CS506: Data Wrangling and Management

Fall 2025

Marc Tollis, PhD

Table of contents

Pr	eface Foot	etnotes	9								
1	Soft	eware	10								
2	Introduction to R, RStudio, and Quarto										
	2.1	Learning Objectives	11								
	2.2	Getting Started	11								
	2.3	Installing R, RStudio, and Quarto	11								
	2.4	Introduction to Quarto	12								
		2.4.1 Your First Quarto Document	12								
		2.4.2 In-Class Quarto Exercise	12								
	2.5	Basic R Concepts	13								
		2.5.1 Variables and Assignments	13								
		2.5.2 Vectors and Functions	13								
		2.5.3 Data Frames	13								
		2.5.4 Inspecting Data	14								
		2.5.5 Comments and Help	14								
		2.5.6 Using Scripts and Console	14								
		2.5.7 Installing and Loading Packages	15								
		2.5.8 In-Class R Exercises	15								
	2.6	Homework Preview	16								
	2.7	Next Steps	16								
3	Data	a Visualization with ggplot2	17								
	3.1	Learning Objectives	17								
	3.2	Introduction to Data Visualization	17								
	3.3	ggplot2 Basics	17								
		3.3.1 Example: Scatterplot of engine size vs. highway mpg	17								
		3.3.2 In-Class Exercise 1	19								
		3.3.3 Aesthetic Mappings	19								
		3.3.4 Example: Color by class	19								
		3.3.5 In-Class Exercise 2	20								
	3.4	Adding Geoms	20								
		3.4.1 Evample: Add a smoothing line	20								

		3.4.2 In-Class Exercise 3	21
	3.5	Facets	21
		3.5.1 Example: Facet by drive type	21
		3.5.2 In-Class Exercise 4	22
	3.6	Customizing Plots	22
	3.7	In-Class Challenge	23
	3.8	Homework Preview	24
	3.9	Next Steps	24
		-	
4	Data	a Transformation with dplyr (Part 1)	25
	4.1	Learning Objectives	25
	4.2	Introduction	25
	4.3	Working with Rows	25
		4.3.1 filter()	25
		4.3.2 arrange()	26
		4.3.3 In-Class Exercise 1 – Rows	27
	4.4	Working with Columns	27
		4.4.1 select()	27
		4.4.2 mutate()	28
		4.4.3 In-Class Exercise 2 – Columns	29
	4.5	Using Pipes to Combine Steps	29
		4.5.1 In-Class Exercise 3 – Pipes	30
	4.6	Homework Preview	30
	4.7	Next Steps	30
5	Data	a Transformation with dplyr (Part 2)	31
•	5.1	Learning Objectives	31
	5.2	Grouped Summaries	31
	0.2	5.2.1 group_by() and summarize()	31
	5.3	Multiple Summaries	32
	0.0	5.3.1 In-Class Exercise 1 – Grouped Summaries	33
	5.4	Grouping with Multiple Variables	33
	0.1	5.4.1 In-Class Exercise 2 – Multiple Grouping	34
	5.5		34
	0.0	5.5.1 In-Class Exercise 3 – Joins	35
	5.6	Chaining with Pipes	35
	5.7	In-Class Challenge	36
	5.8	Homework Preview	37
	5.9	Next Steps	37
	0.0	The Stops	91
6	Tidy	Data with tidyr	38
	6.1	Learning Objectives	38
	6.2	Why Tidy Data?	38

	6.3	Pivoting: Long vs Wide
		6.3.1 pivot_longer()
		6.3.2 pivot_wider()
		6.3.3 In-Class Exercise 1 – Pivoting
	6.4	Separating and Uniting Columns
		6.4.1 separate()
		6.4.2 unite()
		6.4.3 In-Class Exercise 2 – Separate and Unite
	6.5	Tidying a Real Dataset
		6.5.1 In-Class Exercise 3 – WHO Dataset
	6.6	Tidy Data Workflow
	6.7	Homework Preview
7	Exp	loratory Data Analysis (EDA) 44
	7.1	Learning Objectives
	7.2	Introduction to EDA
	7.3	Visualizing Single Variables
		7.3.1 Categorical Variables
		7.3.2 Continuous Variables
		7.3.3 In-Class Exercise 1 – Single Variables
	7.4	Visualizing Relationships
		7.4.1 Two Continuous Variables
		7.4.2 Categorical vs. Continuous
		7.4.3 In-Class Exercise 2 – Relationships
	7.5	Patterns and Outliers
		7.5.1 Transformations
		7.5.2 In-Class Exercise 3 – Patterns and Transformations 50
	7.6	Combining EDA with dplyr
		7.6.1 In-Class Challenge – EDA Workflow
	7.7	Homework Preview
	7.8	Next Steps
_		
8		kflow and Reproducibility 53
		Learning Objectives
	8.2	Why Workflow Matters
	8.3	Organizing Projects in RStudio
		8.3.1 RStudio Projects
		8.3.2 Example Project Structure
		8.3.3 In-Class Exercise 1 – Project Setup
	8.4	Quarto for Reproducibility
		8.4.1 Example Quarto Workflow
		8.4.2 In-Class Exercise 2 – Quarto Report
	8.5	Rest Practices for Reproducibility 55

	8.6	Optional: Version Control with Git and GitHub	55
		8.6.1 In-Class Challenge – Reproducible Mini-Report	56
	8.7	Homework Preview	56
	8.8	Next Steps	56
9	Data	•	57
	9.1	○ 3	57
	9.2	<u> </u>	57
		1	57
		• •	58
		9.2.3 In-Class Exercise 1 – CSV/TSV	58
	9.3	Column Types and Parsing	59
		9.3.1 Example: Overriding column types	59
		9.3.2 In-Class Exercise 2 – Parsing	59
	9.4	Importing Excel Files	59
		9.4.1 Example: Reading an Excel sheet	59
		9.4.2 In-Class Exercise 3 – Excel Import	60
	9.5		60
	9.6		60
			61
	9.7	Homework Preview	61
	9.8		61
10	Tran	sform: Logical Vectors and Numbers	62
	10.1	Learning Objectives	62
	10.2	Logical Vectors	62
			62
		10.2.2 In-Class Exercise 1 – Logical Conditions	63
	10.3	Logical Operations	63
		0	64
	10.4	Numbers and Coercion	64
	10.5	Parsing Numbers	65
		10.5.1 In-Class Exercise 3 – Parsing	65
	10.6	Dealing with Missing Values	65
			66
11	Hon	nework Preview	67
12	Next	t Steps (68
13	Strir	ngs and Regular Expressions with stringr	69
	13.1	Learning Objectives	69
	13.2	Introduction to stringr	69

	13.3	Creating and Inspecting Strings	69
		13.3.1 In-Class Exercise 1 – Basic String Operations	70
	13.4	Detecting Patterns with Regex	70
		13.4.1 In-Class Exercise 2 – Pattern Detection	71
	13.5	Extracting and Replacing Text	71
		13.5.1 str_extract()	71
		13.5.2 str_replace()	71
		13.5.3 In-Class Exercise 3 – Extraction and Replacement	71
	13.6	Splitting and Cleaning Text	72
		13.6.1 str_split()	72
		13.6.2 Cleaning with regex	72
		13.6.3 In-Class Challenge – Text Cleaning	72
	13.7	Homework Preview	73
	13.8	Next Steps	73
14		5	74
		0 0	74
			74
			74
	14.4	Reordering Factor Levels	75
		14.4.1 fct_reorder()	75
		14.4.2 In-Class Exercise 1 – Reordering	76
	14.5	9 0	76
		14.5.1 fct_recode()	76
		14.5.2 In-Class Exercise 2 – Recoding	77
	14.6	Collapsing Levels	77
		=	77
		14.6.2 In-Class Exercise 3 – Collapsing Levels	78
	14.7	9	78
		- •	78
		9	79
		Homework Preview	79
	14.9	Next Steps	80
1 6	Dolo	tional Data with dulum lains	81
13		• •	81
			81
		Keys	82
		Joins with dplyr	82
	10.4	15.4.1 left_join()	82
		15.4.2 inner_join()	83
			83
		_ _	84

		15.4.5 In-Class Exercise 1 – Basic Joins	85
	15.5	Joining Multiple Tables	85
		15.5.1 In-Class Exercise 2 – Multi-Table Joins	85
	15.6	Handling Join Problems	86
		In-Class Challenge – Join Workflow	87
		Homework Preview	87
		Next Steps	8'
16	Διιε	essing Data: Spreadsheets, Databases, Arrow, JSON, and Web Scraping	88
		Learning Objectives	88
		Spreadsheets (R4DS Chapter 20)	88
	10.2	16.2.1 Importing Excel	88
		16.2.2 Importing Google Sheets	89
		16.2.3 In-Class Exercise 1 – Spreadsheets	89
	16.3	Databases (R4DS Chapter 21)	89
	10.0	16.3.1 Example: Connecting to SQLite	89
		16.3.2 In-Class Exercise 2 – Databases	90
	16.4	Arrow (R4DS Chapter 22)	90
	10.1	16.4.1 Example: Reading Parquet	90
		16.4.2 In-Class Exercise 3 – Arrow	90
	16.5	Hierarchical Data (R4DS Chapter 23)	91
		16.5.1 Example: Reading JSON	91
		16.5.2 Flattening Nested Data	91
		16.5.3 In-Class Exercise 4 – JSON Rectangling	91
	16.6	Web Scraping (R4DS Chapter 24)	92
		16.6.1 Example: Scraping a Table	92
		16.6.2 In-Class Exercise 5 – Web Scraping	92
	16.7	In-Class Challenge – Multiple Data Sources	93
		Homework Preview	93
		Conclusion	93
Αŗ	pend	dices	94
Α	CS5	06: Data Wrangling and Management– Syllabus	94
		Course Overview	94
	A.2	Canvas & Recorded Lectures	94
	A.3	CS506 Book Website	9!
	_	Course Objectives	95
		A.4.1 Course Student Learning Outcomes	95
		A.4.2 Program Student Outcomes supported by this class	96
	A.5	Required Materials	96
		Assessments	96

	A.7 Course Schedule (Fall 2025)	97
	A.8 Policies	99
	A.8.1 Course Policies	99
	A.8.2 University Policies	100
	A.9 Grading and Submission	100
	A.10 Resources	101
В	Appendix: Coding Style Guidelines	102
_	B.1 Why Style Matters	102
	B.2 File Naming	
	B.3 Object Naming	
	B.4 Spaces and Indentation	
	B.5 Long Lines	
	B.6 Function Formatting	103
	B.7 Commenting Code	104
	B.8 Piping	104
	B.9 Tidyverse Style Summary	
	B.10 In-Class Exercise	
	B.11 Conclusion	105
С	Appendix: Tidyverse and Tibbles	106
	C.1 Overview	106
D	1. What Are Tibbles?	107
_	D.0.1 Key Features:	107
	·	
E	2. Differences from Data Frames	108
F	3. Creating Tibbles	109
G	4. Working with Tibbles	110
Н	5. Best Practices with Tibbles	111
I	6. When to Convert Back to Data Frames I.1 In-Class Exercise	112 112
J	Conclusion	113

Preface

Welcome to CS506: Data Wrangling and Management. This course introduces graduate students to data wrangling and management using R and the Tidyverse ecosystem. Students will learn to import, manipulate, clean, and visualize data with a strong emphasis on practical applications and reproducible workflows.

Please access the course syllabus.

The course will utilize the free textbook R for Data Science by Hadley Wickham and Garrett Grolemund.

Course Objectives: Upon successful completion of the course, students will be able to:

- Develop an understanding of R and the Tidyverse ecosystem
- Import structured and unstructured data into R
- Clean and transform data using dplyr, tidyr, and other core Tidyverse packages
- Visualize data effectively using ggplot2
- Conduct exploratory data analysis (EDA)
- Apply data wrangling techniques to real-world datasets

Textbook: *R for Data Science* by Hadley Wickham & Garrett Grolemund (Available for free: https://r4ds.hadley.nz/)

Software Requirements:

- R (https://www.r-project.org/)
- RStudio (https://posit.co/downloads/)

Footnotes

- This is a Quarto book. To learn more about Quarto books visit https://quarto.org/docs/books.
- This website is published using Github Pages.

1 Software

You will need to have all of the following free software downloaded and in working order on your laptop.

Prior to first lecture

You must have the following on your laptops prior to the first lecture.

- Compatible version of R software environment
- Latest version of RStudio Desktop IDE
- Quarto publishing system (for documents with integrated code).
- You must have a functional PDF Engine to render Quarto (.qmd) documents into PDF. See this section on PDF Engines, and be sure to test whether you can render an example .qmd file into a PDF.

2 Introduction to R, RStudio, and Quarto

2.1 Learning Objectives

By the end of this week, you should be able to:

- Install and open R, RStudio, and Quarto
- Navigate the four-pane layout of RStudio
- Create and run R scripts
- Understand the differences between the console, script editor, and environment
- Execute basic R operations and understand data types
- Install and load R packages
- Create and render a Quarto (.qmd) document to .pdf

2.2 Getting Started

R is a programming language designed for data analysis.

RStudio is an Integrated Development Environment (IDE) that m

RStudio is an Integrated Development Environment (IDE) that makes working with R easier. Quarto is a tool for creating reproducible documents that combine code and text.

2.3 Installing R, RStudio, and Quarto

- 1. Install R: https://cran.r-project.org/
- 2. Install RStudio: https://posit.co/download/rstudio-desktop/
- 3. Install Quarto: https://quarto.org/docs/get-started/

When you open RStudio, you'll see four panes:

- Console runs code interactively
- Source write and save scripts or Quarto documents

- Environment/History view and manage objects
- Files/Plots/Packages/Help/Viewer navigation and visualization tools

2.4 Introduction to Quarto

Quarto allows you to create documents that include both text and executable R code.

2.4.1 Your First Quarto Document

- 1. In RStudio: File \rightarrow New File \rightarrow Quarto Document
- 2. Replace the header with:

```
title: "My First Quarto Document"
author: "Your Name"
format: pdf
---
```

3. Below the header, add:

```
x \leftarrow c(1, 2, 3, 4, 5)
mean(x)
```

[1] 3

4. Click Render to produce a PDF file.

2.4.2 In-Class Quarto Exercise

- Create a new Quarto document with:
 - A title, your name, and the date
 - A short paragraph of text
 - A code chunk that calculates the mean and standard deviation of a numeric vector
- Render it to PDF and verify it works.

2.5 Basic R Concepts

2.5.1 Variables and Assignments

```
x <- 5
y <- 10
z <- x + y
z
```

[1] 15

2.5.2 Vectors and Functions

```
ages <- c(25, 30, 35, 40)
mean(ages)

[1] 32.5

sd(ages)
```

[1] 6.454972

2.5.3 Data Frames

```
name <- c("Alice", "Bob", "Charlie")
age <- c(25, 30, 35)
student_data <- data.frame(name, age)
student_data</pre>
```

```
name age
1 Alice 25
2 Bob 30
3 Charlie 35
```

2.5.4 Inspecting Data

str(student_data) 'data.frame': 3 obs. of 2 variables:

\$ age : num 25 30 35

summary(student_data)

na	me	age		
Length	::3	Min.	:25.0	
Class	:character	1st Qu.	:27.5	
Mode	:character	Median	:30.0	
		Mean	:30.0	
		3rd Qu.	:32.5	
		Max.	:35.0	

\$ name: chr "Alice" "Bob" "Charlie"

head(student_data)

```
name age
1 Alice 25
2 Bob 30
3 Charlie 35
```

2.5.5 Comments and Help

```
# This is a comment
?mean # Help for the mean function
```

2.5.6 Using Scripts and Console

- Write your code in the script editor and run lines with Ctrl+Enter (Cmd+Enter on Mac)
- Save scripts with the .R extension
- Use the Console for quick exploration

2.5.7 Installing and Loading Packages

```
install.packages("tidyverse")
```

2.5.8 In-Class R Exercises

- 1. Create a numeric vector of five numbers and calculate its mean, median, and standard deviation.
- 2. Create a data frame with three columns (name, age, and major) and print its structure.
- 3. Import a dataset from a URL using read.csv() and summarize it using summary().

```
my_vec <- c(10, 20, 30, 40, 50)
mean(my_vec)</pre>
```

[1] 30

```
median(my_vec)
```

[1] 30

```
sd(my_vec)
```

[1] 15.81139

```
df <- data.frame(
   name = c("Lily", "Mark", "Tom"),
   age = c(21, 22, 23),
   major = c("Biology", "Math", "History")
)
str(df)</pre>
```

```
'data.frame': 3 obs. of 3 variables:
$ name : chr "Lily" "Mark" "Tom"
$ age : num 21 22 23
$ major: chr "Biology" "Math" "History"
```

data <- read.csv("https://people.sc.fsu.edu/~jburkardt/data/csv/airtravel.csv") summary(data)</pre>

Month	X1958	X1959	X1960	
Length:12	Min. :310.0	Min. :342.0	Min. :390.0	
Class :character	1st Qu.:339.2	1st Qu.:387.5	1st Qu.:418.5	
Mode :character	Median:360.5	Median:406.5	Median :461.0	
	Mean :381.0	Mean :428.3	Mean :476.2	
	3rd Qu.:411.8	3rd Qu.:465.2	3rd Qu.:514.8	
	Max. :505.0	Max. :559.0	Max. :622.0	

2.6 Homework Preview

- Create a .qmd document that:
 - Includes a title and your name
 - Demonstrates at least three code chunks
 - Shows basic statistics on a numeric vector
 - Imports a dataset, inspects it with str() and summary(), and writes one paragraph summarizing your findings
- Render to PDF and submit to Canvas.

2.7 Next Steps

You now know how to run R scripts and render Quarto documents. Next week, you'll learn how to create data visualizations using ggplot2.

3 Data Visualization with ggplot2

3.1 Learning Objectives

By the end of this chapter, you should be able to:

- Create basic scatterplots using ggplot2
- Map variables to aesthetics (color, size, shape)
- Use different geoms (points, smooth lines, histograms)
- Create facets to display subsets of data
- Customize plots for clear communication

3.2 Introduction to Data Visualization

This week we begin with **visualization first**, following *R for Data Science (Ch. 2)*. ggplot2 is part of the tidyverse and implements the **grammar of graphics**. We will use the built-in mpg dataset for examples.

3.3 ggplot2 Basics

The **template** for a ggplot is:

```
ggplot(data = <DATA>) +
     <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

3.3.1 Example: Scatterplot of engine size vs. highway mpg

library(tidyverse)

-- Attaching core tidyverse packages ------

```
v dplyr
           1.1.4
                    v readr
                                 2.1.5
v forcats 1.0.0
                    v stringr
                                 1.5.1
                                 3.2.1
v ggplot2 3.5.2 v tibble
v lubridate 1.9.4
                    v tidyr
                                 1.3.1
           1.0.4
v purrr
-- Conflicts -----
                                         ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

----- tidyverse 2.0.0 --

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
```


3.3.2 In-Class Exercise 1

- 1. Create a scatterplot of cty (city mpg) vs. hwy (highway mpg).
- 2. What relationship do you see?
- 3. Try swapping x and y—does it change the interpretation?

3.3.3 Aesthetic Mappings

You can map variables to visual properties: color, size, shape, alpha.

3.3.4 Example: Color by class

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))
```


3.3.5 In-Class Exercise 2

- Modify the plot to map size to cyl (number of cylinders).
- Map shape to drv (drive type).
- Try using both color and shape in one plot.

3.4 Adding Geoms

The geom_point() function creates a scatterplot, but there are many geoms.

3.4.1 Example: Add a smoothing line

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  geom_smooth(mapping = aes(x = displ, y = hwy))
```

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

3.4.2 In-Class Exercise 3

- Add a geom_smooth() line to your plot from Exercise 1.
- Try setting se = FALSE to remove the confidence band.
- Change the color of the line manually.

3.5 Facets

Facets split the data into subplots based on a variable.

3.5.1 Example: Facet by drive type

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_wrap(~ drv)
```


3.5.2 In-Class Exercise 4

- Use facet_wrap() to facet the plot by class.
- Try facet_grid(drv ~ cyl)—what do you observe?

3.6 Customizing Plots

You can add labels, titles, and themes to improve clarity.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
  labs(
    title = "Fuel Efficiency by Engine Size",
    x = "Engine Displacement (L)",
    y = "Highway MPG",
    color = "Car Class"
  ) +
  theme_minimal()
```

Fuel Efficiency by Engine Size

3.7 In-Class Challenge

Using the mpg dataset:

- 1. Make a scatterplot of displ vs hwy.
- 2. Map a third variable to color.

- 3. Add a smooth line and facet by drive type.
- 4. Add labels and use a clean theme.

3.8 Homework Preview

For **Homework**, you will:

- Use the mpg dataset (or another dataset of your choice).
- Create three plots:
 - 1. A scatterplot with at least one aesthetic mapping
 - 2. A faceted plot showing subsets of data
 - 3. A customized plot with titles, labels, and a theme
- Render your .qmd to PDF and submit on Canvas.

3.9 Next Steps

Next week, we begin data transformation using dplyr to manipulate data before plotting.

4 Data Transformation with dplyr (Part 1)

4.1 Learning Objectives

By the end of this chapter, you should be able to:

- Filter rows using filter()
- Sort rows using arrange()
- Select columns using select()
- Create or modify columns using mutate()
- Combine multiple transformations using the base R pipe |>

4.2 Introduction

This chapter follows R for Data Science (Ch. 3) and introduces dplyr, a tidyverse package for data transformation.

We will use the nycflights13::flights dataset for examples.

4.3 Working with Rows

4.3.1 filter()

filter() keeps rows that match given conditions.

library(tidyverse)

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
            1.1.4
                      v readr
                                   2.1.5
v forcats
            1.0.0
                      v stringr
                                   1.5.1
                      v tibble
                                   3.2.1
v ggplot2
            3.5.2
v lubridate 1.9.4
                      v tidyr
                                   1.3.1
v purrr
            1.0.4
-- Conflicts -----
                                           ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                  masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(nycflights13)
flights |>
  filter(month == 1, day == 1)
# A tibble: 842 x 19
                 day dep_time sched_dep_time dep_delay arr_time sched_arr_time
    year month
   <int> <int> <int>
                        <int>
                                        <int>
                                                  <dbl>
                                                           <int>
                                                                           <int>
 1 2013
             1
                          517
                                          515
                                                      2
                                                             830
                                                                             819
 2 2013
             1
                          533
                                          529
                                                      4
                                                             850
                                                                             830
 3 2013
             1
                   1
                          542
                                          540
                                                      2
                                                             923
                                                                             850
 4 2013
                          544
                                          545
                                                            1004
                                                                            1022
             1
                   1
                                                     -1
 5 2013
             1
                   1
                          554
                                          600
                                                     -6
                                                                             837
                                                             812
 6 2013
                                                     -4
                                                             740
             1
                   1
                          554
                                          558
                                                                            728
 7 2013
                          555
                                          600
                                                     -5
                                                             913
             1
                   1
                                                                             854
 8 2013
             1
                   1
                          557
                                          600
                                                     -3
                                                             709
                                                                             723
 9 2013
                          557
                                                     -3
                                                             838
             1
                   1
                                          600
                                                                             846
10 2013
             1
                   1
                          558
                                          600
                                                     -2
                                                             753
                                                                             745
# i 832 more rows
# i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
```

What's a **tibble**? See Appendix C: Tidyverse and Tibbles

4.3.2 arrange()

arrange() orders rows by a column.

tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

hour <dbl>, minute <dbl>, time_hour <dttm>

flights |> arrange(desc(dep_delay))

A tibble: 336,776 x 19

year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
2013	1	9	641	900	1301	1242	1530
2013	6	15	1432	1935	1137	1607	2120
2013	1	10	1121	1635	1126	1239	1810
2013	9	20	1139	1845	1014	1457	2210
2013	7	22	845	1600	1005	1044	1815
2013	4	10	1100	1900	960	1342	2211
2013	3	17	2321	810	911	135	1020
2013	6	27	959	1900	899	1236	2226
2013	7	22	2257	759	898	121	1026
2013	12	5	756	1700	896	1058	2020
	<int> 2013 2013 2013 2013 2013 2013 2013 2013</int>	<pre><int> <int> 2013</int></int></pre>	<int> <int> <int> <int> <int> <int> <int> 2013</int></int></int></int></int></int></int>	<pre><int> <int> <int> <int> <int> <int> <int> 2013</int></int></int></int></int></int></int></pre>	<int> <int> <int> <int> <int> <int> <int> <int> <int> 2013 1 9 641 900 2013 6 15 1432 1935 2013 1 10 1121 1635 2013 9 20 1139 1845 2013 7 22 845 1600 2013 4 10 1100 1900 2013 3 17 2321 810 2013 6 27 959 1900 2013 7 22 2257 759</int></int></int></int></int></int></int></int></int>	<int> <int> <int> <int> <int> <int> <int> <dbl> 2013 1 9 641 900 1301 2013 6 15 1432 1935 1137 2013 1 10 1121 1635 1126 2013 9 20 1139 1845 1014 2013 7 22 845 1600 1005 2013 4 10 1100 1900 960 2013 3 17 2321 810 911 2013 6 27 959 1900 899 2013 7 22 2257 759 898</dbl></int></int></int></int></int></int></int>	<int> <</int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int></int>

[#] i 336,766 more rows

4.3.3 In-Class Exercise 1 - Rows

Using the flights dataset:

- 1. Filter for flights departing from **JFK** in **July**.
- 2. Arrange by **arrival delay** (largest to smallest).
- 3. Identify the flight with the worst delay.

4.4 Working with Columns

4.4.1 select()

select() chooses columns.

[#] i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,

[#] tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

[#] hour <dbl>, minute <dbl>, time_hour <dttm>

```
flights |>
select(year, month, day, dep_delay, arr_delay)
```

A tibble: 336,776 x 5 day dep_delay arr_delay year month <dbl> <int> <int> <int> <dbl> 1 2013 1 2 11 2 2013 4 20 1 3 2013 2 33 1 4 2013 1 1 -1 -18 5 2013 1 1 -6 -25 6 2013 1 1 -4 12 7 2013 1 1 -5 19 -3 8 2013 1 1 -14 -3 9 2013 1 1 -8 -2 8 10 2013 1 1 # i 336,766 more rows

4.4.2 mutate()

mutate() creates or modifies columns.

```
flights |>
  mutate(speed = distance / air_time * 60) |>
  select(tailnum, distance, air_time, speed)
```

```
# A tibble: 336,776 x 4
  tailnum distance air_time speed
  <chr>
             <dbl>
                      <dbl> <dbl>
1 N14228
              1400
                        227 370.
2 N24211
              1416
                        227 374.
3 N619AA
              1089
                        160 408.
4 N804JB
              1576
                        183 517.
                        116 394.
5 N668DN
               762
6 N39463
               719
                        150 288.
7 N516JB
              1065
                        158 404.
8 N829AS
               229
                         53 259.
9 N593JB
               944
                        140 405.
10 N3ALAA
               733
                        138 319.
# i 336,766 more rows
```

4.4.3 In-Class Exercise 2 - Columns

- 1. Select carrier, flight, dep_delay, and arr_delay.
- 2. Create a column gain = arr_delay dep_delay.
- 3. Display the first 10 rows.

4.5 Using Pipes to Combine Steps

The base R pipe |> passes results from one function to the next, making code easier to read.

```
flights |>
  filter(month == 6, origin == "JFK") |>
  select(carrier, flight, dep_delay, arr_delay) |>
  mutate(gain = arr_delay - dep_delay) |>
  arrange(desc(gain)) |>
  head()
```

A tibble: 6 x 5

	carrier	flight	dep_delay	arr_delay	gain
	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	B6	2402	-2	142	144
2	DL	706	-3	138	141
3	AA	181	-2	132	134
4	DL	1394	224	350	126
5	B6	83	36	160	124
6	DL	161	278	400	122

4.5.1 In-Class Exercise 3 - Pipes

- 1. Filter flights from JFK in June.
- 2. Select carrier, flight, dep_delay, arr_delay.
- 3. Create a column gain.
- 4. Arrange by largest gain and show the top 5.

4.6 Homework Preview

For Homework, you will:

- Use flights or another dataset.
- Filter for a subset of interest.
- Create at least two new variables with mutate().
- Sort using arrange().
- Save the transformed dataset and inspect it with glimpse() and summary().

Render to PDF and submit on Canvas.

4.7 Next Steps

Next week, we will extend these skills with group_by() and summarize() to calculate grouped summaries.

5 Data Transformation with dplyr (Part 2)

5.1 Learning Objectives

By the end of this chapter, you should be able to:

- Group data with group_by()
- Compute summary statistics with summarize()
- Use multiple summaries with grouped data
- Combine multiple datasets using join functions
- Practice chaining multiple verbs with the pipe |>

5.2 Grouped Summaries

Grouping allows you to calculate statistics **per group**. We will use the nycflights13::flights dataset.

5.2.1 group_by() and summarize()

```
library(tidyverse)
```

```
----- tidyverse 2.0.0 --
-- Attaching core tidyverse packages --
v dplyr
          1.1.4
                      v readr
v forcats
            1.0.0
                      v stringr
                                  1.5.1
v ggplot2
            3.5.2
                      v tibble
                                  3.2.1
v lubridate 1.9.4
                      v tidyr
                                  1.3.1
v purrr
            1.0.4
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
flights |>
  group_by(carrier) |>
  summarize(
    delay = mean(dep_delay, na.rm = TRUE)
)
```

```
# A tibble: 16 x 2
  carrier delay
  <chr>
          <dbl>
1 9E
           16.7
2 AA
           8.59
3 AS
           5.80
4 B6
         13.0
5 DL
           9.26
6 EV
          20.0
7 F9
          20.2
          18.7
8 FL
9 HA
           4.90
10 MQ
          10.6
11 00
          12.6
12 UA
          12.1
13 US
           3.78
14 VX
          12.9
15 WN
          17.7
16 YV
          19.0
```

5.3 Multiple Summaries

```
flights |>
  group_by(dest) |>
  summarize(
    count = n(),
    avg_delay = mean(arr_delay, na.rm = TRUE),
    .groups = "drop"
)
```

```
# A tibble: 105 x 3
```

```
dest count avg_delay
   <chr> <int>
                    <dbl>
           254
                     4.38
 1 ABQ
2 ACK
           265
                     4.85
3 ALB
           439
                    14.4
4 ANC
             8
                    -2.5
5 ATL
         17215
                    11.3
                     6.02
6 AUS
          2439
7 AVL
           275
                     8.00
8 BDL
           443
                     7.05
9 BGR
           375
                     8.03
10 BHM
           297
                    16.9
# i 95 more rows
```

5.3.1 In-Class Exercise 1 – Grouped Summaries

Using flights:

- 1. Group by origin and calculate the average departure delay.
- 2. Group by carrier and find the number of flights and average arrival delay.
- 3. Which carrier has the highest average arrival delay?

5.4 Grouping with Multiple Variables

You can group by multiple columns at once.

```
flights |>
  group_by(origin, month) |>
  summarize(
   avg_delay = mean(dep_delay, na.rm = TRUE),
   .groups = "drop_last"
)
```

```
# A tibble: 36 x 3
# Groups:
            origin [3]
   origin month avg_delay
   <chr> <int>
                     <dbl>
 1 EWR
                     14.9
               1
               2
2 EWR
                     13.1
3 EWR
               3
                     18.1
                     17.4
4 EWR
               4
5 EWR
               5
                     15.4
6 EWR
               6
                     22.5
7 EWR
               7
                     22.0
8 EWR
               8
                     13.5
                      7.29
               9
9 EWR
                      8.64
10 EWR
             10
# i 26 more rows
```

5.4.1 In-Class Exercise 2 - Multiple Grouping

- 1. Group by origin and carrier.
- 2. Summarize with the average air_time.
- 3. Arrange results to see which origin-carrier combination has the longest average flights.

5.5 Joining Datasets

dplyr provides functions to join tables by a common key:

- left_join()
- inner_join()
- right_join()
- full_join()

Example using flights and airlines:

```
flights |>
  left_join(airlines, by = "carrier") |>
  select(name, carrier, flight) |>
  head()
```

```
# A tibble: 6 x 3
                         carrier flight
 name
  <chr>
                         <chr>
                                   <int>
1 United Air Lines Inc.
                         UA
                                    1545
2 United Air Lines Inc.
                         UA
                                    1714
3 American Airlines Inc. AA
                                    1141
4 JetBlue Airways
                         B6
                                    725
5 Delta Air Lines Inc.
                         DL
                                    461
6 United Air Lines Inc.
                                    1696
                         UA
```

5.5.1 In-Class Exercise 3 – Joins

- 1. Use left_join() to add airline names to the flights dataset.
- 2. Use count() to find how many flights each airline operates.
- 3. Arrange results by the number of flights.

5.6 Chaining with Pipes

We can combine group_by(), summarize(), and joins in a single pipeline.

```
flights |>
  left_join(airlines, by = "carrier") |>
  group_by(name) |>
  summarize(
   flights = n(),
   avg_delay = mean(dep_delay, na.rm = TRUE),
```

```
.groups = "drop"
) |>
arrange(desc(avg_delay))
```

A tibble: 16 x 3

	name	flights	avg_delay
	<chr></chr>	<int></int>	<dbl></dbl>
1	Frontier Airlines Inc.	685	20.2
2	ExpressJet Airlines Inc.	54173	20.0
3	Mesa Airlines Inc.	601	19.0
4	AirTran Airways Corporation	3260	18.7
5	Southwest Airlines Co.	12275	17.7
6	Endeavor Air Inc.	18460	16.7
7	JetBlue Airways	54635	13.0
8	Virgin America	5162	12.9
9	SkyWest Airlines Inc.	32	12.6
10	United Air Lines Inc.	58665	12.1
11	Envoy Air	26397	10.6
12	Delta Air Lines Inc.	48110	9.26
13	American Airlines Inc.	32729	8.59
14	Alaska Airlines Inc.	714	5.80
15	Hawaiian Airlines Inc.	342	4.90
16	US Airways Inc.	20536	3.78

5.7 In-Class Challenge

Using the flights dataset:

- Join airline names
- Group by airline name
- Summarize number of flights, average departure delay, and average arrival delay
- Arrange by average arrival delay
- Identify the airline with the longest delays

5.8 Homework Preview

For homework, extend your data transformation by:

- Grouping data by at least one variable
- Calculating at least two summary statistics
- Joining an additional dataset (e.g., airlines, airports)
- Rendering your results as a table in your PDF

5.9 Next Steps

Next week, we will explore **tidy data principles** and learn how to reshape datasets using tidyr.

6 Tidy Data with tidyr

6.1 Learning Objectives

By the end of this chapter, you should be able to:

- Explain why tidy data improves analysis and visualization
- Reshape data between wide and long formats using pivot_longer() and pivot_wider()
- Separate and unite columns using separate() and unite()
- Apply tidying techniques to messy real-world datasets
- Prepare datasets for use with dplyr and ggplot2

6.2 Why Tidy Data?

In Week 6, you performed **EDA** on datasets that were already in a usable format. Real datasets are often messy. **Tidy data** makes it easy to:

- Use ggplot2 for visualization
- Use dplyr for summaries and transformations
- Combine datasets with joins

Principles of Tidy Data (Hadley Wickham):

- 1. Each variable is a column
- 2. Each observation is a row
- 3. Each value is a cell

6.3 Pivoting: Long vs Wide

6.3.1 pivot_longer()

Converts wide data into long (tidy) format.

```
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
                  v readr
                               2.1.5
v dplyr 1.1.4
v forcats 1.0.0 v stringr
                               1.5.1
v ggplot2 3.5.2 v tibble
                               3.2.1
v lubridate 1.9.4 v tidyr
                               1.3.1
         1.0.4
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
table4a |>
 pivot_longer(cols = c(`1999`, `2000`),
             names_to = "year",
             values_to = "cases")
# A tibble: 6 x 3
 country
           year
                   cases
  <chr>
          <chr> <dbl>
1 Afghanistan 1999
                    745
2 Afghanistan 2000
                   2666
3 Brazil
            1999
                  37737
4 Brazil
            2000
                  80488
5 China
            1999 212258
6 China
            2000 213766
```

6.3.2 pivot_wider()

Converts long data back into wide format.

```
table2 |>
  pivot_wider(names_from = type, values_from = count)
```

```
# A tibble: 6 x 4
 country
              year cases population
 <chr>
             <dbl> <dbl>
                               <dbl>
1 Afghanistan 1999
                      745
                            19987071
2 Afghanistan 2000
                     2666
                            20595360
3 Brazil
              1999 37737 172006362
4 Brazil
              2000 80488 174504898
5 China
              1999 212258 1272915272
6 China
              2000 213766 1280428583
```

6.3.3 In-Class Exercise 1 – Pivoting

- 1. Use pivot_longer() to convert table4a to long format.
- 2. Use pivot_wider() on table2 to create separate columns for type.
- 3. Which format is easier to use with ggplot2 and dplyr?

6.4 Separating and Uniting Columns

6.4.1 separate()

Splits a column into multiple columns.

```
table3 |>
separate(rate, into = c("cases", "population"), sep = "/")
```

```
2 Afghanistan 2000 2666 20595360

3 Brazil 1999 37737 172006362

4 Brazil 2000 80488 174504898

5 China 1999 212258 1272915272

6 China 2000 213766 1280428583
```

6.4.2 unite()

Combines multiple columns into one.

```
table5 |>
unite(new, century, year, sep = "")
```

```
# A tibble: 6 x 3
 country
             new
                    rate
 <chr>
             <chr> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000
                   2666/20595360
3 Brazil
             1999 37737/172006362
4 Brazil
             2000 80488/174504898
5 China
             1999 212258/1272915272
6 China
             2000 213766/1280428583
```

6.4.3 In-Class Exercise 2 - Separate and Unite

- 1. Use separate() to split the rate column in table3.
- 2. Use unite() to combine century and year into one column.

6.5 Tidying a Real Dataset

The who dataset is messy: column names encode multiple variables.

Example tidying workflow:

Warning: Expected 2 pieces. Additional pieces discarded in 73466 rows [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].

```
# A tibble: 76,046 x 8
   country
                iso2 iso3
                              year type
                                          sex
                                                 age
                                                       cases
                <chr> <dbl>
   <chr>
 1 Afghanistan AF
                      AFG
                              1997 new
                                          s
                                                            0
                                                 р
 2 Afghanistan AF
                      AFG
                              1997 new
                                                 p
                                                           10
3 Afghanistan AF
                      AFG
                              1997 new
                                                            6
                                                 p
4 Afghanistan AF
                      AFG
                              1997 new
                                                            3
                                          S
                                                 p
                                                            5
5 Afghanistan AF
                      AFG
                              1997 new
                                          S
                                                 p
6 Afghanistan AF
                      AFG
                              1997 new
                                                            2
                                          S
                                                 р
7 Afghanistan AF
                      AFG
                              1997 new
                                                            0
                                                 р
                                                            5
8 Afghanistan AF
                      AFG
                              1997 new
                                                 р
9 Afghanistan AF
                      AFG
                              1997 new
                                                          38
                                          s
                                                 p
10 Afghanistan AF
                      AFG
                              1997 new
                                                          36
                                                 р
# i 76,036 more rows
```

6.5.1 In-Class Exercise 3 - WHO Dataset

- 1. Pivot who longer to create key and cases.
- 2. Separate key into multiple components.

- 3. Count total cases by country.
- 4. Which country has the highest reported cases?

6.6 Tidy Data Workflow

After tidying, you can:

- Use ggplot2 for visualizations
- Use group_by() and summarize() for summaries
- Join with other datasets

6.7 Homework Preview

For homework, you will:

- Take a messy dataset (e.g., table4a, table5, or your own)
- Use pivot_longer() and/or pivot_wider() to reshape it
- Use separate() and unite() as needed
- Produce a tidy dataset and create one visualization and one grouped summary
- Render to PDF and submit on Canvas

7 Exploratory Data Analysis (EDA)

7.1 Learning Objectives

By the end of this chapter, you should be able to:

- Understand the purpose of exploratory data analysis (EDA)
- Visualize distributions of single variables
- Examine relationships between variables
- Detect patterns, clusters, and outliers
- Use transformations to clarify patterns

7.2 Introduction to EDA

Exploratory Data Analysis (EDA) is about **looking at your data** to find patterns, spot anomalies, and guide your next steps.

We use ggplot2 to visualize both univariate and bivariate relationships.

We will use the diamonds dataset.

7.3 Visualizing Single Variables

7.3.1 Categorical Variables

Use a bar chart (geom_bar()):

library(tidyverse)

```
v dplyr
             1.1.4
                        v readr
                                      2.1.5
v forcats
             1.0.0
                        v stringr
                                      1.5.1
v ggplot2
             3.5.2
                        v tibble
                                      3.2.1
v lubridate 1.9.4
                        v tidyr
                                      1.3.1
v purrr
             1.0.4
                                                    ----- tidyverse_conflicts() --
-- Conflicts -----
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                    masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))
```

-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --

7.3.2 Continuous Variables

Use a histogram (geom_histogram()):

You can also use geom_freqpoly() for density curves.

7.3.3 In-Class Exercise 1 – Single Variables

- 1. Plot the distribution of color using a bar chart.
- 2. Plot a histogram of price with a binwidth of 1000.
- 3. What patterns or anomalies do you see?

7.4 Visualizing Relationships

7.4.1 Two Continuous Variables

Scatterplots show relationships:

```
ggplot(data = diamonds) +
geom_point(mapping = aes(x = carat, y = price), alpha = 0.3)
```


Use alpha to reduce overplotting.

7.4.2 Categorical vs. Continuous

Boxplots work well:

```
ggplot(data = diamonds) +
geom_boxplot(mapping = aes(x = cut, y = price))
```


7.4.3 In-Class Exercise 2 - Relationships

- 1. Create a scatterplot of carat vs price.
- 2. Color the points by cut.
- 3. Make a boxplot of price across diamond color categories.

7.5 Patterns and Outliers

Look for clusters, gaps, and unusual observations. You can **filter** or **highlight** outliers.

Example: filter diamonds with unusually high price:

```
color clarity depth table price
                                                          у
  <dbl> <ord>
                 <ord> <ord>
                               <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 2.29 Premium
                       VS2
                               60.8
                                       60 18823 8.5
                                                       8.47
                                                            5.16
2
  2
       Very Good G
                       SI1
                               63.5
                                       56 18818
                                                 7.9
                                                       7.97 5.04
3 1.51 Ideal
                 G
                       IF
                               61.7
                                       55 18806
                                                7.37 7.41 4.56
4 2.07 Ideal
                 G
                       SI2
                               62.5
                                       55 18804 8.2
                                                       8.13 5.11
       Very Good H
                               62.8
                       SI1
                                       57 18803 7.95
                                                      8
                                                            5.01
6 2.29 Premium
                       SI1
                               61.8
                                       59 18797 8.52 8.45 5.24
```

7.5.1 Transformations

Log transformations can reveal patterns in skewed data.

```
ggplot(data = diamonds) +
  geom_point(mapping = aes(x = carat, y = price)) +
  scale_y_log10()
```


7.5.2 In-Class Exercise 3 – Patterns and Transformations

- 1. Identify any outliers in the diamonds dataset using filters.
- 2. Apply a log transformation to price.
- 3. Does the relationship between carat and price become clearer?

7.6 Combining EDA with dplyr

Use filter(), mutate(), and group_by() to enhance your plots.

Example: average price per cut:

```
diamonds |>
  group_by(cut) |>
  summarize(mean_price = mean(price))
```

A tibble: 5 x 2
cut mean_price
<ord>
<ord>
<dbl>
1 Fair 4359.
2 Good 3929.
3 Very Good 3982.
4 Premium 4584.
5 Ideal 3458.

7.6.1 In-Class Challenge – EDA Workflow

- Explore diamonds by:
 - Visualizing distributions of at least two variables
 - Plotting relationships between two variables
 - Detecting outliers
 - Applying a transformation to clarify a pattern

7.7 Homework Preview

For homework, you will:

- Choose a dataset (e.g., diamonds or your own)
- Create at least **two univariate** visualizations (bar chart, histogram)
- Create at least **two bivariate** visualizations (scatterplot, boxplot)
- Identify any patterns or outliers and describe them in text
- Apply at least one transformation to improve visualization
- $\bullet\,$ Render to PDF and submit

7.8 Next Steps

Next week, we will dive into ${f Tidy}$ ${f Data}$ and learn how to reshape messy datasets using tidyr.

8 Workflow and Reproducibility

8.1 Learning Objectives

By the end of this chapter, you should be able to:

- Organize your work with R projects
- Use Quarto for reproducible documents
- Follow best practices for naming files and structuring directories
- Incorporate code, text, and output into a single reproducible report
- Use version control with GitHub (optional, for advanced students)

8.2 Why Workflow Matters

Reproducible workflows:

- Make it easy to rerun analyses later
- Allow others to reproduce your results
- Keep projects organized and easy to navigate
- Prevent errors caused by hard-coded file paths and messy code

8.3 Organizing Projects in RStudio

8.3.1 RStudio Projects

- Use File → New Project for each analysis/course project
- Keep data, scripts, and outputs in **subfolders** (e.g., data/, scripts/, figures/, docs/)
- Avoid using absolute paths—use **relative paths** inside the project

8.3.2 Example Project Structure

```
my_project/
  data/
    raw_data.csv
  scripts/
    analysis.R
  figures/
    plot1.png
  docs/
    report.qmd
  my_project.Rproj
```

8.3.3 In-Class Exercise 1 - Project Setup

- 1. Create a new RStudio Project for this course.
- 2. Make folders: data, scripts, outputs.
- 3. Save your .qmd homework file in the project root.
- 4. Render your Quarto document and confirm outputs stay organized.

8.4 Quarto for Reproducibility

Quarto allows you to:

- Combine text and code in one document
- Render reports to PDF, HTML, or Word
- Ensure results match the code that generated them

8.4.1 Example Quarto Workflow

```
title: "My Analysis"
format: pdf
---
library(tidyverse)
data <- read_csv("data/mydata.csv")
summary(data)</pre>
```

8.4.2 In-Class Exercise 2 – Quarto Report

- 1. Create a .qmd file that loads a dataset and runs a simple analysis.
- 2. Add at least one plot and one table.
- 3. Render to PDF and check the output.

8.5 Best Practices for Reproducibility

- Use scripts and Quarto documents instead of manual steps
- Keep raw data unchanged; clean data with scripts
- Document everything: use comments and text
- Save figures and tables programmatically, not manually
- Render final reports from source code

8.6 Optional: Version Control with Git and GitHub

For students interested in collaboration and tracking changes:

- Install Git and create a GitHub account
- Use usethis::use_git() to initialize Git in a project
- Commit changes regularly and push to GitHub

(We will not cover Git in detail, but this is recommended for your own practice.)

8.6.1 In-Class Challenge - Reproducible Mini-Report

- Set up a project with an organized folder structure
- Create a Quarto document that:
 - Reads a dataset
 - Runs a simple transformation
 - Creates a plot
 - Summarizes the results in text
- Render to PDF and check for a clean, reproducible output

8.7 Homework Preview

For homework, you will:

- Organize your project folder (data, scripts, outputs)
- Create a Quarto report with:
 - One dataset
 - At least one data cleaning step
 - One visualization
 - One table of summary statistics
- Ensure all file paths are relative (not absolute)
- Render to PDF and submit on Canvas

8.8 Next Steps

Next week, we will move into **Data Import** (CSV, Excel, and parsing dates) and continue to build your data wrangling workflow.

9 Data Import with readr and readxl

9.1 Learning Objectives

By the end of this chapter, you should be able to:

- Import CSV and TSV files with readr
- Read Excel files with readxl
- Understand how column types are parsed
- Parse dates, times, and numbers correctly
- Diagnose and fix import problems

9.2 Reading CSV and TSV Files

The readr package (part of the tidyverse) provides fast and friendly functions for reading text data.

9.2.1 Example: Reading a CSV file

```
library(tidyverse)
```

```
----- tidyverse 2.0.0 --
-- Attaching core tidyverse packages ---
v dplyr
          1.1.4
                      v readr
                                  2.1.5
v forcats
            1.0.0
                      v stringr
                                  1.5.1
v ggplot2
            3.5.2
                      v tibble
                                  3.2.1
v lubridate 1.9.4
                      v tidyr
                                  1.3.1
v purrr
            1.0.4
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

df <- read_csv("https://people.sc.fsu.edu/~jburkardt/data/csv/airtravel.csv") Rows: 12 Columns: 4 -- Column specification ----Delimiter: "," chr (1): Month dbl (3): 1958, 1959, 1960 i Use `spec()` to retrieve the full column specification for this data. i Specify the column types or set `show_col_types = FALSE` to quiet this message. glimpse(df)</pre>

9.2.2 Example: Reading a TSV file

```
df_tsv <- read_tsv("data/example.tsv")</pre>
```

9.2.3 In-Class Exercise 1 - CSV/TSV

- 1. Download a small CSV file (e.g., from the course repository).
- 2. Read it into R using read_csv().
- 3. Inspect its structure with glimpse() and summary().
- 4. What data types were automatically detected?

9.3 Column Types and Parsing

readr automatically guesses column types, but you can override them.

9.3.1 Example: Overriding column types

```
df <- read_csv("data/mydata.csv", col_types = cols(
  id = col_character(),
  date = col_date(format = "%Y-%m-%d")
))</pre>
```

You can parse numbers with parse_number(), dates with parse_date(), and times with parse_time().

9.3.2 In-Class Exercise 2 - Parsing

- 1. Create a vector of messy numbers: c("\$100", "250%", "300").
- 2. Use parse_number() to extract numeric values.
- 3. Create a vector of dates as strings and use parse_date().

9.4 Importing Excel Files

The readxl package is used to read Excel files (.xls, .xlsx).

9.4.1 Example: Reading an Excel sheet

```
library(readxl)
excel_df <- read_excel("data/example.xlsx", sheet = "Sheet1")
head(excel_df)</pre>
```

9.4.2 In-Class Exercise 3 – Excel Import

- 1. Use a provided Excel file (or download one).
- 2. Read the first sheet with read_excel().
- 3. Specify a different sheet and check the result.

9.5 Handling Import Problems

When column parsing fails:

- Use problems() to diagnose
- Use col_types to fix column types
- Clean data after import using mutate()

Example:

```
bad <- read_csv("data/bad.csv")
problems(bad)</pre>
```

9.6 Reading Other Formats (Optional)

- read_delim() for custom delimiters
- read_table() for whitespace-delimited files
- read_lines() for line-by-line text
- jsonlite::fromJSON() for JSON files (optional preview)

9.6.1 In-Class Challenge - Import & Clean Workflow

- 1. Import a messy CSV file with mixed types.
- 2. Fix incorrect column parsing.
- 3. Convert a date column to proper Date format.
- 4. Summarize the data by a grouping variable.

9.7 Homework Preview

For homework, you will:

- Import at least one CSV and one Excel dataset
- Fix any parsing issues (e.g., column types, dates)
- Clean at least one column with mutate()
- Provide a short summary (using group_by() and summarize())
- Render to PDF and submit

9.8 Next Steps

Next week, we will learn to work with text data and regular expressions using the stringr package.

10 Transform: Logical Vectors and Numbers

What are the types of variables we see in data frames, and what are the different tools we can use to work with them?

10.1 Learning Objectives

By the end of this chapter, you should be able to:

- Understand how logical vectors work in R
- Use logical conditions to filter and manipulate data
- Convert between logical, numeric, and character types
- Parse numbers from messy strings

10.2 Logical Vectors

Logical vectors contain only TRUE, FALSE, or NA.

```
x <- c(TRUE, FALSE, TRUE, NA)
x
```

[1] TRUE FALSE TRUE NA

10.2.1 Logical comparisons create logical vectors:

```
nums <- c(2, 5, 8, 1)
nums > 4
```

[1] FALSE TRUE TRUE FALSE

You can use these directly with functions like sum() and mean():

```
sum(nums > 4)  # Count how many values are > 4

[1] 2

mean(nums > 4)  # Proportion of values > 4

[1] 0.5
```

10.2.2 In-Class Exercise 1 – Logical Conditions

- 1. Create a numeric vector with 10 random values.
- 2. Which values are greater than the mean?
- 3. What proportion is above the mean?

10.3 Logical Operations

Combine logical vectors with & (and), | (or), and ! (not):

```
a <- c(TRUE, FALSE, TRUE)
b <- c(TRUE, TRUE, FALSE)
a & b</pre>
```

[1] TRUE FALSE FALSE

```
a | b
```

[1] TRUE TRUE TRUE

!a

[1] FALSE TRUE FALSE

10.3.1 In-Class Exercise 2 – Combining Conditions

- 1. Using the mpg dataset, create a logical condition for cars with hwy > 30 and cyl == 4.
- 2. How many such cars exist?

```
library(tidyverse)
```

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4
                   v readr
                                2.1.5
v forcats 1.0.0
                    v stringr
                                1.5.1
v ggplot2 3.5.2
                    v tibble
                                3.2.1
v lubridate 1.9.4
                    v tidyr
                                1.3.1
v purrr
           1.0.4
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
mpg |>
  filter(hwy > 30 & cyl == 4) |>
  nrow()
```

[1] 22

10.4 Numbers and Coercion

Logical values behave like numbers: TRUE = 1, FALSE = 0.

```
as.numeric(c(TRUE, FALSE, TRUE))
```

[1] 1 0 1

This makes calculations on logical vectors easy.

10.5 Parsing Numbers

Real-world data often stores numbers as text with extra symbols. Use readr::parse_number() to extract numeric values.

```
library(readr)

x <- c("$100", "200%", "300kg")
parse_number(x)</pre>
```

[1] 100 200 300

10.5.1 In-Class Exercise 3 – Parsing

- 1. Create a character vector: c("10 kg", "\$50", "30%").
- 2. Use parse_number() to convert it to numeric.
- 3. What happens if there are unexpected characters?

10.6 Dealing with Missing Values

Logical and numeric vectors can contain NA.

Handle them with na.rm = TRUE or functions like replace_na().

```
nums <- c(1, 2, NA, 4)
mean(nums, na.rm = TRUE)

[1] 2.333333</pre>
```

10.7 In-Class Challenge – Logical Filtering

• Using flights from nycflights13, calculate the proportion of flights that departed late (dep_delay > 0) and arrived on time (arr_delay <= 0).

11 Homework Preview

For the next homework, you will:

- Create a numeric vector and use logical comparisons to summarize it
- Filter a dataset using a logical condition
- Parse a messy character column into numeric
- Render to PDF and submit on Canvas

12 Next Steps

Next, you'll learn how to manipulate and clean strings using the stringr package.

13 Strings and Regular Expressions with stringr

13.1 Learning Objectives

By the end of this chapter, you should be able to:

- Manipulate strings using the stringr package
- Detect patterns with regular expressions (regex)
- Extract, replace, and split text
- Clean messy text data for analysis

13.2 Introduction to stringr

The stringr package provides consistent, simple functions for string operations.

```
library(stringr)
```

13.3 Creating and Inspecting Strings

```
fruit <- c("apple", "banana", "pear")
str_length(fruit)</pre>
```

[1] 5 6 4

Load the library:

```
str_c(fruit, " is tasty")
[1] "apple is tasty" "banana is tasty" "pear is tasty"
```

13.3.1 In-Class Exercise 1 – Basic String Operations

- 1. Create a vector of at least 5 words.
- 2. Measure their lengths with str_length().
- 3. Concatenate them with the phrase " is cool".

13.4 Detecting Patterns with Regex

str_detect() returns TRUE if a pattern is found.

```
words <- c("dog", "cat", "parrot", "cow")
str_detect(words, "o")</pre>
```

[1] TRUE FALSE TRUE TRUE

You can use **regular expressions** for more complex patterns.

Examples:

- ^a starts with "a"
- ing\$ ends with "ing"
- [0-9] + one or more digits

```
animals <- c("ant", "bat", "cat", "dog")
str_detect(animals, "^a")</pre>
```

[1] TRUE FALSE FALSE FALSE

13.4.1 In-Class Exercise 2 - Pattern Detection

- 1. Create a vector of email-like strings.
- 2. Use str_detect() to check which contain "@".
- 3. Write a regex to detect strings ending in .com.

13.5 Extracting and Replacing Text

13.5.1 str_extract()

Extracts the first match:

```
str_extract(c("abc123", "xyz789"), "[0-9]+")
```

[1] "123" "789"

13.5.2 str_replace()

Replaces matching patterns:

```
str_replace("apple pie", "apple", "peach")
```

[1] "peach pie"

13.5.3 In-Class Exercise 3 – Extraction and Replacement

- 1. Extract digits from a vector of alphanumeric strings.
- 2. Replace the word " $\operatorname{\mathsf{dog}}$ " with "puppy" in a text vector.

13.6 Splitting and Cleaning Text

13.6.1 str_split()

Splits text into pieces:

```
str_split("a,b,c", ",")

[[1]]
[1] "a" "b" "c"
```

13.6.2 Cleaning with regex

You can remove unwanted characters:

```
dirty <- c(" price:$100 ", " cost:$200 ")
str_replace_all(dirty, "[$ ]", "")

[1] "price:100" "cost:200"</pre>
```

13.6.3 In-Class Challenge – Text Cleaning

- 1. Create a vector of messy product names with extra spaces and symbols.
- 2. Use str_replace_all() and str_trim() to clean them.
- 3. Extract numeric prices from the strings.

13.7 Homework Preview

For the next homework, you will:

- Work with a text dataset (e.g., movie titles, email logs, or messy product names)
- Use at least three stringr functions to clean or extract information
- Write one regex pattern to detect a specific feature in the data
- Render a short report (with code and results) to PDF and submit

13.8 Next Steps

Next, we will learn to work with factors and categorical data using the forcats package.

14 Factors and Categorical Data with forcats

14.1 Learning Objectives

By the end of this chapter, you should be able to:

- Understand what factors are and why they are used
- Reorder factor levels to improve plots
- Rename factor levels
- Collapse multiple levels into broader categories
- Use forcats functions to manipulate categorical variables effectively

14.2 Introduction to Factors

Factors are used to work with **categorical data** (variables with a fixed set of possible values). R uses factors to control ordering in plots and summaries.

Example:

```
x <- factor(c("low", "medium", "high", "medium", "low"))
levels(x)
[1] "high" "low" "medium"</pre>
```

14.3 Using forcats

The forcats package provides helper functions for factors.

```
library(forcats)
library(tidyverse)
```

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
          1.1.4
                   v readr
                                 2.1.5
v ggplot2 3.5.2
                                 1.5.1
                     v stringr
v lubridate 1.9.4
                   v tibble
                                 3.2.1
v purrr
           1.0.4
                     v tidyr
                                 1.3.1
-- Conflicts -----
                                        ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
                 masks stats::lag()
x dplyr::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

14.4 Reordering Factor Levels

14.4.1 fct_reorder()

Reorders factor levels by another variable (e.g., mean of a numeric variable):

```
ggplot(mpg, aes(x = fct_reorder(class, hwy), y = hwy)) +
geom_boxplot()
```


14.4.2 In-Class Exercise 1 – Reordering

- 1. Use fct_reorder() to reorder car classes in the mpg dataset by highway mpg.
- 2. Make a boxplot of hwy by class.
- 3. Which class has the highest median mpg?

14.5 Changing Factor Labels

14.5.1 fct_recode()

Renames levels:

14.5.2 In-Class Exercise 2 - Recoding

- 1. Recode the drv variable to use descriptive names.
- 2. Count the number of cars in each drive category.

14.6 Collapsing Levels

14.6.1 fct_collapse()

Combines multiple levels into broader categories.

```
mpg |>
mutate(class_grouped = fct_collapse(class,
    small = c("2seater", "compact", "subcompact"),
    large = c("suv", "pickup", "minivan")
)) |>
count(class_grouped)
```

14.6.2 In-Class Exercise 3 - Collapsing Levels

- 1. Create a new variable that collapses class into small vs. large.
- 2. Make a bar chart of the collapsed variable.

14.7 Reordering Factors for Plots

14.7.1 fct_infreq()

Orders factors by frequency:

```
mpg |>
  mutate(class = fct_infreq(class)) |>
  ggplot(aes(x = class)) +
  geom_bar()
```


14.7.2 In-Class Challenge - Factor Workflow

Using the mpg dataset:

- Reorder the manufacturer variable by number of cars
- Collapse classes into fewer categories
- Create a bar plot that uses the new ordering and grouping

14.8 Homework Preview

For the next homework, you will:

- Choose a dataset with at least one categorical variable
- Use forcats functions to:
 - Reorder levels
 - Recode labels

- Collapse levels where appropriate
- Produce at least one visualization that uses your factor manipulations
- Render to PDF and submit on Canvas

14.9 Next Steps

Next, we will learn how to work with **relational data** using dplyr join functions to combine multiple datasets.

15 Relational Data with dplyr Joins

15.1 Learning Objectives

By the end of this chapter, you should be able to:

- Understand the concept of relational data and keys
- Combine multiple datasets using different join functions
- Use left_join(), inner_join(), full_join(), and semi_join()
- Diagnose and handle join problems (missing keys, duplicates)
- Apply joins in analysis workflows

15.2 What is Relational Data?

Relational data consists of multiple tables that can be linked by keys.

Example tables from nycflights13:

flights: flight information
airlines: airline names
airports: airport locations
planes: plane details

planes: plane detailsweather: weather data

15.3 Keys

- Primary key: uniquely identifies each row in a table
- Foreign key: column that matches a primary key in another table

Example: flights\$carrier matches airlines\$carrier.

15.4 Joins with dplyr

dplyr join functions merge tables by keys.

15.4.1 left_join()

Keeps all rows from the first table:

```
library(tidyverse)
```

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4
                    v readr
                                  2.1.5
v forcats 1.0.0 v stringr
v ggplot2 3.5.2 v tibble
                                  1.5.1
                                  3.2.1
v lubridate 1.9.4
                      v tidyr
                                  1.3.1
v purrr
           1.0.4
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
library(nycflights13)

flights |>
  left_join(airlines, by = "carrier") |>
  rename(airline_name = name) |>
  select(airline_name, carrier, flight) |>
  head()
```

```
# A tibble: 6 x 3
  airline_name
                         carrier flight
  <chr>
                         <chr>
                                   <int>
1 United Air Lines Inc.
                         UA
                                    1545
2 United Air Lines Inc.
                         UA
                                    1714
3 American Airlines Inc. AA
                                    1141
4 JetBlue Airways
                         В6
                                    725
5 Delta Air Lines Inc.
                         DL
                                     461
6 United Air Lines Inc.
                         UA
                                    1696
```

15.4.2 inner_join()

Keeps only matching rows:

```
flights |>
  inner_join(airlines, by = "carrier") |>
  rename(airline_name = name) |>
  select(airline_name, carrier, flight) |>
  head()
```

```
# A tibble: 6 x 3
  airline_name
                         carrier flight
  <chr>
                         <chr>
                                   <int>
1 United Air Lines Inc.
                         UA
                                    1545
2 United Air Lines Inc.
                         UA
                                    1714
3 American Airlines Inc. AA
                                    1141
4 JetBlue Airways
                         B6
                                     725
5 Delta Air Lines Inc.
                         DL
                                     461
6 United Air Lines Inc.
                         UA
                                    1696
```

15.4.3 full_join()

Keeps all rows from both tables:

```
flights |>
  full_join(airlines, by = "carrier") |>
  rename(airline_name = name) |>
  select(airline_name, carrier, flight) |>
  head()
```

```
# A tibble: 6 x 3
 airline_name
                         carrier flight
  <chr>
                         <chr>
                                   <int>
1 United Air Lines Inc.
                         UA
                                    1545
2 United Air Lines Inc.
                         UA
                                    1714
3 American Airlines Inc. AA
                                    1141
4 JetBlue Airways
                         B6
                                    725
5 Delta Air Lines Inc.
                         DL
                                     461
6 United Air Lines Inc.
                         UA
                                    1696
```

15.4.4 semi_join() and anti_join()

- semi_join(): keeps rows in first table with matches in second
- anti_join(): keeps rows with no matches

```
flights |>
  semi_join(airlines, by = "carrier") |>
  head()
```

A tibble: 6 x 19

```
year month
                day dep_time sched_dep_time dep_delay arr_time sched_arr_time
                                                  <dbl>
  <int> <int> <int>
                        <int>
                                        <int>
                                                            <int>
                                                                            <int>
1 2013
                                                      2
            1
                  1
                          517
                                          515
                                                              830
                                                                              819
2 2013
                                          529
                                                      4
            1
                   1
                          533
                                                              850
                                                                              830
3 2013
                                                      2
                                                                              850
                  1
                          542
                                          540
                                                              923
4 2013
                  1
                          544
                                          545
                                                      -1
                                                             1004
                                                                             1022
5 2013
                  1
                          554
                                          600
                                                      -6
                                                              812
                                                                              837
6 2013
                                          558
                                                                              728
            1
                  1
                          554
                                                      -4
                                                              740
```

- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

15.4.5 In-Class Exercise 1 - Basic Joins

- 1. Use left_join() to add airline names to flights (rename to airline_name).
- 2. Count the number of flights for each airline.
- 3. Use inner_join() and compare the number of rows.

15.5 Joining Multiple Tables

You can chain joins to combine several datasets:

```
flights |>
  left_join(airlines, by = "carrier") |>
  rename(airline_name = name) |>
  left_join(airports, by = c("dest" = "faa")) |>
  select(airline_name, dest, arr_delay) |>
  head()
```

```
# A tibble: 6 x 3
  airline_name
                          dest arr_delay
  <chr>
                          <chr>>
                                     <dbl>
1 United Air Lines Inc.
                          IAH
                                        11
2 United Air Lines Inc.
                          IAH
                                        20
3 American Airlines Inc. MIA
                                        33
4 JetBlue Airways
                          BQN
                                       -18
5 Delta Air Lines Inc.
                                      -25
                          \mathsf{ATL}
6 United Air Lines Inc. ORD
                                        12
```

15.5.1 In-Class Exercise 2 - Multi-Table Joins

- 1. Join flights with airports to add destination airport names.
- 2. Summarize average arrival delay by airport.

3. Which airport has the longest average delay?

15.6 Handling Join Problems

- Missing keys \rightarrow results in NA values
- Duplicated keys \rightarrow may create duplicate rows
- Always check results with count() or distinct()

Example:

```
flights |>
  left_join(airlines, by = "carrier") |>
  rename(airline_name = name) |>
  count(carrier, airline_name)
```

```
# A tibble: 16 x 3
   carrier airline_name
                                            n
   <chr>
           <chr>
                                        <int>
1 9E
           Endeavor Air Inc.
                                        18460
2 AA
           American Airlines Inc.
                                        32729
3 AS
           Alaska Airlines Inc.
                                          714
4 B6
           JetBlue Airways
                                        54635
5 DL
           Delta Air Lines Inc.
                                        48110
6 EV
           ExpressJet Airlines Inc.
                                        54173
7 F9
           Frontier Airlines Inc.
                                          685
8 FL
           AirTran Airways Corporation 3260
9 HA
           Hawaiian Airlines Inc.
                                          342
10 MQ
           Envoy Air
                                        26397
11 00
           SkyWest Airlines Inc.
                                            32
12 UA
           United Air Lines Inc.
                                        58665
13 US
           US Airways Inc.
                                        20536
           Virgin America
14 VX
                                         5162
15 WN
           Southwest Airlines Co.
                                        12275
16 YV
           Mesa Airlines Inc.
                                          601
```

15.7 In-Class Challenge - Join Workflow

- Join flights with airlines and airports
- Calculate average arrival delay by airline and destination
- Arrange by delay and identify the worst-performing routes

15.8 Homework Preview

For the next homework, you will:

- Combine at least two datasets using joins
- Use at least two different join types (left_join(), inner_join(), etc.)
- Handle missing data or duplicates appropriately
- Produce a summary table and one visualization based on the joined data
- Render to PDF and submit on Canvas

15.9 Next Steps

Next, we will introduce **accessing data** using spreadsheets, SQL databases, JSON, and web scraping.

16 Accessing Data: Spreadsheets, Databases, Arrow, JSON, and Web Scraping

16.1 Learning Objectives

By the end of this lecture, you should be able to:

- Import and work with data from Excel and Google Sheets
- Connect to and query relational databases from R
- Use Arrow to work efficiently with parquet files and large datasets
- Access and tidy hierarchical JSON data
- Perform basic web scraping to extract data from web pages

16.2 Spreadsheets (R4DS Chapter 20)

R can read Excel files with the readxl package and Google Sheets with googlesheets4.

16.2.1 Importing Excel

```
library(readxl)
excel_df <- read_excel("data/example.xlsx", sheet = "Sheet1")
head(excel_df)</pre>
```

16.2.2 Importing Google Sheets

```
library(googlesheets4)
sheet_url <- "https://docs.google.com/spreadsheets/d/your-sheet-id/edit#gid=0"
gs_df <- read_sheet(sheet_url)</pre>
```

16.2.3 In-Class Exercise 1 – Spreadsheets

- 1. Read an Excel file from the course data folder.
- 2. Load a Google Sheet you create (optional, requires authentication).
- 3. Summarize one numeric column.

16.3 Databases (R4DS Chapter 21)

Use DBI and RSQLite to interact with relational databases. You can also use dplyr verbs to query tables.

16.3.1 Example: Connecting to SQLite

```
library(DBI)
con <- dbConnect(RSQLite::SQLite(), "data/mydb.sqlite")

# List tables
dbListTables(con)

# Read a table into R
flights_db <- dbReadTable(con, "flights")

# Or use dplyr to query lazily
library(dplyr)
tbl(con, "flights") |> filter(dep_delay > 60) |> collect() |> head()
```

16.3.2 In-Class Exercise 2 – Databases

- 1. Connect to the provided SQLite database.
- 2. List tables with dbListTables().
- 3. Query the flights table for flights delayed more than 2 hours.

16.4 Arrow (R4DS Chapter 22)

Arrow allows you to read parquet files efficiently without loading everything into memory.

16.4.1 Example: Reading Parquet

```
library(arrow)

dataset <- open_dataset("data/large.parquet")
dataset |> filter(column_x > 10) |> collect() |> head()
```

16.4.2 In-Class Exercise 3 - Arrow

- 1. Open a parquet dataset using arrow::open_dataset().
- 2. Run a filter and select query.
- 3. Compare performance to reading the equivalent CSV.

16.5 Hierarchical Data (R4DS Chapter 23)

Hierarchical data (JSON) often contains nested lists. Use jsonlite to load JSON and tidyr::unnest_wider() to flatten it.

16.5.1 Example: Reading JSON

```
library(jsonlite)

json_data <- fromJSON("data/example.json")
str(json_data)</pre>
```

16.5.2 Flattening Nested Data

```
library(tidyr)
nested_df <- tibble(
  id = 1,
   details = list(tibble(city = "NYC", temp = 75))
)
nested_df |> unnest_wider(details)
```

16.5.3 In-Class Exercise 4 – JSON Rectangling

- 1. Load a nested JSON file.
- 2. Use unnest_wider() or unnest_longer() to flatten it.
- 3. Create a tidy table with one row per observation.

16.6 Web Scraping (R4DS Chapter 24)

Web scraping extracts data from websites. Use rvest to read HTML and extract tables or nodes.

16.6.1 Example: Scraping a Table

```
library(rvest)
url <- "https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)"
page <- read_html(url)
gdp_table <- page |> html_element("table") |> html_table()
head(gdp_table)

# A tibble: 2 x 1
    X1
    <chr>
1 ""
2 "Largest economies in the world by GDP (nominal) in 2025according to Internat~
```

16.6.2 In-Class Exercise 5 – Web Scraping

- 1. Use rvest to scrape a simple table from Wikipedia.
- 2. Convert it to a tibble and clean column names.
- 3. Create a plot of GDP vs. rank.

16.7 In-Class Challenge – Multiple Data Sources

1. I	mport an	Excel	dataset,	a JSON	dataset,	and	scrape a	table	from	the	web
------	----------	-------	----------	--------	----------	-----	----------	-------	------	-----	-----

- 2. Clean and join at least two sources.
- 3. Create one visualization combining information.

16.8 Homework Preview

For the next homework:

- Choose two different data sources (Excel, database, parquet, JSON, web)
- Import and tidy them
- Join or compare across sources
- Render a short report with one plot and one table
- Submit the rendered PDF

16.9 Conclusion

This session completes the course by showing how to access data from multiple modern sources, preparing you to work with real-world messy data beyond flat CSV files.

A CS506: Data Wrangling and Management– Syllabus

School of Informatics, Computing, and Cyber Systems

A.1 Course Overview

INF506: Data Wrangling and Management introduces graduate students to data wrangling and management using **R** and the **Tidyverse** ecosystem. Students will learn to import, manipulate, clean, and visualize data with a strong emphasis on practical applications and reproducible workflows.

- CS 506, Fall 2025, 3 units
- Section 001: TuTh 9:35AM-10:50AM, Learning Resource Ctr Rm 106C
- Prerequisite: Graduate status
- Mode of Instruction: Face-to-face (in person)
- Instructor's Name & Contact:
 - Marc Tollis (marc.tollis@nau.edu)
 - * Room 209, SICCS (Building 90, second floor)
 - * Office Hours: Tue 11AM-12PM
 - * 928-523-3406

A.2 Canvas & Recorded Lectures

We will use the learning management system, Canvas, to conduct some course business, including assignment disbursement and submitting. I will use Canvas to record lectures for future viewing.

A.3 CS506 Book Website

I have compiled a course website that has supplemental text and coded examples that we will walk through in class. This website essentially serves as the course textbook and is required reading. There will be other required reading material.

A.4 Course Objectives

By the end of the course, students will be able to:

- Use R and RStudio for data analysis
- Import structured and unstructured data
- Clean and transform data using dplyr, tidyr, and other Tidyverse packages
- Create effective visualizations using ggplot2
- Perform exploratory data analysis (EDA)
- Apply data wrangling techniques to real datasets

A.4.1 Course Student Learning Outcomes

LO1. Compare and contrast major classes of and techniques for data handling (synthesis).

Students will be able to:

- 1. Identify various sources of data
- 2. Identify and utilize tool chains appropriate for accessing data

LO2. Design and enact data manipulation, analysis, and visualization workflows for large, heterogenous datasets (application).

Students will be able to:

- 1. Aggregate data from multiple sources
- 2. Reshape data for further analysis
- 3. Validate data
- 4. Generate meaningful statistics summarizing the data
- 5. Visualize trends in data

LO3. Reason about advantages, preferred use cases, and weaknesses of various data manipulation techniques (application)

LO4. Develop a conceptual understanding of how the field of data management is evolving (knowledge).

Students will be able to:

- 1. Find and employ data management tools in R
- 2. Find and employ data visualization tools in ${\bf R}$

A.4.2 Program Student Outcomes supported by this class

This course directly supports the following program student outcomes in the Masters of Science in Computational and Applied Data Science program assessment and improvement plan:

- **SO2.** Build the practical skills to explore, analyze, manage, and visualize large data sets using the latest technologies.
- **SO3.** Evaluate and use well accepted methods to obtain, clean, pre-process, and transform data for further processing.
- **SO4.** Apply data science and cutting-edge analytical methods to address data-rich problems from a variety of fields, think critically about data, and drive decision making.
- **SO7.** Identify, appraise, and investigate ethical issues surrounding data collection, use, and data-driven decision making and to act in an informed and conscientious ethical manner.

A.5 Required Materials

- Textbook: R for Data Science (free online)
- Software:
 - -R
 - RStudio

A.6 Assessments

Component	Weight
Problem Sets (14 total) Quizzes (6 total, lowest dropped) Attendance	45% 50% 5%

- Grades will be assigned using the weighted sum described above using this scale: $\bf A$ 90%, $\bf B$ 80%, $\bf C$ 70%, $\bf D$ 60%, $\bf F$ < 60%.
- Problem sets are marked as complete or incomplete.
- Problem sets are simple assignments and will be completed on your own.

A.7 Course Schedule (Fall 2025)

	Dates	R4DS			
Week	(T/Th)	Chapters	Topics	Assignments	\mathbf{Quiz}
1	Aug 26 / 28	Ch. 1	Intro to R, RStudio, and Quarto: Projects, rendering .qmd to .pdf	PS1	
2	Sept 2 / 4	Ch. 2 – Data Visualization	Data Visualization with ggplot2: Aesthetics, geoms, facets	PS2	
3	Sept 9 / 11	Ch. 3 – Data Transforma- tion	Data Transformation (Rows): filter(), arrange()	PS3	Quiz 1

Week	$egin{aligned} ext{Dates} \ (ext{T/Th}) \end{aligned}$	R4DS Chapters	Topics	Assignments	Quiz
4	Sept 16 / 18	Ch. 3 – Data Transforma- tion	Data Transformation (Columns + Pipes): select(), mutate(), >	PS4	
5	Sept 23 / 25	Ch. 3 – Data Transforma- tion	<pre>Grouping & Summa- rization: group_by(), summarize()</pre>	PS5	Quiz 2
6	Sept 30 / Oct 2	Ch. 5 – Tidy Data	Tidy Data	PS6	
7	Oct 7 / 9	Ch. 6 – Workflow: Scripts	Workflow & Reproducibility: projects, scripts, Quarto best practices	PS7	Quiz 3
8	Oct 14 / 16	Ch. 7 - Data Import	Data Import: readr, parsing dates, Excel	PS8	
9	Oct 21 / 23	Ch. 10 – Exploratory Data Analysis	EDA: distributions, patterns, relationships	PS9	Quiz 4
10	Oct 28 / 30	Ch. 12 through 18 – Transform	Logical Vectors and Numbers; Strings & Regular Expressions: stringr	PS10	

	Dates	R4DS	m ·		0.:
Week	(T/Th)	Chapters	Topics	Assignments	Quiz
11	Nov 4 / 6	Ch. 12	Factors &	PS11	Quiz 5
		through 18 –	Categorical		
		Transform	Data:		
		(continued)	forcats		
12	Nov 11* / 13	Ch. 19 –	Relational	PS12	
		Joins	Data:		
			joining tables		
			$({\tt left_join},$		
			etc.)		
13	Nov 18 / 20	Ch. 20-24 –	Advanced	PS13	
		Advanced	Importing,		
		Importing	databases,		
			web scraping		
14	Nov $25 / 27$		Nov 25:	_	
			Catch-Up,		
			Q&A,		
			In-Class		
			Coding		
			Practice		
			Nov 27:		
			Thanksgiving		
			– No Class		
15	Dec 2 / 4	_	Course	PS14	Quiz 6
	,		Wrap-up &		
			Final Quiz		

^{*} Nov 11 (Veterans Day) – no class that Tuesday.

A.8 Policies

A.8.1 Course Policies

• Students are encouraged to attend the office hours of the instructor. If a student cannot attend regular office hours with the instructor, an appointment may be considered if made via email with sufficient advanced notice.

- Emails addressed to the instructor must be **respectful and professional**. The instructor will respond to emails promptly, within 2 business days. The instructor will generally not respond to emails on weekends or after working hours (i.e., in the evenings), so please plan accordingly.
- Cheating, including plagiarism of writing or computer code, will not be tolerated. All academic integrity violations are treated seriously. Academic integrity violations will result in penalties including, but not limited to, a zero on the assignment, a failing grade in the class, or expulsion from NAU. The University's Academic Integrity policies will be strictly enforced.
- Each student is required to demonstrate respect towards their peers and the instructor. The instructor is held to the same standard. The instructor will not provide copies of course notes. These materials should be sought from the students' peers or by watching the recorded lectures.
- Electronic device usage must support learning in the class. All cell phones, PDAs, music players and other entertainment devices must be turned off (or put on silent) during lecture.
- Grades will be entered in Canvas and . Please check LOUIE for your final grade.
- Attendance: Active participation in coding activities is expected. Repeated, unexcused absences may affect the student's grade.
- Late Work: Accepted only with prior arrangement.
- Academic Integrity: Students must adhere to NAU's academic integrity policy.

A.8.2 University Policies

• Please see this document for all of the required Syllabus Policy Statements that equally apply to this course.

A.9 Grading and Submission

- Problem Sets will be submitted via Canvas.
- Quizzes are written and completed in-class.
- All assignments are due Sunday 11:59PM the week they are assigned.

A.10 Resources

- RStudio Cheatsheets
- DataCamp & Coursera tutorials for extra practice
- Office hours for additional help

This syllabus is subject to minor adjustments. Updates will be announced in class and posted on Canvas.

B Appendix: Coding Style Guidelines

B.1 Why Style Matters

Consistent code style makes your work:

- Easier to read (for you and collaborators)
- Easier to debug (clean structure reveals problems quickly)
- Easier to maintain (future you will thank present you)

This appendix summarizes the tidyverse style guide based on R4DS Workflow: Style.

B.2 File Naming

- Use lowercase, descriptive names, and hyphens (not spaces).
- Good: data-cleaning.R, plot-analysis.R
- Bad: Data Cleaning.R, final.R

B.3 Object Naming

- Use **snake** case for variable and function names.
- Be descriptive, not cryptic.

```
# Good
daily_sales <- 100
calculate_mean <- function(x) mean(x)

# Bad
ds <- 100
cm <- function(x) mean(x)</pre>
```

B.4 Spaces and Indentation

- Use **two spaces** for indentation.
- Always put a space after commas and around operators.

```
# Good
y <- x + 1
filter(mpg, cyl == 4)

# Bad
y<-x+1
filter(mpg, cyl==4)</pre>
```

B.5 Long Lines

- Keep lines under 80 characters.
- Use line breaks for long function calls.

```
mpg |>
  filter(cyl == 4, hwy > 30) |>
  arrange(desc(hwy))
```

B.6 Function Formatting

• Use consistent curly brace placement.

```
# Good
my_function <- function(x) {
    x + 1
}

# Bad
my_function <- function(x){
    x+1}</pre>
```

B.7 Commenting Code

- Write **comments** to explain why, not what.
- Use # for inline comments.

```
# Calculate average highway mpg for 4-cylinder cars
avg_hwy <- mpg |>
  filter(cyl == 4) |>
  summarize(mean_hwy = mean(hwy))
```

B.8 Piping

- Each step in a pipeline goes on a **new line**.
- Use the pipe |> to connect transformations.

```
mpg |>
  filter(cyl == 4) |>
  group_by(manufacturer) |>
  summarize(mean_hwy = mean(hwy))
```

B.9 Tidyverse Style Summary

- Use |> for pipelines, snake_case for names
- Indent two spaces per level
- Write clear, short, and well-commented code

B.10 In-Class Exercise

- 1. Take a messy R script (provided in class).
- 2. Reformat it to follow these style guidelines.
- 3. Compare before vs. after readability.

B.11 Conclusion

Good code style is not just aesthetic — it improves **reproducibility** and **collaboration**. Follow these conventions for all homework and projects in this course.

C Appendix: Tidyverse and Tibbles

C.1 Overview

The **Tidyverse** is a collection of R packages designed for **data science**. They share a common design philosophy and work seamlessly together.

Core packages include:

- ggplot2: data visualization

- dplyr: data manipulation

- $\mathtt{tidyr} \colon \mathsf{data} \ \mathsf{tidying}$

- readr: data import

- purrr: functional programming

- ${ t tibble}$: modern data frames

- ${\tt stringr:}\ {\tt string}\ {\tt manipulation}$

- forcats: working with factors

You load them all with:

library(tidyverse)

D 1. What Are Tibbles?

Tibbles are modern replacements for base R data frames.

D.0.1 Key Features:

- Don't convert strings to factors automatically
- Never change variable names
- Print in a cleaner, more readable way
- Show only the first 10 rows and as many columns as fit on screen

Example:

```
library(tibble)

tb <- tibble(
    x = 1:5,
    y = x^2,
    z = c("a", "b", "c", "d", "e")
)

tb</pre>
```

```
# A tibble: 5 x 3
     X
         уz
 <int> <dbl> <chr>
     1
         1 a
     2
          4 b
3
     3
         9 с
     4 16 d
4
5
     5
         25 e
```

E 2. Differences from Data Frames

- Subsetting with \$ works the same, but [[is stricter
- Tibbles don't do partial matching
- Printing is **truncated** by default (no flooding the console)

tb\$y

[1] 1 4 9 16 25

tb[["z"]]

[1] "a" "b" "c" "d" "e"

F 3. Creating Tibbles

You can create tibbles manually with tibble() or convert data frames with as_tibble().

```
df <- data.frame(a = 1:3, b = letters[1:3])
tb2 <- as_tibble(df)</pre>
```

G 4. Working with Tibbles

Tibbles work seamlessly with all **dplyr** verbs:

```
tb3 <- tibble(
    x = 1:6,
    y = c("a", "a", "b", "c", "c")
)

tb3 |>
    dplyr::group_by(y) |>
    dplyr::summarize(mean_x = mean(x))
```

H 5. Best Practices with Tibbles

- Always use tibble() for clean, predictable data structures
- Avoid row names; instead, use an explicit column
- Use glimpse() for quick inspection
- Use print(n = Inf) to see all rows when needed

I 6. When to Convert Back to Data Frames

Some base R functions don't work with tibbles. Use as.data.frame() if you need to revert:

df_back <- as.data.frame(tb)</pre>

I.1 In-Class Exercise

- 1. Create a tibble with three columns: name, age, and score.
- 2. Use mutate() to add a new column grade based on score.
- 3. Group by grade and calculate the average age.

J Conclusion

Tibbles are at the heart of the Tidyverse workflow, offering: - Clean printing - Safer subsetting - Compatibility with the pipe operator and dplyr verbs

Use them as your **default** data structure in this course.