

One-shot Multi-agent Path Finding

Hongjun Chen 2020.9.29

Path Finding(Environment)

Legend:

Robot 1 and Target 1

Robot 2 and Target 2

Grid Boundary

Moveable Route

(Small) Environment:

rectangular grid map: M × N

robots: X

Movement:

- —up, down, left, right, standstill
- —Asynchronous
- —Uncertain time-consuming

Task

Route Planning • Robot & Robot

Avoiding confliction between

- Robot & Boundary

To overmatch baseline algorithm(A-Star) with less step-cost

Path Finding (Static Solution)

Baseline Algorithm (A-star, of one robot)

Plan the entire path at a time

- 传统planning方法诸如A*、M*等在不同环境中难以灵活平衡exploration与exploition;
- 随着问题规模提升, centralized planner的探索空间快速增长, 计算耗时难以控制;
- 而decentralized planner规划路径时不考虑 其他agent与动态环境,因此经常需要在无 法执行规划结果时进行replan,在多智体场 景下replan的开销非常高昂

Path Finding (Dynamic Solution)

RL-based Algorithm (of one robot)

 different colors represent decisions made at different timesteps

Designing Observation & Action

Action space (of one robot):

- non-moving: up, down, left right, standstill
- moving: no decision (that is, maintain the decision of the previous timestep)

PS: There is 50% for a robot to arrival next position each timestep.

State space (of one robot):

- the cell in which it is currently located (cell id)
- the cell where other robots are currently located
- the cell in which the target is currently located
- The cell where other robot targets are currently located
- Other robots heading (just for moving robot)

多智体人工智能实验室 Multi-Agent Artificial Intelligence Laboratory

Adapting Asynchronous & Reward Design

- In order to adapt synchronous algorithm into the asynchronous movement, we define discrete decision within each timestep.
 - Setting *is_ready* to indicate whether a robot is moving or not.
 - *True* for moving, *False for complete.*
- For each agent:
 - Observation includes:
 - ✓ Distance between each robot and its target
 - ✓ Distance between each robot and others
 - ✓ Previous action of all robots
 - ✓ Current position and target position of all robots
 - ✓ Movement indication of a robot

- Reward for an agent setting:
 - ➤ Having confliction -> -10
 - ➤ Single movement per timestep -> -1
 - ➤ Arriving at its target -> +1000
 - While moving:
 - Keeping current action -> -1
 - □ Changing action -> -10

MAAC solving MAPF

多智体人工智能实验室 Multi-Agent Artificial Intelligence Laboratory

- Multi-Actor-Attention-Critic(MAAC)
 - Centralized learning / Decentralized executing
 - Each actor matches a critic
 - > Critics share an attention network

Figure 1. Calculating $Q_i^{\psi}(o,a)$ with attention for agent i. Each agent encodes its observations and actions, sends it to the central attention mechanism, and receives a weighted sum of other agents encodings (each tranformed by the matrix V)

[1] Iqbal, Shariq, and Fei Sha. "Actor-attention-critic for multi-agent reinforcement learning." International Conference on Machine Learning. PMLR, 2019.

Result (env: 8×8 world size, 6 agents)

Average number of agents reaching the target in every 1000 episodes

Result (env: 8×8 world size, 6 agents)

The number of times that all agents reach goal per 1000 episodes

分析与思考

• Centralized training的MARL(如MAAC)容易导致部分agent采取 passive policy,最终体现为**到达率(success rate)低下**;

• 将传统planning方法与decentralized RL方法相**结合**,是一个比较合理的思路,其中Imitation Learning是一个比较有价值的方向。

Related Work

- Imitation Learning & Reinforcement Learning
 - PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning
 - Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
- Reinforcement Learning +
 - Learning to Cooperate: Application of Deep Reinforcement Learning for Online AGV Path Finding
 - + multi-step ahead tree search
 - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments
 - + evolutionary training approach

PRIMAL

- **PRIMAL** is a novel framework for MAPF that:
 - Combining reinforcement learning and imitation learning
 - Training fully-decentralized but collaborative policies

SIMPLE REWARD STRUCTURE.

Action	Reward		
Move [N/E/S/W]	-0.3		
Agent Collision	-2.0		
No Movement (on/off goal)	0.0 / -0.5		
Finish Episode	+20.0		

[2] Sartoretti, Guillaume, et al. "PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning." IEEE Robotics and Automation Letters 4.3 (2019): 2378-2385.

Behavioral Cloning,行为克隆,其实本质上就是一个标准的监督学习过程,如下图所示:

Imitation Learning

Policy Gradient

具体地说,策略梯度算法将策略建模成为 $\pi_{\theta}(s,a)$,表示在s状态下选择a动作的概率,其中 θ 为参数。并且将负回报函数作为损失函数,应用梯度下降法将期望奖励最大化。定义为

$$J(\theta) = \sum_{s} d(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}(s, a)$$
 (1)

这样,(1)式对参数 θ 求梯度得到

$$\nabla_{\theta} J(\theta) = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}
= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}(s, a) \right]$$
(2)

式子(2)的期望通过均值代替得到

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}(s, a)$$
(3)

a convenient identity

$$\underline{\pi_{\theta}(\tau)\nabla_{\theta}\log \pi_{\theta}(\tau)} = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \underline{\nabla_{\theta}\pi_{\theta}(\tau)}$$

Actor-Critic

从式子(3)来看蒙特卡洛策略梯度算法在策略梯度更新的过程中,考虑的是即时奖励 v_t ,而即时奖励具有较大噪声,为了得到更稳定的表现,可以使用长期回报来替代即时奖励。具体如式(4):

$$\nabla_{\theta} J(\theta) = \sum_{\mathbf{s} \in S} d(\mathbf{s}) \sum_{a \in A} \pi_{\theta}(\mathbf{s}, a) \nabla_{\theta} \log \pi_{\theta}(\mathbf{s}, a) G_{\mathbf{s}, a}$$

$$\tag{4}$$

其中 $G_{s,a}=\sum \lambda^n \mathcal{R}_n$ 定义为(s,a)的长期回报,根据Q函数的定义 $Q(s,a)=\mathbb{E}[G_{s,a}|s,a]$,于是式子(4)使用长期回报期望Q(s,a)直接替代长期回报得到式(5)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) Q(s, a) \right] \tag{5}$$

于是根据(5)式我们可以得到 $\Delta \theta = \nabla_{\theta} \log \pi_{\theta}(s,a) Q(s,a)$,用这种方式更新参数的就是Actor-Critic算法,简称AC算法。其中Critic就是Q(s,a),本质上就是梯度权值,也可以说是评价梯度的重要性。

A2C & A3C

AC算法使用的Q函数是一个随机初始化的函数,需要在交互中学习逼近真正的 \hat{Q} ,这意味着我们在梯度更新中引入了噪声,或者说方差。为了解决这个问题,A2C引入了Baseline的概念。具体地说是通过在(5)式中引入一个Baseline函数 \mathcal{B} 得到(6)式子

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left\{ \nabla_{\theta} \log \pi_{\theta}(s, a) \left[Q(s, a) - \mathcal{B} \right] \right\}$$

$$\mathcal{B}(s) = V(s)$$

最后,令A(s,a)=Q(s,a)-V(s)为优势函数(动作a相对平均表现的优势),可以得到A2C算法的梯度公式

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) A(s, a) \right]$$

PRIMAL

- Training with blocking panelty
- Selecting **RL(A3C)** or **IL(Behavior Cloning)** per episode
- **结果表明:** Decentralized method能够学会较好的个体policy, 且因为policy共享,不存在agent之间的性能差异,目前在较大 规模的任务中相较传统planning方法有**更好的到达率,但在step length方面有较大的差距**;

[2] Sartoretti, Guillaume, et al. "PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning." IEEE Robotics and Automation Letters 4.3 (2019): 2378-2385.

Ablation Study

- 为了检验PRIMAL中模仿学习部分对于policy训练的 影响
 - 完整的PRIMAL (IM0.5——有0.5的概率采取模仿学习)
 - PRIMAL (IM0.1)
 - PRIMAL w/o IM

Result(Path Length)

• 分析:

- Primal采取的behavior cloning方法 仅考虑当前的观测信息,并没有包 含诸如轨迹等时序信息——单步观 测信息不足
- 尽管planning方法能够解决long horizon的pathfinding问题,但是 对于RL的policy而言,难以提供这 样具有远见性的信息——在多智体 系统中,这种问题在动态环境中更 加严重
- Goal-conditioned policy在解决观测视野外的pathfinding时难以保证其policy的efficiency——导致steplength更长

PRIMAL w/o IM

PRIMAL with IM(0.5)

PRIMAL with IM(0.1)

Related Work

- Imitation Learning & Reinforcement Learning
 - PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning
 - Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
- Reinforcement Learning +
 - Learning to Cooperate: Application of Deep Reinforcement Learning for Online AGV Path Finding
 - + multi-step ahead tree search
 - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments
 - + evolutionary training approach

MDP Definition:

From a decentralized point of view, MDP is defined as:

State $s_t^k \in S$: The state of AGV k at time step t considers information in the 5×5 neighboring grids of the AGV k, each grid consists of the positions of obstacles and other AGVs, the goal information of current AGV and other observable AGVs.

Action $a_t^k \in \mathcal{A}$: Action space of each AGV is divided into two parts: move in four cardinal directions or stay still.

Reward Function $r_t^k \in \mathcal{R} \leftarrow \mathcal{S} \times \mathcal{A}$: The one step reward is designed as -0.2 and -0.4 when an AGV moves towards or away from its target, -0.5 for staying still, -20 for colliding with obstacles or the other AGVs, +40 for arriving at the target grid.

Proximal Policy Optimization

Let $r_t(\theta)$ denote the probability ratio $r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$, so $r(\theta_{\text{old}}) = 1$. TRPO maximizes a "surrogate" objective

$$L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]. \tag{6}$$

The superscript CPI refers to conservative policy iteration [KL02], where this objective was proposed. Without a constraint, maximization of L^{CPI} would lead to an excessively large policy update; hence, we now consider how to modify the objective, to penalize changes to the policy that move $r_t(\theta)$ away from 1.

The main objective we propose is the following:

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$
 (7)

MARL with Multi-step Ahead Tree Search

MARL framework:

Value Network. The state-value function is learned by minimizing the following loss function derived from Bellman equation:

$$L_{\theta_{v}} = \left(V_{\theta_{v}}\left(s_{t}^{k}\right) - V_{target}\left(s_{t+1}^{k}; \pi\right)\right)^{2} \tag{1}$$

$$V_{target}\left(s_{t+1}^{k};\pi\right) = r_{t}^{k} + V_{\theta_{\upsilon}'}\left(s_{t+1}^{k}\right) \tag{2}$$

Policy Network. In this paper, we use the same objective in the actor-critic algorithm from Proximal Policy Optimization [11]:

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

$$L_{\theta} = \mathbb{E}_{t} \left[\min \left(r_{t} \left(\theta \right), clip \left(r_{t} \left(\theta \right), 1 - \epsilon, 1 + \epsilon \right) \right) A_{t} \right] \tag{3}$$

$$A_{t} = -V_{\theta_{v}}(s_{t}) + \sum_{\tau=t}^{T-1} r_{\tau} \gamma^{\tau-t} + \gamma^{T-t} V_{\theta_{v}}(s_{T})$$
 (4)

where θ , θ_v denotes the parameters of policy network and value network.

Searching:

$$UCB_l = \frac{Q_l}{N_l} + C_p \frac{p(s_t, a_t)}{1 + N_l}$$

$$C_p$$
表示探索率

Algorithm 1: Multi-agent Training with Searching

```
1: for m = 1 to N_{episode} do
       Reset environment and get initial state
      Stage 1: Sampling
      while t < T do
         for k=1 to K do
 5:
            Calculate probability weights \pi(a_t^k|s_t^k)
 6:
            Create root node v_0 with Q_0 = 0, N_0 = 0
 7:
            while n < N do
 8:
               if any node v_l \in V is not fully-expanded then
 9:
                  Expand v_0 \rightarrow v_I by choosing an action sequence
10:
                  \{a_t, a_{t+1}, \dots a_{t+\tau}\} according to policy \pi
                  Estimate s_{t+\tau} and r_{t+\tau} by simulating actions
11:
                  Add new child v_I to V with
12:
               else
13:
                  Sample a node v_I with the maximum UCB
14:
                  Backward propagation of parent and ancestor
15:
                  nodes by Q_1 = Q_1 + q_1, N_1 = N_1 + 1
               end if
16:
            end while
17:
            Choose v_0 with the largest Q_l/N_l and its action a_t^k
18:
            Execute \mathbf{a}_{t}^{k} and observe reward \mathbf{r}_{t}^{k}, next state \mathbf{s}_{t+1}^{k}
19:
         end for
20:
         Store the transitions (s_t^k, a_t^k, r_t^k, s_{t+1}^k) into M
      end while
22:
      Stage 2: Learning
      Sample a batch of experience: s_t^k, V_{target}(s_{t+1}^k; \pi)
      Update by minimizing the value loss Eq.(1) over the batch
      Update as \theta \leftarrow \theta + \nabla_{\theta} L_{\theta} according to Eq.(3)
27: end for
```

MARL with Multi-step Ahead Tree Search

• Comparison results for AGV path finding in the 30 × 30 grid world:

[3] Zhang, Yi, et al. "Learning to Cooperate: Application of Deep Reinforcement Learning for Online AGV Path Finding." Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems. 2020.

Related Work

- Imitation Learning & Reinforcement Learning
 - PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning
 - Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
- Reinforcement Learning +
 - Learning to Cooperate: Application of Deep Reinforcement Learning for Online AGV Path Finding
 - + multi-step ahead tree search
 - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments
 - + evolutionary training approach

MARL with Evolutionary Training

- An image-based representation which improves agents' robustness to handle different types of dynamic obstacles
- Decomposing a difficult long-range planning problem into multiple easier waypoint-conditioned planning tasks with the help of mature global planners
- An evolutionary multi-agent reinforcement learning approach that gradually eliminate lowperformance policies during training to increase training efficiency and performance

TABLE I: Reward Design

Reward	Value
step penalty r_s	-0.1 (move) or -0.5 (wait)
collision penalty r_c	-5
oscillation penalty r_o	-0.3
off-route penalty r_f	$-\min_{oldsymbol{p}\in\mathcal{S}} oldsymbol{p}_a-oldsymbol{p} _2$
goal-reaching reward r_g	30

[4] Liu, Zuxin, et al. "MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments." arXiv e-prints (2020): arXiv-2007.

Algorithm & Result

TABLE II: Comparison of success rate over different experiment settings

Environment Setting			Success Rate					
map size	agent	dynamic obstacle	MAPPER	MAPPER w/o traj	MAPPER w/o guid	PRIMAL*	LRA*	
20x20	15	10	1.0	0.971	0.877	0.964	0.996	
20x20	35	30	1.0	0.961	0.836	0.980	0.999	
20x20	45	30	0.999	0.854	0.607	0.971	0.997	
60x65	70	100	1.0	0.256	0.516	0.352	1.0	
60x65	130	140	1.0	0.473	0.221	0.404	0.992	
120x130	150	40	0.997	0.324	0.211	0.389	0.994	

[4] Liu, Zuxin, et al. "MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments." arXiv e-prints (2020): arXiv-2007.

```
      Algorithm 1 Multi-Agent Evolutionary Training Approach

      Require: Agents number N; discount factor \gamma; evolution interval K; evolution rate \eta;

      1: Initialize agents' model weights \Theta = \{\Theta_1, ..., \Theta_N\}
```

```
1: Initialize agents' model weights \Theta = \{\Theta_1, ..., \Theta_N\}
       Set accumulated reward R_1^{(k)}, ..., R_N^{(k)} = 0
       // update model parameters via A2C algorithm
       for k = 1, ..., K do
          for each agent i do
              Executing the current policy \pi_{\Theta_i} for T
              timesteps, collecting action, observation and re-
              ward \{a_i^t, o_i^t, r_i^t\}, where t \in [0, T]
             Compute return R_i = \sum_{t=0}^{T} \gamma^t r_i^t
              Estimate advantage \hat{A}_i = R - V^{\pi_{\Theta_i}}(o_i)
9:
             Compute gradients \nabla_{\Theta_i} J = \mathbb{E}[\nabla_{\Theta_i} \log \pi_{\Theta_i} \hat{A}_i]
10:
             Update \Theta_i based on gradients \nabla_{\Theta_i} J
11:
          end for
12:
         R_i^{(k)} = R_i^{(k)} + R_i
       end for
       Normalize accumulated reward to get \bar{R}_1^{(k)}, ..., \bar{R}_N^{(k)}
       Find maximum reward \bar{R}_{i}^{(k)} with agent index j
       // Evolutionary selection
       for each agent i do
          Sample m from uniform distribution between [0,1]
19:
          Compute evolution probability p_i = 1 - \frac{\exp(\eta \bar{R}_i^{(k)})}{\exp(\eta \bar{R}_i^{(k)})}
20:
          if m < p_i then
21:
             \Theta_i \leftarrow \Theta_i
22:
          end if
23:
       end for
```

25: until converged

Related Work

- Imitation Learning & Reinforcement Learning
 - PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning
 - Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
- Reinforcement Learning +
 - Learning to Cooperate: Application of Deep Reinforcement Learning for Online AGV Path Finding
 - + multi-step ahead tree search
 - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments
 - + evolutionary training approach

Hierarchical Decompositional Reinforcement Learning

- Decomposing the planning policy of single agent into:
 - Planning Layer π_1
 - Control Layer π_0

[5] Jendele, Lukas, et al. "Learning Functionally Decomposed Hierarchies for Continuous Control Tasks." arXiv preprint arXiv:2002.05954 (2020).

Hierarchical Decompositional Reinforcement Learning

Planning Layer(DQN)

- Control Layer(DDPG)
 - Learning a goal-conditioned policy

The Q-function (critic) and the policy π (actor) are approximated by using neural networks with parameters θ^Q and θ^{π} . The objective for θ^Q minimizes the loss:

$$L(\theta^Q) = \mathbb{E}_{\mathcal{M}} \left[\left(Q(s_t, g_t, a_t; \theta^Q) - y_t \right)^2 \right], \text{ where}$$

$$y_t = r(s_t, g_t, a_t) + \gamma Q(s_{t+1}, g_{t+1}, a_{t+1}; \theta^Q).$$
(1)

The policy parameters θ^{π} are trained to maximize the Q-value:

$$L(\theta^{\pi}) = \mathbb{E}_{\pi} \left[Q(s_t, g_t, a_t; \theta^Q) | s_t, g_t, a_t = \pi(s_t, g_t; \theta^{\pi}) \right]$$
 (2)

[5] Jendele, Lukas, et al. "Learning Functionally Decomposed Hierarchies for Continuous Control Tasks." arXiv preprint arXiv:2002.05954 (2020).

改进思路——解决模仿学习低效的问题

- Step1:为observation添加历史轨迹信息
- Step 2:将原本end-to-end的goal-conditioned policy拆分为 hierarchical框架:
 - 上层planning layer负责给出当前agent要到达的下一个waypoint;
 - 下层的control layer负责学习一个goal-conditioned policy,到达下一个waypoint。
- Step 3:改进policy的模仿学习method——将behavior cloning替换为goalGAIL
- Step 4:将模仿的算法替换为其他decentralized传统planning算法(odrm* 为centralized,训练耗时大,且难以求解问题规模较大的问题)

Thank you

• End

