Centrale Maths 2

Séance 1

Exercice 1 (Centrale 2022): Soit $E_n = M_n(\mathbb{R})$. D_n est l'ensemble des matrices dont les coefficients diagonaux sont nuls. T_n est l'ensemble des matrices de trace nulle.

Pour $M \in M_n(\mathbb{R})$, $S_M = \{(A, B) \in E_n^2, AB - BA = M\}$

- 1) On trouve $D_n = Vect((E_{i,j})_{i \in I})$, donc $\dim(D_n) = n^2 n$
- 2) Il vient $T_n = Ker(Tr)$, donc T_n est le noyau d'une forme linéaire non nulle et $\dim(T_n) = n^2 1$.
- 3) Lorsque A est une matrice diagonale et B une matrice quelconque avec leurs coefficients dans [0,1], on remarque que tous les coefficients de Matrice(A,B) sont nuls.
- 4) Si A est diagonale, pour $i \in [1, n]$, il vient $(AB)_{ii} = (BA)_{ii} = A_{ii}B_{ii}$, donc $(AB BA)_{ii} = 0$.
- 5) On sait que Tr(AB) = Tr(BA). Donc si $Tr(M) \neq 0$, $S_M = \emptyset$. S_M n'est jamais de cardinal 1 : si $(A,B) \in S_M$, alors AB BA = M et $\left(2A,\frac{1}{2}B\right) \in S_M$.

6)

Pour
$$M = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}$$
, on prend $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, $A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ et on trouve $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 4 \\ -1 & 0 \end{pmatrix}$
Pour $M' = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$, on peut chercher A à diagonale nulle. On trouve $A = \begin{pmatrix} 0 & 1 \\ -1/3 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix}$.

Exercice 2 (Oral Centrale 22):

- 2) On peut conjecturer que T est d'espérance finie.
- 3) Les $(X_n)_{n\in\mathbb{N}}$ sont indépendantes, donc les $(X_k = 1)$ le sont aussi. Il vient $P(G_n) = \prod_{k=nl+1}^{(n+1)l} P(X_k = 1) = \frac{1}{2^l}$.
- 4) On fixe $N \in \mathbb{N}$. Lorsque G_n se produit, on a b+1+a déplacements consécutifs de +1, ce qui provoque une sortie de l'intervalle $\left[-a,b\right]$. Donc $\bigcup_{n=1}^N G_n \subset (\overline{T=+\infty})$, où $\overline{T=+\infty}$ désigne l'événement contraire de $T=+\infty$.

Donc
$$0 \le P(T = +\infty) \le 1 - P\left(\bigcup_{n=1}^{N} G_n\right) = P\left(\bigcap_{n=1}^{N} \overline{G_n}\right) = \left(1 - \frac{1}{2^l}\right)^N$$
.

Donc en passant les inégalités à la limite, $P(T = +\infty) = 0$.

5) On sait que T est à valeurs dans \mathbb{N} , donc $E(T) = \sum_{k=0}^{+\infty} P(T > k)$. Or si k = Nl + r, $P(T > k) \le P(T > Nl)$.

$$\text{Or } \bigcup_{n=1}^{N-1} G_n \subset (\overline{T > Nl}) \text{ , donc } P(T > Nl) \leq 1 - P\left(\bigcup_{n=1}^{N-1} G_n\right) = P\left(\bigcap_{n=1}^{N-1} \overline{G_n}\right) = \left(1 - \frac{1}{2^l}\right)^{N-1} \leq \left(1 - \frac{1}{2^l}\right)^{k/l-2} \text{ car } N \geq \frac{k}{l} - 1 \text{ .}$$

Donc si $q = \left(1 - \frac{1}{2^l}\right) \in \left]0,1\right[, \ 0 \le P(T > k) \le \left(q^{1/l}\right)^k \frac{1}{q^2}$ et par majoration, la série $\sum P(T > k)$ converge, donc T est d'espérance finie.

1

Exercice 3 (Oral Centrale 22): pour a > 0, on pose $S(a) = \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$

- 1) Si a > 0, $\frac{a}{n^2 + a^2} \sim \frac{a}{n^2}$ et par théorème de comparaison des séries à termes positifs, $D_S = \mathbb{R}_+^*$.
- 2) On sait que pour $a \in D, n \ge 2$, $S(a) \sum_{k=1}^{n} \frac{a}{k^2 + a^2} = \sum_{k=n+1}^{+\infty} \frac{a}{k^2 + a^2}$. Avec une comparaison série-intégrale, il vient après justifications $\int_{n+1}^{+\infty} \frac{a}{t^2 + a^2} dt \le \sum_{k=n+1}^{+\infty} \frac{a}{n^2 + a^2} \le \int_{n}^{+\infty} \frac{a}{t^2 + a^2} dt$. Donc $0 \le \frac{\pi}{2} \operatorname{Arctan}\left(\frac{n+1}{a}\right) \le \sum_{k=n+1}^{+\infty} \frac{a}{n^2 + a^2} \le \frac{\pi}{2} \operatorname{Arctan}\left(\frac{n}{a}\right)$. Or si x > 0, $\frac{\pi}{2} \operatorname{Arctan}\left(\frac{1}{x}\right) = \operatorname{Arctan}(x) \le x$ en étudiant la fonction $x \mapsto x \operatorname{Arctan}(x)$. Donc $\left|S(a) \sum_{k=1}^{n} \frac{a}{k^2 + a^2}\right| \le \operatorname{Arctan}\left(\frac{a}{n}\right) \le \frac{a}{n}$.
- 3) Voir par ailleurs
- 4) Il semble que $\lim_{a \to +\infty} S(a) = \frac{\pi}{2}$.
- 5) Par comparaison série-intégrale, il vient $\int_{1}^{+\infty} \frac{a}{t^2 + a^2} dt \le S(a) \le \int_{0}^{+\infty} \frac{a}{t^2 + a^2} dt.$ Donc $\frac{\pi}{2}$ Arctan $\left(\frac{1}{a}\right) \le S(a) \le \frac{\pi}{2}$. Par encadrement, $\lim_{a \to +\infty} S(a) = \frac{\pi}{2}$.
- 6) Le domaine de définition de f est \mathbb{R} car si $x \in \mathbb{R}$, $f_n(x) = \frac{n^2 x^2}{\left(x^2 + n^2\right)^2} \sum_{n \to +\infty} \frac{1}{n^2}$. $\sum f_n$ converge simplement sur \mathbb{R} .
- 7) On pose $U_n(a) = \frac{a}{n^2 + a^2}$ pour a > 0 et $n \in \mathbb{N}^*$. Chaque U_n est de classe C^1 sur \mathbb{R}^*_+ et $\sum U_n$ converge simplement sur \mathbb{R}^*_+ . $U_n'(a) = \frac{n^2 a^2}{\left(n^2 + a^2\right)^2} = f_n(a)$ et $\left|U_n'(a)\right| \le \frac{n^2 + a^2}{\left(n^2 + a^2\right)^2} \le \frac{1}{n^2}$, donc $\left\|U_n'\right\|_{\infty} \le \frac{1}{n^2}$ et $\sum \left(U_n\right)'$ converge normalement sur \mathbb{R}^*_+ .

Par théorème de dérivation des séries de fonctions, on a bien $\forall a \in D, f(a) = S'(a)$

Exercice 4 (Oral Centrale 22) : On pose f(0) = 0 et, pour $x \in \mathbb{R}^*$, $f(x) = x^2 \sin\left(\frac{1}{x}\right)$

- 1) Avec la limite du taux d'accroissement : pour $x \neq 0$, $\left| \frac{f(x) f(0)}{x} \right| = \left| x \sin\left(\frac{1}{x}\right) \right| \leq |x|$. Donc $\frac{f(x) f(0)}{x} \underset{x \to 0}{\longrightarrow} 0$ et f est dérivable, donc continue en 0 et f'(0) = 0
- 2) f' ne semble pas continue en 0, donc f ne semble pas C^1 sur \mathbb{R} .

Pour
$$x \neq 0$$
 $f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$.

On calcule $f'\left(\frac{1}{2n\pi}\right) = -1$ et $f'\left(\frac{1}{2n\pi + \pi}\right) = 1$. Donc par caractérisation séquentielle, f' n'a pas de limite en 0 et f n'est pas C^1 sur \mathbb{R} .

- 3) g est dérivable par somme et g'(0) = f'(0) + 2 = 2 Comme $\frac{g(x) g(0)}{x} \xrightarrow[x \to 0]{} 2$, avec la définition de limite, il existe $\eta > 0 \quad \forall x \in]0, \eta[, g(x) > g(0)]$.
- 4) Soit $x \in [-0.1, 0.1]$. Pour $x \ne 0$, $g'(x) = 2x \sin\left(\frac{1}{x}\right) + 2 \cos\left(\frac{1}{x}\right) \ge 1 + 2x \sin\left(\frac{1}{x}\right) \ge 0.8$ care $\left|x \sin\left(\frac{1}{x}\right)\right| \le |x| \le 0.1$ et g est croissante au voisinage de 0
- 5) h est dérivable par somme et h'(0) = f'(0) + 1 = 1
- 6) Si $x \neq 0$, $h'(x) = 2x \sin\left(\frac{1}{x}\right) + 1 \cos\left(\frac{1}{x}\right)$

$$h'\left(\frac{1}{U_n}\right) = \frac{2}{2n\pi + \frac{\alpha}{n}}\sin\left(2n\pi + \frac{\alpha}{n}\right) + 1 - \cos\left(2n\pi + \frac{\alpha}{n}\right) = \frac{1}{n\pi}\left(\frac{1}{1 + \frac{\alpha}{2n\pi}}\right)\sin\left(\frac{\alpha}{n}\right) + 1 - \cos\left(\frac{\alpha}{n}\right).$$

Avec des développements limités : si $\alpha + \alpha^2 \neq 0$, $h' \left(\frac{1}{U_n} \right)_{n \to +\infty} \frac{1}{n^2} \left(\frac{\alpha}{\pi} + \frac{\alpha^2}{2} \right)$

On prend $\alpha = -\frac{1}{2} : \frac{\alpha}{\pi} + \frac{\alpha^2}{2} = -\frac{1}{2\pi} + \frac{1}{8} < 0$ et pour n assez grand, $h'\left(\frac{1}{U_n}\right) < 0$.

Donc h n'est pas croissante au voisinage de 0.

8) La fonction f est lipschitzienne sur [0,1] car $\|f'\|_{\infty,[0,1]} \le 3$. Donc avec l'inégalité des accroissements finis, si $a,b \in [0,1]$, $|f(b)-f(a)| \le 3|b-a|$.

Si on prend a(0) = 0 et, pour $x \in \mathbb{R}^*$, $a(x) = x^{3/2} \sin\left(\frac{1}{x}\right)$, a est dérivable sur [0,1], mais pas lipschitzienne. En effet, si elle l'était, on aurait pour $x \neq y$ $\frac{|a(y) - a(x)|}{|y - x|} \leq M$, donc en passant l'inégalité à la limite quand y tend vers x $|a'(x)| \leq M$.

Pourtant, $a'(x) = \frac{3}{2}x^{1/2}\sin\left(\frac{1}{x}\right) - \frac{1}{\sqrt{x}}\cos\left(\frac{1}{x}\right)$ n'est pas bornée en prenant $a'(\frac{1}{2n\pi}) = \sqrt{2n\pi}$.

9) On note $V_n(x) = \frac{1}{n^2} f(x - \frac{1}{n})$. Chaque V_n est dérivable sur [0,1] et $V_n'(x) = \frac{1}{n^2} f'(x - \frac{1}{n})$ Avec $||f'||_{\infty,[0,1]} \le 3$, il vient $||V_n'||_{\infty,[0,1]} \le 3$ donc on a convergence normale de $\sum V_n'$ et $||f||_{\infty,[0,1]} \le 1$ et on a donc convergence normale, donc simple de $\sum V_n$.

On conclut par théorème de dérivation des séries de fonctions

Séance 2 :

Exercice 5 (Oral Centrale 22): Soit $n \in \mathbb{N}$.

- 1) On utilise le théorème de la bijection pour $f_n(x) = e^{-x} \left(\sum_{k=0}^n \frac{x^k}{k!} \right)$. $f_n'(x) = e^{-x} \left(-\sum_{k=0}^n \frac{x^k}{k!} + \sum_{k=1}^n \frac{x^{k-1}}{(k-1)!} \right)$ Donc $f_n'(x) = -e^{-x} \frac{x^n}{n!}$ et f_n est continue, strictement décroissante sur \mathbb{R}_+ , avec $f_n(0) = 1$ et par croissance comparée, $f_n(x) \to 0$.
- 2) Soit $n \in \mathbb{N}$. On compare $f_n(a_n)$ et $f_{n+1}(a_n)$: pour $x \in \mathbb{R}_+$, $f_{n+1}(x) = e^{-x} \left(\sum_{k=0}^{n+1} \frac{x^k}{k!} \right) \ge f_n(x)$. Donc $f_{n+1}(a_n) \ge f_n(a_n) = \frac{1}{2} = f_{n+1}(a_{n+1})$. Comme f_{n+1} est décroissante, $a_n \le a_{n+1}$.
- 3) Par l'absurde : si $a_n \xrightarrow[n \to +\infty]{} a \in \mathbb{R}_+$, alors comme (a_n) est croissante, il vient $a_n \le a$ et par décroissance de f_n , $f_n(a) \le f_n(a_n) = \frac{1}{2}$. On prend la limite quand n tend vers l'infini et on obtient $1 \le \frac{1}{2}$. C'est absurde, donc (a_n) est croissante et ne converge pas : $a_n \xrightarrow[n \to +\infty]{} +\infty$.
- 5) Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$. Comme f_n est C^1 , $f_n(x) = f_n(0) + \int_0^x f_n'(t) dt$, donc $f_n(x) = 1 \int_0^x \frac{t^n}{n!} e^{-t} dt$.
- 6) En prenant la limite quand x tend vers l'infini (ou avec la fonction Γ), il vient $\int_0^+ \frac{t^n}{n!} e^{-t} dt = 1$, donc par Chasles, $f_n(x) = \int_0^+ \frac{t^n}{n!} e^{-t} dt$.

Exercice 6 (Centrale 22):

- 1) On utilise la norme infinie. On a immédiatement V_n borné. Si $M, N \in V_n$, $\lambda \in [0,1]$, $\forall i, j \in [1,n]$, $\lambda M_{i,j} + (1-\lambda)N_{i,j} \in [0,1]$, donc $\lambda M + (1-\lambda)N \in V_n$ et V_n est convexe.
- 2) Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur propre associé à λ une valeur propre complexe de M. Alors pour $\left|x_i\right| = \max_{1 \le j \le n} \left|x_j\right|$, $\left|\lambda\right| \left|x_i\right| = \left|\sum_{j=1}^n M_{i,j} x_j\right| \le \sum_{j=1}^n \left|M_{i,j}\right| \left|x_j\right| \le n \left|x_i\right|$. Or $X \ne 0$ donc $\left|\lambda\right| \le n$.
- 3) U_n est une ensemble fini donc $M\mapsto \det(M)$ possède un maximum sur U_n , et det est continue sur le fermé borné V_n , donc possède un maximum sur V_n (théorème des bornes atteintes).
- 5) On développe par rapport à la i_0 ème ligne : il existe des coefficients $\lambda_1,...,\lambda_n$, qui ne dépendent pas de x, tels que $\det(M_{i_0,j_0}(x)) = \sum_{i\neq i_0} M_{i,j_0} \lambda_i + x \lambda_{i_0}$. On obtient le résultat suivant le signe de λ_{i_0} : si $\lambda_{i_0} \geq 0$, il vient $\det(M_{i_0,j_0}(x)) \leq \det(M_{i_0,j_0}(1)) \text{ et si } \lambda_{i_0} < 0 \text{ , on a } \det(M_{i_0,j_0}(x)) \leq \det(M_{i_0,j_0}(0))$

- 6) On prouve u_n = v_n. Comme U_n ⊂ V_n, on sait que u_n ≤ v_n. De plus, soit M ∈ V_n telle que v_n = det(M) On utilise 5) et on travaille coefficient par coefficient pour le remplacer par 1 ou 0 en obtenant une matrice de déterminant plus grand. Pour i₀ = j₀ = 1, il vient det(M) ≤ max (det(M_{1,1}(0)), det(M_{1,1}(1))) et on note N(1,1) la matrice choisie parmi M_{1,1}(0) et M_{1,1}(1) dont le déterminant est le plus grand. On applique ensuite ce procédé à N(1,1) pour i₀ = 1 et j₀ = 2 et on construit ainsi une matrice N ∈ V_n telle que v_n = det(M) ≤ det(N) ≤ u_n. On a donc bien par double inégalité u_n = v_n.
- 8) Pour $i \in [1, n]$, $X_i = X_i^2$. Donc $P(tr(M) \le 1) = P(\sum_{i=1}^n X_i \le 1)$. Si on pose $S_n = \sum_{i=1}^n X_i$, on sait que $S_n \sim B(n, p)$. Donc $P(tr(M) \le 1) = P(S_n \le 1) = P(S_n = 0) + P(S_n = 1) = (1 p)^{n-1} (np + 1 p)$

Exercice 7 (Oral Centrale 22):

- 1) On trouve $D_2(a,b) = a^2 2b$ et $D_3(a,b) = a^3 3ab$.
- 2) On développe par rapport à la dernière ligne et on trouve $D_{n+2}(a,b) = aD_{n+1}(a,b) bD_n(a,b)$.
- 3) Voir par ailleurs.
- 4) Par récurrence double, on prouve que $a \mapsto D_n(a,b)$ est de degré n.
- 5) $a \mapsto D_n(a,b)$ semble posséder *n* racines distinctes.
- 6) On remarque que $D_n(a,b) = \det(aI_n A_n(b))$. Donc si $a \mapsto D_n(a,b)$ possède n racines distinctes, alors $A_n(b)$ possède n valeurs propres distinctes et est diagonalisable.
- 7) On montre que pour tout $\theta \in \mathbb{R}$ et tout $n \in \mathbb{N}$, $T_n(\cos \theta) = \cos(n\theta)$ par récurrence double (polynômes de Tchebyvhev).
- 8) On résout $T_n(\cos\theta) = 0 \Leftrightarrow \cos(n\theta) = 0 \Leftrightarrow \exists k \in [0, n-1], \theta = \frac{(2k+1)\pi}{n}$. Les $\cos\left(\frac{(2k+1)\pi}{n}\right)_{k \in [0,n-1]}$ sont des racines de T_n . Par bijectivité de $\cos:[0,\pi] \to [-1,1]$, elles sont distinctes, donc comme $\deg(T_n) = n$, ce sont les seules racines et elles sont simples.
- 9) On sépare le cas b=0: $D_n(a,b)=a^n$ et 0 est la seule racine. Si $b \neq 0$, on prouve par récurrence double que $D_n(a,b)=2\left(\sqrt{b}\right)^n T_n\left(\frac{a}{2\sqrt{b}}\right)$ et les racines sont les $2\sqrt{b}\cos\left(\frac{(2k+1)\pi}{n}\right), k \in [\![0,n-1]\!]$.

Exercice 8 (Oral Centrale 22):

1) On calcule
$$\sum_{k=1}^{n} \cos\left(\frac{k\pi}{n+1}\right) = \operatorname{Re}\left(\sum_{k=0}^{n} \exp\left(\frac{ik\pi}{n+1}\right)\right) - 1 = \operatorname{Re}\left(\frac{2}{1 - \exp\left(\frac{i\pi}{n+1}\right)}\right) - 1$$
.

Or avec l'angle moitié, si $\theta \neq 0 \left[2\pi\right]$, $\operatorname{Re}\left(\frac{1}{1 - e^{i\theta}}\right) = \operatorname{Re}\left(e^{-\frac{i\theta}{2}} - \frac{1}{-2i\sin\frac{\theta}{2}}\right) = \frac{1}{2}$, donc $\sum_{k=1}^{n} \cos\left(\frac{k\pi}{n+1}\right) = 0$.

- 2) A est symétrique réelle donc diagonalisable et ses sous-espaces propres sont orthogonaux (car ils ont des bases constituées de vecteurs propres orthogonaux entre eux).
- 3) Voir par ailleurs
- 4) On voit sur les exemples que B(n) est diagonale et que le spectre de A est constitué de n valeurs propres distinctes. Donc les colonnes de P constituent une base C de vecteurs propres de A et les colonnes de P sont orthogonales (car elles appartiennent à des sous-espaces propres distincts puisque chaque sous-espace propre est de dimension 1).
- 5) Pour $p \neq q$, on remarque que $S_{p,q} = \langle X_p, X_q \rangle = 0$ puisque les colonnes de P sont orthogonales.

6)
$$\sum_{k=1}^{n} \cos\left(\frac{kp\pi}{n+1}\right) = \operatorname{Re}\left(\sum_{k=0}^{n} \exp\left(\frac{ikp\pi}{n+1}\right)\right) - 1 = \operatorname{Re}\left(\frac{1 - (-1)^{p}}{1 - \exp\left(\frac{ip\pi}{n+1}\right)}\right) - 1 \text{ si } p \text{ n'est pas un multiple de } 2(n+1)$$

. Dans ce cas, on a donc
$$\sum_{k=1}^{n} \cos\left(\frac{kp\pi}{n+1}\right) = \frac{1-(-1)^p}{2} - 1 = -\frac{1+(-1)^p}{2}$$
.

Si
$$p$$
 est pas un multiple de $2(n+1)$, $\sum_{k=1}^{n} \cos\left(\frac{kp\pi}{n+1}\right) = n$

7) On effectue un calcul direct en utilisant $\forall a, b \in \mathbb{R}, \cos(a-b) - \cos(a+b) = 2\sin(a)\sin(b)$:

$$S_{p,q} = \frac{1}{2} \sum_{k=1}^{n} \left(\cos \left(\frac{k(p-q)\pi}{n+1} \right) - \cos \left(\frac{k(p+q)\pi}{n+1} \right) \right) \text{ pour } (p,q) \in [[1,n]]^{2}.$$

Ici, $p \neq q$, donc p-q et p+q ne sont pas des multiples de 2(n+1).

Donc
$$S_{p,q} = -\frac{1+(-1)^{p-q}}{2} + \frac{1+(-1)^{p+q}}{2}$$
. Donc $S_{p,q} = \frac{(-1)^{p+q}-(-1)^{p-q}}{2} = \frac{(-1)^{p-q}}{2} \left((-1)^{2q}-1\right) = 0$

6