Terminology

원어	번역
Macromolecules	고분자
Polymers	중합체
monomers	단위체
Carbohydrates	탄수화물
Lipids	지질
Nucleic acids	핵산
sugar	당
sucrose	설탕
Monosaccharides	단당류
Glucose	포도당
Fructose	과당
hydrophilic	친수성
(un)saturated	(불)포화
Hydrogenation	수소화

Organic compounds

carbon-based molcules

Carbon chemistry

• carbon is a versatile molecule

- o carbon can share electrons with other atoms in four covalent bonds.
- it is possible to construct an endless diversity of carbon skeletons varying in size and branching pattern
- unique properties of organic compound depend on
 - o its carbon skeleton and
 - the atoms attached to the skeleton
- the groups of atoms directly involved in chemical reactions are called functional groups

Functional group

Chemical Group	Compound Name	Examples
Hydroxyl group (—ОН)	Alcohol	H H H C C OH Ethanol
Carbonyl group (>C=O)	Ketone Aldehyde	HOH HHOH HHOHOMAN HHOMAN HHOMA
Carboxyl group (—COOH)	Carboxylic acid, or organic acid	H—C—C—C———————————————————————————————
Amino group (—NH ₂)	Amine	O H H H + H+ ⇒ H+
Sulfhydryl group (—SH)	Thiol	OCCOH H-C-CH2-SH Cysteine
Phosphate group (—OPO ₃ ²⁻)	Organic phosphate	ОН ОН Н О
Methyl group (—CH₃) H -c—H H	Methylated compound	NH2 C CH3 5-Methyl cytosine

- Methyl group을 제외하고 Ionic unbalance 하다.
- Carbonyl group에 C=0 부분의 위치에 따라 Kethone(가운데), Aldehyde(끝)로 나뉨
- Carboxyl group은 유기산에 있어 필수 요소임
- Phosphate group은 강력하게 결합되어 ATP 생성, 큰 물질 결합 시 이용

Large Biological Molecules

- There are four categories of large biological molecules found in all living creatures
 - 1. Carbohydrates
 - 2. Lipids
 - 3. Proteins
 - 4. nucleic acids

Carbohydrates

· include sugars and polymers of sugar

glycosid bond

- 1. α 1,4 glycosid bond
- 2. β-1,4 glycosid bond
- 3. branch
 - ∘ 6번 탄소 CH₂OH에 1번 혹은 4번 OH기가 붙어 가지를 형성

Monosaccharides

- In water, many monosaccharides form rings
 - it is stable form(less interaction)

- 1번 탄소의 OH기가 아래에 있으면 α-glucose, 위에 있으면 β-glocose
- 결합 시 α-glucose는 같은 방향을, β-glocose은 반대 방향을 향함

Disaccharides

• two monosaccharides with glycosidic bond(linkage) by dehydration reaction.

disaccharides	mono1	mono2	bond
lactose	glucose	galactose	glycosidic bonds (1,4)
maltose	glucose	glucose	α-1,4 glycosidic bonds
sucrose	glucose	fructose	glycosidic bonds (1,4)

High-fructose corn syrup(HFCS) : glucose in corn syrup to much sweeter fructose with isomerase

Polysaccharides

- · complex carbohydrates
- · polymers of monossacharides
- · stable -> good for saving energy
- empty space(twisted structure) make glycosidase decompose polysaccharides easily

Starch

- long string of glucose monomers.
- used by plant cell to store energy
- α- 1,4 glycosid bond -> spiral structure
- some of it have branch. some

Glycogen

- used by animal to store energy
- break down to release glucose
- α 1,4 glycosid bond with branch by α 1,6 glycosid bond (in many case...)

Cellulose

- · abundant organic compound on Earth
- cannot be broken by any enzyme produced by animals
- β 1,4 glycosid bond

Lipids

- hydrophobic
- diverse group of molecules made from diffent molecular building blocks that are unable to mix with water
- neither huge macromolecules nor necessarily polymers built from repeating monomers.

Fats

- triglyceride
- consists of a glycerol molecule joined with three fatty acid molecules via dehydration reaction

(a) A dehydration reaction linking a fatty acid to glycerol

(b) A fat molecule with a glycerol "head" and three energy-rich hydrocarbon fatty acid "tails"

- perform essential function in the human body
 - energy storage, cushioning and insulation
- If carbon skeleton of fatty acid has fewer thatn the maximum number of hydrogens at the double bond, it is unsaturated
 - by its double bond, its structure is fixed. so it has density and easy to be melted(good for Poikilotherm(변온동물) and plant)
- saturated fat has all three of its fatty acid saturated.
- Most animal fats
 - relatively high portion of saturated fatty acids
 - easily stack, tending to be solid at room temperature.

Hydrogenation

- adds hydrogen
- converts unsaturated fats to saturated fats
- makes liquid fats solid at room temperature.
- o creates trans fats. its fatty acid has double bond. -> unsaturated fat

diglyceride

- · two fatty acids
- 인지질은 glycerol에 P(인)이 붙어 있음

Steroids

- · The carbon skeleton has four fused rings
- Steroids vary in the functional groups attached to this set of rings, and these chemical variations their function.

- Cholesterol
 - key component of cell membranes
 - o the base steroid from which body produces other steroids such as estrogen and testosterone

Protein

- polymers of amino acid monomers
- account for more than 50% of the dry weight of most cells
- instrumental in almost everything cells do
 - o structural, storage, contractile, transport, enzymes

Amino Acids: Monomers of Proteins

- central carbon atom bonded to four covalent partners
 - o carboxyl group (-COOH)
 - o amino group (-NH₂)
 - hydrogen atom
 - o side chain giving amino acid its special chemical properties (R7|)

twenty-one amino acid

Peptide bonds

• cells link amino acids together by dehydration reaction with enzyme's help, forming **peptide bonds** and creating long chains of amino acids called, **polypeptides**

- peptide -> polypeptide
- polypeptide -> 변형과정으로 기능함 -> protein
- protein's structure
 - 1. 1차 구조
 - polypeptide 내에서 아미노산이 순서대로 배열된 상태
 - 2. 2차 구조
 - polypetide의 일부가 뒤틀린 구조
 - α-helix : peptide bond에서 N-H기와 C=0기 혹은 4 자리 이전에 위치한 아미노

- 산의 R기와 수소 결합 발생해 나선 모양을 이루는 구조
- β-strand : peptide bond에서 N-H기와 C=0기에서 수소 결합이 발생해 R기의 방향이 위, 아래를 반복하면서 이어짐
- β-sheet : β-strand 구조가 여러 개 이어지면서 그 사이에서 최소 2~3개의 수소 결합을 형성해 병품 구조를 이룸
- 3. 3차 구조
 - R기 간 상호작용으로 연결되어 형성되며 compact함.
- 4. 4차 구조 : 2개 이상의 3차 구조 polypeptide가 이루는 구조. 각각의 polypeptide도 단백질임.

degradation vs denaturation

- degradation 분해 : 1차 구조가 깨짐. 강한 에너지에 의한 것
- denaturation 변성 : 2,3,4차 구조가 변형됨. 구조를 형성하는 interaction이 약해서 일어남. 높은 온 도, pH 변화 등에 의해서 일어남
 - ex) denaturaion of normal protein by prion protein

Nucleic Acids

- store information
- provide the instruction for building protein
- two types
 - 1. DNA, deoxyribonucleic acid => stable. no functional group in ribose
 - 2. RNA, ribonucleic acid => unstable. hydroxyl(-OH) group connected to 2' Carbon in ribose
- polymers made from monomers called nucleotides
- 동식물의 가장 큰 기본 구성 물질. necleotide가 억 단위로 붙으니...

structure of nucleotide

- 1. a five-carbon sugar
- 2. a phosphate group
- 3. a nitrogen-containg base
 - adenine
 - o quanine
 - thymine or uracil
 - o cytosine

phosphodiester bond

- dehydration reaction
- covalent bond
- dotted line describe this bond in last picture.