SEL-487B Relay

Protection Automation Control

Instruction Manual

20210514

SEL SCHWEITZER ENGINEERING LABORATORIES, INC.

 $\hbox{@ 2003-2021}$ by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this manual is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language manual.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative.

PM487B-01

Table of Contents

User's Guide

List of Tables	
List of Figures	
Preface	xxvi
Section 1: Introduction and Specifications	
Overview	U.1.1
Functional Overview	
Options and Standard Features	U.1.5
Applications	U.1.6
Specifications	U.1.11
Section 2: Installation	
Overview	
Shared Configuration Attributes	
Plug-In Boards	
Jumpers	
Relay Placement	
Connection	
AC/DC Connection Diagrams	U.2.38
Section 3: PC Software	
Overview	
Communications Setup	
Settings Database Management and Drivers	
Create and Manage Relay Settings	
Analyze Events	U.3.15
Section 4: Basic Relay Operations	
Overview	
Inspecting a New Relay	
Connecting and Applying Power	
Establishing Communication	
Changing the Default Passwords	
Checking Relay Status	
Making Simple Settings Changes	
Examining Metering Quantities	
Reading Event Reports and SER	
Operating the Relay Inputs and Outputs	
Configuring Timekeeping	U.4.49
Readying the Relay for Field Application	
Section 5: Front-Panel Operations	
Overview	
Front-Panel Layout	
Front-Panel Menus and Screens	
Front-Panel Automatic Messages	
Operation and Target LEDs	
Front-Panel Operator Control Pushbuttons	U.5.36

Section 6: lesting and iroubleshooting	
Overview	
Testing Philosophy	
Testing Features and Tools	
Test Methods	
Checking Relay Operation	
Relay Self-Tests	
Relay Troubleshooting	
Technical Support	U.6.38
Appendix A: Firmware and Manual Versions	
Firmware	II A 1
Instruction Manual	
Appendix B: Firmware Upgrade Instructions	
Overview	U.B.1
Upgrade Procedure	U.B.2
Solving Firmware Upgrade Issues	U.B.18
Technical Support	U.B.20
A (* (* 1) () (
Applications Handbook	
Castian 1: Contant Cantinonation Conidation and Application Formula	
Section 1: System Configuration Guideline and Application Examples	
Overview	
Input, Logic, and Output Assigning Process	
Relay Differential Element Composition	
CT Requirements	
Disconnect Requirements	
Alias Names	
Bus-Zone Configurations	
Bus-Zone-to-Bus-Zone Connections	
Zone Supervision	
Trip Logic	
Output Assignments	
Summary	
Application 1: Single Bus and Tie Breaker (Three Relays)	
Application 2: Single Bus and Tie Breaker (Single Relay)	
Application 3: Breaker-and-a-Half	A.1.8/
Application 4: Single Bus and Transfer Bus With Buscoupler	
Application 5: Double Bus With Bus Coupler	
Application 7: Double and Transfer Bus (Outboard CTs)	
Application 7: Double and Transfer Bus (Outcoard CTs)	
	11.21/
Section 2: Monitoring and Metering	
Overview	A.2.1
Station DC Battery System Monitor	A.2.1
Metering	A.2.7
Continu 2. Analysing Data	
Section 3: Analyzing Data	
Overview	
Data Processing	
Triggering Data Captures and Event Reports	
Duration of Data Captures and Event Reports	
Event Reports, Summaries, and Histories	
Combined Event Report	
SER (Sequential Events Recorder)	A.3.31

Section 4: SEL Communications Processor Applications	
Overview	A.4.1
SEL Communications Processor	
SEL Communications Processors and SEL-487B Architecture	
SEL Communications Processor Example	A.4.6
Section 5: Direct Network Communications	
Overview	A.5.1
Direct Network Communication	
Serial Networking	A.5.2
Ethernet Card	
Direct Networking Example	A.5.9
Reference Manual	
Section 1: Protection Functions	
Overview	R.1.1
Busbar Protection Elements	
Check Zone Protection Elements	
Sensitive Differential Element	
Zone Supervision Logic	
Dynamic Zone Selection Logic	
Check Zone Selection	
Instantaneous/Delayed Overcurrent Elements	
Inverse Time-Overcurrent Elements	
Instantaneous Voltage Elements	
Open Phase Detector Logic	
Open CT Detector Logic	
Circuit Breaker Failure Frotection	
Buscoupler/Bus Sectionalizer Configurations	
Coupler Security Logic	
Disconnect Monitor	
Zone-Switching Supervision Logic	
Differential Trip Logic	
Breaker Trip Logic	
Circuit Breaker Status Logic	
Section 2: SELogic Control Equation Programming	
Overview	R.2.1
SELOGIC Control Equation History	R.2.1
Separation of Protection and Automation Areas	
SELOGIC Control Equation Programming	
SELOGIC Control Equation Setting Structure	
Multiple Setting Groups	
SELOGIC Control Equation Capacity	
SELOGIC Control Equation Elements	
SELOGIC Control Equation Operators	
Effective Programming	
SEL-311 and SEL-351 Series Users	R.2.35
Section 3: Communications Interfaces Overview	D 2 1
Communications Interfaces	
Serial Communication	
Communications Card	R 3.7

Section 4: SEL Communications Protocols	
Overview	
Serial Port Hardware Protocol	
Software Protocol Selections	
Protocol Active When Setting PROTO := SEL	
Virtual File Interface	
SEL Distributed Port Switch Protocol (LMD)	
	K.4.21
Section 5: DNP3 Communications	
Overview	
Introduction to DNP3	
DNP3 (Serial) in the SEL-487B	
DNP3 (Serial) Application	
DNP3 (Serial) Application Example	
DNP LAN/WAN Communication	
DNP LAN/WAN Application Example	
Section 6: IEC 61850 Communications	
Features	
Introduction to IEC 61850	
IEC 61850 Operation	
IEC 61850 Configuration	
Protocol Implementation Conformance Statement: SEL-400 Series Devices	
ACSI Conformance Statements	
Section 7: ASCII Command Reference	
Overview	
Description of Commands	R.7.2
Section 8: Settings	
Overview	R 8 1
Alias Settings	
Global Settings	
Zone Configuration Settings	
Group Settings	
Protection Free-Form SELOGIC Control Equations	R.8.20
Automation Free-Form SELOGIC Control Equations	
Output Settings	
Front-Panel Settings	
Report Settings Port Settings	
DNP3 Settings—Serial Port	
<u> </u>	21010
Appendix A: Relay Word Bits	
Overview	
Relay Word Bits	R.A.1
Appendix B: Analog Quantities	
Overview	R.B.1
Analog Quantities	
Glossary	
Index	
SEL-487B Relay Command Summary	

List of Tables

User's Guide

Table 1.1	Application Highlights	U 1 10
Table 2.1	Required Settings for Use With AC Control Signals	
Table 2.2	I/O Interface Board Control Inputs	
Table 2.3	I/O Interface Boards Control Outputs	
Table 2.4	Main Board Jumpers	
Table 2.5	Main Board Jumpers—JMP1, JMP2, and JMP3	
Table 2.6	I/O Board Jumpers	
Table 2.7	Fuse Requirements for the SEL-487B Power Supply	
Table 4.1	Power Supply Voltage Inputs	
Table 4.2	General Serial Port Settings	
Table 4.3	SEL-487B Access Levels	
Table 4.4	Access Level Commands and Passwords	
Table 4.5	Settings Classes and Instances	
Table 4.5	Actions at Settings Prompts	
Table 4.7	Actions at Text-Edit Mode Prompts	
Table 4.7	Quantities for Secondary Injection	
Table 4.8	The Five Event Type Sources That Initiate a Data Capture in the Relay	
Table 4.10	Types of Event Report Files Available in the Relay	
Table 4.11	Date/Time Last Update Sources	
Table 4.12	Communications Port Commands That Clear Relay Buffers	
Table 5.1	Front-Panel Inactivity Time-Out Setting	
Table 5.2	Metering Screens Enable Settings	
Table 5.3	SER Point Settings	
Table 5.4	Display Point Settings—Boolean	
Table 5.5	Display Point Settings—Analog	
Table 5.6	Display Point Settings—Boolean and Analog Examples	
Table 5.7	Front-Panel Pushbutton Functions While Viewing SER Events	
Table 5.8	Local Bit Control Settings	
Table 5.9	Local Bit SELOGIC	
Table 5.10	Settings Available From the Front Panel	
Table 5.11	Front-Panel Target LEDs	
Table 5.12	Operator Control Pushbuttons and LEDs—Factory Defaults	U.5.36
Table 6.1	Acceptance Testing	
Table 6.2	Commissioning Testing	
Table 6.3	Maintenance Testing	U.6.3
Table 6.4	UUT Database Entries for SEL-5401 Relay Test System Software	
	(Analog Input Board Y)—5 A Relay	U.6.7
Table 6.5	UUT Database Entries for SEL-5401 Relay Test System Software	
	(Analog Input Board Z)—5 A Relay	U.6.7
Table 6.6	UUT Database Entries for SEL-5401 Relay Test System Software	
	(Analog Input Board Y)—1 A Relay	U.6.7
Table 6.7	UUT Database Entries for SEL-5401 Relay Test System Software	
	(Analog Input Board Z)—1 A Relay	
Table 6.8	Time-Overcurrent Element (51P01) Default Settings	
Table 6.9	Pushbutton Assignments to Simulate Disconnect Auxiliary Contacts	
Table 6.10	Current for Testing the Threshold Point, O87P	
Table 6.11	Current for Testing the Second Point on the Relay Characteristic	
Table 6.12	Current Values for Testing the Threshold Value of the Directional Element	
Table 6.13	Current Values for Testing the Boundary Values of the Directional Element	U.6.31
Table 6.14	Injected Voltage Values for Testing the Overvoltage Elements	U.6.32

Date Code 20210514 SEL-487B Relay

Table 6.15	Voltage Element Settings for Testing the Negative- and Zero-Sequence Overvoltage	116 22
Table 6.16	Elements Troubleshooting Procedures	
	· ·	
Table A.1 Table A.2	Firmware Revision History Ethernet Card Firmware Revision History	
Table A.3	Compatible SEL-487B and Ethernet Card Firmware Versions	
Table A.4	ACSELERATOR Architect CID File Compatibility	
Table A.5	Instruction Manual Revision History	
Table B.1	Firmware Upgrade Files	U.B.2
pplication	s Handbook	
Table 1.1	Disconnect Auxiliary Contact Requirements to Ensure Correct Differential Element Operation	Λ 1 15
Table 1.2	Disconnect A and B Auxiliary Contact Status Interpretation	
Table 1.3	Disconnect Auxiliary Contact Status Interpretation When Only Auxiliary Contact B	
	Is Available	
Table 1.4	Primary Plant Data	
Table 1.5	Data for Buscoupler 1 and Buscoupler 2	
Table 1.6	Data for Buscoupler 3 and Buscoupler 4	
Table 1.7	Disconnect, Breaker, and Input Data	
Table 1.8	Breaker Failure Data	
Table 1.9	End-Zone Protection	
Table 1.10	Selection of the Standard Protection Functions	
Table 1.11	Number of Relay Input Contacts Required	
Table 1.12	Breakdown and the Total Number of Relay Outputs Required	
Table 1.13	CTs-to-Analog Channel Allocations and Alias Assignments	
Table 1.14	Alias Names for the Two Bus-Zones	
Table 1.15	Alias Name for the Check Zone	A.1.47
Table 1.16	Alias Names for the Breaker Status Logic Output Relay Word Bits	
Table 1.17	Alias Names for the Disconnect Auxiliary Contact Relay Word Bits	
Table 1.18	Alias Names for the Disconnect Monitor Logic Output Relay Word Bits	
Table 1.19	Alias Names for the Zone Differential Protection Output Relay Word Bits	A.1.49
Table 1.20	Primitive Differential Trip Bit Names, Alias Names for the Differential Trip Bits, and Associated Terminals	Δ 1 40
Table 1.21	Primitive and Alias Names for the Trip Logic of Each Terminal	
Table 1.22	Alias Names for the Main Board Output Contacts	
Table 1.23	Alias Assignment for the Five Terminals in Our Example	
Table 1.24	Selection of the Standard Protection Functions	
Table 1.25	Number of Relay Input Contacts Required	
Table 1.26	Breakdown and the Total Number of Relay Outputs Required	
Table 1.27	CTs to Analog Channel Allocations and Alias Assignments	
Table 1.28	Alias Names for the Six Bus-Zones	
Table 1.29	Alias Names and Assignment for the Digital Inputs	
Table 1.30	Alias Names for the Disconnect Auxiliary Contact Relay Word Bits	
Table 1.31	Alias Names for the Disconnect Monitor Logic Output Relay Word Bits	
Table 1.32	Breaker Status Logic Input and Output Relay Word Bits	
	Alias Names for the Zone Differential Protection Output Relay Word Bits	A.1./1
Table 1.33 Table 1.34	Primitive Terminal and Differential Trip Bit Names and the Alias Names for the	
	Differential Trip Bits	
Table 1.35	Primitive and Alias Names for the Trip Logic of Each Terminal	
Table 1.36	Alias Names for the End-Zone Protection Logic	
Table 1.37	Alias Names for the Main Board Output Contacts	
Table 1.38	Alias Assignment for the Five Terminals in Our Example	
Table 1.39	Section of Standard Protection Functions	
Table 1.40	Number of Relay Input Contacts Required	
Table 1.41	Breakdown and the Total Number of Relay Outputs Required	
Table 1.42	CTs-to-Analog Channel Allocations and Alias Assignments	A.1.92

Table 1.43	Alias Names for the Six Bus-Zones	A.1.93
Table 1.44	Alias Names for the Breaker Failure Input Contacts	A.1.93
Table 1.45	Alias Names for the Breaker Failure Initiate Relay Word Bits	A.1.94
Table 1.46	Alias Names for the Breaker Failure Logic Output Relay Word Bits	A.1.94
Table 1.47	Primitive Terminal and Station Breaker Failure Trip Relay Word Bit Names and	
	the Alias Names for the Breaker Failure Trip Bits	A.1.95
Table 1.48	Alias Names for the Zone Differential Protection Output Relay Word Bits	
Table 1.49	Primitive Terminal and Differential Trip Bit Names and the Alias Names for	
	the Differential Trip Bits	A.1.96
Table 1.50	Primitive and Alias Names for the Trip Logic of Each Terminal	
Table 1.51	Alias Assignment for the Trip Output Contacts	
Table 1.52	Alias Assignments for the Output Contacts of Interface Board 1	
Table 1.53	Input and Relay Word Bit Assignments and Settings for the Combined Logic	
Table 1.54	Selection of the Standard Protection Functions	
Table 1.55	Number of Required Relay Inputs	
Table 1.56	Breakdown and the Total Number of Relay Outputs Required	
Table 1.57	CTs-to-Analog Channel Allocations and Alias Assignments	
Table 1.58	Alias Names for the Two Bus-Zones	
Table 1.59	Relay Input-to-Relay Logic Assignment	
Table 1.60	Zone Differential Protection Output Relay Word Bits	
Table 1.61	Differential Trip Bit and Associated Terminals	
Table 1.62	Alias Names and Contact Allocation of the Main Board Output Contacts	
Table 1.63	Allocation of the Interface Board Output Contacts	
Table 1.64	Fixed Operating Sequence to Put a Feeder on Transfer	
Table 1.65	Selection of the Standard Protection Functions	
Table 1.66	Number of Relay Input Contacts Required	
Table 1.67	Breakdown and Total Number of Relay Outputs Required	
Table 1.68	CT-to-Analog Channel Allocations and Alias Assignments	
Table 1.69	Alias Names for the Six Bus-Zones	
Table 1.70	Disconnect and Circuit Breaker Failure Contact Input Allocation	
Table 1.70	Disconnect and Circuit Breaker Failure Contact Input Allocations	
Table 1.71	Disconnect Auxiliary Contact Relay Word Bits	
Table 1.72	Zone Differential Protection Output Relay Word Bits	
Table 1.74	Differential Trip Bit Names and Associated Terminal Names	
Table 1.75	Station Breaker Failure Trip Bit Names and Associated Terminal Names	
Table 1.76	Breaker Failure Logic Output Relay Word Bits	
Table 1.77	Alias Names for the Main Board Output Contacts	
Table 1.77	Assignment of the Output Contacts	
Table 1.79	Fixed Operating Sequence to Put a Feeder on Transfer	
Table 1.80	Selection of the Standard Protection Functions	
Table 1.81	Number of Relay Input Contacts Required	
Table 1.82	Breakdown and Total Number of Relay Outputs Required	
Table 1.83	CT-to-Analog Channel Allocations and Alias Assignments	
Table 1.84	Alias Names for the Two Bus-Zones	
Table 1.85	Disconnect and Circuit Breaker Failure Contact Input Allocations	
Table 1.86	Disconnect and Circuit Breaker Failure Contact Input Allocations	
Table 1.87	Disconnect Auxiliary Contact Relay Word Bits	
Table 1.88	Zone Differential Protection Output Relay Word Bits	
Table 1.89	Differential Trip Bit Names and the Associated Terminals	
Table 1.90 Table 1.91	Station Breaker Failure Trip Relay Word Bit Names and Associated Terminals Alias Names for the Main Board Output Contacts	
Table 1.91 Table 1.92		
	Assignment of the Output Contacts	
Table 1.93 Table 1.94	Fixed Operating Sequence to Put a Terminal on Transfer	
Table 1.95 Table 1.96	Relay Input Contacts Requirement	Λ.1.193 Λ 1 105
Table 1.90	CTs-to-Analog Channel Allocations and Alias Assignments	
Table 1.97	Alias Names for the Three Bus-Zones	
14015 1.70	Anas manies for the Thice Dus-Zulies	1.1.19/

Date Code 20210514

Table 1.99	Disconnect and Circuit Breaker Failure Contact Input Allocations	A.1.197
Table 1.100	Disconnect and Circuit Breaker Failure Contact Input Allocations	
Table 1.101	Disconnect Auxiliary Contact Relay Word Bits	A.1.199
Table 1.102	Zone Differential Protection Output Relay Word Bits	
Table 1.103	Differential Trip Bit and Associated Terminals	
Table 1.104	Station Breaker Failure Trip Bits and Associated Terminals	
Table 1.105	Breaker Failure Logic Input Relay Word Bits	
Table 1.106	Alias Names for the Main Board Output Contacts	
Table 1.107	Assignment of the Output Terminals	
Table 1.108	Fixed Operating Sequence to Put a Feeder on Transfer	
Table 1.109	Selection of the Standard Protection Functions	Α.1.207 Δ 1 220
Table 1.110	Relay Input Contacts Requirement	
Table 1.111	Breakdown and Number of Relay Outputs Required	
Table 1.111		
	CTs-to-Analog Channel Allocations and Alias Assignments	
Table 1.113	Alias Names for the Two Bus-Zones	
Table 1.114	Disconnect Contact Input Allocations	
Table 1.115	Disconnect Contact Input Allocations	
Table 1.116	Disconnect Auxiliary Contact Relay Word Bits	
Table 1.117	Zone Differential Protection Output Relay Word Bits	
Table 1.118	Differential Trip Bit Names and Associated Terminal Names	
Table 1.119	Alias Names for the Main Board Output Contacts	
Table 1.120	Assignment of the Output Terminals	
Table 2.1	DC Monitor Settings and Relay Word Bit Alarms	
Table 2.2	Example DC Battery Voltage Conditions	
Table 2.3	Example DC Battery Monitor Settings—125 Vdc for Relay A	
Table 2.4	Example DC Battery Monitor Settings—48 Vdc for Relay B	
Table 2.5	Example DC Battery Monitor Settings—AC Ripple Voltages	
Table 2.6	Example DC Battery Monitor Settings-Ground Detection Factor (EGADVS := Y)	
Table 2.7	Instantaneous Metering Quantities—Voltages and Currents	
Table 2.8	MET Command—Metering Only	A.2.7
Table 2.9	Information Available With the MET Command	A.2.8
Table 2.10	Information Available With the MET CZ1 Command	A.2.8
Table 2.11	Information Available With the MET Zn Command	A.2.9
Table 2.12	Information Available With the MET SEC Command	A.2.10
Table 2.13	Information Available With the MET SEC CZ1 Command	A.2.11
Table 2.14	Information Available With the MET SEC Zn Command	A.2.11
Table 2.15	Information Available With the MET DIF Command	
Table 2.16	Information Available With the MET PMV and MET AMV Commands	
Table 2.17	Information Available With the MET PMV A and MET AMV A Commands	
Table 2.18	Information Available With the MET ANA Command	
Table 3.1	Event Report Types Available in the SEL-487B	
Table 3.2	Five Sources That Can Initiate a Data Capture in the Relay	
Table 3.3	LER and PRE Report Settings	
Table 3.4	Event Report Nonvolatile Storage Capability	A 3 6
Table 3.5	EVE Command	
Table 3.6	EVE Command Examples	
Table 3.7	Event Report Metered Analog Quantities	
Table 3.7	Primitive and Alias Names of the First Four Digital Label Headers in the Default	A.J.11
14016 3.6		A 2 17
T-1-1-20	Event Report	
Table 3.9	Event Types	
Table 3.10	SUM Command	
Table 3.11	HIS Command	
Table 3.12	SER Commands	
Table 4.1	SEL-2020, SEL-2030, and SEL-2032 Communications Processor Protocol Interface	
Table 4.2	SEL Communications Processor Port 1 Settings	
Table 4.3	SEL Communications Processor Data Collection Automessages	
Table 4.4	SEL Communications Processor Port 1 Automatic Messaging Settings	
Table 4.5	SEL Communications Processor Port 1 Region Map	A.4.8

Table 4.6	SEL Communications Processor METER Region Map	
Table 4.7	SEL Communications Processor TARGET Region	
Table 5.1	DNP3 Feature Summary	A.5.2
Table 5.2	Ethernet Connection Options	A.5.4
Table 5.3	DNP LAN/WAN Feature Summary	A.5.8
Table 5.4	SEL-487B Port 5 Direct Networking Settings	A.5.10
Reference I	Manual	
Table 1.1	Restraint Filtered Differential Element Default Settings	R 1 5
Table 1.2	Default Settings for the Directional Element	
Table 1.3	External Fault Detection Logic Default Settings	
Table 1.4	Check Zone Restraint Filtered Element Default Settings	
Table 1.5	Check Zone External Fault Detection Logic Default Settings	
Table 1.6	Default Values for the Zone Supervision Settings	
Table 1.7	Default Values for the Check Zone Supervision Settings	
Table 1.8	Current Values Assigned to the Differential Element as a Function of the Disconnect Status	
Table 1.9	Relay Word Bits in the Zone Selection Logic	
Table 1.10	Relay Word Bits in the Check Zone Selection Logic	
Table 1.11	Settings for the Phase Instantaneous and Time-Delayed Overcurrent Elements	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(5 A Relay)	R.1.17
Table 1.12	Settings for the Phase Instantaneous and Time-Delayed Overcurrent Elements	
	(1 A Relay)	R.1.18
Table 1.13	Equations Associated With U.S. Curves	
Table 1.14	Equations Associated With IEC Curves	R.1.19
Table 1.15	Settings for the Time-Overcurrent Elements (5 A Relay)	R.1.30
Table 1.16	Settings for the Time-Overcurrent Elements (1 A Relay)	R.1.31
Table 1.17	Phase Filtered Instantaneous Voltage Magnitudes and Angles	R.1.31
Table 1.18	Negative- and Zero-Sequence Filtered Instantaneous Voltage Magnitudes	
Table 1.19	Phase Instantaneous Under-Overvoltage Elements	
Table 1.20	Sequence Overvoltage Elements	
Table 1.21	Open CT Detector Logic Default Settings	
Table 1.22	Relay Word Bits in the Open CT Detector Logic	
Table 1.23	Breaker Failure Default Settings	
Table 1.24	Station Breaker Failure Trips	
Table 1.25	Summary of the Network Conditions Shown in Figure 1.46	
Table 1.26	Summary of the Event for Fault F1 Shown in Figure 1.46	
Table 1.27	Summary of the Events for Fault F2 Shown in Figure 1.47	
Table 1.28	Summary of the Event for Fault F2 Shown in Figure 1.47	
Table 1.29	Summary of the Event for Fault F3 Shown in Figure 1.49	
Table 1.30	Summary of the Event for Fault F3 Using the Accelerated Trip Function	
Table 1.31	Coupler Security Logic Settings	
Table 1.32	Disconnect 89A and 89B Auxiliary Contact Status Interpretation	K.1.50
Table 1.33	Disconnect Auxiliary Contact Requirements to Ensure Correct Differential Element Operation	
Table 1.34	Zone-Switching Supervision Logic Default Settings	
Table 1.35	Differential Trips	
Table 1.36	Conditions and Results for the Circuit Breaker Status Logic	
Table 2.1	Advanced SEL-487B SELOGIC Control Equation Features	
Table 2.2	SEL-487B SELOGIC Control Equation Programming Summary	R.2.2
Table 2.3	Definitions for Active Setting Group Indication Relay Word Bits SG1 Through SG6	R.2.8
Table 2.4	Definitions for Active Setting Group Switching SELOGIC Control Equation Settings	
	SS1 Through SS6	
Table 2.5	Summary of SELOGIC Control Equation Elements	
Table 2.6	First Execution Bit Operation on Power Up	
Table 2.7	First Execution Bit Operation on Automation Settings Change	R.2.12

Table 2.8	First Execution Bit Operation on Protection Settings Change and Group Switch	
Table 2.9	SELOGIC Control Equation Variable Quantities	
Table 2.10	SELOGIC Control Equation Math Variable Quantities	
Table 2.11	Latch Bit Quantities	
Table 2.12	Latch Bit Parameters	
Table 2.13	Conditioning Timer Quantities	
Table 2.14	Conditioning Timer Parameters	
Table 2.15	Sequencing Timer Quantities	
Table 2.16	Sequencing Timer Parameters	
Table 2.17	Counter Quantities	
Table 2.18	Counter Parameters	
Table 2.19	Operator Precedence from Highest to Lowest	
Table 2.20	Boolean Operator Summary	
Table 2.21	OR Operator Truth Table	
Table 2.22	AND Operator Truth Table	
Table 2.23	NOT Operator Truth Table	
Table 2.24	Parentheses Operation in Boolean Equation	
Table 2.25	Comparison Operations	
Table 2.26	Math Operator Summary	
Table 2.27	Math Error Examples	R.2.29
Table 2.28	SEL-311 Series Relays and SEL-487B SELOGIC Control Equation Programming	D 2 25
T-1-1- 2-20	Features	R.2.35
Table 2.29	SEL-311 Series Relays and SEL-487B SELOGIC Control Equation Boolean	D 2 25
Tr.1.1. 2.1	Operators	
Table 3.1	SEL-487B Communications Protocols	
Table 3.2	EIA-232 Pin Assignments	
Table 3.3	Summary of Available Transceivers	
Table 3.4	Ethernet Card Network Configuration Settings	
Table 3.5 Table 3.6	DEFRTR Address Setting Examples	
Table 3.7	Basic File Structure	
Table 3.7	SEL-2701 FTP Settings	
Table 3.9	Ethernet Card Telnet Settings	
Table 3.10	Control Characters	
Table 3.11	SEL-2701 Command Summary	
Table 3.12	SEL-2701 Access Levels	
Table 3.13	Access Level User Names and Passwords	
Table 3.14	DATE Command	
Table 3.15	HELP Command Options	
Table 3.16	ID Command Internal Parameters Displayed	R.3.18
Table 3.17	PING Command Options	
Table 3.18	TIME Command	
Table 3.19	Communications Card Database Regions	
Table 3.20	SEL-487B Communications Card Database Structure—LOCAL Region	
Table 3.21	SEL-487B Communications Card Database Structure—METER Region	
Table 3.22	SEL-487B Communications Card Database Structure—TARGET Region	
Table 3.23	SEL-487B Communications Card Database Structure—HISTORY Region	
Table 3.24	SEL-487B Communications Card Database Structure—STATUS Region	
Table 3.25	SEL-487B Communications Card Database Structure—ANALOGS Region	R.3.25
Table 3.26	SEL-487B Communications Card Database Structure—STATE Region	
Table 3.27	SEL-487B Communications Card Database Structure—D1 Region	
Table 4.1	Hardware Handshaking	
Table 4.2	Supported Serial Command Sets	
Table 4.3	Selected ASCII Control Characters	
Table 4.4	Compressed ASCII Commands	R.4.5
Table 4.5	Fast Commands and Response Descriptions	R.4.9
Table 4.6	Fast Operate Command Types	R.4.9

Table 4.7	Fast Message Command Function Codes Used With Fast SER (A546 Message)	D 40
T 11 40	and Relay Response Descriptions	
Table 4.8	Commands in Recommended Sequence for Automatic Configuration	
Table 4.9	Virtual File Structure	
Table 4.10	Settings Directory Files	
Table 4.11	Ethernet Card Subdirectory	
Table 4.12	REPORTS Directory Files	
Table 4.13	EVENTS Directory Files (for event 10001)	
Table 4.14	MIRRORED BITS Communications Features	
Table 4.15	General Port Settings Used With MIRRORED BITS Communications	
Table 4.16	400-Series Relay Prerequisite Settings	
Table 4.17	MIRRORED BITS Communications Protocol Settings	
Table 4.18	MIRRORED BITS Communications Message Transmission Period	R.4.21
Table 4.19	MIRRORED BITS Communications ID Settings for Three-Terminal Application	R.4.21
Table 4.20	SEL-2885 Initialization String [MODE PREFIX ADDR:SPEED]	R.4.22
Table 5.1	DNP3 Implementation Levels	
Table 5.2	Selected DNP3 Function Codes	R.5.3
Table 5.3	DNP Access Methods	R.5.4
Table 5.4	DNP Access Methods	R.5.5
Table 5.5	SEL-487B Event Buffer Capacity	R.5.7
Table 5.6	SEL-487B Port DNP Protocol Settings	R.5.8
Table 5.7	SEL-487B DNP Map Settings	
Table 5.8	SEL-487B DNP3 Device Profile	
Table 5.9	SEL-487B DNP Object List	
Table 5.10	SEL-487B DNP3 Default Data Map	
Table 5.11	Object 30, Index 176 Upper Byte—Event Cause	
Table 5.12	SEL-487B Object 1, 2 Relay Word Bit Mapping	
Table 5.13	Object 1, 2 Front-Panel Targets	
Table 5.14	SEL-487B Object 12 Trip Operation	
Table 5.15	SEL-487B Object 12 Code Selection Operation	
Table 5.16	DNP3 Application Example Data Map	
Table 5.17	SEL-487B Port 3 Example Settings	
Table 5.18	DNP LAN/WAN Access Methods	
Table 5.19	SEL-487B Ethernet Port DNP3 Protocol Settings	
Table 5.20	SEL-487B DNP LAN/WAN Map Settings	R 5 43
Table 5.21	SEL-487B Binary Output CPId Values	
Table 5.22	SEL-487B DNP LAN/WAN Device Profile	
Table 5.23	SEL-487B DNP LAN/WAN Object List	
Table 5.24	SEL-487B DNP LAN/WAN Object 12 Control Point Operation	
Table 5.25	DNP LAN/WAN Application Example Custom Data Map	
Table 5.26	DNP LAN/WAN Application Example Protocol Settings	
Table 5.27	DNP LAN/WAN Application Example Analog Output Map	
Table 5.28	DNP LAN/WAN Application Example Binary Output Map	
Table 5.29	DNP LAN/WAN Application Example Analog Input Map DNP LAN/WAN Application Example Analog Input Map	
Table 5.30	DNP LAN/WAN Application Example Analog Output Map DNP LAN/WAN Application Example Analog Output Map	
Table 6.1	IEC 61850 Document Set	
Table 6.1	Example IEC 61850 Descriptor Components	
Table 6.2		
Table 6.4	SEL-487B Logical Devices	
	Buffered Report Control Block Client Access	
Table 6.5	Unbuffered Report Control Block Client Access	
Table 6.6	IEC 61850 Settings.	
Table 6.7	Logical Node Summary	
Table 6.8	Logical Device: PRO (Protection)	
Table 6.9	Logical Device: MET (Metering)	
Table 6.10	Logical Device: CON (Remote Control)	
Table 6.11	Logical Device: ANN (Annunciation)	
Table 6.12	PICS for A-Profile Support	
Table 6 13	PICS for T-Profile Support	R 6 37

Table 6.14	MMS Service Supported Conformance	
Table 6.15	MMS Parameter CBB	
Table 6.16	AlternateAccessSelection Conformance Statement	R.6.41
Table 6.17	VariableAccessSpecification Conformance Statement	R.6.41
Table 6.18	VariableSpecification Conformance Statement	R.6.41
Table 6.19	Read Conformance Statement	R.6.41
Table 6.20	GetVariableAccessAttributes Conformance Statement	R.6.42
Table 6.21	DefineNamedVariableList Conformance Statement	
Table 6.22	GetNamedVariableListAttributes Conformance Statement	
Table 6.23	DeleteNamedVariableList Conformance Statement	
Table 6.24	GOOSE Conformance	
Table 6.25	ACSI Basic Conformance Statement	
Table 6.26	ACSI Models Conformance Statement	
Table 6.27	ACSI Services Conformance Statement	
Table 7.1	2AC Command	
Table 7.2	AAC Command	
Table 7.3	ACC Command	
Table 7.4	BAC Command	
Table 7.5	BNA Command	
Table 7.5	CAL Command	
Table 7.7	CAS Command	
Table 7.7	CEV Commands	
Table 7.8	CEV Command Options	
Table 7.10	CEV Command Options Description	
Table 7.11		
Table 7.12	CEV R Command Options Description	
Table 7.13	CEV RD Command Options	
Table 7.14	CEV RD Command Options Description	
Table 7.15	CHI Command	
Table 7.16	CHI TERSE Command	
Table 7.17	COM c Command	
Table 7.18	COM c C and COM c R Command	
Table 7.19	COM c L Command	
Table 7.20	CON nn Command	
Table 7.21	COPY Command	
Table 7.22	CSE Command	
Table 7.23	CSE TERSE Command	
Table 7.24	CST Command	
Table 7.25	CSU Command	
Table 7.26	CEV ACK Command	
Table 7.27	CSU MB Command	
Table 7.28	CSU NEXT Command	
Table 7.29	CSU TERSE Command	
Table 7.30	DATE Command	
Table 7.31	DNA X Command	
Table 7.32	DNP Command	R.7.14
Table 7.33	EVE Command Options	
Table 7.34	EVE Command Options Description	R.7.14
Table 7.35	EVE R Command Options	R.7.15
Table 7.36	EVE R Command Options Description	
Table 7.37	FILE Command	R.7.16
Table 7.38	GROUP Command	R.7.16
Table 7.39	HELP Command	R.7.17
Table 7.40	HIS Command	
Table 7.41	HIS C and HIS R Commands	
Table 7.42	HIS CA and HIS RA Commands	
Table 7.43	ID Command	
Table 7 44	LOOP Command	R 7 20

Table 7.45	LOOP DATA Command	
Table 7.46	LOOP R Command	R.7.21
Table 7.47	MAP 1 Command	R.7.21
Table 7.48	MAP 1 Region Command	R.7.22
Table 7.49	MET Command	R.7.22
Table 7.50	MET AMV Command	R.7.22
Table 7.51	MET ANA Command	R.7.23
Table 7.52	MET BAT Command	R.7.23
Table 7.53	MET CZ1 Command	
Table 7.54	MET DIF Command	
Table 7.55	MET PMV Command	
Table 7.56	MET SEC Command	
Table 7.57	MET SEC CZ1 Command	
Table 7.58	MET SEC Zn Command	
Table 7.59	MET Zn Command	
Table 7.60	OAC Command	
Table 7.61	OPEN k Command	
Table 7.62	PAC Command	
Table 7.63	PAS level new_password Command	
Table 7.64	PAS level DISABLE Command	
Table 7.65	PORT p Command	
Table 7.66	PORT Kill n Command	
Table 7.67	PUL OUTnnn Command	
Table 7.68	QUIT Command	
Table 7.69	SER Command	
Table 7.70	SER C and SER R Commands	
Table 7.71	SER CA or SER RA Commands	
Table 7.72	SER CV or SER RV Commands	
Table 7.73	SER D Command	
Table 7.74	SET Command Overview	
Table 7.75	SET A Command	
Table 7.76	SET D Command	
Table 7.77	SET F Command	
Table 7.78	SET G Command	
Table 7.79	SET L Command	
Table 7.80	SET O Command	
Table 7.81	SET P Command	
Table 7.82	SET R Command	
Table 7.83	SET T Command	
Table 7.84	SET Z Command	
Table 7.85	SHO Command Overview	
Table 7.86	SHO A Command	
Table 7.87	SHO D Command	
Table 7.88	SHO F Command	
Table 7.89	SHO G Command	
Table 7.90	SHO L Command	
Table 7.91	SHO O Command	
Table 7.92	SHO P Command	
Table 7.92	SHO R Command	
Table 7.93	SHO T Command	
Table 7.95	SHO Z Command	
Table 7.96	SNS Command	
Table 7.96	STA Command	
Table 7.97	STA A Command	
Table 7.98	STA C and STA R Command	
Table 7.100	STA S Command	
Table 7.100	STA SCommand	
Table 7.101	STA SC and STA SK Command	K./.41 D 7 /1

Table 7.103	SUM ACK Command	
Table 7.104	SUM NEXT Command	R.7.42
Table 7.105	TAR Command	R.7.42
Table 7.106	TAR ALL Command	R.7.43
Table 7.107	TAR R Command	R.7.43
Table 7.108	TAR X Command	R.7.43
Table 7.109	TEST DB Command	R.7.44
Table 7.110	TEST DB OFF Command	R.7.45
Table 7.111	TEST DNP Command	R.7.45
Table 7.112	TEST DNP OFF Command	R.7.46
Table 7.113	TEST FM Command	R.7.47
Table 7.114	TEST FM OFF Command	R.7.47
Table 7.115	TIME Command	R.7.48
Table 7.116	TIME Q Command	R.7.48
Table 7.117	TRI Command	R.7.49
Table 7.118	VER Command	R.7.49
Table 7.119	VIEW 1 Commands—Region	R.7.51
Table 7.120	VIEW 1 Commands—Register Item	R.7.51
Table 7.121	VIEW 1 Commands—Bit	R.7.52
Table 7.122	ZON Command	R.7.52
Table 7.123	ZON T Command	R.7.53
Table 7.124	ZON k Command	R.7.53
Table 8.1	Default Alias Settings	R.8.4
Table 8.2	Global Settings Categories	R.8.6
Table 8.3	General Global Settings	R.8.7
Table 8.4	Global Enables	R.8.7
Table 8.5	Station DC Monitor	R.8.7
Table 8.6	Control Inputs (Global)	R.8.7
Table 8.7	Main Board Control Inputs	R.8.7
Table 8.8	Interface Board #1 Control Inputs	R.8.8
Table 8.9	Interface Board #2 Control Inputs	R.8.8
Table 8.10	Interface Board #3 Control Inputs	
Table 8.11	Interface Board #4 Control Inputs	
Table 8.12	Settings Group Selection	
Table 8.13	Data Reset Control	
Table 8.14	Breaker Inputs	
Table 8.15	Disconnect Inputs and Timers	
Table 8.16	Zone Configuration Settings Categories	
Table 8.17	Potential Transformer Ratios	
Table 8.18	Current Transformer Ratios	
Table 8.20	Bus-Zone-to-Bus-Zone Connections	
Table 8.19	Terminal-to-Bus-Zone Connections	
Table 8.21	Zone Supervision	
Table 8.22	Zone Switching Supervision	
Table 8.23	Zone Open CT Detection	R.8.12
Table 8.24	Terminal-to-Check-Zone Connections	
Table 8.25	Check Zone Supervision	
Table 8.26	Group Settings Categories	
Table 8.27	Relay Configuration.	
Table 8.28	Sensitive Differential Elements	
Table 8.30	Restrained Differential Elements	
Table 8.31	Check Zone Restrained Differential Elements	
Table 8.32	Directional Elements	
Table 8.33	Coupler Security Logic (1 through 4)	
Table 8.29	Check Zone Sensitive Differential Elements	
Table 8.34	Terminal Out of Service (1 through 18)	
Table 8.35	Breaker Failure Logic (1 through 18)	
Table 8.36	Definite-Time Overcurrent Elements	K.8.18

Table 8.37	Inverse-Time Overcurrent Elements (1 through 18)	R.8.18
Table 8.38	Phase Instantaneous Over- and Undervoltage Elements	R.8.19
Table 8.39	Sequence Overvoltage Elements	R.8.19
Table 8.40	Trip Logic	
Table 8.41	Protection Free-Form SELOGIC Control Equations	R.8.20
Table 8.42	Output Settings Categories	R.8.21
Table 8.43	Main Board	R.8.21
Table 8.44	Interface Board #1	R.8.21
Table 8.45	Interface Board #2	R.8.22
Table 8.46	Interface Board #3	R.8.22
Table 8.47	Interface Board #4	R.8.22
Table 8.48	Communications Card Outputs	
Table 8.49	MIRRORED BITS Transmit Equations	
Table 8.50	Front-Panel Settings Categories	R.8.23
Table 8.51	Front-Panel Settings	
Table 8.52	Selectable Screens for the Front Panel	
Table 8.53	Selectable Operator Pushbuttons	
Table 8.54	Front-Panel Event Display	
Table 8.55	Boolean Display Points and Aliases	R.8.28
Table 8.56	Analog Display Points and User Text and Formatting	R.8.28
Table 8.57	Local Control	
Table 8.58	Local Bit SELOGIC	R.8.29
Table 8.59	Report Settings Categories	
Table 8.60	SER Chatter Criteria	
Table 8.61	Event Reporting	
Table 8.62	Default Event Report Settings	
Table 8.63	Port Settings Categories	
Table 8.64	Protocol Selection	
Table 8.65	Communications Settings	
Table 8.66	SEL Protocol Settings	
Table 8.67	DNP3 Protocol Serial Port Settings	
Table 8.68	MIRRORED BITS Protocol Settings	
Table 8.69	Ethernet Settings	
Table 8.70	FTP Settings	
Table 8.71	Telnet Settings	
Table 8.72	Network Host Name	
Table 8.73	IEC 61850 Settings	
Table 8.74	DNP LAN/WAN Settings	
Table 8.75	HTTP Settings	
Table 8.76	DNP3 Reference Map Selection	
Table 8.77	DNP3 Object Default Map Enables	R.8.40
Table 8.78	DNP3 User-Defined Map Entries Using Free-Form Style	
Table A.1	Alphabetic List of Relay Word Bits	
Table A.2	Row List of Relay Word Bits	R.A.14
Table B.1	Analog Quantities Sorted by Function	
Table B 2	Analog Quantities Sorted Alphabetically	

List of Figures

		_	I -	^	9	2 _1	_
	ıc	Δ.	r's	- 1 -		П	Δ
L				·	u	ıu	C

Figure 1.1	SEL-487B Relay Basic Functions in a Double-Bus Application	U.1.2
Figure 1.2	Single SEL-487B Protecting Double Bus Sections With Bus Tie Breaker	
Figure 1.3	Two Single SEL-487B Relays Protecting the Two Busbars in a Break- er-and-a-Half Busbar Configuration	
Figure 1.4	Three SEL-487B Relays Protect 2 Main Busbars and a Transfer Busbar, 1 Bus	
U	Coupler, and 17 Terminals	U.1.8
Figure 1.5	Three SEL-487B Relays Protect Both HV and LV Busbars	
Figure 2.1	Front-Panel Diagram, Panel-Mount Option, 9U Version, Showing the Front Panel	
	With LCD, Navigation Pushbuttons, Programmable LEDs, Reset, and	
	Programmable Pushbuttons	U.2.3
Figure 2.2	Front-Panel Diagram, Panel-Mount Option, 7U Version, Showing the Front Panel	
	With LCD, Navigation Pushbuttons, Programmable LEDs, Reset, and	
	Programmable Pushbuttons	
Figure 2.3	Rear-Panel Diagram of SEL-487B With Four Interface Boards (9U Version)	
Figure 2.4	Rear-Panel Diagram of SEL-487B With Two Interface Boards (7U Version)	
Figure 2.5	CT Connections for a Three-Relay Application	U.2.7
Figure 2.6	CT Connections for a Single-Relay Application When the SEL-487B Is the Last	
	in the CT Circuit	U.2.8
Figure 2.7	CT Connections for a Single-Relay Application When the SEL-487B Is in Series	
	With Other Relays	
Figure 2.8	Standard Control Output Connection	
Figure 2.9	High-Speed Control Output Connection	
Figure 2.10	Chassis Key Positions for I/O Interface Boards	
Figure 2.11	Major Component Locations on the SEL-487B Main Board	
Figure 2.12	J18 Header–Password and Breaker Jumpers	
Figure 2.13	Major Component Locations on the SEL-487B INT4 I/O Board	
Figure 2.14	Relay Chassis Dimensions	
Figure 2.15	Rear Panel With Only Main Board (9U Version)	
Figure 2.16	Rear Panel With Only Main Board (7U Version)	
Figure 2.17	Rear-Panel Symbols	
Figure 2.18 Figure 2.19	Screw Terminal Connector Keying	
Figure 2.19	Rear-Panel Receptacle Keying	
Figure 2.20	Control Output OUT108	
Figure 2.22	SEL-487B to Computer-D-Subminiature 9-Pin Connector	
Figure 2.23	Example Ethernet Panel With Fiber-Optic Ports	
Figure 2.24	Two 10/100BASE-T Port Configuration	
Figure 2.25	100BASE-FX and 10/100BASE-T Port Configuration	
Figure 2.26	Two 100BASE-FX Port Configuration	
Figure 2.27	Typical External AC/DC Connections for a Single-Relay Application	
Figure 2.28	Typical External AC/DC Connections for a Three-Relay Application	
Figure 3.1	ACSELERATOR Communication Parameters Dialog Box	
Figure 3.2	ACSELERATOR Communication Parameters Dialog Box With Network Parameters	0.3.2
1 18410 012	Active	U.3.3
Figure 3.3	ACSELERATOR Network Parameters Dialog Box: FTP	
Figure 3.4	ACSELERATOR Network Parameters Dialog Box: Telnet	
Figure 3.5	ACSELERATOR Database Manager Relay Database	U.3.5
Figure 3.6	ACSELERATOR Database Manager Copy/Move	
Figure 3.7	ACSELERATOR Software Driver Information in the FID String	
Figure 3.8	Relay Settings Driver Version Number	
Figure 3.9	ACSELERATOR Sample Settings	U.3.8

Date Code 20210514 SEL-487B Relay

Figure 3.10	Selecting a Settings Driver in ACSELERATOR	U.3.9
Figure 3.11	Opening Relay Settings in ACSELERATOR	
Figure 3.12	Reading Relay Settings in ACSELERATOR	U.3.10
Figure 3.13	ACSELERATOR Relay Editor	U.3.10
Figure 3.14	Retrieving the Relay Part Number	U.3.12
Figure 3.15	Setting the Relay Part Number in ACSELERATOR	U.3.12
Figure 3.16	Ellipsis Button	
Figure 3.17	Location of Ellipsis Button	
Figure 3.18	ACSELERATOR Expression Builder	
Figure 3.19	Time Synchronization Connections Between Three Relays	
Figure 3.20	Screen for Retrieving Event Reports From the Relay	
Figure 3.21	Event Report 10003 at 12 Samples/Cycle Selected for Download	
Figure 3.22	Combine Time-Synchronized Events Submenu Screen	
Figure 3.23	Selection of the First Event Report	
Figure 3.24	First Event of the Analysis	
Figure 3.25	Screen After Reading All Three Events	
Figure 3.26	Screen for Selecting Analog Channels and Digital Relay Word Bits	
Figure 3.27	Selection of Analog Channels and Digital Relay Word Bits	
Figure 3.28	Data From Three Separate Event Reports Combined in a Single Report	
Figure 3.29	Traces of the Three Analog Channels	
Figure 4.1	SEL-487B Serial Number Label	
Figure 4.2	Power Connection Areas of the Rear Panel	U.4.3
Figure 4.3	PORT F, LCD Display, and Navigation Pushbuttons	U.4.4
Figure 4.4	Report Header	
Figure 4.5	Access Level Structure	
Figure 4.6	Relay Status	
Figure 4.7	Checking Relay Status: Front-Panel LCD	
Figure 4.8	Relay Settings Structure Overview	
Figure 4.9	Components of SET Commands	
Figure 4.10	Initial Global Settings	
Figure 4.11	Using Text-Edit Mode Line Editing to Set Display Points	
Figure 4.12	Using Text-Edit Mode Line Editing to Delete a Display Point	
Figure 4.13	Default Alias Settings	
Figure 4.14 Figure 4.15	Using Text-Edit Mode Line Editing to Set Anases Using Text-Edit Mode Line Editing to Set Protection Logic	
Figure 4.15	DATE and TIME Settings: Front-Panel LCD	
Figure 4.17	Changing a Setting From the Front Panel	
Figure 4.17	Confirm Settings With the SHO Z Command	
Figure 4.19	Test Connections Using Three Voltage Sources/Three Current Sources	
Figure 4.19	Terminal Screen MET Metering Quantities	
Figure 4.21	Steps to Enable the Station Battery Front-Panel Display Screen	
Figure 4.22	Press {ESC} to Go to the Rotating Display When in the Main Menu Display	
Figure 4.23	Sample HIS Command Output: Terminal Emulation Software	
Figure 4.24	Sample FILE DIR EVENTS Display	
Figure 4.25	Setting an SER Element: Terminal Emulation Software	
Figure 4.26	Sample SER Report	
Figure 4.27	Reports File Structure	
Figure 4.28	Terminal Display for PULSE Command	
Figure 4.29	Front-Panel Menus for Pulsing T1_TRP	
Figure 4.30	Password Entry Screen	
Figure 4.31	Using Text-Edit Mode Line Editing to Set Local Bit 6	
Figure 4.32	Setting Control Output OUT106: Terminal Emulation Software	
Figure 4.33	Front-Panel LOCAL CONTROL Screens	
Figure 4.34	Result of the SHO O Command, Showing the Output Contacts from the Main	20
<i>6</i>	Board	U.4.47
Figure 4.35	Assign Relay Word Bit TRIP06 to Output OUT106 of the Main Board	
Figure 4.36	Setting 52A01, 52A02, and 52A03: Terminal Emulation Software	
Figure 4.37	Time Synchronization Connections Between Three Relays	

Figure 4.38	IRIG-B IN and IRIG-B OUT Connections at the Back of the Relay (BNC	** 4 54
T: 4.20	Connectors)	
Figure 4.39	Results of the TIME Q Command	
Figure 5.1	Front Panel, 12 Pushbutton (9U Version)	
Figure 5.2	LCD Display and Navigation Pushbuttons	
Figure 5.3	RELAY ELEMENTS Highlighted in MAIN MENU	
Figure 5.4	ROTATING DISPLAY	
Figure 5.5	Sample Alarm Points Screen	
Figure 5.6	Deasserted Alarm Point	
Figure 5.7	Clear Alarm Points Confirmation Screen	
Figure 5.8	No Alarm Points Screen	
Figure 5.9	Alarm Points Data Loss Screen	
Figure 5.10	Display Points Screen	U.5.10
Figure 5.11	Fast Meter Display Points Screen	
Figure 5.12	Contrast Adjustment	
Figure 5.13	Enter Password Screen	
Figure 5.14	Invalid Password Screen	
Figure 5.15	MAIN MENU	
Figure 5.16	Differential Screen	
Figure 5.17	Terminals in Zone Screen	
Figure 5.18	Fundamental Primary Current Screens	
Figure 5.19	Fundamental Primary Voltage Screen	
Figure 5.20	Station Battery Screen	
Figure 5.21	Events Menu Screen	
Figure 5.22	EVENT SUMMARY Screen	
Figure 5.23	SER Events Screen	
Figure 5.24	No SER Events Screen	
Figure 5.25	RELAY ELEMENTS Screen	
Figure 5.26	ELEMENT SEARCH Screen	
Figure 5.27	LOCAL CONTROL Initial Menu	
Figure 5.28	BREAKER CONTROL Screens	
Figure 5.29	LOCAL CONTROL Example Menus	
Figure 5.30	Local Bit Supervision Logic	
Figure 5.31	OUTPUT TESTING Screen	
Figure 5.32	SET/SHOW Screens	
Figure 5.33	Changing the ACTIVE GROUP	
Figure 5.34	DATE/TIME Screen	
Figure 5.35	Edit DATE and Edit TIME Screens	
Figure 5.36	Relay STATUS Screens	
Figure 5.37	VIEW CONFIGURATION Sample Screens	
Figure 5.38	DISPLAY TEST Screens	
Figure 5.39	RESET ACCESS LEVEL Screen	
Figure 5.40	Sample Status Warning in the LCD Message Area	
Figure 5.41	Factory Default Front-Panel Target Areas (16 or 24 LEDs)	
Figure 5.42	Operator Control Pushbuttons and LEDs (8 Pushbutton Version)	
Figure 5.43	Factory Default Operator Control Pushbuttons	
Figure 6.1	Low-Level Test Interface J20	
Figure 6.2	Low-Level Test Interface J21	
Figure 6.3	An Extract of the Relay Response to the SHO Z Command	
Figure 6.4	Sample Targets Display on a Serial Terminal	
Figure 6.5	Viewing Relay Word Bits From the Front-Panel LCD	
Figure 6.6	Assigning Relay Word Bit I01BZ1V to Pushbutton LED 3	
Figure 6.7	Relay Response to the SHO O Command, Showing the Main Board Information	U.6.13
Figure 6.8	Steps to Assign Relay Word Bit I01BZ1V to the Main Board Output Contact	
T	OUT106	
Figure 6.9	Setting Change Description to Enable Overcurrent Elements 51P01 and 51P02	
Figure 6.10	Using the SET R Command to Enter SER Information	
Figure 6.11	Test Connections Using Two Current Sources	U.6.17

Figure 6.12	Relay Response to the SER Command, Snowing the TOC and Definite-Time	TT 6 15
F: 6.10	Element Operations	
Figure 6.13	Station Layout, Comprising a Tie Breaker, Two Feeders and Two Busbars	
Figure 6.14	Front-Panel Operator Pushbuttons	
Figure 6.15	Alias Names for the Four Analog Channels	
Figure 6.16	Zone Configuration Settings	
Figure 6.17	Steps to Disable the Sensitive Differential Elements	
Figure 6.18	Steps to Program Protection Latch Bits	
Figure 6.19	Steps to Program the LEDs	
Figure 6.20	Selected Information From the Relay Response to the SHO Z Command	
Figure 6.21	Relay Response to the MET Z1 Command	
Figure 6.22	Differential Element Characteristic	U.6.20
Figure 6.23	Example Values Below the 8701 Element Pickup Value in Response to the MET DIF Command	11.6.24
Figure 6.24	Example Values Above the 8701 Element Pickup Value in Response to the MET	0.0.20
Figure 0.24	DIF Command	1162
Figure 6.25	Example Values in Response to the MET DIF Command With Two Active Zones	
Figure 6.26	Example Values in Response to the MET DIF Command With Two Differential	0.0.20
rigule 0.20	Elements Asserted	11620
Figure 6.27	Test Connections for Testing the Directional Element	
Figure 6.28	Directional Element Characteristic	
Figure 6.29	Relay Response to the TAR 50DS01 Command	
Figure 6.30	Relay Response to the TAR DE1F Command	
Figure 6.31	Over- and Undervoltage Element Settings	
Figure 6.32	Test Connections for Testing the Voltage Elements	U.U.32
Figure 6.33	Relay Status Information Obtained With the STATUS A Serial Port Command	
Figure 6.34	Relay Status Information Obtained With the CSTATUS Serial Port Command	
Figure B.1	Prepare the Device (Step 1 of 4)	
Figure B.2	Load Firmware (Step 2 of 4)	
Figure B.3	Load Firmware (Step 3 of 4)	
Figure B.4	Verify Device Settings (Step 4 of 4)	
Figure B.5	Example Relay STA A Command Results	
Figure B.6	Transferring New Firmware	
Figure B.7	Sending Ethernet Card Firmware to the Host Computer	
Figure B.8	Transferring New SELBOOT Firmware to the Ethernet Card	
Figure B.9	Transferring New Firmware to the Ethernet Card	
Application	s Handhook	
Figure 1.1	Block Diagram of the Input, Logic, and Output Assigning Process for System	A 1 2
Figure 1.2	Configuration Protection Element Settings Block Diagram Showing Nine Current Inputs and Six Differential Elements	
Figure 1.3		
Figure 1.4	Single-Line Diagram of a Station With Two Busbars and a Tie Breaker Three-Phase Diagram of Terminal TD, the NORTH Busbar, and the SEL-487B	
Figure 1.4 Figure 1.5	A Three-Phase Zone Requires Three Differential Elements	
Figure 1.6	Three Differential Elements With Alias Names for a Three-Phase Bus-Zone in a	A.1
rigule 1.0	Single Relay Application	Λ 1 6
Figure 1.7	Three Differential Elements and Three CT Inputs in a Single-Relay Application	
Figure 1.8	Disconnect and Circuit Breaker Wiring for Terminal TD	
Figure 1.9	Complete Station Configuration, Using Two Three-Phase Bus-Zones and All 18	
riguic 1.9	Current Inputs in a Single-Relay Application	A 1 9
Figure 1.10	One Differential Element From Each of the Three Relays in a Three-Relay Appli-	
1.5010 1.10	cation	A.1
Figure 1.11	CT Wiring in a Three-Relay Application Showing One CT Input to Each of the	
500 1.11	Three Relays	A.1.10
Figure 1.12	CT Wiring for A-Phase Relay, With All A-Phase Inputs of the Station and Two	
<i>6</i> -	Bus-Zones Assigned	A.1.11
Figure 1.13	Jumpers Between Relays from Digital Inputs 52 and 89	
C		

Figure 1.14	Polarity Marks	A.1.13
Figure 1.15	Polarity Marks Above the Odd-Numbered CT Terminals at the Rear of the Relay	
Figure 1.16	Positive Reference Direction	
Figure 1.17	Negative Reference Direction	
Figure 1.18	Disconnect Auxiliary Contact Requirements With Respect to the Arcing Point	
C	for an Open-to-Close Disconnect Operation	A.1.16
Figure 1.19	Disconnect Main Contacts and Auxiliary Contact A Open, Auxiliary	
C	Contact B Closed; Disconnect Is Considered Open	A.1.17
Figure 1.20	Intermediate Position With Both Auxiliary Contacts Open; the Disconnect Is	
C	Considered Closed	A.1.17
Figure 1.21	The Main Contact Has Completed 95% of Travel; Contact A Is Closed, Contact	
	B Is Open, and the Disconnect Is Considered Closed	A.1.18
Figure 1.22	Alias Name Example for NEW_YRK Terminal	A.1.19
Figure 1.23	Assigning Alias Names	
Figure 1.24	Both Differential Elements Balanced	
Figure 1.25	Both Differential Elements Unbalanced	A.1.24
Figure 1.26	Outboard CT	A.1.25
Figure 1.27	Inboard CT	A.1.25
Figure 1.28	Terminal NEW_YRK Disconnects NEW892 and NEW891 and Bus-Zone NORTH	A.1.27
Figure 1.29	Determine the CT Polarity to Select P or N for the Polarity Setting	A.1.28
Figure 1.30	Three Typical Cases of Buscoupler Configurations	A.1.29
Figure 1.31	General Information Regarding the Three Typical Buscoupler Configurations	
Figure 1.32	Steps in Establishing Negative CT Polarity for Terminal CPL1	
Figure 1.33	Steps in Establishing Positive CT Polarity for Terminal CPL2	
Figure 1.34	Using the SET Z 1 Command to Determine Terminal-to-Bus-Zone Settings	
Figure 1.35	Steps in Establishing Positive CT Polarity for Both Terminals CPL1 and CPL2	
Figure 1.36	Using the SET Z 1 Command to Set the Terminal-to-Bus-Zone Settings	A.1.32
Figure 1.37	Steps in Establishing Negative CT Polarities for Both Terminals CPL1 and CPL2	
	When Balancing SOUTH and NORTH	A.1.33
Figure 1.38	Steps in Establishing Positive CT Polarities for Both Terminals CPL1 and CPL2	
	for the Breaker Differential	A.1.34
Figure 1.39	Entries for Terminals CPL1 and CPL2	
Figure 1.40	Forming Bus-Zone-to-Bus-Zone Connections With and Without a Circuit Breaker	A.1.35
Figure 1.41	Zone Supervision Logic	
Figure 1.42	Assign the Protection Functions to the Trip Logic	A.1.37
Figure 1.43	Assigning the Output From the Trip Logic to an Output Contact	A.1.38
Figure 1.44	Information Flow Diagram	
Figure 1.45	Single Bus With Bus Sectionalizer (Tie Breaker)	
Figure 1.46	Station With Two Zone-Specific Bus-Zones and an Overall Check Zone	
Figure 1.47	Zone Supervision Logic	
Figure 1.48	One of the Disconnect Monitoring Logic Circuits Available in the Relay	
Figure 1.49	Differential Trip Logic for Differential Element 1	
Figure 1.50	Breaker Trip Logic	A.1.50
Figure 1.51	Substation Layout With Specific Terminal Information	
Figure 1.52	List of Default Primitive Names and Associated Alias Names	
Figure 1.53	Deletion of the First 43 Alias Names	
Figure 1.54	Analog Quantities and Relay Word Bit Alias Names	
Figure 1.55	Global Settings for Application 1	
Figure 1.56	Bus Differential Trip Logic	
Figure 1.57	Check-Zone Supervision Logic	
Figure 1.58	Zone Supervision for Zone 1 (a) and Zone 2 (b)	
Figure 1.59	Zone Configuration Group Settings for Application 1	
Figure 1.60	Protection Group Settings for Application 1	
Figure 1.61	Control Output Settings for Application 1	
Figure 1.62	Single Bus With Bus Sectionalizer (Tie Breaker)	A.1.62
Figure 1.63	Fault Between Circuit Breaker 1 and the CT at Busbar S	
Figure 1.64	One of the Disconnect Monitoring Logic Circuits Available in the Relay	
Figure 1.65	Breaker Status Logic	A.1.71

Date Code 20210514

Figure 1.66	Differential Trip Logic for Differential Element 1	A.1.72
Figure 1.67	Breaker Trip Logic	
Figure 1.68	End-Zone Logic With the Alias Names for the London Feeder	
Figure 1.69	Substation Layout With Specific Terminal Information	
Figure 1.70	List of Default Primitive Names and Associated Alias Names	
Figure 1.71	Deletion of the First 43 Alias Names	
Figure 1.72	Analog Quantities and Relay Word Bit Alias Names for Application 2	
Figure 1.73	Global Settings for Application 2	
Figure 1.74	Zone Configuration Group Settings for Application 2	
Figure 1.75	Protection Group Settings for Application 2	
Figure 1.76	Protection Logic Settings for Application 2	
Figure 1.77	Control Output Settings for Application 2	
Figure 1.78	Breaker-and-a-Half Busbar Layout	A.1.88
Figure 1.79	Current Distribution for Fault F1 With Circuit Breaker TD and Circuit Breaker TG Closed	Λ 1 03
Figure 1.80	Current Flow for Fault F1 After Circuit Breaker TD Opened	
Figure 1.81	Station Breaker Failure Trip Logic	
Figure 1.82	Differential Trip Logic for Differential Element 1	
Figure 1.83	Breaker Trip Logic	
Figure 1.84	Substation Layout With Specific Terminal Information	
Figure 1.85	List of Default Primitive Names and Associated Alias Names	
Figure 1.86	Deletion of the First 43 Alias Names	
Figure 1.87	Analog Quantities and Relay Word Bits Alias Names	
Figure 1.88	Global Settings for Application 3	
Figure 1.89	Zone Configuration Group Settings for Application 3	
Figure 1.90	Breaker Failure Timing Diagram	
Figure 1.91	Power System for Circuit Breaker Failure Scheme 2	
Figure 1.92	Timing Diagram for Setting BFPU01–Scheme 2	
Figure 1.93	Breaker Failure Protection Wiring for Terminal TD	
Figure 1.94	Circuit Breaker Failure Initiation Extension and Seal-In Logic	
Figure 1.95	Circuit Breaker Failure Logic	
Figure 1.96	Protection Group Settings for Application 3	A.1.113
Figure 1.97	Front-Panel Settings for Application 3	A.1.115
Figure 1.98	Output Settings for Application 3	
Figure 1.99	Single Bus and Transfer Bus With Buscoupler (Tie Breaker)	
Figure 1.100	Differential Trip Logic for Differential Element 1	
Figure 1.101	Substation Layout With Specific Information	
Figure 1.102	List of Default Primitive Names and Associated Alias Names	
Figure 1.103	Deletion of the First 43 Alias Names	
Figure 1.104	Analog Quantities and Relay Word Bits Alias Names	
Figure 1.105	Global Settings for Application 4	
Figure 1.106	External Wiring and Initiation Input for Zone-Switching Supervision	
Figure 1.107	Zone Configuration Group Settings for Application 4	
Figure 1.108	Coupler Security Logic With Applied Input Settings	A.1.134
Figure 1.109	Single CT Application With Faults Between the Circuit Breaker and Tie-	A 1 125
Figure 1.110	Breaker CT	
Figure 1.110	Protection Group Settings for Application 4	
•	Control Output Settings for Application 4 Double Bus With Buscoupler (Tie Breaker)	
Figure 1.112 Figure 1.113	One of the Disconnect Monitoring Logic Circuits Available in the Relay	
Figure 1.113	Differential Trip Logic for Differential Element 1	
Figure 1.114 Figure 1.115	Breaker Failure Trip Logic	
Figure 1.115 Figure 1.116	Breaker Failure Logic for External Breaker Failure	
Figure 1.117	Substation Layout With Specific Information	
Figure 1.117	List of Default Primitive Names and Associated Alias Names	
Figure 1.119	Deletion of the First 43 Alias Names	
Figure 1.120	Analog Quantities and Relay Word Bits Alias Names	
Figure 1.121	Global Settings for Application 5	

Figure 1.122	Bus-Zone B1 and Bus-Zone B2 Are Balanced When Both Transfer Disconnects	A 1 170
E: 1.100	Are Open	
Figure 1.123	Current Distribution During Transfer Procedure Using Inboard CTs	
Figure 1.124	Zone Configuration Group Settings for Application 5	
Figure 1.125	Protection Group Settings for Application 5	
Figure 1.126	Control Output Settings for Application 5	
Figure 1.127	Double Bus and Transfer Bus With Buscoupler (Tie Breaker)	
Figure 1.128	One of the Disconnect Monitoring Logic Circuits Available in the Relay	
Figure 1.129	Differential Trip Logic for Differential Element 1	
Figure 1.130	Breaker Failure Trip Logic	
Figure 1.131		
Figure 1.132 Figure 1.133	Substation Layout With Specific Terminal Information	
Figure 1.133	Deletion of the First 43 Alias Names	
Figure 1.135	Analog Quantities and Relay Word Bit Alias Names	
Figure 1.136	Global Settings for Application 6	
Figure 1.137	Bus-Zones B1 and B2 Are Balanced When All Transfer Disconnects Are Open	
Figure 1.138	Current Distribution During Transfer Procedure Using Inboard CTs	
Figure 1.139	Current Distribution After Opening the Circuit Breaker of the Terminal Going on	A.1.103
riguic 1.13)	Transfer	A 1 184
Figure 1.140	Zone Configuration Group Settings for Application 6	
Figure 1.141	Protection Group Settings for Application 6	
Figure 1.142	Control Output Settings for Application 6	
Figure 1.143	Double Bus and Transfer Bus With Buscoupler (Tie Breaker) and Outboard CTs	
Figure 1.144	Disconnect Monitoring Logic Circuit for Terminal 01	
Figure 1.145	Differential Trip Logic for Differential Element 1	
Figure 1.146	Breaker Failure Trip Logic	
Figure 1.147	Breaker Failure Logic for External Breaker Failure	
Figure 1.148	Substation Layout With Specific Terminal Information	A.1.203
Figure 1.149	List of Default Primitive Names and Associated Alias Names	A.1.204
Figure 1.150	Deletion of the First 43 Alias Names	A.1.204
Figure 1.151	Analog Quantities and Relay Word Bit Alias Names	A.1.205
Figure 1.152	Global Settings	A.1.206
Figure 1.153	Zone Configuration Group Settings	A.1.209
Figure 1.154	Combination of the Coupler Security Logic and the Zone Supervision to Prevent	
	the Loss of Two Zones	A.1.211
Figure 1.155	Single CT Application With Faults Between the Circuit Breaker and	
	Tie-Breaker CT	
Figure 1.156	Protection Group Settings for Application 7	
Figure 1.157	Control Output Settings for Application 7	
Figure 1.158	Double Bus and Transfer Bus With Buscoupler (Tie Breaker) and Inboard CTs	
Figure 1.159	One of the Disconnect Monitoring Logic Circuits Available in the Relay	
Figure 1.160	Differential Trip Logic for Differential Element 1	
Figure 1.161	Substation Layout With Specific Terminal Information	
Figure 1.162	Deletion of the First 43 Alias Names	
Figure 1.163 Figure 1.164	Analog Quantities and Relay Word Bits Alias Names	
Figure 1.165	Global Settings for Application 8	
Figure 1.166	Zone Configuration Group Settings for Application 8.	
Figure 1.167	Protection Group Settings for Application 8	
Figure 1.168	Control Output Settings for Application 8	
Figure 2.1	Typical Station DC Battery System	
Figure 2.2	Ground Detection Factor Areas.	A.2.5
Figure 2.3	Battery Metering: Terminal	
Figure 2.4	Relay Response to the MET Command of One Phase of a Three-Relay	
<i>5</i>	Application	A.2.8
Figure 2.5	Response to MET CZ1 Command When All Terminals Are Inactive	
Figure 2.6	Response to the MET CZ1 Command of One Phase in a Three-Relay Application	

Date Code 20210514

	Figure 2.7	Response to MET Z1 Command when All Terminals Are Inactive	
	Figure 2.8	Response to the MET Z1 Command of One Phase in a Three-Relay Application	A.2.10
	Figure 2.9	Relay Response to the MET SEC Command of One Phase of a Three-Relay Application	A.2.10
	Figure 2.10	Response to the MET SEC CZ1 Command of One Phase in a Three-Relay Application	
	Figure 2.11	Relay Response to the MET SEC Z1 Command of One Phase in a Three-Relay Application	
	Figure 2.12	Relay Response to the MET DIF Command of One Phase in a Three-Relay	
	Figure 3.1	Application	
	Figure 3.1 Figure 3.2	Data Capture/Event Report Times	
	Figure 3.2	Example of the Relay Response to the FILE DIR EVENTS Command	
	Figure 3.4	Substation With Two Busbars, a Tie Breaker, and Three Feeders	
	Figure 3.5	Analog Section of the Event Report	
	Figure 3.6	Event Report Current Column Data and RMS Current Magnitude	
	Figure 3.7	Event Report Current Column Data and RMS Current Angle	
	Figure 3.8	Digital Section of the Event Report	
	Figure 3.9	Sample Digital Portion of the Event Report	
	Figure 3.10	Summary Section of the Event Report	
	Figure 3.11	Settings Section of the Event Report	
	Figure 3.12	Sample Compressed ASCII Event Report	
	Figure 3.13	Sample Event Summary Report	
	Figure 3.14	Sample Compressed ASCII Summary	
	Figure 3.15	Sample Event History	
	Figure 3.16	Sample Compressed ASCII History Report	
	Figure 3.17	Time Synchronization Connections Between Three Relays	
	Figure 3.18	Sample SER Report	
	Figure 3.19	Sample Compressed ASCII SER Report	
	Figure 4.1	SEL-20xx Star Integration Network	
	Figure 4.2	Multitiered SEL-20xx Architecture	
	Figure 4.3	Enhancing Multidrop Networks With the SEL-20xx	
	Figure 4.4	Example SEL-487B and SEL-20xx Configuration	
	Figure 4.5	Substation Layout Showing Four Feeders and a Tie Breaker	
	Figure 4.6	Assigning Alias Names to the Analog Quantities	
	Figure 4.7	Assigning Selected Analog Quantities to the Automation Math Variables	
	Figure 5.1	DNP3 Multidrop Network Topology	
	Figure 5.2	DNP3 Star Network Topology	
	Figure 5.3	DNP3 Network With Communications Processor	
	Figure 5.4	Web Server Login Screen	
	Figure 5.5	Web Server Default Menu Screen	
	Figure 5.6	Event History Screen With Links to Event Reports	A.5.7
	Figure 5.7	Example Direct Networking Topology	
	Figure 5.8	Telnet Connection Dialog Box	
	Figure 5.9	Example FTP Session	A.5.12
	Figure 5.10	Partial Contents of SET_P5.TXT	A.5.13
	Figure 5.11	Example Telnet Session	A.5.14
R	eference N	Manual	
17.	Figure 1.1	Block Diagram Showing the Logic for Busbar Protection Element 1	D 13
	Figure 1.1 Figure 1.2	Filtered Differential Element 1	
	Figure 1.2 Figure 1.3	Filtered Differential Element Characteristic	
	Figure 1.3	Torque Calculation Used in the Directional Element to Determine Fault Direction	
	Figure 1.5	Directional Element Characteristic, the Shaded Area Indicating an Internal Fault	
	Figure 1.6	Directional Element Logic	
	Figure 1.7	Fault Detection Logic That Distinguishes Between External and Internal Faults	
	Figure 1.7	Fault Detection Logic Obtaining Restraint and Operating Quantities	R 1 ′

Figure 1.9	External Fault Detection Logic	R.1.8
Figure 1.10	Internal Fault Detection, Instantaneous Differential Element, Consecutive	
	Measurement Fault Detection, and Fast Fault Detection Logics	R.1.9
Figure 1.11	Differential Element Output: Final Conditions and Adaptive Security Timer	
Figure 1.12	Block Diagram Showing Logic for Check Zone Protection Element 1	
Figure 1.13	Check Zone Filtered Differential Element 1	
Figure 1.14	Check Zone External Fault Detection Logic	
Figure 1.15	Check Zone Internal Fault Detection, Instantaneous Differential Element,	
8	Consecutive Measurements Fault Detection, and Fast Fault Detection Logics	R.1.12
Figure 1.16	Check Zone Differential Element Output: Final Conditions and Adaptive Security	
118010 1110	Timer	R.1.12
Figure 1.17	Sensitive Differential Element (87S)	
Figure 1.18	Check Zone Sensitive Differential Element (87S)	
Figure 1.19	Zone and Check Zone Supervision Logic	
Figure 1.20	Phase Instantaneous and Time-Delayed Overcurrent Elements	
Figure 1.21	U.S. Moderately Inverse—U1	
Figure 1.22	U.S. Inverse—U2	
Figure 1.23	U.S. Very Inverse—U3	
Figure 1.24	U.S. Extremely Inverse—U4	
Figure 1.25	U.S. Short-Time Inverse—U5	
Figure 1.26	IEC Standard Inverse—C1	
Figure 1.27	IEC Very Inverse—C2	
Figure 1.28	IEC Extremely Inverse—C3	
Figure 1.29	IEC Long-Time Inverse—C4.	
Figure 1.29	IEC Short-Time Inverse—C5	
_	Time-Overcurrent Element Logic Diagram	
Figure 1.31		
Figure 1.32	Levels 1 and 2 of Phase V01 Over- and Undervoltage Elements	
Figure 1.33	Levels 1 and 2 of Phase V02 Over- and Undervoltage Elements	
Figure 1.34	Levels 1 and 2 of Phase V03 Over- and Undervoltage Elements	
Figure 1.35	Levels 1 and 2 of the Negative- and Zero-Sequence Voltage Elements	
Figure 1.36	Open Phase Detection	
Figure 1.37	Zone n Open CT Detector	
Figure 1.38	Breaker Failure Logic.	
Figure 1.39	Circuit Breaker Failure Initiation Extension and Seal In	
Figure 1.40	Breaker Failure Logic for External Breaker Failure	
Figure 1.41	Breaker Failure Clearing Times	
Figure 1.42	Station Breaker Failure Trip Logic	
Figure 1.43	Two CTs With the Busbar Protection Configured in Overlap	
Figure 1.44	Two CTs With the Busbar Protection Configured as Breaker Differential	
Figure 1.45	Single CT With the Busbar Protection Configured in Overlap	R.1.43
Figure 1.46	Fault F1 Between Bus Sectionalizer and CT With the Bus Sectionalizer Circuit	D 1 44
E: 1.45	Breaker Open	
Figure 1.47	Closing the Bus Sectionalizing Circuit Breaker Onto a Faulted Busbar	R.1.45
Figure 1.48	Coupler Security Logic for Accelerated Tripping and Busbar Protection Security for	D 1 47
T: 1.10	Circuit Breaker Auxiliary Contact Misalignment	R.1.46
Figure 1.49	CTs on Either Side of the Sectionalizer Circuit Breaker With Breaker Differential	D 4 45
	Across Breaker Z	R.1.47
Figure 1.50	Single CT Application With Fault F4 Between the Bus Sectionalizer Circuit	
	Breaker and CT	
Figure 1.51	Disconnecting Switch Status Logic	R.1.50
Figure 1.52	Disconnecting Switch Main Contact, 89a, and 89b Status for Open-to-Close and	
	Close-to-Open Conditions	
Figure 1.53	Zone-Switching Supervision Logic	
Figure 1.54	External Wiring and Initiation Input for Zone-Switching Supervision	
Figure 1.55	Differential Element Zone Supervision for Zone 1	
Figure 1.56	Bus Differential Trip Logic	
Figure 1.57	Differential Element Zone Supervision for Check Zone	R.1.55
Figure 1.58	Trip Logic for Breaker 1	R.1.55

Preface

Overview

This manual provides information and instructions for installing, setting, configuring, and operating the SEL-487B Relay. The manual is for use by power engineers and others experienced in protective relaying applications. Included are detailed technical descriptions of the relay and application examples.

Manual Overview

The SEL-487B Instruction Manual consists of three volumes:

- ➤ User's Guide
- ➤ Applications Handbook
- Reference Manual

In addition, the SEL-487B Instruction Manual contains a comprehensive *Index* that encompasses the entire manual and a *Glossary* that lists and defines technical terms used throughout the manual.

Read the sections that pertain to your application to gain valuable information about using the SEL-487B. For example, to learn about relay protection functions, read the protection sections of this manual and skim the automation sections. You can concentrate on the operation sections or on the automation sections of this manual as your job needs and responsibilities dictate. An overview of each manual section and section topics follows.

User's Guide

- Preface. Describes manual organization and conventions used to present information.
- Section 1: Introduction and Specifications. Introduces SEL-487B features; summarizes relay functions and applications; lists relay specifications, type tests, and ratings.
- Section 2: Installation. Discusses the ordering configurations and interface features (control inputs, control outputs, and analog inputs, for example); provides information about how to design a new physical installation and secure the relay in a panel or rack; details how to set relay board jumpers and make proper rear-panel connections (including wiring to CTs and PTs); explains basic connections for the relay communications ports and how to install optional communications cards (such as the Ethernet card).
- Section 3: PC Software. Introduces how to use the ACSELERATOR QuickSet® SEL-5030 Software Program.
- Section 4: Basic Relay Operations. Describes how to perform fundamental operations such as applying power and communicating with the relay, setting and viewing passwords, checking relay status, viewing

Date Code 20210514 SEL-487B Relay

metering data, reading event reports and SER (Sequential Events Recorder) records, and operating relay control outputs and control inputs.

- Section 5: Front-Panel Operations. Describes the LCD display messages and menu screens; shows you how to use front-panel pushbuttons and read targets; provides information about local substation control and how to make relay settings via the front panel.
- Section 6: Testing and Troubleshooting. Describes techniques for testing, troubleshooting, and maintaining the SEL-487B; includes the list of status notification messages and a troubleshooting chart.
- Appendix A: Firmware and Manual Versions. Lists the current firmware versions and details differences between the current and previous versions.
- Appendix B: Firmware Upgrade Instructions. Provides information about upgrading firmware in your SEL-487B.

Applications Handbook

- Section 1: System Configuration Guideline and Application Examples.

 Provides general guidelines for implementing the relay in single-relay and three-relay applications; provides CT and disconnect auxiliary contact requirements for proper differential protection application. The section also provides application examples for the following busbar layouts:
 - ➤ Single bus and tie breaker, three-relay application
 - ➤ Single bus and tie breaker, single-relay application
 - ➤ Breaker-and-a half
 - ➤ Single bus and transfer bus with buscoupler
 - ➤ Double bus with buscoupler
 - ➤ Double bus and transfer bus with two busbars
 - ➤ Double and transfer bus (outboard CTs)
 - ➤ Double and transfer bus (inboard CTs)

Use the worksheets provided on the SEL-487B *Product Literature CD* to collect and organize data before configuring and setting the relay.

- Section 2: Monitoring and Metering. Describes how to use the substation dc battery monitors; provides information on viewing metering quantities for voltages and currents.
- Section 3: Analyzing Data. Explains how to obtain raw data and filtered data event reports, event summaries, history reports, and SER reports; discusses how to enter SER trigger and alias settings.
- Section 4: SEL Communications Processor Applications. Provides examples of how to use the SEL-487B with the SEL-2020, SEL-2030, and SEL-2032 Communications Processors for total substation automation solutions.
- Section 5: Direct Network Communications. Explains how to use DNP3 (serial and LAN/WAN) and other Ethernet protocols such as Telnet, FTP, and IEC 61850.

Reference Manual

- Section 1: Protection Functions. Describes the protection, monitoring, and control elements in the SEL-487B and how the relay processes these elements.
- Section 2: SELOGIC Control Equation Programming. Describes SELOGIC® control equations and how to apply these equations; discusses expanded SELOGIC control equation features such as PLC-style commands, math functions, counters, and conditioning timers; provides a tutorial for converting older format SELOGIC control equations to new free-form equations.
- Section 3: Communications Interfaces. Explains the physical connection of the SEL-487B to various communications network topologies.
- Section 4: SEL Communications Protocols. Describes the various SEL software protocols and how to apply these protocols to substation integration and automation; includes details about SEL ASCII, SEL Compressed ASCII, SEL Fast Meter, SEL Fast Operate, SEL Fast SER, and enhanced MIRRORED BITS® communications.
- Section 5: DNP3 Communications. Explains how to use DNP3 (serial and LAN/WAN) and other Ethernet protocols such as Telnet, FTP, and IEC 61850.
- Section 6: IEC 61850 Communications. Describes the IEC 61850 protocol and how to apply this protocol to substation automation and integration. Includes IEC 61850 protocol compliance statements.
- Section 7: ASCII Command Reference. Provides an alphabetical listing of all ASCII commands with examples for each ASCII command option.
- Section 8: Settings. Provides a list of all SEL-487B settings and defaults. The organization of the settings is the same as for the settings organization in the relay and in the ACSELERATOR QuickSet software.
- Appendix A: Relay Word Bits. Contains a summary of Relay Word bits.
- Appendix B: Analog Quantities. Contains a summary of analog quantities.
- SEL-487B Relay Command Summary. Contains a listing of SEL-487B commands.

CD-ROM

The CD-ROM contains the SEL-487B Instruction Manual in an electronic form that you can search easily.

Conventions

The SEL-487B Instruction Manual uses certain conventions that identify particular terms and help you find information. To benefit fully from reading this manual, take a moment to familiarize yourself with these conventions.

Typographic Conventions

There are three ways to communicate with the SEL-487B:

- ➤ Using a command line interface on a PC terminal emulation window, such as Microsoft® HyperTerminal®.
- ➤ Using the front-panel menus and pushbuttons.
- ➤ Using ACSELERATOR QuickSet SEL-5030 Software.

The instructions in this manual indicate these options with specific font and formatting attributes. The following table lists these conventions.

Date Code 20210514 SEL-487B Relay

Example	Description	
STATUS	Commands, command options, and command variables typed at a command line interface on a PC.	
n SUM n	Variables determined based on an application (in bold if part of a command).	
<enter></enter>	Single keystroke on a PC keyboard.	
<ctrl+d></ctrl+d>	Multiple/combination keystroke on a PC keyboard.	
Start > Settings	PC software dialog boxes and menu selections. The > character indicates submenus.	
{CLOSE}	Relay front-panel pushbuttons.	
ENABLE	Relay front- or rear-panel labels.	
RELAY RESPONSE MAIN > METER	Relay front-panel LCD menus and relay responses visible on the PC screen. The > character indicates submenus.	
U.3.1 A.3.1 R.3.1	Page numbers include a reference to the volume, section, and page number. U stands for User's Guide A stands for Applications Handbook R stands for Reference Manual	
SELOGIC control equations	SEL trademarks and registered trademarks contain the appropriate symbol on first reference in a section. In the SEL-487B Instruction Manual, certain SEL trademarks appear in small caps. These include SELOGIC control equations, MIRRORED BITS communications, and ACSELERATOR QuickSet software program.	
Modbus [®]	Registered trademarks of other companies include the registered trademark symbol with the first occurrence of the term in a section.	

Commands

You can simplify the task of entering commands by shortening any ASCII command to the first three characters (upper- or lowercase); for example, ACCESS becomes ACC.

Always send a carriage return **<CR>** character, or a carriage return character followed by a line feed character **<CR> <LF>**, to command the relay to process the ASCII command. Usually, most terminals and terminal programs interpret the **<Enter>** key as a **<CR>**. For example, to send the **ACCESS** command, type the following:

ACC <Enter>

Safety Information

This manual uses three kinds of hazard statements, formatted as follows:

△CAUTION

Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury or equipment damage.

△WARNING

Indicates a potentially hazardous situation that, if not avoided, **could** result in death or serious injury.

△DANGER

Indicates an imminently hazardous situation that, if not avoided, **will** result in death or serious injury.

Notes

Step-by-Step **Procedures**

Margin notes present valuable or important points about relay features or functions. Use these notes as tips to easier and more efficient operation of the relay.

The SEL-487B Instruction Manual contains many step-by-step procedures. These procedures lead you easily and efficiently through complex tasks. Each procedure lists required equipment, as well as the basic knowledge you need to perform the steps in the procedure. Throughout the procedure, the documentation references other SEL-487B Instruction Manual sections where you can find more information.

Read the entire procedure before performing the listed steps. Read each step again before you perform it. The following text shows sample steps. Steps include explanations, text references, table references, and figure references to further illustrate the step.

- Step 1. Press **<Ctrl+T>** to use the serial communications terminal in the ACSELERATOR software.
- Step 2. Press **<Enter>** to see if the communications link is active between the software and the relay.

You should see the Access Level 0 = prompt in the terminal window.

- Step 3. Open the **Communication** menu and click **Port Parameters**.
- Step 4. Confirm that you have entered the correct passwords in the Level One Password dialog box and the Level Two Password dialog box.
- Step 5. On the **Settings** menu, click **Read**.

The relay sends all configuration and settings data to ACSELERATOR.

Step 6. Click the + mark next to the **Group** you want to program on the **Settings** tree view.

	This example use	es Group 1 , a	s shown in	Figure	1.2.
Figure Reference					

Sample Step-by-Step Instructions

Numbers

This manual displays numbers as decimal values. Hexadecimal numbers include the letter h appended to the number. Alternatively, the prefix 0X or 0x can also indicate a hexadecimal number. For instance, 11 is the decimal number eleven, but 11h and 0X11 are hexadecimal representations of the decimal value seventeen.

Date Code 20210514 SEL-487B Relay

Logic Diagrams

Logic diagrams in this manual follow the conventions and definitions shown below.

NAME	SYMBOL	<u>FUNCTION</u>
COMPARATOR	A	Input A is compared to input B. Output C asserts if A is greater than B.
INPUT FLAG	A -	Input A comes from other logic.
OR	A C	Either input A or input B asserted cause output C to assert.
EXCLUSIVE OR	A C	If either A or B is asserted, output C is asserted. If A and B are of the same state, C is deasserted.
NOR	A C	If neither A nor B asserts, output C asserts.
AND	A C	Input A and input B must assert to assert output C.
AND W/ INVERTED INPUT	A C	If input A is asserted and input B is deasserted, output C asserts, Inverter "O" inverts any input or output on any gate.
NAND	A	If A and/or B are deasserted, output C is asserted.
TIME DELAYED PICK UP AND/OR TIME DELAYED DROP OUT	А В	X is a time-delay-pickup value; Y is a time-delay-dropout value. B asserts time X after input A asserts; B will not assert if A does not remain asserted for time X. If X is zero, B will assert when A asserts. If Y is zero, B will deassert when A deasserts.
EDGE TRIGGER TIMER	A B	Rising edge of A starts timers. Output B will assert time X after the rising edge of A. B will remain asserted for time Y. If Y is zero, B will assert for a single processing interval. Input A is ignored while the timers are running.
SET RESET FLIP FLOP	S 0	Input S asserts output Q until input R asserts. Output Q deasserts or resets when R asserts.
FALLING EDGE	А] В	B asserts at the falling edge of input A.

SEL-487B Cautions, Warnings, and Dangers

The following hazard statements appear in the body of this manual in English. See the following table for the English and French translation of these statements.

English French

∧CAUTION

Equipment components are sensitive to electrostatic discharge (ESD). Undetectable permanent damage can result if you do not use proper ESD procedures. Ground yourself, your work surface, and this equipment before removing any cover from this equipment. If your facility is not equipped to work with these components, contact SEL about returning this device and related SEL equipment for service.

△CAUTION

There is danger of explosion if the battery is incorrectly replaced. Replace only with Ray-O-Vac® no. BR2335 or equivalent recommended by manufacturer. Dispose of used batteries according to the manufacturer's instructions.

△CAUTION

Use of controls or adjustments, or performance of procedures other than those specified herein, may result in hazardous radiation exposure.

△CAUTION

Do not connect power to the relay until you have completed these procedures and receive instruction to apply power. Otherwise, equipment damage can result.

△CAUTION

Do not install a jumper on positions A or D of the main board J18 header. Relay misoperation can result if you install jumpers on positions J18A and J18D.

△CAUTION

Setting E87ZSUP := Y enables the zone supervision in all six zones. If you do not enter any supervision conditions for a particular zone, be sure to enter a 1 at the SELOGIC control equation prompt.

△CAUTION

Severe power and ground problems can occur on the communications ports of this equipment as a result of using non-SEL cables. Never use Standard null-modem cables with this equipment.

△WARNING

Use of this equipment in a manner other than specified in this manual can impair operator safety safeguards provided by this equipment.

△WARNING

Have only qualified personnel service this equipment. If you are not qualified to service this equipment, you can injure yourself or others, or cause equipment damage.

ATTENTION

Les composants de cet équipement sont sensibles aux décharges électrostatiques (DES). Des dommages permanents non-décelables peuvent résulter de l'absence de précautions contre les DES. Raccordez-vous correctement à la terre, ainsi que la surface de travail et l'appareil avant d'en retirer un panneau. Si vous n'êtes pas équipés pour travailler avec ce type de composants, contacter SEL afin de retourner l'appareil pour un service en usine.

△ATTENTION

Il y a un danger d'explosion si la pile électrique n'est pas correctement remplacée. Utiliser exclusivement Ray-O-Vac® No. BR2335 ou un équivalent recommandé par le fabricant. Se débarrasser des piles usagées suivant les instructions du fabricant.

ATTENTION

L'utilisation de commandes ou de réglages, ou l'application de tests de fonctionnement différents de ceux décrits ci-après peuvent entraîner l'exposition à des radiations dangereuses.

ATTENTION

Ne pas mettre le relais sous tension avant d'avoir complété ces procédures et d'avoir reçu l'instruction de mettre en marche.

\triangle ATTENTION

Ne pas installer de cavalier sur les positions A ou D sur le connecteur J18 de la carte principale. Une défaillance du relais pourrait survenir si un cavalier était installé sur les positions J18A et J18D.

△ATTENTION

Le réglage E87ZSUP := Y autorise la supervision de zone des six zones. Si vous n'entrez aucune condition de supervision pour une zone particulière, assurez-vous d'entrer un 1 au message de l'équation de commande SELOGIC

\triangle ATTENTION

Des problèmes sévères d'alimentation et de masse pourraient survenir sur les ports de communication suite à l'usage de câbles autres que ceux fournis par SEL. Ne jamais utiliser des câbles standards de type modem nul avec cet équipement.

△AVERTISSEMENT

L'utilisation de cet appareil suivant des procédures différentes de celles indiquées dans ce manuel peut désarmer les dispositifs de protection d'opérateur normalement actifs sur cet équipement.

AVERTISSEMENT

Seules des personnes qualifiées peuvent travailler sur cet appareil. Si vous n'êtes pas qualifiés pour ce travail, vous pourriez vous blesser avec d'autres personnes ou endommager l'équipement.

Date Code 20210514 SEL-487B Relay

English French

△WARNING

This device is shipped with default passwords. Default passwords should be changed to private passwords at installation. Failure to change each default password to a private password may allow unauthorized access. SEL shall not be responsible for any damage resulting from unauthorized access.

∆WARNING

Do not look into the fiber (laser) ports/connectors.

△WARNING

Do not look into the end of an optical cable connected to an optical output.

△WARNING

Do not perform any procedures or adjustments that this instruction manual does not describe.

△WARNING

During installation, maintenance, or testing of the optical ports, use only test equipment qualified for Class 1 laser products.

△WARNING

Incorporated components, such as LEDs, transceivers, and laser emitters, are not user serviceable. Return units to SEL for repair or replacement.

△WARNING

Do not use Relay Word bit 51PnnT in any trip equation if inverse-time overcurrent protection is not required.

△DANGER

Disconnect or de-energize all external connections before opening this device. Contact with hazardous voltages and currents inside this device can cause electrical shock resulting in injury or death.

△DANGER

Contact with instrument terminals can cause electrical shock that can result in injury or death.

△AVERTISSEMENT

Cet appareil est expédié avec des mots de passe par défaut. A l'installation, les mots de passe par défaut devront être changés pour des mots de passe confidentiels. Dans le cas contraire, un accés non-autorisé à l'équipement peut être possible. SEL décline toute responsabilité pour tout dommage résultant de cet accés non-autorisé.

AVERTISSEMENT

Ne pas regarder vers l'extremité des ports ou connecteurs de fibres

∆AVERTISSEMENT

Ne pas regarder vers l'extrémité d'un câble optique raccordé à une sortie optique.

△AVERTISSEMENT

Ne pas appliquer une procédure ou un ajustement qui n'est pas décrit explicitement dans ce manuel d'instruction.

AVERTISSEMENT

Durant l'installation, la maintenance ou le test des ports optiques, utilisez exclusivement des équipements de test homologués comme produits de type laser de Classe 1.

△AVERTISSEMENT

Les composants internes tels que les leds (diodes électroluminescentes), émetteurs-récepteurs ou émetteurs pour rayon laser ne peuvent pas être entretenus par l'usager. Retourner ces unités à SEL pour toute réparation ou remplacement.

△AVERTISSEMENT

Ne pas utiliser le bit de "Relay Word" 51PnnT dans une équation de déclenchement si la protection de type temps-courant à temps inverse n'est pas requise.

\triangle DANGER

Débrancher tous les raccordements externes avant d'ouvrir cet appareil. Tout contact avec des tensions ou courants internes à l'appareil peut causer un choc électrique pouvant entraîner des blessures ou la mort.

△DANGER

Tout contact avec les bornes de l'appareil peut causer un choc électrique pouvant entraîner des blessuers ou la mort.

Section 1

Protection Functions

Overview

This section provides a detailed explanation of the SEL-487B Relay protection functions. Each subsection provides an explanation of the function, along with a list of the corresponding settings and Relay Word bits. Logic diagrams and other figures are included.

Functions discussed in this section are listed below.

- ➤ Busbar protection elements
- ➤ Sensitive differential element
- ➤ Zone supervision logic
- ➤ Dynamic zone selection logic
- ➤ Instantaneous/delayed overcurrent elements
- ➤ Time-overcurrent elements
- ➤ Instantaneous voltage elements
- Open phase detector logic
- ➤ Open CT detector logic
- ➤ Circuit breaker failure protection
- ➤ Circuit Breaker failure trip logic
- ➤ Buscoupler/bus sectionalizer configurations
- ➤ Coupler security logic
- ➤ Disconnect monitor
- ➤ Zone-switching supervision logic
- ➤ Differential trip logic
- ➤ Breaker trip logic
- ➤ Circuit breaker status logic

Busbar Protection Elements

Busbar protection philosophy traditionally calls for two-out-of-two trip criteria, where two separate measuring elements must agree before protection issues a trip signal. Realization of the two-out-of-two trip criteria can occur by using one of the combinations of measuring elements listed below:

- ➤ Dual differential element combination (main zone and check zone)
- ➤ Differential element and directional element combination (main zone and directional element)

Each combination has an advantage over the other; the weakness of one being the strength of the other. In particular, differential elements (amplitude comparators) are more vulnerable to CT saturation than directional elements (phase comparators), but directional elements (phase comparators) are more vulnerable to high-impedance faults.

CT saturation is a concern in networks with high fault currents. Poor CT selection increases the potential for CT saturation. In networks with impedance grounding, all ground faults are high-impedance faults. Although relays may have been correctly selected in the initial network design, changes in the network may adversely influence the network parameters. For example, network extensions or reduced source impedance result in higher fault current, and deterioration of the substation grounding mat at the substation may result in higher fault impedance for ground faults.

Modern busbar protection relays should not only include protection elements to allow for diverse network parameters, but the implementation of these elements in the relays must ensure continual, uncompromising relay performance, despite changes in network parameters. In general, busbar protection must comply with the following performance requirements:

- ➤ Fast operating times for all busbar faults
- > Security for external faults with heavy CT saturation
- ➤ Minimum delay for evolving faults

The SEL-487B meets the above performance requirements during all system operating conditions. The relay includes six busbar protection elements for the protection of up to six zones. Each of the six busbar protection elements consists of the following three elements (see *Figure 1.1*):

- ➤ Differential element using phasor values
- ➤ Directional element using phasor values
- ➤ Fault detection logic using instantaneous values

Figure 1.1 shows a block diagram of one of the six busbar protection elements, with only two (I01 and I02) of the available 18 current inputs connected. Because the relay accepts current inputs from CTs with a 10:1 ratio mismatch, the calculations for the differential elements are performed on per unit values. The relay uses the highest CT ratio (CTR $_{\rm MAX}$) of the installed CT ratios as a reference value in converting the input currents from ampere to per unit values. Using Equation 1.1, the relay calculates a normalization factor value (TAP) for each terminal:

$$TAPnn = \frac{CTR_{MAX} \cdot I_{NOM}}{CTRnn}$$
 Equation 1.1

where:

TAPnn = TAP value for each terminal to convert current from ampere to per unit (nn = 01 through 18)

CTR_{MAX} = Highest CT ratio of the terminals used in the terminal-tobus-zone settings

I_{NOM} = Nominal CT secondary current (1 A or 5 A)

CTRnn = CT ratio of the specific terminal

Using the TAPnn values, the relay calculates the current in per unit values for each terminal as follows:

$$InnCR = \frac{Inn}{TAPnn}pu$$
 Equation 1.2

where:

InnCR = Per unit current for Terminals I01 through I18 Inn = Current in amperes for Terminals I01 through I18 pu = per unit

Figure 1.1 shows the block diagram for Busbar Protection Element 1, one of six busbar protection elements available in the relay. Throughout the following element descriptions, the numerical part of the Relay Word bits refers either to elements from a specific busbar protection element (1 through 6) or the specific terminal number (01 through 18). In most cases, the protection element descriptions refer to elements from Busbar Protection Element 1. For example, FDIF1 in *Figure 1.1* refers to the output from the filtered differential element of Busbar Protection Element 1. IO1 and IO2 refer to current inputs from Terminal IO1 and Terminal IO2.

Figure 1.1 Block Diagram Showing the Logic for Busbar Protection Element 1

Referring to Figure 1.1, after the per unit conversion, the data (I01CR and I02CR) follow two separate paths. One path is through a digital band-pass filter (DBPF) to the filtered differential element and the directional element; the other path brings the instantaneous values to the fault detection logic.

The filtered differential element uses the input currents from each terminal in a protection zone to calculate the operate and restraint currents. The directional element compares the direction of current at a reference terminal to the direction of current at all other terminals in a protection zone to calculate fault direction. Several elements combine in the fault detection logic to distinguish between internal or busbar faults (FAULT1) and external faults (CON1).

AND Gate 1 combines the OR combination of the directional element (DE1F) and internal fault element (FAULT1) with the sensitive differential element (87ST1) to supervise the filtered differential element. P87R1, the output from Gate 1, drives a security timer that controls the final output (87R1) of the busbar protection element.

The logic includes a dedicated check zone (see *Check Zone Protection Elements on page R.1.10*). This flexibility provides the opportunity to configure the dual differential (main zone and check zone) element combination.

Filtered Differential Element

The following discussion refers to the Filtered Differential Element 1, (with only Terminals 01 and 02 connected to the element) but applies equally well to the remaining five filtered differential elements. Using the output quantities from the digital band-pass filter (cosine filter), the filtered differential element calculates a restraint quantity, IRT1, and an operating quantity, IOP1, according to *Equation 1.3* and *Equation 1.4*:

$$IRT1 = |I01CF| + |I02CF|$$
 Equation 1.3

and

$$IOP1 = |I01CF + I02CF|$$
 Equation 1.4

where:

I01CF and I02CF = Filtered per unit current values from Terminals I01 and I02

Figure 1.2 shows a block diagram of the elements necessary for obtaining the differential and restraint quantities used in the filtered differential elements. Relay Word bit FDIF1 is the output from the differential calculation. Relay Word bit 87O1 asserts when the differential current exceeds the O87P threshold. Together these two Relay Word bits form the filtered differential element characteristic.

Figure 1.2 Filtered Differential Element 1

Figure 1.3 shows the characteristic of the differential element as a straight line through the origin of the form:

$$IOP1(IRT1) = SLP1 \cdot IRT1$$
 Equation 1.5

Figure 1.3 Filtered Differential Element Characteristic

For operating quantities (IOP1) exceeding the threshold level O87P and falling in the operate region of Figure 1.3, the filtered differential element issues an output. There are two slope settings. Slope 1 (SLP1) is effective for internal faults, and Slope 2 (SLP2) is effective for external faults. To change the slope values, first enable the advance settings by setting EADVS := Y in Group Settings and then proceed to change the slope values. Otherwise, the default settings in Table 1.1 apply. When the fault detection logic detects an external fault condition, Relay Word bit CON1 asserts. CON1 switches the slope of the differential characteristic from Slope 1 to Slope 2 to add security to the filtered differential element (see Fault Detection Logic on page R.1.7).

Table 1.1 shows default settings for the filtered differential element.

Table 1.1 Restraint Filtered Differential Element Default Settings

Setting	Restrained Differential Element	Range	Default
O87P	Restrained Diff Element Pickup	0.1–4 pu	1.00 pu
SLP1	Restrained Slope 1 Percentage	15-90%	60%
SLP2	Restrained Slope 2 Percentage	15-90%	80%

Directional Element

The relay includes directional elements that supervise the filtered differential elements. In particular, the directional elements provide additional security to the filtered differential elements during external faults with heavy CT saturation conditions. Each of the six busbar protection elements has a directional element specific to that differential element.

The directional element compares the direction of current at the reference terminal to the direction of current at all other qualifying terminals in each zone. A qualifying terminal is a terminal with current value greater than the 50DSP threshold setting; the relay selects one of these currents as a reference. For each calculation, the relay uses the real part of the product of the terminal current and the conjugate of the current at the reference terminal, as depicted in Figure 1.4.

Figure 1.4 Torque Calculation Used in the Directional Element to Determine Fault Direction

The relay declares an internal fault condition when the direction of current at all the remaining terminals coincides with the direction of current at the reference terminal. For the directional element to begin processing, the current values of at least two terminals within the zone must exceed the 50DSP threshold. *Figure 1.5* shows the directional element characteristic, the shaded area indicating an internal fault.

Figure 1.5 Directional Element Characteristic, the Shaded Area Indicating an Internal Fault

The relay acquires the terminals within each specific protection zone from the zone selection logic. The relay determines the terminals with phase current greater than the 50DSP threshold and selects one of the currents greater than the 50DSP threshold as a reference. The relay establishes fault direction by comparing the direction of current at the reference terminal to that at the remaining terminals in the zone with phase current greater than the 50DSP threshold.

Referring to *Figure 1.6*, consider the case of four terminals in Zone 1, with inputs labeled I01CF, I02CF, I03CF, and I04CF. Further assume that the current magnitude in terminal I04CF is below the 50DSP threshold.

Figure 1.6 Directional Element Logic

First, the directional element determines which terminals have phase current magnitude greater than the 50DSP threshold. Because the current magnitude of input I04CF is below the 50DSP threshold, the relay selects only inputs I01CF, I02CF, and I03CF for further processing. The relay selects input I01CF as the reference (IREF) and compares the direction of current I02CF (IT02) and current I03CF (IT03) to this reference. DE1F asserts only if the direction of current at both IT02 and IT03 coincides with the direction of current at the reference terminal according to the directional element characteristic shown in *Figure 1.5. Table 1.2* shows default settings for the directional element.

Table 1.2 Default Settings for the Directional Element

Setting	Directional Element	Range	Default
50DSP	Dir Element O/C Supervision Pickup	0.05-3.0 pu	0.05 pu

Fault Detection Logic

The fault detection logic distinguishes between external faults (external fault detection logic) and internal faults (internal fault detection logic), as shown in *Figure 1.7*. When the fault detection logic detects an external fault, Relay Word bit CON1 asserts, and when the fault detection logic detects an internal fault, Relay Word bit FAULT1 asserts.

Figure 1.7 Fault Detection Logic That Distinguishes Between External and Internal Faults

Elements in the fault detection logic use instantaneous per unit currents to calculate a restraint quantity, IRT1R, and an operating quantity, IOP1R, according to *Equation 1.6* and *Equation 1.7*:

$$IRT1R = abs(I01CR) + abs(I02CR)$$
 Equation 1.6

and

$$IOP1R = abs(I01CR + I02CR)$$
 Equation 1.7

where:

I01CR and I02CR = Instantaneous per unit current from Terminals 01 and 02.

Figure 1.8 shows a block diagram of how the fault detection logic obtains restraint quantity IRT1R and operating quantity IOP1R.

Figure 1.8 Fault Detection Logic Obtaining Restraint and Operating Quantities

External Fault Detection Logic

In general, operating and restraint currents increase simultaneously for internal faults; for external faults, only the restraint current increases if there is no CT saturation. By comparing the change in operating current (Δ IOP1R) to the change in restraint current (Δ IRT1R), the relay detects external fault conditions. Because CTs can saturate during external faults, the relay asserts the external fault condition (Relay Word bit CON1) for 60 cycles after detecting an external fault. *Figure 1.9* shows the logic for detecting external fault conditions.

Figure 1.9 External Fault Detection Logic

Asserting CON1 for 60 cycles can slow relay operation for evolving faults (where the fault starts as an external fault and then develops into an internal fault). To prevent delayed tripping, CON1 resets when either the directional element (DE1F) detects an evolving fault or the internal fault detection logic (IFAULT1) confirms an internal fault condition.

Relay Word bit CON1 controls the operating mode of the relay by asserting when the relay detects an external fault. The relay operates normally with CON1 deasserted but switches to a high-security mode when CON1 asserts. High security causes the following in the relay:

- ➤ Slope 1 changes to Slope 2.
- ➤ Delay time of the adaptive security timer increases.

Resetting CON1 releases the relay from the high-security mode, and the relay operates with the normal settings.

Table 1.3 shows the settings for the external fault detection logic. To change the threshold values, first enable the advanced settings (see *Section 8: Settings* for more information on setting the relay) by setting EADVS := Y in Group Settings.

Table 1.3 External Fault Detection Logic Default Settings

Setting	Restrained Differential Element	Range	Default
RTDI	Incr Restrained Current Threshold	0.1–10 pu	1.2 pu
OPDI	Incr Operating Current Threshold	0.1–10 pu	1.2 pu

Internal Fault Detection Logic

For the internal fault detection logic, the relay uses a characteristic similar to the filtered differential element characteristic.

Figure 1.10 shows the internal fault detection logic consisting of the instantaneous differential element, the consecutive measurement fault detection logic, and the fast fault detection logic. RDIF1, the output from the instantaneous differential element, forms the input into the consecutive measurement fault detection logic and the fast fault detection logic.

The consecutive measurement fault detection logic declares an internal fault when differential current still exists on a consecutive measurement one-half cycle after the instantaneous differential element asserted. When this logic detects an internal fault, the IFAULT1 Relay Word bit asserts.

Figure 1.10 Internal Fault Detection, Instantaneous Differential Element, Consecutive Measurement Fault Detection, and Fast Fault Detection Logics

If surge (lightning) arrestors are installed on busbars, a path to ground exists when these devices conduct, resulting in operating current in the differential elements. The fast fault detection logic qualifies the operating current with a time delay to differentiate between operating current resulting from surge arrestor conduction and operating current because of internal faults. If the fast fault detection logic detects an internal fault, Relay Word bit GFAULT1 asserts.

Protection Element Output Logic

Figure 1.11 shows the four conditions from the relay measuring and control logic that must be fulfilled to start the security timer (the final stage in asserting the protection element output, Relay Word bit 87R1):

- ➤ An output from the filtered differential element, FDIF1
- ➤ An output from the filtered differential element threshold, 87O1
- ➤ An output from either the directional element (DE1F) or the internal fault detection logic (FAULT1)
- ➤ No output from the sensitive differential element (87ST1) with E87SSUP := Y

Figure 1.11 Differential Element Output: Final Conditions and Adaptive Security Timer

When the four differential element output logic conditions are met, the output P87R1 starts the adaptive security timer. CON1 also controls the security timer time setting; when CON1 asserts, the relay increases the time delay by 0.4 cycles to increase security for the protection element.

Check Zone Protection Elements

The SEL-487B logic includes a dedicated check zone, providing the flexibility and opportunity to configure the dual differential (main zone and check zone) element combination.

Figure 1.12 shows the block diagram for the Check Zone Protection Element. Throughout the following element descriptions, the numerical part of the Relay Word bits refers to the specific terminal number (01 through 18). I01 and I02 refer to current inputs from Terminal I01 and Terminal I02.

Figure 1.12 Block Diagram Showing Logic for Check Zone Protection Element

Check Zone Filtered Differential Element

Figure 1.13 shows a block diagram of the elements necessary for obtaining the differential and restraint quantities used in the filtered differential elements. Relay Word bit FDIFCZ1 is the output from the differential calculation. Relay Word bit 87OCZ1 asserts when the differential current exceeds the CZO87P threshold. Together these two Relay Word bits form the filtered differential element characteristic.

Figure 1.13 Check Zone Filtered Differential Element 1

Table 1.4 shows default settings for the filtered Check Zone Differential Element.

Table 1.4 Check Zone Restraint Filtered Element Default Settings

Setting	Setting Check Zone Restrained Differential Element		Default
CZO87P	CZ Restrained Diff Element Pickup	0.1–4 pu	1.00 pu
CZSLP1	CZ Restrained Slope 1 Percentage	15-90%	60%
CZSLP2	CZ Restrained Slope 2 Percentage	15-90%	80%

Check Zone External Fault Detection Logic

Figure 1.14 shows the logic for detecting external fault conditions.

Figure 1.14 Check Zone External Fault Detection Logic

Table 1.5 shows the settings for the external fault detection logic. To change the threshold values, first enable the advanced settings (see *Section 8: Settings* for more information on setting the relay) by setting EADVS := Y in Group Settings.

Table 1.5 Check Zone External Fault Detection Logic Default Settings

Setting	Check Zone Restrained Differential Element	Range	Default
CZRTDI	CZ Incr Restrained Current Threshold	0.1–1- pu	1.2 pu
CZOPDI	CZ Incr Operating Current Threshold	0.1–1- pu	1.2 pu

Check Zone Internal Fault Detection Logic

For the internal fault detection logic, the relay uses a characteristic similar to the filtered differential element characteristic.

Figure 1.15 shows the internal fault detection logic consisting of the instantaneous differential element, the consecutive measurement fault detection logic, and the fast fault detection logic. RDIFCZ1, the output from the instantaneous differential element, forms the input into the consecutive measurement fault detection logic and the fast fault detection logic.

The consecutive measurement fault detection logic declares an internal fault when differential current still exists on a consecutive measurement one-half cycle after the instantaneous differential element asserted. When this logic detects an internal fault, the Relay Word bit IFLTCZ1 asserts.

Figure 1.15 Check Zone Internal Fault Detection, Instantaneous Differential Element, Consecutive Measurements Fault Detection, and Fast Fault Detection Logics

Check Zone Protection Element Output Logic

Figure 1.16 shows the four conditions from the relay measuring and control logic that must be fulfilled to start the security timer (the final stage in asserting the Check Zone Protection Element output, Relay Word bit 87RCZ1):

- ➤ An output from the filtered differential element (FDIFCZ1)
- ➤ An output from the filtered differential element threshold (87OCZ1)
- ➤ An output from either the directional element (DECZ1F) or the internal fault detection logic (FLTCZ1)
- ➤ No output from the sensitive differential element (87STCZ1) with E87SSUP := Y

Figure 1.16 Check Zone Differential Element Output: Final Conditions and Adaptive Security Timer

When the four differential element output logic conditions are met, the output P87RCZ1 starts the adaptive security timer. CONCZ1 also controls the security timer time setting; when CONCZ1 asserts, the relay increases the time delay by 0.4 cycles to increase security for the protection element.

Sensitive Differential Element

For each zone, sensitive differential elements detect differential current resulting from CT open or short circuits conditions. If such a condition exceeds a settable delay, the element asserts an alarm. There are two Relay Word bits per zone: an instantaneous Relay Word bit, 87S1, and a time-delayed Relay Word bit, 87ST1. Use 87ST1, the time-delayed output, for alarming and supervision. Each sensitive differential element compares the sensitive differential element operating quantity, IOP1, against the S87P threshold.

Figure 1.17 Sensitive Differential Element (87S)

The status of the sensitive differential element is one of the four conditions considered in the final output logic of the differential protection element (see $Figure\ 1.11$). With E87SSUP := Y, the output 87STn supervises the differential protection element. When E87SSUP := N the sensitive differential (87STn) element does not supervise the differential protection elements (87Rn). Setting E87SSUP := N only removes the supervision function from the differential element, but does not disable the sensitive differential elements. The sensitive differential elements are still running and available for other functions such as asserting an alarm.

The sensitive differential elements may assert under load conditions if not set properly. To prevent these elements from asserting under load conditions, set the differential threshold setting 50 percent higher than the natural out-of-balance current at the station. Be sure to measure the worst natural out-of-balance current at the station. For example, in a double busbar layout with bus-zone-to-bus-zone connections, first merge the bus-zones before making the measurement (see *Dynamic Zone Selection Logic on page R.1.15* and *Bus-Zone-to-Bus-Zone Connections on page A.1.34* for more information). Use the **MET DIF** command to read the per unit operating current values from each protection zone.

Check Zone Sensitive Differential Element

Figure 1.18 Check Zone Sensitive Differential Element (87S)

The check zone has an independent sensitive differential element. There are two Relay Word bits: an instantaneous Relay Word bit, 87SCZ1, and a time-delayed Relay Word bit, 87STCZ1. Use 87STCZ1, the time-delayed output, for alarming and supervision. The sensitive differential element compares the sensitive differential element operating quantity, IOPCZ1, against the CZS87P threshold.

Zone Supervision Logic

This logic provides final supervision criteria before a trip signal is issued. *Figure 1.19* shows the logic for Differential Element 1, but similar logic is available for all six differential elements. Relay Word bit 87R1 is the output from the differential element, and Z1S is a SELOGIC® control equation in the zone configuration settings. The differential trip logic uses Relay Word bit 87Z1, the output from this logic, to determine which terminals to trip. See *Differential Trip Logic on page R.1.53* for more detail.

Figure 1.19 Zone and Check Zone Supervision Logic

Setting Z1S is a SELOGIC control equation in which you can program the conditions for supervising the differential element (87R1). For example, this is the setting in which you enter the output from the check zone differential element during check zone configuration. Consider the case where a check zone is configured and 87CZ1 is the check zone element output. Both the check zone and the sensitive differential elements must supervise the 87R1 element. With E87SSUP := Y, 87ST1 is already included in the differential element supervision (one of the four final conditions; see *Figure 1.11*). Only the check zone information is required:

Z1S := 87CZ1

Table 1.6 shows the default values for the six zone supervision settings.

Table 1.6 Default Values for the Zone Supervision Settings

Setting	Setting Description	Range	Default Value
E87ZSUP	Differential Element Zone Supervision	Y or N	Y
Z1S	Zone 1 Supervision (SELOGIC control equation)	SVa	1
Z2S	Zone 2 Supervision (SELOGIC control equation)	SVa	1
Z3S	Zone 3 Supervision (SELOGIC control equation)	SVa	1
Z4S	Zone 4 Supervision (SELOGIC control equation)	SVa	1
Z5S	Zone 5 Supervision (SELOGIC control equation)	SVa	1
Z6S	Zone 6 Supervision (SELOGIC control equation)	SV ^a	1

a SV = SELogic control equation variable.

Table 1.7 Default Values for the Check Zone Supervision Settings

Setting	Setting Description	Range	Default Value
E87CZSP	Check Zone Supervision	Y or N	N
CZ1S	Check Zone 1 Supervision (SELOGIC control equation)	SVa	1

a SV = SELogic control equation variable.

NOTE: Setting E87ZSUP := N sets ZnS to logical 1. This setting prevents the inadvertent blocking of the differential elements.

△CAUTION

Setting E87ZSUP: = Y enables the zone supervision in all six zones. If you do not enter any supervision conditions for a particular zone, be sure to enter a 1 at the SELOGIC control equation prompt.

NOTE: Setting E87CZSP := N sets CZ1S to logical 1. This setting prevents the inadvertent blocking of the check zone differential element.

Dynamic Zone Selection Logic

Busbar protection involves assigning the appropriate input current values to the corresponding differential elements for calculation of per zone operating and restraint quantities and determining the breakers to trip for differential and breaker failure protection operation. To allow flexible substation configuration without compromising busbar protection, the relay dynamically reassigns input currents to the appropriate differential elements when the station configuration changes.

Disconnect and breaker auxiliary contacts typically provide station configuration information in the form of control inputs, entered into the relay as SELOGIC control equations. By evaluating these SELOGIC control equations, the zone selection logic assigns the currents to the appropriate differential elements. When disconnects are closed in such a way that a solid connection exists between two (or more) zones, the zones merge, and only one zone is active. The active zone after a merge is always the zone with the lowest number. For example, if Zone 3 and Zone 4 merge, Zone 3 encompasses Zone 4.

When the SELOGIC control equation representing the Terminal-to-Bus-Zone becomes a logical 1, the zone selection algorithm processes the current values associated with that particular terminal. See Table 1.8. When the equation is logical 0, the current values are neither processed nor considered in the differential calculations. This is also true for the trip output. When the SELOGIC control equation of a terminal is a logical 0, the differential element issues no trip signals to that terminal.

Table 1.8 Current Values Assigned to the Differential Element as a Function of the Disconnect Status

SELOGIC Control Equation	Status	Meaning in the Differential Calculation
I01BZ1V := D891	D891 = 1 (closed)	I01 is part of differential Bus-Zone 1
I01BZ1V := D891	D891 = 0 (open)	I01 is not part of differential Bus-Zone 1

where:

I01BZ1V = SELOGIC control equation declaring the conditions when Terminal 1 connects to Bus-Zone 1

D891 = input from Terminal 1 disconnect auxiliary contact that changes state when the disconnect switch changes state

To properly configure the station, the zone selection algorithm requires the following information:

- ➤ Terminals to bus-zones connections, IqqBZpV.
- Interconnections between bus-zones, BZpBZpV.

where:

$$qq = 01-18$$
 (Terminal 1 to Terminal 18)
 $p = 1-6$ (Bus-Zone 1 to 6)

Both IqqBZpV and BZpBZpV are SELOGIC control equation variables that you enter in the relay when using the **SET Z** command to set the relay.

Selecting the Zones

The relay runs the zone selection algorithm every protection processing interval and sets the appropriate zone switching operation (ZSWOP*p*) Relay Word bits for one cycle when there is a status change in either I*qq*BZ*p*V (terminal is connected to or disconnected from a bus-zone) or BZ*p*BZ*p*V (two or more bus-zones are connected together).

Based on the SELOGIC control equations IqqBZpV and BZpBZpV, the zone selection logic determines the following:

- ➤ The bus-zone(s) to be included in each protection zone
- ➤ The active terminals to be included in each protection zone
- ➤ The terminals to trip for differential and breaker failure protection operations

Table 1.9 shows the Relay Word bits available in the zone selection logic with their descriptions.

Table 1.9 Relay Word Bits in the Zone Selection Logic

Quantity	Description
ZSWOPp	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone <i>p</i>
ZONEp	Differential Zone p is active
IqqBZpV	Terminal qq connected to BZp
BZpBZpV	A connection exists between BZp and BZp
ZNpIqq	Terminal qq connected to Zone p
ZNpIqqT	Terminal qq connected to Zone p and will be tripped
BZpBZpR	A connection exists between BZp and BZp and the coupler is removed
ZpBZp	Bus-Zone p is part of Protective Zone p

Check Zone Selection

When the SELOGIC control equation representing the Terminal-to-Check-Zone becomes a logical 1, the check zone selection algorithm processes the current values associated with that particular terminal. When the equation is logical 0, the current values are neither processed nor considered in the differential calculations.

To properly configure the station, the zone selection algorithm requires the following information:

Terminal-to-Check-Zone connections, IqqCZ1V

where:

qq = 01-18 (Terminal 1 to Terminal 18)

IqqCZ1V are SELOGIC control equation variables that you enter in the relay when using the **SET Z** command to set the relay.

The relay asserts the active check zone bit CZONE1 when the Check Zone is active according to the zone configuration settings. CZONE1 is deasserted if Zone Configuration Setting ECHKZN := N or if there are no active terminals in a check zone. CZONE1 is asserted when Zone Configuration Setting ECHKZN := Y and there are active terminals in a check zone.

Table 1.10 shows the Relay Word bits available in the Check Zone selection logic with their descriptions.

Table 1.10 Relay Word Bits in the Check Zone Selection Logic

Quantity	Description
CZONE1	Differential Check Zone 1 is active.
IqqCZ1V	Terminal qq connected to CZ1.

Instantaneous/Delayed Overcurrent Elements

Each of the 18 terminals includes a single level of phase instantaneous and time-delayed overcurrent elements. Figure 1.20 shows the logic for the 50Pnn element. Labels FIM (Filtered, Instantaneous, Magnitude) are included for informational purposes and indicate specific processes used in the relay (see Appendix B: Analog Quantities for more information about analog quantities).

The logic compares the magnitudes of phase input current InnFIM to a pickup setting 50PnnP. If the current magnitude exceeds the pickup level, Relay Word bit 50Pnn asserts and the timer starts timing. After the time specified by the delay setting 50PnnD expires, a second Relay Word bit, 50PnnT, asserts. Relay Word bit 50PnnT only asserts if Relay Word bit 50Pnn remains asserted for the duration of the 50PnnD time setting. When Relay Word bit 50Pnn deasserts, the timer resets without delay, along with 50PnnT if it has asserted.

Figure 1.20 Phase Instantaneous and Time-Delayed Overcurrent Elements

Table 1.11 and Table 1.12 show the setting information for Terminal IO1 phase instantaneous and time-delayed overcurrent elements; Terminals IO2 through I18 have the same settings.

Table 1.11 Settings for the Phase Instantaneous and Time-Delayed Overcurrent Elements (5 A Relay)

Setting	Setting Description	Range	Default Value (5 A)
50P01P	Terminal 01 Pickup (amps, sec)	OFF, 0.25-100	OFF
50P01D	Terminal 01 Pickup Delay (cyc)	0.00 -99999	10

R.1.18

Setting	Setting Description	Range	Default Value (1 A)
50P01P	Terminal 01 Pickup (amps, sec)	OFF, 0.05-20	OFF
50P01D	Terminal 01 Pickup Delay (cyc)	0.00 –99999	10

The definite-time overcurrent elements are not enabled in the default settings. Enable the elements by setting E50 := nn (nn = 01 through 18). After enabling the elements, the definite-time overcurrent elements of all 18 terminals are available but are still set to OFF. For example, assume we want definite-time overcurrent protection for Terminal 05. Set E50 := 5, making the definite-time overcurrent elements of Terminal 01 through Terminal 05 available. Because the default settings for the definite-time overcurrent elements are OFF, the elements are not active. Only enter settings at the definite-time overcurrent protection prompt of Terminal 05. Terminal 05 is the only terminal with definite-time overcurrent protection; the definite-time overcurrent protection for Terminal 01 through Terminal 04 remains switched OFF.

Inverse Time-Overcurrent Elements

Each of the 18 terminals includes time overcurrent (TOC) characteristics of 10 different operating curves (5 U.S. curves and 5 IEC curves).

Time-Current
Operating
Characteristics

The following information describes curve timing for time-overcurrent element curve and time-dial settings. The time-overcurrent relay curves in *Figure 1.21* through *Figure 1.30* conform to *IEEE*® *C37.112–1996 IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays*.

where:

 T_p = operating time in seconds

 T_r = electromechanical induction-disk emulation reset time in seconds (if you select electromechanical reset setting)

TD = time-dial setting

 $M = \text{ applied multiples of pickup current [for operating time } (T_p), M > 1; for reset time <math>(T_r), M \le 1$]

Table 1.13 Equations Associated With U.S. Curves (Sheet 1 of 2)

Curve Type	Operating Time	Reset Time	Figure
U1 (Moderately Inverse)	$T_p = TD \cdot \left(0.0226 + \frac{0.0104}{M^{0.02} - 1}\right)$	$T_{r} = TD \cdot \left(\frac{1.08}{1 - M^{2}}\right)$	Figure 1.21
U2 (Inverse)	$T_p = TD \cdot \left(0.180 + \frac{5.95}{M^2 - 1}\right)$	$T_r = TD \cdot \left(\frac{5.95}{1 - M^2}\right)$	Figure 1.22
U3 (Very Inverse)	$T_p = TD \cdot \left(0.0963 + \frac{3.88}{M^2 - 1}\right)$	$T_{r} = TD \cdot \left(\frac{3.88}{1 - M^{2}}\right)$	Figure 1.23

Table 1.13 Equations Associated With U.S. Curves (Sheet 2 of 2)

Curve Type	Operating Time	Reset Time	Figure
U4 (Extremely Inverse)	$T_p = TD \cdot \left(0.02434 + \frac{5.64}{M^2 - 1}\right)$	$T_r = TD \cdot \left(\frac{5.64}{1 - M^2}\right)$	Figure 1.24
U5 (Short-Time Inverse)	$T_{p} = TD \cdot \left(0.00262 + \frac{0.00342}{M^{0.02} - 1}\right)$	$T_{r} = TD \cdot \left(\frac{0.323}{1 - M^{2}}\right)$	Figure 1.25

Table 1.14 Equations Associated With IEC Curves

Curve Type	Operating Time	Reset Time	Figure
C1 (Standard Inverse)	$T_{p} = TD \cdot \left(\frac{0.14}{M^{0.02} - 1}\right)$	$T_r = TD \cdot \left(\frac{13.5}{1 - M^2}\right)$	Figure 1.26
C2 (Very Inverse)	$T_{p} = TD \cdot \left(\frac{13.5}{M-1}\right)$	$T_r = TD \cdot \left(\frac{47.3}{1 - M^2}\right)$	Figure 1.27
C3 (Extremely Inverse)	$T_{p} = TD \cdot \left(\frac{80}{M^{2} - 1}\right)$	$T_r = TD \cdot \left(\frac{80}{1 - M^2}\right)$	Figure 1.28
C4 (Long-Time Inverse)	$T_p = TD \cdot \left(\frac{120}{M-1}\right)$	$T_r = TD \cdot \left(\frac{120}{1-M}\right)$	Figure 1.29
C5 (Short-Time Inverse)	$T_p = TD \cdot \left(\frac{0.05}{M^{0.04} - 1}\right)$	$T_{r} = TD \cdot \left(\frac{4.85}{1 - M^{2}}\right)$	Figure 1.30

Figure 1.21 U.S. Moderately Inverse-U1

Figure 1.22 U.S. Inverse-U2

Figure 1.23 U.S. Very Inverse-U3

Figure 1.24 U.S. Extremely Inverse-U4

Figure 1.25 U.S. Short-Time Inverse-U5

Figure 1.26 IEC Standard Inverse-C1

Figure 1.27 IEC Very Inverse-C2

Figure 1.28 IEC Extremely Inverse-C3

Figure 1.29 IEC Long-Time Inverse-C4

Figure 1.30 IEC Short-Time Inverse-C5

Figure 1.31 shows the time-overcurrent element logic diagram. Labels FIM (Filtered, Instantaneous, Magnitude) are included for informational purposes and indicate specific processes used in the relay (see Appendix B: Analog Quantities for more information on analog quantities). Consider I01FIM, the input current from Terminal I01. If the element should only measure under certain conditions, specify those conditions with 51P01TC, the torque control setting. For example, if the element should only measure when the circuit breaker is closed, enter the following:

51P01TC := **52A01**

With this setting, the element compares the current in Terminal 01 with the setting 51P01P only when 52A01 is a logical 1. If the element must measure all the time, enter the following:

51P01TC := 1

Output Relay Word bits are 51P01, which asserts when the measured current exceeds the 51P01P setting; 51P01T, which asserts when the curve has timed out; and 51P01R, which asserts when the element is fully reset.

SELOGIC Setting 51PnnTC Controls the Torque Control Switch

51PnnTC	Torque Control	Setting	Reset Timing
State	Switch Position	51PnnR :=	
Logical 1	Closed	Y	Electromechanical
Logical 0	Open	N	1 Cycle

Figure 1.31 Time-Overcurrent Element Logic Diagram

Table 1.15 and *Table 1.16* show setting information for Terminal I01 time-overcurrent elements; Terminals I02 through I18 have the same settings.

Table 1.15 Settings for the Time-Overcurrent Elements (5 A Relay)

Setting	Setting Description	Range	Default Value (5 A)
51P01P	51P01 O/C Pickup (amps, sec)	0.5-16.0	0.5
51P01C	51P01 Inv-Time O/C Curve	U1–U5, C1–C5	U1
51P01TD	51P01 Inv-Time O/C Time Dial [U1–U5] or 51P01 Inv-Time O/C Time Dial [C1–C5]	0.5–15 or 0.05–1	0.5
51P01RS	51P01 Inv-Time O/C EM Reset (Y, N)	Y or N	Y
51P01TC	51P01 Inv-Time O/C Torque Cont	SV	1

Table 1.16 Settings for the Time-Overcurrent Elements (1 A Relay)

Setting	Setting Description	Range	Default Value (1 A)
51P01P	51P01 O/C Pickup (amps, sec)	0.1-3.2	0.1
51P01C	51P01 Inv-Time O/C Curve	U1–U5, C1–C5	U1
51P01TD	51P01 Inv-Time O/C Time Dial [U1–U5] or 51P01 Inv-Time O/C Time Dial [C1–C5]	0.5–15 or 0.05–1	0.5
51P01RS	51P01 Inv-Time O/C EM Reset (Y, N)	Y or N	Y
51P01TC	51P01 Inv-Time O/C Torque Cont	SV	1

△WARNING

Do not use Relay Word bit 51PnnT in any trip equation if inverse-time overcurrent protection is not required. The inverse-time overcurrent elements are not enabled in the default settings. Enable the elements by setting E51 := nn (nn = 01 through 18). After enabling the elements, the inverse-time overcurrent elements up to and including the number nn entered at the E51 := prompt are active. For example, assume we want inverse-time overcurrent protection for Terminal 12. Enter the setting E51 := 12. Inverse-time overcurrent protection for all terminals up to and including Terminal 12 are active. To prevent the inadvertent omission of the inverse time overcurrent protection, the relay does not permit a torque control SELOGIC control equation (51P01TC) setting of 0 or NA. Because the torque control SELOGIC control equation does not disable the inverse-time overcurrent elements, do not include Relay Word bit 51PnnT in any trip equation for terminals that do not require inverse-time overcurrent protection. To prevent the inverse-time overcurrent protection LED (51) illumination for faults on terminals that do not require inverse-time overcurrent protection, remove Relay Word bits 51P01T through 51P11T from the SELOGIC control equation of LED 10. (The LEDs are part of the front-panel settings.)

Instantaneous Voltage Elements

Certain protection philosophies require voltage supervision for a trip. Each SEL-487B provides two levels of negative-sequence voltage and two levels of zero-sequence voltage elements to satisfy this requirement. In addition, the relay also provides two levels of phase undervoltage (27) and overvoltage (59) elements for each of the three phases.

Based on an ABC phase rotation, the relay uses the instantaneous phase voltage outputs from the cosine filter (V01F, V02F, V03F) to calculate phase voltage magnitudes and angles, as shown in *Table 1.17*.

Table 1.17 Phase Filtered Instantaneous Voltage Magnitudes and Angles

Quantity	Description	Units
V01FIM	Phase filtered instantaneous voltage magnitude	V (secondary)
V01FIA	Phase filtered instantaneous voltage angle	degrees
V02FIM	Phase filtered instantaneous voltage magnitude	V (secondary)
V02FIA	Phase filtered instantaneous voltage angle	degrees
V03FIM	Phase filtered instantaneous voltage magnitude	V (secondary)
V03FIA	Phase filtered instantaneous voltage angle	degrees

Figure 1.32 shows the logic for two levels of undervoltage and overvoltage elements for voltage channel V01. Labels FIM (Filtered, Instantaneous, Magnitude) are included for informational purposes, indicating the specific values used in the relay (see Appendix B: Analog Quantities for more information about analog quantities).

For the undervoltage elements, the logic compares the magnitudes of input voltage V01FIM to a pickup setting, 27P11P. If the voltage magnitude falls below the 27P11P setting level, Relay Word bit 27P11 asserts. When the voltage magnitude exceeds the 27P11P setting level, Relay Word bit 27P11 deasserts without delay. You can set the two levels (27P11P and 27P12P) independently.

For the overvoltage elements, the logic compares the magnitude of input voltage V01FIM to a pickup setting, 59P11P. If the voltage magnitude exceeds the 59P11P setting level, Relay Word bit 59P11 asserts. When the voltage magnitude falls below the 59P11P setting level, Relay Word bit 59P11 deasserts without delay. You can set the two levels (59P11P and 59P12P) independently.

Figure 1.33 and Figure 1.34 show the same logic for voltage channels V02 and V03.

Figure 1.32 Levels 1 and 2 of Phase VO1 Over- and Undervoltage Elements

Figure 1.33 Levels 1 and 2 of Phase VO2 Over- and Undervoltage Elements

Figure 1.34 Levels 1 and 2 of Phase VO3 Over- and Undervoltage Elements

Figure 1.35 shows the logic for two levels of negative-sequence voltage elements and two levels of zero-sequence voltage elements. To use these elements, be sure to wire a voltage input from each phase of the power system to the relay. In a three-relay application, wire three voltages to each of the three relays.

Using the same outputs from the cosine filter (V01F, V02F, V03F), the relay also calculates the negative- and zero-sequence voltage magnitudes, according to the expressions below:

$$3V0F = V01F + V02F + V03F$$
 Equation 1.8
 $3V2F = (V01F + a^2V02F + aV03F)$ Equation 1.9

where:

$$a = 1 \angle 120^{\circ}$$

Table 1.18 shows the negative- and zero-sequence filtered instantaneous voltage magnitudes.

Table 1.18 Negative- and Zero-Sequence Filtered Instantaneous Voltage Magnitudes

Quantity	Description	Units
3V2FIM	Negative-sequence filtered instantaneous voltage magnitude, 3V2	V (sec)
3V0FIM	Zero-sequence filtered instantaneous voltage magnitude, 3V0	V (sec)

For the negative-sequence element in Figure 1.35, the logic compares the magnitude of negative-sequence input voltage 3V2FIM to a pickup setting, 59Q1P. If the negative-sequence voltage magnitude exceeds the 59Q1P setting level, Relay Word bit 59Q1 asserts. When the negative-sequence voltage magnitude falls below the 59Q1P setting level, Relay Word bit 59Q1 deasserts without delay. You can set the two levels (59Q1P and 59Q2P) independently.

For the zero-sequence element in *Figure 1.35*, the logic compares the magnitude of zero-sequence input voltage 3V0FIM to a pickup setting. 59N1P. If the zero-sequence voltage magnitude exceeds the 59N1P setting level, Relay Word bit 59N1 asserts. When the zero-sequence voltage magnitude falls below the 59N1P setting level, Relay Word bit 59N1 deasserts without delay. You can set the two levels (59N1P and 59N2P) independently.

Figure 1.35 Levels 1 and 2 of the Negative- and Zero-Sequence Voltage Elements

Table 1.19 shows the setting information for Levels 1 and 2 of phase V01 under- and overvoltage elements; phases V02 and V03 have the same settings.

Table 1.19 Phase Instantaneous Under-Overvoltage Elements

Setting	Setting Description	Range	Default Value
27P11P	Voltage 1 Level 1 U/V Pickup (volts)	OFF, 1.0-200	OFF
27P12P	Voltage 1 Level 2 U/V Pickup (volts)	OFF, 1.0-200	OFF
59P11P	Voltage 1 Level 1 O/V Pickup (volts)	OFF, 1.0-200	OFF
59P12P	Voltage 1 Level 2 O/V Pickup (volts)	OFF, 1.0-200	OFF

Table 1.20 shows the setting information for Levels 1 and 2 of the negative-and zero-sequence voltage elements.

Table 1.20 Sequence Overvoltage Elements

Setting	Setting Description	Range	Default Value
59Q1P	NegSeq. Level 1 O/V Pickup (volts)	OFF, 1.0-200	20
59Q2P	NegSeq. Level 2 O/V Pickup (volts)	OFF, 1.0–200	40
59N1P	Zero-Seq. Level 1 O/V Pickup (volts)	OFF, 1.0–200	20
59N2P	Zero-Seq. Level 2 O/V Pickup (volts)	OFF, 1.0–200	40

Open Phase Detector Logic

Subsidence current results from energy trapped in a CT magnetizing branch after a circuit breaker opens to clear a fault or interrupt load. This current exponentially decays and delays the resetting of instantaneous overcurrent elements used for breaker failure protection. Breaker failure protection requires fast open phase detection to ensure fast resetting of instantaneous overcurrent elements. *Figure 1.36* shows open phase logic that asserts SEL-487B open phase detection elements OPHnn (nn = 01, 02 ...18) in less than one cycle, even during subsidence current conditions.

Figure 1.36 Open Phase Detection

The logic measures the zero crossings and maximum and minimum current values of each phase. The relay declares an open phase when the logic does not detect a zero crossing or current value within 7/12 of a power system cycle since the previous measurement.

Open CT Detector Logic

When a CT opens, there is an incremental increase in operating current and a corresponding incremental decrease in restraint current. The two increments should result in a summation equal to zero.

Figure 1.37 shows the open current transformer detector logic. The change in operating current ($\triangle IOPnR$), the change in restraint current ($\triangle IRTnR$), and operating current (IOPn) are the analog inputs to the logic.

The AND gate output asserts when the following conditions are true:

- \triangleright \triangle IOPnR is a positive value (greater than or equal to 0.05 pu)
- Δ IRT*n*R is a negative value (less than -0.05 pu)
- ► The sum of $\triangle IOPnR$ and $\triangle IRTnR$ is very small (less than $0.05 \, pu$)
- \triangleright The filtered operating current (IOPn) is greater than or equal to Group Setting S87P

When the AND gate output is asserted, Relay Word bit OCTZn asserts and is latched. SELOGIC control equation ROCTZn resets the latch and Relay Word bit OCTZn clears. Reset has priority over set.

The lower portion of the logic asserts Relay Word bit RSTOCT*n*, the default value for SELOGIC control equation ROCTZn. RSTOCTn asserts when any of the following conditions are true:

- ➤ IOP*n* is less than 90 percent of group setting S87P
- \triangleright IOP*n* is less than 0.05

Figure 1.37 Zone n Open CT Detector

Table 1.21 shows the settings for the open CT detection logic.

Table 1.21 Open CT Detector Logic Default Settings

Setting	Zone Open CT Detector	Range	Default Value
ROCTZn	Reset Zone <i>n</i> Open CT Detector (SELOGIC control equation)	SVa	RSTOCTn

^a SELogic control equation variable.

Table 1.22 shows the Relay Word bits available in the check zone selection logic with their descriptions.

Table 1.22 Relay Word Bits in the Open CT Detector Logic

Quantity	Description
OCTZn	Zone n Open CT detected
ROCTZn	Reset Zone <i>n</i> Open CT detector (SELOGIC control equation)
RSTOCTn	Zone <i>n</i> Open CT detection reset

Circuit Breaker Failure Protection

The SEL-487B has complete breaker failure protection that includes retrip for each of the 18 terminals. This protection uses open phase detection logic, provided with subcycle current reset, to reduce breaker failure coordination times. Two options are available for application of breaker failure protection:

- ➤ Schemes equipped with external breaker failure relays. These schemes send a bus trip (output from the breaker failure relay on the terminal panel) command to the bus protection relay (SEL-487B) that requires only the zone selection and output contacts to operate the appropriate breakers.
- Schemes using the internal breaker failure protection of the SEL-487B. These schemes send a breaker failure initiate (normally a trip output) command to the bus protection relay. The SEL-487B includes breaker failure logic, as well as zone selection and output contacts, to operate the appropriate breakers.

Apply either option exclusively, or use a combination of the two options at the same station. For example, use the breaker failure relays on the feeder panels for protection philosophies requiring discrete breaker failure relays, but use the built-in breaker failure protection in the SEL-487B for all other terminals at the station. Connect breaker failure initiate signals from these terminals to any one of six independent optoisolated inputs. These inputs are available on each INT4 interface board. Figure 1.38 shows logic for Terminal 01; similar logic is available for all 18 terminals.

Figure 1.38 Breaker Failure Logic

Schemes Using Internal Breaker **Failure Relays**

The basic breaker failure logic does not include logic to seal-in the breaker failure initiate signals. For applications where BFI seal-in and extension are required, alternate BFI logic is provided. Set EXBF01 := N to enable the internal breaker failure logic for Terminal 01. Refer to Figure 1.38.

Breaker Failure Logic

The breaker failure logic requires the trip signal to be continuously present for the duration of the breaker failure timer because the BFI signal is not sealed in. If an external BFI signal falls away for one processing interval longer than the debounce dropout time setting of the input, the breaker failure timers reset. Wire breaker failure initiate circuitry, typically a trip output contact from a protection relay, to one of the six independent optoisolated inputs and assign the input to BFI01.

When the trip contact from the protection relay closes to assert BFI01, timers BFPU01 (Terminal I01 circuit breaker failure timer) and RTPU01 (Terminal I01 retrip timer) start timing. If BF101 remains asserted when the retrip timer expires, Relay Word bit RT01 asserts. Use this Relay Word bit as an output to attempt another trip pulse to the circuit breaker before the relay issues a bus trip command. When timer BFPU01 expires, Relay Word bit FBF01 asserts if 50F01 is asserted. Use this Relay Word bit in the circuit breaker tripping logic to cause a circuit breaker failure trip.

If the circuit breaker opens successfully before timer BFPU01 or timer RTPU01 expires, the cessation of current flow on the circuit will cause the fast breaker open detector element OPH01 to assert, dropping out element 50F01. This will block the assertion of the breaker failure Relay Word bit FBF01. If the trip contact from the protection relay opens before timer RTP01 expires, the BFPU01 timer and RTPU01 timers will drop out and neither RT01 nor FBF01 will assert.

This logic is suitable for applications where two breakers must open to interrupt fault current, such as in breaker-and-a-half and ring-bus configurations. For these applications, breaker failure logic that requires both BFI and 50F to be asserted before the timer starts is often not suitable. The problem occurs because the 50F element may not assert until the first of the two breakers opens and the current redistributes so that all of it goes through the failed breaker. This situation results in a delay of the Breaker 2 breaker failure time equal to the time for Breaker 1 to interrupt the current. The SEL-487B breaker failure logic does not have this problem.

Alternate Breaker Failure Initiating Input With Extension and/or Seal In Logic

The alternate BFI logic lets you choose to either extend the breaker failure initiate signal or seal in the breaker failure initiate signal. *Figure 1.39* shows the combined logic for both breaker failure initiating input extension (AND Gate 1) and seal-in (AND Gates 1 and 2) functions. This logic can also be used for applications where it is required to have 50F01 asserted before the breaker failure timer can start.

Figure 1.39 Circuit Breaker Failure Initiation Extension and Seal In

Breaker Failure Initiating Input Seal In

Use the seal-in option if the breaker failure initiation signal is not continuous and fault current is immediately available (single-breaker applications). Referring to *Figure 1.39*, set EXBF01 := N to enable the internal breaker failure logic. Set EBFIS01 := Y to set the top input of AND Gate 2 to a logical 1. Wire the breaker failure initiate signal to the SEL-487B, and assign the input to ATBFI01. Then assign Relay Word bit ABFIT01 to BFI01

NOTE: Coordinate Timer BFISP01 setting with the contact debounce settings.

(Figure 1.38). On receipt of the breaker failure initiate signal, AND Gate 1 turns on. The output from AND Gate 1 starts the breaker failure timers (Figure 1.38) and turns AND Gate 2 on. If the initiate signal is present for longer than the Timer BFISP01 setting, the output from Gate 1 seals in for as long as the current exceeds the 50FP01 threshold. Set the Timer BFISP01 setting longer than a quarter cycle to prevent seal-in for spurious signals, but set it shorter than the initiate signal to ensure seal-in.

Breaker Failure Initiating Input Extension

Use the extension option in conjunction with the seal in option if the breaker failure initiation signal is not continuous, but fault current is not immediately available to start the breaker failure timers (double-breaker applications).

The logic still requires the current to be above the 50FP01 threshold after timer BFIDO01 times out to keep Gate 1 turned on. Set EXBF01 := N to enable the internal breaker failure logic. Referring to Figure 1.39, wire the breaker failure initiate signal to the SEL-487B, and assign the input to ATBFI01. Then assign Relay Word bit ABFIT01 to BFI01 (Figure 1.38). In the absence of fault current, and on receipt of the rising edge of the breaker failure initiate signal at input ATBFI01, AND Gate 1 turns on. When AND Gate 1 turns on, Relay Word bit ABFIT01 asserts, causing timers BFPU01 and RTP01 to start timing (Figure 1.38).

When Breaker 1 opens, enough current flows through Breaker 2 to assert the 50F01 Relay Word bit. Refer to Figure 1.39 and note that the current flowing through Breaker 2 replaces the output from timer BFIDO01 and keeps Gate 1 turned on, sustaining the input to the breaker failure timers. Set Timer BFIDO01 longer than the time Breaker 1 takes to interrupt the current, but shorter than the Timer BFPU01setting. This setting ensures that, after Breaker 1 opens, Timer BFPU01 will continue to run while current greater than 50FP01 is present.

Supervising Breaker Failure Initiate With the Fault Detector

Use the alternate BFI logic if the breaker failure initiation signal must be supervised by current before the BFPU01 timer can start. Set EXBF01 := N to enable the internal breaker failure logic. Referring to Figure 1.39, wire the breaker failure initiate signal to the SEL-487B, and assign the input to ATBFI01. Then assign Relay Word bit ABFIT01 to BFI01 (Figure 1.38). Set BFIDO01 to 0.0 CYC. In this configuration, the upper input to AND Gate 1 is controlled by 50F01 and the lower input to AND Gate 1 is controlled by ATBFI01. Thus, ABFIT01 will not assert and start the BFPU01 and RTP01 timers (Figure 1.38) unless both ATBFI01 and 50F01 are asserted.

NOTE: Although BFIDO01 is set to 0.0, the timer picks up for one processing interval after assertion.

Schemes Equipped With External Breaker Failure Relays

Set EXBF01 := Y to enable the external breaker failure logic. This setting effectively reduces the logic to that shown in *Figure 1.40*.

Figure 1.40 Breaker Failure Logic for External Breaker Failure

Wire breaker failure initiate circuitry to one of the SEL-487B inputs, and assign the input to XBF01. Relay Word bit FBF01 immediately asserts upon assertion of the input signal.

Retrip

Some circuit breakers have two separate trip coils. If one trip coil fails, local protection can attempt to energize the second trip coil (often connected to a separate battery) to prevent an impending circuit breaker failure operation. Configure your protection system to always attempt a local retrip using the second trip coil before the circuit breaker failure pickup timer expires. RTPU01 (Retrip Time Delay on Pickup Timer) begins timing when BFI01 asserts. Relay Word bit RT01 (Breaker 1 Retrip) asserts immediately after RTPU01 times out. Assign a control output to trip the circuit breaker when Relay Word bit RT01 asserts. *Table 1.23* shows the breaker failure default settings.

Table 1.23 Breaker Failure Default Settings

Setting	Setting Description	Range	Default
EXBF01	Enable External Breaker Fail—BK01	Y or N	N
XBF01	External Breaker Fail Initiate—BK01	SV	NA
50FP01	Fault Current Pickup—BK01 (amps, secondary)	0.5-50.0	3.0
BFPU01	Breaker Fail Initiate Pickup Delay—BK01 (cyc)	0.00-6000	6.00
RTPU01	Retrip Delay—BK01 (cyc)	0.00-6000	3.00
BFI01	Breaker Fail Initiate—BK01	SV	IN101 and PLT02
ATBFI01	Alt Breaker Fail Initiate—BK01	SV	NA
EBFIS01	Breaker Fail Initiate Seal In—BK01	Y or N	N
BFISP01	Breaker Fail Initiate Seal-In Delay—BK01 (cyc)	0.00-1000	0.5
BFIDO01	Breaker Fail Initiate Dropout Delay—BK01 (cyc)	0.00-1000	1.5

NOTE: BFI01, the breaker fail initiate input (IN101 in Table 1.23), applies to Terminal 01 only. Wire separate breaker fail initiate inputs to each of the terminals requiring breaker failure protection. The remaining settings apply to all 18 terminals.

Breaker Failure Clearing Times

Figure 1.41 is based on actual test data at room temperature using various settings. Relay element specifications given in the Introductions and Specifications include the entire temperature range of the relay. Output contact times are not included.

Figure 1.41 Breaker Failure Clearing Times

Circuit Breaker Failure Trip Logic

Following a breaker failure relay operation, the SEL-487B breaker failure trip logic sends trip signals to all of the breakers the logic identifies as being in the same bus-zone as the faulted breaker. The logic uses breaker failure trip information from the internal breaker failure logic and zone selection information to determine which breakers to trip. Figure 1.42 shows the processing sequence for tripping the breakers according to the breaker failure operation FBF01.

Figure 1.42 Station Breaker Failure Trip Logic

For example, assume Terminals I01, I02, I03 and I04 are in Bus-Zone 1, with Terminal 01 failing for an external fault. The logic determines that Terminal 01 is in Bus-Zone 1, just as Terminals 02, 03, and 04 are also in Bus-Zone 1. The relay asserts Relay Word bits SBFTR01, SBFTR02, SBFTR03, and SBFTR04. With the assumption that there are four breakers, assign these four Relay Word bits to the corresponding TR01, TR02, TR03, and TR04 trip equations.

The breaker failure trip logic asserts the breaker failure trips as shown in *Table 1.24.*

Terminal Within a Zone	Station Brea
I01	S
102	

Table 1.24 Station Breaker Failure Trips

Terminal Within a Zone	Station Breaker Failure Trip Bit
I01	SBFTR01
I02	SBFTR02
103	SBFTR03
104	SBFTR04
105	SBFTR05
106	SBFTR06
107	SBFTR07
108	SBFTR08
109	SBFTR09
110	SBFTR10
I11	SBFTR11
I12	SBFTR12
I13	SBFTR13
I14	SBFTR14
I15	SBFTR15
I16	SBFTR16
I17	SBFTR17
I18	SBFTR18

SBFTR is the OR combination of SBFTR01 to SBFTR18.

Buscoupler/Bus Sectionalizer Configurations

With the flexibility of SELOGIC control equations, you can configure any one of the bus sectionalizer (tie breaker) configurations in Figure 1.43 through Figure 1.45 without additional wiring; it is simply a software configuration change.

CT Either Side of the Breaker With Overlap. Figure 1.43 shows a bus sectionalizer with a CT on either side of the circuit breaker with the protection arranged in overlap. For an overlap application, connect the CTs so that each zone of protection (B1 and B2) includes the tiebreaker circuit breaker. For example, for Fault 1, only the differential element of Busbar B2 operates; the differential element of Busbar B1 is stable. However, because of the overlap connections, both differential elements operate for Fault F2.

Figure 1.43 Two CTs With the Busbar Protection Configured in Overlap

CT Either Side of the Breaker With Breaker Differential. Figure 1.44 also shows a bus sectionalizer with a CT on either side of the circuit breaker with the protection arranged in a breaker differential application. For a breaker differential application, connect the CTs so that each zone of protection (B1 and B2) excludes the tie-breaker circuit breaker. For example, for Fault F1, the differential element of Busbar B2 operates; the differential element of Busbar B1 is stable. The differential element of both Busbar B1 and Busbar B2 is stable for Fault F2. To provide protection for Fault F2, configure an additional differential zone of protection across the tie-breaker circuit breaker.

Figure 1.44 Two CTs With the Busbar Protection Configured as Breaker Differential

Single CT, Single or Two Cores With Overlap. Figure 1.45 shows a bus sectionalizer with a single CT on one side of the circuit breaker with the protection arranged in overlap.

Figure 1.45 Single CT With the Busbar Protection Configured in Overlap

Refer to the application examples in Section 1: System Configuration Guideline and Application Examples in the Applications Handbook for more information.

Coupler Security Logic

A fault between buscoupler circuit breaker and CT usually results in the loss of multiple zones as well as in delayed fault clearance, except for where the buscoupler has overlapping zones of protection where both zones are tripped instantaneously. For buscoupler configurations such as breaker differential and single CT applications, fault clearance time usually equals the buscoupler breaker failure time for faults between the CT and the breaker. The coupler security logic includes logic to shorten this time so that it equals the operating time of the buscoupler circuit breaker. Coupler security logic also includes logic to prevent tripping of multiple bus-zones instead of just the faulted buszone. Although identifying the faulted bus-zone introduces a trip delay, this delay is still shorter than the buscoupler breaker failure time.

Preventing the loss of multiple bus-zones requires two steps. First, the coupler security logic allows the differential elements to trip only the buscoupler circuit breaker, thereby interrupting the fault current from the unfaulted bus-zone. Then, this logic removes the buscoupler CTs from all differential calculations. Removing the buscoupler CTs from the differential calculations of the unfaulted bus-zone has no effect on the stability of this bus-zone because it no longer contributes to the fault current. However, removing the buscoupler CTs from the differential calculations of the faulted bus-zone causes the differential elements of the faulted bus-zone to operate. This application trips only the faulted bus-zone, thereby preventing the indiscriminate loss of multiple zones, irrespective of the fault position or CT location.

In most cases, breaker auxiliary contacts provide circuit breaker status information. However, circuit breaker auxiliary contact failure or misalignment can result in relay misoperation instead of accelerated tripping. The following discussion describes network operating conditions that may result in relay misoperation and shows how the coupler security logic in the SEL-487B prevents these possible misoperations. Two examples of accelerated tripping show how to apply the coupler security logic to breaker differential and single CT applications. In all cases, assume circuit breaker operating times to be two cycles.

Network Operating Condition 1

Figure 1.46 depicts a subset of a substation showing Bus Sectionalizer Breaker Z, and two terminals labeled Feeder 1 and Feeder 2. Zone 1 and Zone 2 are the two bus sections at the station, with the bus sectionalizer busbar protection arranged in overlap. Because both sectionalizer disconnects (Z891 and Z892) are closed, the currents from the sectionalizer CTs are considered in the differential calculations. In this example, the bus sectionalizer circuit breaker is open, and both feeder circuit breakers are closed. Table 1.25 summarizes the prevailing network operating conditions.

Figure 1.46 Fault F1 Between Bus Sectionalizer and CT With the Bus Sectionalizer Circuit Breaker Open

Table 1.25 Summary of the Network Conditions Shown in Figure 1.46

Station Conditions	Fault Description
Bus sectionalizer Circuit Breaker Z open Both bus sectionalizer disconnects (Z891 and Z892) closed	Fault F1 develops between the sectionalizer circuit breaker and CT
All other breakers and disconnects closed	

Assume now that Fault F1 occurs as indicated in *Figure 1.46*. Because the currents from the sectionalizer CTs are considered in the differential calculations, and because the bus sectionalizer busbar protection is arranged in overlap, both zones trip. *Table 1.26* summarizes the event.

Table 1.26 Summary of the Event for Fault F1 Shown in Figure 1.46

Tripping for Fault F1	Clearing Time	Zones Lost	Comment
All breakers in both zones trip without time delay	2 cycles	2	Zone 2 tripped unnecessarily

One solution for overcoming this problem is to include the bus sectionalizer circuit breaker auxiliary contact together with the disconnect auxiliary contact as a condition for CT consideration in the differential calculations. With the bus sectionalizer circuit breaker auxiliary contact included in the conditions, the current inputs from the bus sectionalizer CTs are not considered in the differential calculations when the bus sectionalizer circuit breaker is open. In this case, only Zone 1 trips for Fault F1 in Figure 1.46.

Including the bus sectionalizer circuit breaker auxiliary contact solves the problem in Network Operating Condition 1. However, Network Operating Condition 2 shows that the busbar protection is still not completely secure, although the conditions for CT consideration in the differential calculations now include the bus sectionalizer circuit breaker auxiliary contact.

Network Operating Condition 2

Figure 1.47 shows the same substation under different operating conditions. The bus sectionalizer circuit breaker auxiliary contact 52A forms part of the conditions for CT consideration in the differential calculations. Although the disconnects are closed, the bus sectionalizer circuit breaker is open and the differential calculations do not consider the bus sectionalizer CT inputs in the differential calculation. Fault F2 in *Figure 1.47* represents grounding straps that were inadvertently left on the busbars in Zone 1. The Feeder 1 circuit breaker is open, and the bus sectionalizing circuit breaker is about to close. Table 1.27 summarizes the prevailing network operating conditions.

Figure 1.47 Closing the Bus Sectionalizing Circuit Breaker Onto a Faulted **Busbar**

Table 1.27 Summary of the Events for Fault F2 Shown in Figure 1.47

Station Conditions	Fault Description
Bus sectionalizer Breaker Z closing	Sectionalizer breaker
Both bus sectionalizer disconnects (Z891 and Z892) are closed	closes onto Fault F2
All Zone 2 feeder breakers and disconnects (892) are closed	
All Zone 1 feeder disconnects (891) are open	

If the bus sectionalizing circuit breaker auxiliary contacts are misaligned or fail in such a way that the CTs from the sectionalizer are not considered in the differential calculation at fault inception, the Zone 2 differential elements misoperate. Table 1.28 summarizes the event.

Table 1.28 Summary of the Event for Fault F2 Shown in Figure 1.47

Tripping for F2	Clearing Time	Zones Lost	Comment
All breakers in Zone 2 trip without time delay (Feeder 2 and Circuit Breaker Z)	2 cycles	1	Incorrect tripping for terminals connected to Zone 2; only terminals connected to Zone 1 (Breaker Z) should have tripped.

Use the coupler security logic (see *Figure 1.48*) in the SEL-487B to prevent relay misoperation for network conditions 1 and 2.

Coupler Security Logic

Inserting the bus sectionalizer CTs into the differential calculations before fault inception prevents relay misoperation for Network Operating Condition 2. *Figure 1.48* shows one of the four coupler security logics available in the relay. Wire a bus sectionalizer auxiliary contact to input CB52A1, and wire the bus sectionalizer circuit breaker closing signal to input CBCLS1. Inputs CB52A1 and CBCLS1 coordinate the bus sectionalizer CT insertion into and removal from the differential calculation. For breaker differential applications, enter CSL1, the output from the coupler security logic, instead of the bus sectionalizer circuit breaker auxiliary contact, as a condition for CT consideration in the differential calculations.

As shown in *Figure 1.48*, the breaker auxiliary contact (CB52A1) and the close signal (CBCLS1) are in parallel. Issuing the close signal to the bus sectionalizer circuit breaker close coil also asserts Relay Word bit CSL1. Timer CBCLD01 maintains the close signal for five cycles (default setting), allowing ample time for the bus sectionalizer circuit breaker auxiliary contact to change state. When Relay Word bit CSL1 asserts, the CTs are immediately considered in the differential calculation. Because the bus sectionalizer CTs are considered in the differential calculation before fault inception, Zone 2 is stable for Network Operating Condition 2.

Figure 1.48 Coupler Security Logic for Accelerated Tripping and Busbar Protection Security for Circuit Breaker Auxiliary Contact Misalignment

When the bus sectionalizer circuit breaker trips, misaligned circuit breaker auxiliary contacts can remove the bus sectionalizer CTs from the differential calculation while current still flows through the bus sectionalizer circuit breaker. Timer CB52D01 maintains the status of the bus sectionalizer circuit breaker auxiliary contact as closed for four cycles (default setting) after the contact changes state. During this four-cycle time delay, the bus sectionalizer CTs are still considered in the differential calculation, allowing the bus sectionalizer circuit breaker ample time to interrupt the current.

ACTRP1, the third input into the coupler security logic provides an input to accelerate tripping of the bus sectionalizer circuit breaker for faults between bus sectionalizer circuit breaker and CT. Accelerated tripping operating time

is the time period greater than the bus sectionalizer circuit breaker operating time (typically 2 cycles) but shorter than the breaker failure time (typically 6–10 cycles).

Breaker Differential

Figure 1.49 shows an application of breaker differential protection. There are CTs on either side of the bus sectionalizing circuit breaker, and we configure a differential zone of protection across the bus sectionalizing circuit breaker. This is in addition to Zone 1 and Zone 2 of the busbar protection. Any of the six zones may be used for breaker differential protection. Breaker differential protection is a good choice for stations where preservation of supply is more important than a very fast clearing time.

Figure 1.49 CTs on Either Side of the Sectionalizer Circuit Breaker With Breaker Differential Across Breaker Z

We use the coupler security logic (initially without an ACTRP1 input) and consider the relay operation for Fault F3 in Figure 1.49. Circuit Breaker Z opens after two cycles, deasserting the input to CB52A1. When Circuit Breaker Z trips, fault current no longer flows from Zone 2, but Zone 1 still contributes to the fault. Four cycles after Circuit Breaker Z trips (CB52D01 default time), Relay Word bit CSL1 deasserts, removing both bus sectionalizing CTs from all three differential elements (breaker differential, Zone 1, and Zone 2). Zone 2 is stable after removing the CTs from the Zone 2 differential calculations because Zone 2 no longer contributes to the fault. However, Zone 1 still contributes to the fault, and removing the CTs from the Zone 1 differential calculations causes the Zone 1 differential elements to operate, clearing the fault. Only one zone is lost, although this loss occurs after a time delay. Table 1.29 summarizes the events.

Table 1.29 Summary of the Event for Fault F3 Shown in Figure 1.49

Relay and Circuit Breaker Operation for F3	Time Delay	Zones Lost	Comment
Breaker differential (87R3) asserts	1 cycle	0	Typical operating time is 0.75 cycles
Bus sectionalizer trips	2 cycles	0	Correct tripping
Timer CB52A1 expires	4 cycles	0	Relay Word bit CSL1 deasserts, unbalancing Zone 1
SEL-487B operating time	1 cycle	0	Typical operating time is 0.75 cycles
All circuit breakers in Zone 1 trip	2 cycles	1	Total clearing time is 10 cycles

Because Fault F3 is external to Zone 1 and Zone 2, both of these zones are stable for as long as the sectionalizing breaker CTs are considered in the differential calculations. If the sectionalizing breaker fails, both Zone 1 and Zone 2 trip only after breaker failure time.

Function ACTRP1 provides an input for removing the bus sectionalizing CTs sooner. One solution is to assign 87R3, the output from the sectionalizer breaker differential element to input ACTRP1. Relay Word bit 87R3 asserts when there is a fault within the sectionalizer zone. With ACTPPU1 set to 4 cycles, Relay Word bit CSL1 deasserts about 2 cycles after the sectionalizing circuit breaker interrupts the fault current. *Table 1.30* summarizes the events.

Table 1.30	Summary of the	Event for Fa	ault F3 Using th	e Accelerated Trip
Function				

Relay and Circuit Breaker Operation for F3	Time Delay	Zones Lost	Comment
Breaker differential (87R3) asserts	1 cycle	0	Typical operating time is 0.75 cycles. Timer ACTPPU1 starts timing
Bus sectionalizer trips	2 cycles	0	Correct tripping
Timer ACTPPU1 expires	2 cycles	0	Reduce this setting for faster clearance
SEL-487B operating time	1 cycle	0	Typical operating time is 0.75 cycles
All circuit breakers in Zone 1 trip	2 cycles	1	Total clearing time is 8 cycles

Single CT Application

Figure 1.50 shows the same substation, now with only one CT installed on the bus sectionalizer. The busbar protection is connected in overlap. The challenge for the busbar protection is to distinguish between faults F4 and F5. When Fault F5 occurs, Zone 1 is stable and the Zone 2 protection immediately trips Feeder 2 and the bus sectionalizer circuit breaker. Tripping Feeder 2 and the bus sectionalizer circuit breaker clears Fault F5.

Figure 1.50 Single CT Application With Fault F4 Between the Bus Sectionalizer Circuit Breaker and CT

When Fault F4 occurs, Zone 1 is stable, and, as before, the Zone 2 protection immediately trips Feeder 2 and the bus sectionalizer circuit breaker. Tripping Feeder 2 and the bus sectionalizer circuit breaker, however, does not clear Fault F4, and fault current still flows through the bus sectionalizer CT. At the same time, the busbar protection also initiates breaker failure protection on Feeder 2 and the bus sectionalizer. This fault current causes the breaker failure protection of the bus sectionalizer to continue timing, although the bus

sectionalizer circuit breaker tripped. After the bus sectionalizer breaker failure timer times out, all circuit breakers in Zone 1 trip. Both Zone 1 and Zone 2 trip to clear this fault.

If delayed tripping time for Zone 2 busbar faults is in order, use a combination of the zone supervision and coupler security logic to prevent losing both zones. Assign 87R2, the output from the Zone 2 differential element, to ACTRP1, the accelerated trip input of the coupler security logic. Assign the negated output from the coupler security logic (NOT CSL1) to supervise the Zone 2 differential element output (Z2S := NOT CSL1). For single CT applications, enter CB52A1, the bus sectionalizer circuit breaker auxiliary contact, as a condition for CT consideration in the differential calculations for the zone supervised by CSL1 (Zone 2 in this case). Then, enter CB52T1, the coupler status timed out bit, as a condition for CT consideration in the differential calculations for the unsupervised zone (Zone 1 in this case).

For faults in Zone 2, trip only the bus sectionalizer circuit breaker. After the bus sectionalizer opens, remove the bus sectionalizer CT from the differential calculations of Zone 2. After a set delay of at least 2 cycles (to allow the 87R2 element to reset), remove the Zone 2 supervision and the bus sectionalizer CT from the differential calculations of Zone 1.

When either Fault F4 or Fault 5 occurs, the Zone 2 differential element operates to clear the fault. The Zone 2 zone supervision prevents Relay Word bit 87Z2 from asserting, and only the bus sectionalizer circuit breaker receives a trip signal. The circuit breaker trips two cycles later, removing CT cores C1 and eventually C2 from the differential calculations for Zone 1 and Zone 2.

For Fault F4, the bus sectionalizer circuit breaker is open, but fault current still flows through CT Cores C1 and C2. Removing the bus sectionalizer CTs from all differential calculations prevents Zone 2 from operating (current from CT Core C1 removed) but causes Zone 1 to operate (balancing current from CT Core C2 removed).

For Fault F5, tripping the bus sectionalizer circuit breaker interrupts the fault current contribution from Zone 1, and the Zone 1 differential element is stable. The Zone 2 zone supervision prevents tripping of terminals in Zone 2, until Accelerate Trip Timer ACTRP1 times out. When ACTRP1 times out, coupler security logic output CSL1 deasserts. When Relay Word bit CSL1 deasserts, Relay Word bit Z2S asserts, allowing the Zone 2 differential element (87Z2) to operate and issuing a trip signal to all circuit breakers in Zone 2. See Application 7: Double and *Transfer Bus (Outboard CTs) on page A.1.190* for an example.

Table 1.31 shows the coupler security logic default settings for Coupler 1; Couplers 2 through 4 have the same settings.

Table 1.31 Coupler Security Logic Settings (Sheet 1 of 2)

Setting	Setting description	Range	Default Value
CB52A1	Coupler 1 Status (SELOGIC control equation)	SV	NA
CB52DO1	Coupler 1 Status Dropout Delay (0.00–1000 cyc)	0.00–1000	4
CBCLS1	Coupler 1 Close Command (SELOGIC control equation)	SV	NA
CBCLD01	Coupler 1 Close Command D/O Delay (0.00–1000 cyc)	0.00–1000	5

Table 1.31 Coupler Security Logic Settings (Sheet 2 of 2)

Setting	Setting description	Range	Default Value
ACTRP1	Coupler 1 Acc Trip (SELOGIC control equation)	SV	NA
ACTPPU1	Coupler 1 Acc Trip Pickup Delay (0.00–1000 cyc)	0.00–1000	4

Disconnect Monitor

Disconnect auxiliary contacts provide the zone selection logic with the information required to dynamically assign current inputs to the appropriate differential elements. *Figure 1.51* depicts the logic for Disconnect Logic Circuit 01 in the relay, one of 48 disconnect logic circuits available in the relay. This logic requires both normally open (89A) and/or normally closed (89B) disconnect auxiliary contacts.

Table 1.32 shows the four possible disconnect auxiliary contact combinations, and the way in which the relay interprets these combinations. Applying the principle of (disconnect) NOT OPEN = (disconnect) CLOSED, the relay properly coordinates the primary current flow and the CT current assignment to the appropriate differential element.

Table 1.32 Disconnect 89A and 89B Auxiliary Contact Status Interpretation

Case	89A01	89B01	Disconnect Status (89CLO1)
1	0	0	Closed (1)
2	0	1	Open (0)
3	1	0	Closed (1)
4	1	1	Closed (1)

The following description of the contact combinations assumes the disconnect auxiliary contacts are the only conditions declared in the terminal-to-bus-zone variable settings.

Figure 1.51 Disconnecting Switch Status Logic

Case 1 occurs when disconnect auxiliary contact 89A and auxiliary contacts 89B are open simultaneously. This case is the intermediate position in an open-to-close or close-to-open operation. Timer 89ALP01 times for this condition and asserts Relay Word bit 89AL01 when the disconnect auxiliary contacts remain in the intermediate position for a period exceeding the 89ALP01 timer setting. Relay Word bit 89OIP01 also asserts during this

period, indicating a disconnect operation in progress condition. The relay considers the disconnect main contact closed during this period, and the CTs are considered in the differential calculations.

Case 2 is the only combination of disconnect auxiliary contacts for which the relay considers the disconnect main contact to be open. This is also the only combination for which the CTs are not considered in the differential calculations.

NOTE: Use Relay Word bit 89CL01 in SELogic control equations when entering the conditions in the terminal-to-bus-zone settings.

Case 3 is the only combination of disconnect auxiliary contacts for which the relay confirms the disconnect main contacts to be closed. Relay Word bit 89CL01 asserts to indicate the main contact close position. The CTs are considered in the differential calculations.

Case 4 is an illegitimate condition, with the disconnect auxiliary contacts showing the disconnect main contact to be open and closed simultaneously. Timer 89ALP01 times for this condition and asserts Relay Word bit 89AL01 when the disconnect auxiliary contacts remain in this condition for a period exceeding the timer setting. The relay considers the disconnect main contact closed during this period, and the CTs are considered in the differential calculations.

The relay includes 48 alarm timers that provide individual time settings for 48 disconnect logic circuits. These individual timers are useful in installations where the disconnect travel times differ substantially. In particular, sequentially operated devices (pantographs, for example) have travel times much longer than normal disconnects.

Relay Word bit 890IP represents the OR combination of Relay Word bits 89OIP01 through 89OIP48, and Relay Word bit 89AL (not shown) is respectively the OR combination of Relay Word bits 89AL01 through 89AL48.

To ensure correct differential element operation, the contacts must comply with the requirements listed in Table 1.33.

Table 1.33 Disconnect Auxiliary Contact Requirements to Ensure Correct **Differential Element Operation**

Operation	Requirement
From disconnect open to disconnect close operation	Assign the currents to the applicable differential element before the disconnect reaches the arcing point (the point where primary current starts to flow).
From disconnect close to disconnect open operation	Remove the current from the applicable differential element only once the disconnect has passed the arcing point (the point where primary current has stopped flowing).

Figure 1.52 shows the disconnect auxiliary contact requirements with respect to the arcing point.

Figure 1.52 Disconnecting Switch Main Contact, 89a, and 89b Status for Open-to-Close and Close-to-Open Conditions

Disconnect Switch Starts to Open

Zone-Switching Supervision Logic

Because the disconnect monitoring logic requires both 89A and 89B disconnect auxiliary contacts, installations with only an 89A (or 89B) contact available cannot use the disconnect monitoring logic. In these installations, there is always uncertainty whether the disconnect auxiliary contact actually changed status. This is important information, because busbar protection will misoperate if input currents are assigned to the incorrect differential elements. Zone-switching supervision logic uses the ZSWOP Relay Word bit (see *Dynamic Zone Selection Logic on page R.1.15*) that asserts for any terminal-to-bus-zone or bus-zone-to-bus-zone change. In other words, the ZSWOP Relay Word bit provides an acknowledgment that the relay has recognized a change in disconnect auxiliary contact status. *Figure 1.53* shows the logic.

Figure 1.53 Zone-Switching Supervision Logic

Asserting Relay Word bit ZSWO activates the logic, the rising edge of ZSWO starting timer ZSWOPU, and asserts the ZSWOIP bit for the period when the timer is timing. When the zone selection logic acknowledges a change in disconnect status, the ZSWOP Relay Word bit asserts and resets the timer. If the Zone Selection does not acknowledge the switching operation within the

ZSWOPU time setting, the logic asserts the switching operation alarm ZSWOAL. SELOGIC control equation RZSWOAL provides the input to reset the alarm.

There is only one zone-switching supervision logic in the relay; disconnect open and close commands must be combined externally to the relay for electrically operated disconnects, as shown in Figure 1.54.

Figure 1.54 External Wiring and Initiation Input for Zone-Switching **Supervision**

For manually operated disconnects, configure one of the SEL-487B front-panel pushbuttons as an input to assert the ZSWO Relay Word bit. Timer ZSWOPU has a range of more than 27 minutes, allowing ample time for the operating procedures. Table 1.34 shows zone-switching supervision logic default settings.

Table 1.34 Zone-Switching Supervision Logic Default Settings

Setting	Setting Description	Range	Default Value (Cycles)
EZSWSUP	Enable Zone Switching Supervision	Y or N	N
ZSWO	Zone Switching Operation	SV	NA
RZSWOAL	Reset Zone Switching Op. Alarm	SV	NA
ZSWOPU	Zone Switching Operation Pickup Delay	0–99999 сус	1800

Differential Trip Logic

This is the final stage of the differential trip output. Figure 1.55 is the Bus-Zone portion of Figure 1.19 from the zone supervision logic. At this point, the differential element has operated (87R1), and all supervising criteria are met (Z1S). The differential trip logic now acquires all Zone 1 terminals and generates a trip output to the appropriate breakers.

Figure 1.55 Differential Element Zone Supervision for Zone 1

Figure 1.56 shows the processing sequence for tripping the breakers as a function of the differential element operation, 87Zn, where n = 1 through 6.

Figure 1.56 Bus Differential Trip Logic

The differential trip logic asserts differential trips as shown in *Table 1.35*.

Table 1.35 Differential Trips

Terminal Within a Zone	Differential Trip Bit
I01	87BTR01
I02	87BTR02
I03	87BTR03
104	87BTR04
105	87BTR05
106	87BTR06
107	87BTR07
108	87BTR08
109	87BTR09
110	87BTR10
I11	87BTR11
I12	87BTR12
I13	87BTR13
I14	87BTR14
I15	87BTR15
I16	87BTR16
I17	87BTR17
118	87BTR18

Date Code 20210514

Check Zone **Differential Trip Output**

This is the final stage of the check zone differential trip output. Figure 1.57 is the check zone portion of Figure 1.19 on page R.1.14 from the zone supervision logic. At this point, the Check Zone Differential Element has operated (87RCZ1), and all supervising criteria are met (CZ1S). The supervised trip output is then asserted (87CZ1). The check zone output is independent of the bus zones and is not processed by the differential trip logic shown in Figure 1.56.

Figure 1.57 Differential Element Zone Supervision for Check Zone

Breaker Trip Logic

NOTE: In the trip logic, the set or latch function (TRkk) has priority over the reset or unlatch (ULTRkk) function Figure 1.58 shows the tripping logic for Terminal 01 in the SEL-487B. The remaining logic for Terminal 02 through Terminal 18 is identical and uses variables TR02 through TR18 and ULTR02 through ULTR18, and TRIP02 through TRIP18, respectively.

Figure 1.58 Trip Logic for Breaker 1

Enable the trip logic settings by setting the global setting NUMBK = kk, where kk is the number of breakers at the station. For example, if you have 12 terminals installed at a substation, set NUMBK = 12.

Asserting TR01 directly asserts TRIP01 via input OR Gate 1 and starts the Minimum Trip Duration Timer (TDURD). TRIP01 asserts for a minimum of TDURD cycles, even if TR01 is asserted for as little as one processing interval, or if the unlatch portion of the logic is asserted before TDURD expires. The default setting of TDURD is twelve cycles.

TRIP01 also seals itself in via AND Gate 1. This AND gate receives the negated inputs from the unlatching functions. As long as ULTR01 or TRGTR are not asserted, TRIP01 remains sealed in. TRIP01 is used to drive an output contact to initiate tripping of the breaker.

You can use one of four methods to unlatch the trip logic. One method is to assert either one of SELOGIC control equation setting ULTR01 or SELOGIC control equation setting RSTTRGT. You can also push the {TARGET RESET} pushbutton on the front panel or send the TAR R serial port command to assert Relay Word bit TRGTR. Relay Word bit TRGTR also resets the LED targets on the front panel. In the trip logic, assertion of ULTR01, RSTTRGT, or TRGTR places a zero input on AND Gate 1 and, thereby, breaks the TRIP01 seal-in loop.

Note that TRIP01 is always asserted when TR01 is asserted, regardless of the action of ULTR01 or the **TARGET RESET** commands, and that TRIP01 will be asserted for a minimum of TDURD cycles no matter how short the length of time TR01 has been asserted.

Circuit Breaker Status Logic

Figure 1.59 shows the circuit breaker status logic, which uses the combination of breaker 52A (normally open) auxiliary contact and the open phase detection function, OPH. Because 52B (normally closed) contacts are not always available and as a means to reduce the number of I/O required, the 52B contacts are not required in the logic. However, for applications where the protection philosophy requires a 52B (normally closed) contact, wire the 52B contact into the relay, but use the negated form of the 52B contact in the logic, i.e., NOT 52B (52A01: = NOT IN301).

Relay Word bits 52CL01 through 52CL18 assert when the breaker is closed. Open phase detection logic (OPHnn) Relay Word bits are included in the circuit breaker status logic to guard against delayed breaker status declaration resulting from possible breaker auxiliary contact misalignment. If a discrepancy between the open phase detection logic and the breaker auxiliary contact exists for as long as five cycles, the logic generates an alarm that indicates one of the following:

- ➤ Possible auxiliary contact supply voltage failure
- ➤ Possible failure in an auxiliary contact connection circuit
- Possible failure of auxiliary contact mechanism

The logic in *Figure 1.59* is generic for three-pole or single-pole breaker mechanisms.

Figure 1.59 Breaker Status and Alarm Logic

Note that OPHnn Relay Word bits assert when no current flows through the circuit breaker, and that set has priority over reset in the circuit breaker status logic. *Table 1.36* shows the output states for all possible breaker conditions.

Table 1.36 Conditions and Results for the Circuit Breaker Status Logic

Breaker Status	52A01 or NOT 52B01	OPH01	52CL01	52AL01
Open	0	1 (no current)	0	0
Closed	1	1 (no current)	1	0
Open	0	0 (current flow)	1	1 (after 5 cyc)
Closed	1	0 (current flow)	1	0

Section 2

SELogic Control Equation Programming

Overview

This section describes the use of SELOGIC® control equation programming to customize relay operation and automate substations. This section covers the following topics:

- ➤ SELOGIC control equation elements
- ➤ SELOGIC control equation operators
- ➤ Guidelines for effective SELOGIC control equation programming
- ➤ SELOGIC control equations for users of SEL-300 series relays

SELOGIC Control Equation History

SEL introduced SELOGIC control equations in the SEL-300 series relays to provide relay operation customization. SELOGIC control equations in the SEL-487B Relay provide both protection application flexibility and a platform for substation automation.

SELOGIC control equation programming in the SEL-487B includes several features and capabilities not included in SEL-300 series relays. The new features with a brief description are listed in *Table 2.1*.

Table 2.1 Advanced SEL-487B SELogic Control Equation Features

Feature	Description
Protection/automation separation	Segregation of protection and automation work and settings
Free-form logic	Custom logic operation and execution order
Comments	Documentation of SELOGIC control equations within the equation
Math operations	Calculations for automation or extended protection functions
Sequencing timers	Additional timers designed for sequencing automated operations
Counters	Increased sophistication in custom protection and automation programming
Aliases	Custom programming is more readable when you rename up to 200 analog or digital quantities

Use SELOGIC control equations in the SEL-487B to customize protection operation, create custom protection elements, and automate substation operation. The SEL-487B introduces several advanced programming features, operators, and methods. *Table 2.2* is a summary that compares SELOGIC control equation programming in SEL-351 and SEL-311 series relays with the SEL-487B.

lable 2.2 SEL-487B SELOGIC CONTROL Equation Programming Summa	Table 2.2	SEL-487B SELogic Control Equation Programming Summary
---	-----------	---

	SEL-351/	SEL-487B		
Element	SEL-311 Series	Protection Free Form	Automation Free Form	
SELOGIC control equation variables	16	64	256	
SELOGIC math variables	0	64	256	
Conditioning timers ^a	16	16	0	
Sequencing timers	0	32	32	
Counters	0	32	32	
Latch bits	16	32	32	

a Similar to SEL-300 series relay SELogic control equation programming.

Separation of Protection and Automation Areas

The SEL-487B acts as a protective relay and as a node in distributed substation automation. The relay collects data, coordinates inputs from many interfaces, and automatically controls substation equipment. The relay performs protection and automation functions but keeps programming of these functions separate. For example, someone modifying or testing a station restoration system created in automation programming should not be able to corrupt programming for protection tasks. Similarly, extended protection algorithms must operate at protection speeds unaffected by the volume of automation programming.

The SEL-487B contains several separate programming areas discussed in SELOGIC Control Equation Setting Structure on page R.2.6. Separate access levels and passwords control access to each programming area and help eliminate accidental programming changes. For example, use Access Level P to modify protection configuration and protection free-form SELOGIC control equation programming and Access Level A to access automation programming.

Protection and automation areas must interact and exchange information. Protection and automation interact and exchange information through separate storage areas (variables) for results of automation and protection programming. The relay combines the results in the output settings that drive automation storage areas as illustrated in *Figure 2.1*.

NOTE: If you want unlimited access to both automation and protection configuration and programming, log in to Access Level 2.

NOTE: Be careful how you combine automation variables and protection variables. The relay updates protection variables every twelfth of a cycle but updates the automation variables much less often (within a one-second period).

Figure 2.1 Protection and Automation Separation

Figure 2.1 illustrates how the SEL-487B keeps protection and automation programming separate while still exchanging information. The arrows indicate data flow between components. The Relay Word Bits and Analog Quantities are visible to protection, automation, and output programming. Protection programming uses the Relay Word Bits, Analog Quantities, Protection Variables, and Automation Variables as inputs, but only writes and stores information to the Protection Variables. Similarly, automation programming uses data from all parts of the relay, but only stores data in the Automation Variables.

The Output SELOGIC control equation settings use the Relay Word Bits, Analog Quantities, Protection Variables, and Automation Variables to control outputs and other information leaving the relay. Use the output settings to create a custom combination of the results of protection and automation operations. For example, an OR operation will activate an output when protection or automation programming results necessitate activating the output. You can use more complicated logic to supervise control of the output with other external and internal information. For example, use a command from the SCADA master to supervise automated control of a motor-operated disconnect in the substation.

SELOGIC Control Equation Programming

There are two major areas where the SEL-487B uses SELOGIC control equations. First, fixed SELOGIC control equations define the operation of fixed protection elements or outputs. As with SEL-300 series relay programming, protection programming and outputs use fixed SELOGIC control equations. Second, you can use free-form SELOGIC control equations for free-form programming that includes mathematical operations, custom logic execution order, extended relay customization, and automated operation.

Fixed SELOGIC Control Equations

Fixed result SELOGIC control equations are equations where the left side (result storage location), or LVALUE, is fixed. Programming in SEL-300 series relays consists of all fixed SELOGIC control equations. Fixed equations include protection and output settings that you set with SELOGIC control equations.

SEL-487B fixed SELOGIC control equations are Boolean equations. Fixed result control equations can be as simple as a single element reference (for example PSV01) or can include a complex equation. An example of fixed programming is shown in *Example 2.1*.

EXAMPLE 2.1 Fixed SELogic Control Equations

The following equations are examples of fixed SELogic control equations for relay Output OUT101. The text after the # character is a comment included in the equation and stored in the relay for future reference and documentation.

OUT101 := 1 # Turn on OUT101

OUT101 := NA # Do not evaluate an equation for OUT101

OUT101 := OUT102 AND RB02 # Turn on OUT101 if OUT102 and RB02 are on

Fixed SELOGIC control equations include expressions that evaluate to a Boolean value, True or False, represented by a logical 1 or logical 0.

OUT101 := PSV04 # Turn on OUT101 if protection PSV04 is on

More complex programming in the free-form area controls OUT101. The result of free-form programming is available as an element in a fixed equation.

OUT101 := **AMVOO3 > 5** # Turn on OUT101 if AMVOO3 is greater than 5

While you cannot perform mathematical operations in fixed programming, you can perform comparisons on the results of mathematical operations performed elsewhere.

Free-Form SELOGIC Control Equations

Free-form SELOGIC control equations provide advanced relay customization and automation programming. There are free-form SELOGIC control equation programming areas used for protection and automation. You can use free-form SELOGIC control equation programming to enter sequential program steps that the relay will execute in the order you specify. You can refer to storage locations multiple times and build up intermediate results in successive equations. You can also enter comment lines to help document programming. Mathematical operations are available only in free-form SELOGIC control equation programming areas. An example of free-form SELOGIC control equation programming is shown in *Example 2.2*.

EXAMPLE 2.2 Free-Form SELogic Control Equations

The following equations are examples of free-form SELOGIC control equations. The text after the # character is a comment included in the equation and stored in the relay for future reference and documentation.

Free-form equation example programming

#

Is 80% of A-phase fundamental voltage greater than 12 kV

PMV01 := **V01FM * 0.8** # 80% of V01 input voltage

PSV04 := **PMV01 >= 12** # True if A-phase fundamental voltage is greater than or equal to 12000

Use comments to group settings in the free-form SELOGIC control equations by task and to document individual equations. In this example, an intermediate calculation generates the value we want to test to determine if PSVO4 will be turned on.

Assignment Statements

Both fixed and free-form SELOGIC control equations are a basic type of computer programming statement called an assignment statement. Assignment statements have a basic structure similar to that shown below:

LVALUE := Expression

Starting at the left, the LVALUE is the location where the result of an evaluation of the expression on the right will be stored. The := symbol marks the statement as an assignment statement and provides a delimiter or separator between the LVALUE and the expression. Type the := symbol as a colon and equal sign. The assignment symbol is different than a single equal sign, =, to avoid confusion with a logical comparison between two values. The type of LVALUE must match the result of evaluating the expression on the right. The following discussion provides more detail.

There are two basic types of assignment statements that form SELOGIC control equations. In the first type, Boolean SELOGIC control equations, the SEL-487B evaluates the expression on the right to a result that is a logical 1 or a logical 0. The LVALUE must be some type of Boolean storage location or setting that requires a Boolean value. For example, the setting for the Protection Conditioning Timer 7 Input, PCT07IN, requires a value of 0 or 1, which you set with a Boolean SELOGIC control equation.

The second type is a math SELOGIC control equation. Use the math SELOGIC control equation to perform numerical calculations on data in the relay. For example, in protection free-form programming, enter AMV034 := 5 * I01FIM to store the product of 5 and the Terminal 01 current in automation math variable AMV034. Example 2.3 lists several examples of Boolean and math SELOGIC control equations.

EXAMPLE 2.3 Boolean and Math SELogic Control Equations

The equations below are examples of Boolean SELogic control equations.

Example Boolean SELogic control equations

PSV01 := IN101 # Store the value of IN101 in PSV01

PSV02 := IN101 AND RB03 # Store result of logical AND in PSV02

PST01IN := IN104 # Use IN104 as the input value for PST01

PSV03 := PMV33 >= 7 # Set PSV03 when PMV33 is greater than or equal to 7

The lines below are examples of math SELogic control equations.

Example math SELogic control equations

PMV01 := 5 # Store the constant 5 in PMV01

PMV02 := **0.5 * V01FM** # Store the product of V01 voltage and 0.5 in PMV02

Comments

Include comment statements in SELOGIC control equations to help document SELOGIC control equation programming. You can start a comment anywhere in a SELOGIC control equation with the # character. The comment then continues to the end of the line. If you begin a SELOGIC control equation with a comment character, then the entire line is a comment.

NOTE: During troubleshooting or testing, reenter a line and insert the comment character to disable it. Enter the line without the comment character to enable the line later when you want it to be executed.

Comments are a powerful documentation tool for helping both you and others understand the intent of programming and configuration in the SEL-487B. Use comments liberally; comments do not reduce SELOGIC control equation execution capacity.

SELOGIC Control Equation Setting Structure

The SEL-487B uses SELOGIC control equations in three areas: protection programming, automation programming, and output programming. First, you can customize protection operations with SELOGIC control equation settings and free-form programming. Second, automation contains a free-form programming area for more sophisticated SELOGIC control equation programming. Third, output programming contains a fixed area for relay output programming. The SELOGIC control equation programming areas are shown in *Figure 2.2*.

Figure 2.2 SELogic Control Equation Programming Areas

Protection

Protection SELOGIC control equation programming includes a fixed area and a free-form area. You can configure many protection settings within the relay with fixed SELOGIC control equation programming. Use these settings to

control protection operation and customize relay operation. Programming of fixed SELOGIC control equations in this area is very similar to programming in SEL-300 series relays.

There is a free-form SELOGIC control equation programming area associated with protection. Because this area operates at the protection processing interval along with protection algorithms and outputs, use this area to extend and customize protection operation. Protection free-form SELOGIC control equation programming includes a complete set of timers, counters, and variables.

For all protection settings, including protection SELOGIC control equation programming, there are six groups of settings that you activate with the protection settings group selection. Only one group is active at a time. When you switch groups, for example, you can activate completely different programming that corresponds to the conditions indicated by the active group. If you want the programming to operate identically in all groups, develop the settings in one group and copy these to all groups. You can copy settings using the **COPY** command documented in Section 7: ASCII Command Reference. You can also perform cut-and-paste operations in the ACSELERATOR QuickSet® SEL-5030 software.

NOTE: Perform operations that are not time critical in automation SELogic control equation programming. You can use this automation to reduce the demand and complexity of protection SELogic control equation programming.

Perform time-critical tasks with protection free-form SELOGIC control equations. For example, if you require a SELOGIC control equation for TR01 (Terminal 01 trip) that contains more than 30 elements, you must perform that calculation in several steps. Because detection of a TR01 condition is a timecritical activity, perform the calculation with protection free-form SELOGIC control equations and set TR01 to the protection SELOGIC control equation variable that contains the result.

Automation

Automation SELOGIC control equation programming is a large free-form programming area that consists of 10 blocks. The relay executes each block sequentially from the first block to the last. You do not need to fill a block completely or enter any equations in a block before starting to write SELOGIC control equations in the following blocks.

NOTE: Organize automation SELogic control equation programming into blocks based on function. It is easier to edit and troubleshoot small partially filled blocks that contain related programming.

Use automation SELOGIC control equation programming to automate tasks that do not require time-critical, deterministic execution. For example, if you are coordinating control inputs from a substation HMI and SCADA master, use automation free-form SELOGIC control equations and set the output contact setting to the automation SELOGIC control equation variable that contains the result.

Outputs

To provide protection and automation area separation, the output settings are in a fixed SELOGIC control equation area separate from protection and automation programming. You can take advantage of this separation to combine protection and automation in a manner that best fits your application. Outputs include the relay control outputs, outgoing MIRRORED BITS[®] points, and communications card control points. The relay executes output logic and processes outputs at the protection processing interval.

Multiple Setting Groups

The SEL-487B has six (6) independent setting groups, as shown in the left-hand side of *Figure 2.2 on page R.2.6*. Each setting group has complete relay settings and protection SELOGIC settings. The active setting group can be:

- ➤ Shown or selected with the SEL ASCII serial port **GROUP** command—see *GROUP on page R.7.16*.
- ➤ Shown or selected with the MAIN menu Set/Show menu item and the Active Group submenu item as described in *Figure 5.10 on page U.5.10*.
- ➤ Selected with SELOGIC control equation settings SS1 through SS6. Settings SS1 through SS6 have priority over all other selection methods. Use remote bits in these equations to select setting groups with Fast Operate commands as described in SEL Fast Meter, Fast Operate, and Fast SER Messages on page R.4.8.
- ➤ Shown with DNP3 Objects 20 and 22 as described in *Table 5.10 on page R.5.18* and selected with Objects 40 and 41.

Settings Groups: Application Ideas

Setting groups can be used for such applications as:

- Environmental conditions such as winter storms, periods of high summer heat, etc.
- ➤ Hot-line tag that disables closing and sensitizes protection
- ➤ Commissioning and operation

Active Setting Group Indication

Only one setting group can be active at a time. Relay Word bits SG1 through SG6 indicate the active setting group, as shown in *Table 2.3*.

Table 2.3 Definitions for Active Setting Group Indication Relay Word Bits SG1 Through SG6

Relay Word Bit	Definition
CHSG	Indication that a group switch time is operating, or a group switch change is underway
SG1	Indication that setting Group 1 is the active setting group
SG2	Indication that setting Group 2 is the active setting group
SG3	Indication that setting Group 3 is the active setting group
SG4	Indication that setting Group 4 is the active setting group
SG5	Indication that setting Group 5 is the active setting group
SG6	Indication that setting Group 6 is the active setting group

For example, if setting Group 4 is the active setting group, Relay Word bit SG4 asserts to logical 1, and the other Relay Word bits SG1, SG2, SG3, SG5, and SG6 are all deasserted to logical 0.

Active Setting Group Selection

The Global settings class contains the SELOGIC control equation settings SS1 through SS6, as shown in *Table 2.4*.

NOTE: The settings group switching settings are checked once per cycle. When setting TGR := 0, in order for a transient assertion to be recognized, it should be conditioned to remain. asserted for at least one cycle.

Table 2.4 Definitions for Active Setting Group Switching SELogic Control **Equation Settings SS1 Through SS6**

Setting	Definition
SS1	go to (or remain in) setting Group 1
SS2	go to (or remain in) setting Group 2
SS3	go to (or remain in) setting Group 3
SS4	go to (or remain in) setting Group 4
SS5	go to (or remain in) setting Group 5
SS6	go to (or remain in) setting Group 6

The operation of these settings is explained in the following example:

Assume the active setting group starts out as setting Group 3. Corresponding Relay Word bit SG3 is asserted to logical 1 as an indication that setting Group 3 is the active setting group.

With setting Group 3 as the active setting group, setting SS3 has priority. If setting SS3 is asserted to logical 1, setting Group 3 remains the active setting group, regardless of the activity of settings SS1, SS2, SS4, SS5, and SS6. With settings SS1 through SS6 all deasserted to logical 0, setting Group 3 still remains the active setting group.

With setting Group 3 as the active setting group, if setting SS3 is deasserted to logical 0 and one of the other settings (e.g., setting SS5) asserts to logical 1, the relay switches from setting Group 3 as the active setting group to another setting group (e.g., setting Group 5) as the active setting group, after qualifying time setting TGR (global settings):

TGR (settable from 0 to 54000 cycles) Group Change **Delay Setting**

NOTE: The CHSG Relay Word bit does not operate for settings changes initiated by the serial port or front-panel methods.

In this example, TGR qualifies the assertion of setting SS5 before it can change the active setting group. Relay Word bit CHSG asserts when the TGR time is picked-up and time, and also when a setting group change has been initiated.

Active Setting Group Changes

The SEL-487B is disabled for less than 1 second while in the process of changing active setting groups. Relay elements, timers, and logic are reset, unless indicated otherwise in the specific logic description. For example, local bit (LB01 through LB32), remote bit (RB01 through RB32), and latch bit (PLT01 through PLT32) states are retained during an active setting group change. The output contacts do not change state until the relay enables in the new settings group and the SELOGIC control equations are processed to determine the output contact status for the new group.

After a group change, an automatic message will be sent to any serial port that has setting AUTO := Y.

Active Setting: Nonvolatile State

Power Loss

The active setting group is retained if power to the relay is lost and then restored. If a particular setting group is active (e.g., setting Group 5) when power is lost, the same setting group is active when power is restored.

Settings Change

If individual settings are changed for the active setting group or one of the other setting groups, the active setting group is retained, much like in the preceding explanation.

If individual settings are changed for a setting group other than the active setting group, there is no interruption of the active setting group, so the relay is not momentarily disabled.

If the individual settings change causes a change in one or more SELOGIC control equation settings SS1 through SS6, the active setting group can be changed, subject to the newly enabled SS1 through SS6 settings.

SELOGIC Control Equation Capacity

SELOGIC control equation capacity is a measure of how much remaining space you have available for programming. In both protection and automation, SELOGIC control equation capacity includes execution capacity and settings storage capacity. A single free-form protection or automation SELOGIC setting can have up to 30 elements (terms) with a 512-character maximum.

The relay will reject any setting that exceeds the available settings storage capacity and execution capacity. You can then accept the previous settings you have entered and examine your settings.

Protection

The SEL-487B provides storage space for as many as 100 lines of protection free-form programming. Because the relay executes protection fixed and free-form logic at a deterministic interval, there is a limit to the amount of SELOGIC control equation programming that the relay can execute. The relay calculates total capacity in terms of settings capacity and execution capacity.

Rather than limit parameters to guarantee that your application does not exceed the maximum processing requirements, the relay measures and calculates the available capacity when you enter SELOGIC control equations. The relay will not allow you to enter programming that will cause the relay to be unable to complete all protection SELOGIC control equations each protection processing interval.

There are six protection settings groups that can be active. When a protection settings group is active, the relay executes SELOGIC control equations in the Global Settings, Zone Configuration Settings, Protection Group Settings, Protection Free-Form Settings, Output Settings, and several other settings areas. The relay calculates protection capacities based on the total amount of SELOGIC control equation programming executed when the protection settings group is active. Use the **STATUS S** command to display the remaining settings capacity and execution capacity for protection fixed and free-form logic.

Automation

The SEL-487B provides storage space for 10 blocks of as many as 100 lines of automation free-form programming in each block. The relay executes automation programming differently than protection logic programming. The result is that automation free-form logic execution time varies with the amount of free-form logic expressions that you enter. As you enter more expressions, the time required for the relay to execute all expressions increases. You can display the peak and average execution time using the **STATUS S** command.

There is a maximum execution capacity and settings storage capacity. If you enter a setting that exceeds maximum capacity, the relay will reject the setting. You will have the opportunity to reenter the setting or save any other settings you entered during that session.

SELogic Control Equation Elements

SELOGIC control equation elements are a collection of storage locations, timers, and counters that you can use to customize the operation of your SEL-487B and use the relay to automate substation operation. The elements that you can use in SELOGIC control equations are summarized in Table 2.5.

Table 2.5 Summary of SELogic Control Equation Elements

Element	Description
Relay Word bits	Boolean value data
Analog quantities	Received, measured, and calculated values
Special condition bits	Bits that indicate special SELOGIC control equation execution conditions
SELOGIC control equation variables	Storage locations for the results of Boolean SELOGIC control equations
SELOGIC control equation math variables	Storage locations for the results of math SELOGIC control equations
Latch bits	Nonvolatile storage for the results of Boolean SELOGIC control equations
Conditioning timers	Pickup and dropout style timers similar to those used in SEL-300 series relays
Sequencing timers	On-delay timers similar to those used in programmable logic controllers
Counters	Counters that count rising edges of Boolean value inputs

Relay Word Bits and **Analog Quantities**

Data within the relay are available for use in SELOGIC control equations. Relay Word bits are binary data that include protection elements, input status, and output status. Appendix A: Relay Word Bits contains a list of Relay Word bits available within the SEL-487B. Analog quantities are analog values within the relay including measured and calculated values. *Appendix B*: Analog Quantities contains a list of analog quantities available within the SEL-487B.

Special Condition Bits

Several Relay Word bits are available for special conditions related to SELOGIC control equation programming in the SEL-487B. You can use these bits in SELOGIC control equation programming to react to these conditions. You can also send these bits to other devices through relay interfaces including MIRRORED BITS communications and DNP3. The special condition bits are shown in Table 2.6.

The relay sets the first execution bits AFRTEXA, AFRTEXP, and PFRTEX momentarily to allow you to detect changes in the relay operation. The relay sets these bits and clears them as described in Table 2.6, Table 2.7, and Table 2.8. You can use these bits to force logic and calculations to reset or take a known state on power up or settings change operations.

Name	Description
AFRTEXA	Relay sets on power up and clears after each automation programming block has been executed once.
AFRTEXP	Relay sets on power up. Relay clears after it enables protection and all automation programming blocks have been executed once.
PFRTEX	Relay sets on power up. Relay clears after protection runs for one cycle.

Table 2.7 First Execution Bit Operation on Automation Settings Change

Name	Description
AFRTEXA	Relay sets on settings change and clears after each automation programming block has been executed once.
AFRTEXP	Relay sets on settings change. Relay clears after it enables protection and all automation programming blocks have been executed once.
PFRTEX	Relay sets on settings change. Relay clears after protection runs for one cycle.

Table 2.8 First Execution Bit Operation on Protection Settings Change and Group Switch

Name	Description
AFRTEXA	Relay does not set.
AFRTEXP	Relay sets when listed event occurs. Relay clears after it enables protection and all automation programming blocks have been executed once.
PFRTEX	Relay sets when listed event occurs. Relay clears after protection runs for one cycle.

SELogic Control Equation Variables

SELOGIC control equation variables are Boolean storage locations. Each variable equals either logical 1 or logical 0. This manual refers to these variables and the relay displays these as 1 and 0, respectively. Think also of the states 1 and 0 as True and False when you evaluate Boolean logic statements. The quantities of SELOGIC control equation variables available in the different programming areas are listed in *Table 2.9*.

Table 2.9 SELOGIC Control Equation Variable Quantities

Туре	Quantity	Name Range
Protection SELOGIC control equation variables	64	PSV01–PSV64
Automation SELOGIC control equation variables	256	ASV001–ASV256

Use the SELOGIC control equation variables in free-form logic statements in any order you want. Use a SELOGIC control equation variable more than once in free-form logic programming, and use SELOGIC control equation variables as arguments in SELOGIC control equations. *Example 2.4* illustrates SELOGIC control equation variable usage.

EXAMPLE 2.4 SELogic Control Equation Variables

The equations below show free-form SELogic control equation programming examples that use SELogic control equation variables. Each line has a comment after the # that provides additional detail.

PSV01:= 1 # Set PSV01 to 1 always

PSV09 := **PSV54 AND ASV005** # Set to result of Boolean AND

PSV02 := PMV05 > 5 # Set if PMV05 is greater than 5

You can use SELogic control equation variables more than once in free-form programming. The SELOGIC control equations below use ASV100 and ASV101 to calculate intermediate results.

Remote control 1

ASV100 := **RB14 AND ALT01** # Supervise remote control with ALT01

ASV101 := **RB15 AND PLT07** # Supervise remote control with PLT07

ASV201 := ASV100 OR ASV101 # Store desired control in ASV201 # Remote control 2

ASV100 := **RB18 AND ALT09** # Supervise remote control with ALT09

ASV101 := **RB19 AND PLT13** # Supervise remote control with PI T13

ASV202 := ASV100 OR ASV101 # Store desired control in ASV202

SELOGIC Control **Equation Math Variables**

SELOGIC control equation math variables are math calculation storage results. As with protection and automation SELOGIC control equation variables, there are separate storage areas for protection and automation math calculations. The quantities of SELOGIC control equation math variables available in the SEL-487B are shown in Table 2.10.

Table 2.10 SELOGIC Control Equation Math Variable Quantities

Туре	Quantity	Name Range
Protection SELOGIC control equation math variables	64	PMV01-PMV64
Automation SELOGIC control equation math variables	256	AMV001-AMV256

Use math variables in free-form programming to store the results of math calculations as arguments in math calculations and comparisons. Example 2.5 illustrates SELOGIC control equation math variable usage.

EXAMPLE 2.5 SELOGIC Control Equation Math Variables

The equations below show free-form SELogic control equation programming examples that use SELogic control equation math variables. Each line has a comment after the # that provides additional description.

PMV01 := **378.62** # Store 387.62 in PMV01

PMV09 := **5 + V01FM** # Store sum of 5 and input V01 voltage in kV in PMV09

You can use SELogic control equation math variables more than once in free-form programming. Use AMV010 in the following SELogic control equations to calculate intermediate results.

Determine if any phase voltage is greater than 13 kV

Input V01 voltage

AMV010 := **V01FM** # V01 in kV

ASV010 := **AMV010 > 13** # Set if greater than 13 kV

Input VO2 voltage

AMV010 := **V02FM** # V02 in kV

ASV011 := **AMV010 > 13** # Set if greater than 13 kV

Input V03 voltage

AMV010 := **V03FM** # V03 in kV

ASV012 := **AMV010 > 13** # Set if greater than 13 kV

Combine phase results

ASV013 := ASV010 OR ASV011 OR ASV012

Latch Bits

Latch bits are nonvolatile storage locations for Boolean information. Latch bits are in several settings areas of the relay, as shown in *Table 2.11*. Latch bits have two input parameters, Reset and Set, and one Latched Value, as shown in *Table 2.12*.

Table 2.11 Latch Bit Quantities

Туре	Quantity	Name Range	
Protection free-form latch bits	32	PLT01-PLT32	
Automation latch bits	32	ALT01-ALT32	

Table 2.12 Latch Bit Parameters

Туре	Item	Description	Setting	Name Examples
Input	Reset	Reset latch when on	Boolean SELOGIC control equation	PLT01R ALT01R
Input	Set	Set latch when on	Boolean SELOGIC control equation	PLT01S ALT01S
Output	Latched Value	Latched Value of 0 or 1	Value for use in Boolean SELOGIC control equations	PLT01 ALT24

Latch bits provide nonvolatile storage of binary information. A latch can have the value of logical 0 or logical 1. Latch bits also retain their state through changes in the active protection settings group. Because storage of latch bits is in nonvolatile memory, the state of latch bits remains unchanged indefinitely even when power is lost to the relay.

As with logic latches used in digital electronics, each latch bit has a Set input and a Reset input. The relay evaluates the latch bit value at the end of each logic processing interval using the values for Set and Reset calculated during the processing interval. Latch bits are reset dominant. If the Set and Reset inputs are both asserted, the relay will reset the latch.

Latch bits are available in two different programming areas of the SEL-487B. First, there are 32 latch bits, PLT01–PLT32, that are associated with protection settings. Second, there are 32 latch bits, ALT01–ALT32, available in automation free-form programming.

Protection Latch Bits

Program the 32 latch bits, PLT01–PLT32, in the protection free-form SELOGIC control equation programming area. There is a separate protection free-form SELOGIC control equation programming area associated with each protection settings group. The latches in protection can have separate programming for Set and Reset in each protection setting groups. While each

protection latch value remains unchanged for a change in the active protection settings group, you can enter different Set and Reset programming for each protection settings group.

There are Set and Reset settings for each latch bit available in each group. For example, PLT01R and PLT01S are available in all six free-form settings groups and all control the same Latch Bit, PLT01. This structure allows you to either program each latch to operate in the same way for each group or behave differently based on the active protection settings group. For example, you could program the protection latch to set (latch on) IN106 when Protection Settings Group 1 is active and program the latch to set on IN107 when Protection Settings Group 2 is active. If you do not enter a setting for the Reset and Set in a protection settings group, the latch bit will remain unchanged when that protection settings group is active. Example 2.6 illustrates protection latch bit usage.

EXAMPLE 2.6 Protection Latch Bits

In this example, we use Pushbutton {PB5} to emulate a disconnect auxiliary contact. Pressing Pushbutton (PB5) asserts Relay Word bit PLT01S. Pressing (PB5) one more time deasserts Relay Word bit PLT01S.

1: PLT01S := PB5_PUL AND NOT PLT01 # ASSIGN IO1 TO BZ1 2: PLT01R := PB5_PUL AND PLT01 # REMOVE IO1 FROM BZ1

Asserting Relay Word bit PLTO1S also asserts Relay Word bit IO1BZ1V. When Relay Word bit IO1BZ1V asserts, the relay assigns the current from Terminal IO1 to the differential element of Bus-Zone BZ1. Deasserting Relay Word bit PLTO1S also deasserts Relay Word bit IO1BZ1, removing the Terminal IO1 current from the differential element of Bus-Zone BZ1. The terminal-to-bus-zone settings are as follows:

IO1BZ1V := PLTO1 # FDR 1 to BUS 1 Connection (SELogic control equation)

Evaluation of the latch bit value occurs at the end of the protection SELOGIC control equation execution cycle. The values evaluated for Reset (PLTnnR) and Set (PLTnnS) during SELOGIC control equation execution remain unchanged until after the evaluation of all SELOGIC control equations, when the relay evaluates the latch bit value (PLTnn). For example, if you have multiple SELOGIC control equations for set, the last equation in the protection free-form area dominates, and the relay uses this equation to evaluate the latch.

Automation Latch Bits

The automation latch bits, ALT01-ALT32, are available in automation freeform settings. Write free-form SELOGIC control equations to set and reset these bits. As with protection latch bits, the relay stores automation latch bits in nonvolatile memory and preserves these through a relay power cycle and group change operations. With protection latch bits, you can implement Set and Reset programming for each protection settings group. Automation SELOGIC control equation programming, however, has only one programming area active for all protection settings groups.

The relay evaluates the latch bit value at the end of the automation free-form SELOGIC control equation execution cycle. The values for Reset (ALTnnR) and Set (ALTnnS) remain unchanged until evaluation of all SELOGIC control equations, when the relay evaluates the latch (ALTnn). For example, if you

Conditioning Timers

NOTE: Counters and timers have an upper limit of 8,388,608. Counters and timers stop incrementing when crossing this threshold. Do not enter preset values exceeding this value.

have multiple SELOGIC control equations for set, the last equation in the protection free-form area dominates, and the relay uses this equation to evaluate the latch.

Use conditioning timers to condition Boolean values. Conditioning timers either stretch incoming pulses or allow you to require that an input take a state for a certain period before reacting to the new state. Conditioning timers are available in the protection free-form area, as shown in *Table 2.13*. Conditioning timers have the three input parameters and one output shown in *Table 2.14*.

Table 2.13 Conditioning Timer Quantities

Туре	Quantity	Name Range
Protection free-form conditioning timers	16	PCT01-PCT16

Table 2.14 Conditioning Timer Parameters

Туре	Item	Description	Setting	Name Examples
Input	Input	Value that the relay times	Boolean SELOGIC control equation setting	PCT01IN
Input	Pickup Time	Time that the input must be on before the output turns on	Time value in cycles	PCT01PU
Input	Dropout Time	Time that the output stays on after the input turns off	Time value in cycles	PCT01DO
Output	Output	Timer output	Value for Boolean SELOGIC control equations	PCT01Q

A conditioning timer output turns on and becomes logical 1 after the input turns on and the Pickup Time expires. An example timing diagram for a conditioning timer, PCT01, with a Pickup Time setting greater than zero and a Dropout Time setting of zero is shown in *Figure 2.3*. In the example timing diagram, the Input, PCT01IN, turns on and the timer Output, PCT01Q, turns on after the Pickup Time, PCT01PU, expires. Because the Dropout Time setting is zero, the Output turns off when the Input turns off.

Figure 2.3 Conditioning Timer With Pickup and No Dropout Timing Diagram

If the Pickup Time is not satisfied, the timer Output never turns on, as illustrated in Figure 2.4.

Figure 2.4 Conditioning Timer With Pickup Not Satisfied Timing Diagram

A conditioning timer output turns off when the input turns off and the Dropout Time expires. An example timing diagram for a conditioning timer, PCT02, with a Pickup Time setting of zero and a Dropout Time setting greater than zero is shown in Figure 2.5. Because the Pickup Time, PCT02PU, setting is zero, the Output, PCT02Q, turns on when the Input, PCT02IN, turns on. The Output turns off after the Input turns off and the Dropout Time, PCT02DO, expires.

Figure 2.5 Conditioning Timer With Dropout and No Pickup Timing Diagram

Combining the features shown in *Figure 2.5*, *Figure 2.6* illustrates conditioning timer operation for use of both the pickup and dropout characteristics. The Output, PCT03Q, turns on after the Input, PCT03IN, turns on and the Pickup Time, PCT03PU, expires. The Output turns off after the Input turns off and the Dropout Time, PCT03DO, expires.

Figure 2.6 Conditioning Timer With Pickup and Dropout Timing Diagram

Set the conditioning timer settings for Pickup and Dropout in cycles and fractions of a cycle (represented in decimal form). The relay processes conditioning timers once for each protection processing interval. The relay asserts the timer output on the first processing interval when the elapsed time exceeds the setting. In the SEL-487B, the protection processing interval is 1/12th cycle. Actual settings, programming, and operation are illustrated in *Example 2.7*.

EXAMPLE 2.7 Conditioning Timer Programming and Operation

This example uses Protection Free-Form Conditioning Timer Seven, PCT07. The free-form settings are as shown here:

PCT07PU := **5.3** # Pickup set to 5.3 cycles

PCT07D0 := 6.0 # Dropout set to 6.0 cycles

PCT07IN := IN101 # Operate on the first input on the main board

PSV29 := **PCT07Q** # Protection SELogic control equation variable follows the timer output

The operation of the timer when IN101 turns on for 7 cycles is shown in the timing diagram in Figure 2.7. Because the pickup setting is an uneven number of protection processing intervals (1/12th cycle), the pickup occurs on the first 1/12th cycle after the Pickup Time of 5.3 cycles expires.

Figure 2.7 Conditioning Timer Timing Diagram for Example 2.7

In protection free-form programming, the relay evaluates the timer at execution of the timer Input SELOGIC control equation (PCTnnIN). The relay loads the Pickup Time (PCTnnPU) and Dropout Time (PCTnnDO) into the timer when the relay observes the appropriate edge in the input. If you enter a math expression for Pickup Time or Dropout Time, the relay uses the value calculated before the Input SELOGIC control equation. If your Pickup Time or Dropout Time equation is below the Input equation (has a higher expression line number), the relay will use the value calculated on the previous SELOGIC control equation execution interval. Because the relay calculates the last value for pickup or dropout in this manner, we recommend for most applications that you enter the Pickup Time, Dropout Time, and Input statements together in the order shown in Example 2.7.

Sequencing Timers

NOTE: Counters and timers have an upper limit of 8,388,608. Counters and timers stop incrementing when crossing this threshold. Do not enter preset values exceeding this value.

Sequencing timers are useful for sequencing operation. There are two main differences between sequencing timers and conditioning timers. First, sequencing timers integrate pulses of the input to count up a total time. Second, the elapsed time a sequencing timer counts is visible; you can use this time in other SELOGIC control equation programming or make this time visible through one of the relay communications protocol interfaces. Sequencing timers are available in the protection free-form area and automation free-form area as shown in *Table 2.15*. Sequencing timers have three input parameters and two outputs listed in *Table 2.16*.

Table 2.15 Sequencing Timer Quantities

Туре	Quantity	Name Range
Protection free-form sequencing timers	32	PST01-PST32
Automation free-form sequencing timers	32	AST01-AST32

Table 2.16 Sequencing Timer Parameters

Type	Item	Description	Setting	Name Examples
Input	Input	Value that the relay times	Boolean SELOGIC control equation setting	PST01IN AST07IN
Input	Preset Time	Time the input must be on before the output turns on	Time value. Protection uses cycles, while automation uses seconds.	PST01PT AST07PT
Input	Reset	Timer reset	Boolean SELOGIC control equation setting	PST01R AST07R
Output	Elapsed Time	Time accumulated since the last reset	Value for math SELOGIC control equations. Protection uses cycles, while automation uses seconds.	PST01ET AST07ET
Output	Output	Timer output	Value for Boolean SELOGIC control equations	PST01Q AST07Q

A sequencing timer counts time by incrementing the Elapsed Time when SELOGIC control equation execution reaches the Input equation if the Reset is off and the Input is on. The Output turns on when the Elapsed Time reaches or exceeds the Preset Time. Whenever the Reset is on, the relay sets the Output to zero, then clears the Elapsed Time, and stops accumulating time (even if Input is on).

Figure 2.8 is a timing diagram for typical sequencing timer operation.

Figure 2.8 Sequencing Timer Timing Diagram

Timers in protection programming operate in cycles, while timers in automation programming operate in seconds. As with sequencing timers, operation depends on the logic processing interval. For protection programming, the logic processing interval is 1/12 of a cycle, so the relay effectively rounds up all operation to the nearest 1/12 of a cycle. With automation programming, the execution interval depends on the amount of automation programming. Determine the average automation execution interval with the STATUS S command.

The automation timers operate using a real time clock. Each time the relay evaluates the Input (ASTnnIN) the relay adds the elapsed time since the last execution to the Elapsed Time (ASTnnET). The timer is evaluated each time the relay executes automation SELOGIC control equations. Use the STATUS S command to check the automation average execution cycle time to verify that you will obtain satisfactory accuracy for your application. Example 2.8 describes typical timer programming and describes the resulting operation.

EXAMPLE 2.8 Automation Sequencing Timer Programming

The equations below are an example of programming for an automation sequencing timer, ASTO1. Each timer input is programmed as a separate statement in automation SELogic control equation programming.

Example programming of sequencing timer to time Input IN101 and IN102

ASTO1PT := 7.5 # Timer Preset Time of 7.5 seconds

ASTO1R := RBO3 # Reset timer when RBO3 turns on

ASTO1IN := IN101 AND IN102 # Timing time when IN101 and IN102 are on

ASV001 := AST01Q # ASV001 tracks output of timer

AMV256 := **ASTO1ET** # AMV256 tracks timing progress

In this example, timer ASTO1 times the quantity IN101 AND IN102 and turns on when the total time reaches 7.5 seconds. If the Input, ASTO1IN, is on for approximately 1 second every minute, the Output, ASTO1Q, will turn on during the eighth minute, when the accumulated elapsed time exceeds 7.5 seconds.

In free-form programming, the relay evaluates the timer at the timer Input SELOGIC control equation (PSTnnIN or ASTnnIN). If you enter an expression for the timer Reset (PSTnnR or ASTnnR) or Preset Time (PSTnnPT or AST*nn*PT), the values for Reset and Preset Time that the relay uses are the last values that the relay calculates before the input SELOGIC control equation calculation. Because the relay uses the last values for Reset and Preset Time value in this manner, we recommend for most applications that you enter the Preset Time, Reset, and Input statements together in the order shown in Example 2.8.

Use counters to count changes or edges in Boolean values. Each time the value changes from logical 0 to logical 1 (a rising edge), the counter Current Value increments. Counters are available in the protection free-form area and automation free-form area, as shown in Table 2.17. Counters have three input parameters, Input, Preset Value, and Reset; and two outputs, Current Value and Output as listed in Table 2.18.

Table 2.17 Counter Quantities

Туре	Quantity	Name Range
Protection counters	32	PCN01-PCN32
Automation counters	32	ACN01-ACN32

Counters

NOTE: Counters and timers have an upper limit of 8.388,608, Counters and timers stop incrementing when crossing this threshold. Do not enter preset values exceeding this value.

Table 2.18 Counter Parameters

Туре	Item	Description	Setting	Name Examples
Input	Input	Value that the relay counts	Boolean SELOGIC control equation setting	PCN01IN ACN09IN
Input	Preset Value	Number of counts before the output turns on	Constant or expression for the number of counts	PCN01PV ACN09PV
Input	Reset	Counter reset	Boolean SELOGIC control equation setting	PCN01R ACN09R
Output	Current Value	Current accumulated count	Value for math SELOGIC control equations	PCN01CV ACN09CV
Output	Output	Counter output	Value for Boolean SELOGIC control equations	PCN01Q ACN09Q

In free-form programming, the relay evaluates the counter at execution of the counter Input SELOGIC control equation (PCNnnIN or ACNnnIN). If you enter an expression for the counter Reset (PCNnnR) or the counter Preset (PCNnnPV), the values for Reset and Preset that the relay uses are the last values the relay calculates before the input SELOGIC control equation calculation. Because the relay uses the last values for Reset and Preset in this manner, we recommend for most applications that you enter the Preset, Reset, and Input statements together in the order shown in Example 2.9.

EXAMPLE 2.9 Counter Programming

The free-form programming equations that follow demonstrate how to enter settings to control a protection counter in protection free-form SELOGIC control equation programming. Programming for an automation counter is similar.

Protection Counter 1 counts close operations of the circuit breaker associated with the 52CLO1 element. Initially, the current value, PCN01CV, is zero. The relay increments the current value each time the circuit breaker closes. The relay increases the count value, PCN01CV, each time the circuit breaker closes and the element 52CLO1 value changes from 0 to 1 (a rising edge). When the count reaches 1000, the timer automatically resets and begins counting again.

Example protection counter programming

#

This example counts how many times the circuit breaker of Terminal 01 closes

The counter automatically resets every 1,000 operations

PCN01PV := 1000

PCN01R := PCT01Q

PCN01IN := **52CL01**

The SELogic control equations below provide multiple-change detection counting the close operations of the circuit breaker. The intermediate value PSV01 turns on for one processing interval each time the circuit breaker closes.

Example protection counter programming

#

This example counts how many times a circuit breaker closes

#

Detect CLOSE

PSV01 := **52CL01** # Pulse for each close

The counter automatically resets every 1,000 operations

PCN01PV := 1000

PCN01R := PCT01Q

PCN01IN := **PSV01** # Count close operations

PSV02 := **PCN01CV > 900** # PSV02 signals more than 900 operations

Aliases

Although the SEL-487B provides extensive programming facilities and opportunity for comments, troubleshooting customized programs is sometimes difficult. Aliases provide an opportunity to assign more meaningful names to the generic variable names in order to improve the readability of the program. Example 2.10 provides examples of assigning aliases.

EXAMPLE 2.10 Assigning and Removing Aliases

The following free-form math SELogic control equations show you how to create aliases.

Assign the alias names with the **SET T** command

PMV01,THETA # Assign the alias "THETA" to PMV01

PMV02,TAN # Assign the alias "TAN" to PMV02

Use the alias names "THETA" and "TAN" in a free-form SELOGIC control equation:

Calculate the tangent of THETA

TAN := SIN(THETA)/COS(THETA)

To remove the alias from the alias setting, issue the **SET T** command and press **<Enter>** until the alias appears; then type **DELETE <Enter>**:

nn: PMV01,THETA # (where nn = line number)

DELETE

Assign up to 200 alias names to any Relay Word bit, analog quantity, terminal name, or bus-zone name, using the SET T command. The maximum length of an alias is seven characters. Valid characters are 0–9, A–Z (only uppercase) and (underscore). Make sure no Relay Word bit, analog quantity, terminal name, or bus-zone name appears more than once in the alias settings. Each alias name must be unique, i.e., you cannot use the name of an existing Relay Word bit, analog quantity, or terminal name. If you remove the alias name, all settings that referenced that alias revert to the original name.

SELOGIC Control Equation Operators

There are two types of SELOGIC control equations. Boolean SELOGIC control equations comprise the first type. These equations are expressions that evaluate to a Boolean value of 0 or 1. Math SELOGIC control equations constitute the second type. The relay evaluates these equations to yield a result having a numerical value (for example, 6.25 or 1055).

Left value, LVALUE, determines the type of SELOGIC control equation you need for a setting or for writing free-form programming. If the LVALUE is a Boolean type (ASV001, etc.) then the type of expression you need is a Boolean SELOGIC control equation. If the LVALUE is a numerical (non-Boolean) value (PMV12, PCT01PV, etc.), the type of expression you need is a math SELOGIC control equation.

Writing SELOGIC control equations requires that you use the appropriate operators and correct SELOGIC control equation syntax to combine relay elements including analog values, Relay Word bits, incoming control points, and SELOGIC control equation elements within the relay. The operators are grouped into two types, according to the type of SELOGIC control equation in which you can apply these operators.

Operator Precedence

When you combine several operators and operations within a single expression, the SEL-487B evaluates the operations from left to right starting with the highest precedence operators working down to the lowest precedence. This means that if you write an equation with three AND operators, for example PSV01 AND PSV02 AND PSV03, each AND will be evaluated from the left to the right. If you substitute NOT PSV04 for PSV03 to make PSV01 AND PSV02 AND NOT PSV04, the relay evaluates the NOT operation of PSV04 first and uses the result in subsequent evaluation of the expression. While you cannot use all operators in any single equation, the overall operator precedence follows that shown in *Table 2.19*.

Boolean Operators

Use Boolean operators to combine values with a resulting Boolean value. The arguments of the operator may be either numbers or Boolean values, but the result of the operation must be a Boolean value. Combine the operators to form statements that evaluate complex Boolean logic. *Table 2.20* contains a summary of Boolean operators available in the SEL-487B.

Table 2.19 Operator Precedence from Highest to Lowest (Sheet 1 of 2)

Operator	Description
(Expression)	Parenthesis
Identifier (argument list)	Function evaluation
-	Negation
NOT	Complement
R_TRIG F_TRIG	Edge Trigger
SQRT, LN, EXP, LOG, COS, SIN, ACOS, ASIN, ABS, CEIL, FLOOR	Math Functions
*	Multiply
/	Divide
+	Add
_	Subtract

Table 2.19 Operator Precedence from Highest to Lowest (Sheet 2 of 2)

Operator	Description
<,>,<=,>=	Comparison
=	Equality
<>	Inequality
AND	Boolean AND
OR	Boolean OR

Table 2.20 Boolean Operator Summary

Operator	Description
OR	Logical OR
AND	Logical AND
NOT	Logical inverse
()	Parentheses
R_TRIG	Rising-edge trigger
F_TRIG	Falling-edge trigger
>, <, =, <=, >=, <>	Comparison of values

OR

Use OR to combine two Boolean values according to the truth table shown in *Table 2.21.*

Table 2.21 OR Operator Truth Table

Value A	Value B	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

AND

Use AND to combine two Boolean values according to the truth table shown in *Table 2.22*.

Table 2.22 AND Operator Truth Table

Value A	Value B	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

NOT

Use NOT to calculate the inverse of a Boolean value according to the truth table shown in *Table 2.23*.

Table 2.23 NOT Operator Truth Table

Value A	NOT A
0	1
1	0

Parentheses

Use paired parentheses to control the execution order of operations in a SELOGIC control equation. Use as many as 14 nested sets of parentheses in each SELOGIC control equation. The relay calculates the result of the operation on the innermost pair of parentheses first and then uses this result with the remaining operations. *Table 2.24* is a truth table for an example operation that illustrates how parentheses can affect equation evaluation.

Table 2.24 Parentheses Operation in Boolean Equation

Α	В	С	A AND B OR C	A AND (B OR C)
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

R_TRIG

R_TRIG is a time-based function that creates a pulse when another value changes, as shown in *Figure 2.9*. Use R_TRIG to sense when a value changes from logical 0 to logical 1 and take action only when the value changes.

Figure 2.9 R_TRIG Timing Diagram

The argument of an R_TRIG statement must be a single bit within the SEL-487B. An example of the relay detecting a rising edge of a calculated quantity is shown in Example 2.11.

EXAMPLE 2.11 R_TRIG Operation

The SELogic control equation below is invalid.

PSV15 := **R_TRIG (PSV01 AND PSV23)** # Invalid statement, do not use

Use a SELogic control equation variable to calculate the quantity and then use the R_TRIG operation on the result, as shown below.

PSV14 := **PSV01 AND PSV23** # Calculate quantity in an intermediate result variable

PSV15 := **R_TRIG PSV14** # Perform an R TRIG on the quantity

F_TRIG

F_TRIG is a time-based function that creates a pulse when another value changes, as shown in Figure 2.10. Use F_TRIG to sense when a value changes from logical 1 to logical 0 and take action only after the value changes state.

Figure 2.10 F_TRIG Timing Diagram

The argument of an F_TRIG statement must be a single bit within the SEL-487B. An example of the relay detecting a falling edge of a calculated quantity is shown in *Example 2.12*.

EXAMPLE 2.12 F_TRIG Operation

The SELogic control equation below shows an invalid use of the F_TRIG operation.

ASV015 := F_TRIG (ASV001 AND ALT11) # Invalid statement, do not use

Use a SELogic control equation variable to calculate the quantity and then use the F_TRIG operation on the result, as shown below.

ASV014 := **ASV001 AND ALT11** # Calculate quantity in an intermediate result variable

ASV015 := **F_TRIG ASV14** # Perform an F_TRIG on the quantity

Comparison

NOTE: Be careful how you use the equal (=) and the inequality (<>) operators. Because the relay uses a floating-point format to calculate analog values, only integer numbers will match exactly. Allow a small hysteresis of the following form: PSVOI := IOIFM < 10.002 AND IOIFM > 0008

Comparison is a mathematical operation that compares two numerical values with a result of logical 0 or logical 1. AND and OR operators compare Boolean values; comparison functions compare floating-point values such as currents and other quantities. Comparisons and truth tables for operation of comparison functions are shown in *Table 2.25*.

Table 2.25 Comparison Operations

Α	В	A>B	A>=B	A=B	A⇔B	A<=B	A <b< th=""></b<>
6.35	7.00	0	0	0	1	1	1
5.10	5.10	0	1	1	0	1	0
4.25	4.00	1	1	0	1	0	0

Math Operators

Use math operators when writing math SELOGIC control equations. Math SELOGIC control equations manipulate numerical values. *Table 2.26* summarizes the operators available for math SELOGIC control equations.

Table 2.26 Math Operator Summary

Operator	Description
()	Parentheses
+, -, *, /	Arithmetic
SQRT	Square root
LN, EXP, LOG	Natural logarithm, exponentiation of e, base 10 logarithm
COS, SIN, ACOS, ASIN	Cosine, sine, arc cosine, arc sine
ABS	Absolute value
CEIL	Rounds to the nearest integer towards infinity
FLOOR	Rounds to the nearest integer towards minus infinity
_	Negation

Parentheses

Use parentheses to control the order in which the relay evaluates math operations within a math SELOGIC control equation. Also use parentheses to group expressions that you use as arguments to function operators such as SIN and COS. You can include as many as 14 levels of nested parentheses in your math SELOGIC control equation. Example 2.13 shows how parentheses affect the operation and evaluation of math operations.

EXAMPLE 2.13 Using Parentheses in Math Equations

The free-form math SELogic control equations below show examples of parentheses usage.

Examples of parenthesis usage

AMV001 := AMV005 * (AMV004 + AMV003) # Calculate sum first, then product

AMV002 := AMV010 * (AMV009 + (AMV016 / AMV015)) # Nest parenthe-

AMV003 := SIN (AMV037 + PMV42) # Group terms for a function

Math Error Detection

If a math operation results in an error, the SEL-487B turns on the math error bit, MATHERR, in the Relay Word. A settings change or the **STATUS SC** command provides reset for this bit. For example, if you attempt to take the square root of a negative number (SQRT –5), the math error bit will be asserted until you clear the bit with a STATUS SC command or change settings.

Table 2.27 Math Error Examples

Example	Value in PMV01	Туре	MATHERR
PMV01 := PMV02 / 0	Infinity	Divide by zero	Yes
PMV01 := LN (0)	O ^a	LN of 0	Yes
PMV01 := LN (-1)	Oa	LN of negative number	Yes
PMV01 := SQRT (-1)	Oa	Square root of a negative number	Yes

a Evaluation of the expression results in an error and prevents storage of a new result. In the example, PMV01 remains 0. If the argument were a variable, PMV01 would contain the result of the last evaluation when the argument is valid.

Arithmetic

Use arithmetic operators to perform basic mathematical operations on numerical values. Arguments of an arithmetic operation can be either Boolean or numerical values. In a numerical operation, the relay converts logical 0 or logical 1 to the numerical value of 0 or 1. For example, multiply numerical values by Boolean values to perform a selection operation. Use parentheses to group terms in math SELOGIC control equations and control the evaluation order and sequence of arithmetic operations.

The relay uses IEEE® 32-bit floating-point numbers to perform SELOGIC control equation mathematical operations. If an operation results in a quantity that is not a numerical value, the SELOGIC control equation status bit that signals a math error, MATHERR, asserts. The value that the relay stored previously in the specified result location is not replaced. The SEL-487B

clears the corresponding math error bits if you change SELOGIC control equation settings (protection or automation), or if you issue a **STATUS SC** command. *Example 2.14* contains examples of arithmetic operations in use.

EXAMPLE 2.14 Using Arithmetic Operations

The free-form math SELOGIC control equations below show examples of arithmetic operator usage.

Arithmetic examples

AMV001 := AMV005 + AMV034 # Calculate sum

AMV002 := AMV005 - AMV034 # Calculate difference

AMV003 := AMV005 * AMV034 # Calculate product

AMV004 := AMV005 / AMV034 # Calculate quotient

The lines below demonstrate the use of Boolean values with the multiplication operation.

Use of multiplication to select numerical values based on active settings

Use 7 if protection settings group 1 active

Use 5 if protection settings group 2 active

AMV005 := 7 * SG1 + 5 * SG2

The lines below demonstrate math calculation error detection.

The line below results in a math error if AMV029 becomes 0

AMV006 := **732 / AMV029**

In the second line, if AMV029 is 6 on the first pass through the automation programming, the relay stores the result, 122, in AMV006. If on the next pass AMV029 is 0, the MATHERR bit asserts and the value in AMV006 does not update.

SQRT

Use the SQRT operation to calculate the square root of the argument. Use parentheses to delimit the argument of a SQRT operation. A negative argument for the SQRT operation results in a math error and assertion of the corresponding math error bit described in *Arithmetic on page R.2.29*. *Example 2.15* shows examples of the SQRT operator in use.

EXAMPLE 2.15 Using the SQRT Operator

The free-form math SELOGIC control equations below show examples of SQRT operator usage.

SQRT examples

AMV001 := SQRT (AMV005) # Single argument version of SQRT

AMV002 := **SQRT (AMV005 + AMV034)** # Calculates the square root of the sum

AMV003 := SQRT (AMV007) # Produces a math error if AMV007 is negative

LN, EXP, and LOG

LN and EXP are complementary functions for operating with natural logarithms or logarithms calculated to the natural base e. LN calculates the natural logarithm of the argument. LOG calculates the base 10 logarithm of the argument. A negative or zero argument for the LN and LOG operation results in a math error and assertion of the corresponding math error bit

described in Arithmetic. EXP calculates the value of e raised to the power of the argument. Example 2.16 shows examples of expressions that use the LN, EXP, and LOG operators.

EXAMPLE 2.16 Using the LN, EXP, and LOG Operators

The free-form math SELOGIC control equations below are examples of LN, EXP, and LOG operator usage.

LN examples

AMV001 := LN (AMV009) # Natural logarithm of AMV009

AMV002 := LN (AMV009 + AMV034) # Natural logarithm of the sum

AMV003 := LN (AMV010) # Produces error if AMV010 is 0 or negative

EXP examples

AMV004 := EXP (2) # Calculates e squared

AMV005 := EXP (AMV003) # Calculates e to the power AMV003

AMV006 := **EXP (AMV046 + AMV047)** # e raised to the power of the sum

LOG examples

AMV007 := LOG (AMV012) # Base 10 logarithm of AMV012

AMV008 := LOG (AMV012 + AMV022) # Base 10 logarithm of the sum

AMV009 := LOG (AMV100) # Produces an error if AMV100 is 0 or negative

SIN and COS

Use the SIN or COS operators to calculate the sine or cosine of the argument. SIN and COS operate in degrees, the unit of angular measure the SEL-487B uses to express metering quantities. Example 2.17 shows examples of SIN and COS.

EXAMPLE 2.17 Using the SIN and COS Operators

The free-form math SELogic control equations below are examples of SIN and COS.

SIN examples

AMV001 := **SIN (AMV005)** # Sine of AMV005

AMV002 := SIN (AMV005 + AMV034) # Sine of the sum

COS examples

AMV003 := COS (AMV005) # Cosine of AMV005

AMV004 := COS (AMV005 + AMV006) # Cosine of the sum

ASIN and ACOS

Use the ASIN or ACOS operators to calculate the angle in degrees resulting from the trigonometric function equivalent to a given number (the argument), where the function is sine or cosine. ASIN and ACOS operate in degrees. An argument less than -1 or larger than 1 results in a math error and assertion of the corresponding math bit described in Arithmetic. Example 2.18 shows examples of ASIN and ACOS.

EXAMPLE 2.18 Using the ASIN and ACOS Operators

The free-form math SELogic control equations below are examples of ASIN and ACOS.

ASIN examples

AMV001 := ASIN (AMV010) # Arc sine of AMV010

AMV002 := ASIN (AMV010 + AMV011) # Arc sine of the sum

AMV003 := ASIN (AMV012) # Produces an error if |AMV012| >1

ACOS examples

AMV004 := ACOS (AMV010) # Arc cosine of AMV010

AMV005 := ACOS (AMV010 + AMV011) # Arc cosine of the sum

AMV006 := ACOS (AMV012) # Produces an error if |AMV012| >1

ABS

Use the ABS operation to calculate absolute value of the argument. Use parentheses to group a math expression as the argument of an ABS operation. If the argument of the ABS operation is negative, the result is the value multiplied by −1. If the argument of the ABS operation is positive, the result is the same quantity as the argument. *Example 2.19* contains examples of the ABS operator in use.

EXAMPLE 2.19 Using the ABS Operator

The free-form math SELOGIC control equations below show examples of the ABS operator usage.

ABS examples

AMV001 := ABS (-6) # Stores 6 in AMV001

AMV002 := ABS (6) # Stores 6 in AMV002

AMV003 := ABS (AMV009) # Absolute value of AM009

AMV004 := ABS (AMV005 + AMV034) # Absolute value of the sum

CEIL

Use the CEIL operator to round the argument to the nearest integer towards infinity. Use parentheses to group a math expression as the argument of a CEIL operation. *Example 2.20* contains examples of the CEIL operator.

EXAMPLE 2.20 Using the CEIL Operator

The free-form math SELogic control equations below show examples of the CEIL operator usage.

CEIL examples

AMV001 := CEIL (5.99) # Stores 6 in AMV001

AMV002 := CEIL (-4.01) # Stores -4 in AMV002

FLOOR

Use the FLOOR operator to round the argument to the nearest integer towards minus infinity. Use parentheses to group a math expression as the argument of a FLOOR operation. *Example 2.21* contains examples of the FLOOR operator.

EXAMPLE 2.21 Using the FLOOR Operator

The free-form math SELOGIC control equations below show examples of the FLOOR operator usage.

FLOOR examples

AMV001 := FLOOR (5.99) # Stores 5 in AMV001 AMV002 := FLOOR (-4.01) # Stores -5 in AMV002

Negation

Use the negation (–) operation to change the sign of the argument. The argument of the negation operation is multiplied by -1. Negation of a positive value results in a negative value, while negation of a negative value results in a positive value. Example 2.22 contains examples of expressions that utilize the negation operator.

EXAMPLE 2.22 Using the Negation Operator

The free-form math SELogic control equations below show examples of negation operator usage.

Negation examples

AMV001 := -AMV009 # If AMV009 is 5, stores -5 in AMV001 AMV002 := -AMV009 # If AMV009 is -5, stores 5 in AMV002

Effective Programming

This section contains several ideas useful for creating, maintaining, and troubleshooting programming in the SEL-487B protection and automation SELOGIC control equation programming environments.

Planning and **Documentation**

When you begin to configure the relay to perform a new automation task or customize a protection operation, take time to design, document, and implement your project. Scale the planning effort to match the overall size of the project, but spend sufficient time planning to do the following:

- ➤ Document the inputs and outputs of your programming. This may include protection elements, physical inputs and outputs, metering quantities, user inputs, and other information within the relay.
- Document the processing or outcome of the programming. List the major tasks you want the relay to perform and provide detail about the algorithm you will use for each task. For example, if you need a timer or a counter, make a note of the requirements and how you will use these elements.
- ➤ Work in a top-down method, specifying and moving to more detailed levels, until you have sufficient information to create the settings. For simple tasks, one level may be sufficient. For complex tasks, such as automated station restoration, you may need several levels to move from idea to implementation.

Comments

SELOGIC control equation comments are very powerful tools for dividing, documenting, and clarifying your programming. Even if you completely understand your programming during installation and commissioning, comments will be very helpful if you need to modify operation a year later. Create these comments in the fixed and free-form SELOGIC control equations, and store these comments in the SEL-487B. Obtain comments to assist you in using the ASCII interface or SEL configuration software, regardless of whether you have the original files downloaded to the relay.

Comments add structure to free-form programming environments such as Visual Basic, C, and free-form SELOGIC control equations. *Example 2.23* shows how to use comments to divide and structure free-form SELOGIC control equation programming.

EXAMPLE 2.23 Comments in Free-Form SELOGIC Control Equation Programming

Use comments to divide and direct your eye through free-form programming.

#

This is a header comment that divides sections of free-form programming

#

AMV003 := 15 * AMV003 # Explain this line here

#

This comment is a header for the next section.

Inputs: provide more detail for more complex tasks

Outputs: describe how the programming affects the relay operation

Processing: discuss how the programming itself operates

#

ASV004 := ACN01Q AND RB03 # First line of next section

Many texts on programming in various computer programming languages suggest that you cannot include too many comments. The main reason to include comments is that something you find obvious may not be obvious to your coworker who will have to work with your programming in the future. Adding comments also gives you the opportunity to think about whether the program performs the function you intended.

Testing

After documentation and comments, the next essential element of an effective approach to programming is testing. Two types of testing are critical for determining if programming for complex tasks operates properly. First, test and observe whether the program performs the function you want under the conditions you anticipated. Second, look for opportunities to create conditions that are abnormal and determine how your program reacts to unusual conditions.

For example, test your system in unanticipated, but possible conditions such as loss of power, loss of critical field inputs, unexpected operator inputs, and conditions that result from likely failure scenarios of the equipment in your system. It is unlikely that you will find every possible weakness, but careful consideration and testing for abnormal conditions will help you avoid a failure and may reveal deficiencies in the normal operation of your system.

Modify your SELOGIC control equations to simulate the process. While you may be unable to change the state of a discrete input easily, such as IN101, you can substitute a logical 1 or logical 0 in your logic to simulate the operation of IN101 and observe the results.

Use the SER capabilities of the relay to monitor and record inputs, internal calculations, and outputs. For operations that occur very quickly, use the SER during testing to reconstruct the operation of your logic.

Use the MET PMV or MET AMV commands to display the contents of the last 16 protection or automation math variables, or use the MET PMV A and **MET AMV A** commands to see all of the protection and automation math variables.

SEL-311 and SEL-351 Series Users

You can convert logic that you have used in SEL-311 series relays and SEL-351 series relays to logic for the SEL-487B. In the SEL-311 series relays, SELOGIC control equation programming is restricted to equations where the left side value, LVALUE, is fixed. The SEL-487B uses primarily free-form programming. Table 2.28 shows comparable features between the SEL-311 series relays and the SEL-487B. Convert programming into either the free-form style or the fixed style of SELOGIC control equations, or whatever combination you deem appropriate for your application.

Table 2.28 SEL-311 Series Relays and SEL-487B SELogic Control Equation **Programming Features**

Feature	SEL-311 Series	SEL-487B Protection Free-Form Style
SELOGIC control equation variables	SV1–SV16	PSV01–PSV64
Timer Input	SV1–SV16	PCT01–PCT16
Timer Pickup settings	SV1PU–SV16PU	PCT01PU-PCT16PU
Timer Dropout settings	SV1DO-SV16DO	PCT01DO-PCT16DO
Timer Outputs	SV1T–SV16T	PCT01Q-PCT16Q
Latch Bit Set Control	SET1-SET16	PLT01S-PLT16S
Latch Bit Reset Control	RST1–RST16	PLT01R-PLT16R
Latch Bit	LT1-LT16	PLT01-PLT16

Table 2.29 shows the SEL-487B Boolean operators compared to the operators used in the SEL-311 series relays.

Table 2.29 SEL-311 Series Relays and SEL-487B SELogic Control Equation **Boolean Operators**

Feature	SEL-311 Series	SEL-487B
Logical AND operator	*	AND
Logical OR operator	+	OR
Logical NOT operator	!	NOT
Parentheses	()	()
Rising, falling edge operators	/,\	R_TRIG, F_TRIG

In the SEL-311 series relays, SELOGIC control equation variables and timers are connected. Each SELOGIC control equation variable is the input to a timer. In the SEL-487B, timers and SELOGIC control equation variables are independent.

The SELOGIC control equation Boolean operators in the SEL-487B are different from those used in SEL-300 series relays. For example, if you wish to convert programming from an SEL-311 or SEL-351 series relay for the SEL-487B, you must convert the operators. *Example 2.24* and *Example 2.25* demonstrate conversion of several settings to the SEL-487B setting.

EXAMPLE 2.24 Converting SEL-311 Series Relay SELogic Control Equation Variables

If you have the following SELogic control equation in an SEL-311 series relay, convert it as shown below.

SV1 = IN101 + RB3 * LT4

In the SEL-487B, use the line shown below.

PSV01 := IN101 OR RB03 AND PLT04

In the example above, first convert the + and * operators in the expression to the OR and AND operators. In the free-form example, use a protection SELogic control equation variable for the result.

EXAMPLE 2.25 Converting SEL-311 Series Relay SELogic Control Equation Timers

If you have the following SELOGIC control equation timer in an SEL-311 series relay, convert it as shown below.

SV1 = IN101 SV1PU = 5.25 SV1D0 = 3.5 OUT101 = SV1T

In the SEL-487B, use the format shown below.

#

Free-form programming conversion of timer

#

PCT01PU := **5.25** # Pickup of 5.25 cycles

PCT01D0 := **3.5** # Dropout of 3.5 cycles

PCT01IN := IN101 # Use the timer to monitor IN101

In the output settings, set OUT101 as shown below:

OUT101 := PCT01Q

EXAMPLE 2.26 Converting SEL-311 Series Relay Latch Bits

If you have the following SELogic control equation latch programming in an SEL-311 series relay, convert it as shown below.

SET1 = RB4 RST1 = RB5 OUT101 = LT1 In the SEL-487B, use the format shown below.

Protection free-form style settings:

Free-form programming conversion of latch bit

PLT01S := **RB04** # Set if RB04

PLT01R := RB05 # Reset if RB05

In the output settings, set OUT101 as shown below:

OUT101 := **PLT01**

Section 3

Communications Interfaces

Overview

This section provides information on communications interface options for the SEL-487B Relay. The following topics are discussed:

- ➤ EIA-232 Serial Communications
- ➤ EIA-485 Serial Communications
- ➤ Fiber-Optic Serial Communications
- Communications Card

Communications Interfaces

The SEL-487B collects, stores, and calculates a variety of data. These include electrical power system measurements, calculated quantities, diagnostic data, equipment monitoring data, fault oscillography, and Sequential Events Recorder (SER). Enter settings to configure the SEL-487B to protect and monitor your power system properly. A communications interface is the physical connection on the relay that you can use to collect data from the relay, set the relay, and perform relay test and diagnostic functions.

The SEL-487B has three rear-panel serial ports and one front-panel serial port. These serial ports conform to the EIA-232 standard. Several optional SEL plug-in devices are available to provide alternative physical interfaces including EIA-485 and fiber-optic cable. The relay also has a communications card slot for an optional communications board including Ethernet.

Once you have established a physical connection, you must use a communications protocol to interact with the relay. A communications protocol is a language that you can use to perform relay operations and collect data. For information on protocols that you can use with the SEL-487B, see the instruction manual sections listed in *Table 3.1*.

Table 3.1 SEL-487B Communications Protocols

Communications Protocol	Communications Interface	For More Information See
DNP3 (serial)	EIA-232a	Section 5: DNP3 Communications
DNP LAN/WAN	Ethernet Card	Section 5: DNP3 Communications
IEC 61850	Ethernet Card	Section 6: IEC 61850 Com- munications in the Refer- ence Manual
Distributed Port Switch (LMD)	SEL-2885 EIA-232 to EIA-485 Transceiver on an EIA-232 port	Section 4: SEL Communications Protocols
SEL Binary Protocols (Fast Meter, Fast Operate, Fast SER)	EIA-232 ^a	Section 4: SEL Communications Protocols
MIRRORED BITS® communications	EIA-232 ^a	Section 4: SEL Communications Protocols
ASCII Commands	EIA-232 ^a or Telnet using Ethernet Card	Section 7: ASCII Command Reference
FTP	Ethernet Card or EIA-232 port ^a	Section 5: Direct Network Communications in the Applications Handbook

^a You can add converters to transform EIA-232 to other physical interfaces.

Section 4: SEL Communications Processor Applications in the Applications Handbook and Section 5: Direct Network Communications in the Applications Handbook include more information on communication topologies and protocols.

Serial Communication

EIA-232

The SEL-487B has four EIA-232 communications ports. The serial port locations are shown in Figure 3.1 and Figure 3.2. The front-panel port is Port F, and the three rear-panel ports are Port 1, Port 2, and Port 3.

Figure 3.1 SEL-487B Front-Panel Layout (9U Version)

Figure 3.2 SEL-487B Rear-Panel Layout (9U Version)

The EIA-232 ports are standard female 9-pin connectors with the pin numbering shown in *Figure 3.3*. The pin functions are listed in *Table 3.2*. See the manual section listed in *Table 3.1* for a description of how the relay uses these pins with your specific protocol. Pin 1 can provide power to an external device. See *Serial Port Jumpers on page U.2.18* for more information on installing the jumper to provide voltage on Pin 1.

Figure 3.3 EIA-232 Connector Pin Numbers

Table 3.2 EIA-232 Pin Assignments

NOTE: Pins 5 and 9 are not intended to provide a chassis ground connection. See Section 2: Installation in the User's Guide.

Pin	Signal Name	Description	Comments
1	5 Vdc	Modem power	Jumper selectable on Ports 1–3. No connection on Port F.
2	RXD	Receive data	
3	TXD	Transmit data	
4	+IRIG-B	Time code signal positive	Port 1 only. No connection on Ports F, 2, and 3.
5	GND	Signal ground	Also connected to chassis ground. See Note.
6	-IRIG-B	Time code signal negative	Port 1 only. No connection on Ports F, 2, and 3.
7	RTS	Request to send	
8	CTS	Clear to send	
9	GND	Chassis ground	See Note.

EIA-232 Communications Cables

Δ CAUTION

Severe power and ground problems can occur on the communications ports of this equipment as a result of using non-SEL cables. Never use Standard null-modem cables with this

Fiber-Optic Interface

For most installations, you can obtain information on the proper EIA-232 cable configuration from the SEL-5801 Cable Selector Program from the SEL website at www.selinc.com. Using the SEL-5801 software, you can choose a cable by application. The software provides the SEL cable number with wiring and construction information so you can order the appropriate cable from SEL or construct one. If you do not see information for your application, contact SEL and we will assist you. You can obtain a copy of the SEL-5801 software by contacting SEL or from the SEL website www.selinc.com.

You can connect to a standard 9-pin computer port with SEL Cable C234A for relay configuration and programming with a terminal program or with the ACSELERATOR QuickSet® SEL-5030 software program.

You can add transceivers to the EIA-232 ports to use fiber-optic cables to connect devices. We strongly recommend that you use fiber-optic cables to connect devices within a substation. Power equipment and control circuit switching can cause substantial interference with communications circuits. You can also experience significant ground potential differences during fault conditions that can interfere with communications and damage equipment. Fiber-optic cables provide electrical isolation that increases safety and equipment protection.

Multimode

You can install one of the SEL-2800 family of transceivers on an SEL-487B EIA-232 port to provide a connection to multimode fiber-optic cable. All of these transceivers are port powered, require no settings, and operate automatically over a broad range of data rates. SEL-2800 series transceivers operate over the same wide temperature ranges as SEL relays, providing reliable operations in extreme conditions.

The SEL-2800 Fiber-Optic Transceiver/Modem provides conversion to multimode fiber-optic cable using V-pin connectors for applications as long as 500 m (1500 feet). The SEL-2810 Fiber-Optic Transceiver/Modem provides the same benefits as those from the SEL-2800, but the SEL-2810 also includes multiplexing of IRIG-B time synchronization signals with the data over the

fiber-optic cable. Use the SEL-2810 to connect between any of the SEL communications processors and the SEL-487B to provide a path for both data and IRIG-B with a single pair fiber-optic cable.

For greater distances, or when cable installations require more power, the SEL-2815 Fiber-Optic Transceiver/Modem provides signal strength for distances as long as 15 km (9.4 miles) using standard ST connectors.

SEL also provides fiber-optic cables with terminations and bulk cable with splicing kits for use with these products. See the product flyers or the SEL website for the SEL-2800 series devices and SEL fiber-optic cable product flyers for more information on applications and specifications.

Single Mode

The SEL-2830 Single-Mode Fiber-Optic Transceiver/Modem provides media conversion from EIA-232 to single-mode fiber-optic cable. As with other SEL-2800 series devices, the SEL-2830 is port powered and needs no settings. You can apply the SEL-2830 with ST connector-terminated fiber-optic cables as long as 80 km (50 miles). See the product flyer for the SEL-2830 or the SEL website for more information on applications and specifications.

There is no EIA-485 port integral to the SEL-487B. You can install an SEL-2885 EIA-232 to EIA-485 Transceiver or SEL-2886 EIA-232 to EIA-485 Interface Converter to convert one of the rear-panel EIA-232 ports (Port 1–3) on the relay to an EIA-485 port. The SEL-2885 and SEL-2886 are powered by the +5 Vdc output on Pin 1. These transceivers offer transformer isolation not found on most EIA-232-to-EIA-485 transceivers. See the transceiver product flyers or the SEL website for more information.

The SEL-2885 offers the SEL distributed port switch (LMD) protocol. With this protocol you can selectively communicate with multiple devices on an EIA-485 network. You can communicate with other network nodes including EIA-232 devices with an SEL-2885 and SEL devices having integral EIA-485 ports. You can find more information about using SEL LMD protocol in *Section 4: SEL Communications Protocols*.

Table 3.3 summarizes the family of available transceivers.

Table 3.3 Summary of Available Transceivers

Transceiver	Mode	Distance
SEL-2800	Multimode	500 m
SEL-2810	Multimode	500 m
SEL-2815	Multimode	15 km
SEL-2830	Single mode	80 km

EIA-485

Communications Card

Port 5 of the SEL-487B is a communications card slot. You can either field install the optional communications card or order the relay with the card installed at the factory. The communications card slot provides an interface to SEL-2700 series communications cards. As with other SEL products, SEL has designed and tested SEL communications cards for operation in harsh environments.

Ethernet Card

The optional Ethernet card provides Ethernet communications for the SEL-487B. The Ethernet card is available with standard twisted pair and fiberoptic physical interfaces. The Ethernet card includes redundant physical interfaces with the capability to automatically transfer communications to the backup interface in the event that the primary network fails. For information on substation integration architectures, see Section 4: SEL Communications Processor Applications, Direct Network Communication on page A.5.1, Section 5: DNP3 Communications, and Section 6: IEC 61850 Communications.

Once installed in an SEL-487B, the Ethernet card settings become part of the relay settings. The card cannot be set directly—it must be set as relay PORT 5. The settings needed for network operation and data exchange protocols, including DNP3 and IEC 61850, are available in the PORT 5 settings.

Ethernet Network Operation Settings

Several settings control how the SEL-487B with the optional Ethernet card operates on an Ethernet network. These settings include IP addressing information, network port fail-over options, and network speed.

Network Configuration

Use the network configuration settings shown in *Table 3.4* to configure the SEL-487B for operation on an IP network and to set other parameters affecting the physical Ethernet network interface operation.

Table 3.4 Ethernet Card Network Configuration Settings (Sheet 1 of 2)

Label	Description	Range	Default
IPADDR	IP network address	IP address	192.92.92.92
SUBNETM	IP network subnet mask	IP address	255.255.255.0
DEFRTR	Default router	IP address	NA
ETCPKA ^a	TCP keep-alive functionality enable ^a	Y, N	Y
KAIDLE	Length of time to wait with no detected activity before sending a keep-alive packet	1–20 s (must be greater than or equal to KAINTV)	10
KAINTV	Length of time to wait between sending keep-alive packets after receiving no response for the prior keep-alive packet	1–20 s (must be less than or equal to KAIDLE)	1
KACNT	Maximum number of keep-alive packets to send	1–20	6
NETPORT	Primary network port (D disables all network ports)	A, B, D	A

Table 3.4 Ethernet Card Network Configuration Settings (Sheet 2 of 2)

Label	Description	Range	Default
FAILOVR	Automatic fail-over enable	Y, N	Y
FTIME	Fail-over time out	5–65535 ms	5
NETASPD ^b	Network speed or auto-detect on Port A	A, 10 Mbps, 100 Mbps	A
NETBSPD ^b	Network speed or auto-detect on Port B	A, 10 Mbps, 100 Mbps	A

^a This setting applies only to IEC 61850 communications.

The SEL-487B uses the IPADDR and SUBNETM settings to determine its local network and node address. The SUBNETM setting defines the subnet mask. The subnet mask divides the local node IP address into two parts, a network number and a node address on that network. A subnet mask is four bytes of information and is expressed in the same format as an IP address.

The SEL-487B uses the DEFRTR address setting to determine how to communicate with nodes on other local networks. The SEL-487B communicates with the default router to send data to nodes on other local networks. If you change the DEFRTR setting from the default value of Null (meaning that there is no default router), then the default router must be on the same local network as the SEL-487B or the SEL-487B will reject the DEFRTR setting. You must also coordinate the default router with your general network implementation and administration plan. See *Table 3.5* for examples of how IPADDR and SUBNETM define the network and node and how these settings affect the DEFRTR setting.

Table 3.5 DEFRTR Address Setting Examples

IPADDR	SUBNETM	Network Number	Node Address	DEFRTR
192.92.92.92	255.255.255.0	192.92.92	92	192.92.92.a ^a
192.92.92.92	255.255.0.0	192.92	92.92	192.92.a ^a , b ^a
192.92.92.92	255.0.0.0	192	92.92.92	192.a ^a , b ^a , c ^a
192.92.92.92	0.0.0.0	n/a	192.92.92.92	a ^a , b ^a , c ^a , d ^a

a Value in the range 0-255.

If the SEL-487B is purchased with IEC 61850 support, the ETCPKA setting, along with the KAIDLE, KAINTV, and KACNT settings, can be used to verify that the computer at the remote end of a TCP connection is still available. If ETCPKA is enabled and the SEL-487B does not transmit any TCP data within the interval specified by the KAIDLE setting, the SEL-487B sends a keep-alive packet to the remote computer. If the SEL-487B does not receive a response from the remote computer within the time specified by KAINTV, the keep-alive packet is re-transmitted as many as KACNT times. After this count is reached, the SEL-487B remote device is no longer available, so the SEL-487B can terminate the connection without waiting for the idle timer (TIDLE or FTPIDLE) to expire.

The SEL-487B Ethernet card operates over either twisted-pair or fiber-optic media. Each Ethernet card is equipped with two network ports. With an initial ordering option, you can select the medium for each port (10/100 Mbps twisted pair or 100 Mbps fiber optic). Speeds for the physical media are fixed for fiber-optic connections. For twisted-pair connections, the Ethernet card can auto-detect the network speed or you can set a fixed speed.

^b This setting applies only to twisted-pair ports (10/100BASE-T).

Network Port Fail-Over Operation

The SEL-487B Ethernet card has two network ports. Network port fail-over mode enables the Ethernet card to operate as a single network adapter with a primary and standby physical interface. You can connect the two network ports to the same network or different networks depending on your specific Ethernet network architecture. If you have a single network and want to use only one network port, set NETPORT to the port you want to use and set FAILOVR to N. Only one network port operates at a time. The fail-over mode operation determines the active port. To use fail-over mode, proceed with the following steps.

- Step 1. Set NETPORT to the preferred network interface.
- Step 2. Set FAILOVR to Y.
- Step 3. Set FTIME to the desired network port fail-over time.

If the Ethernet card detects a link failure on the primary port, it activates the standby port after the fail-over time, FTIME, elapses. If the link status on the primary link returns to normal before the fail-over time expires, the fail-over timer resets; uninterrupted operation continues on the primary network port.

NOTE: If you change settings for the host port where the Ethernet card is installed and the standby network port is active, the Ethernet card resets and returns to operation on the primary port.

Network Address Resolution

The SEL-487B Ethernet card can resolve 20 network host names to corresponding IP addresses. Settings for Network Address Resolution (NAR) are shown in *Table 3.6*. The Ethernet card uses address resolution any place settings or commands require an IP network name. NAR is similar to DNS (Domain Name Services) used on the Internet, except that NAR uses a local name list rather than a remote name server. You can use names rather than numeric IP addresses for settings like DEFRTR (default router) or when using the Ethernet card PING command. If a remote network host name (HOST 1-Host 20) is set NA, then the Ethernet card ignores the corresponding IP address setting (IPADR 1-IPADR 20).

Table 3.6 IP Network Address Resolution Settings

Label	Description	Range	Default
HOST1	Remote network host name	16 characters	NA
IPADR1	Remote network host IP address	IP address	NA
HOST 2	Remote network host name	16 characters	NA
IPADR2	Remote network host IP address	IP address	NA
•			
•			
•			
HOST20	Remote network host name	16 characters	NA
IPADR20	Remote network host IP address	IP address	NA

Network Operation

Access data via the standard TCP/IP Telnet and FTP interfaces or through the DNP3 LAN/WAN or IEC 61850 interfaces. You cannot access all data through all interfaces. See Figure 3.4 for details on data access.

The root directory contains the following files if the IEC 61850 protocol is installed and enabled:

- ➤ CID (Configured IED Description) file—contains the IEC 61850 SCL configuration for the SEL-487B
- ➤ ERR.TXT file—contains any errors found during downloading of the CID file, and is present when the download is complete
- ➤ CFG.XML file—contains the Ethernet card and SEL-487B configuration information

Data Access Settings

Access data using either the standard TCP/IP Telnet and FTP interfaces or, optionally, through the DNP LAN/WAN or IEC 61850 interface. You cannot access all data through all interfaces. See the appropriate interface section below for details on data access.

FTP

FTP is a standard application-level protocol for exchanging files between computers over a TCP/IP network. The SEL-487B Ethernet card operates as an FTP server. It presents Ethernet card and host files to FTP clients. The SEL-487B Ethernet card can support as many as three simultaneous FTP sessions, allowing simultaneous FTP access to as many as three separate users.

The host maintains the access control list that determines FTP log-in IDs and passwords. The host also determines which files are available. Some files are available at specific log-in levels, while other files are read-only access. Subsequent host-specific sections describe access control for each host.

File Structure

The basic file structure common to all hosts is organized as a directory and subdirectory tree similar to that used by Unix, DOS, Windows, and other operating systems. The root directory is "/" and has at least one subdirectory. The basic file structure is shown in *Table 3.7*.

Table 3.7 Basic File Structure

Host Directory	Subdirectories	Files
/	Host	See the host-specific sections for available files and directories.
	SEL-2702	DIAGNOSTICS.TXT ERR.TXT
	DD01_DeviceID	REGION1.TXT
	DDnn_DeviceID	REGION1.CAS
		•
		•
		•
		REGIONn.TXT
		REGIONn.CAS

The root directory contains the CID (Configured IED Description) file if the IEC 61850 is installed and enabled. An ERR.TXT file is present if there was an error in downloading the CID file.

The first subdirectory is for the host. Some hosts do not have a subdirectory. The HOST_ID string, if set, determines this subdirectory name. The Ethernet

card strips any leading or following white-space characters. The Ethernet card then substitutes the "_" character for any white-space or delimiter characters. For example, if the HOST_ID is IED#983 Sub#45, then the host subdirectory name is IED_983_Sub_45. If the converted HOST_ID is longer than 31 characters, the host subdirectory name becomes the first 31 characters of the converted HOST_ID. The host subdirectory contains settings, reports, and diagnostic files for the host.

The next subdirectory is SEL-2702. This subdirectory contains the file DIAGNOSTICS.TXT that contains records for Ethernet card system failures. The time and date for the diagnostics file are the same as the time and date of the last system failure event. This directory will also contain the DNPMAP.TXT and DNPMAPx.TXT files if DNP LAN/WAN is enabled. The ERR.TXT file contains any error messages generated by the Ethernet card and host pertaining to these files.

The Ethernet card creates a subdirectory for each virtual device in the host. The subdirectory name is DDnn_DeviceID, where nn is the virtual device number and DeviceID is the device name derived from an identification string stored in the host that is associated with the virtual device. The Ethernet card uses the first identification string that it finds in the PORTID, DEVICEID, and FIDID strings. The same substitution rules that govern substitutions for the host subdirectory name govern creation of the substring. For example, if you have an SEL-351 connected to an SEL-2030 on Port 3 with a PORTID setting of "Feeder 1," the subdirectory name will be "DD03_Feeder_1."

Each virtual device subdirectory contains files that represent valid host data regions associated with the virtual device. Data region files provide snapshots of the corresponding host database regions. When an FTP client requests the file, the Ethernet card sends a file containing values from the host database region. If the voltage VA is 12.47 kV when you make an FTP request for the METER.TXT file, then the file METER.TXT will contain VA = 12.47. If you request the file at another time, when VA is 12.40, the file will contain VA = 12.40. Two file formats are available, ASCII text and compressed ASCII (CASCII). Names of the files correspond to the data region name (i.e. METER.TXT, METER.CAS).

Access Control

FTP settings control some basic file access features. The host is responsible for maintaining names and passwords for access control. The special FTP user name "anonymous" does not require a password. It has the same access rights as the user name in the FTPAUSR setting. For example, if FTPAUSR is set to ACC, the FTP anonymous user has Access Level 1 rights. See the hostspecific sections for additional information about access rights. Table 3.8 lists the settings that affect FTP server operation.

Table 3.8 SEL-2701 FTP Settings

Label	Description	Range	Default
FTPSERVa	FTP session enable	Y, N	N
FTPCBAN	FTP connect banner	254 characters	FTP SERVER:
FTPIDLEa	FTP connection timeout	5–255 minutes	5
FTPANMSa	Anonymous login enable	Y, N	N
FTPAUSR	Host user from which anonymous FTP client inherits access rights	See host- specific section	Empty String

a If you change these settings and accept the new settings, the Ethernet card closes all active network connections and briefly pauses network operation.

NOTE: SEL advises against enabling anonymous FTP logins (FTPANMS = Y) except under test conditions. The Ethernet card does not require a password for the special FTP user name "anonymous." If you enable anonymous FTP logins, you are allowing unrestricted access to the Ethernet card and host files.

Telnet

Telnet is also part of the TCP/IP protocol suite. You can use Telnet to establish terminal access to a remote device. A Telnet connection provides access to the user interface of either the host or the Ethernet card. Host user interface access is similar to an ASCII terminal connection to the front port of an SEL device.

You can use Telnet in the Ethernet card in one of three ways:

- 1. Connect from your PC to the Ethernet card user interface.
- 2. Connect from your PC to the host user interface.
- 3. Connect from a host to another Telnet server.

To determine which modes are available in your installation, see the host-specific section. The Ethernet card acts as a Telnet server for connections to the Ethernet card user interface. The user interface provides access to commands for diagnostics and other special features of the Ethernet card. Telnet settings are listed in *Table 3.9*.

Table 3.9 Ethernet Card Telnet Settings

Label	Description	Range	Default
T1CBAN	Host Telnet connect banner	254 characters	HOST TERMINAL SERVER:
T1INIT	Telnet session from host enable	Y, N	Y
T1RECV	Telnet session to host enable	Y, N	N
T1PNUM ^a	Host Telnet TCP/IP port	1–65534 except 20, 21, 102	23
T2CBAN	Ethernet card Telnet connect banner	254 characters	CARD TERMINAL SERVER:
T2RECV	Telnet session to Ethernet card enable	Y, N	N
T2PNUM ^a	Ethernet card Telnet TCP/IP port	1–65534 except 20, 21, 102	1024
TIDLE	Telnet connection timeout (0 prevents timeout)	0–255 minutes	5

a If you change these settings and accept the new settings, the Ethernet card closes all active network connections and briefly pauses network operation.

Ethernet Card Commands

The SEL-487B Ethernet card user interface accepts Ethernet card commands. There are two ways you can connect to the Ethernet card. First, if your host allows, you can make a transparent connection to the Ethernet card. Second, you can establish a Telnet connection to the Ethernet card user interface. See the host-specific sections for more information on connecting to the Ethernet card user interface. Other connections to the Ethernet card, including FTP, require standard protocol commands and do not respond to the Ethernet card user-interface commands.

Using Commands

When you type commands, you can type in either the entire command or just use the first three letters. For example, if you type **STATUS <Enter>** or **STA <Enter>**, the Ethernet card displays status information. Commands are not case sensitive; you may use upper- or lowercase characters. Access level password entry is case sensitive. *Table 3.11* summarizes the user commands.

As with serial ports on SEL devices, you can control character transmission in a Telnet session using control characters. Send the control characters listed in *Table 3.10* to control long transmissions like event reports and SER reports.

Table 3.10 Control Characters

Control Characters	Key Commands	Results
XON	CTRL + Q	Restart paused transmission and enable subsequent transmissions.
XOFF	CTRL + S	Pause current transmission and block any subsequent transmissions.
CAN	CTRL + X	Cancel current transmission or command and return to cursor.

Command Summary

Table 3.11 summarizes the Ethernet card commands. Subsequent subsections provide full descriptions of each command in alphabetical order.

Table 3.11 SEL-2701 Command Summary

Command	Description	Access Level
2ACCESS	Go to Access Level 2.	1
ACCESS	Go to Access Level 1.	0 or 2
DATE	View or change date.	1a or 2
DNPMAP	Display data map(s) accessible to a DNP LAN/WAN master	1 or 2
GOOSE	Display GOOSE message multicast information and status for transmit and receive GOOSE messages.	1 or 2
HELP	Display available commands or command help.	Any
ID	View internal identification parameters for the Ethernet card.	1 or 2
MEMORY	Display RAM statistics for the Ethernet card.	1 or 2
PING	Ping another node on the network.	2
QUIT	Go to Access Level 0.	Any
STATUS	Display self-test status.	1 or 2
TIME	View or change internal clock.	1a or 2

^a Limited functions at this access level. See command description below for details.

Access Levels

Access levels control whether you can perform different operations within SEL products. For example, at Access Level 1, you can view settings. You cannot change settings unless you are at Access Level 2. A complete list of access levels for the SEL-487B is shown in Table 3.12.

Table 3.12 SEL-2701 Access Levels

Access Level	Prompt	Allowed Ethernet Card User-Interface Operations
0	#	Log in to Access Level 1.
1	#>	View data and status information.
2	#>>	Perform all Access Level 1 functions plus advanced diagnostics and set date/time.

Each access level has a password. The Ethernet card uses passwords set in the host for the same access level. For example, if you have an SEL-2032 and Ethernet card, and have set the SEL-2032 Access Level 2 password to SUB35L2, then SUB35L2 is the password for Access Level 2 on your Ethernet card.

The Ethernet card uses access levels and passwords in two ways. First, if you are connected to the Ethernet card user interface, the Ethernet card limits command access based on your access level. You are connected to the Ethernet card user interface if you are using a terminal or Telnet program and see one of the prompts shown in *Table 3.12*. For example, if your Ethernet card is installed in an SEL-2032, you can Telnet to the Ethernet card or make a transparent connection from one of the SEL-2032 serial ports to the Ethernet card.

Second, the Ethernet card uses access level names and passwords as user names and passwords for protocols that require you to log in to establish a connection. For example, if you are making an FTP connection to the Ethernet card, you will be prompted for an FTP user name and password. In this case, use host access levels and passwords to connect. Use the host access level for the FTP user name and the corresponding password for the FTP password. Access levels are listed with corresponding passwords in *Table 3.13*.

Table 3.13 Access Level User Names and Passwords

Access Level	User Name	Password
0	QUI	None
1	ACC	User-definable
2	2AC	User-definable

Connections that are closed manually by ending the network connection or by using the Ethernet card **QUIT** command are terminated. This means that to reestablish the connection and return to the original access level, you must log in using the access level commands and passwords.

When a connection with the Ethernet card or the host "times out," the connection is closed and the access level is reduced to 0. There is a timeout setting associated with connections to the Ethernet card and connections to the host through the Ethernet card. The timeout settings and their specific operation are described in the host-specific sections.

Access failures cause the Ethernet card to close connections, assert the alarm bit, and prevent connections for a variable delay period.

2ACCESS

Use the **2ACCESS** command to change to Access Level 2. If the current level is not Access Level 1, the Ethernet card responds with "Invalid access level." When you enter the **2AC** command, the Ethernet card prompts you to enter the Access Level 2 password. If the password is Null or you enter the

password set in the host, the access level changes to Access Level 2. Passwords are case sensitive; you must enter them exactly as set. The host maintains the password and user list. For more details, see the host-specific sections.

If you are unable to enter the correct password after the third failed attempt, the Ethernet card asserts the ALARM bit in the Status register and terminates the connection for some connection types. See the host-specific sections for more information on how your host uses the ALARM bit from the Ethernet card.

If your connection to the Ethernet card has an inactivity timeout, the Ethernet card automatically closes the connection and changes to Access Level 0 when the timeout expires.

ACCESS

Use the **ACCESS** command to change to Access Level 1. For example, if you are at Access Level 0, the Ethernet card prompts you for the password and moves you to Access Level 1 if you enter the password correctly. For additional details on access level commands, see 2ACCESS.

DATE

Table 3.14 illustrates how to use the **DATE** command to view or set the date.

Table 3.14 DATE Command

Command	Description
DATE	Display internal Ethernet card date.
DATE mm/dd/yyyy	Set the date if the date format setting for the host is mm/dd/yyyy, where mm is the month, dd is the day of month, and yyyy is the year.
DATE dd/mm/yyyy	Set the date if the date setting for the host is dd/mm/yyyy.
DATE yyyy/mm/dd	Set the date if the date setting for the host is yyyy/mm/dd.

The **DATE** command displays the internal clock date. A setting in the host determines the date format. In order to avoid confusion, the Ethernet card displays the date format along with the date. For example, if you set the host for a European style date, the Ethernet card displays the current date and the date format text "dd/mm/yyyy." The date format options are mm/dd/yyyy, dd/ mm/yyyy, and yyyy/mm/dd.

Use the **DATE** command with a date to set the internal clock date. Enter the year in four-digit form. Enter the date in a form that matches the date form of the host. Because there is no way to differentiate between mm/dd/yyyy and dd/mm/yyyy for certain dates (02/03/2001 could be February 3 or March 2), check the date format before entering the date. To see the date format, use the DATE command.

DNPMAP

Use the **DNPMAP** command to display the data (object types, indices, default variation and source) and controls (object type, indices and destination) that are accessible via DNP3. The output of the **DNPMAP** command documents the DNP3 data map in the SEL-487B to help with the configuration of the DNP3 master.

If the DNPMAP setting is set to CUSTOM, then an additional integer parameter corresponding to an assigned DNPMAP number (1–5) must be specified to view each custom DNP3 data map. For example, the command **DNPMAP 2** would be used to view the custom data map for DNP session 2. If a DNPMAP number is not specified, a summary of DNP3 map settings for all configured sessions will be displayed.

Summary and detailed map configurations are also available in the DNPMAP.TXT and DNPMAPnn.TXT files from the Ethernet card FTP interface. The individual file names associated with the detailed custom map settings follow the DNPMAPnn.TXT naming convention.

GOOSE

This command outputs the GOOSE multicast information and status for every GOOSE transmit and receive message connected to the SEL-487B.

The multicast information displayed includes:

Field	Description
GOOSE Control Reference	A concatenation of the IED name, LN0 lnClass (Logical Node Class) and GSEControl name (GSE Control Block Name)
Multicast Address (MultiCastAddr)	Hexadecimal representation of the multicast addresses
Priority Tag (Ptag)	VLAN priority tag (3-bit decimal). If the priority tag is unknown, then empty spaces will be displayed in lieu of the value.
VLAN	Virtual LAN Setting (12-bit decimal value). If the Virtual LAN setting is unknown, then empty spaces will be displayed in lieu of a decimal value.

The status information includes:

Field	Description
State Number (StNum)	Increments each time a state changes
Sequence Number (SqNum)	Increments each time a GOOSE message is sent
Time to Live (TTL)	Remaining time in ms before the next message is expected
Code	Indicate a warning or error condition. See below for descriptions.

The Status codes are abbreviated as:

Code Abbreviation	Description
OUT OF SEQUENC	Out of sequence error
CONF REV MISMA	Configuration Revision mismatch
NEED COMMISSIO	Needs Commissioning
TEST MODE	Test Mode
MSG CORRUPTED	Message Corrupted
TTL EXPIRED	Time to live expired
HOST DISABLED	Host disabled/not responding

Examples of GOOSE command outputs follow:

```
#>>G00 <Enter>
GOOSE Transmit Status
  MultiCastAddr Ptag:Vlan StNum
                                       SqNum
                                                          Code
SEL_2701_G00SE/LLN0$G0$GooseDSet1
                                        347
  01-03-A7-00-00-01 2:5 1256
Data Set: SEL_2701_G00SE/LLN2$Master
GOOSE Receive Status
  MultiCastAddr Ptag:Vlan StNum
                                        SqNum
                                                 TTL
                                                         Code
SEL-2701/LLN0$G0$GooseDSet13
  01-03-A7-00-00-01 3:1
                             1253758689 4786543985 123456 MSG CORRUPTED
  Data Set: SEL-2701-2/LLNO$Positions
GE-F60/LLN0$GO$GEGooseDSet
  01-03-A7-00-00-01 3:23
                             12568945 34
                                                          TTL EXPIRED
                                                 0
  Data Set: GE-F60/LLN1$Station1
GE-C30/LLN0$G0$GEGooseDSet
  01-03-A7-00-00-01 3:343 1945
                                        34456
  Data Set: GE-C30/LLN2$Terminal
COOPER-EDISONPRO/LLNO$GO$CooperGooseDSet 01-03-A7-00-00-01 3:4987 45
                                                   123456
  Data Set: COOPER-EDISONPRO/LLN2$Transmission
SEL-351-RECLOSING_DIRECTIONAL_OVERCURRENT/LLNO$GO$GooseDSet
  01-03-A7-00-00-01 3:5
                             12568945 34783456 123456
  Data Set: SEL-351-RECLOSING_DIRECTIONAL_OVERCURRENT/LLN3$Recloser
GEC_ALSTOM_123/LLN0$G0$GECGooseDSet
  01-03-A7-00-00-01 3:643
                                                   126 MSG CORRUPTED
  Data Set: GEC_ALSTOM_123/LLN2$Relay
#>>
```

No GOOSE receive and/or GOOSE transmit subscriptions:

```
##>>G00 <Enter>
GOOSE Transmit Status
  MultiCastAddr Ptag:Vlan StNum SgNum TTL
                                                    Code
No GOOSE Tx subscriptions available
GOOSE Receive Status
  MultiCastAddr Ptag:Vlan StNum SqNum TTL
                                                   Code
No GOOSE Rx subscriptions available
##>>
```

GOOSE is disabled by settings (EGSE := N):

```
#>G00 <Enter>
GOOSE is disabled by settings. No GOOSE statistics available.
#>
```

Error during the processing of the IEC 61850 CID file:

```
#>G00 <Enter>
Error detected in the CID file parsing. All GOOSE processing disabled.
#>
```

GOOSE command is executed during CID file processing:

```
#>GOO<Enter>
CID file is currently being parsed. No GOOSE statistics available.
#>
```

SEL-487B is disabled (after CID file parsed successfully):

```
#>GOO <Enter>
Host Disabled. All GOOSE processing disabled.
#>
```

The **GOOSE** command supports only one optional parameter, *cnt*. The *cnt* parameter causes the **GOOSE** command to be repeated *cnt* times. The valid range of *cnt* is from 1–65535; and the default value of *cnt* is 1.

HELP

Because only a limited set of commands may be available at your current access level, you may want to display a list of available commands. Use the **HELP** command to display a list of available commands for your current access level. The **HELP** command format and options are shown in *Table 3.15*.

Table 3.15 HELP Command Options

Command	Description
HELP	Display command information for the current access level.
HELP command	Display information for a specific command.

ID

It may be necessary to identify the firmware version of your Ethernet card for diagnostic purposes or to verify that it is compatible with the firmware version of your host. Use the **ID** command to identify the firmware version and several other internal parameters for your Ethernet card. The information displayed by the **ID** command is described in *Table 3.16*.

Table 3.16 ID Command Internal Parameters Displayed

Parameter	Description
FID	Firmware ID
BFID	SELBOOT Firmware ID
CID	Firmware Checksum
DEVID	Device ID
PARTNO	Part Number
CONFIG	Configuration ID

If the Ethernet card includes the IEC 61850 protocol option and the protocol is enabled (E61850 := Y), the ID command will display the following additional information:

- ➤ iedName: the IED name (e.g., SEL_487B_OtterTail)
- ➤ type: the IED type (e.g., SEL_487B)
- > configVersion: the CID file configuration version (e.g., ICD-487B-R100-V0-Z001001-D20060512)

If the Ethernet card encounters an error while parsing the CID file, the value of the iedName, type, and configVersion fields shall be set to PARSE FAILURE; otherwise, the fields shall contain the CID file values as shown in the examples above.

MEMORY

The MEMORY command is a diagnostic command for determining if the Ethernet card is using onboard RAM properly. Use the MEMORY command to display RAM statistics for the following areas: memory in use, free memory, free memory blocks, and bytes in largest available block.

PING

When you are setting up or testing substation networks, it is helpful to determine if the network is connected properly and if the other devices are powered up and configured properly. Use the **PING** command to determine if another node on the network is available and connected to the network. The Ethernet card sends ping messages to the remote node until you interrupt the Ethernet card by pressing **<Enter>**. Command options for the **PING** command are shown in Table 3.17.

Table 3.17 PING Command Options

Command	Description
PING addr	Ping the address represented by addr every second.
PING addr n	Ping the address addr once every n seconds, where n is a value from 1–255.

The **PING** command requires the *addr* parameter, which can either be a name in the NAR table for the host, or an actual IP address. In response to the PING command, the Ethernet card displays the status of each ping attempt. When you stop the ping process, the Ethernet card displays several statistics to summarize the ping attempts.

QUIT

To close your connection to the Ethernet card and start a connection to another device without closing your terminal application, use the QUIT command. For example, use **QUIT** to log out and automatically terminate a Telnet session. You may then open a new Telnet session from your Telnet application. You can also use the QUIT command to log out of the Ethernet card for security purposes when the connection will not be closed. For example, if you are connected to an Ethernet card in a host from one of the host serial ports, you can log out without closing the transparent connection to the Ethernet card.

STATUS

Use the **STATUS** command to display the self-test status and configuration of the Ethernet card. The Ethernet card displays self-test results as either OK or FAIL. The Ethernet card displays network configuration information and network statistics.

If the Ethernet card includes the IEC 61850 protocol option and the protocol is enabled (E61850 := Y), the card shall append an error message to the output of the **STATUS** command if it fails to successfully parse the current CID file.

```
#> STA <Fnter>
ETHERNET PROCESSOR WITH IEC 61850 AND DNP
                                                           TIME: 14:11:25
FID=SEL-2702-R107-V2-Z000000-D20071225
BFID=SLBT-2701-R103-V0-Z000000-D19981001
 MAC: 00-30-A7-00-01-01
  SELF-TEST
             SRAM
                       EXE
                                 SLBT
                                            SETTINGS STORAGE
                                                                CONFIG
                                                                          HOST
  RAM
                                                      0 K
                                                                0 K
              PORT
                        MEDIA
                                          SPEED
  PRIMARY
              В
                        10/100 BASE-T
                                          100
  STANDBY
             Α
                        10/100 BASE-T
                                         100
  ACTIVE PORT: PRIMARY
                         LINK OK
  IP ADDRESS: 192.168.0.97
  SUBNET MASK: 255.255.0.0
 DEFAULT ROUTER: 192.168.0.1
  PACKETS:
                ΙP
                                       BYTES:
                                                     ΙP
                                                     2051
  SENT:
                33
                                         SENT:
  RECEIVED:
                                         RECEIVED:
  CONNECTIONS:
                                        ERRORS DETECTED:
   LISTENING:
                                         SENT:
  ACTIVE:
                                         RECEIVED:
Error detected in the CID file parsing. All IEC61850 processing disabled.
```

TIME

The TIME command is described in Table 3.18.

Table 3.18 TIME Command

Command	Description	Access Level
TIME	Display internal clock date.	1 or 2
TIME hh:mm	Set internal clock time to hh hours (24 hour time), mm minutes and 0 seconds.	2
TIME hh:mm:ss	Set internal clock time to hh hours (24 hour time), mm minutes, and ss seconds.	2

Some hosts support time synchronization of the Ethernet card from the host or time synchronization of the host from the Ethernet card. See the host-specific section for more information on time synchronization.

Communications Card Database

The SEL-487B presents a database to an installed communications card. This database includes a variety of data within the relay that are available for the communications card. The database includes the regions and data described in *Table 3.19*. Use the **MAP** and **VIEW** commands to display maps and contents of the database regions. See *Section 7: ASCII Command Reference on page 7.1* for more information.

Table 3.19 Communications Card Database Regions

Region Name	Contents	Update Rate
LOCAL	Relay identification data including FID, Relay ID, and active protection settings group	Updated on settings change and whenever monitored values change
METER	Real-time metering and measurement data	0.5 s
TARGET	Selected rows of Relay Word bit data	0.5 s
HISTORY	Relay event history records for the 20 most recent events	Within 15 s of any new event
STATUS	Self-test diagnostic status data	5 s
ANALOGS	Protection and automation math variables	0.50 s
STATE	Elements defined as SER points	0.5 s of any new event
D1	Analog Output points from SEL 27xx card	N/A

Data within the communications card regions is available for mapping to any protocol over the Ethernet interface.

The LOCAL region contains the device FID, SID, and RID. It will also provide appropriate status points. This region is updated on settings changes and whenever monitored status points change. See Table 3.19.

Table 3.20 SEL-487B Communications Card Database Structure-LOCAL Region

Address (Hex)	Name	Туре	Description
0000	FID	char[48]	FID string
0030	BFID	char[48]	SELboot FID string
0060	SER_NUM	char[16]	Device Serial number, from factory settings
0070	PART_NUM	char[18]	Device part number, from factory settings
0082	CONFIG	char[8]	Device configuration string (as reported in ID command)
008A	SPECIAL	char[8]	Special device configuration string (as reported in ID command)
0092	DEVICE_ID	char[40]	Relay ID setting, from global settings
00BA	NODE_ID	char[40]	Station ID from global settings
00E2	GROUP	int	Active group
00E3	STATUS	int	Bit map of status flags: 0 for okay, 1 for failure

The METER region contains all the basic meter and energy information. This region is updated every 0.5 seconds. See *Table 3.21* for the Map.

Table 3.21 SEL-487B Communications Card Database Structure-METER Region (Sheet 1 of 2)

Address		_	
(Hex)	Name	Туре	Description
1000	_YEAR	int	4-digit year when data was sampled
1001	DAY_OF_YEAR	int	1–366 day when data was sampled
1002	TIME(ms)	long int	Time of day in msec when data was sampled (0–86,400,000)
1004	FREQ	float	System frequency
1006	VDC	float	Battery voltage
1008, 100A	I01	float[2]	I01 current magnitude (Amps primary) and phase (degrees)
100C, 100E	102	float[2]	I02 current magnitude (Amps primary) and phase (degrees)
1010, 1012	103	float[2]	I03 current magnitude (Amps primary) and phase (degrees)
1014, 1016	104	float[2]	I04 current magnitude (Amps primary) and phase (degrees)
1018, 101A	105	float[2]	I05 current magnitude (Amps primary) and phase (degrees)
101C, 101E	106	float[2]	I06 current magnitude (Amps primary) and phase (degrees)
1020, 1022	107	float[2]	I07 current magnitude (Amps primary) and phase (degrees)
1024, 1026	108	float[2]	I08 current magnitude (Amps primary) and phase (degrees)
1028, 102A	109	float[2]	I09 current magnitude (Amps primary) and phase (degrees)
102C, 102E	110	float[2]	I10 current magnitude (Amps primary) and phase (degrees)
1030, 1032	I11	float[2]	I11 current magnitude (Amps primary) and phase (degrees)
1034, 1036	I12	float[2]	I12 current magnitude (Amps primary) and phase (degrees)
1038, 103A	113	float[2]	I13 current magnitude (Amps primary) and phase (degrees)
103C, 103E	I14	float[2]	I14 current magnitude (Amps primary) and phase (degrees)
1040, 1042	115	float[2]	I15 current magnitude (Amps primary) and phase (degrees)
1044, 1046	I16	float[2]	I16 current magnitude (Amps primary) and phase (degrees)
1048, 104A	I17	float[2]	I17 current magnitude (Amps primary) and phase (degrees)
104C, 104E	118	float[2]	I18 current magnitude (Amps primary) and phase (degrees)
1050	RSRVD1	float[12]	Reserved for 6 future currents; always report as 0
1068, 106A	V01	float[2]	V01 voltage magnitude (Volts primary) and phase (degrees)

Table 3.21 SEL-487B Communications Card Database Structure-METER Region (Sheet 2 of 2)

Address (Hex)	Name	Туре	Description
106C, 106E	V02	float[2]	V02 voltage magnitude (Volts primary) and phase (degrees)
1070, 1072	V03	float[2]	V03 voltage magnitude (Volts primary) and phase (degrees)
1074	RSRVD2	float[6]	Reserved for 3 future voltages; always report as 0
1080	IOP1	float	Zone 1 Operating Current (per unit)
1082	IOP2	float	Zone 2 Operating Current (per unit)
1084	IOP3	float	Zone 3 Operating Current (per unit)
1086	IOP4	float	Zone 4 Operating Current (per unit)
1088	IOP5	float	Zone 5 Operating Current (per unit)
108A	IOP6	float	Zone 6 Operating Current (per unit)
108C	IRT1	float	Zone 1 Restraint Current (per unit)
108E	IRT2	float	Zone 2 Restraint Current (per unit)
1090	IRT3	float	Zone 3 Restraint Current (per unit)
1092	IRT4	float	Zone 4 Restraint Current (per unit)
1094	IRT5	float	Zone 5 Restraint Current (per unit)
1096	IRT6	float	Zone 6 Restraint Current (per unit)

The TARGET region contains the entire relay word plus the rows designated specifically for the TARGET region. This region is updated every 0.5 seconds. See Table 3.22 for the Map. See Appendix A: Relay Word Bits in the Reference Manual for detailed information on Relay Word bits.

Table 3.22 SEL-487B Communications Card Database Structure-TARGET Region

Address (Hex)	Name	Туре	Description
3000	_YEAR	int	4-digit year when data was sampled
3001	DAY_OF_YEAR	int	1-366 day when data was sampled
3002	TIME(ms)	long int	Time of day in msec when data was sampled (0–86,400,000)
3004	TARGET	char[~393]	Entire Relay Word with some bit labels

The HISTORY region contains all information available in a History report for the most recent 10 events. This region is updated within 15 seconds of any new events. See *Table 3.23* for the Map.

Table 3.23 SEL-487B Communications Card Database Structure-HISTORY Region

Address (Hex)	Name	Туре	Description
4000	_YEAR	int	4-digit year when data was sampled
4001	DAY_OF_YEAR	int	1-366 day when data was sampled
4002	TIME(ms)	long int	Time of day in msec when data was sampled (0–86,400,000)
4004	REF_NUM	int[10]	Event serial number
400E	MONTH	int[10]	Month of event
4018	DAY	int[10]	Day of event
4022	YEAR	int[10]	Year of event
402C	HOUR	int[10]	Hour of event
4036	MIN	int[10]	Minute of event
4040	SEC	int[10]	Second of event
404A	MSEC	int[10]	Milliseconds of event
4054	EVENT	char[60]	Event type string
4090	GROUP	int[10]	Active group during fault
409A	TARGETS	char[160]	System targets from event

The STATUS region contains complete relay status information. This region is updated every 5 seconds. See *Table 3.24* for the Map.

Table 3.24 SEL-487B Communications Card Database Structure-STATUS Region (Sheet 1 of 2)

Address (Hex)	Name	Туре	Description
6000	_YEAR	int	4-digit year when data was sampled
6001	DAY_OF_YEAR	int	1-366 day when data was sampled
6002	TIME(ms)	long int	Time of day in msec when data was sampled (0–86,400,000)
6004	CH1_24(mV)	int	Channel offsets, use 0 if not measured
601C	MOF(mV)	int	Master offset
601D	MOF2(mV)	int	Master offset 2
601E	OFF_WARN	char[8]	Offset warning string
6026	OFF_FAIL	char[8]	Offset failure string
602E	PS3(V)	float	3.3 Volt power supply voltage
6030	PS5(V)	float	5 Volt power supply voltage
6032	PS_N5(V)	float	-5 Volt regulated voltage
6034	PS15(V)	float	15 Volt power supply voltage
6036	PS_N15(V)	float	-15 Volt power supply voltage
6038	PS_WARN	char[8]	Power supply warning string
6040	PS_FAIL	char[8]	Power supply failure string
6048	HW_FAIL	char[40]	Hardware failure strings
6070	CC_STA	char[40]	Comm. card status strings
6098	PORT_STA	char[160]	Serial port status strings

Table 3.24 SEL-487B Communications Card Database Structure-STATUS Region (Sheet 2 of 2)

Address (Hex)	Name	Туре	Description
6138	TIME_SRC	char[10]	Time source
6142	LOG_ERR	char[40]	SELOGIC error strings
616A	TEST_MD	char[160]	Test mode string

The ANALOGS region contains protection and automation variables. This region is updated every 0.5 seconds. See *Table 3.25* for the Map.

Table 3.25 SEL-487B Communications Card Database Structure-ANALOGS Region

Address (Hex)	Name	Туре	Description
7000	_YEAR	int	4-digit year when data was sampled
7001	DAY_OF_YEAR	int	1-366 day when data was sampled
7002	TIME(ms)	long int	Time of day in msec when data was sampled (0–86,400,000)
7004	PMV01_64	float[64]	PMV01–PMV64
7084	AMV001_256	float[256]	AMV001–AMV256

The STATE region contains elements defined with the SET R command and an attached SOE queue that holds up to 100 records. The relay updates this region within 0.5 seconds of any new events. Communications card protocols that require state changes with SOE-quality timestamps must retrieve this data from the STATE region. See *Table 3.26* for the Map. See *DNP LAN/WAN* Application Example on page R.5.56 for DNP LAN/WAN implementation details.

Table 3.26 SEL-487B Communications Card Database Structure-STATE Region

Address (Hex)	Name	Туре	Description
8000	_YEAR	int	4-digit year when data was updated
8001	DAY_OF_YEAR	int	1-366 day when data was updated
8002	TIME(ms)	long int	Time of day in msec when data was updated (0–86,400,000)
8004	ELEMENTS	int[16]	250 Relay Word bits defined to be SER points; SER point 1 goes in first register bit 0,
8014	CARD_SER	int[8]	128 Relay Word bits defined to be SER points from R CC settings

The D1 region registers map to the relay's Analog Output points (Remote Analogs) RA001–RA256. See *Table 3.27* for the Map.

Table 3.27 SEL-487B Communications Card Database Structure-D1 Region

Address (Hex)	Name	Туре	Description
9000–97FF	RA001-RA256	int	Remote Analog Output points from SEL-27xx card

The communications card database is virtual device 1 in the relay. You can display the contents of a region using the **MAP 1:region** command (where region is one of the database region names listed in *Table 3.3*). An example of the **MAP** command is shown in *Figure 3.4*.

=>>MAP 1:METER <enter></enter>			
Virtual Device	e 1, Data Region MET	ER Map	
Data Item	Starting Address	Туре	
_YEAR	1000h	int	
DAY_OF_YEAR	1001h	int	
TIME(ms)	1002h	long int	
FREQ	1004h	float	
VDC	1006h	float	
101	1008h	float[2]	
102	100Ch	float[2]	
103	1010h	float[2]	
104	1014h	float[2]	
105	1018h	float[2]	
106	101Ch	float[2]	
107	1020h	float[2]	
108	1024h	float[2]	
109	1024h	float[2]	
I10	102Ch	float[2]	
I11	1030h	float[2]	
I12	1034h	float[2]	
I13	1034n 1038h	float[2]	
I14		float[2]	
	103Ch		
I15	1040h	float[2]	
I16	1044h	float[2]	
I17	1048h	float[2]	
I18	104Ch	float[2]	
RSRVD1	1050h	float[12]	
V01	1068h	float[2]	
V02	106Ch	float[2]	
V03	1070h	float[2]	
RSRVD2	1074h	float[6]	
IOP1	1080h	float	
IOP2	1082h	float	
IOP3	1084h	float	
IOP4	1086h	float	
IOP5	1088h	float	
IOP6	108Ah	float	
IRT1	108Ch	float	
IRT2	108Eh	float	
IRT3	1090h	float	
IRT4	1092h	float	
IRT5	1094h	float	
IRT6	1096h	float	

Figure 3.4 MAP 1:METER Command Example

Section 4

SEL Communications Protocols

Overview

This section describes features of the SEL-487B Relay communications protocols and includes the following topics:

- ➤ Serial port hardware protocol
- ➤ Software protocol selections
- ➤ SEL ASCII, Compressed ASCII, and Binary protocols
- ➤ Virtual file interface
- ➤ SEL MIRRORED BITS[®] communications
- ➤ SEL Distributed Port Switch Protocol (LMD) using the SEL-2885 EIA-232 to EIA-485 Transceiver

Serial Port Hardware Protocol

The SEL-487B serial ports comply with the EIA-232 Standard, commonly referred to as EIA-232. The serial ports support RTS/CTS hardware flow control. See also *Software Flow Control on page R.4.7*.

Hardware Flow Control

Hardware handshaking is one form of flow control that two communicating serial devices use to prevent input buffer information overflow and loss of characters. To support hardware handshaking, connect the RTS output pin of each device to the CTS input pin of the other device. To enable hardware handshaking, use the **SET P** ASCII command (or the front-panel sequence ROTATING DISPLAY, MAIN MENU, SET/SHOW, PORT, *n*, Communications Settings, RTSCTS) to set RTSCTS := Y. Disable hardware handshaking by setting RTSCTS := N. *Table 4.1* shows actions the relay takes for the RTSCTS setting values and the conditions relevant to hardware flow control.

Setting RTSCTS Value	Condition	Relay Action
N	All	Assert RTS output pin and ignore CTS input pin.
Y	Normal input reception	Assert RTS output pin.
Y	Local input buffer is close to full	Deassert RTS pin to signal remote device to stop transmitting.
Y	Normal transmission	Sense CTS input is asserted, transmit normally.
Y	Remote device buffer is close to full, so remote device deasserts RTS	Sense CTS input is deasserted, stop transmitting

Note that the relay must assert the RTS pin to provide power for some modems, fiber-optic transceivers, and hardware protocol converters that are port powered. Check the documentation for any port-powered device to determine if the device supports hardware handshaking or if you must always assert RTS (RTSCTS := N) for proper operation.

Data Frame

The relay ports use asynchronous data frames to represent each character of data. Four port settings influence the framing: SPEED, DATABIT, PARITY, and STOPBIT. The time allocated for one bit is the reciprocal of the SPEED. For example, at 9600 bits per second, one bit-time is 0.104 milliseconds (ms).

The default port framing uses one start bit, 8 data bits, no parity bit, and one stop bit. The transmitter asserts the TXD line for one data frame, as described in the following steps:

The TXD pin normally is in a deasserted state.

- ➤ To send a character, the transmitter first asserts the TXD pin for one bit time (start bit).
- ➤ For each data bit, if the bit is set, the transmitter asserts TXD for one bit time. If the bit is not set, it deasserts the pin for one bit time (data bits).
- ➤ If the PARITY setting is E, the transmitter asserts or deasserts the parity bit so that the number of asserted data bits plus the parity bit is an even number. If the PARITY setting is O, the transmitter asserts or deasserts the parity bit so that the number of asserted data bits plus the parity bit is an odd number. If the PARITY setting is N, the data frame does not include a parity bit
- ➤ At the completion of the data bits and parity bit (if any), the transmitter deasserts the line for one bit time (stop bit). If STOPBIT is set to 2, the transmitter deasserts the line for one more bit time (stop bit).
- ➤ Until the relay transmits another character, the TXD pin will remain in the unasserted state.

Software Protocol Selections

The SEL-487B supports the protocols and command sets shown in *Table 4.2*.

Table 4.2 Supported Serial Command Sets

PROTO Setting Value	Command Set	Description
SEL	SEL ASCII	Commands and responses
SEL	SEL Compressed ASCII	Commands and comma-delimited responses
SEL	SEL Fast Meter	Binary meter and digital element commands and responses
SEL	SEL Fast Operate	Binary operation commands
SEL	SEL Fast SER	Binary SER commands and responses
MBA or MBB	SEL MIRRORED BITS communications	Binary high-speed control commands
DNP	DNP3 Slave Level 2	Binary commands and responses See Section 5: DNP3 Communica- tions.

Virtual Serial Ports

Actual serial ports are described in Serial Port Hardware Protocol on page R.4.1. In addition to actual serial ports, the SEL-487B supports several virtual serial ports. A virtual serial port does the following:

- > Transmits and receives characters through a different mechanism than the physical serial port
- ➤ Encapsulates characters in virtual terminal messages of a different protocol
- ➤ Simulates an actual serial port with setting PROTO := SEL
- ➤ May have restrictions imposed by the protocol that encapsulates the virtual serial data

You can set the SEL-487B to use virtual serial ports encapsulated in SEL MIRRORED BITS communications links, DNP3 links, and through the Telnet mechanism of an installed Ethernet card.

Protocol Active When Setting PROTO := SEL

This subsection describes the command sets for the SEL protocols that are active when the port setting PROTO := SEL. You can also access these protocols through virtual serial ports that simulate ports with PROTO := SEL.

SEL ASCII Commands

We originally designed SEL ASCII commands for communication between the relay and a human operator via a keyboard and monitor or a printing terminal. A computer with a serial port can also use the SEL ASCII protocol to communicate with the relay, collect data, and issue commands.

The ASCII character set specifies numeric codes that represent printing characters and control characters. The complete ASCII command set is shown in Section 7: ASCII Command Reference. Table 4.3 shows the subset of the ASCII control characters used in this section.

Table 13 Selected ASCII Control Characters	
	_

Decimal Code	Name	Usage	Keystroke(s)
13	CR	Carriage return	<enter> or <return> or <ctrl+m></ctrl+m></return></enter>
10	LF	Line feed	<ctrl+j></ctrl+j>
02	STX	Start of transmission	<ctrl+b></ctrl+b>
03	ETX	End of transmission	<ctrl+c></ctrl+c>
24	CAN	Cancel	<ctrl+x></ctrl+x>
17	XON	Flow control on	<ctrl+q></ctrl+q>
19	XOFF	Flow control off	<ctrl+s></ctrl+s>

The **<Enter>** key on standard keyboards sends the ASCII character CR for a carriage return. This manual instructs you to press the **<Enter>** key after commands to send the proper ASCII code to the relay. A correctly formatted command transmitted to the relay consists of the command, including optional parameters, followed by either a CR character (carriage return) or CR and LF characters (carriage return and line feed). The following line contains this information in the format this manual uses to describe user input:

<command> <Enter>

You may truncate commands to the first three characters. For example, **EVENT 1 <Enter>** is equivalent to **EVE 1 <Enter>**. You may use upper- and lowercase characters without distinction, except in passwords.

In response to a command, the relay may respond with an additional dialog line or message. The relay transmits dialog lines in the following format:

<STX><MESSAGE LINE 1><CR><LF><MESSAGE LINE 2><CR><LF>

<LAST MESSAGE LINE><CR><LF>< ETX>

Each message begins with the start-of-transmission character, STX, and ends with the end-of-transmission character, ETX. Each line of the message ends with a carriage return, CR, and line feed, LF.

Send the CAN character to the relay to abort a transmission in progress. For example, if you request a long report and want to terminate transmission of this report, depress the control and X keys (**Ctrl+X>**) to terminate the report.

SEL Compressed ASCII Commands

The relay supports a subset of SEL ASCII commands identified as Compressed ASCII commands. Each of these commands results in a commadelimited message that includes a checksum field. Most spreadsheet and database programs can directly import comma-delimited files. Devices with embedded processors connected to the relay can execute software to parse and interpret comma-delimited messages without expending the customization and maintenance labor needed to interpret nondelimited messages. The relay calculates a checksum for each line by numerically summing all of the bytes that precede the checksum field in the message. The program that uses the data can detect transmission errors in the message by summing the characters of the received message and comparing this sum to the received checksum.

Most commands are available only in SEL ASCII or Compressed ASCII format. Selected commands have versions in both standard SEL ASCII and Compressed ASCII formats. Compressed ASCII reports may have fewer characters than conventional SEL ASCII reports, because the compressed reports reduce blanks, tabs, and other white space between data fields to a single comma.

Compressed ASCII Message Format

Each message begins with the start-of-transmission character, STX, and ends with the end-of-transmission character, ETX:

<STX><MESSAGE LINE 1><CR><LF> <MESSAGE LINE 2><CR><LF>

<LAST MESSAGE LINE><CR><LF><ETX>

Each line in the message consists of one or more data fields, a checksum field, and a <CR><LF>. Commas separate adjacent fields. Each field is either a number or a string. Number fields contain base-10 numbers using the ASCII characters 0-9, plus (+), minus (-), and period (.). String fields begin and end with quote marks ("")and contain standard ASCII characters. Hexadecimal numbers are contained in string fields.

The checksum consists of four ASCII characters that are the hexadecimal representation of the two-byte binary checksum. The checksum value is the sum of the first byte on a line (first byte following <STX>, <CR>, or <CR><LF>) through the comma preceding the checksum.

If you request data with a Compressed ASCII command and these data are not available, (in the case of an empty history buffer or invalid event request), the relay responds with the following Compressed ASCII format message:

<STX>"No Data Available", "0668" < CR> < ETX>

where:

"No Data Available" is a text string field.

"0668" is the checksum field, which is a hexadecimal number represented by a character string.

Table 4.4 lists the Compressed ASCII commands and contents of the command responses. The Compressed ASCII commands are described in Section 7: ASCII Command Reference.

Table 4.4 Compressed ASCII Commands (Sheet 1 of 2)

Command	Response	Access Level
BNAME	ASCII names of Fast Meter status bits	0
CASCII	Configuration data of all Compressed ASCII commands available at access levels > 0	0
CEVENT	Event report	1
CHISTORY	List of events	1
CSER	Sequential Events Recorder report	1
CSTATUS	Self-diagnostic status	1

Table 4.4 Compressed ASCII Commands (Sheet 2 of 2)

Command	Response	Access Level
CSUMMARY	Summary of an event report	1
DNAME X	ASCII names of digital I/O reported in Fast Meter	0
ID	Relay identification	0
SNS	ASCII names for SER data reported in Fast Meter	0

CASCII Configuration Message for Compressed ASCII Commands

The CASCII message provides a block of data for each of the Compressed ASCII commands supported by an SEL device. The block of data for each command provides message description information to allow automatic data extraction. The relay arranges items in the Compressed ASCII configuration message in a predefined order. For the purpose of improving products and services, SEL sometimes changes the items and item order. Contact your local Technical Service Center or the SEL factory for the latest inventory of the items and item order in the Compressed ASCII configuration message. The information presented below explains the message and serves as a guide to the items in Compressed ASCII configuration messages.

A Compressed ASCII command can include multiple header and data configuration lines. The general format of a Compressed ASCII configuration message is the following:

```
<STX>"CAS",n,"yyyy"<CR><LF>
"COMMAND 1",1,"yyyy"<CR><LF>
"#H","xxxxx","xxxxx",....,"xxxxx","yyyy"<CR><LF>
"#D","ddd","ddd","ddd",...,"ddd","yyyy"<CR><LF>
"COMMAND n",1,"yyyy"<CR><LF>
"#H","xxxxxx","xxxxx",....,"xxxxx","yyyy"<CR><LF>
"#D","ddd","ddd","ddd","ddd","yyyy"<CR><LF><ETX>
```

Definitions for the items and fields in a Compressed ASCII configuration message are the following:

where:

n is the number of Compressed ASCII command descriptions to follow.

COMMAND is the ASCII name for the Compressed ASCII command that the requesting device (terminal or external software) sends. The naming convention for the Compressed ASCII commands is a C character preceding the typical command. For example, CSTATUS, abbreviated to CST, is the Compressed ASCII **STATUS** command. Following the command is the minimum access level at which the command can be executed.

- #H identifies a header line to precede one or more data lines; the # character represents the number of subsequent ASCII names. For example, 21H identifies a header line with 21 ASCII labels.
- xxxxx is an ASCII name for corresponding data on following data lines. Maximum ASCII name width is 10 characters.
 - #D identifies a data format line; the # character represents the maximum number of data lines in command response.

NOTE: Compressed ASCII is self-describing and may vary with the firmware version of your relay. Before you program a master device to send and parse Compressed ASCII commands and responses, you should perform a CASCII command on your relay or contact SEL for more detailed information.

ddd identifies a format field containing one of the following type designators:

I—Integer data

F—Floating point data

zS—String of maximum z characters (for example, enter 10S for a 10-character string).

yyyy is the 4-byte hex ASCII representation of the checksum. Every checksum is followed by a new line indication (<CR><LF>).

Software Flow Control

Software handshaking is a form of flow control that two serial devices use to prevent input buffer overflow and loss of characters. The relay uses XON and XOFF control characters to implement software flow control for ASCII commands.

The relay transmits the XOFF character when the input buffer is more than 75 percent full. The connected device should monitor the data it receives for the XOFF character to prevent relay input buffer overflow. The external device should suspend transmission at the end of a message in progress when it receives the XOFF character. When the relay has processed the input buffer so that the buffer is less than 25 percent full, the relay transmits an XON character. The external device should resume normal transmission after receiving the XON character.

The relay also uses XON/XOFF flow control to delay data transmission to avoid overflow of the input buffer in a connected device. When the relay receives an XOFF character during transmission, it pauses transmission at the end of the message in progress. If there is no message in progress when the relay receives the XOFF character, it blocks transmission of any subsequent message. Normal transmission resumes after the relay receives an XON character. Use the **Ctrl+S**> (XOFF) and the **Ctrl+O**> (XON) keystrokes on the keyboard to manually control the data flow to the terminal.

Interleaved ASCII and Binary Messages

SEL relays have two separate data streams that share the same physical serial port. Human data communications with the relay consist of ASCII character commands and reports that you view using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information; the ASCII data stream continues after the interruption. This mechanism uses a single communications channel for ASCII communication (transmission of an event report, for example) interleaved with short bursts of binary data to support fast acquisition of metering data. The device connected to the other end of the link requires software that uses the separate data streams to exploit this feature. However, you do not need a device to interleave data streams in order to use the binary or ASCII commands. Note that XON, XOFF, and CAN operations operate on only the ASCII data stream.

An example of using these interleaved data streams is when the SEL-487B communicates with an SEL communications processor. The communications processor performs autoconfiguration by using a single data stream and SEL Compressed ASCII and binary messages. In subsequent operations, the communications processor uses the binary data stream for Fast Meter, Fast Operate, and Fast SER messages to populate a local database and to perform SCADA operations. At the same time, you can use the ASCII data stream to connect transparently to the SEL-487B for ASCII commands and responses.

Automatic Messages

If you enable automatic messages, AUTO = Y, the SEL-487B issues a message any time the relay powers up, asserts a self-test, changes to another settings group, or triggers an event. For virtual ports, the relay issues automatic messages only if the connection is active. Automatic messages contain the following information:

- ➤ Power up: On power up, the message provides the terminal ID and the present date and time.
- ➤ Self-test failure: When the relay detects an internal failure, the automatic message is the same as the relay response to the **STATUS** command.
- ➤ Group switch: Whenever a settings group change occurs, the message contains the relay ID, terminal ID, present date and time, and the selected settings group.
- Events: When the relay triggers an event, the automatic message is the same as the relay response to the SUMMARY command.

Timeout

Use the TIMEOUT setting to set the idle time for each port. Idle time is the period when no ASCII characters are transmitted and received (interleaved fast messages do not affect the idle time). When the idle time exceeds the TIMEOUT setting, the following takes place:

- ➤ The access level changes to Access Level 0.
- ➤ The front-panel targets reset to TAR 0 if the port had previously remapped the targets.
- ➤ Virtual connections are disconnected.
- ➤ The software flow control state changes to XON.

When set to OFF, the port never times out.

SEL Fast Meter, Fast Operate, and Fast SER Messages

NOTE: The TEST FM command overrides normal Fast Meter quantities for testing purposes. Values you enter in Fast Meter storage are "override values." Use the TEST FM command to display override values and write override values in the Fast Meter report. SEL Fast Meter is a binary message that you solicit with binary commands. Fast Operate is a binary message for control. The relay can also send unsolicited Fast SER messages automatically. If the relay is connected to an SEL communications processor, these messages provide the mechanism that the communications processor uses for substation control and data acquisition (SCADA) or distributed control system (DCS) functions that occur simultaneously with ASCII interaction. Reference the section, *Interleaved ASCII and Binary Messages on page R.4.7* and *Section 4: SEL Communications Processor Applications in the Applications Handbook.* For more information on the Fast Meter and Fast Operate generic commands and messages that provide configuration messages, see *Application Guide AG95-10* available on the SEL website.

This section summarizes the binary commands and messages and includes our recommendation for using Fast Commands and Compressed ASCII configuration information to communicate with the relay. You need this information to develop or specify the software an external device uses to communicate with the SEL-487B using Fast Messages. To support this type of development, you will also need to contact SEL for Fast Message protocol details.

Table 4.5 lists the two-byte Fast Commands and the actions the relay takes in response to each command.

Table 4.5 rast collillatius allu Response Descriptions	Table 4.5	Fast Commands an	d Response Descriptions
--	-----------	------------------	-------------------------

Command (Hex)	Name	Description
A5B9h	Status acknowledge message	Clears Fast Meter status byte and sends current status.
A5C0h	Relay Fast Meter definition block	Defines available Fast Meter messages and general relay configuration information.
A5C1h	Fast Meter configuration block	Defines contents of Fast Meter data message.
A5CEh	Fast Operate configuration block	Defines available circuit breaker, remote bits, and associated commands, if setting FASTOP := Y for this port.
A5D1h	Fast Meter data message	Defines present values of analog and digital data.

Fast Operate commands use one of the two-byte command types shown in Table 4.6. Each Fast Operate command also includes additional bytes that specify a remote bit or circuit breaker bit.

Table 4.6 Fast Operate Command Types

Command (Hex)	Name	Description
A5E0h	Fast Operate command for remote bits	Sends command code that will change the state of a remote bit, if setting FASTOP := Y for this port.
A5E3h	Fast Operate command for circuit breaker bits	Sends command code that will change the state of a circuit breaker control bit, if setting FASTOP := Y for this port.

The Fast Operate messages transfer control commands through the binary data stream. You must enable Fast Operate messages for a port before the relay accepts these messages on that port. In the port settings, when the protocol is set to SEL, the FASTOP setting is visible. Set FASTOP := Y to enable Fast Operate commands or to N to disable Fast Operate commands.

General Fast Messages have a two-byte identifier (A546h) and a function code. Fast SER messages are general Fast Messages that transport Sequential Event Recorder (SER) report information. The Fast SER messages include function codes to accomplish different tasks. Table 4.7 lists the Fast SER function codes and the actions the relay takes in response to each command.

Table 4.7 Fast Message Command Function Codes Used With Fast SER (A546 Message) and Relay Response Descriptions (Sheet 1 of 2)

Function Code (Hex)	Function	Relay Action
00h	Fast SER message definition block request	Relay transmits Fast SER definition request acknowledge (Function Code 80).
01h	Enable unsolicited transfers	Relay transmits Fast SER command acknowledged message (Function Code 81) and sets relay element bit FSER. Relay will transmit subsequent SER events (Unsolicited SER broadcast, Function Code 18).

NOTE: Jumper J18C must be in place for the Fast Operate command (A5E3h) to operate.

Table 4.7 Fast Message Command Function Codes Used With Fast SER (A546 Message) and Relay Response Descriptions (Sheet 2 of 2)

Function Code (Hex)	Function	Relay Action
02h	Disable unsolicited transfers	Relay sends Fast SER command acknowledged message (Function Code 82) and clears relay element bit FSERx. Relay will not transmit subsequent SER messages.
05h	Ping; determine channel is operable	Relay aborts unsolicited message in progress and transmits ping acknowledge message (Function Code 85).
98h	Fast SER message acknowledge	Relay completes dialog processing for unsolicited message sequence.

Recommended **Use of Relay Self-Description** Messages for **Automatic** Configuration

Compressed ASCII and Fast Message commands provide information to allow an external computer-based device to adapt to the special messages for each relay. The SEL communications processor uses the self-description messages to configure a database and name the elements in the database.

Table 4.8 lists commands and command usage in the recommended order of execution for automatic configuration.

Table 4.8 Commands in Recommended Sequence for Automatic Configuration

Command ASCII or hexadecimal (h suffix)	Response	Usage
ID	Relay identification	ID and FID
A5C0h	Relay Fast Meter definition block	Defines available Fast Meter messages and general relay configuration information
A5C1h	Fast Meter configuration block	Defines contents of Fast Meter data message
BNAME	Binary names	ASCII names of status bits
DNAME X	Digital I/O name	ASCII names of digital I/O points
SNS	SER names	ASCII names for SER data points
CASCII	Compressed ASCII configuration block	Configuration data for Compressed ASCII commands with access levels > 0
A5CEh	Fast Operate configuration block	Defines available circuit breaker and remote bits, and associated commands, if setting FASTOP :=Y for this port

Virtual File Interface

You can retrieve and send data as files through the SEL-487B virtual file interface. Devices with embedded computers can also use the virtual file interface. When using serial ports or virtual terminal links, use the **FILE DIR** command. When you use a communications card, the file transfer protocol(s) supported by the card can present the file structure and send and receive files.

The SEL-487B has a two-level file structure. There is one file at the root level and three subdirectories or folders. Table 4.9 shows the directories and the contents of each directory.

Table 4.9 Virtual File Structure

Directory	Usage	Access Level
root	CFG.TXT file, and the SETTINGS, REPORTS, and EVENTS directories (below)	1
SETTINGS	Relay settings	1
REPORTS	SER, circuit breaker, and history reports	1
EVENTS	EVE, CEV, and history reports	1

System Data Format (SDF)

Settings files and CFG.TXT use the SDF (System Data Format). The files may contain keywords to aid external support software parsing. A keyword is defined as a string surrounded by the open and close bracket characters, followed by a carriage return and line feed. Only one keyword is allowed per line in the file. For example, the keyword INFO would look like this in the file:

[INFO]<CR><LF>.

Records are defined as comma-delimited text followed by a carriage return and line feed. One line in a text file equals one record. Fields are defined as comma-delimited text strings.

Comma-Delimited Text Rules

Field strings are separated by commas or spaces and may be enclosed in optional double quotation marks. Double quotes within the field string are repeated to distinguish these double quotes from the quotes that surround the field string. Delimiters are spaces and commas that are not contained within double quotes. Two adjacent commas indicate an empty string, but spaces that appear next to another delimiter are ignored.

Consider the following examples for converting a list of fields to commadelimited text. Consider the following list of fields:

Stri,ng 1

Stri"ng 2

String 3

String4

The translation to comma-delimited text is:

"Stri,ng 1","Stri""ng 2","String 3","String4"

Root Directory

The root directory contains three subdirectories and one file, CFG.TXT.

CFG.TXT File (Read-Only)

The CFG.TXT file contains general configuration information about the relay and each setting class. External support software retrieves the CFG.TXT file to interact automatically with the connected relay.

SETTINGS Directory

You can access the relay settings through files in the SETTINGS directory. We recommend that you use support software to access the settings files, rather than directly accessing the text files. External settings support software functions by reading settings from all of these files. The relay only allows you to write to the individual SET_cn files, where c is the settings class code and n is the settings instance. Changing settings with external support software involves the following steps:

- Step 1. The PC software reads the CFG.TXT and SET_ALL.TXT files from the relay.
- Step 2. You modify the settings at the PC.
- Step 3. For each settings class that you modify, the software sends a SET_*cn*.TXT file to the SEL-487B.
- Step 4. The PC software reads the ERR.TXT file. If it is not empty, the relay detects errors in the SET_cn.TXT file.
- Step 5. For any detected errors, modify the settings and send the settings until the relay accepts your settings.
- Step 6. Repeat Steps 3–5 for each settings class that you want to modify.
- Step 7. Test and commission the relay.

SET_ALL.TXT File (Read-Only)

The SET_ALL.TXT file contains all of the settings for all of the settings classes in the relay.

SET_cn.TXT Files (Read and Write)

There is a file for each instance of each setting class. *Table 4.10* summarizes the settings files. The settings class is designated by c, and the settings instance number is n.

ERR.TXT (Read-Only)

The ERR.TXT file contents are based on the most recent SET_cn.TXT file you wrote to the relay. If there were no errors, the file is empty. If errors occurred, the relay logs these errors in the ERR.TXT file.

Table 4.10 Settings Directory Files

Settings Class	Filename	Settings Description	Read Access Level	Write Access Level
S	SET_Sp.TXTa	Group p	1, B, P, A, O, 2	P, 2
G	SET_G1.TXT	Global	1, B, P, A, O, 2	P, A, O, 2
R	SET_R1.TXT	SER aliases and event settings	1, B, P, A, O, 2	P, A, O, 2
P	SET_Pn.TXTb	Port	1, B, P, A, O, 2	P, A, O, 2
D	SET_D1.TXT	DNP3 remapping (serial)	1, B, P, A, O, 2	P, A, O, 2
F	SET_F1.TXT	Front panel	1, B, P, A, O, 2	P, A, O, 2
O	SET_O1.TXT	Contact outputs	1, B, P, A, O, 2	O, 2
A	SET_Ap.TXT	Automation	1, B, P, A, O, 2	A, 2
L	SET_Lp.TXT	Protection logic	1, B, P, A, O, 2	P, 2
T	SET_T1.TXT	Alias settings	1, B, P, A, O, 2	P, A, O, 2
Z	SET_Zp.TXT	Zone configuration	1, B, P, A, O, 2	P, 2
All	SET_ALL.TXT	All instances of all settings classes	1, B, P, A, O, 2	NA
All	ERR.TXT	Error log for most recently written settings file	1, B, P, A, O, 2	NA

a Parameter p has a range of 1-6.

Ethernet Card Subdirectory

If an Ethernet card with the DNP3 protocol is installed into an SEL-487B, the CARD settings directory is accessible as a subdirectory of the SETTINGS directory.

Table 4.11 Ethernet Card Subdirectory

Path and Filename	File Description	Read Access Level	Write Access Level
\CARD\SET_DNPn.TXT	DNP custom remapping (Ethernet); <i>n</i> in range 1–5	1, B, P, A, O, 2	P, A, O, 2
\CARD\ERR.TXT	List of all error messages from the last write of a settings file (SET_CC1.TXT or SET_DNPn.TXT)	1, B, P, A, O, 2	NA

REPORTS Directory

Use the REPORTS directory to retrieve files that contain the reports shown in Table 4.12. Note that the relay provides a report file that contains the latest information each time you request the file. You can use the FILE DIR **REPORTS** command to display the contents of the REPORTS directory.

Table 4.12 REPORTS Directory Files

File	Usage: All are read-only files	
SER.TXT	ASCII SER report, clears SER when read	
CSER.TXT	Compressed ASCII SER report	
HISTORY.TXT	History file	
CHISTORY.TXT	Compressed ASCII history file	

b Parameter n has a range of 1-3, 5, F.

EVENTS Directory

The relay provides history and event report files in the EVENTS directory. Event reports are available in the following formats: SEL ASCII 4-, 12-, or 24-samples/cycle reports and Compressed ASCII 12- or 24-samples/cycle reports. The size of each event report file is determined by the LER setting in effect at the time the event is triggered. You can use the **FILE DIR EVENTS** command to display the contents of the EVENTS directory.

The 4-, 12-, and 24-samples/cycle report files (files with names that begin with C, D, E, or Z) are text files with the same format as the **EVENT** and **CEVENT** command responses. Event file names start with the prefix E4_, E12, E24, D12, C12, C24, or Z24 followed by a unique event serial number. For example, if one event is triggered, with serial number of 10001, the EVENTS directory contains the files shown in *Table 4.13*. For an example of retrieving these files see *Retrieving Event Report Data Files: Terminal Emulation Software on page U.4.36*.

Table 4.13 EVENTS Directory Files (for event 10001)

File	Usage	ASCII Command
HISTORY.TXT	History file; read-only	HIS
CHISTORY.TXT	Compressed ASCII History file; read-only	СНІ А
C1210001.TXT	12-samples/cycle Compressed ASCII filtered event report; read-only	CEV S12
C2410001.TXT	24-samples/cycle Compressed ASCII unfiltered event report; read-only	CEV R
Z2410000.TXT	24-samples/cycle raw and 12-samples/cycle differential event report; read-only	CEV RD
E4_10001.TXT	4-samples/cycle filtered event report; read-only	EVE
E1210001.TXT	12-samples/cycle filtered event report; read-only	EVE S12
E2410001.TXT	24-samples/cycle unfiltered event report; read-only	EVE R
D1210001.TXT	12-samples/cycle differential event report; read-only	EVE DIFF

NOTE: Parameter nn is a unique event serial number.

Reports are only available as indicated. For example, the 24-samples/cycle report is only available in an unfiltered format, and filtered reports are only available in 4-samples/cycle (E4 nn.TXT) or 12-samples/cycle format.

SEL MIRRORED BITS Communications

Overview

With SEL-patented MIRRORED BITS communications protocol, protective relays and other devices can directly exchange information quickly, securely, and with minimal cost. Use MIRRORED BITS communications for remote control or remote sensing.

SEL products support several variations of MIRRORED BITS communications protocols. Through port settings, you can set the SEL-487B for compatible operation with SEL-300 series relays, the SEL-2505 Remote I/O Modules, and the SEL-2100 Logic Processors. These devices use MIRRORED BITS communications to exchange the states of eight logic bits. You can also use settings to select extensions of the MIRRORED BITS communications protocols, available only in SEL-400 series relays, to exchange analog values, synchronize clocks, and engage in virtual terminal dialogs. *Table 4.14* summarizes MIRRORED BITS communications features.

Table 4.14	MIRRORED	BITS	Communications Features	•
------------	----------	------	-------------------------	---

Feature	Compatibility
Transmit and receive logic bits	SEL-300 series relays, SEL-2505, SEL-2100, SEL-400 series relays
Transmit and receive analog values	SEL-400 series relays
Synchronize time	SEL-400 series relays
Send and receive virtual serial port characters	SEL-400 series relays
Support synchronous communications channel	SEL-400 series relays

Communications **Channels and Logical Data Channels**

NOTE: Complete all of the port settings for a port that you use for MIRRORED BITS communications before you connect an external MIRRORED BITS communications device. If you connect a MIRRORED BITS communications device to a port that is not set for MIRRORED BITS communications operation, the port will be continuously busy.

The SEL-487B supports two MIRRORED BITS communications channels, designated A and B. Use the port setting PROTO to assign one of the MIRRORED BITS communications channels to a serial port; PROTO := MBA for MIRRORED BITS communications Channel A or PROTO := MBB for MIRRORED BITS communications Channel B.

Transmitted bits include TMB1A-TMB8A and TMB1B-TMB8B. The last letter (A or B) designates the channel with which the bits are associated. These bits are controlled by SELOGIC® control equations. Received bits include RMB1A-RMB8A and RMB1B-RMB8B. You can use received bits as arguments in SELOGIC control equations. The channel status bits are ROKA, RBADA, CBADA, LBOKA, ROKB, RBADB, CBADB, LBOKB, DOKA, ANOKA, DOKB, and ANOKB. You can also use these bits as arguments in SELOGIC control equations. Use the COM command for additional channel status information.

Within each MIRRORED BITS communications message for a given channel (A or B), there are eight logical data channels (1–8). In operation compatible with other SEL products, you can use the eight logical data channels for TMB1 through TMB8. If you use fewer than eight transmit bits, Data Channel 8 is reserved to support data framing and time synchronization features. You can assign the eight logical data channels as follows:

- ➤ Logic Bits. Setting MBNUM controls the number of channels used for logic bits, TMB1-TMB8, inclusive.
 - > If you set MBNUM to 8, then you cannot use channels for any of the following features.
 - > If you set MBNUM less than 8, you can use the remaining channels (up to a total of eight) for the following features.
- ➤ Message and Time Synchronization. If MBNUM is less than 8, the relay dedicates a logical data channel to message framing and time synchronization.
- ➤ Analog Channels. Setting MBNUMAN controls the number of Analog Channels.
 - > If MBNUM := 8, all channels are used for logic bits and MBNUMAN is forced to 0.
 - If MBNUM := 7, seven channels are used for logic bits and one channel is used for message and time synchronization, and MBNUMAN is forced to 0.
 - If MBNUM is less than 7, you can use the remaining channels for analog channels by setting the desired number of channels in MBNUMAN (1 to 7 – MBNUM).

- ➤ Virtual Terminal Sessions. Setting MBNUMVT controls the number of additional channels available for the virtual terminal session.
 - > If MBNUMVT := OFF, the relay does not dedicate any additional channels to the virtual terminal session.
 - If there are spare channels (7 MBNUM MBNUMAN > 0), you can use MBNUMVT to dedicate these additional channels to the virtual terminal session.
 - With MBNUM = 7 or less and MBNUMVT = 0, virtual terminal is still possible, because the relay uses the eighth element for time synchronization and virtual terminal.

The virtual terminal session uses channels differently than other data exchange mechanisms. There can only be one active virtual terminal session across a MIRRORED BITS link. One channel, included in the synchronization data, is always dedicated to this virtual terminal session. If you assign additional channels to the virtual terminal session (set MBNUMVT > 0), you will improve the performance of the virtual terminal session. The relay uses the additional channels to exchange data more quickly.

Operation

Message Transmission

MIRRORED BITS communications messages are transmitted as a function of the transmission mode and modem settings, as shown in *Table 4.15*. Each message contains the most recent values of the transmit bits. If you enabled any of the extended features through the settings, note that the relay transmits a portion of the extended data in each message.

If you have specified virtual terminal data channels for this port, the designated data channels are normally idle. If you use the **PORT** command to open a virtual terminal session for this port and type characters, the relay transmits these characters through the virtual terminal logical data channels.

Message Reception Overview

When the devices are synchronized and the MIRRORED BITS communications channel is in a normal state, the relay decodes and checks each received message. If the message is valid, the relay performs the following operations:

- ➤ Sends each received logic bit (RMBn) to the corresponding pickup and dropout security counters, that in turn set or clear the RMBnc relay element bits.
- ➤ For 16 out of 18 messages, builds the analog datum for each analog data point; on the 18th message, processes the analog data
- ➤ For 16 out of 18 messages, buffers the received characters for each MIRRORED BITS communications virtual serial logical channel; on receiving the 18th message, treats the character exactly as a character from an actual serial port.

Message Decoding and Integrity Checks

The relay provides indication of the status of each MIRRORED BITS communications channel, with element bits ROKA and ROKB. During normal operation, the relay sets the ROKc bit. The relay clears the bit upon detecting any of the following conditions:

- ➤ Parity, framing, or overrun errors
- ➤ Receive data redundancy error
- ➤ Receive message identification error
- No message received in the time three messages have been sent

The relay will assert ROKc only after successful synchronization as described below and two consecutive messages pass all of the data checks described above. After ROKc is reasserted, received data may be delayed while passing through the security counters described below.

While ROKc is not set, the relay does not transfer new RMB data to the pickup-dropout security counters described below. Instead, the relay sends one of the user-definable default values to the security counter inputs. For each RMBn, specify the default value with setting RMBnFL, as follows:

- ➤ P (to use last valid value)

Individual pickup and dropout security counters supervise the movement of each received data bit into the corresponding RMBn element. You can set each pickup/dropout security counter from 1 to 8. A setting of 1 causes a security counter to pass every occurrence, while a setting of 8 causes a counter to wait for eight consecutive occurrences in the received data before updating the data bits. The pickup and dropout security count settings are separate. Control the security count settings with the settings RMBnPU and RMBnDO.

A pickup/dropout security counter operates identically to a pickup/dropout timer, except that the counter uses units of counted received messages instead of time. An SEL-487B communicating with another SEL-487B typically sends and receives MIRRORED BITS communications messages eight times per power system cycle. Therefore, a security counter set to two counts will delay a bit by approximately 1/4 of a power system cycle. Reference *Table 4.18* for the message rates based on the transmission mode and modem settings. You must consider the impact of the security counter settings in the receiving device to determine the channel timing performance.

Channel Synchronization

When an SEL-487B detects a communications error, it deasserts ROKA or ROKB. The relay transmits an attention message until it receives an attention message that includes a match to the TX_ID setting value. If the attention message is successful, the relay has properly synchronized and data transmission will resume. If the attention message is not successful, the relay will repeat the attention message until it is successful.

Loopback Testing

Use the **LOOP** command to verify the communications channel. In this mode, the relay expects the transmitted data to be looped back to the relay to test the data transmissions, including communication data. At the remote end, jumper the send and receive communications channels to complete the path for the test. While in loopback mode, ROKc is deasserted, and LBOKc asserts and deasserts based on the received data checks.

Channel Monitoring

Based on the results of data checks (described above), the relay collects information regarding the 255 most recent communications errors. Each record contains at least the following fields:

- ➤ Dropout Time/Date
- ➤ Pickup Time/Date
- ➤ Time elapsed during dropout
- ➤ Reason for dropout (See *Message Decoding and Integrity Checks*)

Use the **COM** command to generate a long or summary report of the communications errors.

There is a single record for each outage, but an outage can evolve. For example, the initial cause could be a data disagreement, but framing errors can extend the outage. If the channel is presently down, the COMM record will only show the initial cause, but the COMM summary will display the present cause of failure.

When the duration of an outage on Channel A or B exceeds a user-definable threshold, the relay will assert a user-accessible flag, RBADA or RBADB. When channel unavailability exceeds a user-definable threshold for Channel A or B, the relay asserts a user-accessible flag, CBADA or CBADB.

MIRRORED BITS Communications Protocol for the Pulsar 9600-BPS Modem

To use a Pulsar MBT modem, set setting MBT:= Y. Setting MBT:= Y hides setting SPEED and forces it to 9600, hides setting PARITY and forces it to a value of O, and hides setting RTSCTS and forces it to a value of N. The relay also injects a delay (idle time) of 3 ms between messages.

The relay sets RTS to a negative voltage at the EIA-232 connector to signify that MIRRORED BITS communications matches this specification.

The SEL-487B Port settings associated with MIRRORED BITS communications are shown in *Table 4.15* and *Table 4.17*.

Set PROTO := MBA to enable the MIRRORED BITS communications protocol Channel A on this port. Set PROTO := MBB to enable the MIRRORED BITS communications protocol Channel B on this port.

NOTE: Combine error conditions including RBADA, RBADB, CBADA, and CBADB with other alarm conditions using SELogic control equations. You can use these alarm conditions to program the relay to take appropriate action when it detects a communications channel failure.

NOTE: You must consider the idle time in calculations of data transfer latency through a Pulsar MBT modem

Settings

Name	Description	Range	Default
PROTO	Protocol.	None, SEL, DNPa, MBA, MBB	SEL
MBT	Enable Pulsar 9600 modem. Hidden and set to N if PROTO set to SEL or DNP.	Y, N	N
SPEED	Data speed. Hidden and set to 9600 if MBT := Y.	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, SYNC	9600
DATABIT	Data bits. Hidden and set to 6 if PROTO set to MBA or MBB.	6, 7, 8	8
PARITY	Parity. Forced to O if MBT := Y.	O, E, N	N
STOPBIT	Stop bits. Hidden and set to 1 if MBT := Y.	1, 2	2
RTSCTS	Hardware handshaking enable.	Y, N	N

Table 4.15 General Port Settings Used With MIRRORED BITS Communications

The relay uses the RBADPU setting to determine how long a channel error must persist before the relay asserts RBADA or RBADB. The relay deasserts RBADA and RBADB immediately when it no longer detects a channel error.

The relay uses the CBADPU setting to determine when to assert CBADA and CBADB. If the short-term channel down time ratio exceeds CBADPU, the relay asserts the appropriate CBAD bit.

The TXMODE setting provides compatibility with SEL devices that are not SEL-400 series relays. The SEL-487B can send messages quicker than the SEL-300 series relays and other SEL devices can process these messages. This could lead to loss of data and a failure to communicate properly. When you set TXMODE to P, the relay sends new MIRRORED BITS messages no faster than every 3 ms even if the selected data speed (SPEED setting) would allow more frequent messages.

As a function of the settings for SPEED, TXMODE, and MBT, the message transmission periods are shown in Table 4.18.

SEL-300 Series Relays and SEL-2100 Compatibility

NOTE: You must use paced transmission mode (set TXMODE := P)

when connecting to an SEL product

that is not an SEL-400 series relay.

Use MIRRORED BITS communications to exchange information between 300series and 400-series relays. In addition to the normal MIRRORED BITS settings, ensure the 400-series relay has the settings as shown in *Table 4.16*.

Table 4.16 400-Series Relay Prerequisite Settings

Name	Setting
TXMODE	P
MBNUM	8

a Optional relay feature.

Table 4.17 MIRRORED BITS Communications Protocol Settings

Name	Description	Range	Default
TX_ID	MIRRORED BITS communications ID of this device	1–4	2
RX_ID	MIRRORED BITS communications ID of device connected to this port	1–4; must be different than TX_ID	1
RBADPU	Outage duration to set RBAD	1-10000 seconds	10
CBADPU	Channel unavailability to set CBAD	1–100000 parts per million	20000
TXMODE	Transmission mode ^a	N (normal), P (paced)	N
MBNUM	Number of MIRRORED BITS communications data channels used for logic bits	0–8	8
RMB1FL ^b	RMB1 channel fail state	0, 1, P	P
RMB1PU ^b	RMB1 pickup message count	1–8	1
RMB1DOb	RMB1 dropout message count	1–8	1
•	•		
•			
RMB8FLb	RMB8 channel fail state	0, 1, P	P
RMB8PU ^b	RMB8 pickup message count	1–8	1
RMB8DOb	RMB8 dropout message count	1–8	1
MBTIME	MIRRORED BITS time synchronize enable	Y, N	N
MBNUMAN	Number of analog data channels. Hidden and set to 0 if MBNUM := 7 or 8.	0-n, n=7-MBNUM	0
MBANA1 ^c	Selection for Analog Channel 1	Analog quantity label	PMV58
MBANA2 ^c	Selection for Analog Channel 2	Analog quantity label	PMV59
MBANA3c	Selection for Analog Channel 3	Analog quantity label	PMV60
MBANA4 ^c	Selection for Analog Channel 4	Analog quantity label	PMV61
MBANA5 ^c	Selection for Analog Channel 5	Analog quantity label	PMV62
MBANA6 ^c	Selection for Analog Channel 6	Analog quantity label	PMV63
MBANA7 ^c	Selection for Analog Channel 7	Analog quantity label	PMV64
MBNUMVT	Number of virtual terminal channels	OFF,0-n, n=7-MBNUM- MBNUMAN	OFF

a Must be P for connections to devices that are not SEL-400 series relays.

b Hidden based on MBNUM setting.
 c Hidden based on MBNUMAN setting.

Table 4.18 MIRRORED BITS Communications Message Transmission Period

Speed in Bits per Second	TXMODE := NORMAL MBT := N	TXMODE := PACED MBT := N	MBT :=Y
38400	1.0 ms	3.0 ms	n/a
19200	2.0 ms	3.0 ms	n/a
9600	4.0 ms	4.0 ms	7.0 ms
4800	8.0 ms	8.0 ms	n/a

Set the RX ID of the local relay to match the TX ID of the remote relay. In a three-terminal case, Relay X transmits to Relay Y, Relay Y transmits to Relay Z, and Relay Z transmits to Relay X. Table 4.19 lists the MIRRORED BITS communications ID settings for Relays X, Y, and Z.

Table 4.19 MIRRORED BITS Communications ID Settings for Three-Terminal Application

Relay	TX_ID	RX_ID
X	1	3
Y	2	1
Z	3	2

SEL Distributed Port Switch Protocol (LMD)

SEL Distributed Port Switch Protocol (LMD) permits multiple devices to share a common communications channel. This protocol is appropriate for low-cost, low-speed port switching applications where updating a real-time database is not a requirement. The SEL-487B does not have built-in LMD protocol, but you can connect an SEL-487B to an SEL-2885 EIA-232/485 Protocol Converter and connect the SEL-2885 to an EIA-485 multidrop network. See the SEL-2885 EIA-232 to EIA-485 Transceiver product flyer for more information on the settings, configuration, and application of the SEL-2885. (Contact your local Technical Service Center, the SEL factory, or visit our website www.selinc.com for a copy of the SEL-2885 product flyer.)

Initialization

For the first 30 seconds after applying power to the relay, the SEL-2885 listens for an initialization string from the relay. The initialization string must be enclosed in square brackets ("[]"). The following table describes the initialization string fields. To send this string automatically, set AUTO to Y and append the initialization string to the relay ID setting so that it is included in the relay power-up header.

Table 4.20 SEL-2885 Initialization String [MODE PREFIX ADDR:SPEED]

Field	Optional or Required	Value	Description
[Required	[Opening bracket is start of string
Mode	Optional	Not specified N B	Treat as N, below Addressing for ASCII device Addressing for binary devices
PREFIX	Required	@, #, \$, %, or &	Prefix character
ADDR	Required	01–99	Two digit address in the range 01–99
:	Optional; needed if SPEED is specified	Colon ":"	Colon ":", then one of the following codes to match the port SPEED setting
SPEED	Optional	12 24 48 96	1200 bps 2400 bps 4800 bps 9600 bps
]	Required]	Closing bracket is end of string

Operation

The following steps describe how to use the LMD operation of the SEL-2885:

- Step 1. When you send the prefix and address, the SEL-2885 enables echo and message transmission. Wait until you receive a prompt before entering commands to avoid losing echoed characters while the external transmitter is ready.
- Step 2. You can use the commands that are available for the protocol setting of the port where the SEL-2885 is installed.
- Step 3. If the port PROTO setting is set to SEL, you can use the QUIT command to terminate the connection. If no data are sent to the relay before the port time-out period, this command automatically terminates the connection.
- Step 4. If all relays in the multidrop network do not have the same prefix setting, enter the sequence <Ctrl+X> QUIT <Enter> before entering the prefix character to connect to another device.

Section 5

DNP3 Communications

Overview

The SEL-487B Relay provides a DNP3 (Distributed Network Protocol) Level 2 Slave interface for direct serial and Ethernet (LAN/WAN) network connections to the relay. This section covers the following topics:

- ➤ Introduction to DNP3 on page R.5.1
- ➤ DNP3 (Serial) in the SEL-487B on page R.5.5
- ➤ DNP3 (Serial) Documentation on page R.5.11
- ➤ DNP3 (Serial) Application Example on page R.5.31
- ➤ DNP LAN/WAN Communications on page R.5.37
- ➤ DNP LAN/WAN Documentation on page R.5.47
- ➤ DNP LAN/WAN Application Example on page R.5.56

Introduction to DNP3

A SCADA (Supervisory Control and Data Acquisition) manufacturer developed DNP3 from the lower layers of IEC 60870-5. DNP3 was designed for use in telecontrol applications. The protocol has become popular for both local substation data collection and telecontrol. DNP3 is one of the protocols included in the IEEE® Recommended Practice for Data Communication between Remote Terminal Units and Intelligent Electronic Devices in a Substation.

Rather than individual input and output points wired from the station RTU (remote terminal unit) to the station IEDs (intelligent electronic devices), many stations use DNP3 to convey measurement and control data to and from the RTU. The RTU then forwards data to the off-site master station. By using data communications rather than hard wiring, designers have reduced installation, commissioning, and maintenance costs while increasing remote control and monitoring flexibility.

The DNP User's Group maintains and publishes DNP standards. See the DNP User's Group website, www.dnp.org, for more information on DNP standards, implementers of DNP, and tools for working with DNP.

DNP3 Specifications

DNP3 is a protocol with many features and many ways to accomplish tasks. DNP3 is defined in a series of specifications known as the Basic 4. A companion specification called the Subset Definitions simplifies DNP3 implementation by providing three standard interoperable implementation levels. The levels are listed in *Table 5.1*.

Table 5.1 DNP3 Implementation Levels

Level	Description	Equipment Types
1	Simple: limited communication requirements	Meters, simple IEDs
2	Moderately complex: monitoring and metering devices and multifunction devices that contain more data	Protective relays, RTUs
3	Sophisticated: devices with great amounts of data or complex communication requirements	Large RTUs, SCADA masters

Each level is a proper superset of the next lower-numbered level. A higher subset level device can act as a master to a lower subset level device. For example, a typical SCADA master is a Level 3 device and can poll a Level 2 or Level 1 device by using only the data types and functions that the lower-level device uses. A lower-level device can also poll a higher-level device. For example, a Level 1 device can poll a Level 3 device, but the Level 1 device can only access the features and data available in Level 1.

In addition to the Basic 4 and the Subset Definitions, the protocol is further refined by conformance requirements and a series of technical bulletins. The technical bulletins supplement the specifications with discussion and examples of specific features of DNP.

Data Handling

Objects

DNP3 uses a system of data references called objects, which the Basic 4 standard object library defines. Each subset level specification requires a minimum implementation of object types and also recommends several optional object types. Object types are commonly referred to as objects. DNP objects are specifications for the type of data the object carries. An object can include a single value or more complex data. Some objects serve as shorthand references for collections of data or even all data within the DNP device.

If there can be more than one instance of a type of object, then each instance of the object includes an index that makes it unique. For example, each binary status point (Object 1) has an index. If there are 16 binary status points, these points are Object 1, Index 0 through Object 1, Index 15.

Each object also includes multiple versions called variations. For example, Object 1 has three variations: 0, 1, and 2. Variation 0 is a shorthand reference used to request all Object 1 data from a DNP device. Variation 1 is used to specify binary input values only and variation 2 is used to specify binary input values with status information.

Each DNP3 device has both a list of objects and a map of object indices. The list of objects defines the available objects, variations, and qualifier codes. The map defines the indices for objects that have multiple instances and defines what data or control points correspond with each index.

A master initiates all DNP message exchanges except unsolicited data. DNP terminology describes all points from the perspective of the master. Binary points for control that move from the master to the remote are called Binary Outputs, while binary status points within the remote are called Binary Inputs.

Function Codes

Each DNP message includes a function code. Each object has a limited set of function codes that a master may use to manipulate the object. The object listing for the device shows the permitted function codes for each type of object. The most common DNP3 function codes are listed in Table 5.2.

Table 5.2 Selected DNP3 Function Codes

Function Code	Function	Description
1	Read	Request data from the remote
2	Write	Send data to the remote
3	Select	First part of a select-before-execute operation
4	Execute	Second part of a select-before-execute operation
5	Direct operate	One-step operation with reply
6	Direct operate, no reply	One-step operation with no reply

Qualifier Codes and Ranges

DNP3 masters use qualifier codes and ranges to make requests for specific objects by index. Qualifier codes specify the style of range, and the range specifies the indices of the objects of interest. DNP masters use qualifier codes to compose the shortest, most concise message possible when requesting points from a DNP remote.

For example, the qualifier code 01 specifies that the request for points will include a start address and a stop address. Each of these two addresses uses two bytes. An example request using qualifier code 01 might have the fourhexadecimal byte range field, 00h 04h 00h 10h, that specifies points in the range 4 to 16.

Access Methods

DNP has many features that help it obtain maximum possible message efficiency. Requests are sent with the least number of bytes using special objects, variations, and qualifiers that reduce the message size. Other features eliminate the continual exchange of data values that are not changing. These features optimize use of bandwidth and maximize performance over any speed connection.

DNP event data collection eliminates the need to use bandwidth to transmit values that have not changed. Event data are records of when observed measurements changed. For binary points, the remote device logs changes from logical 1 to logical 0 and from logical 0 to logical 1. For analog points, the remote device logs changes that exceed a dead band. DNP remote devices collect event data in a buffer that the master can either request or the relay can send to the master without a request message. Data sent from the remote to the master without a polling request are called unsolicited data.

DNP data fit into one of four event classes: 0, 1, 2, or 3. Class 0 is reserved for reading the present value data (static data). Classes 1, 2, and 3 are event data classes. The meaning of Classes 1 to 3 is arbitrary and defined by the application at hand. With remotes that contain great amounts of data or in large systems, the three event classes provide a framework for prioritizing different types of data. For example, you can poll once a minute for Class 1 data, once an hour for Class 2 data, and once a day for Class 3 data.

DNP also supports static polling, simple polling of the present value of data points within the remote. By combining event data, unsolicited polling, and static polling, you can operate your system in one of the four access methods shown in *Table 5.3*.

The access methods listed in *Table 5.3* are in order of increasing communication efficiency. With various tradeoffs, each method is less demanding of communication bandwidth than the previous one. For example, unsolicited report-by-exception consumes less communication bandwidth because of the elimination of polling messages from the master required by polled report-by-exception. You must also consider overall system size and the volume of data communication expected in order to properly evaluate which access method provides optimum performance for your application.

Table 5.3 DNP Access Methods

Access Method	Description
Polled static	Master polls for present value (Class 0) data only
Polled report-by- exception	Master polls frequently for event data and occasionally for Class 0 data
Unsolicited report- by-exception	Remote devices send unsolicited event data to the master, and the master occasionally polls for Class 0 data
Quiescent	Master never polls and relies on unsolicited reports only

Binary Control Operations

DNP masters use Object 12 control relay output block to perform DNP binary control operations. The control relay output block has both a trip/close selection and a code selection. The trip/close selection allows a single DNP index to operate two related control points such as trip and close or raise and lower. Trip/close pair operation is not recommended for new DNP3 devices, but is often included for interoperability with older DNP master implementations.

The control relay output block code selection specifies either a latch or pulse operation on the point. In many cases, DNP remotes have only a limited subset of the possible combinations of the code field. Sometimes, DNP remotes assign special operation characteristics to the latch and pulse selections. *Table 5.14* and *Table 5.15* describe control point operation for the SEL-487B.

Conformance Testing

In addition to the protocol specifications, the DNP User's Group has approved conformance testing requirements for Level 1 and Level 2 remote devices. Some implementers perform their own conformance specification testing, while some contract with independent companies to perform conformance testing.

Conformance testing does not always guarantee that a master and remote will be fully interoperable (work together properly for all implemented features). Conformance testing does help to standardize the testing procedure and move the DNP implementers toward a higher level of interoperability. The SEL-487B is certified as having passed DNP3 Slave Level 2 conformance tests by a third-party organization, and the conformance certificate is on file at SEL.

Data Link Layer Operation

DNP employs a three-layer version of the seven-layer OSI (Open Systems Interconnect) model called the enhanced performance architecture. The layer definition helps to categorize functions and duties of various software components that make up the protocol. The middle layer, the Data Link Layer, includes several functions for error checking and media access control.

Date Code 20210514

A feature called data link confirmation is a mechanism that provides positive confirmation of message receipt by the receiving DNP device. While this feature helps you recognize a failed device or failed communications link quickly, it also adds significant overhead to the DNP conversation. Consider for your individual application whether you require this link integrity function at the expense of overall system speed and performance.

The DNP technical bulletin (DNP Confirmation and Retry Guidelines 9804-002) on confirmation processes recommends against using data link confirmations because these processes can add to traffic in situations where communications are marginal. The increased traffic will reduce connection throughput further, possibly preventing the system from operating properly.

Network Medium Contention

When more than one device requires access to a single network medium, you must provide a mechanism to resolve the resulting network medium contention. For example, unsolicited reporting results in network medium contention if you do not design your network as a star topology of point-topoint connections or use carrier detection on a multidrop network.

To avoid collisions among devices trying to send messages, DNP3 includes a collision avoidance feature. Before sending a message, a DNP3 device listens for a carrier signal to verify that no other node is transmitting data. The device transmits if there is no carrier or waits for a random time before rechecking for a carrier signal. However, if two nodes both detect a lack of carrier at the same instant, these two nodes could begin simultaneous transmission of data and cause a data collision. If your network allows for spontaneous data transmission including unsolicited event data transmissions, you also must use application confirmation to provide a retry mechanism for messages lost due to data collisions.

DNP3 (Serial) in the SEL-487B

The SEL-487B is a DNP3 Level 2 remote (slave) device. Additional implementation documentation describing DNP in the relay is in *DNP3* (Serial) Documentation on page R.5.11.

Data Access

NOTE: Because unsolicited messaging only operates properly in some situations, for maximum performance and minimum risk of configuration problems, use the polled report-by-exception access method. Configure the master to perform at least 10 event polls for every integrity poll.

You can use any of the data access methods listed in Table 5.4. Table 5.4 also lists the SEL-487B DNP3 settings. You must configure the DNP master for the data access method you select.

Table 5.4 DNP Access Methods

Access Method	Master Polling	SEL-487B Settings
Polled static	Class 0	Set ECLASSB, ECLASSC, ECLASSA, ECLASSV to Off, UNSOL to No.
Polled report-by- exception	Class 0 occasionally, Class 1, 2, 3 frequently	Set ECLASSB, ECLSSC, ECL- ASSA, ECLASSV to the desired event class, UNSOL to No.
Unsolicited report- by-exception	Class 0 occasionally, optional Class 1, 2, 3 less frequently, mainly relies on unsolicited messages	Set ECLASSB, ECLSSC, ECL- ASSA, ECLASSV to the desired event class, set UNSOL to Yes and PUNSOL to Yes or No.
Quiescent	Class 0, 1, 2, 3 never, relies completely on unsolicited messages	Set ECLASSB, ECLSSC, ECL- ASSA to the desired event class, set UNSOL and PUNSOL to Yes.

While automatic unsolicited data transmission on power up is convenient, problems can result if your master is not prepared to start receiving data immediately on power up. If the master does not acknowledge the unsolicited data with an Application Confirmation message, the relay will resend the data until it is acknowledged. On a large system, or in systems where the processing power of the master is limited, you may have problems when several relays simultaneously begin sending data and waiting for acknowledgement messages.

Collision Avoidance

If your application uses unsolicited reporting, you must select a polled mode (polled static or polled report-by-exception) or a medium that includes carrier detection to avoid data collisions. EIA-485 two-wire networks are half-duplex. EIA-485 four-wire networks do not provide carrier detection, while EIA-232 systems can support carrier detection.

The relay uses Application Confirmation messages to guarantee delivery of unsolicited event data before erasing the local event data buffer. Data collisions are typically resolved when messages are repeated until confirmed.

The SEL-487B pauses for a random delay between the settings MAXDLY and MINDLY when it detects a carrier through data on the receive line or the CTS pin. If you use the settings of 0.10 seconds for MAXDLY and 0.05 seconds for MINDLY, the SEL-487B will insert a random delay of 50 to 100 ms (milliseconds) between the end of carrier detection and the start of data transmission.

Transmission Control

If you use a media transceiver (for example, EIA-232 to EIA-485) or a radio system for your DNP network, you may need to adjust data transmission properties. Use the PREDLY and POSTDLY settings to provide a delay between RTS signal control and data transmission. For example, an EIA-485 transceiver typically requires 10 to 20 ms to change from receive to transmit. If you set the predelay to 30 ms, you will avoid data loss resulting from data transmission beginning at the same time as RTS signal assertion.

Event Data

DNP event data objects contain change-of-state and timestamp information that the SEL-487B collects and stores in a buffer. You can configure the SEL-487B to either report the data without a polling request from the master (unsolicited data) or hold the data until the master requests it with an event poll message.

With the event class settings ECLASSB, ECLASSC, ECLASSA, and ECLASSV you can set the event class for binary, counter, analog, and virtual terminal information. You can use the classes as a simple priority system for collecting event data. The relay does not treat data of different classes differently with respect to unsolicited messages, but the relay does allow the master to perform independent class polls.

For event data collection you must also consider and enter appropriate settings for dead-band and scaling operation on analog points shown in *Table 5.6*. You can either set and use default dead band and scaling according to data type or use a custom data map to select dead bands on a point-by-point basis. See *Configurable Data Mapping on page R.5.9* for a discussion of how to set scaling and dead-band operation on a point-by-point basis.

NOTE: Most RTUs that act as substation DNP masters perform an event poll that collects event data of all classes simultaneously. Confirm that the polling configuration of your master allows independent polling for each class before implementing separate classes in the SEL-487B.

The settings ANADBA, ANADVB, and ANADBM control default dead-band operation for the specified data type. Because DNP Objects 30 and 32 use integer data, you must use scaling to send digits after the decimal point and avoid rounding to a simple integer value.

With no scaling, the value of 12.632 would be sent as 13. With a scaling setting of 1, the value transmitted is 126. With a scaling setting of 3, the value transmitted is 12632. You must make certain that the maximum value does not exceed 32767 if you are polling the default 16-bit variations for Objects 30 and 32, but you can send some decimal values using this technique. You must also configure the master to perform the appropriate division on the incoming value to display it properly.

Set the default analog value scaling with the DECPLA, DECPLV, and DECPLM settings. Application of event reporting dead bands occurs after scaling in the DECPLA, DECPLV, and DECPLM. For example, if you set DECPLA to 2 and ANADBA to 10, a measured current of 10.14 amps would be scaled to the value 1014 and would have to increase to more than 1024 or decrease to less than 1004 (a deadband of 0.2 amps) for the relay to report a new event value.

The relay uses the NUMEVE and AGEEVE settings to decide when to send unsolicited data to the master. The relay sends an unsolicited report when the total number of events accumulated in the event buffer reaches NUMEVE. The relay also sends an unsolicited report if the age of the oldest event in the buffer exceeds AGEEVE. The SEL-487B has the buffer capacities listed in *Table 5.5.*

Table 5.5 SEL-487B Event Buffer Capacity

Туре	Maximum Number of Events
Binary	1024
Analog	256
Counters	128

Binary Controls

The SEL-487B provides more than one way to control individual points within the relay. The relay maps incoming control points either to remote bits within the relay or to internal command bits that cause circuit breaker operations. Table 5.14 and Table 5.15 list control points and control methods available in the SEL-487B.

A DNP technical bulletin (Control Relay Output Block Minimum *Implementation 9701-002*) recommends that you use one point per Object 12, control block output relay. You can use this method to perform Pulse On, Pulse Off, Latch On, and Latch Off operations on selected remote bits.

If your master does not support the single-point-per-index messages or singleoperation database points, you can use the trip/close operation or use the code field in the DNP message to specify operation of the points shown in *Control* Point Operation on page R.5.26.

Time **Synchronization**

The accuracy of DNP time synchronization is insufficient for most protection and oscillography needs. DNP time synchronization provides backup time synchronization in the event the relay loses primary synchronization through the IRIG-B input or some other high accuracy source. Enable time synchronization with the TIMERQ setting and use Object 50, Variation 1, and Object 52, Variation 2, to set the time via a DNP master.

Modem Support

NOTE: Contact SEL for information on serial cable configurations and requirements for connecting your SEL-487B to other devices.

DNP Settings

The SEL-487B DNP implementation includes modem support. Your DNP master can dial-in to the SEL-487B and establish a DNP3 connection. The SEL-487B can automatically dial out and deliver unsolicited DNP event data. When the relay dials out, it waits for the "CONNECT" message from the local modem and for assertion of the relay CTS line before continuing the DNP transaction. This requires a connection from the modem DCD to the relay CTS line.

Either connect the modem to a computer and configure it before connecting it to the relay, or program the appropriate modem setup string in the modem startup string setting MSTR. Use the PH_NUM setting to set the phone number that you want the relay to call. The relay automatically will send the ATDT modem dial command and then the contents of the PH_NUM setting when dialing the modem. PH_NUM is a text setting that must conform to the AT modem command set dialing string standard. Use a comma (,) for a pause of four seconds. You may need to include a nine to reach an outside line or a one if the number requires long distance access. You can also insert other special codes your telephone service provider designates for block call waiting and other telephone line features.

The DNP protocol settings that become available when you select DNP on a serial port are shown in *Table 5.6*. The DNP protocol settings are in the port settings for the port that you select for the DNP protocol. You can use DNP on any of the serial ports, Port F and Port 1–Port 3, but you can only enable DNP on one port at a time.

Table 5.6 SEL-487B Port DNP Protocol Settings (Sheet 1 of 2)

Name	Description	Range	Default
DNPADR	DNP address	0–65519	0
ECLASSB	Class for binary event data	OFF, 1–3	1
ECLASSC	Class for counter event data	OFF, 1–3	OFF
ECLASSA	Class for analog event data	OFF, 1–3	2
TIMERQ	Time-set request interval (I, M, 1–32767 minutes)	I, M, 1–32767	Ι
DECPLA	Current value scaling	0–3	1
DECPLV	Voltage value scaling	0–3	1
DECPLM	Miscellaneous data scaling	0–3	1
STIMEO	Select/operate time-out	0.0-60.0 seconds	1.0
DRETRY	Data link retries	OFF, 1–15	OFF
DTIMEO	Data link time-out; hidden if DRETRY := OFF	0.0–30.0 seconds	1.0
MINDLY	Minimum delay from DCD to TX	0.00-1.00 seconds	0.05
MAXDLY	Maximum delay from DCD to TX	0.00-1.00 seconds	0.10
PREDLY	Settle time from RTS on to TX; OFF disables PSTDLY	OFF, 0.00–30.00 seconds	0.00
PSTDLY	Settle time from TX to RTS off; hidden if PREDLY := OFF	0.00–30.00 seconds	0.00
ANADBA	Analog reporting dead band for current; hidden if ECLASSA := OFF	0–32767	100
ANADBV	Analog reporting dead band for voltages; hidden if ECLASSA := OFF	0–32767	100

Table 5.6 SEL-487B Port DNP Protocol Settings (Sheet 2 of 2)

Name	Description	Range	Default
ANADBM	Analog reporting dead band; hidden if ECLASSC and ECLASSA := OFF	0–32767	100
EVELOCK	Event summary lock period	0–1000 seconds	0
ETIMEO	Event data confirmation time-out	0.1–100.0 seconds	10.0
UNSOL	Enable unsolicited reporting; hidden and set to N if ECLASSB, ECLASSC, ECLASSA, and ECLASSV := OFF	Y, N	N
PUNSOL	Enable unsolicited reporting at power up; hidden if UNSOL := N	Y, N	N
REPADR	DNP address to which the relay reports unsolicited data; hidden if UNSOL := N	0–65519	1
NUMEVE	Number of events on which the relay transmits unsolicited data; hidden if UNSOL := N	1–200	10
AGEEVE	Age of oldest event on which the relay transmits unsolicited data; hidden if UNSOL := N	0.0–60.0 seconds	2.0
MODEM	Modem connected to port	Y, N	N
MSTR	Modem startup string; hidden if MODEM := N	Up to 30 characters	"E0X0& D0S0=4"
PH_NUM	Phone number for unsolicited reporting dial-out; hidden if MODEM := N or UNSOL := N	Up to 30 characters	,
MDTIME	Time to attempt dial	5–300 seconds	60
MDRET	Time between dial-out attempts	5–3600 seconds	120

Configurable Data Mapping

One of the most powerful features of the SEL-487B DNP3 implementation is the ability to remap DNP data. Remapping is the process of selecting data from the default map and organizing it into a smaller data set optimized for your application.

Use the settings Class D to access the SEL-487B DNP Map settings shown in Table 5.7. When you are remapping points, the new index will be the row number minus one.

Table 5.7 SEL-487B DNP Map Settings (Sheet 1 of 2)

Name	Description	Range	Default
MAPSEL	Reference Map Selection	B, E	В
DNPBID	Default binary input map enable	Y, N	Y
DNPBOD	Default binary output map enable	Y, N	Y
DNPCOD	Default counters map enable	Y, N	Y
DNPAID	Default analog input map enable	Y, N	Y
DNPAOD	Default analog output map enable	Y, N	Y
Row 1 ^a • •	Custom binary input map	Index number from default map	

Table 5.7 SEL-487B DNP Map Settings (Sheet 2 of 2)

	The second of th	nect L of L)	1
Name	Description	Range	Default
Row 400 ^a	Maximum custom binary input map		
Row 1 ^a	Custom binary output map	Index number from default map	
•			
Row 70 ^a	Maximum custom binary output map		
Row 1 ^a	Custom counter map, custom counter dead band ^b (Example: 3, 6)	Index number from default map; 1–32767	
•			
•			
Row 10a	Last custom counter map; custom	Index number from default	
	counter dead band ^b (Example: 3, 6)	map; 1–32767	
Row 1 ^a	Custom analog input map; custom analog input scaling ^b , custom analog input dead band ^b (Example: 3, 10, 6)	Index number from default map; 0.001–1000.000: 1–32767	
•			
•			
•			
Row 200 ^a	Last custom analog input map; custom analog input scaling ^b custom analog input dead band	Index number from default map; 0.001–1000.000: 1–32767	
Row 1 ^a	Custom analog output map	Index number from default map	
Row 2a	Custom analog output map	Index number from default map	

^a Free-form setting row hidden if corresponding default map is enabled.

The settings shown in *Table 5.7* that follow DNPAOD are entered in a line-based free-form format. An example of these settings is shown in *DNP3* (*Serial*) Application Example on page R.5.31. You can program a custom scaling and dead band for each point where indicated. If you do not specify a custom scaling or dead band, the relay will use the default for the type of value you are mapping. For example, if you enter 60 in Row 1 of the custom analog map with no other parameters, the operating current (IOP1) of Differential Element 1 in per unit will be available as Object 30 and 32; index 0 and the relay will use the default scaling DECPLM and default dead band of ANADBM.

Scaling factors allow you to overcome the limitations imposed by the integer nature of Objects 30 and 32. For example, the relay rounds a value of 11.4 amps to 11 amps. Use the scaling to include decimal point values by multiplying by a number larger than one. If you use 10 as a scaling factor, 11.4 amps will be transmitted as 114. You must divide the value by 10 in the master device to see the original value including one decimal place.

^b Optional. If not specified, defaults to value associated with point in default map.

You can also use scaling to avoid overflowing the 16-bit maximum integer value of 32767. If you have a value that can reach 157834 you cannot send it using DNP 16-bit analog object variations. Use a scaling factor of 0.1 so that the maximum value reported is 15783. You must multiply the value by 10 in the master to see a value of 157830. You will lose some precision as the last digit is rounded in the scaling process, but you can transmit the scaled value using standard DNP Objects 30 and 32.

Warm Start and Cold Start

The DNP function codes for warm start and cold start reset the SEL-487B serial port. These function codes do not interrupt protection processes within the relay.

Testing

Use the **TEST DNP** command to test the data mapping from the relay to your DNP master. You can use the **TEST DNP** command to force DNP values by object and index number. Although the relay reports forced values to the DNP host, these values do not affect protection processing or other protocol interfaces on the SEL-487B. The **TEST DNP** command operates by object and index number, so it works equally well with custom mapping and the default DNP map.

When you are using the **TEST DNP** command to test DNP operation, the Relay Word bit TESTDNP will be asserted to indicate that test mode is active. The DNP status bit will also show forced status for any object variations that include status.

DNP3 (Serial) Documentation

Device Profile

Table 5.8 contains the standard DNP3 device profile information. Rather than checkboxes in the example Device Profile in the DNP3 Subset Definitions, only the relevant selections are shown.

Table 5.8 SEL-487B DNP3 Device Profile (Sheet 1 of 2)

Parameter	Value		
Vendor name	Schweitzer Engineering Laboratories		
Device name	SEL-487B Relay		
Highest DNP request level	Level 2		
Highest DNP response level	Level 2		
Device function	Slave		
Notable objects, functions, and/or qualifiers supported	Virtual terminal		
Maximum data link frame size transmitted/received (octets)	292		
Maximum data link retries	Configurable, range 0 to 15		
Requires data link layer confirmation	Configurable by setting		
Maximum application fragment size transmitted/received (octets)	2048		
Maximum application layer retries	None		
Requires application layer confirmation	When reporting Event Data		
Data link confirm time-out	Configurable		
Complete application fragment time-out	None		

Table 5.8 SEL-487B DNP3 Device Profile (Sheet 2 of 2)

Parameter	Value			
Application confirm time-out	Configurable			
Complete Application response time-out	None			
Executes control WRITE binary outputs	Always			
Executes control SELECT/OPERATE	Always			
Executes control DIRECT OPERATE	Always			
Executes control DIRECT OPERATE-NO ACK	Always			
Executes control count greater than 1	Never			
Executes control Pulse On	Always			
Executes control Pulse Off	Always			
Executes control Latch On	Always			
Executes control Latch Off	Always			
Executes control Queue	Never			
Executes control Clear Queue	Never			
Reports binary input change events when no specific variation requested	Only time-tagged			
Reports time-tagged binary input change events when no specific variation requested	Binary Input change with time			
Sends unsolicited responses	Configurable with unsolicited message enable settings			
Sends static data in unsolicited responses	Never			
Default counter object/variation	Object 20, Variation 6			
Counter roll-over	16 bits			
Sends multifragment responses	No			

Object List

Table 5.9 lists the objects and variations with supported function codes and qualifier codes as defined in the DNP level 2 documentation. Not all objects listed are supported in the SEL-487B. Objects that are supported include function code and qualifier code information.

Table 5.9 SEL-487B DNP Object List (Sheet 1 of 6)

Obj.		Description	Requesta		Response ^b	
	Var.		Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
1	0	Binary Input– All Variations	1	0, 1, 6, 7, 8		
1	1	Binary Input	1	0, 1, 6, 7, 8	129	0, 1, 7, 8
1	2e	Binary Input With Status	1	0, 1, 6, 7, 8	129	0, 1, 7, 8
2	0	Binary Input Change– All Variations	1	6, 7, 8		
2	1	Binary Input Change Without Time	1	6, 7, 8	129	17, 28
2	2e	Binary Input Change With Time	1	6, 7, 8	129, 130	17, 28

Table 5.9 SEL-487B DNP Object List (Sheet 2 of 6)

			Red	questa	Response ^b		
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d	
2	3 ^f	Binary Input Change With Relative Time	1	6, 7, 8	129	17, 28	
10	0	Binary Output– All Variations	1	0, 1, 6, 7, 8			
10	1	Binary Output					
10	2 ^e	Binary Output Status	1	0, 1, 6, 7, 8	129	0, 1	
12	0	Control Block– All Variations					
12	1	Control Relay Output Block	3, 4, 5, 6	17, 28	129	echo of request	
12	2	Pattern Control Block					
12	3	Pattern Mask					
20	0	Binary Counter– All Variations	1	0, 1, 6, 7, 8			
20	1	32-Bit Binary Counter					
20	2	16-Bit Binary Counter					
20	3	32-Bit Delta Counter					
20	4	16-Bit Delta Counter					
20	5	32-Bit Binary Counter Without Flag	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	
20	6e	16-Bit Binary Counter Without Flag	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	
20	7	32-Bit Delta Counter Without Flag					
20	8	16-Bit Delta Counter Without Flag					
21	0	Frozen Counter– All Variations					
21	1	32-Bit Frozen Counter					
21	2	16-Bit Frozen Counter					
21	3	32-Bit Frozen Delta Counter					
21	4	16-Bit Frozen Delta Counter					
21	5	32-Bit Frozen Counter With Time of Freeze					
21	6	16-Bit Frozen Counter With Time of Freeze					
21	7	32-Bit Frozen Delta Counter With Time of Freeze					
21	8	16-Bit Frozen Delta Counter With Time of Freeze					
21	9	32-Bit Frozen Counter Without Flag					

Table 5.9 SEL-487B DNP Object List (Sheet 3 of 6)

lable	Table 5.9 SEL-487B DNP Object List (Sheet 3 of 6)							
			Reg	uesta	Res	ponse ^b		
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d		
21	10	16-Bit Frozen Counter Without Flag						
21	11	32-Bit Frozen Delta Counter Without Flag						
21	12	16-Bit Frozen Delta Counter Without Flag						
22	0	Counter Change Event–All Variations	1	6, 7, 8				
22	1	32-Bit Counter Change Event Without Time	1	6, 7, 8	129	17, 28		
22	2 ^e	16-Bit Counter Change Event Without Time	1	6, 7, 8	129, 130	17, 28		
22	3	32-Bit Delta Counter Change Event Without Time						
22	4	16-Bit Delta Counter Change Event Without Time						
22	5	32-Bit Counter Change Event With Time	1	6, 7, 8	129	17, 28		
22	6	16-Bit Counter Change Event With Time	1	6, 7, 8	129	17, 28		
22	7	32-Bit Delta Counter Change Event With Time						
22	8	16-Bit Delta Counter Change Event With Time						
23	0	Frozen Counter Event–All Variations						
23	1	32-Bit Frozen Counter Event Without Time						
23	2	16-Bit Frozen Counter Event Without Time						
23	3	32-Bit Frozen Delta Counter Event Without Time						
23	4	16-Bit Frozen Delta Counter Event Without Time						
23	5	32-Bit Frozen Counter Event With Time						
23	6	16-Bit Frozen Counter Event With Time						
23	7	32-Bit Frozen Delta Counter Event With Time						
23	8	16-Bit Frozen Delta Counter Event With Time						
30	0	Analog Input– All Variations	1	0, 1, 6, 7, 8				

Table 5.9 SEL-487B DNP Object List (Sheet 4 of 6)

			Red	questa	Response ^b		
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d	
30	1	32-Bit Analog Input	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	
30	2	16-Bit Analog Input	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	
30	3	32-Bit Analog Input Without Flag	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	
30	4 ^e	16-Bit Analog Input Without Flag	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	
31	0	Frozen Analog Input– All Variations					
31	1	32-Bit Frozen Analog Input					
31	2	16-Bit Frozen Analog Input					
31	3	32-Bit Frozen Analog Input With Time of Freeze					
31	4	16-Bit Frozen Analog Input With Time of Freeze					
31	5	32-Bit Frozen Analog Input Without Flag					
31	6	16-Bit Frozen Analog Input Without Flag					
32	0	Analog Change Event–All Variations	1	6, 7, 8			
32	1	32-Bit Analog Change Event Without Time	1	6, 7, 8	129	17, 28	
32	2e	16-Bit Analog Change Event Without Time	1	6, 7, 8	129, 130	17, 28	
32	3	32-Bit Analog Change Event With Time	1	6, 7, 8	129	17, 28	
32	4	16-Bit Analog Change Event With Time	1	6, 7, 8	129	17, 28	
33	0	Frozen Analog Event– All Variations					
33	1	32-Bit Frozen Analog Event Without Time					
33	2	16-Bit Frozen Analog Event Without Time					
33	3	32-Bit Frozen Analog Event With Time					
33	4	16-Bit Frozen Analog Event With Time					
40	0	Analog Output Status– All Variations	1	0, 1, 6, 7, 8			
40	1	32-Bit Analog Output Status	1	0, 1, 6, 7, 8	129	0, 1, 7, 8	

Table 5.9 SEL-487B DNP Object List (Sheet 5 of 6)

			Red	questa	Res	ponse ^b
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
40	2e	16-Bit Analog Output Status	1	0, 1, 6, 7, 8	129	0, 1, 7, 8
41	0	Analog Output Block– All Variations				
41	1	32-Bit Analog Output Block	3, 4, 5, 6	17, 28	129	echo of request
41	2	16-Bit Analog Output Block	3, 4, 5, 6	17, 28	129	echo of request
50	0	Time and Date– All Variations				
50	1	Time and Date	2	7, 8 index=0	129	07, quantity=1
50	2	Time and Date With Interval				
51	0	Time and Date CTO– All Variations				
51	1	Time and Date CTO				
51	2	Unsynchronized Time and Date CTO				07, quantity=1
52	0	Time Delay– All Variations				
52	1	Time Delay, Coarse				
52	2	Time Delay, Fine			129	07, quantity=1
60	0	All Classes of Data	1, 20, 21	6		
60	1	Class 0 Data	1	6		
60	2	Class 1 Data	1, 20, 21	6, 7, 8		
60	3	Class 2 Data	1, 20, 21	6, 7, 8		
60	4	Class 3 Data	1, 20, 21	6, 7, 8		
70	1	File Identifier	1, 2	6	129	7, 8
80	1	Internal Indications	2	0, 1 index=7		
81	1	Storage Object				
82	1	Device Profile				
83	1	Private Registration Object				
83	2	Private Registration Object Descriptor				
90	1	Application Identifier				
100	1	Short Floating Point				
100	2	Long Floating Point				
100	3	Extended Floating Point				
101	1	Small Packed Binary–Coded Decimal				

			Req	uesta	Res	ponse ^b
Obj. Var.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
101	2	Medium Packed Binary–Coded Decimal				
101	3	Large Packed Binary–Coded Decimal				
110	All	Octet String				
111	All	Octet String Event				
112	All	Virtual Terminal Output Block	2	6		
113	All	Virtual Terminal Event Data	1, 20, 21	6	129, 130	17, 28
N/A		No object required for the following function codes: 13 cold start 14 warm start 23 delay measurement	13, 14, 23			

Table 5.9 SEL-487B DNP Object List (Sheet 6 of 6)

- a Supported in requests from master
- b May generate in response to master
- c Decimal
- d Hexadecimal
- e Default variation
- f Supports request, but response contains no data

Default Data Map

Table 5.10 shows the SEL-487B default DNP3 data map. The default data map makes a wide range of data in the relay available. If your DNP3 master does Class 0 polls, polls of all present value points, the response will be quite large. Use the custom DNP mapping functions of the SEL-487B to reduce the data map to the points that your application requires.

The SEL-487B provides binary input information with one of two reference maps: base or extended. The default map selection is base (MAPSEL := B).

With the base reference map, Object 1 and 2 Indices 0–799 and 800–1599 contain the same data but provide different levels of timestamp accuracy for associated Object 2 DNP events. The SER (sequential events recorder) in the relay controls events for indices 800–1599. The time stamps for these indices have the same accuracy and resolution that the SER provides. The only points available within indices 800-1599 are those that you configure for tracking by the relay SER.

Use indices 800–1599 and corresponding SER settings to track each change of bits in the Relay Word and provide SER quality time stamps via DNP. Event reporting for indices 0–799 uses a slower, less accurate timestamping mechanism, but this reporting operates for all points within the range without additional configuration.

With the extended reference map, Object 1 and 2 Indices 16–265 contain the points available for tracking by the relay SER. SER quality time stamps are available for these points and only the SER settings are needed in order to configure the points available. The entire visible Relay Word (Table A.2 on page R.A.14) is available starting at Index 272.

The relay scales analog values by the indicated settings or fixed scaling indicated in the description. Analog dead bands for event reporting use the indicated settings, or ANADBM if you have specified no setting.

Table 5.10 SEL-487B DNP3 Default Data Map (Sheet 1 of 4)

Table 5.10	SEL-487B	EL-487B DNP3 Default Data Map (Sheet 1 of 4)				
Object	Indices	Description				
MAPSEL :=	В					
01, 02	000–799	Relay Word bits, Table 5.12				
01, 02	800–1599	SER Points, add 800 to indices in Table 5.12				
01, 02	1600–1615	Relay front panel targets in <i>Table 5.13</i>				
01, 02	1616	Relay disabled				
01, 02	1617	Relay diagnostic failure				
01, 02	1618	Relay diagnostic warning				
01, 02	1619	New relay event available				
01, 02	1620	Settings change or relay restart				
01, 02	1621–1623	Reserved for future status points				
01, 02	1624–1631	Relay front-panel targets in Table 5.13				
MAPSEL :=	E					
01, 02	0	Relay disabled				
01, 02	1	Relay diagnostic failure				
01, 02	2	Relay diagnostic warning				
01, 02	3	New relay event available				
01, 02	4	Settings change or relay restart				
01, 02	5–15	Reserved				
01, 02	16–265	SER points 1–250				
01, 02	266–271	Reserved				
01, 02	272–3671	Entire visible Relay Word, starting from bit 0				
MAPSEL :=	B, MAPSEL :=	E				
10, 12	00–15	Remote bits RB01–RB16				
10, 12	16	Pulse Open Circuit Breaker 1 command				
10, 12	17	Reserved				
10, 12	18	Pulse Open Circuit Breaker 2 command				
10, 12	19	Reserved				
10, 12	20	Pulse Open Circuit Breaker 3 command				
10, 12	21	Reserved				
10, 12	22	Pulse Open Circuit Breaker 4 command				
10, 12	23	Reserved				
10, 12	24–31	Remote bit pairs RB01-RB16				
10, 12	32	Open/Close pair for Circuit Breaker 1				
10, 12	33	Open/Close pair for Circuit Breaker 2				
10, 12	34	Open/Close pair for Circuit Breaker 3				
10, 12	35	Open/Close pair for Circuit Breaker 4				
10, 12	36–39	Reserved				
10, 12	40	Reset front panel targets				

NOTE: See Table 5.14 (trip and close) and Table 5.15 (latch and pulse) for Object 12 operations.

Table 5.10 SEL-487B DNP3 Default Data Map (Sheet 2 of 4)

		Description
Object	Indices	Description
10, 12	41	Read next relay event
10, 12	42–43	Reserved
10, 12	44–59	Remote bits RB17–RB32
10, 12	60–67	Remote bit pairs RB17–RB32
10, 12	68	Pulse Open Circuit Breaker 5 command
10, 12	69	Reserved
10, 12	70	Pulse Open Circuit Breaker 6 command
10, 12	71	Reserved
10, 12	72	Pulse Open Circuit Breaker 7 command
10, 12	73	Reserved
10, 12	74	Pulse Open Circuit Breaker 8 command
10, 12	75	Reserved
10, 12	76	Pulse Open Circuit Breaker 9 command
10, 12	77	Reserved
10, 12	78	Pulse Open Circuit Breaker 10 command
10, 12	79	Reserved
10, 12	80	Pulse Open Circuit Breaker 11 command
10, 12	81	Reserved
10, 12	82	Pulse Open Circuit Breaker 12 command
10, 12	83	Reserved
10, 12	84	Pulse Open Circuit Breaker 13 command
10, 12	85	Reserved
10, 12	86	Pulse Open Circuit Breaker 14 command
10, 12	87	Reserved
10, 12	88	Pulse Open Circuit Breaker 15 command
10, 12	89	Reserved
10, 12	90	Pulse Open Circuit Breaker 16 command
10, 12	91	Reserved
10, 12	92	Pulse Open Circuit Breaker 17 command
10, 12	93	Reserved
10, 12	94	Pulse Open Circuit Breaker 18 command
10, 12	95	Reserved
10, 12	96–107	Reserved
10, 12	108	Open/Close pair for Circuit Breaker 5
10, 12	109	Open/Close pair for Circuit Breaker 6
10, 12	110	Open/Close pair for Circuit Breaker 7
10, 12	111	Open/Close pair for Circuit Breaker 8
10, 12	112	Open/Close pair for Circuit Breaker 9
10, 12	113	Open/Close pair for Circuit Breaker 10
10, 12	114	Open/Close pair for Circuit Breaker 11
10, 12	115	Open/Close pair for Circuit Breaker 12

Table 5.10 SEL-487B DNP3 Default Data Map (Sheet 3 of 4)

lable 5.10	J SEL-487B DNP3 Default Data Map (Sneet 3 of 4)				
Object	Indices	Description			
10, 12	116	Open/Close pair for Circuit Breaker 13			
10, 12	117	Open/Close pair for Circuit Breaker 14			
10, 12	118	Open/Close pair for Circuit Breaker 15			
10, 12	119	Open/Close pair for Circuit Breaker 16			
10, 12	120	Open/Close pair for Circuit Breaker 17			
10, 12	121	Open/Close pair for Circuit Breaker 18			
20, 22	00	Active settings group			
20, 22	01	Reserved			
20, 22	02	Reserved			
20, 22	03	Number of unread event reports			
30, 32	00, 01 ^a	I01 current magnitude and angle			
30, 32	02, 03a	I02 current magnitude and angle			
30, 32	04, 05 ^a	I03 current magnitude and angle			
30, 32	06, 07 ^a	I04 current magnitude and angle			
30, 32	$08,09^{a}$	I05 current magnitude and angle			
30, 32	10, 11 ^a	I06 current magnitude and angle			
30, 32	12, 13 ^a	I07 current magnitude and angle			
30, 32	14, 15	I08 current magnitude and angle			
30, 32	16, 17 ^a	I09 current magnitude and angle			
30, 32	18, 19 ^a	I10 current magnitude and angle			
30, 32	20, 21a	I11 current magnitude and angle			
30, 32	22, 23 ^a	I12 current magnitude and angle			
30, 32	24, 25 ^a	I13 current magnitude and angle			
30, 32	26, 27 ^a	I14 current magnitude and angle			
30, 32	28, 29 ^a	I15 current magnitude and angle			
30, 32	30, 31 ^a	I16 current magnitude and angle			
30, 32	32, 33a	I17 current magnitude and angle			
30, 32	34, 35 ^a	I18 current magnitude and angle			
30, 32	36–47	Reserved			
30, 32	48, 49 ^b	V01 voltage magnitude and angle			
30, 32	50, 51 ^b	V02 voltage magnitude and angle			
30, 32	52, 53b	V03 voltage magnitude and angle			
30, 32	54–59	Reserved			
30, 32	60°	IOP1 (per unit) operating current			
30, 32	61 ^c	IOP2 (per unit) operating current			
30, 32	62°	IOP3 (per unit) operating current			
30, 32	63 ^c	IOP4 (per unit) operating current			
30, 32	64 ^c	IOP5 (per unit) operating current			
30, 32	65°	IOP6 (per unit) operating current			
30, 32	66–67	Reserved			
30, 32	68 ^c	IRT1 (per unit) restraint current			

Table 5.10 SEL-487B DNP3 Default Data Map (Sheet 4 of 4)

		·
Object	Indices	Description
30, 32	69 ^c	IRT2 (per unit) restraint current
30, 32	70 ^c	IRT3 (per unit) restraint current
30, 32	71 ^c	IRT4 (per unit) restraint current
30, 32	72°	IRT5 (per unit) restraint current
30, 32	73°	IRT6 (per unit) restraint current
30, 32	74–75	Reserved
30, 32	76 ^c	IOPCZ1 (per unit) operating current
30, 32	77–78	Reserved
30, 32	79°	IRTCZ1 (per unit) restraint current
30, 32	80–99	Reserved
30, 32	100 ^d	VDC1 (Volts)
30, 32	101	Reserved
30, 32	102–175	Reserved
30, 32e	176	Fault type, Table 5.11
30, 32e	177	Fault targets (Relay Word rows 0 and 1)
30, 32e	178	Fault targets (Relay Word row 421)
30, 32e	179	Reserved
30, 32e	180	Reserved
30, 32e	181	Fault settings group
30, 32e	182	Reserved
30, 32e	183	Reserved
30, 32e	184–186	Fault time in DNP format
30, 32e	187–195	Reserved
30, 32	196–227	First 32 automation math variables (AMV001–AMV032)
40, 41	0	Active settings group

a Default current scaling DECPLA on magnitudes; angles scaled by 100. Dead band ADADBV on magnitudes and ADADBM on angles.

NOTE: The lower byte is always 0.

Object 30, Index 176 is a 16-bit composite value, where the upper byte value indicates an event cause as shown in Table 5.11.

Table 5.11 Object 30, Index 176 Upper Byte-Event Cause

Byte Value	Description
1	Trigger command
2	Pulse command (Not supported)
4	Trip element
8	Event report element

^b Default voltage scaling DECPLV on magnitudes; angles scaled by 100. Dead band ADADBV on magnitudes and ANADBM on angles.

 $^{^{\}rm c}\,$ Default miscellaneous scaling DECPLM and dead band ANADBM.

d Default scale factor of 100.

e Event data shall only be generated for the fault summary information if the relay is operating in single event mode.

Table 5.11 Object 30, Index 176 Upper Byte-Event Cause

Byte Value	Description
16	Breaker failure trip
32	Differential trip

With the base reference map, the Relay Word bits mapped into Objects 1 and 2 are shown in *Table 5.12*. For non-SER points in the range 0–799, use the Index Range column directly. For SER points in the range 800–1599, add 800 to the indices in *Table 5.12*. The table lists eight bits in each row and the index range for each row. To determine the index for a specific point, add the Relay Word bit number (0 to 7) to the first number in the range listed in the first column. For example, the index of TLED_4 is 12 (the bit number, 4, plus the first number in the range, 8).

Table 5.12 SEL-487B Object 1, 2 Relay Word Bit Mapping (Sheet 1 of 3)

			ı	Relay Word B	tsa			
Index Range	7	6	5	4	3	2	1	0
7-0	EN	TRIPLED	*	*	*	*	*	*
15-8	TLED_1	TLED_2	TLED_3	TLED_4	TLED_5	TLED_6	TLED_7	TLED_8
23-16	TLED_9	TLED_10	TLED_11	TLED_12	TLED_13	TLED_14	TLED_15	TLED_16
31-24	52AL03	52A03	52CL02	52AL02	52A02	52CL01	52AL01	52A01
39-32	52A06	52CL05	52AL05	52A05	52CL04	52AL04	52A04	52CL03
47-40	*	*	ZONE6	ZONE5	ZONE4	ZONE3	ZONE2	ZONE1
55-48	*	*	*	*	ZSWOAL	ZSWOIP	ZSWO	RZSWOAI
63-56	*	87ST	87ST6	87ST5	87ST4	87ST3	87ST2	87ST1
71-64	*	CSL1	ACTRPT1	ACTRP1	CBCLST1	CBCLS1	CB52T1	CB52A1
79-72	*	CSL2	ACTRPT2	ACTRP2	CBCLST2	CBCLS2	CB52T2	CB52A2
87-80	TOS08	TOS07	TOS06	TOS05	TOS04	TOS03	TOS02	TOS01
95-88	TOS16	TOS15	TOS14	TOS13	TOS12	TOS11	TOS10	TOS09
103-96	*	*	*	*	*	*	TOS18	TOS17
111-104	SG6	SG5	SG4	SG3	SG2	SG1	CHSG	*
119-112	RB25	RB26	RB27	RB28	RB29	RB30	RB31	RB32
127-120	RB17	RB18	RB19	RB20	RB21	RB22	RB23	RB24
135-128	RB09	RB10	RB11	RB12	RB13	RB14	RB15	RB16
143-136	RB01	RB02	RB03	RB04	RB05	RB06	RB07	RB08
151-144	*	IN107	1N106	IN105	IN104	IN103	IN102	IN101
159-152	IN208	IN207	IN206	IN205	IN204	IN203	IN202	IN201
167-160	IN216	IN215	IN214	IN213	IN212	IN211	IN210	IN209
175-168	IN224	IN223	IN222	IN221	IN220	IN219	IN218	IN217
183-176	IN308	IN307	IN306	IN305	IN304	IN303	IN302	IN301
191-184	IN316	IN315	IN314	IN313	IN312	IN311	IN310	IN309
199-192	IN324	IN323	IN322	IN321	IN320	IN319	IN318	IN317
207-200	IN408	IN407	IN406	IN405	IN404	IN403	IN402	IN401
215-208	IN416	IN415	IN414	IN413	IN412	IN411	IN410	IN409
223-216	IN424	IN423	IN422	IN421	IN420	IN419	IN418	IN417

Table 5.12 SEL-487B Object 1, 2 Relay Word Bit Mapping (Sheet 2 of 3)

Relay Word Bits ^a								
Index Range	7	6	5	4	3	2	1	o
231-224	IN508	IN507	IN506	IN505	IN504	IN503	IN502	IN501
239-232	IN516	IN515	IN514	IN513	IN512	IN511	IN510	IN509
247-240	IN524	IN523	IN522	IN521	IN520	IN519	IN518	IN517
255-248	PSV08	PSV07	PSV06	PSV05	PSV04	PSV03	PSV02	PSV01
263-256	PSV16	PSV15	PSV14	PSV13	PSV12	PSV11	PSV10	PSV09
271-264	PSV24	PSV23	PSV22	PSV21	PSV20	PSV19	PSV18	PSV17
279-272	PSV32	PSV31	PSV30	PSV29	PSV28	PSV27	PSV26	PSV25
287-280	PSV40	PSV39	PSV38	PSV37	PSV36	PSV35	PSV34	PSV33
295-288	PSV48	PSV47	PSV46	PSV45	PSV44	PSV43	PSV42	PSV41
303-296	PSV56	PSV55	PSV54	PSV53	PSV52	PSV51	PSV50	PSV49
311-304	PSV64	PSV63	PSV62	PSV61	PSV60	PSV59	PSV58	PSV57
319-312	PLT08	PLT07	PLT06	PLT05	PLT04	PLT03	PLT02	PLT01
327-320	PLT16	PLT15	PLT14	PLT13	PLT12	PLT11	PLT10	PLT09
335-328	PCT08Q	PCT07Q	PCT06Q	PCT05Q	PCT04Q	PCT03Q	PCT02Q	PCT01Q
343-336	PCT16Q	PCT15Q	PCT14Q	PCT13Q	PCT12Q	PCT11Q	PCT10Q	PCT09Q
351-344	PST08Q	PST07Q	PST06Q	PST05Q	PST04Q	PST03Q	PST02Q	PST01Q
359-352	PST16Q	PST15Q	PST14Q	PST13Q	PST12Q	PST11Q	PST10Q	PST09Q
367-360	PCN08Q	PCN07Q	PCN06Q	PCN05Q	PCN04Q	PCN03Q	PCN02Q	PCN01Q
375-368	PCN16Q	PCN15Q	PCN14Q	PCN13Q	PCN12Q	PCN11Q	PCN10Q	PCN09Q
383-376	ASV008	ASV007	ASV006	ASV005	ASV004	ASV003	ASV002	ASV00
391-384	ASV016	ASV015	ASV014	ASV013	ASV012	ASV011	ASV010	ASV009
399-392	ASV024	ASV023	ASV022	ASV021	ASV020	ASV019	ASV018	ASV017
407-400	ASV032	ASV031	ASV030	ASV029	ASV028	ASV027	ASV026	ASV025
415-408	ASV040	ASV039	ASV038	ASV037	ASV036	ASV035	ASV034	ASV033
123-416	ASV048	ASV047	ASV046	ASV045	ASV044	ASV043	ASV042	ASV041
431-424	ASV056	ASV055	ASV054	ASV053	ASV052	ASV051	ASV050	ASV049
139-432	ASV064	ASV063	ASV062	ASV061	ASV060	ASV059	ASV058	ASV057
447-440	ALT08	ALT07	ALT06	ALT05	ALT04	ALT03	ALT02	ALT01
455-448	ALT16	ALT15	ALT14	ALT13	ALT12	ALT11	ALT10	ALT09
463-456	AST08Q	AST07Q	AST06Q	AST05Q	AST04Q	AST03Q	AST02Q	AST01Q
471-464	AST16Q	AST15Q	AST14Q	AST13Q	AST12Q	AST11Q	AST10Q	AST09Q
479-472	ACN08Q	ACN07Q	ACN06Q	ACN05Q	ACN04Q	ACN03Q	ACN02Q	ACN01Q
487-480	ACN16Q	ACN15Q	ACN14Q	ACN13Q	ACN12Q	ACN11Q	ACN10Q	ACN09Q
195-488	PUNRLBL	PFRTEX	MATHERR	*	*	*	*	*
503-496	AUNRLBL	AFRTEXP	AFRTEXA	*	*	*	*	*
511-504	SALARM	HALARM	BADPASS	CCALARM	CCOK	*	*	*
519-512	*	*	TIRIG	TUPDH	*	*	*	*
527-520	OUT108	OUT107	OUT106	OUT105	OUT104	OUT103	OUT102	OUT101
535-528	OUT208	OUT207	OUT206	OUT205	OUT204	OUT203	OUT202	OUT201

Table 5.12 SEL-487B Object 1, 2 Relay Word Bit Mapping (Sheet 3 of 3)

	Relay Word Bitsa							
Index Range	7	6	5	4	3	2	1	0
543-536	OUT308	OUT307	OUT306	OUT305	OUT304	OUT303	OUT302	OUT301
551-544	OUT408	OUT407	OUT406	OUT405	OUT404	OUT403	OUT402	OUT401
559-552	OUT508	OUT507	OUT506	OUT505	OUT504	OUT503	OUT502	OUT501
567-560	PB1_LED	PB2_LED	PB3_LED	PB4_LED	PB5_LED	PB6_LED	PB7_LED	PB8_LED
575-568	RMB8A	RMB7A	RMB6A	RMB5A	RMB4A	RMB3A	RMB2A	RMB1A
583-576	TMB8A	TMB7A	TMB6A	TMB5A	TMB4A	TMB3A	TMB2A	TMB1A
591-584	RMB8B	RMB7B	RMB6B	RMB5B	RMB4B	RMB3B	RMB2B	RMB1B
599-592	TMB8B	TMB7B	TMB6B	TMB5B	TMB4B	TMB3B	TMB2B	TMB1B
607-600	ROKA	RBADA	CBADA	LBOKA	ANOKA	DOKA	*	*
615-608	ROKB	RBADB	CBADB	LBOKB	ANOKB	DOKB	*	*
623-616	TESTDNP	TESTDB	TESTFM	TESTPUL	*	*	*	*
631-624	CCIN25	CCIN26	CCIN27	CCIN28	CCIN29	CCIN30	CCIN31	CCIN32
639-632	CCIN17	CCIN18	CCIN19	CCIN20	CCIN21	CCIN22	CCIN23	CCIN24
647-640	CCIN09	CCIN10	CCIN11	CCIN12	CCIN13	CCIN14	CCIN15	CCIN16
655-648	CCIN01	CCIN02	CCIN03	CCIN04	CCIN05	CCIN06	CCIN07	CCIN08
663-656	CCOUT25	CCOUT26	CCOUT27	CCOUT28	CCOUT29	CCOUT30	CCOUT31	CCOUT32
671-664	CCOUT17	CCOUT18	CCOUT19	CCOUT20	CCOUT21	CCOUT22	CCOUT23	CCOUT24
679-672	CCOUT09	CCOUT10	CCOUT11	CCOUT12	CCOUT13	CCOUT14	CCOUT15	CCOUT16
687-680	CCOUT01	CCOUT02	CCOUT03	CCOUT04	CCOUT05	CCOUT06	CCOUT07	CCOUT08
695-688	CCSTA01	CCSTA02	CCSTA03	CCSTA04	CCSTA05	CCSTA06	CCSTA07	CCSTA08
703-696	CCSTA09	CCSTA10	CCSTA11	CCSTA12	CCSTA13	CCSTA14	CCSTA15	CCSTA16
711-704	CCSTA17	CCSTA18	CCSTA19	CCSTA20	CCSTA21	CCSTA22	CCSTA23	CCSTA24
719-712	CCSTA25	CCSTA26	CCSTA27	CCSTA28	CCSTA29	CCSTA30	CCSTA31	CCSTA32
727-720	FSERP1	FSERP2	FSERP3	FSERPF	*	*	*	*
735-728	*	*	*	*	*	*	*	CZONE1
743-736	*	*	*	*	*	*	*	87CZ1
751-744	*	*	*	*	*	*	*	87STCZ1
759-752	TLED_17	TLED_18	TLED_19	TLED_20	TLED_21	TLED_22	TLED_23	TLED_24
767-760	PB9_LED	PB10_LED	PB11_LED	PB12_LED	*	*	*	*
799-768	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

a An * denotes reserved for future use.

Object 1, 2 indices 1600–1615 represent the front-panel target Relay Word bits as listed in *Table 5.13*.

Table 5.13 Object 1, 2 Front-Panel Targets (Sheet 1 of 2)

Index	Relay Word Bit	Default Function
1600	TLED_8	Busbar Fault in Protective Zone 6
1601	TLED_7	Busbar Fault in Protective Zone 5
1602	TLED_6	Busbar Fault in Protective Zone 4

Table 5.13 Object 1, 2 Front-Panel Targets (Sheet 2 of 2)

Index	Relay Word Bit	Default Function
1603	TLED_5	Busbar Fault in Protective Zone 3
1604	TLED_4	Busbar Fault in Protective Zone 2
1605	TLED_3	Busbar Fault in Protective Zone 1
1606	TLED_2	Breaker Failure
1607	TLED_1	87 Differential element operation
1608	TLED_16	Potential transformer alarm
1609	TLED_15	Disconnect alarm
1610	TLED_14	Disconnect operation in progress
1611	TLED_13	Terminal out of service
1612	TLED_12	87 Differential element blocked
1613	TLED_11	Current transformer alarm
1614	TLED_10	51 Time-delayed overcurrent element operation
1615	TLED_9	50 Instantaneous overcurrent element operation
1624	TLED_24	IRIG Source detected
1625	TLED_23	Circuit Breaker alarm
1626	TLED_22	Busbar Fault in any Zone
1627	TLED_21	Terminal 03 Voltage healthy
1628	TLED_20	Terminal 02 Voltage healthy
1629	TLED_19	Terminal 01 Voltage healthy
1630	TLED_18	59 overvoltage element operation
1631	TLED_17	27 undervoltage element operation

Reading Relay **Event Data**

The SEL-487B provides protective relay event history information in one of two modes: single event or with a first-in, first-out (FIFO) multi-event access method. The default mode is single event.

Single event mode provides the most recent tripping event. When a trigger with a trip type (Object 30, Index 176 byte value of 4; see Table 5.11 on page R.5.21) occurs this data shall be made available in the DNP fault summary area, generating appropriate DNP events. The relay shall then ignore any subsequent events for EVELOCK (port setting) time. This data shall be reset to 0 on a rising edge of RSTDNPE (global SELOGIC equation result). The relay element EVELOCK shall be set when the fault is triggered and reset when EVELOCK time expires.

Multi-event mode shall be initiated if the next event control is operated. The master should monitor binary input point 1619 (MAPSEL := B; see *Table 5.10* on page R.5.18) or point 3 (MAPSEL := E; see Table 5.10), which will be asserted when there is an unread relay event summary. To read the oldest relay event summary, the master should pulse-on binary output point 41 (see *Table 5.14*). This will load the relay event summary analogs (points 176) through 186; see *Table 5.10*) with information from the oldest relay event summary, discarding the values from the previous load.

After reading the analogs, the master should again check binary input point 1619 (point 3 when MAPSEL := E), which will be on if there is another unread relay event summary. The master should continue this process until binary input point 1619 (point 3 when MAPSEL := E) is deasserted. If the master attempts to load values using output point 41 when binary input point

Control Point Operation

1619 (point 3 when MAPSEL := E) is deasserted, the relay event type analog (point 176) will be loaded with zero. With the FIFO method, the relay event summaries will always be collected in chronological order.

Use the Trip and Close operations with Object 12 control relay output block command messages to operate the points shown in *Table 5.14*. Pulse operations provide a pulse with a duration of one protection processing interval.

Table 5.14 SEL-487B Object 12 Trip Operation (Sheet 1 of 3)

Indices	Close	Trip
0–15	Set remote bits RB1–RB16	Clear remote bits RB1–RB16
16	Open Circuit Breaker 1	No action
17	Reserved	Reserved
18	Open Circuit Breaker 2	No action
19	Reserved	Reserved
20	Open Circuit Breaker 3	No action
21	Reserved	Reserved
22	Open Circuit Breaker 4	No action
23	Reserved	Reserved
24	Pulse RB2	Pulse RB1
25	Pulse RB4	Pulse RB3
26	Pulse RB6	Pulse RB5
27	Pulse RB8	Pulse RB7
28	Pulse RB10	Pulse RB9
29	Pulse RB12	Pulse RB11
30	Pulse RB14	Pulse RB13
31	Pulse RB16	Pulse RB15
32	No action	Pulse OC1, Circuit Breaker 1 open command bit
33	No action	Pulse OC2, Circuit Breaker 2 open command bit
34	No action	Pulse OC3, Circuit Breaker 3 open command bit
35	No action	Pulse OC4, Circuit Breaker 4 open command bit
36–39	Reserved	Reserved
40	Reset front panel targets	Reset front panel targets
41	Read next relay event	Read next relay event
42	Reserved	Reserved
43	Reserved	Reserved
44–59	Set remote bits RB17–RB32	Clear remote bits RB17-RB32
60	Pulse RB18	Pulse RB17
61	Pulse RB20	Pulse RB19
62	Pulse RB22	Pulse RB21
63	Pulse RB24	Pulse RB23
64	Pulse RB26	Pulse RB25

Table 5.14 SEL-487B Object 12 Trip Operation (Sheet 2 of 3)

Indices	Close	Trip
65	Pulse RB28	Pulse RB27
66	Pulse RB30	Pulse RB29
67	Pulse RB32	Pulse RB31
68	Open Circuit Breaker 5	No action
69	Reserved	Reserved
70	Open Circuit Breaker 6	No action
71	Reserved	Reserved
72	Open Circuit Breaker 7	No action
73	Reserved	Reserved
74	Open Circuit Breaker 8	No action
75	Reserved	Reserved
76	Open Circuit Breaker 9	No action
77	Reserved	Reserved
78	Open Circuit Breaker 10	No action
79	Reserved	Reserved
80	Open Circuit Breaker 11	No action
81	Reserved	Reserved
82	Open Circuit Breaker 12	No action
83	Reserved	Reserved
84	Open Circuit Breaker 13	No action
85	Reserved	Reserved
86	Open Circuit Breaker 14	No action
87	Reserved	Reserved
88	Open Circuit Breaker 15	No action
89	Reserved	Reserved
90	Open Circuit Breaker 16	No action
91	Reserved	Reserved
92	Open Circuit Breaker 17	No action
93	Reserved	Reserved
94	Open Circuit Breaker 18	No action
95	Reserved	Reserved
96–107	Reserved	Reserved
108	No action	Pulse OC5, Circuit Breaker 5 open command bit
109	No action	Pulse OC6, Circuit Breaker 6 open command bit
110	No action	Pulse OC7, Circuit Breaker 7 open command bit
111	No action	Pulse OC8, Circuit Breaker 8 open command bit
112	No action	Pulse OC9, Circuit Breaker 9 open command bit

Table 5.14 SEL-487B Object 12 Trip Operation (Sheet 3 of 3)

Indices	Close	Trip
113	No action	Pulse OC10, Circuit Breaker 10 open command bit
114	No action	Pulse OC11, Circuit Breaker 11 open command bit
115	No action	Pulse OC12, Circuit Breaker 12 open command bit
116	No action	Pulse OC13, Circuit Breaker 13 open command bit
117	No action	Pulse OC14, Circuit Breaker 14 open command bit
118	No action	Pulse OC15, Circuit Breaker 15 open command bit
119	No action	Pulse OC16, Circuit Breaker 16 open command bit
120	No action	Pulse OC17, Circuit Breaker 17 open command bit
121	No action	Pulse OC18, Circuit Breaker 18 open command bit
122–127	Reserved	Reserved

The SEL-487B assigns some special operations to the code portion of the control relay output block command. The special operations are shown in *Table 5.15*. Pulse operations provide a pulse duration of one protection-processing interval.

Table 5.15 SEL-487B Object 12 Code Selection Operation (Sheet 1 of 4)

Indices	Latch On	Latch Off	Pulse On	Pulse Off
0–15	Set remote bits RB1–RB16	Clear remote bits RB1–RB16	Pulse remote bits RB1–RB16	Clear remote bits RB1–RB16
16	Pulse	No action	Pulse	No action
17	Reserved	Reserved	Reserved	Reserved
18	Pulse	No action	Pulse	No action
19	Reserved	Reserved	Reserved	Reserved
20	Pulse	No action	Pulse	No action
21	Reserved	Reserved	Reserved	Reserved
22	Pulse	No action	Pulse	No action
23	Reserved	Reserved	Reserved	Reserved
24	Pulse RB2	Pulse RB1	Pulse RB2	Pulse RB1
25	Pulse RB4	Pulse RB3	Pulse RB4	Pulse RB3
26	Pulse RB6	Pulse RB5	Pulse RB6	Pulse RB5
27	Pulse RB8	Pulse RB7	Pulse RB8	Pulse RB7
28	Pulse RB10	Pulse RB9	Pulse RB10	Pulse RB9
29	Pulse RB12	Pulse RB11	Pulse RB12	Pulse RB11
30	Pulse RB14	Pulse RB13	Pulse RB14	Pulse RB13
31	Pulse RB16	Pulse RB15	Pulse RB16	Pulse RB15

Table 5.15 SEL-487B Object 12 Code Selection Operation (Sheet 2 of 4)

Indices	Latch On	Latch Off	Pulse On	Pulse Off
32	No action	Pulse OC1, Circuit Breaker 1 open bit	No action	Pulse OC1, Circuit Breaker 1 open bit
33	No action	Pulse OC2, Circuit Breaker 2 open bit	No action	Pulse OC2, Circuit Breaker 2 open bit
34	No action	Pulse OC3, Circuit Breaker 3 open bit	No action	Pulse OC3, Circuit Breaker 3 open bit
35	No action	Pulse OC4, Circuit Breaker 4 open bit	No action	Pulse OC4, Circuit Breaker 4 open bit
36–39	Reserved	Reserved	Reserved	Reserved
40	Reset front panel targets	No action	Reset front-panel targets	No action
41	Read next relay event	No action	Read next relay event	No action
42–43	Reserved	Reserved	Reserved	Reserved
44–59	Set remote bits RB17–RB32	Clear remote bits RB17–RB32	Pulse remote bits RB17–RB32	Clear remote bits RB17–RB32
60	Pulse RB18	Pulse RB17	Pulse RB18	Pulse RB17
61	Pulse RB20	Pulse RB19	Pulse RB20	Pulse RB19
62	Pulse RB22	Pulse RB21	Pulse RB22	Pulse RB21
63	Pulse RB24	Pulse RB23	Pulse RB24	Pulse RB23
64	Pulse RB26	Pulse RB25	Pulse RB26	Pulse RB25
65	Pulse RB28	Pulse RB27	Pulse RB28	Pulse RB27
66	Pulse RB30	Pulse RB29	Pulse RB30	Pulse RB29
67	Pulse RB32	Pulse RB31	Pulse RB32	Pulse RB31
68	Pulse	No action	Pulse	No action
69	Reserved	Reserved	Reserved	Reserved
70	Pulse	No action	Pulse	No action
71	Reserved	Reserved	Reserved	Reserved
72	Pulse	No action	Pulse	No action
73	Reserved	Reserved	Reserved	Reserved
74	Pulse	No action	Pulse	No action
75	Reserved	Reserved	Reserved	Reserved
76	Pulse	No action	Pulse	No action
77	Reserved	Reserved	Reserved	Reserved
78	Pulse	No action	Pulse	No action
79	Reserved	Reserved	Reserved	Reserved
80	Pulse	No action	Pulse	No action
81	Reserved	Reserved	Reserved	Reserved
82	Pulse	No action	Pulse	No action
83	Reserved	Reserved	Reserved	Reserved
84	Pulse	No action	Pulse	No action

Table 5.15 SEL-487B Object 12 Code Selection Operation (Sheet 3 of 4)

Indices	Latch On	Latch Off	Pulse On	Pulse Off
85	Reserved	Reserved	Reserved	Reserved
86	Pulse	No action	Pulse	No action
87	Reserved	Reserved	Reserved	Reserved
88	Pulse	No action	Pulse	No action
89	Reserved	Reserved	Reserved	Reserved
90	Pulse	No action	Pulse	No action
91	Reserved	Reserved	Reserved	Reserved
92	Pulse	No action	Pulse	No action
93	Reserved	Reserved	Reserved	Reserved
94	Pulse	No action	Pulse	No action
95	Reserved	Reserved	Reserved	Reserved
96–107	Reserved	Reserved	Reserved	Reserved
108	No action	Pulse OC5, Circuit Breaker 5 open bit	No action	Pulse OC5, Circuit Breaker 5 open bit
109	No action	Pulse OC6, Circuit Breaker 6 open bit	No action	Pulse OC7, Circuit Breaker 7 open bit
110	No action	Pulse OC8, Circuit Breaker 8 open bit	No action	Pulse OC8, Circuit Breaker 8 open bit
111	No action	Pulse OC9, Circuit Breaker 9 open bit	No action	Pulse OC9, Circuit Breaker 9 open bit
112	No action	Pulse OC10, Circuit Breaker 10 open bit	No action	Pulse OC10, Circuit Breaker 10 open bit
113	No action	Pulse OC11, Circuit Breaker 11 open bit	No action	Pulse OC11, Circuit Breaker 11 open bit
114	No action	Pulse OC12, Circuit Breaker 12 open bit	No action	Pulse OC12, Circuit Breaker 12 open bit
115	No action	Pulse OC13, Circuit Breaker 13 open bit	No action	Pulse OC13, Circuit Breaker 13 open bit
116	No action	Pulse OC14, Circuit Breaker 14 open bit	No action	Pulse OC14, Circuit Breaker 14 open bit
117	No action	Pulse OC15, Circuit Breaker 15 open bit	No action	Pulse OC15, Circuit Breaker 15 open bit
118	No action	Pulse OC16, Circuit Breaker 16 open bit	No action	Pulse OC16, Circuit Breaker 16 open bit
119	No action	Pulse OC17, Circuit Breaker 17 open bit	No action	Pulse OC17, Circuit Breaker 17 open bit

	•		•	·
Indices	Latch On	Latch Off	Pulse On	Pulse Off
120	No action	Pulse OC18, Circuit Breaker 18 open bit	No action	Pulse OC18, Circuit Breaker 18 open bit
121	No action	Pulse OC1, Circuit Breaker 1 open bit	No action	Pulse OC1, Circuit Breaker 1 open bit
122-127	Reserved	Reserved	Reserved	Reserved

Table 5.15 SEL-487B Object 12 Code Selection Operation (Sheet 4 of 4)

DNP3 (Serial) Application Example

Application

This example uses an SEL-487B connected to an RTU over an EIA-485 network. The RTU collects basic metering information from the relay. The network for this example is shown in Figure 5.1.

Figure 5.1 DNP Application Network Diagram

The station layout for this example is shown in Figure 5.2. The busbar voltage is 230 kV, and the highest expected current on any feeder is 2000 A.

Figure 5.2 Station Layout for the Application Example Showing Four Feeders and a Tie Bus

The metering and status data that the RTU collects from the relay, as well as the default map indices and the new custom indices you can select, are listed in *Table 5.16*.

Table 5.16 DNP3 Application Example Data Map (Sheet 1 of 2)

Name	Object	Default Map Index	Custom Map Index	Description
EN	1, 2	7	0	Relay enabled
52CL01	1, 2	26	1	TD Breaker status
52CL02	1, 2	29	2	TE Breaker status
52CL03	1, 2	32	3	TF Breaker status
52CL04	1, 2	35	4	TG Breaker status
52CL05	1, 2	38	5	TZ Breaker status
TOS01	1, 2	80	6	TD protection status
TOS02	1, 2	81	7	TE protection status
TOS03	1, 2	82	8	TF protection status
TOS04	1, 2	83	9	TG protection status
TOS05	1, 2	84	10	TZ protection status
IN204	1, 2	155	20	D981 disconnect status
IN205	1, 2	156	21	E981 disconnect status
IN206	1, 2	157	22	F981 disconnect status
IN207	1, 2	158	23	G981 disconnect status
IN208	1, 2	159	24	Z981 disconnect status
IN209	1, 2	160	25	Z982 disconnect status
SALARM	1, 2	511	25	Relay software alarm
HALARM	1, 2	510	26	Relay hardware alarm
OUT101	1, 2	520	27	TD breaker tripped
OUT102	1, 2	521	28	TE breaker tripped
OUT103	1, 2	522	29	TF breaker tripped
OUT104	1, 2	523	30	TG breaker tripped
OUT105	1, 2	524	31	TZ breaker tripped
TESTDNP	1, 2	623	32	DNP test mode enabled
RB01	10, 12	00	0	General use control point 1
RB02	10, 12	01	1	General use control point 2
RB03	10, 12	02	2	General use control point 3
RB04	10, 12	03	3	General use control point 4
RB05	10, 12	04	4	General use control point 5
OC1	10, 12	16	5	Circuit Breaker TD open
OC2	10, 12	18	6	Circuit Breaker TE open
OC3	10, 12	20	7	Circuit Breaker TF open
0C4	10, 12	22	8	Circuit Breaker TG open
0C5	10, 12	68	9	Circuit Breaker TZ open
I01FM ^a and I01FA ^b	30	00,01	0,1	I01 magnitude and angle

Table 5.16 DNP3 Application Example Data Map (Sheet 2 of 2)

Name	Object	Default Map Index	Custom Map Index	Description
I02FM ^a and I02FA ^b	30	02,03	2,3	I02 magnitude and angle
I03FM ^a and I01FA ^b	30	04,05	4,5	I03 magnitude and angle
I04FM ^a and I01FA ^b	30	06,07	6,7	I04 magnitude and angle
I05FM ^a and I01FA ^b	30	08,09	8,9	I05 magnitude and angle
V01FM ^c and V01FA ^b	30	48,49	10,11	V01 magnitude and angle
V02FM ^c and V01FA ^b	30	50,51	12,13	V02 magnitude and angle
V03FM ^c and V01FA ^b	30	52,53	14,15	V03 magnitude and angle
IOP1 ^d	30	60	16	Zone 1 operating current
IOP2d	30	61	17	Zone 2 operating current
IRT1e	30	62	18	Zone 1 restraint current
IRT2e	30	63	19	Zone 2 restraint current
VDC1 ^f	30	100	20	DC1 voltage multiplied by 100
	40	00	0	Active settings group

^a Because the largest expected current is 2000 A, scale the analog value by a factor of 10 to provide a resolution of 0.1 A and a maximum current of 3276.7 A. Report change events on a

Settings

Figure 5.3 shows how to enter the new map into the relay. Use the **SET D** command and enter N at the prompts shown in Figure 5.3 to allow changes to the existing maps. Press **<Enter>** at the line prompt to advance to the next map. For example, press **<Enter>** at line 26 of the Binary Input Map to advance to the Binary Output Map.

b Angles are scaled to 1/100 of a degree. Report change events on a change of 2 degrees.

 $^{^{\}rm c}\,$ For a nominal voltage of 230 kV, scale the analog value by a factor of 100 to provide a resolution of 10 V and a maximum value of 327.67 kV. Report 1 kV for change event reporting.

d To allow for errors during commissioning, allow an operating current of 1.0 per unit and scale the analog value by a factor of 10000 to provide a resolution of 0.0001 per unit and a maximum value of 3.2767 per unit. Report change events on a change of 0.01 per unit.

e Because the largest expected restraint current is 4 per unit, scale the analog value by a factor of 5000 to provide a resolution of 0.0002 per unit, and a maximum value of 6.5534 per unit. Report change events on a change of 0.05 per unit.

f VDC1 is scaled by a factor of 1/100 of a volt. Report change events on a change of 2 V.

```
=>>SET D <Enter>
DNP
DNP Object Default Map Enables
DNP Reference Map Selection
                                                                                              ? <Enter>
Reference Map Selection (B,E)
                                                                      MAPSEL := B
Use default DNP map for Binary Inputs (Y/N)
                                                                      DNPBID := Y
                                                                                              ?N <Enter>
Use default DNP map for Binary Outputs (Y/N)
Use default DNP map for Counters (Y/N)
Use default DNP map for Analog Inputs (Y/N)
                                                                      DNPBOD := Y
DNPCOD := Y
                                                                                              ?N <Enter>
                                                                                              ? <Enter>
                                                                      DNPAID := Y
                                                                                              ?N <Enter>
Use default DNP map for Analog Outputs (Y/N)
                                                                      DNPAOD := Y
                                                                                              ? <Enter>
Binary Input Map
(Index Number)
1:
    7 <Enter>
    26 <Enter>
    29 <Enter>
    32 <Enter>
    35 <Enter>
   38 <Enter>
    80 <Enter>
    81 <Enter>
    82 <Enter>
10:
   83 <Enter>
? 84 <Enter>
12:
? 155 <Enter>
13:
? 156 <Enter>
? 157 <Enter>
15:
    .
158 <Enter>
16:
? 159 <Enter>
? 160 <Enter>
18:
? 511 <Enter>
? 510 <Enter>
20:
? 520 <Enter>
21:
? 521 <Enter>
22:
    522 <Enter>
    523 <Enter>
24:
   524 <Enter>
25:
? 623 <Enter>
26:
Binary Output Map
(Index Number)
    0 <Enter>
   1 <Enter>
   2 <Enter>
    3 <Enter>
    4 <Enter>
    16 <Enter>
    18 <Enter>
```

```
20 <Enter>
   22 <Enter>
10:
   68 <Enter>
?<Enter>
Analog Input Map
(Index Number, Scale Factor, Deadband)
? 0 <Enter>
    1,1,200 <Enter>
    2 <Enter>
4:
?
   3,1,200 <Enter>
5:
?
    4 <Enter>
    5,1,200 <Enter>
7:
? 6 <Enter>
?
   7,1,200 <Enter>
    8 <Enter>
10:
   9,1,200 <Enter>
11:
? 48 <Enter>
12:
   49,1,200 <Enter>
13:
? 50 <Enter> 14:
? 51,1,200 <Enter>
15:
? 52 <Enter>
   53,1,200 <Enter>
17:
   60,10000,100 <Enter>
18:
? 61,10000,100 <Enter>
? 62,5000,250 <Enter>
20:
? 63,5000,250 <Enter>
21:
? 100,,200 <Enter>
22:
?<Enter>
DNP Object Default Map Enables
DNPBID := N
                        DNPBOD := N
                                                DNPCOD := Y
                                                                        DNPAID := N
DNPAOD := Y
Binary Input Map
(Index Number)
1: 7
2: 26
20: 63, 5000, 250
21: 100, 1, 200
Save settings (Y,N) ?Y <Enter>
Saving Settings, Please Wait.....
Settings Saved
=>>
```

Figure 5.3 SEL-487B Example Settings

Table 5.17 lists the settings for Port 3 for this example. The physical connection between the relay and the DNP master is an EIA-485 network. An SEL-2886 interface converter on the relay Port 3 provides conversion from

EIA-232 to EIA-485. Unsolicited reporting has been disabled because the network is wired as a four-wire connection and does not provide carrier detection or the opportunity to monitor for data traffic on the network.

Table 5.17 SEL-487B Port 3 Example Settings

Setting Name	Setting	Description	
PROTO	DNP	Protocol	
SPEED	9600	Data speed; hidden and set to 9600 if MBT set to Y	
DNPADR	101	DNP address	
ECLASSB	1	Event Class 1 for binary event data	
ECLASSC	1	Event Class 1 for counter event data	
ECLASSA	1	Event Class 1 for analog event data	
ECLASSV	OFF	Disable virtual terminal event data because this feature is not supported by master.	
TIMERQ	I	Ignore time-set request because IRIG-B is used for time synchronization.	
DECPLA	1	Scale current, multiplying by 10 to send amps and tenths of an amp. The relay would report a value of 10.4 as 104, which would remain unscaled at the master.	
DECPLV	2	Scale voltage, multiplying by 100 to send kilovolts and tenths of a kilovolt.	
DECPLM	2	Not used because custom scaling on all miscellaneous points.	
STIMEO	10.0	Select/operate time-out of 10 seconds.	
DRETRY	OFF	Turn off data link retries.	
MINDLY	0.05	Minimum delay from DCD to TX.	
MAXDLY	0.10	Maximum delay from DCD to TX.	
PREDLY	0.025	Settle time from RTS on to TX to allow EIA-485 transceiver to switch to transmit mode of 25 milliseconds.	
PSTDLY	0.00	Settle time from TX to RTS off; not required in this application.	
ANADBA	50	Analog reporting dead band for currents, 5 amps based on DECPLA scaling factor	
ANADBV	100	Analog reporting dead band for voltages, 1 kV based on DECPLV scaling factor.	
ANADBM	1600	Not used because custom deadbands on all miscellaneous points.	
ETIMEO	10	Event data confirmation time-out in seconds.	
EVELOCK	0	Event summary lock period (0–1000 seconds)	
UNSOL	N	Unsolicited reporting disabled because polling is polled report-by-exception.	
MODEM	N	No modem connected to port.	

In this example, the polling method employed by the RTU DNP master is polled report-by-exception. The master device normally polls for events only. Once every 25 event polls, the master polls for Class 0 data (status of all points). This polling method allows the master to collect data efficiently from the IEDs by not continuously polling and receiving data that are not changing.

Testing

In this example, we can also use the **TEST DNP** command to substitute each measured value with a static value that you can control. You can then examine received values in the RTU or at the SCADA master to verify that each point is reaching the proper destination.

DNP LAN/WAN Communications

The installation of an Ethernet Card in an SEL-487B Relay provides a DNP3 Level 2 Slave interface for direct Ethernet network connections to the relay. This section covers the following topics:

- ➤ DNP LAN/WAN
- ➤ DNP LAN/WAN in the SEL-487B
- ➤ DNP LAN/WAN Documentation on page R.5.47
- ➤ DNP LAN/WAN Application Example on page R.5.56

Please refer to *Introduction to DNP3 on page R.5.1* for additional information on DNP3.

DNP LAN/WAN

Because of the benefits that Local- and Wide-Area Networks (LAN/WAN) provide, they have become ubiquitous throughout utilities. Networks are now found in control rooms, substations, and other areas where they were rarely seen until just recently. In line with this trend, the DNP User's Group produced an extension of the DNP3 specification with recommendations for implementing DNP LAN/WAN networks.

The specification contains several key recommendations about DNP3 operation over LAN and WAN links. The most significant recommendations are listed below:

- ➤ DNP LAN/WAN will use the TCP/IP and UDP/IP protocol suite, also known as The Internet Protocol Suite.
- ➤ Ethernet is the recommended physical layer, but the recommended implementation will function over any link where the TCP/IP and UDP/IP protocol suite is present.
- ➤ All devices must support messaging through both TCP (connection oriented) and UDP (connectionless) mechanisms.
- ➤ The full DNP3 protocol stack is retained. It is supplemented by the network protocol layers so that major restructuring of DNP3 is unnecessary.
- ➤ Link layer confirmations, which are optional but discouraged for serial DNP3, are specifically not allowed for DNP LAN/ WAN. The IP Suite already provides a reliable delivery mechanism that is backed up by confirmations at the application layer when required.

DNP LAN/WAN in the SEL-487B

Ethernet Card

Installation of the optional Ethernet card in an SEL-487B provides a high-performance network interface that enables the use of industry-standard SCADA network protocols, including DNP3 Level 2 slave functionality. DNP LAN/WAN incorporates most Serial DNP3 functions, and includes event data reporting with direct time tags, customized data maps and session settings, and operator-initiated control through remote bits.

Configuration and operation of the DNP LAN/WAN interface in the SEL-487B is completely independent of the Serial DNP3 interface. In this section, DNP LAN/WAN is discussed as a function of the SEL-487B, with the implication that this refers to the operation of an optional Ethernet card (with the DNP3 option) installed in an SEL-487B.

Data Access

The data access methods listed for Serial DNP3 in *Table 5.4* are also available for DNP LAN/WAN, with the exception of Virtual Terminal classes. *Table 5.18* lists the appropriate settings for DNP LAN/WAN. The DNP3 master session must be configured for one of the data access methods below.

Table 5.18	DNPI	ΔΝ/WΔΝ	Access	Methods

Access Method	Master Polling	SEL-487B/Ethernet Card Settings
Polled static	Class 0	Set ECLASSB, ECLASSC, ECLASSA to Off, UNSLnn to No (where nn is the session number from 01-10).
Polled report-by- exception	Class 0 occasionally, Class 1, 2, 3 frequently	Set ECLASSB, ECLASSC, ECLASSA to the desired event class, UNSLnn to No.
Unsolicited report- by-exception	Class 0 occasionally, optional Class 1, 2, 3 less frequently, mainly relies on unsolicited messages	Set ECLASSB, ECLASSC, ECL-ASSA to the desired event class, set UNSLnn to Yes and PUNSLnn to Yes or No.
Quiescent	Class 0, 1, 2, 3 never, relies completely on unsolicited messages	Set ECLASSB, ECLASSC, ECL-ASSA to the desired event class, set UNSLnn and PUNSLnn to Yes.

As with Serial DNP3, in both the unsolicited report-by-exception and quiescent polling methods shown in *Table 5.18*, you must make a selection for the session's PUNSL*nn* setting. This setting enables or disables unsolicited data reporting at power up for this session. If the master can send the DNP message to enable unsolicited reporting from the SEL-487B, set the session PUNSL*nn* to No.

See *DNP3 Settings on page 5.39* for more information on configuring DNP LAN/WAN sessions.

Event Data

The same serial DNP event data objects are available for DNP LAN/WAN. However, configuration is slightly different. You can still configure the SEL-487B to either report the data without a polling request from the master (unsolicited data) or hold the data until the master requests it with an event poll message.

NOTE: Most RTUs that act as substation DNP3 masters perform an event poll that collects event data of all classes simultaneously. Confirm that the polling configuration of your master allows independent polling for each class before implementing separate classes in the SEL-487B.

With the event class settings ECLASSB, ECLASSC, and ECLASSA, you can set the event class for binary, counter, and analog information. Virtual terminal information is not supported for DNP LAN/WAN since Telnet is available to provide this capability. As with serial DNP3, you can also use the classes as a simple priority system for collecting event data.

For event data collection, you must also consider and enter appropriate settings for dead band and scaling operations on analog points shown in Table 5.19. You can set and use either default dead band and scaling according to data type or use a custom data map to select dead bands on a point-by-point basis. See Custom Data Mapping on page R.5.43 for a discussion of how to set scaling and dead-band operations on a point-by-point basis.

The setting ANADB defines default dead-band operation for analog events. A DNP3 master may also impose its own default dead band that it will use for event data for a specific channel that override the relay's ANADB setting. Because the default variations of DNP Objects 30 and 32 use integer data, you must use scaling to send digits after the decimal point and avoid rounding to a simple integer value. Scaling on the DNP LAN/WAN connection is subject to the same limitations of the serial interface. The master should also be configured to perform the appropriate arithmetic conversion on the incoming value to display it in proper engineering units.

Set the default analog value scaling with the DECPL setting. Application of event reporting dead bands occurs after scaling the incoming value with 10^{DECPL}. For example, if you set DECPL to 2 and ANADB to 10, a measured current of 10.14 amps would be scaled to the value $1014 (10.14 \times 10^2)$ and would have to increase to more than 1024 or decrease to less than 1004 (a dead band of 0.2 amps) for the relay to report a new event value.

As with the DNP3 serial connection, the NUMEVE and AGEEVE settings are used to decide when to send unsolicited data to the master. The relay sends an unsolicited report when the total number of events accumulated in the event buffer reaches NUMEVE.

The relay also sends an unsolicited report if the age of the oldest event in the buffer exceeds AGEEVE. The SEL-487B uses the same buffer capacities with DNP LAN/WAN as through the serial DNP3 connection, listed in *Table 5.5*.

Time Synchronization

Time synchronization is not supported for DNP LAN/WAN. However, the relay will accept messages that contain a Record Current Time (Function Code 24) request and return a Null Response.

DNP3 Settings

The protocol settings that become available for DNP LAN/WAN are shown in Table 5.19. The DNP3 protocol settings are for the port assigned to the Ethernet card: Port 5. Keep in mind that any settings for the DNP LAN/WAN will not affect any DNP3 serial port configuration or operation and vice-versa. It may be useful to note a few parameters that are unique to configuring DNP LAN/WAN:

- ➤ The ENDNP setting allows the user to enable or disable all DNP3 sessions on the Ethernet interface.
- ➤ The DNPMAP setting enables the usage of custom DNP3 maps to define the data/control maps for the DNP3 sessions. The DNPMAP setting can have one of two values—AUTO or CUSTOM. AUTO is intended for SEL-2032 and SEL-2030 applications. With the SEL-487B, we recommend that you always use CUSTOM.
- ➤ DECPL indicates an exponential scaling factor, 10^{DECPL}, to multiply by the raw value to calculate engineering units. Thus the default value of DECPL, 0, will still result in the raw value being multiplied by 1 (10⁰).

Up to 10 sets of unique master station parameters can be configured for implementation when the relay communicates with a specified DNP3 host. These parameters include: DNPIPxx, DNPTRxx, DNPUPxx, UNSLxx, PUNSLxx, DNPMPxx, and DNPCLxx, where xx is a master station number from 01–10. These allow you to specify, for all communication sessions with a particular master, whether or not to:

- ➤ enable or disable unsolicited reporting at power-up
- ➤ enable or disable unsolicited reporting for normal operation
- ➤ indicate which custom DNP3 map is associated with it
- ➤ enable or disable controls

Please note that although the SEL-487B supports 10 masters, only five unique configuration files are available. These mapping files follow the naming convention SET_DNPn.TXT, where n indicates the DNP3 map from 1 to 5. These files reside in the Ethernet card settings subdirectory and are associated with the DNPMPnn setting of DNP3 Master nn, where nn is the master's number of the form 01 to 10. The DNPMPnn setting determines which configuration is used for communication sessions with master nn. For example, if DNPMP01 is set to 3, DNP3 Ethernet sessions between the SEL-487B and DNP3 Master 01 will employ the custom mapping file named SET_DNP3.TXT. Mapping files may be used by single or multiple sessions, or none at all.

Please see *Custom Data Mapping on page R.5.43* for a discussion of how to configure custom DNP3 maps for Ethernet sessions.

Table 5.19 SEL-487B Ethernet Port DNP3 Protocol Settings (Sheet 1 of 4)

Name	Description	Range	Default
ENDNP	Enable DNP3 (Y, N)	Y, N	N
DNPADR	DNP3 Address (0–65519)	0–65519	0
DNPPNUM	DNP3 Port Number for TCP and UDP (1–65534)	1–65534	20000
DNPMAP	DNP3 map Mode (AUTO, CUSTOM)	AUTO, CUSTOM	AUTO
RPADR01	DNP3 Address for Master 1 (0–65519)	0–65519	1
DNPIP01	IP Address for Master 1 (www.xxx.yyy.zzz)	20 Char String	,

Table 5.19 SEL-487B Ethernet Port DNP3 Protocol Settings (Sheet 2 of 4)

Name	Description	Range	Default
DNPTR01	Transport Protocol for Master 1 (UDP, TCP)	TCP, UDP	TCP
DNPUP01	UDP Response Port Number for Master 1 (1–65534, REQ)	REQ, 1-65534	20000
UNSL01	Enable Unsolicited Reporting for Master 1 (Y, N)	Y, N	N
PUNSL01	Enable Unsolicited Reporting at Powerup for Master 1 (Y, N)	Y, N	N
DNPMP01	CUSTOM Mode: DNP3 map associated with Master 1 (1–5)	1–5	"1"
DNPCL01	Enable Controls for Master 1 (Y, N)	Y, N	N
RPADR02	DNP3 Address for Master 2 (0-65519)	0-65519	1
DNPIP02	IP Address for Master 2 (www.xxx.yyy.zzz)	20 Char String	,
:			
DNPCL02	Enable Controls for Master 2 (Y, N)	Y, N	N
RPADR03	DNP3 Address for Master 3 (0–65519)	0-65519	1
DNPIP03	IP Address for Master 3 (www.xxx.yyy.zzz)	20 Char String	6699
•			
DNPCL03	Enable Controls for Master 3 (Y,N)	Y, N	N
RPADR04	DNP3 Address for Master 4 (0–65519)	0–65519	1
DNPIP04	IP Address for Master 4 (www.xxx.yyy.zzz)	20 Char String	,
•			
DNPCL04	Enable Controls for Master 4 (Y,N)	Y,N	N
RPADR05	DNP3 Address for Master 5 (0–65519)	0-65519	1
DNPIP05	IP Address for Master 5 (www.xxx.yyy.zzz)	20 Char String	,
•			
DNPCL05	Enable Controls for Master 5 (Y, N)	Y, N	N
RPADR06	DNP3 Address for Master 6 (0–65519)	0-65519	1
DNPIP06	IP Address for Master 6 (www.xxx.yyy.zzz)	20 Char String	,
•			

Table 5.19 SEL-487B Ethernet Port DNP3 Protocol Settings (Sheet 3 of 4)

Name	Description	Range	Default
DNPCL06	Enable Controls for Master 4 (Y, N)	Y, N	N
RPADR07	DNP3 Address for Master 7 (0–65519)	0–65519	1
DNPIP07	IP Address for Master 7 (www.xxx.yyy.zzz)	20 Char String	,
•			
•			
DNPCL07	Enable Controls for Master 7 (Y, N)	Y, N	N
RPADR08	DNP3 Address for Master 8 (0–65519)	0–65519	1
DNPIP08	IP Address for Master 8 (www.xxx.yyy.zzz)	20 Char String	,
•			
DNPCL08	Enable Controls for Master 8 (Y, N)	Y, N	N
RPADR09	DNP3 Address for Master 9 (0–65519)	0-65519	1
DNPIP09	IP Address for Master 9 (www.xxx.yyy.zzz)	20 Char String	,
•			
DNPCL09	Enable Controls for Master 9 (Y, N)	Y, N	N
RPADR10	DNP3 Address for Master 10 (0–65519)	0-65519	1
DNPIP10	IP Address for Master 10 (www.xxx.yyy.zzz)	20 Char String	,
•			
DNPCL10	Enable Controls for Master 10 (Y, N)	Y, N	N
ECLASSA	Class for Analog Event Data (0–3)	0–3	2
ECLASSB	Class for Binary Event Data (0–3)	0–3	1
ECLASSC	Class for Counter Event Data (0–3)	0–3	0
DECPL	Data Scaling Decimal Places (0–3)	0–3	0
ANADB	Data Reporting Deadband Counts (0–32767)	0–32767	100
16BIT	DNP analog input objects default variation size. 16- or 32-bit default variations for analog inputs (16/32)	16, 32	16
STIMEO	Seconds to Select/Operate Time-out (0.0–30.0)	0.0–30.0	1.0
DNPPAIR	AUTO Mode: Enable Use of DNP3 Trip Close Pairs (Y, N)	Y, N	N
DNPINA	Seconds to send Inactive Heartbeat (0=Off, 1–7200)	0–7200	120
NUMEVE	Number of Events to Transmit On (1–200)	1–200	10
AGEEVE	Age of Oldest Event to Transmit On (0–100000 sec)	0-100000	2

Table 5.19 SEL-487B Ethernet Port DNP3 Protocol Settings (Sheet 4 of 4)

Name	Description	Range	Default
ETIMEO	Event Message Confirm Timeout (1–50 sec)	1–50	2
URETRY	Unsolicited Message Max Retry Attempts (2–10)	2–10	3
UTIMEO	Unsolicited Message Offline Timeout (1–5000 sec)	1–5000	60

Custom Data Mapping

Installing an Ethernet card with DNP3 LAN/WAN into an SEL-487B adds the ability to make relay data available over Ethernet to a properly configured DNP3 Master. However, by default, DNPMAP = AUTO, which includes only the relay Digital and Analog Outputs. If Digital or Analog Inputs or Counters need to be available to DNP3, each point must be specified in a custom data map. Setting DNPMAP = CUSTOM enables you to specify the DNP3 data points available for up to 10 unique master sessions using any of 5 distinct DNP3 data maps.

The SEL-487B DNP LAN/WAN interface also maps incoming control points either to remote bits within the relay or to internal command bits that cause circuit breaker operations. See *Table 5.26* for a list of control points and control methods available in the SEL-487B.

When the Ethernet port has been configured to use custom DNP3 maps, the SEL-487B will obtain these maps from the relay's SETTINGS/CARD subdirectory. Custom setting files have the filename SET DNPx.TXT, where x is the map number from 1 to 5.

The settings described in *Table 5.20* are used to define the custom DNP3 maps. Please note that these settings are only accessible as files in the SETTINGS/CARD subdirectory. The best way to operate on these settings is by using the ACSELERATOR QuickSet® SEL-5030 settings assistant.

Table 5.20 SEL-487B DNP LAN/WAN Map Settings (Sheet 1 of 3)

Name	Туре	Range	Default	Description
BIM0000- BIM1023	Binary Input Point	String of form "1:addr:bit" where addr must be in range 0-65534 and bit must be in range 0-15.		These settings correlate specific database bits with binary input indexes.
BIC0000- BIC1023	Binary Input Class	DFLT, 0-3	DFLT	These settings specify the event class for that index. A value of DFLT indicates to use the ECLASSB setting, 0 indicates to not generate events, and 1–3 provide the specific class to place the point events into.
BOM0000- BOM0511	Binary Output Point	OFF, 0–(MAX as defined by <i>Table 5.2</i>)	OFF	These settings correlate specific control operations from <i>Table 5.14</i> to binary output indexes. A value of OFF indicates no object at that index.

Table 5.20 SEL-487B DNP LAN/WAN Map Settings (Sheet 2 of 3)

Name	Туре	Range	Default	Description
CIM0000- CIM0127	Counter Input Point	String of form "1:addr" where addr must be in range 0-65534.	6677	These settings corre- late specific database registers with counter indexes.
CIC0000- CIC0127	Counter Input Class	DFLT, 0–3	DFLT	These settings specify the event class for that index. A value of DFLT indicates to use the ECLASSC setting, 0 indicates to not generate events, and 1–3 provide the specific class to place the point events into.
AIM0000- AIM0511	Analog Input Point	String of form "1:addr[,t]" where addr must be in range 0-65534 and t must be i, u, il, ul, or f.	(0)	These settings correlate specific database registers with analog input indexes. The optional "treat-as" qualifier (t) is used to indicate that the data at the referenced database address is to be treated as if it is of this type, rather than the type indicated in the database. i = integer u = unsigned integer il = long integer ul = unsigned long integer f = floating point
AIC0000- AIC0511	Analog Input Class	DFLT, 0-3	DFLT	These settings specify the event class for that index. A value of DFLT indicates to use the ECLASSA setting, 0 indicates to not generate events, and 1–3 provide the specific class to place the point events into.
AIS0000- AIS0511	Analog Input Scaling	DFLT, 0.000001- 1000000.0	DFLT	A value of DFLT indicates to use the DECPL setting for determining the scaling of a point. The given point will be multiplied by this value before being reported through DNP.

Name	Туре	Range	Default	Description
AID0000- AID0511	Analog Input Deadband	DFLT, 0-32767	DFLT	This is the deadband to use for the point at the given index. A value of DFLT indicates to use the scaling on the ANADB setting.
AOM0000- AOM0063	Analog Output Point	OFF, 0–255	OFF	These settings corre- late addresses within the card-controlled D1 region to analog out- put indexes. A value of OFF indicates no object at that index.

Table 5.20 SEL-487B DNP LAN/WAN Map Settings (Sheet 3 of 3)

When DNPMAP = "CUSTOM", the points that are included in the DNP3 map are defined by the contents of the custom DNP3 map files. The database capacity for each point type per map and system-wide is discussed below:

- ➤ The total number of Binary Input points allowed per map is 1024. The total system capacity (all custom DNP3 maps) is 2048 Digital Input points with unique references.
- ➤ The total number of Analog Input points allowed per map is 512. The total system capacity is 2048 Analog Inputs with unique references.
- ➤ The total number of Binary Output control points allowed per map is 512.
- ➤ The total number of Analog Output control points allowed per map is 64. The total system capacity, for all the custom DNP3 maps, is 256 Analog Output points with unique references.

Binary Inputs

The DNP index for any data point within a custom DNP3 map is assigned based on the associated setting name (i.e., BIMxxxx for a Binary Input, where xxxx is the DNP index).

In order for Binary Input points to have SOE-quality timestamps, each point must be listed in the SER and the corresponding STATE region points mapped to DNP (see DNP LAN/WAN Application Example on page R.5.56).

Analog Inputs

Analog dead bands and scaling factors may be set for each individual point. Use the AIDxxxx setting to impose a dead band of 0–32767. This may be used in conjunction with a scaling factor of 0.000001–1000000.0 entered in AISxxxx.

Binary Outputs

NOTE: When DNPMAP = CUSTOM. the DNPPAIR setting is ignored. The user must choose the appropriate CPId(s) to select paired or unpaired points for custom BO maps. For example, you may set BOM0000 = 224. BOM0001 = 130 to set the first DNP BO point to the remote bit pair RB02/RB01 and the second to RB03. A Binary Output manipulates a control point, which is associated to the Binary Output by a Control Point Identifier (CPId). The CPId represents either a non-paired (single) control point or a paired (two control points) control point, where the operation selects the control point. The control points correspond to all paired and unpaired Remote Bits and all breaker controls plus the CCINx bits. CPIds for the SEL-487B, which has 128 CCINx points, 96 Remote Bits, 48 Remote Bit pairs, and controls for 18 Circuit Breakers, are given in Table 5.21.

Table 5.21 SEL-487B Binary Output CPId Values

CPId	Description
0–127	CCIN01–CCIN128
128–223	Remote Bits RB01-RB96
224–271	Remote Bit Pairs RB02/RB01-RB96/RB95
272–289	Open/Close Pairs for Circuit Breakers 1–18

Analog Outputs

Any of the 256 Analog Output Quantities in the D1 Region can be included in a custom data map. Up to 64 Analog Outputs can be assigned to a custom map. These are selected using their relative position within the region: 0 to 255. Please note that you must add 1 to the index to find the corresponding Analog Quantity number. For example, if you use index 63, that will correspond to RA064.

DNP Map Command

Use the **POR 5** and Ethernet card **DNPMAP** command to display the data (object types, indices, default variation and source) and controls (object type, indices and destination) that are accessible via DNP LAN/WAN. The output of the **DNPMAP** command documents the DNP3 data map(s) in the Ethernet card to help with the configuration of the DNP3 master.

Specify the desired custom map using an integer parameter corresponding to a DNPMAP number (1–5). For example, the command **DNPMAP 2** would be used to view the custom data map for DNP3 session 2. If a DNPMAP number is not specified, a summary of DNP3 map settings for all configured sessions will be displayed.

Summary and detailed map configurations are also available in the DNPMAP.TXT and DNPMAPnn.TXT files from the SEL-487B FTP interface. The individual file names associated with the detailed custom map settings follow the DNPMAPnn.TXT naming convention.

Note that if you issue a **DNPMAP** command at the SEL-487B command line, you will get that device's (serial) DNP3 data map. But if you issue a **PORT** command (**PORT 5**) to open a transparent session to the Ethernet port, then a DNPMAP [x], you will get the DNPMAP from the Ethernet card. The **PORT** command redirects all input from a serial port away from the command parser for the device and sends the stream of data to the Ethernet port. Also, any data that comes from the Ethernet port is redirected out the serial port.

Testing

Use the **TEST DB** command to test the communications card relay database. The **TEST DB** command can be used to override any value in the relay database. Since the relay database provides data to the communications card interfaces, the **TEST DB** command can also be used to test the data read operations of the DNP3 or IEC 61850 protocols on an installed Ethernet card. Use the **MAP 1** command and the **VIEW 1** command to inspect the relay database (see *MAP on page R.9.26* and *VIEW on page R.9.55*). You must be familiar with the relay database structure to use the **TEST DB** command effectively.

DNP LAN/WAN Documentation

The following section contains information specific to the DNP LAN/WAN implementation.

Device Profile

Table 5.22 contains the standard DNP LAN/WAN device profile information. Rather than checkboxes in the example Device Profile in the DNP3 Subset Definitions, only the relevant selections are shown.

Table 5.22 SEL-487B DNP LAN/WAN Device Profile (Sheet 1 of 2)

Parameter	Value
Vendor name	Schweitzer Engineering Laboratories
Device name	SEL-487B Relay with Ethernet card
Highest DNP3 request level	Level 2
Highest DNP3 response level	Level 2
Device function	Slave
Notable objects, functions, and/or qualifiers supported	None
Maximum data link frame size transmitted/ received (octets)	292
Maximum data link retries	0
Requires data link layer confirmation	Never
Maximum application fragment size transmitted/received (octets)	2048
Maximum application layer retries	None
Requires application layer confirmation	When reporting Event Data
Data link confirm time-out	Configurable
Complete application fragment time-out	None
Application confirm time-out	Configurable
Complete Application response time-out	None
Executes control WRITE binary outputs	Always
Executes control SELECT/OPERATE	Always
Executes control DIRECT OPERATE	Always
Executes control DIRECT OPERATE-NO ACK	Always
Executes control count greater than 1	Never
Executes control Pulse On	Always
Executes control Pulse Off	Always
Executes control Latch On	Always
Executes control Latch Off	Always
Executes control Queue	Never
Executes control Clear Queue	Never
Reports binary input change events when no specific variation requested	Only time-tagged
Reports time-tagged binary input change events when no specific variation requested	Binary input change with time

Table 5.22 SEL-487B DNP LAN/WAN Device Profile (Sheet 2 of 2)

Parameter	Value
Sends unsolicited responses	Configurable with unsolicited message enable settings
Sends static data in unsolicited responses	Never
Default counter object/variation	Object 20, Variation 6
Counter roll-over	N/A
Sends multifragment responses	Yes

Object List

The list of DNP3 objects given in *Table 5.23* includes the additions and exceptions to the list of supported DNP3 objects in *Table 5.9*. Please note the added support of object 34, and removed support of objects 112 and 113.

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 1 of 6)

			Red	juest ^a	Response ^b	
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
1	0	Binary Input—All Variations	1	0, 1, 6, 7, 8, 17, 28		
1	1e	Binary Input	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
1	2	Binary Input With Status	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
2	0	Binary Input Change— All Variations	1	6, 7, 8		
2	1	Binary Input Change Without Time	1	6, 7, 8	129	17, 28
2	2e	Binary Input Change With Time	1	6, 7, 8	129, 130	17, 28
2	3	Binary Input Change With Relative Time	1	6, 7, 8	129	17, 28
10	0	Binary Output—All Variations	1	0, 1, 6, 7, 8		
10	1	Binary Output				
10	2e	Binary Output Status	1	0, 1, 6, 7, 8	129	0, 1
12	0	Control Block—All Variations				
12	1	Control Relay Output Block	3, 4, 5, 6	17, 28	129	echo of request
12	2	Pattern Control Block				
12	3	Pattern Mask				
20	0	Binary Counter—All Variations	1	0, 1, 6, 7, 8, 17, 28		
20	1	32-Bit Binary Counter				
20	2	16-Bit Binary Counter				
20	3	32-Bit Delta Counter				
20	4	16-Bit Delta Counter				
20	5	32-Bit Binary Counter Without Flag	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 2 of 6)

			Red	questa	Response ^b	
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
20	6e	16-Bit Binary Counter Without Flag	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
20	7	32-Bit Delta Counter Without Flag				
20	8	16-Bit Delta Counter Without Flag				
21	0	Frozen Counter—All Variations				
21	1	32-Bit Frozen Counter				
21	2	16-Bit Frozen Counter				
21	3	32-Bit Frozen Delta Counter				
21	4	16-Bit Frozen Delta Counter				
21	5	32-Bit Frozen Counter With Time of Freeze				
21	6	16-Bit Frozen Counter With Time of Freeze				
21	7	32-Bit Frozen Delta Counter With Time of Freeze				
21	8	16-Bit Frozen Delta Counter With Time of Freeze				
21	9	32-Bit Frozen Counter Without Flag				
21	10	16-Bit Frozen Counter Without Flag				
21	11	32-Bit Frozen Delta Counter Without Flag				
21	12	16-Bit Frozen Delta Counter Without Flag				
22	0	Counter Change Event— All Variations	1	6, 7, 8		
22	1	32-Bit Counter Change Event Without Time	1	6, 7, 8	129	17, 28
22	2e	16-Bit Counter Change Event Without Time	1	6, 7, 8	129, 130	17, 28
22	3	32-Bit Delta Counter Change Event Without Time				
22	4	16-Bit Delta Counter Change Event Without Time				
22	5	32-Bit Counter Change Event With Time	1	6, 7, 8	129	17, 28
22	6	16-Bit Counter Change Event With Time	1	6, 7, 8	129	17, 28

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 3 of 6)

			Red	juest ^a	Resp	oonse ^b
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
22	7	32-Bit Delta Counter Change Event With Time				
22	8	16-Bit Delta Counter Change Event With Time				
23	0	Frozen Counter Event— All Variations				
23	1	32-Bit Frozen Counter Event Without Time				
23	2	16-Bit Frozen Counter Event Without Time				
23	3	32-Bit Frozen Delta Counter Event Without Time				
23	4	16-Bit Frozen Delta Counter Event Without Time				
23	5	32-Bit Frozen Counter Event With Time				
23	6	16-Bit Frozen Counter Event With Time				
23	7	32-Bit Frozen Delta Counter Event With Time				
23	8	16-Bit Frozen Delta Counter Event With Time				
30	0	Analog Input—All Variations	1	0, 1, 6, 7, 8, 17, 28		
30	1	32-Bit Analog Input	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
30	2	16-Bit Analog Input	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
30	3	32-Bit Analog Input Without Flag	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
30	4e	16-Bit Analog Input Without Flag	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
30	5	Short Floating Point Analog Input	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
30	6	Long Floating Point Analog Input	1	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
31	0	Frozen Analog Input— All Variations				
31	1	32-Bit Frozen Analog Input				

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 4 of 6)

			Re	questa	Resp	oonse ^b
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
31	2	16-Bit Frozen Analog Input				
31	3	32-Bit Frozen Analog Input With Time of Freeze				
31	4	16-Bit Frozen Analog Input With Time of Freeze				
31	5	32-Bit Frozen Analog Input Without Flag				
31	6	16-Bit Frozen Analog Input Without Flag				
32	0	Analog Change Event— All Variations	1	6, 7, 8		
32	1	32-Bit Analog Change Event Without Time	1	6, 7, 8	129	17, 28
32	2e	16-Bit Analog Change Event Without Time	1	6, 7, 8	129, 130	17, 28
32	3	32-Bit Analog Change Event With Time	1	6, 7, 8	129	17, 28
32	4	16-Bit Analog Change Event With Time	1	6, 7, 8	129	17, 28
32	5	Short Floating Point Analog Change Event	1	6, 7, 8	129	17, 28
32	6	Long Floating Point Analog Change Event	1	6, 7, 8	129	17, 28
33	0	Frozen Analog Event— All Variations				
33	1	32-Bit Frozen Analog Event Without Time				
33	2	16-Bit Frozen Analog Event Without Time				
33	3	32-Bit Frozen Analog Event With Time				
33	4	16-Bit Frozen Analog Event With Time				
34	0	Analog Input Reporting Dead-Band Setting— All Variations	1	1, 6, 7, 8, 17, 28	129	1, 17, 28
34	0	Analog Input Reporting Dead-Band Setting— All Variations	2	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
34	1 ^e	16-Bit Analog Input Reporting Dead-Band Setting	1	1, 6, 7, 8, 17, 28	129	1, 17, 28
34	1e	16-Bit Analog Input Reporting Dead-Band Setting	2	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 5 of 6)

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 5 of 6)						
			Red	juest ^a	Resp	onse ^b
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d
34	2	32-Bit Analog Input Reporting Dead-Band Setting	1	1, 6, 7, 8, 17, 28	129	1, 17, 28
34	2	32-Bit Analog Input Reporting Dead-Band Setting	2	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
34	3	Floating Point Analog Input Reporting Dead-Band Setting	1	1, 6, 7, 8, 17, 28	129	1, 17, 28
34	3	Floating Point Analog Input Reporting Dead-Band Setting	2	0, 1, 6, 7, 8, 17, 28	129	0, 1, 17, 28
40	0	Analog Output Status— All Variations	1	0, 1, 6, 7, 8	139	
40	1	32-Bit Analog Output Status	1	0, 1, 6, 7, 8	129	0, 1, 17, 28
40	2e	16-Bit Analog Output Status	1	0, 1, 6, 7, 8	129	0, 1, 17, 28
41	0	Analog Output Block— All Variations				
41	1	32-Bit Analog Output Block	3, 4, 5, 6	17, 28	129	echo of request
41	2	16-Bit Analog Output Block	3, 4, 5, 6	17, 28	129	echo of request
50	0	Time and Date—All Variations				
50	1	Time and Date			129	07, quantity=1
50	2	Time and Date With Interval				
50	3	Time and Date at Last Recorded Time	1	7, 8 index=0	129	07, quantity=1
51	0	Time and Date CTO—All Variations				
51	1	Time and Date CTO				
51	2	Unsynchronized Time and Date CTO	07, quan- ity=1			
52	0	Time Delay—All Variations				
52	1	Time Delay, Coarse				
52	2	Time Delay, Fine			129	07, quantity=1
60	0	All Classes of Data	1, 20, 21	6		
60	1	Class 0 Data	1	6	129	0, 1
60	2	Class 1 Data	1, 20, 21	6, 7, 8	129	17, 28
60	3	Class 2 Data	1, 20, 21	6, 7, 8	129	17, 28

Table 5.23 SEL-487B DNP LAN/WAN Object List (Sheet 6 of 6)

		23 SEE 4018 BIN EARLY WAR OBJECT EIST (SHEET O'01 O)					
			Red	juest ^a	Resp	onse ^b	
Obj.	Var.	Description	Funct. Codes ^c	Qual. Codes ^d	Funct. Codes ^c	Qual. Codes ^d	
60	4	Class 3 Data	1, 20, 21	6, 7, 8	129	17, 28	
70	1	File Identifier					
80	1	Internal Indications	2	0, 1 index=7			
81	1	Storage Object					
82	1	Device Profile					
83	1	Private Registration Object					
83	2	Private Registration Object Descriptor					
90	1	Application Identifier					
100	1	Short Floating Point					
100	2	Long Floating Point					
100	3	Extended Floating Point					
101	1	Small Packed Binary— Coded Decimal					
101	2	Medium Packed Binary— Coded Decimal					
101	3	Large Packed Binary— Coded Decimal					
112	all	Virtual Terminal Output Block					
113	all	Virtual Terminal Event Data					
N/A		No object required for the following function codes: 13 cold start 14 warm start 24 record current time	13, 14, 24				

^a Supported in requests from master

Control Point Operation

Control point operation for DNP LAN/WAN is functionally identical to Serial DNP3 operation. Use Trip and Close or Code Selection operations with Object 12 control relay output block command messages to operate the points shown in Table 5.24. Use the Control Point ID (CPId) shown to select the desired control points to build the Custom Binary Output map. Note that all Binary outputs (paired and non-paired) are available to the DNP LAN/WAN interface. Pulse operations provide a pulse duration of at least one protectionprocessing interval.

^b May generate in response to master

c Decimal

^d Hexadecimal

e Default variation

Table 5.24 SEL-487B DNP LAN/WAN Object 12 Control Point Operation (Sheet 1 of 3)

CPId	Control Points	Trip / Cl	ose Pairs	Code Selection Operation				
		Close (0x4X)	Trip (0x8X)	Latch On (3)	Latch Off (4)	Pulse On (1)	Pulse Off (2)	
0–127	CCIN001– CCIN128	SET Comms Card input 001–128	CLEAR Comms Card input 001–128	SET Comms Card input 001–128	CLEAR Comms Card input 001–128	SET Comms Card input 001–128	CLEAR Comms Card input 001–128	
128	RB01	SET remote bit RB01	CLEAR remote bit RB01	SET remote bit RB01	CLEAR remote bit RB01	SET remote bit RB01	CLEAR remote bit RB01	
129	RB02	SET remote bit RB02	CLEAR remote bit RB02	SET remote bit RB02	CLEAR remote bit RB02	SET remote bit RB02	CLEAR remote bit RB02	
130	RB03	SET remote bit RB03	CLEAR remote bit RB03	SET remote bit RB03	CLEAR remote bit RB03	SET remote bit RB03	CLEAR remote bit RB03	
•								
127+z ^a	RB(z)	SET remote bit RB(z)	CLEAR remote bit RB(z)	SET remote bit RB(z)	CLEAR remote bit RB(z)	SET remote bit RB(z)	CLEAR remote bit RB(z)	
•								
223	RB96	SET remote bit RB96	CLEAR remote bit RB96	SET remote bit RB96	CLEAR remote bit RB96	SET remote bit RB96	CLEAR remote bit RB96	
224	RB02/RB01	PULSE remote bit RB02	PULSE remote bit RB01	PULSE remote bit RB02	PULSE remote bit RB01	PULSE remote bit RB02	PULSE remote bit RB01	
225	RB04/RB03	PULSE remote bit RB04	PULSE remote bit RB03	PULSE remote bit RB04	PULSE remote bit RB03	PULSE remote bit RB04	PULSE remote bit RB03	
226	RB06/RB05	PULSE remote bit RB06	PULSE remote bit RB05	PULSE remote bit RB06	PULSE remote bit RB05	PULSE remote bit RB06	PULSE remote bit RB05	
•								
223+x/ 2 b	RB(x)/RB(x-1)	PULSE remote bit RB(x)	PULSE remote bit RB(<i>x</i> -1)	PULSE remote bit RB(x)	PULSE remote bit RB(x-1)	PULSE remote bit RB(x)	PULSE remote bit RB(x-1)	
•								
271	RB96/RB95	PULSE remote bit RB96	PULSE remote bit RB95	PULSE remote bit RB96	PULSE remote bit RB95	PULSE remote bit RB96	PULSE remote bit RB95	
272	CB1	No Action	PULSE OC1, Circuit Breaker 1 open bit	PULSE OC1, Circuit Breaker 1 open bit	No Action	PULSE OC1, Circuit Breaker 1 open bit	No Action	

Table 5.24 SEL-487B DNP LAN/WAN Object 12 Control Point Operation (Sheet 2 of 3)

CPId	Control Points	Trip / Cl	ose Pairs		Code Selec	tion Operation	
273	CB2	No Action	PULSE OC2, Circuit Breaker 2 open bit	PULSE OC2, Circuit Breaker 2 open bit	No Action	PULSE OC2, Circuit Breaker 2 open bit	No Action
274	CB3	No Action	PULSE OC3, Circuit Breaker 3 open bit	PULSE OC3, Circuit Breaker 3 open bit	No Action	PULSE OC3, Circuit Breaker 3 open bit	No Action
275	CB4	No Action	PULSE OC4, Circuit Breaker 4 open bit	PULSE OC4, Circuit Breaker 4 open bit	No Action	PULSE OC4, Circuit Breaker 4 open bit	No Action
276	CB5	No Action	PULSE OC5, Circuit Breaker 5 open bit	PULSE OC5, Circuit Breaker 5 open bit	No Action	PULSE OC5, Circuit Breaker 5 open bit	No Action
277	CB6	No Action	PULSE OC6, Circuit Breaker 6 open bit	PULSE OC6, Circuit Breaker 6 open bit	No Action	PULSE OC6, Circuit Breaker 6 open bit	No Action
278	CB7	No Action	PULSE OC7, Circuit Breaker 7 open bit	PULSE OC7, Circuit Breaker 7 open bit	No Action	PULSE OC7, Circuit Breaker 7 open bit	No Action
279	CB8	No Action	PULSE OC8, Circuit Breaker 8 open bit	PULSE OC8, Circuit Breaker 8 open bit	No Action	PULSE OC8, Circuit Breaker 8 open bit	No Action
280	CB9	No Action	PULSE OC9, Circuit Breaker 9 open bit	PULSE OC9, Circuit Breaker 9 open bit	No Action	PULSE OC9, Circuit Breaker 9 open bit	No Action
281	CB10	No Action	PULSE OC10, Circuit Breaker 10 open bit	PULSE OC10, Circuit Breaker 10 open bit	No Action	PULSE OC10, Circuit Breaker 10 open bit	No Action
282	CB11	No Action	PULSE OC11, Circuit Breaker 11 open bit	PULSE OC11, Circuit Breaker 11 open bit	No Action	PULSE OC11, Circuit Breaker 11 open bit	No Action
283	CB12	No Action	PULSE OC12, Circuit Breaker 12 open bit	PULSE OC12, Circuit Breaker 12 open bit	No Action	PULSE OC12, Circuit Breaker 12 open bit	No Action
284	CB13	No Action	PULSE OC13, Circuit Breaker 13 open bit	PULSE OC13, Circuit Breaker 13 open bit	No Action	PULSE OC13, Circuit Breaker 13 open bit	No Action
285	CB14	No Action	PULSE OC14, Circuit Breaker 14 open bit	PULSE OC14, Circuit Breaker 14 open bit	No Action	PULSE OC14, Circuit Breaker 14 open bit	No Action
286	CB15	No Action	PULSE OC15, Circuit Breaker 15 open bit	PULSE OC15, Circuit Breaker 15 open bit	No Action	PULSE OC15, Circuit Breaker 15 open bit	No Action

CPId	Control Points	Trip / CI	ose Pairs	Code Selection Operation			
287	CB16	No Action	PULSE OC16, Circuit Breaker 16 open bit	PULSE OC16, Circuit Breaker 16 open bit	No Action	PULSE OC16, Circuit Breaker 16 open bit	No Action
288	CB17	No Action	PULSE OC17, Circuit Breaker 17 open bit	PULSE OC17, Circuit Breaker 17 open bit	No Action	PULSE OC17, Circuit Breaker 17 open bit	No Action
289	CB18	No Action	PULSE OC18, Circuit Breaker 18 open bit	PULSE OC18, Circuit Breaker 18 open bit	No Action	PULSE OC18, Circuit Breaker 18 open bit	No Action

Table 5.24 SEL-487B DNP LAN/WAN Object 12 Control Point Operation (Sheet 3 of 3)

DNP LAN/WAN Application Example

This example uses an SEL-487B connected to an RTU over an Ethernet (TCP) network. The RTU collects basic metering information from the relay. The network for this example is shown in Figure 5.4.

Figure 5.4 DNP LAN/WAN Application Example Ethernet Network

The polling method employed by the RTU DNP3 master is polled report-byexception, so it normally only does event polls. Once every 25 event polls, the master polls for Class 0 data (status of all points). This polling method allows the master to collect data efficiently from the IEDs by only polling and receiving data that has changed.

The RTU, which will act as the DNP3 master to the SEL-487B slave, has an IP address of 192.9.0.1 and a DNP3 address of 12. The SEL-487B should be assigned a DNP3 address of 101.

All event data (analog, binary, counter) should be assigned to CLASS 1.

All Binary Inputs should have SOE-quality timestamps.

The metering, status data and controls that the RTU will receive and/or send to the relay are listed in Table 5.25.

^a Use this formula to calculate CPId for Remote Bits, where z is the Remote Bit from 1-96.

b Use this formula to calculate CPId for Remote Bit pairs, where x is the even-numbered Remote Bit from 2-96.

Table 5.25 DNP LAN/WAN Application Example Custom Data Map

Name	Object Type	Custom Map Index	Description
EN	Binary Input	0	Relay enabled
TRIPLED	Binary Input	1	Circuit Breaker tripped
IN101	Binary Input	2	Relay Discrete Input 1
IN102	Binary Input	3	Relay Discrete Input 2
IN103	Binary Input	4	Relay Discrete Input 3
IN104	Binary Input	5	Relay Discrete Input 4
SALARM	Binary Input	6	Relay software alarm
HALARM	Binary Input	7	Relay hardware alarm
TESTDNP	Binary Input	8	DNP3 test mode enabled
RB01	Binary Output	0	General use Control Point (Remote Bit) 1
RB02	Binary Output	1	General use Control Point (Remote Bit) 2
RB03	Binary Output	2	General use Control Point (Remote Bit) 3
RB04	Binary Output	3	General use Control Point (Remote Bit) 4
RB05	Binary Output	4	General use Control Point (Remote Bit) 5
RB06	Binary Output	5	General use Control Point (Remote Bit) 6
OC1	Binary Output	6	Circuit Breaker 1 trip
CB01	Binary Output	6	Circuit Breaker 1 manual trip/close
I01 ^{ab}	Analog Input	0, 1	Line phase A current magnitude and phase angle
I02ab	Analog Input	2,3	Line phase B current magnitude and phase angle
I03 ^{ab}	Analog Input	4,5	Line phase C current magnitude and phase angle
V01bc	Analog Input	6, 7	Phase A voltage magnitude and phase angle
V02bc	Analog Input	8,9	Phase B voltage magnitude and phase angle
V03bc	Analog Input	10, 11	Phase C voltage magnitude and phase angle
VDC^d	Analog Input	14	DC1 voltage multiplied by 100
ACTGRP	Analog Output	0	Active settings group

a Assume the largest expected current is 2000 A, scale the analog value by a factor of 10 to provide a resolution of 0.1 A and a maximum current of 3276.7 A. Report change events on a

To meet the requirement for SOE-quality timestamps, enter all binary inputs into the SER report. See Figure 5.5 for a screenshot of the process.

 $^{^{\}rm b}\,$ Angles are scaled to 1/100 of a degree. Report change events on a change of 2 degrees.

c For a nominal voltage of 230 kV, scale the analog value by a factor of 100 to provide a resolution of 10 V and a maximum value of 327.67 kV. Report 1 kV for change event reporting.

 $^{^{\}rm d}\,$ VDC is scaled by a factor of 1/100 of a volt. Report change events on a change of 2 V.

Figure 5.5 Add Binary Inputs to SER Point List

Pass the Binary Input states and timestamps to the DNP master by mapping the SER points from the STATE region, as demonstrated in *Table 5.27*.

Settings

Use the ACSELERATOR QuickSet software to enter the DNP3 protocol settings and new data map into the relay.

Table 5.26 DNP LAN/WAN Application Example Protocol Settings

Setting Name	Setting	Description
ENDNP	Y	Enable DNP3
DNPADR	101	DNP3 Address for Relay is 101
DNPPNUM	20000a	DNP3 Port Number for TCP
DNPMAP	CUSTOM	CUSTOM DNP3 map Mode
ECLASSA	1	Analog Event Data = Class 1
ECLASSB	1	Binary Event Data = Class 1
ECLASSC	1	Counter Event Data = Class 1
DECPL	2	Scale analog data, multiplying by 10 to send whole numbers and tenths. The relay would report a value of 5.25 as 525, which would remain unscaled at the master. (102=100)
ANADB	200	Analog Deadband Counts, set to 2 engineering units, based on DECPL scaling factor
STIMEO	1.0a	1.0 Second to Select/Operate Time-out
DNPPAIR	Na	AUTO Mode: Disable Use of DNP3 Trip Close Pairs
DNPINA	120a	Wait 120 Seconds to send Inactive Heartbeat
NUMEVE	10 ^a	Transmit after 10 Events
AGEEVE	2a	Transmit when Age of Oldest Event = 2 sec
ETIMEO	2 ^a	Event Message Confirm Timeout (2 sec)
URETRY	3a	3 Max Retry Attempts per Unsolicited Message
UTIMEO	60a	60 sec for Unsolicited Message Offline Timeout
RPADR01	12	DNP3 Address for Master 1 is 12
DNPIP01	192.9.0.1	IP Address for Master 1 (www.xxx.yyy.zzz)
DNPTR01	TCP	Transport Protocol for Master 1 (UDP, TCP)
DNPUP01	20000a	UDP Response Port Number for Master 1
UNSL01	N	Disable Unsolicited Reporting for Master 1
PUNSL01	N	Disable Unsolicited Reporting at Powerup for Master 1
DNPMP01	1	CUSTOM Mode: DNP3 map associated with Master 1 (Map 1)
DNPCL01	Y	Enable Controls for Master 1

a Default value

Table 5.27 DNP LAN/WAN Application Example Analog Output Map

Setting Name	Setting	Description
BIM0000 Database Address	1:STATE:ELEMENTS:0	SER Point 1 (EN)
BIM0001 Database Address	1:STATE:ELEMENTS:1	SER Point 2 (TRIPLED)
BIM0002 Database Address	1:STATE:ELEMENTS:2	SER Point 3 (IN101)
BIM0003 Database Address	1:STATE:ELEMENTS:3	SER Point 4 (IN102)
BIM0004 Database Address	1:STATE:ELEMENTS:4	SER Point 5 (IN103)
BIM0005 Database Address	1:STATE:ELEMENTS:5	SER Point 6 (IN104)
BIM0006 Database Address	1:STATE:ELEMENTS:6	SER Point 7 (SALARM)
BIM0007 Database Address	1:STATE:ELEMENTS:7	SER Point 8 (HALARM)
BIM0008 Database Address	1:STATE:ELEMENTS:8	SER Point 9 (TESTDNP)

Table 5.28 DNP LAN/WAN Application Example Binary Output Map

Setting Name	Setting	Description
BOM0000 Database Address	128	Custom BO map position for RB01 Control
BOM0001 Database Address	129	Custom BO map position for RB02 Control
BOM0002 Database Address	130	Custom BO map position for RB03 Control
BOM0003 Database Address	131	Custom BO map position for RB04 Control
BOM0004 Database Address	132	Custom BO map position for RB05 Control
BOM0005 Database Address	133	Custom BO map position for RB06 Control
BOM0006 Database Address	272	Custom BO map position for Circuit Breaker 1 trip/close control

Table 5.29 DNP LAN/WAN Application Example Analog Input Map (Sheet 1 of 2)

Setting Name	Point (Menu Path)	Scale Factor	Dead Band	Description
AIM0000 Data- base Address	1:METER:I01 (Meter Region > I01_M)	1	50	Custom map position for I01 magnitude, scale by 10 and report 5 amp change events
AIM0001 Data- base Address	1:100Ah			Custom map position for I01 angle ^a , scale by 100 and report 2 degree change events
AIM0002 Data- base Address	1:METER:I02 (Meter Region > I02_M)	1	50	Custom map position for I02 magnitude ^a , scale by 10 and report 5 amp change events
AIM0003 Data- base Address	1:100Eh			Custom map position for I02 angle ^a , scale by 100 and report 2 degree change events
AIM0004 Data- base Address	1:METER:I03 (Meter Region > I03_M)	1	50	Custom map position for I03 magnitude ^a , scale by 10 and report 5 amp change events
AIM0005 Data- base Address	1:1012h			Custom map position for I03 angle ^a , scale by 100 and report 2 degree change events
AIM0006 Data- base Address	1:METER:V01 (Meter Region > V01_M)	1	10000	Custom map position for V01 magnitude, scale by 10 and report 1 kv change events

Table 5.29 DNP LAN/WAN Application Example Analog Input Map (Sheet 2 of 2)

Setting Name	Point (Menu Path)	Scale Factor	Dead Band	Description
AIM0007 Data- base Address	1:106Ah			Custom map position for V01 angle ^a , scale by 100 and report 2 degree change events
AIM0008 Data- base Address	1:METER:V02 (Meter Region > V02_M)	1	10000	Custom map position for V02 magnitude, scale by 10 and report 1 kv change events
AIM0009 Data- base Address	1:106Eh			Custom map position for V02 angle ^a , scale by 100 and report 2 degree change events
AIM0010 Data- base Address	1:METER:V03 (Meter Region > V03_M)	1	10000	Custom map position for V03 magnitude ^a , scale by 10 and report 1 kv change events
AIM0011 Data- base Address	1:1072h			Custom map position for V03 angle ^a , scale by 100 and report 2 degree change events
AIM0012 Data- base Address	1:1METER:VDC (Meter Region > VDC_M)			DC voltage ^a multiplied by 100, with a dead band of 2 volts

^a Uses default scaling and dead band

Table 5.30 DNP LAN/WAN Application Example Analog Output Map

Setting Name	Setting	Description
AOM0000 Database Address	0	Active Settings Group

Section 6

IEC 61850 Communications

Features

The SEL-487B Relay supports the following features using Ethernet and IEC 61850:

- ➤ SCADA—Connect up to six simultaneous client sessions. The SEL-487B also support up to six buffered and six unbuffered report control blocks.
- ➤ Real-Time Status and Control—Use GOOSE with as many as 24 incoming (receive) and 8 outgoing (transmit) messages.
- ➤ Configuration—Use FTP client software or ACSELERATOR Architect[®] SEL-5032 Software to transfer the Substation Configuration Language (SCL) Configured IED Description (CID) file to the relay.
- ➤ Commissioning and Troubleshooting—Use software such as MMS Object Explorer and AX-S4 MMS from Sisco, Inc., to browse the relay logical nodes and verify functionality.

This section presents the information you need to use the IEC 61850 features of the SEL-487B:

- ➤ Introduction to IEC 61850 on page R.6.2
- ➤ IEC 61850 Operation on page R.6.3
- ➤ IEC 61850 Configuration on page R.6.12
- ➤ Logical Nodes on page R.6.18
- ➤ ACSI Conformance Statements on page R.6.43

NOTE: SEL-400 series relays with optional IEC 61850 protocol require the presence of one valid CID file to enable the protocol. You should only transfer a CID file to the relay if you want to implement a change in the IEC 61850 configuration or if new Ethernet card firmware does not support the current CID file version. If you transfer an invalid CID file, the relay will disable the IEC 61850 protocol, as it no longer has a valid configuration. To restart IEC 61850 protocol operation, you must transfer a valid CID file to the relay.

Introduction to IEC 61850

In the early 1990s, the Electric Power Research Institute (EPRI) and the Institute of Electrical and Electronics Engineers, Inc. (IEEE) began to define a Utility Communications Architecture (UCA). They initially focused on intercontrol center and substation-to-control center communications and produced the Inter-Control Center Communications Protocol (ICCP) specification. This specification, later adopted by the IEC as 60870-6 TASE.2, became the standard protocol for real-time exchange of data between databases.

In 1994, EPRI and IEEE began work on UCA 2.0 for Field Devices (simply referred to as UCA2). In 1997, they combined efforts with Technical Committee 57 of the IEC to create a common international standard. Their joint efforts created the current IEC 61850 standard.

The IEC 61850 standard, a superset of UCA2, contains most of the UCA2 specification, plus additional functionality. The standard describes client/ server and peer-to-peer communications, substation design and configuration, testing, and project standards.

The IEC 61850 standard consists of the parts listed in *Table 6.1*.

Table 6.1 IEC 61850 Document Set

IEC 61850 Sections	Definitions
IEC 61850-1	Introduction and overview
IEC 61850-2	Glossary
IEC 61850-3	General requirements
IEC 61850-4	System and project management
IEC 61850-5	Communication requirements
IEC 61850-6	Configuration description language for substation IEDs
IEC 61850-7-1	Basic communication structure for substations and feeder equipment–Principles and models
IEC 61850-7-2	Basic communication structure for substations and feeder equipment–Abstract communication service interface (ACSI)
IEC 61850-7-3	Basic communication structure for substations and feeder equipment-Common data classes
IEC 61850-7-4	Basic communication structure for substations and feeder equipment— Compatible logical node (LN) classes and data classes
IEC 61850-8-1	SCSM–Mapping to Manufacturing Messaging Specification (MMS) (ISO/IEC 9506-1 and ISO/IEC 9506-2 over ISO/IEC 8802-3)
IEC 61850-9-1	SCSM–Sampled values over serial multidrop point-to-point link
IEC 61850-9-2	SCSM–Sampled values over ISO/IEC 8802-3
IEC 61850-10	Conformance testing

The IEC 61850 document set, available directly from the IEC at http://www.iec.ch, contains information necessary for successful implementation of this protocol. SEL strongly recommends that anyone involved with the design, installation, configuration, or maintenance of IEC 61850 systems be familiar with the appropriate sections of this standard.

IEC 61850 Operation

Ethernet Networking

IEC 61850 and Ethernet networking model options are available when ordering a new SEL-487B and may also be available as field upgrades to relays equipped with the Ethernet card. In addition to IEC 61850, the Ethernet card provides support protocols and data exchange, including FTP and Telnet, to SEL devices. Access the SEL-487B Port 5 settings to configure all of the Ethernet settings, including IEC 61850 network settings.

The SEL-487B Ethernet card supports IEC 61850 services, including transport of Logical Node objects, over TCP/IP. The Ethernet card can coordinate a maximum of six concurrent IEC 61850 sessions.

Object Models

The IEC 61850 standard relies heavily on the Abstract Communication Service Interface (ACSI) models to define a set of services and the responses to those services. In terms of network behavior, abstract modeling enables all IEDs to act identically. These abstract models are used to create objects (data items) and services that exist independently of any underlying protocols. These objects are in conformance with the common data class (CDC) specification IEC 61850-7-3, which describes the type and structure of each element within a logical node. CDCs for status, measurements, controllable analogs and statuses, and settings all have unique CDC attributes. Each CDC attribute belongs to a set of functional constraints that groups the attributes into specific categories such as status (ST), description (DC), and substituted value (SV). Functional constraints, CDCs, and CDC attributes are used as building blocks for defining logical nodes.

UCA2 used GOMSFE (Generic Object Models for Substation and Feeder Equipment) to present data from station IEDs as a series of objects called models or bricks. The IEC working group has incorporated GOMSFE concepts into the standard, with some modifications to terminology; one change was the renaming of bricks to logical nodes. Each logical node represents a group of data (controls, status, measurements, etc.) associated with a particular function. For example, the MMXU logical node (polyphase measurement unit) contains measurement data and other points associated with three-phase metering including voltages and currents. Each IED may contain many functions such as protection, metering, and control. Multiple logical nodes represent the functions in multifunction devices.

Logical nodes can be organized into logical devices that are similar to directories on a computer disk. As represented in the IEC 61850 network, each physical device can contain many logical devices and each logical device can contain many logical nodes. Many relays, meters, and other IEC 61850 devices contain one primary logical device where all models are organized.

IEC 61850 devices are capable of self-description. You do not need to refer to the specifications for the logical nodes, measurements, and other components to request data from another IEC 61850 device. IEC 61850 clients can request and display a list and description of the data available in an IEC 61850 server device. This process is similar to the autoconfiguration process used within SEL communications processors (SEL-2032 and SEL-2030). Simply run an MMS browser to query devices on an IEC 61850 network and discover what data are available. Self-description also permits extensions to both standard and custom data models. Instead of having to look up data in a profile stored in its database, an IEC 61850 client can simply query an IEC 61850 device and receive a description of all logical devices, logical nodes, and available data.

Unlike other Supervisory Control and Data Acquisition (SCADA) protocols that present data as a list of addresses or indices, IEC 61850 presents data with descriptors in a composite notation made up of components. *Table 6.2* shows how the A-phase current expressed as MMXU\$A\$phsA\$cVal is broken down into its component parts.

Table 6.2 Example IEC 61850 Descriptor Components

Component		Description
MMXU	Logical Node	Polyphase measurement unit
A	Data Object	Phase-to-ground amperes
PhsA	Sub-Data Object	Phase A
CVal	Data Attribute	Complex value

Data Mapping

Device data is mapped to IEC 61850 logical nodes (LN) according to rules defined by SEL. Refer to IEC 61850-5:2003(E) and IEC 61850-7-4:2003(E) for the mandatory content and usage of these LNs. The SEL-487B logical nodes are grouped under Logical Devices for organization based on function. See *Table 6.3* for descriptions of the Logical Devices in an SEL-487B. See *Logical Nodes on page R.6.18* for a description of the LNs that make up these Logical Devices.

Table 6.3 SEL-487B Logical Devices

Logical Device	Description
ANN	Annunciator elements—alarms, status values
CFG	Configuration elements—datasets and report control blocks
CON	Control elements—remote bits
MET	Metering or Measurement elements—currents, voltages, power, etc.
PRO	Protection elements—protection functions and breaker control

MMS

Manufacturing Messaging Specification (MMS) provides services for the application-layer transfer of real-time data within a substation LAN. MMS was developed as a network independent data exchange protocol for industrial networks in the 1980s and standardized as ISO 9506.

In theory, you can map IEC 61850 to any protocol. However, it can become unwieldy and quite complicated to map objects and services to a protocol that only provides access to simple data points via registers or index numbers. MMS supports complex named objects and flexible services that enable mapping to IEC 61850 in a straightforward manner. This was why the UCA users group used MMS for UCA from the start, and why the IEC chose to keep it for IEC 61850.

GOOSE

The Generic Object Oriented Substation Event (GOOSE) object within IEC 61850 is for high-speed control messaging. IEC 61850 GOOSE automatically broadcasts messages containing status, controls, and measured values onto the network for use by other devices. IEC 61850 GOOSE sends the message several times, increasing the likelihood that other devices receive the messages.

IEC 61850 GOOSE objects can quickly and conveniently transfer status, controls, and measured values between peers on an IEC 61850 network. Configure SEL devices to respond to GOOSE messages from other network devices with ACSELERATOR Architect. Also, configure outgoing GOOSE

messages for SEL devices in ACSELERATOR Architect. See the ACSELERATOR Architect instruction manual or online help for more information.

Each IEC 61850 GOOSE sender includes a text identification string (GOOSE Control Block Reference) in each outgoing message and an Ethernet multicast group address. Devices that receive GOOSE messages use the text identification and multicast group to identify and filter incoming GOOSE messages.

CCIN (Communications Card Input) bits are control inputs that you can map to GOOSE receive messages using the ACSELERATOR Architect software. See the CCIN*nn* bits in *Table 6.11* for details on which logical nodes and names are used for these bits. This information can be useful when searching through device data with MMS browsers. If you intend to use any SEL-487B CCIN bits for controls, you must create SELOGIC® control equations to define these operations. The CCIN Logical Nodes only contain CCIN status, and only those CCINs that are part of the SER data set will be able to track CCIN transitions (via reporting) between LN data update scans.

File Services

The Ethernet File System allows reading or writing data as files. The File System supports FTP and, for the SEL-487B, the Shared Memory File Transfer service. The File System provides:

- ➤ A means for the device to transfer data as files.
- ➤ A hierarchal file structure for the device data.

SCL Files

Substation Configuration Language (SCL) is an XML-based configuration language used to support the exchange of database configuration data between different tools, which may come from different manufacturers. There are four types of SCL files:

- ➤ IED Capability Description file (.ICD)
- > System Specification Description (.SSD) file
- ➤ Substation Configuration Description file (.SCD)
- ➤ Configured IED Description file (.CID)

The ICD file describes the capabilities of an IED, including information on LN and GOOSE support. The SSD file describes the single-line diagram of the substation and the required LNs. The SCD file contains information on all IEDs, communications configuration data, and a substation description. The CID file, of which there may be several, describes a single instantiated IED within the project, and includes address information.

Reports

SEL-487B supports buffered and unbuffered report control blocks in the report model as defined in IEC 61850-8-1:2004(E). The predefined reports shown in *Figure 6.1* are available by default via IEC 61850.

ID	Name	Description	Data Set
DSet01	BRep01	Predefined Buffered Report 01	DSet01
DSet02	BRep02	Predefined Buffered Report 02	DSet02
DSet03	BRep03	Predefined Buffered Report 03	DSet03
DSet04	BRep04	Predefined Buffered Report 04	DSet04
DSet05	BRep05	Predefined Buffered Report 05	DSet05
DSet06	BRep06	Predefined Buffered Report 06	DSet06
DSet07	URep01	Predefined Unbuffered Report 0	1 DSet07
DSet08	URep02	Predefined Unbuffered Report 0	2 DSet08
DSet09	URep03	Predefined Unbuffered Report 0	3 DSet09
DSet10	URep04	Predefined Unbuffered Report 0	4 DSet10
DSet11	URep05	Predefined Unbuffered Report 0	5 DSet11
DSet12	URep06	Predefined Unbuffered Report 0	6 DSet12

Figure 6.1 SEL-487B Predefined Reports

There are twelve report control blocks (six buffered and unbuffered reports). For each report control block, there can be just one client association, i.e., only one client can be associated to a report control block (BRCB or URCB) at any given time. The number of reports (12) and the type of reports (buffered or unbuffered) cannot be changed. However, by using ACSELERATOR Architect, you can reallocate data within each report data set to present different data attributes for each report beyond the predefined datasets.

For buffered reports, connected clients may edit the report parameters shown in *Table 6.4*.

Table 6.4	Buffered Report	Control Block	Client Access
-----------	-----------------	---------------	----------------------

RCB Attribute	User Changeable (Report Disabled)	User Changeable (Report Enabled)	Default Values
RptId	YES		FALSE
RptEna	YES	YES	FALSE
OptFlds	YES		segNum
			timeStamp
			dataSet
			reasonCode
			dataRef
BufTm	YES		500
TrgOp	YES		dchg
			qchg
IntgPd	YES		FALSE
GI	YESa b	YESa	FALSE
PurgeBuf	YESa		FALSE
EntryId	YES		0

^a Exhibits a pulse behavior. Write a one to issue the command. Once command is accepted will return to zero. Always read as zero.

b When disabled, a GI will be processed and the report buffered if a buffer has been previously established. A buffer is established when the report is enabled for the first time.

Similarly, for unbuffered reports, connected clients may edit the report parameters shown in Table 6.5.

Table 6.5 Unbuffered Report Control Block Client Access

RCB Attribute	User Changeable (Report Disabled)	User Changeable (Report Enabled)	Default Values
RptId	YES		FALSE
RptEna	YES	YES	FALSE
Resv	YES		FALSE
OptFlds	YES		segNum
			timeStamp
			dataSet
			reasonCode
			dataRef
BufTm	YES		250
TrgOps	YES		dchg
			qchg
IntgPd	YES		FALSE
GI		YESa	0

a Exhibits a pulse behavior. Write a one to issue the command. Once command is accepted will return to zero. Always read as zero.

For buffered reports, only one client can enable the RptEna attribute of the BRCB or URCB at a time resulting in a client association for that BRCB or URCB. Once enabled, the associated client has exclusive access to the BRCB or URCB until the connection is closed or the client disables the RptEna attribute. Once enabled, all unassociated clients have read only access to the BRCB or URCB.

For unbuffered reports, up to six clients can enable the RptEna attribute of the URCB at a time, resulting in multiple client associations for that URCB. Once enabled, each client has independent access to a copy of that URCB.

The Resv attribute is writable, however, the SEL-487B does not support reservations. Writing any field of the URCB causes the client to obtain their own copy of the URCB-in essence, acquiring a reservation.

Reports are serviced at a 2 Hz rate. The client can set the IntgPd to any value with a resolution of 1 ms. However, the integrity report is only sent when the period has been detected as having expired. The report service rate of 2 Hz results in a report being sent within 500 ms of expiration of the IntgPd. The new IntgPd will begin at the time that the current report is serviced.

The list of datasets in Figure 6.2 are the defaults for an SEL-487B device.

Figure 6.2 SEL-487B Datasets

Within ACSELERATOR Architect, IEC 61850 datasets have two main purposes:

- ➤ GOOSE: You can use predefined or edited datasets, or create new datasets for outgoing GOOSE transmission.
- ➤ Reports: Twelve predefined datasets (DSet01 to DSet12) correspond to the default six buffered and six unbuffered reports. Note that you cannot change the number (12) or type of reports (buffered or unbuffered) within ACSELERATOR Architect. However, you can alter the data attributes that a dataset contains and so define what data an IEC 61850 client receives with a report.

The SER dataset, CFG.LLN0.SER, is a listing of the predetermined LN data attributes that are available with SER quality timestamps in the SEL-487B. Modifications to this dataset *do not* modify which data attributes have SER quality timestamps. If your application requires SER quality timestamps for data attributes not in this dataset, contact SEL for possible modification to your device IEC 61850 default configuration.

LN data attributes listed in the SER dataset have SER accurate timestamps of 1 ms for data change events. All other LN data attributes are scanned on a 1/2-second interval for data change and have 1/2-second timestamp accuracy.

Supplemental Software

Examine the data structure and values of the supported IEC 61850 LNs with an MMS browser such as MMS Object Explorer and AX-S4 MMS from Sisco, Inc.

The settings needed to browse an SEL-487B with an MMS browser are shown below.

OSI-PSEL (Presentation Selector	00000001
OSI-SSEL (Session Selector)	0001
OSI-TSEL (Transport Selector)	0001

NOTE: Do not edit the dataset names used in reports. Changing or deleting any of those dataset names will cause a failure in generating the corresponding report.

Time Stamps and Quality

In addition to the various data values, the two attributes quality and t (time stamp) are available at any time. The timestamp is determined when data or quality change is detected. A change in the quality attribute can also be used to issue an internal event.

The timestamp is applied to all data and quality attributes (Boolean, Bstrings, Analogs, etc.) in the same fashion when a data or quality change is detected. However, there is a difference in how the change is detected between the different attribute types. For points that are assigned as SER points, i.e., listed in the SER data set, the change is detected as the receipt of an SER record (which contains the SER timestamp) from the relay to the card. For all other Booleans or Bstrings, the change is detected via the scanner, which compares the last state against the previous state to detect the change. For analogs, the scanner looks at the amount of change relative to the deadband configured for the point to indicate a change and apply the timestamp. In all cases, these timestamps are used for the reporting model.

The SEL-487B has predetermined LN data attributes that are available with SER quality timestamps. These data attributes are listed in the SER data set in the default relay ICD file. Modifications to this data set do not modify which data attributes have SER quality timestamps. If your application requires SER quality timestamps on data attributes not in this data set, contact SEL for possible modification to your relay default configuration.

LN data attributes listed in the SER data set have SER accurate timestamps of 1 ms for data change events. All other LN data attributes are scanned on a 1/2-second interval for data change and have 1/2-second timestamp accuracy.

The SEL-487B uses GOOSE quality attributes to indicate the quality of the data in its transmitted GOOSE messages. Under normal conditions, all attributes are zero, indicating good quality data. Figure 6.3 shows the GOOSE quality attributes available to devices that subscribe to GOOSE messages from SEL-487B datasets that contain them. Internal status indicators provide the information necessary for the device to set these attributes. For example, if the device becomes disabled, as shown via status indications (e.g., an internal self-test failure), the SEL-487B will set the Validity attribute to invalid and the Failure attribute to TRUE. Note that the SEL-487B does not set any of the other quality attributes. These attributes will always indicate FALSE (0). See the ACSELERATOR Architect online help for additional information on GOOSE Quality attributes.

Figure 6.3 GOOSE Quality

GOOSE Processing

SEL-487B devices support GOOSE processing as defined by IEC 61850-7-1:2003(E), IEC 61850-7-2:2003(E), and IEC 61850-8-1:2004(E) via the installed Ethernet card.

Outgoing GOOSE messages are processed in accordance with the following constraints:

- ➤ The user can define up to 8 outgoing GOOSE messages consisting of any Data Attribute (DA) from any Logical Node. A single DA can be mapped to one or more outgoing GOOSE, or one or more times within the same outgoing GOOSE. A user can also map a single GOOSE data set to multiple GOOSE control blocks.
- ➤ High-speed GOOSE messaging (as defined under GOOSE Performance on page R.6.11) is only available for CCOUTn data.
- ➤ The SEL-487B will transmit all configured GOOSE immediately upon successful initialization. If a GOOSE is not retriggered, then following initial transmission, the SEL-487B will retransmit that GOOSE on a curve. The curve begins at 4 ms and doubles for each retransmission until leveling at the maximum specified in the CID file for that GOOSE. For example, a message with a maximum retransmit interval of 50 ms is retransmitted at intervals of 4 ms, 8 ms, 16 ms, 32 ms and 50 ms, then repeated every 50 ms until a trigger causes the transmission sequence to be repeated. The time-to-live reported in each transmitted message, is three times the current interval, or two times the interval, if the maximum time-to-live has been reached (12 ms, 24 ms, 48 ms, 96 ms and 100 ms for the example above. See IEC 61850-8-1, sec. 18.1).
- ➤ GOOSE transmission is squelched (silenced) if the SEL-487B stops responding to the Ethernet card, or after a permanent (latching) self-test failure.
- ➤ Each outgoing GOOSE includes communication parameters (VLAN, Priority, and Multicast Address) and is transmitted entirely in a single network frame.
- ➤ The SEL-487B will maintain the configuration of outgoing GOOSE through a power cycle and device reset.

Incoming GOOSE messages are processed in accordance with the following constraints:

- ➤ The user can configure the SEL-487B to subscribe to as many as 24 incoming GOOSE messages.
- ➤ Control bits in the SEL-487B get data from incoming GOOSE messages which are mapped to CCINn bits. Note: MMS can independently operate these bits.
- ➤ The SEL-487B will recognize incoming GOOSE messages as valid based on the following content:
 - Source broadcast MAC address.
 - ➤ Data Set Reference
 - > Application ID
 - ➤ GOOSE Control Reference

Any GOOSE message that fails these checks shall be rejected.

- ➤ Every received and validated GOOSE message that indicates a data change, by an incremented status number, is evaluated as follows:
 - > Data within the received GOOSE data set that are mapped to host data bits are identified.
 - > Mapped bits are compared against a local version of the available host data bits.
 - > If the state of the received bits is different than the local version,
 - > Update the local version with the new state for that bit.
 - > Pass the new state for the bit to the SEL-487B.
- ➤ Reject all DA contained in an incoming GOOSE based on the accumulation of the following error indications created by inspection of the received GOOSE:
 - Configuration Mismatch. The configuration number of the incoming GOOSE changes.
 - > Needs Commissioning. This Boolean parameter of the incoming GOOSE is true.
 - **Test Mode.** This Boolean parameter of the incoming GOOSE is true.
 - > **Decode Error.** The format of the incoming GOOSE is not as configured.
- ➤ The SEL-487B will discard incoming GOOSE under the following conditions:
 - > after a permanent (latching) self-test failure
 - when the host is not responding
 - > when EGSE is set to No

Link-layer priority tagging and virtual LAN is supported as described in Annex C of IEC 61850-8-1:2004(E).

GOOSE Performance

For outgoing high-speed data (CCOUTn data, as identified under GOOSE Processing on page R.6.10), transmission of GOOSE begins within 2 ms of transition of data within the SEL-487B. For all other data contained in outgoing GOOSE, transmission of GOOSE begins within 500 ms of transition of data within the SEL-487B. Appropriate control commands are issued to the SEL-487B within 2 ms of a GOOSE reception.

IEC 61850 Configuration

Settings

Table 6.6 lists IEC 61850 settings. These settings are only available if your device includes the optional IEC 61850 protocol.

Table 6.6 IEC 61850 Settings

Label	Description	Range	Default
E61850	IEC 61850 interface enable	Y, N	N
EGSE	Outgoing IEC 61850 GSE message enable	Ya, N	N

a Requires E61850 set to Y to send IEC 61850 GSE messages.

Configure all other IEC 61850 settings, including subscriptions to incoming GOOSE messages, with ACSELERATOR Architect software.

ACSELERATOR Architect

The ACSELERATOR Architect software enables protection and integration engineers to design and commission IEC 61850 substations containing SEL IEDs.

Engineers can use ACSELERATOR Architect to:

- ➤ Organize and configure all SEL IEDs in a substation project.
- ➤ Configure incoming and outgoing GOOSE messages.
- ➤ Edit and create GOOSE datasets.
- ➤ Read non-SEL IED Capability Description (ICD) and Configured IED Description (CID) files and determine the available IEC 61850 messaging options.
- ➤ Use or edit preconfigured datasets for reports.
- ➤ Load device settings and IEC 61850 CID files into SEL IEDs.
- ➤ Generate ICD files that will provide SEL IED descriptions to other manufacturers' tools so they can use SEL GOOSE messages and reporting features.
- ➤ Configure protection, logic, control, and communication settings of all SEL IEDs in the substation.

ACSELERATOR Architect provides a Graphical User Interface (GUI) for engineers to select, edit, and create IEC 61850 GOOSE messages important for substation protection, coordination, and control schemes. Typically, the engineer first places icons representing IEDs in a substation container, then edits the outgoing GOOSE messages or creates new ones for each IED. The engineer may also select incoming GOOSE messages for each IED to receive from any other IEDs in the domain. ACSELERATOR Architect has the capability to read other manufacturers' ICD and CID files, enabling the engineer to map the data seamlessly into SEL IED logic. See the ACSELERATOR Architect online help for more information.

SEL ICD File Versions

ACSELERATOR Architect version 1.1.69.0 and higher supports multiple ICD file versions for each IED in a project. Because relays with different Ethernet card firmware may require different CID file versions, this allows users to manage the CID files of all IEDs within a single project.

Please ensure that you work with the appropriate version of ACSELERATOR Architect relative to your current configuration, existing project files, and ultimate goals. If you desire the best available IEC 61850 functionality for your SEL relay, obtain the latest version of ACSELERATOR Architect and select the appropriate ICD version(s) for your needs.

As of this writing, ACSELERATOR Architect comes with two versions of the ICD file for use with the SEL-487B on new or existing projects. These versions are listed below.

- ➤ 002 (SEL-487B-0 8-Pushbutton Models): This file is compatible with Ethernet card firmware R107 to R112 and the 8-pushbutton model of the SEL-487B.
- ➤ 002 (SEL-487B-0 12-Pushbutton Models): Identical in content to the file above, with additional logical nodes for extra pushbuttons made accessible in SEL-487B R116 or higher firmware. Select this file to enable access to these additional logical nodes when using the 12-pushbutton model of the SEL-487B.

NOTE: Using this file with SEL-487B R115 and earlier firmware may cause unexpected behavior.

CID File Conversion

NOTE: If left unmodified, downloading the file will cause CID file parse errors and disable the IEC 61850 protocol.

If you attempt to download a version 001 CID file to a relay with Ethernet card firmware R107 to R112, ACSELERATOR Architect will offer to make the file compatible with version 002. If you agree, ACSELERATOR Architect will modify the existing CID file so that the relay can successfully process it. If you decline, the relay will cancel your request to download the CID file to the relay.

Similarly, if you attempt to download a version 002 CID file to a relay with Ethernet card firmware R113 or higher, ACSELERATOR Architect will offer to convert the file to version 003. Once converted, there will be no difference between version 002 and 003 except for the file version number stored in the CID file. If you agree, ACSELERATOR Architect will change the CID file version so that the relay can successfully process it. If you decline, the relay will cancel your request to download the CID file to the relay. This conversion is the only method ACSELERATOR Architect supports to download a CID file to a relay with Ethernet card firmware R113 or higher.

See Table 6.7 for a summary of the logical nodes provided with each ICD file version.

Table 6.7 Logical Node Summary (Sheet 1 of 4)

lable 6.7				
	Logical Nodes by ICD Version		ersion	
Logical Device	Ver 001 Ver 002L	Ver 002 Default	Ver 002 R116+	Description
PRO	D87R1PDIF1	D87RPDIF1a	D87RPDIF1	Zone 1 Restraint Differential Element
PRO	D87R2PDIF2	D87RPDIF2a	D87RPDIF2	Zone 2 Restraint Differential Element
PRO	D87R3PDIF3	D87RPDIF3a	D87RPDIF3	Zone 3 Restraint Differential Element
PRO	D87R4PDIF4	D87RPDIF4a	D87RPDIF4	Zone 4 Restraint Differential Element
PRO	D87R5PDIF5	D87RPDIF5a	D87RPDIF5	Zone 5 Restraint Differential Element
PRO	D87R6PDIF6	D87RPDIF6a	D87RPDIF6	Zone 6 Restraint Differential Element
PRO	T87Z1PTRC1	T87ZPTRC1	T87ZPTRC1	Zone 1 Differential Element
PRO	T87Z2PTRC2	T87ZPTRC2	T87ZPTRC2	Zone 2 Differential Element
PRO	T87Z3PTRC3	T87ZPTRC3	T87ZPTRC3	Zone 3 Differential Element
PRO	T87Z4PTRC4	T87ZPTRC4	T87ZPTRC4	Zone 4 Differential Element
PRO	T87Z5PTRC5	T87ZPTRC5	T87ZPTRC5	Zone 5 Differential Element
PRO	T87Z6PTRC6	T87ZPTRC6	T87ZPTRC6	Zone 6 Differential Element
PRO	TRIP01PTRC7	TRIPPTRC7a	TRIPPTRC7	Terminal 1 Trip Output
PRO	TRIP02PTRC8	TRIPPTRC8a	TRIPPTRC8	Terminal 2 Trip Output
PRO	TRIP03PTRC9	TRIPPTRC9a	TRIPPTRC9	Terminal 3 Trip Output
PRO	TRIP04PTRC10	TRIPPTRC10a	TRIPPTRC10	Terminal 4 Trip Output
PRO	TRIP05PTRC11	TRIPPTRC11a	TRIPPTRC11	Terminal 5 Trip Output
PRO	TRIP06PTRC12	TRIPPTRC12a	TRIPPTRC12	Terminal 6 Trip Output
PRO	TRIP07PTRC13	TRIPPTRC13a	TRIPPTRC13	Terminal 7 Trip Output
PRO	TRIP08PTRC14	TRIPPTRC14a	TRIPPTRC14	Terminal 8 Trip Output
PRO	TRIP09PTRC15	TRIPPTRC15a	TRIPPTRC15	Terminal 9 Trip Output
PRO	TRIP10PTRC16	TRIPPTRC16a	TRIPPTRC16	Terminal 10 Trip Output
PRO	TRIP11PTRC17	TRIPPTRC17a	TRIPPTRC17	Terminal 11 Trip Output
PRO	TRIP12PTRC18	TRIPPTRC18a	TRIPPTRC18	Terminal 12 Trip Output
PRO	TRIP13PTRC19	TRIPPTRC19a	TRIPPTRC19	Terminal 13 Trip Output
PRO	TRIP14PTRC20	TRIPPTRC20a	TRIPPTRC20	Terminal 14 Trip Output
PRO	TRIP15PTRC21	TRIPPTRC21a	TRIPPTRC21	Terminal 15 Trip Output
PRO	TRIP16PTRC22	TRIPPTRC22a	TRIPPTRC22	Terminal 16 Trip Output
PRO	TRIP17PTRC23	TRIPPTRC23a	TRIPPTRC23	Terminal 17 Trip Output
PRO	TRIP18PTRC24	TRIPPTRC24a	TRIPPTRC24	Terminal 18 Trip Output
PRO	-	-	T87CZPTRC25b	Check Zone Differential Element
PRO	X52A01XCBR1	X52AXCBR1a	X52AXCBR1	Circuit Breaker 01 Closed
PRO	X52A02XCBR2	X52AXCBR2a	X52AXCBR2	Circuit Breaker 02 Closed
PRO	X52A03XCBR3	X52AXCBR3a	X52AXCBR3	Circuit Breaker 03 Closed
PRO	X52A04XCBR4	X52AXCBR4a	X52AXCBR4	Circuit Breaker 04 Closed
PRO	X52A05XCBR5	X52AXCBR5a	X52AXCBR5	Circuit Breaker 05 Closed
PRO	X52A06XCBR6	X52AXCBR6a	X52AXCBR6	Circuit Breaker 06 Closed
PRO	X52A07XCBR7	X52AXCBR7a	X52AXCBR7	Circuit Breaker 07 Closed
PRO	X52A08XCBR8	X52AXCBR8a	X52AXCBR8	Circuit Breaker 08 Closed

Table 6.7 Logical Node Summary (Sheet 2 of 4)

	Logical Nodes by ICD Version		rsion	
Logical Device	Ver 001 Ver 002L	Ver 002 Default	Ver 002 R116+	Description
PRO	X52A09XCBR9	X52AXCBR9a	X52AXCBR9	Circuit Breaker 09 Closed
PRO	X52A10XCBR10	X52AXCBR10a	X52AXCBR10	Circuit Breaker 10 Closed
PRO	X52A11XCBR11	X52AXCBR11a	X52AXCBR11	Circuit Breaker 11 Closed
PRO	X52A12XCBR12	X52AXCBR12a	X52AXCBR12	Circuit Breaker 12 Closed
PRO	X52A13XCBR13	X52AXCBR13a	X52AXCBR13	Circuit Breaker 13 Closed
PRO	X52A14XCBR14	X52AXCBR14a	X52AXCBR14	Circuit Breaker 14 Closed
PRO	X52A15XCBR15	X52AXCBR15a	X52AXCBR15	Circuit Breaker 15 Closed
PRO	X52A16XCBR16	X52AXCBR16a	X52AXCBR16	Circuit Breaker 16 Closed
PRO	X52A17XCBR17	X52AXCBR17a	X52AXCBR17	Circuit Breaker 17 Closed
PRO	X52A18XCBR18	X52AXCBR18a	X52AXCBR18	Circuit Breaker 18 Closed
PRO	X89CL01XSWI1	X89CLXSWI1a	X89CLXSWI1	Disconnect 01 Closed
PRO	X89CL02XSWI2	X89CLXSWI2a	X89CLXSWI2	Disconnect 02 Closed
PRO	X89CL03XSWI3	X89CLXSWI3a	X89CLXSWI3	Disconnect 03 Closed
PRO	X89CL04XSWI4	X89CLXSWI4a	X89CLXSWI4	Disconnect 04 Closed
PRO	X89CL05XSWI5	X89CLXSWI5a	X89CLXSWI5	Disconnect 05 Closed
PRO	X89CL06XSWI6	X89CLXSWI6a	X89CLXSWI6	Disconnect 06 Closed
PRO	X89CL07XSWI7	X89CLXSWI7a	X89CLXSWI7	Disconnect 07 Closed
PRO	X89CL08XSWI8	X89CLXSWI8a	X89CLXSWI8	Disconnect 08 Closed
PRO	X89CL09XSWI9	X89CLXSWI9a	X89CLXSWI9	Disconnect 09 Closed
PRO	X89CL10XSWI10	X89CLXSWI10a	X89CLXSWI10	Disconnect 10 Closed
PRO	X89CL11XSWI11	X89CLXSWI11a	X89CLXSWI11	Disconnect 11 Closed
PRO	X89CL12XSWI12	X89CLXSWI12a	X89CLXSWI12	Disconnect 12 Closed
PRO	X89CL13XSWI13	X89CLXSWI13a	X89CLXSWI13	Disconnect 13 Closed
PRO	X89CL14XSWI14	X89CLXSWI14a	X89CLXSWI14	Disconnect 14 Closed
PRO	X89CL15XSWI15	X89CLXSWI15a	X89CLXSWI15	Disconnect 15 Closed
PRO	X89CL16XSWI16	X89CLXSWI16a	X89CLXSWI16	Disconnect 16 Closed
PRO	X89CL17XSWI17	X89CLXSWI17a	X89CLXSWI17	Disconnect 17 Closed
PRO	X89CL18XSWI18	X89CLXSWI18a	X89CLXSWI18	Disconnect 18 Closed
PRO	X89CL19XSWI19	X89CLXSWI19a	X89CLXSWI19	Disconnect 19 Closed
PRO	X89CL20XSWI20	X89CLXSWI20a	X89CLXSWI20	Disconnect 20 Closed
PRO	X89CL21XSWI21	X89CLXSWI21a	X89CLXSWI21	Disconnect 21 Closed
PRO	X89CL22XSWI22	X89CLXSWI22a	X89CLXSWI22	Disconnect 22 Closed
PRO	X89CL23XSWI23	X89CLXSWI23a	X89CLXSWI23	Disconnect 23 Closed
PRO	X89CL24XSWI24	X89CLXSWI24a	X89CLXSWI24	Disconnect 24 Closed
PRO	X89CL25XSWI25	X89CLXSWI25a	X89CLXSWI25	Disconnect 25 Closed
PRO	X89CL26XSWI26	X89CLXSWI26a	X89CLXSWI26	Disconnect 26 Closed
PRO	X89CL27XSWI27	X89CLXSWI27a	X89CLXSWI27	Disconnect 27 Closed
PRO	X89CL28XSWI28	X89CLXSWI28a	X89CLXSWI28	Disconnect 28 Closed
PRO	X89CL29XSWI29	X89CLXSWI29a	X89CLXSWI29	Disconnect 29 Closed

Table 6.7 Logical Node Summary (Sheet 3 of 4)

	Logical Word Summi	•	anaian.	
	·	cal Nodes by ICD Ve	ersion	
Logical Device	Ver 001 Ver 002L	Ver 002 Default	Ver 002 R116+	Description
PRO	X89CL30XSWI30	X89CLXSWI30a	X89CLXSWI30	Disconnect 30 Closed
PRO	X89CL31XSWI31	X89CLXSWI31a	X89CLXSWI31	Disconnect 31 Closed
PRO	X89CL32XSWI32	X89CLXSWI32a	X89CLXSWI32	Disconnect 32 Closed
PRO	X89CL33XSWI33	X89CLXSWI33a	X89CLXSWI33	Disconnect 33 Closed
PRO	X89CL34XSWI34	X89CLXSWI34a	X89CLXSWI34	Disconnect 34 Closed
PRO	X89CL35XSWI35	X89CLXSWI35a	X89CLXSWI35	Disconnect 35 Closed
PRO	X89CL36XSWI36	X89CLXSWI36a	X89CLXSWI36	Disconnect 36 Closed
PRO	X89CL37XSWI37	X89CLXSWI37a	X89CLXSWI37	Disconnect 37 Closed
PRO	X89CL38XSWI38	X89CLXSWI38a	X89CLXSWI38	Disconnect 38 Closed
PRO	X89CL39XSWI39	X89CLXSWI39a	X89CLXSWI39	Disconnect 39 Closed
PRO	X89CL40XSWI40	X89CLXSWI40a	X89CLXSWI40	Disconnect 40 Closed
PRO	X89CL41XSWI41	X89CLXSWI41a	X89CLXSWI41	Disconnect 41 Closed
PRO	X89CL42XSWI42	X89CLXSWI42a	X89CLXSWI42	Disconnect 42 Closed
PRO	X89CL43XSWI43	X89CLXSWI43a	X89CLXSWI43	Disconnect 43 Closed
PRO	X89CL44XSWI44	X89CLXSWI44a	X89CLXSWI44	Disconnect 44 Closed
PRO	X89CL45XSWI45	X89CLXSWI45a	X89CLXSWI45	Disconnect 45 Closed
PRO	X89CL46XSWI46	X89CLXSWI46a	X89CLXSWI46	Disconnect 46 Closed
PRO	X89CL47XSWI47	X89CLXSWI47a	X89CLXSWI47	Disconnect 47 Closed
PRO	X89CL48XSWI48	X89CLXSWI48a	X89CLXSWI48	Disconnect 48 Closed
PRO	BKR01CSWI1	BKRCSWI1a	BKRCSWI1	Circuit Breaker 01 Open/Close
PRO	BKR02CSWI2	BKRCSWI2a	BKRCSWI2	Circuit Breaker 02 Open/Close
PRO	BKR03CSWI3	BKRCSWI3a	BKRCSWI3	Circuit Breaker 03 Open/Close
PRO	BKR04CSWI4	BKRCSWI4a	BKRCSWI4	Circuit Breaker 04 Open/Close
PRO	BKR05CSWI5	BKRCSWI5a	BKRCSWI5	Circuit Breaker 05 Open/Close
PRO	BKR06CSWI6	BKRCSWI6a	BKRCSWI6	Circuit Breaker 06 Open/Close
PRO	BKR07CSWI7	BKRCSWI7a	BKRCSWI7	Circuit Breaker 07 Open/Close
PRO	BKR08CSWI8	BKRCSWI8a	BKRCSWI8	Circuit Breaker 08 Open/Close
PRO	BKR09CSWI9	BKRCSWI9a	BKRCSWI9	Circuit Breaker 09 Open/Close
PRO	BKR10CSWI10	BKRCSWI10a	BKRCSWI10	Circuit Breaker 10 Open/Close
PRO	BKR11CSWI11	BKRCSWI11a	BKRCSWI11	Circuit Breaker 11 Open/Close
PRO	BKR12CSWI12	BKRCSWI12a	BKRCSWI12	Circuit Breaker 12 Open/Close
PRO	BKR13CSWI13	BKRCSWI13a	BKRCSWI13	Circuit Breaker 13 Open/Close
PRO	BKR14CSWI14	BKRCSWI14a	BKRCSWI14	Circuit Breaker 14 Open/Close
PRO	BKR15CSWI15	BKRCSWI15a	BKRCSWI15	Circuit Breaker 15 Open/Close
PRO	BKR16CSWI16	BKRCSWI16a	BKRCSWI16	Circuit Breaker 16 Open/Close
PRO	BKR17CSWI17	BKRCSWI17a	BKRCSWI17	Circuit Breaker 17 Open/Close
PRO	BKR18CSWI18	BKRCSWI18a	BKRCSWI18	Circuit Breaker 18 Open/Close
	•	•	•	•

Table 6.7 Logical Node Summary (Sheet 4 of 4)

	Logic	Logical Nodes by ICD Version		
Logical Device	Ver 001 Ver 002L	Ver 002 Default	Ver 002 R116+	Description
MET	METMMXN1	METMMXN1	METMMXN1	Measured Values (Currents and Voltages)
MET	IOPMMXN2	IOPMMXN2	IOPMMXN2b	Operating Current Magnitudes
MET	IRTMMXN3	IRTMMXN3	IRTMMXN3b	Restraint Current Magnitudes
CON	RBGGIO1	RBGGIO1	RBGGIO1	Remote Bits
ANN	PSVGGIO1	PSVGGIO1	PSVGGIO1	Protection SELOGIC Control Variables
ANN	PLTGGIO2	PLTGGIO2	PLTGGIO2	Protection Latches
ANN	PMVGGIO3	PMVGGIO3	PMVGGIO3	Protection SELOGIC Control Equation Math Variables
ANN	ASVGGIO4	ASVGGIO4	ASVGGIO4	Automation SELOGIC Control Equation Variables
ANN	ALTGGIO5	ALTGGIO5	ALTGGIO5	Automation Latches
ANN	AMVGGIO6	AMVGGIO6	AMVGGIO6	Automation SELOGIC Control Equation Math Variables
ANN	TLEDGGIO7	TLEDGGIO7	TLEDGGIO7b	Front-panel target LEDs
ANN	PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8 ^b	Pushbutton LEDs
ANN	INPUT1GGIO9	IN1GGIO9 ^a	IN1GGIO9	Mainboard inputs
ANN	INPUT2GGIO10	IN2GGIO10a	IN2GGIO10	I/O Board 2 inputs, active data only if additional I/O Card(s) installed
ANN	INPUT3GGIO11	IN3GGIO11a	IN3GGIO11	I/O Board 3 inputs, active data only if additional I/O Card(s) installed
ANN	INPUT4GGIO12	IN4GGIO12a	IN4GGIO12	I/O Board 4 inputs, active data only if additional I/O Card(s) installed
ANN	INPUT5GGIO13	IN5GGIO13a	IN5GGIO13	I/O Board 5 inputs, active data only if additional I/O Card(s) installed
ANN	OUTPUT1GGIO14	OUT1GGIO14a	OUT1GGIO14	Mainboard outputs
ANN	OUTPUT2GGIO15	OUT2GGIO15a	OUT2GGIO15	I/O Board 2 outputs, active data only if additional I/O Card(s) installed
ANN	OUTPUT3GGIO16	OUT3GGIO16a	OUT3GGIO16	I/O Board 3 outputs, active data only if additional I/O Card(s) installed
ANN	OUTPUT4GGIO17	OUT4GGIO17a	OUT4GGIO17	I/O Board 4 outputs, active data only if additional I/O Card(s) installed
ANN	OUTPUT5GGIO18	OUT5GGIO18 ^a	OUT5GGIO18	I/O Board 5 outputs, active data only if additional I/O Card(s) installed
ANN	CCINGGIO19	CCINGGIO19	CCINGGIO19	Communications Card Inputs
ANN	CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Communications Card Outputs
ANN	-	-	RMBAGGIO21b	Channel A Receive MIRRORED BITS
ANN	-	-	TMBAGGIO22 ^b	Channel A Transmit MIRRORED BITS
ANN	-	-	RMBBGGIO23b	Channel B Receive MIRRORED BITS
ANN	-	-	TMBBGGIO24b	Channel B Transmit MIRRORED BITS
ANN	-	-	MBOKGGIO25b	MIRRORED BITS Communications Status

a Indicates that this LN name has been changed in this version and differs from the ICD file version in the adjacent left-hand column.
 b Indicates that this LN has been added/modified in this version and differs from the ICD file version in the adjacent left-hand column.

Logical Nodes

Table 6.8–Table 6.11 show the logical nodes (LNs) supported in the SEL-487B and the associated Relay Word bits or measured quantities.

Table 6.8 shows the LNs associated with protection elements, defined as Logical Device PRO.

Table 6.8 Logical Device: PRO (Protection) (Sheet 1 of 4)

Logical Nodes by ICD Version				Relay Word
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Status	or Database Bit
D87R1PDIF1	D87RPDIF1	D87RPDIF1	Str.general	P87R1
D87R1PDIF1	D87RPDIF1	D87RPDIF1	Op.general	87R1
D87R2PDIF2	D87RPDIF2	D87RPDIF2	Str.general	P87R2
D87R2PDIF2	D87RPDIF2	D87RPDIF2	Op.general	87R2
D87R3PDIF3	D87RPDIF3	D87RPDIF3	Str.general	P87R3
D87R3PDIF3	D87RPDIF3	D87RPDIF3	Op.general	87R3
D87R4PDIF4	D87RPDIF4	D87RPDIF4	Str.general	P87R4
D87R4PDIF4	D87RPDIF4	D87RPDIF4	Op.general	87R4
D87R5PDIF5	D87RPDIF5	D87RPDIF5	Str.general	P87R5
D87R5PDIF5	D87RPDIF5	D87RPDIF5	Op.general	87R5
D87R6PDIF6	D87RPDIF6	D87RPDIF6	Str.general	P87R6
D87R6PDIF6	D87RPDIF6	D87RPDIF6	Op.general	87R6
T87Z1PTRC1	T87ZPTRC1	T87ZPTRC1	Tr.general	87Z1
T87Z2PTRC2	T87ZPTRC2	T87ZPTRC2	Tr.general	87Z2
T87Z3PTRC3	T87ZPTRC3	T87ZPTRC3	Tr.general	87Z3
T87Z4PTRC4	T87ZPTRC4	T87ZPTRC4	Tr.general	87Z4
T87Z5PTRC5	T87ZPTRC5	T87ZPTRC5	Tr.general	87Z5
T87Z6PTRC6	T87ZPTRC6	T87ZPTRC6	Tr.general	87Z6
TRIP01PTRC7	TRIPPTRC7	TRIPPTRC7	Tr.general	TRIP01
TRIP02PTRC8	TRIPPTRC8	TRIPPTRC8	Tr.general	TRIP02
TRIP03PTRC9	TRIPPTRC9	TRIPPTRC9	Tr.general	TRIP03
TRIP04PTRC10	TRIPPTRC10	TRIPPTRC10	Tr.general	TRIP04
TRIP05PTRC11	TRIPPTRC11	TRIPPTRC11	Tr.general	TRIP05
TRIP06PTRC12	TRIPPTRC12	TRIPPTRC12	Tr.general	TRIP06
TRIP07PTRC13	TRIPPTRC13	TRIPPTRC13	Tr.general	TRIP07
TRIP08PTRC14	TRIPPTRC14	TRIPPTRC14	Tr.general	TRIP08
TRIP09PTRC15	TRIPPTRC15	TRIPPTRC15	Tr.general	TRIP09
TRIP10PTRC16	TRIPPTRC16	TRIPPTRC16	Tr.general	TRIP10
TRIP11PTRC17	TRIPPTRC17	TRIPPTRC17	Tr.general	TRIP11
TRIP12PTRC18	TRIPPTRC18	TRIPPTRC18	Tr.general	TRIP12
TRIP13PTRC19	TRIPPTRC19	TRIPPTRC19	Tr.general	TRIP13
TRIP14PTRC20	TRIPPTRC20	TRIPPTRC20	Tr.general	TRIP14

Table 6.8 Logical Device: PRO (Protection) (Sheet 2 of 4)

Logical Nodes by ICD Version				Relay Word
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Status	or Database Bit
TRIP15PTRC21	TRIPPTRC21	TRIPPTRC21	Tr.general	TRIP15
TRIP16PTRC22	TRIPPTRC22	TRIPPTRC22	Tr.general	TRIP16
TRIP17PTRC23	TRIPPTRC23	TRIPPTRC23	Tr.general	TRIP17
TRIP18PTRC24	TRIPPTRC24	TRIPPTRC24	Tr.general	TRIP18
-	-	T87CZ1PTRC25a	Tr.general	87CZ1
X52A01XCBR1	X52AXCBR1	X52AXCBR1	Pos.stVal	52CL01
X52A02XCBR2	X52AXCBR2	X52AXCBR2	Pos.stVal	52CL02
X52A03XCBR3	X52AXCBR3	X52AXCBR3	Pos.stVal	52CL03
X52A04XCBR4	X52AXCBR4	X52AXCBR4	Pos.stVal	52CL04
X52A05XCBR5	X52AXCBR5	X52AXCBR5	Pos.stVal	52CL05
X52A06XCBR6	X52AXCBR6	X52AXCBR6	Pos.stVal	52CL06
X52A07XCBR7	X52AXCBR7	X52AXCBR7	Pos.stVal	52CL07
X52A08XCBR8	X52AXCBR8	X52AXCBR8	Pos.stVal	52CL08
X52A09XCBR9	X52AXCBR9	X52AXCBR9	Pos.stVal	52CL09
X52A10XCBR10	X52AXCBR10	X52AXCBR10	Pos.stVal	52CL10
X52A11XCBR11	X52AXCBR11	X52AXCBR11	Pos.stVal	52CL11
X52A12XCBR12	X52AXCBR12	X52AXCBR12	Pos.stVal	52CL12
X52A13XCBR13	X52AXCBR13	X52AXCBR13	Pos.stVal	52CL13
X52A14XCBR14	X52AXCBR14	X52AXCBR14	Pos.stVal	52CL14
X52A15XCBR15	X52AXCBR15	X52AXCBR15	Pos.stVal	52CL15
X52A16XCBR16	X52AXCBR16	X52AXCBR16	Pos.stVal	52CL16
X52A17XCBR17	X52AXCBR17	X52AXCBR17	Pos.stVal	52CL17
X52A18XCBR18	X52AXCBR18	X52AXCBR18	Pos.stVal	52CL18
X89CL01XSWI1	X89CLXSWI1	X89CLXSWI1	Pos.stVal	89CL01
X89CL02XSWI2	X89CLXSWI2	X89CLXSWI2	Pos.stVal	89CL02
X89CL03XSWI3	X89CLXSWI3	X89CLXSWI3	Pos.stVal	89CL03
X89CL04XSWI4	X89CLXSWI4	X89CLXSWI4	Pos.stVal	89CL04
X89CL05XSWI5	X89CLXSWI5	X89CLXSWI5	Pos.stVal	89CL05
X89CL06XSWI6	X89CLXSWI6	X89CLXSWI6	Pos.stVal	89CL06
X89CL07XSWI7	X89CLXSWI7	X89CLXSWI7	Pos.stVal	89CL07
X89CL08XSWI8	X89CLXSWI8	X89CLXSWI8	Pos.stVal	89CL08
X89CL09XSWI9	X89CLXSWI9	X89CLXSWI9	Pos.stVal	89CL09
X89CL10XSWI10	X89CLXSWI10	X89CLXSWI10	Pos.stVal	89CL10
X89CL11XSWI11	X89CLXSWI11	X89CLXSWI11	Pos.stVal	89CL11
X89CL12XSWI12	X89CLXSWI12	X89CLXSWI12	Pos.stVal	89CL12
X89CL13XSWI13	X89CLXSWI13	X89CLXSWI13	Pos.stVal	89CL13
X89CL14XSWI14	X89CLXSWI14	X89CLXSWI14	Pos.stVal	89CL14
X89CL15XSWI15	X89CLXSWI15	X89CLXSWI15	Pos.stVal	89CL15
X89CL16XSWI16	X89CLXSWI16	X89CLXSWI16	Pos.stVal	89CL16

Table 6.8 Logical Device: PRO (Protection) (Sheet 3 of 4)

Lo	Logical Nodes by ICD Version			Relay Word
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Status	or Database Bit
X89CL17XSWI17	X89CLXSWI17	X89CLXSWI17	Pos.stVal	89CL17
X89CL18XSWI18	X89CLXSWI18	X89CLXSWI18	Pos.stVal	89CL18
X89CL19XSWI19	X89CLXSWI19	X89CLXSWI19	Pos.stVal	89CL19
X89CL20XSWI20	X89CLXSWI20	X89CLXSWI20	Pos.stVal	89CL20
X89CL21XSWI21	X89CLXSWI21	X89CLXSWI21	Pos.stVal	89CL21
X89CL22XSWI22	X89CLXSWI22	X89CLXSWI22	Pos.stVal	89CL22
X89CL23XSWI23	X89CLXSWI23	X89CLXSWI23	Pos.stVal	89CL23
X89CL24XSWI24	X89CLXSWI24	X89CLXSWI24	Pos.stVal	89CL24
X89CL25XSWI25	X89CLXSWI25	X89CLXSWI25	Pos.stVal	89CL25
X89CL26XSWI26	X89CLXSWI26	X89CLXSWI26	Pos.stVal	89CL26
X89CL27XSWI27	X89CLXSWI27	X89CLXSWI27	Pos.stVal	89CL27
X89CL28XSWI28	X89CLXSWI28	X89CLXSWI28	Pos.stVal	89CL28
X89CL29XSWI29	X89CLXSWI29	X89CLXSWI29	Pos.stVal	89CL29
X89CL30XSWI30	X89CLXSWI30	X89CLXSWI30	Pos.stVal	89CL30
X89CL31XSWI31	X89CLXSWI31	X89CLXSWI31	Pos.stVal	89CL31
X89CL32XSWI32	X89CLXSWI32	X89CLXSWI32	Pos.stVal	89CL32
X89CL33XSWI33	X89CLXSWI33	X89CLXSWI33	Pos.stVal	89CL33
X89CL34XSWI34	X89CLXSWI34	X89CLXSWI34	Pos.stVal	89CL34
X89CL35XSWI35	X89CLXSWI35	X89CLXSWI35	Pos.stVal	89CL35
X89CL36XSWI36	X89CLXSWI36	X89CLXSWI36	Pos.stVal	89CL36
X89CL37XSWI37	X89CLXSWI37	X89CLXSWI37	Pos.stVal	89CL37
X89CL38XSWI38	X89CLXSWI38	X89CLXSWI38	Pos.stVal	89CL38
X89CL39XSWI39	X89CLXSWI39	X89CLXSWI39	Pos.stVal	89CL39
X89CL40XSWI40	X89CLXSWI40	X89CLXSWI40	Pos.stVal	89CL40
X89CL41XSWI41	X89CLXSWI41	X89CLXSWI41	Pos.stVal	89CL41
X89CL42XSWI42	X89CLXSWI42	X89CLXSWI42	Pos.stVal	89CL42
X89CL43XSWI43	X89CLXSWI43	X89CLXSWI43	Pos.stVal	89CL43
X89CL44XSWI44	X89CLXSWI44	X89CLXSWI44	Pos.stVal	89CL44
X89CL45XSWI45	X89CLXSWI45	X89CLXSWI45	Pos.stVal	89CL45
X89CL46XSWI46	X89CLXSWI46	X89CLXSWI46	Pos.stVal	89CL46
X89CL47XSWI47	X89CLXSWI47	X89CLXSWI47	Pos.stVal	89CL47
X89CL48XSWI38	X89CLXSWI38	X89CLXSWI38	Pos.stVal	89CL48
BKR01CSWI1	BKRCSWI1	BKRCSWI1	Pos.stVal	52CL01
BKR01CSWI1	BKRCSWI1	BKRCSWI1	OpOpn.general	OC01
BKR02CSWI2	BKRCSWI2	BKRCSWI2	Pos.stVal	52CL02
BKR02CSWI2	BKRCSWI2	BKRCSWI2	OpOpn.general	OC02
BKR03CSWI3	BKRCSWI3	BKRCSWI3	Pos.stVal	52CL03
BKR03CSWI3	BKRCSWI3	BKRCSWI3	OpOpn.general	OC03
BKR04CSWI4	BKRCSWI4	BKRCSWI4	Pos.stVal	52CL04

Table 6.8 Logical Device: PRO (Protection) (Sheet 4 of 4)

Logical Nodes by ICD Version				Relay Word
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Status	or Database Bit
BKR04CSWI4	BKRCSWI4	BKRCSWI4	OpOpn.general	OC04
BKR05CSWI5	BKRCSWI5	BKRCSWI5	Pos.stVal	52CL05
BKR05CSWI5	BKRCSWI5	BKRCSWI5	OpOpn.general	OC05
BKR06CSWI6	BKRCSWI6	BKRCSWI6	Pos.stVal	52CL06
BKR06CSWI6	BKRCSWI6	BKRCSWI6	OpOpn.general	OC06
BKR07CSWI7	BKRCSWI7	BKRCSWI7	Pos.stVal	52CL07
BKR07CSWI7	BKRCSWI7	BKRCSWI7	OpOpn.general	OC07
BKR08CSWI8	BKRCSWI8	BKRCSWI8	Pos.stVal	52CL08
BKR08CSWI8	BKRCSWI8	BKRCSWI8	OpOpn.general	OC08
BKR09CSWI9	BKRCSWI9	BKRCSWI9	Pos.stVal	52CL09
BKR09CSWI9	BKRCSWI9	BKRCSWI9	OpOpn.general	OC09
BKR10CSWI10	BKRCSWI10	BKRCSWI10	Pos.stVal	52CL10
BKR10CSWI10	BKRCSWI10	BKRCSWI10	OpOpn.general	OC10
BKR11CSWI11	BKRCSWI11	BKRCSWI11	Pos.stVal	52CL11
BKR11CSWI11	BKRCSWI11	BKRCSWI11	OpOpn.general	OC11
BKR12CSWI12	BKRCSWI12	BKRCSWI12	Pos.stVal	52CL12
BKR12CSWI12	BKRCSWI12	BKRCSWI12	OpOpn.general	OC012
BKR13CSWI13	BKRCSWI13	BKRCSWI13	Pos.stVal	52CL13
BKR13CSWI13	BKRCSWI13	BKRCSWI13	OpOpn.general	OC13
BKR14CSWI14	BKRCSWI14	BKRCSWI14	Pos.stVal	52CL14
BKR14CSWI14	BKRCSWI14	BKRCSWI14	OpOpn.general	OC14
BKR15CSWI15	BKRCSWI15	BKRCSWI15	Pos.stVal	52CL15
BKR15CSWI15	BKRCSWI15	BKRCSWI15	OpOpn.general	OC15
BKR16CSWI16	BKRCSWI16	BKRCSWI16	Pos.stVal	52CL16
BKR16CSWI16	BKRCSWI16	BKRCSWI16	OpOpn.general	OC16
BKR17CSWI17	BKRCSWI17	BKRCSWI17	Pos.stVal	52CL17
BKR17CSWI17	BKRCSWI17	BKRCSWI17	OpOpn.general	OC17
BKR18CSWI18	BKRCSWI18	BKRCSWI18	Pos.stVal	52CL18
BKR18CSWI18	BKRCSWI18	BKRCSWI18	OpOpn.general	OC18

^a Available only for SEL-487B R116 firmware or later.

Table 6.9 shows the LNs associated with measuring elements, defined as Logical Device MET.

Table 6.9 Logical Device: MET (Metering)

Table 6.5 Logical Sevice. MET (Metering)			
Logical Node (All ICD Versions)	Measurand	Analog Quantity	
METMMXN1	Amp01.mag	I01, current magnitude (Amps primary)	
METMMXN1	Amp02.mag	I02, current magnitude (Amps primary)	
METMMXN1	Amp03.mag	I03, current magnitude (Amps primary)	
METMMXN1	Amp04.mag	I04, current magnitude (Amps primary)	
METMMXN1	Amp05.mag	I05, current magnitude (Amps primary)	
METMMXN1	Amp06.mag	I06, current magnitude (Amps primary)	
METMMXN1	Amp07.mag	I07, current magnitude (Amps primary)	
METMMXN1	Amp08.mag	I08, current magnitude (Amps primary)	
METMMXN1	Amp09.mag	I09, current magnitude (Amps primary)	
METMMXN1	Amp10.mag	I10, current magnitude (Amps primary)	
METMMXN1	Amp11.mag	I11, current magnitude (Amps primary)	
METMMXN1	Amp12.mag	I12, current magnitude (Amps primary)	
METMMXN1	Amp13.mag	I13, current magnitude (Amps primary)	
METMMXN1	Amp14.mag	I14, current magnitude (Amps primary)	
METMMXN1	Amp15.mag	I15, current magnitude (Amps primary)	
METMMXN1	Amp16.mag	I16, current magnitude (Amps primary)	
METMMXN1	Amp17.mag	I17, current magnitude (Amps primary)	
METMMXN1	Amp18.mag	I18, current magnitude (Amps primary)	
METMMXN1	Vol01.mag	V01, voltage magnitude (Volts primary)	
METMMXN1	Vol02.mag	V02, voltage magnitude (Volts primary)	
METMMXN1	Vol03.mag	V03, voltage magnitude (Volts primary)	
IOPMMXN2	Amp01.mag	I0P1, Zone 1 Operating Current (per unit)	
IOPMMXN2	Amp02.mag	I0P2, Zone 1 Operating Current (per unit)	
IOPMMXN2	Amp03.mag	I0P3, Zone 1 Operating Current (per unit)	
IOPMMXN2	Amp04.mag	I0P4, Zone 1 Operating Current (per unit)	
IOPMMXN2	Amp05.mag	I0P5, Zone 1 Operating Current (per unit)	
IOPMMXN2	Amp06.mag	I0P6, Zone 1 Operating Current (per unit)	
IOPMMXN2a	Amp07.mag	I0PCZ1, Check Zone 1 Operating Current (per unit)	
IRTMMXN3	Amp01.mag	IRT1, Zone 1 Restraint Current (per unit)	
IRTMMXN3	Amp02.mag	IRT2, Zone 1 Restraint Current (per unit)	
IRTMMXN3	Amp03.mag	IRT3, Zone 1 Restraint Current (per unit)	
IRTMMXN3	Amp04.mag	IRT4, Zone 1 Restraint Current (per unit)	
IRTMMXN3	Amp05.mag	IRT5, Zone 1 Restraint Current (per unit)	
IRTMMXN3	Amp06.mag	IRT6, Zone 1 Restraint Current (per unit)	
IRTMMXN3a	Amp07.mag	IRTCZ1, Check Zone 1 Restraint Current (per unit)	

^a Available only for ICD Ver 002 R116 or newer with SEL-487B R116 firmware or later.

Table 6.10 shows the LNs associated with control elements, defined as Logical Device CON.

Table 6.10 Logical Device: CON (Remote Control) (Sheet 1 of 2)

Logical Node		Relay Word	,
(All ICD Versions)	Control	or Database Bit	Comment
RBGGIO1	SPCSO01	RB01	
RBGGIO1	SPCSO02	RB02	
RBGGIO1	SPCSO03	RB03	
RBGGIO1	SPCSO04	RB04	
RBGGIO1	SPCSO05	RB05	
RBGGIO1	SPCSO06	RB06	
RBGGIO1	SPCSO07	RB07	
RBGGIO1	SPCSO08	RB08	
RBGGIO1	SPCSO09	RB09	
RBGGIO1	SPCSO10	RB10	
RBGGIO1	SPCSO11	RB11	
RBGGIO1	SPCSO12	RB12	
RBGGIO1	SPCSO13	RB13	
RBGGIO1	SPCSO14	RB14	
RBGGIO1	SPCSO15	RB15	
RBGGIO1	SPCSO16	RB16	
RBGGIO1	SPCSO17	RB17	
RBGGIO1	SPCSO18	RB18	
RBGGIO1	SPCSO19	RB19	
RBGGIO1	SPCSO20	RB20	
RBGGIO1	SPCSO21	RB21	
RBGGIO1	SPCSO22	RB22	
RBGGIO1	SPCSO23	RB23	
RBGGIO1	SPCSO24	RB24	
RBGGIO1	SPCSO25	RB25	
RBGGIO1	SPCSO26	RB26	
RBGGIO1	SPCSO27	RB27	
RBGGIO1	SPCSO28	RB28	
RBGGIO1	SPCSO29	RB29	
RBGGIO1	SPCSO30	RB30	
RBGGIO1	SPCSO31	RB31	
RBGGIO1	SPCSO32	RB32	
RBGGIO1	SPCSO33	RB33	
RBGGIO1	SPCSO34	RB34	
RBGGIO1	SPCSO35	RB35	
RBGGIO1	SPCSO36	RB36	
RBGGIO1	SPCSO37	RB37	

Table 6.10 Logical Device: CON (Remote Control) (Sheet 2 of 2)

Logical Node (All ICD Versions)	Control	Relay Word or Database Bit	Comment
RBGGIO1	SPCSO38	RB38	
RBGGIO1	SPCSO39	RB39	
RBGGIO1	SPCSO40	RB40	
RBGGIO1	SPCSO41	RB41	
RBGGIO1	SPCSO42	RB42	
RBGGIO1	SPCSO43	RB43	
RBGGIO1	SPCSO44	RB44	
RBGGIO1	SPCSO45	RB45	
RBGGIO1	SPCSO46	RB46	
RBGGIO1	SPCSO47	RB47	
RBGGIO1	SPCSO48	RB48	

Table 6.11 shows the LNs associated with the annunciation element, defined as Logical Device ANN.

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 1 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind01.stVal	PSV01	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind02.stVal	PSV02	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind03.stVal	PSV03	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind04.stVal	PSV04	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind05.stVal	PSV05	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind06.stVal	PSV06	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind07.stVal	PSV07	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind08.stVal	PSV08	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind09.stVal	PSV09	Protection SELOGIC Control Equation Variable
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind10.stVal	PSV10	Protection SELOGIC Control Equation Variable
•		•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind63.stVal	PSV63	Protection SELOGIC Control Equation Variable

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 2 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
PSVGGIO1	PSVGGIO1	PSVGGIO1	Ind64.stVal	PSV64	Protection SELOGIC Control Equation Variable
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind01.stVal	PLT01	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind02.stVal	PLT02	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind03.stVal	PLT03	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind04.stVal	PLT04	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind05.stVal	PLT05	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind06.stVal	PLT06	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind07.stVal	PLT07	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind08.stVal	PLT08	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind09.stVal	PLT09	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind10.stVal	PLT10	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind11.stVal	PLT11	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind12.stVal	PLT12	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind13.stVal	PLT13	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind14.stVal	PLT14	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind15.stVal	PLT15	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind16.stVal	PLT16	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind17.stVal	PLT17	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind18.stVal	PLT18	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind19.stVal	PLT19	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind20.stVal	PLT20	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind21.stVal	PLT21	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind22.stVal	PLT22	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind23.stVal	PLT23	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind24.stVal	PLT24	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind25.stVal	PLT25	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind26.stVal	PLT26	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind27.stVal	PLT27	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind28.stVal	PLT28	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind29.stVal	PLT29	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind30.stVal	PLT30	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind31.stVal	PLT31	Protection Latch
PLTGGIO2	PLTGGIO2	PLTGGIO2	Ind32.stVal	PLT32	Protection Latch
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn01.mag	PMV01	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn02.mag	PMV02	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn03.mag	PMV03	Protection SELOGIC Control Equation Math Variable

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 3 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn04.mag	PMV04	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn05.mag	PMV05	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn06.mag	PMV06	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn07.mag	PMV07	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn08.mag	PMV08	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn09.mag	PMV09	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn10.mag	PMV10	Protection SELOGIC Control Equation Math Variable
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn63.mag	PMV63	Protection SELOGIC Control Equation Math Variable
PMVGGIO3	PMVGGIO3	PMVGGIO3	AnIn64.mag	PMV64	Protection SELOGIC Control Equation Math Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind001.stVal	ASV001	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind002.stVal	ASV002	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind003.stVal	ASV003	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind004.stVal	ASV004	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind005.stVal	ASV005	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind006.stVal	ASV006	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind007.stVal	ASV007	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind008.stVal	ASV008	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind009.stVal	ASV009	Automation SELOGIC Control Equation Variable
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind010.stVal	ASV010	Automation SELOGIC Control Equation Variable
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind127.stVal	ASV127	Automation SELOGIC Control Equation Variable

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 4 of 14)

Logica	Logical Nodes by ICD Version				
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
ASVGGIO4	ASVGGIO4	ASVGGIO4	Ind128.stVal	ASV128	Automation SELOGIC Control Equation Variable
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind01.stVal	ALT01	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind02.stVal	ALT02	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind03.stVal	ALT03	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind04.stVal	ALT04	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind05.stVal	ALT05	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind06.stVal	ALT06	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind07.stVal	ALT07	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind08.stVal	ALT08	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind09.stVal	ALT09	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind10.stVal	ALT10	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind11.stVal	ALT11	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind12.stVal	ALT12	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind13.stVal	ALT13	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind14.stVal	ALT14	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind15.stVal	ALT15	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind16.stVal	ALT16	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind17.stVal	ALT17	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind18.stVal	ALT18	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind19.stVal	ALT19	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind20.stVal	ALT20	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind21.stVal	ALT21	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind22.stVal	ALT22	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind23.stVal	ALT23	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind24.stVal	ALT24	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind25.stVal	ALT25	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind26.stVal	ALT26	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind27.stVal	ALT27	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind28.stVal	ALT28	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind29.stVal	ALT29	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind30.stVal	ALT30	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind31.stVal	ALT31	Automation Latch
ALTGGIO5	ALTGGIO5	ALTGGIO5	Ind32.stVal	ALT32	Automation Latch
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn01.mag	AMV001	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn02.mag	AMV002	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn03.mag	AMV003	Automation SELOGIC Control Equation Math Variable

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 5 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn04.mag	AMV004	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn05.mag	AMV005	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn06.mag	AMV006	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn07.mag	AMV007	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn08.mag	AMV008	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn09.mag	AMV009	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn10.mag	AMV010	Automation SELOGIC Control Equation Math Variable
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn63.mag	AMV63	Automation SELOGIC Control Equation Math Variable
AMVGGIO6	AMVGGIO6	AMVGGIO6	AnIn64.mag	AMV64	Automation SELOGIC Control Equation Math Variable
TLEDGGIO7	TLEDGGIO7	TLEDGGIO7	Ind01.stVal	EN	Front-panel target LED "EN"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind02.stVal	TRIPLED	Front-panel target LED "TRIPLED"
TLEDGGI07	TLEDGGIO7	TLEDGGIO7	Ind03.stVal	TLED_1	Front-panel target LED "TLED_1"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind04.stVal	TLED_2	Front-panel target LED "TLED_2"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind05.stVal	TLED_3	Front-panel target LED "TLED_3"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind06.stVal	TLED_4	Front-panel target LED "TLED_4"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind07.stVal	TLED_5	Front-panel target LED "TLED_5"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind08.stVal	TLED_6	Front-panel target LED "TLED_6"
TLEDGGI07	TLEDGGIO7	TLEDGGI07	Ind09.stVal	TLED_7	Front-panel target LED "TLED_7"
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind10.stVal	TLED_8	Front-panel target LED "TLED_8"
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind11.stVal	TLED_9	Front-panel target LED "TLED_9"
TLEDGGI07	TLEDGGI07	TLEDGGIO7	Ind12.stVal	TLED_10	Front-panel target LED "TLED_10"
TLEDGGI07	TLEDGGI07	TLEDGGIO7	Ind13.stVal	TLED_11	Front-panel target LED "TLED_11"

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 6 of 14)

Logical	Logical Nodes by ICD Version				
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind14.stVal	TLED_12	Front-panel target LED "TLED_12"
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind15.stVal	TLED_13	Front-panel target LED "TLED_13"
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind16.stVal	TLED_14	Front-panel target LED "TLED_14"
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind17.stVal	TLED_15	Front-panel target LED "TLED_15"
TLEDGGI07	TLEDGGI07	TLEDGGI07	Ind18.stVal	TLED_16	Front-panel target LED "TLED_16"
-	-	TLEDGGIO7a	Ind19.stVal	TLED_17	Front-panel target LED "TLED_17"
-	-	TLEDGGIO7a	Ind20.stVal	TLED_18	Front-panel target LED "TLED_18"
-	-	TLEDGGIO7a	Ind21.stVal	TLED_19	Front-panel target LED "TLED_19"
-	-	TLEDGGIO7a	Ind22.stVal	TLED_20	Front-panel target LED "TLED_20"
-	-	TLEDGGIO7a	Ind23.stVal	TLED_21	Front-panel target LED "TLED_21"
-	-	TLEDGGIO7a	Ind24.stVal	TLED_22	Front-panel target LED "TLED_22"
-	-	TLEDGGIO7a	Ind25.stVal	TLED_23	Front-panel target LED "TLED_23"
-	-	TLEDGGIO7a	Ind26.stVal	TLED_24	Front-panel target LED "TLED_24"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind01.stVal	PB1_LED	Pushbutton LED "PB1_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind02.stVal	PB2_LED	Pushbutton LED "PB2_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind03.stVal	PB3_LED	Pushbutton LED "PB3_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind04.stVal	PB4_LED	Pushbutton LED "PB4_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind05.stVal	PB5_LED	Pushbutton LED "PB5_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind06.stVal	PB6_LED	Pushbutton LED "PB6_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind07.stVal	PB7_LED	Pushbutton LED "PB7_LED"
PBLEDGGIO8	PBLEDGGIO8	PBLEDGGIO8	Ind08.stVal	PB8_LED	Pushbutton LED "PB8_LED"
-	-	PBLEDGGIO8a	Ind09.stVal	PB9_LED	Pushbutton LED "PB9_LED"
-	-	PBLEDGGIO8a	Ind10.stVal	PB10LED	Pushbutton LED "PB10LED"
-	-	PBLEDGGIO8a	Ind11.stVal	PB11LED	Pushbutton LED "PB11LED"
-	-	PBLEDGGIO8a	Ind12.stVal	PB12LED	Pushbutton LED "PB12LED"
INPUT1GGIO9	IN1GGIO9	IN1GGIO9	Ind01.stVal	IN101	Mainboard input, point 1 value
INPUT1GGIO9	IN1GGIO9	IN1GGIO9	Ind02.stVal	IN102	Mainboard input, point 2 value
INPUT1GGIO9	IN1GGIO9	IN1GGIO9	Ind03.stVal	IN103	Mainboard input, point 3 value
INPUT1GGIO9	IN1GGIO9	IN1GGIO9	Ind04.stVal	IN104	Mainboard input, point 4 value
INPUT1GGI09	IN1GGIO9	IN1GGIO9	Ind05.stVal	IN105	Mainboard input, point 5 value

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 7 of 14)

Logical	Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment	
INPUT1GGIO9	IN1GGIO9	IN1GGIO9	Ind06.stVal	IN106	Mainboard input, point 6 value	
INPUT1GGIO9	IN1GGIO9	IN1GGIO9	Ind07.stVal	IN107	Mainboard input, point 7 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind01.stVal	IN201	I/O Board 2 input, point 1 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind02.stVal	IN202	I/O Board 2 input, point 2 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind03.stVal	IN203	I/O Board 2 input, point 3 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind04.stVal	IN204	I/O Board 2 input, point 4 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind05.stVal	IN205	I/O Board 2 input, point 5 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind06.stVal	IN206	I/O Board 2 input, point 6 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind07.stVal	IN207	I/O Board 2 input, point 7 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind08.stVal	IN208	I/O Board 2 input, point 8 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind09.stVal	IN209	I/O Board 2 input, point 9 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind10.stVal	IN210	I/O Board 2 input, point 10 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind11.stVal	IN211	I/O Board 2 input, point 11 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind12.stVal	IN212	I/O Board 2 input, point 12 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind13.stVal	IN213	I/O Board 2 input, point 13 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind14.stVal	IN214	I/O Board 2 input, point 14 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind15.stVal	IN215	I/O Board 2 input, point 15 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind16.stVal	IN216	I/O Board 2 input, point 16 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind17.stVal	IN217	I/O Board 2 input, point 17 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind18.stVal	IN218	I/O Board 2 input, point 18 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind19.stVal	IN219	I/O Board 2 input, point 19 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind20.stVal	IN220	I/O Board 2 input, point 20 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind21.stVal	IN221	I/O Board 2 input, point 21 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind22.stVal	IN222	I/O Board 2 input, point 22 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind23.stVal	IN223	I/O Board 2 input, point 23 value	
INPUT2GGIO10b	IN2GGIO10b	IN2GGIO10b	Ind24.stVal	IN224	I/O Board 2 input, point 24 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind01.stVal	IN301	I/O Board 3 input, point 1 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind02.stVal	IN302	I/O Board 3 input, point 2 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind03.stVal	IN303	I/O Board 3 input, point 3 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind04.stVal	IN304	I/O Board 3 input, point 4 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind05.stVal	IN305	I/O Board 3 input, point 5 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind06.stVal	IN306	I/O Board 3 input, point 6 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind07.stVal	IN307	I/O Board 3 input, point 7 value	
INPUT3GGIO11b	IN3GGIO11 ^b	IN3GGIO11 ^b	Ind08.stVal	IN308	I/O Board 3 input, point 8 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind09.stVal	IN309	I/O Board 3 input, point 9 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind10.stVal	IN310	I/O Board 3 input, point 10 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind11.stVal	IN311	I/O Board 3 input, point 11 value	
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind12.stVal	IN312	I/O Board 3 input, point 12 value	

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 8 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind13.stVal	IN313	I/O Board 3 input, point 13 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind14.stVal	IN314	I/O Board 3 input, point 14 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind15.stVal	IN315	I/O Board 3 input, point 15 value
INPUT3GGIO11 ^b	IN3GGIO11b	IN3GGIO11 ^b	Ind16.stVal	IN316	I/O Board 3 input, point 16 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind17.stVal	IN317	I/O Board 3 input, point 17 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind18.stVal	IN318	I/O Board 3 input, point 18 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind19.stVal	IN319	I/O Board 3 input, point 19 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind20.stVal	IN320	I/O Board 3 input, point 20 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind21.stVal	IN321	I/O Board 3 input, point 21 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind22.stVal	IN322	I/O Board 3 input, point 22 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11b	Ind23.stVal	IN323	I/O Board 3 input, point 23 value
INPUT3GGIO11b	IN3GGIO11b	IN3GGIO11 ^b	Ind24.stVal	IN324	I/O Board 3 input, point 24 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind01.stVal	IN401	I/O Board 4 input, point 1 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind02.stVal	IN402	I/O Board 4 input, point 2 value
INPUT4GGIO12b	IN4GGIO12 ^b	IN4GGIO12 ^b	Ind03.stVal	IN403	I/O Board 4 input, point 3 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind04.stVal	IN404	I/O Board 4 input, point 4 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind05.stVal	IN405	I/O Board 4 input, point 5 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind06.stVal	IN406	I/O Board 4 input, point 6 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind07.stVal	IN407	I/O Board 4 input, point 7 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind08.stVal	IN408	I/O Board 4 input, point 8 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind09.stVal	IN409	I/O Board 4 input, point 9 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind10.stVal	IN410	I/O Board 4 input, point 10 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind11.stVal	IN411	I/O Board 4 input, point 11 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind12.stVal	IN412	I/O Board 4 input, point 12 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind13.stVal	IN413	I/O Board 4 input, point 13 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind14.stVal	IN414	I/O Board 4 input, point 14 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind15.stVal	IN415	I/O Board 4 input, point 15 value
INPUT4GGIO12b	IN4GGIO12 ^b	IN4GGIO12 ^b	Ind16.stVal	IN416	I/O Board 4 input, point 16 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12 ^b	Ind17.stVal	IN417	I/O Board 4 input, point 17 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12 ^b	Ind18.stVal	IN418	I/O Board 4 input, point 18 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind19.stVal	IN419	I/O Board 4 input, point 19 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind20.stVal	IN420	I/O Board 4 input, point 20 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind21.stVal	IN421	I/O Board 4 input, point 21 value
INPUT4GGIO12b	IN4GGIO12 ^b	IN4GGIO12 ^b	Ind22.stVal	IN422	I/O Board 4 input, point 22 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind23.stVal	IN423	I/O Board 4 input, point 23 value
INPUT4GGIO12b	IN4GGIO12b	IN4GGIO12b	Ind24.stVal	IN424	I/O Board 4 input, point 24 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind01.stVal	IN501	I/O Board 5 input, point 1 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind02.stVal	IN502	I/O Board 5 input, point 2 value

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 9 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind03.stVal	IN503	I/O Board 5 input, point 3 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind04.stVal	IN504	I/O Board 5 input, point 4 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13 ^b	Ind05.stVal	IN505	I/O Board 5 input, point 5 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind06.stVal	IN506	I/O Board 5 input, point 6 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind07.stVal	IN507	I/O Board 5 input, point 7 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind08.stVal	IN508	I/O Board 5 input, point 8 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind09.stVal	IN509	I/O Board 5 input, point 9 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind10.stVal	IN510	I/O Board 5 input, point 10 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind11.stVal	IN511	I/O Board 5 input, point 11 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind12.stVal	IN512	I/O Board 5 input, point 12 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind13.stVal	IN513	I/O Board 5 input, point 13 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13 ^b	Ind14.stVal	IN514	I/O Board 5 input, point 14 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13 ^b	Ind15.stVal	IN515	I/O Board 5 input, point 15 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind16.stVal	IN516	I/O Board 5 input, point 16 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind17.stVal	IN517	I/O Board 5 input, point 17 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind18.stVal	IN518	I/O Board 5 input, point 18 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind19.stVal	IN519	I/O Board 5 input, point 19 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13 ^b	Ind20.stVal	IN520	I/O Board 5 input, point 20 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind21.stVal	IN521	I/O Board 5 input, point 21 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13b	Ind22.stVal	IN522	I/O Board 5 input, point 22 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13 ^b	Ind23.stVal	IN523	I/O Board 5 input, point 23 value
INPUT5GGIO13b	IN5GGIO13b	IN5GGIO13 ^b	Ind24.stVal	IN524	I/O Board 5 input, point 24 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind01.stVal	OUT101	Mainboard output, point 1 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind02.stVal	OUT102	Mainboard output, point 2 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind03.stVal	OUT103	Mainboard output, point 3 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind04.stVal	OUT104	Mainboard output, point 4 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind05.stVal	OUT105	Mainboard output, point 5 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind06.stVal	OUT106	Mainboard output, point 6 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind07.stVal	OUT107	Mainboard output, point 7 value
OUTPUT1GGIO14	OUT1GGIO14	OUT1GGIO14	Ind08.stVal	OUT108	Mainboard output, point 8 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind01.stVal	OUT201	I/O Board 2 output, point 1 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind02.stVal	OUT202	I/O Board 2 output, point 2 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind03.stVal	OUT203	I/O Board 2 output, point 3 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind04.stVal	OUT204	I/O Board 2 output, point 4 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind05.stVal	OUT205	I/O Board 2 output, point 5 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind06.stVal	OUT206	I/O Board 2 output, point 6 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind07.stVal	OUT207	I/O Board 2 output, point 7 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind08.stVal	OUT208	I/O Board 2 output, point 8 value

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 10 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind09.stVal	OUT209	I/O Board 2 output, point 9 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind10.stVal	OUT210	I/O Board 2 output, point 10 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind11.stVal	OUT211	I/O Board 2 output, point 11 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind12.stVal	OUT212	I/O Board 2 output, point 12 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind13.stVal	OUT213	I/O Board 2 output, point 13 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind14.stVal	OUT214	I/O Board 2 output, point 14 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind15.stVal	OUT215	I/O Board 2 output, point 15 value
OUTPUT2GGIO15b	OUT2GGIO15b	OUT2GGIO15b	Ind16.stVal	OUT216	I/O Board 2 output, point 16 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16b	Ind01.stVal	OUT301	I/O Board 3 output, point 1 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16b	Ind02.stVal	OUT302	I/O Board 3 output, point 2 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16 ^b	Ind03.stVal	OUT303	I/O Board 3 output, point 3 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16b	Ind04.stVal	OUT304	I/O Board 3 output, point 4 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16 ^b	Ind05.stVal	OUT305	I/O Board 3 output, point 5 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16 ^b	Ind06.stVal	OUT306	I/O Board 3 output, point 6 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16b	Ind07.stVal	OUT307	I/O Board 3 output, point 7 value
OUTPUT3GGIO16b	OUT3GGIO16b	OUT3GGIO16 ^b	Ind08.stVal	OUT308	I/O Board 3 output, point 8 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17b	Ind01.stVal	OUT401	I/O Board 4 output, point 1 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17b	Ind02.stVal	OUT402	I/O Board 4 output, point 2 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17 ^b	Ind03.stVal	OUT403	I/O Board 4 output, point 3 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17b	Ind04.stVal	OUT404	I/O Board 4 output, point 4 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17b	Ind05.stVal	OUT405	I/O Board 4 output, point 5 value
OUTPUT4GGIO17b	OUT4GGIO17 ^b	OUT4GGIO17 ^b	Ind06.stVal	OUT406	I/O Board 4 output, point 6 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17 ^b	Ind07.stVal	OUT407	I/O Board 4 output, point 7 value
OUTPUT4GGIO17b	OUT4GGIO17b	OUT4GGIO17b	Ind08.stVal	OUT408	I/O Board 4 output, point 8 value
OUTPUT5GGIO18b	OUT5GGIO18b	OUT5GGIO18b	Ind01.stVal	OUT501	I/O Board 5 output, point 1 value
OUTPUT5GGIO18b	OUT5GGIO18b	OUT5GGIO18b	Ind02.stVal	OUT502	I/O Board 5 output, point 2 value
OUTPUT5GGIO18b	OUT5GGIO18b	OUT5GGIO18b	Ind03.stVal	OUT503	I/O Board 5 output, point 3 value
OUTPUT5GGIO18b	OUT5GGIO18b	OUT5GGIO18b	Ind04.stVal	OUT504	I/O Board 5 output, point 4 value
OUTPUT5GGIO18b	OUT5GGIO18b	OUT5GGIO18b	Ind05.stVal	OUT505	I/O Board 5 output, point 5 value
OUTPUT5GGIO18 b	OUT5GGIO18 b	OUT5GGIO18 b	Ind06.stVal	OUT506	I/O Board 5 output, point 6 value
OUTPUT5GGIO18 b	OUT5GGIO18 b	OUT5GGIO18 b	Ind07.stVal	OUT507	I/O Board 5 output, point 7 value
OUTPUT5GGIO18 b	OUT5GGIO18 b	OUT5GGIO18 b	Ind08.stVal	OUT508	I/O Board 5 output, point 8 value
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind001.stVal	CCIN001	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind002.stVal	CCIN002	Communications Card Input

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 11 of 14)

Logical	Logical Nodes by ICD Version				
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind003.stVal	CCIN003	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind004.stVal	CCIN004	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind005.stVal	CCIN005	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind006.stVal	CCIN006	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind007.stVal	CCIN007	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind008.stVal	CCIN008	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind009.stVal	CCIN009	Communications Card Input
CCINGGIO19	CCINGGIO19	CCINGGIO19	Ind010.stVal	CCIN010	Communications Card Input
•	CCINGGIO19	CCINGGIO19	•	•	•
•			•	•	•
CCINCCIO10	CCINCCIO10	CCINCCIO10	I. 1107 .47.1	CCIN127	· Comment of the Continues
CCINGGIO19	CCINGGIO19	CCINGGIO19 CCINGGIO19	Ind127.stVal Ind128.stVal	CCIN127 CCIN128	Communications Card Input
CCINGGIO19	CCINGGIO19				Communications Card Input
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind01.stVal	CCOUT001	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind02.stVal	CCOUT002	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind03.stVal	CCOUT003	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind04.stVal	CCOUT004	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind05.stVal	CCOUT005	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind06.stVal	CCOUT006	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind07.stVal	CCOUT007	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind08.stVal	CCOUT008	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind09.stVal	CCOUT009	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind10.stVal	CCOUT010	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind11.stVal	CCOUT011	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind12.stVal	CCOUT012	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind13.stVal	CCOUT013	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind14.stVal	CCOUT014	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind15.stVal	CCOUT015	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind16.stVal	CCOUT016	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind17.stVal	CCOUT017	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind18.stVal	CCOUT018	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind19.stVal	CCOUT019	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind20.stVal	CCOUT020	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind21.stVal	CCOUT021	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind22.stVal	CCOUT022	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind23.stVal	CCOUT023	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind24.stVal	CCOUT024	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind25.stVal	CCOUT025	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind26.stVal	CCOUT026	Communications Card Output

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 12 of 14)

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind27.stVal	CCOUT027	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind28.stVal	CCOUT028	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind29.stVal	CCOUT029	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind30.stVal	CCOUT030	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind31.stVal	CCOUT031	Communications Card Output
CCOUTGGIO20	CCOUTGGIO20	CCOUTGGIO20	Ind32.stVal	CCOUT032	Communications Card Output
-	-	RMBAGGIO21a	Ind01.stVal	RMB1A	Channel A Receive MIRRORED BIT 1
-	-	RMBAGGIO21a	Ind02.stVal	RMB2A	Channel A Receive MIRRORED BIT 2
-	-	RMBAGGIO21a	Ind03.stVal	RMB3A	Channel A Receive MIRRORED BIT 3
-	-	RMBAGGIO21a	Ind04.stVal	RMB4A	Channel A Receive MIRRORED BIT 4
-	-	RMBAGGIO21a	Ind05.stVal	RMB5A	Channel A Receive MIRRORED BIT 5
-	-	RMBAGGIO21a	Ind06.stVal	RMB6A	Channel A Receive MIRRORED BIT 6
-	-	RMBAGGIO21a	Ind07.stVal	RMB7A	Channel A Receive MIRRORED BIT 7
-	-	RMBAGGIO21a	Ind08.stVal	RMB8A	Channel A Receive MIRRORED BIT 8
-	-	TMBAGGIO22a	Ind01.stVal	TMB1A	Channel A Transmit MIRRORED BIT 1
-	-	TMBAGGIO22a	Ind02.stVal	TMB2A	Channel A Transmit MIRRORED BIT 2
-	-	TMBAGGIO22a	Ind03.stVal	TMB3A	Channel A Transmit MIRRORED BIT 3
-	-	TMBAGGIO22a	Ind04.stVal	TMB4A	Channel A Transmit MIRRORED BIT 4
-	-	TMBAGGIO22a	Ind05.stVal	TMB5A	Channel A Transmit MIRRORED BIT 5
-	-	TMBAGGIO22 ^a	Ind06.stVal	TMB6A	Channel A Transmit MIRRORED BIT 6
-	-	TMBAGGIO22a	Ind07.stVal	TMB7A	Channel A Transmit MIRRORED BIT 7
-	-	TMBAGGIO22 ^a	Ind08.stVal	TMB8A	Channel A Transmit MIRRORED BIT 8
-	-	RMBBGGIO23a	Ind01.stVal	RMB1B	Channel B Receive MIRRORED BIT 1
-	-	RMBBGGIO23a	Ind02.stVal	RMB2B	Channel B Receive MIRRORED BIT 2
-	-	RMBBGGIO23a	Ind03.stVal	RMB3B	Channel B Receive MIRRORED BIT 3
-	-	RMBBGGIO23 ^a	Ind04.stVal	RMB4B	Channel B Receive MIRRORED BIT 4

Table 6.11 Logical Device: ANN (Annunciation) (Sheet 13 of 14)

Logical	Logical Nodes by ICD Version				
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
-	-	RMBBGGIO23a	Ind05.stVal	RMB5B	Channel B Receive MIRRORED BIT 5
-	-	RMBBGGIO23a	Ind06.stVal	RMB6B	Channel B Receive MIRRORED BIT 6
-	-	RMBBGGIO23a	Ind07.stVal	RMB7B	Channel B Receive MIRRORED BIT 7
-	-	RMBBGGIO23a	Ind08.stVal	RMB8B	Channel B Receive MIRRORED BIT 8
-	-	TMBBGGIO24a	Ind01.stVal	TMB1B	Channel B Transmit MIRRORED BIT 1
-	-	TMBBGGIO24a	Ind02.stVal	TMB2B	Channel B Transmit MIRRORED BIT 2
-	-	TMBBGGIO24a	Ind03.stVal	TMB3B	Channel B Transmit MIRRORED BIT 3
-	-	TMBBGGIO24a	Ind04.stVal	TMB4B	Channel B Transmit MIRRORED BIT 4
-	-	TMBBGGIO24a	Ind05.stVal	TMB5B	Channel B Transmit MIRRORED BIT 5
-	-	TMBBGGIO24a	Ind06.stVal	TMB6B	Channel B Transmit MIRRORED BIT 6
-	-	TMBBGGIO24a	Ind07.stVal	TMB7B	Channel B Transmit MIRRORED BIT 7
-	-	TMBBGGIO24a	Ind08.stVal	TMB8B	Channel B Transmit MIRRORED BIT 8
-	-	MBOKGGIO25a	Ind01.stVal	ROKA	Channel A MIRRORED BIT Normal Status (non-loopback)
-	-	MBOKGGIO25a	Ind02.stVal	RBADA	Channel A MIRRORED BIT Outage Too Long
-	-	MBOKGGIO25a	Ind03.stVal	CBADA	Channel A MIRRORED BIT Unavailability
-	-	MBOKGGIO25a	Ind04.stVal	LBOKA	Channel A MIRRORED BIT Normal Status (loopback)
-	-	MBOKGGIO25a	Ind05.stVal	ANOKA	Channel A MIRRORED BIT Analog Transfer OK
-	-	MBOKGGIO25a	Ind06.stVal	DOKA	Channel A MIRRORED BIT Communications Normal Status
-	-	MBOKGGIO25 ^a	Ind07.stVal	ROKB	Channel B MIRRORED BIT Normal Status (non-loopback)
-	-	MBOKGGIO25 ^a	Ind08.stVal	RBADB	Channel B MIRRORED BIT Outage Too Long
-	-	MBOKGGIO25 ^a	Ind09.stVal	CBADB	Channel B MIRRORED BIT Unavailability
-	-	MBOKGGIO25a	Ind10.stVal	LBOKB	Channel B MIRRORED BIT Normal Status (loopback)

Table 6.11	Logical Device:	ANN (Annunciation	(Sheet 14 of 14)
------------	-----------------	-------------------	------------------

Logical Nodes by ICD Version					
Ver 001 Ver 002L	Ver 002	Ver 002 R116+	Attribute	Relay Word or Database Bit	Comment
-	-	MBOKGGIO25a	Ind11.stVal	ANOKB	Channel B MIRRORED BIT Analog Transfer OK
-	-	MBOKGGIO25a	Ind12.stVal	DOKB	Channel B MIRRORED BIT Communications Normal Status

^a Active data only if enhanced front panel installed.

Protocol Implementation Conformance Statement: SEL-400 Series Devices

The tables below are as shown in the IEC 61850 standard, Part 8-1, Section 24. Note that since the standard explicitly dictates which services and functions must be implemented to achieve conformance, only the optional services and functions are listed.

Table 6.12 PICS for A-Profile Support

	Profile	Client	Server	Value/Comment
A1	Client/Server	N	Y	
A2	GOOSE/GSE management	Y	Y	Only GOOSE, not GSSE management
A3	GSSE	N	N	
A4	Time Sync	N	N	

Table 6.13 PICS for T-Profile Support

	Profile	Client	Server	Value/Comment
T1	TCP/IP	N	Y	
T2	OSI	N	N	
Т3	GOOSE/GSE	Y	Y	Only GOOSE, not GSSE
T4	GSSE	N	N	
T5	Time Sync	N	N	

Refer to the ACSI Conformance Statements on page R.6.43 for information on the supported services.

MMS Conformance

The Manufacturing Message Specification (MMS) stack provides the basis for many IEC 61850 protocol services. Table 6.14 defines the service support requirement and restrictions of the MMS services in the SEL-400 series devices. Generally, only those services whose implementation is not mandatory are shown. Refer to the IEC 61850 standard Part 8-1 for more information.

b Active data only if additional I/O Card(s) installed.

Table 6.14 MMS Service Supported Conformance (Sheet 1 of 3)

W 0 0	Client-CR	Server-CR
MMS Service Supported CBB	Supported	Supported
status		Y
getNameList		Y
dentify		Y
rename		
read		Y
write		Y
getVariableAccessAttributes		Y
lefineNamedVariable		
defineScatteredAccess		
getScatteredAccessAttributes		
leleteVariableAccess		
defineNamedVariableList		
getNamedVariableListAttributes		Y
deleteNamedVariableList		
defineNamedType		
getNamedTypeAttributes		
deleteNamedType		
input		
output		
akeControl		
relinquishControl		
defineSemaphore		
deleteSemaphore		
reportPoolSemaphoreStatus		
reportSemaphoreStatus		
nitiateDownloadSequence		
downloadSegment		
terminateDownloadSequence		
nitiateUploadSequence		
uploadSegment		
terminateUploadSequence		
requestDomainDownload		
requestDomainUpload		
oadDomainContent		
storeDomainContent		
deleteDomain		
getDomainAttributes		Y
createProgramInvocation		
deleteProgramInvocation		
start		

Table 6.14 MMS Service Supported Conformance (Sheet 2 of 3)

MMS Service Supported CBB	Client-CR	Server-CR
MMS Service Supported CBB	Supported	Supported
stop		
resume		
reset		
kill		
get Program Invocation Attributes		
obtainFile		
defineEventCondition		
deleteEventCondition		
getEventConditionAttributes		
reportEventConditionStatus		
alterEventConditionMonitoring		
triggerEvent		
defineEventAction		
deleteEventAction		
alterEventEnrollment		
reportEventEnrollmentStatus		
getEventEnrollmentAttributes		
acknowledgeEventNotification		
getAlarmSummary		
getAlarmEnrollmentSummary		
readJournal		
writeJournal		
initializeJournal		
reportJournalStatus		
createJournal		
deleteJournal		
fileOpen		
fileRead		
fileClose		
fileRename		
fileDelete		
fileDirectory		
unsolicitedStatus		
informationReport		Y
eventNotification		
attachToEventCondition		
attachToSemaphore		
conclude		Y
cancel		Y
getDataExchangeAttributes		
	1	I

Protocol Implementation Conformance Statement: SEL-400 Series Devices

Table 6.14 MMS Service Supported Conformance (Sheet 3 of 3)

MMS Service Supported CBB	Client-CR	Server-CR
mm3 Service Supported CBB	Supported	Supported
exchangeData		
defineAccessControlList		
getAccessControlListAttributes		
reportAccessControlledObjects		
deleteAccessControlList		
alterAccessControl		
reconfigureProgramInvocation		

Table 6.15 lists specific settings for the MMS parameter Conformance Building Block (CBB).

Table 6.15 MMS Parameter CBB

MMS Parameter CBB	Client-CR	Server-CR
MMS Farameter CDD	Supported	Supported
STR1		Y
STR2		Y
VNAM		Y
VADR		Y
VALT		Y
TPY		Y
VLIS		Y
CEI		

The following variable access conformance statements are listed in the order specified in the IEC 61850 standard, Part 8-1. Generally, only those services whose implementation is not mandatory are shown. Refer to the IEC 61850 standard Part 8-1 for more information.

Table 6.16 AlternateAccessSelection Conformance Statement

AlternateAccessSelection -	Client-CR	Server-CR
	Supported	Supported
accessSelection		Y
component		Y
index		
indexRange		
allElements		
alternateAccess		Y
selectAccess		Y
component		Y
index		
indexRange		
allElements		

Table 6.17 VariableAccessSpecification Conformance Statement

Variable Access Checification	Client-CR	Server-CR
VariableAccessSpecification	Supported	Supported
listOfVariable		Y
variableSpecification		Y
alternateAccess		Y
variableListName		Y

Table 6.18 VariableSpecification Conformance Statement

VariableSpecification	Client-CR	Server-CR
variableSpecification	Supported	Supported
name		Y
address		
variableDescription		
scatteredAccessDescription		
invalidated		

Table 6.19 Read Conformance Statement

Read -	Client-CR	Server-CR
	Supported	Supported
Request		
specificationWithResult		
variableAccessSpecification		
Response		
variableAccessSpecification		Y
listOfAccessResult		Y

Table 6.20 GetVariableAccessAttributes Conformance Statement

GetVariableAccessAttributes -	Client-CR	Server-CR
	Supported	Supported
Request		
name		
address		
Response		
mmsDeletable		
address		
typeSpecification		

Table 6.21 DefineNamedVariableList Conformance Statement

DefineNamedVariableList -	Client-CR	Server-CR
	Supported	Supported
Request		
variableListName		
listOfVariable		
variableSpecification		
alternateAccess		
Response		

Table 6.22 GetNamedVariableListAttributes Conformance Statement

GetNamedVariableListAttributes -	Client-CR	Server-CR
	Supported	Supported
Request		
ObjectName		
Response		
mmsDeletable		Y
listOfVariable		Y
variableSpecification		Y
alternateAccess		Y

Table 6.23 DeleteNamedVariableList Conformance Statement

DeleteNamedVariableList -	Client-CR	Server-CR
Deletendilled validableList	Supported	Supported
Request		
Scope		
listOfVariableListName		
domainName		
Response		
numberMatched		
numberDeleted		
DeleteNamedVariableList-Error		

GOOSE Services Conformance Statement

Table 6.24 GOOSE Conformance

	Subscriber	Publisher	Value/Comment
GOOSE Services	Y	Y	
SendGOOSEMessage		Y	
GetGoReference			
GetGOOSEElementNumber			
GetGoCBValues		Y	
SetGoCBValues			
GSENotSupported			
GOOSE Control Block (GoCB)		Y	

ACSI Conformance Statements

Table 6.25 ACSI Basic Conformance Statement

		Client/Subscriber	Server/Publisher	SEL-487B Support			
Client-Server Roles							
B11	Server side (of Two-Party Application-Association)	-	c1 ^a	YES			
B12	Client side (of Two-Party Application-Association)	c1 ^a	_				
		SCMS Supported	'	'			
B21	SCSM: IEC 61850-8-1 used			YES			
B22	SCSM: IEC 61850-9-1 used						
B23	SCSM: IEC 61850-9-2 used						
B24	SCSM: other						
	Gene	ric Substation Event Mod	lel (GSE)	'			
B31	Publisher side	-	Op	YES			
B32	Subscriber side	O_p	-	YES			
Transmission of Sampled Value Model (SVC)							
B41	Publisher side	-	Op				
B42	Subscriber side	O_p	_				

 $^{^{\}rm a}\,$ c1 shall be mandatory if support for LOGICAL-DEVICE model has been declared. $^{\rm b}\,$ O = optional.

Table 6.26 ACSI Models Conformance Statement (Sheet 1 of 2)

		Client/Subscriber	Server/Publisher	SEL-487B Support	
If Server Side (B11) Supported					
M1	Logical device	c2a	c2a	YES	
M2	Logical node	c3b	c3b	YES	
M3	Data	c4 ^c	c4 ^c	YES	
M4	Data set	c5d	c5d	YES	
M5	Substitution	Oe	Oe		

Table 6.26 ACSI Models Conformance Statement (Sheet 2 of 2)

		Client/Subscriber	Server/Publisher	SEL-487B Support
M6	Setting group control	Oe	Oe	
		Reporting	•	
M7	Buffered report control	Oe	Oe	YES
M7-1	sequence-number			YES
M7-2	report-time-stamp			YES
M7-3	reason-for-inclusion			YES
M7-4	data-set-name			YES
M7-5	data-reference			YES
M7-6	buffer-overflow			YES
M7-7	entryID			YES
M7-8	BufTm			YES
M7-9	IntgPd			YES
M7-10	GI			YES
M8	Unbuffered report control	Oe	Oe	YES
M8-1	sequence-number			YES
M8-2	report-time-stamp			YES
M8-3	reason-for-inclusion			YES
M8-4	data-set-name			YES
M8-5	data-reference			YES
M8-6	BufTm			YES
M8-7	IntgPd			YES
M8-8	GI			
	Logging	Oe	Oe	
M9	Log control	Oe	Oe	
M9-1	IntgPd			
M10	Log	Oe	Oe	
M11	Control	Mf	Mf	YES
	•	If GSE (B31/32) Is Suppor	ted	
M12	GOOSE	Oe	Oe	YES
M12-1	entryID			YES
M12-2	DataReflnc			YES
M13	GSSE	Oe	Oe	
	•	If GSE (B41/42) Is Suppor	ted	•
M14	Multicast SVC	Oe	Oe	
M15	Unicast SVC	Oe	Oe	
M16	Time	Mf	Mf	
M17	File Transfer	Oe	Oe	

a c2 shall be "M" if support for LOGICAL-NODE model has been declared.

b c3 shall be "M" if support for DATA model has been declared.
c c4 shall be "M" if support for DATA-SET, Substitution, Report, Log Control, or Time model has been declared.
d c5 shall be "M" if support for Report, GSE, or SV models has been declared.

e O = optional

f M = mandatory

Table 6.27 ACSI Services Conformance Statement (Sheet 1 of 3)

	Services	AA: TP/MC	Client/ Subscriber	Server/Publisher	SEL-487B Support	
	Server (Clause 6)					
S1	ServerDirectory	TP		Ma	YES	
	•	Application	Association (Cla	use 7)		
S2	Associate		Ma	Ma	YES	
S3	Abort		Ma	M ^a	YES	
S4	Release		Ma	Ma	YES	
		Logica	l Device (Clause 8	3)		
S5	LogicalDeviceDirectory	TP	\mathbf{M}^{a}	\mathbf{M}^{a}	YES	
		Logica	al Node (Clause 9)		
S6	LogicalNodeDirectory	TP	\mathbf{M}^{a}	\mathbf{M}^{a}	YES	
S7	GetAllDataValues	TP	O_p	\mathbf{M}^{a}	YES	
		Da	ata (Clause 10)			
S8	GetDataValues	TP	M ^a	M ^a	YES	
S 9	SetDataValues	TP	O_p	O_p	YES	
S10	GetDataDirectory	TP	O_p	Ma	YES	
S11	GetDataDefinition	TP	O_p	M ^a	YES	
		Dat	a Set (Clause 11)			
S12	GetDataSetValues	TP	O_p	\mathbf{M}^{a}	YES	
S13	SetDataSetValues	TP	O_p	Op	YES	
S14	CreateDataSet	TP	O_p	O_p		
S15	DeleteDataSet	TP	O_p	Op		
S16	GetDataSetDirectory	TP	O_p	Op	YES	
		Subst	itution (Clause 12)		
S17	SetDataValues	TP	Ma	Ma		
		Setting Gr	oup Control (Clau	se 13)		
S18	SelectActiveSG	TP	O_p	O_p		
S19	SelectEditSG	TP	O_p	Op		
S20	SetSGvalues	TP	O_p	O_p		
S21	ConfirmEditSGVal	TP	Op	Op		
S22	GetSGValues	TP	Op	Op		
S23	GetSGCBValues	TP	O_p	Op		
		Repo	orting (Clause 14)			
Buffered Report Control Block (BRCB)						
S24	Report	TP	c6 ^c	c6 ^c	YES	
S24-1	data-change (dchg)				YES	
S24-2	qchg-change (qchg)				YES	
S24-3	data-update (dupd)					
S25	GetBRCBValues	TP	c6 ^c	c6 ^c	YES	
S26	SetBRCBValues	TP	c6 ^c	c6 ^c	YES	

Table 6.27 ACSI Services Conformance Statement (Sheet 2 of 3)

	Services	AA: TP/MC	Client/ Subscriber	Server/Publisher	SEL-487B Support	
Unbuffered Report Control Block (URCB)						
S27	Report	TP	c6 ^c	c6 ^c	YES	
S27-1	data-change (dchg)				YES	
S27-2	qchg-change (qchg)				YES	
S27-3	data-update (dupd)					
S28	GetURCBValues	TP	c6c	c6 ^c	YES	
S29	SetURCBValues	TP	c6 ^c	c6 ^c	YES	
		Log	ging (Clause 14)		'	
		Lo	g Control Block			
S30	GetLCBValues	TP	Ma	M ^a		
S31	SetLCBValues	TP	Op	Ma		
LOG						
S32	QueryLogByTime	TP	c7 ^d	$\mathbf{M}^{\mathbf{a}}$		
S33	QueryLogByEntry	TP	c7 ^d	\mathbf{M}^{a}		
S34	GetLogStatusValues	TP	Ma	Ma		
	Generic Sul	ostation Eve	ent Model (GSE) (Clause 14.3.5.3.4.)	'	
		G00	SE-Control-Block			
S35	SendGOOSEMessage	MC	c8e	c8e	YES	
S36	GetReference	TP	Op	c9 ^f		
S37	GetGOOSEElementNumber	TP	Op	c9 ^f		
S38	GetGoCBValues	TP	Op	Op	YES	
S39	SetGoCBValues	TP	Op	Op	Client/Sub ONLY	
		GSS	E-Control-Block			
S40	SendGSSEMessage	MC	c8e	c8e		
S41	GetReference	TP	Op	c9f		
S42	GetGSSEElementNumber	TP	Op	c9f		
S43	GetGsCBValues	TP	Op	Op		
S44	SetGsCBValues	TP	Op	Op		
	Transmiss	sion of Sam	ple Value Model (SVC) (Clause 16)		
	1	N	Multicast SVC	1	1	
S45	SendMSVMessage	MC	c10g	c10g		
S46	GetMSVCBValues	TP	O_p	Op		
S47	SetMSVCBValues	TP	Op	Op		
			Unicast SVC	1	1	
S48	SendUSVMessage	MC	c10g	c10g		
S49	GetUSVCBValues	TP	Op	Op		
S50	SetUSVCBValues	TP	Op	Op		
	1	Contr	ol (Clause 16.4.8)		1	
S51	Select		Ma	Op		
S52	SelectWithValue	TP	M ^a	Op		
S53	Cancel	TP	O_p	Ma	YES	

Table 6.27 ACSI Services Conformance Statement (Sheet 3 of 3)

	Services	AA: TP/MC	Client/ Subscriber	Server/Publisher	SEL-487B Support
S54	Operate	TP	Ma	Ma	YES
S55	Commmand-Termination	TP	Ma	Ma	
S56	TimeActivated-Operate	TP	Op	Op	
	'	File Tr	ansfer (Clause 20))	'
S57	GetFile	TP	Op	M ^a	
S58	SetFile	TP	Op	Op	
S59	DeleteFile	TP	Op	O_p	
S60	GetFileAttributeValues	TP	Op	M ^a	
T1	Time resolution of internal clock (nearest negative power of 2 in seconds)			2–10 (1 ms)	T1
T1		Tin	ne (Clause 5.5)	2–10 (1 ms)	T1
T2	Time accuracy of internal clock				10/9
	T1				YES
	T2				YES
	T3				YES
	T4				YES
	T5				YES
					
Т3	Supported TimeStamp resolution (nearest negative power of 2 in seconds)			2–10 (1 ms)	10

a M = Mandatory

b O = Optional

c c6 shall declare support for at least one (BRCB or URCB).

d c7 shall declare support for at least one (QueryLogByTime or QueryLogAfter).
e c8 shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage).

f c9 shall declare support if TP association is available.
g c10 shall declare support for at least one (SendMSVMessage or SendUSVMessage).

Section 7

ASCII Command Reference

Overview

You can use a communications terminal or terminal emulation program to set and operate the SEL-487B Relay. This section explains the commands that you send to the SEL-487B using SEL ASCII (American National Standard Code for Information Interchange) communications protocol. The relay responds to commands such as settings, metering, and control operations.

This section lists ASCII commands alphabetically. Commands, command options, and command variables that you enter are shown in bold. Lowercase italic letters and words in a command represent command variables that you determine based on the application (for example, Zone n = 1-6, remote bit number nn = 01-96, and level).

Command options appear with brief explanations about the command function. Refer to the references listed with the commands for more information on the relay function corresponding to the command or examples of the relay response to the command.

You can simplify the task of entering commands by shortening any ASCII command to the first three characters (upper- or lowercase); for example, ACCESS becomes ACC. Always send a carriage return <CR> character, or a carriage return character followed by a line feed character <CR><LF>, to command the relay to process the ASCII command. Usually, most terminals and terminal programs interpret the Enter key as a <CR>. For example, to send the ACCESS command, type ACC <Enter>. For more information on SEL ASCII protocol, including handshaking, see Section 4: SEL Communications Protocols.

Tables in this section show the access level(s) where the command or command option is active. Access levels in the SEL-487B are Access Level 0, Access Level 1, Access Level B (breaker), Access Level P (protection), Access Level A (automation), Access Level O (output), and Access Level 2. For information on access levels see *Changing the Default Passwords on page U.4.6*.

Description of Commands

2ACCESS

Use the **2AC** command to gain access to Access Level 2 (full relay control). See Access Levels on page U.4.6 for more information.

Table 7.1 2AC Command

Command	Description	Access Level
2AC	Go to Access Level 2 (full relay control).	1, B, P, A, O, 2

AACCESS

Use the **AAC** command to gain access to Access Level A (automation). See Access Levels for more information.

Table 7.2 AAC Command

Command	Description	Access Level
AAC	Go to Access Level A (automation).	1, B, P, A, O, 2

ACCESS

Use the ACC command to gain access to Access Level 1 (monitor). See Access Levels for more information.

Table 7.3 ACC Command

Command	Description	Access Level
ACC	Go to Access Level 1 (monitoring).	0, 1, B, P, A, O, 2

BACCESS

Use the **BAC** command to gain access to Access Level B (breaker). See Access Levels for more information.

Table 7.4 BAC Command

Command	Description	Access Level
BAC	Go to Access Level B (breaker).	1, B, P, A, O, 2

BNAME

In response to the BNA command, the relay displays the ASCII names of all relay status bits for Fast Meter Compressed ASCII. See Section 4: SEL Communications Protocols for more information on Fast Meter and the Compressed ASCII command set.

Table 7.5 BNA Command

Command	Description	Access Level
BNA	Display ASCII names of all relay status bits for Fast Meter.	0, 1, B, P, A, O, 2

CAL

Use the CAL command to gain access to Access Level C. See Access Levels on page U.4.6 for more information. Only go to Level C to modify the default password or under the direction of an SEL employee. The additional commands available at Level C are not intended for normal operational purposes.

Table 7.6 CAL Command

Command	Description	Access Level
CAL	Go to Access Level C.	2, C

CASCII

CEVENT

In response to the CAS command, the relay displays the Compressed ASCII configuration message. This configuration instructs an external computer on the method for extracting data from other Compressed ASCII commands. See Section 4: SEL Communications Protocols for an example of the CAS command configuration message and for further information on the Compressed ASCII command set.

Table 7.7 CAS Command

Command	Description	Access Level
CAS	Return the Compressed ASCII configuration message.	0, 1, B, P, A, O, 2

Three CEVENT commands CEV, CEV R, and CEV RD, each with options and combinations of the options, provide different formats of the same event data in the relay. *Table 7.8* defines the differences among the three commands.

Table 7.8 CEV Commands

Command	Definition
CEV	Display filtered analog and digital data at 4-samples/cycle in Compressed ASCII format.
CEV R	Display unfiltered analog and digital data at 24-samples/cycle in Compressed ASCII format.
CEV RD	Display a combination of unfiltered analog and digital data at 24-samples/cycle and filtered differential element analog data at 12-samples/cycle in Compressed ASCII format.

Table 7.9 CEV Command Options

Command	Options
CEV	na, ACK, C, L, Ly, NEXT, NSET, Sx, TERSE

^a Parameter n indicates event order or serial number; see EVENT on page R.7.14.

When parameter n is 1 through 100, n indicates the order of the event report. The most recent event report is 1, the next most recent report is 2, and so on. When parameter n is 10000 through 42767, n indicates the unique serial number of the event report. For example, event number 10475 keeps this unique number. The position of event 10475 could be anywhere between 1 and 100.

Except for the CEV ACK command, all other command options may be grouped when using the CEV command.

Table 7.10 CEV Command Options Description (Sheet 1 of 2)

Command	Description	Access Level
CEV	Return the most recent event report (including settings and summary) at full length with 4-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV na	Return particular <i>n</i> event report (including settings and summary) at full length with 4-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2

Table 7.10 CEV Command Options Description (Sheet 2 of 2)

Command	Description	Access Level
CEV ACK	Acknowledge the oldest unacknowledged event at the present communications port.	1, B, P, A, O, 2
CEV C	Return the most recent event report at full length with 12-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV L	Return the most recent event report at full length with 12-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV Ly	Return y cycles of the most recent event report (including settings) with 4-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV na L	Return particular <i>n</i> event report (including settings and summary) as full-length with 12-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV NEXT	Return the oldest unacknowledged event report with 4-samples/cycle sampling in Compressed ASCII format.	1, B, P, A, O, 2
CEV NSET	Return the most recent event report without settings at full length with 4-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV Sxb	Return the most recent event report at full length with <i>x</i> -samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV TERSE	Return the most recent event report at full length without the report labels with 4-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2

^a Parameter n indicates event order or serial number; see EVENT on page R.7.14.

CEVENT R

Use the **CEV R** command to display an unfiltered 24-samples/cycle event report. *Table 7.11* shows the **CEV R** command options. You can combine options *n*, **Ly**, **NSET**, and **TERSE** in one command, entered in any order.

Table 7.11 CEV R Command Options

Command	Options
CEV R	na, Ly, NSET, TERSE

^a Parameter n indicates event order or serial number; see EVENT on page R.7.14.

b x = 4 or 12.

Table 7.12 CEV R Command Options Description

Command	Description	Access Level
CEV R	Return the most recent unfiltered event report at full length with 24-samples/cycle data.	1, B, P, A, O, 2
CEV R n ^a	Return a particular <i>n</i> unfiltered event report at full length with 24-samples/cycle.	1, B, P, A, O, 2
CEV R Ly	Return <i>y</i> cycles of the most recent event report with 24-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV R NSET	Return the most recent event report without settings at full length with 24-samples/cycle data in Compressed ASCII format.	1, B, P, A, O, 2
CEV R TERSE	Return the most recent event report at full length without the report labels with 24-samples/cycle data in Compressed ASCII format	1, B, P, A, O, 2

^a Parameter n indicates event order or serial number; see EVENT on page R.7.14.

CEVENT RD

Use the CEV RD command to display unfiltered 24-samples/cycle analog and digital values and 12-samples/cycle differential data. You can combine options n, Ly, NSET, and TERSE in one command, entered in any order. Table 7.13 shows the CEV RD command options.

Table 7.13 CEV RD Command Options

Command	Options
CEV RD	n ^a , Ly, NSET, TERSE

^a Parameter n indicates event order or serial number; see EVENT on page R.7.14.

Table 7.14 CEV RD Command Options Description

Command	Description	Access Level
CEV RD	Return the most recent unfiltered event report at full length with 24-samples/cycle analog and digital data and 12-samples/cycle analog differential data in Compressed ASCII format.	1, B, P, A, O, 2
CEV RD n	Return event number <i>n</i> unfiltered event report at full length with 24-samples/cycle analog and digital data and 12-samples/cycle analog differential data in Compressed ASCII format.	1, B, P, A, O, 2
CEV RD Ly	Return the first y cycles of the most recent unfiltered event report with 24-samples/cycle analog and digital data and 12-samples/cycle analog differential data in Compressed ASCII format.	1, B, P, A, O, 2
CEV RD NSET	Return the most recent unfiltered event report without settings at full length with 24-samples/cycle analog and digital data and 12-samples/cycle analog differential data in Compressed ASCII format.	1, B, P, A, O, 2
CEV RD TERSE	Return the most recent unfiltered event report without report labels at full length with 24-samples/cycle analog and digital data and 12-samples/cycle analog differential data in Compressed ASCII format.	1, B, P, A, O, 2

CHISTORY

The **CHISTORY** command is the **HISTORY** command for the Compressed ASCII command set. See *Section 4: SEL Communications Protocols* for information on the Compressed ASCII command set. For a detailed example of the items in the Compressed ASCII history report, see *Section 3: Analyzing Data in the Applications Handbook*.

CHI

Use the **CHI** command to gather one-line descriptions of event reports. Combine parameters **A** and k to display the summary description of event number k, for example, **CHI A 3**.

Table 7.15 CHI Command

Command	Description	Access Level
СНІ	Return the data as contained in the History report for the most recent 20 event reports in Compressed ASCII format (for SEL-2030/2032 compatibility).	1, B, P, A, O, 2
CHI k	Return one-line descriptions of the most recent <i>k</i> number of event reports in Compressed ASCII format.	1, B, P, A, O, 2
СНІ А	Return summary descriptions of available event reports in Compressed ASCII format (returns long form report).	1, B, P, A, O, 2

CHI TERSE

The **CHI TERSE** command returns a Compressed ASCII event report without the event report header label lines. Combine parameters \mathbf{A} and \mathbf{k} to display the summary description of event number \mathbf{k} .

Table 7.16 CHI TERSE Command

Command	Description	Access Level
CHI TERSE	Return one-line descriptions for the most recent 20 event reports without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
CHI k TERSE	Return one-line descriptions for the most recent <i>k</i> number of event reports without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
CHI A TERSE	Return summary descriptions of all available event reports without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2

COMMUNICATIONS

The **COMMUNICATIONS** command displays communications statistics for the MIRRORED BITS® communications channels. For more information on MIRRORED BITS communications, see *SEL MIRRORED BITS Communications* on page R.4.14.

COM c

Use the **COM** *c* command to view records in the communications buffers for specific relay communications channels.

Table 7.17 COM c Commanda

Command	Description	Access Level
COM A	Return a summary report of the last 255 records in the communications buffer for MIRRORED BITS communications Channel A.	1, B, P, A, O, 2
СОМ В	Return a summary report of the last 255 records in the communications buffer for MIRRORED BITS communications Channel B.	1, B, P, A, O, 2
COM M	Return a summary report of the last 255 records in the communications buffer for either MIRRORED BITS communications Channel A or Channel B when only one channel is enabled.	1, B, P, A, O, 2

a Parameter c is A, B, or M for Channel A, Channel B, and MIRRORED BITS communications channels, respectively.

The c option in the **COM** command is **A** for MIRRORED BITS communications Channel A, B for MIRRORED BITS communications Channel B, and M for the MIRRORED BITS communications channels in general. If both MIRRORED BITS communications channels are in use, then the M option does not function and you must specify A or B.

COM c C and COM c R

The COM c C and COM c R commands clear the communications buffer data for the specified channel c. Options C and R are identical.

Table 7.18 COM c C and COM c R Commanda

Command	Description	Access Level
COM A C	Clear communications buffer data for MIRRORED BITS communications Channel A.	P, A, O, 2
COM B R	Clear communications buffer data for MIRRORED BITS communications Channel B.	P, A, O, 2
СОМ М С	Clear communications buffer data for both MIRRORED BITS communications Channel A or Channel B when only one channel is enabled.	P, A, O, 2

^a Parameter c is A, B, or M for Channel A, Channel B, and MIRRORED BITS communications channels, respectively.

COM c L m n and COM c L date1 date2

Use **COM** c L to list the records in the communications buffer in a specified manner. The relay returns the list of records in rows. You can specify a range of buffer records in forward or reverse chronological order or in forward or reverse date order. Date parameter entries depend on the setting DATE_F format you chose in the relay Global settings. See Section 8: Settings for more information.

The relay displays the records based on the last 255 records in newest to oldest time order. The relay puts the newest record in the buffer and discards the oldest record if the buffer is full.

Table 7.19 is a representative list of options for listing records in the communications buffer.

Table 7.19 COM c L Commanda

Command	Description	Access Level
COM A L	Display all available records from MIRRORED BITS communications Channel A; the most recent record is Row 1 (at the top of the report) and the oldest record is at the bottom of the report.	1, B, P, A, O, 2
COM B L k ^b	Display the first <i>k</i> records for MIRRORED BITS communications Channel B; the most recent record is Row 1 (at the top of the report) and the oldest record is at the bottom of the report.	1, B, P, A, O, 2
COM M L m n ^c	Display the records for either MIRRORED BITS communications Channel A or Channel B when only one channel is enabled; show the records with Record <i>m</i> at the top of the report through Record <i>n</i> at the bottom of the report.	1, B, P, A, O, 2
COM A L date1d	Display the records from MIRRORED BITS communications Channel A on <i>date1</i> .	1, B, P, A, O, 2
COM B L date1 date2d	Display the records from MIRRORED BITS communications Channel B between <i>date1</i> and <i>date2</i> . The date listed first, <i>date1</i> , is at the top of the report; the date listed second, <i>date2</i> , is at the bottom of the report.	1, B, P, A, O, 2

^a Parameter c is A, B, or M for Channel A, Channel B, and MIRRORED BITS communications channels, respectively.

CONTROL nn

Use the **CONTROL** *nn* command to set, clear, or pulse internal Relay Word bits RB01 through RB96 (Remote Bit 1 through Remote Bit 96). Remote bits in SELOGIC control equations are similar to hardwired control inputs, in that you use these bits to affect relay operation from outside sources. For hard-wired control inputs, external input to the relay comes through the rear panel; in the case of the **CON** *nn* command, external control signals come through the communications ports. See *Section 4: SEL Communications Processor Applications in the Applications Handbook* for information on remote bits.

Table 7.20 CON nn Commanda

Command	Description	Access Level
CON nn C	Clear Remote Bit nn.	P, A, O, 2
CON nn P	Pulse Remote Bit <i>nn</i> for one processing cycle.	P, A, O, 2
CON nn S	Set Remote Bit nn.	P, A, O, 2

^a Parameter nn is a number from 01 to 96 representing Remote Bit 01 through Remote Bit 96.

If you enter **CON** *nn* with no set, clear, or pulse option specified, the relay responds:

Control RBnn:

^b Parameter k indicates a specific number of communications buffer records.

c Parameters m and n are communications buffer row numbers.

^d Enter date1 and date2 in the same format as specified by Global setting DATE_F.

You must then provide the control action (set, clear, or pulse) that you want to perform. (The relay checks only the first character; you can type Set and Clear.) When you issue a valid CON command, the relay performs the control action immediately and displays the following:

Remote Bit Operated

COPY

The **COPY** command copies the settings from one class instance to another instance in the same class. For example, you can copy Group settings from Group 1 to Group 2. You cannot copy Group settings to Port settings.

This command is limited to the same access level as the **SET** command for the class of settings you are copying. Use the command order specified in *Table 7.21*.

Table 7.21 COPY Command

Command	Description	Access Level
COPY m na	Copy settings from instance <i>m</i> of the Group settings to instance <i>n</i> of the Group settings.	P, A, O, 2
COPY class m nb	Copy settings from instance <i>m</i> of Class <i>class</i> to instance <i>n</i> of Class <i>class</i> .	P, A, O, 2

Parameters m and n are 1 to 6 for the Group class and 1, 2, 3, and F for the Port class.

The parameters m and n must be valid and distinct (not the same) instance numbers. The *class* parameter is the class that you can choose from group (S), port (P), protection SELOGIC control equations (L), and zone (Z). The COPY command is not available within the Automation class.

In addition, port settings instances must be compatible; you cannot copy from/to Port 5 and the other communications ports settings. You cannot copy to a port that is presently in transparent communication. In addition, you cannot copy to the present port (the port you are using to communicate with the relay).

When you enter the **COPY** command with valid parameters, the relay responds as follows:

Are you sure (Y/N)?

Answer Y **<Enter>** (for yes) to complete copying.

If the copy is successful, the relay pulses the SALARM Relay Word bit for one second.

CSER

The CSER command is the SER command for the Compressed ASCII command set. See SEL Compressed ASCII Commands on page R.4.4 for information on the Compressed ASCII command set. The default order of the **CSER** command (chronologically newest to oldest from list top to list bottom) is the reverse of the **SER** command (oldest to newest from list top to list bottom). For a detailed example of the items in the Compressed ASCII SER report, see SER (Sequential Events Recorder) on page A.3.31.

^b Parameter class is S, P, L, and Z for group settings, port settings, protection SELogic® control equations, and zone settings, respectively.

CSE

Use the **CSE** command to gather Sequential Events Recorder records. You can sort these records in numerical or date order.

Table 7.22 CSE Command

Command	Description	Access Level
CSE	Return all records from the Sequential Events Recorder in Compressed ASCII format, with the most recent (lowest number) at the beginning of the list and the oldest (highest number) at the end of the list.	1, B, P, A, O, 2
CSE k ^a	Return the <i>k</i> most recent records from the Sequential Events Recorder in Compressed ASCII format, with the most recent (lowest number) at the beginning of the list and the oldest (highest number) at the end of the list.	1, B, P, A, O, 2
CSE m n ^b	Return the Sequential Events Recorder records in Compressed ASCII format from <i>m</i> to <i>n</i> .	1, B, P, A, O, 2
	If m is greater than n , then records appear with the oldest (highest number) at the beginning of the list and the most recent (lowest number) at the end of the list.	
	If <i>m</i> is less than <i>n</i> , then records appear with the most recent (lowest number) at the beginning of the list and the oldest (highest number) at the end of the list.	
CSE date1°	Return the Sequential Events Recorder records in Compressed ASCII format on <i>date1</i> .	1, B, P, A, O, 2
CSE date1 date2°	Return the Sequential Events Recorder records in Compressed ASCII format from <i>date1</i> to <i>date2</i> .	1, B, P, A, O, 2

^a Parameter k indicates a specific number of SER records.

CSE TERSE

The **CSE TERSE** command returns a Sequential Events Recorder report in Compressed ASCII format without labels; the relay sends only the data. You can apply the **TERSE** option with any of the **CSE** commands.

Table 7.23 CSE TERSE Command (Sheet 1 of 2)

Command	Description	Access Level
CSE TERSE	Return all Sequential Events Recorder records without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
CSE k TERSE ^a	Return the <i>k</i> most recent Sequential Events Recorder records without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2

^b Parameters m and n indicate an SER record number.

c Enter date1 and date2 in the same format as specified by Global setting DATE_F.

Table 7.23 CSE TERSE Command (Sheet 2 of 2)

Command	Description	Access Level
CSE m n TERSEb	Return the Sequential Events Recorder records in Compressed ASCII format from <i>m</i> to <i>n</i> without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
	If <i>m</i> is greater than <i>n</i> , then records appear with the oldest (highest number) at the beginning of the list and the most recent (lowest number) at the end of the list.	
	If <i>m</i> is less than <i>n</i> , then records appear with the most recent (lowest number) at the beginning of the list and the oldest (highest number) at the end of the list.	
CSE date1 TERSE°	Return the Sequential Events Recorder records in Compressed ASCII format on <i>date1</i> without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
CSE date1 date2 TERSE ^c	Return the Sequential Events Recorder records in Compressed ASCII format from <i>date1</i> to <i>date2</i> without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2

a Parameter k indicates a specific number of SER records.

CSTATUS

The CSTATUS command is the STATUS command for the Compressed ASCII command set. The **TERSE** option eliminates the report header label lines. See Section 4: SEL Communications Protocols for information on the Compressed ASCII command set. For an example of the CST command, see Figure 6.34 on page U.6.35.

Table 7.24 CST Command

Command	Description	Access Level
CST	Return the relay status in Compressed ASCII.	1, B, P, A, O, 2
CST TERSE	Return the relay status in Compressed ASCII; suppress the header label lines and transmit only the data lines.	1, B, P, A, O, 2

CSUMMARY

The CSUMMARY command is the SUMMARY command for the Compressed ASCII command set. CSUMMARY supports the following parameters: ACK, MB, n, NEXT, and TERSE. See Section 4: SEL Communications Protocols for information on the Compressed ASCII command set. For a detailed example of the items in the Compressed ASCII summary report, see Figure 3.14 on page A.3.27.

CSU

Use the **CSU** command to gather event report summaries.

b Parameters m and n indicate an SER record number.

c Enter date1 and date2 in the same format as specified by Global setting DATE_F.

Table 7.25 CSU Command

Command	Description	Access Level
CSU	Return the most recent event summary (with header label lines) in Compressed ASCII format.	1, B, P, A, O, 2
CSU na	Return a particular <i>n</i> event summary (with header label lines) in Compressed ASCII format.	1, B, P, A, O, 2

a Parameter n indicates event order or serial number.

When parameter n is 1 through 100, n indicates the order of the event report. The most recent event report is 1, the next most recent report is 2, and so on. When parameter n is 10000 through 42767, n indicates the absolute serial number of the event report.

CSU ACK

Use the **CSU ACK** command to acknowledge an event summary that you recently retrieved with the **CSU NEXT** command on the present communications port.

Table 7.26 CEV ACK Command

Command	Description	Access Level
CSU ACK	Acknowledge the oldest unacknowledged event summary at the present communications port for Compressed ASCII format.	1, B, P, A, O, 2

CSU MB

The **CSU MB** command causes the relay to output the labels for the MIRRORED BITS communications channel data in Compressed ASCII format.

Table 7.27 CSU MB Command

Command	Description	Access Level
CSU MB	Return the MIRRORED BITS communications channel labels.	1, B, P, A, O, 2

CSU NEXT

Use the **CSU NEXT** command to view the oldest unacknowledged event summary in Compressed ASCII format.

Table 7.28 CSU NEXT Command

Command	Description	Access Level
CSU NEXT	View the oldest unacknowledged event summary.	1, B, P, A, O, 2

CSU TERSE

The **TERSE** command option returns an event summary report in Compressed ASCII format without header labels; the relay sends only the data.

Table 7.29 CSU TERSE Command

Command	Description	Access Level
CSU TERSE	Return the most recent event summary report without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
CSU n TERSE ^a	Return a particular <i>n</i> event summary report without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2
CSU N TERSE	View the oldest unacknowledged event summary without the header label lines in Compressed ASCII format.	1, B, P, A, O, 2

a Parameter n indicates event number or serial order.

You can apply the **TERSE** option with any of the **CSU** commands except CSU ACK and CSU MB.

Use the **DATE** command to view and set the relay date. The relay can overwrite the date that you enter by using other time sources such as IRIG and DNP; see Configuring Timekeeping on page U.4.49 for information. Enter the **DATE** command with a date to set the internal clock date. You can separate the month, day, and year parameters with spaces, commas, slashes, colons, and semicolons.

Set the year in 2-digit form (for dates 2000–2099) or 4-digit form. If you enter the year as 12, the relay date is 2012. Global setting DATE_F sets the date format; see Section 8: Settings for more information.

Table 7.30 DATE Command

Command	Description	Access Level
DATE	Display the internal clock date.	1, B, P, A, O, 2
DATE date ^a	Set the internal clock date.	1, B, P, A, O, 2

^a Enter date setting in the same format as specified by Global setting DATE_F.

DNAME X

The **DNA X** command produces the ASCII names of all relay digital I/O (input/output) quantities reported in a Fast Meter message in Compressed ASCII format. See SEL Fast Meter, Fast Operate, and Fast SER Messages on page R.4.8 for more information on SEL Fast Meter.

Table 7.31 DNA X Command

Command	Description	Access Level
DNA X	Display ASCII names of all relay digital I/O.	0, 1, B, P, A, O, 2

DNP

The **DNP** command is only available if DNP3 has been selected as the protocol on one of the serial ports. Use the **DNP** command to access the DNP3 settings. The **DNP** command is similar to the **SHOW D** and **SET D** commands. Type **DNP <Enter>** to show the relay DNP3 map beginning at the first setting label. Issue the **DNP** command with any parameter param to set the DNP3 settings; the relay begins at the first DNP3 setting. For more information, see the **SET D** command and *Section 5: DNP3 Communications*.

Table 7.32 DNP Command

Command	Description	Access Level
DNP	Show the serial port DNP3 settings (same as SHOW D).	1, B, P, A, P, O, 2
DNP VIEW	Show the serial port DNP3 settings (same as SHOW D).	1, B, P, A, P, O, 2
DNP param	Set the serial port DNP3 settings (same as SET D); begin at the first DNP3 setting.	P, A, O, 2

EVENT

Two **EVENT** commands **EVE** and **EVE R**, each with options and combinations of the options, provide reports in different formats of the same event data in the relay.

Table 7.33 EVE Command Options

Command	Options
EVE	n, A, ACK, C, D, DIF, L, Ly, NEXT, NSET, NSUM, Sx

When parameter n is 1 through 100, n indicates the order of the event report. The most recent event report is 1, the next most recent report is 2, and so on. When parameter n is 10000 through 42767, n indicates the absolute serial number of the event report.

Except for the **EVE ACK** command, all other command options may be grouped when using the **EVE** command. Enter the options according to the following guidelines:

- ➤ The Ly option overrides the C option.
- \triangleright The **S***x* option overrides the **L** option.
- ➤ When choosing option **A** or option **D** as a report type, you cannot use option **C** to specify the report length at 15 cycles. Use option **Ly** at L15 to specify a 15-cycle report.
- ➤ Enter the options in any order.

Table 7.34 EVE Command Options Description (Sheet 1 of 2)

Command	Description	Access Level
EVE	Return the most recent event report (including settings and summary) at full length with 4-samples/cycle data.	1, B, P, A, O, 2
EVE ACK	Acknowledge the oldest unacknowledged event at the present communications port.	1, B, P, A, O, 2
EVE n	Return a particular <i>n</i> event report (including settings and summary) at full length with 4-samples/cycle data.	1, B, P, A, O, 2
EVE A	Return only the analog information for the most recent event report with 4-samples/cycle data.	1, B, P, A, O, 2
EVE C	Return the most recent event report at full length with 12-samples/cycle data.	1, B, P, A, O, 2
EVE D	Return only the digital information for the most recent event report with 4-samples/cycle data.	1, B, P, A, O, 2
EVE DIF	Return the differential information for the most recent event report with 4-samples/cycle data.	1, B, P, A, O, 2

Table 7.34 EVE Command Options Description (Sheet 2 of 2)

Command	Description	Access Level
EVE L	Return the most recent event report at full length with 12-samples/cycle data.	1, B, P, A, O, 2
EVE Ly	Return y cycles of the most recent event report with 4-samples/cycle data.	1, B, P, A, O, 2
EVE NEXT	Return the oldest unacknowledged event report with 4-samples/cycle data.	1, B, P, A, O, 2
EVE NSET	Return the most recent event report without settings at full length with 4-samples/cycle data.	1, B, P, A, O, 2
EVE NSUM	Return the most recent event report without the event summary at full length with 4-samples/cycle data.	1, B, P, A, O, 2
EVE Sxa	Return the most recent event report at full length with <i>x</i> -samples/cycle data.	1, B, P, A, O, 2

a Where x = 4 or 12.

EVENT R

Use the EVE R command to display an unfiltered 24-samples/cycle event report. Table 7.35 shows the EVE R command options.

Table 7.35 EVE R Command Options

Command	Options
EVE R	n, A, D, Ly, NSET, NSUM

Table 7.36 EVE R Command Options Description

Command	Description	Access Level
EVE R	Return the most recent unfiltered event report at full length with 24-samples/cycle data	1, B, P, A, O, 2
EVE R n ^a	Return a particular <i>n</i> unfiltered event report at full length with 24-samples/cycle data.	1, B, P, A, O, 2
EVE R A	Return only the analog information for the most recent event report with 24-samples/cycle data.	1, B, P, A, O, 2
EVE R D	Return only the digital information for the most recent event report with 24-samples/cycle data.	1, B, P, A, O, 2
EVE R Ly	Return y cycles of the most recent event report with 24-samples/cycle data.	1, B, P, A, O, 2
EVE R NSET	Return the most recent event report without settings at full length with 24-samples/cycle data.	1, B, P, A, O, 2
EVE R NSUM	Return the most recent event report without the event summary at full length with 24-samples/cycle data.	1, B, P, A, O, 2

^a Parameter n indicates event order or serial number; see EVENT on page R.7.14

FILE

Use the Ymodem protocol with the FILE command to transfer files between intelligent electronic devices (IEDs) and external support software (ESS). For more information on the FILE command, see Virtual File Interface on page R.4.11.

Command	Description	Access Level
FILE DIR [directory1 [directory2]]	Returns a list of filenames in specified directory (<i>directory1</i>) and subdirectory (<i>directory2</i>). If neither parameter is specified, then the list of files and directories in the root directory is returned.	1, B, P, A, O, 2
FILE READ [directory1 [directory2]] filename	Initiates a file transfer of the file <i>filename</i> (in the folder <i>directory1</i> , subdirectory <i>directroy2</i>) from the relay to external support software. The <i>filename</i> parameter is required.	1, B, P, A, O, 2
FILE WRITE SETTINGS [directory1 [directory2]] [filename]	Initiates a file transfer of the file <i>filename</i> (in the folder SETTINGS, subdirectory <i>directory</i>) from external support software to the relay. If the <i>filename</i> parameter is not specified, the file name must be given in the Ymodem header.	P, A, O, 2

All text enclosed in [brackets] indicate optional command line parameters. The **FILE** command allows access to second level subdirectories as the optional *directory2* parameter.

File directories in the SEL-487B are the EVENTS directory, the REPORTS directory, and the SETTINGS directory. For FILE READ operations, specify the *directory1* (and *directory2*) parameters as needed. The **FILE WRITE** command is available only for the SETTINGS directory and its second level subdirectories. Parameter filename is optional for **FILE WRITE** operations. When using the **FILE WRITE** command, use only file names that already exist in the relay.

Use the **GROUP** command to view the present group number or to change the active group.

Table 7.38 GROUP Command

Command	Description	Access Level
GROUP	Display the presently active group.	1, B, P, A, O, 2
GROUP na	Change the active group to Group n .	B, P, A, O, 2

^a Parameter n indicates group numbers 1-6.

When you change the active group, the relay sends the following confirmation prompt:

Are you sure (Y/N)?

Answer **Y <Enter>** to change the active group. The relay asserts the Relay Word bit SALARM for one second when you change the active group.

If any of the SELOGIC control equations SS1–SS6 are set when you issue the **GROUP** *n* command, the group change will fail, because the SS1–SS6 settings have priority. For information on SELOGIC control equations SS1 through SS6, see *Settings Structure on page U.4.12*.

The **HELP** command gives a list of commands available at the present access level. You can also get a description of any particular command; type **HELP** followed by the name of the command for help on each command. For information on access levels and passwords, see *Access Levels on page U.4.6*.

GROUP

HELP

Table 7.39 HELP Command

Command	Description	Access Level
HELP	Display a list of each command available at the present access level with a one-line description.	1, B, P, A, O, 2
HELP command	Display information on the command command.	1, B, P, A, O, 2

HISTORY

The **HISTORY** command displays a quick synopsis of the last 100 events that the relay has captured. The rows in the HISTORY report contain the event number, date, time, event, active group, and targets. See Event History on page A.3.27 for the **HISTORY** report format.

HIS

Use the HIS command to list one-line descriptions of relay events. You can list event histories by number or by date.

Table 7.40 HIS Command

Command	Description	Access Level
HIS	Return event histories with the oldest at the bottom of the list and the most recent at the top of the list.	1, B, P, A, O, 2
HIS ka	Return the <i>k</i> most recent event histories with the oldest at the bottom of the list and the most recent at the top of the list.	1, B, P, A, O, 2
HIS date1b	Return the event histories on date1.	1, B, P, A, O, 2
HIS date1 date2b	Return the event histories from <i>date1</i> to <i>date2</i> , with <i>date1</i> at the bottom of the list and <i>date2</i> at the top of the list.	1, B, P, A, O, 2

a Parameter k indicates number of events.

HIS C and HIS R

The HIS C and HIS R commands clear the history data and corresponding event report data on the present port. Options C and R are identical.

Table 7.41 HIS C and HIS R Commands

Command	Description	Access Level
HIS C	Clear event data on the present port only.	1, B, P, A, O, 2
HIS R	Clear event data on the present port only.	1, B, P, A, O, 2

When you issue the HIS C and HIS R commands, the relay sends the following prompt:

Are you sure (Y/N)?

If you answer **Y <Enter>**, the relay clears the present port history data.

b Enter date1 and date2 in the same format as specified by Global setting DATE_F.

HIS CA and HIS RA

The **HIS CA** and **HIS RA** commands clear all history data and event reports from memory. Use these commands to completely delete event report data captures.

Table 7.42 HIS CA and HIS RA Commands

Command	Description	Access Level
HIS CA	Clear all event data for all ports.	P, A, O, 2
HIS RA	Clear all event data for all ports.	P, A, O, 2

If you issue the **HIS CA** and **HIS RA** commands, the relay sends the following prompt:

Are you sure (Y/N)?

If you answer **Y <Enter>**, the relay clears all history data and event reports. The relay resets the event report number to 10000.

Use the **ID** command to extract relay identification codes.

Table 7.43 ID Command

Command	Description	Access Level
ID	Return a list of relay identification codes.	0, 1, B, P, A, O, 2

Each line of the **ID** command report contains an identification code and a line checksum. The relay presents these codes in the following order:

FID: the Firmware Identification string

BFID: the Boot Firmware Identification string

CID: the checksum of the firmware

DEVID: the RID string as stored in the relay settings

DEVCODE: a unique Device Code (for SEL-2020/2030/2032 Modbus[®] identification purposes)

PARTNO: the Part Number CONFIG: abcdef (a0c000)

The designator positions indicate a specific relay configuration:

"a" represents the nominal frequency; where 1 = 60 Hz, and 2 = 50 Hz.

"b" represents the phase rotation; where 0 = N/A.

"c" represents the phase input current scaling; where 1 = 5 A, and 2 = 1 A.

"d" represents the neutral input current scaling; where 0 = N/A.

"e" represents the voltage input connection; where 0 = N/A.

"f" represents the current input connection; where 0 = N/A.

SPECIAL: the Special Configuration Designators—a mechanism for anticipating future product enhancements

CARD5FID: the Ethernet card Firmware Identification string

ID

CARD5BFID: the Ethernet card Boot Firmware Identification string CARD5PARTNO: the Ethernet card Part Number

A sample **ID** command response is shown in *Figure 7.1*.

```
"FID=SEL-487B-R102-V0-Z001001-D20030724","08E1"
"BFID=SLBT-4XX-R100-V0-Z001001-D20030703","0972"
"CID=88D0","0261"
"DEVID=Relay 1","0467"
"DEVCODE=42","030D"
"PARTNO=0487B06512XEXXXXH","06E4"
"CONFIG=101000","0385"
"SPECIAL=00000","039E"
"CARD5FID=SEL-2702-R103-V0-Z001001-D20070223","0A1B"
"CARD5BFID=SLBT-2701-R102-V0-Z000000-D20051107","0AAA"
"CARD5PARTNO=2702A0P","055C"
```

Figure 7.1 Sample ID Command Response

If the device supports IEC 61850 ICD or CID files and the IEC 61850 protocol is enabled, the ID command will display the following additional information:

- ➤ iedName: the IED name (e.g., SEL-487B OtterTail)
- type: the IED type (e.g., SEL-487B)
- configVersion: the CID file configuration version (e.g., ICD-487B-R100-V0-Z001001-20060512

The optional Ethernet card provides support for IEC 61850 in the SEL-487B. You must first use the **POR 5** command to establish a transparent session to the Ethernet card, then issue the ID command to view the IEC 61850 ID data.

A sample ID command response from the optional Ethernet card (with IEC 61850 enabled) is shown in Figure 7.2.

```
"FID=SEL-2702-R100-V2-Z000000-D20060524","08DA"
"BFID-SLBT-2701-R102-V0-Z000000-D20051107","095B"
"CID-9689h","02C5"
"DEVID-ETHERNET PROCESSOR WITH IEC 61850 AND DNP","0CBE"
"PARTNO=2702C4P","0413'
"CONFIG=000000","0383"
"iedName=SEL_487B_OtterTail","05BC"
"type=SEL_487B","04A4"
"configVersion=ICD-487B-R117-V0-Z001001-D20060524","0698"
```

Figure 7.2 Sample ID Command Response from Ethernet Card

LOOPBACK

Use the **LOOP** command to verify the communications channel. In this mode, the relay expects the transmitted data to be looped back to the relay to test the data transmissions, including communication data. See SEL MIRRORED BITS Communications on page R.4.14 for more information on MIRRORED BITS communications.

LO_OP

The LOOP command puts the relay serial port in loopback if you have previously configured the port for MIRRORED BITS communications. If you have enabled both of the MIRRORED BITS communications channels (A and B), then you must specify the channel parameter. If you have only one of the channels enabled, the relay uses that channel, if you do not specify that channel in the command. If you do not specify a timeout period, the relay provides a five-minute timeout.

Table 7.44 LOOP Command

Command	Description	Access Level
LOOP	Begin loopback of a single enabled MIRRORED BITS communications channel (either Channel A or Channel B) for 5 minutes; ignore input data and force receive bits (RMB) to defaults.	P, A, O, 2
LOOP ca	Begin loopback of MIRRORED BITS communications channel <i>c</i> for 5 minutes; ignore input data and force receive bits (RMB) to defaults.	P, A, O, 2
LOOP t	Begin loopback of a singleMIRRORED BITS communications channel (either Channel A or Channel B) and end the loopback after timeout <i>t</i> minutes; ignore input data and force receive bits (RMB) to defaults; <i>t</i> range is 1–5000 minutes.	P, A, O, 2
LOOPtc	Begin loopback of a single MIRRORED BITS communications channel (either Channel A or Channel B) and end the loopback after timeout <i>t</i> minutes; ignore input data and force receive bits (RMB) to defaults; <i>t</i> range is 1–5000 minutes.	P, A, O, 2

^a Parameter c is A or B, representing Channel A or Channel B.

You can enter the options in any order. If you operate the relay using both MIRRORED BITS communications channels (A and B), then you must specify the channel parameter by using the **LOOP A** command and the **LOOP B** command.

When you issue the **LOOP** command, the relay responds with statements about the loopback time, status of the RMB (Receive MIRRORED BITS), and a confirmation prompt:

Are you sure (Y/N)?

If you answer **Y <Enter>**, the relay responds as follows:

Loopback Mode Started

In the loopback mode, Relay Word bit ROK (data valid, loopback disabled) drops out and the relay uses Relay Word bit LBOK (data valid, loopback enabled) to indicate whether the data transmissions are satisfactory. The relay collects COM data as usual. Time synchronization and virtual terminal modes are not available during loopback. The relay continues passing analog quantities.

LOOP DATA

The **LOOP DATA** command results in the input MIRRORED BITS communications data being passed through to the receive (RMB) bits, as in the nonloopback mode.

Table 7.45 LOOP DATA Command

Command	Description	Access Level
LOOP DATA	Begin loopback of a single MIRRORED BITS communications channel (either Channel A or Channel B) for 5 minutes: pass input data to receive data as in nonloopback mode.	P, A, O, 2
LOOP c DATA	Begin loopback of MIRRORED BITS communications channel <i>c</i> only for 5 minutes: pass input data to receive data as in nonloopback mode.	P, A, O, 2
LOOP c DATA t	Begin loopback of MIRRORED BITS communications channel c only for t minutes: pass input data to receive data as in nonloopback mode.	P, A, O, 2

The relay ignores received values if you do not specify the **DATA** option. You can enter the options in any order.

LOOP R

The LOOP R command terminates the loopback condition on MIRRORED BITS communications channels in loopback. If you do not specify a channel c, the relay disables loopback on both channels. If you specify a channel, you can enter the options in any order.

Table 7.46 LOOP R Command

Command	Description	Access Level
LOOP R	Cease loopback on all MIRRORED BITS communications channels. (Reset the channels to normal use.)	P, A, O, 2
LOOP c R	Cease loopback on MIRRORED BITS communications channel c . (Reset channel c to normal use.)	P, A, O, 2

Use the MAP command to view the organization of the relay database. The MAP command in the SEL-487B is very similar to the MAP command in the SEL-2020 and SEL-2030 Communications Processors. See Section 4: SEL Communications Protocols for more information on the relay database regions and data types.

MAP 1

The MAP 1 command lists the relay database regions. Database region names are LOCAL, METER, TARGET, HISTORY, STATUS, ANALOGS, STATE and D1.

Table 7.47 MAP 1 Command

Con	nmand	Description	Access Level
MA	.P 1	List the database regions in the relay.	1, B, P, A, O, 2

MAP 1 region and MAP 1 region BL

Use the MAP 1 command with the region option to view the layout of a specific region. Database region names are LOCAL, METER, TARGET, HISTORY, STATUS, ANALOGS, STATE and D1.

MAP

Table 7.48 MAP 1 Region Command

Command	Description	Access Level
MAP 1 region	List the data labels, database address, and data type.	1, B, P, A, O, 2
MAP 1 region BL	List the data labels, database address, and data type; list the Bit Labels, if assigned.	1, B, P, A, O, 2

The *region* option is the database region name shown in the simple **MAP 1** command response. The region map consists of columns for data item labels, database address, and data type.

If you specify the **BL** option and the region contains items with bit labels, the relay lists these bit labels in MSB (most significant bit) to LSB (least significant bit) order. Examples of database bit label names are P87R1, 27P32, and ASV256.

METER

The **METER** command displays reports about quantities the relay measures in the power system and internal relay operating quantities. For more information on power system measurements, see *Section 2: Monitoring and Metering in the Applications Handbook*.

MET

NOTE: Data obtained with the **MET** command during dynamic zone selection may be unreliable.

Use the **MET** command to view fundamental metering quantities. The relay filters harmonics to present only measured quantities at the power system fundamental operating frequency.

Table 7.49 MET Command

Command	Description	Access Level
MET	Display fundamental metering data.	1, B, P, A, O, 2
MET k	Display fundamental metering data successively for k times.	1, B, P, A, O, 2

Some situations require that you repeatedly monitor the power system for a brief period; specify a number after any **MET** command to automatically repeat the command.

MET AMV

The MET AMV command lists automation math variables.

Table 7.50 MET AMV Command

Command	Description	Access Level
MET AMV	Display the last 16 automation math variables.	1, B, P, A, O, 2
MET AMV k	Display the last 16 automation math variables successively for k times.	1, B, P, A, O, 2
MET AMV A	Display all the automation math variables.	1, B, P, A, O, 2
MET AMV A k	Display all the automation math variables successively for k times.	1, B, P, A, O, 2

The last 16 automation math variables are AMV241 through AMV256. The relay displays three places after the decimal point for these numerals.

MET ANA

Use the MET ANA command to view the analog quantities from the MIRRORED BITS communications channels.

Table 7.51 MET ANA Command

Command	Description	Access Level
MET ANA	Display the MIRRORED BITS communications analog quantities.	1, B, P, A, O, 2
MET ANA k	Display the MIRRORED BITS communications analog quantities successively for <i>k</i> times.	1, B, P, A, O, 2

If you have not enabled the MIRRORED BITS communications channels and the remote sources, the relay responds with the following:

Option not available.

MET BAT

Use the MET BAT command to view the station dc quantities.

Table 7.52 MET BAT Command

Command	Description	Access Level
MET BAT	Display station battery measurements.	1, B, P, A, O, 2
MET BAT k	Display station battery measurements successively for k times.	1, B, P, A, O, 2
MET RBM	Reset station battery measurements.	P, A, O, 2

If you have not enabled the Station DC Battery Monitor, the relay responds as follows:

DC Monitor Is Not Enabled

(Enable the dc monitor with the Global setting EDCMON; see Section 8: Settings.)

The reset command, MET RBM, resets the dc monitor maximum/minimum metering quantities. When you issue the MET RBM command, the relay responds as follows:

Reset Max/Min Battery Metering (Y/N)?

If you answer **Y <Enter>**, the relay responds as follows:

Max/Min Battery Reset

MET CZ1

Use the **MET CZ1** command to view the current magnitude, angle, and polarity of each terminal in Check Zone 1 and the voltage in primary values.

Table 7.53 MET CZ1 Command

Command	Description	Access Level
MET CZ1	Display primary metering data.	1, B, P, A, O, 2
MET CZ1 k	Display primary metering data successively for <i>k</i> times.	1, B, P, A, O, 2

If an alias name for the terminal exists, the relay displays the alias name.

MET DIF

Use the **MET DIF** command to view the operate and restraint differential currents in the active zones in per unit values as well as the reference current (IREF).

Table 7.54 MET DIF Command

Command	Description	Access Level
MET DIF	Display the operate and restraint differential currents and IREF metering data.	1, B, P, A, O, 2
MET DIF k	Display the operate and restraint differential currents and IREF metering data successively for <i>k</i> times.	1, B, P, A, O, 2

MET PMV

Use the MET PMV command to view the protection math variables.

Table 7.55 MET PMV Command

Command	Description	Access Level
MET PMV	Display the last 16 protection math variables.	1, B, P, A, O, 2
MET PMV k	Display the last 16 protection math variables successively for k times.	1, B, P, A, O, 2
MET PMV A	Display all the protection math variables	1, B, P, A, O, 2
MET PMV A k	Display all the protection math variables successively for k times.	1, B, P, A, O, 2

The last 16 protection math variables are PMV49 through PMV64. The relay displays three places after the decimal point for these numerals.

MET SEC

Use the **MET SEC** command to view the current magnitude, angle, and CT ratio of each terminal. The view also includes voltage magnitudes in secondary values.

Table 7.56 MET SEC Command

Command	Description	Access Level
MET SEC	Display secondary metering data.	1, B, P, A, O, 2
MET SEC k	Display secondary metering data successively for <i>k</i> times.	1, B, P, A, O, 2

If an alias name for the terminal exists, the relay displays the alias name.

MET SEC CZ1

Use the MET SEC CZ1 command to view the current magnitude, angle, CT ratio, and polarity of each terminal in check zone and the voltage in secondary values.

Table 7.57 MET SEC CZ1 Command

Command	Description	Access Level
MET SEC CZ1	Display secondary metering data.	1, B, P, A, O, 2
MET SEC CZ1 k	Display secondary metering data successively for <i>k</i> times.	1, B, P, A, O, 2

If an alias name for the terminal exists, the relay displays the alias name.

MET SEC Zn

Use the MET SEC Zn command to view the current magnitude, angle, CT ratio, and polarity of each terminal in a particular protection zone (n = 1-6), the bus-zones in Protection Zone n, and the voltage in secondary values.

Table 7.58 MET SEC Zn Command

Command	Description	Access Level
MET SEC Zn	Display secondary metering data.	1, B, P, A, O, 2
MET SEC Zna k	Display secondary metering data successively for k times.	1, B, P, A, O, 2

a Parameter n is 1 or 6 to indicate 6 zones.

If an alias name for the terminal exists, the relay displays the alias name.

MET Zn

Use the **MET Zn** command to view the current magnitude, angle, and polarity of each terminal in a particular protection zone (n = 1-6), the bus-zones in Protection Zone n, and the voltage in primary values.

Table 7.59 MET Zn Command

Command	Description	Access Level
MET Zn	Display primary metering data.	1, B, P, A, O, 2
MET Zna k	Display primary metering data successively for <i>k</i> times.	1, B, P, A, O, 2

^a Parameter n is 1 or 6 to indicate 6 zones.

If an alias name for the terminal exists, the relay displays the alias name.

OACCESS

OPEN n

Access Levels on page U.4.6 for more information.

Table 7.60 OAC Command

Command	Description	Access Level
OAC	Go to Access Level O (output).	1, B, P, A, O, 2

Use the OACCESS command to gain access to Access Level O (output). See

Use the **OPEN** n (n = 1-18) command to open a circuit breaker(s). The **OPEN 1** command pulses Relay Word bit OC01, and the **OPEN 2** command pulses Relay Word bit OC02. Usually, you configure these Relay Word bits as part of the SELOGIC control equations that trip the appropriate circuit breaker. See *Breaker Trip Logic on page R.1.55* for information on trip SELOGIC control equations.

Table 7.61 OPEN k Command

Command	Description	Access Level
OPEN 1	Pulse Relay Word bit OC01 to logical 1.	B, P, A, O, 2
OPEN 2	Pulse Relay Word bit OC02 to logical 1.	B, P, A, O, 2
•	•	B, P, A, O, 2
•	•	
•	•	
OPEN 18	Pulse Relay Word bit OC18 to logical 1.	B, P, A, O, 2

To open a breaker, the breaker number (1–18) must be within the range specified by the global setting, NUMBK; the relay must be enabled; and the breaker control enable jumper, J18C, must be in place.

For information on placing relay jumpers, see *Password and Circuit Breaker Jumpers on page U.2.16*.

When you issue the **OPEN** n command, and the circuit breaker control enable jumper is in place, the relay responds as follows:

Open breaker (Y/N)?

If you answer **Y <Enter>**, the relay responds as follows:

Are you sure (Y/N)?

If you answer **Y <Enter>**, the relay asserts the appropriate OC bit (OC01–OC18) for one processing interval. Circuit Breaker 1 opens if you have programmed Relay Word bit OC01 in the TR01 SELOGIC control equation.

If you have assigned auxiliary contact 52A inputs for this circuit breaker (based on settings 52A01 through 52A18), the relay waits 0.5 seconds, checks the state of the breaker auxiliary contacts, and returns one of the following responses:

Breaker OPEN

or

Breaker CLOSED

PACCESS

Use the **PACCESS** command to gain access to Access Level P (protection). See Access Levels on page U.4.6 for more information.

Table 7.62 PAC Command

Command	Description	Access Level
PAC	Go to Access Level P (protection).	1, B, P, A, O, 2

PASSWORD

Use the **PASSWORD** command to control password protection for relay access levels. For information on access levels and passwords, see *Changing* the Default Passwords on page U.4.6.

PAS level new password

△WARNING

This device is shipped with default passwords. Default passwords should be changed to private passwords at installation. Failure to change each default password to a private password may allow unauthorized access. SEL shall not be responsible for any damage resulting from unauthorized access.

The relay changes the existing password for the specified access level to a new_password that you specify when you issue the PAS level new_password command.

Table 7.63 PAS level new_password Command

Command	Description	Access Levels
PAS levela new_password	Set a password new_password for Access Level level.	2

a Parameter level represents the relay access levels 1, B, P, A, O, or 2.

Relay access levels that have passwords are 1, B, P, A, O, and 2. Valid passwords are character sequences of as many as 12 characters. Valid characters are any printable ASCII character. HMI password entry is limited to upper- and lower-case letters, numbers, underscore, and period, so you must limit your password to these characters if you need to do privileged operations from the front panel.

All passwords are case sensitive. See Changing the Default Passwords on page U.4.6 for information on setting strong passwords. When you successfully enter a new password, the relay pulses the Relay Word bit SALARM for one second, and responds as follows:

Set

PAS level DISABLE

Issuing the PAS level DISABLE command disables password checking for the specified access level. You must type **DISABLE** in uppercase.

Table 7.64 PAS level DISABLE Command

Command	Description	Access Levels
PAS level DISABLE	Disable password protection for the Access Level <i>level</i> . ^a	2

^a Parameter level represents the relay access Levels 1, B, P, A, O, or 2.

When you successfully disable password checking, the relay pulses the SALARM Relay Word bit for one second, and responds as follows:

Password Disabled

PORT

SEL does not recommend disabling passwords. See *Changing the Default Passwords*.

The **PORT** command can be used to connect to either an installed Ethernet card or a remote relay.

In the SEL-487B, serial port virtual terminal capability is available in MIRRORED BITS communications. You must have previously configured the serial port for MIRRORED BITS communications operation, set port setting MBNUM less than 8, and have at least one virtual terminal session available (set MBNUMVT to 0 or greater). Choosing MBNUMVT to 0 uses virtual terminal within the synchronization channel only. See *SEL MIRRORED BITS Communications on page R.4.14* for information on the MIRRORED BITS communications protocol.

PORT p

The **PORT** *p* command connects a relay serial or Ethernet port to another device through a virtual terminal session.

If an Ethernet card is installed, you can use the **PORT** command to initiate a virtual terminal session with the communications card by specifying port number *p* as 5.

Table 7.65 PORT p Command

Command	Description	Access Level
PORT p ^a	Connect to a remote device through Port <i>p</i> (over MIRRORED BITS communications virtual terminal mode).	1, B, P, A, O, 2

^a Parameter p is 1, 2, 3, 5, and F to indicate Communications Port 1 through Port 3, Port 5, and Port F.

When the relay establishes a connection, the relay responds as follows:

Transparent session to Port p established

To quit the transparent connection, type the control string that you specify in port setting TERSTRN; the default is <Ctrl+E>. Only one transparent port connection to each MIRRORED BITS communications port is possible at one time. If you issue a **PORT** p command when the selected session is already active, the relay responds as follows:

Transparent session already in use

If you issue the **PORT** *p* command to ports 1, 2, 3, or F and you have not properly configured the MIRRORED BITS communications port or the MBNUMVT is not set to 1 or larger, then the relay responds Invalid destination port as follows:

Invalid destination port

PORT KILL n

It is possible to forcefully disconnect a transparent session from another port (a port not involved in the present transparent connection) by using the **PORT** KILL *n* command.

Table 7.66 PORT Kill n Command

Command	Description	Access Level
PORT KILL n ^a	Terminate the virtual terminal connection with a remote device through Port <i>n</i> by using a port not involved in the connection.	P, A, O, 2

^a Parameter n is 1, 2, 3, 5, and F to indicate Communications Port 1 through Port 3, Port 5, and Port F; n is not the present port.

The port parameter n can refer to either of the ports involved in the session you want to kill. When you issue the **PORT KILL** *n* command, the relay responds as follows:

Kill connection between ports m and n (Y/N)?

Answer Y **<Enter>** to terminate the connection. The relay sends a character sequence to the remote relay (to make sure the remote device is left in a known state) and responds, Connection between ports m and n disconnected.

Use the **PULSE OUT***nnn* command to pulse any of the relay control outputs for a specified time. This function aids you in relay testing and commissioning. If the output is open, the PUL command momentarily closes the output; if the output is closed, the PUL command momentarily opens the output. See Test Commands on page U.6.5 for information on using the **PULSE OUT***nnn* command. The control outputs are **OUT***nnn*, where *nnn* represents the 100-series, 200-series, 300-series, 400-series, and 500-series addresses.

Table 7.67 PUL OUTnnn Command

Command	Description	Access Level
PUL OUTnnna	Pulse output OUT <i>nnn</i> for 1 second.	B, P, A, O, 2
PUL OUTnnn sb	Pulse output OUT <i>nnn</i> for <i>s</i> seconds.	B, P, A, O, 2

a Parameter nnn is a control output number.

If the circuit breaker control enable jumper J18C is not in place, the relay aborts the command and responds as follows:

Aborted: the breaker jumper is not installed

See *Jumpers on page U.2.16* for more information on relay jumpers.

PULSE

b Parameter s is time in seconds, with a range of 1 through 30.

When you issue the **PUL** command and the breaker jumper is in place, the relay responds as follows:

Pulse contact OUTnnn for s seconds (Y/N)?

If you answer **Y <Enter>**, the relay asserts OUT*nnn* for the time you specify.

During the **PUL** operation, the Relay Word bit corresponding to the control output you specified (OUT*nnn*) asserts; Relay Word bit TESTPUL asserts also during any **PUL** command, so you can monitor pulse operation by programming TESTPUL into event triggers and alarm outputs. See *Section 3: Analyzing Data in the Applications Handbook* for more information on pulsing relay outputs.

Use the **QUIT** command to revert to Access Level 0 (exit relay control). See *Section 4: Basic Relay Operations in the User's Guide* for more information.

Table 7.68 QUIT Command

Command	Description	Access Level
QUIT	Go to Access Level 0 (exit relay control).	0, 1, B, P, A, O, 2

Access Level 0 is the lowest access level; the relay performs no password check to descend to this level (or remain at this level).

In a Telnet session, **QUIT** terminates the connection; see *Section 5: Direct Network Communications in the Applications Handbook.*

The **SER** command retrieves SER (Sequential Events Recorder) records. The relay SER captures state changes of Relay Word bit elements and relay conditions. Relay conditions include power up, relay enable/disable, group changes, settings changes, memory queue overflow, and SER autoremoval/reinsertion. For more information on the Sequential Events Recorder, see *Section 3: Analyzing Data in the Applications Handbook*.

SER

The default order of the **SER** command is oldest to newest from list top to list bottom. You can view the SER records in numerical or date order.

Table 7.69 SER Command (Sheet 1 of 2)

Command	Description	Access Level
SER	Return the 20 most recent records from the SER, with the oldest (highest number) at the top of the list and the most recent (lowest number) at the bottom of the list.	1, B, P, A, O, 2
SER k	Return the <i>k</i> most recent records from the SER, with the oldest (highest number) at the top of the list and the most recent (lowest number) at the bottom of the list.	1, B, P, A, O, 2

QUIT

SER

Table 7.69 SER Command (Sheet 2 of 2)

Command	Description	Access Level
SER m n ^a	Return the SER records from <i>m</i> to <i>n</i> . If <i>m</i> is greater than <i>n</i> , records appear with the oldest (highest number) at the top of the list and the most recent (lowest number) at the	1, B, P, A, O, 2
	bottom of the list. If <i>m</i> is less than <i>n</i> , records appear with the most recent (lowest number) at the top of the list and the oldest (highest number) at the bottom of the list.	
SER date1b	Return the SER records on date1.	1, B, P, A, O, 2
SER date1 date2b	Return the SER records from <i>date1</i> at the top of the list, to <i>date2</i> at the bottom of the list.	1, B, P, A, O, 2

^a Parameters m and n indicate an SER event number, where 1 is the latest event.

SER C and SER R

The **SER** C and **SER** R commands clear the SER records for the present port. Options C and R are identical.

Table 7.70 SER C and SER R Commands

Command	Description	Access Level
SER C	Clear SER records on the present port.	1, B, P, A, O, 2
SER R	Clear SER records on the present port.	1, B, P, A, O, 2

When you issue the **SER C** or **SER R** command, the relay prompts as follows:

Clear the sequential events recorder. Are you sure (Y/N)?

If you answer Y <Enter>, the relay clears the SER for that port. The data are still visible to other ports and to file transfer accesses, and they must be cleared independently for those ports.

SER CA and SER RA

The SER CA and SER RA commands are identical and clear all SER records from memory.

Table 7.71 SER CA or SER RA Commands

Command	Description	Access Level
SER CA or SER RA	Clear SER data for all ports.	P, A, O, 2

If you issue the **SER CA** or **SER RA** command, the relay prompts as follows:

Clear the sequential events recorder for all ports. Are you sure (Y/N)?

If you answer **Y <Enter>**, the relay clears all SER records in nonvolatile memory.

^b Enter date1 and date2 in the same format as specified by Global setting DATE_F.

SER CV and SER RV

The **SER CV** and **SER RV** commands clear any SER data records that have been viewed from the present port. The two commands are equivalent.

Table 7.72 SER CV or SER RV Commands

Command	Description	Access Level
SER CV or SER RV	Clear viewed SER data for this port.	1, B, P, A, O, 2

If you issue the **SER CV** or **SER RV** command, the relay prompts as follows:

Clear viewed SER records for this port. Are you sure (Y/N)?

If you answer **Y <Enter>**, the relay clears all SER records viewed from this port. The data are still visible to other ports and to file transfer accesses, and they must be cleared independently for those ports. Data not yet viewed remain available.

SER D

The **SER D** command shows a list of SER items that the relay has automatically removed. These are chattering elements. You can automatically remove chattering SER elements in the SER Chatter Criteria category of the Report settings; the enable setting is ESERDEL. See *Section 3: Analyzing Data in the Applications Handbook* for more information on SER automatic deletion and reinsertion.

Table 7.73 SER D Command

Command	Description	Access Level
SER D	List chattering SER elements that the relay is removing from the SER records.	1, B, P, A, O, 2

If you issue the **SER D** command and you have not enabled automatic removal of chattering SER elements (Report setting ESERDEL), the relay responds as follows:

Automatic removal of chattering SER elements not enabled.

SET

Use the **SET** command to change relay settings. The SEL-487B settings structure is ordered and contains these items (in structure order): classes, instances, categories, and settings. An outline of the relay settings structure is as follows:

Classes (Global, Group, Zone Configuration, Protection, Automation, Outputs, Front Panel, Report, DNP, and Ports)

Instances (some classes have instances: Group = 1-6; Protection = 1-6; Zone Configuration = 1-6; Automation = 1-10; Ports = 1-3, F, 5)

Categories (collections of similar settings)

Settings (specific relay settings with values)

The SET and SHOW commands contain these settings structure items, which you must specify in order from class to instance (if applicable) to setting. For more information and a tutorial on setting the relay, see Making Simple Settings Changes on page U.4.12.

The order that specific settings appear in the relay settings structure is factory programmed. See Section 8: Settings for specific settings order, ranges, and default values.

SET

The **SET** command with no options or parameters accesses the relay settings Group class and the instance corresponding to the active group. To set a different instance, specify the instance number (1–6).

Table 7.74 SET Command Overview

Command	Description	Access Level
SET	Set the Group relay settings, beginning at the first setting in the active group.	P, 2
SET n ^a	Set the Group <i>n</i> relay settings, beginning at the first setting in the group.	P, 2
SET label	Set the active group settings beginning at setting <i>label</i> .	P, 2
SET n labela	Set the Group <i>n</i> relay settings beginning at setting <i>label</i> . Note: free-form settings will not be recognized as valid labels.	P, 2

a Parameter n = 1-6, representing Group 1 through Group 6.

The relay validates your settings entries as you enter each setting. At the end of a settings instance session, the relay responds with a readback of all the settings in the settings instance; then prompts as follows:

Save settings (Y,N)?

If you answer Y <Enter>, the relay pulses the Relay Word bit SALARM, and responds as follows:

Saving Settings, Please Wait.....

The relay saves the new settings, then responds as follows:

Settings Saved

If you answer **N <Enter>** to the save settings prompt, the relay responds as follows:

Settings aborted

SET A

Use the **SET A** command to set the Automation SELOGIC control equations. See *Section 2: SELOGIC Control Equation Programming* for more information on SELOGIC control equations.

Table 7.75 SET A Command

Command	Description	Access Level
SET A	Set the Automation SELOGIC control equation relay settings in Block 1.	A, 2
SET A n ^a	Set the Automation SELOGIC control equation relay settings in Block n .	A, 2

^a Parameter n = 1-10 for Block 1 through Block 10.

The relay presents text-edit mode entry format for the free-form SELOGIC control equations you program in the Automation SELOGIC control equations settings area. See *Text-Edit Mode Line Editing on page U.4.18* for information on settings text-edit mode.

SET D

Issue the **SET D** command to remap serial port DNP3 values. To set the general DNP settings, use the Port settings for the appropriate port (see *SET P on page R.7.35*). There is only one instance of the serial port DNP3 protocol installed to access these settings. For more information, see *Section 5: DNP3 Communications*.

Table 7.76 SET D Command

Command	Description	Access Level
SET D	Set the serial port DNP3 remapping settings, beginning at the first setting in this class.	P, A, O, 2
SET D label	Set the serial port DNP3 remapping settings, beginning at setting <i>label</i> .	P, A, O, 2

SET F

Use the **SET F** command to set the relay front-panel settings. There is only one instance for the Front Panel settings. See *Section 5: Front-Panel Operations in the User's Guide* for information about front-panel settings.

Table 7.77 SET F Command

Command	Description	Access Level
SET F	Set the Front Panel relay settings, beginning at the first setting in this class.	P, A, O, 2
SET F label	Set the Front Panel relay settings, beginning at the settings <i>label</i> .	P, A, O, 2

SET G

Use the **SET G** command to the Global class settings. There is only one instance for the Global class.

Table 7.78 SET G Command

Command	Description	Access Level
SET G	Set the Global relay settings, beginning at the first setting in this class.	P, A, O, 2
SET G label	Set the Global relay settings, beginning at the setting <i>label</i> .	P, A, O, 2

SET L

Use the **SET** L command to set the Protection SELOGIC control equations. See Section 2: SELOGIC Control Equation Programming for more information on SELOGIC control equations.

Table 7.79 SET L Command

Command	Description	Access Level
SET L	Set the Protection SELOGIC control equation relay settings for the active group.	P, 2
SET L na	Set the Protection SELOGIC relay settings for Group <i>n</i> .	P, 2

^a Parameter n is 1-6 for Protection Groups 1 through 6.

The relay presents text-edit mode entry format for the free-form SELOGIC control equations you program in the Protection SELOGIC control equation settings area. See Text-Edit Mode Line Editing on page U.4.18 for information on settings text-edit mode.

SET 0

Use the **SET O** command to set the Output SELOGIC control equations. See Control Outputs on page U.2.9 for more information on relay control outputs.

Table 7.80 SET O Command

Command	Description	Access Level
SET O	Set the Output SELOGIC control equation relay settings, beginning at OUT101.	O, 2
SET O label	Set the Output SELOGIC control equation relay settings, beginning at the output <i>label</i> .	O, 2

SET P

Use the **SET P** command to configure the relay communications ports; each port is a settings instance. The SEL-487B communications ports include serial ports at Port F, Port 1, Port 2, and Port 3. Port 5 is the communications card port in which you can install the optional Ethernet card or other communications cards.

Table 7.81 SET P Command

Command	Description	Access Level
SET P	Set the port presently in use, beginning at the first setting for this port.	P, A, O, 2
SET P label	Set the port presently in use, beginning at the setting <i>label</i> .	P, A, O, 2

Table 7.81 SET P Command

Command	Description	Access Level
SET P pa	Set the communications Port relay settings for Port <i>p</i> , beginning at the first setting for this port.	P, A, O, 2
SET P p label	Set the communications Port relay settings for Port <i>p</i> , beginning at the setting <i>label</i> .	P, A, O, 2

^a Parameter p = 1-3, F, or 5, corresponding to Port 1-Port 3, Port F, or Port 5.

SET R

Use the **SET R** command to set Report settings and to program SER points and Reporting, Set State, and Clear State names. You can also set event report parameters and program event report digital elements. There is only one instance for the Report settings.

Table 7.82 SET R Command

Command	Description	Access Level
SET R	Set the Report relay settings, beginning at the first setting for this class.	P, A, O, 2
SET R label	Set the Report relay settings, beginning at the setting <i>label</i> .	P, A, O, 2

Report settings are a mix of traditional settings entry mode and text-edit entry mode. See *Making Simple Settings Changes on page U.4.12* for settings entry methods for these modes.

SET T

Use the **SET T** command to set aliases for Relay Word bits, Analog quantities, terminal names, or bus-zone names. There is only one instance for the alias settings.

Table 7.83 SET T Command

Command	Description	Access Level
SET T	Set the alias settings.	P, A, O, 2

SET Z

Use the **SET Z** command for the zone configuration settings. Included are the CT and PT ratios, Terminal-to-Bus-Zone and Bus-Zone to Bus-Zone and Terminal-to-Check-Zone connections, and zone supervision settings. There are six instances for zone configuration settings.

Table 7.84 SET Z Command

Command	Description	Access Level
SET Z	Set the active group zone configuration settings, beginning at the first setting.	P, 2
SET Z label	Set the active group zone configuration setting, beginning at the setting <i>label</i> .	P, 2

Table 7.84 SET Z Command

Command	Description	Access Level
SET Z na	Set the configuration setting for Group n , beginning at the first setting.	
SET Z n label	Set the zone configuration setting for Group n , beginning at setting <i>label</i> .	P, 2

a n = 1-6 instances.

SHOW

The **SHOW** command shows the relay settings. When showing settings, the relay displays the settings label and the present value from nonvolatile memory.

The relay organizes settings in classes, instances, categories, and specific settings; see SET on page R.7.33 for information on settings organization. The relay displays each setting in the order specified in the settings tables in Section 8: Settings. When you are using a terminal and you specify a setting in the middle of a settings category, the relay displays the category title, then proceeds with the class or instance settings from the setting that you specified. See Making Simple Settings Changes on page U.4.12 for more information on entering and viewing relay settings.

SH₀

The **SHO** command with no options or parameters accesses the relay settings Group class and the instance corresponding to the active group. To show a different instance, specify the instance number (1–6).

Table 7.85 SHO Command Overview

Command	Description	Access Level
SHO	Show the Group relay settings, beginning at the first setting in the active group.	1, B, P, A, O, 2
SHO n	Show Group n settings, beginning at the first setting in Group n .	1, B, P, A, O, 2

SHOW A

Use the **SHO** A command to show the Automation SELOGIC control equations. See Section 2: SELOGIC Control Equation Programming for more information on SELOGIC control equations.

Table 7.86 SHO A Command

Command	Description	Access Level
SHO A	Show the Automation SELOGIC control equation relay settings in Block 1.	1, B, P, A, O, 2
SHO A n ^a	Show the Automation SELOGIC control equation relay settings in Block <i>n</i> .	1, B, P, A, O, 2

a Parameter n = 1-10 for Block 1 through Block 10.

SHOW D

NOTE: This does not display mapping information for DNP The **SHO D** command shows the serial port DNP3 remapping settings. To view the general serial port DNP3 settings, use the Port settings (see SHOW P on page R.7.39). There is only one instance of the serial port DNP3 remapping settings. The relay must have the optional serial port DNP3 protocol installed to access these settings. For more information, see *Section 5: DNP3 Communications*.

Table 7.87 SHO D Command

Command	Description	Access Level
SHO D	Show the serial DNP3 remapping settings.	1, B, P, A, O, 2
SHO D label	Show the serial DNP3 remapping settings, beginning at setting <i>label</i> .	1, B, P, A, O, 2

SHOW F

Use the **SHO F** command to show the relay front-panel settings. There is only one instance for the Front Panel settings. See *Section 5: Front-Panel Operations in the User's Guide* for information on front-panel settings.

Table 7.88 SHO F Command

Command	Description	Access Level
SHO F	Show the Front Panel relay settings, beginning at the first setting in this class.	1, B, P, A, O, 2

SHOW G

Use the **SHO G** command to show the Global class settings. There is only one instance for the Global class.

Table 7.89 SHO G Command

Command	Description	Access Level
SHO G	Show the Global relay settings, beginning at the first setting in this class.	1, B, P, A, O, 2

SHOW L

Use the **SHO L** command to show the Protection SELOGIC control equations. See *Section 2: SELOGIC Control Equation Programming* for more information on SELOGIC control equations.

Table 7.90 SHO L Command

Command	Description	Access Level
SHO L	Show the Protection SELOGIC control equation relay settings for the active group.	1, B, P, A, O, 2
SHO L n ^a	Show the Protection SELOGIC control equation relay settings for Group n .	1, B, P, A, O, 2

^a Parameter n is 1-6 for Group 1 through Group 6.

SHOW 0

Use the **SHO O** command to show the Output SELOGIC control equations. See *Control Outputs on page U.2.9* for more information on relay control outputs.

Table 7.91 SHO O Command

Command	Description	Access Level
SHO O	Show the Output SELOGIC control equation relay settings, beginning at OUT101.	1, B, P, A, O, 2

SHOW P

Use the SHO P command to configure the relay communications ports; each port is a settings instance. The SEL-487B communications ports include serial ports at Port F, Port 1, Port 2, and Port 3. Port 5 is the communications card port in which you can install the optional Ethernet card or other communications cards.

Table 7.92 SHO P Command

Command	Description	Access Level
SHO P	Show the relay settings for the port presently in use, beginning at the first setting.	1, B, P, A, O, 2
SHO P p ^a	Show the communications Port relay settings for Port <i>p</i> , beginning at the first setting for this port.	1, B, P, A, O, 2

a Parameter p = 1-3, F, and 5 which corresponds to Port 1-Port 3, Port F, and Port 5.

The SHO P command with no options and parameters shows the settings for the active serial port.

SHOW R

Use the SHO R command to show Report settings and to program SER Points and SER Reporting, Set State, and Clear State Names. You can also show event report parameters and program Event Report Digital Elements. There is only one instance for the Report settings.

Table 7.93 SHO R Command

Command	Description	Access Level
SHO R	Show the Report relay settings, beginning at the first setting for this class.	1, B, P, A, O, 2

SHOW T

Use the **SHO T** command to show aliases for Relay Word bits, Analog quantities, terminal names, or bus-zone names. There is only one instance for the alias settings.

Table 7.94 SHO T Command

Command	Description	Access Level
SHO T	Show the alias settings.	1, B, P, A, O, 2

SHOW Z

Use the **SHO Z** command to show the zone configuration settings. Included are the CT and PT ratios, Terminal-to-Bus-Zone and Bus-Zone to Bus-Zone and Terminal-to-Check-Zone connections, and zone supervision settings. There are six instances for zone configuration settings, with the default being the active group.

Table 7.95 SHO Z Command

Command	Description	Access Level
SHO Z	Show the zone configuration settings for the active group.	1, B, P, A, O, 2
SHO Z na	Show the zone configuration settings for Group <i>n</i> .	1, B, P, A, O, 2

a n = 1-6 instances.

SNS

In response to the **SNS** command, the relay sends the name strings of the Sequential Events Recorder elements. This is a comma-delimited string used to support the SEL Fast SER report. See *Section 4: SEL Communications Protocols* for more information.

Table 7.96 SNS Command

Command	Description	Access Level
SNS	Send the name strings of SER elements.	0, 1, B, P, A, O, 2

STATUS

The **STATUS** command reports relay status information that the relay derives from internal diagnostic routines and self-tests. See *Relay Self-Tests on page U.6.34* for information on relay diagnostics.

STA

The **STA** command with no options displays a short-form relay status report. Items in the STA report are the header, failures, warnings, SELOGIC control equation programming environment errors, and relay operational status. See *Checking Relay Status on page U.4.10* for information on relay status reports.

Table 7.97 STA Command

Command	Description	Access Level
STA	Return the relay status.	1, B, P, A, O

STA A

Use the **STA** A command to view the entire relay status report. Items in the full status report include the status report items (**STA** command) plus data on A/D (analog/digital) channel offsets, power supply voltages, temperature, communications interfaces, and time-source synchronization.

Table 7.98 STA A Command

Command	Description	Access Level
STA A	Display all items of the status report.	1, B, P, A, O, 2

SEL-487B Relay Reference Manual Date Code 20210514

STA C and STA R

The STA C and STA R commands reboot the relay. Thus, these commands clear a transient failure should this unlikely event occur. Options C and R are identical. Contact your Technical Service Center or the SEL Factory before using this command.

Table 7.99 STA C and STA R Command

Command	Description	Access Level
STA C	Reset the relay.	2
STA R	Reset the relay.	2

STA S

Use the STA S command to view all SELOGIC control equation operating errors. See Section 2: SELOGIC Control Equation Programming for more information.

Table 7.100 STA S Command

Command	Description	Access Level
STA S	Display detailed SELOGIC control equation error information.	1, B, P, A, O, 2

STA SC and STA SR

The STA SC and STA SR commands clear the SELOGIC control equation operating errors from the status report if the errors are no longer present. In addition, these commands reset the Automation SELOGIC Peak and Average Execution Cycle Time statistics. See Section 2: SELOGIC Control Equation Programming for more information.

Table 7.101 STA SC and STA SR Command

Command	Description	Access Level
STA SC	Clear SELOGIC control equation errors and reset SELOGIC cycle time statistics.	P, A, O, 2
STA SR	Clear SELOGIC control equation errors and reset SELOGIC cycle time statistics.	P, A, O, 2

SUMMARY

The **SUMMARY** command displays a summary event report. See *Section 3*: Analyzing Data in the Applications Handbook for information on summary event reports.

SUM

Use the **SUM** command to view the event summary reports in the relay memory.

Table 7.102 SUM Command

Command	Description	Access Level
SUM	Return the most recent event summary.	1, B, P, A, O, 2
SUM n ^a	Return an event summary for event n .	1, B, P, A, O, 2

a Parameter n indicates event order or serial number; see the event history report (HIS on page R.7.17).

When parameter n is 1 through 100, n indicates the order of the event report. The most recent event report is 1, the next most recent report is 2, and so on. When parameter n is 10000 through 42767, n indicates the absolute serial number of the event report.

SUM ACK

Acknowledge the oldest summary (specify no event number). Use the **SUM NEXT** command to view the event summaries available on the present communications port. Use **SUM ACK** to acknowledge the oldest unacknowledged summary on the present communications port.

Table 7.103 SUM ACK Command

Command	Description	Access Level
SUM ACK	Acknowledge the oldest unacknowledged event summary at the present communications port.	1, B, P, A, O, 2

If you attempt to acknowledge an event summary that you have not viewed on the present port with the **SUM NEXT** command, the relay responds as follows:

Event summary number n has not been viewed

SUM NEXT

Use the **SUM NEXT** command to view the oldest (next) unacknowledged event summary.

Table 7.104 SUM NEXT Command

Command	Description	Access Level
SUM NEXT	View the oldest unacknowledged event summary at the present communications port.	1, B, P, A, O, 2

TARGET

The **TARGET** command displays the elements for a selected row in the Relay Word bit table. See *Appendix A: Relay Word Bits*.

TAR

Use the **TAR** command to view a row of Relay Word bits or the alias names of the Relay Word bits. When using the **TAR** command, you can specify the row number or element name.

Table 7.105 TAR Command

Command	Description	Access Level
TAR	Display Row 0 or display the most recently viewed row.	1, B, P, A, O, 2
TAR n	Display Row n.	1, B, P, A, O, 2
TAR $n k^a$	Display Row n and repeat for k times; the repeat count k must follow the row number.	1, B, P, A, O, 2

Table 7.105 TAR Command

Command	Description	Access Level
TAR name	Display the row with the element <i>name</i> .	1, B, P, A, O, 2
TAR name k	Display the row with the element <i>name</i> and repeat for k times; the repeat count k can be before or after the <i>name</i> option.	1, B, P, A, O, 2

^a Parameter k is the repeat count from 1-32767.

The relay memorizes the latest row input conditioned by your present access level. The relay displays Row 0 if you have not specified a row since power up, the access level has timed out, or you have issued the **QUIT** command.

If you specify the repeat count k at a number greater than eight, the relay displays the repeated rows on the terminal screen in groups of eight, with the row elements listed above each grouping.

TAR ALL

Use the TAR ALL command to display all of the Relay Word bits. To avoid buffer overflow because of the large number of Relay Word bits, capture this information to a file rather than display it on the screen.

Table 7.106 TAR ALL Command

Command	Description	Access Level
TAR ALL	Display all target rows.	1, B, P, A, O, 2

TAR R

The **TAR R** command has two functions. Use this command to reset any latched relay targets resulting from a tripping event. Also employ the TAR R command to reset to Row 0 the memorized row that the relay reports when you issue a simple **TAR** command.

Table 7.107 TAR R Command

Command	Description	Access Level
TAR R	Reset latched targets and return memorized row to Row 0.	1, B, P, A, O, 2

TAR X

Use the **TAR X** command to view a different row in the Relay Word bit table than the row in the memory. This function is useful for relay testing. See Section 6: Testing and Troubleshooting in the User's Guide for more information.

Table 7.108 TAR X Command

Command	Description	Access Level
TAR n X	Display Row n , but do not memorize Row n .	1, B, P, A, O, 2
TAR X n ka	Display Row n and repeat for k times; do not memorize Row n . The repeat count k must follow the row number.	1, B, P, A, O, 2

Table 7.108 TAR X Command

Command	Description	Access Level
TAR name X	Display the row with the element <i>name</i> ; do not memorize the row number.	1, B, P, A, O, 2
TAR name X k	Display the row with the element <i>name</i> and repeat for k times; do not memorize the row number. The repeat count k can be at any position in the command after TAR .	1, B, P, A, O, 2

a Parameter k is the repeat count from 1-32767.

You can place the **X** option at any position in the **TAR** command.

TEST DB

Use the **TEST DB** command for testing interfaces to a virtual device database. For the SEL-487B, the interface is the communications card. The relay contains a database that describes the relay to external devices. When other devices access the relay via the communications card, the relay appears as a virtual device described by the database. The SEL-487B is Virtual Device 1.

The virtual database of any installed Ethernet card is accessible to master stations of supported Ethernet protocols (DNP3, IEC 61850) connected to the Ethernet network. You can therefore test the read functionality of all protocols in the Ethernet interface with this command.

Use the **TEST DB 1** command to override any value in the relay database. You must understand the relay database structure to effectively use the **TEST DB** command.

Values you enter in the relay database are override values. Use the **TEST DB** command to write override values in the database accessed through the communications card.

Table 7.109 TEST DB Command

Command	Description	Access Level
TEST DB	Display present override values by virtual device number and address.	1, B, P, A, O, 2
TEST DB 1 addr value1	Write new data <i>value1</i> to the database at an address <i>addr</i> .	B, P, A, O, 2
TEST DB 1 addr value1 M D Y h m s	Write new data value 1 to the database at an address <i>addr</i> and include the provided date/time stamp <i>M D Y h m s</i>	B, P, A, O, 2

The database address *addr* can be any legitimate decimal or hexadecimal address. (A hexadecimal address is a numeral with an "h" suffix or a "0x" prefix.)

You can enter the override value *value1* as an integer, a floating-point number (which overrides two registers), a character (which must be in single quotes), or a string (which must be in double quotes and overrides the number of registers corresponding to the length of the string).

If a date/time stamp is also provided (MDYhms), the relay will change the static state given and, for any bits being changed by this operation, queued entries will be pushed with the provided date/time stamp. If no queue is associated with the database region (determined by addr), the date/time stamp will be ignored.

The order that the date should be entered on the command line depends upon the DATE_F (Global) setting. For example, if DATE_F := DMY, you would enter TEST DB vdev addr value D M Y h m s.

While there are active test data, the relay asserts Relay Word bit TESTDB.

TEST DB OFF

Use the **TEST DB OFF** command to end the testing session and remove the override values. The relay returns the database registers to the pretest values.

Table 7.110 TEST DB OFF Command

Command	Description	Access Level
TEST DB OFF	Clear all override testing values from all virtual devices.	B, P, A, O, 2
TEST DB OFF 1	Clear all override testing values from Virtual Device 1 (the relay).	B, P, A, O, 2
TEST DB OFF 1 region	Clear all override testing values from the region region in Virtual Device 1 (the relay).	B, P, A, O, 2

TEST DNP

The **TEST DNP** command is for testing the DNP interface. For more information on DNP and the SEL-487B, see Section 5: DNP3 Communications.

TEST DNP

The **TEST DNP** command is for testing the serial port DNP3 interface only. For more information on Serial DNP3 and the SEL-487B, see Section 5: DNP3 Communications.

Use the **TEST DNP** command to write override values in the DNP map with a test value.

Table 7.111 TEST DNP Command

Command	Description	Access Level
TEST DNP	Display present override values.	1, B, P, A, O, 2
TEST DNP type na value	Write new data <i>value</i> of <i>type</i> to the DNP map at DNP point number n .	B, P, A, O, 2

^a Parameter type is A for analog, B for binary, or C for counter inputs.; n is a DNP point number.

When displaying DNP test data, the relay shows the report header, then the DNP Object Type, Index, and Override Value for binary inputs, counters, and analog inputs.

To force a value, use the **TEST DNP** type n value command. The type is A for analog inputs, B for binary inputs, or C for counter inputs. The point number nis based on the active DNP map. The override value value is a value you specify. The point number and override value must be valid for the given data type; see Section 5: DNP3 Communications.

When you have successfully added a new DNP test value (for example, TEST **DNP A 17 -357**), the relay responds as follows:

Override Added

The relay asserts Relay Word bit TESTDNP while any DNP test data are present in the relay.

DNP Status Bytes

Whenever a DNP value is overridden and the value is read via DNP, the status byte for the overridden value indicates that the bit is locally forced to a test value.

TEST DNP OFF

Use the **TEST DNP OFF** command to remove override values. The relay returns the database registers to the pretest values.

Table 7.112 TEST DNP OFF Command

Command	Description	Access Level
TEST DNP type na OFF	Clear the override testing value of <i>type</i> from the DNP point number <i>n</i> .	B, P, A, O, 2
TEST DNP OFF	Clear all override testing values from the DNP map.	B, P, A, O, 2

^a Parameter n is a DNP point number; type is A for analog, B for binary, or C for counter inputs.

When you have successfully removed a DNP test value (for example, **TEST DNP A 17 OFF**), the relay responds as follows:

Override Removed

When an attempt to remove a DNP test value fails, the relay responds as follows:

Override Not Found

When removing all DNP test values (for example, **TEST DNP OFF**), the relay responds as follows:

All Overrides Removed

TEST FM

The **TEST FM** command overrides normal Fast Meter quantities for testing purposes. You can only override reported Fast Meter values. For more information on Fast Meter and the SEL-487B, see *Section 4: SEL Communications Protocols*.

TEST FM

Values you enter in Fast Meter storage are override values. Use the **TEST FM** command to display override values and write override values in the Fast Meter report.

Table 7.113 TEST FM Command

Command	Description	Access Level
TEST FM	Display present override values.	1, B, P, A, O, 2
TEST FM label value	Write new data <i>value</i> to the Fast Meter report at the item <i>label</i> .	B, P, A, O, 2

When displaying Fast Meter data overrides with the TEST FM command, the relay shows the item label and override values.

To force a value, use the **TEST FM** *label value* command.

Value can be logical 0 or logical 1 for digital and status elements, or a floating-point value for all analog quantities.

When you have successfully added a new Fast Meter test value (for example, TEST FM AMV001 3.7), the relay responds as follows:

Override Added

The relay asserts Relay Word bit TESTFM while any Fast Meter override data are present in the relay.

Fast Meter Status Byte

Bits labeled TEST and FMTEST reside in the Fast Meter status byte. If any item within the Fast Meter message is in test mode, the relay sets the TEST and FMTEST bits.

TEST FM OFF

Use the TEST FM OFF command to remove override values. The relay returns the Fast Meter registers to the pretest values.

Table 7.114 TEST FM OFF Command

Command	Description	Access Level
TEST FM label OFF	Clear the override values for the Fast Meter item <i>label</i> .	B, P, A, O, 2
TEST FM OFF	Clear all override testing values from Fast Meter.	B, P, A, O, 2

When you have successfully removed a Fast Meter test value (for example, TEST FM AMV001 OFF), the relay responds as follows:

Override Removed

When an attempt to remove an FM test value fails, the relay responds as follows:

Override Not Found

When removing all FM test values (for example, **TEST FM OFF**), the relay responds as follows:

All Overrides Removed

TIME

Use the **TIME** command to view and set the relay time clock. The ASCII interface is just one source by which you can set the internal clock. Other sources can override the ASCII **TIME** command; overriding occurs in IRIG time mode and when using DNP. See *Configuring Timekeeping on page U.4.49* for more information on configuring SEL-487B time functions.

TIME

The **TIME** command returns information about the internal relay clock. You can also set the clock if you specify hours and minutes (seconds data are optional). Separate the hours, minutes, and seconds with colons, semicolons, spaces, commas, or slashes.

Table 7.115 TIME Command

Command	Description	Access Level
TIME	Display the present relay internal clock time.	1, B, P, A, O, 2
TIME hh:mm	Set the relay internal clock to hh:mm.	1, B, P, A, O, 2
TIME hh:mm:ss	Set the relay internal clock to hh:mm:ss.	1, B, P, A, O, 2

Use the **TIME** *hh:mm* and **TIME** *hh:mm:ss* commands to set the relay internal clock time. The value *hh* is for hours from 0–23; the value *mm* is for minutes from 0–59; the value *ss* is for seconds from 0–59. If you enter a valid time, the relay updates and saves the time in the nonvolatile clock, and displays the time you just entered. If you enter an invalid time, the relay responds as follows:

Invalid Time

TIME Q

The **TIME Q** command returns detailed information on the relay internal clock. Use this command to query the status of high-accuracy time source inputs and the present clock time mode.

Table 7.116 TIME Q Command

Command	Description	Access Level
TIME Q	Display detailed information about the internal relay clock; query relay time.	1, B, P, A, O, 2

When you issue the **TIME Q** command, the relay reports statistics on the relay time sources. These statistics include the present high-priority time mark source, the last time value update source, and time synchronization status among others. See *Configuring Timekeeping on page U.4.49*.

TRIGGER

The TRIGGER command initiates data captures for event reports. For information on event reports, see Section 3: Analyzing Data in the Applications Handbook. See Reading Event Reports and SER on page U.4.34 for examples using the TRI command.

TRI

Use the **TRI** command to trigger the SEL-487B to record data for event reports.

Table 7.117 TRI Command

Command	Description	Access Level
TRI	Trigger relay data capture.	1, B, P, A, O, 2

When you issue the **TRI** command, the relay responds as follows:

Triggered

If the event did not trigger within one second, the relay responds as follows:

Did not trigger

VERSION

The VERSION command displays the relay hardware and software configuration.

VER

Use the **VER** command to list the part numbers, serial numbers, checksums, software release numbers, and other important relay configuration information.

Table 7.118 VER Command

Command	Description	Access Level
VER	Display the hardware and software configurations.	1, B, P, A, O, 2

When you issue the VER command, the relay displays the latest release numbers for the following items:

- ➤ FID
- Part number
- Serial number
- SELBOOT BFID
- Mainboard memory types and sizes
- ➤ Front-panel hardware
- ➤ Analog inputs ratings
- ➤ Fiber port (installed or absent)
- Interface board inputs and outputs
- Power supply ratings

- ➤ Communications card IDs and part number
- ➤ Extended relay features list (optional DNP communications capability)

A sample **VER** command response is shown in *Figure 7.3*:

```
=>>VFR <Fnter>
FID=SEL-487B-R102-V0-Z001001-D20030724
CID=0F73
Part Number: 0487B06512XEDXXXH
Serial Number: 20030011234
SELboot:
    BFID= SLBT-4XX-R100-V0-Z001001-D20010703
   Checksum: 4DFF
Mainboard:
    Code FLASH Size:
                        4 MB
    Data FLASH Size:
                        8 MB
    RAM Size:
                        2 MB
   EEPROM Size:
                      64 kB
Front Panel: installed
Analog Inputs:
   Currents: 5 Amp
    Voltages: 67 Volts
Fiber Port: installed
Interface Boards: - Warning - hardware does not match part number
   Board 1: 24 inputs 8 outputs
Board 2: not installed
    Board 3: not installed
    Board 4: not installed
Communications Card:
    installed
Extended Relay Features:
If the information above is not as expected, contact SEL for assistance.
```

Figure 7.3 Sample VER Command Response

If an item is not installed, the **VER** report indicates as follows:

```
Not installed
```

at the appropriate line. If a detected hardware configuration does not match the component part number, the relay adds the following statement on the corresponding line:

```
Warning - hardware does not match part number
```

Use the **VIEW** command to examine data within the relay database. You can view these data in three ways:

- ➤ Region
- > Register item
- ➤ Bit

The **VIEW** command in the SEL-487B is very similar to the **VIEW** command in SEL Communications Processors. See *Section 4: SEL Communications Protocols* for more information on the relay database regions and data types.

SEL-487B regions are LOCAL, METER, TARGET, HISTORY, STATUS, ANALOGS, STATE and D1; view this list with the **MAP 1** command.

VIEW

The SEL-487B is Virtual Device 1; all commands begin VIEW 1. In all database views, if a data item is in test mode, the relay displays an asterisk (*) mark following the data value.

VIEW 1 Commands-Region

Use the commands in *Table 7.119* to view the contents of the database regions.

Table 7.119 VIEW 1 Commands-Region

Command	Description	Access Level
VIEW 1 region	Display the data in the relay database in the region <i>region</i> .	1, B, P, A, O, 2
VIEW 1 region BL	Display the data in the region <i>region</i> and include bit labels.	1, B, P, A, O, 2

VIEW 1 Commands-Register Item

Use the commands in *Table 7.120* to view register items in the relay database. Examples of register items in the METER region are IA1, I0_1, VB, and PF. Examples of register items in the LOCAL region are FID, SER_NUM, and PART_NUM.

Table 7.120 VIEW 1 Commands-Register Item

Command	Description	Access Level
VIEW 1 addr	Display the data in the relay database at register address <i>addr</i> .	1, B, P, A, O, 2
VIEW 1 addr NR m ^a	Display the data beginning at register address <i>addr</i> and continue for <i>m</i> registers.	1, B, P, A, O, 2
VIEW 1 region item_label	Display the data for the addresses in the <i>region item_label</i> area of the database.	1, B, P, A, O, 2
VIEW 1 region item_label NR m ^a	Display the data for addresses in the <i>region item_label</i> area of the database; begin at the start of <i>item_label</i> and proceed for <i>m</i> registers.	1, B, P, A, O, 2
VIEW 1 region offset	Display the data for the address in the database region <i>region</i> at the offset <i>offset</i> from the beginning of the region.	1, B, P, A, O, 2
VIEW 1 region offset NR m ^a	Display the data for the addresses in the data- base region <i>region</i> ; begin at the offset <i>offset</i> from the beginning of the region and proceed for <i>m</i> registers.	1, B, P, A, O, 2

^a Parameter m is an integer value representing the number of registers.

In the VIEW 1 addr commands, option addr is the register address. Use the MAP 1 region command to find the register address. You can specify register addresses as a decimal or hexadecimal number. (A hexadecimal address is a numeral with an "h" suffix or a "0x" prefix.) If you specify the data by address or by offset with the addr and offset options, the relay returns the data in hexadecimal number format. The NR option specifies the number of registers *m* that the relay includes in the data listing.

VIEW 1 Commands-Bit

Use commands in *Table 7.121* to inspect a specific bit in the relay database. The relay displays bit data as the bit label or number and the value logical 1 or logical 0. An example of a relay response for bit commands is 1:TARGET:ALTI = 0, where ALTI is the bit label and 0 is the bit value. Other examples of bit labels are P87R1, 27P32, and ASV256.

Table 7.121 VIEW 1 Commands-Bita

Command	Description	Access Level
VIEW 1 addr bit	Display the value at register address <i>addr</i> for the bit number <i>bit</i> .	1, B, P, A, O, 2
VIEW 1 bit_label	Display the value for the bit with the bit label <i>bit_label</i> .	1, B, P, A, O, 2
VIEW 1 region bit_label	Display the value for the particular bit with the bit label <i>bit_label</i> in the region <i>region</i> .	1, B, P, A, O, 2
VIEW 1 region offset bit ^b	Display the value for the bit bit in the region region that is offset from the beginning of the region by offset offset.	1, B, P, A, O, 2

^a Parameter bit is a number from 0-15, with 0 as the LSB (least significant bit).

The command option *bit* is the bit number. If you access bit data, the relay displays the bit label or number and the value (logical 0 or logical 1). If you reference the data by label with the **BL** and *bit_label* options, the relay returns the data according to the data type.

Use the VIEW 1 bit_label command as a shorthand method to inspect a specific data bit in the relay database. The relay searches the entire relay database structure for the bit label you specified; this process takes more time and processing than narrowing the search by using the VIEW 1 region command and the VIEW 1 addr command with the bit label option bit_label.

The **ZONE** command causes the relay to display the active protection zones and the terminal and bus-zone names in each active protection zone, where active means a zone with at least one terminal in the zone.

ZON

Use the **ZON** command to display the terminal and bus-names associated with all active zones.

Table 7.122 ZON Command

Command	Description	Access Level
ZON	Display the terminal and bus-zone names associated with all active zones.	1, B, P, A, O, 2

ZON T

Use the **ZON T** command to display the terminal names in each active zone, selected for tripping by differential and breaker failure protection.

ZONE

^b Parameter offset is a decimal or hexadecimal number to indicate the offset.

Table 7.123 ZON T Command

Command	Description	Access Level
ZON T	Display the terminals programmed for tripping in all zones	1, B, P, A, O, 2

When two zones combine, the combined zone includes the terminals from both merged zones. Not all terminals in the combined zone may be required to trip for a differential element operation. **ZON T** provides a list of all terminals assigned to trip in all the zones at the station, and **ZON T** k provides a list of the terminals to trip in a specific zone.

ZON k

Use the **ZON** k (k = 1 through 6) command to display the terminals in Zone k, if Zone k is active.

Table 7.124 ZON k Command

Command	Description	Access Level
ZON ka	Display the terminals in Zone k .	1, B, P, A, O, 2

^a Parameter k is 1-6.

Section 8

Settings

Overview

This section contains tables of relay settings for the SEL-487B Relay.

The relay hides some settings based upon other settings. If you set an enable setting to OFF, for example, the relay hides all settings associated with that enable setting. This section does not explain rules for hiding settings; these rules are discussed in the applications sections of the instruction manual where appropriate.

The settings prompts in this section are similar to the ASCII terminal and ACSELERATOR QuickSet[®] SEL-5030 software prompts. The prompts in this section are unabbreviated and show all possible setting options.

For information on using settings in protection and automation, see the examples in *Section 1: System Configuration Guideline and Application Examples in the Applications Handbook*. The section arranges settings in the following order:

- ➤ Alias settings
- ➤ Global settings
 - General global settings
 - ➤ Global enables
 - > Station dc monitor
 - Control inputs (global)
 - Main Board control inputs
 - ➤ Interface Board #1 control inputs
 - Interface Board #2 control inputs
 - ➤ Interface Board #3 control inputs
 - ➤ Interface Board #4 control inputs
 - > Settings group selection
 - > Data reset control
 - Breaker inputs
 - > Disconnects inputs and timers
- Zone configuration settings
 - > Potential transformer ratios
 - Current transformer ratios
 - > Terminal-to-bus-zone connections
 - > Bus-zone-to-bus-zone connections
 - > Zone supervision

- > Zone switching supervision
- Open CT detection
- ➤ Terminal-to-check-zone connections
- Check zone supervision

➤ Group settings

- Relay configuration
- > Sensitive differential elements
- Restrained differential elements
- > Directional elements
- > Coupler security logic
- > Terminal out of service
- ➤ Breaker failure logic
- > Definite-time overcurrent elements
- > Inverse-time overcurrent elements
- > Phase instantaneous over- and undervoltage elements
- Sequence overvoltage elements
- ➤ Trip logic
- ➤ Protection free-form SELOGIC[®] control equations
- ➤ Automation free-form SELOGIC control equations
- ➤ Output settings
 - Main board
 - ➤ Interface Board #1
 - ➤ Interface Board #2
 - ➤ Interface Board #3
 - ➤ Interface Board #4
 - Communications card outputs
 - ➤ MIRRORED BITS® communications transmit equations
- ➤ Front-panel settings
 - > Pushbuttons and target LEDs
 - > Selectable screens for the front panel
 - Selectable operator pushbuttons
 - > Front-panel event display
 - Display points
 - > Local control
- ➤ Report settings
 - > SER chatter criteria
 - > SER points
 - > Event reporting
 - > Event reporting digital elements

- > Port settings
 - > Protocol selection
 - Communications settings
 - SEL protocol settings
 - DNP3 protocol settings
 - MIRRORED BITS protocol settings
 - Ethernet settings
 - > FTP settings
 - > Telnet settings
 - Network host name
 - IEC 61850 settings
- ➤ DNP3 settings
 - > DNP3 Reference Map Selection
 - > DNP3 Object Default Map Enables
 - Binary Input Map
 - Binary Output Map
 - Counter Map
 - Analog Input Map
 - Analog Output Map

Alias Settings

Assign a valid seven-character alias name to any of the following:

- ➤ Relay Word bit
- Analog quantity
- Terminal name
- Bus-zone name
- ➤ Check-zone name

Invalid alias names include the following keywords used by settings and SELOGIC control equations:

- ➤ END
- ➤ INSERT
- ➤ DELETE
- ➤ LIST
- ➤ NA

SELOGIC control equation operators (e.g., NOT, AND, OR, COS) cannot be used as alias names.

NOTE: Lowercase letters are accepted, but the relay converts them to uppercase.

Alias names are valid when the following are true:

- ➤ They consist of a maximum of seven characters.
- ➤ They are constructed using characters 0–9, uppercase A–Z, or the underscore ().

For example, the default name for analog input I01 is FDR_1. You could change the default name to a more appropriate feeder name, New York, for example.

New York (including the space) consists of eight characters, one more than the allowable number of seven. Changing the name to New Yrk reduces the character count to seven, but the alias contains two elements not permitted, a space and four lowercase letters (ew rk). One possible alias for the existing name of FDR_1 could be NEW_YRK, entered using the following syntax:

primitive name, alias name,

```
e.g., I01, NEW_YRK
```

Figure 8.1 shows the steps using the **SET T** command.

```
=>>SET T <Enter>
Alias
Relay Aliases
(RW Bit, Analog Qty., Terminal, Bus-Zone, or Check Zone, 7 Char. Alias [0-9 A-Z _])
1: I01,"FDR_1"
? IO1,NEW_YRK <Enter>
2: I02,"FDR_2"
? END <Enter>
Alias
Relay Aliases
(RW Bit, Analog Oty., Terminal, Bus-Zone, or Check Zone, 7 Char. Alias [0-9 A-Z _])
1: IO1, "NEW_YRK"
2: I02, "FDR_2"
Save settings (Y,N) ?Y <Enter>
Saving Settings, Please Wait.....
Settings Saved
=>>
```

Figure 8.1 Changing a Default Name to an Alias

Table 8.1 Default Alias Settings (Sheet 1 of 3)

.abel	Default Value
01	FDR_1
02	FDR_2
03	FDR_3
04	TRFR_1
05	TB_1
06	TB_2
BZ1	BUS_1
3Z2	BUS_2
BF01	F1_BF
BF02	F2_BF
BF03	F3_BF
03 04 05 06 3Z1 3Z2 EBF01 EBF02	FDR_3 TRFR_1 TB_1 TB_2 BUS_1 BUS_2 F1_BF F2_BF

	erault Alias Settings (Sneet 2 or 3)
Label	Default Value
FBF04	T1_BF
FBF05	TB1_BF
FBF06	TB2_BF
87Z1	Z1_TRIP
87Z2	Z2_TRIP
IN101	F1_BFI
IN102	F2_BFI
IN103	F3_BFI
IN104	T1_BFI
IN105	TB_BFI
PLT01	DIFF_EN
PLT02	BF_EN
PLT03	TNS_SW
87ST1	CTZ1_AN
87ST2	CTZ2_AN
SBFTR01	F1_BFT
SBFTR02	F2_BFT
SBFTR03	F3_BFT
SBFTR04	T1_BFT
SBFTR05	TB1_BFT
SBFTR06	TB2_BFT
87BTR01	F1_DPT
87BTR02	F2_DPT
87BTR03	F3_DPT
87BTR04	T1_DPT
87BTR05	TB1_DPT
87BTR06	TB2_DPT
OUT101	F1_TRP
OUT102	F2_TRP
OUT103	F3_TRP
OUT104	T1_TRP
OUT105	TB_TRP
OUT107	TEST
OUT108	ALARM
TLED_1	87_DIFF
TLED_2	BK_FAIL
TLED_3	ZONE_1
TLED_4	ZONE_2
TLED_5	ZONE_3
TLED_6	ZONE_4
TLED_7	ZONE_5

Table 8.1 Default Alias Settings (Sheet 3 of 3)

Label	Default Value
TLED_8	ZONE_6
TLED_9	50_TRIP
TLED_10	51_TRIP
TLED_11	CT_ALRM
TLED_12	87_BLK
TLED_13	TOS
TLED_14	89_OIP
TLED_15	89_ALRM
TLED_16	PT_ALRM
TLED_17	27_LED
TLED_18	59_LED
TLED_19	V01_ON
TLED_20	V02_ON
TLED_21	V03_ON
TLED_22	FLT_LED
TLED_23	52_ALRM
TLED_24	IRIGLED

Global Settings

Table 8.2 Global Settings Categories

Settings	Reference
General Global Settings	Table 8.3
Global Enables	Table 8.4
Station DC Monitor	Table 8.5
Control Inputs (Global)	Table 8.6
Main Board Control Inputs	Table 8.7
Interface Board #1 Control Inputs	Table 8.8
Interface Board #2 Control Inputs	Table 8.9
Interface Board #3 Control Inputs	<i>Table 8.10</i>
Interface Board #4 Control Inputs	Table 8.11
Settings Group Selection	<i>Table 8.12</i>
Data Reset Control	<i>Table 8.13</i>
Breaker Inputs	Table 8.14
Disconnects Inputs and Timers	Table 8.15

Table 8.3 General Global Settings

Label	Prompt	Default Value
SID	Station Identifier (40 characters)	Station A
RID	Relay Identifier (40 characters)	Relay 1
NUMBK	Number of Breakers (N, 1–18)	5
NUMDS	Number of Disconnects (N, 1-48)	N
NFREQ	Nominal System Frequency (50, 60 Hz)	60
DATE_F	Date Format (MDY, YMD, DMY)	MDY

Table 8.4 Global Enables

Label	Prompt	Default Value
EDCMON	Station DC Battery Monitor (Y, N)	N
EICIS	Independent Control Input Settings (Y, N)	N
EDRSTC	Data Reset Control (Y, N)	N
EGADVS	Advanced Global Settings (Y, N)	N

Table 8.5 Station DC Monitor

Label	Prompt	Default Value
DC1LFP	Low Level Fail Pickup (OFF, 15–300 Vdc)	100
DC1LWP	Low Level Warn Pickup (OFF, 15–300 Vdc)	127
DC1HWP	High Level Warn Pickup (OFF, 15–300 Vdc)	137
DC1HFP	High Level Fail Pickup (OFF, 15–300 Vdc)	142
DC1RP	Peak-to-Peak AC Ripple Pickup (1–300 Vac)	9
DC1GF	Ground Detection Factor (1.00–2)	1.05

Table 8.6 Control Inputs (Global)

Label	Prompt	Default Value
GINPU	Input Pickup Delay (0.00–1 cyc)	0.17
GINDO	Input Dropout Delay (0.00-1 cyc)	0.17

Table 8.7 Main Board Control Inputs

Label	Prompt	Default Value
IN101PU	Input IN101 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN101DO	Input IN101 Dropout Delay (0.00–1 cyc)	0.17 ^a
•	•	•
•	•	•
•	•	•
IN107PU	Input IN107 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN107DO	Input IN107 Dropout Delay (0.00–1 cyc)	0.17a

^a If EICIS = N, these settings are the same as GINPU and GINDO.

Table 8.8 Interface Board #1 Control Inputs

Label	Prompt	Default Value
IN201PU	Input IN201 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN201DO	Input IN201 Dropout Delay (0.00–1 cyc)	0.17 ^a
•	•	•
•	•	•
•	•	•
IN224PU	Input IN224 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN224DO	Input IN224 Dropout Delay (0.00–1 cyc)	0.17a

^a If EICIS = N, these settings are the same as GINPU and GINDO.

Table 8.9 Interface Board #2 Control Inputs

Label	Prompt	Default Value
IN301PU	Input IN301 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN301DO	Input IN301 Dropout Delay (0.00–1 cyc)	0.17 ^a
•	•	•
•	•	•
•	•	•
IN324PU	Input IN324 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN324DO	Input IN324 Dropout Delay (0.00–1 cyc)	0.17 ^a

^a If EICIS = N, these settings are the same as GINPU and GINDO.

Table 8.10 Interface Board #3 Control Inputs

Label	Prompt	Default Value
IN401PU	Input IN401 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN401DO	Input IN401 Dropout Delay (0.00–1 cyc)	0.17a
•	•	•
•	•	•
•	•	•
IN424PU	Input IN424 Pickup Delay (0.00–1 cyc)	0.17a
IN424DO	Input IN424 Dropout Delay (0.00–1 cyc)	0.17a

^a If EICIS = N, these settings are the same as GINPU and GINDO.

Table 8.11 Interface Board #4 Control Inputs

Label	Prompt	Default Value
IN501PU	Input IN501 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN501DO	Input IN501 Dropout Delay (0.00–1 cyc)	0.17 ^a
•	•	•
•	•	•
•	•	•
IN524PU	Input IN524 Pickup Delay (0.00–1 cyc)	0.17 ^a
IN524DO	Input IN524 Dropout Delay (0.00-1 cyc)	0.17 ^a

a If EICIS = N, these settings are the same as GINPU and GINDO.

Table 8.12 Settings Group Selection

Label	Prompt	Default Value
SS1	Select Setting Group 1 (SELOGIC Equation)	NA
SS2	Select Setting Group 2 (SELOGIC Equation)	NA
SS3	Select Setting Group 3 (SELOGIC Equation)	NA
SS4	Select Setting Group 4 (SELOGIC Equation)	NA
SS5	Select Setting Group 5 (SELOGIC Equation)	NA
SS6	Select Setting Group 6 (SELOGIC Equation)	NA
TGR	Group Change Delay (0–54000 cycles)	180

Table 8.13 Data Reset Control

Label	Prompt	Default Value
RST_BAT	Reset Battery Monitoring (SELOGIC Equation)	NA
RSTTRGT	Target Reset (SELOGIC Equation)	NA
RSTDNPE	Reset DNP Fault Summary Data (SELOGIC Equation)	TRGTR

Table 8.14 Breaker Inputs

Label	Prompt	Default Value
52A01	N/O Contact Input–BK01 (SELOGIC Equation)	NA
•	•	•
•	•	•
•	•	•
52A18	N/O Contact Input–BK18 (SELOGIC Equation)	NA

Table 8.15 Disconnect Inputs and Timers

Label	Prompt	Default Value
89A01	N/O Contact Inputs-DS01 (SELOGIC Equation)	NA
89B01	N/C Contact Inputs-DS01 (SELOGIC Equation)	NA
89ALP01	DS01 Alarm Pickup Delay (0–99999 cyc)	300
•	•	•
•	•	•
•	•	•
89A48	N/O Contact Inputs-DS48 (SELOGIC Equation)	NA
89B48	N/C Contact Inputs-DS48 (SELOGIC Equation)	NA
89ALP48	DS48 Alarm Pickup Delay (0–99999 cyc)	300

Zone Configuration Settings

The following zone configuration settings are the default settings for all six setting groups. You can set each of the six zone configuration setting groups independently.

Table 8.16 Zone Configuration Settings Categories

Settings	Reference
Potential Transformer Ratios	Table 8.17
Current Transformer Ratios	<i>Table 8.18</i>
Terminal-to-Bus-Zone Connections	Table 8.19
Bus-Zone-to-Bus-Zone Connections	Table 8.20
Zone Supervision	Table 8.21
Zone Switching Supervision	Table 8.22
Open CT Detection	Table 8.23
Terminal-to-Check-Zone Connections	Table 8.24
Check Zone Supervision	Table 8.25
Current Normalization Factor	a

^a This setting is included here because it appears in the read-back information as TAPnn values (nn = 01 through 18). However, the user cannot set these values; the SEL-487B calculates these internally using the nominal current and CT ratios. See Section 1: Protection Functions for more information.

Table 8.17 Potential Transformer Ratios

Label	Prompt	Default Value
PTR1	Potential Transformer Ratio-V01 (1-10000)	2000
PTR2	Potential Transformer Ratio-V02 (1-10000)	2000
PTR3	Potential Transformer Ratio-V03 (1-10000)	2000

Table 8.18 Current Transformer Ratios

Label	Prompt	Default Value
CTR01	Current Transformer Ratio-I01 (1-50000)	600
CTR02	Current Transformer Ratio-I02 (1-50000)	600
CTR03	Current Transformer Ratio-I03 (1-50000)	600
CTR04	Current Transformer Ratio–I04 (1–50000)	600
CTR05	Current Transformer Ratio–I05 (1–50000)	600
CTR06	Current Transformer Ratio–I06 (1–50000)	600
CTR07	Current Transformer Ratio-I07 (1-50000)	600
•	•	•
•	•	•
•	•	•
CTR18	Current Transformer Ratio–I18 (1–50000)	600

Label	Prompt	Default Value
I01BZ1C	Terminal, Bus-Zone, Polarity (P, N)	FDR_1, BUS_1,P
I01BZ1V	TB_1 to BUS_1 Connection (SELOGIC Equation)	DIFF_EN AND NOT TOS01
I02BZ1C	Terminal, Bus-Zone, Polarity (P, N)	FDR_2, BUS_1,P
I02BZ1V	TB_2 to BUS_1 Connection (SELOGIC Equation)	DIFF_EN AND NOT TOS02
I03BZ2C	Terminal, Bus-Zone, Polarity (P, N)	FDR_3, BUS_2,P
I03BZ2V	FDR_1 to BUS_2 Connection (SELOGIC Equation)	DIFF_EN AND NOT TOS03
I04BZ2C	Terminal, Bus-Zone, Polarity (P, N)	TRFR_1, BUS_2,P
I04BZ2V	FDR_2 to BUS_2 Connection (SELOGIC Equation)	DIFF_EN AND NOT TOS04
I05BZ1C	Terminal, Bus-Zone, Polarity (P, N)	TB_1, BUS_1,P
I05BZ1V	FDR_3 to BUS_1 Connection (SELOGIC Equation)	DIFF_EN AND NOT TOS05
I06BZ2C	Terminal, Bus-Zone, Polarity (P, N)	TB_2, BUS_2,P
I06BZ2V	TRFR_1 to BUS_2 Connection (SELOGIC Equation)	DIFF_EN AND NOT TOS05
•	•	•
•	•	•
•	•	•
$InnBZpC^{a,b}$	Terminal, Bus-Zone, Polarity (P, N)	None
InnBZpV	Inn to BZp Connection (SELOGIC Equation)	NA

a nn = 1-18.

Table 8.20 Bus-Zone-to-Bus-Zone Connections

Label	Prompt	Default Value
$BZpBZmC^{a,b}$	Bus-Zone, Bus-Zone	None
BZpBZmV	BZp to BZm Connection (SELOGIC Equation)	NA
BZpBZmR	Connection to Remove Terminals when BZp and BZm merge (SELOGIC Equation)	NA
BZpBZmM	Terminals Removed when BZp and BZm Bus-Zones merge (Ter $k,$, Ter n) ^c	None
BZpBZmT	Trip Terminals Ter $k, \ldots, \text{Ter } n (Y, N)$	N

a p = 1-6.

b p = 1-6.

b m = 1-6.
c Terminal k, Terminal 1, or Terminal n (maximum of four terminals from 01 through 18).

Table 8.21 Zone Supervision

Label	Prompt	Default Value
E87ZSUP	Differential Element Zone Supervision (Y, N)	N
Z1S	Zone 1 Supervision (SELOGIC Equation)	1
Z2S	Zone 2 Supervision (SELOGIC Equation)	1
Z3S	Zone 3 Supervision (SELOGIC Equation)	1
Z4S	Zone 4 Supervision (SELOGIC Equation)	1
Z5S	Zone 5 Supervision (SELOGIC Equation)	1
Z6S	Zone 6 Supervision (SELOGIC Equation)	1

Table 8.22 Zone Switching Supervision

Label	Prompt	Default Value
EZSWSUP	Zone Switching Supervision (Y, N)	N
ZSWO	Zone Switching Operation (SELOGIC control equation)	NA
RZSWOAL	Reset Zone Switching Op Alarm (SELOGIC control equation)	NA
ZSWOPU	Zone Switching Op Pickup Delay (0–99999 cyc)	1800

Table 8.23 Zone Open CT Detection

Label	Prompt	Default Value
ROCTZ1	Reset Zone 1 Open CT Detector (SELOGIC control equation)	RSTOCT1
ROCTZ2	Reset Zone 2 Open CT Detector (SELOGIC control equation)	RSTOCT2
ROCTZ3	Reset Zone 3 Open CT Detector (SELOGIC control equation)	RSTOCT3
ROCTZ4	Reset Zone 4 Open CT Detector (SELOGIC control equation)	RSTOCT4
ROCTZ5	Reset Zone 5 Open CT Detector (SELOGIC control equation)	RSTOCT5
ROCTZ6	Reset Zone 6 Open CT Detector (SELOGIC control equation)	RSTOCT6

Table 8.24 Terminal-to-Check-Zone Connections

Label	Prompt	Default Value
ECHKZN	Enable Check Zones at Station (Y, N)	N
InnCZpCab	Terminal, Check-Zone, Polarity (P, N)	None
InnCZpV ^{ab}	Inn to CZp Connection (SELOGIC control equation)	NA

a nn = 1-18 b p = 1

Table 8.25 Check Zone Supervision

Label	Prompt	Default Value
E87CZSP	Differential Element Check Zone Supervision (Y, N)	N
CZ1S	Check Zone 1 Supervision (SELOGIC control equation)	1

Group Settings

Table 8.26 Group Settings Categories

Settings	Reference
Relay Configuration	Table 8.27
Sensitive Differential Elements	Table 8.28
Check Zone Sensitive Differential Elements	Table 8.29
Restrained Differential Elements	Table 8.30
Check Zone Restrained Differential Elements	Table 8.31
Directional Elements	Table 8.32
Coupler Security Logic	Table 8.33
Terminal Out of Service	Table 8.34
Breaker Failure Logic	Table 8.35
Definite-Time Overcurrent Elements	Table 8.36
Inverse-Time Overcurrent Elements	Table 8.37
Phase Instantaneous Over- and Undervoltage Elements	Table 8.38
Sequence Overvoltage Elements	Table 8.39
Trip Logic	Table 8.40

Table 8.27 Relay Configuration

Label	Prompt	Default Value
E87SSUP	Sensitive Differential Element Supervision (Y, N)	Y
ECSL	Coupler Security Logic (N, 1–4)	N
ETOS	Terminal Out of Service (N, 1–18)	5
EBFL	Breaker Failure Logic (N, 1–18)	6
E50	Definite Time Overcurrent Elements (N, 1–18)	N
E51	Inverse Time Overcurrent Elements (N, 1–18)	N
EVOLT	Voltage Elements (Y, N)	Y
EADVS	Advanced Settings (Y, N)	N

Table 8.28 Sensitive Differential Elements

Label	Prompt	Default Value
S87P	Sensitive Differential Element Pickup (0.05–1 pu)	0.10
87STPU	87S Timer Pickup Delay (50–6000 cyc)	300

Table 8.29 Check Zone Sensitive Differential Elements^a

Label	Prompt	Default Value
CZS87P	Check Zone Sensitive Differential Element Pickup (0.05–1 pu)	0.10
CZ87STP	Check Zone 87S Time Pickup Delay (50–6000 cyc)	300

a Available when ECHKZN := Y

Table 8.30 Restrained Differential Elements

Label	Prompt	Default Value
O87P	Restrained Diff Element Pickup (0.10–4 pu)	1.00
SLP1	Restrained Slope 1 Percentage (15–90%)	60
SLP2	Restrained Slope 2 Percentage (50–90%)	80
RTDI	Incr Restrained Current Threshold (0.10–10 pu)	1.20
OPDI	Incr Operating Current Threshold (0.10–10 pu)	1.20

Table 8.31 Check Zone Restrained Differential Elements^a

Label	Prompt	Default Value
CZO87P	Check Zone Restrained Diff Element Pickup (0.10–4 pu)	1.00
CZSLP1	Check Zone Restrained Slope 1 Percentage (15–90%)	60
CZSLP2	Check Zone Restrained Slope 2 Percentage (15–90%)	80
CZRTDI	Check Zone Incr Restrained Current Threshold (0.10–10 pu)	1.20
CZOPDI	Check Zone Incr Operating Current Threshold (0.10–10 pu)	1.20

^a Available when ECHKZN := Y

Table 8.32 Directional Elements

Label	Prompt	Default Value
50DSP	Dir Element O/C Supervision Pickup (0.05–3 pu)	0.05

Table 8.33 Coupler Security Logic (1 through 4) (Sheet 1 of 2)

Label	Prompt	Default Value
CB52A1	Coupler 1 Status (SELOGIC Equation)	NA
CB52DO1	Coupler 1 Status Dropout Delay (0.00–1000 cyc)	4
CBCLS1	Coupler 1 Close Command (SELOGIC Equation)	NA
CBCLDO1	Coupler 1 Close Command D/O Delay (0.00–1000 cyc)	5
ACTRP1	Coupler 1 Acc Trip (SELOGIC Equation)	NA
ACTPPU1	Coupler 1 Acc Trip Pickup Delay (0.00–1000 cyc)	4
•	•	•
•	•	•
•	•	•

Table 8.33 Coupler Security Logic (1 through 4) (Sheet 2 of 2)

Label	Prompt	Default Value
CB52A4	Coupler 4 Status (SELOGIC Equation)	NA
CB52DO4	Coupler 4 Status Dropout Delay (0.00–1000 cyc)	4
CBCLS4	Coupler 4 Close Command (SELOGIC Equation)	NA
CBCLDO4	Coupler 4 Close Command D/O Delay (0.00–1000 cyc)	5
ACTRP4	Coupler 4 Acc Trip (SELOGIC Equation)	NA
ACTPPU4	Coupler 4 Acc Trip Pickup Delay (0.00–1000 cyc)	4

Table 8.34 Terminal Out of Service (1 through 18)

Label	Prompt	Default Value
TOS01	Terminal 01 Out-of-Service (SELOGIC Equation)	LB01
TOS02	Terminal 02 Out-of-Service (SELOGIC Equation)	LB02
TOS03	Terminal 03 Out-of-Service (SELOGIC Equation)	LB03
TOS04	Terminal 04 Out-of-Service (SELOGIC Equation)	LB04
TOS05	Terminal 05 Out of Service (SELOGIC Equation)	LB05
TOS06	Terminal 06 Out of Service (SELOGIC Equation)	NA
•	•	•
•	•	•
•	•	•
TOS18	Terminal 18 Out-of-Service (SELOGIC Equation)	NA

Table 8.35 Breaker Failure Logic (1 through 18) (Sheet 1 of 4)

Label	Prompt	Default Value	
Breaker 01 Fa	Breaker 01 Failure Logic		
EXBF01	External Breaker Fail–BK01 (Y, N)	N	
XBF01	External Brkr Fail Init-BK01 (SELOGIC Equation)	NA	
50FP01	Fault Current Pickup–BK01 (0.50–50 amps, sec)	3.00	
BFPU01	Brkr Fail Init Pickup Delay–BK01 (0.00–6000 cyc)	6.00	
RTPU01	Retrip Delay-BK01 (0.00-6000 cyc)	3.00	
BFI01	Breaker Fail Initiate–BK01 (SELOGIC Equation)	F1_BFI AND BF_EN	
ATBFI01	Alt Breaker Fail Initiate—BK01 (SELOGIC Equation)	NA	
EBFIS01	Breaker Fail Initiate Seal-In–BK01 (Y, N)	N	
BFISP01	Breaker Fail Init Seal-In Delay–BK01 (0.00–1000 cyc)	0.50	
BFIDO01	Brkr Fail Init Dropout Delay–BK01 (0.00–1000 cyc)	1.50	
Breaker 02 F	ailure Logic		
EXBF02	External Breaker Fail-BK02 (Y, N)	N	
XBF02	External Brkr Fail Init-BK02 (SELOGIC Equation)	NA	
50FP02	Fault Current Pickup–BK02 (0.50–50 amps, sec)	3.00	
BFPU02	Brkr Fail Init Pickup Delay–BK02 (0.00–6000 cyc)	6.00	
RTPU02	Retrip Delay–BK02 (0.00–6000 cyc)	3.00	

Table 8.35 Breaker Failure Logic (1 through 18) (Sheet 2 of 4)

Label	Prompt	Default Value
BFI02	Breaker Fail Initiate–BK02 (SELOGIC Equation)	F2_BFI AND BF_EN
ATBFI02	Alt Breaker Fail Initiate–BK02 (SELOGIC Equation)	NA
EBFIS02	Breaker Fail Initiate Seal-In–BK02 (Y, N)	N
BFISP02	Breaker Fail Init Seal-In Delay–BK02 (0.00–1000 cyc)	0.50
BFIDO02	Brkr Fail Init Dropout Delay–BK02 (0.00–1000 cyc)	1.50
Breaker 03 F	ailure Logic	
EXBF03	External Breaker Fail-BK03 (Y, N)	N
XBF03	External Brkr Fail Init-BK03 (SELOGIC Equation)	NA
50FP03	Fault Current Pickup–BK03 (0.50–50 amps, sec)	3.00
BFPU03	Brkr Fail Init Pickup Delay–BK03 (0.00–6000 cyc)	6.00
RTPU03	Retrip Delay-BK03 (0.00-6000 cyc)	3.00
BFI03	Breaker Fail Initiate–BK03 (SELOGIC Equation)	F3_BFI AND BF_EN
ATBFI03	Alt Breaker Fail Initiate–BK03 (SELOGIC Equation)	NA
EBFIS03	Breaker Fail Initiate Seal-In-BK03 (Y, N)	N
BFISP03	Breaker Fail Init Seal-In Delay–BK03 (0.00–1000 cyc)	0.50
BFIDO03	Brkr Fail Init Dropout Delay–BK03 (0.00–1000 cyc)	1.50
Breaker 04 F	ailure Logic	,
EXBF04	External Breaker Fail-BK04 (Y, N)	N
XBF04	External Brkr Fail Init-BK04 (SELOGIC Equation)	NA
50FP04	Fault Current Pickup–BK04 (0.50–50 amps, sec)	3.00
BFPU04	Brkr Fail Init Pickup Delay–BK04 (0.00–6000 cyc)	6.00
RTPU04	Retrip Time Delay–BK04 (0.00–6000 cyc)	3.00
BFI04	Breaker Fail Initiate–BK04 (SELOGIC Equation)	T1_BFI AND BF_EN
ATBFI04	Alt Breaker Fail Initiate–BK04 (SELOGIC Equation)	NA
EBFIS04	Breaker Fail Initiate Seal-In-BK04 (Y, N)	N
BFISP04	Breaker Fail Init Seal-In Delay–BK04 (0.00–1000 cyc)	0.50
BFIDO04	Brkr Fail Init Dropout Delay–BK04 (0.00–1000 cyc)	1.50
Breaker 05 F	ailure Logic	,
EXBF05	External Breaker Fail-BK05 (Y, N)	N
XBF05	External Brkr Fail Init-BK05 (SELOGIC Equation)	NA
50FP05	Fault Current Pickup–BK05 (0.50–50 amps, sec)	3.00
BFPU05	Brkr Fail Init Pickup Delay–BK05 (0.00–6000 cyc)	6.00
RTPU05	Retrip Delay–BK05 (0.00–6000 cyc)	3.00
BFI05	Breaker Fail Initiate–BK05 (SELOGIC Equation)	TB_BFI AND BF_EN

Table 8.35 Breaker Failure Logic (1 through 18) (Sheet 3 of 4)

Label	Prompt	Default Value
ATBFI05	Alt Breaker Fail Initiate–BK05 (SELOGIC Equation)	NA
EBFIS05	Breaker Fail Initiate Seal-In–BK05 (Y, N)	N
BFISP05	Breaker Fail Init Seal-In Delay–BK05 (0.00–1000 cyc)	0.50
BFIDO05	Brkr Fail Init Dropout Delay–BK05 (0.00–1000 cyc)	1.50
Breaker 06	Failure Logic	_
EXBF06	Enable External Breaker Fail–BK06 (Y, N)	N
XBF06	External Brkr Fail Init-BK06 (SELOGIC Equation)	NA
50FP06	Fault Current Pickup–BK06 (0.50–50 amps, sec)	3.00
BFPU06	Brkr Fail Init Pickup Delay–BK06 (0.00–6000 cyc)	6.00
RTPU06	Retrip Delay–BK06 (0.00–6000 cyc)	3.00
BFI06	Breaker Fail Initiate–BK06 (SELOGIC Equation)	TB_BFI AND BF_EN
ATBFI06	Alt Breaker Fail Initiate–BK06 (SELOGIC Equation)	NA
EBFIS06	Breaker Fail Initiate Seal-In–BK06 (Y, N)	N
BFISP06	Breaker Fail Init Seal-In Delay–BK06 (0.00–1000 cyc)	0.50
BFIDO06	Brkr Fail Init Dropout Delay–BK06 (0.00–1000 cyc)	1.50
Breaker 07	Failure Logic	ļ
EXBF07	External Breaker Fail-BK07 (Y, N)	N
XBF07	External Brkr Fail Init-BK07 (SELOGIC Equation)	NA
50FP07	Fault Current Pickup–BK07 (0.50–50 amps, sec)	3.00
BFPU07	Brkr Fail Init Pickup Delay–BK07 (0.00–6000 cyc)	6.00
RTPU07	Retrip Delay–BK07 (0.00–6000 cyc)	3.00
BFI07	Breaker Fail Initiate–BK07 (SELOGIC Equation)	NA
ATBFI07	Alt Breaker Fail Initiate–BK07 (SELOGIC Equation)	NA
EBFIS07	Breaker Fail Initiate Seal-In–BK07 (Y, N)	N
BFISP07	Breaker Fail Init Seal-In Delay–BK07 (0.00–1000 cyc)	0.50
BFIDO07	Brkr Fail Init Dropout Delay–BK07 (0.00–1000 cyc)	1.50
Breaker 08	Failure Logic	
EXBF08	External Breaker Fail-BK08 (Y, N)	Y
XBF08	External Brkr Fail Init-BK08 (SELOGIC Equation)	NA
50FP08	Fault Current Pickup–BK08 (0.50–50 amps, sec)	3.00
BFPU08	Brkr Fail Init Pickup Delay–BK08 (0.00–6000 cyc)	6.00
RTPU08	Retrip Delay–BK08 (0.00–6000 cyc)	3.00
BFI08	Breaker Fail Initiate–BK08 NA (SELOGIC Equation)	
ATBFI08	Alt Breaker Fail Initiate–BK08 (SELOGIC Equation)	NA
EBFIS08	Breaker Fail Initiate Seal-In–BK08 (Y, N)	N

Table 8.35 Breaker Failure Logic (1 through 18) (Sheet 4 of 4)

Label	Prompt	Default Value
BFISP08	Breaker Fail Init Seal-In Delay–BK08 (0.00–1000 cyc)	0.50
BFIDO08	Brkr Fail Init Dropout Delay–BK08 (0.00–1000 cyc)	1.50
•	•	•
•	•	•
•	•	•
Breaker 18 F	ailure Logic	,
EXBF18	External Breaker Fail-BK18 (Y, N)	Y
XBF18	External Brkr Fail Init-BK18 (SELOGIC Equation)	NA
50FP18	Fault Current Pickup–BK18 (0.50–50 amps, sec)	3.00
BFPU18	Brkr Fail Init Pickup Delay–BK18 (0.00–6000 cyc)	6.00
RTPU18	Retrip Delay–BK18 (0.00–6000 cyc)	3.00
BFI18	Breaker Fail Initiate–BK18 (SELOGIC Equation)	NA
ATBFI18	Alt Breaker Fail Initiate–BK18 (SELOGIC Equation)	NA
EBFIS18	Breaker Fail Initiate Seal-In–BK18 (Y, N)	N
BFISP18	Breaker Fail Init Seal-In Delay–BK18 (0.00–1000 cyc)	0.50
BFIDO18	Brkr Fail Init Dropout Delay–BK18 (0.00–1000 cyc)	1.50

Table 8.36 Definite-Time Overcurrent Elements

Label	Prompt	Default Value
50P01P	Terminal 01 Pickup (OFF, 0.25–100 amps, sec)	OFF
50P01D	Terminal 01 Pickup Delay (0.00–99999 cyc)	10.00
•	•	•
•	•	•
•	•	•
50P18P	Terminal 18 Pickup (OFF, 0.25–100 amps, sec)	OFF
50P18D	Terminal 18 Pickup Delay (0.00–99999 cyc)	10.00

Table 8.37 Inverse-Time Overcurrent Elements (1 through 18) (Sheet 1 of 2)

Label	Prompt	Default Value	
51P01P	51P01 O/C Pickup (0.50–16 amps, sec)	0.50	
51P01C	51P01 Inv-Time O/C Curve (U1–U5, C1–C5)	U1	
51P01TD	51P01 Inv-Time O/C Time Dial (0.50–15) [U1–U5]	0.50	
	or		
	51P01 Inv-Time O/C Time Dial (0.05–1) [C1–C5]		
51P01RS	51P01 Inv-Time O/C EM Reset (Y, N)	Y	
51P01TC	51P01 Inv-Time O/C Torque Cont (SELOGIC Equation)	1	
•	•	•	
•	•	•	
•	•	•	

Table 8.37 Inverse-Time Overcurrent Elements (1 through 18) (Sheet 2 of 2)

Label	Prompt	Default Value
51P18P	51P18 O/C Pickup (0.50–16 amps, sec)	0.50
51P18C	51P18 Inv-Time O/C Curve (U1–U5, C1–C5)	U1
51P18TD	51P18 Inv-Time O/C Time Dial (0.50–15) [U1–U5]	0.50
	or	
	51P18 Inv-Time O/C Time Dial (0.05–1) [C1–C5]	
51P18RS	51P18 Inv-Time O/C EM Reset (Y, N)	Y
51P18TC	51P18 Inv-Time O/C Torque Cont (SELOGIC Equation)	1

Table 8.38 Phase Instantaneous Over- and Undervoltage Elements

Label	Prompt	Default Value
27P11P	Voltage 1 Level 1 U/V Pickup (OFF, 1.0–200 volts)	OFF
27P12P	Voltage 1 Level 2 U/V Pickup (OFF, 1.0–200 volts)	OFF
59P11P	Voltage 1 Level 1 O/V Pickup (OFF, 1.0–200 volts)	OFF
59P12P	Voltage 1 Level 2 O/V Pickup (OFF, 1.0–200 volts)	OFF
•	•	•
•	•	•
•	•	•
27P31P	Voltage 3 Level 1 U/V Pickup (OFF, 1.0–200 volts)	OFF
27P32P	Voltage 3 Level 2 U/V Pickup (OFF, 1.0–200 volts)	OFF
59P31P	Voltage 3 Level 1 O/V Pickup (OFF, 1.0–200 volts)	OFF
59P32P	Voltage 3 Level 2 O/V Pickup (OFF, 1.0–200 volts)	OFF

Table 8.39 Sequence Overvoltage Elements

Label	Prompt	Default Value
59Q1P	NegSeq. Level 1 O/V Pickup (OFF, 1.0–200 volts)	20.0
59Q2P	NegSeq. Level 2 O/V Pickup (OFF, 1.0–200 volts)	40.0
59N1P	Zero-Seq. Level 1 O/V Pickup (OFF, 1.0–200 volts)	20.0
59N2P	Zero-Seq. Level 2 O/V Pickup (OFF, 1.0–200 volts)	40.0

Table 8.40 Trip Logic (Sheet 1 of 2)

Label	Prompt	Default Value
TR01	Trip 01 (SELOGIC Equation)	F1_BFT OR F1_DPT
ULTR01	Unlatch Trip 01 (SELOGIC Equation)	NA
TR02	Trip 02 (SELOGIC Equation)	F2_BFT OR F2_DPT
ULTR02	Unlatch Trip 02 (SELOGIC Equation)	NA
TR03	Trip 03 (SELOGIC Equation)	F3_BFT OR F3_DPT
ULTR03	Unlatch Trip 03 (SELOGIC Equation)	NA
TR04	Trip 04 (SELOGIC Equation)	T1_BFT OR T1_DPT
ULTR04	Unlatch Trip 04 (SELOGIC Equation)	NA
TR05	Trip 05 (SELOGIC Equation)	TB1_BFT OR TB1_DPT OR TB2_BFT OR TB2_DPT
ULTR05	Unlatch Trip 05 (SELOGIC Equation)	NA

Table 8.40 Trip Logic (Sheet 2 of 2)

Label	Prompt	Default Value
TR06	Trip 06 (SELOGIC Equation)	NA
ULTR06	Unlatch Trip 06 (SELOGIC Equation)	NA
•	•	•
•	•	•
•	•	•
TR18	Trip 18 (SELOGIC Equation)	NA
ULTR18	Unlatch Trip 18 (SELOGIC Equation)	NA
TDURD	Minimum Trip Duration Time Delay (2.000–8000 cyc)	12.000
ER	Event Report Trigger Equation (SELOGIC Equation)	R_TRIG 87ST

Protection Free-Form SELogic Control Equations

The following protection free-form SELOGIC control equation settings are the default settings for all six settings groups. You can set each of the six protection free-form SELOGIC control equation setting groups independently. See *Section 2: SELOGIC Control Equation Programming*.

Table 8.41 Protection Free-Form SELogic Control Equations

Label	Default Value
Label	Default Value
PLT01S :=	NOT DIFF_EN AND PLT04 # DIFFERENTIAL ENABLED
PLT01R :=	PCT02Q AND DIFF_EN AND NOT PLT04
PLT02S :=	NOT BF_EN AND PLT05 # BREAKER FAILURE ENABLED
PLT02R :=	PCT03Q AND BF_EN AND NOT PLT05
PLT03S :=	NOT TNS_SW AND PLT06 # RELAY TEST MODE
PLT03R :=	PCT04Q AND TNS_SW AND NOT PLT06
PLT04S :=	PB1_PUL AND NOT DIFF_EN # ONLY ONE OP PER PB1 PRESS
PLT04R :=	PB1_PUL AND DIFF_EN
PLT05S :=	PB2_PUL AND NOT BF_EN # ONLY ONE OP PER PB2 PRESS
PLT05R :=	PB2_PUL AND BF_EN
PLT06S :=	PB4_PUL AND NOT TNS_SW # ONLY ONE OP PER PB4 PRESS
PLT06R :=	PB4_PUL AND TNS_SW
PCT01PU :=	240
PCT01IN :=	59Q1 OR 59N1
PCT02PU :=	60 # 1 SEC DELAY DISABLE ON PB1
PCT02IN :=	PB1
PCT03PU :=	60 # 1 SEC DELAY DISABLE ON PB2
PCT03IN :=	PB2
PCT04PU :=	60 # 1 SEC DELAY DISABLE ON PB4
PCT04IN :=	PB4

Automation Free-Form SELogic Control Equations

Automation free-form SELOGIC control equations are in blocks 1 through 10. See Section 2: SELOGIC Control Equation Programming in the Reference Manual.

Output Settings

Table 8.42 Output Settings Categories

Settings	Reference
Main Board	Table 8.43
Interface Board #1	Table 8.44
Interface Board #2	Table 8.45
Interface Board #3	Table 8.46
Interface Board #4	Table 8.47
Communications Card Outputs	Table 8.48
MIRRORED BITS Transmit Equations	Table 8.49

Table 8.43 Main Board

Label	Prompt	Default Value
OUT101	NA	TRIP01 AND NOT TNS_SW
OUT102	NA	TRIP02 AND NOT TNS_SW
OUT103	NA	TRIP03 AND NOT TNS_SW
OUT104	NA	TRIP04 AND NOT TNS_SW
OUT105	NA	TRIP05 AND NOT TNS_SW
OUT106	NA	NA
OUT107	NA	TNS_SW #RELAY TEST MODE
OUT108	NA	NOT (SALARM OR HALARM)

Table 8.44 Interface Board #1

Label	Prompt	Default Value
OUT201	NA	NA
•	•	•
•	•	•
•	•	•
OUT208	NA	NA

Table 8.45 Interface Board #2

Label	Prompt	Default Value	
OUT301	NA	NA	
•	•	•	
•	•	•	
•	•	•	
OUT308	NA	NA	

Table 8.46 Interface Board #3

Label	Prompt	Default Value
OUT401	NA	NA
•	•	•
•	•	•
•	•	•
OUT408	NA	NA

Table 8.47 Interface Board #4

Label	Prompt	Default Value
OUT501	NA	NA
•	•	•
•	•	•
•	•	•
OUT508	NA	NA

Table 8.48 Communications Card Outputs

Label	Prompt	Default Value
CCOUT01	NA	NA
•	•	•
•	•	•
•	•	•
CCOUT32	NA	NA

Table 8.49 MIRRORED BITS Transmit Equations

Label	Prompt	Default Value
TMB1A	NA	NA
•	•	•
•	•	•
•	•	•
TMB8A	NA	NA
TMB1B	NA	NA
•	•	•
•	•	•
•	•	•
TMB8B	NA	NA

Front-Panel Settings

Table 8.50 Front-Panel Settings Categories

Settings	Reference
Front-Panel Settings	Table 8.51
Selectable Screens for the Front Panel	Table 8.52
Selectable Operator Pushbuttons	<i>Table 8.53</i>
Front-Panel Event Display	Table 8.54
Display Points	
Boolean Display Points	<i>Table 8.55</i>
Analog Display Points	<i>Table 8.56</i>
Local Control	<i>Table 8.57</i>
Local Bits SELOGIC	<i>Table 8.58</i>

Table 8.51 Front-Panel Settings (Sheet 1 of 4)

Label	Prompt	Default Value	
FP_TO	Front Panel Display Time-Out (OFF, 1–60 minutes)	15	
EN_LEDCa	Enable LED Asserted Color (R, G, A)	G	
TR_LEDC ^a	Trip LED Asserted Color (R, G, A)	R	
PB1_LED	Pushbutton LED 1 (SELOGIC Equation)	DIFF_EN # Differential Protection Enabled	
PB1_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB2_LED	Pushbutton LED 2 (SELOGIC Equation)	BF_EN # Breaker Failure Enabled	
PB2_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB3_LED	Pushbutton LED 3 (SELOGIC Equation)	NA	
PB3_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB4_LED	Pushbutton LED 4 (SELOGIC Equation)	TNS_SW # Test Normal Switch Enabled	
PB4_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB5_LED	Pushbutton LED 5 (SELOGIC Equation)	NA	
PB5_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB6_LED	Pushbutton LED 6 (SELOGIC Equation)	NA	
PB6_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB7_LED	Pushbutton LED 7 (SELOGIC Equation)	NA	

Table 8.51 Front-Panel Settings (Sheet 2 of 4)

Table 8.51 Front-Panel Settings (Sheet 2 of 4)			
Label	Prompt	Default Value	
PB7_COL ^a	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB8_LED	Pushbutton LED 8 (SELOGIC Equation)	NA	
PB8_COL ^{a,b}	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB9_LED ^b	Pushbutton LED 9 (SELOGIC Equation)	NA	
PB9_COL ^{a,b}	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB10LED ^b	Pushbutton LED 10 (SELOGIC Equation)	NA	
PB10COL ^{a,b}	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB11LED ^b	Pushbutton LED 11 (SELOGIC Equation)	NA	
PB11COL ^{a,b}	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
PB12LED ^b	Pushbutton LED 12 (SELOGIC Equation)	NA	
PB12COL ^{a,b}	PB_LED Assert & Deassert Color (Enter 2: R, G, A, O)	AO	
T1_LED	Target LED 1 (SELOGIC Equation)	87BTR	
T1LEDL	Target LED 1 Latch (Y, N)	Y	
T1LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T2_LED	Target LED 2 (SELOGIC Equation)	SBFTR	
T2LEDL	Target LED 2 Latch (Y, N)	Y	
T2LEDCa	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T3_LED	Target LED 3 (SELOGIC Equation)	Z1_TRIP	
T3LEDL	Target LED 3 Latch (Y, N)	Y	
T3LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T4_LED	Target LED 4 (SELOGIC Equation)	Z2_TRIP	
T4LEDL	Target LED 4 Latch (Y, N)	Y	
T4LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T5_LED	Target LED 5 (SELOGIC Equation)	87Z3	
T5LEDL	Target LED 5 Latch (Y, N)	Y	
T5LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T6_LED	Target LED 6 (SELOGIC Equation)	87Z4	

Table 8.51 Front-Panel Settings (Sheet 3 of 4)

Label	Prompt	Default Value	
T6LEDL	Target LED 6 Latch (Y, N)	Y	
T6LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T7_LED	Target LED 7 (SELOGIC Equation)	87Z5	
T7LEDL	Target LED 7 Latch (Y, N)	Y	
T7LEDCa	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T8_LED	Target LED 8 (SELOGIC Equation)	87Z6	
T8LEDL	Target LED 8 Latch (Y, N)	Y	
T8LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T9_LED	Target LED 9 (SELOGIC Equation)	50P01T OR 50P02T OR50P18T	
T9LEDL	Target LED 9 Latch (Y, N)	Y	
T91LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T10_LED	Target LED 10 (SELOGIC Equation)	51P01T OR 51P02T OR51P18T	
T10LEDL	Target LED 10 Latch (Y, N)	Y	
T10LEDCa	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T11_LED	Target LED 11 (SELOGIC Equation	87ST	
T11LEDL	Target LED 11 Latch (Y, N)	N	
T11LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T12_LED	Target LED 12 (SELOGIC Equation	NOT (Z1S AND Z2S ANDZ6S)	
T12LEDL	Target LED 12 Latch (Y, N)	Y	
T12LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T13_LED	Target LED 13 (SELOGIC Equation)	TOS01 OR TOS02 OR TOS18	
T13LEDL	Target LED 13 Latch (Y, N)	N	
T13LEDCa	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T14_LED	Target LED 14 (SELOGIC Equation)	89IOP	
T14LEDL	Target LED 14 Latch (Y, N)	N	
T14LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T15_LED	Target LED 15 (SELOGIC Equation)	89AL	
T15LEDL	Target LED 15 Latch (Y, N)	N	
T15LEDC ^a	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	

Table 8.51 Front-Panel Settings (Sheet 4 of 4)

Label	Prompt	Default Value	
T16_LED	Target LED 16 (SELOGIC Equation)	PCT01Q	
T16LEDL	Target LED 16 Latch (Y, N)	Y	
T16LEDCa	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T17_LED ^c	Target LED 17 (SELOGIC Equation)	27P11 OR 27P12 OR 27P32	
T17LEDL ^c	Target LED 17 Latch (Y, N)	N	
T17LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T18_LED ^c	Target LED 18 (SELOGIC Equation)	59P11 OR 59P12 OR 59P32	
T18LEDLc	Target LED 18 Latch (Y, N)	N	
T18LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T19_LED ^c	Target LED 19 (SELOGIC Equation)	V01FIM>55	
T19LEDL ^c	Target LED 19 Latch (Y, N)	N	
T19LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T20_LED ^c	Target LED 20 (SELOGIC Equation)	V02FIM>55	
T20LEDLc	Target LED 20 Latch (Y, N)	N	
T20LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T21_LED ^c	Target LED 21 (SELOGIC Equation)	V03FIM>55	
T21LEDLc	Target LED 21 Latch (Y, N)	N	
T21LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T22_LED ^c	Target LED 22 (SELOGIC Equation)	FAULT	
T22LEDL ^c	Target LED 22 Latch (Y, N)	N	
T22LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T23_LED ^c	Target LED 23 (SELOGIC Equation)	52AL	
T23LEDL ^c	Target LED 23 Latch (Y, N)	N	
T23LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	
T24_LEDc	Target LED 24 (SELOGIC Equation)	TIRIG	
T24LEDL ^c	Target LED 24 Latch (Y, N)	N	
T24LEDCa,c	TLED Assert & Deassert Color (Enter 2: R, G, A, O)	RO	

 ^a LED color settings are only available on HMI2 models.
 ^b PB9-PB12 settings are only available on 12-pushbutton models.
 ^c T17LED-T24LED settings are only available on 12-pushbutton models.

Table 8.52 Selectable Screens for the Front Panel

Label	Prompt	Default Value
SCROLD	Front Panel Display Update Rate (OFF, 1–15 secs) ^a	5
STA_BAT	Station Battery Screen (Y, N)	N
FUND_VI	Fundamental Voltage and Current Screen (Y, N)	Y
DIFF	Differential Metering (Y, N)	Y
ZONECFG	Terminals Associated with Zones (Y, N)	Y

a Screens will not rotate when SCROLD := OFF; the first screen in the rotation order remains on the screen.

Table 8.53 Selectable Operator Pushbuttons

Label	Prompt	Default Value
PB1_HMI	Pushbutton 1 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB2_HMI	Pushbutton 2 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB3_HMI	Pushbutton 3 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB4_HMI	Pushbutton 4 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB5_HMI	Pushbutton 5 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB6_HMI	Pushbutton 6 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB7_HMI	Pushbutton 7 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB8_HMI	Pushbutton 8 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB9_HMIc	Pushbutton 9 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB10HMI ^c	Pushbutton 10 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB11HMI ^c	Pushbutton 11 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF
PB12HMI ^c	Pushbutton 12 HMI Screen (OFF, AP, DP, EVE, SER) ^{a,b}	OFF

a PBn_HMI can only be set to DP if a valid display point has been set.

b Each instance (AP, DP, EVE, SER) can only be set to a single operator pushbutton. OFF = No HMI Pushbutton Operation

AP = Alarm Points

DP = Display Points

EVE = Event Summaries

SER = SER HMI Display

c PB9-PB12 settings are only available on 12-pushbutton models.

Table 8.54 Front-Panel Event Display

Label	Prompt	Default Value
DISP_ER	Enable HMI Auto Display of Events Summaries (Y, N)	Y
TYPE_ER	Types of Events for HMI Auto Display (ALL, TRIP) ^a	ALL
NUM_ER	Number of Events for HMI Display (1–100) ^b	10

^a Setting is only available if DISP_ER := Y.

Table 8.55 Boolean Display Points and Aliasesa

Label	Prompt	Default Value ^b
[Relay Word Bit Name]	Name of any element in element store.	None
[Label]	String of ASCII characters except double quotation marks ^c	None
[Set String]	String of ASCII characters except double quotation marks ^c	None
[Clear String]	String of ASCII characters except double quotation marks ^c	None
[Text Size]	S for Single, D for Double	S

Table 8.56 Analog Display Points and User Text and Formattinga

Label	Prompt	Default Value ^b
[Analog Quantity Name]	Name of any element in element store	None
[User Text]	String of ASCII characters except double quotation marks and { }c	None
[Formatting]	$\{ total \ width. characters \ to \ right \ of \ decimal \ place, \ scaling \ factor \}^d$	None
[User Text]	String of ASCII characters except double quotation marks and { }c	None
[Text Size]	S for Single, D for Double	S

b Setting is only available if an operator pushbutton has been set to EVE.

Relay Word Bit Name, "Label","String Set","Clear String","Text Size".
 The SEL-487B has no default values programmed for these settings.

c Total length of Boolean Display Point is 20 characters; 19 characters of ASCII string with one (1) character reserved for an "=".

Analog Quantity Name, "User Text and Formatting","Text Size".
 The SEL-487B has no default values programmed for these settings.

^c Total length of Analog Display Point is 20 characters.

 $^{^{}m d}$ See Display Points on page U.5.9 in the User's Guide for examples of setting Analog Display

Table 8.57 Local Controla

Label	Prompt	Default Value ^b
[Local Bit number]	Valid Local Bit number (LB01, for example)	None
[Local Label]	String of up to 20 printable ASCII characters except double quotation marks	None
[Local Set State]	String of up to 20 printable ASCII characters except double quotation marks	None
[Local State]	String of up to 20 printable ASCII characters except double quotation marks	
[Pulse Enable]	Pulse Local Bit (Y, N)	N

a Local Bit, Local Label, Local Set State, Local Clear State, Pulse Enable.
 b The SEL-487B has no default values programmed for these settings.

Table 8.58 Local Bit SELogica

Label	Prompt	Default Value
LB_SPmm	Local Bit Supervision (SELOGIC Equation, NA)	1
LB_DPmm	Local Bit Status Display (SELOGIC Equation, NA)	LBmm

a Settings in Table 8.58 appear if the associated local bit is defined. If no local bits are defined, the whole category is hidden.

Report Settings

Table 8.59 Report Settings Categories

Settings	Reference
SER Chatter Criteria	Table 8.60
SER Points	SER Points
Event Reporting	Table 8.61
Event Reporting Digital Elements	Table 8.62

Table 8.60 SER Chatter Criteria

Label	Prompt	Default Value
ESERDEL	Automatic Removal of Chattering SER Points (Y, N)	N
SRDLCNT	Number of Counts Before Auto-Removal (2–20)	5
SRDLTIM	Time for Auto-Removal (0.1–30 seconds)	1.0

SER Points

NOTE: Reporting Name, Set State Name, and Clear State Name are strings of up to 20 printable ASCII characters except double quotation marks.

Enter SER Points in the free-form style with the following syntax:

Relay Word Bit, Reporting Name, Set State Name, Clear State Name, HMI Alarm

For example, Reporting Name TARGET RESET PB has two display states, one when Relay Word bit TRGTR asserts (Set State Name) and one when Relay Word bit TRGTR deasserts (Clear State Name). For each item, assign a suitable label:

Relay Word Bit = TRGTR

Local Name = TARGET RESET PB

Local Set State = TEST

Local Clear State = OFF

HMI Alarm = Y

Use the **SET R** command and enter the settings for the example as shown in *Figure 8.2*.

Figure 8.2 Setting an SER Point to Report TRGTR Relay Word Bit Status

Table 8.61 Event Reporting

Label	Prompt	Default Value
LER	Length of Event Report (15, 30, 60, 120 cycles)	15
PRE	Length of Pre-Fault (1–13 cycles) for LER = 15	5
PRE	Length of Pre-Fault (1–28 cycles) for LER = 30	5
PRE	Length of Pre-Fault (1–58 cycles) for LER = 60	5
PRE	Length of Pre-Fault (1–118 cycles) for LER = 120	5

Because substations differ in layout, digital points in the event report also differ from substation to substation. *Table 8.62* shows the relay default settings. The table shows the position in the report (left-to-right), the primitive name, and the alias name.

You can change any or all of these settings to suit a particular application. You can enter up to 800 Relay Word bits from 100 different Relay Word bit rows in the event report. You can enter a # sign for formatting of the event report, but it counts against the 800 bit limit. The rows containing the following Relay Word bits count against the 100 row limit even if they are not selected by the

user: ZONE1-ZONE6, 87BTR, 87BTR01-87BTR18, SBFTR, SBFTR01-SBFTR18, TRIP, TRIP01–TRIP18, 87Z1–6, BFZ1–6, ER, RMBnA, TMBnA, RMBnB, TMBnB, ROKA, RBADA, CBADA, LBOKA, ROKB, RBADB, CBADB, LBOKB, TLED_1, TLED_2, TLED_3, TLED_4, TLED_5, TLED_6, TLED_7, ,TLED_8, TLED_9, TLED_10, TLED_11, TLED_12, TLED_13, TLED_14, TLED_15, TLED_16, TLED_17, TLED_18, TLED_19, TLED_20, TLED_21, TLED_22, TLED_23, TLED_24, Z1BZ1, Z1BZ2, Z1BZ3, Z1BZ4, Z1BZ5, Z1BZ6, Z2BZ2, Z2BZ3, Z2BZ4, Z2BZ5, Z2BZ6, Z3BZ3, Z3BZ4, Z3BZ5, Z3BZ6, Z4BZ4, Z4BZ5, Z4BZ6, Z5BZ5, Z5BZ6, Z6BZ6, CZONE1, 87CZ1 (n = 1–8; see Appendix A: Relay Word Bits for a list of Relay Word bits available in the SEL-487B).

Table 8.62 Default Event Report Settings

Position	Primitive Name	Alias Name
1	87Z1	Z1_TRIP
2	87Z2	Z2_TRIP
3	#	
4	FBF01	F1_BF
5	FBF02	F2_BF
6	FBF03	F3_BF
7	FBF04	T1_BF
8	FBF05	TB1_BF
9	FBF06	TB2_BF
10	#	
11	PLT01	DIFF_EN
12	PLT02	BF_EN
13	PLT03	TNS_SW
14	#	
15	IN101	F1_BFI
16	IN102	F2_BFI
17	IN103	F3_BFI
18	IN104	T1_BFI
19	IN105	TB_BFI
20	#	
21	OUT101	F1_TRIP
22	OUT102	F2_TRIP
23	OUT103	F3_TRIP
24	OUT104	T1_TRIP
25	OUT105	TB_TRIP
26	#	
27	OUT107	TEST
28	OUT108	ALARM

Use the **SET R** command to change the default event report settings. Figure 8.3 shows the steps to add the output from Coupler Security Logic 1 to the event report.

```
=>>SET R <Enter>
Report
SER Chatter Criteria
Automatic Removal of Chattering SER Points (Y,N)
                                                         ESERDEL := N
                                                                             ?> <Enter>
(Relay Word Bit, Reporting Name, Set State Name, Clear State Name, HMI Alarm)
1: TRGTR, "TARGET RESET PB", "TEST", "OFF", "Y"
? <Enter>
? <Enter>
EVENT REPORTING
Length of Event Report (15, 30, 60, 120 cycles)
                                                         LER
                                                                  := 15
                                                                           ?> <Enter>
Event Reporting Digital Elements (800 Relay Word Bits Maximum from 100 Rows Maximum)
1: Z1_TRIP
? >
29:
? CSL1 <Enter>
30:
? END <Enter>
Report
29: CSL1
Save settings (Y,N) ?Y <Enter>
Saving Settings, Please Wait.....
Settings Saved
=>>
```

Figure 8.3 Steps to Add the Output From Coupler Security Logic 1 to the Event Report

Figure 8.4 shows the event report after adding the output from Coupler Security Logic 1. Relay Word bit CSL1 appears in the right-most column of the event report.

```
ZZ FFFTTT DBT FFFTT TA

12 1231BB IFN 1231B 1231B EL
______ 12 F.S _______ SA

TT BBBB___ FE__ BBBBB TTTTT TRC

RR FFFFBB__NS FFFFF RRRRR MS

II FF E W IIIII IIIII L

PP N PPPPP 1
```

Figure 8.4 Example Event Report After Adding Output From Coupler Security Logic 1

Port Settings

Table 8.63 Port Settings Categories

Settings	Reference
Protocol Selection	Table 8.64
Communications Settings	<i>Table 8.65</i>
SEL Protocol Settings	Table 8.66
DNP3 Protocol (Serial) Settings	Table 8.67
MIRRORED BITS Protocol Settings	<i>Table 8.68</i>
Ethernet Settings	Table 8.69
FTP Settings	Table 8.70
Telnet Settings	Table 8.71
Network Host Name	Table 8.72
IEC 61850 Settings	Table 8.73
DNP3 Protocol (Ethernet) Settings	Table 8.74

Table 8.64 Protocol Selection

Label	Prompt	Default Value
EPORT	Enable Port (Y, N)	Y
MAXACC	Maximum Access Level (1, B, P, A, 0, 2, C)	С
PROTO	Protocol (SEL, DNP, MBA, MBB)	SEL

Table 8.65 Communications Settings

Label	Prompt	Default Value
MBT	Using Pulsar 9600 modem? (Y, N)	N
SPEEDa	Data Speed (300 to 57600)	9600
DATABIT	Data Bits (7, 8 bits)	8
PARITY	Parity (Odd, Even, None)	N
STOPBIT	Stop Bits (1, 2 bits)	1
RTSCTS	Enable Hardware Handshaking (Y, N)	N

^a Maximum speed for MIRRORED BITS communications is 38400 bps.

Table 8.66 SEL Protocol Settings

Label	Prompt	Default Value
TIMEOUT	Port Time-Out (OFF, 1–60 minutes)	5
AUTO	Send Auto-Messages to Port (Y, N)	Y
FASTOP	Enable Fast Operate Messages (Y, N)	N
TERTIM1	Initial Delay-Disconnect Sequence (0–600 seconds)	1
TERSTRN	Termination String-Disconn. Sequence (0–600 seconds) ^a	\005
TERTIM2	Final Delay-Disconnect Sequence (0–600 seconds)	0

a TERSTRN set at \005 is <Ctrl+E>.

NOTE: Enter nonprinting characters in the format \Oxx where xx is a hexadecimal code for the desired

Table 8.67 DNP3 Protocol Serial Port Settings

Label	Prompt	Default Value
DNPADR	DNP Address (0–65519)	0
ECLASSB	Class for Binary Event Data (OFF, 1-3)	1
ECLASSC	Class for Counter Event Data (OFF, 1–3)	OFF
ECLASSA	Class for Analog Event Data (OFF, 1–3)	2
TIMERQa	Time-Set Request Interval (I, M, 1–32767 minutes)	I
DECPLA	Currents Scaling (0–3 decimal places)	1
DECPLV	Voltages Scaling (0–3 decimal places)	1
DECPLM	Miscellaneous Data Scaling (0–3 decimal places)	1
STIMEO	Select/Operate Time-Out (0.0–60.0 seconds)	1.0
DRETRY	Data Link Retries (OFF, 1–15)	OFF
DTIMEO	Data Link Time-Out (0.0–30.0 seconds)	1.0
MINDLY	Minimum Delay from DCD to TX (0.00–1.00 seconds)	0.05
MAXDLY	Maximum Delay from DCD to TX (0.00–1.00 seconds)	0.10
PREDLY	Settle Time-RTS On to TX (OFF, 0.00–30.00 seconds)	0.00
PSTDLY	Settle Time-TX to RTS Off (0.00–30.00 seconds)	0.00
ANADBA	Analog Reporting Deadband for Currents (0–32767)	100
ANADBV	Analog Reporting Deadband for Voltages (0–32767)	100
ANADBM	Analog Reporting Deadband (0–32767)	100
EVELOCK	Event Summary Lock Period (0–1000 seconds)	0
ETIMEO	Event Data Confirmation Time-Out (0.1–100.0 seconds)	10.0
UNSOL	Enable Unsolicited Reporting (Y, N)	N
PUNSOL	Enable Unsolicited Reporting at Power Up (Y, N)	N
REPADR	DNP Address to Report to (0–65519)	1
NUMEVE	Number of Events to Transmit On (1–200)	10
AGEEVE	Age of Oldest Event to Transmit On (0.0–60.0 seconds)	2.0
MODEM	Modem Connected to Port (Y, N)	N
MSTR	Modem Startup String (30 characters maximum)	E0X0&D0S0=4
PH_NUM	Phone Number for Dial-Out (30 characters maximum)	,
MDTIME	Time to Attempt Dial (5–300 seconds)	60
MDRET	Time Between Dial-Out Attempts (5–3600 seconds)	120

^a This setting sets the frequency with which the relay requests a DNP time synchronization. Setting M disables the time synchronization request, but the relay still accepts and applies time synchronization from the master. When set to I, the relay ignores (does not apply) time synchronization from the master.

Table 8.68 MIRRORED BITS Protocol Settings

Label	Prompt	Default Value
TX_ID	MIRRORED BITS ID of This Device (1–4)	2
RX_ID	MIRRORED BITS ID of Device Receiving From (1–4)	1
RBADPU	Outage Duration to Set RBAD (1–10000 seconds)	10
CBADPU	Channel Unavailability to Set CBAD (1–100000 ppm)	20000
TXMODE	Transmission Mode (N-Normal, P-Paced)	N
MBNUM	Number of MIRRORED BITS Channels (0–8)	8
RMB1FL	RMB1 Channel Fail State (0, 1, P)	P
RMB1PU	RMB1 Pickup Time (1–8 messages)	1
RMB1DO	RMB1 Dropout Time (1–8 messages)	1
RMB2FL	RMB2 Channel Fail State (0, 1, P)	P
RMB2PU	RMB2 Pickup Time (1–8 messages)	1
RMB2DO	RMB2 Dropout Time (1–8 messages)	1
RMB3FL	RMB3 Channel Fail State (0, 1, P)	P
RMB3PU	RMB3 Pickup Time (1–8 messages)	1
RMB3DO	RMB3 Dropout Time (1–8 messages)	1
RMB4FL	RMB4 Channel Fail State (0, 1, P)	P
RMB4PU	RMB4 Pickup Time (1–8 messages)	1
RMB4DO	RMB4 Dropout Time (1–8 messages)	1
RMB5FL	RMB5 Channel Fail State (0, 1, P)	P
RMB5PU	RMB5 Pickup Time (1–8 messages)	1
RMB5DO	RMB5 Dropout Time (1–8 messages)	1
RMB6FL	RMB6 Channel Fail State (0, 1, P)	P
RMB6PU	RMB6 Pickup Time (1–8 messages)	1
RMB6DO	RMB6 Dropout Time (1–8 messages)	1
RMB7FL	RMB7 Channel Fail State (0, 1, P)	P
RMB7PU	RMB7 Pickup Time (1–8 messages)	1
RMB7DO	RMB7 Dropout Time (1–8 messages)	1
RMB8FL	RMB8 Channel Fail State (0, 1, P)	P
RMB8PU	RMB8 Pickup Time (1–8 messages)	1
RMB8DO	RMB8 Dropout Time (1–8 messages)	1
MBTIME	Accept MIRRORED BITS Time Synchronization (Y, N)	N
MBNUMAN	Number of Analog Channels (0–7)	0
MBANA1	Selection for Analog Channel 1 (analog label)	PMV58
MBANA2	Selection for Analog Channel 2 (analog label)	PMV59
MBANA3	Selection for Analog Channel 3 (analog label)	PMV60
MBANA4	Selection for Analog Channel 4 (analog label)	PMV61
MBANA5	Selection for Analog Channel 5 (analog label)	PMV62
MBANA6	Selection for Analog Channel 6 (analog label)	PMV63
MBANA7	Selection for Analog Channel 7 (analog label)	PMV64
MBNUMVT	Number of Virtual Terminal Channels (OFF, 0-7)	OFF

NOTE: Settings in Table 8.69 through Table 8.73 apply to Port 5 of the SEL-487B. These settings are available only when the SEL-487B includes the Ethernet card.

NOTE: Fast SER over Ethernet is not supported on the SEL-2702 card on the SEL-487B.

Table 8.69 Ethernet Settings

Label	Prompt	Default Value
IPADDR	IP Address (www[h].xxx[h].yyy[h].zzz[h])	192.92.92
SUBNETM	Subnet Mask (www[h].xxx[h].yyy[h].zzz[h])	255.255.255.0
DEFRTR	Default Router (www[h].xxx[h].yyy[h].zzz[h])	
ETCPKA	Enable TCP Keep-Alive (Y, N)	Y
KAIDLE	TCP Keep-Alive Idle Range (1-20 s)	10
KAINTV	TCP Keep-Alive Interval Range (1-20 s)	1
KACNT	TCP Keep-Alive Count Range (1-20)	6
NETPORT	Primary Network Port (A=Port A, B=Port B, D=Disabled)	A
FAILOVR	Enable Fail-Over Mode (Y, N)	Y
FTIME	Network Port Fail-Over Time (5–65535 msec)	5
NETASPD	Network Speed, Port A (A=Auto, 10=10 Mbps, 100=100 Mbps)	A
NETBSPD	Network Speed, Port B (A=Auto, 10=10 Mbps, 100=100 Mbps)	A

Table 8.70 FTP Settings

Label	Prompt	Default Value
FTPSERV	Enable FTP Server (Y, N)	N
FTPCBAN	FTP Connect Banner	SEL-2702 FTP SERVER:
FTPIDLE	FTP Idle Time-Out (5–255 minutes)	5
FTPANMS	Enable Anonymous FTP Login (Y, N)	N
FTPAUSR	Associate Anonymous User Access Rights With User	1111

Table 8.71 Telnet Settings

Label	Prompt	Default Value
T1CBAN	Telnet Connect Banner For Host	HOST TERMINAL SERVER:
T1INIT	Allow Telnet Sessions To Be Initiated By The Host (Y, N)	Y
T1RECV	Allow Telnet Sessions To Be Received By The Host (Y, N)	N
T1PNUM	Telnet Port Number For Host (1–65519)	23
T2CBAN	Telnet Connect Banner For Card	SEL-2702 TERMINAL SERVER:
T2RECV	Allow Telnet Sessions To Be Received By The Card (Y, N)	N
T2PNUM	Telnet Port Number For Card (1–65519)	1024
TIDLE	Telnet Idle Time-Out (0–255 minutes)	5

Table 8.72 Network Host Name

Label	Prompt	Default Value
HOST1	Alias for Host 1 (www[h].xxx[h].yyy[h].zzz[h])	NA
IPADR1	IP Address for Host 1 (www[h].xxx[h].yyy[h].zzz[h])	NA
•	•	•
•	•	•
•	•	•
HOST20	Alias for Host 20 (www[h].xxx[h].yyy[h].zzz[h])	
IPADR20	IP Address for Host 20 (www[h].xxx[h].yyy[h].zzz[h])	

Table 8.73 IEC 61850 Settings

Label	Prompt	Default Value
E61850	Enable IEC 61850 Protocol (Y, N)	N
EGSE	Enable IEC 61850 GSE (Y, N)	N

Table 8.74 DNP LAN/WAN Settings (Sheet 1 of 3)

Label	Prompt	Default
ENDNP	Enable DNP3 (Y, N)	N
DNPADR	DNP3 Address (0-65519)	0
DNPPNUM	DNP3 Port Number for TCP and UDP (1–65534)	20000
DNPMAP	DNP3 map Mode (AUTO, CUSTOM)	AUTO
RPADR01	DNP3 Address for Master 1 (0–65519)	1
DNPIP01	IP Address for Master 1 (www.xxx.yyy.zzz)	""
DNPTR01	Transport Protocol for Master 1 (UDP, TCP)	TCP
DNPUP01	UDP Response Port Number for Master 1 (1–65534, REQ)	20000
UNSL01	Enable Unsolicited Reporting for Master 1 (Y, N)	N
PUNSL01	Enable Unsolicited Reporting at Powerup for Master 1 (Y, N)	N
DNPMP01	CUSTOM Mode: DNP3 map associated with Master 1 (1–5)	"1"
DNPCL01	Enable Controls for Master 1 (Y, N)	N
RPADR02	DNP3 Address for Master 2 (0–65519)	1
DNPIP02	IP Address for Master 2 (www.xxx.yyy.zzz)	""
•		
•		
DNPCL02	Enable Controls for Master 2 (Y, N)	N
RPADR03	DNP3 Address for Master 3 (0–65519)	1
DNPIP03	IP Address for Master 3 (www.xxx.yyy.zzz)	""
•		
•		
DNPCL03	Enable Controls for Master 3 (Y, N)	N

Table 8.74 DNP LAN/WAN Settings (Sheet 2 of 3)

	Prompt	Default
Label	Prompt	Default
RPADR04	DNP3 Address for Master 4 (0–65519)	1
DNPIP04	IP Address for Master 4 (www.xxx.yyy.zzz)	""
•		
•		
DNPCL04	Enable Controls for Master 4 (Y, N)	N
RPADR05	DNP3 Address for Master 5 (0–65519)	1
DNPIP05	IP Address for Master 5 (www.xxx.yyy.zzz)	""
•		
•		
•		
DNPCL05	Enable Controls for Master 5 (Y, N)	N
RPADR06	DNP3 Address for Master 6 (0–65519)	1
DNPIP06	IP Address for Master 6 (www.xxx.yyy.zzz)	""
•		
•		
DNPCL06	Enable Controls for Master 4 (Y, N)	N
RPADR07	DNP3 Address for Master 7 (0–65519)	1
DNPIP07	IP Address for Master 7 (www.xxx.yyy.zzz)	""
•	11 Fladress for Fladson (
•		
•		
DNPCL07	Enable Controls for Master 7 (Y, N)	N
RPADR08	DNP3 Address for Master 8 (0–65519)	1
DNPIP08	IP Address for Master 8 (www.xxx.yyy.zzz)	""
•		
•		
DNPCL08	Enable Controls for Master 8 (Y, N)	N
RPADR09	DNP3 Address for Master 9 (0–65519)	1
DNPIP09	IP Address for Master 9 (www.xxx.yyy.zzz)	""
•		
•		
•		
DNPCL09	Enable Controls for Master 9 (Y, N)	N
RPADR10	DNP3 Address for Master 10 (0–65519)	1
DNPIP10	IP Address for Master 10 (www.xxx.yyy.zzz)	""
•		
•		
DNPCL10	Enable Controls for Master 10 (Y, N)	N
ECLASSA	Class for Analog Event Data (0–3)	2
ECLASSA	Class for Binary Event Data (0–3)	1
LCLAUUD	Cass for Dinary Livent Data (0-3)	1

Table 8.74 DNP LAN/WAN Settings (Sheet 3 of 3)

Label	Prompt	Default
ECLASSC	Class for Counter Event Data (0–3)	0
DECPL	Data Scaling Decimal Places (0–3)	0
ANADB	Data Reporting Deadband Counts (0–32767)	100
16BIT	DNP analog input objects default variation size (16/32)	16
STIMEO	Seconds to Select/Operate Time-out (0.0–30.0)	1.0
DNPPAIR	AUTO Mode: Enable Use of DNP3 Trip Close Pairs (Y, N)	N
DNPINA	Seconds to send Inactive Heartbeat (0=Off, 1–7200)	120
NUMEVE	Number of Events to Transmit On (1–200)	10
AGEEVE	Age of Oldest Event to Transmit On (0–100000 sec)	2
ETIMEO	Event Message Confirm Timeout (1–50 sec)	2
URETRY	Unsolicited Message Max Retry Attempts (2–10)	3
UTIMEO	Unsolicited Message Offline Timeout (1–5000 sec)	60

Table 8.75 HTTP Settings

Label	Prompt	Default
ЕНТТР	Enable HTTP Server (Y, N)	"N"
HPNUM	HTTP Port Number (1–65534)	80
HIDLE	HTTP Session Idle Timeout in minutes (1–30)	10

DNP3 Settings-Serial Port

When entering new data in the user-defined maps, the SEL-487B prompts for the following three kinds of information:

➤ Index Number

Select the appropriate index number from the DNP map; see Section 5: DNP3 Communications for more information.

➤ Scale Factor

Divide the original number by the scale factor to create a number suitable for presentation to the DNP protocol.

➤ Deadband

State the number of counts by which the value of a specific point must vary before DNP generates a change event.

Table 8.76 DNP3 Reference Map Selection

Label	Prompt	Default Value
MAPSEL	Reference Map Selection (B, E)	В

Table 8.77 DNP3 Object Default Map Enables

Label	Prompt	Default Value
DNPBID	Use Default DNP map for Binary Inputs (Y, N)	Y
DNPBOD	Use Default DNP map for Binary Outputs (Y, N)	Y
DNPCOD	Use Default DNP map for Counters (Y, N)	Y
DNPAID	Use Default DNP map for Analog Inputs (Y, N)	Y
DNPAOD	Use Default DNP map for Analog Outputs (Y, N)	Y

Use the free-style format to modify the data in the user-defined maps with the syntax shown in *Table 8.78*.

Table 8.78 DNP3 User-Defined Map Entries Using Free-Form Style

Мар	Syntax
Binary Input	Index Number
Binary Output	Index Number
Counter	Index Number, Deadband
Analog Input	Index Number, Scale Factor, Deadband
Analog Output	Index Number

Appendix A

Relay Word Bits

Overview

This section contains a table of the Relay Word bits available in the SEL-487B Relay. For information on using analog quantities in protection and automation, see the SEL-487B *Applications Handbook*.

Relay Word Bits

Use this appendix as a reference for Relay Word bit labels. *Table A.1* lists the Relay Word bits in alphabetic order.

Table A.1 Alphabetic List of Relay Word Bits (Sheet 1 of 14)

Name	Definition
27P11	V01, Level 1 undervoltage element picked up
27P12	V01, Level 2 undervoltage element picked up
27P21	V02, Level 1 undervoltage element picked up
27P22	V02, Level 2 undervoltage element picked up
27P31	V03, Level 1 undervoltage element picked up
27P32	V03, Level 2 undervoltage element picked up
50DS01-50DS18	Terminal 01-Terminal 18 directional element current threshold exceeded
50F01-50F18	Circuit Breaker 01–Circuit Breaker 18 breaker failure current threshold exceeded
50P01-50P18	Terminal 01-Terminal 18 instantaneous overcurrent element
50P01T-50P18T	Terminal 01–Terminal 18 definite-time overcurrent element timed out
51P01-51P18	Terminal 01–Terminal 18 inverse-time overcurrent element picked up
51P01R-51P18R	Terminal 01–Terminal 18 inverse-time overcurrent element is reset
51P01T-51P18T	Terminal 01–Terminal 18 inverse-time overcurrent element timed out
52A01-52A18	Circuit Breaker 01–Circuit Breaker 18 status
52AL	Any circuit breaker alarm
52AL01-52AL18	Circuit Breaker 01-Circuit Breaker 18 alarm
52CL01-52CL18	Circuit Breaker 01–Circuit Breaker 18 closed
59N1	Level 1 zero-sequence overvoltage element picked up

Table A.1 Alphabetic List of Relay Word Bits (Sheet 2 of 14)

Name	Definition
59N2	Level 2 zero-sequence overvoltage element picked up
59P11	V01, Level 1 overvoltage element picked up
59P12	V01, Level 2 overvoltage element picked up
59P21	V02, Level 1 overvoltage element picked up
59P22	V02, Level 2 overvoltage element picked up
59P31	V03, Level 1 overvoltage element picked up
59P32	V03, Level 2 overvoltage element picked up
59Q1	Level 1 negative-sequence instantaneous overvoltage element picked up
59Q2	Level 2 negative-sequence instantaneous overvoltage element picked up
87BTR	Any terminal bus-zone differential trip asserted
87BTR01-87BTR18	Terminal 01–Terminal 18 bus-zone differential trip asserted
87CZ1	Check Zone 1 differential element trip
87O1	Zone 1 restraint differential operating current above O87P
87O2	Zone 2 restraint differential operating current above O87P
87O3	Zone 3 restraint differential operating current above O87P
87O4	Zone 4 restraint differential operating current above O87P
87O5	Zone 5 restraint differential operating current above O87P
8706	Zone 6 restraint differential operating current above O87P
87OCZ1	Check Zone 1 restraint differential operating current above CZO87P
87R1	Zone 1 restraint differential element picked up
87R2	Zone 2 restraint differential element picked up
87R3	Zone 3 restraint differential element picked up
87R4	Zone 4 restraint differential element picked up
87R5	Zone 5 restraint differential element picked up
87R6	Zone 6 restraint differential element picked up
87RCZ1	Check Zone 1 restraint differential element picked up
87S1	Zone 1 sensitive differential element picked up
87S2	Zone 2 sensitive differential element picked up
87S3	Zone 3 sensitive differential element picked up
87S4	Zone 4 sensitive differential element picked up
87S5	Zone 5 sensitive differential element picked up
87S6	Zone 6 sensitive differential element picked up
87SCZ1	Check Zone 1 sensitive differential element picked up
87ST	Any sensitive differential element timer timed out
87ST1	Zone 1 sensitive differential element timed out
87ST2	Zone 2 sensitive differential element timed out
87ST3	Zone 3 sensitive differential element timed out
87ST4	Zone 4 sensitive differential element timed out

Table A.1 Alphabetic List of Relay Word Bits (Sheet 3 of 14)

Name	Definition
87ST6	Zone 6 sensitive differential element timed out
87STCZ1	Check Zone 1 sensitive differential element timed out
87Z1	Zone 1 differential element trip
87Z2	Zone 2 differential element trip
87Z3	Zone 3 differential element trip
87Z4	Zone 4 differential element trip
87Z5	Zone 5 differential element trip
87Z6	Zone 6 differential element trip
89A01–89A48	Disconnect 01-Disconnect 48 a auxiliary contact closed
89AL	Any disconnect auxiliary contact discrepancy alarm
89AL01–89AL48	Disconnect 01–Disconnect 48 auxiliary contact discrepancy alarm
89B01-89B48	Disconnect 01-Disconnect 48 b auxiliary contact closed
89CL01-89CL48	Disconnect 01–Disconnect 48 closed
89OIP	Any disconnect operation in progress
89OIP01-89OIP48	Disconnect 01–Disconnect 48 operation in progress
ABFIT01–ABFIT18	Circuit Breaker 01–Circuit Breaker 18 alternate circuit breaker failure initiate
ACN01Q–ACN32Q	Automation counter outputs
ACN01R-ACN32R	Automation counter resets
ACTRP1	Coupler 1 accelerated trip SELOGIC® control equation
ACTRP2	Coupler 2 accelerated trip SELOGIC control equation
ACTRP3	Coupler 3 accelerated trip SELOGIC control equation
ACTRP4	Coupler 4 accelerated trip SELOGIC control equation
ACTRPT1	Coupler 1 accelerated trip timed out
ACTRPT2	Coupler 2 accelerated trip timed out
ACTRPT3	Coupler 3 accelerated trip timed out
ACTRPT4	Coupler 4 accelerated trip timed out
AFRTEXA	Automation SELOGIC control equation first execution automation
AFRTEXP	Automation SELOGIC control equation first execution protection
ALT01-ALT32	Automation latches
ANOKA	Analog transfer OK on MIRRORED BITS® communications Channel A
ANOKB	Analog transfer OK on MIRRORED BITS communications Channel B
AST01Q-AST32Q	Automation sequencing timer outputs
AST01R-AST32R	Automation sequencing timer resets
ASV001–ASV256	Automation SELOGIC control equation variables
ATBFI01–ATBFI18	Circuit Breaker 01–Circuit Breaker 18 alternate breaker failure initiate SELOGIC control equation
AUNRLBL	Automation SELOGIC control equation unresolved label
	·

Table A.1 Alphabetic List of Relay Word Bits (Sheet 4 of 14)

Name	Definition
BADPASS	Bad password
BFI01–BFI18	Circuit Breaker 01–Circuit Breaker 18 breaker failure initiate SELOGIC control equation
BFIT01-BFIT18	Circuit Breaker 01–Circuit Breaker 18 breaker failure timed out
BFZ1	Zone 1 breaker failure
BFZ2	Zone 2 breaker failure
BFZ3	Zone 3 breaker failure
BFZ4	Zone 4 breaker failure
BFZ5	Zone 5 breaker failure
BFZ6	Zone 6 breaker failure
BZ1BZ2R	A connection exists between BZ1 and BZ2, and the coupler is removed
BZ1BZ3R	A connection exists between BZ1 and BZ3, and the coupler is removed
BZ1BZ4R	A connection exists between BZ1 and BZ4, and the coupler is removed
BZ1BZ5R	A connection exists between BZ1 and BZ5, and the coupler is removed
BZ1BZ6R	A connection exists between BZ1 and BZ6, and the coupler is removed
BZ2BZ3R	A connection exists between BZ2 and BZ3, and the coupler is removed
BZ2BZ4R	A connection exists between BZ2 and BZ4, and the coupler is removed
BZ2BZ5R	A connection exists between BZ2 and BZ5, and the coupler is removed
BZ2BZ6R	A connection exists between BZ2 and BZ6, and the coupler is removed
BZ3BZ4R	A connection exists between BZ3 and BZ4, and the coupler is removed
BZ3BZ5R	A connection exists between BZ3 and BZ5, and the coupler is removed
BZ3BZ6R	A connection exists between BZ3 and BZ6, and the coupler is removed
BZ4BZ5R	A connection exists between BZ4 and BZ5, and the coupler is removed
BZ4BZ6R	A connection exists between BZ4 and BZ6, and the coupler is removed
BZ5BZ6R	A connection exists between BZ5 and BZ6, and the coupler is removed
BZ1BZ2V	A connection exists between BZ1 and BZ2
BZ1BZ3V	A connection exists between BZ1 and BZ3
BZ1BZ4V	A connection exists between BZ1 and BZ4
BZ1BZ5V	A connection exists between BZ1 and BZ5
BZ1BZ6V	A connection exists between BZ1 and BZ6
BZ2BZ3V	A connection exists between BZ2 and BZ3
BZ2BZ4V	A connection exists between BZ2 and BZ4

Name	Definition
BZ2BZ5V	A connection exists between BZ2 and BZ5
BZ2BZ6V	A connection exists between BZ2 and BZ6
BZ3BZ4V	A connection exists between BZ3 and BZ4
BZ3BZ5V	A connection exists between BZ3 and BZ5
BZ3BZ6V	A connection exists between BZ3 and BZ6
BZ4BZ5V	A connection exists between BZ4 and BZ5
BZ4BZ6V	A connection exists between BZ4 and BZ6
BZ5BZ6V	A connection exists between BZ5 and BZ6
CB52A1-CB52A4	Coupler 1–Coupler 4 status SELOGIC control equation
CB52T1-CB52T4	Coupler 1–Coupler 4 status timed out
CBADA	Unavailability threshold exceeded for MIRRORED BITS communications Channel A
CBADB	Unavailability threshold exceeded for MIRRORED BITS communications Channel B
CBCLS1-CBCLS4	Coupler 1–Coupler 4 close command SELOGIC control equation
CBCLST1-CBCLST4	Coupler 1–Coupler 4 close command timed out
CCALARM	Communications card alarm
CCOK	Ethernet communications card status OK
CCIN001–CCIN128	Communications card input points
CCOUT01–CCOUT32	Communications card output points
CCSTA01	Card Status Register Bit 15 - Spare
CCSTA02	Card Status Register Bit 14 - Spare
CCSTA03	Card Status Register Bit 13 - Spare
CCSTA04	Card Status Register Bit 12 - Spare
CCSTA05	Card Status Register Bit 11 - Spare
CCSTA06	Card Status Register Bit 10 - Spare
CCSTA07	Card Status Register Bit 9 - Spare
CCSTA08	Card Status Register Bit 8 - Spare
CCSTA09	Card Status Register Bit 7 - Low Resource bit
CCSTA10	Card Status Register Bit 6 - Alarm bit
CCSTA11	Card Status Register Bit 5 - Settings selection
CCSTA12	Card Status Register Bit 4 - Running in SELBoot
CCSTA13	Card Status Register Bit 3 - Settings error
CCSTA14	Card Status Register Bit 2 - Network port active
CCSTA15	Card Status Register Bit 1 - Self-test failure
CCSTA16	Card Status Register Bit 0 - Alive and initialized
CCSTA17	Self Test Failure Bit 15 - Spare
CCSTA18	Self Test Failure Bit 14 - Spare
CCSTA19	Self Test Failure Bit 13 - SLBT Incompatible
CCSTA20	Self Test Failure Bit 12 - No Host Response to Interrupt
CCSTA21	Self Test Failure Bit 11 - Active Ethernet Port

Table A.1 Alphabetic List of Relay Word Bits (Sheet 6 of 14)

Table A.I Alphabetic List of Relay word Bits (Sneet 6 of 14)		
Name	Definition	
CCSTA22	Self Test Failure Bit 10 - Host Access Counter Error	
CCSTA23	Self Test Failure Bit 9 - Host Access Counter Warning	
CCSTA24	Self Test Failure Bit 8 - Host Incompatible	
CCSTA25	Self Test Failure Bit 7 - Host Commanded Read/Write Test Results	
CCSTA26	Self Test Failure Bit 6 - Shared Memory Interface Failure	
CCSTA27	Self Test Failure Bit 5 - Configuration	
CCSTA28	Self Test Failure Bit 4 - Executable Storage Block	
CCSTA29	Self Test Failure Bit 3 - Settings Check	
CCSTA30	Self Test Failure Bit 2 - SLBT Code Flash Check	
CCSTA31	Self Test Failure Bit 1 - EXE Code Flash Check	
CCSTA32	Self Test Failure Bit 0 - RAM Check	
CHSG	Asserted during settings group change	
CON1	Zone 1 in high-security mode	
CON2	Zone 2 in high-security mode	
CON3	Zone 3 in high-security mode	
CON4	Zone 4 in high-security mode	
CON5	Zone 5 in high-security mode	
CON6	Zone 6 in high-security mode	
CONCZ1	Check Zone 1 in high-security mode	
CSL1	Coupler 1 security logic picked up	
CSL2	Coupler 2 security logic picked up	
CSL3	Coupler 3 security logic picked up	
CSL4	Coupler 4 security logic picked up	
CZ1S	Check Zone 1 supervision asserted	
CZONE1	Check Zone 1 is active	
DC1F	DC Monitor fail alarm	
DC1G	DC Monitor ground fault alarm	
DC1R	DC Monitor alarm for ac ripple	
DC1W	DC Monitor warning alarm	
DE1F	Zone 1 forward directional element picked up	
DE2F	Zone 2 forward directional element picked up	
DE3F	Zone 3 forward directional element picked up	
DE4F	Zone 4 forward directional element picked up	
DE5F	Zone 5 forward directional element picked up	
DE6F	Zone 6 forward directional element picked up	
DECZ1F	Check Zone 1 forward directional element picked up	
DOKA	Normal MIRRORED BITS communications Channel A status	
DOKB	Normal MIRRORED BITS communications Channel B status	
DOP1	Zone 1 incremental operating current picked up	
DOP2	Zone 2 incremental operating current picked up	
	•	

Table A.1 Alphabetic List of Relay Word Bits (Sheet 7 of 14)

Name	Definition
DOP3	Zone 3 incremental operating current picked up
DOP4	Zone 4 incremental operating current picked up
DOP5	Zone 5 incremental operating current picked up
DOP6	Zone 6 incremental operating current picked up
DOPCZ1	Check Zone 1 incremental operating current picked up
DRT1	Zone 1 incremental restraint current picked up
DRT2	Zone 2 incremental restraint current picked up
DRT3	Zone 3 incremental restraint current picked up
DRT4	Zone 4 incremental restraint current picked up
DRT5	Zone 5 incremental restraint current picked up
DRT6	Zone 6 incremental restraint current picked up
DRTCZ1	Check Zone 1 incremental restraint current picked up
EN	Relay enabled
ER	Event report trigger equation (SELOGIC control equation)
EVELOCK	Lock DNP Events
EXT1	Zone 1 external fault declaration
EXT2	Zone 2 external fault declaration
EXT3	Zone 3 external fault declaration
EXT4	Zone 4 external fault declaration
EXT5	Zone 5 external fault declaration
EXT6	Zone 6 external fault declaration
EXTCZ1	Check Zone 1 external fault declaration
FAULT	Busbar fault in any zone
FAULT1	Zone 1 fault detector picked up
FAULT2	Zone 2 fault detector picked up
FAULT3	Zone 3 fault detector picked up
FAULT4	Zone 4 fault detector picked up
FAULT5	Zone 5 fault detector picked up
FAULT6	Zone 6 fault detector picked up
FLTCZ1	Check Zone 1 fault detector picked up
FBF01-FBF18	Circuit Breaker 01–Circuit Breaker 18 failure
FDIF1	Zone 1 filtered restrained differential element picked up
FDIF2	Zone 2 filtered restrained differential element picked up
FDIF3	Zone 3 filtered restrained differential element picked up
FDIF4	Zone 4 filtered restrained differential element picked up
FDIF5	Zone 5 filtered restrained differential element picked up
FDIF6	Zone 6 filtered restrained differential element picked up
FDIFCZ1	Check Zone 1 filtered restrained differential element picked up
FSERP1	Fast SER enabled for Serial Port 1
FSERP2	Fast SER enabled for Serial Port 2
FSERP3	Fast SER enabled for Serial Port 3
-	

Table A.1 Alphabetic List of Relay Word Bits (Sheet 8 of 14)

Name	Definition
FSERPF	Fast SER enabled for Serial Port F
GFAULT1	Zone 1 fast fault detection
GFAULT2	Zone 2 fast fault detection
GFAULT3	Zone 3 fast fault detection
GFAULT4	Zone 4 fast fault detection
GFAULT5	Zone 5 fast fault detection
GFAULT6	Zone 6 fast fault detection
GFLTCZ1	Check Zone 1 fast fault detection
HALARM	Hardware alarm
I01BZ1V-I01BZ6V	Terminal I01 connected to BZ1–BZ6
I02BZ1V-I02BZ6V	Terminal I02 connected to BZ1–BZ6
I03BZ1V-I03BZ6V	Terminal I03 connected to BZ1–BZ6
I04BZ1V-I04BZ6V	Terminal I04 connected to BZ1–BZ6
I05BZ1V–I05BZ6V	Terminal I05 connected to BZ1-BZ6
I06BZ1V-I06BZ6V	Terminal I06 connected to BZ1–BZ6
I07BZ1V-I07BZ6V	Terminal I07 connected to BZ1–BZ6
I08BZ1V-I08BZ6V	Terminal I08 connected to BZ1–BZ6
I09BZ1V-I09BZ6V	Terminal I09 connected to BZ1–BZ6
I10BZ1V-I10BZ6V	Terminal I10 connected to BZ1–BZ6
I11BZ1V–I11BZ6V	Terminal I11 connected to BZ1–BZ6
I12BZ1V-I12BZ6V	Terminal I12 connected to BZ1–BZ6
I13BZ1V-I13BZ6V	Terminal I13 connected to BZ1–BZ6
I14BZ1V–I14BZ6V	Terminal I14 connected to BZ1–BZ6
I15BZ1V–I15BZ6V	Terminal I15 connected to BZ1–BZ6
I16BZ1V–I16BZ6V	Terminal I16 connected to BZ1–BZ6
I17BZ1V–I17BZ6V	Terminal I17 connected to BZ1–BZ6
I18BZ1V–I18BZ6V	Terminal I18 connected to BZ1–BZ6
I01CZ1V	Terminal I01 connected to CZ1
I02CZ1V	Terminal I02 connected to CZ1
I03CZ1V	Terminal I03 connected to CZ1
I04CZ1V	Terminal I04 connected to CZ1
I05CZ1V	Terminal I05 connected to CZ1
I06CZ1V	Terminal I06 connected to CZ1
I07CZ1V	Terminal I07 connected to CZ1
I08CZ1V	Terminal I08 connected to CZ1
I09CZ1V	Terminal I09 connected to CZ1
I10CZ1V	Terminal I10 connected to CZ1
I11CZ1V	Terminal I11 connected to CZ1
I12CZ1V	Terminal I12 connected to CZ1
I13CZ1V	Terminal I13 connected to CZ1
I14CZ1V	Terminal I14 connected to CZ1
	•

Table A.1 Alphabetic List of Relay Word Bits (Sheet 9 of 14)

Name	Definition
I15CZ1V	Terminal I15 connected to CZ1
I16CZ1V	Terminal I16 connected to CZ1
I17CZ1V	Terminal I17 connected to CZ1
I18CZ1V	Terminal I18 connected to CZ1
IFAULT1	Zone 1 fault detection
IFAULT2	Zone 2 fault detection
IFAULT3	Zone 3 fault detection
IFAULT4	Zone 4 fault detection
IFAULT5	Zone 5 fault detection
IFAULT6	Zone 6 fault detection
IFLTCZ1	Check Zone 1 fault detection
IN101–IN107	Main board inputs
IN201-IN224	Optional I/O Board 1 inputs
IN301-IN323	Optional I/O Board 2 inputs
IN401-IN424	Optional I/O Board 3 inputs
IN501-IN524	Optional I/O Board 4 inputs
LB01-LB32	Local bits
LB_DP01-LB_DP32	Local bit status display (SELOGIC control equation)
LB_SP01-LB_SP32	Local bit supervision (SELOGIC control equation)
LBOKA	MIRRORED BITS communications Channel A normal status while in loopback mode
LBOKB	MIRRORED BITS communications Channel B normal status while in loopback mode
MATHERR	SELOGIC control equation math error
OC01-OC18	Circuit Breaker 01–Circuit Breaker 18 open command
OCTZ1	Zone 1 Open CT detection
OCTZ2	Zone 2 Open CT detection
OCTZ3	Zone 3 Open CT detection
OCTZ4	Zone 4 Open CT detection
OCTZ5	Zone 5 Open CT detection
OCTZ6	Zone 6 Open CT detection
OPH01-OPH18	Terminal 01-Terminal 18 open phase detected
OUT101-OUT108	Main board outputs
OUT201-OUT208	Optional I/O Board 1 outputs
OUT301-OUT308	Optional I/O Board 2 outputs
OUT401-OUT408	Optional I/O Board 3 outputs
OUT501-OUT508	Optional I/O Board 4 outputs
P87R1	Zone 1 instantaneous differential element picked up
P87R2	Zone 2 instantaneous differential element picked up
P87R3	Zone 3 instantaneous differential element picked up
P87R4	Zone 4 instantaneous differential element picked up
P87R5	Zone 5 instantaneous differential element picked up

Table A.1 Alphabetic List of Relay Word Bits (Sheet 10 of 14)

Name	Definition
P87R6	Zone 6 instantaneous differential element picked up
P87RCZ1	Check Zone 1 instantaneous differential element picked up
PB1–PB12	Pushbuttons
PB1_LED-PB12LED	Pushbutton LEDs
PB1_PUL-PB12PUL	Pushbutton pulse inputs (on for one processing interval when button is pushed)
PCN01Q-PCN32Q	Protection counter outputs
PCN01R-PCN32R	Protection counter resets
PCT01Q-PCT16Q	Protection conditioning timer outputs
PFRTEX	Protection SELOGIC control equation first execution
PLT01-PLT32	Protection latches
PST01Q-PST32Q	Protection sequencing timer outputs
PST01R-PST32R	Protection sequencing timer resets
PSV01–PSV64	Protection SELOGIC control equation variables
PUNRLBL	Protection SELOGIC control equation unresolved label
RB01–RB96	Remote bits
RBADA	Outage too long on MIRRORED BITS communications Channel A
RBADB	Outage too long on MIRRORED BITS communications Channel B
RDIF1	Zone 1 unfiltered restrained differential element picked up
RDIF2	Zone 2 unfiltered restrained differential element picked up
RDIF3	Zone 3 unfiltered restrained differential element picked up
RDIF4	Zone 4 unfiltered restrained differential element picked up
RDIF5	Zone 5 unfiltered restrained differential element picked up
RDIF6	Zone 6 unfiltered restrained differential element picked up
RDIFCZ1	Check Zone 1 unfiltered restrained differential element picke up
RMB1A-RMB8A	Channel A receive MIRRORED BITS communications
RMB1B-RMB8B	Channel B receive MIRRORED BITS communications
ROCTZ1	Reset Zone 1 Open CT Detector (SELOGIC control equation)
ROCTZ2	Reset Zone 2 Open CT Detector (SELOGIC control equation)
ROCTZ3	Reset Zone 3 Open CT Detector (SELOGIC control equation)
ROCTZ4	Reset Zone 4 Open CT Detector (SELOGIC control equation)
ROCTZ5	Reset Zone 5 Open CT Detector (SELOGIC control equation)
ROCTZ6	Reset Zone 6 Open CT Detector (SELOGIC control equation)
ROKA	Normal MIRRORED BITS communications Channel A status while not in loopback mode
ROKB	Normal MIRRORED BITS communications Channel B status while not in loopback mode
RST_BAT	Reset battery monitoring (SELOGIC control equation)
RSTDNPE	Reset DNP Fault Summary Data (SELOGIC control equation)
RSTOCT1	Zone 1 Open CT detection reset

Table A.1 Alphabetic List of Relay Word Bits (Sheet 11 of 14)

Name	Definition
RSTOCT2	Zone 2 Open CT detection reset
RSTOCT3	Zone 3 Open CT detection reset
RSTOCT4	Zone 4 Open CT detection reset
RSTOCT5	Zone 5 Open CT detection reset
RSTOCT6	Zone 6 Open CT detection reset
RSTTRGT	Target reset (SELOGIC control equation)
RT01-RT18	Circuit Breaker 01–Circuit Breaker 18 retrip
RZSWOAL	Reset zone switching operation alarm
SALARM	Software alarm
SBFTR	Any circuit breaker failure trip
SBFTR01-SBFTR18	Circuit Breaker 01–Circuit Breaker 18 breaker failure trip
SG1	Settings Group 1 active
SG2	Settings Group 2 active
SG3	Settings Group 3 active
SG4	Settings Group 4 active
SG5	Settings Group 5 active
SG6	Settings Group 6 active
TESTDB	Communications card database test bit
TESTDNP	DNP test bit
TESTFM	Fast meter test bit
TESTPUL	Pulse test bit
TIRIG	Assert while time is based on IRIG for both mark and value
TLED_1	Trip LED 1
TLED_10	Trip LED 10
TLED_11	Trip LED 11
TLED_12	Trip LED 12
TLED_13	Trip LED 13
TLED_14	Trip LED 14
TLED_15	Trip LED 15
TLED_16	Trip LED 16
TLED_17	Trip LED 17
TLED_18	Trip LED 18
TLED_19	Trip LED 19
TLED_2	Trip LED 2
TLED_20	Trip LED 20
TLED_21	Trip LED 21
TLED_22	Trip LED 22
TLED_23	Trip LED 23
TLED_24	Trip LED 24
TLED_3	Trip LED 3
TLED_4	Trip LED 4
	1 -

Table A.1 Alphabetic List of Relay Word Bits (Sheet 12 of 14)

lable A.I Alphabetic	List of Relay word bits (Sheet 12 of 14)
Name	Definition
TLED_5	Trip LED 5
TLED_6	Trip LED 6
TLED_7	Trip LED 7
TLED_8	Trip LED 8
TLED_9	Trip LED 9
TMB1A	Channel A Transmit MIRRORED BIT 1
TMB1B	Channel B Transmit MIRRORED BIT 1
TMB2A	Channel A Transmit MIRRORED BIT 2
TMB2B	Channel B Transmit MIRRORED BIT 2
TMB3A	Channel A Transmit MIRRORED BIT 3
TMB3B	Channel B Transmit MIRRORED BIT 3
TMB4A	Channel A Transmit MIRRORED BIT 4
TMB4B	Channel B Transmit MIRRORED BIT 4
TMB5A	Channel A Transmit MIRRORED BIT 5
TMB5B	Channel B Transmit MIRRORED BIT 5
TMB6A	Channel A Transmit MIRRORED BIT 6
TMB6B	Channel B Transmit MIRRORED BIT 6
TMB7A	Channel A Transmit MIRRORED BIT 7
TMB7B	Channel B Transmit MIRRORED BIT 7
TMB8A	Channel A Transmit MIRRORED BIT 8
TMB8B	Channel B Transmit MIRRORED BIT 8
TOS01-TOS18	Terminal 01–Terminal 18 out of service
TRGTR	Reset all active target relay words
TRIP	Any terminal trip output
TRIP01-TRIP18	Terminal 01–Terminal 18 trip output
TRIPLED	Trip LED
TUPDH	Assert if update source is high-accuracy time source
ULTR01-ULTR18	Terminal 01–Terminal 18 unlatch trip
XBF01–XBF18	Circuit Breaker 01–Circuit Breaker 18 external breaker failure input (SELOGIC control equation)
Z1BZ1	Bus-Zone 1 is part of Protective Zone 1
Z1BZ2	Bus-Zone 2 is part of Protective Zone 1
Z1BZ3	Bus-Zone 3 is part of Protective Zone 1
Z1BZ4	Bus-Zone 4 is part of Protective Zone 1
Z1BZ5	Bus-Zone 5 is part of Protective Zone 1
Z1BZ6	Bus-Zone 6 is part of Protective Zone 1
Z1S	Zone 1 supervision asserted
Z2BZ2	Bus-Zone 2 is part of Protective Zone 2
Z2BZ3	Bus-Zone 3 is part of Protective Zone 2
Z2BZ4	Bus-Zone 4 is part of Protective Zone 2
Z2BZ5	Bus-Zone 5 is part of Protective Zone 2

Table A.1 Alphabetic List of Relay Word Bits (Sheet 13 of 14)

Name	Definition
Z2BZ6	Bus-Zone 6 is part of Protective Zone 2
Z2S	Zone 2 supervision asserted
Z3BZ3	Bus-Zone 3 is part of Protective Zone 3
Z3BZ4	Bus-Zone 4 is part of Protective Zone 3
Z3BZ5	Bus-Zone 5 is part of Protective Zone 3
Z3BZ6	Bus-Zone 6 is part of Protective Zone 3
Z3S	Zone 3 supervision asserted
Z4BZ4	Bus-Zone 4 is part of Protective Zone 4
Z4BZ5	Bus-Zone 5 is part of Protective Zone 4
Z4BZ6	Bus-Zone 6 is part of Protective Zone 4
Z4S	Zone 4 supervision asserted
Z5BZ5	Bus-Zone 5 is part of Protective Zone 5
Z5BZ6	Bus-Zone 6 is part of Protective Zone 5
Z5S	Zone 5 supervision asserted
Z6BZ6	Bus-Zone 6 is part of Protective Zone 6
Z6S	Zone 6 supervision asserted
ZN1I01-ZN1I18	Terminal 01-Terminal 18 connected to Zone 1
ZN1I01T–ZN1I18T	Terminal 01–Terminal 18 connected to Zone 1 and will be tripped
ZN2I01-ZN2I18	Terminal 01–Terminal 18 connected to Zone 2
ZN2I01T-ZN2I18T	Terminal 01–Terminal 18 connected to Zone 2 and will be tripped
ZN3I01-ZN3I18	Terminal 01–Terminal 18 connected to Zone 3
ZN3I01T–ZN3I18T	Terminal 01–Terminal 18 connected to Zone 3 and will be tripped
ZN4I01–ZN4I18	Terminal 01-Terminal 18 connected to Zone 4
ZN4I01T–ZN4I18T	Terminal 01–Terminal 18 connected to Zone 4 and will be tripped
ZN5I01-ZN5I18	Terminal 01–Terminal 18 connected to Zone 5
ZN5I01T-ZN5I18T	Terminal 01–Terminal 18 connected to Zone 5 and will be tripped
ZN6I01-ZN6I18	Terminal 01-Terminal 18 connected to Zone 6
ZN6I01T–ZN6I18T	Terminal 01–Terminal 18 connected to Zone 6 and will be tripped
ZONE1	Differential Zone 1 is active
ZONE2	Differential Zone 2 is active
ZONE3	Differential Zone 3 is active
ZONE4	Differential Zone 4 is active
ZONE5	Differential Zone 5 is active
ZONE6	Differential Zone 6 is active
ZSWO	Zone switching operation
ZSWOAL	Zone switching operation alarm
ZSWOIP	Zone switching operation in progress

Table A.1 Alphabetic List of Relay Word Bits (Sheet 14 of 14)

Name	Definition
ZSWOP	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in any zone
ZSWOP1	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone 1
ZSWOP2	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone 2
ZSWOP3	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone 3
ZSWOP4	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone 4
ZSWOP5	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone 5
ZSWOP6	Picks up following a change to either bus-zone-to-bus-zone or terminal-to-bus-zone conditions in Zone 6

Table A.2 Row List of Relay Word Bits (Sheet 1 of 11)

Row	7	6	5	4	3	2	1	0
0	EN	TRIPLED	*	*	*	*	*	*
1	TLED_1	TLED_2	TLED_3	TLED_4	TLED_5	TLED_6	TLED_7	TLED_8
2	TLED_9	TLED_10	TLED_11	TLED_12	TLED_13	TLED_14	TLED_15	TLED_16
3	OPH08	OPH07	OPH06	OPH05	OPH04	OPH03	OPH02	OPH01
4	OPH16	OPH15	OPH14	OPH13	OPH12	OPH11	OPH10	OPH09
5	*	*	*	*	*	*	OPH18	OPH17
6	52AL03	52A03	52CL02	52AL02	52A02	52CL01	52AL01	52A01
7	52A06	52CL05	52AL05	52A05	52CL04	52AL04	52A04	52CL03
8	52CL08	52AL08	52A08	52CL07	52AL07	52A07	52CL06	52AL06
9	52AL11	52A11	52CL10	52AL10	52A10	52CL09	52AL09	52A09
10	52A14	52CL13	52AL13	52A13	52CL12	52AL12	52A12	52CL11
11	52CL16	52AL16	52A16	52CL15	52AL15	52A15	52CL14	52AL14
12	*	52AL	52CL18	52AL18	52A18	52CL17	52AL17	52A17
13	89CL02	89B02	89A02	89AL01	89OIP01	89CL01	89B01	89A01
14	89A04	89AL03	89OIP03	89CL03	89B03	89A03	89AL02	89OIP02
15	89OIP05	89CL05	89B05	89A05	89AL04	89OIP04	89CL04	89B04
16	89B07	89A07	89AL06	89OIP06	89CL06	89B06	89A06	89AL05
17	89AL08	89OIP08	89CL08	89B08	89A08	89AL07	89OIP07	89CL07
18	89CL10	89B10	89A10	89AL09	89OIP09	89CL09	89B09	89A09
19	89A12	89AL11	89OIP11	89CL11	89B11	89A11	89AL10	89OIP10
20	89OIP13	89CL13	89B13	89A13	89AL12	89OIP12	89CL12	89B12
21	89B15	89A15	89AL14	89OIP14	89CL14	89B14	89A14	89AL13
22	89AL16	89OIP16	89CL16	89B16	89A16	89AL15	89OIP15	89CL15
23	89CL18	89B18	89A18	89AL17	89OIP17	89CL17	89B17	89A17
24	89A20	89AL19	89OIP19	89CL19	89B19	89A19	89AL18	89OIP18
25	89OIP21	89CL21	89B21	89A21	89AL20	89OIP20	89CL20	89B20

Table A.2 Row List of Relay Word Bits (Sheet 2 of 11)

Row	7	6	5	4	3	2	1	0
26	89B23	89A23	89AL22	89OIP22	89CL22	89B22	89A22	89AL21
27	89AL24	89OIP24	89CL24	89B24	89A24	89AL23	89OIP23	89CL23
28	89CL26	89B26	89A26	89AL25	89OIP25	89CL25	89B25	89A25
29	89A28	89AL27	89OIP27	89CL27	89B27	89A27	89AL26	89OIP26
30	89OIP29	89CL29	89B29	89A29	89AL28	89OIP28	89CL28	89B28
31	89B31	89A31	89AL30	89OIP30	89CL30	89B30	89A30	89AL29
32	89AL32	89OIP32	89CL32	89B32	89A32	89AL31	89OIP31	89CL31
33	89CL34	89B34	89A34	89AL33	89OIP33	89CL33	89B33	89A33
34	89A36	89AL35	89OIP35	89CL35	89B35	89A35	89AL34	89OIP34
35	89OIP37	89CL37	89B37	89A37	89AL36	89OIP36	89CL36	89B36
36	89B39	89A39	89AL38	89OIP38	89CL38	89B38	89A38	89AL37
37	89AL40	89OIP40	89CL40	89B40	89A40	89AL39	89OIP39	89CL39
38	89CL42	89B42	89A42	89AL41	89OIP41	89CL41	89B41	89A41
39	89A44	89AL43	89OIP43	89CL43	89B43	89A43	89AL42	89OIP42
10	89OIP45	89CL45	89B45	89A45	89AL44	89OIP44	89CL44	89B44
4 1	89B47	89A47	89AL46	89OIP46	89CL46	89B46	89A46	89AL45
42	89AL48	89OIP48	89CL48	89B48	89A48	89AL47	89OIP47	89CL47
13	*	*	*	*	*	*	89OIP	89AL
14	I08BZ1V	I07BZ1V	I06BZ1V	I05BZ1V	I04BZ1V	I03BZ1V	I02BZ1V	I01BZ1V
45	I16BZ1V	I15BZ1V	I14BZ1V	I13BZ1V	I12BZ1V	I11BZ1V	I10BZ1V	I09BZ1V
46	*	*	*	*	*	*	I18BZ1V	I17BZ1V
47	*	*	*	*	*	*	*	*
48	I08BZ2V	I07BZ2V	I06BZ2V	I05BZ2V	I04BZ2V	I03BZ2V	I02BZ2V	I01BZ2V
49	I16BZ2V	I15BZ2V	I14BZ2V	I13BZ2V	I12BZ2V	I11BZ2V	I10BZ2V	I09BZ2V
50	*	*	*	*	*	*	I18BZ2V	I17BZ2V
51	*	*	*	*	*	*	*	*
52	I08BZ3V	I07BZ3V	I06BZ3V	I05BZ3V	I04BZ3V	I03BZ3V	I02BZ3V	I01BZ3V
53	I16BZ3V	I15BZ3V	I14BZ3V	I13BZ3V	I12BZ3V	I11BZ3V	I10BZ3V	I09BZ3V
54	*	*	*	*	*	*	I18BZ3V	I17BZ3V
55	*	*	*	*	*	*	*	*
56	I08BZ4V	I07BZ4V	I06BZ4V	I05BZ4V	I04BZ4V	I03BZ4V	I02BZ4V	I01BZ4V
57	I16BZ4V	I15BZ4V	I14BZ4V	I13BZ4V	I12BZ4V	I11BZ4V	I10BZ4V	I09BZ4V
58	*	*	*	*	*	*	I18BZ4V	I17BZ4V
59	*	*	*	*	*	*	*	*
50	I08BZ5V	I07BZ5V	I06BZ5V	I05BZ5V	I04BZ5V	I03BZ5V	I02BZ5V	I01BZ5V
51	I16BZ5V	I15BZ5V	I14BZ5V	I13BZ5V	I12BZ5V	I11BZ5V	I10BZ5V	I09BZ5V
52	*	*	*	*	*	*	I18BZ5V	I17BZ5V
53	*	*	*	*	*	*	*	*
54	I08BZ6V	I07BZ6V	I06BZ6V	I05BZ6V	I04BZ6V	I03BZ6V	I02BZ6V	I01BZ6V
65	I16BZ6V	I15BZ6V	I14BZ6V	I13BZ6V	I12BZ6V	I11BZ6V	I10BZ6V	I09BZ6V
66	*	*	*	*	*	*	I18BZ6V	I17BZ6V

Table A.2 Row List of Relay Word Bits (Sheet 3 of 11)

Row	7	6	5	4	3	2	1	0
67	*	*	*	*	*	*	*	*
68	ZN1I08	ZN1I07	ZN1I06	ZN1I05	ZN1I04	ZN1I03	ZN1I02	ZN1I01
69	ZN1I16	ZN1I15	ZN1I14	ZN1I13	ZN1I12	ZN1I11	ZN1I10	ZN1I09
70	*	*	*	*	*	*	ZN1I18	ZN1I17
71	*	*	*	*	*	*	*	*
72	ZN2I08	ZN2I07	ZN2I06	ZN2I05	ZN2I04	ZN2I03	ZN2I02	ZN2I01
73	ZN2I16	ZN2I15	ZN2I14	ZN2I13	ZN2I12	ZN2I11	ZN2I10	ZN2I09
74	*	*	*	*	*	*	ZN2I18	ZN2I17
75	*	*	*	*	*	*	*	*
76	ZN3I08	ZN3I07	ZN3I06	ZN3I05	ZN3I04	ZN3I03	ZN3I02	ZN3I01
77	ZN3I16	ZN3I15	ZN3I14	ZN3I13	ZN3I12	ZN3I11	ZN3I10	ZN3I09
78	*	*	*	*	*	*	ZN3I18	ZN3I17
79	*	*	*	*	*	*	*	*
80	ZN4I08	ZN4I07	ZN4I06	ZN4I05	ZN4I04	ZN4I03	ZN4I02	ZN4I01
81	ZN4I16	ZN4I15	ZN4I14	ZN4I13	ZN4I12	ZN4I11	ZN4I10	ZN4I09
82	*	*	*	*	*	*	ZN4I18	ZN4I17
83	*	*	*	*	*	*	*	*
84	ZN5I08	ZN5I07	ZN5I06	ZN5I05	ZN5I04	ZN5I03	ZN5I02	ZN5I01
85	ZN5I16	ZN5I15	ZN5I14	ZN5I13	ZN5I12	ZN5I11	ZN5I10	ZN5I09
86	*	*	*	*	*	*	ZN5I18	ZN5I17
87	*	*	*	*	*	*	*	*
88	ZN6I08	ZN6I07	ZN6I06	ZN6I05	ZN6I04	ZN6I03	ZN6I02	ZN6I01
89	ZN6I16	ZN6I15	ZN6I14	ZN6I13	ZN6I12	ZN6I11	ZN6I10	ZN6I09
90	*	*	*	*	*	*	ZN6I18	ZN6I17
91	*	*	*	*	*	*	*	*
92	ZN1I08T	ZN1I07T	ZN1I06T	ZN1I05T	ZN1I04T	ZN1I03T	ZN1I02T	ZN1I01T
93	ZN1I16T	ZN1I15T	ZN1I14T	ZN1I13T	ZN1I12T	ZN1I11T	ZN1I10T	ZN1I09T
94	*	*	*	*	*	*	ZN1I18T	ZN1I17T
95	*	*	*	*	*	*	*	*
96	ZN2I08T	ZN2I07T	ZN2I06T	ZN2I05T	ZN2I04T	ZN2I03T	ZN2I02T	ZN2I01T
97	ZN2I16T	ZN2I15T	ZN2I14T	ZN2I13T	ZN2I12T	ZN2I11T	ZN2I10T	ZN2I09T
98	*	*	*	*	*	*	ZN2I18T	ZN2I17T
99	*	*	*	*	*	*	*	*
100	ZN3I08T	ZN3I07T	ZN3I06T	ZN3I05T	ZN3I04T	ZN3I03T	ZN3I02T	ZN3I01T
101	ZN3I16T	ZN3I15T	ZN3I14T	ZN3I13T	ZN3I12T	ZN3I11T	ZN3I10T	ZN3I09T
102	*	*	*	*	*	*	ZN3I18T	ZN3I17T
103	*	*	*	*	*	*	*	*
104	ZN4I08T	ZN4I07T	ZN4I06T	ZN4I05T	ZN4I04T	ZN4I03T	ZN4I02T	ZN4I01T
105	ZN4I16T	ZN4I15T	ZN4I14T	ZN4I13T	ZN4I12T	ZN4I11T	ZN4I10T	ZN4I09T
106	*	*	*	*	*	*	ZN4I18T	ZN4I17T
107	*	*	*	*	*	*	*	*

Table A.2 Row List of Relay Word Bits (Sheet 4 of 11)

Row	7	6	5	4	3	2	1	0
108	ZN5I08T	ZN5I07T	ZN5I06T	ZN5I05T	ZN5I04T	ZN5I03T	ZN5I02T	ZN5I01T
109	ZN5I16T	ZN5I15T	ZN5I14T	ZN5I13T	ZN5I12T	ZN5I11T	ZN5I10T	ZN5I09T
110	*	*	*	*	*	*	ZN5I18T	ZN5I17T
111	*	*	*	*	*	*	*	*
112	ZN6I08T	ZN6I07T	ZN6I06T	ZN6I05T	ZN6I04T	ZN6I03T	ZN6I02T	ZN6I01T
113	ZN6I16T	ZN6I15T	ZN6I14T	ZN6I13T	ZN6I12T	ZN6I11T	ZN6I10T	ZN6I09T
114	*	*	*	*	*	*	ZN6I18T	ZN6I17T
115	*	*	*	*	*	*	*	*
116	*	*	BZ1BZ6V	BZ1BZ5V	BZ1BZ4V	BZ1BZ3V	BZ1BZ2V	*
117	*	*	BZ2BZ6V	BZ2BZ5V	BZ2BZ4V	BZ2BZ3V	*	*
118	*	*	BZ3BZ6V	BZ3BZ5V	BZ3BZ4V	*	*	*
119	*	*	BZ4BZ6V	BZ4BZ5V	*	*	*	*
120	*	*	BZ5BZ6V	*	*	*	*	*
121	*	*	*	*	*	*	*	*
122	*	*	*	*	*	*	*	*
123	*	*	*	*	*	*	*	*
124	*	*	BZ1BZ6R	BZ1BZ5R	BZ1BZ4R	BZ1BZ3R	BZ1BZ2R	*
125	*	*	BZ2BZ6R	BZ2BZ5R	BZ2BZ4R	BZ2BZ3R	*	*
126	*	*	BZ3BZ6R	BZ3BZ5R	BZ3BZ4R	*	*	*
127	*	*	BZ4BZ6R	BZ4BZ5R	*	*	*	*
128	*	*	BZ5BZ6R	*	*	*	*	*
129	*	*	*	*	*	*	*	*
130	*	*	*	*	*	*	*	*
131	*	*	*	*	*	*	*	*
132	*	*	Z1BZ6	Z1BZ5	Z1BZ4	Z1BZ3	Z1BZ2	Z1BZ1
133	*	*	Z2BZ6	Z2BZ5	Z2BZ4	Z2BZ3	Z2BZ2	*
134	*	*	Z3BZ6	Z3BZ5	Z3BZ4	Z3BZ3	*	*
135	*	*	Z4BZ6	Z4BZ5	Z4BZ4	*	*	*
136	*	*	Z5BZ6	Z5BZ5	*	*	*	*
137	*	*	Z6BZ6	*	*	*	*	*
138	*	*	ZONE6	ZONE5	ZONE4	ZONE3	ZONE2	ZONE1
139	*	ZSWOP	ZSWOP6	ZSWOP5	ZSWOP4	ZSWOP3	ZSWOP2	ZSWOP1
140	*	*	*	*	ZSWOAL	ZSWOIP	ZSWO	RZSWOAL
141	*	*	Z6S	Z5S	Z4S	Z3S	Z2S	Z1S
142	*	*	ROCTZ6	ROCTZ5	ROCTZ4	ROCTZ3	ROCTZ2	ROCTZ1
143	*	*	OCTZ6	OCTZ5	OCTZ4	OCTZ3	OCTZ2	OCTZ1
144	*	*	RSTOCT6	RSTOCT5	RSTOCT4	RSTOCT3	RSTOCT2	RSTOCT1
145	*	*	8786	8785	87S4	87S3	87S2	87S1
146	*	87ST	87ST6	87ST5	87ST4	87ST3	87ST2	87ST1
147	87R1	P87R1	87O1	FAULT1	CON1	EXT1	DOP1	DRT1
148	*	*	*	*	FDIF1	RDIF1	IFAULT1	GFAULT1

Table A.2 Row List of Relay Word Bits (Sheet 5 of 11)

Row	7	6	5	4	3	2	1	0
149	87R2	P87R2	87O2	FAULT2	CON2	EXT2	DOP2	DRT2
150	*	*	*	*	FDIF2	RDIF2	IFAULT2	GFAULT2
151	87R3	P87R3	87O3	FAULT3	CON3	EXT3	DOP3	DRT3
152	*	*	*	*	FDIF3	RDIF3	IFAULT3	GFAULT3
153	87R4	P87R4	87O4	FAULT4	CON4	EXT4	DOP4	DRT4
154	*	*	*	*	FDIF4	RDIF4	IFAULT4	GFAULT4
155	87R5	P87R5	87O5	FAULT5	CON5	EXT5	DOP5	DRT5
156	*	*	*	*	FDIF5	RDIF5	IFAULT5	GFAULT5
157	87R6	P87R6	8706	FAULT6	CON6	EXT6	DOP6	DRT6
158	*	*	*	*	FDIF6	RDIF6	IFAULT6	GFAULT6
159	*	*	*	*	*	*	*	FAULT
160	*	*	DE6F	DE5F	DE4F	DE3F	DE2F	DE1F
161	50DS08	50DS07	50DS06	50DS05	50DS04	50DS03	50DS02	50DS01
162	50DS16	50DS15	50DS14	50DS13	50DS12	50DS11	50DS10	50DS09
163	*	*	*	*	*	*	50DS18	50DS17
164	*	CSL1	ACTRPT1	ACTRP1	CBCLST1	CBCLS1	CB52T1	CB52A1
165	*	CSL2	ACTRPT2	ACTRP2	CBCLST2	CBCLS2	CB52T2	CB52A2
166	*	CSL3	ACTRPT3	ACTRP3	CBCLST3	CBCLS3	CB52T3	CB52A3
167	*	CSL4	ACTRPT4	ACTRP4	CBCLST4	CBCLS4	CB52T4	CB52A4
168	TOS08	TOS07	TOS06	TOS05	TOS04	TOS03	TOS02	TOS01
169	TOS16	TOS15	TOS14	TOS13	TOS12	TOS11	TOS10	TOS09
170	*	*	*	*	*	*	TOS18	TOS17
171	FBF01	XBF01	RT01	ABFIT01	ATBFI01	BFIT01	BFI01	50F01
172	FBF02	XBF02	RT02	ABFIT02	ATBFI02	BFIT02	BFI02	50F02
173	FBF03	XBF03	RT03	ABFIT03	ATBFI03	BFIT03	BFI03	50F03
174	FBF04	XBF04	RT04	ABFIT04	ATBFI04	BFIT04	BFI04	50F04
175	FBF05	XBF05	RT05	ABFIT05	ATBFI05	BFIT05	BFI05	50F05
176	FBF06	XBF06	RT06	ABFIT06	ATBFI06	BFIT06	BFI06	50F06
177	FBF07	XBF07	RT07	ABFIT07	ATBFI07	BFIT07	BFI07	50F07
178	FBF08	XBF08	RT08	ABFIT08	ATBFI08	BFIT08	BFI08	50F08
179	FBF09	XBF09	RT09	ABFIT09	ATBFI09	BFIT09	BFI09	50F09
180	FBF10	XBF10	RT10	ABFIT10	ATBFI10	BFIT10	BFI10	50F10
181	FBF11	XBF11	RT11	ABFIT11	ATBFI11	BFIT11	BFI11	50F11
182	FBF12	XBF12	RT12	ABFIT12	ATBFI12	BFIT12	BFI12	50F12
183	FBF13	XBF13	RT13	ABFIT13	ATBFI13	BFIT13	BFI13	50F13
184	FBF14	XBF14	RT14	ABFIT14	ATBFI14	BFIT14	BFI14	50F14
185	FBF15	XBF15	RT15	ABFIT15	ATBFI15	BFIT15	BFI15	50F15
186	FBF16	XBF16	RT16	ABFIT16	ATBFI16	BFIT16	BFI16	50F16
187	FBF17	XBF17	RT17	ABFIT17	ATBFI17	BFIT17	BFI17	50F17
	EDE10	VDE10	RT18	A DEIT10	ATBFI18	BFIT18	DEI10	50E10
188	FBF18	XBF18	KIIO	ABFIT18	AIDITIO	DI 11 10	BFI18	50F18

Table A.2 Row List of Relay Word Bits (Sheet 6 of 11)

Row	7	6	5	4	3	2	1	0
190	50P08T	50P08	50P07T	50P07	50P06T	50P06	50P05T	50P05
191	50P12T	50P12	50P11T	50P11	50P10T	50P10	50P09T	50P09
192	50P16T	50P16	50P15T	50P15	50P14T	50P14	50P13T	50P13
193	*	*	*	*	50P18T	50P18	50P17T	50P17
194	51P03T	51P03	51P02R	51P02T	51P02	51P01R	51P01T	51P01
195	51P06	51P05R	51P05T	51P05	51P04R	51P04T	51P04	51P03R
196	51P08R	51P08T	51P08	51P07R	51P07T	51P07	51P06R	51P06T
197	51P11T	51P11	51P10R	51P10T	51P10	51P09R	51P09T	51P09
198	51P14	51P13R	51P13T	51P13	51P12R	51P12T	51P12	51P11R
199	51P16R	51P16T	51P16	51P15R	51P15T	51P15	51P14R	51P14T
200	*	*	51P18R	51P18T	51P18	51P17R	51P17T	51P17
201	*	*	27P32	27P31	27P22	27P21	27P12	27P11
202	*	*	59P32	59P31	59P22	59P21	59P12	59P11
203	*	*	*	*	59N2	59N1	59Q2	59Q1
204	87BTR08	87BTR07	87BTR06	87BTR05	87BTR04	87BTR03	87BTR02	87BTR01
205	87BTR16	87BTR15	87BTR14	87BTR13	87BTR12	87BTR11	87BTR10	87BTR09
206	*	*	*	*	*	87BTR	87BTR18	87BTR17
207	*	*	87Z6	87Z5	87Z4	87Z3	87Z2	87Z1
208	SBFTR08	SBFTR07	SBFTR06	SBFTR05	SBFTR04	SBFTR03	SBFTR02	SBFTR01
209	SBFTR16	SBFTR15	SBFTR14	SBFTR13	SBFTR12	SBFTR11	SBFTR10	SBFTR09
210	*	*	*	*	*	SBFTR	SBFTR18	SBFTR17
211	*	*	BFZ6	BFZ5	BFZ4	BFZ3	BFZ2	BFZ1
212	ER	EVELOCK	*	*	*	*	*	*
213	TRIP08	TRIP07	TRIP06	TRIP05	TRIP04	TRIP03	TRIP02	TRIP01
214	TRIP16	TRIP15	TRIP14	TRIP13	TRIP12	TRIP11	TRIP10	TRIP09
215	*	*	*	*	*	TRIP	TRIP18	TRIP17
216	ULTR08	ULTR07	ULTR06	ULTR05	ULTR04	ULTR03	ULTR02	ULTR01
217	ULTR16	ULTR15	ULTR14	ULTR13	ULTR12	ULTR11	ULTR10	ULTR09
218	*	*	*	*	*	*	ULTR18	ULTR17
219	DC1F	DC1W	DC1G	DC1R	*	*	*	*
220	*	OC04	*	OC03	*	OC02	*	OC01
221	*	OC08	*	OC07	*	OC06	*	OC05
222	*	OC12	*	OC11	*	OC10	*	OC09
223	*	OC16	*	OC15	*	OC14	*	OC13
224	*	*	*	*	*	OC18	*	OC17
225	SG6	SG5	SG4	SG3	SG2	SG1	CHSG	*
226	*	*	*	*	*	*	*	*
227	*	*	*	*	*	*	*	*
228	LB08	LB07	LB06	LB05	LB04	LB03	LB02	LB01
229	LB16	LB15	LB14	LB13	LB12	LB11	LB10	LB09
230	LB24	LB23	LB22	LB21	LB20	LB19	LB18	LB17

Table A.2 Row List of Relay Word Bits (Sheet 7 of 11)

Row	7	6	5	4	3	2	1	0
231	LB32	LB31	LB30	LB29	LB28	LB27	LB26	LB25
232	RB89	RB90	RB91	RB92	RB93	RB94	RB95	RB96
233	RB81	RB82	RB83	RB84	RB85	RB86	RB87	RB88
234	RB73	RB74	RB75	RB76	RB77	RB78	RB79	RB80
235	RB65	RB66	RB67	RB68	RB69	RB70	RB71	RB72
236	RB57	RB58	RB59	RB60	RB61	RB62	RB63	RB64
237	RB49	RB50	RB51	RB52	RB53	RB54	RB55	RB56
238	RB41	RB42	RB43	RB44	RB45	RB46	RB47	RB48
239	RB33	RB34	RB35	RB36	RB37	RB38	RB39	RB40
240	RB25	RB26	RB27	RB28	RB29	RB30	RB31	RB32
241	RB17	RB18	RB19	RB20	RB21	RB22	RB23	RB24
242	RB09	RB10	RB11	RB12	RB13	RB14	RB15	RB16
243	RB01	RB02	RB03	RB04	RB05	RB06	RB07	RB08
244	*	IN107	IN106	IN105	IN104	IN103	IN102	IN101
245	IN208	IN207	IN206	IN205	IN204	IN203	IN202	IN201
246	IN216	IN215	IN214	IN213	IN212	IN211	IN210	IN209
247	IN224	IN223	IN222	IN221	IN220	IN219	IN218	IN217
248	IN308	IN307	IN306	IN305	IN304	IN303	IN302	IN301
249	IN316	IN315	IN314	IN313	IN312	IN311	IN310	IN309
250	IN324	IN323	IN322	IN321	IN320	IN319	IN318	IN317
251	IN408	IN407	IN406	IN405	IN404	IN403	IN402	IN401
252	IN416	IN415	IN414	IN413	IN412	IN411	IN410	IN409
253	IN424	IN423	IN422	IN421	IN420	IN419	IN418	IN417
254	IN508	IN507	IN506	IN505	IN504	IN503	IN502	IN501
255	IN516	IN515	IN514	IN513	IN512	IN511	IN510	IN509
256	IN524	IN523	IN522	IN521	IN520	IN519	IN518	IN517
257	*	*	*	*	*	*	*	*
258	*	*	*	*	*	*	*	*
259	*	*	*	*	*	*	*	*
260	PSV08	PSV07	PSV06	PSV05	PSV04	PSV03	PSV02	PSV01
261	PSV16	PSV15	PSV14	PSV13	PSV12	PSV11	PSV10	PSV09
262	PSV24	PSV23	PSV22	PSV21	PSV20	PSV19	PSV18	PSV17
263	PSV32	PSV31	PSV30	PSV29	PSV28	PSV27	PSV26	PSV25
264	PSV40	PSV39	PSV38	PSV37	PSV36	PSV35	PSV34	PSV33
265	PSV48	PSV47	PSV46	PSV45	PSV44	PSV43	PSV42	PSV41
266	PSV56	PSV55	PSV54	PSV53	PSV52	PSV51	PSV50	PSV49
267	PSV64	PSV63	PSV62	PSV61	PSV60	PSV59	PSV58	PSV57
268	PLT08	PLT07	PLT06	PLT05	PLT04	PLT03	PLT02	PLT01
269	PLT16	PLT15	PLT14	PLT13	PLT12	PLT11	PLT10	PLT09
270	PLT24	PLT23	PLT22	PLT21	PLT20	PLT19	PLT18	PLT17
271	PLT32	PLT31	PLT30	PLT29	PLT28	PLT27	PLT26	PLT25

Table A.2 Row List of Relay Word Bits (Sheet 8 of 11)

Row	7	6	5	4	3	2	1	0
272	PCT08Q	PCT07Q	PCT06Q	PCT05Q	PCT04Q	PCT03Q	PCT02Q	PCT01Q
273	PCT16Q	PCT15Q	PCT14Q	PCT13Q	PCT12Q	PCT11Q	PCT10Q	PCT09Q
274	PST08Q	PST07Q	PST06Q	PST05Q	PST04Q	PST03Q	PST02Q	PST01Q
275	PST16Q	PST15Q	PST14Q	PST13Q	PST12Q	PST11Q	PST10Q	PST09Q
276	PST24Q	PST23Q	PST22Q	PST21Q	PST20Q	PST19Q	PST18Q	PST17Q
277	PST32Q	PST31Q	PST30Q	PST29Q	PST28Q	PST27Q	PST26Q	PST25Q
278	PST08R	PST07R	PST06R	PST05R	PST04R	PST03R	PST02R	PST01R
279	PST16R	PST15R	PST14R	PST13R	PST12R	PST11R	PST10R	PST09R
280	PST24R	PST23R	PST22R	PST21R	PST20R	PST19R	PST18R	PST17R
281	PST32R	PST31R	PST30R	PST29R	PST28R	PST27R	PST26R	PST25R
282	PCN08Q	PCN07Q	PCN06Q	PCN05Q	PCN04Q	PCN03Q	PCN02Q	PCN01Q
283	PCN16Q	PCN15Q	PCN14Q	PCN13Q	PCN12Q	PCN11Q	PCN10Q	PCN09Q
284	PCN24Q	PCN23Q	PCN22Q	PCN21Q	PCN20Q	PCN19Q	PCN18Q	PCN17Q
285	PCN32Q	PCN31Q	PCN30Q	PCN29Q	PCN28Q	PCN27Q	PCN26Q	PCN25Q
286	PCN08R	PCN07R	PCN06R	PCN05R	PCN04R	PCN03R	PCN02R	PCN01R
287	PCN16R	PCN15R	PCN14R	PCN13R	PCN12R	PCN11R	PCN10R	PCN09R
288	PCN24R	PCN23R	PCN22R	PCN21R	PCN20R	PCN19R	PCN18R	PCN17R
289	PCN32R	PCN31R	PCN30R	PCN29R	PCN28R	PCN27R	PCN26R	PCN25R
290	ASV008	ASV007	ASV006	ASV005	ASV004	ASV003	ASV002	ASV001
291	ASV016	ASV015	ASV014	ASV013	ASV012	ASV011	ASV010	ASV009
292	ASV024	ASV023	ASV022	ASV021	ASV020	ASV019	ASV018	ASV017
293	ASV032	ASV031	ASV030	ASV029	ASV028	ASV027	ASV026	ASV025
294	ASV040	ASV039	ASV038	ASV037	ASV036	ASV035	ASV034	ASV033
295	ASV048	ASV047	ASV046	ASV045	ASV044	ASV043	ASV042	ASV041
296	ASV056	ASV055	ASV054	ASV053	ASV052	ASV051	ASV050	ASV049
297	ASV064	ASV063	ASV062	ASV061	ASV060	ASV059	ASV058	ASV057
298	ASV072	ASV071	ASV070	ASV069	ASV068	ASV067	ASV066	ASV065
299	ASV080	ASV079	ASV078	ASV077	ASV076	ASV075	ASV074	ASV073
300	ASV088	ASV087	ASV086	ASV085	ASV084	ASV083	ASV082	ASV081
301	ASV096	ASV095	ASV094	ASV093	ASV092	ASV091	ASV090	ASV089
302	ASV104	ASV103	ASV102	ASV101	ASV100	ASV099	ASV098	ASV097
303	ASV112	ASV111	ASV110	ASV109	ASV108	ASV107	ASV106	ASV105
304	ASV120	ASV119	ASV118	ASV117	ASV116	ASV115	ASV114	ASV113
305	ASV128	ASV127	ASV126	ASV125	ASV124	ASV123	ASV122	ASV121
306	ASV136	ASV135	ASV134	ASV133	ASV132	ASV131	ASV130	ASV129
307	ASV144	ASV143	ASV142	ASV141	ASV140	ASV139	ASV138	ASV137
308	ASV152	ASV151	ASV150	ASV149	ASV148	ASV147	ASV146	ASV145
309	ASV160	ASV159	ASV158	ASV157	ASV156	ASV155	ASV154	ASV153
310	ASV168	ASV167	ASV166	ASV165	ASV164	ASV163	ASV162	ASV161
311	ASV176	ASV175	ASV174	ASV173	ASV172	ASV171	ASV170	ASV169
312	ASV184	ASV183	ASV182	ASV181	ASV180	ASV179	ASV178	ASV177

Table A.2 Row List of Relay Word Bits (Sheet 9 of 11)

Row	7	6	5	4	3	2	1	0
313	ASV192	ASV191	ASV190	ASV189	ASV188	ASV187	ASV186	ASV185
314	ASV200	ASV199	ASV198	ASV197	ASV196	ASV195	ASV194	ASV193
315	ASV208	ASV207	ASV206	ASV205	ASV204	ASV203	ASV202	ASV201
316	ASV216	ASV215	ASV214	ASV213	ASV212	ASV211	ASV210	ASV209
317	ASV224	ASV223	ASV222	ASV221	ASV220	ASV219	ASV218	ASV217
318	ASV232	ASV231	ASV230	ASV229	ASV228	ASV227	ASV226	ASV225
319	ASV240	ASV239	ASV238	ASV237	ASV236	ASV235	ASV234	ASV233
320	ASV248	ASV247	ASV246	ASV245	ASV244	ASV243	ASV242	ASV241
321	ASV256	ASV255	ASV254	ASV253	ASV252	ASV251	ASV250	ASV249
322	ALT08	ALT07	ALT06	ALT05	ALT04	ALT03	ALT02	ALT01
323	ALT16	ALT15	ALT14	ALT13	ALT12	ALT11	ALT10	ALT09
324	ALT24	ALT23	ALT22	ALT21	ALT20	ALT19	ALT18	ALT17
325	ALT32	ALT31	ALT30	ALT29	ALT28	ALT27	ALT26	ALT25
326	AST08Q	AST07Q	AST06Q	AST05Q	AST04Q	AST03Q	AST02Q	AST01Q
327	AST16Q	AST15Q	AST14Q	AST13Q	AST12Q	AST11Q	AST10Q	AST09Q
328	AST24Q	AST23Q	AST22Q	AST21Q	AST20Q	AST19Q	AST18Q	AST17Q
329	AST32Q	AST31Q	AST30Q	AST29Q	AST28Q	AST27Q	AST26Q	AST25Q
330	AST08R	AST07R	AST06R	AST05R	AST04R	AST03R	AST02R	AST01R
331	AST16R	AST15R	AST14R	AST13R	AST12R	AST11R	AST10R	AST09R
332	AST24R	AST23R	AST22R	AST21R	AST20R	AST19R	AST18R	AST17R
333	AST32R	AST31R	AST30R	AST29R	AST28R	AST27R	AST26R	AST25R
334	ACN08Q	ACN07Q	ACN06Q	ACN05Q	ACN04Q	ACN03Q	ACN02Q	ACN01Q
335	ACN16Q	ACN15Q	ACN14Q	ACN13Q	ACN12Q	ACN11Q	ACN10Q	ACN09Q
336	ACN24Q	ACN23Q	ACN22Q	ACN21Q	ACN20Q	ACN19Q	ACN18Q	ACN17Q
337	ACN32Q	ACN31Q	ACN30Q	ACN29Q	ACN28Q	ACN27Q	ACN26Q	ACN25Q
338	ACN08R	ACN07R	ACN06R	ACN05R	ACN04R	ACN03R	ACN02R	ACN01R
339	ACN16R	ACN15R	ACN14R	ACN13R	ACN12R	ACN11R	ACN10R	ACN09R
340	ACN24R	ACN23R	ACN22R	ACN21R	ACN20R	ACN19R	ACN18R	ACN17R
341	ACN32R	ACN31R	ACN30R	ACN29R	ACN28R	ACN27R	ACN26R	ACN25R
342	PUNRLBL	PFRTEX	MATHERR	*	*	*	*	*
343	AUNRLBL	AFRTEXP	AFRTEXA	*	*	*	*	*
344	SALARM	HALARM	BADPASS	CCALARM	ССОК	*	*	*
345	*	*	TIRIG	TUPDH	*	*	*	*
346	OUT108	OUT107	OUT106	OUT105	OUT104	OUT103	OUT102	OUT101
347	OUT208	OUT207	OUT206	OUT205	OUT204	OUT203	OUT202	OUT201
348	OUT308	OUT307	OUT306	OUT305	OUT304	OUT303	OUT302	OUT301
349	OUT408	OUT407	OUT406	OUT405	OUT404	OUT403	OUT402	OUT401
350	OUT508	OUT507	OUT506	OUT505	OUT504	OUT503	OUT502	OUT501
351	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8
352	PB1_PUL	PB2_PUL	PB3_PUL	PB4_PUL	PB5_PUL	PB6_PUL	PB7_PUL	PB8_PUL
353	PB1_LED	PB2_LED	PB3_LED	PB4_LED	PB5_LED	PB6_LED	PB7_LED	PB8_LED

Table A.2 Row List of Relay Word Bits (Sheet 10 of 11)

Row	7	6	5	4	3	2	1	0
354	RST_BAT	RSTDNPE	*	*	*	*	*	*
355	TRGTR	RSTTRGT	*	*	*	*	*	*
356	RMB8A	RMB7A	RMB6A	RMB5A	RMB4A	RMB3A	RMB2A	RMB1A
357	TMB8A	TMB7A	TMB6A	TMB5A	TMB4A	TMB3A	TMB2A	TMB1A
358	RMB8B	RMB7B	RMB6B	RMB5B	RMB4B	RMB3B	RMB2B	RMB1B
359	TMB8B	TMB7B	TMB6B	TMB5B	TMB4B	TMB3B	TMB2B	TMB1B
360	ROKA	RBADA	CBADA	LBOKA	ANOKA	DOKA	*	*
361	ROKB	RBADB	CBADB	LBOKB	ANOKB	DOKB	*	*
362	TESTDNP	TESTDB	TESTFM	TESTPUL	*	*	*	*
363	*	*	*	*	*	*	*	*
364	CCIN121	CCIN122	CCIN123	CCIN124	CCIN125	CCIN126	CCIN127	CCIN128
365	CCIN113	CCIN114	CCIN115	CCIN116	CCIN117	CCIN118	CCIN119	CCIN120
866	CCIN105	CCIN106	CCIN107	CCIN108	CCIN109	CCIN110	CCIN111	CCIN112
867	CCIN097	CCIN098	CCIN099	CCIN100	CCIN101	CCIN102	CCIN103	CCIN104
868	CCIN089	CCIN090	CCIN091	CCIN092	CCIN093	CCIN094	CCIN095	CCIN096
369	CCIN081	CCIN082	CCIN083	CCIN084	CCIN085	CCIN086	CCIN087	CCIN088
370	CCIN073	CCIN074	CCIN075	CCIN076	CCIN077	CCIN078	CCIN079	CCIN080
371	CCIN065	CCIN066	CCIN067	CCIN068	CCIN069	CCIN070	CCIN071	CCIN072
372	CCIN057	CCIN058	CCIN059	CCIN060	CCIN061	CCIN062	CCIN063	CCIN064
373	CCIN049	CCIN050	CCIN051	CCIN052	CCIN053	CCIN054	CCIN055	CCIN056
374	CCIN041	CCIN042	CCIN043	CCIN044	CCIN045	CCIN046	CCIN047	CCIN048
375	CCIN033	CCIN034	CCIN035	CCIN036	CCIN037	CCIN038	CCIN039	CCIN040
376	CCIN025	CCIN026	CCIN027	CCIN028	CCIN029	CCIN030	CCIN031	CCIN032
377	CCIN017	CCIN018	CCIN019	CCIN020	CCIN021	CCIN022	CCIN023	CCIN024
378	CCIN009	CCIN010	CCIN011	CCIN012	CCIN013	CCIN014	CCIN015	CCIN016
379	CCIN001	CCIN002	CCIN003	CCIN004	CCIN005	CCIN006	CCIN007	CCIN008
880	CCOUT25	CCOUT26	CCOUT27	CCOUT28	CCOUT29	CCOUT30	CCOUT31	CCOUT32
381	CCOUT17	CCOUT18	CCOUT19	CCOUT20	CCOUT21	CCOUT22	CCOUT23	CCOUT24
382	CCOUT09	CCOUT10	CCOUT11	CCOUT12	CCOUT13	CCOUT14	CCOUT15	CCOUT16
883	CCOUT01	CCOUT02	CCOUT03	CCOUT04	CCOUT05	CCOUT06	CCOUT07	CCOUT08
384	CCSTA01	CCSTA02	CCSTA03	CCSTA04	CCSTA05	CCSTA06	CCSTA07	CCSTA08
385	CCSTA09	CCSTA10	CCSTA11	CCSTA12	CCSTA13	CCSTA14	CCSTA15	CCSTA16
386	CCSTA17	CCSTA18	CCSTA19	CCSTA20	CCSTA21	CCSTA22	CCSTA23	CCSTA24
387	CCSTA25	CCSTA26	CCSTA27	CCSTA28	CCSTA29	CCSTA30	CCSTA31	CCSTA32
888	FSERP1	FSERP2	FSERP3	FSERPF	*	*	*	*
389	*	*	*	*	*	*	*	CZONE1
390	*	*	*	*	*	*	*	CZ1S
391	*	*	*	*	*	*	*	87CZ1
392	I08CZ1V	I07CZ1V	I06CZ1V	I05CZ1V	I04CZ1V	I03CZ1V	I02CZ1V	I01CZ1V
393	I16CZ1V	I15CZ1V	I14CZ1V	I13CZ1V	I12CZ1V	I11CZ1V	I10CZ1V	I09CZ1V
394	*	*	*	*	*	*	I18CZ1V	I17CZ1V

Table A.2 Row List of Relay Word Bits (Sheet 11 of 11)

Row	7	6	5	4	3	2	1	0
395	*	*	*	*	*	*	*	*
396	*	*	*	*	*	*	*	*
397	*	*	*	*	*	*	*	*
398	*	*	*	*	*	*	*	*
399	*	*	*	*	*	*	*	*
400	*	*	*	*	*	*	*	*
401	*	*	*	*	*	*	*	*
402	*	*	*	*	*	*	*	*
403	*	*	*	*	*	*	*	*
404	*	*	*	*	*	*	*	87SCZ1
405	*	*	*	*	*	*	*	87STCZ1
406	87RCZ1	P87RCZ1	87OCZ1	FLTCZ1	CONCZ1	EXTCZ1	DOPCZ1	DRTCZ1
407	*	*	*	*	FDIFCZ1	RDIFCZ1	IFLTCZ1	GFLTCZ1
408	*	*	*	*	*	*	*	*
409	*	*	*	*	*	*	*	*
410	*	*	*	*	*	*	*	*
411	*	*	*	*	*	*	*	*
412	*	*	*	*	*	*	*	DECZ1F
413	LB_SP08	LB_SP07	LB_SP06	LB_SP05	LB_SP04	LB_SP03	LB_SP02	LB_SP01
414	LB_SP16	LB_SP15	LB_SP14	LB_SP13	LB_SP12	LB_SP11	LB_SP10	LB_SP09
415	LB_SP24	LB_SP23	LB_SP22	LB_SP21	LB_SP20	LB_SP19	LB_SP18	LB_SP17
416	LB_SP32	LB_SP31	LB_SP30	LB_SP29	LB_SP28	LB_SP27	LB_SP26	LB_SP25
417	LB_DP08	LB_DP07	LB_DP06	LB_DP05	LB_DP04	LB_DP03	LB_DP02	LB_DP01
418	LB_DP16	LB_DP15	LB_DP14	LB_DP13	LB_DP12	LB_DP11	LB_DP10	LB_DP09
419	LB_DP24	LB_DP23	LB_DP22	LB_DP21	LB_DP20	LB_DP19	LB_DP18	LB_DP17
420	LB_DP32	LB_DP31	LB_DP30	LB_DP29	LB_DP28	LB_DP27	LB_DP26	LB_DP25
421	TLED_17	TLED_18	TLED_19	TLED_20	TLED_21	TLED_22	TLED_23	TLED_24
422	PB9	PB10	PB11	PB12	*	*	*	*
423	PB9_LED	PB10LED	PB11LED	PB12LED	*	*	*	*
424	PB9_PUL	PB10PUL	PB11PUL	PB12PUL	*	*	*	*

Appendix B

Analog Quantities

Overview

This section contains a table of the analog quantities available within the SEL-487B Relay. For information on using analog quantities in protection and automation, see the SEL-487B *Applications Handbook*.

Analog Quantities

Use this section as a reference for analog quantities. *Table B.1* groups the analog quantities by function; *Table B.2* groups the analog quantities alphabetically.

Table B.1 Analog Quantities Sorted by Function (Sheet 1 of 3)

Label	Description	Units			
Current	Current				
InnFIM ^a	Phase filtered instantaneous current magnitude	A (sec)			
InnFIA ^a	Phase filtered instantaneous current angle	degrees			
$InnFM^a$	Phase one-cycle average current magnitude	A (pri)			
InnFAa	Phase one-cycle average current angle	degrees			
$IOPk^b$	Zone <i>k</i> operating current	pu			
IOPCZ1	Check Zone 1 operating current	pu			
IRTk ^b	Zone k restraint current	pu			
IRTCZ1	Check Zone 1 operating current	pu			
IOPkF ^b	Zone k one-cycle average operating current	pu			
IOPCZ1F	Check Zone 1 one-cycle average operating current	pu			
$IRTkF^b$	Zone k one-cycle average restraint current	pu			
IRTCZ1F	Check Zone 1 one-cycle average restraint current	pu			
Voltage		1			
VmmFIM ^c	Phase filtered instantaneous voltage magnitude	V (sec)			
VmmFIA ^c	Phase filtered instantaneous voltage angle	degrees			
VmmFM ^c	Phase one-cycle average voltage magnitude	kV (pri)			
VmmFA ^c	Phase one-cycle average voltage angle	degrees			
V1FIM	Positive-sequence filtered instantaneous voltage magnitude, V1	V (sec)			
3V2FIM	Negative-sequence filtered instantaneous voltage magnitude, 3V2	V (sec)			

Table B.1 Analog Quantities Sorted by Function (Sheet 2 of 3)

Label	Description	Units
3V0FIM	Zero-sequence filtered instantaneous voltage magnitude, 3V0	V (sec)
DC1	Filtered dc monitor voltage	V
DC1PO	Average positive-to-ground dc voltage	V
DC1NE	Average negative-to-ground dc voltage	V
DC1RI	AC ripple of dc voltage (peak-to-peak)	V
DC1MIN	Minimum dc voltage	V
DC1MAX	Maximum dc voltage	V
Database Structur	e	
RA001-RA256	Remote analogs from Ethernet card	N/A
Date and Time		
TODMS	Time of day in milliseconds (0–86399999)	ms
THR	Hour (0–23)	hours
TMIN	Minute (0–59)	minutes
TSEC	Seconds (0–59)	seconds
TMSEC	Milliseconds (0–999)	ms
DDOW	Day of the week (Encoded value: 1=Sun, 2=Mon, 3=Tue, 4=Wed, 5=Thu, 6=Fri, 7=Sat)	n/a
DDOM	Day of the month (1–31)	n/a
DDOY	Day of the year (1–366)	n/a
DMON	Month (1–12)	n/a
DYEAR	Year (2000–2200)	n/a
MIRRORED BITS®		
MB1A–MB7A	MIRRORED BITS® communications Channel A received analog values	n/a
MB1B-MB7B	MIRRORED BITS® communications Channel B received analog values	n/a
SELogic® and Auto	mation Elements	
PMV01–PMV64	Protection SELOGIC® control equation math variable	n/a
PCT01PU- PCT16PU	Protection conditioning timer pickup time	cycles
PCT01DO- PCT16DO	Protection conditioning timer dropout time	cycles
PST01ET- PST32ET	Protection sequencing timer elapsed time	cycles
PST01PT- PST32PT	Protection sequencing timer preset time	cycles
PCN01CV- PCN32CV	Protection counter current value	n/a
PCN01PV- PCN32PV	Protection counter preset value	n/a
AMV001- AMV256	Automation SELOGIC® control equation math variable	n/a
AST01ET- AST32ET	Automation sequencing timer elapsed time	seconds

Table B.1 Analog Quantities Sorted by Function (Sheet 3 of 3)

Label	Description	Units
AST01PT- AST32PT	Automation sequencing timer preset time	seconds
ACN01CV- ACN32CV	Automation counter current value	n/a
ACN01PV- ACN32PV	Automation counter preset value	n/a
Setting Group	'	,
ACTGRP	Active group setting	n/a

a nn = 01-18

Table B.2 Analog Quantities Sorted Alphabetically (Sheet 1 of 2)

Label	Description	Units
3V0FIM	Zero-sequence filtered instantaneous voltage magnitude, 3V0	V (sec)
3V2FIM	Negative-sequence filtered instantaneous voltage magnitude, 3V2	V (sec)
ACN01CV- ACN32CV	Automation counter current value	n/a
ACN01PV- ACN32PV	Automation counter preset value	n/a
ACTGRP	Active group setting	n/a
AMV001- AMV256	Automation SELOGIC® control equation math variable	n/a
AST01ET- AST32ET	Automation sequencing timer elapsed time	seconds
AST01PT- AST32PT	Automation sequencing timer preset time	seconds
DC1	Filtered dc monitor voltage	V
DC1MAX	Maximum dc voltage	V
DC1MIN	Minimum dc voltage	V
DC1NE	Average negative-to-ground dc voltage	V
DC1PO	Average positive-to-ground dc voltage	V
DC1RI	AC ripple of dc voltage (peak-to-peak)	V
DDOM	Day of the month (1–31)	n/a
DDOW	Day of the week (encoded value: 1=Sun, 2=Mon, 3=Tue, 4=Wed, 5=Thu, 6=Fri, 7=Sat)	n/a
DDOY	Day of the year (1–366)	n/a
DMON	Month (1–12)	n/a
DYEAR	Year (2000–2200)	n/a
InnFAa	Phase one-cycle average current angle	degrees
InnFIAa	Phase filtered instantaneous current angle	degrees
InnFIM ^a	Phase filtered instantaneous current magnitude	A (sec)
InnFM ^a	Phase one-cycle average current magnitude	A (pri)
IOPk ^b	Zone k operating current	pu

b k = 1-6 c mm = 01-03

Table B.2 Analog Quantities Sorted Alphabetically (Sheet 2 of 2)

Label	Description	Units
IOPCZ1	Check Zone 1 operating current	pu
$IOPkF^b$	Zone k one-cycle average operating current	pu
IOPCZ1F	Check Zone 1 one-cycle average operating current	pu
IRTk ^b	Zone k restraint current	pu
IRTCZ1	Check Zone 1 restraint current	pu
IRTkFb	Zone k one-cycle average restraint current	pu
IRTCZ1F	Check Zone 1 one-cycle average restraint current	pu
MB1A-MB7A	MIRRORED BITS communications Channel A received analog values	n/a
MB1B-MB7B	MIRRORED BITS communications Channel B received analog values	n/a
PCN01CV- PCN32CV	Protection counter current value	n/a
PCN01PV- PCN32PV	Protection counter preset value	n/a
PCT01DO- PCT16DO	Protection conditioning timer dropout time	cycles
PCT01PU- PCT16PU	Protection conditioning timer pickup time	cycles
PMV01-PMV64	Protection SELOGIC control equation math variable	n/a
PST01ET- PST32ET	Protection sequencing timer elapsed time	cycles
PST01PT- PST32PT	Protection sequencing timer preset time	cycles
RA001-RA256	Remote analogs from Ethernet card	n/a
THR	Hour (0–23)	hours
TMIN	Minute (0–59)	minutes
TMSEC	Milliseconds (0–999)	ms
TODMS	Time of day in milliseconds (0–86399999)	ms
TSEC	Seconds (0–59)	seconds
V1FIM	Positive-sequence filtered instantaneous voltage magnitude, V1	V (sec)
VmmFA ^c	Phase one-cycle average voltage angle	degrees
VmmFIA ^c	Phase filtered instantaneous voltage angle	degrees
VmmFIM ^c	Phase filtered instantaneous voltage magnitude	V (sec)
VmmFM ^c	Phase one-cycle average voltage magnitude	kV (pri)

a nn = 01-18. b k = 1-6. c mm = 01-03.

Glossary

9 U	The designation of the vertical height of a device in rack units. Nine rack units, 9U, total approximately 400 mm (15.75 inches).
7 U	The designation of the vertical height of a device in rack units. Seven rack units, 7U, total approximately 311 mm (12.25 inches).
A	Abbreviation for amps or amperes; unit of electrical current flow.
a contact	A normally open auxiliary contact that closes when the device is closed and opens when the device is open.
ABS Operator	An operator in math SELOGIC® control equations that provides absolute value.
AC Ripple	The peak-to-peak ac component of a signal or waveform. In the station dc battery system, monitoring ac ripple provides an indication of whether the substation battery charger has failed.
Acceptance Testing	Testing that confirms that the relay meets published critical performance specifications and requirements of the intended application. This involves testing protection elements and logic functions when qualifying a relay model for use on the utility system.
Access Level	A relay command level with a specified set of relay information and commands. All access levels, except for Access Level 0, require the correct password.
Access Level 0	The least secure and most limited access level; not password protected. You must enter a password from this level to go to a higher level.
Access Level 1	The default access level for the relay front panel, used to monitor (view) relay information.
Access Level 2	The most secure access level, from which you have total relay functionality and control of all settings types.
Access Level A	A relay command level used to access all Access Level 1 and Access Level B (Breaker) functions, plus Alias, Automation, Global, Front Panel, Report, Port, and DNP settings.
Access Level B	A relay command level used for Access Level 1 functions, plus circuit breaker control and data.
Access Level O	A relay command level used to access all Access Level 1 and Access Level B (Breaker) functions, plus Alias, Output, Global, Front Panel, Report, Port, and DNP settings.
Access Level P	A relay command level used to access all Access Level 1 and Access Level B (Breaker) functions, plus Protection, Global, Group, Front Panel, Report, Port, Alias, Zone configuration, and DNP settings.

ACSELERATOR Architect® SEL-5032 Software

ACSELERATOR Architect is an add-on to the ACSELERATOR Suite that utilizes the IEC 61850 Substation Configuration Language to configure SEL IEDs.

ACSELERATOR QuickSet® SEL-5030 Software A Windows®-based program that simplifies settings and provides analysis support.

ACSI

Abstract Communications Service Interface for the IEC 61850 protocol. Defines a set of objects, a set of services to manipulate and access those objects, and a base set of data types for describing objects.

Active Settings Group

The settings group that the SEL-487B is presently using from among six settings groups available in the relay.

Active Zone

A zone is active when any IqqBZpV (qq = 01-18, p = 1-6) Relay Word bit asserts. For example, Zone 1 becomes active when Relay Word bit I01BZ1V asserts.

Advanced Settings

Settings for customizing protection functions; these settings are hidden unless you set EADVS := Y.

Alias

An alternative name assigned to Relay Word bits, analog quantities, default terminals, and bus-zone names.

Analog Quantities

Variables represented by such fluctuating measurable quantities as temperature, frequency, current, and voltage.

AND Operator

Logical AND. An operator in Boolean SELOGIC control equations that requires fulfillment of conditions on both sides of the operator before the equation is true.

ANSI Standard Device Numbers

A list of standard numbers used to represent electrical protection and control relays. The standard device numbers used in this instruction manual include the following:

- 27 Undervoltage Element
- 50 Overcurrent Element
- 51 Inverse Time-Overcurrent Element
- 52 AC Circuit Breaker
- 59 Overvoltage Element
- 86 Breaker Failure Lockout
- 89 Disconnect

These numbers are frequently used within a suffix letter to further designate their application. The suffix letters used in this instruction manual include the following:

- P Phase Element
- N Neutral/Ground Element
- Q Negative-Sequence Element

Anti-Aliasing Filter

A low pass filter that blocks frequencies too high for the given sampling rate.

ASCII

Abbreviation for American Standard Code for Information Interchange. Defines a standard set of text characters. The SEL-487B uses ASCII text characters to communicate, through front- and rear-panel EIA-232 serial ports and virtual serial ports.

ASCII Terminal

A terminal without built-in logic or local processing capability that can only send and receive information.

Assert

To activate. To fulfill the logic or electrical requirements needed to operate a device. To set a logic condition to the true state (logical 1) of that condition. To apply a closed contact to an SEL-487B input. To close a normally open output contact. To open a normally closed output contact.

AT Modem Command Set Dialing String Standard

The command language standard that Hayes Microcomputer Products, Inc. developed to control auto-dial modems from an ASCII terminal (usually EIA-232 connected) or a PC (personal computer) containing software allowing emulation of such a terminal.

Autoconfiguration

The ability to determine relay type, model number, metering capability, port ID, baud rate, passwords, relay elements, and other information that an IED (e.g., SEL-2020/2030/2032 Communications Processor) needs to automatically communicate with relays.

Automatic Messages

Messages including status failure and status warning messages that the relay generates at the serial ports and displays automatically on the front-panel LCD.

Automation Variables

Variables that are included in automation SELOGIC control equations.

AX-S4 MMS

"Access for MMS" is an IEC 61850, UCA2, and MMS client application produced by SISCO, Inc., for real-time data integration in Microsoft Windows-based systems supporting OPC and DDE. Included with AX-S4 MMS is the interactive MMS Object Explorer for browser-like access to IEC 61850 / UCA2 and MMS device objects.

b contact

A normally closed auxiliary contact that opens when the device is closed and closes when the device is open.

Bandpass Filter

A filter that passes frequencies within a certain range and blocks all frequencies outside this range.

Bit Label

The identifier for a particular bit.

Bit Value

Logical 0 or logical 1.

Boolean Logic Statements

Statements consisting of variables that behave according to Boolean logic operators, such as AND, NOT, and OR.

Breaker Auxiliary Contact

An electrical contact associated with a circuit breaker that opens or closes to indicate the breaker position. A Form A breaker auxiliary contact (ANSI Standard Device Number 52A) closes when the breaker is closed and opens when the breaker is open. A Form B breaker auxiliary contact (ANSI Standard Device Number 52B) opens when the breaker is closed and closes when the breaker is open.

Breaker-and-a-Half Configuration A switching station arrangement of three circuit breakers per two circuits; the two circuits share one of the circuit breakers.

Breaker Differential

Differential zone of protection configured exclusively across the tie breaker; the breaker differential protects only the area between the two tie-breaker CTs.

Buffered Report

IEC 61850 IEDs can issue buffered reports of internal events (caused by trigger options data-change, quality-change, and data-update). These event reports can be sent immediately or buffered (to some practical limit) for transmission, such that values of data are not lost due to transport flow control constraints or loss of connection. Buffered reporting provides sequence-of-events (SOE) functionality.

Bushar

Electrical junction of two or more primary circuits. For a single busbar, there could be multiple bus-zones; there can be more bus-zones than busbars, but not more busbars than bus-zones.

Buscoupler (see also Tie Breaker)

Equipment with at least a current transformer and circuit breaker, connecting two busbars when the circuit breaker is closed. Disconnects of other terminals at the station (feeders, lines, etc.) are normally arranged in parallel with the buscoupler. Closing two or more disconnects of the other terminals bypasses the buscoupler, forming a connection without a circuit breaker between two or more busbars.

Busbar Protection Element

Each of the six busbar protection elements comprise a differential element, a directional element, and a fault detection logic.

Bus Sectionalizer (see also Buscoupler)

Equipment with at least a current transformer and circuit breaker, connecting two busbars when the circuit breaker is closed.

Bus-Zone-to-Bus-Zone Connection Variable

SELOGIC variable stating the conditions when the relay merges two zones to form a single protection zone.

Bus-Zone (see also Protection Zone)

Area of protection formed by a minimum of two terminals.

Category

A collection of similar relay settings.

Checksum

A method for checking the accuracy of data transmission, involving summation of a group of digits and comparison of this sum to a previously calculated value.

Check Zone

Protection zone formed by two or more terminals where the differential calculation is independent of the status of the disconnect auxiliary contacts.

CID

Checksum identification of the firmware.

CID File

IEC 61850 Configured IED Description file. XML file that contains the configuration for a specific IED.

Circuit Breaker Failure Logic This logic within the SEL-487B detects and warns of failure or incomplete operation of a circuit breaker in clearing a fault or in performing a trip or close sequence.

Class

The first level of the relay settings structure, including Global, Group, Breaker Monitor, Port, Report, Front Panel, DNP settings, Protection SELOGIC control equations, Automation SELOGIC control equations, and Output SELOGIC control equations.

Commissioning Testing

Testing that serves to validate all system ac and dc connections and confirm that the relay, auxiliary equipment, and SCADA interface all function as intended with your settings. Perform such testing when installing a new protection system.

Common Data Class IEC 61850 grouping of data objects that model substation functions. Common

Data Classes include Status information, Measured information, Controllable status, Controllable analog, Status settings, Analog settings, and Description

information.

Common Inputs Relay control inputs that share a common terminal.

Communications Protocol A language for communication between devices.

Comparison Boolean SELOGIC control equation operation that compares two numerical

values. Compares floating-point values, such as currents, total counts, and

other measured and calculated quantities.

Computer Terminal Emulation Software Software such as Microsoft[®] HyperTerminal[®] or ProComm Plus[®] that can be used to send and receive ASCII text messages and files via a computer serial

port.

COMTRADE Abbreviation for Common Format for Transient Data Exchange.

Conditioning Timers Timers for conditioning Boolean values. Conditioning timers either stretch

incoming pulses or allow you to require that an input take a state for a certain

period before reacting to the new state.

Contact Input See Control Input.

Contact Output See Control Output.

Control Input Relay input for monitoring the state of external circuits. Connects auxiliary

relay and circuit breaker contacts to the control inputs.

Control Output Relay output that affects the state of other equipment. Connects control

outputs to circuit breaker trip and close coils, breaker failure auxiliary relays,

communications-assisted tripping circuits, and SCADA systems.

Coordination Timer A timer that delays an overreaching element so that a downstream device has

time to operate.

COS Operator Operator in math SELOGIC control equations that provides the cosine

function.

Counter Variable or device such as a register or storage location that either records or

represents the number of times an event occurs.

CT Current transformer.

CT Subsidence Current Subsidence current appears as a small exponentially decaying dc current with

a long time constant. This current results from the energy trapped in the CT magnetizing branch after the circuit breaker opens to clear a fault or interrupt

load.

CTR Current transformer ratio.

Current CT condition when the CT does not reproduce the primary current with the

Transformer Saturation specified accuracy.

Data Attribute In the IEC 61850 protocol, the name, format, range of possible values, and

representation of values being communicated.

Data Bit A single unit of information that can assume a value of either logical 0 or

logical 1 and can convey control, address, information, or frame check

sequence data.

Data Class In the IEC 61850 protocol, an aggregation of classes or data attributes.

Data Label The identifier for a particular data item.

Data Object In the IEC 61850 protocol, part of a logical node representing specific

information (status or measurement, for example). From an object-oriented

point of view, a data object is an instance of a data class.

DC Offset A dc component of fault current that results from the physical phenomenon

preventing an instantaneous change of current in an inductive circuit.

DCE Devices Data communication equipment devices (modems).

Deadband The range of variation an analog quantity can traverse before causing a

response.

Deassert To deactivate. To remove the logic or electrical requirements needed to

> operate a device. To clear a logic condition to its false state (logical 0). To open the circuit or open the contacts across an SEL-487B input. To open a normally open output contact. To close a normally closed output contact.

Debounce Time The time that masks the period when relay contacts continue to move after

closing; debounce time covers this indeterminate state.

Default Data Map The default map of objects and indices that the SEL-487B uses in DNP

protocol.

Differential Element Using the busbar as reference, the differential element calculates the

difference between current towards the busbars and away from the busbars.

Directional Element The directional element compares the direction of current at the reference

terminal to the direction of current at all other terminals in each protection

zone.

Mechanical switch that isolates primary equipment such as circuit breakers **Disconnect (Isolator)**

from the electrical system.

DNP (Distributed Manufacturer-developed, hardware-independent communications protocol **Network Protocol**)

primarily intended for SCADA applications; owned and controlled by the

DNP User's Group (www.dnp.org).

Dropout Time The time measured from the removal of an input signal until the output signal

> deasserts. You can set the time, in the case of a logic variable timer, or the dropout time can be a result of the characteristics of an element algorithm, as

in the case of an overcurrent element dropout time.

DTE Devices Data terminal equipment (computers, terminals, printers, relays, etc.).

A communications-assisted tripping scheme. A relay at one end of a line DTT (Direct

Transfer Trip) sends a tripping signal to the relay at the opposite end of the line.

Dumb Terminal See ASCII terminal.

Dynamic Zone Selection The process by which the currents from the CTs are assigned to or removed

from the differential calculations as a function of the boolean value (logical 0

or logical 1) of a particular SELOGIC equation.

EEPROM Electrically Erasable Programmable Read-Only Memory. Nonvolatile

memory where relay settings, event reports, SER records, and other

nonvolatile data are stored.

EHV Extra high voltage. Voltages greater than 230 kV.

EIA-232 Electrical definition for point-to-point serial data communications interfaces,

based on the standard EIA/TIA-232. Formerly known as RS-232.

Electrical standard for multidrop serial data communications interfaces, based **EIA-485**

on the standard EIA/TIA-485. Formerly known as RS-485.

Electrical Operating Time Time between trip or close initiation and an open phase status change.

Electromechanical Reset Setting of the relay to match the reset characteristics of an electromechanical

overcurrent relay.

A fault between the circuit breaker and the CT of a terminal. **End-Zone Fault**

The sudden transfer of charge between objects at different potentials caused

by direct contact or induced by an electrostatic field. (Electrostatic Discharge)

> A network physical and data link layer defined by IEEE® 802.2 and Ethernet

> > IEEE 802.3.

Event History A quick look at recent relay activity that includes a standard report header;

event number, date, time, and type; fault location; maximum fault phase

current; active group at the trigger instant; and targets.

Event Report A text-based collection of data stored by the relay in response to a triggering

> condition, such as a fault or ASCII TRI command. The data show relay measurements before and after the trigger, in addition to the states of protection elements, relay inputs, and relay outputs each processing interval. After an electrical system fault, use event reports to analyze relay and system

performance.

Event Summary A shortened version of stored event reports. An event summary includes items

> such as event date and time, event type, time source, etc. The relay sends an event report summary (if auto messaging is enabled) to the relay serial port a

few seconds after an event.

EXP Operator Math SELOGIC control equation operator that provides exponentiation.

F_TRIG Falling-edge trigger. Boolean SELOGIC control equation operator that triggers

an operation upon logic detection of a falling edge.

Fail-Safe Refers to an output that is open during normal relay operation and closed

when relay power is removed or if the relay fails. Configure alarm outputs for

fail-safe operation.

Falling Edge Transition from logical 1 to logical 0.

Fast Meter SEL binary serial port command used to collect metering data with SEL

relays.

Fast Operate SEL binary serial port command used to perform control with SEL relays.

Firmware The nonvolatile program stored in the relay that defines relay operation.

Flash Memory A type of nonvolatile relay memory used for storing large blocks of

nonvolatile data.

Fault Detection Logic Logic that distinguishes between internal and external faults.

Float High The highest charging voltage supplied by a battery charger.

Float Low The lowest charging voltage supplied by a battery charger.

Form C Output An output with both an a output and b output sharing a common post.

Free-Form Logic Custom logic creation and execution order.

Free-Form SELOGIC Free-form relay programming that includes mathematical operations, custom logic execution order, extended relay customization, and automated operation.

FTP File transfer protocol.

Function In IEC 61850, task(s) performed by the substation automation system, i.e., by

application functions. Generally, functions exchange data with other

functions. Details are dependent on the functions involved.

Functions are performed by IEDs (physical devices). A function may be split into parts residing in different IEDs but communicating with each other (distributed function) and with parts of other functions. These communicating

parts are called logical nodes.

Function Code A code that defines how you manipulate an object in DNP3 protocol.

Functional Component Portion of an IEC 61850 Logical Node dedicated to a particular function

including status, control, and descriptive tags.

Fundamental Frequency The component of the measured electrical signal with a frequency equal to the

normal electrical system frequency, usually 50 Hz or 60 Hz. Generally used to differentiate between the normal system frequency and any harmonic

frequencies present.

Global Settings General settings including those for relay and station identifiers, number of

breakers, number of disconnects, date format, nominal system frequency, enables, station dc monitoring, control inputs, settings group selection, and

data reset controls.

GOMSFE Generic Object Model for Substation and Feeder Equipment; a system for

presenting and exchanging IED data.

GOOSE IEC 61850 Generic Object Oriented Substation Event. GOOSE objects can

quickly and conveniently transfer status, controls, and measured values among

peers on an IEC 61850 network.

GPS Global Positioning System. Source of position and high-accuracy time

information.

GUI Graphical user interface.

Hexadecimal Address

An address reference represented as a base-16 value. Hexadecimal number representation is typically indicated by a 0x prefix or an h suffix.

HMI

Human machine interface.

Local HMI: the LCD display on each of the SEL-487B relays.

System HMI: the display connected to the SEL-2030 that dynamically

shows the station linking arrangement.

Station HMI: the equipment from which station-wide data acquisition

and control are performed.

HV High

High voltage. System voltage greater than or equal to $100\ kV$ and less than

230 kV.

I01–I18 Input phase currents.

ICD File IEC 61850 IED Capability Description file. XML file that describes IED

capabilities, including information on logical node and GOOSE support.

IEC 61850 Internationally standardized method of communications and integration

conceived with the goal of supporting systems of multivendor IEDs networked together to perform protection, monitoring, automation, metering, and control.

IED Intelligent electronic device.

IGBT Insulated gate bipolar junction transistor.

Inboard CT (bushing CT) Current transformer physically positioned in such a way that the CT is by-

passed when the feeder is on transfer.

Input Conditioning The establishment of debounce time and assertion level.

Instance A subdivision of a relay settings class. Group settings have several

subdivisions (Group 1-Group 6), while the Global settings class has one

instance.

IP Address An identifier for a computer or device on a TCP/IP network. Networks using

the TCP/IP protocol route messages based on the IP address of the destination. The format of an IP address is a 32-bit numeric address written as four numbers separated by periods. Each number can be zero to 255. For example,

1.160.10.240 could be an IP address.

IRIG-B A time code input that the relay can use to set the internal relay clock.

Jitter Time, amplitude, frequency, or phase-related abrupt, spurious variations in

duration, magnitude, or frequency.

L/R Circuit inductive/resistive ratio.

Latch Bits Nonvolatile storage locations for binary information.

LED Light-emitting diode. Used as indicators on the relay front panel.

Left-Side Value LVALUE. Result storage location of a SELOGIC control equation.

Line Impedance The phasor sum of resistance and reactance in the form of positive-sequence,

negative-sequence, and zero-sequence impedances of the protected line.

LMD SEL distributed port switch protocol.

LN Operator Math SELOGIC control equation operator that provides natural logarithm.

Local Bits The Relay Word bit outputs of local control switches that you access through

the SEL-487B front panel. Local control switches replace traditional panel

mounted control switches.

Lockout Relay An auxiliary relay that prevents operation of associated devices until it is reset

either electrically or manually.

Logical 0 A false logic condition, dropped out element, or deasserted control input or

control output.

Logical 1 A true logic condition, picked up element, or asserted control input or control

output.

Logical Node In IEC 61850, the smallest part of a function that exchanges data. A logical

node (LN) is an object defined by its data and methods. Each logical node represents a group of data (controls, status, measurements, etc.) associated

with a particular function.

Low-Level Test Interface An interface that provides a means for interrupting the connection between the

relay input transformers and the input processing module and allows inserting

reduced-scale test quantities for relay testing.

MAC Address The Media Access Control (hardware) address of a device connected to a

shared network medium, most often used with Ethernet networks.

verifies correct functioning of auxiliary equipment, scheme logic, and

protection elements.

Math Operations Calculations for automation or extended protection functions.

Math Operators Operators that you use in the construction of math SELOGIC control equations

to manipulate numerical values.

Maximum Dropout Time The maximum time interval following a change of input conditions between

the deassertion of the input and the deassertion of the output.

Mechanical Time between trip initiation or close initiation and the change in status of an

Operating Time associated circuit breaker auxiliary 52A normally open contacts.

MIRRORED BITS® Patented relay-to-relay communications protocol that sends internal logic

Communications status, encoded in a digital message, from one relay to the other. Eliminates

the need for some communications hardware.

MMS Manufacturing Messaging Specification, a data exchange protocol used by

IEC 61850 and UCA.

MOD Motor-operated disconnect.

MOV Metal-oxide varistor.

Negation Operator A SELOGIC control equation math operator that changes the sign of the

argument. The argument of the negation operation is multiplied by -1.

Negative Sequence Use the following expression to calculate the negative-sequence voltage:

$$3V_2 = V_A + a^2V_B + aV_C$$

where $a = 1 \angle 120^{\circ}$

NEMA National Electrical Manufacturers' Association.

Nonvolatile Memory Relay memory that persists over time to maintain the contained data even

when the relay is de-energized.

NOT Operator A logical operator that produces the inverse value.

OR Operator Logical OR. A Boolean SELOGIC control equation operator that compares two

Boolean values and yields either a logical 1 if either compared Boolean value is logical 1 or a logical 0 if both compared Boolean values are logical 0.

OSI Open Systems Interconnect. A model for describing communications

protocols. Also an ISO suite of protocols designed to this model.

Outboard CT Current transformer physically positioned in such a way that the CT remains

in circuit when the feeder is on transfer.

Overlap Configuration Configuration of the tie-breaker protection whereby the area between the tie-

breaker CTs are part of two bus-zones, i.e., a fault between the tie-breaker CTs

is common to two bus-zones.

Override Values Test values you enter in Fast Meter and DNP storage.

Parentheses Operator Math operator. Use paired parentheses to control the execution of operations

in a SELOGIC control equation.

PC Personal computer.

Phase Elements that operate by comparing the phase current applied to the

Overcurrent Element secondary current inputs with the phase overcurrent setting. The relay asserts

these elements when any combination of the phase currents exceeds phase

current setting thresholds.

Pickup Time The time measured from the application of an input signal until the output

signal asserts. You can set the time, as in the case of a logic variable timer, or the pickup time can be a result of the characteristics of an element algorithm,

as in the case of an overcurrent element pickup time.

Pinout The definition or assignment of each electrical connection at an interface.

Typically refers to a cable, connector, or jumper.

Port Settings Communications port settings such as Data Bits, Speed, and Stop Bits.

Positive-Sequence Use the following expression to calculate the positive-sequence voltage:

 $3V_1 = V_A + aV_B + a^2V_C$

Where $a = 1 \angle 120^{\circ}$

Primitive Name The mnemonic current labels (I01, I02 through I18), voltage labels (V01, V02

and V03) and bus-zone labels (BZ1, BZ2 through BZ6).

Protection and Segregation of protection and automation processing and settings. **Automation Separation**

Protection Settings Group Individual scheme settings for as many as six different schemes (or instances).

Protection-Disabled State Suspension of relay protection element and trip/close logic processing and

de-energization of all control outputs.

Protection Zone (also see Bus-Zone)

Remote Bit

RMS

Area of protection formed by a minimum of one bus-zone. A protection zone can include more than one bus-zone. For example, merging two bus-zones results in a single protection zone. When no bus-zones are merged, a protection zone and a bus-zone have the same meanings.

PT Potential transformer. Also referred to as a voltage transformer or VT.

PTR Potential transformer ratio.

Qualifier Code Specifies type of range for DNP3 objects. With the help of qualifier codes, DNP master devices can compose the shortest, most concise messages.

R_TRIG Rising-edge trigger. Boolean SELOGIC control equation operator that triggers an operation upon logic detection of a rising edge.

RAM Random Access Memory. Volatile memory where the relay stores intermediate calculation results, Relay Word bits, and other data.

Relay Word Bit

A single relay element or logic result. A Relay Word bit can equal either logical 1 or logical 0. Logical 1 represents a true logic condition, picked up element, or asserted control input or control output. Logical 0 represents a false logic condition, dropped out element, or deasserted control input or control output. Use Relay Word bits in SELOGIC control equations.

Remapping The process of selecting data from the default map and configuring new indices to form a smaller data set optimized to your application.

A Relay Word bit with a state that is controlled by serial port commands, including the **CONTROL** command, a binary Fast Operate command, DNP binary output operation, or an IEC 61850 control operation.

Report Settings Event report and Sequential Events Recorder settings.

Retrip A subsequent act of attempting to open the contacts of a circuit breaker after the failure of an initial attempt to open these contacts.

Rising Edge Transition from logical 0 to logical 1, or the beginning of an operation.

Root-mean-square. This is the effective value of the current and voltage measured by the relay, accounting for the fundamental frequency and higher order harmonics in the signal.

RTU Remote Terminal Unit.

RXD Received data.

SCADA Supervisory control and data acquisition.

SCD File IEC 61850 Substation Configuration Description file. XML file that contains information on all IEDs within a substation, communications configuration data, and a substation description.

SCL IEC 61850 Substation Configuration Language. An XML-based configuration

> language that supports the exchange of database configuration data among different software tools that can be from different manufacturers. There are four types of SCL files used within IEC 61850: CID, ICD, SCD, and SSD.

Self-Description A feature of the IEC 61850 protocol. A master device can request a

description of all of the Logical Nodes and data within the IED.

Self-Test A function that verifies the correct operation of a critical device subsystem

> and indicates detection of an out-of-tolerance condition. The SEL-487B has self-tests that validate the relay power supply, microprocessor, memory, and

other critical systems.

SELOGIC **Control Equation** A relay setting that allows you to control a relay function (such as a control output) using a logical combination of relay element outputs and fixed logic

outputs.

SELOGIC Expression Builder

A rules-based editor within the ACSELERATOR software for programming

SELOGIC control equations.

SELOGIC Math Variables Math calculation result storage locations.

Sequencing Timers Timers designed for sequencing automated operations.

Sequential **Events Recorder**

A relay function that stores a record of the date and time of each assertion and deassertion of every Relay Word bit in a list that you set in the relay. SER

provides a useful way to determine the order and timing of events of a relay

operation.

SER Sequential Events Recorder or the relay serial port command to request a

report of the latest 1000 sequential events.

Settle/Settling Time Time required for an input signal to result in an unvarying output signal within

a specified range.

Single-CT Application Tie breaker with only one CT available for busbar protection.

Single Relay Application Stations with as many as 18 per-phase CTs require only one SEL-487B.

Stations with more than 18 and as many as 54 per-phase CTs require three

SEL-487B relays.

SIN Operator Operator in math SELOGIC control equations that provides the sine function.

SQRT Operator Math SELOGIC control equation operator that provides square root.

SSD File IEC 61850 System Specification Description file. XML file that describes the

single-line diagram of the substation and the required logical nodes.

Status Failure A severe out-of-tolerance internal operating condition. The relay issues a

status failure message and enters a protection-disabled state.

Status Warning Out-of-tolerance internal operating conditions that do not compromise relay

protection, yet are beyond expected limits. The relay issues a status warning

message and continues to operate.

Strong Password A mix of valid password characters in a six-character combination that does

not spell common words in any portion of the password. Valid password

characters are numbers, upper- and lowercase alphabetic characters, period (.), and hyphen (-).

Subnet Mask The subnet mask divides the local node IP address into two parts, a network

number and a node address on that network. A subnet mask is four bytes of

information and is expressed in the same format as an IP address.

Subsidence Current See CT subsidence current.

> **Telnet** An Internet protocol for exchanging terminal data that connects a computer to

> > a network server and allows control of that server and communication with

other servers on the network.

Terminal Any equipment with at least a current transformer and a circuit breaker.

Terminal-to-Bus-Zone SELOGIC variable stating the conditions when the relay considers the current

Connection Variable input from a particular terminal in the differential calculations of a particular

bus-zone.

Thermal The capability of equipment to withstand a predetermined temperature value

Withstand Capability for a specified time.

Three-Phase Fault A fault involving all three phases of a three-phase power system.

A circuit breaker operation that occurs when the circuit breaker opens all three Three-Pole Trip

poles at the same time.

Three-Relay Application Stations with more than 18 and as many as 54 per-phase CTs require three

SEL-487B relays. Stations with as many as 18 per-phase CTs require only one

SEL-487B.

Tie Breaker See buscoupler and bus sectionalizer.

Time Delay on Pickup The time interval between initiation of a signal at one point and detection of

the same signal at another point.

Time Dial A control that governs the time scale of the time-overcurrent characteristic of

a relay. Use the time-dial setting to vary relay operating time.

Time-Delayed Tripping Tripping that occurs after expiration of a predetermined time.

Time-Overcurrent An element that operates according to an inverse relationship between input

current and time, with higher current causing faster relay operation.

Torque Control A method of using one relay element to supervise the operation of another.

Total Clearing Time The time interval from the beginning of a fault condition to final interruption

of the circuit.

Transmitted data. **TXD**

Element

Utility Communications Architecture version 2. A network-independent UCA2

protocol suite that serves as an interface for individual intelligent electronic

devices.

Unbalanced Fault All faults that do not include all three phases of a system.

SEL-487B Relay

Unbuffered Report IEC 61850 IEDs can issue immediate unbuffered reports of internal events

(caused by trigger options data-change, quality-change, and data-update) on a "best efforts" basis. If no association exists, or if the transport data flow is not

fast enough to support it, events may be lost.

User ST Region in GOOSE for user-specified applications.

V01, V02, V03 Voltage input terminals.

Wye

Virtual Terminal A mechanism that uses a virtual serial port to provide the equivalent functions Connection

of a dedicated serial port and a terminal.

VT Voltage transformer. Also referred to as a potential transformer or PT.

Warm Start The reset of a running system without removing and restoring power.

> A phase-to-neutral connection of circuit elements, particularly voltage transformers or loads. To form a wye connection using transformers, connect the nonpolarity side of each of three voltage transformer secondaries in common (the neutral), and take phase to neutral voltages from each of the remaining three leads. When properly phased, these leads represent the A-phase-, B-phase-, and C-phase-to-neutral voltages. This connection is frequently called four-wire wye, alluding to the three phase leads plus the

XML Extensible Markup Language. This specification developed by the W3C (World Wide Web Consortium) is a pared-down version of SGML designed especially for web documents. It allows designers to create their own customized tags, enabling the definition, transmission, validation, and interpretation of data among applications and organizations.

Zero Sequence Use the following expression to calculate the zero-sequence voltage:

 $3V_0 = V_A + V_B + V_C$

Z-Number That portion of the relay FID string that identifies the proper ACSELERATOR software relay driver version and HMI driver version when creating or editing

relay settings files.

neutral lead.

Date Code 20210514

Index

Page numbers appearing in bold mark the location of the topic's primary discussion.

A=Applications Handbook U=User's Guide R=Reference Manual

Symbols	Anonymous User	Circuit Breaker Failure R.1.37–R.1.42	
>, trigger row	for FTP R.3.11	retrip R.1.40	
See Event Report	ASCII	Circuit Breaker Jumpers U.2.16	
A	ASCII text files R.3.11	Commands R.7.1-R.7.53	
A	compressed ASCII files R.3.11	2ACCESS R.7.2	
a contact R.1.50	ASCII Commands R.3.2, R.4.3, R.7.1 –	AACCESS R.7.2	
Acceptance Testing U.6.1	R.7.53	ACCESS R.7.2	
See also Testing	See also Commands	ASCII R.7.1–R.7.53	
ACCESS Command	Autoconfiguration R.4.7	BACCESS R.7.2	
See Commands	Automessages A.4.7	BNAME R.7.2	
Access Control	See also SEL Binary Protocols	CASCII R.7.3	
for FTP R.3.11	В	CEVENT A.3.21, R.7.3	
See also TCP/IP	_	See also Event Report	
Access Levels U.4.6-U.4.8, R.3.13	b contact R.1.50	CEVENT R R.7.4 CEVENT RD R.7.5	
Accuracy	Battery Monitor	CHISTORY A.3.29, R.7.6	
instantaneous metering U.1.15	See DC Battery System Monitor	See also Event History	
ACSELERATOR Architect Software	Boolean Equations R.2.4	COM R.7.6–R.7.8	
R.6.12	See also SELOGIC Control	CONTROL nn R.7.8	
ACSELERATOR QuickSet Software	Equations	COPY R.7.9	
U.3.1–U.3.23 , A.5.8	Breaker Bit A.4.13	CSER A.3.33, R.7.9–R.7.11	
communications setup U.3.2-U.3.4	Breaker Control	See also SER (Sequential Events	
computer terminal U.3.4	front panel U.5.21	Recorder)	
FTP U.3.2	Breaker Differential A.1.32	CSTATUS U.6.35, R.7.11	
serial U.3.2	Breaker Failure Protection	CSUMMARY A.3.26, R.7.11 –	
Telnet U.3.3	See Circuit Breaker Failure	R.7.13	
create and manage settings U.3.8– U.3.15	Breaker-and-a-Half A.1.87	See also Event Summary	
expression builder U.3.14	Bus Sectionalizer	DATE R.7.13	
database management	See Buscoupler	DNAME X R.7.13 DNP R.7.13	
drivers U.3.6	Busbar Protection Elements R.1.2	EVENT R.7.14	
event reports U.3.15–U.3.23	Buscoupler R.1.42	EVENT R.7.14 EVENT R R.7.15	
ACSELERATOR Software	Bushing CT	FILE R.7.15	
database management U.3.4–U.3.7	See Inboard CT	GROUP R.7.16	
Active Group U.5.27	Bus-Zone Configurations A.1.21	HELP R.7.16	
Advanced Settings R.1.8	Bus-Zone Configurations A.1.21	HISTORY R.7.17–R.7.18	
e e e e e e e e e e e e e e e e e e e	С	ID R.7.18	
Alarm	Cable	LOOPBACK R.7.19–R.7.21	
HALARM U.6.34	See Communications	METER R.7.22-R.7.25	
relay output U.2.33	CEVENT Command	OACCESS R.7.26	
ALARM Bit R.3.15	See Commands; Event Report	OPEN n R.7.26	
Alias Settings U.4.23, A.1.19	Checksum A.3.10	PACCESS R.7.27	
Analog Quantities	Check-Zone A.1.43	PASSWORD R.7.27	
in SELOGIC control equations	CHISTORY Command	PORT R.7.28	
R.2.11	See Commands; Event History	PULSE U.4.40, U.6.5, R.7.29 –	
list sorted alphabetically R.B.3	See Commands, Event History	R.7.30 Ouit R.7.30	
		QUII R./.30	

SER U.4.38, U.6.14–U.6.18, R.7.30	Configuration	Date
SET R.7.32–R.7.37	serial number label U.4.2	See Ethernet Card Commands
SHOW R.7.37–R.7.40	Connection U.2.24	DC Battery System Monitor A.2.1-A.2.6
SNS R.7.40	ac/dc diagram U.2.39	ac ripple A.2.4
STATUS R.7.40–R.7.41	alarm output U.2.33	alarm A.2.6
SUMMARY A.3.26, R.7.41–R.7.42	battery monitors U.2.32	dc ground detection A.2.5
See also Event Summary	communications ports U.2.35	metering A.2.6
TARGET U.6.5, R.7.42	control inputs U.2.33	DIAGNOSTICS.TXT R.3.11
TEST DNP U.6.5, R.7.45	control outputs U.2.33	Differential Element Composition
TEST FM U.6.5, R.7.46–R.7.48	grounding U.2.28	A.1.3–A.1.12
TIME R.7.48	IRIG-B U.2.34	Dimensions U.2.23
TIME Q R.7.48	power U.2.30 , U.4.3	
TRIGGER U.4.35, A.3.4, R.7.49	screw terminal connectors U.2.27	Directional Overcurrent Elements R.1.5–R.1.7
VERSION R.7.49	secondary circuits U.2.32	
ZONE R.7.52	serial port U.2.36	Disconnect Requirements A.1.15
Commissioning Testing U.6.2	terminal blocks U.2.32	Display
See also Testing	trip output U.2.34	See Front Panel, LCD
Communications	Connectors U.2.7	Display Points U.5.9
See also ACSELERATOR QuickSet	screw terminal connectors U.2.7	creating, application example U.5.12
Software	terminal blocks U.2.7	deleting, application example U.4.21
ASCII Commands	Contact Inputs	Distributed Port Switch R.4.21, R.4.21
See Commands	See Control Inputs	DNP3 A.4.3, A.5.2–A.5.3, R.3.2, R.5.1 –
cable U.2.36, U.4.5, R.3.5	Contact Outputs	R.5.37
DNP3	See Control Outputs	access method R.5.4, R.5.5
See DNP3	_	application example R.5.31-R.5.37
EIA-232 U.2.36, R.3.3–R.3.6	Contrast, LCD U.5.13	configurable data mapping R.5.9
hardware flow control R.4.1	Control Inputs U.2.8	conformance testing R.5.4
pin assignments R.3.5	connecting	deadband R.8.39
pin functions R.3.4	See Connection	Device Profile document R.5.11
EIA-485 R.3.6 , R.4.21	debounce R.8.7	event data R.5.3
IEC 61850	main board U.2.11	objects R.5.2 , R.5.12–R.5.17
See IEC 61850	time U.2.11	polling
interfaces R.3.1	Control Outputs U.2.9	See DNP3, access method
LMD	connecting	settings R.5.8
See Distributed Port Switch	See Connection	testing R.5.11
MIRRORED BITS communications	ratings U.1.11	User's Group R.5.1
See MIRRORED BITS	trip output	Dynamic Zone Selection Logic R.1.15
Communications	See Connection, trip output	_
protocol R.3.1	Counters	E
serial R.3.3–R.3.6	See SELOGIC Control Equations	Earthing
transparent mode R.7.9, R.7.28	CSER Command	See Grounding
UCA2	See Commands; SER (Sequential	EIA-232
See UCA2	Events Recorder)	See Communications
virtual serial ports R.4.3	CSUMMARY Command	EIA-485
Communications Card A.5.1 , R.3.7	See Commands; Event Summary	See Communications
application example A.5.9–A.5.11	CT Saturation R.1.2	End-Zone Protection A.1.74
Ethernet A.5.4	CTR (CT Ratio) R.1.2	Ethernet Card
SEL-2701 A.4.4	CTR (CT Ratio) R.1.2	See Communications Card
SEL-2702 A.5.4	D	
settings A.5.9, R.8.36	Data	Ethernet Card Commands R.3.12– R.3.20
Communications Processor A.4.1–	See Event Report	2ACCESS R.3.14–R.3.15
A.4.13	Database	ACCESS R.3.15
application example A.4.6	See ACSELERATOR QuickSet	DATE R.3.15
Compressed ASCII R.4.4 – R.4.7	Software	DNPMAP R.3.15
See also Commands		HELP R.3.18

ID R.3.18	LCD U.5.3	Internal Fault Detection Logic R.1.8
MEMORY R.3.19	Front-Panel Menus U.5.13-U.5.31	Inverse Time-Overcurrent Elements
PING R.3.19	FTP A.4.3, A.5.4	See Overcurrent Elements
QUIT R.3.14, R.3.19	See also ACSELERATOR Software	IRIG-B U.2.34, U.4.49
STATUS R.3.20	Fuse U.2.30	See also Time Synchronization,
summary R.3.13	replacement U.2.31	IRIG-B
syntax R.3.12 TIME R.3.20	•	J
	G	Jumpers U.2.16–U.2.22
Ethernet Card Settings	GOOSE	Jumpers 0.2.10-0.2.22
FTP R.3.10 Telnet R.3.12	See IEC 61850	L
	GPS Receiver U.4.50	L/R U.2.10
EVE Command	See also IRIG-B	Latch Bits R.2.14
See Commands	Grounding U.2.28	LCD, Front Panel
Event	н	See Front Panel, LCD
initiate, TRI command R.7.49		LEDs U.5.32–U.5.35
Event History A.3.27–A.3.30	HELP Command	
CHISTORY Command See Commands	See Commands	LMD See Distributed Port Switch
HIS Command	HIS Command	
See Commands	See Commands	Local Bits U.5.22–U.5.24
211 20	History	Local Control
Event Report A.3.6–A.3.24	See Event History	See Breaker Control
>, trigger row A.3.11 report types A.3.8	1	Low-Level Test Interface U.6.6–U.6.8
trigger A.3.3	I/O	М
Event Summary A.3.24 – A.3.27	See Input/Output	Maintenance Testing U.6.3
CSUMMARY Command	ID Command	See also Testing
See Commands	See also Commands	MET Command
SUM Command	codes R.7.18	See Commands
See Commands	sample response R.7.19	Meter A.2.7–A.2.13
Expression Builder	IEC 61850 A.5.7, R.3.2, R.6.1–R.6.47	
See ACSELERATOR QuickSet	ACSELERATOR Architect R.6.12	METER Command See Commands
Software	ASCI Conformance R.6.43-R.6.47	
External Fault Detection Logic R.1.8	GOOSE R.6.10	METER.TXT R.3.11
_	Logical Nodes R.6.18	Metering
F	Object Models R.6.3	See Meter
Fast Meter	Reports R.6.5, R.6.11	MIRRORED BITS Communications R.3.2,
See SEL Binary Protocols	SCL Files R.6.5	R.4.14–R.4.21 Pulsar modem R.4.18
Fast Operate	Settings R.6.12	virtual terminal R.7.28
See SEL Binary Protocols	Inboard CT A.1.24	Modbus Plus A.4.3
Fast SER	Input Processing A.3.2	Modbus RTU A.4.3
See SEL Binary Protocols	Input/Output	
Fiber Optic	communications card	Modem Support R.5.8
See also Communications	See Communications Card	MOV
multimode R.3.5	I/O interface boards U.2.12	control outputs U.2.9
single mode R.3.6	Installation U.2.1–U.2.38	Multidrop Network A.4.4
File	Instantaneous Metering A.2.7	N
See FTP; Commands, FILE	See also Meter	Negative Sequence
FILE Command	Instantaneous Overcurrent Elements	See Voltage Elements
See Commands	See Overcurrent Elements	-
Firmware Version U.A.1	Instantaneous Voltage Elements	0
of SEL-2701 R.3.18	See Voltage Elements	OPEN n Command
Front Panel U.5.1–U.5.12	Interface Boards	See Commands
automatic messages U.5.31	See Input/Output	

See Input/Output

Date Code 20210514

contrast U.5.13

Open Phase Detection Logic R.1.34	R	SEL-487B
Operator Control LEDs	Rack Mount	features U.1.3
See LEDs	See Installation	options U.1.5
Operator Control Pushbuttons U.5.36	Rear Panel	SEL-5030 ACSELERATOR Quickset
Oscillography	See Connection	Software
See Event Report	Relay Word Bits	See ACSELERATOR Quickset
Outboard CT A.1.24	in SELOGIC control equations	Software
	R.2.11	Self-Tests
Output Testing	list sorted alphabetically R.A.1-	See Testing
front panel U.5.25	R.A.14	SELOGIC Control Equations R.2.1 –
Overcurrent Elements directional	Remapping	R.2.37
See Directional Overcurrent	See DNP3, configurable data	aliases R.2.23
Elements	mapping	analog quantities See Analog Quantities
instantaneous R.1.17	Remote Bit R.7.8	automation R.2.6, R.2.7, R.8.21
inverse time R.1.18–R.1.31	See also Commands,	Boolean equations R.2.4, R.2.5,
formulas R.1.18	CONTROL nn; UCA2	R.2.24–R.2.28
Overlap Configuration R.1.42	protection latch bits R.2.15	capacity R.2.10, R.2.10
Overlap Comigaration R.1.12	SEL communications processors A.4.13	comments R.2.5, R.2.5 , R.2.33
Р		conditioning timers R.2.16, R.2.16
Panel Mount	Remote Terminal Unit (RTU) DNP3 R.5.1, R.5.31	convert R.2.35
See Installation	SEL communications processors	counters R.2.21, R.2.21
Password U.4.6–U.4.10	A.4.4	fixed result R.2.4, R.2.4
defaults U.4.7	Reset	free-form R.2.4, R.2.4
jumper U.2.16	battery monitor metering A.2.6	LVALUE R.2.5
Passwords R.3.14	targets U.5.33	math equations R.2.4, R.2.5, R.2.28–R.2.33
PC Software	S	math error R.2.29
See ACSELERATOR QuickSet		math variables R.2.13
Software	SCADA	operators R.2.24
Phasors	See Communications Processor	output R.2.3 , R.2.6, R.2.7, R.7.35
See Event Report	Schweitzer Engineering Laboratories	protection R.2.6, R.8.20
Plug-In Boards	contact information U.6.38	Relay Word bits
See Communications Card;	Screw Terminal Connectors	See Relay Word Bits
Input/Output	See Connection, screw terminal connectors	sequencing timers R.2.19, R.2.19
Power Supply		variables R.2.12
See also Connection	Scrolling	Sequential Events Recorder
types U.4.3	See Front Panel	See SER (Sequential Events
voltage ranges U.4.3	Secondary Connections	Recorder)
Protection and Automation Separation R.2.3	See Connection, secondary circuits	SER (Sequential Events Recorder)
See also SELOGIC Control	Security	A.3.31–A.3.34
Equations	access levels R.3.13	SER Command
Protection-Disabled State U.6.34	passwords R.3.14	See Commands
Pulsar Modem	SEL Binary Protocols R.3.2, R.4.8	Serial Number Label
See MIRRORED BITS	Fast Meter A.4.7, R.7.2, R.7.13, R.7.46–R.7.48	See Configuration
Communications	Fast Operate A.4.13	Serial Port
PULSE Command	Fast SER R.7.40	See Communications
See Commands	SEL-2020	EIA-232
Pushbuttons	See Communications Processor	See Communications
See Operator Control Pushbuttons		Settings R.8.1–R.8.40
•	SEL-2030	category U.4.12
Q	database regions R.3.11 See Communications Processor	class U.4.12
QUIT Command		data access R.3.10–R.3.12
See Commands	SEL-2032	instance U.4.12
	See Communications Processor	

Single-Relay Application A.1.3–A.1.8	See Acceptance Testing	release numbers R.7.49
Specifications U.1.11	commissioning testing	sample response R.7.50
	See Commissioning Testing	Virtual Devices R.3.11
Star Network Topology A.4.1 , A.4.4	directional element U.6.29	
Station DC Battery System Monitor See DC Battery System Monitor	low-level test interface See Low-Level Test Interface	Virtual File Interface R.4.11–R.4.14 Voltage Elements R.1.31–R.1.34
Status U.4.10	maintenamce testing	14/
CST Command	See Maintenance Testing	W
See Commands	Three-Relay Application A.1.9–A.1.12	Wire
STATUS Command	• ••	See Connection
See Commands	Tie Breaker	Z
Status Failure U.6.34	See Buscoupler	Zero Sequence
front panel U.5.29	Time	See Voltage Elements
Status Warning U.6.34	See Ethernet Card Commands See IRIG-B	ZONE Command
front panel U.5.29		See Commands
Subsidence Current	Time Inputs	See Commands
See Open Phase Detection Logic	See Control Inputs, time	
Substation Automation R.2.2	Time Out	
See also SELOGIC Control	front panel U.5.3	
Equations	TIME Q Command	
SUM Command	See Commands	
See Commands; Event Summary	Time Synchronization	
System Integration A.4.1	See also IRIG-B	
_	DNP3 R.5.7	
Т	IRIG-B A.4.2, A.4.5	
TARGET Command	Time-Overcurrent Curves	
See Commands	See Overcurrent Elements	
Targets	Time-Overcurrent Elements	
See LEDs	See Overcurrent Elements	
TCP/IP	Timers	
FTP	See SELOGIC Control Equations	
access control R.3.11	Total Clearing Time A.1.108	
anonymous user R.3.11	Trigger	
downloading settings R.3.11	TRIGGER Command	
file structure R.3.10–R.3.11	See Commands	
security R.3.14	Trip	
SEL-2701 related settings R.3.10–R.3.11	output	
simultaneous users R.3.10	See Connection, trip output	
See Communications Card	Trip Logic	
Telnet	breaker R.1.55	
security R.3.14	breaker failure R.1.41	
SEL-2701 related settings	differential R.1.53	
R.3.12	Troubleshooting U.6.36-U.6.38	
transmission control characters	U	
R.3.13 user interface access R.3.12	_	
	UCA2 R.3.2	
Telnet A.5.5	GOOSE A.4.3	
Terminal-to-Bus-Zone Settings R.8.11	User Interface	
TEST DNP Command	Ethernet Card command entry	
See Commands	R.3.12 Telnet access R.3.12	
TEST FM Command	Temet access R.J.12	
See Commands	V	
Testing U.6.1-U.6.35	VERSION Command	
acceptance testing	See also Commands	

SEL-487B Relay Command Summary

Command ^{a, b}	Description		
2ACCESS	Go to Access Level 2 (complete relay monitoring and control)		
AACCESS	Go to Access Level A (automation control)		
ACCESS	Go to Access Level 1 (monitor relay)		
BACCESS	Go to Access Level B (monitor relay and control circuit breakers)		
BNAME	ASCII names of all relay status bits (Fast Meter)		
CASCII	Generate the Compressed ASCII response configuration message		
CEVENT	EVENT command for the Compressed ASCII response		
CHISTORY	HISTORY command for the Compressed ASCII response		
COMM c	Display relay-to-relay MIRRORED BITS [®] communications data ($c = A$ is channel A; $c = B$ is channel B; $c = M$ is either enabled single channel)		
CONTROL nn	Set, clear, or pulse an internal remote bit (nn is the remote bit number from 01–96)		
COPY m n	Copy settings between instances in the same class (m and n are instance numbers; for example: $m = 1$ is Group 1; $n = 2$ is Group 2)		
CSER	SER command for the Compressed ASCII response		
CSTATUS	STATUS command for the Compressed ASCII response		
CSUMMARY	SUMMARY command for the Compressed ASCII response		
DATE	Display and set the date		
DNAME X	ASCII names of all relay digital I/O (Fast Meter)		
DNP	Access or modify serial port DNP3 settings (similar to SHOW D and SET D)		
EVENT	Display and acknowledge event reports		
FILE	Transfer data between the relay and external software		
GROUP	Display the active group number or select the active group		
HELP	Display available commands or command help at each access level		
HISTORY	View event summaries/histories; clear event data		
ID	Display the firmware id, user id, device code, part number, and configuration information		
LOOPBACK	Connect MIRRORED BITS data from transmit to receive on the same port		
MAP 1	Analyze the communications card database		
METER	Display metering data and internal relay operating variables		
OACCESS	Go to Access Level O (output control)		
OPEN n	Open the circuit breaker $(n = 1-18)$		
PACCESS	Go to Access Level P (protection control)		
PASSWORD	Change relay passwords		
PORT	Connect to a remote relay via MIRRORED BITS [®] virtual terminal (for port number $p = 1-3$ and F), or to the Ethernet card (port $p = 5$)		
PULSE OUTnnn	Pulse a relay control output (OUT <i>nnn</i> is a control output number)		
QUIT	Reduce access level to Access Level 0 (exit relay control)		
SER	View Sequential Events Recorder reports		
SET ^c	Enter relay settings		
SHOW ^c	Display relay settings		

Command ^{a, b}	Description	
SNS	Display Sequential Events Recorder settings name strings (Fast SER)	
STATUS	Report or clear relay status and SELOGIC® control equation errors	
SUMMARY	View summary event reports	
TARGET	Display relay elements for a row in the Relay Word table	
TEST DB	Display or place values in the communications card database (useful for Ethernet protocol read tests)	
TEST DNP	Display or place values in the serial port DNP3 object map	
TEST FM	Display or place values in metering database (Fast Meter)	
TIME	Display and set the internal clock	
TRIGGER	Initiate a data capture and record an event report	
VERSION	Display the relay hardware and software configurations	
VIEW 1	View data from the communications card database	
ZONE	Display the terminal and bus names associated with all active protective zones	

- a See Section 7: ASCII Command Reference in the Reference Manual.
 b For help on a specific command, type HELP [command] <Enter> at an ASCII terminal communicating with the relay.
 c See the table below for SET/SHOW options.

SET/SHOW Command Options

Option	Setting Type	Description
[S] n	Group Settings 1–6	Particular application settings
A n	Automation Logic Block 1–10	Automation SELOGIC control equations
D	DNP3	Direct Network Protocol remapping (serial port only)
\mathbf{F}	Front Panel	Front-panel HMI settings
G	Global	Relay-wide settings
L n	Protection Logic Group 1–6	Protection SELOGIC control equations
0	Outputs	Output SELOGIC control equations
P n	Port 1–3, F, 5	Communications port settings
R	Report	Event report and SER settings
T	Alias	Alias names for analog quantities and Relay Word bits
Z n	Zone Configuration Group 1–6	Zone configuration settings

SEL-487B Relay Command Summary

Command ^{a, b}	Description		
2ACCESS	Go to Access Level 2 (complete relay monitoring and control)		
AACCESS	Go to Access Level A (automation control)		
ACCESS	Go to Access Level 1 (monitor relay)		
BACCESS	Go to Access Level B (monitor relay and control circuit breakers)		
BNAME	ASCII names of all relay status bits (Fast Meter)		
CASCII	Generate the Compressed ASCII response configuration message		
CEVENT	EVENT command for the Compressed ASCII response		
CHISTORY	HISTORY command for the Compressed ASCII response		
COMM c	Display relay-to-relay MIRRORED BITS [®] communications data ($c = A$ is channel A; $c = B$ is channel B; $c = M$ is either enabled single channel)		
CONTROL nn	Set, clear, or pulse an internal remote bit (nn is the remote bit number from 01–96)		
COPY m n	Copy settings between instances in the same class (m and n are instance numbers; for example: $m = 1$ is Group 1; $n = 2$ is Group 2)		
CSER	SER command for the Compressed ASCII response		
CSTATUS	STATUS command for the Compressed ASCII response		
CSUMMARY	SUMMARY command for the Compressed ASCII response		
DATE	Display and set the date		
DNAME X	ASCII names of all relay digital I/O (Fast Meter)		
DNP	Access or modify serial port DNP3 settings (similar to SHOW D and SET D)		
EVENT	Display and acknowledge event reports		
FILE	Transfer data between the relay and external software		
GROUP	Display the active group number or select the active group		
HELP	Display available commands or command help at each access level		
HISTORY	View event summaries/histories; clear event data		
ID	Display the firmware id, user id, device code, part number, and configuration information		
LOOPBACK	Connect MIRRORED BITS data from transmit to receive on the same port		
MAP 1	Analyze the communications card database		
METER	Display metering data and internal relay operating variables		
OACCESS	Go to Access Level O (output control)		
OPEN n	Open the circuit breaker $(n = 1-18)$		
PACCESS	Go to Access Level P (protection control)		
PASSWORD	Change relay passwords		
PORT	Connect to a remote relay via MIRRORED BITS [®] virtual terminal (for port number $p = 1-3$ and F), or to the Ethernet card (port $p = 5$)		
PULSE OUTnnn	Pulse a relay control output (OUT <i>nnn</i> is a control output number)		
QUIT	Reduce access level to Access Level 0 (exit relay control)		
SER	View Sequential Events Recorder reports		
SET ^c	Enter relay settings		
SHOW ^c	Display relay settings		

Command ^{a, b}	Description	
SNS	Display Sequential Events Recorder settings name strings (Fast SER)	
STATUS	Report or clear relay status and SELOGIC® control equation errors	
SUMMARY	View summary event reports	
TARGET	Display relay elements for a row in the Relay Word table	
TEST DB	Display or place values in the communications card database (useful for Ethernet protocol read tests)	
TEST DNP	Display or place values in the serial port DNP3 object map	
TEST FM	Display or place values in metering database (Fast Meter)	
TIME	Display and set the internal clock	
TRIGGER	Initiate a data capture and record an event report	
VERSION	Display the relay hardware and software configurations	
VIEW 1	View data from the communications card database	
ZONE	Display the terminal and bus names associated with all active protective zones	

- a See Section 7: ASCII Command Reference in the Reference Manual.
 b For help on a specific command, type HELP [command] <Enter> at an ASCII terminal communicating with the relay.
 c See the table below for SET/SHOW options.

SET/SHOW Command Options

Option	Setting Type	Description
[S] n	Group Settings 1–6	Particular application settings
A n	Automation Logic Block 1–10	Automation SELOGIC control equations
D	DNP3	Direct Network Protocol remapping (serial port only)
\mathbf{F}	Front Panel	Front-panel HMI settings
G	Global	Relay-wide settings
L n	Protection Logic Group 1–6	Protection SELOGIC control equations
0	Outputs	Output SELOGIC control equations
P n	Port 1–3, F, 5	Communications port settings
R	Report	Event report and SER settings
T	Alias	Alias names for analog quantities and Relay Word bits
Z n	Zone Configuration Group 1–6	Zone configuration settings