Ch4: Rigid-Body Motions – Transformation

Amin Fakhari, Spring 2023

Rigid-Body Motions

Homogeneous Transformation Matrices

Rigid-body configuration can be represented by the pair (R, p) $(R \in SO(3), p \in \mathbb{R}^3)$. We can package (R, p) into a single 4×4 matrix as

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

(an implicit representation of the C-space)

Special Euclidean Group SE(n)

The Special Euclidean Group SE(3), also known as the group of rigid-body motions or homogeneous transformation matrices in \mathbb{R}^3 , is the set of all 4×4 real matrices T of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} T \in SE(3) \\ \mathbf{R} \in SO(3) \\ \mathbf{p} \in \mathbb{R}^3 \end{array}$$

$$T = (R, p) \in SE(3)$$
 $SE(3) = \{(R, p) \mid R \in SO(3), p \in \mathbb{R}^3\}$

The special Euclidean group SE(2) is the set of all 3×3 real matrices T of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & p_1 \\ \sin \theta & \cos \theta & p_2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \mathbf{T} \in SE(2) \\ \mathbf{R} \in SO(2) \\ \mathbf{p} \in \mathbb{R}^2 \\ \theta \in [0, 2\pi) \end{array}$$

- SE(2) is a subgroup of SE(3): $SE(2) \subset SE(3)$

Properties of Transformation Matrices

SE(3) (or SE(2)) is a matrix (Lie) group (and the group operation • is matrix multiplication).

Closure: $T_1T_2 \in SE(3)$

Associative: $(T_1T_2)T_3 = T_1(T_2T_3)$ (but generally not commutative, $T_1T_2 \neq T_2T_1$)

Identity: $\exists I \in SE(3)$ such that TI = IT = T

Inverse: $\exists T^{-1} \in SE(3)$ such that $TT^{-1} = T^{-1}T = I$

$$T^{-1} = \begin{bmatrix} R & p \\ \mathbf{0} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ \mathbf{0} & 1 \end{bmatrix}$$

Note: *T* preserves both distances and angles.

Uses of Transformation Matrices (1)

(1) Representing configuration (position and orientation) of a frame relative to another frame.

Notation: T_{sb} is the configuration of $\{b\}$ relative to $\{s\}$.

$$\boldsymbol{T}_{sb} = \begin{bmatrix} \boldsymbol{R}_{sb} & \boldsymbol{p} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$T_{sb}T_{bs} = I$$
 or $T_{bs} = T_{sb}^{-1} = \begin{bmatrix} R_{sb}^T & -R_{sb}^T p \\ 0 & 1 \end{bmatrix}$

Example

Rigid-Body Motions

Uses of Transformation Matrices (2)

(2) Changing the reference frame of a vector or frame.

 T_{ab} can be viewed as a <u>mathematical operator</u> that changes the reference frame from $\{b\}$ to $\{a\}$.

Note: To calculate Tv, we append a "1" to v and it is called **homogeneous coordinates** representation of \boldsymbol{v} . $\mathbf{v} = [v_1 \ v_2 \ v_3 \ 1]^T$

Example

A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling. The robot must pick up an object with body frame $\{e\}$. What is the configuration of the object relative to the robot hand, T_{ce} , given T_{db} , T_{de} , T_{bc} , and T_{ad} ?

Uses of Transformation Matrices (3)

(3) Displacing (rotating and translating) a vector or frame.

$$T = (R, p) = (\text{Rot}(\widehat{\omega}, \theta), p) = \text{Trans}(p)\text{Rot}(\widehat{\omega}, \theta)$$

Trans
$$(\mathbf{p}) = \begin{bmatrix} \mathbf{I} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix}$$
 Rot $(\widehat{\boldsymbol{\omega}}, \theta) = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}$

T can be viewed as a <u>mathematical operator</u> that rotates a frame or vector about a unit axis $\hat{\boldsymbol{\omega}} = (\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3)$ by an amount θ + translating it by \boldsymbol{p} .

Uses of Transformation Matrices (3) (cont.)

• Rotation of vector v about a unit axis $\widehat{\omega}$ (expressed in the same frame) by an amount θ and translation of it by p (expressed in the same frame) is vector v' expressed in the same frame:

$$v' = Tv = \operatorname{Trans}(p)\operatorname{Rot}(\widehat{\omega}, \theta)v$$
Interpretation

Fixed-frame Transformation:

2. Translating it by
$$p = 1$$
. Rotating $p = 1$.

Rigid-Body Motions

000000000

Example

Fixed-frame and body-frame transformations corresponding to $\widehat{\omega}=(0.0,1)$, $\theta=90^\circ$, and p = (0,2,0).

Twists

Rigid-Body Motions

Spatial Velocity or Twist

Let's find both the linear and angular velocities of a frame fixed to a moving body. Body Frame $\{b\}$ is instantaneously coincident with this body-attached frame.

$$T(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$
: T_{Sb} at time t

A rigid body's velocity can be represented simply as a point in \mathbb{R}^6 , defined by three angular velocities and three linear velocities, which together we call a **Spatial Velocity** or **Twist**.

Rigid-Body Motions

Body Twist

Similar to
$$\mathbf{R}^{-1}\dot{\mathbf{R}}=[\boldsymbol{\omega}_b]$$
, lets compute $\mathbf{T}^{-1}\dot{\mathbf{T}}$: $(\mathbf{R}=\mathbf{R}_{sb},\mathbf{T}=\mathbf{T}_{sb})$

$$T^{-1}\dot{T} = \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ \mathbf{0} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} R^{\mathrm{T}}\dot{R} & R^{\mathrm{T}}\dot{p} \\ \mathbf{0} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_b] \in so(3)} \boldsymbol{v}_b = \begin{bmatrix} \boldsymbol{\omega}_b \\ \boldsymbol{v}_b \end{bmatrix} \in \mathbb{R}^6$$

 \mathcal{V}_h is defined as **Body Twist** (or spatial velocity in the body frame)

$$T^{-1}\dot{T} = [\mathcal{V}_b] = \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

The set of all 4×4 matrices of this form is called se(3) and comprises the 4×4 matrix representations of the **body twists** associated with the rigid-body configurations SE(3).

(se(3)) is called the Lie algebra of the Lie group SE(3)

Rigid-Body Motions

Spatial Twist

Similar to
$$\dot{R}R^{-1} = [\omega_s]$$
, lets compute $\dot{T}T^{-1}$:

$$(\pmb{R} = \pmb{R}_{Sb}$$
 , $\pmb{T} = \pmb{T}_{Sb})$

$$\dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ \mathbf{0} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}^{\mathrm{T}} & -\mathbf{R}^{\mathrm{T}} \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} \\
= \begin{bmatrix} \dot{R}\mathbf{R}^{\mathrm{T}} & \dot{p} - \dot{R}\mathbf{R}^{\mathrm{T}} \mathbf{p} \\ \mathbf{0} & 0 \end{bmatrix} \\
= \begin{bmatrix} [\boldsymbol{\omega}_{s}] & \boldsymbol{v}_{s} \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_{s}] \in so(3)} \qquad \boldsymbol{v}_{s} = \begin{bmatrix} \boldsymbol{\omega}_{s} \\ \boldsymbol{v}_{s} \end{bmatrix} \in \mathbb{R}^{6}$$

 $\mathcal{V}_{\scriptscriptstyle S}$ is defined as **Spatial Twist** (or spatial velocity in the space frame)

$$\dot{T}T^{-1} = [\mathcal{V}_s] = \begin{bmatrix} [\boldsymbol{\omega}_s] & \boldsymbol{v}_s \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

The set of all 4×4 matrices of this form is called se(3) and comprises the 4×4 matrix representations of the **spatial twists** associated with the rigid-body configurations SE(3).

Rigid-Body Motions

Adjoint Map

Rigid-Body Motions

$$[\mathcal{V}_b] = \mathbf{T}^{-1}\dot{\mathbf{T}} \qquad \longrightarrow \qquad [\mathcal{V}_S] = \mathbf{T}[\mathcal{V}_b]\mathbf{T}^{-1} \qquad \longrightarrow$$

$$[\mathcal{V}_S] = \dot{\mathbf{T}}\mathbf{T}^{-1}$$

$$[\boldsymbol{\mathcal{V}}_S] = \begin{bmatrix} \boldsymbol{R}[\boldsymbol{\omega}_b] \boldsymbol{R}^{\mathrm{T}} & -\boldsymbol{R}[\boldsymbol{\omega}_b] \boldsymbol{R}^{\mathrm{T}} \boldsymbol{p} + \boldsymbol{R} \boldsymbol{v}_b \end{bmatrix} \xrightarrow{\begin{array}{c} \boldsymbol{R}[\boldsymbol{\omega}] \boldsymbol{R}^{\mathrm{T}} = [\boldsymbol{R} \boldsymbol{\omega}] \\ [\boldsymbol{\omega}] \boldsymbol{p} = -[\boldsymbol{p}] \boldsymbol{\omega} \end{array}} = \begin{bmatrix} [\boldsymbol{R} \boldsymbol{\omega}_b] & [\boldsymbol{p}] \boldsymbol{R} \boldsymbol{\omega}_b + \boldsymbol{R} \boldsymbol{v}_b \\ \boldsymbol{0} & 0 \end{bmatrix}$$

$$[\mathrm{Ad}_{T}] = \begin{bmatrix} R & \mathbf{0} \\ \mathbf{p} & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

 $[\mathrm{Ad}_T] = \begin{bmatrix} R & \mathbf{0} \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ Adjoint Map associated with T or Adjoint Representation of T

$$\mathcal{V}_{\scriptscriptstyle S} = igl[\operatorname{Ad}_{T_{\scriptscriptstyle Sb}} igr] \mathcal{V}_{\scriptscriptstyle b} = \operatorname{Ad}_{T_{\scriptscriptstyle Sb}} (\mathcal{V}_{\scriptscriptstyle b})$$

Similarly, $\mathcal{V}_{\scriptscriptstyle b} = igl[\operatorname{Ad}_{T_{\scriptscriptstyle bS}} igr] \mathcal{V}_{\scriptscriptstyle S} = \operatorname{Ad}_{T_{\scriptscriptstyle bS}} (\mathcal{V}_{\scriptscriptstyle S})$

Adjoint Map Properties

• Let $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\boldsymbol{\omega}, \boldsymbol{v}) \in \mathbb{R}^6$. Then,

$$\big[\mathrm{Ad}_{T_1}\big]\big[\mathrm{Ad}_{T_2}\big]\boldsymbol{\mathcal{V}} = \big[\mathrm{Ad}_{T_1T_2}\big]\boldsymbol{\mathcal{V}} \qquad \text{or} \qquad \mathrm{Ad}_{T_1}\big(\mathrm{Ad}_{T_2}(\boldsymbol{\mathcal{V}})\big) = \mathrm{Ad}_{T_1T_2}(\boldsymbol{\mathcal{V}})$$

• For any $T \in SE(3)$, $[Ad_T]^{-1} = [Ad_{T-1}]$

• For any two frames $\{c\}$ and $\{d\}$, a twist represented as \mathcal{V}_c in $\{c\}$ is related to its representation \mathcal{V}_d in $\{d\}$ by

$$\boldsymbol{\mathcal{V}}_c = [\mathrm{Ad}_{\boldsymbol{T}_{cd}}] \boldsymbol{\mathcal{V}}_d$$
 $\boldsymbol{\mathcal{V}}_d = [\mathrm{Ad}_{\boldsymbol{T}_{dc}}] \boldsymbol{\mathcal{V}}_c$

(changing the reference frame of a twist)

• [Ad_T] is always invertible.

Example

Consider a three-wheeled car with a single steerable front wheel, driving on a plane. The angle of the front wheel of the car causes the car's motion to be a pure angular velocity 2 rad/s about an axis out of the page at the point r in the plane. Find \mathcal{V}_s and \mathcal{V}_b when

$$r_s = (2, -1, 0)$$

 $r_b = (2, -1.4, 0)$

Rigid-Body Motions

Example

Find \mathcal{V}_{s} and \mathcal{V}_{b} for the shown one degree of freedom manipulator.

Screw Interpretation of a Twist

Any rigid-body velocity or twist ν is equivalent to the <u>instantaneous</u> velocity $\dot{\theta}$ about some screw axis \mathcal{S} (i.e., rotating about the axis while also translating along the axis).

A screw axis \mathcal{S} represented by a point $q \in \mathbb{R}^3$ on the axis, a unit vector $\hat{\mathbf{s}} \in S^2$ in the direction of the axis, and a pitch $h \in \mathbb{R}$ (linear velocity along the axis divided by angular velocity $\dot{\theta}$ about the axis) as $\{q, \hat{s}, h\}$.

Thus, twist \mathcal{V} can be represented as

$$v = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{\omega} \times (-\boldsymbol{q}) + h\boldsymbol{\omega} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}}\dot{\boldsymbol{\theta}} \\ -\hat{\boldsymbol{s}}\dot{\boldsymbol{\theta}} \times \boldsymbol{q} + h\dot{\boldsymbol{\theta}}\hat{\boldsymbol{s}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}} \\ -\hat{\boldsymbol{s}} \times \boldsymbol{q} + h\hat{\boldsymbol{s}} \end{bmatrix} \dot{\boldsymbol{\theta}}$$

Due to rotation about \mathcal{S} (which is in the plane orthogonal to \hat{s})

Due to translation along \mathcal{S} (which is in the direction of \hat{s})

Representation of Screw Axis

Now, instead of representing the screw axis \mathcal{S} as $\{q, \hat{s}, h\}$ (with the non-uniqueness of q), we represent a "unit" screw axis as a vector as

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} \in \mathbb{R}^{6}$$
 where $\boldsymbol{\gamma} = S\dot{\theta} \in \mathbb{R}^{6}$ $S_{\omega}, S_{v} \in \mathbb{R}^{3}$

- Finding **S** and $\{q, \hat{s}, h\}$ by having \mathcal{V} :
- (a) If $\|\omega\| \neq 0$ (\equiv rotation with/without translation along \hat{s}):

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \mathcal{V}/\|\boldsymbol{\omega}\| = \begin{bmatrix} \boldsymbol{\omega}/\|\boldsymbol{\omega}\| \\ \boldsymbol{v}/\|\boldsymbol{\omega}\| \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{s}} \\ -\hat{\mathbf{s}} \times \boldsymbol{q} + h\hat{\mathbf{s}} \end{bmatrix}$$
$$= \begin{bmatrix} \text{angular velocity when } \dot{\theta} = 1 \\ \text{linear velocity of origin when } \dot{\theta} = 1 \end{bmatrix}$$

(b) If $\|\boldsymbol{\omega}\| = 0$ (\equiv pure translation along $\hat{\boldsymbol{s}}$):

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \mathcal{V}/\|v\| = \begin{bmatrix} \mathbf{0} \\ v/\|v\| \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \hat{\mathbf{s}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{0} \\ \text{normalized linear velocity of origin} \end{bmatrix}$$

 $h = \mathbf{S}_{\omega}^T \mathbf{S}_{v} = \boldsymbol{\omega}^T \boldsymbol{v} / \|\boldsymbol{\omega}\|^2$ $\hat{\mathbf{s}} = \mathbf{S}_{\omega} = \mathbf{\omega}/\|\mathbf{\omega}\|, \quad \|\mathbf{S}_{\omega}\| = 1$ $\dot{\theta} = \|\mathbf{\omega}\|$ is interpreted as angular velocity about \hat{s}

Pitch *h* is finite.

To find
$$m{q}$$
, use $m{v} - h m{\omega} = - m{\omega} imes m{q}$ or $(m{S}_v - h m{S}_\omega = - m{S}_\omega imes m{q})$

Pitch h is infinite, $\|\mathbf{S}_{\omega}\| = 0$ $\hat{m{s}} = m{S}_v = m{v}/\|m{v}\|, \ \|m{S}_v\| = 1$ $\dot{m{ heta}} = \|m{v}\|$ is interpreted as linear velocity along \hat{s}

Screw Axis Properties

 \diamond Since a screw axis **S** is just a normalized twist, the 4×4 matrix representation [S] of $S = (S_{\omega}, S_{\nu})$ is

$$[S] = \begin{bmatrix} [S_{\omega}] & S_{v} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

$$\mathbf{v} = \mathbf{S}\dot{\theta} \in \mathbb{R}^6 \quad \Rightarrow \quad [\mathbf{v}] = [\mathbf{S}]\dot{\theta} \in se(3)$$

• For any two frames $\{c\}$ and $\{d\}$, a screw axis represented as S_c in $\{c\}$ is related to its representation S_d in $\{d\}$ by:

$$\mathbf{S}_c = [\mathrm{Ad}_{\mathbf{T}_{cd}}]\mathbf{S}_d$$
 $\mathbf{S}_d = [\mathrm{Ad}_{\mathbf{T}_{dc}}]\mathbf{S}_c$

(changing the reference frame of a screw axis)

Example

Kinova lightweight 4-dof arm:

Rigid-Body Motions

000000000

What are the screw axis S_b and S_s for J4 and J2?

Exponential Coordinate Representation of Rigid-Body Motion

Rigid-Body Motions

Screw Motion

Instead of viewing a displacement as a rotation followed by a translation, both rotation and translation can be performed simultaneously.

Planar example of a screw motion:

Twists

The displacement can be viewed as a rotation of $\beta = 90^{\circ}$ about a fixed point s.

Rigid-Body Motions

 \equiv

Exponential Coordinates of Rigid-Body Motions

Chasles—Mozzi theorem states that every rigid-body displacement can be expressed as a finite rotation and translation about a fixed screw axis in space.

This theorem motivates a six-parameter representation of a configuration (or a homogeneous transformation $T \in SE(3)$ called the exponential coordinates as $S\theta \in \mathbb{R}^6$, where S is the screw axis and θ is the distance that must be traveled along the screw axis to take a frame from the origin *I* to *T*.

Note: **T** is equivalent to the displacement obtained by rotating a frame from *I* about *S*

• by an angle θ , or

Rigid-Body Motions

- at a speed $\dot{\theta} = 1$ rad/s for θ s, or
- at a speed $\dot{\theta} = \theta$ for 1s, or
- by constant twist ${m \mathcal V}$ for 1s. $(\mathcal{V}t = \mathbf{S}\theta)$

Constant Screw Motion:

A rotation θ + a translation d about/along a fixed screw axis **S**.

$$\boldsymbol{S} = \begin{bmatrix} \boldsymbol{S}_{\omega} \\ \boldsymbol{S}_{v} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}} \\ -\hat{\boldsymbol{s}} \times \boldsymbol{q} + h\hat{\boldsymbol{s}} \end{bmatrix} \quad \text{(for rotation with/without translation along } \hat{\boldsymbol{s}}\text{)}$$

$$S = \begin{bmatrix} S_{\omega} \\ S_{\omega} \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{s} \end{bmatrix}$$
 (for pure translation along \hat{s})

000

Exponential Coordinates of Rigid-Body Motions

As with rotations, we can define a matrix exponential (exp) and matrix logarithm (log). For any transformation matrix $T \in SE(3)$, we can always find a screw axis $S = (S_{\omega}, S_{v}) \in \mathbb{R}^{6}$ $(\|S_{\omega}\| = 1 \text{ or } S_{\omega} = \mathbf{0}, \|S_{v}\| = 1)$ and scalar $\theta \in \mathbb{R}$ such that $T = e^{[S]\theta}$.

```
exp: [S]\theta \in se(3) \rightarrow T \in SE(3) : e^{[S]\theta} = T = (R, p)
```

log: $T \in SE(3) \rightarrow [S]\theta \in se(3) : \log(T) = [S]\theta$

 $S\theta \in \mathbb{R}^6$: Exponential coordinates of $T \in SE(3)$

 $[S]\theta = [S\theta] \in se(3)$: Matrix logarithm of T (inverse of the matrix exponential)

Note: T and S have the same base.

Rigid-Body Motions

Twists

Matrix Exponential

exp:
$$[S]\theta \in se(3) \rightarrow T \in SE(3)$$
 : $e^{[S]\theta} = T = (R, p)$

 \clubsuit Finding T = (R, p) by having $S = (S_{\omega}, S_{v})$ and θ :

$$e^{[S]\theta} = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_v \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$G(\theta) = I\theta + (1 - \cos \theta)[S_{\omega}] + (\theta - \sin \theta)[S_{\omega}]^2 \in \mathbb{R}^{3 \times 3}$$

Rigid-Body Motions

000000000

Matrix Exponential: Remark

For a given
$$S_s$$
 or S_b : $(S_s = [Ad_{T_{sb}}]S_b)$

S is expressed in $\{s\}$

Body-frame displacement : $m{T}_{sb^{\prime\prime}} = m{T}_{sb}e^{[m{S}_b] heta}$

 \boldsymbol{S} is expressed in $\{b\}$

Matrix Logarithm

log:
$$T \in SE(3) \rightarrow [S]\theta \in se(3) : \log(T) = [S]\theta$$

- \clubsuit Finding $S = (S_{\omega}, S_{v})$ and $\theta \in [0, \pi]$ by having T = (R, p):
- (a) If tr $\mathbf{R}=3$ (or $\mathbf{R}=\mathbf{I}$), then set $\mathbf{S}_{\omega}=\mathbf{0}$, $\mathbf{S}_{v}=\mathbf{p}/\|\mathbf{p}\|$, and $\theta=\|\mathbf{p}\|$.
- (b) Otherwise, use the matrix logarithm $\log(\mathbf{R}) = [\mathbf{S}_{\omega}]\theta$ to determine \mathbf{S}_{ω} ($\widehat{\boldsymbol{\omega}}$ in the SO(3)algorithm) and $\theta \in [0, \pi]$. Then, S_v is calculated as

$$\mathbf{S}_{v} = \mathbf{G}^{-1}(\theta)\mathbf{p}$$

$$\mathbf{G}^{-1}(\theta) = \frac{1}{\theta}\mathbf{I} - \frac{1}{2}[\mathbf{S}_{\omega}] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\mathbf{S}_{\omega}]^{2} \in \mathbb{R}^{3\times3}$$

Rigid-Body Motions

Twists

Example

The initial frame $\{b\}$ and final frame $\{c\}$ are given. Find the screw motion that displaces the frame at T_{sh} to T_{sc} .

$$T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1\\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rigid-Body Motions

000000000

Twists

Wrenches

Rigid-Body Motions

Wrench

Consider a linear force \mathbf{f} acting on a rigid body at a point \mathbf{r} . Both $\mathbf{f}_b \in \mathbb{R}^3$ and $\mathbf{r}_b \in \mathbb{R}^3$ are represented in $\{b\}$. This force creates a torque or moment $\mathbf{m}_b \in \mathbb{R}^3$ in $\{b\}$ as

$$m_b = r_b \times f_b$$

We can package the moment and force together in a single six-dimensional vector called wrench (or spatial force) in $\{b\}$ as

$$oldsymbol{\mathcal{F}}_b = egin{bmatrix} oldsymbol{m}_b \ oldsymbol{f}_b \end{bmatrix} \in \mathbb{R}^6$$

$$\mathcal{F}_{S} = ?$$

Wrench

The **power** is a coordinate-independent quantity, i.e., the power generated (or dissipated) by an $(\mathcal{F},\mathcal{V})$ pair (wrench and twist) must be the same regardless of the frame in which it is represented:

$$\boldsymbol{\mathcal{F}}_a = \left[\operatorname{Ad}_{\boldsymbol{T}_{ba}}\right]^T \boldsymbol{\mathcal{F}}_b$$
 $\boldsymbol{\mathcal{F}}_b = \left[\operatorname{Ad}_{\boldsymbol{T}_{ab}}\right]^T \boldsymbol{\mathcal{F}}_a$

(changing the reference frame of a wrench)

Example

The robot hand shown is holding an apple with a mass of 0.1 kg in a gravitational field $g=10 \text{ m/s}^2$. The mass of the hand is 0.5 kg, $L_1=10 \text{ cm}$, and $L_2=15 \text{ cm}$. What is the force and torque measured by the six-axis force—torque sensor between the hand and the robot arm?

❖ If more than one wrench acts on a rigid body, the total wrench on the body is simply the vector sum of the individual wrenches, provided that the wrenches are expressed in the same frame.

Rigid-Body Motions

000000000

Review

Rigid-Body Motions

Rotations	Rigid-Body Motions
$R \in SO(3)$: 3×3 matrices $R^T R = RR^T = I$, $det(R) = 1$	$T \in SE(3)$: 4×4 matrices $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$, where $R \in SO(3)$, $p \in \mathbb{R}^3$
$R^{-1} = R^{\mathrm{T}}$	$T^{-1} = \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}} p \\ 0 & 1 \end{bmatrix}$
Change of coordinate frame:	Change of coordinate frame:
$\mathbf{R}_{ab}\mathbf{R}_{bc}=\mathbf{R}_{ac},\ \mathbf{R}_{ab}\mathbf{p}_b=\mathbf{p}_a$	$T_{ab}T_{bc}=T_{ac}, T_{ab}p_b=p_a$

Rigid-Body Motions

Rotations	Rigid-Body Motions
Rotating a frame $\{b\}$: $ R = \text{Rot}(\hat{\boldsymbol{\omega}}, \theta) $ $ R_{sb'} = RR_{sb}$:	Displacing a frame $\{b\}$:
Unit rotation axis is $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$, where $\ \hat{\boldsymbol{\omega}}\ = 1$	"Unit" screw axis is $\pmb{S} = \begin{bmatrix} \pmb{S}_{\omega} \\ \pmb{S}_{v} \end{bmatrix} \in \mathbb{R}^{6}$, where either (i) $\ \pmb{S}_{\omega}\ = 1$ or (ii) $\ \pmb{S}_{\omega}\ = 0$, $\ \pmb{S}_{v}\ = 1$
	For a screw axis $\{q, \hat{s}, h\}$ with finite h , $S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$
Angular velocity is $oldsymbol{\omega} = \hat{oldsymbol{\omega}}\dot{ heta}$	Twist is ${m {\cal V}}={m S}\dot{ heta}$

Rigid-Body Motions

Rotations	Rigid-Body Motions
For any $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3$, $ [\boldsymbol{\omega}] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3) $ Properties: For any $\boldsymbol{\omega}, \boldsymbol{x} \in \mathbb{R}^3, \boldsymbol{R} \in SO(3)$: $ [\boldsymbol{\omega}] = -[\boldsymbol{\omega}]^T, [\boldsymbol{\omega}] \boldsymbol{x} = -[\boldsymbol{x}] \boldsymbol{\omega}, $ $ [\boldsymbol{\omega}] [\boldsymbol{x}] = ([\boldsymbol{x}] [\boldsymbol{\omega}])^T, \boldsymbol{R} [\boldsymbol{\omega}] \boldsymbol{R}^T = [\boldsymbol{R} \boldsymbol{\omega}] $	For any $\mathbf{\mathcal{V}} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} \in \mathbb{R}^6$ or $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{\omega} \\ \mathbf{S}_{v} \end{bmatrix} \in \mathbb{R}^6$, $[\mathbf{\mathcal{V}}] = \begin{bmatrix} [\boldsymbol{\omega}] & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \in se(3),$ $[\mathbf{S}] = \begin{bmatrix} [\mathbf{S}_{\omega}] & \mathbf{S}_{v} \\ 0 & 0 \end{bmatrix} \in se(3)$
$\dot{R}R^{-1} = [\boldsymbol{\omega}_S], \ R^{-1}\dot{R} = [\boldsymbol{\omega}_b] (R \coloneqq R_{Sb})$	$\dot{T}T^{-1} = [\mathcal{V}_S], T^{-1}\dot{T} = [\mathcal{V}_b] (T \coloneqq T_{Sb})$
	$ [\mathrm{Ad}_{T}] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6} $ Properties: $[\mathrm{Ad}_{T}]^{-1} = [\mathrm{Ad}_{T^{-1}}],$ $ [\mathrm{Ad}_{T_{1}}][\mathrm{Ad}_{T_{2}}] = [\mathrm{Ad}_{T_{1}T_{2}}] $
Change of coordinate frame: $\hat{m{\omega}}_a = m{R}_{ab}\hat{m{\omega}}_b$, $m{\omega}_a = m{R}_{ab}m{\omega}_b$	Change of coordinate frame: $\mathbf{S}_a = [\mathrm{Ad}_{T_{ab}}]\mathbf{S}_b$, $\mathbf{\mathcal{V}}_a = [\mathrm{Ad}_{T_{ab}}]\mathbf{\mathcal{V}}_b$

Rigid-Body Motions

Rotations	Rigid-Body Motions
$\widehat{\boldsymbol{\omega}}_{\scriptscriptstyle S} = \boldsymbol{R}_{\scriptscriptstyle Sb} \widehat{\boldsymbol{\omega}}_{\scriptscriptstyle b}$	$S_s = [Ad_{T_{Sb}}]S_b, V_s = [Ad_{T_{Sb}}]V_b, [Ad_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix}$
Exponential coordinate for $\mathbf{R} \in SO(3)$: $\hat{\boldsymbol{\omega}}\theta \in \mathbb{R}^3$	Exponential coordinate for $ extbf{ extit{T}} \in SE(3)$: $ extbf{ extit{S}} extit{ heta} \in \mathbb{R}^6$
exp: $[\hat{\boldsymbol{\omega}}]\theta \in so(3) \to \boldsymbol{R} \in SO(3)$ $\boldsymbol{R} = \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \theta) = e^{[\hat{\boldsymbol{\omega}}]\theta}$ $\boldsymbol{R} = \boldsymbol{I} + \sin \theta [\hat{\boldsymbol{\omega}}] + (1 - \cos \theta) [\hat{\boldsymbol{\omega}}]^2$ (Rodrigues' formula for rotations)	$\exp: [\mathbf{S}]\theta \in se(3) \to \mathbf{T} \in SE(3)$ $\mathbf{T} = e^{[\mathbf{S}]\theta}$ $\mathbf{T} = \begin{bmatrix} e^{[\mathbf{S}_{\omega}]\theta} & \mathbf{G}(\theta)\mathbf{S}_{v} \\ 0 & 1 \end{bmatrix}$ $\mathbf{G}(\theta) = \mathbf{I}\theta + (1 - \cos\theta)[\mathbf{S}_{\omega}] + (\theta - \sin\theta)[\mathbf{S}_{\omega}]^{2}$
log: $\mathbf{R} \in SO(3) \to [\hat{\boldsymbol{\omega}}]\theta \in so(3)$ $\log(\mathbf{R}) = [\hat{\boldsymbol{\omega}}]\theta$	log: $T \in SE(3) \rightarrow [S]\theta \in se(3)$ $\log(T) = [S]\theta$
Moment change of coordinate frame: $m{m}_a = m{R}_{ab} m{m}_b$	Wrench change of coordinate frame: $\boldsymbol{\mathcal{F}}_a = (\boldsymbol{m}_a, \boldsymbol{f}_a) = \left[\operatorname{Ad}_{\boldsymbol{T}_{ba}}\right]^{\mathrm{T}} \boldsymbol{\mathcal{F}}_b$

Rigid-Body Motions