数列的极限

王二民(≥wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

单位圆的面积

= 1.29904 A_6 = 2.59808= 3.00000 A_{12} = 3.10583 A_{24} = 3.13263 A_{48} = 3.13935 A_{96} = 3.14103 A₁₉₂ A₃₈₄ = 3.14145= 3.14156 A₇₆₈ = 3.14158A₁₅₃₆ = 3.14159 A_{3072}

 $A_3, A_6, A_{12}, \cdots, A_{3 \times 2^{n-1}}, \cdots$

$$\sqrt{2}$$

$$\sqrt{2}$$
 = 1.4142135623730950488...

$$\sqrt{2} = 1. \cdots$$
 \Longrightarrow $\sqrt{2} \in [1, 2]$
 $\sqrt{2} = 1.4 \cdots$ \Longrightarrow $\sqrt{2} \in [1.4, 1.5]$
 $\sqrt{2} = 1.41 \cdots$ \Longrightarrow $\sqrt{2} \in [1.41, 1.42]$
 $\sqrt{2} = 1.414 \cdots$ \Longrightarrow $\sqrt{2} \in [1.414, 1.415]$

无穷数列

1, 1.4, 1.41, 1.414, 1.4142, ...

表示了无理数 √2.

数列

定义(无穷数列)

称定义在正整数上的函数 $x: \mathbb{N}_{\perp} \to \mathbb{R}$ 为**无穷数列**。

通常记

$$x_n \stackrel{\text{def}}{=} x(n)$$

称为数列的一般项或通项。

数列 x 通常记为

$$x_1, x_2, x_3, \cdots, x_n, \cdots$$

也可以简记为 $\{x_n\}$.

数列举例

2.
$$-1$$
, 1, -1 , 1, ..., $(-1)^n$, ...

4.
$$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$$

5.
$$0, \frac{1}{2}, 0, \frac{1}{4}, \dots, \frac{(-1)^n + 1}{n}, \dots$$

6.
$$-1$$
, $\frac{1}{2}$, $-\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{(-1)^n}{n}$, ...

7.
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, ..., $\frac{n}{n+1}$, ...

8.
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, ..., $\frac{1}{2^n}$, ...

9. 2, 4, 8,
$$\cdots$$
, 2^n , \cdots

一直为 1

振荡

无限变大

无限接近于 0

无限接近于 0

无限接近于 0

无限接近于 1

无限接近于 0

无限变大

数列极限

定义(数列极限)

设 $\{x_n\}$ 为一数列,如果存在常数 $A \in \mathbb{R}$, 使得当 n 无限增大时 x_n 无限接近于 A, 则称 A 为此数列的**极限**,记为

$$\lim_{n\to\infty}x_n=A.$$

并称**数列** $\{x_n\}$ 收敛;否则称数列 $\{x_n\}$ 发散。

当数列 $\{x_n\}$ 收敛时,表达式 $\lim_{n\to\infty}x_n$ 有意义,当数列 $\{x_n\}$ 发散时,表达式 $\lim_{n\to\infty}x_n$ 无意义。

数 x_n 与 A 的接近程度是 $|x_n - A|$, 它越小, x_n 与 A 就越接近。

数列极限的说法

表达式

$$\lim_{n\to\infty} x_n = A$$

可以读为

- ·数列 {x_n} 的收敛于 A.
- ·数列 {x_n} 的极限为 A.
- \cdot n 趋于无穷时 x_n 趋于 A.
- \cdot *n* 趋于无穷时 x_n 的极限为 A.

数列极限理解举例

例 1.
$$\lim_{n\to\infty} \frac{n}{n+1} = 1$$
.

$$- 般项 \frac{n}{n+1} = 5$$
 与极限值 1 的接近程度为 $\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1}$.
$$\left| \frac{n}{n+1} - 1 \right| < \frac{1}{100} \qquad \iff \qquad n > 100$$

$$\left| \frac{n}{n+1} - 1 \right| < \frac{1}{10^{10}} \qquad \iff \qquad n > 10^{10}$$

$$\left| \frac{n}{n+1} - 1 \right| < \frac{1}{10^{1000}} \qquad \iff \qquad n > 10^{1000}$$

$$\left| \frac{n}{n+1} - 1 \right| < \varepsilon > 0 \qquad \iff \qquad n > \frac{1}{\varepsilon}$$

即,随着 n 的增大 $\frac{n}{n+1}$ 与 1 可以任意接近。

数列极限理解举例

例 2.
$$\lim_{n\to\infty} \frac{1+(-1)^n}{n} = 0$$
. 无限接近不一定是越来越接近

一般项
$$\frac{1+(-1)^n}{n}$$
 与极限值 0 的接近程度为
$$\left|\frac{1+(-1)^n}{n}-0\right| = \frac{|1+(-1)^n|}{n} \le \frac{2}{n}$$

$$\left| \frac{1 + (-1)^n}{n} - 0 \right| < \frac{1}{100} \qquad \Longleftrightarrow \qquad n > 200$$

$$\left| \frac{1 + (-1)^n}{n} - 0 \right| < \frac{1}{10000} \qquad \Longleftrightarrow \qquad n > 20000$$

$$\left| \frac{1 + (-1)^n}{n} - 0 \right| < \varepsilon > 0 \qquad \Longleftrightarrow \qquad n > \frac{2}{\varepsilon}$$

即,随着 n 的增大 $\frac{1+(-1)^n}{n}$ 与 0 可以任意接近。

常用数列极限举例

例 3. 极限 $\lim_{n\to\infty} C = C$.

例 4. 设 k > 0, 求极限 $\lim_{n \to \infty} \frac{1}{n^k}$.

 \mathbf{M} 由幂函数的图象可知,k > 0 时

$$\lim_{n\to\infty}\frac{1}{n^k}=0$$

同理可知, 当 k > 0 时

$$\lim_{n\to\infty}\frac{(-1)^n}{n^k}=0$$

等比数列的极限

例 5. 设 $q \in \mathbb{R}$, 观察数列 $\{q^n\}$, 并求极限 $\lim_{n \to \infty} q^n$.

\mathbf{M} 通过指数函数 \mathbf{a}^{X} 的图像可知:

- · 当 |q| < 1 时, $\lim_{n\to\infty}q^n=0$.
- · 当 |q| > 1 时,随着 n 无限增大, q^n 也无限增大,从而数列的极限不存在。
- · 当 q = 1 时, $\lim_{n \to \infty} q^n = \lim_{n \to \infty} 1 = 1$.
- · 当 q = -1 时,随着 n 无限增大, $q^n = (-1)^n$ 一直在 1 和 -1 之间振荡,从而数列的极限不存在。

发散数列的例子

无界型 如

$$1, 2, 3, \cdots, n, \cdots$$

$$2,4,8,\cdots,2^n,\cdots$$

振荡型 如

$$-1,1,-1,1,-1,1,\cdots,(-1)^n,\cdots$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{3}{4}, \frac{1}{5}, \frac{5}{6}, \frac{1}{7}, \frac{7}{8}, \cdots$$

数列极限的唯一性

定理

如果数列 $\{x_n\}$ 收敛,那么它的极限唯一,即

$$\lim_{\substack{n\to\infty\\n\to\infty}}x_n=A\\\lim_{n\to\infty}x_n=B$$
 \Longrightarrow $A=B.$

收敛数列的有界性

定理

如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 有界,即 $\lim_{n\to\infty} x_n = A \implies \exists M \in \mathbb{R}, \forall n \in \mathbb{N}_+, |x_n| \leq M.$

例 6. 讨论数列 0,1,0,2,0,3,··· 的敛散性。

发散

推论

如果数列 $\{x_n\}$ 无界,则数列 $\{x_n\}$ 发散。

极限的保号性

定理

设 $\lim_{n\to\infty} x_n = A$, 若 A>0(或 A<0), 则存在 $N\in\mathbb{N}$, 使得当 n>N 时恒有 $x_n>0$ (或 $x_n<0$)。

推论

设 $\lim_{n\to\infty} x_n = A$, 若存在 $N \in \mathbb{N}$, 使得当 n > N 时恒有 $x_n \le 0$ (或 $x_n \ge 0$), 则 $A \le 0$ (或 $A \ge 0$).

即使把 $x_n \ge 0$ 改为 $x_n \ge 0$, 也不能得到 A > 0. 如, 设 $x_n = \frac{1}{n}$, 则 $x_n \ge 0$, 但 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = 0$.

数列的子列

设
$$\{x_n\}$$
 时一个数列,设 $k_i \in \mathbb{N}_+$, $(i = \mathbb{N}_+)$, 且
$$k_1 < k_2 < k_3 < \cdots < k_n < \cdots$$

则称数列

$$X_{k_1}, X_{k_2}, X_{k_3}, \cdots, X_{k_n}, \cdots$$

为数列 $\{x_n\}$ 的一个子列,可记为 $\{x_{k_n}\}$.

数列 $\{x_n\}$ 的奇数项子列为 $\{x_{2n-1}\}$, 偶数项子列为 $\{x_{2n}\}$.

数列极限与其子列极限的关系

定理

设 $\lim_{n\to\infty} x_n = A$, 如果数列 $\{y_n\}$ 是数列 $\{x_n\}$ 的一个子列,那么 $\lim_{n\to\infty} y_n = A$.

例 7. 设 $\lim_{n\to\infty} x_n = A$, 如果数列 $\{x_n\}$ 中有无限项 1, 则 A = 1.

推论

如果数列 $\{x_n\}$ 有两个收敛子列且它们的极限不相等,则数列 $\{x_n\}$ 发散。

例 8. 证明数列 $x_n = (-1)^n$ 发散。 考虑其奇数项子列与偶数项子列

作业: 习题 1-2

- · 1.(1), 1.(3), 1.(5), 1.(7),
- · 2.(2).