TERMOQUÍMICA (introdução)

1. TERMOQUÍMICA

Estuda as trocas de calor em processos

$$H$$
 = entalpia; R = reagente(s) e P = produto(s)
 ΔH = variação de entalpia = calor trocado (P = cte.)
 $\Delta H = H_{\underbrace{\text{final}}_{P}} - H_{\underbrace{\text{inicial}}_{P}}$

3. PROCESSO EXOTÉRMICO (LIBERA CALOR)

$$R \longrightarrow P + calor$$
 Diagrama
$$R - calor \longrightarrow P$$
ou
$$R \longrightarrow P \Delta H < 0 (H_f < H_i)$$

$$H_i \longrightarrow P$$

$$\Delta H < 0$$

$$H_f \longrightarrow P$$

2. PROCESSO ENDOTÉRMICO (ABSORVE CALOR)

$$\begin{array}{c} \underset{infcio}{\underbrace{R}+calor} & \longrightarrow \underset{final}{\underbrace{P}} \\ & ou \\ R & \longrightarrow P - calor \\ & ou \\ R & \longrightarrow P & \Delta H > 0 \ (H_f > H_i) \end{array}$$

4. A VARIAÇÃO DE ENTALPIA (△H) DEPENDE DE VÁRIOS FATORES:

- a) quantidade de reagentes e produtos;
- b) estado físico de reagentes e produtos;
- c) variedade alotrópica;
- d) temperatura e "pressão";
- e) existência ou não de solução "aquosa", etc.

5. ΔΗ NAS MUDANÇAS DE ESTADO FÍSICO

EXERCÍCIOS DE APLICAÇÃO

- **01 (FEI-SP)** A queima de 46 g de álcool etílico (C₂H₆O) libera 32,6 kcal. Sabendo que a densidade do álcool é de 0,8g/cm³, o calor liberado na queima de 28,75 litros de álcool será, em kcal,
- a) $65,2 \cdot 10^3$
- b) $32.6 \cdot 10^3$
- c) $24,45 \cdot 10^3$
- d) $16.3 \cdot 10^3$
- e) $10.9 \cdot 10^3$
- 02 **(FMTM-MG)** Dentro das células, as moléculas de monossacarídeos são metabolizadas pelo organismo, num processo que libera energia. O processo de metabolização da glicose pode ser representado pela equação:

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O + energia$$

(Dados: massas molares: C = 12; H = 1; O = 16)

Cada grama de açúcar metabolizado libera aproximadamente 17kJ.

- a) Calcule a quantidade, em mols, de oxigênio necessário para liberar 6.120 kJ de energia.
- b) O soro glicosado, frequentemente usado em hospitais, é uma solução aquosa contendo 5% (em massa) de glicose. Calcule a energia liberada para cada litro de soro metabolizado pelo organismo.

Obs. . Considere a densidade do soro glicosado = 1 g/cm³.

03 (Mackenzie-SP) Observando o diagrama a seguir, é correto afirmar que:

[Dadas as massas molares (g/mol): H = 1 e O = 16]

- a) para vaporizar 18 g de água são liberados 10,5 kcal.
- b) o calor de reação, na síntese da água líquida, é igual ao da água gasosa.
- c) a entalpia para a vaporização de 36 g de água líquida é + 21 kcal.
- d) a síntese da água gasosa libera mais calor que a da água líquida.
- e) o ΔH na síntese de 1 mol de água gasosa é igual a -126,1 kcal/mol.
- 04 (UFES -ES) Uma pessoa com febre de 38,5 °C deve perder cerca de 4,18 x 10^5 J de calor para que sua temperatura corporal volte ao normal (36,5° C). Supondo que a única forma de o corpo perder calor seja através da transpiração, a massa de água, em gramas, a ser perdida para abaixar a febre em 2° C é Dado: $\Delta H = 43,4$ kJ · mol⁻¹ (calor de vaporização da água)
- a) 9,6
- b) 43,4
- c) 96,0
- d) 173,4
- e) 1734,0

05 (FGV-SP) Da hematita obtém-se ferro. Uma das reações do processo é a seguinte:

$$Fe_2O_3 + 3 CO \rightarrow 3 CO_2 + 2 Fe$$

Nessa reação, cada mol de hematita libera $30 \cdot 10^3$ J na forma de calor. O ferro formado absorve 80% desse valor, aquecendo-se. São necessários 25 J por mol de ferro resultante para elevar sua temperatura de 1 °C. Supondo que a reação teve início à temperatura de 30 °C e que a massa de ferro resultante não apresentou sinais de fusão, a temperatura final do ferro é igual a

- a) 630 °C.
- b) 510 °C.
- c) aproximadamente 30,5 °C.
- d) 990 °C.
- e) 960 °C.
- **06 (UFMG-MG)** Nos diagramas a seguir as linhas horizontais correspondem a entalpias de substâncias ou de misturas de substâncias.

O diagrama que quantitativamente indica as entalpias relativas de 1 mol de etanol líquido, 1 mol de etanol gasoso e dos produtos da combustão de 1 mol desse álcool, 2 CO₂ + 3 H₂O, é:

07 **(UFMG-MG)** O gás natural (metano) é um combustível utilizado, em usinas termelétricas, na geração de eletricidade, a partir da energia liberada na combustão.

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \Delta H = -800kJ/mol$$

Em Ibirité, região metropolitana de Belo Horizonte, está em fase de instalação uma termelétrica que deveria ter, aproximadamente, uma produção de 2,4 · 10⁹ kJ/hora de energia elétrica.

Considere que a energia térmica liberada na combustão do metano é completamente convertida em energia elétrica. Nesse caso, a massa de CO₂ lançada na atmosfera será, aproximadamente, igual a:

- a) 3 toneladas/hora.
- b) 18 toneladas/hora.
- c) 48 toneladas/hora.
- d) 132 toneladas/hora
- 08 (UFRO-RO) Reações em que a energia dos reagentes é inferior à dos produtos, à mesma temperatura, são:
- a) endotérmicas.
- b) lentas.
- c) espontâneas.
- d) catalisadas.
- e) explosivas.
- 09 (UFRN-RN) O preparo de uma solução de hidróxido de sódio em água ocorre com desenvolvimento de energia térmica e consequente aumento de temperatura, indicando tratar-se de um processo:
- a) sem variação de entalpia.
- b) sem variação de energia livre.
- c) isotérmico.
- d) endotérmico.
- e) exotérmico.

- 10 (FMU-SP) Em um texto encontramos a seguinte frase: "Quando a água funde, ocorre uma reação exotérmica".
 Na frase há:
 a) apenas um erro, porque a água não funde.
 b) apenas um erro, porque a reação química é endotérmica.
 c) apenas um erro, porque não se trata de reação química mas de processo físico.
 d) dois erros, porque não se trata de reação química nem o processo físico é exotérmico.
 e) três erros, porque a água não sofre fusão, não ocorre reação química e o processo físico é endotérmico.
 - 11 (UFSE-SE) A reação 2 $CO_2 \rightarrow 2$ CO + O_2 apresenta ΔH positivo. Assim, pode-se afirmar que essa reação:
 - a) ocorre com contração de volume.
 - b) libera energia térmica.
 - c) é catalisada.
 - d) é endotérmica.
 - e) é espontânea.
 - 12 (UCDB-MS) Considerando a reação de dissolução do cloreto de sódio em água:

$$NaC\ell(s) + aq. \rightarrow Na^{+}(aq) + C\ell^{-}(aq) \Delta H = -0.9kcal/mol$$

Podemos afirmar que este processo é:

- a) exotérmico.
- b) endotérmico.
- c) isotérmico.
- d) atérmico.
- e) adiabático.
- 13 (Mackenzie-SP) Observando-se os dados a seguir, pode-se dizer que o reagente apresenta menor energia que o produto somente em:
- I. $\frac{1}{2} \operatorname{C}\ell_2(g) \to \operatorname{C}\ell(g) \Delta H = + 30 \operatorname{kcal/mol} \operatorname{de} \operatorname{C}\ell$
- II. $C_{(diamante)} \rightarrow C_{(grafite)} \Delta H = -0.5 kcal/mol de C$
- III. $H_2O(g) \rightarrow H_2O(\ell) \Delta H = -9,5$ kcal/mol de $H_2O(g) \rightarrow H_2O(g) \Delta H_2O(g) \Delta H = -9,5$ kcal/mol de $H_2O(g) \rightarrow H_2O(g) \Delta H_2O(g)$
- a) II b) III c) III e II d) III e I e) I
- **14 (FUVEST-SP)** Considere os seguintes dados:
- 1. $C_{(grafite)} \rightarrow C_{(diamante)} \Delta H = + 0.5 kcal/mol de C$
- 2. $I_{(g)} \rightarrow \frac{1}{2} I_{2(g)} \Delta H = -25 \text{kcal/mol de I}$
- 3. $\frac{1}{2} \operatorname{C}\ell_{2(g)} \to \operatorname{C}\ell_{(g)} \Delta H = + 30 \text{kcal/mol de } \operatorname{C}\ell$

Pode-se afirmar que o reagente tem maior energia do que o produto somente em:

- a) 1
- b) 2
- c) 3
- d) 1 e 2
- e) 1 e 3

15 (FCC-BA) A queima completa do carbono é uma reação exotérmica. Assim, considerando-se as energias (E) armazenadas nos reagentes e produto, pode-se afirmar que:

a)
$$E_C = E_{O_2} = E_{CO_2}$$

b)
$$E_C + E_{O_2} = E_{CO_2}$$

c)
$$E_C = E_{O_2} > E_{CO_2}$$

d)
$$E_{C} = E_{O_{2}} < E_{CO_{2}}$$

e)
$$E_C + E_{O_2} + E_{CO_3} = 0$$

- 16 (Acafe–SC) Ao se abrir a válvula de um botijão de gás de cozinha, este se resfria intensamente porque:
- a) ocorre absorção de luz na expansão do gás.
- b) ao se contrair, o gás mantém sua temperatura constante.
- c) durante a expansão as moléculas do gás retiram calor das vizinhanças.
- d) durante a expansão ocorrerão reações químicas com o ferro do botijão, que são endotérmicas.
- e) a expansão é um processo exotérmico.

17 (FCC-BA) A equação:

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) + 242kJ$$

representa uma reação química que:

- a) libera 121 kJ por mol de O₂(g) consumido.
- b) absorve 121 kJ por mol de O₂(g) consumido.
- c) libera 242 kJ por mol de H₂O(g) produzido.
- d) libera 242 kJ por mol de O₂(g) consumido.
- e) absorve 242 kJ por mol de H₂O(g) produzido.
- 18 (UFMT-MT) Pode-se resfriar o conteúdo de uma garrafa colocando-a em um recipiente que contém Na₂CO₃·10H₂O sólido e, em seguida, adicionando água até a dissolução desse sal.

Obtém-se o resfriamento como consequência da transformação:

a) sal + água → íons em solução + calor

- c) sal + água → sal hidratado + calor
- d) sal + água → íons em solução calor
- e) sal água → íons desidratados + calor

19 **(UFMG-MG)** Ao se sair molhado em local aberto, mesmo em dias quentes, sente-se uma sensação de frio. Esse fenômeno está relacionado com a evaporação da água que, no caso, está em contato com o corpo humano.

Essa sensação de frio explica-se corretamente pelo fato de que a evaporação da água:

- a) é um processo endotérmico e cede calor ao corpo.
- b) é um processo endotérmico e retira calor do corpo.
- c) é um processo exotérmico e cede calor ao corpo.
- d) é um processo exotérmico e retira calor do corpo.
- **20 (Unicamp-SP)** Grafite e diamante são formas alotrópicas do carbono, cujas equações de combustão são apresentadas a seguir:

$$C(gr) + O_2(g) = CO_2(g) \Delta H = -393,5 \text{ kJmol}^{-1}$$

 $C(d) + O_2(g) = CO_2(g) \Delta H = -395,4 \text{ kJmol}^{-1}$

- a) Coloque os dados em um gráfico e calcule a variação de entalpia necessária para converter 1,0 mol de grafite em diamante.
- b) Qual a variação de entalpia na queima de 120 g de grafite?
- 21 (UEPG-PR) Considere a representação gráfica da variação de entalpia abaixo.

Entre os processos que ela pode representar figuram:

- 01) a fusão da água;
- 02) a vaporização da água;
- 04) a oxidação da gordura;
- 08) a solidificação da água;
- 16) o preparo de uma solução aquosa de NaOH, com aquecimento espontâneo do frasco.
- O processo esquematizado no gráfico libera calor, ou seja, é exotérmico. Assim, quais os que podem representá-lo? Soma das alternativas corretas ()

22 O gráfico indica os calores de combustão do enxofre monoclínico e do enxofre rômbico a 25 °C. Sendo ΔH_1 = - 71,1 kcal/mol e ΔH_2 = - 71,0 kcal/mol, qual a variação de entalpia da transformação do enxofre rômbico em enxofre monoclínico, nas condições da experiência?

23 (PUC-MG) Sejam dados os processos abaixo:

I.
$$Fe(s) \rightarrow Fe(\ell)$$

II.
$$H_2O(\ell) \to H_2(g) + \frac{1}{2}O_2(g)$$

III.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

IV.
$$H_2O(v) \rightarrow H_2O(s)$$

V.
$$NH_3(g) \rightarrow \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g)$$

A opção que representa somente fenômenos químicos endotérmicos é:

- a) I, II e V.
- b) II e V apenas.
- c) III e IV apenas.
- d) II, III e V.

24 (PUC-MG) Sejam dadas as seguintes equações termoquímicas (25 °C, 1atm):

I. C(grafite) +
$$O_2(g) \rightarrow CO_2(g) \Delta H_1 = -393,5 \text{ kJ/mol}$$

II. C(diamante) +
$$O_2(g) \rightarrow CO_2(g) \Delta H_2 = -395,4 \text{ kJ/mol}$$

Com base nessas equações, todas as afirmativas estão corretas, exceto:

- a) a formação de CO₂ é um processo exotérmico.
- b) a equação II libera maior quantidade de energia, pois o carbono diamante é mais estável que o carbono grafite.
- c) a combustão do carbono é um processo exotérmico.
- d) a variação de entalpia necessária para converter 1,0 mol de grafite em diamante é igual a + 1,9 kJ.
- e) a reação de transformação de grafite em diamante é endotérmica.

25 (FCC-BA) Qual das reações a seguir exemplifica uma mudança de estado que ocorre com liberação de energia térmica?

- a) $H_2(\ell) \rightarrow H_2(g)$
- b) $H_2O(s) \rightarrow H_2O(\ell)$
- c) $O_2(g) \rightarrow O_2(\ell)$
- d) $CO_2(s) \rightarrow CO_2(\ell)$
- e) $Pb(s) \rightarrow Pb(\ell)$

26 (Mackenzie-SP)

C grafite(s) +
$$O_2(g) \rightarrow CO_2(g) \Delta H = -94,0 \text{ kcal}$$

C diamante(s) + $O_2(g) \rightarrow CO_2(g) \Delta H = -94,5 \text{ kcal}$

Relativamente às equações anteriores, fazem-se as seguintes afirmações:

- I. C (grafite) é a forma alotrópica menos energética.
- II. As duas reações são endotérmicas.
- III. Se ocorrer a transformação de C (diamante) em C (grafite) haverá liberação de energia.
- IV. C (diamante) é a forma alotrópica mais estável.

São corretas:

- a) I e II, somente.
- b) I e III, somente.
- c) I, II e III, somente.
- d) II e IV, somente.
- e) I, III e IV, somente.
- 27 (UFRS-RS) A reação de formação da água é exotérmica. Qual das reações a seguir desprende a maior quantidade de calor?
- a) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$
- b) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$
- c) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(s)$
- d) $H_2(g) + \frac{1}{2} O_2(\ell) \to H_2O(\ell)$
- e) $H_2(\ell) + \frac{1}{2} O_2(\ell) \to H_2O(\ell)$
- 28 Para a reação $S(r) \rightarrow S(m)$, o valor da variação de entalpia (em calorias), calculado com base no gráfico, é:

- a) 200
- b) + 200
- c) 100
- d) + 100
- e) 50

29 Conhecem-se as equações termoquímicas:

$$S(r) + O_2(g) \rightarrow SO_2(g) \Delta H_2 = -71,0 \text{ kcal/mol}$$

$$S(m) + O_2(g) \rightarrow SO_2(g) \Delta H_1 = -71,1 \text{ kcal/mol}$$

Qual(is) das seguintes afirmações é(são) correta(s)?

- I) A formação de SO₂ é sempre endotérmica.
- II) A conversão da forma rômbica na forma monoclínica é endotérmica.
- III) A forma alotrópica estável do enxofre na temperatura da experiência é monoclínica.

30 (Fesp-SP) Uma substância A encontra-se nos seus três estados de agregação conforme o esquema:

A ordem decrescente das entalpias será:

- a) $H_s > H_v > H_\ell$
- b) $H_{v} > H_{\ell} > H_{s}$
- c) $H_s > H_{\ell} > H_v$

- d) $H_{\ell} > H_{v} > H_{s}$
- e) $H_{v} > H_{s} > H_{\ell}$

31 (UFCE-CE) As reações a seguir apresentam efeitos energéticos:

I.
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(s)$$

II.
$$H_2O(\ell) \to H_2(g) + \frac{1}{2}O_2(g)$$

III.
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(v)$$

IV.
$$H_2(g) \rightarrow 2 H(g)$$

Assinale a alternativa correta:

- a) I e II são exotérmicas.
- b) I e III são endotérmicas.
- c) II e IV são exotérmicas.

- d) somente IV é exotérmica.
- e) I libera maior quantidade de energia que III.

32 (Cesgranrio-RJ) Considere o diagrama de entalpia abaixo

Assinale a opção que contém a equação termoquímica correta:

- a) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) \Delta H = +242 \text{kJ.mol}^{-1}$
- b) $H_2O(\ell) \rightarrow H_2O(g) \Delta H = -41kJ.mol^{-1}$
- c) $H_2O(\ell) \rightarrow H_2(g) + \frac{1}{2}O_2(g) \Delta H = +283 \text{kJ.mol}^{-1}$
- d) $H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g) \Delta H = 0kJ.mol^{-1}$
- e) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell) \Delta H = +41 \text{kJ.mol}^{-1}$

33 (UA-AM) Reação exotérmica é aquela na qual:

- 1 há liberação de calor.
- 2 há diminuição de energia.
- 3 a entalpia dos reagentes é maior que a dos produtos.
- 4 a variação de entalpia é negativa.

Estão corretos os seguintes complementos:

- a) Somente 1.
- b) Somente 2 e 4.
- c) Somente 1 e 3.
- d) Somente 1 e 4.
- e) 1, 2, 3 e 4.

34 (UFJF-MG) Considere os processos a seguir:

- I queima do carvão
- II fusão do gelo à temperatura de 25 ºC
- III combustão da madeira
- a) Apenas o primeiro é exotérmico.

d) Apenas o primeiro é endotérmico.

b) Apenas o segundo é exotérmico.

e) Apenas o segundo é endotérmico.

- c) Apenas o terceiro é exotérmico.
- 35 (PUC-MG) Sejam dadas as seguintes equações termoquímicas:

ΔH em kcal/mol

(25 °C e 1 atm)

$$I - Cu(s) + \frac{1}{2} O_2(g) \rightarrow CuO(s)$$
 -37,6

$$II - C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g)$$

$$-26.0$$

III - 2 A
$$\ell$$
(s) + 3/2 O₂(g) \rightarrow A ℓ ₂O₃(s) -400,0

$$IV - 2 Au(s) + 3/2 O_2(g) \rightarrow Au_2O_3(s) +20.0$$

$$1V - 2 Au(s) + 3/2 O_2(g) \rightarrow Au_2O_3(s) + 20,0$$

$$V - F_2(g) + 1/2 O_2(g) \rightarrow F_2O(g)$$
 +5,0

Nas condições citadas, a equação que representa a reação mais exotérmica é:

- a) I.
- b) II.
- c) III.
- d) IV.
- e) V.

36 (UFSM-RS) Considere o seguinte gráfico:

De acordo com o gráfico ao lado, indique a opção que completa, respectivamente, as lacunas da frase a seguir:

- "A variação da entalpia, ΔH, é; a reação é porque se processa calor."
- a) positiva, exotérmica, liberando.
- b) positiva, endotérmica, absorvendo.
- c) negativa, endotérmica, absorvendo.
- d) negativa, exotérmica, liberando.
- e) negativa, exotérmica, absorvendo.

37 Considere a reação de combustão das variedades alotrópicas do carbono, representadas no gráfico:

Resolva as seguintes questões:

- I As duas combustões são exotérmicas ou endotérmicas?
- II Calcule o ΔH das combustões da grafite e do diamante.
- III Em qual delas ocorre maior liberação de calor?
- IV A transformação de grafite em diamante é um processo exotérmico ou endotérmico?

38 Analise o diagrama a seguir:

Resolva:

- I A síntese da água em qualquer estado físico é um processo exotérmico ou endotérmico?
- II A formação da $H_2O(s)$ libera maior ou menor energia do que a formação da $H_2O(\ell)$?
- III Calcule o calor liberado ou absorvido na formação de 2 mol de $H_2O(\ell)$.
- IV Calcule o calor liberado ou absorvido na formação de 5 mol de H₂O(s).
- 39 (Fuvest-SP) Experimentalmente observa-se que, quando se dissolve etanol na água, há aumento na temperatura da mistura. Com base nesse fato, demonstre ou refute a seguinte afirmação: "A dissolução do etanol em água é um processo endotérmico".
- **40 (UFU-MG)** São processos endotérmicos e exotérmicos, respectivamente, as mudanças de estado:
- a) fusão e ebulição.
- b) solidificação e liquefação.
- c) condensação e sublimação.
- d) sublimação e fusão.
- e) sublimação e solidificação.

41 (UNICAMP-SP) Um botijão de gás de cozinha, contendo butano, foi utilizado em um fogão durante um certo tempo, apresentando uma diminuição de massa de 1,0kg. Sabendo-se que:

$$C_4H_{10}(g) + 6.5 O_2(g) = 4 CO_2(g) + 5 H_2O(g) \Delta H = -2900 kJ/mol.$$

- a) Qual a quantidade de calor que foi produzida no fogão devido à combustão do butano?
- b) Qual o volume, a 25°C e 1,0atm, de butano consumido?

Dados: o volume molar de um gás ideal a 25°C e 1,0atm é igual a 24,51litros.

massas atômicas relativas: C = 12; H = 1.

42 (Unicamp-SP) Uma vela é feita de um material ao qual se pode atribuir a fórmula $C_{20}H_{42}$. Qual o calor liberado na combustão de 10,0 g desta vela à pressão constante? (massas molares: C = 12 g/mol); H = 1 g/mol)

$$C_{20}H_{42}(s) + 61/2 O_{2}(g) \rightarrow 20 CO_{2}(g) + 21 H_{2}O(g) \Delta H = -13 300 kJ$$

43 (FEI-SP) Considere a equação termoquímica:

$$C_2H_5OH(\ell) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O \Delta H = 330 \text{ kcal/mol}$$

O volume de álcool (d = 0,782 g/mL) que, por combustão completa, libera 561 kcal é igual a: (Dado: M $C_2H_5OH = 46$ g/mol)

- a) 10 mL.
- b) 50 mL.
- c) 100 mL.
- d) 500 mL.
- e) 1 000 mL.
- 44 (UFPeI-RS) A água é a substância mais abundante em nosso planeta, ocorrendo, nos três estados físicos (sólido, líquido, gasoso), na litosfera, hidrosfera e atmosfera. Todos os seres vivos são constituídos por grandes porcentagens de água, de modo que, sem ela, a vida, tal qual a conhecemos, não existiria na Terra. Considerando o gráfico de energia, a seguir, que representa a formação da água nos diferentes estados físicos, faça o que se pede.

- I Escreva a equação termoquímica correspondente à formação da água no estado líquido.
- II Observando a formação da água nos 3 estados físicos, indique em qual estado físico ocorre liberação ou absorção de maior quantidade de calor.
- III —Determine o ΔH na transformação do vapor de água em água líquida, a partir do gráfico.

45 (Unicamp-SP) As variações de entalpia (ΔH) do oxigênio, do estanho e dos seus óxidos, a 298 K e 1 bar, estão representadas no diagrama:

Assim, a formação do SnO(s), a partir dos elementos, corresponde a uma variação de entalpia de -286 kJ/mol.

- a) Calcule a variação de entalpia (ΔH₁) correspondente à decomposição do SnO₂(s) nos respectivos elementos, a 298 K e 1 bar.
- b) Escreva a equação química e calcule a respectiva variação de entalpia (ΔH_2) da reação entre o óxido de estanho II e o oxigênio, produzindo o óxido de estanho IV, a 298 K e 1 bar.
- 46 (UNICAMP-SP) A figura adiante mostra o esquema de um processo usado para a obtenção de água potável a partir de água salobra (que contém alta concentração de sais). Este "aparelho" improvisado é usado em regiões desérticas da Austrália.

- a) Que mudanças de estado ocorrem com a água, dentro do "aparelho"?
- b) Onde, dentro do "aparelho", ocorrem estas mudanças?
- c) Qual destas mudanças absorve energia e de onde esta energia provém?
- 47 Em um determinado tipo de doce diet, existe 0,10 g de lipídios para cada 100 g de doce. Considere que esses lipídios sejam todos representados pela tripalmitina (M = 800 g/mol) e que essa será queimada no organismo segundo a equação abaixo.

CH₂OCO(CH₂)₁₄CH₃
| CHOCO(CH₂)₁₄CH₃ +
$$\frac{145}{2}$$
O₂ \rightarrow 51CO₂ + 49H₂O Δ H = -5.488 kcal/mol
| CH₂OCO(CH₂)₁₄CH₃

Calcule, em quilocalorias, a energia que será produzida pelo consumo de 1 kg desse doce.

(UERJ-RJ) Explosivos, em geral, são formados por substâncias que, ao reagirem, liberam grande quantidade de energia. O nitrato de amônio, um explosivo muito empregado em atividades de mineração, se decompõe segundo a equação química:

$$2 \text{ NH}_4 \text{NO}_3(s) \rightarrow 2 \text{ N}_2(g) + \text{O}_2(g) + 4\text{H}_2\text{O}(g)$$

Em um teste, essa decomposição liberou 592,5 kJ de energia e produziu uma mistura de nitrogênio e oxigênio com volume de 168 L, medido nas CNTP.

Nas mesmas condições, o teste com 1 mol de nitrato de amônio libera, em quilojoules, a seguinte quantidade de energia:

- a) 39,5
- b) 59,3
- c) 118,5
- d) 158,0
- 49 Propano, C₃H₈, é muito utilizado como gás combustível. A reação de combustão completa do propano pode ser representada pela equação:

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(\ell) + 2220 KJ$$

- a) Qual é a variação de entalpia (ΔH) por mol de propano queimado? A reação é exotérmica ou endotérmica?
- b) Queimando-se 440g de propano em presença de ar, qual a quantidade de calor, em kJ, transferido?
- 50 (U. São Judas-SP) Os alunos de um curso da USJT realizam todos os dias 30 minutos de ginástica para manter a forma atlética. Um deles deseja perder alguns quilos de gordura localizada para entrar em forma e é orientado pelo professor a fazer uma ginástica monitorada, na qual terá que despender 15 kcal/minuto. Analisando a tabela dada:

Substância	Valor Calórico (kcal/g)
Glicose	3,8
Carboidratos	4,1
Proteínas	4,1
Gorduras	9,3

Quantos quilos de gordura esse aluno perderá depois de 93 dias de atividades de ginástica? Suponha que sua alimentação diária seja de 2500 kcal e inalterada.

- a) 5,0 Kg
- b) 7,5 Kg
- c) 10,0 Kg
- d) 4,5 Kg
- e) 3,0 Kg

GABARITO

01- Alternativa D

$$28,75 \frac{\text{L C}_2\text{H}_6\text{O}}{1 \text{L C}_2\text{H}_6\text{O}} \cdot \frac{1000 \text{cm}^3 \text{ C}_2\text{H}_6\text{O}}{1 \text{cm}^3 \text{ C}_2\text{H}_6\text{O}} \cdot \frac{0,8 \text{g C}_2\text{H}_6\text{O}}{1 \text{cm}^3 \text{ C}_2\text{H}_6\text{O}} \cdot \frac{32,6 \text{kcal}}{46 \text{g C}_2\text{H}_6\text{O}} = 16,3.10^3 \text{kcal}$$

02-

a) 6120kJ.
$$\frac{1g \cdot C_6 H_{12} O_6}{17kJ} \cdot \frac{1mol \cdot C_6 H_{12} O_6}{180g \cdot C_6 H_{12} O_6} \cdot \frac{6mol \cdot de \cdot O}{1mol \cdot C_6 H_{12} O_6} = 12mols \cdot de \cdot O$$

b)
$$1L$$
 soro. $\frac{1000 \text{cm}^3 \text{ soro}}{1L$ soro. $\frac{1\text{g-soro}}{1\text{cm}^3 \text{ soro}} \cdot \frac{5\text{g-glicose}}{100\text{g-soro}} \cdot \frac{17\text{kJ}}{1\text{g-glicose}} = 850\text{kJ}$

03- Alternativa C

- a) Falso. São absorvidos 10,5kcal.
- b) Falso. Entalpia $H_2O_{(Iíquido)} \neq Entalpia H_2O_{(gasoso)}$

c) Verdadeiro.
$$36g H_2O.\frac{1mol H_2O}{18g H_2O}.\frac{10,5kcal}{1mol H_2O} = 21kcal$$

- d) Falso. A síntese do H₂O_(líquido) libera 68,3kcal e a síntese do H₂O_(gasoso) libera 57,8kcal.
- e) Falso. A síntese do $H_2O_{(gasoso)}$ libera 57,8kcal, ou seja, $\Delta H = -57,8$ kcal.

04- Alternativa D

$$4,18.10^{5}$$
 J. $\frac{1$ mol H_{2} O $\frac{18g H_{2}$ O $\frac{1}{1}$ mol H_{2} O $\frac{1}{1}$ = 173,4kJ

05- Alternativa C

Cálculo do calor absorvido pelo ferro: 30.10³J . 0,8 = 24.10³J

Cálculo de quantos graus Celsius aumentará a temperatura com o calor absorvido pelo ferro:

$$\frac{24.10^{3} \text{J}}{1 \text{mol Fe}_{2} \text{O}_{3}} \frac{1 \text{mol Fe}_{2} \text{O}_{3}}{2 \text{mol Fe}} \cdot \frac{1 \text{mol Fe}}{25 \text{J}} \cdot 1^{0} \text{C} = 480^{0} \text{C}$$

Cálculo da temperatura final obtida pelo ferro: t_{FINAL} = 30°C + 480°C = 510°C

06- Alternativa C

Para qualquer substância temos: H(gás) > H(líquido) > H(sólido), portanto: H_{ETANOL GASOSO} > H_{ETANOL LÍQUIDO} Como a reação de combustão é exotérmica, logo a H_{REAGENTE(ETANOL)} > H_{PRODUTOS}, com isso ficamos com a alternativa C.

07- Alternativa D

$$\frac{2,4.10^{9} \text{kJ}}{1 \text{hora}} \cdot \frac{1 \text{mol CO}_{2}}{800 \text{kJ}} \cdot \frac{44 \text{g CO}_{2}}{1 \text{mol CO}_{2}} \cdot \frac{1 \text{ton CO}_{2}}{10^{6} \text{g CO}_{2}} = \frac{132 \text{ton CO}_{2}}{1 \text{hora}}$$

08- Alternativa A

Reações endotérmicas possuem entalpia dos reagentes menor que a entalpia dos produtos.

09- Alternativa E

Um processo em que há desenvolvimento de energia térmica por consequente aumento de temperatura implica na liberação de energia térmica, tratando-se desta forma de um processo exotérmico.

10- Alternativa D

A afirmação "Quando a água funde, ocorre uma reação exotérmica" possui dois erros:

- 1°) a fusão da água não é uma reação química e sim um processo físico;
- 2°) a fusão da água é um processo endotérmico.

11- Alternativa D

A reação que possui ΔH positivo é definida como uma reação endotérmica.

12- Alternativa A

A reação que possui ΔH negativo é definida como uma reação exotérmica.

13- Alternativa E

O processo em que o reagente tem menor energia que o produto é endotérmico, ou seja, que possui AH positivo.

14- Alternativa B

O processo em que o reagente tem maior energia do que o produto é exotérmico, ou seja, que possui ΔH negativo.

15- Alternativa C

A queima do carbono é uma reação exotérmica: $C + O_2 \rightarrow CO_2 \Delta H < 0$, ou seja, a entalpia dos reagentes é maior que a entalpia do produto.

16- Alternativa C

O resfriamento do gás, ou seja, diminuição da temperatura, é um processo endotérmico que ocorre com absorção de calor (energia) da vizinhança.

17- Alternativa C

A reação de formação da água possui calor positivo de 242kJ, isto significa que esta quantidade de calor está sendo liberado para o meio, sendo assim, a reação é exotérmica.

18- Alternativa D

A dissolução do sal implica no resfriamento do sistema, ou seja, diminuição da temperatura, é um processo endotérmico que ocorre com absorção de calor (energia) da vizinhança, caracterizado pelo ΔH positivo ou calor da reação negativo.

19- Alternativa B

A evaporação da água é um processo endotérmico, que ocorre com absorção de calor do corpo, implicando na diminuição de temperatura e subsequente sensação de frio.

395,4 = X + 393,5 → X = 395,4 − 393,5 → X = 1,9kJ, com isso temos: ΔH = + 1,9kJ

b)
$$120g \frac{C_{grafite}}{12g \frac{C_{grafite}}{C_{grafite}}} \cdot \frac{393,5kJ}{1mol C_{grafite}} = 3935kJ$$
, com isso temos, ΔH =-3935kJ

21-

O processo esquematizado no gráfico é exotérmico, com isso temos:

- (01) (F) a fusão é um processo físico endotérmico.
- (02) (F) a vaporização é um processo físico endotérmico.
- (04) (V) oxidação, ou seja, queima da gordura é uma combustão que é um processo exotérmico.
- (08) (V) a solidificação é um processo físico exotérmico.
- (16) (V) se há aquecimento é porque houve liberação de calor, portanto o processo é exotérmico.

Soma: 28 (4+8+16)

22-

$$\Delta H_1 = X + \Delta H_2 \rightarrow X = \Delta H_1 - \Delta H_2 \rightarrow X = 71,1 - 71,0 \rightarrow X = 1,1$$
, com isso temos que: $\Delta H = +1,1$ kcal

23- Alternativa A

I. $Fe(s) \rightarrow Fe(\ell)$

Fusão: processo físico endotérmico

II. $H_2O(\ell) \to H_2(g) + \frac{1}{2}O_2(g)$

Decomposição: reação química endotérmica

III. $C(s) + O_2(g) \rightarrow CO_2(g)$

Combustão: reação química exotérmica

IV. $H_2O(v) \rightarrow H_2O(s)$

Sublimação inversa: processo físico exotérmico

V. $NH_3(g) \rightarrow \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g)$

Decomposição: reação química endotérmica

24- Alternativa B

O carbono na forma alotrópica do grafite é a forma mais estável porque possui menor energia (entalpia) em relação ao carbono na forma alotrópica do diamante.

25- Alternativa A

- a) $H_2(\ell) \rightarrow H_2(g)$ Condensação: processo físico exotérmico
- b) $H_2O(s) \rightarrow H_2O(\ell)$ Fusão: processo físico endotérmico
- c) $O_2(g) \rightarrow O_2(\ell)$ Vaporização: processo físico endotérmico
- d) $CO_2(s) \rightarrow CO_2(\ell)$ Fusão: processo físico endotérmico
- e) $Pb(s) \rightarrow Pb(\ell)$ Fusão: processo físico endotérmico

26- Alternativa B

I. (V) C (grafite) é a forma alotrópica menos energética.

Comentário: o carbono na forma alotrópica do grafite é a forma mais estável, pois possui menor energia.

II. (F) As duas reações são endotérmicas.

Comentário: as duas reações são exotérmicas, pois possuem ΔH negativo.

III.(V) Se ocorrer a transformação de C (diamante) em C (grafite) haverá liberação de energia.

Comentário: vide o gráfico abaixo

Caminho da reação

IV. (F) C (diamante) é a forma alotrópica mais estável.

Comentário: o carbono na forma alotrópica do grafite é a forma mais estável, pois possui menor energia.

27- Alternativa C

Observe o gráfico abaixo:

28- Alternativa D

Observe o gráfico abaixo:

I) (F) A formação de SO₂ é sempre endotérmica.

Comentário: a reação de formação de SO₂ possui ΔH negativo e, portanto é exotérmica.

II) (V) A conversão da forma rômbica na forma monoclínica é endotérmica.

Comentário: observe o gráfico abaixo

III) (F) A forma alotrópica estável do enxofre na temperatura da experiência é monoclínica.

Comentário: o enxofre na forma alotrópica rômbico é a forma mais estável, pois possui menor energia.

30- Alternativa B

Para qualquer substância temos: H(gás) > H(líquido) > H(sólido)

31- Alternativa E

I.
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(s)$$

Reação de combustão do hidrogênio é exotérmica.

II.
$$H_2O(\ell) \to H_2(g) + \frac{1}{2}O_2(g)$$

Reação de decomposição do H₂O é endotérmica.

III.
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(v)$$

Reação de combustão do hidrogênio é exotérmica.

IV.
$$H_2(g) \rightarrow 2 H(g)$$

A quebra de ligação é um processo endotérmico.

Observe o gráfico abaixo:

32- Alternativa C

Resolução através da interpretação do gráfico.

33- Alternativa E

Reação química exotérmica ocorre com liberação de energia em forma de calor, com isso a temperatura do meio reacional aumenta. Condição para reação ser exotérmica: $H_{REAGENTES} > H_{PRODUDOS}$, com isso, a reação possui ΔH negativo.

34- Alternativa E

I — queima do carvão: Reação química exotérmica.

II — fusão do gelo à temperatura de 25 °C: Processo físico endotérmico.

III — combustão da madeira: Reação química exotérmica.

35- Alternativa C

Reação mais exotérmica é aquela que libera maior quantidade de energia em forma de calor.

36- Alternativa D

Reação química exotérmica ocorre com liberação de energia em forma de calor, com isso a temperatura do meio reacional aumenta. Condição para reação ser exotérmica: $H_{REAGENTES} > H_{PRODUDOS}$, com isso, a reação possui ΔH negativo.

37-

I — As duas combustões são exotérmicas ou endotérmicas?

R.: as duas reações são exotérmicas, pois possuem ΔH negativo.

II — Calcule o ΔH das combustões da grafite e do diamante.

R.: C(graf) +
$$O_2(g) \rightarrow CO_2(g) \Delta H = -394kJ$$

C(diam) + $O_2(g) \rightarrow CO_2(g) \Delta H = -394kJ - 1,9 = -395,9kJ$

III — Em qual delas ocorre maior liberação de calor?

R.: a reação com maio quantidade de calor liberado é a combustão do carbono diamante: $\Delta H = -395,9kJ$

IV — A transformação de grafite em diamante é um processo exotérmico ou endotérmico?

R.: a transformação de grafite em diamante é um processo endotérmico com $\Delta H = +1,9kJ$ (vide o gráfico).

38-

I — A síntese da água em qualquer estado físico é um processo exotérmico ou endotérmico?

R.: a síntese da água em qualquer estado físico é um processo exotérmico, pois possui ΔH negativo.

II — A formação da $H_2O(s)$ libera maior ou menor energia do que a formação da $H_2O(\ell)$?

R.: a formação da $H_2O(s)$ libera 70kcal, ou seja, maior energia do que a formação da $H_2O(\ell)$ 68,3kcal.

III — Calcule o calor liberado ou absorvido na formação de 2 mol de $H_2O(\ell)$.

R.:
$$2 \text{mol } H_2O(\ell)$$
. $\frac{68,3 \text{kcal}}{1 \text{mol } H_2O(\ell)} = 136,6 \text{kcal}$

IV — Calcule o calor liberado ou absorvido na formação de 5 mol de H₂O(s).

R.:
$$5 \text{mol H}_2\text{O}(s)$$
. $\frac{70,0 \text{kcal}}{1 \text{mol H}_2\text{O}(s)} = 350,0 \text{kcal}$

39-

A afirmação está incorreta. Foi afirmado que a dissolução do etanol em água ocorre um aumento de temperatura, devido a liberação de energia em forma de calor para a vizinhança, desta forma podemos afirmar que o processo é exotérmico.

40- Alternativa E

Processos físicos endotérmicos: fusão, ebulição e sublimação.

Processos físicos exotérmicos: solidificação, liquefação (condensação) e sublimação inversa.

41-

$$C_4H_{10} \rightarrow M = 4.12 + 10.1 = 48+10 = 58 \text{ g/mol}$$

$$\begin{aligned} & \text{C}_4\text{H}_{10} \rightarrow \text{M} = 4.12 + 10.1 = 48 + 10 = 58 \text{ g/mol} \\ & \text{a) } 1 \text{kg} \cdot \frac{1000 \text{g} \cdot \frac{\text{C}_4\text{H}_{10}}{1}}{1 \text{kg} \cdot \frac{\text{C}_4\text{H}_{10}}{1}} \cdot \frac{1 \text{mol} \cdot \frac{\text{C}_4\text{H}_{10}}{1}}{58 \text{g} \cdot \frac{\text{C}_4\text{H}_{10}}{1}} \cdot \frac{2900 \text{kJ}}{1 \text{mol} \cdot \frac{\text{C}_4\text{H}_{10}}{1}} = 5.10^4 \text{kJ} \end{aligned}$$

b)
$$1 \frac{1 \text{kg C}_4 H_{10}}{1 \frac{1000 \text{g C}_4 H_{10}}{1 \text{kg C}_4 H_{10}}} \cdot \frac{1 \text{mol C}_4 H_{10}}{58 \text{g C}_4 H_{10}} \cdot \frac{24,51 \text{L}}{1 \text{mol C}_4 H_{10}} = 422,6 \text{L}$$

42-

$$C_{20}H_{42} \rightarrow M = 20.12 + 42.1 = 240 + 42 = 282g/mol$$

Cálculo da quantidade de calor liberado na combustão de 10g da vela:

$$10g \cdot \frac{C_{20}H_{42}}{282g \cdot C_{20}H_{42}} \cdot \frac{13300kJ}{1mol \cdot C_{20}H_{42}} = 471,6kJ$$
, ou seja, ΔH =-471,6kJ

43- Alternativa C

$$561 \text{kcal.} \frac{1 \text{mol } C_2 \text{H}_5 \text{OH}}{330 \text{kcal}} \cdot \frac{46 \text{g} \cdot C_2 \text{H}_5 \text{OH}}{1 \text{mol } C_2 \text{H}_5 \text{OH}} \cdot \frac{1 \text{mL } C_2 \text{H}_5 \text{OH}}{0,782 \text{g} \cdot C_2 \text{H}_5 \text{OH}} = 100 \text{mL } C_2 \text{H}_5 \text{OH}$$

44-

I — Escreva a equação termoquímica correspondente à formação da água no estado líquido.

R.:
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$$

II — Observando a formação da água nos 3 estados físicos, indique em qual estado físico ocorre liberação ou absorção de maior quantidade de calor.

R.: a formação da H₂O(s) libera 69,8kcal, ou seja, maior energia.

III — Determine o ΔH na transformação do vapor de água em água líquida, a partir do gráfico.

R.:
$$H_2O(v) \rightarrow H_2O(\ell) \Delta H = (-68,4) - (-57,8) = -68,4 + 57,8 = -10,6kcal$$

45-

a)
$$SnO_2(s) \rightarrow Sn(s) + O_2(g) \Delta H_1 = +581 \text{ kJ/mol}$$

b)
$$SnO(s) + \frac{1}{2}O_2(g) \rightarrow SnO_2 \Delta H_2 = (-581) - (-286) = -581 + 286 = -295 \text{ kJ/mol}$$

46-

- a) evaporação e liquefação
- b) A evaporação na superfície da água salobra e a liquefação na superfície do plástico.
- c) A evaporação, que absorve energia do Sol, sendo um processo físico endotérmico.

47-

$$1 \frac{1 \text{kg doce}}{1 \text{kg doce}} \cdot \frac{1000 \frac{\text{g doce}}{100 \frac{\text{g doce}}{100 \frac{\text{g doce}}{100 \frac{\text{g doce}}{100 \frac{\text{g lipídio}}{100 \frac{\text{g lipídio}}{100 \frac{\text{g lipídio}}{100 \frac{\text{g lipídio}}{100 \frac{\text{g lipídio}}{100 \frac{\text{g lipídio}}}}}{1 \frac{1 \frac{1 \text{mol lipídio}}{100 \frac{\text{g lipídio}}}{100 \frac{\text{g lipídio}}{100 \frac{\text{g lipídio}}}} = 6,86 \frac{1 \frac{1 \text{g lipídio}}{100 \frac{\text{g lipídio}$$

48- Alternativa C

$$1 \text{mol NH}_4 \text{NO}_3. \frac{3 \text{mol gás}}{2 \text{mol NH}_4 \text{NO}_3}. \frac{22,4 \text{L gás}}{1 \text{mol gás}}. \frac{592,5 \text{kJ}}{168 \text{L gás}} = 118,5 \text{kJ}$$

49-

a) calor da reação positivo significa liberação de energia térmica, portanto a reação é exotérmica com $\Delta H = -2220 kJ$.

b)
$$C_3H_8 \rightarrow M = 3.12 + 8.1 = 36 + 8 = 44 \text{ g/mol}$$

$$440g C_3H_8.\frac{1\text{mol } C_3H_8}{44g C_3H_8}.\frac{2220\text{kJ}}{1\text{mol } C_3H_8} = 2,22.10^4\text{kJ}$$

50- Alternativa D

93 dias.
$$\frac{30 \text{ minutos}}{1 \text{ dia}} \cdot \frac{15 \text{keal}}{1 \text{ minuto}} \cdot \frac{1 \text{g gordura}}{9,3 \text{keal}} \cdot \frac{1 \text{kg gordura}}{1000 \text{g gordura}} = 4,5 \text{kg gordura}$$