_1+c_2\mathbf{a}_2$ $(c_1,c_2\in\mathbb{R})$ の形 $(\mathbf{a}_1$ と \mathbf{a}_2 の線形結合)に表せるかどうかを調べ,もし表せるならば (c_1,c_2) にあたる数を求めよ.

$$(1) \begin{pmatrix} 5 \\ 3 \end{pmatrix} \qquad (2) \begin{pmatrix} -1 \\ 4 \end{pmatrix} \qquad (3) 基本ベクトル $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$$

演習 1.2
$$a_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ とする.

- (1) a_1,a_2 が \mathbb{R}^2 を張ることを示せ. (任意の $x\in\mathbb{R}^2$ に対して $x=c_1a_1+c_2a_2$ となる $c_1,c_2\in\mathbb{R}$ が必ず存在することを示せ.)
 - (2) a_1, a_2, a_3 のうちどの 2 つも線形独立になることを示せ.
 - (3) a_1, a_2, a_3 は線形独立か線形従属かを述べよ.

演習 ${\bf 1.3}$ ベクトル ${m a}=\left(egin{array}{c} a_1 \\ a_2 \end{array}
ight)
eq {m 0}$ に対して、 ${m a}$ に直交し原点を通る直線の方程式を書け、(根拠も述べること、)