

Parallel Algorithms

Review: Amdahl's Law

Number of threads/processes/cores

Myth: Parallel Programming is too hard

- Myth: Parallel programming is too hard for me. There are deadlocks, race conditions, non-deterministic behavior. That's too much for me!
- Well, you are right. Partially.
- Structured programming and patterns help tame the problem.
 - → It does not magically go away, but is much less problematic
- Apply the well-known Software Engineering practices:
 - → Identify a (parallel) pattern
 - → Use the pattern library and apply a matching pattern from it

Structured Programming w/ Patterns

- Patterns are "best practices" for solving specific problems
 - → Known from Software Engineering
- Patterns can be used to organize your code, leading to algorithms that are more scalable and maintainable.
- A pattern (often) supports a particular "algorithmic structure" with an efficient implementation.
- Good parallel programming models support a set of useful parallel patterns with low-overhead implementations.

Finding Concurrency

Simultaneous Task Execution

Look for tasks that can be executed simultaneously (task parallelism)

Catchy example: building a house

Data Decomposition

Decompose data into distinct chunks to be processed independently (data parallelism)

- Catchy example: work on a farm
 - → each worker takes an (unpicked) row and picks the crop
 - → possibly more rows than worker
 - → process continues until all rows have been harvested

Structured Parallel Patterns

- The following additional parallel patterns can be used for "structured parallel programming":
 - Superscalar sequence
 - Speculative selection
 - Map
 - Recurrence
 - Scan
 - Reduce
 - Pack/expand
 - Fork/join
 - Pipeline

- Partition
- Segmentation
- Stencil
- Search/match
- Gather
- Merge scatter
- Priority scatter
- Permutation scatter
- Atomic scatter

Parallel Patterns: Overview

Patterns: Parallel Control

The Fork-Join Pattern

- Fundamental pattern to express and exploit parallelism
 - → control flow *forks* into multiple flows that *join* later
 - → well-versed to go from serial to parallel
 - → can be nested
- As an algorithmic pattern it is a natural fit for parallel divide-and-conquer approaches
- (Subtle) Differences among Intel® Cilk Plus and OpenMP*:
 - → Intel Cilk Plus only uses tasks and an implicit threadpool
 - → OpenMP allows for tasks and threads
 - → OpenMP requires a parallel region to apply any other parallel construct

Fork-Join in OpenMP*

- OpenMP programs start with just one thread: the master.
- Worker threads are spawned at *parallel regions*, together with the master they form the team of threads.

#pragma omp parallel

structured block

```
Serial Part
Master Thread
                                Parallel
                                 Region
          Worker
         Threads
                              Serial Part
                                Parallel
                                 Region
```

```
The parallelism has to be expressed explicitly.
```

```
Introduction to HPC
```

Fork-Join in Intel® Cilk™ Plus

- Spawn = asynchronous function call
 - → Arguments to spawned functions are evaluated before fork
- Example (with optional assignment):

```
x = cilk_spawn f(*p++);
y = g(*p--);
cilk_sync;
z = x+y;
```

Expression spawning possible via lambda expression:

```
cilk_spawn [&]{
    for(int i=0; i<n; ++i )
        a[i] = 0;
} ();
...
cilk_sync;</pre>
```

Fork-Join: Summary

How expensive is Fork-Join? OpenMP Overhead Analysis via EPCC micro-benchmarks for

The Map Pattern

- Replicate a function over every element of an "index set"
- The index set typically corresponds to the elements of an array

- Some programming languages have support for the map pattern
 - → e.g., Fortran, Intel® Cilk™ Plus

Map Pattern: Examples


```
module example
  implicit none
contains
  subroutine example
    integer,parameter :: len=100
    real,dimension(len) :: in=(/(i,i=1,len)/)
    real,dimension(len) :: out
    integer :: i
    ! explicit do loop
    do i=1,size(in)
      output(i)=sqrt(in(i))
    end do
    ! explicit array subsets
    output(:)=sqrt(in(:))
    ! whole array operation
    output=sqrt(in)
    write (*,*), output
  end subroutine
end module
```

Map Pattern: Examples


```
module example
  implicit none
contains
  subroutine example
    integer,parameter :: len=100
    real,dimension(len) :: in=(/(i,i
    real,dimension(len) :: out
    integer :: i
    ! explicit do loop
    do i=1,size(in)
      output(i)=sqrt(in(i))
    end do
    ! explicit array subsets
    output(:)=sqrt(in(:))
    ! whole array operation
    output=sqrt(in)
    write (*,*), output
  end subroutine
end module
```

```
void ex vector() {
  const size t len = 100;
  size t i = 0;
  std::vector<float> in(len);
  std::vector<float> out(len);
  std::generate_n(in.begin(), len, gen);
  std::transform(in.begin(), in.end(),
                 out.begin(), sqrt);
  for (auto it = out.begin();
            it != out.end(); ++it, ++i)
    printf("%f%s",
           *it.
           (i%4==3) ? "\n" : " ");
}
```

Map Pattern: Examples


```
module example
                                   void ex vector() {
  implicit none
                                     const size t len = 100;
contains
                                     size t i = 0;
  subroutine example
                                     std::vector<float> in(len);
   integer,parameter :: len=100
                                     std::vector<float> out(len);
   real, dimension (le
                        Did you see this
   real, dimension (14
                                                     n.begin(), len, gen);
   integer :: i
                    pattern in any other
                                                     .begin(), in.end(),
    ! explicit do loc
                                                     t.begin(), sqrt);
   do i=1,size(in)
                         programming
     output(i)=sqrt(
                                                     t.begin();
   end do
                                                     ut.end(); ++it, ++i)
                     language you have
    ! explicit array
                               used?
   output(:)=sqrt(ir
                                                      ? "\n" : " ");
    ! whole array operation
   output=sqrt(in)
   write (*,*), output
```

end subroutine

end module

Workpile

- The Workpile pattern generalizes the Map pattern
 - → The mapped function can create new parallel work while it is applied
 - → Number of items to work on is not known in advance
- **Example: tree traversal**
 - → Apply Map pattern to root node; create new tasks for a node's children

Sudoko for Lazy Computer Scientists

Lets solve Sudoku puzzles with brute multi-core force

_															
	6						8	11			15	14			16
15	11				16	14				12			6		
13		9	12					3	16	14		15	11	10	
2		16		11		15	10	1							
	15	11	10			16	2	13	8	9	12				
12	13			4	1	5	6	2	3					11	10
5		6	1	12		9		15	11	10	7	16			3
	2				10		11	6		5			13		9
10	7	15	11	16				12	13						6
9						1			2		16	10			11
1		4	6	9	13			7		11		3	16		
16	14			7		10	15	4	6	1				13	8
11	10		15				16	9	12	13			1	5	4
		12		1	4	6		16				11	10		
		5		8	12	13		10			11	2			14
3	16			10			7			6				12	

- (1) Find an empty field
- (2) Insert a number
- (3) Check Sudoku
- (4 a) If invalid:

 Delete number,

 Insert next number
- (4 b) If valid:

 Go to next field

Parallel Brute-force Sudoku (1/3)

This parallel algorithm finds all valid solutions

	6				fi	rct (ျ	COI	nt ni	no	15	14			16
15	11				16								رة 1	~ I	
13		9	12					na na		7/	_			10	
2		16		11		15	40			_		_		he	
	15	11	10		such that one tasks starts the execution of the algorithm										
12	13			4	1	5	6		3					11	10
5		6	1	12		9		15	11	10	7	16			3
	2				10		11	6		5			13		.9
10	7	15	11	16	#:	pr	agr	na	on	ıρ	ta	sk			6
9					ne	eed	s to) W	ork	on	a r	iew	СО	ру	11
1		4	6	9	of	fth	e S	udc	ku	boa	ard	3	16		
16	14			7		10	15	4	6	1				13	8
11	10		15				16	9	12	13			1	5	4
		12		1	4	6		16				11	10		
		5		8	12	13		10			11	2			14
3	16			10			7			6				12	
Prof. Matthias Müller # # pragma omp taskwait -															

wait for all child tasks

- (1) Search an empty field
 - (2) Insert a number
 - (3) Check Sudoku
 - (4 a) If invalid:
 Delete number,
 Insert next number
 - (4 b) If valid:
 Go to next field

Performance Evaluation

Performance Analysis

Event-based profiling gives a good overview:

Every thread is executing ~1.3m tasks...

... in \sim 5.7 seconds.

=> average duration of a task is ~4.4 μs

Tracing gives more details:

Tasks get much smaller down the call-stack.

Performance Analysis

Event-based profiling gives a

... in \sim 5.7 seconds.

=> average duration of a task is ~4.4 μs

down the call-stack.

Tasks get much smaller

Performance Evaluation

The Reduction Pattern

- Combines every element in a collection into a single result
 - employs an associative combiner function
 - consequently, different ordering are possible

The Reduction Pattern

- Combines every element in a collection into a single result
 - employs an associative combiner function
 - consequently, different ordering are possible

Natural parallelization approach is to perform a tree reduction, delivering a speedup of n / 1g n:

Reduction: Summary

Reduction allows for logarithmic runtime implementation

Intel[®] Cilk[™] Plus

```
cilk::reducer<sum_monoid> sum;
cilk_for (int i = 1; i < 100; i++)
   *sum += i;
std::cout << "sum 1 .. 99 is " << *sum << std::endl;</pre>
```

OpenMP*

```
double sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for (int i = 1; i < 100; i++)
   sum += i;
```

The Scan Pattern

- Produce all partial reductions of an input index set
- Function f needs to be associative

Thinking about Scan

Simple example:

```
for (int i=1; i<N; i++)
{
    a[i] = f(a[i-1],b[i]);
}</pre>
```

Associativity:

$$F(a, F(b, c)) = F(F(a, b), c)$$

Tree-wandering:

$$O(N * log N)$$

The Scan Pattern: Implementation 1

The Scan Pattern: Implementation 2

Upward sweep:

- Get values L and R from left and right child
- Save L in local variable Mine
- Compute Tmp = L + R and pass to parent

Downward sweep:

- Get value Tmp from parent
- Send Tmp to left child
- Send Tmp + Mine to right child

The Recurrence Pattern

- In map, all loop iterations are independent. In recurrence, there are some dependencies:
 - → 1D recurrence: computation in the element is associative
 - →has already been discussed with the *scan* pattern
 - → n-D recurrence: nested loop body

Leslie Lamport's theorem: hyperplane separation can be found if the dependencies are constant offsets

Recurrence: Example

Loop iteration space to hyperplane separation

Organization

Schedule

KW Date		Type		Date	Type	
03	16.01.2017	V	Parallel Algorithms I	17.01.2017	V	Parallel Algorithms II
						GPGPU/ Manycore
04	23.01.2017	V	GPGPU	24.01.2017	V	Architectures
			Hybrid Programming/			
05	30.01.2017	Ü	Accelerators	31.01.2017	V	Energy Efficiency I
			Energy Efficiency II/			
06	06.02.2017	V	Summary/ Outlook	07.02.2017	F	Question Time

KW: week, V: lecture, Ü: exercise, F: Fragenstunde

Exams (February 13th and April 3rd 12:15 – 15:45)

→ 120 minutes, no additional materials allowed

Online Registration for Seminars and Practical Courses (Praktika) in Summer Term 2017

Who?

Students of: • Master Courses

Bachelor Informatik (ProSeminar!)

Where?

www.graphics.rwth-aachen.de/apse

When?

13.01.2017 – 29.01.2017

Master Thesis: Representation of a User Jobmix as a Parameterization of Standard Benchmarks

- Goal: Representation of the investigated programs by means of parametrization of standard benchmarks
 - → Characterization of the job mix by a set of metrics
 - → Comparison to common benchmarks with known characteristics
 - → Fitting a weighted mix of the benchmarks to the programs of the job mix

Recurrence: Example

Loop iteration space to hyperplane separation

Case Study: CG

Case Study: CG

Sparse Linear Algebra

- → Sparse Linear Equation Systems occur in many scientific disciplines.
- → Sparse matrix-vector multiplications (SpMxV) are the dominant part in many iterative solvers (like the CG) for such systems.
- → number of non-zeros << n*n

Beijing Botanical Garden

Oben Rechts: Orginal Gebäude

Unten Rechts: Modell Unten Links: Matrix

(Quelle: Beijing Botanical Garden and University of Florida, Sparse Matrix Collection)

Case Study: CG

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 4 & 0 & 4 & 4 \end{pmatrix}$$

```
for (i = 0; i < A.num_rows; i++){
    sum = 0.0;
    for (nz=A.row[i]; nz<A.row[i+1]; ++nz){
        sum+= A.value[nz]*x[A.index[nz]];
    }
    y[i] = sum;
}
```

- Format: compressed row storage
- store all values and columns in arrays (length nnz)
- store beginning of a new row in a third array (length n+1)

		1		/			<u> </u>
index:	0	0	1	2	0	2	3
value:	1	2	2	3	4	4	4

Hotspot analysis of the serial code:

Call Stack	CPU Time: Total by Utilization			
Cuil Stack	📗 Idle 📕 Poor 📙 Ok 📳 Ideal 📙 Over			
▽¹a cg	46.7%			
Þ ⋈ matvec	40.8% 1.			
Þ ⊴ xpay	1.4% 2.			
⊳ы axpy	1.4% 2.			
	1.2% 3.			
▷ ⊴ axpy	1.1% 2.			
	0.6% 3.			

Hotspots are:

- 1. matrix-vector multiplication
- 2. scaled vector additions
- 3. dot product

Tuning:

- parallelize all hotspots with a parallel for construct
- use a reduction for the dot-product
- activate thread binding

Hotspot analysis of naive parallel version:

Event Name
MEM_UNCORE_RETIRED.LOCAL_DRAM_AND_REMOTE_CACHE_HIT
MEM_UNCORE_RETIRED.REMOTE_DRAM

A lot of remote accesses occur in nearly all places.

	MEM_UNCORE_RETIRED.LOCAL	MEM_UNCORE_RETIRED.REMOTE
void matvec(const int n, const int		
int i,j;		
<pre>#pragma omp parallel for private(j)</pre>	20,000	0
for(i=0; i <n; i++){<="" td=""><td>0</td><td>0</td></n;>	0	0
y[i]=0;	0	0
for(j=ptr[i]; j <ptr[i+1]; j<="" td=""><td>6,740,000</td><td>3,720,000</td></ptr[i+1];>	6,740,000	3,720,000
y[i]+=value[j]*x[index[17,580,000	6,680,000
}		
}		

Tuning:

- Initialize the data in parallel
- Add parallel for constructs to all initialization loops

Scalability improved a lot by this tuning on the large machine.

Load Imbalance in VTune

- Grouping execution time of parallel regions by threads helps to detect load imbalance.
- Significant potions of Spin Time also indicate load balance problems.
- Different loop schedules might help to avoid these problems.

Load Imbalance in VTune

The Timeline can help to investigate the problem further.

Zooming in, e.g. to one iteration is also possible.

Analyzing load imbalance in the concurrency view:

So Line	Source	CPU Time: Total by Didle Poor Ok III	
49	void matvec(const int n, const int nnz,		
50	int i,j;		
51	<pre>#pragma omp parallel for private(j)</pre>	22.462s	10.612s
52	for(i=0; i <n; i++){<="" td=""><td>0.050s</td><td>0s</td></n;>	0.050s	0s
53	y[i]=0;	0.060s	0s
54	for(j=ptr[i]; j <ptr[i+1]; j++){<="" td=""><td>1.741s</td><td>0s</td></ptr[i+1];>	1.741s	0s
55	y[i]+=value[j]*x[index[j]];	9.998s	0s

- 10 seconds out of ~35 seconds are overhead time
- other parallel regions which are called the same amount of time only produce 1 second of overhead

Counters for Remote Traffic

- Stream example $(\vec{a} = \vec{b} + s * \vec{c})$ with and without parallel initialization.
 - → 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

	сору	scale	add	triad
ser_init	18.8 GB/s	18.5 GB/s	18.1 GB/s	18.2 GB/s
par_init	41.3 GB/s	39.3 GB/s	40.3 GB/s	40.4 GB/s

Tuning:

→ pre-calculate a schedule for the matrix-vector multiplication, so that the non-zeros are distributed evenly instead of the rows

Patterns: Data Management

The Pipeline Pattern

A pipeline is a linear sequence of stages.

- Parallelization approaches:
 - → run different stages in parallel
 - run multiple copies of stateless stages in parallel (reorder output)
- Possibly need to manage buffering between stages.

Geometric Decomposition

- Break an index set into sub-index sets
- Geometric partitioning is a special case for non-overlapping subindex sets
- Does not reorganize data, only provides a different view on it
- Requirements:
 - → Computation independent for elements
 - → Regular data structure
- Irregularly structured data (e.g. graph) can also be partitioned

Example for Geometric Decomposition

Original photo:

Blurred photo:

Example for Geometric Decomposition

Original photo:

Blurred photo:

```
void blur(const picture &input, picture &output) {
                                                        OpenMP*
  // traverse the picture
#pragma omp parallel for shared(input) shared(output)
  for (size_t y = 0; y < input.num_rows(); ++y) {</pre>
    for (size t x = 0; x < input.num cols(); ++x) {
      float pixel = 0.0;
      // apply the stencil
      for (size t sy = STENCIL WIDTH; sy < STENCIL WIDTH; ++sx) {</pre>
        for (size_t sx = STENCIL_WIDTH; sx < STENCIL_WIDTH; ++sx) {</pre>
          // wrap around picture to avoid bogus accesses
          size_t py = wrap_around(input.num_rows(), sy - y);
          size t px = wrap around(input.num cols(), sx - x);
          pixel += gauss coeffs[sy][sx] * input.get(px,py);
      output.set(x,y,sum);
```

The Map Pattern - Revisited

- To increase efficiency, the Map pattern can be fused with the Geometric Decomposition pattern
 - → Useful for traditional OS-level threads
 - → Potentially having kazillions of threads executing only one instance of a function might be too fine-grained

Have multiple partitions to work on in parallel, invoke function sequentially within each partition

Fusing Geometric Decomposition and Map

Original photo:

Blurred photo:


```
void blur(const picture &input, picture &output) {
    // traverse over the picture

#pragma omp parallel for shared(input) shared(output)
    for (size_t y = 0; y < input.num_rows(); ++y) {
        for (size_t x = 0; x < input.num_cols(); ++x) {
            float pixel;
            // "map" the gauss stencil for current (x,y) position
            pixel = gauss_stencil(input.num_rows(), input.num_cols(), y, x);
            output.set(x,y,pixel);
} } }</pre>
```


Case Study: Karazuba

Polynomial Multiplication

15

$$x^2 + 2x + 3$$

$$x^2 + 4x + 5$$

a

C

b

a

$$5x^2 + 10x +$$

$$4x^3 + 8x^2 + 12x$$

$$x^4 + 2x^3 + 3x^2$$

 $6x^3 +$

 $16x^{2} +$

15

a[2]

a[1]

22x +

C

 X^4

School Method

O(n^2) work:

Can we do any better?

→ Yes. There are several methods, but Karatsuba is the one with the nicest

name!

Karatsuba: Divide and Conquer

Suppose polynomials a and b have degree n

$$a = a_1 K + a_0$$

$$b = b_1 K + b_0$$

Compute:

$$t_0 = a_0 \cdot b_0$$

$$t_1 = (a_0 + a_1) \cdot (b_0 + b_1)$$

$$t_2 = a_1 \cdot b_1$$

Then

$$a \cdot b \equiv t_2 K^2 + (t_1 - t_0 - t_2) K + t_0$$

Partition coefficients.

3 half-sized multiplications. Do these recursively.

Sum products, shifted by multiples of K.

Save one (half) multiplication.

Cilk-parallel Karatsuba


```
void karatsuba( T c[], const T a[], const T b[], size t n ) {
     size t m = n/2;
     cilk_spawn karatsuba( c, a, b, m );
                                                                   // t_0 = a_0 \times b_0
     cilk spawn karatsuba(c+2*m, a+m, b+m, n-m);
                                                                   //t_2 = a_1 \times b_1
    temp space<T>s(4*(n-m));
    T *a = s.data(), *b = a + (n-m), *t=b + (n-m);
     a [0:m] = a[0:m] + a[m:m];
                                                                   //a_{-} = (a_0 + a_1)
                                                                   //b_{-} = (b_0 + b_1)
     b [0:m] = b[0:m] + b[m:m];
     karatsuba( t, a , b , n-m );
                                                                   //t_1 = (a_0 + a_1) \times (b_0 + b_1)
     cilk sync;
    t[0:2*m-1] -= c[0:2*m-1] + c[2*m:2*m-1];
                                                                   //t = t_1 - t_0 - t_2
    c[2*m-1] = 0;
     c[m:2*m-1] += t[0:2*m-1];
                                                                   //c = t_2 K^2 + (t_1 - t_0 - t_2) K + t_0
```

Cilk-parallel Karatsuba (better!)


```
void karatsuba( T c[], const T a[], const T b[], size t n ) {
  if( n<=CutOff ) {
    simple mul(c, a, b, n);
  } else {
    size t m = n/2;
     cilk_spawn karatsuba( c, a, b, m );
                                                                   // t_0 = a_0 \times b_0
     cilk spawn karatsuba(c+2*m, a+m, b+m, n-m);
                                                                  // t_2 = a_1 \times b_1
    temp space<T>s(4*(n-m));
    T *a = s.data(), *b = a + (n-m), *t=b + (n-m);
     a [0:m] = a[0:m] + a[m:m];
                                                                   //a_{-} = (a_0 + a_1)
                                                                   //b_{-} = (b_0 + b_1)
     b [0:m] = b[0:m] + b[m:m];
     karatsuba( t, a , b , n-m );
                                                                   //t_1 = (a_0 + a_1) \times (b_0 + b_1)
     cilk sync;
    t[0:2*m-1] -= c[0:2*m-1] + c[2*m:2*m-1];
                                                                   //t = t_1 - t_0 - t_2
    c[2*m-1] = 0;
    c[m:2*m-1] += t[0:2*m-1];
                                                                   //c = t_2 K^2 + (t_1 - t_0 - t_2) K + t_0
```


Case Study: Mandelbrot set w/ Master-Worker

Case Study: Mandelbrot Set

Set of complex numbers c for which

$$z_0 = 0$$
; $z_{n+1} = z_n^2 + c$ $z, c \in \mathbb{C}$ does not diverge.


```
// For each image pixel (x, y):
// (x, y) - scaled pixel cords
c = x + i*y
z = 0
iteration = 0
maxIters = 1000
while (|z|^2 <= 2^2)
       && iteration < maxIters)
  7 = 7^2 + C
  iteration = iteration + 1
if (iteration == maxIters)
  color = black
else
  color = iteration
plot(x, y, color)
```

Case Study: Mandelbrot Set Work Imbalance

Computation complexity mapped to ranks

Case Study: Mandelbrot Set Master – Worker

- One process (master) manages the work.
 - → Work is split into many relatively small work items.
- Many other processes (workers) compute over the work items:

- Above steps are repeated until all work items are processed.
- Sometimes called "bag of jobs" pattern.

Case Study: Mandelbrot Set Master – Worker

The algorithm:

```
if (rank == 0) { // Master
    splitDomain;
    sendWorkItems;
    receivePartialResults;
    assembleResult;
    output;
} else { // Worker
    receiveWorkItems;
    processWorkItems;
    sendPartialResults;
}
```


Case Study: Mandelbrot Set Results

Quiz

Quiz (1/3)

We wanted to make you think parallel: were these two lectures useful?

- a) Yes
- b) No
- c) Yes, at least I have learned how to build a house
- d) -

Quiz (2/3)

- Throughout this course we offered you to get experienced in using the HPC Cluster at RWTH Aachen University. Did you ever login?
 - a) Yes, several times
 - b) Once to see how the environment looks like
 - c) Never
 - d) What is an HPC cluster?

Quiz (3/3)

In case you are interested in learning more about HPC: would you attend a dedicated lecture on Parallel and Data-centric Programming Models?

- a) Yes
- b) Maybe if it fits my schedule
- c) No interest whatsoever
- d) -

Summary

Parallel Software Engineering

- Problem: Amdahl's Law notes that scaling will be limited by the serial fraction of your program.
- Solution: go parallel "as far as you can", exploit all dimensions of parallelism.
- Problem: Locking, access to data (memory and communication), and overhead will strangle scaling.
- Solution: use programming approaches with good data locality and low overhead, and avoid locks.
- Problem: Parallelism introduces new debugging challenges: deadlocks and race conditions.
- Solution: use structured programming strategies to avoid these by design, improving maintainability.

Question Time...