Bribeproof Mechanisms in Two-Values Domains

Matúš Mihalák Maastricht University Paolo Penna ETH Zurich Peter Widmayer ETH Zurich

Payment = reported cost

Payment = reported cost

Payment = 2nd best cost

Payment = 2nd best cost

utility("truth") \geq utility("false")

Strategyproof Mechanism

Shortest Path, Min Spanning Tree, Steiner Tree,...

Strategyproof Mechanism

(Vickrey'61 – Clarke'71 – Groves'73)

Payment = 2nd best cost

utility("truth") \geq utility("false")

Strategyproof Mechanism

Payment = 2nd best cost

utility("truth") \geq utility("false")

Strategyproof Mechanism

Payment = 2nd best cost

utility("truth") \geq utility("false")

Strategyproof Mechanism

Best Strategy = Bribe (collude)!!

Bribeproofness

(Schummer'00)

Bribeproofness

(Schummer'00)

Bribeproof

Welfare maximization

min sum costs

(VCG)

Bribeproof

Welfare maximization

min sum costs

(VCG)

Restricted domains:

- min max costs
- max revenue

•

characterizations

(Myerson'81) (Rochet'87)... ...(Archer-Tardos'01)...

Bribeproof

Welfare maximization

min sum costs

(VCG)

Restricted domains:

- min max costs
- max revenue

characterizations

(Myerson'81) (Rochet'87)... ...(Archer-Tardos'01)...

Bribeproof

Nothing useful:

fixed outcome

(Schummer'00)

Welfare maximization

min sum costs

(VCG)

Restricted domains:

- min max costs
- max revenue

characterizations

(Myerson'81) (Rochet'87)... ...(Archer-Tardos'01)...

Bribeproof

Nothing useful:

fixed outcome

(Schummer'00)

Also in finite domains

(Mizukami'03)

Welfare maximization

min sum costs

(VCG)

Restricted domains:

- min max costs
- max revenue

characterizations

(Myerson'81) (Rochet'87)... ...(Archer-Tardos'01)...

Bribeproof

Nothing useful:

fixed outcome

(Schummer'00)

Also in finite domains

(Mizukami'03)

Restricted Domains

Anything Useful?

Welfare maximization

min sum costs

(VCG)

Restricted domains:

- min max costs
- max revenue

characterizations

(Myerson'81) (Rochet'87)... ...(Archer-Tardos'01)...

Bribeproof

Nothing useful:

fixed outcome

(Schummer'00)

Also in finite domains

(Mizukami'03)

Identical Items
Posted Prices

(Goldberg-Hartline'05)...

Welfare maximization

min sum costs

(VCG)

Restricted domains:

- min max costs
- max revenue

characterizations

(Myerson'81) (Rochet'87)... ...(Archer-Tardos'01)...

Bribeproof

Nothing useful:

fixed outcome

(Schummer'00)

Also in finite domains

(Mizukami'03)

Restricted Domains

Anything Useful?

money

work

Bribeproof Mechanisms

Sufficient Condition

Characterizations

Bribeproof Mechanisms

- max welfare
- simple

Sufficient Condition

Characterizations

Bribeproof Mechanisms

- max welfare
- simple

 $pay = work \times q$

Sufficient Condition

Characterizations

Bribeproof Mechanisms

- max welfare
- simple

 $pay = work \times q$

Sufficient Condition

algorithm (allocation rule)

Characterizations

Bribeproof Mechanisms

- max welfare
- simple

 $pay = work \times q$

Sufficient Condition

algorithm (allocation rule)

Characterizations

- only mechanism
- best possible result

Bribeproof Mechanisms

- max welfare
- simple

 $pay = \overline{work \times q}$

Sufficient Condition

algorithm (allocation rule)

Characterizations

- only mechanism
- best possible result

$$\frac{L+H}{2}=3$$

pay

Binary Allocations

max social welfare ⇒ bribeproof

Two-Values Domains

work
$$\times \frac{L+H}{2}$$

cannot affect the others more than yourself

Two-Values Domains

Bounded \Influence ⇒ Bribeproof

 $non-bossy \Rightarrow bribeproof$

Two-Values Domains

work
$$\times \frac{L+H}{2}$$

max social welfare ⇒ bribeproof

pay

pay

pay

pay

unique bribeproof mechanism

pay

unique bribeproof mechanism

unique bribeproof mechanism

social welfare

social welfare

social welfare

APX shortest path?

Combinatorial Auction (Known Single Minded)?

APX Makespan Related Machines?

Thank You