目 录

	牛头刨床机构的分析与综合	1
1	设计题目及原始数据	1
	1.1 题目: 牛头刨床机构的分析与综合	1
	1. 2 原始数据	1
	1.3 名称符号的意义	1
2	机构运动简图	2
3	各部分设计计算结果及必要的说明	2
4	导杆机构的运动分析	3
	4. 1 已知数据	3
	4. 2 设计步骤	4
	4. 2. 1 位置划分	4
	4. 2. 2 1', 6, 9 位置的运动 分析	4
	4.2.3 运动分析结果汇总表	10
5	导杆机构动态静力分析	
	5. 1 已知数据	
	5.2 设计步骤	
	5. 2. 1 惯性力及力矩结果汇总表	
	5. 2. 2 求齿轮 的重量	
	5. 2. 3 1', 6, 9 位置动态静力分析	
	5. 2. 4 动力分析结果汇总表	
6	齿轮机构设计计算	
Ŭ	6.1 已知数据	
	6.2 设计步骤	
	6. 2. 1 确定变位系数	
	6.2.2 计算齿轮几何尺寸	то

牛头刨床机构的分析与综合

1设计题目及原始数据

1.1 题目: 牛头刨床机构的分析与综合

1.2 原始数据

方案号	H mm	K	L _{O2O3}	P ₁	P ₂	P ₃	L _{FS₆}	m ₄ kg	m ₅	m ₆ kg
	320	1.2	650	0.5	0.25	0.5	150	16	4	68
Ι	JS ₄ kgm ²	JS ₅ kgm ²	F _c	Y _p mm	n ₂ r.p.m	m mm	\mathbf{Z}_4	Z_5	$\begin{array}{c} L_{O_2O_4} \\ mm \end{array}$	L _{O₄C} mm
	1.6	0.03	1600	160	80	12	16	60	136	120

1.3 名称符号的意义

Н	刨头的最大行程
K	导杆机构行程速度变化系数
$L_{O_2O_3}$	导杆转动副 O_3 至曲柄转动副 O_2 的距离
P ₁	导杆 4 质心 S_4 至转动副 O_3 之距与导杆长之比,即 L_{BSS} $/$ L_{BF}
P ₂	L _{BF} / L _{O₃B} 导杆 5 与导杆 4 的长度比
P ₃	连杆 5 质心 S_5 到转动副 B 之距与杆 5 长之比,即 L_{BS5} / L_{BF}
$L_{ ext{FS}_6}$	刨头 6 质心到转动副 F 之距
m_4 , m_5 , m_6	分别为构件 4、5、6 的质量
JS ₄ , JS ₅	分别为构件 4、5 对各自质心的转动惯量
F _c	刨头所受切削阻力
Y _p	切削阻力 FC 至 O2 的垂直距离
n_2	曲柄 2, 齿轮 5 及凸轮 7 的转速
m	齿轮 4、5 的模数

 Z_4 , Z_5

分别为齿轮 4、5 的齿数

2 机构运动简图

3 各部分设计计算结果及必要的说明

1.导杆机构的极位夹角 θ 与导杆的最大摆角 ψ :

$$\psi = \theta = 180^{\circ} \frac{K - 1}{K + 1} = 16.36^{\circ}$$

2. 求导杆长 L₀₃B:

$$L_{O_3B} = \frac{H}{2\sin\frac{\Psi}{2}} = 1124.27mm$$

3.求曲柄长L_{0:A}:

$$L_{O_2A} = L_{O_2O_3} \sin \frac{\Psi}{2} = 92.50mm$$

4.求连杆长L_{BF}:

$$L_{BF} = L_{O_2B} \cdot P_2 = 281.07mm$$

5.求刨头导路 x—x 至 O_3 点的距离 L_{O_3M} ; 从受力情况(有较大的传动角)出发,x—x 常取为通过 B_1B_2 的扰度 DE 的中点 M。由图得:

$$L_{O_3M} = L_{O_3B} - \frac{DE}{2} = L_{O_3B} \left(1 + \cos \frac{\Psi}{2} \right) / 2 = 1118.55 mm$$

6.求导杆质心到转动副 O_3 之距 $L_{O_{2}}$:

$$L_{O_2S_4} = L_{O_2B} \cdot P_1 = 562.14mm$$

7.求连杆质心到转动副 B 之距 L_{BS}:

$$L_{BS_5} = L_{BF} \cdot P_3 = 140.54mm$$

4 导杆机构的运动分析

4.1 已知数据

- 1.由机构综合确定各构件长度和质心位置;
- 2.曲柄转速 n₂=80r.p.m。

4.2 设计步骤

4.2.1 参照指导书上写明各位置的划分

将机构运动简图选定 15 个位置,其中 1 对应导杆的左极限位置,1—12 每个位置间隔为 30°,4′与 10′对应于曲柄与导杆共线的两个位置,8′对应导杆的右极限位置。

4. 2. 2 1', 6, 9 位置的运动 分析

4. 2. 2. 1 1'位置运动分析

1'位置速度向量方程

$$\overrightarrow{v_{A4}} = \overrightarrow{v_{A3}} + \overrightarrow{v_{A_4A_3}}$$

 $\bot 4$ 杆 $\bot 2$ 杆 $//4$ 杆 ? $\omega \cdot l_{O2A}$? $\overrightarrow{v_F} = \overrightarrow{V_B} + \overrightarrow{v_{FB}}$ 水平 $\bot 4$ 杆 $//5$ 杆 ? \checkmark ?

1'位置速度多边形

1'位置加速度向量方程

1'位置加速度多边形

1)

4. 2. 2. 2 6 位置运动分析

6位置速度向量方程

? \sqrt{2}

6位置速度多边形

6

UN= UNIS h

6位置加速度向量方程

$$\vec{a}_{_{A4}}^{^{n}} \ + \quad \vec{a}_{_{A4}}^{^{t}} \ = \quad \vec{a}_{_{A3}} \quad + \quad \vec{a}_{_{A4A3}}^{^{k}} \ + \quad \vec{a}_{_{A4A3}}^{^{r}}$$

$$\vec{f}$$
 = $\vec{a}_{\scriptscriptstyle B}$ + $\vec{a}_{\scriptscriptstyle FB}$ + $\vec{a}_{\scriptscriptstyle FB}$

6位置加速度多边形

6

4. 2. 2. 3 9位置运动分析

9位置速度向量方程

? ✓ ?

9位置速度多边形

9位置加速度向量方程

$$\vec{a}_{A4}^{n} + \vec{a}_{A4}^{t} = \vec{a}_{A3} + \vec{a}_{A4A3}^{k} + \vec{a}_{A4A3}^{r}$$

$$\vec{f} = \vec{a}_{B} + \vec{a}_{FB}^{n} + \vec{a}_{FB}^{t}$$

9位置加速度多边形

4.2.3 运动分析结果汇总表

数值	ω_4	$\omega_{\scriptscriptstyle 5}$	V_{F}	\mathcal{E}_4	\mathcal{E}_5	a_{s4}	a_{s_5}	$a_{\rm F}$
位置	rad/s	rad/s	m/s	rad/s^2	rad/s^2	m/s^2	m/s^2	m/s^2
1'	0.47	0. 37	0.53	7. 94	3. 78	4. 45	8. 90	8.90
6	0.73	-0.40	0.83	-5.60	0.05	-3.10	-6.30	-6. 30
9	0.95	0.45	-1.08	-10.68	4. 98	-6.00	-11.90	-11.80

5 导杆机构动态静力分析

5.1 已知数据

- 1.由运动分析确定的加速度与角加速度 ε_4 , ε_5 , a_{S4} , a_{S5} , a_F ;
- 2. 各构件的质量 m_4 , m_5 , m_6 (滑块 3 质量不计);
- 3. 各构件的转动惯量 JS_4 , JS_5 ;
- 4. 切削阻力F。及其线图;
- 5. 齿轮 5 模数 m, 齿数 \mathbb{Z}_5 , 两齿轮中心线 $\mathbb{Q}_1\mathbb{Q}_2$ 与 X 轴夹角 $\alpha=30^\circ$ 。

5.2 设计步骤

5.2.1 惯性力及力矩结果汇总表

名称		导杆 4			刨头 6		
	F_{I4}	M_{I4}	H_{I4}	F_{I5}	M_{I5}	H_{I5}	F_{I6}
位置	N	Nm	mm	N	Nm	mm	N
1'	71.2	12.7	180	35.6	0.113	3.16	610.0
6	49.6	9.0	180	25.2	0.0015	0.1	428.4
9	96.0	17.1	178	47.6	0.149	3.0	802.4

5. 2. 2 求齿轮 的重量

齿轮 5 的重量用下式近似计算:

$$G_{75} = 1.274 \times 10^{-5} \pi d_f S \rho(N)$$

式中:

齿根圆直径 $d_f = m(Z_5 - 2.5)$:

齿圈截断面面积: S=3mB;

B: 齿轮宽,取为100mm;

 ρ : 齿轮材料密度,钢的密度为 $7.8g/cm^3$ 。

$$G_{z5} = 1.274 \times 10^{-5} \pi d_f S \rho(N) = 775N$$

5. 2. 3 1',6,9 位置动态静力分析

5.2.3.1 1'位置动态 静力分析

a、杆组6-5力方程:

$$\overrightarrow{R_{45}}^n + \qquad \overrightarrow{R_{45}}^t + \qquad \overrightarrow{G_5} + \qquad \overrightarrow{F_{is}} + \qquad \overrightarrow{G_6} + \qquad \overrightarrow{F_{i6}} + \qquad \overrightarrow{R_{16}} = 0$$

b、杆组 3-4 力方程:

$$\overrightarrow{R_{34}}$$
 + $\overrightarrow{R_{54}}$ + $\overrightarrow{G_4}$ + $\overrightarrow{F_{i4}}$ + $\overrightarrow{R_{14}}$ =0

c、曲柄 2(即齿轮 5) 力方程

$$\overrightarrow{R_{z4z5}} + \overrightarrow{R_{32}} + \overrightarrow{G_{z5}} + \overrightarrow{R_{12}} = 0$$

d、1'位置动态静力图

5.2.3.2 6 位置动态 静力分析

a、杆组 6-5 力方程:

$$\overrightarrow{R_{_{45}}}^{_{n}}+ \quad \overrightarrow{R_{_{45}}}^{_{t}}+ \quad \overrightarrow{G_{_{5}}}+ \quad \overrightarrow{F_{_{i5}}}+ \quad \overrightarrow{G_{_{6}}}+ \quad \overrightarrow{F_{_{i6}}}+ \quad \overrightarrow{Fc}+ \quad \overrightarrow{R_{_{16}}}=0$$

b、杆组 3-4 力方程:

$$\overrightarrow{R_{_{34}}} \quad + \quad \overrightarrow{R_{_{54}}} + \quad \overrightarrow{G_{_4}} + \quad \overrightarrow{F_{_{i4}}} + \quad \overrightarrow{R_{_{14}}} = 0$$

c、曲柄 2 (齿轮 5) 上力平衡:

$$\overrightarrow{R_{z4z5}} + \overrightarrow{R_{32}} + \overrightarrow{G_{z5}} + \overrightarrow{R_{12}} = 0$$

d、6位置动态静力图

5.2.3.3 9 位置动态 静力分析

a、杆组 6-5 力方程:

$$\overrightarrow{R_{_{45}}}^n + \qquad \overrightarrow{R_{_{45}}}^t + \qquad \overrightarrow{G_{_5}} + \qquad \overrightarrow{F_{_{i5}}} + \qquad \overrightarrow{G_{_6}} + \qquad \overrightarrow{F_{_{i6}}} + \qquad \overrightarrow{R_{_{16}}} = 0$$

b、杆组 3-4 力方程:

$$\overrightarrow{R}_{34}$$
 + \overrightarrow{R}_{54} + \overrightarrow{G}_{4} + \overrightarrow{F}_{i4} + \overrightarrow{R}_{14} =0

d、曲柄 2 (齿轮 5) 上力平衡:

$$\overrightarrow{R_{z4z5}} + \overrightarrow{R_{32}} + \overrightarrow{G_{z5}} + \overrightarrow{R_{12}} = 0$$

e、9位置动态静力图

5.2.4 动力分析结果汇总表

名称

	F_{C}	R ₁₆	R ₆₅	R ₅₄	R ₄₃	R ₁₄	R ₁₂	R _{z4z5}	M_{b}
位置	N	N	N	N	N	N	N	N	Nm
1'	1600	610.0	2240	2300	3929	1800	4400	460	41.4
6	1600	428.4	1200	1060	1675	600	1760	340	30.6
9	0	802.4	790	850	1792	840	1820	375	33.7

6齿轮机构设计计算

6.1 已知数据

- a、齿数中 Z₄=16, Z₅=60;
- b、模数 m=12mm;

- c、齿顶高系数 h_a *=1, 径向间隔系数 C*=0.25;
- d、压力角 $\alpha = 20^{\circ}$;
- e、齿轮传动采用等高度变位传动。

6.2 设计步骤

6.2.1 确定变位系数

参阅附录三可确定变位系数 $X_1=0.397$, $X_2=-0.397$ 。

6.2.2 计算齿轮几何尺寸

名称	符号	计算公式	计算结果
分度圆直径	d_4	$d_4 = mZ_4$	192mm
分度圆直径	d_5	$d_5 = mZ_5$	720mm
基圆直径	d _{b4}	$d_{b4} = mZ_4 \cos \alpha_4$	180.4mm
基圆直径	d _{b5}	$d_{b5} = mZ_5 \cos \alpha_5$	659.7mm
齿根圆直径	d _{f4}	$d_{f4} = mZ_4 - 2(h_a * + C* - X)m$	171.5mm
齿根圆直径	d_{f5}	$d_{f5} = mZ_5 - 2(ha*+ C*+X)m$	680.5mm
齿顶圆直径	d_{a4}	$d_{a4} = mZ_4 + 2(ha*+X)m$	225.5mm
齿顶圆直径	d _{a5}	$d_{a5} = mZ_5 + 2(ha * -X)m$	734.5mm
分度圆齿厚	S ₄	$S_4 = (\pi m)/2 + 2Xmtg\alpha$	22.3mm
分度圆齿厚	S_5	$S_5 = (\pi m)/2 - 2Xmtg\alpha$	15.4mm
齿顶圆齿厚	S _{a4}	$S_{a4} = S_4 r_{a4} / r_4 - 2r_{a4} (inv \alpha_{a4} - inv \alpha)$	5.5mm
齿顶圆齿厚	S _{a5}	$S_{a5} = S_5 r_{a5} / r_5 - 2r_{a5} (inv \alpha_{a5} - inv \alpha)$	6.26mm
中心距 a	a	$a = m(Z_4 + Z_5)/2$	456mm
重合度 ε	ε	$\mathcal{E}=(Z_4(tg_{\alpha 4}-tg_{\alpha'})+Z_5(tg_{\alpha 5}-tg_{\alpha'}))/2\pi$	1.841