МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

(ГУАП)

<u>Кафедра 44 Вычислительных систем и сетей</u> (наименование)

ОТЧЁТ ПО ПРАКТ ЗАЩИЩЁН С ОЦІ						
РУКОВОДИТЕЛЬ						
доцент, канд. техн. наук				Н. В. Кучин		
должность, уч. степень, звание			подпись, дата	инициалы, фамилия		
	(ОТЧЁТ ПО	ПРАКТИКЕ			
вид практики	производствен	ная				
тип практики	вычислительная					
на тему индивидуального задания Автоматизированная информационная система						
первичной профсоюзной организации студентов и аспирантов ГУАП. Клиентская часть.						
выполнен Горбуновым Никитой Сергеевичем						
фамилия, имя, отчество обучающегося в творительном падеже						
по направлению подготовки –		09.03.01	Информатика и вычислительная техника			
		код	на	именование направления		
наименование направления						
направленности -		02	Вычислительные машины, комплексы,			
		код	наим	менование направленности		
системы и сети		нанизиоромно	WALL DO NOT A WALL OF THE			
		наименование	направленности			
Обучающийся групп	ы № <u>4941</u>	09.04	4.2023	Н.С. Горбунов		

Содержание

введе	НИЕ	3	
1. An	налоги и сравнение	5	
2. Te	хническое задание	6	
2.1.	Работа с данными студентов	6	
2.2.	Пользователи	6	
2.3.	Ролевая модель	7	
2.4.	Статистика	7	
2.5.	Генератор документов	8	
3. Ис	пользуемые технологии	9	
3.1.	C#	9	
3.2.	Фреймворк Avalonia	10	
3.3.	Безопасность	11	
4. Пр	ооектирование системы	13	
5. Par	зработка системы	13	
5.3.	Реализация ролевого разграничения	13	
6. Par	звертывание системы	13	
7. Демонстрация работы системы			
СПИСС	УК ИСПОЛЬЗОВУННРІХ ИСТОЛНИКОВ	1.4	

ВВЕДЕНИЕ

Одно из популярных направления развития ІТ технологий — автоматизация информационных систем различных сфер деятельности человека. Потому как это позволяет сократить ручной труд, минимизировать ошибки и «человеческий фактор». Именно поэтому автоматизированная информационная система ППОСА ГУАП является актуальной разработкой в существующем положении.

Такая система позволит автоматизировать работу профсоюзной организации во многих аспектах: учет студентов, в том числе студентов, имеющих социальные льготы, выплата материальной помощи, предоставление бонусов, сбор членских взносов. Все это позволит профсоюзу эффективнее выполнять свою работу, исключая ошибки: как умышленные, так и случайные.

Также в число достоинств можно включить инструмент по автоматизированной генерации служебной документации, что значительно сократит труд членов профсоюза по работе как внутри: протоколы собраний, решения профсоюзного комитета; так и снаружи: служебные записки в бухгалтерию и т.д.

АИС также обеспечивает более высокую точность обработки информации и улучшенный контроль за финансовыми потоками. Данная система также позволяет повысить качество обслуживания членов доступ к профсоюзной необходимой организации, предоставляя ИМ информации и услугам.

Кроме того, АИС также может повысить уровень прозрачности и демократичности профсоюзной организации, обеспечивая членам доступ к информации о работе организации и возможность участия в принятии решений.

В результате, данная бакалаврская выпускная работа имеет большое практическое значение, так как позволяет проанализировать эффективность

использования АИС в управлении профсоюзной организацией и предложить рекомендации по ее дальнейшему совершенствованию.

1. Аналоги и сравнение

В данный момент сложно найти ПО, узкоспециализированое для профсоюзных организаций, однако существуют автоматизированные системы широкого профиля.

Системы управления взаимоотношениями с клиентами (СRM-системы). Они позволяют собирать, анализировать и управлять информацией о членах профсоюза, их потребностях и предпочтениях, что является важным элементом управления отношениями с членами профсоюза и повышения качества обслуживания.

Использование CRM системы в рамках автоматизированной системы для профсоюзной организации позволяет автоматизировать процессы взаимодействия с членами профсоюза, такие как обработка заявок, учет участия в мероприятиях, а также организация рассылок и оповещений. CRM системы позволяют вести учет контактной информации о членах профсоюза, информации об их предпочтениях и интересах, истории взаимодействия и другой полезной информации.

Кроме того, CRM системы обеспечивают возможность анализа данных и формирования отчетов о деятельности профсоюзной организации, что позволяет управлять эффективностью работы организации, определять наиболее перспективные направления развития и принимать обоснованные решения на основе данных.

2. Техническое задание

2.1. Работа с данными студентов

Система должна хранить информацию о студентах состоящих в профсоюзе, а именно следующие данные:

- ФИО
- Группа
- Номер телефона
- Электронная почта
- Номер профсоюзного билета
- Дата вступления
- Дата выхода
- Наличие социальных льгот (с датой начала и окончания действия)
- Наличие стипендии
- Должность в профсоюзе
- Должность в группе
- Бонусы, которыми пользовался студент

Следующие данные должны храниться за каждый семестр:

- Получение матпомощи
- Продление профсоюзного билета
- Наличие социальных льгот
- Наличие стипендии

Необходимо разработать удобный интерфейс для работы с данными в клиентском приложении.

2.2. Пользователи

Для работы с системой нужно иметь учетную запись пользователя и авторизоваться с помощью неё.

Система должна хранить следующую информацию о пользователе:

- Логин
- Пароль

- Электронная почта
- Информацию о студенте, которому принадлежит данная запись (необязательно)
- Дата последнего входа в систему
- Дата создания записи
- Дата окончания действия записи

2.3. Ролевая модель

Для разграничения прав в системе должна присутствовать ролевая модель. Она должна позволять гибко изменять доступный пользователю функционал. Права доступа задает администратор системы.

В системе должны присутствовать следующие базовые права:

- Доступ к просмотру данных студентов (разделение по институтам/факультетам)
- Доступ к изменению данных студентов (разделение по институтам/факультетам)
- Доступ к журналу действий
- Создание пользователей

Предполагается, что автоматизированные рабочие места (далее APM) будут установлены в офисах профсоюзной организации. Поэтому необходимо разработать единое приложение с изменяемым интерфейсом согласно доступным действиям для текущего пользователя. Таким образом реализуется возможность ограничения доступа к функционалу на уровне клиентского приложения.

2.4. Статистика

Для контроля работы профсоюза необходимо собирать статистику по необходимым критериям, при этом предоставляя форматированные отчеты:

- Анализ вступления/выхода из профсоюза
- Анализ по бонусам, которыми пользовались студенты
- Анализ по продлению профсоюзных билетов

2.5. Генератор документов

Клиентское приложение должно генерировать документы по запросу пользователя, например: служебная записка для бухгалтерии, или отчет для вышестоящей профсоюзной организации.

3. Используемые технологии

Для разработки клиентского приложения выбран язык С# с использованием фреймворка Avalonia.

3.1. C#

С# — это кроссплатформенный объектно-ориентированный язык программирования, созданный компанией Microsoft, а теперь переведен в Open Source[1].

Одной из главных особенностей С# является его способность к кроссплатформенной разработке. Это означает, что один и тот же код С# может быть скомпилирован и запущен на различных операционных системах, не требуя дополнительной модификации или переписывания.

Эта особенность была достигнута благодаря платформе .NET, которая предоставляет общую среду выполнения для всех языков .NET, в том числе С#. Среда выполнения, называемая Common Language Runtime (CLR), обеспечивает взаимодействие между кодом и операционной системой, а также управление памятью, безопасностью и другими аспектами выполнения приложений.

С# также поддерживает многопоточность, что делает его удобным для создания высокопроизводительных приложений. Он обладает широким набором библиотек и инструментов, которые упрощают создание и отладку приложений, а также обеспечивают доступ к ресурсам операционной системы, таким как файловая система, базы данных и сетевые соединения.

В целом, С# является мощным языком программирования, который позволяет создавать приложения для различных платформ и операционных систем. Его простой синтаксис и мощные возможности делают его популярным выбором для разработчиков, работающих в различных областях, от мобильной разработки до создания веб-сайтов и игр. Благодаря своей кроссплатформенной природе, С# является языком, который остается актуальным и перспективным в настоящее время.

3.2. Фреймворк Avalonia

Avalonia[2] — это кроссплатформенный фреймворк для создания графических интерфейсов пользователя на языке С#. Он предназначен для разработки приложений, которые могут быть запущены на различных платформах, таких как Windows, macOS и Linux.

Основным преимуществом Avalonia является его способность к созданию нативных приложений с использованием единой кодовой базы. Он использует собственный визуальный язык, называемый XAML (Extensible Application Markup Language), который обеспечивает быстрое создание интерфейсов, а также расширяемость и гибкость в проектировании пользовательских элементов управления.

Аvalonia также обеспечивает богатую функциональность, такую как многопоточность, анимации, события и другие возможности для удобной и эффективной разработки пользовательских интерфейсов. Он поддерживает различные стили оформления, которые могут быть применены к приложению, а также множество готовых элементов управления, которые можно использовать для создания интерфейсов.

Фреймворк Avalonia был обеспечения создан ДЛЯ простоты использования и быстрой разработки приложений. Его кроссплатформенность позволяет разработчикам создавать приложения для различных операционных систем, используя единую кодовую базу. Он также обеспечивает высокую производительность и эффективность, что делает его привлекательным выбором создания современных приложений богатыми ДЛЯ пользовательскими интерфейсами.

В целом, Avalonia является кроссплатформенным фреймворком, который обеспечивает быструю разработку пользовательских интерфейсов для приложений на С#. Он предоставляет множество возможностей для создания современных приложений с богатыми пользовательскими интерфейсами, а его кроссплатформенность позволяет разработчикам создавать приложения, которые могут быть запущены на различных операционных системах.

3.3. Безопасность

Передача данных между серверной и клиентской частями будет реализовано по протоколу HTTPS.

HTTPS (Hypertext Transfer Protocol Secure) - это протокол для передачи данных в интернете с использованием шифрования, который обеспечивает безопасность и конфиденциальность передаваемых данных. HTTPS использует SSL / TLS (Secure Sockets Layer / Transport Layer Security) протоколы для шифрования информации перед ее отправкой по сети.

Ключевой механизм безопасности HTTPS - это шифрование данных, которое происходит на стороне клиента (браузера) и сервера, перед тем как данные будут отправлены В интернет. Для ЭТОГО используется криптографический алгоритм, который защищает данные OT несанкционированного доступа и перехвата.

HTTPS также обеспечивает проверку подлинности и целостности данных, что делает его еще более безопасным. Проверка подлинности данных происходит путем проверки, что отправитель является действительным, а не злоумышленником, который пытается подменить данные. Проверка целостности данных гарантирует, что данные не были изменены в процессе передачи.

Другим важным механизмом безопасности HTTPS является цифровая подпись. Она используется для подтверждения подлинности источника данных и защиты от внесения изменений в передаваемые данные. Цифровая подпись создается путем шифрования данных, используя приватный ключ, который только у отправителя. Получатель может расшифровать цифровую подпись, используя открытый ключ отправителя и убедиться, что данные были отправлены именно этим отправителем.

Для идентификации пользователя в системе будут использованы механизмы авторизации и аутентификации на основе JWT токена. JWT токен[3] состоит из трех частей: заголовка, полезной нагрузки и подписи. Заголовок содержит информацию о типе токена и используемом алгоритме

шифрования, полезная нагрузка - данные, которые нужно передать, а подпись - защищает токен от несанкционированного доступа.

С точки зрения безопасности, JWT токен имеет несколько преимуществ. Один из них — это невозможность изменения данных в токене. При создании токена, полезная нагрузка включает в себя информацию, которая не может быть изменена. При проверке подписи, сервер может убедиться, что данные не были изменены в процессе передачи.

Еще одним преимуществом JWT токена является возможность аутентификации пользователей без необходимости хранения информации о сессии на сервере. Вместо этого, токен содержит всю необходимую информацию о пользователе, которая может быть проверена без запроса к серверу. Это уменьшает нагрузку на сервер и увеличивает производительность.

Также стоит отметить, что JWT токен может быть защищен от подмены или изменения данных, путем использования секретного ключа для подписи токена. Ключ хранится на сервере, и только сервер имеет доступ к нему. Это обеспечивает надежную защиту от несанкционированного доступа и гарантирует, что токен был создан именно сервером.

Для исключения атаки через перехват JWT токена использован механизм его обновления, так называемый Refresh Token. Его смысл заключается в использовании токена сессии, как основного, предоставляющего доступ в систему, но имеющего короткий срок валидности. После окончания этого периода клиенту необходимо получить новый, передавая Refresh Token. Сервер контролирует использование Refresh Token, позволяя использовать его лишь единожды. Таким образом, если один и тот же токен обновления используется повторно, то сервер предполагает попытку атаки и блокирует оба токена, заставляя реального клиента повторно пройти аутентификацию через отправку логина и пароля, а злоумышленника без валидных токенов сессии и обновления.

- 4. Проектирование системы
- 4.1. Разработка и описание АРІ для взаимодействия с сервером
- 4.2. Разработка дизайна графического интерфейса клиентского приложения
- 4.3. Разработка системы распределения прав и ролей в системе
- 4.4. Разработка обновления приложения
- 5. Разработка системы
- 5.1. Реализация АРІ
- 5.2. Реализация графического интерфейса
- 5.3. Реализация ролевого разграничения
- 5.4. Реализация генерации документов
- 5.5. Реализация обновления системы
- 6. Развертывание системы
- 7. Демонстрация работы системы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. The .NET Compiler Platform: [Электронный ресурс]. URL: https://github.com/dotnet/roslyn (Дата обращения: 09.04.2023)
- 2. ООП в картинках: [Электронный ресурс]. URL: https://github.com/AvaloniaUI/Avalonia (Дата обращения: 09.04.2023)
- 3. Пять простых шагов для понимания JSON Web Tokens (JWT): [Электронный ресурс]. // Хабр URL: https://habr.com/ru/post/340146/ (Дата обращения: 09.04.2023)