Today's Roadmap

Probability and Statistics

Axioms of Probability

Definition: A function Pr that assigns a real number Pr(A) to each event A is a probability distribution if it satisfies the following three axioms:

Axiom 1: $Pr(A) \ge 0$, for every A.

Axiom 2: Pr(S) = 1.

Axiom 3: If A_1, A_2, \ldots are disjoint then,

$$Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} Pr(A_i)$$

.

Axioms of Probability

Definition: A function Pr that assigns a real number Pr(A) to each event A is a probability distribution if it satisfies the following three axioms:

Axiom 1: $Pr(A) \ge 0$, for every A.

Axiom 2: Pr(S) = 1.

Axiom 3: If A_1, A_2, \ldots are disjoint then,

$$Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} Pr(A_i)$$

List of all possible outcomes with their associated probabilities.

Today's Roadmap

Introduction to Random Variables

- ullet Consider some experiment for which the sample space is S
- A real-valued function that is defined on S is called a random variable
- ullet A random variable X is a random process with a numerical outcome.

Random Variables

ullet We can determine a probability distribution for the possible values of a random variable X

Random Variables

- ullet We can determine a probability distribution for the possible values of a random variable X
- ullet The collection of all these probabilities is the distribution of X

Random Variables

Probability distribution for the sum of two dice:

Allows for computation of probabilities of events.

Distribution Functions

• Given a random variable X we define the cumulative distribution function or CDF is the function $F_X:\mathbb{R}\to[0,1]$ defined by

$$F_X(x) = Pr(X \le x)$$

Distribution Functions

• Given a random variable X we define the cumulative distribution function or CDF is the function $F_X:\mathbb{R}\to[0,1]$ defined by

$$F_X(x) = Pr(X \le x)$$

 The CDF effectively contains all the information about the random variable.

Types of Random Variables

 Discrete: finite or countable list of possible values; probability mass function (pmf) assigns a probability to each value

$$f_X(x) = Pr(X = x)$$

 Continuous: taking any numerical value in an interval; probability density function (pdf) assigns a probabilities to intervals

$$Pr(a \le X \le b) = \int_a^b f_X(x) dx$$

Discrete Random Variables

• We say X has a discrete distribution or that X is a discrete random variable if X can take only a countable number k of different values x_1, \ldots, x_k

Discrete Random Variables

- We say X has a discrete distribution or that X is a discrete random variable if X can take only a countable number k of different values x₁,...,x_k
- If a random variable X has a discrete distribution, the probability function or probability mass function is defined as the function f such that for every real number x,

$$f(x) = Pr(X = x)$$

Suppose the value of a random variable X is equally likely to be each of k integers $1, 2, \ldots, k$.

Suppose the value of a random variable X is equally likely to be each of k integers $1, 2, \ldots, k$.

What is the probability mass function (pmf) of X?

Suppose the value of a random variable X is equally likely to be each of k integers $1, 2, \ldots, k$.

What is the probability mass function (pmf) of X?

$$f(x) = \begin{cases} \frac{1}{k} & x = 1, 2, \dots, k \\ 0 & otherwise \end{cases}$$

Suppose the value of a random variable X is equally likely to be each of k integers $1, 2, \ldots, k$.

What is the probability mass function (pmf) of X?

$$f(x) = \begin{cases} \frac{1}{k} & x = 1, 2, \dots, k \\ 0 & otherwise \end{cases}$$

This is discrete distribution is called the uniform distribution on the integers.

Continuous Random Variables

A random variable has a continuous distribution if there exists
a nonnegative function f defined on the real that such that for
every subset A of the real line the probability that X takes on
a value in A is the integral of f over the set A.

Continuous Random Variables

- A random variable has a continuous distribution if there exists
 a nonnegative function f defined on the real that such that for
 every subset A of the real line the probability that X takes on
 a value in A is the integral of f over the set A.
- We will primarily be concerned with sets that are intervals:

$$Pr(a < X < b) = \int_{a}^{b} f(x)dx$$

- The function f is called the probability density function (pdf) of X
- f must satisfy the following $f(x) \ge 0$ for all x and

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Continuous Random Variables Example

Suppose that X has pdf

$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Continuous Random Variables Example

Suppose that X has pdf

$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

X is said to have a Uniform(0,1) distribution, this situation captures the idea of choosing a point at random between 0 and 1.

Expectation of Random Variables

 \bullet The expectation or mean of a random variable X is the average value of X

Definition: The expected value of X is defined to be

$$E(X) = \begin{cases} \sum_{x} x f(x) & \text{if } X \text{ is discrete} \\ \int x f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

 \bullet We often refer to the expected value of a random variable as μ

Expectation Example

Suppose we flip a fair coin two times. Let X be the number of heads. What is the expected value of X?

E.S. Spiro

Expectation Example

Suppose we flip a fair coin two times. Let X be the number of heads. What is the expected value of X?

$$E(X) = \sum_{x} x f(x) = (0 \times f(0)) + (1 \times f(1)) + (2 \times f(2))$$

Expectation Example

Suppose we flip a fair coin two times. Let X be the number of heads. What is the expected value of X?

$$E(X) = \sum_{x} x f(x) = (0 \times f(0)) + (1 \times f(1)) + (2 \times f(2))$$
$$(0 \times 1/4) + (1 \times 1/2) + (2 \times 1/4) = 1$$

Random Variables in Practice

Any numerical quantity that does not have a fixed value and has a distribution function associated with it becomes a RV.

Today's Roadmap

Distributions of Random Variables

- Normal distribution: symmetric, unimodal
- Bernoulli distribution: success/failure
- Geometic distribution: success on nth trial
- Binomial distribution: k successes in n trials
- Neg. binomial distribution: kth success on nth trial
- Poisson distribution: k rare events

The Normal Distribution

• Many variables are nearly normal, none are exactly normal

Normal Distribution Example

The Normal (Gaussian) Distribution

• A random variable X has a normal distribution with parameters μ and σ^2 if

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

• We write $X \sim N(\mu, \sigma^2)$

The Normal Distribution: Z scores

 The Z score of an observation is the number of standard deviations it falls above/below the mean.

$$Z = \frac{x - \mu}{\sigma}$$

Use this idea to find the probability for a particular observation
 how likely/extreme is that observation?

Z scores: Self Test

Based on a sample of 100 men, the distribution of heights of male adults between ages 20 and 62 in the US is nearly normal with a mean of 70 inches and a s.d. of 3.3 in.

Mike in 5'7" and Jim is 6'4".

- What is Mike's height percentile?
- What is Jim's percentile?
- What is the probability that a randomly chosen male in class is taller than Jim?

Hint: Use the pnorm() function in R.

Z scores: Self Test

What is Mike's height percentile?

Z scores: Self Test

What is Mike's height percentile?

$$Z_{Mike} = \frac{67 - 70}{3.3} = -.91 \Rightarrow 0.1814$$

What is Mike's height percentile?

$$Z_{Mike} = \frac{67 - 70}{3.3} = -.91 \Rightarrow 0.1814$$

• What is Jim's percentile?

What is Mike's height percentile?

$$Z_{Mike} = \frac{67 - 70}{3.3} = -.91 \Rightarrow 0.1814$$

What is Jim's percentile?

$$Z_{Jim} = \frac{76 - 70}{3.3} = 1.82 \Rightarrow 0.9656$$

What is Mike's height percentile?

$$Z_{Mike} = \frac{67 - 70}{3.3} = -.91 \Rightarrow 0.1814$$

What is Jim's percentile?

$$Z_{Jim} = \frac{76 - 70}{3.3} = 1.82 \Rightarrow 0.9656$$

 What is the probability that a randomly measure male in class is taller than Jim?

What is Mike's height percentile?

$$Z_{Mike} = \frac{67 - 70}{3.3} = -.91 \Rightarrow 0.1814$$

What is Jim's percentile?

$$Z_{Jim} = \frac{76 - 70}{3.3} = 1.82 \Rightarrow 0.9656$$

 What is the probability that a randomly measure male in class is taller than Jim?

$$1 - .9656 = 0.344$$

The Standard Normal Distribution

- If $\mu = 0$ and $\sigma^2 = 1$ we say that X has a standard normal distribution
- ullet We use Z to denote a random variable with a standard normal distribution
- The standard normal distribution comes up so frequently we have special symbols to denote its pdf $\phi(z)$ and cdf $\Phi(z)$

Important Facts about Normal Distribution

There is no closed form expression for $\Phi(z)$, but we can rely on these facts to calculate probabilities.

1. If
$$X \sim \mathrm{N}(\mu, \sigma^2)$$
, then $Z = \frac{(X - \mu)}{\sigma} \sim \mathrm{N}(0, 1)$

2. If
$$Z \sim \mathrm{N}(0,1)$$
, then $X = \mu + \sigma Z \sim \mathrm{N}(\mu,\sigma^2)$

Important Facts about Normal Distribution

There is no closed form expression for $\Phi(z)$, but we can rely on these facts to calculate probabilities.

1. If
$$X \sim \mathrm{N}(\mu, \sigma^2)$$
, then $Z = \frac{(X - \mu)}{\sigma} \sim \mathrm{N}(0, 1)$

2. If
$$Z \sim N(0,1)$$
, then $X = \mu + \sigma Z \sim N(\mu,\sigma^2)$

$$Pr(a < X < b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Normal Distribution Example

Suppose that $X \sim N(3,5)$. Find Pr(X > 1).

Normal Distribution Example

Suppose that $X \sim N(3,5)$. Find Pr(X > 1).

$$Pr(X > 1) = 1 - Pr(X < 1)$$

Normal Distribution Example

Suppose that $X \sim N(3,5)$. Find Pr(X > 1).

$$Pr(X > 1) = 1 - Pr(X < 1)$$

$$= 1 - Pr\left(Z < \frac{1-3}{\sqrt{5}}\right) = 1 - \Phi(-0.8944) = 0.81$$

Evaluating the Normal Approximation

- Plot the data!
- Normal probability plots in R: qqplot()

Foundations for Statistical Inference

- We carry out an experiment and get a random sample of the underlying population
- Data are the values in the sample
- Our aim is to infer the population probability distribution (parameters) from the data we observe in the sample
- Our assumption is that that samples behave approximately as the population

Foundations for Statistical Inference

- We carry out an experiment and get a random sample of the underlying population
- Data are the values in the sample
- Our aim is to infer the population probability distribution (parameters) from the data we observe in the sample
- Our assumption is that that samples behave approximately as the population

This is statistical inference!

- In many situations we want to estimated the population mean based on a sample.
- What should we do?

- In many situations we want to estimated the population mean based on a sample.
- What should we do?
- Take the sample mean!

- In many situations we want to estimated the population mean based on a sample.
- What should we do?
- Take the sample mean!
- The sample mean \overline{x} is called a point estimate of the population mean.
- It is our simple best guess at the population mean.

 Suppose we take another sample. Will our estimate be the same?

- Suppose we take another sample. Will our estimate be the same?
- Estimates vary, this is called sampling variation

- Suppose we take another sample. Will our estimate be the same?
- Estimates vary, this is called sampling variation
- Our estimate may be close to the true parameter but not exactly equal.

Sampling Distribution

The sampling distribution represents the distribution of the point estimates based on sample of a fixed size from a certain population.

Sampling Distribution

 How can we determine how confident we are in our model/estimate/decision?

Sampling Distribution

- How can we determine how confident we are in our model/estimate/decision?
- By understanding the sampling distribution!

Break

Today's Roadmap

The Central Limit Theorem

The distribution of \overline{x} is approximately normal. The approximation can be poor if the sample size is small, but it improves with larger sample sizes.

The Central Limit Theorem

 The CLT is about the sampling distribution for the population mean!

The Central Limit Theorem Intuition

Today's Roadmap

Lab: Simulation and the CLT

Today's Roadmap

Questions?