

(Artificial) Neural Networks with TensorFlow

Industrial AI Lab.

Prof. Seungchul Lee

Training Neural Networks: Deep Learning Libraries

Caffe

Platform: Linux, Mac OS, Windows

– Written in: C++

Interface: Python, MATLAB

Theano

Platform: Cross-platform

Written in: Python

– Interface: Python

Tensorflow

Platform: Linux, Mac OS, Windows

— Written in: C++, Python

Interface: Python, C/C++, Java, Go, R

Caffe

theano

TensorFlow: Constant

- TensorFlow is an open-source software library for deep learning
 - tf.constant
 - tf.Variable
 - tf.placeholder

```
import tensorflow as tf

a = tf.constant([1, 2, 3])
b = tf.constant([4, 5, 6])

A = a + b
B = a * b
A
```

<tf.Tensor 'add:0' shape=(3,) dtype=int32>

TensorFlow: Session

• To run any of the three defined operations, we need to create a session for that graph. The session will also allocate memory to store the current value of the variable.

TensorFlow

```
sess = tf.Session()
sess.run(A)
array([5, 7, 9], dtype=int32)
```

```
sess.run(B)
```

array([4, 10, 18], dtype=int32)

TensorFlow: Initialization

- tf. Variable is regarded as the decision variable in optimization.
- We should initialize variables to use tf. Variable.

```
w = tf.Variable([1, 1])

init = tf.global_variables_initializer()
sess.run(init)

sess.run(w)
array([1, 1], dtype=int32)
```


TensorFlow: Placeholder

 The value of tf.placeholder must be fed using the feed_dict optional argument to Session.run()

Training Neural Networks: Optimization

 Learning or estimating weights and biases of multi-layer perceptron from training data

- 3 key components
 - objective function $f(\cdot)$
 - decision variable or unknown θ
 - constraints $g(\cdot)$
- In mathematical expression

$$egin{array}{ll} \min_{ heta} & f(heta) \ & ext{subject to} & g_i(heta) \leq 0, & i=1,\cdots,m \end{array}$$

Training Neural Networks: Loss Function

Measures error between target values and predictions

$$\min_{ heta} \sum_{i=1}^m \ell\left(h_{ heta}\left(x^{(i)}
ight), y^{(i)}
ight)$$

- Example
 - Squared loss (for regression):

$$rac{1}{N}\sum_{i=1}^{N}\left(h_{ heta}\left(x^{(i)}
ight)-y^{(i)}
ight)^{2}$$

— Cross entropy (for classification):

$$-rac{1}{N}\sum_{i=1}^N y^{(i)}\log\Bigl(h_ heta\left(x^{(i)}
ight)\Bigr)+\Bigl(1-y^{(i)}\Bigr)\log\Bigl(1-h_ heta\left(x^{(i)}
ight)\Bigr)$$

Training Neural Networks: Gradient Descent

- Negative gradients points directly downhill of the cost function
- We can decrease the cost by moving in the direction of the negative gradient (α is a learning rate)

$$heta:= heta-lpha
abla_{ heta}\left(h_{ heta}\left(x^{(i)}
ight),y^{(i)}
ight)$$

Training Neural Networks: Learning

- Forward propagation
 - the initial information propagates up to the hidden units at each layer and finally produces output
- Backpropagation
 - allows the information from the cost to flow backwards through the network in order to compute the gradients

- Chain Rule
 - Computing the derivative of the composition of functions

•
$$f(g(x))' = f'(g(x))g'(x)$$

•
$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

•
$$\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx}\right) \cdot \frac{dx}{dw}$$

•
$$\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw}\right) \cdot \frac{dw}{du}$$

- Backpropagation
 - Update weights recursively

- Chain Rule
 - Computing the derivative of the composition of functions

•
$$f(g(x))' = f'(g(x))g'(x)$$

•
$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

•
$$\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx}\right) \cdot \frac{dx}{dw}$$

•
$$\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw}\right) \cdot \frac{dw}{du}$$

- Backpropagation
 - Update weights recursively

- Chain Rule
 - Computing the derivative of the composition of functions

•
$$f(g(x))' = f'(g(x))g'(x)$$

•
$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

•
$$\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx}\right) \cdot \frac{dx}{dw}$$

•
$$\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw}\right) \cdot \frac{dw}{du}$$

- Backpropagation
 - Update weights recursively

- Chain Rule
 - Computing the derivative of the composition of functions

•
$$f(g(x))' = f'(g(x))g'(x)$$

•
$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

•
$$\frac{dz}{dw} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx}\right) \cdot \frac{dx}{dw}$$

•
$$\frac{dz}{du} = \left(\frac{dz}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dw}\right) \cdot \frac{dw}{du}$$

- Backpropagation
 - Update weights recursively

Training Neural Networks

Optimization procedure

- It is not easy to numerically compute gradients in network in general.
 - The good news: people have already done all the "hard work" of developing numerical solvers (or libraries)
 - There are a wide range of tools

ANN with MNIST

- MNIST database
 - Mixed National Institute of Standards and Technology database
 - Handwritten digit database
 - 28×28 gray scaled image
 - Flattened matrix into a vector of 28×28=784

ANN with TensorFlow

Feed a gray image to ANN

Our Network Model

Iterative Optimization

$$\min_{ heta} \quad f(heta) \ ext{subject to} \quad g_i(heta) \leq 0$$

$$heta:= heta-lpha
abla_{ heta}\left(h_{ heta}\left(x^{(i)}
ight),y^{(i)}
ight)$$

Mini-batch Gradient Descent

D Linear Regression Cost function
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^i - y^i)^2$$

M training data

 $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^i - y^i) \cdot x_i^i$

Vanilla (Bottch) G.D.

$$\theta_{j} := \theta_{j} - d \frac{\partial}{\partial \theta_{j}} T(\theta)$$

$$\frac{1}{m} \sum_{j=1}^{m} (\hat{y}^{j} - y^{j}) \times_{j}^{j}$$

Stochastic G.D.

For 1 in range (M):

$$\Theta_{\hat{j}} := \Theta_{\hat{j}} - \alpha \cdot \frac{\text{only one example}}{(\hat{y}^{\hat{i}} - y^{\hat{i}}) \times \hat{j}}$$

4 Mini-batch gradient descent uses *n* data batch at each iteration

ANN with TensorFlow

Import Library

```
# Import Library
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
```

- Load MNIST Data
 - Download MNIST data from TensorFlow tutorial example

```
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
```


One Hot Encoding

```
train_x, train_y = mnist.train.next_batch(10)
img = train_x[3,:].reshape(28,28)

plt.figure(figsize=(5,3))
plt.imshow(img,'gray')
plt.title("Label : {}".format(np.argmax(train_y[3])))
plt.xticks([])
plt.yticks([])
plt.show()
```

Label: 6

One hot encoding

```
print ('Train labels : {}'.format(train_y[3, :]))
Train labels : [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

• First, the layer performs several matrix multiplication to produce a set of linear activations


```
# hidden1 = tf.matmul(x, weights['hidden1']) + biases['hidden1']
hidden1 = tf.add(tf.matmul(x, weights['hidden1']), biases['hidden1'])
```

• Second, each linear activation is running through a nonlinear activation function

hidden1 = tf.nn.relu(hidden1)

• Third, predict values with an affine transformation


```
# output = tf.matmul(hidden1, weights['output']) + biases['output']
output = tf.add(tf.matmul(hidden1, weights['output']), biases['output'])
```


ANN's Shape

- Input size
- Hidden layer size
- The number of classes


```
n_input = 28*28
n_hidden1 = 100
n_output = 10
```


Weights and Biases

- Define parameters based on predefined layer size
- Initialize with normal distribution with $\mu=0$ and $\sigma=0.1$

```
weights = {
    'hidden1' : tf.Variable(tf.random_normal([n_input, n_hidden1], stddev = 0.1)),
    'output' : tf.Variable(tf.random_normal([n_hidden1, n_output], stddev = 0.1)),
}
biases = {
    'hidden1' : tf.Variable(tf.random_normal([n_hidden1], stddev = 0.1)),
    'output' : tf.Variable(tf.random_normal([n_output], stddev = 0.1)),
}
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
```



```
# Define Network
def build_model(x, weights, biases):
    # first hidden layer
    hidden1 = tf.add(tf.matmul(x, weights['hidden1']), biases['hidden1'])
    # non linear activate function
    hidden1 = tf.nn.relu(hidden1)

# Output layer with linear activation
    output = tf.add(tf.matmul(hidden1, weights['output']), biases['output'])
    return output
```


Cost, Initializer and Optimizer

Loss: cross entropy

$$-rac{1}{N} \sum_{i=1}^N y^{(i)} \log(h_ heta\left(x^{(i)}
ight)) + (1-y^{(i)}) \log(1-h_ heta\left(x^{(i)}
ight))$$

- Initializer
 - Initialize all the empty variables
- Optimizer
 - AdamOptimizer: the most popular optimizer

```
# Define Cost
pred = build_model(x, weights, biases)
loss = tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)
loss = tf.reduce_mean(loss)

# optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
LR = 0.0001
optm = tf.train.AdamOptimizer(LR).minimize(loss)
init = tf.global_variables_initializer()
```

Summary of Model

Iteration Configuration

- Define parameters for training ANN
 - n_batch: batch size for stochastic gradient descent
 - n_iter: the number of learning steps
 - n_prt: check loss for every n_prt iteration

```
n_batch = 50  # Batch Size

n_iter = 2500  # Learning Iteration

n_prt = 250  # Print Cycle
```


Optimization

```
# Run initialize
# config = tf.ConfigProto(allow soft placement=True) # GPU Allocating policy
# sess = tf.Session(config=config)
sess = tf.Session()
sess.run(init)
# Training cycle
for epoch in range(n iter):
    train x, train y = mnist.train.next batch(n batch)
    sess.run(optm, feed dict={x: train x, y: train y})
    if epoch % n prt == 0:
        c = sess.run(loss, feed_dict={x : train_x, y : train_y})
        print ("Iter : {}".format(epoch))
        print ("Cost : {}".format(c))
Iter: 0
Cost: 2.4568586349487305
Iter: 250
Cost: 1.4568665027618408
Iter : 500
Cost: 0.7992963194847107
Iter: 750
Cost: 0.6279309988021851
Iter: 1000
Cost: 0.4135037958621979
Iter: 1250
Coct . 0 1507003701016173
```

Test or Evaluation

```
test_x, test_y = mnist.test.next_batch(100)

my_pred = sess.run(pred, feed_dict={x : test_x})
my_pred = np.argmax(my_pred, axis=1)

labels = np.argmax(test_y, axis=1)

accr = np.mean(np.equal(my_pred, labels))
print("Accuracy : {}%".format(accr*100))
```

Accuracy: 92.0%

Test or Evaluation

```
test_x, test_y = mnist.test.next_batch(1)
logits = sess.run(tf.nn.softmax(pred), feed_dict={x : test_x})
predict = np.argmax(logits)

plt.imshow(test_x.reshape(28,28), 'gray')
plt.xticks([])
plt.yticks([])
plt.show()

print('Prediction : {}'.format(predict))
np.set_printoptions(precision=2, suppress=True)
print('Probability : {}'.format(logits.ravel()))
```



```
Prediction: 6
Probability: [ 0. 0.01 0.04 0. 0.01 0. 0.93 0. 0.01 0. ]
```

