IV Year – II SEMESTER

T P C
4 0 3

Elective - III

Human Computer Interaction

Course Objectives:

The main objective is to get student to think constructively and analytically about how to design and evaluate interactive technologies.

Course Outcomes:

- 1. Explain the capabilities of both humans and computers from the viewpoint of human information processing.
- 2. Describe typical human–computer interaction (HCI) models, styles, and various historic HCI paradigms.
- 3. Apply an interactive design process and universal design principles to designing HCI systems.
- 4. Describe and use HCI design principles, standards and guidelines.
- 5. Analyze and identify user models, user support, socio-organizational issues, and stakeholder requirements of HCI systems.
- **6.** Discuss tasks and dialogs of relevant HCI systems based on task analysis and dialog design.

Syllabus:

UNIT I:

Introduction: Usability of Interactive Systems- introduction, usability goals and measures, usability motivations, universal usability, goals for our profession

Managing Design Processes: Introduction, Organizational design to support usability, Four pillars of design, development methodologies, Ethnographic observation, Participatory design, Scenario Development, Social impact statement for early design review, legal issues, Usability Testing and Laboratories

UNIT II:

Menu Selection, Form Fill-In and Dialog Boxes: Introduction, Task- Related Menu Organization, Single menus, Combinations of Multiple Menus, Content Organization, Fast Movement Through Menus, Data entry with Menus: Form Fill-in, dialog Boxes, and alternatives, Audio Menus and menus for Small Displays

UNIT III:

Command and Natural Languages: Introduction, Command organization Functionality, Strategies and Structure, Naming and Abbreviations, Natural Language in Computing

Interaction Devices: Introduction, Keyboards and Keypads, Pointing Devices, Speech and Auditory Interfaces, Displays- Small and large

UNIT IV:

Quality of Service: Introduction, Models of Response-Time impacts, Expectations and attitudes, User Productivity, Variability in Response Time, Frustrating Experiences

Balancing Function and Fashion: Introduction, Error Messages, Nonanthropomorphic Design, Display Design, Web Page Design, Window Design, Color

UNIT V:

User Documentation and Online Help: Introduction, Online Vs Paper Documentation, Reading from paper Vs from Displays, Shaping the content of the Documentation, Accessing the Documentation, Online tutorials and animated documentation, Online communities for User Assistance, The Development Process

UNIT VI:

Information Search: Introduction, Searching in Textual Documents and Database Querying, Multimedia Document Searches, Advanced Filtering and Searching Interfaces

Information Visualization: Introduction, Data Type by Task Taxonomy, Challenges for Information Visualization

Text Books:

1. Designing the User Interface, Strategies for Effective Human Computer Interaction, 5ed, Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven M Jacobs, Pearson

2. The Essential guide to user interface design,2/e, Wilbert O Galitz, Wiley DreamaTech.

Reference Books:

- 1. Human Computer, Interaction Dan R.Olsan, Cengage ,2010.
- 2. Designing the user interface. 4/e, Ben Shneidermann, PEA.
- 3. User Interface Design, Soren Lauesen, PEA.
- 4. Interaction Design PRECE, ROGERS, SHARPS, Wiley.

Advanced Operating Systems

Course Objectives:

The aim of this module is to study, learn, and understand the main concepts of advanced operating systems (parallel processing systems, distributed systems, real time systems, network operating systems, and open source operating systems); Hardware and software features that support these systems.

Course Outcomes:

- 1. Outline the potential benefits of distributed systems
- 2. Summarize the major security issues associated with distributed systems along with the
- 3. range of techniques available for increasing system security

Syllabus:

UNIT-I:

Introduction to Distributed systems: Goals of distributed system, hardware and software concepts, design issues. **Communication in Distributed systems**: Layered protocols, ATM networks, the Client - Server model, remote procedure call and group communication.

UNIT-II:

Synchronization in Distributed systems: Clock synchronization, Mutual exclusion, E-tech algorithms, the Bully algorithm, a ring algorithm, atomic transactions,

UNIT-III:

Deadlocks: deadlock in distributed systems, Distributed deadlock prevention, and distributed dead lock detection.

UNIT-IV:

Processes: Processes and Processors in distributed systems: Threads, system models, Processor allocation, Scheduling in distributed system, Fault tolerance and real time distributed systems.

UNIT-V:

Distributed file systems: Distributed file systems design, distributed file system implementation, trends in distributed file systems.

Distributed shared memory: What is shared memory, consistency models, page based distributed shared memory, shared variable distributed shared memory, object based DSM.

UNIT-VI:

Case study MACH: Introduction to MACH, process management in MACH, memory management in MACH, communication in MACH, UNIX emulation in MACH. Case study DCE: Introduction to DCE threads, RPC's, Time service, Directory service, security service, Distributed file system.

TEXT BOOKS:

- 1. Distributed Operating System Andrew, S. Tanenbaum, PHI
- 2. Operating Systems' Internal and Design Principles Stallings, Fifth Edition–2005, Pearson education/PHI

REFERENCE BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 2. Modern Operating Systems, Andrew S Tanenbaum 2nd edition Pearson/PHI

Mobile Adhoc & Sensor Networks

Course Objectives:

- 1) To make the student understand the concepts of MOBILE AD HOC NETWORKS (Manets) as well as Wireless Sensor Networks (WSN), their characteristics, novel applications, and technical challenges.
- 2) To understand the issues and solutions of various layers of Manets, namely MAC layer, Network Layer & Transport Layer in Manets and WSN.
- 3) To understand the platforms and protocols used in Manets and WSN.
- 4) To make the student take up further research as part of his higher studies

Course Outcomes:

- 1) Able to think and develop new applications in Manets and WSN.
- 2) Able to take any new technical issue related to these new thrust areas and come up with a solution(s).
- 3) Able to develop algorithms/protocols for Manets and WSN.

Syllabus:

UNIT I:

Introduction to Ad Hoc Networks: Characteristics of MANETs, applications of MANETs, and challenges of MANETs.

Routing in MANETs: Criteria for classification, Taxonomy of MANET routing algorithms, Topology based routing algorithms, Position based routing algorithms,

UNIT II:

Data Transmission: Broadcast storm problem, Broadcasting, Multicasting and Geocasting

UNIT III:

TCP over Ad Hoc: TCP protocol overview, TCP and MANETs, and Solutions for TCP over Ad hoc

UNIT IV:

Basics of Wireless Sensors and Applications: Applications, Classification of sensor networks, Architecture of sensor networks, Physical layer, MAC layer, Link layer

UNIT V:

Data Retrieval in Sensor Networks: Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, and Sensor Networks and mobile robots.

UNIT VI:

Security: Security in ad hoc networks, Key management, Secure routing, Cooperation in MANETs, and Intrusion detection systems.

Sensor Network Platforms and Tools: Sensor Network Hardware, Berkeley motes, Sensor Network Programming Challenges, Node-Level Software Platforms, TinyOS, NS-2 and TOSSIM.

Textbook:

- 1. *Ad hoc and Sensor Networks* Theory and Applications, by Carlos Cordeiro and Dharma P. Agrawal, World Scientific Publications, March 2006, ISBN 981-256-681-3.
- Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science ISBN: 978-1-55860-914-3, (Morgan Kauffman)

Pattern Recognition

Course Objectives:

The course is designed to introduce students to theoretical concepts and practical issues associated with pattern recognition

Course Outcomes:

- 1. Design systems and algorithms for pattern recognition (signal classification), with focus on sequences of patterns that are analyzed using, e.g., hidden Markov models (HMM),
- 2. Analyse classification problems probabilistically and estimate classifier performance,
- 3. Understand and analyse methods for automatic training of classification systems,
- 4. Apply Maximum-likelihood parameter estimation in relatively complex probabilistic models, such as mixture density models and hidden Markov models,
- 5. Understand the principles of Bayesian parameter estimation and apply them in relatively simple probabilistic models

Syllabus:

UNIT-I:

Introduction: Machine perception, pattern recognition example, pattern recognition systems, the Design cycle, learning and adaptation

Bayesian Decision Theory: Introduction, continuous features – two categories classifications, minimum error-rate classification-zero–one loss function, classifiers, discriminant functions, and decision surfaces

UNIT-II:

Normal density: Univariate and multivariate density, discriminant functions for the normal Density different cases, Bayes decision theory – discrete features, compound Bayesian decision theory and context

UNIT-III:

Maximum likelihood and Bayesian parameter estimation: Introduction, maximum likelihood Estimation, Bayesian estimation, Bayesian parameter estimation—Gaussian case

UNIT-IV:

Un-supervised learning and clustering: Introduction, mixture densities and identifiability, maximum likelihood estimates, application to normal mixtures, K-means clustering. Date description and clustering – similarity measures, criteria function for clustering

UNIT-V:

Pattern recognition using discrete hidden Markov models: Discrete-time Markov process, Extensions to hidden Markov models, three basic problems of HMMs, types of HMMs

UNIT-VI:

Continuous hidden Markov models:

Continuous observation densities, multiple mixtures per state, speech recognition applications.

Text Books:

- 1. Pattern classifications, Richard O. Duda, Peter E. Hart, David G. Stroke. Wiley student edition, Second Edition.
- 2. Pattern Recognition, An Introduction, V Susheela Devi, M Narsimha Murthy, University Press

Reference Books:

- 1. R.C Gonzalez and R.E. Woods, "Digital Image Processing", Addison Wesley, 1992.
- 2. Pattern Recognition and Image Analysis Earl Gose, Richard John baugh, Steve Jost PHI 2004
- 3. Fundamentals of speech Recognition, Lawerence Rabiner, Bijng Hwang Juang Pearson education.
- 4. Pattern Recognition, Sergios Theodoridis, Konstantinos Koutroumbas, Academic Press, Elsevier, 4ed,

IV Year – II SEMESTER

T P C
4 0 3

Distributed Systems

Course Objectives:

1. provides an introduction to the fundamentals of distributed computer systems, assuming the availability of facilities for data transmission, IPC mechanisms in distributed systems, Remote procedure calls.

2. Expose students to current technology used to build architectures to enhance distributed computing infrastructures with various computing principles

Course Outcomes:

- 1. Develop a familiarity with distributed file systems.
- 2. Describe important characteristics of distributed systems and the salient architectural features of such systems.
- 3. Describe the features and applications of important standard protocols which are used in distributed systems.
- 4. Gaining practical experience of inter-process communication in a distributed environment

Syllabus:

UNIT-I:

Characterization of Distributed Systems: Introduction, Examples of Distributed Systems, Resource Sharing and the Web, Challenges.

System Models: Introduction, Architectural Models- Software Layers, System Architecture, Variations, Interface and Objects, Design Requirements for Distributed Architectures, Fundamental Models-Interaction Model, Failure Model, Security Model.

UNIT-II:

Interprocess Communication: Introduction, The API for the Internet Protocols- The Characteristics of Interprocess communication, Sockets, UDP Datagram Communication, TCP Stream Communication; External Data Representation and Marshalling; Client Server Communication; Group Communication- IP Multicast- an implementation of group communication, Reliability and Ordering of Multicast.

UNIT-III:

Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects-Object Model, Distributed Object Modal, Design Issues for RMI, Implementation of RMI, Distributed Garbage Collection; Remote Procedure Call, Events and Notifications, Case Study: JAVA RMI

UNIT-IV:

Operating System Support: Introduction, The Operating System Layer, Protection, Processes and Threads –Address Space, Creation of a New Process, Threads.

UNIT-V:

Distributed File Systems: Introduction, File Service Architecture; Peer-to-Peer Systems: Introduction, Napster and its Legacy, Peer-to-Peer Middleware, Routing Overlays.

Coordination and Agreement: Introduction, Distributed Mutual Exclusion, Elections, Multicast Communication.

UNIT-VI:

Transactions & Replications: Introduction, System Model and Group Communication, Concurrency Control in Distributed Transactions, Distributed Dead Locks, Transaction Recovery; Replication-Introduction, Passive (Primary) Replication, Active Replication.

TEXT BOOKS:

- 1. Ajay D Kshemkalyani, Mukesh Sighal, "Distributed Computing, Principles, Algorithms and Systems", Cambridge
- 2. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems- Concepts and Design", Fourth Edition, Pearson Publication

IV Year – II SEMESTER T P C

Mathematical Optimization

3

Course Objectives:

The student will learn about the mathematical modeling, Linear Programming, Simplex method, Transportation problem, assignment problems, processing jobs through several machines, queuing, Inventory management and management decision making, Project management techniques, simulation techniques, probability distributions and markov analysis.

Course Outcomes:

- 1. Concept of mathematical modeling and development of a model.
- 2. Use of graphical solution in solving LPP.
- 3. Determining minimum transportation costs.
- 4. Use of assignment models in business and industry.
- 5. Processing of jobs through different number of machines.
- 6. Solving queuing problems in single-channel and multiple-channel situations
- 7. Inventory management and management decision making
- 8. Project management and simulation techniques
- 9. Understand application of probability distributions and markov process in different situations.

Syllabus:

UNIT I:

Introduction to Operations Research: Definition, Features, types of OR models, Methodology, Tools, Limitations and applications of Linear Programming.

Linear Programming I: Introduction, Formulation of LPP, Assumptions for solving LPP, Applications of LPP, Graphical method of solving LPP.

UNIT II:

Linear Programming II: Introduction, steps in solving problems using simplex method, Principle of simplex method- Maximization and minimization problems, solution by simplex method, limitations of LPP simplex method. **Linear Programming III:** Introduction, concept of primal dual relationship, formulation of the dual of the primal problem, solution of LP problems using duality.

UNIT III:

The Transportation Problem: Basics, Solution of Transportation problem with several methods, performing optimality test, degeneracy in transportation problem.

Assignment model: Definition, Formulation, Different methods of solutions, Hungarian assignment method, unbalanced assignment problems

UNIT IV:

The Sequencing problems: introduction, basics, types of sequencing problems, priority sequencing, sequencing n jobs through two machines, n jobs and m machines, two jobs 3 machines case.

Waiting Line(Queuing) Theory: introduction, objectives and models, benefits and limitations, single channel and multi-channel queuing models.

UNIT V:

Inventory Management: introduction, objectives, developing the model, EOQ, Selective inventory management. **Project management PERT & CPM**: introduction, construction of networks, calculation of EST, LST, EFT and LFT, drawing of networks and calculation of timings

UNIT VI:

Simulation: introduction, applications, advantages and limitations, Monte Carlo simulation technique, steps involved in use of simulation, generating and using random system, simulation of queuing system, investment decisions using simulation.

Probability theory and markov analysis: Basics, law of probability, discre and continuous random variables, cumulative distribution function, frequency and probability distributions, mean and standard deviation, Binomial

probability distribution, Normal probability distribution. Markovian process- applications, Markovian decision problems.

TEXT BOOKS:

- 1. Operations research, 2ed, Col D S Cheema, University Science Press, Lakshmi Publications.
- 2. Hamdy H. Taha, "Operations Research An Introduction" Pearson Education, 2003
- 3. Taha Hamdy- Operations Research- An Introduction , Prentice-Hall, 7th edition

REFERNCE BOOKS:

- 1. Operations Research, Panneer Selvan, Prentice Hall of India.
- 2. Banks, J, Carson II J. S., Nelson B.L., and Nicol D.M. Discrete Event System Simulation. Pearson Education Asia, 3rd edition,
- 3. Principles of Operation Research (with applications to managerial decisions) H.M Wagher, PHI, New Delhi

IV Year – II SEMESTER

T P C
4 0 3

Management Science

Management – Functions of Management – Evaluation of Management thought- Theories of Motivation – Decision making process-Designing organization structure- Principles of organization - Types of organization structure

Unit II

Operations Management: Principles and Types of Management – Work study- Statistical Quality Control- Control charts (P-chart, R-chart, and Cchart) Simple problems- Material Management: Need for Inventory control- EOQ, ABC analysis (simple problems) and Types of ABC analysis (HML, SDE, VED, and FSN analysis)

Unit III

Functional Management: Concept of HRM, HRD and PMIR- Functions of HR Manager- Wage payment plans(Simple Problems) – Job Evaluation and Merit Rating - Marketing Management- Functions of Marketing – Marketing strategies based on product Life Cycle, Channels of distributions.

Unit IV

Project Management: (PERT/CPM): Development of Network – Difference between PERT and CPM Identifying Critical Path- Probability- Project Crashing (Simple Problems)

Unit V

Strategic Management: Vision, Mission, Goals, Strategy – Elements of Corporate Planning Process – Environmental Scanning – SWOT analysis-Steps in Strategy Formulation and Implementation, Generic Strategy alternatives

Unit VI

Contemporary Management Practice: Basic concepts of MIS, MRP, Justin-Time(JIT) system, Total Quality Management(TQM), Six sigma and Capability Maturity Model(CMM) Levies, Supply Chain Management, Enterprise Resource Planning (ERP), Business Process outsourcing (BPO), Business process Re-engineering and Bench Marking, Balanced Score Card.

Text Books

- 1. Dr. P. Vijaya Kumar & Dr. N. Appa Rao, 'Management Science' Cengage, Delhi, 2012.
- 2. Dr. A. R. Aryasri, Management Science' TMH 2011.

References

- 1. Koontz & Weihrich: 'Essentials of management' TMH 2011
- 2. Seth & Rastogi: Global Management Systems, Cengage learning , Delhi, 2011
- 3. Robbins: Organizational Behaviour, Pearson publications, 2011
- 4. Kanishka Bedi: Production & Operations Management, Oxford Publications, 2011
- 5. Philip Kotler & Armstrong: Principles of Marketing, Pearson publications
- 6. Biswajit Patnaik: Human Resource Management, PHI, 2011
- 7. Hitt and Vijaya Kumar: Starategic Management, Cengage learning

Objective: To familiarize with the process of management and to provide basic insights into select contemporary management practices. **Codes/ Tables**: Normal Distribution Function Tables need to be permitted

into the examination Halls

IV Year – II SEMESTER

T P C
0 0 9

Project