Χώρος στηλών και μηδενοχώρος

Έστω
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 ένας $m \times n$ πίνακας και

$$c_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, c_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, c_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

οι στήλες του A ως διανύσματα του \mathbb{R}^m .

Ορισμός

Ο **χώρος στηλών** του A συμβολίζεται με Col(A) και είναι το σύνολο $Span\{\mathbf{c}_1,\mathbf{c}_2,\ldots,\mathbf{c}_n\}$.

Σ. Δημόπουλος ΜΑΣ029 1/

Είδαμε ότι το γινόμενο Α**x** εκφράζει γραμμικό συνδυασμό των στηλών του Α. Άρα:

Το γραμμικό σύστημα $A\mathbf{x} = \mathbf{b}$ είναι συμβιβαστό.

- \Leftrightarrow Η εξίσωση $x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \ldots + x_n\mathbf{c}_n = \mathbf{b}$ έχει λύση.
- \Leftrightarrow Το **b** είναι γραμμικός συνδυασμός των $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_n$.
- \Leftrightarrow **b** \in Span $\{$ **c**₁, **c**₂ $, \dots,$ **c**_n $\} = Col(A).$

Θεώρημα

Το γραμμικό σύστημα $A\mathbf{x} = \mathbf{b}$ είναι συμβιβαστό αν και μόνο αν $\mathbf{b} \in \text{Col}(A)$.

Σ. Δημόπουλος ΜΑΣ029 2 / 7

Θεώρημα

Έστω Α ένας m × n πίνακας. Τα παρακάτω είναι ισοδύναμα.

- f O Για κάθε f D f E f D το γραμμικό σύστημα f Af X f D είναι συμβιβαστό.
- $oldsymbol{Q}$ Κάθε $oldsymbol{b} \in \mathbb{R}^m$ είναι γραμμικός συνδυασμός των στηλών του A.
- Η κλιμακωτή μορφή του Α έχει ηγετικό στοιχείο σε κάθε γραμμή.

Σ. Δημόπουλος ΜΑΣ029 3 / 7

Παρατήρηση

Υπάρχει περίπτωση δύο πίνακες A, B να είναι ισοδύναμοι αλλά $\mathrm{Col}(A) \neq \mathrm{Col}(B)$.

Σ. Δημόπουλος ΜΑΣ029 4 / Τ

Υπενθύμιση: Ένα ομογενές σύστημα $A\mathbf{x}=\mathbb{O}$ είτε έχει μοναδική λύση την τετριμμένη ή έχει άπειρες λύσεις. Στην 2η περίπτωση οι λύσεις εκφράζονται ως παραγόμενος χώρος (Span).

Παράδειγμα

$$10x_1 - 3x_2 - 2x_3 = 0$$

Σ. Δημόπουλος ΜΑΣ029 5 / 7

Παράδειγμα

$$3x_1 + 5x_2 - 4x_3 = 0$$

$$-3x_1 - 2x_2 + 4x_3 = 0$$

$$6x_1 + x_2 - 8x_3 = 0$$

Σ. Δημόπουλος ΜΑΣ029 6

Ορισμός

Έστω A ένας $m \times n$ πίνακας. Το σύνολο λύσεων του ομογενούς γραμμικούς συστήματος $A\mathbf{x} = \mathbb{O}$ λέγεται μηδενικός χώρος ή μηδενοχώρος ή πυρήνας του A και συμβολίζεται με $\mathrm{Nul}(A)$.

Παράδειγμα

$$A = \begin{pmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 7 / 7