Invertible Operators

Definition: Inverse

Let E be a vector space and let A be an operator on some subspace of A. To say that an operator B on $\mathcal{R}(A)$ is an *inverse* of A means:

- $\forall \vec{x} \in \mathcal{D}(A), (BA)\vec{x} = x$
- $\forall \vec{y} \in \mathcal{R}(A), (AB)\vec{y} = y$

If B exists then A is said to be *invertible* and B can be denoted by $B = A^{-1}$.

Properties

Let E be a vector space and let A and B be linear operators on some subspace of E.

- 1). A is invertible $\implies A^{-1}$ is unique.
- 2). A is invertible $\implies A^{-1}$ linear.
- 3). A is invertible $\iff \ker(A) = \{\vec{0}\}.$
- 4). A is invertible and $\{\vec{x}_1,\ldots,\vec{x}_n\}$ is a linearly independent set $\implies \{A\vec{x}_1,\ldots,A\vec{x}_n\}$ is a linearly independent set.
- 5). A and B invertible $\implies AB$ is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof

1). Assume *A* is invertible.

Assume S and T are inverses of A.

$$S = SI = S(AT) = (SA)T = IT = I$$

2). Assume A is invertible.

Assume $\vec{y_1}, \vec{y_2} \in \mathcal{R}(A)$.

 $\exists \vec{x}_1, \vec{x}_2 \in \mathcal{D}(A)$ such that $\vec{y}_1 = A\vec{x}_1$ and $\vec{y}_2 = A\vec{x}_2$.

$$A^{-1}\vec{y_1} = \vec{x_1}$$
 and $A^{-1}\vec{y_2} = \vec{x_2}$.

Assume $\alpha, \beta \in \mathbb{F}$:

$$A^{-1}(\alpha \vec{y}_1 + \beta \vec{y}_2) = A^{-1}(\alpha A \vec{x}_1 + \beta A \vec{x}_2)$$

$$= A^{-1}A(\alpha \vec{x}_1 + \beta \vec{x}_2)$$

$$= \alpha \vec{x}_1 + \beta \vec{x}_2$$

$$= (\alpha A^{-1} \vec{y}_1 + \beta A^{-1} \vec{y}_2)$$

Therefore A^{-1} is linear.

3). \implies Assume A is invertible.

$$\vec{x} \in \ker(A) \iff A\vec{x} = \vec{0} \iff A^{-1}A\vec{x} = A^{-1}\vec{0} \iff I\vec{x} = \vec{0} \iff \vec{x} = \vec{0}$$

$$\iff \operatorname{Assume} \ker(A) = \{\vec{0}\}.$$

A is one-to-one.

But A is also onto $\mathcal{R}(A)$.

Therefore *A* is bijective and thus invertible.

4). Assume A is invertible.

Assume
$$\sum_{k=1}^{n} \alpha_k A \vec{x}_k = \vec{0}$$
:
$$A \sum_{k=1}^{n} \alpha_k \vec{x} = \vec{0}$$
$$A^{-1} A \sum_{k=1}^{n} \alpha_k \vec{x} = A^{-1} \vec{0}$$
$$\sum_{k=1}^{n} \alpha_k \vec{x} = \vec{0}$$

But $\{\vec{x}_1, \dots, \vec{x}_n\}$ is a linearly independent set.

Therefore $\alpha_k = 0$ and thus $\{A\vec{x}_1, \dots, A\vec{x}_n\}$ is a linearly independent set.

5). Assume A and B are invertible.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = BB^{-1} = I$

Therefore, since the inverse is unique, AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Corollary

Let E be a finite dimensional vector space and let A be a linear operator on E. If A is invertible then A is onto.

Proof

Assume A is invertible.

Assume $\dim(E) = n$.

Assume $\{\vec{x}_1, \dots, \vec{x}_n\}$ is a basis for E.

 $\{\vec{x}_1,\ldots,\vec{x}_n\}$ is a linearly independent set.

So $\{A\vec{x}_1,\ldots,A\vec{x}_n\}$ is a linearly independent set.

Thus $\{A\vec{x}_1,\ldots,A\vec{x}_n\}$ is also a basis for E.

Now assume $\vec{y} \in E$.

$$\exists \, \alpha_k \in \mathbb{F} \text{ such that } \vec{y} = \sum_{k=1}^n \alpha_k A \vec{x}_k = A \sum_{k=1}^n \alpha_k A \vec{x}_k.$$

But
$$\vec{x} = \sum_{k=1}^{n} \alpha_k A \vec{x}_k \in \mathcal{D}(A) = E$$
 and so $A \vec{x} = \vec{y}$.

Therefore A is onto.

Example

Let
$$E = \ell^2$$
 and $A(z_1, z_2, z_3, ...) = (0, z_1, z_2, z_3, ...)$.

A is linear, one-to-one, and invertible; however, A is not onto.

Note that the inverse of a bounded linear operator need not be bounded:

Example

Consider $T: \ell^2 \to \ell^2$ defined by $T(z_1, z_2, z_3, \ldots) = \left(z_1, \frac{z_2}{2}, \frac{z_3}{3}, \ldots\right)$.

Claim: T is bounded.

Assume $z = (z_n) \in \ell^2$:

$$||Tz||^2 = \sum_{k=1}^{\infty} |Tz_k|^2 = \sum_{k=1}^{\infty} \left| \frac{z_k}{k} \right|^2 = \sum_{k=1}^{\infty} \frac{1}{k^2} |z_k|^2 \le \sum_{k=1}^{\infty} |z_k|^2 = ||z||^2$$

Thus $||Tz|| \le ||z||$ and so $||T|| \le 1$ (bounded).

Claim: T is invertible.

Let
$$T^{-1}(z_1, z_2, z_3, \ldots) = (z_1, 2z_2, 3z_3, \ldots)$$
.
 $T(T^{-1}z) = T^{-1}(Tz) = z$

Therefore T and T^{-1} are inverses.

Claim: T^{-1} is unbounded.

$$||T^{-1}e_n|| = ||ne_n|| = n ||e_n|| = n \cdot 1 = n$$

So
$$||T^{-1}e_n|| \to \infty$$
 as $n \to \infty$.

But
$$||e_n|| = 1$$
.

Therefore T^{-1} is unbounded.

If E is finite dimensional and A on E is invertible, then both A and A^{-1} are bounded because all operators on finite dimensional vector spaces are bounded.

Theorem

Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ such that $\exists \, m > 0$ such that $\forall \, \vec{x} \in H, \|A\vec{x}\| \geq m \, \|\vec{x}\|$: A is invertible and A^{-1} is bounded.

<u>Proof</u>

$$A\vec{x} = \vec{0} \iff \vec{x} = \vec{0}$$

Therefore A is invertible.

Assume $\vec{y} \in H$.

Since A^{-1} is onto, $\exists \vec{x} \in H$ such that $A^{-1}\vec{y} = \vec{x}$.

And so $A\vec{x} = \vec{y}$.

By assumption, $m \|\vec{x}\| \le \|A\vec{x}\|$.

Therefore $\left\|A^{-1}\vec{y}\right\| \leq \frac{1}{m} \left\|\vec{y}\right\|$ and thus A^{-1} is bounded.

The number $m(A) = \inf_{\|\vec{x}\|=1} \|A\vec{x}\|$ is called the conorm of A. Thus, if m(A) > 0 then A is invertible and $\|A^{-1}\| = \frac{1}{m(A)}$

Note that the previous example failed because $||Te_n|| = \frac{1}{n} \to 0$.

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be invertible such that $T^{-1} \in \mathcal{B}(H)$:

$$(T^{-1})^* = (T^*)^{-1}$$

Proof

$$(T^{-1})^*T^* = (TT^{-1})^* = I^* = I$$

$$T^*(T^{-1})^* = (T^{-1}T)^* = I^* = I$$

Therefore, since inverses are unique, $(T^{-1})^* = (T^*)^{-1}$.

Corollary

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be invertible such that T is self-adjoint and $T^{-1} \in \mathcal{B}(H)$:

 T^{-1} is self-adjoint.

<u>Proof</u>

$$(T^{-1})^* = (T^*)^{-1} = T^{-1}$$