Análisis Armónico: Taller 2

19 de mayo de 2025

Universidad Nacional de Colombia

Ricardo Ariel Pastrán Ramirez

Andrés David Cadena Simons

acadenas@unal.edu.co

Problema 1:

Convolución

(I) Pruebe que si $f \in L^1(\mathbb{R}^n)$ y $g \in L^p(\mathbb{R}^n)$, con $1 \leq p \leq 2$, entonces

$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

en $L^{p'}(\mathbb{R}^n)$, donde $\frac{1}{p} + \frac{1}{p'} = 1$.

(II) Si $f \in L^p(\mathbb{R}^n)$ y $g \in L^{p'}(\mathbb{R}^n)$, con $\frac{1}{p} + \frac{1}{p'} = 1$, donde $1 , entonces <math>f * g \in C_{\infty}(\mathbb{R}^n)$. ¿Qué se puede afirmar cuando p = 1 o $p = \infty$?

Antes de comenzar será de utilidad demostrar la siguiente desigualdad.

Lema 1: Desigualdad de Young

Suponga $p,q,r \leq 1$, tales que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$. Luego dadas $f \in L^p(\mathbb{R}^n)$ y $g \in L^q(\mathbb{R}^n)$, entonces

$$||f * g||_r \le ||f||_p ||g||_q$$
.

Definamos T_g al operador

$$T_g(f) = f * g.$$

Veamos que $T_g:L^1(\mathbb{R}^n)\to L^q(\mathbb{R}^n)$ es un operador acotado ya que usando la desigualdad de Minkowski.

$$||T_{g}(f)||_{q} = \left(\int_{\mathbb{R}^{n}} |(f * g)(x)|^{q} dx\right)^{\frac{1}{q}},$$

$$= \left(\int_{\mathbb{R}^{n}} \left|\int_{\mathbb{R}^{n}} f(y)g(x - y) dy\right|^{q} dx\right)^{\frac{1}{q}},$$

$$\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |f(y)g(x - y)|^{q} dx\right)^{\frac{1}{q}} dy,$$

$$\leq \int_{\mathbb{R}^{n}} |f(y)| \left(\int_{\mathbb{R}^{n}} |g(x - y)|^{q} dx\right)^{\frac{1}{q}} dy,$$

$$\leq ||g||_{q} ||f||_{1}.$$

Por otro lado también podemos ver que $T_g: L^{q'}(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$ ya que usando la desigualdad de Hölder podemos ver que

$$||T_g(f)||_{\infty} = \sup_{x \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(y)g(x-y) \, dx \right|,$$

$$\leq \sup_{x \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} |f(y)g(x-y)| \, dy \right|,$$

$$\leq \sup_{x \in \mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(y)|^{q'} \, dy \right)^{\frac{1}{q'}} \left(\int_{\mathbb{R}^n} |g(x-y)|^q \, dy \right)^{\frac{1}{q}},$$

$$\leq ||g||_q \, ||f||_{q'}.$$

Luego, usando el teorema de interpolación de Riesz-Thorin sabemos que podemos definir $T_g: L^p(\mathbb{R}^n) \to L^r(\mathbb{R}^n)$ con

$$\frac{1}{p} = \frac{1-t}{1} + \frac{t}{q'},$$

$$\frac{1}{r} = \frac{1-t}{q}.$$

Lo que implica

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1,$$

lo que concluye el lema.

Solución:

(I) Veamos que $f*g\in L^p(\mathbb{R}^n)$ ya que usando la desigualdad integral de Minkowski's se cumple que

$$\begin{split} \|f * g\|_{p} &= \left(\int_{\mathbb{R}^{n}} |(f * g)(x)|^{p} dx \right)^{\frac{1}{p}}, \\ &= \left(\int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} f(y) g(x - y) dy \right|^{p} dx \right)^{\frac{1}{p}}, \\ &\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |f(y) g(x - y)|^{p} dx \right)^{\frac{1}{p}} dy, \\ &\leq \int_{\mathbb{R}^{n}} |f(y)| \left(\int_{\mathbb{R}^{n}} |g(x - y)|^{p} dx \right)^{\frac{1}{p}} dy, \\ &\leq \int_{\mathbb{R}^{n}} |f(y)| \|g\|_{p} dy, \\ &\leq \|f\|_{1} \|g\|_{p}. \end{split}$$

Ahora veamos que $\widehat{f*g}\in L^{p'}(\mathbb{R}^n)$, ya que usando el teorema de interpolación de

Riesz-Thorin podemos ver que como

$$\mathcal{F}: L^1(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n),$$

 $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n).$

Luego podemos definir $\mathcal{F}: L^p \to L^q(\mathbb{R}^n)$ con

$$\frac{1}{p} = \frac{1-t}{1} + \frac{t}{2},$$

$$\frac{1}{q} = \frac{t}{2}.$$

Lo que implica que

$$\frac{1}{p} - 1 + \frac{2}{q} = \frac{1}{q},$$

que a su vez implica que

$$\frac{1}{p} + \frac{1}{q} = 1.$$

en donde sabemos que q=p', lo que nos permite concluir que $\widehat{f*g}\in L^{p'}(\mathbb{R}^n)$. Ahora veamos que se cumple la propiedad.

Recuerde que si $g \in L^p(\mathbb{R}^n)$, entonces $g \in L^1(\mathbb{R}^n) + L^2(\mathbb{R}^n)$, suponga $g_1 \in L^1(\mathbb{R}^n)$ y $g_2 \in L^2(\mathbb{R}^n)$ tales que $g = g_1 + g_2$, además, suponga $\{g_k\} \subseteq L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ tales que $g_k \to g_2$ cuando $k \to \infty$, entonces

$$\widehat{f * g}(\xi) = (f * \widehat{(g_1 + g_2)})(\xi),$$

$$= \widehat{f * g_1}(\xi) + \widehat{f * g_2}(\xi),$$

$$= \widehat{f * g_1}(\xi) + \lim_{k \to \infty} \widehat{f * g_k}(\xi),$$

$$= \widehat{f}(\xi)\widehat{g_1}(\xi) + \lim_{k \to \infty} \widehat{f}(\xi)\widehat{g_k}(\xi),$$

$$= \widehat{f}(\xi)\widehat{g_1}(\xi) + \widehat{f}(\xi)\widehat{g_2}(\xi),$$

$$= \widehat{f}(\xi) (\widehat{g_1}(\xi) + \widehat{g_2}(\xi)),$$

$$= \widehat{f}(\xi)\widehat{g_1}(\xi),$$

$$= \widehat{f}(\xi)\widehat{g_1}(\xi).$$

Lo que concluye el resultado.

(II) Veamos que $f * g \in C(\mathbb{R}^n)$.

Dado $\epsilon > 0$ existe $\delta > 0$ (este viene dado por la continuidad de las traslaciones en $L^{p'}(\mathbb{R}^n)$, es decir que $\lim_{h\to 0} \|g(x+h)-g(x)\|_{p'} = 0$) tal que si

$$|x - y| < \delta$$
,

entonces usando la desigualdad de Young y la continuidad de las traslaciones de la norma en $L^{p'}(\mathbb{R}^n)$ (es este caso tomamos ese ϵ como $\frac{\epsilon}{\|f\|_{-}}$) se tiene que

$$\begin{aligned} |(f*g)(x) - (f*g)(y)| &= \left| \int_{\mathbb{R}^n} f(z)g(x-z) \, dz - \int_{\mathbb{R}^n} f(z)g(y-z) \, dz \right|, \\ &= \left| \int_{\mathbb{R}^n} f(z) \left(g(x-z) - g(y-z) \right) \, dz \right|, \\ &\leq \sup_{z \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(z) \left(g(x-z) - g(y-z) \right) \, dz \right|, \\ &\leq \|f*(g(y-\cdot) - g(x-\cdot))\|_{\infty}, \\ &\leq \|f\|_p \|g(y) - g(x)\|_{p'}, \\ &\leq \|f\|_p \frac{\epsilon}{\|f\|_p}, \end{aligned}$$

Por lo que podemos concluir que $f * g \in C(\mathbb{R}^n)$.

Ahora veamos que $f * g(x) \to 0$ cuando $|x| \to \infty$.

Suponga $\{g_k\} \subset C_c(\mathbb{R}^n)$ (continua de soporte compacto) tal que $g_k \to g$ cuando $k \to \infty$, sin pérdida de generalidad suponga $supp(g_k) \subset B_k(0)$, luego dado $\epsilon > 0$ existe N > 0 tal que si k > N, entonces

$$\|g - g_k\|_{p'} < \epsilon$$
.

Además, note que como $f \in L^p(\mathbb{R}^n)$, podemos asegurar que dado $\epsilon > 0$ existe R > 0 tal que si k > R, entonces

$$\left(\int_{|x|>k} |f(x)|^p \, dx\right)^{\frac{1}{p}} < \epsilon.$$

Luego tomando k adecuado que cumpla las 2 condiciones anteriores se cumple que

$$|(f * g)(x)| = |(f * (g_k + g - g_k))(x)|,$$

= |(f * g_k(x))| + |(f * (g - g_k))(x)|,
= I + J.

Estudiemos I y supongamos |x| > 2k, entonces

$$|(f * g_k)(x)| = \left| \int_{\mathbb{R}^n} f(y) g_k(x - y) \, dy \right|,$$

$$\leq \int_{B_k(x)} |f(y) g_k(x - y)| \, dy,$$

$$\leq ||g_k||_{\infty} \int_{B_k(x)} |f(y)| \, dy,$$

$$\leq ||g_k||_{\infty} \int_{|y| \geq k} |f(y)| \, dy,$$

$$\leq ||g_k||_{\varepsilon}.$$

Ahora estudiemos J, usando la desigualdad de Young se tiene que

$$|(f * (g - g_k))(x)| \le ||(f * (g - g_k))||_{\infty},$$

 $\le ||f||_p ||g - g_k||_{p'},$
 $< ||f||_p \epsilon.$

luego tenemos que tomando x suficientemente grande y un k adecuado se cumple que

$$|(f * g)(x)| = I + J,$$

$$< ||g_k|| \epsilon + ||f|| \epsilon,$$

$$< M\epsilon.$$

Por lo que podemos asegurar que $(f*g)(x) \to 0$ cuando $|x| \to \infty$, lo que concluye el ejercicio.

Problema 2:

Si $f \in L^1(\mathbb{R}^n)$, f es continua en 0 y $\widehat{f} \geq 0$ entonces $\widehat{f} \in L^1(\mathbb{R}^n)$.

Solución:

Usemos el núcleo del calor

$$g_t(x) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|}{4t}},$$

en donde

$$\widehat{g}_t(\xi) = e^{-4\pi^2 t |\xi|^2}.$$

Note que usando que g_t es par y propiedades de la transformada de Fourier se cumple que

$$\int_{\mathbb{R}^n} f(x)g_t(x) dx = \int_{\mathbb{R}^n} f(x)g_t(-x) dx,$$

$$= \int_{\mathbb{R}^n} f(x)\widehat{g_t}(x) dx,$$

$$= \int_{\mathbb{R}^n} \widehat{f}(\xi)\widehat{g_t}(\xi) d\xi.$$

Además si tomamos $t \to 0$, como f es continua en 0 (es decir que 0 es un punto de Lebesgue) entonces

$$\int_{\mathbb{R}^n} f(x)g_t(x) \, dx = f(0).$$

Luego como $\hat{f} \geq 0$ y $\hat{f}(\xi)e^{-4\pi^2t|\xi|^2} \to \hat{f}(\xi)$ de manera creciente y monótona cuando $t \to 0$, usando el teorema de la convergencia monótona tenemos que

$$\begin{split} \left\| \widehat{f} \right\|_1 &= \int_{\mathbb{R}^n} \widehat{f}(\xi) \, d\xi, \\ &= \lim_{t \to 0} \int_{\mathbb{R}^n} \widehat{f}(\xi) \widehat{g_t}(\xi) \, d\xi, \\ &= \lim_{t \to 0} \int_{\mathbb{R}^n} f(x) g_t(x) \, dx, \\ &= f(0). \end{split}$$

Problema 3:

Producto de convolución S' * S.

(I) Sean f, ϕ y $\psi \in \mathcal{S}(\mathbb{R}^n)$, pruebe que

$$\int_{\mathbb{R}^n} f * \phi(x) \psi(x) \, dx = \int_{\mathbb{R}^n} f(x) \widetilde{\phi} * \psi(x) \, dx,$$

donde $\widetilde{\phi}(x) = \phi(-x)$. Esto motiva la siguiente definición: Sean $T \in \mathcal{S}'(\mathbb{R}^n)$ y $\phi \in \mathcal{S}(\mathbb{R}^n)$,

$$T * \phi : \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathbb{C}, \quad \psi \longmapsto T * \phi(\psi) := T(\widetilde{\phi} * \psi).$$

Pruebe que $T * \phi \in \mathcal{S}'(\mathbb{R}^n)$ y que

$$\widehat{(T * \phi)} = \widehat{T}\widehat{\phi}$$
 en $\mathcal{S}'(\mathbb{R}^n)$.

(II) Por otro lado, si $T \in \mathcal{S}'(\mathbb{R}^n)$ y $\phi \in \mathcal{S}(\mathbb{R}^n)$, se define:

$$T *_1 \phi : \mathbb{R}^n \longrightarrow \mathbb{C}, \quad x \longmapsto T *_1 \phi(x) := T(\tau_x \widetilde{\phi}),$$

donde $\tau_x \phi(y) = \phi(y-x)$. Pruebe entonces que

$$T *_1 \phi \in C^{\infty}(\mathbb{R}^n) \cap \mathcal{S}'(\mathbb{R}^n)$$
 y $T *_1 \phi = T * \phi$.

Solución:

(I)

Veamos que $T * \phi \in \mathcal{S}'(\mathbb{R}^n)$.

Por claridad defina el operador $T_T(\phi) = T * \phi$, note que como $T \in \mathcal{S}'(\mathbb{R}^n)$ y la convolución para funciones en $\mathcal{S}(\mathbb{R}^n)$ es lineal, entonces T_T es lineal, ya que si tomamos $\phi, \psi \in \mathcal{S}(\mathbb{R}^n)$ y λ escalar, entonces

$$T_{T}(\phi + \lambda \psi) = (T * (\phi + \lambda \psi)) (f),$$

$$= T (\widetilde{(\phi + \lambda \psi)} * f),$$

$$= T (\widetilde{\phi} * f + \lambda \widetilde{\psi} * f),$$

$$= (T * \phi) (f) + \lambda (T * \psi) (f),$$

$$= T_{T}(\phi) + \lambda T_{T}(\psi).$$

Ahora veamos que T_T es un operador acotado, para esto recuerde que como $T \in \mathcal{S}(\mathbb{R}^n)$ entonces se satisface que existe una constante C > 0 y enteros m, l tales que

$$|T(\phi)| \le C \sum_{\substack{|\alpha| \le l \\ |\beta| \le m}} \rho_{\alpha,\beta}(\phi)$$

para toda $\phi \in \mathcal{S}(\mathbb{R}^n)$.

Asumiendo esto podemos ver que como $\widetilde{\phi} * f \in \mathcal{S}(\mathbb{R}^n)$, entonces

$$|T_{T}(\phi)| = |(T * \phi) (f)|,$$

$$= |T (\widetilde{\phi} * f)|,$$

$$\leq C \sum_{\substack{|\alpha| \leq l \\ |\beta| < m}} \rho_{\alpha,\beta} (\widetilde{\phi} * f)$$

Lo que concluye que T_T es un operador lineal continuo, es decir, $T * \phi \in \mathcal{S}'(\mathbb{R}^n)$. Ahora, veamos que $(\widehat{T} * \phi) = \widehat{T} \widehat{\phi}$ en $\mathcal{S}'(\mathbb{R}^n)$. Note que

$$(\widehat{T*\phi})(f) = (T*\phi)(\widehat{f}),$$

$$= T\left(\widetilde{\phi}*\widehat{f}\right),$$

$$= T\left(\widehat{\widehat{\phi}}*\widehat{f}\right),$$

$$= T\left(\widehat{\widehat{\phi}}*\widehat{f}\right),$$

$$= T\left(\widehat{\widehat{\phi}}f\right),$$

$$= \widehat{T}\left(\widehat{\phi}f\right),$$

$$= \widehat{T}\widehat{\phi}(f).$$

Lo que concluye el ejercicio.

(II)

Veamos que $T *_1 \phi \in C^{\infty}(\mathbb{R}^n) \cup \mathcal{S}'(\mathbb{R}^n)$.

Primero veamos que $T *_1 \phi \in C^{\infty}(\mathbb{R}^n)$, para esto note que como T es continuo, entonces

$$\begin{split} \partial_{x_j} \left(T *_1 \phi \right) (x) &= \lim_{h \to 0} \frac{(T *_1 \phi)(x + h \epsilon_j) - (T * \phi)(x)}{h}, \\ &= \lim_{h \to 0} \frac{T \left(\tau_{x + h \epsilon_j} \widetilde{\phi}(y) \right) - T \left(\tau_x \widetilde{\phi}(y) \right)}{h}, \\ &= \lim_{h \to 0} \frac{T \left(\phi \left(x + h \epsilon_j - y \right) \right) - T \left(\phi \left(x - y \right) \right)}{h}, \\ &= \lim_{h \to 0} T \left(\frac{\phi(x + h \epsilon_j - y) - \phi(x - y)}{h} \right), \\ &= T \left(\lim_{h \to 0} \frac{\phi(x + h \epsilon_j - y) - \phi(x - y)}{h} \right), \\ &= T \left(\partial_{x_j} \phi(x - y) \right), \\ &= T \left(\tau_x \widehat{\partial_{x_j}} \phi(y) \right), \\ &= \left(T *_1 \partial_{x_j} \phi \right) (x), \end{split}$$

luego usando un argumento inductivo, como $\phi \in \mathcal{S}(\mathbb{R}^n)$ podemos concluir que $T*_1\phi \in C^{\infty}(\mathbb{R}^n)$. Ahora veamos que $T*_1\phi \in \mathcal{S}'(\mathbb{R}^n)$, para esto con el fin de ser más claros definiremos el operador $T_T(\phi) = T*_1\phi$, note que como las traslaciones y reflexiones son lineales, entonces dadas $\phi, \varphi \in \mathcal{S}(\mathbb{R}^n)$ con λ escalar se cumple que

$$T_{T}(\phi + \lambda \varphi) = T *_{1} (\phi + \lambda \varphi),$$

$$= T \left(\widetilde{\tau_{x} \phi + \lambda \varphi} \right),$$

$$= T \left(\widetilde{\tau_{x} \phi} + \lambda \tau_{x} \widetilde{\varphi} \right),$$

$$= T \left(\tau_{x} \widetilde{\phi} \right) + \lambda T \left(\tau_{x} \widetilde{\varphi} \right),$$

$$= T *_{1} \phi + \lambda T *_{1} \varphi.$$

Ahora veamos la continuidad, note que como $T \in \mathcal{S}'(\mathbb{R}^n)$, entonces existe una constante C > 0 y enteros m y l tales que para toda $\phi \in \mathcal{S}(\mathbb{R}^n)$ se cumple que

$$|T(\phi)| \le C \sum_{\substack{|\alpha| \le l \ |\beta| < m}} \rho_{\alpha,\beta}(\phi),$$

usando esto se puede ver que

$$|T_{T}(\phi)| = |T *_{1} \phi(x)|,$$

$$= |T (\tau_{x} \widetilde{\phi}(y))|,$$

$$\leq C \sum_{\substack{|\alpha| \leq l \\ |\beta| < m}} \rho_{\alpha,\beta}(\tau_{x} \widetilde{\phi}),$$

lo que nos permite concluir que $T_T \in \mathcal{S}'(\mathbb{R}^n)$, es decir que $T*_1\phi \in \mathcal{S}'(\mathbb{R}^n)$. Ahora, con el fin de ver que $T*_1\phi = T*\phi$, usaremos que la transformada de Fourier es un isomorfismo en $\mathcal{S}'(\mathbb{R}^n)$, es decir, demostraremos que $\widehat{T*_1\phi} = \widehat{T}\widehat{\phi}$ en $\mathcal{S}'(\mathbb{R}^n)$ y como la transformada de Fourier es un isomorfismo en $\mathcal{S}'(\mathbb{R}^n)$, entonces $T*_1\phi = T*\phi$ en $\mathcal{S}'(\mathbb{R}^n)$.

Problema 4:

Topología sobre $\mathcal{S}(\mathbb{R}^n)$ Definimos la aplicación

$$\begin{split} d: \mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n)) &\longrightarrow \mathbb{R} + \\ (\phi, \psi) &\longmapsto \sum_{\alpha, \beta \in \mathbb{N}^n} 2^{-(|\alpha| + |\beta|)} \frac{\|\phi - \psi\|_{\alpha, \beta}}{1 + \|\phi - \psi\|_{\alpha, \beta}} \end{split}$$

- (I) Pruebe que $(S(\mathbb{R}^n);d)$ es un espacio métrico completo.
- (II) Pruebe que para cualquier sucesión $(\phi_k)_k \subset \mathcal{S}(\mathbb{R}^n)$ y $\phi \in \mathcal{S}(\mathbb{R}^n)$, vale

$$\phi_k \xrightarrow{d} \phi$$
 si y solo si $\|\phi_k - \phi\|_{\alpha,\beta} \to 0, \forall \alpha, \beta \in \mathbb{N}^n$

(III) Sea $f \in C^{\infty}(\mathbb{R}^n)$. Pruebe que

$$f \in \mathcal{S}(\mathbb{R}^n)$$
 si v solo si $x^{\alpha} \partial^{\beta} f \in L^2(\mathbb{R}^n), \forall \alpha, \beta \in \mathbb{N}^n$.

(IV) Muestre que

$$\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$$
$$\phi \longmapsto \widehat{\phi}$$

es un isomorfismo topológico.

Solución:

Solución

Problema 5:

Valor principal.

Definimos

$$v.p.\left(\frac{1}{x}\right): \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathbb{C},$$

$$\phi \longmapsto \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} \, dx.$$

Pruebe que $v.p.\left(\frac{1}{x}\right) \in \mathcal{S}'(\mathbb{R}^n)$ y calcule $\widehat{\left(v.p.\left(\frac{1}{x}\right)\right)}$.

Solución:

Solución