MODELAGEM E SIMULAÇÃO MULTIFÍSICA TRABALHO COMPUTACIONAL 5

O levitador magnético Modelagem usando PDEs

Objetivo: Nesta aula, retomaremos o estudo do problema do levitador magnético, agora analisando-o sob a perspectiva das equações de Maxwell. Utilizaremos o método de elementos finitos (FEM) para modelar as grandezas magnéticas, obtendo os valores concentrados necessários para a simulação do modelo dinâmico.

Exemplos de probemas magnetostáticos: Para uma melhor compreensão da utilização do FEniCS em problemas magnéticos axissimétricos, siga os tutorial apresentados nas aulas 13 e 18. O tutorial da aula 13 apresenta uma bobina no espaço livre. Nesse tutorial é apresentada a forma fraca do problema magnetostático axissétrico e como o resultado pode ser usado para determinar a impedância da bobina. Na aula 18, o problema apresentado na aula 13 é modificado para receber o núcleo ferromagnético e uma peça cilíndrica em levitação. No caso da permeabilidade dos materiais, tanto a permeabilidade magnética do cobre (bobina) quanto a do ar são aproximadas pela permeabilidade magnética do vácuo, $\mu_0 = 4\pi \cdot 10^{-7} (H/m)$. Para as partes ferromagnéticas, são considerados materiais lineares e isotrópicos com $\mu_r = 1200$. Reparem que ambos os exemplos são regidos pelas mesmas equações, o que muda é apenas o domínio de interesse.

Ainda na aula 18, é apresentado um levitador de geometria mais simples, cuja solução analítica torna-se viável ao considerar infinita a permeabilidade das partes ferromagnéticas. A partir da solução desse problema, podem ser determinadas as grandezas L, Bl e f_m , utilizadas na simulação do modelo dinâmico. Como esperado, esses parâmetros dependem da posição da peça em levitação, da corrente e de uma constante k, que é obtida a partir dos parâmetros geométricos do problema.

Geometria do problema:

Considere a geometria apresentada na fig. 1, onde os parâmetros construtivos do levitador estão descritos na tabela 1.

Descrição	Parâmetro	Valor
Raio do núcleo	r_c	$0.75~\mathrm{cm}$
Altura do núcleo	z_c	$6.0~\mathrm{cm}$
Distância entre o núcleo e a esfera	x	$0.5~\mathrm{cm}$
Raio da esfera	r_s	$1.0~\mathrm{cm}$
Massa da esfera	m	$22.0~\mathrm{g}$
Altura da bobina	z_b	$4.0~\mathrm{cm}$
Bitola do fio	AWG	18
Número de espiras	N	200

Table 1. Parâmetros do levitador

Figure 1. Geometria do levitador magnético

Aproximação Linear

Inicialmente, assumiremos que os materiais ferromagnéticos apresentam um comportamento linear. Nesse contexto, consideraremos que tanto o núcleo quanto a esfera possuem $\mu_r = 1200$.

Parte prática

Simule o problema considerando os parâmetros descritos na Tab. 1. Inicialmente, utilize uma corrente de 1A. A seguir, descreva os passos utilizados na simulação: definição da forma fraca, tipo de condições de contorno, cálculo da densidade de corrente, entre outros.

Apresente os resultados do Campo Magnético (H) e da Indução Magnética (B) dentro do domínio. Além disso, mostre as curvas das componentes H_r e H_z na superfície externa da esfera (campos avaliados fora do material ferromagnético). A partir dessas componentes e do vetor normal à superfície da esfera, calcule a componente \hat{z} da força magnética por meio do tensor de Maxwell.

Por fim, compare esse resultado com o obtido utilizando as funções FacetNormal() e assemble() do FEniCS. Ajuste o valor da corrente de forma que a força magnética compense exatamente a força peso. Esse valor é compatível com o tipo de fio utilizado? Qual a potência dissipada no fio?

Levantamento dos Parâmetros de Circuito

Com a corrente corrigida, determine os parâmetros concentrados utilizados no modelo circuital, considerando a posição de equilíbrio e outros pontos linearmente espaçados próximos a essa condição. Utilize como referência os dados apresentados na Tabela 2. Para esses pontos, anote também os valores da Indução Magnética máxima e média dentro do núcleo e dentro da esfera. Orgaize seus resultados em uma ou mais tabelas.

Levante as curvas de indutância e força magnética em função da posição. Compare os resultados obtidos com as expressões analíticas derivadas para o modelo do

Parâmetro	Valor
Ponto inicial	0.1x
Ponto final	3.0x
Número de pontos	10

Table 2. Pontos para a análise dos parâmetros concentrados.

levitador planar apresentado na Aula 18.

Efeitos da Não Linearidade

A inclusão dos efeitos da não linearidade no comportamento dos materiais ferromagnéticos altera significativamente os resultados da análise. Em particular, a permeabilidade relativa (μ_r) deixa de ser constante, tornando-se uma função da densidade de fluxo magnético (B). Esse comportamento resulta em uma relação não linear entre o campo magnético (H) e a indução magnética (B), conforme exemplificado na figura 2.

FIGURE 2. Curva de magnetização do ferro puro

Os dados apresentados na figura 2 foram obtidos da biblioteca de materiais do software FEMM e são apresentados na tabela 3.

No contexto da simulação, a não linearidade implica a necessidade de utilizar métodos numéricos iterativos para a solução do problema, uma vez que a forma fraca resultante deixa de ser linear. Além disso, os valores de indutância e força magnética passam a depender não apenas da posição da peça, mas também da intensidade da corrente aplicada, devido à saturação magnética nas regiões de maior densidade de fluxo.

Dependendo do ponto de equilíbrio e do deslocamento da esfera, esses efeitos devem ser considerados na análise e no projeto do sistema, a fim de garantir que os modelos empregados representem adequadamente o comportamento real do dispositivo.

Com base nos valores de B_{max} e $B_{\text{méd}}$ avaliados anteriormente, determine os pontos de operação correspondentes na curva $B \times H$. Analise a diferença entre o valor esperado da permeabilidade no problema não linear em comparação com a aproximação linear.

Índice	B (Tesla)	H (A/m)
1	0.000000	0.0000
2	0.227065	13.8984
3	0.454130	27.7967
4	0.681195	42.3974
5	0.908260	61.4157
6	1.135330	82.3824
7	1.362390	144.6690
8	1.589350	897.7600
9	1.812360	4581.7400
10	2.010040	17736.0000
11	2.133160	41339.3000
12	2.199990	68321.8000
13	2.254790	95685.5000
14	2.299930	123355.0000
15	2.342510	151083.0000
16	2.378760	178954.0000
17	2.415010	206825.0000
18	2.451260	234696.0000
19	2.487500	262568.0000
20	2.523750	290439.0000
21	2.560000	318310.0000

Table 3. Valores da curva de magnetização do ferro puro.

Escreva um relatório contendo as atividades desenvolvidas. Converta o arquivo para o formato **PDF** e o envie pelo Moodle. Anexe os arquivos de simulação em um único arquivo .zip e envie juntamente com o PDF. **Cuidado!** Relatórios que não estiverem em formato **PDF** não serão avaliados.