## RESCIENCEC

#### Replication / Computational Neuroscience

# [Re] A circuit model of auditory cortex

#### Parvathy Neelakandan<sup>1</sup> and Christoph Metzner<sup>1,2, ID</sup>

<sup>1</sup>Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany – <sup>2</sup>Biocomputation Group, Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, United Kingdom

Edited by (Editor)

#### Introduction

Received

bla

Published

#### Methods

DOI

In this replication, we focus on the rate models proposed in the original article. The firing rate model was an extensions of the traditional Wilson-Cowan model<sup>1</sup> and represented an iso-frequency unit of the auditory cortex. This iso-frequency unit consisted of one excitatory and two inhibitory populations. Building on this unit a more complex three-unit rate models was developed, to investigate stimulus-specific adaptation, forward suppression, tunig-curve adaptation and feedforward functional connectivity.

## Iso-Frequency Unit Model

Three-Unit Model

## Reproduction of experiments

## Reimplementation

The iso-frequency unit model and the three-unit model were both implemented in Python and integrated into the neurolib framework $^2$ .

#### Discussion

bla

## References

- H. R. Wilson and J. D. Cowan. "Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons."
   In: Biophysical Journal 12.1 (1972), pp. 1–24.
- C. Cakan, C. Metzner, and N. Jajcay. neurolib: A Python simulation framework for easy whole-brain neural mass modeling. 2019.

Copyright © 2020 P. Neelakandan and C. Metzner, released under a Creative Commons Attribution 4.0 International license. Correspondence should be addressed to Christoph Metzner (cmetzner@ni.tu-berlin.de)
The authors have declared that no competing interests exists.
Code is available at https://github.com/ChristophMetzner/Park-Geffen-Replication.



Figure 1. ReFig1



Figure 2. ReFig2



Figure 3. ReFig3





Figure 4. ReFig4



Figure 5. ReFig6



Figure 6. ReFig8



Figure 7. ReFig9