

LFA0001 – Linguagens Formais e Autômatos Aula 08 Propriedades das Linguagens Regulares

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Karina G. Roggia 2016 LFA0001 - Aula08 1 / 29

Sumário

Caracterização das Linguagens Regulares

Bombeamento para Linguagens Regulares

Operações Fechadas sobre Ling. Regulares

Ling. Regular Vazia, Finita ou Infinita

Igualdade de Ling. Regulares

Karina G. Roggia 2016 LFA0001 - Aula08 2 / 29

Propriedades das Ling. Regulares

Ling. Regulares são representadas por formalismos

- de pouca complexidade
- com grande eficiência
- de fácil implementação

Classe relativamente simples de linguagens, logo

- é restrita e limitada
- facilmente se define linguagens n\u00e3o regulares

Karina G. Roggia 2016 LFA0001 - Aula08 3 / 29

Questões sobre Linguagens Regulares

- Como determinar se uma linguagem é regular?
- Linguagens são conjuntos, portanto as linguagens regulares são..
 - fechadas para união?
 - fechadas para concatenação?
 - fechadas para intersecção?
 - ...
- Como verificar se uma Linguagem Regular é finita, infinita ou vazia?
- É possível analisar duas Linguagens Regulares e concluir se são iguais ou diferentes?

Análise das Propriedades

A análise será desenvolvida somente para **um** dos formalismos estudados

Outro formalismo? Tradução entre eles.

Obs: Complexidade de Tempo para Autômatos Finitos

Autômatos finitos estão na classe de algoritmos mais eficientes em termo de tempo de processamento

- supondo que toda a entrada deva ser lida
- se a hipótese for relaxada, pode-se obter algoritmos mais eficientes para algumas linguagens (ex: Σ*)

Qualquer autômato finito é igualmente eficiente

- a menos de eventual redundância de estados
- o que não influi no tempo de processamento

Eliminação de redundância de estados

• Autômato Finitos (Determinístico) Mínimo

Karina G. Roggia 2016 LFA0001 - Aula08 6 / 29

Lema do Bombeamento

Ideia básica

- Se uma linguagem é regular, então
 - é aceita por um AFD com *n* estados.
- Se o AFD reconhece alguma palavra w tal que |w| > n
 - o processamento passa por algum estado q mais de uma vez
 - portanto existe um ciclo na função programa que passa por q

Karina G. Roggia 2016 LFA0001 - Aula08

Bombeamento para Ling. Regulares

Dado AFD sendo

- n o número de estados
- w palavra aceita pelo AFD com $|w| \ge n$

Então w pode ser subdividida em três subpalavras w = uvz

- $|uv| \le n e |v| \ge 1$
- v é a parte de w reconhecida pelo ciclo
- o ciclo pode ser executado (bombeado) zero ou mais vezes

Para qualquer $i \ge 0$, uv^iz é palavra aceita pelo AFD

Lema do Bombeamento para Ling. Regulares

Teorema (Lema do Bombeamento para Ling. Regulares)

Se L é uma Linguagem Regular, então:

- existe constante n tal que
- para qualquer palavra $w \in L$ onde $|w| \ge n$
- w = uvz onde
 - $\mathbf{v} \neq \varepsilon$
 - $|uv| \leq n$
 - para todo $i \in \mathbb{N}$, $uv^i z \in L$.

Se L é Ling. Regular, então existe um AFD $M=\langle \Sigma,Q,\delta,q_0,F\rangle$ tal que $\mathsf{ACEITA}(M)=L$

Suponha que:

- n é o cardinal de Q
- existe $w = a_1 a_2 \dots a_m \in L$ tal que $m \ge n$
- $\delta(q_0, a_1) = q_1$
- $\delta(q_1, a_2) = q_2$
- . . .
- $\bullet \ \delta(q_{m-1},a_m)=q_m$

Como $m \ge n$, então existe r e s com $0 \le r < s \le n$ tais que

- $q_r = q_s$
- $\bullet \ \delta^*(q_0,a_1\ldots a_r)=q_r$
- $\bullet \ \delta^*(q_r,a_{r+1}\ldots a_s)=q_s$
- $\bullet \ \delta^*(q_s,a_{s+1}\ldots a_m)=q_m$

Sejam

- $u = a_1 \dots a_r$
- $v = a_{r+1} \dots a_s$
- $z = a_{s+1} \dots a_m$

Como $r < s \le n$, então

$$|v| \ge 1$$
 e $|uv| \le n$

Como $q_r = q_s$, então v é reconhecida em um ciclo.

Portanto, para todo $i \in \mathbb{N}$, $uv^iz \in L$.

Exemplo

- n = 4
- para w = abbba
 - $q_r = q_s =$
 - u =
 - v =
 - z =

Exemplo

- n = 4
- para w = abbba
 - $\bullet \quad q_r = q_s = q_1$
 - u = a
 - v = bb
 - z = ba

Investigação se uma Linguagem é Regular

Mostrar que L é Regular

• representar L a partir de algum dos formalismos regulares

Mostrar que L não é Regular

- desenvolvida caso a caso
- pode-se usar o Lema do Bombeamento

2016 LFA0001 - Aula08 13 / 29

Exemplo

 $L = \{w \mid w \text{ possui o mesmo nro de símbolos } a \in b\}$

Suponha L regular. Então há AFD com n estados que aceita L. Seja $w=a^nb^n$. $w\in L$ com $|w|=2n\geq n$. Portanto, pelo lema do bombeamento, w=uvz tal que

- $|uv| \leq n$
- $|v| \geq 1$
- $\forall i \in \mathbb{N}, uv^i z \in L$

Absurdo! Como $|uv| \le n$

- uv é composta exclusivamente por símbolos a
- uv^kz para $k \ge 2$ não pertence a L (possui mais as do que bs)

Karina G. Roggia 2016 LFA0001 - Aula08 14 / 2¹

Operações Fechadas sobre Ling. Regulares

Álgebra de Linguagens Regulares

Construção de novas linguagens a partir de conhecidas

Classe das Linguagens Regulares é fechada para

- união
- concatenação
- complemento
- intersecção

Karina G. Roggia 2016 LFA0001 - Aula08 15 / 29

Operações Fechadas sobre Ling. Regulares

Teorema (Operações Fechadas sobre Ling. Regulares)

A Classe das Linguagens Regulares é fechada para as operações de:

- união
- concatenação
- complemento
- intersecção

Demonstração:

União e Concatenação

Trivial a partir da definição de Expressão Regular

Karina G. Roggia 2016 LFA0001 - Aula08 16 / 29

Complemento

Suponha L uma Linguagem Regular sobre Σ^* . Então existe AFD

$$M = \langle \Sigma, Q, \delta, q_0, F \rangle$$

tal que ACEITA(M) = L.

Construiremos um AFD M_C que aceitará \overline{L} .

Ideia: inverter as condições de ACEITA e REJEITA de M.

• Relembrar que *M* pode rejeitar por indefinição.

$$M_C = \langle \Sigma, Q_C, \delta_C, q_0, F_C \rangle$$

- $\bullet \ \ Q_C = Q \uplus \{d\}$
- $F_C = Q_C \setminus F$
- δ_C é como δ , adicionando para todo $a \in \Sigma$ e $q \in Q$, as transições:
 - $\delta_C(q, a) = d$ se $\delta(q, a)$ não é definida
 - $\delta_C(d,a)=d$

Claramente, M_C é tal que

$$ACEITA(M_C) = \overline{L}$$
, ou seja, $ACEITA(M_C) = REJEITA(M)$

Karina G. Roggia 2016 LFA0001 - Aula08 18 / 29

Intersecção

Suponha L_1 e L_2 linguagens regulares. Pela lei de DeMorgan

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}$$

Como a Classe das Linguagens Regulares é fechada para complemento e união, também é fechada para intersecção.

Exemplo

Complemento de Linguagem Regular

Exemplo

Complemento de Linguagem Regular

$$M_C = \langle \{a, b\}, \{q_0, q_1, q_2, q_f, d\}, \delta_C, q_0, \{q_0, q_1, q_2, d\} \rangle$$

Linguagem Regular Vazia, Finita ou Infinita

Teorema (Linguagem Regular Vazia, Finita ou Infinita)

Se L é uma Linguagem Regular aceita por um AFD

 $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ com n estados, então L é:

Vazia sse M **não** aceita qualquer palavra w tal que |w| < n

Finita sse M não aceita qualquer palavra w tal que n < |w| < 2n

Infinita sse M aceita palavra w tal que $n \le |w| < 2n$

Infinita sse M aceita palavra w tal que $n \le |w| < 2n$

$$(\Leftarrow)$$

Verificar se M aceita alguma palavra w tal que $n \le |w| < 2n$

- processar o autômato para todas as entradas w neste intervalo
- se existe $w \in L$, ela pode ser definida como w = uvz
 - $|uv| \leq n$
 - $|v| \geq 1$
- então para todo $i \in \mathbb{N}$, $uv^iz \in L$

Logo L é infinita.

 (\Rightarrow)

Se L é infinita, então existe w tal que $|w| \ge n$.

Duas possibilidades:

Caso 1: |w| < 2n

• prova está completa

Caso 2: $|w| \ge 2n$ Suponha que

- não existe palavra de comprimento menor de 2n aceita
- w é a menor palavra tal que $|w| \ge 2n$

w pode ser definida como w = uvz

- $|uv| \le n$ e $|v| \ge 1$
- em particular, $1 \le |v| \le n$

Logo, $uz \in L$, o que é absurdo, pois...

- $|uz| \ge 2n$ Contradiz suposição de que w é menor palavra com $|w| \ge 2n$
- |uz| < 2n $n \le |uz| < 2n$ (pois $|uvz| \ge 2n, 1 \le |v| \le n$) Contradiz suposição de que não existe w onde $n \le |w| < 2n$

Vazia sse M não aceita qualquer palavra w tal que |w| < n

Processa M para todas as palavras de comprimento menor que n Se rejeita todas as palavras: linguagem vazia.

• Exercício: detalhamento da prova.

Finita sse M não aceita qualquer palavra w tal que $n \le |w| < 2n$

Prova por contraposição, portanto a mesma prova para o caso de linguagem infinita.

• Exercício: explicar a afirmação acima.

Exemplo

Linguagem Regular Infinita

A linguagem é infinita sse aceita palavra w tal que $n \le |w| \le 2n$

- aabaa é aceita
- 3 ≤ |aabaa| < 6

Logo, a linguagem aceita pelo autômato é infinita.

Karina G. Roggia 2016 LFA0001 - Aula08 27 / 29

Igualdade de Linguagens Regulares

Existe algoritmo para **verificar** se dois autômatos finitos são equivalentes

Teorema (Igualdade de Ling. Regulares)

Se M_1 e M_2 são autômatos finitos, então existe algoritmo para determinar se

$$ACEITA(M_1) = ACEITA(M_2)$$

Karina G. Roggia 2016 LFA0001 - Aula08 28 / 29

Suponha M_1 e M_2 autômatos finitos tal que ACEITA $(M_1) = L_1$ e ACEITA $(M_2) = L_2$. Seja a linguagem L_3 tal que

$$L_3 = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

 L_3 é linguagem regular e, portanto, é possível construir M_3 tal que ACEITA $(M_3) = L_3$.

Porém, $L_1 = L_2$ sse L_3 é vazia.

Como há algoritmo para verificar se uma linguagem é vazia, o teorema está demonstrado.

Karina G. Roggia 2016 LFA0001 - Aula08 29 / 29