Capacitated Arc Routing Problem

CARP can be described as follows: consider an undirected connected graph G=(V,E), with a vertex set V and an edge set E and a set of required edges (tasks) $T\subseteq E$. A fleet of identical vehicles, each of capacity Q, is based at a designated depot vertex $v_0\in V$. Each edge $e\in E$ incurs a cost c(e) whenever a vehicle travels over it or serves it (if it is a task). Each required edge (task) $\tau\in T$ has a demand $d(\tau)>0$ associated with it.

The objective of CARP is to determine a set of routes for the vehicles to serve all the tasks with minimal costs while satisfying: a) Each route must start and end at v_0 ; b) The total demand serviced on each route must not exceed Q; c) Each task must be served exactly once (but the corresponding edge can be traversed more than once)

Capacitated Arc Routing Problem (CARP)

- Inputs:
 - An undirected connected graph G(V, E)
 - Cost c(e) > 0, and demand $d(e) \ge 0$ for $\forall e \in E$
 - The task set $T = \{ \tau \in E | d(\tau) > 0 \}$
 - A predefined vertex (depot) $v_0 \in V$, where a set of vehicles are based
 - Vehicle capacity Q

- The goal: to determine a set of routes for the vehicles with minimal costs, which satisfy:
 - ullet Each route starts and ends at v_0
 - Each task is served exactly once
 - The total demand of tasks served in each route $\leq Q$

- Solution representation
 - The route of a vehicle can be represented by
 - a) A sequence of vertices which the vehicle visits one by one
 - b) A sequence of tasks which the vehicle serves one by one
 - The second representation is more compact
 - The shortest path between the consecutive tasks can be calculated in polynomial time using Dijkstra algorithm

- Solution representation
 - Thus, we have a solution to CARP as:

$$s = (R_1, R_2, \dots, R_m)$$

m is the number of routes (vehicles). The kth route $R_k = (0, \tau_{k1}, \tau_{k2}, ..., \tau_{kl_k}, 0)$, where τ_{kt} and l_k denote the tth task and the number of tasks served in R_k , and 0 denotes a dummy task which is used to separate different routes. The cost and the demand of the dummy task are both 0 and its two endpoints are both v_0 (the depot). Moreover, since each task here is an undirected edge and it can be served from either direction, so each task in R_k must be specified from which direction it will be served. Specifically, $\tau_{kt} = \left(head(\tau_{kt}), tail(\tau_{kt})\right)$, where $head(\tau_{kt})$ and $tail(\tau_{kt})$ represent the endpoints of τ_{kt} , and τ_{kt} is served from $head(\tau_{kt})$ to $tail(\tau_{kt})$.

Problem formulation of CARP

Formally, the objective function of CARP is:

 $head(\tau)$ and $tail(\tau)$ represent the endpoints of task τ and specifies the direction from which τ is served, and $inv(\tau)$ represent the inverse direction

Problem formulation of CARP

$$TC(s) = \sum_{k=1}^{m} RC(R_k)$$

 $RC(R_k)$ is the route cost of route R_k , which can be computed as:

$$RC(R_k) =$$

$$\sum_{i=1}^{l_k} c(\tau_{ki}) + dc(v_0, head(\tau_{k1})) + \sum_{i=2}^{l_k} dc \left(tail(\tau_{k(i-1)}), head(\tau_{ki}) \right) + dc(tail(\tau_{kl_k}), v_0)$$

 $dc(v_i, v_j) > 0$ is the cost of the shortest path from v_i to v_j $(i \neq j)$