

Revisão bibliográfica

Eduardo Ogasawara eduardo.ogasawara@cefet-rj.br https://eic.cefet-rj.br/~eogasawara

Revisão bibliográfica

Objetivos:

- Compreender o assunto estudado
- Identificar lacunas na pesquisa e novos temas
- Verificar se um trabalho é novo ou inovador
- Evitar pesquisas infrutíferas
- Apoiar teoricamente métodos e abordagens
- Mapear trabalhos relacionados

Onde pesquisar?

- Fontes de informação confiáveis bases indexadas (uso recomendado):
 - Google Scholar (abrangente, mas inclui documentos não revisados)
 - Scopus (indexação rigorosa, inclui conferências e periódicos)
 - Web of Science (alto controle de qualidade, impacto acadêmico)
 - IEEE Xplore (foco em engenharia e tecnologia)
 - ACM Digital Library (ciência da computação)
- Fontes não recomendadas:
 - Wikipedia: Útil para um primeiro contato, mas não deve ser citada
 - Blogs e sites informais: Não possuem revisão por pares e podem conter erros

Google Scholar e a revisão por pares

- Atenção: Uma parcela significativa dos trabalhos listados no Google Scholar pode não ser revisada por pares
- Como verificar se um artigo é revisado por pares?
 - Verifique a fonte: Periódicos e conferências de alto impacto costumam ter revisão por pares
 - Procure pelo DOI: Muitas publicações revisadas por pares possuem DOI
 - Busque no site da revista/conferência: Informações sobre o processo de revisão estão disponíveis
- Dica: Sempre priorize artigos de periódicos indexados e conferências com revisão por pares para garantir a credibilidade das fontes

Formas de conduzir uma revisão bibliográfica

- Busca ad-hoc
 - Exploratória, sem critérios rígidos
 - Boa para obter uma visão inicial sobre um tema
- Busca sistemática
 - Baseada em um protocolo definido
 - Necessária para revisões rigorosas
- Snowballing
 - Segue citações para expandir a busca
 - Complementa a busca sistemática

WWW.PHDCOMICS.COI

Elementos levantados

- Essenciais para Avaliação de um Artigo:
 - Problema formulado: A questão de pesquisa está claramente definida?
 - Síntese das descobertas: Quais contribuições o artigo oferece para a área?
 - Análise da metodologia: O método usado é adequado e replicável?
 - Aplicação e análise teórica: A abordagem é prática ou apenas conceitual?
 - Dados coletados e avaliados: O artigo apresenta evidências concretas?
- Dica: O critério de avaliação deve ser ajustado de acordo com o problema de pesquisa

Anotações durante as revisões

- Registrar informações estratégicas facilita a comparação entre diferentes artigos:
 - Contribuição: O que o artigo adiciona à área?
 - Critérios para comparação: Como ele se diferencia de outros trabalhos?
 - Motivação e aplicação: Quais problemas ele resolve?
 - Limitações: O artigo apresenta restrições metodológicas ou lacunas?
- Dicas:
 - Use ferramentas para armazenar e organizar anotações
 - Fichamento: Prepare um parágrafo sintetizando cada artigo segundo os critérios de comparação, limitações e diferenças em relação à sua proposta

Formação do conhecimento

Passos Essenciais:

- Pesquisar artigos: O estado da arte geralmente está em inglês
- Ler e selecionar artigos: Focar na contribuição e relevância
- Identificar trabalhos relacionados: Quem já trabalhou no problema? Como se diferenciar?

Dica:

- Priorize publicações de conferências e periódicos reconhecidos
- Busque artigos de revisão (surveys) para obter um panorama geral

Busca sistemática: como fazer?

- Montar a string de busca:
 - "games" AND "education" → 65.000 artigos
 - "computer games" AND "education" → 3.500 artigos
 - "computer games" AND "education" AND "math" → 540 artigos
 - "computer games" AND "education" AND "math" AND "geometry" → 85 artigos
- Filtrar resultados:
 - Aplicar critérios de exclusão (anos, relevância, tipo de publicação)
 - Exportar referências em formato BibTeX

Busca sistemática: exemplo de uso no Scopus

- Use conectores booleanos corretamente:
 - "machine learning" AND "healthcare" (busca mais específica)
 - "machine learning" OR "deep learning" (abrange mais artigos)
- Refine a busca com filtros: ano, área do conhecimento, idioma, tipo
- Dica:
 - Faça testes com diferentes combinações para obter resultados mais relevantes

Busca sistemática: exportando o resultado em formato BibTeX

https://www.scopus.com

Mapa sistemático & revisão sistemática

- Mapa sistemático:
 - Organiza publicações com foco em tendências e categorias gerais
 - Classifica artigos por termos principais e resumos
 - Ideal para identificar temas emergentes
- Revisão sistemática:
 - Análise crítica, meticulosa e ampla da literatura
 - Responde a uma pergunta de pesquisa específica
 - Cobre um conjunto menor de publicações, mas analisa cada uma em profundidade

Snowballing: Expandindo a pesquisa

- Tipos de Snowballing:
 - Backward Snowballing:
 - Verificar referências citadas em um artigo base
 - Melhor para identificar trabalhos fundamentais em uma área
 - Forward Snowballing:
 - Verificar artigos que citaram um artigo base
 - Melhor para encontrar pesquisas mais recentes e avanços
- Ferramentas úteis:
 - Scopus (https://www.scopus.com)
 - Connected Papers (https://www.connectedpapers.com)

Snowballing: Exemplo usando Connected Papers

- Permite explorar artigos relacionados de forma visual
- Ajuda a identificar redes de citações e artigos-chave na área
- Dica: Use para complementar a busca em bases indexadas e descobrir trabalhos semântica e metodologicamente próximos

https://www.connectedpapers.com

Snowballing: exemplo usando Scopus

https://www.scopus.com

Revisão sistemática vs. snowballing

- Revisão sistemática:
 - Area de aplicação: medicina e engenharia de software
 - Tipo de temas: fechado, bem delimitado
 - Coberta: Baseada em palavras-chave
- Snowballing:
 - Area de aplicação: busca e recuperação de informação
 - Tipo de temas: abertos, menos estruturado
 - Cobertura: Baseado na relevância das citações
- Dicas:
 - Se o campo de estudo possui muitas publicações consolidadas, a revisão sistemática pode ser mais eficiente
 - Para áreas emergentes, o snowballing pode oferecer melhores resultados

https://www.scopus.com

Como decidir se um artigo é relevante?

- Fluxo de decisão:
 - Leia o resumo: Se for relevante, continue
 - Leia a introdução: Identifique o problema, solução e contribuição
 - Leia a conclusão: Verifique se os resultados são válidos
 - Leia o artigo completo (se necessário): Faça anotações detalhadas

Gerenciamento de referências

- Um bom gerenciamento evita retrabalho e inconsistências na escrita científica
- Ferramentas recomendadas:
 - Zotero → Interface intuitiva, permite armazenar PDFs
 - Mendeley → Facilita a colaboração entre pesquisadores
 - JabRef → Focado em explorar arquivos BibTeX
- Dica: sempre renomeie os arquivos de artigos com nomes padronizados e crie pastas organizadas por tema

Considerações finais

- Revisões bibliográficas são essenciais para embasar um trabalho científico
- O uso de métodos como busca sistemática e snowballing melhora a qualidade da revisão
- Ferramentas de gerenciamento de referências facilitam a organização e escrita
- O sucesso de uma pesquisa depende da qualidade da revisão bibliográfica

Referências

[1] D. G. Perovano, Manual de metodologia da pesquisa científica. Editora Intersaberes, 2016.
[2] A. L. Cervo, P. A. Bervian, e R. da Silva, Metodologia Científica. Pearson Universidades, 2006.
[3] R. Wazlawick, 2017, Metodologia de Pesquisa para Ciência da Computação. Elsevier Brasil.
[4] J. Zobel, 2015, Writing for Computer Science. Springer.

