Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Congruence

Exercice 1

1. Trouver

 $999 \cdot 1998 \mod 1999, \qquad 136^7 \mod 137, \qquad 1997 \cdot 1998 \cdot 1999 \cdot 2000 \mod 2001.$

2. Trouver $2792^{217} \mod 5$ et $10^{1000} \mod 13$.

[002240]

Exercice 2

1. Examiner les carrés $a^2 \mod n$ pour n = 3, 4, 8.

2. Examiner $a^3 \mod 9$ et $b^4 \mod 16$.

[002241]

Exercice 3

Passer $\mod n$ avec un module approprié et montrer que chacune des équations suivantes n'a aucune solution dans \mathbb{Z} :

1. $3x^2 + 2 = y^2$;

2. $x^2 + y^2 = n$ pour n = 2003, 2004;

3. $x^2 + y^2 + z^2 = 1999$;

4. $x^3 + y^3 + z^3 = 5$;

5. $x_1^4 + x_2^4 + \dots + x_{15}^4 = 7936.$

[002242]

Exercice 4

On dit que $a \mod n$ est inversible si il existe $b \mod n$ tel que $ab \equiv 1 \mod n$.

1. Trouver tous les éléments inversibles modulo 5, 6, 9, 11.

2. Trouver pgcd(107,281) et sa representation linéaire en utilisant *l'algorithme d'Euclide*.

3. Trouver l'inverse de 107 mod 281 et l'inverse de 281 mod 107.

4. Montrer que $a \mod n$ est inversible ssi a et n sont premiers entre eux.

[002243]

Exercice 5

Trouver toutes les solutions dans \mathbb{Z} :

1. $2x + 3 \equiv 10 \mod 13$;

2.
$$\begin{cases} 2x + 3y \equiv 5 \mod 7 \\ 5x + 2y \equiv 2 \mod 7; \end{cases}$$

3. $x^2 + 2x + 14 \equiv 0 \mod 17$.

Exercice 6 Le petit théorème de Fermat

Soit p un nombre premier et a un nombre premier à p. Montrer que :

- 1. $am \equiv an \mod p \operatorname{ssi} m \equiv n \mod p$;
- 2. La suite $a, 2a, 3a, \ldots, (p-1)a \mod p$ est une permutation de la suite $1, 2, 3, \ldots, (p-1) \mod p$;
- 3. $a^{p-1} \equiv 1 \mod p$.

[002245]

Exercice 7

- 1. Examiner $7^n + 11^n \mod 19$.
- 2. Trouver $2792^{217} \mod 5$ et $10^{1000} \mod 13$.
- 3. Montrer que 13 divise $2^{70} + 3^{70}$ et 11 divise $2^{129} + 3^{118}$.

[002246]

Exercice 8 Théorème de Wilson

Soit p = 2m + 1 un nombre premier. Montrer que :

- 1. $(p-1)! \equiv -1 \mod p$;
- 2. $(m!)^2 \equiv (-1)^{m+1} \mod p$.

[002247]

Exercice 9

Soit p > 2 un nombre premier.

- 1. Soit a premier à p. Supposons que la congruence $x^2 \equiv a \mod p$ possède une solution. Montrer que $a^{(p-1)/2} \equiv 1 \mod p$.
- 2. La congruence $x^2 \equiv -1 \mod p$ a une solution ssi $p \equiv 1 \mod 4$.

[002248]