Übungen zur Linearen Algebra I 2. Übungsblatt

Abgabe bis zum 31.10.19, 9:15 Uhr

Aufgabe 1 (6 Punkte). Sei $G=(G,\cdot,e)$ eine Gruppe. Auf der Potenzmenge $\mathcal{P}(G)$ betrachten wir die Abbildung

$$(A,B) \longmapsto A*B = \{a\cdot b \mid (a,b) \in A\times B\}.$$

Zeigen Sie, dass es sich um eine assoziative Verknüpfung handelt und ein eindeutiges (links- und rechts-)neutrales Element existiert. Zu welchen Teilmengen gibt es inverse Elemente? Ist $(\mathcal{P}(G), *)$ jemals eine Gruppe?

Aufgabe 2 (3 · 2 Punkte). Es seien A, B und C Mengen und $f: A \to B, g: B \to C$ Abbildungen zwischen ihnen. Zeigen Sie:

- (a) Ist $g \circ f$ injektiv, so ist f injektiv.
- (b) Ist $g \circ f$ surjektiv, so ist g surjektiv.
- (c) Sind f und g bijektiv, so ist auch $g \circ f$ bijektiv und es gilt $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Aufgabe 3 (2 + 4 Punkte). Sei $a \in \mathbb{N}_0$. Wir betrachten folgende Abbildung:

$$f\colon \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

$$n \longmapsto \begin{cases} a & \text{falls } n \leqslant 1, \\ f(n-1) + f(n-2) & \text{sonst.} \end{cases}$$

Zeigen Sie:

- (a) f ist weder injektiv noch surjektiv.
- (b) $f(n)^2 = f(n-1)f(n+1) + (-1)^n \cdot a^2$ für alle $n \ge 1$.

Aufgabe 4 (2 + 4 Punkte). Sei $f: X \to Y$ eine Abbildung. Wir definieren die Relation

$$R = \{(x_1, x_2) \in X \times X \mid f(x_1) = f(x_2)\}.$$

Zeigen Sie:

- (a) R ist eine Äquivalenzrelation auf X.
- (b) Es bezeichne p die kanonische Projektion $p: X \to X/R$ und

$$\operatorname{im} f = \{ y \in Y \mid \exists x \in X \colon f(x) = y \} \subset Y$$

das Bild von f. Dann existiert eine eindeutige bijektive Abbildung $\overline{f}: X/R \to \operatorname{im} f$ mit der Eigenschaft, dass $\overline{f} \circ p = f$ gilt.