Frederick Robinson Fall 2002

1 Suppose P(x,y,z), Q(x,y,q), and R(x,y,z) are C^{∞} functions on \mathbb{R}^3 which vanish identically if $|x| \geq 5$ and, $|y| \geq 5$, or $|z| \geq 5$. Prove that the volume integral

$$\int_{-6}^{6} \int_{-6}^{6} \int_{-6}^{6} d(Pdy \wedge dz + Qdx \wedge dz + Rdx \wedge dy) = 0$$

(Do this directly, not by quoting Stokes' Theorem: this is a special case of a proof of Stokes' Theorem!)

- Suppose that $V = P(x,y,z) \frac{\partial}{\partial x} + Q(x,y,z) \frac{\partial}{\partial y} + R(x,y,z) \frac{\partial}{\partial z}$ is a C^{∞} vector filed on \mathbb{R}^3 with $V \neq \vec{0}$ at the origin. Find a necessary and sufficient condition for there to exist a C^{∞} function $\lambda(x,y,z)$ in some neighborhood of the origin such that λV is the gradient of a C^{∞} function on the neighborhood.
- 3 Let $T_t: \mathbb{R}^3 \to \mathbb{R}^3$ be the right-hand rule rotation around the positive z-axis by t degrees and $S_s: \mathbb{R}^3 \to \mathbb{R}^3$ be the right-hand rule rotation around the positive x-axis by t degrees.
- 3.1 Find the infinitesimal generators of the flows T_t and S_t , i.e., the vector fileds X and Y, respectively, on \mathbb{R}^3 whose flows are $\{T_t\}$ and $\{S_t\}$.
- 3.2 Compute the commutator

$$T_{-t} \circ S_{-t} \circ T_t \circ S_t$$
.

- 3.3 Compare the result of (B) (lowest order non-identically zero term) with the Lie bracket [X, Y].
- 4 Take as given that a C^{∞} 2-form ω on S^2 is of the form $d\theta$ for some C^{∞} 1-form θ if and only if $\int_{X^2} \omega = 0$. Use this to show that every C^{∞} 2-form Ω on $\mathbb{R}P^2$ has the form $d\Lambda$ for some C^{∞} 1-form Λ . (Do not just quote DeRham's Theorem here.)
- 5.1 Suppose $F: S^1 \to \mathbb{R}^3$ is a C^{∞} function such that dF is nowhere zero (on S^1). Prove that there is a two-dimensional subspace P of \mathbb{R}^3 such that $\pi_P \circ F: S^1 \to \mathbb{R}^3$ has nowhere vanishing differential, where $\pi_P =$ orthogonal projection on P.
- 5.2 Show by example (a picture with explanation is all right) that there is such an F that is also 1 to 1 (injective) but is such that, for all P, $\pi_P \circ F$ fails to be injective.
- 5.3 Show that if $F: S^1 \to \mathbb{R}^4$ is C^{∞} and injective then there is a three-dimensional subspace H of \mathbb{R}^4 such that $\pi_H \circ F$ is injective, where $\pi_H =$ orthogonal projection on H.