绝密★启用前

2021年普通高等学校招生全国统一考试 文科数学

注意事项:

A. 18

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答 案写在答题卡上. 写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- Þ,

	、选择题:本题共12	小题,每小题5分,共	60分. 在每小题给出的	四个	选项中								
只	有一项是符合题目要	球的.											
1.	1. 已知全集 $U = \{1,2,3,4,5\}$,集合 $M = \{1,2\}, N = \{3,4\}$,则 $\delta_U(M \cup N) = ($												
A.	{5 }	B. {1,2}	C. {3,4}	D.									
{1	,2,3,4}												
2. 设 $iz = 4 + 3i$, 则 $z = ($)													
A.	-3 - 4i	B. $-3 + 4i$	C. 3-4i	D.	3+4i								
3.	已知命题 $p:\exists x \in \mathbf{R}$, si	$\mathbf{n} x < 1$; 命题 $q: \forall x \in \mathbf{R}$,	$e^{ x } \ge 1$,则下列命题中为真	命是	题的是								
()												
A.	$p \wedge q$	B. $\neg p \land q$	C. $p \land \neg q$	D.									
\neg	$(p \lor q)$												
4.	函数 $f(x) = \sin \frac{x}{3} + \cos \frac{x}{3}$	$s\frac{x}{3}$ 的最小正周期和最大值	分别是()										
Α.	3π 和 $\sqrt{2}$	В. 3π和2	C. 6π 和 $\sqrt{2}$	D.	6π和2								
5.	若 x,y 满足约束条件 $\left\{\right\}$	$x + y \ge 4$, $x - y \le 2$, 则 $z = 3x + y$ 的量 $y \le 3$,											

C. 6

D. 4

B. 10

6.
$$\cos^2 \frac{\pi}{12} - \cos^2 \frac{5\pi}{12} = ($$

- B. $\frac{\sqrt{3}}{2}$
- C. $\frac{\sqrt{2}}{2}$
- D. $\frac{\sqrt{3}}{2}$

7. 在区间
$$\left(0,\frac{1}{2}\right]$$
随机取 1 个数,则取到的数小于 $\frac{1}{3}$ 的概率为()

A. $\frac{3}{4}$

C. $\frac{1}{3}$

D. $\frac{1}{6}$

A. $v = x^2 + 2x + 4$

B. $y = |\sin x| + \frac{4}{|\sin x|}$

C. $y = 2^x + 2^{2-x}$

D. $y = \ln x + \frac{4}{\ln x}$

9. 设函数
$$f(x) = \frac{1-x}{1+x}$$
,则下列函数中为奇函数的是()

- A. f(x-1)-1 B. f(x-1)+1 C. f(x+1)-1
- D.

$$f(x+1)+1$$

10. 在正方体 $ABCD - A_lB_lC_lD_l$ 中,P 为 B_lD_l 的中点,则直线 PB 与 AD_l 所成的角为(

A. $\frac{\pi}{2}$

C. $\frac{\pi}{4}$

D. $\frac{\pi}{6}$

11. 设
$$B$$
是椭圆 C : $\frac{x^2}{5} + y^2 = 1$ 的上顶点,点 P 在 C 上,则 $|PB|$ 的最大值为(

A. $\frac{5}{2}$

B. $\sqrt{6}$

C. $\sqrt{5}$

D. 2

12. 设
$$a \neq 0$$
, 若 $x = a$ 为函数 $f(x) = a(x-a)^2(x-b)$ 的极大值点,则(

- A. a < b
- B. a > b
- C. $ab < a^2$
- D. $ab > a^2$

二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13. 已知向量
$$\overset{1}{a} = (2,5), \overset{1}{b} = (\lambda,4), \\ \overset{1}{a} \overset{1}{a} \overset{1}{/b}, \\ \overset{1}{y} \lambda = \underline{\qquad}.$$

14. 双曲线
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
 的右焦点到直线 $x + 2y - 8 = 0$ 的距离为______.

15. 记VABC的内角 A, B, C的对边分别为 a, b, c, 面积为 $\sqrt{3}$, $B=60^\circ$, $a^2+c^2=3ac$, 则 b=

16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).

三、解答题. 共 70 分. 解答应写出文字说明,证明过程或演算步骤,第 17~21 题为必考题,每个试题考生都必须作答. 第 22、23 题为选考题,考生根据要求作答.

(一) 必考题: 共60分.

17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:

旧设备	9.8	10.3	10.0	10.2	9.9	9.8	10.0	10.1	10.2	9.7
新设备	10.1	10.4	10.1	10.0	10.1	10.3	10.6	10.5	10.4	10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为 $_x^-$ 和 $_y^-$,样本方差分别记为 $_x^2$ 和 $_y^2$ 。

- (1) \vec{x}_{x} , \vec{y} , S_{1}^{2} , S_{2}^{2} ;
- (2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果

 $\overline{y} - \overline{x} \ge 2\sqrt{\frac{S_1^2 + S_2^2}{10}}$,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不

认为有显著提高).

18. 如图,四棱锥 P-ABCD 的底面是矩形,PD 上底面 ABCD,M 为 BC 的中点,且 $PB \perp AM$.

- (1) 证明: 平面 *PAM* _ 平面 *PBD*:
- (2) 若 PD = DC = 1, 求四棱锥 P ABCD 的体积.

19. 设 $\{a_n\}$ 是首项为 1 的等比数列,数列 $\{b_n\}$ 满足 $b_n = \frac{na_n}{3}$. 已知 a_1 , $3a_2$, $9a_3$ 成等差数列.

- (1) 求 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
- (2) 记 S_n 和 T_n 分别为 $\{a_n\}$ 和 $\{b_n\}$ 的前n项和.证明: $T_n < \frac{S_n}{2}$.
- 20. 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点 F 到准线的距离为 2.
- (1) 求 C 的方程;
- (2) 已知 O 为坐标原点,点 P 在 C 上,点 Q 满足 PQ = 9QF ,求直线 OQ 斜率的最大值.
- 21. 已知函数 $f(x) = x^3 x^2 + ax + 1$.
- (1) 讨论 f(x) 的单调性;
- (2) 求曲线 y = f(x) 过坐标原点的切线与曲线 y = f(x) 的公共点的坐标.
- (二)选考题:共 10分. 请考生在第 22、23 题中任选一题作答. 如果多做. 则按 所做的第一题计分.

[选修 4-4:坐标系与参数方程]

- 22. 在直角坐标系 xOy 中,e C 的圆心为 C(2,1),半径为 1.
- (1) 写出 e C 的一个参数方程;
- (2) 过点 F(4,1) 作 e C 的两条切线. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.

[选修 4—5:不等式选讲]

- 23. 已知函数 f(x) = |x-a| + |x+3|.
- (1) 当a=1时,求不等式 $f(x) \ge 6$ 解集;
- (2) 若f(x) > -a, 求a的取值范围.

2021年普通高等学校招生全国统一考试 文科数学 答案解析

一、选择题:

1. A

解析:

由题意可得: $M UN = \{1, 2, 3, 4\}$,则 $\delta_U(M UN) = \{5\}$.

故选 A.

2. C

解析:

由题意可得:
$$z = \frac{4+3i}{i} = \frac{(4+3i)i}{i^2} = \frac{4i-3}{-1} = 3-4i$$
.

故选 C.

3. A

解析:

由于 $-1 \le \sin x \le 1$,所以命题P为真命题;

由于 $|x| \ge 0$,所以 $e^{|x|} \ge 1$,所以命题q为真命题;

所以 $p \wedge q$ 为真命题, $\neg p \wedge q$ 、 $p \wedge \neg q$ 、 $\neg (p \vee q)$ 为假命题.

故选 A.

4. C

解析:

由题,
$$f(x) = \sqrt{2}\sin\left(\frac{x}{3} + \frac{\pi}{4}\right)$$
, 所以 $f(x)$ 的最小正周期为 $T = \frac{2p}{\frac{1}{3}} = 6p$, 最大值为 $\sqrt{2}$.

故选 C.

5. C

解析:

由题意,作出可行域,如图阴影部分所示,

由
$$\begin{cases} x+y=4 \\ y=3 \end{cases}$$
 可得点 $A(1,3)$,

转换目标函数 z = 3x + y 为 y = -3x + z,

上下平移直线 y = -3x + z, 数形结合可得当直线过点 A 时, z 取最小值,

此时
$$z_{\min} = 3 \times 1 + 3 = 6$$
.

故选 C.

6. D

解析:

由题意,
$$\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = \cos^2\frac{\pi}{12} - \cos^2\left(\frac{\pi}{2} - \frac{\pi}{12}\right) = \cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12}$$

$$=\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}.$$

故选 D.

7. B

解析:

设
$$\Omega =$$
 "区间 $\left(0, \frac{1}{2}\right]$ 随机取 1 个数" $= \left\{x \middle| 0 < x \le \frac{1}{2}\right\}$,

$$A =$$
 "取到的数小于 $\frac{1}{3}$ " = $\left\{ x \middle| 0 < x < \frac{1}{3} \right\}$,所以 $P(A) = \frac{l(A)}{l(\Omega)} = \frac{\frac{1}{3} - 0}{\frac{1}{2} - 0} = \frac{2}{3}$.

故选: B.

8. C

解析:

对于 A, $y=x^2+2x+4=(x+1)^2+3\geq 3$, 当且仅当 x=-1 时取等号,所以其最小值为 3, A 不符合题意;

对于 B, 因为 $0 < |\sin x| \le 1$, $y = |\sin x| + \frac{4}{|\sin x|} \ge 2\sqrt{4} = 4$, 当且仅当 $|\sin x| = 2$ 时取等号,

等号取不到, 所以其最小值不为4, B不符合题意;

对于 C,因为函数定义域为
$$R$$
 ,而 $2^x > 0$, $y = 2^x + 2^{2-x} = 2^x + \frac{4}{2^x} \ge 2\sqrt{4} = 4$,当且仅当

 $2^x = 2$, 即 x = 1时取等号, 所以其最小值为4, C符合题意;

对于 D,
$$y = \ln x + \frac{4}{\ln x}$$
, 函数定义域为 $(0,1)$ U $(1,+\infty)$, 而 $\ln x \in R$ 且 $\ln x \neq 0$, 如当

$$\ln x = -1$$
, $y = -5$, D 不符合题意.

故选 C.

9. B

解析:

由题意可得
$$f(x) = \frac{1-x}{1+x} = -1 + \frac{2}{1+x}$$
,

对于 A,
$$f(x-1)-1=\frac{2}{x}-2$$
 不是奇函数;

对于 B,
$$f(x-1)+1=\frac{2}{x}$$
 是奇函数;

对于 C,
$$f(x+1)-1=\frac{2}{x+2}-2$$
, 定义域不关于原点对称, 不是奇函数;

对于 D,
$$f(x+1)+1=\frac{2}{x+2}$$
, 定义域不关于原点对称, 不是奇函数.

故选 B

10. D

解析:

如图,连接 BC_1 , PC_1 ,PB,因为 AD_1 // BC_1 ,

所以 $\angle PBC_1$ 或其补角为直线PB与 AD_1 所成的角,

因为 $BB_1 \perp$ 平面 $A_1B_1C_1D_1$,所以 $BB_1 \perp PC_1$,又 $PC_1 \perp B_1D_1$, $BB_1 \cap B_1D_1 = B_1$,

所以 PC_1 上平面 PBB_1 , 所以 PC_1 上PB,

设正方体棱长为 2,则 $BC_1 = 2\sqrt{2}, PC_1 = \frac{1}{2}D_1B_1 = \sqrt{2}$,

$$\sin \angle PBC_1 = \frac{PC_1}{BC_1} = \frac{1}{2}$$
, 所以 $\angle PBC_1 = \frac{\pi}{6}$.

故选 D

11. A

解析:

设点
$$P(x_0, y_0)$$
,因为 $B(0,1)$, $\frac{x_0^2}{5} + y_0^2 = 1$,所以

$$|PB|^2 = x_0^2 + (y_0 - 1)^2 = 5(1 - y_0^2) + (y_0 - 1)^2 = -4y_0^2 - 2y_0 + 6 = -4(y_0 - \frac{1}{2})^2 + \frac{25}{4},$$

而
$$-1 \le y_0 \le 1$$
,所以当 $y_0 = \frac{1}{2}$ 时, $|PB|$ 的最大值为 $\frac{5}{2}$.

故选 A.

12. D

解析:

若a=b,则 $f(x)=a(x-a)^3$ 为单调函数,无极值点,不符合题意,故 a^1 b.

依题意, x = a 为函数 $f(x) = a(x-a)^2(x-b)$ 的极大值点,

当a < 0时,由x > b, $f(x) \le 0$,画出f(x)的图象如下图所示:

由图可知b < a, a < 0, 故 $ab > a^2$.

当a>0时,由x>b时,f(x)>0,画出f(x)的图象如下图所示:

由图可知b > a, a > 0, 故 $ab > a^2$.

综上所述, $ab > a^2$ 成立.

故选 D

二、填空题:

13.

答案: $\frac{8}{5}$

解析:

由题意结合向量平行的充分必要条件可得: $2\times4-\lambda\times5=0$,

解方程可得: $\lambda = \frac{8}{5}$.

故答案为 $\frac{8}{5}$.

14.

答案: √5

解析:

由己知, $c = \sqrt{a^2 + b^2} = \sqrt{5 + 4} = 3$, 所以双曲线的右焦点为(3,0),

所以右焦点(3,0)到直线x+2y-8=0 距离为 $\frac{|3+2\times 0-8|}{\sqrt{1^2+2^2}}=\frac{5}{\sqrt{5}}=\sqrt{5}$.

故答案为√5

15.

答案: $2\sqrt{2}$

解析:

曲题意,
$$S_{VABC} = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}ac = \sqrt{3}$$
,

所以 ac = 4, $a^2 + c^2 = 12$,

所以
$$b^2 = a^2 + c^2 - 2ac\cos B = 12 - 2 \times 4 \times \frac{1}{2} = 8$$
,解得 $b = 2\sqrt{2}$ (负值舍去).

故答案为 $2\sqrt{2}$.

16.34

解析:

选择侧视图为③,俯视图为④,

如图所示,长方体 $ABCD-A_1B_1C_1D_1$ 中,AB=BC=2, $BB_1=1$,

E, F 分别为棱 B_1C_1, BC 的中点,

则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E-ADF.

故答案为: ③④.

三、解答题.

(一) 必考题:

17.

答案: (1) x = 10, y = 10.3, $S_1^2 = 0.036$, $S_2^2 = 0.04$; (2) 新设备生产产品的该项指标的均值 较旧设备没有显著提高.

解析:

$$\begin{array}{c} (1) \ \ \overline{x} = \frac{9.8 + 10.3 + 10 + 10.2 + 9.9 + 9.8 + 10 + 10.1 + 10.2 + 9.7}{10} = 10 \ , \\ \overline{y} = \frac{10.1 + 10.4 + 10.1 + 10 + 10.1 + 10.3 + 10.6 + 10.5 + 10.4 + 10.5}{10} = 10.3 \ , \\ S_1^2 = \frac{0.2^2 + 0.3^2 + 0 + 0.2^2 + 0.1^2 + 0.2^2 + 0 + 0.1^2 + 0.2^2 + 0.3^2}{10} = 0.036 \ , \\ S_2^2 = \frac{0.2^2 + 0.1^2 + 0.2^2 + 0.3^2 + 0.2^2 + 0 + 0.3^2 + 0.2^2 + 0.1^2 + 0.2^2}{10} = 0.04 \ . \end{array}$$

(2) 依题意,
$$\overline{y} - \overline{x} = 0.3 = 2 \times 0.15 = 2\sqrt{0.15^2} = 2\sqrt{0.025}$$
, $2\sqrt{\frac{0.036 + 0.04}{2}} = 2\sqrt{0.038}$,

 $\overline{y} - \overline{x} < 2\sqrt{\frac{s_1^2 + s_2^2}{10}}$,所以新设备生产产品的该项指标的均值较旧设备没有显著提高.

18.

答案: (1) 证明见解析; (2) $\frac{\sqrt{2}}{3}$.

解析:

(1) 因为PD 上底面ABCD, $AM \subset \mathbb{P}$ 面ABCD, 所以 $PD \perp AM$, 又 $PB \perp AM$,

PBIPD = P, 所以 $AM \perp$ 平面 PBD, 而 $AM \subset$ 平面 PAM, 所以平面 $PAM \perp$ 平面 PBD.

(2)由(1)可知,AM 上平面PBD,所以AM 上BD,从而 $VDAB \sim VABM$,设BM = x,

$$AD=2x$$
,则 $\frac{BM}{AB}=\frac{AB}{AD}$,即 $2x^2=1$,解得 $x=\frac{\sqrt{2}}{2}$,所以 $AD=\sqrt{2}$. 因为 PD 上底面

$$ABCD$$
, 故四棱锥 $P-ABCD$ 的体积为 $V=\frac{1}{3}\times\left(1\times\sqrt{2}\right)\times 1=\frac{\sqrt{2}}{3}$.

19.

答案: (1)
$$a_n = (\frac{1}{3})^{n-1}$$
, $b_n = \frac{n}{3^n}$; (2) 证明见解析.

解析:

因为 $\{a_n\}$ 是首项为 1 的等比数列且 a_1 , $3a_2$, $9a_3$ 成等差数列,

所以
$$6a_2 = a_1 + 9a_3$$
, 所以 $6a_1q = a_1 + 9a_1q^2$,

即
$$9q^2 - 6q + 1 = 0$$
,解得 $q = \frac{1}{3}$,所以 $a_n = (\frac{1}{3})^{n-1}$,

所以
$$b_n = \frac{na_n}{3} = \frac{n}{3^n}$$
.

(2) 证明:由(1)可得
$$S_n = \frac{1 \times (1 - \frac{1}{3^n})}{1 - \frac{1}{3}} = \frac{3}{2} (1 - \frac{1}{3^n}),$$

$$T_n = \frac{1}{3} + \frac{2}{3^2} + L + \frac{n-1}{3^{n-1}} + \frac{n}{3^n}$$
, ①

$$\frac{1}{3}T_n = \frac{1}{3^2} + \frac{2}{3^3} + L + \frac{n-1}{3^n} + \frac{n}{3^{n+1}}, \quad (2)$$

① - ②
$$= \frac{2}{3}T_n = \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + L + \frac{1}{3^n} - \frac{n}{3^{n+1}} = \frac{\frac{1}{3}(1 - \frac{1}{3^n})}{1 - \frac{1}{3}} - \frac{n}{3^{n+1}} = \frac{1}{2}(1 - \frac{1}{3^n}) - \frac{n}{3^{n+1}},$$

所以
$$T_n = \frac{3}{4}(1 - \frac{1}{3^n}) - \frac{n}{2 \cdot 3^n}$$
,

所以
$$T_n - \frac{S_n}{2} = \frac{3}{4}(1 - \frac{1}{3^n}) - \frac{n}{2 \cdot 3^n} - \frac{3}{4}(1 - \frac{1}{3^n}) = -\frac{n}{2 \cdot 3^n} < 0$$
,

所以
$$T_n < \frac{S_n}{2}$$
.

20.

答案: (1)
$$y^2 = 4x$$
; (2) 最大值为 $\frac{1}{3}$.

解析:

(1) 拋物线
$$C: y^2 = 2px(p > 0)$$
 的焦点 $F\left(\frac{p}{2}, 0\right)$, 准线方程为 $x = -\frac{p}{2}$,

由题意,该抛物线焦点到准线的距离为
$$\frac{p}{2}$$
- $\left(-\frac{p}{2}\right)$ = $p=2$,

所以该抛物线的方程为 $y^2 = 4x$;

(2)
$$\mbox{if } Q(x_0, y_0)$$
, $\mbox{if } PQ = 9QF = (9 - 9x_0, -9y_0)$,

所以
$$P(10x_0-9,10y_0)$$
,

由
$$P$$
 在抛物线上可得 $(10y_0)^2 = 4(10x_0 - 9)$,即 $x_0 = \frac{25y_0^2 + 9}{10}$,

所以直线
$$OQ$$
 斜率 $k_{OQ} = \frac{y_0}{x_0} = \frac{y_0}{25y_0^2 + 9} = \frac{10y_0}{25y_0^2 + 9}$,

当
$$y_0 = 0$$
 时, $k_{OQ} = 0$;

当
$$y_0 \neq 0$$
 时, $k_{00} = \frac{10}{25y_0 + \frac{9}{y_0}}$,

当
$$y_0 > 0$$
 时,因为 $25y_0 + \frac{9}{y_0} \ge 2\sqrt{25y_0 \cdot \frac{9}{y_0}} = 30$,

此时
$$0 < k_{oQ} \le \frac{1}{3}$$
, 当且仅当 $25y_0 = \frac{9}{y_0}$, 即 $y_0 = \frac{3}{5}$ 时, 等号成立;

当 $y_0 < 0$ 时, $k_{oo} < 0$;

综上,直线OQ的斜率的最大值为 $\frac{1}{3}$.

21.

答案: (1)答案见解析; (2)(1,a+1).

解析:

(1)由函数的解析式可得: $f'(x) = 3x^2 - 2x + a$,

导函数的判别式 $\Delta = 4-12a$,

当
$$\Delta = 4 - 12a \le 0, a \ge \frac{1}{3}$$
 时, $f'(x) \ge 0, f(x)$ 在 R 上单调递增,

当
$$\Delta = 4 - 12a > 0, a < \frac{1}{3}$$
 时, $f'(x) = 0$ 的解为: $x_1 = \frac{2 - \sqrt{4 - 12a}}{6}, x_2 = \frac{2 + \sqrt{4 - 12a}}{6}$,

当
$$x \in \left(-\infty, \frac{2-\sqrt{4-12a}}{6}\right)$$
时, $f'(x) > 0, f(x)$ 单调递增;

当
$$x \in \left(\frac{2-\sqrt{4-12a}}{6}, \frac{2+\sqrt{4-12a}}{6}\right)$$
时, $f'(x) < 0, f(x)$ 单调递减;

当
$$x \in \left(\frac{2+\sqrt{4-12a}}{6}, +\infty\right)$$
时, $f'(x) > 0, f(x)$ 单调递增;

综上可得: 当 $a \ge \frac{1}{3}$ 时, f(x)在R上单调递增,

当
$$a < \frac{1}{3}$$
时, $f(x)$ 在 $\left(-\infty, \frac{2-\sqrt{4-12a}}{6}\right)$ 上单调递增,在 $\left(\frac{2-\sqrt{4-12a}}{6}, \frac{2+\sqrt{4-12a}}{6}\right)$ 上

单调递减,在
$$\left(\frac{2+\sqrt{4-12a}}{6},+\infty\right)$$
上单调递增.

(2)由题意可得:
$$f(x_0) = x_0^3 - x_0^2 + ax_0 + 1$$
, $f'(x_0) = 3x_0^2 - 2x_0 + a$,

则切线方程为:
$$y-(x_0^3-x_0^2+ax_0+1)=(3x_0^2-2x_0+a)(x-x_0)$$
,

切线过坐标原点,则:
$$0-(x_0^3-x_0^2+ax_0+1)=(3x_0^2-2x_0+a)(0-x_0)$$
,

整理可得: $2x_0^3 - x_0^2 - 1 = 0$, 即: $(x_0 - 1)(2x_0^2 + x_0 + 1) = 0$,

解得:
$$x_0 = 1$$
, 则 $f(x_0) = f(1) = 1 - 1 + a + 1 = a + 1$,

即曲线 y = f(x) 过坐标原点的切线与曲线 y = f(x) 的公共点的坐标为(1, a+1).

(二) 选考题:

[选修 4-4:坐标系与参数方程]

22

答案: (1)
$$\begin{cases} x = 2 + \cos \alpha \\ y = 1 + \sin \alpha \end{cases}$$
, (α 为参数); (2) $2\rho\cos(\theta + \frac{\pi}{3}) = 4 - \sqrt{3}$ 或

$$2\rho\cos(\theta-\frac{\pi}{3})=4+\sqrt{3}.$$

解析:

(1) 由题意, e C 的普通方程为 $(x-2)^2 + (y-1)^2 = 1$,

所以e
$$C$$
 的参数方程为 $\begin{cases} x = 2 + \cos \alpha \\ y = 1 + \sin \alpha \end{cases}$, $(\alpha \text{ 为参数})$

(2) 由题意, 切线的斜率一定存在, 设切线方程为y-1=k(x-4), 即kx-y+1-4k=0,

由圆心到直线的距离等于 1 可得
$$\frac{|-2k|}{\sqrt{1+k^2}} = 1$$
,

解得
$$k = \pm \frac{\sqrt{3}}{3}$$
,所以切线方程为 $\sqrt{3}x - 3y + 3 - 4\sqrt{3} = 0$ 或 $\sqrt{3}x + 3y - 3 - 4\sqrt{3} = 0$,

将 $x = \rho \cos \theta$, $y = \rho \sin \theta$ 代入化简得

$$2\rho\cos(\theta + \frac{\pi}{3}) = 4 - \sqrt{3} \text{ id } 2\rho\cos(\theta - \frac{\pi}{3}) = 4 + \sqrt{3}$$

[选修 4—5:不等式选讲]

23.

答案: (1)
$$\left(-\infty, -4\right]$$
U $\left[2, +\infty\right)$. (2) $\left(-\frac{3}{2}, +\infty\right)$.

解析:

(1) 当a=1时,f(x)=|x-1|+|x+3|,|x-1|+|x+3|表示数轴上的点到1和-3的距离之和,

则 $f(x) \ge 6$ 表示数轴上的点到1和-3的距离之和不小于6,故 $x \le -4$ 或 $x \ge 2$, 所以 $f(x) \ge 6$ 的解集为 $\left(-\infty, -4\right]$ U $\left[2, +\infty\right)$.

(2) 依题意 f(x) > -a, 即|x-a| + |x+3| > -a 恒成立,

$$|x-a|+|x+3|=|a-x|+|x+3|\ge |a+3|$$
, $to |a+3|>-a$,

所以a+3>-a或a+3< a,

解得
$$a > -\frac{3}{2}$$
.

所以a的取值范围是 $\left(-\frac{3}{2},+\infty\right)$.