Contents		4 Graphs		14		5.9 Euler phi $\varphi(n)$	
		4.1		14		5.10 Factorial Factorization	
1 Data structures 2		4.2	2 Cycle Distances	14		5.11 Factorial	
1.1 Segtree Lazy (Atcoder) 2		4.3		14		5.12 Factorization (Pollard Rho)	
1.2 Bitree 2D		4.4	SCC (struct)	16		5.13 Factorization	
1.3 Disjoint Sparse Table		4.5	Bellman-Ford (find negative cycle)	16		5.14 Fast Fourrier Transform	28
1.4 DSU/UFDS 4		4.6		16		5.15 Fast pow	28
1.5 Ordered Set		4.7	Binary Lifting	17		5.16 Gauss Elimination	28
1.6 Prefix Sum 2D		4.8		17		5.17 Integer Mod	29
$1.7 {\bf SegTree\ Range\ Sum\ Query\ Range\ PA\ sum/set}$		4.9		17		5.18 Is prime	29
Update $\dots \dots \dots$		4.1		17		5.19 Number of Divisors $\tau(n)$	
1.8 SegTree Point Update (dynamic function) 5			1 Dijkstra	18		5.20 Power Sum	29
1.9 Segtree Range Max Query Point Max Assign			2 Disjoint Edges Path (Maxflow)	18		5.21 Sieve list primes	
Update (dynamic) 6			3 Euler Path (directed)	19		5.22 Sum of Divisors $\sigma(n)$	30
1.10 Segtree Range Max Query Range Max Update 6		4 1	4 Euler Path (undirected)	19		()	
1.11 SegTree Range Min Query Point Assign Update 7			5 Find Centroid	20	6	Problems	30
1.12 Segtree Range Sum Query Point Sum Update			6 Floyd Warshall	20		6.1 Hanoi Tower	30
(dynamic)			7 Graph Cycle (directed)	20			
1.13 SegTree Range Xor Query Point Assign Update 8			8 Graph Cycle (undirected)	$\frac{20}{21}$	7	Searching	30
1.14 SegTree Range Min Query Range Sum Update 9			9 Kruskal	21		7.1 Meet in the middle	
1.15 SegTree Range Sum Query Range Sum Update 9			20 Lowest Common Ancestor	21		7.2 Ternary Search Recursive	30
1.16 Sparse Table			21 Tree Maximum Distance			~ .	
				22	8	Strings	31
2 Dynamic programming 10	- 1		22 Maximum Flow (Edmonds-Karp)	23		8.1 Count Distinct Anagrams	
2.1 Binary Knapsack (bottom up) 10			Minimum Cut (unweighted)	23		8.2 Double Hash Range Query	
2.2 Binary Knapsack (top down) 11			24 Small to Large	24		8.3 Hash Range Query	
2.3 Edit Distance			25 Sum every node distance	24		8.4 K-th digit in digit string	
2.4 Kadane			Topological Sorting	25		8.5 Longest Palindrome Substring (Manacher)	
2.5 Longest Increasing Subsequence (LIS) 11		4.2	77 Tree Diameter	25		8.6 Rabin Karp	
2.6 Money Sum (Bottom Up)				٥.		8.7 String Psum	
2.7 Travelling Salesman Problem 12	{	5 M		25		8.8 Suffix Automaton (complete)	33
		5.1	GCD (with factorization)	25		8.9 Z-function get occurrence positions	34
3 Geometry 12		5.2		26			
3.1 Convex Hull		5.3	()	26	9	Settings and macros	34
3.2 Determinant		5.4	_	26		9.1 short-macro.cpp	
3.3 Equals	- 1	5.5		26		9.2 debug.cpp	
3.4 Line		5.6		26		9.3 .vimrc	
3.5 Point Struct And Utils (2d)		5.7		26		9.4 .bashrc	35
3.6 Segment		5.8	B Euler phi $\varphi(n)$ (in range)	26		9.5 macro.cpp	36

1 Data structures

1.1 Segtree Lazy (Atcoder)

```
struct Node {
 // need an empty constructor with the neutral node
  Node() : {}
}:
struct Lazy {
 // need an empty constructor with the neutral lazy
 Lazy() : {}
};
// how to merge two nodes
Node op(Node a, Node b) {}
// how to apply the lazy into a node
Node mapping(Lazv a, Node b, int, int) {}
// how to merge two lazy
Lazy comp(Lazy a, Lazy b) {}
template <typename T, auto op, typename L, auto mapping, auto composition>
struct SegTreeLazv {
  static_assert(is_convertible_v < decltype(op), function < T(T, T) >>,
                "op must be a function T(T, T)");
    is_convertible_v < decltype (mapping), function < T(L, T, int, int) >>,
    "mapping must be a function T(L, T, int, int)");
  static_assert(is_convertible_v<decltype(composition), function<L(L, L)>>,
                "composition must be a function L(L, L)"):
  int N, size, height;
  const T eT;
  const L eL;
  vector <T> d;
  vector <L> lz:
  SegTreeLazy(const T &eT_ = T(), const L &eL_ = L())
    : SegTreeLazv(0, eT , eL ) {}
  explicit SegTreeLazy(int n, const T &eT_ = T(), const L &eL_ = L())
    : SegTreeLazy(vector<T>(n, eT_), eT_, eL_) {}
  explicit SegTreeLazy(const vector<T> &v, const T &eT_ = T(),
                       const L &eL = L())
    : N(int(v.size())), eT(eT_), eL(eL_) {
    size = 1;
    height = 0:
    while (size < N) size <<= 1. height++:
    d = vector < T > (2 * size, eT);
    lz = vector < L > (size, eL);
    for (int i = 0; i < N; i++) d[size + i] = v[i];</pre>
    for (int i = size - 1; i >= 1; i--) {
      update(i):
    }
```

```
void set(int p, T x) {
 assert(0 <= p && p < N);
  p += size:
 for (int i = height; i >= 1; i--) push(p >> i);
 for (int i = 1; i <= height; i++) update(p >> i);
T get(int p) {
  assert(0 <= p && p < N);
  p += size;
 for (int i = height; i >= 1; i--) push(p >> i);
  return d[p];
T query(int 1, int r) {
  assert(0 <= 1 && 1 <= r && r < N);
 1 += size:
 r += size;
  for (int i = height: i >= 1: i--) {
   if (((1 >> i) << i) != 1) push(1 >> i);
   if ((((r + 1) >> i) << i) != (r + 1)) push(r >> i);
 T \text{ sml} = eT. \text{ smr} = eT:
  while (1 <= r) {
   if (1 \& 1) sml = op(sml, d[1++]);
   if (!(r \& 1)) smr = op(d[r--], smr);
   1 >>= 1;
   r >>= 1:
  return op(sml, smr);
T query_all() { return d[1]; }
void update(int p, L f) {
 assert(0 <= p && p < N);
 p += size;
  for (int i = height; i >= 1; i--) push(p >> i);
 d[p] = mapping(f, d[p]);
 for (int i = 1; i <= height; i++) update(p >> i);
void update(int 1, int r, L f) {
  assert(0 <= 1 && 1 <= r && r < N);
 1 += size;
  r += size:
 for (int i = height; i >= 1; i--) {
   if (((1 >> i) << i) != 1) push(1 >> i);
   if ((((r + 1) >> i) << i) != (r + 1)) push(r >> i);
```

```
int 12 = 1, r2 = r;
      while (1 <= r) {
       if (1 & 1) all_apply(1++, f);
        if (!(r & 1)) all_apply(r--, f);
       1 >>= 1;
        r >>= 1;
      }
     1 = 12:
     r = r2:
    for (int i = 1; i <= height; i++) {</pre>
      if (((1 >> i) << i) != 1) update(1 >> i);
      if ((((r + 1) >> i) << i) != (r + 1)) update(r >> i);
    }
 pair<int, int> node_range(int k) const {
    int remain = height;
    for (int kk = k; kk >>= 1; --remain)
    int fst = k << remain;</pre>
    int lst = min(fst + (1 << remain) - 1. size + N - 1):
    return {fst - size, lst - size};
  void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
 void all_apply(int k, L f) {
    auto [fst, lst] = node_range(k);
   d[k] = mapping(f, d[k], fst, lst);
    if (k < size) lz[k] = composition(f, lz[k]);</pre>
 void push(int k) {
    all_apply(2 * k, lz[k]);
    all_apply(2 * k + 1, lz[k]);
    lz[k] = eL;
 }
};
     Bitree 2D
```

Given a 2d array allow you to sum val to the position (x,y) and find the sum of the rectangle with left top corner (x1, y1) and right bottom corner (x2, y2)

Update and query 1 indexed!

Time: update $O(logn^2)$, query $O(logn^2)$

```
struct Bit2d {
 int n;
 vll2d bit:
 Bit2d(int ni): n(ni), bit(n + 1, vll(n + 1)) {}
 Bit2d(int ni, vll2d &xs) : n(ni), bit(n + 1, vll(n + 1)) {
   for (int i = 1; i <= n; i++) {
     for (int j = 1; j <= n; j++) {
        update(i, j, xs[i][j]);
   }
 }
```

```
void update(int x, int y, ll val) {
   for (: x \le n: x += (x & (-x))) {
      for (int i = y; i <= n; i += (i & (-i))) {
        bit[x][i] += val:
   }
  }
 11 sum(int x, int y) {
   11 \text{ ans} = 0:
    for (int i = x; i; i -= (i & (-i))) {
      for (int j = y; j; j = (j & (-j))) {
        ans += bit[i][j];
   }
    return ans;
  11 query(int x1, int y1, int x2, int y2) {
    return sum(x2, y2) - sum(x2, y1 - 1) - sum(x1 - 1, y2) +
           sum(x1 - 1, y1 - 1);
 }
};
```

Disjoint Sparse Table

struct DisjointSparseTable {

v.resize(st[0].size(), identity);

for (int level = 0; level < (int)st.size(); ++level) {</pre>

for (int block = 0; block < (1 << level); ++block) {</pre>

Answers queries of any monoid operation (i.e. has identity element and is associative) Build: $O(N \log N)$, Query: O(1)#define F(expr) [](auto a, auto b) { return expr; } template <typename T>

```
using Operation = T (*)(T, T);
vector < vector < T >> st:
Operation f;
T identity;
static constexpr int log2_floor(unsigned long long i) noexcept {
  return i ? __builtin_clzll(1) - __builtin_clzll(i) : -1;
// Lazy loading constructor. Needs to call build!
DisjointSparseTable(Operation op, const T neutral = T())
 : st(), f(op), identity(neutral) {}
DisjointSparseTable(vector<T> v) : DisjointSparseTable(v, F(min(a, b))) {}
DisjointSparseTable(vector<T> v, Operation op, const T neutral = T())
 : st(), f(op), identity(neutral) {
 build(v):
}
void build(vector<T> v) {
  st.resize(log2_floor(v.size()) + 1,
            vector <T > (111 << (log2_floor(v.size()) + 1)));</pre>
```

```
const auto 1 = block << (st.size() - level);</pre>
        const auto r = (block + 1) << (st.size() - level);</pre>
        const auto m = 1 + (r - 1) / 2;
        st[level][m] = v[m];
        for (int i = m + 1; i < r; i++)
          st[level][i] = f(st[level][i - 1], v[i]);
        st[level][m - 1] = v[m - 1];
        for (int i = m - 2: i >= 1: i--)
          st[level][i] = f(st[level][i + 1], v[i]):
    }
  T query(int 1, int r) const {
    if (1 > r) return identity;
    if (1 == r) return st.back()[1]:
    const auto k = log2_floor(l ^ r);
    const auto level = (int)st.size() - 1 - k;
    return f(st[level][1], st[level][r]);
}:
```

$1.4 \quad \mathrm{DSU/UFDS}$

Uncomment the lines to reover which element belong to each set. Time: $\approx O(1)$ for everything.

```
struct DSU {
 vi ps;
 vi size:
 // vector < unordered_set < int >> sts;
 DSU(int N) : ps(N + 1), size(N, 1), sts(N) {
   iota(all(ps), 0);
   // for (int i = 0; i < N; i++) sts[i].insert(i);
 int find_set(int x) { return ps[x] == x ? x : ps[x] = find_set(ps[x]); }
 bool same_set(int x, int y) { return find_set(x) == find_set(y); }
 void union set(int x. int v) {
   if (same_set(x, y)) return;
   int px = find_set(x);
   int py = find_set(y);
   if (size[px] < size[py]) swap(px, py);</pre>
   ps[py] = px;
   size[px] += size[py];
   // sts[px].merge(sts[py]);
```

1.5 Ordered Set

};

If you need an ordered **multi**set you may add an id to each value. Using greater_equal, or less_equal is considered undefined behavior.

- order of key (k): Number of items strictly smaller/greater than k
- find by order(k): K-th element in a set (counting from zero).

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template <typename T>
using ordered_set =
   tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
```

1.6 Prefix Sum 2D

Given an 2d array with n lines and m columns, find the sum of the subarray that have the left upper corner at (x1, y1) and right bottom corner at (x2, y2).

Time: build $O(n \cdot m)$, query O(1).

```
struct psum2d {
  v112d s;
  vll2d psum;
  psum2d(v112d &grid, int n, int m)
    : s(n + 1, vll(m + 1)), psum(n + 1, vll(m + 1)) {
   for (int i = 1: i <= n: i++)
      for (int j = 1; j <= m; j++) s[i][j] = s[i][j - 1] + grid[i][j];
   for (int i = 1; i <= n; i++)
      for (int j = 1; j <= m; j++) psum[i][j] = psum[i - 1][j] + s[i][j];
 }
  11 query(int x1, int y1, int x2, int y2) {
   ll ans = psum[x2][y2] + psum[x1 - 1][y1 - 1];
    ans -= psum[x2][y1 - 1] + psum[x1 - 1][y2];
    return ans;
 }
};
```

1.7 SegTree Range Sum Query Range PA sum/set Update

Makes arithmetic progression updates in range and sum queries. Considering PA(A, R) = [A + R, A + 2R, A + 3R, ...]

```
• update set(l, r, A, R): sets [l, r] to PA(A, R)
```

- update add(l, r, A, R): sum PA(A, R) in [l, r]
- query(l, r): sum in range [l, r]

0 indexed

Time: build O(n), updates and queries $O(\log n)$

```
const ll oo = 1e18;
struct SegTree {
    struct Data {
        ll sum;
        ll set_a, set_r, add_a, add_r;
        Data() : sum(0), set_a(oo), set_r(0), add_a(0), add_r(0) {}
};
int n;
vector < Data > seg;
SegTree(int n_) : n(n_), seg(vector < Data > (4 * n)) {}
```

```
void prop(int p, int 1, int r) {
  int sz = r - 1 + 1;
  11 &sum = seg[p].sum, &set_a = seg[p].set_a, &set_r = seg[p].set_r,
     &add_a = seg[p].add_a, &add_r = seg[p].add_r;
  if (set a != oo) {
    set_a += add_a, set_r += add_r;
    sum = set a * sz + set r * sz * (sz + 1) / 2:
    if (1 != r) {
      int m = (1 + r) / 2;
      seg[2 * p].set_a = set_a;
      seg[2 * p].set_r = set_r;
      seg[2 * p].add_a = seg[2 * p].add_r = 0;
      seg[2 * p + 1].set_a = set_a + set_r * (m - 1 + 1);
      seg[2 * p + 1].set r = set r:
      seg[2 * p + 1].add_a = seg[2 * p + 1].add_r = 0;
    set_a = oo, set_r = 0;
    add a = add r = 0:
  } else if (add a or add r) {
    sum += add_a * sz + add_r * sz * (sz + 1) / 2;
    if (1 != r) {
      int m = (1 + r) / 2:
      seg[2 * p].add_a += add_a;
      seg[2 * p].add_r += add_r;
      seg[2 * p + 1].add a += add a + add r * (m - 1 + 1):
      seg[2 * p + 1].add_r += add_r;
    add a = add r = 0:
 }
}
int inter(pii a, pii b) {
  if (a.first > b.first) swap(a, b);
  return max(0, min(a.second, b.second) - b.first + 1);
11 set(int a, int b, ll aa, ll rr, int p, int l, int r) {
  prop(p, 1, r);
  if (b < 1 or r < a) return seg[p].sum;</pre>
  if (a <= 1 and r <= b) {</pre>
    seg[p].set_a = aa;
    seg[p].set_r = rr;
    prop(p, 1, r);
    return seg[p].sum;
  int m = (1 + r) / 2;
  int tam 1 = inter({1, m}, {a, b});
  return seg[p].sum = set(a, b, aa, rr, 2 * p, 1, m) +
                      set(a, b, aa + rr * tam_1, rr, 2 * p + 1, m + 1, r);
void update_set(int 1, int r, 11 aa, 11 rr) {
  set(1, r, aa, rr, 1, 0, n - 1):
```

```
11 add(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p, 1, r):
    if (b < 1 or r < a) return seg[p].sum;</pre>
    if (a \le 1 \text{ and } r \le b)
      seg[p].add_a += aa;
      seg[p].add_r += rr;
      prop(p, 1, r);
      return seg[p].sum;
    int m = (1 + r) / 2:
    int tam_1 = inter({1, m}, {a, b});
    return seg[p].sum = add(a, b, aa, rr, 2 * p, 1, m) +
                         add(a, b, aa + rr * tam_1, rr, 2 * p + 1, m + 1, r);
  void update add(int 1, int r, 11 aa, 11 rr) {
    add(1, r, aa, rr, 1, 0, n - 1);
  11 query(int a, int b, int p, int 1, int r) {
    prop(p, 1, r);
   if (b < 1 or r < a) return 0;</pre>
    if (a <= 1 and r <= b) return seg[p].sum;</pre>
    int m = (1 + r) / 2:
    return querv(a, b, 2 * p, 1, m) + querv(a, b, 2 * p + 1, m + 1, r):
 11 query(int 1, int r) { return query(1, r, 1, 0, n - 1); }
}:
      SegTree Point Update (dynamic function)
Answers queries of any monoid operation (i.e. has identity element and is associative)
Build: O(N), Query: O(\log N)
#define F(expr) [](auto a, auto b) { return expr; }
template <tvpename T>
struct SegTree {
 using Operation = T (*)(T, T);
  vector <T> ns;
  Operation operation:
  T identity;
  SegTree(int n, Operation op = F(a + b), T neutral = T())
    : N(n), ns(2 * N, neutral), operation(op), identity(neutral) {}
  SegTree(const vectorT> &v, Operation op = F(a + b), T neutral = T())
    : SegTree((int)v.size(), op, neutral) {
    copy(v.begin(), v.end(), ns.begin() + N);
    for (int i = N - 1: i > 0: --i) ns[i] = operation(ns[2 * i], ns[2 * i +
   11):
  }
  T query(size_t i) const { return ns[i + N]; }
```

T query(size_t 1, size_t r) const {

auto a = 1 + N, b = r + N; auto ans = identity:

```
// Non-associative operations needs to be processed backwards
    stack <T> st:
    while (a <= b) {</pre>
      if (a & 1) ans = operation(ans, ns[a++]);
      if (not(b & 1)) st.push(ns[b--]);
      a >>= 1:
      b >>= 1;
    for (; !st.empty(); st.pop()) ans = operation(ans, st.top());
    return ans;
  void update(size_t i, T value) { update_set(i, operation(ns[i + N], value));
  void update_set(size_t i, T value) {
    auto a = i + N:
    ns[a] = value;
    while (a >>= 1) ns[a] = operation(ns[2 * a], ns[2 * a + 1]);
};
      Segtree Range Max Query Point Max Assign Update
      (dynamic)
Answers range queries in ranges until 10<sup>9</sup> (maybe more)
Time: query and update O(n \cdot \log n)
struct node:
node *newNode();
struct node {
  node *left, *right;
  int lv, rv;
  ll val:
  node() : left(NULL), right(NULL), val(-oo) {}
  inline void init(int 1, int r) {
   lv = 1:
    rv = r;
  inline void extend() {
    if (!left) {
      int m = (lv + rv) / 2:
      left = newNode();
      right = newNode();
      left->init(lv, m);
      right -> init(m + 1, rv);
   }
```

}

```
11 query(int 1, int r) {
    if (r < lv || rv < 1) {
      return 0;
    if (1 <= lv && rv <= r) {
      return val;
    extend():
    return max(left->query(1, r), right->query(1, r));
  void update(int p, ll newVal) {
    if (lv == rv) {
      val = max(val, newVal);
      return:
    extend();
    (p <= left->rv ? left : right)->update(p, newVal);
    val = max(left->val, right->val);
 }
};
const int BUFFSZ(1e7);
node *newNode() {
  static int bufSize = BUFFSZ:
  static node buf[(int)BUFFSZ];
  assert(bufSize);
  return &buf[--bufSize];
struct SegTree {
 int n;
  node *root;
  SegTree(int _n) : n(_n) {
   root = newNode();
    root -> init(0, n):
  11 query(int 1, int r) { return root->query(1, r); }
  void update(int p, ll v) { root->update(p, v); }
};
1.10 Segtree Range Max Query Range Max Update
template <typename T = 11>
struct SegTree {
 int N;
T nu, nq;
  vector <T> st, lazy;
  SegTree(const vector <T> &xs)
   : N(len(xs)),
      nu(numeric_limits <T>::min()),
      nq(numeric_limits <T>::min()),
      st(4 * N + 1, nu),
      lazy(4 * N + 1, nu) {
```

```
for (int i = 0; i < len(xs); ++i) update(i, i, xs[i]);</pre>
  void update(int 1, int r. T value) { update(1, 0, N - 1, 1, r, value); }
  T query(int 1, int r) { return query(1, 0, N - 1, 1, r); }
  void update(int node, int nl, int nr, int ql, int qr, T v) {
    propagation(node, nl, nr);
    if (ql > nr or qr < nl) return;</pre>
    st[node] = max(st[node], v);
    if (ql <= nl and nr <= qr) {</pre>
      if (nl < nr) {
        lazy[left(node)] = max(lazy[left(node)], v);
        lazy[right(node)] = max(lazy[right(node)], v);
      return;
    }
    update(left(node), nl, mid(nl, nr), ql, qr, v);
    update(right(node), mid(nl, nr) + 1, nr, ql, qr, v);
    st[node] = max(st[left(node)], st[right(node)]);
  T query(int node, int nl, int nr, int ql, int qr) {
    propagation(node, nl, nr);
    if (ql > nr or qr < nl) return nq;</pre>
    if (ql <= nl and nr <= qr) return st[node];</pre>
    T x = query(left(node), nl, mid(nl, nr), ql, qr);
    T y = query(right(node), mid(nl, nr) + 1, nr, ql, qr);
    return max(x, y);
  void propagation(int node, int nl, int nr) {
    if (lazv[node] != nu) {
      st[node] = max(st[node], lazy[node]);
      if (nl < nr) {
        lazy[left(node)] = max(lazy[left(node)], lazy[node]);
        lazy[right(node)] = max(lazy[right(node)], lazy[node]);
      lazy[node] = nu;
    }
  }
  int left(int p) { return p << 1; }</pre>
  int right(int p) { return (p << 1) + 1; }</pre>
  int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
int main() {
  int n:
```

```
cin >> n:
  vector < array < int , 3>> xs(n);
  for (int i = 0; i < n; ++i) {
    for (int j = 0; j < 3; ++ j) {
      cin >> xs[i][j];
  }
  vi aux(n, 0);
  SegTree < int > st(aux);
  for (int i = 0; i < n; ++i) {
    int a = min(i + xs[i][1], n);
    int b = min(i + xs[i][2], n);
    st.update(i, i, st.query(i, i) + xs[i][0]);
    int cur = st.query(i, i);
    st.update(a, b, cur);
  cout << st.query(0, n) << '\n';
1.11 SegTree Range Min Query Point Assign Update
template <typename T = 11>
struct SegTree {
 int n;
  T nu, nq;
  vector <T> st:
  SegTree(const vector <T> &v)
   : n(len(v)), nu(0), nq(numeric_limits < T > :: max()), st(n * 4 + 1, nu) {
   for (int i = 0; i < n; ++i) update(i, v[i]);</pre>
  void update(int p, T v) { update(1, 0, n - 1, p, v); }
  T query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
  void update(int node, int nl, int nr, int p, T v) {
    if (p < nl or p > nr) return;
    if (nl == nr) {
      st[node] = v;
      return:
    update(left(node), nl, mid(nl, nr), p, v);
    update(right(node), mid(nl, nr) + 1, nr, p, v);
    st[node] = min(st[left(node)], st[right(node)]);
  T query(int node, int nl, int nr, int ql, int qr) {
    if (ql <= nl and qr >= nr) return st[node];
    if (nl > qr or nr < ql) return nq;</pre>
    if (nl == nr) return st[node];
    return min(query(left(node), nl, mid(nl, nr), ql, qr),
               query(right(node), mid(nl, nr) + 1, nr, ql, qr));
```

int left(int p) { return p << 1; }</pre>

```
int right(int p) { return (p << 1) + 1; }
int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};</pre>
```

1.12 Segtree Range Sum Query Point Sum Update (dynamic)

```
Answers range queries in ranges until 10<sup>9</sup> (maybe more)
Time: query and update O(n \cdot \log n)
struct node;
node *newNode():
struct node {
  node *left, *right;
  int lv, rv;
  ll val;
  node() : left(NULL), right(NULL), val(0) {}
  inline void init(int 1. int r) {
    1v = 1;
    rv = r:
  inline void extend() {
    if (!left) {
      int m = (rv - lv) / 2 + lv;
      left = newNode():
      right = newNode();
      left->init(lv, m);
      right -> init(m + 1, rv);
    }
  11 querv(int 1, int r) {
    if (r < lv || rv < l) {
      return 0;
    if (1 <= lv && rv <= r) {</pre>
      return val:
    }
    return left->query(1, r) + right->query(1, r);
  void update(int p, ll newVal) {
    if (lv == rv) {
      val += newVal;
      return:
    extend();
    (p <= left->rv ? left : right)->update(p, newVal);
    val = left->val + right->val;
};
```

```
const int BUFFSZ(1.3e7);
node *newNode() {
  static int bufSize = BUFFSZ;
  static node buf[(int)BUFFSZ]:
  // assert(bufSize);
  return &buf[--bufSize];
struct SegTree {
  int n:
  node *root;
  SegTree(int _n) : n(_n) {
   root = newNode();
   root -> init(0, n);
 11 query(int 1, int r) { return root->query(1, r); }
  void update(int p, ll v) { root->update(p, v); }
};
1.13 SegTree Range Xor Query Point Assign Update
template <typename T = 11>
struct SegTree {
 int n;
 T nu, nq;
  vector <T> st:
  SegTree(const vectorT> &v) : n(len(v)), nu(0), nq(0), st(n * 4 + 1, nu) {
   for (int i = 0; i < n; ++i) update(i, v[i]);</pre>
  void update(int p, T v) { update(1, 0, n - 1, p, v); }
  T query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
  void update(int node, int nl, int nr, int p, T v) {
    if (p < nl or p > nr) return;
    if (nl == nr) {
      st[node] = v;
      return;
    update(left(node), nl, mid(nl, nr), p, v);
    update(right(node), mid(nl, nr) + 1, nr, p, v);
    st[node] = st[left(node)] ^ st[right(node)]:
  }
  T query(int node, int nl, int nr, int ql, int qr) {
    if (ql <= nl and qr >= nr) return st[node];
    if (nl > qr or nr < ql) return nq;</pre>
    if (nl == nr) return st[node];
    return query(left(node), nl, mid(nl, nr), ql, qr) ^
           query(right(node), mid(nl, nr) + 1, nr, ql, qr);
  int left(int p) { return p << 1; }</pre>
  int right(int p) { return (p << 1) + 1; }</pre>
```

```
int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
```

1.14 SegTree Range Min Query Range Sum Update

```
template <typename t = 11>
struct SegTree {
 int n:
 t nu;
 t nq;
 vector <t> st, lazy;
  SegTree(const vector <t> &xs)
   : n(len(xs)),
     nu(0),
      nq(numeric_limits <t>::max()),
      st(4 * n. nu).
     lazy(4 * n, nu) {
   for (int i = 0; i < len(xs); ++i) update(i, i, xs[i]);</pre>
 SegTree(int n): n(n), st(4 * n. nu), lazv(4 * n. nu) {}
 void update(int 1, int r, 11 value) { update(1, 0, n - 1, 1, r, value); }
 t query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
 void update(int node, int nl, int nr, int ql, int qr, ll v) {
   propagation(node, nl, nr);
   if (ql > nr or qr < nl) return;
   if (gl <= nl and nr <= gr) {</pre>
      st[node] += (nr - nl + 1) * v;
     if (nl < nr) {
        lazv[left(node)] += v;
        lazy[right(node)] += v;
      return:
   update(left(node), nl, mid(nl, nr), al, ar, v);
   update(right(node), mid(nl, nr) + 1, nr, ql, qr, v);
   st[node] = min(st[left(node)], st[right(node)]);
 t query(int node, int nl, int nr, int ql, int qr) {
   propagation(node, nl, nr);
   if (ql > nr or qr < nl) return nq;</pre>
   if (ql <= nl and nr <= qr) return st[node];</pre>
   t x = query(left(node), nl, mid(nl, nr), ql, qr);
   t y = query(right(node), mid(nl, nr) + 1, nr, ql, qr);
```

```
return min(x, y);
 7
  void propagation(int node, int nl, int nr) {
   if (lazy[node]) {
      st[node] += lazy[node];
      if (nl < nr) {</pre>
       lazy[left(node)] += lazy[node];
        lazv[right(node)] += lazv[node]:
      lazy[node] = nu;
 }
  int left(int p) { return p << 1; }</pre>
  int right(int p) { return (p << 1) + 1; }</pre>
 int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
1.15 SegTree Range Sum Query Range Sum Update
template <typename T = 11>
struct SegTree {
 int N:
  T nu:
 T nq;
  vector <T> st, lazy;
  SegTree(const vector <T> &xs)
   : N(len(xs)), nu(0), nq(0), st(4 * N, nu), lazy(4 * N, nu) {
   for (int i = 0; i < len(xs); ++i) update(i, i, xs[i]);</pre>
  SegTree(int n): N(n), nu(0), nq(0), st(4 * N, nu), lazy(4 * N, nu) {}
  void update(int 1, int r, 11 value) { update(1, 0, N - 1, 1, r, value); }
  T query(int 1, int r) { return query(1, 0, N - 1, 1, r); }
  void update(int node, int nl, int nr, int ql, int qr, ll v) {
    propagation(node, nl, nr);
   if (ql > nr or qr < nl) return;</pre>
   if (ql <= nl and nr <= qr) {</pre>
      st[node] += (nr - nl + 1) * v;
      if (nl < nr) {</pre>
        lazv[left(node)] += v:
        lazv[right(node)] += v:
      return;
```

update(left(node), nl, mid(nl, nr), ql, qr, v); update(right(node), mid(nl, nr) + 1, nr, ql, qr, v);

```
st[node] = st[left(node)] + st[right(node)];
  T query(int node, int nl, int nr, int ql, int qr) {
    propagation(node, nl, nr);
    if (ql > nr or qr < nl) return nq;</pre>
    if (gl <= nl and nr <= gr) return st[node]:
    T x = query(left(node), nl, mid(nl, nr), ql, qr);
    T y = query(right(node), mid(nl, nr) + 1, nr, ql, qr);
    return x + v:
  void propagation(int node, int nl, int nr) {
    if (lazy[node]) {
      st[node] += (nr - nl + 1) * lazy[node];
      if (nl < nr) {
        lazv[left(node)] += lazv[node]:
        lazy[right(node)] += lazy[node];
      lazy[node] = nu;
    }
  int left(int p) { return p << 1; }</pre>
  int right(int p) { return (p << 1) + 1; }</pre>
  int mid(int 1, int r) { return (r - 1) / 2 + 1; }
};
1.16 Sparse Table
Answer the range query defined at the function op.
Build: O(NlogN), Query: O(1)
template <typename T>
struct SparseTable {
  vector <T> v:
  static const int b = 30;
  vi mask, t;
  int op(int x, int y) { return v[x] < v[y] ? x : y; }
  int msb(int x) { return __builtin_clz(1) - __builtin_clz(x); }
  SparseTable() {}
  SparseTable(const vectorT \ge v_1): v(v_1), v(v_2), v(v_3), v(v_3)
    for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
      at = (at << 1) & ((1 << b) - 1);
      while (at and op(i, i - msb(at & -at)) == i) at ^= at & -at;
    for (int i = 0; i < n / b; i++)</pre>
      t[i] = b * i + b - 1 - msb(mask[b * i + b - 1]):
    for (int j = 1; (1 << j) <= n / b; j++)
      for (int i = 0; i + (1 << i) <= n / b; i++)
```

2 Dynamic programming

2.1 Binary Knapsack (bottom up)

Given N items, each with its own value V_i and weight W_i and a maximum knapsack weight W, compute the maximum value of the items that we can carry, if we can either ignore or take a particular item. Assume that 1 < n < 1000, 1 < S < 10000.

Time and space: O(N * W)

the vectors VS and WS starts at one, so it need an empty value at index 0.

```
const int MAXN(2010), MAXM(2010);
ll st[MAXN + 1][MAXM + 1];
char ps[MAXN + 1][MAXM + 1];
pair < 11, vi > knapsack (int M, const vll &VS, const vi &WS) {
  memset(st, 0, sizeof(st));
  memset(ps, 0, sizeof(ps));
  int N = len(VS) - 1: // ELEMENTS START AT INDEX 1 !
  for (int i = 0; i \le N; ++i) st[i][0] = 0;
  for (int m = 0; m \le M; ++m) st[0][m] = 0;
  for (int i = 1: i <= N: ++i) {
    for (int m = 1; m <= M; ++m) {</pre>
      st[i][m] = st[i - 1][m];
      ps[i][m] = 0:
      int w = WS[i];
      11 v = VS[i]:
      if (w \le m \text{ and } st[i - 1][m - w] + v > st[i][m]) {
        st[i][m] = st[i - 1][m - w] + v;
        ps[i][m] = 1;
   }
  }
  int m = M:
  vi is:
  for (int i = N: i >= 1: --i) {
    if (ps[i][m]) {
      is.emplace_back(i - 1);
```

```
m -= WS[i]:
  }
}
return {st[N][M], is};
```

Binary Knapsack (top down)

Given N items, each with its own value V_i and weight W_i and a maximum knapsack weight W, compute the maximum value of the items that we can carry, if we can either ignore or take a particular item. Assume that 1 < n < 1000, 1 < S < 10000.

Time and space: O(N * W)

```
the bottom up version is 5 times faster!
```

```
const int MAXN(2000), MAXM(2000);
ll memo[MAXN][MAXM + 1];
char choosen[MAXN][MAXM + 1];
ll knapSack(int u, int w, vll &VS, vi &WS) {
 if (u < 0) return 0:
 if (memo[u][w] != -1) return memo[u][w];
 11 a = 0, b = 0;
  a = knapSack(u - 1, w, VS, WS);
 if (WS[u] \le w) b = knapSack(u - 1, w - WS[u], VS, WS) + VS[u];
 if (b > a) {
    choosen[u][w] = true:
 return memo[u][w] = max(a, b);
pair<ll, vi> knapSack(int W, vll &VS, vi &WS) {
 memset(memo, -1, sizeof(memo));
 memset(choosen, 0, sizeof(choosen)):
  int n = len(VS);
 11 v = knapSack(n - 1, W, VS, WS);
 11 cw = W:
 vi choosed;
 for (int i = n - 1; i >= 0; i--) {
    if (choosen[i][cw]) {
      cw -= WS[i];
      choosed.emplace_back(i);
    }
 return {v, choosed};
```

Edit Distance

```
O(N*M)
int edit_distance(const string &a, const string &b) {
 int n = a.size();
 int m = b.size();
 vector < vi > dp(n + 1, vi(m + 1, 0));
 int ADD = 1, DEL = 1, CHG = 1;
 for (int i = 0: i <= n: ++i) {
```

```
dp[i][0] = i * DEL;
  for (int i = 1; i <= m; ++i) {
    dp[0][i] = ADD * i;
  for (int i = 1; i <= n; ++i) {</pre>
    for (int j = 1; j <= m; ++j) {</pre>
      int add = dp[i][j - 1] + ADD;
      int del = dp[i - 1][j] + DEL;
      int chg = dp[i - 1][j - 1] + (a[i - 1] == b[j - 1]?0:1) * CHG;
      dp[i][j] = min({add, del, chg});
  }
  return dp[n][m];
2.4 Kadane
Find the maximum subarray sum in a given a rray.
```

```
int kadane(const vi &as) {
 vi s(len(as));
  s[0] = as[0]:
  for (int i = 1; i < len(as); ++i) s[i] = max(as[i], s[i - 1] + as[i]);
 return *max_element(all(s));
```

Longest Increasing Subsequence (LIS)

Finds the length of the longest subsequence in

 $O(n \log n)$

```
int LIS(const vi& as) {
  const 11 oo = 1e18;
  int n = len(as);
 vll lis(n + 1, oo);
  lis[0] = -oo:
  auto ans = 0;
  for (int i = 0; i < n; ++i) {
    auto it = lower_bound(all(lis), as[i]);
    auto pos = (int)(it - lis.begin());
    ans = max(ans, pos);
    lis[pos] = as[i];
 }
 return ans;
```

2.6 Money Sum (Bottom Up)

Find every possible sum using the given values only once.

```
set < int > money_sum(const vi &xs) {
 using vc = vector < char >;
 using vvc = vector < vc >:
 int _m = accumulate(all(xs), 0);
 int _n = xs.size();
  vvc _dp(_n + 1, vc(_m + 1, 0));
  set < int > _ans;
  dp[0][xs[0]] = 1:
  for (int i = 1; i < _n; ++i) {</pre>
   for (int j = 0; j <= _m; ++j) {
      if (j == 0 or _dp[i - 1][j]) {
        _dp[i][j + xs[i]] = 1;
        _dp[i][j] = 1;
   }
 for (int i = 0; i < _n; ++i)
    for (int j = 0; j <= _m; ++j)</pre>
      if (_dp[i][j]) _ans.insert(j);
 return ans:
```

2.7 Travelling Salesman Problem

```
using vi = vector<int>;
vector<vi> dist;
vector<vi> memo;
/* 0 ( N^2 * 2^N )*/
int tsp(int i, int mask, int N) {
   if (mask == (1 << N) - 1) return dist[i][0];
   if (memo[i][mask] != -1) return memo[i][mask];
   int ans = INT_MAX << 1;
   for (int j = 0; j < N; ++j) {
      if (mask & (1 << j)) continue;
      auto t = tsp(j, mask | (1 << j), N) + dist[i][j];
      ans = min(ans, t);
   }
   return memo[i][mask] = ans;
}</pre>
```

3 Geometry

3.1 Convex Hull

Given a set of points find the smallest convex polygon that contains all the given points. Time: $O(N \log N)$

By default it removes the collinear points, set the boolean to true if you don't want that

```
struct pt {
  double x, y;
  int id;
};
```

```
int orientation(pt a, pt b, pt c) {
  double v = a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y);
 if (v < 0) return -1; // clockwise
 if (v > 0) return +1: // counter-clockwise
 return 0;
bool cw(pt a, pt b, pt c, bool include_collinear) {
 int o = orientation(a, b, c);
 return o < 0 || (include collinear && o == 0):
bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
void convex_hull(vector<pt>& pts, bool include_collinear = false) {
  pt p0 = *min_element(all(pts), [](pt a, pt b) {
    return make_pair(a.v, a.x) < make_pair(b.v, b.x);</pre>
  sort(all(pts), [&p0](const pt& a, const pt& b) {
   int o = orientation(p0, a, b);
   if (o == 0)
      return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.y) * (p0.y - a.y) <
             (p0.x - b.x) * (p0.x - b.x) + (p0.y - b.y) * (p0.y - b.y);
    return o < 0;</pre>
 });
  if (include_collinear) {
    int i = len(pts) - 1:
    while (i >= 0 && collinear(p0, pts[i], pts.back())) i--;
   reverse(pts.begin() + i + 1, pts.end());
  vector <pt> st:
  for (int i = 0; i < len(pts); i++) {</pre>
    while (st.size() > 1 &&
           !cw(st[len(st) - 2], st.back(), pts[i], include_collinear))
      st.pop_back();
    st.push_back(pts[i]);
 pts = st;
     Determinant
#include "Point.cpp"
template <typename T>
T D(const Point<T> &P, const Point<T> &Q, const Point<T> &R) {
 return (P.x * Q.y + P.y * R.x + Q.x * R.y) -
         (R.x * Q.y + R.y * P.x + Q.x * P.y);
}
3.3 Equals
template <typename T>
bool equals(T a, T b) {
  const double EPS{1e-9}:
```

```
if (is_floating_point <T>::value)
    return fabs(a - b) < EPS:</pre>
 else
    return a == b:
3.4 Line
#include <bits/stdc++.h>
#include "point-struct-and-utils.cpp"
using namespace std;
struct line {
 ld a, b, c;
}:
// the answer is stored in the third parameter (pass by reference)
void pointsToLine(const point &p1, const point &p2, line &1) {
 if (fabs(p1.x - p2.x) < EPS)
   // vertical line
   1 = \{1.0, 0.0, -p1.x\};
 // default values
 else
    1 = \{-(1d)(p1.y - p2.y) / (p1.x - p2.x), 1.0, -(1d)(1.a * p1.x) - p1.y\};
    Point Struct And Utils (2d)
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
struct point {
 ld x, y;
 int id;
 point(1d x = 0.0, 1d y = 0.0, int id = -1): x(x), y(y), id(id) {}
 point& operator+=(const point& t) {
    x += t.x:
    y += t.y;
   return *this;
 point& operator -= (const point& t) {
   x -= t.x:
   y -= t.y;
   return *this;
 point& operator*=(ld t) {
   x *= t;
   y *= t;
    return *this;
 point& operator/=(ld t) {
   x /= t;
   y /= t;
    return *this;
```

```
point operator+(const point& t) const { return point(*this) += t; }
  point operator-(const point& t) const { return point(*this) -= t; }
  point operator*(ld t) const { return point(*this) *= t; }
  point operator/(ld t) const { return point(*this) /= t; }
ld dot(point& a, point& b) { return a.x * b.x + a.y * b.y; }
ld norm(point& a) { return dot(a, a); }
ld abs(point a) { return sqrt(norm(a)); }
ld proj(point a, point b) { return dot(a, b) / abs(b); }
ld angle(point a, point b) { return acos(dot(a, b) / abs(a) / abs(b)); }
ld cross(point a, point b) { return a.x * b.y - a.y * b.x; }
3.6 Segment
#include "Line.cpp"
#include "Point.cpp'
#include "equals.cpp"
template <typename T>
struct segment {
  Point <T> A, B;
  bool contains(const Point < T > & P) const;
  Point <T> closest(const Point <T> &p) const;
};
template <typename T>
bool segment < T > :: contains (const Point < T > &P) const {
  // verifica se P áest contido na reta
  double dAB = Point <T >:: dist(A, B), dAP = Point <T >:: dist(A, P),
         dPB = Point <T>::dist(P, B);
  return equals(dAP + dPB, dAB);
template <typename T>
Point <T > segment <T>::closest(const Point <T> &P) const {
 Line\langle T \rangle R(A, B);
  auto Q = R.closest(P);
  if (this->contains(Q)) return Q;
  auto distA = Point<T>::dist(P. A):
  auto distB = Point<T>::dist(P, B);
  if (distA <= distB)</pre>
    return A;
  else
    return B;
```

4 Graphs

4.1 2 SAT

```
struct SAT2 {
 11 n;
 vll2d adj, adj_t;
 vc used:
 vll order, comp;
 vc assignment;
 bool solvable:
 SAT2(11 _n)
   : n(2 * _n),
      adj(n),
      adj_t(n),
      used(n).
      order(n),
      comp(n, -1),
      assignment(n / 2) {}
  void dfs1(int v) {
    used[v] = true:
    for (int u : adj[v]) {
      if (!used[u]) dfs1(u);
    order.push_back(v);
  void dfs2(int v, int cl) {
    comp[v] = cl;
    for (int u : adj_t[v]) {
      if (comp[u] == -1) dfs2(u, cl);
    }
 }
 bool solve_2SAT() {
    // find and label each SCC
    for (int i = 0; i < n; ++i) {</pre>
      if (!used[i]) dfs1(i);
    }
    reverse(all(order)):
    11 i = 0;
    for (auto &v : order) {
      if (comp[v] == -1) dfs2(v, j++);
    }
    assignment.assign(n / 2, false);
    for (int i = 0; i < n; i += 2) {</pre>
      // x and !x belong to the same SCC
      if (comp[i] == comp[i + 1]) {
        solvable = false:
        return false:
     }
      assignment[i / 2] = comp[i] > comp[i + 1];
    solvable = true:
    return true;
```

```
void add_disjunction(int a, bool na, int b, bool nb) {
    a = (2 * a) ^ na;
    b = (2 * b) ^ nb;
    int neg_a = a ^ 1;
    int neg_b = b ^ 1;
    adj[neg_a].push_back(b);
    adj[neg_b].push_back(a);
    adj_t[b].push_back(neg_a);
    adj_t[a].push_back(neg_b);
}
};
```

4.2 Cycle Distances

Given a vertex s finds the longest cycle that end's in s, note that the vector **dist** will contain the distance that each vertex u needs to reach s.

Time: O(N)

```
using adj = vector < vector < pair < int , 11 >>> ;
11 cycleDistances(int u, int n, int s, vc &vis, adj &g, vll &dist) {
  vis[u] = 1;
  for (auto [v, d] : g[u]) {
    if (v == s) {
      dist[u] = max(dist[u], d);
      continue;
    if (vis[v] == 1) {
      continue;
    if (vis[v] == 2) {
      dist[u] = max(dist[u], dist[v] + d);
      11 d2 = cycleDistances(v, n, s, vis, g, dist);
      if (d2 != -00) {
        dist[u] = max(dist[u], d2 + d);
   }
  }
  vis[u] = 2:
  return dist[u];
```

4.3 Minimum Cost Flow

Given a network find the minimum cost to achieve a flow of at most f.

- add(u, v, w, c): adds an edge from u to v with capacity w and cost c.
- flow(s, t, f): return a pair (flow, cost) with the maximum flow until f with source at s and sink at t, with the minimum cost possible.

```
Time: O(N \cdot M + f \cdot m \log n)

template <typename T = 11>
struct mcmf {
struct edge {
```

14

```
int to, rev, flow, cap;
  bool res; // if is a residual edge
  T cost:
  edge(): to(0), rev(0), flow(0), cap(0), cost(0), res(false) {}
  edge(int to_, int rev_, int flow_, int cap_, T cost_, bool res_)
    : to(to_), rev(rev_), flow(flow_), cap(cap_), res(res_), cost(cost_) {}
};
vector < vector < edge >> g:
vector < int > par_idx, par;
T inf;
vector <T> dist:
mcmf(int n) : g(n), par_idx(n), par(n), inf(numeric_limits<T>::max() / 4) {}
void add(int u, int v, int w, T cost) {
  edge a = edge(v, g[v].size(), 0, w, cost, false);
  edge b = edge(u, g[u].size(), 0, 0, -cost, true);
  g[u].push_back(a);
  g[v].push_back(b);
vector <T> spfa(int s) {
  deque < int > q;
  vector < bool > is_inside(g.size(), 0);
  dist = vector<T>(g.size(), inf);
  dist[s] = 0;
  q.push_back(s);
  is inside[s] = true:
  while (!q.empty()) {
    int v = q.front();
    q.pop_front();
    is_inside[v] = false;
    for (int i = 0; i < g[v].size(); i++) {</pre>
      auto [to, rev, flow, cap, res, cost] = g[v][i];
      if (flow < cap and dist[v] + cost < dist[to]) {</pre>
        dist[to] = dist[v] + cost:
        if (is_inside[to]) continue;
        if (!q.empty() and dist[to] > dist[q.front()])
          q.push_back(to);
        else
          q.push_front(to);
        is_inside[to] = true;
    }
  }
  return dist:
bool dijkstra(int s, int t, vector <T>& pot) {
  priority_queue < pair < T, int > , vector < pair < T, int > > , greater <>> q;
  dist = vector <T>(g.size(), inf);
  dist[s] = 0:
  g.emplace(0, s):
```

```
while (q.size()) {
      auto [d, v] = q.top();
      q.pop();
      if (dist[v] < d) continue:</pre>
      for (int i = 0; i < g[v].size(); i++) {</pre>
        auto [to, rev, flow, cap, res, cost] = g[v][i];
        cost += pot[v] - pot[to];
        if (flow < cap and dist[v] + cost < dist[to]) {</pre>
          dist[to] = dist[v] + cost:
          a.emplace(dist[to], to);
          par_idx[to] = i, par[to] = v;
    return dist[t] < inf;</pre>
  pair < int, T > flow(int s, int t, int flow = inf) {
    vector <T> pot(g.size(), 0);
    pot = dijkstra(s); // change to spfa has negative cycle
    int f = 0:
    T ret = 0:
    while (f < flow and dijkstra(s, t, pot)) {</pre>
     for (int i = 0; i < g.size(); i++)</pre>
        if (dist[i] < inf) pot[i] += dist[i];</pre>
      int mn_flow = flow - f, u = t;
      while (u != s) {
        mn flow =
          min(mn_flow, g[par[u]][par_idx[u]].cap - g[par[u]][par_idx[u]].flow)
        u = par[u];
      ret += pot[t] * mn_flow;
      u = t;
      while (u != s) {
        g[par[u]][par_idx[u]].flow += mn_flow;
        g[u][g[par[u]][par_idx[u]].rev].flow -= mn_flow;
        u = par[u];
      f += mn_flow;
    return make_pair(f, ret);
  vector<pair<int, int>> recover() {
    vector < pair < int . int >> used:
    for (int i = 0; i < g.size(); i++)</pre>
      for (edge e : g[i])
        if (e.flow == e.cap && !e.res) used.push_back({i, e.to});
    return used;
};
```

4.4 SCC (struct)

Able to find the component of each node and the total of SCC in O(V*E) and build the SCC graph (O(V*E)).

```
struct SCC {
 11 N:
 int totscc;
 vll2d adj, tadj;
 vll todo, comps, comp;
 vector<set<ll>>> sccadj;
  vchar vis:
  SCC(11 _N)
    : N(_N), totscc(0), adj(_N), tadj(_N), comp(_N, -1), sccadj(_N), vis(_N)
    {}
 void add_edge(ll x, ll y) { adj[x].eb(y), tadj[y].eb(x); }
  void dfs(ll x) {
    vis[x] = 1;
    for (auto &y : adj[x])
      if (!vis[y]) dfs(y);
    todo.pb(x);
 void dfs2(11 x, 11 v) {
    comp[x] = v;
    for (auto &y : tadj[x])
      if (comp[y] == -1) dfs2(y, v);
 void gen() {
    for (11 i = 0; i < N; ++i)
      if (!vis[i]) dfs(i);
    reverse(all(todo));
    for (auto &x : todo)
      if (comp[x] == -1) {
        dfs2(x, x);
        comps.pb(x);
        totscc++;
 }
 void genSCCGraph() {
   for (11 i = 0; i < N; ++i) {</pre>
      for (auto &j : adj[i]) {
        if (comp[i] != comp[j]) {
          sccadj[comp[i]].insert(comp[j]);
     }
 }
};
```

4.5 Bellman-Ford (find negative cycle)

Given a directed graph find a negative cycle by running n iterations, and if the last one produces a relaxation than there is a cycle.

```
Time: O(V \cdot E)
```

```
const 11 oo = 2500 * 1e9;
using graph = vector < vector < pair < int , 11 >>> ;
vi negative_cycle(graph &g, int n) {
  vll d(n, oo);
  vi p(n, -1);
  int x = -1;
  d[0] = 0;
  for (int i = 0; i < n; i++) {</pre>
    x = -1:
    for (int u = 0; u < n; u++) {
      for (auto &[v, 1] : g[u]) {
        if (d[u] + 1 < d[v]) {
          d[v] = d[u] + 1;
          p[v] = u;
          x = v;
    }
  }
  if (x == -1)
    return {}:
  else {
    for (int i = 0; i < n; i++) x = p[x];
    vi cvcle:
    for (int v = x;; v = p[v]) {
      cycle.eb(v);
      if (v == x and len(cycle) > 1) break;
    reverse(all(cycle));
    return cycle;
  }
}
      Bellman Ford
Find shortest path from a single source to all other nodes. Can detect negative cycles.
Time: O(V * E)
bool bellman_ford(const vector<vector<pair<int, ll>>> &g, int s,
                   vector<ll> &dist) {
  int n = (int)g.size();
  dist.assign(n, LLONG_MAX);
  vector < int > count(n);
  vector < char > in_queue(n);
  queue < int > q;
  dist[s] = 0;
  q.push(s);
  in_queue[s] = true;
  while (not q.empty()) {
    int cur = q.front();
    q.pop();
    in_queue[cur] = false;
```

```
for (auto [to, w] : g[cur]) {
      if (dist[cur] + w < dist[to]) {</pre>
        dist[to] = dist[cur] + w;
        if (not in_queue[to]) {
          q.push(to);
          in_queue[to] = true;
          count[to]++;
          if (count[to] > n) return false;
  return true;
     Binary Lifting
far[h][i] = the node that is 2^h distance from node i
Build : O(N * \log N)
sometimes is useful invert the order of loops
const int maxlog = 20;
int far[maxlog + 1][n + 1];
int n:
for (int h = 1; h <= maxlog; h++) {</pre>
  for (int i = 1: i <= n: i++) {
    far[h][i] = far[h - 1][far[h - 1][i]];
}
      Check Bipartitie
O(V)
bool bfs(const ll n, int s, const vector < vll > & adj, vll & color) {
  queue < 11 > q;
  q.push(s);
  color[s] = 0:
  bool isBipartite = true;
  while (!q.empty() && isBipartite) {
    11 u = q.front();
    q.pop();
    for (auto &v : adj[u]) {
      if (color[v] == INF) {
        color[v] = 1 - color[u];
        q.push(v);
      } else if (color[v] == color[u]) {
        return false:
      }
    }
  return true;
bool checkBipartite(int n, const v112d &adj) {
```

vll color(n. oo):

```
for (int i = 0; i < n; i++) {</pre>
      if (color[i] != oo) {
        if (not bfs(n, adj, color)) return false;
    }
    return true;
        Dijkstra (k Shortest Paths)
  const 11 oo = 1e9 * 1e5 + 1;
  using adj = vector < vector < pl1 >>;
  vector<priority_queue<ll>> dijkstra(const vector<vector<pll>> &g, int n, int s
                                        int k) {
    priority_queue < pll , vector < pll > , greater < pll >> pq;
    vector < priority_queue < ll >> dist(n);
    dist[0].emplace(0);
    pq.emplace(0, s);
    while (!pq.empty()) {
      auto [d1, v] = pq.top();
      pq.pop();
      if (not dist[v].empty() and dist[v].top() < d1) continue;</pre>
      for (auto [d2, u] : g[v]) {
        if (len(dist[u]) < k) {</pre>
          pq.emplace(d2 + d1, u);
           dist[u].emplace(d2 + d1);
        } else {
           if (dist[u].top() > d1 + d2) {
            dist[u].pop();
            dist[u].emplace(d1 + d2);
            pq.emplace(d2 + d1, u);
    return dist;
  4.10 Dijkstra (restore Path)
  pair<vll, vi> dijkstra(const vector<vector<pll>>> &g, int n, int s) {
    priority_queue < pll, vector < pll>, greater < pll>> pq;
    vll dist(n, oo);
    vi p(n, -1);
    pq.emplace(0, s);
    dist[s] = 0;
    while (!pq.empty()) {
      auto [d1, v] = pq.top();
      pq.pop();
      if (dist[v] < d1) continue:
      for (auto [d2, u] : g[v]) {
17
```

```
if (dist[u] > d1 + d2) {
    dist[u] = d1 + d2;
    p[u] = v;
    pq.emplace(dist[u], u);
    }
}
return {dist, p};
```

4.11 Dijkstra

Finds the minimum distance from s to every other node in

 $O(E * \log E)$

```
time.
vll dijkstra(const vector<vector<pll>> &g, int n, int s) {
 priority_queue<pll, vector<pll>, greater<pll>> pq;
 vll dist(n + 1, oo);
 pg.emplace(0, s):
 dist[s] = 0;
 while (!pq.empty()) {
    auto [d1, v] = pq.top();
   pq.pop();
    if (dist[v] < d1) continue;</pre>
    for (auto [d2, u] : g[v]) {
      if (dist[u] > d1 + d2) {
        dist[u] = d1 + d2;
        pq.emplace(dist[u], u);
    }
 return dist;
```

4.12 Disjoint Edges Path (Maxflow)

Given a directed graph find's every path with distinct edges that starts at s and ends at t

When building the graph, if there is an edge (u, v) is necessary to also add the transposed edge (v, u) but only need to add the capacity c(u, v), and mark isedge(u, v) as true.

```
\begin{split} & \text{Time}: O(E \cdot V^2) \\ & \text{ll bfs(int s, int t, vi2d \&g, vll2d \&capacity, vi \&parent)} \ \{ \\ & \text{fill(all(parent), -1);} \\ & \text{parent[s] = -2;} \\ & \text{queue<pair<ll, int>> q;} \\ & \text{q.push(\{oo, s\});} \\ & \text{while (!q.empty()) } \{ \\ & \text{auto [flow, cur] = q.front();} \\ & \text{q.pop();} \\ & \text{for (auto next : g[cur]) } \{ \\ & \text{ if (parent[next] == -1 and capacity[cur][next]) } \{ \\ & \text{parent[next] = cur;} \\ & \text{ll new\_flow = min(flow, capacity[cur][next]);} \end{split}
```

```
if (next == t) return new_flow;
        q.push({new_flow, next});
   }
  }
  return 011;
11 maxflow(int s, int t, int n, vi2d &g, v112d &capacity) {
 11 flow = 0:
 vi parent(n);
 11 new_flow;
  while ((new_flow = bfs(s, t, g, capacity, parent))) {
   flow += new_flow;
   int cur = t:
   while (cur != s) {
     int prev = parent[cur];
      capacity[prev][cur] -= new_flow;
      capacity[cur][prev] += new_flow;
      cur = prev;
 }
 return flow:
void dfs(int u, int t, vi2d &g, vc2d &vis, vc2d &isedge, v112d &capacity,
         vi &route, vi2d &routes) {
  route.eb(u):
 if (u == t) {
   routes.emplace_back(route);
   route.pop_back();
   return;
 }
  for (auto &v : g[u]) {
    if (capacity[u][v] == 0 and isedge[u][v] and not vis[u][v]) {
      vis[u][v] = true:
      dfs(v, t, g, vis, isedge, capacity, route, routes);
      route.pop_back();
      return;
   }
  }
}
vi2d disjoint_paths(vi2d &g, vl12d &capacity, vc2d &isedge, int s, int t,
                    int n) {
  11 mf = maxflow(s, t, n, g, capacity);
  vi2d routes:
  vi route:
  vc2d vis(n + 1, vc(n + 1));
  for (int i = 0; i < (int)mf; i++)</pre>
    dfs(s, t, g, vis, isedge, capacity, route, routes);
  return routes;
```

4.13 Euler Path (directed)

```
Given a {\bf directed} graph finds a path that visits every edge exactly once.
```

```
Time: O(E)
vector < int > euler_cycle(vector < vector < int >> &g, int u) {
  vector<int> res:
  stack<int> st:
  st.push(u);
  while (!st.empty()) {
    auto cur = st.top();
    if (g[cur].empty()) {
     res.push_back(cur);
      st.pop();
    } else {
      auto next = g[cur].back();
      st.push(next);
      g[cur].pop_back();
  for (auto &x : g)
    if (!x.empty()) return {};
  return res;
vector<int> euler_path(vector<vector<int>> &g, int first) {
    int n = (int)g.size();
    vector < int > in(n). out(n):
    for (int i = 0; i < n; i++)</pre>
      for (auto x : g[i]) in[x]++, out[i]++;
    int a = 0, b = 0, c = 0;
    for (int i = 0; i < n; i++)
      if (in[i] == out[i])
        c++;
      else if (in[i] - out[i] == 1)
      else if (in[i] - out[i] == -1)
    if (c != n - 2 or a != 1 or b != 1) return {}:
  auto res = euler_cycle(g, first);
  if (res.empty()) return res;
  reverse(all(res)):
  return res;
```

4.14 Euler Path (undirected)

Given a **undirected** graph finds a path that visits every edge exactly once. Time: O(E)

```
vector<int> euler_cycle(vector<vector<int>> &g, int u) {
  vector<int> res;
  multiset < pair < int , int >> vis;
  stack<int> st;
  st.push(u);
  while (!st.empty()) {
    auto cur = st.top();
    while (!g[cur].empty()) {
      auto it = vis.find(make_pair(cur, g[cur].back()));
      if (it == vis.end()) break;
      g[cur].pop_back();
     vis.erase(it);
    if (g[cur].empty()) {
     res.push_back(cur);
     st.pop();
   } else {
      auto next = g[cur].back();
      st.push(next);
      vis.emplace(next, cur);
      g[cur].pop_back();
  for (auto &x : g)
   if (!x.empty()) return {};
  return res:
vector < int > euler_path(vector < vector < int >> &g, int first) {
 int n = (int)g.size();
  int v1 = -1, v2 = -1;
   bool bad = false;
   for (int i = 0; i < n; i++)
     if (g[i].size() & 1) {
       if (v1 == -1)
         v1 = i:
        else if (v2 == -1)
          v2 = i;
        else
          bad = true;
   if (bad or (v1 != -1 and v2 == -1)) return {};
  if (v2 != -1) {
```

```
// insert cycle
    g[v1].push_back(v2);
    g[v2].push_back(v1);
  auto res = euler_cycle(g, first);
  if (res.empty()) return res;
  if (v1 != -1) {
    for (int i = 0: i + 1 < (int)res.size(): i++) {
      if ((res[i] == v1 and res[i + 1] == v2) ||
           (res[i] == v2 \text{ and } res[i + 1] == v1)) {
        vector<int> res2:
        for (int j = i + 1; j < (int)res.size(); j++) res2.push_back(res[j]);</pre>
        for (int j = 1; j <= i; j++) res2.push_back(res[j]);</pre>
        res = res2;
        break:
      }
    }
  reverse(all(res));
  return res:
      Find Centroid
Given a tree (don't forget to make it 'undirected'), find it's centroids.
Time: O(V)
void dfs(int u, int p, int n, vi2d &g, vi &sz, vi &centroid) {
  sz[u] = 1:
  bool iscentroid = true;
  for (auto v : g[u])
    if (v != p) {
      dfs(v, u, n, g, sz, centroid);
      if (sz[v] > n / 2) iscentroid = false:
      sz[u] += sz[v];
  if (n - sz[u] > n / 2) iscentroid = false;
  if (iscentroid) centroid.eb(u);
vi getCentroid(vi2d &g, int n) {
  vi centroid;
  vi sz(n);
  dfs(0, -1, n, g, sz, centroid);
  return centroid:
4.16 Floyd Warshall
Simply finds the minimal distance for each node to every other node. O(V^3)
```

```
vector<vll> floyd_warshall(const vector<vll> &adj, ll n) {
 auto dist = adj;
```

```
for (int i = 0; i < n; ++i) {
   for (int j = 0; j < n; ++ j) {
      for (int k = 0; k < n; ++k) {
        dist[j][k] = min(dist[j][k], dist[j][i] + dist[i][k]);
    }
  return dist:
4.17 Graph Cycle (directed)
Given a directed graph finds a cycle (or not).
Time : O(E)
bool dfs(int v, vi2d &adj, vc &visited, vi &parent, vc &color, int &
    cycle_start,
         int &cycle_end) {
  color[v] = 1;
  for (int u : adi[v]) {
   if (color[u] == 0) {
      parent[u] = v;
      if (dfs(u, adj, visited, parent, color, cycle_start, cycle_end))
        return true;
    } else if (color[u] == 1) {
      cycle_end = v;
      cycle_start = u;
      return true;
  }
  color[v] = 2:
  return false;
vi find_cycle(vi2d &g, int n) {
  vc visited(n):
  vi parent(n);
  vc color(n);
  int cycle_start, cycle_end;
  color.assign(n, 0);
  parent.assign(n, -1);
  cvcle start = -1:
  for (int v = 0: v < n: v++) {
    if (color[v] == 0 &&
        dfs(v, g, visited, parent, color, cycle_start, cycle_end))
  }
  if (cvcle start == -1) {
    return {};
 } else {
    vector < int > cycle;
    cycle.push_back(cycle_start);
    for (int v = cycle_end; v != cycle_start; v = parent[v]) cycle.push_back(v
    cvcle.push back(cvcle start):
```

```
reverse(cycle.begin(), cycle.end());
return cycle;
}
```

4.18 Graph Cycle (undirected)

Detects if a graph contains a cycle. If path parameter is not null, it will contain the cycle if one exists. Time: O(V+E)

4.19 Kruskal

```
Find the minimum spanning tree of a graph.
```

Time: $O(E \log E)$

can be used to find the maximum spanning tree by changing the comparison operator in the sort

```
struct UFDS {
  vector < int > ps, sz;
  int components;

UFDS(int n) : ps(n + 1), sz(n + 1, 1), components(n) { iota(all(ps), 0); }

int find_set(int x) { return (x == ps[x] ? x : (ps[x] = find_set(ps[x]))); }

bool same_set(int x, int y) { return find_set(x) == find_set(y); }

void union_set(int x, int y) {
    x = find_set(x);
    y = find_set(y);

    if (x == y) return;

    if (sz[x] < sz[y]) swap(x, y);

    ps[y] = x;
    sz[x] += sz[y];

    components --;
}

};</pre>
```

```
vector<tuple<11, int, int>> kruskal(int n, vector<tuple<11, int, int>> &edges)
  UFDS ufds(n):
  vector<tuple<11, int, int>> ans;
  sort(all(edges));
  for (auto [a, b, c] : edges) {
    if (ufds.same_set(b, c)) continue;
    ans.emplace_back(a, b, c);
    ufds.union_set(b, c);
  }
  return ans:
      Lowest Common Ancestor
Given two nodes of a tree find their lowest common ancestor, or their distance
Build : O(V), Queries: O(1)
0 indexed!
template <typename T>
struct SparseTable {
  vector <T> v:
  int n:
  static const int b = 30;
  vi mask, t:
  int op(int x, int y) { return v[x] < v[y] ? x : y; }
  int msb(int x) { return __builtin_clz(1) - __builtin_clz(x); }
  SparseTable(const vector<T>& v ) : v(v ), n(v.size()), mask(n), t(n) {
    for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
      at = (at << 1) & ((1 << b) - 1);
      while (at and op(i, i - msb(at & -at)) == i) at ^= at & -at:
    for (int i = 0; i < n / b; i++)</pre>
      t[i] = b * i + b - 1 - msb(mask[b * i + b - 1]):
    for (int j = 1; (1 << j) <= n / b; j++)
     for (int i = 0; i + (1 << j) <= n / b; i++)
        t[n / b * i + i] =
          op(t[n / b * (j - 1) + i], t[n / b * (j - 1) + i + (1 << (j - 1))]);
  int small(int r, int sz = b) { return r - msb(mask[r] & ((1 \leq sz) - 1)); }
  T querv(int 1, int r) {
    if (r - l + 1 <= b) return small(r, r - l + 1);</pre>
    int ans = op(small(1 + b - 1), small(r));
    int x = 1 / b + 1, y = r / b - 1;
```

ans = op(ans, op(t[n / b * j + x], t[n / b * j + y - (1 << j) + 1]));

} }; **if** (x <= y) {

return ans;

int j = msb(y - x + 1);

```
SparseTable < int > st:
  int n;
  vi v, pos, dep;
  LCA(const vi2d& g, int root) : n(len(g)), pos(n) {
    dfs(root, 0, -1, g);
    st = SparseTable < int > (vector < int > (all(dep)));
  void dfs(int i, int d, int p, const vi2d& g) {
    v.eb(len(dep)) = i, pos[i] = len(dep), dep.eb(d);
    for (auto j : g[i])
      if (j != p) {
        dfs(j, d + 1, i, g);
        v.eb(len(dep)) = i, dep.eb(d);
  }
  int lca(int a, int b) {
    int 1 = min(pos[a], pos[b]);
    int r = max(pos[a], pos[b]);
    return v[st.querv(l, r)];
  int dist(int a. int b) {
    return dep[pos[a]] + dep[pos[b]] - 2 * dep[pos[lca(a, b)]];
};
       Tree Maximum Distance
Returns the maximum distance from every node to any other node in the tree. O(6V) = O(V)
pll mostDistantFrom(const vector < vll > & adi. ll n. ll root) {
  // O(V)
  // 0 indexed
  11 mostDistantNode = root:
  11 nodeDistance = 0;
  queue <pll> q;
  vector < char > vis(n):
  q.emplace(root, 0);
  vis[root] = true;
  while (!a.emptv()) {
    auto [node, dist] = q.front();
    q.pop();
    if (dist > nodeDistance) {
      nodeDistance = dist:
      mostDistantNode = node:
    for (auto u : adi[node]) {
      if (!vis[u]) {
        vis[u] = true:
        q.emplace(u, dist + 1);
  return {mostDistantNode, nodeDistance};
```

struct LCA {

```
11 twoNodesDist(const vector < vll > & adi. 11 n. 11 a. 11 b) {
  queue <pll> q;
  vector < char > vis(n):
  q.emplace(a, 0);
  while (!q.empty()) {
    auto [node, dist] = q.front();
    q.pop();
    if (node == b) return dist:
    for (auto u : adi[node]) {
     if (!vis[u]) {
        vis[u] = true:
        q.emplace(u, dist + 1);
   }
 return -1:
tuple < 11, 11, 11> tree_diameter(const vector < v11> & adj, 11 n) {
 // returns two points of the diameter and the diameter itself
  auto [node1, dist1] = mostDistantFrom(adj, n, 0);
  auto [node2. dist2] = mostDistantFrom(adj. n. node1): // O(V)
  auto diameter = twoNodesDist(adj, n, node1, node2);
 return make_tuple(node1, node2, diameter);
vll evervDistanceFromNode(const vector < vll> &adi. ll n. ll root) {
  // Single Source Shortest Path, from a given root
  queue < pair < 11, 11 >> q;
  vll ans(n. -1):
  ans[root] = 0;
  q.emplace(root, 0);
  while (!a.emptv()) {
    auto [u, d] = q.front();
    q.pop();
    for (auto w : adj[u]) {
      if (ans[w] != -1) continue;
      ans[w] = d + 1;
      q.emplace(w, d + 1);
 }
  return ans:
vll maxDistances(const vector < vll > & adj, ll n) {
 auto [node1, node2, diameter] = tree_diameter(adj, n); // 0(3V)
  auto distances1 = everyDistanceFromNode(adj, n, node1); // O(V)
  auto distances2 = everyDistanceFromNode(adj. n. node2): // O(V)
 vll ans(n);
  for (int i = 0: i < n: ++i)
    ans[i] = max(distances1[i], distances2[i]); // O(V)
  return ans;
```

4.22 Maximum Flow (Edmonds-Karp)

Finds the maximum flow in a graph network, given the source s and the sink t.

When building the graph, if there is an edge (u, v) is necessary to also add the transposed edge (v, u) but only need to add the capacity c(u, v).

```
Time: O(V \cdot E^2)
const ll oo = 1e17:
11 bfs(int s, int t, vi2d &g, v112d &capacity, vi &parent) {
  fill(all(parent), -1);
  parent[s] = -2;
  queue < pair < ll, int >> q;
  a.push({oo, s}):
  while (!q.empty()) {
    auto [flow, cur] = q.front();
    q.pop();
    for (auto next : g[cur]) {
      if (parent[next] == -1 and capacity[cur][next]) {
        parent[next] = cur;
        11 new_flow = min(flow, capacity[cur][next]);
        if (next == t) return new flow:
        q.push({new_flow, next});
    }
  }
  return 011:
11 maxflow(int s, int t, int n, vi2d &g, v112d &capacity) {
  11 \text{ flow = 0};
  vi parent(n);
  ll new_flow;
  while ((new_flow = bfs(s, t, g, capacity, parent))) {
    flow += new_flow;
    int cur = t;
    while (cur != s) {
      int prev = parent[cur];
      capacitv[prev][cur] -= new flow:
      capacity[cur][prev] += new_flow;
      cur = prev:
    }
  }
  return flow;
}
```

4.23 Minimum Cut (unweighted)

Given the edges of a directed/undirected graph find the minum of edges that needs to be removed to make the sink t unreachable from the source s. Time: $O(V \cdot E^2)$

```
const 11 oo = 1e17;
```

```
11 bfs(int s, int t, vi2d &g, v112d &capacity, vi &parent) {
  fill(all(parent), -1):
  parent[s] = -2;
  queue <pair <11. int >> q:
 q.push({oo, s});
  while (!q.empty()) {
    auto [flow, cur] = q.front();
    q.pop();
    for (auto next : g[cur]) {
      if (parent[next] == -1 and capacity[cur][next]) {
        parent[next] = cur;
        11 new_flow = min(flow, capacity[cur][next]);
        if (next == t) return new_flow;
        q.push({new_flow, next});
  }
 return 011:
11 maxflow(int s, int t, int n, vi2d &g, vl12d &capacity) {
 11 \text{ flow} = 0:
  vi parent(n):
 ll new_flow;
  while ((new_flow = bfs(s, t, g, capacity, parent))) {
   flow += new flow:
   int cur = t:
    while (cur != s) {
     int prev = parent[cur];
      capacity[prev][cur] -= new_flow;
      capacity[cur][prev] += new_flow;
      cur = prev;
 }
 return flow;
void dfs(int u, vi2d &g, vll2d &capacity, vc &visited) {
 visited[u] = true;
 for (auto v : g[u]) {
   if (capacity[u][v] > 0 and not visited[v]) {
      dfs(v, g, capacity, visited);
 }
}
vii mincut(vii &edges, int s, int t, int n, bool directed = false) {
  vll2d capacity(n, vll(n));
  vi2d g(n);
  for (auto &[u, v] : edges) {
    g[u].eb(v);
    capacity[u][v] += 1;
    if (not directed) {
```

```
g[v].eb(u);
      capacity[v][u] += 1;
   }
  maxflow(0, n - 1, n, g, capacity);
  vc vis(n);
  dfs(0, g, capacity, vis);
  vii removed:
  for (auto &[u, v] : edges) {
    if ((vis[u] and not vis[v]) or (vis[v] and not vis[u]))
      removed.emplace_back(u, v);
  return removed;
4.24 Small to Large
Answer queries of the form "How many vertices in the subtree of vertex v have property P?"
Build: O(N), Query: O(N \log N)
struct SmallToLarge {
  vector < vector < int >> tree, vis_childs;
  vector < int > sizes, values, ans;
  set < int > cnt:
  SmallToLarge(vector < vector < int >> &&g, vector < int > &&v)
    : tree(g), vis_childs(g.size()), sizes(g.size()), values(v), ans(g.size())
    update_sizes(0);
  inline void add_value(int u) { cnt.insert(values[u]); }
  inline void remove_value(int u) { cnt.erase(values[u]); }
  inline void update_ans(int u) { ans[u] = (int)cnt.size(); }
  void dfs(int u, int p = -1, bool keep = true) {
    int mx = -1:
    for (auto x : tree[u]) {
      if (x == p) continue;
     if (mx == -1 \text{ or sizes}[mx] < sizes[x]) mx = x;
    for (auto x : tree[u]) {
      if (x != p and x != mx) dfs(x, u, false);
    if (mx != -1) {
      dfs(mx, u, true);
      swap(vis_childs[u], vis_childs[mx]);
```

vis childs[u].push back(u):

```
add_value(u);
    for (auto x : tree[u]) {
     if (x != p and x != mx) {
        for (auto y : vis_childs[x]) {
          add_value(y);
          vis_childs[u].push_back(y);
     }
    update_ans(u);
   if (!keep) {
      for (auto x : vis_childs[u]) remove_value(x);
 }
  void update_sizes(int u, int p = -1) {
    sizes[u] = 1:
   for (auto x : tree[u]) {
     if (x != p) {
        update sizes(x, u):
        sizes[u] += sizes[x];
   }
 }
};
```

4.25 Sum every node distance

Given a **tree**, for each node i find the sum of distance from i to every other node. don't forget to set the tree as undirected, that's needed to choose an arbitrary root Time: O(N)

```
void getRoot(int u, int p, vi2d &g, vll &d, vll &cnt) {
  for (int i = 0; i < len(g[u]); i++) {</pre>
    int v = g[u][i];
    if (v == p) continue:
    getRoot(v, u, g, d, cnt);
    d[u] += d[v] + cnt[v];
    cnt[u] += cnt[v]:
 }
void dfs(int u, int p, vi2d &g, vll &cnt, vll &ansd, int n) {
 for (int i = 0; i < len(g[u]); i++) {</pre>
    int v = g[u][i];
    if (v == p) continue;
    ansd[v] = ansd[u] - cnt[v] + (n - cnt[v]);
    dfs(v, u, g, cnt, ansd, n);
 }
vll fromToAll(vi2d &g, int n) {
  vll d(n);
  vll cnt(n. 1):
```

```
getRoot(0, -1, g, d, cnt);
vll ansdist(n);
ansdist[0] = d[0];
dfs(0, -1, g, cnt, ansdist, n);
return ansdist;
```

4.26 Topological Sorting

```
Assumes that:
   • vertices index [0, n-1]
   • is a DAG (else it returns an empty vector)
O(V)
enum class state { not_visited, processing, done };
bool dfs(const vector<vll> &adi. ll s. vector<state> &states. vll &order) {
  states[s] = state::processing;
  for (auto &v : adj[s]) {
    if (states[v] == state::not_visited) {
      if (not dfs(adj, v, states, order)) return false;
    } else if (states[v] == state::processing)
      return false;
  states[s] = state::done;
  order.pb(s);
  return true:
vll topologicalSorting(const vector<vll> &adj) {
  ll n = len(adi):
  vll order:
  vector < state > states(n, state::not_visited);
  for (int i = 0: i < n: ++i) {</pre>
    if (states[i] == state::not_visited) {
      if (not dfs(adi, i, states, order)) return {}:
    }
  }
  reverse(all(order)):
  return order;
```

4.27 Tree Diameter

Finds the length of the diameter of the tree in O(V), it's easy to recover the nodes at the point of the diameter.

```
pll mostDistantFrom(const vector<vll> &adj, ll n, ll root) {
   // 0 indexed
   ll mostDistantNode = root;
   ll nodeDistance = 0;
   queue<pll> q;
   vector<char> vis(n);
   q.emplace(root, 0);
   vis[root] = true;
   while (!q.empty()) {
```

```
auto [node, dist] = q.front();
    q.pop();
    if (dist > nodeDistance) {
      nodeDistance = dist:
      mostDistantNode = node;
    for (auto u : adj[node]) {
     if (!vis[u]) {
       vis[u] = true:
        q.emplace(u, dist + 1);
   }
  }
  return {mostDistantNode, nodeDistance};
11 twoNodesDist(const vector < vll> &adj, ll n, ll a, ll b) {
 // 0 indexed
  queue <pll> q;
  vector < char > vis(n);
  q.emplace(a, 0);
  while (!q.empty()) {
    auto [node, dist] = q.front();
    if (node == b) {
      return dist;
    for (auto u : adj[node]) {
     if (!vis[u]) {
        vis[u] = true;
        q.emplace(u, dist + 1);
   }
  }
  return -1:
ll tree_diameter(const vector < vll > & adj, ll n) {
 // 0 indexed !!!
  auto [node1, dist1] = mostDistantFrom(adj, n, 0);
                                                           // O(V)
  auto [node2, dist2] = mostDistantFrom(adi, n, node1); // O(V)
  auto diameter = twoNodesDist(adj, n, node1, node2);
  return diameter:
```

5 Math

5.1 GCD (with factorization)

 $O(\sqrt{n}) \text{ due to factorization.}$ $\text{ll gcd_with_factorization(ll a, ll b) } \{ \\ \text{map<ll, ll> fa = factorization(a);} \\ \text{map<ll, ll> fb = factorization(b);} \\ \text{ll ans = 1;} \\ \text{for (auto fai : fa) } \{ \\ \text{ll } k = \min(\text{fai.second, fb[fai.first]}); \\ \text{while } (k--) \text{ ans } *= \text{fai.first;} \}$

```
return ans;
     GCD
11 gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
     LCM (with factorization)
O(\sqrt{n}) due to factorization.
11 lcm_with_factorization(ll a, ll b) {
  map<ll, ll> fa = factorization(a);
  map<11, 11> fb = factorization(b);
  11 \text{ ans} = 1;
  for (auto fai : fa) {
    11 k = max(fai.second, fb[fai.first]);
    while (k--) ans *= fai.first;
  return ans;
5.4 LCM
11 gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
11 lcm(ll a, ll b) { return a / gcd(a, b) * b; }
    Arithmetic Progression Sum
   \bullet s: first term
   \bullet d: common difference
   \bullet n: number of terms
11 arithmeticProgressionSum(ll s. ll d. ll n) {
  return (s + (s + d * (n - 1))) * n / 211:
}
      Binomial MOD
Precompute every factorial until maxn (O(maxn)) allowing to answer the \binom{n}{k} in O(\log mod) time, due to
the fastpow. Note that it needs O(maxn) in memory.
const 11 \text{ MOD} = 1e9 + 7;
const 11 maxn = 2 * 1e6:
vll fats(maxn + 1, -1);
void precompute() {
  fats[0] = 1:
  for (ll i = 1: i <= maxn: i++) {
    fats[i] = (fats[i - 1] * i) % MOD;
  }
}
11 fpow(ll a, ll n, ll mod = LLONG_MAX) {
  if (n == 011) return 111;
  if (n == 111) return a;
```

```
11 x = fpow(a, n / 211, mod) \% mod;
  return ((x * x) % mod * (n & 111 ? a : 111)) % mod;
ll binommod(ll n, ll k) {
 ll upper = fats[n];
 11 lower = (fats[k] * fats[n - k]) % MOD;
  return (upper * fpow(lower, MOD - 211, MOD)) % MOD;
     Binomial
O(nm) time, O(m) space
Equal to n choose k
ll binom(ll n, ll k) {
 if (k > n) return 0:
  vll dp(k + 1, 0);
 dp[0] = 1;
  for (ll i = 1; i <= n; i++)</pre>
   for (ll j = k; j > 0; j--) dp[j] = dp[j] + dp[j - 1];
  return dp[k];
     Euler phi \varphi(n) (in range)
Computes the number of positive integers less than n that are coprimes with n, in the range [1, n], in
O(N \log N).
const int MAX = 1e6:
vi range_phi(int n) {
  bitset < MAX > sieve:
  vi phi(n + 1);
  iota(phi.begin(), phi.end(), 0);
  sieve.set();
  for (int p = 2; p <= n; p += 2) phi[p] /= 2;</pre>
  for (int p = 3; p <= n; p += 2) {</pre>
    if (sieve[p]) {
      for (int j = p; j <= n; j += p) {
        sieve[j] = false;
        phi[j] /= p;
        phi[j] *= (p - 1);
    }
  return phi;
```

5.9 Euler phi $\varphi(n)$

Computes the number of positive integers less than n that are coprimes with n, in $O(\sqrt{N})$

```
int phi(int n) {
  if (n == 1) return 1;

  auto fs = factorization(n); // a vctor of pair or a map
  auto res = n;

for (auto [p, k] : fs) {
   res /= p;
   res *= (p - 1);
  }

  return res;
}
```

5.10 Factorial Factorization

Computes the factorization of n! in $\pi(N) * \log n$

```
// O(logN)
11 E(ll n, ll p) {
    ll k = 0, b = p;
    while (b <= n) {
        k += n / b;
        b *= p;
    }
    return k;
}

// O(pi(N)*logN)
map<1l, ll> factorial_factorization(ll n, const vll &primes) {
    map<1l, ll> fs;
    for (const auto &p : primes) {
        if (p > n) break;
        fs[p] = E(n, p);
    }
    return fs;
}
```

5.11 Factorial

```
const ll MAX = 18;
vll fv(MAX, -1);
ll factorial(ll n) {
   if (fv[n] != -1) return fv[n];
   if (n == 0) return 1;
   return n * factorial(n - 1);
}
```

5.12 Factorization (Pollard Rho)

Factorizes a number into its prime factors in $O(n^{(\frac{1}{4})} * \log(n))$.

```
11 mul(11 a, 11 b, 11 m) {
 ll ret = a * b - (ll)((ld)1 / m * a * b + 0.5) * m;
 return ret < 0 ? ret + m : ret;</pre>
11 pow(ll a, ll b, ll m) {
 ll ans = 1:
 for (; b > 0; b /= 211, a = mul(a, a, m)) {
   if (b % 211 == 1) ans = mul(ans, a, m);
  return ans;
bool prime(ll n) {
 if (n < 2) return 0:
 if (n <= 3) return 1;
 if (n % 2 == 0) return 0:
 ll r = \_builtin\_ctzll(n - 1), d = n >> r;
  for (int a: {2, 325, 9375, 28178, 450775, 9780504, 795265022}) {
   11 x = pow(a, d, n);
   if (x == 1 \text{ or } x == n - 1 \text{ or a } \% n == 0) continue;
   for (int j = 0; j < r - 1; j++) {
     x = mul(x, x, n);
      if (x == n - 1) break:
   if (x != n - 1) return 0:
  return 1;
ll rho(ll n) {
  if (n == 1 or prime(n)) return n:
  auto f = [n](11 x) \{ return mul(x, x, n) + 1; \};
 11 x = 0, y = 0, t = 30, prd = 2, x0 = 1, q;
  while (t \% 40 != 0 or gcd(prd, n) == 1) {
   if (x == y) x = ++x0, y = f(x);
    q = mul(prd, abs(x - y), n);
   if (q != 0) prd = q;
   x = f(x), y = f(f(y)), t++;
 }
  return gcd(prd, n);
vll fact(ll n) {
 if (n == 1) return {};
 if (prime(n)) return {n};
 11 d = rho(n):
 vll l = fact(d), r = fact(n / d);
 1.insert(1.end(), r.begin(), r.end());
 return 1;
```

5.13 Factorization

```
Computes the factorization of n in O(\sqrt{n}).

map<11, 11> factorization(11 n) {
    map<11, 11> ans;
    for (11 i = 2; i * i <= n; i++) {
        11 count = 0;
        for (; n % i == 0; count++, n /= i)
            ;
        if (count) ans[i] = count;
    }
    if (n > 1) ans[n]++;
    return ans;
}
```

5.14 Fast Fourrier Transform

```
template <bool invert = false>
void fft(vector < complex < double >> & xs) {
  int N = (int)xs.size();
  if (N == 1) return:
  vector < complex < double >> es(N / 2). os(N / 2);
  for (int i = 0; i < N / 2; ++i) es[i] = xs[2 * i];
  for (int i = 0; i < N / 2; ++i) os[i] = xs[2 * i + 1];
  fft < invert > (es);
  fft < invert > (os):
  auto signal = (invert ? 1 : -1);
  auto theta = 2 * signal * acos(-1) / N;
  complex <double > S{1}, S1{cos(theta), sin(theta)};
  for (int i = 0: i < N / 2: ++i) {
    xs[i] = (es[i] + S * os[i]);
    xs[i] /= (invert ? 2 : 1):
    xs[i + N / 2] = (es[i] - S * os[i]);
    xs[i + N / 2] /= (invert ? 2 : 1):
    S *= S1;
 }
```

5.15 Fast pow

```
Computes a<sup>n</sup> in O(log N).

11 fpow(11 a, int n, 11 mod = LLONG_MAX) {
   if (n == 0) return 1;
   if (n == 1) return a;
   11 x = fpow(a, n / 2, mod) % mod;
   return ((x * x) % mod * (n & 1 ? a : 111)) % mod;
}
```

5.16 Gauss Elimination

```
template <size t Dim>
struct GaussianElimination {
  vector <11> basis;
  size_t size;
  GaussianElimination() : basis(Dim + 1). size(0) {}
  void insert(ll x) {
   for (ll i = Dim; i >= 0; i--) {
      if ((x & 111 << i) == 0) continue;</pre>
      if (!basis[i]) {
        basis[i] = x;
        size++:
        break;
      x ^= basis[i];
  }
  void normalize() {
   for (ll i = Dim; i >= 0; i--)
      for (11 j = i - 1; j >= 0; j--)
        if (basis[i] & 111 << i) basis[i] ^= basis[i];</pre>
 }
  bool check(ll x) {
   for (11 i = Dim; i >= 0; i--) {
      if ((x & 111 << i) == 0) continue;</pre>
      if (!basis[i]) return false:
      x ^= basis[i];
    return true;
  auto operator[](ll k) { return at(k); }
  11 at(11 k) {
   11 \text{ ans} = 0:
   11 total = 111 << size;</pre>
    for (11 i = Dim; ~i; i--) {
     if (!basis[i]) continue;
      11 mid = total >> 111:
      if ((mid < k and (ans & 111 << i) == 0) ||
          (k <= mid and (ans & 111 << i)))
        ans ^= basis[i];
      if (mid < k) k -= mid;</pre>
      total >>= 111;
```

```
return ans;
  ll at normalized(ll k) {
    11 \text{ ans} = 0;
    k--;
    for (size t i = 0: i <= Dim: i++) {</pre>
      if (!basis[i]) continue;
     if (k & 1) ans ^= basis[i]:
      k >>= 1:
    }
    return ans;
};
       Integer Mod
const ll INF = 1e18:
const 11 mod = 998244353:
template <11 MOD = mod>
struct Modular {
 ll value;
  static const 11 MOD_value = MOD;
  Modular(11 v = 0) {
    value = v % MOD:
    if (value < 0) value += MOD:</pre>
  Modular(ll a. ll b) : value(0) {
    *this += a:
    *this /= b;
  Modular& operator += (Modular const& b) {
    value += b.value:
    if (value >= MOD) value -= MOD;
    return *this:
  Modular& operator -= (Modular const& b) {
    value -= b.value:
    if (value < 0) value += MOD;</pre>
    return *this:
  Modular& operator*=(Modular const& b) {
    value = (11)value * b.value % MOD:
    return *this;
  friend Modular mexp(Modular a, 11 e) {
    Modular res = 1;
    while (e) {
      if (e & 1) res *= a;
      a *= a;
      e >>= 1;
    return res:
  friend Modular inverse (Modular a) { return mexp(a, MOD - 2); }
```

```
Modular& operator/=(Modular const& b) { return *this *= inverse(b); }
  friend Modular operator+(Modular a, Modular const b) { return a += b; }
  Modular operator++(int) { return this->value = (this->value + 1) % MOD; }
  Modular operator++() { return this->value = (this->value + 1) % MOD; }
  friend Modular operator-(Modular a, Modular const b) { return a -= b; }
  friend Modular operator-(Modular const a) { return 0 - a; }
  Modular operator -- (int) {
    return this->value = (this->value - 1 + MOD) % MOD:
  Modular operator -- () { return this -> value = (this -> value - 1 + MOD) % MOD; }
  friend Modular operator*(Modular a, Modular const b) { return a *= b; }
  friend Modular operator/(Modular a, Modular const b) { return a /= b; }
  friend std::ostream& operator<<(std::ostream& os, Modular const& a) {</pre>
    return os << a.value;</pre>
  friend bool operator == (Modular const& a. Modular const& b) {
    return a.value == b.value;
  friend bool operator!=(Modular const& a, Modular const& b) {
    return a.value != b.value;
};
5.18 Is prime
O(\sqrt{N})
bool isprime(ll n) {
 if (n < 2) return false:
  if (n == 2) return true:
  if (n % 2 == 0) return false;
  for (11 i = 3: i * i < n: i += 2)
    if (n % i == 0) return false:
  return true;
5.19 Number of Divisors \tau(n)
Find the total of divisors of N in O(\sqrt{N})
ll number_of_divisors(ll n) {
 11 \text{ res} = 0:
  for (11 d = 1; d * d <= n; ++d) {
    if (n % d == 0) res += (d == n / d ? 1 : 2);
  return res:
5.20 Power Sum
Calculates K^0 + K^1 + ... + K^n
ll powersum(ll n, ll k) { return (fastpow(n, k + 1) - 1) / (n - 1); }
```

5.21 Sieve list primes

List every prime until MAXN, $O(N \log N)$ in time and O(MAXN) in memory.

```
const ll MAXN = 1e5;
vll list_primes(ll n) {
  vll ps;
  bitset < MAXN > sieve;
  sieve.set();
  sieve.reset(1);
  for (ll i = 2; i <= n; ++i) {
    if (sieve[i]) ps.push_back(i);
    for (ll j = i * 2; j <= n; j += i) {
        sieve.reset(j);
    }
}
return ps;
}</pre>
```

5.22 Sum of Divisors $\sigma(n)$

```
Computes the sum of each divisor of n in O(\sqrt{n}).
```

```
11 sum_of_divisors(long long n) {
    ll res = 0;

    for (ll d = 1; d * d <= n; ++d) {
        if (n % d == 0) {
            ll k = n / d;

            res += (d == k ? d : d + k);
        }
    }

    return res;
}</pre>
```

6 Problems

6.1 Hanoi Tower

Let T_n be the total of moves to solve a hanoi tower, we know that $T_n >= 2 \cdot T_{n-1} + 1$, for n > 0, and $T_0 = 0$. By induction it's easy to see that $T_n = 2^n - 1$, for n > 0.

The following algorithm finds the necessary steps to solve the game for 3 stacks and n disks.

```
void move(int a, int b) { cout << a << ' ' ' << b << endl; }
void solve(int n, int s, int e) {
   if (n == 0) return;
   if (n == 1) {
      move(s, e);
      return;
   }
   solve(n - 1, s, 6 - s - e);
   move(s, e);
   solve(n - 1, 6 - s - e, e);
}</pre>
```

7 Searching

7.1 Meet in the middle

```
Answers the query how many subsets of the vector xs have sum equal x.
Time: O(N \cdot 2^{\frac{N}{2}})
vll get_subset_sums(int 1, int r, vll &a) {
  int len = r - l + 1;
  vll res:
  for (int i = 0; i < (1 << len); i++) {</pre>
    11 \text{ sum} = 0:
    for (int j = 0; j < len; j++) {</pre>
      if (i & (1 << j)) {
         sum += a[1 + j];
    res.push_back(sum);
  return res;
};
11 count(vll &xs. ll x) {
  int n = len(xs);
  vll left = get_subset_sums(0, n / 2 - 1, xs);
  vll right = get_subset_sums(n / 2, n - 1, xs);
  sort(all(left));
  sort(all(right));
  11 \text{ ans} = 0;
  for (11 i : left) {
    auto start_index =
      lower_bound(right.begin(), right.end(), x - i) - right.begin();
    auto end_index =
      upper_bound(right.begin(), right.end(), x - i) - right.begin();
    ans += end_index - start_index;
  }
  return ans;
```

7.2 Ternary Search Recursive

```
const double eps = 1e-6;

// IT MUST BE AN UNIMODAL FUNCTION
double f(int x) { return x * x + 2 * x + 4; }

double ternary_search(double 1, double r) {
   if (fabs(f(1) - f(r)) < eps) return f((1 + (r - 1) / 2.0));

   auto third = (r - 1) / 3.0;
   auto m1 = 1 + third;
   auto m2 = r - third;

   // change the signal to find the maximum point.
   return m1 < m2 ? ternary_search(m1, r) : ternary_search(1, m2);
}</pre>
```

8 Strings

8.1 Count Distinct Anagrams

```
const 11 MOD = 1e9 + 7;
const int maxn = 1e6;
vll fs(maxn + 1):
void precompute() {
  fs[0] = 1;
  for (ll i = 1; i <= maxn; i++) {</pre>
    fs[i] = (fs[i - 1] * i) % MOD:
  }
}
11 fpow(ll a, int n, ll mod = LLONG_MAX) {
  if (n == 0) return 1:
  if (n == 1) return a;
  11 x = fpow(a, n / 2, mod) \% mod;
  return ((x * x) % mod * (n & 1 ? a : 111)) % mod;
11 distinctAnagrams(const string &s) {
  precompute();
  vi hist('z' - 'a' + 1, 0);
  for (auto &c : s) hist[c - 'a']++;
  ll ans = fs[len(s)]:
  for (auto &q : hist) {
    ans = (ans * fpow(fs[q], MOD - 2, MOD)) \% MOD;
  return ans;
```

8.2 Double Hash Range Query

```
const 11 MOD = 1000027957;
const int MOD2 = 1000015187;
struct Hash {
 const 11 P = 31:
 int n;
 string s;
 vll h, h2, hi, hi2, p, p2;
 Hash() {}
 Hash(string _s) : s(_s), n(len(_s)), h(n), h2(n), hi(n), hi2(n), p(n), p2(n)
   for (int i = 0; i < n; i++) p[i] = (i ? P * p[i - 1] : 1) % MOD;
   for (int i = 0; i < n; i++) p2[i] = (i ? P * p2[i - 1] : 1) % MOD2;
   for (int i = 0; i < n; i++) h[i] = (s[i] + (i ? h[i - 1] : 0) * P) % MOD;
   for (int i = 0: i < n: i++) h2[i] = (s[i] + (i ? h2[i - 1] : 0) * P) %
   for (int i = n - 1; i >= 0; i--)
     hi[i] = (s[i] + (i + 1 < n ? hi[i + 1] : 0) * P) % MOD;
   for (int i = n - 1; i >= 0; i--)
     hi2[i] = (s[i] + (i + 1 < n ? hi2[i + 1] : 0) * P) % MOD2;
 pii query(int 1, int r) {
   ll hash = (h[r] - (1 ? h[1 - 1] * p[r - 1 + 1] % MOD : 0));
```

```
11 \text{ hash2} = (h2[r] - (1 ? h2[1 - 1] * p2[r - 1 + 1] % MOD2 : 0));
    return {(hash < 0 ? hash + MOD : hash), (hash2 < 0 ? hash2 + MOD2 : hash2)
   }:
  }
  pii query_inv(int 1, int r) {
   ll hash = (hi[1] - (r + 1 < n ? hi[r + 1] * p[r - 1 + 1] % MOD : 0));
   ll hash2 = (hi2[1] - (r + 1 < n ? hi2[r + 1] * p2[r - 1 + 1] % MOD2 : 0));
    return {(hash < 0 ? hash + MOD : hash), (hash2 < 0 ? hash2 + MOD2 : hash2)
 }
};
     Hash Range Query
struct Hash {
  const 11 P = 31;
  const 11 \mod = 1e9 + 7;
  string s;
  int n;
  vll h. hi. p:
  Hash() {}
  Hash(string s) : s(s), n(s.size()), h(n), hi(n), p(n) {
   for (int i = 0; i < n; i++) p[i] = (i ? P * p[i - 1] : 1) % mod;
    for (int i = 0; i < n; i++) h[i] = (s[i] + (i ? h[i - 1] : 0) * P) % mod;
   for (int i = n - 1; i >= 0; i - -)
      hi[i] = (s[i] + (i + 1 < n ? hi[i + 1] : 0) * P) \% mod;
  11 query(int 1, int r) {
    ll hash = (h[r] - (1?h[1 - 1] * p[r - 1 + 1] % mod : 0));
    return hash < 0 ? hash + mod : hash;</pre>
 11 query_inv(int 1, int r) {
   ll hash = (hi[1] - (r + 1 < n ? hi[r + 1] * p[r - 1 + 1] % mod : 0));
    return hash < 0 ? hash + mod : hash;</pre>
};
8.4 K-th digit in digit string
Find the k-th digit in a digit string, only works for 1 \le k \le 10^{18}!
Time: precompute O(1), query O(1)
using vull = vector<ull>:
vull pow10;
vector < array < ull, 4>> memo;
void precompute(int maxpow = 18) {
  ull atd = 1:
  ull start = 1:
  ull end = 9;
  ull curlenght = 9;
  ull startstr = 1:
  ull endstr = 9;
  for (ull i = 0, j = 111; (int)i < maxpow; i++, j *= 1011) pow10.eb(j);
  for (ull i = 0: i < maxpow - 1ull: i++) {
    memo.push_back({start, end, startstr, endstr});
```

```
start = end + 111;
    end = end + (911 * pow10[qtd]);
    curlenght = end - start + 1ull;
    qtd++;
    startstr = endstr + 1ull;
    endstr = (endstr + 1ull) + (curlenght)*qtd - 1ull;
char kthDigit(ull k) {
  int qtd = 1;
  for (auto [s, e, ss, es] : memo) {
    if (k \ge ss and k \le ss) {
      ull pos = k - ss;
      ull index = pos / qtd;
      ull nmr = s + index;
      int i = k - ss - qtd * index;
      return ((nmr / pow10[qtd - i - 1]) % 10) + '0';
    }
    qtd++;
  return 'X';
```

8.5 Longest Palindrome Substring (Manacher)

Finds the longest palindrome substring, manacher returns a vector where the i-th position is how much is possible to grow the string to the left and the right of i and keep it a palindrome. Time: O(N)

```
vi manacher(string s) {
 string t2;
 for (auto c : s) t2 += string("#") + c;
 t2 = t2 + '#';
 int n = t2.size():
  t2 = "\$" + t2 + "^";
 vi p(n + 2);
 int l = 1, r = 1:
 for (int i = 1; i <= n; i++) {
    p[i] = max(0, min(r - i, p[l + (r - i)]));
    while (t2[i - p[i]] == t2[i + p[i]]) {
     p[i]++;
    if (i + p[i] > r) {
     l = i - p[i], r = i + p[i];
   p[i]--;
 return vi(begin(p) + 1, end(p) - 1);
string longest_palindrome(const string &s) {
 vi xs = manacher(s);
 string s2:
 for (auto c : s) s2 += string("#") + c;
 s2 = s2 + '#';
```

```
int mpos = 0;
  for (int i = 0; i < len(xs); i++) {</pre>
   if (xs[i] > xs[mpos]) {
      mpos = i;
   }
 }
  string ans;
  int k = xs[mpos]:
  for (int i = mpos - k; i <= mpos + k; i++) {</pre>
   if (s2[i] != '#') {
      ans += s2[i]:
 }
 return ans;
void run() {
  string s;
  cin >> s;
 auto ans = longest_palindrome(s);
  cout << ans << endl;</pre>
     Rabin Karp
size_t rabin_karp(const string &s, const string &p) {
  if (s.size() < p.size()) return 0;</pre>
  auto n = s.size(), m = p.size();
  const 11 p1 = 31, p2 = 29, q1 = 1e9 + 7, q2 = 1e9 + 9;
  const 11 p1_1 = fpow(p1, q1 - 2, q1), p1_2 = fpow(p1, m - 1, q1);
  const 11 p2_1 = fpow(p2, q2 - 2, q2), p2_2 = fpow(p2, m - 1, q2);
  pair < ll, ll > hs, hp;
  for (int i = (int)m - 1; ~i; --i) {
   hs.first = (hs.first * p1) % q1;
   hs.first = (hs.first + (s[i] - 'a' + 1)) % q1;
   hs.second = (hs.second * p2) % q2;
   hs.second = (hs.second + (s[i] - 'a' + 1)) \% q2;
    hp.first = (hp.first * p1) % q1;
   hp.first = (hp.first + (p[i] - 'a' + 1)) % q1;
   hp.second = (hp.second * p2) % q2;
   hp.second = (hp.second + (p[i] - 'a' + 1)) % q2;
  size_t occ = 0;
  for (size_t i = 0; i < n - m; i++) {</pre>
   occ += (hs == hp):
   int fi = s[i] - 'a' + 1;
    int fm = s[i + m] - 'a' + 1;
   hs.first = (hs.first - fi + q1) % q1;
   hs.first = (hs.first * p1_1) % q1;
   hs.first = (hs.first + fm * p1_2) % q1;
```

```
hs.second = (hs.second - fi + q2) % q2;
    hs.second = (hs.second * p2_1) % q2;
    hs.second = (hs.second + fm * p2_2) \% q2;
  occ += hs == hp;
  return occ;
      String Psum
struct strPsum {
  11 n:
  11 k:
  vector <vll> psum;
  strPsum(const string &s) : n(s.size()), k(100), psum(k, vll(n + 1)) {
    for (ll i = 1; i <= n; ++i) {
      for (11 j = 0; j < k; ++j) {
        psum[j][i] = psum[j][i - 1];
      psum[s[i - 1]][i]++;
   }
  ll qtd(ll l, ll r, char c) { // [0,n-1]
    return psum[c][r + 1] - psum[c][1];
 }
     Suffix Automaton (complete)
struct state {
  int len, link, cnt, firstpos;
  // this can be optimized using a vector with the alphabet size
  map < char , int > next;
  vi inv_link;
};
struct SuffixAutomaton {
  vector < state > st;
  int sz = 0:
  int last;
  vc cloned:
  SuffixAutomaton(const string &s, int maxlen)
    : st(maxlen * 2), cloned(maxlen * 2) {
    st[0].len = 0;
    st[0].link = -1:
    sz++;
    last = 0;
    for (auto &c : s) add_char(c);
    // precompute for count occurences
    for (int i = 1; i < sz; i++) {</pre>
      st[i].cnt = !cloned[i];
    vector < pair < state, int >> aux;
    for (int i = 0; i < sz; i++) {</pre>
      aux.push back({st[i], i}):
```

```
sort(all(aux), [](const pair<state, int> &a, const pair<state, int> &b) {
   return a.fst.len > b.fst.len:
 });
 for (auto &[stt, id] : aux) {
   if (stt.link != -1) {
      st[stt.link].cnt += st[id].cnt;
 }
 // for find every occurende position
 for (int v = 1; v < sz; v++) {</pre>
    st[st[v].link].inv_link.push_back(v);
}
void add_char(char c) {
 int cur = sz++:
 st[cur].len = st[last].len + 1;
  st[cur].firstpos = st[cur].len - 1;
 int p = last:
 // follow the suffix link until find a transition to c
  while (p != -1 and !st[p].next.count(c)) {
    st[p].next[c] = cur;
   p = st[p].link;
 // there was no transition to c so create and leave
 if (p == -1) {
   st[cur].link = 0;
   last = cur;
   return;
  int q = st[p].next[c];
  if (st[p].len + 1 == st[q].len) {
    st[cur].link = q;
 } else {
   int clone = sz++;
    cloned[clone] = true;
    st[clone].len = st[p].len + 1;
    st[clone].next = st[q].next;
    st[clone].link = st[q].link;
    st[clone].firstpos = st[q].firstpos;
    while (p != -1 and st[p].next[c] == q) {
      st[p].next[c] = clone;
     p = st[p].link;
    st[q].link = st[cur].link = clone;
 last = cur:
bool checkOccurrence(const string &t) { // O(len(t))
 int cur = 0;
 for (auto &c : t) {
   if (!st[cur].next.count(c)) return false:
```

```
cur = st[cur].next[c];
    }
    return true;
  11 totalSubstrings() { // distinct, O(len(s))
   11 \text{ tot} = 0:
    for (int i = 1; i < sz; i++) {</pre>
      tot += st[i].len - st[st[i].link].len;
    return tot:
  // count occurences of a given string t
  int countOccurences(const string &t) {
    int cur = 0:
    for (auto &c : t) {
      if (!st[cur].next.count(c)) return 0:
      cur = st[cur].next[c]:
    return st[cur].cnt;
  // find the first index where t appears a substring O(len(t))
  int firstOccurence(const string &t) {
    int cur = 0:
    for (auto c : t) {
      if (!st[cur].next.count(c)) return -1;
      cur = st[cur].next[c]:
    return st[cur].firstpos - len(t) + 1;
  vi everyOccurence(const string &t) {
    int cur = 0:
    for (auto c : t) {
      if (!st[cur].next.count(c)) return {};
      cur = st[cur].next[c];
    getEveryOccurence(cur, len(t), ans);
    return ans:
  void getEveryOccurence(int v, int P_length, vi &ans) {
    if (!cloned[v]) ans.pb(st[v].firstpos - P_length + 1);
    for (int u : st[v].inv_link) getEveryOccurence(u, P_length, ans);
};
     Z-function get occurrence positions
O(len(s) + len(p))
```

```
vi getOccPos(string &s, string &p) {
 // Z-function
 char delim = '#';
 string t{p + delim + s}:
 vi zs(len(t));
```

```
int 1 = 0, r = 0;
for (int i = 1; i < len(t); i++) {</pre>
  if (i \le r) zs[i] = min(zs[i - 1], r - i + 1);
  while (zs[i] + i < len(t) and t[zs[i]] == t[i + zs[i]]) zs[i]++;
  if (r < i + zs[i] - 1) l = i, r = i + zs[i] - 1;
// Iterate over the results of Z-function to get ranges
int start = len(p) + 1 + 1 - 1:
for (int i = start; i < len(zs); i++) {</pre>
  if (zs[i] == len(p)) {
    int l = i - start;
    ans.emplace_back(1);
}
return ans:
```

Settings and macros

9.1 short-macro.cpp

```
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define fastio
 ios_base::sync_with_stdio(false); \
  cin.tie(0):
 cout.tie(0);
#define len(__x) (int) __x.size()
using 11 = long long;
using pii = pair<int, int>;
#define all(a) a.begin(), a.end()
void run() {}
int32_t main(void) {
 fastio:
 int t:
  t = 1;
 // cin >> t;
  while (t--) run();
```

9.2 debug.cpp

```
#include <bits/stdc++.h>
using namespace std:
/****** Debug Code ******/
template <typename T>
concept Printable = requires(T t) {
    { std::cout << t } -> std::same_as<std::ostream &>;
template <Printable T>
void __print(const T &x) {
```

```
cerr << x:
template <size_t T>
void __print(const bitset<T> &x) {
    cerr << x;
template <typename A, typename B>
void __print(const pair<A, B> &p);
template <typename... A>
void __print(const tuple<A...> &t);
template <typename T>
void __print(stack<T> s);
template <typename T>
void __print(queue < T > q);
template <typename T, typename... U>
void __print(priority_queue <T, U...> q);
template <typename A>
void __print(const A &x) {
    bool first = true;
    cerr << '{':
    for (const auto &i : x) {
        cerr << (first ? "" : ","), __print(i);</pre>
        first = false:
    }
    cerr << '}';
}
template <typename A, typename B>
void __print(const pair<A, B> &p) {
    cerr << '(';
    __print(p.first);
    cerr << ',';
    __print(p.second);
    cerr << ')':
template <typename... A>
void __print(const tuple < A... > &t) {
    bool first = true;
    cerr << '(';
    apply(
        [&first](const auto &...args) {
            ((cerr << (first ? "" : ","), __print(args), first = false), ...);
        },
        t);
    cerr << ')':
template <typename T>
void __print(stack<T> s) {
    vector <T> debugVector;
    while (!s.empty()) {
        T t = s.top();
        debugVector.push_back(t);
        s.pop();
    reverse(debugVector.begin(), debugVector.end());
    __print(debugVector);
template <tvpename T>
void __print(queue < T > q) {
```

```
vector < T > debugVector;
    while (!q.empty()) {
       T t = q.front();
        debugVector.push_back(t);
        q.pop();
    __print(debugVector);
template <typename T, typename... U>
void __print(priority_queue < T, U... > q) {
    vector <T> debugVector;
    while (!q.empty()) {
       T t = q.top();
        debugVector.push_back(t);
        q.pop();
    __print(debugVector);
void _print() { cerr << "]\n"; }</pre>
template <typename Head, typename... Tail>
void _print(const Head &H, const Tail &...T) {
    __print(H);
    if (sizeof...(T)) cerr << ".":</pre>
    _print(T...);
#define dbg(x...)
    cerr << "[" << #x << "] = [": \
    _print(x)
9.3 vimrc
set ts=4 sw=4 sta nu rnu sc cindent
set bg=dark ruler clipboard=unnamed,unnamedplus, timeoutlen=100
colorscheme default
nnoremap <C-j>:botright belowright term bash <CR>
syntax on
9.4 .bashrc
 g++ -std=c++20 -fsanitize=address, undefined -Wall $1 && time ./a.out
cpp() {
  echo ">> COMPILING <<" 1>&2
  g++ -std=c++17 \
      -02 \
      -g \
      -g3 \
      -Wextra \
      -Wshadow \
      -Wformat=2 \
      -Wconversion \
      -fsanitize=address.undefined \
      -fno-sanitize-recover \
      -Wfatal-errors \
```

```
$1
 if [ $? -ne 0 ]; then
      echo ">> FAILED <<" 1>&2
      return 1
 fi
 echo ">> DONE << " 1>&2
 time ./a.out ${0:2}
prepare() {
    cp debug.cpp ./
    for i in {a..z}
        cp macro.cpp $i.cpp
        touch $i.py
    for i in {1..10}
    dо
        touch in${i}
        touch out${i}
        touch ans${i}
    done
}
9.5
    macro.cpp
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "debug.cpp"
#endif
#define endl '\n'
#define fastio
 ios_base::sync_with_stdio(false); \
 cin.tie(0);
 cout.tie(0);
```

#define len(__x) (int)__x.size()

```
using 11 = long long;
using ull = unsigned long long;
using ld = long double;
using vll = vector<ll>;
using pll = pair<11, 11>;
using v112d = vector < v11>;
using vi = vector<int>;
using vi2d = vector < vi>;
using pii = pair<int, int>;
using vii = vector<pii>;
using vc = vector < char >;
#define all(a) a.begin(), a.end()
#define pb(___x) push_back(___x)
#define mp(__a, __b) make_pair(__a, __b)
#define eb(___x) emplace_back(___x)
// vector<string> dir({"LU", "U", "RU", "R", "RD", "D", "LD", "L"});
// int dx[] = \{-1, -1, -1, 0, 1, 1, 1, 0\};
// int dv[] = \{-1, 0, 1, 1, 1, 0, -1, -1\};
vector < string > dir({"U", "R", "D", "L"});
int dx[] = \{-1, 0, 1, 0\};
int dy[] = \{0, 1, 0, -1\};
const ll oo = 1e18;
auto solve() {}
int32_t main(void) {
#ifndef LOCAL
 fastio;
#endif
 int t;
 t = 1:
 // cin >> t:
for (int i = 1; i <= t; i++) {
   solve();
}
}
```