Homework: Pre-Exam Sequences and series

1a. In an arithmetic sequence, the first term is 3 and the second term is 7.

Find the common difference.

[2 marks]

1b. Find the tenth term.

[2 marks]

1c. Find the sum of the first ten terms of the sequence.

[2 marks]

2a. The first three terms of an arithmetic sequence are $u_1=0.3,\;u_2=1.5,\;u_3=2.7$.

Find the common difference.

[2 marks]

2b. Find the 30th term of the sequence.

[2 marks]

2c. Find the sum of the first 30 terms.

[2 marks]

3a. The first three terms of a geometric sequence are $u_1=0.64,\ u_2=1.6$, and $u_3=4$.

Find the value of *r*.

[2 marks]

3b. Find the value of S_6 .

[2 marks]

3c. Find the least value of n such that $S_n > 75\,000$.

[3 marks]

4a. The first three terms of a geometric sequence are $\ln x^{16}$, $\ln x^8$, $\ln x^4$, for x>0.

Find the common ratio.

[3 marks]

$$\sum\limits_{k=1}^{\infty}2^{5-k}\ln x=64$$
 .

[5 marks]

5. Consider a geometric sequence where the first term is 768 and the second term is 576.

Find the least value of n such that the nth term of the sequence is less than 7.

[6 marks]

6a. Consider the following sequence of figures.

Figure 1 contains 5 line segments.

Given that Figure n contains 801 line segments, show that n=200.

[3 marks]

6b. Find the total number of line segments in the first 200 figures.

[3 marks]

7. An arithmetic sequence has the first term $\ln a$ and a common difference $\ln 3$.

The 13th term in the sequence is $8 \ln 9$. Find the value of a.

[6 marks]

8a. The first two terms of an infinite geometric sequence, in order, are

 $2\log_2 x$, $\log_2 x$, where x > 0.

Find r. [2 marks]

8b. Show that the sum of the infinite sequence is $4\log_2 x$.

[2 marks]

8c. The first three terms of an arithmetic sequence, in order, are

$$\log_2 x,\ \log_2\left(rac{x}{2}
ight),\ \log_2\left(rac{x}{4}
ight)$$
 , where $x>0$.

Find d, giving your answer as an integer.

[4 marks]

8d. Let S_{12} be the sum of the first 12 terms of the arithmetic sequence.

Show that
$$S_{12} = 12\log_2 x - 66$$

[2 marks]

8e. Given that S_{12} is equal to half the sum of the infinite geometric sequence, find x, giving your answer in the form 2^p , where $p \in \mathbb{Q}$.