Transit Access to Employment across Canada: Taking Stock of Income Inequalities

Jeff Allen & Steven Farber,

SAUSy Lab,

Department of Geography & Planning,

University of Toronto

Background:

- + Across Canada, millions of urban residents rely on transit to commute to work
- + However, many neighbourhoods do not have sufficient transit access
- + Low accessibility, compounded with other forms of social disadvantage, can result in transport poverty (e.g. Lucas, 2012)
- + This can result in limited activity participation (e.g. Paez et al., 2009)

Background:

- + Increasing income inequality in Canadian cities (e.g. Walks & Twigge-Molecey, 2014)
- + Higher costs of living in city centres, and increasing concentration of poverty in suburban areas (e.g. Ades et al., 2012)
- + Suburban areas tend to have relatively worse transit service
- + Governments across Canada are investing billions in transit (e.g. Canadian Federal Budget, 2017)
- + The extent of transport poverty is unknown at the national scale.

Objectives:

- 1 Compute accurate measures of access to employment for Canadian cities.
- **2** Analyze the inequality of transit access to jobs, with respect to socio-economic status.
- **3** Estimate the number of people at risk of transport poverty.

Data Sources:

2016 Canadian Census

Census Metropolitan Areas (CMAs) - boundaries of analysis

Dissemination Areas (DA) - household demographic and socio-economic data

Census Tracts (CT) - employment data

Data Sources:

Multi-modal network graphs

- > Built with OpenTripPlanner & OSRM
- > Inputs: OpenStreetMap, GTFS (circa May 2016)
- > used to compute origin-destination matrices from home locations to work locations

Computing Travel Times

 $t_{i,j,m}$ = travel time from i to j for a departure time m

Measuring Access to Jobs:

Common approach

$$A_i = \sum_{j=1}^{J} O_j f(t_{i,j})$$

 $A_i = \text{access to jobs at location } i$ $O_j = \text{number of jobs at location } j$ $f(t_{i,j}) = \text{gravity function}$

Accounting for competition

$$A_i = \sum_{j=1}^{J} \frac{O_j f(t_{i,j})}{L_j}$$

$$L_j = \sum_{i=1}^{I} \frac{P_i f(t_{i,j})}{A_i}$$

 $L_j = \text{access to the labour force from } j$ $P_i = \text{number of workers at location } i$

Simulation:

Zone A	Zone X	Zone B	Zone Y	Zone C	
0-	0	- 0-	0	 0	
P = 500	O = 700	P = 600	O = 800	P = 400	

$$A_i = \sum_{j=1}^{J} \frac{O_j f(t_{i,j})}{L_j}$$

$$L_j = \sum_{i=1}^{I} \frac{P_i f(t_{i,j})}{A_i}$$

Accounting for mode and any imbalance in the number of jobs and the size of the labour force

$$A_{i,\lambda} = \frac{\bar{A}_0}{\bar{A}_c} \sum_{j=1}^{J} \frac{O_j f(t_{i,j,\lambda}) f(t_{i,j,\lambda})}{L_j}$$

$$L_{j} = \sum_{\forall \lambda \in \Lambda} \sum_{i=1}^{I} \frac{\alpha_{i,\lambda} P_{i} f(t_{i,j,\lambda})}{A_{i,\lambda}}$$

$$A_i = access to jobs at location i$$

$$O_j = \text{number of jobs at location } j$$

$$f(t_{i,j}) = \text{gravity function}$$

$$L_j = access to the labour force from j$$

$$P_i$$
 = number of workers at location i

$$\lambda = \text{travel mode}$$

Summary of Transit Access by Region

Inequalities of Transit Access

Gini Coefficient:

	Transit	Auto	
	Access	Access	
Toronto	0.493	0.305	
Montreal	0.499	0.317	
Vancouver	0.510	0.317	
Calgary	0.454	0.208	
Ottawa	0.416	0.240	
Edmonton	0.458	0.193	
Quebec City	0.416	0.174	
Winnipeg	0.325	0.134	
All	0.489	0.289	

Lorenz Curve

- transit

auto

— line of equality

Transit Access & Income:

Transit Access & Income:

In the lowest quintile of transit access there are

300,000 people living below the poverty line

125,000 people who are unemployed

110,000 recent immigrants (2011-2016)

Transit Access & Income:

Policy Implications:

- + Focus suburban transit investments in areas which have relatively low socio-economic status and low transit access.
- + Promote higher density land-use planning to help reduce travel times between activity locations
- + Consider demand responsive transit or subsidized rideshare programs in areas with smaller populations

Conclusion:

Link for code and slides:

https://github.com/SAUSy-Lab/canada-transit-access

Contact:

jeff.allen@mail.utoronto.ca

Work supported by a grant from the Ontario Ministry of Research, Innovation, and Science and a SSHRC Master's scholarship

Table 1: Summary statistics by urban region

	Area	D 1.43	$_{ m opulation}$ Jobs §	$\begin{array}{c} {\rm Labour} \\ {\rm Force}^{\S} \end{array}$	Transit Mode Share †	Mean Commute Time*	
	(km^2)	Population				Auto	Transit
Toronto	12,160	7,951,192	3,462,185	4,524,570	18.4%	29.0	49.2
Montreal	4,605	4,098,927	1,757,150	$2,\!189,\!115$	22.2%	26.8	44.4
Vancouver	4,935	2,745,461	1,091,340	$1,\!498,\!535$	18.7%	27.2	43.8
Calgary	5,110	1,392,609	587,290	816,385	15.9%	24.1	41.6
Ottawa	6,770	$1,\!323,\!783$	595,920	727,160	20.1%	24.7	42.2
Edmonton	9,440	1,321,426	553,660	758,150	11.3%	24.2	40.2
Quebec City	3,410	800,296	375,750	437,325	11.3%	21.2	35.1
Winnipeg	4,310	778,489	344,330	$424,\!250$	13.4%	22.6	35.7

[†] Percent of work commute trips by transit

^{*} In minutes

[§] Jobs are only those in the region with a "usual place of work" according to the census, while the labour force also includes the unemployed, those who work at home, and those without a fixed place of work.