Lista de Exercícios – Atividade 6

Referência:

PATTERSON, David A.; HENNESSY, John L. Organização e Projeto de Computadores: A Interface Hardware/Software. 5 ed. Rio de Janeiro: Elsevier, 2017.

Exercício 5.1

Neste exercício, veremos as propriedades de localidade de memória do cálculo de matriz. O código a seguir é escrito em C, em que os elementos dentro da mesma linha são armazenados de forma contígua. Suponha que cada palavra seja um inteiro de 32 bits.

a. for (I=0; I<8; I++) for (J=0; J<8000; J++) A[I][J]=B[I][0]+A[J][I];

5.1.1 [5] <§5.1> Quantos inteiros de 32 bits podem ser armazenados em uma linha de cache de 16 bytes?

Em uma linha de cache de 16 bytes podem ser armazenadas 4 de 32 bits

5.1.2 [5] <§5.1> Referências a quais variáveis exibem localidade temporal?

I e J

5.1.3 [5] <§5.1> Referências a quais variáveis exibem localidade espacial?

AeB

Exercício 5.2

As caches são importantes para fornecer uma hierarquia de memória de alto desempenho aos processadores. A seguir se encontra uma lista de referências a endereços de memória de 32 bits, dadas como endereços de palavra.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

5.2.1 [10] <§5.3> Para cada uma dessas referências, identifique o endereço binário, a tag e o índice dado uma cache de mapeamento direto com 16 blocos de uma palavra. Além disso, indique se cada referência é um acerto ou uma falha, supondo que a cache esteja inicialmente vazia.

índice e TAG em decimais

End. Decimal	End. Binário	TAG	Índice	hit/miss
3	0000 0011	0	3	miss
180	1011 0100	11	4	miss
43	0010 1011	2	11	miss
2	0000 0010	0	2	miss
191	1011 1111	11	15	miss
88	0101 1000	5	8	miss
190	1011 1110	11	14	miss
14	0000 1110	0	14	miss
181	1011 0101	11	5	miss
44	0010 1100	2	12	miss
186	1011 1010	11	10	miss
253	1111 1101	15	13	miss

5.2.2 [10] <§5.3> Para cada uma dessas referências, identifique o endereço binário, a tag e o índice dado uma cache de mapeamento direto com blocos de duas palavras e um tamanho total de oito blocos. Liste também se cada referência é um acerto ou uma falha, supondo que a cache esteja inicialmente vazia.

índice e TAG em decimais

End. Decimal	End. Binário	TAG	Índice	hit/miss
3	0000 0011	0	3	miss
180	1011 0100	11	4	miss
43	0010 1011	2	11	miss
2	0000 0010	0	2	hit
191	1011 1111	11	15	miss
88	0101 1000	5	8	miss
190	1011 1110	11	14	hit
14	0000 1110	0	14	miss
181	1011 0101	11	5	hit
44	0010 1100	2	12	miss
186	1011 1010	11	10	miss
253	1111 1101	15	13	miss