Home Depot

I am thinking!!

Marc de Groot Marta Parada Segui Patrick Tan Suzanne van den Bosch Zhuoran Liu

Thursday March 17

The data:

- product_descriptions.csv description for each product
- attributes.csv additional information for some products
- train.csv and test.csv

The goal:

- each test case consists of:
 - product_uid
 - product title
 - search query
- calculate relevance for each test case:
 - 1 irrelevant.
 - 2 Partially or somewhat relevant.
 - 3 perfect match.

Introducing Levenshtein

$$\mathit{lev}_{a,b}(i,j) = egin{cases} \mathit{max}(i,j) & \text{if } \mathit{min}(i,j) = 0 \\ \mathit{min} egin{cases} \mathit{lev}_{a,b}(i-1,j) + 1 & \\ \mathit{lev}_{a,b}(i,j-1) + 1 & \text{otherwise.} \\ \mathit{lev}_{a,b}(i-1,j-1) + 1_{(a_i
eq b_j)} & \end{cases}$$

kitten \rightarrow sitting costs 3:

- kitten → sitten (substitution of "s" for "k")
- sitten → sittin (substitution of "i" for "e")
- $lue{}$ sittin o sitting (insertion of "g" at the end).

The Approach:

- compare test/training search queries with Levehnstein
- use relevance of closest search query

The Future:

- include brand information
- implement SVM/SVR ("Do some actual machine learning")

The Problem:

- lots of messy data (typos, inconsitency, etc)
- SVM/SVR requires numbers.