Lecture 10 Complexity

FIT 1008 Introduction to Computer Science

Running Time and RAM

Insertion sort

Binary Search

Big O

Growth rates

Running Time and RAM

Running Time

Depends on a number of factors including:

- The quality of the code generated by the compiler
- The nature and speed of the instructions on the machine used to execute the program
- The time complexity of the algorithm

Simple computation model

- Each simple operation takes one step (e.g., assignment, print or return statement).
- Each comparison takes one time step.
- Running time of a sequence of statements = Sum of the running time of the statements.
- Loops and modules
 - Composition of many simple operations, and their running time
 - Depends on how many times each of these simple operations are performed.

RAM model = abstract machine

Insertion Sort

(take last, put it slowly in the right position, enlarge)

k= 2

k= 2

1 2	5	5	2	3
-----	---	---	---	---

k= 5

Loop 1

Loop 2

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
         list[j+1] \leftarrow list[j]
         j ← j − 1
      list[j+1] \leftarrow tmp
      k \leftarrow k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp} < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
         j ← j − 1
      list[j+1] \leftarrow tmp
      k \leftarrow k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      ____ k-1
      while (j \ge 0 \text{ and tmp } < \text{list[j]}) do {
         list[j+1] \leftarrow list[j]
        j ← j − 1
      list[j+1] \leftarrow tmp
      k \leftarrow k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp} < \text{list}[j]) do {
         list[j+1] \leftarrow list[j]
         j ← j − 1
      list[j+1] \leftarrow tmp
      k \leftarrow k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k \leftarrow 1 1 assignment
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
         list[j+1] \leftarrow list[j]
         j ← j − 1
      list[j+1] \leftarrow tmp
      k ← k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k \leftarrow 1 1 assignment
while (k < n) do { 1 comparison
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp} < \text{list}[j]) do {
         list[j+1] \leftarrow list[j]
         j \leftarrow j - 1
      list[j+1] \leftarrow tmp
      k \leftarrow k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k \leftarrow 1 1 assignment
tmp \leftarrow list[k] 
j \leftarrow k-1
2 assignments
      while (j \ge 0 \text{ and tmp } < \text{list[j]}) do {
        list[j+1] \leftarrow list[j]
        j ← j − 1
     list[j+1] \leftarrow tmp
     k \leftarrow k + 1
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

Output: A list sorted in ascending order.

```
k ← 1 1 assignment
tmp \leftarrow list[k] 
j \leftarrow k-1
2 assignments
     while (j \ge 0 \text{ and tmp} < \text{list[j]}) do {
        list[j+1] \leftarrow list[j]
       j ← j − 1
     list[j+1] \leftarrow tmp
     k \leftarrow k + 1
```

2 comparisons

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k ← 1 1 assignment
while (k < n) do { _ 1 comparison
      tmp \leftarrow list[k] 2 assignments j \leftarrow k-1
        while (j ≥ 0 and tmp-{ list[j]) do {
                                                                      2 comparisons
         \begin{array}{c} \text{list[j+1]} \longleftarrow \text{list[j]} \end{array} \longrightarrow \begin{array}{c} \textbf{2 assignments} \\ \textbf{j} \longleftarrow \textbf{j-1} \end{array}
        list[j+1] \leftarrow tmp
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k ← 1 1 assignment
while (k < n) do \{ tmp \leftarrow list[k] \} 2 assignments j \leftarrow k-1
     while (j \ge 0 \text{ and tmp-} \{list[j]\}) do {
                                             2 comparisons
       list[j+1] ← list[j]  

2 assignments
   list[j+1] ← tmp 2 assignments
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

```
k \leftarrow 1 1 assignment
while (k < n) do { _ 1 comparison
   tmp \leftarrow list[k] 2 assignments
                                      2 comparisons
    while (j ≥ 0 and tmp- list[j]) do {
                                                           At
                                                          most
                           2 assignments
                                                         k times
                                                          k < n
                          2 assignments
```

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

Output: A list sorted in ascending order.

Running time does not depend on **n** only

Sorts a list using insertion sort.

Input: A list L[0, n-1] of real numbers

Output: A list sorted in ascending order.

Running time does not depend on **n** only

Best and Worst Case

Loop 1

Loop 1 k= 1 k= 2 k= 3 k= 4 k= 5

Loop 2

Loop 1 k= 1 k= 2 k= 3 k= 4 k= 5

Loop 2


```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
         j ← j − 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
         j ← j − 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

 Can we stop any of the two loops early?

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
         j ← j − 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
         j ← j − 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
          j ← j − 1
      list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different
 - The average case lies in between them.

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
          j ← j − 1
      list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different
 - The average case lies in between them.

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 and tmp < list[j]) do {
         list[j+1] \leftarrow list[j]
         j ← j − 1
      list[j+1] \leftarrow tmp
      k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different
 - The average case lies in between them.
- Best case?

```
k ← 1
while (k < n) do {
       tmp \leftarrow list[k]
       j ← k-1
       while (j \ge 0 \text{ and tmp } < \text{list[j]}) do {
           list[j+1] \leftarrow list[j]
          j \leftarrow j - 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different
 - The average case lies in between them.
- Best case?
 - [1, 2, 3, 4]

```
k ← 1
while (k < n) do {
       tmp \leftarrow list[k]
       j ← k-1
       while (j \ge 0 \text{ and tmp } < \text{list[j]}) do {
           list[j+1] \leftarrow list[j]
          j \leftarrow j - 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different
 - The average case lies in between them.
- Best case?
 - [1, 2, 3, 4]
- Worst case?

```
k ← 1
while (k < n) do {
       tmp \leftarrow list[k]
       j ← k-1
       while (j \ge 0 \text{ and tmp } < \text{list[j]}) do {
           list[j+1] \leftarrow list[j]
          j \leftarrow j - 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

- Can we stop any of the two loops early?
 - Yes, the second one, when tmp ≥ list[j]
 - Best and worst cases are going to be different
 - The average case lies in between them.
- Best case?
 - [1, 2, 3, 4]
- Worst case?
 - [4, 3, 2, 1]

```
k ← 1 <sup>1</sup>
while (k < n) do \{ 1 \}

tmp \leftarrow list[k]  2
       while (j \ge 0 \text{ and tmp} < \text{list[j]}) do {
                                                                   k
                                                                    times
                                                                                 n-1
           list[j+1] \leftarrow list[j]
                                                                   max
                                                                                 times
           j ← j − 1
       list[j+1] ← tmp
       k \leftarrow k + 1
```

```
k ← 1 1
while (k < n) do \{ 1 tmp \leftarrow list[k] 2
      j ← k-1
      while (j \ge 0 \text{ and } tmp - \{list[j]\}) do {
                                                              k
          list[j+1] ← list[j] ►
                                                              times
                                                                          n-1
                                                              max
                                                                          times
         j \leftarrow j-1
      list[j+1] ← tmp
       k \leftarrow k + 1
```

```
k ← 1 1
while (k < n) do \{ 1 tmp \leftarrow list[k] 2
       j ← k-1
                                                                k
                                                                 times
                                                                             n-1
          list[j+1] \leftarrow list[j]
                                                                max
                                                                             times
       list[j+1] ← tmp
       k \leftarrow k + 1
```

```
k ← 1 <sup>1</sup>
while (k < n) do \{ 1 \}

tmp \leftarrow list[k] \}
       j ← k-1
        while (j ≧ 0 and tmp-<
                                                                                 n-1
          list[j+1] \leftarrow list[j]
                                                                                 times
       list[j+1] ← tmp _
       k \leftarrow k + 1
```

```
k ← 1 <sup>1</sup>
while (k < n) do \{ 1 \}

tmp \leftarrow list[k] \}
       while (j ≥ 0 and tmp-<
                                                                         n-1
          list[j+1] \leftarrow list[j]
                                                                         times
       list[j+1] ← tmp _
       k \leftarrow k + 1
```

```
while (k < n) do { _ 1
     tmp \leftarrow list[k]
     j ←  k-1
      while (j ≥ 0 and tmp-<
                                                            n-1
       list[j+1] \leftarrow list[j]
                                                            times
     list[j+1] ← tmp
     k \leftarrow k + 1
```

```
while (k < n) do {
     tmp \leftarrow list[k]
     while (j ≥ 0 and tmp-<
                                                           n-1
       list[j+1] \leftarrow list[j]
                                                           times
     list[j+1] ← tmp
     k \leftarrow k + 1
```

```
while (k < n) do {
      tmp \leftarrow list[k]
     j ← k-1
                                                                 n-1
        list[j+1] \leftarrow list[j]
                                                                 times
      list[j+1] ← tmp
      k \leftarrow k + 1
```

```
while (k < n) do {
      tmp \leftarrow list[k]
     j ← k-1
                                                                   n-1
        list[j+1] \leftarrow list[j]
                                                                   times
      list[j+1] ← tmp _
      k \leftarrow k + 1
```

```
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
                                                                      n-1
         list[j+1] \leftarrow list[j]
                                                                      times
      k \leftarrow k + 1
```


$$1 + 7(n-1) + 1$$

Worst case

```
k ← 1 <sup>1</sup>
while (k < n) do \{ tmp \leftarrow list[k] 2
      j ← k-1
       while (j ≥ 0 and tmp < list[j]) do 4
                                                                times
          list[j+1] \leftarrow list[j]
                                                                            n-1
                                                                max
                                                                            times
          j ← j − 1
       k \leftarrow k + 1
```

Worst case

k ← 1 ¹ **while** (k < n) **do** { _ 1 $tmp \leftarrow list[k] - 2$ +1+2 +4 +2 j ← k-1 while $(j \ge 0 \text{ and tmp} < \text{list[j]})$ do 4k = 1times n-1 $list[j+1] \leftarrow list[j]$ max times +1+2 + 2x4 +2 $j \leftarrow j - 1$ k = 2list[j+1] ← tmp _ $k \leftarrow k + 1$

k ← 1 ¹ **while** (k < n) **do** { _ 1 $tmp \leftarrow list[k] - 2$ +1+2 +4 +2 j ← k-1 while $(j \ge 0 \text{ and tmp} < \text{list[j]})$ do 4k = 1times n-1 $list[j+1] \leftarrow list[j]$ max times +1+2 + 2x4 +2 $j \leftarrow j - 1$ k = 2list[j+1] ← tmp _ $k \leftarrow k + 1$

k ← 1 ¹ **while** (k < n) **do** { _ 1 $tmp \leftarrow list[k] - 2$ +1+2 +4 +2 j ← k-1 while $(j \ge 0 \text{ and tmp} < \text{list[j]})$ do 4k = 1times n-1 $list[j+1] \leftarrow list[j]$ max times j ← j − 1 k = 2list[j+1] ← tmp $k \leftarrow k + 1$

Worst case

k = 3

k ← 1 ¹ **while** (k < n) **do** { _ 1 $tmp \leftarrow list[k] - 2$ +1+2 +4 +2 j ← k-1 while $(j \ge 0 \text{ and tmp} < \text{list[j]})$ do 4k = 1times n-1 $list[j+1] \leftarrow list[j]$ max times +1+2 + 2x4 +2 j ← j − 1 k = 2list[j+1] ← tmp +1+2 + 3x4 +2 $k \leftarrow k + 1$ k = 3

+1+2 +4 +2 k = 1+1+2 + 2x4 +2 k = 2+1+2 + 3x4 +2 k = 3

k = n-1

k ← 1 ¹ **while** (k < n) **do** { _ 1 $tmp \leftarrow list[k] - 2$ +1+2 +4 +2 j ← k-1 while $(j \ge 0 \text{ and tmp} < \text{list[j]})$ do 4k = 1times n-1 $list[j+1] \leftarrow list[j]$ max times +1+2 + 2x4 +2 j ← j − 1 k = 2list[j+1] ← tmp +1+2 + 3x4 +2 $k \leftarrow k + 1$ k = 3+1+2 + (n-1)x4 +2 k = n-1

1

$$k = 2$$

$$k = 3$$

$$5(n-1) + (1x4 + 2x4 + 3x4 + ... + (n-1)x4) + 2$$

$$S = 1 + 2 + 3 + 4 + ... + 97 + 98 + 99 + 100$$

 $+$
 $S = 100 + 99 + 98 + 97 + ... + 4 + 3 + 2 + 1$

$$2S = 101*100$$

 $S = 101*50$
 $S = 5050$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$1x4 + 2x4 + 3x4 + ... + (n-1)x4 =$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$1x4 + 2x4 + 3x4 + ... + (n-1)x4 =$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$1x4 + 2x4 + 3x4 + \dots + (n-1)x4 =$$

$$4(1 + 2 + 3 + \dots + (n-1))$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$1x4 + 2x4 + 3x4 + \dots + (n-1)x4 =$$

$$4(1 + 2 + 3 + \dots + (n-1))$$

$$4\frac{(n-1(n))}{2}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$1x4 + 2x4 + 3x4 + ... + (n-1)x4 =$$

$$4(1 + 2 + 3 + ... + (n-1))$$

$$4\frac{(n-1(n))}{2}$$

$$2n(n-1)$$

$$k \leftarrow 1 \quad 1$$

$$\text{while } (k < n) \text{ do } \{$$

$$\text{tmp} \leftarrow \text{list[k]} \} \quad 2$$

$$\text{j} \leftarrow k-1$$

$$\text{while } (j \ge 0 \text{ and tmp} < \text{list[j]}) \text{ do} \} \quad 4$$

$$\text{list[j+1]} \leftarrow \text{list[j]}$$

$$\text{j} \leftarrow \text{j} - 1$$

$$\}$$

$$\text{list[j+1]} \leftarrow \text{tmp} \qquad 2$$

$$\text{k} \leftarrow \text{k} + 1$$

$$5(n-1) + (1x4 + 2x4 + 3x4 + ... + (n-1)x4) + 2$$

$$k \leftarrow 1 \quad 1$$

$$\text{while } (k < n) \text{ do } \{$$

$$\text{tmp} \leftarrow \text{list[k]} \quad 2$$

$$\text{j} \leftarrow k-1$$

$$\text{while } (j \ge 0 \text{ and tmp} < \text{list[j]}) \text{ do} \}$$

$$\text{list[j+1]} \leftarrow \text{list[j]}$$

$$\text{j} \leftarrow \text{j} - 1$$

$$\}$$

$$\text{list[j+1]} \leftarrow \text{tmp} \}$$

$$\text{k} \leftarrow \text{k} + 1$$

$$5(n-1) + (1x4 + 2x4 + 3x4 + ... + (n-1)x4)$$
 +2
 $5(n-1) + (2n(n-1)) +2$

$$k \leftarrow 1 \quad 1$$

$$\text{while } (k < n) \text{ do } \{$$

$$\text{tmp} \leftarrow \text{list[k]} \quad 2$$

$$\text{j} \leftarrow k-1$$

$$\text{while } (j \ge 0 \text{ and tmp} < \text{list[j]}) \text{ do} \}$$

$$\text{list[j+1]} \leftarrow \text{list[j]}$$

$$\text{j} \leftarrow \text{j} - 1$$

$$\}$$

$$\text{list[j+1]} \leftarrow \text{tmp} \}$$

$$\text{k} \leftarrow \text{k} + 1$$

$$5(n-1) + (1x4 + 2x4 + 3x4 + ... + (n-1)x4)$$
 +2
 $5(n-1) + (2n(n-1)) + 2$
 $2n^2 + 3n - 3$

Insertion Sort running time

Insertion Sort running time

- Select how to measure the input size.
- If running time depends only on the input size, then that's great.
- If running time depends on input size and other characteristics of the input:
 - Analyse best case separately (can I leave any loops early).
 - Analyse worst case separately.
 - Together best and worst case are informative.

Insertion Sort: Code

```
k ← 1
while (k < n) do {
      tmp \leftarrow list[k]
      j ← k-1
      while (j \ge 0 \text{ and tmp } < \text{list}[j]) do {
          list[j+1] \leftarrow list[j]
         j ← j − 1
       list[j+1] \leftarrow tmp
       k \leftarrow k + 1
```

```
def insertion_sort(the_list):
    n = len(the_list)
    for k in range(1, n):
        temp = the_list[k]
        i = k - 1
        while i >= 0 and the_list[i] > temp:
            the_list[i + 1] = the_list[i]
        i -= 1
        the_list[i + 1] = temp
```

Binary Search Assumptions

- The list is sorted
- We can random access the list (you can get the value of any position in the list)

Binary Search

```
item ← the item in the middle of the list
if (item = target)
        return index of item
if (target < item)
       search the first part of the list
if (target > item)
       search the second part of the list
```


item < target

item = target

item > target

More concrete...

坎						
---	--	--	--	--	--	--

lower mid upper lower mid

target

upper

↑ ↑ ↑ ↑ Indicate the property of the property

Binary Search

```
Algorithm BinarySearch(target, L[0..n-1])
// Find the index such that L[index] = target
// Input: target and list L[0..n-1]
// Output: If target is in L, return the index of the first
// item with that value. Otherwise return -1.
lower ← 0
upper ← n-1
while (lower ≤ upper) do {
    mid = \lfloor (lower + upper)/2 \rfloor
    if (target == L[mid])
        return mid
    if (target < L[mid])</pre>
        upper = mid - 1
    if (target > L[mid])
        lower = mid + 1
```

Binary Search

```
Algorithm BinarySearch(target, L[0..n-1])
// Find the index such that L[index] = target
// Input: target and list L[0..n-1]
// Output: If target is in L, return the index of the first
// item with that value. Otherwise return -1.
lower ← 0
upper ← n-1
while (lower ≤ upper) do {
    mid = \lfloor (lower + upper)/2 \rfloor
    if (target == L[mid])
        return mid
    if (target < L[mid])</pre>
        upper = mid - 1
    if (target > L[mid])
        lower = mid + 1
return -1
```

Binary Search

```
Algorithm BinarySearch(target, L[0..n-1])
// Find the index such that L[index] = target
// Input: target and list L[0..n-1]
// Output: If target is in L, return the index of the first
// item with that value. Otherwise return -1.
lower ← 0
upper ← n-1
while (lower ≤ upper) do {
    mid = \lfloor (lower + upper)/2 \rfloor
    if (target == L[mid])
        return mid
    if (target < L[mid])</pre>
        upper = mid - 1
    if (target > L[mid])
        lower = mid + 1
return -1
```

At most log₂(n) times.

n

n/2

n/4

n/8

 $\frac{n}{2^k} = 1$

 $\frac{n}{2^k} = 1$

n/2

n/4

n/8

 $\frac{n}{2^k} = 1$

 $\frac{n}{2^k} = 1$ $n = 2^k$

n/2

n/4

n/8

$$\frac{n}{2^k} = 1$$

$$n = 2^k$$

$$n=2^k$$

$$log_2(n)=k$$

Worst case

$$2 + log_2(n) (1 + 1 + 1 + 3) + 1 + 1$$

```
lower \leftarrow 0 2 assignments upper \leftarrow n-1
                                                 Target not in List
while (lower ≤ upper) { 1 comparison
                                     1 assignment
    mid ← [ (lower + upper)/2 ]
                           1 comparison
    if (target = L[mid]) 1 return
                                                         at most
                                                          log_2(n)
        return mid
                                                          times
    if (target < L[mid])</pre>
        upper ← mid – 1
                                 3 operations
    if (target > L[mid])
        lower ← mid + 1
            1 return
```

Worst case

 $6 \log_2(n) + 4$

$$2 + \log_2(n) (1 + 1 + 1 + 3) + 1 + 1$$

Big O

Focus on the big picture

Binary Search running time

$6 \log_2(n) + 4$ n = 1, 4.0 = 0.0 + 4.0n = 2, 10.0 = 6.0 + 4.0n = 3, 13.5 = 9.5 + 4.0n = 5, 17.9 = 13.9 + 4.0n = 10, 23.9 = 19.9 + 4.0n = 100, 43.9 = 39.9 + 4.0n = 1000, 63.8 = 59.8 + 4.0n = 100000, 83.7 = 79.7 + 4.0n = 1000000, 103.7 = 99.7 + 4.0n = 10000000, 123.6 = 119.6 + 4.0

Ignore parts that do not contribute significantly, when the input is large

Worst case

$d + k log_2(n) + 1$

```
lower ← 0
while (lower ≤ upper) {
    mid \leftarrow \lfloor (lower + upper)/2 \rfloor
     if (target = L[mid])
         return mid
     if (target < L[mid])</pre>
         upper ← mid – 1
     if (target > L[mid])
         lower ← mid + 1
```

Target not in List

at most log₂(n) times

$$g(n) < k*f(n)$$
 for all $n > L$

g(n) is **O(f(n))**

Intuitively:
 f(n) gives an upper bound to
 running time g(n), which:

- Intuitively:
 f(n) gives an upper bound to
 running time g(n), which:
- ignores parts of the algorithm that do not contribute significantly to the total running time

- Intuitively:
 f(n) gives an upper bound to
 running time g(n), which:
- ignores parts of the algorithm that do not contribute significantly to the total running time
- bounds the error made when ignoring small terms in g

- Intuitively:
 f(n) gives an upper bound to
 running time g(n), which:
- ignores parts of the algorithm that do not contribute significantly to the total running time
- bounds the error made when ignoring small terms in g

g(n) is **O(f(n))**

- Intuitively:
 f(n) gives an upper bound to
 running time g(n), which:
- ignores parts of the algorithm that do not contribute significantly to the total running time
- bounds the error made when ignoring small terms in g

Big O gives us an idea of g(n)'s behaviour for large inputs.

Simple but formal.

$$2n^2 + 3n - 3$$
 is $O(n^2)$

Ignore constants

Ignore parts that do not contribute significantly

Basic efficiency classes

In order of increasing time complexity:

Constant O(1)

Logarithmic O(log N)

Linear O(N)

Superlinear O(N log N)

• Quadratic $O(N^2)$

• Exponential $O(2^N)$

Factorial O(N!)

Basic efficiency classes

In order of increasing time complexity:

Constant

O(1)

Logarithmic

O(log N)

Linear

O(N)

Superlinear

 $O(N \log N)$

Quadratic

 $O(N^2)$

Exponential

 $O(2^N)$

Factorial

O(N!)

Constant	O(1)	Running time does not depend on N	N doubles, T remains constant	
Logarithmic	O(log N)	Problem is broken up into smaller problems and solved independently. Each step cuts the size by a constant factor.	If N doubles, running time T gets slightly slower	
Linear	O(N)	Each element requires a certain (fixed) amount of processing	If N doubles, running time T doubles (2*T)	
Superlinear	O(N log N)	Problem is broken up in sub-problems. Each step cuts the size by a constant factor and the final solution is obtained by combining the solutions.	If N doubles, running time T gets slightly bigger than double (2*T and a bit)	
Quadratic	$O(N^2)$	Processes pairs of data items. Often occurs when you have double nested loop	If N doubles, running time T increases four times (4*T)	
Exponential	O(2N)	Combinatorial explosion (think about a family tree)	If N doubles, running time T squares (T*T)	
Factorial	O(N!)	Finding all the permutations of N items		

Growth Rates

N	log(N)	N	Nlog(N)	N ²	2 ^N	N!
10	0.003 µs	0.01 µs	0.033 µs	0.1 µs	1 μs	3.63 ms
20	0.004 µs	0.02 µs	0.086 µs	0.4 μs	1 ms	77.1 years
30	0.005 µs	0.03 µs	0.147 µs	0.9 µs	1 sec	8.4x10 ¹⁵ years
40	0.005 µs	0.04 µs	0.213 µs	1.6 µs	18.3 min	
50	0.006 µs	0.05 µs	0.282 µs	2.5 µs	13 days	
100	0.007 µs	0.1 μs	0.644 µs	10 μs	4x10 ¹³ years	
1,000	0.010 µs	1 μs	9.966 µs	1 ms		
10,000	0.013 µs	10 μs	130 µs	100 ms		
100,000	0.017 µs	100 µs	1.67 ms	10 sec		
1,000,000	0.020 μs	1 ms	19.93 ms	16.7 min		
10,000,000	0.023 µs	10 ms	0.23 sec	1.16 days		
100,000,000	0.027 µs	0.1 sec	2.66 sec	115.7 days		
1,000,000,000	0.030 µs	1 sec	29.90 sec	31.7 years		

Measured in nanoseconds (10⁻⁹ secs)