

Université Abdelmalek Essaadi Faculté des sciences et techniques Al Hoceima

Licence : Ingénierie de Données et Développement Logiciel Module : Mathématiques pour l'ingénierie de donnée

Pr. Ahmed Toukmati

TABLE DES MATIÈRES

HAPITRE		ANALYSE NUMERIQUE MATRICIELLE	PAGE 2
	1.1	Rappel sur les matrices	2
		Notations	2
		Déterminant - Trace d'une matrice.	5
		Mineurs et cofacteurs	7
		Matrices particulière	8
	1.2	Valeurs propres - Vecteurs propres	12
		Théorème de Cayley-Hamilton	17
		Cas des matrices diagonales par blocs - Triangulaire par blocs	20
	1.3	Diagonalisation-Trigonalisation d'une matrice	23
		Les matrices semblables	23
		Diagonalisation	25
		Trigonalisation	29
CHAPITRE	2	Systèmes linéaires	Page 31
	2.1	Résolution numériques des systèmes linéaires	31
		Ecriture matricielle d'un système linéaire	31
		Système de Cramer	32
	2.2	Méthodes directes pour la résolution d'un système linéaire carrée	34
	2.3	Méthode du pivot de Gauss	34
		Décomposition LU	36
	2.4	Méthode de Cholesky	40
		Produit scalaire - matrice définie positive	40
	2.5	Théorème de point fixe	45
	2.6	Méthodes itératives	46
	2.7	Méthode de Jacobi/ Méthode de Gauss-Seidel	48
		Méthode de Jacobi	48
		Méthode Gauss-Seidel	48

Chapitre 1

Analyse numérique matricielle

1.1 Rappel sur les matrices

1.1.1 Notations

Notation 1.1.1

Ce paragraphe a pour but de fixer les notations qui seront utilisées tout au long de ce cours.

- L'espace des matrices à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$, ou $\mathbb{K} = \mathbb{C}$) à m lignes et n colonnes sera noté par $M_{nm}(\mathbb{K})$.
- Si $A=(a_{ij})_{\substack{1\leqslant i\leqslant m\\1\leqslant j\leqslant n}}\in M_{nm}(\mathbb{K})\,;\;i$ est l'indice de lignes, et j et l'indice de colonnes.
- Si $a_{ij}=0$ pour tous $i\in\{1,2,\ldots,m\}$ et $j\in\{1,2,\ldots,n\}$, la matrice A=(0) est appelée matrice nulle qu'on la note

$$0 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}.$$

• La matrice

$$I_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

est appelée la matrice identité.

- La matrice ligne $A = (a_1, a_2, \dots, a_m) \in M_{1m}(\mathbb{K})$.
- La matrice colonne $A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in M_{n1}(\mathbb{K}).$
- Si m=n alors la matrice $A=(a_{ij})_{1\leq i,j\leq n}$ est dite matrice carrée, est l'ensemble des matrices carrée de taille n, sera noté par $M_n(\mathbb{K})$.

2

• Une matrice $A=(a_{ij})_{1\leqslant i\leqslant m}$ est triangulaire supérieure si $a_{ij}=0$ pour tout j< i est on a : $1\leqslant j\leqslant n$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{mn} \end{pmatrix}.$$

• Une matrice $A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$ est triangulaire inférieure si $a_{ij}=0$ pour tout i< j est on a :

$$A = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{mn} \end{pmatrix}.$$

• Une matrice carrée $A=(a_{ij})_{1\leqslant i,j\leqslant n}$ est dite diagonal si $a_{ij}=0$ pour tout $i\neq j$ est on note :

$$D = \operatorname{diag}(d_1, d_2, \dots, d_n) = \begin{pmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{pmatrix}.$$

Definition 1.1.1

Soit $A=(a_{ij})_{\substack{1\leqslant i\leqslant m\\1\leqslant j\leqslant n}}\in M_{mn}(\mathbb{K}).$ La **transposé** de A est la matrice notée A^T est définie par $A^T=(a_{ji})_{\substack{1\leqslant i\leqslant m\\1\leqslant j\leqslant n}}.$

Exemple 1.1.1

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

2.
$$B = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 4 & 5 \\ \frac{1}{2} & 3 & \sqrt{2} \end{pmatrix}; B^T = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 3 & 4 & 3 \\ -1 & 5 & \sqrt{2} \end{pmatrix}.$$

Remarque:-

Si $A \in M_{mn}(\mathbb{K})$, alors $A^T \in M_{nm}(\mathbb{K})$.

Proposition 1.1.1

Soient $A, B \in M_{mn}(\mathbb{K})$ et $\lambda \in \mathbb{K}$, alors :

1.
$$(AB)^T = B^T A^T$$
;

2.
$$(A + B)^T = A^T + B^T$$
;

3.
$$(\lambda A)^T = \lambda A^T$$
.

Definition 1.1.2

Soit $A = (a_{ij})_{1 \le i \le m} \in M_{mn}(\mathbb{K})$. Le **conjugué** de A, est la matrice $\bar{A} = (\bar{a}_{ij})_{1 \le i \le m}$. $1 \le j \le n$

Exemple 1.1.2

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $\bar{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A$.

2.
$$B = \begin{pmatrix} i & 3 \\ 1+i & 1+2i \end{pmatrix}; \bar{B} = \begin{pmatrix} -i & 3 \\ 1-i & 1-2i \end{pmatrix}.$$

Definition 1.1.3

Soit $A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}\in M_{mn}(\mathbb{K}).$ L'adjoint de A, est la matrice $A^*=\bar{A}^T=(\bar{a}_{ji})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$

Exemple 1.1.3

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $A^* = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = A$.

2.
$$B = \begin{pmatrix} 1 & i \\ 1+i & 3 \end{pmatrix}$$
; $B^* = \begin{pmatrix} 1 & -i \\ 1-i & 3 \end{pmatrix}^T = \begin{pmatrix} 1 & 1-i \\ -i & 3 \end{pmatrix}$.

Proposition 1.1.2

Soient $A, B \in M_{mn}(\mathbb{K})$ et $\lambda \in \mathbb{K}$, alors :

- 1. $(AB)^* = B^*A^*$;
- 2. $(A + B)^* = A^* + B^*$;
- 3. $(\lambda A)^* = \bar{\lambda} A^*$.

Definition 1.1.4

- 1. Une matrice carrée $A \in M_n(\mathbb{K})$ est dite **inversible**, s'il existe une matrice carrée B tel que $AB = BA = I_n$.
- 2. L'ensemble des matrices carrée de $M_{mn}(\mathbb{K})$, sera noté $GL_n(\mathbb{K})$.
- 3. Si A n'est pas inversible, on dit que A est singulière.

Exemple 1.1.4

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; $A^{-1} = \frac{-1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$
; $A^{-1} = \begin{pmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{pmatrix}$.

Remarque:-

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{K})$. On rappel que $\det(A) = ad - bc$. Si $\det(A) \neq 0$, alors A est inversible et

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

4

Par exemple, si
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$$
. Alors $A^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 0 \\ -2 & 1 \end{pmatrix}$.

Proposition 1.1.3

Soient $A, B \in M_n(\mathbb{K})$ deux matrices inversibles. Alors

1.
$$(AB)^{-1} = B^{-1}A^{-1}$$
;

2.
$$(A^*)^{-1} = (A^{-1})^*$$
;
3. $(A^{-1})^{-1} = A$;

3.
$$(A^{-1})^{-1} = A$$

4.
$$(A^T)^{-1} = (A^{-1})^T$$
.

1.1.2 Déterminant - Trace d'une matrice.

Definition 1.1.5

On considère la matrice carrée suivante :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Le déterminant de la matrice qu'on note $\det(\mathbf{A})$ ou $|\mathbf{A}|$ est défini à l'aide de la formule de récurrence suivante:

n=1: Le déterminant d'une matrice A=(a) de taille 1×1 est det(A)=a.

 $n \ge 2$: Pour $1 \le i, j \le n$, on note par Δ_{ij} le déterminant de la matrice d'ordre n-1 obtenue en supprimant la ligne et la colonne de A contenant a_{ij} . On l'appelle mineur de l'élément a_{ij} . Le déterminant de A est défini par :

$$det(A) = a_{11}\Delta_{11} - a_{21}\Delta_{21} + \dots + (-1)^{n+1}\Delta_{n1}.$$

Remarque:-

Soit A une matrice carrée, le **déterminant** de A, qu'on le note $\det(A)$ ou encore |A|, est une forme multilinéaire alternée de colonnes de A.

Exemple 1.1.5

1. On considère la matrice carrée suivante :

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 1 & 3 \end{pmatrix}.$$

Alors

$$\det(A) = 1 \times \begin{vmatrix} 5 & 6 \\ 1 & 3 \end{vmatrix} - 4 \times \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} + 0 \times \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix}$$
$$= 15 - 6 - 4(6 - 3) = 15 - 6 - 24 + 12 = -3 \neq 0.$$

Ainsi A est inversible.

2. Soit la matrice carrée suivante :

$$B = \begin{pmatrix} -1 & 0 & 1 \\ 3 & 4 & 5 \\ 1 & 2 & 3 \end{pmatrix},$$

après calcule on trouve det(B) = 0. D'où B est singulière.

Proposition 1.1.4

Soient $A, B \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

- 1. det(AB) = det(A) det(B).
- 2. $det(A^T) = det(A)$.
- 3. $det(\lambda A) = \lambda^n det(A)$.
- 4. $\det \operatorname{diag}(d_1, d_2, \dots, d_n) = \prod_{i=1}^n d_i$.
- 5. $\det(I_n) = 1$.

Proposition 1.1.5

Soit $A \in M_n(\mathbb{K})$. A inversible si et seulement si $\det(A) \neq 0$.

Proposition 1.1.6

Soit $A \in M_n(\mathbb{K})$. Si A est inversible, alors $\det(A^{-1}) = \frac{1}{\det(A)}$.

Definition 1.1.6

Soit $A=(a_{ij})_{1\leqslant i,j\leqslant n}\in M_n(\mathbb{K}).$ Le réel $\mathrm{Tr}(A)=\sum_{i=1}^n a_{ii}$ est appelé la **trace** de A.

Exemple 1.1.6

-
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $Tr(A) = 5$.

--
$$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 1 & 4 \end{pmatrix}$$
, $Tr(B) = 10$.

Proposition 1.1.7

Soient $A, B \in M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

- 1. $\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$;
- 2. $Tr(\alpha A) = \alpha Tr(A)$.
- 3. Tr(AB) = Tr(BA).

Remarque:-

Soient $A, B \in M_n(\mathbb{K})$, en générale $\text{Tr}(AB) \neq \text{Tr}(A)\text{Tr}(B)$.

1.1.3 Mineurs et cofacteurs

Definition 1.1.7

Soit $A = (a_{ij})_{1 \le i,j \le n}$ une matrice carrée de $M_n(\mathbb{K})$.

• Le **mineur** de l'élément a_{ij} est le déterminant de la matrice obtenu après avoir retiré la i^{me} ligne et la j^{me} colonne de A qu'on le note :

$$M_{i,j} = \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j-1} & a_{2,j+1} & \dots & a_{2,n} \\ \vdots & & & \vdots & \vdots & \dots & \vdots \\ a_{i-1,1} & a_{i-1,2} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & a_{i+1,2} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & & & \vdots & \vdots & \dots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{vmatrix}$$

• Le **cofacteur** de l'élément $a_{i,j}$ noté $c_{i,j}$ est égale à :

$$c_{i,j} = (-1)^{i+j} M_{i,j}.$$

• La **comatrice** de $A=(a_{i,j})$ est définie par $Com(A)=(c_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$

Exemple 1.1.7

1. On considère la matrice suivante $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Alors : $M_{1,1} = |4| = 4$, $M_{1,2} = |3| = 3$, $M_{2,1} = |2| = 2$ et

$$Com(A) = \begin{pmatrix} 4 & -3 \\ -2 & 1 \end{pmatrix}.$$

2. On considère la matrice suivante :

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 1 & 3 \end{pmatrix}.$$

Alors

$$Com(B) = \begin{pmatrix} \begin{vmatrix} 5 & 6 \\ 1 & 3 \end{vmatrix} & -\begin{vmatrix} 4 & 6 \\ 0 & 3 \end{vmatrix} & \begin{vmatrix} 4 & 5 \\ 0 & 1 \end{vmatrix} \\ -\begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 0 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 9 & -12 & -5 \\ -3 & 3 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$

7

Proposition 1.1.8

Soit $A \in M_n(\mathbb{K})$. Alors

 $\bullet \ \det(A) = \sum_{j=1}^n a_{i,j} c_{i,j}.$

• Si $\det(A) \neq 0$, alors $A^{-1} = \frac{1}{\det(A)} Com(A)^T$.

Exemple 1.1.8

On considère la matrice carrée de taille n=3 suivante :

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix}.$$

Alors:

$$\det(A) = 1 \times \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} - 0 \times \begin{vmatrix} 2 & 0 \\ -1 & 0 \end{vmatrix} + 3 \times \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix}$$
$$= (1 \times 0) - (0 \times 0) + 3 \times (4 + 1) = 15.$$

Ainsi

$$Com(A) = \begin{pmatrix} \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} & - \begin{vmatrix} 2 & 0 \\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ -1 & 0 \end{vmatrix} \\ - \begin{vmatrix} 0 & 3 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} \\ \begin{vmatrix} 0 & 3 \\ 1 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 5 \\ 6 & 3 & -2 \\ -3 & 6 & 1 \end{pmatrix}.$$

D'où

$$A^{-1} = \frac{1}{\det(A)} Com(A)^{T}$$
$$= \frac{1}{15} \begin{pmatrix} 0 & 6 & -3\\ 0 & 3 & 6\\ 5 & -2 & 1 \end{pmatrix}.$$

1.1.4 Matrices particulière

Matrice symétriques

Definition 1.1.8

Soit A une matrice carrée de $M_n(\mathbb{K})$. Alors

- On dit que A est une matrice **symétrique** si $A = A^T$.
- On dit que A est une matrice anti-symétrique si $A = -A^T$.

Remarque:-

Si $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in M_n(\mathbb{K}),$ alors

A est symétrique si et seulement si $a_{i,j} = a_{j,i} \ \forall i,j \in \{1,2,\ldots,n\}.$

Exemple 1.1.9

- $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; $A^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, ainsi A est symétrique.
- $B = \begin{pmatrix} 1 & -2 & 3 \\ -2 & \sqrt{2} & \frac{1}{2} \\ 3 & \frac{1}{2} & 0 \end{pmatrix}$; $B^T = \begin{pmatrix} 1 & -2 & 3 \\ -2 & \sqrt{2} & \frac{1}{2} \\ 3 & \frac{1}{2} & 0 \end{pmatrix}$, ainsi B est symétrique.

Remarque:-

Soit $A \in M_n(\mathbb{K})$. La matrice AA^T est symétrique. En effet : $(AA^T) = (A^T)^TA^T = AA^T$, d'où AA^T est symétrique.

Remarque:-

Si A et B sont deux matrice symétrique alors AB n'est pas forcément symétrique. En effet, considérant les deux matrices suivantes : $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Clairement A et B sont symétrique tandis que AB n'est pas symétrique puisque $AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Proposition 1.1.9

Soient A et B deux matrices symétrique dans $M_n(\mathbb{K})$. Alors

AB symétrique si et seulement si, AB = BA.

Matrice hermitienne

Definition 1.1.9

Soit $A \in M_n(\mathbb{K})$. La matrice A est dite **hermitienne** si $A^* = A$.

Exemple 1.1.10

- On considère la matrice $A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$. On a : $A^* = \bar{A}^T = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} = A$, d'où A est hermitienne.
- Considérant la matrice suivante : $A = \begin{pmatrix} 5 & 1+i \\ 1-i & 1 \end{pmatrix}$. On a $A^* = \bar{A}^T = \begin{pmatrix} 5 & 1-i \\ 1+i & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1+i \\ 1-i & 1 \end{pmatrix} = A$, d'où A est hermitienne.

Remarque:-

Si A et B sont deux matrice hermitienne, alors AB n'est pas forcément une matrice hermitienne.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},$$

puisque

$$AB = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = BA.$$

9

Proposition 1.1.10

Si A et B sont deux matrices hermitiennes.

AB est hermitienne si et seulement si, AB = BA.

Matrice orthogonale

Definition 1.1.10

Soit $A \in M_n(\mathbb{K})$. Alors A est dite **orthogonal** si $AA^T = A^TA = I_n$.

Exemple 1.1.11

On considère la matrice A suivante :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Clairement:

$$A^{T} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}^{T} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Ainsi

$$AA^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, d'où $AA^T = A^TA = I_2$ et A orthogonale.

Remarque:-

Soit $A \in M_n(\mathbb{K})$.

- 1. A est orthogonal si et seulement si $A^{-1} = A^{T}$.
- 2. Si A est orthogonale, alors $det(A) = \pm 1$. En effet,

$$1 = \det(I_n) = \det(A^T A) = \det(A^T) \det(A) = \det(A)^2$$
.

Theoreme 1.1.1

Caractérisation d'une matrice orthogonale Une matrice est orthogonale si et seulement si, les colonnes (ou les lignes) de la matrice (vues comme des vecteurs) sont unitaires et deux-à-deux orthogonales.

Exemple 1.1.12

On considère la matrice suivante :

$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

On pose:

$$X = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix} \text{ et } Y = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}.$$

On a $||X|| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$, $||Y|| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$ et $\langle X, Y \rangle = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$. Ainsi A est une matrice orthogonale.

10

Exemple 1.1.13

On considère la matrice suivante :

$$A = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ \frac{-1}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{5}{\sqrt{30}} \end{pmatrix}.$$

On pose:

$$X = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{5}} \\ \frac{-1}{\sqrt{30}} \end{pmatrix}, Y = \begin{pmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{30}} \end{pmatrix} \text{ et } Z = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ 0 \\ \frac{5}{\sqrt{30}} \end{pmatrix}.$$

On a $\|X\| = \sqrt{\frac{1}{6} + \frac{4}{5} + \frac{1}{30}} = 1$, $\|Y\| = \sqrt{\frac{4}{6} + \frac{1}{5} + \frac{4}{30}} = 1$ et $\|Z\| = \sqrt{\frac{1}{6} + \frac{5}{30}} = 1$ $\langle X, Y \rangle = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$. Ainsi A est une matrice orthogonale. De même si on considère les vecteurs de lignes au lieu des vecteurs colonnes.

Exemple 1.1.14

Soit la matrice A de $M_3(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} \frac{1}{9} & \frac{8}{9} & \frac{-4}{9} \\ \frac{4}{9} & \frac{-4}{9} & \frac{-7}{9} \\ \frac{8}{9} & \frac{1}{9} & \frac{4}{9} \end{pmatrix}.$$

Alors A est une matrice orthogonale (Les détails sont laissés au lecteur à titre d'exercice).

Proposition 1.1.11

Soit $A \in M_n(\mathbb{K})$. Si est une matrice orthogonale, alors $(AX)^T(AX) = X^TX$ pour tout $X \in M_{n,1}(\mathbb{K})$.

Remarque:-

Soit $X \in M_{n,1}(\mathbb{K})$. Si on pose : $||X|| = X^T X$ et si A est une matrice orthogonale alors ||AX|| = ||X|| (On dit que A conserve la norme).

Proposition 1.1.12

Si A et B deux matrices orthogonale, alors AB l'est aussi.

Preuve 1.1.1

Soient A et B deux matrices orthogonale de $M_n(\mathbb{K})$. Alors

$$AA^T = A^TA = I$$
 et $BB^T = B^TB = I$.

Ainsi

$$(AB)(AB)^{T} = ABB^{T}A^{T} = AA^{T} = I \text{ et } (AB)^{T}AB = B^{T}A^{T}AB = B^{T}B = I,$$

d'où AB est orthogonale.

Matrice unitaire

Definition 1.1.11

Soit $A \in M_n(\mathbb{K})$. Alors A est dite **unitaire** si, $AA^* = A^*A = I$.

Exemple 1.1.15

1.
$$A = \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix}$$
; $A^* = \bar{A}^T = \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix}$. Alors

$$AA^* = \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix}$$

et

$$A^*A = \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix},$$

d'où A est normale.

Remarque:-

Soit $A \in M_n(\mathbb{K})$.

- 1. Si A est unitaire, alors A est normale.
- 2. Si A est hermitienne, alors A est normale.

1.2 Valeurs propres - Vecteurs propres

Definition 1.2.1

Soit $A \in M_n(\mathbb{K})$.

- $\lambda \in \mathbb{C}$ est une valeur propre de A, s'il existe $X \neq 0$ tel que $AX = \lambda X$.
- Le vecteur X est appelé **vecteur propre** de A associé à λ .
- L'ensemble des vecteurs propres de A associé à λ est noté par E_{λ} :

$$E_{\lambda} = \{ X \in \mathbb{K}^n / AX = \lambda X \}.$$

Exemple 1.2.1

• On considère la matrice et le vecteurs suivantes :

$$A = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix} \text{ et } X = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

X est un vecteur propre associé à la valeur propre $\lambda = -2$.

• Cherchons les valeurs propres associé a la valeur propre $\lambda = 7$, c-à-d cherchons $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ tel que :

12

AX = 7X. On a:

$$AX = 7X \iff \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} x + 3y + 3z = 7x \\ -2x + 11y - z = 7y \\ 8x - 7y + 6z = 7z \end{cases}$$

$$\iff \begin{cases} -6x + 3y + 3z = 0 \\ -2x + 4y - 2z = 0 \\ 8x - 7y - z = 0 \end{cases}$$

$$\iff x = y = z.$$

Ainsi

$$E_{\lambda} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} / x = y = z \right\}$$
$$= \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad (\dim E_{\lambda} = 1).$$

Exemple 1.2.2

Soit A la matrice donné par :

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

On a:

- $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ est un vecteur propre associé à la valeur propre λ_1 .
- $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ est un vecteur propre associé à la valeur propre λ_2 .
- $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ est un vecteur propre associé à la valeur propre λ_3 .

Definition 1.2.2

Soit $A \in M_n(\mathbb{K})$. L'ensemble des valeurs propres de A est appelé le **spectre** de A qu'on note Sp(A):

$$Sp(A) = {\lambda \text{ valeur propre de } A}.$$

Proposition 1.2.1

Soit $A \in M_n(\mathbb{K})$, et $\lambda \in \mathbb{K}$. Alors

 λ valeur propre de $A \iff \det(A - \lambda_n) = 0$.

Preuve 1.2.1

Soit $A \in M_n(\mathbb{K})$, et $\lambda \in \mathbb{K}$. Alors :

$$\lambda \in Sp(A) \iff \exists X \in \mathbb{K}^n \setminus \{0\} \text{ tel que } AX = \lambda X$$
 $\iff \exists X \in \mathbb{K}^n \setminus \{0\} \text{ tel que } (A - \lambda I)(X) = 0$
 $\iff A - \lambda \text{ n'est pas injective}$
 $\iff A - \lambda I \text{ n'est pas inversible}$
 $\iff \det(A - \lambda I) = 0.$

Definition 1.2.3

Soit $A \in M_n(\mathbb{K})$. Le **polynôme caractéristique** de A que l'on note $P_A(X)$ est donné par : $P_A(X) = \det(A - XI)$.

Exemple 1.2.3

1. Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Alors:

$$P_A(X) = \det(A - XI_2)$$

$$= \begin{vmatrix} 1 - X & 2 \\ 3 & 4 - X \end{vmatrix}$$

$$= (1 - X)(4 - X) - 6$$

$$= 4 - X - 4X + X^2 - 6$$

$$= X^2 - 5X - 2.$$

2. Soit A la matrice définie par :

$$B = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix}.$$

Alors

$$\begin{split} P_B(X) &= \det(A - XI_2) \\ &= \begin{vmatrix} 1 - X & 3 & 3 \\ -2 & 11 - X & -2 \\ 8 & -7 & 6 - X \end{vmatrix} \\ &= (1 - X) \begin{vmatrix} 11 - X & -2 \\ -7 & 6 - X \end{vmatrix} + 2 \begin{vmatrix} 3 & 3 \\ 11 - X & -2 \end{vmatrix} + 8 \begin{vmatrix} 3 & 3 \\ 11 - X & -2 \end{vmatrix} \\ &= (1 - X) \left[(11 - X)(6 - X) - 14 \right] + 2 \left[3(6 - X) + 21 \right] + 8 \left[-6 - 33 + 3X \right] \\ &= (1 - X)(X^2 - 17X + 52) + 2(-3X + 39) + 8(3X - 39) \\ &= -X^3 + 18X^2 - 51X - 182 \\ &= -(X + 2)(X - 7)(X - 13). \end{split}$$

Proposition 1.2.2

Soit $A \in M_n(\mathbb{K})$. Alors

 $\lambda \in Sp(A)$ si et seulement si $P_A(\lambda) = 0$.

Ainsi $Sp(A) = \{ \text{ racines de } P_A(X) \}.$

Remarque:-

1. Si
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
. Alors

$$P_A(X) = \begin{vmatrix} a_{11} - X & a_{12} \\ a_{21} & a_{22} - X \end{vmatrix}$$

$$= (a_{11} - X)(a_{22} - X) - a_{21}a_{12}$$

$$= a_{11}a_{22} - a_{11}X - a_{22}X + X^2 - a_{21}a_{12}$$

$$= X^2 - (a_{11} + a_{22})X + a_{11}a_{22} - a_{21}a_{12}$$

$$= X^2 - Tr(A)X + \det(A).$$

2. Si A est une matrice définie par :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Alors

$$P_A(X) = \det(A - XI_2)$$

$$= \begin{vmatrix} a_{11} - X & a_{12} & a_{13} \\ a_{21} & a_{22} - X & a_{23} \\ a_{31} & a_{32} & a_{33} - X \end{vmatrix}$$

$$= -X^3 + Tr(A)X^2 - (A_{11} + A_{22} + A_{23})X + \det(A)$$

où A_{ii} est le cofacteur associé à a_{ii} déterminant de la matrice (i,i) où on a enlevé la i^{me} ligne et i^{me} colonne. C'est-à-dire :

$$A_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22}a_{33} - a_{32}a_{23},$$

et

$$A_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} = a_{11}a_{33} - a_{31}a_{13}.$$

— Si $A \in M_4(\mathbb{K})$. $P_A(X) = X^4 - Tr(A)X^3 + \dots + \det(A)$.

— Si $A \in M_5(\mathbb{K})$. $P_A(X) = -X^5 - Tr(A)X^4 + \dots + \det(A)$.

Remarque:-

Soit $A \in M_n(\mathbb{K})$. $P_A(X)$ est un polynôme de degré n, à coefficients réels si $\mathbb{K} = \mathbb{R}$, et à coefficients complexes si $\mathbb{K} = \mathbb{C}$. Il est toujours de la forme :

$$P_A(X) = (-1)^n X^n + (-1)^{n-1} Tr(A) X^{n-1} + \dots + \det(A).$$

Exemple 1.2.4

On considère la matrice suivante :

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & -1 \\ 1 & 3 & 1 \end{pmatrix},$$

alors
$$P_A(X) = -X^3 + 6X^2 - 6X - 1$$
.

Remarque:-

Soit $A \in M_n(\mathbb{K})$.

- 1. La somme des valeurs propres répétées avec leur multiplicités de A est égale à Tr(A).
- 2. Le produit de valeurs propres répétées avec leur de multiplicités de A est égale à $\det(A)$.
- 3. $\det(A) = P_A(0)$.

Exemple 1.2.5

On considère la matrice A suivante :

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix}.$$

Alors $P_A(X) = -X(X-1)(X-3)$ et $Sp(A) = \{0,1,3\}$.

Proposition 1.2.3

Soit $A \in M_n(\mathbb{K})$. Alors

- 1. A est inversible si et seulement si, $0 \notin Sp(A)$.
- 2. Si A est inversible alors, $Sp(A^{-1}) = \left\{\frac{1}{\lambda} \ / \ \lambda \in Sp(A)\right\}$.

Preuve 1.2.2

Soit $A \in M_n(\mathbb{K})$. On a:

$$\begin{split} P_{A^{-1}}(X) &= \det(A^{-1} - XI) \\ &= \det(A^{-1} - A^{-1}AX) \\ &= \det(A^{-1}) \det(I - AX) \\ &= \det(A^{-1} \det(-(AX - I)) \\ &= \det(A^{-1}) \det\left(-X\left(A - \frac{1}{X}I\right)\right) \\ &= (-1)^n \det(A^{-1}) \det\left(A - \frac{1}{X}I\right), \end{split}$$

d'où $P_{A^{-1}}(X)=\frac{(-X)^n}{\det(A)}P_A\left(\frac{1}{X}\right)$. Ainsi $P_{A^{-1}}(\lambda)=0$ si et seulement si $P_A\left(\frac{1}{\lambda}\right)=0$.

Proposition 1.2.4

Soit $A \in M_n(\mathbb{K})$. Alors A et A^T ont le même polynôme caractérisation, c'est -à-dire $P_A(X) = P_{A^T}(X)$.

Preuve 1.2.3

Soit $A \in M_n(\mathbb{K})$. On a :

$$\begin{split} P_{A^T}(X) &= \det(A^T - XI) \\ &= \det\left((A - XI)^T\right) \\ &= \det(A - XI) \\ &= P_A(X). \end{split}$$

Remarque:-

Soit $A, B \in M_n(\mathbb{K})$. Alors

- 1. $Sp(A + B) \neq Sp(A) + Sp(B)$.
- 2. $Sp(AB) \neq Sp(A)Sp(B)$.

1.2.1 Théorème de Cayley-Hamilton

Le polynôme caractéristique P_A de la matrice A, fournit une information supplémentaire sur A, en fait une relation sur certains puissances de A.

Theoreme 1.2.1 Cayley-Hamilton

Soit $A \in M_n(\mathbb{K})$, de polynôme caractéristique P_A . Alors :

$$P_A(A) = 0.$$

Exemple 1.2.6 (Applications 1 : Calcul de puissance d'une matrice)

$$\text{Soit } A \in M_2(\mathbb{K}). \text{ Alors } P_A(X) = X^2 - Tr(A)X + \det(A). \text{ Donc } P_A(A) = A^2 - Tr(A)A + \det(A)I_2 = 0, \text{ d'où all } P_A(A) = A^2 - Tr(A)A + \det(A)I_2 = A^2 - Tr(A)A + \det(A)I_2 = A^2 - Tr(A)A + \det(A)I_2$$

$$A^2 = Tr(A)A - \det(A)I_2.$$

Ainsi

$$A^{3} = AA^{2} = A (Tr(A)A - \det(A)I_{2})$$

$$= Tr(A)A^{2} - \det(A)A$$

$$= Tr(A) [Tr(A)A - \det(A)I_{2}] - \det(A)A$$

$$= Tr(A)^{2}A - Tr(A) \det(A)I_{2} - \det(A)A$$

$$= (Tr(A)^{2} - \det(A)) A - Tr(A) \det(A)I_{2}.$$

De la même manière on peut calculer A^4, A^5, \dots, A^n pour $n \in \mathbb{N}$.

Remarque:-

Soient $A \in M_n(\mathbb{K})$ et $p \in \mathbb{N}$. Alors

$$Sp(A^p) = \{\lambda^p / \lambda \in Sp(A)\}.$$

Definition 1.2.4

On dit d'une matrice $A \in M_n(\mathbb{K})$ est **nilpotent** s'il existe $m \in \mathbb{N}$ tel que $A^m = 0$.

Exercise 1.2.1

Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix}.$$

- 1. Calculer Tr(A) et det(A).
- 2. Déterminer le polynôme caractéristique de A.
- 3. Calculer A^3 , A^4 et A^5 .
- 4. Déterminer A^{-1} en fonction de A.

Exercise 1.2.2

Soit

$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}.$$

- 1. Donner $P_A(X)$.
- 2. Déterminer Sp(A).
- 3. En déduire det(A).
- 4. Calculer A^{-1} en fonction de A.
- 5. Calculer (A-2I)(A-4I).
- 6. En déduire A^2 en fonction de A.
- 7. Montrer que $\forall n \in \mathbb{N}^*$, on a :

$$A^{n} = 2^{n-1} \begin{pmatrix} 2^{n} + 1 & -3(2^{n} - 1) & 2(2^{n} - 1) \\ -2^{n} + 1 & 3 \times 2^{n} - 1 & -2(2^{n} - 1) \\ -2^{n} + 1 & 3(2^{n} - 1) & 4 - 2^{n+1} \end{pmatrix}.$$

Exemple 1.2.7 (Application 2 : Calcul de l'inverse d'une matrice)

Soit $A \in M_n(\mathbb{K})$ une matrice inversible, c-à-dire $\det(A) \neq 0$. On a

$$P_A(X) = (-1)^n X^n + (-1)^{n-1} Tr(A) X^{n-1} + \dots + \det(A).$$

Appliquons le Théorème de Cayley-Hamilton on trouve que :

$$(-1)^n A^n + (-1)^{n-1} Tr(A) A^{n-1} + \dots + \det(A) I_n = 0.$$

Donc

$$(-1)^n A^n + (-1)^{n-1} Tr(A) A^{n-1} + \dots + A = -\det(A) I_n.$$

Ainsi

$$\frac{-1}{\det(A)} \left[(-1)^n A^n + (-1)^{n-1} Tr(A) A^{n-1} + \dots + p I_n \right] A = I_n,$$

d'où

$$A^{-1} = \frac{-1}{\det(A)} \left[(-1)^n A^{n-1} + (-1)^{n-1} Tr(A) A^{n-2} + \dots + p I_n \right].$$

Exemple 1.2.8

On considère la suivante définie par :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}.$$

- 1. Montrer que $P_A(X) = -X^3 X^2 + 10X 8 = -(X 2)(X 1)(X + 4)$.
- 2. Déterminer Sp(A).
- 3. Calculer A^{-1} en fonction de A.

On termine ce paragraphe, en posant la question suivante. Est-ce que n'importe quel polynôme peut être un polynôme caractéristique d'une matrice? La réponse est **oui**.

En effet : Soit $P(X) = X^n + \alpha_{n-1}X^{n-1} + \cdots + \alpha_1X + \alpha_0$ un polynôme. On pose :

$$A = \begin{pmatrix} 0 & \dots & \dots & 0 & -\alpha_0 \\ 1 & \ddots & & \vdots & -\alpha_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -\alpha_{n-1} \end{pmatrix}.$$

Alors : $P_A(X) = (-1)^n P(X)$.

Exemple 1.2.9

On considère le polynôme suivant : $P(X) = X^2 + 3X + 2$ et soit A une matrice définie par :

$$A = \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix}.$$

On aura:

$$P_A(X) = \begin{vmatrix} -X & -2 \\ 1 & -3 - X \end{vmatrix} = -X(-3 - X) + 2 = 3X + X^2 + 2 = P(X).$$

Exemple 1.2.10

On considère le polynôme suivant : $P(X) = -X^3 - X^2 + 10X - 8$ et soit A une matrice définie par :

$$A = \begin{pmatrix} 0 & 0 & -8 \\ 1 & 0 & 10 \\ 0 & 1 & -1 \end{pmatrix}.$$

Ainsi : $P_A(X) = -X^3 - X^2 + 10X - 8 = P(X)$.

Différentes méthodes pour déterminer le polynôme caractéristiques d'une matrice.

Remarque:-

- 1. Soit $A \in M_2(\mathbb{C})$. Alors : $P_A(X) = \det(A XI_2) = X^2 Tr(A)X + \det(A)$. Si $Sp(A) = \{\lambda_1, \lambda_2\}$, alors $P_A(X) = (X - \lambda_1)(X - \lambda_2)$.
- 2. Soit $A \in M_3(\mathbb{C})$, alors :

$$P_A(X) = \det(A - XI_3) = -X^3 + Tr(A)X^2 - (M_{11} + M_{22} + M_{33})X + \det(A).$$

Si
$$Sp(A) = \{\lambda_1, \lambda_2, \lambda_3\}$$
, alors

$$P_A(X) = -(X - \lambda_1)(X - \lambda_2)(X - \lambda_3)$$
 et $M_{11} + M_{22} + M_{33} = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3$.

3. Cas des matrices triangulaires supérieurs. Soit A une matrice carré triangulaire supérieur définie par :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Alors:

$$P_A(X) = \begin{vmatrix} a_{11} - X & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} - X & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} - X \end{vmatrix} = (a_{11} - X)(a_{22} - X)(a_{33} - X)\cdots(a_{nn} - X),$$

donc $Sp(A) = \{$ les termes diagonaux de $A\}$. Même chose dans le cas d'une matrice diagonale.

1.2.2 Cas des matrices diagonales par blocs - Triangulaire par blocs

Proposition 1.2.5

Soit M une matrice de $M_{n+p}(\mathbb{K})$ c'est-à-dire $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ avec $A \in M_n(\mathbb{K})$, $B \in M_{n,p}(\mathbb{K})$ et $C \in M_p(\mathbb{K})$.

$$\det(M) = \det(A)\det(C).$$

Remarque:-

Cas général qui intervient dans les calcules de sciences de l'ingénieur. Soit A,B,C et D des matrices carrées de $M_n(\mathbb{K})$ telle que : DC = CD. Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{2n}(\mathbb{K})$. Si D est inversible, alors :

$$\det(M) = \det(AD + BC).$$

Le résultat reste vrai même si D n'est pas inversible.

Exemple 1.2.11

Considérons la matrice M définie par :

$$M = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ \hline 3 & 1 & 5 & 6 \\ 2 & 4 & 7 & 8 \end{pmatrix}.$$

Alors:

$$\det(M) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \times \begin{vmatrix} 5 & 6 \\ 7 & 8 \end{vmatrix} = (-2) \times (-2) = 4.$$

Proposition 1.2.6

Soit A une matrice triangulaire par block telle que :

$$A = \begin{pmatrix} A_1 \\ & A_2 \\ & & \ddots \\ 0 & & & A_p \end{pmatrix}$$

Alors:

$$P_A(X) = P_{A_1}(X)P_{A_2}(X)\cdots P_{A_p}(X),$$

 et

$$Sp(A) = Sp(A_1) \cup Sp(A_2) \cup \cdots \cup Sp(A_p).$$

Exemple 1.2.12

On considère la matrice par block suivante :

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ \hline 3 & 1 & 5 & 6 \\ 2 & 4 & 7 & 8 \end{pmatrix},$$

ici
$$A_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 et $A_2 = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Alors:

$$P_A(X) = P_{A_1}(X)P_{A_2}(X)$$

$$= (X^2 - 5X - 2)(X^2 - 13X - 2)$$

$$= X^4 - 18X^3 + 16X^2 + 36X + 4.$$

Détermination du polynôme caractéristique

Méthode de Le Verrier

Soit A une matrice carrée de $M_n(\mathbb{C})$. Alors on a :

$$P_A(X) = (-1)^n \left(X^n - \sum_{k=1}^n a_k X^{n-k} \right).$$

Les coefficients a_k avec $k \in \{1, ..., n\}$ sont déterminées de la manière suivante : On pose $S_k = Tr(A^k)$ pour k = 1, ..., n. Les coefficients a_k sont donnés par :

- $\bullet \ a_1 = S_1 = Tr(A).$
- \bullet $2a_2 = S_2 a_1S_1$.
- $3a_3 = S_3 a_1S_2 a_2S_1$.
- $\bullet \ 4a_4 = S_4 a_1 S_3 a_2 S_2 a_3 S_1.$

:

•
$$na_n = S_n - a_1 S_{n-1} - a_2 S_{n-2} - \dots - a_{n-1} S_1$$
.

Exemple 1.2.13

•
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 alors $P_A(X) = X^2 - 5X - 2$.

•
$$B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
, $B^2 = \begin{pmatrix} -1 & -2 & -4 \\ 5 & 6 & 4 \\ 10 & 10 & 9 \end{pmatrix}$ et $B = \begin{pmatrix} -11 & -12 & -13 \\ 19 & 20 & 13 \\ 38 & 38 & 27 \end{pmatrix}$.
Ainsi $P_B(X) = -X^3 + 6X^2 - 11X + 6$.

Méthode de Krylov

Soit A une matrice carrée de $M_n(\mathbb{C})$. Alors

$$P_A(X) = (-1)^n \left(X^n - \sum_{k=1}^n a_k X^{n-k} \right).$$

Déterminons les coefficients : a_{11}, \dots, a_{nn} . D'après le Théorème de Cayley-Hamilton on trouve : $A^n = \sum_{k=1}^n A^{n-k}$.

Choisissons $x_0 \neq 0$ et posons $a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ et soit B la matrice donnée par :

$$B = (A^{n-1}x_0|A^{n-2}x_0|\cdots|A^{n-1}x_0|x_0).$$

Donc

$$Ba = a_1 A^{n-1} x_0 + a_2 A^{n-2} x_0 + \dots + a_n x_0.$$

Ainsi déterminer les a_k revient à résoudre l'équation : $Ba = A^n x_0$.

Remarque:-

Si B est inversible, alors $a = B^{-1}A^nx_0$ (sinon on change x_0).

Exemple 1.2.14

1. Soit la matrice A définie par :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

alors

$$A^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}.$$

Ainsi : $P_A(X) = X^2 - 5X - 2$.

2. Considérons la matrice A définie par :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix},$$

alors
$$P_A(X) = -X^3 + 6X^2 - 11X + 6$$
.

Méthode de Faddeev

Soit A une matrice carrée de $M_n(\mathbb{C})$. On a :

$$P_A(X) = (-1)^n \left(X^n - \sum_{k=1}^n a_k X^{n-k} \right).$$

On pose:

$$\begin{cases} A_1 = A \\ A_k = (A_{k-A} - a_{k_n} I)A, & k = 2, 3, \dots, n. \end{cases}$$

Les coefficients a_k sont donnés par $a_k = \frac{1}{k} Tr(A_k)$.

Exemple 1.2.15

1. Soit la matrice A définie par

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

alors

$$A^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}.$$

Ainsi : $P_A(X) = X^2 - 5X - 2$.

2. Considérons ma matrice A définie par :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix},$$

alors $P_A(X) = -X^3 + 6X^2 - 11X + 6$.

1.3 Diagonalisation-Trigonalisation d'une matrice

1.3.1 Les matrices semblables

Remarque:-

Dans l'ensemble $M_n(\mathbb{K})$ des matrices carrées à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ où $\mathbb{K} = \mathbb{C}$), les matrices diagonales sont surement les plus simples. Même si $A \in M_n(\mathbb{K})$ n'est pas diagonale, on peut être s'y ramener.

Definition 1.3.1

Soit A et B deux matrices de $M_n(\mathbb{K})$. On dit que A et B sont **semblable** si il existe une matrice $P \in M_n(\mathbb{K})$ inversible telle que :

$$A = PBP^{-1}$$
.

Remarque:-

Si A et B sont semblable alors il existe une matrice P inversible telle que : $A = PBP^{-1}$, d'où AP = PB.

Exemple 1.3.1

Considérons les matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 1 \\ -3 & 0 & 0 \\ -2 & 0 & 1 \end{pmatrix}.$$

On a : $A = PBP^{-1}$.

Proposition 1.3.1

Soient $A, B \in M_n(\mathbb{K})$ deux matrices semblables. Alors il existe P inversible telle que $A = PBP^{-1}$. De plus :

- 1. $A = PBP^{-1} \iff AP = PB \iff B = P^{-1}AP$.
- 2. det(A) = det(B).
- 3. Tr(A) = Tr(B). 4. $A^m = PB^mP^{-1}$, $\forall m \in \mathbb{N}$.
- 5. $\exp(A) = P \exp(B)P^{-1}$

Si l'une des propriétés de la proposition précédente est vérifiée, cela ne signifie pas nécessairement que les deux matrices en question sont semblables. En effet, soient A et B deux matrices définie par :

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

On a : det(A) = 1 et det(B) = 1, mais Tr(A) = 1 et Tr(B) = 3. Donc A et B ne sont pas semblables.

Proposition 1.3.2

Si A et B sont deux matrices semblable, alors $P_A = P_B$. En particulier, Sp(A) = Sp(B).

Preuve 1.3.1

Supposons que les deux matrices A et B sont semblable, alors il existe une matrice P inversible telle que $A = PBP^{-1}$, et on a :

$$\begin{split} P_A(X) &= \det(A - XI) \\ &= \det(PBP^{-1} - XPP^{-1}) \\ &= \det(P(B - xI)P^{-1}) \\ &= \det(P)\det(B - XI)\det(P^{-1}) \\ &= \det(B - XI) \\ &= P_B(X). \end{split}$$

Si Sp(A) = Sp(B), alors cela n'implique pas que A et B sont semblable. En effet : soient A et B deux matrices définie par :

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

On a: $P_A(X) = X^2$, $P_B(X) = X^2$ et Sp(A) = Sp(B) mais A et B ne sont pas semblables.

Proposition 1.3.3

Soient A et B deux matrices de $M_n(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$. Si A et B sont semblables, alors $A + \lambda I$ et $B + \lambda I$ le sont également.

Preuve 1.3.2

Supposons que A et B sont semblables, alors il existe une matrice P inversible telle que : $A = PBP^{-1}$. On a : $A + \lambda I = PBP^{-1} + \lambda PP^{-1} = P(B + \lambda I)P^{-1}$. Donc $A + \lambda I$ et $B + \lambda I$ sont semblables.

Exemple 1.3.2

Soient A et B deux matrices données par :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

On a : det(A) = 1, det(B) = 1, Tr(A) = 3 et Tr(B) = 3. Prenons $\lambda = -1$, alors :

$$A + \lambda I = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Ainsi $\det(A-I) = 0$ et $\det(B-I) = 1$, donc ne sont pas semblables, d'où A et B ne sont pas semblables.

1.3.2 Diagonalisation

Definition 1.3.2

Une matrice carrée $A \in M_n(\mathbb{K})$ est diagonalisable si elle est semblable à une matrice diagonale.

Remarque:-

Soit $A \in M_n(\mathbb{K})$. Alors : si A est diagonalisable, donc il existe une matrice inversible P et une matrice

$$D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \in M_n(\mathbb{K}) \text{ tel que :}$$

$$A = PDP^{-1} = P \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} P^{-1}.$$

25

- $Tr(A) = Tr(D) = \lambda_1 + \cdots + \lambda_n$.
- $\det(A) = \det(D) = \lambda_1 \lambda_2 \cdots \lambda_n$.
- $\forall m \in \mathbb{N}, A^m = PD^mP^{-1} = P \begin{pmatrix} \lambda_1^m & 0 \\ & \ddots \\ 0 & \lambda_n^m \end{pmatrix} P^{-1}.$
- Si A est inversible, alors $A^{-1} = PD^{-1}P^{-1} = P\begin{pmatrix} \frac{1}{\lambda_1} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\lambda_n} \end{pmatrix} P^{-1}$.

•
$$Sp(A) = Sp(D) = {\lambda_1, \ldots, \lambda_n}.$$

•
$$Sp(A) = Sp(D) = \{\lambda_1, \dots, \lambda_n\}.$$

• $\exp(A) = P \exp(D)P^{-1} = P \begin{pmatrix} \exp(\lambda_1) & 0 \\ & \ddots & \\ 0 & \exp(\lambda_n) \end{pmatrix} P^{-1}.$

Exemple 1.3.3

La matrice $A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$ est diagonalisable car :

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} P^{-1} \text{ avec } P = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}.$$

Definition 1.3.3

Soit $A \in M_n(\mathbb{K})$. On appelle multiplicité de la valeur propre λ de A, qu'on notera m_{λ} , l'ordre de multiplicité de λ comme racine du polynôme caractéristique.

$$P_A(X) = (-1)^n (X - \lambda_1)^{m_{\lambda_1}} (X - \lambda_2)^{m_{\lambda_2}} \cdots (X - \lambda_n)^{m_{\lambda_n}}.$$

Exemple 1.3.4

On considère la matrice suivante :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix},$$

alors $P_A(X) = (X+1)^2(2-X)$.

Proposition 1.3.4

Soit λ une valeur propre d'une matrice $A \in M_n(\mathbb{K})$. Alors :

$$1 \leq \dim E_{\lambda} \leq m_{\lambda}$$
.

Definition 1.3.4

Un polynôme P est dite **scindé** sur \mathbb{K} , s'il s'écrit sous la forme :

$$P(X) = a(X - \lambda_1)^{m_1} (X - \lambda_2)^{m_2} \cdots (X - \lambda_n)^{m_p},$$

avec $a \in \mathbb{K}$ et $\lambda_i \in \mathbb{K}$ pour tout $i \in \{1, 2, ..., p\}$.

Remarque:-

Si λ est une valeur propre simple, alors dim $E_{\lambda} = 1$.

Exemple 1.3.5

- 1. $P(X) = X^3 4X^2 + 5X 2 = (X 2)(X 1)^2$. P est un polynôme scindé sur $\mathbb R$ et sur $\mathbb C$.
- 2. $P(X) = X^2 + 1$ n'est pas scindé sur \mathbb{R} , mais il est scindé sur \mathbb{C} , car $P(X) = X^2 + 1 = (X i)(X + i)$.

Theoreme 1.3.1

Soit $A \in M_n(\mathbb{K})$. Alors :

 $A \text{ est diagonalisable sur } K \text{ si et seulement si, } \begin{cases} P_A \text{ est scind\'e sur } \mathbb{K} \\ \dim E_\lambda = m_\lambda; \ \ \forall \lambda \in Sp(A). \end{cases}$

Corollaire 1.3.1

Soit $A \in M_n(\mathbb{K})$. Si P_A est scindé et si les racines sont simples, alors A est diagonalisable.

Exemple 1.3.6

On considère la matrice A suivante : $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$, alors $P_A(X) = (5 - X)(2 - X) - 4 = (X - 1)(X - 6)$ et $Sp(A) = \{1, 6\}$.

Déterminons E_1

On a:

$$E_{1} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 5x + 4y = x \\ x + 2y = y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 4x = -4y \\ x = -y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : x = -y \right\}$$

$$= \left\{ \begin{pmatrix} x \\ -x \end{pmatrix} : x \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

Ainsi dim $E_1 = 1$.

Déterminons E_6

On a:

$$E_{6} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : A \begin{pmatrix} x \\ y \end{pmatrix} = 6 \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 5x + 4y = 6x \\ x + 2y = 6y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : \begin{cases} 4y = x \\ x = 4y \end{cases} \right\}$$

$$= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} : x = 4y \right\}$$

$$= \left\{ \begin{pmatrix} 4y \\ y \end{pmatrix} : x \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} 4 \\ 1 \end{pmatrix} \right\},$$

d'où dim $E_6 = 1$. Donc

$$A = \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}^{-1}.$$

Exemple 1.3.7

Soit A la matrice donnée par : $A = \begin{pmatrix} 3 & -5 \\ 2 & -3 \end{pmatrix}$, ainsi $P_A(X) = \begin{vmatrix} 3 - X & -5 \\ 2 & -3 - X \end{vmatrix} = (3 - X)(-3 - X) + 10 = X^2 + 1$. Donc $P_A(X)$ n'est pas scindé sur \mathbb{R} , ainsi A n'est pas diagonalisable sur \mathbb{R} , mais il est diagonalisable sur \mathbb{C} .

Exemple 1.3.8

Soit A la matrice donnée par :

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

On a : $P_A(X) = -(X - A)(X + 2)^2$ et $Sp(A) = \{1, -2\}$.

•
$$E_{-2} = \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right)$$
, et dim $E_{-2} = 2$.

•
$$E_1 = \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right)$$
.

Exemple 1.3.9

Considérons la matrice suivante :

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}.$$

Alors $P_A(X) = -(X-4)^2(X-2)$ et

$$E_2 = \left(\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right), \quad E_4 = \left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right).$$

Soient P et D deux matrices données par :

$$P = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Ainsi:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

1.3.3 Trigonalisation

Definition 1.3.5

Une matrice $A \in M_n(\mathbb{K})$ est dite **trigonalisable** dans $M_n(\mathbb{K})$ si A est semblable à une matrice triangulaire supérieure, c'est-à-dire il existe une matrice inversible P est une matrice triangulaire supérieure T, telle que :

$$A = PTP^{-1}$$
.

Theoreme 1.3.2

Une matrice $A \in M_n(\mathbb{K})$ est trigonalisable si et seulement si, son polynôme caractéristique P_A est scindé sur \mathbb{K} .

Proposition 1.3.5

Tout matrice $A \in M_n(\mathbb{K})$ est trigonalisable sur \mathbb{C} .

Comment trigonaliser une matrice (cas d'une matrice de 3×3)

Soit $A \in M_n(\mathbb{K})$; $P_A(X) = \det(A - XI_3)$.

- Si P_A n'est pas scindé sur \mathbb{K} , alors A n'est pas trigonalisable (on s'arrête).
- Si P_A est scindé, on factorise P_A : Il y a 3 cas à distingué: 1^{ere} Cas: Si P_A , admet 3 racines $\lambda_1, \lambda_2, \lambda_3$ simples 2 à 2 disjoints alors: $E_{\lambda_1} = \langle e_1 \rangle, E_{\lambda_2} = \langle e_2 \rangle$ et $E_{\lambda_3} = \langle e_3 \rangle$.

Donc
$$P = (e_1|e_2|e_3)$$
 et $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$. Ainsi $A = PDP^{-1}$.

 2^{eme} Cas : Si P_A admet une racine simple λ_1 et une racine double λ_2 . On a : dim $E_{\lambda_1}=1 \Rightarrow E_{\lambda_1}=\langle e_1 \rangle$.

• Si dim $E_{\lambda_2}=2\Rightarrow E_{\lambda_2}=\langle e_2,e_3\rangle,$ alors A est diagonalisable.

$$P = (e_1|e_2|e_3) \ et \ D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix},$$

ainsi $A = PDP^{-1}$.

• Si dim $E_{\lambda_2} = 1 \Rightarrow A$ n'est pas diagonalisable, mais A est trigonalisable puisque dim $E_{\lambda_2} = 1 \Rightarrow E_{\lambda_2} = \langle e_2 \rangle$. On complète (e_1, e_2) en une base (e_1, e_2, e_3) . Donc

$$P = (e_1, e_2, e_3)$$
 $T = \begin{pmatrix} \lambda_1 & 0 & a \\ 0 & \lambda_2 & b \\ 0 & 0 & \lambda_2 \end{pmatrix}$.

Comment déterminer e_3 ?

Si on pose : $e_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ donc $A = PTP^{-1} \iff AP = PT$. Si on prend a = 0 et b = 1, $Ae_3 = be_2 + \lambda_2 e_3 = e_3 + \lambda_2 e_3$

si et seulement $(A - \lambda_2 I)e_3 = e_2$. Si e_3 solution de $(A - \lambda_2 I)X = e_2$.

 2^{eme} Cas : Si P_A admet une seul racine λ_1 avec $m_{\lambda_1}=3$. C'est-à-dire : $P_A(X)=-(X-\lambda_1)^3$. On a :

$$1 \leq \dim E_{\lambda_1} \leq 3$$
.

3 cas intervient:

• Si dim $E_{\lambda_1}=3 \Rightarrow A$ est diagonalisable et $E_{\lambda_1}=\langle e_1,e_2,e_3\rangle$ donc :

$$P = (e_1|e_2|e_3)$$
 et $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix} = \lambda_1 I_3.$

Par suite : $A = PDP^{-1} = P\lambda_1I_3P^{-1} = \lambda I_3$.

• Si dim $E_{\lambda_1}=2 \Rightarrow A$ n'est pas diagonalisable. $E_{\lambda_1}=\langle e_1 \rangle$, on complète (e_1) en une base (e_1,e_2,e_3) . Donc

$$P = (e_1|e_2|e_3) \quad et \quad T = \begin{pmatrix} \lambda_1 & a & b \\ 0 & \lambda_1 & c \\ 0 & 0 & \lambda_1 \end{pmatrix}.$$

- e_1 donnée.
- e_2 vérifie : $Ae_2 = ae_1 + \lambda_1 e_3$.
- e_3 vérifie : $Ae_3 = be_1 + +ce_2 + \lambda_1 e_3$.

Remarque:-

$$A = \overline{PTP^{-1}} \iff AP = PT$$

Exemple 1.3.10

On considère la matrice suivante :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Alors $P_A(X) = -(X - A)^3$ et $E_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, comme $dim(E_1) = 1 \neq 3$, alors A n'est pas diagonalisable, mais

elle est trigonalisable.

On complète
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 en une base $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, donc $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, et $T = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

On a $A = PTP^{-1}$.

Chapitre 2

Systèmes linéaires

2.1Résolution numériques des systèmes linéaires

2.1.1Ecriture matricielle d'un système linéaire

Definition 2.1.1

On considère le système linéaire à n lignes et p inconnues (S) donné par :

(S):
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases}$$

- 1. Résoudre le système (S) consiste à déterminer les p-uplets $(x_1,x_2\dots,x_p)\in\mathbb{K}^p$ vérifiant le système
- 2. Le vecteur $b = (b_1, b_2, \dots, b_n)$ s'appelle le second membre du (S).

$$3. (S) \iff \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

2. Le vecteur
$$b = (b_1, b_2, \dots, b_n)$$
 s'appene le second membre du (S) .

3. $(S) \iff \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

Si on pose : $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$ et $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$. Alors $(S) \iff AX = b$, la matrice A s'appelle la matrice du système (S) , et l'écriture $AX = b$, s'appelle l'écriture $AX = b$.

AX = b, la matrice A s'appelle la matrice du système (S), et l'écriture AX = b, s'appelle l'écriture matricielle de (S).

- 4. Si n = p on dit que le système (S) est carrée.
- 5. Un système (S) est dit homogène si b=0 c'est-à-dire AX=0.

2.1.2 Système de Cramer

Definition 2.1.2

Le système carré AX = b est dit de Cramer si A est inversible

Proposition 2.1.1

Si le système AX=b est de Cramer, alors il posséde une et une seul solution qui s'écrit matriciellement : $X=A^{-1}b$.

Proposition 2.1.2

Soit le système (S):

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases} \iff A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Si le système est de Cramer, alors le système AX = b admet une unique solution est n-umplet $(x_1, x_2, \dots, x_n) \in \mathbb{K}$, tel que :

$$x_i = \frac{\det(A_i)}{\det(A)}$$
 puor $i = 1, 2, \dots, n$

où A_i est la matrice obtenue en remplaçant la i^{eme} colonne de A par $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

Remarque:-

Pour n = 2, on a:

$$(S): \begin{cases} ax + by = \alpha \\ cx + dy = \beta \end{cases} \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

Posons : $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Si $\det(A) = ad - bc \neq 0$, alors (S) est de Cramer, donc il admet une unique solution donnée par :

$$x = \frac{\det \begin{pmatrix} \alpha & b \\ \beta & d \end{pmatrix}}{\det(A)} = \frac{\alpha d - \beta b}{ad - bc},$$

et

$$y = \frac{\det \begin{pmatrix} a & \alpha \\ c & \beta \end{pmatrix}}{\det(A)} = \frac{a\beta - c\alpha}{ad - bc}.$$

Pour n = 3, on a:

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} \iff \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Si
$$\Delta = \det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0$$
, alors le système (S) admet une unique solution donnée par :

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}}{\Delta}; \ x_2 = \frac{\begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}}{\Delta} \text{ et } x_3 = \frac{\begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}}{\Delta}$$

Remarque:-

Soit

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases} \iff A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix},$$

un système de Cramer.

— Pour obtenir $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, il faut calculer (n+1) déterminants, et n division, de plus dans chaque $det(A_i)$

ou det(A), il faut effectuer (n-1)n! multiplications et n!-1 additions. La somme des opérations est : $(n+1)(n-1)n!+(n+1)(n!-1)+1=(n^2+n)n!-1$. Par exemple pour n=10, on a besoin de $(100+10)\times 10!-1\simeq 4\times 10^8$ opérations.

- Si le système (S) est de Cramer, alors $X = A^{-1}b$, ainsi théoriquement pour déterminer la solution revient à calculer A^{-1} . Mais en pratique ce calcul est difficile. Il existe plusieurs méthodes pour résoudre le système (S) sous calculer A^{-1} . Le choix de la méthode dépend du forme de la matrice A, et de la taille du système.
- Si A est une matrice carrée triangulaire supérieure

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}.$$

$$\text{Alors } AX = b \iff \begin{cases} a_{11}x_1 & +a_{12}x_2 & +a_{13}x_3 & + \dots & +a_{1n}x_n & = b_1 \\ & +a_{22}x_2 & +a_{23}x_3 & + \dots & +a_{2n}x_n & = b_2 \\ & & \vdots & & & \vdots \\ & & & a_{nn}x_n & = b_n. \end{cases}$$

 $(S) \text{ est de Cramer si } A \text{ est inversible, donc } \det(A) = \prod_{i=1}^n a_{ii} \neq 0 \text{ c'est-\`a-dire, } a_{ii} \neq 0, \ \forall i \in \{1,2,\ldots,n\}.$

Donc la solution
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 est donnée par :

$$\begin{cases} x_n = \frac{b_n}{a_{nn}} \\ x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_j i} \ i = 1, 2, \dots, n-1. \end{cases}$$

Donc dans le cas d'une matrice triangulaire on a :

— n divisions.

—
$$1 + 2 + \cdots + n - 1 = \frac{n(n-1)}{2}$$
 additions.

—
$$1 + 2 + \cdots + n - 1 = \frac{n(n-1)}{2}$$
 multiplications.

Donc on a besoin de $n + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = n^2$. Donc si on a : le système AX = b, avec A n'est pas triangulaire on cherche une matrice M inversible telle que MA soit triangulaire suppérieure, donc

$$(S) \iff AX = b \iff MAX = Mb$$

 $\iff TX = b' \text{ avec } T \text{ triangulaire supérieure et } b' = Mb.$

Remarque:Les méthodes de résolutions des systèmes linéaires se groupent dans deux grand types :

- Les méthodes divertes : une méthode est dite directe si elle permet d'obtenir la solution exacte du système en un nombre fini d'opérations élémentaire (x,+,-,/) (Gauss-LU-Chokesky).
- Les méthodes itétatives : une méthode est dite itératives si elle permet de construire une suite (x_n) qui converge vers la solution du système.

2.2Méthodes directes pour la résolution d'un système linéaire carrée

2.3Méthode du pivot de Gauss

Soit (S) un système de Cramer, d'écriture matricielle AX = b. La méthode du pivot de Gauss consiste en utilisant des transformation élémentaire à transformer la matrice A en une matrice triangulaire sur la matrice colonne b.

$$[A \vdots b] \xrightarrow{\text{transformations}} [T \vdots b'].$$

Exemple 2.3.1

(S):
$$\begin{cases} x + 2y + 3z = 1 \\ -x - 3y + 5z = 2 \\ x + y + z = -1. \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 3 & \vdots & 1 \\ -1 & -3 & 5 & \vdots & 2 \\ 1 & 1 & 1 & \vdots & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & \vdots & 1 \\ 0 & -1 & 8 & \vdots & 3 \\ 0 & 1 & 2 & \vdots & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & \vdots & 1 \\ 0 & -1 & 8 & \vdots & 3 \\ 0 & 0 & 10 & \vdots & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & \vdots & 1 \\ 0 & -1 & 8 & \vdots & 3 \\ 0 & 0 & 2 & \vdots & 1 \end{pmatrix}$$

$$\operatorname{donc}(S) \iff \begin{cases} x + 2y + 3z = 1 \\ -y + 8z = 3 \\ 2z = 1 \end{cases} \iff \begin{cases} x = 1 - 2y - 3z \\ y = 8z - 3 \\ z = \frac{1}{2}. \end{cases}$$
 D'où
$$S = \left\{ \left(\frac{-5}{2}; 1; \frac{1}{2} \right) \right\}.$$

Exemple 2.3.2

$$(S) : \begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 1 \\ x_1 - 3x_2 - 6x_4 = -1 \\ 2x_2 - x_3 + 2x_4 = 3 \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 1 \end{cases} \iff \begin{pmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & -1 & -1 & 2 \\ 1 & 0 & -7 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 3 \\ 1 \end{pmatrix}$$
$$\iff \begin{cases} x_1 = 2 \\ x_2 = 3 \\ x_3 = 1 \\ x_4 = -1 \end{cases}$$

Exemple 2.3.3

$$(S): \begin{cases} x_1 + x_2 + x_3 = 5 \\ 2x_1 - x_2 + 3x_3 = 1 \\ 4x_1 - 2x_2 + 8x_3 = 1 \end{cases} \iff \begin{cases} x_1 = \frac{8}{3} \\ x_2 = \frac{17}{6} \\ x_3 = \frac{-1}{2}. \end{cases}$$

Remarque:-

La méthode d'élimination de Gauss a pour but de transformer le système AX = b, en un système équivalent de la forme $UX = \tilde{b}$ ou U est une matrice triangulaire supérieure et \tilde{b} est un second membre convenablement modifié, en appliquant le théorème suivant :

Theoreme 2.3.1

Pivot de Gauss Pour toute matrice $A \in M_n(\mathbb{K})$, il existe une matrice inversible M telle que MA soit triangulaire supérieure.

Exemple 2.3.4

$$(S): \begin{cases} x_1 + 2x_2 + 3x_3 = 4 \\ x_1 + x_2 + 2x_3 = 5 \\ x_1 + x_2 + x_3 = 6 \end{cases} \iff \begin{cases} x_1 = 7 \\ x_2 = 0 \\ x_3 = -1. \end{cases}$$

2.3.1 Décomposition LU

La méthode LU, consiste à transformer la matrice A en un produit de deux matrices triangulaire inférieures, et l'autre triangulaire supérieure : A = LU, ou

- L est une matrice triangulaire inférieure à 1 sur la diagonal.
- U est une matrice triangulaire supérieure. La méthode LU est basée sur le théorème suivant :

Theoreme 2.3.2

Soit $A \in M_n(\mathbb{K})$, dont les sous-matrices principales sont inversibles, alors il existe une unique matrice L triangulaire inférieure (lower) à diagonale unité, et une matrice triangulaire supérieure (upper) inversible telle que : A = LU.

Remarque:-

Soit la matrice d'un système A avec :

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K}); \text{ On pose } : \Delta_k(A) = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix} \in M_k(\mathbb{K}),$$

les matrices $\Delta_k(A)$ pour $k=1,\ldots,n$ sont appellées les matrices principales de A.

Exemple 2.3.5

On considère la matrice A suivante :

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 6 \\ 3 & 4 & 1 & -2 \\ 5 & 6 & 7 & 8 \end{pmatrix}.$$

On a :
$$A_4 = A$$
; $A_3 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 5 \\ 3 & 4 & 1 \end{pmatrix}$; $A_2 = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ et $A_1 = (1)$. D'après le théorème précèdent, si les $\Delta_k(A)$

sont inversibles c'est-à-dire $\det(\Delta_k(A)) \neq 0 \ \forall 1 \leq k \leq n$, alors il existe une unique décomposition de A de la forme LU avec L une matrice triangulaire inférieure ne possédant que 1 sur la diagonale, et U une matrice triangulaire supérieure.

Theoreme 2.3.3

Soit $A \in M_n(\mathbb{K})$ admet une décomposition LU avec $U = (\ell_{ij})$ et $U = (u_{ij})$, alors $\ell_{ii} = 1$, $\ell_{ij} = 0$ pour tout i < j, $\ell_{ij} = a_{ij} - \sum_{k=1}^{j-1} \ell_{ik} u_{kj}$ pour tout $j \le i$ et $u_{ij} = \frac{1}{\ell_{ii}} \left[a_{ij} - \sum_{k=1}^{i-1} \ell_{ik} u_{kj} \right]$, $i \le j$; $u_{ij} = 0 \ \forall j < i$ pour tout $j = 1, \ldots, n$.

Exemple 2.3.6

On considère la matrice suivante :

$$A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 1 \\ 1 & 5 & 6 \end{pmatrix}.$$

On a:

$$--\Delta_1(A) = 2 \Rightarrow \det(\Delta_1(A)) = 2 \neq 2.$$

$$- \Delta_2(A) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(\Delta_2(A)) = 6 - 4 = 2 \neq 0.$$

$$- \Delta_3(A) = A \Rightarrow \det(A) = 2 \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} - \begin{vmatrix} 4 & 4 \\ 5 & 6 \end{vmatrix} + \begin{vmatrix} 4 & 4 \\ 3 & 1 \end{vmatrix} = 14 \neq 0.$$

Donc A admet une décomposition LU. On a

$$\begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 1 \\ 1 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0u_{33} \end{pmatrix}$$

$$= \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ \ell_{11}u_{11} & \ell_{11}u_{12} + u_{22} & \ell_{11}u_{13} + u_{23} \\ \ell_{31}u_{11} & \ell_{31}u_{12} + \ell_{32}u_{22} & \ell_{32}u_{23} + u_{33} \end{pmatrix},$$

d'où

$$\left\{ \begin{array}{ll} u_{11}=2; & u_{12}=4; & u_{13}=4; \\ \ell_{11}u_{11}=1\,; & \ell_{11}u_{12}+u_{22}=3\,; & \ell_{11}u_{13}+u_{23}=1\,; \\ \ell_{31}u_{11}=1\,; & \ell_{31}u_{12}+\ell_{32}u_{22}=5\,; & \ell_{31}u_{13}+\ell_{32}u_{23}+u_{33}=6. \end{array} \right.$$

Alors

$$\begin{cases} u_{11} = 2; & u_{12} = 4; \\ \ell_{11} = \frac{1}{u_{11}}; & u_{22} = 3 - \ell_{11}u_{12}; \\ \ell_{31} = \frac{1}{u_{11}}; & \ell_{32} = \frac{5 - \ell_{31}u_{12}}{u_{22}}; \\ u_{33} = 6 - \ell_{31}u_{13} - \ell_{32}u_{23}. \end{cases}$$

Ce qui donne :

$$\begin{cases} u_{11} = 2; & u_{12} = 4; \\ \ell_{11} = \frac{1}{2}; & u_{22} = 3 - 2 = 1; \\ \ell_{31} = \frac{1}{2}; & \ell_{32} = \frac{5 - \frac{1}{2} \times 4}{1} = 3; \\ u_{33} = 6 - \frac{1}{2} \times 4 - 3 \times (-1) = 7. \end{cases}$$

D'où:

$$A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 1 \\ 1 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 7 \end{pmatrix}.$$

Exemple 2.3.7

On considère la matrice suivante :

$$A = \begin{pmatrix} -2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{pmatrix}.$$

Si on pose:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & a & 1 \end{pmatrix} \begin{pmatrix} -2 & -1 & 2 \\ 0 & x & y \\ 0 & 0 & z \end{pmatrix},$$

donc:

$$\begin{pmatrix} -2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{pmatrix} = \begin{pmatrix} -2 & -1 & 2 \\ -6 & -3 + x & 6 + y \\ 8 & 4 + xa & -8 + ay + z \end{pmatrix},$$

d'où

$$\begin{cases} -3 + x = 0; & 6 + y = -2 \\ 4 + xa = -1; & -8 + ay + z = 5 \end{cases} \Rightarrow \begin{cases} x = 3; & y = -8 \\ 3a = -5; & z = 5 + 8 - ay \end{cases}$$

$$\Rightarrow \begin{cases} x = 3; & y = -8 \\ a = \frac{-5}{3}; & z = 13 - \frac{40}{3} = \frac{39 - 40}{3} = \frac{-1}{3}. \end{cases}$$

D'où

$$\begin{pmatrix} -2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & \frac{-5}{3} & 1 \end{pmatrix} \begin{pmatrix} -2 & -1 & 2 \\ 0 & 3 & -8 \\ 0 & 0 & \frac{-1}{3} \end{pmatrix}.$$

Proposition 2.3.1

Soit $A \in M_n(\mathbb{K})$, admettant une décomposition LU alors $\det(A) = \det(U)$.

Proposition 2.3.2

Soit (S): AX = b. Si A = LU, alors :

$$AX = b \iff \begin{cases} UX = Y & \text{(descente)} \\ LY = b & \text{(remontée)}. \end{cases}$$

Remarque:-

Soit (S): AX = b et A = LU. La résolution du système AX = b, revient à la résolution de deux systèmes LY = b et UX = Y. La résolution de ces deux dérnier est immédiate, puisque les matrices L et U sont triangulaires. En particulier, on résolution de LY = b, puis connaissant Y on résolution UX = Y.

Exemple 2.3.8

Résoudre

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 4 \\ x_1 + x_2 + 2x_3 = 5 \\ x_1 + x_2 + x_3 = 6 \end{cases}$$

Remarque:-

Soit
$$A \in M_n(\mathbb{K})$$
. On pose

$$1. \ L_{k} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & \dots & & \vdots \\ 0 & 0 & 1 & \dots & \vdots & \vdots & & & \vdots \\ \vdots & \vdots & 0 & \dots & \vdots & & & & \vdots \\ \vdots & \vdots & 0 & \dots & 1 & & & \vdots \\ \vdots & \vdots & \vdots & \dots & -\ell_{k+1,k} & & & \vdots \\ \vdots & \vdots & \vdots & \dots & -\ell_{nk} & \dots & \dots & 1 \end{pmatrix} \text{ pour } K = k, k+1, \dots, n-1 \text{ avec } \ell_{ik} = \frac{a_{ik}^{K}}{a_{kk}^{K}}.$$

2.
$$A^{(1)} = A$$
; $A^{(2)} = L_1 A^{(1)}$; $A^{(3)} = L_2 A^{(2)} = L_2 L_1 A^{(1)}$; $A^{(n)} = L_{n-1} \cdots L_1 A^{(1)}$. On a:

$$A^{(n)} = L_{n-1}L_{n-2}\cdots L_2L_1A.$$

On a : $A^{(n)}$ est une matrice triangulaire supérieure qu'on le note U. D'où

$$L_{n-1}L_{n-2}\cdots L_2L_1A=U.$$

Ce qui donne que :

$$A = (L_{n-1}L_{n-2}\cdots L_2L_1)^{-1}U$$
$$= L_1^{-1}L_2^{-1}\cdots L_{n-1}^{-1}U.$$

Si on pose : $L=L_1^{-1}L_2^{-1}\cdots L_{n-1}^{-1}$ qui est une matrice triangulaire inférieure avec des 1 sur la diagonale.

Exemple 2.3.9

On considère la matrice suivante :

$$A = \begin{pmatrix} 4 & -9 & 2 \\ 2 & -4 & 4 \\ -1 & 2 & 2 \end{pmatrix}.$$

On a :
$$A^{(1)} = A$$
. Donc $L_1 = \begin{pmatrix} 1 & 0 & 0 \\ \frac{-1}{2} & 1 & 0 \\ \frac{1}{4} & 0 & 1 \end{pmatrix}$, d'ù

$$L_1 A = \begin{pmatrix} 1 & 0 & 0 \\ \frac{-1}{2} & 1 & 0 \\ \frac{1}{4} & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & -9 & 2 \\ 2 & -4 & 4 \\ -1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & -9 & 2 \\ 0 & \frac{1}{2} & 3 \\ 0 & \frac{-1}{4} & \frac{5}{2} \end{pmatrix} = A^{(2)}$$

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \end{pmatrix}$$

$$L_2A^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 & -9 & 2 \\ 0 & \frac{1}{2} & 3 \\ 0 & -\frac{1}{4} & \frac{5}{2} \end{pmatrix} = \begin{pmatrix} 4 & -9 & 2 \\ 0 & \frac{1}{2} & 3 \\ 0 & 0 & 4 \end{pmatrix} = U.$$

Donc : $L_2L_1A = U$, d'où

$$A = L_1^{-1} L_2^{-1} U = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{-1}{4} & \frac{-1}{2} & 1 \end{pmatrix} \begin{pmatrix} 4 & -9 & 2 \\ 0 & \frac{1}{2} & 3 \\ 0 & 0 & 4 \end{pmatrix}.$$

Exemple 2.3.10

— Décomposer en LU la matrice :

$$A = \begin{pmatrix} 1 & 4 & -3 \\ -2 & 8 & 5 \\ 3 & 4 & 7 \end{pmatrix}.$$

— Décomposer en LU la matrice :

$$A = \begin{pmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -5 & 1 & 0 \\ -3 & 8 & 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

2.4 Méthode de Cholesky

2.4.1 Produit scalaire - matrice définie positive

Definition 2.4.1

Soit $\mathbb{K} = \mathbb{C}$ ou \mathbb{C} . Le produit scalaire canonique sur \mathbb{K}^n est définie comme : $\langle , \rangle : \mathbb{K}^n \times \mathbb{K}^n \xrightarrow[(X,Y) \mapsto \langle X,Y \rangle]{\mathbb{K}^n}$ qui vérifie :

- Si $\mathbb{K} = \mathbb{R}$; $\langle X, Y \rangle = Y^T X = \sum_{i=1}^n x_i y_i$.
- Si $\mathbb{K} = \mathbb{C}$; $\langle X, Y \rangle = \overline{Y}^T X = \sum_{i=1}^n x_i \overline{y_i}$.

Remarque:-

 $\forall X \in \mathbb{K}^n \text{ on a} : \langle X, X \rangle = \sum_{i=1}^n |x_i|^2 \ge 0.$

Exemple 2.4.1

On considère les deux vecteurs qui suit :

$$X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $Y = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Alors $\langle X,Y\rangle=Y^TX=\begin{pmatrix}2&3\end{pmatrix}\begin{pmatrix}1\\2\end{pmatrix}=(2\times1)+(3\times2)=2+6=8.$

Notation 2.4.1

 $\forall X \in \mathbb{K}^n, \, \|X\| = \sqrt{\langle X, X \rangle}, \, \text{ainsi} \, \|X\| \geq 0 \, \, \text{pour tout} \, \, X \in \mathbb{K}^n.$

Definition 2.4.2

Soit $A \in M_n(\mathbb{K})$ est définie positive si :

$$\langle AX, X \rangle > 0 \ \forall X \in \mathbb{K}^n \setminus \{0\}.$$

Remarque:-

Soit $A \in M_n(\mathbb{K})$, A est définie positive si :

- $-X^TAX \ge 0 \ \forall X \in \mathbb{K} \ (A \text{ positive}).$
- $X^T A X = 0$ si et seulement si X = 0 (A définie).
- Si de plus A est symétrique, on dit que A symétrique définie positive.

Exemple 2.4.2

On considère la matrice suivante : $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$. On a : $A^T = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = A$, donc A est symetrique. Soit $X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, on a :

$$X^{T}AX = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x+2y \\ 2x+5y \end{pmatrix}$$
$$= x^{2} + 2xy + 2xy + 5y^{2}$$
$$= (x+2y)^{2} + y^{2} \ge 0 \ \forall X \in \mathbb{R}^{2},$$

et on a : $X^TAX = 0$ si et seulement si $(x + 2y)^2 + y^2 = 0$ si et seulement si x + 2y = 0 et y = 0 si et seulement si x = y = 0 si et seulement si $X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Ainsi A et symétrique définie positive.

Exemple 2.4.3

On considère la matrice suivate :

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Pour tout $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3\{0\}$; on a :

$$\langle AX, X \rangle = X^T AX$$

= $\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
= $(x - y)^2 + (y - z)^2 + x^2 + y^2 + z^2 > 0$,

et comme $A^T=A,$ alors A n'est définie positive. Car si $X=\begin{pmatrix}1\\1\\1\end{pmatrix}\neq 0,$ mais $\langle AX,X\rangle=0.$

Proposition 2.4.1

Soit $A \in M_n(\mathbb{R})$ symétrique. A est définie positive si et seulement si, $\det(\Delta_k(A)) > 0 \ \forall 1 \leq k \leq n$ avec $\Delta_k(A)$ les matrices principales de A.

Exemple 2.4.4

• On considère la matrice suivante $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$ on a : $\det(\Delta_1) = \det(1) = 1 > 0$ et $\det(\Delta_2) = \det(A) = 5 - 4 = 1 > 0$, comme A est symétrique, alors A est définie positive.

• On considère la matrice suivante :

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Alors $\det(\Delta_1) = \det(2) = 2 > 0$, $\det(\Delta_2) = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 4 - 1 = 3 > 0$ et $\det(\Delta_3) = \det(A) = 4 > 0$. Ainsi A est définie positive.

• On considère la matrice suivante :

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

On a : $\det(\Delta_1) = \det(2) = 2 > 0$, $\det(\Delta_2) = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3 > 0$ et $\det(\Delta_3) = \det(A) = 0$, donc A est positive.

Remarque:-

Soit $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in M_2(\mathbb{R})$. On a : $\det(\Delta_1) = \det(a) = a$ et $\det(\Delta_2) = ac - b^2$. Ainsi A est définie positive si et seulement a > 0 et $b^2 < ac$.

Proposition 2.4.2

- Si A est une matrice positive (quelconque), alors la matrice $B = M^T AM$ ($\forall M \in M_n(\mathbb{R})$) est symétrique et définie positive.
- Si A est une matrice symétrique positive, alors A^k est positive pour tout $k \in \mathbb{N}$.

Démonstration:

— Soit $X \in \mathbb{K}^n$, alors

$$\langle BX, X \rangle = X^T BX = X^T M^T A M X = (MX)^T A M X$$

= $\langle AMX, MX \rangle \ge 0$. Car A est positive

- Par récurrence sur k.
 - Si k=0, alors $A^0=I$ et $\langle IX,X\rangle=X^TIX=X^TX=\|X\|^2\geq 0$.
 - Supposons que le résultat est vrai jusqu'a l'ordre k et montrons que le résultat est vrais pour k+1. On a :

$$A^{k+1} = AA^{k-1}A = A^TA^{k-1}A \text{ Car } A^T = A.$$

Proposition 2.4.3

Soit $A \in M_n(\mathbb{K})$.

- Si A est définie positive, alors A est inversible.
- Si A est inversible, alors $A^{T}A$ est symétrique et définie positive.
- Si A est symétrique définie positive, alors $Sp(A) \subset]0, +\infty[$.

Theoreme 2.4.1 Décomposition de Cholesky

Soit $A \in M_n(\mathbb{K})$ une matrice symétrique définie positive. Alors il existe une matrice $L = (\ell_{ij})_{1 \le i,j \le n}$ trian-

gulaire inférieure tel que $\ell_{ii} = 1$ et $A = LL^T$.

$$A = \begin{pmatrix} \ell_{11} & & 0 \\ & \ddots & \\ * & & \ell_{nn} \end{pmatrix} \begin{pmatrix} \ell_{11} & & * \\ & \ddots & \\ 0 & & \ell_{nn} \end{pmatrix}.$$

Remarque:-

Si $A \in M_n(\mathbb{K})$ une matrice symétrique définie positive, alors A admet une décoposition A = LU avec

$$L = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ * & & 1 \end{pmatrix} \begin{pmatrix} u_{11} & & * \\ & \ddots & \\ 0 & & u_{nn} \end{pmatrix}.$$

On a : $det(A) = det(U) = \prod_{i=1}^{n} u_{ii} > 0$.

Posons

$$D = \begin{pmatrix} \sqrt{u_{11}} & 0 \\ & \ddots & \\ 0 & \sqrt{u_{nn}} \end{pmatrix} \text{ alors } D^{-1} = \begin{pmatrix} \frac{1}{\sqrt{u_{11}}} & 0 \\ & \ddots & \\ 0 & \frac{1}{\sqrt{u_{nn}}} \end{pmatrix}.$$

On a : $A = LU = LDD^{-1}U = (LD)(D^{-1}U)$. Si on pose : R = LD est une matrice triangulaire inférieure et $B = (D^{-1}U)^T$ c'est-à-dire $B^T = D^{-1}U$ triangulaire supérieure. Or R et B sont inversibles. Comme A est symétrique $A^T = A$ donc

$$A = RB^T = BR^T \Rightarrow B^{-1}RB^T = R^T$$
$$\Rightarrow B^{-1}R = R^T(B^T)^{-1}.$$

On a : $B^{-1}R$ est une matrice triangulaire inférieure, et $R^T(B^T)^{-1}$ est une matrice triangulaire supérieure, ce qui donne que $B^{-1}R = R^T(B^T)^{-1}$ est diagonale avec 1 sur la diagonale, donc $B^{-1}R = R^T(B^T)^{-1} = I \Rightarrow R = B$. Par suite $A = RB^T = RR^T$ ou R = LD.

Exemple 2.4.5

On considère la matrice symétrique définie positive suivante :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 5 & 6 \\ 2 & 6 & 17 \end{pmatrix}.$$

On a:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 9 \end{pmatrix},$$

$$L = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{pmatrix}.$$

Exemple 2.4.6

On considère la matrice symétrique définie positive suivante :

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 7 \end{pmatrix}.$$

On a:

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$

Posons

$$L = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 & \sqrt{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & \sqrt{3} \end{pmatrix}.$$

Donc:

$$A = \begin{pmatrix} 1 & 0 \\ 2 & \sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & \sqrt{3} \end{pmatrix}^T.$$

Remarque:-

Soit $A = (a_{ij}) \in M_n(\mathbb{K})$ une matrice symétrique définie positive. Alors : $A = LL^T$ avec L une matrice triangulaire inférieure. On a :

$$a_{ij} = (LL^T)_{ij} = \sum_{k=1}^n \ell_{ik} \ell_{jk},$$

avec $L=(\ell_{ij})_{1\leqslant i,j\leqslant n}.$ Donc $a_{11}=\ell_{11}\ell_{11}\Rightarrow \ell_{11}=\sqrt{a_{11}}.$

— Pour i = 1, on a:

$$a_{1j} = \ell_{11}\ell_{j1} \Rightarrow \ell_{j1}\frac{a_{1j}}{\ell_{11}} = \frac{a_{1j}}{\sqrt{a_{11}}} \quad \forall 2 \le j \le n.$$

— Pour $2 \le i \le n$, on a :

$$a_{ii} = \ell_{i1}\ell_{i1} + \dots \ell_{ii}\ell_{ii} \Rightarrow \ell_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} \ell_{ik}^2}$$

$$a_{ij} = \ell_{i1}\ell_{j1} + \dots \ell_{ji}\ell_{ji} \Longrightarrow \ell_{ji} = \frac{a_{ii} - \sum_{k=1}^{i-1} \ell_{ik}\ell_{jk}}{\ell_{ii}}.$$

Exemple 2.4.7

1.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 7 \end{pmatrix}$$
.

$$2. \ A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 5 & 6 \\ 2 & 6 & 17 \end{pmatrix}.$$

Remarque:-

Si A est une matrice symétrique définie positive, alors $A=LL^T$ donc

$$AX = b \iff LL^T = b \iff \begin{cases} L^TX = Y & \text{(déscente)} \\ LY = b & \text{(remontée)}. \end{cases}$$

(Le coût de la factorisation de Cholesky est équivalent à $\frac{n^3}{3}$).

2.5 Théorème de point fixe

Definition 2.5.1

Soit I un interval de \mathbb{R} , et soit $f: I \to \mathbb{R}$ une function.

- 1. On dit que $a \in I$, est un point fixe de f si f(a) = a.
- 2. On dit que f est une contractante, s'il existed $0 \le k < 1$ tel que :

$$|f(x) - f(y)| \le k|x - y|; \ \forall x, y \in I$$

Exemple 2.5.1

- Si f(x) = 2x + 1 définie de \mathbb{R} dans \mathbb{R} .

On a f(-1) = -1, donc -1 est point fixde de f.

- Si $f:[0,1] \to [0,1]$ continue, alors d'après le théorème du valeurs intermidiares f admet un point fixe

Exercise 2.5.1

Soit $f:[0;+\infty[\to\mathbb{R} \text{ continue et positive telle que :}$

 $\lim_{r\to-\infty}\frac{f(x)}{r}=l<1$, montrer que f admet un point fixe.

Exercise 2.5.2

Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, et $n \in \mathbb{N}^*$. On note f^n l'itéré de composition d'ordre n de f, c-à-d $f^n = f \circ f \dots \circ f$. Montrer que si f^n admet un point fixe, alors f possede aussi un point fixe.

Theoreme 2.5.1

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction contractante. Alors f admet un unique point fixe a. De plus pour tout point b de \mathbb{R} , on peut obtenir a come limite de la suite X_n définie par :

$$\begin{cases} X_0 = b \\ X_{n+1} = f(X_n); & n \in \mathbb{N} \end{cases}$$

Démonstration:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction contractante, alors il existed $0 \le k < 1$ tel que : $|f(x) - f(y)| \le k|x - y|$; $\forall x, y \in \mathbb{R}$

Posons:
$$\begin{cases} X_0 = b \\ X_{n+1} = f(X_n); & n \in \mathbb{N} \end{cases}$$

 $\begin{aligned} & \text{Posons} : \begin{cases} X_0 = b \\ X_{n+1} = f(X_n); & n \in \mathbb{N} \end{cases} \\ X_0 = b; & X_1 = f(b); & X_2 = f^2(b) & X_3 = f^3(b); \dots; X_n = f^n(b) \end{cases}$

- Montrons que : $|X_{n+1} - X_n| \le k^n |X_1 - X_0|$.

On raisonne par récurrence sure n.

Pour n = 0, on a $|X_1 - X_0| \le k^0 |X_1 - X_0|$.

Supposons que $|X_{n+1} - X_n| \le k^n |X_1 - X_0|$, et montrons que $|X_{n+2} - X_{n+1}| \le k^{n+1} |X_1 - X_0|$.

 $|X_{n+2}-X_{n+1}|=|f(X_{n+1})-f(X_n)|\leq k|X_{n+1}-X_n|\leq kk^n|X_1-X_0|=k^{n+1}|X_1-X_0|.$

Donc d'après le principle de récurrence on a : $|X_{n+1} - X_n| \le k^n |X_1 - X_0|$.

Soient $p, q \in \mathbb{N} \ (q \ge p)$ on a :

$$\begin{split} |X_p - X_q| &= |X_p - X_{p+1} + X_{p+1} - X_{p+2} + \dots + X_{q-1} - X_q| \\ &\leq |X_p - X_{p+1}| + |X_{p+1} - X_{p+2}| + \dots + |X_{q-1} - X_q| \\ &\leq k^p |X_1 - X_0| + k^{p+1} |X_1 - X_0| + \dots + k^{q-1} |X_1 - X_0| \\ &\leq (k^p + k^{p+1} + \dots + k^{q-1}) |X_1 - X_0| \\ &\leq \frac{k^p}{1 - k} (1 - k^{p-q} |X_1 - X_0| \\ &\leq \frac{k^p}{1 - k} |X_1 - X_0|. \end{split}$$

Alors (X_n) est une suite de Cauchy dans \mathbb{R} qui est complet, donc elle converge vers a, d'où a = f(a) puisque fest continue.

Montrons l'unicité :

Supposons que f admet deux points fixe $a \neq a'$. On a :

 $|a-a'|=|f(a)-f(a')|\leqslant k|a-a'|,\ \mathrm{donc}\ |a-a'|(1-k)\leqslant 0,\ \mathrm{ce}\ \mathrm{qui}\ \mathrm{donne}\ 1-k\leqslant 0\ \mathrm{c.\`a.d}\ k\geqslant 1\ \mathrm{ce}\ \mathrm{qui}\ \mathrm{est}\ \mathrm{absurde}.$

Supposons que f une function continue, soit la suite donnée par : $\begin{cases} X_0 = b \\ X_{n+1} = f(X_n); & n \in \mathbb{N} \end{cases}$ si la suite (X_n) converge vers l, alors l est un point fixe de f.

2.6 Méthodes itératives

On considère une matrice $A \in M_n(\mathbb{K})$ inversible, et $b \in \mathbb{K}^n$, et le système (S): AX = b.

Le principle général d'une méthode itérative pour résoudre le système (S) est de générer une suite de vecteurs qui converge vers la solution $X = A^{-1}b$.

Par exemple Si A = M - N avec M, N deux matrices de $M_n(\mathbb{K})$, où M est une martice inversible, alors:

$$AX = b \iff (M - N)X = b$$

$$\iff MX - NX = b$$

$$\iff MX = NX + b$$

$$\iff X = M^{-1}NX + M^{-1}b$$

Si on pose $f(X) = M^{-1}NX + M^{-1}b$, on aura :

$$AX = b \iff X = M^{-1}NX + M^{-1}b$$

 $\iff f(X) = X$
 $\iff X \text{ est un point fixe de } f$

Si la fonction f admet un point fixe X, alors X est limited de la suite :

$$\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = f(X^{(k)}) = M^{-1}NX^{(k)} + M^{-1}b; & k \in \mathbb{N} \end{cases}$$

Notation 2.6

-
$$\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = M^{-1}NX^{(k)} + M^{-1}b; & k \in \mathbb{N} \end{cases}$$
 est appelé le schéma itératif ou la méthode itérative.
- La matrice $M^{-1}N$ est appellée la matrice d'itération de la méthode itértive associée à (M,N) .

- On dit qu'une méthode itérative converge si et seulement si, la suite $(X^{(k)}$ converge pour tout $X^{(0)}$.

Remarque:-

Soit le schéma itératif $\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = M^{-1}NX^{(k)} + M^{-1}b; & k \in \mathbb{N} \end{cases}$ si la suite $(X^{(k)})$ converge vers X, alors :

$$X = M^{-1}NX + M^{-1}b \iff AX = b$$

Definition 2.6.1

Soit $A \in \mathbb{M}_n(\mathbb{K})$. Le réel $\rho(A) = \sup_{\lambda \in Sp(A)} |\lambda|$ est appelé le rayon spectral de A.

Exemple 2.6.1

Soit
$$A = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 5 & -2 \\ 0 & 0 & 6 \end{pmatrix}$$
; on a $Sp(A) = \{-1; 5; 6\}$, alors $\rho(A) = 6$

Theoreme 2.6.1

Soit le schéma itératif suivant : $\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = M^{-1}NX^{(k)} + M^{-1}b; & k \in \mathbb{N} \end{cases}$ La méthode itérative converge si et seulement si, $\rho(M^{-1}N) < 1$

Remarque:-

Soit $A = (a_{ij})_{1 \leq I, j \leq n} \in \mathbb{M}_n(\mathbb{K})$.

Si on pose:

- $D = (d_{ij})$ avec $d_{ii} = a_{ii}$ pour tout i = 1, ..., n et $d_{ij} = 0$ pour tout $i \neq j$ (D est matrice diagonale).
- $E = (e_{ij})$, avec $e_{ij} = -a_{ij}$, pour tout i > j et $e_{ij} = 0$ pour tout $i \le j$. (E est une matrice traingulaire inférieure stricte).
- $F = (f_{ij})$, avec $f_{ij} = -a_{ij}$, pour tout i < j et $f_{ij} = 0$ pour tout $i \ge j$. (F est une matrice traingulaire supérieure stricte). Alors A = D E F

Exemple 2.6.2

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ -3 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$$

Exemple 2.6.3

$$A = \begin{pmatrix} 3 & -5 & 2 \\ -6 & 2 & 1 \\ 4 & -1 & -4 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 6 & 0 & 0 \\ -4 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 5 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

2.7 Méthode de Jacobi/ Méthode de Gauss-Seidel

2.7.1 Méthode de Jacobi

La méthode de Jacobi consists à considèrer M=D et N=E+F, donc la méthode itérative est donnée par :

$$\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = D^{-1}(E+F)X^{(k)} + D^{-1}b; & k \in \mathbb{N} \end{cases}$$

La matrice $B_I = D^{-1}(E + F)$ est appellée la matrice de Jacobi associée à A.

Theoreme 2.7.1

Si $\rho(B_I) < 1$, alors la méthode de Jacobi converge.

Remarque:-

Soit le système AX = b, la méthode de Jacobi a un sens si et seulement si, D est inversible, il faut donc réecrire le système de telle sorte A n'ait pas de zéro sur sa diagonale. Le schéma itiratif est donné par :

$$\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = D^{-1}(E+F)X^{(k)} + D^{-1}b; & k \in \mathbb{N} \end{cases}$$

et:
$$X_i^{(k+1)} = \frac{b_i - \sum_{j=1,j^n eqi}^n aij X_j^{(k)}}{a_{ii}}$$
 $i = 1, ..., n$

Exemple 2.7.1

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ -2 & -2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M = D = I = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } N = E + F = \begin{pmatrix} 0 & -2 & 2 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{pmatrix}$$

Alors $B_J = \begin{pmatrix} 0 & -2 & 2 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{pmatrix}$ et $Sp(B_J) = \{0\}$ ce qui donne que $\rho(B_J) = 0 < 1$, alors la méthode de Jacobi conerge.

2.7.2 Méthode Gauss-Seidel

La méthode de Gauss-Seidel du système AX=b, consiste à prendre M=D-E et N=F. Donc la méthode itérative est donnée par :

$$\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = (D-E)^{-1} F X^{(k)} + (D-M)^{-1} b; & k \in \mathbb{N} \end{cases}$$

La matrice $B_{GS} = (D - E)^{-1}F$ est appellée la matrice de Gauss-Seidel associée à A.

Theoreme 2.7.2

Si $\rho(B_{GS}) < 1$, alors la méthode de Gauss-Seidel converge.

Si le schéma itératif de la méthode de Gauss-Seidel converge, alors la méthode itérative est donnée par :

$$\begin{cases} X^{(0)} \in \mathbb{K}^n \\ X^{(k+1)} = (D-E)^{-1} F X^{(k)} + (D-M)^{-1} b; & k \in \mathbb{N} \end{cases}$$

$$\text{et } X_i^{(k+1)} = \frac{\sum\limits_{j=1,j^n eqi}^{i-1} aij X_j^{(k+1)} - \sum\limits_{j=i-1}^n a_{ij} X_j^{(k)} }{a_{ii}} \quad i=1,...,n \\ \text{Le calcul de } X_i^{(k+1)} \text{ fait intervenir less valeurs de } X_j^{(k)} \text{ pour } j > i \text{ et des } X_j^{(k-1)} \text{ pour } j < i.$$

Exemple 2.7.2

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ -2 & -2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M = D - E = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} \text{ et } N = F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Alors $B_{GS} = \begin{pmatrix} 0 & -2 & 2 \\ 0 & 2 & -3 \\ 0 & 0 & 1 \end{pmatrix}$ et $Sp(B_{GS}) = \{0; 2; 1\}$ ce qui donne que $\rho(B_{GS}) = 2 > 1$, alors la méthode de Gauss-Seidel diverge.

Definition 2.7.1

Soit $A = (a_{ij})$ une matrice carrée, A est dite à diagonale dominante si :

$$|a_{ii}| \ge \sum_{\substack{j=1\\ j \ne i}}^{n} |a_{ij}|; \quad \forall i = 1, ...n.$$

Exemple 2.7.3

$$A = \begin{pmatrix} -3 & 1 & 0 \\ 1 & 5 & 2 \\ 1 & -6 & 7 \end{pmatrix}$$

$$|-3| = 3 \ge |1| + |0| = 1$$

 $|5| = 5 \ge |1| + |2| = 3$
 $|7| = 7 \ge |1| + |-6| = 7$

Donc A est une matrice à diagonale strictement dominante.

Exemple 2.7.4

$$B = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 5 & 3 \\ 1 & 3 & -8 \end{pmatrix}$$
On a:

$$|1| = 3 \le |3| + |4| = 7$$

 $|5| = 5 \ge |0| + |3| = 3$
 $|-8| = 8 \ge |1| + |3| = 4$

Donc B est une matrice n'est pas à diagonale strictement dominante.

Theoreme 2.7.3

Soit A une matrice à diagonale strictement dominante, alors A est inversible, et les méthodes de Jacobi et de Gauss-Seidel convergent routes les deux.