프로그래밍실습 (ICE2012)

Term Project 2

A core meltdown just happened at a local nuclear plant! There are *n* nuclear fuel rods that need to be moved to solid lead isolation chambers by a specialized, radiation-hardened robot. Each fuel rod is labeled with an identifier from 1 and *n*, and many of the fuel rods fused together during the meltdown. The relationship between fused rods is given as an array of space-separated integer IDs named *pairs*.

The robot can pick up one set of rods at a time, where each set consists one or more rods directly or indirectly fused together (i.e, as a single mass). Each recovery trip has a cost, c, associated with it. This cost is proportional to the square root of the number of fused rods recovered during the trip, meaning that the cost of recovering k rods is c = ceiling(sqrt(k)).

Complete the minimalCost function in your editor. It has 2 parameters:

- 1. An integer, n, the number of rods.
- 2. An array of strings, pairs, where the value of each element pairs_i (where 0 ≤ i < n) is two space-separated integers describing the respective values of p_i and q_i. Each item in the array is a string which needs to be parsed into p and q. It must return an integer denoting the cost of recovering all n radioactive rods.

Input Format

The locked stub code in your editor reads the following input from stdin and passes it to your function:

The first line contains an integer, n, denoting the number of rods.

The second line contains an integer, m, denoting the number of fused rods in pairs.

Each line i of the m subsequent lines (where $0 \le i < m$) contains a string describing element i in pairs. Each string contains two space-separated integers describing the respective ID numbers for fused rods p_i and q_i .

Constraints

- $2 \le n \le 10^5$
- $1 \le p, q \le n$
- p ≠ q

Output Format

Your function must return an integer denoting the cost of recovering all the rods. This is printed to stdout by the locked stub code in your editor.

Sample Input 1

The following arguments are passed to your function:

$$1. n = 4$$

Sample Output 1

3

Explanation 1

The diagram below depicts the configuration of rods:

The cost for removing each group is as follows:

When we sum all values of c, we get 2 + 1 = 3 as our answer. Thus, we return 3.

Sample Input 2

The following arguments are passed to your function:

- 1, n = 8
- 2. pairs = ["8 1", "5 8", "7 3", "8 6"]

Sample Output 2

6

Explanation 2

The diagram below depicts the configuration of rods:

The cost for removing each group is as follows:

- 1. Set (2): c = ceil(sqrt(1)) = 1
- 2. Set (4): c = ceil(sqrt(1)) = 1
- 3. Set $\{1, 5, 6, 8\}$: c = ceil(sgrt(4)) = 2
- 4. Set (3, 7): c = ceil(sgrt(2)) = 2

When we sum all values of c, we get 1 + 1 + 2 + 2 = 6 as our answer. Thus, we return 6.

업로드시 제출물

* test case1~5에 대한 출력값을 제시하시오.

* 어떻게 문제를 풀었는지 보고서에 자세히 작성한 후 소스와 함께 압축하여 업로드 할 것.