

1904
K14

KARNOPP

Action of Sea-Water
Upon Cement

Civil Engineering

B. S.

1904

UNIVERSITY OF ILLINOIS
LIBRARY

BOOK

1904

CLASS

KIA

VOLUME

267 n 89
113

ACTION OF SEA-WATER UPON CEMENT

...BY...

Edwin Benjamin Karnopp

THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE
IN CIVIL ENGINEERING

COLLEGE OF ENGINEERING
UNIVERSITY OF ILLINOIS
PRESENTED JUNE, 1904

Digitized by the Internet Archive
in 2013

<http://archive.org/details/actionofseawater00karn>

1904

K14

29504 Rev 2

UNIVERSITY OF ILLINOIS

May 27, 1904 190

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

EDWIN BENJAMIN KARNOFF

ENTITLED ACTION OF SEA WATER UPON CEMENT

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE

OF Bachelor of Science in Civil Engineering.

Ira O. Baker

HEAD OF DEPARTMENT OF

Civil Engineering

66197

RECEIVED
LIBRARY OF CONGRESS
1938

210 PAGES - 400 - 712 MESSAGES

NOV 1938 1938 1938

IN CONSIDERATION OF THE GREAT INFLUENCE WHICH THEY EXERCISE ON THE
PRESIDENTIAL ELECTIONS,

PRESIDENTIAL ELECTIONS,

THESE NOTES MUST NOT BE FORWARDED

OR COPIED

AND YOU ARE HEREBY INSTRUCTED NOT TO TAKE ANY PERTINENT OR USE THIS INFORMATION

IN YOUR POLITICAL ACTIVITIES OR IN CONNECTION WITH THE PRESIDENTIAL ELECTIONS.

REDACTED

REDACTED

TO PRESIDENTIAL ELECTIONS

50000

Introduction.

The question of the stability of hydraulic cement when exposed to the action of sea-water has always been a matter of interest to engineers. The following references to actual work will show the importance of this subject.

In the construction of a dry-dock in Japan it was decided that the concrete should not be allowed to set in sea-water, and since the stability of the copper-dam would not warrant the entire removal of the sea-water from the inside, fresh water from the city water works was allowed to flow in at the top and the sea-water was pumped out from the bottom until the

water in the afternoon was sufficient to delated. It would be thought necessary in this case is shown by the fact that the water originally contained 15,000 tons of salt water and the interchange required 300,000 tons of fresh water.

At May West is a sea-wall which is covered at high tide, and covers the tide falls small Indians are sent along the tops of the walls. After a few years a pointed blade could be easily sunk into the concrete upon which the bubbles had stood; while along the side of the wall where the sea water did not always remain in contact with the surface, the concrete is hard. The conclusion is that the sea-water in the basin is now

the top of the wall had reacted upon the cement so that
readily introduced.

At St. Augustine a wall was
built in the sea and another
was built in the air,
both at the same time and
of the same materials; also
several experimental blocks
were allowed to set in air
as well as under
placed in seawater. After
two years of exposure a
hole was drilled into the
arch which had been placed
in the air, and the air
was found hard and strong;
but an examination of the
seawall and the test blocks
showed that the cement in
the wall was soft.

Purposes of this lesson.
The above example shows
that at least some hydraulics

ements are not durable when exposed to the action of sea-water; and therefore the writer determined to investigate the cause of this deterioration. Although it is probable that short-time laboratory experiments are not giving conclusive evidence upon this question, the writer concluded to make some experiments to answer the following questions:

1. Will briquettes made with sea-water and stored in sea-water show any difference in tensile strength from those mixed with fresh water and stored in fresh water within four months?
2. Will a cement which gains its strength rapidly, indicating a high proportion of lime and alumina be acted upon more by sea-water than a cement that

5

gives its strength more slowly?

3. Will tiles which are mixed with fresh water and stored in the same for three weeks and then stored in sea-water show higher tensile strength than those mixed with and stored in sea-water from the beginning?

4. Will sea-water act relatively less upon a neat cement than upon a porous sand mixture?

The Experiments.

The sea-water used in the above experiments was obtained by dissolving sea-salt in proper proportions. The following is the standard composition of sea-water.

Water - - - - -	963.7
Iodium Chloride - - - -	28.0
Magnesium Chloride - - -	3.7
" Sulfkate - - -	2.3
Calcium Sulfkate - - -	1.4
Potassium Chloride - - -	0.8
Total	991.4

Five samples were used: two American bottom shrimps and three; one from a bottom shell; two American scallops Louisville Star and Shem. The sand was from an standard sand with no organic material in the proportion of one cement to four sand I gave as very porous mass thus allowing the water to penetrate easily. That the water might have opportunity to penetrate the briquettes and then be replaced by a current of water, the same was continued over ten days or two weeks, the briquette left to dry over night and the same refilled next day. This was done always at the same time for all briquettes both sea-water and sea-water and meat and sand.

The lower degree of elasticity

7

for the meat cement mortar
was determined by adding
the cement.

The sift sand specimens were
mixed with ten percent of
water - no sand or silt
matter being retained,
as shown in Table I. The
specimens were then dried
down and the specimens, ^{were} reduced
by hand care being taken to
secure uniformity. They were
then laid out of the form on
each water and part of the
time in sea-water - all as
stated in Tables I and II. The
purpose of the sea-water
tests was to establish a
standard from which the
action of the salts could
be measured. The specimens
were broken at the ages
indicated in the tables. The
results in the tables come
[#]Baker's Masonry Instruction, 9th edition, p. 69.

2

day out for a walk with
one of the big otters. The
water was still cold and
two months ago the average
of the big otters and the
adults were seen on the river.
The names of four big otters.

TABLE I.

TENSILE STRENGTH OF NEAT CEMENT BRIOUETTES.

POUNDS PER SQUARE INCH.

Name of Cement.	Kind of Water.		Age when broken.				
	Mixed	STORED	1 day	7 days.	3 wks.	1 mns	4 mns
CHICAGO AA PORTLAND.	Fresh.	Fresh.	100	553	755	744	615
	Fresh.	{Fresh-3wks. then Sea.	—	—	—	757	624
	Sea.	Sea.	77	618	761	440	822
ATLAS PORTLAND.	Fresh.	Fresh	59	552	716	702	630
	Fresh.	{Fresh-3wks. then Sea	—	—	—	604	705
	Sea.	Sea.	71	603	659	206	407
ALSEN PORTLAND.	Fresh.	Fresh.	—	494	581	580	679
	Fresh.	{Fresh-3wks. then Sea.	—	—	—	645	324*
	Sea.	Sea.	—	486	641	599	614
AKRON NATURAL.	Fresh.	Fresh.	0	134	200	334	394
	Fresh.	{Fresh-3wks. then Sea.	—	—	—	324	389
	Sea.	Sea.	0	20	52	114	204
LOUISVILLE STAR NATURAL.	Fresh.	Fresh.	—	136	127	164	299
	Fresh.	{Fresh-3wks. then Sea.	—	—	—	165	351
	Sea.	Sea.	—	103	113	148	205

* The water in which these briquettes were immersed evaporated, and they stood in air for an unknown time.

TABLE II.

RESISTANCE OF 1:4 MORTAR BRIGUETTES.

POUNDS PER SQUARE INCH.

Name of cement.	Kind of water.		Age when tested.				
	Mixed.	Stored.	1 day.	7 days.	3 wks.	2 mos.	4 mos.
CHICAGO AA PORTLAND.	Fresh.	Fresh.	0	90	122	141	162
	Fresh.	{ Fresh-3wks then Sea.	—	—	—	163	181
	Sea.	Sea.	0	82	99	134	174
ATLAS PORTLAND.	Fresh.	Fresh.	0	75	115	142	170
	Fresh.	{ Fresh-3wks then Sea.	—	—	—	141	182
	Sea.	Sea.	0	61	106	146	184
ALSEN PORTLAND.	Fresh.	Fresh.	0	67	138	141	162
	Fresh.	{ Fresh-3wks then Sea.	—	—	—	129	149
	Sea.	Sea.	0	106	126	147	152
LOUISVILLE STAR NATURAL.	Fresh.	Fresh.	0	0	30	59	83
	Fresh.	{ Fresh-3wks then Sea.	—	—	—	59	100*
	Sea.	Sea.	0	0	32	76	149

* The water in which these briquettes were immersed evaporated, and they stood in air for an unknown time.

It remains to be seen whether
the data in Table I and II
give any light as to the following
questions stated on pages four
and five.

Will briquettes made with
sea-water and stored in sea-
water show any difference in
tensile strength from those
mixed with fresh water and
stored in fresh water, within
four months?

This question is to be
answered from a comparison
of the first and last lines
for each cement.

The results for neat Chicago AA
are as follows:

	1 day	7 days	3 wks.	2 mos.	4 mos.
Fresh	100	553	755	744	615
Sea	77	618	761	440	822

The most remarkable fact about
these numbers is the surprisingly
low result for the sea-water
briquettes at two months. The

writer can not understand the cause of this anomaly, as all of the sea-water briquettes were made at the same time and were stored in the same tray. A similar discrepancy, but of the obverse character, exists for the results at four months which is inexplicable. Omitting the values for the two-months and the four-months tests as being unreliable the remainder of the results do not differ sufficiently to warrant any definite conclusion.

The results for cement Altona Portland are:

	1 day.	7 days.	3 mos.	2 mos.	4 mos.
Fresh.	51	552	716	702	630
Sea	71	603	659	206	407

The noticeable feature of these results is the very low value for sea-water briquettes at two months and at four months.

13.

The writer can not conceive why
any hygroscopic to account for
this inconsistent result. This
must be due to some undetected
error in marking or breaking
the specimens; although the
writer can not see how this
is possible, since all of the
fresh water were made at one
time and all of the sea-water
brigarettes at another time.

The results for neat iron
Portland are:

	day	7 days	sober	wet
Fresh	410	571	530	407
Sea	480	601	571	411

The differences in this series
are not sufficient to warrant
any definite conclusions as
to the effect of sea-water when
cement particularly in view
of the very varied discrepancies
for the two succeeding elements.

The results for briquettes of
Akron natural cement made with

and end with sea-water are,
as follows:

	1 day	7 days	3 weeks	2 mos.	4 mos.
Fresh	136	127	161	271	
Sea	0	20	52	114	204

These results seem to indicate
that sea-water materially weakens
the cement at all ages. In a
rough way the same is true; it
decreases with the age of the
brignette. The fact that the
difference is so great at the
earliest age and continually
decreases probably indicates
some error in the experiments.

For the Louisville Star natural
the corresponding results are:

	1 day.	7 days.	3 weeks.	2 mos.	4 mos.
Fresh	-	136	127	161	271
Sea	-	103	113	148	205

These show that at all ages
the sea-water decreases the strength.
The difference being greatest at
the extreme ages probably
indicates considerable error in

15

the experiments.

It is scarcely worth while to examine in detail the corresponding results in Table II, since a usual impression shows that the abrading effect of sea-water is of its variable sometimes strengthening and sometimes weakening, and since the effect of sea-water is in no case continuous in one direction, these results seem to show that the experiments were not accurate enough to determine such an uncertain function.

2. The second question proposed for investigation is: "Will a cement which gains its strength rapidly, indicating a high proportion of lime and alumina be acted upon more by sea-water than a cement that gains its strength more slowly?" Since

in discussing question one it was concluded that the experiments were too inaccurate to show whether sea-water had any effect upon cement, it is clearly not possible from these experiments to show whether sea-water has different effects upon different portlands or different natural cements.

3. The third question was: "Will briquettes mixed with fresh water and stored in the same for three weeks and then stored in sea-water show higher tensile strength than those mixed with and stored in sea-water from the beginning?" To answer this question requires a comparison in Table I and II of the second and third lines for each of the several cements. Such a comparison shows

17.

results erratic enough as to prove only that the experiments are too crude to detect such an effect - if one exists at all.

4. The fourth question is: "Will sea-water act relatively less upon a neat cement than upon a porous sand mixture?" The answer to this question involves a comparison of the differences between the results in the first and last lines of each cement in Table I with the like differences in Table II. Even a casual comparison shows that these differences are too erratic to warrant any conclusions.

UNIVERSITY OF ILLINOIS-URBANA

3 0112 086824346