Convolutional neural network layers

In this notebook, we will build the convolutional neural network layers. This will be followed by a spatial batchnorm, and then in the final notebook of this assignment, we will train a CNN to further improve the validation accuracy on CIFAR-10.

```
In [ ]:
         ## Import and setups
         import time
         import numpy as np
         import matplotlib.pyplot as plt
         from nndl.conv layers import *
         from utils.data_utils import get_CIFAR10_data
         from utils.gradient_check import eval_numerical_gradient, eval_numerical_gradient_arm
         from utils.solver import Solver
         %matplotlib inline
         plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
         plt.rcParams['image.interpolation'] = 'nearest'
         plt.rcParams['image.cmap'] = 'gray'
         # for auto-reloading external modules
         # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
         %load ext autoreload
         %autoreload 2
         def rel_error(x, y):
           """ returns relative error """
           return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

Implementing CNN layers

Just as we implemented modular layers for fully connected networks, batch normalization, and dropout, we'll want to implement modular layers for convolutional neural networks. These layers are in nndl/conv_layers.py.

Convolutional forward pass

Begin by implementing a naive version of the forward pass of the CNN that uses for loops. This function is conv_forward_naive in nndl/conv_layers.py . Don't worry about efficiency of implementation. Later on, we provide a fast implementation of these layers. This version ought to test your understanding of convolution. In our implementation, there is a triple for loop.

After you implement conv_forward_naive, test your implementation by running the cell below.

```
In [ ]: x_shape = (2, 3, 4, 4)
w_shape = (3, 3, 4, 4)
```

```
x = np.linspace(-0.1, 0.5, num=np.prod(x shape)).reshape(x shape)
w = np.linspace(-0.2, 0.3, num=np.prod(w shape)).reshape(w shape)
b = np.linspace(-0.1, 0.2, num=3)
conv param = {'stride': 2, 'pad': 1}
out, _ = conv_forward_naive(x, w, b, conv_param)
correct_out = np.array([[[[-0.08759809, -0.10987781],
                           [-0.18387192, -0.2109216]],
                          [[ 0.21027089, 0.21661097],
                           [ 0.22847626, 0.23004637]],
                          [[ 0.50813986, 0.54309974],
                           [ 0.64082444, 0.67101435]]],
                         [[[-0.98053589, -1.03143541],
                           [-1.19128892, -1.24695841]],
                          [[ 0.69108355, 0.66880383],
                           [ 0.59480972, 0.56776003]],
                          [[ 2.36270298, 2.36904306],
                           [ 2.38090835, 2.38247847]]]])
# Compare your output to ours; difference should be around 1e-8
print('Testing conv forward naive')
print('difference: ', rel_error(out, correct_out))
```

Testing conv_forward_naive difference: 2.2121476417505994e-08

Convolutional backward pass

Now, implement a naive version of the backward pass of the CNN. The function is conv_backward_naive in nndl/conv_layers.py . Don't worry about efficiency of implementation. Later on, we provide a fast implementation of these layers. This version ought to test your understanding of convolution. In our implementation, there is a guadruple for loop.

After you implement conv_backward_naive, test your implementation by running the cell below.

```
In [ ]:
         x = np.random.randn(4, 3, 5, 5)
         w = np.random.randn(2, 3, 3, 3)
         b = np.random.randn(2,)
         dout = np.random.randn(4, 2, 5, 5)
         conv_param = {'stride': 1, 'pad': 1}
         out, cache = conv forward naive(x, w, b, conv param)
         dx_num = eval_numerical_gradient_array(lambda x: conv_forward_naive(x, w, b, conv_par
         dw_num = eval_numerical_gradient_array(lambda w: conv_forward_naive(x, w, b, conv_par
         db num = eval numerical gradient array(lambda b: conv forward naive(x, w, b, conv par
         out, cache = conv_forward_naive(x, w, b, conv_param)
         dx, dw, db = conv_backward_naive(dout, cache)
         # Your errors should be around 1e-9'
         print('Testing conv backward naive function')
         print('dx error: ', rel_error(dx, dx_num))
         print('dw error: ', rel_error(dw, dw_num))
         print('db error: ', rel_error(db, db_num))
```

```
(4, 2, 5, 5)
Testing conv_backward_naive function
dx error: 2.9738906880965006e-09
dw error: 1.798996177060553e-09
db error: 9.609108922505667e-10
```

Max pool forward pass

In this section, we will implement the forward pass of the max pool. The function is max_pool_forward_naive in nndl/conv_layers.py . Do not worry about the efficiency of implementation.

After you implement <code>max_pool_forward_naive</code> , test your implementation by running the cell below.

```
In [ ]:
         x \text{ shape} = (2, 3, 4, 4)
         x = np.linspace(-0.3, 0.4, num=np.prod(x_shape)).reshape(x_shape)
         pool_param = {'pool_width': 2, 'pool_height': 2, 'stride': 2}
         out, = max pool forward naive(x, pool param)
         correct_out = np.array([[[[-0.26315789, -0.24842105],
                                    [-0.20421053, -0.18947368]],
                                   [[-0.14526316, -0.13052632],
                                    [-0.08631579, -0.07157895]],
                                   [[-0.02736842, -0.01263158],
                                    [ 0.03157895, 0.04631579]]],
                                  [[[ 0.09052632, 0.10526316],
                                    [ 0.14947368, 0.16421053]],
                                  [[ 0.20842105, 0.22315789],
                                    [ 0.26736842, 0.28210526]],
                                   [[ 0.32631579, 0.34105263],
                                    [ 0.38526316, 0.4
         # Compare your output with ours. Difference should be around 1e-8.
         print('Testing max pool forward naive function:')
         print('difference: ', rel error(out, correct out))
```

Testing max_pool_forward_naive function: difference: 4.1666665157267834e-08

Max pool backward pass

In this section, you will implement the backward pass of the max pool. The function is max_pool_backward_naive in nndl/conv_layers.py . Do not worry about the efficiency of implementation.

After you implement <code>max_pool_backward_naive</code> , test your implementation by running the cell below.

```
In [ ]:
    x = np.random.randn(3, 2, 8, 8)
    dout = np.random.randn(3, 2, 4, 4)
    pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}

    dx_num = eval_numerical_gradient_array(lambda x: max_pool_forward_naive(x, pool_param
```

```
out, cache = max_pool_forward_naive(x, pool_param)
dx = max_pool_backward_naive(dout, cache)

# Your error should be around 1e-12
print('Testing max_pool_backward_naive function:')
print('dx error: ', rel_error(dx, dx_num))
```

Testing max_pool_backward_naive function: dx error: 3.2756333805891263e-12

Fast implementation of the CNN layers

Implementing fast versions of the CNN layers can be difficult. We will provide you with the fast layers implemented by utils. They are provided in utils/fast_layers.py .

The fast convolution implementation depends on a Cython extension ('pip install Cython' to your virtual environment); to compile it you need to run the following from the utils directory:

```
python setup.py build_ext --inplace
```

NOTE: The fast implementation for pooling will only perform optimally if the pooling regions are non-overlapping and tile the input. If these conditions are not met then the fast pooling implementation will not be much faster than the naive implementation.

You can compare the performance of the naive and fast versions of these layers by running the cell below.

You should see pretty drastic speedups in the implementation of these layers. On our machine, the forward pass speeds up by 17x and the backward pass speeds up by 840x. Of course, these numbers will vary from machine to machine, as well as on your precise implementation of the naive layers.

```
In [ ]:
         from utils.fast_layers import conv_forward_fast, conv_backward_fast
         from time import time
         x = np.random.randn(100, 3, 31, 31)
         w = np.random.randn(25, 3, 3, 3)
         b = np.random.randn(25,)
         dout = np.random.randn(100, 25, 16, 16)
         conv param = {'stride': 2, 'pad': 1}
         t0 = time()
         out_naive, cache_naive = conv_forward_naive(x, w, b, conv_param)
         t1 = time()
         out fast, cache fast = conv forward fast(x, w, b, conv param)
         t2 = time()
         print('Testing conv_forward_fast:')
         print('Naive: %fs' % (t1 - t0))
         print('Fast: %fs' % (t2 - t1))
         print('Speedup: %fx' % ((t1 - t0) / (t2 - t1)))
         print('Difference: ', rel error(out naive, out fast))
```

```
t0 = time()
         dx naive, dw naive, db naive = conv backward naive(dout, cache naive)
         t1 = time()
         dx_fast, dw_fast, db_fast = conv_backward_fast(dout, cache_fast)
         t2 = time()
         print('\nTesting conv backward fast:')
         print('Naive: %fs' % (t1 - t0))
         print('Fast: %fs' % (t2 - t1))
         print('Speedup: %fx' % ((t1 - t0) / (t2 - t1)))
         print('dx difference: ', rel_error(dx_naive, dx_fast))
         print('dw difference: ', rel_error(dw_naive, dw_fast))
         print('db difference: ', rel_error(db_naive, db_fast))
        Testing conv forward fast:
        Naive: 5.589695s
        Fast: 0.008337s
        Speedup: 670.466770x
        Difference: 8.033244698564102e-11
        (100, 25, 31, 31)
        Testing conv backward fast:
        Naive: 24.059427s
        Fast: 0.007952s
        Speedup: 3025.591431x
        dx difference: 2.910722239597815e-11
        dw difference: 7.679773952467281e-13
        db difference: 0.0
In [ ]:
         from utils.fast_layers import max_pool_forward_fast, max_pool_backward_fast
         x = np.random.randn(100, 3, 32, 32)
         dout = np.random.randn(100, 3, 16, 16)
         pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}
         t0 = time()
         out naive, cache naive = max pool forward naive(x, pool param)
         t1 = time()
         out fast, cache fast = \max pool forward fast(x, pool param)
         t2 = time()
         print('Testing pool_forward_fast:')
         print('Naive: %fs' % (t1 - t0))
         print('fast: %fs' % (t2 - t1))
         print('speedup: %fx' % ((t1 - t0) / (t2 - t1)))
         print('difference: ', rel_error(out_naive, out_fast))
         t0 = time()
         dx naive = max pool backward naive(dout, cache naive)
         t1 = time()
         dx_fast = max_pool_backward_fast(dout, cache_fast)
         t2 = time()
         print('\nTesting pool backward fast:')
         print('Naive: %fs' % (t1 - t0))
         print('speedup: %fx' % ((t1 - t0) / (t2 - t1)))
         print('dx difference: ', rel_error(dx_naive, dx_fast))
```

```
Testing pool_forward_fast:
Naive: 0.250537s
fast: 0.006918s
speedup: 36.216750x
difference: 0.0

Testing pool_backward_fast:
Naive: 1.110180s
speedup: 83.681032x
dx difference: 0.0
```

Implementation of cascaded layers

We've provided the following functions in nndl/conv_layer_utils.py :

```
conv_relu_forwardconv_relu_backwardconv_relu_pool_forwardconv_relu_pool_backward
```

db error: 1.895581679146329e-09

These use the fast implementations of the conv net layers. You can test them below:

```
In [ ]:
         from nndl.conv_layer_utils import conv_relu_pool_forward, conv_relu_pool_backward
         x = np.random.randn(2, 3, 16, 16)
         w = np.random.randn(3, 3, 3, 3)
         b = np.random.randn(3,)
         dout = np.random.randn(2, 3, 8, 8)
         conv param = {'stride': 1, 'pad': 1}
         pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}
         out, cache = conv_relu_pool_forward(x, w, b, conv_param, pool_param)
         dx, dw, db = conv relu pool backward(dout, cache)
         dx num = eval numerical gradient array(lambda x: conv relu pool forward(x, w, b, conv
         dw num = eval numerical gradient array(lambda w: conv relu pool forward(x, w, b, conv
         db_num = eval_numerical_gradient_array(lambda b: conv_relu_pool_forward(x, w, b, conv_
         print('Testing conv_relu_pool')
         print('dx error: ', rel_error(dx_num, dx))
         print('dw error: ', rel_error(dw_num, dw))
         print('db error: ', rel_error(db_num, db))
        Testing conv_relu_pool
        dx error: 2.3320115000172897e-08
        dw error: 1.0875856011179476e-09
```

```
from nndl.conv_layer_utils import conv_relu_forward, conv_relu_backward

x = np.random.randn(2, 3, 8, 8)
w = np.random.randn(3, 3, 3, 3)
b = np.random.randn(3,)
dout = np.random.randn(2, 3, 8, 8)
conv_param = {'stride': 1, 'pad': 1}
```

```
out, cache = conv_relu_forward(x, w, b, conv_param)
dx, dw, db = conv_relu_backward(dout, cache)

dx_num = eval_numerical_gradient_array(lambda x: conv_relu_forward(x, w, b, conv_para
dw_num = eval_numerical_gradient_array(lambda w: conv_relu_forward(x, w, b, conv_para
db_num = eval_numerical_gradient_array(lambda b: conv_relu_forward(x, w, b, conv_para

print('Testing conv_relu:')
print('dx error: ', rel_error(dx_num, dx))
print('dw error: ', rel_error(dw_num, dw))
print('db error: ', rel_error(db_num, db))
```

Testing conv relu:

dx error: 1.5488994509648658e-09
dw error: 4.0797742133855386e-10
db error: 2.1591033321352403e-11

What next?

We saw how helpful batch normalization was for training FC nets. In the next notebook, we'll implement a batch normalization for convolutional neural networks, and then finish off by implementing a CNN to improve our validation accuracy on CIFAR-10.