Wed Jun 17 14:23:14 2020 Luis Duarte Carneiro Pinto (up201704025) Logout Submissão 151 Enviada por up201704025 em Wed Jun 17 14:23:08 2020. Resultado: Accepted
Number of questions: 33 Total number of options: 33 Number of correct choices: 24 Number of incorrect choices: 9 Weight for correct choices: default Weight for incorrect choices: default Score: 59.09% 1.
A diferença fundamental entre arquitecturas de 32 e 64 bits consiste no facto de as segundas permitirem: a. ☑ a execução de processos com espaços de endereçamento maiores. ✓ b. ☐ manter informação sobre mais processos na memória física. c. ☐ transferir processos completos para a memória física. Answers: a
 No CPU, a componente designada por "Memory Management Unit" (MMU) é responsável por: a. □ atribuir espaço aos processos que aguardam execução mantendo a integridade da memória física. b. ☒ garantir a integridade da memória e traduzir endereços virtuais em endereços na memória física. ✓ c. □ detectar acessos indevidos a zonas de memória e transferir controlo para o sistema operativo. Answers: b
3. A priori, uma desvantagem das técnicas de segmentação e paginação relativamente a técnicas que mapeiam processos completos em zonas contíguas de memória consiste no facto da tradução de endereços virtuais em endereços físicos: a. □ não poder ser feita pelo hardware (MMU). b. ☒ envolver a consulta de tabelas em memória. ✓
c. as MMUs respectivas serem muito complexas. Answers: b 4. A imagem que se segue representa uma MMU. O circuito suporta segmentação, paginação ou nenhuma das duas? Porquê?
 a. ⊠ segmentação, porque a tabela de tradução tem o valor "limit" para cada entrada, indicando que os blocos de memória podem ter tamanhos diferentes. ✓ b. □ paginação, porque a tabela de tradução tem o valor "limit" para cada entrada, indicando que os limites das páginas estão a ser verificados. c. □ nenhuma, porque a existência da tabela com valores "limit" e "base" por entrada indica que esta guarda a posição de processos completos na memória. Answers: a
 5. Uma vantagem significativa da técnica da paginação é: a. ☑ não provoca a fragmentação externa da memória física. ✓ b. ☐ todos os endereços traduzidos são válidos no programa. c. ☐ as páginas têm tamanho variável e estritamente necessário. Answers: a
 Na técnica da segmentação: a. □ não ocorre a fragmentação externa da memória física. b. ☒ os endereços traduzidos são sempre válidos no programa. ✓ c. □ a MMU é simples pois os segmentos são do mesmo tamanho.
7. A imagem que se segue representa uma MMU. Quantos acessos à memória estão envolvidos na tradução de um endereço de memória virtual quando: 1) o TLB tem um hit, 2) caso contrário:
a. ⊠ 1 e 2. ✓ b. □ 2 e 1. c. □ 2 e 2. Answers: a
 8. Numa arquitectura de 32 bits, um sistema operativo com páginas de 4 KBytes produz tabelas de páginas com quantas entradas? a. □ 2³⁰. b. ⋈ 2²⁰. ✓ c. □ 2¹².
 Answers: b 9. Uma vantagem/desvantagem, respectivamente, de usar páginas mais pequenas num sistema operativo, é: a. ⊠ diminuir a fragmentação interna / aumentar o "swapping" de páginas. ✓ b. □ diminuir a fragmentação externa / diminuir a localidade de informação. c. □ aumentar a localidade de informação / aumentar a fragmentação externa.
Answers: a 10. Como explica que o seguinte programa dê valores distintos para a variável "val" que está localizada no mesmo endereço? /* includes & defines */
<pre>int main(int argc, char* argv[]) { pid_t pid; int val; pid = fork(); if (pid == 0) { val = 0; printf(" child: val = %d, at addr = %p\n",val, &val); return EXIT_SUCCESS; } else { val = 1; wait(NULL); printf("parent: val = %d, at addr = %p\n",val, &val); return EXIT_SUCCESS; } } \$ gcc -Wall val.c -0 val \$./val \$ child: val = 0 at addr = %97ffeef775a38</pre>
child: val = 0, at addr = 0x7ffeef275a38 parent: val = 1, at addr = 0x7ffeef275a38 a. □ há um erro no programa, depois do "fork" os endereços têm de ser diferentes. b. □ "val" é alterada na memória física no mesmo endereço em instantes diferentes. c. ☒ os espaços de endereçamento dos processos são iguais e o endereço é virtual. ✓ Answers: c
11. Se imprime o valor de um apontador obtendo, por exemplo, 0x7ffeef275a38, quantos bits tem a arquitectura em que o programa foi executado? a. ⊠ 64 bits. ✓ b. □ 32 bits. c. □ 12 bits.
12. Na imagem da MMU que se segue, não é feita nenhuma verificação do "offset" do endereço para garantir que este cai sempre dentro da página porque:
 a. □ essa verificação é feita por software, pelo sistema operativo, e não pelo hardware da MMU. b. □ o hardware de tradução de endereços fica mais rápido mesmo que possa gerar erros ocasionais. c. ☒ a divisão em bits dos endereços virtuais garante que "offset" é inferior ao tamanho duma página. ✓ Answers: c
 13. A técnica da segmentação: a. ☑ preserva a localidade dos dados e das instruções de um programa. b. ☐ preserva a localidade dos dados mas não das instruções de um programa. c. ☐ em geral, pão preserva a localidade dos dados pem das instruções
c. ☐ em geral, não preserva a localidade dos dados nem das instruções. Answers: a 14. As instruções do CPU operam directamente apenas com informação na memória física, e nunca com informação guardada em discos, porque: a. ☒ a latência de acesso é muito superior nos discos do que na memória. ✓ b. ☐ necessitariam de endereços virtuais enormes para aceder à informação. c. ☐ porque o CPU e os discos não estão ligados directamente na motherboard. Answers: a
 15. A partição de um disco permite ao utilizador: a. □ partilhar a informação no dispositivo com outros utilizadores. b. □ diminuir a latência na transferência de informação para a memória. c. ☒ manter diferentes sistemas de ficheiros no mesmo dispositivo. ✓
Answers: c 16. Um volume é: a. ⊠ uma partição de um disco onde foi instalado um sistema de ficheiros. ✓
 b. □ o conjunto de todos os sistemas de ficheiros instalados num disco. c. □ uma partição de um disco usada para transferir páginas de/para memória. Answers: a 17. A estrutura de dados utilizada para organizar a informação no Unix File System (UFS) e afins é:
a. ☐ uma lista ligada de ficheiros simples, sem directórios. b. ☒ uma árvore com directórios nos nós e com ficheiros nas folhas. ✗ c. ☐ um grafo dirigido acíclico com directórios nos nós e ficheiros nas folhas. ← · · · · · · · · · · · · · · · · · ·
Um sistema de ficheiros virtual (VFS) é: a. □ é um sistema de ficheiros desenhado especificamente para ser utilizado em máquinas virtuais, suportando vários sistemas operativos. b. ☒ é um sistema de ficheiros implementado inteiramente em memória e que fornece ao utilizador a ilusão de um sistema de ficheiros em disco. ✗ c. □ uma abstracção do sistema operativo que permite oferecer aos utilizadores uma API uniforme para operações sobre o sistema de ficheiros. ←… Answers: c
19. A System-Wide Open File Table (SWOFT) é uma tabela mantida pelo kernel em memória contendo informação relativa a todos os ficheiros: a. ⊠ guardados actualmente nos discos. ✗ b. □ abertos por processos em execução. ← c. □ que alguma vez estiveram nos discos.
Answers: b 20. Para cada processo, a Per-Process Open File Table (PPOFT) mantém informação sobre os ficheiros por ele abertos, porque há informação dos ficheiros específica aos processos, por exemplo: a. □ a localização do cursor de leitura/escrita. ← b. □ as permissões de leitura, escrita e execução. c. ☒ a localização dos blocos respectivos em disco. ✗
Answers: a 21. A estrutura em C seguinte (exemplo do MACOS X) contém informação normalmente guardada: struct stat { dev_t st_dev;
<pre>dev_t st_rdev; /* device type, for special file inode */ struct timespec st_atimespec; /* time of last access */ struct timespec st_mtimespec; /* time of last data modification */ struct timespec st_ctimespec; /* time of last file status change */ off_t st_size; /* file size, in bytes */ quad_t st_blocks; /* blocks allocated for file */ u_long st_blksize;/* optimal file sys I/O ops blocksize */ u_long st_flags; /* user defined flags for file */ u_long st_gen; /* file generation number */ };</pre>
a. ⊠ numa entrada da Per-Process Open File Table. X b. □ numa entrada da System-Wide Open File Table. c. □ num File Control Block (Inode no Unix). ← Answers: c
As estruturas de dados Per-Process Open File Table (PPOFT), System-Wide Open File Table (SWOFT) e File Control Block (FCB) são mantidas na memória pelo kernel do sistema operativo para: a. ☑ diminuir a latência das operações sobre o sistema de ficheiros. ✓ b. ☐ diminuir o custo energético de aceder sempre a informação nos discos. c. ☐ manter ficheiros para lá do limite de capacidade dos discos. Answers: a
A utilização de blocos contíguos para guardar o conteúdo de um ficheiro: a. □ simplifica a criação de ficheiros grandes e expansíveis. b. □ apresenta a pior latência para acessos aleatórios no ficheiro. c. ☒ minimiza o seek time nos acessos ao ficheiro em discos HDD. ✓ Answers: c
24. A utilização do mecanismo de gestão do espaço em disco para ficheiros ilustrado na figura seguinte:
a. ☐ minimiza o seek time nos acessos ao ficheiro em discos HDD.
 b. ☐ dificulta a criação de ficheiros grandes e expansíveis. c. ☒ incorre na latência mais elevada para acessos aleatórios. ✓ Answers: c 25. File Allocation Table (FAT) usa listas de blocos para guardar o conteúdo de ficheiros mas é mais eficiente porque a tabela FAT contém:
 a. ⊠ todas as ligações entre blocos de ficheiros e é mantida em memória pelo kernel. b. □ todos os primeiros blocos de ficheiros e é mantida em memória pelo kernel. c. □ os blocos mais usados de cada ficheiro e é mantida em memória pelo kernel. Answers: a 26.
Qual a vantagem do seguinte esquema de indexação para a localização de blocos de ficheiros em disco?
a. □ gasta apenas espaço de disco com os dados. b. ☒ é muito eficiente para ficheiros pequenos. ✓ c. □ minimiza os movimentos da cabeça de leitura. Answers: b
27. Sistema de indexação do Unix (inode) está optimizado para o cenário de muitos ficheiros de pequeno tamanho porque: a. ☑ suporta níveis 0, 1, 2 e 3 de indexação para ficheiros e os inodes têm identificadores de 32 ou 64 bits. ✗ b. ☐ ficheiros pequenos são indexados directamente pelo inode e os inodes têm identificadores de 32 ou 64 bits. ←…
c. □ suporta apenas indexação directa de ficheiros pelo inode e estes têm identificadores no máximo de 8 bits. Answers: b 28. As siglas IDE, EIDE, SCSI, SATA identificam tecnologias utilizadas em: a. □ módulos de memória. b. □ microprocessadores. c. ☒ controladores de disco. ✓
Answers: c 29. A função de um controlador de um disco é: a receber do CPU, via motherboard, comandos de leitura/escrita de dados e executá-los. b receber dados de periféricos de I/O, guardá-los, e sinalizar o CPU através de interrupts. c. ⊠ garantir que um disco não lê nem escreve mais do que o indicado pelos comandos do CPU. X
c. ⊠ garantir que um disco não lê nem escreve mais do que o indicado pelos comandos do CPU. X Answers: a 30. Num disco rígido (HD) a latência no acesso aos dados: a. ⊠ não é uniforme devido ao movimento dos pratos e das cabeças de leitura/escrita. ✓
 a. ☑ não é uniforme devido ao movimento dos pratos e das cabeças de leitura/escrita. ✓ b. ☐ não é uniforme devido à capacidade variável do buffer de leitura/escrita do controlador. c. ☐ é uniforme, i.e., demora o mesmo tempo obter informação em qualquer posição do disco. Answers: a 31. Os algoritmos FCFS (First Come First Served), SSFT (Shortest Seek Time First), SCAN e outros são usados pelo sistema operativo para organizar as operações de leitura/escrita em discos HDD tendo em vista:
operações de leitura/escrita em discos HDD tendo em vista: a. ☐ minimizar o tempo de transferência. b. ☒ minimizar a rotação dos pratos. ✗ c. ☐ minimizar o movimento das cabeças. ← ···· Answers: c
Relativamente a um disco rígido (HDD), um disco de estado sólido (SSD): a. ⊠ tem uma maior largura de banda para a memória. ✓ b. □ tem um preço mais baixo por GB de capacidade. c. □ tem um tempo médio de utilização mais longo. Answers: a
Bevido a características de implementação das memórias NAND, o acesso a dados em discos de estado sólido (SSD) é uniforme: a. ☑ para operações de leitura e de escrita. ✗ b. ☐ para operações de leitura apenas. ← c. ☐ para operações de escrita apenas. Answers: b