Alauddin Maulana Hirzan, S.Kom., M.Kom. NIDN. 0607069401

Fakultas Teknologi Informasi dan Komunikasi, Universitas Semarang

Alauddin Maulana Hirzan Sistem Operasi 1 / 34

- 1 CPU

0000

Definisi:

Central Processing Unit (CPU) berfungsi sebagai komponen inti dari sistem komputer, menjalankan instruksi dan melakukan perhitungan yang diperlukan untuk menjalankan berbagai aplikasi dan proses.

Pada dasarnya, CPU bertindak sebagai otak komputer, mengatur manipulasi data, operasi input/output, dan kontrol sistem secara keseluruhan.

Alauddin Maulana Hirzan Sistem Operasi 3 / 34

CPU Definisi CPU

Alauddin Maulana Hirzan Sistem Operasi 4/34 0000

Arsitektur CPU

CPU terdiri dari beberapa komponen utama yang berkolaborasi untuk menjalankan instruksi dan memanipulasi data. Komponen-komponen ini meliputi:

- Arithmetic Logic Unit (ALU): Bertanggung jawab untuk melakukan operasi aritmatika dan logika
- Ontrol Unit (CU): Mengelola eksekusi instruksi
- 3 Register: Unit penyimpanan sementara yang terletak di dalam CPU

- 1 CPU
- 2 Manajemen Proses di CPU

- 3 Manajemen Kinerja CPU
- 4 Manajemen Daya CPU
- 5 GPU Offloading

Definisi Manajemen CPU

Definisi:

Proses ini sangat penting untuk memastikan pemanfaatan sumber daya yang efisien dan kinerja sistem. Peran utama manajemen CPU adalah menjadwalkan proses untuk dieksekusi pada CPU, dengan mempertimbangkan faktorfaktor seperti waktu kedatangan proses, waktu eksekusi, dan tingkat prioritas.

Hal ini memfasilitasi pelaksanaan tugas yang teratur dan mengoptimalkan throughput sistem.

Alauddin Maulana Hirzan Sistem Operasi 7 / 34

Pentingnya Manajemen CPU

Peran manajemen CPU adalah mengalokasikan sumber daya pemrosesan CPU secara efisien di antara proses yang bersaing. Hal ini melibatkan pemilihan algoritma penjadwalan yang paling tepat untuk memaksimalkan kinerja sistem dan memastikan akses yang adil ke CPU untuk semua proses.

Manajemen CPU bertujuan untuk meminimalkan waktu penyelesaian, waktu tunggu, dan waktu respons, sehingga meningkatkan efisiensi sistem secara keseluruhan dan kepuasan pengguna.

Alauddin Maulana Hirzan Sistem Operasi 8 / 34

Manajemen Proses di CPU Algoritma CPU

Algoritme penjadwalan CPU menentukan urutan proses yang dieksekusi pada CPU. Algoritme ini memainkan peran penting dalam manajemen CPU dengan memengaruhi keputusan penjadwalan yang menentukan urutan eksekusi proses. Terdapat berbagai algoritme penjadwalan CPUdengan karakteristik:

- First Come First Serve (FCFS)
- Shortest Job First (SJF)
- Priority Scheduling
- 4 Round Robin (RR)
- **6** Multi Level Queue (MLQ)

Alauddin Maulana Hirzan Sistem Operasi 9 / 34

Algoritma CPU - First Come First Serve (FCFS)

Algoritma **First-Come**, **First-Served** (FCFS) adalah salah satu algoritma penjadwalan CPU yang paling sederhana, di mana proses dieksekusi sesuai urutan kedatangannya. Dalam penjadwalan FCFS, proses yang datang lebih dulu diberikan CPU untuk dieksekusi hingga proses tersebut menyelesaikan atau memasuki operasi I/O.

Meskipun mudah diimplementasikan, FCFS dapat menghasilkan waktu tunggu rata-rata yang tinggi, terutama untuk proses yang berjalan lama yang tiba lebih awal.

Alauddin Maulana Hirzan Sistem Operasi 10 / 34

Algoritma CPU - First Come First Serve (FCFS)

PROCESS	ARRIVAL TIME	BURST TIME		
P1	0	10		
P2	3	5		
P3	5	2		
P4	6	6		
P5	8	4		

Alauddin Maulana Hirzan Sistem Operasi 11/34

Algoritma CPU - Shortest Job First (SJF)

Algoritma **Shortest Job First (SJF)** memilih proses dengan waktu burst terpendek untuk dieksekusi selanjutnya. Pendekatan penjadwalan ini bertujuan untuk meminimalkan waktu tunggu rata-rata dan waktu penyelesaian dengan memprioritaskan proses yang lebih pendek.

SJF dapat bersifat **preemptive** atau **non-preemptive**, dengan SJF preemptive yang memungkinkan proses yang lebih pendek untuk menginterupsi proses yang lebih panjang yang sedang dieksekusi.

Alauddin Maulana Hirzan Sistem Operasi 12 / 34

Algoritma CPU - Shortest Job First (SJF) - Pre Emptive

Alauddin Maulana Hirzan Sistem Operasi 13 / 34

Algoritma CPU - Shortest Job First (SJF) - Non Pre Emptive

Alauddin Maulana Hirzan Sistem Operasi 14 / 34

Algoritma CPU - Priority Scheduling

Algoritme **Priority Scheduling** menetapkan prioritas pada proses berdasarkan kriteria tertentu, seperti kepentingan proses, tenggat waktu, atau kebutuhan sumber daya. Proses dengan prioritas lebih tinggi dieksekusi sebelum proses dengan prioritas lebih rendah, sehingga tugas-tugas penting dapat diselesaikan dengan segera.

Namun, penjadwalan prioritas dapat menyebabkan kelaparan / **Starvation** pada proses dengan prioritas rendah jika tidak dikelola dengan baik.

Alauddin Maulana Hirzan Sistem Operasi 15 / 34

Algoritma CPU - Priority Scheduling

PROCESS	BURST TIME	PRIORITY	
P1	21	2	
P2	3	1	
P3	6	4	
P4	2	3	

The GANTT chart for following processes based on Priority scheduling will be,

	P2	P1	P4	P3	
0	3	2	4 26		32

Alauddin Maulana Hirzan Sistem Operasi 16 / 34

Algoritma CPU - Round Robin

Algoritma **Round Robin (RR)** adalah algoritma penjadwalan CPU preemptive yang mengalokasikan waktu CPU dalam irisan waktu tetap yang disebut kuantum waktu. Proses dieksekusi dalam antrean melingkar, dengan setiap proses diberi kuantum waktu untuk dieksekusi sebelum didahului dan ditempatkan kembali dalam antrean.

RR memastikan keadilan dan mencegah kelaparan dengan mengizinkan semua proses menerima waktu CPU.

Alauddin Maulana Hirzan Sistem Operasi 17 / 34

Algoritma CPU - Round Robin

Round Robin scheduling algorithm Gantt chart

	P1	P2	Р3	P4	P5	P1	P2	P4	P1
0	5	1	0 14	4 1	9 2	4 2	9 3	2 3	7 39

Alauddin Maulana Hirzan Sistem Operasi 18 / 34

Algoritma CPU - Multi Level Queue

Algoritma Multilevel Queue Scheduling (MLQ) adalah algoritma penjadwalan yang digunakan dalam sistem operasi untuk mengatur eksekusi beberapa proses dengan tingkat prioritas yang berbeda. Dalam MLQ, proses dikategorikan ke dalam beberapa antrian, masing-masing mewakili tingkat prioritas yang berbeda.

Antrian ini disusun secara hierarkis, dengan setiap antrian memiliki algoritme penjadwalannya sendiri. Biasanya, antrian dengan prioritas lebih tinggi diproses sebelum antrian dengan prioritas lebih rendah.

Alauddin Maulana Hirzan Sistem Operasi 19 / 34

Algoritma CPU - Multi Level Queue

Alauddin Maulana Hirzan Sistem Operasi 20 / 34

- 3 Manajemen Kinerja CPU
- 4 Manajemen Daya CPU
- 5 GPU Offloading

Manajemen Kinerja CPU CPU Scheduler

Definisi:

CPU Scheduler merupakan komponen penting dari sistem operasi yang memainkan peran penting dalam mengelola eksekusi proses pada CPU komputer. Fungsionalitas utamanya melibatkan penentuan proses mana yang harus dialokasikan waktu CPU dari kumpulan proses yang siap dieksekusi.

Proses pengambilan keputusan ini memastikan pemanfaatan CPU yang efisien dan kinerja sistem yang optimal.

Alauddin Maulana Hirzan Sistem Operasi 22 / 34

Manajemen Kinerja CPU

Tipe CPU Scheduler

Ada beberapa jenis CPU Scheduler:

- Penjadwal Jangka Panjang (Task Scheduler): Penjadwal ini menentukan proses mana yang akan dimasukkan ke dalam antrean siap untuk dieksekusi.
- Penjadwal Jangka Pendek (CPU Scheduler): Beroperasi pada frekuensi tinggi, penjadwal ini memilih proses mana dari antrian siap yang akan dieksekusi berikutnya dan mengalokasikan waktu CPU.
- **9 Penjadwal Jangka Menengah**: Penjadwal ini bertanggung jawab untuk mengelola pertukaran proses antara memori utama dan penyimpanan sekunder (mis., disk).

Alauddin Maulana Hirzan Sistem Operasi 23 / 34

- 3 Manajemen Kinerja CPU
- 4 Manajemen Daya CPU
- 5 GPU Offloading

Definisi Manajemen Daya

Definisi:

Manajemen Daya CPU sangat penting dalam sistem komputasi modern karena dampaknya yang signifikan terhadap efisiensi energi, masa pakai baterai di perangkat seluler, dan kinerja sistem secara keseluruhan.

Manajemen daya yang efisien memastikan bahwa sumber daya digunakan secara optimal sekaligus meminimalkan konsumsi daya, sehingga menghasilkan penghematan biaya dan manfaat bagi lingkungan.

Alauddin Maulana Hirzan Sistem Operasi 25 / 34

Manajemen Daya CPU

Dynamic Voltage and Frequency Scaling (DVFS)

Definisi:

Dynamic Voltage and Frequency Scaling (DVFS) memungkinkan CPU untuk menyesuaikan tegangan dan frekuensi operasinya secara dinamis sesuai dengan beban kerja saat ini.

Dengan menurunkan voltase dan frekuensi selama periode aktivitas rendah, CPU dapat menghemat daya tanpa mengorbankan kinerja. Sebaliknya, selama tugas-tugas dengan permintaan tinggi, CPU dapat meningkatkan voltase dan frekuensinya untuk memenuhi persyaratan kinerja secara efisien.

Alauddin Maulana Hirzan Sistem Operasi 26 / 34

Manajemen Daya CPU

Teknik Manajemen Daya

CPU governor adalah komponen perangkat lunak dalam sistem operasi yang mengawasi kinerja dan penggunaan daya CPU. Komponen ini secara dinamis menyesuaikan parameter operasi CPU untuk menyeimbangkan kinerja dengan efisiensi daya.

Governor terus memantau berbagai metrik seperti penggunaan CPU, beban sistem, dan kondisi termal untuk membuat keputusan yang tepat tentang cara mengoptimalkan konsumsi daya tanpa mengorbankan kinerja.

Alauddin Maulana Hirzan Sistem Operasi 27 / 34

Teknik Manajemen Daya

Jenis-jenis Governor:

- **1) Mode Performance**: Governor ini memprioritaskan performa CPU maksimum dengan menjaga frekuensi CPU pada tingkat setinggi mungkin
- Mode Power Saving: Bertujuan untuk meminimalkan konsumsi daya dengan menjaga frekuensi CPU pada tingkat serendah mungkin
- **Mode On-Demand**: Governor ondemand secara dinamis menyesuaikan frekuensi CPU berdasarkan beban kerja sistem.
- Mode Konservatif: Mirip dengan ondemand governor, namun dilakukan dengan lebih konservatif
- **6** Mode User Space: Kendali eksternal dari aplikasi luar / user

Alauddin Maulana Hirzan Sistem Operasi 28 / 34

Manajemen Daya CPU

Teknik Manajemen Daya

Alauddin Maulana Hirzan Sistem Operasi 29 / 34

- 1 CPU
- 2 Manajemen Proses di CPU
- 3 Manajemen Kinerja CPU
- 4 Manajemen Daya CPU
- **5** GPU Offloading

GPU Offloading (Graphics Processing Unit) adalah teknik yang digunakan untuk meningkatkan daya komputasi GPU untuk tugas-tugas yang tidak dapat ditangani secara efisien oleh CPU (Central Processing Unit) saja.

Pendekatan ini melibatkan pemindahan komputasi atau beban kerja tertentu dari CPU ke GPU, di mana kemampuan pemrosesan paralel GPU dapat dimanfaatkan sepenuhnya. Dengan membebankan tugas-tugas tertentu ke GPU, kinerja sistem secara keseluruhan dapat ditingkatkan secara signifikan.

Alauddin Maulana Hirzan Sistem Operasi 31/34

GPU Offloading

Jenis Tugas

Hal ini sering terjadi pada tugas yang melibatkan:

- Kalkulasi matematika yang rumit
- 2 Simulasi skala besar, dan
- 3 Rendering grafis yang intensif.

GPU Offloading

Perbandingan Hasil Render

