

Report No. : EED32I00227801 Page 1 of 56

TEST REPORT

Product : Casambi BLE Module

Trade mark : N/A

Model/Type reference : RFM-CSB-2, 3300-00063,

3300-00064, XEN-CSBM-1

Serial Number : N/A

Report Number : EED32I00227801 FCC ID : 2AJML-EUCSBM

Date of Issue : Sep. 08, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

EULUM DESIGN, LLC 6131-B Kellers Church Road, Pipersville, PA 18947 USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom chen (Test Project)

Compiled by:

Ware Xin (Project Engineer)

Kevin yang (Reviewer)

Sep. 08, 2016

Approved by:

Sheek Luo (Lab supervisor)

Check No.: 2448766459

Page 2 of 56

2 Version

Version No.	Date	Description
00	Sep. 08, 2016	Original

Page 3 of 56

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Model No.: RFM-CSB-2, 3300-00063, 3300-00064, XEN-CSBM-1

These models are similar identical on the circuit design, layout and transmission portion. The only difference in the power supply voltage.

Therefore in this report the Model No. RFM-CSB-2 were fully tested, and the Model No.3300-00063, 3300-00064, XEN-CSBM-1 were retested for Radiated Emission and Conducted Peak Output Power.

Page 4 of 56

4 Content

/ 4 1	••••••						
2 VERSION	••••••		••••••		••••••		
3 TEST SUMMAI	RY	••••••	•••••	••••••			
4 CONTENT							
5 TEST REQUIR							
5.1.2 For Ra	onducted test adiated Emiss onducted Emis RONMENT	setup ions test setu ssions test se	ptup				
6 GENERAL INF							
6.1 CLIENT INFO 6.2 GENERAL D 6.3 PRODUCT S 6.4 DESCRIPTIO 6.5 TEST LOCA 6.6 TEST FACIL 6.7 DEVIATION 6.8 ABNORMALI 6.9 OTHER INFO	DESCRIPTION OF SPECIFICATION OF SUPPORTION	F EUTSUBJECTIVE TO TUNITS	O THIS STANDA	RD			
6.10 MEASURE		1300		19.9			
7 EQUIPMENT L							
8 RADIO TECHN							
Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H): Conducted I): Band-edge): RF Conduct): Power Spec): Antenna Re): AC Power L): Restricted b	Peak Output for RF Conducted Spurious Extral Density quirement ine Conducte ands around	Power cted Emission Emissions ed Emission fundamental f	requency (Ra	adiated)		
PHOTOGRAPHS	OF TEST SE	TUP	•••••	•••••	•••••	•••••	40
PHOTOGRAPHS	OF EUT CO	NSTRUCTION	NAL DETAILS	S		•••••	49

Page 5 of 56

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	25°C	0
Humidity:	50% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

ot onariror.					
Test Mode	Tv	RF Channel			
rest Mode	Tx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Gran	2402WIN2 ~2400 WIN2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	III kind of data	

Page 7 of 56

6 General Information

6.1 Client Information

Applicant:	EULUM DESIGN, LLC
Address of Applicant:	6131-B Kellers Church Road, Pipersville, PA 18947 USA
Manufacturer:	EULUM DESIGN, LLC
Address of Manufacturer:	6131-B Kellers Church Road, Pipersville, PA 18947 USA
Factory:	EULUM DESIGN, LLC
Address of Factory:	6131-B Kellers Church Road, Pipersville, PA 18947 USA

6.2 General Description of EUT

Product Name:	Casambi BLE Module			
Model No.(EUT):	RFM-CSB-2, 3300-00063, 3300-00064, XEN-CSBM-1			
Trade Mark:	N/A			
EUT Supports Radios application:	Bluetooth V4.0 BLE			
Power Supply:	DC 5V	20		
Sample Received Date:	Aug. 17, 2016	1		
Sample tested Date:	Aug. 17, 2016 to Sep. 08, 2016			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	4.0	(27)	(23)	
Modulation Technique:	DSSS			
Modulation Type:	GFSK			
Number of Channel:	40			
Test Power Grade:	N/A	1		
Test Software of EUT:	N/A			6
Antenna Type:	Chip Antenna			
Antenna Gain:	1.3dBi			
Test Voltage:	DC 5V	(20)		

		100				100	
Operation F	requency eac	h of channe					·
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Page 8 of 56

6.4 Description of Support Units

The EUT has been tested independently.

Description	Manufacturer	Model No.	Certification	Supplied by
Power supply	Keysight	E3642A	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Spurious emission toot	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 10 of 56

7 Equipment List

	RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(2)	01-12-2016	01-11-2017			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017			
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

Page 11 of 56

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	_	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(42)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 13 of 56

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6708	1.0510	PASS	
BLE	MCH	0.6765	1.0409	PASS	Peak
BLE	НСН	0.6766	1.0498	PASS	detector

Test Graphs

Page 14 of 56

Page 15 of 56

Appendix B): Conducted Peak Output Power

Model Name: RFM-CSB-2

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.983	PASS
BLE	MCH	-2.958	PASS
BLE	НСН	-2.784	PASS

Test Graphs

Model Name: XEN-CSBM-1

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.523	PASS
BLE	MCH	-3.805	PASS
BLE	нсн	-3.232	PASS

Model Name: 3300-00063

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-6.226	PASS
BLE	MCH	-5.513	PASS
BLE	HCH	-4.932	PASS

Page 18 of 56

Test Graphs

Model Name: 3300-00064

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.362	PASS
BLE	MCH	-3.682	PASS
BLE	НСН	-3.232	PASS

Page 20 of 56

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-4.056	-49.887	-24.06	PASS
BLE	HCH	-2.703	-58.033	-22.7	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.028	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-3.303	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-2.8	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 24 of 56

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.919	8	PASS
BLE	MCH	-17.334	8	PASS
BLE	НСН	-17.394	8	PASS

Test Graphs

Page 26 of 56

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip Antenna and no consideration of replacement. The best case gain of the antenna is 1.3dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Te	est frequency range :150KHz	-30MHz		
	1)	The mains terminal disturbar	ice voltage test was c	onducted in a shield	ded room.
	2)	The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the growthe unit being measure multiple power cables to a sexceeded.	h provides a $50Ω/50$ μ nits of the EUT were round reference planed. A multiple socket of	uH + 5Ω linear imp connected to a sec in the same way a butlet strip was use	edance. The cond LISN 2, s the LISN 1 d to connect
	3)	The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		•
	4)	The test was performed wir EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	e vertical ground refered to the horizontal grother to the boundary of the upper LISNs mounted on the closest possible versions.	rence plane. The verbund reference pland init under test and in top of the groundints of the LISN 1 are	ertical ground ne. The LISN bonded to a nd reference and the EUT.
	5)	In order to find the maximum of the interface cables reconducted measurement.			
Limit:		(C.)	(6,7)	(67)	
		Frequency range (MHz)	Limit (c	lΒμV)	
			Quasi-peak	Average	
		0.15-0.5	66 to 56*	56 to 46*	522
	1000				_ 0
		0.5-5	56	46	

NOTE: The lower limit is applicable at the transition frequency

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 29 of 56

Live line:

	Reading_Level No. Freq. (dBuV)		evel	Correct Factor	М	easurem (dBuV)	ent	Lin (dB			rgin dB)				
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
_	1	0.1500	26.70		9.29	9.80	36.50		19.09	65.99	55.99	-29.49	-36.90	Р	
_	2	0.1860	20.53		-8.47	9.80	30.33		1.33	64.21	54.21	-33.88	-52.88	Р	
_	3	1.7220	8.49		-12.4	9.92	18.41		-2.55	56.00	46.00	-37.59	-48.55	Р	
1	4	2.5579	7.67		-13.0	10.00	17.67		-3.06	56.00	46.00	-38.33	-49.06	Р	
	5	11.9700	11.45		8.94	10.04	21.49		18.98	60.00	50.00	-38.51	-31.02	Р	
	6	23.9380	10.47		7.50	9.80	20.27		17.30	60.00	50.00	-39.73	-32.70	Р	

Page 30 of 56

Neutral line:

No.	Freq.		ling_L∈ IBuV)	evel	Correct Factor	М	easuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	27.19		14.37	9.80	36.99		24.17	65.99	55.99	-29.00	-31.82	Р	
2	0.1980	20.93		-6.52	9.80	30.73		3.28	63.69	53.69	-32.96	-50.41	Р	
3	0.2220	19.91		-9.43	9.80	29.71		0.37	62.74	52.74	-33.03	-52.37	Р	
4	0.6540	7.09		-8.58	9.90	16.99		1.32	56.00	46.00	-39.01	-44.68	Р	
5	1.9100	9.45		-12.5	9.97	19.42		-2.61	56.00	46.00	-36.58	-48.61	Р	
6	11.9660	7.10		4.75	10.04	17.14		14.79	60.00	50.00	-42.86	-35.21	Р	
7	23.9340	13.23		11.96	9.80	23.03		21.76	60.00	50.00	-36.97	-28.24	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak 1	20kHz	300kHz	Quasi-peak		
	AL 4011	Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz Average		-0-	
Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to c. The antenna height is	on the top of a rotatechoic camber. The nof the highest radio eters away from the op of a variable-hei	table wa ation. e interfere ght anter	s rotated 3 ence-recei nna tower.	360 degrees t	o, whic	
	 c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel 						
	frequency to show con bands. Save the spec	mpliance. Also mea trum analyzer plot.	sure any	emissions	s in the restric		
	frequency to show con bands. Save the spec	mpliance. Also mea trum analyzer plot. It channel lure as below: ove is the test site, comber change form to a meter and table is lowest channel, the ements are performed found the X axis	sure any Repeat for change fr able 0.8 s 1.5 met e Highest ed in X, ` positioni	om Semi- meter to 1 er). channel Y, Z axis p	Anechoic Ch .5 meter(Abo	ambe ove	
Limit:	frequency to show conbands. Save the spector for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the ling. The radiation measure Transmitting mode, ar j. Repeat above proced	mpliance. Also mea trum analyzer plot. It channel lure as below: ove is the test site, comber change form to a 1 meter and table is lowest channel, the ements are performed found the X axis ures until all frequents.	change frable 0.8 s 1.5 met e Highest ed in X, positionincies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo	ambe ove	
imit:	frequency to show conbands. Save the spector for lowest and highest Above 1GHz test procede g. Different between about to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar	mpliance. Also mea trum analyzer plot. It channel lure as below: ove is the test site, comber change form to a meter and table is lowest channel, the ements are performed found the X axis	change frable 0.8 s 1.5 met e Highest ed in X, positionincies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	ambe ove	
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Charal 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above proced	mpliance. Also mea trum analyzer plot. channel lure as below: ove is the test site, comber change form to a 1 meter and table is lowest channel, the ements are performed found the X axis ures until all frequents (dBµV/m).	change frable 0.8 s 1.5 met e Highest ed in X, positionincies me	om Semi- meter to 1 er). channel Y, Z axis p ng which ir asured wa	Anechoic Ch .5 meter(Abo positioning for it is worse cas as complete.	ambe ove	
imit:	frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	mpliance. Also mea trum analyzer plot. the channel strum as below: It channel strum as below: It channel strum as below: It meter and table is the company of the channel and table is the test strum and found the X axis the company of the X axis the channel all frequents are until all frequents the Limit (dBµV/m 40.0	change frable 0.8 s 1.5 met e Highest ed in X, positionincies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe	Anechoic Ch. 5 meter (About 15 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 6 meter (About 15 meter) Anechoic Ch. 7 m	ambe ove	
Limit:	frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceded g. Different between about to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, arg. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also mea trum analyzer plot. It channel fure as below: It we is the test site, of the moder change form the second of	change frable 0.8 s 1.5 met e Highest ed in X, positionincies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ambe ove	
Limit:	frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charal 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	mpliance. Also mea trum analyzer plot. It channel lure as below: ove is the test site, comber change form to a 1 meter and table is owest channel, the ements are performed found the X axis ures until all frequer Limit (dBµV/m 40.0 43.5 46.0	change frable 0.8 s 1.5 met e Highest ed in X, positionincies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abordoning for tis worse cases complete. mark eak Value eak Value	ambe ove	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 32 of 56

Worse case mode: GFSK

Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Peak

Worse case mode: GFSK

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak

Worse case mode:	GFSK	-0-		-1-
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Horizontal	Peak

Worse case mode: GFSK

Frequency: 2483.5MHz Test channel: Highest Polarization: Horizontal AVG

Worse case mode:	GFSK			(1)	
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Vertical	Peak	

Worse case mode:	GFSK			
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Vertical	AVG

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	
(62)	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

				٠,	
	п	n	n	п	t:
_	-1	ш		ш	L.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	(3)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 36 of 56

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(2)	
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	51.662	14.87	1.41	4.23	20.51	40.00	-19.49	Horizontal	
2	137.420	10.46	1.58	19.53	31.57	43.50	-11.93	Horizontal	
3	179.386	10.88	1.97	19.35	32.20	43.50	-11.30	Horizontal	
4	377.259	15.64	2.76	16.77	35.17	46.00	-10.83	Horizontal	
5 pp	545.183	18.58	3.20	19.39	41.17	46.00	-4.83	Horizontal	
								Horizontal	

Page 37 of 56

Transmitter Emission above 1GHz

Model Name: RFM-CSB-2

Wodel Ha			201	/ AN			/ 41/1		
Worse case	mode:	GFSK		Test chann	nel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1357.254	30.58	2.69	34.80	47.18	45.65	74	-28.35	Pass	Н
1668.044	31.18	2.98	34.54	48.18	47.80	74	-26.20	Pass	ЭН
4804.000	34.69	5.11	34.35	48.55	54.01	74	-19.99	Pass	Н
5762.235	35.72	6.90	34.30	40.55	48.87	74	-25.13	Pass	Н
7206.000	36.42	6.66	34.90	36.41	44.59	74	-29.41	Pass	Н
9608.000	37.88	7.73	35.08	37.65	48.18	74	-25.82	Pass	Н
1198.095	30.22	2.51	34.97	47.55	45.31	74	-28.69	Pass	V
1988.327	31.68	3.22	34.31	45.84	46.43	74	-27.57	Pass	V
4804.000	34.69	5.11	34.35	54.50	59.96	74	-14.04	Pass	V
5895.771	35.82	7.20	34.30	40.06	48.78	74	-25.22	Pass	V
7206.000	36.42	6.66	34.90	39.15	47.33	74	-26.67	Pass	V
9608.000	37.88	7.73	35.08	36.08	46.61	74	-27.39	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Lowest	Remark: Average		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4804.000	34.69	5.11	34.35	37.57	43.02	54	-10.98	Pass	• Н
4804.000	34.69	5.11	34.35	43.52	48.97	54	-5.03	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1260.670	30.37	2.58	34.90	47.12	45.17	74	-28.83	Pass	Н
1668.044	31.18	2.98	34.54	47.83	47.45	74	-26.55	Pass	Н
4880.000	34.85	5.08	34.33	44.97	50.57	74	-23.43	Pass	Н
5791.646	35.74	6.97	34.30	40.46	48.87	74	-25.13	Pass	Н
7320.000	36.43	6.77	34.90	37.30	45.60	74	-28.40	Pass	Н
9760.000	38.05	7.60	35.05	36.43	47.03	74	-26.97	Pass	Н
1273.572	30.40	2.60	34.89	46.64	44.75	74	-29.25	Pass	V
3616.451	33.08	5.50	34.56	44.19	48.21	74	-25.79	Pass	V
4880.000	34.85	5.08	34.33	45.15	50.75	74	-23.25	Pass	V
5910.798	35.83	7.23	34.30	38.89	47.65	74	-26.35	Pass	V
7320.000	36.43	6.77	34.90	37.19	45.49	74	-28.51	Pass	V
9760.000	38.05	7.60	35.05	35.46	46.06	74	-27.94	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1219.635	30.27	2.54	34.94	46.88	44.75	74	-29.25	Pass	Н
1755.164	31.32	3.05	34.47	47.53	47.43	74	-26.57	Pass	Н
3625.669	33.07	5.50	34.57	44.22	48.22	74	-25.78	Pass	H
4960.000	35.02	5.05	34.31	48.59	54.34	74	-19.66	Pass	М
7440.000	36.45	6.88	34.90	38.33	46.76	74	-27.24	Pass	Н
9920.000	38.22	7.47	35.02	35.09	45.76	74	-28.24	Pass	Н
1222.743	30.28	2.54	34.94	46.94	44.82	74	-29.18	Pass	V
1668.044	31.18	2.98	34.54	47.83	47.45	74	-26.55	Pass	V
3607.257	33.09	5.50	34.56	45.02	49.05	74	-24.95	Pass	V
4960.000	35.02	5.05	34.31	53.13	58.88	74	-15.12	Pass	V
7440.000	36.45	6.88	34.90	39.32	47.75	74	-26.25	Pass	V
9920.000	38.22	7.47	35.02	37.81	48.48	74	-25.52	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Highest	Remark: Average		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4960.000	35.02	5.05	34.31	37.61	43.37	54	-10.63	Pass	Н
4960.000	35.02	5.05	34.31	42.14	47.90	54	-6.10	Pass	V

Model Name: XEN-CSBM-1

wodei na	ille. AEN	-CODIVI- I							
Worse case	mode:	GFSK		Test chann	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1378.143	30.63	2.71	34.78	47.03	45.59	74	-28.41	Pass	Н
3747.656	32.98	5.48	34.58	44.36	48.24	74	-25.76	Pass	Н
4804.000	34.69	5.11	34.35	44.42	49.87	74	-24.13	Pass	- H
5895.771	35.82	7.20	34.30	40.25	48.97	74	-25.03	Pass	H
7206.000	36.42	6.66	34.90	38.91	47.09	74	-26.91	Pass	H
9608.000	37.88	7.73	35.08	36.13	46.66	74	-27.34	Pass	Н
1132.844	30.06	2.43	35.04	47.37	44.82	74	-29.18	Pass	V
1651.146	31.15	2.96	34.55	46.47	46.03	74	-27.97	Pass	V
4804.000	34.69	5.11	34.35	50.26	55.71	74	-18.29	Pass	V
6331.329	36.07	7.10	34.51	39.60	48.26	74	-25.74	Pass	V
7206.000	36.42	6.66	34.90	37.30	45.48	74	-28.52	Pass	V
9608.000	37.88	7.73	35.08	37.43	47.96	74	-26.04	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Lowest	Remark: Average		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4804.000	34.69	5.11	34.35	39.40	44.85	54	-9.15	Pass	V

70.7						/ / / / / / / / / / / / / / / / / / / /			201
Worse case	mode:	GFSK		Test chan	nel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	47.27	44.66	74	-29.34	Pass	Н
1663.803	31.17	2.97	34.54	46.22	45.82	74	-28.18	Pass	Н
4883.519	34.86	5.08	34.33	48.52	54.13	74	-19.87	Pass	Н
6172.197	35.99	7.25	34.41	40.03	48.86	74	-25.14	Pass	Н
7320.000	36.43	6.77	34.90	37.76	46.06	74	-27.94	Pass	Н
9760.000	38.05	7.60	35.05	36.71	47.31	74	-26.69	Pass	H
1129.964	30.05	2.43	35.04	47.86	45.30	74	-28.70	Pass	V
1668.044	31.18	2.98	34.54	46.82	46.44	74	-27.56	Pass	V
4880.000	34.85	5.08	34.33	50.69	56.29	74	-17.71	Pass	V
6251.257	36.03	7.17	34.46	40.31	49.05	74	-24.95	Pass	V
7320.000	36.43	6.77	34.90	37.60	45.90	74	-28.10	Pass	V
9760.000	38.05	7.60	35.05	36.21	46.81	74	-27.19	Pass	V

Worse case	Worse case mode: GFSK			Test channel:		Middle	Remark: Average		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4883.519	34.86	5.08	34.33	37.66	43.27	54	-10.73	Pass	Н
4880.000	34.85	5.08	34.33	39.83	45.43	54	-8.57	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1219.635	30.27	2.54	34.94	46.78	44.65	74	-29.35	Pass	Н
1597.401	31.05	2.92	34.59	46.67	46.05	74	-27.95	Pass	C H
4960.000	35.02	5.05	34.31	49.85	55.61	74	-18.39	Pass	H
5762.235	35.72	6.90	34.30	40.22	48.54	74	-25.46	Pass	Н
7440.000	36.45	6.88	34.90	37.78	46.21	74	-27.79	Pass	Н
9920.000	38.22	7.47	35.02	35.44	46.11	74	-27.89	Pass	Н
1118.517	30.02	2.42	35.05	47.24	44.63	74	-29.37	Pass	V
1668.044	31.18	2.98	34.54	47.90	47.52	74	-26.48	Pass	V
4960.000	35.02	5.05	34.31	49.19	54.94	74	-19.06	Pass	V
6267.190	36.04	7.16	34.47	40.52	49.25	74	-24.75	Pass	V
7440.000	36.45	6.88	34.90	37.26	45.69	74	-28.31	Pass	V
9920.000	38.22	7.47	35.02	36.36	47.03	74	-26.97	Pass	V

Worse case	Worse case mode: GFSK			Test channel:		Highest	Remark: Average		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4960.000	35.02	5.05	34.31	38.99	44.75	54	-9.25	Pass	Н
4960.000	35.02	5.05	34.31	38.32	44.08	54	-9.92	Pass	V

Model Name: 3300-00063

Worse case	mode:	GFSK		Test chann	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1115.673	30.02	2.41	35.06	48.10	45.47	74	-28.53	Pass	Н
1668.044	31.18	2.98	34.54	47.25	46.87	74	-27.13	Pass	Н
4804.000	34.69	5.11	34.35	53.79	59.24	74	-14.76	Pass	- 1
5732.974	35.70	6.83	34.30	41.20	49.43	74	-24.57	Pass	H
7206.000	36.42	6.66	34.90	39.18	47.36	74	-26.64	Pass	H
9608.000	37.88	7.73	35.08	37.56	48.09	74	-25.91	Pass	Н
1129.964	30.05	2.43	35.04	47.32	44.76	74	-29.24	Pass	V
1668.044	31.18	2.98	34.54	47.26	46.88	74	-27.12	Pass	V
4804.000	34.69	5.11	34.35	57.23	62.68	74	-11.32	Pass	V
6267.190	36.04	7.16	34.47	41.24	49.97	74	-24.03	Pass	V
7206.000	36.42	6.66	34.90	37.83	46.01	74	-27.99	Pass	V
9608.000	37.88	7.73	35.08	37.23	47.76	74	-26.24	Pass	V

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 42 of	56
------------	----

Worse case	rse case mode: GFSK Te		Test chann	Test channel:		Remark: Av	verage		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4804.000	34.69	5.11	34.35	42.81	48.26	54	-5.74	Pass	Н
4804.000	34.69	5.11	34.35	45.45	50.90	54	-3.10	Pass	٧

Worse case	mode:	GFSK		Test chann	nel:	Middle	Remark: Pe	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1060.295	29.87	2.34	35.12	48.76	45.85	74	-28.15	Pass	Н
1668.044	31.18	2.98	34.54	47.87	47.49	74	-26.51	Pass	Н
4880.000	34.85	5.08	34.33	47.65	53.25	74	-20.75	Pass	Н
5703.861	35.68	6.77	34.30	41.63	49.78	74	-24.22	Pass	Н
7320.000	36.43	6.77	34.90	36.93	45.23	74	-28.77	Pass	H
9760.000	38.05	7.60	35.05	35.88	46.48	74	-27.52	Pass	ЭН
1204.210	30.24	2.52	34.96	47.25	45.05	74	-28.95	Pass	V
1668.044	31.18	2.98	34.54	47.99	47.61	74	-26.39	Pass	V
4880.000	34.85	5.08	34.33	51.23	56.83	74	-17.17	Pass	V
6363.645	36.09	7.06	34.53	39.07	47.69	74	-26.31	Pass	V
7320.000	36.43	6.77	34.90	36.07	44.37	74	-29.63	Pass	V
9760.000	38.05	7.60	35.05	34.68	45.28	74	-28.72	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Middle	Remark: A	verage	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4880.000	34.85	5.08	34.33	38.67	44.27	54	-9.73	Pass	Н
4880.000	34.85	5.08	34.33	40.25	45.85	54	-8.15	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1062.998	29.88	2.35	35.12	47.79	44.90	74	-29.10	Pass	Н
1668.044	31.18	2.98	34.54	47.34	46.96	74	-27.04	Pass	H
4960.000	35.02	5.05	34.31	40.49	46.25	74	-27.75	Pass	Ĥ
5732.974	35.70	6.83	34.30	40.80	49.03	74	-24.97	Pass	Н
7440.000	36.45	6.88	34.90	36.91	45.34	74	-28.66	Pass	Н
9920.000	38.22	7.47	35.02	36.56	47.23	74	-26.77	Pass	Н
1357.254	30.58	2.69	34.80	47.66	46.13	74	-27.87	Pass	V
1668.044	31.18	2.98	34.54	47.65	47.27	74	-26.73	Pass	V
4960.000	35.02	5.05	34.31	52.01	57.77	74	-16.23	Pass	V
6511.117	36.17	6.92	34.62	41.18	49.65	74	-24.35	Pass	V
7440.000	36.45	6.88	34.90	38.87	47.30	74	-26.70	Pass	V
9920.000	38.22	7.47	35.02	38.33	49.00	74	-25.00	Pass	V

Worse case	mode:	GFSK		Test channel:		Middle	Remark: Av	verage	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4960.000	35.02	5.05	34.31	41.03	46.79	54	-7.21	Pass	V

Model Name: 3300-00064

Model Na	1116. 330t	J-0000 -		16.0		16.0	-/		6.4
Worse case	mode:	GFSK		Test chani	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	48.34	45.73	74	-28.27	Pass	Н
1899.278	31.55	3.16	34.37	47.60	47.94	74	-26.06	Pass	Н
4804.000	34.69	5.11	34.35	49.39	54.84	74	-19.16	Pass	Н
6172.197	35.99	7.25	34.41	39.94	48.77	74	-25.23	Pass	_°.H
7206.000	36.42	6.66	34.90	37.26	45.44	74	-28.56	Pass	H
9608.000	37.88	7.73	35.08	34.96	45.49	74	-28.51	Pass	H
1132.844	30.06	2.43	35.04	47.92	45.37	74	-28.63	Pass	V
1680.831	31.20	2.99	34.53	45.76	45.42	74	-28.58	Pass	V
4804.000	34.69	5.11	34.35	50.22	55.67	74	-18.33	Pass	V
5910.798	35.83	7.23	34.30	40.58	49.34	74	-24.66	Pass	V
7206.000	36.42	6.66	34.90	36.25	44.43	74	-29.57	Pass	V
9608.000	37.88	7.73	35.08	35.33	45.86	74	-28.14	Pass	V
					·				/

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 44 c	f 56

١	Worse case	mode:	GFSK	Test channel:		nel:	Lowest	Remark: Av	verage	
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	4804.000	34.69	5.11	34.35	39.41	44.86	54	-9.14	Pass	Н
-	4804.000	34.69	5.11	34.35	39.24	44.69	54	-9.31	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1381.656	30.63	2.71	34.78	47.58	46.14	74	-27.86	Pass	Н
3625.669	33.07	5.50	34.57	44.29	48.29	74	-25.71	Pass	Н
4880.000	34.85	5.08	34.33	49.75	55.35	74	-18.65	Pass	Н
6235.364	36.02	7.19	34.45	41.09	49.85	74	-24.15	Pass	Н
7320.000	36.43	6.77	34.90	38.72	47.02	74	-26.98	Pass	Н
9760.000	38.05	7.60	35.05	35.67	46.27	74	-27.73	Pass	₩
1257.465	30.36	2.58	34.90	46.99	45.03	74	-28.97	Pass	V
3709.691	33.01	5.49	34.57	44.64	48.57	74	-25.43	Pass	V
4880.000	34.85	5.08	34.33	55.89	61.49	74	-12.51	Pass	V
5821.207	35.77	7.03	34.30	40.77	49.27	74	-24.73	Pass	V
7320.000	36.43	6.77	34.90	38.39	46.69	74	-27.31	Pass	V
9760.000	38.05	7.60	35.05	37.29	47.89	74	-26.11	Pass	V

Worse cas	e mode:	GFSK		Test chann	nel:	Middle	Remark: A	verage	
Frequenc (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4880.000	34.85	5.08	34.33	38.77	44.37	54	-9.63	Pass	Н
4880.000	34.85	5.08	34.33	44.91	50.51	54	-3.49	Pass	V

Page	45	of	56
ı ayc	┰∪	OI	50

Worse case mode:		GFSK		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1367.659	30.60	2.70	34.79	47.50	46.01	74	-27.99	Pass	Н
1899.278	31.55	3.16	34.37	48.29	48.63	74	-25.37	Pass	H
4960.000	35.02	5.05	34.31	55.00	60.76	74	-13.24	Pass	H
6187.929	36.00	7.24	34.42	40.66	49.48	74	-24.52	Pass	TH.
7440.000	36.45	6.88	34.90	36.77	45.20	74	-28.80	Pass	Н
9920.000	38.22	7.47	35.02	35.01	45.68	74	-28.32	Pass	Н
1115.673	30.02	2.41	35.06	48.38	45.75	74	-28.25	Pass	V
1663.803	31.17	2.97	34.54	46.81	46.41	74	-27.59	Pass	V
4960.000	35.02	5.05	34.31	51.27	57.02	74	-16.98	Pass	V
5776.922	35.73	6.93	34.30	41.56	49.92	74	-24.08	Pass	V
7440.000	36.45	6.88	34.90	38.06	46.49	74	-27.51	Pass	V
9920.000	38.22	7.47	35.02	35.37	46.04	74	-27.96	Pass	V

Worse case mode:		GFSK		Test channel:		Highest	Remark: Average		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
4960.000	35.02	5.05	34.31	44.02	49.78	54	-4.22	Pass	Н
4960.000	35.02	5.05	34.31	40.29	46.05	54	-7.95	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specifi ed above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 46 of 56

PHOTOGRAPHS OF TEST SETUP

Test model No.: RFM-CSB-2

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Page 47 of 56

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup for close-up-4

Page 48 of 56

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: RFM-CSB-2

View of Product-1

Page 50 of 56

View of Product-3

View of Product-4

Page 51 of 56

Test model No.: XEN-CSBM-1

View of Product-5

View of Product-6

Page 52 of 56

View of Product-8

Page 53 of 56

Test model No.: 3300-00063

View of Product-9

View of Product-10

Page 54 of 56

Page 55 of 56

Test model No.: 3300-00064

View of Product-13

View of Product-14

View of Product-15

View of Product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com