

## Механико-математический факультет

### Алгебра, 3 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Авторы: Соколов Егор

Группа: 208

Контакт: Мой телеграм для связи

# Содержание

| 1 | 1 Группы               |    |  |  |
|---|------------------------|----|--|--|
|   | 1.1 Основные понятия   |    |  |  |
|   | 1.2 Циклические группы | 9  |  |  |
|   | 1.3 Смежные классы     | 1  |  |  |
|   | 1.4 Факторгруппа       | 10 |  |  |
|   | 1.5 Гомоморфизмы групп | 1' |  |  |
| 2 | Свободные группы       | 20 |  |  |

## 1 Группы

#### 1.1 Основные понятия

**Определение.** Пусть G - множество. Бинарной операцией на G называется отображение  $*: G \times G \to G$ .

**Определение.** Множество G с бинарной операцией \* называется группой, если выполнены следующие аксиомы:

- 1.  $\forall a, b, c \in G \ \ a * (b * c) = (a * b) * c;$
- 2.  $\exists e \in G : \forall a \in G \ a * e = e * a = a;$
- 3.  $\forall a \in G \ \exists b \in G : a * b = b * a = e$

Различные формы записи группы:

1. Мультипликативная форма (терминология):

Операция - " · " (умножение);

Нейтральный элемент - единичный (1);

Элемент из аксиомы 3 - обратный  $(a^{-1}$  для  $a \in G)$ ;

2. Аддитивная форма (терминология):

Операция - " + " (сложение);

Нейтральный элемент - нулевой (0);

Элемент из аксиомы 3 - противоположный (-a для  $a \in G)$ ;

**Определение.** Если G - группа и  $\forall a,b \in G \ a \cdot b = b \cdot a,$  то G - абелева (коммутативная) группа.

Замечание. Обычно для обозначения абелевых групп будем использовать аддитивную форму записи, для иных - мультипликативную.

Утверждение (Простейшие свойства групп).

- 1. Единичный элемент единственный;
- 2.  $\forall a \in G$  обратный к а элемент единственный;
- $\beta. (ab)^{-1} = b^{-1}a^{-1};$
- 4. Если  $a,b \in G$ , то решение уравнения ax = b (xa = b) единственно.

Доказательство.

- 1. (От противного) Допустим, что  $\exists e_1, e_2 \in A$  единичные. Тогда  $e_1 = e_1 * e_2 = e_2$  по определению единичного элемента.
- 2. Допустим  $\exists b_1, b_2$  обратные к a элементы:  $b_1 \neq b_2$  В силу ассоциативности:

$$b_1 * (a * b_2) = (b_1 * a) * b_2$$
  
 $b_1 * e = e * b_2$   
 $b_1 = b_2$ 

3. 
$$abb^{-1}a^{-1} = aea^{-1} = e;$$
  
 $b^{-1}a^{-1}ab = b^{-1}eb = e \Longrightarrow (ab)^{-1} = b^{-1}a^{-1}$ 

4. 
$$ax = b \iff a^{-1}ax = a^{-1}b \iff x = a^{-1}b;$$
  
 $xa = b \iff xaa^{-1} = ba^{-1} \iff x = ba^{-1};$ 

**Определение.** Мощность множества G называется порядком группы G. Обозначается |G|.

Если  $|G| < \infty$ , то группа называется конечной, иначе бесконечной.

## Примеры.

- 1.  $(\mathbb{Z}, +), (\mathbb{Z}_n, +);$
- 2.  $GL_n(F)$  группа невырожденных матриц порядка n с коэффициентами из поля F:
- 3. Пусть  $\Omega$  множество. Преобразованиями  $\Omega$  назовём биекции  $f:\Omega \to \Omega$ .  $S(\Omega)$  множество всех преобразований  $\Omega$  образует группу относительно композиции.

Если  $\Omega = \{1, ..., n\}$ , то  $S(n) = S_n$  - группа подстановок.

4. Если  $G = \{a_1, ..., a_n\}$  - конечная группа, то её можно задать с помощью таблицы умножения (таблицы Кэли).

Например, для  $Z_2 = \{0, 1\}$ :

|   | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |

5. Группа кватернионов:  $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$  Таблица Кэли для кватернионов:

|   | 1 | i  | j  | k  |
|---|---|----|----|----|
| 1 | 1 | i  | j  | k  |
| i | i | -1 | k  | -j |
| j | j | -k | -1 | i  |
| k | k | j  | i  | -1 |

**Определение.** Подмножество  $H\subseteq G$  называется подгруппой группы G, если:

- 1.  $\forall a, b \in H \ ab \in H$ ;
- $2. \ \forall a \in H \ a^{-1} \in H;$
- 3.  $1 \in H$  (можно заменить на  $H \neq \varnothing$ )

Обозначается  $H \leq G$ .

**Утверждение.** Подгруппа H группы G является группой относительно бинарной операции группы G.

#### Примеры.

- 1.  $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} \ (\mathbb{N} \nleq \mathbb{Z},$ т.к. не группа);
- 2.  $GL_n(F) \geq SL_n(F) = \{A \in GL_n(F) | \det A = 1\}$  унимодулярная группа.
- 3.  $GL_n(F) \ge O_n(F) \ge SO_n(F) \ (O_n(F)$  ортогональная группа,  $SO_n(F)$  специальная ортогональная группа);
- 4.  $GL_n(F) \ge$  группа строго треугольных матриц.

**Определение.** Любая подгруппа группы  $S(\Omega)$  называется группой преобразований множества  $\Omega$ .

## Примеры.

- 1.  $GL(V) (\leq S(V))$  группа всех невырожденных линейных операторов векторного пространства V;
- 2.  $Aff(\mathbb{A})$  группа всех невырожденных аффинных преобразований аффинного пространства  $\mathbb{A}$ ;

3.  $\mathcal{E}^2$  - аффинно-евклидово двумерное пространство. Ізот  $\mathcal{E}^2$  - группа изометрий (движений) на  $\mathcal{E}^2$ . Ізот  $\mathcal{E}^2 \geq O_2 \geq SO_2$ , где  $O_2$  - группа движений, сохраняющих точку O,  $SO_2$  - группа поворотов вокруг точки O.

- 4.  $T\subseteq \mathcal{E}^2$  некоторая фигура. Sym  $T=\{f\in \mathrm{Isom}\ \mathcal{E}^2\mid f(T)=T\}$  - группа симметрий фигуры T.
  - Если T окружность с центром в точке O, то Sym  $T = O_2$ ;
  - Если T правильный n-угольник с центром в точке O, то Sym  $T=D_n$  группа Диэдра.

 $|D_n| = 2n$  - n поворотов и n симметрий.

**Определение.** Пусть  $(G_1,*,e_1),(G_2,\circ,e_2)$  - группы. Отображение  $\varphi:G_1\to G_2$  - изоморфизм, если

- 1.  $\varphi$  биекция;
- 2.  $\forall a, b \in G_1 \ \varphi(a * b) = \varphi(a) * \varphi(b)$

Если между  $G_1$  и  $G_2$  существует изоморфизм, то  $G_1$  и  $G_2$  называются изоморфными. Обозначается  $G_1 \simeq G_2$ .

Пример.  $D_3 \simeq S_3$ .

 $\mathcal{A}$ оказательство.  $D_3$  - группа движений, переводящая равносторонний треугольник в себя. Если пронумеровать вершины изначального треугольника, то каждый элемент группы  $D_3$  будет соответствовать подстановке, переводящей старый порядок вершин в новый. Определение изоморфизма проверяется очевидно.

**Утверждение.** Изоморфность групп - отношение эквивалентности на множестве групп.

Утверждение (Свойства изоморфизмов).

- 1.  $\varphi(e_1) = e_2;$
- 2.  $\varphi(a^{-1}) = (\varphi(a))^{-1};$
- 3.  $G_1 \simeq G_2 \Longrightarrow |G_1| = |G_2|$ .

3амечание. Обратное утверждение неверно (например,  $S_3 \ncong \mathbb{Z}_6$ ).

Пример.  $SO_2 \simeq (U, \cdot)$ , где  $U = \{z \in \mathbb{C} : |z| = 1\}$ .

**Определение.** Пусть  $(G, \cdot, e)$  - группа,  $k \in \mathbb{Z}, g \in G$ . Мультипликативный термин - элемент g в степени k:

$$g^{k} = \begin{cases} \underbrace{g \cdot g \cdot \dots \cdot g, k > 0}_{k} \\ \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{-k}, k < 0 \\ \underbrace{e, k = 0} \end{cases}$$

**Определение.** Пусть (G, +, e) - группа,  $k \in \mathbb{Z}, g \in G$ . Аддитивный термин - кратное элемента g:

$$kg = \begin{cases} \underbrace{g + g + \dots + g, k > 0}_{k} \\ \underbrace{(-g) + (-g) + \dots + (-g)}_{-k}, k < 0 \\ e, k = 0 \end{cases}$$

**Утверждение** (Свойства  $(k, m \in \mathbb{Z}, g \in G)$ ).

1. 
$$g^k \cdot g^m = g^{k+m}$$
;

2. 
$$(g^k)^m = g^{km}$$
;

3. 
$$(g^k)^{-1} = g^{-k}$$
.

**Утверждение.** Множество всех элементов  $g^k$ , где  $k \in \mathbb{Z}$ ,  $g \in G$ , образует подгруппу в G. Обозначается  $\langle g \rangle = \{e, g, g^{-1}, g^2, g^{-2}, ...\}$ .

**Определение.**  $\langle g \rangle$  - циклическая подгруппа. порождённая элементом g.

### Примеры.

1. 
$$G=\mathbb{Z}:\langle 2\rangle=2\mathbb{Z}$$
 - чётные целые числа;

2. 
$$G = \mathbb{Z}_6 : \langle 2 \rangle = \{0, 2, 4\};$$

3. 
$$G = \mathbb{C} : \langle i \rangle = \{\pm 1, \pm i\}$$

Пусть  $(G, \cdot, e)$  - группа,  $g \in G$ . Если  $\forall k, m \in \mathbb{Z} : k \neq m \Longrightarrow g^k \neq g^m$ , то  $\langle g \rangle$  - бесконечная (элемент g имеет бесконечный порядок).

Если  $\exists k, m \in \mathbb{Z} : k \neq m, g^k = g^m \Longrightarrow g^{k-m} = e \Longrightarrow$  существует наименьшее  $n \in \mathbb{N}$  такое, что  $g^n = e$  (элемент g имеет порядок n)

**Определение.** Порядком элемента  $g \in G$  называется наименьшее натуральное число n такое, что  $g^n = e$ , если такое существует. Иначе говорят, что элемент g имеет бесконечный порядок. Обозначается ord g.

#### Примеры.

- 1.  $G = \mathbb{Z}$ : ord  $2 = \infty$ ;
- 2.  $G = \mathbb{Z}_{12}$ : ord 2 = 6;
- 3.  $G = \mathbb{C}^*$  : ord  $2 = \infty$  ( $\mathbb{C}^*$  мультипликативная группа поля,  $\mathbb{C} \setminus \{0\}$  относительно умножения).

Утверждение 1 (Свойства элементов конечного порядка).

- 1.  $q^m = e \iff \text{ord } q \mid m$ ;
- 2.  $g^m = g^l \iff k \equiv l \pmod{g}$

Доказательство.

1. Разделим m на  $n = \operatorname{ord} g$  с остатком: m = nq + r, где  $0 \leqslant r < n$ . Тогда:

$$e = g^m = (g^n)^q \cdot g^r = g^r \Longrightarrow r = 0$$

так как r < n, где n - минимальное натуральное число такое, что  $g^n = 0$ .

2. Следует из 1.

Следствие. ord  $g = |\langle g \rangle|$ 

Доказательство. Если ord  $g=\infty: \forall k\neq l\ g^k\neq g^l\Longrightarrow$  подгруппа  $\langle g\rangle=\{e,g^{\pm 1},g^{\pm 2},...\}$  бесконечна.

Если ord  $g=n:\langle g\rangle=\{e,g^1,...g^{n-1}\}$  - все эти элементы различны из пункта 2 утверждения, а других нет по определению порядка.

## Примеры.

1. 
$$i \in \mathbb{C}^*$$
 - ord  $i = 4$ ;

2.  $\sigma \in S_n$ :

Если 
$$\sigma = (i_1, ..., i_k)$$
 - цикл длины  $k$ , то ord  $\sigma = k$ .

Так как любая подстановка раскладывается в произведение независимых циклов и независимые циклы коммутируют, если  $\sigma = \tau_1...\tau_n$ , где  $\tau_i$  - независимые циклы, то верно: ord  $\sigma = \text{HOK }\{|\tau_1|,...,|\tau_n|\}$ .

Например, 
$$\sigma = (23)(145) \Longrightarrow \text{ ord } \sigma = 6.$$

Утверждение 2. Пусть n = ord g. Тогда ord  $g^k = \frac{n}{HOZ(n,k)}$ .

Доказательство. Пусть ord  $g^k = m$ . Из утверждения 1:  $g^{mk} = e \iff n|mk$ , откуда  $\frac{n}{\text{HOД}(n,k)}|m$ , т.е.  $m \geqslant \frac{n}{\text{HOД}(n,k)}$ . Очевидно, что при  $m = \frac{n}{\text{HOД}(n,k)} \, n|mk$ .  $\square$ 

**Определение.** Множество  $S \subseteq G$  называется порождающим множеством для группы G, если  $\forall g \in G \ \exists s_1,...,s_k \in S : g = s_1^{\varepsilon_1}...s_k^{\varepsilon_k}$ , где  $\varepsilon_i = \pm 1$  ( $s_i$  не обязательно различны).

При этом говорят, что G порождается множеством S.

Если  $\exists$  конечное множество S такое, что S порождает G, то G называется конечно порождённой, и бесконечно порождённой иначе.

Обозначается  $\langle S \rangle = \{s_1^{\varepsilon_1}...s_k^{\varepsilon_k}|\varepsilon_i=\pm 1\}$  - группа, порождённая S.

#### Примеры.

- 1.  $S_n = \langle \text{все транспозиции} \rangle;$
- 2.  $GL_n(F) = \langle \text{все элементарные матрицы} \rangle$
- 3.  $Q_8 = \langle i, j \rangle;$
- 4.  $D_n=\langle \alpha,s \rangle$ , где  $\alpha$  поворот на  $\frac{2\pi}{n}$ , а s любая из симметрий.
- 5. Группа Клейна:  $H = \{ \mathrm{id}, a = (12)(34), b = (13)(24), c = (14)(23) \} \leq S_4$  Это группа симметрий прямоугольника, не являющегося квадратом: a, c симметрии относительно средних линий, b поворот на  $\pi$  вокруг центра. Таблица Кэли для группы Клейна:

|   | e            | a | b | $^{\mathrm{c}}$ |
|---|--------------|---|---|-----------------|
| е | е            | a | b | c               |
| a | a            | е | c | b               |
| b | b            | c | е | a               |
| С | $\mathbf{c}$ | b | a | е               |

Отсюда  $\{e,a,b,c\} = \langle a,b \rangle$ .

6. Q - бесконечно порождённая.

## 1.2 Циклические группы

**Определение.** Группа G называется циклической, если G порождается одним элементом, т.е.  $\exists g \in G : \forall h \in G \ \exists k \in \mathbb{Z} : h = g^k$ . Элемент g также называется образующим элементом группы G.

#### Примеры.

- 1.  $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$ ,  $\mathbb{Z}_n = \langle 1 \rangle$ ;
- 2.  $U_n$  множество всех комплексных корней степени n из 1.  $U_n$  группа относительно умножения, причём  $U_n = \langle \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \rangle$ .

**Утверждение 3.** Если  $G = \langle g \rangle$ , mo |G| = ord g.

3амечание. Далее циклическую группу порядка n обозначаем  $\langle g \rangle_n$ 

Утверждение 4. Пусть  $G = \langle g \rangle_n$ . Тогда  $G = \langle g^k \rangle \iff \operatorname{HOД}(k,n) = 1$ .

Доказательство. Из утверждения 3 |G| = ord g. Тогда:

$$G = \langle g^k \rangle \iff \text{ord } g^k = \frac{n}{\text{HOД}(n,k)} = n \iff \text{HOД}(n,k) = 1$$

Теорема 1 (Классификация циклических групп).

- 1. Если циклическая группа G бесконечна, то  $G \simeq \mathbb{Z}$ ;
- 2. Если циклическая группа G конечна и имеет порядок n, то  $G \simeq \mathbb{Z}_n$ .

Доказательство.

1. Пусть ord  $g = \infty, \forall h \in g \; \exists k \in \mathbb{Z} : h = g^k$  Рассмотрим отображение  $\varphi : G \to \mathbb{Z}$  такого вида:  $\varphi : g^k \mapsto k$ . Очевидно, что  $\varphi$  - сюръекция (в  $k \in \mathbb{Z}$  перешёл  $g^k \in G$ ).  $\varphi(g^k) = \varphi(g^m) \Longrightarrow k = m \Longrightarrow g^k = g^m$  - отсюда  $\varphi$  - инъекция. Проверим сохранение операции:

$$\varphi(g^k \cdot g^m) = \varphi(g^{k+m}) = k + m = \varphi(g^k) + \varphi(g^m)$$

Отсюда  $\varphi$  - изоморфизм.

2. Пусть ord g=n. Рассмотрим отображение  $\varphi:\mathbb{Z}_n\to G$  такого вида:  $\varphi:k\mapsto g^k$ . Очевидно, что  $\varphi$  - сюръекция (в  $g^k\in G$  перешёл  $k\in\mathbb{Z}_n$ ).

 $k \equiv m \pmod{n} \Longleftrightarrow g^k = g^m$  - отсюда  $\varphi$  - инъекция.

Сохранение операции - аналогично пункту 1.

Отсюда  $\varphi$  - изоморфизм.

Следствие. Если  $G_1, G_2$  - циклические группы, то  $G_1 \simeq G_2 \Longleftrightarrow |G_1| = |G_2|$ .

Доказательство.

⇒: верно всегда;

 $\iff :$  из теоремы: если  $G_1$  бесконечна, то  $G_1 \simeq \mathbb{Z} \simeq G_2$ , иначе  $G_1 \simeq \mathbb{Z}_n \simeq G_2$ , где  $n = |G_1| = |G_2|$ .

#### Теорема 2.

- 1. Любая подгруппа циклической группы является циклической.
- 2. Подгруппы циклической группы G порядка n находятся во взаимно однозначном соответствии c делителями n, m.e.

$$\forall H \le G \mid H \mid \mid n \mid u \mid \forall d \mid n \mid \exists ! \mid H \le G : \mid H \mid = d$$

3. Подгруппы группы  $\mathbb Z$  исчерпываются группами  $k\mathbb Z=\langle k\rangle,\ \epsilon\partial e\ k\in\mathbb N\cup\{0\}.$ 

Доказательство.

1. Пусть  $G = \langle g \rangle, H \leq G$ . Если  $H = \{e\}$ , то  $H = \langle e \rangle$ .

При  $H \neq \{e\}$ :  $\forall h \in H \; \exists k \in \mathbb{Z} : h = g^k$ . Так как  $g^k \in H \Longrightarrow g^{-k} \in H$  и в H есть элемент, отличный от e,  $\exists$  наименьшее  $k \in \mathbb{N} : g^k \in H$ .

Докажем, что  $H = \langle g^k \rangle$ . Рассмотрим произвольный  $g^m \in H$ . Разделим m на k с остатком:  $m = kq + r, 0 \leqslant r < k$ . Тогда:

$$g^m = (g^k)^q \cdot g^r \Longrightarrow g^r = (g^k)^{-q} \cdot g^m \Longrightarrow r = 0$$
, т.к. k - наименьшее  $\in \mathbb{N}$ 

2.  $G = \langle g \rangle_n, H \leq G \Longrightarrow_{(1)} H = \langle g^k \rangle.$ 

Так как  $g^n=e\in H$ , то в силу рассуждений пункта 1 при m=n получаем  $k|n\Longrightarrow n=kq.$ 

Отсюда  $H = \{e, g^k, g^{2k}, ..., g^{(q-1)k}\} \Longrightarrow |H| = q$ , где q|n.

Обратно,  $\forall d | n \; \exists ! H = \langle g^{\frac{n}{d}} \rangle$  (в силу описания выше других подгрупп такого порядка нет).

3. Из пункта 1 в аддитивной форме получаем, что  $H \leq \mathbb{Z} = \langle 1 \rangle \Longrightarrow H = \langle k \cdot 1 \rangle$ 

**Следствие.** В циклической группе простого порядка существуют ровно две подгруппы - тривиальная и сама группа.

#### Примеры.

- 1.  $H \leq \mathbb{Z}_5 \Longrightarrow H = \{0\}, H = \mathbb{Z}_5;$
- 2.  $H \leq \mathbb{Z}_6 \Longrightarrow H = \{0\}, H = \langle 2 \rangle, H = \langle 3 \rangle, H = \mathbb{Z}_6.$

#### 1.3 Смежные классы

**Определение.** Пусть  $(G, \cdot, e)$  - произвольная группа,  $H \leq G, g \in G$ . Рассмотрим множества:

 $gH = \{gh|h \in H\}$  - левый смежный класс G по H с представителем g  $Hg = \{hg|h \in H\}$  - правый смежный класс G по H с представителем g

Утверждение (Свойства смежных классов).

- 1.  $\forall a \in G \ a \in aH$ ;
- 2. если  $a \in bH$ , то bH = aH; в частности, любые два смежных класса либо не пересекаются, либо совпадают.
- 3.  $aH = bH \iff b^{-1}a \in H;$  (Верны аналогичные утверждения для правых смежных классов)

Доказательство.

- 1. Очевидно;
- 2.  $a \in bH \Longrightarrow \exists h \in H : a = bh \Longrightarrow \forall \tilde{h} \in H \ a\tilde{h} = bh\tilde{h} \in bH \Longrightarrow aH \subseteq bH$ . Аналогично  $bH \subseteq aH \Longrightarrow aH = bH$ .
- 3.  $\Longrightarrow$ :  $aH = bH \Longrightarrow a \in bH (a \in aH) \Longrightarrow \exists h \in H : a = bh \Longrightarrow b^{-1}a = h \in H$   $\Longleftrightarrow$ :  $b^{-1}a = h \in H \Longrightarrow a = bh \Longrightarrow aH = bH$  по пункту 2.

**Утверждение.** Отношение  $a \equiv b \pmod{H} \Leftrightarrow b^{-1}a \in H$  является отношением эквивалентности, причём классы эквивалентности совпадают с левыми смежными классами (аналогично  $ab^{-1} \in H$  для правых).

Доказательство.

- Рефлексивность:  $a^{-1}a = e \in H \Longrightarrow a \equiv a \pmod{H}$ ;
- Симметричность:  $a \equiv b \pmod{H} \Rightarrow b^{-1}a \in H \Rightarrow a^{-1}b = (b^{-1}a)^{-1} \in H \Rightarrow b \equiv a \pmod{H}$ ;
- Транзитивность:  $a \equiv b, b \equiv c \pmod{H} \Longrightarrow c^{-1}b, b^{-1}a \in H \Longrightarrow c^{-1}b \cdot b^{-1}a = c^{-1}a \in H \Longrightarrow a \equiv c \pmod{H}$ .

Совпадение классов эквивалентности с левыми смежными классами следует из пункта 3 предыдущего утверждения.

**Утверждение.** Если G - абелева, то  $\forall a \in G : aH = Ha$ . (В общем случае данное утверждение неверно).

Доказательство.  $\forall a \in G: \{ah: h \in H\} = \{ha: h \in H\} \Longrightarrow aH = Ha.$ 

#### Примеры.

- 1.  $H = \langle (12) \rangle \leq S_3$   $(H = \{id, (12)\}), g = (13).$  (13)(12) = (123); (12)(13) = (132). Тогда  $\{(13), (123)\} = gH \neq Hg = \{(13), (132)\}.$
- 2.  $H = 3\mathbb{Z} \leq \mathbb{Z}$ . Смежные классы  $3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$ .
- 3.  $H = \mathbb{R} \leq \mathbb{C}$ . Смежные классы  $a + bi + \mathbb{R} = bi + \mathbb{R}$ .

**Утверждение.** Множество  $\{aH: a \in G\}$  находится во взаимно однозначном соответствии с множеством  $\{Ha: a \in G\}$ .

Доказательство. 
$$gH \leftrightarrow Hg^{-1}: x = gh \in gH \leftrightarrow x^{-1} = h^{-1}g^{-1} \in Hg^{-1}.$$

Следствие.  $|\{aH: a \in G\}| = |\{Ha: a \in G\}|$ 

**Определение.** Мощность множества левых смежных классов группы G по подгруппе H называется индексом H в G. Обозначение: |G:H|

Пример.  $|\mathbb{Z}: 3\mathbb{Z}| = 3$ , т.к. смежные классы -  $\{3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}$ .

Теорема. (Теорема Лагранжа)

Пусть G - конечная группа,  $H \leq G$ . Тогда  $|G| = |H| \cdot |G:H|$ .

Доказательство. Так как  $|G| < \infty$ , то  $|H| < \infty$ , т.е.  $H = \{h_1, \dots, h_k\}$ .  $\forall g \in G, \ gH = \{gh_1, \dots, gh_k\}$ , причем  $gh_i = gh_j \Rightarrow h_i = h_j \Rightarrow |gH| = |H|$ . Отсюда, если |G:H| = n:

$$G = \bigsqcup_{i=1}^{n} a_i H \Longrightarrow |G| = \sum_{i=1}^{n} |a_i H| = |G: H| \cdot |H|$$

**Следствие 1.** Если G - конечная группа,  $H \leq G$ , то  $|H| \mid |G|$ . (Обратное утверждение неверно).

**Упражнение.** Пусть  $G = A_4$  (группа чётных перестановок).  $|A_4| = \frac{4!}{2} = 12$ . Докажем, что в  $A_4$  нет подгруппы порядка 6.

Предположим, что  $H \leq A_4$  и |H| = 6.  $A_4$  состоит из элемента id, 3 элементов вида (ab)(cd) и восьми элементов вида (abc). Значит, H содержит хотя бы один элемент вида (abc) (с точностью до перенумерования - (123)). Тогда H содержит и  $(123)^{-1} = (132)$ . Также знаем, что группа чётного порядка содержит элемент порядка 2 (иначе в группе все элементы, кроме e, разбиваются на пары обратных, и элементов нечётное число), поэтому H содержит  $\sigma = (**)(**)$ .

Рассмотрим  $\omega = \sigma(123)\sigma^{-1} = (\sigma(1), \sigma(2), \sigma(3))$  (это равенство легко проверить, подставив в него  $\sigma(1), ..., \sigma(4)$ ). Очевидно, что это цикл длины 3, не оставляющий на месте 4 (т.к.  $\sigma$  не оставляет на месте 4). Значит,  $\omega$  и  $\omega^{-1}$  принадлежат H и не совпадают с предыдущими элементами (и друг с другом), т.е.

$$H = \{id, (123), (132), \sigma, \omega, \omega^{-1}\}\$$

Осталось перебрать возможные значения  $\sigma$ :

• 
$$\sigma = (12)(34) \Longrightarrow (123)(12)(34)(132) = (14)(23) \notin H$$
;

• 
$$\sigma = (13)(24) \Longrightarrow (123)(13)(24)(132) = (12)(34) \notin H$$
;

• 
$$\sigma = (14)(23) \Longrightarrow (123)(14)(23)(132) = (13)(24) \notin H$$
;

Отсюда таких H не существует.

Следствие 2. Если G - конечная группа, то  $\forall g \in G : \mathrm{ord}\ g \mid |G|$ 

Доказательство. ord 
$$g = |\langle g \rangle| \mid |G|$$
.

Следствие 3. Если G - конечная группа порядка n, то  $\forall g \in G : g^n = e$  в G.

Доказательство. По следствию 2:  $n = \operatorname{ord} g \cdot k \Rightarrow g^n = g^{(\operatorname{ord} g) \cdot k} = e^k = e$ .

**Пример.** Пусть  $G = \mathbb{Z}_p^*$ , p - простое,  $|\mathbb{Z}_p^*| = p-1$ . По следствию 3:  $\forall a \in \mathbb{Z}_p^* : a^{p-1} = 1$  в  $\mathbb{Z}_p^*$ , отсюда  $\forall a \in \mathbb{Z}, \ p \nmid a : a^{p-1} \equiv 1 \pmod p$  - малая теорема Ферма.

Следствие 4. Любая группа G простого порядка p является циклической.

Доказательство. 
$$\forall a \in G, \ a \neq e : \text{ord } a \neq 1, \text{ ord } a \mid |G| = p \Rightarrow \text{ord } a = |G| \Rightarrow G = \langle a \rangle.$$

**Упражнение.** Доказать, что с точностью до изоморфизма существует ровно две группы порядка 4 -  $\mathbb{Z}_4$  и  $V_4$ .

Доказательство. Пусть G - группа порядка 4. Заметим, что по следствию 2 порядок неединичного элемента в G может быть равен либо 2, либо 4. Если в G есть элемент порядка 4, то G циклическая, а тогда по теореме о классификации циклических групп  $G \simeq \mathbb{Z}_4$ .

Пусть  $G = \{e, a, b, c\}$ , ord a = ord b = ord c = 2. Посмотрим, чему может быть равно ab:

- $ab = e \Longrightarrow aab = a \Longrightarrow b = a$  противоречие;
- $ab = a \Longrightarrow aab = aa \Longrightarrow b = e$  противоречие;
- $ab = b \Longrightarrow abb = bb \Longrightarrow a = e$  противоречие.

Отсюда ab=c - аналогично произведение любых двух различных неединичных элементов равно третьему. Отсюда таблица Кэли для G имеет вид

|              | e               | a | b | c |
|--------------|-----------------|---|---|---|
| е            | е               | a | b | c |
| a            | a               | е | c | b |
| b            | b               | c | е | a |
| $\mathbf{c}$ | $^{\mathrm{c}}$ | b | a | е |

откуда видно, что  $G \simeq V_4$ .

**Упражнение.** Доказать, что если в группе G все неединичные элементы имеют порядок 2, то G - абелева.

Доказательство. ord 
$$a=2\Longrightarrow a=a^{-1}\Longrightarrow \forall a,b\in G:ab=(ab)^{-1}=b^{-1}a^{-1}=ba.$$

Пример. 
$$H = \langle (12) \rangle \leq S_3, \ g = (13) \Rightarrow gH \neq Hg$$

**Определение.** Подгруппа H группы G называется нормальной, если

$$\forall g \in G : gH = Hg \Longleftrightarrow \forall g \in G : gHg^{-1} = H \Longleftrightarrow$$

$$\iff \forall g \in G : gHg^{-1} \subseteq H \Longleftrightarrow \forall g \in G, \ \forall h \in H : ghg^{-1} \in H$$

Обозначение:  $H \leq G$ .

Эквивалентность определений:

- 1 ⇔ 2 очевидно;
- $2 \iff 3$ :  $\iff gHg^{-1} \subseteq H \Leftrightarrow H \subseteq g^{-1}Hg$  из условия на всевозможные g получаем равенство;  $\implies$  очевидно;

• 3  $\iff$  4 - из определения смежного класса.

Примеры.

1.  $A_n \subseteq S_n$ , так как  $\forall \sigma \in S_n$ ,  $\forall \tau \in A_n : \sigma \tau \sigma^{-1} \in A_n$ .

2. 
$$SL_n(\mathbb{R}) \leq GL_N(\mathbb{R})$$
, так как  $\forall A \in GL_n(\mathbb{R})$ ,  $\forall B \in SL_n(\mathbb{R}) : \det(ABA^{-1}) = \det B = 1 \Rightarrow ABA^{-1} \in SL_n(\mathbb{R})$ .

**Утверждение.** В абелевой группе любая подгруппа является нормальной.

**Упражнение.** Докажите, что если |G:H|=2, то  $H \le G$  для произвольной группы G и произвольной подгруппы  $H \le G$ .

Доказательство. Если |G:H|=2, то G разбивается на два непересекающихся левых (правых) смежных класса по H. Очевидно, что один из этих классов в обоих случаях - сама подгруппа H. Тогда  $\forall g \in G \setminus H$  группа G разбивается на левые смежные классы H и gH, а также на правые смежные классы H и Hg, откуда gH=Hg. Также очевидно, что  $\forall h \in H: hH=H=Hh$ . Значит,  $\forall g \in G: gH=Hg \Longrightarrow H \unlhd G$ .

#### 1.4 Факторгруппа

**Утверждение.** Пусть G - группа,  $H \leq G$ . Тогда множество всех смежных классов G по  $H: G/H = \{eH, aH, ...\}$  образует группу относительно операции  $aH \cdot bH = abH$ .

Доказательство.

1. Проверим корректность операции, т.е.  $\begin{cases} aH = \tilde{a}H \\ bH = \tilde{b}H \end{cases} \implies abH = \tilde{a}\tilde{b}H.$ 

Действительно, если  $\begin{cases} a = \tilde{a}h_a \\ b = \tilde{b}h_b \end{cases}$  из равенства смежных классов, то:

$$\forall x \in abH \Longrightarrow \exists h \in H : x = abh = \tilde{a}h_a\tilde{b}h_bh = \tilde{a}\tilde{b}h'h_bh \in \tilde{a}\tilde{b}H$$
$$(H \leq G \Longrightarrow Hb = bH \Longrightarrow \exists h' \in H : h_a\tilde{b} = \tilde{b}h')$$

- 2. Проверим, что это группа:
  - Ассоциативность:

$$aH(bH \cdot cH) = aH(bcH) = a(bc)H = (ab)cH = (abH)cH = (aH \cdot bH)cH$$

• Нейтральный элемент:

$$eH = H : aH \cdot eH = aeH = aH = eaH = eH \cdot aH$$

• Обратный элемент:

$$\forall aH \exists a^{-1}H : aH \cdot a^{-1}H = eH = a^{-1}H \cdot aH$$

**Определение.** Группа G/H называется факторгруппой G по H.

3 aмечание. Если  $H \not \supseteq G$ , то операция  $aH \cdot bH = abH$  некорректна:

$$\langle (12) \rangle \le S_3$$
:  $(13)H = (132)H, (23)H = (123)H$ ;  
 $(13)(23)H = (132)H \ne H = (123)(123)H$ 

## Примеры.

- 1.  $\mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}_3 = \{0, 1, 2\};$
- 2.  $S_n \leq A_n, S_n/A_n \simeq \mathbb{Z}_2$  (по чётности);
- 3.  $\mathbb{R} \leq \mathbb{C}, \mathbb{C}/\mathbb{R} \simeq \mathbb{R} \ (bi + \mathbb{R} \mapsto b).$

## 1.5 Гомоморфизмы групп

**Определение.** Пусть  $(G, \cdot, e), (\tilde{G}, \cdot, \tilde{e})$  - группы. Отображение  $\varphi : G \to \tilde{G}$  называется гомоморфизмом групп G и  $\tilde{G}$ , если  $\forall a, b, \in G$   $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ .

Замечание. В частности, изоморфизм - биективный гомоморфизм.

Утверждение (Свойства гомоморфизмов).

1. 
$$\varphi(e) = \tilde{e}$$
;

2. 
$$\varphi(a^{-1}) = (\varphi(a))^{-1}$$

**Определение.** Множество Im  $\varphi = \{b \in \tilde{G} \mid \exists a \in G : \varphi(a) = b\}$  - образ гомоморфизма. Множество Ker  $\varphi = \{a \in G \mid \varphi(a) = \tilde{e}\}$  - ядро гомоморфизма.

#### Утверждение 1.

- 1. Im  $\varphi \leq \tilde{G}$ ;
- 2. Ker  $\varphi \leq G$ .

Доказательство.

- 1. Im  $\varphi \subseteq \tilde{G}$ 
  - $x, y \in \text{Im } \varphi \Rightarrow \exists a, b \in G : x = \varphi(a), y = \varphi(b) \Longrightarrow xy = \varphi(a)\varphi(b) = \varphi(ab) \in \text{Im } \varphi;$
  - $\tilde{e} = \varphi(e) \in \text{Im } \varphi$ ;
  - $\forall x \in \text{Im } \varphi \ \exists a \in G : \varphi(a) = x \Longrightarrow x^{-1} = (\varphi(a))^{-1} = \varphi(a^{-1}) \in \text{Im } \varphi$

Отсюда Im  $\varphi \leq \tilde{G}$ .

- 2. Ker  $\varphi \subseteq G$ 
  - $\forall a, b \in \text{Ker } \varphi : \varphi(a) = \varphi(b) = \tilde{e} \Longrightarrow \varphi(ab) = \varphi(a)\varphi(b) = \tilde{e} \Longrightarrow ab \in \text{Ker } \varphi;$
  - $\tilde{e} = \varphi e \Longrightarrow e \in \text{Ker } \varphi;$
  - $\forall a \in \text{Ker } \varphi \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1} = \tilde{e}^{-1} = \tilde{e} \Longrightarrow a^{-1} \in \text{Ker } \varphi$

Отсюда Ker  $\varphi \leq G$ .

$$\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = \tilde{e} \Rightarrow ghg^{-1} \in \operatorname{Ker} \varphi \Longrightarrow \operatorname{Ker} \varphi \trianglelefteq G.$$

Утверждение 2.  $\varphi(a) = \varphi(b) \iff a \operatorname{Ker} \varphi = b \operatorname{Ker} \varphi$ . В частности,  $\varphi$  инъективно  $\iff \operatorname{Ker} \varphi = \{e\}$ .

Доказательство.

$$\varphi(a) = \varphi(b) \Longleftrightarrow \varphi(a)\varphi(b)^{-1} = \tilde{e} \Longleftrightarrow \varphi(ab^{-1}) = \tilde{e} \Longleftrightarrow$$
$$ab^{-1} \in \operatorname{Ker} \varphi \Longleftrightarrow a\operatorname{Ker} \varphi = b\operatorname{Ker} \varphi$$

Пример.  $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^* : \varphi(A) = \det A.$ Кег  $\varphi = SL_n(\mathbb{R})$ , Іт  $\varphi = \mathbb{R}^* \Longrightarrow R^* \simeq GL_n(\mathbb{R})/SL_n(\mathbb{R}).$ 

**Теорема** (О гомоморфизме). Пусть  $G, \tilde{G}$  - группы,  $\varphi : G \to \tilde{G}$  - гомоморфизм. Тогда  $G/\mathrm{Ker}\ \varphi \simeq \mathrm{Im}\ \varphi$ .

Доказательство. Для начала заметим, что Кег  $\varphi \unlhd G$ , поэтому факторгруппа  $G/\mathrm{Ker}\ \varphi$  определена.

Рассмотрим  $\psi: g \operatorname{Ker} \varphi \mapsto \varphi(g)$ :

- Корректность: По утверждению 2:  $g_1 \text{Ker } \varphi = g_2 \text{Ker } \varphi \Longrightarrow \varphi(g_1) = \varphi(g_2);$
- Биективность:

Сюръективность:  $\forall b \in \tilde{G} \ \exists a \in G : \varphi(a) = b \Longrightarrow \psi(a \operatorname{Ker} \varphi) = b;$ Инъективность: по утверждению 2:  $\psi(a \operatorname{Ker} \varphi) = \psi(b \operatorname{Ker} \varphi) \Longrightarrow \varphi(g_1) = \varphi(g_2) \Longrightarrow a \operatorname{Ker} \varphi = b \operatorname{Ker} \varphi;$ 

• Сохранение операции:

$$\psi((g_1 \operatorname{Ker} \varphi)(g_2 \operatorname{Ker} \varphi)) = \psi(g_1 g_2 \operatorname{Ker} \varphi) = \varphi(g_1 g_2) =$$
$$= \varphi(g_1) \varphi(g_2) = \psi(g_1 \operatorname{Ker} \varphi) \psi(g_2 \operatorname{Ker} \varphi)$$

Отсюда  $\psi:G/\mathrm{Ker}\ arphi o\mathrm{Im}\ arphi$  - изоморфизм.

Пример. Пусть  $G = S_n, \tilde{G} = \mathbb{R}^*, \varphi(\sigma) = \operatorname{sgn} \sigma.$ 

Тогда из теоремы о гомоморфизме:

Im 
$$\varphi = \{\pm 1\}$$
, Ker  $\varphi = A_n \Longrightarrow S_n/A_n \simeq \{\pm 1\} \simeq \mathbb{Z}_2$ 



Доказательство.

⇒ - очевидно из биективности;

 $\longleftarrow$  - изоморфизм из теоремы совпадёт с  $\varphi$ .

Следствие 2.  $Ecnu |G| < \infty$ ,  $mo |G| = |Ker \varphi| \cdot |Im \varphi|$ .

Доказательство.  $|G| = |G/\operatorname{Ker} \varphi| \cdot |\operatorname{Ker} \varphi| = |\operatorname{Im} \varphi| \cdot |\operatorname{Ker} \varphi|.$ 

**Утверждение.** Пусть G - группа,  $H \leq G$ . Тогда  $\exists$  такая группа  $\tilde{G}$ , что  $\exists$  сюръективный гомоморфизм  $\pi: G \to \tilde{G}$ , причём  $\ker \pi = H$ .

Доказательство. Подходят  $\tilde{G}=G/H, \pi:g\mapsto gH.$ 

**Определение.** Приведённый выше гомоморфизм  $\pi: G \mapsto G/H$  называется естественным (натуральным) гомоморфизмом из G в G/H.

Определение. Эпиморфизм - сюръективный гомоморфизм.

**Утверждение.** Пусть  $\varphi: G \to \tilde{\tilde{G}}$  - произвольный эпиморфизм с ядром H. Тогда  $\exists$  изоморфизм  $\psi: G/H \to \tilde{\tilde{G}}$  такой, что  $\varphi = \psi \circ \pi$ , где  $\pi$  - натуральный гомоморфизм из G в G/H.

Доказательство. По теореме о гомоморфизме  $G/\mathrm{Ker}\ \varphi \simeq \mathrm{Im}\ \varphi$ .

Так как  $\varphi$  - сюръекция, Im  $\varphi=\tilde{\tilde{G}}$ , также по условию  ${\rm Ker}\ \varphi=H.$  Тогда  $\psi:G/H\to \tilde{\tilde{G}}$  - изоморфизм, заданный в доказательстве теоремы о гомоморфизме:  $\psi:gH\mapsto \varphi(g).$ 

Взяв этот изоморфизм, получим  $\varphi = \psi \circ \pi$  (так как  $q \stackrel{\pi}{\mapsto} qH \stackrel{\tau}{\mapsto} \varphi(q)$ ).

## 2 Свободные группы

Определение. Тривиальные (групповые) соотношения - соотношения, которые выводятся из аксиом группы (и, соответственно, есть в любой группе).

Построим группу, в которой нет других соотношений.

**Определение.** Пусть A - множество символов (букв),  $A^{-1}$  - множество символов (букв)  $a^{-1}$ , где  $a \in A$ .

Условия на эти множества:

- 1.  $\forall a^{-1} \in A^{-1} \Longrightarrow a^{-1} \notin A;$  $\forall a \in A \Longrightarrow a \notin A^{-1};$
- 2.  $(a^{-1})^{-1} = a;$  Буквы  $a, a^{-1}$  назовём взаимно обратными.

Множество  $A^{\pm 1} = A \sqcup A^{-1}$  называется алфавитом.

Слово в алфавите  $A^{\pm 1}$  - конечная последовательность букв  $X=x_1...x_k$ , где  $x_i\in A^{\pm 1}$ .

Длина слова X (обозначается |X|) - количество букв в X.

Пример.  $A = \{a, b\} : X = abaab^{-1} \Rightarrow |X| = 5.$ 

**Определение.** Слово  $X = x_1...x_k$  - сократимое, если  $\exists i \in \overline{1,...,k-1} : x_i = x_{i+1}^{-1}$ . Сокращением взаимно обратных букв назовём вычёркиванием пары  $x_i, x_{i+1}$  из X (получим слово длины |X|-2).

За конечное число сокращений получим слово  $\tilde{X}$ , не являющееся сократимым - такое  $\tilde{X}$  называется результатом полного сокращения слова X.

**Определение.** Рассмотрим множество F(A) всех несократимых слов в  $A^{\pm 1}$ .

Введём бинарную операцию на F(A): пусть  $X = x_1...x_k, Y = y_1...y_m$ .

Если  $x_k \neq y_1^{-1}$ , то XY - конкатенация (приписывание) X и Y:

$$XY = x_1...x_k y_1...y_m, |XY| = k + m.$$

Если  $x_k = y_1^{-1}$ , то XY - результат полного сокращения слова  $x_1...x_ky_1...y_m$ .

Пример.  $(abcda^{-1}b)(b^{-1}ad^{-1}aab) = abcaab$ .

**Определение.** Если |X|=0, то X называется пустым словом (обозначим  $\lambda$ ). Пустое слово по определению несократимо и лежит в F(A).

**Теорема.** F(A) с приведённой выше бинарной операцией - группа.

#### Доказательство.

1. Ассоциативность:

Пусть 
$$X = x_1...x_k, Z = z_1...z_m$$
.

Случай 
$$|Y| = 0 \Longrightarrow Y = \lambda$$
 очевиден  $(XZ = XZ)$ ;

Индукция по длине слова Y:

База индукции:  $|Y|=1\Longrightarrow Y=a\in A^{\pm 1}$ . Индукция по |X|+|Z|:

База внутренней индукции:

$$|X| + |Z| = 0$$
 - очевидно  $(a = a)$ ;

$$|X| + |Z| = 1$$
 - очевидно (одно из слов  $X, Z$  пустое);

Шаг внутренней индукции  $(k+m-2 \to k+m)$  - рассмотрим случаи:

- $a^{-1} \neq x_k, a^{-1} \neq z_1 : X(YZ) = x_1...x_k a z_1...z_m = (XY)Z;$
- $a^{-1} = x_k, a^{-1} \neq z_1 : X(aZ) = X(az_1...z_m) =$ = результат полного сокращения  $x_1...x_{k-1}a^{-1}az_1...z_m =$ = результат полного сокращения  $x_1...x_{k-1}z_1...z_m = (Xa)Z$ ;
- $a^{-1} \neq x_k, a^{-1} = z_1$  аналогично предыдущему;
- $a^{-1} = x_k, a^{-1} = z_1$ : пусть  $X = X'a^{-1}, Z = a^{-1}Z'$ . Тогда:  $X(aZ) = X(a(a^{-1}Z')) = XZ' = (X'a^{-1})Z'$   $(Xa)Z = (X'a^{-1}a)Z = X'Z = X'(a^{-1}Z')$  При этом |X'| + |Y'| = k + m 2, то есть  $X'(a^{-1}Z') = (X'a^{-1})Z'$  по предположению внутренней индукции.

Во всех случаях  $X(aZ)=(Xa)Z\Longrightarrow$  база доказана.

Шаг индукции: Пусть  $Y = y_1...y_l$ . Тогда:

$$X(YZ) = X(y_1...y_l \cdot Z) = X((y_1...y_{l-1} \cdot y_l)Z) \stackrel{1}{=} X((y_1...y_{l-1}) \cdot (y_lZ)) \stackrel{2}{=}$$

$$\stackrel{2}{=} ((X \cdot y_1...y_{l-1})y_l)Z \stackrel{3}{=} (X \cdot y_1...y_l)Z = (XY)Z$$

- 1, 3 из утверждения базы индукции; 2 по предположению индукции.
- 2.  $\lambda$  нейтральный элемент;
- 3. обратный элемент к  $x_1...x_k$  элемент  $x_k^{-1}...x_1^{-1}$ .

**Определение.** Построенная группа F(A) называется свободной группой с базисом A. (A также называется свободной порождающей системой группы). Любая группа, изоморфная F(A), также называется свободной.

Утверждение. Пусть  $H \leq SL_2(\mathbb{Z}): H = \langle \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} \rangle.$  Тогда  $H \simeq F(A)$  с базисом  $A = \{a, b\}.$ 

Доказательство. Без доказательства.

Утверждение. Все базисы свободной группы равномощны.

Доказательство. Без доказательства.

Определение. Ранг свободной группы - мощность её базиса.

Замечание. Заметим, что в F(A) результат умножения определён однозначно  $\Longrightarrow$  однозначно определён элемент  $x_1 \cdot ... \cdot x_k$ , где  $x_i \in A^{\pm 1}$ .

Тогда если считать слово  $x_1...x_k$  результатом умножения  $x_1 \cdot ... \cdot x_k$ , то можно опускать знак умножения, и в этом смысле работать и с сократимыми словами.

Пример.  $abb^{-1}ba^{-1}a = a \cdot b \cdot b^{-1} \cdot b \cdot a^{-1} \cdot a = ab \in F(A)$ .