Math 1410 Assignment #1 University of Lethbridge, Spring 2017

Sean Fitzpatrick

January 19, 2017

Due date: Thursday, January 26th, by 4 pm.

Please review the **Guidelines for preparing your assignments** before submitting your work. You can find these guidelines, along with the required cover page, in the Assignments section on our Moodle site.

Assigned problems

1. Prove the *distributive property* for complex arithmetic. That is, prove that for any complex numbers u, v, w, we have

$$u(v + w) = uv + uw$$
.

Reminder: The phrase "for any" tells you that simply providing an example is not acceptable. You need to give a general argument that does not depend on any particular choices of values for your complex numbers.

- 2. Recall that the complex conjugate of $z \in \mathbb{C}$ is denoted by \overline{z} , and the modulus of z is denoted by |z|. Show that:
 - (a) $|\bar{z}| = |z|$
 - (b) $|z| = \sqrt{z\overline{z}}$
 - (c) $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z \overline{z}}{2i}$, where $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ denote the real and imaginary parts of z, respectively.
- 3. Convert $z = -1 + \sqrt{3}i$ to polar form, and compute the value of $z^6 = (-1 + \sqrt{3}i)^6$. Express your answer in rectangular form.
- 4. Let $\vec{v} = \langle 3, -1, 4 \rangle$ and $\vec{w} = \langle -2, 5, 1 \rangle$ be two vectors in \mathbb{R}^3 . Find the coordinates of:
 - (a) The point P, one half of the way from the tip of \vec{v} to the tip of \vec{w} .
 - (b) The point *Q*, one third of the way from the tip of $\vec{v} + \vec{w}$ to the tip of $\vec{v} \vec{w}$.

(Assume all vectors are drawn with their tails at the origin.)