

Final Presentation Bachelor Thesis

Deep Learning for Scene Flow Estimation Using Monocular Camera and Sparse LiDAR

Name: Rishav

Email: f2016108@pilani.bits-pilani.ac.in,

rishav.rishav@dfki.de

Supervisors: Ramy Battrawy, René Schuster

Outline

- Introduction
- Motivation
- Previous Work
- Frameworks
 - Novel feature Extractor
 - DeepLiDARFlow
- Summary
- Future Work

Introduction

- Captures 3-D motion and 3-D geometry of the scene between two frames.
- 3-dimensional displacement vector of each image point
- Scene Flow: 4-D Vector at each pixel: {u,v,do,d1} if the image are calibrated & rectified.

Image credits: Wedel, Andreas, et al. "Efficient dense scene flow from sparse or dense stereo data." ECCV 2008.

Motivation

Motivation

- Image based methods depend on image quality.
- LiDAR measurements are robust
- Mutual Improvement by fusion

Goal

- End-to-End Deep Learning architecture for Scene flow
- Uses monocular images and LiDAR measurements as input.

Challenges

- Sparse LiDAR measurements
- Fusion of RGB and LiDAR data is non trivial.

Related Work

- Monocular (Image based)
 - Mono-SF [1]
 - Mono-Stixels [2]
- Stereo (Image based)
 - DWARF [3]
 - PWOC-3D [4]
 - SceneFlowNet [5]
- LiDAR only
 - FlowNet3D [6]
 - HPLFLowNet [7]
- LiDAR + RGB (monocular & stereo)
 - LiDARFlow [8]

References

- [1] F. Brickwedde, et. Al. "Mono-SF: Multi-View Geometry Meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes" (CVPR 2019)
- [2] F. Brickwedde, et Al. "Mono-Stixels: monocular depth reconstruction of dynamic street scenes (ICRA 2019)
- [3] Aleotti, et Al. "Learning end-to-end scene flow by distilling single tasks knowledge" (AAAI, 2020)
- [4] Saxena et Al, "PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation" (IV, 2019)
- [5] Ilg et. Al "Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation" (ECCV, 2018)
- [6] Liu et. Al "Flownet3d: Learning scene flow in 3d point clouds" (CVPR 2019)
- [7] Gu et. Al, "HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow Estimation on Large-scale Point Clouds" (CVPR, 2019)
- [8] Battrawy et. Al, "LiDAR-Flow: Dense Scene Flow Estimation from Sparse LiDAR and Stereo Images", (IROS 2019)

Related Work

PWOC-3D [1]

An overview

Novel Feature Extractor (DenseFPN)

Motivation

- Feature maps are basic cues of computer vision tasks
- Strong feature representations have significantly improved results.
- (Feature Pyramid Networks) FPN [1] improved results.

Dense pixel-wise matching and features

- Demands high spatial accuracy in features.
- Localization is very important

Feature pyramids

- Use information from multiple scales
- Helps in handling general problems like large motion.

Image Pyramids

Feature Pyramids

Feature Pyramid Network [1]

Idea of DenseFPN

Final Design (Ablation Next!)

DenseFPN (Ablation)

Ablation Results on PWOC-3D [3]

#of additional skip connections, Results on KITTI [2]

- ■0 (FPN [1]) ■1 (1x1, max-pool) (add) ■2 (max-pool) (con) ■2 (1x1, max-pool) (con) ■2 (3x3, stride) (add) ■2 (1x1, bi-linear) (add) ■2 (max-pool, 1x1) (add) ■2 (1x1, max-pool) (add)
- [1] Tsung-Yi Lin et al. Feature pyramid networks for object detection". In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR 2017)
- [2] Geiger et. Al, "Are we ready for autonomous driving? The KITTI vision benchmark suite" (CVPR 2015)
- [3] Saxena et Al, "PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation" (IV, 2019)

DenseFPN (Ablation)

Model size (#of parameters in millions)

[1] Saxena et Al, "PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation" (IV, 2019)

Results on State-of-the-Art Algorithms

Results on FlyingThings3D

Task	Algorithm	%change KOE	%change in EPE
Stereo Disparity	PSM-Net [1]	30 %	21%
Optical Flow	PWC-Net [2]	6 %	2.3 %
Optical Flow	LiteFlowNet [3]	8 %	8 %
Scene Flow	PWOC-3D [4]	12 %	7.5 %

References

- [1] Jia-Ren Chang et. Al, "Pyramid stereo matching network" (CVPR 2018)
- [2] Deqing Sun et AI, "CNNs for optical flow using pyramid, warping, and cost volume" (CVPR 2018)
- [3] Tak-Wai Hui, "Liteflownet: A lightweight convolutional neural network for optical flow estimation" (CVPR 2018)
- [4] Saxena et AI, "PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation" (IV, 2019)

Results on State-of-the-Art Algorithms

Results on KITTI

Task	Algorithm	%change KOE	%change in EPE
Stereo Disparity	PSM-Net [1]	15 %	0 %
Optical Flow	PWC-Net [2]	5 %	13 %
Optical Flow	LiteFlowNet [3]	8 %	5.4%
Scene Flow	PWOC-3D [4]	15.8%	6.2 %

References

- [1] Jia-Ren Chang et. Al, "Pyramid stereo matching network" (CVPR 2018)
- [2] Deqing Sun et Al, "CNNs for optical flow using pyramid, warping, and cost volume" (CVPR 2018)
- [3] Tak-Wai Hui, "Liteflownet: A lightweight convolutional neural network for optical flow estimation" (CVPR 2018)
- [4] Saxena et AI, "PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation" (IV, 2019)

 Localization! (Output from LiteFlowNet [1], top row BASELINE and bottom row DFPN)

Optical Flow

Error Map

20-pixel boundary error map

EPE: 6.4

An overview

Confidence Convolution [1]

[1] Eldesokey et.Al, "Confidence propagation through cnns for guided sparse depth regression", (PAMI 2019)

Confidence Pyramid

Every scale

Matching and Scene Flow Estimation Module

Invariance to sparsity?

- Important for generalization
- Two Strategies:
 - Removing skip connections!
 - Invariance achieved but errors too high
 - Training with variable number of points
 - Achieved Similar performances across a wide density

- [1] Mayer et al., "A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation" (CVPR 2016)
- DeepLiDARFlow (Trained with Constant Points)
- Removing skip connections from DeepLiDARFlow
- → Varying Disparity during Training of DeepLiDARFlow

DeepLiDARFlow vs MonoLiDARFlow* vs PWOC-3D [2] (KITTI 2015)

*Monocular version of LiDARFlow[1], Not yet published

^[1] Battrawy et al, "LiDAR-Flow: Dense Scene Flow Estimation from Sparse LiDAR and Stereo Images", (IROS 2019)

DeepLiDARFlow vs MonoLiDARFlow vs PWOC-3D (KITTI 2015)

Visuals (GT)

Visuals (KITTI with 88 LiDAR points (top) and 4000 points (bottom))

Conclusion

DenseFPN

- Improved the accuracies of various dense matching tasks across datasets.
- Improved the localization of features.

DeepLiDARFlow

- Novel deep learning architecture for Scene flow using Monocular camera and sparse LiDAR.
- Outperformed MonoLiDARFlow for very sparse LiDAR points
- Outperformed PWOC-3D with monocular images and 4000 LiDAR points (6% points of total density)

Future Work

- Stage wise guidance from RGB pyramid
- Depth Representation
- Fusion Strategies
- Occlusion Estimator
- Confidence Based loss

Q&A