

Übungsblatt 11

1. Dijkstra-Algorithmus

Gegeben sei der folgende Netzwerkgraph:

Berechnen Sie den kürzesten Pfad vom Knoten A zu allen anderen Knoten nach dem Dijkstra-Algorithmus. Vervollständigen Sie die unten angegebene Routingtabelle mit den gefundenen Pfaden und Kosten. Die Vorgehensweise muss erkennbar sein. Füllen Sie die folgende Tabelle aus:

Ziel	Pfad	Kosten
A	A	0
В	BA	2
С		
D		
E		
F		
G		
Н		
I		

Tabelle 1: Kürzeste Distanzen

Tabelle 12: Kürzeste Distanzen

2. Distance-Vector-Algorithmus

Gegeben sei folgende Topologie von Routern:

Abbildung 1: Routingtopologie

Die Kantengewichte geben hierbei die jeweiligen Linkkosten an. Beantworten Sie nun folgende Aufgabenstellungen:

- a) Ermitteln Sie mittels Distance-Vector-Algorithmus die kürzesten Pfade zwischen allen Routern. Berücksichtigen Sie dabei jeden Zwischenschritt.
- b) Beschreiben Sie das "Count-to-Infinity" Problem. Wann tritt dieses Problem auf?
- c) Nehmen Sie nun in Abb. 1 an, dass die Kante *AB* unterbrochen wird und damit nicht mehr zur Verfügung steht. Wie wirkt sich das "Count-to-Infinity" Problem in diesem Beispiel aus? Nach wie vielen Schritten hat sich die Situation erneut stabilisiert?
- d) Wie wurde sich die Situation ändern, wenn Poisoned-Reverse verwendet wurde?

Viel Erfolg !!!