notebook1

June 12, 2025

1 Import

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly as go
  import os

[2]: df_ch4 = pd.read_csv('ch4_mm_gl.csv',header=45)
  df_co2 = pd.read_csv('co2_mm_mlo.csv',header=40)
  df_n2o = pd.read_csv('n2o_mm_gl.csv',header=45)
  df_sf6 = pd.read_csv('sf6_mm_gl.csv',header=45)
```

2 Question 1

- nombre d'observations = 499
- période = 1983 to 2025
- 7 parametres non conserver

```
[3]: display(df_ch4) print(df_ch4.columns)
```

```
year
           month
                    decimal
                              average
                                        average unc
                                                               trend unc
                                                        trend
0
     1983
                   1983.542
                              1625.96
                                               2.19
                                                      1635.15
                                                                     1.42
                                               2.72
                                                      1635.64
1
     1983
                   1983.625
                              1628.05
                                                                     1.36
2
     1983
                   1983.708
                              1638.42
                                               2.16
                                                      1636.19
                                                                     1.29
3
                   1983.792
     1983
               10
                              1644.81
                                               1.40
                                                      1636.81
                                                                     1.21
4
     1983
               11
                   1983.875
                              1642.60
                                               0.71
                                                      1637.49
                                                                     1.12
                   2024.708 1935.67
     2024
                9
                                              -9.99
                                                                    -9.99
494
                                                      1931.99
     2024
                   2024.792
                                                                    -9.99
495
               10
                              1941.58
                                              -9.99
                                                      1932.75
496
     2024
                   2024.875
                              1940.44
                                              -9.99
                                                                    -9.99
                                                      1933.49
497
     2024
               12
                   2024.958
                              1937.52
                                              -9.99
                                                      1934.23
                                                                    -9.99
498
     2025
                   2025.042
                             1935.33
                                              -9.99
                                                      1934.96
                                                                    -9.99
```

[499 rows x 7 columns]

3 Question 2

```
[4]: df_ch4_q2 = df_ch4[['month', 'average']]
display(df_ch4_q2)
```

```
month average
0
           1625.96
         7
1
         8 1628.05
2
         9 1638.42
3
        10 1644.81
4
        11
           1642.60
         9
494
            1935.67
495
        10 1941.58
        11 1940.44
496
497
        12 1937.52
         1 1935.33
498
```

[499 rows x 2 columns]

4 Question 3

4.1 1. Méthane (CH)

- Formule chimique : CH
- Effets sur l'atmosphère :
 - Puissant gaz à effet de serre, environ 25 fois plus efficace que le dioxyde de carbone
 (CO) sur une période de 100 ans.
 - Contribue au réchauffement climatique.
 - Participe à la formation d'ozone troposphérique, un polluant nocif pour la santé humaine et les écosystèmes.
- Sources:
 - Naturelles : zones humides, termites.
 - **Anthropiques** : agriculture (fermentation entérique des ruminants), gestion des déchets, exploitation des combustibles fossiles.
- Unité de mesure : Parties par million (ppm) ou nanomoles par mole (nmol/mol).

4.2 2. Dioxyde de carbone (CO)

- Formule chimique : CO
- Effets sur l'atmosphère :
 - Principal gaz à effet de serre d'origine anthropique.

- Responsable de l'acidification des océans lorsqu'il se dissout dans l'eau.
- Contribue au réchauffement climatique en piégeant la chaleur dans l'atmosphère.
- Sources:
 - Naturelles : respiration des organismes vivants, éruptions volcaniques.
 - Anthropiques : combustion des énergies fossiles, déforestation, production de ciment.
- Unité de mesure : Parties par million (ppm).

4.3 3. Protoxyde d'azote (NO)

- Formule chimique : N O
- Effets sur l'atmosphère :
 - Gaz à effet de serre environ 300 fois plus puissant que le CO sur une période de 100 ans.
 - Contribue à la destruction de la couche d'ozone stratosphérique.
- Sources:
 - Naturelles : cycles biologiques dans les sols et les océans.
 - Anthropiques : utilisation d'engrais azotés, gestion des déchets, combustion de biomasse.
- Unité de mesure : Parties par milliard (ppb).

4.4 4. Hexafluorure de soufre (SF)

- Formule chimique : SF
- Effets sur l'atmosphère :
 - Gaz à effet de serre extrêmement puissant, avec un potentiel de réchauffement global
 (PRG) environ 23 500 fois supérieur à celui du CO sur 100 ans.
 - Très stable dans l'atmosphère, avec une durée de vie estimée à plus de 3 000 ans.
- Sources:
 - Utilisé principalement comme isolant électrique dans les équipements haute tension.
 - Émissions liées aux fuites lors de la fabrication, de l'utilisation ou du recyclage des équipements.
- Unité de mesure : Parties par trillion (ppt).

5 Question 4

V1:

[5]: df_ch4.reset_index().plot.scatter(x='index',y='average')
plt.grid(True)

V2:

je prefère la version 2...

```
[7]: scatterplot_graphique(df_ch4,"scatterplot représentant l'évolution de la⊔
→moyenne mensuelle ch4")
```


Gaz avec des variations saisonnières claires :

- CH (Méthane) : Présente des variations saisonnières marquées.
- CO (Dioxyde de carbone) : Montre également des oscillations saisonnières significatives.

Gaz sans variations saisonnières significatives :

- N O (Protoxyde d'azote) : Tendances plus stables, sans oscillations saisonnières évidentes.
- SF (Hexafluorure de soufre) : Aucune variation saisonnière détectée, tendance linéaire stable.

6 Question 5

6.0.1 FONCTIONS

```
[9]: def moyenne_mobile_ordre_6(dataframe):
    window_size = 6
    smoothed_values = []
    smoothed_months = []
```

Interprétation de la moyenne mobile

Il n'est pas possible de calculer la moyenne mobile pour les **6 premiers mois** et les **6 derniers mois** de la serie car il manque des données pour completer la fenètre de taille 6 avant ou apres l'indice **t**.

La moyenne mobile est une méthode statistique utilisée pour lisser une série temporelle en réduisant les fluctuations aléatoires à court terme tout en conservant les tendances générales à long terme.

On parle de **série lissée** car la moyenne mobile agit comme un filtre qui atténue les variations rapides ou irrégulières. Cela permet de mieux visualiser les tendances générales ou les cycles à long terme dans les données.

```
[11]: def serie_residuelle_vector(dataframe,smoothed_dataframe,offset):
    x_t = dataframe['average'].iloc[offset : -offset].to_numpy()
    x_t_smoothed = smoothed_dataframe['average_smoothed'].to_numpy()
    S_t = x_t - x_t_smoothed
    months = dataframe['month'].iloc[offset : -offset].to_numpy()
    df_residuelle = pd.DataFrame({'month' : months, 'residual' : S_t})
```

```
return df_residuelle
```

 $S_t = x_t - x_t^*$ mets en evidance les fluctuations à court terme ou les variations spécifiques qui ne font pas partie de la tendance globale.

```
def affichage_serie_residuelle(dataframe_residuelle,y_label):
    sns.lineplot(data=dataframe_residuelle.
    reset_index(),x="index",y="residual",label="residuelle")
    plt.grid(True)
    plt.title("Serie residuelle")
    plt.xlabel("index")
    plt.ylabel(f" ({y_label}) residuel")
    plt.legend()
    plt.show()
```

```
[13]: def coefficients_mensuels(dataframe, dataframe_residuelle, offset):
    months = dataframe['month'].iloc[offset : -offset].to_numpy()
    dataframe_residuelle['month'] = months
    coefficients = dataframe_residuelle.groupby('month')['residual'].mean().
    sort_index()
    return coefficients
```

Les coefficients mensuels $c_1, c_2, ..., c_{12}$ \$ représentent les **composantes saisonnières** moyennes pour chaque mois.

Ils indiquent les variations saisonnières typiques qui ne sont pas capturées par la tendance globale.

```
[15]: def centrer_coefficient_mensuels(serie_coefficients_mensuels):
    moyenne = serie_coefficients_mensuels.mean()
    coefficients_centrer = serie_coefficients_mensuels - moyenne
    return coefficients_centrer
```

[16]: def affichage centrer coefficient mensuels(serie coefficients mensuels, y label):

Cela permet de centrer les coefficients autour de zéro, facilitant l'analyse des écarts saisoniers par rapport à la moyenne annuelle

```
dataframe_coefficient_mensuels = serie_coefficients_mensuels.reset_index()
                                dataframe_coefficient_mensuels.columns = ['month','coefficient']
                                dataframe_coefficient_mensuels['month'] = pd.
                        oto numeric(dataframe coefficient mensuels['month'], errors='coerce')
                                sns.barplot(data=dataframe_coefficient_mensuels,x="month",y="coefficient")
                                plt.grid(True)
                                plt.title("coefficients mensuels centrer")
                                plt.xlabel("month")
                                plt.ylabel(f" ({y_label}) coeficient mensuel centrer")
                                plt.xticks(ticks=range(0, 12), labels=['Jan', 'Fév', 'Mar', 'Avr', 'Mai', 'Indicate of the state of the state

¬'Juin', 'Juil', 'Août', 'Sep', 'Oct', 'Nov', 'Déc'])
                                plt.show()
[17]: def correction_variation_saisoniere(dataframe, serie_coefficient_mensuel):
                                dataframe_copy = dataframe.copy()
                                dataframe_copy['coefficient'] = dataframe_copy['month'].
                        →map(serie coefficient mensuel)
                                dataframe_copy['corrigee'] = dataframe_copy['average'] -__
                        ⇔dataframe_copy['coefficient']
```

La série corrigée $x_t^{\rm corrigé}$ représente les données initiales après suppression des variations saisonnières. Elle met en évidence les tendances à long terme et les fluctuations non saisonnières.

return dataframe copy

```
plt.legend()
plt.tight_layout()
plt.show()
```

```
def regression_corrige_moindres_carres(dataframe):
    dataframe = dataframe.reset_index(drop=True)
    x = dataframe.index.to_numpy()
    y = dataframe["corrigee"].to_numpy()
    x_mean = np.mean(x)
    y_mean = np.mean(y)
    covariance_xy = np.sum((x - x_mean) * (y - y_mean))
    variance_x = np.sum((x - x_mean) ** 2)
    a = covariance_xy / variance_x
    b = y_mean - a * x_mean
    y_pred = a * x + b
    return x,y,y_pred,a,b
```

La **Regression** représente l'évolution à long terme de la série corrigée des variations saisonnières. Elle permet d'identifier si la série présente une augmentation, une diminution, ou une stabilité globale au fil du temps.

```
[21]: def prevision(a, b, coeficient_mensuels, dataframe, nb_mois):
    previsions = []
    x_last = len(dataframe) - 1
    for i in range(1, nb_mois + 1):
        mois_futur = (x_last + i) % 12 or 12
        t = x_last + i
        tendance = a * t + b
        saison = coeficient_mensuels[mois_futur]
        prevision = tendance + saison
        previsions.append((t, mois_futur, prevision))
```

return previsions

Elle permet de prévoir les valeurs futures en tenant compte à la fois des tendances globales et des fluctuations saisonnières (coefficients mensuels corrigés).

6.0.2 CH4

```
[23]: df_ch4_q5 = df_co2_q4
      df_smoothed_ch4 = moyenne_mobile_ordre_6(df_ch4_q5)
      affichage_moyenne_mobile_ordre_6(df_ch4_q5,df_smoothed_ch4,"CH4")
      df_residual_ch4 = serie_residuelle_vector(df_ch4_q5,df_smoothed_ch4,6)
      affichage_serie_residuelle(df_residual_ch4,"CH4")
      coefficients_mensuels_ch4 = coefficients_mensuels(df_ch4_q5, df_residual_ch4, 6)
      affichage coefficients mensuels(coefficients mensuels ch4, "CH4")
      centrer_coefficient_mensuels_ch4 = __
       →centrer_coefficient_mensuels(coefficients_mensuels_ch4)
      affichage_centrer_coefficient_mensuels(centrer_coefficient_mensuels_ch4,"CH4")
      correction_ch4 =_
       Gorrection_variation_saisoniere(df_ch4_q5,centrer_coefficient_mensuels_ch4)
      afficher correction variation saisoniere(correction ch4, "CH4")
      x , y , y_pred , a , b = regression_corrige_moindres_carres(correction_ch4)
      affichage_regression_corrige_moindres_carres(x,y,y_pred,a,b,"CH4")
      prevision_ch4 = prevision(a,b,centrer_coefficient_mensuels_ch4,df_ch4_q5,24)
      affichage_prevision(prevision_ch4)
```


Les graphiques pour CH montrent clairement : 1. Une **tendance globale à la hausse** des concentrations de CH au fil du temps. 2. Des **variations saisonnières régulières**, avec des mois où les concentrations sont systématiquement plus élevées ou plus basses.

6.0.3 SF6

x , y , y_pred , a , b = regression_corrige_moindres_carres(correction_sf6)
affichage_regression_corrige_moindres_carres(x,y,y_pred,a,b,"SF6")

prevision_sf6 = prevision(a,b,centrer_coefficient_mensuels_sf6,df_sf6_q5,24)
affichage_prevision(prevision_sf6)

Les graphiques pour SF montrent clairement : 1. Une **tendance linéaire croissante** des concentrations de SF au fil du temps. 2. Une **absence de variations saisonnières**, confirmée par les faibles résidus et les coefficients mensuels proches de zéro.

6.0.4 N2O

x , y , y_pred , a , b = regression_corrige_moindres_carres(correction_n2o)
affichage_regression_corrige_moindres_carres(x,y,y_pred,a,b,"N2O")

prevision_n2o = prevision(a,b,centrer_coefficient_mensuels_n2o,df_n2o_q5,24)
affichage_prevision(prevision_n2o)

Les graphiques pour N O montrent clairement : 1. Une **tendance légèrement croissante** des concentrations de N O au fil du temps. 2. Une **absence de variations saisonnières**, confirmée par les faibles résidus et les coefficients mensuels proches de zéro.

6.0.5 CO2

affichage_regression_corrige_moindres_carres(x,y,y_pred,a,b,"CO2") prevision_co2 = prevision(a,b,centrer_coefficient_mensuels_co2,df_co2_q5,24) affichage_prevision(prevision_co2)

Les graphiques pour CO montrent clairement : 1. Une tendance globale à la hausse des concentrations de CO au fil du temps. 2. Des variations saisonnières significatives, avec des cycles récurrents de pics et de creux.

7 Question 6

7.1 Fonction

```
[28]: def afficher_lisser_serie_multiplicatif(dataframe,y_label):
    plt.figure(figsize=(12, 5))
    plt.plot(dataframe["average"], label="Série originale", alpha=0.6)
    plt.plot(dataframe["tendance"], label="Tendance", color="red", linewidth=2)
    plt.title("Lissage par moyenne mobile")
    plt.legend()
    plt.ylabel(f" ({y_label}) ")
    plt.grid(True)
    plt.show()
```

```
[29]: def composante_saisonniere_multiplicative(dataframe):
          dataframe["saison_multiplicative"] = dataframe["average"] /__

¬dataframe["tendance"]

          return dataframe
[30]: def afficher_saison_multiplicative(dataframe, label_serie="Serie"):
          if "saison multiplicative" not in dataframe.columns:
              raise ValueError("La colonne 'saison_multiplicative' est absente du⊔
       ⇔DataFrame. Appliquer 'composante_saisonniere_multiplicative' d'abord.")
          plt.figure(figsize=(14, 6))
          sns.lineplot(data=dataframe["saison_multiplicative"], label="Composanteu"
       ⇒saisonnière multiplicative")
          plt.axhline(y=1, color="red", linestyle="--", linewidth=1.5,__
       ⇔label="Référence")
          plt.title(f"Composante saisonnière multiplicative - {label_serie}")
          plt.xlabel("Temps (index)")
          plt.ylabel("Saison multiplicative (St)")
          plt.legend()
          plt.grid(True)
          plt.tight_layout()
          plt.show()
[31]: def calculer_coefficient_mensuel_multiplicatif(dataframe):
          coef mensuels = dataframe.groupby("month")["saison multiplicative"].mean()
          coef_mensuels_normalises = coef_mensuels / coef_mensuels.mean()
          return coef_mensuels_normalises
[32]: def corriger_coefficients_mensuels_multiplicatifs(coeficients):
          movenne = coeficients.mean()
          coeficients_corriges = coeficients / moyenne
          return coeficients_corriges
```

Interprétation des coefficients corrigés :

- Les coefficients corrigés \$ c' j \$ sont centrés autour de 1.
- Si $\$ c'_j > 1 $\$, ce la signifie que le mois j a une composante saisonnière su périeure à la moyenne annuelle.
- Si $c_j' < 1$, cela signifie que le mois j a une composante saisonnière inférieure à la moyenne annuelle
- Ces coefficients corrigés permettent de comparer directement les effets saisonniers des différents mois.

```
dataframe_coeficient.columns = ['month', 'coefficient_corrige']
  dataframe coeficient['month'] = pd.
sto_numeric(dataframe_coeficient['month'], errors='coerce')
  plt.figure(figsize=(10, 5))
  sns.barplot(data=dataframe coeficient, x="month", y="coefficient corrige", |
⇔hue="month", palette="coolwarm", dodge=False, legend=False)
  plt.axhline(y=1.0, color='black', linestyle='--', linewidth=1,__
→label="Moyenne")
  plt.ylim(0.9, 1.01)
  plt.grid(True, linestyle='--', linewidth=0.5)
  plt.title("Coefficients mensuels corrigés (multiplicatif)")
  plt.xlabel("Mois")
  plt.ylabel(f" ({y_label}) ")
  plt.xticks(
      ticks=range(0, 12),
      labels=['Jan', 'Fév', 'Mar', 'Avr', 'Mai', 'Juin', 'Juil', 'Août', |

¬'Sep', 'Oct', 'Nov', 'Déc']

  plt.tight_layout()
  plt.show()
```

```
[34]: def corriger_variation_saisonniere(dataframe, coefficients_corriges):
    dataframe_corrigee = dataframe.copy()
    dataframe_corrigee["coefficient_corrige"] = dataframe_corrigee["month"].

□ map(coefficients_corriges)
    dataframe_corrigee["corrige"] = dataframe_corrigee["average"] /

□ dataframe_corrigee["coefficient_corrige"]
    return dataframe_corrigee
```

Interprétation de la série corrigée :

- La série corrigée \$ x_t^{corrigé} \$ représente les données initiales après suppression des variations saisonnières.
- Elle met en évidence les tendances à long terme et les fluctuations non saisonnières.

```
plt.grid(True)
plt.tight_layout()
plt.show()
```

```
[36]: def ajouter_tendance(dataframe):
    dataframe = dataframe.reset_index(drop=True).copy()
    x = dataframe.index.to_numpy()
    y = dataframe["corrige"].to_numpy()

    x_mean = np.mean(x)
    y_mean = np.mean(y)
    a = np.sum((x - x_mean) * (y - y_mean)) / np.sum((x - x_mean) ** 2)
    b = y_mean - a * x_mean

    dataframe["tendance"] = a * x + b
    return dataframe, a, b
```

Interprétation de la tendance :

- La tendance représente l'évolution à long terme de la série corrigée des variations saisonnières.
- Une pente positive a > 0 indique une augmentation globale de la série au fil du temps.
- Une pente négative a < 0 indique une diminution globale de la série au fil du temps.
- Une pente proche de zéro \$ a 0 \$ indique une stabilité globale de la série.

```
[37]: def regression_tendance(dataframe):
    df = dataframe.dropna(subset=["tendance"]).copy()
    t = df.index.to_numpy()
    y = df["tendance"].to_numpy()
    a, b = np.polyfit(t, y, deg=1)
    return a, b
```

```
[38]: def prevision_multiplicatif(dataframe, a, b, coeficient_mensuels, nb_mois):
    previsions = []
    x_last = len(dataframe) - 1
    for i in range(1, nb_mois + 1):
        mois_futur = (x_last + i) % 12 or 12
        t = x_last + i
        tendance = a * t + b
        saison = coeficient_mensuels.get(mois_futur, 1)
        prevision = tendance * saison
        previsions.append((t, mois_futur, prevision))
    return previsions
```

Interprétation de la méthode de prévision :

- Elle permet de prévoir les valeurs futures en tenant compte à la fois des fluctuations saisonnières et de la tendance globale.
- Cette méthode est particulièrement utile pour les séries temporelles présentant des variations saisonnières régulières (coefficients mensuels corrigés).

7.2 CH4

```
[40]: df ch4 q6 = df co2 q4
      lisser_ch4 = lisser_serie_multiplicatif(df_ch4_q6,12)
      afficher lisser serie multiplicatif(lisser ch4,12)
      display(lisser_ch4)
      multiplicative_ch4 = composante_saisonniere_multiplicative(lisser_ch4)
      afficher_saison_multiplicative(multiplicative_ch4, "ch4")
      display(multiplicative_ch4)
      coefficient_mensuel_multiplicatif_ch4 =_
       Graduler_coefficient_mensuel_multiplicatif(multiplicative_ch4)
      affichage coefficients mensuels corige 6(coefficient mensuel multiplicatif ch4, "CH4")
      display(coefficient_mensuel_multiplicatif_ch4)
      corrige_ch4 =
       Gorriger_variation_saisonniere(df_ch4_q6,coefficient_mensuel_multiplicatif_ch4)
      afficher_serie_corrigee(corrige_ch4)
      display(corrige_ch4)
      tendance_ch4, a, b = ajouter_tendance(corrige_ch4)
      prevision_multiplicative_ch4 = __

→prevision_multiplicatif(df_ch4_q6,a,b,tendance_ch4,24)

      affichage_prevision_multiplicatif(prevision_multiplicative_ch4)
      display(prevision_multiplicative_ch4)
```


	month	average	tendance
0	3	315.71	NaN
1	4	317.45	NaN
2	5	317.51	NaN
3	6	317.27	NaN
4	7	315.87	NaN
	•••	•••	•••
801	12	425.40	NaN
802	1	426.65	NaN
803	2	427.09	NaN
804	3	428.15	NaN
805	4	429.64	NaN

[806 rows x 3 columns]

	month	average	tendance	saison_multiplicative
0	3	315.71	NaN	NaN
1	4	317.45	NaN	NaN
2	5	317.51	NaN	NaN
3	6	317.27	NaN	NaN
4	7	315.87	NaN	NaN
	•••		•••	•••
801	12	425.40	NaN	NaN
802	1	426.65	NaN	NaN
803	2	427.09	NaN	NaN
804	3	428.15	NaN	NaN
805	4	429.64	NaN	NaN

[806 rows x 4 columns]

month	
1	1.000181
2	1.002002
3	1.003992
4	1.007202
5	1.008453
6	1.006522
7	1.001894
8	0.995833
9	0.991176
10	0.990918
11	0.994270
12	0.997557
Name:	saison multipli

 ${\tt Name: saison_multiplicative, \ dtype: float64}$

	month	average	coefficient_corrige	corrige
0	3	315.71	1.003992	314.454548
1	4	317.45	1.007202	315.180229
2	5	317.51	1.008453	314.848605
3	6	317.27	1.006522	315.214326
4	7	315.87	1.001894	315.272966
	•••	•••	•••	•••
801	12	425.40	0.997557	426.441904
802	1	426.65	1.000181	426.572740
803	2	427.09	1.002002	426.236839
804	3	428.15	1.003992	426.447419
805	4	429.64	1.007202	426.568069

[806 rows x 4 columns]


```
[(806, 2, np.float64(415.51419886619317)),
(807, 3, np.float64(415.6517239771939)),
(808, 4, np.float64(415.78924908819465)),
(809, 5, np.float64(415.92677419919534)),
(810, 6, np.float64(416.0642993101961)),
(811, 7, np.float64(416.20182442119676)),
(812, 8, np.float64(416.3393495321975)),
(813, 9, np.float64(416.47687464319824)),
(814, 10, np.float64(416.6143997541989)),
(815, 11, np.float64(416.75192486519967)),
(816, 12, np.float64(416.88944997620035)),
(817, 1, np.float64(417.0269750872011)),
(818, 2, np.float64(417.1645001982018)),
(819, 3, np.float64(417.3020253092025)),
(820, 4, np.float64(417.4395504202032)),
(821, 5, np.float64(417.57707553120395)),
(822, 6, np.float64(417.7146006422047)),
(823, 7, np.float64(417.85212575320537)),
(824, 8, np.float64(417.9896508642061)),
(825, 9, np.float64(418.1271759752068)),
(826, 10, np.float64(418.26470108620754)),
(827, 11, np.float64(418.4022261972083)),
(828, 12, np.float64(418.53975130820896)),
(829, 1, np.float64(418.67727641920965))]
```

Les résultats montrent que les concentrations de CH4 suivent une **tendance globale croissante**, avec des **variations saisonnières significatives**.

7.3 SF6

Les résultats montrent que les concentrations de SF6 suivent une **tendance linéaire croissante**, sans variations saisonnières significatives.

7.4 N2O

Les résultats montrent que les concentrations de N O suivent une **tendance légèrement croissante**, sans variations saisonnières significatives.

7.5 CO2

Les résultats montrent que les concentrations de CO suivent une **tendance globale croissante**, avec des **variations saisonnières significatives**.

8 Question 7

1. Nature des données :

- Si les variations saisonnières sont **additives** (indépendantes de la tendance), la méthode de la **question 5** est plus adaptée.
- Si les variations saisonnières sont **multiplicatives** (proportionnelles à la tendance), la méthode de la **question 6** est plus pertinente.

2. Contexte des gaz étudiés :

- Pour des gaz comme CH et CO, qui présentent des variations saisonnières significatives, la méthode de la question 6 semble plus pertinente, car les variations saisonnières sont souvent proportionnelles à la tendance.
- \bullet Pour des gaz comme N O et SF , qui n'ont pas de variations saisonnières significatives, les deux méthodes donnent des résultats similaires, mais la méthode de la **question 6** reste plus robuste.

3. Prévisions:

• La méthode de la **question 6** offre des prévisions plus réalistes pour des séries avec des variations saisonnières multiplicatives, car elle tient compte de la proportionnalité entre la tendance et les variations saisonnières.

9 Question 8

9.1 Fonction

```
def regression_lineaire(dataframe):
    t = dataframe["t"].to_numpy()
    y = dataframe["average"].to_numpy()
    t_mean = np.mean(t)
    y_mean = np.mean(y)
    a = np.sum((t - t_mean) * (y - y_mean)) / np.sum((t - t_mean) ** 2)
    b = y_mean - a * t_mean
    return a, b
```

```
[46]: def prevision_8(a, b, dataframe, nb_mois):
          previsions = []
          dernier_indice = dataframe["t"].iloc[-1]
          dernier mois = dataframe["month"].iloc[-1]
          for i in range(1, nb_mois + 1):
              indice futur = dernier indice + i
              mois_futur = (dernier_mois + i - 1) % 12 + 1
              valeur_prevue = a * indice_futur + b
              previsions.append((indice_futur, mois_futur, valeur_prevue))
          return previsions
[47]: def afficher_previsions(previsions, titre):
          df_previsions = pd.DataFrame(previsions, columns=["Indice", "Mois", ____

¬"Prévision"])
          plt.figure(figsize=(10, 6))
          plt.plot(df_previsions["Indice"], df_previsions["Prévision"], marker='o',__
       →label="Prévisions")
          plt.title(titre)
          plt.xlabel("Indice temporel")
          plt.ylabel("Valeur prévue")
          plt.grid(True)
          plt.legend()
          plt.show()
[48]: def regression exponentielle(dataframe):
          t = dataframe["t"].to_numpy()
          y = dataframe["average"].to_numpy()
          ln_y = np.log(y)
          t mean = np.mean(t)
          ln_y_mean = np.mean(ln_y)
          b = np.sum((t - t_mean) * (ln_y - ln_y_mean)) / np.sum((t - t_mean) ** 2)
          ln_a = ln_y_mean - b * t_mean
          a = np.exp(ln_a)
          return a, b
[49]: def tracer regression exponentielle(dataframe, a, b, title):
          t = dataframe["t"].to_numpy()
          y = dataframe["average"].to_numpy()
          y_pred = a * np.exp(b * t)
          plt.figure(figsize=(10, 6))
          plt.scatter(t, y, label="Données", color="blue", alpha=0.6)
          plt.plot(t, y_pred, label=f"Régression : y = {a:.2f} * exp({b:.4f} * t)", u

color="green", linewidth=2)

          plt.title(title)
          plt.xlabel("Indice temporel (t)")
```

```
plt.ylabel("Valeur moyenne (average)")
plt.legend()
plt.grid(True)
plt.show()
```

```
[50]: def prevision_exponentielle(a, b, dataframe, nb_mois=24):
    previsions = []
    dernier_indice = dataframe["t"].iloc[-1]
    dernier_mois = dataframe["month"].iloc[-1]
    for i in range(1, nb_mois + 1):
        indice_futur = dernier_indice + i
        mois_futur = (dernier_mois + i - 1) % 12 + 1
        valeur_prevue = a * np.exp(b * indice_futur)
        previsions.append((indice_futur, mois_futur, valeur_prevue))
    return previsions
```

9.2 Execution

```
[51]: df_{co2}q8 = df_{co2}
      df_sf6_q8 = df_sf6
      df_co2_q8 = df_co2_q8[["month", "average"]].dropna()
      df_sf6_q6 = df_sf6_q6[["month", "average"]].dropna()
      df_co2_q8["t"] = np.arange(len(df_co2_q8))
      df_sf6_q8["t"] = np.arange(len(df_sf6_q6))
      n2o_corr = np.corrcoef(df_co2_q8["t"], df_co2_q8["average"])[0, 1]
      sf6_corr = np.corrcoef(df_sf6_q8["t"], df_sf6_q8["average"])[0, 1]
      print(f"Coefficient de corrélation pour N20 : {n2o corr:.4f}")
      print(f"Coefficient de corrélation pour SF6 : {sf6_corr:.4f}")
      a_n2o, b_n2o = regression_lineaire(df_co2_q8)
      tracer_regression(df_co2_q8, a_n2o, b_n2o, "Régression linéaire pour N2O")
      a_sf6, b_sf6 = regression_lineaire(df_sf6_q8)
      tracer_regression(df_sf6_q8, a_sf6, b_sf6, "Régression linéaire pour SF6")
      previsions_n2o = prevision_8(a_n2o, b_n2o, df_co2_q8,24)
      previsions_sf6 = prevision_8(a_sf6, b_sf6, df_sf6_q8,24)
      afficher_previsions(previsions_n2o, "Prévisions pour N2O (prochains 24 mois)")
      afficher_previsions(previsions_sf6, "Prévisions pour SF6 (prochains 24 mois)")
```

```
a_n2o_exp, b_n2o_exp = regression_exponentielle(df_co2_q8)
tracer_regression_exponentielle(df_co2_q8, a_n2o_exp, b_n2o_exp, "Régression_u
exponentielle pour N2O")

a_sf6_exp, b_sf6_exp = regression_exponentielle(df_sf6_q8)
tracer_regression_exponentielle(df_sf6_q8, a_sf6_exp, b_sf6_exp, "Régression_u
exponentielle pour SF6")

previsions_n2o_exp = prevision_exponentielle(a_n2o_exp, b_n2o_exp, df_co2_q8)
afficher_previsions(previsions_n2o_exp, "Prévisions exponentielles pour N2O_u
exponentielle pour SF6_exp = prevision_exponentielle(a_sf6_exp, b_sf6_exp, df_sf6_q8)
afficher_previsions(previsions_sf6_exp, "Prévisions exponentielles pour SF6_u
exponentielle pour SF6_u
exponen
```

Coefficient de corrélation pour N2O : 0.9879 Coefficient de corrélation pour SF6 : 0.9952

9.3 Pertience

1. Coefficient de corrélation :

- Les deux modèles (linéaire et exponentiel) peuvent avoir des coefficients de corrélation similaires, car ils s'ajustent bien aux données historiques.
- Cependant, le modèle exponentiel peut mieux capturer les tendances non linéaires dans les données.

2. Prévisions :

- Le modèle exponentiel est plus pertinent si les émissions montrent une tendance à l'accélération ou à la décroissance rapide.
- Si les émissions suivent une tendance stable ou linéaire, le modèle linéaire est suffisant.

10 Question 9

10.1 Fonction

```
[52]: def creer_dataset_annuel(dataframe):
    dataset_annuel = dataframe.groupby("year", as_index=False)["average"].mean()
    dataset_annuel.rename(columns={"average": "average_annual"}, inplace=True)
    return dataset_annuel

[53]: def tracer_nuage_points(dataframe, y_label):
    plt.figure(figsize=(10, 6))
```

```
plt.scatter(dataframe.index, dataframe[y_label], color='blue', alpha=0.3,_u
       ⇔label='Émissions')
          plt.title("Nuage de points des émissions")
          plt.xlabel("Indice des observations")
          plt.ylabel("Émissions")
          plt.grid(True, linestyle='--', alpha=0.3)
          plt.legend()
          plt.show()
[54]: def calculer_correlation(dataframe, col1, col2):
          correlation = dataframe[col1].corr(dataframe[col2])
          return correlation
[55]: def tracer_regression_avec_nuage(dataframe, x_col, y_col):
          x = dataframe[x col]
          y = dataframe[y_col]
          a, b = np.polyfit(x, y, 1)
          plt.figure(figsize=(10, 6))
          plt.scatter(x, y, color='blue', alpha=0.6, label='Données')
          y_pred = a * x + b
          plt.plot(x, y_pred, color='red', label=f"Régression : y = {a:.2f}x + {b:.
       plt.title("Nuage de points avec droite de régression")
          plt.xlabel(x_col)
          plt.ylabel(y_col)
          plt.grid(True, linestyle='--', alpha=0.7)
          plt.legend()
          plt.show()
          return a, b
[56]: def prevoir_2_prochaines_annees(a, b, dataframe, nb_annees=2):
          derniere_annee = dataframe["year"].max()
          annees_prevision = [derniere annee + i for i in range(1, nb_annees + 1)]
          valeurs_prevision = [a * annee + b for annee in annees_prevision]
          previsions = pd.DataFrame({
              "year": annees_prevision,
              "predicted_average_annual": valeurs_prevision
          })
          return previsions
[57]: def afficher_previsions_annee(previsions, titre, molecule):
          plt.figure(figsize=(10, 6))
          plt.plot(previsions["year"], previsions["predicted_average_annual"],_
       →marker='o', label="Prévisions", color="green")
          plt.title(titre)
          plt.xlabel("Année")
```

```
plt.ylabel(f"Valeur prévue ({molecule})")
          plt.grid(True, linestyle='--', alpha=0.7)
          plt.legend()
          plt.tight_layout()
          plt.show()
[58]: def regression_exponentielle_9(dataframe, x_col, y_col):
          x = dataframe[x_col].to_numpy()
          y = dataframe[y_col].to_numpy()
          ln_y = np.log(y)
          x mean = np.mean(x)
          ln_y_mean = np.mean(ln_y)
          b = np.sum((x - x_mean) * (ln_y - ln_y_mean)) / np.sum((x - x_mean) ** 2)
          ln_a = ln_y_mean - b * x_mean
          a = np.exp(ln_a)
          return a, b
[59]: def tracer_regression_exponentielle(dataframe, x_col, y_col, a, b, titre):
          x = dataframe[x col].to numpy()
          y = dataframe[y_col].to_numpy()
          y \text{ pred} = a * np.exp(b * x)
          plt.figure(figsize=(10, 6))
          plt.scatter(x, y, label="Données", color="blue", alpha=0.6)
          plt.plot(x, y_pred, label=f"Régression : y = {a:.2f} * exp({b:.4f} * x)", u
       ⇔color="red", linewidth=2)
          plt.title(titre)
          plt.xlabel(x_col)
          plt.ylabel(y_col)
          plt.legend()
          plt.grid(True)
          plt.show()
[60]: def prevoir_exponentielle(a, b, dataframe, x_col, nb_annees):
          derniere annee = dataframe[x col].max()
          annees_prevision = [derniere_annee + i for i in range(1, nb_annees + 1)]
          valeurs_prevision = [a * np.exp(b * annee) for annee in annees_prevision]
          previsions = pd.DataFrame({
              x_col: annees_prevision,
              "predicted_average_annual": valeurs_prevision
          })
          return previsions
[61]: def comparer_modeles(dataframe, x_col, y_col, a_lin, b_lin, a_exp, b_exp):
          x = dataframe[x_col].to_numpy()
          y = dataframe[y col].to numpy()
          y_pred_lin = a_lin * x + b_lin
```

```
rmse_lin = np.sqrt(np.mean((y - y_pred_lin) ** 2))
y_pred_exp = a_exp * np.exp(b_exp * x)
rmse_exp = np.sqrt(np.mean((y - y_pred_exp) ** 2))
return {"RMSE Linéaire": rmse_lin, "RMSE Exponentiel": rmse_exp}
```

10.2 CH4

```
[62]: df ch4 q9 = df ch4
      dataset_annuel_ch4 = creer_dataset_annuel(df_ch4_q9)
      print(dataset annuel ch4)
      tracer_nuage_points(dataset_annuel_ch4, "average_annual")
      correlation = calculer_correlation(dataset_annuel_ch4, "year", "average_annual")
      print(f"Le coefficient de corrélation est : {correlation:.4f}")
      a_lin, b_lin = tracer_regression_avec_nuage(dataset_annuel_ch4, "year", __
      →"average_annual")
      print(f"L'équation de la droite de régression est : y = {a:.2f}x + {b:.2f}")
      previsions ch4 = prevoir 2 prochaines annees (a lin, b lin, dataset annuel ch4)
      display(previsions_ch4)
      afficher previsions annee(previsions ch4, "Prévisions des émissions pour les u
      odeux prochaines années", molecule="N20")
      a_exp, b_exp = regression_exponentielle_9(dataset_annuel_ch4, "year", __

¬"average_annual")

      tracer_regression_exponentielle(dataset_annuel_ch4, "year", "average_annual", __
       ⇔a_exp, b_exp, "Régression exponentielle pour N2O")
      previsions exp_ch4 = prevoir_exponentielle(a_exp, b_exp, dataset_annuel_ch4,_
       display(previsions_exp_ch4)
      resultats_comparaison = comparer_modeles(dataset_annuel_ch4, "year", __

¬"average_annual", a_lin, b_lin, a_exp, b_exp)
     print(resultats_comparaison)
```

```
year average_annual
0
   1983
            1636.556667
1
   1984
            1644.855000
2
   1985
            1657.370000
3
   1986
            1670.210833
4
   1987
            1682.804167
5
   1988
            1693.235000
6
   1989
            1704.624167
7
   1990
            1714.533333
8
   1991
            1725.005833
   1992
            1735.452500
```

10	1993	1736.548333
11	1994	1742.157500
12	1995	1748.895000
13	1996	1751.311667
14	1997	1754.604167
15	1998	1765.653333
16	1999	1772.390000
17	2000	1773.321667
18	2001	1771.308333
19	2002	1772.716667
20	2003	1777.353333
21	2004	1777.025000
22	2005	1774.192500
23	2006	1774.998333
24	2007	1781.451667
25	2008	1787.098333
26	2009	1793.559167
27	2010	1798.964167
28	2011	1803.145833
29	2012	1808.192500
30	2013	1813.462500
31	2014	1822.705833
32	2015	1834.347500
33	2016	1843.185833
34	2017	1849.714167
35	2018	1857.448333
36	2019	1866.665833
37	2020	1878.874167
38	2021	1894.852500
39	2022	1911.040000
40	2023	1921.709167
41	2024	1930.023333
42	2025	1935.330000

Le coefficient de corrélation est : 0.9745

L'équation de la droite de régression est : y = 0.14x + 304.67

year predicted_average_annual 0 2026 1912.716268 1 2027 1918.591432

10.3 SF6

```
[63]: df_sf6_q9 = df_sf6
      dataset_annuel_sf6 = creer_dataset_annuel(df_sf6_q9)
      print(dataset_annuel_sf6)
      tracer_nuage_points(dataset_annuel_sf6, "average_annual")
      correlation = calculer_correlation(dataset_annuel_sf6, "year", "average_annual")
      print(f"Le coefficient de corrélation est : {correlation:.4f}")
      a_lin, b_lin = tracer_regression_avec_nuage(dataset_annuel_sf6, "year", __

¬"average annual")

      print(f"L'équation de la droite de régression est : y = {a:.2f}x + {b:.2f}")
      previsions sf6 = prevoir 2 prochaines annees (a lin, b lin, dataset annuel sf6)
      display(previsions sf6)
      afficher_previsions_annee(previsions_sf6, "Prévisions des émissions pour les_u

deux prochaines années", molecule="SF6")

      dataset_annuel_sf6 = dataset_annuel_sf6[dataset_annuel_sf6["average_annual"] >__
       ∽07
      a_exp, b_exp = regression_exponentielle_9(dataset_annuel_sf6, "year", __

¬"average annual")

      print(f"Coefficients exponentiels : a exp = {a exp}, b exp = {b exp}")
      tracer_regression_exponentielle(dataset_annuel_sf6, "year", "average_annual", __
       →a_exp, b_exp, "Régression exponentielle pour SF6")
      previsions_exp_sf6 = prevoir_exponentielle(a_exp, b_exp, dataset_annuel_sf6,_u
       display(previsions_exp_sf6)
      resultats_comparaison = comparer_modeles(dataset_annuel_sf6, "year", u

¬"average_annual", a_lin, b_lin, a_exp, b_exp)

      print(resultats comparaison)
```

```
year average_annual
0 1997 4.041667
1 1998 4.208333
2 1999 4.385833
```

3	2000	4.585000
4	2001	4.778333
5	2002	4.980000
6	2003	5.229167
7	2004	5.455000
8	2005	5.670000
9	2006	5.910833
10	2007	6.179167
11	2008	6.466667
12	2009	6.755000
13	2010	7.040000
14	2011	7.300833
15	2012	7.604167
16	2013	7.915833
17	2014	8.248333
18	2015	8.579167
19	2016	8.909167
20	2017	9.258333
21	2018	9.603333
22	2019	9.943333
23	2020	10.267500
24	2021	10.635000
25	2022	11.017500
26	2023	11.404167
27	2024	11.805000
28	2025	12.030000

Le coefficient de corrélation est : 0.9950

L'équation de la droite de régression est : y = 0.14x + 304.67

Coefficients exponentiels : $a_{exp} = 1.2020134470968839e-34$, $b_{exp} = 0.03981942265193005$

10.4 N2O

```
[64]: df_n2o_q9 = df_n2o
      dataset_annuel_n2o = creer_dataset_annuel(df_n2o_q9)
      print(dataset_annuel_n2o)
      tracer_nuage_points(dataset_annuel_n2o, "average_annual")
      correlation = calculer correlation(dataset annuel n2o, "year", "average annual")
      print(f"Le coefficient de corrélation est : {correlation:.4f}")
      a_lin, b_lin = tracer_regression_avec_nuage(dataset_annuel_n2o, "year", __

¬"average_annual")
      print(f"L'équation de la droite de régression est : y = {a:.2f}x + {b:.2f}")
      previsions n2o = prevoir 2 prochaines annees(a lin, b lin, dataset annuel n2o)
      display(previsions_n2o)
      afficher previsions annee(previsions n2o, "Prévisions des émissions pour les u

deux prochaines années", molecule="N20")

      a_exp, b_exp = regression_exponentielle_9(dataset_annuel_n2o, "year", __

¬"average annual")

      tracer_regression_exponentielle(dataset_annuel_n2o, "year", "average_annual", __
       →a_exp, b_exp, "Régression exponentielle pour N20")
      previsions_exp = prevoir_exponentielle(a_exp, b_exp, dataset_annuel_n2o,_

year", 2)

      display(previsions_exp)
      resultats_comparaison = comparer_modeles(dataset_annuel_n2o, "year", __

¬"average_annual", a_lin, b_lin, a_exp, b_exp)

      print(resultats comparaison)
```

```
year average_annual
0
    2001
              316.363333
1
    2002
              316.942500
              317.634167
2
   2003
3
    2004
              318.264167
4
    2005
              318.915833
5
    2006
              319.825833
   2007
6
              320.445833
7
    2008
              321.509167
8
    2009
              322.280833
    2010
              323.195000
```

10	2011	324.215000
11	2012	325.059167
12	2013	325.951667
13	2014	327.096667
14	2015	328.177500
15	2016	328.955833
16	2017	329.746667
17	2018	330.920833
18	2019	331.885000
19	2020	333.022500
20	2021	334.287500
21	2022	335.625000
22	2023	336.697500
23	2024	337.733333
24	2025	338.420000

Nuage de points des émissions

Le coefficient de corrélation est : 0.9971

L'équation de la droite de régression est : y = 0.14x + 304.67

10.5 CO₂

```
afficher_previsions_annee(previsions_co2, "Prévisions des émissions pour les_u deux prochaines années", molecule="SF6")

a_exp, b_exp = regression_exponentielle_9(dataset_annuel_co2, "year", u devaceage_annual")

tracer_regression_exponentielle(dataset_annuel_co2, "year", "average_annual", u devalue, b_exp, "Régression exponentielle pour SF6")

previsions_exp_co2 = prevoir_exponentielle(a_exp, b_exp, dataset_annuel_co2, u devery)

display(previsions_exp_co2)

resultats_comparaison = comparer_modeles(dataset_annuel_co2, "year", u devaceage_annual", a_lin, b_lin, a_exp, b_exp)

print(resultats_comparaison)
```

	year	average_annual
0	1958	315.237000
1	1959	315.981667
2	1960	316.908333
3	1961	317.643333
4	1962	318.453333
	•••	•••
63	2021	416.414167
64	2022	418.528333
65	2023	421.075833
66	2024	424.604167
67	2025	427.882500

Le coefficient de corrélation est : 0.9897

L'équation de la droite de régression est : y = 0.14x + 304.67

year predicted_average_annual
0 2026 417.810660
1 2027 419.469442

10.6 Pertinance

- Si les résultats montrent que le RMSE du modèle exponentiel est inférieur à celui du modèle linéaire, alors le modèle exponentiel est plus pertinent.
- Cependant, si les émissions suivent une tendance linéaire ou stable, le modèle linéaire reste plus simple et adapté.
- Dans le contexte des gaz étudiés (**CH** et **CO**), où les variations saisonnières sont significatives et les tendances globales peuvent être non linéaires, le modèle exponentiel pourrait être **plus pertinent**, surtout si les données montrent une accélération ou une croissance exponentielle.