

① Veröffentlichungsnummer: 0 625 578 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93120934.0

2 Anmeldetag: 27.12.93

(C12P 19/24, C12S 3/02, A23L 1/236, A23L 1/09, A23L 1/06, A23G9/04, C07H15/04, C07H3/04, (C12P19/24, C12R1:01, 1:18, 1:38, 1:425, 1:43)

Der (Die) Mikroorganismus (Mikroorganismen) ist (sind) bei FERM unter der (den) Nummer(n) BP 3619 und BP 3620 hinterlegt worden.

3 Priorität: 06.05.93 DE 4314961

43 Veröffentlichungstag der Anmeldung: 23.11.94 Patentblatt 94/47

84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FR GB GR IT LI LU NL SE

7) Anmelder: SÜDZUCKER
AKTIENGESELLSCHAFT
MANNHEIM/OCHSENFURT
Maximilianstrasse 10
D-68165 Mannheim (DE)

(72) Erfinder: Kunz, Markwart, Dr.

Kernerstrasse 8 D-67550 Worms (DE)

Erfinder: Munir, Mohammad, Dr.

Am Kinderbach 1

D-67271 Kindenheim (DE)

Erfinder: Degelmann, Hanspeter, Dipl.-Ing.

Donnersbergstrasse 2 D-67549 Worms (DE)

Erfinder: Kowalczyk, Jörg, Dr. Dipl.-Chem.

Westring 38

D-67269 Grünstadt (DE)

Erfinder: Wach, Wolfgang, Dipl.-Chem.

Sophienstrasse 23

D-38118 Braunschweig (DE) Erfinder: Vogel, Manfred, Dr.

Am Höllenpfad 1

D-67271 Neuleiningen (DE)

Vertreter: Gleiss, Alf-Olav, Dipl.-Ing. et al

Gleiss & Grosse Patentanwaltskanzlei Maybachstrasse 6A D-70469 Stuttgart (DE)

Süssungsmittel, Verfahren zur Herstellung desselben sowie dessen Verwendung.

Die Erfindung betrifft einmal ein Verfahren zur Herstellung eines Süßungsmittels, bei dem man Saccharose enzymatisch in ein als "isomerisierte Saccharose" bezeichnetes Saccharidengemisch mit einem Disaccharidanteil von mehr als 85 Gew.% umwandelt, danach diese von nicht isomerisierter Restsaccharose durch enzymatische und/oder H⁺-Ionen katalysierte Spaltung befreit und dieses Produkt katalytisch hydriert, wobei vorzugsweise entweder vor oder nach der katalytischen Hydrierung das erhaltene Gemisch einer chromatographischen Trennung unterworfen wird; sie betrifft zum anderen vorzugsweise nach diesem Verfahren hergestellte Süßungsmittel, die entweder ein Gemisch aus

10 bis 50 Gew.% 6-O- α -D-Glucopyranosyl-D-sorbit (= 1,6 GPS)

2 bis 20 Gew.% 1-O- α -D-Glucopyranosyl-D-sorbit (= 1,1 GPS)

30 bis 70 Gew.% 1-O- α -D-Glucopyranosyl-D-mannit (= 1,1 GPM)

oder aus

5 bis 10 Gew.% 6-O- α -D-Glucopyranosyl-D-sorbit (= 1,6 GPS)

30 bis 40 Gew.% 1-O- α -D-Glucopyranosyl-D-sorbit (= 1,1 GPS)

45 bis 60 Gew.% 1-O- α -D-Glucopyranosyl-D-mannit (= 1,1 GPM)

enthalten.

Die Erfindung betrifft ein neues Süßungsmittel, ein Verfahren zu dessen Herstellung sowie die Verwendung dieses Süßungsmittels in Nahrungs- und Genußmitteln.

Da Saccharose ein kalorienreiches Nahrungsmittel ist, Zahnkaries begünstigt und für Diabetiker ungeeignet ist, besteht ein Bedürfnis an anderen Süßungsmitteln, die im Gegensatz zu synthetischen Süßstoffen wie Saccharin, Cyclamat oder Aspartame keinen Nebengeschmack haben und körpergebende Eigenschaften besitzen.

Als Süßungsmittel wurden bislang unter anderem Maltit und Lactit sowie Isomaltit als nicht-kariogene, kalorienarme Süßungsmittel vorgeschlagen. Erstere sind wegen ihrer sirupartigen Konsistenz nur begrenzt einsetzbar, während letzteres bislang nicht auf wirtschaftliche Weise hergestellt werden konnte.

Isomaltit kann z.B. gemäß DE 22 17 628 A1 über Isomaltulose als Zwischenstufe mit anschließender katalytischer Hydrierung erhalten werden. Die Ausbeute an der Zwischenstufe Isomaltulose beträgt nur 45 %, die Gesamtausbeute an Isomaltit liegt bei 41 %.

Man kann zwar gemäß EP 28 900 A1, EP 49 472 A1 und EP 91 063 A1 mit immobilisierten Bakterienzellen eine enzymatische Umwandlung der Saccharose zu Isomaltulose in einer Ausbeute von etwa 80 % ermöglichen, jedoch wird für die Herstellung von Isomaltit gereinigte Isomaltulose benötigt, so daß auch bei diesen Verfahren eine Ausbeuteminderung durch Kristallisation eintritt.

Darüber hinaus hat Isomaltit den Nachteil, daß es aufgrund seiner geringeren Löslichkeit zum Auskristallisieren in Lebensmitteln neigt, wodurch z.B. Schokolade einen sandigen Geschmack zeigt, Hartkaramellen trübe werden und sich in Marmeladen Kristalle bilden.

Es ist ferner aus der DE 25 20 173 A1 bekannt, durch katalytische Reduktion von Isomaltulose in neutraler wässriger Lösung neben Isomaltit, also dem Glucopyranosyl-1,6-sorbit (= 1,6-GPS), auch den stereoisomeren Glucopyranosyl-1,6-mannit (= 1,6-GPM) bis zu einem Gewichtsverhältnis von 1 : 1 zu erhalten. Aufgrund seiner geringen Löslichkeit kann 1,6-GPM zwar leicht isoliert werden und ist als kalorienarmes, körpergebendes Produkt eine Bereicherung der Diätetik. Wegen seiner geringen Löslichkeit kristallisiert es aber noch leichter in den Lebensmitteln aus als Isomaltit und muß - da die Süßkraft nur etwa 40 % der von Saccharose beträgt - in höherer Menge zum Erreichen des gleichen Süßungseffektes eingesetzt werden.

Auch Abmischungen von 1,6-GPS bzw. 1,6-GPM mit anderen Zuckeralkoholen oder Zuckern ergeben keine befriedigenden Produkte. Selbst wenn man den zur Unterdrückung von Kristallisation bekannten Sorbit einsetzt, erhält man hygroskopische, also klebrige Produkte.

Letztlich ist in der EP 109 009 A1 ein Isomerisierungsprodukt, das mit *Protaminobacter rubrum* (CBS 574.77) aus Saccharose hergestellt wurde, mit der folgenden Zusammensetzung beschrieben:

Fruc	tose	5 - 8 Gew.% a. TS-Gehalt
Gluc	ose	2 - 5 Gew.% a. TS-Gehalt
Saco	charose	0 - 0,5 Gew.% a. TS-Gehalt
Isom	naltulose	65 - 72 Gew.% a. TS-Gehalt
Treh	alulose	10 - 20 Gew.% a. TS-Gehalt
Olig	omere	3 - 6 Gew.% a. TS-Gehalt

40

35

20

Ein solches Saccharidgemisch ist als diätetisches Süßungsmittel ungeeignet, da einige Komponenten kalorisch verwertet werden, insulinabhängigen Stoffwechsel zeigen und Zahnkaries fördern. Der Gehalt an Trehalulose läßt sich zwar auf bis zu 35 % steigern, wenn die Zuckermischung etwa 100 h mit freien oder trägerfixierten Bakterienzellen unter geeigneten Bedingungen gehalten wird. Wirtschaftlich ist dieses Verfahren jedoch nicht.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Süßungsmittel bzw. ein Verfahren zur Herstellung eines neuen kalorienarmen, nicht-kariogenen und für Diabetiker geeigneten Süßungsmittels vorzuschlagen, welches eine angenehme Süßwirkung mit guten körpergebenden Eigenschaften verbindet, in fester Form leicht und wirtschaftlich hergestellt werden kann und in den anwendungsgemäßen Konzentrationen nicht auskristallisiert.

Zur Lösung dieser Aufgabe wird daher einmal ein Verfahren zur Herstellung eines Süßungsmittels gemäß Hauptanspruch und zum anderen die vorzugsweise nach diesem Verfahren hergestellten Süßungsmittel gemäß Anspruch 6 bis 9 und letztlich die Verwendung dieser Süßungsmittel für Nahrungs- und Genußmittel vorgeschlagen, wobei weitere Ausgestaltungen in den Unteransprüchen erwähnt sind.

Die Erfindung beruht auf der überraschenden Feststellung, daß man durch die Kombination der Verfahrensschritte von Isomerisierung der Saccharose, Entfernung von nicht isomerisierter Restsaccharose und katalytischer Hydrierung und vorzugsweise sowohl durch die entweder vor oder nach der Hydrierung

vorgenommene chromatographische Behandlung und auch insbesondere durch eine spezielle Auswahl von Bakterienstämmen Süßungsmittel mit den gewünschten Eigenschaften erhält.

im folgenden wird die Erfindung näher erläutert, wobei die folgenden Kurzbezeichnungen verwendet werden:

1,6-GPS für 6-0-α-D-Glucopyranosyl-D-sorbit

1,1-GPS für 1-0-α-D-Glucopyranosyl-D-sorbit

1,1-GPM für 1-0-α-D-Glucopyranosyl-D-mannit

und wobei ferner festzuhalten ist, daß durch Hydrierung

10

15

aus Isomaltose	100%	1,6-GPS,
aus Isomaltulose	43-57% 43-57%	1,1-GPM 1,6-GPS und
aus Trehalulose	50-80% 20-50%	1,1-GPM 1,1-GPS

erhalten werden.

Nach dem erfindungsgemäßen Verfahren wird in einer ersten Stufe Saccharose mit Bakterienstämmen aus der Gruppe von *Protaminobacter rubrum* (CBS 574.77), *Serratia plymuthica* (ATCC 15928), *Serratia marcescens* (NCIB 8285), *Leuconostoc mesenteroides* (NRRL-B 512 F (ATCC 1083 a)) und *Erwinia rhapontici* (NCPPB 1578) isomerisiert.

Danach wird in einem zweiten Verfahrensschritt diese "Isomerisierte Saccharose" von der nicht isomerisierten Restsaccharose befreit. Dieses ist im vorliegenden Verfahren wesentlich, wenngleich es an sich bekannt ist, reine Saccharoselösungen mit Invertase und/oder einem Invertierungsharz zu einem Gemisch aus Glucose und Fructose zu spalten; nur war es bislang nicht bekannt, eine spezifische Spaltung der Saccharose in Gegenwart von wesentlich größeren Mengen anderer Disaccharide ohne deren Beeinträchtigung durchzuführen.

In einem dritten Verfahrensschritt wird dann die von Restsaccharose befreite "Isomerisierte Saccharose" katalytisch hydriert, wobei ein Gemisch der folgenden Zusammensetzung erhalten wird:

5	Mannit (aus Fructose) Sorbit (aus Fructose und Glucose) 6-O-α-D-Glucopyranosyl-D-sorbit (= 1,6-GPS) aus Isomaltulose 1-O-α-D-Glucopyranosyl-D-sorbit (= 1,1-GPS) aus Trehalulose 1-O-α-D-Glucopyranosyl-D-mannit (= 1,1-GPM) aus Isomaltulose und Trehalulose	3 bis 4 Gew.% 4 bis 9 Gew.% 10 bis 55 Gew.% 2 bis 20 Gew.% 30 bis 70 Gew.%
	1-O-α-D-Glucopyranosyl-D-mannit (= 1,1-GPM) aus Isomaltulose und Trehalulose	
	hydrierte Oligosaccharide	3 bis 6 Gew.%
	Saccharose	unter 1 Gew.%

40

30

35

Das Verhältnis von GPS/GPM liegt je nach Hydrierungsbedingungen (alkalisch/neutral) bei etwa 2 : 1 bis 1 : 7.

Da die Oligosaccharide die anwendungstechnischen, aber auch die physiologischen Eigenschaften des erhaltenen Produktes negativ beeinflussen können, werden sie zusätzlich und vorzugsweise durch chromatographische Trennung an Kationenaustauscherharzen bzw. Zeolithen entfernt.

Das nach der chromatographischen Trennung resultierende Gemisch aus Sorbit, Mannit, 1,6-GPS, 1,1-GPS und 1,1-GPM kann in flüssiger Form oder auch als trockenes, freifließendes Produkt als Süßungsmittel verwendet werden.

Alternativ ist es also auch möglich, die isomerisierte Saccharose von der nicht hydrierfähigen Rest-Saccharose zu befreien und insbesondere Glucose, Fructose und Oligosaccharide zu entfernen, was durch chromatographische Trennung an Kationenaustauscherharzen bzw. Zeolithen bewirkt wird.

Um das Süßungsmittel besser in Lebensmitteln einzusetzen, bei denen ein hoher Trockensubstanzgehalt einzuhalten ist, ist es vorteilhaft, die Kristallisationsneigung des 1,1-GPM durch Erhöhung des 1,1-GPS Gehaltes zu unterdrücken. Dieses läßt sich nach einer weiteren Alternative dadurch erreichen, daß man Saccharose enzymatisch mit Bakterien der Art *Pseudomonas mesoacidophila* oder *Agrobacterium radiobacter* in wässriger Lösung in ein Zuckergemisch überführt, welches überwiegend aus Trehalulose besteht, und dieses Zuckergemisch katalytisch hydriert und einer Reinigung unterwirft. Insbesondere werden die Bakterien-stämme *Pseudomonas mesoacidophila MX-45* (Ferm 11808) oder *Agrobacterium*

radiobacter MX-232 (Ferm 12397) eingesetzt.

Um das erhaltene Süßungsmittel, das als Gemisch aus Sorbit, Mannit, 1,6-GPS, 1,1-GPS und 1,1-GPM in flüssiger Form vorliegt in trockene Form zu überführen, muß das als Lösungsmittel vorliegende Wasser durch Verdampfen entfernt werden, wobei es vorteilhaft ist, zuvor den Sorbit- und Mannitgehalt auf 5 bis 0 und vorzugsweise auf 1 bis 0% zu reduzieren; dieses läßt sich durch die chromatographische Trennung an geeigneten Kationenaustauscherharzen bzw. Zeolithen durchführen.

Die erfindungsgemäß hergestellten Mischungen haben eine der Saccharose ähnliche Süße ohne Beigeschmack; die Süßkraft beträgt jedoch nur 40 bis 50 %. Diese kann gegebenenfalls durch Zufügen von synthetischen Süßstoffen erhöht und z.B. auf die Süßkraft von Saccharose eingestellt werden. Bei Anwendung in Karamellen oder Marmelade ergibt sich ein der Saccharose vergleichbarer Körper, ohne daß es zum Auskristallisieren der einzelnen Saccharide kommt.

Beispiel 1:

30

40

45

55

5 A. Herstellung des Biokatalysators

Von einer Abimpfung des Stammes *Protaminobacter rubrum* (CBS 574.77) werden Zellen mit 10 ml eines sterilen Nährsubstrates, bestehend aus 8 kg Dicksaft aus einer Zuckerfabrik (Trockensubstanzgehalt = 65 %), 2 kg Maisquellwasser, 0,1 kg (NH₄)₂ HPO₄ und 89,9 kg dest. Wasser, bei Bedarf auf pH 7,2 eingestellt, abgeschwemmt. Diese Suspension dient als Impfgut für die Schüttelmaschinen-Vorkultur in 1-Liter-Kolben mit 200 ml Nährlösung obiger Zusammensetzung.

Nach einer 30-stündigen Bebrütungszeit bei 29° C werden mit je 10 Kolben (Gesamtinhalt 2 Liter) 18 Liter Nährlösung obiger Zusammensetzung in einem 30-Liter-Kleinfermenter beimpft und bei 29° C mit 20 Liter Luft pro Minute und einer Rührgeschwindigkeit von 350 UpM fermentiert.

Nach Erreichen von Keimzahlen über 5 x 10⁹ Keimen/ml wird die Fermentation abgestellt; die Zellen werden durch Zentrifugation aus der Fermenterlösung abgeerntet, in einer 2%-igen Natriumalginatlösung suspendiert und durch Eintropfen der Suspension in eine 2%-ige Calciumchloridlösung immobilisiert.

Die entstandenen Immobilisatkugeln werden mit Wasser gewaschen. Dieser Biokatalysator ist bei + 4° C mehrere Wochen lagerfähig.

B. Herstellung der "Isomerisierten Saccharose"

Die wie unter A erhaltenen immobilisierten Zellen werden in einen temperierbaren Säulenreaktor gefüllt, auf 25 bis 30° C temperiert und mit einer Saccharoselösung mit 35 bis 45 % TS-Gehalt kontinuierlich durchströmt. Die Fließgeschwindigkeit wird dabei so eingestellt, daß mindestens 97 % der eingesetzten Saccharose umgelagert werden.

Eine HPLC-Analyse der aus dem Säulenreaktor austretenden "Isomerisierten Saccharose" ergab folgende Zusammensetzung:

Fructose	2,5 % a. TS
Glucose	2,0 % a. TS
Saccharose	1,0 % a. TS
Isomaltulose	82,5 % a. TS
Trehalulose	9,5 % a. TS
Isomaltose	1,5 % a. TS
Oligomere (DP > 3)	1,0 % a. TS.

C. Entfernung von Restsaccharose

Die derart erhaltene "Isomerisierte Saccharose" wurde von der nicht hydrierfähigen Rest-Saccharose befreit, indem sie in einem mit H⁺-lonen beladenen, starksauren Kationenaustauscher bzw. mit geeigneten Enzymen in einem Säulenreaktor wie folgt behandelt wurde:

i) Entfernung der Restsaccharose an starksauren Kationenaustauschern

100 cm³ eines starksauren Kationenaustauschers (z.B. Lewatit^(R) OC 1052) wurden in eine geeignete, auf 60° C temperierte Glassäule eingefüllt und durch Regeneration mit HCl nach bekannter Methode mit H⁺-lonen beladen.

Die nach Beispiel 1B erhaltene "Isomerisierte Saccharose" wurde mit einer Fließrate von 100 cm³ • h⁻¹ durch die so vorbereitete Kationenaustauschersäule gepumpt. Das am Säuleinausgang erhaltene Produkt hatte folgende Zusammensetzung (HPLC):

Fuctose	3,0 % a. TS
Glucose	2,5 % a. TS
Saccharose	-
Isomaltulose	82,3 % a. TS
Trehalulose	9,5 % a. TS
Isomaltose	1,5 % a. TS
Oligomere (DP 3)	1,2 % a. TS

ii) Entfernung oder Restsaccarose durch Enzyme

11 g einer immobilisierten Invertase (z.B. SP 362 von NOVO Nordisk, Kophenhagen) entsprechend einem Bettvolumen von 33 cm³ wurden in eine geeignete, auf 60 ° C temperierte Glassäule eingefüllt.

Die nach Beispiel 1 B erhaltene "Isomerisierte Saccharose" wurde mit einer Fließrate von 210 cm³ • h⁻¹ kontinuierlich durch diese Säule gepumpt.

Eine HPLC-Analyse des aus der "Invertasesäule" austretenden Produkts ergab folgende Zusammensetzung:

Fructose	3,0 % a. TS
Glucose	2,5 % a. TS
Saccharose	-
Isomaltulose	82,5 % a. TS
Trehalulose	9,5 % a. TS
Isomaltose	1,5 % a. TS
Oligomere (DP > 3)	1,0 % a. TS

30

5

10

15

20

25

In beiden Fällen wurde die Restsaccharose vollständig zu Glucose und Fructose gespalten. Der Gehalt an diesen Monosacchariden war entsprechend höher, während die anderen Komponenten der "Isomerisierten Saccharose" nicht verändert wurden.

D Hydrierung der "Isomerisierten Saccharose"

Die jeweils von der Rest-Saccharose befreiten Ansätze der "Isomerisierten Saccharose" wurden an Raney-Nickel bei 80° C mit Wasserstoffgas unter Druck von etwa 10 MPa kontinuierlich hydriert. Nach Nickel-Abtrennung und Reinigung durch lonenaustausch hatten die Ansätze der unter neutralen Bedingungen hydrierten "Isomerisierte Saccharose" etwa die folgende Zusammensetzung:

Mannit	1,5 % a. TS
Sorbit	4,0 % a. TS
1,6-GPS	44,4 % a. TS
1,1-GPS	3,8 % a. TS
1,1-GPM	45,3 % a. TS
hydrierte und nichthydrierte Oligomere	1,0 % a. TS

45

50

Dieses Produkt ist zwar nach Entfernung von Wasser durch Verdampfen als Süßungsmittel einsetzbar, läßt sich jedoch wegen seiner Hygroskopizität, besonders wegen des Oligomerenanteils nur begrenzt einsetzen, zumal die noch vorhandenen Oligomeren teilweise im Dünndarm unter Freisetzung von Sorbit, Mannit und insbesondere von Glucose und Fructose gespalten werden und somit in Lebensmitteln für Diabetiker problematisch sind.

Beispiel 2:

20

25

30

35

40

45

50

Es wurde analog Beispiel 1 A bis C "Isomerisierte Saccharose" hergestellt, die zur Entfernung von Glucose, Fructose und Oligosacchariden vor der Hydrierung einer chromatographischen Trennbehandlung unterworfen wurde, wobei gleichzeitig ein Verlust an den Disacchariden Isomaltulose, Isomaltose und Trehalulose vermieden werden sollte.

Als chromatographische Trennsäule wurde ein temperierbares, mit Siebboden versehenes 10 m langes Rohr mit 25 cm Durchmesser verwendet, das vollständig mit Wasser befüllt und anschließend mit einem mit Calciumionen beladenen starksauren Kationenaustauscherharz mit einer 4 bis 6%igen Vernetzung und einer Korngröße von etwa 0,4 bis 0,5 mm derart beschickt war, daß das Harz vollständig von Wasser bedeckt war.

Die nach Beispiel 1 A und B erhaltene "Isomerisierte Saccharose" wurde nach Entfernung der Restsaccharose in einer Menge von etwa 18 kg (Trockensubstanz) auf die auf etwa 75° C temperierte Trennsäule aufgetragen und mit entionisiertem Wasser mit einer Fließgeschwindigkeit von etwa 2 cm/min eluiert. Am Ausgang der Trennsäule wurden alle 10 Minuten Fraktionen gesammelt und deren Zusammensetzung mit HPLC untersucht.

In den ersten vier Fraktionen befanden sich etwa 60 % der Oligosaccharide und ferner etwa 10 % der Isomaltulose und etwa 25 % der Isomaltose. Die letzten fünf Fraktionen enthielten etwa 70 % der Fructose, 10 % der Trehalulose und 20 % der Glucose.

Die Zusammensetzung der resultierenden "Isomerisierten Saccharose" war wie folgt:

Fructose	1,0 % a. TS
Glucose	2,3 % a. TS
Isomaltulose	85,1 % a. TS
Trehalulose	9,8 % a. TS
Isomaltose	1,3 % a. TS
Oligomeren	0,5 % a. TS

Durch diese Art der Trennung lassen sich immerhin etwa 60 % der Oligomeren, 70 % der Fructose und 20 % der Glucose entfernen, wobei man den Verlust von 10 % der Isomaltulose, 10 % der Trehalulose und 25 % der Isomaltose hinnehmen muß.

Das erhaltene Produkt wurde analog Beispiel 1 C hydriert und hatte folgende Zusammensetzung:

Mannit	0,5 % a. TS
Sorbit	3,3 % a. TS
1,6-GPS	43,8 % a. TS
1,1-GPS	3,9 % a. TS
1,1-GPM	48,5 % a. TS
Oligomere	0,5 % a. TS.

Gegenüber dem Produkt nach Beispiel 1 lag der Gehalt an Sorbit und Mannit niedriger; der Anteil an hydrierten und nicht hydrierten Oligomeren betrug nur die Hälfte.

Beispiel 3:

Es wurde analog Beispiel 2 gearbeitet, wobei jedoch jetzt die Trennsäule mit einem Zeolithen beschickt wurde, der ein Si/Al-Verhältnis von etwa 50 hatte.

Die ersten fünf Fraktionen enthielten die gesamte Menge an Oligosacchariden, Glucose und Fructose und noch etwa 50 % der Isomaltose. Es traten weder Trehalulose noch Isomaltulose in diesen Fraktionen auf. Da der Isomaltosegehalt der "Isomerisierten Saccharose" nach Beispiel 1 bzw. 2 bei 1,5 bzw. 1,3 % a. TS liegt, gehen bei dieser Arbeitsweise nur etwa 0,8 bzw. 0,5 % der gewünschten Disaccharide verloren. Gleichzeitig werden die unerwünschten Oligosaccharide, Glucose und Fructose vollständig entfernt.

Die erhaltene "Isomerisierte Saccharose" hatte die folgende Zusammensetzung:

Fructose	-
Glucose	-
Isomaltulose	89,0 % a. TS
Trehalulose	10,2 % a. TS
Isomaltose	0,8 % a. TS
Oligomere	

Dieses Produkt wurde analog Beispiel 1 D hydriert und zeigte folgende Zusammensetzung:

1,6-GPS	45,3 % a. TS
1,1-GPS	4,1 % a. TS
1,1-GPM	50,6 % a. TS.

Dieses von Mannit, Sorbit und Oligomeren befreite Produkt war ein ausgezeichnetes, kaum hygroskopisches und für Diabetiker geeignetes Süßungsmittel.

Beispiel 4:

Die nach Beispiel 1 erhaltene und bereits hydrierte "Isomerisierte Saccharose" wurde mit einer chromatographischen Trennsäule, wie sie in Beispiel 2 vor der Hydrierung verwendet wurde, behandelt, wobei analog etwa 18 kg a. TS der nunmehr hydrierten "Isomerisierten Saccharose" aufgegeben und mit einer Fließgeschwindigkeit von 2 cm/min eluiert wurden. Allerdings war diese Trennsäule jetzt mit einem mit Natriumionen beladenen, starksauren Kationenaustauscherharz beschickt.

Die ersten drei Fraktionen enthielten die Oligomeren und etwa 4 % des 1,1-GPM. In den weiteren Fraktionen 4 bis 8 war der restliche Anteil an 1,1-GPM, der gesamte Anteil an 1,1-GPS und etwa 99 % des 1,6-GPS enthalten, sowie etwa 50 % des Mannits und nur geringe Anteile des Sorbits. Aus den Massenbilanzen ergibt sich für das Produkt der Fraktionen 4 bis 8 ein Gesamtgehalt von GPM und GPS von etwa 97 Gew.%. Die restlichen Anteile an 1,6 GPS, Mannit und Sorbit wurden in den Fraktionen ab Fraktion 9 eluiert.

Im Vergleich mit dem Verfahren gemäß Beispiel 2, nach welchem die chromatographische Trennung mit erdalkalibeladenen Kationenaustauschern durchgeführt wurde, ergibt sich eine bessere Trennung zwischen Disaccharid- und Monosaccharidalkoholen, so daß mehr als 97 Gew.% der gewünschten Disaccharidalkohole im Hauptprodukt gewonnen werden können, während bei mit Calciumionen beladenen Kationenaustauschern die Ausbeute bei etwa 85 % liegt. Überraschenderweise ergibt sich auch noch der weitere Vorteil, daß mehr als 90 % des als verwertbares Nebenprodukt entstandenen Sorbits mit einer Reinheit von mehr 98 % gewonnen werden kann.

Die Produktzusammensetzung war wie folgt:

1,6-GPS	46,2 % a. TS
1,1-GPS	4,1 % a. TS
1,1-GPM	49,6 % a. TS.

Beispiel 5:

Es wurde analog Beispiel eine chromatographische Trennung nach der Hydrierung durchgeführt, wobei jedoch jetzt eine Zeolith-Trennanlage entsprechend Beispiel 3 eingesetzt wurde. Hydrierte "Isomerisierte Saccharose" wurde in einer Menge von 15 bis 20 kg (Trockensubstanz) aufgetragen und mit entionisiertem Wasser eluiert.

Die Analyse der erhaltenen Fraktionen zeigt, daß Mannit, Sorbit und Oligomere sich vollständig in den ersten 5 Fraktionen befinden. Außerdem sind darin auch etwa 5 % des GPM-Anteils enthalten. Der restliche GPM, der gesamte 1,1-GPS sowie 1,6-GPS finden sich in den Fraktionen 6 bis 16 wieder.

Somit gelingt es, mehr als 97 % der erwünschten Disaccharidalkohole frei von Sorbit, Mannit und Oligomeren zu gewinnen.

8

10

5

15

20

25

40

45

Beispiel 6:

Zur Kristallisation der die Disaccharidalkohole enthaltenden Fraktionen wird ganz allgemein der Wassergehalt durch Verdampfen entfernt. Hierzu wurden diese Fraktionen z.B. die nach Beispiel 5 erhaltene Fraktion durch Verdampfen unter vermindertem Druck auf 90 bis 95 % Trockensubstanzgehalt aufkonzentriert, auf einer gekühlten Fläche erstarren gelassen und anschließend gemahlen. Es wurde ein feinkörniges, nicht klebendes und freifließendes Produkt erhalten.

Wenn das Süßungsmittel in Lebensmitteln mit einem hohen Trockensubstanzgehalt eingesetzt werden soll, ist es von Vorteil, die Kristallisationsneigung des 1,1-GPM durch Erhöhung des 1,1-GPS zu unterdrükken. Dieses wird mit einer weiteren Art von Bakterienstämmen erreicht, wie das folgende Beispiel zeigt.

Beispiel 7:

Zur Herstellung dieses Biokatalysators wurden von einer Abimpfung des Stammes *Pseudomonas mesoacidophila* MX-45 (Ferm 11808) Zellen mit 10 ml eines sterilen Nährsubstrates aus 8 kg Dicksaft von einer Zuckerfabrik (Trockensubstanzgehalt = 65 %), 2 kg Maisquellwasser, 0,1 kg (NH₄)₂ HPO₄ und 89,9 kg destilliertem Wasser auf einen pH-Wert von 7,2 eingestellt, abgeschwemmt. Diese Suspension dient als Impfgut für eine Schüttelmaschinen-Vorkultur in einem 1-Liter-Kolben mit 200 ml der Nährlosung.

Nach einer 30-stündigen Bebrütung bei 29° C wurden mit je 10 Kolben (Gesamtinhalt 2 Liter) 18 Liter Nährlösung obiger Zusammensetzung in einem 30-Liter-Kleinfermenter beimpft und bei 29° C mit 20 Liter Luft pro Minute und einer Rührgeschwindigkeit von 350 Upm fermentiert.

Nach Erreichen von Keimzahlen über 5 x 10⁹ Keimen/ml wurde die Fermentation abgestellt, die Zellen durch Zentrifugation aus der Fermenterlösung abgeerntet, in einer 2%-igen Natriumalginatlösung suspendiert und durch Eintropfen der Suspension in eine 2%-ige Calciumchloridlösung immobilisiert. Die entstandenen Immobilisatkugeln wurden mit Wasser gewaschen. Dieser Biokatalysator ist bei + 4° C mehrere Wochen lagerfähig.

Zur Herstellung von "Isomerisierter Saccharose" wurden die derart erhaltenen immobilisierten Zellen von *Pseudomonas mesoacidophila* MX-45 (Ferm 11808) in einen temperierbaren Säulenreaktor gefüllt, auf etwa 25 bis 30° C temperiert und mit einer Saccharoselösung mit etwa 35 bis 45 % TS-Gehalt kontinuierlich durchströmt. Die Fließgeschwindigkeit wurde dabei so eingestellt, daß mindestens 97 % der eingesetzten Saccharose umgelagert wurden.

Eine HPLC-Analyse der aus dem Säulenreaktor austretenden "Isomerisierten Saccharose" ergab folgende Zusammensetzung:

0	5	
o	υ	

40

Fructose	0,2 % a. TS
Glucose	0,2 % a. TS
Saccharose	1,0 % a. TS
Isomaltulose	12,5 % a. TS
Isomaltose	0,2 % a. TS
Trehalulose	85,7 % a. TS
Oligomere (DP > 3)	0,2 % a. TS

Die derart hergestellte "Isomerisierte Saccharose" wurde analog Beispiel 1 zunächst von der nicht hydrierfähigen Rest-Saccharose befreit und an Raney-Nickel bei etwa 80° C mit Wasserstoffgas unter Druck bei 8 bis 12 MPa kontinuierlich hydriert.

Nach Nickel-Abtrennung und Reinigung durch Ionenaustausch hatte die unter neutralen Bedingungen hydrierte "Isomerisierte Saccharose" die folgende Zusammensetzung:

E	റ
v	v

Mannit	0,4 % a. TS
Sorbit	1,0 % a. TS 57,7 % a. TS 34,4 % a. TS 6,4 % a. TS
1,1-GPM	57,7 % a. TS
1,1-GPS	34,4 % a. TS
1,6-GPS	6,4 % a. TS
hydrierte und nicht-hydrierte Oligomere	0,2 % a. TS

Um die hydrierten und nicht hydrierten Oligomeren sowie Sorbit durch chromatographische Trennung aus dem Produkt zu entfernen, wurde die chromatographische Trennung nach der Hydrierung mit einer chromatographischen Trennsäule gemäß Beispiel 4, also mit einem mit Natrium- bzw. Kaliumionen beladenen starksauren Kationenaustauscherharz durchgeführt.

Die Analyse der erhaltenen Fraktionen zeigt, daß die ersten 3 Fraktionen die Oligomeren und ca. 4 % des GPM enthalten. In den Fraktionen 4 bis 8 ist der restliche GPM, der gesamte 1,1-GPS und etwa 99 % des 1,6-GPS sowie etwa 50 % des Mannits enthalten. Der restliche 1,6-GPS sowie Sorbit und Mannit werden in den Fraktionen ab Nr. 9 eluiert.

10 Beispiel 8:

5

15

20

30

Zur Feststellung der relativen Süßkraft wurden in einem Dreieckstest von jeweils 15 Versuchspersonen folgende Lösungen miteinander verglichen:

- a) Zwei 7 %ige Saccharoselösungen gegen eine 15,5 %ige Lösung des neuen Süßungsmittels gemäß Beispiel 3.
- b) Zwei 7 %ige Saccharoselösungen gegen eine 17,5 %ige Lösung dieses neuen Süßungsmittels.
- c) Zwei 7 %ige Saccharoselösungen gegen eine 18,5 %ige Lösung dieses neuen Süßungsmittels.

Beim Test a) wurde von sechs Personen das neue Süßungsmittel herausgefunden: Kein statistisch gesicherter Unterschied zu den Saccharoselösungen.

Beim Test b) wurde von zwölf Personen das neue Süßungsmittel als "süßer" herausgefunden: Statistisch gesicherter Unterschied mit p = 0,99.

Beim Test c) wurde ebenfalls von zwölf Personen das neue Süßungsmittel als "süßer" herausgefunden: Statistisch gesicherter Unterschied mit p = 0,99.

Die Süßkraft des erfindungsgemäßen Süßungsmittels beträgt 45 % der Saccharose. Zur Anhebung der Süßkraft läßt sich das neue Süßungsmittel mit Fructose, Xylit, Saccharin, Cyclamat, Aspartam oder Acesulfam-K mischen.

Beispiel 9:

Zur Herstellung von Speiseeis mit dem neuen Süßungsmittel wurden 22,1 kg süße Sahne (40 % Fett i. Trockenmasse), 58,1 kg Vollmilch (3,7 % Fett i.T.) und 4,5 kg Magermilchpulver mit 15 kg des Süßungsmittels gemäß Beispiel 3 und 0,3 kg Stabilisator vermischt, homogenisiert und sterilisiert. Nach der Sterilisation wurden 53 g fein gemahlener Phenylalaninasparaginsäuremethylester der Eismasse zugesetzt, verrührt, aufgeschlagen und gefroren. Das Produkt hat die gleiche Süße und den gleichen Geschmack, wie mit 15 kg Zucker hergestelltes Speiseeis.

Bei Frucht-Eiskrem ist es sogar von Vorteil, auf eine Aufsüßung zu verzichten, da das neue Süßungsmittel den Fruchtgeschmack wesentlich besser zur Geltung bringt.

Beispiel 10:

40

Zur Herstellung einer kalorienarmen Erdbeerkonfitüre wurden 1 kg zerkleinerte Erdbeeren zusammen mit 1 kg des neuen Süßungsmittels gemäß Beispiel 3 und 8 g eines mittelveresterten Pektins mit 150° SAG-USA (Ullmann, Enzyklopädie der technischen Chemie, 3. Auflage, Bd. 13, S. 180) sowie 7 g Weinsäure, drei Minuten lang gekocht und in vorbereitete Gläser abgefüllt.

Ein Vergleich mit einer mit Zucker hergestellten Konfitüre zeigte keinen Unterschied bezüglich Konsistenz, die Süße war etwas geringer, dafür jedoch der Erdbeergeschmack spürbar stärker. Nach Lagerung von sechs Monaten Dauer zeigte sich keine Kristallisationsneigung des Süßungsmittels.

Patentansprüche

50

55

- 1. Verfahren zur Herstellung eines Süßungsmittels dadurch gekennzeichnet, daß man
 - a) in einem ersten Verfahrensschritt Saccharose enzymatisch in ein als "isomerisierte Saccharose" bezeichnetes Saccharidengemisch mit einem Disaccharidanteil von mehr als 85 Gew.% umwandelt,
 - b) in einem zweiten Schritt die "isomerisierte Saccharose" von nicht isomerisierter Restsaccharose durch enzymatische und/oder H⁺-katalysierte Spaltung befreit,
 - c) in einem weiteren Verfahrensschritt die "isomerisierte Saccharose" katalytisch hydriert, wobei vorzugsweise

- d) entweder vor oder nach der katalytischen Hydrierung das erhaltene Gemisch einer chromatographischen Trennung unterworfen wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die enzymatische Umwandlung der Saccharose mit Bakterienstämmen aus der Gruppe von Protaminobacter rubrum (CBS 574.77), Serratia plymuthica (ATCC 15928), Serratia marcescens (NCIB 8285), Leuconostoc mesenteroides (NRRL-B 512 F (ATCC 1083a)) und Erwinia rhapontici (NCPPB 1578) durchführt.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die enzymatische Umwandlung der Saccharose mit Bakterien der Art Pseudomonas mesoacidophila oder Agrobacterium radiobacter in wässriger Lösung durchführt.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man die Saccharose mit den Bakterienstämmen Pseudomonas mesoacidophila MX-45 (Ferm 11808) oder Agrobacterium radiobacter MX-232 (Ferm 12397) durchführt.
 - 5. Verfahren nach Anspruch 1 bis 4, **dadurch gekennzeichnet**, daß man die chromatographische Trennung zur Entfernung der in der Mischung enthaltenen Oligosaccharidalkohole und/oder Monosaccharidalkohole an mit Natrium-, Kalium- oder Calcium-Ionen beladenen, starksauren Kationenaustauscherharzen oder an Zeolithen mit einem Si/Al-Verhältnis > 50 durchführt.
 - Süßungsmittel, insbesondere hergestellt nach dem Verfahren gemäß Anspruch 1, 2 und 5, dadurch gekennzeichnet, daß es ein Gemisch aus

10 bis 50 Gew.% 6-O- α -D-Glucopyranosyl-D-sorbit (= 1,6 GPS) 2 bis 20 Gew.% 1-O- α -D-Glucopyranosyl-D-sorbit (= 1,1 GPS) 30 bis 70 Gew.% 1-O- α -D-Glucopyranosyl-D-mannit (= 1,1 GPM) enthält.

7. Süßungsmittel nach Anspruch 6, dadurch gekennzeichnet, daß es 25 bis 50 Gew.% (= 1,6 GPS)
2 bis 20 Gew.% (= 1,1 GPS)
35 bis 60 Gew.% (= 1,1 GPM)
enthält.

35 8. Süßungsmittel, insbesondere hergestellt nach dem Verfahren gemäß Anspruch 1 und 3 bis 5, dadurch gekennzeichnet, daß es ein Gemisch aus

5 bis 10 Gew.% 6-O- α -D-Glucopyranosyl-D-sorbit (= 1,6 GPS) 30 bis 40 Gew.% 1-O- α -D-Glucopyranosyl-D-sorbit (= 1,1 GPS) 45 bis 60 Gew.% 1-O- α -D-Glucopyranosyl-D-mannit (= 1,1 GPM) enthält.

- 9. Süßungsmittel nach Anspruch 6 bis 8, dadurch gekennzeichnet, daß es geringe Mengen Mannit, Sorbit, hydrierte oder nicht hydrierte Oligosaccharide (DP ≥ 3) oder Gemische dieser enthält.
- 45 10. Verwendung von Süßungsmitteln nach einem der Ansprüche 7 bis 9 in fester oder flüssiger Form als Süßungsmittel für Nahrungs- und Genußmittel.

50

40

5

15

20

25

30

		E DOKUMENTE		
(ategorie	Kennzeichnung des Dokumer der maßgeblich	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.5)
Х	ALIMENTA Bd. 19, Nr. 1 , 198 Seiten 5 - 16 SCHIWECK 'Palatinit technologische Eige palatinithaltiger L * das ganze Dokumen	- Herstellung, nschaften und Analyti ebensmittel'	1,2	C12P19/24 C12S3/02 A23L1/236 A23L1/09 //A23L1/06, A23G9/04, C07H15/04,
Y A	-		5 6-10	C07H3/04, (C12P19/24, C12R1:01,1:18,
Y	1985	61)(1735) 18. Januar SHOWA DENKO K.K.) 13	. 5	1:38,1:425,
Y	CARBOHYDRATE RES. Bd. 164 , 1987 Seiten 477 - 485 MUNIR ET AL. '1-O-alpha-glucopyr Darstellung aus Sac Reduktion zu 1-O-alpha-D-glucopy	charose und ihre	1,2,5,6	RECHERCHIERTE SACHGEBIETE (Int.Cl.5) C12P A23L
Y	EP-A-0 152 779 (BAY * das ganze Dokumen	ER AG) 28. August 198	1,2,5,6 10	5,
Y,D	EP-A-O 109 009 (SUDDEUTSCHER-ZUCKE 23. Mai 1984 * das ganze Dokumen	R-AKTIENGESELLSCHAFT	1,2,5,6	5,
Y	FR-A-2 179 966 (SUD November 1973 * Beispiele Seiten	DEUTSCHE-ZUCKER AG)	1,2,5,0	5,
		-/		
Der v	orliegende Recherchenbericht wurd	de für alle Patentansprüche erstellt		
	Recherchemort	Abschlußdatum der Recherche		Printer
Y:vo	DEN HAAG KATEGORIE DER GENANNTEN I n besonderer Bedeutung allein betrach n besonderer Bedeutung in Verbindun deren Veröffentlichung derselben Kate chnologischer Hintergrund	tet E: ilteres Pat nach dem gmit einer D: in der Anr gorie L: aus andern	ing zugrunde liegen entdokument, das je Anmeldedatum verö neldung angeführtes Gründen angeführ	ffentlicht worden ist Dokument

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 93 12 0934

Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich hen Teile	n, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.5)
A	EP-A-0 483 755 (MIT Mai 1992 * das ganze Dokumen	SUI SUGAR CO LTD) 6. t * 	1,3,4	
				RECHERCHIERTE SACHGEBIETE (Int.Cl.5)
Der vo	rliegende Recherchenbericht wurd Recherchenort	Abschlußdatum der Recherche		Préfer
	DEN HAAG	26. August 19	94 Gac	, G
X:von Y:von and A:tech O:nicl	KATEGORIE DER GENANNTEN D besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg inologischer Hintergrund nischriftliche Offenbarung schenitteratur	E: älteres Pat et nach dem mit einer D: in der Ann orie L: aus andern	entdokument, das jedoc Anmeldedatum veröffen neldung angeführtes Do Gründen angeführtes l er gleichen Patentfamil	tlicht worden ist okument

EPO FORM 1503 03.82 (PO4C03)