Computational Microelectronics L19

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Small-signal analysis

Transient simulation

- Consider a single device, PN junction. (A symmetric one with 10¹⁷ cm⁻³)
 - While its cathode is grounded, the anode voltage is

$$V_{anode}(t) = V_{anode,DC} + v_{amp,sin}\sin(2\pi ft)$$

- We assume a small amplitude, v_{amp} . (How small?)
- Then, observe the anode current, after a long time elapses. $I_{anode}(t) = I_{anode,DC} + i_{amp,sin} \sin(2\pi ft) + i_{amp,cos} \cos(2\pi ft)$
- -Question: Why do we have only $I_{anode,DC}$, $i_{amp,sin}\sin(2\pi ft)$, and $i_{amp,cos}\cos(2\pi ft)$ terms? Is this device a linear device?

Getting the frequency response

- Run a long transient simulation.
 - The initial response (due to introducing the time-varying excitation) will be diminished.
 - -Then, two periods show the same response.
 - By using responses of the last period, calculate the frequency components. For example,

$$i_{amp,sin} = \frac{2}{T} \int_0^T I_{anode}(t) \sin(2\pi f t) dt$$

$$i_{amp,cos} = \frac{2}{T} \int_0^T I_{anode}(t) \cos(2\pi f t) dt$$

10th period @ 0.5 V & 1 MHz

- Consider a 1 MHz signals, f is 10^6 Hz.
 - -Amplitude is 1 mV.
 - For each period, 100 intervals are assigned.
 - Its DC value is 1.4326 nA.
 - Its sine amplitude is 54.958 pA.
 - Its cosine amplitude is 7.6511 pA.

10th period @ 0.5 V & 100 MHz

- Consider a 100 MHz signals, f is 10^8 Hz.
 - -The frequency is 100 times higher. Now it looks like a cosine function.
 - Its DC value is 1.4326 nA. (Not changed)
 - Its cosine amplitude is 765.10 pA. (100 times larger)

Response as a function of frequency

- For example, from 1 Hz to 100 GHz?
 - -The number of frequencies is N_f .
- Okay, then, starting from the DC solution,
 - Run several transient simulations.
 - Estimate the computational efforts:

(Single DC calculation) + (Single transient calculation) $\times N_f$

It takes long...

An efficient approach

- Can we avoid the time-consuming transient calculation to obtain the frequency responst?
 - -The answer is "Yes!"
 - In this efficient approach, the computational efforts can be expressed as

(Single DC calculation) + (Single frequency calculation) $\times N_f$

It is much faster!

Important assumption

- We assume that time-varying quantities are "small" in their amplitudes.
 - Variables are expressed as

$$\phi(t) = \phi_{DC} + \delta\phi(t)$$

$$n(t) = n_{DC} + \delta n(t)$$

$$p(t) = p_{DC} + \delta p(t)$$

- Under this assumption, we can write the DD model as

$$\nabla \cdot \left[\epsilon \nabla \phi_{DC} + \epsilon \nabla \delta \phi \right] + q p_{DC} + q \delta p - q n_{DC} - q \delta n + q N_{dop}^{+} = 0$$
$$-q \frac{\partial \delta n}{\partial t} + \nabla \cdot \left(\mathbf{J}_{n,DC} + \delta \mathbf{J}_{n} \right) = 0$$
$$q \frac{\partial \delta p}{\partial t} + \nabla \cdot \left(\mathbf{J}_{p,DC} + \delta \mathbf{J}_{p} \right) = 0$$

Current densities

- Nonlinearity comes from the current densities.
 - Remember that

$$\mathbf{J}_n = -q\mu_n n \nabla \phi + q D_n \nabla n$$
$$\mathbf{J}_p = -q\mu_p p \nabla \phi - q D_p \nabla p$$

- With time-varying variables,

$$\delta \mathbf{J}_{n} = -q\mu_{n}n_{DC}\nabla\delta\phi - q\mu_{n}\delta n\nabla\phi_{DC} + qD_{n}\nabla\delta n$$

$$\delta \mathbf{J}_{p} = -q\mu_{p}p_{DC}\nabla\delta\phi - q\mu_{p}\delta p\nabla\phi_{DC} - qD_{p}\nabla\delta p$$

- -The second order terms are nelected!
- Of course, in the practical implementation, the Scharfetter-Gummel discretization is employed.

Linearization

- Note that ϕ_{DC} , n_{DC} , and p_{DC} are the DC solutions.
 - Without the time-dependent terms, they satisfy the DD model, too:

$$\nabla \cdot \left[\epsilon \nabla \phi_{DC} + \epsilon \nabla \delta \phi \right] + q p_{DC} + q \delta p - q n_{DC} - q \delta n + q N_{dop}^{+} = 0$$

$$-q \frac{\partial \delta n}{\partial t} + \nabla \cdot \left(\mathbf{J}_{n,DC} + \delta \mathbf{J}_{n} \right) = 0$$

$$q \frac{\partial \delta p}{\partial t} + \nabla \cdot \left(\mathbf{J}_{p,DC} + \delta \mathbf{J}_{p} \right) = 0$$

In other words,

$$\nabla \cdot \left[\epsilon \nabla \delta \phi \right] + q \delta p - q \delta n = 0$$

$$-q \frac{\partial \delta n}{\partial t} + \nabla \cdot (\delta \mathbf{J}_n) = 0$$

$$q \frac{\partial \delta p}{\partial t} + \nabla \cdot (\delta \mathbf{J}_p) = 0$$

Relation to Jacobian

- The linearized system is closely related to the Jacobian matrix.
 - -The product between the Jacobian matrix and the update vector $(\mathbf{A}\mathbf{x})$ describes the following functions:

$$\nabla \cdot \left[\boldsymbol{\epsilon} \nabla \delta \boldsymbol{\phi} \right] + q \delta p - q \delta n$$

$$\nabla \cdot \left(\delta \mathbf{J}_{n} \right)$$

$$\nabla \cdot \left(\delta \mathbf{J}_{p} \right)$$

- -Simply speaking, the DC Jacobian matrix is related to the small-signal analysis at the zero frequency (or the low-frequency limit).
- –Of course, we must consider $-q \frac{\partial \delta n}{\partial t}$ and $q \frac{\partial \delta p}{\partial t}$ for general cases.

Non-zero frequency

- In the frequency domain, let us introduce the time dependence of $e^{j2\pi ft}$.
 - -Then, the time derivation terms can be expressed as

$$-q \frac{\partial \delta n e^{j2\pi f t}}{\partial t} = -q(j2\pi f) \delta n e^{j2\pi f t}$$
$$q \frac{\partial \delta p e^{j2\pi f t}}{\partial t} = q(j2\pi f) \delta p e^{j2\pi f t}$$

-Therefore, in the frequency domain, the linearized system reads

$$\nabla \cdot [\epsilon \nabla \delta \phi] + q \delta p - q \delta n = 0$$
$$-j 2\pi f q \delta n + \nabla \cdot (\delta \mathbf{J}_n) = 0$$
$$j 2\pi f q \delta p + \nabla \cdot (\delta \mathbf{J}_p) = 0$$

Calculate dI_{anode}/dV_{anode} .

- First, prepare the DC solution.
 - -Since it is the solution (or very close to the solution), the residue vector is a null vector (or very close to a null vector).

$$\mathbf{A}\mathbf{\delta} \approx 0$$

- -Then, re-use the Jacobian matrix, A.
- -The boundry condition for the anode potential is given as

$$\phi_{anode} - \phi_{anode,0} - V_{anode} = 0$$

– Now, the response, $\delta\phi_{anode}$, must satisfy $\delta\phi_{anode}=1$

1 means the unit perturbation.

-Therefore, the RHS vector is modified to include 1 for the adode potential.

An example for PN junction

• Once again, consider a PN junction at 0.5 V.

-The response of electrostatic potential is drawn. (line)

- Difference between 0.5 V and 0.501 V (X 1,000) are drawn, too.

(symbol)

-They agree well.

Responses of carrier densities

- At the same bias, δn and δp are drawn.
 - The depletion region gets narrower.
 - -Symbols are obtained from the finite difference.

Response of terminal current

- In a similar way, we can calculate the terminal current.
 - -It is 54.708 nA/V.
 - From the difference between 0.5 V and 0.501 V, we obtain 55.766 nA/V, which is quite close.
 - From the difference between 0.5 V and 0.500001 V, we obtain 54.774 nA/V, which is even closer to the small-signal value.

Nonzero frequency

- Frequency-dependent terms should be added.
 - It is noted that $\frac{\partial \delta n}{\partial t}$ contributes $(j2\pi f)\delta n$.
- Displacement current
 - Just like the transient simulation, we must include the displacement current.

Relatively low frequency, 1 MHz

- Real (blue) and imaginary (red) parts of $\delta\phi$
 - We have a non-vanishing imaginary part.

Relatively high frequency, 100 MHz

- ullet Real (blue) and imaginary (red) parts of $\delta\phi$
 - Its real part looks similar, but the imaginary one is much larger (x100).

Admittance as a function of frequency

- 100 kHz, 1 MHz, 10 MHz, 100 MHz, and 1 GHz
 - Real (blue)
 - Imaginary (red)
- R and C

Homework#19

- Due: AM08:00, November 26
- Problem#1
 - Implement a small-signal DD solver. Check a valid range of the small-signal approximation.

Thank you for your attention!