Session C5: Land-Based Applications

A novel high-performance attitude determination system based on MEMS IMU and a single high-precision GNSS antenna

S. Schaufler, X. Luo, M. Carrera, I. Celebi, B. Richter Leica Geosystems AG, Switzerland

Tilt compensated GNSS RTK surveying

Tilt compensated GNSS RTK surveying

Pole tip position derived using

- GNSS phase center position
- Length of the pole (1)
- Attitude of the pole

Intepretation of pole attitude

- Tilt (t) and direction of tilt (γ)
- GS heading (λ)

Introduction Leica GS18 T

MEMS IMU

Multi-GNSS Smart Antenna

- GNSS RTK rover with attitude determination technology
 - Based on MEMS IMU and GNSS measurements
 - GNSS/INS integration with automatic quality control mechanism
 - Patent calibration process
 - Completely free from on-site calibration

Next generation of GNSS RTK surveying

MEMS: micro-electro-mechanical system

IMU: inertial measurement unit INS: inertial navigation system

GNSS/INS integration

GNSS aided INS

- High-precision position and velocity estimates from GNSS
- IMU is factory calibrated over whole operating temperature range
- Automatic initialization through meter-level movements
- Consistency checks between GNSS and INS for high system robustness
- Reliable quality indicator for the 6DoF estimates

GS18 T is developed to increase productivity in GNSS RTK surveying

1. No need of levelling the pole 2. Measuring obstructed points

3. No on-site calibrations

Tilt-compensated pole tip position Accuracy testing

No drift in position result of continuously moving sensor

Test setup

Leica GS18 T

- Position and attitude estimates
- 6DoF X, Y, Z, roll, pitch, heading
- Quality estimates

Reference system

- Tracks the movement of the GS18 T
- Direct 6DoF serving as reference

Testing

- Accuracy, reliability, initialization speed, stability
- Static and kinematic

Test cases Datasets

35 Datasets

- Realistic use-case environment
 - Near buildings
 - Challenging GNSS conditions
- Different trajectories and moving behaviour

Test cases Focusing on

- (1) Initialization phase
 - Time until required accuracy is reached?

- (2) Sensor accuracy during movement
 - What is the expected accuracy of the 6DoF?

- (3) Sensor in static state
 - Stability How long can the system deliver required accuracy?

(1) Initialization phase

System is self-initializing after meterlevel movements

- Completely free from on-site calibrations
- Initial positionGNSS Smart Antenna
- Initial orientation → Kinematic alignment

Test: Heading angle error < 1°

Number of datasets	Average time	Average distance
35	4.67 sec	1.79 m

(2) Kinematic phase

Analyse over all datasets

- RMS error of position
- RMS error of orientation

Number of epochs	Position error 3D	Roll error	Pitch error	Heading error
26249	0.025 m	0.194 deg	0.211 deg	1.382 deg

Test cases (2) Kinematic phase

Quality indicator for 6DoF

How reliable is the quality indicator?

Number of epochs	3D position Error < 3-sigma	3D attitude Error < 3-sigma
26249	99.8 %	94.0 %

(3) Static phase - Stability

How does the system behave in static situations?

- Using datasets with ~1min static intervalls
- What is the amount of the attitude drift?

(3) Static phase - Stability

What is the expected stability?

- Heading drift
- Average drift = 1.6 °/min

Reliable quality indicator

• Informs the user if attitude error > 2°

Conclusions

GS18 T developed for tilt compensated GNSS RTK

- Based on MEMS IMU measurements and high-end GNSS smart antenna
- Patent IMU calibration process
- GNSS/IMU integration with automatic quality control mechanisms

User benefits for navigation applications

- High-end GNSS RTK rover with real-time attitude information
- Precise and reliable navigation information
- Enhancing productivity and user experience in the field
- Easy-to-use and easily portable device

Thank you very much for your attention

Leica Geosystems AG, Switzerland

September 2018

