The allowable soil pressure for
$DL + LL = 250 \text{ kN/m}^2$
DL + reduced LL = 150 kN/n

(OR)

b. Explain the causes and remedial measures of total settlement.

	A group of 9 piles each 10 m long of 300 mm \times 300 mm reinforced –concrete square pile. The spacing between the piles are 0.8 m. The subsoil consists of clay having $C = 110 \text{ kN/m}^2$ and $FOS = 3$. Determine the safe frictional load of the pile. Take adhesion factor is 0.6.	10	4	4
b.	(OR)	10	3	4

30. a. A gravity retaining wall of height 9 m retains backfill having $\gamma = 18 \text{ kN/m}^3$ and $\phi = 30^\circ$. Assume the vertical smooth wall. Determine the magnitude of the active earth pressure and point of application of force when the water table is 4 m below the ground water table. Take $\gamma' = 10 \text{ kN/m}^3.$

(OR)

b. Draw the Culmann's graphical method of active earth pressure and describe the detail procedure to calculate the active lateral earth pressure.

					5 1			
Reg. No.	-					62		

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

18CEE301T - FOUNDATION ENGINEERING AND DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

2 3 1

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii)		Par	t - B should be answered in answer b	ookle	t.				
Time	: 21	⁄2 Ho	urs			Max.	Ma	rks:	7
			$PART - A (25 \times 1 =$	= 25]	Marks)	Marks	BL	СО	I
		,	Answer ALL Q						
	1.		_		mple recovered to the depth of	1	1	1	
		(A)	Area ratio	(B)	Recovery ratio				
		(C)	Inside clearance	(D)	Outside clearance				
	2.		field procedure to study the var	iatio	n in the soil profile of horizontal	1	1	1	
		(A)	Electrical profiling	(B)	Electrical sounding				
		(C)	Critical distance	(D)	Mean resistivity				
	3.	The	standard penetration test is perfo	rmed	in a hole of diameter about	1	1	1	
			25 mm to 35 mm		25 mm to 50 mm				
		(C)	55 mm to 150 mm	` /	10 mm to 25 mm				
	4	The	outside clearance of the soil samp	nles t	o get undisturbed sample is	1	1	1	
	'•		Between 1 to 3		Less than 1				
		(C)	Greater than 3	` /	Less than inside clearance				
	5	The	depth of soil exploration for a square	nare :	footing should be	1	1	1	
	٥.		Width of footing		1.5 times of footing width				
		(C)	2 times of footing width	` /	3 times of footing width				
	6	The	Terzaghi's bearing capacity factor	ra ar	e functions of	1	1	2	1
	0.	(A)							
		(C)	Friction angle between load and centre of footing	(D)	Safe bearing pressure				
	7.	The	size of bearing plate for a plate lo	oad te	est will be	1	1	2]
		(A)	Less than 0.2 m	(B)	Between 0.3 m to 0.75 m				
		(C)	Less than 0.3 m	(D)	Greater than 1.0 m				
	8.	The	width of the test pit in the plate lo	oad te	est is	1	1	2	1
			2.5 times width of plate		3 times width of plate				
		(C)	4 times width of plate		5 times width of plate				

		When $\phi = 0$, the Terzaghi's bearing (A) 5.14 (C) 7.5	capacity factor due to cohesion N _C is (B) 5.7 (D) 9	1	2	2 1		ac	the angle of internal friction of soil is 30°, the value of coefficient of stive earth pressure is	1	2	5	1
		(C) 7.3	(D) 9						(B) 1.5 (C) 0.5 (D) 0.33				
	10.	The net ultimate bearing capacity of		1	2	2 1							
		(A) $0.3\gamma BN_{\gamma} + \gamma D_f (Nq - 1)$	(B) $0.3\gamma BN_{\gamma} + \gamma D_f(Nq+1)$						he value of coefficient of earth pressure on retaining will is maximum at	1	2	5	1
		(C) $0.4\gamma BN_{\gamma} + \gamma D_f(Nq-1)$	(D) $0.4\gamma BN_{\gamma} + \gamma D_f(Nq+1)$					•	A) Active state (B) Passive state				
								(C	C) At rest state (D) Saturated state				
	11,	The uniform vertical downward mov	vement of foundation base is called as	1	1	3 1		23 Tł	he coefficient of active earth pressure 'ka' is given by	1	2	5	1
		(A) Compaction	(B) Uniform settlement					(A					
		(C) Differential settlement	(D) Tilt					($k_a = \frac{1 + \sin \phi}{1 - \sin \phi} $ (B) $k_a = \frac{1 - \sin \phi}{1 + \sin \phi}$				
	10	71		-1	2	3 1		((
	12.	The secondary consolidation in a cla (A) Sudden application of load	(B) Dissipation of pure water	•	-	, ,		(0	$k_a = \frac{1 + \tan \phi}{1 - \sin \phi} \qquad (D) k_a = \frac{1 + \tan \phi}{1 - \tan \phi}$				
		(C) Dissipation of pore air	(D) Rearrangement of soil particles						$1-\sin\varphi$		1.		
		(c) Dissipation of pole and	(b) Realitaingement of son particles					24. Tł	he material which is retaining by the retaining structure is generally	1	1	5	1
	13.	Two or more footings connected by	a beam is called as	1	1	3 1			illed as				
		(A) Strip footing	(B) Strap footing						A) Surcharge (B) Backfill				
		(C) Spread footing	(D) Raft footing					(C	C) Soil slope (D) Angle of repose				
		TTI -0.0 - 1.1		1	2	2 1							
	14.		oreferred under the conditions when the	1	2	3 1			he critical height of the cohesive soil, the depth of vertical cut upto which	ļ	2	5	1
		area required for individual footing (A) 20 % of total area	(B) 30 % of total area						o lateral support is required is given as				
		(C) 40 % of total area	(D) 50 % of total area					(A	A) $\underline{2c}$ (B) $\underline{2\gamma}$				
		(C) 10 70 of total area	(D) 30 % of total area					(0	γ				
	15.	If the failure of a finite slope occur t	through the toe is known as	1	1	3 1		(C	C) $\frac{4c}{}$ (D) $\frac{4\gamma}{}$				
		(A) Base failure	(B) Face failure						γ c				
		(C) Toe failure	(D) Slope failure										
	16	Th. 1	-1	1	1	4 1			$PART - B (5 \times 10 = 50 Marks)$	Iarks	BL	co 1	РО
	10.	of the pile shaft settles more than the	when a soil layer surrounding a portion	1					Answer ALL Questions				
		(A) Positive skin friction	(B) Negative skin friction										
		(C) End bearing	(D) Skin friction				26	.a. Br	riefly explain the wash boring methods of soil exploration with neat	10	2	1	1
								sk	tetch.				
	17.	The pile transfer the load through its		_1	_1 '	4 1			(OD)				
		(A) End bearing pile	(B) Friction pile					h Da	(OR) escribe in detail about the seismic refraction method of geophysical soil	10	3	1	1
		(C) Compaction pile	(D) Displacement pile						escribe in detail about the seising reflection method of geophysical son				
	10	Classification of pile based on the m	acthod of land transfer	1	1	4 1		011	protection with near bicolon.				-
	10.	(A) Driven pile	(B) Load bearing pile					. a. A	column carrying a load of 700 kN has to be supported by a square	10	4	2	2
		(C) End bearing pile	(D) Compaction pile						oting with its base at 1.5 m depth. What is the required size of the				
		(e) End soming pro	(2) compared pro						oting? Where FOS = 2.5, C = 8 kN/m ² , ϕ = 35°, N _c = 57.8, N _q = 41.4,				
	19.	The area used to calculate the skin f	riction of pile is	1	2	4 1		N_{γ}	$\gamma = 42.4$, $\gamma = 18$ kN/m ³ , and $\gamma' = 11$ kN/m ³ . Use Terzaghi's method.				
		(A) Cross-sectional area	(B) Base area						(OP)				
		(C) Circumferential area	(D) Triangular area					h E-	(OR)	10	2	2	1
	20		1-10-0	1	1 .	1 1		U. EX	xplain the detail procedure to conduct the plate load test with neat sketch.		77		
	20.	The initial test on the pile in the pile		1	1	4 1		a. Pr	roportion the rectangular combined footing for the following data. The	10	4	3	3
		(A) Test pile(C) Steel pile	(B) Working pile(D) Concrete pile				20		ead load and live load of the left column are 400 kN and 500 kN				
		(c) Steel pile	(D) Concrete pile				•		spectively, and for the right column is 600 kN and 850 kN respectively.				
									the projection beyond the column cannot exceed 0.5 m on the both sides.				
	0 64			8MF618	CEE30	1T	Page 3	of 4	180	AF6180	TEE30	1T	
Pa	ge 2 of 4				, 4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0			II. OTO			