The R package trioClasses for definition of the class FamilyExperiment, an extension of SummarizedExperiment, for use in trio based analyses of genetic data.

Samuel G. Younkin

May 6, 2013

1 Packages & Data

```
> library("trioClasses")
> data("sample")
> data("8q24-european-all.sm")
```

2 SummarizedExperiment

3 Pedigree

> ped <- PedClass(ped.DF)

4 FamilyExperiment

```
> (ste <- FamilyExperiment(se, pedigree = ped))

class: FamilyExperiment
dim: 8951 960
exptData(0):
assays(1): geno
rownames(8951): chr8:129296000 chr8:129296113 ...
    chr8:130354703 chr8:130354790
rowData values names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
    H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
    H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):</pre>
```

5 Methods

5.1 ScanTrio

```
> (ste.rare <- ste[!(MAF(ste) >= 0.01 | is.na(MAF(ste)))])
class: FamilyExperiment
dim: 6397 960
exptData(0):
assays(1): geno
rownames(6397): chr8:129296113 chr8:129296185 ...
  chr8:130354703 chr8:130354790
rowData values names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
  H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
 H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):
> window
GRanges with 100 ranges and 0 elementMetadata cols:
        segnames
                                  ranges strand
           <Rle>
                               <IRanges>
                                          <Rle>
            chr8 [129296113, 129305165]
    [1]
    [2]
            chr8 [129305476, 129313104]
    [3]
            chr8 [129313362, 129322866]
            chr8 [129324558, 129333656]
    [4]
    [5]
            chr8 [129334625, 129343161]
            chr8 [129343198, 129351365]
    [6]
    [7]
            chr8 [129351547, 129364328]
            chr8 [129364463, 129372905]
    [8]
    [9]
            chr8 [129373229, 129381948]
   [92]
            chr8 [130252429, 130264086]
            chr8 [130264170, 130277352]
   [93]
   [94]
            chr8 [130277457, 130287796]
   [95]
            chr8 [130288052, 130298138]
            chr8 [130298273, 130307946]
   [96]
   [97]
            chr8 [130307953, 130319387]
   [98]
            chr8 [130319526, 130328613]
   [99]
            chr8 [130328617, 130345350]
  [100]
            chr8 [130345517, 130354790]
  seqlengths:
   chr8
     NA
> range(rowData(ste.rare))
GRanges with 1 range and 0 elementMetadata cols:
      seqnames
                               ranges strand
```

```
[1]
       chr8 [129296113, 130354790]
 seqlengths:
  chr8
   NA
> countOverlaps(window, rowData(ste.rare))
 > system.time(scan.trio <- ScanTrio(object = ste.rare,
   window = window, block = range(rowData(ste.rare))))
  user system elapsed
      0.176 17.751
17.548
> scan.trio
DataFrame with 100 rows and 7 columns
        lr minor.in major.in minor.out major.out mendel.in
   <numeric> <integer> <integer> <integer> <integer> <integer>
   1.103716
                58
                        59
                              5390
                                      5955
1
2
   1.258080
                46
                        58
                              5402
                                      5956
                                                 0
3
   1.689351
                42
                        57
                              5406
                                      5957
                                                 0
                                                 0
4
   3.504761
                41
                        62
                              5407
                                      5952
5
                              5406
   1.111341
                42
                        51
                                      5963
                                                 0
6
   1.000482
                73
                        81
                              5375
                                      5933
                                                 0
7
   1.040295
                47
                        49
                              5401
                                      5965
                                                 0
8
   2.234714
                75
                        67
                              5373
                                      5947
                                                 0
9
  10.418485
                36
                        62
                              5412
                                      5952
                                                 0
       . . .
                . . .
                       . . .
                               . . .
                                       . . .
. . .
92
   2.014642
                72
                              5376
                                      5949
                                                 0
                        65
93
   1.147383
                44
                        54
                              5404
                                      5960
                                                 0
94
   1.493045
                49
                        45
                              5399
                                      5969
                                                 0
95
   1.000654
                62
                        68
                              5386
                                      5946
                49
                        72
                                                 0
96
   3.395825
                              5399
                                      5942
                                                 0
97
   2.668222
                34
                        51
                              5414
                                      5963
                              5395
                53
                        67
                                                 0
98
   1.317561
                                      5947
   1.000407
                71
                        78
                              5377
                                      5936
                                                 0
100 10.219049
                39
                        66
                              5409
                                      5948
   mendel.out
   <integer>
1
          0
2
          0
3
          0
4
          0
5
```

<IRanges>

<Rle>

6	0
7	0
8	0
9	0
92	0
93	0
94	0
95	0
96	0
97	0
98	0
99	0
100	0

> save(scan.trio, file = "./../data/scan-trio.RData")

A Holger-style Genotype Matrix

Coercion to matrix for trio

```
> geno <- as(ste, "matrix")
> aTDT(geno[, 1:5])
```

Or apply the aTDT method to the FamilyExperiment directly.

> aTDT(ste[1:5])

B Count of Transmission of Variants (TransCount())

B.1 Window

```
> window <- gr[100] + 10000
> window2 <- gr[100] + 1000
> block <- range(rowData(ste))
> TransCount(ste, window)
```

B.2 Not in window, but in block

> TransCount(ste, setdiff(block, window))

B.3 In the whole block

> TransCount(ste, block)

B.4 In both windows

> TransCount(ste, GRangesList(window, window2))

B.5 Not "In both windows," but in block

C Count of Transmission of Rare Variants (TransCount())

- C.1 In both windows
- C.2 Not "In both windows," but in block

D Classes

D.1 SnpMatrix, DataFrame, GRanges

The four key ingredients are the SNP matrix, the pedigree information as a DataFrame, position of the SNPs given by a GRanges object, and covariate data given as a DataFrame.

```
> sm
> ped.DF
> gr
```

D.2 SummarizedExperiment

We combine three of the key ingredients when we create the SummarizedExperiment object.

D.3 FamilyExperiment

Now, we include the pedigree information as an object of class PedClass. We keep PedClass independent of FamilyExperiment for flexibility.

```
> ped <- PedClass(ped.DF)
> ste <- FamilyExperiment(se, pedigree = ped)</pre>
```

Here is the show method.

> ste

And now we verify that it is indeed an extension of SummarizedExperiment.

> getClass("FamilyExperiment")

D.4 PedClass

Now we investigate the pedigree slot of the FamilyExperiment object.

```
> class(pedigree(ste))
> getClass("PedClass")
> pedigree(ste)
```

D.5 geno accessor

```
> class(geno(ste))
> getClass("SnpMatrix")
> geno(ste)
```

D.6 RowData

> rowData(ste)

D.7 ColData

E Validity