# An Introduction to Support Vector Machine

#### **PDEEC**

Machine Learning 2018/19

Jaime S. Cardoso

INESC TEC and Faculdade Engenharia, Universidade do Porto 2018/11/15

# What is pattern recognition?

"The assignment of a physical object or event to one of several prespecified categories" -- Duda & Hart

- A pattern is an object, process or event that can be given a name.
- A pattern class (or category) is a set of patterns sharing common attributes and usually originating from the same source.
- During recognition (or classification) given objects are assigned to prescribed classes.
- A classifier is a machine which performs classification.

### Examples of applications

- Optical Character
- **Recognition (OCR)**
- Biometrics
- Diagnostic systems
- Military applications

- Handwritten: sorting letters by postal code, input device for PDA's.
- Printed texts: reading machines for blind people, digitalization of text documents.
- Face recognition, verification, retrieval.
- Finger prints recognition.
- Speech recognition.
- Medical diagnosis: X-Ray, EKG analysis.
- Machine diagnostics, waster detection.
- Automated Target Recognition (ATR).
- Image segmentation and analysis (recognition from aerial or satelite photographs).

### Basic concepts



#### Feature vector $\mathbf{x} \in X$

- A vector of observations (measurements).
- $\mathbf{x}$  is a point in feature space X.

- Cannot be directly measured.
- Patterns with equal hidden state belong to the same class.

#### **Task**

- To design a classifer (decision rule)  $q: X \to Y$  which decides about a hidden state based on an onbservation.

### Example



<u>Task</u>: jockey-hoopster recognition.

The set of hidden state is  $Y = \{H, J\}$ The feature space is  $X = \Re^2$ 

Training examples 
$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}$$

#### **Linear classifier:**

$$\mathbf{q}(\mathbf{x}) = \begin{cases} H & if \quad (\mathbf{w} \cdot \mathbf{x}) + b \ge 0 \\ J & if \quad (\mathbf{w} \cdot \mathbf{x}) + b < 0 \end{cases}$$

# Components of PR system



- Sensors and preprocessing.
- A feature extraction aims to create discriminative features good for classification.
- · A classifier.
- A teacher provides information about hidden state -- supervised learning.
- A learning algorithm sets PR from training examples.

### Feature extraction

Task: to extract features which are good for classification.

Good features: Objects from the same class have similar feature values.

Objects from different classes have different values.



"Good" features

"Bad" features

#### Feature extraction methods

#### Feature extraction



#### Feature selection



Problem can be expressed as optimization of parameters of feature extractor  $\phi(\theta)$ 

**Supervised methods**: objective function is a criterion of separability (discriminability) of labeled examples, e.g., linear discriminat analysis (LDA).

**Unsupervised methods**: lower dimensional representation which preserves important characteristics of input data is sought for, e.g., principal component analysis (PCA).

#### Classifier

A classifier partitions feature space *X* into **class-labeled regions** such that

$$X = X_1 \cup X_2 \cup ... \cup X_{|Y|}$$
 and  $X_1 \cap X_2 \cap ... \cap X_{|Y|} = \{0\}$ 





The classification consists of determining to which region a feature vector **x** belongs to.

Borders between decision boundaries are called decision regions.

### Representation of classifier

A classifier is typically represented as a set of discriminant functions

$$f_i(\mathbf{x}): X \to \Re, i = 1, ..., |Y|$$

The classifier assigns a feature vector  $\mathbf{x}$  to the *i*-the



Discriminant function

### Review: What We've Learned So Far

- Bayesian Decision Theory
- Maximum-Likelihood & Bayesian Parameter Estimation
- Parametric Density Estimation
- Nonparametric Density Estimation
  - $\square$  Parzen-Window,  $k_n$ -Nearest-Neighbor

- K-Nearest Neighbor Classifier
- Decision Tree Classifier

# Now: Support Vector Machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.
- Also used for regression (will not cover today)

#### Outline

- Linear Discriminant Function
- Large Margin Linear Classifier
- Nonlinear SVM: The Kernel Trick

#### **Slides from Jinwei Gu**

#### Discriminant Function

It can be arbitrary functions of x, such as:



Nearest Neighbor



Decision Tree



Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$



Nonlinear Functions

g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

- A hyper-plane in the feature space
- (Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$



- denotes +1
  - denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!



- denotes +1
  - denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!



- denotes +1
  - $\odot$  denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

 $X_2$ 

Infinite number of answers!



- denotes +1
  - denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?



Infinite number of answers!

Which one is the best?



- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
  - Robust to outliners and thus strong generalization ability



denotes +1

denotes -1

- denotes +1
- odenotes -1

Given a set of data points:

$$\{(\mathbf{x}_i, y_i)\}, i = 1, 2, \dots, n, \text{ where }$$

For 
$$y_i = +1$$
,  $\mathbf{w}^T \mathbf{x}_i + b > 0$ 

For 
$$y_i = -1$$
,  $\mathbf{w}^T \mathbf{x}_i + b < 0$ 

 With a scale transformation on both w and b, the above is equivalent to

For 
$$y_i = +1$$
,  $\mathbf{w}^T \mathbf{x}_i + b \ge 1$ 

For 
$$y_i = -1$$
,  $\mathbf{w}^T \mathbf{x}_i + b \le -1$ 



- denotes +1
- denotes -1

We know that

$$\mathbf{w}^{T}\mathbf{x}^{+} + b = 1$$
$$\mathbf{w}^{T}\mathbf{x}^{-} + b = -1$$

The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$



- denotes +1
- denotes -1

Formulation:

maximize 
$$\frac{2}{\|\mathbf{w}\|}$$

For 
$$y_i = +1$$
,  $\mathbf{w}^T \mathbf{x}_i + b \ge 1$   
For  $y_i = -1$ ,  $\mathbf{w}^T \mathbf{x}_i + b \le -1$ 



- denotes +1
- denotes -1

Formulation:

minimize 
$$\frac{1}{2} \|\mathbf{w}\|^2$$

For 
$$y_i = +1$$
,  $\mathbf{w}^T \mathbf{x}_i + b \ge 1$   
For  $y_i = -1$ ,  $\mathbf{w}^T \mathbf{x}_i + b \le -1$ 



- denotes +1
- denotes -1

Formulation:

minimize 
$$\frac{1}{2} \|\mathbf{w}\|^2$$

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$



Quadratic programming with linear constraints

minimize 
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t. 
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian Function



minimize 
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left( y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. 
$$\alpha_i \geq 0$$

minimize 
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left( y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$
  
s.t.  $\alpha_i \ge 0$ 

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_p}{\partial b} = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

minimize 
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left( y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. 
$$\alpha_i \ge 0$$

Lagrangian Dual Problem



maximize 
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

s.t. 
$$\alpha_i \ge 0$$
 , and  $\sum_{i=1}^n \alpha_i y_i = 0$ 

From KKT condition, we know:

$$\alpha_i \left( y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0$$

- Thus, only support vectors have  $\alpha_i \neq 0$
- The solution has the form:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

get *b* from  $y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$ , where  $\mathbf{x}_i$  is support vector



The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- Notice it relies on a dot product between the test point x and the support vectors x<sub>i</sub>
- Also keep in mind that solving the optimization problem involved computing the dot products x<sub>i</sub><sup>T</sup>x<sub>j</sub> between all pairs of training points

- denotes +1
- odenotes -1

 What if data is not linear separable? (noisy data, outliers, etc.)

 Slack variables ξ<sub>i</sub> can be added to allow misclassification of difficult or noisy data points



Formulation:

minimize 
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

Parameter C can be viewed as a way to control over-fitting.

Formulation: (Lagrangian Dual Problem)

maximize 
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

#### Non-linear SVMs

Datasets that are linearly separable with noise work out great:



But what are we going to do if the dataset is just too hard?



How about... mapping data to a higher-dimensional space:



### Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:



#### Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

#### Nonlinear SVMs: The Kernel Trick

#### An example:

2-dimensional vectors  $\mathbf{x} = [x_1 \ x_2]$ ;

let 
$$K(x_i,x_j)=(1+x_i^Tx_j)^2$$
,

Need to show that  $K(x_i,x_j) = \varphi(x_i)^T \varphi(x_j)$ :

$$\begin{split} \textit{K}(\mathbf{x_i}, & \mathbf{x_j}) = (1 + \mathbf{x_i}^{\mathrm{T}} \mathbf{x_j})^2, \\ &= 1 + x_{iI}^2 x_{jI}^2 + 2 \; x_{iI} x_{jI} \; x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{iI} x_{jI} + 2 x_{i2} x_{j2} \\ &= [1 \; \; x_{iI}^2 \; \sqrt{2} \; x_{iI} x_{i2} \; \; \; x_{i2}^2 \; \sqrt{2} x_{iI} \; \sqrt{2} x_{i2}]^{\mathrm{T}} [1 \; \; x_{jI}^2 \; \sqrt{2} \; x_{jI} x_{j2} \; \; x_{j2}^2 \; \sqrt{2} x_{jI} \; \sqrt{2} x_{j2}] \\ &= \varphi(\mathbf{x_i}) \; ^{\mathrm{T}} \varphi(\mathbf{x_j}), \quad \text{where } \varphi(\mathbf{x}) = [1 \; \; x_{I}^2 \; \sqrt{2} \; x_{I} x_{2} \; \; x_{2}^2 \; \sqrt{2} x_{I} \; \sqrt{2} x_{2}] \end{split}$$

### Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
  - □ Linear kernel:  $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
  - □ Polynomial kernel:  $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
  - Gaussian (Radial-Basis Function (RBF)) kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

In general, functions that satisfy Mercer's condition can be kernel functions.

# Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

maximize 
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 such that 
$$0 \le \alpha_i \le C$$
 
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

The optimization technique is the same.

# Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

#### Some Issues

#### Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity measures

#### Choice of kernel parameters

- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
  - a lengthy series of experiments in which various parameters are tested

# Summary: Support Vector Machine

- 1. Large Margin Classifier
  - Better generalization ability & less over-fitting

- 2. The Kernel Trick
  - Map data points to higher dimensional space in order to make them linearly separable.
  - Since only dot product is used, we do not need to represent the mapping explicitly.

#### Additional Resource

- http://www.kernel-machines.org/
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/

#### Multiclass classification

- Reduction techniques
  - Conventional approaches
    - One-against-All
      - K two-class problems
    - Pairwise
      - □ K(K 1)/2 two-class problems
    - Decision-Tree-Based
    - DAG (Directed Acyclic Graph)
    - Error-Correcting Output Codes

#### Multiclass classification

#### Reduction techniques

- Conventional approaches
  - apply binary classifier 1 to test example and get prediction F1 (0/1)
  - apply binary classifier 2 to test example and get prediction F2 (0/1)
  - **...**
  - apply binary classifier M to test example and get prediction FM (0/1)
  - use all M classifications to get the final multiclass classification 1..K