$2 \, \text{Доп1}$ (7). Существование нелинейной аддитивной функции, т.е. такой функции f, что f(x + y) = f(x) + f(y) $\forall x; y \in \mathbb{R}$, но f(x) не является умножением на константу.

Линейно независимое множество векторов называется *базисом* Гамеля (или просто *базисом*) данного пространства, если любой вектор представим в виде конечной линейной комбина- ции элементов этого множества.

Теорема. Существует (всюду определённая) функция $f : \mathbb{R} \to \mathbb{R}$, для которой f(x + y) = f(x) + f(y) при всех x и y, но которая не есть умножение на константу.

▲ Рассмотрим $\mathbb R$ как векторное пространство над полем $\mathbb Q$. В нём есть базис Гамеля. Пусть α — один из векторов базиса. Рассмотрим функцию f, которая c каждым числом x (рассматриваемым как вектор в пространстве $\mathbb R$ над полем $\mathbb Q$) сопоставляет его α -координату (коэффициент при α в единственном выражении x через векторы базиса). Эта функция линейна над $\mathbb Q$, поэтому f(x+y)=f(x)+f(y) $\forall x,y\in\mathbb R$. Она отлична от нуля $(f(\alpha)=1)$ и принимает лишь рациональные значения, поэтому не может быть умножением на константу. \blacksquare

P.S. \mathbb{R} как векторное пространство над полем \mathbb{Q} : \mathbb{R} замкнуто относительно сложения и домножения на рациональный коэффициент; можно считать это векторным пространством. Базисом будет $<1;\sqrt{2};\sqrt{3};\sqrt{5};\sqrt{6},\cdots>$.