Minimax AUC Fairness: Efficient Algorithm with Provable Convergence

Machine Learning in Practice Reading Group

Duke B&B

January 29, 2024

Presented by Luke Wang

Section 1: Introduction

Purpose

- Current AUC based algorithms aiming to improve fairness of the prediction model fail to account for all possible disparate effects.
- Find a scoring function that maximize the minimum of inter-group and intra-group AUC
- The proposed algorithm addresses both inter-group and intra-group disparities, with proven convergence. It demonstrates an improvement in prediction fairness while maintaining high prediction accuracy across various datasets.

Intuition: The probability of ranking a positive individual before negative individual should have minimal dependence on whether these individuals belong to the same demographic group or not.

Potential Applications

- Recidivism, Loan Approval......
- Identify high-risk group and guide healthcare resource allocation
- Application of xCI

Section 2: Background

Group Conditioned AUC

- $AUC_{z,z'}(f_{\theta}) = \mathbb{E}\left[\mathbb{I}\left(f_{\theta}(X) > f_{\theta}(X')\right) | Y = 1, Y' = -1, Z = z, Z' = z'\right]$, where Z is the group sensitive attribute eg. sex, race, f_{θ} is the prediction model, Y indicates the true label, and X dentes covariates
- $AUC_{a,a}(f_{\theta}) = AUC_{a,b}(f_{\theta}) = AUC_{b,a}(f_{\theta}) = AUC_{b,b}(f_{\theta})$ indicates perfect fairness
- The chance of a qualified candidate from any gender ranking higher than an unqualified candidate from any gender is the same (Rawlsian Principle of Maximin Welfare for Distributive Justice)
- The interpretation depends on the purpose of the prediction model
- "The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the xAUC Metric" by Nathan Kallus and Angela Zhou

Section 3: Methods - Problem Setup and Notation

• They are attempting to optimize:

$$\max_{\theta \in \Theta} \min_{z,z' \in \mathcal{Z}} AUC_{z,z'}(f_{\theta})$$

• Since we only have access to empirical estimates, denoted by \hat{AUC} :

$$A\hat{U}C_{z,z'}(f) = AUC(f; S^{z+}, S^{z'-}) = \frac{1}{n^{z+} + n^{z'-}} \sum_{i=1}^{n^{z+}} \sum_{j=1}^{n^{z'-}} \left[\mathbb{I}(f(\mathbf{x}_i^{z+}) > f(\mathbf{x}_j^{z'-})) \right]$$

 As the indicator function I is not differentiable, it is substituted with a surrogate loss function for optimization.

$$\hat{R}_{\ell}(\cdot;S) = \left(\hat{R}_{\ell}(\cdot;S^{z+},S^{z'-})\right)_{z,z'\in\{a,b\}}$$

Section 3: Methods - Problem Setup and Notation

• The problem then becomes:

$$\min_{\theta \in \Theta} \max_{z,z' \in \mathcal{Z}} \hat{R}^{\ell}_{z,z'}(\theta)$$

• Again this is not differentiable, we ease this into a zero-sum game:

$$\min_{\theta \in \Theta} \max_{\lambda \in \Lambda} F'(\theta, \lambda) = \lambda^T \hat{R}'_{\ell}(\theta) = \sum_{z, z' \in \mathcal{Z}} \lambda_{z, z'} \hat{R}^{\ell}_{z, z'}(\theta)$$

where
$$\Lambda = \left\{\lambda \in \mathbb{R}^4 \left| \sum_{z,z' \in \mathcal{Z}} \lambda_{z,z'} = 1, \lambda_{z,z'} \geq 0 \right. \right\} \, \text{ is a } 2 imes 2 - \text{dimensional simplex} \right.$$

Section 3: Methods - MiniMax Algorithm

Algorithm 1 MinimaxFairAUC

- 1: **Inputs**: Training set S with label Y and protected attribute Z, model f_{θ} , number of iterations T, batch size m, learning rates $\{\eta_{\theta}, \eta_{\lambda}\}$
- 2: Initialize $\theta_0 \in \Theta$ and $\lambda_0 \in \Lambda$ with $\lambda_{z,z'} = \frac{n^{z+} + n^{z'}}{n^+ + n^-}$ for all $z,z' \in \mathcal{Z}$
- 3: **for** t = 1 to T 1 **do**
- 4: $B_t = \text{StratifiedSampler}_m(S; Y, Z)$
- 5: $\theta_t = \theta_{t-1} \eta_\theta \nabla_\theta \hat{R}'_\ell(\theta_{t-1}; B_t)$
- 6: $\gamma_t = \lambda_{t-1} \exp(\eta_{\lambda} \nabla_{\lambda} \hat{R}'_{\ell}(\theta_{t-1}; B_t))$
- 7: $\lambda_t = \gamma_t / \|\gamma_t\|_1$
- 8: end for
- 9: **Outputs**: $\theta_T \sim \text{Unif}(\{\theta_t\}_{t=1}^T)$

Section 4: Theoretical Results - Assumption for Guaranteed Convergence

Assumption 1

For any $\theta \in \Theta$ and $\lambda \in \Lambda$, the gradients of F are bounded by G_{θ} and G_{λ} respectively, i.e.,

$$\|\lambda^T \nabla_{\theta} R'(\theta; S)\|_2 \leq G_{\theta}$$
, and $\|R'(\theta; S)\|_{\infty} \leq G_{\lambda}$.

• Assumption 2

The objective F is L_{θ} and L_{λ} smooth respectively, i.e.,

$$\|\lambda^T \nabla_{\theta} R'(\theta; S) - \lambda^T \nabla_{\theta} R'(\theta'; S)\|_2 \le L_{\theta} \|\theta - \theta'\|_2,$$

and
$$||R'(\theta; S) - R'(\theta'; S)||_{\infty} \le L_{\lambda} ||\lambda - \lambda'||_{1}$$

for any $\theta, \theta' \in \Theta$ and $\lambda, \lambda' \in \Lambda$.

Assumption 3

For any fixed $\theta \in \Theta$, $\lambda \in \Lambda$ and randomly sampled pair ξ , the variances of the stochastic gradients are bounded by σ_{θ}^2 and σ_{λ}^2 respectively.

Section 4: Theoretical Results - Guaranteed Convergence

Theorem 2 (Informal). Suppose Assumption 1, 2 and 3 hold true. Then the output θ_T of Algorithm 1 satisfies

$$\mathbb{E}\left[\|\nabla P_{1/2L}(\theta_T)\|_2\right] \leq \epsilon(T, \eta_\theta, \eta_\lambda),$$

where $\epsilon(T,\eta_{\theta},\eta_{\lambda})$ is an absolute constant. In particular, to achieve some small $\epsilon=\epsilon(T,\eta_{\theta},\eta_{\lambda})$, one chooses $\eta_{\theta}=\Theta(\epsilon^4)$, $\eta_{\lambda}=\Theta(\epsilon^2)$ and $T=\Theta(\epsilon^{-8})$. Furthermore, there exists $\hat{\theta}\in\Theta$ such that $\mathbb{E}\left[\|\hat{\theta}-\theta_T\|_2\right]\leq \epsilon/2L$ and it satisfies

$$\mathbb{E}\left[\min_{\xi\in\partial P(\hat{\theta})}\|\xi\|_2\right]\leq\epsilon.$$

Section 5: Experiment Results - Overview

• The author implemented algorithms on four datasets – Bank, Adult, Compas, and Default

Name	# instances	# attributes	Group ratio	Class ratio
Adult	48,842	15	0.48:1	3.03:1
Bank	41,188	21	0.05:1	7.55:1
Compas	11,757	53	1.86:1	1.94:1
Default	30,000	24	1.52:1	3.52:1

- They used fully connected NN of 2 hidden layer with ReLU activation and normalization
- They compared their metric with four algorithms AUC Max, MiniMaxFair, InterFairAUC, EqualAUC

Section 5: Experimental Results

Figure: Convergence plots on training set (u pper half) and ROC plots on test set (lower half) of Algorithm 1 (solid curves) versus AUCMax (dashed curves). For convergence plots, the x-axis indicates the number of epochs, and the y-axis indicates the AUC score. For ROC plots, the x-axis indicates the FPR and the y-axis indicates the TPR

Section 5: Experimental Results

	Adult		Bank		Compas		Default	
Metric Algorithm	Overall	Min/Max	Overall	Min/Max	Overall	Min/Max	Overall	Min/Max
AUCMax	$.902\pm.002$	$.823 \pm .005$	$.910 \pm .002$	$.780 \pm .018$	$.732 \pm .004$	$.779 \pm .041$	$.763 \pm .005$	$.871 \pm .017$
MinimaxFair								
InterFairAUC	$.894 \pm .004$	$.950 \pm .003$	$.912\pm.001$	$.836 \pm .018$	$.738 \pm .003$	$.939 \pm .014$	$.763 \pm .003$	$.952 \pm .024$
EqualAUC								$.972\pm.020$
Algorithm 1	$.901 \pm .004$	$.953\pm.002$	$.907 \pm .004$	$.858 \pm .014$	$.741 \pm .004$	$.961 \pm .012$	$.767 \pm .002$	$.968 \pm .013$

Figure: Comparison of Algorithm 1 versus baselines. 'Overall' is the AUC score on the full dataset, measuring the utility. 'Min/Max' is the minimum group-level AUC score over the maximum one, measuring the fairness. The numbers are reported as 'Mean \pm Standard Deviation'. Best results at each column are highlighted in bold. Second best are highlighted in underline