## Resumen Practica

#### **Modelo Conceptual**

### Modelo Logico

#### Modelo Lógico

La segunda etapa es el **modelo lógico**, que toma el esquema del modelo conceptual y lo refina para adaptarlo a un formato más estructurado. En esta fase se busca:

- Normalización: Se aplican técnicas para eliminar redundancias y asegurar la integridad de los datos. Esto implica descomponer las relaciones complejas en estructuras más simples, evitando problemas como las relaciones de muchos a muchos 4 5.
- Definición de Esquemas: Se establece un esquema lógico que detalla cómo se organizarán los datos en tablas, especificando claves primarias y foráneas, así como restricciones de integridad
- Independencia del SGBD: Aunque el modelo lógico es más detallado que el conceptual, todavía permanece independiente del sistema de gestión de bases de datos específico que se utilizará para su implementación 4.

#### Modelo Conceptual

El modelo conceptual es la primera etapa del diseño de bases de datos. Su objetivo principal es representar de manera abstracta y visual los requisitos del negocio y las entidades involucradas, sin entrar en detalles técnicos sobre cómo se implementará la base de datos. En esta fase, se busca:

- Identificación de Entidades: Se definen las entidades relevantes para el dominio del negocio, que pueden ser objetos, personas o conceptos (por ejemplo, "Usuario", "Producto").
- Relaciones entre Entidades: Se establecen las relaciones que existen entre estas entidades (por ejemplo, un "Usuario" puede realizar múltiples "Compras").
- Atributos: Se describen las propiedades o características de cada entidad (por ejemplo, un "Usuario" puede tener atributos como nombre, correo electrónico y dirección) (1 3 .

El modelo conceptual utiliza herramientas como diagramas entidad-relación (ER) para facilitar la visualización y comprensión de estos elementos y sus interacciones 20 4.

#### Modelo Fisico

#### Modelo Físico

Finalmente, el **modelo físico** es la etapa donde se define cómo se almacenarán realmente los datos en el sistema. En esta fase se busca:

- Especificación Técnica: Se seleccionan los tipos de datos específicos para cada atributo (por ejemplo, varchar para cadenas de texto o int para números) y se definen índices para optimizar el rendimiento
- Consideraciones del SGBD: Se toman en cuenta las características particulares del sistema de gestión de bases de datos elegido, como su capacidad para manejar transacciones o su soporte para ciertas funciones
- Optimización del Rendimiento: Se realizan ajustes para mejorar la eficiencia en el acceso a los datos y la velocidad de las consultas.



## Cosas conceptual



Cosas conceptual





## Modelo Conceptual

#### Coberturas en Jerarquias

Jerarquías de generalización: Permiten extraer propiedades comunes de varias entidades o relaciones, y generar con ellas una super-entidad que las aglutine. Así, las características compartidas son expresadas una única vez en el modelo, y los rasgos específicos de cada entidad quedan definidos en su sub-entidad.





**TOTAL**: si todo supertipo es necesariamente algun subtipo

PARCIAL: si todo supertipo no necesariamente es algun subtipo, puede no pertenecer a los subtipos

EXCLUSIVA: solo puede ser uno de los 2 pero no ambos

SUPERFICIAL: puede ser las 2 o N cosas al mismo tiempo, contraEjemplo de exclusiva

## DE CONCEPTUAL A Modelo Logico

Para reseolver el modelo logico, ya tengo que tener planteado el conceptual

#### - Resolver las Jerarquías

Hay 2 opciones para transformar

Resolver Atributos Compuestos

atributos compuestos

Resolver Atributos Polivalentes

**Total Exclusiva (T, E)**: <u>Tres posibilidades</u>, dejar todo, dejar sólo los hijos o dejar sólo al padre.

**Total Superpuesta (T, S)**: <u>Dos posibilidades</u>, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Exclusiva (P, E): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Superpuesta (P, S): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Considerar sólo los atributos individuales Considerar todo en un sólo atributo

Hay 3 opciones para transformer la Jerarquia

Dependiendo de la cobertura de la Jerarquia, se va ha tener +- opciones para transformar

A partir de la segunda cobertura, se repite para todas, que tipos de transformaciones puedo aplicar

Para resolver los atributos polivalentes se debe Agregar una entidad y una interrelacion

## **DEJANDO TODO- JERARQUIA**

#### Resolver las Jerarquías

**Total Exclusiva (T, E)**: Tres posibilidades, dejar todo, dejar sólo los hijos o dejar sólo al padre.

**Total Superpuesta (T, S)**: Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Exclusiva (P, E): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Superpuesta (P, S): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.



Si las entidades hijas no tienen identificador debo bajarlo desde el padre. Caso contrario es opcional - NoDocente puedo no bajarlo, pero si lo bajo no debo cruzarlo con cuil

## **DEJANDO SOLO AL PADRE- JERARQUIA**

#### Resolver las Jerarquías

**Total Exclusiva (T, E)**: Tres posibilidades, dejar todo, dejar sólo los hijos o dejar sólo al padre.

**Total Superpuesta (T, S)**: Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Exclusiva (P, E): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Superpuesta (P, S): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

BASICAMENTE SUBEN LOS ATRIBUTOS DE LOS HIJOS AL PADRE Y LOS IDENTIFICADORES DE LOS HIJOS, PASAN A SER SIMPLES



- Todos los atributos de los hijos pasan al padre.
- Deben pasar como no obligatorios.
- Si en el hijo era un atributo identificador, debe dejar de serlo. (Nunca un identificador puede ser opcional)
- Si bien puede deducirse es una buena opción agregar un atributo que identifique que tipo de empleado es (tipo\_empleado).

## **DEJANDO SOLO A LOS HIJOS- JERARQUIA**

#### - Resolver las Jerarquías

**Total Exclusiva (T, E)**: Tres posibilidades, dejar todo, dejar sólo los hijos o dejar sólo al padre.

**Total Superpuesta (T, S)**: Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Exclusiva (P, E): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.

Parcial Superpuesta (P, S): Dos posibilidades, dejar todo o dejar sólo al padre. No se puede eliminar al padre.



BASICAMENTE BAJAN TODOS LOS ATRIBUTOS

DEL PADRE A LOS HIJOS TAL CUAL,

si los hijos no tienen ID y el padre si tenia, se deja el ID del padre

Se deben bajar los atributos del padre a cada uno de los hijos.



## INDIVIDUALES- EN UN SOLO ATRIBUTO ATRIBUTOS COMPUESTOS

### Considerar sólo los atributos individuales



### Considerar todo en un solo atributo



Si se accede con mucha frecuencia, es major INDIVIDUAL, EJEMPLO SOS CORREO ARGENTINO

## AGREGAR UNA IDENTIDAD ATRIBUTOS POLIVALENTES

(LAS CARDINALIDADES, CASI SIEMPRE SE VAN A (0,N))

Para resolver los atributos polivalentes se debe agregar una entidad y una interrelación.



## Transformacion Inicio



## Transformacion final



# DE LOGICO A FISICO

El modelo relacional representa a una BD como una colección de archivos denominados tablas. Cada tabla se denomina relación y está integrada por filas y columnas. Cada fila se denomina tupla y cada columna representa un atributo.

Columnas = atributos = la cantidad de presupuestos realizados en el taller.

Cada fila, se podria pensar como una instancia de della contidad

|                                         | Re          | sult Grid       | <b>1</b> 44 | Filter Rows: |            | Edit: 🔏 🖶 Exp                   | port/Import: | Wrap Cell Content: |
|-----------------------------------------|-------------|-----------------|-------------|--------------|------------|---------------------------------|--------------|--------------------|
| as                                      |             | codC            | DNI         | Nombre       | Apellido   | Direction                       | tel          |                    |
|                                         | <b>&gt;</b> | 1022            | 19785452    | Micaela      | Fuentes    | Heguera 1840 Haedo Pcia Bs. As. | 48526323     |                    |
| *************************************** |             | 1023            | 36478298    | Luis         | Rodriguez  | Lope de Vega 1089 CABA          | 28495378     |                    |
|                                         |             | 1027            | 43570272    | Dylan        | Toscano    | Andres Vallejos 3067 PB B CABA  | 1554895973   |                    |
| ted                                     |             | 1028            | 44520290    | Sofia        | Cristalino | Devoto 2207 depto C CABA        | 1123436647   |                    |
|                                         |             | 1030            | 08007220    | Juan         | Garcia     | Baigorria 123 CABA              | 15151516     |                    |
|                                         |             | 1040            | 16452236    | Blanca       | Quiroga    | Miranda 1047 Moron Pcia Bs. As. | 45263232     |                    |
|                                         |             | 1043            | 44791232    | Fiorela      | Vazquez    | Pasaje Pedro 1212 CABA          | 1536201577   |                    |
|                                         |             | 1047            | 25364823    | Manuel       | Gonzales   | Av Sabara 1234 CABA             | 47778585     |                    |
|                                         |             | 1048            | 45848254    | Hernan       | Hernandez  | Madero 954 Caseros Pcia Bs. As. | 45785114     |                    |
|                                         |             | 1050            | 30500505    | Julio        | Domingo    | Beiro 2457 CABA                 | 1150550511   |                    |
|                                         |             | 1055            | 44218713    | Facundo      | Abadi      | Av de los Incas 123 CABA        | 1512132223   |                    |
|                                         |             | 1056            | 25410014    | Claudia      | Laprida    | Morelos 1020 CABA               | 1520203623   |                    |
|                                         |             | 1059            | 45678907    | Micaela      | Suarez     | Escalada 4500 CABA              | 45663344     |                    |
|                                         |             | 1061            | 43630332    | Miguel       | Fernandez  | Pola 100 CABA                   | 15151515     |                    |
|                                         |             | 1062            | 43630333    | Anasta       | Romanov    | Eva Peron 4330 CABA             | 15151516     |                    |
|                                         | clie        | 1063<br>nte 3 × | 30241690    | Hector       | Caceres    | Nueva York 1964 CARA            | 15891912     |                    |



# DE LOGICO A FISICO

→ Cada entidad se transforma en una tabla.



Alumno= (dni, nombres, calle, nro, piso?, dpto?)

El identificador va subrayado...... Clave primaria

Llaman table a esto

PK

Los atributos "opciones" los que tienen cardinalidad 0, van al final con un "?"

Los identificadores de otras tablas que aparecen en mi table son Claves foraneas

# DE LOGICO A FISICO

Analizar las cardinalidad de las relaciones para ver si la relacion se convierte en table y sino se convierte en tabla la relacion, ver como mantengo la relacion de las entidades

→ Una relación puede o no ser una tabla.



Que R sea una tabla o no depende de la cardinalidad de la relación.

### Conversion de relaciones



Cuando tengo, 0,1 de ambos lados, si o si se crea una tabla

В

## Conversion de relaciones



### Conversion de relaciones



## R12 = (Código Materia, Código Materia Correlativa)



#### Ayudin

Hay tabla en la relacion cuando: 3 opciones

Usuario=(Usuario, Clave, )

Para ver que identidad se trae la FK, solo veo 1,1 De la que salga el 1,1 va llevar la FK de los otras entidades





En N a N
dejo las entidades como estan
y en la relacion me traigo ambas como FK y todas
las FK van a ser mi PK de esa table relacion y pongo
solo los atributos de esa relacion