Simple linear regression - Exercise Solution

real estate dataset file: 'real_estate_price_size.csv'

Create a simple linear regression.

Apart from that:

- Create a scatter plot (with or without a regression line)
- Calculate the R-squared
- Display the intercept and coefficient(s)
- Using the model make a prediction about an apartment with size 750 sq.ft.

In this exercise, the dependent variable is 'price', while the independent variable is 'size'.

Libraries

```
In [15]: import numpy as np
        import pandas as pd
         import matplotlib.pyplot as plt
        import seaborn as sns
         from sklearn.linear model import LinearRegression
```

```
Load the data
In [2]: data = pd.read_csv('real_estate_price_size.csv')
       data.head()
```

```
Out[2]:
                 price
                          size
         0 234314.144 643.09
         1 228581.528
                        656.22
         2 281626.336
                        487.29
         3 401255.608 1504.75
         4 458674.256 1275.46
```

```
data.describe()
In [3]:
```

Out[3]:		price	size
	count	100.000000	100.000000
	mean	292289.470160	853.024200
	std	77051.727525	297.941951
	min	154282.128000	479.750000
	25%	234280.148000	643.330000
	50%	280590.716000	696.405000
	75 %	335723.696000	1029.322500
	max	500681.128000	1842.510000

Create the regression

Declare the dependent and the independent variables

```
In [5]: x = data['size']
        y = data['price']
```

Explore the data

350000 300000 250000 200000 150000 1000 1800 800 1400 1600 Size

Transform the inputs into a matrix (2D object)

```
x_matrix = x.values.reshape(-1,1)
In [7]:
```

Regression

```
In [9]: reg = LinearRegression()
        reg.fit(x matrix,y)
        LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
Out[9]:
```

R-squared

```
reg.score(x_matrix,y)
In [10]:
         0.7447391865847586
Out[10]:
```

Intercept

```
In [12]:
         reg.intercept_
         101912.60180122912
Out[12]:
```

Coefficients

```
reg.coef
In [13]:
         array([223.17874259])
Out[13]:
```

Making predictions

You find an apartment online with a size of 750 sq.ft.

All else equal what should be its price according to the model?

```
In [14]: reg.predict(750)
```

array([269296.65874718]) Out[14]: