InBody

ID

1698

Heig

Height Age 6ft, 00, 0in, 72

Gender | Male

Test Date / Time 2020.05.07. 08:56

)_[InBody570]

AMB

Body Composition Analysis

	Values	Total Body Water	Lean Body Mass	Weight
Intracellular Water (lbs)	55.8	92.8		
Extracellular Water(lbs)	37.0	92.0	125. 7	
Dry Lean Mass (lbs)	32.8			183. 7
Body Fat Mass (lbs)	58.0			

Muscle-Fat Analysis

Weight	(lbs)	55	70	85	100	115	83.7	145	160	175	190	205	%
SMM Skeletal Muscle Mass	(lbs)	70	80	6 8	100	110	120	130	140	150	160	170	%
Body Fat Mass	(lbs)	40	60	80	100	160	220	58. 0	340	400	460	520	%

Obesity Analysis

BMI Body Mass Index	(kg/m²)	10.0	15.0	18.5	22.0	25.0 25.0	30.0 4.9	35.0	40.0	45.0	50.0	55.0
PBF Percent Body Fat	(%)	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0 31.6	40.0	45. 0	50.0

Segmental Lean Analysis

Segmental	Lean	i Ana	lysis		В	ased on i	deal we	ight 🗪	- Ba	sed on cu	irrent w	eight =	901 BEESE
Right Arm	(lbs) (%)	55	70		6. 79 5. 1	115	130	145	160	175	190	205	%
Left Arm	(lbs) (%)	55	70	85	6. 99 87. 5	115	130	145	160	175	190	205	%
Trunk	(lbs) (%)	70	80	90	56. 1 3. 1	110	120	130	140	150	160	170	%
Right Leg	(lbs) (%)	70	80	90	100 97.	21. 61 22. 2	120	130	140	150	160	170	%
Left Leg	(lbs) (%)	70	80	90	100 2 95.	1. 32 9	120	130	140	150	160	170	%

ECW/TBW Analysis

				-		1			
ECW/TBW	0.320	0.340	0.360	0.380	0.400	0.420	0.430	0.440	0. 450

Body Composition History

Weight (lbs)	189. 7 188. 1 179. 4 186. 7 189. 3 186. 8 183. 7
SMM Skeletal Muscle Mass (1bs)	68.6 68.1 69.2 69.0 69.2 68.6 68.3
PBF Percent Body Fat (%)	33.8 33.1 29.2 32.0 32.5 32.7 31.6
ECW/TBW	0. 397 0. 403 0. 399 0. 400 0. 403 0. 398 0. 399
Recent □ Total	17. 09. 08 18. 01. 24 18. 05. 16 18. 09. 06 19. 08. 09 19. 12. 06 20. 05. 07 09:44 09:41 09:21 08:21 08:23 10:39 08:56

Body Fat - Lean Body Mass Control -

Body Fat Mass	-33.7 lbs
Lean Body Mass	+12. 1 lbs
(+) means to gain fat/lean	(-) means to lose fat/lean

Segmental Fat Analysis

	▼ - ▲	
Right Arm	(4. 21bs) - 289. 3	39
Left Arm	(4. 21bs) ————————————————————————————————————	1 %
Trunk	(30. 21bs) ————————————————————————————————————	29
Right Leg	(8. 41bs) ————————————————————————————————————	
Left Leg	(8. 41bs) ————————————————————————————————————	
Basal Me	etabolic Rate————	
	1602 kcal	
Visceral	Fat Level————	
	Low 10 High	
Leve	el 13	

Results Interpretation

Body Composition Analysis

Body weight is the sum of Body Fat Mass and Lean Body Mass, which is composed of Dry Lean Mass and Total Body Water.

Obesity Analysis

BMI is an index used to determine obesity by using height and weight. PBF is the percentage of body fat compared to body weight.

Segmental Lean Analysis

Evaluates whether the muscles are adequately developed in the body.

The top bar shows the comparison of muscle mass to ideal weight while the bottom bar shows that to the current weight.

ECW/TBW Analysis

ECW/TBW, the ratio of Extracellular Water to Total Body Water, is an important indicator of body water balance.

Visceral Fat Level

Visceral Fat Level is an indicator based on the estimated amount of fat surrounding internal organs in the abdomen. Maintain a Visceral Fat Level under 10 to stay healthy.

Results Interpretation QR Code

Scan the QR Code to see results interpretation in more detail.

Impedance-

IIIIbe	uanc	C	A COLUMN TO THE REAL PROPERTY OF THE PARTY O			
		RA	LA	TR	RL	LL
$Z(\Omega)$	$5\mathrm{kHz}$	361. 1	353.4	25. 4	244. 2	251.5
	$50\mathrm{kHz}$	328. 2	353. 4 319. 0 278. 9	22.4	228.4	234. 1
5	00 kHz	287. 2	278.9	17.8	207.4	212.6