Class 08 Mini project

Lorena Cuellar

Table of contents

Save my input data file into my Project directory	2
Create diagnosis vector for later	5
Q1	5
Q2	5
Q3	5
Principal Component Analysis (PCA)	6
Q4	6
Q5	9
Q6	10
Q7	10
Q8	12
Section 5: Combining Methods Combine PCA with clustering	13
Section 2	15
Q9	17
Q10	18
Q11	19

Q12	20
Q13	20
Q15	20
Q17	21

Save my input data file into my Project directory

```
fna.data <- "WisconsinCancer.csv"

wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis ra	adius_mean	texture_mean p	erimeter_mean	area_mean	Ĺ
842302	M	17.99	10.38	122.80	1001.0)
842517	M	20.57	17.77	132.90	1326.0)
84300903	М	19.69	21.25	130.00	1203.0)
84348301	M	11.42	20.38	77.58	386.1	
84358402	М	20.29	14.34	135.10	1297.0)
843786	M	12.45	15.70	82.57	477.1	
	smoothness_n	mean compa	ctness_mean con	cavity_mean co	oncave.poi	.nts_mean
842302	0.11	1840	0.27760	0.3001		0.14710
842517	0.08	3474	0.07864	0.0869		0.07017
84300903	0.10	0960	0.15990	0.1974		0.12790
84348301	0.14	1250	0.28390	0.2414		0.10520
84358402	0.10	0030	0.13280	0.1980		0.10430
843786	0.12		0.17000	0.1578		0.08089
			_dimension_mean	radius_se tex	kture_se p	erimeter_se
842302	0.241	19	0.07871	1.0950	0.9053	8.589
842517	0.181	12	0.05667	0.5435	0.7339	3.398
84300903	0.206	59	0.05999	0.7456	0.7869	4.585
84348301	0.259	97	0.09744	0.4956	1.1560	3.445
84358402	0.180	09	0.05883	0.7572	0.7813	5.438
843786	0.208	37	0.07613	0.3345	0.8902	2.217
	area_se smoo	othness_se	${\tt compactness_se}$	•	concave.p	oints_se
842302	153.40	0.006399	0.04904	0.05373		0.01587
842517	74.08	0.005225	0.01308	0.01860		0.01340
84300903	94.03	0.006150	0.04006	0.03832		0.02058

```
84348301
           27.23
                      0.009110
                                       0.07458
                                                    0.05661
                                                                       0.01867
84358402
           94.44
                      0.011490
                                       0.02461
                                                    0.05688
                                                                       0.01885
843786
           27.19
                      0.007510
                                       0.03345
                                                    0.03672
                                                                       0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
                                  0.006193
             0.03003
                                                  25.38
842302
                                                                 17.33
842517
             0.01389
                                  0.003532
                                                  24.99
                                                                 23.41
84300903
             0.02250
                                  0.004571
                                                  23.57
                                                                 25.53
84348301
             0.05963
                                  0.009208
                                                  14.91
                                                                 26.50
84358402
             0.01756
                                  0.005115
                                                  22.54
                                                                 16.67
             0.02165
                                  0.005082
843786
                                                  15.47
                                                                 23.75
         perimeter_worst area_worst smoothness_worst compactness_worst
                  184.60
                             2019.0
                                               0.1622
                                                                  0.6656
842302
842517
                                               0.1238
                  158.80
                             1956.0
                                                                  0.1866
84300903
                  152.50
                                               0.1444
                                                                  0.4245
                             1709.0
84348301
                   98.87
                              567.7
                                               0.2098
                                                                  0.8663
84358402
                  152.20
                             1575.0
                                               0.1374
                                                                  0.2050
843786
                  103.40
                               741.6
                                               0.1791
                                                                  0.5249
         concavity_worst concave.points_worst symmetry_worst
842302
                  0.7119
                                        0.2654
                                                       0.4601
                                                       0.2750
842517
                  0.2416
                                        0.1860
84300903
                  0.4504
                                        0.2430
                                                       0.3613
84348301
                  0.6869
                                        0.2575
                                                       0.6638
84358402
                  0.4000
                                        0.1625
                                                       0.2364
843786
                  0.5355
                                        0.1741
                                                       0.3985
         fractal_dimension_worst
842302
                         0.11890
842517
                         0.08902
84300903
                         0.08758
84348301
                         0.17300
84358402
                         0.07678
843786
                          0.12440
  # We can use -1 here to remove the first column
```

We can use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
842302	17.99	10.38	122.80	1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030

843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean	concavity_mean	concave.poi	nts_mean symme	etry_mean
842302	0.27760	0.3001	-	0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimension	n_mean radius_s	e texture_se	perimeter_se	area_se
842302	0	.07871 1.095	0.9053	8.589	153.40
842517	0	.05667 0.543	5 0.7339	3.398	74.08
84300903	0	.05999 0.745	0.7869	4.585	94.03
84348301	0	.09744 0.495	1.1560	3.445	27.23
84358402	0	.05883 0.757	0.7813	5.438	94.44
843786	0	.07613 0.334	0.8902	2.217	27.19
	smoothness_se com	mpactness_se com	ncavity_se co	oncave.points	_se
842302	0.006399	0.04904	0.05373	0.01	
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020)58
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.013	L37
	symmetry_se frac	tal_dimension_s	e radius_wor	st texture_wor	rst
842302	0.03003	0.00619	3 25.3	38 17	. 33
842517	0.01389	0.00353	2 24.9	99 23	. 41
84300903	0.02250	0.00457	1 23.	57 25	. 53
84348301	0.05963	0.00920	3 14.9	91 26	. 50
84358402	0.01756	0.00511	5 22.	54 16	. 67
843786	0.02165	0.00508	2 15.4	47 23	. 75
	perimeter_worst	area_worst smoo	thness_worst	compactness_v	vorst
842302	184.60	2019.0	0.1622	0	. 6656
842517	158.80	1956.0	0.1238	0	. 1866
84300903	152.50	1709.0	0.1444	0	. 4245
84348301	98.87	567.7	0.2098	0	.8663
84358402	152.20	1575.0	0.1374	0	. 2050
843786	103.40	741.6	0.1791	0	. 5249
	concavity_worst	concave.points_	worst symmet	ry_worst	
842302	0.7119	0	. 2654	0.4601	
842517	0.2416	0	. 1860	0.2750	
84300903	0.4504	0	. 2430	0.3613	
84348301	0.6869	0	. 2575	0.6638	
84358402	0.4000	0	. 1625	0.2364	
843786	0.5355	0	. 1741	0.3985	

	<pre>fractal_dimension_worst</pre>
842302	0.11890
842517	0.08902
84300903	0.08758
84348301	0.17300
84358402	0.07678
843786	0.12440

Create diagnosis vector for later

```
diagnosis <- as.factor(wisc.df[,1])</pre>
```

Q1

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

Q2

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

212 observations

Q3

Q3. How many variables/features in the data are suffixed with $_$ mean? Ans: 10 variables

colnames(wisc.data)

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture se"
[13] "perimeter_se"
                                "area_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

The function grep() could be useful here. How can I get it to work

```
grep("_mean", colnames(wisc.data))

[1] 1 2 3 4 5 6 7 8 9 10

length(grep("_mean", colnames(wisc.data)))
```

[1] 10

Principal Component Analysis (PCA)

Q4

First I will need check whether we need to scale Check columns and standard deviations

```
colnames(wisc.data)
```

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
                                "fractal_dimension_mean"
 [9] "symmetry_mean"
[11] "radius_se"
                                "texture_se"
[13] "perimeter_se"
                                "area_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

apply(wisc.data, 2, sd)

radius_mean	texture_mean	perimeter_mean
3.524049e+00	4.301036e+00	2.429898e+01
area_mean	smoothness_mean	compactness_mean
3.519141e+02	1.406413e-02	5.281276e-02
concavity_mean	concave.points_mean	symmetry_mean
7.971981e-02	3.880284e-02	2.741428e-02
fractal_dimension_mean	radius_se	texture_se
7.060363e-03	2.773127e-01	5.516484e-01
perimeter_se	area_se	smoothness_se
2.021855e+00	4.549101e+01	3.002518e-03
compactness_se	concavity_se	concave.points_se
1.790818e-02	3.018606e-02	6.170285e-03
symmetry_se	fractal_dimension_se	radius_worst
8.266372e-03	2.646071e-03	4.833242e+00
texture_worst	perimeter_worst	area_worst
6.146258e+00	3.360254e+01	5.693570e+02
smoothness_worst	${\tt compactness_worst}$	concavity_worst
2.283243e-02	1.573365e-01	2.086243e-01
<pre>concave.points_worst</pre>	symmetry_worst	<pre>fractal_dimension_worst</pre>
6.573234e-02	6.186747e-02	1.806127e-02

#Q4

I will perform PCA on wisc.data by completing the following code

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Standard deviation
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
                          PC15
                                   PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                   PC23
                                          PC24
                                                  PC25
                                                          PC26
                          PC22
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

```
plot(wisc.pr)
```

wisc.pr

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

O.4427 as shown in code above

Q5

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

```
y <- summary(wisc.pr)
attributes(y)</pre>
```

\$names

- [1] "sdev" "rotation" "center" "scale" "x"
- [6] "importance"

\$class

[1] "summary.prcomp"

```
which(y$importance[3,] > 0.7)[1]
PC3
3
3 PCs are required
```

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

Q7

7 PCs are required

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(wisc.pr)

This plot is very clustered together and it is very difficult to understand. You can't really get anything from it because it is messy.

Let's make a PC plot (a.k.a. "score plot)

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis, xlab = "PC1", ylab = "PC2")
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x[,1], wisc.pr$x[,3], col=diagnosis, xlab = "PC1", ylab = "PC3")
```


I notice that the clusters are further down in the graph

Section 5: Combining Methods

Combine PCA with clustering

I want to cluster in "PC space"

The hclust() functions wants a distance matrix input

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method = "ward.D2" )
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Find my cluster membership vector.

Section 2

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Variance explained by each principal component: pve

```
pve <- pr.var/sum(pr.var)

# Plot variance explained for each principal component

plot(pve, xlab = "Principal Component",
     ylab = "Proportion of Variance Explained",
     ylim = c(0, 1), type = "o")</pre>
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
concave.points_mean <- wisc.pr$rotation[,1]
concave.points_mean</pre>
```

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	${\tt concavity_mean}$
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	$fractal_dimension_mean$
-0.01742803	-0.20597878	-0.06436335
${\tt smoothness_se}$	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se

```
-0.04249842
                                  -0.10256832
                                                          -0.22799663
       texture_worst
                             perimeter_worst
                                                           area_worst
         -0.10446933
                                  -0.23663968
                                                          -0.22487053
    smoothness_worst
                           compactness_worst
                                                      concavity_worst
                                  -0.21009588
                                                          -0.22876753
         -0.12795256
concave.points_worst
                               symmetry_worst fractal_dimension_worst
         -0.25088597
                                  -0.12290456
                                                          -0.13178394
```

Answer: -0.26085376

Q10

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
which(y$importance[3,] >= 0.8)[1]
```

PC5 5

Scale the wisc.data data using the "scale()" function

```
data.scaled <- scale(wisc.data)</pre>
```

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset and assign the result to data.dist.

```
data.dist <- dist(data.scaled)
wisc.hclust <- hclust(data.dist)
wisc.hclust</pre>
```

Call:

hclust(d = data.dist)

 $\begin{array}{lll} \hbox{\tt Cluster method} & : & \hbox{\tt complete} \\ \hbox{\tt Distance} & : & \hbox{\tt euclidean} \end{array}$

Number of objects: 569

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(a=19, b=0, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
The height is 19
```

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

Q13

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The method = "ward.D2" because it squares the dissimilarities between the two

Q15

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

```
## Use the distance along the first 7 PCs for clustering i.e. wisc.pr$x[, 1:7]
d <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(d, method = "ward.D2" )
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

```
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
# Compare to actual diagnoses
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24

It is worse because there is a lot of left over data compared to the PCA before.

Q17

Q17. Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity?

A: #dianosis(kmeans) Sensitivity: 175/(175+14) = 0.926 Specificity 343/(343+14) = 0.961 #clustering(pca) Sensitivity: 165/(165+40) = 0.805 Specificity: 343/(343+12) = 0.967

The best sensitivity is from the diagnosis (kmeans) and the best specificity is from the PCA clustering.

kmeans for best sensitivity