Università degli Studi di Bologna

Corso di Laurea in Informatica Esercitazione scritta di LINGUAGGI Teoria — 05 giugno 2009

- 1. Dare la sintassi per le formule della logica del primo ordine
- 2. Dare la definizione di equivalenza logica per il calcolo proposizionale
- 3. Mostrare due insiemi entrambi formati da due connettivi e tali per cui il primo insieme sia funzionalmente completo per la logica proposizionale, mentre il secondo non lo sia. La completezza/incompletezza funzionale deve essere dimostrata.
- 4. Definire le nozioni di formula in forma normale prenessa e di Skolem
- 5. Dare la definizione di connettivo logico e calcolare il numero dei connettivi logici ternari distinti.
- 6. Identificare nella seguente mappa di Karnaugh l'insieme di tutti gli implicanti, quello di tutti gli implicanti primi e quello di tutti gli implicanti primi essenziali. Gli implicanti debbono essere indicati con la formula congiuntiva che li caratterizza universalmente

AB/CD	00	01	11	10
00	1	0	0	0
01	1	0	1	1
11	0	1	1	0
10	0	1	1	0

- 7. Enunciare il teorema di completezza per la deduzione naturale per la logica intuizionista del primo ordine
- 8. Dimostrare il teorema di deduzione sintattica per la logica proposizionale (nella versione enunciata con il se e solo se)
- 9. Sia F una formula proposizionale in cui non compaiano negazioni e implicazioni e sia $F[\vee/\wedge]$ la formula ottenuta rimpiazzando ogni congiunzione con una disgiunzione. Dimostrare, per induzione strutturale su F, che $F \Vdash F[\vee/\wedge]$.