Supervised Machine Learning

AIMA Chapter 18, 20

Supervised learning

- To learn an unknown target function f
- Input: a training set of labeled examples (x_j, y_j) where $y_i = f(x_i)$
- Output: hypothesis h that is "close" to f

- Types of supervised learning
 - Classification = learning f with discrete output value
 - Regression = learning f with real-valued output value
 - Structured prediction = learning f with structured output

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - Tune hyperparameters on held-out set
 - Compute accuracy of test set (fraction of instances predicted correctly)
 - Very important: never "peek" at the test set!

Training Data

Held-Out Data

> Test Data

Naïve Bayes

Naive Bayes model:

$$P(Y, F_1 ... F_n) = P(Y) \prod_i P(F_i|Y)$$

$$\begin{array}{c}
 \text{n x } |F| \text{ x } |Y| \\
 \text{parameters}
 \end{array}$$

- Assume all features are independent effects of the label
- Total number of parameters is *linear* in n
- Tree-structured: linear inference time
- Model is very simplistic, but often works anyway

Parameter Estimation

- Estimating the distribution of a random variable
- Elicitation: ask a human (this is hard...)
- Empirically: use training data (learning!)
 - For each outcome x, look at the empirical rate of that value

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

- We've seen 1000 words from spam emails, among which we see "money" for 50 times
- So we set P(money | spam) = 0.05
- This is the estimate that maximizes the likelihood of the data
 - Likelihood: conditional probability of the data given the parameters

Generalization and Overfitting

- Overfitting: learn to fit the training data very closely, but fit the test data poorly
 - Generalization: try to fit the test data as well
- Why does overfitting occur?
 - Training data is not representative of the true data distribution
 - Too few training samples
 - Training data is noisy
 - Too many attributes, some of them irrelevant to the classification task
 - The model is too expressive
 - Ex: the model is capable of memorizing all the spam emails in the training set

Generalization and Overfitting

- Avoid overfitting
 - Acquire more training data (not always possible)
 - Remove irrelevant attributes (not always possible)
 - Limit the model expressiveness by regularization, early stopping, pruning, etc.

 In our previous example, we may smooth the empirical rate to improve generalization

Laplace Smoothing

Laplace's estimate:

 Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$
$$= \frac{c(x) + 1}{N + |X|}$$

 Can derive this estimate with Dirichlet priors (see cs281a)

$$P_{ML}(X) =$$

$$P_{LAP}(X) =$$

Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior
- Laplace for conditionals:
 - Smooth each condition independently:

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

$$P_{LAP,0}(X) =$$

$$P_{LAP,1}(X) =$$

$$P_{LAP,100}(X) =$$

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

$$\frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})}$$

helvetica: 11.4
seems: 10.8
group: 10.2
ago: 8.4
areas: 8.3

```
\frac{P(W|\text{spam})}{P(W|\text{ham})}
```

verdana : 28.8
Credit : 28.4
ORDER : 27.2
 : 26.9
money : 26.5
...

Do these make more sense?

Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation
 - Also get the empirical P(X) from the data
 - Make sure the estimate of P(X|Y) isn't too different from the empirical P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

Tuning on Held-Out Data

- Now we've got two kinds of unknowns
 - Parameters: the probabilities P(X|Y), P(Y)
 - Hyperparameters: e.g. the amount / type of smoothing to do, k, α
- What should we learn where?
 - Learn parameters from training data
 - Tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Confidences from a Classifier

The confidence of a probabilistic classifier:

Posterior over the top label

$$confidence(x) = \max_{y} P(y|x)$$

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

Calibration

- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What's the value of calibration?

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Linear Classifiers

Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

 \overline{w}

BIAS : -3
free : 4
money : 2

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

■ If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Before: w fAfter: wf + y*f ff f > = 0

Examples: Perceptron

Separable Case

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

mistakes
$$<\frac{k}{\delta^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

A 1D Example

Multiclass Logistic Regression

Recall Perceptron:

- lacktriangledown A weight vector for each class: w_y
- Score (activation) of a class y: $w_y \cdot f(x)$
- Prediction highest score wins $y = \arg\max_{y} w_y \cdot f(x)$

How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}$$
 original activations

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Optimization

• i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Hill Climbing

Recall from CSPs lecture: simple, general idea

Start wherever

Repeat: move to the best neighboring state

If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

1-D Optimization

- Could evaluate $g(w_0 + h)$ and $g(w_0 h)$
 - Then step in best direction
- Or, evaluate derivative: $\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) g(w_0 h)}{2h}$
 - Tells which direction to step into

2-D Optimization

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$\nabla_w g(w) = \begin{vmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{vmatrix}$$
 = gradient

Gradient Ascent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?

$$\max_{\Delta: \Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w + \Delta)$$

$$g(w + \Delta) \approx g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

$$\max_{\Delta: \Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

$$\max_{\Delta: \|\Delta\| < \varepsilon} \Delta^{\top} a \quad \rightarrow \quad \Delta = \varepsilon \frac{a}{\|a\|}$$

$$\Delta = \varepsilon \frac{a}{\|a\|}$$

• Hence, solution:
$$\Delta = \varepsilon \frac{\nabla g}{\|\nabla g\|}$$

$$\Delta = \varepsilon \frac{\nabla g}{\|\nabla g\|}$$

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \end{bmatrix}$$

Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \dots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

• init w• for iter = 1, 2, ... $w \leftarrow w + \alpha * \nabla g(w)$

- ullet α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - lacktriangle Crude rule of thumb: update changes w about 0.1 1 %

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

$$g(w)$$

- lacktriangledown init w

init
$$w$$
 for iter = 1, 2, ...
$$w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)}|x^{(i)};w)$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

- lacktriangledown init w
- for iter = 1, 2, ...
 - pick random j

$$w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- lacktriangledown init w
- for iter = 1, 2, ...
 - pick random subset of training examples J

$$w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$$

Neural Networks

Multi-class Logistic Regression

= special case of neural network

Deep Neural Network = Also learn the features!

Deep Neural Network = Also learn the features!

$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Deep Neural Network = Also learn the features!

$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Deep Neural Network: Also Learn the Features!

Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

just w tends to be a much, much larger vector ©

- →just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

Motivation

- Visual recognition
 - Suppose we aim to train a network that takes a 200x200 RGB image as input

- What is the problem with have full connections in the first layer?
 - Too many parameters! 200x200x3x1000 = 120 million
 - What happens if the object in the image shifts a little?

- First idea: Use a local connectivity of hidden units
 - Each hidden unit is connected only to a subregion (patch) of the input image
 - Usually it is connected to all channels
 - Each neuron has a local receptive field

- Second idea: share weights across certain units
 - Units organized into the same "feature map" share weight parameters
 - Hidden units within a feature map cover different positions in the image

- Third idea: pool hidden units in the same neighborhood
 - Averaging or Discarding location information in a small region
 - Robust toward small deformations in object shapes by ignoring details.

- Fourth idea: Interleaving feature extraction and pooling operations
 - Extracting abstract, compositional features for representing semantic object classes

 Artificial visual pathway: from images to semantic concepts (Representation learning)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

More classification methods

- Naive Bayes
- Perceptron / Neural networks
- Decision trees / Random forest
- Support Vector Machines
- Nearest neighbors
- Model ensembles: bagging, boosting, etc.
- •••••

Regression

Linear Regression

Prediction: $h_w(x) = w_0 + w_1 x$

Error on one instance: $|y - h_w(x)|$

Least squares: Minimizing squared error

L2 loss function: sum of squared errors over all examples

$$L(\mathbf{w}) = \sum_{i} (y_i - h_w(\mathbf{x}_i))^2 = \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- We want the weights w* that minimize loss
- Analytical solution: at w* the derivative of loss w.r.t. each weight is zero
 - X is the data matrix (all the data, one example per row); y is the vector of labels
 - $\mathbf{w}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$

Regularized Regression

- Overfitting is also possible in regression
 - Extreme case: *n* features, *n* training examples
- Regularization can be used to alleviate overfitting

LASSO (Least Absolute Shrinkage and Selection Operator)

$$L(\mathbf{w}) = \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{k} |w_k|$$

Ridge Regression

$$L(\mathbf{w}) = \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{k} w_k^2$$