If $f \colon X \to Y$ is a continuous mapping between Hausdorff topological spaces X and Y, prove that

$$f(\overline{E}) \subseteq \overline{f(E)}$$

for every set $E \subseteq X$. Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.

Solution. ff

- (a). Let X and Y be metric spaces. Prove that for $f: X \to Y$, TFAE:
 - (a) f is uniformly continuous on X;
 - (b) for any sequences (x_n) and (x'_n) in X satisfying $d_X(x_n, x'_n) \to 0$, one has $d_Y(y_n, y'_n) \to 0$, where $y_n = f(x_n), y'_n = f(x'_n)$.
- (b). Identify, with proof, all real numbers p for which the function $f(x) = x^p$ is uniformly continuous on $X = (0, +\infty)$. [It's OK to use a little calculus to support your findings.]
- (a). Solution. ff
- (b). Solution. ff

A metric space (X, d) is called an ultrametric space if d satisfies the condition

$$\forall x, y, z \in X, \quad d(x, z) \le \max\{d(x, y), d(y, z)\}.$$

(This makes d itself "an ultrametric".) Show that in any ultrametric space (X,d),...

- (a). every open ball $\mathbb{B}[x;r)$ is a closed set;
- (b). one has $y \in \mathbb{B}[x;r)$ if and only if $\mathbb{B}[y;r) = \mathbb{B}[x;r)$; and
- (c). if $\mathbb{B}[x;r_1) \cap \mathbb{B}[y;r_2) \neq \emptyset$, then one of these balls must contain the other, i.e.,

$$\mathbb{B}[x; r_1) \subseteq \mathbb{B}[y; r_2) \neq \emptyset$$
 or $\mathbb{B}[x; r_1) \supseteq \mathbb{B}[y; r_2) \neq \emptyset$

[The "p-adic numbers" form an ultrametric space of interest in number theory.]

- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff

Given Hausdorff Topological Spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) , and continuous functions $f, g: X \to Y$, consider the equalizer:

$$E = \{ x \in X : f(x) = g(x) \}.$$

Prove that E is closed in X.

Solution. ff

Three continuous functions $f, g, h \colon \mathbb{R} \to \mathbb{R}$ are related by the identity

$$f(x+y) = g(x) + h(y)$$

- (a). In the special case where f = g = h, show that there must be a real number m such that f(t) = mt for all real t.
- (b). Drop the hypothesis that f, g, h are identical. Describe the most general trio of continuous functions compatible with the given identity.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff

Here's a key fact every math student should know:

Every nonempty open set in \mathbb{R} can be expressed as a finite or countable union of disjoint open intervals Prove this, referring to a given open set $U \neq \emptyset$, by following these steps:

- (a). For each $x \in U$, let $I(x) = (\alpha(x), \beta(x))$, where $\alpha(x) = \inf\{a \colon \text{ one has } x \in (a,b) \text{ for some } (a,b) \subseteq U\} \\ \beta(x) = \sup\{a \colon \text{ one has } x \in (a,b) \text{ for some } (a,b) \subseteq U\} \\ \text{Prove that } x \in I(x) \text{ and } I(x) \subseteq U, \text{ while } \alpha(x) \notin U \text{ and } \beta(x) \notin U. \text{ [Argue carefully, since both } \alpha(x) = -\infty \\ \text{and } \beta(x) = +\infty \text{ are possible.]}$
- (b). Let $\mathcal{G} = \{I(x) : x \in U\}$. Show that any two intervals in \mathcal{G} must be either disjoint or identical.
- (c). Explain why the key fact stated above must hold.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff