SMOKING REDUCTION TRAJECTORIES AND THEIR ASSOCIATION WITH SMOKING CESSATION

Anthony Barrows^{1,2}, Elias Klemperer^{1,3}, Hugh Garavan¹, Nicholas Allgaier^{1,2}, Nicola Lindson⁴, Gemma Taylor⁵

Introduction

- Smoking is the leading cause of premature death and preventable illness worldwide [9].
- A prior Cochrane review found that reduction interventions are no more or less effective than quitting abruptly [5].
- However, little is known about how people reduce their smoking and which smoking reduction patterns predict better cessation outcomes.
- When people are asked to reduce smoking, how do people choose to do so?
- Are there smoking or demographics associated with certain reduction patterns?
- Which patterns of reduction are associated with better cessation outcomes?

Methods

Data

- Smoking and demographic information from 5 clinical trials of NRT [1, 2, 4, 7, 8]
- Baseline and follow-up (weeks 2, 10, 18, and 26) CPD were recorded
- CPD and expired breath carbon monoxide (CO) collected at week 56
- Anxiety and depression (from SCQoL[6]), and nicotine dependence (FTND[3]) were recorded at baseline
- Participants in the included trials were:
- -enrolled if they smoked \geq 15 CPD, made a recent quit attempt, were currently unmotivated to quit, and wanted to reduce their smoking.
- -randomly assigned to receive active or placebo NRT (gum or inhaler)
- -told to reduce their smoking as much as possible.

Table 1: Baseline demographic, smoking, and behavioral characteristics.

	Overall	Class 1	Class 2	Class 3
N (%)	1783 (100)	186 (10.4)	803 (45.0)	794 (44.5)
Study Site (%)				
Australia	360 (20.2)	32 (17.2)	159 (19.8)	169(21.3)
Denmark	340 (19.1)	35 (18.8)	175(21.8)	$130 \ (16.4)$
Germany	353 (19.8)	60 (32.3)	153 (19.1)	140 (17.6)
Switzerland	301 (16.9)	29 (15.6)	139 (17.3)	133 (16.8)
USA	429(24.1)	30 (16.1)	177(22.0)	222 (28.0)
Active NRT (%)	900 (50.5)	125 (67.2)	413 (51.4)	362 (45.6)
Sex = Male (%)	798 (44.8)	96 (51.6)	357 (44.5)	345 (43.5)
Age (m(sd))	44.10(10.72)	45.79 (11.41)	44.26 (10.52)	43.53 (10.73)
FTND (m(sd))	6.14(2.00)	5.60(2.13)	6.11(2.01)	6.30(1.94)
CPD (m(sd))	27.32(9.73)	25.65 (10.37)	27.42 (9.78)	27.62 (9.50)
SCQoL Anxiety (m(sd))	0.45 (0.85)	0.41 (0.83)	0.41 (0.82)	0.51 (0.90)
SCQoL Depression (m(sd))	0.29 (0.69)	0.29 (0.69)	0.26 (0.67)	0.32 (0.71)

Analysis

- 1. We estimated smoking trajectories using latent class analysis (LCA) as a function of percent reduction in CPD. Participants were assigned to the most likely latent class.
- 2. We used regularized regression (i.e., elastic net) under a nested cross validation scheme to predict latent class using baseline and demographic characteristics (see Table 1).
- 3. We predicted biochemically-verified smoking status (CO < 6ppm) at week 52 using baseline and demographic characteristics, plus latent class.
- Pre-registered protocol: https://osf.io/qh378/
- Analytical code: https://github.com/ajbarrows/mcneil-lca

Results

Participants

- 108/2066 participants were excluded for missing values.
- Resulting n = 1783:
- From five countries
- -44.8% male, mean age 44.10 ± 10.72 years
- -Smoked an average of 27.32 ± 9.73 CPD

Latent Class Analysis

- Class 1: $\sim 10\%$ initially reduced and nearly eliminated smoking
- Class 2: $\sim 45\%$ reduced by nearly 50% and remained
- Class 3: $\sim 45\%$ initially reduced but reverted to their baseline smoking

Predicting Latent Class

- Demographic data and baseline characteristics (e.g., smoking and quit behavior, FTND, SF-36, trial treatment group) were used as independent variables
- Latent class was used as the dependent variable
- One cross-validated elastic net logistic regression for each latent class (i.e., oneversus-all)
- All models performed better than chance:
- -Class 1 test AUC = 0.766, p < .001. Tended to be older with lower anxiety and nicotine dependence, more likely to have received active NRT.
- -Class 2 test AUC = 0.569, p = .008 No clear pattern of characteristics.
- -Class 3 test AUC = 0.523, p < .001 Inverse of class one: higher nicotine dependence, more likely to have received placebo NRT.

Conclusions

- Examining latent trajectories in smoking behavior among people not motivated to quit revealed three distinct patterns
- One of these trajectories was nearly twice as likely as the others to achieve cessation
- Smoking reduction in the first two weeks after intervention by $\geq 50\% \rightarrow$ substantially increased cessation likelihood

e-mail Anthony.Barrows@uvm.edu

This work is supported by

- NIH (NIDA T32DA045593 and NIGMS P20GM103644)
- Cancer Research UK (PRCPJT-Nov22/100012, PPRCPJT\100,023, and C56067/A21330)
- The University of Oxford and NHS Greater Manchester Integrated Care

The work being presented has received funding or other means of support from any of the following sources:	Tobacco Industry	E-cigarette & nicotine product industry	Pharma Industry
Any of the authors have received funding (including consultancy) from any of the following sources in the past 5 years:			

Average Smoking Trajectories by Predicted Latent Class

Predicting Smoking Status

- 122/1783 (6.8%) achieved biochemically-verifiable smoking cessation at week 52:
- -Class 1: 70/186 (37.6%); Class 2: 34/803 (4.2%); Class 3: 18/776 (2.3%)
- Elastic net logistic regression predicting smoking cessation using
- -baseline characteristics alone: AUC = 0.632 ± 0.006 , p < .001
- -baseline characteristics plus latent class: AUC = 0.776 ± 0.010 , p < .001
- Adding latent class as an independent variable improved cessation prediction by 14.4%

References

[1] A. Batra, K. Klingler, B. Landfeldt, H. Friederich, A. Westin, and T. Danielsson. Smoking reduction treatment with 4-mg nicotine gum: A double-blind, randomized, placebo-controlled study. Clinical Pharmacology & Therapeutics, 78(6):689–696, Dec. 2005. ISSN 00099236. doi: 10.1016/j.clpt.2005.08.019.

- [2] C. T. Bolliger. Smoking reduction with oral nicotine inhalers: Double blind, randomised clinical trial of efficacy and safety. BMJ, 321(7257):329–333, Aug. 2000. ISSN 09598138. doi: 10.1136/bmj.321.7257.329.
- [3] K. O. Fagerstrom, T. F. Heatherton, and L. T. Kozlowski. Nicotine addiction and its assessment. Ear, Nose, & Throat Journal, 69(11):763–765, Nov. 1990. ISSN 0145-5613.
- [4] K. Haustein. A double-blind, randomized, placebo-controlled multicentre trial of a nicotine chewing gum in smoking reduction. Study ID 980-CHC-9021-0013. Unpublished data., 2001. [5] N. Lindson, E. Klemperer, B. Hong, J. M. Ordóñez-Mena, and P. Aveyard. Smoking reduction interventions for smoking cessation. *Cochrane Database*
- of Systematic Reviews, 2019(9), Sept. 2019. ISSN 14651858. doi: 10.1002/14651858.CD013183.pub2. [6] A. O. Olufade, J. W. Shaw, S. A. Foster, S. J. Leischow, R. D. Hays, and S. J. Coons. Development of the Smoking Cessation quality of life questionnaire.
- Clinical Therapeutics, 21(12):2113–2130, Dec. 1999. ISSN 01492918. doi: 10.1016/S0149-2918(00)87242-2. [7] S. Rennard, E. Glover, S. Leischow, D. Daughton, P. Glover, M. Muramoto, M. Franzon, T. Danielsson, B. Landfeldt, and Å. Westin. Efficacy of the nicotine inhaler in smoking reduction: A double-blind, randomized trial. Nicotine & Tobacco Research, 8(4):555–564, Aug. 2006. ISSN 1462-2203. doi: 10.1080/14622200600789916.
- [8] P. Wennike, T. Danielsson, B. Landfeldt, Å. Westin, and P. Tønnesen. Smoking reduction promotes smoking cessation: Results from a double blind, randomized, placebo-controlled trial of nicotine gum with 2-year follow-up: Smoking reduction with nicotine gum. Addiction, 98(10):1395–1402, Oct. 2003. ISSN 09652140. doi: 10.1046/j.1360-0443.2003.00489.x.
- [9] World Health Organization. WHO report on the global tobacco epidemic, 2011: Warning about the dangers of tobacco. 2011. ISSN 9789244564264.