```
6A-16) Suppose une EV are such that
                 11u1=3, 11u+211=4, 1/u-211=6
 what does will equal?
              114+V112=16.
               114-2112 = 36
          Using the parallelogram equality,
               114+2112+114-412=2(11412+114112)
                    16+36=2(9+11+112)
                        52= 2(9+11-4112)
                         26= 9+11-0112
                           11-11-0115
                          11-411 = 117 // 1
6B.5) On Pack), (p, q) = 5' prograda
   Vaing the basis 1, 2, 2, produce an orthonormal basis for P2 CIR).
    Orthonormal > < p, q> = 0.
    let the basic be e,, l2, l3.

e,=1 < e,, l1, = 5', idx = 21', = 1

> 115 orthonormal.
     Using Gram Schmidt Decomposition,
             C2 = 2-(2, e, 7e, 1)
                                       < x, e, 7 = 50 x dx
                                               = = = 2 | 1
             11-4-52, 0, 76, 11
              = 11x-511
              = 「スーラ、スーラン
                                        = 186 Cx-22 dx
                                              = \frac{13}{6}x - \frac{13}{8} = 218x - 13
             = よくなーをもす
                                         C2= J3 (22-1)
             = 17
              = 1 = 1673
                                          < 22, l, 7 = So 22 da
                                                   x- くx2, Li7と, - くx2, l27 l2
                                          (22, e2) = 81, 22 [53 (2x-1)] dx
                                                = 52 5', 2x2-x2dx
                                               = 」豆「シャーシャッフ。
                                               = 53 [2-3] = 53/6
```

=
$$\int \int_{0}^{1} (x^{2} + \frac{1}{6} - x)^{2} dx$$

= $\int \int_{0}^{1} x^{4} + \frac{1}{6}x^{2} - x^{3} + \frac{1}{6}x^{2} + \frac{1}{36} - \frac{7}{6} - x^{3} - \frac{1}{6}x + x^{2} dx$
= $\int \int_{0}^{1} x^{4} - \frac{1}{6}x^{4} + \frac{1}{36}x^{2} + \frac{1}{36}x$

= 30 (2x4-23+3x2-6x) = 3= (2-1+3-6)=0. V.

11 22- 1- 13/6 (J3 (22-1)) 11 = (122-13-12(221-1)1) = 1/22-1-2+211 = 1122+6-211 = J So(x2+6-x)2dx

30 35 (2x3-2x2+3x-22+x-6)dx

6B.7) Find phynomial q & P2CIR) s.t PC= 3' por acx) dre for every PEP2CIR). From 6B.5, we established that 20, 97 = 80 ports goes dre P(2) = <p, q> for all p. Let $Q \in L(P_2CIR)$, IR) whore Q(CP) = p(L) for all $P \in P_2(IR)$ Then by Riesz representational thim, there exists a unique 9E P.CIR) s.E. PCP) = < P.Q? for all PEP2CIR). From 6.43, given orthonormal basis e., e2, e3, 9= (Ce,) e,+...+ (ECE3) e3 From 6BJ, we established that e=1, e2=13(2x-1), e3= 35(22-2+6) form an orthonormal balls. $\varphi(e_1) = 1$. $\varphi(e_2) = \sqrt{3}(0)$ $\varphi(e_3) = \frac{32}{5}(\frac{1}{4} - \frac{1}{2} + \frac{1}{6})$ $= \frac{32}{5}(-\frac{1}{6}) = -\frac{5}{25} = -\frac{1}{2}5$ = 1- 1x (30 (x2-x+6)) = 1- 15 (x2-x+6) 9 = -15x2+15x-3 < ax2+ bx+c, -15x2+15x-37 S! (az2+bre+c) (-15x2+15x-32) dx - 318 -150x4+ 150x3-3ax3-15bx3+15bx2-3bx-15cx2+15cx-3cdx. -3a+ 152-15b -129+5b-5c-36b+15c-3e a(-3+1====)+b(-1=+5-3)+c(-5+1=-3)

= a(+)+b(+)+c

=> P= an2+bnc+c, pc=>

Verly:
$$\langle av^{2}bv_{+}c, \frac{12}{17}(2v_{-}1)\rangle = -\frac{17}{17}\frac{1}{5}(2v_{-}1)(av^{2}bv_{+}c)dv$$

$$= -\frac{12}{172}\frac{1}{5}(2av^{2}+2vv^{2}+2cx-ax^{2}-bv_{-}c)dv$$

$$= -\frac{12}{172}(\frac{1}{5}(2av^{2}+v^{2}(2b-a)+v(2c-b)-c)dv$$

$$= -\frac{17}{172}(\frac{1}{2}a+\frac{2b-a}{2}+\frac{2c-b}{2}-c)$$

$$= -\frac{17}{172}(ac^{2}-\frac{1}{3})+b(\frac{2}{3}-\frac{1}{2})$$

$$= -\frac{17}{172}(\frac{1}{6}a+\frac{1}{6}b) = -\frac{2}{172}(a+b)$$

$$\frac{1}{5}(av^{2}+bv_{+}c)(conx)dv$$

$$\frac{1}{5}(av^{2}+bv_{+}c)(conx)dv$$

$$\frac{1}{5}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)|_{0}^{1}-\frac{1}{5}(\frac{1}{7}ennv)(2av_{+}b)dv$$

$$= -\frac{1}{5}(\frac{1}{7}sinnv)(2av_{+}b)dv$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}sinnv)(2av_{+}b)dv$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)|_{0}^{1}-\frac{1}{5}(\frac{1}{7}ennv)(2av_{+}b)dv$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)|_{0}^{1}-\frac{1}{5}(\frac{1}{7}ennv)(2av_{+}b)dv$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)|_{0}^{1}-\frac{1}{5}(\frac{1}{7}ennv)(2av_{+}b)dv$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}annv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}anv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}anv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}anv)(2av_{+}b)|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}$$

$$\frac{1}{7}(av^{2}+bv_{+}c)(-\frac{1}{7}anv)(2av_{+}c)(-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}annv}|_{0}^{1}-\frac{1}{7}an$$

1) a) Pt: Let XEC be an eigenvalue of T, with a corresponding eigenvector NEV Since V= UAW, ~= u+w where uEV, wEW. Tw = TCU+W) = >CU+W) Since U and W ore invariant under T, The U and The W. Here, for Tu+To = Lu+LW, Tu= >u and Tu= >u. If $u \neq 0$ and $u \neq 0$, then v = u + u is an eigenvector of $v = v = \lambda u$ and λ is an eigenvector of $v = \lambda u$. If $u\neq 0$, and w=0, then $v=u\Rightarrow Tv=Tu=\lambda u$ $\Rightarrow \lambda$ is an eigenvalue of T(u). If u=0 and $w\neq 0$, then $v=\omega \Rightarrow Tv=T\omega=\lambda\omega$ $\Rightarrow \lambda$ is an eigenvalue of $T \mid \omega$. Here X is an eigenvalued Tlu, Tw, or both. 3CT 10)=0 in 1CO) P) . gCT/W)=0 ,, &CW). Let V=U+W, UEU, WEW. Since V= UAW まして)の(て)~ = BCT) aCT) (U+W) = fct) gct) u+ fct) gct) w = fctu) gctu)+fctw) gctw) TWEW > g(TW)= 0 as U, Waremarant O. gCTu) + fCTw). O since under T Thus &CT)gCT)-N=O. for N=U+W, UEU, WEW, U. 40, W = O. · For ヤ=u, f(T)g(T)v = f(T)g(T)u= fctu)gctu) For 4= W, $f(\tau)g(\tau) = f(\tau)g(\tau)\omega$ = $f(\tau\omega)g(\tau\omega)$ $\therefore \pm CT)gCT = 0$ in $\pm CV$.

c) Prove that if fixer, give how no shared roots, then fourgence is a minimal polymounal of T.
PE: Suppose lex), gax) have no shared roots,
Let $f(x) = (x-\lambda_1)(x-\lambda_n)$ where $\lambda_1,,\lambda_n \in \mathbb{C}$ are the roots of $f(x)$. Let $g(x) = (x-\sigma_1)(x-\sigma_m)$ where $\sigma_1,,\sigma_m \in \mathbb{C}$ are the roots of $g(x)$.
Since for has No, No roots, there must be up,, Un corresponding eigenvectors. Similarly, g(x) has on,, on roots, thus w,,, won corresponding eigenvectors.
Let poor be the minimal polynomial of T. We will now prove that poor = good food.
From 8.46, polynomials QCT)=0 => QCT) is a miltiple of the minimal polynomial Hence for goes must be a polynomial moltable of poer.
paidar = targar where dePCa). Here targar = par
$\Rightarrow d(x) \approx a b c b r d f(x) a(x) such that \frac{f(\tau)a(\tau)}{a(\tau)} = 0$
Lemma: d(x) cannot be a non-constant polynomial factor of fcx) or g(x). Pf: We prove the case for f(x) g(x) trivally follows. Py controdiction, alsume d(x) is a non-constant polynomial factor of f(x). Let d(x) = x - xu, 1 < k < n.
WLOG, let $K=1$. $d(x) = x - \lambda_1$. $p(x) = \frac{f(x)g(x)}{x - \lambda_1} = (x - \lambda_2)(x - \lambda_n)(x - \sigma_n)(x - \sigma_m)$
$\rho(T)u_1 = (T-\lambda_2 I)(T-\lambda_n I)(T-\sigma_1 I)(T-\sigma_m I)u_1$ $= (\lambda_1 u_1 - \lambda_2 u_1)(\lambda_1 u_1 - \lambda_n u_1)(\lambda_1 u_1 - \sigma_1 u_1)(\lambda_1 u_1 - \sigma_m u_1)$ $= (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_n)(\lambda_1 - \sigma_1)(\lambda_1 - \sigma_m)U_1$ $= (\lambda_1 - \lambda_2)(\lambda_1 - \lambda_n)(\lambda_1 - \sigma_1)(\lambda_1 - \sigma_m)U_1$ $= 0 \text{ since all eigenvalues } \lambda_1,,\lambda_m,\sigma_1,,\sigma_m \text{ are unique}.$
Hence dCX) cannot be a non-ronstant paymonial factor of fox).
This applies similarly to gox). Hence dox) annot be a non constant polynomial

From Lemma 1, 2 Cx) can only hence be a constant multiple of ferd, gots). Since fex), g cx) are minimal polynomials, PCa), g (2) are monic, thus d(x)=1. pcx = for gor p(x)= fcx1g(x) =) fcx1g(x) is the minimal polynomial of T d) Suppose lexigox) have shared roots. Let f(z) = (z-x)...(z-xn) where x,...,xn & C are the roots of PCi). Let good = (x-0,)... (x-om) whose of,...,om & C are the roots of good. let >1=0, Since for has now, nots, there must be up, ..., un corresponding eigenvectors. Similarly, g(x) has o1,..., on roots, thus w1,..., um corresponding eggenvectors. Since Xi=0, $f(x)g(x) = (x-\lambda_1)...(x-\lambda_n)(x-\sigma_1)...(x-\sigma_m)$ $= (x-\lambda_1)^2...(x-\lambda_n)(x-\sigma_2)...(x-\sigma_m)$ fcx)g(x)/(x-x1)= (x-x1)...(x-xn)(x-02)...(x-om) Lemma 2: fct) gct) / (T-X,) = 0 in RCV).

Per V= UOW: U, W are invenient under T. Let ue U [f(T)act)/(T-2,7]u=[(T-2,1...(T-2n)(T-02)...(T-0m)]u =[fcT)(T-02)...(T-0m)] u = fcTu)CTu-ozu)... (Tu-omu) = 0 Since TUEU > fcTu)=0. let weW [+CT)g(T)/(T-X)]()=|(T-X))...(T-Xn)(T-02)...(T-0m)]w =[(T-01)(T-2), CT-An)(T-02)...(T-0m)W. = $[(\tau-\lambda_2), (\tau-\lambda_n)g(\tau)]\omega$ = O since Tue Wa g(Tw) = O. Let v= au+bev. hCT)= {(T) g(T)/(T-2)] hCT) = hCT+1) = h(Tau + Tbw) = h(Tau)+h(Tbw) = ah CTu) + bh CTw)

Hence $f(\tau)g(\tau)/(\tau-\lambda_1) = 0$ Thus there exists a polynomial $g(x) = f(\tau)g(\tau)/(\tau-\lambda_1)$ with smaller degree than for $g(\tau)$ such that $g(\tau) = 0$:- $f(\tau)g(\tau)$ is not the minimal polynomial.

Let & be the corresponding eigenvector.	
Tv = Xv = +v > \(\(\times \), \(\times \) = \(\times \), \(\times \) \(\times \) \(\times \), \(\times \) The rece to have eigenvalues, the only possible values or >1, 1. Hence Tean have at most 2 eigenvalues.	
Proce (can have so most I eigenvanes.	
37 $V=\mathbb{C}^n$ $R: V \rightarrow V$ be defined as R $(a_1,,a_n)=(a_2,,a_n,a_n)$ Given $p(x)=x^n-1$, prove that $p(R)=0$.	
pCR) = Kn-I	
$R(\alpha_1,,\alpha_n) = (\alpha_2,,\alpha_n,\alpha_1)$ $R^2(\alpha_1,,\alpha_n) = (\alpha_3,,\alpha_n,\alpha_1,\alpha_2)$ $R^2(\alpha_1,,\alpha_n) = (\alpha_3,,\alpha_n,\alpha_1,\alpha_2)$	
Kr C 3 3 3 3 5 7 3 5 7 5 7 5 7 5 7 5 7 5 7 5	
Lemma: Rk (a,,, a) = (a, e,, an, a,,, ax) for 1 < k < n-1	
Pf. Bose cose: $k=1$. $R^{k}(a_1,,a_n) = (a_2,,a_n,a_i) \vee$. Assuming lemma is true for $k=i$, $1 < i < n-2$,	
let k= i+1, Rit (a1,,an) = R(Ri(a,,an)) = R(a1,,an)	
$= (a_{i+2,,a_n}, a_{i,}, a_{i+1})$ $= (a_{i+(i+1),,a_n}, a_{i,}, a_{i+1})$ $\Rightarrow \text{lemma is fore } a_{i+1}, a_{i+1}, a_{i+1}$	
= $(a_1+ci+i),,a_n,a_1,,a_n,a_n,,a_n)$ = $(a_1+ci+i),,a_n,a_n,,a_n,a_n,,a_n,a_n,,a_n,a_n,a_n,a_n,a_n,a_n,a_n,a_n,a_n,a_n$	
$= (a_1+ci+i),, a_n, a_1,, a_{ci+in})$ $= emma (s frue Br k=i+1)$ $= emma (s $	
= $(a_1+ci+i),,(a_n,a_1,,a_n)$	
= $Ca_{1}+ci_{1},,a_{n},a_{1},,a_{n},a_{1},,a_{n},a_{1},,a_{n},a_{n},,a_{n},a_{n},,a_{n},a_{n},,a_{n},a_{n},,a_{n},a_{n},,a_{n},a_{n},,a_{n},a_{n},,a_{n},a_$	
$= Ca_{1+(i+1)},, a_{n}, a_{1},, a_{n}, a_{1},, a_{n}, a_{1},, a_{n}, a_{n},, a$	

C) W= cos(27) - isin(27) Since 2n-1.5 a minimal polynomials that all the roots 1, w, w2,..., wn must be eigenvalus for R. $|\nabla A = A \Rightarrow A = (1, 1, ..., 1)$ $|A = \frac{1}{2} |A = \frac{1}{$ $R(1,\omega,\omega^2,...,\omega^{n-1}) = (\omega,\omega^2,...,\omega^{n-1},1)$ = $\omega(1,\omega,\omega^2,...,\omega^{n-1})$ $||C_1, \omega, \omega^2, \dots, \omega^{n-1}|| \le an eigenvector with eigenvalue \omega$ $||C_1, \omega, \omega^2, \dots, \omega^{n-1}|| = \sqrt{n}$ $\Rightarrow v_2 = \frac{1}{2\pi}(c_1, \omega, \omega^2, \dots, \omega^{n-1})$ $R(1,\omega^2,...,\omega^{2(n-1)}) = (\omega^2,\omega^4...,\omega^{2(n-1)},1)$ = $\omega^2(1,\omega^2,...,\omega^{2(n-1)},1)$ Lemma 3. For RCVL) = We Vk, Vk= C1, W, W, , , wkin-1) for 05 k5 n-1. PE: By induction, Rose case: K=0. Inductive step: Assume lemma 3 is fac for some i,0 = i < k, then for k=i+1, R(-VK+1) = R(1, WK+1, W2(K+1), (K+1)(N-1)) = (WK+1, W2(K+1), (K+1)(N-1), (K+1 ". Vk = (1, Uk, W2k, ..., Ukin-1)) for Osks n-1 form a books for C"

Since Osks n-1 and Du are all I rearly independed

d) Proposition: It $\mu \in \mathbb{C}$ satisfies $\mu^n = 1$ but $\mu \neq 1$, then $1 + \mu + \mu^{n-1} = 0$. Pf: $(1+\mu^2+...+\mu^{n-1})(\mu-1)$ = $\mu+\mu^2+...+\mu^n-(1+\mu+\mu^2+...+\mu^{n-1})$ = $\mu+\mu^2+...+\mu^{n-1}+1-(1+\mu+\mu^2+...+\mu^{n-1})$ = 0Since $\mu \neq 1$, then $\mu - 1 \neq 0$. Thus for $(1+\mu+\mu^2+...+\mu^{n-1})(\mu-1)=0$, (+M+M2+..+Mn-1=0 e) Formy bours to be octhonormal, · < 40, 457 = 0 Let -V; = C(,ω),ω22,...,ω(n-1);)

V; = C(,ω),ω2,...,ω20,...,ω20-1);) <- 00, 1/3 = 1 + w w + ... + w n + i w cn-1); Suppose 275, 7= 1+ wind wis + ... + w (n-x)= con-123 worners Since wisa root of 1, 11 WK11=1 $(-1)^{2} = 1 + \omega^{2-3} + \omega^{2-3} + \omega^{2-3} + \omega^{2-3}$ whi-i) = (wn)(i-i) = but win = > Here by (d), 1+ Wi-j+ W2C1-j)+ ... + W ⇒ くゃこ,かうっ = O if irj. Same argument applies to it ixi, herce all vectors to, ,, or one orthonormal.

f). Since Vi, vn are orthonormal, then For some acthonormal vector we, $\Rightarrow b_{\epsilon} = \langle -v, v_{\epsilon} \rangle$ $= \langle (a_{1}, ..., a_{n}), (1, \omega^{\epsilon}, ..., \omega^{\epsilon} c_{n-1}) \rangle$ $= a_{1} + a_{2} \omega^{\epsilon} + a_{3} \omega^{2\epsilon} + ... + a_{k} \omega^{(k-1)\epsilon} + ... + a_{n} \omega^{(n-1)\epsilon} \int_{\Gamma}$ Let the stordard basis be li,..., en V= ail,+ ... + anen. < b, t, t. . + bat niei > bit baw't baw't to to no con-17 くといとう = < pin/+ ... + pun/n/1/2 = pi < 1/2/2/2 + ... + pu < 1/2/2/2 = pi < 1/2/2/2 + ... + pu < 1/2/2/2 = (-0.20) ことしていれていましかいました $= b_1 b_1 + \dots + b_n b_n$ $= |b_1|^2 + \dots + |b_n|^2$ $= |a_1|^2 + \dots + |a_n|^2 = |b_1|^2 + \dots + |b_n|^2$