Course title	Hours	Description	Literature Used
Course title Algorithms and Programming I	Hours 194.5	Description Basic computer literacy: terminology, system components and operation. Fundamentals of computer programming: top-down structured design, sequence, decision, repetition, syntax, compilation, debugging and maintenance, object-oriented programming with Java, objects classes, methods, parameters, arrays, layout and style. The emphasis is on an engineering	Literature Used Textbook: Big Java: Late Objects, Big Java Late Objects, Enhanced eText, 2nd Edition, 2016, Wiley [download]
		emphasis is on an engineering "right-first-time"	
		approach to solving large problems using computers.	

Course title	Hours	Description	Literature Used
Algorithms and Programming II	195	Enhanced Object-Oriented Programming with Java. Inheritance and polymorphism, abstract classes and interfaces, graphical-user- interfaces, exceptions. Abstract data structures: lists, stacks, queues and trees. Recursion. Files. Searching and sorting. Hashing. Time and space considerations. Students undertake a large design project involving teamwork, independent learning, writing and presenting of requirements, user-interface design, and project documentation.	Textbook: Big Java (Late Objects) Enhanced eText 2nd edition., Cay S. Horstmann, 2016, Wiley

Course title	Hours	Description	Literature Used
Course title Digital Design	Hours 200	Number systems, Binary numbers, Logic levels, transistors, gates, Boolean expressions. Combinational logic: Boolean algebra, simplification of Boolean expressions. Logic minimization with Karnaugh maps, don't-care conditions. Introduction to System Verilog. Combinational building blocks, multiplexers, decoders, propagation delays, glitches. Verilog modeling. Sequential logic: SR latch, D-latch, D flip-flop, synchronous sequential circuits. Finite State Machine design, Moore and Mealy models, state encodings, timing of sequential circuits. Verilog modeling of sequential circuits. Verilog modeling of sequential circuits. Signed numbers, Adders, ALU, comparators. Registers, register 3 files. Counters, timers. High level state machines, RTL design, RAM, ROM. FPGA, programmable	Textbook: Digital Desgn and Computer Architecture, David M. Harris, Sarah L. Harris, 2013 Second Edition, Morgan KaufmannTextbook: Digital Design, with RTI Design ,VHDL and Verilog, Farank Vahid, 2011 2nd Edition John Wiley

Course title	Hours	Description	Literature Used
Programming Languages	150	Language evaluation criteria. Describing syntax and semantics. Tools for constructing lexical and syntactical analyzers. Names, bindings, type checking, and scopes. Data types. Expressions and the assignment statement. Statement-level control structures. Subprograms. Abstract data types. Concurrency. Exception handling. Functional programming languages. Logic	Textbook: Concepts of Programming Languages, Robert W. Sebesta, 11th Edition, Pearson [download]
		programming languages.	

Course title	Hours	Description	Literature Used
Object Oriented Software Engineering	195	Principles and stages of object-oriented software development. Overview of object-oriented software modeling with Unified Modeling Language and exposure to CASE tools for object-oriented development. Experience with such tools and environments through programming assignments and/or a term project.	Textbook: Object Oriented Software Engineering, Using UML, Patterns, and Java, Bernd Bruegge and Allen H. Dutoit, 2010/3rd, Pearson

Course title	Hours	Description	Literature Used
Operating	196.5	Introduction to	Textbook:
Systems		computer	Operating
		operating	System Concepts,
		systems;	Avi Silberschatz,
		processes,	Peter Baer
		threads,	Galvin, Greg
		interprocess	Gagne, 2018 /
		communication,	10th edition,
		process	Wiley [down-
		scheduling,	load Textbook:
		process	The C
		synchronization,	Programming
		deadlocks,	Languge, B.
		memory	Kernighan and D.
		management and	Ritchie, 1998,
		virtual memory,	Prentice Hall
		file systems -	[download]
		interface and	. ,
		implementation,	
		mass-storage	
		structure and	
		management,	
		input/output	
		systems,	
		examples from	
		operating systems	
		such as Linux	
		and Windows.	

Course title	Hours	Description	Literature Used
Course title Database Systems	Hours 154	Relational data model. Entity/Relationship model. Relational Algebra. Structured Query Language, SQL. Relational database design. Tree-structured and hash-based indexing. Query processing and optimization. Transaction management, concurrency control and recovery issues in database systems. Development of a relational	Textbook: Database Management Systems, R. Ramakrishnan, J. Gehrke, 2003/3rd, McGraw HillTextbook: Database System Concepts, A. Silberschatz; H. Korth; S. Sudarshan, 2011/6th, McGraw HillTextbook: Fundamentals of Database Systems, R. Elmasri, S. B. Navathe, 2011/6th,
		database application as a term project.	Addison Wesley

Description	Literature Used
Description Introduction to computer networks and the Internet. Application layer: HTTP, FTP, SMTP, DNS. Socket programming; client/server model; peer-to-peer networking. Transport layer protocols: TCP, UDP. Congestion control and congestion control in TCP. Network layer protocols: IP. Internet routing. Link layer: error control, multiple access. Data link layer protocols:	Textbook: Computer Networks, A.S. Tanenbaum, 2003, Prentice HallTextbook: Computer Networking, J.F. Kurose and K.W. Ross, 2010, Addison WesleyTextbook: Computer Networks, L.L. Peterson and B.S.Davie, 2007, Morgan Kaufman
	Introduction to computer networks and the Internet. Application layer: HTTP, FTP, SMTP, DNS. Socket programming; client/server model; peer-to-peer networking. Transport layer protocols: TCP, UDP. Congestion control and congestion control in TCP. Network layer protocols: IP. Internet routing. Link layer: error control, multiple access. Data link

ourse title	Hours	Description	Literature Used
Course title Oftware Cerification and Calidation	Hours 151.5	Introduction and motivation for verification and validation; software testing overview, fundamentals of test process, general principles of testing, definitions and concepts, testing in software development life cycle, types of testing, levels of testing, levels of testing, test metrics; software inspection and code reviews, technical reviews, pair programming; specification-based testing, input-based partitioning, equivalence class partitioning, boundary value analysis, state transition test, decision table technique, used case testing; structural testing, graph coverage, logic coverage, syntax-based testing, statement coverage, condition coverage, condition coverage, instrumentation 11 and tool support; system, acceptance, and regression testing; model-based testing; run-time verification;	Literature Used Textbook: Software Testing and Analysis: Process, Principles and Techniques, Wiley, ISBN 0471455938., Mauro Pezzè, Michal Young, 2008, Wiley [down-load]Textbook: Foundations of Software Testing (2nd Edition), Aditya P. Mathur, 2013, PearsonTextbook: Software Engineering And Testing: An Introduction (Computer Science), B.B. Agarwal, M. Gupta, S.P. Tayal, Jones & BartlettText-book: Software Engineering, "A practitioner's Approach" 8th Edition, Roger S. Pressman, Bruce R. Maxim, 2015, McGraw Hill International EditionTextbook: Software Engineering, Ian Sommerville, 2011, Addison Wesley

Course title	Hours	Description	Literature Used
Algorithms I	145	Asymptotic notation. Divide and conquer approach. Solving recurrences: substitution method, master method. Bounding summations. Analysis of randomized quicksort. Medians and order statistics. Heaps: heapsort, priority queues. Sorting in linear time. Dynamic programming. Greedy algorithms. Amortized analysis: aggregate, accounting and potential methods, dynamic tables. Elementary graph algorithms: breadth-/depth-first search, topological sort, strongly connected components.	Textbook: Introduction to Algorithms, T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, 2009/3rd Ed, Mit Press and McGraw Hill

Course title	Hours	Description	Literature Used
Automata Theory and Formal Languages	147	Finite automata, regular expressions, regular languages and their properties, the pumping lemma. Context free grammars and languages, normal forms, pushdown automata, the pumping lemma for the CFLs. Turing machines and their properties. Decidability and undecidable languages. Complexity	Textbook: Introduction to the Theory of Computation, Michael Sipser, 3, Cengage Learning
		theory, NP-completeness.	

Course title	Hours	Description	Literature Used
Computational Geometry	156.5	Introduction: algorithmic background, data structures, geometric preliminaries, models of computation. Geometric searching: point-location problems, range-searching problems. Convex hulls: problem statement and lower bounds, convex hull algorithms in the plane, Graham's scan, Jarvis's march, Quickhull techniques, divide-and- conquer algorithms, dynamic convex hull, convex hull in 3D. Proximity: a collection of problems, a computational prototype: element uniqueness, lower bounds, the closest-pair problem: a divide- and-conquer approach, the Voronoi diagram, proximity problems solved by the Voronoi diagram. Triangulation: 14 planar triangulations, Delaunay triangulation Intersections: application areas, planar applications:	Textbook: Computational Geometry: An Introduction, F. P. Preparata and M.I. Shamos, 1985, Springer Verlag [down- load]Textbook: Computational Geometry: Algorithms and Applications, M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, 2000/2, Springer Verlag [down- load]Textbook: Computational Geometry in C, Joseph O'Rourke 2/1998, Cambridge University Press [down- load]Software: Computational Geometry Pages Jeff Erickson, 1999 [download]

Course title	Hours	Description	Literature Used
Senior Research Project	Hours 150	Introduction to research techniques in computer engineering and science. Working on a research topic as an independent study, under the supervision of a faculty member. Preparation of academic papers to present the	Literature Used
Senior Design Project I	197	results of the study. Capstone design project. Technical and innovative group project emphasizing engineering design principles on a specific topic in any field of computer science and engineering. Documentation on the specifications, analysis and the high level design	