Lista de Exercícios - Projeto e Análise de Algoritmos

Luiz Alberto do Carmo Viana

29 de novembro de 2019

Questão 1

Dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ são isomorfos se existe uma função $f: V_1 \to V_2$ tal que $\{u, v\} \in E_1$ sse $\{f(u), f(v)\} \in E_2$. Em palavras, grafos isomorfos são estruturalmente idênticos. O problema ISOMORPHIC (G_1, G_2) consiste em decidir se G_1 é isomorfo a algum subgrafo de G_2 . Mostre que ISOMORPHIC é NP-completo. Dica: talvez seja possível usar G_1 para buscar por certas estruturas dentro de G_2 .

Questão 2

Dados um subconjunto de naturais S e um natural t, SUBSET-SUM(S,t) consiste em decidir se há um subconjunto de S cuja soma dos elementos é t. Um outro problema SET-PARTITION(S) consiste em decidir se S pode ser particionado em dois subconjuntos de mesma soma. Sabendo que SUBSET-SUM é NP-completo, prove que SET-PARTITION é NP-completo.

Questão 3

O problema ${\tt HAMILTONIAN-PATH}(G)$ consiste em decidir se G possui um caminho hamiltoniano (que passa por todos os vértices). Já o problema ${\tt HAMILTONIAN-CYCLE}(G)$ consiste em decidir se G possui um ciclo hamiltoniano. Sabendo que ${\tt HAMILTONIAN-PATH}$ é ${\tt NP-completo}$, prove que ${\tt HAMILTONIAN-CYCLE}$ é ${\tt NP-completo}$. Agora faça o contrário.

Questão 4

O problema $\mathtt{HALF-SAT}(\phi)$ consiste em decidir se há uma valoração para as variáveis de uma fórmula CNF ϕ tal que exatamente metade de suas m cláusulas seja satisfeita. Certamente, $\mathtt{HALF-SAT}(\phi) = F$ se m for ímpar, e portanto essas instâncias não são interessantes. Mostre que $\mathtt{HALF-SAT}$ é NP-completo.

Questão 5

O problema HITTING-SET(S, k) consiste em decidir se, dada uma família de conjuntos $S = \{S_1, S_2, \dots, S_n\}$, existe um conjunto H com no máximo k elementos tal que $H \cap S_i \neq \emptyset$, para $1 \leq i \leq n$. Mostre que HITTING-SET é NP-completo.

Questão 6

O problema MAX-DEG-SPANNING-TREE(G,k) consiste em decidir se G possui uma árvore geradora T com $\Delta(T) \leq k$. Prove que esse problema é NP-completo. Dica: você pode admitir que HAMILTONIAN-PATH é NP-completo.

Questão 7

Dado um grafo conexo G=(V,E), um conjunto $S\subseteq V$ é dito dominante se cada vértice de G ou está em S ou tem um vizinho em S. O problema DOMINATING-SET(G,k) consiste em decidir se G possui um conjunto dominante com no máximo k vértices. Prove que esse problema é NP-completo. Dica: cobertura e dominância são conceitos muito parecidos; toda cobertura de vértices é um conjunto dominante, mas e a volta? Seria possível estender um grafo de forma que a volta também fosse verdade?