CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
ITT305	DATA COMMUNICATION AND NETWORKING	PCC	3	1	0	4

Preamble: The syllabus is prepared with a view to equip the Engineering Graduates to learn basic concepts in data communication and computer networking, and to fine-tune performance parameters used in data transmission.

Prerequisite: Nil

Course Outcomes: After completion of the course the student will be able to

CO No.	Course Outcome (CO)	Bloom's Category Level
CO 1	Discuss the basic concepts used in data communication and computer networking	Level 2 :Understand
CO 2	Identify the concepts of data transmission and apply signal encoding techniques in data transmission.	Level 3 : Apply
CO 3	Compare different transmission mode, multiplexing, and Spread Spectrum techniques.	Level 2 :Understand
CO 4	Describe the design issues and protocols in data link layer.	Level 2 :Understand
CO 5	Summarize the routing algorithms and congestion control techniques in network layer.	Level 2 :Understand

Mapping of Course Outcomes with Program Outcomes 3/2/1: High/Medium/Low

	PO	PO	PO	PO	PO	PO						
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	1	-	-		-	-	-	-	-	2
CO 2	3	3	2	1	2	7	151	-	-	-	-	2
CO 3	2	3	1	2	2	-	101	- 1	-	-	7-	2
CO 4	2	3	3	2	1		-	-	-	ı	-	2
CO 5	2	2	2	1	1	-	-	-	-	- //	-	2

Assessment Pattern

Bloom's	Continu Assessm	ous ent Tests	End Semester Examination		
Category Levels	1	2			
BL 2: Understand	30	30	60		
BL 3: Apply	20	20	40		
BL 4: Analyse					
BL 5: Evaluate					
BL 6: Create					

Mark distribution

Total Marks	Continuous Internal Evaluation (CIE)	End Semester Examination (ESE)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be *two* parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer *all* questions. Part B contains 2 questions from each module of which student should answer *any one*. Each question can have maximum 2 sub-divisions and carry 14 marks.

Sample Course Level Assessment Questions

Course Outcome 1 (CO 1):

- 1. List the various layers of the OSI reference model.
- 2. What are the types of topologies used in a network?
- 3. Mention the various devices used in different layers of the TCP/IP reference model.
- 4. Define a Protocol Data Unit (PDU).
- 5. Compare the features of different guided media used in data transmission.
- 6. Give a comparative analysis of different kinds of satellite communication.
- 7. Compare and contrast the functionalities of hubs, bridges and switches.

Course Outcome 2 (CO 2):

- 1. Explain the impairments in data transmission.
- 2. What is Nyquist criteria for channel bandwidth?
- 3. Differentiate between analog and digital signals used in transmission.
- 4. Explain the process of Delta Modulation?

Course Outcome 3 (CO 3):

- 1. Explain Spread Spectrum Techniques used in networks.
- 2. Compare and contrast FDM and WDM.
- 3. Explain CDMA with the help of an example
- 4. Differentiate statistical TDM and synchronous TDM
- 5. Discuss synchronous transmission. How is synchronization provided for synchronous transmission?

Course Outcome 4 (CO 4):

- 1. Assess the suitability of various error correcting codes to deal with single-bit and burst errors in data transmission.
- 2. Derive a Hamming code for single bit error correction (For a data of length 7 Bit).
- 3. How are errors detected using parity checking? What are the limitations of parity checking?
- 4. What are the services offered by the Data Link Layer? Mention the protocols also.
- 5. With the help of a diagram, explain the format of an Ethernet frame.

Course Outcome 5 (CO 5):

- 1. What are the functionalities of network layer?
- 2. Compare distance vector routing and link state routing?
- 3. What is count-to-infinity problem? How can it be solved?
- 4. Explain how congestion control is performed in network layer
- 5. Explain congestion control in virtual circuit subnet

Model Question Paper

Course Code: ITT305

Course Name: Data Communication and Networking

Max.Marks:100 Duration: 3

Hours

Part A

Answer all questions. Each question carries 3 marks. (10 * 3 = 30 Marks)

- 1. What are the features of WAN.
- 2. Explain the role of routers in Networks.
- 3. Explain Data rate, Noise and Bandwidth with respect to a channel.
- 4. If a periodic signal is decomposed into five sine waves with frequencies of 100, 300, 500, 700, and 900 Hz, what is its bandwidth? Draw the spectrum, assuming all components have a maximum amplitude of 10 V.
- 5. Draw the constellation diagrams for ASK, BPSK, and QPSK signals.
- 6. Define scrambling and give its purpose.
- 7. Using an example, explain two-dimensional parity checks.
- 8. Write a short note on CDMA.
- 9. Explain the significance of QoS in communication
- 10. Explain the importance of the age field in link state messages

Part B

Answer all questions. Each question carries 14 marks. (5 * 14 = 70 Marks)

11 List and explain the main features of all the seven layers of the ISO/OSI reference model and compare it with TCP/IP Model.

OR

- 12 a. Explain the features of any two guided transmission media
 - b. Describe the use of satellites in communication

13 Explain the features of NRZ, AMI, and Manchester encoding schemes. Encode 10 the given digital data 10110010 using NRZ-L, NRZ-I, AMI, Manchester and differential Manchester encoding schemes? b. A telephone line normally has a bandwidth of 3000 Hz (300 to 3300 Hz) 4 assigned for data communications. The signal-to-noise ratio is usually 3162. Find the channel capacity. What are the transmission impairments happening in data communication? 14 a. 10 b. Consider a channel with a 1-MHz bandwidth. The SNR for this channel is 63. 4 What are the appropriate bit rate and signal level? Explain Multiplexing in detail. 10 15 List the features of frequency hopping spread spectrum. 4 b. OR 16 a. Describe direct sequence spread spectrum in detail 10 Explain in detail about synchronous communication 4 List and explain the sliding window protocols used in data link layer 17 10 Derive the saturation throughput of pure ALOHA b. 4 Describe about CRC encoding and decoding with data word 1010 with 18 a. 10 $G(x) = x^3 + x + 1$ b. What is CSMA/CA? 4 a. Explain distance vector routing in detail 19 10 What is flooding? 4 b. OR Explain in detail about the congestion control mechanisms used by datagram 10 20 subnets What are the services provided by the transport layer? 4

Syllabus

Module 1: Overview of Data Communication and Networks (8 Hours)

Introduction: - Types of Computer Networks, Network Software - Protocol Hierarchies, Connection oriented and Connection less hierarchies, Reference Models - ISO-OSI Reference Model, TCP/IP Reference Model - Comparison of OSI and TCP/IP reference models.

Physical Layer: - Guided Transmission Media— Twisted Pair, Coaxial and Fiber Optics, Wireless Transmission- Radio and Microwave transmission, Communication Satellites – GEO, MEO, LEO.

Comparison of Network hardware - Repeaters, Routers, Bridges, Gateways, and Hub.

Module 2: Data Transmission and Encoding Techniques (10 Hours)

Data and signals, Analog Signals, Digital Signals - Transmission Impairments, Data Rate Limits: Channel Capacity, Nyquist Bit Rate, Shannon Capacity, Performance parameters - Bandwidth, Throughput, Delay & Jitter.

Digital-To-Digital Conversion: Line Coding Schemes: Unipolar, Polar, Bipolar - Block Coding, Scrambling, Analog-To-Digital Conversion: Pulse Code Modulation, Delta Modulation - Digital-To-Analog Conversion: ASK, FSK, PSK.

Module 3: Digital Transmission (7 Hours)

Transmission Modes: Parallel and Serial Transmission, Asynchronous, Synchronous, Isochronous Transmission

Multiplexing - TDM, FDM, WDM - Spread spectrum-The concept of spread spectrum - frequency hopping spread spectrum - direct sequence spread spectrum - code division multiple access

Module 4:Link Layer Communication (10 Hours)

Data Link Layer – design issues - Error Detection: Parity Check, Checksum, CRC, Error Correction: Hamming code - Flow Control: Stop-and-Wait, Go-Back-N, and Selective-Repeat - Random Access: ALOHA, CSMA, CSMA/CD, CSMA/CA, Controlled Access: Reservation, Polling, Token Passing,

Ethernet- Ethernet Cabling, Encoding, Frame Format, Binary Exponential Back Off Algorithm.

Module 5: Network Layer (10 Hours)

Network Layer Design Issues, Routing Algorithm – Optimality principle - Flooding - Distance vector routing – Link state routing –Multicast Routing - Congestion Control Algorithms – General principles – Congestion prevention policies – Choke packets – Random Early Detection- Quality of Service requirements- Buffering, Traffic shaping – Leaky bucket algorithm.

Basic functions of Transport layer and Application layer (Basic understanding only).

Text Books

- 1. Andrew S. Tanenbaum, Computer Networks, Prentice Hall, 4th Edition, 2003
- 2. Behrouz A. Forouzan, Data Communications and Networking, 5/e, Tata McGraw Hill, 2017.
- 3. William Stallings, 'Data and Computer Communications', 8/e Pearson, 2007.

Reference Books

- 1. William Stallings, Computer Networking with Internet Protocols, Prentice-Hall, 2004.
- 2. Fred Halsall, Computer Networking and the Internet, 5/e.
- 3. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach Featuring Internet, 6/e, Pearson Education, 2012.
- 4. L. L. Peterson and B. S. Davie, Computer Networks, A systems approach, 5/e, Morgan Kaufmann, 2011.

Course Contents and Lecture Schedule

Sl. No.	Topic	No. of Lectures
1	Overview of Data Communication and Networks	8 Hours
1.1	Introduction: - Types of Computer Networks, Network Software - Protocol Hierarchies, Connection oriented and Connection less hierarchies	2
1.2	Reference Models - ISO-OSI Reference Model, TCP/IP Reference Model – Comparison of OSI and TCP/IP reference models	3
1.3	Physical Layer: - Guided Transmission Media— Twisted Pair, Coaxial and Fiber Optics, Wireless Transmission- Radio and Microwave transmission, Communication Satellites – GEO, MEO, LEO. Comparison of Network hardware - Repeaters, Routers, Bridges, Gateways, and Hub.	3
2	Data Transmission and Encoding Techniques	10 Hours
2.1	Data and signals, Analog Signals, Digital Signals - Transmission Impairments, Data Rate Limits: Channel Capacity, Nyquist Bit Rate, Shannon Capacity, Performance parameters - Bandwidth, Throughput, Delay & Jitter.	4
2.2	Digital-To-Digital Conversion: Line Coding Schemes: Unipolar, Polar, Bipolar - Block Coding, Scrambling,	3
2.3	Analog-To-Digital Conversion: Pulse Code Modulation, Delta Modulation - Digital-To-Analog Conversion: ASK, FSK, PSK.	3
3	Digital Transmission	7 Hours
3.1	Transmission Modes: Parallel and Serial Transmission, Asynchronous, Synchronous, Isochronous Transmission	2
3.2	Multiplexing - TDM, FDM, WDM	2
3.3	Spread spectrum-The concept of spread spectrum – frequency hopping spread spectrum – direct sequence spread spectrum – code division multiple access	3
4	Link Layer Communication	10 Hours
4.1	Data Link Layer – design issues	2
4.2	Error Detection: Parity Check, Checksum, CRC, Error Correction: Hamming code	3

INFORMATION TECHNOLOGY

4.3	Flow Control: Stop-and-Wait, Go-Back-N, and Selective-Repeat	2
	Random Access: ALOHA, CSMA, CSMA/CD, CSMA/CA, Controlled Access: Reservation, Polling, Token Passing,	
4.4	Ethernet- Ethernet Cabling, Encoding, Frame Format, Binary Exponential Back Off Algorithm.	3
5	Network Layer	10 Hours
5.1	Network Layer Design Issues, Routing Algorithm – Optimality principle - Flooding	2
5.2	Distance vector routing, Link state routing	2
5.3	Multicast Routing	1
5.4	Congestion Control Algorithms – General principles	1
5.5	Congestion prevention policies – Choke packets – Random Early Detection	2
5.6	Quality of Service requirements- Buffering, Traffic shaping – Leaky bucket algorithm.	1
5.7	Basic functions of Transport layer and Application layer	1