

Institutt for matematiske fag

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensdato: 3. desember 2016		
Eksamenstid (fra-til): 09:00-13:00		
Hjelpemiddelkode/Tillatte hjelpemidler: C: Bestemt, enkelt kalkulator og Rottmann mater	matisk formelsamling.	
Annen informasjon:		
Alle svar må begrunnes.		
Du må ha med nok mellomregninger til at tenken	nåten din klart fremgå	r.
Oppgaven består av 25 delpunkter som har lik ve	ekt ved sensur.	
To sider med formler er vedlagt bakerst.		
Målform/språk: bokmål		
Antall sider: 3		
Antall sider vedlegg: 2		
		Kontrollert av:
Informasjon om trykking av eksamensoppgave		
Originalen er: 1-sidig □ 2-sidig ⊠		
sort/hvit ⊠ farger □	Dato	Sign
skal ha flervalgskjema □		ū

Oppgave 1 La
$$f(x) = x^3$$
 og $\begin{array}{c|c} x & 0 & 1 & 2 \\ \hline y & 0 & 1 & 8 \end{array}$.

- a) Finn andregradspolynomet p(x) som interpolerer punktene.
- b) Approksimer integralet $\int_0^2 f(x) dx$ ved Simpson's metode ved å beregne f i tre punkter.
- c) Beregn integralene $\int_0^2 f(x) dx$ og $\int_0^2 p(x) dx$ og forklar sammenhengen med de foregående beregningene.
- d) Beregn en approksimasjon av f'(1) ved sentrale differanser og funksjonsverdiene i punktene x = 0, x = 1 og x = 2.
- e) Beregn p'(1) og forklar sammenhengen med de foregående beregningene.

Oppgave 2 I denne oppgaven skal du se på løsning av ligningen $y' = xy^2$ med startverdi y(0) = 1.

- a) Vis at $y = (1 \frac{x^2}{2})^{-1}$ er en løsning.
- b) Hvilken metode er implementert i følgende Python kode.

```
\begin{array}{l} \textbf{def} \ \ \textbf{metode} \ \ (N) \ : \\ x = 0 \\ y = 1 \\ h = 0.1 \\ \textbf{def} \ \ f \ \ (x \ , \ y \ ) \ : \\ \textbf{return} \ \ (x \ * \ y \ * \ y) \\ \textbf{for} \ \ \textbf{n} \ \ \textbf{in} \ \ \textbf{range} \ \ (0 \ , N) \ : \ \# \ 0 <= \ n <= \ N\!\!-\!1 \\ A = \ h * \ f \ (x \ , y) \\ B = \ h * \ f \ (x \ + \ h \ , \ y \ + \ A) \\ x = x \ + \ h \\ y = y \ + \ 0.5 * (A \ + \ B) \\ \textbf{return} \ \ y \end{array}
```

- c) Hva blir resultatet med N=1?
- d) Beregn en approksimasjon til y(0.1) ved et steg med trapesmetoden.
- e) Hvilken orden har metodene?

Oppgave 3 I denne oppgaven er $\mathcal{L}(y)$ Laplace transformasjon av y(t).

- a) Beregn $\mathcal{L}(8\cos(2t))$.
- **b)** Beregn $\mathcal{L}^{-1}\left(\frac{\exp(-\pi s)}{s^2+4}\right)$.
- c) Finn y(t) når $y'' + 4y = \delta(t \pi)$, y(0) = 8 og y'(0) = 0.
- **d)** Finn $\mathcal{L}(1*y)$ når $y(t) = \frac{t^3}{3!}$.
- e) Finn y(t) når $y(t) \int_0^t y(\tau) \sin(t-\tau) d\tau = t^2$.

Oppgave 4 La g være den odde utvidelsen til

$$f(x) = \begin{cases} x & \text{hvis } 0 \le x < \frac{1}{2}, \\ 1 - x & \text{hvis } \frac{1}{2} \le x \le 1. \end{cases}$$

- a) Skisser grafen til y = g(x) for $-1 \le x \le 1$. Finn Fourier-sinusrekken til f.
- **b)** Vis at $\pi^2 = 8(1 + 1/3^2 + 1/5^2 + 1/7^2 + \cdots)$.
- c) Finn løsningen u(x,t) til varmeligningen

$$u_t = u_{xx}, \ 0 < x < 1, \ 0 < t$$

som oppfyller randbetingelsene u(0,t)=u(1,t)=0 og startbetingelsen u(x,0)=f(x) ved separasjon av variable. Hint: Start med u(x,t)=F(x)G(t).

- d) Vis at v(x,t) = u(x,t) + 1 x løser varmeligningen $v_t = v_{xx}$ med randbetingelsene v(0,t) = 1, v(1,t) = 0 og startbetingelsen v(x,0) = f(x) + 1 x. Forklar hvordan denne varmeligningen kan løses ved Crank-Nicolson metoden.
- e) La X(t) = u(1/4, t) = u(3/4, t) og Y(t) = u(1/2, t). Beregn en approksimasjon til X(1/16) og Y(1/16) ved å beregne et steg med den implisitte Euler metoden.

Oppgave 5 La $z = h(x, y) = |(x, y)| = \sqrt{x^2 + y^2}$ og $\vec{a} = (1, -1)$.

- a) Beregn gradienten ∇h og den retningsderiverte $D_{\vec{a}}h$ i $P^* = (10, 10)/\sqrt{2}$.
- **b)** Skisser grafen til z = h(x, y) og forklar hvordan du kunne funnet ∇h direkte ved et geometrisk argument.
- c) La $Q = (15, 15)/\sqrt{2}$. Skisser nivåkurven gitt av h(x, y) = 10, punktet Q, $(\nabla h)(Q)$ og tangentlinjen L til nivåkurven i punktet P^* .

Forklar hvorfor tangentlinjen L er gitt av punktene P som oppfyller ligningen $(\nabla h)(Q) \cdot (Q - P) = 5$.

Oppgave 6 En robot har posisjon R i et rektangulært rom med hjørner A, B, C, D hvor sidekantene har lengde 20m og 10m. Roboten finner sin posisjon ved signaler sendt ut fra hjørnene.

- a) Roboten måler avstandene |R A| = 15.5m og |R B| = 6.5m. Tegn figur med skala slik at 1m tegnes som 1cm og finn posisjonen $R_0^* = (x_0, y_0)$ med en nøyaktighet på 1m ved å måle på figuren.
 - De to avstandene gir to ikke-lineære ligninger som kan løses ved Newton's metode. La R_0^* være startverdien og beregn en bedre approksimasjon R_1^* ved å utføre et steg med Newton's metode.
- b) La startverdien være $R_0 = C$ hvor C er hjørnet nærmest hjørne B. Forklar hvordan en bedre approksimasjon R_1 kan finnes ved en geometrisk tolkning av Newton's metode i dette tilfellet.

Finn R_1 ved å utføre et steg med Newton's metode med den geometriske metoden.

Anta at roboten kun har målingen |R - B| = 6.5m tilgjengelig. Hvilket punkt R_B vil Newton's metode konvergere mot da?

Anta at roboten har måling av avstanden fra alle fire hjørner tilgjengelig. Forklar hvordan Newton's metode kan brukes til å finne posisjonen R.

To sider med formler er vedlagt.

Numerics

- Fixed-point iteration: $\mathbf{x}^{(k+1)} = \mathbf{g}(\mathbf{x}^{(k)})$ converges if $|\mathbf{g}'| \leq K < 1$
- Vectorial Newton's method: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)}$ and $\mathbf{h}^{(k)}$ is the smallest least-squares solution of $\mathbf{f}'(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$ with $\mathbf{f}'_{ij} = \partial_j f_i$
- \bullet Lagrange interpolation polynomial:

$$p_n(x) = \sum_{k=0}^n L_k(x) f(x_k)$$
 and $L_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i}$

- Newton series: $f(x) = f[x_0] + f[x_0, x_1](x x_0) + \cdots$ $+ f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1}) + \frac{f^{(n+1)}(t)}{(n+1)!}(x - x_0) \cdots (x - x_n)$
- Taylor series: $f(x) = f(x_0) + f'(x_0)(x x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x x_0)^n + \frac{f^{(n+1)}(t)}{(n+1)!}(x x_0)^{n+1}$
- Trapezoid rule: $\int_a^b f(x) dx = h \left[\frac{1}{2} f_0 + f_1 + f_2 + \ldots + f_{n-1} + \frac{1}{2} f_n \right] \frac{b-a}{12} h^2 f''(t)$
- Simpson rule: $\int_a^b f(x) dx = \frac{h}{3} \left[f_0 + 4f_1 + 2f_2 + \ldots + 4f_{2m-1} + f_{2m} \right] \frac{b-a}{180} h^4 f^{(4)}(t)$
- Jacobi iteration: $\mathbf{x}^{(k+1)} = \mathbf{b} \mathbf{L}\mathbf{x}^{(k)} \mathbf{U}\mathbf{x}^{(k)}$ with $\mathbf{A} = \mathbf{I} + \mathbf{L} + \mathbf{U}$
- Gauß–Seidel iteration and Liebmann's method: $\mathbf{x}^{(k+1)} = \mathbf{b} \mathbf{L}\mathbf{x}^{(k+1)} \mathbf{U}\mathbf{x}^{(k)} \text{ with } \mathbf{A} = \mathbf{I} + \mathbf{L} + \mathbf{U}$

• ADI:
$$-\Delta_x u^{(n+\frac{1}{2})} = \Delta_u u^{(n)} + \rho, -\Delta_u u^{(n+1)} = \Delta_x u^{(n+\frac{1}{2})} + \rho$$

- Euler method: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_n, \mathbf{y}_n)$
- Improved Euler method: $\mathbf{k}_1 = h\mathbf{f}(x_n, \mathbf{y}_n), \ \mathbf{k}_2 = h\mathbf{f}(x_n + h, \mathbf{y}_n + \mathbf{k}_1),$ $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}\mathbf{k}_1 + \frac{1}{2}\mathbf{k}_2$
- The classical Runge–Kutta method:

$$\mathbf{k}_{1} = h\mathbf{f}(x_{n}, \mathbf{y}_{n}), \qquad \mathbf{k}_{2} = h\mathbf{f}(x_{n} + h/2, \mathbf{y}_{n} + \mathbf{k}_{1}/2),$$

$$\mathbf{k}_{3} = h\mathbf{f}(x_{n} + h/2, \mathbf{y}_{n} + \mathbf{k}_{2}/2), \qquad \mathbf{k}_{4} = h\mathbf{f}(x_{n} + h, \mathbf{y}_{n} + \mathbf{k}_{3}),$$

$$\mathbf{y}_{n+1} = \mathbf{y}_{n} + \frac{1}{6}\mathbf{k}_{1} + \frac{1}{3}\mathbf{k}_{2} + \frac{1}{3}\mathbf{k}_{3} + \frac{1}{6}\mathbf{k}_{4}$$

- Implicit Euler method: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(x_{n+1}, \mathbf{y}_{n+1})$
- Trapezoid and Crank-Nicolson methods: $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{2} \left[\mathbf{f}(x_n, \mathbf{y}_n) + \mathbf{f}(x_{n+1}, \mathbf{y}_{n+1}) \right]$
- Finite differences: $u'(x) \approx \frac{u(x+h)-u(x-h)}{2h}, \ u''(x) \approx \frac{u(x-h)-2u(x)+u(x+h)}{h^2}$

Fourier series:
$$f(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx, \ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Fourier transform

$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} dk$	$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$
f * g(x)	$\sqrt{2\pi}\hat{f}(k)\hat{g}(k)$
$f^{(n)}(x)$	$(ik)^n \hat{f}(k)$
e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{-k^2/4a}$
$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{a}{k^2 + a^2}$
$\frac{1}{1+x^2}$	$\sqrt{\frac{\pi}{2}}e^{- k }$
f(x) = [x < a]	$\sqrt{\frac{2}{\pi}} \frac{\sin ka}{k}$

Laplace transform

f(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt$
$e^{at}f(t)$	F(s-a)
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$
$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
f(t-a)u(t-a)	$e^{-sa}F(s)$
$\delta(t-a)$	e^{-as}