Channel Coding ARQ and Reliability

November 25, 2021

Recall

The Open Systems Interconnection model (OSI)

Application Presentation Session Transport Network Data Link **Physical**

Recall

The Open Systems Interconnection model (OSI)

Application Presentation Session **Transport** Network Data Link **Physical**

Web-Browser

IP MAC

TCP/UDP

RJ45, 802.11PHY, 1000BASE-T

Recall

The Open Systems Interconnection model (OSI)

Sockets

Network stack from users perspective

 $\begin{array}{l} \mathsf{ARQ} \\ \mathsf{Why} \ \mathsf{do} \ \mathsf{we} \ \mathsf{need} \ \mathsf{ARQ?} \end{array}$

ARQ Acknowledgement

ARQ Timeout problem

$\begin{array}{l} \mathsf{ARQ} \\ \mathsf{Sequence} \ \mathsf{number}. \ \mathsf{Stop}\text{-}\mathsf{and}\text{-}\mathsf{wait}. \end{array}$

ARQ Frame Timing

$$t_0 = 2t_{prop} + t_f + 2t_{proc} + t_{ack} \approx RTT + 2t_{proc} + \frac{n_f + n_{ack}}{Rate}$$

ARQ Timing

- Which timeout should we choose?
 - Not too big
 - Not too small
- Easy to define for specific LAN. Little variation.
- Difficult over the Internet. High variation.

ARQ Adaptive Timeout

Simple Timeout calculation scheme 1 . Smoothed RTT + variance.

- $SRTT_{N+1} = 0.9 \cdot SRTT_N + 0.1 \cdot RTT_{N+1}$
- $Svar_{N+1} = 0.9 \cdot Svar_N = 0.1 \cdot |RTT_{N+1} SRTT_{N+1}|$
- $Timeout_N = SRTT_N + 4 \cdot Svar_N$

ARQ Adaptive Timeout

Stop And Wait Efficiency

Probability of Failure¹:

$$P_f = 1 - (1 - plr)^2$$

Average total time to transmit a packet [1]:

$$E[t_{packet}] = t_0 + \frac{t_{out}P_f}{1 - P_f}$$

- Effective information transmission rate: $R_{eff} = \frac{n_f n_{headers}}{F[t_{resolve}]}$
- Associated transmission efficiency: $\eta = \frac{R_{eff}}{Rate}$

¹plr stands for Packet Loss Rate

Stop And Wait Efficiency

Stop And Wait Send time simulation

Sliding Window Go Back N. Principle

Sliding Window Go Back N. Principle

Sliding Window Go Back N. Principle

Sliding Window Efficiency of GoBack-N

- Probability of Failure: $P_f = plr$
- Average total time to transmit a packet [1]. Windows size W_s should be selected so that the channel will be busy all the time.

$$E[t_{packet}] = t_f \frac{1 + (W_s - 1)P_f}{1 - P_f}$$

- Effective information transmission rate: $R_{eff} = \frac{n_f n_{headers}}{E[t_{nocleat}]}$
- Associated transmission efficiency: $\eta = \frac{R_{eff}}{Rate}$

Sliding Window Efficiency of GoBack-N

Sliding Window Selective Repeat. Principle

Sliding Window Selective Repeat. Principle

Sliding Window Selective Repeat. Principle

Sliding Window Efficiency of Selective Repeat

- Probability of Failure: $P_f = plr$
- Average total time to transmit a packet [1]. Windows size W_s should be selected so that the channel will be busy all the time.

$$E[t_{packet}] = \frac{t_f}{1 - P_f}$$

- Effective information transmission rate: $R_{eff} = \frac{n_f n_{headers}}{E[t_{packet}]}$
- Associated transmission efficiency: $\eta = \frac{R_{\text{eff}}}{R_{\text{ate}}}$

Sliding Window Efficiency of Selective Repeat

Task 1 Echo Server


```
user@pcl:-$./echo-server -p 8888 --proto udp
Server is listenning on UDP port 8888...
Connection from 192.168.0.6...
Client message: Your mouth is deep as a cave!
Client message: That was an echo))))

client message: That was an echo))))
```

Task 2 Network condition simulation

Your task is to create Python program which transmits files via network under harsh network conditions.

Task 2 Network condition simulation

Filesize: 1 GB Bandwidth: 100 Mbps MTU: 1512 B

RTT, msec	PLR	4 credits	8 credits	11 credits	15 credits
1	0 %	25 min	20 min	15 min	10 min
10	1 %	30 min	25 min	20 min	15 min
10	10 %		30 min	25 min	20 min
100	10 %			30 min	25 min
1000	1 %				30 min

Table 1: Cases and credits

Stop-and-Wait gets 4 credits. Go-Back-N gets 8 credits. Selective repeate gets 11 credits.

Task 2 Network condition simulation

to set delays and losses on eth0 interface
tc qdisc add dev eth0 root netem delay 10ms loss 1.0%
to remove delays and losses on eth0 interface
tc qdisc del dev eth0 root netem delay 10ms loss 1.0%
to limit bandwith on eth0 interface
tc qdisc add dev eth0 root tbf rate 100mbit
to check network parammeters
iperf3 -s -p 8888 # server side
iperf3 -c 127.0.0.1 -p 8888 -u -b 1000m # client side

¹How to limit bandwidth on Linux to better test your applications

Task 2 How it should look like


```
. . .
                                                                 . . .
user@pc1:~$ ./server -p 8888 > file
                                                                  user@pc2:~$ dd if=/dev/urandom of=file bs=1G count=1
                                                                  user@pc2:~$ ls -lah file
Server is listenning on UDP port 8888....
                                                                  -rwxrwxrwx 1 user user 1G Oct 28 18:21 file
Connection from 192.168.0.6...
                                                                  user@pc2:~$ md5sum ./file
 Transmission is over.
                                                                  a7931b2aa3348a0b68286c8ea4ba6a11 file
Transmission time is 123.01 sec.
                                                                  user@pc2:~$ cat file | ./sender -a 192.168.0.5 -p 8888
user@pc1:~$ ls -lah file
-rwxrwxrwx 1 user user 1G Oct 28 18:47 file
                                                                  Transmission started.
                                                                  Transmission is over.
user@pc1:~$ md5sum ./file
a7931b2aa3348a0b68286c8ea4ba6a11 file
                                                                  Transmission time is 122 sec
```

References and further readings

- [1] Leon-Garcia, A., & Widjaja, I. (2000). Communication networks: fundamental concepts and key architectures (Vol. 2). New York: McGraw-Hill.
- 2 Computer Networking: A Top-Down Approach. / Interactive Animations
- [3] TU Berlin. Computer Networks An Animated Approach
- [4] University Washington. Computer Networks Retransmissions
- [5] University of Colorado. Peer-to-Peer Protocols and Local Area Networks

Thanks for your attention