Siamese Neural Networks for Access Control

Ari Barnett

Mathematical Modeling Project 4

Overview

- CNN Basics
- SNN Basics
- Data overview / methods
- CNN Displayed
- Example Cases
- Conclusions

Basics of Convolutional Neural Networks

Siamese Neural Network

Dataset Used / Approaches Tried

- Kaggle Celebrity Image Dataset
 - N = 1800, Classes = 18, Both Actors and Actress, Multiracial, Varying presentations (glasses, facial hair, etc)
- Additional Cat Images
 - Utilize drastic image difference to demonstrate effectiveness or lack of
- Approaches
 - Cosine Similarity Score
 - Distance (Euclidean, L1)
 - Classification (K-means clustering, ML approach**)

CNN Overview (Resnet18 using ImageNet)

Example Case 1

Metrics from Feature Matrix:

Euclidean Distance = 1.2394 L1 Distance = 21.8296 Cosine Similarity = 0.9983

Metrics from Dimension Reduction (TSNE):

Euclidean Distance = 3.59e-05 L1 Distance = 4.99e-05 Cosine Similarity = 0.8853

Angelina Jolie

Due to the stochastic nature of TSNE without fixing RNG – can produce varying results. Likewise, adjust perplexity hyperparameter to prevent point mirroring

Example Case 2

Metrics from Feature Matrix:

Euclidean Distance = 1.2938 L1 Distance = 22.5892 Cosine Similarity = 0.9982

Metrics from Dimension Reduction (TSNE):

Euclidean Distance = 1.44e-04 L1 Distance = 1.6657e-04 Cosine Similarity = -0.1674

Cartoon Cat vs Angelina Jolie

Example Case 2

Metrics from Feature Matrix:

Euclidean Distance = 1.2002 L1 Distance = 21.6547 Cosine Similarity = 0.9984

Metrics from Dimension Reduction (TSNE):

Euclidean Distance = 1.545e-04 L1 Distance = 2.0414e-04 Cosine Similarity = 0.1752

Will Smith vs Angelina Jolie

Threshold / Rapid Testing

• Of the metrics utilized – cosine similarity yields the most effective and likely consistent method to be utilized.

• Therefore, we evaluate this approach for entry control via running 1000 iterations and comparing the method to standard clustering approaches to determine an effective method to maintain security.

Staff Employee Photo

Would I trust the security system as is?

Would I trust the security system as is?

• NOPE!

KMEAN APPROACH Correctly identified employee = 45.6% of the time

COSINE SIM. APPROACH
Specifity = 0.667 Sensitivty = 0.358
Accuracy = 0.5125

MEDIAN COSINE SIMILARITY
Similarity Average (True) = 0.034019
Similarity Average (False) = -0.030293

Things to do different / Conclusion

 Ideally in a real-world situation more accurate weights from similar dataset could be used for transfer learning approach (freeze layers, retrain classification task)

 Evaluating initial classification labels given to the images – many times the predicted class referred to articles of clothing the celebrity was wearing therefore making the distinction difficult

Potential need for further data augmentation or deeper network

Other Applications of SCNN

Parameter estimation for Stochastic Models (ABM's)

QUESTIONS?