导函数为二次函数的分类讨论

王骝维

不惑面试

2021年7月1日

$$f(x) = x - a \ln x + \frac{1+a}{x}$$

- (1) 若 a = 1, 求 f(x) 在 $x \in [1,3]$ 的最小值;
- (2) 求 f(x) 的单调区间
- (3) 若 $\exists x \in [1, e]$, 使得 f(x) < 0, 求 a 的取值范围

(1)
$$a = 1, f'(x) = x - \frac{1}{x} - \frac{2}{x^2}$$
 故在 $x = 2$ 处取得最小值为
$$= \frac{x^2 - x - 2}{x^2}$$

$$= \frac{(x+1)(x-2)}{x^2}$$
 $f(2) = 2 - \ln 2 + 1 = 3 - \ln 2$ $f(1) = 3, f(3) = \frac{7}{3} - \ln \frac{2}{3}$ 故在 $x \in [1,3]$ 上的最大值和最小值分别为 $f(1) = 3, f(2) = 3 - \ln 2$

(1):
$$a = 1, f'(x) = x - \frac{1}{x} - \frac{2}{x^2}$$
 故在 $x = 2$ 处取得最小值为
$$= \frac{x^2 - x - 2}{x^2}$$

$$= \frac{(x+1)(x-2)}{x^2}$$
 $f(2) = 2 - \ln 2 + 1 = 3 - \ln 2$ 故 $x \in [1,3]$ 时, $f(x)$ 最小值为 $f(2) = 3 - \ln 2$

(2):
$$f'(x) = x - \frac{a}{x} - \frac{1+a}{x^2}$$
 由原函数定义域为 $x \in (0, +\infty)$
$$= \frac{x^2 - ax - 1 - a}{x^2}$$

$$= \frac{(x+1)(x-1-a)}{x^2}$$
 $x > -1$ 则 $f(x)$ 与 $x - a - 1$ 同号 $a > 1$ 时,