

Полное руководство по системам счисления

Бинарная, шестнадцатеричная, восьмеричная и десятичная системы

Студент: Греве Давид.

Преподаватель: Куциава Василий.

25 февраля 2025 г.

Содержание

1	Вве	едение	3
2	Обі	цие понятия о системах счисления	3
3	Бинарная система счисления		
	3.1	Преобразование из двоичной в десятичную систему	3
4	Boo	сьмеричная система счисления	4
	4.1	Преобразование из восьмеричной в десятичную систему	4
5	Дес	зтичная система счисления	4
	5.1	Преобразование из десятичной в другие системы	4
6	Ше	стнадцатеричная система счисления	5
	6.1	Преобразование из шестнадцатеричной в десятичную систему	5
7	Методы преобразования между системами счисления		
	7.1	Бинарная \leftrightarrow Десятичная	5
	7.2	Двоичная ↔ Восьмеричная	5
	7.3	Двоичная \leftrightarrow Шестнадцатеричная	6
	7.4	Шестнадцатеричная \leftrightarrow Восьмеричная	6
8	Раз	бор задач с подробным решением	6
	8.1	Задача 1. Перевести число из двоичной системы в шестнадцатеричную	6
	8.2	Задача 2. Перевести число из шестнадцатеричной системы в двоичную	7
	8.3	Задача 3. Перевести число из восьмеричной системы в десятичную	7
	8.4	Задача 4. Перевести число из десятичной системы в двоичную	7
	8.5	Задача 5. Перевести число из двоичной системы в восьмеричную	8
	8.6	Задача 6. Перевести число из шестнадцатеричной системы в восьмеричную.	8
9	Occ	бенности и советы при работе с системами счисления	9

Системы счисления	2
10 Заключение	9
Список использованных источников	9
Приложение	9

1 Введение

В данной работе рассматриваются основные системы счисления: бинарная (основание 2), восьмеричная (основание 8), десятичная (основание 10) и шестнадцатеричная (основание 16). Пошагово разобраны методы преобразования чисел между указанными системами, приведены примеры и задачи с подробным решением. Цель работы — дать читателю глубокое понимание устройства этих систем, а также показать на практике, как выполнять их преобразования.

2 Общие понятия о системах счисления

Система счисления — способ записи чисел с использованием заданного набора символов (цифр) и определённой базы (основания). Любое число можно представить в системе с основанием b в виде:

$$N = a_n b^n + a_{n-1} b^{n-1} + \dots + a_1 b + a_0,$$

где $0 \le a_i < b$. Основные системы, рассматриваемые в данной работе:

- **Бинарная:** b = 2 (цифры: 0, 1);
- Восьмеричная: b = 8 (цифры: 0, 1, ..., 7);
- Десятичная: b = 10 (цифры: 0, 1, ..., 9);
- Шестнадцатеричная: b = 16 (цифры: 0, 1, ..., 9, A, B, C, D, E, F).

3 Бинарная система счисления

Бинарная система основана на двух цифрах: 0 и 1. Каждый разряд числа соответствует степени двойки. Например, число:

$$1011_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 8 + 0 + 2 + 1 = 11_{10}.$$

3.1 Преобразование из двоичной в десятичную систему

Чтобы перевести число из бинарной системы в десятичную, необходимо перемножить каждую цифру на соответствующую степень двойки и просуммировать:

Если
$$N = d_n d_{n-1} \dots d_0$$
, то $N_{10} = \sum_{i=0}^n d_i \cdot 2^i$.

Пример: Переведём 1101_2 в десятичную систему.

$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 0 + 1 = 13_{10}$$

4 Восьмеричная система счисления

Восьмеричная система использует цифры от 0 до 7. Каждая цифра соответствует степени восьмерки.

$$N = a_n 8^n + a_{n-1} 8^{n-1} + \dots + a_0.$$

4.1 Преобразование из восьмеричной в десятичную систему

Пример: Переведём число 725₈ в десятичную систему.

$$725_8 = 7 \cdot 8^2 + 2 \cdot 8^1 + 5 \cdot 8^0 = 7 \cdot 64 + 2 \cdot 8 + 5 = 448 + 16 + 5 = 469_{10}$$

5 Десятичная система счисления

Десятичная система — это стандартная система, основание которой равно 10. В ней используются цифры от 0 до 9.

5.1 Преобразование из десятичной в другие системы

Преобразование числа из десятичной системы в любую другую выполняется с помощью последовательного деления на основание целевой системы. Остатки от деления, записанные в обратном порядке, дают искомое число.

Пример: Переведём 345₁₀ в двоичную систему.

- 1. $345 \div 2 = 172$ c остатком 1.
- 2. $172 \div 2 = 86$ с остатком 0.
- 3. $86 \div 2 = 43$ с остатком 0.
- 4. $43 \div 2 = 21$ с остатком 1.
- 5. $21 \div 2 = 10$ с остатком 1.
- 6. $10 \div 2 = 5$ с остатком 0.
- 7. $5 \div 2 = 2$ с остатком 1.
- 8. $2 \div 2 = 1$ c остатком 0.
- 9. $1 \div 2 = 0$ с остатком 1.

Записывая остатки в обратном порядке, получаем:

$$345_{10} = 101011001_2.$$

6 Шестнадцатеричная система счисления

Шестнадцатеричная система основана на числе 16. Помимо цифр 0–9 используются буквы A, B, C, D, E, F, обозначающие числа 10, 11, 12, 13, 14, 15 соответственно.

6.1 Преобразование из шестнадцатеричной в десятичную систему

Пример: Переведём $1A3_{16}$ в десятичную систему.

$$1A3_{16} = 1 \cdot 16^2 + 10 \cdot 16^1 + 3 \cdot 16^0 = 256 + 160 + 3 = 419_{10}.$$

7 Методы преобразования между системами счисления

В данном разделе описаны основные алгоритмы перевода чисел между системами счисления.

7.1 Бинарная \leftrightarrow Десятичная

- Из двоичной в десятичную: Как уже описывалось, умножаем каждую цифру на соответствующую степень 2 и суммируем.
- Из десятичной в двоичную: Последовательное деление числа на 2 с записью остатков.

7.2 Двоичная \leftrightarrow Восьмеричная

Преобразование между двоичной и восьмеричной системами упрощается за счёт того, что $8=2^3$. Для преобразования:

- 1. Разбиваем двоичное число на группы по 3 бита, начиная с младших разрядов.
- 2. Каждую группу заменяем соответствующей восьмеричной цифрой.

Пример: Переведём 1011101_2 в восьмеричную систему.

$$1011101_2 \Rightarrow \underline{1}011101.$$

Добавим ведущие нули для первой группы: 001, получим группы: 001, 011, 101.

- $001_2 = 1_8$,
- $011_2 = 3_8$,
- $101_2 = 5_8$.

Таким образом, $1011101_2 = 135_8$.

7.3 Двоичная \leftrightarrow Шестнадцатеричная

Поскольку $16 = 2^4$, процесс схож с преобразованием в восьмеричную:

- 1. Разбиваем двоичное число на группы по 4 бита (начиная с младших разрядов).
- 2. Каждую группу заменяем соответствующей шестнадцатеричной цифрой.

Пример: Переведём 10101100_2 в шестнадцатеричную систему.

$$10101100_2 \Rightarrow 1010 1100.$$

- $1010_2 = A_{16}$ (так как $10_{10} = A$),
- $1100_2 = C_{16}$ (так как $12_{10} = C$).

Итак, $10101100_2 = AC_{16}$.

7.4 Шестнадцатеричная \leftrightarrow Восьмеричная

Преобразование между шестнадцатеричной и восьмеричной системами часто выполняется через десятичную или двоичную систему. Один из удобных способов:

- 1. Перевести шестнадцатеричное число в двоичное (заменяя каждую шестнадцатеричную цифру на 4 двоичных бита).
- 2. Полученное двоичное число преобразовать в восьмеричное, группируя биты по 3.

8 Разбор задач с подробным решением

8.1 Задача 1. Перевести число из двоичной системы в шестнадцатеричную

Условие: Переведите число 11010110₂ в шестнадцатеричную систему.

Решение:

1. Разобьём число на группы по 4 бита, начиная с младших разрядов:

$$11010110_2 \Rightarrow 1101 \quad 0110.$$

- 2. Преобразуем каждую группу:
 - $1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 0 + 1 = 13 \Rightarrow D_{16}$
 - $0110_2 = 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 0 + 4 + 2 + 0 = 6 \Rightarrow 6_{16}$.
- 3. Таким образом, $11010110_2 = D6_{16}$.

8.2 Задача 2. Перевести число из шестнадцатеричной системы в двоичную

Условие: Переведите число $2F4_{16}$ в двоичную систему.

Решение:

- 1. Преобразуем каждую шестнадцатеричную цифру в 4-битное двоичное число:
 - $2_{16} = 0010_2$,
 - $F_{16} = 15_{10} = 1111_2$,
 - $4_{16} = 0100_2$.
- 2. Объединяем группы:

$$2F4_{16} = 0010111110100_2.$$

3. Итоговое двоичное число: 001011110100_2 (лидирующие нули можно опустить: 1011110100_2).

8.3 Задача 3. Перевести число из восьмеричной системы в десятичную

Условие: Переведите число 657₈ в десятичную систему.

Решение:

$$657_8 = 6 \cdot 8^2 + 5 \cdot 8^1 + 7 \cdot 8^0 = 6 \cdot 64 + 5 \cdot 8 + 7 = 384 + 40 + 7 = 431_{10}$$

8.4 Задача 4. Перевести число из десятичной системы в двоичную

Условие: Переведите число 237₁₀ в двоичную систему.

Решение: Выполним последовательное деление на 2:

- 1. $237 \div 2 = 118$ с остатком 1.
- 2. $118 \div 2 = 59$ с остатком 0.
- 3. $59 \div 2 = 29$ с остатком 1.
- 4. $29 \div 2 = 14$ с остатком 1.
- 5. $14 \div 2 = 7$ с остатком 0.
- 6. $7 \div 2 = 3$ с остатком 1.
- 7. $3 \div 2 = 1$ с остатком 1.
- 8. $1 \div 2 = 0$ с остатком 1.

Остатки в обратном порядке: 11101101. Таким образом,

$$237_{10} = 11101101_2.$$

8.5 Задача 5. Перевести число из двоичной системы в восьмеричную

Условие: Переведите число 101110111₂ в восьмеричную систему.

Решение:

1. Разобьём число на группы по 3 бита, начиная с правого края:

$$101110111_2 \Rightarrow 101110111.$$

- 2. Преобразуем каждую группу:
 - $101_2 = 5_8$,
 - $110_2 = 6_8$,
 - $111_2 = 7_8$.
- 3. Итог: $101110111_2 = 567_8$.

8.6 Задача 6. Перевести число из шестнадцатеричной системы в восьмеричную

Условие: Переведите число $3B_{16}$ в восьмеричную систему.

Решение:

- 1. Сначала переведём шестнадцатеричное число в двоичное. Каждую цифру заменим на 4 бита:
 - $3_{16} = 0011_2$,
 - $B_{16} = 11_{10} = 1011_2$ (при необходимости дополним нулями: 1011_2).
- 2. Объединяем: $3B_{16} = 0011 \, 1011_2$.
- 3. Разобьём двоичное число на группы по 3 бита, начиная с правого края:

$$0011\ 1011_2 \Rightarrow 00\ 111\ 011.$$

Добавим недостающие нули к первой группе: 000.

- 4. Преобразуем:
 - $000_2 = 0_8$,
 - $111_2 = 7_8$,
 - $011_2 = 3_8$.
- 5. Таким образом, $3B_{16} = 073_8$ (лидирующий 0 можно опустить: 73_8).

9 Особенности и советы при работе с системами счисления

- При переводе из двоичной системы в восьмеричную или шестнадцатеричную важно правильно группировать биты (по 3 для восьмеричной и по 4 для шестнадцатеричной). Если общее число бит не кратно 3 или 4, дополняйте число ведущими нулями.
- Для проверки правильности перевода можно выполнить обратное преобразование.
- В системах с основанием, большим 10, следует помнить соответствие цифр и букв (например, $A=10, B=11, \ldots, F=15$).

10 Заключение

В данной работе рассмотрены основы работы с различными системами счисления, а также приведены методы преобразования чисел между бинарной, восьмеричной, десятичной и шестнадцатеричной системами. Подробно разобраны примеры, позволяющие на практике закрепить теоретические знания. Освоение этих методов является важным навыком для студентов, изучающих информатику и программирование, поскольку различные системы счисления активно применяются в вычислительной технике и алгоритмах.

Список использованных источников

- 1. Куликов А.В. «Основы дискретной математики».
- 2. Левин А. «Информатика: теория и практика».
- 3. Методические материалы кафедры информатики.

Приложение. Дополнительные примеры

Пример А. Перевод числа 1001110_2 в шестнадцатеричную систему.

- 1. Группировка по 4 бита: 0100 1110₂.
- 2. $0100_2 = 4_{16}$, $1110_2 = E_{16}$.
- 3. Other: $10011110_2 = 4E_{16}$.

Пример В. Перевод числа 572₁₀ в восьмеричную систему.

- 1. Деление на 8:
 - $572 \div 8 = 71$ с остатком 4.

- $71 \div 8 = 8$ с остатком 7.
- $8 \div 8 = 1$ с остатком 0.
- $1 \div 8 = 0$ с остатком 1.
- 2. Остатки в обратном порядке: 1074.
- 3. Other: $572_{10} = 1074_8$.

Пример С. Перевод числа $3C9_{16}$ в десятичную систему.

$$3C9_{16} = 3 \cdot 16^2 + 12 \cdot 16^1 + 9 \cdot 16^0 = 3 \cdot 256 + 192 + 9 = 768 + 192 + 9 = 969_{10}.$$

Примечание: Приведённый материал рассчитан на подробное изучение темы и может служить как справочное пособие для студентов, изучающих основы систем счисления.