# 3D Shape Representations

## Background

- Deep relationship between human visual perception & 3D representations
  - Marr's "Stages of Vision"
  - Explain visual input in a hierarchy of representations
  - 2D features -> 2.5D sketch -> 3D representation
- Ambiguity in visual input
  - Requires strong priors
  - Neural, VAE, Adversarial
- Representation level
  - How to represent the 3D shape?





## 3D representations



- Point Cloud
  - Very sparse
  - Geometrically ambiguous (no surface orientation)
  - Requires "marching cubes"
- Voxel
  - Not sparse (memory heavy)
  - Huge amount of existing machinery (Convolutions)
- Mesh
  - Very sparse
  - Surface orientation preserved
  - Limited amount of existing machinery (Topologically adaptive graph convs)
- Implicit surface representations
  - New popular method
  - Infinite detail (See also NeRF & SRN for scenes)
  - Requires "marching cubes"

## Prior work on learning 3D priors

#### Voxel based

- 3D GAN (NeurIPS 2016 -- Wu, Jiajun and Zhang, Chengkai and Xue, Tianfan and Freeman, William T and Tenenbaum, Joshua B)
- 3D Descriptor Nets (CVPR 2018 -- Xie, Jianwen and Zheng, Zilong and Gao, Ruiqi and Wang, Wenguan and Zhu, Song-Chun and Nian Wu, Ying)

#### Mesh based

No work so far on Mesh GANs or Mesh VAEs

#### Point Cloud based

• Latent 3D Points (ICML 2018 -- Achlioptas, Panos and Diamanti, Olga and Mitliagkas, Ioannis and Guibas, Leonidas J)

#### Implicit based

• IM-Net (CVPR 2019 -- Chen, Zhiqin and Zhang, Hao)

### PointNet

- Points are scattered
  - Sort the points
  - Data augmentation & train an RNN
  - Symmetric pooling function (their approach)
    - Max/Avg Pool





|                      | accuracy |
|----------------------|----------|
| MLP (unsorted input) | 24.2     |
| MLP (sorted input)   | 45.0     |
| LSTM                 | 78.5     |
| Attention sum        | 83.0     |
| Average pooling      | 83.8     |
| Max pooling          | 87.1     |

### Rotations & translations

- Ideally, geometric transformations should not change the classification of the shape
  - Learn a data-driven spatial transformation to "correct" the input
  - Spatial Transformer Networks (2015)
  - Driven by global feature





### Full Network



## Internal Sparsity

- The MAX bottleneck leads to forced sparsity
- Visualization of points that contribute to final MAX vector



### Bottleneck tradeoff



Figure 15. Effects of bottleneck size and number of input points. The metric is overall classification accuracy on Model-Net40 test set.

## Learned functions from local/global fusion



## GAN for point clouds

- Learning Representations and Generative Models for 3D Point Clouds
  - Not to be confused with "Point Cloud GAN"



## Generator in latent versus point cloud space

- Adversarial Auto Encoder (latent GAN)
  - First train an Encoder-Decoder Pair
    - Encoder is PointNet based (Max Pool)
    - Decoder generates (2048 x 3 vector, reshaped to [2048, 3])
  - Then train a generator to generate samples from latent space
  - Discriminator also in latent space
- Raw GAN
  - Takes in z (random Normal)
  - Discriminator based on Encoder-Decoder

## Training objectives

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

- Chamfer Distance (CD)
  - Does not require same number of points

- Earth Movers Distance (EMD)
  - Optimal transport based
  - Much slower to calculate but better
  - Requires same number of points

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where  $\phi: S_1 \to S_2$  is a bijection.



| Model | Type       | JSD           | MMD-   | MMD-       | COV-       | COV- |
|-------|------------|---------------|--------|------------|------------|------|
|       |            | C2049 2 year- | CD     | <b>EMD</b> | <b>EMD</b> | CD   |
| A     | MEM        | 0.017         | 0.0018 | 0.063      | 78.6       | 79.4 |
| В     | RAW        | 0.176         | 0.0020 | 0.123      | 19.0       | 52.3 |
| C     | CD         | 0.048         | 0.0020 | 0.079      | 32.2       | 59.4 |
| D     | <b>EMD</b> | 0.030         | 0.0023 | 0.069      | 57.1       | 59.3 |
| E     | <b>EMD</b> | 0.022         | 0.0019 | 0.066      | 66.9       | 67.6 |
| F     | <b>GMM</b> | 0.020         | 0.0018 | 0.065      | 67.4       | 68.9 |

Table 3. Evaluating 5 generators on the *test* split of the chair dataset on epochs/models selected via minimal JSD on the validation-split. We report: A: sampling-based memorization baseline, B: r-GAN, C: 1-GAN (AE-CD), D: 1-GAN (AE-EMD), E: 1-WGAN (AE-EMD), F: GMM (AE-EMD).