

AMENDMENTS TO THE CLAIMS

1. **(Currently amended)** An electrolyte for the galvanic deposition of aluminum-magnesium alloys, containing at least one organoaluminum complex compound of formula $MAlR_4$ or mixtures thereof and an alkylmagnesium compound, wherein M represents Na, K, Rb or Cs, and R represents a C_1 - C_{10} alkyl group, ~~preferably a C_1 - C_4 alkyl group~~.
2. **(Currently amended)** The electrolyte according to claim 1, ~~characterized in that wherein~~ the electrolyte additionally includes trialkylaluminum.
3. **(Currently amended)** The electrolyte according to claim 1 or 2, ~~characterized in that wherein~~ the electrolyte includes AlR_3 , M^1AlR_4 , M^2AlR_4 and $Mg(R^1)_x(R^2)_y$, wherein M^1 and M^2 are different from each other, representing Na, K, Rb or Cs, R represents a C_1 - C_{10} alkyl group, ~~preferably a C_1 - C_4 alkyl group~~, R^1 and R^2 independently represent a C_1 - C_{20} , ~~preferably a C_2 - C_{10}~~ alkyl group, and $x = 0$ to 2, and $y = 0$ to 2, and $x + y = 2$.
4. **(Currently amended)** The electrolyte according to ~~one or more of claims 1 to~~ Claim 3, ~~characterized in that wherein~~ the alkylmagnesium compound is included in an amount of from 0.01 to 10 mole-%, ~~preferably from 0.1 to 1 mole %~~, relative to the aluminum complex.
5. **(Currently amended)** The electrolyte according to ~~one or more of claims 1 to~~ Claim 4, ~~characterized in that~~ the alkylmagnesium compound is selected from the group of $Mgbutyl_{1.5}octyl_{0.5}$, $Mgbutyl_{1.0}ethyl_{1.0}$, $Mgsec-butyl_{1.0}n-butyl_{1.0}$ or mixtures thereof.
6. **(Currently amended)** The electrolyte according to ~~one or more of claims~~ Claim 1 to 5, ~~characterized in that wherein~~ the electrolyte includes an organic solvent.
7. **(Currently amended)** The electrolyte according to claim 6, ~~characterized in that wherein~~ the organic solvent is an aromatic solvent.
8. **(Currently amended)** The electrolyte according to claim 7, ~~characterized in that wherein~~ the aromatic solvent is benzene, toluene or xylene or a mixture thereof.
9. **(Currently amended)** A method for the production of the electrolyte according to ~~claims~~ Claim 1 to 8, ~~comprising~~ characterized by the following steps:
 - supplying an organoaluminum complex compound of formula $MAlR_4$ or a mixture thereof, ~~optionally in combination with trialkylaluminum; and~~
 - ~~-addition of adding~~ an alkylmagnesium compound,

wherein M represents Na, K, Rb or Cs, and R represents a C₁-C₁₀ alkyl group, preferably a C₁-C₄ alkyl group.

10. (Currently amended) The method according to claim 9, characterized in that wherein the organoaluminum complex compound is a mixture of M¹AlR₄ and M²AlR₄, wherein M¹ and M² are different from each other, representing Na, K, Rb or Cs, R represents a C₁-C₁₀ alkyl group, preferably a C₁-C₄ alkyl group.

11. (Currently amended) The method according to claim 9, characterized in that wherein the alkylmagnesium compound is Mg(R¹)_x(R²)_y, wherein R¹ and R² independently represent a C₁-C₂₀, preferably a C₁-C₁₀ alkyl group, and x = 0 to 2, and y = 0 to 2, and x + y = 2.

12. (Currently amended) The method according to Claim one or more of claims 9 to 11, characterized in that wherein the alkylmagnesium compound is added dissolved in a hydrocarbon.

13. (Currently amended) The method according to Claim one or more of claims 9 to 11, characterized in that wherein the alkylaluminum complex is supplied dissolved in an aromatic hydrocarbon.

14. (Currently amended) The method according to claim 12, characterized in that wherein the hydrocarbon is a saturated or unsaturated hydrocarbon.

15. (Currently amended) The method according to claim 14, characterized in that wherein the hydrocarbon is selected from the group of i-pentane, n-pentane, hexane, n-hexane, heptane, n-heptane, toluene, xylene.

16. (Currently amended) An electrolyte for the production of aluminum-magnesium alloys on electrically conducting materials or electrically conducting layers, which can be produced according to the method of claims Claim 9 to 15.

17. (Currently amended) A method of coating electrically conducting materials or layers with aluminum-magnesium alloys comprising coating said electrically conducting materials or layers with using the electrolyte in accordance with Claim claims 1 to 8, in which method the alkylmagnesium compound is metered during coating.

18. (Cancelled)

19. Currently amended) An electrolysis kit for the galvanic deposition of aluminum-magnesium alloys on electrically conducting materials or layers, including:

Int. Appl. No. : PCT/EP2004/052113
Int. Filing Date : September 9, 2004

(a) the organoaluminum complex compounds or alkylaluminum compounds of ~~claims~~ Claim 1 to 3; and

(b) an alkylmagnesium compound in accordance with ~~claims~~ Claim 1, 3, 5.

20. (**Currently amended**) The electrolysis kit according to claim 19, characterized in that wherein the compounds (a) and (b) are present in an organic solvent.

21. (**New**) The electrolyte of Claim 3, wherein R represents C₁-C₄ alkyl group.

22. (**New**) The electrolyte of Claim 3, wherein R¹ and R² independently represent a C₂-C₁₀ alkyl group.

23. (**New**) The electrolyte of Claim 4, wherein the alkylmagnesium compound is included in an amount of from 0.1 to 1 mole% relative to the aluminum complex.

24. (**New**) The method of Claim 9, wherein the organoaluminum complex compound of formula MAIR₄ is supplied in combination with trialkylaluminum.

25. (**New**) The method of Claim 9, wherein R represents a C₁-C₄ alkyl group.

26. (**New**) The method of Claim 11, wherein R¹ and R² independently represent a C₂-C₁₀ alkyl group.