Esperienza 10:

Ponte di Wheatstone con amplificatore differenziale

18-20 marzo 2019

Obiettivo

- Usare un ponte di Wheatstone, accoppiato ad un amplificatore differenziale, per misurare una resistenza incognita R_x .
- Calibrare un ponte di Wheatstone per piccoli cambiamenti di R_x e piccoli cambiamenti di capacità parassita.
- Stimare la risoluzione con cui si può misurare una variazione di resistenza $\delta (\delta R_x)$ con una misura del ponte fatta con amplificatore differenziale e oscilloscopio.

Preparazione

- Costruzione e caratterizzazione (misura G_{CM} e G_{DIFF}) di un amplificatore differenziale con sorgente di corrente (Esp. 9).
- Analisi della sensibilità del ponte di Wheatstone a piccoli cambiamenti di resistenza e di capacità, $\frac{\partial \Delta V_{OUT}}{\partial R_x}$ e $\frac{\partial \Delta V_{OUT}}{\partial \delta C_x}$.

Svolgimento

- Costruire il componente R_x a partire dal resistore assegnato collegandolo in parallelo con due resistori da 100 k Ω nominali (connessioni fatte sul breadboard). Misurare R_x con DMM.
 - $-R_x$ dovrebbe essere fra 100 400 Ω .
 - L'uso delle due resistenze in parallelo per avere il nostro R_x consentirà in un secondo momento di effettuare piccoli cambiamenti, sia positivi che negativi, di R_x , rispettivamente togliendo e aggiungendo resistori da 100 k Ω .
- Costruire il ponte di Wheatstone usando $R_R = 1000 \Omega$ nominali e un trimmer da 1 o 2 k Ω per R_1 e R_2 .
- Collegare il ponte all'amplificatore differenziale e aggiustare il trimmer in modo da bilanciare il ponte al meglio consentito dall'oscilloscopio e dalla risoluzione manuale. Suggeriamo di eccitare il ponte con $V_{IN}\approx 1~{\rm V}$ e $f\approx 200~{\rm Hz}$, ma si può ripetere per altri valori per approfondire eventuali errori sistematici. Si consiglia di usare l'uscita "SYNC" del generatore per fornire un trigger esterno all'oscilloscopio.
- Misurare i valori dei componenti rilevanti R_R , più R_1 e R_2 con DMM.
- Usare questi valori per calcolare un valore sperimentale per R_x .
 - Confrontare il valore sperimentale di R_x con il valore ottenuto con DMM.
 - Considerare nel calcolo il guadagno a modo comune G_{CM} e l'eventuale sbilanciamento residuo (segnale V_{OUT} non nullo) del ponte.
- Acquisire 5 o più forme d'onda in questa configurazione con il ponte bilanciato.
- Lasciando fisso il rapporto R_1 / R_2 (trimmer), calibrare il ponte per piccoli cambiamenti di resistenza, inserendo o togliendo resistori da 100 k Ω si suggerisce almeno 5 valori diversi e registrando le forma d'onda V_{IN} e V_{OUT} almeno 5 volte per ogni configurazione.
- Tornando alla configurazione iniziale con gli stessi due resistori da 100 k Ω nominali effettuare una calibrazione per piccoli valori di capacità "parassite" δC_x in parallelo con R_x .
 - Si consiglia di aggiungere condensatori di circa 1 nF (3-4 valori sono sufficienti)
 e di effettuare diverse (almeno 5) prove per ogni configurazione.
 - Data la dipendenza in frequenza del segnale prodotto nel ponte da δC_x , si consiglia di prendere misure ad almeno due frequenze.

Elaborazione dati

- Per ogni configurazione δR_x oppure δC_x estrarre tramite regressione le fasi sin e cos del segnale, con le loro incertezze statistiche (si può usare fit_sine_poly.m per la regressione e eventualmente media_segnale.m o simile per prendere medie e incertezze da gruppi di segnali).
- Tramite regressione ad una retta, usare i dati per valutare la sensibilità del ponte ai cambi di resistenza e capacità, $\frac{\partial V_{OUT}}{\partial \delta R_x}$ e $\frac{\partial V_{OUT}}{\partial \delta C_x}$.
- Confrontare queste sensibilità, in ampiezza e fase, con i valori attesi, considerando il ponte ma anche i guadagni misurati per l'amplificatore.
- Calcolare, usando l'incertezza nell'ampiezza misurata con il ponte bilanciato al meglio, il minimo cambio di resistenza che si possa risolvere con il ponte e il nostro circuito di misura (ovvero l'incertezza $\pm 1\sigma$ per una misura di resistenza),

$$\delta \left(\delta R_x \right) \approx \frac{\sigma_{V_{OUT}}}{\left| \frac{\partial V_{OUT}}{\partial \delta R_x} \right|} \tag{1}$$