GRIP (THE SPARKS FOUNDATION)

Data Science and Business Analytics

Author: Chavala Naveen Kumar

Task - 1(Prediction using Supervised Machine Learning)

Simple Linear Regression

studied. This is a simple linear regression task as it involves just two variables. Technical Stack: Scikit-learn, Numpy, Pandas, Matplotlib

In this regression task we try to predict the percentage of marks that a student is expected to score based upon the number of hours they

Importing the required libraries

```
from sklearn.model selection import train test split
 from sklearn.linear model import LinearRegression
 import matplotlib.pyplot as plt
 import pandas as pd
 import numpy as np
Step-1: Reading Data from source
```

url = "https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv

Reading data from remote link

1

2

3

4

5

6

7

8

5.1

3.2

8.5

3.5

1.5

9.2

5.5

8.3

2.7

plt.show()

60

47

27

75

30

20

88

60

81

25

s_	data.	head(10	0)					
Dat	a imp	ort su	ccessful					
ı	Hours	Scores						
0	2.5	21						
	pr s_ Dat	print(" s_data. Data imp	print("Data in s_data.head(1) Data import su Hours Scores	 <pre>print("Data import successful") s_data.head(10) Data import successful Hours Scores</pre>	<pre>print("Data import successful") s_data.head(10) Data import successful Hours Scores</pre>	<pre>print("Data import successful") s_data.head(10) Data import successful Hours Scores</pre>	<pre>print("Data import successful") s_data.head(10) Data import successful Hours Scores</pre>	print("Data import successful") s_data.head(10) Data import successful Hours Scores

	Step 2 : Input data visualization
[3]:	# Plotting the distribution of scores
	<pre>s_data.plot(x='Hours', y='Scores', style='o')</pre>
	plt.title('Hours vs Percentage')
	<pre>plt.xlabel('Hours Studied')</pre>

plt.ylabel('Percentage Score')

Scores

80 70

regressor.fit(X_train.reshape(-1,1), y_train)

Hours vs Percentage

print("Training complete.") Training complete.

plt.plot(X, line,color='red');

plt.show()

80

[[1.5]][3.2] [7.4] [2.5] [5.9]]

```
Step 5 : Plotting the line of regression
 # Plotting the regression line
 line = regressor.coef_*X+regressor.intercept_
 # Plotting for the test data
 plt.scatter(X, y)
```

```
60
 40
 20
Step 6 : Making Predictions
 # Testing data
 print(X_test)
 # Model Prediction
 y_pred = regressor.predict(X test)
```

Step 7: Comparing actual result to the predicted model result

df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})

print("Training Score:", regressor.score(X_train, y_train))

Comparing Actual vs Predicted

Actual Predicted

20 16.884145

30 26.794801

62 60.491033

50

40

In [9]: #Estimating training and test score

	<pre>print("Test Score:", regressor.score(X_test, y_test))</pre>								
In [10]:	Training Score: 0.9515510725211552 Test Score: 0.9454906892105356								
	# Plotting the Bar graph to depict the difference between the actual and predicted value								
	<pre>df.plot(kind='bar',figsize=(5,5)) plt.grid(which='major', linewidth='0.5', color='red') plt.grid(which='minor', linewidth='0.5', color='blue') plt.show()</pre>								
	70 Actual Predicted								

print('R-2:', metrics.r2 score(y test, y pred))

parameters such as mean absolute error, mean squared error and R2 score.

Mean Absolute Error: 4.183859899002975

```
print("No of Hours = {}".format(hours))
print("Predicted Score = {}".format(own_pred[0]))
No of Hours = 9.25
Predicted Score = 93.69173248737538
from sklearn import metrics
```

Mean Squared Error: 21.5987693072174 Root Mean Squared Error: 4.6474476121003665 R-2: 0.9454906892105356

R-2 gives the score of model fit and in this case we have R-2 = 0.9454906892105355 which is actually a great score for this model.

Conclusion

print('Mean Absolute Error:', metrics.mean absolute error(y test, y pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))

print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))

I was successfully able to carry-out Prediction using Supervised ML task and was able to evaluate the model's performance on various