NGS - variant analysis

Introduction to variant analysis

Why study variants?

- Find causes for phenotypic variation
- Understand relatedness

https://en.wikipedia.org/wiki/Genome-wide_association_study

Mutation

Change in DNA sequence

Mutations - causes

Change in DNA sequence

- Repair mistakes
- Unbalanced mitosis
- Transposable elements

https://nl.wikipedia.org/wiki/Springend_gen

Genomic variation

- inherited germline mutation
- cells somatic mutation

Question 1

What kind of mutation has caused the flower to turn yellow?

- A. Somatic mutation
- B. Germline mutation
- C. Both

Detecting mutations

- Phenotypic analysis
- Molecular analysis
- Sequencing

image: https://www.khanacademy.org

Genetic association

Small mutations

Single nucleotide polymorphism (SNP)

ATCATGACCGTCA ATCATGTCCGTCA

Insertion/deletion (INDEL)

ATCATGACCGTCA ATCATG---GTCA

Large mutations

- Structural variance (> 1,000 base pairs)
 - Copy number variation
 - Translocations
 - Inversions
- Chromosomal abberation

https://en.wikipedia.org/wiki/Aneuploidy

Haplotypes

- NGS variants: mostly SNP
- Most SNPs are bi-allelic e.g. [A/T], [G/C]
- Genetic variation is often multi-allelic

This course

- Inherited (germline) small mutations
- Detection by next generation sequencing (NGS)

