基于PSRT的窗口自适应改进

实验说明

基于PSRT的改进

之前写代码是用for实现窗口卷积的串行运行结构;后来用分组卷积实现了并行运行,但是并行的代码一开始写错了,所以这里区分开。串行、并行代码除了速度上的区别,还有SE模块参数是否窗口共享的区别。

下面是一张窗口生成的卷积核与窗口进行卷积的示意图;左下角是将窗口生成卷积核融合成一个全局卷积核,新卷积核与全图卷积。最后融合窗口卷积和全图卷积得到的feature map。模型解释里写的卷窗口、卷全图特指第二次卷积。

双分支结构 (加粗为效果相对较好的尝试, PSRT_noshuffle是baseline):

- PSRT_noshuffle: 把PSRT的shuffle都变成普通的Swin Block
- **PSRT_KAv1_noshuffle**:卷积核由池化生成,自注意力、SE计算后去卷全图,卷积核暴力升维(c->c**2),与原图重新计算卷积,1*1卷积融合得到的四张图。并行

- [code error] PSRT_KAv2_noshuffle: 把卷窗口的KA放进noshuffle的PSRT中,并行。KAv2的代码有错误,一个维度转换有问题;需要注意,没有for会比有for少三个SE,SE的参数是共享的
- PSRT_KAv3_noshuffle: 卷窗口的KA, 串行
- PSRT_KAv4_noshuffle:卷窗口的KA,窗口生成卷积核融合成一个全局卷积核(记为global kernel,1*1卷积实现),窗口卷积核与窗口卷积,全局卷积核与全图卷积,融合得到的五张图为一张图(1*1卷积)。串行
- **PSRT_KAv5_noshuffle**: 卷窗口的KA, kernels融合成global kernel, 只用global kernel与全图卷积。串行
- PSRT_KAv6_noshuffle: 卷窗口的KA, kernels融合成global kernel, 窗口核和全局核都卷全局, 然后fusion。串行
- **PSRT_KAv7_noshuffle**:基于KAv2和KAv6,尝试解决了维度转换的错误,SE的参数依然是多卷积核共享。窗口生成的卷积核与全图计算卷积,然后融合
- PSRT_KAv8_noshuffle:与KAv6思想相同,se的参数是窗口核和全局核共享
- PSRT_KAv9_noshuffle:基于KAv1,生成卷积核增加c的维度的方法改为repeat,c*2->c*c后进行一个参数为cc的linear

测试结果

PSRT模型改进的测试结果

PSRT设置bs=32, lr=1e-4, embed_dim=48

模型	SAM	ERGAS	PSNR	参数量	note
PSRT(embed_Dim=32)	-	-	-	0.248 M	-
PSRT(embed_Dim=64)	-	-	-	0.939 M	-
PSRT(embed_Dim=48)	2.2407495	2.4452974	50.0313946	0.538 M	
PSRT_noshuffle	2.1245276	2.2309420	50.4692293	0.538 M	
PSRT_KAv1_noshuffle	2.2294778	1.3029419	50.7237681	0.779 M	
PSRT_KAv2_noshuffle	2.2752936	2.0677896	49.6950313	0.854 M	
PSRT_KAv3_noshuffle	2.2756061	1.7408064	50.1445174	0.918 M	
PSRT_KAv4_noshuffle	2.1899021	2.3440072	50.2209833	1.002 M	
PSRT_KAv5_noshuffle	2.1078129	2.2032974	50.5076604	1.002 M	
PSRT_KAv6_noshuffle	4.7182505	3.9199647	40.0239899	1.054 M	
PSRT_KAv7_noshuffle	2.1232879	2.1154806	50.4642246	0.894 M	
PSRT_KAv8_noshuffle	2.1751094	2.4212308	50.3579216	0.946 M	
PSRT_KAv9_noshuffle				0.519 M	

PSRT_KAv6_noshuffle怀疑是过拟合了,2000epoch时,PSNR只有40;1999epoch时,PSNR有50.26;1998epoch时,PSNR有50.43;1500epoch时,PSNR有50.24

一些暂未尝试的改进方向

- 进入Kernel Attention前的LayerNorm去掉,保留Window Attention的LayerNorm?
- 并行代码里, SE的参数是否需要共享? 共享的话global kernel是否共享?
- 通过池化生成卷积核,卷积核缺失一个c的维度,这个维度从何而来?暴力拓展通道数、repeat, 应该有其他更好的方法吧
- 对卷积核计算自注意力和通道注意力,这里能不能只计算通道自注意力。因为3*3卷积核太小了,自注意力计算可以带来负面的影响。或者这里不计算空间自注意力,计算通道自注意力?