Diffusion Neural Sampler 101

Jiajun He

Cambridge MLG reading group 26/02/2025

Sampling

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{\text{target}}$.

Sampling

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{\text{target}}$.

 \leftarrow Bayesian inference: p_{target} \propto likelihood \times prior

Sampling

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{\text{target}}$.

- \leftarrow Bayesian inference: p_{target} \propto likelihood \times prior
- \leftarrow Boltzmann distribution (molecules, etc): p_{target} ∝ exp(−βU)

Sampling – classical approach

Markov chain Monte Carlo (MCMC)

Sampling - classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$

Sampling - classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$
score
$$\nabla \log \tilde{p}(X_t) \Delta t \qquad \sqrt{2\Delta t} \epsilon, \epsilon \sim N(0, 1)$$

Sampling – classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$

e dependent samples; auto-correlation reduces efficiency sample size

Sampling - classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$

- e dependent samples; auto-correlation reduces efficiency sample size
- ergodicity; only guarantee convergence with infinite steps

Neural samplers

Train a neural network to amortize the sampling process

Neural samplers

Train a neural network to amortize the sampling process

- independent samples!
- can mix in finite time

Neural samplers

Train a neural network to amortize the sampling process

- independent samples!
- can mix in finite time

Neural samplers are in fact generative models:

Diffusion Neural samplers

Train a diffusion (like) model

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t,$$

Diffusion Neural samplers

Train a diffusion (like) model

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t,$$

transporting samples from $p_{
m prior}$ to $p_{
m target}$:

$$X_0 \sim p_{
m prior}$$
 , and want $X_T \sim p_{
m target}$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
, we want $X_T \sim p_{\text{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
, we want $X_T \sim p_{\text{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

And
$$X_t \sim Y_{T-t}$$
,

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}, \text{ we want } X_T \sim p_{\mathrm{target}}.$$

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

And $X_t \sim Y_{T-t}$,

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

And $X_t \sim Y_{T-t}$, "time-reversal"

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

If we have a "target" process

$$\mathrm{d}Y_t = g(Y_t,t) \,\mathrm{d}t + \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$
 can be a simple, prescribed function, like 0 or $-\beta_t Y_t$

And $X_t \sim Y_{T-t}$, "time-reversal"

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

If we have a "target" process

$$\mathrm{d}Y_t = g(Y_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$
 can be a simple, prescribed function, like 0 or $-\beta_t Y_t$

And $X_t \sim Y_{T-t}$, "time

'time-reversal'

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

Want a sample process (prior to target),

$$dY_t = g(Y_t, t) dt$$
 To be the time-reversal,

And
$$X_t \sim Y_{T-t}$$
,

And $X_t \sim Y_{T-t}$, "time-reveof a simple target process (target to prior)

We will have
$$X_T \sim Y_{T-T} = Y_0$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{prior}$$
, we want $X_T \sim p_{target}$

Want a sample process (prior to target),

$$dY_t = g(Y_t, t) dt$$
 To be the **time-reversal**,

And
$$X_t \sim Y_{T-t}$$
,

And $X_t \sim Y_{T-t}$, "time-reveof a simple target process (target to prior)

We will have $X_T \sim Y_T$ -How to achieve this?

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$\begin{bmatrix} X_{t_n} \sim N(X_{t_n} | X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t) \Delta t, 2\sigma^2 \Delta t), & X_0 \sim p_{\text{prior}} \end{bmatrix}$$

$$p_{\text{prior}}(X_0) N(X_{t_1} | X_0) N(X_{t_2} | X_{t_1}) \dots N(X_{t_N} | X_{t_{N-1}})$$

$$dY_t = g(Y_t, t) dt + \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n} | Y_{t_{n-1}} + g(Y_{t_{n-1}}, t) \Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1}) \dots N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

 $Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}},t)\Delta t, 2\sigma^2\Delta t), \qquad Y_0 \sim p_{\text{target}}$$

 $Y_t \sim X_{T-t}$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$X_{t_N}X_{t_{N-1}}...$$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dY_t = g(Y_t, t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim p_{\text{target}}$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1}) := p(X_{0:t_N})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1}) := p(X_{0:t_N})$$

$$:= q(X_{0:t_N})$$

$$Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$\tilde{p}_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1}) := \tilde{p}(X_{0:t_N})$$

$$\coloneqq q(X_{0:t_N})$$

$$|X_{t_1}\rangle \qquad := \tilde{\tilde{p}}(X_{0:t_N})$$

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

It is fine to have a different sampling process

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: Let's go continuous!

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match
$$q(X_{0:t_N})$$
 with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$D_{\mathrm{KL}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\text{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \text{Var}_{\overrightarrow{\boldsymbol{\pi}}} \left[\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\text{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = E_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

$$D_{\mathrm{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\overrightarrow{\pi}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\boldsymbol{\pi}}}\left[\left(\log\frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k\right)^{2}\right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

We can calculate this by Girsanov theorem when two paths are in the same direction

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{E}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^{2} \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: $\mathbf{Q}(X), \mathbf{P}(X)$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

$$= \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{Q}}(X)}{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)} + \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)}{\overrightarrow{d} \overleftarrow{\mathbf{P}}(X)}$$

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

$$= \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{Q}}(X)}{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)} + \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)}{\overrightarrow{d} \overleftarrow{\mathbf{P}}(X)}$$

$$D_{TR} = \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

We can choose any P_r

$$= \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{Q}}(X)}{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)} + \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)}{\overrightarrow{d} \overleftarrow{\mathbf{P}}(X)}$$

$$= \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

We can choose any P_r

$$= \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overrightarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Choose it to have known $\overrightarrow{P_r}$ and $\overleftarrow{P_r}$

$$= \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: $\overline{\mathbf{Q}}(X), \overline{\mathbf{P}}(X)$

Want a sample process (prior to target),

To be the time-reversal,

of a simple target process (target to prior)

How to achieve this?

matching forward and backward processes

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: $\mathbf{Q}(X), \mathbf{P}(X)$

Want a sample process (prior to target),

To be the **time-reversal**,

We can choose any P_r of a simple target process (target to prior) $= \log \frac{1}{dP_r(X)} + \log \frac{1}{dP(X)}$

Choose it to have Any other choices to achieve this? YES! known $\overrightarrow{P_r}$ and $\overleftarrow{P_r}$ $= \log \frac{dQ(X)}{d\overrightarrow{P_r}(X)} + \log \frac{dP_r(X)}{d\overrightarrow{P}(X)}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

For simplicity, we consider g=0

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models,

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$
 What is this term?

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

What is this term?

The "score" at T-t

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

What is this term?

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

The "score" at T-t

Recall $X_t \sim Y_{T-t}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

What is this term?

The "score" at T-t $\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$

The "score" at t

Recall $X_t \sim Y_{T-t}$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}$$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}$$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

We want to have a network to regress its score

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

We want to have a network to regress its score

With data $Y_0 \sim p_{\text{target}}$: denoising score matching

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

We want to have a network to regress its score

With data $Y_0 \sim p_{\text{target}}$: denoising score matching

What if without data?

$$\mathrm{d} Y_t = \sigma \sqrt{2} \mathrm{d} W_t, Y_0 \sim p_{\mathrm{target}}$$
 Gaussian convolution
$$\nabla \log p_t(Y_t) = \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d} Y_0$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \end{aligned} \qquad \text{Gaussian convolution} \\ \nabla \log p_t(Y_t) &= \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \\ &= \nabla \left(p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \end{aligned}$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \end{aligned} \qquad \text{Gaussian convolution} \\ \nabla \log p_t(Y_t) &= \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \\ &= \nabla \left(p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \end{aligned}$$
 Gradient of Conv = Conv of gradient
$$= \left(\nabla p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t)$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \end{aligned} \qquad \text{Gaussian convolution} \\ \nabla \log p_t(Y_t) &= \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \\ &= \nabla \left(p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \end{aligned}$$

$$\text{Gradient of Conv} = \text{Conv of gradient} = \left(\nabla p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 / p_t(Y_t) \end{aligned}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \end{split}$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 / p_t(Y_t) \end{aligned}$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ & p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) \end{aligned}$$

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}}$$

$$\nabla\log p_t(Y_t)$$

$$= \int \nabla p_{\text{target}}(Y_0) N(Y_t|Y_0, v_t I) dY_0 / p_t(Y_t)$$

$$= \int p_{\text{target}}(Y_0) \nabla \log p_{\text{target}}(Y_0) N(Y_t | Y_0, v_t I) dY_0 / p_t(Y_t)$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \\ &= \int p(Y_0 | Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}$$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

But we still do not know how to sample from $p(Y_0|Y_t)$

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

But we still do not know how to sample from $p(Y_0|Y_t)$

$$\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{p(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$$

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

But we still do not know how to sample from $p(Y_0|Y_t)$

$$\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{p(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$$

Importance Sampling using q

Want a sample process (prior to target),

To be the **time-reversal**, $V_{\text{target}} = V_{\text{target}} = V$

of a simple target process (target to prior)

But we still do not know how to sample from $p(Y_0|Y_t)$

 $\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{p(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$

Estimate score by TSI+IS, and regress it with a score net

Want a sample process (prior to target),

 $\nabla \log p_{\star}(Y_{\star}) = \int (Y_{\star}) \nabla \log p_{\mathrm{target}}(Y_{0}) dY_{0}$ To be the **time-reversal**,

of a simple target process (target to prior)

But we still do not know how to sample from $p(Y_0|Y_t)$

Any other choices to achieve this? YEEEES!

 $\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{P(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$

Importance Sampling using q

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

We want the marginal density of this SDE at T-t, to be $p_{T-t}(X_t)$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

We want the marginal density of this SDE at T-t, to be $p_{T-t}(X_t)$

What connects an SDE with its marginal density?

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

We want the marginal density of this SDE at T-t, to be $p_{T-t}(X_t)$

What connects an SDE with its marginal density?

Fokker-Planck equation!

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

Do not worry on this formula

Let's focus on the high-level idea

$$\mathrm{d}X_t = f(X_t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \boxed{\nabla \cdot f} + \sqrt{\log p_t} \boxed{\cdot f} - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

f only contains σ and score of marginal: $\nabla \log p_t$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t \big| = 0$$

LFS will have only one unknown term $\log p_t$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

LFS will have only one unknown term $\log p_t$

We can parameter network for $\log p_t$, and learn it by $\min ||\text{LFS}||^2$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want a sample process (prior to target),

Fokker-Planck equation (in log space)

To be the time-reversal,

$$\frac{\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t}{\text{of a simple target process (target to prior)}} = 0$$

LFS will have only one unknown term $\log p_t$

We can parameter network for $\log p_t$, and learn it by $\min ||\text{LFS}||^2$

matching the PDE induced by SDE

Want a sample process (prior to target),

To be the time-reversal,

of a simple target process (target to prior)

- 1.1 align forward with backward
- 1.2 align the marginal to the desired marginal by
 - 1.2.1 score matching
 - 1.2.2 satisfy PDE

This includes

- (1) DDS (denoising diffusion sampler)
- (2) PIS (path integral sampler)
- (3) DIS (diffusion time-reversal sampler)
- (4) GFlowNet (generative flow network)
- (5) iDEM (iterated denoising energy matching)
- (6) RDMC (reversal diffusion monte carlo)
- (7) PINN (physics-informed neural networks) sampler

aligning forward with backward

score matching/estimation with IS

satisfying PDE

• • •

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$, we want $X_T \sim p_{\text{target}}$.

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

We can define a sequence of interpolants π_t :

$$\pi_0 = p_{\mathrm{prior}}, \pi_T = p_{\mathrm{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

We can define a sequence of interpolants π_t :

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

We want the marginal of X_t to be π_t .

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
, we want $X_T \sim p_{\text{target}}$.

We can define a sequence of interpolants π_t :

$$\pi_0 = p_{\mathrm{prior}}, \pi_T = p_{\mathrm{target}}$$

We want the marginal of X_t to be π_t .

One example for
$$\pi_t$$
: $\pi_t \propto p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

We can define a sequence of interpolants π_t

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

We want the marginal of X_t to be π_t .

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

Want a sample process (prior to target),

We can define a sequence of interpolants π_t :

whose marginal density at every time step,

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

aligns with known interpolants between prior and target

We want the marginal of X_t to be π_t

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{prior}$, we want $X_T \sim p_{target}$

Want a sample process (prior to target),

We can define a sequence of interpolants π_t :

whose marginal density at every time step,

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

aligns with known interpolants between prior and target

We want the marginal of X_t to be π_t .

How to achieve this?

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$, we want $X_T \sim p_{\text{target}}$

Want a sample process (prior to target),

We can define a sequence of interpolants π_t :

whose marginal density at every time step,

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

aligns with known interpolants between prior and target

We want the marginal of X_t to be π_t

How to achieve this?

Satisfy the PDE!

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t = 0$$

$$\log \pi_t \qquad \log \pi_t \qquad \log \pi_t \qquad \log \pi_t$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \log \pi_t & \log \pi_t & \log \pi_t \end{split}$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \log \pi_t \end{split}$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$\mathrm{d}X_t = f(X_t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \text{tr} \left(\nabla \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} \right) \end{split}$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \text{tr} \left(\nabla \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} \right) \end{split}$$

Again, do not worry on this formula

Let's focus on the high-level idea

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \text{tr} \left(\nabla \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} \right) \end{split}$$

The LHS only has **2 unknown terms**: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

We can parameter network for $Z_{\pi_t}(t)$, f(X,t), and learn it by min $||LFS||^2$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want a sample process (prior to target),

whose marginal density at every time step,

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t = 0$$

aligns with known interpolants between prior and target

How to achieve this?

The LHS only has **2 unknown terms**: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want a sample process (prior to target),

whose marginal density at every time step,

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 |\nabla \log p_t|^2 - \sigma^2 \Delta \log p_t = 0$$

aligns with known interpolants between prior and target

Any other ways? YES! The LHS only has 2 unknown terms: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

 $dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$

Want a sample process (prior to target),

Fokker-Planck equation (in log space

whose marginal density at every time step,

 $\log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t = 0$

aligns with known interpolants between prior and target

Any other ways? YES! The LHS only has 2 unknown terms: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

If the marginal at diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If the marginal at diffusion time t is π_t

its time-reversal is given by

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If the marginal at diffusion time t is π_t

its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

If the marginal at diffusion time t is π_t

its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

"Nelson's Condition"

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If the marginal at diffusion time t is π_t

its **time-reversal** is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

known term

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Time-dependent network

If its time-reversal is given by

The same network

known term

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}}) := p(X_{0:t_N})$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}}$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}}) := p(X_{0:t_N})$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}}$$

$$\tilde{p}_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}}) := \tilde{p}(X_{0:t_N})$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

We can use all objectives in the previous slide (idea 1.1)

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Other choices exist, including sub-TB, DB, etc...

Match
$$q(X_{0:t_N})$$
 with $\tilde{p}(X_{0:t_N})$:

Want a sample process (prior to target),

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

whose marginal density at every time step,

$$D_{\text{LV}}[q(X_{0:t_N})|\tilde{p}(X_{0:t_N})] = \text{Var}_{\pi} \log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}$$
 aligns with known interpolants between prior and target

$$D_{\mathrm{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_{\pi}\left[\left(\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k\right)^2\right]$$
 match forward and backward process!

Other choices exist, including sub-TB, DB, etc...

Want a sample process (prior to target),

whose marginal density at every time step,

aligns with known interpolants between prior and target

- 1.1 align the marginal to the desired marginal by satisfying PDE
- 1.2 align forward with backward

This includes

- (1) NETS (non-equilibrium transport sampler)
- (2) PINN (physics-informed neural networks) sampler satisfying PDE
- (3) LFIS (Liouville Flow Importance Sampler)
- (4) CMCD (Controlled Monte Carlo Diffusions) aligning forward with backward

• • •

Overall framework:

Objectives:

Overall framework:

- Make the sampling process as the reversal of a target process.
- Make the marginal of the sampling agree with some target interpolants

Objectives:

Overall framework:

- Make the sampling process as the reversal of a target process.
- Make the marginal of the sampling agree with some target interpolants

Objectives:

- Write down backward and forward, align them
- 👉 Write down the marginal, align it with the sampling process

Overall framework:

Make the sampling process as the reversal of a target process.

Make the marginal of the sampling agree with some target interpolants

You can combine them freely!

Objectives:

The work of the wo

Write down the marginal, align it with the sampling process

Thank you!

Jiajun He

https://jiajunhe98.github.io/

jh2383@cam.ac.uk