#### (19) 世界知的所有権機関 国際事務局



# 

WO 2006/035899 A1

#### (43) 国際公開日 2006年4月6日(06.04.2006)

# (10) 国際公開番号

(51) 国際特許分類: H04N 7/50 (2006.01)

(21) 国際出願番号:

PCT/JP2005/018015

(22) 国際出願日:

2005 年9 月29 日 (29.09.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

ΤP

(30) 優先権データ: 特願2004-286412 2004年9月30日(30.09.2004)

(71) 出願人(米国を除く全ての指定国について): 日本電 信電話株式会社 (NIPPON TELEGRAPH AND TELE-PHONE CORPORATION) [JP/JP]; 〒1008116 東京都 千代田区大手町二丁目3番1号 Tokyo (JP).

(72) 発明者; および

- (75) 発明者/出願人(米国についてのみ): 高村 誠之(TAKA-MURA, Seishi) [JP/JP]; 〒1808585 東京都武蔵野市緑町 3 丁目 9 - 1 1 N T T 知的財産センタ内 Tokyo (JP). 八島 由幸 (YASHIMA, Yoshiyuki) [JP/JP]; 〒1808585 東京都武蔵野市緑町3丁目9-11 NTT知的財産 センタ内 Tokyo (JP).
- (74) 代理人: 志賀 正武 (SHIGA, Masatake); 〒1048453 東 京都中央区八重洲2丁目3番1号 Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX,

/続葉有/

(54) Title: STEPWISE REVERSIBLE VIDEO ENCODING METHOD, STEPWISE REVERSIBLE VIDEO DECODING METHOD, STEPWISE REVERSIBLE VIDEO ENCODING DEVICE, STEPWISE REVERSIBLE VIDEO DECODING DEVICE, PROGRAM THEREFORE, AND RECORDING MEDIUM FOR THE PROGRAM

(54) 発明の名称: 段階的可逆ビデオ符号化方法、段階的可逆ビデオ復号方法、段階的可逆ビデオ符号化装置、段階 的可逆ビデオ復号装置、これらのプログラムおよびそのプログラムの記録媒体



- 1... STEPWISE REVERSIBLE VIDEO ENCODING DEVICE
- AA... RESIDUAL SIGNAL RORG BB... QUANTIZATION PARAMETER
- CC... UPPER/LOWER LIMIT DD... PREDICTION SIGNAL Y
- 11 INITIALIZATION UNIT
- 12... ORTHOGONAL CONVERSION UNIT
- 13... QUANTIZATION UNIT
- 14... EXISTING SPACE DECIDING UNIT
  15... COEFFICIENT SEQUENTIAL ENCODING UNIT
- 17... END DECIDING UNIT
- 16... COEFFICIENT BATCH-ENCODING UNIT

- 162... INVERSELY ORTHOGONAL CONVERSION UNIT
- 163 PREDICTION SIGNAL ADDING UNIT
- 164... INTERNAL VARIABLE UPDATING UNIT
- 165... MULTIPLEX LOOP END DECIDING UNIT
- 166... CONSECUTIVE NUMBER ENCODING UNIT 161... MULTIPLEX LOOP STARTING UNIT

(57) Abstract: A code to be transmitted as a basic portion can be reversibly decoded in a high efficiency while keeping compatibility with H.264 standards. An orthogonal conversion unit (12) converts a residual signal (Rorig) orthogonally to acquire a conversion coefficient (Xorig), which is quantized by a quantization unit (13). An existing space deciding unit (14) determines the upper/lower limit information (the existing space of the conversion coefficient) coefficient each offrom quantization information. coefficient batch-encoding unit (16) decides whether or not the dots in the existing space of the conversion coefficient are valid as the result of the orthogonal conversion of the residual signal, and enumerates the valid dots. Consecutive numbers (index) are assigned in the enumerated order, and the consecutive



MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR),

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### 添付公開書類:

#### ─ 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

numbers of the dots coincident with the conversion coefficient (Xorig) of the residual signal are encoded by a consecutive number encoding unit (166).

(57) 要約: 基本部分として伝送される符号はH. 264標準と互換性を保ちながら,高効率の可逆な復号を可能とする。直交変換部(12)が残差信号(Rorig)を直交変換して変換係数(Xorig)を取得し、それを量子化部(13)が量子化する。存在空間決定部(14)は、量子化情報から各係数の上下限値情報(変換係数の存在空間)を求める。係数一括符号化部(16)において、変換係数の存在空間内の格子点が残差信号の直交変換の結果として妥当であるかどうかを判断し、妥当である格子点を列挙する。列挙順に通し番号(index)を割り当て、残差信号の変換係数(Xorig)に一致する格子点の通し番号を通し番号符号化部(166)により符号化する。

# 明細書

段階的可逆ビデオ符号化方法, 段階的可逆ビデオ復号方法, 段階的可逆ビデオ符号化装置, 段階的可逆ビデオ復号装置, これらのプログラムおよびそのプログラムの記録媒体

# 技術分野

- [0001] 本発明は高能率ビデオ符号化/復号技術に関し、特に、基本部分として伝送される符号はH. 264標準と互換性を保ちながら、付加部分の符号量をできるだけ低く抑えつつ、原信号に一致する可逆な復号を可能とする段階的可逆ビデオ符号化/復号技術に関する。
- [0002] 本願は、2004年9月30日に出願された特願2004-286412号に対して優先権を 主張するものであって、その内容をここに援用する。 背景技術
- [0003] 従来の可逆あるいは段階的ビデオ符号化方式には以下のようなものがある。Moti onJPEG2000標準(非特許文献1参照)の可逆モードやJPEG-LS(非特許文献2 参照)は、静止画ベースであるためフレーム内に閉じた符号化を行う。
- [0004] H. 264標準(非特許文献3参照)の第二版"Fidelity Range Extension(FRExt)"は ,フレーム内・フレーム間予測残差信号を(直交変換・量子化せず)そのまま伝送する
- [0005] 非可逆な符号化方式と組み合わせた段階的符号化方式としては、復号画像と原画像の差分を符号化するもの(非特許文献4参照)がある。これは基本情報にMPEG -2を用いているが、他の方式であっても適用は可能である。
- [0006] また、MPEG-4標準(非特許文献5参照)の Fine Granularity Scalable(FGS) Profile 方式のように、DCT(離散コサイン変換)を施し整数化したものに対し、ビットプレーン展開し逐次伝送するというものがある。

非特許文献1:ISO/IEC 15444-3:2002 Information technology —JPEG 2000 image c oding system —Part 3:Motion JPEG 2000

非特許文献2:ISO/IEC 14495-1:1999 Information technology —Lossless and near-1

ossless coding of continuous tone still images

非特許文献3:ISO/IEC 14496-10:2003 Information technology — Coding of audio-v isual objects —Part 10:Advanced Video Coding

非特許文献4:中嶋, 八島, 小林: "MPEG-2符号化パラメータに基づく階層的ロスレス符号化の検討", 信学総大 D-11-49, Mar. 2000

非特許文献5:ISO/IEC 14496-2:2003 Information technology — Coding of audio-visual objects—Part 2:Visual

## 発明の開示

## 発明が解決しようとする課題

- [0007] 上記JPEG2000(非特許文献1参照)は、段階的伝送が可能であるが、フレーム内符号化をするため、ビデオ特有のフレーム間相関を用いた高能率符号化はできないという問題がある。また、上記JPEG-LS(非特許文献2参照)は、JPEG2000よりも効率は高いが、やはりフレーム内に閉じた符号化であり効率に限界があるほか、段階的伝送ができないという問題がある。
- [0008] H. 264標準(非特許文献3参照)の第二版"Fidelity Range Extension(FRExt)"は , 段階的伝送ができないという問題がある。
- [0009] また、上記非特許文献4に記載された技術は、直交変換空間内での残差ではなく、原信号空間での残差を符号化対象とするため、元来原信号が存在しないはずの空間までも考慮した符号化をせざるをえず、圧縮効率に限界がある。
- [0010] MPEG-4標準(非特許文献5参照)の Fine Granularity Scalable(FGS) Profile 方式は、
  - ・実数変換であるDCT後、係数が整数化されるため、いくら付加情報を多く使っても可逆にはできないという問題、
  - ・後述の式(6)のように変換後の係数が伸張されるH. 264標準方式においてそのま ま適用すると、伸張分がそのまま符号量の無駄につながってしまうという問題、 などがあった。
- [0011] このようにフレーム間予測を行うことでビデオ符号化効率を高め、スケーラビリティを 有し、かつ基本情報がH. 264標準互換である方式は提案されていなかった。

[0012] 本発明は、上に述べたような問題に鑑みて、基本部分として伝送される符号はH. 264標準と互換性を保ちながら、付加部分の符号量をできるだけ低く抑えつつ、可逆な復号を可能とすることを目的とする。

## 課題を解決するための手段

- 「0013**]** 上記課題を解決するため、本発明の第1の熊様に係る段階的可逆ビデオ符号化方 法は、原信号に一致する復号が可能なビデオ符号化を行う可逆ビデオ符号化方法 であって、あらかじめ定められた非可逆のビデオ符号化方式に準拠し、画像信号の 各ブロック毎に原信号からフレーム内符号化における空間予測またはフレーム間符 号化における時間予測による予測信号を差し引いた残差信号を入力するステップと , 前記非可逆のビデオ符号化方式に基づき, 前記残差信号に対し直交変換を施し て得られる変換係数およびそれを量子化した量子化係数を求めるステップと、前記 量子化係数、量子化時に用いた量子化パラメータおよび量子化方法から定まる変換 係数の存在空間を特定するステップと、前記変換係数の存在空間内のある格子点が 残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断のステ ップと、前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを所 定の格子点の順番で探索し列挙するステップと, 列挙された格子点に, 列挙順に通 し番号を割り当てるステップと,列挙された格子点の中で,残差信号の変換係数に一 致する格子点の通し番号を得るステップと, 前記残差信号の変換係数に一致する格 子点の通し番号を符号化し出力するステップとを有する。
- [0014] 本発明の第2の態様は、上記段階的可逆ビデオ符号化方法において、前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを列挙するステップでは、変換係数間の整数的値関係を用いることにより、前記空間内で変換係数がとり得ない点については、残差信号の直交変換の結果として妥当であるかどうかの判断処理を省略する。
- [0015] 本発明の第3の態様は、上記段階的可逆ビデオ符号化方法において、特定のいく つかの変換係数について、該係数と既に出力済みの係数との整数的値関係を利用 し、該係数がとり得ない値を除いた情報を出力することで、該係数を出力することに 代替するステップを有し、前記変換係数の存在空間内の格子点のうち前記判断が妥

当であるものを列挙するステップでは、前記あらかじめ出力された変換係数を用い、 次元の縮小した存在空間内で格子点を列挙する。

- [0016] 本発明の第4の態様は、上記段階的可逆ビデオ符号化方法において、前記妥当 性判断のステップでは、ビット演算および整数加減算のみを用いて妥当性を判断す る。
- [0017] 本発明の第5の態様は、上記段階的可逆ビデオ符号化方法において、残差信号の存在範囲と変換係数の存在範囲の交わりが凸多面体となることを用いて、判断対象となる前記格子点が前記凸多面体の外部に存在する場合に前記妥当性判断を途中で中止する。
- [0018] 本発明の第6の態様は、上記段階的可逆ビデオ符号化方法において、前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを列挙するステップを 実行せずに符号量の見積もりを行うステップを有する。
- [0019] 本発明の第7の態様は、上記段階的可逆ビデオ符号化方法により符号化された符号化ストリームを復号する復号方法であって、前記あらかじめ定められた非可逆のビデオ符号化方式に対応する復号方式を実行するステップと、量子化パラメータ、量子化係数および符号化側の量子化方法、ならびに既に復号された係数がある場合にはその係数から定まる変換係数の存在空間を特定するステップと、復号すべき係数を復号するステップと、前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断のステップと、前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを、符号化時における格子点の探索の順番と同じ順番で探索し列挙するステップと、通し番号を復号するステップと、前記列挙された格子点の中で、前記復号された通し番号に等しい順番の格子点を出力するステップとを有する。
- [0020] 本発明の第8の態様に係る段階的可逆ビデオ符号化装置は、原信号に一致する 復号が可能なビデオ符号化を行う可逆ビデオ符号化装置であって、あらかじめ定め られた非可逆のビデオ符号化方式に準拠し、画像信号の各ブロック毎に原信号から フレーム内符号化における空間予測またはフレーム間符号化における時間予測によ る予測信号を差し引いた残差信号を入力する手段と、前記非可逆のビデオ符号化

方式に基づき,前記残差信号に対し直交変換を施して得られる変換係数およびそれを量子化した量子化係数を求める手段と,前記量子化係数,量子化時に用いた量子化パラメータおよび量子化方法から定まる変換係数の存在空間を特定する存在空間決定手段と,前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断手段と,前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを所定の格子点の順番で探索し列挙する手段と,列挙された格子点に,列挙順に通し番号を割り当てる手段と,列挙された格子点に,列挙順に通し番号を割り当てる手段と,列挙された格子点の中で,残差信号の変換係数に一致する格子点の通し番号を得る手段と,前記残差信号の変換係数に一致する格子点の通し番号を符号化し出力する手段とを備える。

- [0021] 本発明の第9の態様は、上記段階的可逆ビデオ符号化装置により符号化された符号化ストリームを復号する復号装置であって、前記あらかじめ定められた非可逆のビデオ符号化方式に対応する復号方式を実行する手段と、量子化パラメータ、量子化係数および符号化側の量子化方法、ならびに既に復号された係数がある場合にはその係数から定まる変換係数の存在空間を特定する存在空間決定手段と、復号すべき係数を復号する係数復号手段と、前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断手段と、前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを、符号化時における格子点の探索の順番と同じ順番で探索し列挙する手段と、通し番号を復号する通し番号復号手段と、前記列挙された格子点の中で、前記復号された通し番号に等しい順番の格子点を出力する出力手段とを備える。
- [0022] 以上の段階的可逆ビデオ符号化および復号の処理は、コンピュータとソフトウェア プログラムとによって実現することもでき、そのプログラムをコンピュータ読み取り可能 な記録媒体に記録して提供することも、ネットワークを通して提供することも可能であ る。
- [0023] すなわち、本発明の第10の態様は、本発明の段階的可逆ビデオ符号化方法をコンピュータに実行させるための段階的可逆ビデオ符号化プログラムである。 本発明の第11の態様は、本発明の段階的可逆ビデオ復号方法をコンピュータに

実行させるための段階的可逆ビデオ復号プログラムである。

本発明の第12の態様は、本発明の段階的可逆ビデオ符号化方法をコンピュータに実行させるためのプログラムをコンピュータ読み取り可能な記録媒体に記録した段階的可逆ビデオ符号化プログラムの記録媒体である。

本発明の第13の態様は、本発明の段階的可逆ビデオ復号方法をコンピュータに 実行させるためのプログラムをコンピュータ読み取り可能な記録媒体に記録した段階 的可逆ビデオ復号プログラムの記録媒体である。

# 発明の効果

- [0024] 本発明によれば、基本部分として伝送される符号はH. 264標準の符号化と互換性を保ちながら、付加部分の符号量をできるだけ低く抑えつつ、原信号に一致する可逆な復号を可能とすることができる。
- [0025] また、本発明によれば、処理を数兆倍に高速化して上記の処理を実行することができる。また、実際の符号化を行わずに、符号量の推定を行うことができ、結果として符号量を減らす予測モードの選択を高速に行うことができる。

図面の簡単な説明

[0026] 「図1]R, Xの存在範囲  $\Omega$ と $\Psi$ をそれぞれ図示したものである。

「図2〕Ψ領域の拡大図である。

「図3]段階的可逆ビデオ符号化装置の構成例を示す図である。

[図4]段階的可逆ビデオ復号装置の構成例を示す図である。

[図5]indexの符号化に汎用可変長符号を用いた場合の段階的可逆ビデオ復号装置の構成例を示す図である。

[図6]実施例1の処理フローを示す図である。

[図7]実施例2の処理フローを示す図である。

#### 符号の説明

- [0027] 1 段階的可逆ビデオ符号化装置
  - 2,3 段階的可逆ビデオ復号装置
  - 11 初期化部
  - 12 直交変換部

- 13 量子化部
- 14 存在空間決定部
- 15 係数逐次符号化部
- 16 係数一括符号化部
- 17 終了判定部
- 21 初期化復号部
- 22 存在空間決定部
- 23 係数逐次復号部
- 24,28 係数一括復号部
- 25 Ubuf[]
- 26 終了判定部
- 27 汎用可変長復号部
- 161, 241, 281 多重ループ開始部
- 162, 242, 282 逆直交変換部
- 163, 243, 283 予測信号加算部
- 164, 244, 284 内部変数更新部
- 165, 245, 285 多重ループ終了判定部
- 166 通し番号符号化部
- 246 通し番号復号部
- 247, 286 原信号出力部

#### 発明を実施するための最良の形態

- [0028] 以下,図面を参照して本発明の実施形態及び実施例を詳細に説明する。ただし,本発明は以下に説明する実施形態及び実施例に限定されるものではなく,例えばこれらを適宜組み合わせたものも本発明の範囲に属する。
- [0029] 本発明の説明の前提として、H. 264方式の直交変換について説明する。
  - [H. 264方式の直交変換]
  - H. 264標準においては、フレーム内あるいはフレーム間で画素値を予測した後、 縦横4画素ずつの小ブロック毎に、残差の直交変換・係数の量子化を行う。

[0030] 原信号の小ブロックを $4\times4$ 行列Uで,フレーム内あるいはフレーム間で該ブロックを予測した信号を同じく $4\times4$ 行列Yで表す。そして予測残差信号  $(4\times4$ 行列R)をR=U-Y (1)

とする。これらはいずれも、要素がすべて整数である。ここでは残差信号の各要素を [0031] [数1]

$$R = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$
 (2)

のように表記することとする。

[0032] これに次のような直交変換を施す。

$$[0033] \quad X = TRT^{t} \tag{3}$$

[0034] [数2]

$$T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix}$$
 (4)

である。また、T<sup>t</sup>は行列Tの転置行列を表す。

[0035] さらに、Xの各要素を

[0036] [数3]

$$X = \begin{bmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ M & N & O & P \end{bmatrix}$$
 (5)

とする。

[0037] ここでTは直交変換ではあるが正規直交変換ではないことに注意する。正規直交変換の行列式は常に1であるが、Tの行列式(detT)は40であるので、任意の16次元

領域の体積はTによる写像後40倍になる。式(3)はTによりRの4行および4列に変換を施すため、変換後の係数Xは、変換前(残差信号R)に比べ

$$40^{4+4} = 6,553,600,000,000倍$$
 (6)

に引き伸ばされた,極めて疎な空間内に写像される。H. 264における直交変換係数は整数となるが,係数空間の格子点は,ほとんどが残差信号として不適(つまり後の式(8)により逆変換しても整数値が得られない)であるということになる。仮に係数空間の格子点をすべて対象とし,原信号に対応する格子点を符号化すると,上記の数の2を底とする対数を画素数(4\*4=16)で除した

$$\log_{3}(40^{4+4})/16=2.66[\text{bit}]$$
 (7)

が、1画素あたり余分に必要になる。対象としている信号が(1カラーコンポーネントあたり)8bitであることを考えると、2.66bitの増加は実用性を著しく阻害していると言わざるを得ない。

- [0038] H. 264方式では、前述のように大きく拡大されたXの各要素を、粗く(比較的広い幅で)量子化することにより、この拡大分を補償している。
- [0039] もし量子化がなければ、逆変換

$$R = T^{-1}X(T^{t})^{-1}$$
 (8)

により残差信号は完全に元に戻り、

$$U=R+Y \tag{9}$$

により原画素値の $4 \times 4$ 行列Uが再現できるところであるが、実際のH. 264符号化においては量子化を施された係数が復号側で逆量子化されると、一般に、元の値には近いが完全に同じではない値が復元されることになる。こうしてXは伝送後、異なる値X' ( $\neq X$ )となり、これを式(8)により逆変換しても

$$R \neq R' = T^{-1}X' (T^{t})^{-1}$$

となる。復号側ではYは符号化側と同一のものを持つことができるが、Rが再現できないため原画素値U=R+Yも再現できない。

- [0040] したがってUを完全再現するためには、Xの量子化で失われた情報を補うような付加情報を、別途伝送する必要がある。
- [0041] [実施形態1]

本実施形態は本発明の第1の態様に対応するものである。

実施形態1に係る段階的可逆ビデオ符号化方法は,この量子化で失われた情報を ,以下のように効率よく符号化する。

[0042] 例えば、式(5)における係数Aの値は量子化され伝送されるため、復号側では量子 化前のAの値は正確にはわからない。ここでは符号化側の量子化方法は既知として おり、Aがとり得る範囲はわかる。すなわち、H. 264ソフトウェアJM(参考文献: http: //bs.hhi.de/~suehring/tml/,"JM Reference Software version 8.4", Jul 2004)の量 子化方法を例にとると、

$$| \text{level}_{A} | = (|A| *qc_{A} + \text{qpconst}) > \text{qbits}$$
 (10)

のようにして量子化された値 level を求める。ここで">>"は右ビットシフト演算子である。なお level の正負はAのそれに一致させる。ここで $\operatorname{qc}_A$  はAの位置,量子化パラメータに対応してJMが決める整数, $\operatorname{qpconst}$  は符号化モード,量子化パラメータに対応してJMが決める整数, $\operatorname{qbits}$  は量子化パラメータに対応して,JMが決める整数である。

[0043] 復号側では量子化パラメータや符号化モードおよび量子化方法を知ることができるので、符号化側と共通の level  $_{_{A}}$  , qpconst , qbits を持つことができる。 level  $_{_{A}}$  の値からまず

$$\begin{aligned} \mathbf{x} &= \mid \text{level}_{\text{A}} \mid << \text{qbits} \\ \mathbf{y} &= \mathbf{x} + (1 << \text{qbits}) - 1 \\ \text{mmin} &= (\mathbf{x} - \text{qpconst} + \mathbf{qc}_{\text{A}} - 1) / \mathbf{qc}_{\text{A}} \\ \text{mmax} &= (\mathbf{y} - \text{qpconst}) / \mathbf{qc}_{\text{A}} \end{aligned}$$

を求める。ここで"<<"は左ビットシフト演算子,"/"は小数点以下を切捨てる整数 除算である。ついで上下限A が以下のように求められる。

[0044] [数4]

$$A_{\min} = \begin{cases} -\text{mmax} & (\text{level}_{A} < 0 \text{ のとき}) \\ -\text{mmax} & (\text{level}_{A} = 0 \text{ のとき}) \\ \text{mmin} & (\text{level}_{A} > 0 \text{ のとき}) \end{cases}$$

$$A_{\max} = \begin{cases} -\text{mmin} & (\text{level}_{A} < 0 \text{ のとき}) \\ \text{mmax} & (\text{level}_{A} = 0 \text{ のとき}) \\ \text{mmax} & (\text{level}_{A} > 0 \text{ のとき}) \end{cases}$$

$$(12)$$

こうして、量子化前の係数がとり得る上下限値

下限値 
$$A_{\min}$$
,  $B_{\min}$ ,  $C_{\min}$ , ...,  $P_{\min}$  (13)  
上限値  $A_{\max}$ ,  $B_{\max}$ ,  $C_{\max}$ , ...,  $P_{\max}$  (14)

を得ることができる。これらの数値範囲が本発明の第1の態様の「変換係数の存在空間」に相当する。

- [0045] この上下限を元に、下記のアルゴリズム1のような16重ループ(本発明の第1の態様の「列挙するステップ」に相当)を回すことにより、直交変換後の空間において妥当なものをもれなくすべて列挙することができる。ここで、以下の処理が本発明の第1の態様の「妥当性判断」に相当する。
  - 「Rの全要素が整数である」
  - ・「Uの全要素が8bit整数の範囲「0~255]におさまっている」

上記の妥当性判断の結果,列挙された格子点の総数はcases,残差信号の直交変換係数に一致する格子点の「通し番号」は indexとして与えられる。

[0046] [アルゴリズム1]

- 1.  $index \leftarrow 0$
- 2. cases $\leftarrow$ 0
- 3. for  $A \leftarrow A_{min}$  to  $A_{max}$
- 4. for  $B \leftarrow B_{min}$  to  $B_{max}$
- 5. for  $C \leftarrow C_{\min}$  to  $C_{\max}$
- 6. for  $D \leftarrow D_{min}$  to  $D_{max}$
- 7. for  $E \leftarrow E_{min}$  to  $E_{max}$
- 8. for  $F \leftarrow F_{\min}$  to  $F_{\max}$
- 9. for  $G \leftarrow G_{\min}$  to  $G_{\max}$

- 10. for  $H \leftarrow H_{min}$  to  $H_{max}$
- 11. for  $I \leftarrow I_{\min}$  to  $I_{\max}$
- 12. for  $J \leftarrow J_{min}$  to  $J_{max}$
- 13. for  $K \leftarrow K_{min}$  to  $K_{max}$
- 14. for  $L \leftarrow L_{\min}$  to  $L_{\max}$
- 15. for  $M \leftarrow M_{min}$  to  $M_{max}$
- 16. for  $N \leftarrow N_{min}$  to  $N_{max}$
- 17. for  $O \leftarrow O_{min}$  to  $O_{max}$
- 18. for  $P \leftarrow P_{\min}$  to  $P_{\max}$
- 19. begin
- 20.  $R \leftarrow T^{-1}X(T^{t})^{-1}(* 式(8)*)$
- 21. if Rの全要素が整数である
- 22. then (\*A~Pが整数信号の直交変換の結果として妥当\*)
- 23.  $U \leftarrow R + Y(*式(9)*)$
- 24. if Uの全要素が8bit整数の範囲[0~255]におさまっている
- 25. then (\*A~Pが残差信号の直交変換の結果として妥当\*)
- 26. if Xが原変換係数に一致する
- 27. then index  $\leftarrow$  cases
- 28. endif
- 29. cases  $\leftarrow$  cases +1
- 30. endif
- 31. endif
- 32. end
- 33. cases分の情報量を用いてindex を符号化

[実施形態2]:変換係数間の整数的値関係を利用した高速化

本実施形態は本発明の第2の態様に対応するものである。

実施形態1では、16重のループをそれぞれ1間隔で回すため、総ループ回数は非常に多くなる。しかし、実施形態2では、直交変換係数間に存在する整数的関係を用

いることで、符号化効率は同じままで、ループ回数を大幅に削減することができる。

[0047] まず4×4行列Rを, 上の行から下の行へ順に並べなおした16次元の行ベクトル↑ xにより

$$\uparrow x=[a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p]$$
(15)

のように表現することとする。

[0048] 式(3)をこの16次元ベクトルを用いて書き換えると,

$$A = \uparrow t_{A} \uparrow x^{t}$$
$$B = \uparrow t_{B} \uparrow x^{t}$$

$$P = \uparrow t_{R} \uparrow x^{t}$$

のように書くことができる。

ここで

[0049] ここで ↑  $t_A$  + ↑  $t_C$  を計算すると ↑  $t_A$  + ↑  $t_C$  = [2,0,0,2,2,0,0,2,2,0,0,2,2,0,0,2] = 2[1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1]

となる。したがって、

$$A+C = (\uparrow t_A + \uparrow t_C) \uparrow x^t$$

$$= 2[1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1] \uparrow x^t$$

であるので、任意の整数要素ベクトル↑xに対し、A+Cは常に偶数となる。

[0050] つまりAの値がわかっている場合, Cの下位第1ビットはAのそれと同じとわかるので, Cの存在範囲は,

$$C_{\min} + ((C_{\min} + A) \& 1) \le C \le C_{\max} - ((C_{\max} + A) \& 1)$$
(16)

であり、この区間中に間隔2でまばらに存在していることになる。ここで'&'はビットA ND演算子である。同じ位置関係である、

EとG

IŁK

M&O

も同様である。

[0051] 同様に縦方向においても、A+Iも偶数であることから、Aの値がわかっている場合 , Iが間隔2で存在する範囲がわかる。同じ位置関係である、

BとJ

C&K

DとL

も同様である。

[0052] 次に,任意の整数要素ベクトル↑xに対し,B+(C>>1)+(A>>1)は常に偶数になる。これは,↑xの各要素を0,1,2,3と変化させたすべての場合について確認することで証明される。つまりAとCの値がわかっている場合,Bの下位第1ビットは(C

>>1)+(A>>1)のそれと同じとわかるので、上記と同様にBの存在範囲がわかり、そこに間隔2で存在することになる。同じ位置関係、および縦に同じ位置関係である、

[0053] 次に

2. 
$$5(\uparrow t_A + \uparrow t_C) + 2 \uparrow t_B + \uparrow t_D$$
  
=  $[10,0,0,0,10,0,0,0,10,0,0,10,0,0,0]$   
=  $10[1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0]$ 

となるので,任意の整数要素ベクトル↑xに対し,2B+D+2.5(A+C)は,常に10の倍数になる。

- [0054] つまりA, B, Cの値がわかっている場合, Dの10を法とする剰余(D mod 10)と2. 5(A+C)+2Bのそれとの和は0か10となるので, Dの存在範囲がわかり, その中に 間隔10で存在することになる。
- [0055] 同じ位置関係や、縦に同じ位置関係、例えばMとA、E、Iの間にも同様の関係がある。
- [0056] ここで用いた,ある整数yを法とする剰余演算子mod yは,非負整数x≥0に対してはC言語などの剰余演算子'%'と同じで

$$x \mod y = x\%y$$

である。なお%演算子は、負の整数x<0に対しては、

$$x\%y = -((-x)\%y)$$

のように奇関数となるが、ここで用いるmod yは、結果が負にならないよう

$$x \mod y = (x\%y) + y (x < 0 の場合)$$

であるとする。例えば

$$(-1) \mod 10 = 9$$

である。

[0057] さらに、

$$\uparrow t_{A} + \uparrow t_{C} + \uparrow t_{I} + \uparrow t_{K} = [4,0,0,4,0,0,0,0,0,0,0,0,4,0,0,4]$$
$$= 4[1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1]$$

となる。したがって,任意の整数要素ベクトル↑xに対し,A+C+I+Kは常に4の倍数になる。

- [0058] つまりA, C, Iの値がわかっている場合, Kの4を法とする剰余と(A+C+I)のそれとの和は0か4となるので, Kの存在範囲がわかり, そこに間隔4で存在することになる
- [0059] さらに以下のような関係もある。

$$\begin{array}{c} [0060] \quad \uparrow t_{_{\rm B}} - \uparrow t_{_{\rm J}} + \uparrow t_{_{\rm E}} - \uparrow t_{_{\rm G}} = [0,4,4,0,4,4,0,-4,4,0,-4,-4,0,-4,-4,0] \\ \\ = 4[0,1,1,0,1,1,0,-1,1,0,-1,-1,0,-1,-1,0] \end{array}$$

- 2.  $5(\uparrow t_A + \uparrow t_C + \uparrow t_I + \uparrow t_K) + 2(\uparrow t_E + \uparrow t_G) + \uparrow t_M + \uparrow t_O$ = [20,0,0,20,0,0,0,0,0,0,0,0,0,0]
  - =20[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]

2. 
$$5(\uparrow t_A + \uparrow t_C + \uparrow t_1 + \uparrow t_K) + 2(\uparrow t_B + \uparrow t_J) + \uparrow t_D + \uparrow t_L$$
  
=  $[20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$   
=  $20[1,0,0,0,0,0,0,0,0,0,0,0,0,0]$ 

6. 
$$25(\uparrow t_{A} + \uparrow t_{C} + \uparrow t_{I} + \uparrow t_{K})$$
  
 $+5(\uparrow t_{B} + \uparrow t_{B} + \uparrow t_{G} + \uparrow t_{J})$   
 $+2. 5(\uparrow t_{D} + \uparrow t_{L} + \uparrow t_{M} + \uparrow t_{O})$   
 $+4\uparrow t_{F} + 2(\uparrow t_{H} + \uparrow t_{N}) + \uparrow t_{P}$   
 $=[100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$   
 $=100[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$   
つまり、

- 1)Aの範囲を1間隔にループ
- 2)Cの範囲を2間隔にループ(Aを利用)
- 3)Bの範囲を2間隔にループ(A, Cを利用)
- 4)Dの範囲を10間隔にループ(A, B, Cを利用)
- 5)Iの範囲を2間隔にループ(Aを利用)
- 6)Eの範囲を2間隔にループ(A, Iを利用)
- 7) Mの範囲を10間隔にループ(A, I, Eを利用)
- 8) Kの範囲を4間隔にループ(A, C, Iを利用)
- 9)Gの範囲を2間隔にループ(Eを利用)
- 10)Fの範囲を2間隔にループ(E, Gを利用)
- 11) Hの範囲を10間隔にループ(E, F, Gを利用)
- 12)Jの範囲を4間隔にループ(B, E, Gを利用)
- 13)Lの範囲を20間隔にループ(A, B, C, D, I, J, Kを利用)
- 14) Nの範囲を10間隔にループ(B, F, Jを利用)
- 15)Oの範囲を20間隔にループ(A, C, E, G, I, K, Mを利用)
- 16) Pの範囲を100間隔にループ(A~Oを利用)
- のように多重ループを実行すれば、各forループを1間隔にループするのに比べ、総ループ回数を
  - 1/(2\*2\*10\*2\*2\*10\*4\*2\*2\*10\*4\*20\*10\*20\*100)

=1/409,600,000,000

に削減できる。

[0061] 具体的な手順はアルゴリズム2のようになる。ここで $C'_{min}$ ,  $B'_{min}$ ,  $D'_{min}$  は,  $f(x, y) = (-x) \mod y$  (17)

を用いて例えば次のようにして求める。

[0062] 
$$C'_{\min} = C_{\min} + f(C_{\min} + A, 2)$$
 (18)  $B'_{\min} = B_{\min} + f(B_{\min} + (A >> 1) + (C >> 1), 2)$  (19)  $D'_{\min} = D_{\min} + f(D_{\min} + 2B + 2.5(A + C), 10)$  (20)  $E'_{\min} \sim P'_{\min}$  も同様である。

[0063] [アルゴリズム2]

- 1.  $index \leftarrow 0$
- 2. cases ← 0
- 3. for A $\leftarrow$ A<sub>min</sub> to A<sub>max</sub>(\*ここだけは1間隔\*)
- 4. for  $C \leftarrow C'$  to C step 2
- 5. for  $B \leftarrow B'$  to  $B_{max}$  step 2
- 6. for  $D {\leftarrow} D'_{\min}$  to  $D_{\max}$  step 10
- 7. for  $I \leftarrow I'$  to  $I_{max}$  step 2
- 8. for  $E \leftarrow E'$  to  $E_{max}$  step 2
- 9. for  $M \leftarrow M'$  to  $M_{max}$  step 10
- 10. for  $K \leftarrow K'$  to  $K_{max}$  step 4
- 11. for  $G {\leftarrow} G'$   $_{\tiny{min}}$  to  $G_{\tiny{max}}$  step 2
- 12. for  $F \leftarrow F'$  to  $F_{max}$  step 2
- 13. for  $H \leftarrow H'$  min to  $H_{max}$  step 10
- 14. for  $J \leftarrow J'$  to  $J_{max}$  step 4
- 15. for  $L \leftarrow L'$  to  $L_{max}$  step 20
- 16. for  $N \leftarrow N'$  to  $N_{\text{max}}$  step 10
- 17. for  $O \leftarrow O'$  min to O step 20
- 18. for  $P {\leftarrow} P'_{\text{min}}$  to  $P_{\text{max}}$  step 100
- 19. begin
- 20.  $R \leftarrow T^{-1}X(T^{t})^{-1}(*式(8)*)$
- 21. if Rの全要素が整数である
- 22. then (\*A~Pが整数信号の直交変換の結果として妥当\*)
- 23. U←R+Y(\*式(9)\*)
- 24. if Uの全要素が8bit整数の範囲[0~255]におさまっている
- 25. then (\*A~Pが残差信号の直交変換の結果として妥当\*)
- 26. if Xが原変換係数に一致する
- 27. then index  $\leftarrow$  cases

28. endif

29. cases  $\leftarrow$  cases +1

- 30. endif
- 31. endif
- 32. end
- 33. cases分の情報量を用いてindex を符号化

「実施形態3]:ループ多重度削減

本実施形態は本発明の第3の態様に対応するものである。

上記実施形態1および実施形態2におけるアルゴリズムは、いずれも16重ループを用いるものであったが、実施形態3では、さらに高速化するためにループの多重度を減らすようにする。ここではA~Pの16係数のうち

A B C D

E . . .

I • K •

 $M \cdot \cdot \cdot$ 

の8係数を別途伝送することでこれらのループを除くようにする。

[0064] まず係数Aの伝送を考える。例えば「付加情報」として

$$Z_{A} = A - A_{min}$$

を伝送すれば, 復号側で

$$A = Z_A + A_{min}$$

とすることでAを復元することができる。

[0065] なお、このときAのとり得る場合の数が

$$\mathbf{A}_{_{\mathrm{max}}} - \mathbf{A}_{_{\mathrm{min}}} + 1$$

であるので、Z<sub>A</sub>を符号化するのに必要な情報量は、

$$\log_{2} \left( A_{\text{max}} - A_{\text{min}} + 1 \right) [\text{bit}] \tag{21}$$

となる。これは復号側でも共有できるので、Z<sub>A</sub>を復号することは可能である。

[0066] B~PについてもこのAのように伝送することも可能であるが、残差信号は直交変換後の空間内で非常に疎に分布していることから、符号量が大変に無駄になる。そこで

例えばBについては、A、Cが既知の場合Bに関するループを2間隔にできたことから

,

$$Z_{B} = (B - B'_{min})/2$$

を伝送すれば, 復号側で

$$B=2Z_B+B'_{min}$$

によりBを復元できる。 $Z_B$ を符号化するのに必要な情報量は,

$$\log_{2}((B_{max}-B'_{min})/2+1)[bit]$$

となる。C~Kについても同様である。したがって,

- 1)Aの値をZ<sub>A</sub>により符号化
- 2)Cの範囲を約1/2に狭めた $Z_c$ で符号化(Aを利用)
- 3) Bの範囲を約1/2に狭めた $Z_B$ で符号化(A, Cを利用)
- 4) Dの範囲を約1/10に狭めたZ<sub>D</sub>で符号化(A, B, Cを利用)
- 5) Iの範囲を約1/2に狭めたZ で符号化(Aを利用)
- 6) Eの範囲を約1/2に狭めた $Z_F$ で符号化(A, Iを利用)
- 7) Mの範囲を約1/10に狭めた $Z_{M}$ で符号化(A, E, Iを利用)
- 8) Kの範囲を約1/4に狭めた $Z_{\kappa}$ で符号化(A, C, Iを利用)
- のような手順を実行することで、Xのうち

ABCD

E • • •

I • K •

 $M \cdot \cdot \cdot$ 

の8係数が無駄なく伝送される。このように範囲を狭められたZ が,本発明の第3の 態様の「該係数がとり得ない値を除いた情報」に相当する。

[0067] 残る8係数

- . . . .
- F G H
- J L
- N O P

については、実施形態1と同様、まとめて1つの数indexで表現し伝送する。

[0068] これらをまとめるとアルゴリズム3に示すような手順となる。

[0069] [アルゴリズム3]

- 1. A, C, B, D, I, E, M, Kをこの順で符号化する
- 2.  $index \leftarrow 0$
- 3. cases $\leftarrow$ 0
- 4. for  $G {\leftarrow} G'$  to  $G_{_{max}}$  step 2
- 5. for  $F {\leftarrow} F'_{\text{min}}$  to  $F_{\text{max}}$  step 2
- 6. for  $H \leftarrow H'$  to  $H_{max}$  step 10
- 7. for  $J {\leftarrow} J' \underset{\text{min}}{}$  to  $J_{\underset{\text{max}}{}}$  step 4
- 8. for  $L \leftarrow L'$  to  $L_{max}$  step 20
- 9. for  $N \leftarrow N'$  to  $N_{max}$  step 10
- 10. for  $O \leftarrow O'$  to O step 20
- 11. for  $P \leftarrow P'$  min to P step 100
- 12. begin
- 13.  $R \leftarrow T^{-1}X(T^{t})^{-1}(*式(8)*)$
- 14. if Rの全要素が整数である
- 15. then (\*A~Pが整数信号の直交変換の結果として妥当\*)
- 16. U $\leftarrow$ R+Y(\*式(9)\*)
- 17. if Uの全要素が8bit整数の範囲[0~255]におさまっている
- 18. then (\*A~Pが残差信号の直交変換の結果として妥当\*)
- 19. if Xが原変換係数に一致する
- 20. then index  $\leftarrow$  cases
- 21. endif
- 22. cases  $\leftarrow$  cases +1
- 23. endif
- 24. endif
- 25. end

26. cases分の情報量を用いてindex を符号化

上記のようにして、16重だったループが8重に削減され、処理がより高速になる。

[0070] なおindex を記述するのに必要な情報量は

である。これは復号側が付加情報なしに持つことができ、かつindex の復号に必要な情報である。

[0071] 「実施形熊4]:対応する復号

本実施形態は本発明の第7の態様に対応するものである。

ここでは、上記実施形態3に係る符号化に対応する復号に係る実施形態について説明する。復号側でも符号化と同様のループを回すことにより、ループ最内部の妥当性判断の結果がindex +1回目に真となったときの、A~KおよびG~Pの値が、原残差信号に対応する直交変換係数となることを知る。

- [0072] index の符号化時にこれがどれだけの情報量を持つかに応じて符号化した場合, in dex の復号においては, まずこれがどれだけの情報量をもつかを知らなければならない。そこで予めcases を得る必要がある。そのためにはやはり符号化と同様のループを実行することが必要である。
- [0073] 例えば、メモリは余分に必要であるが、多重ループの二度実行を避けるためにアルゴリズム4のようにすることで多重ループを一度実行することによりcases, index,原信号をこの順で取得できる。ここでUbuf[]は、4×4行列を要素とする配列であり、動的に確保あるいはあらかじめ十分な量を確保しておくこととする。
- [0074] [アルゴリズム4]
  - 1. A, C, B, D, I, E, M, Kをこの順で復号する
  - 2. cases $\leftarrow$ 0
  - 3. for  $G \leftarrow G'$  to  $G_{max}$  step 2
  - 4. for  $F {\leftarrow} F'_{\text{min}}$  to  $F_{\text{max}}$  step 2
  - 5. for  $H \leftarrow H'$  to  $H_{max}$  step 10
  - 6. for  $J \leftarrow J'$  to  $J_{max}$  step 4
  - 7. for  $L \leftarrow L'$  to  $L_{max}$  step 20

- 8. for  $N \leftarrow N'$  to  $N_{max}$  step 10
- 9. for  $O \leftarrow O'$  to O step 20
- 10. for  $P \leftarrow P'$  to  $P_{max}$  step 100
- 11. begin
- 12.  $R \leftarrow T^{-1}X(T^{t})^{-1}(*式(8)*)$
- 13. if Rの全要素が整数である
- 14. then (\*A~Pが整数信号の直交変換の結果として妥当\*)
- 15.  $U \leftarrow R + Y(*式(9)*)$
- 16. if Uの全要素が8bit整数の範囲「0~255] におさまっている
- 17. then (\*A~Pが残差信号の直交変換の結果として妥当\*)
- 18. Ubuf[cases]  $\leftarrow$  U
- 19. cases  $\leftarrow$  cases +1
- 20. endif
- 21. endif
- 22. end
- 23. cases分の情報量を用いてindex を復号
- 24. U←Ubuf [index ] (\*原信号值\*)

「実施形態5]:高速な符号量推定

本実施形態は本発明の第6の態様に対応するものである。

- H. 264方式では、フレーム内予測においては複数のモードや種類、フレーム間予測においては複数のブロックサイズなど、さまざまな予測モードを選択することができる。予測残差信号Rも予測モードにより変化するため、符号量対歪みの意味で最適な予測モードを選択する場合、モード毎の符号量を適切に見積もる必要が生じる。
- [0075] 可逆符号化の場合, 歪みは常に零であるので, 符号量(H. 264準拠の符号量と, 付加情報の符号量の和)を最小化することだけに注意すればよい。
- [0076] アルゴリズム1, アルゴリズム2, アルゴリズム3に示したような多重ループを実行すれば当然正確な付加情報符号量を見積もることが可能であるが, より高速な符号量推定法があれば, 複数のモードを比較するのに都合がよい。

- [0077] 実施形態5は、多重ループを実行することなく、付加情報の符号量を見積もることを 目的としている。
- [0078] まず実施形態1,実施形態2のように特定の変換係数を事前に伝送しない場合を説明する。事前に量子化前の係数がとり得る上下限値(式(13),式(14))を求めておく。これを元に本発明の第6の態様の「変換係数の存在空間」の体積Vを次のように求める:

[0079] [数5]

$$V = \prod_{x \in A_{min}} (x_{max} - x_{min} + 1)$$
 (23)

このVが存在空間中の格子点の数を近似していると考えられる。この中のすべてが原残差信号に対応しているわけではなく、空間は式(6)に示したように拡大されているため、Vをこの倍率で除したV。

$$V_0 = V/40^{4+4}$$
 (24)

が格子点の総数を近似していると考えられる。したがって、1画素あたりの付加情報符号量l。は、

$$l_{0} = log_{2} V_{0} / 16$$

$$= log_{2} (V / 40^{4+4}) / 16$$

$$= log_{2} V / 16 - 2.66[bit]$$
(25)

となる。

[0080] また実施形態3のように特定の変換係数を事前に伝送する場合, それらの情報量1 は式(21)と同様にして、

[0081] [数6]

$$l_1 = \sum_{x \in A_{\text{min}}} ((x_{\text{max}} - x'_{\text{min}})/n_x + 1)$$
 (26)

ここでxは

I • K •

 $M \cdot \cdot \cdot$ 

の係数である。

[0082] なおn はすでに述べた区間を狭める量であり、A, ..., Mそれぞれについて

1 2 2 10

2 . . .

2 · 4 ·

10 • • •

である。 $A'_{min} = A_{min}$ ,  $C'_{min} \sim M'_{min}$ は、式(18)などのようにして求める。

[0083] また、残る8次元の「変換係数の存在空間」の体積 $V_1$  は次のようになる:

[0084] [数7]

$$V_1 = \prod_{x \in F, \dots, P} (x_{\text{max}} - x_{\text{min}} + 1)$$
 (27)

ここでも,先のケース同様,原残差信号に対応する格子点はまばらに存在している。 この空間の拡大率は,式(6)を $n_x$  (x  $\in$  A, ... , M)をすべて掛け合わせたもので除した

「0085] 「数8]

$$n_0 = 40^{4+4} / \prod_{x \in A, \dots, M} n_x = 40^8 / (1 * 2 * 2 * 10 * 2 * 2 * 4 * 10)$$
  
= 1, 024, 000, 000 (28)

となっているはずである。そこで「格子点の総数」の情報量1 は一画素あたり

$$\frac{1}{2} = \log_{2} \left( \frac{V_{1}}{n_{0}} \right) / 16 
= \log_{2} \frac{V_{1}}{16 - 1.87 [bit]}$$
(29)

となる。

[0086] 結局,一画素あたり付加情報量は両者の和

$$l_1 + l_2 [bit]$$
 (30)

[0087] 式(25),式(30)のように見積もられた値を利用して,多重ループを用いる符号化

を実行することなしに、符号量の推定を行うことができる。これを用いて符号量最小と なるモードを選択し、選択されたモードについてだけ実際の符号化を行うことで、準 最適な可逆符号化を実現することができる。

[0088] [実施形態6]:妥当性判断の高速化

本実施形態は本発明の第4の態様に対応するものである。

[0089] [数9]

$$T^{-1} = \begin{bmatrix} 0.25 & 0.2 & 0.25 & 0.1 \\ 0.25 & 0.1 & -0.25 & -0.2 \\ 0.25 & -0.1 & -0.25 & 0.2 \\ 0.25 & -0.2 & 0.25 & -0.1 \end{bmatrix}$$
(31)

であるので、式(8)をそのまま計算する場合、浮動小数点演算が必要になる。しかしながら、これを20倍すると、

「0090] 「数10]

$$T_0 = 20T^{-1} = \begin{bmatrix} 5 & 4 & 5 & 2 \\ 5 & 2 & -5 & -4 \\ 5 & -2 & -5 & 4 \\ 5 & -4 & 5 & -2 \end{bmatrix}$$
 (32)

となるので、 $T^{-1}$ の代わりに $T_0$ を用いることで、以下のように正しいRの400(=20\*20)倍の値( $R_{400}$ とする)を整数演算のみで得ることができる。

[0091] 
$$R_{400} = 400R = T_{0} X T_{0}^{t}$$
 (33)

[0092] [数11]

$$\begin{bmatrix} s \\ t \\ u \\ v \end{bmatrix} = T_0 \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
 (34)

としたとき,式(33)は式(34)を8回縦横に施すことに分解できるが,この計算は具体的にアルゴリズム5のように高速に求められる。

[0093] [アルゴリズム5]

1. 
$$x_0 \leftarrow 5(a+c)$$

2. 
$$x_1 \leftarrow 5(a-c)$$

3. 
$$x_{g} \leftarrow 4b + 2c$$

$$4. x_{2} \leftarrow 2b - 4c$$

5. 
$$s \leftarrow x_0 + x_2$$

6. 
$$t \leftarrow x_1 + x_3$$

7. 
$$u \leftarrow x_1 - x_3$$

8. 
$$\mathbf{v} \leftarrow \mathbf{x}_{0} - \mathbf{x}_{2}$$

ここで、5xは(x<<2)+xのようにシフト1回、加算1回で求められるし、4b+2cなども(b<<2)+(c<<1)としてシフト2回、加算1回で求められるため、式(33)の計算に乗算は一切不要である。

- [0094] ここで、前述した「妥当性判断」の一つである、「Rの全要素が整数であること」は、「R。の全要素が400の倍数であること」と等価である。これを実行する場合、400で除した余りが0であることを確認するために、除算が必要となる。しかしながら、既にループを回す時点で25の倍数である冗長性は除去されているので、16の倍数であることを確認すればよい。これは「R。の全要素の下位4bitがすべて0であること」と等価である。これは「各要素と15(二進数で1111)とのビットAND演算の結果が0であること」と等価であり、除算を用いずに判断ができる。
- [0095] ここで、もう一つの「妥当性判断」である、「Uの全要素が8bit整数の範囲[0~255]におさまっていること」も修正が必要になる。式(9)の両辺に400を乗ずると

$$U_{400} = 400U = R_{400} + Y_{400}$$
 (35)

となる。ここで $Y_{400}$ は予測信号Yを400倍したものであり、これを予め用意しておき(256要素のルックアップテーブルを用いれば400倍の乗算は不要である)、 $R_{400}$ との和を求めれば、原信号の400倍が得られる。ここで255 \* 400 = 102、000なので「 $U_{400}$ の全要素が $[0\sim102000]$ におさまっていること」を確認すればよい。

- [0096] この手順をまとめるとアルゴリズム6のようになる。
- [0097] [アルゴリズム6]
  - 1. index←0

- 2. cases $\leftarrow$ 0
- 3. for A←A<sub>min</sub> to A<sub>max</sub> (\*ここだけは1間隔\*)
- 4. for  $C \leftarrow C'$  to  $C_{max}$  step 2
- 5. for  $B \leftarrow B'$  to  $B_{max}$  step 2
- 6. for  $D {\longleftarrow} D'$   $_{\mbox{\tiny min}}$  to  $D_{\mbox{\tiny max}}$  step 10
- 7. for  $I \leftarrow I'$  to  $I_{max}$  step 2
- 8. for  $E \leftarrow E'$  to  $E_{max}$  step 2
- 9. for  $M \leftarrow M'$  to  $M_{max}$  step 10
- 10. for  $K \leftarrow K'$  to  $K_{max}$  step 4
- 11. for  $G \leftarrow G'$  to  $G_{max}$  step 2
- 12. for  $F \leftarrow F'$  to  $F_{max}$  step 2
- 13. for  $H \leftarrow H'$  to  $H_{max}$  step 10
- 14. for  $J {\leftarrow} J' \underset{min}{}$  to  $J_{max}$  step 4
- 15. for  $L \leftarrow L'$  to  $L_{max}$  step 20
- 16. for  $N \leftarrow N'$  min to N step 10
- 17. for  $O \leftarrow O'$  min to O step 20
- 18. for  $P \leftarrow P'$  to  $P_{max}$  step 100
- 19. begin
- 20.  $R_{400} \leftarrow T_0 XT_0^{t} (*式(33)*)$
- 21. if R<sub>400</sub>の全要素の下位4bitが0である
- 22. then (\*A~Pが整数信号の直交変換の結果として妥当\*)
- 23.  $U_{400} \leftarrow R_{400} + Y_{400} (*式(35)*)$
- 24. if U の全要素が[0~102000]におさまっている
- 25. then (\*A~Pが残差信号の直交変換の結果として妥当\*)
- 26. if Xが原変換係数に一致する
- 27. then index  $\leftarrow$  cases
- 28. endif
- 29. cases  $\leftarrow$  cases +1

- 30. endif
- 31. endif
- 32. end
- 33. cases分の情報量を用いてindex を符号化

[実施形態7]: 凸性を利用した処理高速化

本実施形態は本発明の第5の態様に対応するものである。

残差信号

「0098] 「数12]

$$R = \left[ \begin{array}{cccc} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{array} \right]$$

の存在空間を考える。左上の要素aは、この位置の予測画素信号をY とすると、

$$0 \le a + Y_a \le 255$$
 (36)  
 $-Y_a \le a \le 255 - Y_a$  (37)

という存在範囲を満たしている。b~pも同様に上限・下限が定まっている。16次元空間で考えると、Rの存在範囲Ωは凸多面体(超直方体)の形状をしていることになる。

- [0099] Rの存在範囲を式(3)により変換した先の、やはり16次元の空間でも、回転・拡大を経ているが凸多面体であることには変わりがない。変換係数Xはこの変換先の空間内に存在しているが、各要素の上下限は式(13)、式(14)のように求まっているため、Xの存在範囲Ψもやはり凸多面体(超直方体)となっている。したがって、ΩとΨの交わりΩ ∩ Ψも、やはり凸多面体になる。これらの関係を簡単のため2次元で図示すると図1のようになる。
- [0100] 図1の $\Psi$ 領域を拡大したものが図2である。格子点を列挙するステップにおいて多 重ループを回す際,この図に示すように,A=A でBを変化させていった場合,妥当 性判断の第二番(Uの全要素が8bit整数の範囲 $[0\sim255]$ におさまっている)は5個 目の格子点(灰色)において「真」 $\rightarrow$ 「偽」となる。存在範囲 $\Omega$   $\cap$   $\Psi$ が凸であるため,6 個目以降は偽であることが確定するので,Bのループを中止し,次の,A=A として

Bのループを再開する。ここでは6個目の格子点(灰色)において「真」→「偽」となる ためループを中止する。このようにして、図の破線で囲った部分についての判断を中 止することができる。

[0101] これらをまとめるとアルゴリズム7のようになる。全係数について妥当性判断中止を 行う手順を示すと字下げが深くなりすぎるため、ここでは簡単のため多重ループ最内 部の3変数(N, O, P)について妥当性判断を中止する手順を示しているが、一般性 を示すには十分である。

### [0102] [アルゴリズム7]

- 1.  $index \leftarrow 0$
- 2. cases ← 0
- 3. for  $A \leftarrow A_{min}$  to  $A_{max}$
- 4. for  $B \leftarrow B_{min}$  to  $B_{max}$
- 5. for  $C \leftarrow C_{min}$  to  $C_{max}$
- 6. for  $D \leftarrow D_{min}$  to  $D_{max}$
- 7. for  $E \leftarrow E_{min}$  to  $E_{max}$
- 8. for  $F \leftarrow F_{min}$  to  $F_{max}$
- 9. for  $G \leftarrow G_{min}$  to  $G_{max}$
- 10. for  $H \leftarrow H_{min}$  to  $H_{max}$
- 11. for  $I \leftarrow I_{min}$  to  $I_{max}$
- 12. for  $J \leftarrow J_{min}$  to  $J_{max}$
- 13. for  $K \leftarrow K_{min}$  to  $K_{max}$
- 14. for  $L \leftarrow L_{min}$  to  $L_{max}$
- 15. for  $M \leftarrow M_{min}$  to  $M_{max}$
- 16. begin
- 17. CheckN←偽
- 18. for  $N \leftarrow N_{\min}$  to  $N_{\max}$
- 19. begin
- 20. CheckO←偽

```
21.
      for O \leftarrow O_{min} to O_{max}
22.
       begin
       CheckP←偽
23.
       for P {\leftarrow} P_{\text{min}} to P_{\text{max}}
24.
25.
        begin
         R \leftarrow T^{-1}X(T^{t})^{-1}(*式(8)*)
26.
27.
         if Rの全要素が整数である
          then (*A~Pが整数信号の直交変換の結果として妥当*)
28.
            U←R+Y(*式(9)*)
29.
            if Uの全要素が8bit整数の範囲[0~255]におさまっている
30.
             then (*A~Pが残差信号の直交変換の結果として妥当*)
31.
32.
              if Xが原変換係数に一致する
33.
                then index ←cases
34.
               endif
35.
               Check N←真
               Check O←真
36.
37.
               Check P←真
38.
              cases \leftarrow cases +1
             else if CheckP=真
39.
              then goto 21(*真→偽に変わった*)
40.
41.
            endif
42.
         endif
43.
        end
        if CheckP=偽 and CheckO=真
44.
           then goto 18(*真→偽に変わった*)
45.
46.
        endif
47.
       end
       if CheckP=偽 and CheckO=偽 and CheckN=真
48.
```

- 49. then goto 15(\*真→偽に変わった\*)
- 50. endif
- 51. end
- 52. end
- 53. cases分の情報量を用いてindex を符号化

「実施形態8]:符号化装置の構成例

本実施形態は本発明の第8の態様に対応するものである。

上述した本発明を実現する装置構成について以下に説明する。図3は、本発明の段階的可逆ビデオ符号化装置の構成例を示す図である。段階的可逆ビデオ符号化装置1は、H. 264標準符号化方式に基づき各ブロック毎に原画像信号と、フレーム内符号化における空間予測またはフレーム間符号化における時間予測による予測画像信号との残差信号Rorigを算出する部分(図3では図示省略)の他に、cases、indexを初期化する初期化部11、残差信号Rorigを直交変換する直交変換部12,直交変換部12の出力を量子化する量子化部13、上下限値情報Amin、Amax、…、Pmin、Pmaxを求める存在空間決定部14、逐次符号化伝送する係数を符号化処理する係数逐次符号化部15、係数を一括して代表する数indexを求めて符号化する係数一括符号化部16、画像内のすべてのブロックを符号化したかを判定する終了判定部17を備える。

- [0103] 係数一括符号化部16は,各係数の上下限内ですべての係数の組合せを列挙する 多重ループ開始部161,既に符号化伝送した係数および現在ループ中の係数により定まる4×4行列Xを逆直交変換する逆直交変換部162,行列和U=R+Yを求める予測信号加算部163,index とcases を更新処理する内部変数更新部164,各係数の上下限内ですべての係数の組合せが調べられたかを判定する多重ループ終了判定部165,index を符号化する通し番号符号化部166から構成される。
- [0104] 図3に示す段階的可逆ビデオ符号化装置1は、以下のように動作する。まず初期化 部11において「格子点の総数」cases 、残差信号の直交変換係数に一致する格子点 の「通し番号 lindex をそれぞれ0に初期化する。
- [0105] 次いで直交変換部12において、残差信号Rorigに直交変換を施しXorigを得る。こ

れを量子化部13において、量子化パラメータ情報を用いて量子化する。この量子化情報から、存在空間決定部14において、上下限値情報 $A_{min}$ ,  $A_{max}$ , ...,  $P_{min}$ ,  $P_{max}$ を求める。

- [0106] 次に、係数逐次符号化部15で、逐次符号化伝送する係数を符号化処理する。例 えば上述した実施形態1の場合0個、実施形態3の場合A, C, B, D, I, E, M, Kの 8個である。
- [0107] 次いで、係数一括符号化部16において、残る係数を一括して代表する数index を求めて符号化する。すなわち、係数一括符号化部16中の多重ループ開始部161は、残る係数(例えば実施形態1の場合A~Pの16個、実施形態3の場合G、F、H、J、L、N、O、Pの8個)についてのそれぞれの上下限でとり得る範囲すべてを列挙する。その際、実施形態2のように、係数間の整数的値関係を利用して、とり得ない係数の組合せをとばして列挙してもよい。
- [0108] 逆直交変換部162では、既に符号化伝送した係数および現在ループ中の係数A ~Pにより定まる4×4行列Xを逆直交変換し、Rとする。ここでもしRに整数でない値が存在すれば、多重ループ終了判定部165の処理に進む。
- [0109] 次に予測信号加算部163において、行列和U=R+Yを求める。ここでもしUの要素に[0~255]の範囲に収まっていない値が存在すれば、多重ループ終了判定部165の処理に進む。
- [0110] 次に内部変数更新部164において、XとXorigが一致する場合, index にcases を代入する処理を行う。また、cases に1を加算する。
- [0111] 多重ループ終了判定部165では、上下限内ですべての係数の組合せが調べられたかを判定し、まだであれば多重ループ開始部161の処理へ戻る。済みであれば、通し番号符号化部166で、cases 分の情報量を用いてindex を符号化する。
- [0112] 次いで、終了判定部17において、画像内のすべてのブロックを符号化したかを判定し、済んでいなければ次のブロックに移って初期化部11による処理を再開する。 済みであれば、符号化を終了する。
- [0113] [index の符号化に汎用可変長符号化を用いる場合] 本発明においては、例えば、汎用可変長符号(参考文献:Y.Itoh, N-M Cheung:"U

niversal variable length code for DCT coding", IEEE Proc. Int. Conf. Image Processing, Vol.1, pp.940-943, 2000)等を用いることにより, cases を使わずにindex を符号化してもよい。この場合,内部変数更新部164においてXとXorigが一致すれば,その時のcasesの値を汎用可変長符号化し、すぐさま係数一括符号化部16による処理を終了する。

[0114] 「実施形態9]:復号装置の構成例

本実施形態は本発明の第9の態様に対応するものである。

図4は、本発明の段階的可逆ビデオ復号装置の構成例を示す図である。段階的可逆ビデオ復号装置2は、量子化パラメータ・量子化係数を復号するとともに予測信号 Yの生成を行う初期化復号部21、上下限値情報A<sub>min</sub>、A<sub>max</sub>、…、P<sub>nin</sub>、P<sub>max</sub>を求める存在空間決定部22、逐次符号化伝送された係数を復号する係数逐次復号部23、係数を一括して代表する数index を復号する係数一括復号部24、Uの値を記憶する配列記憶であるUbuf[]25、および画像内のすべてのブロックを復号したかを判定する終了判定部26から構成される。

- [0115] 係数一括復号部24は,各係数の上下限内ですべての係数の組合せを列挙する多重ループ開始部241,既に復号された係数および現在ループ中の係数により定まる 4×4行列Xを逆直交変換する逆直交変換部242,行列和U=R+Yを求める予測 信号加算部243,Ubuf[]25のcases 番地にUを格納するとともにcases を更新する 内部変数更新部244,各係数の上下限内ですべての係数の組合せが調べられたかを判定する多重ループ終了判定部245,index を復号する通し番号復号部246,U buf[]25のindex 番目の値を原画像信号として出力する原信号出力部247から構成される。
- [0116] 図4に示す段階的可逆ビデオ復号装置2は、以下のように動作する。まず初期化復号部21において、格子点の総数cases を0に初期化し、量子化パラメータ・量子化係数の復号、予測信号Yの生成を行う。
- [0117] 量子化パラメータと量子化係数とに基づき,存在空間決定部22において,上下限値情報 $A_{min}$ , $A_{max}$ ,..., $P_{min}$ , $P_{max}$  を求める。
- [0118] 次に、係数逐次復号部23で、逐次符号化伝送された係数を復号する。例えば上

記実施形態1の場合0個, 実施形態3の場合A, C, B, D, I, E, M, Kの8個をこの順に復号する。

- [0119] 次いで、係数一括復号部24において、残る係数を一括して代表する数index を復号し可逆復元を行う。すなわち、係数一括復号部24中の多重ループ開始部241は、残る係数(例えば実施形態1の場合A~Pの16個、実施形態3の場合G、F、H、J、L、N、O、Pの8個)についてのそれぞれの上下限でとり得る範囲すべてを列挙する。
- [0120] その際, 実施形態2のように, 係数間の整数的値関係を利用して, とり得ない係数の組合せをとばして列挙してもよい。ただし, とり得ない係数の組合せをとばして列挙する手順は, 対応する符号化装置と全く同一の手順とする。
- [0121] 逆直交変換部242では、既に復号された係数および現在ループ中の係数A~Pにより定まる4×4行列Xを逆直交変換し、Rとする。ここでもしRに整数でない値が存在すれば、多重ループ終了判定部245の処理に進む。
- [0122] 次に、予測信号加算部243において、行列和U=R+Yを求める。ここでもしUの要素に[0~255]の範囲に収まっていない値が存在すれば、多重ループ終了判定部245の処理に進む。
- [0123] 次に, 内部変数更新部244において, 予め確保しておいたUbuf[]25のcases 番 地にUを格納し、cases に1を加算する。
- [0124] 多重ループ終了判定部245では、上下限内ですべての係数の組合せが調べられたかを判定し、まだであれば多重ループ開始部241による処理へ戻る。済みであれば、通し番号復号部246で、cases 分の情報量を用いてindex を復号する。
- [0125] 次いで原信号出力部247で、Ubuf[]25のindex 番目の値を取り出し、原画像信号として出力する。
- [0126] 次いで、終了判定部26において、画像内のすべてのブロックを復号したかを判定し、済んでいなければ次のブロックに移って初期化復号部21による処理を再開する。済みであれば、復号を終了する。
- [0127] [index の符号化に汎用可変長符号化を用いる場合の復号装置の構成例] 本発明において、index の符号化に汎用可変長符号を用いる場合、復号側は図5 に示すような機能ブロック構成になる。図5に示す段階的可逆ビデオ復号装置3は、

汎用可変長復号部27においてindex を復号し、多重ループ終了判定部285では多重ループを回った回数がindex 回目であるかを判定し、そうであればすぐさま終了と判定し、そのときのUの値を原信号として出力する。したがって、図4に示すUbuf[]25のような配列記憶は不要となる。他の部分の動作は、図4で説明した例と同様である。

## 実施例1

- [0128] 実施形態3に対応する実施例1について説明する。この実施例1において核となる 処理の概略は以下となる。
- [0129] 入力:量子化パラメータ,予測信号Y,原残差信号Rorig 処理:原信号に対応する直交変換係数について,一部は圧縮情報化し,残りは, 原信号となり得る組合せをもれなくすべて列挙した中の通し番号として表現する。
- [0130] 出力:係数の一部(A, C, B, D, I, E, M, K)をそれぞれ表現する圧縮情報(Z<sub>A</sub> ~ Z<sub>K</sub>), 残りの係数(G, F, H, J, L, N, O, P)をまとめて1数値で代表する符号(index )

実施例1について、図6に示す処理フローを参照して説明する。まずステップS101にて量子化パラメータ、予測信号Y、原残差信号Rorigを入力する。次いでステップS102においてindex, cases をともに0に初期化する。

- [0131] 次いでステップS103においてRorigに直交変換を施し原変換係数Xorigを得ると同時に、Xorigに量子化を施した量子化係数も求める。ステップS104では、これまでに得られた量子化パラメータ、量子化係数の情報から、Xorigを逆に推定した行列である、Xの各要素(A~P)の上下限を求める。これを元に、ステップS105において、A、C、B、D、I、E、M、Kをこの順で圧縮符号化する。
- [0132] 続いて、G、F、H、J、L、N、O、Pの8重ループ(ステップS106~ステップS114)に 入る。ステップS107にて、現在のA~Pの値からなる4×4行列Xを式(8)により逆変 換しRを得る。
- [0133] ステップS108にて、Rの要素がすべて整数であるかを確認し、偽であればステップ S114〜、真であればステップS109に進み、U=R+Yを計算する。
- [0134] 次いでステップS110にて、Uの全要素が[0~255]の範囲内であるかどうかを確

認する。これが偽であればステップS114へ, 真であればステップS111に進み, Xが原変換係数Xorigに等しいかを確認する。これが真であればステップS112にて, 変数index に現在のcases の値を保存する。次いでステップS113にてcases の値を1加算しステップS114へ進む。

- [0136] ここでは、予め一部の係数(A, C, B, D, I, E, M, Kの8係数)をまず別途符号化する(ステップS105)処理例を示したが、これを省略し、ステップS106からステップS14までを全16係数の多重ループとすれば、全く同じ枠組で実施形態1または実施形態2に対応する実施例となる。

## 実施例 2

- [0137] 実施形態4に対応する実施例2について説明する。この実施例2において核となる 処理の概略は以下となる。
- [0138] 入力:量子化パラメータ,予測信号Y,量子化係数

処理:原信号に対応する直交変換係数について,一部(A, C, B, D, I, E, M, K)は圧縮情報から,残り(G, F, H, J, L, N, O, P)は,原信号となりうる組合せをもれなくすべて列挙した中の通し番号番目として復号する。

出力:原画像信号

実施例2について、図7に示す処理フローを参照して説明する。まずステップS201にてcases を0に初期化する。次いでステップS202において量子化パラメータ・量子化係数の復号、予測信号Yの生成を行う。これらはH. 264基本情報ビットストリームから得られる情報である。

- [0139] ステップS203では、これまでに得られた情報から、行列Xの各係数(A~P)の上下限を求める。これを元に、ステップS204において、A、C、B、D、I、E、M、Kをこの順で復号する。
- [0140] 次いでG, F, H, J, L, N, O, Pの8重ループ(ステップS205~ステップS212)に 入る。ステップS206にて、現在のA~Pの値からなる4×4行列Xを第8式により逆変

換しRを得る。

- [0141] ステップS207にて、Rの要素がすべて整数であるかを確認し、偽であればステップ S212へ、真であればステップS208に進み、U=R+Yを計算する。
- [0142] 次いでステップS209にて、Uの全要素が[0~255]の範囲内であるかどうかを確認する。これが真であれば、ステップS210にて、配列Ubuf[]の cases番地に現在のUの値を保存し、ステップS211へ進み casesを1加算し、ステップS212へ進む。偽であればステップS212へ進む。
- [0143] ステップS212では8重ループがすべて完了したかを確認し、偽である間はループ 先頭のステップS205へ戻る。真であれば、ステップS213において、既に求められた cases (格子点の総数)分の情報量(式(22))を用いてindex を復号し、ステップS21 4にてUbuf[index](原信号に相当)を出力し、終了する。
- [0144] 以上の実施例では、cases を用いてindex を符号化する例を説明したが、index の符号化に汎用可変長符号化(UVLC: Universal Variable Length Code)やストップ符号を用いるようにしてもよい。index の符号化に汎用可変長符号化やストップ符号を用いた場合、復号側では casesがわからなくても復号することができる。この場合、index 用の符号量は2割弱増えると予想されるが、casesの値を算出する必要がないため、多重ループを途中で打ち切ることができ、符号化も復号も時間が約1/2になるというメリットがある。また、復号側の配列記憶Ubuf[]が不要になるというメリットもある。
- [0145] 以上,本発明の実施形態及び実施例を図面を参照して説明してきたが,これらは本発明の例示に過ぎず,本発明がこれら実施形態及び実施例に限定されるものでないことは明らかである。したがって,本発明の精神および範囲を逸脱しない範囲で構成要素の追加,省略,置換,その他の変更を行うようにしても良い。
- [0146] 例えば、図3~図5に示した装置は専用のハードウェアにより実現する形態のほか、メモリおよびCPU(中央処理装置)等を備えたコンピュータシステムで構成し、これら装置の処理(例えば、図6~図7に示した各ステップ)を実現するためのプログラムをメモリにロードして実行することによってその機能を実現させるようにしても良い。また、当該の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録しておき、この記録媒体に記録されたプログラムをコンピュータシステムに読み

込ませて実行するようにしても良い。

- [0147] なお、ここでいうコンピュータシステムとは、OSや周辺機器等のハードウェアを含むものとする。また、コンピュータ読み取り可能な記録媒体とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことを言い、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの(伝送媒体ないしは伝送波)、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
- [0148] また、段階的可逆ビデオ符号化装置および段階的可逆ビデオ復号装置は例えば 以下のように構成しても良い。

すなわち、段階的可逆ビデオ符号化装置は、H. 264標準準拠のビットストリームを 生成する手段と、これに加えて画像信号の各ブロックの符号化において、フレーム内 符号化における空間予測またはフレーム間符号化における時間予測による予測信 号を入力する手段と、原信号から予測信号を差し引いた残差信号を入力する手段と 、H. 264標準方式に基づき残差信号に対し直交変換を施して得られる変換係数お よびそれを量子化した量子化係数を求める手段と、量子化係数、量子化パラメータ および量子化方法から定まる変換係数の存在空間を特定する手段と、該空間中のあ る格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性 判断手段と、該空間内の格子点のうち上記判断が妥当であるものを列挙する列挙手 段と、列挙された格子点に、列挙順に0から始まる通し番号を割り当てる手段と、列挙 された格子点の中で、残差信号の変換係数に一致する格子点の通し番号を得る手 段と、得られた通し番号を符号化する手段とを備えるように構成する。

[0149] 上記段階的可逆ビデオ符号化装置において、格子点を列挙する際に、変換係数間の整数的値関係を用いることにより、空間内で変換係数がとりえない点については

妥当の判断処理を省略する手段を備えるようにしても良い。

- [0150] 上記段階的可逆ビデオ符号化装置において、特定のいくつかの変換係数について、該係数と既に伝送済みの係数(もしあれば)との整数的値関係を利用し、該係数がとりえない値を除いた情報を伝送することで、該係数を伝送することに代替する手段と、こうして予め伝送された変換係数を用い、次元の縮小した存在空間内で格子点を列挙する手段とを備えるようにしても良い。
- [0151] 上記段階的可逆ビデオ符号化装置において,前記妥当性判断をビット演算・整数 加減算のみで等価に実現する手段を備えるようにしても良い。
- [0152] 上記段階的可逆ビデオ符号化装置において、残差信号の存在範囲と変換係数の 存在範囲の交わりが凸多面体となることを用いて上記妥当性判断を途中で中止する 手段を備えるようにしても良い。
- [0153] 上記段階的可逆ビデオ符号化装置において、上記列挙手段による格子点の列挙 を実行せず符号量の見積もりを行う手段を備えるようにしても良い。
- [0154] 上記段階的可逆ビデオ符号化装置に対応する段階的可逆ビデオ復号装置は、H . 264標準復号方式を実行する手段と、量子化パラメータ、量子化係数、符号化側の量子化方法、および既に復元された係数(もしあれば)から定まる変換係数の存在空間を特定する手段と、復号すべき係数を復号する手段と、第1~第3の本発明と同様な列挙手段および妥当性判断手段と、通し番号を復号する手段と、列挙された順が通し番号に等しい格子点を出力する手段とを備えるように構成する。

# 産業上の利用可能性

[0155] 本発明は高能率ビデオ符号化/復号を実現する段階的可逆ビデオ符号化/復号技術に関するものである。本発明によれば、基本部分として伝送される符号はH. 26 4標準の符号化と互換性を保ちながら、付加部分の符号量をできるだけ低く抑えつつ、原信号に一致する可逆な復号を行うことが可能となる。また、本発明によれば、処理を数兆倍に高速化して実行することができる。さらに、本発明によれば、実際の符号化を行わずに符号量の推定を行うことができ、結果として符号量を減らす予測モードの選択を高速に行うことができる。

## 請求の範囲

[1] 原信号に一致する復号が可能なビデオ符号化を行う可逆ビデオ符号化方法であって、

あらかじめ定められた非可逆のビデオ符号化方式に準拠し、画像信号の各ブロック 毎に原信号からフレーム内符号化における空間予測またはフレーム間符号化におけ る時間予測による予測信号を差し引いた残差信号を入力するステップと、

前記非可逆のビデオ符号化方式に基づき,前記残差信号に対し直交変換を施して得られる変換係数およびそれを量子化した量子化係数を求めるステップと,

前記量子化係数,量子化時に用いた量子化パラメータおよび量子化方法から定まる変換係数の存在空間を特定するステップと,

前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断のステップと、

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを所定の 格子点の順番で探索し列挙するステップと、

列挙された格子点に、列挙順に通し番号を割り当てるステップと、

列挙された格子点の中で, 残差信号の変換係数に一致する格子点の通し番号を 得るステップと,

前記残差信号の変換係数に一致する格子点の通し番号を符号化し出力するステップとを有する

ことを特徴とする段階的可逆ビデオ符号化方法。

[2] 請求項1に記載の段階的可逆ビデオ符号化方法において、

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを列挙する ステップでは、変換係数間の整数的値関係を用いることにより、前記空間内で変換係 数がとり得ない点については、残差信号の直交変換の結果として妥当であるかどうか の判断処理を省略する

ことを特徴とする段階的可逆ビデオ符号化方法。

[3] 請求項1または請求項2に記載の段階的可逆ビデオ符号化方法において、 特定のいくつかの変換係数について、該係数と既に出力済みの係数との整数的値

関係を利用し、該係数がとり得ない値を除いた情報を出力することで、該係数を出力 することに代替するステップを有し、

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを列挙する ステップでは、前記あらかじめ出力された変換係数を用い、次元の縮小した存在空 間内で格子点を列挙する

ことを特徴とする段階的可逆ビデオ符号化方法。

[4] 請求項1から請求項3までのいずれか1項に記載の段階的可逆ビデオ符号化方法において,

前記妥当性判断のステップでは、ビット演算および整数加減算のみを用いて妥当 性を判断する

ことを特徴とする段階的可逆ビデオ符号化方法。

[5] 請求項1から請求項4までのいずれか1項に記載の段階的可逆ビデオ符号化方法において、

残差信号の存在範囲と変換係数の存在範囲の交わりが凸多面体となることを用いて,判断対象となる前記格子点が前記凸多面体の外部に存在する場合に前記妥当 性判断を途中で中止する

ことを特徴とする段階的可逆ビデオ符号化方法。

[6] 請求項1から請求項3までのいずれか1項に記載の段階的可逆ビデオ符号化方法において、

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを列挙する ステップを実行せずに符号量の見積もりを行うステップを有する

ことを特徴とする段階的可逆ビデオ符号化方法。

[7] 請求項1から請求項6までのいずれか1項に記載の段階的可逆ビデオ符号化方法により符号化された符号化ストリームを復号する復号方法であって,

前記あらかじめ定められた非可逆のビデオ符号化方式に対応する復号方式を実行するステップと、

量子化パラメータ,量子化係数および符号化側の量子化方法,ならびに既に復号 された係数がある場合にはその係数から定まる変換係数の存在空間を特定するステ ップと,

復号すべき係数を復号するステップと,

前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断のステップと、

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを, 符号化時における格子点の探索の順番と同じ順番で探索し列挙するステップと,

通し番号を復号するステップと,

前記列挙された格子点の中で,前記復号された通し番号に等しい順番の格子点を 出力するステップとを有する

ことを特徴とする段階的可逆ビデオ復号方法。

[8] 原信号に一致する復号が可能なビデオ符号化を行う可逆ビデオ符号化装置であって,

あらかじめ定められた非可逆のビデオ符号化方式に準拠し,画像信号の各ブロック 毎に原信号からフレーム内符号化における空間予測またはフレーム間符号化におけ る時間予測による予測信号を差し引いた残差信号を入力する手段と,

前記非可逆のビデオ符号化方式に基づき,前記残差信号に対し直交変換を施して得られる変換係数およびそれを量子化した量子化係数を求める手段と,

前記量子化係数,量子化時に用いた量子化パラメータおよび量子化方法から定まる変換係数の存在空間を特定する存在空間決定手段と,

前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断手段と,

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを所定の格子点の順番で探索し列挙する手段と、

列挙された格子点に、列挙順に通し番号を割り当てる手段と、

列挙された格子点の中で, 残差信号の変換係数に一致する格子点の通し番号を 得る手段と,

前記残差信号の変換係数に一致する格子点の通し番号を符号化し出力する手段とを備える

ことを特徴とする段階的可逆ビデオ符号化装置。

[9] 請求項8に記載の段階的可逆ビデオ符号化装置により符号化された符号化ストリームを復号する復号装置であって,

前記あらかじめ定められた非可逆のビデオ符号化方式に対応する復号方式を実行する手段と,

量子化パラメータ,量子化係数および符号化側の量子化方法,ならびに既に復号された係数がある場合にはその係数から定まる変換係数の存在空間を特定する存在空間決定手段と、

復号すべき係数を復号する係数復号手段と、

前記変換係数の存在空間内のある格子点が残差信号の直交変換の結果として妥当であるかどうかを判断する妥当性判断手段と.

前記変換係数の存在空間内の格子点のうち前記判断が妥当であるものを, 符号化時における格子点の探索の順番と同じ順番で探索し列挙する手段と,

通し番号を復号する通し番号復号手段と,

前記列挙された格子点の中で,前記復号された通し番号に等しい順番の格子点を 出力する出力手段とを備える

ことを特徴とする段階的可逆ビデオ復号装置。

- [10] 請求項1から請求項6までのいずれか1項に記載の段階的可逆ビデオ符号化方法 をコンピュータに実行させるための段階的可逆ビデオ符号化プログラム。
- [11] 請求項7に記載の段階的可逆ビデオ復号方法をコンピュータに実行させるための 段階的可逆ビデオ復号プログラム。
- [12] 請求項1から請求項6までのいずれか1項に記載の段階的可逆ビデオ符号化方法 をコンピュータに実行させるためのプログラムをコンピュータ読み取り可能な記録媒体 に記録したことを特徴とする段階的可逆ビデオ符号化プログラムの記録媒体。
- [13] 請求項7に記載の段階的可逆ビデオ復号方法をコンピュータに実行させるための プログラムをコンピュータ読み取り可能な記録媒体に記録したことを特徴とする段階 的可逆ビデオ復号プログラムの記録媒体。

WO 2006/035899 PCT/JP2005/018015

[図1]



[図2]



[図3]



差換え用紙(規則26)

[図4]



差換え用紙(規則26)

[図5]



差換之用紙(規則26)



差換之用紙(規則26)



#### INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/018015

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                | FC1/UF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2003/018013           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| A. CLASSIFICATION OF SUBJECT MATTER H04N7/50 (2006.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |
| According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |
| B. FIELDS SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |
| Minimum documentation searched (classification system followed by classification symbols)  H04N7/24 (2006.01) - H04N7/68 (2006.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005  Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |
| Electronic data b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase consulted during the international search (name of                                                                         | data base and, where practicable, search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n terms used)         |  |  |  |
| C. DOCUMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ITS CONSIDERED TO BE RELEVANT                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |  |  |
| Category*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Citation of document, with indication, where ap                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Relevant to claim No. |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JP 2001-359099 A (Nippon Tel<br>Telephone Corp.),<br>26 December, 2001 (26.12.01)<br>Full text; all drawings<br>(Family: none) | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-13                  |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                | NC.),<br>2003/0021485 A1<br>1549988 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-13                  |  |  |  |
| × Further do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ocuments are listed in the continuation of Box C.                                                                              | See patent family annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| * Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier application or patent but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed  Date of the actual completion of the international search  13 December, 2005 (13.12.05) |                                                                                                                                | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art  "&" document member of the same patent family  Date of mailing of the international search report  27 December, 2005 (27.12.05) |                       |  |  |  |
| NT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 64 . 10 A /                                                                                                                 | A disciplination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |  |  |  |
| Name and mailing address of the ISA/ Japanese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                | Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |  |  |  |
| Facsimile No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                | Telephone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |  |  |

Form PCT/ISA/210 (second sheet) (April 2005)

### INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/018015

| C (Continuation | ). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                               |                       |
|-----------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category*       | Citation of document, with indication, where appropriate, of the relevant passages                                   | Relevant to claim No. |
| А               | JP 8-251418 A (Kawasaki Steel Corp.),<br>27 September, 1996 (27.09.96),<br>Full text; all drawings<br>(Family: none) |                       |
| A               | (Family: none)  JP 63-253784 A (Toshiba Corp.), 20 October, 1988 (20.10.88), Full text; all drawings (Family: none)  | 1-13                  |
|                 |                                                                                                                      |                       |
|                 |                                                                                                                      |                       |

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl. HO4N7/50 (2006.01)

#### 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. **H04N7/24** (2006. 01) - **H04N7/68** (2006. 01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

関連オスレ認められる文献

| C. 関連すると認められる文献 |                                                               |                  |  |  |
|-----------------|---------------------------------------------------------------|------------------|--|--|
| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                             | 関連する<br>請求の範囲の番号 |  |  |
| A               | JP 2001-359099 A (日本電信電話株式会社)<br>2001.12.26,全文,全図 (ファミリーなし)   | 1-13             |  |  |
| A               | WO 2003/005626 A2 (QUALCOMM INCORPORATED)<br>2003.01.16,全文,全図 | 1-13             |  |  |
|                 | & JP 2005-520360 A<br>& US 2003/0021485 A1                    |                  |  |  |
|                 | & EP 1402464 A2 & CN 1549988 A<br>& KR 2004-018414 A          |                  |  |  |

## ☑ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- \* 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

13.12.2005

国際調査報告の発送日

27.12.2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

5 C 9070

國分 直樹

電話番号 03-3581-1101 内線 3539

| C (続き).         | 関連すると認められる文献                                           |                  |  |
|-----------------|--------------------------------------------------------|------------------|--|
| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                      | 関連する<br>請求の範囲の番号 |  |
| A               | JP 8-251418 A (川崎製鉄株式会社)<br>1996.09.27,全文,全図 (ファミリーなし) | 1-13             |  |
| A               | JP 63-253784 A (株式会社東芝)<br>1988.10.20,全文,全図 (ファミリーなし)  | 1-13             |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |
|                 |                                                        |                  |  |