

What is claimed is:

1. A method for controlling a controlled operation by determining
5 the lag in measured data from at least one variable signal,
comprising:
 - processing the measured data using time-series analysis with a
filter to produce filtered data with reduced noise content;
 - arranging the filtered data in matrices with one column for each
10 variable signal;
 - shifting the columns of the matrices to produce a plurality of
different shifted matrices, each shifted matrix having a
given value for the lag in data for each variable signal;
 - processing each shifted matrix with a variable signal estimator
15 to output a variable signal function for each variable signal
that defines each variable signal in terms of its mathematical
dependencies on all of the variable signals;
 - processing each variable signal function with a criterial function
to provide an optimal lag value for each variable signal;
20
 - processing each shifted matrix with a point calculation algorithm
to produce a point for each column in each shifted matrix;
 - processing each point and each optimal lag value with a lag
estimator to output a lag function for each lag, each lag
function defining each lag in terms of its mathematical
25 dependency on all of the variable signals;
 - determining the goodness of fit of each lag function based on the
most recent filtered data;
 - storing at least one lag function based on its goodness of fit;
and
- 30 discarding at least one lag function based on its goodness of fit.

2. The method of claim 1, wherein the filter is a 1-D filter.

3. The method of claim 2, wherein the filter is a time series approximator.

4. The method of claim 1, wherein the filter is an n-D filter.

5

5. The method of claim 1, wherein the variable signal estimator is selected from the group consisting of: topological-algebraic infinite-dimensional methods, clustering algorithms, self-organized map (SOM) algorithms, expectation-maximization (EM) algorithms, genetic algorithms (GA), maximum likelihood training of hidden Markov model (MLTHMM) algorithms, neural networks, linear correlation and regression algorithms, nonlinear correlation and regression algorithms, factor analysis (FA) algorithms, and real-time computation of time-recursive discrete sinusoidal transforms (DST) algorithms.

6. The method of claim 1, wherein the criterial function utilizes optimization methods to provide an optimal lag value for each variable signal.

20

7. The method of claim 1, wherein the point calculation algorithm averages the values of each column in a given matrix to produce a point for each column in each shifted matrix.

25

8. The method of claim 1, wherein the lag estimator is selected from the group consisting of: topological-algebraic infinite-dimensional methods, clustering algorithms, self-organized map (SOM) algorithms, expectation-maximization (EM) algorithms, genetic algorithms (GA), maximum likelihood training of hidden Markov model (MLTHMM) algorithms, neural networks, linear correlation and regression algorithms, nonlinear correlation and regression algorithms, factor analysis (FA) algorithms, and real-time computation of time-recursive discrete sinusoidal transforms (DST) algorithms.

9. A method for controlling a controlled operation by determining the lag in measured data from at least one variable signal, comprising:
- 5 arranging the data in matrices with one column for each variable signal;
- shifting the columns of the matrices to produce a plurality of different shifted matrices, each shifted matrix having a given value for the lag in data for each variable signal;
- 10 processing each shifted matrix with a variable signal estimator to output a variable signal function for each variable signal that defines each variable signal in terms of its mathematical dependencies on all of the variable signals; and
- processing each variable signal function with a criterial function
- 15 to provide an optimal lag value for each variable signal.
10. The method of claim 9, wherein the variable signal estimator is selected from the group consisting of: topological-algebraic infinite-dimensional methods, clustering algorithms,
- 20 self-organized map (SOM) algorithms, expectation-maximization (EM) algorithms, genetic algorithms (GA), maximum likelihood training of hidden Markov model (MLTHMM) algorithms, neural networks, linear correlation and regression algorithms, nonlinear correlation and regression algorithms, factor analysis (FA)
- 25 algorithms, and real-time computation of time-recursive discrete sinusoidal transforms (DST) algorithms.
11. The method of claim 9, wherein the criterial function utilizes optimization methods to provide an optimal lag value for each
- 30 variable signal.

12. A method for controlling a controlled operation by determining
the lag in measured data from at least one variable signal,
comprising:
arranging the data in matrices with one column for each variable
5 signal;
shifting the columns of the matrices to produce a plurality of
different shifted matrices, each shifted matrix having a
given value for the lag in data for each variable signal;
processing each shifted matrix with a variable signal estimator
10 to output a variable signal function for each variable signal
that defines each variable signal in terms of its mathematical
dependencies on all of the variable signals;
processing each variable signal function with a criterial function
to provide an optimal lag value for each variable signal;
15 processing each shifted matrix with a point calculation algorithm
to produce a point for each column in each shifted matrix;
and
processing each point and each optimal lag value with a lag
estimator to output a lag function for each lag, each lag
20 function defining each lag in terms of its mathematical
dependency on all of the variable signals.

13. The method of claim 12, wherein the variable signal estimator
is selected from the group consisting of: topological-algebraic
25 infinite-dimensional methods, clustering algorithms,
self-organized map (SOM) algorithms, expectation-maximization
(EM) algorithms, genetic algorithms (GA), maximum likelihood
training of hidden Markov model (MLTHMM) algorithms, neural
networks, linear correlation and regression algorithms, nonlinear
30 correlation and regression algorithms, factor analysis (FA)
algorithms, and real-time computation of time-recursive discrete
sinusoidal transforms (DST) algorithms.

14. The method of claim 12, wherein the criterial function utilizes optimization methods to provide an optimal lag value for each variable signal.

5

15. The method of claim 12, wherein the point calculation algorithm averages the values of each column in a given matrix to produce a point for each column in each shifted matrix.

10 16. The method of claim 12, wherein the lag estimator is selected from the group consisting of: topological-algebraic infinite-dimensional methods, clustering algorithms,

self-organized map (SOM) algorithms, expectation-maximization (EM) algorithms, genetic algorithms (GA), maximum likelihood

15 training of hidden Markov model (MLTHMM) algorithms, neural networks, linear correlation and regression algorithms, nonlinear correlation and regression algorithms, factor analysis (FA) algorithms, and real-time computation of time-recursive discrete sinusoidal transforms (DST) algorithms.

20