Name Activati	Plot ion functions w	Equation ith small ranges are usually used for so	Derivative Olving classification problems.
Identity	-/-	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

We first used **The Chain Rule** to calculate the derivative of the **Sum of the Squared**

$$\frac{d SSR}{d b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$

$$\frac{d SSR}{d b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$

Yes (1)
Output
No (0)
Dosage

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
....and used **Gradient**
Descent to optimize the unknown parameter.

No (0)
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$
....and used **Gradient**
Descent to optimize the unknown parameter.

No (0)
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$
 $\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$

Yes (1)
Output
No (0)
$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**
Descent to optimize the unknown parameter.

No (0)
$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**
Unknown parameter.

SSR

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$
...and used **Gradient**

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$

 W_2

+ 0.57

x -2.30

W4

The first thing we do is initialize the **Weights**, w_3 and w_4 , with random starting values...

Now we multiply the y-axis coordinates on the orange curve by **w**₄, which starts with the random value **0.63**...

Lastly, since the initial value for **b**₃ is **0**, adding it to the y-axis values on the **green** squiggle does not change anything.

Now let's talk about how to calculate the derivatives of the **SSR** with respect to the **Weights** w_3 and w_4 .

...we can talk about how to calculate the derivatives of the **SSR** with respect to the **Weights** w₃ and w₄.

And that means we can plug $y_{1,i}$ times w_3 into the equation for the **Predicted** values.

...then the **SSR** are linked to w_3 and w_4 ...

$$\frac{d \ SSR}{d \ w_4} = \frac{d \ SSR}{d \ Predicted} \times \frac{d \ Predicted}{d \ w_4} \times \frac{d \ Predicted}{d \ Predicted} \times \frac{d \ Predicted}{d \ w_4} \times$$

$$\frac{d SSR}{d W_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times y_{1,i}$$

$$\frac{d SSR}{d W_4} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times y_{2,i}$$

$$\frac{d SSR}{d b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$

...we can plug them into Gradient Descent to optimize w_3 , w_4 and b_3 .

$$\frac{d SSR}{d w_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times y_{1,i}$$

$$\frac{d SSR}{d w_4} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times y_{2,i}$$

$$\frac{d \, SSR}{d \, b_3} = \sum_{i=1}^{n=3} -2 \times (Observed_i - Predicted_i) \times 1$$

Now we repeat that process until the **Predictions** no longer improve very much, or we reach a maximum number of steps or we meet some other criteria.

