习题 3.20 1

习题 3.20

a. 可能的非抽样误差

题中说每一层的 SRS 是来自该县的电话簿,则可能的非抽样误差有:

- 抽样框不完善: 不是所有的家庭信息都在该县的电话簿上;
- 样本中有无回答单元: 无法接电话或不愿意接受调查的家庭会造成样本选择偏差。

b. 计算每一层的抽样权重

```
每一层抽样权重的计算公式为: w_{hi} = \frac{N_h}{n_h}.
```

计算每一层抽样权重的代码如下所示:

问题 1. 有些层的样本容量 $n_h=1$

当 $n_h=1$ 时,层内样本方差为 $s_h^2=\frac{1}{n_h-1}\sum_{i\in\mathcal{S}_h}(y_i-\bar{y}_h)^2$,分母 $n_h-1=0$,故无法用此公式计算。可以采用其他方法来对 S_h^2 进行估计,比如:

- 对其他样本量大于1的各层的层内样本方差进行简单平均或加权平均,从而估计样本量为1的各层的层内样本方差;
- 从样本观测值大小、层权等角度考察层间相似性,将样本量为 1 的各层并入与其相似的层,然后用相似层的层内样本方差来估计样本量为 1 的层的层内样本方差。

对 s_h^2 进行估计之后, 再计算 $\hat{V}(\bar{y}_h)$ 和 $\hat{V}(\hat{p}_h)$.

问题 2. 有些层内 0-1 变量的样本总和 $a_h=0$ 或 n_h

层内 0-1 变量的样本总和 $a_h=0$ 时, $\hat{p}_h=0$; $a_h=n_h$ 时, $\hat{p}_h=1$,则 $\hat{V}(\hat{p}_h)=\frac{1-f_h}{n_h-1}\hat{p}_h(1-\hat{p}_h)=0$,这样的估计较为极端。可以对于 \hat{p}_h 进行一定的调整,比如取 $\hat{p}_h=\frac{a_h+1}{n_h+2}$,然后再根据公式计算 $\hat{V}(\hat{p}_h)$.

习题 3.20 2

c. 估计明尼苏达州的家庭平均氡水平

各估计值的计算公式如下所示:

- 家庭平均氡水平 $\bar{y}_{str} = \sum_{h=1}^{H} W_h \bar{y}_h$;
- 家庭平均氡水平的标准误 $SE(\bar{y}_{str}) = \sqrt{\sum_{h=1}^{H} W_h^2 \frac{1-f_h}{n_h} s_h^2}$;
- 家庭平均氡水平的 95% 置信区间 $[\bar{y}_{str}-\mathrm{SE}(\bar{y}_{str}),\bar{y}_{str}+\mathrm{SE}(\bar{y}_{str})].$

对 $n_h=1$ 的层(编号为 43、51、84 的县)取 $s_h^2=0$,则得到 $\mathrm{SE}(\bar{y}_{str})$ 的下界。对 radon 和 $\log(\mathrm{radon})$ 分别采用上述公式计算 \bar{y}_U 的点估计值和 95% 置信区间。

代码如下所示:

```
radon$radon_log = log(radon$radon) # 在原始数据中创建变量 log(radon)
radon_stratum$W_h = radon_stratum$N_h / sum(radon_stratum$N_h) # 每一层的层权
radon_stratum$y_h = rep(0, dim(radon_stratum)[1]) # 初始化每层的样本均值
radon_stratum$s2_h = rep(0, dim(radon_stratum)[1]) # 初始化每层的样本方差
radon_stratum$y_h_log = rep(0, dim(radon_stratum)[1]) # 初始化每层的样本均值, log(radon)
radon_stratum$s2_h_log = rep(0, dim(radon_stratum)[1]) # 初始化每层的样本方差, log(radon)
for (county in unique(radon$countyname)){
  one_county = radon[radon$countyname==county,]
 radon_stratum[radon_stratum$countyname==county,6] = mean(one_county$radon)
  radon_stratum[radon_stratum$countyname==county,8] = mean(one_county$radon_log)
  if (dim(one_county)[1]==1){
   radon_stratum[radon_stratum$countyname==county,c(7,9)] = 0
  }else{
   radon_stratum[radon_stratum$countyname==county,7] = var(one_county$radon)
   radon_stratum[radon_stratum$countyname==county,9] = var(one_county$radon_log)
 }
}
# radon 均值的点估计和 95% 置信区间
radon_mean = sum(radon_stratum$W_h * radon_stratum$y_h)
radon_se = sqrt(sum(radon_stratum$W_h^2 * (1/radon_stratum$n_h-1/radon_stratum$N_h)*
                     radon_stratum$s2_h))
radon_CI_lb = radon_mean - qnorm(0.975) * radon_se
radon_CI_ub = radon_mean + qnorm(0.975) * radon_se
# radon_log 均值的点估计和 95% 置信区间
radon_log_mean = sum(radon_stratum$W_h * radon_stratum$y_h_log)
radon_log_se = sqrt(sum(radon_stratum$\mu_h^2 * (1/radon_stratum\n_h-1/radon_stratum\n_h)*
                     radon_stratum$s2_h_log))
radon_log_CI_lb = radon_log_mean - qnorm(0.975) * radon_log_se
radon_log_CI_ub = radon_log_mean + qnorm(0.975) * radon_log_se
```

习题 3.20 3

则 radon 和 log(radon) 的均值点估计和 95% 置信区间的结果如表 1 所示:

表 1:	radon	和	log(radon)	的均值	点估计	和 95%	置信区间
------	-------	---	------------	-----	-----	-------	------

变量名	\bar{y}_{str}	$\mathrm{SE}(\bar{y}_{str})$	95% 置信下限	95% 置信上限
radon	4.899	0.154	4.596	5.201
log(radon)	1.301	0.029	1.245	1.358

d. 估计家庭氡水平大于等于 4 pCi/L 的总体比例

各估计值的计算公式如下所示:

- 家庭氡水平大于等于 4 的总体比例 $\hat{p}_{str} = \sum_{h=1}^{H} W_h \hat{p}_h$;
- 家庭氡水平大于等于 4 的总体比例的标准误 $\mathrm{SE}(\hat{p}_{str}) = \sqrt{\sum_{h=1}^{H} W_h^2 \frac{1-f_h}{n_h-1} \hat{p}_h (1-\hat{p}_h)}$;
- 家庭平均氡水平的 95% 置信区间 $[\hat{p}_{str} SE(\hat{p}_{str}), \hat{p}_{str} + \dot{S}E(\hat{p}_{str})]$

对样本总和 $a_h=0$ or n_h 的层的 \hat{p}_h 进行调整,取 $\hat{p}_h=\frac{a_h+1}{n_h+2}$. 同时,对 $n_h=1$ 的层(编号为 43、51、 84 的县)取 $s_h^2=0$,得到 $\mathrm{SE}(\hat{p}_{str})$ 的下界。采用上述公式计算 p 的点估计值和 95% 置信区间。

代码如下所示:

```
library(dplyr)
# 求每一层的样本总和
radon_prop = radon %>%
  group_by(countyname) %>%
  summarise(prop=sum(radon>=4))
# 求每一层总体比例的估计,并进行一定调整
radon_stratum$p_h = rep(0, dim(radon_stratum)[1])
for (i in 1:dim(radon stratum)[1]){
  if (radon_prop$prop[i] < radon_stratum$n_h[1] & radon_prop$prop[i] > 0){
   radon_stratum$p_h[i] = radon_prop$prop[i] / radon_stratum$n_h[i]
 }else{
   radon_stratum$p_h[i] = (radon_prop$prop[i]+1) / (radon_stratum$n_h[i]+2)
 }
}
radon_p_str = sum(radon_stratum$W_h * radon_stratum$p_h) # 总体比例的点估计
radon_stratum1 = radon_stratum[radon_stratum$s2_h != 0,]
radon_p_se = sqrt(sum(radon_stratum1$\mathbb{W}_h^2 * (1-1/radon_stratum1$\mathbb{W}_hi)/
                       (radon_stratum1$n_h-1) * radon_stratum1$p_h *
                       (1-radon_stratum1$p_h))) # 总体比例的点估计的标准误
radon_p_CI_lb = radon_p_str - 1.96 * radon_p_se # 总体比例点估计的 95% 置信下限
radon_p_CI_ub = radon_p_str + 1.96 * radon_p_se # 总体比例点估计的 95% 置信上限
```

习题 3.35 4

则家庭氡水平大于等于 4 pCi/L 的总体比例的点估计和 95% 置信区间的结果如表 2 所示:

表 2: p 的点估计和 95% 置信区间

\hat{p}_{str}	$\mathrm{SE}(\hat{p}_{str})$	95% 置信下限	95% 置信上限
0.4939	0.0179	0.4588	0.5290

习题 3.35

a. 按照 team 分层抽样

读入数据并对每一层的总体数进行描述性统计,代码和结果如下所示:

```
baseball_raw = read.csv('baseball.csv', header=FALSE)
baseball = baseball_raw[,c(1,4,5)]; colnames(baseball) = c('team', 'salary', 'POS')
baseball$logsal = log(baseball$salary) # 创建变量 logsal
baseball$pitcher = rep(0, dim(baseball)[1])
baseball$pitcher[baseball$POS=='P'] = 1 # 创建 0-1 变量 pitcher

baseball_strata = baseball %>%
group_by(team) %>% summarise(N_h=n()) # 每一层的总体数
summary(baseball_strata$N_h) # 每一层总体数的描述性统计
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 24.00 26.00 26.50 26.57 27.00 29.00
```

要按比例分层抽样,理论上每一层的抽样比应相等,则每一层的抽样比为 $f_h=n/N=150/797\approx0.188$ 。由每一层总体数的描述性统计可知,每一层总体数的均值为 26.57 ,且每一层总体数较为接近,所以可考虑对每一层抽取相同的样本量。故每一层的样本量为 $n_h=N_hf_h\approx26.57\times0.188\approx5$ 。

分层抽样的代码如下所示:

b. 估计 logsal 的总体均值和 95% 置信区间

各估计值的计算公式如下所示:

• logsal 总体均值的点估计 $\bar{y}_{str} = \sum_{h=1}^{H} W_h \bar{y}_h$;

习题 3.35 5

```
• logsal 总体均值的标准误 \mathrm{SE}(\bar{y}_{str}) = \sqrt{\sum_{h=1}^H W_h^2 \frac{1-f_h}{n_h} s_h^2} \; ;
```

• logsal 总体均值的 95% 置信区间 $[\bar{y}_{str} - \mathrm{SE}(\bar{y}_{str}), \bar{y}_{str} + \mathrm{SE}(\bar{y}_{str})].$

采用上述公式计算 \bar{y}_U 的点估计值和 95% 置信区间,代码如下所示:

则 logsal 总体均值的点估计和 95% 置信区间的结果如表 3 所示:

表 3: logsal 总体均值的点估计和 95% 置信区间

变量名	\bar{y}_{str}	$\mathrm{SE}(\bar{y}_{str})$	95% 置信下限	95% 置信上限
logsal	14.023	0.086	13.853	14.192

c. 估计 pitcher 的总体比例和 95% 置信区间

各估计值的计算公式如下所示:

- pitcher 总体比例的点估计 $\hat{p}_{str} = \sum_{h=1}^{H} W_h \hat{p}_h$;
- pitcher 总体比例点估计的标准误 $\mathrm{SE}(\hat{p}_{str}) = \sqrt{\sum_{h=1}^{H} W_h^2 \frac{1-f_h}{n_h-1} \hat{p}_h (1-\hat{p}_h)}$;
- pitcher 总体比例的 95% 置信区间 $[\hat{p}_{str} \text{SE}(\hat{p}_{str}), \hat{p}_{str} + \text{SE}(\hat{p}_{str})]$.

采用上述公式计算 p 的点估计值和 95% 置信区间,代码如下所示:

```
baseball_byTeam2 = by_team %>%
   summarise(a_h=sum(pitcher))
baseball_strata$pitcher_p_h = baseball_byTeam2$a_h / baseball_strata$n_h
# pitcher 总体比例的点估计和 95% 置信区间
```

习题 3.35 6

则 pitcher 总体比例的点估计和 95% 置信区间的结果如表 4 所示:

表 4: pitcher 总体比例的点估计和 95% 置信区间

变量名	\hat{p}_{str}	$\mathrm{SE}(\hat{p}_{str})$	95% 置信下限	95% 置信上限
pitcher	0.487	0.036	0.417	0.557

d. SRS 与 StS 估计值的比较

习题 2.32 中 SRS 的估计值与本题中 StS 的估计值如表 5 所示:

表 5: SRS 与 StS 估计值的比较

变量名	抽样方法	均值	标准误	95% 置信下限	95% 置信上限
logsal	SRS	13.950	0.090	13.774	14.126
	StS	14.023	0.086	13.853	14.192
pitcher	SRS	0.440	0.037	0.368	0.512
	StS	0.487	0.036	0.417	0.557

由表 5 可知,使用分层样本对变量 logsal 和 pitcher 进行估计的标准误均比使用简单随机样本进行估计的标准误要略小。所以,可以认为使用分层样本的估计精度更高。