Lineare Algebra SS2018

Dozent: Prof. Dr. Arno Fehm

21. Juni 2018

In halts verzeichn is

Ι	Endomorphismen				
	1	Eigenwerte	1		
	2	Das charakteristische Polynom	4		
	3	Diagonalisierbarkeit	6		
	4	Trigonalisierbarkeit	9		
	5	Das Minimalpolynom	12		
	6	Nilpotente Endomorphismen	15		
	7	Die JORDAN-Normalform	20		
П	Ska	Skalarprodukte 23			
	1	Das Standardskalarprodukt	23		
	2	Bilinearformen und Sesquilinearformen	26		
	3	Euklidische und unitäre Vektorräume	29		
	4	Orthogonalität	31		
	5	Orthogonale und unitäre Endomorphismen	34		
	6	Selbstadjungierte Endomorphismen	37		
	7	Hauptachsentransformation	39		
	8	Quadriken	43		
ш	Dualität 48				
	1	Das Lemma von Zorn	48		
	2	Der Dualraum	51		
	3	Die duale Abbildung	54		
	4	Die adjungierte Abbildung	57		
IV	Mo	Moduln			
An	hang	ξ	61		
A	Listen				
	A.1	Liste der Theoreme	61		
	A.2	Liste der benannten Sätze	62		
Index			63		

Kapitel I

Endomorphismen

In diesem Kapitel seien K ein Körper, $n \in \mathbb{N}$ eine natürliche Zahl, V ein n-dimensionaler K-VR und $f \in \operatorname{End}_K(V)$ ein Endomorphismus.

Das Ziel dieses Kapitels ist, die Geometrie von f besser zu verstehen und Basen zu finden, für die $M_B(f)$ eine besonders einfache oder kanonische Form hat.

1. Eigenwerte

▶ Bemerkung 1.1

Wir erinnern uns daran, dass $\operatorname{End}_K(V) = \operatorname{Hom}_K(V, V)$ sowohl einen K-VR als auch einen Ring bildet. Bei der Wahl einer Basis B von V wird $f \in \operatorname{End}_K(V)$ durch die Matrix $M_B(f) = M_B^B(f)$ beschrieben.

■ Beispiel 1.2
$$K = \mathbb{R}, A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}), f = f_A \in \operatorname{End}_K(K^2)$$

$$A \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}, A \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\Rightarrow$$
 mit $B = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$ ist $M_B(f) = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$.

Der Endomorphismus $f=f_A$ streckt also entlang der Achse $\mathbb{R}\cdot \begin{pmatrix} 1\\1 \end{pmatrix}$ um den Faktor 3 und spiegelt

entlang der Achse $\mathbb{R} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Definition 1.3 (Eigenwert, Eigenvektor, Eigenraum)

Sind $0 \neq x \in V$ und $\lambda \in K$ mit $f(x) = \lambda x$ so nennt man λ einen Eigenwertvon f und x einen Eigenvektorvon f zum Eigenwert λ . Der Eigenraumzu $\lambda \in K$ ist $\text{Eig}(f,\lambda) = \{x \in V \mid f(x) = \lambda x\}$.

▶ Bemerkung 1.4

Für jedes $\lambda \in K$ ist $\text{Eig}(f, \lambda)$ ein UVR von V, da

$$\operatorname{Eig}(f,\lambda) = \{x \in V \mid f(x) = \lambda x\}$$

$$= \{x \in V \mid f(x) - \lambda \cdot \operatorname{id}_{V}(x) = 0\}$$

$$= \{x \in V \mid (f - \lambda \cdot \operatorname{id}_{V})(x) = 0\}$$

$$= \operatorname{Ker}(f - \lambda \cdot \operatorname{id}_{V})$$

und $f - \lambda \cdot id_V \in \operatorname{End}_K(V)$.

▶ Bemerkung 1.5

Achtung! Der Nullvektor ist nach Definition kein Eigenvektor, aber $\lambda = 0$ kann ein Eigenwert sein, nämlich genau dann, wenn $f \notin \operatorname{Aut}_K(V)$, siehe Übung. Die Menge der Eigenvektoren zu λ ist also $\operatorname{Eig}(f,\lambda)\setminus\{0\}$ und λ ist genau dann ein Eigenwert von f, wenn $\operatorname{Eig}(f,\lambda)\neq\{0\}$.

■ Beispiel 1.6

Ist $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ und $f = f_A \in \operatorname{End}_K(K^n)$, so sind $\lambda_1, ..., \lambda_n$ EW von f und jedes e_i ist ein EV zum EW λ_i .

Satz 1.7

Sei B eine Basis von V. Genau dann ist $M_B(f)$ eine Diagonalmatrix, wenn B aus EV von f besteht.

Beweis. Ist $B=(x_1,...x_n)$ eine Basis aus EV zu EW $\lambda_1,....,\lambda_n$, so ist $M_B(f)=\operatorname{diag}(\lambda_1,...,\lambda_n)$ und umgekehrt.

■ Beispiel 1.8

Sei $K = \mathbb{R}$, $V = \mathbb{R}^2$ und $f_{\alpha} \in \operatorname{End}_K(\mathbb{R}^2)$ die Drehung um den Winkel $\alpha \in [0, 2\pi)$

$$\Rightarrow M_{\mathcal{E}}(f_{\alpha}) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Für $\alpha = 0$ hat $f_{\alpha} = \mathrm{id}_{\mathbb{R}^2}$ nur den EW 1.

Für $\alpha = \pi$ hat $f_{\alpha} = -\operatorname{id}_{\mathbb{R}^2}$ nur den EW -1.

Für $\alpha \neq 0, \pi$ hat f_{α} keine EW.

Lemma 1.9

Sind $\lambda_1,...,\lambda_n$ paarweise verschiedene EW von f und ist x_i ein EV zu λ_i für i=1,...,m, so ist $(x_1,...,x_m)$ linear unabhängig.

Beweis. Induktion nach m

 $\underline{m-1 \to m}$: Sei $\sum_{i=1}^{m} \mu_i x_i = 0$ mit $\mu_1, ..., \mu_m \in K$.

$$0 = (f - \lambda \cdot id_V) \left(\sum_{i=1}^m \mu_i x_i \right)$$
$$= \sum_{i=1}^m \mu_i (f(x_i) - \lambda_m \cdot x_i)$$
$$= \sum_{i=1}^{m-1} \mu_i (\lambda_i - \lambda_m) \cdot x_i$$

Nach IB ist $\mu_i(\lambda_i - \lambda_m) = 0$ für i = 1, ..., m - 1, da $\lambda_i \neq \lambda_m$ für $i \neq m$ also $\mu_i = 0$ für i = 1, ..., m - 1. Damit ist auch $\mu_m = 0$. Folglich ist $(x_1, ..., x_m)$ linear unabhängig.

Satz 1.10

Sind $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden, so ist

$$\sum_{i=1}^{m} \operatorname{Eig}(f, \lambda_i) = \bigoplus_{i=0}^{m} \operatorname{Eig}(f, \lambda_i).$$

Beweis. Seien $x_i, y_i \in \text{Eig}(f, \lambda_i)$ für i = 1, ..., m. Ist $\sum_{i=1}^m x_i = \sum_{i=1}^m y_i$, so ist $\sum_{i=1}^m \underbrace{x_i - y_i}_{i=1} = 0$.

o. E. seien $z_i \neq 0$ für i = 1, ..., r und $z_i = 0$ für i = r + 1, ..., m. Wäre r > 0, so wären $(z_1, ..., z_r)$ linear abhängig, aber $z_i = x_i - y_i \in \text{Eig}(f, \lambda_i) \setminus \{0\}$, im Widerspruch zu Lemma 1.9. Somit ist $x_i = y_i$ für alle i und folglich ist die Summe $\sum \text{Eig}(f, \lambda_i)$ direkt.

Definition 1.11 (EW und EV für Matrizen)

Sei $A \in \operatorname{Mat}_n(K)$. Man definiert Eigenwerte, Eigenvektoren, etc von A als Eigenwerte, Eigenvektoren von $f_A \in \operatorname{End}_K(K^n)$.

Satz 1.12

Sei B eine Basis von V und $\lambda \in K$. Genau dann ist λ ein EW von f, wenn λ ein EW von $A = M_B(f)$ ist. Insbesondere haben ähnliche Matrizen die selben EW.

 $Beweis.\ {\it Dies}$ folgt aus dem kommutativen Diagramm

$$\begin{array}{c|c}
K^n & \xrightarrow{f_A} & K^n \\
\Phi_B \downarrow & & \downarrow \Phi_B \\
V & \xrightarrow{f} & V
\end{array}$$

denn $f_A(x) = \lambda x \iff (\Phi_B \circ f_A)(x) = \Phi_B(\lambda x) \iff f(\Phi_B(x)) = \lambda \Phi_B(x).$

Ähnliche Matrizen beschreiben den selben Endomorphismus bezüglich verschiedener Basen, vgl. IV.4.1

2. Das charakteristische Polynom

Satz 2.1

Sei $\lambda \in K$. Genau dann ist λ ein EW von f, wenn $\det(\lambda \cdot id_V - f) = 0$.

Beweis. Da $\mathrm{Eig}(f,\lambda)=\mathrm{Ker}(\lambda\cdot\mathrm{id}_V-f)$ ist λ genau dann ein EW von f, wenn $\mathrm{dim}_K(\mathrm{Ker}(\lambda\cdot\mathrm{id}_V-f))>0$, also wenn $\lambda\cdot\mathrm{id}_V-f\notin\mathrm{Aut}_K(V)$. Nach IV.4.6 bedeutet dies, dass $\det(\lambda\cdot\mathrm{id}_V-f)=0$

Definition 2.2 (charakteristisches Polynom)

Das <u>charakteristische Polynom</u>einer Matrix $A \in \operatorname{Mat}_n(K)$ ist die Determinante der Matrix $t \cdot \mathbb{1}_n - A \in \operatorname{Mat}_n(K[t])$.

$$\chi_A(t) = \det(t \cdot \mathbb{1}_n - A) \in K[t]$$

Das charakteristische Polynom eines Endomorphismus $f \in \text{End}_K(V)$ ist $\chi_f(t) = \chi_{M_B(f)}(t)$, wobei B eine Basis von V ist.

Satz 2.3

Sind $A, B \in \operatorname{Mat}_n(K)$ mit $A \sim B$, so ist $\chi_A = \chi_B$. Insbesondere ist χ_f wohldefiniert.

Beweis. Ist $B = SAS^{-1}$ mit $S \in GL_n(K)$, so ist $t \cdot \mathbb{1}_n - B = S(t \cdot \mathbb{1}_n - A)S^{-1}$, also $t \cdot \mathbb{1}_n - B \sim t \cdot \mathbb{1}_n - A$ und ähnliche Matrizen haben die selben Determinante (IV.4.4).

Sind B, B' Basen von V, so sind $M_B(f) \sim M_{B'}(f)$, also $\chi_{M_B(f)} = \chi_{M_{B'}(f)}$

Lemma 2.4

Für $\lambda \in K$ ist $\chi_f(\lambda) = \det(\lambda \cdot id_V - f)$.

Beweis. Sei B eine Basis von V und $A = M_B(f) = (a_{ij})_{i,j}$. Dann ist $M_B(\lambda \cdot id_V - f) = \lambda \cdot \mathbb{1}_n - A$. Aus IV.2.8 und I.6.8 folgt $\det(t \cdot \mathbb{1}_n - A)(\lambda) = \det(\lambda \cdot \mathbb{1}_n - A)$. Folglich ist

$$\chi_f(\lambda) = \chi_A(\lambda)$$

$$= \det(t \cdot \mathbb{1}_n - A)(\lambda)$$

$$= \det(\lambda \cdot \mathbb{1}_n - A)$$

$$= \det(\lambda \cdot \mathrm{id}_V - f)$$

Satz 2.5

Sei $\dim_K(V) = n$ und $f \in \operatorname{End}_K(V)$. Dann ist $\chi_f(t) = \sum_{i=0}^n \alpha_i t^i$ ein Polynom vom Grad n mit

$$\alpha_n = 1$$

$$\alpha_{n-1} = -\operatorname{tr}(f)$$

$$\alpha_0 = (-1)^n \cdot \det(f)$$

Die Nullstellen von χ_f sind genau die EW von f.

Beweis. Sei B eine Basis von V und $A = M_B(f) = (a_{ij})_{i,j}$. Wir erinnern uns daran, dass $\operatorname{tr}(f) = \operatorname{tr}(A = \sum_{i=1}^n a_{ii}$. Es ist $\chi_f(t) = \det(t - \cdot 1_n - A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n (t \delta_{i,\sigma(i)} - a_{i,\sigma(i)})$.

Der Summand für $\underline{\sigma = id}$ ist $\prod_{i=1}^{n} (t - a_{ii}) = t^n + \sum_{i=1}^{n} (-a_{ii})t^{n-1} + ... + \prod_{i=1}^{n} (-a_{ii})$

Für $\underline{\sigma \neq \mathrm{id}}$ ist $\sigma(i) \neq i$ für mindestens zwei i, der entsprechende Summand hat also Grad höchstens n-2. Somit haben α_n und α_{n-1} die oben behauptete Form, und $\alpha_0 = \chi_A(0) = \det(-A) = (-1)^n \cdot \det(f)$.

Die Aussage über die Nullstellen von χ_f folgt aus Satz 2.1 und Lemma 2.4.

Folgerung 2.6

Ist $\dim_K(V) = n$, so hat f höchstens n Eigenwerte.

Beweis. Satz 2.5 und I.6.10 \Box

Definition 2.7 (normiertes Polynom)

Ein Polynom $0 \neq P \in K[t]$ mit Leitkoeffizient 1 heißt normiert.

■ Beispiel 2.8

- 1. Ist $A = (a_{ij})_{i,j}$ eine obere Dreiecksmatrix, so ist $\chi_A(t) = \prod_{i=1}^n (t a_{ii})$, vgl. IV.2.9.c Insbesondere ist $\chi_{1_n}(t) = (t-1)^n$, $\chi_0(t) = t^n$
- 2. Für eine Blockmatrix $A=\begin{pmatrix}A_1&B\\0&A_2\end{pmatrix}$ mit quadratischen Matrizen A_1,A_2 ist $\chi_A=\chi_{A_1}\cdot\chi_{A_2}$ vgl. IV.2.9.e
- 3. Für

$$\begin{pmatrix} 0 & \dots & \dots & 0 & -c_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & 0 & -c_{n-1} \end{pmatrix} \quad c_0, \dots, c_{n-1} \in K$$

ist
$$\chi_A(t) = t^n + \sum_{i=0}^{n-1} c_i t^i$$

Man nennt diese Matrix die Begleitmatrix zum normierten Polynom $P=t^n+\sum_{i=0}^{n-1}c_it^i$ und schreibt $M_P:=A$

3. Diagonalisierbarkeit

Definition 3.1 (diagonalisierbar)

Man nennt f <u>diagonalisierbar</u>, wenn V eine Basis B besitzt, für die $M_B(f)$ eine Diagonalmatrix ist.

Lemma 3.2

Genau dann ist f diagonalisierbar, wenn

$$V = \sum_{\lambda \in K} \mathrm{Eig}(f,\lambda)$$

.

 $Beweis. \ \ (\Rightarrow) : \text{Ist } B \text{ eine Basis aus EV von } f \text{ (vgl. Satz 1.7)}, \text{ so ist } B \leq \bigcup_{\lambda \in K} \text{Eig}(f,\lambda), \text{ also } V = \text{span}_K (\bigcup_{\lambda \in K} \text{Eig}(f,\lambda)) = \sum_{\lambda \in K} \text{Eig}(f,\lambda).$

 (\Leftarrow) : Ist $V = \sum_{\lambda \in K} \operatorname{Eig}(f, \lambda)$, so gibt es $\lambda_1, ..., \lambda_n \in K$ mit $V = \sum_{i=1}^r \operatorname{Eig}(f, \lambda_i)$. Wir wählen Basen B_i von $\operatorname{Eig}(f, \lambda_i)$. Dann ist $\bigcup_{i=1}^r B_i$ ein endliches Erzeugendensystem von V, enthält also eine Basis von V (II.3.6). Diese besteht aus EV von f.

Satz 3.3

Ist $\dim_K(V) = n$, so hat f höchstens n Eigenwerte. Hat f genau n Eigenwerte, so ist f diagonalisierbar.

Beweis. Ist λ ein EW von f, so ist $\dim_K(\text{Eig}(f,\lambda)) \geq 1$. Sind also $\lambda_1, ..., \lambda_n$ paarweise verschiedene EW von f, so ist

$$n = \dim_{K}(V) \ge \dim_{K} \left(\sum_{i=1}^{m} \operatorname{Eig}(f, \lambda_{i}) \right)$$

$$\stackrel{\operatorname{Satz} = 1.10}{=} \dim_{K} \left(\bigoplus_{i=0}^{m} \operatorname{Eig}(f, \lambda_{i}) \right)$$

$$= \sum_{i=1}^{m} \dim_{K} (\operatorname{Eig}(f, \lambda_{i}))$$

$$\ge m$$

Ist zudem m = n, so muss

$$\dim_K(V) = \dim_K(\sum_{i=1}^m \operatorname{Eig}(f, \lambda_i))$$
 sein, also
$$V = \sum_{i=1}^m \operatorname{Eig}(f, \lambda_i)$$

Nach Lemma 3.2 ist f genau dann diagonalisierbar.

Definition 3.4 (a teilt b)

Sei R ein kommutativer Ring mit seien $a, b \in R$. Man sagt, a <u>teilt</u>b (in Zeichen a|b), wenn es $x \in R$ mit b = ax gibt.

Definition 3.5 (Vielfachheit)

Für $0 \neq P \in K[t]$ und $\lambda \in K$ nennt man $\mu(P, \lambda) = \max\{r \in \mathbb{N}_{>0} \mid (t - r)^r | P\}$ die <u>Vielfachheit</u>der Nullstelle λ von P.

Lemma 3.6

Genau dann ist $\mu(P,\lambda) \geq 1$, wenn λ eine Nullstelle von P ist.

Beweis.
$$(\Rightarrow)$$
: $t - \lambda | P \Rightarrow P(t) = (t - \lambda) \cdot Q(t)$ mit $Q(t) \in K[t] \Rightarrow P(\lambda) = 0 \cdot Q(\lambda) = 0$. (\Leftarrow) : $P(\lambda) = 0 \stackrel{I.6.9}{=} t - \lambda | P(t) \Rightarrow \mu(P, \lambda) \ge 1$.

Lemma 3.7

Ist $P(t) = (t - \lambda)^r \cdot Q(t)$ mit $Q(t) \in K[t]$ und $Q(\lambda) \neq 0$, so ist $\mu(P, \lambda) = r$

Beweis. Offensichtlich ist $\mu(P,\lambda) \ge r$. Wäre $\mu(P,\lambda) \ge r+l$, so $(t-\lambda)^{r+l}|P(t)$ also $(t-\lambda)^r \cdot Q(t) = (t-\lambda)^{r+l} \cdot R(t)$ mit $R(t) \in K[t]$, folglich $t-\lambda|Q(t)$, insbesondere $Q(\lambda) = 0$.

(Denn wir dürfen kürzen: R ist nullteilerfrei, genau so wie K[t]).

$$(t-\lambda)^r(Q(t)-(t-\lambda)R(t))=0\Rightarrow Q(t)=(t-\lambda)R(t).$$

Lemma 3.8

Sind $P, Q, R \in K[t]$ mit PQ = PR, und ist $P \neq 0$, so ist Q = R.

Beweis.
$$PQ = PR \Rightarrow P(Q - R) = 0$$
 $\stackrel{K[t]}{\Rightarrow} \text{nullteilerfrei} Q - R = 0, \text{ d.h. } Q = R.$

Lemma 3.9

Es ist $\sum_{\lambda \in K} \mu(P, \lambda) \leq \deg(P)$, mit Gleichheit genau dann, wenn P in Linearfaktoren zerfällt.

Beweis. Schreibe $P(t) = \prod_{\lambda \in K} (t - \lambda)^{r_{\lambda}} \cdot Q(t)$, wobei $Q(t) \in K[t]$ keine Nullstellen mehr besitzt. Nach Lemma 3.7 ist $\mu(P,\lambda) = r_{\lambda}$ für alle λ und somit $\deg(P) = \sum_{\lambda \in K} r_{\lambda} + \deg(Q) \geq \sum_{\lambda \in K} \mu(P,\lambda)$ mit Gleichheit genau dann, wenn $\deg(Q) = 0$, also $Q = c \in K$, d.h. genau dann, wenn $P(t) = c \cdot \prod_{\lambda \in K} (t - \lambda)^{r_{\lambda}}$.

Lemma 3.10

Für $\lambda \in K$ ist

$$\dim_K(\operatorname{Eig}(f,\lambda)) \ge \mu(x_f,\lambda)$$

Beweis. Ergänze eine Basis B von $Eig(f, \lambda)$ zu einer Basis B von V. Dann ist

$$A = M_B(f) = \begin{pmatrix} \lambda \mathbb{1}_s & * \\ 0 & A' \end{pmatrix}$$

mit einer Matrix $A' \in \operatorname{Mat}_{n-s}(K)$, also $\chi_f(t) = \chi_A(t) \stackrel{\text{Beispiel 2.8}}{=} \chi_{\lambda 1} \cdot \chi_{A'}(t) = (t - \lambda)^s \cdot \chi_{A'}(t)$ und somit $\dim_K(\operatorname{Eig}(f,\lambda)) = s \leq \mu(x_f,\lambda)$.

Satz 3.11

Genau dann ist f diagonalisierbar, wenn χ_f in Linearfaktoren zerfällt und $\dim_K(\text{Eig}(f,\lambda)) = \mu(x_f,\lambda)$ für alle $\lambda \in K$.

Beweis. Es gilt

$$\dim_{K} \left(\sum_{\lambda \in K} \operatorname{Eig}(f, \lambda) \right) \stackrel{\operatorname{Satz} \ 1.10}{=} \dim_{K} \left(\bigoplus_{\lambda \in K} \operatorname{Eig}(f, \lambda) \right)$$

$$\stackrel{\operatorname{II.4.12}}{=} \sum_{\lambda \in K} \dim_{K} \left(\operatorname{Eig}(f, \lambda) \right)$$

$$\stackrel{\operatorname{Lemma} \ 3.10}{\leq} \sum_{\lambda \in K} \mu(\chi_{f}, \lambda) \qquad (1)$$

$$\leq \deg(\chi_{f}) \qquad (2)$$

$$= n$$

Nach Lemma 3.2 ist f genau dann diagonalisierbar, wenn $\dim_K(\sum_{\lambda \in K} \operatorname{Eig}(f,\lambda)) = n$, also wenn bei (1) und (2) Gleichheit herrscht. Gleichheit bei (1) bedeutet $\dim_K(\operatorname{Eig}(f,\lambda)) = \mu(\chi_f,\lambda)$ für alle $\lambda \in K$, und Gleichheit bei (2) bedeutet nach Lemma 3.9, dass χ_f in Linearfaktoren zerfällt.

Definition 3.12 (algebraische und geometrische Vielfachheit)

Man nennt $\mu_a(f,\lambda) = \mu(\chi_f,\lambda)$ die <u>algebraische Vielfachheit</u>und $\mu_g(f,\lambda) = \dim_K(\text{Eig}(f,\lambda))$ die geometrische Vielfachheitdes Eigenwertes λ von f.

▶ Bemerkung 3.13

Wieder nennt man $A \in \operatorname{Mat}_n(K)$ diagonalisierbar, wenn $f_A \in \operatorname{End}_K(K^n)$ diagonalisierbar ist, also wenn $A \sim D$ für eine Diagonalmatrix D.

4. Trigonalisierbarkeit

Definition 4.1

Man nennt f <u>trigonalisierbar</u>, wenn V eine Basis B besitzt, für die $M_B(f)$ eine obere Dreiecksmatrix ist

■ Beispiel 4.2

Ist f diagonalisierbar, so ist f auch trigonalisierbar.

Lemma 4.3

Ist f trigonalisierbar, so zerfällt χ_f in Linearfaktoren.

Beweis. Klar aus Beispiel 2.8 und Satz 2.3.

Definition 4.4 (invariant)

Ein Untervektorraum $W \leq V$ ist f-invariant, wenn $f(W) \leq W$.

▶ Bemerkung 4.5

Ist W ein f-invarianter UVR von V, so ist $f|_W \in \text{End}_K(W)$.

■ Beispiel 4.6

- 1. V hat stets die f-invarianten UVR $W=\{0\}$ und W=V.
- 2. Jeder UVR $W \leq \text{Eig}(f, \lambda)$ ist f-invariant.
- 3. Ist $B = (x_1, ..., x_n)$ eine Basis von V, für die $M_B(f)$ eine obere Dreiecksmatrix ist, so sind alle UVR $W_i = \operatorname{span}_K(x_1, ..., x_i)$ f-invariant.
- 4. Sei $V = W \oplus U$, $B_1 = (x_1, ..., x_r)$ Basis von W, $B_2(x_{r+1}, ..., x_n)$ Basis von U und $B = (x_1, ..., x_n)$. Ist W f-invariant, so ist

$$M_B(f) = \begin{pmatrix} M_{B_1}(f|_W) & * \\ 0 & * \end{pmatrix}$$

Sind W und U f-invariant, so ist

$$M_B(f) = \begin{pmatrix} M_{B_1}(f|_W) & 0\\ 0 & M_{B_2}(f|_U) \end{pmatrix}$$

Lemma 4.7

Ist $W \subset V$ ein f-invarianter UVR, so gilt $\chi_{f|_W}|\chi_f$. Hat W ein lineares Komplement U, dass auch f-invariant ist, so $\chi_f = \chi_{f|_W} \cdot \chi_{f|_U}$.

Beweis. Ergänze eine Basis $B_0 = (x_1, ..., x_r)$ von W zu einer Basis $B = (x_1, ..., x_n)$ von V. Sei $A = M_B(f)$,

 $A_0 = M_{B_0}(f|_W)$. Dann ist

$$A = \begin{pmatrix} A_0 & * \\ 0 & C \end{pmatrix} \quad C \in \mathrm{Mat}_{n-r}(K)$$

folglich $\chi_f = \chi_A = \chi_{A_0} \cdot \chi_C$, insbesondere $\chi_{f|_W}|\chi_f$. Ist auch $U = \operatorname{span}_K(x_{r+1}, ..., x_n)$ f-invariant, so ist

$$A = \begin{pmatrix} A_0 & 0 \\ 0 & C \end{pmatrix}$$

und folglich $\chi_f = \chi_A = \chi_{A_0} \cdot \chi_C = \chi_{f|_W} \cdot \chi_{f|_U}$.

Theorem 4.8

Genau dann ist f trigonalisierbar, wenn χ_f in Linearfaktoren zerfällt.

Beweis. (\Rightarrow) : Lemma 4.3

 (\Leftarrow) : Induktion nach $n = \dim_K(V)$.

n=1: trivial

 $\underline{n-1 \to n}$: Nach Annahme ist $\chi_f(t) = \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1,...,\lambda_n \in K$. Sei x_1 ein EV zum EW λ_1 . Dann ist $V_1 = K \cdot x_1$ ein f-invarianter UVR. Ergänze $B_1 = (x_1)$ zu einer Basis $B = (x_1,...,x_n)$ von V und setze $B_2 = (x_2,...,x_n), \ V_2 = \mathrm{span}_K(B_2). \ \underline{n-1 \to n}$: Nach Annahme ist $\chi_f(t) = \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1,...,\lambda_n \in K$. Sei x_1 ein EV zum EW λ_1 . Dann ist $V_1 = K \cdot x_1$ ein f-invarianter UVR. Ergänze $B_1 = (x_1)$ zu einer Basis $B = (x_1,...,x_n)$ von V und setze $B_2 = (x_2,...,x_n), \ V_2 = \mathrm{span}_K(B_2)$.

$$\Rightarrow M_B(f) = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \quad A_2 \in \operatorname{Mat}_{n-1}(K)$$
$$\chi_f(t) = \chi_{\lambda_1 \mathbb{1}_1} \cdot \chi_{A_2} = (t - \lambda_1) \cdot \chi_{A_2}(t)$$
$$\stackrel{\text{Lemma } 3.7}{\Rightarrow} \chi_{A_2}(t) = \prod_{i=2}^{n} (t - \lambda_i)$$

Seien $\pi_1, \pi_2 \in \operatorname{End}_K(V)$ gegeben durch $M_B(\pi_1) = \operatorname{diag}(1, 0, ..., 0)$ und $M_B(\pi_2) = \operatorname{diag}(0, 1, ..., 1)$. Dann ist $\pi_1 + \pi_2 = \operatorname{id}_V$ und $f_i = \pi_1 \circ f$ ist $f = \operatorname{id}_V \circ f = f_1 + f_2$ und $f_2|_{V_2} \in \operatorname{End}_K(V_2)$. Nach Induktionshypothese ist $f_2|_{V_2}$ trigonalisierbar, da $M_B(f_2|_{V_2}) = A_2$, also $\chi_{f_2|_{V_2}} = \chi_{A_2}$. Dies bedeutet, es gibt also eine Basis $B'_2 = (x'_2, ..., x'_n)$ von V_2 , für die $M_{B'_2}(f_2|_{V_2})$ eine obere Dreiecksmatrix ist. Somit ist für $B' = (x_1, x'_2, ..., x'_n)$ auch

$$M_{B'}(f) = M_{B'}(f_1) + M_{B'}(f_2)$$

$$= \begin{pmatrix} \lambda_1 & * \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & M_{B'_2}(f_2|_{V_2}) \end{pmatrix}$$

eine obere Dreiecksmatrix.

Folgerung 4.9

Ist K algebraisch abgeschlossen, so ist jedes $f \in \text{End}_K(V)$ trigonalisierbar.

Beweis. Ist K algebraisch abgeschlossen, so zerfällt nach I.6.14 jedes Polynom über K in Linearfaktoren, ins-

4. Trigonansieroarkeit	Kapitei I: Endomorphismen
be sondere also χ_f .	
Folgerung 4.10	
Ist V ein endlichdimensionaler $\mathbb{C}\text{-VR}$, so ist jedes $f\in \mathrm{End}_{\mathbb{C}}(V)$) trigonalisierbar.

Beweis. Nach dem Fundamentalsatz der Algebra I.6.16 ist $\mathbb C$ algebraisch abgeschlossen.

5. Das Minimalpolynom

Definition 5.1

Für ein Polynom $P(t) = \sum_{i=0}^n c_i t^i \in K[t]$ definieren wir $P(f) = \sum_{i=0}^m c_i f^i \in \operatorname{End}_K(V)$, wobei $f^0 = \operatorname{id}_V, \ f^1 = f, \ f^2 = f \circ f, \dots$ Für ein Polynom $P(t) = \sum_{i=0}^n c_i t^i \in K[t]$ definieren wir $P(f) = \sum_{i=0}^m c_i f^i \in \operatorname{End}_K(V)$, wobei $f^0 = \operatorname{id}_V, \ f^1 = f, \ f^2 = f \circ f, \dots$

Analog definiert man P(A) für $A \in Mat_n(K)$.

$$\mathcal{I}_f := \{ P \in K[t] \mid P(f) = 0 \}$$

und sein Bild ist der kommutative Unterring

$$K[f] := \{ P(f) \mid P \in K[t] \}$$

= span_K(f⁰, f¹, f², ...)

des (im Allgemeinen nicht kommutativen) Rings $\operatorname{End}_K(V)$.

Analog definiert man \mathcal{I}_A und $K[A] \leq \operatorname{Mat}_n(K)$.

Lemma 5.3

 $\mathcal{I}_f \neq \{0\}$

Beweis. Wäre $\mathcal{I}_f = \{0\}$, so wäre $K[t] \to \operatorname{End}_K(V)$ injektiv, aber $\dim_K(K[t]) = \infty > n^2 = \dim_K(\operatorname{End}_K(V))$, ein Widerspruch.

Satz 5.4

Es gibt ein eindeutig bestimmtes normiertes Polynom $0 \neq P \in K[t]$ kleinsten Grades mit P(f) = 0. Dieses teilt jedes $Q \in K[t]$ mit Q(f) = 0.

Beweis. Nach Lemma 5.3 gibt es $0 \neq P \in K[t]$ mit P(f) = 0 von minimalem Grad d. Indem wir durch den Leitkoeffizienten von P teilen, können wir annehmen, dass P normiert ist.

Sei $Q \in \mathcal{I}_f$. Polynomdivision liefert $R, H \in K[t]$ mit $Q = P \cdot H + R$ und $\deg(R) < \deg(P) = d$. Es folgt $R(f) = \underbrace{Q(f)}_{=0} - \underbrace{P(f)}_{=0} \cdot H(f) = 0$. Aus der Minimalität von d folgt R = 0 und somit P|Q.

Ist Q zudem normiert vom Grad d, so ist H=1, also Q=P, was die Eindeutigkeit zeigt.

Definition 5.5 (Minimalpolynom)

Das eindeutig bestimmte normierte Polynom $0 \neq P \in K[t]$ kleinsten Grades mit P(f) = 0 nennt man das Minimalpolynom P_f von f.

Analog definiert man das Minimalpolynom $P_A \in K[t]$ einer Matrix $A \in \operatorname{Mat}_n(K)$.

■ Beispiel 5.6

- 1. $A = \mathbb{1}_n$, $\chi_A(t) = (t-1)^n$, $P_A(t) = t-1$
- 2. A = 0, $\chi_A(t) = t^n$, $P_A(t) = t$
- 3. Ist $A = \operatorname{diag}(a_1, ..., a_n)$ mit paarweise verschiedenen Eigenwerten $\lambda_1, ..., \lambda_r$, so ist $\chi_A(t) = \prod_{i=1}^n (t-a_i) = \prod_{i=1}^n (t-\lambda_i)^{\mu_a(f_A,\lambda_i)}, P_A(t) = \prod_{i=1}^r (t-\lambda_i)$ und es folgt $\operatorname{deg}(P_A) \geq |\{a_1, ..., a_n\}| = r$.

Definition 5.7 (f-zyklisch)

Ein f-invarianter UVR $W \leq V$ heißt f-zyklisch, wenn es ein $x \in W$ mit $W = \operatorname{span}_K(x, f(x), f^2(x), ...)$ gibt.

Lemma 5.8

Sei $x \in V$ und $x_i = f(x)$. Es gibt ein kleinstes k mit $x_k \in \operatorname{span}_K(x_0, x_1, ..., x_{k-1})$, und $W = \operatorname{span}_K(x_0, ..., x_{k-1})$ ein f-zyklischer UVR von V mit Basis $B = (x_0, ..., x_{k-1})$ und $M_B(f|_W) = M_{\chi_{f|_W}}$.

Beweis. Da $\dim_K(V) = n$ ist $(x_0, ..., x_n)$ linear abhängig, es gibt also ein kleinstes k mit $(x_0, ..., x_{k-1})$ linear unabhängig, aber $(x_0, ..., x_k)$ linear abhängig, folglich $x_k \in \operatorname{span}_K(x_0, ..., x_{k-1})$. Mit $x_k = f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$ ist dann Da $\dim_K(V) = n$ ist $(x_0, ..., x_n)$ linear abhängig, es gibt also ein kleinstes k mit $(x_0, ..., x_{k-1})$ linear unabhängig, aber $(x_0, ..., x_k)$ linear abhängig, folglich $x_k \in \operatorname{span}_K(x_0, ..., x_{k-1})$. Mit $x_k = f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$ ist dann

$$M_B(f|_W) = \begin{pmatrix} 0 & \dots & \dots & 0 & -c_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & 0 & -c_{k-1} \end{pmatrix}$$

somit $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $M_B(f|_W) = M_{\chi_{f|_W}}$.

Theorem 5.9 (Satz von CAYLEY-HAMILTION)

Für $f \in \text{End}_K(V)$ ist $\chi_f(f) = 0$.

Beweis. Sei $x \in V$. Definiere $x_i = f^i(x)$ und $W = \operatorname{span}_K(x_0, ..., x_{k-1})$ wie in Lemma 5.8. Sei $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$. Wenden wir $\chi_{f|_W}(f) \in \operatorname{End}_K(V)$ auf x an, so erhalten wir

$$\chi_{f|W}(f)(x) = \left(f^k + \sum_{i=1}^{k-1} c_i f^i\right)(x)$$
$$= \sum_{i=1}^{k-1} -c_i x_i + \sum_{i=1}^{k-1} c_i x_i$$
$$= 0$$

Aus $\chi_{f|_W}|_{\chi_f}$ (Beispiel 4.6) folgt somit $\chi_f(f)(x)=0$, denn ist $\chi_f=Q\cdot\chi_{f|_W}$ mit $Q\in K[t]$, so ist $\chi_f(f)=0$

 $Q(f)\circ\chi_{f|_W}(f), \text{ also } \chi_f(f)(x) = Q(f)(\underbrace{\chi_{f|_W}(f)(x)}_{=0}) = 0. \text{ Da } x \in V \text{ beliebig war, folgt } \chi_f(f) = 0 \in \operatorname{End}_K(V). \ \Box$

Folgerung 5.10

Es gilt $P_f|\chi_f$. Insbesondere ist $\deg(P_f) \leq n$.

Beweis. Theorem
$$5.9 + \text{Satz } 5.4$$

▶ Bemerkung 5.11

Ist B eine Basis von V und $A=M_B(f)$, so ist $P_A=P_f$. Insbesondere ist $P_A=P_B$ für $A\sim B$. Als Spezialfall von Theorem 5.9 erhält man $\chi_A(A)=0$ und $P_A|\chi_A$.

▶ Bemerkung 5.12

Der naheliegende "Beweis"
$$\chi_A = \det(t\mathbb{1}_n - A)(A) = \det(A\mathbb{1}_n - A) = \det(0) = 0$$
 ist falsch!

6. Nilpotente Endomorphismen

▶ Bemerkung 6.1

Für $f \in \operatorname{End}_K(V)$ sind

- $f\{0\} = \operatorname{Ker}(f^0) \subseteq \operatorname{Ker}(f^1) \subseteq \operatorname{Ker}(f^2) \subseteq \dots$
- $V = \operatorname{Im}(f^0) \supseteq \operatorname{Im}(f^1) \supseteq \operatorname{Im}(f^2) \supseteq \dots$

Folgen von UVR von V. Nach der Kern-Bild-Formel III.7.13 ist

$$\dim_K(\operatorname{Ker}(f^i)) + \dim_K(\operatorname{Im}(f^i)) = \dim_K(V) \quad \forall i$$

Da $\dim_K(V) = n < \infty$ gibt es ein d mit $\operatorname{Ker}(f^d) = \operatorname{Ker}(f^{d+i})$ und $\operatorname{Im}(f^d) = \operatorname{Im}(f^{d+i})$ für jedes $i \geq 0$.

■ Beispiel 6.2

 $f = f_A, A \in \operatorname{Mat}_2(K).$

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) = \text{Ker}(f^1) = \dots$

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) \subset \text{Ker}(f^1) = \text{Ker}(f^2) = \dots = \text{span}_K(e_2)$

$$\bullet \ \ A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \colon \{0\} = \operatorname{Ker}(f^0) \subset \underbrace{\operatorname{Ker}(f^1)}_{=\operatorname{span}_K(e_1)} \subset \operatorname{Ker}(f^2) = \ldots = K^2$$

•
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) \subset \text{Ker}(f^1) = \text{Ker}(f^2) = \dots = K^2$

Lemma 6.3

Seien $f, g \in \text{End}_K(V)$. Wenn f und g kommutieren, d.h. $f \circ g = g \circ f$, so sind die UVR Ker(g) und Im(g) f invariant.

Beweis. Ist $x \in \text{Ker}(f)$, so ist g(f(x)) = f(g(x)) = f(0) = 0, also $f(x) \in \text{Ker}(g)$. Für $g(x) \in \text{Im}(g)$ ist $f(g(x)) = g(f(x)) \in \text{Im}(g)$.

Satz 6.4 (Lemma von FITTING)

Seien $V_i = \text{Ker}(f^i)$, $W_i = \text{Im}(f^i)$, $d = \min\{i : V_i = V_{i+1}\}$. Dann sind

$$\{0\} = V_0 \subsetneq V_1 \subsetneq \dots \subsetneq V_d = V_{d+1} = \dots$$

 $V = W_0 \supseteq W_1 \supseteq \dots \supseteq W_d = W_{d+1} = \dots$

Folgen f-invarianter UVR und $V = V_d \oplus W_d$.

Beweis. Da f^i und f^j für beliebige i, j kommutieren, sind V_i und V_j nach Lemma 6.3 f-invariant für jedes i. Aus $\dim_K(V_i) + \dim_K(W_i) = n$ folgt $d = \min\{i : W_i = W_{i+1}\}$, insbesondere ist $\operatorname{Im}(f^d) = \operatorname{Im}(f^{d+1}) = f(\operatorname{Im}(f^d))$, somit $W_{d+i} = \operatorname{Im}(f^{d+i}) = W_d$ für $i \geq 0$, also auch $V_d = V_{d+i}$ für alle $i \geq 0$.

Insbesondere ist $f^d|_{W_d}: W_d \to W_{2d} = W_d$ surjektiv, also auch injektiv, also $V_d \cap W_d = \{0\}$. Aus der Dimensionsformel II.4.12 folgt dann $\dim_K(V_d + W_d) = \dim_K(V_d) + \dim_K(W_d) = \dim_K(V)$. Folglich ist $V_d + W_d = V$ und $V_d \cap W_d = \{0\}$, also $V = V_d \oplus W_d$.

Definition 6.5 (nilpotent)

Ein $f \in \text{End}_K(V)$ heißt <u>nilpotent</u>, wenn $f^k = 0$ für ein $k \in \mathbb{N}$. Analog heißt $A \in \text{Mat}_n(K)$ nilpotent, wenn $A^k = 0$ für $k \in \mathbb{N}$. Das kleinste k mit $f^k = 0$ bzw. A^k heißt die <u>Nilpotenzklasse</u>von f bzw. A.

Lemma 6.6

Ist f nilpotent, so gibt es eine Basis B von V, für die $M_B(f)$ eine strikte obere Dreiecksmatrix ist.

Beweis. Induktion nach $n = \dim_K(V)$.

$$n=1$$
: $f^k=0 \Rightarrow f=0$

n > 1: Sei k die Nilpotenzklasse von f und $U = \operatorname{Ker}(f^{k-1})$. Dann ist $U \subset V$. Da $f^k = f^{k-1} \circ f$ ist $f(V) \subset U$, insbesondere $f|_U \in \operatorname{End}_K(U)$. Da $f|_U$ nilpotent ist, gibt es nach I.H. eine Basis B_0 von U, für die $M_B(f|_U)$ eine strikte obere Dreiecksmatrix ist. Ergänze B_0 zu einer Basis B von V. Da $f(V) \subset U$ ist dann auch

$$M_B(f) = \begin{pmatrix} M_{B_0}(f|_U) & * \\ 0 & 0 \end{pmatrix}$$

eine strikte obere Dreiecksmatrix.

Satz 6.7

Für $f \in \text{End}_K(V)$ sind äquivalent:

- 1) f ist nilpotent
- 2) $f^n = 0$ für $n \in \mathbb{N}$
- 3) $P_f(t) = t^r$ für ein $r \le n$
- 4) $\chi_f(t) = t^n$
- 5) Es gibt eine Basis B von V, mit

$$M_B(f) = egin{pmatrix} 0 & * & \dots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & 0 \end{pmatrix}$$

eine strikte obere Dreiecksmatrix ist.

Beweis.

- 1) \Rightarrow 5): Lemma 6.6
- 5) \Rightarrow 4): Beispiel 2.8
- 4) \Rightarrow 3): Nach Folgerung 5.10 ist $P_f|\chi_f = t^n$, also $t^n = P_f(t)Q(t)$ mit $Q \in K[t]$. Schreibe $P_f(t) = t^a \cdot P_1(t), Q(t) = t^b \cdot Q_1(t)$ mit $a, b \in \mathbb{N}, P_1, Q_1 \in K[t], P_1(0) \neq 0, Q_1(0) \neq 0$ $\stackrel{3.8}{\Rightarrow} t^{n-(a+b)} = P_1(t)Q_1(t)$ und $(P_1Q_1)(0) \neq 0$ $\Rightarrow n - (a+b) = 0 \Rightarrow P_1 = 1$, somit $P_f(t) = t^a$
- 3) \Rightarrow 2): $t^r = 0$, $r \le n \Rightarrow f^n = 0$
- 2) \Rightarrow 1): nach Definition

Folgerung 6.8

Die Nilpotenzklasse eines nilpotenten Endomorphismus $f \in \text{End}_K(V)$ ist höchstens $\dim_K(V)$.

Folgerung 6.9

Ist $d := \min\{i \mid \operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})\}$, so ist $d \leq \dim_K(\operatorname{Ker}(f)) = \mu_a(f, 0)$.

Beweis. Sei $V_d = \operatorname{Ker}(f^d)$, $W_d = \operatorname{Im}(f^d)$, $k = \dim_K(V_d)$. Da $V = V_d \oplus W_d$ ist $\chi_f = \chi_{f|_{V_d}} \cdot \chi_{f|_{W_d}}$. Da $f|_{V_d}$ nilpotent ist, ist $\chi_{f|_{V_d}} = t$ nach Satz 6.7. Da $f|_{W_d}$ injektiv ist, ist $\chi_{f|_{W_d}}(0) \neq 0$. Somit ist $\mu_a(f,0) = \mu(\chi_f,0) \stackrel{3.6}{=} k$. Da $\dim_K(\operatorname{Ker}(f^d)) > \dots > \dim_K(\operatorname{Ker}(f)) > 0$ ist $k = \dim_K(\operatorname{Ker}(f^d)) \geq d$, falls d > 0, sonst klar.

▶ Bemerkung 6.10

Die Bedeutung nilpotenter Endomorphismen beim Finden geeigneter Basen ergibt sich aus der folgenden Beobachtung:

Ist A eine obere Dreiecksmatrix, so ist A = D + N, wobei D eine Diagonalmatrix ist und N eine strikte obere Dreiecksmatrix ist. Anders gesagt: Jeder trigonalisierbare Endomorphismus ist Summe aus einem diagonalisierbaren und einem nilpotenten Endomorphismus.

Definition 6.11 (JORDAN-Matrix)

Für $k \in \mathbb{N}$ definieren wir die JORDAN-Matrix

$$J_{k} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix} \in \operatorname{Mat}_{k}(K)$$

weiter setzen wir für $\lambda \in K$ $J_k(\lambda) := \lambda \mathbb{1} + J_k$.

Lemma 6.12

Die JORDAN-Matrix J_k ist nilpotent von Nilpotenzklasse k.

Beweis. Es ist $(J_k)^r = (\delta_{i+r,j})_{i,j}$ für $r \ge 1$.

Satz 6.13

Ist f nilpotent von Nilpotenzklasse k, so gibt es eindeutig bestimmte $r_1, ..., r_k \in \mathbb{N}_{>0}$ mit $\sum_{d=1}^k dr_d = n$ und eine Basis B von V mit

$$M_B(f) = \operatorname{diag}(\underbrace{J_k, ..., J_k}_{r_k \text{ viele}}, ..., \underbrace{J_1, ..., J_1}_{r_1 \text{ viele}})$$

Beweis. Sei $U_i = \text{Ker}(f^i)$. Nach Satz 6.4 haben wir eine Folge $\{0\} = U_0 \subset U_1 \subset ... \subset U_k = V$ mit $f(U_i) \subseteq U_{i-1}$ für alle i > 0.

Wir konstruieren eine Zerlegung $V = \bigoplus_{d=1}^{k} W_d$ mit $U_i = U_{i-1} \oplus W_i$, $f(W_i) \subseteq W_{i-1}$, $f|_{W_d}$ injektiv für i > 1.

$$\begin{split} V &= U_k \\ V &= U_{k-1} \oplus W_k \\ V &= U_{k-2} \oplus W_{k-1} \oplus W_k \\ &\vdots \\ V &= U_0 \oplus W_1 \oplus \ldots \oplus W_k \end{split}$$

Wähle W_k mit $V = U_k = U_{k-1} \oplus W_k$. Ist k > 1, so ist $W_k \cap \operatorname{Ker}(f) \subseteq W_k \cap U_{k-1} = \{0\}$, also $f|_{W_k}$ ist injektiv. Des weiteren ist $f(W_k) \subseteq U_{k-1}$ und aus $W_k \cap U_{k-1} = \{0\}$ folgt $f(W_k) \cap U_{k-2} = \{0\}$. Wir können deshalb W_{k-1} mit $U_{k-1} = U_{k-2} \oplus W_{k-1}$ und $f(W_k) \subseteq W_{k-1}$ wählen. Somit ist $V = U_{k-1} \oplus W_k = U_{k-2} \oplus W_{k-1} \oplus W_k$. Wir setzen dies fort und erhalten $V = U_0 \oplus W_1 \oplus \ldots \oplus W_k$ mit $f(W_i) \subseteq W_{i-1}$ und $f|_{W_i}$ injektiv für i > 1, wobei $U_0 = \{0\}$ und $W_1 = \operatorname{Ker}(f)$.

Sie $r_d = \dim_K(W_d) - \dim_K(W_{d+1})$, wobei wir $W_{k+1} = \{0\}$. Wähle nun eine Basis $(x_{k,1}, ..., x_{k,r_k})$ von W_k . Ist k > 1, so ist $f|_{W_k}$ injektiv und wir können $(f(x_{k,1}), ..., f(x_{k,r_k}))$ durch Elemente $x_{k-1,1}, ..., x_{k-1,r_{k-1}}$ zu einer Basis von W_{k-1} ergänzen, und so weiter.

Da
$$V = \bigoplus_{d=1}^{k} W_d$$
 ist

$$B = \{ f^{i}(x_{d,j}) \mid d = 1, ..., k, j = 1, ..., r_{d}, i = 0, ..., d - 1 \}$$

eine Basis von V, die bei geeigneter Anordnung das Gewünschte leistet.

Es bleibt zu zeigen, dass $r_1, ..., r_k$ eindeutig bestimmt sind. Ist B_0 eine Basis, für die $M_{B_0}(f)$ in der gewünschten Form ist, so ist

$$\dim_K(U_1) = \sum_{d=1}^k r_d$$

$$\dim_K(U_2) = \sum_{d=2}^k r_d + \sum_{d=1}^k r_d$$

$$\vdots$$

$$\dim_K(U_k) = \sum_{d=2}^k r_d + \dots + \sum_{d=1}^k r_d$$

woraus man sieht, dass $r_1, ..., r_k$ durch $U_1, ..., U_k$, also durch f eindeutig bestimmt.

■ Beispiel 6.14 Sei $f = f_A$ mit $A = \begin{pmatrix} 0 & 1 & 3 \\ & 0 & 2 \\ & & 0 \end{pmatrix} \in \operatorname{Mat}_3(\mathbb{R})$

$$A^2 = \begin{pmatrix} 0 & 0 & 2 \\ & 0 & 0 \\ & & 0 \end{pmatrix}, A^3 = 0$$

 $\Rightarrow k = 3, U_0 = \{0\}, U_1 = \mathbb{R}e_1, U_2 = \mathbb{R}e_1 + \mathbb{R}e_2, U_3 = V.$

Wähle W_3 mit $V=U_3=U_2\oplus W_3$, z.B. $W_3=\mathbb{R}e_3$.

Wähle W_2 mit $U_2 = U_1 \oplus W_2$ und $f(W_3) \subseteq W_2$, also

$$W_2 = \mathbb{R} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$

Setze $W_1 = U_1 = \text{Ker}(f) = \mathbb{R}e_1 \Rightarrow \text{Basis } B = (f^2(e_3), f(e_3), e_3)$

$$M_B(f) = \left(egin{array}{ccc} 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 \end{array} \right)$$

7. Die Jordan-Normalform

Definition 7.1 (Hauptraum)

Der <u>Hauptraum</u>von f zum EW λ der Vielfachheit $r = \mu_a(f, \lambda)$ ist

$$\operatorname{Hau}(f,\lambda) = \operatorname{Ker}\left((f - \lambda \operatorname{id}_V)^r\right)$$

Lemma 7.2

 $\operatorname{Hau}(f,\lambda) \text{ ist ein } f\text{-invarianter UVR der Dimension } \dim_K(\operatorname{Hau}(f,\lambda)) = \mu_a(f,\lambda), \text{ auf dem } f - \lambda \operatorname{id}_V$ nilpotent ist und $\chi_{f|_{\operatorname{Hau}(f,\lambda)}} = (t-\lambda)^{\mu_a(f,\lambda)}$

Beweis. f kommutiert sowohl mit f als auch mit id_V , somit auch mit $(f - \lambda \mathrm{id}_V)^r$. Die f-Invarianz von $U = \mathrm{Hau}(f,\lambda)$ folgt aus Lemma 6.3. Nach Folgerung 6.9 ist $\mathrm{dim}_K(U) = \mu_a(f - \lambda \mathrm{id}_V,0)$ und $\mathrm{da}\,\chi_f(t) = \chi_{f-\lambda\,\mathrm{id}_V}(t-\lambda)$ ist $\mu_a(f,\lambda) = \mu(\chi_f,\lambda) = \mu_a(f - \lambda \mathrm{id}_V,0)$. Da $f - \lambda\,\mathrm{id}_V|_U$ nilpotent ist $\chi_{f-\lambda\,\mathrm{id}_V|_U}(t) = t^r$, somit $\chi_{f|_U}(t) = (t-\lambda)^r$.

Satz 7.3 (Hauptraumzerlegung)

Ist $\chi_f(t) = \prod_{i=1}^m (t-\lambda_i)^{r_i}$ mit $\lambda_1,...,\lambda_m \in K$ paarweise verschieden und $r_1,...,r_m \in \mathbb{N}$, so ist $V = \bigoplus_{i=1}^m V_i$ mit $V_i = \operatorname{Hau}(f,\lambda_i)$ eine Zerlegung in f-invariante UVR und für jedes i ist $\chi_{f|_{V_i}}(t) = (t-\lambda_i)^{r_i}$.

Beweis. Induktion nach m.

$$m = 1$$
: $r_1 = n \stackrel{7.2}{\Rightarrow} V = V_1$.

 $\underline{m-1 \to m}$: Nach Satz 6.4 ist $V = V_1 \oplus W_1$ mit $W_1 = \operatorname{Im}((f - \lambda_i \operatorname{id}_V)^r)$ eine Zerlegung in f-invariante UVR mit $\dim_K(V_1) = r_1$, $\dim_K(W_1) = n - r_1$. Somit ist $\chi_f = \chi_{f|V_1} \cdot \chi_{f|W_1}$ und $\chi_{f|V_1} \stackrel{7.2}{=} (t - \lambda_1)^{r_1}$ also $\chi_{f|W_1} = \prod_{i=2}^m (t - \lambda_i)^{r_i}$. Nach I.H. ist also $W_1 = \bigoplus_{i=2}^m \operatorname{Hau}(f|W_1, \lambda_i)$. Es ist für $i \geq 2$ $\operatorname{Hau}(f|W_1, \lambda_i) \subseteq \operatorname{Hau}(f, \lambda_i) = V_i$ und da $\dim_K(\operatorname{Hau}(f|W_1, \lambda_i)) = r_i = \dim_K(\operatorname{Hau}(f, \lambda_i))$ gilt Gleichheit. Damit ist

$$V = V_1 \oplus W_1$$

$$= V_1 \oplus \bigoplus_{i=2}^m \operatorname{Hau}(f|_{W_1}, \lambda_i)$$

$$= V_1 \oplus \bigoplus_{i=2}^m V_i$$

$$= \bigoplus_{i=1}^m V_i$$

■ Beispiel 7.4

$$f = f_A$$

$$A = \begin{pmatrix} 1 & 3 \\ & 1 & 4 \\ & & 2 \end{pmatrix} \in \operatorname{Mat}_3(\mathbb{R})$$

$$\chi_A(t) = (t-1)^2(t-2) \Rightarrow \mathbb{R}^3 = \underbrace{\operatorname{Hau}(f,1)}_{\dim 2} \oplus \underbrace{\operatorname{Hau}(f,2)}_{\dim 1}$$

$$\operatorname{Hau}(f,1) = \operatorname{Ker}((f-\operatorname{id})^2) = L((A-1)^2,0)$$

$$\operatorname{Hau}(f,2) = \operatorname{Ker}(f-2\operatorname{id}) = \operatorname{Eig}(f,2) = L(A-21,0)$$

$$A - \mathbb{1} = \begin{pmatrix} 0 & 3 \\ & -1 & 4 \\ & & 0 \end{pmatrix}, (A - \mathbb{1})^2 = \begin{pmatrix} 0 & 12 \\ & 0 & 4 \\ & & 1 \end{pmatrix} \Rightarrow \operatorname{Hau}(f, 1) = \mathbb{R}e_1 + \mathbb{R}e_2$$

$$A - 2\mathbb{1} = \begin{pmatrix} -1 & 3 \\ & -1 & 4 \\ & & 0 \end{pmatrix} \Rightarrow \operatorname{Hau}(f, 2) = \mathbb{R} \begin{pmatrix} 12 \\ 4 \\ 1 \end{pmatrix}$$

$$Mit B = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 12 \\ 4 \\ 1 \end{pmatrix} \right) ist$$

$$M_B(f) = \begin{pmatrix} \begin{pmatrix} 1 & 3 \\ & 1 \end{pmatrix} & \\ & & 2 \end{pmatrix}$$

Theorem 7.5 (JORDAN-Normalform)

Sei $f \in \text{End}_K(V)$ ein Endomorphismus, dessen charakteristisches Polynom χ_f in Linearfaktoren zerfällt. Dann gibt es $r \in \mathbb{N}$, $\mu_1, ..., \mu_r \in K$ und $k_1, ..., k_r \in \mathbb{N}$ mit $\sum_{i=1}^r k_i = \dim_K(V)$ und eine Basis B von V mit

$$M_B(f) = \text{diag}(J_{k_1}(\mu_1), ..., J_{k_r}(\mu_r))$$

Die Paare $(\mu_1, k_1), ..., (\mu_r, k_r)$ heißen die <u>JORDAN-Invarianten</u>von f und sind bis auf Reihenfolge eindeutig bestimmt.

Beweis. Schreibe $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{r_i}$ mit $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden, $r_i \in \mathbb{N}$. Sei $V_i = \text{Hau}(f, \lambda_i)$. Nach Satz 7.3 ist $V = \bigoplus_{i=1}^m V_i$ eine Zerlegung in f-invariante UVR. Für jedes i wenden wir Satz 6.13 auf $(f - \lambda_i \operatorname{id}_V)|_{V_i}$ an und erhalten eine Basis B_i von V_i und $k_{i,1} \geq ... \geq k_{i,s_i}$ mit

$$M_B((f - \lambda_i \operatorname{id})|_{V_i}) = \operatorname{diag}(J_{k_{i,1}}, ..., J_{k_{i,s_i}})$$

Es folgt $M_{B_i}(f|_{V_i}) = M_{B_i}(\lambda_i \operatorname{id}_{V_i}) + M_{B_i}((f - \lambda_i \operatorname{id}_{V_i})|_{V_i})$. Ist nun B die Vereinigung der B_i , so hat $M_B(f)$ die gewünschte Form. Die Eindeutigkeit der JORDAN-Invarianten folgt aus der Eindeutigkeit der $k_{i,j}$ in Lemma 6.3. \square

▶ Bemerkung 7.6

Ist K algebraisch abgeschlossen, so haben wir nun eine (bis auf Permutationen) eindeutige Normalform für Endomorphismen $f \in \operatorname{End}_K(V)$ gefunden. Aus ihr lassen sich viele Eigenschaften des Endomorphismus leicht ablesen.

Folgerung 7.7

Sei $f \in \operatorname{End}_K(V)$ trigonalisierbar mit $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{\mu_a(f,\lambda_i)}, \ P_f(t) = \prod_{i=1}^m (t - \lambda_i)^{d_i}$ und Jordan-Invarianten $(\mu_1, k_1), ..., (\mu_r, k_r)$. Mit $J_i = \{j \mid \mu_j = \lambda_i\}$ ist dann

$$\mu_g(f, \lambda_i) = |J_i|$$

$$\mu_a(f, \lambda_i) = \sum_{j \in J_i} k_j$$

$$d_i = \max\{k_j \mid j \in J_i\}$$

Beweis. • μ_a : klar, da $\chi_f(t) = \prod_{j=1}^r (t - \mu_j)^{k_j} = \prod_{i=1}^m (t - \lambda_i)^{\mu_a(f, \lambda_i)}$

- μ_g : lese Basis von Eig (f, λ_i) aus Jordan-NF: Jeder Block $J_{k_j}(\lambda_i)$ liefert ein Element der Basis.
- d_i : folgt, da J_{k_j} nilpotent von Nilpotenzklasse k_j ist (Lemma 6.12).

Folgerung 7.8

Genau dann ist f diagonalisierbar, wenn

$$\chi_f(t)=\prod_{i=1}^m(t-^\lambda_i)^{r_i}\quad \lambda_1,...,\lambda_m\in K \text{ paarweise verscheiden und}$$

$$P_f(t)=\prod_{i=1}^m m(t-\lambda_i)$$

Beweis. Genau dann ist f diagonalisierbar, wenn f trigonalisierbar ist und die JORDAN-NF die Diagonalmatrix ist (Eindeutigkeit der JNF), also $k_j = 1$ für alle j. Nach Folgerung 7.7 ist dies äquivalent dazu, dass $d_i = 1$ für alle i, also $P_f = \prod_{i=1}^m (t - \lambda_i)$.

▶ Bemerkung 7.9

Wider definiert man die JORDAN-Invarianten, etc. von einer Matrix $A \in \operatorname{Mat}_n(K)$ als die JORDAN-Invarianten von $f_A \in \operatorname{End}_K(K^n)$.

Folgerung 7.10

Seien $A, B \in \operatorname{Mat}_n(K)$ trigonalisierbar. Genau dann ist $A \sim B$, wenn A und B die gleichen JORDAN-Invarianten haben.

Beweis. Existenz und Eindeutigkeit der Jordan-Normalform.

Kapitel II

Skalar produkte

In diesem ganzen Kapitel seien

- $K = \mathbb{R}$ oder $K = \mathbb{C}$
- $n \in \mathbb{N}$
- V ein n-dimensionaler K-VR

1. Das Standardskalarprodukt

Sei zunächst $K = \mathbb{R}$.

Definition 1.1 (Standardskalarprodukt in \mathbb{R})

Auf den Standardraum $V = \mathbb{R}^n$ definiert man das <u>Standardskalarprodukt in $\mathbb{R}\langle . \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ </u> durch

$$\langle x, y \rangle = x^t y = \sum_{i=1}^n x_i y_i$$

Satz 1.2

Das Standardskalarprodukt erfüllt die folgenden Eigenschaften:

• Für $x, x', y, y' \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ ist:

$$\begin{split} \langle x+x',y\rangle &= \langle x,y\rangle + \langle x',y\rangle \\ \langle \lambda x,y\rangle &= = \lambda \langle x,y\rangle \\ \langle x,y+y'\rangle &= \langle x,y\rangle + \langle x,y'\rangle \\ \langle x,\lambda y\rangle &= \lambda \langle x,y\rangle \end{split}$$

- Für $x, y \in \mathbb{R}^n$ ist $\langle x, y \rangle = \langle y, x \rangle$
- Für $x \in \mathbb{R}^n$ ist $\langle x,y \rangle \geq 0$ und $\langle x,x \rangle = 0 \iff x = 0$

Beweis. • klar

- klar
- $\langle x, x \rangle = \sum_{i=1}^{n} x_i^2 \ge x_j^2$ für jedes $j \Rightarrow \langle x, x \rangle \ge 0$ und $\langle x, x \rangle > 0$ falls $x_j \ne 0$ für ein j.

Definition 1.3 (euklidische Norm in \mathbb{R})

Auf $K=\mathbb{R}^n$ definiert man euklidische Norm in $\mathbb{R}\|\cdot\|:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ durch

$$||x|| = \sqrt{\langle x, x \rangle}$$

Satz 1.4 (Ungleichung von CAUCHY-SCHWARZ)

Für $x, y \in \mathbb{R}^n$ gilt

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Gleichheit genau dann, wenn x und y linear abhängig sind.

Beweis. siehe Analysis, siehe VI.§3

Satz 1.5

Die euklidische Norm erfüllt die folgenden Eigenschaften:

- Für $x \in \mathbb{R}^n$ ist $||x|| = 0 \iff x = 0$
- Für $x \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ ist $||\lambda x|| = |\lambda| \cdot ||x||$
- Für $x, y \in \mathbb{R}^n$ ist $||x + y|| \le ||x|| + ||y||$

Beweis. • Satz 1.2

- Satz 1.2
- $||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2 \stackrel{1.4}{\Rightarrow} ||x+y|| \le ||x|| + ||y||$

Sei nun $K = \mathbb{C}$.

Definition 1.6 (komplexe Konjugation, Absolutbetrag)

Für $x,y\in\mathbb{R}$ und $z=x+iy\in\mathbb{C}$ definiert man $\overline{z}=x-iy$ heißt komplexe Konjugation. Man definiert den Absolutbetragvon z als

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} \in \mathbb{R}_{\geq 0}$$

Für $A = (a_{ij})_{i,j} \in \mathrm{Mat}_{m \times n}(\mathbb{C})$ sehen wir

$$\overline{A} = (\overline{a_{ij}})_{i,j} \in \mathrm{Mat}_{m \times n}(\mathbb{C})$$

Satz 1.7

Komplexe Konjugation ist ein Ringautomorphismus von $\mathbb C$ mit Fixkörper

$$\{z \in \mathbb{C} \mid z = \overline{z}\} = \mathbb{R}$$

Beweis. siehe LAAG1 H47

Folgerung 1.8

Für
$$A, B \in \operatorname{Mat}_n(\mathbb{C})$$
 und $S \in \operatorname{GL}_n(\mathbb{C})$ ist $\overline{A+B} = \overline{A} + \overline{B}, \overline{AB} = \overline{A} \cdot \overline{B}, \overline{A^t} = \overline{A}^t, \overline{S^{-1}} = \overline{S}^{-1}$

Beweis. Satz 1.7, einfache Übung

Definition 1.9 (Standardskalarprodukt in \mathbb{C})

Auf $K = \mathbb{C}^n$ definiert man das Standardskalarprodukt in $\mathbb{C}\langle\cdot,\cdot\rangle:\mathbb{C}^n\times\mathbb{C}^n\to\mathbb{C}$ durch

$$\langle x, y \rangle = x^t \overline{y} = \sum_{i=1}^n x_i \overline{y}_i$$

Satz 1.10

Das komplexe Standardskalarprodukt erfüllt die folgenden Eigenschaften:

• Für $x, x', y, y' \in \mathbb{C}^n$ und $\lambda \in \mathbb{C}$ ist:

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle$$
$$\langle \lambda x, y \rangle = = \lambda \langle x, y \rangle$$
$$\langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle$$
$$\langle x, \lambda y \rangle = \overline{\overline{\lambda}} \langle x, y \rangle$$

- Für $x, y \in \mathbb{C}^n$ ist $\langle x, y \rangle = (\overline{\langle y, x \rangle})$
- Für $x \in \mathbb{C}^n$ ist $\langle x, y \rangle \in \mathbb{R}_{>0}$ und $\langle x, x \rangle = 0 \iff x = 0$

Beweis. • klar

- klar
- $\langle x, x \rangle = \sum_{i=1}^{n} x_i \overline{x_i} = \sum_{i=1}^{n} |x_i|^2$

Definition 1.11 (euklidische Norm in \mathbb{C})

Auf $V = \mathbb{C}$ definiert man die euklidische Norm in $\mathbb{C}\|\cdot\|: \mathbb{C}^n \to \mathbb{R}_{\geq 0}$ durch

$$||x|| = \sqrt{\langle x, x \rangle}$$

▶ Bemerkung 1.12

Schränkt man das komplexe Skalarprodukt auf den \mathbb{R}^n ein, so erhält man das Standardskalarprodukt auf dem \mathbb{R}^n . Wir werden ab jetzt die beiden Fälle $K=\mathbb{R}$ und $K=\mathbb{C}$ parallel behandeln. Wenn nicht anders angegeben, werden wir die Begriffe für den komplexen Fall benutzen, aber auch den reellen Fall einschließen.

2. Bilinearformen und Sesquilinearformen

Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$.

Definition 2.1 (Bilinearform, Sesquilinearform)

Eine Bilinearform $(K = \mathbb{R})$ bzw. Sesquilinearform $(K = \mathbb{C})$ ist eine Abbildung $s : V \times V \to K$ für die gilt:

- Für $x, x', y \in V$ ist s(x + x', y) = s(x, y) + s(x', y)
- Für $x, y, y' \in V$ ist s(x, y + y') = s(x, y) + s(x, y')
- Für $x, y \in V$, $\lambda \in K$ ist $s(x, \lambda y) = \overline{\lambda} s(x, y)$

▶ Bemerkung 2.2

Im Fall $K = \mathbb{R}$ ist $\lambda = \overline{\lambda}$. Wir werden der Einfachheit halber auch in diesem Fall von Sesquilinearformen sprechen, vgl. Bemerkung 1.12

■ Beispiel 2.3

Für $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(K)$ ist $s_A : K^n \times K^n \to K^n$ gegeben durch

$$s_A(x,y) = x^t A \overline{y} = x^t \left(\sum_{j=1}^n a_{ij} \overline{y}_j \right)_i = \sum_{i,j=1}^n a_{ij} x_i \overline{y}_j$$

eine Sesquilinearform auf $V = K^n$.

Definition 2.4

Sei s eine Sesquilinearform auf V und $B=(v_1,...,v_n)$ eine Basis von V. Die darstellende Matrixvon s bzgl. B ist

$$M_B(s) = (s(v_i, v_j))_{i,j} \in \operatorname{Mat}_n(K)$$

■ Beispiel 2.5

Die darstellende Matrix des Standardskalarprodukts $s=s_{\mathbbm{1}_n}$ auf den Standardraum $V=K^n$ bzgl. der Standardbasis $\mathcal E$ ist

$$M_{\mathcal{E}}(s) = \mathbb{1}_n$$

Lemma 2.6

Seien $v, w \in V$. Mit $x = \Phi_B^{-1}(v)$, $y = \Phi_B^{-1}(w)$ und $A = M_B(s)$ ist $s(v, w) = x^t A \overline{y} = s_A(x, y)$.

Beweis. Achtung: v_i beschreibt das *i*-te Element der Basis B! $s(v,w) = s(\sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j) = \sum_{i,j=1}^n x_i \overline{y} s(v,v_j) = x^t A \overline{y}$

Satz 2.7

ISei B eine Basis von V. Die Abbildung $s \mapsto M_B(s)$ ist eine Bijektion zwischen den Sesquilinearformen auf V und $\operatorname{Mat}_n(K)$.

Beweis. • injektiv: Lemma 2.6

• surjektiv: Für $A \in \operatorname{Mat}_n(K)$ wird durch $s(v,w) = \Phi_B^{-1}(v)^t \cdot A \cdot \overline{\Phi_B^{-1}(w)}$ eine Sesquilinearform auf V mit $M_B(s) = (s(v_i, w_j))_{i,j} = (e_i^t A \overline{e_j})_{i,j} = (e_i A e_j)_{i,j} = A$ definiert.

Satz 2.8 (Transformationsformel)

Seien B und B' Basen von V und s eine Sesquilinearform auf V. Dann gilt:

$$M_{B'}(s) = (T_B^{B'})^t \cdot M_B(s) \cdot \overline{T_B^{B'}}$$

Beweis. Seien $v, w \in V$. Definiere $A = M_B(s)$, $A' = M_{B'}(s)$, $T = T_B^{B'}$ und $x, y, x', y' \in K^n$ mit $v = \Phi_B(x) = \Phi_B(x')$, $w = \Phi_B(y) = \Phi_B(y')$. Dann ist x = Tx', y = Ty' und somit

$$(x')^{t}A'\overline{y'} \stackrel{2.6}{=} s(v, w)$$

$$\stackrel{2.6}{=} x^{t}A\overline{y}$$

$$= (Tx')^{t}A\overline{Ty'}$$

$$= (x')^{t}T^{t}A\overline{Ty'}$$

Da $v, w \in V$ und somit $x', y' \in K$ beliebig waren, folgt $A = T^t A \overline{T}$.

■ Beispiel 2.9

Sei s das Standardskalarprodukt auf dem K^n und $B = (b_1, ..., b_n)$ eine Basis des K^n . Dann ist

$$M_B(s) = (T_{\mathcal{E}}^B)^t \cdot M_{\mathcal{E}}(s) \cdot \overline{T_{\mathcal{E}}^B} = B^t \cdot \mathbb{1}_n \cdot \overline{B} = B^t B$$

wobei $B = (b_1, ..., b_n) \in \operatorname{Mat}_n(K)$.

Satz 2.10

Sei s eine Sesquilinearform auf V. Dann sind äquivalent:

- Es gibt $0 \neq v \in V$ mit s(v, w) = 0 für alle $w \in V$.
- Es gibt $0 \neq w \in V$ mit s(v, w) = 0 für alle $v \in V$.
- Es gibt eine Basis B von V mit $det(M_B(s)) = 0$.
- Für jede Basis B von V gilt $det(M_B(s)) = 0$.

Beweis. Sei B eine Basis von V, $v = \Phi_B(x)$ und $A = M_B(s)$. Genau dann ist die (semilineare) Abbildung $w \mapsto s(v, w)$ die Nullabbildung, wenn $x^t A \overline{y} = 0$ für alle $y \in K^n$, also wenn $0 = x^t A$, d.h. $A^t x = 0$. Somit ist (1) genau dann erfüllt, wenn A^t nicht invertierbar ist, also wenn $0 = \det(A^t) = \det(A)$. Damit (1) \Rightarrow (4) \Rightarrow (3) \Rightarrow (1) gezeigt und (2) \iff (4) zeigt man analog.

Definition 2.11 (ausgeartet)

Eine Sesquilinearform s auf V heißt <u>ausgeartet</u>, wenn eine der äquivalenten Bedingungen aus Satz 2.10 erfüllt ist, sonst nicht-ausgeartet.

Definition 2.12 (symmetrisch, hermitesch)

Eine Sesquilinearform s auf V heißt symmetrisch, wenn bzw. hermitesch, wenn

$$s(x,y) = \overline{s(y,x)}$$
 für alle $x,y \in V$

Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt <u>symmetrisch</u> bzw. <u>hermitesch</u>, wenn $A = A^* = \overline{A}^t = \overline{A}^t$.

Satz 2.13

Sei s eine Sesquilinearform auf V und B eine Basis von V. Genau dann ist s hermitesch, wenn $M_B(s)$ dies ist.

Beweis. (
$$\Rightarrow$$
): klar aus Definition von $M_B(s)$.
(\Leftarrow): $x = \Phi_B^{-1}$, $y = \Phi_B^{-1}(w)$, $\overline{s(v,w)} = \overline{s(v,w)^t} = \overline{(x^t A \overline{y})^t} = y^t \overline{A^t x} = s(w,v)$

Satz 2.14

Für $A, B \in Mat_n(K)$ und $S \in GL_n(K)$ ist $(A + B)^* = A^* + B^*$, $(AB)^* = B^*A^*$, $(A^*)^* = A$ und $(S^{-1})^* = (S^*)^{-1}$.

Beweis. Folgerung 1.8, III.1.14, III.1.15

3. Euklidische und unitäre Vektorräume

Lemma 3.1

Sei s eine hermitesche Sesquilinearform auf V. Dann ist $s(x,x) \in \mathbb{R}$ für alle $x \in V$.

Beweis. Da s hermitesch ist, ist $s(x,x) = \overline{s(x,x)}$, also $s(x,x) \in \mathbb{R}$.

Definition 3.2 (quadratische Form)

Sei s eine hermitesche Sesquilinearform auf V. Die quadratische Formzu s ist die Abbildung

$$q_s: \begin{cases} V \to \mathbb{R} \\ x \mapsto s(x,x) \end{cases}$$

▶ Bemerkung 3.3

Die quadratische Form q_s erfüllt das $q_s(\lambda x) = |\lambda|^2 \cdot q_s(x)$ für alle $x \in V$, $\lambda \in K$. Im Fall $K = \mathbb{R}$, $V = \mathbb{R}^n$, $x = (x_1, ..., x_n)^t$, $s = s_A$, $A \in \operatorname{Mat}_n(\mathbb{R})$ ist $q_s(x) = s_A(x, x) = x^t A x = \sum_{i,j=1}^n a_{ij} x_i x_j$ ein "quadratisches Polynom in den Variablen $x_1, ..., x_n$ ".

Satz 3.4 (Polarisierung)

Sei s ein hermitesche Sesquilinearform auf V. Dann gilt für $x, y \in V$:

$$s(x,y) = \frac{1}{2}(q_s(x+y) - q_s(x) - q_s(y)) \quad K = \mathbb{R}$$

$$s(x,y) = \frac{1}{4}(q_s(x+y) - q_s(x-y) + iq_s(x+iy) - iq_s(x-iy)) \quad K = \mathbb{C}$$

Beweis. Im Fall $K = \mathbb{R}$ ist

$$q_s(x+y) - q_s(x) - q_s(y) = s(x+y, x+y) - s(x, x) - s(y, y)$$

$$= s(x, x) + s(x, y) + s(y, x) + s(y, y) - s(x, x) - s(y, y)$$

$$= s(x, y) + s(y, x) - 2s(x, y)$$

Im Fall $K = \mathbb{C}$: ÜA

Definition 3.5 ((semi)definit, euklidischer VR, unitärer VR)

Sei s eine hermitesche Sesquilinearform auf V. Ist $s(x,x) \ge 0$ für alle $x \in V$, so heißt s positiv semidefinit. Ist s(x,x) > 0 für alle $0 \ne x \in V$, so heißt s positiv definit(oder ein Skalarprodukt).

Eine hermitesche Matrix $A \in \operatorname{Mat}_n(K)$ heißt positiv (semi)definit, wenn s_A dies ist.

Einen endlichdimensionalen K-VR zusammen mit positiv definiten hermiteschen Sesquilinearformen nennt man einen <u>euklidischen</u>bzw. <u>unitären</u>VR (oder auch <u>Prähilbertraum</u>). Wenn nicht anderes angegeben, notieren wir die Sesquilinearform mit $\langle \cdot, \cdot \rangle$.

■ Beispiel 3.6

Der Standardraum $V=K^n$ zusammen mit dem Standardskalarprodukt ist ein euklidischer bzw. unitärer VR.

■ Beispiel 3.7

Ist $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ mit $\lambda_i \in \mathbb{R}$, so ist s_A genau dann positiv definit, wenn $\lambda_i > 0$ für alle i, und positiv semidefinit, wenn $\lambda_i \geq 0$ für alle i.

Satz 3.8

Ist V ein unitärer VR und $U\subseteq V$ ein UVR, so ist U mit der Einschränkung des Skalarprodukts wieder ein unitärer VR.

Beweis. klar, die Einschränkung ist wieder positiv definit.

Definition 3.9

Ist V ein unitärer VR, so definiert man die Norm von $x \in V$ als

$$||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{>0}$$

Satz 3.10

Die Norm eines unitären VR erfüllt die folgenden Eigenschaften:

- Für $x \in V$ ist $||x|| = 0 \iff x = 0$
- Für $x \in V$ und $\lambda \in K$ ist $||\lambda x|| = |\lambda| \cdot ||x||$
- Für $x, y \in V$ ist $||x + y|| \le ||x|| + ||y||$

Beweis. • Das Skalarprodukt ist positiv definit.

- klar
- Wie im Fall im \mathbb{R}^n

Satz 3.11

Ist V ein unitärer VR, so gilt für $x, y \in V$:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Dabei gilt Gleichheit genau dann, wenn x und y linear abhängig sind.

Beweis. Für y = 0 ist die Aussage klar.

Sei also $y \neq 0$. Für $\lambda, \mu \in K$ ist

$$\begin{split} 0 & \leq \langle \lambda x + \mu y, \lambda x + \mu y \rangle \\ & = \lambda \overline{\lambda} \cdot \langle x, x \rangle + \mu \overline{\mu} \cdot \langle y, y \rangle + \lambda \overline{\mu} \cdot \langle x, y \rangle + \mu \overline{\lambda} \cdot \langle y, x \rangle \end{split}$$

Setzt man $\lambda = \overline{\lambda} = \langle y, y \rangle > 0$ und $\mu = -\langle x, y \rangle$ ein, so erhält man

$$0 \le \lambda \cdot ||x||^2 ||y||^2 + \mu \overline{\mu} \lambda - \lambda \mu \overline{\mu} - \langle x, y \rangle \overline{\lambda} \langle y, x \rangle$$
$$= \lambda (||x||^2 ||y||^2 - |\langle x, y \rangle|^2)$$

Teilen durch λ und Wurzelziehen liefert die Ungleichung. Gilt dort Gleichheit, so ist $\|\lambda x + \mu y\| = 0$ folglich (da $\lambda \neq 0$) sind dann x, y linear unabhängig. Ist $x = \alpha y$ mit $\alpha \in K$, so ist $|\langle x, y \rangle| = |\alpha| \cdot ||y||^2 = ||x|| \cdot ||y||$

4. Orthogonalität

Sei V ein euklidischer bzw. unitärer Vektorraum.

Definition 4.1 (orthogonal, orthogonales Komplement)

Zwei Vektoren $x,y \in V$ heißen <u>orthogonal</u>, in Zeichen $x \perp y$, wenn $\langle x,y \rangle = 0$. Zwei Mengen $X,Y \subseteq V$ sind orthogonal, in Zeichen $X \perp Y$, wenn $x \perp y$ für alle $x \in X$ und $y \in Y$.

Für $U \subseteq V$ bezeichnet

$$U^{\perp} = \{ x \in V \mid x \perp u \text{ für alle } u \in U \}$$

das orthogonale Komplementzu U.

Lemma 4.2

Für $x, y \in V$ ist

- $x \perp y \iff y \perp x$
- $\bullet x \perp 0$
- $\bullet \ x \perp x \iff x = 0$

Beweis. klar

Satz 4.3

Für $U \subseteq V$ ist U^{\perp} ein Untervektorraum von V mit $U \perp U^{\perp}$ und $U \cap U^{\perp} \subseteq \{0\}$.

Beweis. Linearität des Skalarprodukts im ersten Argument liefert, dass U^{\perp} ein Untervektorraum ist. Die Aussage $U^{\perp} \perp U$ ist trivial, $U \perp U^{\perp}$ folgt dann aus Lemma 4.2. Ist $u \in U \cap U^{\perp}$, so ist insbesondere $u \perp u$, also u = 0 nach Lemma 4.2.

Definition 4.4 (orthonormal)

Eine Familie $(x_i)_{i \in I}$ von Elementen von V ist <u>orthogonal</u>, wenn $x_i \perp x_j$ für alle $i \neq j$, und <u>orthonormal</u>, wenn zusätzlich $||x_i|| = 1$ für alle i. Eine orthogonale Basis nennt man eine <u>Orthogonalbasis</u>, eine orthonormale Basis nennt man eine Orthonormalbasis.

▶ Bemerkung 4.5

Eine Basis B ist genau dann eine Orthonormalbasis, wenn die darstellende Matrix des Skalarprodukts bezüglich B die Einheitsmatrix ist. (Beispiel: Standardbasis des Standardraum bezüglich des Standardskalarprodukts)

Lemma 4.6

Ist die Familie $(x_i)_{i\in I}$ orthogonal und $x_i\neq 0$ für alle $i\in I$, so ist $(x_i)_{i\in I}$ linear unabhängig.

Beweis. Ist $\sum_{i \in I} \lambda_i x_i = 0$, $\lambda_i \in K$, fast alle gleich 0, so ist $0 = \langle \sum_{i \in I} \lambda_i x_i, x_j \rangle = \sum_{i \in I} \lambda_i \langle x_i, x_j \rangle = \lambda_j \langle x_j, x_j \rangle$ Aus $x_j \neq 0$ folgt $\langle x_j, x_j \rangle > 0$ und somit $\lambda_j = 0$ für jedes $j \in I$.

Lemma 4.7

Ist $(x_i)_{i\in I}$ orthogonal und $x_i \neq 0$ für alle i, so ist $(y_i)_{i\in I}$ mit

$$y_i = \frac{1}{\|x_i\|} x_i$$

orthonormal.

Beweis. Für alle i ist $\langle y_i, y_i \rangle = \frac{1}{\|x_i\|^2} \langle x_i, x_i \rangle = 1$. Für alle $i \neq j$ ist $\langle y_i, y_j \rangle = \frac{1}{\|x_i\| \cdot \|x_j\|} \langle x_i, x_j \rangle = 0$.

Satz 4.8

Sei $U \subseteq V$ ein Untervektorraum und $B = (x_1, ..., x_k)$ eine Orthonormalbasis von U. Es gibt genau einen Epimorphismus $\operatorname{pr}_U : V \to U$ mit $\operatorname{pr}_U|_U = \operatorname{id}_U$ und $\operatorname{Ker}(\operatorname{pr}_U) \perp U$, insbesondere also $x - \operatorname{pr}_U \perp U$ für alle $x \in V$, genannt die orthogonale Projektionauf U, und dieser ist geben durch

$$x \mapsto \sum_{i=1}^{k} \langle x, x_i \rangle x_i \tag{1}$$

Beweis. Sei zunächst pr_U durch (1) gegeben. Die Linearität von pr_U folgt aus (S1) und (S3). Für $u = \sum_{i=1}^k \lambda_i x_i \in U$ ist $\langle u, x_j \rangle = \left\langle \sum_{i=1}^k \lambda_i x_i, x_j \right\rangle = \sum_{i=1}^k \lambda_i \langle x_i, x_j \rangle = \lambda_j$, woraus $\operatorname{pr}_U(u) = u$. Somit ist $\operatorname{pr}_U|_U = \operatorname{id}_U$, und insbesondere ist pr_U surjektiv. Ist $\operatorname{pr}_U(x) = 0$, so ist $\langle x, x_i \rangle = 0$ für alle i., woraus mit (S2) und (S4) sofort $x \perp U$ folgt. Somit ist $\operatorname{Ker}(\operatorname{pr}_U) \perp U$.

 $\begin{aligned} & \text{F\"{u}r} \ x \in V \ \text{ist} \ \text{pr}_U(x - \text{pr}_U(x)) = \text{pr}_U(x) - \text{pr}_U(\text{pr}_U(x)) = \text{pr}_U(x) - \text{pr}_U(x) = 0, \ \text{also} \ x - \text{pr}_U(x) \in \text{Ker}(\text{pr}_U) \subseteq U^\perp. \end{aligned} \\ & \text{Ist} \ f : V \to U \ \text{ein weiterer Epimorphismus mit} \ f|_U = \text{id}_U \ \text{und Ker}(f) \perp U, \ \text{so ist}$

$$\underbrace{\operatorname{pr}_{U}(x)}_{\in U} - \underbrace{f(x)}_{\in U} = \underbrace{\operatorname{pr}_{U}(x) - x}_{\in U^{\perp}} - \underbrace{f(x) - x}_{\in U^{\perp}} \in U \cap U^{\perp} = \{0\}$$

für jedes $x \in V$, somit $f = \operatorname{pr}_U$.

Theorem 4.9 (GRAM-SCHMIDT-Verfahren)

Ist $(x_1,...,x_n)$ eine Basis von V und $k \leq n$ mit $(x_1,...,x_k)$ orthonormal, so gibt es eine Orthonormalbasis $(y_1,...,y_n)$ von V mit $y_i = x_i$ für i = 1,...,k und $\operatorname{span}_K(y_1,...,y_l) = \operatorname{span}_K(x_1,...,x_l)$ für l = 1,...,n.

Beweis. Induktion nach d = n - k.

d=0: nichts zu zeigen

 $\underline{d-1 \to d}$: Für $i \neq k+1$ definiere $y_I = x_i$. Sei $U = \operatorname{span}_K(x_1, ..., x_k)$, $\tilde{x_{k+1}} = x_{k+1} - \operatorname{pr}_U(x_{k-1})$. Dann ist $\tilde{x_{k+1}} \in \operatorname{Ker}(\operatorname{pr}_U) \subseteq U^{\perp}$ (vgl. Satz 4.8) und $\operatorname{span}_K(x_1, ..., x_k, \tilde{x_{k+1}}) = \operatorname{span}_K(x_1, ..., x_{k+1})$. Setze $y_{k+1} = \frac{1}{\|x_{k+1}\|} \tilde{x_{k+1}}$. Dann ist $(y_1, ..., y_n)$ eine Basis von V mit $(y_1, ..., y_{k+1})$ orthonormal (vgl. Lemma 4.7). Nach Induktionshypothese gibt es eine Orthonormalbasis von V, die das Gewünschte leistet.

Folgerung 4.10

Jeder endlichdimensionale euklidische bzw. unitäre Vektorraum V besitzt eine Orthonormalbasis.

Beweis. Wähle irgendeine Basis von V und wende Theorem 4.9 mit k=0 an.

Folgerung 4.11

Ist U ein Untervektorraum von V, so ist $V = U \oplus U^{\perp}$ und $(U^{\perp})^{\perp} = U$.

Beweis. Wähle eine Orthonormalbasis von U (vgl. Folgerung 4.10), $B = (x_1, ..., x_k)$ und ergänze diese zu einer Orthonormalbasis $(x_1, ..., x_n)$ von V (vgl. Theorem 4.9). Dann sind $x_{k+1}, ..., x_n \in U \perp$, da $U \cap U^{\perp} = \{0\}$ ist somit $V = U \oplus U^{\perp}$. Insbesondere ist $\dim_K(U^{\perp}) = n - \dim_K(U)$, woraus $\dim_K((U^{\perp})^{\perp}) = \dim_K(U)$ folgt. Zusammen mit der trivialen Inklusion $U \subseteq (U^{\perp})^{\perp}$ folgt $U = (U^{\perp})^{\perp}$.

Folgerung 4.12

Ist s eine positiv definite hermitesche Sesquilinearform auf V und B eine Basis von V, so ist

$$\det(M_B(s)) \in \mathbb{R}_{>0}$$

Beweis. Wähle eine Orthonormalbasis B' von V bezüglich s. Dann ist $M_{B'}(s) = \mathbb{1}_n$, folglich

$$\det(M_B(s)) = \det\left(\left(T_{B'}^B\right)^t \cdot \mathbb{1}_n \cdot \overline{T_{B'}^B}\right)$$

$$= \det\left(\left(T_{B'}^B\right)^t\right) \cdot \det\left(\overline{T_{B'}^B}\right)$$

$$= \det\left(T_{B'}^B\right) \cdot \overline{\det\left(T_{B'}^B\right)}$$

$$= |\det\left(T_{B'}^B\right)|^2$$

$$> 0$$

5. Orthogonale und unitäre Endomorphismen

Sei V ein euklidischer bzw. unitärer Vektorraum und $f \in \text{End}_K(V)$.

Definition 5.1 (orthogonale, unitäre Endomorphismen)

f ist orthogonalbzw. unitär, wenn

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \quad \forall x, y \in V$$

Satz 5.2

Ist f unitär, so gelten

- Für $x \in V$ ist ||f(x)|| = ||x||.
- Sind $x, y \in V$ mit $x \perp y$, so ist $f(x) \perp f(y)$.
- Es ist $f \in Aut_K(V)$ und auch f^{-1} ist unitär.
- \bullet Das Bild einer Orthonormalbasis unter f ist eine Orthonormalbasis.
- Ist λ ein Eigenwert von f, so ist $|\lambda| = 1$.

Beweis. • klar

- klar
- $f(x) = 0 \iff ||f(x)|| = 0 \iff ||x|| = 0 \iff x = 0$, also ist f injektiv, somit $f \in Aut_K(V)$ und

$$\langle f^{-1}(x), f^{-1}(y) \rangle \stackrel{f \text{ unit \"{ar}}}{=} \langle f(f^{-1}(x)), f(f^{-1}(y)) \rangle = \langle x, y \rangle$$

- Folgt aus 1, 2 und 3
- Ist $f(x) = \lambda x$, $x \neq 0$, so ist

$$||x|| = ||f(x)|| = ||\lambda x|| = |\lambda| \cdot ||x|| \Rightarrow |\lambda| = 1$$

Satz 5.3

Ist ||f(x)|| = ||x|| für alle $x \in V$, so ist f unitär.

Beweis. Aus ||f(x)|| = ||x|| folgt $\langle f(x), f(x) \rangle = \langle x, x \rangle$. Die Polarisierung (Satz 3.4) für $\langle f(x), f(y) \rangle$ und die Linearität von f liefern $\langle f(x), f(y) \rangle = \langle x, y \rangle$. Zum Beispiel im Fall $K = \mathbb{R}$:

$$\langle f(x), f(y) \rangle = \frac{1}{2} \left(\left\langle \underbrace{f(x) + f(y)}_{f(x+y)}, \underbrace{f(x) + f(y)}_{f(x+y)} \right\rangle - \left\langle f(x), f(x) \right\rangle - \left\langle f(y), f(y) \right\rangle \right)$$

$$= \frac{1}{2} \left(\left\langle x + y, x + y \right\rangle - \left\langle x, x \right\rangle - \left\langle y, y \right\rangle \right)$$

$$= \left\langle x, y \right\rangle$$

Definition 5.4 (orthogonale, unitäre Matrizen)

Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt orthogonalbzw. unitär, wenn

$$A^*A = \mathbb{1}_n$$

▶ Bemerkung 5.5

Offenbar ist A genau dann unitär, wenn A^* das Inverse zu A ist. Die folgenden Bedingungen sind daher äquivalent dazu, dass A unitär ist:

$$AA^* = \mathbb{1}_n, \overline{A}A^t = \mathbb{1}_n, A^t \overline{A} = \mathbb{1}_n, A^t = \overline{A^{-1}}$$

Satz 5.6

Sei B eine Orthogonalbasis von V. Genau dann ist f unitär, wenn $M_B(f)$ unitär ist.

Beweis. Sei $A = M_B(f), \ v = \Phi_B(x), \ \Phi_B(y)$. Dann ist $\langle v, w \rangle = x^t \underbrace{M_B(\langle \cdot, \cdot \rangle)}_{=1} \cdot \overline{y} = x^t \cdot \overline{y}$. Somit ist f genau dann unitär, wenn $(Ax)^t \overline{Ay} = x^t \overline{y}$ für alle $x, y \in K^n$, also wenn $A^t \overline{A} = \mathbb{1}$, d.h. A unitär.

Satz 5.7

Die folgenden Mengen bilden Untergruppen der $GL_n(K)$.

- $O_n = \{A \in GL_n(\mathbb{R}) \mid A \text{ ist orthogonal}\}\ \text{die } \underline{\text{orthogonale Gruppe}}$
- $SO_n = \{A \in O_n \mid \det(A) = 1\}$ die spezielle orthogonale Gruppe
- $U_n = \{A \in GL_n(\mathbb{C}) \mid A \text{ ist unitar}\}\ die unitare Gruppe$
- $SU_n = \{A \in U_n \mid \det(A) = 1\}$ die spezielle unitäre Gruppe

Beweis. z.B. für
$$U_n$$
: Sind $A^{-1} = A^*$, $B^{-1} = B^*$, so ist $(AB)^{-1} = B^{-1}A^{-1} = B^*A^* = (AB)^*$, $(A^{-1})^{-1} = A = (A^*)^{-1} = (A^{-1})^*$

Satz 5.8

Genau dann ist $A \in \operatorname{Mat}_n(K)$ unitär, wenn die Spalten (oder die Zeilen) von A eine Orthonormalbasis des K^n bilden.

Beweis. Sei s das Standardskalarprodukt und $B=(a_1,...,a_n)$. Nach Bemerkung 4.5 ist B genau dann eine Orthonormalbasis, wenn $M_B(s)=\mathbbm{1}_n$, und $M_B(s)=A^t\cdot \mathbbm{1}_n\cdot \overline{A}$, vgl. Beispiel 2.9

Theorem 5.9

Sei $K = \mathbb{C}$ und $f \in \text{End}_K(V)$. Ist f unitär, so besitzt V eine Orthonormalbasis aus Eigenvektoren von f.

Beweis. Induktion $"ubern = \dim_K(V)$.

n=0: klar

 $\underline{n-1 \to n}$: Da K algebraisch abgeschlossen ist, hat χ_f eine Nullstelle λ , es gibt also einen Eigenvektor x_1 von f zum Eigenwert λ . Ohne Einschränkung nehmen wir ||x|| = 1 an. Sei $W = K \cdot x_1$. Nach Folgerung 4.11 ist dann

 $V = W \oplus W^{\perp}$. Für $v \in W^{\perp}, w \in W$ ist

$$0 = \langle v, w \rangle = \langle f(v), f(w) \rangle = \overline{\lambda} \langle f(v), w \rangle$$

da $\lambda \neq 0$ (f unitär) also $f(W^{\perp}) \perp W$. Somit ist $f(W^{\perp}) \subseteq W^{\perp}$, d.h. W^{\perp} ist f-invariant. Da auch $f|_{W^{\perp}}$ unitär ist, gibt es nach Induktionshypothese eine Orthonormalbasis $(x_1, ..., x_n)$ aus Eigenvektoren von $f|_{W^{\perp}}$. Da $V = W \oplus W^{\perp}$ und $W \perp W^{\perp}$ ist $(x_1, ..., x_n)$ eine Orthonormalbasis von V aus Eigenvektoren von f.

Folgerung 5.10

Jeder unitäre Endomorphismus eines unitären Vektorraums ist diagonalisierbar.

Folgerung 5.11

Zu jeder $A \in \mathcal{U}_n$ gibt es $S \in \mathcal{U}_n$ so, dass

$$S^*AS = S^{-1}AS = \operatorname{diag}(\lambda_1, ..., \lambda_n)$$

$$mit |\lambda_i| = 1 \text{ für } i = 1, ..., n$$

Beweis. Da A unitär ist, ist $f_A \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}^n)$ unitär, nach Theorem 5.9 existiert also eine Orthonormalbasis B des \mathbb{C}^n aus Eigenvektoren von A. Die Transformationsmatrix $S = T_{\mathcal{E}}^B$ hat als Spalten die Elemente von B und somit ist S nach Satz 5.8 unitär. Nach Satz 5.2 ist $|\lambda| = 1$ für alle Eigenwerte von f_A .

▶ Bemerkung 5.12

Dies (Theorem 5.9) gilt nicht im Fall $K = \mathbb{R}$. Man kann aber auch orthogonale Endomorphismen immer "fast diagonalisieren".

6. Selbstadjungierte Endomorphismen

Sei V ein euklidischer bzw. unitärer Vektorraum und $f \in \text{End}_K(V)$.

Definition 6.1 (selbstadjungiert)

f ist selbstadjungiert, wenn

$$\langle f(x), y \rangle = \langle x, f(y) \rangle \quad \forall x, y \in V$$

Satz 6.2

Sei B eine Orthonormalbasis von V. Genau dann ist f selbstadjungiert, wenn $M_B(f)$ hermitesch ist.

Beweis. Seien $A = M_B(f), v = \Phi_B(x), w = \Phi_B(y)$. Es ist

$$\langle f(v), w \rangle = (Ax)^t \overline{y} = x^t A^t \overline{y}$$

 $\langle v, f(w) \rangle = x^t \overline{Ay} = x^t \overline{A} \overline{y}$

Somit ist $\langle f(v), w \rangle = \langle v, f(w) \rangle$ genau dann, wenn $A^t = \overline{A}$, d.h. $A = A^*$, also A hermitesch.

Lemma 6.3

Ist f selbstadjungiert und λ ein Eigenwert von f, so ist $\lambda \in \mathbb{R}$.

Beweis. Ist $0 \neq x \in V$ mit $f(x) = \lambda x$, so ist

$$\lambda \langle x, x \rangle = \langle f(x), x \rangle = \langle x, f(x) \rangle = \overline{\lambda} \langle x, x \rangle$$

und mit $\langle x, x \rangle \neq 0$ folgt $\lambda = \overline{\lambda}$, also $\lambda \in \mathbb{R}$.

Satz 6.4

Ist f selbstadjungiert, so ist $\chi_f \in \mathbb{R}[t]$ und χ_f zerfällt über \mathbb{R} in Linearfaktoren.

Beweis. Sei B eine Orthonormalbasis von V. Nach Satz 6.2 ist $A = M_B(f) \in \operatorname{Mat}_n(K) \subseteq \operatorname{Mat}_n(\mathbb{C})$ hermitesch. Da \mathbb{C} algebraisch abgeschlossen ist, ist $\chi_f(t) \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1, ..., \lambda_n \in \mathbb{C}$. Nach Lemma 6.3 ist aber schon $\lambda_1, ..., \lambda_n \in \mathbb{R}$. Somit zerfällt $\chi_f \chi_A \in \mathbb{R}[t]$ über \mathbb{R} in Linearfaktoren.

Theorem 6.5

Ist f selbstadjungiert, so besitzt V eine Orthonormalbasis aus Eigenvektoren von f.

Beweis. Induktion über $n = \dim_K(V)$.

n=0: klar

 $\underline{n-1 \to n}$: Nach Satz 6.4 hat f einen reellen Eigenwert $\lambda \in \mathbb{R}$. Wähle $x_1 \in V$ mit $f(x_1) = \lambda x_1$ und $||x_1|| = 1$. Sei $W = K \cdot x_1$. Für $y \in W^{\perp}$ ist

$$\langle x_1, f(y) \rangle = \langle f(x_1), y \rangle = \lambda \langle x_1, y \rangle = 0$$

und folglich ist W^{\perp} f-invariant. Nach Folgerung 4.11 ist $V = W \oplus W^{\perp}$ und $f|_{W^{\perp}}$ ist wieder selbstadjungiert. Nach Induktionshypothese hat W^{\perp} eine Orthonormalbasis $(x_1,...,x_n)$ aus Eigenvektoren von $f|_{W^{\perp}}$. Da $V = W \oplus W^{\perp}$ und $W \perp W^{\perp}$ ist $(x_1,...,x_n)$ eine Orthonormalbasis von V aus Eigenvektoren von f.

Folgerung 6.6

Jeder selbstadjungierte Endomorphismus eines euklidischen oder unitären Vektorraums ist diagonalisierbar.

Folgerung 6.7

Ist

- f selbstadjungiert $(K = \mathbb{C} \text{ oder } \mathbb{R})$
- f unitär $(K = \mathbb{C})$

so ist

$$V = \bigoplus_{\lambda \in K} \operatorname{Eig}(f, \lambda)$$

eine Zerlegung von V in paarweise orthogonale Untervektorräume.

Beweis. Nach Theorem 5.9 bzw. Theorem 6.5 existiert eine Orthonormalbasis B aus Eigenvektoren. Insbesondere ist f diagonalisierbar, also

$$V = \bigoplus_{\lambda \in K} \operatorname{Eig}(f,\lambda)$$

Zu jedem λ gibt es eine Teilfamilie von B die eine Basis von Eig (f, λ) bildet. Da B eine Orthonormalbasis ist, folgt, dass die Eigenräume paarweise orthogonal sind.

▶ Bemerkung 6.8

Um eine Orthonormalbasis aus Eigenvektoren wie in Theorem 5.9 oder Theorem 6.5 zu bestimmen, kann man entweder wie im Induktionsbeweis vorgehen, oder man bestimmt zunächst Basen B von $\text{Eig}(f, \lambda_i), i = 1, ..., n$ und orthonormalisiert diese mit Theorem 4.9 zu Basen B'. Nach Folgerung 6.7 ist $\bigcup B'$ dann eine Orthonormalbasis von V aus Eigenvektoren von f.

7. Hauptachsentransformation

Sei V ein euklidischer bzw. unitärer Vektorraum und s eine hermitesche Sesquilinearform auf V.

Satz 7.1

Zu $A \in \operatorname{Mat}_n(K)$ hermitesch gibt es $S \in U_n(K)$ so, dass

$$S^*AS = S^{-1}AS = \operatorname{diag}(\lambda_1, ..., \lambda_n)$$

mit $\lambda_1, ..., \lambda_n \in \mathbb{R}$.

Beweis. Da A hermitesch ist, ist $f_A \in \operatorname{End}_K(K^n)$ selbstadjungiert, es gibt also nach Theorem 6.5 also eine Orthonormalbasis $B = (x_1, ..., x_n)$ aus Eigenvektoren von f_A . Die Transformationsmatrix $S = T_{\mathcal{E}}^B$ hat $x_1, ..., x_n$ als Spalten und ist somit nach Satz 5.8 unitär. Nach Lemma 6.3 sind die Eigenvektoren $\lambda_1, ..., \lambda_n$ reell.

Folgerung 7.2

Sei $A \in \operatorname{Mat}_n(K)$ hermitesch. Genau dann ist A positiv definit, wenn alle Eigenwerte positiv sind.

Beweis. Nach Satz 7.1 existiert $S \in U_n(K)$ mit

$$S^*AS = S^{-1}AS = D = \operatorname{diag}(\lambda_1, ..., \lambda_n) \quad \lambda_1, ..., \lambda_n \in \mathbb{R}$$

Die Eigenwerte von A sind die Eigenwerte von $S^{-1}AS$ (LAAG 1.5.1.11), also $\lambda_1, ..., \lambda_n$. Sei $T = \overline{S}$. Genau dann ist A positiv definit, wenn $T^tA\overline{T} = S^*AS = D$ positiv definit ist (Satz 2.8), also wenn $\lambda_i > 0$.

Theorem 7.3 (Hauptachsentransformation)

Zu jeder hermiteschen Sesquilinearform s auf V gibt es eine Orthonormalbasis B von V, für die

$$M_B(s) = \operatorname{diag}(\lambda_1, ..., \lambda_n) \quad \lambda_1, ..., \lambda_n \in \mathbb{R}$$

Beweis. Sei $B_0 = (x_1, ..., x_n)$ eine Orthonormalbasis von V und $A = M_{B_0}(s)$. Da s hermitesch ist, ist auch A hermitesch (Satz 2.13). Nach Satz 7.1 gibt es deshalb $S \in U_n(K)$ mit $S^*AS = D$ eine reelle Diagonalmatrix. Ist nun $f \in \operatorname{End}_K(V)$ mit $M_{B_0}(f) = \overline{S}$, so ist auch $B = (f(x_1), ..., f(x_n))$ eine Basis von V mit $T_{B_0}^B = \overline{S}$ unitär. Da $M_{B_0}(f)$ unitär ist, ist auch f unitär. Nach Satz 5.2 ist $f(B_0) = B$ somit auch eine Orthonormalbasis. Nach Satz 2.8 ist

$$M_B(s) = (T_{B_0}^B)^t \cdot M_{B_0}(s) \cdot \overline{T_{B_0}^B} = S^* A S = D$$

■ Beispiel 7.4 $A = \begin{pmatrix} 2 & 1 \\ 2 & 1 \\ 1 & 2 \end{pmatrix}, s = s_A, K = \mathbb{R}, V = \mathbb{R}^2$ $\Rightarrow q_s(x) = 2x_1^2 + 2x_1x_2 + 2x_2^2$

Wie verhält sich $q_s: \mathbb{R}^2 \to \mathbb{R}$? Wie sehen die "Höhenlinien"

$$H_c = \{x \in \mathbb{R}^2 \mid q_s(x) = c\} \quad c \in \mathbb{R}$$

aus?

$$\chi_A = (t-2)^2 - 1 = (t-1)(t-3) \Rightarrow \lambda_1 = 3, \lambda_2 = 1$$

$$\Rightarrow B = \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1 \end{pmatrix}\right)$$

$$\Rightarrow M_B(s) = \operatorname{diag}(3,1)$$

Im neuen Koordinatensystem $z=\Phi_B^{-1}(x)$ ist dann

$$q_s(z) = 3z_1^2 + z_2^2$$

Mit $a_1 = \frac{1}{\sqrt{3}}$, $a_2 = 1$ erhält man "Höhenlinien" der Form

$$\left(\frac{z_1}{a_1}\right)^2 + \left(\frac{z_2}{a_2}\right)^2 = c$$

was für c > 0 eine Ellipse beschreibt.

Folgerung 7.5

Zu jeder hermiteschen Sesquilinearform s auf V gibt es eine Basis B von V, für die

$$M_B(s) = \begin{pmatrix} \mathbb{1}_{\mathbb{r}_+(s)} & & \\ & -\mathbb{1}_{\mathbb{r}_-(s)} & \\ & & 0 \end{pmatrix}$$

mit $r_{+}(s) + r_{-}(s) \le n$.

Beweis. Sei $B_0=(x_1,...,x_n)$ eine Orthonormalbasis von V mit $A=M_{B_0}(s)=\mathrm{diag}(\lambda_1,...,\lambda_n)$. Setze

$$\mu_i = \begin{cases} \frac{1}{\sqrt{|\lambda_i|}} & \lambda_i \neq 0\\ 1 & \lambda_i = 0 \end{cases}$$

Sei $x_i' = \mu_i \cdot x_i$ und $B' = (x_1', ..., x_n')$. Dann ist $M_B(s) = S^t A \overline{S}$ mit $S = T_{B_0}^{B'} = \operatorname{diag}(\mu_1, ..., \mu_n)$ also $M_{B'}(s) = \operatorname{diag}(\lambda_1', ..., \lambda_n')$ mit $\lambda_i' = \mu_i \cdot \lambda_i \cdot \overline{\mu_i} = \mu_i^2 \lambda_i \in \{0, 1, -1\}$. Durch Permutation der Elemente von B' erhält man die gewünschte Basis B.

Definition 7.6 (Ausartungsraum)

Der Ausartungsraumvon s ist

$$V_0 = \{ x \in V \mid s(x, y) = 0 \quad \forall y \in V \}$$

Lemma 7.7

 V_0 ist ein Untervektorraum von V.

Beweis. Klar aus Linearität im ersten Argument.

Lemma 7.8

Seien V_+ und V_- Untervektorräume von V mit $V=V_+\oplus V_-\oplus V_0$ und s positiv definit auf V_+ , -s positiv definit auf V_- . Dann ist

$$\dim_K(V_+) = \max\{\dim_K(W) \mid \text{Untervektorraum von } V, s \text{ positiv definit auf } V\}$$

$$\dim_K(V_-) = \max\{\dim_K(W) \mid \text{Untervektorraum von } V, -s \text{ positiv definit auf } V\}$$

Beweis. Beweis nur für V_+ , analog für V_- .

≤: klar

 \geq : Ist $W \leq V$ Untervektorraum mit $s(x,x) > 0 \quad \forall x \in W \setminus \{0\}$, so ist $W \cap (V_- \oplus V_+) = \{0\}$. Ist x = y + z mit $y \in V_-$, $z \in V_0$, so ist $s(x,x) = s(y+z,y+z) = \underbrace{s(y,y)}_{\leq 0} + \underbrace{s(y,z) + s(z,y) + s(z,z)}_{=0} \leq 0 \Rightarrow \dim_K(W) \leq \dim_K(V) - \dim_K(V_-) - \dim_K(V_0) = \dim_K(V_+)$.

Theorem 7.9 (Trägheitssatz von Sylvester)

Für eine hermitesche Sesquilinearform s auf V sind die Zahlen $r_+(s)$, $r_-(s)$ aus Folgerung 7.5 eindeutig bestimmt.

Beweis. Sei B eine Basis von V wie in Folgerung 7.5, $B = (x_1, ..., x_n)$. Definiere

$$\begin{split} V_{+} &= \operatorname{span}_{K}(x_{1},...,x_{r_{+}(s)}) \\ V_{-} &= \operatorname{span}_{K}(x_{r_{+}(s)+1},...,x_{r_{+}(s)+r_{-}(s)}) \\ V'_{0} &= \operatorname{span}_{K}(x_{r_{+}(s)+r_{-}(s)+1},...,x_{n}) \end{split}$$

Dann ist s positiv definit auf V_+ , -s positiv definit auf V_- und $V = V_+ \oplus V_- \oplus V_0'$. Es gilt $V_0' = V_0$ \subseteq : klar

 \supseteq : Ist $x = \sum_{i=1}^{n} \lambda_i x_i \in V_0$, so ist $0 = s(x, x_i) = \lambda_i \cdot s(x_i, x_i)$ für i = 1, ..., n also $\lambda_i = 0$ für $i = 1, ..., r_+(s) + r_-(s)$, d.h. $x \in V'_0$. Nach Lemma 7.8 ist $r_+(s) = \dim_K(V_+)$ nur von s abhängig, analog für $r_-(s)$.

Definition 7.10 (Signatur)

Die Signaturvon s ist das Tripel

$$(r_+(s), r_-(s), r_0(s))$$

wobei $r_0(s) = \dim_K(V_0)$.

Folgerung 7.11

Ist s eine hermitesche Form auf V und B eine Basis von V, so ist die Zahl der positiven bzw. negativen Eigenwerte von $M_B(s)$ gleich $r_+(s)$ bzw. $r_-(s)$, insbesondere also unabhängig von B.

Beweis. Sei $A = M_B(s)$. Nach Satz 7.1 gibt es $S \in U_n(K)$ mit S^*AS eine reelle Diagonalmatrix. Da $S^* = S^{-1}$ haben A und S^*AS die selben Eigenwerte. Bringt man S^*AS nun in die Form in Folgerung 7.5, so ändern sich die Vorzeichen der Diagonale nicht mehr.

8. Quadriken

Sei $n \in \mathbb{N}$.

Definition 8.1 (Quadrik)

Eine Quadrikist eine Teilmenge von \mathbb{R}^n mit

$$Q = \{ x \in \mathbb{R}^n \mid x^t A x + 2b^t x + c = 0 \}$$

mit $A \in \operatorname{Mat}_n(\mathbb{R})$ symmetrisch, $b^t \in \mathbb{R}^n$ und $c \in \mathbb{R}$.

▶ Bemerkung 8.2

- $Q = \{x \in \mathbb{R}^n \mid \sum_{i,j=1}^n a_{ij} x_i y_j + 2 \sum_{i=1}^n b_i x_i + c = 0\}$ also Q ist die Nullstellenmenge eines quadratischen Polynoms in $x_1, ..., x_n$
- Q bestimmt A, b, c nicht eindeutig, da $Q(A, b, c) = Q(\lambda A, \lambda b, \lambda c)$
- Man kann A, b, c so normieren, dass c = 0 oder c = 1

▶ Bemerkung 8.3

Seien A, b, c wie in Definition 8.1, so schreiben wir

$$\tilde{A} = \begin{pmatrix} A & b \\ b^t & c \end{pmatrix}$$

$$\tilde{x} = \begin{pmatrix} x \\ 1 \end{pmatrix}$$

Dann ist $Q = \{x \in \mathbb{R}^n \mid \tilde{x}^t \tilde{A} \tilde{x} = 0\}$. Wir schreiben (A, b) für

$$\begin{pmatrix} A & b \end{pmatrix} \in \operatorname{Mat}_{n,n+1}(\mathbb{R})$$

Es gilt $\operatorname{rk}(A) \le \operatorname{rk}(A, b) \le \operatorname{rk}(\tilde{A})$.

▶ Bemerkung 8.4 (Wiederholung)

Seien V, W K-Vektorräume. $f: V \to W$ heißt affin, wenn $\exists g \in \text{Hom}_K(V, W)$ mit $f(v) = g(v) + w_0$ $\forall v \in V$. Ist f affin und bijektiv, so ist f^{-1} affin, d.h. $\text{Aff}_K(V) = \{f: V \to V \mid f \text{ affin und bijektiv}\}$. Im Fall von $V = \mathbb{R}^n$, $K = \mathbb{R}$ ist

$$\operatorname{Aff}_{\mathbb{R}}(\mathbb{R}^n) = \{ f = \tau_z \circ f_T \mid T \in \operatorname{GL}_n(\mathbb{R}), z \in \mathbb{R}^n \}$$

mit $f_T(x) = Tx$ und $\tau_z(x) = x + z$.

Lemma 8.5

Ist $Q \subseteq \mathbb{R}^n$ eine Quadrik, so ist f(Q) eine Quadrik, für $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$.

Beweis. $f = \tau_z \circ f_T$ mit $T \in GL_n(\mathbb{R})$ und $z \in \mathbb{R}^n$. Schreibe $S = T^{-1} \in GL_n(\mathbb{R})$, $\tilde{S} = \begin{pmatrix} S & 0 \\ 0 & 1 \end{pmatrix}$. Es gilt $\tilde{S}\tilde{x} = \widetilde{S}x$.

$$f_T(Q) = \{ Tx \in \mathbb{R}^n \mid \tilde{x}^t \tilde{A} \tilde{x} = 0 \}$$

$$= \{ y \in \mathbb{R}^n \mid (\tilde{S} \tilde{y})^t \tilde{A} \tilde{S} \tilde{y} = 0 \}$$

$$= \{ y \in \mathbb{R}^n \mid \tilde{y}^t \quad \tilde{\underline{S}}^t \tilde{A} \tilde{\underline{S}} \quad \tilde{y} = 0 \}$$

$$\begin{pmatrix} S^t A S & S^t b \\ b^t S & c \end{pmatrix}$$

Jetzt für τ_z . Sei $U_z = \begin{pmatrix} \mathbb{1} & z \\ 0 & 1 \end{pmatrix}$. $U_z \tilde{x} = \tilde{\tau}_z(x)$. Man folgert analog, dass

$$\tau_z(Q) = \{ y \in \mathbb{R}^n \mid \tilde{y}^t \qquad \underbrace{U_z^t \tilde{A} U_z}_{z^t A + b} \qquad \tilde{y} = 0 \}$$

$$\begin{pmatrix} A & Az + b \\ z^t A + b & z^t Az + b^t z + z^t b + c \end{pmatrix}$$

Definition 8.6 (Typen von Quadriken)

Sei Q gegeben durch (A, b, c) wie in Definition 8.1. Q heißt

- vom kegeligen Typ, wenn $\operatorname{rk}(A) = \operatorname{rk}(A, b) = \operatorname{rk}(\tilde{A})$
- eine Mittelpunktsquadrik, wenn $\operatorname{rk}(A) = \operatorname{rk}(A, b) < \operatorname{rk}(\tilde{A})$
- $\bullet\,$ vom parabolischen Typ, wenn $\mathrm{rk}(A) < \mathrm{rk}(A,b)$
- ausgeartet, wenn $\det(\tilde{A}) = 0$

Lemma 8.7

Ist $Q \subseteq \mathbb{R}^n$ eine Quadrik, $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$. Von dem Typ, von dem Q ist, ist auch f(Q).

Beweis. $f = f_{S^{-1}}, S \in GL_n(\mathbb{R})$. Da \tilde{S} invertierbar ist, ist $\operatorname{rk}(\tilde{A}) = \operatorname{rk}(\tilde{S}^t \tilde{A} \tilde{S})$, analog auch $\operatorname{rk}(S^t A S) = \operatorname{rk}(A)$. $(S^t A S, S^t b) = S^t(A, b) \begin{pmatrix} S & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \operatorname{rk}(S^t A S, S^t b) = \operatorname{rk}(A, b)$. Für $f = \tau_z$ analog.

Definition 8.8 (Isometrie)

Eine Isometriedes \mathbb{R}^n ist $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$ mit

$$f(x) = Ax + b$$

mit $b \in \mathbb{R}^n$ und $A \in \mathrm{GL}_n(\mathbb{R})$ ist orthogonal.

▶ Bemerkung 8.9

 $f: \mathbb{R}^n \to \mathbb{R}^n$ ist eine Isometrie genau dann, wenn ||f(x) - f(y)|| = ||x - y|| für alle $x, y \in \mathbb{R}^n$.

Theorem 8.10 (Klassifikation der Quadriken bis auf Isometrien)

Sei Q eine Quadrik. Es gibt eine Isometrie $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$ mit f(Q), die eine der folgenden Formen annimmt:

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k \left(\frac{x_i}{a_i}\right)^2 - \sum_{i=k+1}^n \left(\frac{x_i}{a_i}\right)^2 = 0 \right\}$$
 $k \ge r - k$

$$\bullet \ f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k \left(\frac{x_i}{a_i}\right)^2 - \sum_{i=k+1}^n \left(\frac{x_i}{a_i}\right)^2 = 1 \right\}$$

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k \left(\frac{x_i}{a_i} \right)^2 - \sum_{i=k+1}^n \left(\frac{x_i}{a_i} \right)^2 - 2x_{r+1} = 0 \right\}$$
 $k \ge r - k, r < n$

mit $a_1, ..., a_r \in \mathbb{R}_{>0}$ und $0 \le k \le r \le n$

Beweis. Sei Q gegeben durch (A, b, c). Nach Satz 7.1 gibt es eine orthogonale Matrix $S \in O_n$ mit $S^tSAS = \operatorname{diag}(\lambda_1, ..., \lambda_n)$. Indem wir Q durch $f_{S^{-1}}(Q)$ ersetzen, können wir also ohne Einschränkung annehmen, dass $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$. Ohne Einschränkung ist weiter $\lambda_1, ..., \lambda_k > 0$ und $\lambda_{k+1}, ..., \lambda_r < 0$ und $\lambda_{r+1}, ..., \lambda_n = 0$. Dann ist $(e_{r+1}, ..., e_n)$ eine Orthonormalbasis des Ausartungsraums V_0 von s_A .

Wenn wir Q durch $\tau_z(Q)$ ersetzen, wird b durch Az+b ersetzt, wir können deshalb ohne Einschränkung annehmen, dass $b \in V_0$. Ist n > r, also $V_0 \neq \{0\}$, so können wir eine Orthonormalbasis $(v_{r+1}, ..., v_n)$ von V_0 mit $b \in \operatorname{span}_{\mathbb{R}}(v_{r+1})$ wählen.

Indem wir Q durch $f_{S^{-1}}(Q)$ mit $S=(e_1,...,e_r,v_{r+1},...,v_n)$ ersetzen, können wir ohne Einschränkung annehmen, dass $b=\mu\cdot e_{r+1}$ mit $\mu\in\mathbb{R}$.

Ist nun rk(A) = rk(A, b), so gibt es z mit Az = -b, und indem wir Q durch $\tau_z(Q)$ ersetzen, können wir annehmen, dass b = 0.

- Im Fall c=0 setzt man $a_i=\frac{1}{\sqrt{|\lambda_i|}}$ und ersetzt gegebenenfalls (A,b,c) mit (-A,-b,-c), um Form 1 zu erhalten.
- Im Fall $c \neq 0$ ersetzt man (A, b, c) durch $(-\frac{1}{c}A, -\frac{1}{c}b, -1)$ und setzt dann $a_i = \frac{1}{\sqrt{|\lambda_i|}}$, um Form 2 zu erhalten.
- Ist $\operatorname{rk}(A) < \operatorname{rk}(A,b)$, so ist insbesondere r < n und $\mu \neq 0$. Nun ersetzten wir Q durch $\tau_z(Q)$ mit $z = -\frac{c}{2\mu} \cdot e_{r+1}$ und können somit auch wieder c = 0 annehmen. Ersetzt man (A,b,0) durch $(-\frac{1}{\mu}A,-1,0)$ und setzt wieder $a_i = \frac{1}{\sqrt{|\lambda_i|}}$, so erhält man Form 3. (Ist k < r k, so ersetzt man weiter Q durch $f_{-1_n}(Q)$ und (A,b,0) durch (-A,-b,0).)

Folgerung 8.11

Sei $Q \subseteq \mathbb{R}^n$ eine Quadrik. Es gibt eine invertierbare affine Abbildung $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$ für die f(Q) eine der folgenden 3 Formen annimmt:

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^r x_i^2 = 0 \right\}$$
 $k \ge r - k$
• $f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^r x_i^2 = 1 \right\}$

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^r x_i^2 - 2x_{r+1} = 0 \right\}$$
 $k \ge r - k, r < n$

■ Beispiel 8.12

 $Q \subseteq \mathbb{R}^2$

•
$$-k = 2, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 + \left(\frac{x_2}{a_2} \right)^2 = 0 \right\}$$

$$-k = 1, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 0 \right\}$$

$$-k = 1, r = 1 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 + \left(\frac{x_2}{a_2} \right)^2 = 1 \right\}$$

$$-k = 1, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\}$$

$$-k = 1, r = 1 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\}$$

$$-k = 0, r = 2 : \left\{ x \in \mathbb{R}^2 \mid -\left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\} = \emptyset$$

$$-k = 0, r = 1 : \left\{ x \in \mathbb{R}^2 \mid -\left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\} = \emptyset$$

•
$$-k = 1, r = 1 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1}\right)^2 - 2x_2 = 0 \right\}$$

▶ Bemerkung 8.13

- Ist $Q \subseteq \mathbb{R}^2$ eine Quadrik, $U \subseteq V$ affiner Untervektorraum, so ist $Q \cap U$ eine Quadrik in dem Sinne, dass $\exists f$ Isometrie : $f(U) = \mathbb{R}^k$ und $f(Q \cap U)$ ist eine Quadrik.
- Ebene Quadriken sind im wesentlichen Kegelschnitte, $Q' = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = x_3^2\}$, außer 2c und 2d in Beispiel 8.12

▶ Bemerkung 8.14

Die Situation wird deutlich übersichtlicher, wenn man den affinen Raum \mathbb{R}^n durch Hinzunahme von Punkten im Unendlichen zum projektiven Raum $\mathbb{P}^n(\mathbb{R})$ vervollstädigt und den Abschluss der Quadriken darin betrachtet. Es stellt sich dann heraus, dass vom projektiven Standpunkt aus die meisten ebenen Quadriken ähnlich aussehen. (Siehe Vorlesung *Elementare Algebraische Geometrie*)

Kapitel III

$Dualit \ddot{a}t$

1. Das Lemma von Zorn

Sei K ein Körper und U, V, W seien K-Vektorräume. Zudem sei X eine Menge.

Definition 1.1 (Relation)

Eine Relationist eine Teilmenge $R \subseteq X \times X$. Man schreibt $(x, x') \in R$ als xRx'. R heißt

- reflexiv, wenn $\forall x \in X : xRx$
- transitiv, wenn $\forall x, y, z \in X$: xRy und $yRz \Rightarrow xRz$
- symmetrisch, wenn $\forall x, y \in X : xRy \Rightarrow yRx$
- antisymmetrisch, wenn $\forall x, y \in X : xRy \text{ und } yRx \Rightarrow y = x$
- total, wenn $\forall x, y \in X : (x, y) \notin R \Rightarrow (y, x) \in R$

■ Beispiel 1.2 (Äquivalenzrelation)

Eine <u>Äquivalenzrelation</u>ist eine reflexive, transitive und symmetrische Relation. Wir haben schon verschiedene Äquivalenzrelationen kennengelernt: Isomorphie von K-Vektorräumen und Ähnlichkeit von Matrizen.

Definition 1.3 (Halbordnung)

Eine Halbordnung (oder partielle Ordnung) ist eine reflexive, transitive und antisymmetrische Relation \leq . Eine totale Halbordnung heißt Totalordnung oder lineare Ordnung. Man schreibt x < y für $x \leq y \land x \neq y$.

■ Beispiel 1.4

- Die natürliche Ordnung \leq auf \mathbb{R} , \mathbb{Q} , \mathbb{Z} und \mathbb{N} ist eine Z Totalordnung.
- Teilbarkeit | ist eine Halbordnung auf \mathbb{N} , aber Teilbarkeit ist keine Halbordnung auf \mathbb{Z} , da 1|-1 und -1|1, aber $1 \neq -1$!
- $\mathcal{P}(X)$ ist die Potenzmenge. " \subseteq ist eine Halbordnung auf \mathcal{P} , aber für |X| > 1 ist " \subseteq "keine Totalordnung.
- Sei (X, \leq) eine Halbordnung, sei $Y \subseteq X$, so ist $(Y, \subseteq |_Y)$ eine Halbordnung.

Definition 1.5 (Kette)

Sei (X, \leq) eine Halbordnung, $Y \subseteq X$. Y heißt Kette, wenn $(Y, \leq |_Y)$ total ist.

 $x \in Y$ heißt ein minimales Elementvon Y, wenn $\forall x' \in Y : x < x'$.

 $x \in Y$ heißt untere Schrankevon Y, wenn $\forall y \in Y \colon y \geq x$.

 $x \in Y$ heißt kleinstes Elementvon Y, wenn x untere Schranke von Y ist.

Analog: maximales Element, obere Schranke, größtes Element.

 $Y = \{2^n \mid n \in \mathbb{N}\}$ ist eine Kette

▶ Bemerkung 1.6

- Hat Y ein kleinstes Element, so ist dies eindeutig bestimmt. Ein kleinstes Element ist minimal.
- Jede endliche Halbordnung hat minimale Elemente. Jede endliche Totalordnung hat ein kleinstes Element. Analog für maximale Elemente und größtes Element.

■ Beispiel 1.7

 (\mathbb{N}, \leq) hat als kleinstes Element die 1, aber kein größtes Element oder maximale Elemente.

■ Beispiel 1.8

 $V = \mathbb{R}^3$, \mathfrak{X} die Menge der Untervektorräume des \mathbb{R}^3 . (\mathfrak{X}, \leq) ist eine Halbordnung auf $Y \subseteq X$ mit $Y = \{U \in \mathfrak{X} \mid \dim_{\mathbb{R}}(U) \leq 2\}$.

- Y hat ein kleinstes Element: $\{0\}$.
- ullet Es gibt unendlich viele maximale Elemente in Y, nämlich die Untervektorräume von V, die die Dimension 2 haben. Es gibt also kein größtes Element.
- \bullet V ist die obere Schranke von Y.

Theorem 1.9 (Das Lemma von Zorn)

Sei (X, \leq) eine Halbordnung, die nicht leer ist. Wenn jede Kette eine obere Schranke hat, dann hat X ein maximales Element.

Beweis. Das Lemma von Zorn hat axiomatischen Charakter - es ist äquivalent zum Auswahlaxiom, seine Gültigkeit ist somit abhängig von unseren grundlegenden mengentheoretischen Annahmen. Für einen Beweis des Lemmas von Zorn aus dem Auswahlaxiom siehe die Vorlesung Mengenlehre. Wir zeigen hier zumindest die andere Richtung, nämlich dass das Auswahlaxiom aus dem Lemma von Zorn folgt.

Folgerung 1.10 (Auswahlaxiom)

Zu jeder Familie (x_i) , nicht leer, gibt es eine Auswahlfunktion, das heißt eine Abbildung:

$$f: I \to \bigcup_{i \in I} X_i \text{ mit } f(i) \in X_i \quad \forall i$$

Beweis. Sei \mathcal{F} die Menge der Paare (J,f) bestehend aus einer Teilmenge $J\subseteq I$ und einer Abbildung $f:I\to\bigcup_{i\in I}X_i$ mit $f(i)\in X_i$ $\forall i\in J$. Definieren wir $(J,f)\le (J',f')\iff J\subseteq J'$ und $f'|_J=f$, so ist \le eine Halbordnung auf \mathcal{F} . Da $(\emptyset,\emptyset)\in\mathcal{F}$ ist \mathcal{F} nichtleer. Ist $\mathcal{G}\subseteq\mathcal{F}$ eine nichtleere Kette, so wird auf $J':=\bigcup_{(J,f)\in\mathcal{G}}J$ durch f'(j)=f(j) falls $(J,f)\in\mathcal{G}$ und $j\in J$ eine wohldefinierte Abbildung $f':J\to\bigcup_{i\in J}X_i$ mit $f'(i)\in X_i$ $\forall i\in J'$ gegeben. Das Paar (J',f') ist eine obere Schranke der Kette \mathcal{G} . Nach dem Lemma von Zorn besitzt \mathcal{F} ein maximales Element (J,f). Wir behaupten, dass J=I. Andernfalls nehmen wir ein $i'\in I\setminus J$ und ein $x'\in X_{i'}$ und definieren $J':=U\cup\{i'\}$ und $f':J'\to\bigcup_{i\in J'}X_i,\,j\mapsto\begin{cases}f(j)&j\in J\\x'&j=i'\end{cases}$. Dann ist $(J',f')\in\mathcal{F}$ und (J,f)<(J',f') im Widerspruch zur Maximalität von (J,f).

Folgerung 1.11 (Basisergänzungssatz)

Sei V ein K-Vektorraum. Jede linear unabhängige Teilmenge $X_0 \subseteq V$ ist in einer Basis von V enthalten.

Beweis. Sei $\mathfrak{X} = \{X \subseteq V \mid X \text{ ist linear unabhängig, } X_0 \subseteq X\}$ geordnet durch Inklusion. Dann ist $X_0 \in \mathfrak{X}$, also $\mathfrak{X} \neq \emptyset$. Ist \mathcal{Y} eine nichtleere Kette in \mathfrak{X} , so ist auch $Y = \bigcup \mathcal{Y} \subseteq V$ linear unabhängig. Sind $y_1, ..., y_n \in Y$ paarweise verschieden, so gibt es $Y_1, ..., Y_n \in \mathcal{Y}$ mit $y_i \in Y_i$ für i = 1, ..., n. Da \mathcal{Y} total geordnet ist, besitzt $\{Y_1, ..., Y_n\}$ ein größtes Element, o.E. Y_1 . Also sind $y_1, ..., y_n \in Y_1$ und somit linear unabhängig. Folglich ist $Y_1 \in \mathfrak{X}$ eine obere Schranke von \mathcal{Y} . Nach dem Lemma von Zorn besitzt \mathfrak{X} ein maximales Element X. Das heißt, X ist eine maximal linear unabhängige Teilmenge von V, nach LAAG1 II.3.5 also eine Basis von V.

2. Der Dualraum

Sei V ein K-Vektorraum.

Definition 2.1 (Dualraum)

Der Dualraumzu V ist der K-Vektorraum

$$V^* = \operatorname{Hom}_K(V, K) = \{ \varphi : V \to K \text{ linear} \}$$

Die Elemente von V^* heißen Linearformenauf V.

■ Beispiel 2.2

Ist $V = K^n = \operatorname{Mat}_{n \times 1}(K)$, so wird $V^* = \operatorname{Hom}_K(V, K)$ durch $\operatorname{Mat}_{1 \times n}(K) \cong K^n$. Wir können also die Elemente von V als Spaltenvektoren und die Linearformen auf V als Zeilenvektoren auffassen.

Lemma 2.3

Ist $B(x_1)_{i\in I}$ eine Basis von V, so gibt es zu jedem $i\in I$ genau $x_i^*\in V^*$ mit

$$x_i^*(x_i) = \delta_{ij} \quad \forall j \in I$$

Beweis. Siehe LAAG1 III.5.1, angewandt auf die Familie $(y_j)_{j\in I}, y_j\delta_{i,j}$ in W=K.

Satz 2.4

Ist $B = (x_1)_{i \in I}$ eine Basis von V, so ist $B^* = (x_i^*)_{i \in I}$ linear unabhängig. Ist I endlich, so ist B^* eine Basis von V^* .

Beweis. Ist $\varphi = \sum_{i \in I} \lambda_i x_i^*$, $\lambda_i \in K$, fast alle gleich 0, so ist $\varphi(x_j) = \sum_{i \in I} \lambda_j x_i^*(x_j) = \lambda_j$ für jedes $j \in I$. Ist also $\varphi = 0$, so ist $\lambda_j = \varphi(x_j) = 0 \quad \forall j \in I$, B^* ist somit linear unabhängig.

Ist zudem I endlich und $\psi \in V^*$, so ist $\psi = \psi' = \sum_{i \in I} \psi(x_i) x_i^*$, denn $\psi'(x_j) = \sum_{i \in I} \psi(x_i) x_i^* (x_j) = \psi(x_i) \quad \forall j \in I$, und somit ist B^* ein Erzeugendensystem von V^* .

Definition 2.5 (duale Basis)

Ist $B = (x_i)_{i \in I}$ eine endliche Basis von V, so nennt man $B^* = (x_i^*)_{i \in I}$ die zu B duale Basis.

Folgerung 2.6

Zu jeder Basis B von V gibt es einen eindeutig bestimmtem Monomorphismus

$$f_V \to V^* \text{ mit } f(B) = B^*$$

Ist $\dim_K(V) < \infty$, so ist dieser ein Isomorphismus.

Folgerung 2.7

Zu jedem = $0 \neq x \in V$ gibt es eine Linearform $\varphi \in V$ mit $\varphi(x) = 1$.

Beweis. Ergänze $x_1 = x$ zu einer Basis $(x_i)_{i \in I}$ von V (Folgerung 1.11) und $\varphi = x_1^*$.

■ Beispiel 2.8

Ist $V=K^n$ mit Standardbasis $\mathcal{E}=(e_1,...,e_n)$, so können wir V^* mit dem Vektorraum der Zeilen-

vektoren identifizieren, und dann ist

$$e_i^* = e_i^t$$

Definition 2.9 (Bidualraum)

Der Bidualraumzu V ist der K-Vektorraum

$$V^{**} = (V^*)^* = \operatorname{Hom}_K(V^*, K)$$

Satz 2.10

Die kanonische Abbildung

$$\iota: \begin{cases} V \to V^{**} \\ x \to \iota_x \end{cases} \text{ wobei } \iota_x(\varphi) = \varphi(x)$$

ist ein Monomorphismus. Ist $\dim_K(V) < \infty$, so ist ι ein Isomorphismus.

Beweis. • $\iota_x \in V^{**}$:

$$-\iota_{x}(\varphi + \psi) = (\varphi + \psi)(x) = \varphi(x) + \psi(x) = \iota_{x}(\varphi) + \iota_{x}(\psi)$$
$$-\iota_{x}(\lambda\varphi) = (\lambda\varphi)(x) = \lambda\varphi(x) = \lambda\iota_{x}(\varphi)$$

• ι linear:

$$-\iota_{x+y}(\varphi) = \varphi(x+y) = \varphi(x) + \varphi(y) = \iota_x(\varphi) + \iota_y(\varphi) = (\iota_x + \iota_y)(\varphi)$$
$$-\iota_{\lambda x}(\varphi) = \varphi(\lambda x) = \lambda \iota_x(\iota) = (\lambda \iota_x)(\varphi)$$

- ι injektiv: Sei $0 \neq x \in V$. Nach Folgerung 2.7 existiert $\varphi \in V^*$ mit $\iota_x(\varphi) = \varphi(x) = 1 \neq 0$. Somit ist $\iota_x \neq 0$.
- Ist $\dim_K(V) < \infty$, so ist $V \stackrel{2.6}{\cong} V^* \stackrel{2.6}{\cong} V^{**}$, insbesondere $\dim_K(V) = \dim_K(V^{**})$. Der Monomorphismus ι ist somit ein Isomorphismus.

▶ Bemerkung 2.11

Sei $\dim_K(V) < \infty$. Im Gegensatz zu den Isomorphismen $V \to V^*$, die von der Wahl der Basis B abhängen, ist der Isomorphismus $\iota: V \to V^{**}$ kanonisch (von der Wahl der Basis B unabhängig).

Die Voraussetzung, dass $\dim_K(V) < \infty$ ist hier essentiell: Für $\dim_K(V) = \infty$ ist ι nicht surjektiv.

Definition 2.12 (Annulator)

Für eine Teilmenge $U \subseteq V$ bezeichne

$$U^0 = \{ \varphi \in V^* \mid \varphi(x) = 0 \quad \forall x \in U \}$$

den Annulatorvon U.

Lemma 2.13

 U^0 ist ein Untervektorraum von V^* .

Beweis. Klar. \Box

Satz 2.14

Ist $\dim_K(V) < \infty$ und $U \subseteq V$ ein Untervektorraum, so ist

$$\dim_K(V) = \dim_K(U) + \dim_K(U^0)$$

Beweis. Ergänze eine Basis $(x_1,...,x_r)$ von U zu einer Basis $B=(x_1,...,x_n)$ von V. Dann ist $B^*(x_1^*,...,x_n^*)$ eine Basis von V^* . Sei $C=(x_{r+1}^*,...,x_n^*)$. Dann ist C eine Basis von U^0 :

- B^* ist Basis $\Rightarrow C$ ist linear unabhängig.
- $C \subseteq U^0$: Für $1 \le j \le r < i \le n$ ist $x_i^*(x_j) = \delta_{ij} = 0$.
- $U^0 \subseteq \operatorname{span}_K(C)$: Ist $\varphi = \sum_{i=1}^n \lambda_i x_i^* \in U^0$, so $0 = \varphi(x_j) = \lambda_j$ für alle $j \le r$, also $\varphi \in \operatorname{span}_K(x_{r+1}^*, ..., x_n^*)$.

Folgerung 2.15

Ist $\dim_K(V) < \infty$ und $U \subset V$ ein Untervektorraum, so ist

$$\iota(U) = U^{00}$$

Beweis. Es ist klar, dass $\iota(U) \leq U^{00}$.

Für $\varphi \in U^0$ und $x \in U$ ist $\iota_x(\varphi) = \varphi(x) = 0$. Mit Satz 2.14 ist

$$\dim_K(U^{00}) = \dim_K(V^*) - \dim_K(U^0)$$

$$= \dim_K(V^*) - (\dim_K(V) - \dim_K(U))$$

$$\stackrel{2.6}{=} \dim_K(U)$$

und da ι injektiv ist, folgt $\iota(U) = U^{00}$.

3. Die duale Abbildung

Sei $f \in \operatorname{Hom}_K(V, W)$.

▶ Bemerkung 3.1

Ist $\varphi \in W^* = \operatorname{Hom}_K(W, K)$ eine Linearform auf W, so ist $\varphi \circ f \in \operatorname{Hom}_K(V, K) = V^*$ eine Linearform auf V.

$$V^* \leftarrow_{f^*} W^*$$

Definition 3.2 (duale Abbildung)

Die zu f duale Abbildung ist

$$f^*: \begin{cases} W^* \to V^* \\ \varphi \mapsto \varphi \circ f \end{cases}$$

Lemma 3.3

Es ist $f^* \in \text{Hom}_K(W^*, V^*)$.

Beweis. Sind $\varphi, \psi \in W^*$ und $\lambda \in K$ ist

$$f^*(\varphi + \psi) = (\varphi + \psi) \circ f$$

$$= \varphi \circ f + \psi \circ f$$

$$= f^*(\varphi) + f^*(\psi)$$

$$f^*(\lambda \varphi) = (\lambda \varphi) \circ f$$

$$= \lambda \cdot (\varphi \circ f)$$

$$= \lambda \cdot f^*(\varphi)$$

Satz 3.4

Sind $B = (x_1, ..., x_n)$ und $C = (y_1, ..., y_m)$ Basen von V bzw. W, so ist

$$M_{B^*}^{C^*}(f^*) = (M_C^B(f))^t$$

Beweis. Sei $A = M_C^B(f) = (a_{ij})_{i,j}$ und $B = M_{B^*}^{C^*}(f^*) = (b_{ji})_{j,i}$. Dann ist $f(x_j) = \sum_{i=1}^m a_{ij}y_i$, also $a_{ji} = y_i^*(f(x_j)) = f^*(y_i^*)(x_j)$ und $f^*(y_i^*) = \sum_{j=1}^n b_{ji}x_j^*$, also $b_{ji} = f^*(y_i^*)(x_j) = a_{ij}$.

Folgerung 3.5

Sind V und W endlichdimensional, und identifizieren wir $V=V^{**}$ und $W=W^{**}$, so ist $f=f^{**}$, das heißt $\iota\circ f=f^{**}\circ\iota$.

$$V \xrightarrow{f} W$$

$$\downarrow \iota_{V} \cong \qquad \downarrow \iota_{W} \cong$$

$$V^{**} \xrightarrow{f^{**}} W^{**}$$

Beweis. Seien B und C Basen von V bzw. W. Unter der Identifizierung ist $B^{**} = B$ und $C = C^{**}$, das heißt $\iota(x_i) = x_i^{**}$ bzw. $\iota(y_j) = y_j^{**}$, denn $\iota(x_i)(x_j^*) = x_j^*(x_i) = \delta_{ij} = x_i^{**}(x_j^*) \quad \forall i, j \text{ und somit}$

$$M_C^B(f^{**}) \stackrel{3.4}{=} \left(M_{B^*}^{C^*}(f^*)\right)^t \stackrel{3.4}{=} \left(M_C^B(f)\right)^{tt} = M_C^B(f)$$

Also $f^{**} = f$.

Folgerung 3.6

Sind V,W endlichdimensional, so liefert die Abbildung $f\mapsto f^*$ einen Isomorphismus von K-Vektorräumen.

$$\operatorname{Hom}_K(V,W) \to \operatorname{Hom}_K(W^*,V^*)$$

Beweis. Sind $f, g \in \text{Hom}_K(V, W)$ und $\lambda \in K$, $\varphi \in W^*$, so ist

$$(f+g)^*(\varphi) = \varphi \circ (f+g) = \varphi \circ f + \varphi \circ g = f^*(\varphi) + g^*(\varphi) = (f^* + g^*)(\varphi)$$
$$(\lambda f)^*(\varphi) = \varphi \circ (\lambda f) = \lambda \cdot (\varphi \circ f) = \lambda \circ f^*(\varphi) = (\lambda f^*)(\varphi)$$

Die Abbildung ist somit linear. Nach Folgerung 3.5 ist sie injektiv. Da

$$\dim_K(V, W) = \dim_K(V) \cdot \dim_K(W)$$
$$= \dim_K(V^*) \cdot \dim_K(W^*)$$
$$= \dim_K(\operatorname{Hom}_K(W^*, V^*))$$

ist sie auch ein Isomorphismus.

Satz 3.7

Sind V, W endlichdimensional so ist

$$\operatorname{Im}(f^*) = \operatorname{Ker}(f)^0$$
$$\operatorname{Ker}(f^*) = \operatorname{Im}(f)^0$$

Beweis. • $\operatorname{Im}(f^*) \subseteq \operatorname{Ker}(f)^0$: Ist $\varphi \in W^*$, $x \in \operatorname{Ker}(f)$, so ist

$$f^*(\varphi)(x) = (\varphi \circ f)(x) = \varphi(0) = 0$$

• Ker $(f)^0 \subseteq \text{Im}(f^*)$: Sei $\varphi \in \text{Ker}(f)^0$. Setze eine Basis $(x_1, ..., x_r)$ von Ker(f) zu einer Basis $(x_1, ..., x_n)$ von V fort. Dann sind $f(x_{r+1}), ..., f(x_n)$ linear unabhängig nach der Kern-Bild-Formel (LAAG 1 III.7.13), es gibt also $\psi \in W^*$ mit

$$\psi(f(x_i)) = \varphi(x_i) \quad \forall i$$

Es folgt

$$f^*(\psi)(x_i) = \psi(f(x_i)) = \varphi(x_i) \quad \forall i$$

also $\varphi = f^*(\psi)$.

• Mit der Identifizierung $V = V^{**}$ ist

$$\operatorname{Im}(f)^{0} \stackrel{3.5}{=} \operatorname{Im}(f^{**})^{0} = \operatorname{Ker}(f^{*})^{00} \stackrel{2.15}{=} \operatorname{Ker}(f^{*})$$

Folgerung 3.8

Sind V, W endlich dimensional, so ist

$$rk(f) = rk(f^*)$$

Beweis.

$$\operatorname{rk}(f) = \dim_{K}(\operatorname{Im}(f))$$

$$\stackrel{2.14}{=} \dim_{K}(W) - \dim_{K}(\operatorname{Im}(f)^{0})$$

$$\stackrel{LAAG1.III.7.13}{=} \dim_{K}(W^{*}) - \dim_{K}(\operatorname{Ker}(f^{*}))$$

$$= \operatorname{rk}(f^{*})$$

Folgerung 3.9

Ist $\dim_K(V) < \infty$ und $U \subseteq V$ ein Untervektorraum, so lässt sich jede Linearform auf U zu einer Linearform auf V fortsetzen.

Beweis. Ist $f:U\to V$ die Inklusionsabbildung, so ist $f^*:V^*\to U^*,\,\varphi\mapsto\varphi|_U$ und

$$\operatorname{rk}(f^*) = \operatorname{rk}(f) = \dim_K(U) = \dim_K(U^*)$$

 f^* ist somit surjektiv.

▶ Bemerkung 3.10

Folgerung 3.9 gilt auch ohne die Voraussetzung $\dim_K(V) < \infty$, siehe Übung.

▶ Bemerkung 3.11

Ein homogenes lineares Gleichungssystem Ax=0 hat als Lösungsraum $L(A,0)\subseteq K^n$ ein Untervektorraum des K^n . Unter der Identifizierung $K^n=(K^n)^{**}$ ist L(A,0) der Annulator der Linearformen beschrieben durch die Zeilen $a_1,...,a_m\in (K^n)^*$ von A. Wir wollen umgekehrt zu einem Untervektorraum $W\subseteq K^n$ ein $A=(a_1,...,a_m)\in \mathrm{Mat}_{n\times m}(K)$ mit W=L(A,0) finden. Ist $W=\mathrm{span}_K(b_1,...,b_r),$ so ist $W=\mathrm{Im}(f_B)$ mit $B=(b_1,...,b_r)\in \mathrm{Mat}_{n\times r}(K).$ $\Rightarrow W\stackrel{3.7}{=}\mathrm{Ker}(f_B^*)^0$ und $M_{\mathcal{E}^t}(f_B^*)=B^t$. Wenn man also eine Basis $(a_1,...,a_s)$ von $L(B^t,0)$ bestimmt und daraus eine Matrix $A=(a_1^t,...,a_s^t)\in \mathrm{Mat}_{s\times n}(K)$ bildet, so ist W=L(A,0).

4. Die adjungierte Abbildung

Sei $K=\mathbb{R}$ oder $K=\mathbb{C}$ und V ein endlichdimensionaler unitärer K-Vektorraum.

Definition 4.1 (weitere Skalarmultiplikation)

Wir definieren auf V eine Skalarmultiplikation

$$\lambda * x = \overline{\lambda} \cdot x$$

und schreiben $\overline{V} = (V, +, *).$

Lemma 4.2

 \overline{V} ist ein K-Vektorraum und $\operatorname{End}_K(V) = \operatorname{End}_K(\overline{V})$.

Beweis. Mit LAAG1 VI.1.7 nachprüfen, zum Beispiel:

•
$$\lambda * (x + y) = \overline{\lambda} \cdot (x + y) = \overline{\lambda}x + \overline{\lambda}y = \lambda * x + \lambda * y$$

•
$$\lambda * (\mu * x) = \overline{\lambda}(\overline{\mu} \cdot x) = \overline{\lambda}\mu x = (\lambda \mu) * x$$

Weiterhin sei: $f \in \text{End}_K(V), x \in V, \lambda \in K$

$$\Rightarrow f(\lambda * x) = f(\overline{\lambda}x) = \lambda * f(x)$$

$$\Rightarrow f \in \operatorname{End}_K(\overline{V}).$$

Umgekehrt sei $g \in \operatorname{End}_K(\overline{V}), x \in V, \lambda \in K$

$$\Rightarrow g(\lambda \cdot x) = g(\overline{\lambda} * x) = \lambda \cdot g(x)$$

$$\Rightarrow g \in \operatorname{End}_K(V)$$
.

Lemma 4.3

Für $y \in V$ ist

$$\Phi_y: \begin{cases} V \to K \\ x \mapsto \langle x, y \rangle \end{cases}$$

eine Linearform auf V.

Die Abbildung $y\mapsto \Phi_y$ liefert einen Isomorphismus $\Phi:\overline{V}\to V^*.$

Beweis. • $\Phi_y \in V^*$: Linearität in ersten Argument.

• $\Phi \in \operatorname{Hom}_K(\overline{V}, V^*)$: Für $y, y' \in V$, $\lambda \in K$, $x \in V$ ist $-\Phi_{y+y'}(x) = \langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle = \Phi_y(x) + \Phi_{y'}(x)$

$$- \Phi_{\lambda * y}(x) = \langle x, \lambda * x \rangle = \left\langle x, \overline{\lambda} y \right\rangle = \lambda \left\langle x, y \right\rangle = \lambda \Phi_y(x)$$

- \bullet Φ injektiv: Skalarprodukt ist nicht ausgeartet.
- Da $\dim_K(\overline{V}) = \dim_K(V) = \dim_K(V^*)$ ist Φ somit ein Isomorphismus.

Satz 4.4

Zu $f \in \operatorname{End}_K(V)$ gibt es ein eindeutig bestimmtes $f^{adj} \in \operatorname{End}_K(V)$ mit

$$\langle f(x), y \rangle = \langle x, f^{adj}(y) \rangle \quad \forall x, y \in V$$

Beweis.

Definition 4.5 (adjungierter Endomorphismus)

Die Abbildung f^{adj} heißt der zu f adjungierte Endomorphismus.

■ Beispiel 4.6

- Ist f selbstadjungiert, so ist $f^{adj} = f$.
- Ist f unitär, so ist $f \in Aut_K(V)$ und

$$\langle f(x), y \rangle = \langle x, f^{-1}(y) \rangle \quad \forall x, y \in V$$

also $f^{adj} = f^{-1}$.

Kapitel IV

Moduln

Anhang A: Listen

A.1. Liste der Theoreme

Theorem 1.4.8:		10
Theorem I.5.9:	Satz von Cayley-Hamiltion	13
Theorem I.7.5:	JORDAN-Normalform	21
Theorem II.4.9:	Gram-Schmidt-Verfahren	32
Theorem II.5.9:		35
Theorem II.6.5:		37
Theorem II.7.3:	Hauptachsentransformation	39
Theorem II.7.9:	Trägheitssatz von Sylvester	41
Theorem II.8.10:	Klassifikation der Quadriken bis auf Isometrien	45
Theorem III.1.9:	Das Lemma von Zorn	50

A.2. Liste der benannten Sätze

Satz I.6.4:	Lemma von Fitting	15
Satz I.7.3:	Hauptraumzerlegung	20
Satz II.1.4:	Ungleichung von Cauchy-Schwarz	24
Satz II.2.8:	Transformationsformel	27
Satz II.3.4:	Polarisierung	29

\mathbf{Index}

Äquivalenzrelation, 48	komplexe Konjugation, 24
JORDAN-Invarianten, 21	
Jordan-Matrix, 17	lineare Ordnung, 48
	Linearformen, 51
Absolutbetrag, 24	Matrix
Annulator, 52	orthogonal, 35
Ausartungsraum, 41	unitär, 35
ausgeartet, 28, 44	Minimal polynom, 12
Auswahlfunktion, 50	William Polyholii, 12
Bidualraum, 52	nilpotent, 16
Bilinearform, 26	Nilpotenzklasse, 16
5	normiert, 5
charakteristische Polynom, 4	.1 1.01
1.6.14.00	orthogonal, 31
definit, 29	orthogonale Gruppe, 35
diagonalisierbar, 6	orthogonale Komplement, 31
duale Basis, 51	orthogonale Projektion, 32
Dualraum, 51	orthonormal, 31
Eigenraum, 2	partielle Ordnung, 48
Eigenvektor, 2	projektiven Raum, 47
Eigenwert, 2	
Endomorphismus	quadratische Form, 29
orthogonal, 34	Quadrik, 43
unitär, 34	kegeligen Typ, 44
euklidische Norm in \mathbb{C} , 25	Mittelpunktsquadrik, 44
euklidische Norm in \mathbb{R} , 24	parabolischen Typ, 44
euklidischen, 29	Relation, 48
Halbordnung, 48	antisymmetrisch, 48
•	reflexiv, 48
Hauptraum, 20	symmetrisch, 48
hermitesch, 28	total, 48
invariant, 9	transitiv, 48
Isometrie, 44	
	selbstadjungiert, 37
Kette, 49	semidefinit, 29
größtes Element, 49	Sesquilinearform, 26
kleinstes Element, 49	darstellende Matrix, 26
maximales Element, 49	Signatur, 42
minimales Element, 49	spezielle orthogonale Gruppe, 35
obere Schranke, 49	spezielle unitäre Gruppe, 35
untere Schranke, 49	Standardskalarprodukt in C. 25

INDEX

Standardskalar produkt in \mathbb{R} , 23	unitären, 29
symmetrisch, 28	
teilt, 6 Totalordnung, 48 trigonalisierbar, 9	Vielfachheit, 7 algebraische Vielfachheit, 8 geometrische Vielfachheit, 8
unitäre Gruppe, 35	zyklisch, 13