Due Friday 7 April, before 1:00pm

Note: solutions may be incomplete, and meant to be used as guidelines only. We encourage you to ask follow-up questions on the course forum or during office hours.

1. [7 marks] Nested loops.

Consider the following algorithm. (It doesn't **return** anything useful, but it sure spends a bunch of time before returning!)

```
def loop_de_loop(n: int) -> None:
       """ Precondition: n > 0 """
2
       i = 0
3
       s = 1
4
       while i < n:
                                   # Loop 1
5
           i = i + s
6
           s = s + 2
           j = 0
8
                                   # Loop 2
           while j < i:
9
                k = n
10
                while k > 1:
                                   # Loop 3
11
                    k = k // 2
12
                j = j + 3
13
```

(a) [3 marks] Let s_t be the value of variable s and i_t be the value of variable s immediately after t iterations of Loop 1 have occurred. Determine a general formula for each of s_t and i_t and then find the exact number of iterations of Loop 1 for a given value of s_t .

Solution

Let's start by constructing a trace table that shows the values of t, i_t and s_t after t iterations of Loop 1.

We have:

t	$\mathtt{i}_\mathtt{t}$	s_{t}
0	0	1
1	1	3
2	4	5
3	9	7
4	16	9
5	25	11

and so on.

In the code, we see that s starts at 1 and is incremented by 2 on each iteration of Loop 1. We can write $s_t = 2t + 1$. That is, after t iterations, s_t is the $(t+1)^{st}$ odd natural number. This is consistent with the table given above.

In the code, we also see that i starts at 0 and is incremented by s_{t-1} on iteration t of Loop 1. We can write

$$egin{aligned} \mathbf{i_t} &= \sum_{a=0}^{t-1} \mathbf{s_a} \ &= \sum_{a=0}^{t-1} ig(2\mathbf{a} + 1 ig). \end{aligned}$$

That is, after t iterations, i_t is the sum of the first t odd natural numbers. We know from Example 3.11 of the course notes (pgs. 74 - 75), that this sum is equal to t^2 , and so can write $i_t = t^2$. This is consistent with the table given above.

Loop 1 repeats until $i_t \ge n$. This first happens when $t^2 \ge n$ or when $t \ge \sqrt{n}$. We can conclude that there will be $\lceil \sqrt{n} \rceil$ iterations of Loop 1.

(b) [4 marks] Give a Theta bound on the running time function RT(n) for this algorithm. Show your work. (That is, explain how you obtained your answer and show your calculations).

Solution

Note: there may be some off-by-one errors in the counting due to crossing-up of [] and [], but that won't affect the final conclusion.

Starting with the inner-most loop, Loop 3, let k_b be the value of variable k after b iterations of the loop. Since k starts at n, we have $k_0 = n$. Since k is divided by 2 using integer division each iteration, we have $k_{b+1} = \lfloor k_b/2 \rfloor$. You can show that repeated flooring of floors can be combined and that $k_b = \left\lfloor \frac{n}{2^b} \right\rfloor$. Loop 3 repeats until $k_b \leq 1$. This first happens when $\left\lfloor \frac{n}{2^b} \right\rfloor \leq 1$ or when $b \geq \lfloor \log_2 n \rfloor$. We can conclude that there will be $\lfloor \log_2 n \rfloor$ iterations of Loop 3. Since the loop body takes 1 step, the running time of Loop 3 is $\lfloor \log_2 n \rfloor$ steps.

Moving on to Loop 2, we can see that on a fixed iteration of Loop 2, the body will take $1+\lfloor \log_2 n \rfloor$ steps. If we let j_c be the value of variable j after c iterations of the loop, we have $j_c=3c$, since j starts at 0 and is incremented by 3 each iteration. Loop 2 repeats until $j_c \geq i$. This first happens when $3c \geq i$ and so there are $\left\lceil \frac{i}{3} \right\rceil$ iterations of Loop 2.

The total running time of Loops 2 and 3 together is then $\left\lceil \frac{\mathtt{i}}{3} \right\rceil (1 + \lfloor \log_2 \mathtt{n} \rfloor)$ steps.

Moving on to Loop 1, we can see that on iteration t of Loop 1, the body will take $1 + \left| \frac{\mathbf{i_t}}{3} \right| (1 + \lfloor \log_2 \mathbf{n} \rfloor)$ steps. (We can use $\mathbf{i_t}$ since \mathbf{i} is incremented before the Loops 2 and 3 are performed.) This happens for $\mathbf{i_t}$ running from $\mathbf{t} = 1$ to $\lceil \sqrt{\mathbf{n}} \rceil$.

The total number of steps is then

$$\begin{split} &1 + \sum_{\mathbf{t}=1}^{\left\lceil\sqrt{\mathbf{n}}\right\rceil} \left(1 + \left\lceil\frac{\mathbf{i}_{\mathbf{t}}}{3}\right\rceil \left(1 + \left\lfloor\log_{2}\mathbf{n}\right\rfloor\right)\right) \\ &= 1 + \left\lceil\sqrt{\mathbf{n}}\right\rceil + \left(1 + \left\lfloor\log_{2}\mathbf{n}\right\rfloor\right) \sum_{\mathbf{t}=1}^{\left\lceil\sqrt{\mathbf{n}}\right\rceil} \left(\left\lceil\frac{\mathbf{i}_{\mathbf{t}}}{3}\right\rceil\right) \\ &= 1 + \left\lceil\sqrt{\mathbf{n}}\right\rceil + \left(1 + \left\lfloor\log_{2}\mathbf{n}\right\rfloor\right) \sum_{\mathbf{t}=1}^{\left\lceil\sqrt{\mathbf{n}}\right\rceil} \left(\left\lceil\frac{\mathbf{t}^{2}}{3}\right\rceil\right) \end{split}$$

Recalling the summation formula $\sum_{i=1}^{m} i^2 = \frac{m(m+1)(2m+1)}{6}$ and applying it with $m = \lceil \sqrt{\mathtt{n}} \rceil$,

we can argue the running time is $\Theta((n)^{\frac{3}{2}} \log_2 n)$.

(An argument that uses \mathcal{O} (ignore the division by 3) and Ω (pull the division by 3 out of the ceiling term) would be more precise and end with the same conclusion.)

2. [8 marks] Worst-case analysis.

Consider the following algorithm.

```
def algo(lst: list[int]) -> None:
        """ Precondition: len(lst) > 0 """
       n = len(lst)
3
        i = 0
4
        j = 0
5
        while i < n:
6
            if lst[i] % 3 == 0:
7
                 j = j + i
8
                while j > 0:
9
                     j = j // 2
10
                i = i + 2
11
            else:
12
                 j = j + n
13
                i = i + 1
```

(a) [4 marks] Find, with proof, an **upper bound** on the **worst-case** running time of this algorithm. Show your work. For full marks, your upper bound must match the lower bound determined in the next part.

Solution

Let $n \in \mathbb{N}$, and consider running algo on an (arbitrary) input 1st of length n.

In this algorithm, we first perform a constant-time operation (the 3 assignment statements) and then enter the outer-loop.

We claim that on each iteration of the outer loop i increases by at least 1.

This is true because whenever lst[i] is divisible by 3, i increases by exactly 2. When lst[i] is not divisible by 3, i increases by exactly 1. Since 2 > 1, we can conclude that i increases by at least 1 each iteration.

Also, since i starts at 0 and ends when $i \ge n$, we know that at the start of each iteration of the outer-loop, i is at most n. The outer-loop will iterate at most n times.

In each iteration of the outer-loop body, we either take the else-branch and perform a constant-time operation or take the if-branch and perform an constant-time operation and the inner-loop. In each iteration of the outer-loop body, j either increases by i or by n. We also know that when j is incremented, i is at most n. Since j starts at 0, and the outer-loop runs at most n times, we know that j is at most $n \times n$ or n^2 .

In the inner-most loop, a constant-time operation is repeated. Loop variable j is divided by 2 on each iteration until j reaches zero. The number of iterations of the inner loop is at most $\lceil \log_2 j - 1 \rceil$. Since j is at most n^2 , the running time of the inner-most loop (for a fixed iteration of the outer loop) is at most $\lceil \log_2 n^2 - 1 \rceil$ or $\lceil 2 \log_2 n \rceil$ steps.

Altogether then, the running-time is at most $1 + n((1 + \lceil 2\log_2 n \rceil) + 1) = n\lceil 2\log_2 n \rceil + 2n + 1$ steps. We can conclude that $WC_{algo}(n) \in \mathcal{O}(n\log_2 n)$.

(b) [4 marks] Find, with proof, a lower bound on the worst-case running time of this algorithm. Show your work. For full marks, your lower bound must match the upper bound determined in the

previous part.

Solution

We wish to prove that $WC_{algo}(n) \in \Omega(n \log_2 n)$.

To prove that $WC_{algo}(n) \in \Omega(n \log_2 n)$, we need to find an input family whose running time is $\Omega(n \log_2 n)$.

Let $n \in \mathbb{N}$.

The running time will be in $\Omega(n \log_2 n)$ if we can get the inner loop over j to be performed a number of times that depends on n, and have it start each time with a value of j that depends on n.

Let $k \in \mathbb{N}$ and start with k = 0.

Assuming that item lst[k] (for a valid non-negative index k) is not divisible by 3, j would be incremented by n and i would be incremented by 1. If lst[k+1] were divisible by 3, the inner loop would then be run starting with a value of j that is at least n (and so will perform at least $|\log_2 n|$ steps). Variable j would be reset to 0.

After running the inner loop, variable i is incremented by 2. If lst[k+1+2] is **not** divisible by 3, j would once again be incremented by n and i would be incremented by 1. If lst[k+1+2+1] were divisible by 3, the inner loop would once again perform at least $\lfloor \log_2 n \rfloor$ steps, and j would be reset to 0.

Repeating in this manner, the inner loop would perform at least $\lfloor \log_2 n \rfloor$ steps. The number of such repetitions would be at least $\lfloor \frac{n}{3} \rfloor$, since i is incremented by 1 and then 2 each time.

An input family of the form

$$[1, 3, 2, 1, 3, 2, 1, 3, 2, \ldots]$$

would produce the behaviour described above.

That is, the n^{th} member of the family $(n \in \mathbb{N})$, is a list lst where, len(lst) == n and for i in range(n),

$$\begin{cases}
1st[i] = 1, & \text{when i } % \ 3 = 0, \\
1st[i] = 3, & \text{when i } % \ 3 = 1, \\
1st[i] = 2, & \text{when i } % \ 3 = 2.
\end{cases}$$

(The entry 2 is arbitrary as the value does not affect the steps performed by the algorithm.)

Altogether then, for this input, the number steps performed is at least $\left\lfloor \frac{n}{3} \right\rfloor \lfloor \log_2 n \rfloor$ steps. We can conclude that $WC_{\texttt{algo}}(n) \in \Omega(n \log_2 n)$.

3. [10 marks] Average-case analysis.

Consider the following algorithm.

```
def has_even(numbers: list[int]) -> bool:
    """Return whether numbers contains an even number.

Precondition: len(lst) > 0
    """

for number in numbers:
    if number % 2 == 0:
    return True
return False
```

(a) [1 mark] Write a set of allowable inputs $\mathcal{I}_{has_even,n}$ for which $Avg_{has_even}(n)$ is $\Theta(1)$. State briefly the reasoning used to arrive at your answer.

Solution

We note that the number of iterations of the for-loop depends on the location of the first even number in numbers. The running time of has_even will be constant independent of n when the first even number in numbers occurs at a fixed index i that is independent of n. When this is the case, the for-loop will always run exactly i + 1 times.

To simplify, let's suppose that numbers [0] is even, and consider the set F_n ($n \in \mathbb{Z}^+$) of input lists numbers to has_even where len(numbers) == n and

$$(\forall i \in range(n), 1 \leq numbers[i] \leq n) \land numbers[0] \% 2 == 0.$$

For the reasons given above, $Avg_{\mathtt{has_even}}(n)$ is $\Theta(1)$ when $\mathcal{I}_{\mathtt{has_even},n} = F_n$.

Note that we need to limit the items in numbers and not allow all ints so that F_n is a finite set.

(b) [1 mark] Write a set of allowable inputs $\mathcal{I}_{has_even,n}$ for which $Avg_{has_even}(n)$ is $\Theta(n)$. State briefly the reasoning used to arrive at your answer.

Solution

The running time of has_even will be depend on n when the first even number in numbers occurs at an index i that is depends on n. When this is the case, the for-loop will always run exactly i+1 times.

Let's suppose that numbers [n-1] is even, and consider the set L_n $(n \in \mathbb{Z}^+)$ of input lists numbers to has_even where len(numbers) == n and

```
 \begin{array}{l} \left( \forall \mathtt{i} \in \mathtt{range}(n), 1 \leq \mathtt{numbers}[\mathtt{i}] \leq n \right) \\ \wedge \quad \left( \forall \mathtt{i} \in \mathtt{range}(n-1), \mathtt{numbers}[\mathtt{i}] \% 2 == 1 \right) \\ \wedge \quad \mathtt{numbers}[\mathtt{n-1}] \ \% \ 2 == 0. \end{array}
```

For the reasons given above, $Avg_{\text{has_even}}(n)$ is $\Theta(n)$ when $\mathcal{I}_{\text{has_even},n} = L_n$.

(c) [2 marks] Define

```
S_n = \{\text{input lists numbers to has\_even} \mid \forall i \in \text{range}(n), 1 \leq \text{numbers}[i] \leq n \}.
```

Note that an int value is allowed to be repeated in an element of S_n . For example,

$$S_2 = \{[1,1], [1,2], [2,1], [2,2]\}.$$

Consider the set of allowable inputs $\mathcal{I}_{\mathtt{has_even},n} = S_n$. Give an expression for $|\mathcal{I}_{\mathtt{has_even},n}|$. State briefly the reasoning used to arrive at your answer.

Solution

Each element of S_n is a distinct length n list of ints where each item is an int between 1 and n inclusive.

Since we have n choices for each item (an int between 1 and n inclusive) and n items in each list, the total number of distinct length n lists of ints is

$$n \times n \times n \times \cdots \times n$$
 (n terms in the product)
= n^n .

For this reason, $|\mathcal{I}_{\mathtt{has_even},n}| = n^n$.

(d) [6 marks] Calculate an exact expression for $Avg_{has_even}(n)$ for the set of allowable inputs $\mathcal{I}_n = S_n$, where S_n is as defined in the previous part. Show your work.

Hint: You may use without proof any helpful correct formula that simplifies an expression containing a summation.

Solution

We can start with the observation that

$$\begin{aligned} Avg_{\text{has_even}}(n) &= \frac{1}{|\mathcal{I}_{\text{has_even},n}|} \sum_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} \text{ running time of has_even(numbers)} \\ &= \frac{1}{n^n} \sum_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} \text{ running time of has_even(numbers)} \end{aligned}$$

The running time of has_even on numbers is determined by the smallest index i for which numbers[i] is even.

When the first even number in numbers[i] has index 0, the running time is 1 step. When it has index 1, the running time is 2 steps. (Here we are simply counting the number of iterations of the loop and taking the running time of the loop body as 1 step.) When numbers does not contain an even number, the running time is n + 1 steps. (There are n iterations of the loop followed by 1 step for the return statement.)

In general, when numbers contains an even number and the first even is at index i, the running time is i + 1 steps. When numbers does not contain an even number, the running time is n + 1 steps.

We can this observation to simplify the single summation given above. We have:

$$Avg_{\text{has_even}}(n) = \frac{1}{n^n} \left(\begin{array}{c} \sum\limits_{i=0}^{n-1} \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} \text{running time of has_even(numbers)} \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} \text{running time of has_even(numbers)} \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} \text{running time of has_even(numbers)} \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} (i+1) \right) \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} (n+1) \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} (n+1) \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} (1) \right) \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} (1) \\ + \sum\limits_{\text{numbers} \in \mathcal{I}_{\text{has}},\text{numbers}} (1) \\ + \sum\limits_{\text{numbers}}$$

The expression

$$\sum_{\begin{subarray}{c} numbers \in \mathcal{I}_{\begin{subarray}{c} label{eq:label} Laster and laster and$$

is equal to the number of lists in S_n with first even item at index i, while the expression

$$\sum_{\text{numbers} \in \mathcal{I}_{\text{has_even},n}} \tag{1}$$
 all items in numbers[i] are odd

is equal to the number of lists in S_n that only contain odd numbers.

The value of each of those expressions depends on whether n is even or odd.

Let's first consider the case that n is even.

Then there are $\frac{n}{2}$ even numbers between 1 and n (inclusive), and $\frac{n}{2}$ odd numbers between 1 and n.

The number of lists in S_n with first even item at index i is then

$$\left(\frac{n}{2}\right)^{i} \times \left(\frac{n}{2}\right)^{1} \times \left(n\right)^{n-i-1}$$

$$= \frac{n^{n}}{2^{i+1}}$$

since each of the first i items can be any one of the possible odd numbers, the item at index [i] can be any one of the possible even numbers and the remaining n - i - 1 items can be any one of the numbers between 1 and n (inclusive).

The number of lists in S_n that only contain odd numbers is

$$\left(\frac{n}{2}\right)^n$$

$$= \frac{n^n}{2^n}.$$

Substituting these new expressions into our average-case running time expression gives:

$$\begin{split} Avg_{\text{has_even}}(n) &= \frac{1}{n^n} \left(\Big(\sum_{i=0}^{n-1} \left(i+1 \right) \frac{n^n}{2^{i+1}} \Big) + \left(n+1 \right) \frac{n^n}{2^n} \right) \\ &= \frac{n^n}{n^n} \left(\Big(\sum_{i=0}^{n-1} \left(i+1 \right) \frac{1}{2^{i+1}} \Big) + \frac{n+1}{2^n} \right) \\ &= \left(\Big(\sum_{i=1}^{n} \left(i \right) \frac{1}{2^i} \Big) + \frac{n+1}{2^n} \right) \\ &= \left(\Big(\sum_{i=1}^{n} \left(i \right) \left(\frac{1}{2} \right)^i \right) + \frac{n+1}{2^n} \right) \end{split}$$

At this point, we will find it helpful to use the following formula from the course notes (pg. 115):

$$\sum_{i=0}^{n-1} ir^i = \frac{nr^n}{r-1} + \frac{r-r^{n+1}}{(r-1)^2}$$

or the equivalent:

$$\sum_{i=1}^{n} ir^{i} = \frac{(n+1)r^{n+1}}{r-1} + \frac{r-r^{n+2}}{(r-1)^{2}}$$

We then have, using $r = \frac{1}{2}$, that

$$\begin{split} Avg_{\text{has_even}}(n) &= \left(\left(\sum_{i=1}^n \left(i \right) \left(\frac{1}{2} \right)^i \right) + \frac{n+1}{2^n} \right) \\ &= \left(\frac{(n+1)(\frac{1}{2})^{n+1}}{\frac{1}{2}-1} + \frac{\frac{1}{2}-(\frac{1}{2})^{n+2}}{(\frac{1}{2}-1)^2} + \frac{n+1}{2^n} \right) \\ &= \left(-2(n+1)\left(\frac{1}{2} \right)^{n+1} + 2^2 \left(\frac{1}{2} - \left(\frac{1}{2} \right)^{n+2} \right) + (n+1)\left(\frac{1}{2} \right)^n \right) \\ &= \left(-(n+1)\left(\frac{1}{2} \right)^n + \left(2 - \left(\frac{1}{2} \right)^n \right) + (n+1)\left(\frac{1}{2} \right)^n \right) \\ &= 2 - \frac{1}{2^n} \end{split}$$

Now we need to repeat the same exercise for n odd! Suppose that n is odd.

Then there are $\frac{n-1}{2}$ even numbers between 1 and n (inclusive), and $\frac{n+1}{2}$ odd numbers between 1 and n.

The number of lists in S_n with first even item at index i is then

$$\left(\frac{n+1}{2}\right)^{i} \times \left(\frac{n-1}{2}\right)^{1} \times \left(n\right)^{n-i-1}$$

$$\left(\frac{1}{2}\right)^{i+1} \times \left(n+1\right)^{i} \times \left(n-1\right)^{1} \times \left(n\right)^{n-i-1}$$

$$\left(\frac{1}{2}\right)^{i+1} \times \left(n+1\right)^{i+1} \times \left(\frac{n-1}{n+1}\right) \times \left(n\right)^{n-i-1}$$

since each of the first i items can be any one of the possible odd numbers, the item at index [i] can be any one of the possible even numbers and the remaining n - i - 1 items can be any one of the numbers between 1 and n (inclusive).

The number of lists in S_n that only contain odd numbers is

$$\left(\frac{n+1}{2}\right)^n$$

$$= \frac{(n+1)^n}{2^n}.$$

Substituting these new expressions into our average-case running time expression gives:

$$\begin{split} Avg_{\,\text{has_even}}(n) &= \frac{1}{n^n} \left(\Big(\sum_{i=0}^{n-1} \left(i+1\right) \Big(\frac{1}{2}\Big)^{i+1} \Big(n+1\Big)^{i+1} \Big(\frac{n-1}{n+1}\Big) \Big(n\Big)^{n-i-1} \Big) + \Big(n+1\Big) \frac{(n+1)^n}{2^n} \right) \\ &= \left(\Big(\sum_{i=0}^{n-1} \left(i+1\right) \Big(\frac{1}{2}\Big)^{i+1} \frac{1}{n^{i+1}} \Big(n+1\Big)^{i+1} \Big(\frac{n-1}{n+1}\Big) \frac{1}{n^{n-i-1}} \Big(n\Big)^{n-i-1} \Big) + \Big(n+1\Big) \frac{1}{n^n} \frac{(n+1)^n}{2^n} \right) \\ &= \left(\Big(\sum_{i=0}^{n-1} \left(i+1\right) \Big(\frac{1}{2}\Big)^{i+1} \Big(1+\frac{1}{n}\Big)^{i+1} \Big(\frac{n-1}{n+1}\Big) \Big) + \Big(n+1\Big) \frac{(1+\frac{1}{n})^n}{2^n} \right) \\ &= \left(\Big(\frac{n-1}{n+1}\Big) \Big(\sum_{i=1}^{n} \left(i\right) \Big(\frac{1}{2}\Big)^{i} \Big(1+\frac{1}{n}\Big)^{i} \Big) + \Big(n+1\Big) \Big(\frac{1}{2}\Big)^{n} \Big(1+\frac{1}{n}\Big)^{n} \right) \end{split}$$

Now let's apply the previously mentioned summation formula with

$$r = \left(\frac{1}{2}\right)\left(1 + \frac{1}{n}\right) = \frac{n+1}{2n}.$$

Note that $r - 1 = \frac{1 - n}{2n}$.

Also note that the last term is the sum above can be written as

$$(n+1)\left(\frac{1}{2}\right)^n \left(1+\frac{1}{n}\right)^n = (n+1)r^n.$$

$$\begin{split} Avg_{\text{has_even}}(n) &= \left(\left(\frac{n-1}{n+1} \right) \left(\sum_{i=1}^{n} \left(i \right) \left(\frac{1}{2} \right)^{i} \left(1 + \frac{1}{n} \right)^{i} \right) + \left(n+1 \right) \left(\frac{1}{2} \right)^{n} \left(1 + \frac{1}{n} \right)^{n} \right) \\ &= \left(\left(\frac{n-1}{n+1} \right) \left(\left(\frac{(n+1)r^{n+1}}{r-1} \right) + \left(\frac{r-r^{n+1}}{(r-1)^{2}} \right) \right) + (n+1)r^{n} \right) \\ &= \left(\left(\frac{n-1}{n+1} \right) \left(\frac{(n+1)r^{n+1}}{r-1} \right) + \left(\frac{n-1}{n+1} \right) \left(\frac{r-r^{n+1}}{(r-1)^{2}} \right) + (n+1)r^{n} \right) \end{split}$$

The first term can be rearranged to get $-2nr^{n+1}$.

The middle term can be rearranged to get $\frac{(1-r^n)(2n)}{(n-1)}$.

The three terms can be added to get an expression of the form:

$$2\frac{n}{n-1} - r^n \cdot A_n$$

where A_n is a positive quantity.

We have then that

$$Avg_{\text{has_even}}(n) = 2\frac{n}{n-1} - B_n$$

where B_n is a quantity that goes to 0 from above as n increases.

This expression has a similar form as in the case of n even, as one would expect.

(We should have restricted the assigned discussion to even n.)