Corpus, ressources et linguistique outillée · M2SOL034

CM 5 : Reconnaissance des entités nommées (REN)

Ljudmila PETKOVIĆ

Semestre 2, 2024-2025 27 février 2025

Sorbonne Université $\label{eq:master} {\sf Master \ w. Langue \ et \ Informatique \ w. (M1 \ ScLan)}$ ${\sf UFR \ Sociologie \ et \ Informatique \ pour \ les \ Sciences \ Humaines}$

Cours adapté de EHRMANN et ROSSET (2022).

Outline

Contexte et applications

Définition

Ressources

Reconnaissance et classification

Liaison

Évaluation

Contexte et applications

Données non structurées

Une grande quantité de données (texte, images, audio...) est non structurée (sans modèle ni format pré-définis).

comment exploiter les données, extraire l'information utile?

Données	Information	Connaissance
description élémentaire	données avec un sens	informations avec une vé-
d'une réalité	construisant une repré-	rité
	sentation de la réalité	
mesure des températures	courbe sur l'évolution	fait que la température
	des <i>minima</i> et <i>maxima</i>	sur terre augmente du fait
	moyens en un lieu donné,	de l'activité humaine
	par mois	
série d'articles journalis-	noms de personnes et	opinion des médias vis-à-
tiques	leurs polarités	vis de personnalités

Table 1 – Le qualitatif : données, informations et connaissances.

L'information est « cachée » dans les textes

Extraction d'information (EI): extraire des informations structurées à partir de textes non structurés :

- identifier et catégoriser des fragments d'information
- les relier avec des bases de connaissances
- les aggréger pour extraire d'autres informations

Exemple:

On the invitation of the Festival de Cannes, the Italian actress

Monica Bellucci has agreed to play the role of Mistress of the Opening and

Closing Ceremonies of the 70th Festival de Cannes to be held

from 17 to 28 May 2017, under the presidency of Spanish filmmaker

Pedro Almodovar.

PERSON, ORGANIZATION, TIME-EXPR, EVENT

Principales tâches en El

- traitement des entités nommées (EN)
 reconnaissance, catégorisation et désambiguïsation
 - \circ Monica Bellucci et Pedro Almodovar $\to PERSON$
 - Monica Bellucci ref. https://dbpedia.org/page/Monica_Bellucci
- traitement des expressions temporelles extraction et normalisation
 - \circ from 17 to 28 May 2017 \rightarrow Duration
 - \circ from 17 to 28 May 2017 \rightarrow [17-05-2017, 28-05-2017]
- extraction d'évènements
 - \circ 70th Festival de Cannes \to Factual, Recurring Event
 - 70th Festival de Cannes → instance_of https://fr.wikipedia.org/wiki/Festival_de_Cannes
- extraction de relations
 - \circ 70th Festival de Cannes, TOOKPLACE, [17-05-2017, 28-05-2017]

Définition

Contexte et applications Définition Ressources Reconnaissance et classification

Entités nommées : définition et tâches

'90 : campagnes d'évaluations sur la compréhension de documents

- éléments d'intérêt : Personne, Organisation, Lieu etc.
- unités référentielles qui sous-tendent la sémantique des textes
- 1. reconnaissance : détecter les EN dans les flux textuels (on pose les frontières dans le texte)
- 2. classification : catégoriser les éléments reconnus selon des catégories sémantiques pré-définies (on affecte un type)
- 3. désambiguïsation / liaison : lier les mentions d'EN à une référence unique (on lie à une référence)
- 4. extraction de relation : découvrir des relations entre entités (FATHER-OF, BORN-IN, ALMA MATER)

Les EN dans le monde : le problème de la catégorisation

Figure 1 – Le choix des catégories des EN.

Catégorie PERSONNE:

Lionel Jospin les Démocrates Bison Futé les Windsors les Talibans le Prince Charmant la famille Kennedy Zorro l'épouse Chirac les frères Cohen St Nicolas ...

Figure 2 – La détermination de ce que les EN recouvrent.

→ catégorisation instable

Les EN dans le texte : le problème de l'annotation

- Combinaisions de syntagmes : une ou plusieurs entités ?
 - o Les banques centrales américaine et européenne ont décidé...
 - Donald et Melania Trump
 - o l'université de Genève
- Un syntagme : quelles frontières?
 - o la candidate Ségolène Royal, Professeur Paolucci
 - o George W. Bush Jr., La Mecque, l'Abbé Pierre
- Une entité : quelle unité lexicale ?
 - Émmanuel Macron, Monsieur Macron, le Président Émmanuel Macron, le Président français, le Président de la République française, Manu
- → caractérisation imprécise, diversité des mentions

Les EN dans la langue : le problème des polysémies

- Homonymie
 - o Orange a invité M. Hollande
- Métonymie
 - · Leclerc a fermé ses magasins en Rhône-Alpes
- « Facettes »
 - <u>Le candidat Sarkozy</u>, devenu <u>chef de l'État</u>, a changé de position sur la présence française au sein de la force internationale.
 - → polyréférentialité

Reconnaissance et classification Contexte et applications Définition Ressources

EN: un objet TAL difficile à cerner

- Hétérogénéité des réalisations
 - Les EN ne se limitent pas à une catégorisation, une mention, une interprétation
- Hétérogénéité des points de vue
 - o formules définitoires sous la forme d'énumérations
 - caractérisation diverses (sens, forme)
- \rightarrow Question : que sont les EN?

27 février 2025

Le « matériau » de départ

Figure 3 – Unités lexicales considérées comme des EN.

Le « matériau de départ »

Figure 4 – Proposition de catégorisation des EN.

Unicité référentielle

Le nom propre se réfère à un particulier

- nomination d'un particulier : Felix vs. nomination d'une classe conceptuelle (chat)
- unicité : une individualité considérée comme unique au sein d'une catégorie d'existants
- unité : une individualité considérée comme formant un tout reconnaissable
- Les descriptions définies
 - o présupposition d'existence et d'unicité
 - le président de la République, le père de Charles II, le marronnier
 - Une description de la forme « le tel et tel » présuppose qu'il existe une et une seule entité qui soit telle et telle

Définition Reconnaissance et classification Contexte et applications Ressources

Autonomie référentielle

Comment s'opère la référence à une entité unique?

Noms propres

- sens instructionnel dénominatif \rightarrow connaissance d'une convention
- dénomination non contingente → désignateur rigide
- dénomination plus ou moins descriptive (Massif Central)

Descriptions définies

- sens descriptif
- descriptions définies (in)complètes
 - le président, le président de la République française en 26

27 février 2025

Caractérisation linguistique des EN

- L'ensemble EN n'est pas réductible à une catégorie linguistique
 - o plus que les noms propres et moins que les descriptions définies
- Caractérisation d'un comportement référentiel
 - o référence à une entité unique et autonomie référentielle
 - Jacques Chirac, le Président de la République, le costume bleu du président
- → La perspective linguistique ne suffit pas

Proposition de définition

Entité nommée

Étant donné un modèle applicatif et un corpus, on appelle entité nommée toute expression linguistique qui se réfère à une entité unique du modèle de manière autonome dans le corpus.

Questions que l'on s'est posées :

- Comment définir un objet TAL?
- Que sont les noms propres et les descriptions définies?
- Que devient le cadre linguistique du sens et de la référence en TAL?

Illustration

Etant donné un modèle applicatif et un corpus, on appelle entité nommée toute expression linguistique qui réfère à une entité unique du modèle de manière autonome dans le corpus.

Application : générique « typique »

Modèle : Personnes, Lieux, Organisations Corpus : journalistique français de 1998 à 2008

Figure 5 - Cas de figure I.

Contexte et applications Définition Reconnaissance et classification Liaison Évaluation Références Ressources

Illustration

Etant donné un modèle applicatif et un corpus, on appelle entité nommée toute expression linguistique qui réfère à une entité unique du modèle de manière autonome dans le corpus.

Application : étude sur le climat

Modèle: températures, mesures atmosphérique, ouragan, dates, périodes, ... Corpus : totalité des observations météorologiques sur une période données

Figure 6 - Cas de figure II.

Illustration

Etant donné un modèle applicatif et un corpus, on appelle entité nommée toute expression linguistique qui réfère à une entité unique du modèle de manière autonome dans le corpus.

Application : « littéraire »

Modèle : personnes, lieux, événements Corpus : correspondance de Flaubert

Figure 7 - Cas de figure III.

Les EN: une création TAL

De la linguistique au TAL, spécification d'un cadre théorique pour les EN :

- perspective linguistique : non réductibles à une catégorie mais caractérisables par un comportement référentiel
- perspective TAL : existent relativement à un modèle applicatif précis
- ightarrow pas d'EN *per se*, seulement des critères linguistiques et un modèle

Conséquences : points de vue

- général : explication de l'hétérogénéité et de la variabilité de l'ensemble EN
- pratique : critères de décision pour annoter

Ressources

Ressources

De quoi a-t-on besoin pour traiter les EN?

- 1. Typologies, pour définir un cadre sémantique
- Corpus annotés, pour servir de référence (évaluation) et d'illustration
- 3. Lexique et bases de connaissances, pour donner des informations sur les éléments à traiter (entraînement)

Contexte et applications Définition Ressources Reconnaissance et classification

Typologie : une façon de structurer

Une typologie (angl. tagset) est une formalisation descriptive des catégories d'EN à prendre en compte :

- quoi reconnaître (cibler des éléments appartenant à des catégories spécifiques)
- comment le représenter (pour un élément, choisir une catégorie parmi d'autres)

De multiples variations en fonction des domaines et des applications – différences de :

- catégories
- structure
- sur la définition de ce que recouvrent les catégories

Contexte et applications Reconnaissance et classification Ressources Références

Typologie MUC

- noms propres (ENAMEX): lieux, personnes, organisations
- expressions numériques (NUMEX) : dates et heures (expressions absolues), montants monétaires et pourcentages

Types	Exemple	Contre-exemple
ORG	DARPA	our university
PERS	Harry Schearer	St. Michael
LOC	U.S.	53140 Gatchell Road
MONEY	19 dollars	ça en coûte 19
TIME	8 heures	la nuit dernière
DATE	en juillet	en juillet dernier

Table 2 – Le qualitatif : données, informations et connaissances.

Typologie ACE

Types	Sous-types
PERS	individu, groupe, indéterminé
ORG	(non) gouvernementales, commerciales,
	éducation, divertissement, média, reli-
	gieuses, médicales, sciences, sports
GPE	continent, nation, état ou province, dé-
	partement ou région, villes, groupement
	de GPE, spécial, ainsi que des types
	comme PERS, LOC, ORG
LOC	adresses, frontières, objets astrono-
	miques, plans d'eau, région géogra-
	phique, région internationale, autre
FAC	aéroports, usines, constructions, portion
	de construction
VEH	air, terre, eau, portions de véhicule, non
	spécifié
WEA	contondantes, explosives, coupantes,
	chimiques, biologiques, armes à feu, mu-
	nitions, nucléaires, non spécifiées 🗨 LETTRES

Évolution

Nombreuses autres typologies s'inspirant de MUC et ACE

- CoNLL: inspiration MUC, ajout d'une catégorie MISC
- HAREM: inspiration ACE, ajout de différentes catégories (IDÉE, OBJET, AUTRE, GROUPE)
- ESTER-2: encore plus de sous-types (PERS.HUM, PERS.ANIM, LOC.GEO, LOC.ADMIN etc.) et traitement de l'imbrication

27 février 2025

Imbrication des EN

Au-delà de la structuration en type et sous-types, il y a la notion de l'imbrication :

- une entité peut en contenir une autre
- The <pers> president of <org> Ford </org> </pers>

Structuration très utilisée dans des domaines de spécialité, p. ex. la typologie GENIA (domaine bio-médical)

La typologie QUAERO

- 1. Personne : personne individuelle, groupe de personnes
- Lieu : lieu administratif, lieu physique, construction, odonyme, adresse
- 3. Organisation: administration, service
- 4. Expression temporelle : date / heure absolue et relative
- 5. Montant
- 6. **Produit** : objet manufacturé, route, produit financier, doctrine, loi, *software*, art, média, récompense
- 7. Fonction: individuelle ou collective

27 février 2025

Typologie QUAERO: sous-types

Figure 8 – Les sous-types de la typologie QUAERO.

Typologie QUAERO : composants d'entités

Figure 9 – Les composants d'entités de la typologie $\mathrm{QUAERO}.$

QUAERO: composants d'entités

Figure 10 – Les composants d'entités de la typologie QUAERO.

Les composants permettent :

- d'avoir, par compositionnalité, de nombreux types sans les multiplier
- d'aider au suivi et à la liaison, au moins intra-documents (l'usine Renault → l'usine)

Comparaison de typologies par l'exemple

MUC	d'après le Bureau du recensement des LOC [États-Unis] , les revenus des
	ménages ont reculé pour la quatrième année consécutive en DATE [2011] .
ACE	d'après le ORG [Bureau du recensement des États-Unis] , les revenus des
	ménages ont reculé pour la quatrième année consécutive en DATE [2011] .
EST	d'après le ORG [Bureau du recensement des LOC [États-Unis]] , les revenus des ménages ont reculé pour la quatrième année consécutive en DATE [2011] .
QUA	d'après le ORG [name [Bureau du recensement] des LOC [name [États-Unis]] les revenus des ménages ont reculé pour la quatrième année consécutive en DATE [year [2011]] .

Table 4 – Comparaison de typologies des EN.

Définition Contexte et applications Ressources Reconnaissance et classification

Text Analysis Conference – Knowledge Base Population

Pour une EN donnée, il importe de trouver de nombreux attributs.

P. ex. pour une entité de type PERS :

- noms : les autres noms que porte ou a porté cette personne (alias, faux noms, noms de scène, etc.)
- fonctions et activités : ses emplois, ses occupations, etc.
- dates (ou âge) : de naissance, de mort, des différents évènements, son âge
- lieux : en rapport avec des évènements de sa vie comme la naissance, la mort, les différents emplois, etc.
- personnes liées : conjoint(e), enfants, autres membres de sa famille, etc.
- autres informations : écoles et universités fréquentées, pays visités, etc.

Corpus annoté et guide d'annotation

Un ensemble de documents textuels dont le texte est enrichi, lors d'une campagne d'annotation, par un marquage des EN respectant une typologie donnée.

Typologie \rightarrow manuel d'annotation

- exemplification des catégories
- règles pour permettre à l'annotateur de faire des choix
- souvent, définition en parallèle de la typologie et de guide d'annotation

Ljudmila PETKOVIĆ

Campagne d'annotation

- à partir d'outils dédiés (BRAT ¹, GLOZZ ², WEBANNO ³)
- importance de la mesure de la qualité et de la cohérence des annotations
- publication du corpus avec des informations : sources, accord inter-annotateur, mesures utilisées, typologie et guide d'annotation
- à faire avec soin : chronophage et gourmand en ressources

Exemples de corpus français : ESTER 2, QUAERO, ETAPE

27 février 2025

^{1.} https://brat.nlplab.org/introduction.html

^{2.} http://explorationdecorpus.corpusecrits.huma-num.fr/glozz/

^{3.} https://webanno.github.io/webanno/

Lexiques et bases de connaissances

Objectif : fournir des informations relatives à des EN, en général ou dans des domaines de spécialité, sur lesquelles les systèmes automatiques peuvent s'appuyer afin de les reconnaître, les catégoriser et les désambiguïser.

Types d'informations :

- 1. lexicales, sur les unités composant les EN
- 2. encyclopédiques, sur les référents des EN

Évolution importante de ce type de ressource depuis l'apparition de la tâche : index géographiques (angl. gazetteers) \rightarrow encodage de plus en plus d'information

Contexte et applications Reconnaissance et classification Évaluation Définition Ressources Liaison Références

Bases lexicales

Encodent 2 types d'information :

- des noms ou parties de noms d'entités avec leurs types associés, p. ex. $Justin \rightarrow directement$ utilisés pour reconnaître des unités équivalentes dans les textes
- des mots amorces, également avec leurs types associés, p. ex. Monsieur \rightarrow des unités indiguant avec une forte probabilité la présence d'une EN d'un certain typye
- WORDNET ⁴ : utile pour l'intégration de ressources
- PROLEX⁵: base d'EN multilingue
- GEONAMES ⁶: toponymes et assimilés
- 4. https://wordnet.princeton.edu/
- 5. https://www.ortolang.fr/market/lexicons/prolex
- 6. https://www.geonames.org/

27 février 2025

Reconnaissance et classification

Objectifs

Construire des systèmes logiciels qui effectuent ces tâches de manière automatique.

Exigences:

- qualité : ne pas faire trop d'erreurs
- exhaustivité : ne pas manquer trop d'EN
- robustesse : ne pas échouer face à des cas non canoniques

En pratique :

- difficile de répondre à ces exigences simultanément
- recherche du meilleur compromis en fonction des ressources et de l'application

Représentation du texte

La représentation des textes comme séquences de mots donne 2 niveaux de granularité :

- caractères, qui forment un mot
- mots, qui composent une séquence (un texte)

Les indices peuvent être caractérisés au niveau :

- des caractères : indices morphologiques
 - o majuscule, régularités socio-culturelles (-ville), nombres
- des mots eux-mêmes : indices lexicaux
 - \circ confronter les textes à des listes d'EN de composants d'EN
- de la séquence de mots : indices contextuels
 - contextes local (mots qui précèdent ou suivent l'EN) et global (phrase(s), etc.)

Approches symboliques

Techniques à base d'automates

- insertion de balises dans les textes indiquant où se trouvent les EN
- conception de règles formant une grammaire locale
- boîtes à outils : Unitex, GATE, NooJ, etc.

Pré-traitements : segmentation en mots, en phrases, étiquetage morphosyntaxique

ightarrow indices supplémentaires fort utiles, mais qui impactent les performances si bruités

M2SOL034 : Reconnaissance des entités nommées (REN)

Approches statistiques

Au début des années 2000, grâce à la mise à disposition de jeux de données volumineux.

Mais les approches symboliques sont toujours présentes :

- combinées avec des méthodes statistiques
- prédominent pour les langues ou les typologies sans corpus de données suffisants
- gardent l'atout pour le contrôle et de l'ingénierie : plus compréhensibles, modulables, possibilités de réglages fins
- majoritaires dans le milieu industriel

Apprentissage automatique

Modèles guidés par les données (angl. data-driven models)

Objectif : déterminer les paramètres d'un modèle à partir de données, d'où le terme apprentissage

Ces paramètres et ce modèle sont ensuite utilisés pour prendre les décisions les plus probables (ou vraisemblables) sur de nouvelles données à traiter.

Il s'agit, simultanément, de spécifier le modèle et de généraliser sur les données.

Le paradigme de l'apprentissage automatique

Systèmes symboliqes : le concepteur du système interagit majoritairement avec le modèle (l'automate), et n'utilise les données que pour visualiser ou pour évaluer

Systèmes guidés par les données : le concepteur agit sur les données, la structure du modèle est prédéfinie et rigide et les paramètres ajustés automatiquement à partir des données.

Figure 11 – Système symbolique *vs.* système guidé par les données.

Contexte et applications Définition

Ressources

Reconnaissance et classification

Approches existantes

La REN peut être formalisée comme une tâche de classification.

- arbres de décision
- modèles probabilistes
- réseaux neuronaux

Modèles par classes majoritaires

Déterminer la classe d'un mot à partir de la classe qui lui est majoritairement associée dans le corpus d'apprentissage.

Formulation à l'aide des probabilités :

- fréquence du mot F(m)
- fréquence d'une étiquettee F(e)
- fréquence de la présence jointe du mot et de l'étiquette F(m,e)

Modèles par classes majoritaires

Définition

La formule de Bayes et l'estimation statistique permettent de calculer la probabilité d'une étiquette étant donné le mot :

$$P(E_i = e|M_i = m) = \frac{P(M_i = m, E_i = e)}{P(M_i = m)} = \frac{F(e, m)}{F(m)}$$

Probabilité d'une étiquette pour un mot donné = ratio entre la fréquence du mot avec une étiquette dans le corpus annoté et la fréquence du mot dans ce même corpus, quelle que soit l'étiquette.

27 février 2025

Modèles par classes majoritaires

Figure 12 – Modèle par classes majoritaires. L'orientation des flèches indique quelles dépendances sont prises en compte par le modèle.

Modèles à décisions contextuelles (HMM)

Objectif : tenir compte de la vraisemblance d'étiquettes contiguës

François Hollande

- Hollande : Lieu ou Personne?
- François : annoté comme PERSONNE, peut conditionner l'annotation du mot Hollande

Option : modèles génératifs comme les modèles de Markov à états cachés.

Calcul des probabilités inverse : déterminer, pour une suite d'étiquettes, la probabilité qu'elle génère un texte donné.

$$P(M_1, M_2, \dots, M_n | E_1, E_2, \dots, E_n) = \prod_{i=1}^n P(M_i | E_i) \times P(E_i | E_{i-1})$$

Soit le produit des probabilités de génération $P(M_i|E_i)$ et de transition $P(E_i|E_{i-1})$

Modèles à décisions contextuelles (HMM)

Figure 13 – Modèle de Markov à états cachés. Décisions non indépendantes : la solution la plus vraisemblable est choisie en fonction des étiquettes préalablement choisies.

Modèles utilisant des indices multiples (Softmax, MaxEnt)

Objectif : **considérer plus d'indices que les mots**, *i.e.* prendre en compte la morphologie, les indices lexicaux, le contexte, etc.

Figure 14 - Tenir compte d'indice sur les tokens.

Champs markoviens conditionnels (CRF)

Les CRF (angl. Conditional Random Fields) ou champs markoviens conditionnels combinent les deux aspects précédents :

- tenir compte du contexte pour prendre des décisions (une décision sur un mot influence la décision pour le mot suivant)
- tenir compte de multiples indices (analyses en pré-traitements)

27 février 2025

Champs markoviens conditionnels (CRF)

Figure 15 – Modèle graphique CRF.

$$G(e, m, f_1, \dots, f_k) = \exp\left(\sum_{p=1}^k \alpha_{ep} \times f_p\right)$$

Fonction exponentielle pour évaluer la pertinence d'un état donné en fonction d'un ensemble de caractéristiques.

Liaison

Reconnaissance et classification Contexte et applications Définition Ressources Références

Où en sommes-nous?

- nous savons reconnaître et catégoriser des segments textuels : des mentions d'EN qui font référence à un objet du monde
- ce qu'il reste à faire : établir le lien entre les mentions et les objets auxquels elles se réfèrent
- → objectif : désambiguïsation, résolution, liaison

Des mentions aux référents

Catégoriser n'est pas désambiguïser

- G. Bush et F. Mitterrand sont des Person
- lequel des deux se réfère-t-il au 43e président des États-Unis?

Le problème des homonymes

- F. Mitterrand est une Person (François ou Frédéric?)
- Bush est une Person (G. Bush ou G. W. Bush?)

Le problème des variantes

 Jean-Claude Juncker, Juncker et le président de la Commission Européenne se réfèrent-elles à la même EN?

Ljudmila PETKOVIĆ

Contexte et applications Définition Ressources Reconnaissance et classification Liaison

Le point sur les tâches

Résolution de co-référence

au sein d'un même document, identifier que Frédéric Mitterrand, Mitterrand, FM ont le même référent, quel qu'il soit

Clustering de mentions

pour une collection de documents, identifier que *Frédéric* Mitterrand, Mitterrand, FM ont le même référent, avec ou sans référentiel

Liaison d'entités

o étant donné des documents, identifier les mentions d'EN et lier chacune d'elles à un référent d'une base de connaissances

Évaluation

Contexte et applications Définition Reconnaissance et classification Évaluation Références Ressources

Évaluer

Figure 16 - Objectif: mesurer à quel point le système trouve les « bonnes réponses ».

Quelles « bonnes réponses »?

- traduction ou résumé automatique : bonnes réponses multiples
- REN : une seule et unique bonne réponse

Avantages et exigences

- Transparence : « règles du jeu » connues par tous
- Coût : réduit par rapport à une évaluation manuelle pour chaque hypothèse des systèmes
- Reproductibilité: réutilisation au-delà des campagnes permettant une comparaison des résultats dans la production scientifique

Ce qu'il faut pour évaluer :

- une métrique mesurant la distance entre une référence et une hypothèse
- 2. un algorithme d'alignement de la référence et de l'hypothèse
- un algorithme de projection des EN annotées sur la transcription manuelle de référence vers la transcription automatique

Les mesures classiques

Précision

Ratio entre le nombre de réponses correctes et toutes les réponses données par un système

$$P = \frac{C}{C + S + I}$$

- C : nombre d'objets **corrects** dans l'hypothèse
- I : nombre d'insertions par le système
- S : nombre de substitutions par le système (EN mal orthographiées)
- soit C + S + I: nombre total d'objets dans l'hypothèse

Les mesures classiques

Rappel

Ratio entre le nombre de réponses correctes et le nombre des réponses attendues (i.e. présentes dans la référence)

$$R = \frac{C}{C + S + D}$$

- D : nombre total d'omissions (suppressions) opérées par le systèmes (EN non détectées, silence)
- C+S+D : nombre total d'objets dans la référence

Références

Exemple 1

REF: <pers>Bertrand Delanoë</pers> a été élu maire de <loc>Paris</loc>

Reconnaissance et classification

HYP1: <pers>Bertrand Delanoë</pers> a été élu <pers>maire</pers> de <loc>Paris</loc>

- Précision : $\frac{2}{3} = 0,67$
- Rappel : $\frac{2}{2} = 1$
- \rightarrow ici HYP1 produit du **bruit**.

Exemple 2

REF : <pers>Bertrand Delanoë</pers> a été élu maire de
<loc>Paris</loc>

HYP2: <pers>Bertrand Delanoë</pers> a été élu maire de Paris

- Précision : $\frac{2}{2} = 1$
- $\qquad \text{Rappel}: \frac{1}{2} = 0, 5$
- → HYP2 produit du **silence**

F-mesure

Définie comme la moyenne harmonique entre Précision et Rappel :

$$F = (1 + \beta^2) \times \frac{P \times R}{\beta^2 P + R}$$

où β est un poids permettant d'ajuster l'importance de P ou R (si 1, égale importance).

Exemples

REF: <pers>Bertrand Delanoë</pers> a été élu maire de <loc>Paris</loc>

HYP1: <pers>Bertrand Delanoë</pers> a été élu <pers>maire</pers> de <loc>Paris</loc>

HYP2: <pers>Bertrand Delanoë</pers> a été élu maire de Paris

$$F(HYP1) = (1+1^2) \times \frac{0.67 \times 1}{1^2 \times 0.67 + 1} = 0.80$$

$$F(HYP2) = (1+1^2) \times \frac{1 \times 0.5}{1^2 \times 1 + 0.5} = 0.67$$

27 février 2025

Inconvénients des mesures classiques

- fusionner P et R minimise le poids des erreurs d'insertion et d'omission par rapport aux erreurs de substitution, quel que soit β
- avec les typologies fines et complexes, besoin d'une métrique différenciant les erreurs

```
REF : the <pers.ind>president of Ford</pers.ind>
```

```
HYP1: the <pers.ind>president</pers.ind> of Ford
→ erreur de frontière
```

```
HYP2: the <pers.coll>president of Ford</pers.coll>
```

 \rightarrow erreur de sous-type

HYP3: the <pers.coll>president</pers.coll> of Ford

→ erreur de sous-type et de frontière

Définition

Mesures basées sur le décompte d'erreurs : SER

SER: Slot Error Rate (MAKHOUL et al., 1999)

• identique au WER utilisé en reconnaissance autom. de parole

Reconnaissance et classification

- utilisée lors de ACE, ESTER-2, QUAERO et ETAPE
- suppression du nombre d'insertion (I) du dénominateur

$$SER = \frac{S+D+I}{C+D+S} = \frac{S+D+I}{R}$$

où R = nombre total d'EN de la référence

27 février 2025

Reconnaissance et classification Liaison Évaluation Contexte et applications Définition Ressources Références

SER

Possibilité d'affiner l'importance relative des erreurs

$$SER = \frac{\alpha_1 S_t + \alpha_2 S_f + \beta D + \gamma I}{R}$$

- S_t et S_f : nb total de substitutions de type et de frontières
- D et I: nombre total d'omissions et d'insertions
- α_1 , α_2 , β et γ : poids affectées à chaque catégories d'erreur

Références

Définition

Ressources

https://github.com/BigDataSpeech/EN/blob/ghpages/docs/classEN.pdf. Consulté le 27 février 2025 (voir p. 1).

Makhoul, J., F. Kubala, R. Schwartz, R. Weischedel et al. (1999). Performance measures for information **extraction.** In: Proceedings of DARPA broadcast news workshop. http:

//ccc.inaoep.mx/~villasen/bib/slot%20error%20rate.pdf. Herndon, VA, p. 249-252 (voir p. 71).

Licence

Le contenu de cette présentation est sous licence CC-BY-NC-SA 4.0 Utilisation non commerciale – Partage dans les mêmes conditions.

