

SKA1 DISH HIGH FIDELITY FAR FIELD PATTERNS

Document number	SKA-TEL-DSH-0000139
Revision	1
Author	A. Peens-Hough
Date	
Status	Released

Name	Designation	Affiliation	Signature & Date		
	Authored by:				
A. Peens-Hough	Systems Analyst	SARAO	A. Peens-Hough (Aug 13, 2019)		
Approved by:					
T. Küsel	DSH Systems Engineer	SARAO	T. Kusel		

DOCUMENT HISTORY

Revision	Date Of Issue	Engineering Change Number	Comments
1	2019-08-13	-	First formal release

DOCUMENT SOFTWARE

	Package	Version	Filename
Wordprocessor	MsWord	Word 2007	SKA-TEL.DSH.0000139 High Fidelity Beam Patterns.docx
Block diagrams			
Other			

ORGANISATION DETAILS

Name	SKA Organisation	
Registered Address	Jodrell Bank Centre for Astrophysics	
	Room 3.116	
	Alan Turing Building	
	The University of Manchester	
	Oxford Road	
	Manchester, UK	
	M13 9PL	
	Registered in England & Wales	
	Company Number: 07881918	
Fax.	+44 (0)161 275 4049	
Website	www.skatelescope.org	

2019-08-13 Page 2 of 5

1 Introduction

This document serves as a cover note to accompany the set of far field patterns that have been generated to support advanced analysis within the SKA1 project.

2 References

The following documents are referenced in the text:

- [1] A. Peens-Hough, SKA1 DISH Model for High Fidelity EM Analysis, SKA-TEL-DSH-0000137, rev
- [2] R. Lehmensiek, SKA1 SPF Band 1 Far Field Patterns, 2019_08_06_SKA_SPFB1.zip, 6 August 2019
- [3] R. Lehmensiek, SKA1 SPF Band 2 Far Field Patterns, 2019_08_06_SKA_SPFB2.zip, 6 August 2019
- [4] R. Lehmensiek, SKA1 Ku-band Test Receiver Far Field Patterns, 2019_08_06_SKA_Ku.zip, 6 August 2019
- [5] R. Lehmensiek, SPF Band 2 Signal Chain Design Document, SKA-TEL-DSH-0000111, rev 2

3 The DISH Model

The far field patterns represent the EM response of the SKA1_MID DISH element when the asdesigned SPF Feeds are fitted to the as-designed Dish Structure. The requirements for the model and analysis methods were stipulated in detail [1], with the following of relevance:

- 1) The model is based on a structural Finite Element Model of the reflector system incorporating the following detail of the CAD model (illustrated in Figure 1):
 - a. actual designed reflector surfaces, including outer rim geometry, and
 - b. all conductive objects within 0.5 m from the geometrical optical ray paths.
- 2) The reflectors are represented as continuous conducting surfaces (no panel gaps) and with infinite conductivity (no Ohmic losses).
- 3) The model employs structural Finite Element Models of the SPF Band 1 & Band 2 feeds as produced for DDR's. A FEM model is also for the MeerKAT Ku-band feed horn & probes.
- 4) The far field patterns were generated for transmission, referred to the nominal **phase reference point**. This point is also the origin of the nominal feed coordinate system. The far field azimuthal angle ϕ is measured positive from the X axis towards Y (with reference to the coordinate axes indicated in Figure 1).

2019-08-13 Page 3 of 5

Figure 1: Illustration of the key components included in the DISH model. The *phase reference point* is at the origin of the coordinate axes.

4 Usage Notes

The far field patterns are distributed as collections of compressed MATLAB files [2], [3], [4]. All follow the same conventions including coordinate systems, units and naming conventions.

The file naming convention is as follows:

```
"B%s %d %d.mat" % (band, elevation deg, f MHz)
```

Variable naming conventions are as follows:

th is the angle [deg] away from bore sight, with th=0 defining bore sight direction. ph is the angle [deg] in the aperture plane (x-y axes), ph=0 defines the plane of symmetry J*: Jones matrix (voltage) patterns, un-normalized.

Jqh: response of the horizontally polarized feed due to a horizontally polarised wave

Jqv: response of the horizontally polarized feed due to a vertically polarised wave

Jph: response of the vertically polarized feed due to a horizontally polarised wave

Jpv: response of the vertically polarized feed due to a vertically polarised wave

The patterns may be manipulated using standard tools, for example using the standard python, numpy & scipy libraries as illustrated below.

```
import scipy.io
D = scipy.io.loadmat("B2_45_%d.mat"%freq_MHz)
th = D["th"].squeeze() # angle from bore sight with th=0 defining bore sight [deg]
ph = D["ph"].squeeze() # angle in aperture plane with 0="up from vertex" and
defines plane of symmetry [deg]
JHH = D["Jqh"].squeeze() # Jones "voltage" pattern, arranged rows:th x columns:ph
JVV = D["Jpv"].squeeze()
JHV = D["Jqv"].squeeze()
JVH = D["Jqh"].squeeze()
```

Note that these patterns are not normalized to bore sight directivity. An example pattern has been generated and included in Figure 2, for reference.

2019-08-13 Page 4 of 5

Figure 2: Sample far field patterns for Band 2 (965 MHz) with the reflectors oriented at 45° Elevation angle

Note that the far field figures included in the SPF Band 2 design report [5] have the HV and VH patterns swapped around. This has been confirmed with the author to be an error in that document.

2019-08-13 Page 5 of 5

SKA-TEL.DSH.0000139_Rev1_HighFidelityBeamPatterns

Final Audit Report 2019-08-13

Created: 2019-08-13

By: Thomas Kusel (thomas.kusel@ska.ac.za)

Status: Signed

Transaction ID: CBJCHBCAABAAsBapDKDBAMRSEWNKDCjkEHRAigO8SyRH

"SKA-TEL.DSH.0000139_Rev1_HighFidelityBeamPatterns" History

- Document created by Thomas Kusel (thomas.kusel@ska.ac.za) 2019-08-13 1:30:50 PM GMT- IP address: 196.24.39.242
- Document emailed to A. Peens-Hough (aph@ska.ac.za) for signature 2019-08-13 1:31:59 PM GMT
- Email viewed by A. Peens-Hough (aph@ska.ac.za) 2019-08-13 1:33:38 PM GMT- IP address: 66.249.93.205
- Document e-signed by A. Peens-Hough (aph@ska.ac.za)

 Signature Date: 2019-08-13 1:34:11 PM GMT Time Source: server- IP address: 196.24.39.242
- Document emailed to Thomas Kusel (thomas.kusel@ska.ac.za) for signature 2019-08-13 1:34:13 PM GMT
- Email viewed by Thomas Kusel (thomas.kusel@ska.ac.za) 2019-08-13 1:44:02 PM GMT- IP address: 66.249.93.207
- Document e-signed by Thomas Kusel (thomas.kusel@ska.ac.za)

 Signature Date: 2019-08-13 1:44:15 PM GMT Time Source: server- IP address: 196.24.39.242
- Signed document emailed to Thomas Kusel (thomas.kusel@ska.ac.za) and A. Peens-Hough (aph@ska.ac.za) 2019-08-13 1:44:15 PM GMT