$$\frac{\partial \mathcal{A}}{\partial \phi} \Big|_{\mathcal{A}_0 = \mathcal{A}_0 = 0} = e^{\sum_{i=1}^{3} \mathcal{A}_{i}^*}, \quad \frac{\partial \mathcal{A}}{\partial \phi} \Big|_{\mathcal{A}_0 = \mathcal{A}_0 = 0} = 0$$

4、证明 $\chi'=A\chi$, $\chi\in \mathbb{R}^n$, $t\in \mathbb{R}$ 与 $\chi'=B\chi$, $\chi\in \mathbb{R}^n$, $t\in \mathbb{R}$ 是從分同配的 (即)可微映射 $h:\mathbb{R}^n\to\mathbb{R}^n$, sh. $\forall \chi'=A\chi$ 的 施 $\{-1^t\}$, h $\{-1^t\}$ 映成 $\chi'=X$ 的施 $\{-1^t\}$, h $\{-1^t\}$ 映成 $\chi'=X$ 的施 $\{-1^t\}$, h $\{-1^t\}$ 映成 $\chi'=X$ 的施 $\{-1^t\}$, h $\{-1^t\}$ 映成 $\chi'=B\chi$ 的施 $\{-1^t\}$, $\{-1^t\}$ 映成 $\chi'=B\chi$ 的施 $\{-1^t\}$, $\{-1^t\}$ 中心 $\{-1$

上次 PEE的一个题:

Q(Z) EL™(IR)∩C(IR)·利用Green函数构造应解问题

$$\begin{cases} \mathcal{U}_{xx} + \mathcal{U}_{yy} = 0 & \chi \in \mathbb{R}. \ \mathcal{Y} > 0 \\ \mathcal{U}(x,0) = (\rho(x)) & \chi \in \mathbb{R} \end{cases}$$

的有界解 u(x,y). 证明唯一性.