Stage IV – Elaboration: Database Design

- 2. Demonstrate that all the relations in the relational schema are normalized to Boyce–Codd normal form (BCNF).
 - For each table, specify whether it is in BCNF or not, and explain why.

Meters: This table is not in BCNF normalization, because there exists a transitive dependency between start_date and end_date; knowing start_date allows one to infer end_date, despite start_date not being a primary key.

Energy Metrics: This table is not in BCNF normalization, since there is a transitive dependency between type and usage_units, as type implies usage_units, despite type not being a unique identifier.

Green Energy: This table is in BCNF normalization. There are no transitive or partial dependencies in the table, and the table has a primary key.

Emissions: This table is in BCNF normalization. There are no transitive or partial dependencies in the table, and the table has a primary key

```
FDs: <u>consumption_id</u> -> {type, name, start_date, end_date, cost, usage_quantity, usage_units, etype}

<u>type</u> -> avg_emissions

TDs: {start_date->end_date} in Meters
{type->usage_units} in Energy Metrics
```

• For each table that is not in BCNF, show the process that normalizes it to BCNF.

Meters: Break the table up into 2 smaller tables to get rid of the transitive dependency. We will have our meters table include {consumption_id, type, name, and start_date}. The second table would be named Meter_Month and include {start_date} and end_date}. These two tables would not be in BCNF since there will be no transitive dependencies inside of them as well as no partial dependencies.

Energy Metrics: This table can be split into Energy Metrics {consumption_id, type, cost, usage_quantity} and Meter Units, which is {consumption_id, usage_units}.

Updated Relational Schema:

3. Define the different views (virtual tables) required. For each view list the data and transaction requirements. Give a few examples of queries, in English, to illustrate.

Views:

- Total energy data
- Average emissions per energy source
- Minimum cost per meter
- Maximum cost per meter
- Average cost per type
- Average cost per meter
- Total emissions per type
- 4. Design a complete set of SQL queries to satisfy the transaction requirements identified in the previous stages, using the relational schema and views defined in tasks 2 and 3 above.

Total energy data:

SELECT * FROM meters

JOIN emissions ON meters.type = emissions.source

JOIN energy_metrics ON meters.consumption_id = energy_metrics.consumption_id

JOIN meter_units ON meters.consumption_id = meter_units.consumption_id;

Average emissions per energy source:

SELECT * FROM meters
JOIN emissions ON type = source;
GROUP BY type;

Minimum cost per meter:

SELECT consumption_id, type, MIN(cost), usage_quantity FROM energy_metrics GROUP BY name;

Maximum cost per meter:

SELECT consumption_id, type, MAX(cost), usage_quantity FROM energy_metrics GROUP BY name;

Average cost per type:

SELECT type, AVG(cost), usage_quantity FROM energy_metrics GROUP BY type;

Average cost per meter:

SELECT type, AVG(cost), usage_quantity FROM energy_metrics GROUP BY type NATURAL JOIN meters;

Total emissions per type

SELECT source, SUM(emissions.avg_emissions)
FROM emissions
GROUP BY source;