Introdução ao Aprendizado de Máquina

Lucas Gonçalves de Moura Leite

Resumo de ontem

- Aprendizado de máquina
 - Supervisionado x Não Supervisionado
- Classificar frutas com base nas suas características
- ▶ K-NN
- Treino x Teste (Capacidade de generalização)

Aula de hoje

- Como outros métodos supervisionados aprendem a partir dos dados
- Vantagens e desvantagens de cada um destes métodos
- Como utilizar estes métodos no scikit-learn
- Princípios gerais de aprendizado de máquina (overfitting)

Nomenclatura

- Representação por atributos (features)
- Instâncias (exemplos)
- Saídas desejadas(target, labels)

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
10	1	apple	braeburn	166	6.9	7.3	0.93
11	1	apple	braeburn	172	7.1	7.6	0.92
12	1	apple	braeburn	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	156	7.7	7.1	0.69
16	1	apple	golden_delicious	156	7.6	7.5	0.67
17	1	apple	golden_delicious	168	7.5	7.6	0.73
18	1	apple	cripps_pink	162	7.5	7.1	0.83

Revisão

- Conjuntos de treinamento e testes
- Treinamento (Estimação)
- Avaliação

```
%matplotlib notebook
import numpy as np
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
fruits = pd.read table('fruit data with colors.txt')
X = fruits[['height', 'width', 'mass', 'color_score']]
v = fruits['fruit label']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
knn = KNeighborsClassifier(n_neighbors = 5)
knn.fit(X_train, y_train)
print("Accuracy of K-NN classifier on test set: ", knn.score(X_test, y_test))
example fruit = [[5.5, 2.2, 10, 0.70]]
print("Predicted fruit type for ", example_fruit, " is ", knn.predict(example_fruit))
```

Aprendizado Supervisionado

- ▶ Classificação e Regressão
 - Saídas discretas ou contínuas
- Muitos métodos supervisionados possuem versões para classificação e regressão

Aprendizado Supervisionado

- Classificação e Regressão
 - Saídas discretas ou contínuas
- Muitos métodos supervisionados possuem versões para classificação e regressão
- Classificação
 - ► K-NN
- Regressão
 - Regressão linear usando mínimos quadrados

Métodos Supervisionados

- Veremos alguns dos principais métodos de AS
 - Como funcionam (alto nível)
 - Principais hiper-parâmetros
 - Vantagens e desvantagens

Exemplo

Exemplo

▶ Erro = 6.54

Exemplo

▶ Erro = 2.24

Exemplo

▶ Erro = 27.77

Exemplo

► Erro = 15.18

Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros

 Modelo se ajusta demasiadamente aos dados utilizados para encontrar os parâmetros

Generalização e Overfitting

 Generalização é a capacidade de um algoritmo de fornecer boas predições para um dado ainda não visto.

Premissas

- Dados que não foram vistos se assemelham aos dados usados para treinamento
- Com isso, modelos ajustados para o treino ficarão bons para o teste

Overfitting

 Acontece quando um modelo complexo é ajustado em um conjunto de dados que não é suficientemente grande

Overfitting para Classificação

Overfitting K-NN

Comportamento Geral

K-NN

plot_two_class_knn(X_train, y_train, 1, 'uniform', X_test, y_test)
plot_two_class_knn(X_train, y_train, 3, 'uniform', X_test, y_test)
plot_two_class_knn(X_train, y_train, 11, 'uniform', X_test, y_test)

```
import numpy as np
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import make classification, make blobs
from matplotlib.colors import ListedColormap
from adspy shared utilities import plot two class knn
df = pd.read csv('dadosClassBin.csv',index col=0)
X_C2 = np.array(df[['x1','x2']])
                                                                                                      Neighbors = 1
y_C2 = np.array(df['y'])
                                                                                              Train score = 1.00, Test score = 0.80
X_train, X_test, y_train, y_test = train_test_split(X_C2, y_C2,
                                                     random state=0)
```


K-NN para Regressão

K-NN para Regressão

- Encontra-se os k vizinhos mais próximos
- $ar{y}$ é dado pela média dos valores de y dos k vizinhos mais próximos

K-NN para Regressão

R² score

- Mede o quão bem um modelo de regressão se ajustou aos dados
- ▶ Entre 0 e I
 - I indica ajuste perfeito

Regressão com variação de K

```
# plot k-NN regression on sample dataset for different values of K
fig, subaxes = plt.subplots(5, 1, figsize=(5,20))
X predict input = np.linspace(-3, 3, 500).reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X_R1, y_R1,
                                                   random state = 0)
for thisaxis, K in zip(subaxes, [1, 3, 7, 15, 55]):
   knnreg = KNeighborsRegressor(n neighbors = K).fit(X train, y train)
   y predict output = knnreg.predict(X predict input)
   train score = knnreg.score(X_train, y_train)
   test score = knnreg.score(X test, y test)
   thisaxis.plot(X predict input, y predict output)
   thisaxis.plot(X_train, y_train, 'o', alpha=0.9, label='Train')
   thisaxis.plot(X_test, y_test, '^', alpha=0.9, label='Test')
   thisaxis.set xlabel('Input feature')
   thisaxis.set vlabel('Target value')
   thisaxis.set title('KNN Regression (K={})\n\
Train R^2 = {:.3f}, Test R^2 = {:.3f}
                     .format(K, train_score, test score))
   thisaxis.legend()
   plt.tight layout(pad=0.4, w pad=0.5, h pad=1.0)
```


Train $R^2 = 0.797$. Test $R^2 = 0.323$

Train $R^2 = 0.357$. Test $R^2 = 0.371$

Modelos lineares para regressão

- Explicar uma determinada variável de saída (y) através de variáveis de entrada (x), utilizando um modelo linear.
- Exemplo
 - Concessão de crédito

Concessão de Crédito

Salário (R\$)	Crédito (R\$)
1500	16500
2000	18000
3000	28000
3300	33000
4200	49000
•••	
5500	52000

- Concessão de Crédito
 - Encontrar uma relação linear entre Salário e Credito

Salário (R\$)	Crédito (R\$)
1500	16500
2000	18000
3000	28000
3300	33000
4200	49000
•••	•••
5500	52000

Concessão de Crédito

- Encontrar uma relação linear entre Salário e Credito
- Salário (x_i) e Crédito (y_i)

Salário (R\$)	Crédito (R\$)
1500	16500
2000	18000
3000	28000
3300	33000
4200	49000
•••	•••
5500	52000

Concessão de Crédito

- Encontrar uma relação linear entre Salário e Credito
- Salário (x_i) e Crédito (y_i)

Salário (R\$)	Crédito (R\$)
1500	16500
2000	18000
3000	28000
3300	33000
4200	49000
•••	
5500	52000

- $J(w_1, w_0) = \frac{1}{2n} \sum_{i=1}^n e_i^2$
 - Onde: $e_i = y_i \overline{y_i}$

Regressão Linear

- $J(w_1, w_0) = \frac{1}{2n} \sum_{i=1}^n e_i^2$
 - Onde: $e_i = y_i \overline{y_i}$

Regressão Linear

- $J(w_1, w_0) = \frac{1}{2n} \sum_{i=1}^n e_i^2$
 - Onde: $e_i = y_i \overline{y_i}$

Ordinary Least-Squares (OLS)

Estimação dos Parâmetros

- \mathbf{w}_1 e \mathbf{w}_0 são estimados a partir dos dados de treinamento
- Existem muitos métodos para este ajuste
 - Minimizar uma função de perda (loss function)

Em diversos problemas é necessário utilizar mais de uma variável x para tentar explicar a variável de saída y

- Em diversos problemas é necessário utilizar mais de uma variável x para tentar explicar a variável de saída y
 - Exemplo
 - Concessão de crédito

- Em diversos problemas é necessário utilizar mais de uma variável x para tentar explicar a variável de saída y
 - Exemplo
 - Concessão de crédito

Salário (R\$)	Dívida (R\$)	Crédito (R\$)
1500	0	16500
2000	4000	12000
3000	2000	28000
•••		•••
5500	1700	52000

Concessão de Crédito

- ▶ Encontrar uma relação linear entre Salário, Dívida e Credito
- Salário (x_{1i}), Salário (x_{2i}) e Crédito (y_i)

Salário (R\$)	Dívida (R\$)	Crédito (R\$)
1500	0	16500
2000	4000	12000
3000	2000	28000
•••		•••
5500	1700	52000

Regressão Linear – Scikit Learn

```
import numpy as np
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
from sklearn.linear model import LinearRegression
df = pd.read csv('dadosRegLin1.csv',index col=0)
X_R1 = df[['x']]
y R1 = df['y']
X train, X test, y train, y test = train test split(X R1, y R1, random state = 0)
linreg = LinearRegression().fit(X_train, y_train)
```

KNN x RL

k-NN (k=7)

R-squared score (training): 0.720 R-squared score (test): 0.471

LS linear

R-squared score (training): 0.679 R-squared score (test): 0.492

Ridge Regression

- Regressão Linear
 - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \overline{y}_i)^2$$

- Regressão Ridge
 - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

Regressão com regularização L2 (Ridge Regression)

Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

- Penaliza a utilização dos pesos
- Modelos mais simples
- Menos suscetível a overfitting

Normalização de Dados

- Importante que os atributos estejam na mesma escala
 - ► K-NN, regressão regularizada
- Normalizações
 - Min-Max
 - Standardization

Normalização Min-Max

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

- Mesma normalização para treino e teste
 - Não usar dados de teste
- Não normalizar as saídas

Standardization

```
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X_train)
scaler.transform(X_test)
```

Dados com média 0 e variância I

Regressão Lasso

Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} |w_j| \right]$$

Produz modelos esparsos

Seleção de atributos

```
from sklearn.linear_model import Lasso
from sklearn.preprocessing import MinMaxScaler
from adspy_shared_utilities import load_crime_dataset

(X_crime, y_crime) = load_crime_dataset()

scaler = MinMaxScaler()

X_train, X_test, y_train, y_test = train_test_split(X_crime, y_crime, random_state = 0)

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

linlasso = Lasso(alpha=2.0, max_iter = 10000).fit(X_train_scaled, y_train)
```


Modelos não-Lineares com Regressão Linear

- É possível criar regressões não lineares através da formulação linear do problema.
 - Relação entre as variáveis é reconhecidamente não linear (quadrática, cúbica ...)

Modelos não-Lineares com Regressão Linear

- É possível criar regressões não lineares através da formulação linear do problema
- Criar novos atributos

Modelos não-Lineares com Regressão Linear

- É possível criar regressões não lineares através da formulação linear do problema
- Criar novos atributos

$$x=(x_0,x_1)$$
 $x'=(x_0,x_1,x_0^2,x_0x_1,x_1^2)$

$$\hat{y} = \hat{w}_0 x_0 + \hat{w}_1 x_1 + \hat{w}_{00} x_0^2 + \hat{w}_{01} x_0 x_1 + \hat{w}_{11} x_1^2 + b$$

Regressão Polinomial

- Linear nos parâmetros
- Ajuste de dados não lineares


```
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)
X_F1_poly = poly.fit_transform(X_F1)
```


Exercício

- Carregar os dados do dataset boston housing
- Estimar a saida usando todos os modelos lineares vistos até agora

```
>>> from sklearn.datasets import load_boston
>>> boston = load_boston()
```


Modelos lineares para classificação

Método de Classificação

- Método de Classificação
 - Exemplo

- Método de Classificação
 - Exemplo

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

- Método de Classificação
 - Exemplo
 - Utilizando Regressão Linear

$$\Box \ \overline{y_i} = w_1 x_i + w_0$$

Modelo Linear

$$\overline{y_i} = w_1 x_i + w_0 = \mathbf{w}^T \mathbf{x}_i$$

Função Logística

$$f(x) = \frac{1}{1 + e^{-x}}$$

Modelo Linear

$$\overline{y_i} = w_1 x_i + w_0 = \mathbf{w}^T \mathbf{x}_i$$

Função Logística

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

0,10 centavos0,50 centavos

Peso

$$\overline{y_i} = \frac{1}{1 + e^{-w^T x_i}}$$

- Regressão Logistica regularizada
 - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \lambda \sum_{j=1}^{m} w_j^2 \right]$$

- Regressão Logistica regularizada (Scikit Learn)
 - Função Objetivo

$$J(\mathbf{w}) = \frac{1}{2n} \left[\sum_{i=1}^{n} (y_i - \overline{y_i})^2 + \frac{1}{C} \sum_{j=1}^{m} w_j^2 \right]$$

Regressão Logística

- Parametro de regularização (C)
 - Lógica inversa a da regressão logistica

```
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(C=100).fit(X_train, y_train)
```


Support Vector Machines

- Máquinas de Vetores Suporte
- Classificação e Regressão
- Busca encontrar a melhor superfície de separação entre os dados de diferentes classes

Margem de Separação

Support Vector Machines

- Maximizar a margem de separação dos dados de treinemanto.
- Hyperparâmetros
 - ▶ Linear C
 - Não Linear Parâmetros do Kernel

- Define o custo do seu modelo errar alguns exemplos de treinamento
- Errar pode ser bom desde que a margem seja aumentada
- No scikit learn
 - Inverso da logica do custo
 - Menor C -> Muito ajustado ao treinamento -> Poucos erros no treino

```
from sklearn.svm import SVC
clf = SVC(kernel = 'linear', C=this_C).fit(X_train, y_train)
```


Modelos Lineares

Vantagens

- Treinamento simples
- Interpretáveis
- Rápidos
- Funcionam bem para grandes massas de dados

Desvantagens

- Para dados de baixa dimensão, modelos não-lineares podem ter melhor performance
- Dados podem não ser linearmente separáveis

Exercício

- Carregar os dados do dataset breast cancer
- Classificar usando todos os modelos lineares vistos até agora

```
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
(X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)
```