Tema 4: Sistemas Neurodifusos

Universidad Pontificia de Salamanca

Manuel Martín-Merino

Contenido

- Motivación
- Sistemas de Inferencia Difusos Sugeno (TSK) y Tsukamoto
- Sistema Adaptativo de Inferencia Neurodifuso (ANFIS)
 - Arquitectura
 - Algoritmo de aprendizaje
 - ANFIS y redes RBF
 - Características: Generalización (Aproximador Universal)
- Tópicos avanzados
- Bibliografía

Motivación (I)

- Los sistemas difusos son fácilmente interpretables por los expertos humanos en términos de reglas
- No permiten adaptarse a cambios en la distribución de probabilidad de los datos
- * La extracción de reglas a partir de expertos humanos es un proceso complejo, caro y, en ocasiones, inviable
- La lógica difusa no proporciona un formalismo riguroso para la estimación de los parámetros óptimos de las reglas

Motivación (II)

Sistemas Neurodifusos

- Permiten obtener la base de reglas que controla el sistema a partir de una muestra finita de ejemplos de entrada-salida
- Mantienen la interpretabilidad de los sistemas difusos en forma de reglas. Permiten incorporar conocimiento a priori
- Utilizan el formalismo desarrollado en las redes neuronales para estimar los parámetros óptimos de las reglas difusas
- Permiten desarrollar sistemas con alta capacidad de generalización utilizando la teoría desarrollada para las redes neuronales clásicas

Sistemas de Inferencia Difusos Sugeno (TSK) (I)

- Permite obtener de manera sistemática reglas difusas a partir de datos de entrada salida.
 - El sistema inferencia Mamdani es excesivamente complejo
- Utiliza reglas del tipo:

If
$$x$$
 is A and y is B then $z = f(x, y)$

- f(x,y) especifica la salida en la región difusa determinada por los antecedentes.
 - ▶ Sistema difuso Sugeno primer orden: f(x,y) = p * x + q * y + r.
 - Sistema difuso Sugeno grado 0: f(x,y) = r. Equivale a Mandami con consecuentes singleton.

Sistema de Inferencia Difuso Sugeno (TSK) (II)

 Operador mínimo o producto para la t-norma. Defusificador promedio:

$$z = \frac{w_1 z_1 + w_2 z_2}{w_1 + w_2} \tag{1}$$

Sistemas de Inferencia Difusos Tsukamoto (I)

- El consecuente de cada regla se representa por una función de pertenencia monótona
- Operador mínimo-producto para la t-norma. Defusificador promedio.
- Menos intuitivo y más complejo

Sistema Adaptativo de Inferencia Neurodifuso (ANFIS)

Arquitectura (I)

 Implementa un sistema difuso Sugeno de grado 1 con reglas del tipo:

if x is A_1 and y is B_1 then $f1 = p1 * x + q1 * y + r_1$

Arquitectura (II)

Capas ANFIS

 O_{li} denota la salida del nodo i en la capa l

Capa 1: Implementa funciones de pertenencia del tipo:

$$O_{1i} = \mu_{A_i}(x) = \frac{1}{1 + \left| \frac{x - c_i}{a_i} \right|^{2b_i}}$$
 (2)

donde $\{a_i, b_i, c_i\}$ son los parámetros de las premisas.

• Capa 2: Reliza la t-norma de las funciones de pertenencia

$$O_{2i} = w_i = \mu_{A_i}(x)\mu_{B_i}(y) \qquad \forall i = 1, 2$$
 (3)

Arquitectura (III)

Capa 3: Normaliza el grado de activación de cada regla:

$$O_{3i} = \bar{w}_i = \frac{w_i}{w_1 + w_2} \tag{4}$$

 Capa 4: Multiplica el consecuente de la regla por su grado de activación:

$$O_{4i} = \bar{w}_i f_i = \bar{w}_i (p_i x + q_i y + r_i)$$
 (5)

Capa 5: Calcula la salida mediante un promedio pesado:

$$O_{51} = \sum_{i} \bar{w}_{i} f_{i} = \sum_{i} \frac{w_{i} f_{i}}{\sum_{i} w_{i}}$$
 (6)

Arquitectura (IV)

 La extensión al modelo neurodifuso Tsukamoto ANFIS es inmediato como muestra la figura:

 El sistema de inferencia producto (Mamdani) con defusificador promedio de los centros se puede implementar fácilmente como una red neurodifusa

Algoritmo de aprendizaje (I)

 ANFIS es un sistema lineal en los parámetros del consecuente cuando se fijan los parámetros de las premisas

$$f = \bar{w}_1(p_1x + q_1y + r_1) + \bar{w}_2(p_2x + q_2y + r_2)$$

= $(\bar{w}_1x)p_1 + (\bar{w}_1y)q_1 + (\bar{w}_1)r_1 + (\bar{w}_2x)p_2 + (\bar{w}_2y)q_2 + (\bar{w}_2)r_2$ (7)

- Sea $S = S_1 S_2$ donde
 - \triangleright S_1 es el conjunto de parámetros de las premisas
 - $\triangleright S_2$ es el conjunto de parámetros del consecuente. El sistema es lineal en S_2

Algoritmo de aprendizaje (II)

El algoritmo de aprendizaje se puede implementar en dos pasos:

- Paso hacia adelante:
 - Se obtienen las salidas de los nodos de la capa 4, \bar{w}_1 , \bar{w}_2). El vector de parámetros del consecuente verifica:

$$\mathbf{A}\theta = \mathbf{f} \tag{8}$$

ightharpoonup La solución $heta^*$ minimiza $\|\mathbf{A}\mathbf{ heta} - m{f}\|^2$

$$\theta^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{f} \tag{9}$$

donde $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$ es la pseudoinversa de \mathbf{A} .

Algoritmo de aprendizaje (III)

- Paso hacia atrás:
 - Los errores se propagan hacia atrás actualizando con un algoritmo iterativo basado en gradiente descendente los parámetros de las funciones de pertenencia del antecedente.
- La estrategia anterior converge mucho más rápido que gradiente descendente puro. El espacio de parámetros para el gradiente descendente se reduce disminuyendo la dimensión del espacio de búsqueda.

UPSA Manuel Martín-Merino

ANFIS y redes RBF

- Las redes RBF son equivalentes al modelo de Inferencia Difuso de Sugeno grado 0. (Se deja como ejercicio)
- El sistema híbrido de aprendizaje de ANFIS puede ser utilizado para estimar los parámetros de la red RBF
- El sistema de optimización de las redes RBF puede ser empleado para estimar los parámetros de ANFIS.

UPSA Manuel Martín-Merino