Nonlocal UFL: Finite elements for Helmholtz equations with a nonlocal boundary condition

Robert Kirby¹ Andreas Klöckner² Ben Sepanski³
¹Baylor University

²University of Illinois at Urbana-Champaign

³University of Texas at Austin

25 March 2021

Order of Presentation

Motivating Problem: Helmholtz scattering

A nonlocal boundary condition

Nonlocal UFL

Numerical Results

Thanks to...

- NSF 1525697, 1909176
- ► The U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0021110
- Luke Olson (UIUC)

Exterior scattering¹

 Model waves reflecting off of obstacle Γ

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \mathbb{R}^d \setminus \Omega^c \\ -\frac{\partial u}{\partial n} = f, & \Gamma \end{cases}$$

Without any spurious reflections from infinity

$$\lim_{r \to \infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0$$

In some finite domain of interest $\Omega' \subseteq \mathbb{R}^d \setminus \Omega^c$ bounded by Σ .

¹Colton and Kress 1998; Kress 1999.

Exterior scattering¹

 Model waves reflecting off of obstacle Γ

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \mathbb{R}^d \setminus \Omega^c \\ -\frac{\partial u}{\partial n} = f, & \Gamma \end{cases}$$

Without any spurious reflections from infinity

$$\lim_{r\to\infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0$$

▶ In some finite domain of interest $\Omega' \subseteq \mathbb{R}^d \setminus \Omega^c$ bounded by Σ .

¹Colton and Kress 1998; Kress 1999.

Exterior scattering¹

 Model waves reflecting off of obstacle Γ

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \mathbb{R}^d \setminus \Omega^c \\ -\frac{\partial u}{\partial n} = f, & \Gamma \end{cases}$$

Without any spurious reflections from infinity

$$\lim_{r\to\infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0$$

In some finite domain of interest $\Omega' \subseteq \mathbb{R}^d \setminus \Omega^c$ bounded by Σ .

¹Colton and Kress 1998; Kress 1999.

Exterior scattering: computational problem

Problem we want to solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, \\ -\frac{\partial u}{\partial n} = f, \\ \lim_{r \to \infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0 \end{cases}$$

► Problem we can actually solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ ?????, & \Sigma \end{cases}$$

Exterior scattering: computational problem

Problem we want to solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, \\ -\frac{\partial u}{\partial n} = f, \\ \lim_{r \to \infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0 \end{cases}$$

Problem we can actually solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ ?????, & \Sigma \end{cases}$$

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

- $ightharpoonup \Omega_S$: ho is a complex-valued coordinate transform to cause exponential decay in oscillating waves
- ► Preconditioning is difficult!²

²Engquist and Ying 2011; Safin, Minkoff, and Zweck 2018.

³Berenger 1994; Erlangga 2006; Bermudez et al. 2006.

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

- $ightharpoonup \Omega'$: β = I, satisfies original equation
- ► Preconditioning is difficult!²

²Engquist and Ying 2011; Safin, Minkoff, and Zweck 2018.

³Berenger 1994; Erlangga 2006; Bermudez et al. 2006.

$$\begin{cases} -\nabla \cdot \beta(x)\nabla u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

- ho Ω': $\beta = I$, satisfies original equation
- $ightharpoonup \Omega_S$: ho is a complex-valued coordinate transform to cause exponential decay in oscillating waves
- ► Preconditioning is difficult!²

²Engquist and Ying 2011; Safin, Minkoff, and Zweck 2018.

³Berenger 1994; Erlangga 2006; Bermudez et al. 2006.

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

- ho Ω': β = I, satisfies original equation
- $ightharpoonup \Omega_S$: ho is a complex-valued coordinate transform to cause exponential decay in oscillating waves
- ► Preconditioning is difficult!²

²Engquist and Ying 2011; Safin, Minkoff, and Zweck 2018.

³Berenger 1994; Erlangga 2006; Bermudez et al. 2006.

Integral form of the solution

Using the Helmholtz Green's function $\mathcal{K}(\mathbf{x}) = \frac{i}{4\pi |\mathbf{x}|} e^{i\kappa |\mathbf{x}|}$,

Figure: K in 2D

Integral form of the solution

Using the Helmholtz Green's function

$$\mathcal{K}(\mathsf{x}) = \frac{i}{4\pi \, |\mathsf{x}|} e^{i\kappa |\mathsf{x}|},$$

Figure: K in 2D

the *true solution* satisfies⁴

$$u(x) = D(u)(x) - S(\frac{\partial u}{\partial n})(x), \quad x \in \Omega'$$

where

$$D(u)(x) = \int_{\Gamma} \left(\frac{\partial}{\partial n} \mathcal{K}(x - y) \right) u(y) \, dy,$$

$$S(u)(x) = \int_{\Gamma} \mathcal{K}(x - y) u(y) \, dy$$

⁴Colton and Kress 1998; Kress 1999.

Integral form of the solution

Using the Helmholtz Green's function

$$\mathcal{K}\left(\mathbf{x}\right) = \frac{i}{4\pi \left|\mathbf{x}\right|} e^{i\kappa\left|\mathbf{x}\right|},$$

Figure: K in 2D

the *true solution* satisfies⁴

$$u(x) = D(u)(x) - S(\frac{\partial u}{\partial n})(x), \quad x \in \Omega'$$

where

$$D(u)(x) = \int_{\Gamma} \left(\frac{\partial}{\partial n} \mathcal{K}(x - y) \right) u(y) \, dy,$$

$$S(u)(x) = \int_{\Gamma} \mathcal{K}(x - y) u(y) \, dy$$

⁴Colton and Kress 1998; Kress 1999.

Exterior scattering

Exact boundary conditions

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ (i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma \end{cases}$$

Variational Form:

For all $v \in H^1(\Omega')$

$$(\nabla u, \nabla v) - \kappa^{2}(u, v) - i\kappa \langle u, v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u), v \rangle_{\Sigma}$$

= $\langle f, v \rangle_{\Gamma} + \langle (i\kappa - \frac{\partial}{\partial n}) S(f), v \rangle_{\Sigma}$

Exterior scattering

Exact boundary conditions

$$\Sigma \qquad \begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ (i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma \end{cases}$$

Variational Form:

For all $v \in H^1(\Omega')$

$$(\nabla u, \nabla v) - \kappa^{2}(u, v) - i\kappa \langle u, v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u), v \rangle_{\Sigma}$$

= $\langle f, v \rangle_{\Gamma} + \langle (i\kappa - \frac{\partial}{\partial n}) S(f), v \rangle_{\Sigma}$

- \triangleright a is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1
- ▶ Gårding inequality. There exist M and an $\alpha > 0$ such that

$$\text{Re}(a(u, u)) + M \|u\|^2 \ge \alpha \|u\|_{H^1(\Omega)}^2$$
.

► For $h \le h_0$, we have optimal-order H^1 and L^2 error estimates ⁵

6/13

- ightharpoonup a is a bounded bilinear form on $H^1 \times H^1$
- F is a bounded linear functional on H^1
- ▶ Gårding inequality. There exist M and an $\alpha > 0$ such that

$$Re(a(u, u)) + M ||u||^2 \ge \alpha ||u||_{H^1(\Omega)}^2$$
.

► For $h \le h_0$, we have optimal-order H^1 and L^2 error estimates ⁵

- ightharpoonup a is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1
- ▶ Gårding inequality. There exist M and an $\alpha > 0$ such that

$$Re(a(u, u)) + M ||u||^2 \ge \alpha ||u||_{H^1(\Omega)}^2$$
.

► For $h \le h_0$, we have optimal-order H^1 and L^2 error estimates ⁵

- ▶ a is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1
- ▶ Gårding inequality. There exist M and an $\alpha > 0$ such that

$$Re(a(u, u)) + M ||u||^2 \ge \alpha ||u||_{H^1(\Omega)}^2$$
.

For $h \le h_0$, we have optimal-order H^1 and L^2 error estimates.⁵

- ightharpoonup a is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1
- ▶ Gårding inequality. There exist M and an $\alpha > 0$ such that

$$Re(a(u, u)) + M ||u||^2 \ge \alpha ||u||_{H^1(\Omega)}^2$$
.

► For $h \le h_0$, we have optimal-order H^1 and L^2 error estimates ⁵

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ightharpoonup *Problem:* Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - $\operatorname{ndof}(\Gamma) \cdot \operatorname{ndof}(\Sigma)$
 - Solution: Fast multipole methods (FMM)^o: use the structure
 of K to compute the potential in linear time with low-rank
 - approximations

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ▶ *Problem:* Nonlocal operations have large support (all of Σ !)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - ndof(Γ) · ndof(Σ)
 - Solution: Fast multipole methods (FMM)⁶: use the structure
 of K to compute the potential in linear time with low-rank
 - approximations

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- Problem: Naive evaluation of layer potentials is slow:
 - ndof(Γ) · ndof(Σ)
 - Solution: Fast multipole methods (FMM)^o: use the structure of K to compute the potential in linear time with low-rank
 - approximations

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - Solution: Fast multipole methods (FMM) 6 : use the structure of ${\cal K}$ to compute the potential in *linear time* with low-rank
 - approximations

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) dy, \qquad x \in \Sigma$$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - $ndof(\Gamma) \cdot ndof(\Sigma)$
 - *Solution:* Fast multipole methods (FMM) 6 : use the structure of $\mathcal K$ to compute the potential in *linear time* with low-rank approximations

⁶Carrier, Greengard, and Rokhlin 1988

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - $ndof(\Gamma) \cdot ndof(\Sigma)$
 - *Solution:* Fast multipole methods (FMM)⁶: use the structure of $\mathcal K$ to compute the potential in *linear time* with low-rank approximations

⁶Carrier, Greengard, and Rokhlin 1988.

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - $ndof(\Gamma) \cdot ndof(\Sigma)$
 - *Solution:* Fast multipole methods (FMM) 6 : use the structure of $\mathcal K$ to compute the potential in *linear time* with low-rank approximations

⁶Carrier, Greengard, and Rokhlin 1988

$$D(u)(x) = \int_{\Gamma} \frac{\partial}{\partial n} \mathcal{K}(x - y) u(y) \, dy, \qquad x \in \Sigma$$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation
- ▶ *Problem:* Naive evaluation of layer potentials is slow:
 - $ndof(\Gamma) \cdot ndof(\Sigma)$
 - *Solution:* Fast multipole methods (FMM) 6 : use the structure of $\mathcal K$ to compute the potential in *linear time* with low-rank approximations

- ► Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - ✓ LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html
⁸Klöckner 2020.

⁸Klöckner 2020.

- ▶ Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- ▶ Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - ✓ LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html

- Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest

⁷N. Bouziani, External Operators: https://fenics2021.com/talks/bouziani.html

⁸Klöckner 2020.

- ▶ Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- ▶ Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - ✓ LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html

- ▶ Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- lacktriangle Evaluation of $\left\langle (i\kappa \frac{\partial}{\partial n})D(u), v \right\rangle_{\Sigma}$
 - LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html

- Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- ▶ Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html

⁸Klöckner 2020.

Nonlocal operations in UFL: Marshalling pytential⁸

- ▶ Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - ✓ LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html

Nonlocal operations in UFL: Marshalling pytential⁸

- ▶ Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - \checkmark LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

8/13

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html ⁸Klöckner 2020.

⁸Klöckner 2020.

Nonlocal operations in UFL: Marshalling pytential⁸

- Build LayerPotential as a UFL External Operator⁷
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - \checkmark LayerPotential evaluates D(u) (automatically uses pytential, which employs FMM to compute the potential)
 - √ Firedrake evaluates inner product

⁷N. Bouziani, *External Operators*: https://fenics2021.com/talks/bouziani.html

Solving the system with Firedrake

Extend UFL:

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u)v \rangle_{\Sigma}$$

Solving the system with Firedrake

Extend UFL:

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u)v \rangle_{\Sigma}$$

Will be written as:

Solving the system with Firedrake

Extend UFL:

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u)v \rangle_{\Sigma}$$

Will be written as:

Numerical results: 2D

Preconditioning: LU of local part

Preconditioning: PyAMG

- ► If we can find a good preconditioner for the local problem, we get a good preconditioner for the nonlocal problem
- PyAMG: precondition with plane waves

Preconditioning: PyAMG

- ► If we can find a good preconditioner for the local problem, we get a good preconditioner for the nonlocal problem
- PyAMG: precondition with plane waves

Conclusion

Results

- Novel nonlocal boundary condition
 - Error estimates 9
- Extension of UFL to efficiently handle nonlocal operators
- Numerical experiments demonstrating optimal-order convergence
- Investigation into preconditioners

Coming Soon

- ► Full implementation of LayerPotentials and VolumePotential¹⁰s in UFL as External Operator¹¹s
- General theory for this method and application to more problems

¹⁰Kirby, Klöckner, and Sepanski 2021.

¹¹ X. Wei, IEM-FEM Coupling: https://fenics2021.com/talks/wei.html

¹² N. Bouziani, External Operators: https://fenics2021.com/talks/bouziani.html

References I

- Berenger, Jean-Pierre (1994). "A perfectly matched layer for the absorption of electromagnetic waves". In: Journal of Computational Physics 114.2, pp. 185–200. ISSN: 0021-9991. DOI: https://doi.org/10.1006/jcph.1994.1159. URL: https://www.sciencedirect.com/science/article/pii/S0021999184711594.
 - Bermudez, Alfredo et al. (Jan. 2006). "An optimal finite-element/pml method for the simulation of acoustic wave propagation phenomena". In: *Variational Formulations in Mechanics: Theory and Applications*. Citation Key: Bermudez:2006.

References II

Carrier, J., Leslie Greengard, and Vladimir Rokhlin (July 1988). "A Fast Adaptive Multipole Algorithm for Particle Simulations".

In: *SIAM Journal on Scientific and Statistical Computing* 9.4, pp. 669–686. ISSN: 0196-5204, 2168-3417. DOI: 10.1137/0909044.

Colton, David and Rainer Kress (Jan. 1998). *Inverse Acoustic and Electromagnetic Scattering Theory*. 2nd ed. Springer. ISBN: 3-540-62838-X.

References III

Engquist, Björn and Lexing Ying (2011). "Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation". In: Communications on Pure and Applied Mathematics 64.5, pp. 697–735. DOI: https://doi.org/10.1002/cpa.20358.eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.20358. URL: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20358.

Erlangga, Y. A. (2006). "A preconditioner for the Helmholtz equation with perfectly matched layer". In: URL: https://repository.tudelft.nl/islandora/object/uuid% 3A241032bc-7485-41cb-8f2a-e36ad88fbc08.

References IV

- Kirby, Robert C., Andreas Klöckner, and Ben Sepanski (2021). Finite elements for Helmholtz equations with a nonlocal boundary condition. arXiv: 2009.08493 [math.NA].
- Klöckner, Andreas (2020). "pytential Source Code Repository". In: URL: https://github.com/inducer/pytential.
- Kress, Rainer (Jan. 1999). *Linear Integral Equations*. Springer. ISBN: 978-0-387-98700-2.
 - Safin, Artur, Susan Minkoff, and John Zweck (Jan. 2018). "A Preconditioned Finite Element Solution of the Coupled Pressure-Temperature Equations Used to Model Trace Gas Sensors". In: *SIAM Journal on Scientific Computing* 40.5, B1470–B1493. ISSN: 1064-8275, 1095-7197. DOI: 10.1137/17M1145823.

Backup Slides

Numerical results: 2D, degree 2

Numerical results: 2D, degree 3

Numerical results: 2D, degree 4

Numerical results: 3D, degree 1

