

Recurrence Relations

Let $\{a_0, a_1, a_2, \ldots, a_n\}$ be a sequence of real numbers, A formula that relates 'a_n' with one (or) more of the previous term is called a recurrence relation

$$S_n = Sum of first n-terms$$

$$= 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

$$= 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

$$S_n = S_{n-1} + n$$

$$S_{0} = S_{0} + 10$$

A.P.:
$$a, a + d, a + 2d, a + 3d, a + 4d, ----, a + (n-1)d$$

$$t_2=t_1+d$$

$$t_3 = t_2 + d$$

$$t_n = t_{n-1} + t_{n-2} + t_{n-3}$$

 $a_n = a_{n-1} + a_{n-2} + a_{n-3}$

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$

$$t_3 = t_2 \times \gamma$$

$$t_n = t_{n-1} \star r$$

Q. Obtain the Recurrence relation to following sequence

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ---- F_0 = 0$$
, $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, ---

 $F_2 = F_1 + F_0$
 $F_3 = F_2 + F_1$

$$F_4 = F_3 + F_2$$

$$\vdots$$

$$F_7$$

$$F_n = F_{n-1} + F_{n-2}$$
, with $F_0 = 0$, $F_1 = 1$

Q. Let a_n be the number of n-bit strings that do NOT contain two consecutive 1's. Which one of the following is the recurrence relation for a_n ?

(GATE-16-Set1)

a)
$$a_{n} = a_{n-1} + 2a_{n-2}$$
 b) $a_{n} = a_{n-1} + a_{n-2}$ c) $a_{n} = 2a_{n-1} + a_{n-2}$ d) $a_{n} = 2a_{n-1} + 2a_{n-2}$ d) $a_{n} = 2a_{n-1} + 2a_{n-2}$ d) $a_{n} = 2a_{n-1} + 2a_{n-2}$ define strings that the do not contain two consecutive one's formula $a_{n-1} = a_{n-1} = a_{n-1}$ for $a_{n-1} = a_{n-1} = a_{n-2}$ for $a_{n-1} = a_{n-2} = a_{n-2}$ for $a_{n-1} = a_{n-2} = a_{n-2}$

Let x_n denote the number of binary strings of length n that contain no consecutive 0s. (GATE-CS-08)

 Q_i Which of the following recurrences does x_n satisfy?

a)
$$x_n = 2x_{n-1}$$

b)
$$x_n = x_{[n/2]} + 1$$

c)
$$x_n = x_{[n/2]} + n$$

$$d) x_n = x_{n-1} + x_{n-2}$$

$$i) \text{ Begin}$$

Xn = No. of binary strings of length n' that do not contain successive o's.

$$1 = \frac{1}{n-1} = x_{n-1}$$

$$X_{n} = X_{n-1} + X_{n-2}$$
ii) Begin o $0 - \frac{1}{n-2} = X_{n-2}$

$$X_n = X_{n-1} + X_{n-2}$$

$$X_1 = 2$$

$$X_2 = 3$$

$$X_4 = 8$$

$$xs = 13$$

Length
$$n=1$$

String = 0 (or) |

 $X_1 = 0$
 $X_1 = 0$

$$n=2$$

$$Strings = OOXX$$

$$X_2 = 3$$

$$N=3$$

$$X_3 = 5$$

$$n = \frac{3}{5}$$

String = 000 ×
001 ×
000 ×
100 ×
100 ×
110 ×
111 ×

c) 8

$$X_1 = 2$$

$$X_1 = 2$$

 $X_2 = 3$
 $X_3 = 5$
 $X_4 = 8$

b) 7

d) 13

$$(b) 2^n + 1$$

$$x+y=7$$

$$a_n = 2a_{n-1} - 1$$
; with $a_1 = 3$

$$a_{n-1} = 3^{n-1}$$
 $a_{100} = 3^{100}$
 $a_{100} = 3^{100}$

$$a_{n+1} = 3^{n-1}$$

Initial condition $a_i = 3^i = 3$

Initial condition is satisfied

Initial condition

airen Recurerere Relation 1s
$$an = 2 an - 1 - 1$$

$$RHS = 2 an - 1 - 1$$

$$= 2 \left[3^{n-1} \right] - 1 \neq LHS$$
This is not a solution.

option (b)

solution is
$$a_{n-1} = 2^{n-1} + 1$$
 $a_{n-1} = 2^{n-1} + 1$

Initial condition $\alpha_1 = 3$

$$a_1 = 2^l + 1 = 3$$

Initial condition is satisfied

R.R.
$$an = 2a_{n-1}-1$$

RHS = $2a_{n-1}-1$
 $= 2\left[2^{n-1}+1\right]-1$
 $= 2\cdot2^{n-1}+2-1$
 $= 2\cdot1$
 $= 2\cdot1$

Solution to Recurrence Relation:

- 1) Substitution Method
- 2) Master's Method
- 3) Method of characteristic roots
- 4) Method of undetermined co-efficient

Substitution Method

Q. Solve the recurrence relation
$$a_n = a_{n-1} + n$$
 with $a_0 = 4$

Sol Quiven R.R
$$a_n = a_{n-1} + b$$
 with $a_0 = 4$
 $a_1 = a_0 + b = 4 + 1 = 5$
 $a_2 = a_1 + 2 = 5 + 2 = 7$
 $a_3 = a_2 + 3 = 7 + 3 = 10$
 $a_4 = a_3 + 4 = 10 + 4 = 14$
 $a_4 = a_3 + 4 = a_4 + b$

Here we have
$$a_1 - a_0 = 1$$
 $a_2 - a_1 = 2$
 $a_3 - a_2 = 3$
 $a_4 - a_3 = 4$
 $a_{n-4} = \frac{n(n+1)}{2}$
 $a_{n-4} = \frac{n(n+1)}{2}$
 $a_{n-4} = \frac{n(n+1)}{2}$

$$\chi_{n} = 2\chi_{n-1-1}, \quad \chi_{1} = 2$$
 $\chi_{2} = 2\chi_{1}-1 = 2(2)-1 = 3$
 $\chi_{3} = 2\chi_{2}-1 = 2(3)-1 = 5$
 $\chi_{4} = 2\chi_{3}-1 = 2(5)-1 = 9$
 $\chi_{5} = 2\chi_{4}-1 = 2(9)-1 = 17$
 $\chi_{7} = 2\chi_{7}-1$

$$\chi_{n} = 2\chi_{n-1} - 1, \quad \chi_{1} = 2$$

$$\chi_{2} = 2\chi_{1} - 1 = 2(2) - 1 = 3$$

$$\chi_{3} = 2\chi_{2} - 1 = 2(3) - 1 = 5$$

$$\chi_{4} = 2\chi_{3} - 1 = 2(3) - 1 = 9$$

$$\chi_{5} - \chi_{4} = 8 = 2^{3}$$

$$\chi_{5} - \chi_{4} = 8 = 2^{3}$$

$$\chi_{7} - \chi_{1} = 2^{2} - 1$$

$$\chi$$

$$\chi_{n-\chi_{1}} = 2^{n}+2^{1}+2^{2}+--+2^{n-2} \quad (n-1) \text{ terms}$$

$$= \frac{a[\eta^{n-1}]}{\eta^{-1}}$$

$$= \frac{i(2^{n-1})}{2-1}$$

$$\chi_{n-\chi_{1}} = 2^{n-1}-1$$

$$\chi_{n-2} = 2^{n-1}-1$$

$$\chi_{n} = 2^{n-1}+1$$

 $S_n = \frac{A(\pi^{n-1})}{\pi^{-1}}$

Consider the recurrence relation $a_1 = 8$, Q.

$$a_n = 6n^2 + 2n + a_{n-1}$$
. Let $a_{99} \ne K \times 10^4$. The value of K is _____.

Initial condition $a_1 = 8 = 6(1)^2 + 2(1)$

R.R.:
$$a_n = 6n^2 + 2n + a_{n-1}$$

 $a_2 = 6(2)^2 + 2(2) + a_1 \sqrt{2}$
 $a_3 = 6(3)^2 + 2(3) + a_2 \sqrt{2}$
 $a_4 = 6(4)^2 + 2(4) + a_3 \sqrt{2}$
 $a_5 = 6(5)^2 + 2(5) + a_4 \sqrt{2}$

(GATE-16-Set1)

$$a_{n} = 6n^{2} + 2n + a_{n-1}$$

$$a_{2} = 6(2)^{2} + 2(2) + a_{1} \checkmark$$

$$a_{3} = 6(3)^{2} + 2(3) + a_{2} \checkmark$$

$$a_{4} = 6(4)^{2} + 2(4) + a_{3} \checkmark$$

$$a_{5} = 6(5)^{2} + 2(5) + a_{4} \checkmark$$

$$a_{6} = 6(5)^{2} + 2(5) + a_{4} \checkmark$$

$$a_{7} = 6(99)^{2} + 2(99) + (6(98)^{2} + 2(98) + 6(97)^{2} + (97) +$$

: K=198

$$5n = n \frac{(n+1)}{2}$$

 $5n^2 = \frac{n(n+1)(2n+1)}{6}$

Note:

$$T(n) = \theta(n) \xrightarrow{Q(n)} \Omega(n), \Omega(n \log n), \Omega(n^2), \Omega(n^3)$$

$$\to \Omega(n), \Omega(\log n), \Omega(\sqrt{n}), \Omega(n/2)$$

Asymptotic Notations are used

to discribe the running time of

an algorithm. how much time an algorithm takes

 $\theta(n) = \theta(c.n)$

20min

15 min

to min 5min (n)

20min

with a given input in'

we have three different Notations

Upper Bound i) big(o) $\rightarrow f(n) \leq c.g(n)$

ii) Theta $(\theta) \rightarrow f(n) = c \cdot g(n)$ Exact (θr) Tignbows

iii) big omega(-P) \rightarrow $f(n) \geq c \cdot gn$

Lower Bound

 $n \log n = \theta(n \log n)$

Reflexive : $\theta[f(n)] = f(n)$

Master's Theorem:

$$T(n) = a T(\frac{n}{6}) + f(n)$$

Sub task

Each Subtask T(号)

a = Number of subtasks.

$$T(n) = 5 T(\frac{1}{3}) + O(n\log n)$$

Each subtask. n

How Many 5

ACE

Master Theorem by Division:

If
$$T(n) = a T(\frac{n}{b}) + \theta(n^k \cdot \log_b p n)$$

Where a > 0, b > 1, $k \ge 0$ and p is real

Case – 1: If
$$\underline{a > b^k}$$
 then $\underline{T(n)} = \theta[n^{\log_b^a}]$

$$T(n) = a T(\frac{1}{6}) + f(n)$$

$$T(n) = a T(\frac{1}{6}) + \theta \left[n^{K}, \log_{6}^{p} \right]$$

$$(\log_b^n)^p = \log_b^p$$

Case – 2: If $a = b^k$ and

i) P > -1 then
$$\underline{T(n)} = \theta \left[n^{\log_b^a} . \log_b^{p+1} n \right] = \theta \left[n^{\log_b^a} * \log_b^{p+1} \right]$$

ii)
$$P = -1$$
 then $\underline{T(n)} = \theta \left[n^{\log_b^a} \cdot \log_b^{\log_b^n} \right] = \theta \left[n^{\log_b^a} + \log_b^{\log_b^n} \right]$

iii)
$$P < -1$$
 then $\underline{T(n)} = \theta [n^{\log_b^a}]$

Case-3: If $a < b^k$ and \checkmark

i)
$$P \ge 0$$
 then $\underline{T(n)} = \theta[n^k . log_b^p n]$

ii)
$$P \le 0$$
 then $T(n) = \theta(n^k)$

Master Theorem by Division

Case – 2: If $a = b^k$ and

T(n) =

 $\theta[n^{log_b^a}]$

$$P > -1$$
 then
$$T(n) = \theta \left[n^{\log_b^a} . \log_b^{p+1} n \right]$$

P = -1 then T(n) = $\theta \left[n^{\log_b^a} . \log_b^{\log_b^n} \right]$

P < -1 then T(n)= $\theta [n^{log_b^a}]$ Case-3: If $a < b^k$ and

$$P \ge 0 \text{ then}$$

$$\underline{T(n)} = \theta \left[n^k \cdot log_b^p n \right]$$

P < 0 then $T(n) = \theta(n^k)$

The recurrence relation T(1) = 2Q.

$$T(n) = 3T(\frac{n}{4}) + n$$
 has the solution $T(n)$ equal to

Here
$$a=3$$
, $b=4$, $K=1$, $P=0$

d) none of these Here
$$a=3$$
, $b^{k}=4^{l}=4$.

(**GATE-CS-96**)

aiven Recurrence Relation is
$$T(n) = 3T(\frac{n}{4}) + n = 3T(\frac{n}{4}) + \theta(n')$$
Compare
$$T(n) = a T(\frac{n}{b}) + \theta(n^{K}, \log^{n} n)$$

clearly
$$a < b^{K}$$
, $P \ge 0$

$$T(n) = O[n^{K}, log_{b}^{n}]$$

$$= O[n^{I}, log_{b}^{n}]$$

$$= O(n) \longleftrightarrow O(n)$$

DICHEERING ACIO

Master Theorem for Subtraction:

If
$$T(n) = \underline{a} T(n-b) + \theta(n^k)$$
 where $\underline{a > 0}$, $\underline{b \ge 1}$, $\underline{k \ge 0}$

i) If
$$a > 1$$
, $T(n) = \theta(n^k . a^{n/b})$

ii) If
$$a = 1$$
, $T(n) = \theta(n^{k+1})$

iii) If
$$a < 1$$
, $T(n) = \theta(n^k)$

Q.
$$T(1) = 1, T(n) = 2T(\frac{n}{2}) + \sqrt{n} \text{ for } n \ge 2$$

a)
$$T(n) = O(\sqrt{n})$$

c)
$$T(n) = O(\log n)$$

airen Recurrence Relation is

T(n) =
$$2 T(\frac{n}{2}) + \sqrt{n}$$
 for $n \ge 2$ clearly $a > b^{n}$.
T(n) = $a T(\frac{n}{2}) + \theta(n^{k} \cdot \log_{b}^{n})$ $T(n) = \theta[n^{\log_{b}^{n}}]$

$$= \theta[n^{\log_{b}^{n}}]$$

b)
$$T(n) = O(n)$$

b)
$$T(n) = O(n)$$
 $a = 2, b = 2, K = \frac{1}{2}, P = 0$
d) None
 $b^{k} = 2^{VL} = \sqrt{2}$

clearly
$$a > b^{K}$$
.

$$T(n) = O\left[n^{\log a}\right]$$

$$= O\left[n^{\log 2}\right]$$

$$= O\left[n'\right] \longleftrightarrow O(n)$$

A

Shift Operation E:

The shift operator E is defined as

$$E(\boldsymbol{a}_n) = \boldsymbol{a}_{n+1}$$

$$E^2(\boldsymbol{a}_n) = \boldsymbol{a}_{n+2}$$

$$E^3(a_n) = a_{n+3}$$

.....

$$E^k(a_n) = a_{n+k}$$

III) Methods of characteristic Roots:-

Replacing n by n + k, we have

$$\Rightarrow l_0.a_{n+k} + l_1.a_{n+k-1} + \dots + l_k.a_n = F(n)$$

$$\Rightarrow l_0 \cdot E^k(a_n) + l_1 \cdot E^{k-1}(a_n) + \dots + l_k \cdot a_n = F(n)$$

$$\Rightarrow$$
 $(l_0.E^k + l_1.E^{k-1} + \dots + l_k)a_n = F(n)$

$$\Rightarrow \phi(E) a_n = F(n)$$
(2)

Where
$$\phi(E) = l_0.E^k + l_1.E^{k-1} + \dots + l_k$$

E 72E+1

The characteristics equation is

$$\phi(t) = 0$$

$$\phi(E)$$
 $an = F(n)$

The roots of this equation are called characteristic roots.

Let
$$t = t_1, t_2 \dots t_k$$
 be the characteristic roots

$$\phi(E) = E^{2} - 2E^{2} = 3$$

$$\phi(t) = t^{2} - 2t^{2} = 3$$

$$t = t_{1}, t_{2}$$

$$t = t_{1}, t_{2}, t_{3}$$

croots
$$a_{n} = 2 a_{n-1} + 3 a_{n-2} + n^{2} \qquad t^{2} + 2t + t = 0$$

$$a_{n} - 2 a_{n-1} + 3 a_{n-2} = n^{2} \qquad put \quad n = n + 2$$

$$a_{n+2} - 2 a_{n+1} + 3 a_{n} = (n+2)^{2} \quad put \quad n = n + 2$$

$$E^{2}(a_{n}) - 2 E^{1}(a_{n}) + 3 E^{0}(a_{n}) = (n+2)^{2}$$

$$(E^{2} - 2E + 3) a_{n} = F(n)$$

$$\phi(E) a_{n} = F(n)$$

 $\phi(E)$

Complimentary Function (C.F):-

This is solution of equation (1)

When
$$f(n) = 0$$

i.e., the solution of homogenous part of equation (1).

$$a_{n} + a_{n-1} + a_{n-2} = (n^{2} + n + 1)$$

 $a_{n+1} + a_{n-2} = 0$. Homogenous eq.

complete Solution
$$a_n = c.F + P.S$$

ACE Since 1995

Rules for finding (C.F) are given below.

1. Characteristics roots are real and distinct say t₁, t₂ t_k

$$C.F = c_1.t_1^{n} + c_2.t_2^{n} + \dots + c_k.t_k^{n} = c_j.t_i^{n} + c_2.t_2^{n} + c_3.t_3^{n} + \dots$$

2. Roots are real and two roots are equal say t_1 , t_1 , t_3 , t_4 , ..., t_k t_1 , t_3 , t_4 , ..., t_k

C.F =
$$(c_1 + c_2.n)t_1^n + c_3.t_3^n + \dots + c_k.t_k^n =$$

3. Roots are real and 3 roots are equal say $t_1,\,t_1,\,t_1,\,t_4\,\ldots\ldots\,t_k$

$$C.F = (c_1 + c_2.n + c_3.n^2).t_1^n + c_4.t_4^n + \dots + c_k.t_k^n$$

4. Suppose if all the roots are equal say $t_1, t_1, t_1, \ldots, t_1$

C.F =
$$(c_1 + c_2.n + c_3.n^2 + \dots + c_k.n^{k-1})t_1^n$$

5. A pair of roots are complex say $(\alpha \pm i\beta)$

$$C.F = r^{n}(c_{1}.cos(n\theta) + c_{2}.sin(n\theta))$$

Where

$$r = \sqrt{\alpha^2 + \beta^2}$$
 and

$$\theta = tan^{-1} \left(\frac{\beta}{\alpha} \right)$$