

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                      M,
                                                                                  = 6250000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70800 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 194000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                      M,
                                                                                  = 5290000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 64000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 129000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                      M,
                                                                                 = 7070000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 56600 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 81500 N
                                                                      M,
                                                                                  = 5820000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 52100 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 155000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 106000 N
                                                                      M,
                                                                                  = 6720000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 71700 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 196000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 105000 N
                                                                      M,
                                                                                 = 5720000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 64900 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 130000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 125000 N
                                                                      M,
                                                                                 = 7650000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 57400 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 158000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 82800 N
                                                                      M,
                                                                                  = 6340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 53000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 108000 N
                                                                      M,
                                                                                 = -6460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 73700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 199000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 106000 N
                                                                      M,
                                                                                 = -5420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 65700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 130000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 121000 N
                                                                      M,
                                                                                 = 6940000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 55900 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 152000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 80100 N
                                                                      M,
                                                                                  = 5730000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 51500 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 151000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                      M,
                                                                                 = -6210000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 190000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 103000 N
                                                                      M,
                                                                                 = -5270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 63900 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 126000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 129000 N
                                                                     M,
                                                                                 = -7890000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 59700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 161000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 84300 N
                                                                      M,
                                                                                  = -6460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 54300 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 158000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 132000 N
                                                                      M,
                                                                                  = 9470000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 96100 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 274000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 128000 N
                                                                      M,
                                                                                  = 7750000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 85800 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 177000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
            = 156000 N
                                                                         M,
                                                                                     = 10800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
            = 76800 N
                                                                                     = 260 \text{ N/mm}^2
                                                                                     = 200000 \text{ N/mm}^2
           = 221000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                         \tau(T_{yc}) =
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
           =
                                                                         \tau(T_{v})_{d} =
           =
\sigma(N) =
                                                                         \sigma_{\text{IIs}}
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 100000 N
                                                                      M,
                                                                                 = 8590000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 69900 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 214000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                      M,
                                                                                 = 10100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 97300 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 277000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 130000 N
                                                                      M,
                                                                                  = 8350000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 86900 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 179000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 158000 N
                                                                      M,
                                                                                  = 11600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 77900 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 224000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 102000 N
                                                                      M,
                                                                                  = 9300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 71000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 216000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 130000 N
                                                                      M,
                                                                                  = -9230000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 95100 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 267000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 126000 N
                                                                      M,
                                                                                 = -7560000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 84800 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 173000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 153000 N
                                                                      M,
                                                                                  = 10600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 76000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 216000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

N	= 98900 N	M,	= 208000 Nmm		= 260 N/mm ²	G	= 76000 N/mm ²
		· ·				u	- 70000 N/IIIII
T_{v}	= 69100 N	M_x	= 8440000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{ extsf{s}}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	$\sigma_{\sf ls}$	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$		σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
		-					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 131000 N
                                                                      M,
                                                                                  = -9370000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 95900 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 269000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 127000 N
                                                                      M,
                                                                                 = -7660000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 85600 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 174000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 155000 N
                                                                       M_{\star}
                                                                                   = -11300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 77000 N
                                                                                   = 260 \text{ N/mm}^2
                                                                                   = 200000 \text{ N/mm}^2
           = 218000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 100000 N
                                                                      M,
                                                                                  = -9070000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70200 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 211000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 155000 N
                                                                     M,
                                                                                 = -12600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 123000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 354000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

Ν	= 151000 N	M,	= 230000 Nmm		= 260 N/mm ²	G	= 76000 N/mm ²
1.4		·		σ_{a}		ч	- 70000 N/IIIII
T_y	= 114000 N	M_x	= -10700000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
v_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$		$\sigma_{\sf ls}$	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\sf Id}$	=	r _o	=
J _u	=	$\tau(T_y)_{\xi}$; =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	_ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 185000 N
                                                                      M,
                                                                                 = 15100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 98800 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 288000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                      M,
                                                                                  = 12600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 93600 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 279000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 157000 N
                                                                      M,
                                                                                  = -12800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 123000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 357000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_{d} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 152000 N
                                                                     M,
                                                                                 = -10900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 114000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 232000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 187000 N
                                                                      M,
                                                                                 = -15500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 99600 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 291000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 121000 N
                                                                      M,
                                                                                 = -12900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 94400 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 282000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 152000 N
                                                                     M,
                                                                                 = -11800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 121000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 346000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 148000 N
                                                                     M,
                                                                                 = -10000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 112000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 224000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 182000 N
                                                                      M,
                                                                                 = -14300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 97700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 282000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                      M,
                                                                                 = -11800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 92400 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 273000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 154000 N
                                                                     M,
                                                                                 = -12000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 122000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 349000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 149000 N
                                                                     M,
                                                                                 = -10100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 113000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 226000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 184000 N
                                                                      M,
                                                                                 = -14500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 98400 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 285000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                      M,
                                                                                 = -12000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 93100 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 275000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 178000 N
                                                                                 = -15100000 Nmm
                                                                     M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 149000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 445000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 168000 N	M _t	= 280000 Nmm	σ_a	= 260 N/mm ²	G	= 76000 N/mm ²
T_y	= 136000 N	M_x	= -12200000 Nmm		$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_j =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 213000 N
                                                                     M,
                                                                                 = -18400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 120000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 364000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                                 = -14600000 Nmm
                                                                      M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 112000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 343000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 179000 N
                                                                                  = -15300000 Nmm
                                                                      M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 150000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 448000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                       \tau(T_{yb})_{d} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 169000 N
                                                                                 = -12400000 Nmm
                                                                     M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 137000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 282000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 215000 N
                                                                     M,
                                                                                 = -18600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 120000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                = 200000 \text{ N/mm}^2
           = 367000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 135000 N
                                                                                 = -14800000 Nmm
                                                                      M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 112000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 345000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 176000 N
                                                                      M,
                                                                                 = -14400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 147000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 439000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 165000 N
                                                                                 = -11600000 Nmm
                                                                     M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 135000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 276000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 211000 N
                                                                     M,
                                                                                = -17600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 119000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                = 200000 \text{ N/mm}^2
           = 359000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 132000 N
                                                                                 = -13900000 Nmm
                                                                     M,
\begin{matrix} T_y \\ M_t \end{matrix}
           = 110000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 337000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 177000 N	M _t	= 441000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 148000 N	M_x	= -14600000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	$\sigma_{\sf ls}$	=	r_u	=
$S_{u}^{^{x}}$	=	$\tau(T_{yc})$	=	$\sigma_{\sf IIs}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 167000 N	M _t	= 277000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T_v	= 135000 N	M_x	= -11800000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$	₃ =	$\sigma_{\sf ls}$	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\sf ld}$	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	, =	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 212000 N
                                                                     M,
                                                                                = -17800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 119000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                = 200000 \text{ N/mm}^2
           = 361000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 133000 N
                                                                      M,
                                                                                 = -14000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 111000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 339000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 114000 N
                                                                      M,
                                                                                 = -6470000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 69900 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 236000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 118000 N
                                                                      M,
                                                                                  = -5960000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 66300 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 163000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                      M,
                                                                                  = 7420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 56000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 190000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 92900 N
                                                                      M,
                                                                                  = 6670000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 54200 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 196000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

Tadoliative. Tappresentate Tanadinente delle terio, tangenziali.								., 2
N	= 115000 N	M_t	= 237000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 1	N/mm ⁻
T_y	= 70500 N	M_x	= -6520000 Nmm	E	= 200000 N/mm ²			
y_G	=	J_t	=	σ	=	σ_{mises}	=	
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=	
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=	
A _.	=	$\tau(M_t)_c$	_i =	$\sigma_{\sf ls}$	=	r_u	=	
Su	=	$\tau(T_{vc})$	=	$\sigma_{\sf IIs}$	=	r_v	=	
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=	
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=	
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	, =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.16.04.10								21.05.10

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                      M,
                                                                                 = -6000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 66800 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 163000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 136000 N
                                                                     M,
                                                                                 = -7920000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 56700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 192000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 94100 N
                                                                      M,
                                                                                 = -7140000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 54900 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 197000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 112000 N
                                                                      M,
                                                                                 = -5900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 68800 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 229000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 116000 N
                                                                      M,
                                                                                  = -5420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 65200 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 159000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 132000 N
                                                                     M,
                                                                                = -7140000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 55300 N
                                                                                = 260 \text{ N/mm}^2
                                                                                = 200000 \text{ N/mm}^2
           = 185000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 91500 N
                                                                      M,
                                                                                 = -6420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 53500 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 192000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 113000 N
                                                                      M,
                                                                                 = -5940000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 69300 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 230000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                      M,
                                                                                 = -5440000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 65700 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 159000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 133000 N
                                                                     M,
                                                                                 = -7210000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 55800 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 186000 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 92200 N
                                                                      M,
                                                                                 = -6470000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 54000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 192000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 118000 N
                                                                      M,
                                                                                  = 4930000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 65400 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 277000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

		•	400000 1		_	_	70000 11/ 2
N	= 122000 N	M_t	= 192000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T_y	= 60200 N	M_x	= 4360000 Nmm	Е	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}		$\sigma(M_x)$		$ au_{\sf d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_i =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 139000 N
                                                                      M,
                                                                                  = 5620000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 52300 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 224000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 96200 N
                                                                      M,
                                                                                  = 4840000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 49200 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 232000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                      M,
                                                                                  = 5260000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 66100 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 279000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                      M,
                                                                                 = 4660000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 61000 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 193000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 140000 N
                                                                      M,
                                                                                  = 6020000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 53000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 225000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 97000 N
                                                                      M,
                                                                                  = 5210000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 49900 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 233000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 116000 N
                                                                      M,
                                                                                  = 4920000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 65000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 273000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

	•	•	400000 1			_	70000 N/ 2
Ν	= 120000 N	M_t	= 189000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 N/mm ²
T_y	= 59900 N	M_x	= 4360000 Nmm	E	= 200000 N/mm ²		
y_{G}	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)		$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	$\sigma_{\sf ls}$	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 137000 N
                                                                      M,
                                                                                  = 5610000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 52000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 221000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 95300 N
                                                                      M,
                                                                                  = 4850000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 48900 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 229000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                      M,
                                                                                  = 5240000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 65800 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 274000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 121000 N
                                                                      M,
                                                                                 = 4660000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 60600 N
                                                                                 = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 190000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 139000 N
                                                                      M,
                                                                                  = 6010000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 52700 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 222000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 96100 N
                                                                      M,
                                                                                  = 5210000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 49600 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 230000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                      M,
                                                                                  = 6250000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70800 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 194000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                      M,
                                                                                  = 5290000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 64000 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 129000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                      M,
                                                                                  = 7070000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 56600 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 81500 N
                                                                      M,
                                                                                  = 5820000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 52100 N
                                                                                  = 260 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 155000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```