

Princípios da Programação Dinâmica

## **MEMOIZAÇÃO OU ITERAÇÃO?**

- Nos slides anteriores utilizados o problema do escalonamento de tarefas ponderadas para demonstrar os princípios de Programação Dinâmica.
- Também apresentamos duas perspectivas para a solução de problemas: recursivamente ou iterativamente.
- Na abordagem recursiva começamos com um algoritmo em tempo exponencial e depois utilizamos memoização para obter tempo polinomial.
- Para compreendermos o processo de Programação Dinâmica, vamos propor uma reformulação completamente equivalente do algoritmo de memorização.
- Esta nova formulação é a que melhor captura a essência da Programação Dinâmica e servirá para o desenvolvimento de algoritmos futuros.



Princípios da Programação Dinâmica

#### **O ALGORITMO:**

- A chave para o algoritmo eficiente é o vetor *M*.
- Ele representa a noção de que estamos usando um valor de soluções ótimas de subproblemas em intervalos  $\{1,2,3,...,j\}$  para cada j.
- E utiliza A.20

$$OPT(j) = \begin{cases} 0 & , se \ j = 0 \\ max(v_j + OPT(p(j)), OPT(j-1)) & , se \ j > 0 \end{cases}$$

- para definir o valor de M[j] baseado em valores que antecedem j no vetor.
- Uma vez que temos o vetor M, o problema está resolvido, pois M[n] contém o valor da solução ótima para a instância completa do problema.
- Depois utilizamos Find-Solution para obter o conjunto com todos os intervalos que compõem a solução ótima.
- O ponto que precisamos observar é que podemos diretamente computar as entradas em M via um algoritmo iterativo, ao invés de uma recursão com memorização.

- Começamos com M[0] = 0 e seguimos incrementando j.
- Cada vez que precisarmos computar M[j], simplesmente utilizamos **A.20.**
- Portanto, temos o seguinte algoritmo
   Iterative-Compute-Opt :

```
Iterative-Compute-Opt \\ M[0] = 0 \\ For \ j = 1, 2, \dots, n \\ M[j] = \max(v_j + M[p(j)], M[j-1]) \\ Endfor
```

- Lembrando apenas que assumimos que:
  - já ordenamos as requisições pelo tempo de finalização
  - Computamos os valores de p(j) para cada j.



Princípios da Programação Dinâmica

- Um exemplo da execução de Iterative-Compute-Opt é apresentado abaixo.
- O algoritmo preenche uma entrada no vetor M comparando o valor de  $v_j + M[p(j)]$  com M[j-1].



# $Iterative-Compute-Opt \\ M[0] = 0 \\ For j = 1, 2, \dots, n \\ M[j] = \max(v_j + M[p(j)], M[j-1]) \\ Endfor$

#### **ANALISANDO O ALGORITMO:**

Por analogia exata com a prova de A.22

A.22: Compute-Opt(j) computa corretamente OPT(j) para cada j = 1, 2, ..., n.

- Podemos demonstrar por indução em j que este algoritmo escreve OPT(j) numa entrada M[j].
- A.20 nos entrega o passo indutivo.
- Adicionalmente, como antes, podemos passar o vetor preenchido M para Find-Solution para obter as transações que representam o conjunto ótimo.
- Por fim, o tempo de execução de Iterative-Compute-Opt é claramante O(n), pois ele executa por n iterações e gasta O(1) em cada uma.



Princípios da Programação Dinâmica

### **IMPLEMENTAÇÃO E TEMPO DE EXECUÇÃO:**

Sort jobs by finish time and renumber so that  $f_1 \leq f_2 \leq \ldots \leq f_n$ .

Compute p[1], p[2], ..., p[n].

 $M[0] \leftarrow 0$ . previously computed values

FOR j = 1 TO n

 $M[j] \leftarrow \max \{ M[j-1], w_j + M[p[j]] \}.$ 

Utilizamos merge-sort para ordenar -  $O(n \log n)$ 

Utilizamos busca binária -  $O(n \log n)$ 

Iterative-Compute-Opt - O(n)

FIND-SOLUTION(j)

IF (j = 0)

RETURN Ø.

ELSE IF  $(w_j + M[p[j]] > M[j-1])$ 

RETURN  $\{j\} \cup \text{FIND-SOLUTION}(p[j]).$ 

**ELSE** 

RETURN FIND-SOLUTION(j-1).

Find-Solution - O(n)

• Tempo total do algoritmo de busca de valores (**Iterative-Compute-Opt**) e busca de soluções (**Find-Solution**) é  $O(n \log n)$ .



Princípios da Programação Dinâmica







Princípios da Programação Dinâmica





```
Vetor de memoizacao: [0, 2, 4, 6, 7, 8, 8]
Valor máximo considerando o conjunto ótimo de solicitacoes = 8

Requisicao incluida na solucao final:
Requisicao 1: Tempo (0-4) Valor=2
Requisicao 3: Tempo (5-7) Valor=4
Requisicao 5: Tempo (8-11) Valor=2
```



Princípios da Programação Dinâmica



Princípios da Programação Dinâmica



```
Vetor de memoizacao: [0, 5, 5, 5, 8, 8, 12, 12, 12]
Valor máximo considerando o conjunto ótimo de solicitacoes = 12
Requisicao incluida na solucao final:
Requisicao 2: Tempo (1-4) Valor=5
Requisicao 6: Tempo (5-9) Valor=7
```



Princípios da Programação Dinâmica

## CARACTERÍSTICAS BÁSICAS DA PROGRAMAÇÃO DINÂMICA

- Apresentamos duas perspectivas para a solução de problemas: recursivamente ou iterativamente.
- A abordagem iterativa é a mais utilizada na prática, devido a sua simplicidade frente ao processo recursivo.
- Porém, ambas abordagens são equivalentes conforme demonstrado.
- Para desenvolver um algoritmo baseado em programação dinâmica, precisamos de uma coleção de subproblemas derivados do problema original que satisfaça algumas propriedades básicas:
  - 1. Existe apenas um número polinomial de subproblemas.
  - 2. A solução do problema original pode ser facilmente computada das soluções dos subproblemas. (Por exemplo, o problema original pode na verdade ser um dos subproblemas.)
  - 3. Existe uma ordenação natural de "menor" para "maior" (no sentido do tamanho das recorrências) nos subproblemas, juntamente com uma recorrência de fácil computação como em (A.20 e A.21) que permite a determinação de uma solução para o subproblema de soluções para um número menor de subproblemas.
- Algumas vezes é mais fácil começar o processo de desenho do algoritmo pela formulação de subproblemas que parecem naturais e intuitivos, e então definir uma recorrência que combina esses subproblemas;
- Outras vezes, podemos começar definindo uma recorrência pela análise da estrutura da nossa solução ótima, e então determinar que subproblemas serão necessários para desenrolar a recursão.