PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/00

A2

(11) International Publication Number: WO 99/43797

(43) International Publication Date: 2 September 1999 (02.09.99)

(21) International Application Number: PCT/US99/04203

(22) International Filing Date: 25 February 1999 (25.02.99)

60/076,075 26 February 1998 (26.02.98) US

(71) Applicant (for all designated States except US): PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 800 Capital Square, 400 Locust Street, Des Moines, IA 50319 (US).

(72) Inventor; and

(30) Priority Data: .

(75) Inventor/Applicant (for US only): RICE, Douglas, A. [US/US]; 4334 Woodland Avenue, Des Moines, IA 50312 (US).

(74) Agents: SPRUILL, W., Murray et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.

(54) Title: CONSTITUTIVE MAIZE PROMOTERS

(57) Abstract

The present invention provides compositions and methods for regulating expression of heterologous nucleotide sequences in a plant. Compositions are novel nucleotide sequences for constitutive promoters isolated from maize genes encoding histone H2B, metallothionein, alpha—tubulin 3, elongation factor efla, ribosomal protein rps8, chlorophyll a/b binding protein, and glyceraldehyde—3—phosphate dehydrogenase. A method for constitutively expressing a heterologous nucleotide sequence in a plant using the promoter sequences disclosed herein is provided. The method comprises transforming a plant cell to comprise a heterologous nucleotide sequence operably linked to one of the constitutive promoters of the present invention and regenerating a stably transformed plant from the transformed plant cell.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

I	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
Ì	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
I	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ĺ	ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
۱	ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
İ	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
l	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
1	BÉ	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
١	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
1	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ı	BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
ı	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
Ì	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
	CA	Canada	KT	Italy	MX	Mexico	UZ	Uzbekistan
	CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	CM	Cameroon		Republic of Korea	PL	Poland		
i	CN	China	KR	Republic of Korea	PT	Portugal		
	CU	Cuba	KZ	Kazakstan	RO	Romania		
	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
	DE	Germany	LI	Liechtenstein	SD	Sudan		
	DK	Denmark	LK	Sri Lanka	SE	Sweden		
	EE	Estonia	LR	Liberia	SG	Singapore		
				•				
	j							

CONSTITUTIVE MAIZE PROMOTERS

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application Serial No. 60/076,075, filed February 26, 1998, herein incorporated by reference.

5

10

15

20

25

FIELD OF THE INVENTION

The present invention relates to the field of plant molecular biology, more particularly to regulation of gene expression in plants.

BACKGROUND OF THE INVENTION

Expression of heterologous DNA sequences in a plant host is dependent upon the presence of an operably linked promoter that is functional within the plant host. Choice of the promoter sequence will determine when and where within the organism the heterologous DNA sequence is expressed. Thus, where continuous expression is desired throughout the cells of a plant, constitutive promoters are utilized. In contrast, where gene expression in response to a stimulus is desired, inducible promoters are the regulatory element of choice. In either case, additional regulatory sequences upstream and/or downstream from the core promoter sequence may be included in expression constructs of transformation vectors to bring about varying levels of constitutive or inducible expression of heterologous nucleotide sequences in a transgenic plant.

Frequently it is desirable to have constitutive expression of a DNA sequence throughout the cells of an organism. For example, increased resistance of a plant to infection by soil- and air-borne pathogens might be accomplished by genetic manipulation of the plant's genome to comprise a constitutive promoter operably linked to a heterologous pathogen-resistance gene such that pathogen-resistance proteins are continuously expressed throughout the plant's tissues.

Alternatively, it might be desirable to inhibit expression of a native DNA sequence within a plant's tissues to achieve a desired phenotype. In this case, such inhibition might be accomplished with transformation of the plant to comprise a

WO 99/43797 2

5

25

30

constitutive promoter operably linked to an antisense nucleotide sequence, such that constitutive expression of the antisense sequence produces an RNA transcript that interferes with translation of the mRNA of the native DNA sequence.

Thus, isolation and characterization of constitutive promoters that can serve as regulatory regions for constitutive expression of heterologous nucleotide sequences of interest are needed for genetic manipulation of plants to exhibit specific phenotypic traits.

SUMMARY OF THE INVENTION

10 Compositions and methods for regulating expression of heterologous nucleotide sequences in a plant are provided. Compositions are novel nucleotide sequences for constitutive plant promoters, more particularly promoters isolated from maize genes encoding histone H2B, metallothionein, alpha-tubulin 3, elongation factor ef1a, ribosomal protein rps8, chlorophyll a/b binding protein, and 15 glyceraldehyde-3-phosphate dehydrogenase. A method for constitutively expressing a heterologous nucleotide sequence in a plant using the promoter sequences disclosed herein is provided. The method comprises transforming a plant cell with a transformation vector that comprises a heterologous nucleotide sequence operably linked to one of the plant promoters of the present invention and regenerating a stably 20 transformed plant from the transformed plant cell.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the plasmid vector PHP3953 comprising the GUS gene operably linked to the ubiquitin promoter. Promoter fragments of the present invention were recloned into this plasmid in place of the ubiquitin promoter, and the resulting plasmid DNA was available for use in transformation studies to test for promoter activity.

DETAILED DESCRIPTION OF THE INVENTION

Compositions of the present invention are nucleic acid molecules comprising novel nucleotide sequences for plant promoters, more particularly constitutive promoters for the maize genes encoding histone H2B; metallothionein-1; alphatubulin 3-18; elongation factor efla-11, efla-15, and efla-16; ribosomal protein rps8; chlorophyll a/b binding protein cab-10 and cab-20; and glyceraldehyde-3-phosphate

dehydrogenase gpc4. The nucleotide sequences for these promoters are set forth in SEQ ID NOs: 1-10, respectively. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the DNA sequences deposited in a bacterial host as ATCC Accession Nos. _______, and variants and fragments thereof. The promoters for these maize genes were isolated from the 5' untranslated region flanking their respective transcription initiation sites: Methods for isolation of promoter regions are well known in the art. The specific method used to obtain the promoters of the present invention is described in Example 1 below.

5

10

15

20

25

30

Plasmids containing the promoter nucleotide sequences of the invention were deposited with American Type Culture Collection (ATCC), Manassas, Virginia, and assigned Accession Nos. ______. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. These deposits were made merely as a convenience for those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112.

The invention encompasses isolated or substantially purified nucleic acid compositions. An "isolated" or "purified" nucleic acid molecule, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Preferably, an "isolated" nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.

By "promoter" is intended a regulatory region of DNA usually comprising a TATA box capable of directing RNA polymerase II to initiate RNA synthesis at the appropriate transcription initiation site for a particular coding sequence. A promoter may additionally comprise other recognition sequences generally positioned upstream or 5' to the TATA box, referred to as upstream promoter elements, which influence the transcription initiation rate. It is recognized that having identified the nucleotide

sequences for the promoter regions disclosed herein, it is within the state of the art to isolate and identify further regulatory elements in the 5' untranslated region upstream from the particular promoter regions identified herein. Thus the promoter regions disclosed herein may further comprise upstream regulatory elements that confer tissue-specific expression of any heterologous nucleotide sequence operably linked to one of the disclosed promoter sequences. See particularly Australian Patent No. AU-A-77751/94 and U.S. Patent Nos. 5,466,785 and 5,635,618.

5

10

15

20

25

30

The maize promoter sequences of the present invention, when assembled within a DNA construct such that the promoter is operably linked to a heterologous nucleotide sequence of interest, enable constitutive expression of the heterologous nucleotide sequence in the cells of a plant stably transformed with this DNA construct. By "heterologous nucleotide sequence" is intended a sequence that is not naturally occurring with the promoter sequence. While this nucleotide sequence is heterologous to the promoter sequence, it may be homologous or native or heterologous or foreign to the plant host. By "constitutive" is intended expression in the cells throughout a plant at most times and in most tissues.

The isolated promoter sequences of the present invention can be classified as providing for a range of constitutive expression. Thus, some are weak constitutive promoters, and others are strong constitutive promoters. Generally, by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By "low level" is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts. Conversely, a strong promoter drives expression of a coding sequence at a high level, or at about 1/10 transcripts to about 1/100 transcripts to about 1/1,000 transcripts.

The nucleotide sequences for the constitutive promoters of the present invention may be the naturally occurring sequences or any sequence having substantial homology. By "substantial homology" is intended a sequence exhibiting substantial functional and structural equivalence with the native or naturally occurring sequence. Any functional or structural differences between substantially homologous sequences do not effect the ability of the sequence to function as a promoter as disclosed in the present invention. Thus, any sequence having substantial sequence homology with the sequence of a particular constitutive promoter of the present invention will direct constitutive expression of an operably linked heterologous nucleotide sequence. Two promoter nucleotide sequences are considered

10

15

20

25

30

substantially homologous when they have at least about 50%, 60%, to 70%, generally about 80%, preferably about 85%, 90%, up to 98% sequence homology.

Substantially homologous sequences of the present invention include variants of the disclosed sequences, such as those that result from site-directed mutagenesis. as well as synthetically derived sequences. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) *Proc. Natl. Acad. Sci. USA 82*:488-492; Kunkel *et al.* (1987) *Methods Enzymol. 154*:367-382; U.S. Patent No. 4,873,192; Walker *et al.*, eds. (1983) *Techniques in Molecular Biology* (MacMillan Publishing Company, New York) and the references cited therein. Thus, the promoter nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant and synthetically derived forms. Generally, nucleotide sequence variants of the invention will have at least about 50%, 60%, to 70%, generally about 80%, preferably about 85%, 90%, up to 98% sequence identity to its respective native nucleotide sequence.

Fragments of the promoter nucleotide sequences disclosed herein are also encompassed by the present invention. By "fragment" is intended a portion of the promoter nucleotide sequence. Fragments of a promoter nucleotide sequence may retain their biological activity. Thus, for example, less than the entire promoter sequences disclosed herein may be utilized to drive expression of an operably linked nucleotide sequence of interest, such as a nucleotide sequence encoding a heterologous protein. It is within skill in the art to determine whether such fragments decrease expression levels or alter the nature of expression, *i.e.*, constitutive expression. Alternatively, fragments of a promoter nucleotide sequence that are useful as hybridization probes generally do not retain this biological activity.

Nucleic acid molecules that are fragments of a promoter nucleotide sequence comprise at least 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, or 1,700 nucleotides, or up to the number of nucleotides present in a full-length promoter nucleotide sequence disclosed herein (*i.e.*, 1392, 1300, 166, 1023, 1022, 1769, 461, 467, 467, and 565 for SEQ ID NOs: 1-10, respectively). Generally, fragments of a promoter sequence that retain their biological activity comprise at least 30, 35, 40 contiguous nucleotides, preferably at least 50 contiguous nucleotides. more preferably at least 75 contiguous nucleotides, still more preferably at least 100 contiguous nucleotides of the particular promoter nucleotide sequence disclosed herein. Preferred

10

15

20

25

30

fragment lengths depend upon the objective and will also vary depending upon the particular promoter sequence.

The nucleotides of such fragments will usually comprise the TATA recognition sequence of the particular promoter sequence. Such fragments may be obtained by use of restriction enzymes to cleave the naturally occurring promoter nucleotide sequence disclosed herein; by synthesizing a nucleotide sequence from the naturally occurring sequence of the promoter DNA sequence; or may be obtained through the use of PCR technology. See particularly, Mullis et al. (1987) Methods Enzymol. 155:335-350, and Erlich, ed. (1989) PCR Technology (Stockton Press, New York). Variants of these promoter fragments, such as those resulting from site-directed mutagenesis, are encompassed by the compositions of the present invention.

The disclosed promoter nucleotide sequences can be used to isolate homologous promoter sequences in other plant species. Methods are readily available in the art for the hybridization of nucleic acid sequences. Promoter sequences from other plants may be isolated according to well-known techniques based on their sequence homology to the promoter sequences set forth herein. In these techniques all or part of the known nucleotide sequence is used as a probe which selectively hybridizes to other promoter nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (*i.e.*, genomic or cDNA libraries) from a chosen organism.

To obtain other homologous promoter sequences, the entire promoter nucleotide sequence or portions thereof may be used as probes capable of specifically hybridizing to corresponding promoter sequences. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique and are preferably at least about 10 nucleotides in length, and most preferably at least about 20 nucleotides in length. Such probes may be used to amplify the promoter sequences of interest from a chosen organism by the well-known process of polymerase chain reaction (PCR). This technique may be used to isolate additional promoter sequences from a desired organism or as a diagnostic assay to determine the presence of promoter sequences in an organism.

Such techniques include hybridization screening of plated DNA libraries (either plaques or colonies: see, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press. Plainview, New York) and amplification by PCR using oligonucleotide primers (see, e.g., Innis et al.,

25

30

eds. (1990) PCR Protocols, a Guide to Methods and Applications. Academic Press, New York).

For example, hybridization of such sequences may be carried out under conditions of reduced stringency, medium stringency, or even stringent conditions (e.g., conditions represented by a wash stringency of 35-40% Formamide with 5x 5 Denhardt's solution, 0.5% SDS and 1x SSPE at 37°C; conditions represented by a wash stringency of 40-45% Formamide with 5x Denhardt's solution, 0.5% SDS, and 1x SSPE at 42°C; and conditions represented by a wash stringency of 50% Formamide with 5x Denhardt's solution, 0.5% SDS and 1x SSPE at 42°C. respectively) to DNA for the promoter sequences disclosed herein in a standard 10 hybridization assay. See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York). In general, homologous sequences that are promoter sequences and hybridize to the promoter sequences disclosed herein will be at least 40% to 50% homologous, 60% to 15 70% homologous, and even 80%, 85%, 90%, 95% homologous or more with the disclosed sequence. That is, the sequence similarity of sequences may range, sharing at least about 40%, 50%, about 60%, 70%, and even about 80%, 85%, 90%, 95%, 98% sequence similarity.

The following terms are used to describe the sequence relationships between two or more nucleic acids: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", (d) "percentage of sequence identity", and (e) "substantial identity".

- (a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.
- (b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a

25

30

reference sequence due to inclusion of gaps in the polynucleotide sequence, a gap penalty is typically introduced and is subtracted from the number of matches.

Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison may be conducted by the local 5 homology algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; by the homology alignment algorithm of Needleman et al. (1970) J. Mol. Biol. 48:443; by the search for similarity method of Pearson et al. (1988) Proc. Natl. Acad. Sci. 85:2444; by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, California; 10 GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Drive, Madison, Wisconsin; the CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988); Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nuc. Acids Res. 16:10881-90; Huang et al. (1992) Computer Applications in the Biosciences 15 8:155-65, and Person et al. (1994) Meth. Mol. Biol. 24:307-331; preferred computer alignment methods also include the BLASTP, BLASTN, and BLASTX algorithms (see Altschul et al. (1990) J. Mol. Biol. 215:403-410). Alignment is also often performed by inspection and manual alignment.

- (c) As used herein, "sequence identity" or "identity" in the context of two nucleic acid sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
- (d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
 - (e)(i) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity,

10

15

20

25

30

preferably at least 80%, more preferably at least 90% and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters.

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5° C to about 20° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent wash conditions are those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 50, 55, or 60° C.

The nucleotide sequences for the constitutive promoters disclosed in the present invention, as well as variants and fragments thereof, are useful in the genetic manipulation of any plant when assembled within a DNA construct such that the promoter sequence is operably linked with a heterologous nucleotide sequence whose constitutive expression is to be controlled to achieve a desired phenotypic response. By "operably linked" is intended the transcription or translation of the heterologous nucleotide sequence is under the influence of the promoter sequence. In this manner, the nucleotide sequences for the promoters of the invention are provided in expression cassettes along with heterologous nucleotide sequences for expression in the plant of interest. It is recognized that the promoter sequences of the invention may also be used with their native coding sequences to increase or decrease expression of the native coding sequence, thereby resulting in a change in phenotype in the transformed plant.

Such expression cassettes will comprise a transcriptional initiation region comprising one of the promoter nucleotide sequences of the present invention, or variants or fragments thereof, operably linked to the heterologous nucleotide sequence whose expression is to be controlled by the constitutive promoters disclosed herein. Such an expression cassette is provided with a plurality of restriction sites for insertion of the nucleotide sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.

In order to increase transcription levels, enhancers may be utilized in combination with the promoter regions of the invention. Enhancers are nucleotide

10

15

20

25

30

sequences that act to increase the expression of a promoter region. Enhancers are known in the art and include the SV40 enhancer region, the 35S enhancer element, and the like.

The transcriptional cassette will include in the 5'-to-3' direction of transcription, a transcriptional and translational initiation region, a heterologous nucleotide sequence of interest, and a transcriptional and translational termination region functional in plants. The termination region may be native with the transcriptional initiation region comprising one of the promoter nucleotide sequences of the present invention, may be native with the DNA sequence of interest, or may be derived from another source. Convenient termination regions are available from the Ti-plasmid of *A. tumefaciens*, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau *et al.* (1991) *Mol. Gen. Genet.* 262:141-144; Proudfoot (1991) *Cell* 64:671-674; Sanfacon *et al.* (1991) *Genes Dev.* 5:141-149; Mogen *et al.* (1990) *Plant Cell* 2:1261-1272; Munroe *et al.* (1990) *Gene* 91:151-158; Ballas *et al.* 1989) *Nuc. Acids Res.* 17:7891-7903; Joshi *et al.* (1987) *Nuc. Acid Res.* 15:9627-9639.

The expression cassette comprising the promoter sequence of the present invention operably linked to a heterologous nucleotide sequence may also contain at least one additional nucleotide sequence for a gene to be cotransformed into the organism. Alternatively, the additional sequence(s) can be provided on another expression cassette.

Where appropriate, the heterologous nucleotide sequence whose expression is to be under the control of the promoter sequence of the present invention and any additional nucleotide sequence(s) may be optimized for increased expression in the transformed plant. That is, these nucleotide sequences can be synthesized using plant-preferred codons for improved expression. Methods are available in the art for synthesizing plant-preferred nucleotide sequences. See, for example, U.S. Patent Nos. 5,380,831 and 5,436,391, and Murray *et al.* (1989) *Nuc. Acids Res.* 17:477-498, herein incorporated by reference.

Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the heterologous nucleotide sequence may be adjusted to levels

25

30

average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

The expression cassettes may additionally contain 5' leader sequences in the 5 expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein et al. (1989) Proc. Nat. Acad. Sci. USA 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986)); MDMV leader (Maize Dwarf Mosaic Virus) (Virology 154:9-20); human immunoglobulin heavy-chain 10 binding protein (BiP) (Macejak and Sarnow (1991) Nature 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling and Gehrke (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) Molecular Biology of RNA, pages 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385). See also 15 Della-Cioppa et al. (1987) Plant Physiology 84:965-968. Other methods known to enhance translation and/or mRNA stability can also be utilized, for example, introns, and the like.

In those instances where it is desirable to have the constitutively expressed product of the heterologous nucleotide sequence directed to a particular organelle, such as the chloroplast or mitochondrion, or secreted at the cell's surface or extracellularly, the expression cassette may further comprise a coding sequence for a transit peptide. Such transit peptides are well known in the art and include, but are not limited to, the transit peptide for the acyl carrier protein, the small subunit of RUBISCO, plant EPSP synthase, and the like.

In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, for example, transitions and transversions, may be involved.

The expression cassette comprising the particular promoter sequence of the present invention operably linked to a heterologous nucleotide sequence of interest can be used to transform any plant. In this manner, genetically modified plants, plant cells, plant tissue, seed, and the like can be obtained. Transformation protocols may 5 vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microiniection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium-mediated transformation (Hinchee et al. (1988) Biotechnology 6:915-921), direct gene transfer 10 (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al. U.S. Patent 4,945,050; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe et al. (1988) Biotechnology 6:923-926). Also see Weissinger et al. (1988) Annual Rev. Genet. 22:421-477; Sanford et al. (1987) 15 Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et 20 al. (1990) Biotechnology 8:833-839; Hooydaas-Van Slogteren and Hooykaas (1984) Nature (London) 311:763-764; Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. G. P. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418; and Kaeppler et al. (1992) 25 Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); all of which are herein incorporated by reference.

The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick *et al.* (1986) *Plant Cell Reports* 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or

10

15

20

25

30

more generations may be grown to ensure that constitutive expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure constitutive expression of the desired phenotypic characteristic has been achieved.

The promoter nucleotide sequences and methods disclosed herein are useful in regulating constitutive expression of any heterologous nucleotide sequence in a host plant in order to vary the phenotype of a plant. Various changes in phenotype are of interest including modifying the fatty acid composition in a plant, altering the amino acid content of a plant, altering a plant's pathogen defense mechanism, and the like. These results can be achieved by providing expression of heterologous products or increased expression of endogenous products in plants. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.

Genes of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly. General categories of genes of interest include for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and commercial products. Genes of interest include, generally, those involved in oil, starch, carbohydrate, or nutrient metabolism as well as those affecting kernel size, sucrose loading, and the like.

Agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin protein modifications are described in U.S. Patent Application Serial Nos. 08/838,763, filed April 10, 1997; 08/824,379, filed March 26, 1997; 08/824,382, filed March 26, 1997; and U.S. Patent No. 5.703,409; herein incorporated

10

15

20

25

30

by reference. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Serial No. 08/618,911, filed March 20, 1996, and the chymotrypsin inhibitor from barley, Williamson *et al.* (1987) *Eur. J. Biochem.* 165:99-106, the disclosures of which are herein incorporated by reference.

Derivatives of the coding sequences can be made by site directed mutagenesis to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide (BHL) is derived from barley chymotrypsin inhibitor, U.S. Serial No. 08/740,682 filed November 1, 1996, and PCT/US97/20441, filed October 31, 1997, the disclosures of each are incorporated herein by reference. Other proteins include methionine-rich plant proteins such as from sunflower seed (Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, Illinois), pp. 497-502; herein incorporated by reference)); corn (Pedersen et al. (1986) J. Biol. Chem. 261:6279; Kirihara et al. (1988) Gene 71:359; both of which are herein incorporated by reference); and rice (Musumura et al. (1989) Plant Mol. Biol. 12:123, herein incorporated by reference). Other agronomically important genes encode latex, Floury 2, growth factors, seed storage factors, and transcription factors.

Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like. Such genes include, for example *Bacillus thuringiensis* toxic protein genes (U.S. Patent Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; Geiser *et al.* (1986) *Gene* 48:109); lectins (Van Damme *et al.* (1994) *Plant Mol. Biol.* 24:825); and the like.

Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Patent Application Serial No. 08/484,815, filed June 7, 1995); avirulence (avr) and disease resistance (R) genes (Jones *et al.* (1994) *Science* 266:789; Martin *et al.* (1993) *Science* 262:1432; Mindrinos *et al.* (1994) *Cell* 78:1089); and the like.

Herbicide resistance traits may include genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance, in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides that act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), or other

10

15

20

25

30

such genes known in the art. The *bar* gene encodes resistance to the herbicide basta, the *nptII* gene encodes resistance to the antibiotics kanamycin and geneticin, and the ALS gene encodes resistance to the herbicide chlorsulfuron.

Sterility genes can also be encoded in an expression cassette and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue-preferred genes and genes with male sterility phenotypes such as QM, described in U.S. Patent No. 5,583,210. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development.

The quality of grain is reflected in traits such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids, and levels of cellulose. In corn, modified hordothionin proteins, described in U.S. Patent Application Serial Nos. 08/838,763, filed April 10, 1997; 08/824,379, filed March 26, 1997; 08/824,382, filed March 26, 1997; and U.S. Patent No. 5,703,409 issued December 30, 1997, provide descriptions of modifications of proteins for desired purposes.

Commercial traits can also be encoded on a gene or genes that could increase for example, starch for ethanol production, or provide expression of proteins. Another important commercial use of transformed plants is the production of polymers and bioplastics such as described in U.S. Patent No. 5,602,321 issued February 11, 1997. Genes such as B-Ketothiolase, PHBase (polyhydroxyburyrate synthase) and acetoacetyl-CoA reductase (see Schubert *et al.* (1988) *J. Bacteriol.* 170:5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs).

Exogenous products include plant enzymes and products as well as those from other sources including procaryotes and other eukaryotes. Such products include enzymes, cofactors, hormones, and the like. The level of proteins, particularly modified proteins having improved amino acid distribution to improve the nutrient value of the plant, can be increased. This is achieved by the expression of such proteins having enhanced amino acid content.

Thus, the heterologous nucleotide sequence operably linked to one of the constitutive promoters disclosed herein may be a structural gene encoding a protein of interest. Examples of such heterologous genes include, but are not limited to, genes encoding proteins conferring resistance to abiotic stress, such as drought, temperature, salinity, and toxins such as pesticides and herbicides, or to biotic stress, such as attacks by fungi, viruses, bacteria, insects, and nematodes, and development of

15

20

diseases associated with these organisms. More particularly, the constitutive promoters disclosed herein and identified as weak constitutive promoters are useful in transforming plants to constitutively express an avirulence gene as disclosed in the copending applications both entitled "Methods for Enhancing Disease Resistance in Plants," U.S. Application Serial No. 60/075,151, filed February 26, 1998, and U.S. Application Serial No. 60/092,464, filed July 11, 1998, both of which are herein incorporated by reference. Such weak promoters may cause activation of the plant defense system short of hypersensitive cell death. Thus, there is an activation of the plant defense system at levels sufficient to protect from pathogen invasion. In this state, there is at least a partial activation of the plant defense system wherein the plant produces increased levels of antipathogenic factors such as PR proteins, i.e., PR-1, cattiness, a-glucanases, etc.; secondary metabolites; phytoalexins; reactive oxygen species; and the like.

Alternatively, the heterologous nucleotide sequence operably linked to one of the constitutive promoters disclosed herein may be an antisense sequence for a targeted gene. By "antisense DNA nucleotide sequence" is intended a sequence that is in inverse orientation to the 5' to 3' normal orientation of that nucleotide sequence. When delivered into a plant cell, expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene. The antisense nucleotide sequence encodes an RNA transcript that is complementary to and capable of hybridizing to the endogenous messenger RNA (mRNA) produced by transcription of the DNA nucleotide sequence for the targeted gene. In this case, production of the native protein encoded by the targeted gene is inhibited to achieve a desired phenotypic response. Thus the promoter sequences disclosed herein may be operably linked to antisense DNA sequences to reduce or inhibit expression of a native protein in the plant.

The following examples are offered by way of illustration and not by way of limitation.

30

25

EXPERIMENTAL

Promoter regions for maize genes encoding histone H2B, metallothionein, alpha-tubulin 3-18, elongation factor efla (efla-11, efla-15, and efla-16), ribosomal protein rps8, chlorophyll a/b binding protein (cab-10 and cab-20), and glyceraldehyde-3-phosphate gpc4 were isolated from maize plants and cloned. These

10

15

20

25

30

17

genes were selected as sources of constitutive promoters based on the developmental and spatial expression of their gene products. The method for their isolation is described below.

Histones are classified on the basis of their role in chromatin structure. The histone H2B is one of four histones contributing to the nucleosome core. Of the core histones H2A, H2B, H3, and H4, H2B is the least conserved from one species to another. In maize, it exists in the form of multiple variants encoded by a large multigenic family. The maize H2B histones are constitutively expressed at a high level in meristematic tissues throughout the plant. The novel promoter sequence for a maize gene encoding one of these H2B histones is set forth in SEQ ID NO: 1.

Metallothioneins make up a class of proteins that are constitutively expressed in low copy number in cells throughout a plant. Expression of these proteins in mammalian cells is inducible in response to stress and to elevated concentrations of trace elements and hormones. The novel promoter sequence for a maize gene encoding one of these metallothioneins, met-1, is set forth in SEQ ID NO: 2.

Alpha-tubulins play a key role in the cytoskeleton of a plant, contributing to microtubule formation. In maize, these proteins are encoded by a family of genes. Generally, these genes are constitutively expressed in all meristematic tissues, though some are preferentially expressed in certain tissues (see Montoliu *et al.* (1989) *Plant Mol. Biol.* 14:1-15; Montoliu *et al.* (1990) *Gene* 94:201-207). The novel promoter sequence for a maize gene encoding alpha-tubulin 3-18 is set forth in SEQ ID NO: 3.

Elongation factor ef1a is one of four subunits of the translation elongation factor 1 protein. This subunit plays a role in binding aminoacyl tRNA to the ribosome's acceptor site during protein synthesis. However, it has been found to play a number of other diverse roles in the cell, and hence is a multifunctional protein (see Durso and Cyr (1994) *Protoplasma* 180:99-105 for a review). In maize, ef1a is encoded by a family of genes comprising at least 6 members (see Berberich *et al.* (1995) *Plant Mol. Biol.* 29:611-615). Novel promoter sequences for three maize genes encoding ef1a proteins, ef1a-11, ef1a-15, and ef1a-16, are set forth in SEQ ID NOs: 4, 5, and 6, respectively.

Ribosomal proteins contribute to the structure of ribosomes. A novel promoter sequence for a gene encoding a maize ribosomal protein rps8 is set forth in SEQ ID NO: 7.

20

25

30

Chlorophyll a/b binding protein is associated with photosystem II in the thylakoid membranes. Expression of this protein in leaf tissues is elevated in the light. Novel promoter sequences for two maize genes encoding maize chlorophyll a/b binding proteins, cab-10 and cab-20, are set forth in SEO ID NOs: 8 and 9. respectively. The cab-10 promoter sequence shares homology (97% in an overlap from nt 1-271 of SEQ ID NO: 8) with a maize cab-m7 gene sequence (emb Accession No. X53398/ZMCABM7). The C-terminal end of the cab-10 promoter sequence disclosed herein is unique from nt 272-467. The cab-20 promoter sequence shares homology (98% in an overlap from nt 1-85 of SEQ ID NO:9) with this same cab-m7 10 gene sequence. The C-terminal end of the cab-20 promoter sequence disclosed herein is unique from nt 86-467. Fragments comprising contiguous nucleotides of the cab-10 and cab-20 promoters disclosed herein are preferably obtained from the unique Cterminal end of these promoter sequences, but fragments may overlap the N-terminal regions of homology, and thus include contiguous nucleotides within this region of 15 overlap.

Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme. A novel promoter sequence for a maize gene encoding glyceraldehyde-3-phosphate dehydrogenase gpc4 is set forth in SEQ ID NO: 10.

Example 1: Isolation of Promoter Sequences

The procedure for promoter isolation is described in the User Manual for the Genome Walker kit sold by Clontech Laboratories, Inc., Palo Alto, California. Genomic DNA from maize line A63 was extracted by grinding 10-day old seedling leaves in liquid nitrogen, and the DNA prepared as described by Chen and Dellaporta (1994) in *The Maize Handbook*, ed. Freeling and Walbot (Springer-Verlag, Berlin). RNase A was added to 10 µg/ml and then incubated at 37°C for 1 hr. The DNA was then extracted once with phenol-chloroform, then chloroform, then ethanol precipitated and resuspended in TE (10 mM Tris pH 8.0, 1 mM EDTA). The DNA was then used exactly as described in the Genome Walker User Manual (Clontech PT3042-1 version PR68687). Briefly, the DNA was digested separately with restriction enzymes Dral, EcoRV, PvuII, Scal, and StuI, all blunt end cutters. The GenomeWalker adapters were then ligated onto the ends of the restricted DNA. The resulting DNA is referred to as DL1-DL5, respectively.

25

30

For isolation of specific promoter regions, two nonoverlapping gene-specific primers (usually 27 bp in length) were designed from the sequences of abundant ESTs in the Pioneer/HGS database. The primers were designed to amplify the region upstream of the coding sequence, *i.e.*, the 5' untranslated region and promoter region of the chosen gene. The sequences of the primers are given below for each promoter described. The first round of PCR was performed on each DNA sample (DL1-5) with Clontech primer AP1 (sequence 5'-gtaatacgactcactatagggc-3'; SEQ ID NO: 11) and the gene-specific primer (gsp)1 with the following sequences:

histone H2B gsp1 sequence: 5'-cgcgggctcctcctccgccggcttctt-3' (SEQ ID NO: 12) metallothionein gsp1 sequence: 5'-gtacttcttgccgcacttgcagcttga-3' (SEQ ID NO: 13) alpha-tubulin 3 gsp1 sequence: 5'-ggtcttgtcaccgggcatctgaccatc-3' (SEQ ID NO: 14) efla gsp1 sequence: 5'-gtcctgtggtggtcgacttgccagagt-3' (SEQ ID NO: 15) rps8 gsp1 sequence: 5'-ttcttcctccaggccttctgctttcca-3' (SEQ ID NO: 16)
 cab gsp1 sequence: 5'-aggagacgacggcacgttcacggc-3' (SEQ ID NO: 17) gpc4 sequence: 5'-taatcggtgctgatgaaggggtcgttc-3' (SEQ ID NO: 18)

PCR was performed in a model PTC-100 thermal cycler with HotBonnet from MJ Research (Watertown, Massachusetts) using reagents supplied with the

20 GenomeWalker kit. The following cycle parameters were used: 7 cycles of 94°C for 2 sec, then 72°C for 3 min, followed by 32 cycles of 94°C for 2 sec, and 67°C for 3 min. Finally, the samples were held at 67°C for 4 min, then at 4°C until further analysis.

As described in the User Manual, the DNA from the first round of PCR was then diluted and used as a template in a second round of PCR using the Clontech AP2 primer (sequence 5'-actatagggcacgcgtggt-3'; SEQ ID NO: 19) and gene-specific primer (gsp)2 with the following sequences:

histone H2B gsp2 sequence: 5'-gggcttcttctgggcgccat-3' (SEQ ID NO: 20) metallothionein gsp2 sequence: 5'agccgcagcttgatccgcagttgcaag-3' (SEQ ID NO: 21) alpha-tubulin 3 gsp2 sequence: 5'-cccagcacgcgtttccgacctggatac-3' (SEQ ID NO: 22) efla gsp2 sequence: 5'-tggccaataaccacaatgttgatgtg-3' (SEQ ID NO: 23) rps8 gsp2 sequence: 5'-cgcttgtgcatcgagtcacgcgagata-3' (SEQ ID NO: 24)

cab gsp2 sequence: 5'-gaaggctgtggaggaggggccatggt-3' (SEO ID NO: 25) gpc4 gsp2 sequence: 5'-acccattgatcccgatcttgatct-3' (SEQ ID NO: 26)

The cycle parameters for the second round were: 5 cycles of 94°C for 2 sec, then 72°C for 3 min, followed by 20 cycles of 94°C for 2 sec, and 67°C for 3 min. Finally, the samples were held at 67°C for 4 min, and then held at 4°C. Approximately 10 µl of each reaction were run on a 0.8% agarose gel, and bands (usually 500bp or larger) were excised, purified with the Sephaglas BandPrep kit (Pharmacia, Piscataway, New Jersey), and cloned into the TA vector pCR2.1 10 (Invitrogen, San Diego, California). Clones were sequenced for verification, and then the mini-prep DNA was diluted 1:30 in water and 1 µl was amplified with genespecific primer (gsp)3 (sequences below) and the Clontech AP2 primer with the following cycle parameters: five cycles of 94°C for 2 sec, 46°C for 30 sec, 72°C for min, followed by 20 cycles of 94°C for 2 sec, 67°C for 3 min, then 67°C for 4 min, 15 and held at 4°C.

histone H2B gsp3 sequence: 5'-gaccatggtgtggtgtgtgtgtgtggtgctgct-3' (SEQ ID NO: 27)

metallothionein gsp3 sequence: 5'-gaccatggtgtgtgtgtgtgtgtgtgtgc-3' (SEQ ID

20 NO: 28)

30

alpha-tubulin gsp3 sequence: 5'-gaccatggtgtgtgtgtggatccggtgttgttgaacg-3' (SEQ ID NO: 29)

ID NO: 30)

25 efla-16 gsp3 sequence: 5'-gaccatggtgtcgtcgtgtggatccgtgaagcttaa-3' (SEQ ID NO: 31)

rps8 gsp3 sequence: 5'-gaccatggtgtgtgtgtgtgtgtgtgtcccttgtc-3' (SEQ ID NO: 32) cab gsp3 sequence: 5'-gaccatggtgtggtgtgtgtgtgtgtgtctgcactgctac-3' (SEO ID NO: 33) gpc4 gsp3 sequence: 5'-gaccatggtgtgtgtgtgtgtgtgtatcacaaacacaagc-3' (SEQ ID NO: 34)

Ten µl of the resulting amplified DNA was run out on a 0.8% agarose gel. purified with Sephaglas, and cloned into the PCR2.1 TA vector. Final sequences were determined on the resulting plasmids.

10

15

20

25

Example 2: Transient Gene Expression Data Using Promoter Sequences
A transient gene expression assay was used to test the cloned DNAs for
promoter activity. The promoters were recloned into plasmid PHP3953 (Figure 1)
digested with Bg1II and SphI or with Bg1II and PvuII to remove the ubiquitin
promoter. The new promoter fragments were inserted in place of the ubiquitin
promoter such that the ubiquitin 5' untranslated region and intron were now between
the test promoter and the GUS reporter gene.

Experiments were performed with immature embryos, essentially the scutellar surface. Immature GS3 maize embryos were isolated from ears 9-11 days after pollination using a scalpel. Prior to embryo isolation, pollinated ears were surface-sterilized with a microdetergent and 25% commercial bleach mixture, then washed with 3 exchanges of sterile H₂O. Isolated immature embryos (1.4-1.7 mm) were placed on bombardment medium and aligned in a target grid in preparation for bombardment.

Immature embryos were then transformed by the tungsten particle biolistic method (Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture:

Funadamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); Koziel et al. (1993) Bio/Technology 11:194-200) using a high pressure particle delivery system (Biolistic Particle Delivery System Model PDS-100 by DuPont). Plasmid DNA comprising a promoter sequence of the invention operably linked to the GUS gene was bombarded into the maize immature embryos. Following culture for 40 hours, bombarded embryos were stained with X-Gluc staining solution (McCabe et al. (1988) Bio/Technology 6(87):923-926) for 12 h at 37°C in the dark. GUS activity was then measured, using the ubiquitin promoter as a control, by counting blue spots after staining for GUS activity as described elsewhere (see Jefferson (1987) Plant Mol. Biol. Rep. 5:387-405). Transient expression data are shown in Table 1.

Table 1: Promoter activity as measured by transient expression of GUS (see Christensen and Quail (1989) *Plant Mol. Biol.* 12:619-632 for details of ubiquitin promoter activity).

Gene	#Blue spots	Average
Ubiquitin (control)	395, 155, 307, 416	318
histone H2B	2127, 2826, 2830	2594
tub3-18 (alpha-tubulin 3)	2542, 1832, 2727	2367
met-1 (methallothionein)	163, 111, 27	100
efla-16 (elongation factor 1a)	136, 2, 0	46
efla-15 (another family member)	81, 38, 25	48

10

15

Promoter activity of the promoter sequences for the alpha-tubulin and histone H2B genes was significantly stronger than that of the ubiquitin promoter, indicating these as strong constitutive promoters. Promoter activity of the promoter sequence for the metallothionein gene was considerably lower than that of the ubiquitin promoter, indicating this is a weak constitutive promoter.

Example 3: Transformation and Regeneration of Transgenic Plants
Immature GS3 maize embryos were bombarded with a plasmid containing the
promoter sequence operably linked to the GUS gene plus a plasmid containing the
selectable marker gene PAT (Wohlleben *et al.* (1988) *Gene* 70:25-37) that confers
resistance to the herbicide Bialaphos. Transformation was performed as described in
Example 1. See Appendix for examples of bombardment (560Y), selection (560R),
hormone-containing regeneration (288J), and hormone-free (272V) media.

20

One day after bombardment, the embryos were transferred from bombardment medium to selection medium containing 3 mg/liter Bialaphos and subcultured on selection medium every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones were transferred to hormone-containing medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos were transferred to medium for germination and

10

15

20

25

30

transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets were transferred to hormone-free medium in tubes for 7-10 days until plantlets were well established. Plants were then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity.

Promoter activity in transformed plant tissues was assessed by measuring expression of GUS. Plant tissue samples were placed into the wells of 12-well cell culture clusters and stained with X-Gluc staining solution for 12 h at 37°C in the dark. Samples were then scored for GUS staining. GUS staining score ranged from 0 (negative) -6 (highest). These staining scores served as a measure of level of GUS expression. Results are shown in Table 2.

Six transformation events have been evaluated for the H2B promoter. Overall, five out of six events scored strong GUS expression in maize plants, with one event scoring median expression. GUS expression was particularly strong in leaf, root, and tassel, with these tissues having GUS staining scores of 5-6 in all events. GUS expression in husk and silk was slightly lower, with these two tissues mostly having staining scores of 4-5. GUS staining with kernels was conducted with event TC7394 and it scored strong. In general, H2B is a strong promoter in maize embryos, callus, and different tissues.

Four transformation events have been evaluated for the met-1 promoter. Overall, three events scored strong GUS expression and one event scored median expression. GUS expression was found in all plant tissues, including leaf, root, husk, silk, and tassel, with these tissues mostly having staining scores of 4-5. The expression pattern seems similar to that observed with the tub3-18 promoter.

Five transformation events have been evaluated for the tub3-18 promoter. Overall, three events scored strong GUS expression and two scored median expression. GUS expression was found in all plant tissues, including leaf, root, husk, silk, and tassel, with these tissues mostly having staining scores of 3-5. GUS staining with kernels was conducted with event TC7406 and it scored very strong.

Five transformation events have been evaluated the efla-15 promoter. Overall, three events scored strong GUS expression, one event scored median expression, and one event scored weak expression. GUS expression was found in all plant tissues.

10

including leaf, root, husk, silk, and tassel, with these tissues mostly having staining scores of 3-5.

The ubiquitin promoter was used as a control. Five transformation events have been evaluated. Overall, two events scored strong GUS expression and three scored weak expression. GUS expression was found in all plant tissues, including leaf, root, husk, silk, and tassel. With those transformation events exhibiting strong expression, GUS was expressed in all different tissues, with tissues mostly having staining scores of 4-5. With those transformation events exhibiting weak expression, GUS was expressed in leaf, root, and tassel, with these tissues mostly having staining scores of 1-3. There was very little GUS expression in husk and silk tissues in those transformation events that exhibited weak expression.

Table 2. Gus expression as driven by various promoters of the invention.

Promoters	Event	GUS expression	GUS
		•	PCR
H2B	TC4703	strong	na
	TC4701	strong	na
	TC4694	strong	na .
	TC7392	median	positive
	TC7394	strong	positive
	TC7396	strong	positive
met-l	TC7413	strong	positive
	TC7414	weak	positive
	TC7415	strong	positive
	TC7416	strong	positive
tub3-18	TC7406	strong	positive
[TC7407	strong	positive
	TC7408	strong	positive
1	TC7409	median	positive
	TC7410	median	positive
efla-15	TC7418	median	positive
	TC7419	strong	positive
	TC7420	strong	positive
	TC7421	weak	positive
	TC7422	strong	positive
ubi	TC7390	strong	positive
-	TC7386	strong	positive
	TC7387	weak	positive
	TC7388	weak	positive
	TC7389	weak	positive

APPENDIX

272 V

Ingredient	Amount	Unit
D-I H ₂ O	950.000	ml
MS Salts (GIBCO 11117-074)	4.300	g
Myo-Inositol	0.100	g
MS Vitamins Stock Solution ##	5.000	ml
Sucrose	40.000	g
Bacto-Agar @	6.000	g

Directions:

- @ = Add after bringing up to volume
 Dissolve ingredients in polished D-I H₂O in sequence
 Adjust to pH 5.6
 Bring up to volume with polished D-I H₂O after adjusting pH
 Sterilize and cool to 60°C.
- ## = Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H₂O in sequence. Bring up to volume with polished D-I H₂O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.
- Total Volume (L) = 1.00

288 J

Ingredient	Amount	Unit
D-I H ₂ O	950.000	ml
MS Salts	4.300	g
Myo-Inositol	0.100	g
MS Vitamins Stock Solution ##	5.000	ml
Zeatin .5mg/ml	1.000	ml
Sucrose	60.000	g
Gelrite @	3.000	g
Indoleacetic Acid 0.5 mg/ml #	2.000	ml
.1mM Abscisic Acid	1.000	ml
Bialaphos 1mg/ml #	3.000	ml

Directions:

- @ = Add after bringing up to volume
- 5 Dissolve ingredients in polished D-I H₂O in sequence

Adjust to pH 5.6

Bring up to volume with polished D-I H_2O after adjusting pH

Sterilize and cool to 60°C.

Add 3.5g/L of Gelrite for cell biology.

- ## = Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H₂O in sequence. Bring up to volume with polished D-I H₂O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.
- Total Volume (L) = 1.00

560 R

Ingredient	Amount	Unit
D-I Water, Filtered	950.000	ml
CHU (N6) Basal Salts (SIGMA C-1416)	4.000	g
Eriksson's Vitamin Mix (1000X SIGMA-1511	1.000	ml
Thiamine.HCL 0.4mg/ml	1.250	ml
Sucrose	30.000	g
2, 4-D 0.5mg/ml	4.000	ml
Gelrite @	3.000	g
Silver Nitrate 2mg/ml #	0.425	ml
Bialaphos 1mg/ml #	3.000	ml

Directions:

- @ = Add after bringing up to volume
- 5 # = Add after sterilizing and cooling to temp.

Dissolve ingredients in D-I H₂O in sequence

Adjust to pH 5.8 with KOH

Bring up to volume with D-I H₂O

Sterilize and cool to room temp.

10 Total Volume (L) = 1.00

560 Y

Ingredient	Amount	Unit
D-I Water. Filtered	950.000	ml
CHU (N6) Basal Salts (SIGMA C-1416)	4.000	g
Eriksson's Vitamin Mix (1000X SIGMA-1511	1.000	ml
Thiamine.HCL 0.4mg/ml	1.250	ml
Sucrose	120.000	g
2,4-D 0.5mg/ml	2.000	ml
L-Proline	2.880	g
Gelrite @	2.000	g
Silver Nitrate 2mg/ml #	4.250	ml

Directions:

- @ = Add after bringing up to volume
- 5 # = Add after sterilizing and cooling to temp.

Dissolve ingredients in D-I H₂O in sequence

Adjust to pH 5.8 with KOH

Bring up to volume with D-I H₂O

Sterilize and cool to room temp.

** Autoclave less time because of increased sucrose**

Total Volume (L) = 1.00

All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

30/1

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorganism of on page3, line4	r other biological material referred to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet X
Name of depositary institution AMERICAN TYPE CULTURE COLLECTION (ATCC)	
Address of depositary institution (including postal code and country) 1801 University Blvd. Manassa, VA 20110-2209 US	
Date of deposit 24 February 1999	ession Number
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet X
Page 3 line 11 Page 34 line 16 Page 31 line 9 Page 34 line 36 Page 31 line 28 Page 35 line 16 Page 32 line 18 Page 35 line 3 Page 33 line 10 Page 36 line 1 Page 36 line 3 D. DESIGNATED STATES FOR WHICH INDICATIONS ARE M	0 7 1 4 3
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if)	not applicable)
The indications listed below will be submitted to the International Burea Number of Deposit", Accession Number of Deposit	
For receiving Office use only This sheet was received with the international application (athernal B. Williams Authorized officer	For International Bureau use only This sheet was received by the International Bureau on: Authorized officer

WHAT IS CLAIMED IS:

- d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c).
- 6. A DNA construct comprising a nucleotide sequence of claim
 5 operably linked to a heterologous nucleotide sequence of interest.
 - 7. A vector comprising the DNA construct of claim 6.
- 8. A host cell having stably incorporated in its genome the DNA construct of claim 6.
 - 9. An isolated nucleic acid molecule having a nucleotide sequence for a promoter that is capable of initiating constitutive transcription in a plant cell, wherein said nucleotide sequence is selected from the group consisting of:
- a) a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 9;
 - b) the nucleotide sequence deposited as ATCC Accession No.
- c) a nucleotide sequence comprising at least 40 contiguous

 nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 9,
 wherein said C-terminal end comprises nucleotides 86-467 of SEQ ID NO: 9; and
 - d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c).
- 25 10. A DNA construct comprising a nucleotide sequence of claim 9 operably linked to a heterologous nucleotide sequence of interest.
 - 11. A vector comprising the DNA construct of claim 10.
- 30 12. A host cell having stably incorporated in its genome the DNA construct of claim 10.

- 13. A method for constitutively expressing a heterologous nucleotide sequence in a plant, said method comprising transforming a plant cell with a DNA construct comprising said heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in a plant cell and regenerating a stably transformed plant from said plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of:
- a) a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 10;
- b) a nucleotide sequence selected from the group consisting of sequences deposited as ATCC Accession Nos._____;
 - c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 10; and
 - d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b) or c).

15

25

10

- 14. The method of claim 13, wherein said plant is a monocot.
- 15. The method of claim 14, wherein said monocot is maize.
- 20 16. The method of claim 13, wherein said plant is a dicot.
 - 17. A method for constitutively expressing a heterologous nucleotide sequence in a plant, said method comprising transforming a plant cell with a DNA construct comprising said heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in a plant cell and regenerating a stably transformed plant from said plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of:
 - a) a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 8;
- b) the nucleotide sequence deposited as ATCC Accession No.

10

15

20

25

30

- c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 8, wherein said C-terminal end comprises nucleotides 272-467 of SEQ ID NO: 8; and a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c). 18. A method for constitutively expressing a heterologous nucleotide sequence in a plant, said method comprising transforming a plant cell with a DNA construct comprising said heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in a plant cell and regenerating a stably transformed plant from said plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of: a) a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 9; b) the nucleotide sequence deposited as ATCC Accession No. c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 9, wherein said C-terminal end comprises nucleotides 86-467 of SEQ ID NO: 9; and a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c). A plant cell stably transformed with a DNA construct comprising a 19. heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in said plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of: a nucleotide sequence comprising the sequence set forth in a) SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 10; a nucleotide sequence selected from the group consisting of sequences deposited as ATCC Accession Nos.
 - c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 10; and

10

15

20

25

30

SEQ ID NO: 9;

b)

d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c). 20. The plant cell of claim 19, wherein said plant cell is from a monocot. 21. The plant cell of claim 20, wherein said monocot is maize. 22. The plant cell of claim 19, wherein said plant cell is from a dicot. 23. A plant cell stably transformed with a DNA construct comprising a heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in said plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of: a nucleotide sequence comprising the sequence set forth in a) SEQ ID NO: 8; b) the nucleotide sequence deposited as ATCC Accession No. c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 8, wherein said C-terminal end comprises nucleotides 272-467 of SEQ ID NO: 8; and a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c). 24. A plant cell stably transformed with a DNA construct comprising a heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in said plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of: a) a nucleotide sequence comprising the sequence set forth in

the nucleotide sequence deposited as ATCC Accession No.

10

15

20

25

30

c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 9, wherein said C-terminal end comprises nucleotides 86-467 of SEQ ID NO: 9; and a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c). 25. A plant stably transformed with a DNA construct comprising a heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in a plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of: a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 10; a nucleotide sequence selected from the group consisting of b) sequences deposited as ATCC Accession Nos. a nucleotide sequence comprising at least 40 contiguous nucleotides of the sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, or 10; and d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c). 26. The plant of claim 25, wherein said plant is a monocot. 27. The plant of claim 26, wherein said monocot is maize. 28. The plant of claim 25, wherein said plant is a dicot. 29. A plant stably transformed with a DNA construct comprising a heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in a plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of: a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 8; b) the nucleotide sequence deposited as ATCC Accession No.

20

- c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 8, wherein said C-terminal end comprises nucleotides 272-467 of SEQ ID NO: 8; and
- d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c).
 - 30. A plant stably transformed with a DNA construct comprising a heterologous nucleotide sequence operably linked to a promoter that is capable of initiating constitutive transcription in a plant cell, wherein said promoter comprises a nucleotide sequence selected from the group consisting of:
 - a) a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 9;
 - b) the nucleotide sequence deposited as ATCC Accession No.
- 15 c) a nucleotide sequence comprising at least 40 contiguous nucleotides of the C-terminal end of the sequence set forth in SEQ ID NO: 9, wherein said C-terminal end comprises nucleotides 86-467 of SEQ ID NO: 9; and
 - d) a nucleotide sequence that hybridizes under stringent conditions to a sequence of a), b), or c).
 - 31. Seed of the plant of any one of claims 25-30.

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> Rice, Douglas A.

<120> Constitutive Maize Promoters

<130> 5718-33, 035718/175218

<140>

<141>

<150> 60/076,075

<151> 1998-02-26

<160> 34

<170> PatentIn Ver. 2.0

<210> 1

<211> 1392

<400> 1

<212> DNA <213> Zea mays

cgacggcccg ggctggtatc gataaatgtt tccacataga ttttgcatat cataatgatg 60 tttqtcqttc cqtatctatq tttcatacaa aatttttacq catatcqcaa cacatqqqca 120 catacctagt gactgtataa ctctgcatgt atgagtgtat gactatatga tgtagtaact 180 aataagaagg gtagacatti gagtgattct tttattcctg gacttgtaag acttgacatt 240 tetgeettga gtgcqataca teatatggae aggggttatg catacactge ttgtttgttg 300 tttatgttct aagagcatct ccaacaacgt gacatatgaa aatgccctac aatttaaaaa 360 tggttatatt ttataaaatt tagggcataa ataaaacatc ccgctccaac attaaagcct 420 taaatctatt atagggaagc ccactatgat atagtatatt tgaggcactt tagagggtgc 480 cctataattt tttgaccatt tttttatgaa atgagacact attggagtat tttttttccg 540 tagagcacca tatttcaatt tgagacacca atttaaggca ttgttggaga tgttctaaat 600 qttqqtttat tttqtctqta tcqttqtqgt tttqataqtq qtqcctttqc aatqtacatc 660 ttacattgac aataataata ggtaaaactc tacaaatttt ttatctaatg gactcttgta 720 tgaaacattg tacttgcaca catctgatgt aaacactgca tacttttaac agtgacaaga 780 ttctgtttca ttttagggct agtttgggaa ccaaatttta ttagggtttt tattttctaa 840 gaaaaagtaa tttattttac cttgagaaaa tataaattac ttgagaaaat agagttccaa 900 actagetett atetttgteg aateeteete tatteaaatg tgacatttet ggeaegtgae 960 aactggtgat gttgtagact gtgttaagta atacgtgtca ttattactaa atgccatttt 1020 agtaaatgtt gagtatgtac tctactacag taagtattat tggtgtattt acactagaca 1080 ccaaaggaaa ggccttccgg cccgccacc tttgcgcgcc gaaggtcagt tccttcagtc 1200 tecteeget teagactetg accaegtega caateeggge egaaacaeat etgeaeegte 1260 cacttgcgac agattgaaca caccacttct atccacqtca qcqatccqtq qcactaqccc 1320 ttocaccaat cageecaagt tgeceettte etttaaatte geegeaecea ttgetettet 1380 cacqqccata ga 1392

```
<210> 2
<211> 1300
<212> DNA
<213> Zea mays
<400> 2
qaatataggc aacaccccac actggtaggt aaagctccgg gattgtgact gagatgggga 60
tgatqacqtt qtagagaata caggcagccg tcggcgctac aacteteete acaaagaaga 120
agctatagag catatagaac ttcttgacga gtgatatatc ctagcggaac aacaagtggg 180
qctaattttt agattttccc ctgcgaaagg catgatttgc cagaatggga acctgggcag 240
atatatgete acettggeaa acaaaacate etttgecate ttaeggaata agtttgeace 300
acctagacca coggaattgc tgccgacagt aggccttgta agtggacggc agttcactct 360
tgacctgtaa atataacatg tttgcatagt caaatgatca catcaaatat atttaatttt 420
qqcaacactc ttatatqtca aaatctactc actctaacqt ctccaacata tacqaatttc 480
caqcccttta gtgttgctcg aaccgccaag tccatgcctt caactgtagt tcggtccttc 540
caaceteetq catetettat qqeteetqta eqecacaete caqeaqttee taqaataqae 600
ataccatcag qaaqaattta tqqtcttqaa attqacattc tqqqqtqqtt cccctctttt 660
qqqqaatttq tttgtactct ttagaggttt caaaagatgt gtaccgttga aactgaagaa 720
ggcaaaggtc gctgatcctg cttcttgttc aactttgaag tggtagtcgt aaaacatctt 780
ttqtaccctt gtcagcaggc ttgtcgtgtc attcactgca aaattctgtc aattaagaat 840
tggaccgatc agagtgaata aaaatactat atcgctcgag aagcttatgc actagcagtt 900
ctctttttca tqttatatca tctttgaaca gttctatqcc atctttctqq catcatcatt 960
aaaqaatgtg aaaatatatt ttattgtcat cattatgaaa cgtgatgcct attttataag 1020
cccaaaacag tgaggttgtc tgttccaagt tccttgtgct atttgtaaga actatctgtg 1080
cacttctcac aagaaaaaca tctgaaaatg gagaaagtat tccattgtgg tggtatactg 1140
aaatqtqqqa gagcatatct gacaaatttg acatqaggtt taagaaatat ttcccatagt 1200
attittctat tccataaatt aatcatgtgc attigttata gacgggtagc tggaaaagtg 1260
tgctcaagaa ctagcaggga atggaccagc caggccgtcg
                                                                   1300
<210> 3
<211> 166
<212> DNA
<213> Zea mays
<400> 3
cgacqqcccq qgctggtcca acctccaagc ctacaaccag atcagccggt ctggtactgt 60
qcttctgtgg cacgaaaaaa ccgaccgttg cacggacgag aaacccgaac cgtcgaaaca 120
                                                                   166
ateqtaatec ccaggggete aaacgcaaaa caccgteege teeeet
<210> 4
<211> 1023
<212> DNA
<213> Zea mays
<400> 4
tgttaacaag acgaatcaat gattagaaac actagtaaat taatactacc agtaacgaca 60
 caatttatcq gatgggatca gaaactagat ctaacgttgt cgccggagtt atgagcttga 120
```

```
aaaaagcttg atacacataa gcagtgtaaa aataaagaag caaatattaa acagagcaat 180
caatgtaata taaaaaataa agcaggcata gaaaataaag qqcaaactga taagcqtqcg 240
cacatgattt tgagccagta agacgaattc aaaattaggc acaacaactc tataaagcag 300
atcaggaatt tggtcatatt atgaggttac aactettact gegcatqaac tacaaagaca 360
agtateggte aaatagaaac tacageaget etacacetea aaaattegat etgaetttat 420
taagaccacg taacacgacc gcaagcgcaa ttaagaagtc gtccaactac ggtggcacgg 480
tgcgtatgta atttatcaaa tccagaagca actatccgta agaatcaggt catccaaaca 540
cggaagcaaa caaaaccaca aaaactaaga gaatggagac gcagtagcta caattaatcq 600
caaacagaaq gccgaatcac ttcaggcacg gggaggcaac agagcacagc tttgaaccac 660
tgcctatctc atcgagcacc tcaaggacaa agatcgagcg acagaggatt agctaccttg 720
caagggacag aggccgaaat ggaggcgcac aaggcagacg gcgagttggg gaggaaggtg 780
ctggcctcta gggttcggga ctttatataa gggtgtcgga gtggccggac cagcccaata 840
cttgacttcc gaatggcggc ccagggccca taaacggagc gagacatagt atatgggatg 900
actgaatgac aatgttattt gctcttaata ttgtatggca gcacttttag gtatatgccc 960
caatttetet aataetetae tetteeatat tetaatggea teteatgtta tgttggeeta 1020
                                                                  1023
```

<210> 5

<211> 1022

<212> DNA

<213> Zea mays

<400> 5

gttaacaaga cgaatcaacg attagaaaca ctagtaaata ttaatactac cagtaacgac 60 acaatttatc agatgggatc agaaactaga tctaacgttg tcaccggagt tatgagcttg 120 aaaaaaagctt gatacacata agcagtgtaa aaataaagaa gcaaatatta aacagagcaa 180 tcaatgtaat ataaaaaaat aaagcaggca tagaaaataa agagcaaact aataagtgtg 240 cgcacataat tttgagccag taagacgaat tcaaaattag qcacaacaac tctataaagc 300 agatcaggaa tttggtcata ttatgaggtt acaactctta ctgcgcatga actacaaaga 360 caagtategg teaaatagaa actacageag etetacaeet caaaaatteg atetgaettt 420 attaagacca cgtagcacga ccgcaagcgc aattaagaag tcqtccaact acqqtqqcac 480 ggtgcgtatg taatttatca aatccagaag caactatccg taagaatcag gtcatccaaa 540 cacggaagca aacaaaacca caaaaaacta agagaatgga gacgcagtag ctacaattaa 600 tcgcaaacag aagaccgaat cacttcaggc acggggaggc aacagagcac agctttgaac 660 cactgcctat ctcatcgagc acctcaagga caaagatcga gcgacagagg attagctacc 720 ttgcaaggga cagaggccga aatggaggcg cagaaggcag acggcgagtt ggggaggaag 780 gtgcttgcct ctagggttcg ggactttata taagggtgtc ggtgtggccg gaccagccca 840 atgtgacttc cgatttccga atggcggccc agggccataa acggagcgag acagggtgtg 900 tttggttegg tttttttetg accagettat atgaaaaget ggttgtgggg aaaagetgge 960 tgttgggaaa aactggtggc taaaatttag gtgtttggtt cgccagacca qcccqqqccq 1020 tc 1022

<210> 6

<211> 1769

<212> DNA

<213> Zea mays

<400> 6

```
cqacggcccg ggctggtctg acttcagtgt aattcaaagc cggaacagat aaaagtgtgt 60
ctttgccgat gatgttaaat agagtaatac ctgattattg ctgtcaagtg gttgtgttag 120
taattqqaat actgttggag tatgtttccc tttatctttc cattttatca tctqtcaqtq 180
ctcgtgactt tatggtctct aaatttctta gatagttcat gtcgtaccat gaaatgtgtg 240
tetgtaacat tggtcaacca tattgttcat gtettcaact etatttegaa gteacaaact 300
gatcacttgg agtttcggac gtgaagcaac gacaggcatc aatgcctact tcatatataa 360
aactgcttgc ttgttgcatg ctgttacagc acctaagacc taagtacata cttgcttcct 420
tttcttattt gtatgctggg tcccatggac cccqttttqt tttqqqtttc cctacacatt 480
gtccccggac ttacagatga caaatatgat gtgttctatg agtcacgtcg aaagaaagaa 540
atqtacttta gcatttcact gtacataagt ccatcgattt cacattatac tcttctacct 600
aacaaagccc aaaattgagc tacacatctt tttgatatta gtacgttaat gttagtcaat 660
tqttatcagg cagcgatgtc tgattataga tctcaaaqta aqactgtcat ttccccttag 720
ttcaqttagt atagttgctt aaattcagca agtctgaata cttcaacaag gcacaataag 780
qqaqqttcaq cacqtaaqtt aqtataqqac catqtqtaat ctatttaaca qaqaaaataq 840
gcataaaaac gactagcctg cagtcgtgcg gatatttgaa tataagtgtt cagatgggcg 900
agcgcccttg tgctttctct attcgctaaa attcttgaaa agcatgtaag cttttcgcaa 960
qqttcqttaq cagtqactac ctqtttqtaq tacatqaaca ttaqtatttt acttccctca 1020
gttcaccttt cttgtgcttg caatacaata cattatttt tacggtgaat ttataaacca 1080
tatttggtaa gttatattta tactagccta atgcactcga ctcttctatt tagattaagt 1140
ttggtgaata atttatatgt ttgtgtagcg aaagactcat atttatttag ttttttctt 1200
gtcaaggata ggacataatt tggtgctttg cttgtgtaat tatgtctacg cacttaaaaa 1260
atggcacttt ccttacgcct tggtacagtg cttcaataat gagtggataa atgttttatg 1320
aagttgatct tattttttg agaattcagc attaataatc atqcqccaca ttatccaaag 1380
cttatggtat tctttatatg attttagtgc taataatgtt gtgccactac agggcggtgc 1440
cggctctgat ctggtttata aagtagcaaa ttttgaattt gttttgttgg ctctaaattc 1500
tgtgtgaaca cttattagtc tgctctgttt attctttagt gcttcttata ttatattgtt 1560
tgctctattg aatgtttcta ggtctgcttt atcccttgct aacatgtacc atgctttttc 1620
taagctgatt acagtagttg caactccaaa tttagtttct aattccatct aataattttt 1680
tttgttagtg gctttagtat tgtgtgattt ttacttgcgt tcctaataat ttattcgttt 1740
gattaacagt ttaagcttca cggatccac
                                                                  1769
```

<210> 7 <211> 461 <212> DNA

<213> Zea mays

<400> 7

ggtacagaag tgagagaagg aaaccctagg tatcgagtgt gtatatagga ggagggaagg 60 tgggggcct gggccgcata aaatgtggaa aggctctgaa ccgacaaatt tggatgttta 120 acagacctgt aaatggtct gtactctaaa atatagtata tagagaatac atgcatcttt 180 ttatctccaa caaaagtctg taaaggaatca tctaaagttt agagcacggc atgcatccgc 240 taaaaaatgaa gggcgtacgg ttctactcta tacactgtgc ttatttattg tgtttgctca 300 ttcacatgca catgaccggt aaaaatcaat atagaatgtg aaatatagga acctattgat 360 atagaggatg aaatttagag gacattgctg gagatggaga aaatatagag aacaaaattt 420 tttagagagt gctgtaaagg actgagaata ttctttang g

<210> 8 <211> 467

```
<212> DNA
<213> Zea mays
<400> 8
qtaqcqaqac ttqcagatcg atggtggctt gaggtqctqt gqacttqtqq aqqcqacqaa 60
ggtatttaaa gcgacggagg gaaacaccgc cgcgagcaag ttctatcttg aatgttgcca 120
qaaaataaaa aataaatctg atgcttggat gccattggtg cgtccgggat gctqqaacac 180
ttggcgcgac gggagcctca gggggacgat gaggcagatg tgggctgtgg ctgaggctag 240
gaatctccgt ggagaagggt gattgggcgc cgtaaatact actatatacc tttqttccaa 300
gatgtctgtt ttaacttctc taactttaac tgagttcata taaaaaaatcc aaacatatta 360
atcaacttan ttataaattt geetaaattt aaataagete taettaegae aaaaccatat 420
taaacgtttt aaaacgtcca caacccccaa ttttgcaatg caaaagg
                                                                   467
<210> 9
<211> 467
<212> DNA
<213> Zea mays
<400> 9
gtagcgagac ttgcagatcg atggtggctt gagatgctgt ggacttgtgg aggcgacgaa 60
ggtatttaaa gcgacggagg gaaacctaca atacggagta tgagctaatc taggcggcat 120
ctcccaqtca ccttgatggt gccaatgaat aattatttag ttcgttttat tqttatcatt 180
tatttttgta agactettee actatgtaat aatgattatg acatttatet etatacaett 240
tqtcattata tqtqatqttc tcctttggcg cacatatqaq acqcacccqt ctttatccct 300
taaattttggg tgtgacactc cgaaagccct atacaatcac tataaaatct gccaagacct 360
qqqatttqat tqttqtcctc agctcgaaag tgacattqta cccaqqqaat tcqqctqccc 420
atttggctat tctggcagat gccttgagaa ttctaaatan gtctccc
                                                                   467
<210> 10
<211> 565
<212> DNA
<213> Zea mays
<400> 10
taacagtacc aacttgcaca tcagaagccc cgcgagcaca gaagtgtata gaacatatgg 60-
atctqctaqc aaqtattcct taagaagtat ttctqcttta tacttataqq ccttaqctqc 120
catgattggg tcaacaggaa aatccataat ctgatccatc aagtcaacag tcagattgtt 180
qaacaqaqtq qttccattcc ccacaatcca taagcaatgc ctacaacaaa ttqttaaaaa 240
ttaaatagtt ttattatcat gcaccagata aaagattatg aagtaattga agtgaaattt 300
aaatgcttgg cgcagaactt acttggcccc tgttaacaat atatagtata gatatgtgct 360
cgtgcgttgc gatggaagta aaaaatttgt atgaaacatt gatacggaac gacaaaaatc 420
actataatat gcaaaatata cgtggaaaat attatcaata tcacacaaat taattctaaa 480
aagttaattt agaattttta attacagaca aatatgtcga caactaatca qctaatcctt 540
tttagcgata ccagcccggg ccgtc
                                                                   565
<210> 11
```

<210> 11 <211> 22 <212> DNA

<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: PCR Primer	
<400>	11	
gtaata	cgac tcactatagg gc	22
<210>	. 12	
<211>		
<211>		
	Artificial Sequence	
~213/	Altificial sequence	
<220>		
	Description of Artificial Sequence: Maize gene-specific PCR primer	
<400>	12	
		27
<210>	13	
<211>	27	
<212>	AND	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Maize	
\223 /	gene-specific PCR primer	
	gene specific for primer	
<400>	13	
gtactt	cttg ccgcacttgc agcttga	27
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>	14	
ggtctt	tgtca ccgggcatct gaccatc	27
<210>	15	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	

<220>	Description of Artificial Sequence	· Maizo	
	gene-specific PCR primer	. Harze	
<400>			
gtcctg	tggt ggtcgacttg ccagagt		27
<210>	16	,	
<211>	27		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence	: Maize	
	gene-specific PCR primer		
<400>	16		
			27
ttcttc	cctcc aggéettetg ettteca		21
<210>	17		
<211>	27		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence	: Maize	
	gene-specific PCR primer		
<400>	17		
aggaga	acgac gacggcacgt tcacggc		27
33 3			
<210>	18		
<211>	27		
<212>	DNA		
<213>	Artificial Sequence		
<220>		•	
<223>	Description of Artificial Sequence	e: Maize	
	gene-specific PCR primer		
<400>	18		
	ggtgc tgatgaaggg gtcgttc		27
<210>	19		
<211>	19		
<212>	DNA		
Z213N	Artificial Sequence		

220>		
:223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
(400>		
	agggc acgcgtggt	19
.000	3990 4090955-	
(210>	20	
(211>		
<212>		
.213>	Artificial Sequence	
- 2005		
<220>	n children and a non-	
(223>	Description of Artificial Sequence: PCR primer	
<400>		
gggctt	cette teggeettgg gegeeat	27
<210>	21	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>	21	
	cagct tgatccgcag ttgcaag	27
5 5		
<210>	22	
<211>		
<212>		
	Artificial Sequence	
\ 213/	Altilitial bequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>		
cccag	cacgc gtttccgacc tggatac	27
<210>	23	
<211>	26	
<212>	· DNA	
<213>	Artificial Sequence	

<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>	23	
		26
- 9 5		
<210>	24	
<211>		
<212>		
	Artificial Sequence	
\Z1J/	niciiiotai ocquenoc	
<220>		
	Description of Artificial Sequence: Maize	
~223/	gene-specific PCR primer	
	gene-specific for primer	
< 4.0.0 >	24	
<400>		07
cgcttc	gtgca tcgagtcacg cgagata	27
.010-		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>		
gaagg	ctgtg gaggagaggg ccatggt	27
<210>	26	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>	26	
accca	ttgat cccgatcttg atct	24
<210>	27	
<211>		
<212>		
· /		

<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>		٠.
gaccat	ggtg tcgtgtggat ccgatgcggc tgct	34
<210>	28	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400×	20	
<400>	z8 :ggtg tegtgtggat eccettgtgg tge	33
gaccat	ggtg tegegeggat ecoettgegg tge	00
<210>	29	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>	29	
	tggtg tcgtgtggat ccggtgttgt tgaacg	36
,		
<210>	30	
<211>	34	
<212>		
<213>	Artificial Sequence	
10005		
<220>	Description of Artificial Sequence: Maize	
\223/	gene-specific PCR primer	
	gone operation paramet	
<400>	30	
gacca	tggtg tcgtgtggat ccgtgagatt gaac	34
<210>		
<211>		
<212>		
<2135	Arrificial Sequence	

<400> 34

gaccatggtg tcgtgtggat ccacaaacac aagc

(220>		
223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
	24	
<400>		o c
jaccat	ggtg tcgtcgtgtg gatccgtgaa gcttaa	36
<210>	32	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	
<400>		
gaccat	ggtg tcgtgtggat ccgcctgctc cttgtc	36
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Maize	
	gene-specific PCR Primer	
	•	
<400>	33	
gaccat	eggtg tegtgtggat eetgeactge tae	33
<210>	34	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Maize	
	gene-specific PCR primer	

34

International application No. PCT/US99/04203

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

on page(see attached)	.line (see attached)
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	
American Type Culture Col	lection (ATCC)
Address of depositary institution (including postal	code and country)
10801 University Boulevard Manassas, Virginia 20110-220	200 115
nanassas, viiginia 20110 22	
Date of deposit	Accession Number 207119
25 February 1999	20/119
C. ADDITIONAL INDICATIONS (leave blank	if not applicable) This information is continued on an additional sheet
207120 207125	(Additional Accession Numbers)
207121 207126	
207122 207127	
207123 207128 207124	
D. DESIGNATED STATES FOR WHICH IND	OICATIONS ARE MADE (if the indications are not for all designated States)
All designated states	
E. SEPARATE FURNISHING OF INDICATIO	ONS (leave blank if not applicable)
	e International Bureau later (specify the general nature of the indications e.g., "Accession
various of Deposit /	
For receiving Office use only	For International Bureau use only
This sheet was received with the international a	application This sheet was received by the International Bureau on. 1 8 MAY 1999
Authorized officer	Authorized officer
	\mathcal{N}

Continuation of Box A: Page 3, lines 4 and 12; Page 31, lines 9 and 29; Page 32, line 18; Page 33, lines 10 and 31: Page 34, lines 16 and 30; Page 35, lines 18 and 32; Page 36, lines 14 and 33: and Page 37, line 14