In [5]: ▶

```
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
```

In [4]: ▶

```
train = pd.read_csv('data/4th_kaggle/train.csv')
test = pd.read_csv('data/4th_kaggle/test.csv')
sub = pd.read_csv('data/4th_kaggle/sample_submission.csv')
```

데이터 탐색

• 컬럼명 : [].columns

행열 : [].shape정보 : [].info()

• 수치 데이터 요약정보 : [].describe()

• 결측치 : [].isnull().sum()

데이터 정보

age: LFO

workclass : 고용 형태

fnlwgt : 사람 대표성을 나타내는 가중치 (final weight의 약자)

education : 교육 수준 (최종 학력) education_num : 교육 수준 수치 marital_status: 결혼 상태

occupation : 업종

relationship : 가족 관계

race : 인종 sex : 성별

capital_gain : 양도 소득 capital_loss : 양도 손실

hours_per_week : 주당 근무 시간

native_country : 국적

income : 수익 (예측해야 하는 값, target variable)

```
In [6]:
                                                                                                M
train.columns
Out[6]:
Index(['id', 'age', 'workclass', 'fnlwgt', 'education', 'education_num',
       'marital_status', 'occupation', 'relationship', 'race', 'sex',
       'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
       'income'],
     dtype='object')
In [7]:
                                                                                                H
test.columns
Out[7]:
Index(['id', 'age', 'workclass', 'fnlwgt', 'education', 'education_num',
       'marital_status', 'occupation', 'relationship', 'race', 'sex',
       'capital_gain', 'capital_loss', 'hours_per_week', 'native_country'],
     dtype='object')
In [8]:
                                                                                                M
sub.columns
Out[8]:
Index(['id', 'prediction'], dtype='object')
In [11]:
                                                                                                M
print("학습용 데이터 : ", train.shape)
print("테스트용 데이터 : ", test.shape)
학습용 데이터 : (26049, 16)
테스트용 데이터 : (6512, 15)
```

In [12]: ▶

train.isnull().sum()

Out[12]:

0 id 0 age 0 workclass fnlwgt 0 education 0 education_num 0 marital_status 0 0 occupation relationship 0 0 race sex 0 0 capital_gain capital_loss 0 0 hours_per_week 0 native_country income 0 dtype: int64

In [13]:

test.isnull().sum()

Out[13]:

id 0 0 age 0 workclass 0 fnlwgt 0 education 0 education_num marital_status 0 0 occupation relationship 0 0 race 0 sex 0 capital_gain 0 capital_loss 0 hours_per_week native_country 0 dtype: int64

In [14]: ▶

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26049 entries, 0 to 26048
Data columns (total 16 columns):

Jala	COTUIIIIS (LOLAT	10 COTUIII15).	
#	Column	Non-Null Count	Dtype
0	id	26049 non-null	int64
1	age	26049 non-null	int64
2	workclass	26049 non-null	object
3	fnlwgt	26049 non-null	int64
4	education	26049 non-null	object
5	education_num	26049 non-null	int64
6	marital_status	26049 non-null	object
7	occupation	26049 non-null	object
8	relationship	26049 non-null	object
9	race	26049 non-null	object
10	sex	26049 non-null	object
11	capital <u>g</u> ain	26049 non-null	int64
12	capital_loss	26049 non-null	int64
13	hours_per_week	26049 non-null	int64
14	native_country	26049 non-null	object

26049 non-null object

dtypes: int64(7), object(9)
memory usage: 3.2+ MB

In [15]: ▶

test.info()

15 income

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6512 entries, 0 to 6511
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	id	6512 non-null	int64
1	age	6512 non-null	int64
2	workclass	6512 non-null	object
3	fnlwgt	6512 non-null	int64
4	education	6512 non-null	object
5	education_num	6512 non-null	int64
6	marital_status	6512 non-null	object
7	occupation	6512 non-null	object
8	relationship	6512 non-null	object
9	race	6512 non-null	object
10	sex	6512 non-null	object
11	capital <u>g</u> ain	6512 non-null	int64
12	capital_loss	6512 non-null	int64
13	hours_per_week	6512 non-null	int64
14	native_country	6512 non-null	object
مب بله	aa : in + CA(7) ab	ina+(0)	

dtypes: int64(7), object(8) memory usage: 763.2+ KB

In [16]: ▶

```
train.income.unique()
```

Out[16]:

```
array(['>50K', '<=50K'], dtype=object)
```

In [19]: ▶

```
sns.countplot(x="income", data=train)
```

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x21a3b20bb20>

In [31]: ▶

```
train.loc[ train['income']=='>50K' , 'target'] = 1
train.loc[ train['income']=='<=50K' , 'target'] = 0
train['target'] = train.target.astype("int")</pre>
```

In [32]: ▶

train.head()

Out[32]:

	id	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relations
0	0	40	Private	168538	HS-grad	9	Married-civ- spouse	Sales	Husba
1	1	17	Private	101626	9th	5	Never-married	Machine- op-inspct	Own-cl
2	2	18	Private	353358	Some- college	10	Never-married	Other- service	Own-cl
3	3	21	Private	151158	Some- college	10	Never-married	Prof- specialty	Own-cl
4	4	24	Private	122234	Some- college	10	Never-married	Adm- clerical	Not-in-far
4									>

In [23]:

test.head()

Out [23]:

num_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_
10	Never-married	Adm- clerical	Other- relative	White	Female	0	0	
9	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	
10	Never-married	Handlers- cleaners	Own-child	White	Male	0	0	
11	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	
16	Married-civ- spouse	Prof- specialty	Husband	White	Male	0	0	
4								>

In [24]: ▶

train.columns

Out [24]:

```
In [40]:
                                                                                                   M
sel = ['id', 'age', 'fnlwgt', 'education_num', 'capital_gain', 'capital_loss', 'hours_per_week']
X = train[sel]
y = train['target']
test_X = test[sel]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,
                                                   stratify=train.target,
                                                   random_state=42)
In [26]:
                                                                                                   H
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
(19536, 7) (6513, 7) (19536,) (6513,)
로지스틱 모델
In [34]:
                                                                                                   H
from sklearn.linear_model import LogisticRegression
In [41]:
                                                                                                   H
model = LogisticRegression()
model.fit(X_train, y_train)
pred = model.predict(test_X)
In [42]:
sub.columns
Out [42]:
Index(['id', 'prediction'], dtype='object')
In [43]:
                                                                                                   H
print( sub.shape )
print( pred.shape )
(6512, 2)
(6512,)
In [45]:
                                                                                                   M
sub['prediction'] = pred
sub.to_csv("firstSub4th.csv", index=False)
```

0.78545

In []: