Michael Edelman

Professor Leff

10/07/2020

<u>Drill Comparing Orders Of Growth – 1</u>

		Double The input size	Increase input size by one
1.	n^2	(2n)^2/n^2 = 4n^2/n^2 = <u>4x slower</u>	Lim $n \rightarrow \infty$ $(n+1)^2/n^2$ = $n^2 + 2n + 1 / n^2$ (ignore lower order terms when find the limit at ∞) -> $n^2/n^2 = 1x$ or the same.
2.	n^3	(2n)^3/n^3 = 8n^3/n^3 = 8x slower	Lim $n \rightarrow \infty (n+1)^3/n^3$ = $n^3 + 3n^2 + 3n + 1/$ $n^3 -> n^3/n^3 = 1x \text{ or}$ the same.
3.	100n^2	100(2n)^2/100n^2 = 100(4)(n^2)/100(n^2) = <u>4x slower</u>	Lim $n \rightarrow \infty$ $100(n+1)^2/100n^2 =$ $100(n^2 + 2n + 1) /$ $100(n^2) = n^2 + 2n + 1$ $/ n^2 -> n^2/n^2 = 1x \text{ or}$ the same.
4.	nlogn	(2n)log(2n)/nlogn = 2log(2n)/logn = 2(log(2n/n) = 2log2 ~ <u>2x slower</u>	Lim $n \rightarrow \infty$ ((n+1) log(n+1))/ n logn (get rid of lower order terms) \rightarrow n+1/ n \rightarrow n/n = 1x or the same
5.	2^n	$2^2n/2^n$, subtract the exponents of like bases in division $(2n - n = n) \rightarrow 2^2n/2^n = (2^n)x$ slower	$2^{(n+1)/2^n} = 2x \text{ slower}$ (subtract exponents (n+1) - n = 1)

10^10 operations per second * 3600 seconds in an hour = $36 * 10^13$ operations a hour. Since each mathematical description of algorithm performance reflects on operations that are performed for a given input size we can set our algorithms to, $36 * 10^13$, and solve for n and that will show us for which input size does that algorithm perform , $36 * 10^13$ operations which is the amount of operations the computer can do anyways in an hour.

1. N^2	$N^2 = 36 *10^12 \rightarrow sqrt(n^2) = sqrt(36*10^12) \rightarrow n = 60 *10^5 \text{ or 6,000,000}$
2. n^3	$N^3 = 36*10^12 \rightarrow cbrt(n^3) = cbrt(36*10^12) \rightarrow n = floor(33,019.2725) = 33,019$
3. 100n^2	$100n^2 = 36 * 10^12 \rightarrow sqrt(n^2) = sqrt((36*10^12)/100) \rightarrow n = 600,000$
4. nlogn	Nlogn = 36*10^12 → Nmax =~ 28.9 * 10^11(basically the logn takes away one order of magnitude so its almost constant but not quite – so with calculator tweaking you can get the approximate value of n.)
5. 2^n	$2^n = 36 * 10^12 \rightarrow \log_2(36 * 10^12) = 45.033 \rightarrow \text{floor}(45.033) = 45 = Nmax$
6. 2^2n	$2^2 = 36^*10^12 \rightarrow (\log_2(36^*10^12))/2 = 22.5165 \rightarrow \text{floor}(22.5165) = 22 = Nmax$