# Kombinatoryka & teoria grafów

by a fish

21.03.2137



## SYLABUS - teoria grafów:

- 1. Basic concepts: graphs, paths and cycles, complete andbipartite graphs
- 2. Matchings: Hall's Marriage theorem and its variations
- 3. Forbidden subgraphs: complete bipartite and r-partite subgraphs, chromatic numbers, Tur"an's thorem, asymptotic behaviour og edge density, Erd"os-Stone theorem
- 4. Hamiltonian cycles (Dirac's Theorem), Eulerian circuits
- 5. Connectivity: connected and k-connected graphs, Menger's theorem
- 6. Ramsey theory: edge colourings of graphs, Ramsey's theorem and its variations, asymptotic bounds on Ramsey numbers
- 7. Planar graphs and colourings: statements of Kuratowski's and Four Colour theorems, proof of Five Colour theorem, graphs on other surfaces and Euler chracteristics, chromatic polynomial, edge colourings and Vizing's theorem
- 8. Random graphs: further asymptotic bounds on Ramsey numbers, Zarankiewicz numbers and their bounds, graphs of large firth and high chromatic number, cmplete subgraphs in random graphs.
- 9. Algebraic methods: adjavenvy matrix and its eigenvalues, strongly regular graphs, Moore graphs and their existence.

# Contents

| 1 | Structural properties       | 5 |
|---|-----------------------------|---|
|   | 1.1 Basic definitions       | 5 |
|   | 1.2 Hall's Marriage Theorem | 6 |

### Structural properties

#### 1.1 Basic definitions

Graph - an ordered pair G = (V, E):  $\hookrightarrow$  vertices := V [singular: vertex]  $\hookrightarrow$  edges := E,  $\{v, w\} := vw$ 

For an edge vw,  $v \neq w$  we say that v, w are its endpoints and that it is incident to v (or w).

Dla krawedzi vw,  $v \neq w$  mowimy, ze v,w sa jej koncami i ze jest krawedzia padajaca na v (lub w).

Graphs G and H are isomorfic (G  $\simeq$  H) if there exists  $f: V(G) \xrightarrow[1-1]{on} V(H)$  such that  $(\forall v, w \in V(G)) \lor w \in E(G) \iff f(v)f(w) \in E(H)$ 

Meaning that edges are like an operation on a group of vertices

G is a subgraph of H  $[G \leq H]$  if  $V(G) \subseteq V(H)$ and  $E(G) \subseteq E(H)$ .

If G is H-free if it is has no subgraphs isomorfphic to H.

Grafy G i G sa izomorficzne, jezeli istnieje  $f: V(G) \xrightarrow{1} -1] naV(H) takie, ze$ 

 $(\forall v, w \in V(G)) vw \in E(G) \iff f(v)f(w) \in E(H)$ 

G jest podgrafem H  $[G \le H]$  jezeli  $V(G) \subseteq V(H)$ oraz  $E(G) \subseteq E(H)$ .

G jest H-free (wolny od H?), jezeli nie ma podgrafow izomorficznych z H.

A cycle of length  $n \geq 3$  [C<sub>n</sub>] is a graph with vertices

$$V(C_n) = [n]$$

and edges:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

A path of length  $n - 1 [P_{n-1}]$  is a graph with vertices

$$V(P_{n-1}) = [n]$$

and edges

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

Cykl dlugosci n  $\geq$  3 [C<sub>n</sub>] to graf z wierzcholkami

$$V(C_n) = [n]$$

i krawiedziami:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

Sciezka dlugosci n - 1  $[P_{n-1}]$  to graf z wierzcholkami

$$V(P_{n-1}) = [n]$$

i krawedziami

$$E(P_{n-1}) = \left\{ \, i \, (\, i \, + 1 \,) \ : \ 1 \leq i \leq n-1 \, \right\}.$$

An induced by  $A \subseteq V(G)$  subgraph of G is  $G[A] = (A, E_A)$ 

A connected component of G is a subgraph  $G[W] \leq G$  where  $W \subseteq V$  is an equivalence class under  $\approx$  given by

 $v \approx w \iff \text{exists a path } v...w \text{ in } G$ 

A graph is connected if  $v \approx w$  for every  $v, w \in$ V (G has at most one connected component).

If v is a vertex in graph G, we say that its neighbourhood is  $N_G(v) = \{w \in G : vw \in E(G)\}.$ Furthermore, the degree of v is  $|N_G(v)|$ .

If 
$$A \subseteq V$$
, then  $N(A) := \bigcup_{v \in A} N(v)$ .

We define:

- $\hookrightarrow$  minimal degree  $\delta(G) = \min_{v \in G} d(v)$
- $\hookrightarrow$  maximal degree  $\Delta(G) = \max_{v \in G} d(v)$
- $\hookrightarrow$  average degree  $d(G) = \frac{\sum d(v)}{|G|}$ .

If there exists an r > 0 such that

$$\delta(G) = \Delta(G) = d(G) = r$$

then we say that the graph is r-regular or, more generally, it is regular for some r.

Handshaking Lemma: for any graph G we have  $e(G) = \frac{1}{2} \sum d(v) = \frac{|G|}{2} d(G)$ 

### 1.2 Hall's Marriage Theorem

Graph G is bipartite with vertex classes U and W if  $V = U \cup W$  so that every edge has form uw for some  $u \in U$  and  $w \in W$ .

 $\ensuremath{\mathtt{G}}$  is bipartite iff it has no cycles of odd length.

Graf G jest dwudzielny z klasami wierz-cholkow U i W, jesli V = U  $\cup$  W takimi, ze kazda krawedz jest formy uw dla pewnych u  $\in$  U oraz w  $\in$  W.

G jest dwudzielny wtw kiedy nie ma cykli o nieparzystej dlugosci.

[ 💥 ]

 $\Longrightarrow$ 

Let U, W be the vertex classes and  $v_1, v_2, \ldots, v_n, v_1$  be a cycle in G. WLG suppose that  $v_1 \in U$ . Then  $v_2 \in W$  etc. Specifically we have  $v_i \in U$  if i is odd and  $v_i \in W$  if i is even. Then, we have  $v_n v_i$ , so n must be even.

 $\Leftarrow$ 

Suppose G has no cycles of odd length. WLOG, assume that  $V(G) \neq \emptyset$  and that G is connected, because G will be bipartite if all its connected components are bipartite. Fix  $v \in G$  and for all other  $w \in G$  define distance dist(v,w) as the smallest  $n \geq 0$  such that there exists a path  $v \dots w$  in G of length n.

Now, let  $V_n := \{ w \in G : dist(v, w) = n \}$  and set

$$U = V_0 \cup V_2 \cup V_4 \cup \dots$$
$$W = V_1 \cup V_3 \cup V_5 \cup \dots$$

We want to show that there are no edges in G of the form v'v'' where  $v',v''\in U$  or  $v',v''\in W$ . Suppose that  $v'v''\in E(G)$  with  $v'\in V_m$ ,  $v''\in V_n$  and  $m\leq n$ . Then, we have a path

$$v \dots v'v'' \in G$$

of length m+1, implying that

$$n \in \{m, m+1\}.$$

Supose that n=m. Let  $v_0'v_1'\ldots v_m'$  and  $v_0''v_1''\ldots v_m''$  be paths in G with  $v=v_0'=v_0''$ ,  $v'=v_m'$  and  $v''=v_m''$ . Note that  $v_i'$ ,  $v_i''\in V_i$  for  $0\leq i\leq m$ . Let  $k\geq 0$  be largest such that

$$v'_k = v''_k$$

and note that  $k \le m-1$  as  $v' \ne v''$ . Then

$$v'_k v'_{k+1} \dots v'_m v''_m v''_{m-1} \dots v''_k$$

is a cycle of odd length, which is a contradiction.

Therefore, we can only have n=m+1 and then exactly one of n,m is even meaning that exactly one of v' and v'' is in U as required for G to be bipartite.

Niech U,W beda klasami wierzcholkow oraz niech  $v_1,v_2,\ldots,v_n,v_1$  niech bedzie cyklem w G. BSO  $\texttt{zalozmy, ze} \ \ \texttt{v}_1 \ \in \ \ \texttt{U}. \quad \ \texttt{W} \ \ \texttt{takim} \ \ \texttt{razie, v}_2 \ \in \ \ \texttt{W} \ \ \texttt{etc.} \quad \ \texttt{W} \ \ \texttt{szczegolnosci, mamy} \ \ \texttt{v}_i \ \in \ \ \texttt{U} \ \ \texttt{jezeli} \ \ i \ \ \texttt{jest}$ nieparzyste oraz  $v_i \in W$  jezeli i jest parzyste. W takim razie, skoro  $v_nv_1$ , to n musi byc parzyste.

Zalozmy, ze G nie ma cykli o nieparzystej dlugosci. BSO zalozmy, ze  $V(G) \neq \emptyset$  i ze G jest spojny, poniewaz G bedzie dwudzielny, wtw gdy wszystkie jego skladowe spojne (????) beda dwudzielne. Ustalmy  $v \in G$  i dla kazdego innego  $w \in G$  zdefiniujmy dystans dist(v, w) jako najmniejsze n $\geq$ 0 takie, ze istnieje sciezka v...w w G o dlugosci n.

Niech  $V_n := \{w \in G : dist(v, w) = n\}$  i zbiory

$$U = V_0 \cup V_2 \cup V_4 \cup \dots$$
$$V = V_1 \cup V_3 \cup V_5 \cup \dots$$

Chcemy pokazac, ze nie istnieja w G krawedzie postaci v'v'', gdzie  $v',v''\in U$  lub  $v',v''\in W$ . Zalozmy, ze  $v'v'' \in E(G)$  z  $v' \in V_m$ ,  $v'' \in V_n$  oraz  $m \le n$ . Wtedy istnieje sciezka

$$v\dots v'v''\in G$$

dlugosci m + 1, co implikuje, ze

$$n \in \{m, m+1\}.$$

Zalozmy, ze n = m. Niech  $v_0'v_1'\ldots v_m'$  oraz  $v_0''v_1''\ldots v_m''$  sa sciezkami w G takimi, ze  $v=v_0'v_0''$ ,  $v'=v_m'$  oraz  $v''=v_m''$ . Zauwazmy, ze  $v_1'$ ,  $v_1''\in V_1$  dla  $0\leq i\leq m$ . Niech  $k\geq 0$  bedzie najwiksze takie, ze

$$v'_k = v''_k$$

i zauwazmy, ze k  $\leq$  m - 1 poniewaz  $v' \neq v''$ . Wtedy

$$v'_{k}v'_{k+1}...v'_{m}v'''_{m}v'''_{m-1}...v''_{k}$$

jest cyklem o nieparzystej dlugosci, co daje nam sprzecznosc.

W takim raize, mozemy miec tylko n = m + 1 i wtedy dokladnie jedno z n,m moze byc parzystem, co daje nam dokladnie jedno z v' i v'' w U tak, jak jest wymagane zeby to byl graf dwudzielny.

 ${\tt W}' \subseteq {\tt W}$ , a partial matching in  ${\tt G}$  from  ${\tt W}'$  to  ${\tt M}$  oraz  ${\tt W}' \subseteq {\tt W}$ , wtedy czesciowe skojarzenie w  ${\tt G}$ 

$$\{w \lor_{W} : w \in W'\} \subseteq E(G)$$

for some  $v_w$   $\in$  M such that w  $\neq$  w' $v_w \neq v_{w'}$ . A partial matching from W to M is called a matching.

Sufficient condition:

$$|N(A)| \ge |A| \quad (\clubsuit)$$

for every  $A \subseteq W$ 

If G is a bipartite graph with V = W  $\cup$  M and Jesli G jest grafem dwudzielnym z V = W  $\cup$  M z W' do M to

$$\{w \lor_w : w \in W'\} \subseteq E(G)$$

dla pewnych  $v_w$   $\in$  M takich, ze w  $\neq$  w'  $\Longrightarrow$  $v_w \neq v_{w'}$ . Czesciowe kojarzenie z W do M jest nazywane kojarzeniem.

Wystarczajacy warunek:

$$|N(A)| \ge |A| \quad (\clubsuit)$$

dla kazdego  $A \subseteq W$ 

A bipartite graf G contains a matching from W to M iff (G, W) satisfies Hall's condition ( 👛 ) .

Dwudzielny graf G zawiera kojarzeniem iff gdy (G, W) zadowala warunek Halla (🖐).

Trivial.

Using induction on |W|. For |W| = 0, 1 it is trivial.

We gonna break it into parts: |N(A)| > |A| and |N(A)| = |A|

Suppose that |N(A)| > |A| for every non-empty subset  $A \subsetneq W$ . Take any  $w \in W$  and  $v \in N(w)$  and construct a new graph

$$G_{\emptyset} = G - \{w, v\}.$$

For any non-empty  $B \subseteq W - \{w\}$  we have

$$N_{G_{o}}(B) = N_{G}(B) - \{v\}$$

and therefore

$$|N_{G_{\Omega}}(B)| \ge |N_{G}(B)| - 1 \ge |B|$$

and so  $(G_0, W - \{w\})$  satisfies Hall's condition. From induction we have a matching P in  $G_0$  from  $W - \{w\}$  to  $M - \{v\}$  and so  $P \cup \{wv\}$  is a matching from W to M.

Now, suppose that |N(A) = |A| for some non-empty subset  $A \subsetneq W$ . Let

$$G_1 = G[A \cup N(A)]$$

and

$$g_2 = G[(W-A) \cup (M-N(A))].$$

We will show that both those graphs satisfy Hall's condition. Let us take any B  $\subseteq$  A in G1. We have

$$N_G(B) \subseteq N_G(A) \subseteq V(G_1)$$

$$|N_{G_1}(B)| = |N_G(B)| \ge |B|$$

and so graph  $G_1$  satisfies Hall's condition.

Now, let us take any  $B \subseteq W - A$  in  $G_2$ . We know that  $N_{G_2}(B) \subseteq M - N(A)$  so

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \ge |N_G(A \cup B)| - |N_G(A)| \ge |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

Therefore, graph  $G_2$  also satisfies Hall's condition.

Using inductive hypothesis, we have that there exists a matching  $P_1$  in  $G_1$  and a matching  $P_2$  in  $G_2$ . The first one is from A to  $N_G(A)$  while the second is from W - A to M -  $N_G(A)$ , so they are disjoint. Therefore,  $P_1 \cup P_2$  is a matching in G from W to M.



 $\Longrightarrow$ 

Trywialne.

 $\Leftarrow$ 

Uzyjemy indukcji na |W|. Dla |W| = 0,1 jest trywialne.

Podzielimy dowod na dwie czesci: |N(A)| > |A| oraz |N(A)| = |A|.

Zalozmy, że |N(A)| > |A| dla kazdego niepustego podzbioru  $A \subsetneq W$ . Wezmy dowolne  $w \in W$  oraz  $v \in N(w)$  i skonstruujmy nowy graf

$$G_{\emptyset} = G - \{w, v\}.$$

Dla kazdego niepustego  $B \subseteq W - \{w\}$  mamy

$$N_{G_{\varnothing}}(B) = N_{G}(B) - \{v\}$$

i w takim razie

$$|N_{G_0}(B)| \ge |N_G(B)| - 1 \ge |B|,$$

czyli  $(G_0,W-\{w\})$  spelnia warunek Halla. Z zalozenia indukcyjnego istnieje kojarzenie P w  $G_0$  z  $W-\{w\}$  do  $M-\{v\}$ , w takim razie  $P\cup\{wv\}$  jest kojarzeniem z W do M.

Zalozmy teraz, ze |N(A) = A| dla pewnego niepustego podzbioru  $A \subseteq W$ . Niech

$$G_1 = G[A \cup N(A)]$$

oraz

$$g_2 = G[(W-A) \cup (M-N(A))].$$

Pokazemy, ze oba te grafy zaspokajaja warunek Halla. Wezmy dowolny  $B \subseteq A \ w \ G_1$ . Mamy

$$N_{G}(B) \subseteq N_{G}(A) \subseteq V(G_{1})$$

$$|N_{G_1}(B)| = |N_G(B)| \ge |B|$$

a wiec graf  $G_1$  zaspokaja warunek Halla.

Teraz, wezmy dowolny  $B \subseteq W - A$  w  $G_2$ . Wiemy, ze  $N_{G_2}(B) \subseteq M - N(A)$ , a wiec

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \geq |N_G(A \cup B)| - |N_G(A)| \geq |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

W takim razie  $G_2$  spelnia warunek Halla.

Z zalozenia indukcyjnego wiemy, ze istnieje kojarzenie  $P_1$  w  $G_1$  oraz  $P_2$  w  $G_2$ . Pierwsze jest z A do  $N_G(A)$ , natomiast drugie jest z W-A do M- $N_G(A)$ , czyli sa rozlaczne. W takim razie  $P_1 \cup P_2$ jest kojarzeniem w G z W do M.

Let G be a finite group and let H  $\,\leq\,$  G be a  $\,$  Niech G bedzie skonczona grupa i niech H  $\,\leq\,$  G subgroup with  $\frac{|G|}{|H|} = k$ , then  $g_1H \cup \ldots \cup g_kH = G = Hg_1 \cup \ldots \cup Hg_k$ for some  $g_1, \ldots, g_k \in G$ .

bedzie podgrupa z  $\frac{|G|}{|H|} = k$ , wtedy  $g_1H \cup \ldots \cup g_kH = G = Hg_1 \cup \ldots \cup Hg_k$ fdla pewnych  $g_1, \ldots, g_k \in G$ .