

WHAT IS CLAIMED IS

5

1. A circuit, comprising:
a register which stores therein a
semaphore address; and
a semaphore control circuit which asserts
10 a control signal in response to a read access by a
processor directed to the semaphore address, and
negates the control signal in response to a write
access by the processor directed to the semaphore
address.

15

2. The circuit as claimed in claim 1,
20 further comprising a comparator which makes a
comparison of an address output from the processor
with the semaphore address stored in said register,
and asserts a match signal when the comparison
indicates a match, wherein said semaphore control
25 circuit includes:
a circuit which sets the control signal to
an asserted state in response to assertion of the
match signal and an indication of a read operation
by a read/write signal output from the processor;
30 and
a circuit which resets the control signal
to a negated state in response to the assertion of
the match signal and an indication of a write
operation by the read/write signal output from the
35 processor.

3. The circuit as claimed in claim 1,
wherein a right to use a bus given to the processor
is not relinquished in response to a bus-arbitration
request supplied from an external source during an
5 asserted state of the control signal.

10 4. The circuit as claimed in claim 3,
further comprising a bus-arbitration control circuit
which receives a signal indicative of the bus-
arbitration request, the control signal, and a chip
enable signal output from the processor, said bus-
15 arbitration control circuit operating not to assert
a bus-arbitration-acknowledge signal in response to
the bus-arbitration request signal regardless of a
state of the chip enable signal if the control
signal is in an asserted state, operating not to
20 assert the bus-arbitration-acknowledge signal in
response to the bus-arbitration request signal if
the chip enable signal is in an asserted state and
the control signal is in a negated state, and
operating to assert the bus-arbitration-acknowledge
25 signal in response to the bus-arbitration request
signal if the chip enable signal is in a negated
state and the control signal is in the negated state.

30

5. A processor, comprising:
a processor core;
a register which stores therein a
35 semaphore address; and
a control circuit which asserts a control
signal in response to a read access by said

CONFIDENTIAL - SECURITY INFORMATION

processor core directed to the semaphore address,
and negates the control signal in response to a
write access by said processor core directed to the
semaphore address.

5

10 6. The processor as claimed in claim 5,
wherein said control circuit includes:
 a comparator which makes a comparison of
an address output from said processor core with the
semaphore address stored in said register, and
asserts a match signal when the comparison indicates
15 a match;
 a circuit which sets the control signal to
an asserted state in response to assertion of the
match signal and an indication of a read operation
by a read/write signal output from said processor
20 core; and
 a circuit which resets the control signal
to a negated state in response to the assertion of
the match signal and an indication of a write
operation by the read/write signal output from said
25 processor core.

30 7. The processor as claimed in claim 5,
wherein a right to use a bus is not relinquished in
response to a bus-arbitration request supplied from
an external source during an asserted state of the
control signal.

35

2025edc3-00e2-4eeb-a9c0-26363d00f7d1

8. A multi-processor system, comprising:
a plurality of processors;
a memory shared by said plurality of
5 processors; and
a semaphore register for controlling
exclusive use of said memory, wherein at least one
of said plurality of processors includes:
a processor core;
10 an address register which stores therein
an address of said semaphore register; and
a control circuit which asserts a control
signal in response to a read access by said
processor core directed to the address stored in
15 said address register, and negates the control
signal in response to a write access by said
processor core directed to the address stored in
said address register.

20

9. The multi-processor system as claimed
in claim 8, wherein said control circuit includes:
25 a comparator which makes a comparison of
an address output from said processor core with the
semaphore address stored in said address register,
and asserts a match signal when the comparison
indicates a match;
30 a circuit which sets the control signal to
an asserted state in response to assertion of the
match signal and an indication of a read operation
by a read/write signal output from said processor
core; and
35 a circuit which resets the control signal
to a negated state in response to the assertion of
the match signal and an indication of a write

2025 2020 2015 2010 2005 2000 2000

operation by the read/write signal output from said processor core.

5

10. The multi-processor system as claimed in claim 8, wherein said at least one of said plurality of processors does not relinquish a right 10 to use a bus in response to a bus-arbitration request made by another one of the processors during an asserted state of the control signal.