Chapter 5, Solution 44.

At node b,
$$\frac{v_b - v_1}{R_1} + \frac{v_b - v_2}{R_2} = 0$$
 $v_b = \frac{\frac{v_1}{R_1} + \frac{v_2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}$ (1)

At node a,
$$\frac{0 - v_a}{R_3} = \frac{v_a - v_o}{R_4}$$
 $\frac{v_a - v_o}{1 + R_4 / R_3}$ (2)

But $v_a = v_b$. We set (1) and (2) equal.

$$\frac{v_o}{1 + R_4 / R_3} = \frac{R_2 v_1 + R_1 v_2}{R_1 + R_2}$$

or

$$V_{o} = \frac{\left(R_{3} + R_{4}\right)}{R_{3}\left(R_{1} + R_{2}\right)} \left(R_{2}v_{1} + R_{1}v_{2}\right)$$