Lista de exercícios II - Verossimilhança e Log-Verossimilhança

Verossimilhança e Log-Verossimilhança

Wagner Hugo Bonat

2018-08-13

Verossimilhança e Log-verossimilhança

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança $\mu = 10$ e variância conhecida σ^2 . Escreva a verossimilhança e log-verossimilhança para σ^2 e verifique se as condições de regularidade estão satisfeitas.
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ . Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n=1 e esperança μ . Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 5. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n = 10 e esperança $n\mu$. Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 6. Sejam Y_1, \ldots, Y_n v.a. iid de uma população Uniforme com parâmetros a=0 e b desconhecido. Escreva a função de verossimilhança e log-verossimilhança para b e verifique se as condições de regularidade estão satisfeitas.
- 7. Considere as quatro observações $y_1 < 10$, $y_2 > 10$, $5 < y_3 < 10$ e $y_4 = 10$, escreva a função de verossimilhança e log-verossimilhança supondo que elas são iid provenientes de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Use o R ou qualquer outro software para desenhar a função de verossimilhança em cada caso.
- 8. Repita o exercício (7) para uma população Poisson com esperança μ .
- 9. Caso você tivesse que escolher entre apenas uma das quatro observações qual você escolheria? Explique.
- 10. Demonstre a desigualdade de Jensen.

Função escore e Informação de Fisher

- 1. Sejam Y_1,\dots,Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2=1.$
- a) Obtenha a função escore e a matriz de informação de Fisher para $\mu.$
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com esperança μ e n conhecido.
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhanca de μ .
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ .

- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população exponencial com esperança μ .
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 5. Sejam Y_1, \dots, Y_n v.a iid de uma população geométrica de parâmetro μ .
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 6. Sejam Y_1, \ldots, Y_n v.a iid de uma população uniforme com parâmetros a=0 e b.
- a) Discuta como o estimador de máxima verossimilhança para b pode ser obtido neste caso.
- b) Obtenha a função e escore e verifique se as igualdades de Bartlett são válidas.
- 7. Sejam Y_1, \ldots, Y_n amostras iid com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$. Considere os estimadores

$$\bar{Y} = \sum_{i=1}^{n} Y_i$$
, para μ e $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu)^2$, para σ^2 .

- a) Mosque que ambos são não viciados.
- b) Obtenha a variância de \bar{Y} e $\hat{\sigma}^2$.
- c) Mosque que ambos são consistentes.
- d) Considere o estimador

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2,$$

mostre que este estimador é viciado. d) Proponha uma correção para o estimador em c) de modo a torná-lo não viciado.

- 8. Sejam Y_1, Y_2, Y_3 uma amostra iid de uma v.a. com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$ em que σ^2 é conhecido. Considere os estimadores $\hat{\mu}_1 = \frac{Y_1 + Y_2 + Y_3}{3}$ e $\hat{\mu}_2 = \frac{1}{2}Y_1 + \frac{1}{4}Y_2 + \frac{1}{4}Y_3$.
- a) Mostre que ambos são não viciados para μ .
- b) Obtenha a variância de $\hat{\mu}_1$ e $\hat{\mu}_2$.
- c) Mosque que ambos são consistente para μ .
- d) Qual estimador você prefere? Explique.
- 9. Sejam Y_1, \ldots, Y_n uma amostra iid de uma v.a. com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$ em que σ^2 é conhecido. Considere os estimadores lineares $Y_L = \sum_{i=1}^n l_i Y_i$ em que $l_i \geq 0, i = 1, \ldots, n$ são constantes conhecidas.
- a) Sob quais condições Y_L é não viciado?
- b) Sob quais condições Y_L é eficiente?
- c) Sob quais condições Y_L é consistente?
- 10. Para cada um dos modelos abaixo, encontre o limite inferior de Cramér-Rao.
- a) Normal média μ e variância σ^2 com σ^2 conhecido.
- b) Normal média μ e variância σ^2 com μ conhecido.
- c) Poisson média μ .

- d) Binomial n conhecido e probabilidade de sucesso μ . e) Geométrica com parâmetro μ . f) Exponencial de média μ .