ChE641 Mathematical Methods in Chemical Engineering

Due Date: 1 October, 2020

Assignment 3

Complex variables and Complex analysis

- 1. Find the analogue of the Cauchy-Riemann equations for an "anti-analytic" function f(x,y)=u(x,y)+iv(x,y) which is a function only of $z^*=x-iy$. To do this, you need to set $\partial f/\partial z=0$ and set the real and imaginary parts of this equation to zero.
- 2. Consider a real-valued function of two variables f(x,y). You can change variables from (x,y) to $x_+=(x+y)/2$ and $x_-=(x-y)/2$. Derive the conditions such that the function is a function *only* of (a) x_+ , and (b) x_- .
- 3. Locate and name the type of singularities of $f(z) = 1/(1+z^4)$.
- 4. Verify if $f(z) = (x iy)/(x^2 + y^2)$ is analytic.
- 5. Write down the two square roots of (a) i and (b) (3+4i) in Cartesian form.
- 6. Express the following in Cartesian form: (a) 3^i , (b) $\ln[(1+i)/(1-i)]$.
- 7. Write (1+i) in polar form and find its cube roots in Cartesian form. Check explicitly that their cubes do give the original complex number.
- 8. Find all the roots of $\sqrt[5]{i}$.
- 9. Find the value in Cartesian form: (a) $\ln i$, (b) $\ln(1-i)$.
- 10. Find the Cauchy-Riemann equations in polar coordinates. *Hint*: Write $z=re^{i\theta}$, and $f(z)=u(r,\theta)+iv(r,\theta)$.