85594505 Mercury James Mindoe		
(-(a)		
First, $\frac{dT}{dt} = \chi(T_0-T)$ we know $T_0=25^{\circ}C$, $T_0=1$		
#= 9(25-T) -> 9T+ #= 257 ux can s	maltiply both sides with e ^{nt} and get	
ent. NT + ent # = 25 ne	$nt \Rightarrow \frac{1}{4}(e^{nt}\tau) = 2\pi ne^{nt}$	
	thus ent T= 25ent+c (C is a constant) making T=25+Cent	
	at t=0,	
	at $t = \tau = 100$ seconds, $\tau_0 = 26 + c \cdot e^{100\Lambda} = 26 + 472 \cdot e^{100\Lambda}$	
	1 → 5 = e ¹⁰⁰ → λ= (金) × 0.00/46 s ⁻¹	
	⇒ 5 2 = ε ⁻¹ ⇒ λ = 100 μ (= 2.) ≈ 0.00(446 s ⁻¹	
1-(b) Now Ta=15°C, therefore $\frac{dI}{dc} = \lambda(15-T) \Rightarrow$	$\Rightarrow \cancel{!} + \lambda T = 15\lambda \Rightarrow e^{\lambda t} (\cancel{!} + \lambda T) = 15\lambda e^{\lambda t} \Rightarrow e^{\lambda t} T = 15e^{\lambda t} + D (0 \text{ is a constant.})$	
	⇒ T= 15+D.0 ^{-At} .	
Now the new initial temperature is T(0)=1	Ti=10 hexit D=95.	
Teip = T(360-100) = T(260) = 15+55. e ==================================	= 52.7%FC	
	∴ 52.0W5 c	
1-(c) $T_A = T_b(1+0.t)$, $a = 0.0038462.sec^{-1}$ and $T_b = 10$		
$\# = \lambda(T_a - T) = \lambda(10 + 100 + T) \Rightarrow \# + \lambda T = 1$	K(oHloub)	
$T_{h(t)} = E \cdot e^{-\lambda t}$, $T_{p(t)} = At+B \Rightarrow A+\lambda(A)$	AttB) = AAt+ (A4AB) = $ 0a\lambda + H0\lambda \Rightarrow A= 0a $, $B= 0-\frac{10}{\lambda}a $ honce $T_0(t) = 0at+ 0 (1-\frac{A}{\lambda})$	
Hence, $T(t) = E \cdot e^{-\lambda t} + \log t + \log (1 - \frac{\alpha}{\lambda})$		
As (-(b), $T(0) = 10 = E + 10((-\frac{\alpha}{\lambda}))$.: $E = 1$	60+ 10-\$\frac{9}{3}	
Now Tajp = $T(260) = (60 + (0 \cdot \frac{\alpha}{\lambda}) e^{-260\lambda} + 260 \cdot (60 + (0 \cdot \frac{\alpha}{\lambda})) e^{-260\lambda}$	m> + to (1− m²) = 52. 8644 °C ∴ 52. 8644 °C	
(-(d)		
as both (b),(c) are in the bounds 44:c2	.T<60°C, both and uncombinable situations.	