FCC Part 15 SUBPART C Test Report

for

RADIO CONTROLLED TOYS

Model No.: 24302

FCC ID: X3J24302

of

Applicant: RADIO FUN INTERNATIONAL INVESTMENT LIMITED Address: FLAT A, 9/F., KUN LOCK BUILDING, 178 NATHAN ROAD, TSIMSHATSUI, KOW LOON, HONG KONG

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M20912-10316-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

FCC ID: X3J24302

TABLE OF CONTENTS

1	Gen	eral Information	2
	1.1	Notes	2
	1.2	Testing laboratory	3
	1.2.1		
	1.2.2	2 Details of accreditation status	3
	1.3	Details of approval holder	3
	1.4	Application details	4
	1.5	General information of Test item	4
	1.6	Test standards	5
2	Tecl	hnical test	5
	2.1	Summary of test results	5
	2.2	Test environment	5
	2.3	Test Equipment List	6
	2.4	General Test Procedure	8
3	Test	results (enclosure)	9
	3.1	Output Power (Field Strength)	10
	3.2	Spurious emissions (tx)	11
	3.3	Band Edge Measurement	13
	3.4	Antenna requirement	14
	3.5	Power Line Conducted Emission	15

FCC ID: X3J24302

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Tester:

January 4, 2010 Danny Sung

Date WTS-Lab. Name Signature

Technical responsibility for area of testing:

January 4, 2010 Chang Tse-Ming

Date WTS Name Signature

FCC ID: X3J24302

1.2 **Testing laboratory**

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel 886-2-66068877 Fax : 886-2-66068879

1.2.2 **Details of accreditation status**

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd.:

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

1.3 **Details of approval holder**

Name: RADIO FUN INTERNATIONAL INVESTMENT LIMITED Street: FLAT A, 9/F., KUN LOCK BUILDING, 178 NATHAN ROAD,

Town: TSIMSHATSUI, KOW LOON,

Country: HONG KONG. Telephone: +852-2377-9699 Fax: +852-2762-7822

FCC ID: X3J24302

1.4	App	lication	details
-----	-----	----------	---------

Date of receipt of test item: December 28, 2009

Date of test:	from December 28, 2009 to December 31, 2009				
1.5 General information of 1	Test item				
Type of test item:	RADIO CONTROLLED TOYS				
Model Number:	24302				
Multi-listing model number:	./.				
Brand name:	./.				
Photos:	see Annex				
Technical data					
Transmitting Frequency:	27.145 MHz				
Operation modes:	simplex				
Transmitting mode:	A1B				
Antenna Type:	Integral antenna				
Power supply:	Battery 9 Vdc				
Manufacturer: (if applicable)					
Name:	RADIO FUN TOYS (SHENZHEN) CO., LTD.				
Street:	1/F 1 JINTANG INDUSTRIAL ESTATE, XINER JUSEI				
	ZHUANG VILLAGE, SHA JING, BAO AN,				
City:	SHENZHEN CITY,				
Country:	CHINA				

Additional information: ./.

FCC ID: X3J24302

1.6 Test standards

Technical standard: FCC RULES SUBPART C § 15.203, § 15.209, § 15.227 (2008-10)

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.		
or		
The deviations as specified in 3 were ascertained in the course of the tests performed.		

2.2 Test environment

Temperature: 23 °C

Relative humidity content: 20 ... 75 %

Air pressure: 86 ... 103 kPa

Details of power supply Battery 9 Vdc

Extreme conditions parameters: test voltage : -- extreme

min : -- V max : -- V

Worldwide Testing Services(Taiwan) Co., Ltd.

FCC ID: X3J24302

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2009/9/10	2010/9/9
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test	
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2009/3/27	2010/3/26
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2009/9/9	2010/9/8
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2009/5/9	2010/5/8
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2009/7/21	2010/7/20
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2009/9/12	2010/9/11
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2009/9/9	2010/9/8
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	Function	on Test
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2009/10/1	2010/9/30
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2009/9/18	2010/9/17
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2009/9/11	2010/9/10
ETSTW-RE 010	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2009/9/11	2010/9/10
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	МОТЕСН	Function	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2009/5/4	2010/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2009/10/1	2010/9/30
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Function	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2009/8/19	2010/8/18
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	2009/8/14	2011/8/13
ETSTW-RE 028	Log-Periodic Dipole Array Antenna	3148	34429	EMCO	2009/4/15	2010/4/14
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2009/4/15	2010/4/14
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2009/3/23	2010/3/22
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2009/8/23	2010/8/22
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2009/6/15	2010/6/14
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2009/8/23	2010/8/22
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2009/1/8	2010/1/7
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2009/5/5	2010/5/4
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2009/5/21	2010/5/20
ETSTW-RE 047	PSA SERIES SPECTRUM ANALYZER	E4445A	MY46181369	Agilent	2009/6/15	2010/6/14
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2009/8/31	2010/8/30
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2009/4/14	2010/4/13
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2009/6/10	2010/6/09
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302

ETSTW-RE 065	Amplifier	AMF-6F- 18002650-25-10P	941608	MITEQ	2009/4/21	2010/4/20
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2009/10/2	2010/10/1
ETSTW-RE 073	Power Meter	N1911A	MY45100769	Agilent	2009/1/13	2010/1/12
ETSTW-RE 074	Power Sensor	N1921A	MY45241198	Agilent	2009/1/13	2010/1/12
ETSTW-RE 091	Match Pad	MDCS1500	None	WOKEN	2008/10/9	2010/10/8
ETSTW-RE 092	Match Pad	MDCS1510	None	WOKEN	2008/10/9	2010/10/8
ETSTW-RE 093	LUMPED ELEMENT POWER DIVIDER	PL2-10	146	MCLI	2009/3/6	2010/3/5
ETSTW-RE 095	Digital Thermo-Hygro Meter	0410	01	WISEWIND	2009/3/24	2010/3/23
ETSTW-RE 096	SIGNAL GENERATOR	SMIQ 03B	102274	R&S	2009/6/5	2010/6/4
ETSTW-RE 097	GPS SIGNAL GENERATOR	GSG-L1	06-0507-0311	Naviva	Function	on Test
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2009/9/22	2010/9/21
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2009/9/21	2010/9/20
ETSTW-Cable 001	Microwave Cable	SUCOFLEX 104 (S Cable 1)	238094	HUBER+SUHNER	2009/9/16	2010/9/15
ETSTW-Cable 002	Microwave Cable	SUCOFLEX 104 (S_Cable 7)	238093	HUBER+SUHNER	2009/9/16	2010/9/15
ETSTW-Cable 003	Microwave Cable	SUCOFLEX 104 (S_Cable 11)	209953	HUBER+SUHNER	2009/9/16	2010/9/15
ETSTW-Cable 006	Microwave Cable	SUCOFLEX 104 (S_Cable 8)	238095	HUBER+SUHNER	2009/3/6	2010/3/5
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2009/3/6	2010/3/5
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	2009/8/20	2010/8/19
ETSTW-Cable 012	BNC Cable	BNC Cable 2	None	JYE BAO CO.,LTD.	2009/8/20	2010/8/19
ETSTW-Cable 013	Microwave Cable	SUCOFLEX 104 (S_Cable 5)	232345	HUBER+SUHNER	2009/3/6	2010/3/5
ETSTW-Cable 022	N TYPE Cable	OATS Cable 3	0002	JYE BAO CO.,LTD.	2009/3/6	2010/3/5

Worldwide Testing Services(Taiwan) Co., Ltd.

FCC ID: X3J24302

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS

33 $20 dB\mu V + 10.36 dB + 6 dB = 36.36 dB\mu V/m @3m$

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm height and with dimensions of 1m by 1.5m (non metallic table). The EUT was placed in the centre of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located at No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.) The Registration Number: 930600.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

FCC ID: X3J24302

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Output Power (Field Strength)	15.227(a)	×	×	
Spurious Emissions radiated – Transmitter operating	15.227(b), 15.209	×	×	
Band Edge Measurement	15.227(b)	×	×	
Antenna Requirement	15.203	×	×	
Power Line Conducted Emission	15.207(a)			

The follows is intended to leave blank.

FCC ID: X3J24302

3.1 Output Power (Field Strength)

FCC Rules: 15.227 (a)

Model:	24302	Date:	2009/12/28	
Mode:		Temperature:	24 °C	Engineer:

Polarization: Horizontal Humidity: 60 %

r dianzation: Honzontal		Tidiffiant	<i>j</i> ·	00	70						
	Frequency	ncy Reading		Factor	Result	t @3m	Limit @3m		Margin	Table	
		(dBuV)		(dB)	(dBu	V/m)	(dBuV/m)		_	Degree	Ant. High
	(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
	27.1445		42.93	21.34		64.27	100.00	80.00	-15.73	210	150

Polarization: Vertical Humidity: 60 % Reading Factor Result @3m Limit @3m Margin Table Frequency (dBuV) (dB) (dBuV/m) (dBuV/m) Degree Ant. High Corr. Peak (dB) (Deg.) (MHz) Peak Ave. Peak Ave. Ave. (cm) 27.1443 24.40 21.34 45.74 | 100.00 | 80.00 | -34.26 70 150

Measurement uncertainty: 4.94 dB

Limit

Fundamental Frequency	Field strength of fundamental, limit
26.96 – 27.28 MHz	$80.0 \text{ dB}\mu\text{V/m} = 10,\!000 \mu\text{V/m}$

Test equipment used: ETSTW-RE 004, ETSTW-RE 042

Explanation: See attached diagrams in appendix.

Rick

FCC ID: X3J24302

3.2 Spurious emissions (tx)

FCC Rules: 15.227 (b), 15.209

Radiated emission measurements were performed from 30 MHz to 1000 MHz.

For radiated emission tests, the analyzer setting was as followings:

Frequency \leq 1 GHz, RBW:100 kHz, VBW: 100 kHz (Peak measurements) Frequency > 1 GHz, RBW: 1 MHz, VBW: 1 MHz (Peak measurements) Frequency > 1 GHz, RBW:1 MHz, VBW: 10Hz (Average measurements)

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

Summary table with radiated data of the test plots

Model: 24302 Date: 2009/12/28

Mode: Temperature: 26 °C Engineer: Rick

Polarization: Horizontal Humidity: 60 %

i dianzation.	Horizontal			riairiiaity.	00	70		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
81.9440	9.78	peak	9.74	19.52	40.00	-20.48	300	150
167.4350	7.98	peak	15.05	23.03	43.50	-20.47	150	150
224.7896	12.84	peak	13.66	26.50	46.00	-19.50	130	150
530.0601	8.74	peak	21.72	30.46	46.00	-15.54	40	150
746.0922	7.27	peak	25.66	32.93	46.00	-13.07	90	150
924.2485	7.28	peak	28.09	35.37	46.00	-10.63	330	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
45.6914	9.13	peak	14.20	23.33	40.00	-16.67	220	150
195.0301	13.04	peak	12.23	25.27	43.50	-18.23	80	150
259.9600	12.48	peak	14.80	27.28	46.00	-18.72	170	150
503.4068	8.73	peak	21.12	29.85	46.00	-16.15	130	150
622.6453	7.15	peak	23.81	30.96	46.00	-15.04	70	150
790.9820	7.28	peak	26.35	33.63	46.00	-12.37	290	150

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. See the attached diagram as appendix.

FCC ID: X3J24302

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (**Transmitter**): The unit DOES meet the FCC requirements.

Limits: 15.209

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

FCC ID: X3J24302

3.3 Band Edge Measurement

FCC Rule: 15.227(b)

Channel	Frequency MHz	Detector	Test Results (dBµV/m)	Limit (dBµV/m)	
Lower Band-edge	26.96	Peak	25.46	49.54	
Upper Band-edge	27.28	Peak	27.26	49.54	

Limit:

The field strength of any emissions appearing outside of the 26.96-27.28 MHz band shall not exceed the general radiated emission limits in § 15.209.

Frequency of Emission (MHz)	Limit	Measurement distance		
0.009 - 0.490	2400 / f (KHz)	300		
0.49 - 1.705	24000 / f (KHz)	30		
1.705 - 30	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 – 960	200	3		
Above 960	500	3		

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

Explanation: See attached diagrams in appendix.

FCC ID: X3J24302

3.4 Antenna requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Explanation: This antenna is integral antenna which passes antenna requirement.

The equipment meets the	yes	no
requirements	×	

FCC ID: X3J24302

3.5 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency	Level (dBµV)				
Trequency	quasi-peak	average			
150 kHz	lower limit line	Lower limit line			

Model: 24302 Date: --Mode: Temperature: -- °C Engineer: --Polarization: N Humidity: -- %

Frequency (MHz)	Rea (dB QP	ding uV) Ave.	Factor (dB) Corr.	Re (dE QP	sult BuV) Ave.	Lir (dB QP	mit uV) Ave.	Margin (dB)
				-				1
				-				1

Polarization: L1

· oranzationi				1		1		
Frequency (MHz)	Rea (dB QP	ding aV) Ave.	Factor (dB) Corr.	Re (dE QP	sult BuV) Ave.	Lir (dB QP	mit uV) Ave.	Margin (dB)

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi Peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Note:

- 1. 1.The formula of measured value as: Test Result = Reading + Correction Factor
- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. The EUT is battery used, so this test is not required.

Test equipment used: ETSTW-CE 001, ETSTW-CE 003, ETSTW-CE 004, ETSTW-CE 006, ETSTW-RE 064

FCC ID: X3J24302

Appendix

A Measurement diagrams

- 1. Output Power
- 2. Spurious Emissions radiated- transmitter
- 3. Band Edge measurement

B Photos

- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photo of Radiated Emission

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302 Peak Output Power Antenna Polarization H

Antenna Polarization V

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of output power test data of this test report.

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302

Spurious Emissions radiated

Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line

- The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302

Antenna Polarization V

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

- The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: X3J24302

Band Edge Measurement

Registration number: W6M20912-10316-C-1 FCC ID: X3J24302

External Photos

Registration number: W6M20912-10316-C-1 FCC ID: X3J24302

Three functions

Registration number: W6M20912-10316-C-1

Registration number: W6M20912-10316-C-1 FCC ID: X3J24302

FCC ID: X3J24302 Single function

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302 Internal Photos

Registration number: W6M20912-10316-C-1

Registration number: W6M20912-10316-C-1

FCC ID: X3J24302

Set Up Photo of Radiated Emission

