```
In [43]: %cd /media/eel/DATAUbuntu/Projetos/Pub2023-2024/PortModels/
```

/media/eel/DATAUbuntu/Projetos/Pub2023-2024/PortModels

Import Libraries

```
In [44]: import pandas as pd
#from functions import *
import ipywidgets as widgets
from ipywidgets import interact, fixed, interact_manual
# Evaluating the model
from sklearn.metrics import mean_squared_error, r2_score
from pycaret.classification import *
from sklearn.metrics import confusion_matrix
```

Data preparation

The following data represents the results of all technical indicators utilized in this study, calculated at the end of each month from January 2023 to May 2024. These files were derived from a dataset originally containing daily data.

```
In [45]: dta0_01 = pd.read_csv('data/raw/jan2023.csv')
         dta0_02 = pd.read_csv('data/raw/fev2023.csv')
         dta0_03 = pd.read_csv('data/raw/mar2023.csv')
         dta0_04 = pd.read_csv('data/raw/abr2023.csv')
         dta0 05 = pd.read csv('data/raw/mai2023.csv')
         dta0_06 = pd.read_csv('data/raw/jun2023.csv')
         dta0_07 = pd.read_csv('data/raw/jul2023.csv')
         dta0_08 = pd.read_csv('data/raw/ago2023.csv')
         dta0_09 = pd.read_csv('data/raw/set2023.csv')
         dta0_10 = pd.read_csv('data/raw/out2023.csv')
         dta0_11 = pd.read_csv('data/raw/nov2023.csv')
         data0_0 = pd.read_csv('data/raw/dez2023.csv')
         data0_1 = pd.read_csv('data/raw/jan2024.csv')
         data0 2 = pd.read csv('data/raw/fev2024.csv')
         data0 3 = pd.read csv('data/raw/mar2024.csv')
         # the next two files are exclusively used for unseen predictions
         data0_4 = pd.read_csv('data/raw/abr2024.csv')
         data0_5 = pd.read_csv('data/raw/mai2024.csv')
```

Since the dataset lacks a date column, we create one to facilitate debugging.

```
In [46]: dta0_01['Date'] = '2023-01'
    dta0_02['Date'] = '2023-02'
    dta0_03['Date'] = '2023-03'
    dta0_04['Date'] = '2023-04'
    dta0_05['Date'] = '2023-05'
    dta0_06['Date'] = '2023-06'
    dta0_07['Date'] = '2023-07'
    dta0_08['Date'] = '2023-08'
    dta0_09['Date'] = '2023-09'
    dta0_10['Date'] = '2023-10'
    dta0_11['Date'] = '2023-11'
    data0_1['Date'] = '2023-12'
    data0_1['Date'] = '2024-01'
    data0_2['Date'] = '2024-02'
    data0_3['Date'] = '2024-02'
    data0_3['Date'] = '2024-03'
```

Slicing data based on the number of investors and fund classificationn, where the CNPJ serves as the unique identifier for each fund.

```
In [47]: cpj01 = dta0_01['CNPJ do fundo'].loc[ (dta0_01['Cotistas'] > 100) & (dta0_01['Classe N1'] == 'Ações')].values
                   cpj02 = dta0 02['CNPJ do fundo'].loc[ (dta0 02['Cotistas'] > 100) & (dta0 02['Classe N1'] == 'Ações')].values
                   cpj03 = dta0\_03['CNPJ do fundo'].loc[ (dta0\_03['Cotistas'] > 100) \& (dta0\_03['Classe N1'] == 'Ações')].values = (dta0\_03['CNPJ do fundo'].loc[ (dta0\_03['Cotistas'] > 100) & (dta0\_03['CNPJ do fundo'].loc[ (dta0\_03['CNPJ do fundo'].loc] & (dta0\_03['CNPJ do fundo']
                   cpj04 = dta0_04['CNPJ do fundo'].loc[ (dta0_04['Cotistas'] > 100) & (dta0_04['Classe N1'] == 'Ações')].values
                   cpj05 = dta0_05['CNPJ do fundo'].loc[ (dta0_05['Cotistas'] > 100) & (dta0_05['Classe N1'] == 'Ações')].values
                   cpj06 = dta0 06['CNPJ do fundo'].loc[ (dta0_06['Cotistas'] > 100) & (dta0_06['Classe N1'] == 'Ações')].values
                   cpj07 = dta0_07['CNPJ do fundo'].loc[ (dta0_07['Cotistas'] > 100) & (dta0_07['Classe N1'] == 'Ações')].values
                    cpj08 = dta0\_08['CNPJ do fundo'].loc[ (dta0\_08['Cotistas'] > 100) \& (dta0\_08['Classe N1'] == 'Ações')].values \\ 
                   cpj09 = dta0_09['CNPJ do fundo'].loc[ (dta0_09['Cotistas'] > 100) & (dta0_09['Classe N1'] == 'Ações')].values
                   cpj10 = dta0_10['CNPJ do fundo'].loc[ (dta0_10['Cotistas'] > 100) & (dta0_10['Classe N1'] == 'Ações')].values
                   cpj11 = dta0\_11['CNPJ do fundo'].loc[ (dta0\_11['Cotistas'] > 100) & (dta0\_11['Classe N1'] == 'Ações')].values
                   cnpj0 = data0_0['CNPJ \ do \ fundo'].loc[ \ (data0_0['Cotistas'] > 100) \ \& \ (data0_0['Classe \ N1'] == 'Ações')].values
                   cnpj1 = data0_1['CNPJ do fundo'].loc[ (data0_1['Cotistas'] > 100) & (data0_1['Classe N1'] == 'Ações')].values
                   cnpj2 = data0 2['CNPJ do fundo'].loc[ (data0 2['Cotistas'] > 100) & (data0 2['Classe N1'] == 'Ações')].values
                   cnpj3 = data0_3['CNPJ do fundo'].loc[ (data0_3['Cotistas'] > 100) & (data0_3['Classe N1'] == 'Ações')].values
                   # the next two variables are exclusively used for unseen predictions
                   cnpj4 = data0_4['CNPJ do fundo'].loc[ (data0_4['Cotistas'] > 100) & (data0_4['Classe N1'] == 'Ações')].values
                   cnpj5 = data0_5['CNPJ do fundo'].loc[ (data0_5['Cotistas'] > 100) & (data0_5['Classe N1'] == 'Ações')].values
```

Data Transformation: This step involves the main data processing where we create the shifted return, which serves as the basis for defining the labels used in the classification algorithms. For a given month t, we select the funds (identified by their CNPJ) and verify which funds, in the subsequent month t+1, still meet the requirements established in the previous filtering step. Then, we assign the return of month t+1 to the corresponding row for month t. In the code, 'Rentabilidade No mês' represents the 1-month return for month t, while 'Rentabilidade 1M' corresponds to the 1-month return for month t+1.

```
In [48]: set1 = set(cpj01)
         set2 = set(cpj02)
         matches01 = list(set1.intersection(set2))
         dta01 = dta0_01.loc[dta0_01['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_02.loc[dta0_02['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta01 = dta01.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj02)
         set2 = set(cpj03)
         matches01 = list(set1.intersection(set2))
         dta02 = dta0_02.loc[dta0_02['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_03.loc[dta0_03['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta02 = dta02.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj03)
         set2 = set(cpj04)
         matches01 = list(set1.intersection(set2))
         dta03 = dta0_03.loc[dta0_03['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_04.loc[dta0_04['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta03 = dta03.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj04)
         set2 = set(cpj05)
         matches01 = list(set1.intersection(set2))
         dta04 = dta0_04.loc[dta0_04['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_05.loc[dta0_05['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta04 = dta04.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj05)
         set2 = set(cpj06)
         matches01 = list(set1.intersection(set2))
         dta05 = dta0_05.loc[dta0_05['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_06.loc[dta0_06['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta05 = dta05.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj06)
         set2 = set(cpj07)
         matches01 = list(set1.intersection(set2))
         dta06 = dta0_06.loc[dta0_06['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_07.loc[dta0_07['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta06 = dta06.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj07)
         set2 = set(cpj08)
         matches01 = list(set1.intersection(set2))
         dta07 = dta0_07.loc[dta0_07['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_08.loc[dta0_08['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta07 = dta07.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj08)
         set2 = set(cpj09)
         matches01 = list(set1.intersection(set2))
         dta08 = dta0_08.loc[dta0_08['CNPJ do fundo'].isin(matches01)]
         rent1M = dta0_09.loc[dta0_09['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
         rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
         rent1M.drop(columns='Rentabilidade No mês', inplace=True)
         dta08 = dta08.merge(rent1M, how='inner', on='CNPJ do fundo')
         set1 = set(cpj09)
         set2 = set(cpi10)
         matches01 = list(set1.intersection(set2))
         dta09 = dta0_09.loc[dta0_09['CNPJ do fundo'].isin(matches01)]
```

```
rent1M = dta0_10.loc[dta0_10['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
rent1M.drop(columns='Rentabilidade No mês', inplace=True)
dta09 = dta09.merge(rent1M, how='inner', on='CNPJ do fundo')
set1 = set(cpj10)
set2 = set(cpj11)
matches01 = list(set1.intersection(set2))
dta10 = dta0_10.loc[dta0_10['CNPJ do fundo'].isin(matches01)]
rent1M = dta0_11.loc[dta0_11['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo', 'Rentabilidade No mês']]
rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
rent1M.drop(columns='Rentabilidade No mês', inplace=True)
dta10 = dta10.merge(rent1M, how='inner', on='CNPJ do fundo')
set1 = set(cpj11)
set2 = set(cnpj0)
matches01 = list(set1.intersection(set2))
dtall = dta0 11.loc[dta0 11['CNPJ do fundo'].isin(matches01)]
rent1M = data0_0.loc[data0_0['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
rent1M.drop(columns='Rentabilidade No mês', inplace=True)
dtal1 = dtal1.merge(rent1M, how='inner', on='CNPJ do fundo')
set1 = set(cnpj0)
set2 = set(cnpj1)
matches01 = list(set1.intersection(set2))
data0 = data0 0.loc[data0 0['CNPJ do fundo'].isin(matches01)]
rent1M = data0_1.loc[data0_1['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
rent1M.drop(columns='Rentabilidade No mês', inplace=True)
data0 = data0.merge(rent1M, how='inner', on='CNPJ do fundo')
set1 = set(cnpj1)
set2 = set(cnpj2)
matches01 = list(set1.intersection(set2))
data1 = data0_1.loc[data0_1['CNPJ do fundo'].isin(matches01)]
rent1M = data0_2.loc[data0_2['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
rent1M.drop(columns='Rentabilidade No mês', inplace=True)
data1 = data1.merge(rent1M, how='inner', on='CNPJ do fundo')
set1 = set(cnpj2)
set2 = set(cnpj3)
matches01 = list(set1.intersection(set2))
data2 = data0_2.loc[data0_2['CNPJ do fundo'].isin(matches01)]
rent1M = data0_3.loc[data0_3['CNPJ do fundo'].isin(matches01)][['CNPJ do fundo','Rentabilidade No mês']]
rent1M['Rentabilidade 1M'] = rent1M['Rentabilidade No mês']
rent1M.drop(columns='Rentabilidade No mês', inplace=True)
data2 = data2.merge(rent1M, how='inner', on='CNPJ do fundo')
data = pd.concat([ dta01, dta02, dta03, dta04, dta05, dta06, dta07, dta08, dta09, dta10, dta11, data0, data1, data2]
data.head(3)
                                                                                                                  Inf
```

Out[48]:

	Nome do fundo	CNPJ do fundo	cnpj	Classe N1	Patrimônio líquido	Cotistas	Valor da cota	Variação da Cota	Drawdown máximo	Rentabilidade No mês	•••	In
0	KAPITALO NW3 PLUS FIC FIA	26396708000105	26396708000105	Ações	3.124270e+08	209.0	1.721758	0.999438	0.234871	0.004679		
1	LOGOS LONG BIASED FIC FIA	32295931000150	32295931000150	Ações	2.034791e+07	149.0	1.884993	1.023862	0.455493	0.016681		
2	TRACK BOLSA AMERICANA FIA	40938273000104	40938273000104	Ações	3.228408e+06	329.0	1.136129	1.013805	0.200563	0.066748		

3 rows × 83 columns

```
In [49]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13465 entries, 0 to 13464

	eIndex: 13465 entries, 0 to 1		
	columns (total 83 columns):		
#	Column	Non-Null Count	Dtype
0	Nome do fundo	13465 non-null	object
1	CNPJ do fundo	13465 non-null	int64
2	cnpj	13465 non-null	int64
3	Classe N1	13465 non-null	object
4 5	Patrimônio líquido	13465 non-null	float64
6	Cotistas Valor da cota	13465 non-null 13465 non-null	float64 float64
7	Variação da Cota	13463 non-null	float64
8	Drawdown máximo	13463 non-null	float64
9	Rentabilidade No mês	13453 non-null	float64
10 11	Rentabilidade 3 meses Rentabilidade 6 meses	13397 non-null 13297 non-null	float64
12	Rentabilidade 12 meses	12905 non-null	float64 float64
13	Rentabilidade 24 meses	11802 non-null	float64
14	Volatilidade No mês	13442 non-null	float64
15	Volatilidade 3 meses	13397 non-null	float64
16 17	Volatilidade 6 meses Volatilidade 12 meses	13297 non-null 12905 non-null	float64 float64
18	Volatilidade 12 meses Volatilidade 24 meses	11802 non-null	float64
19	Beta No mês	13442 non-null	float64
20	Beta 3 meses	13397 non-null	float64
21	Beta 6 meses	13297 non-null	float64
22 23	Beta 12 meses Beta 24 meses	12905 non-null	float64 float64
23	Tracking Error No mês	11802 non-null 13442 non-null	float64
25	Tracking Error 3 meses	13397 non-null	float64
26	Tracking Error 6 meses	13297 non-null	float64
27	Tracking Error 12 meses	12905 non-null	float64
28	Tracking Error 24 meses	11802 non-null	float64
29 30	Índice de sharpe No mês Índice de sharpe 3 meses	13442 non-null 13397 non-null	float64 float64
31	Índice de sharpe 6 meses	13297 non-null	float64
32	Índice de sharpe 12 meses	12905 non-null	float64
33	Índice de sharpe 24 meses	11802 non-null	float64
34 35	Índice de sortino No mês Índice de sortino 3 meses	13439 non-null 13388 non-null	float64 float64
36	Índice de sortino 5 meses	13297 non-null	float64
37	Índice de sortino 12 meses	12905 non-null	float64
38	Índice de sortino 24 meses	11802 non-null	float64
39	Information Ratio No mês	13442 non-null	float64
40 41	Information Ratio 3 meses Information Ratio 6 meses	13397 non-null 13297 non-null	float64 float64
42	Information Ratio 0 meses	12905 non-null	float64
43	Information Ratio 24 meses	11802 non-null	float64
44	Índice de Treynor No mês	13442 non-null	float64
45	Índice de Treynor 3 meses	13397 non-null	float64
46 47	Índice de Treynor 6 meses Índice de Treynor 12 meses	13297 non-null 12905 non-null	float64 float64
48	Índice de Treynor 24 meses	11802 non-null	float64
49	Rentabilidade 36 meses	9772 non-null	float64
50	Rentabilidade 48 meses	7725 non-null	float64
51 52	Rentabilidade 60 meses Rentabilidade 120 meses	6644 non-null 4970 non-null	float64 float64
53	Volatilidade 36 meses	9772 non-null	float64
54	Volatilidade 48 meses	7725 non-null	float64
55	Volatilidade 60 meses	6644 non-null	float64
56	Volatilidade 120 meses	4970 non-null	float64
57 58	Beta 36 meses Beta 48 meses	9772 non-null 7725 non-null	float64 float64
59	Beta 60 meses	6644 non-null	float64
60	Beta 120 meses	4970 non-null	float64
61	Tracking Error 36 meses	9772 non-null	float64
62	Tracking Error 48 meses	7725 non-null	float64
63 64	Tracking Error 60 meses Tracking Error 120 meses	6644 non-null 4970 non-null	float64 float64
65	Índice de sharpe 36 meses	9772 non-null	float64
66	Índice de sharpe 48 meses	7725 non-null	float64
67	Índice de sharpe 60 meses	6644 non-null	float64
68	Índice de sharpe 120 meses	4970 non-null	float64
69 70	Índice de sortino 36 meses Índice de sortino 48 meses	9772 non-null 7725 non-null	float64 float64
71	Índice de sortino 40 meses	6644 non-null	float64
72	Índice de sortino 120 meses	4970 non-null	float64
73	Information Ratio 36 meses	9772 non-null	float64
74 75	Information Ratio 48 meses	7725 non-null	float64
75 76	Information Ratio 60 meses Information Ratio 120 meses	6644 non-null 4970 non-null	float64 float64
77	Índice de Treynor 36 meses	9772 non-null	float64
78	Índice de Treynor 48 meses	7725 non-null	float64
79	Índice de Treynor 60 meses	6644 non-null	float64

```
80 Índice de Treynor 120 meses 4970 non-null float64
81 Date 13465 non-null object
82 Rentabilidade 1M 13465 non-null float64
dtypes: float64(78), int64(2), object(3)
memory usage: 8.5+ MB
```

Next, we remove columns that are not relevant for the experiments.

DATA VALIDATION

Before defining the labels, we first explore the data for validation purposes. To do this, we slice the dataset and compare the values with those from a commercial website. Specifically, we create a slice for a particular fund and select only a subset of relevant features to visualize.

```
In [51]: df = data[data['CNPJ do fundo'] == 8336054000134].iloc[:,[73, 1, 74, 2,3,4,44, 6,7, 8]]
df
```

	П					
U	u		J	_		

:		Date	Rentabilidade No mês	Rentabilidade 1M	Rentabilidade 3 meses	Rentabilidade 6 meses	Rentabilidade 12 meses	Rentabilidade 120 meses	Volatilidade No mês	Volatilidade 3 meses	Vola
	223	2023-01	0.061076	-0.031836	-0.003206	0.065805	0.333016	1.923726	0.401812	0.398719	0
	584	2023-02	-0.031836	-0.070622	0.002443	-0.156276	0.252869	2.096518	0.360742	0.387293	0
	976	2023-03	-0.070622	0.131442	-0.045253	-0.101672	0.199251	1.701155	0.308832	0.336380	0
	1281	2023-04	0.131442	0.091902	0.035824	-0.069530	0.348498	1.713167	0.333871	0.332616	0
	1587	2023-05	0.091902	0.189948	0.145483	0.142686	0.333743	1.899742	0.300154	0.315338	0
	1882	2023-06	0.189948	0.049165	0.470091	0.403564	0.662484	3.270021	0.376057	0.333412	0
	2364	2023-07	0.049165	0.059981	0.363187	0.407136	0.479132	3.286023	0.286364	0.314070	0
	2606	2023-08	0.059981	0.078341	0.284485	0.515858	0.303815	3.591302	0.233485	0.298908	0
	3055	2023-09	0.078341	0.002645	0.199217	0.724973	0.583715	3.539103	0.222482	0.245146	0
	3404	2023-10	0.002645	0.069234	0.163687	0.562272	0.585389	3.215778	0.371290	0.279730	0
	3768	2023-11	0.069234	0.036387	0.156048	0.529840	0.748127	3.691439	0.228093	0.280585	0
	4141	2023-12	0.036387	0.082776	0.111071	0.332415	0.870131	4.447122	0.220795	0.280079	0
	4492	2024-01	0.082776	-0.008213	0.187458	0.396270	0.934955	5.856764	0.204397	0.215563	0
	4744	2024-02	-0.008213	-0.067689	0.112959	0.261867	0.950355	6.367214	0.282245	0.233747	0

The results can be compared to https://maisretorno.com/fundo/sicredi-fia-petrobras

Rentabilidade histórica

Exibir: Valor do Indicador 🔻

Indicador: CDI

Returning to the main data set, we compute mean and std of considering all 4970 rows for collum 'Rentabilidade 1M'.

```
In [52]: data['Rentabilidade 1M'].mean()
Out[52]: 0.009668797786720324
```

Out[53]: 0.06363163087970403

In [53]: data['Rentabilidade 1M'].std()

41[55]: 0.0050520500,5,0.0

Label definition

Rechecking the data for a specific fund.

In [55]: data[data['CNPJ do fundo'] == 8336054000134].iloc[:,[73, 1, 74, 75, 2,3,6,7, 8]]

Out[55]:

	Date	Rentabilidade No mês	Rentabilidade 1M	Cluster	Rentabilidade 3 meses	Rentabilidade 6 meses	Volatilidade No mês	Volatilidade 3 meses	Volatilidade 6 meses
223	2023-01	0.061076	-0.031836	-1	-0.003206	0.065805	0.401812	0.398719	0.432943
584	2023-02	-0.031836	-0.070622	-1	0.002443	-0.156276	0.360742	0.387293	0.429893
976	2023-03	-0.070622	0.131442	1	-0.045253	-0.101672	0.308832	0.336380	0.408405
1281	2023-04	0.131442	0.091902	1	0.035824	-0.069530	0.333871	0.332616	0.366084
1587	2023-05	0.091902	0.189948	1	0.145483	0.142686	0.300154	0.315338	0.346793
1882	2023-06	0.189948	0.049165	1	0.470091	0.403564	0.376057	0.333412	0.337039
2364	2023-07	0.049165	0.059981	1	0.363187	0.407136	0.286364	0.314070	0.323097
2606	2023-08	0.059981	0.078341	1	0.284485	0.515858	0.233485	0.298908	0.307066
3055	2023-09	0.078341	0.002645	0	0.199217	0.724973	0.222482	0.245146	0.292983
3404	2023-10	0.002645	0.069234	1	0.163687	0.562272	0.371290	0.279730	0.296270
3768	2023-11	0.069234	0.036387	0	0.156048	0.529840	0.228093	0.280585	0.290554
4141	2023-12	0.036387	0.082776	1	0.111071	0.332415	0.220795	0.280079	0.261683
4492	2024-01	0.082776	-0.008213	0	0.187458	0.396270	0.204397	0.215563	0.248468
4744	2024-02	-0.008213	-0.067689	-1	0.112959	0.261867	0.282245	0.233747	0.257994
4492	2024-01	0.082776	-0.008213	0	0.187458	0.396270	0.204397	0.215563	0.248468

In [56]: data[data['CNPJ do fundo'] == 8336054000134].iloc[:,[73, 1, 2, 6, 7, 11, 12, 74, 75]]

Out[56]:

:	Date	Rentabilidade No mês	Rentabilidade 3 meses	Volatilidade No mês	Volatilidade 3 meses	Beta No mês	Beta 3 meses	Rentabilidade 1M	Cluster
223	2023-01	0.061076	-0.003206	0.401812	0.398719	1.294686	1.125024	-0.031836	-1
584	2023-02	-0.031836	0.002443	0.360742	0.387293	1.173587	1.213534	-0.070622	-1
976	2023-03	-0.070622	-0.045253	0.308832	0.336380	0.926783	1.044430	0.131442	1
1281	2023-04	0.131442	0.035824	0.333871	0.332616	0.920402	1.007187	0.091902	1
1587	2023-05	0.091902	0.145483	0.300154	0.315338	0.790979	0.892930	0.189948	1
1882	2023-06	0.189948	0.470091	0.376057	0.333412	1.289548	0.978592	0.049165	1
2364	2023-07	0.049165	0.363187	0.286364	0.314070	1.338841	1.086866	0.059981	1
2606	2023-08	0.059981	0.284485	0.233485	0.298908	1.155156	1.236188	0.078341	1
3055	2023-09	0.078341	0.199217	0.222482	0.245146	0.236175	0.925899	0.002645	0
3404	2023-10	0.002645	0.163687	0.371290	0.279730	0.194484	0.604194	0.069234	1
3768	2023-11	0.069234	0.156048	0.228093	0.280585	0.179364	0.327473	0.036387	0
4141	2023-12	0.036387	0.111071	0.220795	0.280079	1.156926	0.419560	0.082776	1
4492	2024-01	0.082776	0.187458	0.204397	0.215563	0.805035	0.566291	-0.008213	0
4744	2024-02	-0.008213	0.112959	0.282245	0.233747	0.980960	0.902707	-0.067689	-1

Rechecking the data set.

In [57]: data.head(3)

Out[57]:

	CNPJ do fundo	Rentabilidade No mês	Rentabilidade 3 meses	Rentabilidade 6 meses	Rentabilidade 12 meses	Rentabilidade 24 meses	Volatilidade No mês	Volatilidade 3 meses	Volatilidade 6 meses	١
0	13950062000106	0.045134	-0.117370	0.050586	-0.070121	-0.227474	0.190753	0.228272	0.204698	_
1	3929711000133	0.047141	-0.012793	0.068865	0.291692	0.992360	0.408596	0.404824	0.434350	
2	3904236000140	0.046392	-0.014381	0.065438	0.283348	0.967376	0.408141	0.404529	0.434264	

3 rows × 76 columns

In [58]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4970 entries, 0 to 4969 Data columns (total 76 columns): # Non-Null Count Dtype 0 CNPJ do fundo 4970 non-null int64 1 Rentabilidade No mês 4970 non-null float64 2 Rentabilidade 3 meses 4970 non-null float64 3 Rentabilidade 6 meses 4970 non-null float64 4 Rentabilidade 12 meses 4970 non-null float64 5 Rentabilidade 24 meses 4970 non-null float64 6 Volatilidade No mês 4970 non-null float64 7 Volatilidade 3 meses 4970 non-null float64 4970 non-null 8 Volatilidade 6 meses float64 9 Volatilidade 12 meses 4970 non-null float64 10 Volatilidade 24 meses 4970 non-null float64 11 Beta No mês 4970 non-null float64 12 Beta 3 meses 4970 non-null float64 13 Beta 6 meses 4970 non-null float64 14 Beta 12 meses 4970 non-null float64 15 Beta 24 meses 4970 non-null float64 Tracking Error No mês 4970 non-null 16 float64 17 Tracking Error 3 meses 4970 non-null float64 18 Tracking Error 6 meses 4970 non-null float64 19 Tracking Error 12 meses 4970 non-null float64 20 Tracking Error 24 meses 4970 non-null float64 21 Índice de sharpe No mês 4970 non-null float64 22 Índice de sharpe 3 meses 4970 non-null float64 23 Índice de sharpe 6 meses 4970 non-null float64 Índice de sharpe 12 meses 4970 non-null 24 float64 25 Índice de sharpe 24 meses 4970 non-null float64 26 Índice de sortino No mês 4970 non-null float64 27 Índice de sortino 3 meses 4970 non-null float64 28 Índice de sortino 6 meses 4970 non-null float64 29 Índice de sortino 12 meses 4970 non-null float64 30 Índice de sortino 24 meses 4970 non-null float64 31 Information Ratio No mês 4970 non-null float64 Information Ratio 3 meses 4970 non-null float64 32 33 Information Ratio 6 meses 4970 non-null float64 34 Information Ratio 12 meses 4970 non-null float64 4970 non-null 35 Information Ratio 24 meses float64 36 Índice de Treynor No mês 4970 non-null float64 37 Índice de Treynor 3 meses 4970 non-null float64 38 Índice de Treynor 6 meses 4970 non-null float64 39 Índice de Treynor 12 meses 4970 non-null float64 40 Índice de Treynor 24 meses 4970 non-null float64 41 Rentabilidade 36 meses 4970 non-null float64 42 Rentabilidade 48 meses 4970 non-null float64 43 Rentabilidade 60 meses 4970 non-null float64 Rentabilidade 120 meses 4970 non-null float64 45 Volatilidade 36 meses 4970 non-null float64 46 Volatilidade 48 meses 4970 non-null float64 47 Volatilidade 60 meses 4970 non-null float64 48 Volatilidade 120 meses 4970 non-null float64 49 Beta 36 meses 4970 non-null float64 50 Beta 48 meses 4970 non-null float64 51 Beta 60 meses 4970 non-null float64 52 Beta 120 meses 4970 non-null float64 53 Tracking Error 36 meses 4970 non-null float64 54 Tracking Error 48 meses 4970 non-null float64 55 Tracking Error 60 meses 4970 non-null float64 56 Tracking Error 120 meses 4970 non-null float64 57 Índice de sharpe 36 meses 4970 non-null float64 58 Índice de sharpe 48 meses 4970 non-null float64 59 Índice de sharpe 60 meses 4970 non-null float64 Índice de sharpe 120 meses 4970 non-null float64 61 Índice de sortino 36 meses 4970 non-null float64 62 Índice de sortino 48 meses 4970 non-null float64 63 Índice de sortino 60 meses 4970 non-null float64 64 Índice de sortino 120 meses 4970 non-null float64 65 Information Ratio 36 meses 4970 non-null float64 66 Information Ratio 48 meses 4970 non-null float64 67 Information Ratio 60 meses 4970 non-null float64 68 Information Ratio 120 meses 4970 non-null float64 69 Índice de Treynor 36 meses 4970 non-null float64 Índice de Treynor 48 meses 4970 non-null float64 71 Índice de Treynor 60 meses 4970 non-null float64 72 Índice de Treynor 120 meses 4970 non-null float64 73 Date 4970 non-null object Rentabilidade 1M 4970 non-null float64 75 Cluster 4970 non-null int64

dtypes: float64(73), int64(2), object(1)

memory usage: 2.9+ MB

In [59]: data.drop(columns='CNPJ do fundo', inplace=True)
 data.drop(columns='Rentabilidade 1M', inplace=True)
 data.drop(columns='Date', inplace=True)

Final dataset

Now we have the final dataset containg 72 features and the target colummn

In [60]: data.head()

Out[60]:

	Rentabilidade No mês	Rentabilidade 3 meses	Rentabilidade 6 meses	Rentabilidade 12 meses	Rentabilidade 24 meses	Volatilidade No mês	Volatilidade 3 meses	Volatilidade 6 meses	Volatilidade 12 meses	Volat 24
0	0.045134	-0.117370	0.050586	-0.070121	-0.227474	0.190753	0.228272	0.204698	0.196921	0.
1	0.047141	-0.012793	0.068865	0.291692	0.992360	0.408596	0.404824	0.434350	0.396246	0.
2	0.046392	-0.014381	0.065438	0.283348	0.967376	0.408141	0.404529	0.434264	0.396307	0.
3	0.047704	-0.013920	0.066603	0.285244	0.970398	0.409088	0.405237	0.434668	0.396849	0.
4	0.047510	-0.010284	0.068547	0.287934	0.975874	0.408691	0.405568	0.435969	0.398081	0.

5 rows × 73 columns

In [61]: data.info()

RangeIndex: 4970 entries, 0 to 4969 Data columns (total 73 columns): # Non-Null Count Dtype 0 Rentabilidade No mês 4970 non-null float64 1 Rentabilidade 3 meses 4970 non-null float64 2 Rentabilidade 6 meses 4970 non-null float64 3 Rentabilidade 12 meses 4970 non-null float64 4 Rentabilidade 24 meses 4970 non-null float64 5 Volatilidade No mês 4970 non-null float64 6 Volatilidade 3 meses 4970 non-null float64 7 Volatilidade 6 meses 4970 non-null float64 Volatilidade 12 meses 4970 non-null 8 float64 q Volatilidade 24 meses 4970 non-null float64 10 Beta No mês 4970 non-null float64 11 Beta 3 meses 4970 non-null float64 12 Beta 6 meses 4970 non-null float64 13 Beta 12 meses 4970 non-null float64 14 Beta 24 meses 4970 non-null float64 15 Tracking Error No mês 4970 non-null float64 Tracking Error 3 meses 4970 non-null float64 16 17 Tracking Error 6 meses 4970 non-null float64 Tracking Error 12 meses 4970 non-null float64 18 19 Tracking Error 24 meses 4970 non-null float64 20 Índice de sharpe No mês 4970 non-null float64 21 Índice de sharpe 3 meses 4970 non-null float64 22 Índice de sharpe 6 meses 4970 non-null float64 23 Índice de sharpe 12 meses 4970 non-null float64 Índice de sharpe 24 meses 4970 non-null 24 float64 25 Índice de sortino No mês 4970 non-null float64 26 Índice de sortino 3 meses 4970 non-null float64 27 Índice de sortino 6 meses 4970 non-null float64 Índice de sortino 12 meses 4970 non-null float64 29 Índice de sortino 24 meses 4970 non-null float64 30 Information Ratio No mês 4970 non-null float64 31 Information Ratio 3 meses 4970 non-null float64 Information Ratio 6 meses 4970 non-null float64 32 33 Information Ratio 12 meses 4970 non-null float64 34 Information Ratio 24 meses 4970 non-null float64 35 Índice de Treynor No mês 4970 non-null float64 36 Índice de Treynor 3 meses 4970 non-null float64 37 Índice de Treynor 6 meses 4970 non-null float64 38 Índice de Treynor 12 meses 4970 non-null float64 39 Índice de Treynor 24 meses 4970 non-null float64 40 Rentabilidade 36 meses 4970 non-null float64 41 Rentabilidade 48 meses 4970 non-null float64 42 Rentabilidade 60 meses 4970 non-null float64 43 Rentabilidade 120 meses 4970 non-null float64 Volatilidade 36 meses 4970 non-null float64 45 Volatilidade 48 meses 4970 non-null float64 46 Volatilidade 60 meses 4970 non-null float64 47 Volatilidade 120 meses 4970 non-null float64 Beta 36 meses 4970 non-null float64 Beta 48 meses 49 4970 non-null float64 50 Beta 60 meses 4970 non-null float64 51 Beta 120 meses 4970 non-null float64 Tracking Error 36 meses 4970 non-null float64 53 Tracking Error 48 meses 4970 non-null float64 54 Tracking Error 60 meses 4970 non-null float64 55 Tracking Error 120 meses 4970 non-null float64 56 Índice de sharpe 36 meses 4970 non-null float64 57 Índice de sharpe 48 meses 4970 non-null float64 Índice de sharpe 60 meses 4970 non-null float64 59 Índice de sharpe 120 meses 4970 non-null float64 Índice de sortino 36 meses 4970 non-null float64 61 Índice de sortino 48 meses 4970 non-null float64 62 Índice de sortino 60 meses 4970 non-null float64 63 Índice de sortino 120 meses 4970 non-null float64 64 Information Ratio 36 meses 4970 non-null float64 65 Information Ratio 48 meses 4970 non-null float64 66 Information Ratio 60 meses 4970 non-null float64 67 Information Ratio 120 meses 4970 non-null float64 Índice de Treynor 36 meses 4970 non-null float64 4970 non-null 69 Índice de Treynor 48 meses float64 Índice de Treynor 60 meses 4970 non-null float64 71 Índice de Treynor 120 meses 4970 non-null float64 72 Cluster 4970 non-null int64 dtypes: float64(72), int64(1) memory usage: 2.8 MB

<class 'pandas.core.frame.DataFrame'>

Modeling

	Description	Value
0	Session id	123
1	Target	Cluster
2	Target type	Multiclass
3	Target mapping	-1: 0, 0: 1, 1: 2
4	Original data shape	(4970, 73)
5	Transformed data shape	(4970, 73)
6	Transformed train set shape	(3976, 73)
7	Transformed test set shape	(994, 73)
8	Numeric features	72
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Transformation	True
14	Transformation method	quantile
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	472e