Análisis de Redes

George G Vega¹

Superintendencia de Pensiones

20 de junio, 2014

¹mailto:gvegayon@caltech.edu

Contenidos

- Introducción
- 2 Definiciones
- Stadísticos
- 4 Ejemplos
- 6 Referencias

Introducción

Objetivos de esta sección

Esta parte del curso se centrará en lo siguiente:

- Familiarizarse con el lenguaje
- Entender gráfos desde mirada estadística
- Realizar análisis de redes utilizando software especializado (Gephi)

Alternativas de software

- UCINET https://sites.google.com/site/ucinetsoftware/home
- Pajek http://pajek.imfm.si/doku.php
- NodeXL http://nodexl.codeplex.com/
- NetworkX (Python) http://networkx.lanl.gov/
- igraph (R y otros) http://igraph.org/redirect.html
- ...
- Gephi http://gephi.org/

Introducción

La ciencia de redes

Cómo se estudian las redes?

- Redes biologicas Redes metabólicas, redes regulatorias, etc.
- Redes tecnológicas Redes de telecomunicaciones, energía, transporte, etc.
- Redes sociales Amigos, familia, parejas sexuales, etc.
- de Información Citas académicas, World Wide Web (Red), etc.

En las ciencias sociales es donde se lleva más tiempo desarrollando investigación cuantitativa al respecto.

Introducción

La ciencia de redes

a) Cazador-presa, b) Red de colaboración, y c) Red de contactos sexuales Fuente: [3]

Gráfico 2: Red de parlamentarios, ministros y el presidente de Chile en Twitter (al 28/04/2011)

Conceptos fundamentales

- Vertice (aka nodo) Unidad fundamental de un grafo.
- Arista (aka arco) Puede ser dirigida o no.
- Grado (entrada/salida) Número de conexiones de un nodo.
- Geodésica Distancia más corta entre dos nodos.
- Diametro Distancia más larga en un grafo.
- Diada Par de nodos conectados.
- Triada Trio de nodos conectados.
- Componente (gigante) Porción de un grafo desconectado.

- Definición de gráfo: G = (V, E), donde V (vertex) representa el conjunto de nodos y E (edges) representa el número de aristas.
- Tipos de grafo:
 - Grafo vs Bigraf En un bigrafo existen dos tipos de nodos distintos (personas e instituciones por ejemplo)
 - **Dirigido** Los arcos tienen sentido, $v_i \rightarrow v_i$
 - No dirigido Los arcos no tienen sentido (dirección), $v_i v_j$
 - **Cíclico** Existen bucles, $v_i o v_j o v_k o v_i$
 - a-cíclico No existes bucles

Caracterizando una red

Máximo número de conexiones en un grafo dirigido

$$n(n-1) \tag{1}$$

Máximo número de conexiones en un grafo no dirigido

$$\frac{1}{2}n(n-1)\tag{2}$$

Mundos Pequeños

efecto mundo-pequeño el hecho de que la mayoría de los pares de nodos está conectado por un camino pequeño a lo largo del grafo. La primera evidencia de esto se encuentra en el experimento de Stanley Milgram [2]

Se puede medir en función de la geodésica media

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \geq j} d_{ij} \tag{3}$$

Notar que $\frac{1}{2}n(n+1)$ corresponde al máximo número de links posibles. Como $d_{ij}\to\infty$, se recomienda calcular

$$\ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i > i} d_{ij}^{-1} \tag{4}$$

Distribución de grado

Una característica importante de los grafos *naturales* es la distribución del grado (k_i) de sus nodos (v_i)

$$\mathsf{P}(\mathsf{grado} \geq k) : P_k = \sum_{k'=k}^{\infty} p_k'$$

donde p_k es la fracción de nodos que tiene grado kAhora, dado que se da $p_k \sim k^{-\alpha}$

$$P_k \sim \sum_{k'=k}^{\infty} k^{-\alpha} \sim k^{-(\alpha-1)}$$

Definiciones Distribución de grado

real networks (power-law, scale-free) most nodes are lowly linked lowly linked <- node degree -> highly linked

Definiciones Clusterización

Indica en qué medida existen triadas conectadas en un grafo.

Watts y Strogratz, 1998

$$C_i = \frac{2E_i}{k_i(k_i - 1)}; C = \frac{1}{n} \sum_{i \in V} C_i$$
 (5)

donde E_i corresponde al número de arcos, k_i el grado del nodo i.

• Barrat y Weight, 2000; Newman, Strogatz y Watts, 2000

$$C = \frac{3 \times \# \text{ de triangulos en el grafo}}{\# \text{ de triadas}}$$
 (6)

El número 3 se utiliza para asegurar que el índice se encuentre entre 0 y 1

Definiciones Clusterización

FIG. 5 Illustration of the definition of the clustering coefficient C, Eq. (3). This network has one triangle and eight connected triples, and therefore has a clustering coefficient of $3 \times 1/8 = \frac{3}{8}$. The individual vertices have local clustering coefficients, Eq. (5), of 1, 1, $\frac{1}{6}$, 0 and 0, for a mean value, Eq. (6), of $C = \frac{13}{30}$.

(3.3) Nuestra ecuación (6); (3.5) y (3.6) Nuestra ecuación (5)

Ejemplos

Medidas en la literatura

10

	network	type	n	m	2	· l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
social	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7 673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52 909	245 300	9.27	6.19	-	0.45	0.56	0.363	311, 313
	biology coauthorship	undirected	1520251	11 803 064	15.53	4.92	-	0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59 912	86 300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16 881	57 029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
information	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				74
	citation network	directed	783 339	6 716 198	8.57		3.0/-				351
	Roget's Thesaurus	directed	1 022	5 103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		119, 157
technological	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
	power grid	undirected	4 941	6 594	2.67	18.99	-	0.10	0.080	-0.003	416
	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
	software packages	directed	1 439	1 723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
biological	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
	protein interactions	undirected	2 115	2 240	2.12	6.80	2.4	0.072	0.071	-0.156	212
	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

Temas que revisaremos en la próxima sesión

- Centralidad de Grado (in/out)
- Centralidad de Cercanía
- Centralidad de Intermediación

Otras medidas de centralidad...

- Número de Erdös
- El oráculo de Kevin Bacon http://oracleofbacon.org/

Referencias

Jorge Fábrega and George Vega.

The network of scientific production in chile since 1909.

Stanley Milgram.

The small world problem.

Psychology today, 2(1):60-67, 1967.

Mark EJ Newman.

The structure and function of complex networks.

SIAM review, 45(2):167-256, 2003.