# Causal Inference

RDD, SCM, Diff in Diff



#### План





Почему не стандартный А/В тест?



Regression Discontinuity Design



Synthetic Control Method



Diff-in-Diff



Сравнение методов

# Почему не стандартный А/В тест?



Необходимость оценки причино-следственных связей

Нет возможности распределения в группы теста/контроля

- —> Риск наличия искажений оценки причинного эффекта (смешанное влияние факторов)
- Требование выполнения заданных предположений

→ Временные ряды

Playstation Store предлагает подписчикам, у которых стандартная подписка истекает в течение 30 календарных дней, скидку на новую версию премиум.

- —> **Цель акции:** увеличить продажи новой версии премиум подписки
- —> Искомый эффект: оценить влияние предложения скидки на вероятность обновления подписки





## Проблема

- Нет дизайна эксперимента: имеем дело с реальным поведением пользователей без искусственного вмешательства.
- —> Хотим избежать необходимости в рандомизации: нет необходимости случайным образом распределять пользователей на группы.
- Нарушение несмещенности: пользователи с 29 днями до истечения подписки похожи на пользователей с 31 днями до истечения подписки, при этом они принадлежат к разным группам, т.е.

 $E[Y_0 \mid D_i = 1] - E[Y_0 \mid D_i = 0] = 0$  ожидаемый потенциальный исход без вмешательства  $(Y_0)$  одинаков для обеих групп.

#### Функция плотности вероятности



Истинное значение

# Regression Discontinuity Design (RDD)



#### **Assignment variable**

Разрыв в исходах между двумя очень похожими группами может быть приписан ATE, если мы предполагаем, что остальные факторы изменяются плавно через порог

Предположение  $E[Y_0 \mid D_i = 1] - E[Y_0 \mid D_i = 0] = 0$  глобально нарушается, но может выполняться локально вблизи порога

### Алгоритм

#### 1. Выбираем порог — с

Пусть переменная **X** — определяет относится ли наблюдение к тестовой или контрольной группе. При этом наблюдения, где **X** ≥ **c** являются тестовой группой, а **X** < **c** — контрольной.

#### 2. Оцениваем основное уравнение — $Y_i = \alpha + \tau D_i + f(X_i) + \epsilon_i$

**Y**<sub>i</sub> — бизнес-метрика для наблюдения і.

 $D_i$  — дамми-переменная, равеная 1, если  $X_i \ge c$ , и 0 в противном случае.

т — параметр, который представляет собой оценку АТЕ.

 $f(X_i)$  — функция, которая описывает зависимость бизнес-метрики от переменной X. Может быть линейной, квадратичной или более сложной функцией.

**∈**<sub>і</sub> — ошибка модели.

Необходимо иметь достаточное количество пользователей вблизи порога для получения статистически значимых результатов!



## Локальная оценка вблизи порога

#### Локальное предположение о непрерывности

$$\lim(x \rightarrow c^{-}) E[Y_0 \mid X_i = x] = \lim(x \rightarrow c^{+}) E[Y_0 \mid X_i = x]$$

#### Вычисление локального среднего эффекта

ATE= 
$$\lim(x \rightarrow c^+) E[Y \mid X_i = x] - \lim(x \rightarrow c^-) E[Y \mid X_i = x]$$

$$Y_i = Y_0 + D_i \cdot (Y_1 - Y_0)$$
, где  $(Y_1 - Y_0)$  — индивидуальный эффект

При условии непрерывности  $E[Y_0 \mid X_i = x]$  в точке x = c, средний эффект:

ATE= 
$$[E[Y | X_i = c^+] - E[Y | X_i = c^-]]$$

#### Bandwidth selection

 $|X_i - c| \le h$  где h — ширина полосы

Почему выбор полосы пропускания важен?

- Bias: малое h -> уменьшает смещение в оценке эффекта
- Variance: большое h -> снижает дисперсию

Методики выбора полосы:

Кросс-валидация Silverman's Rule of Thumb Sheather Jones Method (AMISE -> min)

Optimal Bandwidth Choice for the Regression Discontinuity Estimator. 2019 (Imbens & Kalyanaraman)



## Bandwidth selection - overfitting

Один из методов уменьшения вероятности ложных эффектов - это сужение h.

Основная идея: чем ближе "приближаемся" к этой точке с, тем меньше вероятность обнаружения тенденции.

- 1. Использование полиномов высокой степени
  - Могут чрезмерно подгонять модель под данные
- 2. Зависимость оценок от малого количества данных и смещение весов
  - При использовании полиномов высокой степени зависим от небольшого числа наблюдений. Модель может придавать большой вес наблюдениям, удалённым от порога
- 4. Недостаточное отражение неопределённости в стандартных ошибках

Стандартные ошибки могут не корректно отражать неопределённость, связанную с выбором модели и степенью полинома.

Это означает, что доверительные интервалы и тесты значимости могут быть ненадёжными.

Green et al. (2009) Gelman and Imbens (2019)

# Gelman Zelizer (2015)



## Robustness







#### Выбираем пороговое значение:

В данном случае порогом является срок окончания текущей подписки. Клиенты, у которых подписка истекает в ближайшие 30 дней, получают предложение со скидкой, а те, у кого подписка истекает более чем через 30 дней, не получают такую скидку



#### Разбиение на группы

Тестовая группа включает клиентов, чьи подписки истекают в ближайшие 30 дней, а контрольная группа — тех, у кого контракты истекают через 31-60 дней.



#### Сравнение групп

Сравним вероятность обновления подписки между группами. Предполагаем, что эти группы схожи по всем параметрам, кроме доступа к скидке.



#### Построение регрессии

Оцениваем разрыв в вероятности обновления подписки между этими двумя группами. Это позволяет оценить причинный эффект предложения скидки на решение клиентов обновить подписку.

## Причины использовать RDD

—> Снижение ошибки при несопоставимости групп

Не нужно дизайнить тест

Простота интерпретации

#### **Exploding Popularity of RDD**



Vertical bar is Angrist and Lavy (1999) and Black (1999)

## Ограничения RDD

- —> Наблюдения должны находиться вблизи порогового значения
- —> Необходимость наличия точной информации о пороговом значении и достаточная плотность наблюдений вокруг него
- Требование непрерывности



## Как можно улучшить RDD?

Полупараметрические
 и непараметрические подходы

Вблизи порогового значения рассматриваем данные как случайно распределенные Local Randomization Approach



Компания управляющая сетью кофеен решила протестировать новую концепцию меню, включающую больше веганских блюд и блюд без глютена.

- Цель акции: увеличить прибыль
- Искомый эффект: оценка влияния нового меню на средний чек и число посетителей
- —> Проблема: внешние факторы, которые влияют на посещаемость и выручку кафе



# Synthetic Control Method (SCM)



Создаем «синтетическую» версию контрольной группы: комбинацию нескольких тестовых групп, которая максимально соответствует характеристикам группы до вмешательства.

### Алгоритм

- **Пусть** 
  - $X_1$  матрица ковариат для тестовой выборки до начала эксперимента  $X_0$  матрица ковариат для контрольной выборки. Найдем веса  $W = (w_1, w_2, ..., w_j)$ , которые минимизируют:  $\| X_1 X_0 W \|$  Причем для любого  $w \in W$ :  $w_i \ge 0$  и  $\sum_{j=1}^{n} w_j = 1$
- $\rightarrow$  Пусть Y(T,t) значение бизнес-метрики для тестовой выборки в момент времени t  $Y^*(C,t) = \sum_{j=1} w_j Y(j,t)$  соответствующее значение для синтетической контрольной группы.
- $\rightarrow$  Тогда **ATE** в момент времени **t** оценивается как:  $\Delta_t = Y(T,t) Y^*(C,t)$
- ightarrow Если разница  $\Delta_t$  значительна и стабильна в течение всего эксперимента, то эффект есть



## Взаимосвязь с регрессией

#### При следующих ограничениях:

- 1. Нулевая константа
- 2. Положительные веса:  $w_i \ge 0$  для всех i = 1, ..., N-1
- 3. Сумма весов равна единице:  $\sum_{i=1}^{n} w_i = 1$

#### Дополнительные условия:

- Нет постоянной разницы во времени между тестовой и контрольной группой.
- Каждая единица анализа находится в выпуклой оболочке контрольных единиц.
- Регуляризация необходима, когда N велико по сравнению с Т.







#### Определим тестовую группу:

Отберем несколько кафе для внедрения новой концепции меню. Эти кафе станут экспериментальной группой.



#### Создадим синтетическую контрольную группу:

Характеристики (средняя посещаемость/средний чек/расположение) должны максимально соответствовать характеристикам тестовых кафе до внедрения изменений.



Изменения в посещаемости и среднем чеке в тестовых кафе сравниваются с изменениями в синтетической контрольной группе

## Причины использовать SCM

Работа с агрегированными данными

Отсутствие параллельных трендов

Не предполагается однородность эффекта



## Ограничения SCM

- —> Чувствительность к выбору пула наблюдений, из которого создается синтетический контроль.
- —> Сложность в интерпретации весов.

—> Предполагает, что синтетический контроль может точно воспроизвести тренд исследуемой переменной до вмешательств.



## Как можно улучшить SCM?

— Использовать байесовские методы для учета неопределенности в выборе весов Bayesian Synthetic Control.

 $\rightarrow$  ML + SCM



Оценки последствий объединения Германии 1990 года Abadie, A. (2021). "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects". Journal of Economic Literature.

Платформа онлайн-продаж хочет оценить влияние новой ценовой политики на объем продаж. В рамках эксперимента компания решила изменить цены на определенные товары в одной группе регионов (тестовая группа), в то время как в другой группе регионов цены остались прежними (контрольная группа).

**Цель политики:** увеличить выручку

 Искомый эффект: оценка влияния изменения цен на объем продаж, учитывая возможные внешние факторы, такие как сезонные колебания спроса



## Diff-in-Diff



**DiD** сравнивает изменения в результатах между тестовой и контрольной группами до и после вмешательства.

## Алгоритм

- Вычисляем средние значения бизнес-метрики для каждой группы до начала эксперимента.
- Вычисляем изменения для каждой группы:

$$\Delta$$
 Y(tr) = Y(tr, after) - Y(tr, before)  
 $\Delta$  Y(c) = Y(c, after) - Y(c, before)

- $\rightarrow$  Расчет разности в разностях  $\Delta(DiD) = (\Delta Y(tr) \Delta Y(c))$
- $\rightarrow$  Если  $\Delta(DiD) >> 0$ , значит эффект есть



## Причины использовать DiD

У вас есть данные до и после изменения для обеих групп.

- Вы хотите учесть временные тренды или сезонные колебания.
- Необходим контроль за неизменными во времени различиями между группами.



# Ограничения DiD

Предположение о параллельных трендах

Запрет на изменения в составе групп

Гетерогенность эффектов



Callaway, B., Sant'Anna, P. H. C. (2021).
"Difference-in-Differences with Multiple
Time Periods". Journal of Econometrics.



Влияние минимальной заработной платы на занятость подростков

# Как можно улучшить?

Добавить нелинейные тренды

- → SCM + Diff-in-Diff

  Synthetic Difference-in-Differences
- Использовать несколько временных отрезков
   Generalized Difference-in-Differences



# В чем разница между методами?

|             | RDD                                                                                                                                    | SCM                                                                                      | DiD                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Применение  | Существует четкая граница,<br>определяющая тестовую<br>и контрольную группы                                                            | Необходимо создать контрольную группу из доступных данных.                               | Имеются данные до и после вмешательства как для тестовой, так и для контрольной группы. |
| Ограничения | Около порога распределение всех факторов случайное<br>Единственное различие<br>между группами —<br>это наличие/отсутствие эксперимента | Синтетическая контрольная группа<br>отражает данные<br>до начала эксперимента            | При отсутствии вмешательства изменения обеих групп были бы одинаковыми                  |
| Метод       | Сравниваем АТЕ для наблюдений,<br>которые находятся чуть выше<br>и чуть ниже порога.                                                   | Создаем взвешенную комбинацию данных для формирования «синтетической» контрольной группы | Сравнивает изменения<br>во времени для обеих групп                                      |

# Выводы



Выбор подходящего метода зависит от темы исследования, доступности данных и специфики проведенного эксперимента.



Комбинирование нескольких методов **может** улучшить результаты.

