

(43) International Publication Date 30 October 2003 (30.10.2003)

**PCT** 

(10) International Publication Number WO 03/089583 A2

(51) International Patent Classification7:

......

- (21) International Application Number: PCT/US03/11497
- (22) International Filing Date: 15 April 2003 (15.04.2003)
- (25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

| , | TIMINITY Data. |                                |    |
|---|----------------|--------------------------------|----|
|   | 60/372,669     | 16 April 2002 (16.04.2002)     | US |
|   | 60/374.823     | 24 April 2002 (24.04.2002)     | US |
|   | 60/376,558     | I May 2002 (01.05.2002)        | US |
|   | 60/381,366     | 20 May 2002 (20.05.2002)       | US |
|   | 60/403,648     | 16 August 2002 (16.08.2002)    | US |
|   | 60/411,882     | 20 September 2002 (20.09.2002) | US |
|   | 60/424,336     | 7 November 2002 (07.11.2002)   | US |
|   |                |                                |    |

(71) Applicant (for all designated States except US): ORI-GENE TECHNOLOGIES, INC. [US/US]; Suite 100, 6 Tafi Court, Rockville, MD 20850 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): JAY, Gilbert [US/US]; 5801 Nicholson Lane, North Bethesda, MD 20852 (US). LEBOVITZ. Richard, M. [US/US]; 3800 North Fairfax Drive, Arlington, VA 22203 (US). LIU, Xuan [US/US]; 14213 Dav Road, Rockville, MD 20850 (US). SHU, Youmin [US/US]; 2508 Chilham Place, Potomac, MD 20854 (US). SUN, Zairen [CN/US]; 1083 Copperstone Court. Rockville, MD 20852 (US). WU, Meng [PG/US]; 18016 Rockingham Place, Germantown, MD 20874 (US).
- (74) Agent: LEBOVITZ, Richard, M.; Origene Technologies, Inc., Suite 100, 6 Taft Court, Rockville, MD 20850 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: TISSUE SPECIFIC GENES AND GENE CLUSTERS



XM\_061785



(57) Abstract: The present invention relates to genes and genes clusters which are expressed in a tissue specific manner. For example, the invention relates to a group of genes encoding GPCR-like receptors that are involved in the function and activity of the immune system. These genes are organized into a discrete cluster at chromosomal location 1q22 (the "immune gene complex") and span about 700 kb of DNA. The region closest to the centromere comprises genes that are expressed predominantly in the thymus, while the distal region comprises genes which are expressed predominantly in the bone marrow and other hematopoietic cells, Another cluster of GPCR genes is located at chromosomal band 11q24. These genes are expressed predominantly in pancreatic tissue, establishing this region of chromosome 11 as a unique gene complex involved in

pancreatic function. A cluster of transmembrane and GPCR-type receptor genes is also located at chromosomal band 11q12.2. These genes are expressed predominantly in the spleen (hence, "spleen gene" cluster), as well as other tissues of the immune and reticuloendothelial system (RES), indicating that establishing this region of the chromosome is involved is spleen, lymphoid, and/or reticuloendothelial function. Finally, genes coding for membrane proteins have been identified which are expressed selectively in bone marrow, kidney, pancreas, and retina.

OCID: <WO ....... 03089583A2\_1 >

03/089583



(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

## Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE. AG. AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH. CN. CO. CR. CU. CZ. DE. DK. DM. DZ. EC. EE. ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL. IN. IS. JP. KE. KG. KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK. MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC. SD. SE. SG. SK. SL. TJ. TM. TN. TR. TT. TZ. UA. UG. UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB. GR. HU. IE. IT. LU. MC. NL. PT. RO. SE. SI. SK. TR). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML. MR. NE. SN. TD. TG)

- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN. IS, JP. KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT. RO, RU. SC, SD, SE, SG, SK, SL, TJ, TM. TN. TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ. TM). European patent (AT, BE, BG, CH, CY, CZ, DE, DK. EE. ES. FI, FR. GB. GR. HU. IE. IT, LU, MC. NL, PT. RO. SE. SI. SK. TR). OAPI patent (BF, BJ. CF, CG, CI. CM, GA. GN. GQ. GW. ML. MR. NE. SN. TD. TG)
- of inventorship (Rule 4.17(iv)) for US only

#### Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

15

20

25

30

## TISSUE SPECIFIC GENES AND GENE CLUSTERS

This application claims the benefit of U.S. Application Serial Nos. 60/372,669 April 16, 2002, 60/374,823 filed April 24, 2002, 60/376,558 filed May 1, 2002, 60/381,366 filed May 20, 2002, 60/403,648 filed August 16, 2002, 60/411,882 filed September 20, 2002, and 60/424,336 filed November 7, 2002, which are hereby incorporated by reference in their entirety.

# **DESCRIPTION OF THE DRAWINGS**

Figs. 1 and 2 show a physical map of the immune system gene complex. Sequence-tagged site ("STS") markers are used to characterize the chromosomal regions. An STS is defined by two short synthetic sequences (typically 20 to 25 bases each) that have been designed from a region of sequence that appears as a single-copy in the human genome (the reference numbers, and the sequences which they represent, are hereby incorporated by reference in their entirety). These sequences can be used as primers in a polymerase chain reaction (PCR) assay to determine whether the site is present or absent from a DNA sample.

Fig. 3 shows the expression pattern of transmembrane proteins homologous to the olfactory G-protein-coupled receptor ("GPCR") family in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 5 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 4 shows the expression pattern of two olfactory G-protein-coupled receptor ("GPCR") family members in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 6 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Figs. 5 (a and b) and 6 show the expression pattern in human tissues of genes selectively expressed in kidney tissue. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 11 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 7 (a-b) show organization of pancreatic gene complex on chromosome 11q24.

)OCID: <WO\_\_\_\_\_03089583A2\_I, >

10

15

20

25

30

Fig. 8 is a schematic drawing of five of the pancreatic olfactory G-protein-coupled receptor ("GPCR") family members located in the gene complex showing regions of overlap. The numbering underneath the lines indicates amino acid position.

Fig. 9 (a and b) show the expression pattern of TMD0986, XM\_061780 (TMD0987), XM\_061781 (TMD0353), XM\_061784 (TMD0989), and XM\_061785 (TMD058) in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 12 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 10 shows the expression pattern of TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), and TMD0621 (XM\_166205) in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 17 indicates the SEQ ID NO for each primer ("F-oligo" is the forward primer and "R-oligo" is the reverse primer).

Fig. 11 shows the organization of the spleen gene complex on chromosome 11q12.2.

Fig. 12 (a-c) shows the expression of the pancreas genes in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 23 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Expression patterns were analyzed as described below. A twenty-four tissue panel was used (lanes from left to right): 1, adrenal gland; 2, bone marrow; 3, brain; 4, colon; 5, heart; 6, intestine; 7, pancreas; 8, liver; 9, lung; 10, lymph node; 11, lymphocytes; 12, mammary gland; 13, muscle; 14, ovary; 15, pancreas; 16, pituitary; 17, prostate; 18, skin; 19, spleen; 20, stomach; 21, testis; 22, thymus; 23, thyroid; 24, uterus. The lane at the far left of each panel contains molecular weight standards. Polyadenylated mRNA was isolated from tissue samples, and used as a template for first-strand cDNA synthesis. The resulting cDNA samples were normalized using beta-actin as a standard. For the normalization procedure, PCR was performed on aliquots of the first-strand cDNA using beta-actin specific primers. The PCR products were visualized on an ethidium bromide stained agarose gel to estimate the quantity of beta-actin cDNA present in each sample. Based on these estimates, each sample was diluted with buffer until each contained the same quantity of beta-actin cDNA per unit volume. PCR was carried out using the primers described above, and reaction

10

15

20

products were loaded on to an agarose (e.g., 1.5-2%) gel and separated electrophoretically.

## **DESCRIPTION OF THE INVENTION**

The present invention relates to tissue-selective genes and tissue-selective gene clusters. The polynucleotides and polypeptides are useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, associated with genes of the present invention. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to particular tissues, permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

# Immune Gene Complex

The present invention relates to a group of genes involved in the function and activity of the immune system. These genes are organized into a discrete cluster at chromosomal location 1q22 (the "immune gene complex") and span hundreds of kb of DNA, e.g., about 700 kb of DNA. See, Figs. 1 and 2. The region closest to the centromere comprises genes that are expressed predominantly in the thymus, while the distal region comprises genes which are expressed predominantly in the bone marrow and other hematopoietic cells.

The present invention relates to a composition consisting essentially of the 1q22

immune gene complex, comprising TMD0024 (XM\_060945), TMD1779 (XM\_060946),

TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781

(XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890

(XM\_060959) genes, or a fragment thereof comprising at least two said genes. As discussed in more detail, the composition can comprise or consist essentially of the chromosome region

between STS markers that define the genomic DNA, e.g., between SHGC-81033 and SHGC-145403, or a fragment thereof comprising at least two said genes.

10

15

20

25-

The CD1 family, a cluster of genes previously identified as coding for proteins involved in antigen presentation (Sugita and Brenner, Seminars in Immunology, 12:511-516, 2000), are located at the proximal boundary of the immune gene complex. The expression of CD1a, b, and c genes are restricted to professional antigen-presenting cells, including dendritic cells and some B-cell subsets (Sugita and Brenner, ibid). CD1d is present on other cell types, in addition to hematopoietic cells, such as intestinal cells (Sugita and Brenner, ibid).

Adjacent to the CD1 family, is a cluster of genes coding for transmembrane proteins homologous to the olfactory G-protein-coupled receptor ("GPCR") family. These genes include XM\_060945 (TMD0024), XM\_060346 (TMD1779), XM\_060947 (TMD0884), and XM\_060948 (TMD0025), and are expressed predominantly in thymus tissues (e.g., thymocytes). XM\_089421 (TMD1781) is also expressed in thymus, but it is present in much higher amounts in lymphocytes ("PBL"). This chromosomal region can be defined by STS markers, e.g., between SHGC-81033 and D1S3249, G15944, GDB:191077, GDB:196442, RH68459, RH102597, RH69635, or RH65132, or fragments thereof, such as fragments which comprise two or more genes.

The gene for human erythroid alpha spectrin (SPTA1) is distal to the GPCR thymus-restricted family. It is expressed in bone marrow cells, and is localized to the red cell membrane (Wilmotte et al., Blood, 90(10):4188-96, 1997). Next to it, is another cluster of genes coding for proteins that resemble the olfactory GPCR family. These include XM\_060956 (TMD0304), XM\_060957 (TMD0888), and XM\_060959 (TMD089), and are expressed predominantly in the bone marrow, although other sites of expression are observed as well. See, e.g., Table 1. This chromosomal region can be defined by STS markers, e.g., between GDB:181583 or RH118729, and D1S2577 or SHGC-145403.

The gene for myeloid cell nuclear differentiation antigen ("MNDA") is next. MNDA is also expressed in bone marrow cells, particularly in normal and neoplastic myelomonocytic cells and a subset of normal and neoplastic B lymphocytes (Miranda et al., Hum. Pathol., 30(9):1040-9, 1999).

The phrase "immune system" indicates any processes and cells which are involved in generating and carrying out an immune response. Immune system cells includes, but are not limited to, e.g., stem cells, pluripotent stem cell, myeloid progenitor, lymphoid progenitor,

15

20

25

30

lymphocytes, B-lymphocytes, T-lymphocytes (e.g., naive, effector, memory, cytotoxic, etc.), thymocytes, natural killer, erythroid, megakaryocyte, basophil, eosinophil, granulocytemonocyte, accessory cells (e.g., cells that participate in initiating lymphocyte responses to antigens), antigen-presenting cells ("APC"), mononuclear phagocytes, dendritic cells, macrophages, alveolar macrophages, etc., and any precursors, progenitors, or mature stages thereof.

Table 1 is a summary of the genes and their expression patterns in accordance with the present invention. The genes and the polypeptides they encode can be used as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications associated with the tissues and cells in which they are expressed.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

In view of their selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are a useful target for histological, diagnostic, and therapeutic applications relating to the cells in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow and thymus tissue, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc.

Useful antibodies or other binding partners include those that are specific for parts of the

10

15

20

25

30

polypeptide which are exposed extracellularly as indicated in Table 2. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo (e.g., bone marrow cells or peripheral blood lymphocytes can be treated ex vivo and then returned to the body).

The expression patterns of the selectively expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the tissue-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of tissue-selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of tissue-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify

10

15

20

25

30

the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ between samples, albeit in ways that do not change the overall expression pattern. As a result of these individual differences, each gene although expressed selectively in spleen, may not on its own 100% of the time be adequately enough expressed to distinguish said tissue. Thus, the genes can be used in any of the methods and processes mentioned above and below as a group, or one at a time.

Binding partners can also be used as to specifically deliver therapeutic agents to a tissue of interest. For example, a gene to be delivered to a tissue can be conjugated to a binding partner (directly or through a polymer, etc.), in liposomes comprising cell surface, and then administered as appropriate to the subject who is to be treated. Additionally, cytotoxic, cytostatic, and other therapeutic agents can be delivered specifically to the tissue to treat and/or prevent any of the conditions associated with the tissue of interest.

The present invention relates to methods of detecting immune system cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene selected from Table 1, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 3, 4, 8, 9, 14, 15, 22, 23, 27, 28, 35, 36, 42, 43, 49, 50, 57, and 58 (see, Table 5), and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting an immune system cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by gene selected from Table 1, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be

10

15

20

25

30

accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 2.

As indicated above, binding partners can be used to deliver agents specifically to the immune system, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to an immune cell can comprise, e.g., contacting an immune cell with an agent coupled to binding partner specific for a gene selected from Table 1 (i.e., TMD0024 (XM 060945), TMD1779 (XM 060946), TMD0884 (XM 060947), TMD0025 (XM 060948), TMD1780 (XM 089422), TMD1781 (XM 089421), TMD0304 (XM 060956), TMD0888 (XM 060957), and TMD0890 (XM 060959)), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the immune system can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

The maturation of the immune system can also be modulated in accordance with the

15

20

25

30

present invention, e.g., by methods of modulating the maturation of an immune system cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 1, or a mammalian homolog thereof, whereby the maturation of an immune cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

The phrase "immune system cell maturation" includes indirect or direct effects on immune system cell maturation, i.e., where modulating the gene directly effects the maturational process by modulating a gene in a immune system cell, or less directly, e.g., where the gene is expressed in a cell-type that delivers a maturational signal to the immune system cell. Immune system maturation includes B-cell maturation, T-cell maturation, such as positive selection, negative selection, apoptosis, recombination, expression of T-cell receptor genes, CD4 and CD8 receptors, antigen recognition, MHC recognition, tolerization, RAG expression, differentiation, TCR expression, antigen expression, etc. See also below and, e.g., Abbas et al., *Cellular and Molecular Immunology*, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 149-160. Process include reception of a signal, such as cytokinin or other GPCR ligand. Any suitable agent can be used, e.g., agents that block the maturation, such as an antibody to a GPCR of Table 1, or other GPCR antagonist.

The interactions between lymphoid and non-lymphoid immune system cells can also be modulated comprising, e.g., contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 1, or a mammalian homolog thereof, whereby the interaction is modulated. Lymphoid cells, includes, e.g., lymphocytes (T- and B-), natural killer cells, and other progeny of a lymphoid progenitor cell. Non-lymphoid cells include accessory cells, such as antigen presenting cells, macrophages, mononuclear phagocytes dendritic cells, non-lymphoid thymocytes, and other cell types which do not normally arise from lymphoid progenitors. Interactions that can be modulated included, e.g., antigen presentation, positive selection, negative selection, progenitor cell differentiation, antigen expression, tolerization, TCR expression, apoptosis. See, also above and below, for other immune system processes.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in immune system cells. Methods of

expressing a heterologous polynucleotide in immune system cells can comprise, e.g., expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from Table 5. In addition to the cell lines mentioned below, the construct can be expressed in primary cells, such as thymocytes, bone marrow cells, stem cells, lymphoid progenitor cells, myeloid progenitor cells, monocytes, antigen presenting cells, macrophages, and cell lines derived therefom, cell lines such as JHK3 (CRL-10991), KG-1 (CCL-246), KG-1a (CCL-246.1), U-937 (CRL-1593.2), VA-ES-BJ (CRL-2138), TUR (CRL-2367), ELI (CRL-9854), 28SC (CRL-9855), KMA (CRL-9856), THP-1 (TIB-2002), WEHI-274.1 (CRL-1679), M-NFS-60 (CRL-1838), MH-S (CRL-2019), SR-4987 (CRL-2028),NCTC 3749 (CCL-461), AMJ2-C8 (CRL 2455), AMJ2-C11 (CRL2456), PMJ2-PC (CRL-2457), EOC2 (CRL-2467), as well as any primary and established immune system cell lines.

# 15 Thymus

5

10

20

25

30

The thymus is the site of T-cell lymphocyte maturation. Immature lymphocytes migrate into the thymus from the bone marrow and other organs in which they are generated. The selection process that shape the antigen repertoire of T-cells takes place in the thymus organ. Both positive and negative selection processes take place. For a review, see, e.g., Abbas et al., Cellular and Molecular Immunology, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 126-130 and 149-160.

There are various diseases and disorders related to thymus tissue, including, but not limited to, thymic carcinoma, thymoma, Omenn syndrome, autoimmune diseases, allergy, Graves disease, Myasthenia gravis, thymic hyperplasia, DiGeorge syndrome, Good syndrome, promoting immune system regeneration after bone marrow transplantation, immuno-responsiveness, etc. The thymic selective genes and polypeptides encoded thereby can be use to treat or diagnose any thymic condition. For instance, chemotherapeutic and cytotoxic agents can be conjugated to thymic selective antibodies and used to ablate a thymoma or carcinoma. They can be used alone or in combination with other treatments. See, e.g., Graeber and Tamin, Semin. Thorac. Cardiovasc. Surg., 12:268-277, 2000; Loehrer, Ann. Med., 31 Suppl. 2:73-79, 1999.

#### Bone marrow

5

10

15

20

25

30

All circulating blood cells in the adult, including all immature lymphocytes, are produced in the bone marrow. In addition, the bone marrow is also the site of B-cell maturation. The marrow consists of a spongelike reticular framework located between long trabeculae. It is filled with fat cells, stromal cells, and precursor hematopoietic cells. The precursors mature and exit through the vascular sinuses

All the blood cells are believed to arise from a common stem cell. Lineages that develop from this common stem cell include, e.g., myeloid and lymphoid progenitor cells. The myeloid progenitor develops into, erythrocytes (erythroid), platelets (megokaryocytic), basophils, eosinophils, granulocytes, neutrophils, and monocytes. The lymphoid progenitor is the precursor to B-lymphocytes, T-lymphocytes, and natural killer cells.

There are various diseases and disorders related to bone marrow, including, not limited to, e.g., red cell diseases, aplastic anemia (e.g., where there is a defect in the myeloid stem cell), pure red cell aplasia, white cell diseases, leukopenia, neutropenia, reactive (inflammatory) proliferation of white cells and nodes such as leukocytosis and lymphadenitis, neoplastic proliferation of white cells, malignant lymphoma, Non-Hodgkin's Lymphomas, Hodgkins disease, acute leukemias (e.g., acute lymphoblastic leukemia, acute myeloblastic leukemia, myelodysplatic snydrome), chromic myeloid leukemia, chronic leukemia hairy cell leukemia, myeloproliferative disorders, plasma cell disorders, multiple myeloma, histiocytoses, etc.

# Immune System Selective Genes

The present invention relates to genes involved in the function and activity of the immune system. XM\_062147 (TMD0088) and XM\_061676 (TMD0045) code for seven membrane spanning polypeptides which are homologous to members of the olfactory G-protein-coupled receptor ("GPCR") family. XM\_062147 is expressed predominantly in bone marrow tissue, with no detectable expression in other tissues. XM\_061676 is also expressed predominantly in bone marrow tissue, but it is detected in peripheral blood lymphocytes, as well. As discussed in more detail below, XM\_062147 (TMD0088), XM\_061676 (TMD0045), and the polypeptides they encode, can be used as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications

10

15

20

25.

30

associated with the immune system and the cells in which they are expressed.

In view of their selectivity and display on the cell surface, the GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., B-cells and B-cell progenitors) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow, lymphocytes, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 2. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo (e.g., bone marrow cells or peripheral blood lymphocytes can be treated ex vivo and then returned to the body). Ex vivo methods can be used to eliminate cancerous cells from the bone marrow, to modulate bone marrow cells, to prime bone marrow cells for an immune response, to expand a particular class of cells expressing XM 062147 (TMD0088) or XM\_061676 (TMD0045), to transfer genes into said cells (e.g., Banerjee and Bertino, Lancet Oncol., 3:154-158, 2002), etc.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The phrase "immune system" indicates any processes and cells which are involved in

10

15

20

25

30

引等 強禁 人物の種

generating and carrying out an immune response. Immune system cells includes, but are not limited to, e.g., stem cells, pluripotent stem cell, myeloid progenitor, lymphoid progenitor, lymphocytes, B-lymphocytes, T-lymphocytes (e.g., naive, effector, memory, cytotoxic, etc.), thymocytes, natural killer, erythroid, megakaryocyte, basophil, eosinophil, granulocytemonocyte, accessory cells (e.g., cells that participate in initiating lymphocyte responses to antigens), antigen-presenting cells ("APC"), mononuclear phagocytes, dendritic cells, macrophages, etc., and any precursors, progenitors, or mature stages thereof.

XM\_062147 contains seven transmembrane segments. It is located on chromosomal band 11q12 within proximity to the locus for an inherited form of atopic hypersenstivity (OMIM 147050, e.g., associated with asthma, hay fever, and eczema). It has been suggested that the condition is a result of defect in the regulation of immunoglobulin E. XM\_061676 also is seven membrane spanning polypeptide. The chromosomal locus, 11p15, to which it maps is rich in genes associated with immune disorders, including Fanconi anemia, nucleoporin, myeloid leukemia, and T-cell lymphoblastic leukemia. Arthrogryposis multiplex congenita (distal type IIB) also maps closely to this chromosomal location.

The present invention relates to methods of detecting immune system cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene selected from Table 6, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 67, 68, 76, and 77 (see, Table 6), and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting an immune system cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by gene selected from Table 6, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be

XOCID: <WO\_\_\_\_\_03089583A2\_I\_>

10

15

20

25

30

accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc.

Useful epitopes include those exposed to the surface as indicated in Table 7.

As indicated above, binding partners can be used to deliver agents specifically to the immune system, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to an immune cell can comprise, e.g., contacting an immune cell with an agent coupled to binding partner specific for a gene selected from Table 6, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the immune system can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos. 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

The maturation of the immune system can also be modulated in accordance with the present invention, e.g., by methods of modulating the maturation of an immune system cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 6, or a mammalian homolog thereof,

10

15

20

25

30

whereby the maturation of an immune cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

The phrase "immune system cell maturation" includes indirect or direct effects on immune system cell maturation, i.e., where modulating the gene directly effects the maturational process by modulating a gene in a immune system cell, or less directly, e.g., where the gene is expressed in a cell-type that delivers a maturational signal to the immune system cell. Immune system maturation includes B-cell maturation, T-cell maturation, such as positive selection, negative selection, apoptosis, recombination, expression of T-cell receptor genes, CD4 and CD8 receptors, antigen recognition, MHC recognition, tolerization, RAG expression, differentiation, TCR expression, antigen expression, etc. See also below and, e.g., Abbas et al., Cellular and Molecular Immunology, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 149-160. Processes include reception of a signal, such as cytokinin or other GPCR ligand. Any suitable agent can be used, e.g., agents that block the maturation, such as an antibody to a GPCR of Table 6, or other GPCR antagonist.

The interactions between lymphoid and non-lymphoid immune system cells can also be modulated comprising, e.g., contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 6, or a mammalian homolog thereof, whereby the interaction is modulated. Lymphoid cells, includes, e.g., lymphocytes (T- and B-), natural killer cells, and other progeny of a lymphoid progenitor cell. Non-lymphoid cells include accessory cells, such as antigen presenting cells, macrophages, mononuclear phagocytes dendritic cells, non-lymphoid thymocytes, and other cell types which do not normally arise from lymphoid progenitors. Interactions that can be modulated included, e.g., antigen presentation, positive selection, negative selection, progenitor cell differentiation, antigen expression, tolerization, TCR expression, apoptosis. See, also above and below, for other immune system processes.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in immune system cells. Methods of expressing a heterologous polynucleotide in immune system cells can comprise, e.g., expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said

promoter sequence is selected from Table 6. In addition to the cell lines mentioned below, the construct can be expressed in primary cells, such as thymocytes, bone marrow cells, stem cells, lymphoid progenitor cells, myeloid progenitor cells, monocytes, B-cells, antigen presenting cells, macrophages, and cell lines derived therefrom.

5

10

15

20

## Kidney Selective Genes

The present invention relates to genes and polypeptides which are selectively expressed in kidney tissues: TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108). These genes and polypeptides are expressed predominantly in kidney tissues, making them, and the polypeptides they encode, useful as selective markers for kidney tissue and function, as well as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications associated with the kidney and the cells in which they are expressed. TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108) includes both human and mammalian homologs of it. SEQ ID NOS 78-103 represent particular alleles, but the present invention relates to other alleles, including naturally-occurring polymorphisms (i.e., a polymorphism in the nucleotide sequence which is identified in populations of mammals) and homologs thereof. More information on these genes is summarized in Tables 8-11.

25

30

In view of their selectivity and display on the cell surface, the polypeptides and polynucleotides of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., juxtaglomerular cells which secrete renin, peritubular cells, endothelial cells, e.g., of the cortex and outer medulla, mesangial cells which secrete inflammatory mediators including NO and products of cyclooxygenase, visceral epithelial cells, parietal epithelial cells, podocytes, early proximal tubule cells which secrete, e.g., angiotensin converting enzyme and neutral endopeptidase, late distal tubule

10

15

20

25

30

cells that produce, e.g., prolyl endopeptidase, serine endopeptidase, carboxypeptidase, and neutral endopeptidase, renomedullary interstitial cells, etc) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies, to identify kidney, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 9. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting kidney cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below,

10

15

20

25

30

such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 104, 105, 107, 108, 111, 112, 115, 116, 119, 120, 122, 123, 126, 127, 131, 132, 135, 136, 138, 139, 142, 143, 145, 146, 149, 150, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a kidney cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108), or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 9.

As indicated above, binding partners can be used to deliver agents specifically to the kidney, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a kidney cell can comprise, e.g., contacting a kidney cell with an agent coupled to binding partner specific for TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the kidney can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target),

10

15

20

25

30

present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108) can be targeted, including, e.g., juxtaglomerular, peritubular, endothelial, mesangial, visceral epithelial, parietal epithelial, podocytes, early proximal tubule, late distal tubule, renomedullary interstitial, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

A kidney cell (see above for examples of kidney cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a kidney cell, comprising, e.g., contacting said cell with an agent effective to modulate TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108), or the biological activity of a polypeptide encoded thereby, or a mammalian homolog thereof, whereby said kidney cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

10

15

20

25

30

An activity or function of the kidney cell can be modulated, including, e.g., glomerular filtration rate, filtration pressure, renal autoregulation (including via myogenic mechanism and tubuloglomerular feedback mechanism), tubular reabsorption, tubular secretion, and renal clearance. In addition, the transcription, translation, synthesis, degradation, expression, etc., of any secretory or polypeptide produced by a kidney cell can be modulated, including, but not limited to, renin-angiotensin activity, production and secretion of prostaglandins, nitric oxide, kallikrein, adenosine, endothelin, erythropoietin, and other hormones, enzymes, and other secretory and intracellular factors. The response of a kidney cell to stimuli can also be modulated, including, but not limited to, ligands to TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108), oxygen levels, blood pressure, etc.

The present invention also relates to polypeptide detection methods for assessing kidney function, e.g., methods of assessing kidney function, comprising, detecting a polypeptide coded for by TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108), fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of kidney function. Kidney function tests are usually performed to determine whether the kidney is functioning normally as a way of diagnosing kidney disease. Various tests are commonly used, including, e.g., BUN (blood urea nitrogen), serum creatinine, estimated GFR, ability to concentrate urine, BUN/creatine ratio, urine sodium and other electrolytes, urine NAG (N-acetyl-beta-glucosaminidase, adenosine deaminase, urinary alkaline phosphatase, serum and urine beta-2-microglobulin, serum uric acid, isotope scans, Doppler sonogram, positron emission tomography, specific gravity of urine, microalbumin, total protein, etc. Detection of TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148

(XM\_087108) provides an additional assessment tool, especially in diseases such as chromic renal failure, urinary tract infections, kidney stones, nephrotic syndrome, nephritic syndrome, kidney disease due to diabetes or high blood pressure, etc., As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired kidney function. Values can be determined routinely, as they are for other kidney function markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in kidney cells. Methods of expressing a heterologous polynucleotide in kidney cells can comprise, e.g., expressing a nucleic acid construct in kidney cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 106, 109, 110, 113, 114, 117, 118, 121, 124, 125, 128-130, 133, 134, 137, 140, 141, 144, 147, 148, and 151. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

## Kidney

10

15

20

25

30

The kidney maintains the constancy of fluids in an organism's internal environment, and is therefore of great importance in maintaining health and vitality. Each day, the kidney filters the blood, removing and concentrating toxins, metabolic wastes, and excess ions, allowing them to be excreted by the body in the form of urine. The excretory function of the kidney is performed by over one million blood units called nephrons, each a miniature blood filtering and processing unit. A nephron consists of a glomerulus, a tuft of capillaries, and a renal tubule. In addition to their excretory function, kidneys produce a number of different hormones, enzymes, and other secreted molecules, including the enzyme renin and the hormone erythropoietin. The kidney also is responsible for metabolizing vitamin D into its active form, calcitriol. For a full description of the kidney's function and structure, see, e.g., *Human Anatomy and Physiology*, Marieb, E.N., 3<sup>rd</sup> Edition, Benjamin/Cummings Publishing Company, Inc., 1995, pp 896-923.

The glomerulus is a high pressure capillary bed which filters out most substances smaller than large plasma proteins across the fenestrated glomerular epithelium, the

10

15

20

25-

30

intervening basement membrane, and the podocyte-containing visceral membrane of the glomerulus capsule. The external layer of the glomerulus is called the parietal layer, consisting predominaly of a squamous epithelium. This layer is structural. Underneath it, is the visceral layer which consists of the modified branching epithelial cells called podocytes. These sit on top of the fenestratrated glomerular endothelium. The glomerulus is connected to the renal tubule, a highly differentiated and long tube, having three major elements: the proximal convoluted tubule, the loop of Henel, and the distal convoluted tubule. Different regions of the tubule have different functions in absorption and secretion.

Renal cells produce a variety of different hormones and chemicals, including, prostaglandins, nitric oxide, kallikrein family, adenosine, endothelin family, renin, erythropoietin, aldosterone, antidiuretic hormone (vasopressin), natriuretic hormones, etc. Renin is involved in modulating blood pressure. It cleaves angiotensinogen, a plasma peptide, splitting off a fragment containing 10 amino acids called angiotensin I. Angiotensin I is cleaved by a peptidase secreted by blood vessels called angiotensin converting enzyme (ACE), producing angiotensin II, which contains 8 amino acids. Angiotensin II has many direct effects on blood pressure. Erythropoietin stimulates red blood cell production in the bone marrow.

TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108) can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the kidney. These include, but are not limited to, diseases that affect the four basic morphologic components, glomeruli, tubules, interstitium, and blood vessels. Diseases include, e.g., acute nephritic syndrome, nephritic syndrome, renal failure, urinary tract infections, renal stones, cystic diseases of the kidney, e.g., cystic renal dysplasia, polycystic disease (autosomal dominant and recessive types), medullary cystic disease, acquired cystic disease, renal cysts, parenchymal cysts, perihilar renal cysts (pyelocalyceal cysts, hilar lymphangitic cysts), glomerular diseases, diseases of tubules, tubulointerstitial diseases, tumors of the kidney, such as benign tumors (cortical adenoma, renal fibroma, renomedullary interstitial cell tumor), malignant tumors (renal cell carcinoma, hypernephroma,

adenocarcinoma of kidney, Wilms' tumor, nephroblastoma, urothelial carcinoma), renal coloboma, nephorblastoma, clear cell sarcoma of kidney (CCSK), rhabdoid tumor of kidney (RTK), von Hippel-Lindau disease, oncocytoid renal cell carcinoma (RCC), renal leiomyoblastoma, etc. TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108) can also be used for staging and classifying conditions and diseases of the present invention, alone, or in combination with conventional staging and classification schemes.

10

15

20

25.

30

5

# Pancreatic Gene Complex

The present invention relates to a cluster of olfactory GPCR (G-protein coupled) receptor genes located at chromosomal band 11q24. These genes are expressed predominantly in pancreatic tissue, establishing this region of chromosome 11 as a unique gene complex involved in pancreatic function. See, Table 12. Because of their exquisite selectivity for pancreatic tissues, the pancreatic gene complex ("PGC"), and the genes which comprise it, are useful to assess pancreas tissue and function for diagnostic, prognostic, therapeutic, and research purposes.

The spatial organization of the pancreatic gene complex ("PGC") is illustrated in Fig. 7. It spans several hundred kilobases of chromosome 11, e.g., from about LOC160205 to LOC119954, from about LOC119944-LOC119954, and any part thereof. Within this region, is a cluster of genes coding for polypeptides which share sequence identity with the olfactory GPCR family. These include, but are not limited to, TMD0986, XM\_061780 (TMD0987), XM\_061781 (TMD0353), XM\_061784 (TMD0989), XM\_061785 (TMD058). Fig. 8 illustrates the relationship between the lengths of the different coding sequences. As shown in the figure, XM\_061784 is shorter at its C-terminus than the other family members.

As members of the GPCR family, the PGC genes all share a degree of amino acid sequence identity and similarity. See, Table 14 for values (% sequence identity is the first place; % sequence similarity is in parenthesis in the second place; calculations were performed using the publicly-available BLASTP pair-wise alignment program). TMD0986, XM\_061780, XM\_061781, and XM\_061785 each share about 40% sequence identity.

10

15

20

30

BLAST searching of publicly available sequences indicates that these polypeptides share less amino acid sequence identity with each other than they do with other olfactory GPCR homologs located elsewhere in the genome. Significantly higher amino acid sequence identity – 81% – is observed between the adjacent genes XM\_061784 and XM\_061785. These genes appear to be part of a sub-cluster within PGC that share high polypeptide similarity between them.

The phrase "a gene of Table 12" which is used throughout the description include the specific sequences for the listed XM numbers as well as other human alleles, and mammalian homologs, such as murine homologs. For example, Table 14 lists several of the mouse homologs that are included in the present invention. While SEQ ID NOS. 152, 153, 162, 163, 167, 168, 171, 172, 175, and 176 may represent particular alleles, the present invention relates to other alleles, as well, including naturally-occurring polymorphisms (i.e., a polymorphism in a nucleotide sequence which is identified in populations of mammals).

TMD0986 (SEQ ID NO 152 and 153) is a full-length sequence of the previously identified XM\_061779. It contains an additional 117 amino acids not present in XM\_061779. The present invention relates to nucleic acids comprising or consisting essentially of this sequence in its entirety (e.g., amino acids 1-314), comprising or consisting essentially of nucleic acids coding for amino acids 1-117, and comprising or consisting essentially of fragments of nucleic acids coding for amino acids 1-117. Polypeptides encoded by these nucleic acids are also claimed, including polypeptide fragments of 1-117, such as 1-23, 79-97, 164-198, 261-274, and other extracellularly exposed peptides. In addition, the present invention relates to binding partners, such as antibodies, that bind to epitopes within amino acids 1-117 (e.g., SEQ ID NO 153).

#### 25 Pancreas

Diabetes and other pancreatic disorders are a major health concern. Worldwide, it is estimated that 5-10% of the population suffers from some form of diabetes. Pancreatic cancer is the fifth leading cause of cancer-related mortality. In 2002, it was estimated that about 30,000 Americans would be diagnosed with pancreatic cancer, and 90% would die within 12 months. Despite the prevalence of pancreatic disease, the genetics and physiology of normal pancreatic function and pancreatic disease is still poorly understood.

10

15

20

30

The pancreas is a mixed gland comprised of exocrine and endocrine tissues. The exocrine portion comprises about 80-85% of the organ. It is divided into lobes by connective tissue septa, and each lobe is divided into several lobules. These lobules are composed of grape-like clusters of secretory cells that form sacs known as acini. An acinus is a functional unit of the pancreatic exocrine gland. All acini drain into interlobular ducts which merge to form the main pancreatic duct. It, in turn, joins together with the bile duct from the liver to form the common bile duct that empties into the duodenum. Pancreatic acinar cells make up more than 80% of the total volume of the pancreas and function in the secretion of the various enzymes that assist digestion in the gastrointestinal tract. Scattered among the acinar cells are approximately a million pancreatic islets ("islets of Langerhans") that secrete the pancreatic endocrine hormones. These dispersed islets comprise approximately 2% of the total volume of the pancreas.

The basic function of the pancreatic endocrine cells is to secrete certain hormones that participate in the metabolism of proteins, carbohydrates, and fats. The hormones secreted by the islets include, e.g., insulin, glucagon, somatostatin, pancreatic polypeptide, amylin, adrenomedullin, gastrin, secretin, and peptide-YY. See, also, Shimizu et al., Endocrin., 139:389-396, 1998. The islets contain about four major and two minor cell types. The major cell types are alpha (glucagon producing), beta (insulin and amylin producing), delta (somatostatin producing which suppresses both insulin and glucagon release), and F (pancreatic polypeptide and adrenomedullin producing) cells. The minor cell types are D1 (produce vasoactive intestinal peptide or VIP) and enterochromaffin (produce serotonin) cells. The cells can be distinguished, e.g., by their morphology, hormonal content, and polynucleotide expression patterns.

The ability of the pancreas to respond to a wide variety of metabolic signals is conferred by an expression profile comprising a rich assortment of receptor proteins. G-25 protein coupled receptors have been previously identified in the pancreas, including, e.g., receptors for glucagon, secretin, CCK (e.g., Roettger et al., J. Cell Biol., 130:579-590, 1995), purines (e.g., P2 purinoreceptors), gastrin, KiSS-1 peptides (e.g., Kotani et al., J. Biol. Chem., 276:34631-6, 2001), adrenomedullin (Martinez et al., Endocrin., 141:406, 2000), and interleukins. G-protein subunits have also been localized to the pancreas, including Gproteins which were previously associated with the olfactory epithelium. See, e.g., Zigman et

10

15

20

25

30

al., *Endocrin.*, 133:2508-2514, 1993. In addition, pancreatic cells express neurotropin, neurotensin, and interleukin receptors.

As mentioned, the pancreas is sensitive to a variety of metabolic, soluble and hormonal signals involved in regulating blood sugar, modulating synthesis and release of pancreatic digestive enzymes, and other physiologically important processes involved in pancreas function. In analogy to the ability of olfactory receptors to detect odors and pheromones in the environment, the pancreatic GPCRs of the present invention can be used to "sniff" out and respond to various ligands in the blood which pass through the pancreas, including peptides, metabolites, and other biologically-active molecules. Biological activities include, but are not limited to, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), zymogen granule processing, G-protein coupling activity, etc.

The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of pancreas. These include, but are not limited to, e.g., disorders associated with loss or mutation to 11q24, such as Jacobsen syndrome (OMIM #147791), cystic fibrosis, acute and chronic pancreatitis, pancreatic abscess, pancreatic pseudocyst, nonalcoholic pancreatitis, alcoholic pancreatitis, classic acute hemorrhagic pancreatitis, chronic calcifying pancreatitis, familial hereditary pancreatitis, carcinomas of the pancreas, primary (idiopathic) diabetes (e.g., Type I (insulin dependent diabetes mellitus, IDDM) [insulin deficiency, beta cell depletion], Type II (non-insulin dependent diabetes mellitus, NIDDM) [insulin resistance, relative insulin deficiency, mild beta cell depletion]), nonobese NIDDM, obese NIDDM, maturity-onset diabetes of the young (MODY), islet cell tumors, diffuse hyperplasia of the islets of Langerhans, benign adenomas, malignant islet tumors, hyperfunction of the islets of Langerhans, hyperinsulinism and hypoglycemia, Zollinger-Ellison syndrome, beta cell tumors (insulinoma), alpha cell tumors (glucagonoma), delta cell tumors (somatostatinoma), vipoma (diarrheogenic islet cell tumor), pancreatic cancers, pancreatic carcinoid tumors, multihormonal tumors, multiple endocrine neoplasia (MEN), MEN I (Wermer syndrome), MEN II (Sipple syndrome), MEN III or IIb, pancreatic endocrine tumors, etc.

10

15

20

25

30

In view of its selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., pancreatic progenitor, exocrine, endocrine, 5 acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow, lymphocytes, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 14. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting pancreas cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene of Table 12, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and

10

15

20

25

30

technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 154, 155, 164, 165, 169, 170, 173, 174, 177, and 178, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a pancreas cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of Table 12, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 14.

As indicated above, binding partners can be used to deliver agents specifically to the pancreas, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a pancreas cell can comprise, e.g., contacting a pancreas cell with an agent coupled to a binding partner specific for a polypeptide coding for a gene of Table 12, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the pancreas can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by a gene of Table 12 can be targeted, including, e.g., pancreatic progenitor, exocrine, endocrine, secretory, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.

lmaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body.

10

15

25

30

Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging pancreas using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A pancreas cell (see above for examples of pancreas cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a pancreas cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene of Table 12, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 153, 163, 168, 172, or 176), or a mammalian homolog thereof, whereby said pancreas cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

An activity or function of the pancreas cell can be modulated, including, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), etc.

The present invention also relates to polypeptide detection methods for assessing pancreas function, e.g., methods of assessing pancreas function, comprising, detecting a polypeptide coded for by a gene of Table 12, fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of pancreas function. Pancreas function tests are usually performed to determine whether the pancreas is functioning normally as a way of diagnosing pancreas disease. Various tests are commonly used, including, e.g., assays for the presence of pancreatic enzymes in body fluids (e.g.,

10

15

20

25

amylase, serum lipase, serum trypsin-like immuoreactivity), studies of pancreatic structure (e.g., using x-ray, sonography, CT-scan, angiography, endoscopic retrograde cholangiopancreatography), and tests for pancreatic function (e.g., secretin-pancreozymin (CCK) tst, Lundh meal test, Bz-Ty-PABA test, chymotrypsin in feces, etc). Detection of a polypeptide coded for by a gene of Table 12 provides an additional assessment tool, especially in diseases such as pancreatitis and pancreatic cancer where pancreatic markers can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired pancreas function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for pancreatic enzymes in body fluids.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in pancreas cells. Methods of expressing a heterologous polynucleotide in pancreas cells can comprise, e.g., expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 156-161, 166, 179, or 180. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of Table 12 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the pancreas as mentioned above. The present invention relates to methods of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising, e.g., determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex. An association between a pancreas disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Any region of the pancreatic gene complex can be used as a source of the DNA marker (e.g., a nucleotide sequence present with PGC), including, e.g., TMD0986,

10

15

20

25

30

XM\_061780 (TMD0987), XM\_061781 (TMD0353), XM\_061784 (TMD0989), XM\_061785 (TMD058), and any part thereof, introns, intergenic regions, any DNA from about 29160-29310 kb of 11q24, NT\_009215, etc.

Human linkage maps can be constructed to establish a relationship between a region within 11q24 and a pancreatic disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

## Retina Selective Gene

The present invention relates to NM 013941 (GPCR181 or OR10C1), a multiple transmembrane spanning polypeptide which shares sequence identity with the olfactory Gprotein coupled receptor (GPCR) family. Like other GPCR, NM 013941 has seven transmembrane domains, at about amino acid positions 20-42, 54-76, 91-113, 134-156, 190-212, 233-255, and 265-287, of SEQ ID NO 182. It is located at about chromosomal band 6p21.31-22.2. There are several other GPCRs located nearby (e.g., OR2B3, AL022727; OR2J3, AL022727). NM 013941 is highly expressed in brain tissue, at lower levels in heart, pituitary, and skin, and at minimally detectable levels in colon, small intestine, kidney, lymphocytes, and mammary gland. In the neuronal tissue, it was selectively expressed in the retina, but was not detected in any other brain tissue regions. The selective expression of NM\_013941 in the retina makes it useful as a marker for retinal tissue, e.g., in stem cell cultures and biopsy samples, as well as a diagnostic, prognostic, therapeutic, and research tool for any conditions, diseases, disorders, or applications associated with the retina and the cells in which it is expressed. NM 013941 includes both human and mammalian homologs of it (e.g., mouse XM\_111729 which is similar to olfactory receptor MOR263-6). SEQ ID NOS. 181 and 182 represent a particular allele of NM 013941; the present invention relates to other alleles, as well, including naturally-occurring polymorphisms (i.e., a polymorphism in the nucleotide sequence which is identified in populations of mammals).

10

15

20

25-

30

The chromosomal region within which NM\_013941 is located comprises a number of genes involved in retinal function. These include, e.g., retinal cone dystrophy (OMIM 602093) which appears to be a result of mutation in guanylate cyclase activator-1A (e.g., Payne et al., *Human Molec. Genet.*, 7:273-277, 1998), retinal degeneration slow (OMIM 179605) which appears to be a defect in specific retinal protein homologous to rod outer segment protein-1, retinitis pigmentosa-7, retinitis pigmentosa-14 (OMIM 600132) which is associated with a mutation in the tubby-like protein TULP1 (e.g., Banerjee et al., *Nature Genet.*, 18:177-179, 1998; Hagstrom et al., *Nature Genet.*, 18:174-176, 1998), and others. Thus, this region appears to be important in eye function.

In view of its selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to retinal cells. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat retinal carcinomas (e.g., retinoblastoma) in analogy to how c-erbB-2 antibodies are used to breast cancer. See, e.g., Hayashi et al., *Invest. Ophthalmol. Vis. Sci.*, 40:265-72, 1999 for an example treating retinoblastoma using HSV-TK. Transfer of the gene into the retinal cells can be achieved by incorporating the gene into liposomes which have been made cell-selective by incorporating a NM\_013941 specific antibody into its bilayer. See, also, Wu and Wu, *J. Biol. Chem.*, 262: 4429-4432, 1987.

The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule

10

15

20

25-

30

comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting retinal cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for NM\_013941 (e.g., SEQ ID NOS 181), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 183 and 184, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a retinal cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by NM\_013941 (e.g., SEQ ID NO 182), or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface.

As indicated above, binding partners can be used to deliver agents specifically to the retina, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a retinal cell can comprise, e.g., contacting a retinal cell with an agent coupled to binding partner specific for NM\_013941 (SEQ ID NO 182), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the retinal can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent

is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by NM\_013941 can be targeted, including, e.g., pigmented epithelial cells, photoreceptor cells, cones, rods, bipolar cells, ganglion cells, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

A retinal cell (see above for examples of retinal cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a retinal cell, comprising, e.g., contacting said cell with an agent effective to modulate NM\_013941, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 182), or a mammalian homolog thereof, whereby said retinal cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

Any activity or function of the retinal cell can be modulated, including, e.g., light reception, phototransduction, excitation of rods, excitation of cones, metabolism of vitamin A, retinal, rhodopsin, and other functional molecules, cGMP binding and hydrolysis, sodium channel flux, membrane potential, phosphodiesterase activity, G-protein activity and coupling, vitamin A processing, sodium pump activity, calcium flux, etc. The response of a retinal cell to stimuli can also be modulated, including, but not limited to, ligands to

5

10

15

20

25

30

NM\_013941, light, ion levels, second messenger levels, etc.

Promoter sequences can be utilized to selectively express heterologous genes in retinal cells. Methods of expressing a heterologous polynucleotide in retinal cells can comprise, e.g., expressing a nucleic acid construct in retinal cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is obtained from NM\_01394, e.g., on genomic NT\_007592. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

### 10 Retina

5

15

20

25

30

The retina is a two-layered structure located on the back of the eye. It is the primary organ responsible for vision. The outer pigmented layer is comprised of pigmented epithelial cells that absorb light, preventing it from scattering in the eye, and store vitamin A needed by the photoreceptor cells. The inner neural layer is comprised of three main cell types: photoreceptor cells, bipolar cells, and ganglion cells. The local currents generated by a light stimulus spreads from the photoreceptor cells to the bipolar cells, and then on to the innermost ganglion cells. The optic disc is the exit site of the retinal ganglion axons which then bundle into the optic nerve

Photoreceptors consist of rods and cones which are the photosensitive cells of the retina. Each rod and cone elaborates a specialized cilium, called the outer segment, that contains the phototransduction machinery. The rods contain a specific light-absorbing visual pigment, rhodopsin. In humans, there are three classes of cones, each characterized by the expression of distinct visual pigments: the blue cone, green cone and red cone pigments. Each type of visual pigment protein is tuned to absorb light maximally at different wavelengths. The rod rhodopsin mediates scotopic vision (in dim light), whereas the cone pigments are responsible for photopic vision (in bright light). The red, blue and green pigments also form the basis of color vision.

NM\_013941 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the retinal. These include, but are not limited to, diseases that affect the basic morphologic components as mentioned above, e.g., the outer and inner cell layers, and the optic nerve the retina. Diseases include, e.g.,

10

15

20

25

30

retinal degeneration, retinal degenerations such as retinitis pigmentosa, Bardet-Biedl syndrome, Bassen-Kornzweig syndrome (abetalipoproteinemia), Best disease (vitelliform dystrophy), choroidemia, gyrate atrophy, congenital amaurosis, Refsum syndrome, Stargardt disease, Usher syndrome, macular degeneration (dry and wet forms), diabetic retinopathy, peripheral vitreoretinopathies, photic retinopathies, surgery-induced retinopathies, viral retinopathies (such as HIV retinopathy related to AIDS), ischemic retinopathies, retinal detachment, traumatic retinopathy, optic neuropathy, optic neuritis, ischemic optic neuropathy, Leber optic neuropathy, diseases of Bruch's membrane, glaucoma, cancer, retinoblastoma, cancer- associated retinopathy syndrome (CAR syndrome), melanoma-associated retinopathy (MAR), etc. NM\_013941 can also be used for staging and classifying conditions and diseases of the present invention, alone, or in combination with conventional staging and classification schemes.

## Spleen Gene Cluster

The present invention relates to a cluster of transmembrane and GPCR-type receptor genes located at chromosomal band 11q12.2. The genes of the present invention are expressed predominantly in the spleen (e.g., Fig. 10, lane 19) (hence, "spleen gene" cluster), as well as other tissues of the immune and reticuloendothelial system (RES), establishing this region of the chromosome as a unique gene complex involved in spleen, lymphoid, and/or reticuloendothelial function. TMD1030 and TMD0621 are highly expressed in spleen tissue, with insignificant levels in other tissues. In addition to spleen. TMD1029 and TMD1029 show significant expression in the liver and lymphocytes, as well. Because of their selectivity for spleen, lymphoid, and/or reticuloendothelial tissues, the gene complex, and the chromosomal region which comprises it, are useful to assess spleen, lymphoid, and/or reticuloendothelial tissue function and for diagnostic, prognostic, therapeutic, and research purposes. Information on the genes is summarized in Tables 15-19.

The spatial organization of the gene complex is illustrated in Fig. 11. The complex spans about at least 100 kb, from about EST markers G62658, SHGC-82134, etc. (located at the end closest to the centromere and TMD1030) to SHGC-154002, SHGC-9433, etc. (located at the end furthest from the centromere and TMD0621). All the genes have the same orientation of transcription. TMD1799 (XM\_166849) (SEQ ID NO 193-194), located at the

10

15

20

25

30

upper region, shows very high expression in lymphocytes, but only marginal expression in spleen, indicating that expression in lymphocytes may predominate at the boundaries of the gene complex. In the lower region, TMD1027 (XM\_166856) (SEQ ID NO 195-196), spleen expression virtually disappears, while lymph node expression becomes very high. The present invention includes this entire region, and any parts thereof. For instance, the present invention includes any DNA fragments within it which confer the observed tissue specificities described herein.

The gene complex is involved in spleen, immune, and RES functions. The spleen is located in the left upper region of the abdomen. In the adult, it weights about 90-180 grams, and is about 15 by 7.5 cm in size. The spleen is anatomically and functionally compartmentalized into two distinct regions, the red and white pulp. The red pulp comprises blood vessels interwoven with connective tissue ("pulp cords") that is lined with reticuloendothelial cells. It possesses a blood filtering function, removing opsonized cells and trapping abnormal red blood cells. It also is a storage reservoir for platelets and other blood cells. In the fetus, the red pulp has a hematopoietic function. Inside the red pulp, is lymphoid tissue know as the white pulp. Antibodies are made inside the white pulp. Similar to other lymphatic tissues, B- and T-cell's mature inside the white pulp, where they are involved in antigen presentation and lymphocyte maturation. The white pulp is clustered around the periarteriolar lymphoid sheath, and is comprised of follicles and marginal zone.

Naive B-cells are located in the primary follicle, memory cells, macrophages, and dendritic cells in the secondary follicle, and macrophages and B-cells in the marginal zone. The integrins LFA-1 and alpha4-beta1 are involved in localization of the B-cells to the marginal zone of the white pulp (Lu and Cyster, Science, 297:409, 2002).

The reticuloendothelial system (RES) is a multi-organ phagocytic system involved in removing particulates from the blood. It is comprised of the spleen and liver. It has the ability to sequester inert particles and dyes. Cells of the RES system include, macrophages, liver Kuppfer cells, endothelial cells lining the sinusoids of the liver, spleen, and bone marrow, and reticular cells of lymphatic and bone marrow tissues.

The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of spleen, lymphoid, and/or reticuloendothelial tissues. These include, but are not limited to, splenomegaly, hypersplenism, hemolytic anemis, hereditary

10

15

20

25

30

spherocytosis, hereditary eliptocytosis, thalassemia minor and major, autoimmune hemolytic anemia, thrombocytopenia, idiopathic thrombocytopenic purpura, immunologic thrombocytopenia associated with chronic lymphocytic leukemia or systemic lupus erythematosis, TTP, leukemia, lymphoma, primary and metastatic tumors, splenic cysts, infection, inflammatory diseases, anemias, blood cancers, etc. See, Table 19 for other examples.

In view of their selectivity and display on the cell surface, the genes of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., reticuloendothelial cells, macrophages, Kupffer cells, monocytes, B-lymphocytes, T-lymphocytes, etc) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to treat breast cancer. They can also be used to detect metastatic cells in biopsies. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly. See, Table 16. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types. TMD1030 and TMD0621 are predominantly and selectively expressed in spleen tissue.

10

15

20

30

The expression patterns of the selectively expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the tissue-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of tissue-selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of tissue-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information 25from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ

10

15

20

25

30

between samples, albeit in ways that do not change the overall expression pattern. As a result of these individual differences, each gene although expressed selectively in spleen, may not on its own 100% of the time be adequately enough expressed to distinguish said tissue. Thus, the genes can be used in any of the methods and processes mentioned above and below as a group, or one at a time.

The present invention relates to methods of detecting spleen, lymphoid, and/or reticuloendothelial cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 197-204 listed in Table 17, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a spleen, lymphoid, and/or reticuloendothelial cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of the present invention, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface. Detection can be useful for assessing spleen integrity, e.g., when it is suspected that the spleen is damaged and undergoing deterioration. The appearance of polypeptides of the present invention in body fluids, such as blood, can indicate spleen damage, including neoplastic and/or apoptotic changes.

As indicated above, binding partners can be used to deliver agents specifically to the spleen, lymphoid, and/or reticuloendothelial tissues, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a spleen, lymphoid, and/or

B-lymphocytes, T-lymphocytes, etc.

5

10

15

20

reticuloendothelial cell can comprise, e.g., contacting a spleen, lymphoid, and/or reticuloendothelial cell with an agent coupled to a binding partner specific for a polypeptide coding for TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM 166205), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the spleen, lymphoid, and/or reticuloendothelial tissue can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parenterally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by TMD1030 (XM 166853), TMD1029 (XM 166854), TMD1028 (XM 166855), or TMD0621 (XM 166205) can be targeted, including, e.g., reticuloendothelial cells, macrophages, Kupffer cells, lymphocytes,

Antibodies (alone or conjugated to active agents) can be used to ablate spleen and other tissues. For instance, in diseases where splenectomy is indicated (e.g., immune thrombocytopenic purpura, autoimmune hemolytic anemia, blood cell disorders, myeloproliferative disorders, tumors, hypersplenism, etc.), antibodies to TMD1030 and TMD0621 can be used to ablate spleen tissue, or block spleen function.

other binding partners that selectively target contrast agents to a specific site in the body.

Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintiographic imaging. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The

10

15

20

25-

30

methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A cell (see above for examples of spleen, lymphoid, and/or reticuloendothelial cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a spleen, lymphoid, and/or reticuloendothelial cell, comprising, e.g., contacting said cell with an agent effective to modulate TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NOS 185-192), or a mammalian homolog thereof, whereby said spleen, lymphoid, and/or reticuloendothelial cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

Any activity or function of the spleen, lymphoid, and/or reticuloendothelial tissues can be modulated, including, e.g., immune modulation (e.g., modulating antigen presentation, antibody production and secretion, humoral and cellular responses, etc.), sequestration and removal of red blood cells, clearance of microorganisms and particular antigens from blood, migration into the marginal zone or other immune and RES compartments, etc.

The present invention also relates to polypeptide detection methods for assessing spleen, lymphoid, and/or reticuloendothelial tissue function, e.g., methods of assessing spleen, lymphoid, and/or reticuloendothelial function, comprising, detecting a polypeptide coded for by TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of spleen, lymphoid, and/or reticuloendothelial function. spleen, lymphoid, and/or reticuloendothelial function tests are usually performed to determine whether the spleen, lymphoid, and/or reticuloendothelial tissue is functioning normally as a way of diagnosing spleen, lymphoid, and/or reticuloendothelial disease. Various tests are commonly used, including, e.g., 99Tc-colloid liver-spleen scan, computed tomography, ultrasound scanning of left upper quandrant, MRI,

liver enzymes, etc.

10

15

20

25

30

Detection of a polypeptide coded for by TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), provides an additional assessment tool, especially in diseases or disorders, such as splenomegaly, hypersplenism, or ruptured spleen, where said polypeptides can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired spleen, lymphoid, and/or reticuloendothelial function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for enzymes and other proteins in body fluids.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in cells. Methods of expressing a heterologous polynucleotide in cells, e.g., spleen, lymphoid, and/or reticuloendothelial cells can comprise, e.g., expressing a nucleic acid construct in spleen, lymphoid, and/or reticuloendothelial cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 205-213. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the spleen, lymphoid, and/or reticuloendothelial tissues mentioned above. The present invention relates to methods of identifying a genetic basis for a disease or disease-susceptibility, comprising, e.g., determining the association of a spleen, lymphoid, and/or reticuloendothelial disease-susceptibility with the gene complex of the present invention, e.g., a nucleotide sequence present in the gene complex at 11q12.2. An association between a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Any region of the gene can be used as a source of the DNA marker, exons, introns,

10

15

20

25

30

intergenic regions, or any DNA from the gene cluster of the present invention at chromosomal region 11q12.2, etc.

Human linkage maps can be constructed to establish a relationship between a gene and a spleen, lymphoid, and/or reticuloendothelial disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced for an individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

The present invention also relates to methods of expressing a polynucleotide in spleen, lymphoid, and/or reticuloendothelial tissue, comprising, e.g., inserting a polynucleotide, which is operably linked to an expression control sequence, into the spleen, lymphoid, and/or reticuloendothelial gene complex at chromosomal location 11q12.2 of a target cell, and growing said cell under conditions effective to express said polynucleotide.

The polynucleotide of interest can be inserted into the target chromosomal region by any suitable method, including, e.g., by gene targeting methods, such as homologous recombination, or by random insertion methods where transformed cells are subsequently screened for insertion into the desired chromosomal site. Chromosome engineering methods are discussed in more detail below, e.g., in the section on transgenic animals. By the phrase "spleen, lymphoid, and/or reticuloendothelial gene complex," it is meant the region of the chromosome in which the cluster of genes, e.g., TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), and TMD0621 (XM\_166205), of the present invention are located. Inserting an expressible polynucleotide (e.g., a polynucleotide operably linked to a promoter sequence) into this region confers the tissue expression selectivity which is characteristic of the gene cluster. Any polynucleotide of interest can be inserted into the chromosomal region, including, e.g., polynucleotides encoding polypeptides, antisense polynucleotides, etc.

A cell comprising a polynucleotide inserted into the target chromosomal location can be utilized in vitro or in vivo, e.g., in a transgenic animal. The cell is grown under conditions

10

15

20

25

30

which are suitable to achieve polynucleotide expression. These conditions depend upon the cell's environment, e.g., tissue culture cell, or in the form of a transgenic animal.

# Pancreas membrane protein genes

The present invention relates to all facets of pancreas membrane protein genes, polypeptides encoded by them, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drug discovery, therapy, clinical medicine, forensic science and medicine, etc. The polynucleotides and polypeptides are useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, such as pancreatic cancer, diabetes, pancreatitis, and other disorders especially relating to the pancreas and the functions its performs. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to pancreas tissue permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

The function, structure, and diseases of the pancreas were described previously. The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of pancreas. These include, but are not limited to, e.g., acute and chronic pancreatitis, pancreatic abscess, pancreatic pseudocyst, nonalcoholic pancreatitis, alcoholic pancreatitis, classic acute hemorrhagic pancreatitis, chronic calcifying pancreatitis, familial hereditary pancreatitis, carcinomas of the pancreas, primary (idiopathic) diabetes (e.g., Type I (insulin dependent diabetes mellitus, IDDM) [insulin deficiency, beta cell depletion], Type II (non-insulin dependent diabetes mellitus, NIDDM) [insulin resistance, relative insulin deficiency, mild beta cell depletion]), nonobese NIDDM, obese NIDDM, maturity-onset diabetes of the young (MODY), islet cell tumors, diffuse hyperplasia of the islets of Langerhans, benign adenomas, malignant islet tumors, hyperfunction of the islets of Langerhans, hyperinsulinism and hypoglycemia, Zollinger-Ellison syndrome, beta cell

10

15

20

25

30

tumors (insulinoma), alpha cell tumors (glucagonoma), delta cell tumors (somatostatinoma), vipoma (diarrheogenic islet cell tumor), pancreatic cancers, pancreatic carcinoid tumors, multihormonal tumors, multiple endocrine neoplasia (MEN), MEN I (Wermer syndrome), MEN II (Sipple syndrome), MEN III or IIb, pancreatic endocrine tumors, etc.

For example, five different pancreatic tumor samples were examined (Nos. 1, 2, 3, 4, and 5). TMD0639 was up-regulated in about 1/5 pancreatic cancers (No. 4), TMD0645 was up-regulated in about 3/5 pancreatic cancers (Nos. 2, 3, and 5), and TMD1127 was up-regulated in about 2/5 pancreatic cancers (Nos. 1 and 4). These results indicate that the probes can be used in combination in order to maximize the detection of different types of pancreatic cancers and tumors. Thus, a sample from a patient can be assesses for expression of both TMD0645 and TMD1127 to increase the probability that the pancreas cancer will be detected.

In view of their selectivity and display on the cell surface, the membrane proteins of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., pancreatic progenitor, exocrine, endocrine, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells in biopsies and other tissue samples. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 21. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule

10

15

20

25

30

comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

Table 20 is a summary of the genes of the present invention which are expressed selectively and/or predominantly in pancreas tissue. Fig. 12 is an illustration of these expression patterns. Each gene is associated with a Clone ID and Accession Number ("ACCN"). The Clone ID is an arbitrary identification number for the clone, and the accession number is the number by which it is listed in GenBank. Although specific sequences are disclosed herein, and listed in GenBank by an accession number), the present invention includes all forms of the gene, including polymorphisms, allelic variations, SNPs, splice variants, and any full-length versions when the disclosed or Genbank version is partial. For convenience, these genes, and their homologs in other species, are referred to throughout the disclosure in shorthand as "the genes of Table 20," "a gene of Table 20," "polynucleotides of Table 20," "tolly peptides of Table 20," etc..., because Table 20 contains a listing of the genes by accession number and clone ID.

The expression patterns of the selectively and/or predominantly expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by pancreas tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the pancreas-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal pancreas tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of pancreas-

10

15

20

25-

30

selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of pancreas-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ between samples, albeit in ways that do not change the overall expression pattern. As a result, a complete match with a particular tissue expression profile, as shown herein, is not necessary.

The present invention relates to methods of detecting pancreas cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene of Table 20, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include the primer sequences shown in Table 23, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g.,

10

15

20

25

30

monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a pancreas cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of Table 20, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface.

As indicated above, binding partners can be used to deliver agents specifically to the pancreas, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a pancreas cell can comprise, e.g., contacting a pancreas cell with an agent coupled to a binding partner specific for a polypeptide coding for a gene of Table 20, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the pancreas can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by a gene of Table 20 can be targeted, including, e.g., pancreatic progenitor, exocrine, endocrine, secretory, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917,

10

15

20

25

30

6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging pancreas using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A pancreas cell (see above for examples of pancreas cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a pancreas cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene of Table 20, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, and 255), or a mammalian homolog thereof, whereby said pancreas cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

An activity or function of the pancreas cell can be modulated, including, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), etc.

The present invention also relates to polypeptide detection methods for assessing pancreas function, e.g., methods of assessing pancreas function, comprising, detecting a polypeptide coded for by a gene of Table 20, fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of pancreas function. Pancreas function tests are usually performed to determine whether the pancreas is functioning normally as a way of diagnosing pancreas disease. Various tests are commonly used, including, e.g., assays for the presence of pancreatic enzymes in body fluids (e.g., amylase, serum lipase, serum trypsin-like immuoreactivity), studies of pancreatic structure (e.g., using x-ray, sonography, CT-scan, angiography, endoscopic retrograde cholangiopancreatography), and tests for pancreatic function (e.g., secretin-pancreozymin

10

15

20

25-

(CCK) tst, Lundh meal test, Bz-Ty-PABA test, chymotrypsin in feces, etc). Detection of a polypeptide coded for by a gene of Table 20 provides an additional assessment tool, especially in diseases such as pancreatitis and pancreatic cancer where pancreatic markers can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired pancreas function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for pancreatic enzymes in body fluids.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in pancreas cells. Methods of expressing a heterologous polynucleotide in pancreas cells can comprise, e.g., expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NO 258, 261, 262, 265-267, 270-272, 275, 278, 279, 282-284, 287, 290-293, 296, 297, 303, 306, 309-314, 317-320, 323-326, 329, 332-333, 336-338, 341, and 344 as shown in Table 23. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of Table 20 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the pancreas as mentioned above. The present invention relates to methods of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising, e.g., determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex. An association between a pancreas disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Human linkage maps can be constructed to establish a relationship between the cytogenetic locus as shown in Table 22 and a pancreatic disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified

within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

## Nucleic acids

5

10

15

20

25

A mammalian polynucleotide, or fragment thereof, of the present invention is a polynucleotide having a nucleotide sequence obtainable from a natural source. When the species name is used, e.g., a human, it indicates that the polynucleotide or polypeptide is obtainable from a natural source. It therefore includes naturally-occurring normal, naturally-occurring mutant, and naturally-occurring polymorphic alleles (e.g., SNPs), differentially-spliced transcripts, splice-variants, etc. By the term "naturally-occurring," it is meant that the polynucleotide is obtainable from a natural source, e.g., animal tissue and cells, body fluids, tissue culture cells, forensic samples. Natural sources include, e.g., living cells obtained from tissues and whole organisms, tumors, cultured cell lines, including primary and immortalized cell lines. Naturally-occurring mutations can include deletions (e.g., a truncated amino- or carboxy-terminus), substitutions, inversions, or additions of nucleotide sequence. These genes can be detected and isolated by polynucleotide hybridization according to methods which one skilled in the art would know, e.g., as discussed below.

A polynucleotide according to the present invention can be obtained from a variety of different sources. It can be obtained from DNA or RNA, such as polyadenylated mRNA or total RNA, e.g., isolated from tissues, cells, or whole organism. The polynucleotide can be obtained directly from DNA or RNA, from a cDNA library, from a genomic library, etc. The polynucleotide can be obtained from a cell or tissue (e.g., from an embryonic or adult tissues) at a particular stage of development, having a desired genotype, phenotype, disease status, etc.

The polynucleotides described herein can be partial sequences that correspond to full-length, naturally-occurring transcripts. The present invention includes, as well, full-length polynucleotides that comprise these partial sequences, e.g., genomic DNAs and polynucleotides comprising a start and stop codon, a start codon and a polyA tail, a

transcription start and a polyA tail, etc. These sequences can be obtained by any suitable method, e.g., using a partial sequence as a probe to select a full-length cDNA from a library containing full-length inserts. A polynucleotide which "codes without interruption" refers to a polynucleotide having a continuous open reading frame ("ORF") as compared to an ORF which is interrupted by introns or other noncoding sequences.

Polynucleotides and polypeptides can be excluded as compositions from the present invention if, e.g., listed in a publicly available databases on the day this application was filed and/or disclosed in a patent application having an earlier filing or priority date than this application and/or conceived and/or reduced to practice earlier than a polynucleotide in this application.

As described herein, the phrase "an isolated polynucleotide which is SEQ ID NO," or "an isolated polynucleotide which is selected from SEQ ID NO," refers to an isolated nucleic acid molecule from which the recited sequence was derived (e.g., a cDNA derived from mRNA; cDNA derived from genomic DNA). Because of sequencing errors, typographical errors, etc., the actual naturally-occurring sequence may differ from a SEQ ID listed herein. Thus, the phrase indicates the specific molecule from which the sequence was derived, rather than a molecule having that exact recited nucleotide sequence, analogously to how a culture depository number refers to a specific cloned fragment in a cryotube.

As explained in more detail below, a polynucleotide sequence of the invention can contain the complete sequence as shown herein, degenerate sequences thereof, anti-sense, muteins thereof, genes comprising said sequences, full-length cDNAs comprising said sequences, complete genomic sequences, fragments thereof, homologs, primers, nucleic acid molecules which hybridize thereto, derivatives thereof, etc.

### 25 Genomic

10

15

20

30

XXXID: <WO

03089583A2 1 >

The present invention also relates genomic DNA from which the polynucleotides of the present invention can be derived. A genomic DNA coding for a human, mouse, or other mammalian polynucleotide, can be obtained routinely, for example, by screening a genomic library (e.g., a YAC library) with a polynucleotide of the present invention, or by searching nucleotide databases, such as GenBank and EMBL, for matches. Promoter and other regulatory regions (including both 5' and 3' regions, as well introns) can be identified

upstream or downstream of coding and expressed RNAs, and assayed routinely for activity, e.g., by joining to a reporter gene (e.g., CAT, GFP, alkaline phosphatase, luciferase, galatosidase). A promoter obtained from a tissue selective gene can be used, e.g., in gene therapy to obtain tissue-specific expression of a heterologous gene (e.g., coding for a therapeutic product or cytotoxin). 5' and 3' sequences (including, UTRs and introns) can be used to modulate or regulate stability, transcription, and translation of nucleic acids, including the sequence to which is attached in nature, as well as heterologous nucleic acids.

#### Constructs

10

5

15

20

25

30

A polynucleotide of the present invention can comprise additional polynucleotide sequences, e.g., sequences to enhance expression, detection, uptake, cataloging, tagging, etc. A polynucleotide can include only coding sequence; a coding sequence and additional nonnaturally occurring or heterologous coding sequence (e.g., sequences coding for leader, signal, secretory, targeting, enzymatic, fluorescent, antibiotic resistance, and other functional or diagnostic peptides); coding sequences and non-coding sequences, e.g., untranslated sequences at either a 5' or 3' end, or dispersed in the coding sequence, e.g., introns.

A polynucleotide according to the present invention also can comprise an expression control sequence operably linked to a polynucleotide as described above. The phrase "expression control sequence" means a polynucleotide sequence that regulates expression of a polypeptide coded for by a polynucleotide to which it is functionally ("operably") linked. Expression can be regulated at the level of the mRNA or polypeptide. Thus, the expression control sequence includes mRNA-related elements and protein-related elements. Such elements include promoters, enhancers (viral or cellular), ribosome binding sequences, transcriptional terminators, etc. An expression control sequence is operably linked to a nucleotide coding sequence when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5' to a coding sequence, expression of the coding sequence is driven by the promoter. Expression control sequences can include an initiation codon and additional nucleotides to place a partial nucleotide sequence of the present invention in-frame in order to produce a polypeptide (e.g., pET vectors from Promega have been designed to permit a molecule to be inserted into all three reading frames to identify the one that results

10

15

25

30

in polypeptide expression). Expression control sequences can be heterologous or endogenous to the normal gene.

A polynucleotide of the present invention can also comprise nucleic acid vector sequences, e.g., for cloning, expression, amplification, selection, etc. Any effective vector can be used. A vector is, e.g., a polynucleotide molecule which can replicate autonomously in a host cell, e.g., containing an origin of replication. Vectors can be useful to perform manipulations, to propagate, and/or obtain large quantities of the recombinant molecule in a desired host. A skilled worker can select a vector depending on the purpose desired, e.g., to propagate the recombinant molecule in bacteria, yeast, insect, or mammalian cells. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, Phagescript, phiX174, pBK Phagemid, pNH8A, pNH16a, pNH18Z, pNH46A (Stratagene); Bluescript KS+II (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR54 0, pRIT5 (Pharmacia). Eukaryotic: PWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene), pSVK3, PBPV, PMSG, pSVL (Pharmacia), pCR2.1/TOPO, pCRII/TOPO, pCR4/TOPO, pTrcHisB, pCMV6-XL4, etc. However, any other vector, e.g., plasmids, viruses, or parts thereof, may be used as long as they are replicable and viable in the desired host. The vector can also comprise sequences which enable it to replicate in the host whose genome is to be modified.

## 20 Hybridization

Polynucleotide hybridization, as discussed in more detail below, is useful in a variety of applications, including, in gene detection methods, for identifying mutations, for making mutations, to identify homologs in the same and different species, to identify related members of the same gene family, in diagnostic and prognostic assays, in therapeutic applications (e.g., where an antisense polynucleotide is used to inhibit expression), etc.

The ability of two single-stranded polynucleotide preparations to hybridize together is a measure of their nucleotide sequence complementarity, e.g., base-pairing between nucleotides, such as A-T, G-C, etc. The invention thus also relates to polynucleotides, and their complements, which hybridize to a polynucleotide comprising a nucleotide sequence as set forth herein and genomic sequences thereof. A nucleotide sequence hybridizing to the latter sequence will have a complementary polynucleotide strand, or act as a template for one

10

15

20

25

30

in the presence of a polymerase (i.e., an appropriate polynucleotide synthesizing enzyme). The present invention includes both strands of polynucleotide, e.g., a sense strand and an anti-sense strand.

Hybridization conditions can be chosen to select polynucleotides which have a desired amount of nucleotide complementarity with the nucleotide sequences set forth in herein and genomic sequences thereof. A polynucleotide capable of hybridizing to such sequence, preferably, possesses, e.g., about 70%, 75%, 80%, 85%, 87%, 90%, 92%, 95%, 97%, 99%, or 100% complementarity, between the sequences. The present invention particularly relates to polynucleotide sequences which hybridize to the nucleotide sequences set forth in the attached sequence disclosure or genomic sequences thereof, under low or high stringency conditions. These conditions can be used, e.g., to select corresponding homologs in non-human species.

Polynucleotides which hybridize to polynucleotides of the present invention can be selected in various ways. Filter-type blots (i.e., matrices containing polynucleotide, such as nitrocellulose), glass chips, and other matrices and substrates comprising polynucleotides (short or long) of interest, can be incubated in a prehybridization solution (e.g., 6X SSC, 0.5% SDS, 100 μg/ml denatured salmon sperm DNA, 5X Denhardt's solution, and 50% formamide), at 22-68°C, overnight, and then hybridized with a detectable polynucleotide probe under conditions appropriate to achieve the desired stringency. In general, when high homology or sequence identity is desired, a high temperature can be used (e.g., 65 °C). As the homology drops, lower washing temperatures are used. For salt concentrations, the lower the salt concentration, the higher the stringency. The length of the probe is another consideration. Very short probes (e.g., less than 100 base pairs) are washed at lower temperatures, even if the homology is high. With short probes, formamide can be omitted. See, e.g., *Current Protocols in Molecular Biology*, Chapter 6, Screening of Recombinant Libraries; Sambrook et al., *Molecular Cloning*, 1989, Chapter 9.

For instance, high stringency conditions can be achieved by incubating the blot overnight (e.g., at least 12 hours) with a polynucleotide probe in a hybridization solution containing, e.g., about 5X SSC, 0.1-0.5% SDS, 100 µg/ml denatured salmon sperm DNA and 50% formamide, at 42°C, or hybridizing at 42°C in 5X SSPE, 0.1-0.5% SDS, and 50%

10

15

20

25

30

formamide, 100  $\mu$ g/ml denatured salmon sperm DNA, and washing at 65°C in 0.1% SSC and 0.1% SDS.

Blots can be washed at high stringency conditions that allow, e.g., for less than 5% bp mismatch (e.g., wash twice in 0.1% SSC and 0.1% SDS for 30 min at 65°C), i.e., selecting sequences having 95% or greater sequence identity.

Other non-limiting examples of high stringency conditions includes a final wash at 65°C in aqueous buffer containing 30 mM NaCl and 0.5% SDS. Another example of high stringent conditions is hybridization in 7% SDS, 0.5 M NaPO<sub>4</sub>, pH 7, 1 mM EDTA at 50°C, e.g., overnight, followed by one or more washes with a 1% SDS solution at 42°C.

Whereas high stringency washes can allow for, e.g., less than 10%, less than 5% mismatch, etc., reduced or low stringency conditions can permit up to 20% nucleotide mismatch. Hybridization at low stringency can be accomplished as above, but using lower formamide conditions, lower temperatures and/or lower salt concentrations, as well as longer periods of incubation time.

Hybridization can also be based on a calculation of melting temperature (Tm) of the hybrid formed between the probe and its target, as described in Sambrook et al.. Generally, the temperature Tm at which a short oligonucleotide (containing 18 nucleotides or fewer) will melt from its target sequence is given by the following equation: Tm = (number of A's and T's) x 2°C + (number of C's and G's) x 4°C. For longer molecules, Tm = 81.5 + 16.6 log<sub>10</sub>[Na<sup>+</sup>] + 0.41(%GC) - 600/N where [Na<sup>+</sup>] is the molar concentration of sodium ions, %GC is the percentage of GC base pairs in the probe, and N is the length. Hybridization can be carried out at several degrees below this temperature to ensure that the probe and target can hybridize. Mismatches can be allowed for by lowering the temperature even further.

Stringent conditions can be selected to isolate sequences, and their complements, which have, e.g., at least about 90%, 95%, or 97%, nucleotide complementarity between the probe (e.g., a short polynucleotide of the sequences disclosed herein or genomic sequences thereof) and a target polynucleotide.

Other homologs of polynucleotides of the present invention can be obtained from mammalian and non-mammalian sources according to various methods. For example, hybridization with a polynucleotide can be employed to select homologs, e.g., as described in Sambrook et al., *Molecular Cloning*, Chapter 11, 1989. Such homologs can have varying

amounts of nucleotide and amino acid sequence identity and similarity to such polynucleotides of the present invention. Mammalian organisms include, e.g., mice, rats, monkeys, pigs, cows, etc. Non-mammalian organisms include, e.g., vertebrates, invertebrates, zebra fish, chicken, Drosophila, C. elegans, Xenopus, yeast such as S. pombe, S. cerevisiae, roundworms, prokaryotes, plants, Arabidopsis, artemia, viruses, etc. The degree of nucleotide sequence identity between human and mouse can be about, e.g. 70% or more, 85% or more for open reading frames, etc.

## Alignment

5

10

15

20

25

30

Alignments can be accomplished by using any effective algorithm. For pairwise alignments of DNA sequences, the methods described by Wilbur-Lipman (e.g., Wilbur and Lipman, Proc. Natl. Acad. Sci., 80:726-730, 1983) or Martinez/Needleman-Wunsch (e.g., Martinez, Nucleic Acid Res., 11:4629-4634, 1983) can be used. For instance, if the Martinez/Needleman-Wunsch DNA alignment is applied, the minimum match can be set at 9, gap penalty at 1.10, and gap length penalty at 0.33. The results can be calculated as a similarity index, equal to the sum of the matching residues divided by the sum of all residues and gap characters, and then multiplied by 100 to express as a percent. Similarity index for related genes at the nucleotide level in accordance with the present invention can be greater than 70%, 80%, 85%, 90%, 95%, 99%, or more. Pairs of protein sequences can be aligned by the Lipman-Pearson method (e.g., Lipman and Pearson, Science, 227:1435-1441, 1985) with k-tuple set at 2, gap penalty set at 4, and gap length penalty set at 12. Results can be expressed as percent similarity index, where related genes at the amino acid level in accordance with the present invention can be greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more. Various commercial and free sources of alignment programs are available, e.g., MegAlign by DNA Star, BLAST (National Center for Biotechnology Information), BCM (Baylor College of Medicine) Launcher, etc. BLAST can be used to calculate amino acid sequence identity, amino acid sequence homology, and nucleotide sequence identity. These calculations can be made along the entire length of each of the target sequences which are to be compared.

After two sequences have been aligned, a "percent sequence identity" can be determined. For these purposes, it is convenient to refer to a Reference Sequence and a

10

15

20

25

30

Compared Sequence, where the Compared Sequence is *compared* to the Reference Sequence. Percent sequence identity can be determined according to the following formula: Percent Identity = 100 [1-(C/R)], wherein C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence where (i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence, (ii) each gap in the Reference Sequence, (iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference; and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid.

Percent sequence identity can also be determined by other conventional methods, e.g., as described in Altschul et al., *Bull. Math. Bio.* 48: 603-616, 1986 and Henikoff and Henikoff, *Proc. Natl. Acad. Sci.* USA 89:10915-10919, 1992.

Specific polynucleotide probes

A polynucleotide of the present invention can comprise any continuous nucleotide sequence described herein, sequences which share sequence identity thereto, or complements thereof. The term "probe" refers to any substance that can be used to detect, identify, isolate, etc., another substance. A polynucleotide probe is comprised of nucleic acid can be used to detect, identify, etc., other nucleic acids, such as DNA and RNA.

These polynucleotides can be of any desired size that is effective to achieve the specificity desired. For example, a probe can be from about 7 or 8 nucleotides to several thousand nucleotides, depending upon its use and purpose. For instance, a probe used as a primer PCR can be shorter than a probe used in an ordered array of polynucleotide probes. Probe sizes vary, and the invention is not limited in any way by their size, e.g., probes can be from about 7-2000 nucleotides, 7-1000, 8-700, 8-600, 8-500, 8-400, 8-300, 8-150, 8-100, 8-75, 7-50, 10-25, 14-16, at least about 8, at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, or more, etc. The polynucleotides can have non-naturally-occurring nucleotides, e.g., inosine, AZT, 3TC, etc. The polynucleotides can have 100% sequence identity or complementarity to a sequence disclosed herein, or it can have mismatches or

10

15

20

25

30

nucleotide substitutions, e.g., 1, 2, 3, 4, or 5 substitutions. The probes can be single-stranded or double-stranded.

In accordance with the present invention, a polynucleotide can be present in a kit, where the kit includes, e.g., one or more polynucleotides, a desired buffer (e.g., phosphate, tris, etc.), detection compositions, RNA or cDNA from different tissues to be used as controls, libraries, etc. The polynucleotide can be labeled or unlabeled, with radioactive or non-radioactive labels as known in the art. Kits can comprise one or more pairs of polynucleotides for amplifying nucleic acids specific for tissue selective genes, e.g., comprising a forward and reverse primer effective in PCR. These include both sense and anti-sense orientations. For instance, in PCR-based methods (such as RT-PCR), a pair of primers are typically used, one having a sense sequence and the other having an antisense sequence.

Another aspect of the present invention is a nucleotide sequence that is specific to, or for, a selective polynucleotide. The phrases "specific for" or "specific to" a polynucleotide have a functional meaning that the polynucleotide can be used to identify the presence of one or more target genes in a sample and distinguish them from non-target genes. It is specific in the sense that it can be used to detect polynucleotides above background noise ("non-specific binding"). A specific sequence is a defined order of nucleotides (or amino acid sequences, if it is a polypeptide sequence) which occurs in the polynucleotide, e.g., in the nucleotide sequences of the present invention, and which is characteristic of that target sequence, and substantially no non-target sequences. A probe or mixture of probes can comprise a sequence or sequences that are specific to a plurality of target sequences, e.g., where the sequence is a consensus sequence, a functional domain, etc., e.g., capable of recognizing a family of related genes. Such sequences can be used as probes in any of the methods described herein or incorporated by reference. Both sense and antisense nucleotide sequences are included. A specific polynucleotide according to the present invention can be determined routinely.

A polynucleotide comprising a specific sequence can be used as a hybridization probe to identify the presence of, e.g., human or mouse polynucleotide, in a sample comprising a mixture of polynucleotides, e.g., on a Northern blot. Hybridization can be performed under high stringent conditions (see, above) to select polynucleotides (and their complements which

10

15

20

30

can contain the coding sequence) having at least 90%, 95%, 99%, etc., identity (i.e., complementarity) to the probe, but less stringent conditions can also be used. A specific polynucleotide sequence can also be fused in-frame, at either its 5' or 3' end, to various nucleotide sequences as mentioned throughout the patent, including coding sequences for enzymes, detectable markers, GFP, etc, expression control sequences, etc.

A polynucleotide probe, especially one that is specific to a polynucleotide of the present invention, can be used in gene detection and hybridization methods as already described. In one embodiment, a specific polynucleotide probe can be used to detect whether a particular tissue or cell-type is present in a target sample. To carry out such a method, a selective polynucleotide can be chosen which is characteristic of the desired target tissue. Such polynucleotide is preferably chosen so that it is expressed or displayed in the target tissue, but not in other tissues which are present in the sample. For instance, if detection of pancreas, or kidney, it may not matter whether the selective polynucleotide is expressed in other tissues, as long as it is not expressed in cells normally present in blood, e.g., peripheral blood mononuclear cells. Starting from the selective polynucleotide, a specific polynucleotide probe can be designed which hybridizes (if hybridization is the basis of the assay) under the hybridization conditions to the selective polynucleotide, whereby the presence of the selective polynucleotide can be determined.

Probes which are specific for polynucleotides of the present invention can also be prepared using involve transcription-based systems, e.g., incorporating an RNA polymerase promoter into a selective polynucleotide of the present invention, and then transcribing antisense RNA using the polynucleotide as a template. See, e.g., U.S. Pat. No. 5,545,522.

## \* Polynucleotide composition

25-A polynucleotide according to the present invention can comprise, e.g., DNA, RNA, synthetic polynucleotide, peptide polynucleotide, modified nucleotides, dsDNA, ssDNA, ssRNA, dsRNA, and mixtures thereof. A polynucleotide can be single- or double-stranded, triplex, DNA:RNA, duplexes, comprise hairpins, and other secondary structures, etc. Nucleotides comprising a polynucleotide can be joined via various known linkages, e.g., ester, sulfamate, sulfamide, phosphorothioate, phosphoramidate, methylphosphonate, carbamate, etc., depending on the desired purpose, e.g., resistance to nucleases, such as

RNAse H, improved in vivo stability, etc. See, e.g., U.S. Pat. No. 5,378,825. Any desired nucleotide or nucleotide analog can be incorporated, e.g., 6-mercaptoguanine, 8-oxo-guanine, etc.

Various modifications can be made to the polynucleotides, such as attaching detectable markers (avidin, biotin, radioactive elements, fluorescent tags and dyes, energy transfer labels, energy-emitting labels, binding partners, etc.) or moieties which improve hybridization, detection, and/or stability. The polynucleotides can also be attached to solid supports, e.g., nitrocellulose, magnetic or paramagnetic microspheres (e.g., as described in U.S. Pat. No. 5,411,863; U.S. Pat. No. 5,543,289; for instance, comprising ferromagnetic, supermagnetic, paramagnetic, superparamagnetic, iron oxide and polysaccharide), nylon, agarose, diazotized cellulose, latex solid microspheres, polyacrylamides, etc., according to a desired method. See, e.g., U.S. Pat. Nos. 5,470,967, 5,476,925, and 5,478,893.

Polynucleotide according to the present invention can be labeled according to any desired method. The polynucleotide can be labeled using radioactive tracers such as <sup>32</sup>P, <sup>35</sup>S, <sup>3</sup>H, or <sup>14</sup>C, to mention some commonly used tracers. The radioactive labeling can be carried out according to any method, such as, for example, terminal labeling at the 3' or 5' end using a radiolabeled nucleotide, polynucleotide kinase (with or without dephosphorylation with a phosphatase) or a ligase (depending on the end to be labeled). A non-radioactive labeling can also be used, combining a polynucleotide of the present invention with residues having immunological properties (antigens, haptens), a specific affinity for certain reagents (ligands), properties enabling detectable enzyme reactions to be completed (enzymes or coenzymes, enzyme substrates, or other substances involved in an enzymatic reaction), or characteristic physical properties, such as fluorescence or the emission or absorption of light at a desired wavelength, etc.

25

30

5

10

15

20

### Nucleic acid detection methods

Another aspect of the present invention relates to methods and processes for detecting tissue selective genes. Detection methods have a variety of applications, including for diagnostic, prognostic, forensic, and research applications. To accomplish gene detection, a polynucleotide in accordance with the present invention can be used as a "probe." The term "probe" or "polynucleotide probe" has its customary meaning in the art, e.g., a polynucleotide

10

15

20

25

30

which is effective to identify (e.g., by hybridization), when used in an appropriate process, the presence of a target polynucleotide to which it is designed. Identification can involve simply determining presence or absence, or it can be quantitative, e.g., in assessing amounts of a gene or gene transcript present in a sample. Probes can be useful in a variety of ways, such as for diagnostic purposes, to identify homologs, and to detect, quantitate, or isolate a polynucleotide of the present invention in a test sample.

Assays can be utilized which permit quantification and/or presence/absence detection of a target nucleic acid in a sample. Assays can be performed at the single-cell level, or in a sample comprising many cells, where the assay is "averaging" expression over the entire collection of cells and tissue present in the sample. Any suitable assay format can be used, including, but not limited to, e.g., Southern blot analysis, Northern blot analysis, polymerase chain reaction ("PCR") (e.g., Saiki et al., Science, 241:53, 1988; U.S. Pat. Nos. 4,683,195, 4,683,202, and 6,040,166; PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, New York, 1990), reverse transcriptase polymerase chain reaction ("RT-PCR"), anchored PCR, rapid amplification of cDNA ends ("RACE") (e.g., Schaefer in Gene Cloning and Analysis: Current Innovations, Pages 99-115, 1997), ligase chain reaction ("LCR") (EP 320 308), one-sided PCR (Ohara et al., Proc. Natl. Acad. Sci., 86:5673-5677, 1989), indexing methods (e.g., U.S. Pat. No. 5,508,169), in situ hybridization, differential display (e.g., Liang et al., Nucl. Acid. Res., 21:3269-3275, 1993; U.S. Pat. Nos. 5,262,311, 5,599,672 and 5,965,409; WO97/18454; Prashar and Weissman, Proc. Natl. Acad. Sci., 93:659-663, and U.S. Pat. Nos. 6,010,850 and 5,712,126; Welsh et al., Nucleic Acid Res., 20:4965-4970, 1992, and U.S. Pat. No. 5,487,985) and other RNA fingerprinting techniques, nucleic acid sequence based amplification ("NASBA") and other transcription based amplification systems (e.g., U.S. Pat. Nos. 5,409,818 and 5,554,527; WO 88/10315), polynucleotide arrays (e.g., U.S. Pat. Nos. 5,143,854, 5,424,186; 5,700,637, 5,874,219, and 6,054,270; PCT WO 92/10092; PCT WO 90/15070), Qbeta Replicase (PCT/US87/00880), Strand Displacement Amplification ("SDA"), Repair Chain Reaction ("RCR"), nuclease protection assays, subtraction-based methods, Rapid-Scan™, etc. Additional useful methods include, but are not limited to, e.g., template-based amplification methods, competitive PCR (e.g., U.S. Pat. No. 5,747,251), redox-based assays (e.g., U.S. Pat. No. 5,871,918), Taqmanbased assays (e.g., Holland et al., Proc. Natl. Acad, Sci., 88:7276-7280, 1991; U.S. Pat. Nos.

10

15

20

25

30

5,210,015 and 5,994,063), real-time fluorescence-based monitoring (e.g., U.S. Pat. 5,928,907), molecular energy transfer labels (e.g., U.S. Pat. Nos. 5,348,853, 5,532,129, 5,565,322, 6,030,787, and 6,117,635; Tyagi and Kramer, *Nature Biotech.*, 14:303-309, 1996). Any method suitable for single cell analysis of gene or protein expression can be used, including in situ hybridization, immunocytochemistry, MACS, FACS, flow cytometry, etc. For single cell assays, expression products can be measured using antibodies, PCR, or other types of nucleic acid amplification (e.g., Brady et al., *Methods Mol. & Cell. Biol.* 2, 17-25, 1990; Eberwine et al., 1992, *Proc. Natl. Acad. Sci.*, 89, 3010-3014, 1992; U.S. Pat. No. 5,723,290). These and other methods can be carried out conventionally, e.g., as described in the mentioned publications.

Many of such methods may require that the polynucleotide is labeled, or comprises a particular nucleotide type useful for detection. The present invention includes such modified polynucleotides that are necessary to carry out such methods. Thus, polynucleotides can be DNA, RNA, DNA:RNA hybrids, PNA, etc., and can comprise any modification or substituent which is effective to achieve detection.

Detection can be desirable for a variety of different purposes, including research, diagnostic, prognostic, and forensic. For diagnostic purposes, it may be desirable to identify the presence or quantity of a polynucleotide sequence in a sample, where the sample is obtained from tissue, cells, body fluids, etc. In a preferred method as described in more detail below, the present invention relates to a method of detecting a polynucleotide comprising, contacting a target polynucleotide in a test sample with a polynucleotide probe under conditions effective to achieve hybridization between the target and probe; and detecting hybridization.

Any test sample in which it is desired to identify a polynucleotide or polypeptide thereof can be used, including, e.g., blood, urine, saliva, stool (for extracting nucleic acid, see, e.g., U.S. Pat. No. 6,177,251), swabs comprising tissue, biopsied tissue, tissue sections, cultured cells, etc.

Detection can be accomplished in combination with polynucleotide probes for other genes, e.g., genes which are expressed in other disease states, tissues, cells, such as brain, heart, kidney, spleen, thymus, liver, stomach, small intestine, colon, muscle, lung, testis, placenta, pituitary, thyroid, skin, adrenal gland, pancreas, salivary gland, uterus, ovary,

10

15

20

23

30

prostate gland, peripheral blood cells (T-cells, lymphocytes, etc.), embryo, breast, fat, adult and embryonic stem cells, etc.

Polynucleotides can be used in wide range of methods and compositions, including for detecting, diagnosing, staging, grading, assessing, prognosticating, etc. diseases and disorders associated with tissue selective genes, for monitoring or assessing therapeutic and/or preventative measures, in ordered arrays, etc. Any method of detecting genes and polynucleotides can be used; certainly, the present invention is not to be limited how such methods are implemented.

Along these lines, the present invention relates to methods of detecting polynucleotides of the present invention in a sample comprising nucleic acid. Such methods can comprise one or more the following steps in any effective order, e.g., contacting said sample with a polynucleotide probe under conditions effective for said probe to hybridize specifically to nucleic acid in said sample, and detecting the presence or absence of probe hybridized to nucleic acid in said sample, wherein said probe is a polynucleotide which is described herein, a polynucleotide having, e.g., about 70%, 80%, 85%, 90%, 95%, 99%, or more sequence identity thereto, effective or specific fragments thereof, or complements thereto. The detection method can be applied to any sample, e.g., cultured primary, secondary, or established cell lines, tissue biopsy, blood, urine, stool, cerebral spinal fluid, and other bodily fluids, for any purpose.

Contacting the sample with probe can be carried out by any effective means in any effective environment. It can be accomplished in a solid, liquid, frozen, gaseous, amorphous, solidified, coagulated, colloid, etc., mixtures thereof, matrix. For instance, a probe in an aqueous medium can be contacted with a sample which is also in an aqueous medium, or which is affixed to a solid matrix, or vice-versa.

Generally, as used throughout the specification, the term "effective conditions" means, e.g., the particular milieu in which the desired effect is achieved. Such a milieu, includes, e.g., appropriate buffers, oxidizing agents, reducing agents, pH, co-factors, temperature, ion concentrations, suitable age and/or stage of cell (such as, in particular part of the cell cycle, or at a particular stage where particular genes are being expressed) where cells are being used, culture conditions (including substrate, oxygen, carbon dioxide, etc.). When hybridization is the chosen means of achieving detection, the probe and sample can be

10

15

20

25-

30

combined such that the resulting conditions are functional for said probe to hybridize specifically to nucleic acid in said sample.

The phrase "hybridize specifically" indicates that the hybridization between single-stranded polynucleotides is based on nucleotide sequence complementarity. The effective conditions are selected such that the probe hybridizes to a preselected and/or definite target nucleic acid in the sample. For instance, if detection of a polynucleotide set forth herein is desired, a probe can be selected which can hybridize to such target gene under high stringent conditions, without significant hybridization to other genes in the sample. To detect homologs of a polynucleotide set forth in herein, the effective hybridization conditions can be less stringent, and/or the probe can comprise codon degeneracy, such that a homolog is detected in the sample.

As already mentioned, the methods can be carried out by any effective process, e.g., by Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, in situ hybridization, etc., as indicated above. When PCR based techniques are used, two or more probes are generally used. One probe can be specific for a defined sequence which is characteristic of a selective polynucleotide, but the other probe can be specific for the selective polynucleotide, or specific for a more general sequence, e.g., a sequence such as polyA which is characteristic of mRNA, a sequence which is specific for a promoter, ribosome binding site, or other transcriptional features, a consensus sequence (e.g., representing a functional domain). For the former aspects, 5' and 3' probes (e.g., polyA, Kozak, etc.) are preferred which are capable of specifically hybridizing to the ends of transcripts. When PCR is utilized, the probes can also be referred to as "primers" in that they can prime a DNA polymerase reaction.

In addition to testing for the presence or absence of polynucleotides, the present invention also relates to determining the amounts at which polynucleotides of the present invention are expressed in sample and determining the differential expression of such polynucleotides in samples.. Such methods can involve substantially the same steps as described above for presence/absence detection, e.g., contacting with probe, hybridizing, and detecting hybridized probe, but using more quantitative methods and/or comparisons to standards.

10

15

20

30

The amount of hybridization between the probe and target can be determined by any suitable methods, e.g., PCR, RT-PCR, RACE PCR, Northern blot, polynucleotide microarrays, Rapid-Scan, etc., and includes both quantitative and qualitative measurements. For further details, see the hybridization methods described above and below. Determining by such hybridization whether the target is differentially expressed (e.g., up-regulated or down-regulated) in the sample can also be accomplished by any effective means. For instance, the target's expression pattern in the sample can be compared to its pattern in a known standard, such as in a normal tissue, or it can be compared to another gene in the same sample. When a second sample is utilized for the comparison, it can be a sample of normal tissue that is known not to contain diseased cells. The comparison can be performed on samples which contain the same amount of RNA (such as polyadenylated RNA or total RNA), or, on RNA extracted from the same amounts of starting tissue. Such a second sample can also be referred to as a control or standard. Hybridization can also be compared to a second target in the same tissue sample. Experiments can be performed that determine a ratio between the target nucleic acid and a second nucleic acid (a standard or control), e.g., in a normal tissue. When the ratio between the target and control are substantially the same in a normal and sample, the sample is determined or diagnosed not to contain cells. However, if the ratio is different between the normal and sample tissues, the sample is determined to contain, e.g., kidney, pancreas, or immune cells. The approaches can be combined, and one or more second samples, or second targets can be used. Any second target nucleic acid can be used as a comparison, including "housekeeping" genes, such as beta-actin, alcohol dehydrogenase, or any other gene whose expression does not vary depending upon the disease status of the cell.

25 Methods of identifying polymorphisms, mutations, etc.

Polynucleotides of the present invention can also be utilized to identify mutant alleles, SNPs, gene rearrangements and modifications, and other polymorphisms of the wild-type gene. Mutant alleles, polymorphisms, SNPs, etc., can be identified and isolated from subjects with diseases that are known, or suspected to have, a genetic component. Identification of such genes can be carried out routinely (see, above for more guidance), e.g., using PCR, hybridization techniques, direct sequencing, mismatch reactions (see, e.g.,

10

15

20

25

30

above), RFLP analysis, SSCP (e.g., Orita et al., Proc. Natl. Acad. Sci., 86:2766, 1992), etc., where a polynucleotide having a sequence selected from the polynucleotides of the present invention is used as a probe. The selected mutant alleles, SNPs, polymorphisms, etc., can be used diagnostically to determine whether a subject has, or is susceptible to a disorder associated with tissue selective genes disclosed herein, as well as to design therapies and predict the outcome of the disorder. Methods involve, e.g., diagnosing a disorder or determining susceptibility to a disorder, comprising, detecting the presence of a mutation in a gene represented by a polynucleotide selected from the sequences disclosed herein. The detecting can be carried out by any effective method, e.g., obtaining cells from a subject, determining the gene sequence or structure of a target gene (using, e.g., mRNA, cDNA, genomic DNA, etc), comparing the sequence or structure of the target gene to the structure of the normal gene, whereby a difference in sequence or structure indicates a mutation in the gene in the subject. Polynucleotides can also be used to test for mutations, SNPs, polymorphisms, etc., e.g., using mismatch DNA repair technology as described in U.S. Pat. No. 5,683,877; U.S. Pat. No. 5,656,430; Wu et al., Proc. Natl. Acad. Sci., 89:8779-8783, 1992.

The present invention also relates to methods of detecting polymorphisms in tissue selective genes, comprising, e.g., comparing the structure of: genomic DNA comprising all or part of a tissue selective gene, mRNA comprising all or part of a tissue selective gene, cDNA comprising all or part of a tissue selective gene, or a polypeptide comprising all or part of a tissue selective gene, with the structure the polynucleotides set forth herein. The methods can be carried out on a sample from any source, e.g., cells, tissues, body fluids, blood, urine, stool, hair, egg, sperm, cerebral spinal fluid, biopy samples, serum, etc.

These methods can be implemented in many different ways. For example, "comparing the structure" steps include, but are not limited to, comparing restriction maps, nucleotide sequences, amino acid sequences, RFLPs, Dnase sites, DNA methylation fingerprints (e.g., U.S. Pat. No. 6,214,556), protein cleavage sites, molecular weights, electrophoretic mobilities, charges, ion mobility, etc., between standard and a test genes. The term "structure" can refer to any physical characteristics or configurations which can be used to distinguish between nucleic acids and polypeptides. The methods and instruments used to accomplish the comparing step depends upon the physical characteristics which are to be

compared. Thus, various techniques are contemplated, including, e.g., sequencing machines (both amino acid and polynucleotide), electrophoresis, mass spectrometer (U.S. Pat. Nos. 6,093,541, 6,002,127), liquid chromatography, HPLC, etc.

To carry out such methods, "all or part" of the gene or polypeptide can be compared.

For example, if nucleotide sequencing is utilized, the entire gene can be sequenced, including promoter, introns, and exons, or only parts of it can be sequenced and compared, e.g., exon 1, exon 2, etc.

## Mutagenesis

10 Mutated polynucleotide sequences of the present invention are useful for various purposes, e.g., to create mutations of the polypeptides they encode, to identify functional regions of genomic DNA, to produce probes for screening libraries, etc. Mutagenesis can be carried out routinely according to any effective method, e.g., oligonucleotide-directed (Smith, M., Ann. Rev. Genet. 19:423-463, 1985), degenerate oligonucleotide-directed (Hill et al., Method Enzymology, 155:558-568, 1987), region-specific (Myers et al., Science, 229:242-15 246, 1985; Derbyshire et al., Gene, 46:145, 1986; Ner et al., DNA, 7:127, 1988), linkerscanning (McKnight and Kingsbury, Science, 217:316-324, 1982), directed using PCR, recursive ensemble mutagenesis (Arkin and Yourvan, Proc. Natl. Acad. Sci., 89:7811-7815, 1992), random mutagenesis (e.g., U.S. Pat. Nos. 5,096,815; 5,198,346; and 5,223,409), site-20 directed mutagenesis (e.g., Walder et al., Gene, 42:133, 1986; Bauer et al., Gene, 37:73, 1985; Craik, Bio Techniques, January 1985, 12-19; Smith et al., Genetic Engineering: Principles and Methods, Plenum Press, 1981), phage display (e.g., Lowman et al., Biochem. 30:10832-10837, 1991; Ladner et al., U.S. Pat. No. 5,223,409; Huse, WIPO Publication WO 92/06204), etc. Desired sequences can also be produced by the assembly of target sequences 25 using mutually priming oligonucleotides (Uhlmann, Gene, 71:29-40, 1988). For directed mutagenesis methods, analysis of the three-dimensional structure of the polypeptide can be used to guide and facilitate making mutants which effect polypeptide activity. Sites of substrate-enzyme interaction or other biological activities can also be determined by analysis of crystal structure as determined by such techniques as nuclear magnetic resonance, 30 crystallography or photoaffinity labeling. See, for example, de Vos et al., Science 255:306-312, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett.

309:59-64, 1992.

5

10

15

20

25

30

In addition, libraries of genes and fragments thereof can be used for screening and selection of genes variants. For instance, a library of coding sequences can be generated by treating a double-stranded DNA with a nuclease under conditions where the nicking occurs, e.g., only once per molecule, denaturing the double-stranded DNA, renaturing it to for double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting DNAs into an expression vector. By this method, expression libraries can be made comprising "mutagenized" tissue selective genes. The entire coding sequence or parts thereof can be used.

Polynucleotide expression, polypeptides produced thereby, and specific-binding partners thereto.

A polynucleotide according to the present invention can be expressed in a variety of different systems, in vitro and in vivo, according to the desired purpose. For example, a polynucleotide can be inserted into an expression vector, introduced into a desired host, and cultured under conditions effective to achieve expression of a polypeptide coded for by the polynucleotide, to search for specific binding partners. Effective conditions include any culture conditions which are suitable for achieving production of the polypeptide by the host cell, including effective temperatures, pH, medium, additives to the media in which the host cell is cultured (e.g., additives which amplify or induce expression such as butyrate, or methotrexate if the coding polynucleotide is adjacent to a dhfr gene), cycloheximide, cell densities, culture dishes, etc. A polynucleotide can be introduced into the cell by any effective method including, e.g., naked DNA, calcium phosphate precipitation, electroporation, injection, DEAE-Dextran mediated transfection, fusion with liposomes, association with agents which enhance its uptake into cells, viral transfection. A cell into which a polynucleotide of the present invention has been introduced is a transformed host cell. The polynucleotide can be extrachromosomal or integrated into a chromosome(s) of the host cell. It can be stable or transient. An expression vector is selected for its compatibility with the host cell. Host cells include, mammalian cells, e.g., COS, CV1, BHK, CHO, HeLa, LTK, NIH 3T3, insect cells, such as Sf9 (S. frugipeda) and Drosophila, bacteria, such as E.

10

15

20

25

30

coli, Streptococcus, bacillus, yeast, such as Sacharomyces, S. cerevisiae, fungal cells, plant cells, embryonic or adult stem cells (e.g., mammalian, such as mouse or human),

immune system cell lines, HH (ATCC CRL 2105), MOLT-4 (ATCC CRL 1582), MJ (ATCC CRL-8294), SK7 (ATCC HB-8584), SK8 (ATCC HB-8585), HM1 (HB-8586), H9 (ATCC HTB-176), HuT 78 (ATCC TIB-161), HuT 102 (ATCC TIB-162), Jurkat,

B-cell lines, B-cell precursor lines, NALM-36, B-cell and other lymphocyte lines; immortalized with Epstein-Barr virus (transformed B lymphoblastoid), stromal cell lines, myelomas, HBM-Noda, WEHl231,

reticuloendothelial cells, endothelial cells, white blood cells, macrophages, antigenresenting cells, lymphocytes, GDM-1 (ATCC CRL-2627), THP-1 (ATCC TIB-202), HL-60 (ATCC CCL-240), and derivatives thereof, including primary and established cell lines thereof,

kidney cell lines, 293, G-402 (ATCC CRL-1440), ACHN (ATCC CRL-1611), Vero (ATCC CCL-81), 786-O (ATCC CRL-1932), 769-P (ATCC CRL-1933), CCD 1103 KIDTr (ATCC CRL-2304), CCD 1105 KIDTr (ATCC CRL-2305), Hs 835.T (ATCC CRL-7569), Hs 926.T (ATCC CRL-7678), Caki-1 (ATCC HTB-46), Caki-2 (ATCC HTB-47), SW 839 (ATCC HTB-49), LLC-MK2 (ATCC CCL-7), BHK-21 (ATCC CCL-10), MDCK, CV-1, (ATCC CRL-1573), KNRK (ATCC CRL-1569), NRK-49F (ATCC CRL-1570), A-704 (ATCC HTB-45), etc., established and primary kidney cells,

pancreas cell lines, , insulinoma cell lines, INS-H1, MIN6N8, RIN 1046-38, RIN-5AH, RIN-A12, RINm5F, capan-1, capan-2, MIA PaCa-2 (ATCC CRL-1420), PANC-1 (ATCC CRL-1469), AsPC-1 (ATCC CRL-1682), SU-86.86 (ATCC CRL-1837), CFPAC-1 (ATCC CRL-1918), HPAF-II (ATCC CRL-1937), TGP61 (ATCC CRL-2135) and other TGP lines, SW 1990 (ATCC CRL-2172), Mpanc-96 (ATCC CRL-2380), MS1 VEGF (ATCC CRL-2460), Beta-TC-6 (ATCC CRL-11506), LTPA (ATCC CRL-2389), 266-6 (ATCC CRL-2151), MS1 (ATCC CRL-2779), SVR (ATCC CRL-2280), NIT-2 (ATCC CRL-2364), alphaTC1 Clone 9 (ATCC CRL-2350), ATCC CRL-1492, BxPC-3 (ATCC CRL-1687), HPAC (ATCC CRL-2119), U.S. Pat. Nos. 6,110743, 5,928,942, 5,888,816, 5,888,705, and 5,723,333, etc., established and primary pancreas cells (e.g., according to Hellerstrom et al., *Diabetes*, 28:769-76, 1979).

OCID: <WO\_\_\_\_\_ 03089583A2,1,>

10

15

20

25

30

retinal cell lines, RF/6A (CRL 1780), ARPE-19 (CRL-2302), ARPE-19/HPV-16 (CRL-2502), Y79 (HTB-18), WERI-Rb-1 (HTB-169), RPE-J (CRL-2240), SO-Rb50 (retinoblastoma cell line), RBL, HER-Xho1-CC2, WERI-Rb24 (Sery et al., *J. Pediatr. Ophthalmol. Strabismus*, 4:212-217, 1990), WERI-Rb27 (Sery et al., *J. Pediatr. Ophthalmol. Strabismus*, 4:212-217, 1990), HXO-Rb44, fetal retina cells, retinoblastoma cells, choroidal endothelial cells (e.g., Chor 55), etc., established and primary retinal cells (For other cell lines and methods thereof, see, also, Griege et al., *Differentiation*, 45:250-7, 1990; Bernstein et al., *Invest. Ophthalmol. Vis. Sci.*, 35:3931-3937, 1994; Howes et al., *Invest. Ophthalmol. Vis. Sci.*, 35:342-351, 1994).

Expression control sequences are similarly selected for host compatibility and a desired purpose, e.g., high copy number, high amounts, induction, amplification, controlled expression. Other sequences which can be employed include enhancers such as from SV40, CMV, RSV, inducible promoters, cell-type specific elements, or sequences which allow selective or specific cell expression. Promoters that can be used to drive its expression, include, e.g., the endogenous promoter, MMTV, SV40, trp, lac, tac, or T7 promoters for bacterial hosts; or alpha factor, alcohol oxidase, or PGH promoters for yeast. RNA promoters can be used to produced RNA transcripts, such as T7 or SP6. See, e.g., Melton et al., *Polynucleotide Res.*, 12(18):7035-7056, 1984; Dunn and Studier. *J. Mol. Bio.*, 166:477-435, 1984; U.S. Pat. No. 5,891,636; Studier et al., *Gene Expression Technology, Methods in Enzymology*, 85:60-89, 1987. In addition, as discussed above, translational signals (including in-frame insertions) can be included.

When a polynucleotide is expressed as a heterologous gene in a transfected cell line, the gene is introduced into a cell as described above, under effective conditions in which the gene is expressed. The term "heterologous" means that the gene has been introduced into the cell line by the "hand-of-man." Introduction of a gene into a cell line is discussed above. The transfected (or transformed) cell expressing the gene can be lysed or the cell line can be used intact.

For expression and other purposes, a polynucleotide can contain codons found in a naturally-occurring gene, transcript, or cDNA, for example, e.g., as set forth in herein or it can contain degenerate codons coding for the same amino acid sequences. For instance,

10

15

20

25

30

IOCID: <WO\_\_\_\_\_03089583A2\_l\_>

it may be desirable to change the codons in the sequence to optimize the sequence for expression in a desired host. See, e.g., U.S. Pat. Nos. 5,567,600 and 5,567,862.

A polypeptide according to the present invention can be recovered from natural sources, transformed host cells (culture medium or cells) according to the usual methods, including, detergent extraction (e.g., non-ionic detergent, Triton X-100, CHAPS, octylglucoside, Igepal CA-630), ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography, lectin chromatography, gel electrophoresis. Protein refolding steps can be used, as necessary, in completing the configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for purification steps. Another approach is express the polypeptide recombinantly with an affinity tag (Flag epitope, HA epitope, myc epitope, 6xHis, maltose binding protein, chitinase, etc) and then purify by anti-tag antibody-conjugated affinity chromatography.

The present invention also relates to specific-binding partners. These include antibodies which are specific for polypeptides encoded by polynucleotides of the present invention, as well as other binding-partners which interact with polynucleotides and polypeptides of the present invention. Protein-protein interactions between polypeptides and binding partners can be identified using any suitable methods, e.g., protein binding assays (e.g., filtration assays, chromatography, etc.), yeast two-hybrid system (Fields and Song, *Nature*, 340: 245-247, 1989), protein arrays, gel-shift assays, FRET (fluorescence resonance energy transfer) assays, etc. Nucleic acid interactions (e.g., protein-DNA or protein-RNA) can be assessed using gel-shift assays, e.g., as carried out in U.S. Pat. No. 6,333,407 and 5,789,538.

Antibodies, e.g., polyclonal, monoclonal, recombinant, chimeric, humanized, single-chain, Fab, and fragments thereof, can be prepared according to any desired method.

Antibodies, and immune responses, can also be generated by administering naked DNA See, e.g., U.S. Pat. Nos. 5,703,055; 5,589,466; 5,580,859. Antibodies can be used from any source, including, goat, rabbit, mouse, chicken (e.g., IgY; see, Duan, W0/029444 for methods of making antibodies in avian hosts, and harvesting the antibodies from the eggs). An antibody specific for a polypeptide means that the antibody recognizes a defined sequence of

10

15

20

25

30

amino acids within or including the polypeptide. Other specific binding partners include, e.g., aptamers and PNA. Antibodies can be prepared against specific epitopes or domains.

Antibodies can also be humanized, e.g., where they are to be used therapeutically. Methods for obtaining human antibodies, e.g., from transgenic mice are described, e.g., in Green et al., Nature Genet. 7:13 (1994); Lonberg et al., Nature 368:856 (1994); and Taylor et al., Int. Immunol. 6:579 (1994). Antibody fragments of the present invention can be prepared by any suitable method, Fab and Fc fragments. sinbgle-chain antibodies can also be used. Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest.

The term "antibody" as used herein includes intact molecules as well as fragments thereof, such as Fab, F(ab')2, and Fv which are capable of binding to an epitopic determinant present in Bin1 polypeptide. Such antibody fragments retain some ability to selectively bind with its antigen or receptor. The term "epitope" refers to an antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Antibodies can be prepared against specific epitopes or polypeptide domains.

Antibodies which bind to polypeptides of the present invention can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. For example, it may be desirable to produce antibodies that specifically bind to the N- or C-terminal domains of the tissue selective polypeptides of the present invention. The polypeptide or peptide used to immunize an animal which is derived from translated cDNA or chemically synthesized which can be conjugated to a carrier protein, if desired. Such commonly used carriers which are chemically coupled to the immunizing peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid.

Methods of detecting polypeptides

10

15

20

25

30

Polypeptides coded for by genes of the present invention can be detected, visualized, determined, quantitated, etc. according to any effective method. useful methods include, e.g., but are not limited to, immunoassays, RIA (radioimmunassay), ELISA, (enzyme-linked-immunosorbent assay), immunoflourescence, flow cytometry, histology, electron microscopy, light microscopy, in situ assays, immunoprecipitation, Western blot, etc.

Immunoassays may be carried in liquid or on biological support. For instance, a sample (e.g., blood, serum, stool, urine, cells, tissue, cerebral spinal fluid, body fluids, etc.) can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled specific antibody. The solid phase support can then be washed with a buffer a second time to remove unbound antibody. The amount of bound label on solid support may then be detected by conventional means.

A "solid phase support or carrier" includes any support capable of binding an antigen, antibody, or other specific binding partner. Supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite. A support material can have any structural or physical configuration. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads

One of the many ways in which gene peptide-specific antibody can be detectably labeled is by linking it to an enzyme and using it in an enzyme immunoassay (EIA). See, e.g., Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)," 1978, Diagnostic Horizons 2, 1-7, Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller, A. et al., 1978, J. Clin. Pathol. 31, 507-520; Butler, J. E., 1981, Meth. Enzymol. 73, 482-523; Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.. The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes that can be used to detectably label the antibody include, but are not limited to, malate

10

15

20

25

30

dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, .alpha.-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, .beta.-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect peptides through the use of a radioimmunoassay (RIA). See, e.g., Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986. The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine. The antibody can also be detectably labeled using fluorescence emitting metals such as those in the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of

luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

#### Diagnostic

5

10

15

20

25

30

The present invention also relates to methods and compositions for diagnosing a disorder, or determining susceptibility to a disorder, using polynucleotides, polypeptides, and specific-binding partners of the present invention to detect, assess, determine, etc., a tissue selective gene. In such methods, the gene can serve as a marker for the disorder, e.g., where the gene, when mutant, is a direct cause of the disorder; where the gene is affected by another gene(s) which is directly responsible for the disorder, e.g., when the gene is part of the same signaling pathway as the directly responsible gene; and, where the gene is chromosomally linked to the gene(s) directly responsible for the disorder, and segregates with it. Many other situations are possible. To detect, assess, determine, etc., a probe specific for the gene can be employed as described above and below. Any method of detecting and/or assessing the gene can be used, including detecting expression of the gene using polynucleotides, antibodies, or other specific-binding partners.

The phrase "diagnosing" indicates that it is determined whether the sample has the disorder. A "disorder" means, e.g., any abnormal condition as in a disease or malady. "Determining a subject's susceptibility to a disease or disorder" indicates that the subject is assessed for whether s/he is predisposed to get such a disease or disorder, where the predisposition is indicated by abnormal expression of the gene (e.g., gene mutation, gene expression pattern is not normal, etc.). Predisposition or susceptibility to a disease may result when a such disease is influenced by epigenetic, environmental, etc., factors. Diagnosing includes prenatal screening where samples from the fetus or embryo (e.g., via amniocentesis or CV sampling) are analyzed for the expression of the gene.

By the phrase "assessing expression of a gene or polynucleotide," it is meant that the functional status of the gene is evaluated. This includes, but is not limited to, measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene. Thus, the term "assessing expression" includes evaluating the all aspects of the transcriptional and translational machinery of the gene. For

10

15

20

25-

30

instance, if a promoter defect causes, or is suspected of causing, the disorder, then a sample can be evaluated (i.e., "assessed") by looking (e.g., sequencing or restriction mapping) at the promoter sequence in the gene, by detecting transcription products (e.g., RNA), by detecting translation product (e.g., polypeptide). Any measure of whether the gene is functional can be used, including, polypeptide, polynucleotide, and functional assays for the gene's biological activity.

In making the assessment, it can be useful to compare the results to a normal gene, e.g., a gene which is not associated with the disorder. The nature of the comparison can be determined routinely, depending upon how the assessing is accomplished. If, for example, the mRNA levels of a sample is detected, then the mRNA levels of a normal can serve as a comparison, or a gene which is known not to be affected by the disorder. Methods of detecting mRNA are well known, and discussed above, e.g., but not limited to, Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, etc. Similarly, if polypeptide production is used to evaluate the gene, then the polypeptide in a normal tissue sample can be used as a comparison, or, polypeptide from a different gene whose expression is known not to be affected by the disorder. These are only examples of how such a method could be carried out.

The genes and polypeptides of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions as mentioned above. The present invention relates to methods of identifying a genetic basis for a disease or disease-susceptibility, comprising, e.g., determining the association of a disease or disease-susceptibility with a gene of the present invention. An association between a disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target. Any region of the gene can be used as a source of the DNA marker, exons, introns, intergenic regions, etc.

Human linkage maps can be constructed to establish a relationship between a gene and a disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the

10

15

20

25

30

various individual molecular markers. Maps can be produced for an individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype. See, e.g., Kruglyak et al., Am. J. Hum. Genet., 58, 1347-1363, 1996; Matise et al., Nat. Genet., 6(4):384-90, 1994.

Assessing the effects of therapeutic and preventative interventions (e.g., administration of a drug, chemotherapy, radiation, etc.) on disorders is a major effort in drug discovery, clinical medicine, and pharmacogenomics. The evaluation of therapeutic and preventative measures, whether experimental or already in clinical use, has broad applicability, e.g., in clinical trials, for monitoring the status of a patient, for analyzing and assessing animal models, and in any scenario involving disease treatment and prevention. Analyzing the expression profiles of polynucleotides of the present invention can be utilized as a parameter by which interventions are judged and measured. Treatment of a disorder can change the expression profile in some manner which is prognostic or indicative of the drug's effect on it. Changes in the profile can indicate, e.g., drug toxicity, return to a normal level, etc. Accordingly, the present invention also relates to methods of monitoring or assessing a therapeutic or preventative measure (e.g., chemotherapy, radiation, anti-neoplastic drugs, antibodies, etc.) in a subject having a disorder, or, susceptible to such a disorder, comprising, e.g., detecting the expression levels of one or more tissue selective genes. A subject can be a cell-based assay system, non-human animal model, human patient, etc. Detecting can be accomplished as described for the methods above and below. By "therapeutic or preventative intervention," it is meant, e.g., a drug administered to a patient, surgery, radiation, chemotherapy, and other measures taken to prevent, treat, or diagnose a disorder.

The present invention also relates to methods of using binding partners, such as antibodies, to deliver active agents to the tissue (e.g., kidney or pancreas or an immune cells) for a variety of different purposes, including, e.g., for diagnostic, therapeutic, and research purposes. Methods can involve delivering or administering an active agent to the tissue, comprising, e.g., administering to a subject in need thereof, an effective amount of an active agent coupled to a binding partner specific for a tissue selective polypeptide, wherein said binding partner is effective to deliver said active agent specifically to the target tissue.

OCCID: <WO \_\_\_\_\_ 03089583A2 1 >

10

15

20

Any type of active agent can be used in combination with it, including, therapeutic, cytotoxic, cytostatic, chemotherapeutic, anti-neoplastic, anti-proliferative, anti-biotic, etc., agents. A chemotherapeutic agent can be, e.g., DNA-interactive agent, alkylating agent, antimetabolite, tubulin-interactive agent, hormonal agent, hydroxyurea, Cisplatin, Cyclophosphamide, Altretamine, Bleomycin, Dactinomycin, Doxorubicin, Etoposide, Teniposide, paclitaxel, cytoxan, 2-methoxy-carbonyl-amino-benzimidazole, Plicamycin, Methotrexate, Fluorouracil, Fluorodeoxyuridin, CB3717, Azacitidine, Floxuridine, Mercapyopurine, 6-Thioguanine, Pentostatin, Cytarabine, Fludarabine, etc. Agents can also be contrast agents useful in imaging technology, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic.

An active agent can be associated in any manner with a binding partner which is effective to achieve its delivery specifically to the target. Specific delivery or targeting indicates that the agent is provided to the tissue, without being substantially provided to other tissues. This is useful especially where an agent is toxic, and specific targeting to the tissue enables the majority of the toxicity to be aimed at the tissue, with as small as possible effect on other tissues in the body. The association of the active agent and the binding partner ("coupling") can be direct, e.g., through chemical bonds between the binding partner and the agent, or, via a linking agent, or the association can be less direct, e.g., where the active agent is in a liposome, or other carrier, and the binding partner is associated with the liposome surface. In such case, the binding partner can be oriented in such a way that it is able to bind to tissue selective polypeptide, e.g., exposed on the cell surface. Methods for delivery of DNA via a cell-surface receptor is described, e.g., in U.S. Pat. No. 6,339,139.

#### Identifying agent methods

The present invention also relates to methods of identifying agents, and the agents themselves, which modulate tissue selective genes. These agents can be used to modulate the biological activity of the polypeptide encoded for the gene, or the gene, itself. Agents which regulate the gene or its product are useful in variety of different environments, including as medicinal agents to treat or prevent disorders associated with genes and as research reagents to modify the function of tissues and cell.

10

15

20

25

30

Methods of identifying agents generally comprise steps in which an agent is placed in contact with the gene, its transcription product, its translation product, or other target, and then a determination is performed to assess whether the agent "modulates" the target. The specific method utilized will depend upon a number of factors, including, e.g., the target (i.e., is it the gene or polypeptide encoded by it), the environment (e.g., in vitro or in vivo), the composition of the agent, etc.

For modulating the expression of tissue selective genes, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a gene (e.g., in a cell population) with a test agent under conditions effective for said test agent to modulate the expression of tissue selective genes, and determining whether said test agent modulates said genes. An agent can modulate expression of a tissue selective gene at any level, including transcription (e.g., by modulating the promoter), translation, and/or perdurance of the nucleic acid (e.g., degradation, stability, etc.) in the cell.

For modulating the biological activity of polypeptides, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a polypeptide (e.g., in a cell, lysate, or isolated) with a test agent under conditions effective for said test agent to modulate the biological activity of said polypeptide, and determining whether said test agent modulates said biological activity.

Contacting a gene or polypeptide with the test agent can be accomplished by any suitable method and/or means that places the agent in a position to functionally control expression or biological activity. Functional control indicates that the agent can exert its physiological effect through whatever mechanism it works. The choice of the method and/or means can depend upon the nature of the agent and the condition and type of environment in which the gene or polypeptide is presented, e.g., lysate, isolated, or in a cell population (such as, in vivo, in vitro, organ explants, etc.). For instance, if the cell population is an in vitro cell culture, the agent can be contacted with the cells by adding it directly into the culture medium. If the agent cannot dissolve readily in an aqueous medium, it can be incorporated into liposomes, or another lipophilic carrier, and then administered to the cell culture. Contact can also be facilitated by incorporation of agent with carriers and delivery molecules and complexes, by injection, by infusion, etc.

Agents can be directed to, or targeted to, any part of the polypeptide which is

OCID: <WO\_\_\_\_\_03089583A2\_I\_>

15

20

25

30

effective for modulating it. For example, agents, such as antibodies and small molecules, can be targeted to cell-surface, exposed, extracellular, ligand binding, functional, etc., domains of the polypeptide. Agents can also be directed to intracellular regions and domains, e.g., regions where the polypeptide couples or interacts with intracellular or intramembrane binding partners.

After the agent has been administered in such a way that it can gain access, it can be determined whether the test agent modulates expression or biological activity. Modulation can be of any type, quality, or quantity, e.g., increase, facilitate, enhance, up-regulate, stimulate, activate, amplify, augment, induce, decrease, down-regulate, diminish, lessen, reduce, etc. The modulatory quantity can also encompass any value, e.g., 1%, 5%, 10%, 50%, 75%, 1-fold, 2-fold, 5-fold, 10-fold, 100-fold, etc. To modulate expression means, e.g., that the test agent has an effect on its expression, e.g., to effect the amount of transcription, to effect RNA splicing, to effect translation of the RNA into polypeptide, to effect RNA or polypeptide stability, to effect polyadenylation or other processing of the RNA, to effect post-transcriptional or post-translational processing, etc. To modulate biological activity means, e.g., that a functional activity of the polypeptide is changed in comparison to its normal activity in the absence of the agent. This effect includes, increase, decrease, block, inhibit, enhance, etc.

A test agent can be of any molecular composition, e.g., chemical compounds, biomolecules, such as polypeptides, lipids, nucleic acids (e.g., antisense), carbohydrates, antibodies, ribozymes, double-stranded RNA, aptamers, etc. For example, if a polypeptide to be modulated is a cell-surface molecule, a test agent can be an antibody that specifically recognizes it and, e.g., causes the polypeptide to be internalized, leading to its down regulation on the surface of the cell. Such an effect does not have to be permanent, but can require the presence of the antibody to continue the down-regulatory effect. Antibodies can also be used to modulate the biological activity of a polypeptide in a lysate or other cell-free form.

Additional cell-based test systems suitable for the analysis of GPCR polypeptides are summarized in Marchese et al. (1999, Trends in Pharmacol. Sci. 20: 370-375) and comprise so-called "ligand screening assays." For example in yeast cells the pheromon receptor can be replaced by a GPCR according to the invention. The effect of test substances on the receptor

can be determined upon modulation of histidine synthesis, i.e. by growing in histidine-free medium. In addition using cells transfected with nucleic acids according to the invention it can be analyzed whether test substances mediate translocation of a detectable arrestins, for example of a arrestin-GFP-fusion protein. Moreover, it can be analyzed whether test substances mediate GPCR-mediated dispersion or aggregation of Xenopus laevis melanophores. Another test system utilizes the universal adapter G-protein G alphal6, which mobilizes Ca.sup.2+. Other screening test systems are described in Lemer et al., supra; WO96/41169; U.S. Pat. No. 5,482,835; WO99/06535; EP 0 939 902; WO99/66326; WO98/34948; EP 0 863 214; U.S. Pat. No. 5,882,944 and U.S. Pat. No. 5,891,641.

#### 10 Therapeutics

5

15

20

25

30

Selective polynucleotides, polypeptides, and specific-binding partners thereto, can be utilized in therapeutic applications, especially to treat diseases and conditions described herein. Useful methods include, but are not limited to, immunotherapy (e.g., using specific-binding partners to polypeptides), vaccination (e.g., using a selective polypeptide or a naked DNA encoding such polypeptide), protein or polypeptide replacement therapy, gene therapy (e.g., germ-line correction, antisense), etc.

Various immunotherapeutic approaches can be used. For instance, unlabeled antibody that specifically recognizes a tissue-specific antigen can be used to stimulate the body to destroy or attack a cancer or other diseased tissue, to cause down-regulation, to produce complement-mediated lysis, to inhibit cell growth, etc., of target cells which display the antigen, e.g., analogously to how c-erbB-2 antibodies are used to treat breast cancer. In addition, antibody can be labeled or conjugated to enhance its deleterious effect, e.g., with radionuclides and other energy emitting entitities, toxins, such as ricin, exotoxin A (ETA), and diphtheria, cytotoxic or cytostatic agents, immunomodulators, chemotherapeutic agents; etc. See, e.g., U.S. Pat. No. 6,107,090.

An antibody or other specific-binding partner can be conjugated to a second molecule, such as a cytotoxic agent, and used for targeting the second molecule to a tissue-antigen positive cell (Vitetta, E. S. et al., 1993, Immunotoxin therapy, in DeVita, Jr., V. T. et al., eds, Cancer: Principles and Practice of Oncology, 4th ed., J. B. Lippincott Co., Philadelphia, 2624-2636). Examples of cytotoxic agents include, but are not limited to, antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, radioisotopes and

PCT/US03/11497

-84-

chemotherapeutic agents. Further examples of cytotoxic agents include, but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, 1dehydrotestosterone, diptheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, elongation factor-2 and glucocorticoid. Techniques for conjugating therapeutic agents to antibodies are well.

In addition to immunotherapy, polynucleotides and polypeptides can be used as targets for non-immunotherapeutic applications, e.g., using compounds which interfere with function, expression (e.g., antisense as a therapeutic agent), assembly, etc. RNA interference can be used in vitro and in vivo to silence a gene when its expression contributes to a disease (but also for other purposes, e.g., to identify the gene's function to change a developmental pathway of a cell, etc.). See, e.g., Sharp and Zamore, Science, 287:2431-2433, 2001; Grishok et al., Science, 287:2494, 2001.

Delivery of therapeutic agents can be achieved according to any effective method, including, liposomes, viruses, plasmid vectors, bacterial delivery systems, orally, systemically, etc. Therapeutic agents of the present invention can be administered in any form by any effective route, including, e.g., oral, parenteral, enteral, intraperitoneal, topical, transdermal (e.g., using any standard patch), intravenously, ophthalmic, nasally, local, nonoral, such as aerosal, inhalation, subcutaneous, intramuscular, buccal, sublingual, rectal, vaginal, intra-arterial, and intrathecal, etc. They can be administered alone, or in combination with any ingredient(s), active or inactive.

In addition to therapeutics, per se, the present invention also relates to methods of treating a disease showing altered expression of a tissue selective gene, comprising, e.g., administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of said gene and/or which is effective in treating said disease. The term "treating" is used conventionally, e.g., the management or care of a subject for the purpose of combating, alleviating, reducing, relieving, improving the condition of, etc., of a disease or disorder. By the phrase "altered expression," it is meant that the disease is associated with a mutation in the gene, or any modification to the gene (or corresponding product) which affects its normal function. Thus, expression refers to, e.g., transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential

5

10

15

20

25

30

expression, etc.

Any agent which "treats" the disease can be used. Such an agent can be one which regulates the expression of a tissue selective gene. Expression refers to the same acts already mentioned, e.g. transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential expression, etc. For instance, if the condition was a result of a complete deficiency of the gene product, administration of gene product to a patient would be said to treat the disease and regulate the gene's expression. Many other possible situations are possible, e.g., where the gene is aberrantly expressed, and the therapeutic agent regulates the aberrant expression by restoring its normal expression pattern.

10

15

20

25

30

5

#### Antisense

Antisense polynucleotide (e.g., RNA) can also be prepared from a polynucleotide according to the present invention. Antisense polynucleotide can be used in various ways, such as to regulate or modulate expression of the polypeptides they encode, e.g., inhibit their expression, for in situ hybridization, for therapeutic purposes, for making targeted mutations (in vivo, triplex, etc.) etc. For guidance on administering and designing anti-sense, see, e.g., U.S. Pat. Nos. 6,200,960, 6,200,807, 6,197,584, 6,190,869, 6,190,661, 6,187,587, 6,168,950, 6,153,595, 6,150,162, 6,133,246, 6,117,847, 6,096,722, 6,087,343, 6,040,296, 6,005,095, 5,998,383, 5,994,230, 5,891,725, 5,885,970, and 5,840,708. An antisense polynucleotides can be operably linked to an expression control sequence. A total length of about 35 bp can be used in cell culture with cationic liposomes to facilitate cellular uptake, but for *in vivo* use, preferably shorter oligonucleotides are administered, e.g. 25 nucleotides.

Antisense polynucleotides can comprise modified, nonnaturally-occurring nucleotides and linkages between the nucleotides (e.g., modification of the phosphate-sugar backbone; methyl phosphonate, phosphorothioate, or phosphorodithioate linkages; and 2'-O-methyl ribose sugar units), e.g., to enhance in vivo or in vitro stability, to confer nuclease resistance, to modulate uptake, to modulate cellular distribution and compartmentalization, etc. Any effective nucleotide or modification can be used, including those already mentioned, as known in the art, etc., e.g., disclosed in U.S. Pat. Nos. 6,133,438; 6,127,533; 6,124,445; 6,121,437; 5,218,103 (e.g., nucleoside thiophosphoramidites); 4,973,679; Sproat et al., "2'-O-Methyloligoribonucleotides: synthesis and applications," Oligonucleotides and Analogs A

XXXID: <WO\_\_\_\_\_03089583A2\_1\_>

WO 03/089583 PCT/US03/11497

Practical Approach, Eckstein (ed.), IRL Press, Oxford, 1991, 49-86; Iribarren et al., "2'O-Alkyl Oligoribonucleotides as Antisense Probes," Proc. Natl. Acad. Sci. USA, 1990, 87, 7747-7751; Cotton et al., "2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event," Nucl. Acids Res., 1991, 19, 2629-2635.

#### **Arrays**

5

10

15

20

30

The present invention also relates to an ordered array of polynucleotide probes and specific-binding partners (e.g., antibodies) for detecting the expression of tissue selective genes or polypeptides encoded thereby, in a sample, comprising, one or more polynucleotide probes or specific binding partners associated with a solid support or in separate receptacles, wherein each probe is specific for a tissue selective gene or a specific-binding partner which is specific for a polypeptide.

The phrase "ordered array" indicates that the probes are arranged in an identifiable or position-addressable pattern, e.g., such as the arrays disclosed in U.S. Pat. Nos. 6,156,501, 6,077,673, 6,054,270, 5,723,320, 5,700,637, WO09919711, WO00023803. The probes are associated with the solid support in any effective way. For instance, the probes can be bound to the solid support, either by polymerizing the probes on the substrate, or by attaching a probe to the substrate. Association can be, covalent, electrostatic, noncovalent, hydrophobic, hydrophilic, noncovalent, coordination, adsorbed, absorbed, polar, etc. When fibers or hollow filaments are utilized for the array, the probes can fill the hollow orifice, be absorbed into the solid filament, be attached to the surface of the orifice, etc. Probes can be of any effective size, sequence identity, composition, etc., as already discussed.

#### 25 Transgenic animals

The present invention also relates to transgenic animals comprising tissue selective genes, and homologs thereof. (Methods of making transgenic animals, and associated recombinant technology, can be accomplished conventionally, e.g., as described in *Transgenic Animal Technology*, Pinkert et al., 2<sup>nd</sup> Edition, Academic Press, 2002.) Such genes, as discussed in more detail below, include, but are not limited to, functionally-disrupted genes, mutated genes, ectopically or selectively-expressed genes, inducible or

10

15

20

25

30

regulatable genes, etc. These transgenic animals can be produced according to any suitable technique or method, including homologous recombination, mutagenesis (e.g., ENU, Rathkolb et al., *Exp. Physiol.*, 85(6):635-644, 2000), and the tetracycline-regulated gene expression system (e.g., U.S. Pat. No. 6,242,667). The term "gene" as used herein includes any part of a gene, i.e., regulatory sequences, promoters, enhancers, exons, introns, coding sequences, etc. The nucleic acid present in the construct or transgene can be naturally-occurring wild-type, polymorphic, or mutated. Where the animal is a non-human animal, its homolog can be used instead. Transgenic animals can have structural and/or functional defects in any of the tissues described herein, e.g., pancreas, kidney, retina, and immune cells, as well as having or being susceptible to any of the associated disorders or diseases mentioned herein.

Along these lines, polynucleotides of the present invention can be used to create transgenic animals, e.g. a non-human animal, comprising at least one cell whose genome comprises a functional disruption of one or tissue selective genes, or homologs thereof (e.g., a mouse homolog when a mouse is used). By the phrases "functional disruption" or "functionally disrupted," it is meant that the gene does not express a biologically-active product. It can be substantially deficient in at least one functional activity coded for by the gene. Expression of a polypeptide can be substantially absent, i.e., essentially undetectable amounts are made. However, polypeptide can also be made, but which is deficient in activity, e.g., where only an amino-terminal portion of the gene product is produced.

The transgenic animal can comprise one or more cells. When substantially all its cells contain the engineered gene, it can be referred to as a transgenic animal "whose genome comprises" the engineered gene. This indicates that the endogenous gene loci of the animal has been modified and substantially all cells contain such modification.

Functional disruption of the gene can be accomplished in any effective way, including, e.g., introduction of a stop codon into any part of the coding sequence such that the resulting polypeptide is biologically inactive (e.g., because it lacks a catalytic domain, a ligand binding domain, etc.), introduction of a mutation into a promoter or other regulatory sequence that is effective to turn it off, or reduce transcription of the gene, insertion of an exogenous sequence into the gene which inactivates it (e.g., which disrupts the production of a biologically-active polypeptide or which disrupts the promoter or other transcriptional

10

15

20

25

30

machinery), deletion of sequences from the gene (or homolog thereof), etc. Examples of transgenic animals having functionally disrupted genes are well known, e.g., as described in U.S. Pat. Nos. 6,239,326, 6,225,525, 6,207,878, 6,194,633, 6,187,992, 6,180,849, 6,177,610, 6,100,445, 6,087,555, 6,080,910, 6,069,297, 6,060,642, 6,028,244, 6,013,858, 5,981,830, 5,866,760, 5,859,314, 5,850,004, 5,817,912, 5,789,654, 5,777,195, and 5,569,824. A transgenic animal which comprises the functional disruption can also be referred to as a "knock-out" animal, since the biological activity of its gene has been "knocked-out." Knock-outs can be homozygous or heterozygous.

For creating functionally disrupted genes, and other gene mutations, homologous recombination technology is of special interest since it allows specific regions of the genome to be targeted. Using homologous recombination methods, genes can be specificallyinactivated, specific mutations can be introduced, and exogenous sequences can be introduced at specific sites. These methods are well known in the art, e.g., as described in the patents above. See, also, Robertson, Biol. Reproduc., 44(2):238-245, 1991. Generally, the genetic engineering is performed in an embryonic stem (ES) cell, or other pluripotent cell line (e.g., adult stem cells, EG cells), and that genetically-modified cell (or nucleus) is used to create a whole organism. Nuclear transfer can be used in combination with homologous recombination technologies. For example, a gene locus can be disrupted in mouse ES cells using a positive-negative selection method (e.g., Mansour et al., Nature, 336:348-352, 1988). In this method, a targeting vector can be constructed which comprises a part of the gene to be targeted. A selectable marker, such as neomycin resistance genes, can be inserted into a an exon present in the targeting vector, disrupting it. When the vector recombines with the ES cell genome, it disrupts the function of the gene. The presence in the cell of the vector can be determined by expression of neomycin resistance. See, e.g., U.S. Pat. No. 6,239,326. Cells having at least one functionally disrupted gene can be used to make chimeric and germline animals, e.g., animals having somatic and/or germ cells comprising the engineered gene. Homozygous knock-out animals can be obtained from breeding heterozygous knockout animals. See, e.g., U.S. Pat. No. 6,225,525.

The present invention also relates to non-human, transgenic animal whose genome comprises recombinant tissue selective nuccleic acid (and homologs thereof) operatively linked to an expression control sequence effective to express said coding sequence in a target

10

15

20

30

tissue. Such a transgenic animal can also be referred to as a "knock-in" animal since an exogenous gene has been introduced, stably, into its genome. "Operable linkage" has the meaning used through the specification, i.e., placed in a functional relationship with another nucleic acid. When a gene is operably linked to an expression control sequence, as explained above, it indicates that the gene (e.g., coding sequence) is joined to the expression control sequence (e.g., promoter) in such a way that facilitates transcription and translation of the coding sequence. As described above, the phrase "genome" indicates that the genome of the cell has been modified. In this case, the recombinant gene has been stably integrated into the genome of the animal. The nucleic acid (e.g., a coding sequence) in operable linkage with the expression control sequence can also be referred to as a construct or transgene.

Any expression control sequence can be used depending on the purpose. For instance, if selective expression is desired, then expression control sequences which limit its expression can be selected. These include, e.g., tissue or cell-specific promoters, introns, enhancers, etc. For various methods of cell and tissue-specific expression, see, e.g., U.S. Pat. Nos. 6,215,040, 6,210,736, and 6,153,427. These also include the endogenous promoter, i.e., the coding sequence can be operably linked to its own promoter. Inducible and regulatable promoters can also be utilized.

The present invention also relates to a transgenic animal which contains a functionally disrupted and a transgene stably integrated into the animals genome. Such an animal can be constructed using combinations any of the above- and below-mentioned methods. Such animals have any of the aforementioned uses, including permitting the knock-out of the normal gene and its replacement with a mutated gene. Such a transgene can be integrated at the endogenous gene locus so that the functional disruption and "knock-in" are carried out in the same step.

25 In addition to the methods mentioned above, transgenic animals can be prepared according to known methods, including, e.g., by pronuclear injection of recombinant genes into pronuclei of 1-cell embryos, incorporating an artificial yeast chromosome into embryonic stem cells, gene targeting methods, embryonic stem cell methodology, cloning methods, nuclear transfer methods. See, also, e.g., U.S. Patent Nos. 4,736,866; 4,873,191; 4,873,316; 5,082,779; 5,304,489; 5,174,986; 5,175,384; 5,175,385; 5,221,778; Gordon et al., Proc. Natl. Acad. Sci., 77:7380-7384, 1980; Palmiter et al., Cell, 41:343-345, 1985; Palmiter

et al., Ann. Rev. Genet., 20:465-499, 1986; Askew et al., Mol. Cell. Bio., 13:4115-4124, 1993; Games et al. Nature, 373:523-527, 1995; Valancius and Smithies, Mol. Cell. Bio., 11:1402-1408, 1991; Stacey et al., Mol. Cell. Bio., 14:1009-1016, 1994; Hasty et al., Nature, 350:243-246, 1995; Rubinstein et al., Nucl. Acid Res., 21:2613-2617,1993; Cibelli et al., 5 Science, 280:1256-1258, 1998. For guidance on recombinase excision systems, see, e.g., U.S. Pat. Nos. 5,626,159, 5,527,695, and 5,434,066. See also, Orban, P.C., et al., "Tissueand Site-Specific DNA Recombination in Transgenic Mice," Proc. Natl. Acad. Sci. USA, 89:6861-6865 (1992); O'Gorman, S., et al., "Recombinase-Mediated Gene Activation and Site-Specific Integration in Mammalian Cells," Science, 251:1351-1355 (1991); Sauer, B., et 10 al., "Cre-stimulated recombination at loxP-Containing DNA sequences placed into the mammalian genome," Polynucleotides Research, 17(1):147-161 (1989); Gagneten, S. et al. (1997) Nucl. Acids Res. 25:3326-3331; Xiao and Weaver (1997) Nucl. Acids Res. 25:2985-2991; Agah, R. et al. (1997) J. Clin. Invest. 100:169-179; Barlow, C. et al. (1997) Nucl. Acids Res. 25:2543-2545; Araki, K. et al. (1997) Nucl. Acids Res. 25:868-872; Mortensen, 15 R. N. et al. (1992) Mol. Cell. Biol. 12:2391-2395 (G418 escalation method); Lakhlani, P. P. et al. (1997) Proc. Natl. Acad. Sci. USA 94:9950-9955 ("hit and run"); Westphal and Leder (1997) Curr. Biol. 7:530-533 (transposon-generated "knock-out" and "knock-in"); Templeton, N. S. et al. (1997) Gene Ther. 4:700-709 (methods for efficient gene targeting, allowing for a high frequency of homologous recombination events, e.g., without selectable 20 markers); PCT International Publication WO 93/22443 (functionally-disrupted).

A polynucleotide according to the present invention can be introduced into any non-human animal, including a non-human mammal, mouse (Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986), pig (Hammer et al., Nature, 315:343-345, 1985), sheep (Hammer et al., Nature, 315:343-345, 1985), cattle, rat, or primate. See also, e.g., Church, 1987, Trends in Biotech. 5:13-19; Clark et al., Trends in Biotech. 5:20-24, 1987); and DePamphilis et al., BioTechniques, 6:662-680, 1988. Transgenic animals can be produced by the methods described in U.S. Pat. No. 5,994,618, and utilized for any of the utilities described therein.

#### 30 Database

25

The present invention also relates to electronic forms of polynucleotides,

10

15

20

25

30

polypeptides, etc., of the present invention, including computer-readable medium (e.g., magnetic, optical, etc., stored in any suitable format, such as flat files or hierarchical files) which comprise such sequences, or fragments thereof, e-commerce-related means, etc. Along these lines, the present invention relates to methods of retrieving nucleic acid and/or polypeptide sequences from a computer-readable medium, comprising, one or more of the following steps in any effective order, e.g., selecting a cell or gene expression profile, e.g., a profile that specifies that said gene is differentially expressed in a tissue as described herein, and retrieving said differentially expressed nucleic acid or polypeptide.

A "gene expression profile" means the list of tissues, cells, etc., in which a defined gene is expressed (i.e, transcribed and/or translated). A "cell expression profile" means the genes which are expressed in the particular cell type. The profile can be a list of the tissues in which the gene is expressed, but can include additional information as well, including level of expression (e.g., a quantity as compared or normalized to a control gene), and information on temporal (e.g., at what point in the cell-cycle or developmental program) and spatial expression. By the phrase "selecting a gene or cell expression profile," it is meant that a user decides what type of gene or cell expression pattern he is interested in retrieving, e.g., he may require that the gene is differentially expressed in a tissue, or he may require that the gene is not expressed in blood, but must be expressed in pancreas. Any pattern of expression preferences may be selected. The selecting can be performed by any effective method. In general, "selecting" refers to the process in which a user forms a query that is used to search a database of gene expression profiles. The step of retrieving involves searching for results in a database that correspond to the query set forth in the selecting step. Any suitable algorithm can be utilized to perform the search query, including algorithms that look for matches, or that perform optimization between query and data. The database is information that has been stored in an appropriate storage medium, having a suitable computer-readable format. Once results are retrieved, they can be displayed in any suitable format, such as HTML.

For instance, the user may be interested in identifying genes that are differentially expressed in a pancreas or kidney. He may not care whether small amounts of expression occur in other tissues, as long as such genes are not expressed in peripheral blood lymphocytes. A query is formed by the user to retrieve the set of genes from the database

having the desired gene or cell expression profile. Once the query is inputted into the system, a search algorithm is used to interrogate the database, and retrieve results.

Advertising, licensing, etc., methods

The present invention also relates to methods of advertising, licensing, selling, purchasing, brokering, etc., genes, polynucleotides, specific-binding partners, antibodies, etc., of the present invention. Methods can comprises, e.g., displaying tissue selective polynucleotide or polypeptide sequences, or antibody specific thereto, in a printed or computer-readable medium (e.g., on the Web or Internet), accepting an offer to purchase said gene, polypeptide, or antibody.

#### Other

5

10

15

20

25

30

A polynucleotide, probe, polypeptide, antibody, specific-binding partner, etc., according to the present invention can be isolated. The term "isolated" means that the material is in a form in which it is not found in its original environment or in nature, e.g., more concentrated, more purified, separated from component, etc. An isolated polynucleotide includes, e.g., a polynucleotide having the sequenced separated from the chromosomal DNA found in a living animal, e.g., as the complete gene, a transcript, or a cDNA. This polynucleotide can be part of a vector or inserted into a chromosome (by specific gene-targeting or by random integration at a position other than its normal position) and still be isolated in that it is not in a form that is found in its natural environment. A polynucleotide, polypeptide, etc., of the present invention can also be substantially purified. By substantially purified, it is meant that polynucleotide or polypeptide is separated and is essentially free from other polynucleotides or polypeptides, i.e., the polynucleotide or polypeptide is the primary and active constituent. A polynucleotide can also be a recombinant molecule. By "recombinant," it is meant that the polynucleotide is an arrangement or form which does not occur in nature. For instance, a recombinant molecule comprising a promoter sequence would not encompass the naturally-occurring gene, but would include the promoter operably linked to a coding sequence not associated with it in nature, e.g., a reporter gene, or a truncation of the normal coding sequence.

10

The term "marker" is used herein to indicate a means for detecting or labeling a target. A marker can be a polynucleotide (usually referred to as a "probe"), polypeptide (e.g., an antibody conjugated to a detectable label), PNA, or any effective material.

The topic headings set forth above are meant as guidance where certain information can be found in the application, but are not intended to be the only source in the application where information on such topic can be found. Reference materials

For other aspects of the polynucleotides, reference is made to standard textbooks of molecular biology. See, e.g., Hames et al., <u>Polynucleotide Hybridization</u>, IL Press, 1985; Davis et al., <u>Basic Methods in Molecular Biology</u>, Elsevir Sciences Publishing, Inc., New York, 1986; Sambrook et al., <u>Molecular Cloning</u>, CSH Press, 1989; Howe, <u>Gene Cloning and Manipulation</u>, Cambridge University Press, 1995; Ausubel et al., <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, Inc., 1994-1998.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following

15 preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. The entire disclosure of all applications, patents and publications, cited above and in the figures are hereby incorporated by reference in their entirety, including U.S. Application Serial Nos. 60/372,669

April 16, 2003, 60/374,823 filed April 24, 2002, 60/376,558 filed May 1, 2002, 60/381,366

20 filed May 20, 2002, 60/403,648 filed August 16, 2002, 60/411,882 filed September 20, 2002, and 60/424,336 filed November 7, 2002.

)OCID: <WO\_\_\_\_03089583A2\_1 >

TABLE 1

| Chare ID (Gene case) | ACC N     | <sub>जि</sub> ष्ट्रागाम्बाह्याद्वाह्य विकट्टिया | ල්ලාය සොක්සෙන්නා නුල්ස  | Cycerefeliners |
|----------------------|-----------|-------------------------------------------------|-------------------------|----------------|
| TMD0024              | XM_060945 | thymus                                          | none                    | 1q22           |
| TMD1779              | XM_060946 | thymus and PBL                                  | none                    | 1q22           |
| TMD0884              | XM_060947 | thymus                                          | skin and ovary          | 1g22           |
| TMD0025              | XM_060948 | thymus                                          | none                    | 1g22           |
| TMD1780              | XM_089422 | thymus                                          | none                    | 1922           |
| TMD1781              | XM_089421 | PBL                                             | thymus                  | 1922           |
| TMD0304              | XM_060956 | bone marrow and muscle                          | testis                  | 1922           |
| TMD0888              | XM_060957 | bone marrow                                     | lung, muscle and testis | 1922           |
| TMD0890              | XM_060959 | bone marrow                                     | lung and PBL            | 1922           |

#### TABLE 2

| -        | Clone ID (gene code) | ACCN      | Protein seq length | Domain Description                                                                                                                                                                                                                            |
|----------|----------------------|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10       | ·TMD1779             | XM_060946 |                    | Transmembrane domain: 26 - 48 Transmembrane domain: 55 - 77 Transmembrane domain: 92 - 114 Transmembrane domain: 134 - 156 Transmembrane domain: 197 - 219                                                                                    |
| 15<br>20 | TMD0024              | XM_060945 | 268                | Transmembrane domain: 16 - 38 Transmembrane domain: 53 - 75 Transmembrane domain: 96 - 118 Transmembrane domain: 156 - 178 Transmembrane domain: 191 - 213 Transmembrane domain: 228 - 246                                                    |
| 25       | TMD0025              | XM_060948 | . 313              | Transmembrane domain: 29 - 51 Transmembrane domain: 58 - 77 Transmembrane domain: 92 - 114 Transmembrane domain: 135 - 157 Transmembrane domain: 197 - 219 Transmembrane domain: 240 - 262 Transmembrane domain: 272 - 294                    |
| 30<br>35 | TMD0304              | XM_060956 | 319                | Transmembrane domain: 28 - 50<br>Transmembrane domain: 63 - 82<br>Transmembrane domain: 102 - 124<br>Transmembrane domain: 144 - 166<br>Transmembrane domain: 205 - 227<br>Transmembrane domain: 240 - 262<br>Transmembrane domain: 272 - 294 |
| 40       | TMD0884              | XM_060947 | 299                | Transmembrane domain: 20 - 42<br>Transmembrane domain: 54 - 76<br>Transmembrane domain: 91 - 113<br>Transmembrane domain: 126 - 148                                                                                                           |

5

|    |         |           | -95- |                                                                                                                                                                 |
|----|---------|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | •       |           |      | Transmembrane domain: 183 - 205<br>Transmembrane domain: 226 - 248<br>Transmembrane domain: 258 - 277                                                           |
| 5  | TMD0888 | XM_060957 | 312  | Transmembrane domain: 25 - 47 Transmembrane domain: 59 - 78 Transmembrane domain: 98 - 120                                                                      |
| 10 |         |           |      | Transmembrane domain: 141 - 163<br>Transmembrane domain: 207 - 229<br>Transmembrane domain: 241 - 260<br>Transmembrane domain: 270 - 292                        |
| 15 | TMD0890 | XM_060959 | 280  | Transmembrane domain: 26 - 48 Transmembrane domain: 122 - 144 Transmembrane domain: 180 - 202 Transmembrane domain: 215 - 237 Transmembrane domain: 252 - 269   |
| 20 | TMD1780 | XM_089422 | 491  | Transmembrane domain: 20 - 42 Transmembrane domain: 54 - 76 Transmembrane domain: 91 - 113 Transmembrane domain: 137 - 159 Transmembrane domain: 190 - 212      |
| 25 |         |           |      | Transmembrane domain: 231 - 253 Transmembrane domain: 266 - 283 Transmembrane domain: 304 - 326 Transmembrane domain: 336 - 358 Transmembrane domain: 379 - 401 |
| 30 | TMD1781 | XM_089421 | 91   | Transmembrane domain: 437 - 459  Transmembrane domain: 63 - 85                                                                                                  |

|                      | XM_060945                                           | XM_060946                                                          | TMD0884<br>XM_060947         | TMD0025<br>XM_060948         | TMD1780<br>XM_089422         | TMD1781<br>XM_089421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TMD0304<br>XM_060956         | TMD0888<br>XM_060957 |
|----------------------|-----------------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| TMD0024<br>XM_060945 | .:                                                  |                                                                    | 2                            |                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      |
| TMD1779<br>XM_060946 | no significant<br>similarity                        |                                                                    |                              |                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      |
| TMD0884<br>XM_060947 | 74%(371nt)                                          | no significant similarity                                          |                              |                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      |
| TMD0025              | 71%(222nt)<br>80%(73nt)                             | 90%(605nt)                                                         | 83%(54nt)                    |                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      |
| TMD1780<br>XM_089422 | 81%(114nt)<br>74%(186nt)<br>79%(113nt)<br>77%(99nt) | 83%(71nt)                                                          | 78%(90nt)                    | 80%(84nt)                    | Sec.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      |
| TMD1781              | 91%(35nt)<br>77%(80nt)                              | no significant no significant<br>signilarity signilarity           | no significant<br>similarity | no significant<br>similarity | 77%(179nt)<br>82%(46nt)      | ng digital di sana di | · ·                          |                      |
| TMD0304<br>XM_060956 | no significant<br>similarity                        | no significant no significant no significant similarity similarity | no significant<br>similarity | no significant<br>similarity | 84%(39nt)                    | no significant<br>similarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                      |
| TMD0888<br>XM_060957 | no significant<br>similarity                        | no significant no significant similarity                           | no significant<br>similarity | 84% (38nt)                   | no significant<br>similarity | no significant<br>similarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73%(24 Int)                  | -gph-sea             |
| TMD0890              | no significant<br>similarity                        | no significant no significant no significant similarity similarity | no significant<br>similarity | no significant<br>similarity | no significant<br>similarity | no significant<br>similarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | no significant<br>similarity | 84%(39nt)            |

**FABLE** 

| TMD0888<br>XP_060957 |                      |                      |                        |                      |                          |                        |                      |                          | 46%(196aa)           |
|----------------------|----------------------|----------------------|------------------------|----------------------|--------------------------|------------------------|----------------------|--------------------------|----------------------|
| TMD0304<br>XP_060956 |                      |                      |                        |                      |                          |                        | 11年                  | 50%(301aa)               | 36%(196aa)           |
| TMD1781<br>XP_089421 |                      |                      |                        |                      |                          |                        | 34%(89aa)            | 41%(82aa)                | 38%(72aa)            |
| TMD1780<br>XP_089422 |                      |                      |                        |                      |                          | 51%(93aa)<br>49%(77aa) | 39%(300aa)           | 45%(304aa)<br>43%(189aa) | 42%(200aa)           |
| TMD0025<br>XP_060948 |                      |                      |                        |                      | 52%(300aa)               | 37%(94aa)              | 39%(299aa)           | 40% (305aa)              | 36%(179aa)           |
| TMD0884<br>XP_060947 |                      |                      |                        | 46%(166aa)           | 55%(165aa)<br>47%(111aa) | 52%(40aa)              | 36% (163aa)          | 41%(157aa)               | 32%(156aa)           |
| TMD1779<br>XP_060946 |                      |                      | 36% <sub>(</sub> 92aa) | 73%(233aa)           | 46%(227aa)<br>46%(169aa) | 35%(82aa)              | 37%(229aa)           | 37%(239aa)               | 32%(132aa)           |
| TMD0024<br>XP_060945 |                      | 47%(200aa)           | 62%(171aa)             | 53%(252aa)           | 59%(261aa)<br>59%(181aa) | 40%(94aa)              | 40%(257aa)           | 49%(251aa)               | 41%(196)             |
|                      | TMD0024<br>XP_060945 | TMD1779<br>XP_060946 | TMD0884<br>XP_060947   | TMD0025<br>XP_060948 | TMD1780<br>XP_089422     | TMD1781<br>XP_089421   | TMD0304<br>XP_060956 | TMD0888<br>XP_060957     | TMD0890<br>XP_060959 |

TABLE 4

| ভাক্ত | TMD17 |
|-------|-------|
|       |       |
|       |       |

-66-

| @ ଜାଉଧିକାତ            | િક્ઝોપાહેલ                                     | S S S S S S S S S S S S S S S S S S S             | CARRIED GRONOHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMD1779               | GGTCAATGAGACTGTGG                              | CTATCACTCCCAGTGTGGAA                              | CAGATITAAATGGGCCAGACTTAGTTTTATGTGTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1-2)                  | (SEQ ID NO 3)                                  | (SEQ ID NO 4)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (SEQ ID NO            | CCACCTGCTCTCAGACA                              | GGCACCATAATTACCAGGAT                              | GAGTGCCAAATATATAAAGAGGTATGTTCAATGCAACATGTTAAATGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (2-2)                 | (SEQ ID NO B)                                  | (SEQ ID NO 9)                                     | (SEG ID NO 10) COCCTINGATAAAAAGGGCAGATTTATTATAAAGAACCCTGATTTAATCA (SEG ID NO 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TMD0025<br>(SEQ.ID NO | CCTGTTCACTCTGGGCA                              | CTGGTTGGAGGAGTGGAAG                               | TAATACTATGTAAAAATCCACTGGACTAGAATCAGCTGTCCTCATGTGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12-13)                | (SEQ ID NO 14)                                 | (SEQ ID NO 15)                                    | VECTITION 19)  SECTION OF THE SECTIO |
|                       |                                                |                                                   | (TEG 50 M) 191 (SEO ID NO 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                                                |                                                   | CCCTTGGAGATATAAAAAGTTCCCAGTAAATAGATGTGTGCTCACATCTT (SEQ ID NO 18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (SEQ ID NO            | CTCTATGTTCCCGCATGC<br>GCACAG<br>(SEQ ID NO 22) | GCAAGGTGGAAATCCATGCA<br>ATCTCAG<br>ASEO ID NO 233 | AGACAGACGTTAAAAATGACCAAACCTACAGAAAATATTTCCAGATAAT (SEQ 10 NO 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TMD0884               | TGTCAATATCCTGGTGTT                             | SAACCTITCT                                        | GTCACTGGTGTATAAGCACGCAGTGCAAAGGAAATATTAAAAACTAGAACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (SEC 10 NO<br>25-26)  | (SEQ ID NO 27)                                 | CAGAGCCATC<br>(SEQ ID NO 28)                      | (SEQ ID NO 29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                                |                                                   | ID NO 30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                                |                                                   | GCTAGATATTTAACAGCCTGCCTGTATTGACCACTTATGCATCAGGAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                |                                                   | ATTTGAGTTATGTATATGAGAGACTGGGTACATCACTTTTTACTTGTTTT (SEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0888<br>(SEQ ID NO | CCAGGTA                                        | GGAGCAGAGGATCAGCAGG                               | ACACTGCAGTTATATAGGGTGGCCCAGGTAGTTGAGCTGGTGAAATTTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33-34)                | (SEO ID NO 35)                                 | 10 36)                                            | CCCTOTOGOTO CONTRACT TA A A A GGAT GGGGCA T GGAGGAAACT A A A GTT GGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                                |                                                   | STC AATTAAATTATATATATATTTGGTCCAGTACGGTATCAATATATTATCAGTA (SEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TMD0890               | TCACCACCACTGGGACC                              | CACACCAATCACTGTGC                                 | CAATCTGTTATTTATACGGCCTCTACATCCATCCAGTACCTGCTTATGTA (SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (SEQ 10 NO            |                                                | CAT                                               | DNO 44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                                                |                                                   | GITCICTITITATAAAAGGCTATGTGGGACTTGCAAAACTTCTAGTGGCC (SEQID NO 45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                |                                                   | GAACATGAAATATAAGTAGGGGAGTATCTTGGGGTAGAAAGGATGCCGAG<br>(SEQ ID NO 46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (SEQ ID NO            | CICTGAAATCTTCTACAC                             | CICTGAAATCTTCTACAC ATGAGATGGGAAGCACAGGTT          | ATCAATATTGTTAAAATGGCCGTACTGTCAAAAGCAATTTACAGATTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 47.48)                | (SEQ ID NO 49)                                 | (SEQ ID NO 50)                                    | ATATGAAACCAAAAAAGCCCTCAAATAGCCCAAGTAACCCTAAAGAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                |                                                   | CGCCCTATTCATAAATGGTGTGGGAATAGCTGGCTAGCCATCTGCAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                                                | :                                                 | SECTION 53) SECTION SE |
| TMD1781<br>(SEQ ID NO | TGATTCC                                        | TCAGGATGGTGTGAACAATG                              | TTCCCTATTTAATAAATGGTGCTGGGAAAACTGGCTAGCCATATGTAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55-56)                |                                                | <u>~</u>                                          | ANCANCOCCITCANAAAGTGGGCCAAAGATATGAACAGACACTTCTCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                |                                                   | AATGGCGATCATTAAAAAGTCAGGAAACAACAACAGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                                                |                                                   | SEQ ID NO 62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

. DCID: <WO\_\_\_\_\_03089583A2\_I\_>

| FRIMER<br>(FOR, REV)<br>(SEQ ID NO)                  | 69,70                                |
|------------------------------------------------------|--------------------------------------|
| PROMOTER<br>(SEQ ID NO)                              | 89-59                                |
| PREDOMINANT PROMOTER SITES OF (SEQ ID NO) EXPRESSION | kidney                               |
| GENE GENBANK<br>NUMBER IDENTIFIER                    | 63,64   TMD0785   XM 060310   kidney |
| GENE<br>NUMBER                                       | TMD0785                              |
| SEQ<br>ID<br>NO                                      | 63,64                                |

|         | XM_062147 | 929190 WX |
|---------|-----------|-----------|
| outside | 1-27      | 1-28      |
| TM (1)  | 28-50     | 29-51     |
| inside  | 51-61     | 52-62     |
| TM (2)  | 62-84     | 63-85     |
| outside | 86-58     | 66-98     |
| TM (3)  | 99-121    | 100-122   |
| inside  | 122-140   | 123-133   |
| TM (4)  | 141-163   | 134-156   |
| outside | 164-203   | 157-201   |
| TM (5)  | 204-226   | 202-224   |
| inside  | 227-237   | 225-236   |
| TM (6)  | 238-260   | 237-259   |
| outside | 261-274   | 260-273   |
| TM (7)  | 275-293   | 274-296   |
| inside  | 294-313   | 297-314   |

LABLE

| මිතම (මැතිත කරන), කිසිම | an Aggn   | SenetNeme@cescipton                                                                          | िग्द्रश्वभागामहान्।<br>अस्ट्रिज्ञत्। | Office of the second                                                |
|-------------------------|-----------|----------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|
| TMD0049                 | XM 057351 | Homo sapiens similar to organic anion transpoter 4 like protein (LOC116085) mRNA             | kidnev                               | Calcifordiassicification                                            |
| TMD0190                 | XM_087157 | Homo sapiens similar to sodium-coupled ascorbic acid transporter 2/LOC151295), mRNA.         | kidnev                               | colon and liver                                                     |
| TMD0242                 | XM_088369 | Homo saplens similar to unnamed protein product (LOC157724) mRNA                             | kidnev                               |                                                                     |
| MD0335                  | 098890_MX | Homo sapiens similar to sodium iodide symporter (LOC159963) mRNA                             | kidney                               | adrenal gland, heart,<br>intestine(small), liver, muscle,<br>testis |
| TMD0371 (new)           | XM_089732 | Homo sapiens similar to CG8271 gene product (LOC196023), mRNA.                               | kidney                               | pancreas and testis                                                 |
| MD0374 (new)            | XM 085595 | Homo sapiens similar to unnamed protein product (LOC146802) mRNA                             | kidnev                               | brain, muscle, ovary, skin,<br>testis                               |
| MD0469                  | XM_038736 | Homo saplens solute carrier family 4 sodium bicarbonate cotransporter member 9 (SLC4A9) mRNA | kidnev                               | none                                                                |
| MD0719                  | XM 059548 | Homo sapiens hypothetical gene supported by XM 059548 (LOC131920) mRNA                       | kidney                               | none                                                                |
| MD0731                  | XM 059703 | Homo sapiens similar to pulative (H. sapiens) (LOC134288) mRNA                               | kidnev                               | adrenal pland muscle thyroid                                        |
| TMD0785                 | XM 060310 | Homo sapiens similar to olfactory receptor MOR275-2 (LOC127069), mRNA                        | kidney                               | none                                                                |
| MD0841                  | XM_060623 | Homo sapiens similar to KIAA0711 gene product (H. sapiens) (LOC127707) mRNA                  | kidnev                               | Iuna                                                                |
| MD1114                  | NM 019841 | Homo sapiens transient receptor potential cation channel subfamily V member 5 (TRPV5) mRNA   | kidnev                               | none                                                                |
| FMD1148                 | XM 087108 | Homo saplens similar to calcium channel voltage-dependent gamma subunit 6 (LOC151151) mRNA   | kidney                               | none                                                                |

## TABLE 8

### ABLE 9

| ලබාව ලැබෙ | <b>6</b> 92 | ි වැට<br>Protein පෙකු (කෙනු). | Comette (essentation                   |
|-----------|-------------|-------------------------------|----------------------------------------|
|           |             |                               |                                        |
| TMD0049   | 2           | 332                           | Sugar (and other) transporter: 2 - 302 |
|           |             |                               | Transmembrane domain: 12 - 34          |
|           |             |                               | Transmembrane domain: 39 - 58          |
|           |             |                               | Transmembrane domain: 131 - 153        |
|           |             |                               | Transmembrane domain: 157 - 179        |
|           |             |                               | Transmembrane domain: 186 - 205        |
|           |             |                               | Transmembrane domain: 215 - 237        |
|           |             |                               |                                        |
| MD0190    | 4           | 243                           | Permease family: 91 - 224              |
|           |             |                               |                                        |
|           |             |                               |                                        |
| MD0242    | 9           | 470                           | AA-permease: 27 - 356                  |
|           |             |                               | Transmembrane domain: 13 - 35          |
|           |             |                               | Transmembrane domain: 50 - 72          |
|           |             |                               | Transmembrane domain: 93 - 115         |
|           |             |                               | Transmembrane domain: 137 - 154        |
|           |             |                               | Transmembrane domain: 161 - 183        |
|           |             |                               | Transmembrane domain; 207 - 229        |
|           |             |                               | Transmembrane domain: 242 - 264        |
|           |             |                               | Transmembrane domain: 286 - 308        |
|           |             |                               | Transmembrane dómain: 335 - 357        |
|           |             |                               | Transmembrane domain: 362 - 379        |
|           |             |                               | Transmembrane domain: 392 - 414        |
|           |             |                               | Transmembrane domain: 420 - 442        |
|           |             |                               |                                        |

|  | Sodium solute symporter family: 41 - 172 | Transmembrane domain: 45 - 67 | Transmembrane domain: 87 - 109 | Transmembrane domain: 116 - 138 | Transmembrane domain: 143 - 165 | Transmembrane domain: 174 - 196 | Transmembrane domain: 201 - 223 | Transmembrane domain: 283 - 305 | Transmembrane domain: 320 - 339 | Transmembrane domain: 351 - 370 | Transmembrane domain: 375 - 397 | Transmembrane domain; 404 - 426 | Transmembrane domain: 441 - 463 | Transmembrane domain: 31 - 53 | Transmembrane domain: 68 - 90 | Transmembrane domain: 116 - 138 | Transmembrane domain; 153 - 171 | Transmembrane domain: 184 - 206 | Transmembrane domain: 211 - 233 | Transmembrane domain: 254 - 273 | Transmembrane domain: 288 - 310 | Transmembrane domain: 331 - 353 | Transmembrane domain: 373 - 395 | Transmembrane domain: 404 - 426 | Transmembrane domain: 431 - 453 | Transmembrane domain: 542 - 564 |  |
|--|------------------------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
|  | 8 178 8                                  | 10 516 T                      |                                | =                               | <b>J</b>                        | <b>j</b>                        |                                 |                                 |                                 | <u> </u>                        |                                 | J-                              |                                 | 12 · 566 T                    | ₽-                            | F                               | <b>P</b>                        | <b>I</b>                        |                                 | <u> </u>                        |                                 |                                 |                                 | <b>   </b>                      |                                 |                                 |  |
|  | TMD0335                                  | TMD0371                       |                                |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 | TMD0374 1                     |                               | ,:<br>,::                       |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |

03-

| TMD0469 | 14 | 983   | HCO3- transporter family: 108 - 891                   |
|---------|----|-------|-------------------------------------------------------|
|         |    |       | Transmembrane domain: 413 - 435                       |
|         |    |       | Transmembrane domain: 447 - 469                       |
|         |    |       | Transmembrane domain: 498 - 520                       |
|         |    |       | Transmembrane domain: 532 - 554                       |
|         |    |       | Transmembrane domain: 623 - 645                       |
|         |    |       | Transmembrane domain: 665 - 684                       |
|         |    |       | Transmembrane domain: 712 - 731                       |
|         |    |       | Transmembrane domain: 751 - 773                       |
|         |    | -     | Transmembrane domain: 813 - 832                       |
|         |    | -     | Transmembrane domain: 839 - 858                       |
|         |    |       | Transmembrane domain: 897 - 919                       |
|         |    |       |                                                       |
| TMD0719 | 16 | 146   | Transmembrane domain: 7 - 29                          |
|         |    |       | Transmembrane domain: 49 - 71                         |
|         |    |       |                                                       |
| TMD0731 | 18 | . 218 | Transmembrane domain: 38 - 60                         |
|         |    | -     | Transmembrane domain: 70 - 92                         |
|         |    |       |                                                       |
| TMD0785 | 20 | 312   | 7 transmembrane receptor (rhodopsin family): 58 - 290 |
|         |    |       | Transmembrane domain: 29 - 51                         |
|         |    | -     | Transmembrane domain: 61 - 83                         |
|         |    | -     | Transmembrane domain: 140 - 162                       |
|         |    |       | Transmembrane domain: 197 - 219                       |
|         |    |       | Transmembrane domain: 240 - 262                       |
|         |    | -     | Transmembrane domain: 272 - 294                       |
|         |    |       |                                                       |
| TMD0841 | 22 | 1161  | Kelch motif: 850 - 895                                |
|         |    | =     | Kelch motif: 897 - 938                                |
|         |    |       |                                                       |

|  | Transmembrane domain: 327 - 349 | Transmembrane domain: 383 - 405 | Transmembrane domain: 420 - 438 | Transmembrane domain: 451 - 473 | Transmembrane domain: 493 - 512 | Transmembrane domain; 519 - 541 | Transmembrane domain; 554 - 576 |   | Transmembrane domain: 7 - 24 | Transmembrane domain: 39 - 61 | Transmembrane domain: 68 - 00 |   |
|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|------------------------------|-------------------------------|-------------------------------|---|
|  | 729                             |                                 | -                               |                                 |                                 |                                 |                                 | - | 103                          | p.                            |                               | 1 |
|  | 24                              |                                 |                                 |                                 |                                 |                                 |                                 |   | 26                           |                               |                               |   |
|  | TMD1114                         |                                 |                                 |                                 |                                 |                                 |                                 |   | TMD1148                      |                               |                               |   |

105-

| ල්කෙම (ම අතෙම පෙරෙන)   සිලෙහ |           | Oylogenetic)locals 4 | Oxogeneticlocus   disease   linkers   Section   Company   Compa |
|------------------------------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMD0049                      | XM 057351 | 11912.1              | osteoporosis-pseudoglioma syndrome; spastic paraplegia 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TMD0190                      |           | 2936.2               | ouou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0242                      | XM 088369 | 8q21.2               | enon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0335                      | XM_089960 | 11p14.2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TMD0371A                     | XM_089732 | 10923.33             | epilepsy, partial, with auditory features: spætic paraplegia 9, autosomal dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TMD0374                      | XM 085595 | 17p11.2              | smith-magenis syndrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TMD0469                      | XM 038736 | 5q31                 | paget disease of bone 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TMD0719                      | XM 059548 | 3q29                 | 9400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0731                      | XM_059703 | 5q13.2               | spastic paraplegia 11, autosomal recessive;<br>corpus callosum, agenesis of, with neuronopathy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TMD0785                      | XM 060310 | 1944-tel             | familial cold urticarla (FCU); Muckle-Wells syndrome (MWS); prostate cancer susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TMD0841                      | XM 060623 | 1036.13              | breast cancer, ductal, 2;<br>prostate cancer/brain cancer susceptibility;<br>melanoma, cutaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TMD1114                      | NM 019841 | 7935                 | glavoma 1, open angle, f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TMD1148                      | XM_087108 | 2q14.1               | motor neuronopathy, distal hereditary, with vocal cord paralysis; cardiomyopathy, dilated, 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# TABLE 10

| මෙමය් (ලෝල<br>දින අමා | (1918 (1918) Section (1918)                                         | THE COLOMBIA (STATE AND STATE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMD0049               | GCGCTTCCGGACCTGTATCTCCAC (104)                                      | d ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (78,79)               | CAAGCICTGGGTCTCGGGCAGAAG (105)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0190               | ACCATCCTGCAAACTTGGATGGGC (107)                                      | GCTTTATGTATATGAAAACCCTGTTTATCTGAGCCTAGAACTGTCTTTGC (109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (80,81)               | AAGGAGCCGGAAGACAGGGAGG (108)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0242               | GAGTCTCCCTGTGCGTTTGGGCTG (111)                                      | AGTCCCAGCTTAAAAAGAGACAGACAGAGAGAGAGAGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (82,83)               | AAGTGTAAAGCATGCCCCGCCTGA (112)                                      | TTAGTGATTTAAAAAATGTGAAGAAGAGAGTCAAGGCAGTAAAAGGA (114)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TMD0335               | GTTCGCTATGCTGCCACGGTCATC (115)                                      | CATACAAATAATTAAAAGCCCAGGTTAAGGTAAATATATAAAGACCAAG (117)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (84,85)               | AGTCCTGGCAGTCCTGGCATTGTG (116)                                      | ATCTCACGAATTAAAAATGCTGAGGTGGTAAATTGTTATCAATTCTATGT (118)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TMD0371               | CAGGATTACGCACAACGGCATGG (119)                                       | CTAGACTATTTAAAAAACCCCTGGCTTGCACAGTGGCTCAAGCCTGTAA (121)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (86,87)               | TGGGAGGCAGAGATAGCAGAGCCC (120)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0374               | CIGGICCIGGGCACCCIGAIAAGC (122)                                      | AGCTGTCCTCATTAAAAGTGACCTGGAGTGABATGGATTCTTCTGCCTAT (124)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (88,89)               | CCCAGGTCTGGTTGCAGTGCTCTC (123)                                      | CCAATICITCIGAAAAACGGGAGICACIGIGGGCACCAICACGCCCGGGI (125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TMD0469               | CTGAGGTGTCCCTCCCAAGCAGGT (126)                                      | TAAACAAATACATAAATGAGGCAGTTACTAGTAGTGGTAACTGCTAGGAA (128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (90,91)               | TACGGCCGAGAAGCACTGGAGATG (127)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                                                     | GGGATGCATTATAAATGCAACCAGCCAGAGGGCCCCTGGCTTCAGAACCT (130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TMD0719               | GTCACCTCAGCGATCTCAACGATAGGG (131)                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (92, 93)              | TGGAGCAGGAACAGGATATAGGTCAGGG (132)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0731 ::            | GGGTGGGAAGGAAGCAGGGAAGAG (135)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (94,95)               | CCAGCTAGTTCATGCTTGGCGCAG (136)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0785<br>(96,97)    | CTGTTGGGAATCTTCAGCCAGATCTCACAC (138) ATGGAGGTTTCTGCACGCTCAGCA (139) | AAGCAAITTGTTAAAAACTGGGATTACTTTACTCTTATGCTTTCTGTGTC (140) ACTTTAATTTTATAAAGAAGGTTCACATCAAGAAATTCCAAGTGAGGTTC (141)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TMD0841               | GGGCCACTTCCACAGAAGC (142)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (66,96)               | TGGCCTGAGAGGTAGATTCCACATAGTAGTCGT                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD1114               | CTCCTTTCTGGTCAGAGAACAAGACTGGGAC                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (100,101)             | GTGATGTCTCGAGAATGAGTGCGGTTG                                         | COST. THE PROPERTY OF THE PROP |
| TMD1148               | GCAGATGACCCGACCTGATCTTC (149)                                       | GCCAGAGAGTTTAAATGAAGCCCTACTTTGGGGAAGAGAGAAGAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (102, 103)            | TGGCTGTGCAGCTAGGTACCAG (150)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE 11

| SEQ  |         | GENBANK    | PREDOMINANT   | OTHER         | PROMOTER    | PRIMER      |
|------|---------|------------|---------------|---------------|-------------|-------------|
| 2    | NUMBER  | IDENTIFIER | SITES         | SITES OF      | (SEQ ID NO) | (FOR, REV)  |
| NO   |         |            | OF EXPRESSION | EXPRESSION    |             | (SEQ ID NO) |
| 152, | TMD0986 | WX 061779  | pancreas      | low levels in | 156-161     | 154,155     |
| 153  |         |            |               | testis        |             |             |
| 162, | 1MD0987 | XM 061780  | pancreas      | low levels in | 166         | 164,165     |
| 163  |         |            | •             | testis        |             |             |
| 167, | TMD0353 | XM 061781  | pancreas      |               |             | 169.170     |
| 168  |         | ı          | •             |               |             |             |
| 171, | 4860QWL | XM_061784  | pancreas      |               |             | 173,174     |
| 172  |         |            |               |               |             |             |
| 175, | TMD058  | XIM_061785 | pancreas      | low levels in | 179,180     | 177,178     |
| 176  |         |            |               | testis        |             |             |

TABLE 12

|         | WW_061779         | XM_061780 | XM 061781 | XM_061779   XM_061780   XM 061781   XM 061784   XM 061785 | XM 061785 |
|---------|-------------------|-----------|-----------|-----------------------------------------------------------|-----------|
| outside | 1-23              | 1-25      | 1-22      |                                                           | 1-24      |
| TM (1)  | 24-46             | 26-48     | 23-45     |                                                           | 25-47     |
| inside  | 47-58             | 49-60     | 46-65     |                                                           | 48-59     |
| TM (2)  | 82-48             | 61-83     | 88-99     |                                                           | 60-82     |
| outside | 79-97             | 84-97     | 89-97     |                                                           | 83-96     |
| TM (3)  | TM (3) 98-120     | 98-120    | 98-120    |                                                           | 97-119    |
| inside  | 121-140           | 121-139   | 121-140   |                                                           | 120-139   |
| TM (4)  | 141-163           | 140-162   | 141-163   |                                                           | 140-162   |
| outside | outside 164-198   | 163-202   | 164-203   |                                                           | 163-201   |
| TM (5)  | TM (5) 199-221    | 203-25    | 204-226   |                                                           | 202-224   |
| inside  | 222-240           | 226-237   | 227-237   |                                                           | 225-236   |
| TM (6)  | 241-260           | 238-260   | 238-260   |                                                           | 237-259   |
| outside | outside   261-274 | 261-269   | 261-272   |                                                           | 260-268   |
| TM (7)  | 75-292            | 270-289   | 273-292   |                                                           | 269-291   |
| inside  | 293-314           | 290-318   | 293-323   |                                                           | 292-311   |
|         |                   |           |           |                                                           |           |

## **FABLE 13**

| The state of the s |            |                     |           |                       |                         |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-----------|-----------------------|-------------------------|-------------|
| GENBANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOUSE      | 061779              | 061780    | 061781                | 061784                  | 061785      |
| IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HOMOLOG    |                     |           |                       | •                       |             |
| XM 061779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     | 42% (63%) | 42% (63%)   36% (57%) | (7017) 7007 (707) 4107) | 400% (610%) |
| XM_061780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOR239-6   | 42% (63%)           |           |                       |                         | 46% (67%)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (AY073489) | ,                   |           | (2.2.2)               | (0/20) 0/11             | (0/10) 0/01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60% (63%)  |                     |           |                       |                         |             |
| XM 061781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 36% (57%) 41% (60%) | 41% (60%) |                       | 43% (63%) 40% (61%)     | 40% (61%)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                     |           |                       | (0) (0)                 |             |

-110

| 177 5 07150 |                    |           |           |             |               |           |
|-------------|--------------------|-----------|-----------|-------------|---------------|-----------|
| XIM_U61784  | MOR223<br>  ~ >85% | 43% (64%) | 44% (62%) | 43% (63%)   |               | 81% (87%) |
| VA 061705   | 20000              |           |           |             |               |           |
| C8/100_147V | MOK223             | 40% (61%) | 46% (67%) | 40% (61%)   | 810% (870%)   |           |
|             | ~>85%              |           |           | (8/10) 8/01 | (0/ (0) 0/ 10 |           |
|             |                    |           |           |             |               |           |

# TABLE 14

ABI.E. 15

| ලියෙව (ම (ලුහෙව දෙනි))                    | AGEN      | ी मिट्टिकामान्डा <u>ती.</u><br>डॉहिड क्<br>डॉहिड क् | Other existencities                       | Gyloganetibless |
|-------------------------------------------|-----------|-----------------------------------------------------|-------------------------------------------|-----------------|
| 186)<br>186)                              | XM_166853 | spleen                                              | liver                                     | 11912.2         |
| TMD1029 (SEQ ID NO 187- XM_166854<br>188) | XM_166854 | spleen,<br>lymphocytes,<br>liver                    | brain, heart, lung, lymph node 11q12,2    | 11q12.2         |
| TMD1028 (SEQ ID NO 189- XM_166855<br>190) | XM_166855 | spleen,<br>lymphocytes                              | liver                                     | 11q12.2         |
| TMD0621 (SEQ ID NO 191- XM_166205<br>192) | XM_166205 | spleen                                              | brain, heart, liver, lung and<br>pancreas | 11q12.2         |

### LABLE 16

| , and the second se | UN. I Protein length (tee) Tometh desentation. | 58853 298 Transmembrane domain; 27 - 49 | Transmembrane domain: 98 - 120 | Transmembrane domain: 140 - 162 | Transmembrane domain: 175 - 197 | Transmombanco de la constante |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|--------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                | AICK                                           | XM_16                                   |                                |                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | l all Guoto                                    | TMD1030 XM_166853                       |                                |                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| ٠ | _ |
|---|---|
| - |   |
| · | ١ |

| Transmembrane domain: 238 - 260<br>Transmembrane domain: 275 - 292 | Transmembrane domain: 26 - 48 Transmembrane domain: 61 - 78 Transmembrane domain: 98 - 120 Transmembrane domain: 140 - 162 Transmembrane domain: 238 - 260 Transmembrane domain: 238 - 260 Transmembrane domain: 275 - 292 | Transmembrane domain; 18 - 40 Transmembrane domain; 61 - 83 Transmembrane domain; 103 - 125 Transmembrane domain; 137 - 156 | Transmembrane domain: 9-31<br>Transmembrane domain: 69 - 91 |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                    | 309                                                                                                                                                                                                                        | 173                                                                                                                         | 109                                                         |
|                                                                    | XM_16684                                                                                                                                                                                                                   | (M_166855                                                                                                                   | (M_166205                                                   |
|                                                                    | MD 1029                                                                                                                                                                                                                    | MD1028 XM_166855                                                                                                            | MD0621 XM_166205                                            |

#### TABLE 17

| 5000                          |                                                                  |                                                                    |                                                                       |                                                                |
|-------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|
| Redign<br>Teacher             | GAGCCTATAATATATGAGCCAGCTACGAGTTGGA<br>(SEQ ID NO 198)            | AAACCTGTTTGTACAGAGGCATTTATTGAGCC<br>(SEQ ID NO 200)                | CICCAACCCAGIGAACAICAAGIIAAAICCCAC<br>(SEQ ID NO 202)                  | CTCATTAATACGATGGCATAGATACATGTAAGAGAG<br>(SEQ ID NO 204)        |
| ्राप्तः ह्योष्टिन<br>इस्पर्यं | TMD1030 XM_166853 GGGATITGGIGTCCAACACGAAITICA<br>(SEQ ID NO 197) | TMD1029 XM_166854 GTCACTGAATTCTATCTTCTGGGATTTGGTGC (SEQ ID NO 199) | TMD1028 XM_166855 GATATCATTTTGGGGCTGCATGATACAATTATTGG (SEQ ID NO 201) | XM_166205 TTAAGCTATTAGTTAGTTCATATGTCATGGGTTTCC (SEQ ID NO 203) |
| NGG)                          | XM_166853                                                        | XM_166854                                                          | XM_166855                                                             | XM_166205                                                      |
| ල්කමම                         | TMD1030                                                          | TMD1029                                                            | TMD1028                                                               | ТМD0621                                                        |

## TABLE 18

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Action of the construction | TMD1030 XM_166853 ATGTTCCATCTAAATGAAGCCTGAGAAACCCAGCACTACCTGTTAG (0.94) (SEQ ID NO 205) ACATCCATTATAACAGGGTTAATAACTTGTAAAGAATAGCACCTAGA (0.95) (SEQ ID NO 206) | TMD1029 XM_166854 AAATGTATAAATTCTGCATGAAATTGGGGGTGGGGCTTGTACTACTTTTG (0.98) (SEQ 1D NO 207) | TMD1028 XM_166855 ATGTTCCATCTAAATGAAGCCTGAGAAACCCAGCACTACCCACTTGTTAG (0.94) (SEQ ID NO 208) ACATCCATTATAACAGGGTTAATAACTTGTAAAGAATAGCACCTAGA (0.95) (SEQ ID NO 209) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the same of the sa | NECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KM_166853 ATGTTCCATCTA.                                                                                                                                        | KM_166854 AAATGTATAAAT                                                                      | KM_166855 ATGTTCCATCTA<br>ACATCCATTATA                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ම්දාවම                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IMD1030 >                                                                                                                                                      | FMD1029                                                                                     | TMD1028                                                                                                                                                            |

-511

| (SEO ID NO 210) | (SEO ID NO 211)                                                           | (SEQ ID NO 212)                         | (SEQ ID NO 213)                                                          |       |
|-----------------|---------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|-------|
| (0.99)          | (0.97)                                                                    | (1.00)                                  | (0.91)                                                                   |       |
| IMDUSZI         | GGCTCACGCCTATAATCCCAGCACTTTGGGAGGCCGAGGCAGGTGGATCA (0.97) (SEQ ID NO 211) | TCCCAAATATATATATATACACACACACACACACACACA | CACACACACATATATATAGACACACATATATTATAATCATTTAACAACA (0,91) (SEQ ID NO 213) |       |
| XM_166205       |                                                                           |                                         |                                                                          | <br>• |
| 1290001         |                                                                           |                                         |                                                                          | <br>  |

OCID: <WO, .... 03089583A2 1 >

TABLE 19

114-

TABLE 19
(from Principles of Internal Medicine, Volume 1, Page 357, 12th Edition, McGraw-Hill Inc.)

"DCID: <WO \_ \_\_\_\_03089583A2 1 >

116-

Table 20

| GIRENOIS: | . Wagen   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HPredominant(sites)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the s |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1MD0077   | XM_166914 | Homo sapiens olfactory receptor MOR212-1 (LOC219956), mRNA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brain, heart and kidney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0233   | XM_069616 | Homo sapiens similar to olfactory receptor (LOC135941) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02007000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0256   | XM_066725 | Homo sapiens similar to olfactory receptor (LOC13947R) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TMD0258   | XM_066873 | Homo sapiens similar to beta-2 adreneroic recentor (1.00139760) mBNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on contract of the contract of | skin and (esus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TMD0267   | XM 089550 | NON CONTRACT OF THE PROPERTY O | paricieds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | colon, stomach and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 2000      | Figure sapidals similar to Cosos gene product (LOC159371) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | adrenal gland, bone marrow, colon, heart, intestine (small), kidney, liver, pituliary, prostate skin stomath and through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TMD0271   | XM_061815 | Homo sapiens similar to odorant receptor S18 gene (LOC120010) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PBL, prostate, thymus and utenis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TMD0290   | XM_065813 | Homo sapiens similar to unnamed protein product (LOC130644) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TMD0530   | XM_048304 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pancreas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | brain, kidney, lung, lymph node, PBL, mammary gland, pituitary,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD0574   | XM_055514 | Homo saplens KIAA1910 protein (KIAA1910) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hroice page ciera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sionach, tesus and myrold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TMD0608   | XM_058332 | Homo saplens similar to putative (H. saplens) (LOC118670) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | piluliary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TMD0639   | XM_058690 | Homo sapiens similar to data source:MGD, source key:MGI:96073, evidence:ISŞ-hexosaminidase A-putative (LOC204249), mRNA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | liver, PBL and prostate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0645   | XM_085376 | Homo sapiens LOC146225 (LOC146225), mRNA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bone marrow, brain, heart, kidney, liver, lung, lymph node, PBL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TMD0674   | XM_059132 | Homo sapiens similar to RIKEN cDNA 4930549C01 gene (LOC127309)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | brain, pituliary, prostate and stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TMD0675   | XM_059134 | Homo sapiens similar to putative (H. sapiens) (LOC127348) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | prostate and stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TMD0677   | XM_059140 | Homo sapiens similar to dJ39G22.2 (novel protein) (H. sapiens) (LOC127391) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | prostate and stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TMD0726   | XM_059639 | Homo sapiens similar to hypothetical protein (H. sapiens) (LOC133309)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | adrenal gland, brain, prostate and stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TMD0727   | XM_059654 | c transporter TST1 (H. sapiens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stomach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TMD0739   | XM_059812 | Homo saplens similar to pulative (H. saplens) (LOC135886) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | liver, lung, mammary gland, ovary, pituitary, prostate and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TMD0753   | XM_059954 | Homo sapiens similar to putative (H. sapiens) (LOC138240) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TMD1111   | NM_014386 | Homo sapiens polycystic kidney disease 2-like 2 (PKD2L2) mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pancreas and testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TMD1127   | NM_054020 | Homo sapiens putative ion channel protein CATSPER2 (CATSPER2), IRMRNA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pancreas and lestis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | euou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| !         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 21

| Gone (D | ACCN      | Protein seq<br>lengin (ax)              | Domain description                          |
|---------|-----------|-----------------------------------------|---------------------------------------------|
| TMD0077 | XM_166914 | 310                                     | 7 transmembrane receptor (rhodopsin family) |
|         |           |                                         | Transmembrane domains: 27 - 49              |
|         |           |                                         | Transmembrane domains: 61 - 83              |
|         |           |                                         | Transmembrane domains: 98 - 120             |
|         |           |                                         | Transmembrane domains: 141 - 163            |
|         |           |                                         | Transmembrane domains: 202 - 224            |
|         |           |                                         | Transmembrane domains: 237 - 259            |
|         |           |                                         | Transmembrane domains: 274 - 291            |
| TMD0233 | XM 069616 | 310                                     | 7 transmembrane receptor (rhodopsin family) |
|         |           |                                         | Transmembrane domain: 26 - 48               |
|         |           |                                         | Transmembrane domain: 60 - 77               |
|         |           |                                         | Transmembrane domain: 97 - 119              |
|         |           |                                         | Transmembrane domain: 140 - 162             |
|         |           |                                         | Transmembrane domain: 196 - 218             |
|         |           |                                         | Transmembrane domain: 239 - 261             |
|         |           |                                         | Transmembrane domain: 272 - 291             |
| TMD0256 | XM 066725 | 308                                     | 7 transmembrane receptor (rhodopsin family) |
|         |           |                                         | Transmembrane domain: 27 - 49               |
|         |           |                                         | Transmembrane domain: 61 - 83               |
|         |           |                                         | Transmembrane domain: 98 - 120              |
|         |           | ,                                       | Transmembrane domain: 140 - 162             |
|         |           |                                         | Transmembrane domain: 196 - 218             |
|         |           |                                         | Transmembrane domain: 239 - 258             |
|         |           |                                         | Transmembrane domain: 273 - 291             |
| TMD0258 | XM 066873 | 335                                     | 7 transmembrane receptor (rhodopsin family) |
|         |           |                                         | Transmembrane domain: 10 - 32               |
|         |           |                                         | Transmembrane domain: 39 - 61               |
|         |           |                                         | Transmembrane domain: 79 - 101              |
|         |           |                                         | Transmembrane domain: 121 - 143             |
|         |           | -                                       | Transmembrane domain: 163 - 185             |
|         |           |                                         | Transmembrane domain: 226 - 248             |
|         |           |                                         | Transmembrane domain: 263 - 282             |
| TMD0267 | XM 089550 | 324                                     | Integral membrane protein DUF6: 49-161      |
|         |           |                                         | Transmembrane domain: 59 - 78               |
|         |           | *************************************** | Transmembrane domain: 91 - 110              |
|         |           |                                         | Transmembrane domain: 115 - 137             |
|         |           | ,                                       | Transmembrane domain: 146 - 168             |
|         |           |                                         | Transmembrane domain: 183 - 201             |
|         |           |                                         | Transmembrane domain: 214 - 236             |
|         |           |                                         | Transmembrane domain: 246 - 265             |

DOCID: <WO\_\_\_\_03089583A2\_1 >

|                                         |                         |                                       | Transmembrane domain: 270 - 292                |
|-----------------------------------------|-------------------------|---------------------------------------|------------------------------------------------|
|                                         |                         |                                       | Transmembrane domain: 297 - 316                |
|                                         |                         |                                       |                                                |
| TMD027                                  | 1 XM_061815             | 291                                   | 7 transmembrane receptor (rhodopsin family)    |
|                                         |                         | · · · · · · · · · · · · · · · · · · · | Transmembrane domain: 29 - 51                  |
|                                         |                         | -32-                                  |                                                |
| ····                                    |                         |                                       | Transmembrane domain: 83 - 105                 |
|                                         |                         |                                       | Transmembrane domain: 120 - 142                |
|                                         |                         |                                       | Transmembrane domain: 163 - 185                |
|                                         |                         |                                       | Transmembrane domain: 190 - 207                |
|                                         |                         |                                       | Transmembrane domain: 220 - 239                |
|                                         |                         |                                       | Transmembrane domain: 249 - 271                |
|                                         | -                       |                                       |                                                |
| TMD0290                                 | XM_065813               | 245                                   | Transmembrane domain: 24 - 46                  |
|                                         |                         |                                       | Transmembrane domain: 61 - 83                  |
|                                         | ļ                       |                                       | Transmembrane domain: 96 - 118                 |
|                                         |                         |                                       | Transmembrane domain: 128 - 150                |
|                                         |                         |                                       | Transmembrane domain: 162 - 184                |
|                                         |                         |                                       | Transmembrane domain: 221 - 243                |
| TMD0530                                 | XM 048304               | · 708                                 | Immunoglobulin domain: 139-206                 |
|                                         |                         |                                       | Immunoglobulin domain: 326-377                 |
|                                         |                         |                                       | Transmembrane domain: 511 - 533                |
|                                         |                         |                                       |                                                |
| TMD0574                                 | XM_055514               | 696                                   | Leucine rich repeat C-terminal domain: 212-262 |
|                                         |                         |                                       | Leucine rich repeat C-terminal domain: 529-579 |
|                                         | · ·                     |                                       | Transmembrane domain: 621 - 643                |
| TMD0608                                 | XM 058332               | 105                                   | Transmembrane domain: 13 - 35                  |
| 111120000                               | XW 030332               | 105                                   | Hansmembrane domain. 13 - 35                   |
| TMD0639                                 | XM_058690               | 127                                   | Transmembrane domain: 12 - 34                  |
|                                         |                         |                                       | Transmembrane domain: 44 - 66                  |
| TMDOGAE                                 | VA 005270               |                                       |                                                |
| 111111111111111111111111111111111111111 | XM_085376               |                                       | Transmembrane domain: 113 - 135                |
|                                         |                         |                                       | Transmembrane domain: 150 - 169                |
|                                         | <del></del>             |                                       | Transmembrane domain: 176 - 198                |
| FMD0674                                 | XM 059132               | 134                                   | Transmembrane domain: 5 - 22                   |
|                                         |                         |                                       |                                                |
| MD0675                                  | XM_059134               | 206                                   | Transmembrane domain: 15 - 37                  |
| TAAD 0077                               | VA 050110               |                                       |                                                |
| MD00//                                  | XM_059140               | 182                                   | Transmembrane: 49 - 71                         |
| MD0726                                  | XM_059639               | 96                                    | Transmembrane domain: 13 - 35                  |
|                                         |                         |                                       | Transmembrane domain: 50 - 72                  |
|                                         |                         |                                       |                                                |
| MD0727                                  | related to<br>XM_059654 | 719                                   | Fransmembrane domain: 108 - 130                |

| ,           |           | · · · · · · · · · · · · · · · · · · · |                                                                              |
|-------------|-----------|---------------------------------------|------------------------------------------------------------------------------|
|             |           |                                       | Transmembrane domain: 145 - 164                                              |
|             |           | <u> </u>                              | Transmembrane domain: 171 - 193                                              |
|             |           |                                       | Transmembrane domain: 229 - 251                                              |
|             |           |                                       | Transmembrane domain: 264 - 286                                              |
|             |           |                                       | Transmembrane domain: 314 - 336                                              |
|             |           |                                       | Transmembrane domain: 421 - 443                                              |
|             | ·         |                                       | Transmembrane domain: 453 - 475                                              |
|             |           |                                       | Transmembrane domain: 580 - 602                                              |
|             |           |                                       | Transmembrane domain: 668 - 690                                              |
|             |           |                                       | Organic Anion Transporter Polypeptide (OATP) family, C-<br>terminus: 125-473 |
|             |           |                                       | Organic Anion Transporter Polypeptide (OATP) family, N-<br>terminus: 558-717 |
| TMD0739     | XM_059812 | 265                                   | Transmembrane domain: 126 - 148                                              |
|             |           |                                       | Transmembrane domain: 185 - 207                                              |
| TMD0753     | XM_059954 | 161                                   | Transmembrane domain: 26 - 48                                                |
|             |           |                                       | ·   · · · · · · · · · · · · · · · · · ·                                      |
| TMD1111     | NM_014386 | 609                                   | Ion transporter domain: 284-490                                              |
|             |           |                                       | Transmembrane domain: 34 - 56                                                |
|             |           |                                       | Transmembrane domain: 274 - 296                                              |
|             |           |                                       | Transmembrane domain: 315 - 337                                              |
|             |           |                                       | Transmembrane domain: 364 - 386                                              |
|             |           |                                       | Transmembrane domain: 407 - 429                                              |
|             |           |                                       | Transmembrane domain: 469 - 491                                              |
| TMD1127     | NM 054020 | 528                                   | lon transporter domain: 172-340                                              |
|             |           |                                       | Transmembrane domain: 113 - 132                                              |
|             |           |                                       | Transmembrane domain: 147 - 169                                              |
|             |           |                                       | Transmembrane domain: 176 - 198                                              |
| · · · · · · |           |                                       | Transmembrane domain: 241 - 263                                              |
|             |           |                                       | Transmembrane domain: 276 - 295                                              |
|             |           |                                       | Transmembrane domain: 315 - 337                                              |

)OCID: <WO\_\_\_\_\_03089583A2\_I\_>

Table 22

|            | **                      |                | i abic as                                                                                                                                                                                                                                                  |
|------------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glove (15) | ACCN                    | Cytogeneticloc | s disease linkage                                                                                                                                                                                                                                          |
| TMD0077    | XM_166914               | 11q12.2        | angioedema, hereditary, spastic paraplegia 17; osteoporosis-<br>pseudoglioma syndrome; pancreatic tumor                                                                                                                                                    |
| TMD0233    | XM_069616               | . 7q35         | glaucoma 1, open angle, f;                                                                                                                                                                                                                                 |
| TMD0256    | XM_066725               | Xq26.1         | x inactivation, familial skewed, 2; panhypopituitarism; thoracoabdominal syndrome; dandy-walker malformation with mental retardation, basal ganglia disease, and seizures; splil-hand/foot malformation 2; mental retardation with optic atrophy, deafness |
| TMD0258    | XM_066873               | Xq26,1         | x inactivation, familial skewed, 2; panhypopituitarism; thoracoabdominal syndrome; dandy-walker malformation with mental retardation, basal ganglia disease, and seizures; split-hand/foot malformation 2; mental retardation with optic atrophy, deafness |
| TMD0267    | XM_089550               | 10q24.1        | comeal dystrophy of bowman layer, type ii; alzheimer<br>disease 6                                                                                                                                                                                          |
| TMD0271    | XM_061815               | 11p15.4        | charcot-manie-tooth disease, type 4b, form 2; deafness, neurosensory, autosomal recessive 18;                                                                                                                                                              |
| TMD0290    | XM_065813               | 2p23.1         | . none                                                                                                                                                                                                                                                     |
| TMD0530    | XM_048304               | 19q13.13       | hypocalciuric hypercalcemia, familial, type iii; deafness, autosomal dominant nonsyndromic sensorineural 4; microcephaly, primary autosomal recessive, 2                                                                                                   |
| TMD0574    | XM_055514               | 13q31.1        | microcoria, congenital; schizophrenia 7;                                                                                                                                                                                                                   |
| TMD0608    | XM_058332               | 10q26.3        | endometrial carcinoma                                                                                                                                                                                                                                      |
| TMD0639    | XM_058690               | 15q22.32       | cataract, central saccular, with sutural opacities; obesity syndrome                                                                                                                                                                                       |
| TMD0645    | XM_085376               | 16q23.1        | dehydrated hereditary stomatocytosis; pancreatic acinar cancer                                                                                                                                                                                             |
| TMD0674    | XM_059132               | 1p36.11        | breast cancer, ductal, 2; prostate cancer/brain cancer susceptibility, melanoma, cutaneous malignant; inflammatory bowel disease 7;                                                                                                                        |
| TMD0675    | XM_059134               | 1p33           | carcinoma of pancreas                                                                                                                                                                                                                                      |
| TMD0677    | XM_059140               | 1p34.2         | deafness, autosomal dominant nonsyndromic sensorineural<br>2;<br>porphyria cutanea tarda;<br>hypercholesterolemia, familial, ptosis, hereditary congenital 1;                                                                                              |
| TMD0726    | XM_059639               | 10q11.22       | none                                                                                                                                                                                                                                                       |
| TMD0727    | related to<br>XM_059654 | 5q21.1         | anemia, dyserythropoietic congenital, type iii; dyslexia, specific, 1; colorectal cancer, hereditary nonpolyposis, type 7; cataract, central saccular, with sutural opacities                                                                              |
| TMD0739    | XM_059812               | 7q11.23        | autism, susceptibility to, 1;<br>muscular dystrophy, limb-girdle, type 1d;<br>aneurysm, intracrania l                                                                                                                                                      |
| TMD0753    | XM_059954               | 9q21.12        | hemophagocytic lymphohistiocytosis, familial, 1;<br>amyotrophic lateral sclerosis with frontotemporal dementia                                                                                                                                             |
| TMD1111    | NM_014386               | 5q31           | , none                                                                                                                                                                                                                                                     |
| TMD1127    | NM_054020               | 15q13-q15      | nanophthalmos 2; spastic paraplegia 11, autosomal recessive; corpus callosum, agenesis of, with neuronopathy, pancreatic acinar carcinoma                                                                                                                  |

122-

|                                    |           | C7 TION I                                                                                                      |                                                                                                                                                                                                                              |
|------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CODE                               | ACCN      | PRIMERS                                                                                                        | PROMOTER                                                                                                                                                                                                                     |
| TMD0077<br>(SEQ ID NO 214-<br>215) | XM_166914 | TCATGGATCACCAGCTCCACGCTC (Forward) (SEQ ID NO 256) CACCAAGATCACCATGGAAGCA (Reverse) (SEQ ID NO 257)            | GGATTCAGGCCTTTTAAACCCCACTCAGTGGGTGCATGGCAGGGCTTTGA (0.88)<br>(SEQ ID NO 258)                                                                                                                                                 |
| TMD0233<br>(SEQ ID NO 216-<br>217) | XM_069616 | TGCTGÁCGAATCTTATGAACCAGG (Forward) (SEQ ID NO259) TCACGTCAGCCTCTCCTTCCTCAGTG (Reverse) (SEQ ID NO 260)         | TCACAAATCATATAAATTAGGGGAAAGAGAGGGGGGGTATACTCTAAAA (0.96) (SEQ ID NO 261) AATTICTTATTTAAAAGACCTCAGAAATGTCACCATGCTTAGTTATTTA (0.95) (SEQ ID NO 262)                                                                            |
| TMD0256<br>(SEQ ID NO 218-<br>219) | XM_066725 | GGCCATGGACAATGTCACAGCAG (Forward) (SEQ ID NO 263) AGCAGACACATACTGGGCCATTCATAACCAC (Reverse) (SEQ ID NO 264)    | GGTACTATTCTATATTTTGGGCACACAGGCAATGAAGAAAACAGAAAAACC (0.93) (SEQ ID NO 265) CTGGGTTTCATAAATATGGAGCAGAAAGTTTTTACAAATATAGAACAGCA (0.92) (SEQ ID NO 266) TAGAAATGTTAAAAAATGAAGCAGGGCTAGGGGAAAGAGAGTGGGTGA (0.91) (SEQ ID NO 267) |
| TMD0258<br>(SEQ ID NO 220-<br>221) | XM_066873 | CCTCATTGGCTTCCTCCCACTCG (Forward) (SEQ ID NO 268) GCCATCAAACTCTGAGCTGGAGATAGTGAC (Reverse) (SEQ ID NO 269)     | CCAAGGAACTITTAAAACTCCCATTGCACAGTTACCACCCAGAATAATTA (0.97) (SEQ ID NO 270 CATCCTGGAATATATTTGCGTCCAACTCTGCACCTTGCTCTCTATTCCCT (0.96) (SEQ ID NO 27) CTGGGGCCCCTCAAAAGCTCACCTTCCCTCACTTCCACTGAT (0.91) (SEO ID NO 272)          |
| TMD0267<br>(SEQ ID NO 222-<br>223) | XM_089550 | TGGCCTCGTTGAAAGTGTCATCATCC (Forward) (SEQ ID NO 273 TTGGTACCATTTACGAATGGCCGC (Reverse) (SEQ ID NO 274)         | AAACGGCATTITAAAAATGCAGGTTTAAATTGTTATCCTCATCTATGGTT (0.98) (SEQ ID NO 275)                                                                                                                                                    |
| TMD0271<br>(SEQ ID NO 224-<br>225) | XM_061815 | CTGGACTTGAGCAGTACCACGTCTGGATC (Forward) (SEQ ID NO 276) CATATTCCCACAGCAATTTTGACAATGG (Reverse) (SEQ ID NO 277) | ATTITIGGITATATATAGAGGAGTCTAGGAAAAGACTCGTGGGICTGATTC (0.97) (SEQ ID NO 278) TACTCATATITIATATAGCAGCAACTTACATTGACCCAGGGAGAACTCAGT (0.94) (SEO ID NO 279)                                                                        |
| TMD0290<br>(SEQ ID NO 226-<br>227) | XM_065813 | GTTACCCACCGTCACGACC (Forward) (SEQ ID NO 280) CAGGCGATGCCAGAGAAGACGATG (Reverse) (SEQ ID NO 281)               | CTAGAATTTACATAAAAGGACTGGAGGAGCTTTTGCAGCAACTTTGCAT (0.97) (SEQ ID NO 282) TTTTCTTCTTTTAAAAACACGCTTTCACTCTCAAAACAGCAGGAATGAA (0.98) (SEQ ID NO 283) AACTGGGGTCTATAAGAGAGCCAGGGCACTTATTCATCCAAGGGCAGATG (0.99) (SEQ ID NO 284)  |
| TMD0530<br>(SEQ ID NO 228-<br>229) | XM_048304 | CTATGACTTCAACCCACACCTGGGCA (Forward) (SEQ ID NO 285) AAGGTCGCCAACTTGTCCTGGCTC (Reverse) (SEQ ID NO 286)        | GGGCGGGAGTAAAAGGCAGAGTCCAATTCCACGGCCCCCAGTGTGGGGTG (0.86) (SEQ ID NO 287)                                                                                                                                                    |

| CODE                         | ACCN                                  | PRIMERS                                                                                               | GHEOMORG                                                                             |
|------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| TMD0574<br>(SEQ ID NO 230-   | XM_055514                             | TCAATGCCATGCCCAAACTGAGGA (Forward) (SEQ ID NO 288) CAACACCGAGATGGACACCCTGCT (Reverse) (SEQ ID NO 289) | CTITITAAGGITAAAAATGTGGGTTTTAGATGATTGTCCTTTCTAAACAGC (0.99) (SEQ ID NO 290)           |
|                              |                                       |                                                                                                       | TCAGGATGTCTAAAAAGATCTCTCTAGTGTACACACGTGCACACACA                                      |
|                              |                                       |                                                                                                       | AGTAACTCTATTTAAAAGACCTAAAAATTTCAAATCCTAAAATGATCTAT (0.90)                            |
|                              |                                       |                                                                                                       | AATAAATGTTTTAAAAGCACTCCTTTCCGAATGGTGGAGCTGGTGGGGGC (0.91)<br>(SEQ ID NO 293)         |
| TMD0608<br>  (SEQ ID NO 232- | XM_058332                             | CTCAGGACGAAGATCATGATCGGCATC (Forward) (SEQ ID NO                                                      | TATTCTCACTTATAAGTGGGAGCTAAGCCATGAGGGCACCAAGGCATAAG (0.99)                            |
| 233)                         | · · · · · · · · · · · · · · · · · · · | GAAGATTTTTGTGCCCAGCTTTCCCAAG (Reverse) (SEQ ID NO 295)                                                | (SEQ ID NO 299) TTACATATGTATACATGTGCCATGCTGCTGCACCCATTAACTCGT (0.96) (SEQ ID NO 297) |
| TMD0639<br>(SEO ID NO 234-   | XM_058690                             | TCCATGCTCAGCTTCATCTCAGCTACC (Forward) (SEQ ID NO 208)                                                 | AAATAACCCCATTAAAAAGTGGGCAAAGGGCATGAAACACTTTTCAAAAGA (1.00)                           |
| 235)                         |                                       | TCCATCTCAGACCTTGGCCCTTCA (Reverse) (SEQ ID NO 299)                                                    | (35Q IO NO 300)                                                                      |
| TMD0645<br>(SEQ ID NO 236-   | XM_085376                             | AGGACGGTAAGGAGCCATCGGACA (Forward) (SEQ ID NO                                                         | TCTTTTTGTCTATAAATAGGACTTTGATTTTCTGGACTAGAGAATTGTAT (0.94)                            |
| 237)                         |                                       | CTTGCCAGGTTCTGGTGGCTTGG (Reverse) (SEQ ID NO 302)                                                     | (3EQ ID NO 303)                                                                      |
| (SEQ ID NO 238.              | XM_059132                             | ACGACTCCAAGAACAGCAAGGCCG (Forward) (SEO ID NO 304)                                                    | GCTAGCATTITITAAAAGCTGATGTCTTCACTGGGCACGGGGACTCACAC (0.94)                            |
| 239)                         | ı, t                                  | AAGGTAACATCGGCAGAGGCCAGC (Reverse) (SEQ ID NO 305)                                                    |                                                                                      |
| TMD0675<br>(SEO ID NO 240-   | XM_059134                             | CGGCCAGGTACCAAAGCTCAGCTG (Forward)                                                                    | TGATCTACTTTTTAAAAAGGATCATGCTGGCTGGTGGGGATTTAGGATA (0.91)                             |
| 241)                         |                                       | (SECTION 201) (SECTION 201) (SECTION 201) (SECTION 201) (SECTION 201)                                 | (SEQ ID NO 309) TGATAGTGATAAAAAAAGTGGCCAGATTTTGGTTATATTTTGAAATAAA (0.99)             |
|                              |                                       | (350,10,203)                                                                                          | (SEQ ID NO 310)                                                                      |
|                              |                                       |                                                                                                       | (SEQ ID NO 311)                                                                      |
|                              |                                       |                                                                                                       | ATTGGAGGACTATAAAGAGGGGAGTCATTAAAATGGTGCTAAGAAGCTGA (0.96)                            |
|                              |                                       |                                                                                                       | CSC 12 12 12 12 12 12 12 12 12 12 12 12 12                                           |
|                              |                                       |                                                                                                       | (SEC TITICAL) (SEC IND 114)                                                          |

| CODE                       | ACCN      | PRIMERS                                                 | PROMOTER                                                                                 |
|----------------------------|-----------|---------------------------------------------------------|------------------------------------------------------------------------------------------|
| -242                       | XM_059140 | TTGGGAGAGACTAGTGCACCTCAGCA (Forward) (SEO ID NO 315)    | AAAAGTGCTTTTAAACAGGGGGGGGGTGGAGGGGGCTTATGAGAAGGGGGCCA (1.00)                             |
| 243)                       | -         | GAGCAATCCCTCTTCGTGGCAGGT (Reverse) (SEO ID NO 316)      | CCATTOTACTA AAAAA GCAGAGAA TCAGCCAGGCGTGGCACGTGCCTGTA (0.95) (SEO ID NO 118)             |
|                            |           |                                                         | SEO ID NO 319)                                                                           |
|                            |           |                                                         | (SEQ ID NO 320)                                                                          |
| 3                          | 6E96SO WX | ACTICCAAACATCTACAACTCCTCAGAGTCTCATT (Forward)           | TITITIAAACTATAAAAAGTGGGGATCAGAAAACACAGTCATAAGGGAAA (0.97)                                |
| (SEQ ID NO 244-<br>245)    |           | (SEQ ID NO 321) TGCAGCACCATCATGTAAGGGACAA (Reverse)     | (SEQ ID NO 323)<br>GTATATGCTATATATATCAGGATTCACTTTAATGGCATTGAGTTCCAGGA (0.98)             |
| <u></u>                    |           | (SEQ ID NO 322)                                         | (SEQ ID NO 324) ATAAACAATITAAAAATTAGCCCACCATGGTGGTACACACCCTGTCGTTCT (0.99)               |
|                            |           |                                                         | (SEQ ID NO 325) AAAAAGTGAAAAAAAAGGTGAGGGAGACTTTAACTTTCTGAAATATATT (0.92) (SEQ ID NO 326) |
| 246-                       | XM_059654 | CCAAGAAGCCGGGAGAAGTGGATG (Forward)                      | CTAAAGAGCTTATATATCAGCCTAAGAAAAGAAAACCAATAAGAAGTTGC (0.96)                                |
| 247)                       |           | TGACAGAGCATATGAGCACTGGA (Reverse) (SEQ ID NO 328)       |                                                                                          |
|                            | XM_059812 | GCAGTTGGTTCAGAACCGAGATCACC (Forward) (SEO ID NO 330)    | ACTAAAAATACAAAAAGTAGCCGGGTATGGTGGTAGGCGCCTATAATCC (0.93)                                 |
| 249)                       |           | GGCAGATGGGGATACATTTATTCTCTGGG (Reverse) (SEO ID NO 331) | GGTAGGCGCCTATAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATTG (0.92)                                |
| ī.÷                        | , ,       | (100 )                                                  |                                                                                          |
| 250-                       | XM_059954 | TCGGCTTGGAAATCAGAATGAGAAGG (Forward) (SEO ID NO 334)    | AAAAGGCTTATATAAAAGGGTTTTGTTTTGTTTTGTTTT                                                  |
| 251)                       |           | TGCACAAAGAATGATTGCAGCAGTGAGTAG (Reverse)                | GGCCAACTTATAAAAAGGTTTATGTTTTGTTCTGATAATTTCGTTTCT (0.91)                                  |
|                            |           |                                                         | (3EQ ID NO 338) (SEQ ID NO 338)                                                          |
| 252.                       | NM_014386 | GGGCGGTGTAGTGCAGGTCCG (Forward)                         | AATTCAAATATTTAAAACGGACTGTCTCCTTTCACAAAAGTCTAGATCT (0.92)                                 |
| 253)                       |           | CCTCCAGTTGCAGGAATTCTGCC (Reverse) (SEQ ID NO 340)       |                                                                                          |
| TMD1127<br>(SEQ ID NO 254- | NM_054020 | GGCTGTTGAGCAGCTTCATGTGC (Forward) (SEQ ID NO 342)       | ATTGGGTGCATATATATTTAGGATAGTTAGCTCTTCTTGTTGAATTGATC (0.89) (SEQ ID NO 344)                |
|                            |           | CICCICIGGATGATCIGCCGCTIG (Reverse) (SEQ ID NO 343)      |                                                                                          |

125-

OCID: <WO \_\_\_\_\_03089583A2\_1\_>

detecting specific hybridization.

#### CLAIMS:

- 1. A method of detecting an immune system cell, comprising:

  contacting a sample comprising cells with a polynucleotide specific for TMD0024

  (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025

  (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304

  (XM\_060956), TMD0888 (XM\_060957), or TMD0890 (XM\_060959) of claim 28, under conditions effective for said polynucleotide to hybridize specifically to said gene, and
- A method of claim 1, wherein said detecting is performed by:
   Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,
   RACE PCR, or in situ hybridization.
- A method of detecting an immune system cell, comprising:
   contacting a sample comprising cells with a binding partner specific for a polypeptide
   coded for by TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947),
   TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304
   (XM\_060956), TMD0888 (XM\_060957), or TMD0890 (XM\_060959) of claim 28, under
   conditions effective for said binding partner bind specifically to said polypeptide, and
   detecting specific binding.
  - A method of claim 3, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 5. A method of delivering an agent to an immune cell, comprising:
   contacting an immune cell with an agent coupled to binding partner specific for a
   polypeptide coded for by TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884
   (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781
   (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), or TMD0890
   30 (XM\_060959) of claim 28, whereby said agent is delivered to said cell.
  - 6. A method of claim 5, wherein the agent is a therapeutic agent or an imaging agent.

10

20

25

- 7. A method of claim 5, wherein the agent is cytotoxic.
- 8. A method of claim 5, wherein the binding partner is an antibody.
- A method of modulating the maturation of an immune system cell, comprising:
   contacting said cell with an agent effective to modulate a gene, or polypeptide
   encoded thereby, selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946),
   TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781
   (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890
   (XM\_060959) of claim 28, whereby the maturation of an immune cell is modulated.
- 10. A method of modulating interactions between lymphoid and non-lymphoid immune system cells, comprising:
- contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) of claim 28, whereby the interaction is modulated.

11. A method of expressing a heterologous polynucleotide in immune system cells, comprising:

expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from SEQ ID NOS 5, 10, 11, 16-19, 29-32, 37-39, 44-46, 51-54, and 59-62.

12. A method of treating an immune system disease, comprising:

administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025

:UCID: <WO \_\_\_\_\_03089583A2 .1 >

(XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) of claim 28.

- 13. A method of claim 12, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
  - 14. A method of diagnosing an immune disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of a gene, or polypeptide encoded thereby, selected from

TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025
(XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304
(XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) of claim 28 in a tissue sample comprising immune system cells.

15. A method of claim 14, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

20 16. A method of claim 14, wherein said assessing detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and

using a polynucleotide probe having a sequence selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) of claim 28, or a polynucleotide probe having 95% sequence identity or more to a sequence set forth in SEQ ID NOS 1, 6, 12, 20, 25, 33, 40, 47, or 55, effective specific fragments thereof, or complements thereto.

17. A method of assessing a therapeutic or preventative intervention in a subject having an

25

10

15

20

immune system disease, comprising,

determining the expression levels of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) of claim 28 in a tissue sample comprising immune system cells.

- 18. A method of claim 17, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 19. A method for identifying an agent that modulates the expression of a gene or polypeptide in the immune system gene complex, comprising,

contacting an immune system cell with a test agent under conditions effective for said test agent to modulate the expression of a gene selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) of claim 28, or the biological activity of a polypeptide encoded thereby, in said immune system cell, and

determining whether said test agent modulates said gene or polypeptide.

- 20. A method of claim 19, wherein said agent is an antisense polynucleotide which is effective to inhibit translation of said gene or an antibody specific for said polypeptide.
- 21. A method of detecting polymorphisms in a gene in the immune system gene complex, comprising: comparing the structure of:

30 (XM\_060959) of claim 28 with the structure of SEQ ID NOS 1, 6, 12, 20, 25, 33, 40, 47, or 55.

- 22. A method of claim 20, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 5 23. A method of identifying a genetic basis for an immune disease or disease-susceptibility, comprising:

determining the association of an immune disease or disease-susceptibility with a nucleotide sequence present in a genome comprising the gene complex of claim 28.

- 10 24. A method of claim 23, wherein determining is performed by producing a human-linkage map of said complex.
  - 25. A method of claim 23, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having an immune system disease.
  - 26. A non-human, transgenic mammal, or a cell thereof, whose genome comprises a functional disruption of a gene selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888
- 20 (XM\_060957), and TMD0890 (XM\_060959) of claim 28, or a mouse homolog thereof, and which has a defect in immune system function.
  - 27. A method of selecting a gene predominantly expressed in immune system cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for a gene selected from TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947), TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959), or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 28. A composition consisting essentially of the 1q22 immune gene complex, comprising
   TMD0024 (XM\_060945), TMD1779 (XM\_060946), TMD0884 (XM\_060947),
   TMD0025 (XM\_060948), TMD1780 (XM\_089422), TMD1781 (XM\_089421), TMD0304 (XM\_060956), TMD0888 (XM\_060957), and TMD0890 (XM\_060959) genes, or a fragment thereof comprising at least two said genes.
- 29. A composition of claim 28, wherein said complex consists essentially of the chromosome region between STS markers SHGC-81033 and SHGC-145403, or a fragment thereof comprising at least two said genes.
- 30. A composition of claim 28, wherein said complex consists essentially of the
   20 chromosome region between STS markers SHGC-81033 and D1S3249, G15944,
   GDB:191077, or GDB:196442, or a fragment thereof comprising at least two said genes.
  - 31. A composition of claim 28, wherein said complex consists essentially of the chromosome region between STS markers RH118729 and D1S2577 or SHGC-145403, or a fragment thereof comprising at least two said genes.
  - 32. A method of detecting an immune system cell, comprising: contacting a sample comprising cells with a polynucleotide specific for a XM\_062147 (SEQ ID NO 63) or XM\_061676 (SEQ ID NO 69) of claim 59 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

detecting specific hybridization.

25

- 33. A method of claim 32, wherein said detecting is performed by:

  Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,
  RACE PCR, or *in situ* hybridization.
- 5 34. A method of detecting an immune system cell, comprising: contacting a sample comprising cells with a binding partner specific for a polypeptide coded for XM\_062147 (SEQ ID NO 64) or XM\_061676 (SEQ ID NO 70) of claim 59 under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.
  - 35. A method of claim 34, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 36. A method of delivering an agent to an immune cell, comprising:
   contacting an immune cell with an agent coupled to binding partner specific for XM\_062147 (SEQ ID NO 64) or XM\_061676 (SEQ ID NO 70) of claim 59, whereby said agent is delivered to said cell.
  - 37. A method of claim 36, wherein the agent is a therapeutic agent or an imaging agent.
  - 38. A method of claim 36, wherein the agent is cytotoxic.
  - 39. A method of claim 36, wherein the binding partner is an antibody.
- 40. A method of modulating the maturation of an immune system cell, comprising: contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59, whereby the maturation of an immune cell is modulated.
- 30 41. A method of modulating interactions between lymphoid and non-lymphoid immune system cells, comprising:

contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59, whereby the interaction is modulated.

5 42. A method of expressing a heterologous polynucleotide in immune system cells, comprising:

expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NOS 65, 66, 72, 73, 74, or 75.

10

43. A method of treating an immune system disease, comprising:

administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of a gene, or polypeptide encoded thereby, selected from XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59.

15

- 44. A method of claim 43, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
- 45. A method of diagnosing an immune disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of a gene, or polypeptide encoded thereby, selected from XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59 in a tissue sample comprising immune system cells.

25 46. A method of claim 45, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

30 47. A method of claim 45, wherein said assessing detecting is performed by:
Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR.

RACE PCR, or in situ hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS  $^{6}$ 7, 68, 76, and 77.

5 48. A method of assessing a therapeutic or preventative intervention in a subject having an immune system disease, comprising,

determining the expression levels of a gene, or polypeptide encoded thereby, selected from XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59 in a tissue sample comprising immune system cells.

10

- 49. A method of claim 48, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 50. A method for identifying an agent that modulates the expression of a gene or polypeptide in the immune system gene complex, comprising,

contacting an immune system cell with a test agent under conditions effective for said test agent to modulate the expression of XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59, or a polypeptide encoded thereby, in said immune system cell, and

- determining whether said test agent modulates said gene.
  - 51. A method of claim 50, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NOS 63 or 69 and which is effective to inhibit translation of said gene.

25

52. A method of detecting polymorphisms in a gene in the immune system gene complex, comprising:

comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of XM\_062147 or XM\_061676 with SEQ ID NOS 63 or 69 of claim 59.

30

53. A method of claim 52, wherein said polymorphism is a nucleotide deletion, substitution,

inversion, or transposition.

- 54. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by XM\_062147 (SEQ ID NO 63) or XM\_061676 (SEQ ID NO 69) of claim 59, and which has a defect in immune system function.
- 55. A mammalian immune system cell whose genome comprises a functional disruption of a gene represented by XM\_062147 (SEQ ID NO 63) or XM\_061676 (SEQ ID NO 69) of claim 59, and which has a defect in immune system function.

10

15

20

- 56. A mammalian cell of claim 55, wherein said cell is a mouse cell.
- 57. A non-human, transgenic mammal, or a cell thereof, comprising a gene operatively linked to an expression control sequence effective to express said gene in immune system, wherein said sequence is SEQ ID NOS 65, 66, 71, 72, 73, 74, or 75.
- 58. A method of selecting a gene predominantly expressed in immune system cells from a database comprising polynucleotide sequences for genes, comprising:
- displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for XM\_062147 (SEQ ID NO 63 or 64) or XM\_061676 (SEQ ID NO 69 or 70) of claim 59, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 25 59. A composition comprising:
  - bone marrow specific genes consisting essentially of XM\_062147 (SEQ ID NO 63 or 64) and XM\_061676 (SEQ ID NO 69 or 70), or polypeptides thereof.
  - 60. A method of detecting a kidney cell, comprising:
- contacting a sample comprising cells with a polynucleotide specific for a polynucleotide, or a naturally-occurring polymorphisms thereof, of claim 81 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

detecting specific hybridization.

61. A method of claim 60, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

62. A method of detecting an kidney cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

- 63. A method of claim 62, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 64. A method of delivering an agent to a kidney cell, comprising:

contacting a kidney cell with an agent coupled to binding partner specific for polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, whereby said agent is delivered to said cell.

20

15

5

10

- 65. A method of claim 64, wherein the agent is a therapeutic agent, a cytotoxic agent, or an imaging agent.
- 66. A method of claim 64, wherein the binding partner is an antibody.

25

67. A method of modulating a kidney cell, comprising:

contacting said cell with an agent effective to modulate a polynucleotide, or polypeptide encoded thereby, or a naturally-occurring polymorphism thereof, of claim 81, whereby the kidney cell is modulated.

30

68. A method of assessing kidney function, comprising:

detecting a polypeptide coded for by a polynucleotide of claim 81, or a naturallyoccurring polymorphism thereof, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of kidney function.

- 5 69. A method of claim 68, wherein said detecting is performed using an antibody which is specific for said polypeptide.
  - 70. A method of claim 69, wherein said detecting is performed by RIA, ELISA, or Western blot.
- 71. A method of expressing a heterologous polynucleotide in kidney cells, comprising: expressing a nucleic acid construct in kidney cells, said construct comprising a

promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from SEQ ID NOS. 106, 109, 110, 113, 114, 117, 118, 121,

- 15 124, 125, 128-130, 133, 134, 137, 140, 141, 144, 147, 148, and 151.
  - 72. A method of diagnosing a kidney disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:
- assessing the expression of a polynucleotide of claim 81, or a polypeptide encoded thereby, or naturally-occurring polymorphisms thereof, in a tissue sample comprising kidney cells.
  - 73. A method of claim 72, wherein assessing is:
- measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.
  - 74. A method of assessing a therapeutic or preventative intervention in a subject having a kidney disease, comprising,
- determining the expression levels of a polynucleotide of claim 81, a naturallyoccurring polymorphism thereof, or polypeptide encoded thereby, in a tissue sample

comprising kidney cells.

75. A method of claim 74, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

5

10

15

20

76. A method for identifying an agent that modulates the expression of a polynucleotide or polypeptide selectively expressed in kidney cells, comprising,

contacting an kidney cell with a test agent under conditions effective for said test agent to modulate the expression of a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, or the biological activity of a polypeptide encoded thereby, in said kidney cell, and

determining whether said test agent modulates said gene or polypeptide.

- 77. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by a polynucleotide of claim 81, or a homolog thereof, and which has a defect in kidney function.
- 78. A mammalian kidney cell whose genome comprises a functional disruption of a gene represented by a polynucleotide of claim 81, or a homolog thereof, and which has a defect in kidney function.
- 79. A mammalian cell of claim 78, wherein said cell is a mouse cell.
- 80. A method of selecting a gene predominantly expressed in kidney cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence, or a polypeptide encoded thereby, of claim 81, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

5

10

81. A composition comprising two or more of the following polynucleotides expressed / selectively in kidney:

TMD0049 (XM\_057351), TMD0190 (XM\_087157), TMD0242 (XM\_088369), TMD0335 (XM\_089960), TMD0371, TMD0374, TMD0469 (XM\_038736), TMD0719 (XM\_059548), TMD0731 (XM\_059703), TMD0785 (XM\_060310), TMD0841 (XM\_060623), TMD1114 (NM\_019841), and/or TMD 1148 (XM\_087108).

- 82. A method of detecting a pancreas cell, comprising:
- contacting a sample comprising cells with a polynucleotide specific for TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, of claim 113 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.
  - 83. A method of claim 82, wherein said detecting is performed by:
- Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.
  - 84. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, of claim 113 under conditions effective for said binding partner bind specifically to said polypeptide, and, detecting specific binding.

85. A method of claim 84, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.

30

25

86. A method of delivering an agent to a pancreas cell, comprising:

contacting a pancreas cell with an agent coupled to binding partner specific for

TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, of claim 113, whereby said agent is delivered to said cell.

- 87. A method of claim 86, wherein the agent is a therapeutic agent or an imaging agent.
- 88. A method of claim 86, wherein the agent is cytotoxic.
  - 89. A method of claim 86, wherein the binding partner is an antibody.
- 90. A method of modulating a pancreas cell, comprising: contacting said cell with an agent effective to modulate TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, or the biological activity of a polypeptide encoded thereby, of claim 113, whereby the pancreas cell is modulated.
- 91. A method of assessing pancreas function, comprising: detecting a polypeptide coded for TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of pancreas function.
- 20 92. A method of claim 91, wherein said detecting is performed using an antibody which is specific for said polypeptide.
  - 93. A method of claim 91, wherein said detecting is performed by RIA, ELISA, or Western blot.
  - 94. A method of expressing a heterologous polynucleotide in pancreas cells, comprising: expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NOS 156-161, 166, 179, or 180.
  - 95. A method of diagnosing a pancreas disease associated with abnormal gene expression,

25

or determining a subject's susceptibility to such disease, comprising:

assessing the expression of TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, or polypeptide encoded thereby, of claim 113 in a tissue sample comprising pancreas cells.

5

96. A method of claim 95, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

10

15

20

97. A method of claim 95, wherein said assessing is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 154, 155, 164, 165, 169, 170, 173, 174, 177, 178, or a complement thereto.

98. A method of assessing a therapeutic or preventative intervention in a subject having a pancreas disease, comprising,

determining the expression levels of TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, or a polypeptide encoded thereby, of claim 113 in a tissue sample comprising pancreas cells.

99. A method of claim 98, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

25

100. A method for identifying an agent that modulates the expression of TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, or the biological activity of a polypeptide encoded thereby, comprising,

contacting a pancreas cell with a test agent under conditions effective for said test agent to modulate the expression of TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785 of claim 113, or the biological activity of a polypeptide encoded thereby, in said

30

NOCID: <WO \_\_\_\_\_03089583A2\_I\_>

pancreas cell, and

determining whether said test agent modulates said gene or polypeptide.

- 101. A method of claim 100, wherein said agent is an antisense polynucleotide to a target
   polynucleotide sequence selected from SEQ ID NO 152, 162, 167, 171, or 175 and which is effective to inhibit translation of said gene.
  - 102. A method of detecting polymorphisms in TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, comprising,
- comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785, with SEQ ID NOS 152, 153, 162, 163, 167, 168, 171, 172, 175, or 176 of claim 113.
  - 103. A method of claim 102, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
    - 104. A method of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising:
  - determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex of claim 113.
    - 105. A method of claim 104, wherein the pancreatic gene complex is from LOC160025-LOC119954.
- 106. A method of claim 104, wherein determining is performed by producing a human-25- linkage map of said complex.
  - 107. A method of claim 104, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a pancreas disorder.
- 108. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by TMD0986, XM 061780, XM 061781, XM 061784, or XM 061785

15

20

of claim 113, and which has a defect in pancreas function.

- 109. A mammalian pancreas cell whose genome comprises a functional disruption of a gene represented by TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785 of claim 113, and which has a defect in pancreas function.
- 110. A mammalian cell of claim 109, wherein said cell is a mouse cell.
- 111. A pancreas cell, comprising a gene operatively linked to an expression control sequence
  effective to express said gene in pancreas, wherein said sequence is SEQ ID NOS 156-161,
  179, or 180.
  - 112. A method of selecting a gene predominantly expressed in pancreas cells from a database comprising polynucleotide sequences for genes, comprising:
- displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD0986, XM\_061780, XM\_061781, XM\_061784, or XM\_061785 of claim 113, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 113. A composition comprising: a pancreas specific gene consisting essentially of TMD0986, XM\_061780, XM\_061781, XM\_061784, and/or XM\_061785, or a polypeptide encoded thereby.
- 25 114. An isolated polynucleotide comprising a polynucleotide sequence which codes without interruption for a human TMD0986 having an amino acid sequence set forth in SEQ ID NO 153, or a complement thereto.
  - 115. An isolated polynucleotide comprising,
- a human TMD0986 polynucleotide sequence having 90% or more nucleotide sequence identity to the polynucleotide sequence set forth in SEQ ID NO 152 along its entire

length, which codes without interruption for human TMD0986, or a complement thereto, and which has G-protein coupling activity.

- 116. An isolated humansTMD0986 polypeptide comprising the amino acid sequence of a
  human TMD0986 as set forth in SEQ ID NO 153.
  - 117. An isolated human TMD0986 polypeptide consisting essentially of amino acids 1-117 of a human TMD0986 as set forth in SEQ ID NO 153.
- 118. An isolated polypeptide which is human TMD0986 having 90% or more amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO 153, and which has protein binding activity.
  - 119. An antibody specific for an epitope selected from the polypeptide of claim 117.
  - 120. A method of detecting an retinal cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for NM\_013941 (SEQ ID NO 181), or a naturally-occurring polymorphisms thereof, of claim 142 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

121. A method of claim 120, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

25

30

15

20

122. A method of detecting an retinal cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by NM\_013941 (SEQ ID NO 182), or a naturally-occurring polymorphism thereof, of claim 142 under conditions effective for said binding partner bind specifically to said polypeptide, and

detecting specific binding.

10

- 123. A method of claim 122, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 124. A method of delivering an agent to a retinal cell, comprising:
- contacting a retinal cell with an agent coupled to binding partner specific for by NM\_013941 (SEQ ID NO 182), or naturally-occurring polymorphism thereof, of claim 142, whereby said agent is delivered to said cell.
- 125. A method of claim 124, wherein the agent is a therapeutic agent or an imaging agent.
- 126. A method of claim 124, wherein the agent is cytotoxic.
  - 127. A method of claim 124, wherein the binding partner is an antibody.
- 15 128. A method of modulating a retinal cell, comprising: contacting said cell with an agent effective to modulate NM\_013941 (SEQ ID NO 181 or 182), or the biological activity of a polypeptide encoded thereby, of claim 142, whereby the retinal cell is modulated.
- 20 129. A method of diagnosing a retinal disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of NM\_013941, a polymorphism thereof, or polypeptide encoded thereby, of claim 142 in a tissue sample comprising retinal cells.

25 130. A method of claim 129, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

30 131. A method of claim 129, wherein said assessing detecting is performed by:
Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,

15

RACE PCR, or in situ hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 183 or 184, or a complement thereto.

5 132. A method of assessing a therapeutic or preventative intervention in a subject having an retinal disease, comprising,

determining the expression levels of NM\_013941, a polymorphism thereof, or polypeptide encoded thereby, of claim 142 in a tissue sample comprising retinal cells.

- 133. A method of claim 132, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 134. A method for identifying an agent that modulates the expression of NM\_013941 or the biological activity of a polypeptide encoded thereby, comprising,

contacting an retinal cell with a test agent under conditions effective for said test agent to modulate the expression of NM\_013941 or a polymorphism thereof, of claim 142, or the biological activity of a polypeptide encoded thereby, in said retinal cell, and determining whether said test agent modulates said gene or polypeptide.

- 135. A method of claim 134, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NO 181 and which is effective to inhibit translation of said gene.
- 136. A method of detecting polymorphisms in NM\_013941, comprising:
   comparing the structure of: genomic DNA or RNA or cDNA comprising all or part
   of an allele of NM\_013941, with SEQ ID NOS 181 or 182 of claim 142.
  - 137. A method of claim 136, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 30 138. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by NM 013941 (SEQ ID NO 181) of claim 142, and which has a defect in

retinal function.

5

15

20

30

- 139. A mammalian retinal cell whose genome comprises a functional disruption of a gene represented by NM\_013941 (SEQ ID NO 181) of claim 142, and which has a defect in retinal function.
- 140. A mammalian cell of claim 139, wherein said cell is a mouse cell.
- 141. A method of selecting a gene predominantly expressed in retinal cells from a database10 comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for NM\_013941 (SEQ ID NO 181 or 182) of claim 142, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 142. A composition comprising:
- a retinal specific gene consisting essentially of NM\_013941 (SEQ ID NO 181 or 182), or a polypeptide encoded thereby.
- 143. A method of detecting a spleen cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for TMD1030 (XM\_166853) or TMD0621 (XM\_166205) of claim 170 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

- 25 detecting specific hybridization.
  - 144. A method of claim 143, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

145. A method of detecting a spleen cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide

OCID: <WO \_\_\_\_03089583A2\_I =

coded for by TMD1030 (XM\_166853) or TMD0621 (XM\_166205) of claim 170 under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

- 5 146. A method of claim 145, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 147. A method of delivering an agent to a spleen cell, comprising:
   contacting a spleen with an agent coupled to binding partner specific for TMD1030
   (XM\_166853) or TMD0621 (XM\_166205) of claim 170, whereby said agent is delivered to said cell.
  - 148. A method of claim 147, wherein the agent is a therapeutic agent or an imaging agent.
- 15 149. A method of claim 148, wherein the agent is cytotoxic.
  - 150. A method of claim 147, wherein the binding partner is an antibody.
- 151. A method of modulating a spleen, immune, or reticuloendothelial cell, comprising:
   contacting said cell with an agent effective to modulate TMD1030 (XM\_166853),
   TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), or the biological activity of a polypeptide encoded thereby, of claim 170, whereby the cell is modulated.
- 25 152. A method of assessing spleen function, comprising: detecting a polypeptide coded for by TMD1030 (XM\_166853) or TMD0621 (XM\_166205) of claim 170, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of spleen function.
- 30 153. A method of claim 152, wherein said detecting is performed using an antibody which is specific for said polypeptide.

- 154. A method of claim 152, wherein said detecting is performed by RIA, ELISA, or Western blot.
- 5 155. A method of expressing a heterologous polynucleotide in spleen cells, comprising: expressing a nucleic acid construct in spleen cell, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NO 205-213.
- 10 156. A method of assessing a therapeutic or preventative intervention in a subject having a spleen or lymphoid disease, comprising,

determining the expression levels of TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), or a polypeptide encoded thereby, of claim 170 in a tissue sample comprising spleen, lymphoid, or reticuloendothelial cells.

- 157. A method of claim 156, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 20 158. A method for identifying an agent that modulates the expression of TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), comprising,

contacting a spleen, lymphoid, or reticuloendothelial cell, with a test agent under conditions effective for said test agent to modulate the expression of TMD1030

25 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), of claim 170, and

determining whether said test agent modulates said gene.

159. A method of claim 158, wherein said agent is an antisense which is effective to inhibit translation of said gene.

- 160. A method for identifying an agent that modulates the expression of a polypeptide coded for by TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205), comprising,
- contacting a polypeptide coded for by TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205) of claim 170, with a test agent under conditions effective for said test agent to modulate said polypeptide, and determining whether said test agent modulates said polypeptide.
- 161. A method of detecting polymorphisms in comprising, comparing the structure of:

  10 genomic DNA or RNA or cDNA comprising all or part of an allele of TMD1030

  (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621

  (XM\_166205), with SEQ ID NOS 185, 187, 189, or 191 of claim 170.
- 162. A method of claim 161, wherein said polymorphism is a nucleotide deletion,substitution, inversion, or transposition.
  - 163. A method of identifying a genetic basis for a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility, comprising: determining the association of a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility with a nucleotide sequence present in the gene complex of claim 170.
  - 164. A method of claim 163, wherein determining is performed by producing a human-linkage map of said complex.
- 25. A method of claim 163, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a spleen, lymphoid, and/or reticuloendothelial disease.
- 166. A non-human, transgenic mammal, or a cell thereof. whose genome comprises a functional disruption of a gene represented by TMD1030 (XM\_166853), TMD1029 (XM 166854), TMD1028 (XM 166855), or TMD0621 (XM 166205) of claim 170, and

which has a defect in spleen, lymphoid, and/or reticuloendothelial disease function.

- 167. A mammalian cell of claim 166, wherein said cell is a mouse cell.
- 5 168. A spleen, lymphoid, and/or reticuloendothelial cell, comprising a gene operatively linked to an expression control sequence effective to express said gene in spleen, lymphoid, and/or reticuloendothelial, wherein said sequence is SEQ ID NO 205-213.
- 169. A method of selecting a gene predominantly expressed in spleen, lymphoid, and/or
   reticuloendothelial cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), or TMD0621 (XM\_166205) of claim 170, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 170. A composition consisting essentially of the 11q12.2 spleen gene complex, comprising TMD1030 (XM\_166853), TMD1029 (XM\_166854), TMD1028 (XM\_166855), and TMD0621 (XM\_166205).
  - 171. A composition of claim 170, wherein said complex consists essentially of the chromosome region between STS markers G62658 and SHGC-154002.
- 25. 172. A method of detecting a pancreas cell, comprising:
   contacting a sample comprising cells with a polynucleotide specific TMD0077,
   TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530,
   TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677,
   TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199
   under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

173. A method of claim 172, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

5 174. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or

10 TMD1127

of claim 199 under conditions effective for said binding partner bind specifically to said polypeptide, and

detecting specific binding.

- 15 175. A method of claim 174, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 176. A method of delivering an agent to a pancreas cell, comprising:
   contacting a pancreas with an agent coupled to binding partner specific for
   TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290,
   TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675,
   TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, whereby said agent is delivered to said cell.
- 25 177. A method of claim 176, wherein the agent is a therapeutic agent or an imaging agent.
  - 178. A method of claim 176, wherein the agent is cytotoxic.
  - 179. A method of claim 176, wherein the binding partner is an antibody.
  - 180. A method of modulating a pancreas, immune, or reticuloendothelial cell, comprising:

contacting said cell with an agent effective to modulate TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, or the biological activity of a polypeptide encoded thereby, of claim 199, whereby the cell is modulated.

181. A method of assessing pancreas function, comprising:

detecting a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of pancreas function.

182. A method of claim 181, wherein said detecting is performed using an antibody which is specific for said polypeptide.

15

10

5

- 183. A method of claim 181, wherein said detecting is performed by RIA, ELISA, or Western blot.
- 184. A method of expressing a heterologous polynucleotide in pancreas cells, comprising:
- expressing a nucleic acid construct in pancreas cell, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NO 258, 261, 262, 265-267, 270-272, 275, 278, 279, 282-284, 287, 290-293, 296, 297, 300, 303, 306, 309-314, 317-320, 323-326, 329, 332-333, 336-338, 341, and 344.

25

20

185. A method of assessing a therapeutic or preventative intervention in a subject having a pancreas or lymphoid disease, comprising,

determining the expression levels of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, or a polypeptide encoded thereby, of claim 199 in

a tissue sample comprising pancreas, lymphoid, or reticuloendothelial cells.

186. A method of claim 185, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

5

187. A method for identifying an agent that modulates the expression of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, comprising,

10

contacting a pancreas, lymphoid, or reticuloendothelial cell, with a test agent under conditions effective for said test agent to modulate the expression of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, and determining whether said test agent modulates said gene.

15

188. A method of claim 187, wherein said agent is an antisense which is effective to inhibit translation of said gene.

20

189. A method for identifying an agent that modulates the expression of a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, comprising,

25

contacting a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, with a test agent under conditions effective for said test agent to modulate said polypeptide, and

30

determining whether said test agent modulates said polypeptide.

15

- 190. A method of claim 189, wherein said test agent is an antibody.
- 191. A method of detecting polymorphisms in comprising, comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, with SEQ ID NOS of Table 23 of claim 199.
- 10 192. A method of claim 191, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
  - 193. A method of identifying a genetic basis for a pancreas disease or disease-susceptibility, comprising: determining the association of a pancreas disease or disease-susceptibility with a gene of claim 199.
  - 194. A method of claim 193, wherein determining is performed by producing a human-linkage map of said gene.
- 20 195. A method of claim 193, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a pancreas disease.
  - 196. A non-human, transgenic mammal, or a cell thereof. whose genome comprises a functional disruption of a gene represented by TMD0077, TMD0233, TMD0256, TMD0258,
- 25 TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, and which has a defect in pancreas, lymphoid, and/or reticuloendothelial disease function.
- 197. A mammalian cell of claim 196, wherein said cell is a mouse cell.
   198. A method of selecting a gene predominantly expressed in pancreas tissue from a

OCID: <WO\_\_\_\_\_03089583A2\_1\_>

10

database comprising polynucleotide and amino acid sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

199. A composition comprising genes and/or polypeptide which are expressed predominantly in pancreas tissue comprising:

TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127.

| STS                           | ĕ <b>→</b> ⊠                                       | RNA XI                  | Accn                                  | locus                  | Gene code |        |
|-------------------------------|----------------------------------------------------|-------------------------|---------------------------------------|------------------------|-----------|--------|
| 55520K                        | RH79988 15<br>SHGC-54518<br>RH93840                | 5930K                   | - XM_173381                           | LOC254079              |           |        |
| 55940K                        | T/A004X45 15<br>= SHGC-82759<br>1 0153312 15       | 5950K                   | XM_086610                             | CDID                   |           |        |
| 55960K<br>55970K<br>35980K    | •                                                  | 5970K                   |                                       |                        |           |        |
| 55990K                        | 15                                                 | 5990K                   |                                       |                        |           |        |
| 56110K                        | RH120517 <sup>15</sup><br>ID153258 15              |                         | XM_048792                             | CDIA                   |           |        |
| 561 20 K                      | !                                                  | 6030K                   |                                       |                        |           | •      |
| 560 60K                       | - DI (3359                                         | 6050K                   | NM_001765.1                           | CDIC                   |           |        |
| 56080K                        | - DX\$ 76.96                                       | E070K<br>E030K          |                                       |                        |           |        |
| 561 0 0K                      | 1                                                  | 6100K                   | " NM_001764.1                         | CDIB                   |           |        |
| 56120K                        | KH46953                                            | 6128K                   | NM_030893.1                           | CDIE                   |           |        |
| 361 30K                       | 15                                                 | 6139H<br>6140K<br>6150K | XM 060945                             | LOC128360              | TMD0024   |        |
| 361 50K<br>361 60K<br>361 74K | 15                                                 | 6160K-<br>6170K-        | XM 060946                             | LOC128361              | TMD1779   |        |
| 56196K                        | 15                                                 | 6180K-<br>6190A-        | · · · · · · · · · · · · · · · · · · · | LOC128362              | TMD0884   |        |
| 5621 6K                       | 15                                                 | 6200K                   | _ XM_060947                           |                        |           |        |
| 56231K                        | SHGC-15525                                         | 6230 K                  | XM_060948                             | LOC128363              | TMD0025   |        |
| 56244K                        | 15                                                 | 6240 K-<br>6250 K-      | _ XM_089422                           | LOC164169              | TMD1780   | Fig. 1 |
| 5626 K<br>5627 K<br>5628 K    | 15                                                 | 6260K<br>6270K          | XM_089421                             | LOC149631              | TMD1781   |        |
| 56290K                        | 15                                                 | 6290 K                  | XM_060949<br>XM_089420                | LOC128364<br>LOC164168 |           |        |
| 56310K-                       | 15                                                 | 6310K<br>6320K          |                                       | LOC128365              |           |        |
| 56230K                        | 15                                                 | 6330 K                  | XM_060950                             | LOC128366              |           |        |
| 56350K<br>56360K              | D133249 15<br>G15944<br>GDE:191075                 | 6360K                   | XM_060951                             | 1.OC128367             |           |        |
| 56370K-                       | COB 1 964 18 - RM68459 - RM10259715 - RM69635 - RM | 6380К                   | XM_060952                             |                        |           |        |
| 53390K<br>56400K<br>56410K    | , KH65132                                          | 6350K<br>6400K<br>6410K | XM 060953                             | LOC 128368             |           |        |
| 56420K                        | 15                                                 | 6420K                   | NM_003126.1                           | SPTAI                  |           |        |
| 36440X-<br>36450K-            | ,                                                  | 6440K<br>6450K          |                                       |                        |           |        |
| 56460K<br>56470K              |                                                    | 6460K<br>6470K          | XM_060954                             | LOC128369              |           |        |
| 56+80K-<br>56+90K-            | 150                                                | 6400K                   | XM_060955                             | LOC128370              |           |        |
| 56500K                        | 150                                                | 6500K-                  | XM_060956                             | LOC128371              | TMD0304   |        |
| 56520K<br>56530K<br>56540K    | •                                                  | 6530K                   | –<br>XM_060957                        | LOC128372              | TMD0888   |        |
| 56550K                        |                                                    | 6550K                   | - XM_060958                           | LOC128373              |           |        |
| 56570K                        |                                                    | 6570K                   | XM_060959                             | LOC128374              | TMD0890   |        |
| 36590K                        | -SHGC-1+545                                        | 660 8 K-4               | NM_002432.1                           | MNDA                   | :         |        |
| 36620K                        | •                                                  | 6620 K                  | 7111-002732.7                         |                        |           |        |
| 36630K                        | 150                                                | 630K                    |                                       |                        |           |        |
| 3665+K-<br>3666+K-            | 150                                                | 6650K<br>6660K<br>6670K |                                       | 1 ()(140420            |           |        |
| 3667•K-<br>3668•K-<br>5669•K- | 150                                                | 680 K                   | XM_089418                             | LOC149629              |           |        |
| 56700K                        | 150                                                | 6700K                   | metro                                 |                        |           |        |
| 56720K                        |                                                    | 6720 K                  |                                       |                        |           |        |







OCID: <WO\_\_\_\_\_03089583A2\_I\_>

XM\_062147



XM\_061676



FIG. 4

Fig. 58

|         |                                   |         | 4                                   |         | 4                          |   |     |
|---------|-----------------------------------|---------|-------------------------------------|---------|----------------------------|---|-----|
|         | 24                                |         | 3 24                                |         | 3 24                       |   |     |
|         | 23                                |         | 23                                  |         | 23                         |   |     |
|         | 22 23                             |         | 22                                  |         | 22                         |   |     |
|         | 21                                |         | 21                                  |         | 20 21                      |   |     |
|         | 20                                |         | 20                                  |         | 20                         |   |     |
|         | 19                                |         | 19                                  |         | 19                         |   |     |
|         | : 8                               |         | 8                                   |         | 8                          |   |     |
|         | . 11                              |         | 17                                  |         | 17                         |   |     |
|         | 8 9 10 11 12 13 14 15 16 17 18 19 |         | 11 12 13 14 15 16 17 18 19 20 21 22 |         | 11 12 13 14 15 16 17 18 19 |   |     |
|         | 15                                |         | 15                                  |         | 15                         |   |     |
|         | 4                                 |         | 4                                   |         | 4                          |   |     |
|         | <u> </u>                          |         | 13                                  |         | 13                         |   |     |
|         | 12                                |         | 2                                   |         | 12                         |   |     |
|         |                                   |         | Ξ                                   |         | Ξ                          |   |     |
|         | 0                                 |         | 10                                  |         | 10                         |   |     |
|         | ,6                                |         | 6                                   |         | 6                          |   |     |
|         | ∞                                 |         | ∞                                   |         | ∞                          |   |     |
| 1       |                                   |         | 1/2                                 | ]       | 7                          |   |     |
|         | 4 5 6 7                           |         | 9                                   |         | 9                          |   |     |
|         | S                                 |         | 4 5                                 |         | 4<br>δ                     |   |     |
|         | 4                                 |         | 4                                   |         | 4                          |   |     |
|         | 3                                 |         | m                                   |         | 3                          |   |     |
|         | 7                                 |         | 7                                   |         | 7                          |   |     |
|         | _                                 |         | -                                   |         | _                          |   |     |
| 111     |                                   |         |                                     | 111     |                            |   |     |
| TMD0719 |                                   | TMD0731 |                                     | TMD0841 |                            | - | , , |
|         |                                   |         |                                     |         |                            |   |     |



Fig. 6



FigIA



FigtB

| XM_061785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 311<br>Fig. 8 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| XM_061785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 149           |
| X X D61784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 323           |
| New Y | 318           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 314           |
| WM 061779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |

DOCID: <WO\_\_\_\_03089583A2\_1\_>

WO 03/089583 PCT/US03/11497



Fig. 9A





Fig. 9B



Fig.10



DOCID: <WO\_\_\_\_03089583A2\_I\_>

FIG. 121

|         |          |          | 24                |     | 24   |         | 24       | •       | ₹             | <b>.</b> : | 4           |                                         |         | 4        |
|---------|----------|----------|-------------------|-----|------|---------|----------|---------|---------------|------------|-------------|-----------------------------------------|---------|----------|
|         | 24       |          | •                 |     | 23 2 |         | · •      |         | 24            | •          | 3 24        |                                         |         | 2        |
|         | 23       |          | 23                |     | 22 2 |         | 2 23     | i<br>1  | 22 23         |            | 2 23        |                                         |         | 2 23     |
|         | 21 - 22  |          | 22                |     |      |         | 1 2      |         | )<br> -<br> - |            | 1 22        | 1                                       | j<br>Li | 1 22     |
|         |          |          | 21                | •   | 0 21 |         | 21.      |         | 5             | دفر        | 2           | - 1                                     |         | 21       |
|         | 20       |          | 20                |     | 9 20 |         | 18       |         | 5             | 230        | 2           |                                         |         | 20       |
|         | 19       |          | 61                |     | 3 19 | *.      | 19       |         | 0             |            | 18 19 20 21 |                                         |         | 19       |
|         | 18       | - C      | 13 14 15 16 17 18 | : . | 182  |         | 18       |         | _ ≃           |            | 28          | • • • • • • • • • • • • • • • • • • • • |         | 18       |
|         | 17       |          | 17                |     | =    |         | 1        | - :     | 1             |            | 7           | ·                                       |         | 17       |
| ا.      | 16       |          | 16                |     | 16   |         | 16       |         | 9             |            | 16          |                                         | Y       | 16       |
|         | 15       |          | 15                |     | 15   |         | 15       |         | 15            |            | 15          |                                         |         | 15       |
|         | 14       |          | 4                 |     | 4    |         | 4        | 7       | 4             |            | 17          |                                         | -       | 14       |
|         |          |          | 13                |     | 13   |         | 13<br>13 |         | 12            | Ď.         | 13 14       |                                         |         | 13       |
|         | 12 13    |          |                   | 4   | 12   |         | 2        |         | 2             |            | 12          |                                         |         | 12 13    |
|         | Ξ        |          |                   | 4   |      |         | 1 _      |         |               |            |             |                                         | 3       | _        |
|         | 10       |          | 10 11 12          | 4   | 10 1 |         | 01       |         | 10 11         |            | 10. 11      | 4                                       | No.     | 10 · 11  |
|         | 9        | 3        |                   | 7.7 |      | • .     | į        |         | .]            |            |             |                                         |         |          |
|         | œ        |          | ο<br>∞            | 71  | 6.   | .:      | 6        |         | 9             |            | 6           |                                         |         | Q        |
| ž.      | 7        | 4        |                   | 7   | ∞.   |         |          |         | 00            |            | 00          |                                         | • • •   | ∞        |
| 4       | 9        |          |                   | T.  |      |         | _        |         |               |            | 7           |                                         | ` :     | 7        |
|         | 8        | 1 7      | <b>2</b>          | - 3 | 9    | 100     | 9        |         | 9             |            | 9           | · · · · · · · · · · · · · · · · · · ·   | :       | 9        |
| à       |          | i        | _                 | 4   |      |         | S        | · · · · | ν,            |            | S           |                                         | .:- '   | S        |
| ĺ       | 8        |          | <b>~</b>          |     | 4    |         | 4        |         | 4             |            | 4           |                                         | ÷ :     | 4        |
| i       | 7        |          | 7                 | -   | CO.  |         | <u>س</u> |         | ù             |            | n           |                                         | . (     | m        |
|         | <b>-</b> |          | _ 3               | \$  | 7    | · N     | 7        |         | 7             |            | 7           |                                         | . •     | 7        |
| D111    | :#1      |          |                   |     |      |         | -        |         | -             |            | ;           |                                         | •       | <b>-</b> |
|         |          |          |                   | ,   |      |         | ٠.       | 1111    | -             |            |             |                                         |         |          |
| 11      | 9        | 33       | 4                 | 2   |      | ∞<br>•  | :        | 23      |               | 11         |             | 0                                       |         |          |
| 00      |          | 023      | 5                 | 7   |      | 025     |          | 026     |               | 027        |             | 029                                     |         |          |
| TMD0077 | (        | 1 MD0233 | TMID0256          | Ĵ   |      | TMD0258 |          | TMD0267 |               | TMD0271    |             | TMD0290                                 |         |          |
| F       | -        |          | E                 | -   | i    |         |          | H       |               | E          |             | E                                       |         |          |
|         |          |          |                   |     |      |         |          |         |               |            |             |                                         |         |          |
|         |          |          |                   |     |      |         |          |         |               |            |             |                                         |         |          |

:'OCID: <WO \_\_\_\_\_03089583A2\_I\_>

FIG. 12]

| 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 16 17 18 19 20 21 22 23 | 15 16 17 18 19 20 21 22 23 | 13 14 15 16 17 18 19 20 21 22 23      | 9 20 21 22 23 | 8 9 10 11 12 13 14 15 15 17 18 10 20 21 22 22 |         | 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|------------------------------------------------------------|-------------------------|----------------------------|---------------------------------------|---------------|-----------------------------------------------|---------|------------------------------------------------------------|
| 2 3 4                                                      | 3 4                     | 2 3 4                      | 2<br>&<br>4                           | 3 4           | 3 4                                           |         | ئ<br>4                                                     |
|                                                            |                         | -                          | · · · · · · · · · · · · · · · · · · · |               | _<br>                                         |         | <b>,</b>                                                   |
| TMD0530                                                    |                         | IMD0608                    | TMD0639                               | TMD0645       | TMD0674                                       | TMD0675 |                                                            |

FIG. 12C

|         | 24      | 24         | 24       | 24             | 24        | 24       |         | 24           |
|---------|---------|------------|----------|----------------|-----------|----------|---------|--------------|
|         | 23      | 23         | 23       | 23             | 23        | 23       |         | 23           |
|         | 22      | 27         | 22       |                | 52        | 52       |         | 22           |
| 1       | 21      | 7          | 77       | 51             | 7 7       | 21       |         | 21           |
| I       | 70      | 20         | 28       | 50             | 7.5       | 20       |         | 20           |
|         | 19      | 19         | 61       | . 6            | 19 · 20   | 19       |         | 19           |
|         | 8       | <b>∞</b> . |          | <u>∞</u>       | ∞<br>⊶    | . ~      |         | 18           |
| 1       |         | 17         | 17 18    | 17             | 17        | 17       |         | 17           |
|         | 16      | 16         | 10       | 19             | 16        | 16       | . •     | 16           |
| 1:      | 15      | 2          | 5        | 15             | 5         | 15       |         | 15           |
|         | 4       | 4          | 4        | 4              | 4         | 4        |         | <del>7</del> |
|         | 13      | E .        | <u> </u> | 13             | <u>.</u>  | 13       |         | 13           |
|         | 12      | 12         | 2        | 12             | 2         | . 12     |         | 12           |
|         | =       | Ξ          | Ξ,       | =              | =         | =        |         | Ξ            |
|         | 0       | 0          | 10       | 0              | 01        | 0        |         | 10.          |
| 4       | σ,      | 6          | 6        | · ο            | 6         | 6        |         | 0            |
| 3       | ∞       | <b>∞</b>   | ∞'       | :<br>∞.        | ∞         | ∞        |         | 00           |
|         | _       | 7          | 7        | <b>,</b> , ,,, | 7         | 7        |         | 7            |
|         | •       | 9          | 9        | <b>v</b>       | 9         | 9        |         | 9            |
| : ,     | ^       | 9          | <b>v</b> | <b>v</b> )     | S         | S        |         | S            |
| -       | 4       | 4          | 4        | 4              | · 5 4     | 4        |         | 4            |
| r       | ن.      | <b>m</b>   | m        | m .            | m         | m        |         | c            |
| c       |         | 8          | 7        | . S            | 7         | . 7      |         | 7            |
| -       |         | -          |          | <b></b> i      | <b></b> . | _        | :       |              |
|         | 111     | 1111       |          | ni             |           | 111      |         |              |
| 77      | 56      | 27         | 39       | 53             | 3 :       | <b>-</b> | 27      |              |
| TMD0677 | TMD0726 | TMD0727    | TMD0739  | TMD0753        |           | IMDIIII  | TMD1127 |              |
| ME      | X       | ¥          | Ā        | 5              |           | <b>₹</b> | Ä       |              |
| Ξ       | H       | F          | F        | F              | ; [       | <b>=</b> | F       |              |
|         |         |            |          |                |           |          |         |              |

# 16U 200 PCT FINAL.ST25 - SEQUENCE LISTING

| <110>              | OriGene Technologies, Inc                                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <120>              | TISSUE SPECIFIC GENES AND GENE CLUSTERS                                                                                           |
| <130>              | 16U 200 PCT                                                                                                                       |
| <150><br><151>     | US 60/372,669<br>2002-04-16                                                                                                       |
| <150><br><151>     | US 60/411,882<br>2002-09-20                                                                                                       |
| <150><br><151>     | US 60/424,336<br>2002-11-07                                                                                                       |
| <150><br><151>     | US 60/374,823<br>2002-04-24                                                                                                       |
| <150><br><151>     | US 60/376,558<br>2002-05-01                                                                                                       |
| <150><br><151>     | US 60/381,366<br>2002-05-20                                                                                                       |
| <150><br><151>     | US 60/403,648<br>2002-08-16                                                                                                       |
| <160>              | 344                                                                                                                               |
| <170>              | PatentIn version 3.1                                                                                                              |
| <210><br><211>     | 1<br>795                                                                                                                          |
| <212><br><213>     | DNA .<br>Homo sapiens                                                                                                             |
| <220>              | nomo saprens                                                                                                                      |
| <221><br><222>     | CDS (1)(795)                                                                                                                      |
| <223>              | (1)(733)                                                                                                                          |
| <400>              | l<br>g cgg gtc aat gag act gtg gtg aga gag gtc atc ttc ctc ggc 48                                                                 |
|                    | 1 Arg Val Asn Glu Thr Val Val Arg Glu Val Ile Phe Leu Gly 5 10 15                                                                 |
|                    | a tcc ctg gcc agg ctg cag ctg ctc ttt gtt atc ttc ctg 96<br>r Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu<br>20 25 30 |
|                    | tac ctg ttc act ctg ggc acc aat gca atc atc att tcc acc 144 in Tyr Leu Phe Thr Leu Gly Thr Asn Ala Ile Ile Ile Ser Thr 35 40 45   |
| att gto            | ctg gac agg gcc ctt cat atc ecc atg tac ttc ttc ctt gcc 192                                                                       |
|                    | . Leu Asp Arg Ala Leu His Ile Pro Met Tyr Phe Phe Leu Ala<br>55 60                                                                |
| Ile Leu            | tot tgc tot gag att tgc tac acc ttc atc att gta ccc aag 240 Ser Cys Ser Glu lle Cys Tyr Thr Phe Ile Ile Val Pro Lys               |
| 65                 | 70 75 80                                                                                                                          |
|                    | gett gac ctg ctg tcc cag aag aag acc att tct ttc ctg ggc 288<br>Val Asp Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly<br>85 90 95   |
|                    | atc caa atg ttt tcc ttc ctc ttc ctt ggc tgc tct cac tcc 336 Ile Gln Met Phe Ser Phe Leu Phe Leu Gly Cys Ser His Ser 100 105 110   |
| ttt ctg<br>Phe Leu | cctg gca gtc atg ggt tat gat cgt tac ata gcc atc tgt aac Leu Ala Val Met Gly Tyr Asp Arg Tyr Ile Ala Ile Cys Asn 115 120 125      |
|                    | cgc tac tca gtg cta atg gga cat ggg gtg tgt atg gga cta 432<br>Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu<br>135 140 |

#### 16U 200 PCT FINAL ST25

| gtg<br>Val<br>145 | Ala               | gct<br>Ala        | gcc<br>Ala        | tgt<br>Cys        | gcc<br>Ala<br>150 | tgt<br>Cys        | ggc<br>Gly        | ttc<br>Phe | act<br>Thr        | gtt<br>Val<br>155 | gca<br>Ala        | cag<br>Gln        | atc<br>Ile | atc<br>Ile        | aca<br>Thr<br>160 | 480 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-----|
| tcc<br>Ser        | ttg<br>Leu        | gta<br>Val        | ttt<br>Phe        | cac<br>His<br>165 | ctg<br>Leu        | cct<br>Pro        | ttt<br>Phe        | tat<br>Tyr | tcc<br>Ser<br>170 | tcc<br>Ser        | aat<br>Asn        | caa<br>Gln        | cta<br>Leu | cat<br>His<br>175 | cac<br>His        | 528 |
|                   |                   |                   | gac<br>Asp<br>180 |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 576 |
| cac<br>His        | ttt<br>Phe        | agt<br>Ser<br>195 | cag<br>Gln        | att<br>Ile        | gtc<br>Val        | atc<br>Ile        | ttc<br>Phe<br>200 | atg<br>Met | ctc<br>Leu        | tgt<br>Cys        | aca<br>Thr        | ttg<br>Leu<br>205 | gtc<br>Val | ctg<br>Leu        | gct<br>Ala        | 624 |
| atc<br>Ile        | ccc<br>Pro<br>210 | tta<br>Lev        | ttg<br>Leu        | ttg<br>Leu        | atc<br>Ile        | ttg<br>Leu<br>215 | gtg<br>Val        | tcc<br>Ser | tat<br>Tyr        | gtt<br>Val        | cac<br>His<br>220 | atc<br>Ile        | ctc<br>Leu | tct<br>Ser        | gcc<br>Ala        | 672 |
| ata<br>11e<br>225 | ctt<br>Leu        | cag<br>Gln        | ttt<br>Phe        | Pro               | tcc<br>Ser<br>230 | aca<br>Thr        | ctg<br>Leu        | gga<br>Gly | gtg<br>Val        | ata<br>11e<br>235 | gca<br>Ala        | aaa<br>Lys        | agg<br>Arg | aag<br>Lys        | Phe<br>240        | 720 |
| cac<br>His        | aat<br>Asn        | agt<br>Ser        | gat<br>Asp        | gat<br>Asp<br>245 | ttc<br>Phe        | tca<br>Ser        | cat<br>His        | Tyr        | aac<br>Asn<br>250 | tct<br>Ser        | ttt<br>Phe        | caa<br>Gln        | gat<br>Asp | cca<br>Pro<br>255 | cct<br>Pro        | 768 |
| gtc<br>Val        | aat<br>Asn        | Lys               | agt<br>Ser<br>260 | ctc<br>Leu        | ctg<br>Leu        | att<br>Ile        | gat<br>Asp        | taa        |                   |                   |                   |                   |            |                   |                   | 795 |
|                   |                   |                   |                   |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |     |

<210> 2

<211> 264

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Arg Val Asn Glu Thr Val Val Arg Glu Val Ile Phe Leu Gly 1  $\phantom{\bigg|}$ 

Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu 20 25 30

Leu Leu Tyr Leu Phe Thr Leu Gly Thr Asn Ala Ile Ile Ser Thr 35 40 45

Ile Val Leu Asp Arg Ala Leu His Ile Pro Met Tyr Phe Phe Leu Ala 50  $\,$  55  $\,$  60  $\,$ 

lle Leu Ser Cys Ser Glu Ile Cys Tyr Thr Phe Ile Ile Val Pro Lys 65 70 75 80

Met Leu Val Asp Leu Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly  $\theta 5$  95

Cys Ala Ile Gln Met Phe Ser Phe Leu Phe Leu Gly Cys Ser His Ser 100 105 . 110

Phe Leu Leu Ala Val Met Gly Tyr Asp Arg Tyr Ile Ala Ile Cys Asn 115 120 125

Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 135 140

Val Ala Ala Ala Cys Ala Cys Gly Phe Thr Val Ala Gln Ile Ile Thr 145 \$150\$ 150 155 160

#### 16U 200 PCT FINAL.ST25

| 16U 200 PCT FINAL.ST25                                                                                                                            |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ser Leu Val Phe His Leu Pro Phe Tyr Ser Ser Asn Gln Leu His His<br>165 170 175                                                                    |     |
| Phe Phe Cys Asp Ile Ala Pro Val Leu Lys Leu Ala Ser His His Asn<br>180 185 190                                                                    |     |
| His Phe Ser Gln Ile Val Ile Phe Met Leu Cys Thr Leu Val Leu Ala<br>195 200 205                                                                    |     |
| Ile Pro Leu Leu Leu Ile Leu Val Ser Tyr Val His Ile Leu Ser Ala<br>210 215 220                                                                    |     |
| Ile Leu Gln Phe Pro Ser Thr Leu Gly Val Ile Ala Lys Arg Lys Phe 225 230 235 240                                                                   |     |
| His Asn Ser Asp Asp Phe Ser His Tyr Asn Ser Phe Gln Asp Pro Pro<br>245 250 255                                                                    |     |
| Val Asn Lys Ser Leu Leu Ile Asp<br>260                                                                                                            |     |
| <210> 3<br><211> 32<br><212> DNA<br><213> Homo sapiens                                                                                            |     |
| <400> 3<br>ggtcaatgag actgtggtga gagaggtcat ct                                                                                                    | 32  |
| <210> 4<br><211> 31<br><212> DNA<br><213> Homo sapiens                                                                                            |     |
| <400> 4<br>ctatcactcc cagtgtggaa ggaaactgaa g                                                                                                     | 31  |
| <210> 5 <211> 50 <212> DNA <213> Homo sapiens                                                                                                     |     |
| <400> 5 ctctttcaga tttaaatggg ccagacttag ttttatgtgg tgcagacatt                                                                                    | 50  |
| <210> 6 <211> 807 <212> DNA <213> Homo sapiers                                                                                                    |     |
| <220> <221> CDS <222> (1)(807) <223>                                                                                                              |     |
| <400> 6 atg gcc gtt att cgc ttc agc tgg act ctc cac act ccc atg tat ggc Met Ala Val Ile Arg Phe Ser Trp Thr Leu His Thr Pro Met Tyr Gly 1 5 10 15 | 48  |
| ttt cta ttc atc ctt tca ttt tct gag tcc tgc tac act ttt gtc'atc<br>Phe Leu Phe Ile Leu Ser Phe Ser Glu Ser Cys Tyr Thr Phe Val Ile<br>20 25 30    | 96  |
| atc cct cag ctg ctg gtc cac ctg ctc tca gac acc aag acc atc tcc Ile Pro Gln Leu Leu Val His Leu Leu Ser Asp Thr Lys Thr Ile Ser 35 40 45          | 144 |

### 160 200 PCT FINAL.ST25

|            |            |            |                   |                   |            |                   |            |                   |                   |            |            |            |                   |                   | tgc<br>Cys | 192 |
|------------|------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|-----|
|            |            |            |                   |                   |            | gct<br>Ala        |            |                   |                   |            |            |            |                   |                   |            | 240 |
| att<br>Ile | tgt<br>Cys | cac<br>His | cct<br>Pro        | ctg<br>Leu<br>85  | agg<br>Arg | tac<br>Tyr        | aca<br>Thr | ctc<br>Leu        | atc<br>Ile<br>90  | ata<br>Ile | aac<br>Asn | aaa<br>Lys | agg<br>Arg        | ctg<br>Leu<br>95  | 999<br>61y | 288 |
|            |            |            |                   | Ser               |            | tca<br>Ser        |            |                   | Thr               |            |            |            |                   |                   |            | 336 |
|            |            |            | Asn               |                   |            | tgt<br>Cys        |            |                   |                   |            |            |            |                   |                   |            | 384 |
|            |            | His        |                   |                   |            | gac<br>Asp<br>135 |            |                   |                   |            |            |            |                   |                   |            | 432 |
|            | Asp        |            |                   |                   |            | gag<br>Glu        |            |                   |                   |            |            |            |                   |                   |            | 480 |
|            |            |            |                   |                   |            | ctg<br>Leu        |            |                   |                   |            |            |            |                   |                   |            | 528 |
| gtt<br>Val | aac<br>Asn | acc<br>Thr | atc<br>Ile<br>180 | ctg<br>Leu        | aag<br>Lys | atc<br>Ile        | ccc<br>Pro | tca<br>Ser<br>185 | gct<br>Ala        | gag<br>Glu | ggc<br>Gly | aag<br>Lys | aag<br>Lys<br>190 | gcc<br>Ala        | ttt<br>Phe | 576 |
|            |            |            |                   |                   |            | ctc<br>Leu        |            |                   |                   |            |            |            |                   |                   |            | 624 |
|            |            |            |                   |                   |            | cgg<br>Arg<br>215 |            |                   |                   |            |            |            |                   |                   |            | 672 |
| Asp<br>225 | Gln        | Len        | Val               | Ala               | Val<br>230 | acc<br>Thr        | Tyr        | Thr               | Val               | Val<br>235 | Thr        | Pro        | Leu               | Leu               | Asn<br>240 | 720 |
| cct<br>Pro | ctt<br>Leu | gtc<br>Val | Tyr               | agt<br>Ser<br>245 | ctg<br>Leu | agg<br>Arg        | aac<br>Asn | Lys               | gag<br>Glu<br>250 | gta<br>Val | aaa<br>Lys | act<br>Thr | Ala               | ttg<br>Leu<br>255 | aaa<br>Lys | 768 |
|            |            |            |                   |                   |            | gtg<br>Val .      | Ala        |                   |                   |            |            | taa        |                   |                   |            | 807 |

<210> 7 <211> 268 <212> PRT

<213> Homo sapiens

Phe Leu Phe Ile Leu Ser Phe Ser Glu Ser Cys Tyr Thr Phe Val Ile 20 25 3025

Ile Pro Gln Leu Leu Val His Leu Leu Ser Asp Thr Lys Thr Ile Ser 35 . 40 45

Phe Met Ala Cys Ala Thr Gln Leu Phe Phe Phe Leu Gly Phe Ala Cys 50 60

## 16U 200 PCT FINAL.ST25

| Thr<br>65               | Asn        | Cys        | Leu        | Lev        | 11e<br>70  | Ala        | Val        | Met        | Gly        | Tyr<br>75  | Asp        | Arg        | Tyr        | Val        | Ala<br>80  |    |
|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
| Ile                     | Cys        | His        | Pro        | Leu<br>85  | Arg        | Tyr        | Thr        | Leu        | 11e<br>90  | Ile        | Asn        | Lys        | Arg        | Leu<br>95  | Gly        |    |
| Leu                     | Glu        | Leu        | 11e<br>100 | Ser        | Leu        | Ser        | Gly        | Ala<br>105 | Thr        | Gly        | Phe        | Phe        | 11e<br>110 | Ala        | Leu        |    |
| Val                     | Ala        | Thr<br>115 | Asn        | Leu        | Ile        | Cys        | Asp<br>120 |            | Arg        | Phe        | Cys        | Gly<br>125 | Pro        | Asn        | Arg        |    |
| Val                     | Asn<br>130 | His        | Tyr        | Phe        | Cys        | Asp<br>135 | Met        | Ala        | Pro        | Val        | 11e<br>140 | Lys        | Leu        | Ala        | Cys        |    |
| Thr<br>145              | Asp        | Thr        | His        | Val        | Lys<br>150 | Glu        | Leu        | Ala        | Leu        | Phe<br>155 | Ser        | Leu        | Ser        | lle        | Leu<br>160 |    |
| Val                     | lle        | Met        | Val        | Pro<br>165 | Phe        | Leu        | Leu        | Ile        | Leu<br>170 | 11e        | Ser        | Туr        | Gly        | Phe<br>175 | Ile        |    |
| Val                     | Asn        | Thr        | 11e<br>180 | Leu        | Lys        | lle        | Pro        | Ser<br>185 | Ala        | Glu        | Gly        | Lys        | Lys<br>190 | Ala        | Phe        |    |
| Val                     | Thr        | Cys<br>195 | Ala        | Ser        | His        | Leu        | Thr<br>200 | Val        | Val        | Phe        | Val        | His<br>205 | Туr        | Gly        | Cys        |    |
| Ala                     | Ser<br>210 | lle        | Ile        | Tyr        | Leu        | Arg<br>215 | Pro        | Lys        | Ser        | Lys        | Ser<br>220 | Ala        | Ser        | Asp        | Lys        |    |
| Asp<br>225              | G1n        | Leu        | Val        |            | Val<br>230 | Thr        | Tyr        | Thr        | Val        | Val<br>235 | Thr        | Pro        | Leu        | Leu        | Asn<br>240 |    |
| Prc                     |            |            |            | 245        |            |            |            |            | 250        |            |            | Thr        | Ala        | Leu<br>255 | Lys        |    |
| Arg '                   | Val        |            | Gly<br>260 | Met        | Pro        | Val        | Ala        | Thr<br>265 | Lys        | Met        | Ser        |            |            |            |            |    |
| <210:                   |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| <212:<br><213:          | > D        | NA         | sapi       | ens        |            |            |            |            |            |            |            |            |            |            |            |    |
| <400:<br>ccac           |            |            | caga       | cacc       | a ag       | acc        |            |            |            |            |            |            |            |            |            | 25 |
| <210:<br><211:<br><212: | > 2        |            |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| <213                    |            |            | sapi       | ens        |            |            |            |            |            |            |            |            | •          |            |            |    |
| <400><br>ggcac          |            | aa t       | tacc       | aggat      | t gc       | t gag      | 9          |            |            |            |            |            |            | ,          |            | 27 |
| <210><211><211><212>    | 5 (        | D<br>NA    |            |            |            |            |            |            |            |            |            |            |            |            |            |    |
| <213>                   |            | omo :      | sapi       | ens        |            |            |            |            |            |            |            |            |            |            |            |    |
| <400><br>gagtg          |            |            | atata      | aaaga      | a ggt      | tatgi      | ttca       | atg        | caac       | atg        | ttaa       | atgc       | aa         |            |            | 50 |
|                         |            |            |            |            |            |            |            |            |            |            |            | 2200       |            |            |            |    |

# 160 200 PCT FINAL ST25

| <210> 11                                                           |      |
|--------------------------------------------------------------------|------|
| <211> 50<br><212> DNA                                              |      |
| <213> Homo sapiens                                                 |      |
| <400> 11                                                           |      |
| actccttaga taaaaaaggg cagatttatt aaagaaccct gatttaatca             | 50   |
|                                                                    |      |
| <210> 12<br><211> 4982                                             |      |
| <211> 4302<br><212> DNA                                            |      |
| <213> Homo sapiens                                                 |      |
| <220>                                                              |      |
| <221> CDS                                                          |      |
| (223)                                                              |      |
| <400> 12                                                           |      |
| gtactccttc agaatcagag aattccagct tccatggttt acattattca tcatattcag  | 60   |
| tcaagtgagg gcctagtggc ggttaaaggt tgattagttg aaagaagatt caaatgaaag  | 120  |
| tcttttggga aagcaatgag gcaaggctaa gcaatgacca taagtttaga tttcctcatt  | 180  |
| gttttgaata gacaggaaat catttgtcca gaaggaggta ttatgtaggg aaacttttac  | 240  |
| ctttctgtat ataaaaacat ataactaata cacacacact catacacaaa tatcaatgga  | 300  |
| ggtatacatt gtgtttactt tttctatgtt tatgtacaat agtaatatct ttatagttat  | 360  |
| actaacgtta ttaaaataag taattatatt aactaagttt aggaccagtt tctagtaagt  | 420  |
| aagaaagaaa aaaaatcatc tccaaattct atgaatagat ataatgaatt tcaagaatgc  | 480  |
| ctgatgaatt aacttaggat tcaggaaaca aaaaaagttg ctattgaata gaaaaatgga  | 540  |
| aaagtaacag caacaaaatt ctggtagcag atgccaataa tttcccaaga caaaatgatg  | 600  |
| tagtaacttc agaagtatat aaatgaagac tggataccag caagacatac tggatgattt  | 660  |
| tgtatccaga tagtgctttt tttacttatt aggttgggtt attgaaaaat gttccagtga  | 720  |
| aaaaaattag gcctaagatg attttagaaa taatttgtaa tggcagtttg caaaatattt  | 780  |
| ttagtggcag aatgttcaaa agaaatctta ttaacataac aacatacaaa agatacaaag  | 840  |
| cctatggttt acagcaggag aggggaaact ggcaaaattc ccaagtgtgc cattctctct  | 900  |
| cacactetgt ageaagetet gteattteta caaaactett atttetetga gtttetecaa  | 960  |
| gttagctcag catggaaaag tgaagtgtgt tacaaaatgc cacaaagtca gtcatctctc  | 1020 |
| tttaccaccc tggtgactat tctcttcctg aaagaagaat ttttttcttt atactaatgc  | 1080 |
| actaatgtta tttatttta ttttatttta tttatttatt                         | 1140 |
| _tgtcacccag tctggagtgc agaggcacaa tcttggctca ctgcaacctc cgcctcccgg | 1200 |
| gctcaagtga atctcatgcc tcagcctccc gagtagctgg gattacaggt gtgtgctgcc  | 1260 |
| atacctggct aattitigta cittiagtaa agaccaggit tigccatgit gccgaggctg  | 1320 |
| gtcttgaacc cctggcctca agcaatccac ccaccttggc ttctcaaagt gctgggatta  | 1380 |
| caggtgtgag ccaccacatc tggctaatgt tatttttgt ttcactgttg actcaatgtt   | 1440 |
| tcaacttgtg gaacttccaa tagtatttct tattgttccc ttggagatat aaaaagttcc  | 1500 |
| cagtaaatag atgtgtgctc acatctttac ttagagacca tggaatactt tatctccttt  | 1560 |
| ctcatttcat ggttggataa actgaagtcc acatgattat gtctgaatat tattcattct  | 1620 |
| ttcgttctat attctgatca gcttcaggta gctgaagtta acgttttcca ctttggagag  | 1680 |
| tgagttgcct tgggtttata gtaagtgaca aaaacaacaa tctctctgtt acataagaag  | 1740 |

| ga                | зааа               | ctatt        | t ago        | caaat        | ttc               | ctaa               | tcct          | tg g         | tcag              | agag              | a ta               | acct          | gttc          | ttc            | acatt               | ag 1800       |
|-------------------|--------------------|--------------|--------------|--------------|-------------------|--------------------|---------------|--------------|-------------------|-------------------|--------------------|---------------|---------------|----------------|---------------------|---------------|
|                   |                    |              |              |              |                   |                    |               |              |                   |                   |                    |               |               |                | ttctt               |               |
|                   |                    |              |              |              |                   |                    |               |              |                   |                   |                    |               |               |                | tgcca               |               |
|                   |                    |              |              |              |                   |                    |               |              |                   |                   |                    |               |               |                | ggttt               |               |
| ac                | ctc                | igtco        | : ctg        | acto         | tcc               | ttta               | taga          | ag t         | gctc              | 1                 | atg<br>Met<br>1    | gag<br>Glu    | caa<br>Gln    | gtc<br>Val     | aat a<br>Asn L<br>5 | ag 2036<br>ys |
| Tn                | ir va              | er va        | 10           | g G1         | u Ph              | e Va               | l Va          | 1 Le<br>15   | ច G1              | y Ph              | e Se               | r Se          | r Le          | u Al           | c agg<br>a Arg      | 2084          |
| re                | ս գյ               | 25           | р ге         | u Le         | u Ph              | e Va               | 30            | e Ph         | e Lei             | u Lei             | u Le               | u Ty<br>35    | r Le          | u Ph           | c act<br>e Thr      | 2132          |
| ct<br>Le          | g gg<br>u Gl<br>40 | y Th         | c aa<br>r As | t gc<br>n Al | a at<br>a Il      | c at<br>e Il<br>45 | c at<br>e Ile | t to<br>e Se | c acc             | att<br>r Ile      | t gte<br>va:<br>50 | g cte<br>l Le | g ga<br>u Asj | c aga<br>p Are | g gcc<br>g Ala      | 2180          |
| 55                | и ні               | S Th         | r Pr         | о ме         | 60                | r Ph               | e Phe         | e Lei        | a Ala             | 65                | e Lei              | u Se:         | c Cys         | s Sei          | gag<br>Glu<br>70    | 2228          |
| 11                | есу                | т ту         | r Th         | r Pho<br>75  | e Va.             | 1 110              | e Val         | Pro          | 80<br>80          | Met               | Lei                | val           | l Asp         | 85             | g ctg<br>I Leu      | 2276          |
| Se                | r G1.              | п Бу         | 90<br>90     | s Th         | r Ile             | e Sei              | r Phe         | e Leu<br>95  | ı Gly             | Cys               | Ala                | ılle          | 9 Glr<br>100  | n Met          | ttt<br>Phe          | 2324          |
| Sei               | c Ph               | e Let<br>105 | u Phe<br>5   | e Phe        | e G1)             | y Sei              | Ser<br>110    | His          | Ser               | Phe               | Leu                | 115           | Ala           | Ala            |                     | 2372          |
| GIZ               | 120                | r Asp<br>O   | o Arc        | ј Туі        | Met               | 125                | lle           | Cys          | aac<br>Asn        | Pro               | Leu<br>130         | Arg           | Tyr           | Ser            | Val                 | 2420          |
| 135               | me                 | t GIY        | / His        | Gly          | Val<br>140        | Cys                | Met           | Gly          | cta<br>Leu        | Met<br>145        | Ala                | Ala           | Ala           | Cys            | Ala<br>150          | 2468          |
| cys               | GIY                | / Phe        | ? Thr        | 155          | Ser               | Leu                | Val           | Thr          | acc<br>Thr<br>160 | Ser               | Leu                | Val           | Phe           | His<br>165     | Leu                 | 2516          |
| 710               | PHE                | : H1S        | 170          | Ser          | Asn               | GIn                | Leu           | His<br>175   | cac<br>His        | Phe               | Phe                | Cys           | Asp<br>180    | Ile            | Ser                 | 2564          |
| FIO               | val                | 185          | Lys          | Leu          | Ala               | Ser                | Gln<br>190    | His          | tcc<br>Ser        | Gly               | Phe                | Ser<br>195    | Gln           | Leu            | Val                 | 2612          |
| 116               | 200                | wet          | ren          | Gly          | Val               | Phe<br>205         | Ala           | Leu          | gtc<br>Val        | Ile               | Pro<br>210         | Leu           | Leu           | Leu            | lle                 | 2660          |
| cta<br>Leu<br>215 | gtc<br>Val         | tcc<br>Ser   | tac<br>Tyr   | atc<br>Ile   | cgc<br>Arg<br>220 | atc<br>Ile         | atc<br>Ile    | tct<br>Ser   | gcc<br>Ala        | att<br>Ile<br>225 | cta<br>Leu         | aaa<br>Lys    | atc<br>Ile    | cct<br>Pro     | tcc<br>Ser<br>230   | 2708          |
| Jei               | Agi                | ы            | Arg          | 235          | Lys               | Thr                | Phe           | Ser          | acc<br>Thr<br>240 | Cys               | Ala                | Ser           | His           | Leu<br>245     | Ile                 | 2756          |
| ,01               | AgI                | inr          | 250          | His          | Tyr               | Ser                | Cys           | Ala<br>255   | tct<br>Ser        | Phe               | Ile                | Tyr           | Leu<br>260    | Arg            | Pro                 | 2804          |
| aag<br>Lys        | act<br>Thr         | aat<br>Asn   | tac<br>Tyr   | act<br>Thr   | tca<br>Ser        | agc<br>Ser         | caa<br>Gln    | gac<br>Asp   | acc<br>Thr        | cta<br>Leu        | ata<br>Ile         | tct<br>Ser    | gtg<br>Val    | tca<br>Ser     | tac<br>Tyr          | 2852          |

| 16U 200 PCT FINAL.ST25 265 270 275                                                                                                                |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| acc atc ctt acc cca ttg ttc aat cca atg att tat agt ctg aga aat.  Thr Ile Leu Thr Pro Leu Phe Asn Pro Met Ile Tyr Ser Leu Arg Asn 280 285 290     | 2900 |
| aag gaa tic aaa tca gcc cta cga aga aca atc ggc caa act ttc tat<br>Lys Glu Phe Lys Ser Ala Leu Arg Arg Thr 11e Gly Gln Thr Phe Tyr<br>295 300 310 | 2948 |
| cct ctt agt taa agagctattt tttaaactac taatgcctag tacatgccag<br>Pro Leu Ser                                                                        | 3000 |
| gcagaacgtg tgttttatac atttttttc atttaattgt ccagctccac tgtaacataa                                                                                  | 3060 |
| gaacatttta catatgagaa gaatgaggct cacagaagtt aagacagtct ggctttctac                                                                                 | 3120 |
| tetecatgat aetttaacaa gaetaateag atatgggaae agageacaca gttecataae                                                                                 | 3180 |
| aaatttaatt atattttact gctttaaata ttgctaattt aaaaactaat atgagagcaa                                                                                 | 3240 |
| agatgcatct aaactgatga gagctgtgtc ttgaagtaga gagcttggat acatcaggaa                                                                                 | 3300 |
| agaaaagatg tatccaaaaa aaaaaaaaga aagaaaaaag aaaaaaaaaa                                                                                            | 3360 |
| aggaaatcca tctatccgta cttttctttt cctaaagaca acagaaaact ttggtcccac                                                                                 | 3420 |
| acattetget acaaatettg gtggteettt ttgteeccaa tteattteet taacetacat                                                                                 | 3480 |
| attgaaatat cttggccttt acttggggtt gttttgttct tcctttgttt gaggtggaac                                                                                 | 3540 |
| cactitatgg ticteticet gatgeacatg tatgicette acatactagt gigiettage                                                                                 | 3600 |
| ccccacattt gttcctgaga caccatacta atttgctctc ttcaaggaag ctactagcat                                                                                 | 3660 |
| tgcctacttg ctgaaatatc tcaagtaatt ccaagcaaag ggcttgagtt aatattaata                                                                                 | 3720 |
| gaaggctaga ttcctagaat gaccagaaaa ctcatggaaa accctccagt gactcccttt                                                                                 | 3780 |
| gccctacaag ataatgccaa gggtccttca ttgtcatgaa tctatcatct agtttccacc                                                                                 | 3840 |
| tacctcttca gtattatcat ttctaatttt gttattctcc attltctata tgccttttgt                                                                                 | 3900 |
| acactetgaa getaaceaac tattigetig tiltaaaaca aataaaigig aigaacaaaa                                                                                 | 3960 |
| taaatgtggt ctctgccctc ataggcctta ttgcctggtt caagatagtc ccagtaaaca                                                                                 | 4020 |
| gaaaaatgag ggaaaatacc ttaccagttt aagttgattc tctgaagaaa aagtgcatgc                                                                                 | 4080 |
| aggcgataga ggagagaata ctaagataaa cctaatttag atcgaatggc atagggttgg                                                                                 | 4140 |
| tttcccagag aaactgagag ttaacctgca tgtaacctga agggtaatta aaagtcttca                                                                                 | 4200 |
| ggtaaagggg atatccttta ggacagaaga aacaatgtgt acaaaacccc tgaagcaaga                                                                                 | 4260 |
| actggatgag ttggagacaa gcaaagaagg cctgtataaa tgctgtttta aaaatgcttt                                                                                 | 4320 |
| tcaattgaca aaattatata tatttatggt gtaaaacatg atattttctc ccatcctgta                                                                                 | 4380 |
| ggttgcctgt tcactctgat ggtattttct tttgctgtgc agaagctctt tagtttaatt                                                                                 | 4440 |
| agatcccatt tgtcaatttt ggcttttgtt gccattgcct ttggtgttta gacatgaagg                                                                                 | 4500 |
| ccttgcccat gcctatgccc tgaatggtac tgcctaggtt ttcttctagg gtttttatgg                                                                                 | 4560 |
| ttttaggtct aacatgtaag tcttttatcc atctggaata aatttttgta taaggtgtaa                                                                                 | 4620 |
| ggaagggatc cagtttcagc tttctacata tggctagcca gttttcccag caccatttat                                                                                 | 4680 |
| taaataggga atcctttccc catttcttgt ttttgtcaga caaagggcta atatccagaa                                                                                 | 4740 |
| tctacaatga actcaaacaa atttacaaga aaaaaacaaa caaccccatc aaaaagtggg                                                                                 | 4800 |
| caaaggatat gaacagacac ttctcaaaag aagacattta tgcagccaga aaacacatga                                                                                 | 4860 |
| aaaaatgctc atcactggcc atcagagaaa tgcaaatcaa aaccacaatg agataccatc                                                                                 | 4920 |
| tcacaccagt tagaatggcg atcattaaaa agtcaggaaa caacaggtgc gggagaagat                                                                                 | 4980 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                             |      |

gt 4982

<210> 13 <211> 313

<211> 313 <212> PRT

<213> Homo sapiens

<400> 13

Met Glu Gln Val Asn Lys Thr Val Val Arg Glu Phe Val Val Leu Gly 1  $\phantom{-}$  5  $\phantom{-}$  10  $\phantom{-}$  15

Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val IIe Phe Leu 20 25 30

Leu Leu Tyr Leu Phe Thr Leu Gly Thr Asn Ala Ile Ile Ser Thr 35 40 45

Ile Val Leu Asp Arg Ala Leu His Thr Pro Met Tyr Phe Phe Leu Ala  $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$ 

Ile Leu Ser Cys Ser Glu Ile Cys Tyr Thr Phe Val Ile Val Pro Lys 65 70 75 80

Met Leu Val Asp Leu Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly 85 90 95

Cys Ala Ile Gln Met Phe Ser Phe Leu Phe Phe Gly Ser Ser His Ser 100 105 110

Phe Leu Leu Ala Ala Met Gly Tyr Asp Arg Tyr Met Ala Ile Cys Asn 115 120 125

Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 135 140

Met Ala Ala Cys Ala Cys Gly Phe Thr Val Ser Leu Val Thr Thr 145 150 155 160

Ser Leu Val Phe His Leu Pro Phe His Ser Ser Asn Gln Leu His His 165 170 175

Phe Phe Cys Asp Ile Ser Pro Val Leu Lys Leu Ala Ser Gln His Ser 180  $$180\$ 

Gly Phe Ser Gln Leu Val Ile Phe Met Leu Gly Val Phe Ala Leu Val

Ile Pro Leu Leu Leu Ile Leu Val Ser Tyr Ile Arg Ile Ile Ser Ala 210 215 220

Cys Ala Ser His Leu Ile Val Val Thr Val His Tyr Ser Cys Ala Ser 245 250 255 ...

Phe Ile Tyr Leu Arg Pro Lys Thr Asn Tyr Thr Ser Ser Gln Asp Thr 260 265 270

16U 200 PCT FINAL.ST25 Leu Ile Ser Val Ser Tyr Thr Ile Leu Thr Pro Leu Phe Asn Pro Met 285 280 lle Tyr Ser Leu Arg Asn Lys Glu Phe Lys Ser Ala Leu Arg Arg Thr 300 295 290 Ile Gly Gln Thr Phe Tyr Pro Leu Ser <210> 14 <211> 24 DNA <212> <213> Homo sapiens <400> 14 24 cctgttcact ctgggcacca atgc <210> 15 <211> 24 <212> DNA <213> Homo sapiens <400> 15 24 ctggttggag gagtggaagg gcag <210> 16 <211> 50 <212> DNA <213> Homo sapiens 50 tacctttctg tatataaaaa catataacta atacacacac actcatacac <210> 50 <211> DNA <212> <213> Homo sapiens <400> 17 50 cttcagaagt atataaatga agactggata ccagcaagac atactggatg <210> 18 <211> 50 <212> DNA <213> Homo sapiens <400> 18 50 cccttggaga tataaaaagt tcccagtaaa tagatgtgtg ctcacatctt <210> 19 <211> 50 <212> DNA <sup>-</sup><213> Homo sapiens 50 taatactatg taaaaatcca ctggactaga atcagctgtc ctcatgtgcc <210> 20 <211> 960 <212> DNA <213> Homo sapiens <220> <221> CDS (1).. (960) <222> <223> atg aca cag ttg acg gcc agt ggg aat cag aca atg gtg act gag ttc Met Thr Gln Leu Thr Ala Ser Gly Asn Gln Thr Met Val Thr Glu Phe

Page 10

OCID: <WO.\_\_\_\_\_03089583A2 1, >

| 1                 |            |            |            | 5          |                   |            |            |            | 10                | 160               | 200         | PCT        | FINA        | AL. 51<br>15 | 25  |   |     |
|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|-------------------|-------------|------------|-------------|--------------|-----|---|-----|
|                   |            |            |            |            |                   |            |            |            | aga<br>Arg        |                   |             |            |             |              |     |   | 96  |
|                   |            |            |            |            |                   |            |            |            | atc<br>Ile        |                   |             |            |             |              |     |   | 144 |
|                   |            |            |            |            |                   |            |            |            | gcc<br>Ala        |                   |             |            |             |              |     |   | 192 |
|                   |            |            |            |            |                   |            |            |            | gag<br>Glu        |                   |             |            |             |              |     |   | 240 |
|                   |            |            |            |            |                   |            |            |            | atc<br>Ile<br>90  |                   |             |            |             |              |     |   | 288 |
|                   |            |            |            |            |                   |            |            |            | tac<br>Tyr        |                   |             |            |             |              |     | • | 336 |
|                   |            |            |            |            |                   |            |            |            | atg<br>Met        |                   |             |            |             |              |     |   | 384 |
|                   |            | Cys        |            |            |                   |            |            |            | acc<br>Thr        |                   |             |            |             |              |     |   | 432 |
|                   |            |            |            |            |                   |            |            |            | ttt<br>Phe        |                   |             |            |             |              |     |   | 480 |
|                   |            |            |            |            |                   |            |            |            | ttg<br>Leu<br>170 |                   |             |            |             |              |     |   | 528 |
|                   |            |            |            |            |                   |            |            |            | aca<br>Thr        |                   |             |            |             |              |     |   | 576 |
|                   |            |            |            |            |                   |            |            |            | gtg<br>Val        |                   |             |            |             |              |     | • | 624 |
|                   |            |            |            |            |                   |            |            |            | gct<br>Ala        |                   |             |            |             |              |     |   | 672 |
|                   |            |            |            |            |                   |            |            |            | gct<br>Ala        |                   |             |            |             |              |     |   | 720 |
| Phe<br>-          | Ser        | Thr        | Cys        | Ala<br>245 | Ala               | His        | Leu        | Ala        | gtg<br>Val<br>250 | Phe               | Leu         | Leu        | Phe         | Phe<br>255   | Gly |   | 768 |
| Ser               | Val        | Ala        | Val<br>260 | Met        | Tyr               | Leu        | Arg        | Phe<br>265 | tca<br>Ser        | Ala               | Thr         | Tyr        | Ser<br>270  | Val          | Phe |   | 816 |
| Trp               | Asp        | Thr<br>275 | Ala        | Ile        | Ala               | val        | Thr<br>280 | Phe        | gtt<br>Val        | lle               | Leu         | Ala<br>285 | Pro         | Phe          | Phe |   | 864 |
| Asn               | Pro<br>290 | lle        | lle        | Tyr        | Ser               | Leu<br>295 | Lys        | Asn        | aag<br>Lys        | Asp               | Me t<br>300 | Lys        | Glu         | Ala          | Ile |   | 912 |
| gga<br>G1y<br>305 | agg<br>Arg | Ctt<br>Leu | ttc<br>Phe | His        | tat<br>Tyr<br>310 | cag<br>Gln | aag<br>Lys | agg<br>Arg | gct<br>Ala        | ggt<br>Gly<br>315 | tgg<br>Trp  | gct<br>Ala | 999<br>G1 y | aaa<br>Lys   | tag |   | 960 |

Page 11

<210> 21

<211> 319

<212> PRT

<213> Homo sapiens

<400> 21

Met Thr Gln Leu Thr Ala Ser Gly Asn Gln Thr Met Val Thr Glu Phe 1  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Phe Ser Met Phe Pro His Ala His Arg Gly Gly Leu Leu Phe Phe 20 25 30

Ile Pro Leu Leu Leu Ile Tyr Gly Phe Ile Leu Thr Gly Asn Leu Ile  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Met Phe Ile Val Ile Gln Val Gly Met Ala Leu His Thr Pro Leu Tyr 50 60

Phe Phe Ile Ser Val Leu Ser Phe Leu Glu Ile Cys Tyr Thr Thr 65 70 75 80

Thr Ile Pro Lys Met Leu Ser Cys Leu Ile Ser Glu Gln Lys Ser Ile 85 90 95

Ser Val Ala Gly Cys Leu Leu Gln Met Tyr Phe Phe His Ser Leu Gly  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ile Thr Glu Ser Cys Val Leu Thr Ala Met Ala Ile Asp Arg Tyr Ile 115  $\phantom{\bigg|}120\phantom{\bigg|}$  125

Ala Ile Cys Asn Pro Leu Arg Tyr Pro Thr Ile Met Ile Pro Lys Leu 130 135 140

Cys Ile Gln Leu Thr Val Gly Ser Cys Phe Cys Gly Phe Leu Leu Val 145 150 160

Leu Pro Ġlu Ile Ala Trp Ile Ser Thr Leu Pro Phe Cys Gly Ser Asn 165 170 175

Gln Ile His Gln Ile Phe Cys Asp Phe Thr Pro Val Leu Ser Leu Ala . 180 185 190

Cys Thr Asp Thr Phe Leu Val Val Ile Val Asp Ala Ile His Ala Ala 195 200 205

Glu Ile Val Ala Ser Phe Leu Val Ile Ala Leu Ser Tyr Ile Arg Ile 210 215 220

Ile Ile Val Ile Leu Gly Met His Ser Ala Glu Gly His His Lys Ala 225 230 240

Phe Ser Thr Cys Ala Ala His Leu Ala Val Phe Leu Leu Phe Phe Gly 245 250 255

Ser Val Ala Val Met Tyr Leu Arg Phe Ser Ala Thr Tyr Ser Val Phe 260 265 270

Trp Asp Thr Ala lle Ala Val Thr Phe Val Ile Leu Ala Pro Phe Phe 275 280 285

| 16U 200 PCT FINAL.ST25 Asn Pro Ile Ile Tyr Ser Leu Lys Asn Lys Asp Met Lys Glu Ala Ile 290 295 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Gly Arg Leu Phe His Tyr Gln Lys Arg Ala Gly Trp Ala Gly Lys<br>305 310 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| <210> 22<br><211> 24<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| <400> 22<br>ctctatgttc ccgcatgcgc acag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                |
| <210> 23<br><211> 27<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| <400> 23<br>gcaaggtgga aatccatgca atctcag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · 27              |
| <210> 24<br><211> 50<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| <400> 24<br>agacagacgt taaaaaatga ccaaacctac agaaaatatt tccagataat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                |
| <210> 25<br><211> 900<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| <220> <221> CDS <222> (1)(900) <223>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| <pre>&lt;400&gt; 25 atg atc acc gag ttc atc ctt ata ggc ttc tca aac ctg ggg gat ctg Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48                |
| Cag atc ctt ctc ttc ttt atc ttc cta tta gtc tac ctg acc act ctg Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96                |
| atg gcc aac acc acc atc atg aca gtc att cac ctg gac agg gct ttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 144               |
| Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35 40 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 144               |
| Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 192               |
| Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35 40 45  cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt tct gaa acc His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35 40 45  cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt tct gaa acc His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 55 60  tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aac ctg cta tcc Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser                                                                                                                                                                                                                                                             | 192               |
| Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35  cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt tct gaa acc His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50  tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aac ctg cta tcc Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65  gca att cca act att tct ttc tct gga tgt gtg gtc cag ctc tat tta Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu                                                                                                                                     | 192<br>240        |
| Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35  cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt tct gaa acc His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50  tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aac ctg cta tcc Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65  gca att cca act att tct ttc tct gga tgt gtg gtc cag ctc tat tta Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 90  ttt gtg ggc ttg gct tgt acc aac tgt ttt ctc att gct gtg atg ggc Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly | 192<br>240<br>288 |

| 130                                                                                                                                                    | Ala Ser                                      | Ser Phe<br>135                     |                        | Gly               |                    |                                |                                | PCT<br>Ser              |                         |                          |                   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|------------------------|-------------------|--------------------|--------------------------------|--------------------------------|-------------------------|-------------------------|--------------------------|-------------------|------------------|
| aat atc ctg<br>Asn Ile Leu<br>145                                                                                                                      | gtg ttc<br>Val Phe                           | agt gtg<br>Ser Val<br>150          | ctc<br>Leu             | ctc<br>Leu        | tgt<br>Cys         | gcc<br>Ala<br>155              | tcc<br>Ser                     | aat<br>Asn              | cgg<br>Arg              | atc<br>Ile               | aac<br>Asn<br>160 | 480              |
| cac ttt ttc<br>His Phe Phe                                                                                                                             | tgt gac<br>Cys Asp<br>165                    | att tcc<br>Ile Ser                 | cct<br>Pro             | gtc<br>Val        | ata<br>Ile<br>170  | aaa<br>Lys                     | ctg<br>Leu                     | ggc<br>Gly              | tgc<br>Cys              | aca<br>Thr<br>175        | gac<br>Asp        | 528              |
| acc aac ctg<br>Thr Asn Leu                                                                                                                             | aag gag<br>Lys Glu<br>180                    | atg gtc<br>Met Val                 | atc<br>Ile             | ttt<br>Phe<br>185 | ttc<br>Phe         | ctc<br>Leu                     | agc<br>Ser                     | att<br>Ile              | ctg<br>Leu<br>190       | gta<br>Val               | ttg<br>Leu        | 576              |
| ctg gtt ccc<br>Leu Val Pro<br>195                                                                                                                      | ctt gtg<br>Leu Val                           | ttg ata<br>Leu Ile                 | ttc<br>Phe<br>200      | atc<br>Ile        | tcc<br>Ser         | tac<br>Tyr                     | atc<br>lle                     | ttc<br>Phe<br>205       | ata<br>Ile              | gtt<br>Val               | tcc<br>Ser        | 624              |
| acc atc ctc<br>Thr Ile Leu<br>210                                                                                                                      | aag atc<br>Lys Ile                           | tcc tca<br>Ser Ser<br>215          | Val                    | gaa<br>Glu        | gga<br>Gly         | cag<br>Gln                     | tgc<br>Cys<br>220              | aaa<br>Lys              | gcc<br>Ala              | ttc<br>Phe               | gcc<br>Ala        | 672 <sub>.</sub> |
| acc tgt gct<br>Thr Cys Ala<br>225                                                                                                                      | tcc cac<br>Ser His                           | ctc aca<br>Leu Thr<br>230          | gtg<br>Val             | gtc<br>Val        | gtc<br>Val         | gtc<br>Val<br>235              | cac<br>His                     | tat<br>Tyr              | ggc<br>Gly              | tgt<br>Cys               | gct<br>Ala<br>240 | 720              |
| tcc ttt atc<br>Ser Phe Ile                                                                                                                             | tac ttg<br>Tyr Leu<br>245                    | agg ccc<br>Arg Pro                 | aca<br>Thr             | tcc<br>Ser        | ctg<br>Leu<br>250  | tac<br>Tyr                     | tct<br>Ser                     | tca<br>Ser              | gat<br>Asp              | aag<br>Lys<br>255        | gac<br>Asp        | 768              |
| cgg ctc gtg<br>Arg Leu Val                                                                                                                             | gca gtg<br>Ala Val<br>260                    | act tat<br>Thr Tyr                 | act<br>Thr             | gtg<br>Val<br>265 | att<br>Ile         | act<br>Thr                     | cca<br>Pro                     | cta<br>Leu              | ctc<br>Leu<br>270       | aac<br>Asn               | ccc<br>Pro        | 816              |
| ctt gtc tat<br>Leu Val Tyr<br>275                                                                                                                      | aca ctg<br>Thr Leu                           | aga aat<br>Arg Asn                 | aaa<br>Lys<br>280      | gaa<br>Glu        | gta<br>Val         | aag<br>Lys                     | atg<br>Met                     | gct<br>Ala<br>285       | ctg<br>Leu              | aga<br>Arg               | aag<br>Lys        | 864              |
|                                                                                                                                                        |                                              |                                    |                        |                   |                    |                                |                                |                         |                         |                          |                   |                  |
| gtt ctg ggt<br>Val Leu Gly<br>290                                                                                                                      | aga tgc<br>Arg Cys                           | tta aat<br>Leu Asn<br>295          | Ser                    | aaa<br>Lys        | act<br>Thr         | gta<br>Val                     | tga                            |                         |                         |                          |                   | 900              |
| Val Leu Gly<br>290<br><210> 26<br><211> 299<br><212> PRT                                                                                               | aga tgc<br>Arg Cys<br>sapiens                | Leu Asn                            | Ser                    | aaa<br>Lys        | act<br>Thr         | gta<br>Val                     | tga                            |                         |                         |                          |                   | 900              |
| Val Leu Gly<br>290<br><210> 26<br><211> 299<br><212> PRT                                                                                               | Arg Cys                                      | Leu Asn                            | Ser                    | aaa<br>Lys        | act<br>Thr         | gta<br>Val                     | tga                            |                         |                         |                          |                   | 900              |
| Val Leu Gly<br>290<br><210> 26<br><211> 299<br><212> PRT<br><213> Homo                                                                                 | Arg Cys                                      | Leu Asn<br>295                     | Ser                    | Lys               | Thr                | Val                            |                                | Leu                     | Gly                     | Asp<br>15                | Leu               | 900              |
| Val Leu Gly 290  <210> 26 <211> 299 <212> PRT <213> Homo <400> 26  Met Ile Thr                                                                         | sapiens Glu Phe                              | Leu Asn<br>295                     | Ser                    | Gly               | Phe                | Val<br>Ser                     | Asn                            |                         |                         | 15                       |                   | 900              |
| Val Leu Gly 290  <210> 26 <211> 299 <212> PRT <213> Homo <400> 26  Met Ile Thr l                                                                       | sapiens Glu Phe 5                            | Leu Asn<br>295                     | Ser<br>Ile             | Gly<br>Leu<br>25  | Phe<br>10          | Ser<br>Val                     | Asn<br>Tyr                     | Leu                     | Thr<br>30               | 15<br>Thr                | Leu               | 900              |
| <pre>Val Leu Gly 290  &lt;210&gt; 26 &lt;211&gt; 299 &lt;212&gt; PRT &lt;213&gt; Homo &lt;400&gt; 26  Met Ile Thr 1  Gln Ile Leu  Met Ala Asn</pre>    | sapiens Glu Phe 5 Leu Phe 20                 | Ile Leu Phe Ile Ile Met            | Ile Phe Thr            | Gly Leu 25        | Phe 10             | Ser<br>Val                     | Asn<br>Tyr<br>Leu              | Leu<br>Asp<br>45        | Thr<br>30<br>Arg        | Thr<br>Ala               | Leu<br>Leu        | 900              |
| <pre>Val Leu Gly 290  &lt;210&gt; 26 &lt;211&gt; 299 &lt;212&gt; PRT &lt;213&gt; Homo &lt;400&gt; 26  Met Ile Thr 1  Gln Ile Leu  Met Ala Asn 35</pre> | sapiens Glu Phe 5 Leu Phe 20 Thr Thr         | Ile Leu Phe Ile Ile Met            | Ile Phe Thr 40         | Gly Leu 25 Val    | Phe 10             | Ser<br>Val<br>His              | Asn<br>Tyr<br>Leu<br>Ser<br>60 | Leu<br>Asp<br>45<br>Cys | Thr<br>30<br>Arg<br>Ser | Thr<br>Ala<br>Glu        | Leu<br>Leu<br>Thr | 900              |
| Val Leu Gly 290  <210> 26 <211> 299 <212> PRT <213> Homo <400> 26  Met Ile Thr  Gln Ile Leu  Met Ala Asn 35  His Thr Pro 50  Cys Tyr Thr               | sapiens Glu Phe 5 Leu Phe 20 Thr Thr Met Tyr | Ile Leu Phe Ile Ile Met Phe Phe 55 | Ile Phe Thr 40 Leu Pro | Gly Leu 25 Val    | Phe 10 Leu Ile Val | Ser<br>Val<br>His<br>Leu<br>75 | Asn<br>Tyr<br>Leu<br>Ser<br>60 | Asp<br>45<br>Cys        | Thr<br>30<br>Arg<br>Ser | Thr<br>Ala<br>Glu<br>Leu | Leu Thr Ser 80    | 900              |

| Tyr As                           | p Arg<br>115            | Tyr        | Val        | Ala        | Ile        | Cys<br>120 | Asn        | Pro        |            | 200<br>Asn |            |            |            |            |   |    |
|----------------------------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---|----|
| Leu Va<br>13                     |                         | Ala        | Ser        | Ser        | Phe<br>135 | Cys        | G1 y       | Phe        | Leu        | Thr<br>140 | Ser        | Val        | Ile        | Val        |   |    |
| Asn II<br>145                    | e Leu                   | Val        | Phe        | Ser<br>150 | Val        | Leu        | Leu        | Cys        | Ala<br>155 | Ser        | Asn        | Arg        | 1 le       | Asn<br>160 |   |    |
| His Ph                           | e Phe                   | Cys        | Asp<br>165 | Ile        | Ser        | Pro        | Val        | Ile<br>170 | Lys        | Leu        | Gly        | Cys        | Thr<br>175 | Asp        |   |    |
| Thr As                           | n Leu                   | Lys<br>180 | Glu        | Met        | Val        | lle        | Phe<br>185 | Phe        | Leu        | Ser        | 11e        | Leu<br>190 | Val        | Leu        |   |    |
| Leu Va                           | l Pro<br>195            | Leu        | Val        | Leu        | Ile        | Phe<br>200 | lle        | Ser        | Туr        | lle        | Phe<br>205 | lle        | Val        | Ser        |   |    |
| Thr 11 21                        |                         | Lys        | lle        | Ser        | Ser<br>215 | Val        | Glu        | Gly        | Gln        | Cys<br>220 | Lys        | Ala        | Phe        | Ala        |   |    |
| Thr Cy<br>225                    | s Ala                   | Ser        | His        | Leu<br>230 | Thr        | Val        | Val        | Val        | Val<br>235 | His        | Tyr        | Gly        | Cys        | Ala<br>240 |   |    |
| Ser Ph                           | e Ile                   | Tyr        | Leu<br>245 | Arg        | Pro        | Thr        | Ser        | Leu<br>250 | Tyr        | Ser        | Ser        | Asp        | Lys<br>255 | Asp        |   |    |
| Arg Le                           |                         | Ala<br>260 | Val        | Thr        | Tyr        | Thr        | Val<br>265 | lle        | Thr        | Pro        | Leu        | Leu<br>270 | Asn        | Pro        |   |    |
| Leu Va                           | 1 Tyr<br>275            | Thr        | Leu        | Arg        | Asn        | Lys<br>280 |            | Val        | Lys        | Met        | Ala<br>285 | Leu        | Arg        | Lys        |   |    |
| Val Le<br>29                     |                         | Arg        | Cys        | Leu        | Asn<br>295 | Ser        | Lys        | Thr        | Val        |            |            |            |            |            |   |    |
| <210><211><211><212><213>        | 27<br>29<br>DNA<br>Homo | sapi       | iens       |            |            |            |            |            |            |            |            |            |            |            |   |    |
| <400><br>tgtcaa                  | 27<br>tatc o            | ctggt      | gtto       | a gt       | gtga       | tcc        |            |            |            |            |            |            |            |            |   | 29 |
| <210><br><211><br><212><br><213> | 28<br>30<br>DNA         |            |            |            |            |            |            |            |            |            |            |            |            |            |   |    |
| <400><br>catcta                  | Homo<br>28<br>ccca c    |            |            | et ca      | gago       | cato       | =          |            |            |            |            |            |            |            |   | 30 |
| <210><br><211><br><212>          | 29<br>50<br>DNA         |            |            |            |            |            |            |            |            |            |            | •          |            |            |   |    |
| <213> <400> gtcacte              | Homo<br>29              |            |            | eq ca      | atac       | aaac       | ı daa      | iatat      | taa        | aact       | agaa       | ıcc        |            |            | • | 50 |
| <210><br><211>                   | 30<br>50                |            | ,,,,,      | ,          | ,-3        |            | , 300      |            |            |            | - 3        | - •        |            |            |   |    |
| <212><br><213>                   | DNA<br>Homo             | sapi       | ens        |            |            |            |            |            |            |            |            |            |            |            |   |    |

Page 15

| <400> 30<br>tttcttcatt tataacatga gggggcttgg ctagatattt aacagcctgc            | 50   |
|-------------------------------------------------------------------------------|------|
| <210> 31                                                                      |      |
| <211> 50                                                                      |      |
| (212) DNA                                                                     |      |
| <213> Homo sapiens                                                            |      |
| <400> 31<br>gctagatatt taacagcctg cctgtattga ccacttatgc atcaggaaat            | 50   |
| ·<br><210> 32                                                                 |      |
| <211> 50                                                                      |      |
| <212> DNA<br><213> Homo sapiens                                               |      |
| <213> Homo sapiens                                                            |      |
| <400> 32<br>atttgagtta tgtatatgag agactgggta catcactttt tacttgtttt            | 50   |
| <210> 33                                                                      |      |
| <211> 5086                                                                    |      |
| <212> DNA (212) None positions                                                |      |
| <213> Homo sapiens                                                            |      |
| <220>                                                                         |      |
| <221> CDS<br><222> (2034)(2972)                                               |      |
| <223>                                                                         |      |
| <4005 22                                                                      |      |
| <400> 33<br>tatccaaatg gtgaaagaga ttctagaaca aggaaagagc tacagcaaag gttttaaatg | 60   |
| atatgtcact gaacacattt gatcgatgga aacgcagaac ctàatttaga atttaacagg             | 120  |
| atcactctgg tgtgttgaga tgaggctaca agtgaacaaa tgcaagtagg gagatctgtt             | 180  |
| aggagtcaat tacagtaaga ggggagagat aaaagtgact tggaccgagg tggtcaaaca             | 240  |
| tagtcagttc ctggatatat gagagaaaga tagaaacaag gatgactgca ggagtttagc             | 300  |
| ttgtcagttg aaagattgca attgccatca tttgtgatgg ggaagactag gggtagagac             | 360  |
| cccaggagtt cagtttgaga tggctcttcg actcccaaga ggagatgtga gtaggcagtg             | 420  |
| aaatatatga gtctggagta gcagagaaaa atatcgcctg agatatggat ttagatgtct             | 480  |
| tcaacacatt tatagtgtit aaagctctgg tattggatgg tatagagcag aggagttgag             | 540  |
| tttatataga agagaaaaaa aaaagattaa acactgacca tgggcactgt gacattaaaa             | 600  |
| ggatggggca tggaggagaa actaaagttg gagaatgaga aggaatgact aataagatag             | 660  |
| aaagtaacca aaagtatagt accccgagaa tcaagtcaag                                   | 720  |
| ataaatcaat actgtcaaga aacagatagt ccaagtaagc tgaggaatga gaaatgacca             | 780  |
| ttggatccag gaaatcttag ataattaatg tctatgagaa aggaggtttt aatggagtgg             | 840  |
| tggtagtata aatctaatta gagtgggttt aagaagaaac ttaaagagag gcattaaagg             | 900  |
| caatgcgtat agccgactct tggaagagtt ttcttttagg gacatagaaa gaaatagagc             | 960  |
| agtggctgtg ggatgagtaa agagaaagaa tttaaggctc ttgcttttt gtttgtttag              | 1020 |
| tagatgagaa taatagcatg tttttacatt gatagagtat tccatgaaag agctgtataa             | 1080 |
| tagttagttg tttctctata ctctgtatta caatattagt ttgttaacat caggtgccac             | 1140 |
| attttatttg tttagtccct gttctaagta taatgcccag agtactgaaa ataatcaatt             | 1200 |
| attgttacat tgacctcaac acagtagagc atgtatattt aatatctaca gaagcaataa             | 1260 |
| accagaaaag agcatttgaa gttgatagag ggggaaatgg caggaagaac tgatgaagtg             | 1320 |
| gccacagtct gaagttgaaa tgcagaaaga tagatttgcc tcctgtcttt ctttggcttt             | 1380 |

| tttat          | ttact                   | ctaa       | cctt       | ct ta      | attt             | ttgad      | t tg             | gage       | tctc       | acca             | agtg       | tcc .            | aaaa       | gaggtc          | 1440  |
|----------------|-------------------------|------------|------------|------------|------------------|------------|------------------|------------|------------|------------------|------------|------------------|------------|-----------------|-------|
| taaat          | tctga                   | ccta       | catgo      | cc c       | ctga             | aagat      | t gc             | tage       | agac       | ctga             | agtt       | ctc              | ataa       | aggaat          | 1500  |
| aggag          | gga <b>gc</b>           | agaag      | gggaa      | aa a       | caati            | tgati      | t ct             | ttgg       | tagc       | caga             | aaag       | ttg .            | aagaa      | agaaaa          | 1560  |
| caaat          | taaaa                   | tgaga      | aati       | ta ga      | aaaa             | taata      | a tto            | caaa       | ttat       | atai             | tatt       | tgg '            | tcca       | gtacgg          | 1620  |
| tatca          | atata                   | ttate      | cagta      | et a       | aatg             | atgai      | t tt             | ttac       | ctta       | gate             | gaac       | aat              | atgt       | ataaat          | 1680  |
| gttaa          | tatat                   | accti      | t gga1     | tt a       | gaaa             | tacci      | t aaa            | attt       | ctaa       | aato             | ctata      | ata (            | gatt       | ctattg          | 1740  |
| agaaa          | gtcaa                   | ctgg       | gttad      | ca g       | gatgo            | gatta      | a gga            | aagge      | ссаа       | aaat             | tgag       | ctg              | tgtt       | aatcag          | 1800  |
| ggaag          | actaa                   | acata      | aaag       | gt ga      | aata             | gtct       | g aaq            | ggag       | gctg       | ttga             | acag       | gaa (            | gggc       | agggag          | 1860  |
| ggatg          | gaat t                  | gaaat      | tgtt       | да с       | ctct             | caaa       | g ca             | ttta       | ctta       | gagg             | ggct       | tta              | ctct       | ggaggt          | 1920  |
| gagag          | aaggg                   | agggo      | caata      | ag ta      | aatt             | tgage      | g gt1            | tgcc       | ttct       | tgti             | taga       | acc (            | ctata      | agttca          | 1980  |
| acttt          | ctttc                   | ctate      | ctto       | cc a       | cacti            | tcaca      | a tci            | tagg       | gaca       | tgaa             | atgg       | tga (            | 1          | atg<br>Met<br>1 | 2036  |
| gac a<br>Asp T | ca ggg<br>hr Gly        | Asn        | tgg<br>Trp | agc<br>Ser | cag<br>Gln       | gta<br>Val | gca<br>Ala<br>10 | gaa<br>Glu | ttc<br>Phe | atc<br>Ile       | atc<br>Ile | ttg<br>Leu<br>15 | ggc<br>Gly | ttc<br>Phe      | 2084  |
|                | at ctc<br>is Leu<br>20  |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2132  |
| att t<br>Ile T | ac ctc<br>yr Leu<br>5   | atg<br>Met | act<br>Thr | gtg<br>Val | ttg<br>Leu<br>40 | gga<br>Gly | aac<br>Asn       | ctg<br>Leu | ctg<br>Leu | ata<br>Ile<br>45 | ttc<br>Phe | ctg<br>Leu       | gtg<br>Val | gtc<br>Val      | 2180  |
|                | tg gac<br>eu Asp        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2228  |
|                | cc ttc<br>er Phe        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2276  |
|                | ca aac<br>la Asn        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2324  |
|                | tg cag<br>eu Gln<br>100 |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2372  |
| Leu L          | tg aca<br>eu Thr<br>15  |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2420  |
|                | ac tac<br>is Tyr        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2468  |
|                | gc tgt<br>ly Cys        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2516- |
|                | tt tca<br>le Ser        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2564  |
|                | gt gac<br>ys Asp<br>180 |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2612  |
| Ile As         | at gtc<br>sn Val<br>95  |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2660  |
|                | tc ctg<br>ne Leu        |            |            |            |                  |            |                  |            |            |                  |            |                  |            |                 | 2708  |

| 210                                               | 215                               |                               | 6U 200 PCT<br>220                | FINAL.ST25<br>225                 |       |
|---------------------------------------------------|-----------------------------------|-------------------------------|----------------------------------|-----------------------------------|-------|
| ctc aga att ccc tca<br>Leu Arg Ile Pro Ser<br>230 | Ala Ala Gly                       | aag agg a<br>Lys Arg 1<br>235 | ag gçc atc<br>Lys Ala Ile        | tcc acg tgt<br>Ser Thr Cys<br>240 | 2756  |
| gcc tcc cac ttc act<br>Ala Ser His Phe Thr<br>245 | gtg gtt ctc<br>Val Val Leu        | atc ttc t<br>Ile Phe T<br>250 | yr Gly Ser                       | atc ctt tcc<br>Ile Leu Ser<br>255 | 2804  |
| atg tat gtg cag ctg<br>Met Tyr Val Gln Leu<br>260 | aag aag agc<br>Lys Lys Ser<br>265 | tac tca c<br>Tyr Ser L        | tg gac tat<br>eu Asp Tyr<br>270  | gac cag gcc<br>Asp Gln Ala        | 2852  |
| ctg gca gtg gtc tac<br>Leu Ala Val Val Tyr<br>275 | tca gtg ctc<br>Ser Val Leu<br>280 | aca ccc t<br>Thr Pro P        | tc ctc aac<br>he Leu Asn<br>285  | ccc ttc atc<br>Pro Phe lle        | 2900  |
| tac agc ttg cgc aac<br>Tyr Ser Leu Arg Asn<br>290 | aag gag atc<br>Lys Glu Ile<br>295 | Lys Glu A                     | ct gtg agg<br>la Val Arg 2<br>00 | agg cag cta<br>Arg Gln Leu<br>305 | 2948  |
| aag aga att ggg ata<br>Lys Arg Ile Gly Ile<br>310 | ttg gca tga<br>Leu Ala            | gttggggct                     | g agagtaggc                      | aaggccgggc                        | 3002  |
| ctgaggatat ggtggccc                               | a gggatcaaca                      | gtggccag                      | ag acgagaaad                     | ct aaaaattcag                     | 3062  |
| tgcttttcta tgtggggtg                              | g tggagctgca                      | gcaagtgc                      | tg actgactto                     | c agtgttatag                      | 3122  |
| cgaccttcat actgtctgc                              | t ggagccacat                      | ttggcttg                      | ag acċagagao                     | t agggaaagta                      | 3182  |
| cacatccctt caacatgat                              | g tagtgcagtg                      | attttcaaa                     | a ctcagatgt                      | t tatgtatcac                      | 3242  |
| acttaggttt tttttaaaa                              | t ctgtgtctta                      | cctattata                     | c gtttatagg                      | c atttttcaaa                      | 3302  |
| tttacttgac ttaatataa                              | a tatagtcagg                      | catgtccta                     | a acaaaatgt                      | g attcatgatg                      | 3362  |
| ttttttgtac cacttgcaa                              | t catttcatgt                      | ggagaagac                     | t ggtacagta                      | g aaaaaagcat                      | 3422  |
| gttttttgaa ctcatatat                              | a tctggattta                      | aatcatgtt                     | t tattcagtc                      | a cttgctaatt                      | 3482  |
| acttaatctt tagaaagta                              | a cttagcatct                      | ctgagtctt                     | a atttcatta                      | t ttgataatgg                      | 3542  |
| tattttcttg aagagtgtt                              | t tgaatattaa                      | cgttaagat                     | t tgtaaacca                      | c agtgcacagt                      | 3602  |
| gtctgacatg taggtgata                              | g taaataaata                      | aggacttgt                     | t tttatttat                      | t ttattctgcg                      | 3662  |
| aagacttcac atcattact                              | c tgggtcttag                      | aacaatato                     | t agtaaaaca                      | t aaataaacaa                      | 3722  |
| aaatactttc caagtattt                              | t ctccaaagga                      | aaggagcaa                     | a ccagccaga                      | a ggaatacttg                      | 3782  |
| tatagtatac aagtatact                              | a tacttgaaaa                      | gtatagttt                     | g tcacagttc                      | t gttctgacaa                      | 3842  |
| gtttcatgta cctgtctta                              | g tggtcctaat                      | atctatggc                     | c agtataatg                      | t atgaaagtat                      | 3902  |
| aggagttgag tcagtggaaa                             | gaaataggat                        | tacttttta                     | c atcgaacca                      | ttctttattg                        | 3962  |
| aattgtaagc taattattto                             | ctgaaacgtg                        | tgaaaaata                     | a ttctaaaat                      | g tagcatatga                      | 4022  |
| gagatetggg gatteaatta                             | atagctaata                        | ttatgtatt                     | c tttatgtato                     | cttccatgaa                        | 4082  |
| <del>Eggaggat</del> ca aatattaact                 | acaagaaatc                        | tttgaattc                     | t atagaactto                     | : ctaagaagat                      | 4142  |
| tacaaaatat ttttaataco                             | acacttttaa                        | aggtattca                     | ccatccatgo                       | attcaaatta                        | 4202  |
| acacgtttat ttagctctta                             | ctatatatca                        | gatgcagtgt                    | caactctaca                       | aaagcaatga                        | 4262  |
| acaagacata tatatgtcca                             | ggtcctacct                        | ttagggtgti                    | : ttaaaagagt                     | tgagaatata                        | 4322  |
| aatattaaaa ttataattaa                             | tttataatta                        | gttataatta                    | attataattg                       | tgggaagtag                        | 4'382 |
| attaagata aacatgcatt                              | ctcctttttt                        | ttcacttgtc                    | : tttgaagttt                     | attgagaatt                        | 4442  |
| taagcagat aaatgttttt                              | acattaaata                        | atcaccagga                    | attcaaaata                       | ttatactcta                        | 4502  |
| caaatggga actigaattg                              |                                   |                               |                                  |                                   | 4562  |
| atttagtgt ttcatctaga                              |                                   |                               |                                  |                                   | 4622  |

| gtt | tgacttt | tggtaaaatt | ttttgtcctg | gacatttttg | atgactaagt | atcactaaat | 4682 |
|-----|---------|------------|------------|------------|------------|------------|------|
| cta | tgctagg | taaatttgcc | cctattattt | tcttttttat | tttattttat | tttatttcat | 4742 |
| tat | tatttta | tttagggtac | atgtgcacaa | cgtgcaagtt | ttttacatat | gtatacatgt | 4802 |
| gcc | atgttgg | tgtgctgcac | ccattaactc | atcatttagc | attaggagta | tctcctaatg | 4862 |
| cta | tecetee | cccatccccc | аассссасаа | cagtccccag | tgtgtgatgt | tccccttctc | 4922 |
| aat | atcatac | tgaatgggca | aaaactggaa | gcattccctt | tgaaaacggg | cacaagacag | 4982 |
| gga | tgccctc | tctcaccact | cctattcaac | atagtgtttg | atgttctggc | cagggcaatc | 5042 |
| agg | taggaga | aggaaattaa | gggtgttcaa | ttaggaaaag | agga       |            | 5086 |

<210> 34

<211> 312

<212> PRT

<213> Homo sapiens

<400> 34

Met Asp Thr Gly Asn Trp Ser Gln Val Ala Glu Phe Ile Ile Leu Gly 1 5 10 15

Phe Pro His Leu Gln Gly Val Gln Ile Tyr Leu Phe Leu Leu Leu 20  $\phantom{\bigg|}25\phantom{\bigg|}$  30

Leu Ile Tyr Leu Met Thr Val Leu Gly Asn Leu Leu Ile Phe Leu Val 35 40 45

Val Cys Leu Asp Ser Arg Leu His Thr Pro Met Tyr His Phe Val Ser 50 60

Ile Leu Ser Phe Ser Glu Leu Gly Tyr Thr Ala Ala Thr Ile Pro Lys 65 70 75 80

Met Leu Ala Asn Leu Leu Ser Glu Lys Lys Thr Ile Ser Phe Ser Gly 85 90 95

Cys Leu Leu Gln Ile Tyr Phe Phe His Ser Leu Gly Ala Thr Glu Cys  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Tyr Leu Leu Thr Ala Met Ala Tyr Asp Arg Tyr Leu Ala Ile Cys Arg 115 120 125

Pro Leu His Tyr Pro Thr Leu Met Thr Pro Thr Leu Cys Ala Glu Ile 130  $$135\$ 

Ala Ile Gly Cys Trp Leu Gly Gly Leu Ala Gly Pro Val Vaf GTu ffe 145 150 155 160

Ser Leu Ile Ser Arg Leu Pro Phe Cys Gly Pro Asn Arg Ile Gln His 165 170 - 175

Val Phe Cys Asp Phe Pro Pro Val Leu Ser Leu Ala Cys Thr Asp Thr 180 185 190

Ser Ile Asn Val Leu Val Asp Phe Val Ile Asn Ser Cys Lys Ile Leu 195 200 205

Ala Thr Phe Leu Leu Ile Leu Cys Ser Tyr Val Gln Ile Ile Cys Thr

| Val 1<br>225                     | Leu Arg                   | lle        | Pro        | Ser<br>230 | Ala        | Ala              | Gly        | Lys        | Arg<br>235 | Lys        | Ala        | lle        | Ser        | Thr<br>240 |   |    |
|----------------------------------|---------------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|---|----|
| Cys A                            | Ala Ser                   | His        | Phe<br>245 | Thr        | Val        | Val              | Leu        | 11e<br>250 | Phe        | Туг        | Gly        | Ser        | 11e<br>255 | Leu        |   |    |
| Ser M                            | let Tyr                   | Val<br>260 | Gln        | Leu        | Lys        | Lys              | Ser<br>265 | Туr        | Ser        | Leu        | Asp        | Туг<br>270 | Asp        | Gln        |   |    |
| Ala L                            | eu Ala<br>275             | Val        | Val        | Туr        | Ser        | Val<br>280       | Leu        | Thr        | Pro        | Phe        | Leu<br>285 | Asn        | Pro        | Phe        |   |    |
| Ile T                            | yr Ser<br>90              | Leu        | Arg        | Asn        | Lys<br>295 | Glu              | He         | Lys        | Glu        | Ala<br>300 | Val        | Arg        | Arg        | Gln        |   |    |
| Leu L<br>305                     | ys Arg                    | lle        |            | 11e<br>310 | Leu        | Ala              |            |            |            |            |            |            |            |            | - |    |
| <210><211><211><212><213>        |                           | sapi       | ens        |            |            |                  |            |            |            |            |            |            |            |            |   |    |
| <400><br>ggaact                  | 35<br>tggag c             | caggi      | tagc       | a gaa      | atte       | atc <sub>.</sub> |            |            |            |            |            |            |            |            |   | 29 |
| <210><211><211><212><212><213>   | 36<br>25<br>DNA<br>Homo : | sapie      | ens        |            |            |                  |            |            |            |            |            |            |            |            |   |    |
| <400><br>ggagca                  | 36<br>agagg at            | tcago      | agga       | agg        | jtg        |                  |            |            |            |            |            |            |            |            |   | 25 |
| <210><211><211><212><213>        | 37<br>50<br>DNA<br>Homo s | sapie      | ns         |            |            |                  |            |            |            |            |            |            |            | •          |   |    |
| <400><br>acactg                  | 37<br>cagt ta             | atata      | gggt       | ggc        | ccag       | igta             | gttg       | jagct      | gg t       | gaaa       | tttg       | ıa         |            |            |   | 50 |
| <210><211><211><212><213>        | 38<br>50<br>DNA<br>Homo s | api e      | ns         |            |            |                  |            |            |            |            |            |            |            |            |   |    |
| <400><br>gcactg                  | 38<br>tgac at             |            |            | tgg        | ggca       | tgg .            | agga       | gaaa       | ct a       | aagt       | tgga       | g          |            |            |   | 50 |
| <210><br><211><br><212><br><213> | 39<br>50<br>DNA<br>Homo s | apien      | าร         |            |            |                  |            |            |            |            |            | •          |            |            |   |    |
| <400><br>attcaaa                 | 39<br>atta ta             |            |            | gtco       | agta       | acg (            | gtate      | caata      | at a       | ttate      | cagt       | a          |            |            | : | 50 |
| <210><211><211><212><213>        | 40<br>848<br>DNA          | .ni        |            |            |            |                  |            |            |            |            |            |            | :          |            |   |    |
| (220>                            | Homo sa                   |            | 13         |            |            |                  |            |            |            |            |            |            |            |            |   |    |
|                                  | (6)(8                     | 40)        |            |            |            |                  |            |            |            |            |            |            |            |            |   |    |

| _ | 2 | 2 | 2 | • |
|---|---|---|---|---|
|   |   |   |   |   |

| <400<br>gaat      | c at             | 10<br>tg ga<br>et As | nt ca<br>sp Hi    | ac gt<br>is Va    | c aç<br>al Se<br>5 | ot ca<br>er Hi   | it aa<br>s As    | oc tç<br>sn Tı    | gg ac             | t ca<br>r Gl      | n Se             | t tt             | t at<br>e Il      | c ct              | t gct<br>eu Ala<br>15 | 50    |
|-------------------|------------------|----------------------|-------------------|-------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-----------------------|-------|
| ggt<br>Gly        | ttc<br>Phe       | acc<br>Thr           | acc<br>Thr        | act<br>Thr<br>20  | 999<br>Gly         | acc<br>Thr       | cta<br>Leu       | caa<br>Gln        | cct<br>Pro<br>25  | ctt<br>Leu        | gcc<br>Ala       | ttc<br>Phe       | ttg<br>Leu        | ggg<br>Gly<br>30  | acc<br>Thr            | 98    |
| cta<br>Leu        | tgc<br>Cys       | atc<br>Ile           | tat<br>Tyr<br>35  | ctc<br>Leu        | ctc<br>Leu         | aca<br>Thr       | ctt<br>Leu       | gca<br>Ala<br>40  | ggg<br>Gly        | aac<br>Asn        | att<br>Ile       | ctc<br>Leu       | atc<br>Ile<br>45  | att<br>Ile        | gtc<br>Val            | 146   |
| ctg<br>Leu        | agg<br>Arg       | tgt<br>Cys<br>50     | ggt<br>Gly        | atg<br>Met        | tca<br>Ser         | gca<br>Ala       | cca<br>Pro<br>55 | cag<br>Gln        | tgc<br>Cys        | cca<br>Pro        | tgc<br>Cys       | tgc<br>Cys<br>60 | tgc<br>Cys        | aca<br>Thr        | cct<br>Pro            | 194   |
| tgc<br>Cys        | tcc<br>Ser<br>65 | aag<br>Lys           | ggt<br>Gly        | gtt<br>Val        | cac<br>His         | ccg<br>Pro<br>70 | tct<br>Ser       | cat<br>His        | cag<br>Gln        | ctg<br>Leu        | tat<br>Tyr<br>75 | gct<br>Ala       | tta<br>Leu        | ttc<br>Phe        | agc<br>Ser            | 242   |
| tat<br>Tyr<br>80  | gtc<br>Val       | ttt<br>Phe           | cat<br>His        | tcc<br>Ser        | tta<br>Leu<br>85   | 999<br>G1 y      | atg<br>Met       | act<br>Thr        | gag<br>Glu        | tgc<br>Cys<br>90  | tac<br>Tyr       | ctg<br>Leu       | ctg<br>Leu        | ggt<br>Gly        | gtc<br>Val<br>95      | · 290 |
| atg<br>Met        | gca<br>Ala       | ctg<br>Leu           | gat<br>Asp        | agc<br>Ser<br>100 | tac<br>Tyr         | ctt<br>Leu       | atc<br>Ile       | atc<br>Ile        | tgc<br>Cys<br>105 | cac<br>His        | cca<br>Pro       | ctc<br>Leu       | cac<br>His        | tac<br>Tyr<br>110 | cac<br>His            | 338   |
| gca<br>Ala        | ctc<br>Leu       | atg<br>Met           | agc<br>Ser<br>115 | aga<br>Arg        | cag<br>Gln         | gta<br>Val       | cag<br>Gln       | tta<br>Leu<br>120 | cga<br>Arg        | cta<br>Leu        | gct<br>Ala       | ggg<br>Gly       | gcc<br>Ala<br>125 | agt<br>Ser        | tgg<br>Trp            | 386   |
| Val               | Ala              | Gly<br>130           | Phe               | Ser               | Ala                | Ala              | Leu<br>135       | Val               | Pro               | gcc<br>Ala        | Thr              | Leu<br>140       | Thr               | Ala               | Thr                   | 434   |
| Leu               | Pro<br>145       | Phe                  | Cys               | Leu               | Lys                | Glս<br>150       | Val              | Ala               | His               | tac<br>Tyr        | Phe<br>155       | Cys              | Asp               | Leu               | Ala                   | 482   |
| cca<br>Pro<br>160 | cta<br>Leu       | atg<br>Met           | cgg<br>Arg        | ttg<br>Leu        | gca<br>Ala<br>165  | tgt<br>Cys       | gtg<br>Val       | gac<br>Asp        | aca<br>Thr        | agc<br>Ser<br>170 | tgg<br>Trp       | cat<br>His       | gct<br>Ala        | agg<br>Arg        | gcc<br>Ala<br>175     | 530   |
| His               | ĞÎy              | Thr                  | Val               | 11e<br>180        | Gly                | Val              | Ala              | Thr               | Gly<br>185        | tgc<br>Cys        | Asn              | Phe              | Val               | Leu<br>190        | Ile                   | 578   |
| Leu               | .Gly             | Leu                  | Tyr<br>195        | Gly               | Gly                | Ile              | Leu              | Asn<br>200        | Ala               | gtg<br>Val        | Leu              | Lys              | Leu<br>205        | Pro               | Ser                   | 626   |
| Ala               | Ala              | Ser<br>210           | Ser               | Ala               | Lys                | Ala              | Phe<br>215       | Ser               | Thr               | tgt<br>Cys        | Ser              | Ser<br>220       | His               | Val               | Thr                   | 674   |
| _Val              | Val<br>225       | Ala                  | Leu               | Phe               | Tyr                | Ala<br>230       | Ser              | Ala               | Phe               | aca<br>Thr        | Val<br>235       | Tyr              | Val               | Gly               | Ser                   | 722   |
| Pro<br>240        | Gly              | Ser                  | Arg               | Pro               | Glu<br>245         | Ser              | Thr              | Asp               | Lys               | ctt<br>Leu<br>250 | Val              | Ala              | Leu               | Val               | Tyr<br>255            | 770   |
| Ala               | Leu              | Ile                  | Thr               | Pro<br>260        | Phe                | Leu              | Asn              | Pro               | 11e<br>265        | atc<br>Ile        | tat<br>Tyr       | agc<br>Ser       | ctt<br>Leu        | Arg<br>270        | aac<br>Asn            | 818   |
|                   |                  |                      |                   | tat<br>Tyr        |                    |                  |                  |                   | tga               |                   |                  |                  |                   |                   | :                     | 848   |

<210> 41 <211> 280 <212> PRT

<213> Homo sapiens

<400> 41

Met Asp His Val Ser His Asn Trp Thr Gln Ser Phe Ile Leu Ala Gly 1 10 15

Phe Thr Thr Gly Thr Leu Gln Pro Leu Ala Phe Leu Gly Thr Leu 20 25 30

Cys lle Tyr Leu Leu Thr Leu Ala Gly Asn Ile Leu Ile Ile Val Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Arg Cys Gly Met Ser Ala Pro Gln Cys Pro Cys Cys Cys Thr Pro Cys 50 60

Ser Lys Gly Val His Pro Ser His Gln Leu Tyr Ala Leu Phe Ser Tyr 65 70 75 80

Val Phe His Ser Leu Gly Met Thr Glu Cys Tyr Leu Leu Gly Val Met  $85 \hspace{1cm} 90 \hspace{1cm} 95$ 

Ala Leu Asp Ser Tyr Leu Ile Ile Cys His Pro Leu His Tyr His Ala 100  $$105\$  110

Leu Met Ser Arg Gln Val Gln Leu Arg Leu Ala Gly Ala Ser Trp Val 115 120 125

Ala Gly Phe Ser Ala Ala Leu Val Pro Ala Thr Leu Thr Ala Thr Leu 130 135 140

Pro Phe Cys Leu Lys Glu Val Ala His Tyr Phe Cys Asp Leu Ala Pro 145 150 155 160

Leu Met Arg Leu Ala Cys Val Asp Thr Ser Trp His Ala Arg Ala His 165 170 175

Gly Thr Val 11e Gly Val Ala Thr Gly Cys Asn Phe Val Leu 11e Leu 180 185 190

Gly Leu Tyr Gly Gly Ile Leu Asn Ala Val Leu Lys Leu Pro Ser Ala 195 200 205

Ala Ser Ser Ala Lys Ala Phe Ser Thr Cys Ser Ser His Val Thr Val 210 215 220

Val Ala Leu Phe TyrAla Ser Ala Phe Thr Val TyrVal Gly Ser Pro225230235240

Gly Ser Arg Pro Glu Ser Thr Asp Lys Leu Val Ala Leu Val Tyr Ala 245 250 255

Leu Ile Thr Pro Phe Leu Asn Pro Ile Ile Tyr Ser Leu Arg Asn Lys 260 265 270

Glu Leu Leu Tyr Cys Phe Leu Cys 275 280

<210> 42 <211> 26 <212> DNA

| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                  |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <400> 42<br>tcaccaccac tgggacccta caacct                                                                                                                                                                                                                                                                                                            | 26                      |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <210> 43<br><211> 23                                                                                                                                                                                                                                                                                                                                |                         |
| <212> DNA                                                                                                                                                                                                                                                                                                                                           |                         |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <400> 43 ggccacacca atcactgtgc cat                                                                                                                                                                                                                                                                                                                  | 23                      |
| gyctacacca accaccycyc cut                                                                                                                                                                                                                                                                                                                           |                         |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <210> 44                                                                                                                                                                                                                                                                                                                                            |                         |
| <211> 50                                                                                                                                                                                                                                                                                                                                            |                         |
| <212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                     |                         |
| (213) Home Doptom                                                                                                                                                                                                                                                                                                                                   |                         |
| <400> 44                                                                                                                                                                                                                                                                                                                                            | 5.0                     |
| caatctgtta tttatacggc ctctacatcc atccagtacc tgcttatgta                                                                                                                                                                                                                                                                                              | 50                      |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <210> 45                                                                                                                                                                                                                                                                                                                                            |                         |
| <211> 50                                                                                                                                                                                                                                                                                                                                            |                         |
| <212> DNA                                                                                                                                                                                                                                                                                                                                           |                         |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                  |                         |
| <400> 45                                                                                                                                                                                                                                                                                                                                            |                         |
| gttctcttt tataaaaggc tatgtgggac ttgcaaaact tctagtggcc                                                                                                                                                                                                                                                                                               | 50                      |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| :210: 16                                                                                                                                                                                                                                                                                                                                            |                         |
| <210> 46<br><211> 50                                                                                                                                                                                                                                                                                                                                |                         |
| <211> 30<br><212> DNA                                                                                                                                                                                                                                                                                                                               |                         |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <400> 46 gaacatgaaa tataagtagg ggagtatett ggggtagaaa ggatgeegag                                                                                                                                                                                                                                                                                     | 50                      |
| gaacatgaaa tataagtagg ggagtateet gggggtageaa ggetgergeg                                                                                                                                                                                                                                                                                             |                         |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <210> 47                                                                                                                                                                                                                                                                                                                                            |                         |
| <211> 1476<br><212> DNA                                                                                                                                                                                                                                                                                                                             |                         |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
|                                                                                                                                                                                                                                                                                                                                                     |                         |
| <220>                                                                                                                                                                                                                                                                                                                                               |                         |
| <221> CDS                                                                                                                                                                                                                                                                                                                                           |                         |
| <221> CDS<br><222> (1)(1476)                                                                                                                                                                                                                                                                                                                        |                         |
| <221> CDS                                                                                                                                                                                                                                                                                                                                           |                         |
| <221> CDS<br><222> (1)(1476)<br><223><br><400> 47                                                                                                                                                                                                                                                                                                   | 48                      |
| <221> CDS <222> (1). (1476) <223> <400> 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att                                                                                                                                                                                                                                          | 48                      |
| <221> CDS <222> (1)(1476) <223> <400> 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile                                                                                                                                                                                | 48                      |
| <221> CDS <222> (1)(1476) <223>  <400> 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1 5 10 15                                                                                                                                                                     |                         |
| <221> CDS <222> (1)(1476) <223>  <400> 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1 5 10 15  Cag ctg gcc ctc ttt gta gtt ttt ctt ttt ctg tat cta gtc att ctt                                                                                                    | 48                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1 5 10 15  cag ctg gcc ctc ttt gta gtt ttt ctt ttt ctg tat cta gtc att ctt Gln Leu Ala Leu Phe Val Val Phe Leu Phe Leu Tyr Leu Val Ile Leu</pre> |                         |
| <221> CDS <222> (1)(1476) <223>  <400> 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1 5 10 15  Cag ctg gcc ctc ttt gta gtt ttt ctt ttt ctg tat cta gtc att ctt                                                                                                    |                         |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                          |                         |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                          | 96                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                          | 96                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                          | 96                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96<br>144<br>192        |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96                      |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96<br>144<br>192        |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96<br>144<br>192<br>240 |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96<br>144<br>192        |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96<br>144<br>192<br>240 |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                          | 96<br>144<br>192<br>240 |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                      | 96<br>144<br>192<br>240 |
| <pre>&lt;221&gt; CDS &lt;222&gt; (1)(1476) &lt;223&gt;  &lt;400&gt; 47 atg gtc acc gaa ttc ctg ttg ctg ggt ttt tcc agc ctt ggt gaa att Met Val Thr Glu Phe Leu Leu Gly Phe Ser Ser Leu Gly Glu Ile 1</pre>                                                                                                                                          | 96<br>144<br>192<br>240 |

|                   |                    |                  |                   | 10                | 0                  |                    |                    |                    | 1                   | 05             |                   | 16                 | υ 2                | 00             | PC:               |                   | (NAI               | L.S            | <b>T</b> 25       |            |
|-------------------|--------------------|------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|---------------------|----------------|-------------------|--------------------|--------------------|----------------|-------------------|-------------------|--------------------|----------------|-------------------|------------|
| t a<br>Ty         | r A                | sp.              | cgc<br>Arg<br>115 | ta:               | t gc<br>r Al       | t go<br>a Al       | cc a<br>la I       | le C               | gt c<br>ys H<br>20  | ac<br>is       | cc<br>Pr          | t cl               | ig c<br>eu H       | at             | ta<br>Ty:<br>12:  | r Pi              | ro :               | act<br>Thr     | ct<br>Le          | t 384<br>u |
| a t<br>Me         | t Se               | gc<br>er '<br>30 | tgg<br>I'rp       | Gli               | g gt<br>n Va       | g tç<br>1 Cy       | /s G               | ga a<br>ly L<br>35 | aa c<br>ys L        | t g<br>eu      | gc<br>Al          | ago<br>aAl         | a A                | cc<br>1a<br>40 | t g t<br>Cys      | t go              | a a<br>la I        | at t           | 99<br>61          | t 432<br>y |
| 99<br>G1<br>14    | y Pi               | ic i             | ttg<br>Leu        | gcc<br>Ala        | tc<br>Se:          | t ct<br>r Le<br>15 | u Tl               | ca g<br>hr V       | tag<br>alV          | ta<br>al       | aa<br>Asi         | t tt<br>n Le<br>15 | ט ע                | tt<br>al       | t t d<br>Phe      | ag<br>Se          | jc c               | et c           | CC<br>Pro         | 9          |
| t t<br>Ph         | t tg<br>e Cy       | jt a<br>/s S     | gc<br>Ser         | gcc<br>Ala        | : aad<br>Asi<br>16 | n Ly               | agt<br>SVa         | ic aa              | at cosn H           | at<br>is       | tac<br>Ty:        | r Ph               | c t<br>e C         | gt<br>ys       | gac<br>Asp        | at<br>11          | e S                | ca<br>er<br>75 | gca<br>Ala        | 528<br>5   |
| gt<br>Va          | c at<br>l Il       | t c<br>e l       | tt<br>eu          | ctg<br>Leu<br>180 | Ala                | t tg<br>a Cy       | t ac<br>s Th       | c aa<br>nr As      | ac ac<br>sn Tl      | ca<br>hr<br>85 | gat<br>Asp        | t gt<br>o Va       | ta<br>lA           | ac<br>sn       | gaa<br>Glu        | tt<br>Ph<br>19    | e V                | t g<br>a l     | ata<br>Ile        | 576        |
| t t<br>Ph         | c at               | e C              | gt<br>ys<br>95    | gga<br>G1 y       | gtt<br>Val         | ct<br>Le           | t gt<br>u Va       | a ct<br>l Le<br>20 | t gt<br>eu Va<br>00 | ig<br>al       | gt t<br>Va]       | cc<br>Pr           | c t:<br>o Pl       | he             | ctg<br>Leu<br>205 | Ph                | ta<br>e I          | tc<br>le       | t o t<br>C y s    | 624        |
| gt (<br>Va        | t tc<br>I Se<br>21 | r T              | ət<br>yr          | ctc<br>Leu        | t go<br>Cys        | ati                | t ct<br>e Le<br>21 | u Ar               | ig ac               | r              | ato               | ct<br>Le           | g aa<br>u Ly<br>22 | /5             | att<br>Ile        | cc<br>Pr          | c t                | ca<br>er       | gct<br>Ala        | 672        |
| gag<br>Glu<br>225 | ) G1               | ca<br>y A        | ga<br>rg          | cgg<br>Arg        | aaa<br>Lys         | gc<br>Ala<br>230   | a Ph               | t to<br>e Se       | c ac                | r              | tgc<br>Cys        | gc<br>Al:<br>23    | a Se               | r I            | cac<br>His        | c t c             | c a<br>u S         | gt<br>er       | gtt<br>Val<br>240 |            |
| gt t<br>Va)       | at                 | tg<br>eV         | tt<br>al          | cat<br>His        | tat<br>Tyr<br>245  | C1.7               | tg<br>/ Cy         | t gc<br>s Al       | t to<br>a Se        | r              | ttc<br>Phe<br>250 | 116                | e ta               | r l            | ctg<br>Leu        | agg<br>Arg        | ) Co<br>) Pi<br>25 | ro             | aca<br>Thr        | 768        |
| gca<br>Ala        | aac<br>Asi         | t to             | yr '              | gtg<br>Val<br>260 | tcc<br>Ser         | aac<br>Asn         | aa<br>Ly:          | a ga<br>s As       | c ag<br>p Ar<br>26  | g 1            | ctg<br>Leu        | gto<br>Val         | g ac               | g ç            | gtg<br>/al        | aca<br>Thr<br>270 | T )                | ec<br>yr       | acg<br>Thr        | 816        |
| att               | gto<br>Val         | 2 ac             | JL I              | cca<br>Pro        | tta<br>Leu         | cta<br>Leu         | aad<br>Asi         | 28                 | c at<br>o Me<br>O   | g ç<br>t \     | gtt<br>Val        | tat                | ag<br>Se           | r I            | tc<br>eu<br>85    | aga<br>Arg        | aa<br>As           | ec<br>sn       | aag<br>Lys        | 864        |
| gat<br>Asp        | gto<br>Val<br>290  | G                | aa o              | ett<br>Leu        | gct<br>Ala         | atc<br>Ile         | aga<br>Arg<br>295  | Ly                 | agt<br>SVa          | g t            | tg<br>Leu         | 990<br>G1 y        | aa<br>Ly<br>30     | s L            | aa<br>ys          | ggt<br>Gly        | at<br>Il           | t<br>e         | ctt<br>Leu        | 912        |
| tct<br>Ser<br>305 | at c<br>Ile        | t c              | t g<br>er G       | jaa<br>Slu        | atc<br>lle         | ttc<br>Phe<br>310  | Tyr                | aca<br>Thi         | ac<br>Th            | t g<br>r V     | tt<br>al          | att<br>11e<br>315  | Le                 | gc<br>uP       | cc<br>ro          | aag<br>Lys        | at<br>Me           | t              | ctt<br>Leu<br>320 | 960        |
| atc<br>Ile        | aac<br>Asn         | Le               | at<br>uP          | ne                | tct<br>Ser<br>325  | gta<br>Val         | t t c<br>Phe       | agg<br>Arg         | aca<br>Thi          | r L            | tc<br>eu<br>30    | tcc<br>Ser         | t t t              | tg<br>eV       | tg<br>al          | agt<br>Ser        | tg<br>Cy<br>33     | S              | gcc<br>Ala        | 1008       |
| acc<br>Thr        | caa<br>Gln         | at<br>Me         | t P               | tc<br>he<br>40    | ttc<br>Phe         | ttc<br>Phe         | Ctc<br>Leu         | ggt<br>Gly         | Phe<br>345          | e A            | ct<br>la          | gtc<br>Val         | act<br>Thi         | : a:           | 5n                | tgt<br>Cys<br>350 | ct<br>Le           | g (            | ctt<br>Leu        | 1056       |
| ctg<br>Leu        | gga<br>Gly         | gt<br>Va<br>35   | I W               | tg (              | ggt<br>Gly         | tat<br>Tyr         | gat<br>Asp         | cgt<br>Arg<br>360  | tat                 | g<br>A         | ct<br>la          | gcc<br>Ala         | ato                | C              | gt<br>ys (        | cag<br>Gln        | Pro                | t 1            | t t g<br>Leu      | 1104       |
| caa<br>Gln        | tac<br>Tyr<br>370  | gc<br>Al         | t gʻ              | tt d              | ctc<br>Leu         | atg<br>Met         | agc<br>Ser<br>375  | tgg<br>Trp         | aga<br>Arg          | g<br>V         | ta<br>al          | tgt<br>Cys         | gga<br>Gly<br>380  | G]             | aa (<br>ln ]      | c t ġ<br>Le u     | ata                | a ç            | jca<br>Nla        | 1152       |
| oct<br>Thr<br>385 | tgt<br>Cys         | at:<br>Il        | t at              | tt a<br>le S      | ser (              | ggc<br>Gly<br>390  | ttc<br>Phe         | cta<br>Leu         | ata<br>Ile          | t o            | er                | ctg<br>Leu<br>395  | gtg<br>Val         | G1             | ja a<br>y 1       | eca<br>Thr        | act<br>Thi         | r i P          | tt<br>he<br>00    | 1200       |
| gtc<br>/al        | ttt<br>Phe         | age<br>Sei       | c t               | eu F              | ro 1               | ttc<br>Phe         | tgt<br>Cys         | ggc<br>Gly         | tcc<br>Ser          | As             | ec<br>sn :        | aag<br>Lys         | gtc<br>Val         | aa<br>As       | n l               | ac<br>Bis         | tac<br>Tyr<br>415  | : P            | tt                | 1248       |
| gt                | gat                | att              | to                | a c               | ca q               | g <b>t</b> t       | atc                | cgt                | ctc                 | gc             | c i               | tgt                | gct                | ga             | c a               | igc               | tac                | a              | tc                | 1296       |

|                                                  |                                   |                                |                                   | 200 PCT FINA                      |                                |
|--------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| Cys Asp Ile                                      | Ser Pro Val<br>420                |                                | eu Ala Cys<br>25                  | Ala Asp Ser<br>430                | Tyr Ile                        |
| agt gaa ctg<br>Ser Glu Leu<br>435                | gtc atc ttc<br>Val Ile Phe        | atc ttc go<br>Ile Phe G<br>440 | gg gtc ttg<br>Sly Val Leu         | gtg ctt gtt<br>Val Leu Val<br>445 | gtg ccc 1344<br>Val Pro        |
| ttg ata ttt<br>Leu Ile Phe<br>450                | atc tgc att<br>Ile Cys Ile        | tcc tat go<br>Ser Tyr G<br>455 | gc ttc att<br>Sly Phe Ile         | gtc cgc acc<br>Val Arg Thr<br>460 | atc ctg 1392<br>Ile Leu        |
| aag atc cca<br>Lys Ile Pro<br>465                | tca gct gaa<br>Ser Ala Glu<br>470 | Gly Lys G                      | caa aaa gcc<br>Sln Lys Ala<br>475 | ttc tcc acc<br>Phe Ser Thr        | tgt gct 1440<br>Cys Ala<br>480 |
|                                                  | att gta gtc<br>11e Val Val<br>485 |                                |                                   | tga                               | 1476                           |
| <210> 48<br><211> 491<br><212> PRT<br><213> Homo | sapiens                           |                                |                                   |                                   |                                |
| <400> 48                                         |                                   |                                |                                   |                                   |                                |
| Met Val Thr<br>1                                 | Glu Phe Leu<br>5                  | Leu Leu G                      | Gly Phe Ser<br>10                 | Ser Leu Gly                       | Glu Ile<br>15                  |
| Gln Leu Ala                                      | Leu Phe Val<br>20                 |                                | Leu Phe Leu<br>25                 | Tyr Leu Val<br>30                 | Ile Leu                        |
| Ser Gly Asn<br>35                                | Val Thr Ile                       | Ile Ser V<br>40                | /al Ile His                       | Leu Asp Lys<br>· 45               | Ser Leu                        |
| His Thr Pro<br>50                                | Met Tyr Phe                       | Phe Leu G<br>55                | Gly Ile Leu                       | Ser Thr Ser<br>60                 | Glu Thr                        |
| Phe Tyr Thr<br>65                                | Phe Val Ile<br>70                 | Leu Pro L                      | Lys Met Leu<br>75                 | Ile Asn Leu                       | Leu Ser<br>80                  |
| Val Ala Arg                                      | Thr Ile Ser<br>85                 | Phe Asn C                      | Cys Cys Ala<br>90                 | Leu Gln Met                       | Phe Phe<br>95                  |
|                                                  |                                   |                                |                                   | Leu Gly Val                       | Met Gly                        |
| Tyr Asp Arg<br>115                               | Tyr Ala Ala                       | Ile Cys H<br>120               | lis Pro Leu                       | His Tyr Pro<br>125                | Thr Leu                        |
| Met Ser Trp<br>_ 130                             | Gln Val Cys                       | Gly Lys L<br>135               | Leu Ala Ala                       | Ala Cys Ala<br>140                | Ile Gly                        |
| Gly Phe Leu<br>145                               | Ala Ser Leu<br>150                |                                | Val Asn Leu<br>155                | Val Phe Ser                       | Leu Pro<br>160                 |
| Phe Cys Ser                                      | Ala Asn Lys<br>165                | Val Asn H                      | lis Tyr Phe<br>170                | Cys Asp Ile                       | Ser Ala<br>175                 |
| Val Ile Leu                                      | Leu Ala Cys<br>180                |                                | Thr Asp Val                       | Asn Glu Phe<br>190                | Val''lle                       |

Phe Ile Cys Gly Val Leu Val Leu Val Val Pro Phe Leu Phe Ile Cys 195 200 205

Val Ser Tyr Leu Cys Ile Leu Arg Thr Ile Leu Lys Ile Pro Ser Ala 210 215 220

Glu Gly Arg Arg.Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Val 225 230 235 240

Val 11e Val His Tyr Gly Cys Ala Ser Phe 11e Tyr Leu Arg Pro Thr 245 250 255

Ala Asn Tyr Val Ser Asn Lys Asp Arg Leu Val Thr Val Thr Tyr Thr 260 265 270

Ile Val Thr Pro Leu Leu Asn Pro Met Val Tyr Ser Leu Arg Asn Lys 275 280 285

Ser Ile Ser Glu Ile Phe Tyr Thr Thr Val Ile Leu Pro Lys Met Leu 305 310 315 320

Ile Asn Leu Phe Ser Val Phe Arg Thr Leu Ser Phe Val Ser Cys Ala 325 330 .335

Thr Gln Met Phe Phe Phe Leu Gly Phe Ala Val Thr Asn Cys Leu Leu 340 345 350

Leu Gly Val Met Gly Tyr Asp Arg Tyr Ala Ala Ile Cys Gln Pro Leu 355 360 365

Gln Tyr Ala Val Leu Met Ser Trp Arg Val Cys Gly Gln Leu Ile Ala 370 375 380

Thr Cys Ile Ile Ser Gly Phe Leu Ile Ser Leu Val Gly Thr Thr Phe 385 390 395 400

Val Phe Ser Leu Pro Phe Cys Gly Ser Asn Lys Val Asn His Tyr Phe 405 410 415

Cys Asp lle Ser Pro Val Ile Arg Leu Ala Cys Ala Asp Ser Tyr Ile 420 425 430

Ser Glu Leu Val Ile Phe Ile Phe Gly Val Leu Val Leu Val Val Pro 435 440 445

Leu Ile Phe Ile Cys Ile Ser Tyr Gly Phe Ile Val Arg Thr Ile Leu 450 455 460

Lys lle Pro Ser Ala Glu Gly Lys Gln Lys Ala Phe Ser Thr Cys Ala 465 470 475 480

Ser His Leu Ile Val Val Ile Val His Tyr Gly 485 490

<210> 49

<211> 35

<212> DNA

<213> Homo sapiens

<400> 49

ctctgaaatc ttctacacaa ctgttattct gccca

35

```
<210>
 <211>
          27
 <212>
          DNA
 <213>
         Homo sapiens
 <400> 50
 atgagatggg aagcacaggt ggagaag
                                                                                                   27
 <210>
          51
 <211>
          50
 <212>
          DNA
 <213>
         Homo sapiens
 <400> 51
 atcaatattg ttaaaatggc cgtactgtca aaagcaattt acagattcaa
                                                                                                   50
 <210>
          52
          50
 <211>
 <212>
          DNA
 <213>
         Homo sapiens
 <400> 52
atatgaaacc aaaaaagccc tcaaatagcc caagtaaccc taaagaaaaa
 <210>
 <211>
 <212>
          DNA
 <213>
         Homo sapiens
 <400> 53
cgccctattc aataaatggt gtgggaatag ctggctagcc atctgcagaa
                                                                                                   50
<210>
          54
<211>
          50
<212>
          DNA
<213> Homo sapiens
<400> 54
cataagggtt cttaaaattg ggagagagaa tcagaaagtc agagaaagag
<210>
<211>
          276
<212>
         DNA
<213>
          Homo sapiens
<220>
<221> CDS
<222>
         (1)..(276)
<223>
atg aca gtt tat gat tcc tat gtt gcc atc tgc cat cca ctt cac tac Met Thr Val Tyr Asp Ser Tyr Val Ala Ile Cys His Pro Leu His Tyr _1^{\rm I} 5 10 15
                                                                                                   48
cct gtc ctt acg agc tgg cag ata tgc tcc ttc tta gat ttt cag ctg
Pro Val Leu Thr Ser Trp Gln Ile Cys Ser Phe Leu Asp Phe Gln Leu
                                                                                                  96
ctt ttc tgt ggc cca aac aag atc aac cac tac ttc tgt ggc atc tca Leu Phe \overset{\circ}{\text{Cys}} Gly Pro Asn Lys Ile Asn His Tyr Phe \overset{\circ}{\text{Cys}} Asp Ile Ser
ctg ctt att cag ctt gcc tgt act gat acc tac atc agg gag cta gtc
Leu Leu Ile Gln Leu Ala Cys Thr Asp Thr Tyr Ile Arg Glu Leu Val
                                                                                               - 192
atc ttc att ggt gga att cta gca ctt acg gtt cct ctg att tta ttt Ile Phe Ile Gly Gly Ile Leu Ala Leu Thr Val Pro Leu Ile Leu Phe
                                                                                                 240
gca tct cct atg gct tca ttg ttc aca cca tcc tga
                                                                                                 276
```

```
16U 200 PCT FINAL.ST25
  Ala Ser Pro Met Ala Ser Leu Phe Thr Pro Ser
  <210>
 <211> 91
  <212>
       PRT
 <213> Homo sapiens
 <400> 56
 Pro Val Leu Thr Ser Trp Gln Ile Cys Ser Phe Leu Asp Phe Gln Leu 20 25 30
 Leu Phe Cys Gly Pro Asn Lys Ile Asn His Tyr Phe Cys Asp Ile Ser 35 40 45
 Ile Phe Ile Gly Gly Ile Leu Ala Leu Thr Val Pro Leu Ile Leu Phe 65 70 70 80
 Ala Ser Pro Met Ala Ser Leu Phe Thr Pro Ser
 <210>
      57
 <211>
       33
 <212>
      DNA
 <213> Homo sapiens
 <400> 57
atgacagttt atgattccta tgttgccatc tgc
                                                                33
<210>
       58
<211> 29
<212> DNA
<213> Homo sapiens
<400> 58
tcaggatggt gtgaacaatg aagccatag
                                                                29
<210>
      59
<211>
      50
<212> DNA
<213> Homo sapiens
ttccctattt aataaatggt gctgggaaaa ċtggctagcc atatgtagaa
                                                               50
<210>
      60
<211>
      50
<212>
      DNA
<213> Homo sapiens
<400> 60
aacaacccca tcaaaaagtg ggccaaagat atgaacagac acttctcaaa
                                                               50
<210>
      61
<211>
      50
<212> DNA
<213> Homo sapiens
<400> 61
aatggcgatc attaaaaagt caggaaacaa caggtgctgg agaggatgtg
```

Page 28

50

```
<210>
 <211>
        50
 <212>
        DNA
       Homo sapiens
 <213>
 <400> 62
 cccagaggat tataaatcat gctgctgtaa agacacatgc ccacgtatgt
                                                                        50
 <210>
        63
 <211>
        5269
 <212>
        DNA
 <213>
       Homo sapiens
 <220>
 <221> CDS
 <222>
       (2211)..(3152)
 <223>
 <400> 63
taaaagcaaa aataacaact aaattcaaaa ggagataaac tataggaaag aagatttcat
ctgtcatatt tcggggattc aaatatttaa agcattatta cctattttat agttacgttt
                                                                     - 120
tggacacaaa ggccattatg taaaatgtaa cattagttta aaataaaatt taaatgcctt
                                                                      180
agataaataa aatgcagtgt taagaaaaaa atgtgctgtc caggcatttt ggctcatgcc
                                                                      240
tgtaatctca gctactcagg aggctgaggc aggagaatct cttgaaccca ggaggcggga
                                                                      300
ggcggaggtt acagtgagcc ataatcacgc cactgcactc cagtctgggc gacagagcaa
                                                                      360
gattctgtct ccaaaaaaaa aaaaggaaag aaagaaagag aaaagaaaaa atatgctaat
                                                                      420
taggatatet gggtttgtga tggattgtet tttgaggttg tetatttttt tttgagaegg
agtetegete tgtegeecag getggagtge agtggegegg ggtetetget taetggaage
                                                                      540
tecgeetect gggtteactg ggtteacgee attetectge eteageetee tgagtagetq
                                                                      600
ggactacagg cgcctgccac tacgcccggg taattttttg tatttttt ttagtagaga
                                                                      660
cggggtttca ccgtgttagc caggatggtc tcaatctctt gacctcgtga tccacccgcc
                                                                      720
totgtotocc aaagtgotgg gattacagto gtgagcoacc gcgcccggcc ttgaggttgt
                                                                      780
ctttaataca caaattcatg agtataggaa gagagggccc ttgaatatgt tggtcttgca
                                                                      840
tgtaaattaa catctttctt gataggccgt ctaaaaattt gggtgggtta tgtgaataga
                                                                      900
tataatgtct attatgatag agaaagagat tacagatatg atagcatctg agaggtgttg
                                                                      960
gacactaatt agagcaatat aatgattett teetattatt gittietgit iteteatgaa
                                                                     1020
atgtattcat gttgctgtac tatctcaagt ttttagttct tctccttcat aggtaataga
                                                                     1080
tggacacaat gaatatataa tgtgtcttga agggagagaa aagaaataga catggagaca
                                                                     1140
gggatagaca gagaggacct agaagaaaag ggaagtttgc aagtcagact cttacactag
                                                                     1200
ttatttctgg gtaaaaagat tttcctcaat cccaffctca tgtgttttat cttgatgctg
ctttctaata tatctttgtg gcagtaactg tcactggact atgtagattc tctagtctgc
                                                                     1320
ttattaattg aaagtatggt tattaatgaa gggaatgtgt tagtatctcg acctagataa
                                                                     1380
tggagcagag tttggtgcgg gtaaagggtt acatgtctag gagttcaagg atcaaaaccc
                                                                     1440
tagtcacaga tgtgtagatt ggccttcctg ggcatatcga taggaaattc aaagcttctc
                                                                     1500
tggcttctac tttgtcacct atagaataaa gaataaacaa gggtatctgt attgactatt
                                                                     1560
cgatatttat tatttctcaa gcaatgagga aggattgata attagtacag cctgattttg
                                                                     1620
gagcatacgc tctgaaacaa ttagttcagc tgtattttga agtcaaattt tctgggtcag
                                                                     1680
acaaacatta aactgctata tggaattaac aataaaggca caaatgttaa gcgttagggc
                                                                     1740
```

|            | tc           | ttg               | atag              | t ta           | atgto          | catc         | gtai                | taaac              | aa a         | attai        |                   |                    |                    | T Flattta    |              | ST25<br>Baattt       | tg 1800 |
|------------|--------------|-------------------|-------------------|----------------|----------------|--------------|---------------------|--------------------|--------------|--------------|-------------------|--------------------|--------------------|--------------|--------------|----------------------|---------|
|            | at           | ttgi              | tata              | a ct           | gatta          | ataa         | gatt                | taca               | ica a        | tcaç         | gtcat             | c at               | tatt               | atac         | g age        | gaagat               | ca 1860 |
|            | tt           | tato              | gtag              | a at           | gctta          | aagg         | aggo                | ctga               | aa t         | tatt         | atgt              | a aa               | attti              | ttaat        | : tta        | aaata                | at 1920 |
|            | ca           | caaa              | itat              | t ta           | atcto          | att          | ttcc                | tata               | tt t         | ggaa         | atat              | t aa               | aaaat              | taca         | gtt          | actaa                | ct 1980 |
|            | ta           | ctct              | ttt               | a cto          | caata          | att          | gtat                | tttt               | ct t         | aaga         | aatt              | a aa               | aaaa               | atta         | caç          | tgttt                | tt 2040 |
|            | aci          | atgt              | taga              | a tai          | ttaa           | gaa          | atct                | taaa               | ca a         | caaa         | ctca              | t aç               | gatto              | cgga         | aga          | gatati               | tt 2100 |
|            | gci          | ttca              | tcci              | t tca          | aggag          | ccg          | taaa                | ggta               | tt c         | aato         | accc              | t to               | ttat               | tttc         | tca          | ttctc                | et 2160 |
|            | taa          | acat              | ttt               | t gtt          | ttca           | igaa         | ctaa                | cttt               | ca g         | atto         | gaag              | a aa               | caga               | agcg         |              | ctg<br>Leu           | 2216    |
| 1          | cto<br>Lei   | ac<br>Th          | t ga<br>r As<br>5 | at ag<br>sp Ar | ja aa<br>:g As | t ac<br>n Th | a ag<br>ir Se       | t gg<br>r Gl<br>10 | g ac<br>y Th | c ac<br>r Th | g tt<br>r Ph      | c ac<br>e Th       | c ct<br>r Le<br>15 | u Le         | g gg<br>u Gl | c ttc<br>y Phe       | 2264    |
| 5          | t ca<br>Se r | ga<br>As<br>20    | рТу               | ic cc<br>r Pr  | a ga<br>o G1   | act<br>uLe   | g ca<br>u G1:<br>25 | a gte<br>n Vai     | c cc         | a ct<br>o Le | c tt<br>u Ph      | c ct<br>e Le<br>30 | u Va               | t tt<br>l Ph | t ct<br>e Le | g gcc<br>u Ala       | 2312    |
| 3          | 1 e<br>35    | ту                | r As              | n Va           | 1 Th           | r Va<br>40   | l Le                | u Gly              | y Ası        | n 11         | e G1;<br>45       | y Le               | u Il               | e Va         | 1 11         | c atc<br>e Ile<br>50 | 2360    |
| I          | ys           | 11                | e As              | n Pr           | o Ly:<br>55    | s Le         | u His               | 5 Thi              | Pro          | 60           | t Ty              | r Ph               | e Ph               | e Le         | 65           | c caa<br>r Gln       | 2408    |
| L          | eu           | Se                | r Ph              | e Va<br>70     | l Asp          | Phe          | e Cys               | 5 Туг              | 75           | Sei          | r Ile             | 2 11               | e Ala              | a Pro<br>80  | D Ly:        | g atg<br>s Met       | 2456    |
| L          | eu           | Val               | 85                | n Lei          | u Val          | l Va]        | l Lys               | 90                 | Arg          | Thi          | 116               | e Sei              | 95                 | e Lei        | ı Gly        | tgc<br>Cys           | 2504    |
| . <b>v</b> | aı           | 100               | G11<br>)          | n Phe          | ≥ Phe          | Phe          | Phe<br>105          | Cys                | Thr          | Phe          | e Val             | 11(                | l Thi              | Glu          | ) Ser        | ttt<br>Phe           | 2552    |
| 1          | eu<br>15     | Leu               | Ala               | a Val          | Met            | 120          | Tyr                 | Asp                | Arg          | Phe          | gtg<br>Val<br>125 | Ala                | ı Ile              | e Cys        | Asn          | 130                  | 2600    |
| ь          | ยบ           | Leu               | Туг               | Thr            | 135            | Asn          | Met                 | Ser                | Gln          | Lys<br>140   |                   | Cys                | Val                | Leu          | Leu<br>145   | Val                  | 2648    |
| Vá         | 31           | Gly               | Ser               | 150            | Ala            | Trp          | Gly                 | Va]                | Ser<br>155   | Cys          | tcc<br>Ser        | Leu                | Glu                | Leu<br>160   | Thr          | Cys                  | 2696    |
| -          | er           | Ala               | 165               | Lys            | Leu            | Cys          | Phe                 | His<br>170         | Gly          | Phe          | aac<br>Asn        | Thr                | 11e<br>175         | Asn          | His          | Phe                  | 2744    |
| Ph         | e            | Egt<br>Cys<br>180 | gag<br>Glu        | ttc<br>Phe     | tcc<br>Ser     | tca<br>Ser   | cta<br>Leu<br>185   | ctc<br>Leu         | tcc<br>Ser   | ctt<br>Leu   | tct<br>Ser        | tgc<br>Cys<br>190  | Ser                | gat<br>Asp   | act<br>Thr   | tac<br>Tyr           | 2792    |
| 19         | e .          | Asn               | Gin               | Trp            | Leu            | Leu<br>200   | Phe                 | Phe                | Leu          | Ala          | acc<br>Thr<br>205 | Phe                | Asn                | Glu          | Ile          | Ser<br>210           | 2840    |
| 10         | r.           | ren               | Len               | He             | Val<br>215     | Leu          | Thr                 | Ser                | Tyr          | Ala<br>220   | ttc<br>Phe        | Ile                | Val                | Val          | Thr<br>225   | Ile<br>              | 2888    |
| re         | u .          | ьys               | Met               | 230            | Ser            | Val          | Ser                 | Gl y               | Arg<br>235   | Arg          | aaa<br>Lys        | Ala                | Phe                | Ser<br>240   | Thr          | Cys                  | 2936    |
| gc         | C 1          | tcc               | cac               | ctg            | act            | gcc          | atc                 | acc                | atc          | ttc          | cat               | ggc                | acc                | atc          | ctc          | ttc                  | 2984    |

| Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr Ile Leu Phe 245 250 255                                                                           |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ctt tac tgt gtg ccc aac tcc aaa aac tcc agg cac aca gtc aaa gtg<br>Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His Thr Val Lys Val<br>260 265 270     | 3032  |
| gcc tct gtg ttt tac acc gtg gtg atc ccc atg ttg aat ccc ctg atc<br>Ala Ser Val Phe Tyr Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile<br>275 280 285 290 | 3080  |
| tac agt ctg aga aat aaa gat gtc aag gat aca gtc acc gag ata ctg<br>Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Thr Val Thr Glu Ile Leu<br>295 300 305     | 3128  |
| gac acc aaa gtc ttc tct tac tga gcctgttact ttcatggagt ttgtcacaca<br>Asp Thr Lys Val Phe Ser Tyr<br>310                                                | 3182  |
| tataaataaa ttctgtccat aaatattgat cttaaagata tctttacaaa taaacaaagt                                                                                     | 3242  |
| tagggttgta caactcaacg aaatggattt tcttttcaac agactaaact tagctctgtc                                                                                     | 3302  |
| tcttactttc tgggaagcat cagtaatccc tctaatcttt aatatttcat ttatgaaatt                                                                                     | -3362 |
| agtatagtat gggttagatc atagtctgat tgtgaagatt aaaatataat ggacacctta                                                                                     | 3422  |
| cgtaagtcaa tggatattaa tttcatgtcc tttccttata agataccggg aatagactaa                                                                                     | 3482  |
| gtgcttagga aacatatgaa tttcttttat aaatgtgcaa aataagttaa aagaagaaat                                                                                     | 3542  |
| agtecteate tteaaggatg aaaactgtgt tgataatagg acaatgaaga agtggecatt                                                                                     | 3602  |
| gtgtaaggca gaaattaata tgtaccaaag agagtttgag agaagagaaa gttcaaatct                                                                                     | 3662  |
| acttagggat tttagaagga tgtcttaatg aaataggtat tgtttgaaac cggcttttga                                                                                     | 3722  |
| aaaggaaatg ggcggagttt atgagataca ttccagggag aaaggagttt tcttctggag                                                                                     | 3782  |
| aaaacaatgt gaataaaacc aattaggtaa gaatgtaata cctagtcaaa gatctaatac                                                                                     | 3842  |
| ttgttttatt gagctaacat aatataatgt gtgtttgtgt gtgtgtgtgt gtgtgtgt                                                                                       | 3902  |
| atgtatacgg gttacttgac atgaactgaa attttaatat gatatgggct acatcctgaa                                                                                     | 3962  |
| tgtgttttca aaggagctcc agtgtgacca tctgataaac cataatagac ttcaccagat                                                                                     | 4022  |
| gctgatgaat aatggatcag atcttagaaa atcctatgta ccaaattagg gatgatgaac                                                                                     | 4082  |
| acctgcccaa cctgtatgtc atactgttag acatcacaaa ctttatcaat ccattatgat                                                                                     | 4142  |
| ttttttatga gcatggaaat aatctctgaa tccttctcaa cagaattccc aacaaccttt                                                                                     | 4202  |
| ataaaaaggt atttggagta gtcttaagtg ttgaaagctc tttggctgca taaacttatt                                                                                     | 4262  |
| caaaataaat aaaaatcagg taatcattaa tatcaagacc tctttaacac agcaaattaa                                                                                     | 4322  |
| aaatgctagc tctttcttac cttaataact cactttcatt cgaataaatt gtataccctt                                                                                     | 4382  |
| ctccttttca atgtgtctag atacagttcc aaacaaatca tcaatatagt ggaagaagta                                                                                     | 4442  |
| aatttccagg tgttttgtta agggagaaaa aataaactgg ggaacaattt tatataaact                                                                                     | 4502  |
| tcttaaattt atttagaatg ttcatattat tttgacctta tgatgattat taaagttatg                                                                                     | 4562  |
| ataattatta aagtgattca tottacatat attatttgat aaagaatcca otaaataato                                                                                     | 4622  |
| cttgtaatag aaaaattttt caaaatgtaa ggaacagtgt tttagatatt aaatgcctga                                                                                     | 4682  |
| ggagggaata ctttttctct tgatatctgt atctccaggt attcaaacat ttatcctttg                                                                                     | 4742  |
| tacacatetg gtaettatae aattittaat titeteagaa gitgggaeat igititaata                                                                                     | 4802  |
| ttaaatcgaa tactgaattt caccatcttt tgaaatcctg aaaagctgcc atgggaacaa                                                                                     | 4862  |
| gcataaaata ggatatttga taatgaggaa aattagccca tatccccatc acaagggctt                                                                                     | 4922  |
| ttctctggca acctaccaga cttgagtgtg aagccctgtg agatgatctg acctgccagc                                                                                     | 4982  |
|                                                                                                                                                       |       |

| tga        | ecagt      | ata        | caca       | caag       | jca a      | gaca       | agco       | a aç       | atca       |            |            | PCT<br>cagg |            |            | T25<br>gagca | g | 5042 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|--------------|---|------|
| aac        | caco       | tgg        | atga       | tcca       | itg c      | aata       | gagt       | c àc       | aggo       | aata       | aga        | ggtt        | gtt        | gtgt       | ttagc        | С | 5102 |
| aat        | aggt       | ttt        | ggag       | tggt       | tt g       | ttat       | acag       | jt ca      | ttag       | agto       | att        | cact        | ttc        | tcaa       | attct        | g | 5162 |
| qqa        | atqo       | tac        | caaa       | aaaa       | ct t       | cacq       | atgt       | t tt       | atta       | tgta       | ata        | atto        | acc        | atct       | tctati       | t | 5222 |
|            | -          |            |            |            |            | _          | _          |            | aaat       | _          |            |             |            |            |              |   | 5269 |
|            |            |            | 3-95       | ,          |            |            |            |            |            | 9-9-       |            | ١           |            |            |              |   |      |
| <21        |            | 64         |            |            |            |            |            |            |            |            |            |             |            |            |              |   |      |
| <21<br><21 | 2>         | 313<br>PRT |            |            |            |            |            |            |            |            |            |             |            |            |              |   |      |
| <21        | .3>        | Homo       | sap        | iens       |            |            |            |            |            |            |            |             |            |            |              |   |      |
| < 40       | 0>         | 64         |            |            |            |            |            |            |            |            |            |             |            |            |              |   |      |
| Met<br>1   | Leu        | Leu        | Thr        | Asp<br>5   | Arg        | Asn        | Thr        | Ser        | Gly<br>10  | Thr        | Thr        | Phe         | Thr        | Leu<br>15  | Leu          |   |      |
| Gly        | Phe        | Ser        | Asp<br>20  | Туг        | Pro        | Glu        | Leu        | Gln<br>25  | Val        | Pro        | Leu        | Phe         | Leu<br>30  | Val        | Phe          |   |      |
| Leu        | Ala        | 11e<br>35  | Туг        | Asn        | Val        | Thr        | Val<br>40  | Leu        | Gly        | Asn        | Ile        | Gly<br>45   | Leu        | Ile        | Val          |   | •    |
| Ile        | 11e<br>50  | Lys        | Ile        | Asn        | Pro        | Lys<br>55  | Leu        | His        | Thr        | Pro        | Met<br>60  | Туr         | Phe        | Phe        | Leu          |   |      |
| Ser<br>65  | Gln        | Leu        | Ser        | Phe        | Val<br>70  | Asp        | Phe        | Cys        | Туг        | Ser<br>75  | Ser        | lle         | Ile        | Ala        | Pro<br>80    |   |      |
| Lys        | Met        | Leu        | Val        | Asn<br>85  | Leu        | Val        | Val        | Lys        | Asp<br>90  | Arg        | Thr        | Ile         | Ser        | Phe<br>95  | Leu          |   |      |
| Gly        | Cys        | Val        | Val<br>100 |            | Phe        | Phe        | Phe        | Phe<br>105 | Cys        | Thr        | Phe        | val         | Val<br>110 | Thr        | Glu          |   |      |
| Ser        | Phe        | Leu<br>115 | Leu        | Ala        | Val        | Met        | Ala<br>120 | Tyr        | Asp        | Arg        | Phe        | Val<br>125  | Ala        | lle        | Cys          |   |      |
| Asn        | Pro<br>130 | Leu        | Leu        | Туr        | Thr        | Val<br>135 | Asn        | Met        | Ser        | Gln        | Lys<br>140 | Leu         | Cys        | Val        | Leu          |   |      |
| Leu<br>145 | Val        | Val        | Gly        | Ser        | Туг<br>150 | Ala        | Trp        | Gly        | Val        | Ser<br>155 | Cys        | Ser         | Leu        | Glu        | Leu<br>160   |   |      |
| Thr        | Суѕ        | Ser        | Ala        | Leu<br>165 | Lys        | Leu        | Cys        | Phe        | His<br>170 | Gly        | Phe        | Asn         | Thr        | Ile<br>175 | Asn          |   |      |
| His        | Phe        | Phe        | Cys<br>180 | Glu        | Phe        | Ser        | Ser        | Leu<br>185 | Leu        | Ser        | Leu        | Ser         | Cys<br>190 | Ser        | Asp          |   |      |
| Thr<br>*   | Туr        | 11e<br>195 | Asņ        | Gln        | Trp        | Leu        | Leu<br>200 | Phe        | Phe        | Leu        | Alà        | Thr<br>205  | Phe        | Asn        | Glu          |   |      |
| Ile        | Ser<br>210 | Thr        | Leu        | Leu        | Ile        | Val<br>215 | Leu        | Thr        | Ser        | Tyr        | Ala<br>220 | Phe         | Ile        | Val.       |              | : |      |
| Thr<br>225 | Ile        | Leu        | Lys        | Met        | Arg<br>230 | Ser        | Val        | Ser        | Gly        | Arg<br>235 | Arg        | Lys         | Ala,       | Phe        | Ser<br>240   |   |      |
|            | _          |            |            |            |            |            |            |            |            |            |            | :           |            |            |              |   |      |

Thr Cys Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr Ile

Leu Phe Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His Thr Val 265

Lys Val Ala Ser Val Phe Tyr Thr Val Val Ile Pro Met Leu Asn Pro

Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Thr Val Thr Glu 295

Ile Leu Asp Thr Lys Val Phe Ser Tyr

<210> 65

<211> 50 <212> DNA

<213> Homo sapiens

<400> 65

ataggccgtc taaaaatttg ggtgggttat gtgaatagat ataatgtcta

50

360

<210> 66

50 <211>

<212> DNA

<213> Homo sapiens

<400> 66

acacaatgaa tatataatgt gtcttgaagg gagagaaaag aaatagacat 50

<210> 67

<211> 32 <212> DNA

<213> Homo sapiens

<400> 67

32 atgctgctga ctgatagaaa tacaagtggg ac

<210> 68

<211> 29

<212> DNA

<213> Homo sapiens

<400> 68

gactttggtg tccagtatct cggtgactg 29

<210> 69

<211> 4558

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1822)..(2766)

<223>

<400> 69

gggaactcag agtagaagct agacagttga gcattccctg aatattgatt tctcttggca 60

tttttaccac ctaagagagc acctagagaa gtatgagaat aaaagggcaa caaaaagagg 120

agagaaaaga agagagaga aggggaatac acaagcaatg ataagatcat ataaggggag . 180

tagaggagat gggagctaga ttggaaggaa ttaaaaaatta agagatgagg aattagataa 240

tgaattactc aactttttca acaaacattg ttgtgaagga aaacagttgc gggtgttaga 300

tggagggaga tataaggcca aggaatgcgg gattgtgctg atgtcaagaa aaacatttta

aaaaaggggg cagatttgtg tgggaggggg aatattgtaa tgacaaataa cagttttaca 420

| atgctttaca gtttacaggg actcttctca tgattttatc tttcctcatc atgaagcagt                                                                                 | 480  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aaaattgtca tggaagatat ggttatgcct tcatctatag gtgaggaacc taaatcttta                                                                                 | 540  |
| aaaatttcag tgattaatac tagtttctat tggtaggctg atggctcaat cattacttaa                                                                                 | 600  |
| acceaagtet ttagatteta attttttte etatateatg ataatgagtt tgagttatat                                                                                  | 660  |
| ttetgttaac ttgaatatge tggatttata ettettagga ágcáatgagg tagaagcága                                                                                 | 720  |
| agagtgtagt gatttaagac attggattgg gaggcagcaa accagagttc tcgaagctca                                                                                 | 780  |
| agtiticated tigaegitti ecaacigite tgatigitag igaettagie tittigitite                                                                               | 840  |
| tcaattcata agtgtccacg tttactgagc actgtttcaa gatttgtgct aagtgtttta                                                                                 | 900  |
| aaagatetea aaateeecaa aagaaagttt ttaggeagga getgaaaaaa aaggtggeae                                                                                 | 960  |
| aggicaaaaa tatigcaagg aaaigittaa acgitticaa gggaaaigac aacagaaggi                                                                                 | 1020 |
| ggaaaaagat agaatgataa ggatcccaga tggaaaaata gtgtgaaggg aataggtcag                                                                                 | 1080 |
| tcttgcaaaa aggtaagtgt ggggcatctc ttctgaatgt catgaagtcc aggaaggaag                                                                                 | 1140 |
| aagcacgtag agatgaaggt taaactacag ttaggcaaaa gagaacaaca aaagggcttc                                                                                 | 1200 |
| tcatgttctc aagttacctg gaggtagggc tttagttgga gggatttctg agtgtcaaac                                                                                 | 1260 |
| aaggacctac gaaaccctgc tagaaaaaaa atctaaagaa cttgtaggga agtgaattat                                                                                 | 1320 |
| tagaaagtgc taactacatt tatttttcat atgaccaaga ttgacatttc agggcagaaa                                                                                 | 1380 |
| ctctttcata attgggagtg tagtttgaat tggaaggcaa taggaagaca gtgacggtaa                                                                                 | 1440 |
| atgittgigg gtatgattig aattaagcag caatcigtat tatitacaaa giigciittg                                                                                 | 1500 |
| gccacatgca ggccacaaaa ggctcttcct ccacttgatt tctcaataag gctgctttgt                                                                                 | 1560 |
| aatactagct ttattggaat taaatgtcct gagcacccag tgtttttata aacagcttaa                                                                                 | 1620 |
| gggcaaggat catgcataat atttcatgat acatatgatt attttctcat ttcttttcat                                                                                 | 1680 |
| gtctaaaaat gggtctaaga actaatcttc tcacaagaat gatcagagtt tgaatgtgag                                                                                 | 1740 |
| cattgtaatt ctgctgatat tgaatattct ctggaagggc cctgtggaag cagataagga                                                                                 | 1800 |
| ggaagagaat teecaggage e atg tea gee tee aat ate ace tta aca eat<br>Met Ser Ala Ser Asn Ile Thr Leu Thr His<br>1 5 10                              | 1851 |
| cca act gcc ttc ttg ttg gtg ggg att cca ggc ctg gaa cac ctg cac<br>Pro Thr Ala Phe Leu Leu Val Gly 11e Pro Gly Leu Glu His Leu His<br>15 20 25    | 1899 |
| atc tgg atc tcc atc cct ttc tgc tta gca tat aca ctg gcc ctg ctt lle Trp lle Ser lle Pro Phe Cys Leu Ala Tyr Thr Leu Ala Leu Leu 30 35 40          | 1947 |
| gga aac tgc act ctc ctt ctc atc atc cag gct gat gca gcc ctc cat<br>Gly Asn Cys Thr Leu Leu Leu Ile Ile Gln Ala Asp Ala Ala Leu His<br>45 50 55    | 1995 |
| gaa ccc atg tac ctc ttt ctg gcc atg ttg gca gcc atc gac ctg gtc<br>Glu Pro Met Tyr Leu Phe Leu Ala Met Leu Ala Ala Ile Asp Leu Val<br>60 65 70    | 2043 |
| ctt tcc tcc tca gca ctg ccc aaa atg ctt gcc ata ttc tgg ttc agg<br>Leu Ser Ser Ser Ala Leu Pro Lys Met Leu Ala Ile Phe Trp Phe Arg<br>75 80 85 90 | 2091 |
| gat cgg gag ata aac ttc ttt gcc tgt ctg gcc cag atg ttc ttc ctt<br>Asp Arg Glu Ile Asn Phe Phe Ala Cys Leu Ala Gln Met Phe Phe Leu<br>95 100 105  | 2139 |
| cac tcc ttc tcc atc atg gag tca gca gtg ctg ctg gcc atg gcc ttt<br>His Ser Phe Ser Ile Met Glu Ser Ala Val Leu Leu Ala Met Ala Phe<br>110 115 120 | 2187 |

| gac cgc tat gtg gct atc tgc aag cca ctg cac tac acc aag gtc ctg Asp Arg Tyr Val Ala Ile Cys Lys Pro Leu His Tyr Thr Lys Val Leu 125 130 135           | 2235 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| act ggg tcc ctc atc acc aag att ggc atg gct gtg gcc cgg gct<br>Thr Gly Ser Leu Ile Thr Lys Ile Gly Met Ala Ala Val Ala Arg Ala<br>140 145 150         | 2283 |
| gtg aca cta atg act cca ctc ccc ttc ctg ctg aga tgt ttc cac tac<br>Val Thr Leu Met Thr Pro Leu Pro Phe Leu Leu Arg Cys Phe His Tyr<br>155 160 165 170 | 2331 |
| tgc cga ggc cca gtg atc gct cac tgc tac tgt gaa cac atg gct gtg<br>Cys Arg Gly Pro Val Ile Ala His Cys Tyr Cys Glu His Met Ala Val<br>175 180 185     | 2379 |
| gtg agg ctg gcg tgt ggg gac act agc ttc aac aat atc tat ggc atc<br>Val Arg Leu Ala Cys Gly Asp Thr Ser Phe Asn Asn Ile Tyr Gly Ile<br>190 195 200     | 2427 |
| gct gtg gcc atg ttt att gtg gtg ttg gac ctg ctc ctt gtt atc ctg<br>Ala Val Ala Met Phe Ile Val Val Leu Asp Leu Leu Leu Val Ile Leu<br>205 210 215     | 2475 |
| tct tat atc ttt att ctt cag gca gtt cta ctg ctt gcc tct cag gag<br>Ser Tyr Ile Phe lle Leu Gln Ala Val Leu Leu Leu Ala Ser Gln Glu<br>220 225 230     | 2523 |
| gcc cac tac aag gca ttt ggg aca tgt gtc tct cat ata ggt gcc atc<br>Ala His Tyr Lys Ala Phe Gly Thr Cys Val Ser His Ile Gly Ala Ile<br>235 240 245 250 | 2571 |
| tta gcc ttc tac aca act gtg gtc atc tct tca gtc atg cac cgt gta<br>Leu Ala Phe Tyr Thr Thr Val Val Ile Ser Ser Val Met His Arg Val<br>255 260 265     | 2619 |
| gcc cgc cat gct gcc cct cat gtc cac atc ctc ctt gcc aar ttc tat<br>Ala Arg His Ala Ala Pro His Val His Ile Leu Leu Ala Asn Phe Tyr<br>270 275 280     | 2667 |
| ctg ctc ttc cca ccc atg gtc aat ccc ata atc tat ggt gtc aag acc<br>Leu Leu Phe Pro Pro Met Val Asn Pro Ile Ile Tyr Gly Val Lys Thr<br>285 290 295     | 2715 |
| aag caa atc cgt gag agc atc ttg gga gta ttc cca aga aag gat atg<br>Lys Gln Ile Arg Glu Ser Ile Leu Gly Val Phe Pro Arg Lys Asp Met<br>300 305 310     | 2763 |
| tag agggtgaggt ggagaaagaa tgggttggct tgtctgctgg agttggagac                                                                                            | 2816 |
| aggotatggt agaatgtgca oggotgocag gatottoatg titagtitit tottggaaaa                                                                                     | 2876 |
| aaaaaaaatg atgteetgaa aeteagagee aeeagtetgt teaggaetea tgggtetgtg                                                                                     | 2936 |
| tcctctggta gcctgtggat tgaatgtgct gactgtgctg tcttctcaca gtgccctcac                                                                                     | 2996 |
| ccctatcagt aacttgacag agacttgacc catgggtctc caggtgactt caccgaaaga                                                                                     | 3056 |
| cacaaagatg cttccaactt catttgctga agagaagact ttgaaaatct gagtttcttt                                                                                     | 3116 |
| tettagteat tgggaatttg gtgaactate tactcaggae etgggtgagg gecaacagta                                                                                     | 3176 |
| tatctgacat aggaatcctt cattcattct gactggtggt gtccagcttc tgatgaaaca                                                                                     | 3236 |
| ctcagtgtta ggaagtttga aacattccag ggctgcaggt tctgagtaag acacctatgc                                                                                     | 3296 |
| ttgctagaaa atcatttttt cacctaagcc agtatgtgta ttcttttgct-tatatttacc                                                                                     | 3356 |
| aatccatcct tatgtccaat teettttatt aagtaetttg aataagacat gteetetgge                                                                                     | 3416 |
| tttatgtttc atgcaactct ttctttgcac atagatgtat cttatgtttt caagaatgag                                                                                     | 3476 |
| aatggeteat ttatttaeta atteeaceaa atetgtgata ggggatgggg acacatatae $\frac{1}{a^2}$                                                                     | 3536 |
| taaattaggg gtgtcagact tgtgtatttg tcctaagaca gagaaggaaa tgataattat                                                                                     | 3596 |
| gatagattet gttetetgaa atttecatee caaggeecag cataataaaa gaagageaag                                                                                     | 3656 |
| accaagcaga taggaggcaa gaatattatg tttctctttt cctgtctcat gtgaacttac                                                                                     | 3716 |

| ctactatata | attctctatt | aatcctgaca | acacagctaa | gcttttcaca | caagccctgt | 3776 |
|------------|------------|------------|------------|------------|------------|------|
| ataaatacat | tgttctgctg | ttatcttctg | acccacttgt | ttcctcagat | attattgctt | 3836 |
| agaaattata | tatctctttt | gctatcactg | tatctttctc | tatttaccta | tctatattat | 3896 |
| ttagccttga | aagataattt | ccaagcctat | ttcaggtggg | gtgtagaagg | ttggaagetg | 3956 |
| tccaggaggg | aagagtatag | caagaaccta | gagttttact | tccccttata | ttccacctct | 4016 |
| gctcttataa | ttccctttga | cacaaaaaca | aataccccag | agaaataatg | tattacataa | 4076 |
| aaaattgcta | catgctagat | atatatattt | ttggagtata | tgtgatattc | tgatatattc | 4136 |
| atataataga | taatgatcaa | atcaggataa | ttggaatatc | catgacctta | aatgtttctt | 4196 |
| ttatgctagg | aacattaaaa | ttattctctt | ctagctattt | tgatatatac | agtagattgt | 4256 |
| tttctatagt | ccctactgat | ttcttgaaca | ctacatcttg | ttatttttta | tatctagctg | 4316 |
| tatttttata | ctcaattaat | ctcttatcct | ccctgcctcc | cttcccagcc | cccaataacc | 4376 |
| accaatctgc | tctctatttt | catgagctgt | acttagcatc | cacatgagtg | agaaatacaa | 4436 |
| taattgtctt | tctgtacctg | gcttgtttca | cttaacttaa | tgacctacag | tttcatccac | 4496 |
| gttgctgcaa | gtgacaggat | ttcattcttt | cttatgacta | atattccatg | tgtatcatat | 4556 |
| tt         |            |            |            |            |            | 4558 |

<210> 70 <211> 314

<211> 314 <212> PRT

<213> Homo sapiens

<400> 70

Met Ser Ala Ser Asn Ile Thr Leu Thr His Pro Thr Ala Phe Leu Leu  $1 \ \ \,$  10  $\ \ \,$  15

Val Gly 1le Pro Gly Leu Glu His Leu His 1le Trp Ile Ser 1le Pro 20 25 30

Phe Cys Leu Ala Tyr Thr Leu Ala Leu Leu Gly Asn Cys Thr Leu Leu 35 40 45

Leu Ile Ile Gln Ala Asp Ala Ala Leu His Glu Pro Met Tyr Leu Phe 50 60

Leu Ala Met Leu Ala Ala Ile Asp Leu Val Leu Ser Ser Ser Ala Leu 65 70 75 80

Pro Lys Met Leu Ala Ile Phe Trp Phe Arg Asp Arg Glu Ile Asn Phe 85 90 95

Phe Ala Cys Leu Ala Gln Met Phe Phe Leu His Ser Phe Ser Ile Met 100 105 110

Glu Ser Ala Val Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile 115 120 125

Cys Lys Pro Leu His Tyr Thr Lys Val Leu Thr Gly Ser Leu Ile Thr 130 135 140 .:

Lys Ile Gly Met Ala Ala Val Ala Arg Ala Val Thr Leu Met Thr Pro 145 150 155 160

| Leu Pro Phe Leu Leu Arg Cys Phe His 7                             | 16U 200 PCT FINAL.ST25  Yr Cys Arg Gly Pro Val Ile 70 175 |
|-------------------------------------------------------------------|-----------------------------------------------------------|
| Ala His Cys Tyr Cys Glu His Met Ala V<br>180 185                  | al Val Arg Leu Ala Cys Gly<br>190                         |
| Asp Thr Ser Phe Asn Asn Ile Tyr Gly I<br>195 200                  | le Ala Val Ala Met Phe Ile<br>205                         |
| Val Val Leu Asp Leu Leu Leu Val Ile L<br>210 215                  | eu Ser Tyr Ile Phe Ile Leu<br>220                         |
| Gln Ala Val Leu Leu Leu Ala Ser Gln G<br>225 230                  | lu Ala His Tyr Lys Ala Phe<br>235 240                     |
| Gly Thr Cys Val Ser His Ile Gly Ala I<br>245 2                    | le Leu Ala Phe Tyr Thr Thr<br>50 255                      |
| Val Val Ile Ser Ser Val Met His Arg V<br>260 265                  | al Ala Arg His Ala Ala Pro<br>270                         |
| His Val His Ile Leu Leu Ala Asn Phe T<br>275 280                  | yr Leu Leu Phe Pro Pro Met<br>285                         |
| Val Asn Pro Ile Ile Tyr Gly Val Lys T<br>290 295                  | hr Lys Gln Ile Arg Glu Ser<br>300                         |
| Ile Leu Gly Val Phe Pro Arg Lys Asp M<br>305 310                  | let                                                       |
| <210> 71<br><211> 50<br><212> DNA<br><213> Homo sapiens           |                                                           |
| <400> 71<br>gaaaaacatt ttaaaaaagg gggcagattt gtgt                 | gggagg gggaatattg 50                                      |
| <210> 72<br><211> 50<br><212> DNA                                 |                                                           |
| <213> Homo sapiens <400> 72 gctaagtgtt ttaaaagatc tcaaaatccc caaa | agaaag tttttaggca 50                                      |
| <210> 73<br><211> 50<br><212> DNA                                 |                                                           |
| <212> DNA<br><213> Homo sapiens                                   |                                                           |
| <400> 73<br>gcaggagctg aaaaaaagg tggcacaggt caaa                  | aatatt gcaaggaaat 50                                      |
| <210> ·74<br><211> 50<br><212> DNA                                |                                                           |
| <213> Homo sapiens<br><400> 74                                    | , , , ,                                                   |
| cccagtgttt ttataaacag cttaagggca agga                             | tcatgc ataatatttc 50                                      |
| <210> 75<br><211> 50<br><212> DND                                 |                                                           |

| <pre></pre>                                                                                                                        |     |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| •                                                                                                                                  |     |
| <400> 75<br>ttttcatgtc taaaaatggg tctaagaact aatcttctca caagaatgat                                                                 | 50  |
| <210> 76                                                                                                                           |     |
| <211> 29<br><212> DNA                                                                                                              |     |
| <213> Homo sapiens                                                                                                                 |     |
| <400> 76                                                                                                                           |     |
| cagootocaa tatoacotta acacatoca                                                                                                    | 29  |
| <210> 77                                                                                                                           |     |
| <211> 25                                                                                                                           |     |
| <212> DNA<br><213> Homo sapiens                                                                                                    |     |
| <400> 77                                                                                                                           |     |
| caccacaata aacatggcca cagcg                                                                                                        | 25  |
|                                                                                                                                    |     |
| <210> 78<br><211> 2520                                                                                                             |     |
| <212> DNA                                                                                                                          |     |
|                                                                                                                                    |     |
| <220><br><221> CDS                                                                                                                 |     |
| <222> (727)(1722)<br><223>                                                                                                         |     |
|                                                                                                                                    |     |
| <400> 78 attaaagtct tcagtctcca cattccctac tttccaaatt cagctttccc gggaggtctg                                                         | 60  |
| gagcagctgc ctctctgggg agatgctgga ggtctcggaa tcacctcacg cggcctcagg                                                                  | 120 |
| gcccagttgg agccaccca agtgacacca gcaggcagat gaccagagag cctgagcctc                                                                   | 180 |
| cggccccgag tctgtgaagc ctagccgctg ggctggagaa gccactgtgg gcaccaccgt                                                                  |     |
| gggggaaaca ggcccgttgc cctggcctct ttgccctggg ccagcctttg tgaagtgggc                                                                  | 240 |
| contettet ggcccettga ageatgetgg agaacttete ggccgccgtg cccagccace                                                                   | 300 |
|                                                                                                                                    | 360 |
| gctgctgggc acccctcctg gacaacagca cggctcaggc cagcatccta gggagcttga                                                                  | 420 |
| gloctgagge cotoctgget atttccated egeogggede caaccagagg ecccaccagt                                                                  | 480 |
| gccgccgctt ccgccagcca cagtggcagc tcttggaccc caatgccacg gccaccagct                                                                  | 540 |
| ggagcgaggc cgacacggag ccgtgtgtgg atggctgggt ctatgaccgc agcatcttca                                                                  | 600 |
| cctccacaat cgtggccaag tggaacctcg tgtgtgactc tcatgctctg aagcccatgg                                                                  | 660 |
| cccagtccat ctacctggct gggattctgg tgggagctgc tgcgtgcggc cctgcctcag                                                                  | 720 |
| acagtg atg gag tgg acg gcg gca cgg gcc cga ccc ttg gtg atg acc                                                                     | 768 |
| Met Glu Trp Thr Ala Ala Arg Ala Arg Pro Leu Val Met Thr 1 5 10                                                                     |     |
| ttg aac tot otg ggo tto ago tto ggo cat ggo otg aca got goa gtg                                                                    | 816 |
| Leu Asn Ser Leu Gly Phe Ser Phe Gly His Gly Leu Thr Ala Ala Val<br>15 20 25 30                                                     |     |
|                                                                                                                                    |     |
| gcc tac ggt gtg cgg gac tgg aca ctg ctg cag ctg gtg gtc tcg gtc<br>Ala Tyr Gly Val Arg Asp Trp Thr Leu Leu Gln Leu Val Val Ser Val | 864 |
| 35 40 45                                                                                                                           |     |
| ccc ttc ttc ctc tgc ttt ttg tac tcc tgg tgg ctg gca gag tcg gca<br>Pro Phe Phe Leu Cys Phe Leu Tyr Ser Trp Trp Leu Ala Glu Ser Ala | 912 |
| 50 55 60                                                                                                                           |     |
| cga tgg ctc ctc acc aca ggc agg ctg gat tgg ggc ctg cag gag ctg                                                                    | 960 |
| Arg Trp Leu Leu Thr Thr Gly Arg Leu Asp Trp Gly Leu Gln Glu Leu 65 70 75                                                           |     |
|                                                                                                                                    |     |

| tgg<br>Trp        | agg<br>Arg<br>80  | gtg<br>Val        | gct<br>Ala        | gcc<br>Ala        | atc<br>Ile        | aac<br>Asn<br>85  | gga<br>Gly        | aag<br>Lys        | ggg<br>Gly        | gca               | gtg               | PCT<br>cag<br>Gln | gac               | acc               | ctg               | 1008 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| acc<br>Thr<br>95  | cct<br>Pro        | gag<br>Glu        | gtc<br>Val        | ttg<br>Leu        | ctt<br>Leu<br>100 | tca<br>Ser        | gcc<br>Ala        | atg<br>Met        | cgg<br>Arg        | gag<br>Glu<br>105 | gag<br>Glu        | ctg<br>Leu        | agc<br>Ser        | atg<br>Met        | ggc<br>Gly<br>110 | 1056 |
|                   | cct<br>Pro        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1104 |
|                   | cgg<br>Arg        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1152 |
| ttc<br>Phe        | ttc<br>Phe        | ggc<br>Gly<br>145 | ctg<br>Leu        | gcc<br>Ala        | ctg<br>Leu        | gac<br>Asp        | ctg<br>Leu<br>150 | cag<br>Gln        | gcc<br>Ala        | ctg<br>Leu        | ggc<br>Gly        | agc<br>Ser<br>155 | aac<br>Asn        | atc<br>Ile        | ttc<br>Phe        | 1200 |
| ctg<br>Leu        | ctc<br>Leu<br>160 | caa<br>Gln        | atg<br>Met        | ttc<br>Phe        | att<br>Ile        | ggt<br>Gly<br>165 | gtc<br>Val        | gtg<br>Val        | gac<br>Asp        | atc<br>Ile        | cca<br>Pro<br>170 | gcc<br>Ala        | aag<br>Lys        | atg<br>Met        | G) y              | 1248 |
| gcc<br>Ala<br>175 | ctg<br>Leu        | ctg<br>Leu        | ctg<br>Leu        | ctg<br>Leu        | agc<br>Ser<br>180 | cac<br>His        | ctg<br>Leu        | ggc<br>Gly        | cgc<br>Arg        | cgc<br>Arg<br>185 | ccc<br>Pro        | acg<br>Thr        | ctg<br>Leu        | gcc<br>Ala        | gca<br>Ala<br>190 | 1296 |
|                   | ctg<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1344 |
| cac<br>His        | gaa<br>Glu        | atg<br>Met        | 999<br>Gly<br>210 | gct<br>Ala        | ctg<br>Leu        | cgc<br>Arg        | tca<br>Ser        | gcc<br>Ala<br>215 | ttg<br>Leu        | gcc<br>Ala        | gtg<br>Val        | ctg<br>Leu        | 999<br>Gly<br>220 | ctg<br>Leu        | ggc<br>Gly        | 1392 |
| 999<br>G1y        | gtg<br>Val        | ggg<br>Gly<br>225 | gct<br>Ala        | gcc<br>Ala        | ttc<br>Phe        | acc<br>Thr        | tgc<br>Cys<br>230 | atc<br>Ile        | acc<br>Thr        | atc<br>Ile        | tac<br>Tyr        | agc<br>Ser<br>235 | agc<br>Ser        | gag<br>Glu        | ctc<br>Leu        | 1440 |
| ttc<br>Phe        | ccc<br>Pro<br>240 | act<br>Thr        | gtg<br>Val        | ctc<br>Leu        | agg<br>Arg        | atg<br>Met<br>245 | acg<br>Thr        | gca<br>Ala        | gtg<br>Val        | ggc<br>Gly        | ttg<br>Leu<br>250 | ggc<br>Gly        | cag<br>Gln        | atg<br>Met        | gca<br>Ala        | 1488 |
| gcc<br>Ala<br>255 | cgt<br>Arg        | gga<br>Gly        | gga<br>Gly        | gcc<br>Ala        | atc<br>Ile<br>260 | ctg<br>Leu        | Gly<br>ggg        | cct<br>Pro        | ctg<br>Leu        | gtc<br>Val<br>265 | cgg<br>Arg        | ctg<br>Leu        | ctg<br>Leu        | ggt<br>Gly        | gtc<br>Val<br>270 | 1536 |
| cat<br>His        | ggc<br>Gly        | ccc<br>Pro        | tgg<br>Trp        | ctg<br>Leu<br>275 | ccc<br>Pro        | ttg<br>Leu        | ctg<br>Leu        | gtg<br>Val        | tat<br>Tyr<br>280 | 999<br>Gly        | acg<br>Thr        | gtg<br>Val        | cca<br>Pro        | gtg<br>Val<br>285 | ctg<br>Leu        | 1584 |
|                   | ggc<br>Gly        |                   |                   |                   |                   |                   |                   | _                 |                   |                   |                   | _                 | _                 |                   | • .               | 1632 |
|                   | gac<br>Asp        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1680 |
| _cat<br>所s        | ggc<br>GTy<br>320 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1722 |
| tage              | ctc               | ctg (             | ggga              | acct              | gc ga             | atgg              | gacg              | g tc              | agag              | gaag              | aga               | cttc              | ttc               | tgtt              | ctctgg            | 1782 |
| agaa              | aggca             | agg a             | aggaa             | agca              | aa aq             | gacci             | tccat             | t tt              | ccag              | aggc              | cca               | gagg              | ctg               | ccct              | ctgagg            | 1842 |
| tccc              | ccact             | ct                | cccc              | agg               | gc to             | gccc              | ctcca             | a gg              | tgag              | ccct              | gcc               | cctc              | tca ·             | cagt              | ccaagg            | 1902 |
| ggco              | ccct              | tte a             | aata              | etgaa             | ag go             | ggaaa             | aagga             | a ca              | gttt              | gatt              | ggc               | agga              | ggt               | gacc              | cagtgc            | 1962 |
|                   |                   |                   |                   | -                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gggaac            | 2022 |
|                   |                   |                   | -                 |                   |                   | -                 |                   |                   |                   |                   |                   |                   |                   |                   | acccgt            | 2082 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ctccac            | 2142 |
| acaa              | agcaç             | jta (             | gagto             | tca               | jc to             | caca              | agcti             | ta                | cca               | yaag              |                   | tgta              | agc               | LLGG              | cccctg            | 2202 |

| geoectecce atgtecetee aggeoteage cacetgeong coacatecte tgcotgctgt | 2262 |
|-------------------------------------------------------------------|------|
| ccccttccca ccctcatccc tgaccgactc cacttaaccc ccaaacccag cccccttcc  | 2322 |
| aggggtccag ggccagcctg agatgcccgt gaaactccta cccacagtta cagccacaag | 2382 |
| cotgootcot cocaccotgo cagootatga gttoccagag ggttggggca gtcccatgac | 2442 |
| cccatgtccc agctccccac acagcgctgg gccagagagg cattggtgcg agggattgaa | 2502 |
| taaagaaaca aatgaatg                                               | 2520 |

<210> 79

211> 332

<212> PRT

<213> Homo sapiens

<400> 79

Met Glu Trp Thr Ala Ala Arg Ala Arg Pro Leu Val Met Thr Leu Asn 1 10 15

Ser Leu Gly Phe Ser Phe Gly His Gly Leu Thr Ala Ala Val Ala Tyr 20 25 30

Gly Val Arg Asp Trp Thr Leu Leu Gln Leu Val Val Ser Val Pro Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Phe Leu Cys Phe Leu Tyr Ser Trp Trp Leu Ala Glu Ser Ala Arg Trp 50 60

Leu Leu Thr Thr Gly Arg Leu Asp Trp Gly Leu Gln Glu Leu Trp Arg 65 70 75 80

Val Ala Ala Ile Asn Gly Lys Gly Ala Val Gln Asp Thr Leu Thr Pro 85 90 95

Glu Val Leu Leu Ser Ala Met Arg Glu Glu Leu Ser Met Gly Gln Pro 100 105 110

Pro Ala Ser Leu Gly Thr Leu Leu Arg Met Pro Gly Leu Arg Phe Arg 115 120 125

Thr Cys Ile Ser Thr Leu Cys Trp Phe Ala Phe Gly Phe Thr Phe Phe 130  $$135\$ 

Gly Leu Ala Leu Asp Leu Gln Ala Leu Gly Ser Asn Ile Phe Leu Leu 145 150 155 160

Gln Met Phe Ile Gly Val Val Asp Ile Pro Ala Lys Met Gly Ala Leu 165 170 175

Leu Leu Ser His Leu Gly Arg Arg Pro Thr Leu Ala Ala Ser Leu 180 185 190

Leu Leu Ala Gly Leu Cys Ile Leu Ala Asn Thr Leu Val Pro His Glu 195 200 205

Met Gly Ala Leu Arg Ser Ala Leu Ala Val Leu Gly Leu Gly Gly Val 210 220

Gly Ala Ala Phe Thr Cys Ile Thr Ile Tyr Ser Ser Glu Leu Phe Pro 225 230 235 240

| Thr Val Leu Arg Met Thr Ala Val Gly Leu Gly Gln Met Ala Ala Arg 245 250 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Gly Gly Ala Ile Leu Gly Pro Leu Val Arg Leu Leu Gly Val His Gly 260 265 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| Pro Trp Leu Pro Leu Leu Val Tyr Gly Thr Val Pro Val Leu Ser Gly 275 280 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| Leu Ala Ala Leu Leu Pro Glu Thr Gln Ser Leu Pro Leu Pro Asp<br>290 295 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| Thr Ile Gln Asp Val Gln Asn Gln Ala Val Lys Lys Ala Thr His Gly 305 310 315 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| Thr Leu Gly Asn Ser Val Leu Lys Ser Thr Gln Phe 325 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| <210> 80<br><211> 2250<br><212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |
| <220> <221> CDS <222> (10)(738) <223>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| <pre>&lt;400&gt; 80 caaggcagc atg agc cga tca ccc ctc aat ccc agc caa ctc cga tca gtg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| ggc tcc cag gat gcc ctg gcc ccc ttg cct cca cct gct ccc cag aat Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99                              |
| Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99<br>147                       |
| Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 15 20 25 30  ccc tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 20 25 30  ccc tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 35 40 45  ctc agc tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 147                             |
| Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 20 25 30  ccc tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 35 40 45  ctc agc tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu 50 55 60  ctc tgt gtc tcc cac ctg ctc ctg ctt tgc agt ctc tcc cca gga gga Leu Cys Val Ser His Leu Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly                                                                                                                                                                                                                                                                                                                                                                                                | 147<br>195                      |
| CCC tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 35  Ctc agc tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu 50  Ctc tgt gtc tcc cac ctg ctc ctg ctt tgc agt ctc tcc cca gga gga Leu Cys Val Ser His Leu Leu Leu Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly 65  Ctc tct tac tcc cct tct cag ctc ctg gcc tcc agc ttc ttt tca tgt Leu Ser Tyr Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys                                                                                                                                                                                                                                                                                                                                          | 147<br>195<br>243               |
| Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 20 25 30 30 ccc tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 45 ctc agc tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu Cys Val Ser His Leu Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly 65 70 75 ctc tct tac tcc cct tct cag ctc ctg gcc tcc agc ttc ttt tca tgt Leu Ser Tyr Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys 80 ggt atg tct acc atc ctg caa act tgg atg agc agg ctg cct ctt Gly Met Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu                                                                                                                                                                                                           | 147<br>195<br>243               |
| Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 30  ccc tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 45  ctc agc tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu Cys Val Ser His Leu Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly 65  ctc tct tac tcc cct tct cag ctc ctg gcc tcc agc tcc agc tcc tct tct tac tcc cct tct cag ctc ctg gcc tcc agc ttc ttt tca tgt Leu Ser Tyr Ser Pro Ser Gln Leu Leu Leu Ala Ser Ser Phe Phe Ser Cys 80  ggt atg tct acc atc ctg caa act tgg atg ggc agc agc agg ctg cct ctt Gly Met Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu Pro Leu 105  gtc cag gct cca tcc tta gag ttc ctt atc cct gct ctg gtg ctg acc Val Gln Ala Pro Ser Leu Glu Phe Leu Ile Pro Ala Leu Val Leu Thr | 147<br>195<br>243<br>291        |
| CCC tCC acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 35  Ctc agc tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu 50  Ctc tgt gtc tcc cac ctg ctc ctg ctt tgc agt ctc cca gga gga Leu Cys Val Ser His Leu Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly 65  Ctc tct tac tcc cct tct cag ctc ctg gcc tcc agc ttc ttc ccc gga gga Leu Ser Tyr Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys 80  ggt atg tct acc atc ctg caa act tgg atg ggc agc agg ctg cct ctt Gly Met Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu 95  agc cag aag cta ccc cgg gcc atc cag aca cct gga aac tcc tcc ctc Ser Gln Lys Leu Pro Arg Ala Ile Gln Thr Pro Gly Asn Ser Ser Leu                                                                          | 147<br>195<br>243<br>291<br>339 |

| 160                                               | 165                                   | 16                                 | U 200 PCT I<br>170                | FINAL.ST25                        |      |
|---------------------------------------------------|---------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|------|
| ctg cag ggc atg at<br>Leu Gln Gly Met Me<br>175   | g ggg ctg ctg<br>t Gly Leu Lei<br>180 | g ggg agt cc<br>u Gly Ser Pr<br>18 | o Gly His Y                       | gtg ttc ccc<br>/al Phe Pro<br>190 | 579  |
| cac tgt ggg ccc ct<br>His Cys Gly Pro Le<br>19    | u Val Leu Ala                         | ccc agc ct<br>Pro Ser Le<br>200    | g gtt gtg o<br>u Val Val 1        | gca ggg ctc<br>Ma Gly Leu<br>205  | 627  |
| tct gcc cac agg ga<br>Ser Ala His Arg Gl<br>210   | g gta gcc cag<br>u Val Ala Glr        | ttc tgc tt<br>Phe Cys Ph<br>215    | e Thr His 1                       | gg ggg ttg<br>rp Gly Leu<br>20    | 675  |
| gcc ttg ctg tac gt<br>Ala Leu Leu Tyr Va<br>225   | g agt oot gag<br>1 Ser Pro Glu<br>230 | Arg Arg Gl                         | g atg gtg c<br>y Met Val F<br>235 | cc agt ggg<br>ro Ser Gly          | 723  |
| ggt gta tgg ggg gad<br>Gly Val Trp Gly Asp<br>240 | c taggggaggg<br>o                     | cagaactget (                       | ggtcctatca                        | gattcagcag                        | 778  |
| cgactggaat agggaca                                | at tttatattt                          | g gaatccaaga                       | cttttcctt                         | g attcatctgg                      | 838  |
| tctccttgaa tttcacad                               | tg ttttctgct                          | g tececeaage                       | tcacttcct                         | a ttccttccat                      | 898  |
| gggagtttcc ttctctgg                               | ta tcaccccc                           | g ctcttatgat                       | attotgcco                         | a ctcccacctc                      | 958  |
| ctttcccatc cctcagga                               | ta cccactgcc                          | t cttgctccta                       | aagccttct                         | g tctcctaggg                      | 1018 |
| ttatcctgct catggtgg                               | tc tgttctcag                          | c acctgggctc                       | ctgccagtt                         | t catgtgtgcc                      | 1078 |
| cctggaggcg agcttcaa                               | cg tcatcaact                          | acact <u>cctct</u>                 | ccctgtctt                         | cggctccttt                        | 1138 |
| cggtatgtgt gggtctgg                               | gc agggcagta                          | g aggtcagaag                       | ggctggcct                         | gagtgctcac                        | 1198 |
| tccatcccct accttttg                               | gc ttctgtctad                         | ccctgcaagg                         | ctggctcaga                        | aggttctggg                        | 1258 |
| ggaggagttc ttttctca                               | gt ctcgcccct                          | aggtgctgat                         | cccagtggc                         | tgtgtgtgga                        | 1318 |
| ttgtttctgc ctttgtgg                               | ga ttcagtgtta                         | tccccagga                          | actgtctgcc                        | cccaccaagg                        | 1378 |
| caccatggat ttggctgc                               | ct cacccaggtg                         | agtggaattg                         | gcctttgctg                        | acgcccagag                        | 1438 |
| ctctggctgc aggcatct                               | cc atggccttgg                         | cagcctccac                         | cagttccctg                        | ggctgctatg                        | 1498 |
| ccctgtgtgg ccggctgc                               | tg catttgcctc                         | ccccacctcc                         | acatgcctgc                        | agtcgagggc                        | 1558 |
| tgagcctgga ggggctgg                               | gc agtgtgctgg                         | ccgggctgct                         | gggaagcccc                        | atgggcactg                        | 1618 |
| catccagett ceccaacg                               | ig ggcaaagtgg                         | gtcttatcca                         | ggtacgtgga                        | cctgggatgg                        | 1678 |
| gagtggggta ggatggagd                              | t agaggggaag                          | aagaaggaca                         | ggaacttaca                        | ccgattgatt                        | 1738 |
| gccaggtgtg cctagcaco                              | t cacatcaact                          | atcttacttg                         | gggaggtgcc                        | taagattaga                        | 1798 |
| ctttgggcta agagagtgg                              | g gaagtgaaca                          | aatcaccacg                         | gaactcctgt                        | gcatgaggca                        | 1858 |
| ctgtatcaag gctagggca                              | a agaaccagtc                          | acataaagtt                         | ctgctctctt                        | ggggacttca                        | 1918 |
| tagagggaga ggcagacag                              | t tgaaggaaaa                          | aagtatcttt                         | ttaaaaaagt                        | gggccaggca                        | 1978 |
| <b>⊧99t99∈t</b> ca cacctgtaa                      | t cctagcacgt                          | ggggaggctg                         | aggcaggcag                        | atcacttagg                        | 2038 |
| ctaggaattc aagaccagc                              | c tggccaacat                          | ggtgaaaccc                         | tgtctctact                        | aaaaatacaa                        | 2098 |
| aaattagctg ggcatggtg                              | t tgtgcaccta                          | taattccagc                         | tactcaggag                        | gctgaggcag                        | 2158 |
| gagaatcgct tgagcctgg                              | g aggcagaggt                          | tgctgtgagc                         | cgagaccgca                        | ccactgcact                        | 2218 |
| ccagcctggg cgacagagc                              | g agactccatc                          | tc                                 |                                   | r                                 | 2250 |
| <210> 81<br><211> 243                             |                                       |                                    |                                   | .:                                |      |

<210> 81 <211> 243 <212> PRT <213> Homo sapiens

<400> 81

16U 200 PCT FINAL.ST25 Met Ser Arg Ser Pro Leu Asn Pro Ser Gln Leu Arg Ser Val Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn Pro Ser 20 25 30 Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu Leu Cys Va) Ser His Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly Leu Ser 65 70 75 80Tyr Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys Gly Met Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu Val Gln Ala Pro Ser Leu Glu Phe Leu Ile Pro Ala Leu Val Leu Thr Ser Gln 115 120 125 Lys Leu Pro Arg Ala Ile Gln Thr Pro Gly Asn Ser Ser Leu Met Leu His Leu Cys Arg Gly Pro Ser Cys His Gly Leu Gly His Trp Asn Thr 145 150 155 160 Ser Leu Gln Glu Val Ser Gly Ala Val Val Ser Gly Leu Leu Gln Gly Met Met Gly Leu Leu Gly Ser Pro Gly His Val Phe Pro His Cys 180 185 190Gly Pro Leu Val Leu Ala Pro Ser Leu Val Val Ala Gly Leu Ser Ala His Arg Glu Val Ala Gln Phe Cys Phe Thr His Trp Gly Leu Ala Leu 210 215 220

Leu Tyr Val Ser Pro Glu Arg Arg Gly Met Val Pro Ser Gly Gly Val

Trp Gly Asp

<210> 82 <211> 1865 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (99)..(1508) <223>

<400> 82
attttatttc aggaatccat caacatcctt tgcagctaca taggcaggaa aatctagaaa 60
ttgtaattta tatagaattt taaaactctt caattaca atg gat aga ggg gag aaa 110
Page 43

| 160 | 20  | 0  | PG | T  | FI | NAL. | ST25 | ,   |
|-----|-----|----|----|----|----|------|------|-----|
| Me  | e t | A: | sp | Ar | g  | Gly  | Glu  | Lys |
| 1   |     |    |    |    |    |      | 5    |     |

|                |                    |            |                    |                  |                  |                    |                      |                      |                    |                      |                      | 1            |                    |                    |                    | 5              |                  |      |
|----------------|--------------------|------------|--------------------|------------------|------------------|--------------------|----------------------|----------------------|--------------------|----------------------|----------------------|--------------|--------------------|--------------------|--------------------|----------------|------------------|------|
| at<br>II       | a ca<br>e G        | ag i       | ct <i>c</i><br>Leu | aag<br>Lys<br>10 | aga<br>Arg       | gt<br>g Va         | g tt<br>1 Ph         | t gg<br>e Gl         | a ta<br>y Ty<br>15 | t tg<br>r Tr         | g tg<br>p Tr         | p G1         | c ac<br>y Th       | a ag<br>r Se<br>20 | er P               | tt<br>he       | ttg<br>Leu       | 164  |
| c t<br>Le      | t at               | le i       | aat<br>Asn<br>25   | atc<br>Ile       | att              | gg<br>G1           | t gc<br>y Al         | a gga<br>a G1:<br>30 | a at<br>y Il       | t tt<br>e Ph         | t gte<br>e Va        | g tc<br>l Se | c cc<br>r Pr<br>35 | O Ly               | a g<br>/s G        | gt<br>ly       | gtg<br>Val       | 212  |
| t t<br>Le      | g go<br>u A)<br>40 | a          | ac<br>Tyr          | tct<br>Ser       | t gc<br>Cys      | ate<br>Mei         | g aad<br>t Asi<br>45 | c gto<br>n Val       | g gg<br>l G1       | a gt<br>y Va         | c tce<br>1 Se        | c ct<br>c Le | g tg<br>u Cy       | c gt<br>s Va       | t to               | 99<br>rp /     | gct<br>Ala       | 260  |
| gg<br>G1<br>55 | у Су               | rs A       | icc<br>lla         | ata<br>Ile       | ctg<br>Leu       | gco<br>Ala<br>60   | a Me                 | g aca<br>t Thi       | tc<br>Se           | a ac<br>r Th         | t cti<br>r Lei<br>65 | t tge        | c tc<br>s Se       | t gc<br>r Al       | a ga<br>a Gì       | u :            | ata<br>Ile<br>70 | 308  |
| ag<br>Se       | t at<br>r Il       | a a<br>e S | gc<br>er           | ttc<br>Phe       | cca<br>Pro<br>75 | t go<br>Cys        | agt<br>Ser           | t gga<br>t Gly       | gc'<br>Ala         | t caa<br>a Gli<br>80 | a tao                | tai<br>Tyi   | t tti              | t ct<br>e Le       | c aa<br>u Ly<br>85 | rs A           | aga<br>Arg       | 356  |
| ta:            | c tt<br>r Ph       | t g<br>e G | 1 y                | tcc<br>Ser<br>90 | acg<br>Thr       | gtt<br>Val         | gct<br>Ala           | ttt<br>Phe           | tte<br>Lei<br>95   | g aat<br>u Asi       | t ctc<br>n Lev       | tgg<br>Trp   | g aca<br>o Thi     | tc<br>Se<br>10     | r Le               | g t            | tt<br>he         | 404  |
| Lei            | 9 99<br>1 G1       | y S        | ca<br>er<br>05     | 999<br>Gly       | gta<br>Vạl       | gtt<br>Val         | gct<br>Ala           | ggc<br>Gly<br>110    | Gli                | gct<br>Ala           | t ctg<br>a Leu       | cto<br>Lev   | ctt<br>Leu<br>115  | 1 Al               | t ga<br>a Gl       | g t<br>u T     | ac<br>'yr        | 452  |
| ago<br>Sei     | 110<br>120         | e G        | ag (<br>ln i       | cct<br>Pro       | ttt<br>Phe       | ttt<br>Phe         | Pro<br>125           | Ser                  | t go<br>Cys        | tct<br>Ser           | gtc<br>Val           | Pro<br>130   | Lys                | Lei                | g cc<br>u Pr       | t a<br>o L     | ag<br>ys         | 500  |
| Lys<br>135     | Cy                 | s L        | eus A              | 41a              | Leu              | Ala<br>140         | Met                  | Leu                  | Trp                | att<br>Ile           | Val<br>145           | Gly          | Ile                | Lei                | ı Th               | r S            | er<br>50         | 549  |
| Arg            | GI                 | y Va       | a] ]               | .ys              | G1ս<br>155       | Val                | Thr                  | Trp                  | Leu                | Cag<br>Gln<br>160    | Ile                  | Ala          | Ser                | Ser                | 16                 | 1 L<br>5       | eu               | 596  |
| rys            | val                | Se         | er 1               | 70               | Leu              | Ser                | Phe                  | Ile                  | Ser<br>175         |                      | Thr                  | Gly          | Val                | Val<br>180         | Phe                | e L            | eu               | 644  |
| He             | Arg                | 1 G I      | y I<br>5           | ys I             | Lys              | Glu                | Asn                  | Val<br>190           | Glu                | cga<br>Arg           | Phe                  | Gln          | Asn<br>195         | Ala                | Phe                | ? A:           | sp               | 692  |
| Ala            | 200                | Le         | u P                | ro A             | Asp              | Ile                | Ser<br>205           | His                  | Leu                | ata<br>Ile           | Gln                  | Ala<br>210   | Ile                | Phe                | Glr                | ı G            | ÌУ               | 740  |
| 1yr<br>215     | Phe                | Al         | ат                 | yr S             | Ser (            | G1 y<br>220        | Gly                  | Ala                  | Cys                | ttt<br>Phe           | Thr<br>225           | Leu          | Ile                | Ala                | Gly                | 23             | l u<br>30        | 788  |
| Leu            | rys                | Ly         | s P                | ro A<br>2        | rg 1             | lhr                | Thr                  | Ile                  | Pro                | aaa<br>Lys<br>240    | Cys                  | Ile          | Phe                | Thr                | Ala<br>245         | Le             | eu               | 836  |
| Pro            | Leu                | Va         | 2                  | hr V<br>50       | al \             | /al                | Tyr                  | Leu                  | Leu<br>255         | gtt<br>Val           | Asn                  | Ile          | Ser'               | Tyr<br>260         | Leu                | Th             | r                | 884  |
| vai            | гев                | 26:        | r Pi               | CO A             | rg G             | ilu i              | Ile                  | Leu<br>270           | Ser                | tca<br>Ser           | Asp                  | Ala          | Val<br>275         | Ala                | Ile                | Th             | r                | 932  |
| тър            | 280                | AS         | ) Ai               | rg A             | la F             | he i               | Pro<br>285           | Ser i                | Leu                | gca<br>Ala           | Trp                  | 11e i<br>290 | Met                | Pro                | Phe                | Al             | a                | 980  |
| 11e<br>295     | Ser                | Thi        | t Se               | r L              | eu P             | tt a<br>he s<br>00 | ser i                | aac (<br>Asn 1       | ct t<br>Leu        | ctg<br>Leu           | att<br>Ile:<br>305   | tct<br>Ser   | ata<br>Ile         | ttt<br>Phe         | aaa<br>Lys         | tc<br>Se<br>31 | r                | 1028 |

|              |            |             |            |            |            |            |            |            |            |            |            |            |            | L.ST         |            | 1076 |
|--------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------|
| tcg<br>Ser   | aga<br>Arg | Pro         | lle        | Tyr        | Leu        | Ala        | Ser        | Gln        | Glu        | G1 y       | Gln        | Leu        | Pro        | t t g<br>Leu | Leu        | 1070 |
|              |            |             |            | 315        |            |            |            |            | 320        |            |            |            |            | 325          |            |      |
| ttt          | aat        | aca<br>Thr  | ctt        | aat<br>Asn | agt<br>Ser | cac        | tct        | tct        | cca        | ttt        | aca<br>Thr | gct<br>Ala | gtg<br>Val | cta<br>Leu   | cta<br>Leu | 1124 |
| rne          | nau        |             | 330        | 71.511     | 561        |            | 501        | 335        |            |            | ••••       |            | 340        |              |            |      |
| ctt          | gtc        | act         | ttg        | gga        | tcc        | ctt        | gca        | att        | atc        | tta        | aca        | agt        | cta        | att          | gat        | 1172 |
| Leu          | Val        | Thr<br>345  | Leu        | Gly        | Ser        | Leu        | Ala<br>350 | lle        | lle        | Leu        | Thr        | Ser<br>355 | Leu        | Ile          | Asp        |      |
| tta          | ata        | aac         | tat        | att        | +++        | ttc        | aca        | oat        | tca        | tta        | taa        | tct        | ata        | tta          | tta        | 1220 |
|              | He         |             |            |            |            | Phe        |            |            |            |            | Trp        |            |            | Leu          |            |      |
|              | 360        |             |            |            |            | 365        |            |            |            |            | 370        |            |            |              |            |      |
| atg<br>Met   | ata        | gga<br>Glv  | ata        | cta        | agg<br>Arg | cgg<br>Arg | aga<br>Aro | tac<br>Tvr | cag<br>Gln | gaa<br>Glu | CCC<br>Pro | aat<br>Asn | cta<br>Leu | tct<br>Ser   | ata<br>Ile | 1268 |
| 375          |            | 0.,         | ***        | 200        | 380        | 9          |            | -,-        |            | 385        |            |            |            |              | 390        |      |
| cct          | tat        | aag         | gtg        | ttt        | ttg        | tca        | ttt        | cca        | tta        | gca        | aca        | ata        | gtc        | atc          | gac        | 1316 |
| Pro          | Tyr        | Lys         | Val        | Phe<br>395 | Leu        | Ser        | Phe        | Pro        | 100        | Ala        | Thr        | 116        | val        | 11e<br>405   | Asp        |      |
| ata          | aac        | tta         | att        | ata        | ata        | cca        | tta        | αta        | aao        | tct        | сса        | aat        | ata        | cat          | tat        | 1364 |
| Val          | Gly        | Leu         | Val        | Val        | Ile        | Pro        | Leu        | Val        | Lys        | Ser        | Pro        | Asn        | Val<br>420 | His          | Tyr        |      |
|              |            |             | 410        |            |            |            |            | 415        |            |            |            |            |            |              |            |      |
| gtc<br>Val   | tac<br>Tyr | gtg<br>Val  | ctt<br>Leu | ctg<br>Leu | tta<br>Leu | gtt<br>Val | ctc<br>Leu | agc<br>Ser | gga<br>Gly | tta<br>Leu | cta<br>Leu | ttt<br>Phe | tac<br>Tyr | ata<br>Ile   | cct<br>Pro | 1412 |
|              | •          | 425         |            |            |            |            | 430        |            |            |            |            | 435        |            |              |            |      |
|              |            |             |            |            |            |            |            |            |            |            |            |            |            | act          |            | 1460 |
| ren          | 440        | H15         | Pne        | rys        | 116        | 445        | ren        | Ala        | пр         | rne        | 450        | rys        | net        | Thr          | cys        |      |
| tat          | tta        | caa         | tta        | cta        | ttt        | aat        | att        | tgc        | ctc        | cct        | gat        | gtg        | tct        | gag          | gaa        | 1508 |
| Tyr<br>455   | Leu        | Gln         | Leu        | Leu        | Phe<br>460 | Asn        | lle        | Cys        | Leu        | Pro<br>465 | Asp        | Val        | Ser        | Glu          | Glu<br>470 |      |
|              |            |             |            |            |            |            |            | . ++.      | 10001      |            | 222        |            | at a       | tate:        | agatto     | 1568 |
|              |            |             |            |            |            |            |            |            |            |            |            |            |            |              |            |      |
|              |            |             |            |            |            |            |            |            |            |            |            |            |            |              | tatttt     | 1628 |
|              |            |             |            |            |            | -          |            |            |            |            |            |            |            |              | cagag      | 1688 |
|              |            |             |            |            |            |            |            |            |            |            |            |            |            |              | gtttgc     | 1748 |
| gtag         | ctt        | gat a       | agagt      | gati       | ta ta      | acaad      | cttc       | ati        | ctc        | cac        | ttti       | ttt        | ttc        | tgtal        | cccac      | 1808 |
| ccct         | ttt        | cta d       | etgaa      | attt       | gt g       | ggat       | ccta       | a taa      | ataaa      | agt        | gaal       | tgac'      | taa        | aaat         | tt         | 1865 |
| <210         | )> {       | 33          |            |            |            |            |            |            |            |            |            |            |            |              |            |      |
| <211         |            | 170         |            |            |            |            |            |            |            |            |            |            |            |              |            |      |
| <212<br><213 |            | PRT<br>Iomo | sapi       | ens        |            |            |            |            |            |            |            |            |            |              |            |      |
| < 400        | )> {       | 33          |            |            |            |            |            |            |            |            |            |            |            |              |            |      |

Trp Gly Thr Ser Phe Leu Leu Ile Asn Ile Ile Gly Ala Gly Ile Phe 20 25 30

Val Ser Pro Lys Gly Val Leu Ala Tyr Ser Cys Met Asn Val Gly Val 35 40 45

Ser Leu Cys Val Trp Ala Gly Cys Ala Ile Leu Ala Met Thr Ser Thr 50 55 60

Leu Cys Ser Ala Glu Ile Ser Ile Ser Phe Pro Cys Ser Gly Ala Gln 65 70 75 80

Tyr Tyr Phe Leu Lys Arg Tyr Phe Gly Ser Thr Val Ala Phe Leu Asn 85 90 95

Leu Trp Thr Ser Leu Phe Leu Gly Ser Gly Val Val Ala Gly Gln Ala 100 105 110

Leu Leu Leu Ala Glu Tyr Ser Ile Gln Pro Phe Phe Pro Ser Cys Ser 115 120 125

Val Pro Lys Leu Pro Lys Lys Cys Leu Ala Leu Ala Met Leu Trp Ile 130 135 140

Val Gly lle Leu Thr Ser Arg Gly Val Lys Glu Val Thr Trp Leu Gln 145 150 155 160

Ile Ala Ser Ser Val Leu Lys Val Ser Ile Leu Ser Phe Ile Ser Leu 165 170 175

Thr Gly Val Val Phe Leu Ile Arg Gly Lys Lys Glu Asn Val Glu Arg 180 185 190

Phe Gln Asn Ala Phe Asp Ala Glu Leu Pro Asp Ile Ser His Leu Ile 195 200 205

Gln Ala Ile Phe Gln Gly Tyr Phe Ala Tyr Ser Gly Gly Ala Cys Phe 210 215 220

Thr Leu Ile Ala Gly Glu Leu Lys Lys Pro Arg Thr Thr Ile Pro Lys 225 230 235 240

Cys Ile Phe Thr Ala Leu Pro Leu Val Thr Val Val Tyr Leu Leu Val 245 250 255

Asn Ile Ser Tyr Leu Thr Val Leu Thr Pro Arg Glu Ile Leu Ser Ser 260 265 270

Asp Ala Val Ala Ile Thr Trp Ala Asp Arg Ala Phe Pro Ser Leu Ala 275 280 285

Trp Ile Met Pro Phe Ala Ile Ser Thr Ser Leu Phe Ser Asn Leu Leu 290 295 300

Ile Ser Ile Phe Lys Ser Ser Arg Pro Ile Tyr Leu Ala Ser Glu 305 310 315 320

Gly Gln Leu Pro Leu Leu Phe Asn Thr Leu Asn Ser His Ser Ser Pro 325- 330- 335

Phe Thr Ala Val Leu Leu Leu Val Thr Leu Gly Ser Leu Ala Ile Ile 340 345 350

Leu Thr Ser Leu Ile Asp Leu Ile Asn Tyr Ile Phe Phe Thr Gly Ser 355 360 365

Leu Trp Ser Ile Leu Leu Met Ile Gly Ile Leu Arg Arg Tyr Gln 370 375 380

Glu Pro Asn Leu Ser Ile Pro Tyr Lys Val Phe Leu Ser Phe Pro Leu 385 390 395 400

60

120

#### 16U 200 PCT FINAL.ST25

| Ala | Thr | Ile | Val | He  | Asp | Val | Gly | Leu | Val | Val | lle | Pro | Leu | Val | Lys |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     | 405 |     |     |     |     | 410 |     |     |     |     | 415 | _   |

Ser Pro Asn Val His Tyr Val Tyr Val Leu Leu Leu Val Leu Ser Gly
420 425 430

Leu Leu Phe Tyr Ile Pro Leu Ile His Phe Lys Ile Arg Leu Ala Trp 435 440 445

Phe Glu Lys Met Thr Cys Tyr Leu Gln Leu Leu Phe Asn Ile Cys Leu 450 455 460

Pro Asp Val Ser Glu Glu 465 470

<210> 84 <211> 1046

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (319)..(852)

<223>

<400> 04
gaacacatet gaatteette tetgtggcat atgetttagg agaggageag acagetetta
getagggtca gattteaaat teteatetet tggtgccaat accaccacca gattettett

tgaagtcaac ttttgagatc ttcactaagt acacgttggt gtctgaagat tcacacgagt 180

gcctctggta atcattttct tcagggaatc acagtctctc ctctcagcaa agcatccact 240 gtactgaact ttgcttttgg aaacatcttc ttcctgagac ctcgttgaaa gaaactctct 300

ggtgtcatac tttccaat atg gag gtg aag aac ttt gca gtt tgg gat tat 351

Met Glu Val Lys Asn Phe Ala Val Trp Asp Tyr

1 5 10

gtt gta ttt gca gcc ctc ttt ttc att tcc tct gga att ggg gtg ttc
Val Val Phe Ala Ala Leu Phe Phe Ile Ser Ser Gly Ile Gly Val Phe
15 20 25

ttt gcc att aag gag aga aaa aag gca act tcc cga gag ttc ctg gtt
Phe Ala Ile Lys Glu Arg Lys Lys Ala Thr Ser Arg Glu Phe Leu Val

ggg gga agg caa atg agc ttt ggc cct gtc ggc ttg tct ctg aca gcc 495 Gly Gly Arg Gln Met Ser Phe Gly Pro Val Gly Leu Ser Leu Thr Ala 45 50 55

agc ttc atg tca gct gtc acg gtc ctg ggg acc cct tct gaa gtc tac
Ser Phe Met Ser Ala Val Thr Val Leu Gly Thr Pro Ser Glu Val Tyr
60 65 70 75

cgc ttt ggg gca tcc ttc cta gtc ttc ttc att gct tac cta ttt gtc
Arg Phe Gly Ala Ser Phe Leu Val Phe Phe Ile Ala Tyr Leu Phe Val

atc ctc tta aca tca gag ctc ttt ctc cct gtg ttc tac aga tct ggt

Ile Leu Thr Ser Glu Leu Phe Leu Pro Val Phe Tyr Arg Ser Gly

95

100

105

atc acc agc act tat gag tac tta caa cta cga ttc aac aaa cca gtt

1le Thr Ser Thr Tyr Glu Tyr Leu Gln Leu Arg Phe Asn Lys Pro Val

110 115 120

cgc tat gct gcc acg gtc atc tac att gta cag acg att ctc tac aca
Arg Tyr Ala Ala Thr Val Ile Tyr Ile Val Gln Thr Ile Leu Tyr Thr
125
130
135

| 996<br>G1<br>146  | y Va         | g gt<br>1 Va     | g gt<br>l Va          | g ta<br>1 Ty       | t gc<br>r Al<br>14 | a Pr         | t gc<br>o Al | c ct<br>a Le | g gc<br>u Al         | a ct             | c aa<br>u As | t ca              | a at         | a ac         | ST25<br>t ggg<br>r Gly<br>155 | 783  |
|-------------------|--------------|------------------|-----------------------|--------------------|--------------------|--------------|--------------|--------------|----------------------|------------------|--------------|-------------------|--------------|--------------|-------------------------------|------|
| tt!<br>Phe        | t ga<br>e As | t ct<br>p Le     | c tg<br>u Tr          | g gg<br>p Gl<br>16 | y Se               | t gt<br>r Va | g tt<br>1 Ph | t gc<br>e Al | a aca<br>a Th:<br>16 | r Gl             | a at<br>y 11 | t gt<br>e Va      | t tg<br>l Cy | c ac<br>s Th | a ttc<br>r Phe<br>0           | 831  |
| tac<br>Tyr        | tg<br>Cy:    | t ac<br>s Th     | c cter<br>r Ler<br>17 | u Va               | a tg<br>1 Cy:      | t ate        | c ta<br>e    | gctg         | tgaa                 | gaa              | gtat         | tta               | асас         | tacc         | tc                            | 882  |
| cta               | ata          | tggg             | ata                   | aggg               | caa a              | atct         | ccag         | ca a         | taggo                | catc             | t aa         | ttat              | agca         | gaa          | ttcgtta                       | 942  |
| tto               | caa          | aatt             | aago                  | caga               | agt a              | atgto        | ggc          | tt a         | tctgt                | caca             | a gti        | ttcc              | tgag         | gaa          | ggtgctg                       | 1002 |
| ttg               | ittta        | васа             | ttc                   | ttt                | cat 1              | tacca        | acc!         | tt ta        | aggag                | gaati            | t taa        | at                |              |              |                               | 1046 |
| <21<br><21<br><21 | 1><br>2>     | 85<br>178<br>PRT |                       |                    |                    |              |              |              |                      |                  |              |                   |              |              |                               |      |
| <21               |              |                  | sar                   | oien:              | 5                  |              |              |              |                      |                  |              |                   |              |              |                               | •    |
| <40               | 0>           | 85               |                       |                    |                    |              |              |              |                      |                  |              |                   |              |              |                               |      |
| Met<br>1          | Glu          | va)              | Lys                   | Asr<br>5           | n Ph∈              | Ala          | Va]          | Trp          | Asp<br>10            | Туг              | · Val        | Va]               | Phe          | 2 Ala<br>15  | a Ala                         |      |
| Leu               | Phe          | Phe              | 11e<br>20             | Ser                | Ser                | : Gly        | Ile          | Gly<br>25    | val                  | Phe              | Phe          | · Ala             | 11e<br>30    | . Lys        | Glu                           |      |
| Arg               | Lys          | Lys<br>35        | Ala                   | Thr                | Ser                | Arg          | Glu<br>40    | Phe          | Leu                  | Val              | Gly          | Gly<br>45         | Arg          | G)n          | Met                           |      |
| Ser               | Phe<br>50    | G1 y             | Pro                   | Val                | Gly                | Leu<br>55    | Ser          | Leu          | Thr                  | Ala              | Ser<br>60    | Phe               | Met          | Ser          | Ala                           |      |
| Val<br>65         | Thr          | Val              | Leu                   | G) y               | Thr<br>70          | Pro          | Ser          | Glu          | Val                  | Tyr<br>75        | Arg          | Phe               | Gly          | Ala          | Ser<br>80                     |      |
| Phe               | Leu          | Val              | Phe                   | Phe<br>85          | Ile                | Ala          | Tyr          | Leu          | Phe<br>90            | Val              | Ile          | Leu               | Leu          | Thr<br>95    | Ser                           |      |
| Glu               | Leu          | Phe              | Leu<br>100            | Pro                | Val                | Phe          | Tyr          | Arg<br>105   | Ser                  | Gly              | Ile          | Thr               | Ser<br>110   | Thr          | Tyr                           |      |
| Glu               | Tyr          | Leu<br>115       | Gln                   | Leu                | Arg                | Phe          | Asn<br>120   | Lys          | Pro                  | Val <sub>.</sub> | Arg          | Tyr<br>125        | Ala          | Ala          | Thr                           |      |
| Val<br>-          | 11e<br>130   | Tyr              | Ile                   | Val                | Gln                | Thr<br>135   | lle          | Leu          | Туr                  | Thr              | Gly<br>140   | Va <sub>.</sub> 1 | Val          | Val          | Tyr                           |      |
| Ala<br>145        | Pro          | ΑΊa              | Ľeu                   | Ala                | Leu<br>150         | Asn          | Gln          | Val          | Thr                  | Gly<br>155       | Phe          | Asp               | Leu          | Trp          | Gly<br>160                    |      |
| Ser               | Val          | Phe              | Ala                   | Thr<br>165         | Gly                | lle          | Val          | Cys          | Thr<br>170           | Phe              | Tyr          | Cys               | Thr          | Leu<br>175   | Val·                          |      |

Cys Ile

<210> 86 <211> 4751 <212> DNA <213> Homo sapiens

|                          |                   |                   |                   |            |                   |                   |                   |                   |            | 16U               | 200               | PCT               | FIN               | AL.S       | T25               |               |
|--------------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|---------------|
| <22<br><22<br><22<br><22 | 1><br>2>          | CDS<br>(382       | 2)(               | 1929       | ))                | -                 |                   |                   |            |                   |                   |                   |                   |            |                   |               |
| <40<br>ccc               |                   | 86<br>gag         | ctgg              | cggg       | ıgc t             | gaat              | gago              | c gg              | tgca       | tttc              | gaa               | ggcc              | gag               | cact       | gggati            | t 60          |
| ttc                      | cgcg              | cta               | cgct              | tccc       | tc t              | cccg              | gcgt              | t gc              | cago       | tagg              | ccc               | ccgg              | ccc               | cagc       | ctcgc             | c 12 <b>0</b> |
| ggc                      | gcct              | ccg               | ccca              | gtcc       | gc t              | cccc              | gccc              | c ac              | cgaa       | gcgc              | gga               | tcgc              | gca               | gcct       | 99 <b>9</b> 9c    | 2 180         |
| cgg                      | gaag              | 999               | ccac              | tgcg       | ca g              | ggac              | gcgg              | c tc              | ggcg       | ggtg              | cgc               | cccg              | ggg               | gcat       | gtccg             | 240           |
| gcg                      | ctac              | cgc               | cagg              | gctg       | ca g              | tggt              | cccg              | g cg              | aggc       | cctg              | gca               | acca              | cca               | ttct       | acttt             | 300           |
| tgt                      | gtct              | atg               | agtt              | tgac       | ta c              | ccta              | agga              | c ct              | caca       | tggc              | gag               | taac              | сса               | tggg       | ccagg             | t 360         |
| agc                      | gttc              | tat               | gcca              | acct       | tg a              |                   |                   | tca<br>Ser        |            |                   |                   |                   |                   |            |                   | 411           |
|                          |                   |                   |                   |            |                   |                   |                   | ttg<br>Leu        |            |                   |                   |                   |                   |            |                   | 459           |
| aaa<br>Lys               | aga<br>Arg        | aaa<br>Lys        | acc<br>Thr<br>30  | atg<br>Met | gca<br>Ala        | aaa<br>Lys        | gta<br>Val        | aat<br>Asn<br>35  | aga<br>Arg | gct<br>Ala        | cgg<br>Arg        | tct<br>Ser        | acc<br>Thr<br>40  | tcc<br>Ser | cct<br>Pro        | 507           |
|                          |                   |                   |                   |            |                   |                   |                   | att<br>Ile        |            |                   |                   |                   |                   |            |                   | 555           |
|                          |                   |                   |                   |            |                   |                   |                   | aga<br>Arg        |            |                   |                   |                   |                   |            |                   | 603           |
|                          |                   |                   |                   |            |                   |                   |                   | gat<br>Asp        |            |                   |                   |                   |                   |            |                   | 651           |
|                          |                   |                   |                   |            |                   |                   |                   | atg<br>Met        |            |                   |                   |                   |                   |            |                   | 699           |
| gtt<br>Val               | gtc<br>Val        | agt<br>Ser        | aac<br>Asn<br>110 | cat<br>His | tta<br>Leu        | tcc<br>Ser        | tgt<br>Cys        | caa<br>Gln<br>115 | gtg<br>Val | gga<br>Gly        | atc<br>11e        | atg<br>Met        | ctg<br>Leu<br>120 | ggt<br>Gly | ggc<br>Gly        | 747           |
|                          |                   |                   | Ser               |            |                   |                   |                   | ct g<br>Leu       |            |                   |                   |                   |                   |            |                   | 795           |
|                          |                   |                   |                   |            |                   |                   |                   | gtt<br>Val        |            |                   |                   |                   |                   |            |                   | 843           |
| ctt<br>Leu<br>155        | tgt<br>Cys        | tac<br>Tyr        | tct<br>Ser        | cca<br>Pro | gct<br>Ala<br>160 | att<br>Ile        | gcc<br>Ala        | atg<br>Met        | gtt<br>Val | ggc<br>Gly<br>165 | aag<br>Lys        | tac<br>Tyr        | ttc<br>Phe        | agc<br>Ser | aga<br>Arg<br>170 | 891           |
|                          |                   |                   |                   |            |                   |                   |                   | gcc<br>Ala        |            |                   |                   |                   |                   |            |                   | 939           |
| acc<br>Thr               | ttc<br>Phe        | atc<br>Ile        | ctg<br>Leu<br>190 | gct<br>Ala | cct<br>Pro        | gtg<br>Val        | gtt<br>Val        | cag<br>Gln<br>195 | ctc<br>Leu | ctt<br>Leu        | att<br>Ile        | gaa<br>Glu        | cág<br>Gln<br>200 | ttt<br>Phe | tcc<br>Ser        | 987           |
| tgg<br>Trp               | cgg<br>Arg        | gga<br>Gly<br>205 | gcc<br>Ala        | tta<br>Leu | ctc<br>Leu        | att<br>Ile        | ctt<br>Leu<br>210 | 61 y              | ggc<br>Gly | ttt<br>Phe        | gtc<br>Val        | ttg<br>Leu<br>215 | aat<br>Asn        | ctc<br>Leu | tgt<br>Cys        | 1035          |
| gta<br>Val               | tgt<br>Cys<br>220 | ggt<br>Gly        | gcc<br>Ala        | ttg<br>Leu | atg<br>Met        | agg<br>Arg<br>225 | cca<br>Pro        | att<br>Ile        | act<br>Thr | ctt<br>Leu        | aaa<br>Lys<br>230 | gag<br>Glu        | gac<br>Asp        | cac<br>His | aca<br>Thr        | 1083          |
| act                      | cca               | gag               | cag               | aac        | cat               | gtg               | tgt               | aga               | act        | cag               | aaa               | gaa               | gac               | att        | aag               | 1131          |

| Th:               |                   | o 61:             | a Glm                 | a Asn                 | His<br>240        |                   | Cys               | Aŕ                | 3 Thr                 |                       | Lys               | PCT<br>Glu        |                   |                        |                   |      |
|-------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|------------------------|-------------------|------|
| Ari<br>Cgi        | g gto<br>g Val    | g tot<br>1 Sei    | ccc<br>Pro            | tat<br>Tyr<br>255     | Ser               | Ser               | ttg<br>Leu        | aco<br>Thi        | aaa<br>Lys<br>260     | Glu                   | t g g<br>Trp      | gca<br>Ala        | cag<br>Gln        | act<br>Thr<br>265      | Cys               | 1179 |
|                   |                   |                   |                       | Leu                   |                   |                   |                   |                   | agt<br>Ser            |                       |                   |                   |                   |                        |                   | 1227 |
|                   |                   |                   | Leu                   |                       |                   |                   |                   | Leu               | ttt<br>Phe            |                       |                   |                   |                   |                        |                   | 1275 |
|                   |                   | Phe               |                       |                       |                   |                   | Pro               |                   | gct<br>Ala            |                       |                   |                   |                   |                        |                   | 1323 |
| cat<br>His<br>315 | Gln               | caa<br>Gln        | gct<br>Ala            | gct<br>Ala            | ttt<br>Phe<br>320 | ctt<br>Leu        | atg<br>Met        | tcc<br>Ser        | ata<br>Ile            | ctt<br>Leu<br>325     | gga<br>Gly        | gtg<br>Val        | att<br>Ile        | gac<br>Asp             | att<br>Ile<br>330 | 1371 |
|                   |                   |                   |                       |                       |                   |                   |                   |                   | acc<br>Thr<br>340     |                       |                   |                   |                   |                        |                   | 1419 |
| aat<br>Asn        | tac<br>Tyr        | cag<br>Gln        | tat<br>Tyr<br>350     | gtt<br>Val            | tgc<br>Cys        | tac<br>Tyr        | ctc<br>Leu        | ttt<br>Phe<br>355 | gcc<br>Ala            | gtg<br>Val            | gga<br>Gly        | atg<br>Met        | gat<br>Asp<br>360 | 999<br>Gly             | ctc<br>Leu        | 1467 |
| tgc<br>Cys        | tat<br>Tyr        | ctc<br>Leu<br>365 | tgc<br>Cys            | ct <i>c</i><br>Leu    | cca<br>Pro        | atg<br>Met        | ctt<br>Leu<br>370 | caa<br>Gln        | agt<br>Ser            | ctc<br>Leu            | cct<br>Pro        | ctg<br>Leu<br>375 | ctc<br>Leu        | gtg<br>Val             | cct<br>Pro        | 1515 |
| ttc<br>Phe        | tct<br>Ser<br>380 | tgt<br>Cys        | acc<br>Thr            | ttt<br>Phe            | ggc<br>Gly        | tac<br>Tyr<br>385 | ttt<br>Phe        | gat<br>Asp        | ggt<br>Gly            | gcc<br>Ala            | tat<br>Tyr<br>390 | gtg<br>Val        | act<br>Thr        | t t g<br>Leu           | atc<br>Ile        | 1563 |
| cca<br>Pro<br>395 | gta<br>Val        | gtg<br>Val        | acc<br>Thr            | aca<br>Thr            | gag<br>Glu<br>400 | ata<br>Ile        | gtg<br>Val        | 999<br>G1 y       | acc<br>Thr            | acc<br>Thr<br>405     | tct<br>Ser        | ttg<br>Leu        | tca<br>Ser        | tca<br>Ser             | gcg<br>Ala<br>410 | 1611 |
| ctt<br>Leu        | ggt<br>Gly        | gtg<br>Val        | Val                   | tac<br>Tyr<br>415     | ttc<br>Phe        | ctt<br>Leu        | cac<br>His        | gca<br>Ala        | gtg<br>Val<br>420     | cca<br>Pro            | tac<br>Tyr        | ttg<br>Leu        | Val               | agc<br>Ser<br>425      | cca<br>Pro        | 1659 |
| ccc<br>Pro        | atc<br>Ile        | gca<br>Ala        | gga<br>G1y<br>430     | cgg<br>Arg            | ctg<br>Leu        | gta<br>Val        | gat<br>Asp        | acc<br>Thr<br>435 | acc<br>Thr            | ggc<br>Gly            | agc<br>Ser        | Tyr               | act<br>Thr<br>440 | gca<br>Ala             | gca<br>Ala        | 1707 |
| ttc<br>Phe        | ctc<br>Leu        | ctc<br>Leu<br>445 | tgt<br>Cys            | gga<br>Gly            | ttt<br>Phe        | tca<br>Ser        | atg<br>Met<br>450 | ata<br>Ile        | ttt<br>Phe            | agt<br>Ser            | Ser               | gtg<br>Val<br>455 | t t g<br>Leu      | ctt<br>Leu             | ggc<br>Gly        | 1755 |
| t t t<br>Phe      | gct<br>Ala<br>460 | aga<br>Arg        | ctt<br>Leu            | ata<br>Ile            | Lys               | aga<br>Arg<br>465 | atg<br>Met        | aga<br>Arg        | aaa<br>Lys '          | Thr (                 | cag<br>Gln<br>470 | ttg (<br>Leu (    | cag<br>Gln        | ttc<br>Phe             | att<br>Ile        | 1803 |
| gcc<br>Ala<br>475 | aaa<br>Lys        | gaa<br>Glu        | tct (<br>Ser )        | Asp :                 | cct<br>Pro:       | aag<br>Lys        | ctg<br>Leu        | cag<br>Gln        | cta (<br>Leu :        | tgg-a<br>Frp 1<br>485 | hr i              | aat (<br>Asn (    | gga<br>Gly :      | Ser                    | gtg<br>Val<br>490 | 1851 |
| gct<br>Ala        | tat<br>Tyr        | tct<br>Ser        | Val 1                 | gca a<br>Ala a<br>195 | aga (<br>Arg (    | gaa<br>Glu i      | tta<br>Leu i      | Asp               | cag a<br>Gln 1<br>500 | aaa d<br>Lys H        | at d              | 999 9<br>Gly 6    | Slu 1             | ect of<br>Pro 1<br>505 | gtg<br>Val        | 1899 |
| gct<br>Ala        | aca<br>Thr        | Ala               | gtg d<br>Val I<br>510 | ect e                 | ggc 1<br>Gly 1    | tac .<br>Tyr :    | Ser !             | ctc<br>Leu<br>515 | aca t<br>Thr          | gaco                  | aaaq              | gg co             | ttga              |                        |                   | 1949 |
| caga              | atct              | tc a              | ggttt                 | gaga                  | gag               | ggtg              | gggc              | cac               | cagat                 | tc t                  | tcat              | gttt              | c to              | jaaad<br>              | tttt              | 2009 |
| tatt              | ttgg              | ca g              | aagga                 | ttgo                  | cti               | ccaa              | gga               | aat               | tatta                 | i <b>tt</b> a         | ttgt              | tttg              | t ta              |                        | atta              | 2069 |
| atat              | ttat              | aa g              | ggaaa                 | acaç                  | , cad             | ata               | taa               | gga               | aagct                 | 99 a                  | ctag              | ccca              | g aç              | ccti                   | ctca              | 2129 |
| tttg              | ggat              | tt g              | tgctc                 | ataa                  | cto               | gaact             | cgt               | atc               | ttttg                 | gt c                  | aatg              | ggca              | t ag              | ctcl                   | gtaa              | 2189 |

| gaaatgtaag  | gacacagctg | atataattag |            | 200 PCT FIR<br>ggataatttc |                    | 2249  |
|-------------|------------|------------|------------|---------------------------|--------------------|-------|
| caaagcagat  | gacactgggc | agcagctttg | ttccagtctc | aggcccttca                | tgttccctcc         | 2309  |
| tcagaaagaa  | aatggaaaca | ttaacgtgta | gctttgctta | ccttgttctg                | gttagagaag         | 2369  |
| ggaggtcagc  | ttgggtgtgg | tggtgaagag | tgaagatgcc | atacttttc                 | atggtggagt         | 2429  |
| ttctcattag  | ggttttactt | gggattgtta | aagaatactt | gagattcttc                | aaaaagtggt         | 2489  |
| gattaatata  | gaaagaaact | cttatttttt | ttttctctta | gtcttccagc                | cagecettge         | 2549  |
| ctctgcccaa  | gggtagacac | cactatgaga | atccaaataa | tcatggaatg                | ccatggttgg         | 2609  |
| aatagatctt  | aaagggcatc | tggtaagatc | catttgaaat | tgtccactgg                | aaaccgaaag         | 2669  |
| ctcttttcct  | aagactgggt | tccaggctct | cacatttgtt | accatcacat                | ataatactta         | 2729  |
| ctctaaattt  | agcagaacac | acttagtcac | aaggacaacc | tctcaatctt                | acctgaaatg         | 2789  |
| tcaacaacac  | caaaacttcc | cgtcttttac | cttcagagaa | gaagctctta                | cttagactgc         | 2849  |
| agacgcattc  | ctgttaggtt | ggaaaaatgt | tggcagtatt | ccaattgggc                | aggaactgaa         | 2909  |
| ttcttgaatc  | agcaggtctc | tggtgagagt | tttctttgca | gatcagacat                | ttagttttat         | 2969  |
| cattacccaa  | aagaggattg | gagggagtca | gttgtctgaa | aaatattatc                | ctagagatat         | 3029  |
| tctaaaggtg  | agattccttt | ctccctgtgt | taattcttgt | tccactatcc                | actgctcttc         | 3089  |
| atctctttat  | agataataat | tagaaatcta | ctcattggat | tataagttta                | ttcattctca         | 3149  |
| aatactccac  | ttttctatgg | tttgggataa | tttctgagtc | ttcagattga                | agagggaa <b>gg</b> | 3209  |
| catggaggga  | agaaaaagtc | cagatecece | agcttgtttc | caaccatttt                | aagtccaaag         | 3269  |
| aattataatc  | ctgaatctca | cagtgtgtca | cacctgtaat | aggagtaaat                | tatgcaatca         | 3329  |
| attttaatta  | ccaggagttt | aaaatccaaa | tgtcaaggaa | ctgttttgac                | cctgaaggct         | 3389  |
| atttaatcca  | ctgtccccta | caaggcctca | caagtgctgg | gggaaaaaaa                | acagcaatga         | 3449  |
| ggatgatcct  | gagttaatgt | gtatgctccg | caagagagct | tgcctatacc                | ttgattattt         | 3509  |
| cataaaatca  | catgttaata | cattgctttc | agaatgaaat | actgacttga                | tctgatagga         | 3569  |
| gaaaatggta  | atatttcata | gttgttttcc | aaagacaaat | ttaaatgttg                | tctgttatct         | 3629  |
| ccttacttag  | tttaagaatt | tagttttgaa | ccccattgac | tttgtcattt                | gcaattttaa         | 3689  |
| aaatatttgg  | gactgggcat | ggtcgctcac | gcctgtaatc | ccagcacttt                | gggaggctga         | 3749  |
| ggcgggtgga  | tcatgaggtc | aggagatcaa | gaccatcctg | gctaacatcg                | tgaaactccg         | 3809  |
| tctctactaa  | aaatgcaaaa | gattagccag | gcgtggtggc | gggcgcctgt                | agtcccagct         | 3869  |
| actcatgagg  | ctgaggccgg | acaatcgctt | gaacccagga | ggtggaggtt                | gcagtgagcc         | 3929  |
| aaaatcatgc  | cactgcactc | caccctgggc | gacagagcaa | gactccatct                | сааваавааа         | 3989  |
| _aaattggaag | gtatctgtaa | aatgtcaaag | ttaagatgaa | gttatatctg                | tttggaatag         | 4049  |
| cactttgccc  | taaatatcat | ttcttgaatt | ttcaagccta | aagatgttta                | aaaatatgaa         | 4109  |
| tagttacaaa  | tattcttata | catattttt  | atcatgatca | caacaaaatt                | ttgtttatgt         | 4169  |
| ggttctgcaa  | tataatttct | gtgaagtatt | acaagtattt | atgaaaaata                | agcatagtga         | 4229  |
|             |            |            |            | tttgacttta                |                    | 4289  |
|             |            |            |            | aaaatcagta                | * *                | .4349 |
|             |            |            | _          | ttagtgttaa                | •                  | 4409  |
|             |            |            |            | tgatgtattt                |                    | 4469  |
|             |            |            |            | ttctttctac                |                    | 4529  |
| tctactttgg  | aattatctga | gtagaaaatc | agaagacatt | atctaacttt                | gtagatacac         | 4589  |

| tgtatgattg | ggctttttgt | tcagattgta | atttcattaa | tagatgaaat | atttatgcta | 4649 |
|------------|------------|------------|------------|------------|------------|------|
| atattttctt | atttcaaaag | caaaataaaa | tgaatttatt | gtcctgtgta | aaaaaaaaa  | 4709 |
| aaaaaaaaaa | aaaaaaaaa  | aaaaaaaaa  | аааааааааа | aa         |            | 4751 |

| <210> | 87   |         |
|-------|------|---------|
| <211> | 516  |         |
| <212> | PRT  |         |
| <213> | Homo | sapiens |

<400> 87

Met Pro Ser Gly Ser His Trp Thr Ala Asn Ser Ser Lys Ile Ile Thr 1 5 15

Trp Leu Leu Glu Gln Pro Gly Lys Glu Glu Lys Arg Lys Thr Met Ala  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Lys Val Asn Arg Ala Arg Ser Thr Ser Pro Pro Asp Gly Gly Trp Gly 35 40 45

Trp Met Ile Val Ala Gly Cys Phe Leu Val Thr Ile Cys Thr Arg Ala 50 55 60

Val Thr Arg Cys Ile Ser Ile Phe Phe Val Glu Phe Gln Thr Tyr Phe 65 70 75 80

Thr Gln Asp Tyr Ala Gln Thr Ala Trp Ile His Ser Ile Val Asp Cys . 85 90 95

Val Thr Met Leu Cys Ala Pro Leu Gly Ser Val Val Ser Asn His Leu  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ser Cys Gln Val Gly 11e Met Leu Gly Gly Leu Leu Ala Ser Thr Gly 115 120 125

Leu Ile Leu Ser Ser Phe Ala Thr Ser Leu Lys His Leu Tyr Leu Thr 130 135 140

Leu Gly Val Leu Thr Gly Leu Gly Phe Ala Leu Cys Tyr Ser Pro Ala 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}$  160

Ile Ala Met Val Gly Lys Tyr Phe Ser Arg Arg Lys Ala Leu Ala Tyr 165 170 175

Gly Ile Ala Met Ser Gly Ser Gly Ile Gly Thr Phe Ile Leu Ala Pro 180 185 190

Val Val Gln Leu Leu Ile Glu Gln Phe Ser Trp Arg Gly Ala Leu Leu 195 200 205

lle Leu Gly Gly Phe Val Leu Asn Leu Cys Val Cys Gly Ala Leu Met 210 215

Arg Pro Ile Thr Leu Lys Glu Asp His Thr Thr Pro Glu Gln Asn His 225 230 235

Val Cys Arg Thr Gln Lys Glu Asp Ile Lys Arg Val Ser Pro Tyr Ser 245 250 255

16U 200 PCT FINAL.ST25 Ser Leu Thr Lys Glu Trp Ala Gln Thr Cys Leu Cys Cys Cys Leu Gln 260 265 270

Gln Glu Tyr Ser Phe Leu Leu Met Ser Asp Phe Val Val Leu Ala Val 275 280 285

Ser Val Leu Phe Met Ala Tyr Gly Cys Ser Pro Leu Phe Val Tyr Leu 290 295 300

Val Pro Tyr Ala Leu Ser Val Gly Val Ser His Gln Gln Ala Ala Phe 305 310 315 320

Leu Met Ser Ile Leu Gly Val Ile Asp Ile Ile Gly Asn Ile Thr Phe 325 \$330\$

Gly Trp Leu Thr Asp Arg Arg Cys Leu Lys Asn Tyr Gln Tyr Val Cys 340 350

Tyr Leu Phe Ala Val Gly Met Asp Gly Leu Cys Tyr Leu Cys Leu Pro 355 360 365

Met Leu Gln Ser Leu Pro Leu Leu Val Pro Phe Ser Cys Thr Phe Gly

Tyr Phe Asp Gly Ala Tyr Val Thr Leu Ile Pro Val Val Thr Glu 385 390 395 400

lle Val Gly Thr Thr Ser Leu Ser Ser Ala Leu Gly Val Val Tyr Phe

Leu His Ala Val Pro Tyr Leu Val Ser Pro Pro Ile Ala Gly Arg Leu 420 425 430

Val Asp Thr Thr Gly Ser Tyr Thr Ala Ala Phe Leu Cys Gly Phe

Ser Met Ile Phe Ser Ser Val Leu Leu Gly Phe Ala Arg Leu Ile Lys

Arg Met Arg Lys Thr Gln Leu Gln Phe Ile Ala Lys Glu Ser Asp Pro 465 470 475 480

Lys Leu Gln Leu Trp Thr Asn Gly Ser Val Ala Tyr Ser Val Ala Arg 485 490 495

Glu Leu Asp Gln Lys His Gly Glu Pro Val Ala Thr Ala Val Pro Gly 505

Tyr Ser Leu Thr 515

<210> 88

<211> 2150

<212> DNA

<213> Homo sapiens

<220>

<221>

<222> (63)..(1760)

<223>

<400> 88

| qc                | toga              | caaa              | gct               | aacc              | ata (             | cagg              | cact              | ca o              | acat              |                   |                   |                   | r Fli             |                   | ST25<br>cggccag   | 60    |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
|                   | atg               | gac               | agc               | ctc               | cag               | gac               | aca               | gtg               | gcc               | ctg<br>Leu        | gac               | cat               | ggg               | ggc               | tac               | 107   |
|                   | - 1               |                   |                   |                   | 5                 |                   |                   |                   |                   | 10                |                   |                   |                   |                   | 15                |       |
| Cy.               | s Pr              | o Al              | a Le              | u Sei<br>20       | c Arg             | g Cto             | g gti<br>val      | l Pro             | aga<br>Arg<br>25  | a ggo             | Phe               | Gl                | g act             | 61 G1v            | g atg<br>u Met    | 155   |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | g ctg<br>l Leu    | 203   |
| Thi               | t tti<br>r Phe    | t ato             | g ato             | tac<br>Tyr        | ato<br>Ile        | gtg<br>Val        | ser<br>55         | act<br>Thr        | gtç<br>Val        | tto<br>Phe        | tgc<br>Cys        | 999<br>Gly<br>60  | g cad<br>y His    | cto<br>Lei        | g Gly             | 251   |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gtc<br>Val        | 299   |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ttg<br>Leu<br>95  | . 347 |
| atg<br>Met        | tct<br>Ser        | Gln               | ago<br>Ser        | Phe<br>100        | Gly               | agc<br>Ser        | ccc<br>Pro        | aac<br>Asn        | aag<br>Lys<br>105 | Lys               | cac<br>His        | gtg<br>Val        | ggc<br>Gly        | gtg<br>Val<br>110 | atc<br>Ile        | 395   |
| ct g<br>Leu       | cag<br>Gln        | cgg<br>Arg        | ggc<br>Gly<br>115 | Ala               | ctg<br>Leu        | gtc<br>Val        | ct g<br>Leu       | ctc<br>Leu<br>120 | Leu               | tgc<br>Cys        | tgc<br>Cys        | ct c<br>Leu       | cct<br>Pro<br>125 | Cys               | tgg<br>Trp        | 443   |
| gcg<br>Ala        | ctc<br>Leu        | ttc<br>Phe<br>130 | Leu               | aac<br>Asn        | acc<br>Thr        | cag<br>Gln        | cac<br>His<br>135 | Ile               | ctg<br>Leu        | ctg<br>Leu        | ctc<br>Leu        | ttc<br>Phe<br>140 | Arg               | cag<br>Gln        | gac<br>Asp        | 491   |
| ccg<br>Pro        | gac<br>Asp<br>145 | gtg<br>Val        | tcc<br>Ser        | agg<br>Arg        | ttg<br>Leu        | acc<br>Thr<br>150 | cag<br>Gln        | gac<br>Asp        | tat<br>Tyr        | gta<br>Val        | atg<br>Met<br>155 | att<br>Ile        | ttc<br>Phe        | att<br>Ile        | cca<br>Pro        | 539   |
| gga<br>Gly<br>160 | Leu               | ccg<br>Pro        | gtg<br>Val        | att<br>Ile        | ttt<br>Phe<br>165 | ctt<br>Leu        | tac<br>Tyr        | aat<br>Asn        | ctg<br>Leu        | ctg<br>Leu<br>170 | gca<br>Ala        | aaa<br>Lys        | tat<br>Tyr        | ttg<br>Leu        | caa<br>Gln<br>175 | 587   |
| aat<br>Asn        | cag<br>Gln        | aag<br>Lys        | atc<br>Ile        | acc<br>Thr<br>180 | tgg<br>Trp        | ccc<br>Pro        | caa<br>Gln        | gtc<br>Val        | ctc<br>Leu<br>185 | agt<br>Ser        | ggt<br>Gly        | gtg<br>Val        | gtg<br>Val        | ggc<br>Gly<br>190 | aac<br>Asn        | 635   |
| tgt<br>Cys        | gtc<br>Val        | aac<br>Asn        | ggt<br>Gly<br>195 | gtg<br>Val        | gcc<br>Ala        | aac<br>Asn        | tat<br>Tyr        | gcc<br>Ala<br>200 | Leu               | gtt<br>Val        | tct<br>Ser        | gtg<br>Val        | ctg<br>Leu<br>205 | aac<br>Asn        | ctg<br>Leu        | 683   |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | atc<br>Ile        |                   |                   |                   |                   |                   | 731   |
| acc<br>Thr        | gtc<br>Val<br>225 | ttc<br>Phe        | ctc<br>Leu        | ctt<br>Leu        | ctc<br>Leu        | tac<br>Tyr<br>230 | att<br>Ile        | gtg<br>Val        | ctg<br>Leu        | aag<br>Lys        | aag<br>Lys<br>235 | ctg<br>Leu        | cac<br>His        | ctg<br>Leu        | gag<br>Glu        | 779   |
| acg<br>Thr<br>240 | tgg<br>Trp        | gca<br>Ala        | ggt<br>Gly        | tgg<br>Trp        | tcc<br>Ser<br>245 | agc<br>Ser        | cag<br>Gln        | tgc<br>Cys        | ctg<br>Leu        | cag<br>Gln<br>250 | gac<br>Asp        | tgg<br>Trp        | G] y              | ccc<br>Prọ        | ttc<br>Phe<br>255 | 827   |
| ttc<br>Phe        | tcc<br>Ser        | ctg<br>Leu        | gct<br>Ala        | gtc<br>Val<br>260 | CCC<br>Pro        | agc<br>Ser        | atg<br>Met        | ctc<br>Leu        | atg<br>Met<br>265 | atc<br>Ile        | tgt<br>Cys        | gtt<br>Val        | gaġ<br>Glu        | tgg<br>Trp<br>270 | tgg<br>Trp        | 875   |
| gcc<br>Ala        | tat<br>Tyr        | Gl u              | atc<br>Ile<br>275 | GJ y<br>ggg       | agc<br>Ser        | ttc<br>Phe        | Leu               | atg<br>Met<br>280 | 999<br>Gly        | ctg<br>Leu        | ctc<br>Leu        | agt<br>Ser        | gtg<br>Val<br>285 | Val               | gat<br>Asp        | .1923 |
| ctc<br>Leu        | Ser               | gcc<br>Ala<br>290 | cag<br>Gln        | gct<br>Ala        | gtc<br>Val        | Ile '             | tac<br>Tyr<br>295 | gag<br>Glu        | gtg<br>Val        | gcc<br>Ala        | Thr               | gtg<br>Val<br>300 | acc<br>Thr        | tac<br>Tyr        | atg<br>Met        | 971   |
| att               | ccc               | ttg               | <b>9</b> 99       | ctc               | agc .             | atc (             | ggg ·             | gtc               | tgt               | gtc               | cga<br>-          | gtg               | 999               | atg               | gct               | 1019  |

|   | lle               | Pro<br>305        | Leu               | Gly               | Leu               | Ser               | 11e<br>310        | Gl y              | Val               | Cys               |                   |                   |                   |                   | L.ST<br>Met       |                   |      |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|   | ctg<br>Leu<br>320 | ggg<br>Gly        | gct<br>Ala        | gcg<br>Ala        | gat<br>Asp        | act<br>Thr<br>325 | gtg<br>Val        | cag<br>Gln        | gcc<br>Ala        | aag<br>Lys        | cgc<br>Arg<br>330 | tcg<br>Ser        | gcc<br>Ala        | gtc<br>Val        | tcg<br>Ser        | ggc<br>Gly<br>335 | 1067 |
|   | gtg<br>Val        | ctc<br>Leu        | agc<br>Ser        | ata<br>Ile        | gtt<br>Val<br>340 | ggc<br>Gly        | att<br>Ile        | tcc<br>Ser        | ctg<br>Leu        | gtc<br>Val<br>345 | ctg<br>Leu        | ggc<br>Gly        | acc<br>Thr        | ctg<br>Leu        | ata<br>Ile<br>350 | agc<br>Ser        | 1115 |
|   | atc<br>lle        | ctg<br>Leu        | aaa<br>Lys        | aat<br>Asn<br>355 | cag<br>Gln        | ctg<br>Leu        | 61 y              | cat<br>His        | att<br>Ile<br>360 | ttt<br>Phe        | acc<br>Thr        | aat<br>Asn        | gat<br>Asp        | gaa<br>Glu<br>365 | gat<br>Asp        | gtc<br>Val        | 1163 |
|   | att<br>Ile        | gcc<br>Ala        | ctg<br>Leu<br>370 | gtg<br>Val        | agc<br>Ser        | cag<br>Gln        | gtc<br>Val        | ttg<br>Leu<br>375 | ccg<br>Pro        | gtt<br>Val        | tat<br>Tyr        | agt<br>Ser        | gtc<br>Val<br>380 | ttt<br>Phe        | cac<br>His        | gtg<br>Val        | 1211 |
|   | ttt<br>Phe        | gag<br>Glu<br>385 | gcc<br>Ala        | atc<br>Ile        | tgt<br>Cys        | tgt<br>Cys        | gtc<br>Val<br>390 | tat<br>Tyr        | ggc<br>Gly        | gga<br>Gly        | gtt<br>Val        | ctg<br>Leu<br>395 | aga<br>Arg        | gga<br>Gly        | act<br>Thr        | 999<br>Gly        | 1259 |
|   | aag<br>Lys<br>400 | cag<br>Gln        | gcc<br>Ala        | ttt<br>Phe        | ggt<br>Gly        | gcc<br>Ala<br>405 | gct<br>Ala        | gtg<br>Val        | aat<br>Asn        | gcc<br>Ala        | atc<br>Ile<br>410 | aca<br>Thr        | tat<br>Tyr        | tac<br>Tyr        | atc<br>Ile        | atc<br>Ile<br>415 | 1307 |
|   | GJ y<br>ggc       | cta<br>Leu        | cca<br>Pro        | ctg<br>Leu        | ggc<br>Gly<br>420 | atc<br>Ile        | ctt<br>Leu        | ctg<br>Leu        | acc<br>Thr        | ttt<br>Phe<br>425 | gtg<br>Val        | gtc<br>Val        | aga<br>Arg        | atg<br>Met        | aga<br>Arg<br>430 | atc<br>Ile        | 1355 |
|   | atg<br>Met        | ggc<br>Gly        | ctc<br>Leu        | tgg<br>Trp<br>435 | ctg<br>Leu        | ggc<br>Gly        | atg<br>Met        | ctg<br>Leu        | gcc<br>Ala<br>440 | tgt<br>Cys        | gtc<br>Val        | ttc<br>Phe        | ctg<br>Leu        | gca<br>Ala<br>445 | act<br>Thr        | gct<br>Ala        | 1403 |
|   | gcc<br>Ala        | ttt<br>Phe        | gtt<br>Val<br>450 | gct<br>Ala        | tat<br>Tyr        | act<br>Thr        | gcc<br>Ala        | cgg<br>Arg<br>455 | ctg<br>Leu        | gac<br>Asp        | tgg<br>Trp        | aag<br>Lys        | ctt<br>Leu<br>460 | gct<br>Ala        | gca<br>Ala        | gag<br>Glu        | 1451 |
|   | gag<br>Glu        | gct<br>Ala<br>465 | aag<br>Lys        | aaa<br>Lys        | cat<br>His        | tca<br>Ser        | ggc<br>Gly<br>470 | cgg<br>Arg        | cag<br>Gln        | cag<br>Gln        | cag<br>Gln        | cag<br>Gln<br>475 | aga<br>Arg        | gca<br>Ala        | gag<br>Glu        | agc<br>Ser        | 1499 |
|   | act<br>Thr<br>480 | gca<br>Ala        | acc<br>Thr        | aga<br>Arg        | cct<br>Pro        | 999<br>Gly<br>485 | cct<br>Pro        | gag<br>Glu        | aaa<br>Lys        | gca<br>Ala        | gtc<br>Val<br>490 | cta<br>Leu        | tct<br>Ser        | tca<br>Ser        | gtg<br>Val        | gct<br>Ala<br>495 | 1547 |
|   | aca<br>Thr        | ggc<br>Gly        | agt<br>Ser        | tcc<br>Ser        | cct<br>Pro<br>500 | ggc<br>Gly        | att<br>Ile        | acc<br>Thr        | ttg<br>Leu        | aca<br>Thr<br>505 | acg<br>Thr        | tat<br>Tyr        | tca<br>Ser        | agg<br>Arg        | tct<br>Ser<br>510 | gag<br>Glu        | 1595 |
|   | tgc<br>Cys        | cac<br>His        | gtg<br>Val        | gac<br>Asp<br>515 | Phe               | t t c<br>Phe      | Arg               | Thr               | Pro               | gag<br>Glu        | gag<br>Glu        | gcc<br>Ala        | cac<br>His        | gcc<br>Ala<br>525 | ctt<br>Leu        | tca<br>Ser        | 1643 |
|   | gct<br>Ala        | cct<br>Pro        | acc<br>Thr<br>530 | agc<br>Ser        | aga<br>Arg        | cta<br>Leu        | tca<br>Ser        | gtg<br>Val<br>535 | aaa<br>Lys        | cag<br>Gln        | ctg<br>Leu        | gtc<br>Val        | atc<br>11e<br>540 | Arg               | cgt<br>Arg        | G1 y              | 1691 |
| - | gct<br>Ala        | gct<br>Ala<br>545 | ctg<br>Leu        | 61 X              | gcg<br>Ala        | gcg<br>Ala        | tca<br>Ser<br>550 | Ala               | aca<br>Thr        | ctg<br>Leu        | atg<br>Met        | gtg<br>Val<br>555 | Gly               | ctc<br>Leu        | acg<br>Thr        | gtc<br>Val        | 1739 |
|   |                   |                   |                   |                   |                   | agg<br>Arg<br>565 |                   | tag               | caaa              | gaa (             | gctt              | ggaa              | at a              | gaaa              | gcca              | g                 | 1790 |
|   | gag               | tggc              | tgt (             | cccc              | agta              | tg c              | aaac              | acac              | c ac              | ggtc              | tgcc              | ctg               | caaa              | aac               | acca              | atgggg            | 1850 |
|   | tct               | agtg              | cag               | gtgg              | acac              | tt t              | gaac              | cact              | c ct              | caaa              | aaaa              | gaa               | cttt              | ggc               | tgat              | tccttg            | 1910 |
|   |                   |                   | _                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | , ,               | ggagtt            | 1970 |
|   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | . :               | gagtcc            | 2030 |
|   | agg               | gatt              | gtc               | acta              | ttat              | ta a              | taat              | gtaa              | a tg              | gctt              | caaa              | tgg               | gaca              | ctg               | caga              | taaaat            | 2090 |
|   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | aaaaaa            | 2150 |
|   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

<210> 89

<211> 566

<212> PRT

<213> Homo sapiens

<400> 89

Met Asp Ser Leu Gln Asp Thr Val Ala Leu Asp His Gly Gly Cys Cys l 5 10 15

Pro Ala Leu Ser Arg Leu Val Pro Arg Gly Phe Gly Thr Glu Met Trp 20 25 30

Thr Leu Phe Ala Leu Ser Gly Pro Leu Phe Leu Phe Gln Val Leu Thr 35 40 45

Phe Met Ile Tyr Ile Val Ser Thr Val Phe Cys Gly His Leu Gly Lys 50 60

Val Glu Leu Ala Ser Val Thr Leu Ala Val Ala Phe Val Asn Val Cys 65 70 75 80

Gly Val Ser Val Gly Val Gly Leu Ser Ser Ala Cys Asp Thr Leu Met 85 90 95

Ser Gln Ser Phe Gly Ser Pro Asn Lys Lys His Val Gly Val Ile Leu 100 105 110

Asp Val Ser Arg Leu Thr Gln Asp Tyr Val Met Ile Phe Ile Pro Gly 145 150 155 160

Leu Pro Val Ile Phe Leu Tyr Asn Leu Leu Ala Lys Tyr Leu Gln Asn 165 170 175

Gln Lys lle Thr Trp Pro Gln Val Leu Ser Gly Val Val Gly Aşn Cys 180 185 190

Val Asn Gly Val Ala Asn Tyr Ala Leu Val Ser Val Leu Asn Leu Gly 195 200 205

Val Arg Gly Ser Ala Tyr Ala Asn Ile Ile Ser Gln Phe Ala Gln Thr 210 215 220

Val Phe Leu Leu Leu Tyr Ile Val Leu Lys Lys Leu His Leu Glu Thr 225 230 235 240

Trp Ala Gly Trp Ser Ser Gln Cys Leu Gln Asp Trp Gly Pro Phe Phe 245 250 255

Ser Leu Ala Val Pro Ser Met Leu Met Ile Cys Val Glu Trp Trp Ala 260 265 270

Tyr Glu Ile Gly Ser Phe Leu Met Gly Leu Leu Ser Val Val Asp Leu 275 280 285

Ser Ala Gln Ala Val Ile Tyr Glu Val Ala Thr Val Thr Tyr Met Ile 290 295 300

Pro Leu Gly Leu Ser 11e Gly Val Cys Val Arg Val Gly Met Ala Leu 305 310 315 320

Gly Ala Ala Asp Thr Val Gln Ala Lys Arg Ser Ala Val Ser Gly Val 325 330 335

Leu Ser Ile Val Gly Ile Ser Leu Val Leu Gly Thr Leu Ile Ser Ile 340 345 350

Leu Lys Asn Gln Leu Gly His Ile Phe Thr Asn Asp Glu Asp Val Ile 355 360 365

Ala Leu Val Ser Gln Val Leu Pro Val Tyr Ser Val Phe His Val Phe 370 375 380

Glu Ala Ile Cys Cys Val Tyr Gly Gly Val Leu Arg Gly Thr Gly Lys 385 390 395 400

Gln Ala Phe Gly Ala Ala Val Asn Ala Ile Thr Tyr Tyr Ile Ile Gly
405 410 415

Gly Leu Trp Leu Gly Met Leu Ala Cys Val Phe Leu Ala Thr Ala Ala 435 440 445

Phe Val Ala Tyr Thr Ala Arg Leu Asp Trp Lys Leu Ala Ala Glu Glu 450 455 460

Ala Lys Lys His Ser Gly Arg Gln Gln Gln Gln Arg Ala Glu Ser Thr 465 470 475 480

Ala Thr Arg Pro Gly Pro Glu Lys Ala Val Leu Ser Ser Val Ala Thr 485 490 495

Gly Ser Ser Pro Gly 11e Thr Leu Thr Thr Tyr Ser Arg Ser Glu Cys 500 505 510

His Val Asp Phe Phe Arg Thr Pro Glu Glu Ala His Ala Leu Ser Ala 515 520 525

Pro Thr Ser Arg Leu Ser Val Lys Gln Leu Val Ile Arg Arg Gly Ala 530 535 540

Ala Leu Gly Ala Ala Ser Ala Thr Leu Met Val Gly Leu Thr Val Arg 545 550 555 . 560

Ile Leu Ala Thr Arg His 565

<210> 90

<211> 3067

<212> DNA

<213> Homo sapiens

<220>

| <2            | 21>          | C                 | s           |                     |                |                      |                    |              |                | 16                             | U 20             | 0 PC1            | r FI             | NAL.                  | ST25                 |     |
|---------------|--------------|-------------------|-------------|---------------------|----------------|----------------------|--------------------|--------------|----------------|--------------------------------|------------------|------------------|------------------|-----------------------|----------------------|-----|
| <2            | 22><br>23>   |                   |             | . (29)              | 84)            |                      |                    |              |                |                                |                  |                  |                  |                       |                      |     |
|               | 00><br>act   | 90<br>gtac        |             | jttci               | gaga           | ttc                  | tg <b>t</b> gc     | aa g         | geete          | atg<br>Met<br>1                | gaa<br>Glu       | atg<br>Met       | aag<br>Lys       | cto<br>Leo<br>5       | cca<br>Pro           | 53  |
| 99<br>G1      | c ca<br>y Gi | agg<br>In G       | In 6        | 199 t<br>31y F<br>0 | tt g<br>he G   | aa go<br>lu Al       | cc tc<br>la Se     | r Se         | r Al           | t cc<br>a Pr                   | t aga            | a aat<br>g Asn   | ati<br>110<br>20 | t co<br>e Pr          | t tca<br>o Ser       | 101 |
| 99<br>G1      | g ga<br>y Gl | ag c<br>lu L<br>2 | eu A        | ac a<br>sp S        | gc a<br>er A   | ac co<br>sn Pr       | t ga<br>o As<br>30 | p Pr         | t gg<br>o Gl   | c acc                          | c ggo            | CCC<br>Pro<br>35 | e ago            | c cc<br>r Pr          | t gat<br>o Asp       | 149 |
| 996<br>G1     | 9 Pr<br>40   | 0 5               | cag<br>er A | ac a<br>sp T        | ca ga<br>hr Gl | ag ag<br>lu Se<br>45 | r Ly:              | g ga<br>s Gl | a ct<br>u Le   | g gga<br>v Gly                 | gta<br>Val<br>50 | ccc<br>Pro       | Lys              | ga<br>S As            | c cct<br>p Pro       | 197 |
| 55            | ı re         | u Pi              | ie 1        | 16 G                | in Le          | eu As<br>)           | n Glu              | ı Le         | u Le           | ս Gly<br>65                    | Trp              | Pro              | Gln              | Al.                   | g ctg<br>a Leu<br>70 | 245 |
| 010           | 11           | риг               | g G         | 7!                  | or GI          | y Se                 | r Sei              | Se           | 80             | a Ser                          | Leu              | Leu              | Leu              | As <sub>l</sub><br>85 |                      | 293 |
| 019           | GI           | u ne              | 90          | )                   | ir 11          | e Th                 | r Leu              | 95           | r Thi          | His                            | Leu              | His              | His<br>100       | Arq                   | g tgg<br>g Trp       | 341 |
| vaj           | rec          | 10                | 5           | u GI                | u Ly           | s Lei                | 3 Glu<br>110       | Val          | Ala            | gca<br>Ala                     | Gl y             | Arg<br>115       | Тгр              | Sei                   | Ala                  | 389 |
| PIO           | 120          | va.               | ı Pr        | o Th                | r Le           | 125                  | Leu                | Pro          | Ser            | ctc<br>Leu                     | Gl n<br>130      | Lys              | Leu              | Arg                   | Ser                  | 437 |
| 135           | Det          | , MI              | 3 61        | ս Այ                | y Lei<br>140   | )<br>o vai           | Leu                | Leu          | Asp            | tgc<br>Cys<br>145              | Pro              | Ala              | Gln              | Ser                   | Leu<br>150           | 485 |
| Leu           | 610          | rei               | , va        | 15:                 | 5 G17          | ı Val                | Thr                | Arg          | Val<br>160     | gag<br>Glu                     | Ser              | Leu              | Ser              | Pro<br>165            | Glu                  | 533 |
| rea           | Arg          | 613               | 17          | D Lei               | o GIr          | Ala                  | Leu                | Leu<br>175   | Leu            | cag<br>Gln                     | Arg              | Pro              | Gln<br>180       | His                   | Tyr                  | 581 |
| non           | 6111         | 185               | ını         | r 61)               | / Thr          | Arg                  | Pro<br>190         | Cys          | Trp            | ggc<br>Gly                     | Ser              | Thr 1<br>195     | His              | Pro                   | Arg                  | 629 |
| bys<br>-      | 200          | 261               | ASI         | ) AST               | 610            | 205                  | Ala                | Pro          | Leu            |                                | Glu (<br>210     | Gln (            | Cys (            | Gln                   | Asn                  | 677 |
| 215           | ₽C U-        | ni G              | · GFF       | r Eys               | 220            | Pro                  | PTO.               | GIY          | Ala            | gag (<br>G <b>T</b> u /<br>225 | Aľa (            | GÍy 1            | hr V             | Val                   | Leu<br>230           | 725 |
| nia (         | огу          | GIU               | ren         | 235                 | 'nпе           | Leu                  | Ala                | Gln          | Pro<br>240     | ctg (<br>Leu (                 | Sly #            | Ala P            | he v             | /a l<br>?45           | Arg                  | 773 |
| , Dua         | 9            | non               | 250         | vai                 | val            | ren                  | GIY                | Ser .<br>255 | Leu            | act g<br>Thr G                 | Slu V            | /al S<br>2       | er I<br>60       | eu ,                  | Pro                  | 821 |
| JC1 7         | .r.y         | 265               | rne         | Cys                 | ren            | Len                  | Leu (<br>270       | Sly          | Pro (          | tgt a<br>Cys M                 | let L<br>2       | eu G<br>75       | ly L             | ys (                  | Gly                  | 869 |
| ac c<br>Tyr H | lis          | gag<br>Glu        | atg<br>Met  | gga<br>Gly          | cgg<br>Arg     | gca<br>Ala           | gca g<br>Ala A     | oct o        | gtc (<br>Val 1 | ctc c<br>Leu L                 | tc a<br>eu S     | gt g<br>er A     | ac c<br>sp P     | cg (                  | caa<br>Gln           | 917 |

|                   | 280               | )                 |                   |                   |                   | 285               | <b>i</b>          |                   |                   | 160               | 200<br>290        | PCT               | FIN               | AL.S              | т25               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tto<br>Phe<br>295 | Gli               | j tgg<br>Trp      | tca<br>Sei        | gtt<br>Val        | cgt<br>Arg<br>300 | Arc               | gco<br>Ala        | : ago             | aac<br>Asn        | ctt<br>Leu<br>305 | His               | gac<br>Asp        | ctt<br>Leu        | ctg<br>Lev        | gca<br>Ala<br>310 | 965  |
| gcc<br>Ala        | ctç<br>Lev        | gat<br>Asp        | gca<br>Ala        | tto<br>Phe<br>315 | Leu               | gaç<br>Glu        | gag<br>Glu        | gtg<br>Val        | aca<br>Thr<br>320 | Val               | Leu               | ccc<br>Pro        | cca<br>Pro        | ggt<br>Gly<br>325 | cgg<br>Arg        | 1013 |
|                   |                   |                   |                   | Ala               |                   |                   |                   |                   | Pro               |                   |                   |                   |                   | Ser               | cag<br>Gln        | 1061 |
|                   |                   |                   | Lev               |                   |                   |                   |                   | Arg               |                   |                   |                   | ggt<br>Gly<br>355 | Pro               |                   | gtc               | 1109 |
|                   |                   | Leu               |                   |                   |                   |                   | Asp               |                   |                   |                   |                   | Gly               |                   |                   | gca<br>Ala        | 1157 |
|                   | Ser               |                   |                   |                   |                   |                   |                   |                   |                   |                   | Phe               |                   |                   |                   | atc<br>Ile<br>390 | 1205 |
|                   |                   |                   |                   |                   | Lys               |                   |                   |                   |                   |                   |                   | gat<br>Asp        |                   |                   | gac<br>Asp        | 1253 |
| gcc<br>Ala        | ctg<br>Leu        | cat<br>His        | ctc<br>Leu<br>410 | Gln               | tgc<br>Cys        | ttc<br>Phe        | tcg<br>Ser        | gcc<br>Ala<br>415 | gta<br>Val        | ctc<br>Leu        | tac<br>Tyr        | att<br>Ile        | tac<br>Tyr<br>420 | ctg<br>Leu        | gcc<br>Ala        | 1301 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gga<br>Gly<br>435 |                   |                   |                   | 1349 |
| gat<br>Asp        | ggt<br>Gly<br>440 | gcc<br>Ala        | Cag<br>Gln        | gga<br>Glý        | gtg<br>Val        | ctg<br>Leu<br>445 | gaa<br>Glu        | agt<br>Ser        | ttc<br>Phe        | ctg<br>Leu        | ggc<br>Gly<br>450 | aca<br>Thr        | gca<br>Ala        | gtg<br>Val        | gct<br>Ala        | 1397 |
| gga<br>Gly<br>455 | gct<br>Ala        | gcc<br>Ala        | ttc<br>Phe        | tgc<br>Cys        | ctg<br>Leu<br>460 | atg<br>Met        | gca<br>Ala        | ggc<br>Gly        | cag<br>Gln        | ccc<br>Pro<br>465 | ctc<br>Leu        | acc<br>Thr        | att<br>Ile        | ctg<br>Leu        | agc<br>Ser<br>470 | 1445 |
| agc<br>Ser        | acg<br>Thr        | 61 y              | cca<br>Pro        | gtg<br>Val<br>475 | ctg<br>Leu        | gtc<br>Val        | ttt<br>Phe        | gag<br>Glu        | cgc<br>Arg<br>480 | ctg<br>Leu        | ctc<br>Leu        | ttc<br>Phe        | tct<br>Ser        | ttc<br>Phe<br>485 | agc<br>Ser        | 1493 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | tgg<br>Trp        |                   |                   |                   | 1541 |
| tgg<br>Trp        | gtg<br>Val        | gct<br>Ala<br>505 | acc<br>Thr        | ttt<br>Phe        | tgc<br>Cys        | ctg<br>Leu        | gtg<br>Val<br>510 | ctg<br>Leu        | gtg<br>Val        | gcc<br>Ala        | aca<br>Thr        | gag<br>Glu<br>515 | gcc<br>Ala        | agt<br>Ser        | gtg<br>Val        | 1589 |
| ctg<br>Leu<br>-   | gtg<br>Val<br>520 | cgc<br>Arg        | tac<br>Tyr        | ttc<br>Phe        | acc<br>Thr        | cgc<br>Arg<br>525 | ttc<br>Phe        | act<br>Thr        | gag<br>Glu        | gaa<br>Glu        | ggt<br>Gly<br>530 | ttc<br>Phe        | tgt<br>Cys        | gcc<br>Ala        | ctc<br>Leu        | 1637 |
| 11e<br>535        | Ser               | Leu               | Ile               | Phe               | 11e<br>540        | Tyr               | Asp               | Ala               | Val               | Gly<br>545        | Lys               | atg<br>Met        | Leu               | Asn               | Leu<br>550        | 1685 |
| Thr               | His               | Thr               | Tyr               | Pro<br>555        | Ile               | Gln               | Lys               | Pro               | Gly<br>560        | Ser               | Ser               | gcc<br>Ala        | Tyr               | Gly<br>565        | Cys               | 1733 |
| ctc<br>Leu        | tgc<br>Cys        | caa<br>Gln        | tac<br>Tyr<br>570 | cca<br>Pro        | ggc<br>Gly        | cca<br>Pro        | gga<br>Gly        | gga<br>Gly<br>575 | aat<br>Asn        | gag<br>Glu        | tct<br>Ser        | caa<br>Gln        | tgg<br>Trp<br>580 | ata<br>Ile        | agg<br>'Arg       | 1781 |
|                   | Arg               | Pro<br>585        | Lys               | Asp               | Arg               | Asp               | Asp<br>590        | Ile               | Val               | Ser               | Met               | Asp<br>595        | Leu               | Gly               | Leu               | 1829 |
| atc               | aat               | gca               | tcc               | ttg               | ctg               | ccg               | cca               | cct               | gag               | tgc               |                   | cgg               |                   | gga               | ggc               | 1877 |

| 11             | e A:         | n A                | la:          | Ser               | Le         | u Le               | u <sup>-</sup> Pr<br>60 |                    | o Pr               | o G1               | 16<br>Lu Cy        | U 20<br>'s Th |                      | T FI<br>g Gl       | NAL.<br>n Gl       | ST25<br>y Gly         | y           |
|----------------|--------------|--------------------|--------------|-------------------|------------|--------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|---------------|----------------------|--------------------|--------------------|-----------------------|-------------|
| ca<br>Hi<br>61 | s Pi         | t c                | gt (<br>rg ( | ggc<br>31 y       | Pro        | t gg<br>o G1<br>62 | у Су                    | t ca<br>s Hi       | t ac<br>s Th       | a gt<br>r Va       | C CC<br>1 Pr<br>62 | o As          | c at<br>p Il         | t gc<br>e Al       | c tt<br>a Ph       | c tto<br>e Phe<br>630 | 5.          |
| tc<br>Se       | c ct         | t c                | tc (         | ctc<br>Leu        | Phe<br>635 | e Le               | t ac<br>u Th            | t to<br>r Se       | t tt<br>r Ph       | c tt<br>e Ph<br>64 | e Ph               | t go<br>e Al  | t at<br>a Me         | g gc<br>t Al       | c ct<br>a Le<br>64 | c aaq<br>u Lys<br>5   | 3 1973<br>5 |
| tg<br>Cy       | t gt<br>s Va | a aa<br>l Ly       | ys 1         | occ<br>Thr<br>550 | Sei        | cge<br>Are         | c tt<br>g Ph            | c tt<br>e Ph       | c cc<br>e Pr<br>65 | o Se               | t gt<br>r Va       | g gt<br>1 Va  | g cg<br>l Ar         | c aa<br>g Ly<br>66 | s Gl               | g cto<br>y Leu        | 2021        |
| ag<br>Se       | c ga<br>r As | c ti<br>p Pi<br>66 | ne S         | cc                | tca<br>Ser | gto<br>Val         | cte<br>Lei              | g gc<br>n Al<br>67 | a Il               | c ct<br>e Le       | g ct<br>u Le       | c gg<br>u Gl  | c tg<br>y Cy:<br>67! | s Gl               | c ct<br>y Le       | t gat<br>u Asp        | 2069        |
| Al.            | a Ph<br>68   | e Le<br>O          | eu G         | :1 y              | Leu        | Ala                | 685                     | r Pr               | o Ly:              | s Le               | u Me               | t Va.<br>69   | 1 Pre                | o Ar               | g G1               | g ttc<br>u Phe        | ·           |
| 69:            | s Pr         | o Th               | r L          | eu                | Pro        | 700                | Arg                     | g Gl               | y Tr               | o Lei              | u Va:              | l Se          | r Pro                | o Phe              | e G1               | a gcc<br>y Ala<br>710 |             |
| Ası            | ) Pr         | o Tr               | рТ           | rp                | Trp<br>715 | Ser                | · Val                   | Ala                | a Ala              | 720                | a Leu<br>D         | ı Pro         | o Ala                | a Lei              | 725                |                       |             |
| Sei            | 116          | e Le               | u I<br>7     | 1 e<br>30         | Phe        | Met                | Asp                     | Glr                | 735                | ille               | ? Thi              | Ala           | e Val                | 740                | e Lei              | aac<br>Asn            |             |
| Arç            | y Met        | 74                 | บ T<br>5     | уr                | Arg        | Leu                | Gln                     | 750                | Gly                | Ala                | 9 G1 y             | Phe           | 755                  | Leu                | Asp                | ctc<br>Leu            | 2309        |
| Phe            | 760          | : Va               | 1 A.         | la                | Val        | Leu                | Met<br>765              | Leu                | Leu                | Thi                | Ser                | 770           | Leu<br>)             | Gly                | Leu                | cct<br>Pro            | 2357        |
| 775            | Tyr          | Va                 | l Si         | er.               | Ala        | 780                | Val                     | Ile                | Ser                | Leu                | 785                | His           |                      | Asp                | Ser                | Leu<br>790            | 2405        |
| Arg            | Arg          | GI                 | u Se         | er .              | Arg<br>795 | Ala                | Cys                     | Ala                | Pro                | 800<br>Gly         | Glu                | Arg           | Pro                  | Asn                | Phe<br>805         |                       | 2453        |
| GIY            | He           | Arg                | 9 G1<br>81   | 0                 | Gln        | Arg                | Leu                     | Thr                | G1 y<br>815        | Leu                | Val                | Val           | ttc<br>Phe           | 11e<br>820         | Leu                | Thr                   | 2501        |
| G1 y           | Ala          | Ser<br>825         | 11           | e i               | Phe        | Leu                | Ala                     | Pro<br>830         | Val                | Leu                | Lys                | Phe           | att<br>Ile<br>835    | Pro                | Met                | Pro                   | 2549        |
| vaı            | 840          | туг                | . 61         | уу                | 11e        | Phe                | 845                     | Tyr                | Met                | GIy                | Val                | Ala<br>850    | gcg                  | Leu                | Ser                | Ser                   | 2597        |
| 855            | Gln          | Phe                | Th           | r A               | Isn        | Arg<br>860         | Val                     | Lys                | Leu                | Leu                | Leu<br>865         | Met           | cca<br>Pro           | Ala                | Lys                | His<br>870            | 2645        |
| GIn            | Pro          | Asp                | Le           | ս L<br>8          | eu<br>175  | Leu                | Leu                     | Arg                | His                | Val<br>880         | Pro                | Lev           | acc<br>Thr           | Arg                | Val<br>885         | His                   | 2693        |
| ren            | Pne          | Thr                | 89           | a 1<br>0          | le (       | Gln                | Leu                     | Ala                | Cys<br>895         | Leu                | Gly                | Leu           | ctt<br>Leu           | 7rp<br>900         | lle                | lle                   | 2741        |
| Lys            | Ser          | Thr<br>905         | Pre          | o A               | la i       | Ala                | lle                     | lle<br>910         | Phe                | Pro                | Leu                | atg<br>Met    | ttg<br>Leu<br>915    | ctg<br>Leu         | ggc<br>Gly         | ctt<br>Leu            | 2789        |

| 16U 200 PCT FINAL.ST25<br>gtg ggg gtc cga aag gcc ctg gag agg gtc ttc tca cca cag gaa ctc<br>Val Gly Val Arg Lys Ala Leu Glu Arg Val Phe Ser Pro Gln Glu Leu<br>920 925 930 | 2837 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ctc tgg ctg gat gag ctg atg cca gag gag gag aga agc atc cct gag<br>Leu Trp Leu Asp Glu Leu Met Pro Glu Glu Glu Arg Ser Ile Pro Glu<br>935 940 945 950                       | 2885 |
| aag ggg ctg gag cca gaa cac tca ttc agt gga agt gac agt gaa gat<br>Lys Gly Leu Glu Pro Glu His Ser Phe Ser Gly Ser Asp Ser Glu Asp<br>955 960 965                           | 2933 |
| tca gag ctg atg tat cag cca aag gct cca gaa atc aac att tct gtg<br>Ser Glu Leu Met Tyr Gln Pro Lys Ala Pro Glu Ile Asn Ile Ser Val<br>970 975 980                           | 2981 |
| aat tagctggagt aggagtctgg gagtggagac cccaggaaac agcatgaggt<br>Asn                                                                                                           | 3034 |
| gagggtgtga gggaagtgct cctgatgttg agg                                                                                                                                        | 3067 |
| <210> 91<br><211> 983<br><212> PRT<br><213> Homo sapiens                                                                                                                    |      |
| <400> 91                                                                                                                                                                    |      |
| Met Glu Met Lys Leu Pro Gly Gln Glu Gly Phe Glu Ala Ser Ser Ala<br>1 10 15                                                                                                  |      |
| Pro Arg Asn Ile Pro Ser Gly Glu Leu Asp Ser Asn Pro Asp Pro Gly 20 25 30                                                                                                    |      |
| Thr Gly Pro Ser Pro Asp Gly Pro Ser Asp Thr Glu Ser Lys Glu Leu<br>35 40 45                                                                                                 |      |
| Gly Val Pro Lys Asp Pro Leu Leu Phe Ile Gln Leu Asn Glu Leu Leu<br>50 55 60                                                                                                 |      |
| Gly Trp Pro Gln Ala Leu Glu Trp Arg Glu Thr Gly Ser Ser Ala 65 70 75 80                                                                                                     |      |
| Ser Leu Leu Asp Met Gly Glu Met Pro Ser Ile Thr Leu Ser Thr<br>85 90 95                                                                                                     |      |
| His Leu His His Arg Trp Val Leu Phe Glu Glu Lys Leu Glu Val Ala<br>100 105 110                                                                                              |      |
| Ala Gly Arg Trp Ser Ala Pro His Val Pro Thr Leu Ala Leu Pro Ser<br>115 120 125                                                                                              |      |
| Leu Gln Lys Leu Arg Ser Leu Leu Ala Glu Gly Leu Val Leu Leu Asp<br>130 135 140                                                                                              |      |
| Cys Pro Ala Gln Ser Leu Leu Glu Leu Val Glu Gln Val Thr Arg Val<br>145 150 155 160                                                                                          |      |
| Glu Ser Leu Ser Pro Glu Leu Arg Gly Gln Leu Gln Ala Leu Leu Leu 165 170 175                                                                                                 |      |
| Gln Arg Pro Gln His Tyr Asn Gln Thr Thr Gly Thr Arg Pro Cys Trp<br>180 185 190                                                                                              |      |
| Gly Ser Thr His Pro Arg Lys Ala Ser Asp Asn Glu Glu Ala Pro Leu                                                                                                             |      |

)OCID: <WO\_\_\_\_03089583A2\_I\_>

195

16U 200 PCT FINAL.ST25 205

Arg Glu Gln Cys Gln Asn Pro Leu Arg Gln Lys Leu Pro Pro Gly Ala 210 215 220

200

Glu Ala Gly Thr Val Leu Ala Gly Glu Leu Gly Phe Leu Ala Gln Pro 225 230 235 240

Leu Gly Ala Phe Val Arg Leu Arg Asn Pro Val Val Leu Gly Ser Leu 245 250 255

Thr Glu Val Ser Leu Pro Ser Arg Phe Phe Cys Leu Leu Leu Gly Pro 260 265 270

Cys Met Leu Gly Lys Gly Tyr His Glu Met Gly Arg Ala Ala Val 275 280 285

Leu Leu Ser Asp Pro Gln Phe Gln Trp Ser Val Arg Arg Ala Ser Asn 290 295 300

Leu His Asp Leu Leu Ala Ala Leu Asp Ala Phe Leu Glu Glu Val Thr 305 310 315 320

Val Leu Pro Pro Gly Arg Trp Asp Pro Thr Ala Arg Ile Pro Pro Pro 325 330 335

Lys Cys Leu Pro Ser Gln His Lys Arg Leu Pro Ser Gln Gln Arg Glu 340 345 350

Arg His Gly Pro His Ala His Ser Pro Glu Leu Gln Arg Thr Gly Arg 370 375 380

Leu Phe Gly Gly Leu Ile Gln Asp Val Arg Arg Lys Val Pro Trp Tyr 385 390 395 400

Pro Ser Asp Phe Leu Asp Ala Leu His Leu Gln Cys Phe Ser Ala Val 405  $\phantom{\bigg|}405$ 

Leu Tyr Ile Tyr Leu Ala Thr Val Thr Asn Ala Ile Thr Phe Gly Gly
420 425 430

Leu Leu Gly Asp Ala Thr Asp Gly Ala Gln Gly Val Leu Glu Ser Phe 435 440 445

Leu Gly Thr Ala Val Ala Gly Ala Ala Phe Cys Leu Met Ala Gly Gln 450 460

Pro Leu Thr Ile Leu Ser Ser Thr Gly Pro Val Leu Val Phe Glu Arg 465 470 475 480

Leu Leu Phe Ser Phe Ser Arg Asp Tyr Ser Leu Asp Tyr Leu Pro Phe 485 490 495

Arg Leu Trp Val Gly Ile Trp Val Ala Thr Phe Cys Leu Val Leu Val 500 510

- Ala Thr Glu Ala Ser Val Leu Val Arg Tyr Phe Thr Arg Phe Thr Glu 515 520 525
- Glu Gly Phe Cys Ala Leu Ile Ser Leu Ile Phe Ile Tyr Asp Ala Val530 . 535 540
- Gly Lys Met Leu Asn Leu Thr His Thr Tyr Pro Ile Gln Lys Pro Gly 545 550 555 560
- Ser Ser Ala Tyr Gly Cys Leu Cys Gln Tyr Pro Gly Pro Gly Gly Asn 565 570 575
- Glu Ser Gln Trp Ile Arg Thr Arg Pro Lys Asp Arg Asp Asp Ile Val 580 585 590
- Ser Met Asp Leu Gly Leu Ile Asn Ala Ser Leu Leu Pro Pro Pro Glu 595 600 605
- Cys Thr Arg Gln Gly Gly His Pro Arg Gly Pro Gly Cys His Thr Val 610 615 620
- Pro Asp Ile Ala Phe Phe Ser Leu Leu Leu Phe Leu Thr Ser Phe Phe 625 630 635 640
- Phe Ala Met Ala Leu Lys Cys Val Lys Thr Ser Arg Phe Phe Pro Ser 645 650 655
- Val Val Arg Lys Gly Leu Ser Asp Phe Ser Ser Val Leu Ala Ile Leu 660 665 670
- Leu Gly Cys Gly Leu Asp Ala Phe Leu Gly Leu Ala Thr Pro Lys Leu 675 680 685
- Met Val Pro Arg Glu Phe Lys Pro Thr Leu Pro Gly Arg Gly Trp Leu 690 695 700
- Val Ser Pro Phe Gly Ala Asn Pro Trp Trp Trp Ser Val Ala Ala Ala 705 710 715 720
- Leu Pro Ala Leu Leu Leu Ser Ile Leu Ile Phe Met Asp Gln Gln Ile 725 730 735
- Thr Ala Val 11e Leu Asn Arg Met Glu Tyr Arg Leu Gln Lys Gly Ala 740 745 750
- \_Gly Phe His Leu Asp Leu Phe Cys Val Ala Val Leu Met Leu Leu Thr 755 760 765
- Ser Ala Leu Gly Leu Pro Trp Tyr Val Ser Ala Thr Val Ile Ser Leu 770 775 780
- Ala His Met Asp Ser Leu Arg Arg Glu Ser Arg Ala Cys Ala Pro Gly 785 790 795 800
- Glu Arg Pro Asn Phe Leu Gly Ile Arg Glu Gln Arg Leu Thr Gly Leu 805 810 815
- Val Val Phe Ile Leu Thr Gly Ala Ser Ile Phe Leu Ala Pro Val Leu 820 825 830

| Lys Phe Ile | Pro Met | Pro Val | Leu Tyr | Gly Ile | Phe Leu | Tyr Met Gly |
|-------------|---------|---------|---------|---------|---------|-------------|
| 835         |         |         | 840     |         | 845     | •           |

Val Ala Ala Leu Ser Ser Ile Gln Phe Thr Asn Arg Val Lys Leu Leu 850 855 860

Leu Met Pro Ala Lys His Gln Pro Asp Leu Leu Leu Arg His Val 865 870 875 880

Pro Leu Thr Arg Val His Leu Phe Thr Ala Ile Gln Leu Ala Cys Leu 885 890 895

Gly Leu Leu Trp Ile Ile Lys Ser Thr Pro Ala Ala Ile Ile Phe Pro 900 905 910

Leu Met Leu Leu Gly Leu Val Gly Val Arg Lys Ala Leu Glu Arg Val 915 920 925

Phe Ser Pro Gln Glu Leu Leu Trp Leu Asp Glu Leu Met Pro Glu Glu 930 935 940

Glu Arg Ser Ile Pro Glu Lys Gly Leu Glu Pro Glu His Ser Phe Ser 945 950 955 960

Gly Ser Asp Ser Glu Asp Ser Glu Leu Met Tyr Gln Pro Lys Ala Pro 965 970 975

Glu Ile Asn Ile Ser Val Asn 980

<210> 92 <211> 700

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (60)..(497)

<223>

<400> 92

gaaagaagga aataaacaca ggcaccaaac cactateeta agttgaetgt eetttaaat 59

atg tca aga tcc aga ctt ttc agt gtc acc tca gcg atc tca acg ata
Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr Ile
1 5 10 15

ggg atc ttg tgt ttg ccg cta ttc cag ttg gtg ctc tcg gac cta cca
Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp Leu Pro
20 25 30

tgc gaa gaa gat gaa atg tgt gta aat tat aat gac caa cac cct aat 203 Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln His Pro Asn

ggc tgg tat atc tgg atc ctc ctg ctg ctg gtt ttg gtg gca gct ctt
Gly Trp Tyr Ile Trp Ile Leu Leu Leu Leu Val Leu Val Ala Ala Leu
50 55 60

ctc tgt gga gct gtg gtc ctc tgc ctc cag tgc tgg ctg agg aga ccc Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys Trp Leu Arg Arg Pro 65 70 75 80

cga att gat tot cac agg cgc acc atg gca gtt ttt gct gtt gga gac 347 Arg Ile Asp Ser His Arg Arg Thr Met Ala Val Phe Ala Val Gly Asp 85 90 95

ttg gac tct att tat ggg aca gaa gca gct gtg agt cca act gtt gga 395

Page 64

107

| 16U 200 PCT FINAL.ST25 Leu Asp Ser Ile Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Val Gly 100 105 110                                                |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| att cac ctt caa act caa acc cct gac cta tat cct gtt cct gct cca<br>Ile His Leu Gln Thr Gln Thr Pro Asp Leu Tyr Pro Val Pro Ala Pro<br>115 120 125 | 443 |
| tgt ttt ggc cct tta ggc tcc cca cct cca tat gaa gaa att gta aaa<br>Cys Phe Gly Pro Leu Gly Ser Pro Pro Pro Tyr Glu Glu Ile Val Lys<br>130 135 140 | 491 |
| aca acc tgattttagg tgtggattat caatttaaàg tattaacgac atctgtaatt<br>Thr Thr<br>145                                                                  | 547 |
| ccaaaacatc aaatttagga atagttattt cagttgttgg aaatgtecag agatctatte                                                                                 | 607 |
| atatagtctg aggaaggaca attcgacaaa agaatggatg ttggaaaaaa ttttggtcat                                                                                 | 667 |
| ggagatgttt aaatagtaaa gtagcaggct ttt                                                                                                              | 700 |
| <210> 93<br><211> 146<br><212> PRT<br><213> Homo sapiens                                                                                          |     |
| <400> 93                                                                                                                                          |     |
| Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr Ile<br>1 5 10 15                                                                      |     |
| Gly 1le Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp Leu Pro<br>20 25 30                                                                       |     |
| Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln His Pro Asn 35 40 45                                                                          |     |
| Gly Trp Tyr lle Trp lle Leu Leu Leu Leu Val Leu Val Ala Ala Leu 50 55 60                                                                          |     |
| Leu Cys Gly Ala Val Leu Cys Leu Gln Cys Trp Leu Arg Arg Pro<br>65 70 75 80                                                                        |     |
| Arg lle Asp Ser His Arg Arg Thr Met Ala Val Phe Ala Val Gly Asp<br>85 90 95                                                                       |     |
| Leu Asp Ser 11e Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Val Gly<br>100 105 110                                                                    |     |
| Ile His Leu Gln Thr Gln Thr Pro Asp Leu Tyr Pro Val Pro Ala Pro<br>115 120 125                                                                    |     |
| Eys Phe 61y Pro Lew Gly Ser Pro Pro Pro Tyr Glu Glu Ile Val Lys 130 135 140                                                                       |     |
| Thr Thr 145                                                                                                                                       |     |
| <210> 94<br><211> 1324<br><212> DNA<br><213> Homo sapiens                                                                                         |     |
| <220> <221> CDS <222> (44)(772) <223>                                                                                                             |     |

| . A1             | 202              | 94               |                  |                |                  |                  |                  |              |                      | 160              | 20               | 0 PC1                | FIN              | IAL.S            | T25               |              |
|------------------|------------------|------------------|------------------|----------------|------------------|------------------|------------------|--------------|----------------------|------------------|------------------|----------------------|------------------|------------------|-------------------|--------------|
|                  | 00><br>ttgc      |                  | gato             | gccci          | ttg (            | gcag             | ggtg             | ag c         | ccac                 | aagg             | a gc             |                      |                  |                  | ggc<br>Gly        | . 55         |
| ago<br>Ser<br>5  | gge<br>Gly       | c cgc<br>y Arc   | c ttg<br>g Lev   | g gaq<br>i Gli | gad<br>Asp<br>10 | tto<br>Phe       | e cc             | t gto<br>Val | c aat<br>l Asi       | t gte<br>n Val   | g tt             | c tco<br>e Ser       | gto<br>Val       | act<br>Thi       | cct<br>Pro<br>20  | 103          |
| tac<br>Tyr       | aca<br>Thi       | e cco            | c ago<br>Ser     | 7hr<br>25      | gct<br>Ala       | gac<br>Asp       | ato              | e Gli        | g gtg<br>n Val<br>30 | g tco<br>l Sei   | c gat            | t gat<br>p Asp       | gac<br>Asp       | aag<br>Lys<br>35 | gcg<br>Ala        | 151          |
| 999<br>G1y       | gco<br>Ala       | aco<br>Thr       | ttg<br>Leu<br>40 | Leu            | tto<br>Phe       | tca<br>Ser       | 61 y             | 11e<br>45    | ttt<br>Phe           | t cto<br>E Lev   | 9 99a<br>9 Gly   | actg<br>y Leu        | gtg<br>Val<br>50 | ggg<br>Gly       | atc<br>Ile        | 199          |
| aca<br>Thr       | t t c<br>Phe     | act<br>Thr<br>55 | gtc<br>Val       | atg<br>Met     | ggc<br>Gly       | tgg<br>Trp       | ato<br>11e<br>60 | aaa<br>Lys   | tac<br>Tyr           | caa<br>Gln       | ggt<br>Gly       | t gtc<br>/ Val<br>65 | tcc<br>Ser       | cac<br>His       | ttt<br>Phe        | 247          |
| gaa<br>Glu       | tgg<br>Trp<br>70 | acc<br>Thr       | cag<br>Gln       | CtC<br>Leu     | ct t<br>Leu      | 999<br>Gly<br>75 | Pro              | gtc<br>Val   | ctg<br>Leu           | ctg<br>Leu       | tca<br>Ser<br>80 | gtt<br>Val           | 999<br>G1 y      | gtg<br>Val       | aca<br>Thr        | 295          |
| ttc<br>Phe<br>85 | atc              | ctg<br>Leu       | att<br>Ile       | gct<br>Ala     | gtg<br>Val<br>90 | tgc<br>Cys       | aag<br>Lys       | ttc<br>Phe   | aaa<br>Lys           | atg<br>Met<br>95 | Leu              | tcc<br>Ser           | tgc<br>Cys       | cag<br>Gln       | ttg<br>Leu<br>100 | 343          |
| Cys              | Lys              | 610              | ser              | 105            | GIu              | Arg              | Val              | Prọ          | 110                  | Ser              | Glu              | cag<br>Gln           | Thr              | Pro<br>115       | Gly               | 391          |
| 61 y             | Pro              | Ser              | 120              | Val            | Phe              | Thr              | Gly              | 11e<br>125   | Asn                  | Gln              | Pro              | atc                  | Thr<br>130       | Phe              | His               | 439          |
| Gly              | Ala              | Thr<br>135       | Val              | Val            | Gln              | Туr              | 11e<br>140       | Pro          | Pro                  | Pro              | Tyr              | ggt<br>Gly<br>145    | Ser              | Pro              | Glu               | 487          |
| Pro              | 150              | GIY              | 11e              | Asn            | Thr              | Ser<br>155       | Tyr              | Leu          | Gln                  | Ser              | Val<br>160       | gtg<br>Val           | Ser              | Pro              | Cys               | 535          |
| 165              | ren              | 116              | Thr              | Ser            | 61y<br>170       | Gly              | Ala              | Ala          | Ala                  | Ala<br>175       | Met              | tca<br>Ser           | Ser              | Pro              | Pro<br>180        | 583          |
| GIN              | Tyr              | Tyr              | Thr              | 11e<br>185     | Tyr              | Pro              | Gln              | Asp          | Asn<br>190           | Ser              | Ala              | ttt<br>Phe           | Val              | Val<br>195       | Asp               | 631          |
| GIU              | GIY              | cys              | 200              | Ser            | Phe              | Thr .            | Asp              | G1 y<br>205  | Gly                  | Asn              | His              |                      | Pro -<br>210     | Asn              | Pro               | 679          |
| ASP              | val              | Asp  <br>215     | GIn 1            | Leu            | Glu (            | Glu '            | Thr<br>220       | Gln          | Leu                  | Glu              | Glu              | 225                  | Ala              | Cys .            | gcc<br>Ala        | 727          |
|                  | 230              | Ser              | Pro I            | Pro 1          | Pro :            | Tyr (<br>235     | Slu              | Glu          | lle                  | Tyr              | Ser<br>240       | Leu                  | Pro 1            | Arg              |                   | 772          |
|                  |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      | •                |                  | gtcat             | 832          |
|                  |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      |                  |                  | cccag             | 892          |
| gcago            |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      |                  |                  |                   | 952          |
| t tggt<br>ggtaa  |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      |                  |                  |                   | 1012         |
| tcccc            |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      |                  |                  |                   | 1072<br>1132 |
| aatca            |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      |                  |                  |                   | 1192         |
|                  |                  |                  |                  |                |                  |                  |                  |              |                      |                  |                  |                      |                  |                  |                   |              |

1252 1312 1324

|                                                                   | 16U 200 PCT FINAL.ST25                                   |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |
|-------------------------------------------------------------------|----------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| cagggaagag aaagcaggcc cagctggaga tttcctggtg gctgtccttg gccccaaagc |                                                          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |
| agactcacta atcccaaaca actcagctgc catctggcct ctctgaggac tctgggtacc |                                                          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |
| ttaaagacta ta                                                     |                                                          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |
| <21<br><21                                                        | <210> 95<br><211> 243<br><212> PRT<br><213> Homo sapiens |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |
| < 40                                                              | 0>                                                       | 95         |            |            |            |            |            |            |            |            |            |            |            |            |            |  |
| Met<br>1                                                          | Glu                                                      | Gln        | Gly        | 5 Ser      | Gly        | Arg        | Leu        | Glu        | Asp<br>10  | Phe        | Pro        | Val        | Asn        | Val<br>15  | Phe        |  |
| Ser                                                               | Val                                                      | Thr        | Pro<br>20  | Туг        | Thr        | Pro        | Ser        | Thr<br>25  | Ala        | Asp        | Ile        | Gln        | Val<br>30  | Ser        | Asp        |  |
| Asp                                                               | Asp                                                      | Lys<br>35  | Ala        | Gly        | Ala        | Thr        | Leu<br>40  | Leu        | Phe        | Ser        | Gly        | Ile<br>45  | Phe        | Leu        | Gly        |  |
| Leu                                                               | Val<br>50                                                | Gly        | Ile        | Thr        | Phe        | Thr<br>55  | Val        | Met        | Gly        | Trp        | 11e<br>60  | Lys        | Tyr        | Gln        | GI y       |  |
| Val<br>65                                                         | Ser                                                      | His        | Phe        | Glu        | Trp<br>70  | Thr        | Gln        | ren        | Leu        | Gl y<br>75 | Pro        | Val        | Leu        | Leu        | Ser<br>80  |  |
| Val                                                               | G1 y                                                     | Val        | Thr        | Phe<br>85  | Ile        | Leu        | Ile        | Ala        | Val<br>90  | Cys        | Lys        | Phe        | Lys        | Met<br>95  | Leu        |  |
| Ser                                                               | Cys                                                      | Gln        | Leu<br>100 |            | Lys        | Glu        | Ser        | Glu<br>105 | Glu        | Arg        | Val        | Pro        | Asp<br>110 |            | Glu        |  |
| Gln                                                               | Thr                                                      | Pro<br>115 | G] A       | G1 y       | Pro        | Ser        | Phe<br>120 | Val        | Phe        | Thr        | Gly        | 11e<br>125 | Asn        | Gln        | Pro        |  |
| Ile                                                               | Thr<br>130                                               | Phe        | His        | Gly        | Ala        | Thr<br>135 | Val        | Val        | Gln        | Tyr        | Ile<br>140 | Pro        | Pro        | Pro        | Tyr        |  |
| Gly<br>145                                                        | Ser                                                      | Pro        | Glu        | Pro        | Met<br>150 | Gly        | Ile        | Asn        | Thr        | Ser<br>155 | Туr        | Leu        | Gln        | Ser        | Val<br>160 |  |
| Val                                                               | Ser                                                      | Pro        | Cys        | Gly<br>165 | Leu        | Ile        | Thr        | Ser        | Gly<br>170 | Gly        | Ala        | Ala        | Ala        | Ala<br>175 | Met        |  |
| Ser                                                               | Ser                                                      | Pro        | Pro<br>180 | Gln        | Туr        | Tyr        | Thr        | Ile<br>185 | Tyr        | Pro        | Gln        | Asp        | Asn<br>190 | Ser        | Ala        |  |
| Phe                                                               | Val                                                      | Val<br>195 | Asp        | Glu        | Gly        | Суѕ        | Leu<br>200 | Ser        | Phe        | Thr        | Asp        | Gly<br>205 | Gly        | Asn        | His        |  |
| Arg                                                               | Pro<br>210                                               | Asn        | Pro        | Asp        | Val        | Asp<br>215 | Gln        | Leu        | Glu        | Gl u       | Thr<br>220 | Gln        | Leu        | Glu        | G1 u       |  |
| Glu<br>225                                                        | Ala                                                      | Cys        | Ala        | Cys        | Phe<br>230 | Ser        | Pro        | Pro        | Pro        | Tyr<br>235 | Glu        | Glu        | lle        | , .        | 240        |  |
| Leu                                                               | Pro                                                      | Arg        |            |            |            |            |            |            |            |            |            |            |            |            |            |  |

<210> 96

<211> 5350 <212> DNA <213> Homo sapiens <220> CDS <221> (2275)..(3213) <222> <223> <400> 96 gtccaggcgt accatgactc tcacattttg cagttgtttt atttgacggg acagacattg 60 actgacagtg gctggagcag ggctgatagt gaatttctga aacggtttac ctgattctct 120 gctttctgag ttcttggata tctgagagac agggcctcta tgctgtttca ctgctggata 180 tatgetteat tettggacea taattiitti ticaaattii tetagatgat gitgetteat 240 tgtcttttgg aatctactaa ataattccac tgaatttttg aagtttatty ggaattattt 300 attttgcctt tatacttaga aaattacttt ctgctccagg aaaatatagt ttattagtct 360 agtaatttat taattgacta aaatctacca tttgttatgg ccaatgacat gtttatttac 420 tgaaaataca ttaagtcccc tttggtttta agtctcttaa cataagaaag caatttgtta 480 aaaactggca ttactttact cttatgcttt ctgtgtcctt tgctaagtat ttctaaaaca 540 aaatgaaaac ccacgagttt agtcttggcc agggcaagat atttgaaata aaaaaggaaa 600 taatatgacc aattgcaata attcttattt ataaatttta agttaatgat aaaaaatata 660 aagtgtacat tacaatgtaa aaggttacat aagaaaagct gcaatataaa aaggatgaat 720 atgtgtctga tttaaataaa catttgacac gttattaata tattgaacat taatgatatc 780 taaaactatt cattttataa aggatatgca ttttctttaa gtagagaata ataataatga 840 gcatccatat gtaaatcaca gaattctgaa caagagaaag atagtgctat caacgggaaa 900 gggctgacca gcaccactga ccccccaaaa tagccaggta gaagaagagt cctacagcct 960 attacaaggt gattaattga ctagatgctc tgagaagaaa ttggaacttg gatgatctga 1020 agatagttat ctcaattgat tgttcacagc cagttacaga tagaattcct tgttctacat 1080 tttcctccct tctcactagt gcacttgagt agtctttaaa aaaaattgca acttcagaga 1140 cccccatgct tgaaccactg ggagaagaaa ccttaggatg acctacctgc atacaataaa 1200 tatgttggat gtcacgataa gataagtata aattgaggca aactttctct caccaaaatt 1260 ctacaggcaa aatggggaga ttggaagaaa agatgtgggc ttgtaaaatc caattacatt 1320 ttactttaat tttataaaga aggttcacat caagaaattc caagtgaggt tcagaccaat 1380 cacctcagaa taaactgatt ggatgataat gctgattcct aaagcatcat tgatctgaga 1440 tagccatàat titititiga taictigaaa gatiggcaga aacacaacgg attagaacai 1500 ~cttgatggaa attatgaaaa tatgaataaa taactcacaa gattaatgtc tttgtaatag 1560 gttaagtgga agtataaaaa tacattttat aaatcacata tgtgtaaaag taaatcattt 1620 tagagaaatt tacaagttgt actagtgtct ttaatacatt taaagaaatt tgactaaatt 1680 tgtaacgtta tataagggtt tggaatttta tgtttaaaat gtttacaatt actggtggct 1740 taatatattg cttttaagta ttgaaaaatt gtatgttcgt agatttgtaa cgagatttaa 1800 gaaacacaag tattactaat ccttttttgc agacatgact cttgagggtc aaatatatag 1860 aaatatotat attggttatt agototgtaa aatoocatgg gaatgggatt tgggcaatac 1920 aggaacatgc aactataaga tactaacaca cacaaaatgt gaacatatat aagtaaaaat 1980 aactattagt gactatataa totataggaa ataatttaat ttoagttgta tggacotott 2040 cattgagaat ataaatattt cattcccatt ctagatgggg aatcagattc acaatctaat 2100

| gtgctgtctc tttttagtgc aaattcacag ttcatgttgg aaatacactc tgattttcac                                                                                     | 2160 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| attgattitt aaaaggtaaa gtgaagcaaa catactitta cgtggtacac acatgattat                                                                                     | 2220 |
| aaataaagtt tacttttgtc ctccaggtaa agccacttca gccgatcata cagc atg<br>Met<br>l                                                                           | 2277 |
| cgg ctg gcc aac cag acc ctg ggt ggt gac ttt ttc ctg ttg gga atc<br>Arg Leu Ala Asn Gln Thr Leu Gly Gly Asp Phe Phe Leu Leu Gly Ile<br>5 10 15         | 2325 |
| ttc agc cag atc tca cac cct ggc cgc ctc tgc ttg ctt atc ttc agt Phe Ser Gln Ile Ser His Pro Gly Arg Leu Cys Leu Leu Ile Phe Ser 20 25 30              | 2373 |
| ata ttt ttg atg gct gtg tct tgg aat att aca ttg ata ctt ctg atc<br>Ile Phe Leu Met Ala Val Ser Trp Asn Ile Thr Leu Ile Leu Leu Ile<br>35 40 45        | 2421 |
| cac att gac tcc tct ctg cat act ccc atg tac ttc ttt ata aac cag<br>His Ile Asp Ser Ser Leu His Thr Pro Met Tyr Phe Phe Ile Asn Gln<br>50 55 60 65     | 2469 |
| ctc tca ctc ata gac ttg aca tat att tct gtc act gtc ccc aaa atg<br>Leu Ser Leu Ile Asp Leu Thr Tyr Ile Ser Val Thr Val Pro Lys Met<br>70 75 80        | 2517 |
| ctg gtg aac cag ctg gcc aaa gac aag acc atc tcg gtc ctt ggg tgt<br>Leu Val Asn Gln Leu Ala Lys Asp Lys Thr Ile Ser Val Leu Gly Cys<br>85 90 95        | 2565 |
| ggc acc cag atg tac ttc tac ctg cag ttg gga ggt gca gag tgc tgc<br>Gly Thr Gln Met Tyr Phe Tyr Leu Gln Leu Gly Gly Ala Glu Cys Cys<br>100 105 110     | 2613 |
| ctt cta gcc gcc atg gcc tat gac cgc tat gtg gct atc tgc cat cct<br>Leu Leu Ala Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys His Pro<br>115 120 125     | 2661 |
| ctc cgt tac tct gtg ctc atg agc cat agg gta tgt ctc ctc ctg gca<br>Leu Arg Tyr Ser Val Leu Met Ser His Arg Val Cys Leu Leu Leu Ala<br>130 135 140 145 | 2709 |
| tca ggc tgc tgg ttt gtg ggc tca gtg gat ggc ttc atg ctc act ccc<br>Ser Gly Cys Trp Phe Val Gly Ser Val Asp Gly Phe Met Leu Thr Pro<br>150 155 160     | 2757 |
| atc gcc atg agc ttc ccc ttc tgc aga tcc cat gag att cag cac ttc<br>Ile Ala Met Ser Phe Pro Phe Cys Arg Ser His Glu Ile Gln His Phe<br>165 170 175     | 2805 |
| ttc tgt gag gtc cct gct gtt ttg aag ctc tct tgc tca gac acc tca<br>Phe Cys Glu Val Pro Ala Val Leu Lys Leu Ser Cys Ser Asp Thr Ser<br>180 185 190     | 2853 |
| ctt tac aag att ttc atg tac ttg tgc tgt gtc atc atg ctc ctg ata<br>Leu Tyr Lys Ile Phe Met Tyr Leu Cys Cys Val Ile Met Leu Leu Ile<br>195 200 205     | 2901 |
| ect gtg acg gtc att tca gtg tet tae tae tat atc atc etc acc ate<br>Pro Val Thr Val Ile Ser Val Ser Tyr Tyr Tyr Ile Ile Leu Thr Ile<br>210 215 220 225 | 2949 |
| Cat aag atg aac tca gtt gag ggt cgg aaa aag gcc ttc acc acc tgc<br>His Lys Met Asn Ser Val Glu Gly Arg Lys Lys Ala Phe Thr Thr Cys<br>230 235 240     | 2997 |
| ser Ser His Ile Thr Val Val Ser Leu Phe Tyr Gly Ala Ala Ile Tyr 245 250 255                                                                           | 3045 |
| 260 Ser Ser Tyr Gln Thr Pro Glu Lys Asp Met Met 260 265 270                                                                                           | 3093 |
| tca tcc ttt ttc tac act atc ctt aca cct gtc ttg aat cct atc att<br>Ser Ser Phe Phe Tyr Thr Ile Leu Thr Pro Val Leu Asn Pro Ile Ile                    | 3141 |

| 275                                                    | 280                                       | 16U 200 PCT<br>285                          | FINAL.ST25                        |      |
|--------------------------------------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------|------|
| tac agt ttc agg aat<br>Tyr Ser Phe Arg Asn<br>290      | aag gat gtc aca<br>Lys Asp Val Tho<br>295 | a agg gct ttg aaa<br>Arg Ala Leu Lys<br>300 | aaa atg ctg<br>Lys Met Leu<br>305 | 3189 |
| agc gtg cag aaa cct of<br>Ser Val Gln Lys Pro 1<br>310 | cca tat taa agi<br>Pro Tyr                | gtgaaag aacttaag                            | tt ggtcctctct                     | 3243 |
| tottagagto totottoaci                                  | : ttaggtgtcc tt                           | ccaccaaa caatcan                            | cat attotootao                    | 3303 |
| tgtctgactc cctgagttg                                   |                                           |                                             |                                   | 3363 |
| tcacacttga gatgatgttd                                  |                                           |                                             |                                   | 3423 |
| agteettegg ggeeaatggt                                  |                                           |                                             |                                   | 3483 |
| tgtttatgac ccttgagcac                                  |                                           |                                             |                                   | 3543 |
| attgatgagt atgaaataac                                  |                                           |                                             |                                   | 3603 |
| acgcttttcg ttcaccacct                                  |                                           |                                             |                                   | 3663 |
| cacatttcac aaatgacaaa                                  |                                           |                                             |                                   | 3723 |
| atcctcaggg acaagggggt                                  |                                           |                                             |                                   | 3783 |
| cctcagagat gctaaatgta                                  | cagttgagat tt                             | ttcttcca tcagaatt                           | tc tagaatgtgt                     | 3843 |
| tctcaatcaa attcttattt                                  | tctgtgagca ta                             | taagaagt caaaccto                           | cc aaaattagag                     | 3903 |
| cagagacatg ggctatccag                                  | tagacatggg ct                             | acaacatg tttggagt                           | at aattggttta                     | 3963 |
| ttcatagact taaccagaga                                  | aatatggaag tt                             | cgcacac ttctccct                            | gt tcaagccaat                     | 4023 |
| ggtgacacat acttagaata                                  | taatttcaaa tca                            | cagtttt acgtatgt                            | gc atggttgtat                     | 4083 |
| ttgtatttaa caaataacat                                  | aataattata ac                             | stettgtg tgattatt                           | at gatctggcac                     | 4143 |
| catttttagt gcgtgacatg                                  | tatggaacac tt                             | tattttc acagccta                            | tt attagcctta                     | 4203 |
| ttctacagtt gatttaactg                                  | aaacccatgg gtt                            | tgagtaa catgaaca                            | aa agggtgtgca                     | 4263 |
| gcttataaag tgctcaacag                                  | ggatttaagc cca                            | ggcaggc aggccgga                            | gt ccctgcccct                     | 4323 |
| gaccactgca tgtgccacgt                                  | cttgtggagt ctg                            | tggcctt ttccacac                            | tg cattgcctct                     | 4383 |
| ccctctggga gggccatact                                  | ccaaccttgg aaa                            | cactata gttctttc                            | ca tacccaatgt                     | 4443 |
| tttcacgtgg ctttccctct                                  | cttcggaatg ttt                            | ttttatc tgtaagta                            | ca aggatacgaa                     | 4503 |
| gataactttc catgactaca                                  | taatcttcct tta                            | ggcccca agtcattc                            | at tcattcaaca                     | 4563 |
| aataactact gagcccctat                                  | agtttgccag gcc                            | ccgttct acaaactg                            | ag gatacatcag                     | 4623 |
| tgagcaaaac aaataaaaat                                  | cttcatcttt ttt                            | agcactt aaagggtg                            | ta tacagaaaat                     | 4683 |
| aaatttggta attgagaaga                                  | agacatggag tat                            | tatcaga agaaaagto                           | gt tggaaaatct                     | 4743 |
| tgagcaggag aggggtcttg                                  | gagtgtgtag ggg                            | tcacgtt ttatgtag                            | gg atttaggcta                     | 4803 |
| atccteacty gttatagttg                                  | agcaaagatg tgg                            | agritac aagritaat                           | fā gccacattga                     | 4863 |
| tattgggaga aatgctttca                                  | agacagagca tag                            | ggacatc taccagect                           | g tcaatcaaga                      | 4923 |
| gtccagtagg accatgtctc                                  | agtaataggg atg                            | aactaga tgtagatto                           | ja <sup>*</sup> gtctaactcc        | 4983 |
| aattataaaa aatgatagta                                  | aaataaattt tto                            | caacaaa caaaagtgg                           | a taaaattott                      | 5043 |
| cagccataga aaaattatct                                  | caaaagtaaa ctc                            | sgaaata taagcaaaa                           | a tgacaaacat                      | 5103 |
| caaccccaaa gagtaatatg                                  |                                           |                                             |                                   | 5163 |
| itgtaatata cagtttagat i                                |                                           | •                                           |                                   | 5223 |
| tatcaatat tgatgtagta (                                 |                                           |                                             |                                   | 5283 |
| atgctgtaa tgtttatagt a                                 | aacgccaaa acca                            | gtttat aaaatgaaa                            | a aatgatagat                      | 5343 |

5350

ttttata <210> 97 <211> 312 <212> PRT Homo sapiens <213> Met Arg Leu Ala Asn Gln Thr Leu Gly Gly Asp Phe Phe Leu Leu Gly  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Ser Ile Phe Leu Met Ala Val Ser Trp Asn Ile Thr Leu Ile Leu Leu 35 40 45 lle His Ile Asp Ser Ser Leu His Thr Pro Met Tyr Phe Phe Ile Asn Gln Leu Ser Leu Ile Asp Leu Thr Tyr Ile Ser Val Thr Val Pro Lys 65 70 75 80Met Leu Val Asn Gln Leu Ala Lys Asp Lys Thr Ile Ser Val Leu Gly  $85 \hspace{1cm} 90 \hspace{1cm} 95$ Cys Gly Thr Gln Met Tyr Phe Tyr Leu Gln Leu Gly Gly Ala Glu Cys Cys Leu Leu Ala Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys His 115 120 125 Pro Leu Arg Tyr Ser Val Leu Met Ser His Arg Val Cys Leu Leu Leu Ala Ser Gly Cys Trp Phe Val Gly Ser Val Asp Gly Phe Met Leu Thr 145 150 155 160 Pro Ile Ala Met Ser Phe Pro Phe Cys Arg Ser His Glu Ile Gln His 165 170 175Phe Phe Cys Glu Val Pro Ala Val Leu Lys Leu Ser Cys Ser Asp Thr 180 \$180\$

Ser Leu Tyr Lys Ile Phe Met Tyr Leu Cys Cys Val Ile Met Leu Leu 195 200 205

lle Pro Val Thr Val Ile Ser Val Ser Tyr Tyr Tyr Ile Ile Leu Thr 210 225 220

Ile His Lys Met Asn Ser Val Glu Gly Arg Lys Lys Ala Phe Thr Thr 225 230 235 240

Cys Ser Ser His Ile Thr Val Val Ser Leu Phe Tyr Gly Ala Ala Ile 245 250 255:

Tyr Asn Tyr Met Leu Pro Ser Ser Tyr Gln Thr Pro Glu Lys Asp Met 260 270

| Met Ser S                                    | Ser Phe Ph<br>?75              | e Tyr <sub>.</sub> Th         | r Ile Le<br>200           | 16<br>eu Thr Pr              | U 200 PCT<br>O Val Let<br>285 | Asn Pro                       | ST25<br>o Ile         |
|----------------------------------------------|--------------------------------|-------------------------------|---------------------------|------------------------------|-------------------------------|-------------------------------|-----------------------|
| Ile Tyr S<br>290                             | er Phe Ar                      | g Asn Ly:<br>29:              | s Asp Va<br>5             | l Thr Ar                     | g Ala Lev<br>300              | Lys Lys                       | s Met                 |
| Leu Ser V<br>305                             | al Gln Ly                      | s Pro Pro<br>310              | э Туг                     |                              |                               |                               |                       |
| <210> 98<br><211> 34<br><212> DN<br><213> Ho | 86                             | s                             |                           |                              |                               |                               |                       |
| <220> <221> CD <222> (1 <223>                | S<br>)(3483)                   |                               |                           |                              |                               |                               |                       |
| <400> 98<br>atg ggg co<br>Met Gly Pi<br>l    | ca cct gaa<br>ro Pro Glu<br>S  | a ttc atg<br>phe Met          | tat gaa<br>Tyr Gli        | e cag cae<br>i Gln Gli<br>10 | g gac aat<br>n Asp Asn        | tca acg<br>Ser Thr<br>15      | cac 48                |
| ctg cag co<br>Leu Gln Pr                     | ca ctt aag<br>co Leu Lys<br>20 | aca tgc<br>Thr Cys            | ccc gtg<br>Pro Val<br>25  | gca ago<br>Ala Aro           | g cag cta<br>g Gln Leu        | atc cga<br>Ile Arg<br>30      | ggg 96<br>Gly         |
| gtg ctg cg<br>Val Leu Ar<br>35               | g Ala Pro                      | gat gga<br>Asp Gly            | gcc aag<br>Ala Lys<br>40  | cca gga<br>Pro Gly           | gag gac<br>Glu Asp<br>45      | agg ggc<br>Arg Gly            | cag 144<br>Gln        |
| gcc cgc tg<br>Ala Arg Cy<br>50               | ic aat gga<br>'s Asn Gly       | cgt gta<br>Arg Val<br>55      | tgt gga<br>Cys Gly        | gag aaa<br>Glu Lys           | tca aaa<br>Ser Lys<br>60      | caa cct<br>Gln Pro            | att 192<br>Ile        |
| gag gct tt<br>Glu Ala Ph<br>65               | t aag ccc<br>e Lys Pro         | gtc tgc<br>Val Cys<br>70      | tac aaa<br>Tyr Lys        | ccc caa<br>Pro Gln<br>75     | ttt atg<br>Phe Met            | tcc cac<br>Ser His            | att 240<br>Ile<br>80  |
| att ccc ct<br>lle Pro Le                     | t tac tcc<br>u Tyr Ser<br>85   | atc cat<br>Ile His            | gca tcc<br>Ala Ser        | cag agt<br>Gln Ser<br>90     | tcc agc<br>Ser Ser            | caa tcc<br>Gln Ser<br>95      | aag 288<br>Lys        |
| ctg cct gc<br>Leu Pro Al                     | a cat ctc<br>a His Leu<br>100  | cat ttg<br>His Leu            | gac ccc<br>Asp Pro<br>105 | tta ggc<br>Leu Gly           | Cys Ala                       | agt ctc<br>Ser Leu<br>110     | agc 336<br>Ser        |
| ttc tcc tcc<br>Phe Ser Ser<br>11             | r Thr Gln                      | Pro Ser                       | cca cct<br>Pro Pro<br>120 | tat tac<br>Tyr Tyr           | cca ggg<br>Pro Gly<br>125     | ttg gta<br>Leu Val            | cta 384<br>Leu        |
| gga tgc agg<br>Gly Cys Sei<br>130            | c aag cag<br>r Lys Gln         | aat act<br>Asn Thr<br>135     | gga ggt<br>Gly Gly        | gca aaa<br>Ala Lys           | tgt cag<br>Cys Gln :<br>140   | aag cca<br>Lys Pro            | ctc 432<br>Leu        |
| act cgc agg<br>Thr Arg Arg<br>145            | g ttt gag<br>g Phe Glu         | cac ttg<br>His Leu<br>150     | gga aca<br>Gly Thr        | gca aag<br>Ala Lys<br>155    | lys Pro                       | Lys Lys                       | tca 480<br>Ser<br>160 |
| gtc tgg cca<br>Val Trp Pro                   | ctg cag<br>Leu Gln<br>165      | agc ctg<br>Ser Leu            | cct caa<br>Pro Gln        | aga gat<br>Arg Asp<br>170    | ttg aag d<br>Leu Lys I        | ctg gtc a<br>Leu Val a<br>175 | aat 528<br>Asn        |
| gca agg agc<br>Ala Arg Ser                   | cag gcc<br>Gln Ala<br>180      | tgć tgg<br>Cys Trp            | aat cca<br>Asn Pro<br>105 | agg acc<br>Arg Thr           | Trp Gly F                     | gca gca a<br>Na Ala 1<br>190  | ecc 576<br>Thr        |
| cca gat aca<br>Pro Asp Thr<br>195            | Asp Pro                        | Glu Glu /                     | gcc aac<br>Ala Asn<br>200 | agc ggt<br>Ser Gly           | cag cag a<br>Gln Gln A<br>205 | ac ata'a<br>sn lle I          | eag 624<br>.ys        |
| gag caa cag<br>Glu Gln Gln<br>210            | tac cgt o                      | gtc tct (<br>Val Ser I<br>215 | ctg ggg<br>Leu Gly        | Asn Asn                      | act ggt t<br>Thr Gly S<br>220 | ct ccc t<br>er Pro I          | etg 672<br>eu         |

|            |            |                   |            |            |            |      |                   |            |            | cag        | cag        | PCT<br>ggc<br>Gly | aag        | ctg         | aat        | 720  |
|------------|------------|-------------------|------------|------------|------------|------|-------------------|------------|------------|------------|------------|-------------------|------------|-------------|------------|------|
|            |            |                   |            |            |            |      |                   |            |            |            |            | tgg<br>Trp        |            |             |            | 768  |
|            |            |                   |            |            |            |      |                   |            |            |            |            | gtc<br>Val        |            |             |            | 816  |
|            |            |                   |            |            |            |      |                   |            |            |            |            | cag<br>Gln<br>285 |            |             |            | 864  |
|            |            | -                 | -          | -          | •          |      |                   |            |            |            |            | tgg<br>Trp        |            |             |            | 912  |
|            |            |                   |            |            |            |      |                   |            |            |            |            | tgg<br>Trp        |            |             |            | 960  |
|            |            |                   |            |            |            |      |                   |            |            |            |            | gat<br>Asp        |            |             |            | 1008 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | ctg<br>Leu        |            |             |            | 1056 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | cag<br>Gln<br>365 |            |             |            | 1104 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | ggc<br>Gly        |            |             |            | 1152 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | agg<br>Arg        |            |             |            | 1200 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | G1 y              |            |             |            | 1248 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | gcc<br>Ala        |            |             |            | 1296 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | cgg<br>Arg<br>445 |            |             |            | 1344 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | agc<br>Ser        |            |             |            | 1392 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | ttc<br>Phe        |            |             |            | 1440 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | gca<br>Ala        |            |             |            | 1488 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | gac<br>Asp        |            |             |            | 1536 |
| cgt<br>Arg | gag<br>Glu | cat<br>His<br>515 | cca<br>Pro | gga<br>Gly | ctg<br>Leu | 61 y | caa<br>Gln<br>520 | cta<br>Leu | gaa<br>Glu | cct<br>Pro | ccc<br>Pro | cac<br>His<br>525 | tgt<br>Cys | cac<br>His" | tac<br>Tyr | 1584 |
|            |            |                   |            |            |            |      |                   |            |            |            |            | agc<br>Ser        |            |             |            | 1632 |

Page 73

| ac<br>Ti<br>54    | ır A         | gt<br>rg     | gtg<br>Val         | ata<br>11e        | 99<br>G1                      | g gt<br>y Va<br>55 | C a                | gc a<br>er A   | ga<br>rg         | gaa<br>Glu        | ga<br>g G1        | U           | gct<br>Ala<br>555 | G1                 | g gc<br>y Al      | t c<br>a L     | t c<br>eu       | ga<br>Gl          | g gc<br>a Al<br>56 | a                      | 80         |
|-------------------|--------------|--------------|--------------------|-------------------|-------------------------------|--------------------|--------------------|----------------|------------------|-------------------|-------------------|-------------|-------------------|--------------------|-------------------|----------------|-----------------|-------------------|--------------------|------------------------|------------|
| gc<br>Al          | c t<br>a S   | cc<br>er     | gat<br>Asp         | gtt<br>Val        | gae<br>As <sub>j</sub><br>56! | p Le               | g ac<br>u Ti       | cc c<br>or L   | t g<br>eu        | cat<br>His        | ca<br>6 Gl<br>57  | n (         | cag<br>Gln        | ga<br>G1           | g gg<br>u G1      | y A            | cc<br>la        | ecc<br>Pro<br>575 | As                 | c 17:<br>n             | 28         |
| t c<br>Se         | r S          | cc<br>er     | tat<br>Fyr         | acc<br>Thr<br>580 | Phe                           | tc<br>Se           | a to<br>r Se       | c a            | ta<br>le         | gcc<br>Ala<br>585 | Ar                | g V         | gtc<br>/al        | cg.                | aat<br>g Me       | t G            | ag<br>l u<br>90 | gaç<br>Glu        | д са<br>В Ні       | t 17 <sup>.</sup><br>s | 76         |
| t t<br>Ph         | c a:<br>e 1: | le (         | ag<br>Sln<br>595   | aag<br>Lys        | gcg<br>Ala                    | g ga<br>Gl         | g gg<br>u Gl       | y V            | t t<br>a 1<br>00 | gag<br>Glu        | cc<br>Pr          | c c         | gg<br>Arg         | ct d<br>Let        | aa<br>u Ly<br>60  | s G            | gc<br>ly        | aag<br>Lys        | gte<br>Va          | g 182<br>1             | 24         |
| ta<br>Ty          | r As         | sc t<br>sp 1 | ac<br>Tyr          | tat<br>Tyr        | gtg<br>Val                    | ga.<br>Gl          | a to<br>u Se<br>61 | r Tl           | oc<br>nr         | tct<br>Ser        | Gl                | 9 9<br>n. A | cc<br>la          | at o<br>11e<br>620 | Ph:               | c ca<br>e Gl   | n<br>In         | ggc<br>Gly        | ago                | g 187<br>9             | 12         |
| ct<br>Le<br>62    | υAJ          | t c          | cc<br>ro           | agg<br>Arg        | aca<br>Thr                    | gc.<br>Al.<br>630  | agc<br>aAl         | c ci<br>a Le   | g<br>eu          | act<br>Thr        | ga<br>Gl          | y V         | al<br>35          | cca<br>Pro         | tco<br>Sei        | c cc<br>r Pr   | t i             | agg<br>Arg        | Pro<br>640         |                        | <b>:</b> 0 |
| Pro               | g cc         | a g          | 99<br>1 y          | tcc<br>Ser        | ctg<br>Leu<br>645             | 99 <i>8</i><br>G1  | a ac<br>/ Th       | agg<br>rG]     | ј <b>9</b><br>У  | gct<br>Ala        | gcc<br>Ala<br>650 | a S         | cg<br>er          | gga<br>G1 y        | gg(               | c ca<br>/ Gl   | ת מ             | gcc<br>Ala<br>655 | ggt<br>Gly         | 196                    | 8          |
| gac<br>Asj        | c ac         | a a          | ys (               | ggt<br>Gly<br>660 | gca<br>Ala                    | gcc<br>Ala         | ga<br>Gl           | a ag<br>u Ar   | g 1              | gcc<br>Ala<br>665 | gcc<br>Ala        | t S         | cc<br>er          | ccg<br>Pro         | Cac<br>Glr        | ac<br>Th<br>67 | r (             | 999<br>51 y       | Pro                | 201                    | 6          |
| t g               | g cc<br>Pr   | o S          | cc a<br>er 1<br>75 | hr                | cga<br>Arg                    | ggc<br>Gly         | tte<br>Phe         | ag<br>Se<br>68 | r /              | agg<br>Arg        | aag<br>Lys        | g g.        | ag<br>lu          | agc<br>Ser         | ctt<br>Leu<br>685 | Le             | g c             | ag<br>Sln         | ata<br>Ile         | 206                    | 4          |
| Ala               | 69<br>69     | u A:<br>D    | sn I               | Pro               | Glu                           | Leu                | Glr<br>695         | le<br>i        | น (              | Sln               | Pro               | A:          | sp                | G1 y<br>700        | Phe               | Ar             | 9 L             | eu                | Pro                | 211:                   | 2          |
| 705               | Pr           | 9 P          | ro (               | ys                | Pro                           | 710                |                    | 61             | уА               | la                | Leu               | P1<br>7]    | 15                | G1 y               | ren               | Gl             | γA              | rg                | Ser<br>720         | 2160                   | 3          |
| ser               | Are          | g G          | lu F               | ro                | 725                           | Val                | Gln                | Pr             | οV               | al                | Ala<br>730        | GI          | у                 | lhr                | Asn               | Phe            | ? P             | he<br>35          | His                | 2208                   | 3          |
| 116               | Pro          | ) Le         | 20 T<br>7          | hr 1              | Pro                           | Ala                | tca<br>Ser         | Ala            | 3 P<br>7         | ro<br>45          | Gln               | ٧a          | 1 /               | arg                | Leu               | 75(            | )<br>)          | eu                | G1 y               | 2256                   | ;          |
| ASN               | Cys          | 75           | r G<br>5           | י טנ              | /al                           | Leu                | acc<br>Thr         | Le:<br>76(     | 1 A.             | la :              | Lys               | Ar          | g G               | gļņ                | Asn<br>765        | Leu            | G.              | lυ                | Ala                | 2304                   | ;          |
| reu               | 770          | GI           | uА                 | la P              | 11a                           | Tyr                | 775                | Va]            | . Me             | et :              | Ser               | G1          | ս A<br>7          | 80                 | Tyr               | Leu            | · <b>G</b> ]    | ln '              | Val                | 2352                   |            |
| ctg<br>Leu<br>785 | Arg          | Se           | r Pi               | ro A              | sp                            | 11e<br>790         | Tyr                | Gly            | . c)             | /S 1              | čeu               | 5e<br>79    | r G               | Ty .               | Aľa               | Glu            | Aı              | rg (              | 51 u<br>800        | 2400                   |            |
| ctg<br>Leu        | 116          | re           | u G                | ln A<br>8         | 05                            | Arg                | Leu                | Arg            | G1               | ly A              | irg               | G1:         | n T               | yr :               | Leu               | Val            | Va<br>81        | .5                | Ala                | 2448                   |            |
| gac<br>Asp        | val          | Cy:          | 8 Pr<br>82         | 0 L               | ys (                          | 51 u               | Asp                | Ser            | 61<br>82         | y G<br>25         | 31 y              | Lei         | ı C               | ys (               | Cys               | Tyr<br>830     | As              | p,z               | Asp                | 2496                   |            |
| gag<br>Glu        | GIN          | 835          | o Va               | 1 T               | rp A                          | irg                | Pro                | Leu<br>840     | Al               | аÀ                | rg                | Met         | : P               | ro I               | Pro<br>345        | Glu            | Al              | c g<br>a V        | itg<br>Val         | 2544                   |            |
| tcc<br>Ser        | cgg<br>Arg   | 990<br>G1    | tg<br>/ Cy         | t go              | cc a<br>la 1                  | tc<br>le           | tgc<br>Cys         | agt<br>Ser     | ct<br>Le         | c t<br>u P        | tc<br>he          | aat<br>Asn  | ta<br>Ty          | et o               | ctc<br>Jeu        | ttc<br>Phe     | gt<br>Va        | 9 9<br>1 V        | tg<br>al           | 2592                   |            |

|                   | 850                |                   |                         |                   |                   | 855                |                   |                   |                   | 16U               | 200<br>860            | PCT               | FIN               | NAL.               | ST         | 25                 |      |
|-------------------|--------------------|-------------------|-------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|--------------------|------------|--------------------|------|
|                   | ggc<br>Gly         |                   |                         |                   |                   |                    |                   |                   |                   |                   |                       |                   |                   |                    | e (        |                    | 2640 |
| t ac<br>Tyr       | aac<br>Asn         | ccg<br>Pro        | ctc<br>Leu              | acg<br>Thr<br>885 | ggg<br>Gly        | atc<br>Ile         | tgg<br>Trp        | agc<br>Ser        | gag<br>Glu<br>890 | gtg<br>Val        | tgc<br>Cys            | ccg<br>Pro        | ct o              | g aa<br>u As<br>89 | n (        | cag<br>Gln         | 2688 |
| gcc<br>Ala        | cgg<br>Arg         | ccg<br>Pro        | cac<br>His<br>900       | tgc<br>Cys        | cgg<br>Arg        | ctg<br>Leu         | gtg<br>Val        | gcc<br>Ala<br>905 | ctg<br>Leu        | gac<br>Asp        | ggg<br>Gly            | cac<br>His        | cto<br>Lev<br>910 | Ту                 | t (        | gcc<br>Ala         | 2736 |
| ato<br>Ile        | ggc<br>Gly         | gga<br>Gly<br>915 | gag<br>Glu              | tgt<br>Cys        | ctg<br>Leu        | aac<br>Asn         | tcg<br>Ser<br>920 | gtg<br>Val        | gag<br>Glu        | cgt<br>Arg        | tac<br>Tyr            | gac<br>Asp<br>925 | Pro               | c cg               | g I        | ctg<br>Leu         | 2784 |
| gac<br>Asp        | cgc<br>Arg<br>930  | tgg<br>Trp        | gac<br>Asp              | ttt<br>Phe        | gcc<br>Ala        | ccg<br>Pro<br>935  | ccg<br>Pro        | ctc<br>Leu        | ccc<br>Pro        | agt<br>Ser        | gac<br>Asp<br>940     | acg<br>Thr        | tto<br>Phe        | gc<br>Al           | c d<br>a l | ctg<br>Leu         | 2832 |
| gcg<br>Ala<br>945 | cac<br>His         | acg<br>Thr        | gcc <sup>.</sup><br>Ala | acg<br>Thr        | gtg<br>Val<br>950 | cgt<br>Arg         | gcc<br>Ala        | aag<br>Lys        | gaa<br>Glu        | atc<br>Ile<br>955 | ttc<br>Phe            | gtc<br>Val        | acc<br>Thr        | gg<br>G1           | уĊ         | ggc<br>51 y<br>960 | 2880 |
| t c g<br>Se r     | ctg<br>Leu         | cgc<br>Arg        | ttc<br>Phe              | ctg<br>Leu<br>965 | ctg<br>Leu        | ttc<br>Phe         | cgc<br>Arg        | ttc<br>Phe        | tct<br>Ser<br>970 | gcg<br>Ala        | cag<br>Gln            | gag<br>Glu        | cag<br>Gln        | 97                 | g 1        | rgg<br>Trp         | 2928 |
|                   | gcc<br>Ala         |                   |                         |                   |                   |                    | Ser               |                   |                   |                   |                       |                   |                   | Me                 |            |                    | 2976 |
|                   | gtc<br>Val         |                   |                         |                   |                   | Tyr                |                   | Ph€               |                   |                   |                       |                   | j S               | -                  | -          | g ggc<br>n Gly     | 3024 |
|                   | gcc<br>Ala<br>1010 | Val               | tac<br>Tyr              |                   |                   |                    | Al                |                   |                   | c cg<br>r Ar      | g Le                  |                   |                   | tac<br>Tyr         | _          | -                  | 3069 |
|                   | gcc<br>Ala<br>1025 | Thr               | Tyr                     |                   |                   |                    | Тy                |                   |                   | t gc<br>p Al      | a Ph                  |                   |                   | tgc<br>Cys         | -          |                    | 3114 |
|                   | gtg<br>Val<br>1040 | Asp               | aac<br>Asn              |                   |                   |                    | Cy:               |                   |                   | a cg<br>y Ar      | g Ar                  |                   | -                 | acc<br>Thr         |            |                    | 3159 |
| Cys               | ttc<br>Phe<br>1055 | Leu               | gca<br>Ala              | Asp               | Ser               | Val<br>106         | Se:<br>0          | r Pr              | o Ar              | a tc<br>g Se      | r Va<br>10            | 1 A<br>65         | la                | gtc<br>Val         | Ph         | е                  | 3204 |
| Leu               | tct<br>Ser<br>1070 | Gly               | Ser                     | Trp               | Gly               | Asn<br>107         | His<br>5          | s Hi              | s Gl              | n Se              | r Al                  | a 1<br>80         | eu                | Gln                | G1         | У                  | 3249 |
| gac<br>Asp<br>-   | agc<br>Ser<br>1085 | ata<br>Ile        | att<br>Ile              | tgc<br>Cys        | cct<br>Pro        | cct<br>Pro<br>109  | Cys               | t gc<br>s Al      | c ag<br>a Ar      | g tg<br>g Tr      | g to<br>p Se.<br>10:  | r G               | ag (              | cta<br>Leu         | ga<br>As   | t<br>P             | 3294 |
| cct<br>Pro        | gtg<br>Val<br>1100 | tcc<br>Ser        | acg<br>Thr              | gaa<br>Glu        | gct<br>Ala        | gct<br>Ala<br>110  | Gly               | gc<br>/ Al        | c ca<br>a Gl      | g gc<br>n Ala     | t gte<br>a Val        | 1 G               |                   | ctt<br>Leu         |            |                    | 3339 |
| Gly               | aga<br>Arg<br>1115 | Ser               | Arg                     | Thr               | Gly               | Thr<br>1120        | Lys<br>)          | As                | p Gl              | u Ly:             | 3 Gl                  | u ₹<br>25         | al (              | Gly                | Me         | t                  | 3384 |
| АЅР               | ata<br>Ile<br>1130 | aga<br>Arg        | gga<br>Gly              | gag<br>Glu        | ctt<br>Leu        | gca<br>Ala<br>1135 | Lev               | ga<br>As          | с са<br>р Ні      | c cga<br>s Arg    | a aga<br>g Arg<br>114 | g P               | ca d              | cca<br>Pro         | tc<br>Se   | c<br>r             | 3429 |
| ctg<br>Leu        | gtc<br>Val<br>1145 | tgg<br>Trp        | gct<br>Ala              | ctg<br>Leu        | gca<br>Ala        | cca<br>Pro<br>1150 | Gly               | tc:<br>Se:        | t gce<br>r Ala    | e agt<br>a Sei    | ggc<br>Gly<br>115     | y S               | gc t<br>er S      | tca<br>Ser         | ga<br>Gl   | g<br>u             | 3474 |
| gcc               | aca                | ggg               | tga                     |                   |                   |                    |                   |                   |                   |                   |                       |                   |                   |                    |            |                    | 3486 |

Ala Thr Gly 1160

<210> 99 <211> 1161

<212> PRT <213> Homo sapiens

<400> 99

Met Gly Pro Pro Glu Phe Met Tyr Glu Gln Gln Asp Asn Ser Thr His 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Gln Pro Leu Lys Thr Cys Pro Val Ala Arg Gln Leu Ile Arg Gly 20 25 30

Val Leu Arg Ala Pro Asp Gly Ala Lys Pro Gly Glu Asp Arg Gly Gln 35 40 45

Ala Arg Cys Asn Gly Arg Val Cys Gly Glu Lys Ser Lys Gln Pro Ile 50 55 60

Glu Ala Phe Lys Pro Val Cys Tyr Lys Pro Gln Phe Met Ser His Ile 65 70 75 80

Ile Pro Leu Tyr Ser Ile His Ala Ser Gln Ser Ser Gln Ser Lys 85 90 95

Leu Pro Ala His Leu His Leu Asp Pro Leu Gly Cys Ala Ser Leu Ser 100 105 110

Phe Ser Ser Thr Gln Pro Ser Pro Pro Tyr Tyr Pro Gly Leu Val Leu 115 120 125

Gly Cys Ser Lys Gln Asn Thr Gly Gly Ala Lys Cys Gln Lys Pro Leu 130 135 140

Thr Arg Arg Phe Glu His Leu Gly Thr Ala Lys Lys Pro Lys Lys Ser 145 150 155 160

Val Trp Pro Leu Gln Ser Leu Pro Gln Arg Asp Leu Lys Leu Val Asn 165 170 175

Ala Arg Ser Gln Ala Cys Trp Asn Pro Arg Thr Trp Gly Ala Ala Thr 180 185 190

Pro Asp Thr Asp Pro Glu Glu Ala Asn Ser Gly Gln Gln Asn Ile Lys 195 200 205

Glu Gln Gln Tyr Arg Val Ser Leu Gly Asn Asn Thr Gly Ser Pro Leu 210 220

Cys Ser Thr Glu Val Asn Phe Gly Ser Arg Gln Gln Gly Lys Leu Asn 225 235 240

Arg Thr Thr Arg Glu Ala Trp Lys Glu Ala Ser Arg Trp Asp Leu Pro 245 250 255 :

Ala Leu Gly Pro Ser Gly His Pro Leu Gln Leu Lys Val Thr Phe Ala 260 265 270

- Pro Leu Leu Ser Ser Ala Gly Gln Pro Glu Pro Ala Gln Asn Ser Leu 275 280 285
- Pro Ser Ala Gln Gln Asp Pro Gly Thr Gly Pro Tyr Trp Ala Ile Ile 290 295 300
- Asn Gln Ile Leu Asp Ile Pro Gln Pro Gln Val Gly Trp Arg Ser Met 305 310 315 320
- Phe Pro Arg Gly Ala Glu Ala Gln Asp Trp His Leu Asp Met Gln Leu 325 330 335
- Thr Gly Lys Val Val Leu Ser Ala Ala Ala Leu Leu Leu Val Thr Val 340 345 350
- Ala Tyr Arg Leu Tyr Lys Ser Arg Pro Ala Pro Ala Gln Arg Trp Gly 355 360 365
- Gly Asn Gly Gln Ala Glu Ala Lys Glu Glu Ala Glu Gly Ser Gly Gln 370 375 380
- Pro Ala Val Gln Glu Ala Ser Pro Gly Val Leu Leu Arg Gly Pro Arg 385 390 395 400
- Arg Arg Arg Ser Ser Lys Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys 405 410 415
- Glu Asn Pro Arg Gly Pro Tyr Val Leu Val Thr Gly Ala Thr Ser Thr 420 425 430
- Asp Arg Lys Pro Gln Arg Lys Gly Ser Gly Glu Glu Arg Gly Gln 435 440 . 445
- Gly Ser Asp Ser Glu Gln Val Pro Pro Cys Cys Pro Ser Gln Glu Thr 450 455 460
- Arg Thr Ala Val Gly Ser Asn Pro Asp Pro Pro His Phe Pro Arg Leu 465 470 475 480
- Gly Ser Glu Pro Lys Ser Ser Pro Ala Gly Leu Ile Ala Ala Ala Asp 485 490 495
- Gly Ser Cys Ala Gly Gly Glu Pro Ser Pro Trp Gln Asp Ser Lys Pro 500 505 510
- \_Arg Glu His Pro Gly Leu Gly Gln Leu Glu Pro Pro His Cys His Tyr 515 520 525
- Val Ala Pro Leu Gln Gly Ser Ser Asp Met Asn Gln Ser Trp Val Phe 530 535 540
- Thr Arg Val Ile Gly Val Ser Arg Glu Glu Ala Gly Ala Leu Glu Ala 545 550 555 560
- Ala Ser Asp Val Asp Leu Thr Leu His Gln Gln Glu Gly Ala Pro Asn 565 570 575"
- Ser Ser Tyr Thr Phe Ser Ser Ile Ala Arg Val Arg Met Glu Glu His 580 585 590

16U-200 PCT FINAL ST25

Phe Ile Gln Lys Ala Glu Gly Val Glu Pro Arg Leu Lys Gly Lys Val 595 600 605

Tyr Asp Tyr Tyr Val Glu Ser Thr Ser Gln Ala Ile Phe Gln Gly Arg 610 615 620

Leu Ala Pro Arg Thr Ala Ala Leu Thr Glu Val Pro Ser Pro Arg Pro 625 630 635 640

Pro Pro Gly Ser Leu Gly Thr Gly Ala Ala Ser Gly Gly Gln Ala Gly 645 650 655

Asp Thr Lys Gly Ala Ala Glu Arg Ala Ala Ser Pro Gln Thr Gly Pro 660 665 670

Trp Pro Ser Thr Arg Gly Phe Ser Arg Lys Glu Ser Leu Leu Gln Ile 675 680 685

Ala Glu Asn Pro Glu Leu Gln Leu Gln Pro Asp Gly Phe Arg Leu Pro 690 695 700

Ala Pro Pro Cys Pro Asp Pro Gly Ala Leu Pro Gly Leu Gly Arg Ser 705 710 715 720

Ser Arg Glu Pro His Val Gln Pro Val Ala Gly Thr Asn Phe Phe His 725 730 735

Ile Pro Leu Thr Pro Ala Ser Ala Pro Gln Val Arg Leu Asp Leu Gly 740 745 750

Asn Cys Tyr Glu Val Leu Thr Leu Ala Lys Arg Gln Asn Leu Glu Ala 755 760 765

Leu Lys Glu Ala Ala Tyr Lys Val Met Ser Glu Asn Tyr Leu Gln Val 770 780

Leu Arg Ser Pro Asp Ile Tyr Gly Cys Leu Ser Gly Ala Glu Arg Glu 785 790 795 800

Leu Ile Leu Gln Arg Arg Leu Arg Gly Arg Gln Tyr Leu Val Val Ala 805 810 815

Asp Val Cys Pro Lys Glu Asp Ser Gly Gly Leu Cys Cys Tyr Asp Asp 820 825 830

Glu Gln Asp Val Trp Arg Pro Leu Ala Arg Met Pro Pro Glu Ala Val 835 840 845

Ser Arg Gly Cys Ala 11e Cys Ser Leu Phe Asn Tyr Leu Phe Val Val 850 860

Ser Gly Cys Gln Gly Pro Gly His Gln Pro Ser Ser Arg Val Phe Cys 875 875 880

Tyr Asn Pro Leu Thr Gly Ile Trp Ser Glu Val Cys Pro Leu Asn Gln 885 890 895

Ala Arg Pro His Cys Arg Leu Val Ala Leu Asp Gly His Leu Tyr Ala 900 905 910

11e Gly Glu Cys Leu Asn Ser Val Glu Arg Tyr Asp Pro Arg Leu 915 920 925

Asp Arg Trp Asp Phe Ala Pro Pro Leu Pro Ser Asp Thr Phe Ala Leu 930 935 940

Ala His Thr Ala Thr Val Arg Ala Lys Glu Ile Phe Val Thr Gly Gly 945 950 955 960

Ser Leu Arg Phe Leu Leu Phe Arg Phe Ser Ala Gln Glu Gln Arg Trp 965 970 975

Trp Ala Gly Pro Thr Gly Gly Ser Lys Asp Arg Thr Ala Glu Met Val980 985 990

Ala Val Asn Gly Phe Leu Tyr Arg Phe Asp Leu Asn Arg Ser Leu Gly . 995 1000 1005

lle Ala Val Tyr Arg Cys Ser Ala Ser Thr Arg Leu Trp Tyr Glu 1010 1015 1020

Cys Ala Thr Tyr Arg Thr Pro Tyr Pro Asp Ala Phe Gln Cys Ala 1025 1030 1035

Val Val Asp Asn Leu Ile Tyr Cys Val Gly Arg Arg Ser Thr Leu 1040 1045 1050

Cys Phe Leu Ala Asp Ser Val Ser Pro Arg Ser Val Ala Val Phe 1055 1060 1065

Leu Ser Gly Ser Trp Gly Asn His His Gln Ser Ala Leu Gln Gly 1070 1075 1080

Asp Ser Ile Ile Cys Pro Pro Cys Ala Arg Trp Ser Gln Leu Asp 1005 1095

Pro Val Ser Thr Glu Ala Ala Gly Ala Gln Ala Val Gly Leu Val

Gly Arg Ser Arg Thr Gly Thr Lys Asp Glu Lys Glu Val Gly Met 1115 1120 1125

Asp Ile Arg Gly Glu Lev Ala Leu Asp His Arg Arg Pro Pro Ser 1130 1135 1140

Leu Val Trp Ala Leu Ala Pro Gly Ser Ala Ser Gly Ser Ser Glu 1145 1150 1155

Ala Thr Gly 1160

<210> 100

<211> 2953

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (350)..(2536)

<223>

Page 79

| < 0                | 00>               | 100                  | 1                    |                      |                    |                     |                   |                   |                      |                      |                    |                      |                      |                            |                      |        |
|--------------------|-------------------|----------------------|----------------------|----------------------|--------------------|---------------------|-------------------|-------------------|----------------------|----------------------|--------------------|----------------------|----------------------|----------------------------|----------------------|--------|
|                    |                   |                      |                      | agaç                 | ctc                | ctcc                | ccct              | сс а              | ggaa                 | aagc                 | a ct               | tctc                 | ccca                 | ggc                        | agggc                | gg 60  |
| to                 | agto              | ccct                 | caç                  | cgca                 | cct                | gcat                | gcac              | ac a              | cacc                 | acct                 | c ac               | aacc                 | acac                 | act                        | gcatg                | ca 120 |
| ca                 | caca              | taca                 | cca                  | cago                 | cac                | acac                | tgtg              | ca t              | acac                 | gcac                 | a co               | ccac                 | aacc                 | cac                        | atact                | gc 180 |
| at                 | gcac              | acac                 | aca                  | cacc                 | tac                | aagc                | tgca              | tg c              | tgca                 | taca                 | c aa               | gtca                 | taca                 | gga                        | gataa                | ac 240 |
| tc                 | agag              | tccc                 | ago                  | ссса                 | aat                | agac                | ccca              | tc t              | cttg                 | ctca                 | g tt               | gctg                 | tcat                 | cct                        | agacc                | tg 300 |
| tt                 | tctt              | tcgc                 | cac                  | attt                 | cta                | taat                | ctgc              | ca g              | tgtc                 | tgca                 | a gg               | agaa                 |                      |                            | ggg g<br>Gly G       |        |
| t t<br>Ph          | t ct<br>e Le<br>5 | a cc<br>u Pr         | t aa<br>o Ly         | g gc<br>s Al         | aga<br>aG1         | a ggg<br>u Gl<br>10 | g cco             | c gg<br>o G1      | g ag<br>y Se         | c ca<br>r Gl         | a ct<br>n Le<br>15 | c ca<br>u Gl         | g aa<br>n Ly         | a ct<br>s Le               | t ctg<br>u Leu       | 406    |
| Pro<br>20          | c tc<br>o Se      | c tt<br>r Ph         | t ct<br>e Le         | g gt<br>u Va         | c ag<br>l Ar<br>25 | a gaa<br>g Glu      | a caa<br>u Glr    | a gad<br>n Asj    | c tgo<br>p Trj       | g gad<br>p Asj<br>30 | c ca<br>p Gl       | g ca<br>n Hi         | c cti<br>s Lei       | g gao<br>u As <sub>l</sub> | c aag<br>p Lys<br>35 | 454    |
| c t i              | t ca<br>u Hi:     | t ate                | g ct<br>t Le         | g cad<br>u Glu<br>40 | g ca<br>n Gl       | g aag<br>n Lys      | g ago<br>s Aro    | g ati             | t cta<br>e Lei<br>45 | a gaq<br>a Glu       | g to<br>u Se:      | t cc                 | a cte                | cti<br>Lei<br>50           | t cga<br>u Arg       | 502    |
| gca<br>Ala         | e tco             | c aaq<br>r Ly:       | g gaa<br>s Gli<br>55 | a aat<br>u Asi       | t ga               | c ctg<br>p Leu      | g tot<br>Ser      | gt1<br>Val        | t ctt<br>Lei         | t agg                | g caa              | a cti                | t cta<br>u Lei<br>65 | e cto<br>Lei               | g gac<br>1 Asp       | 550    |
| t go<br>Cys        | ace<br>Thi        | c tgi<br>c Cy:<br>70 | t gad<br>s Asj       | gtt<br>Val           | . cg               | a caa<br>g Glm      | aga<br>Arg<br>75  | gga<br>Gly        | gco<br>Ala           | cto<br>Lev           | 999<br>Gly         | g gaq<br>/ Glv<br>80 | g aco                | gcg<br>Ala                 | ctg<br>Leu           | 598    |
| cac<br>His         | ata<br>116<br>85  | a gca<br>e Ala       | gco<br>Ala           | cto<br>Leu           | tai<br>Tyi         | gac<br>Asp<br>90    | aac<br>Asn        | ttg<br>Let        | g gag<br>n Glu       | g gcg<br>Ala         | gco<br>Ala<br>95   | tto<br>Lei           | g gtg<br>ı Val       | ctg<br>Lev                 | atg<br>Met           | 646    |
| gag<br>Glu<br>100  | Ala               | gco<br>Ala           | Pro                  | gag<br>Glu           | tet<br>Let<br>105  | ı Val               | Phe               | gag<br>Glu        | ccc<br>Pro           | acc<br>Thr           | Thr                | tgt<br>Cys           | gag<br>Glu           | gct<br>Ala                 | ttt<br>Phe<br>115    | 694    |
| gca<br>Ala         | ggt<br>Gly        | cag<br>Gln           | act                  | gca<br>Ala<br>120    | Let                | cac<br>His          | atc<br>Ile        | gct<br>Ala        | gtt<br>Val<br>125    | Val                  | aac<br>Asn         | cag<br>Gln           | aat<br>Asn           | gtg<br>Val<br>130          | Asn                  | 742    |
| ctg<br>Leu         | gtg<br>Val        | cgt<br>Arg           | 9cc<br>Ala<br>135    | Leu                  | cto<br>Leu         | acc<br>Thr          | cgc<br>Arg        | agg<br>Arg<br>140 | Ala                  | agt<br>Ser           | gtc<br>Val         | tct<br>Ser           | gcc<br>Ala<br>145    | Arg                        | gcc<br>Ala           | 790    |
| aca<br>Thr         | ggc<br>Gly        | act<br>Thr<br>150    | Ala                  | ttc<br>Phe           | cgc<br>Arg         | cgt<br>Arg          | agt<br>Ser<br>155 | ccc<br>Pro        | cgc                  | aac<br>Asn           | ctc<br>Leu         | atc<br>Ile<br>160    | Tyr                  | ttt<br>Phe                 | GJ y<br>ggg          | 838    |
| gag<br>Glu         | cac<br>His<br>165 | cct<br>Pro           | ttg<br>Leu           | tcc<br>Ser           | ttt<br>Phe         | gct<br>Ala<br>170   | gcc<br>Ala        | tgt<br>Cys        | gtg<br>Val           | aac<br>Asn           | agc<br>Ser<br>175  | gag<br>Glu           | gag<br>Glu           | atc<br>Ile                 | gtg<br>Val           | 886    |
| _cgg<br>Arg<br>180 | Leu               | ctc<br>Leu           | att<br>Ile           | gag<br>Glu           | cat<br>His<br>185  | gga<br>Gly          | gct<br>Ala        | gac<br>Asp        | atc<br>Ile           | agg<br>Arg<br>190    | gcc<br>Ala         | cag<br>Gln           | gac<br>Asp           | tcc<br>Ser                 | ctg<br>Leu<br>195    | 934    |
| gga<br>Gly         | aac<br>Asn        | aca<br>Thr           | gta<br>Val           | tta<br>Leu<br>200    | cac<br>His         | atc<br>Ile          | ctc<br>Leu        | atc<br>Ile        | ctc<br>Leu<br>205    | cag<br>Gln           | ccc<br>Pro         | aac<br>Asn           | aaa<br>Lys           | acc<br>Thr<br>210          | ttt<br>Phe           | 982    |
| gcc<br>Ala         | tgc<br>Cys        | cag<br>Gln           | atg<br>Met<br>215    | tac<br>Tyr           | aac<br>Asn         | ctg<br>Leu          | ctg<br>Leu        | ctg<br>Leu<br>220 | tcc<br>Ser           | tac<br>Tyr           | gat<br>Asp         | gga<br>Gly           | cat<br>His<br>225    | 999<br>Gly                 | gac<br>Asp           | 1030   |
| ніѕ                | ren               | G1n<br>230           | Pro                  | Leu                  | Asp                |                     | Val<br>235        | Pro               | Asn                  | His                  | Gln                | Gly<br>240           | Leu                  | Thr                        | Pro                  | 1.078  |
| Pne                | aag<br>Lys<br>245 | ctg<br>Leu           | gct<br>Ala           | gga<br>Gly           | gtg<br>Val         | gag<br>Glu<br>250   | ggt<br>Gly        | aac<br>Asn        | act<br>Thr           | Val                  | atg<br>Met<br>255  | ttc<br>Phe           | cag<br>Gln           | cac<br>His                 | ctg<br>Leu           | 1126   |

|            | Gln        |                   |                   |            | cac<br>His<br>265 |            |                   |                   |            |            |            |                   |                   |            |            | 1174 |
|------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------|
|            |            |                   |                   |            | aca<br>Thr        |            |                   |                   |            |            |            |                   |                   |            |            | 1222 |
|            |            |                   |                   |            | gtc<br>Val        |            |                   |                   |            |            |            |                   |                   |            |            | 1270 |
|            |            |                   |                   |            | gtg<br>Val        |            |                   |                   |            |            |            |                   |                   |            |            | 1318 |
|            |            |                   |                   |            | ttc<br>Phe        |            |                   |                   |            |            |            |                   |                   |            |            | 1366 |
|            |            |                   |                   |            | acg<br>Thr<br>345 |            |                   |                   |            |            |            |                   |                   |            |            | 1414 |
|            |            |                   | -                 |            | cat<br>His        |            | -                 | •                 |            |            |            |                   | -                 |            |            | 1462 |
|            |            |                   |                   |            | tat<br>Tyr        |            |                   |                   |            |            |            |                   |                   |            |            | 1510 |
|            |            |                   |                   |            | atc<br>Ile        |            |                   |                   |            |            |            |                   |                   |            |            | 1558 |
|            |            |                   |                   |            | agg<br>Arg        |            |                   |                   |            |            |            |                   |                   |            |            | 1606 |
|            |            |                   |                   |            | ttc<br>Phe<br>425 |            |                   |                   |            |            |            |                   |                   |            |            | 1654 |
|            |            |                   |                   |            | gtg<br>Val        |            |                   |                   |            |            |            |                   |                   |            |            | 1702 |
|            |            |                   |                   |            | gcc<br>Ala        |            |                   |                   |            |            |            |                   |                   |            |            | 1750 |
|            |            |                   |                   |            | cag<br>Gln        |            |                   |                   |            |            |            |                   |                   |            |            | 1798 |
|            |            |                   |                   |            | gac<br>Asp        |            |                   |                   |            |            |            |                   |                   |            |            | 1846 |
|            |            |                   |                   |            | gcc<br>Ala<br>505 |            |                   |                   |            |            |            |                   |                   |            |            | 1894 |
|            |            |                   | Ser               |            | 999<br>Gly        |            |                   |                   |            |            |            |                   |                   |            |            | 1942 |
| acc<br>Thr | acc<br>Thr | ttt<br>Phe        | gag<br>Glu<br>535 | ctt<br>Leu | ttt<br>Phe        | ctc<br>Leu | Thr               | gtt<br>Val<br>540 | att<br>Ile | gat<br>Asp | gca<br>Ala | cct<br>Pro        | gcc<br>Ala<br>545 | aac<br>Asn | tac<br>Tyr | 1990 |
| gac<br>Asp | Val        | gac<br>Asp<br>550 | ttg<br>Leu        | CCC<br>Pro | ttc<br>Phe        | Met        | ttc<br>Phe<br>555 | agc<br>Ser        | att<br>Ile | gtc<br>Val | aac<br>Asn | ttc<br>Phe<br>560 | gcc<br>Ala        | ttc<br>Phe | gcc<br>Ala | 2038 |
| atc<br>Ile | att<br>Ile | gcc<br>Ala        | aca<br>Thr        | ctg<br>Leu | ctc<br>Leu        | atg<br>Met | ctc<br>Leu        | aac<br>Asn        | ttg<br>Leu | ttc<br>Phe | atc<br>Ile | gcc<br>Ala        | atg<br>Met        | atg<br>Met | ggc<br>Gly | 2086 |

|                   | 565                |                   |                   |                   |                   | 570               |                   |                   |                   | 160               |                    | PCT               | FIN                       | AL.S              | T25               |        |
|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|---------------------------|-------------------|-------------------|--------|
|                   |                    |                   | taa               | 200               |                   |                   |                   |                   |                   |                   | 575                |                   |                           |                   |                   |        |
| Asp<br>580        | Thr                | His               | Тгр               | Arg               | Val<br>585        | Ala               | G1n               | gag<br>Glu        | agg<br>Arg        | gat<br>Asp<br>590 | gag<br>Glu         | Leu               | Trp                       | agg<br>Arg        | gcc<br>Ala<br>595 | 2134   |
| cag<br>Gln        | gt <i>c</i><br>Val | gtg<br>Val        | gcc<br>Ala        | acc<br>Thr<br>600 | aca<br>Thr        | gtg<br>Val        | atg<br>Met        | ctg<br>Leu        | gag<br>Glu<br>605 | cgg<br>Arg        | aag<br>Lys         | ctg<br>Leu        | cct<br>Pro                | cgc<br>Arg<br>610 | tgc<br>Cys        | 2182   |
| ctg<br>Leu        | tgg<br>Trp         | cct<br>Pro        | cgc<br>Arg<br>615 | tcc<br>Ser        | 61 A<br>63 d      | atc<br>Ile        | tgt<br>Cys        | 999<br>Gly<br>620 | tgc<br>Cys        | gaa<br>Glu        | ttc<br>Phe         | 61 y<br>999       | ctg<br>Leu<br>625         | G1 y              | gac<br>Asp        | 2230   |
| cgc<br>Arg        | tgg<br>Trp         | ttc<br>Phe<br>630 | ctg<br>Leu        | cgg<br>Arg        | gtt<br>Val        | gag<br>Glu        | aac<br>Asn<br>635 | cac<br>His        | aat<br>Asn        | gat<br>Asp        | Cag<br>Gln         | aat<br>Asn<br>640 | cct<br>Pro                | ctg<br>Leu        | cga<br>Arg        | 2278   |
| gtg<br>Val        | ctt<br>Leu<br>645  | cgc<br>Arg        | tat<br>Tyr        | gtg<br>Val        | gaa<br>Glu        | gtg<br>Val<br>650 | ttc<br>Phe        | aag<br>Lys        | aac<br>Asn        | tca<br>Ser        | gac<br>Asp<br>655  | aag<br>Lys        | gag<br>Glu                | gat<br>Asp        | gac<br>Asp        | 2326   |
| cag<br>Gln<br>660 | gag<br>Glu         | cat<br>His        | cca<br>Pro        | tct<br>Ser        | gag<br>Glu<br>665 | aaa<br>Lys        | cag<br>Gln        | ccc<br>Pro        | tct<br>Ser        | 999<br>Gly<br>670 | gct<br>Ala         | gag<br>Glu        | agt<br>Ser                | G] A<br>333       | act<br>Thr<br>675 | . 2374 |
| cta<br>Leu        | gcc<br>Ala         | aga<br>Arg        | gcc<br>Ala        | tct<br>Ser<br>680 | ttg<br>Leu        | gct<br>Ala        | ctt<br>Leu        | cca<br>Pro        | act<br>Thr<br>685 | tcc<br>Ser        | t <i>cc</i><br>Ser | ctg<br>Leu        | tcc<br>Ser                | cgg<br>Arg<br>690 | acc<br>Thr        | 2422   |
| gcg<br>Ala        | tcc<br>Ser         | cag<br>Gln        | agc<br>Ser<br>695 | agc<br>Ser        | agt<br>Ser        | cac<br>His        | cga<br>Arg        | ggc<br>Gly<br>700 | tgg<br>Trp        | gag<br>Glu        | atc<br>Ile         | ctt<br>Leu        | cgt<br>Arg<br>705         | caa<br>Gln        | aac<br>Asn        | 2470   |
| acc<br>Thr        | Leu                | 999<br>Gly<br>710 | cac<br>His        | ttg<br>Leu        | aat<br>Asn        | Leu               | gga<br>Gly<br>715 | ctg<br>Leu        | aac<br>Asn        | ctt<br>Leu        | agt<br>Ser         | gag<br>Glu<br>720 | 999<br>Gly <sub>.</sub> . | gat<br>Asp        | gga<br>Gly        | 2518   |
| gag<br>Glu        | gag<br>Glu<br>725  | gtc<br>Val        | tac<br>Tyr        | cat<br>His        | ttt<br>Phe        | tgat              | taac              | at c              | gcta              | tcac              | t ct               | tgac              | ctta                      |                   |                   | 2566   |
| ctcc              | cggt               | tg g              | cctg              | gggg              | c gg              | ggac.             | agag              | acg               | gaga              | cct               | ctgc               | ctat              | gc a                      | agtg              | tctaa             | 2626   |
| cttc              | tgtg               | cc t              | gtta              | atca              | t gg              | gagg              | gtga              | gac               | agaa              | caa               | tccc               | taaa              | 99 g                      | tcat              | gcctc             | 2686   |
| acacı             | ttca               | ca t              | cagaa             | attt              | c tg              | gcaa              | tggg              | caa               | tggt              | cat (             | cgat               | tgtc              | c a                       | gta               | ttttc             | 2746   |
| tgggd             | ctct               | tg c              | aagto             | cacco             | c at              | ctca              | ggaa              | aaa               | ggag              | gtt (             | ggca               | acta              | aa ga                     | cat               | gaggc             | 2806   |
| aggga             | etgci              | ta ga             | ettaa             | etgto             | age               | acco              | att               | tct               | cttc              | igc (             | cca                | cgca              | ge ed                     | cta               | gaaag             | 2866   |
| tagta             | agct               | tg to             | gaggo             | tati              | cto               | gete              | ccc               | agg               | gctta             | ecg t             | ggga               | aagaq             | jc ca                     | ggca              | atggc             | 2926   |
| ataga             | ggtt               | tg to             | gccc              | cttct             | ttt               | tttc              | :                 |                   |                   |                   |                    |                   |                           |                   |                   | 2953   |
| <210>             |                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                           |                   |                   |        |
| <212>             | PF                 | T                 | apie              | ns                |                   |                   |                   |                   |                   |                   |                    |                   |                           |                   |                   |        |
| <400>             |                    | )1"               |                   |                   |                   |                   |                   |                   |                   |                   |                    |                   |                           |                   |                   |        |
| Met G             |                    |                   | he L              | eu P              |                   |                   | la G              | ilu G             | ilv P             | ro G              | ilv S              | er G              | ln t                      | en e              | iln.              |        |
|                   | -                  | -                 | _                 |                   |                   | - '               |                   |                   |                   |                   | -, -               |                   | N                         | 0                 |                   |        |

Met Gly Gly Phe Leu Pro Lys Ala Glu Gly Pro Gly Ser Gln Leu Gln 1 5 10 . 15

Lys Leu Leu Pro Ser Phe Leu Val Arg Glu Gln Asp Trp Asp Gln His 20 25 30

Leu Asp Lys Leu His Met Leu Gln Gln Lys Arg Ile Leu Glu Ser Pro 35 40 45

Leu Leu Arg Ala Ser Lys Glu Asn Asp Leu Ser Val Leu Arg Gln Leu 50 60

Leu Leu Asp Cys Thr Cys Asp Val Arg Gln Arg Gly Ala Leu Glỳ Glu 65 70 75 80

Thr Ala Leu His Ile Ala Ala Leu Tyr Asp Asn Leu Glu Ala Ala Leu  $\theta 5$  90 95

Val Leu Met Glu Ala Ala Pro Glu Leu Val Phe Glu Pro Thr Thr Cys 100 105 110

Glu Ala Phe Ala Gly Gln Thr Ala Leu His Ile Ala Val Val Asn Gln
115 120 125

Asn Val Asn Leu Val Arg Ala Leu Leu Thr Arg Arg Ala Ser Val Ser 130 135 140

Ala Arg Ala Thr Gly Thr Ala Phe Arg Arg Ser Pro Arg Asn Leu Ile 145 150 155 160

Tyr Phe Gly Glu His Pro Leu Ser Phe Ala Ala Cys Val Asn Ser Glu 165 170 175

Glu Ile Val Arg Leu Leu Ile Glu His Gly Ala Asp Ile Arg Ala Gln 180 185 190

Asp Ser Leu Gly Asn Thr Val Leu His Ile Leu Ile Leu Gln Pro Asn 195 200 205

Lys Thr Phe Ala Cys Gln Met Tyr Asn Leu Leu Leu Ser Tyr Asp Gly 210 215 220

His Gly Asp His Leu Gln Pro Leu Asp Leu Val Pro Asn His Gln Gly 225 230 235 240

Leu Thr Pro Phe Lys Leu Ala Gly Val Glu Gly Asn Thr Val Met Phe 245 250 255

Gln His Leu Met Gln Lys Arg Arg His Ile Gln Trp Thr Tyr Gly Pro  $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ 

Leu Thr Ser Ile Leu Tyr Asp Leu Thr Glu Ile Asp Ser Trp Gly Glu 275  $\phantom{\bigg|}280\phantom{\bigg|}$ 

Glu Leu Ser Phe Leu Glu Leu Val Val Ser Ser Asp Lys Arg Glu Ala 290 295 300

Arg Gln Ile Leu Glu Glu Thr Pro Val Lys Glu Leu Val Ser Phe Lys 305 310 315 320

Trp Asn Lys Tyr Gly Arg Pro Tyr Phe Cys Ile Leu Ala Ala Leu Tyr 325 330 - 335

Leu Leu Tyr Met Ile Cys Phe Thr Thr Cys Cys Val Tyr Arg Pro Leu 340 345 350

Lys Phe Arg Gly Gly Asn Arg Thr His Ser Arg Asp Ile Thr Ile "Leu 355 360 365

Gln Gln Lys Leu Gln Glu Ala Tyr Glu Thr Arg Glu Asp Ile Ile 370 375 380

- Arg Leu Val Gly Glu Leu Val Ser Ile Val Gly Ala Val Ile Ile Leu 385 390 395 400
- Leu Leu Glu Ile Pro Asp Ile Phe Arg Val Gly Ala Ser Arg Tyr Phe 405 410 415
- Gly Lys Thr Ile Leu Gly Gly Pro Phe His Val Ile Ile Ile Thr Tyr 420 425 430
- Ala Ser Leu Val Leu Val Thr Met Val Met Arg Leu Thr Asn Thr Asn 435  $\phantom{\bigg|}440\phantom{\bigg|}440\phantom{\bigg|}445\phantom{\bigg|}$
- Gly Glu Val Val Pro Met Ser Phe Ala Leu Val Leu Gly Trp Cys Ser 450 455 460
- Val Met Tyr Phe Thr Arg Gly Phe Gln Met Leu Gly Pro Phe Thr Ile 465 470 475 480
- Met 11e Gln Lys Met 11e Phe Gly Asp Leu Met Arg Phe Cys Trp Leu 485 490 495
- Met Ala Val Val Ile Leu Gly Phe Ala Ser Ala Phe Tyr Ile Ile Phe 500 505 510
- Gln Thr Glu Asp Pro Thr Ser Leu Gly Gln Phe Tyr Asp Tyr Pro Met 515 520 525
- Ala Leu Phe Thr Thr Phe Glu Leu Phe Leu Thr Val Ile Asp Ala Pro 530 535 540
- Ala Asn Tyr Asp Val Asp Leu Pro Phe Met Phe Ser Ile Val Asn Phe 545 550 555 560
- Ala Phe Ala Ile Ile Ala Thr Leu Leu Met Leu Asn Leu Phe Ile Ala 565 570 575
- Met Met Gly Asp Thr His Trp Arg Val Ala Gln Glu Arg Asp Glu Leu 580 585 590
- Trp Arg Ala Gln Val Val Ala Thr Thr Val Met Leu Glu Arg Lys Leu 595 600 605
- Pro Arg Cys Leu Trp Pro Arg Ser Gly Ile Cys Gly Cys Glu Phe Gly 610 615 620
- Leu Gly Asp Arg Trp Phe Leu Arg Val Glu Asn His Asn Asp Gln Asn 625 636 636
- Pro Leu Arg Val Leu Arg Tyr Val Glu Val Phe Lys Asn Ser Asp Lys 645 650 655
- Glu Asp Asp Gln Glu His Pro Ser Glu Lys Gln Pro Ser Gly Ala Glu 660 665 670
- Ser Gly Thr Leu Ala Arg Ala Ser Leu Ala Leu Pro Thr Ser Ser Leu 675 680 685
- Ser Arg Thr Ala Ser Gln Ser Ser Ser His Arg Gly Trp Glu Ile Leu

690

Arq Gln Asn Thr Leu Gly His Leu Asn Leu Gly Leu Asn Leu Ser Glu 710

695

Gly Asp Gly Glu Glu Val Tyr His Phe

<210> 102 <211> 1545 DNA <212> Homo sapiens <213> <220> CDS <221>

<222> (130)..(438)

<223> <400> 102 atttgtgatg ggcactggct cctggctgag gaccgcctct tcgggctctg gcacttctgc 60 accaccacca accagacgat ctgcttcaga gacctgggcc aggcccatgt gcccgggctg 120 gccgtgggc atg ggc ctg gta cgc agc gtg ggc gcc ttg gcc gtg gtg gcc Met Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala 171 gcc att ttt ggc ctg gag ttc ctc atg gtg tcc cag ttg tgc gag gac Ala Ile Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp 219 20 aaa cac tca cag tgc aag tgg gtc atg ggt tcc atc ctc ctc ctg gtg Lys His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val 267

tct ttc gtc ctc tcc tcc ggc ggg ctc ctg ggt ttt gtg atc ctc ctc Ser Phe Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu Leu 315

agg aac caa gtc aca ctc atc ggc ttc acc cta atg ttt tgg tgc gaa Arg Asn Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp Cys Glu 65 70 75 363

ttc act gcc tcc ttc ctc ttc ctg aac gcc atc agc ggc ctt cac Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser Gly Leu His 411

458 atc aac agc atc acc cat ccc tgg gaa tgaccgtgga aattttaggc Ile Asn Ser Ile Thr His Pro Trp Glu 100

cccctccagg gacatcagat tccacaagaa aatatggtca aaatgggact tttccagcat 518 gtggcctctg gtggggctgg gttggacaag ggccttgaaa cggctgcctg tttgccgata 578

638 acttgtgggt ggtcagccag aaatggcccg ggggcctctg cacctggtct gcagggccag

\_aggccaggag ggtgcctcag tgccaccaac tgcacaggct tagccagatg ttgattttag 698

aggaagaaaa aaacatttta aaactccttc ttgaattttc ttccctggac tggaatacag 818 ttggaagcac aggggtaact ggtacctgag ctagctgcac agccaaggat agttcatgcc

878 tgtttcattg acacgtgctg ggataggggc tgcagaatcc ctggggctcc cagggttgtt

938 aagaatggat cattetteea getaagggte caateagtge etaggaettt etteeaceag

ctcaaagggc cttcgtatgt atgtccctgg cttcagcttt ggtcatgcca aagaggcaga . 998

gttcaggatt ccctcagaat gccctgcaca cagtaggttt ccaaaccatt tgactcggtt 1058

tgcctccctg cccgttgttt aaaccttaca aaccctggat aaccccatct tctagcagct 1118

ggctgtgcct ctgggagctc tgcctatcag aaccctacct taaggtgggt ttccttccga 1178 gaagagttot tgagcaagot otoccaggag ggoccacotg actgotaata cacagocoto

| 16U 200 PCT FINAL.ST25                                                       |      |
|------------------------------------------------------------------------------|------|
| cccaaggccc gtgtgtgcat gtgtctgtct tttgtgaggg ttagacagcc tcagggcacc            | 1298 |
| attittaato ocagaacaca titoaaagag cacgiatota gaccigoigg actoigcagg            | 1358 |
| gggtgagggg gaacagcgag agcttgggta atgattaaca cccatgctgg ggatgcatgg            | 1418 |
| aggtgaaggg ggccaggaac cagtggagat ttccatcctt gccagcacgt ctgtacttct            | 1478 |
| gttcattaaa gtgctccctt tctagtcgat gtgtcactgc tgtatcatac ttttatgcta            | 1538 |
| Cacaacc                                                                      | 1545 |
| <210> 103                                                                    |      |
| <211> 103<br><212> PRT                                                       |      |
| <213> Homo sapiens                                                           |      |
| <400> 103                                                                    |      |
| Met Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala Ala 11e<br>1 5 10 15 |      |
| Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp Lys His              |      |
| Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val Ser Phe<br>35 40 45  |      |
| Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu Leu Arg Asn<br>50 55 60  |      |
| Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp Cys Glu Phe Thr 65 70 75 80  |      |
| Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser Gly Leu His Ile Asn<br>85 90 95  |      |
| Ser Ile Thr His Pro Trp Glu<br>100                                           |      |
| <210> 104                                                                    |      |
| <211> 24<br><212> DNA                                                        |      |
| <213> Homo sapiens                                                           |      |
| <400> 104<br>gcgcttccgg acctgtatct ccac                                      | 24   |
| <210> 105                                                                    |      |
| <211> 24<br><212> DNA<br><213> Homo sapiens                                  |      |
| <213> Homo sapiens <400> 105                                                 |      |
| caagetetgg gtetegggea gaag                                                   | 24   |
| <210> 106<br><211> 50                                                        |      |
| <212> DNA<br><213> Homo sapiens                                              |      |
| <400> 106                                                                    | •    |
| aaagagcctc taaagaaggg ttccagacta ccaggagctc actggaaata                       | 50   |
| <210> 107                                                                    |      |
| <211> 24<br><212> DNA                                                        |      |
|                                                                              |      |

|                | 16U 200 PCT FINAL.ST25                            |     |
|----------------|---------------------------------------------------|-----|
| <213           | Homo sapiens                                      |     |
| 4400           | 107                                               |     |
|                | > 107<br>cctgc aaacttggat gggc                    |     |
| accat          | cerge abactrygat ggge                             | 24  |
|                |                                                   |     |
| <210>          | 108                                               |     |
| <211>          |                                                   |     |
| <212>          |                                                   |     |
| <213>          | Homo sapiens                                      |     |
| <400>          | . 108                                             |     |
|                | gccgg aagacaggga gagg                             | 2.4 |
| 20990          | gergg addenggga gagg                              | 24  |
|                |                                                   |     |
| <210>          |                                                   |     |
| <211>          |                                                   |     |
| <212>          |                                                   |     |
| <213>          | Homo sapiens                                      |     |
| <400>          | 109                                               |     |
|                | atgta tatgaaaacc ctgtttatct gagcctagaa ctgtctttgc | 50  |
| ,              | · · · · · · · · · · · · · · · · · · ·             | 30  |
|                |                                                   |     |
| <210>          |                                                   |     |
| <211>          |                                                   |     |
| <212>          |                                                   |     |
| <213>          | Homo sapiens                                      |     |
| <400>          | 110                                               |     |
|                | tagtt ttaaatggga gggaataaag tctgcaaaat ttccccatat | 50  |
| , ,            | - yer real-typy yyyaaraaay caayaaaaa cccacacac    | 30  |
|                |                                                   |     |
| <210>          |                                                   |     |
| <211>          |                                                   |     |
| <212><br><213> |                                                   |     |
| 1213/          | Homo sapiens                                      |     |
| <400>          | 111                                               |     |
| gagtc          | tccct gtgcgtttgg gctg                             | 24  |
|                | •                                                 |     |
| 40105          | 110                                               |     |
| <210><br><211> |                                                   |     |
| <212>          |                                                   |     |
|                | Homo sapiens                                      |     |
|                |                                                   |     |
| <400>          | 112                                               |     |
| aagtgi         | taaag catgccccgc ctga                             | 24  |
|                |                                                   |     |
| <210>          | 113                                               |     |
| <211>          | 50                                                |     |
| <212>          | DNA                                               |     |
| <213>          | Homo sapiens                                      |     |
| - 400          |                                                   |     |
| <400>          | 113                                               |     |
| aytece         | agct taaaaaagag acagacagac agagagagag agagacagag  | 50  |
|                | •                                                 |     |
| <210>          | 114                                               |     |
| <211>          | 50                                                |     |
| <212>          | AND                                               |     |
| <213>          | Homo sapiens                                      |     |
| <400>          | 114                                               |     |
|                | 114                                               |     |
| ccageg         | attt aaaaaaatgt gaagaagaga gagtcaaggc agtaaaagga  | 50  |
|                |                                                   |     |
| <210>          | 115                                               |     |
| <211>          | 24                                                |     |
| <212>          | DNA                                               |     |
| <213>          | Homo sapiens                                      |     |
| <400>          | 115                                               | •   |
|                | tatg ctgccacggt catc                              | 2.4 |
| ,              | ungecouge care                                    | 24  |
|                |                                                   |     |
| <210>          | 116                                               |     |
|                |                                                   |     |

Page 87

```
16U 200 PCT FINAL.ST25
  <211> 24
  <212> DNA
  <213> Homo sapiens
  <400> 116
  agtectggca gtectggcat tgtg
                                                                       24
  <210> 117
  <211> 50
  <212> DNA
  <213> Homo sapiens
 <400> 117
 gatacaaata attaaaagcc caggttaagg taaatatatt aaagaccaag
                                                                       50
 <210> 118
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <400> 118
 atctcacgaa ttaaaaaatgc tgaggtggta aattgttatc aattctatgt
                                                                     50
 <210> 119
 <211> 24
 <212>
       DNA
 <213> Homo sapiens
 <400> 119
 caggattacg cacaaacggc atgg
                                                                       24
 <210> 120
 <211> 24
 <212> DNA
 <213> Homo sapiens
 <400> 120
 tgggaggcag agatagcaga gccc
                                                                      24
 <210> 121
<211> 50
<212> DNA
 <213> Homo sapiens
<400> 121
ctagactatt taaaaaaacc cctggcttgc acagtggctc aagcctgtaa
                                                                      50
<210> 122
<211> 24
<212> DNA
<213> Homo sapiens
<400> 122
ctggtcctgg gcaccctgat aagc
                                                                      24
<210> 123
<211> 24
<212> DNA
<213> Homo sapiens
<400> 123.
cccaggtetg gttgcagtgc tctc
                                                                     24
<210> 124
<211>
      50
<212>
      DNA
<213> Homo sapiens
<400> 124
agctgtcctc attaaaagtg acctggagtg agatggattc ttctgcctat
                                                                     50
```

Page 88

| <210>   | 125                                               |   |    |
|---------|---------------------------------------------------|---|----|
| <211>   | 50                                                |   |    |
| <212>   |                                                   |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         |                                                   |   |    |
| <400>   | 125                                               |   |    |
| ccaat   | totto tgaaaaacgg gagtoactgt gggcaccatc acgcccgggt |   | 50 |
|         |                                                   |   |    |
|         |                                                   |   |    |
| <210>   | 126                                               |   |    |
| <211>   |                                                   |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         |                                                   |   |    |
| <400>   | 126                                               |   |    |
| ctgagg  | gtgtc cctcccaagc aggt                             |   | 24 |
|         |                                                   |   |    |
|         |                                                   |   |    |
| <210>   | 127                                               |   |    |
| <211>   | 24                                                |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         | •                                                 | • |    |
| <400>   | 127                                               |   |    |
| tacggo  | cgag aagcactgga gatg                              |   | 24 |
|         |                                                   |   |    |
|         |                                                   |   |    |
| <210>   | 128                                               |   |    |
| <211>   | 50 .                                              |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         |                                                   |   |    |
| <400>   | 128                                               |   |    |
| taaaca  | aata cataaatgag gcagttacta gtagtggtaa ctgctaggaa  |   | 50 |
|         |                                                   |   |    |
| .010.   |                                                   |   |    |
| <210>   | 129                                               |   |    |
| <211>   | 50                                                |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
| <400>   |                                                   |   |    |
|         | 129                                               |   |    |
| actada  | aata taaaaatcag ccaggcctgg tggcacatgt ctgtaatctc  |   | 50 |
|         |                                                   |   |    |
| <210>   | 130                                               |   |    |
| <211>   | 50                                                |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         | nomo Saprens                                      |   |    |
| <400>   | 130                                               |   |    |
|         | catt ataaatgcaa ccagccagag ggcccctggc ttcagaacct  |   | 50 |
| 3333    |                                                   |   | 30 |
|         |                                                   |   |    |
| <210>   | 131                                               |   |    |
| <211>   | 27                                                |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         | ·                                                 |   |    |
| ≤400>   | 131                                               |   |    |
|         | tcag cgatctcaac gataggg                           |   | 27 |
|         |                                                   |   |    |
|         |                                                   |   |    |
| <210>   | 132                                               |   |    |
| <211>   | 28                                                |   |    |
| <212>   | DNA                                               |   |    |
| <213>   | Homo sapiens                                      |   |    |
|         |                                                   |   |    |
| <400>   | 132                                               |   |    |
| tggagca | agga acaggatata ggtcaggg                          |   | 28 |
|         |                                                   | , |    |
|         |                                                   |   |    |
| (210>   | 133                                               |   |    |
| (211>   | 50                                                |   |    |
| 212>    | DNA                                               |   |    |
| (213>   | Homo sapiens                                      |   |    |
|         |                                                   |   |    |
| 400>    | 177                                               |   |    |

| atatac         | cttg tttaaaagag        | gggtattatc |             | aaggaaagct |   | 50  |
|----------------|------------------------|------------|-------------|------------|---|-----|
| <210><br><211> | 134<br>50              |            |             |            |   |     |
| <212>          | DNA                    |            |             |            |   |     |
| <213>          | Homo sapiens           |            |             |            |   |     |
| <400>          | 134                    |            |             |            | _ |     |
| acccct         | actt ttaaaggcct        | tgacaaacag | tgctaaagtt  | ctcaccttaa | • | 50  |
| <210>          | 135                    |            |             |            |   |     |
| <211>          | 24                     |            |             |            |   |     |
| <212>          | DNA                    |            |             |            |   |     |
| <213>          | Homo sapiens           |            |             |            |   |     |
| <400>          | 135                    |            |             |            | , |     |
| gggtgg         | gaag gaagcaggga        | agag       |             |            | 2 | 24  |
| (210)          | 126                    |            |             |            |   |     |
| <210><br><211> | 136<br>24              |            |             |            |   |     |
| <212>          | DNA                    |            |             |            | • |     |
| <213>          | Homo sapiens           |            |             |            |   |     |
| <400>          | 136                    |            |             |            |   |     |
|                | agtt catgettgge        | gcag       |             |            | 2 | 2 4 |
| -,             |                        |            |             |            |   |     |
| <210>          | 137                    |            |             |            |   |     |
| <211>          | 50                     |            |             |            |   |     |
| <212>          | DNA                    |            |             |            |   |     |
| <213>          | Homo sapiens           |            |             |            |   |     |
| <400>          | 137                    |            |             |            | _ |     |
| ttattg         | ggca taaaaatatg        | aagagaggtc | ccagagagtc  | cctaggttct | 5 | 0   |
|                |                        |            |             |            |   |     |
| <210>          | 138                    |            |             |            |   |     |
| <211><br><212> | 30<br>DNA              |            |             |            |   |     |
| <213>          | Homo sapiens           |            |             |            |   |     |
| <400>          | 138                    |            |             |            |   |     |
|                | ggaa tcttcagcca        | gatctcacac |             |            | 3 | 30  |
|                |                        |            |             |            |   |     |
| <210>          | 139                    |            |             |            |   |     |
| <211>          | 24                     |            |             |            |   |     |
| <212><br><213> | DNA<br>Homo sapiens    |            |             |            |   |     |
|                |                        |            |             |            |   |     |
| <400>          | 139<br>ottt ctgcacgctc | agca       |             |            | 2 | 24  |
| 23 21          | ,,                     | •          |             |            |   |     |
| <210>          | 140                    |            |             |            |   |     |
| <211>          | 50                     |            |             |            |   |     |
| <212><br><213> | DNA<br>Homo sapiens    |            |             |            |   |     |
|                | nomo suprens           |            |             |            |   |     |
| <400>          | 140<br>:ttg ttaaaaactg | ncattact** | actettates  | tttctatata | 5 | 0   |
| anycan         | ity trasassity         | gcattactt  | acticitatge | eccegegee  |   |     |
| <210>          | 141                    |            |             | •          |   |     |
| <211>          | 50                     |            |             |            |   |     |
| <212>          | DNA                    |            |             |            |   |     |
| <213>          | Homo sapiens           |            |             |            |   |     |
| <400>          | 141                    |            |             |            |   | _   |
| actttaa        | ettt tataaagaag        | gttcacatca | agaaattcca  | agtgaggttc | 5 | 0   |
| <b>2210</b> 5  | 142                    |            |             |            |   |     |
| <210><br><211> | 142<br>24              |            |             |            |   |     |
| <212>          | DNA                    |            |             |            |   |     |
| /2125          | Mama anada.            |            |             |            |   |     |

| <400> 142<br>gggccacttc cacagacagg aagc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <210> 143 <211> 33 <212> DNA <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400> 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| tggcctgaga ggtagattcc acatagtagt cgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 50<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| aaggettett caaaaaaage gggettgtte tgggecagaa aatcagagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 31<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| ctcctttctg gtcagagaac aagactggga c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 27<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| gtgatgtctc gagaatgagt gcggttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 147<br><211> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| cagegaggea gaaaaatgte eeacaagttg ageeeteeee acteeeagtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 |
| .210.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <210> 148<br><211> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| taatataaaa tatataaaat agtgcaacat tacttattcc tcctggtgtt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 |
| <210> 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| <212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400> 149 gcagatgacc cgacctgact gttcttc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 |
| <210> 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 27<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •  |
| 4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| <400> 150 Historian de la composición del composición de la composición de la composición del composición de la composic | 27 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -, |
| <210> 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |

|            |             |             |       |            |            |            |            |            |            | 160        | 200        | PCT        | FIN        | AL.S       | T25        |      |
|------------|-------------|-------------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
|            | 12><br>13>  | DNA         | o say | pien       | 5          |            |            |            |            |            |            |            |            |            |            |      |
|            | 00><br>agag | 151<br>gagt | tta   | aatga      | aag d      | ccta       | ctti       | g g        | gcag       | gago       | : 999      | agga       | aac        |            |            | 50   |
| <21        | 0>          | 152         |       |            |            |            |            |            |            |            |            |            |            |            |            |      |
| <21<br><21 |             | 945<br>DNA  |       |            |            |            |            |            |            |            |            |            |            |            |            |      |
| <21        |             |             | sap   | oiens      | 3          |            |            |            |            |            |            |            |            |            |            |      |
| <22        |             |             |       |            |            |            |            |            |            |            |            |            |            |            |            |      |
| <22<br><22 | _           | (1)         | (94   | 15)        |            |            |            |            |            |            |            |            |            |            | •          |      |
| <22        | 3>          |             |       |            |            |            |            |            |            |            |            |            |            |            |            |      |
| < 40       |             | 152         |       |            |            |            |            |            |            |            |            |            |            |            |            | 40   |
|            |             |             |       |            |            |            |            |            |            |            |            |            |            |            | gga<br>Gly | 48   |
| 1          |             |             |       | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |      |
|            |             |             |       |            |            |            |            |            |            |            |            |            |            |            | tta<br>Leu | - 96 |
| 200        |             | 020         | 20    | . 7110     | . 010      | , DCO      | 01,,       | 25         | , , 10     | рси        |            | cys        | 30         |            | Бей        |      |
|            |             |             |       |            |            |            |            |            | aac        |            |            |            |            |            |            | 144  |
| G1 y       | He          | Tyr<br>35   | Thr   | Val        | Thr        | Val        | Val<br>40  | Gly        | Asn        | Leu        | Ser        | Met<br>45  | Ile        | Ser        | lle        |      |
| att        | 200         | cto         | , sat | cat        | C 2 2      | ctt        | cat        | 200        | ccc        | 240        | tac        | + > +      | tto        | cto        | 201        | 192  |
|            | Arg         | -           |       | -          |            | Leu        |            |            | Pro        | -          | Tyr        |            |            | -          |            | 132  |
|            | 50          |             |       |            |            | 55         |            |            |            |            | 60         |            |            |            |            |      |
|            |             |             |       |            |            |            |            |            | tct<br>Ser |            |            |            |            |            |            | 240  |
| 65         |             |             |       |            | 70         |            | -,-        | -,-        | •          | 75         |            |            |            |            | 80         |      |
|            |             |             |       |            |            |            |            |            | aga        |            |            |            |            |            |            | 288  |
| Met        | Leu         | Ser         | GIÀ   | Phe<br>85  | ren        | Cys        | Arg        | Asp        | Arg<br>90  | Ser        | 116        | Ser        | Tyr        | Ser<br>95  | Gly        |      |
| tgc        | atg         | att         | cag   | ctq        | ttt        | ttt        | ttc        | tqt        | gtt        | tqt        | qtt        | att        | tct        | qaa        | tgc        | 336  |
|            |             |             |       | Leu        |            |            |            |            | Val        |            |            |            |            |            |            |      |
|            |             |             |       |            |            |            |            |            |            |            |            |            |            |            |            | 20.4 |
|            |             | Leu         | Ala   |            |            |            |            |            | cgc<br>Arg |            |            |            |            |            |            | 384  |
|            |             | 115         |       |            |            |            | 120        |            |            |            |            | 125        |            |            |            |      |
|            |             |             |       |            |            |            |            |            | cct<br>Pro |            |            |            |            |            |            | 432  |
|            | 130         | Dec         | - , . | 9          |            | 135        | 1100       | Jer        | ,,,        | nrg        | 140        | Cys        | 561        | Deu        | DCU        |      |
| gtg        | gct         | gct         | gtc   | ttc        | tca        | gta        | ggt        | ttc        | act        | gat        | gct        | gtg        | atc        | cat        | gga        | 480  |
| Val<br>145 | Ala         | Ala         | Val   | Phe        | Ser<br>150 | Val        | Gl y       | Phe        | Thr        | Asp<br>155 | Ala        | Val        | lle        | His        | Gly<br>160 |      |
| aat        | tat         | ata         | ctc   | 200        | ***        | tet        | ttc        | tat        | gga        | tca        | 220        | atc        | 211        | 222        | cat        | 528  |
| Gly        |             |             |       | Arg        |            |            |            |            | Gly        |            |            |            |            | Lys        |            | 320  |
|            |             |             |       | 165        |            |            |            |            | 170        |            |            |            |            | 175        |            |      |
|            |             |             |       |            |            |            |            |            | aaa<br>Lys |            |            |            |            |            |            | 576  |
| -          |             | -           | 180   |            |            |            |            | 185        | •          |            |            |            | 190        |            |            |      |
|            |             |             |       |            |            |            |            |            | att        |            |            |            |            |            |            | 624. |
| Tyr        | 116         | 195         | GIU   | ren        | Leu        | 116        | 200        | Val        | 11e        | GIÀ        | G1 A       | 205        | Asn        | Met        | Val        |      |
| gcc        | aca         | agc         | cta   | aca        | atc        | att        | att        | tca        | tat        | act        | ttt        | atc        | ctc        | acc'       | adc        | 672  |
| Ala        | Thr<br>210  | Ser         | Leu   | Thr        | lle        | 11e<br>215 | lle        | Ser        | Tyr        | Ala        | Phe        | Ile        | Leu        | Thr        | Ser        |      |
| A b        |             | _           |       |            |            |            |            |            | •          |            | 220        |            |            |            |            |      |
| Пe         | Leu         | cgc<br>Arg  | lle   | cac<br>His | tct<br>Ser | aaa<br>Lys | aag<br>Lys | ggc<br>Gly | agg<br>Arg | tgc<br>Cys | aaa<br>Lys | gcg<br>Ala | ttt<br>Phe | agc<br>Ser | acc<br>Thr | 720  |
| 225        |             |             |       |            | 230        |            |            |            |            | 235        |            |            |            |            | 240        |      |
| tgt        | agc         | tcc         | cac   | ctg        | aca        | gct        | gtt        | ctt        | atg        | ttt        | tat        | ggg        | tct        | ctg        | atg        | 768  |

15

| Cys                          | Ser               | Ser                       | His               | Leu<br>245 | Thr        | Ala               | Val               | Leu               | Met<br>250 | 16U<br>Phe | 200<br>Tyr        | PCT<br>Gly        | FINA<br>Ser       | L.51<br>Leu<br>255 | 25<br>Met  |                    |
|------------------------------|-------------------|---------------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|--------------------|------------|--------------------|
| tcc<br>Ser                   | atg<br>Met        | tat<br>Tyr                | ctc<br>Leu<br>260 | aaa<br>Lys | cct<br>Pro | gct<br>Ala        | tct<br>Ser        | agc<br>Ser<br>265 | agt<br>Ser | tca<br>Ser | ctc<br>Leu        | acc<br>Thr        | cag<br>Gln<br>270 | gag<br>Glu         | aaa<br>Lys | 816                |
| gta<br>Val                   | tcc<br>Ser        | tca<br>Ser<br>275         | gta<br>Val        | ttt<br>Phe | tat<br>Tyr | acc<br>Thr        | act<br>Thr<br>280 | gtg<br>Val        | att<br>Ile | ctc<br>Leu | atg<br>Met        | ttg<br>Leu<br>285 | aat<br>Asn        | ccc<br>Pro         | ttg<br>Leu | 864                |
| ata<br>Ile                   | tat<br>Tyr<br>290 | agt<br>Ser                | ctg<br>Leu        | agg<br>Arg | aac<br>Asn | aat<br>Asn<br>295 | gaa<br>Glu        | gta<br>Val        | aga<br>Arg | aat<br>Asn | gct<br>Ala<br>300 | ctg<br>Leu        | atg<br>Met        | aaa<br>Lys         | ctt<br>Leu | 917                |
|                              |                   |                           |                   |            |            |                   | tct<br>Ser        |                   |            | taa        |                   |                   |                   |                    |            | 94!                |
| <210<br><210<br><210<br><210 | !><br>2>          | 153<br>314<br>PRT<br>Homo | sap               | iens       |            |                   |                   |                   |            |            |                   |                   |                   |                    |            | -                  |
| <40                          | )>                | 153                       |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |                    |            |                    |
| Met<br>1                     | G1 y              | Val                       | Lys               | Asn<br>5   | His        | Ser               | Thr               | Val               | Thr<br>10  | Glu        | Phe               | Leu               | Leu               | Ser<br>15          | Gly        |                    |
| Leu                          | Thr               | Glu                       | Gln<br>20         | Ala        | Glu        | Leu               | Gln               | Leu<br>25         | Pro        | Leu        | Phe               | Cys               | Leu<br>30         | Phe                | Leu        |                    |
| Gl y                         | Ile               | Туг<br>35                 | Thr               | Val        | Thr        | Val               | Val<br>40         | Gly               | Asn        | Leu        | Ser               | Met<br>45         | Ile               | Ser                | lle        |                    |
| Ile                          | Arg<br>50         | Leu                       | Asn               | Arg        | Gln        | Leu<br>55         | His               | Thr               | Pro        | Met        | Туг<br>60         | Tyr               | Phe               | Leu                | Ser        |                    |
| Ser<br>65                    | Leu               | Ser                       | Phe               | Leu        | Asp<br>70  | Phe               | Cys               | Туr               | Ser        | Ser<br>75  | Val               | Ile               | Thr               | Pro                | Lys<br>80  |                    |
| Met                          | Leu               | Ser                       | Gly               | Phe<br>85  | Leu        | Cys               | Arg               | Asp               | Arg<br>90  | Ser        | Ile               | Ser               | Tyr               | Ser<br>95          | Gly        |                    |
| Cys                          | Met               | Ile                       | Gln<br>100        |            | Phe        | Phe               | Phe               | Cys<br>105        | Val        | Cys        | Val               | lle               | Ser<br>110        | Glu                | Cys        |                    |
| Tyr                          | Met               | Leu<br>115                |                   | Ala        | Met        | Ala               | Cys<br>120        |                   | Arg        | Туr        | Val               | Ala<br>125        | lle               | : Cys              | Ser        |                    |
| Pro                          | Leu<br>130        |                           | Tyr               | Arg        | Val        | 11e<br>135        |                   | Ser               | Pro        | Arg        | Val<br>140        | Cys               | Ser               | Leu                | Leu        | . · · <del>·</del> |
| Val<br>145                   | Ala               | Ala                       | Val               | Phe        | Ser<br>150 |                   | G1 y              | Phe               | Thr        | Asp<br>155 | Ala               | Val               | . 116             | His                | 61y<br>160 |                    |
| Gly                          | Cys               | Ile                       | Leu               | Arg<br>165 |            | Ser               | Phe               | Cys               | Gly<br>170 |            | Asn               | Ile               | : Ile             | Lys<br>175         | His        |                    |
| Tyr                          | Phe               | Cys                       | Asp<br>180        |            | Val        | Pro               | Leu               | 11e<br>185        |            | Leu        | Ser               | Cys               | 5 Ser<br>190      | Ser                | Thr        | •                  |
| Tyr                          | Ile               | Asp<br>195                |                   | Leu        | Leu        | Ile               | Phe<br>200        |                   | Ile        | G1 y       | Gly               | 205               | e Asr             | Met                | . Val      |                    |

```
16U 200 PCT FINAL.ST25
  Ala Thr Ser Leu Thr Ile Ile Ile Ser Tyr Ala Phe Ile Leu Thr Ser
                           215
                                                  220

        Ile Leu Arg Ile His Ser Lys Lys Gly Arg Cys Lys Ala Phe Ser Thr

        225
        230

        225
        235

  Cys Ser Ser His Leu Thr Ala Val Leu Met Phe Tyr Gly Ser Leu Met
  Ser Met Tyr Leu Lys Pro Ala Ser Ser Ser Ser Leu Thr Gln Glu Lys
                                    265
  Val Ser Ser Val Phe Tyr Thr Thr Val Ile Leu Met Leu Asn Pro Leu
 lle Tyr Ser Leu Arg Asn Asn Glu Val Arg Asn Ala Leu Met Lys Leu
 Leu Arg Arg Lys Ile Ser Leu Ser Pro Gly 305 310
 <210> 154
<211> 34
 <212> DNA
 <213> Homo sapiens
 <400> 154
 ctgtgatcca tggaggttgt atactcaggt tgtc
                                                                              34
 <210> 155
 <211> 36
 <212> DNA
 <213> Homo sapiens
 <400> 155
 tcatcagage atttcttact tcattgttcc tcagac
                                                                              36
 <210> 156
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <400> 156
caggagaatt aaatataaga gtggtcagtg tgtttgtaac actcaggaca
                                                                              50
<210> 157
<211>
        50
<212> DNA
<213> Homo sapiens
≺400> 157
aaaacatgct ttaaaaaacc catgatatta aagacaaaaa actgagcata
                                                                             50
<210> 158
<211> 50
<212> DNA
<213> Homo sapiens
<400> 158
atgaacaget tattaaatag ceaggtaget gggeagaatg agaaaatgea
                                                                           - 50
<210> 159
<211> 50
<212>
       DNA
<213> Homo sapiens
<400> 159
```

| gcc                      | caa               | act                       | aaat              | aaag              | gg t              | cago              | ttt               | et ca             | igaga             |                   |                   |                   |                   | AL.S              | т25               | 50  |
|--------------------------|-------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| <21<br><21<br><21<br><21 | 1><br>2>          | 160<br>50<br>DNA<br>Homo  | sar               | oiens             | <b>;</b>          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <40<br>tgc               |                   | 160<br>aaa                | tgtt              | ttta              | iaa a             | agtg              | ıtgaa             | ıg tt             | ggcc              | tato              | acc               | aagt              | aag               |                   |                   | 50  |
| <21<br><21<br><21<br><21 | 1><br>2>          | 161<br>50<br>DNA<br>Homo  | sap               | oiens             | ;                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <40<br>taa               |                   | 161<br>tgt                | attt              | atat              | ag t              | cctt              | cagg              | ıa gg             | actg              | aggc              | ato               | ctcc              | agt               |                   |                   | 50  |
| <21<br><21<br><21<br><21 | 1><br>2><br>3>    | 162<br>957<br>DNA<br>Homo | sap               | iens              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <22<br><22<br><22<br><22 | 1><br>2>          | CDS<br>(1).               | . (95             | 7)                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
|                          | aat               |                           |                   |                   |                   |                   |                   |                   | gca<br>Ala<br>10  |                   |                   |                   |                   |                   |                   | 48  |
|                          |                   |                           |                   |                   |                   |                   |                   |                   | gtt<br>Val        |                   |                   |                   |                   |                   |                   | 96  |
|                          |                   |                           |                   |                   |                   |                   |                   |                   | aac<br>Asn        |                   |                   |                   |                   |                   |                   | 144 |
| gtg<br>Val               | acc<br>Thr<br>50  | tcc<br>Ser                | gac<br>Asp        | cca<br>Pro        | cac<br>His        | ctg<br>Leu<br>55  | cac<br>His        | aca<br>Thr        | acc<br>Thr        | atg<br>Met        | tat<br>Tyr<br>60  | ttt<br>Phe        | ctc<br>Leu        | ttg<br>Leu        | ggc<br>Gly        | 192 |
| aat<br>Asn<br>65         | ctt<br>Leu        | tct<br>Ser                | ttc<br>Phe        | ctg<br>Leu        | gac<br>Asp<br>70  | ttt<br>Phe        | tgc<br>Cys        | tac<br>Tyr        | tct<br>Ser        | tcc<br>Ser<br>75  | atc<br>Ile        | aca<br>Thr        | gca<br>Ala        | cct<br>Pro        | agg<br>Arg<br>80  | 240 |
| atg<br>Met               | ctg<br>Leu        | gtt<br>Val                | gac<br>Asp        | ttg<br>Leu<br>85  | ctc<br>Leu        | tca<br>Ser        | ggc<br>Gly        | aac<br>Asn        | cct<br>Pro<br>90  | acc<br>Thr        | att<br>Ile        | tcc<br>Ser        | ttt<br>Phe        | ggt<br>Gly<br>95  | gga<br>G1 y       | 288 |
| tgc<br>Cys               | ctg<br>Leu        | act<br>Thr                | caa<br>Gln<br>100 | ctc<br>Leu        | ttc<br>Phe        | ttc<br>Phe        | ttc<br>Phe        | cac<br>His<br>105 | ttc<br>Phe        | att<br>Ile        | gga<br>Gly        | ggc<br>Gly        | atc<br>Ile<br>110 | aag<br>Lys        | atc<br>Ile        | 336 |
| _ttc<br>Phe              | ctg<br>Leu        | ctg<br>Eeu<br>115         | act<br>Thr        | gtc<br>VaI        | atg<br>Met        | gcg<br>Aľa        | tat<br>Tyr<br>120 | gac<br>Asp        | cgc<br>Arg        | tac<br>Tyr        | att<br>IÎe        | gcc<br>Afa<br>125 | att<br>IÎe        | tcc<br>Ser        | cag<br>Gľn        | 384 |
| ccc<br>Pro               | ctg<br>Leu<br>130 | cac<br>His                | tac<br>Tyr        | acg<br>Thr        | ctc<br>Leu        | att<br>Ile<br>135 | atg<br>Met        | aat<br>Asn        | cag<br>Gln        | act<br>Thr        | gtc<br>Val<br>140 | tgt<br>Cys        | gca<br>Ala        | ctc<br>Leu        | ctt<br>Leu        | 432 |
| atg<br>Met<br>145        | gca<br>Ala        | gcc<br>Ala                | tcc<br>Ser        | tgg<br>Trp        | gtg<br>Val<br>150 | 999<br>Gly        | ggc<br>Gly        | ttc<br>Phe        | atc<br>Ile        | cac<br>His<br>155 | tcc<br>Ser        | ata<br>Ile        | gta<br>Val        | cag<br>Gln        | att<br>Ile<br>160 | 480 |
| gca<br>Ala               | ttg<br>Leu        | act<br>Thr                | atc<br>Ile        | cag<br>Gln<br>165 | ctg<br>Leu        | cca<br>Pro        | ttc<br>Phe        | tgt<br>Cys        | 999<br>Gly<br>170 | cct<br>Pro        | gac<br>Asp        | aag<br>Lys        | ctg<br>Leu        | gac<br>Asp<br>175 | aac<br>Asn        | 528 |
| ttt<br>Phe               | tat<br>Tyr        | tgt<br>Cys                | gat<br>Asp<br>180 | gtg<br>Val        | cct<br>Pro        | cag<br>Gln        | ctg<br>Leu        | atc<br>Ile<br>185 | aaa<br>Lys        | ttg<br>Leu        | gcc<br>Ala        | tgc<br>Cys        | aca<br>Thr<br>190 | gat<br>Asp        | acc<br>Thr        | 576 |

|                                               |                            |                   |                   |                   |                   |                   |                   |                   | •                 | 1 6U              | 200               | PC <b>T</b>       | FIN               | AL.S              | T25               |     |
|-----------------------------------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| ttt<br>Phe                                    | gtc<br>Val                 | tta<br>Leu<br>195 | GIU               | ctt<br>Leu        | tta<br>Leu        | atg<br>Met        | gtg<br>Val<br>200 | . Sei             | aac<br>Asn        | aat<br>Asn        | ggc<br>Gly        | ctg<br>Leu<br>205 | Val               | acc<br>Thr        | ctg<br>Leu        | 624 |
| atg<br>Met                                    | tgt<br>Cys<br>210          | Pne               | ctg<br>Leu        | gtg<br>Val        | ctt<br>Lev        | ctg<br>Leu<br>215 | gga<br>Gly        | tco<br>Ser        | tac<br>Tyr        | aca<br>Thr        | gca<br>Ala<br>220 | Leu               | cta<br>Leu        | gtc<br>Val        | atg<br>Met        | 672 |
| ctc<br>Leu<br>225                             | cga<br>Arg                 | agc<br>Ser        | cac<br>His        | tca<br>Ser        | cgg<br>Arg<br>230 | gag<br>Glu        | ggc<br>Gly        | cgc               | agc<br>Ser        | aag<br>Lys<br>235 | Ala               | ctg<br>Leu        | tct<br>Ser        | acc<br>Thr        | tgt<br>Cys<br>240 | 720 |
| gcc<br>Ala                                    | tct<br>Ser                 | cac<br>His        | att<br>lle        | gct<br>Ala<br>245 | gtg<br>Val        | gtg<br>Val        | acc<br>Thr        | tta<br>Leu        | atc<br>11e<br>250 | ttt<br>Phe        | gtg<br>Val        | cct<br>Pro        | tgc<br>Cys        | atc<br>Ile<br>255 | tac<br>Tyr        | 768 |
| gtc<br>Val                                    | tat<br>Tyr                 | aca<br>Thr        | agg<br>Arg<br>260 | cct<br>Pro        | ttt<br>Phe        | cgg<br>Arg        | aca<br>Thr        | ttc<br>Phe<br>265 | ccc<br>Pro        | atg<br>Met        | gac<br>Asp        | aag<br>Lys        | gcc<br>Ala<br>270 | gtc<br>Val        | tct<br>Ser        | 816 |
| gtg<br>Val                                    | cta<br>Leu                 | tac<br>Tyr<br>275 | aca<br>Thr        | att<br>Ile        | gtc<br>Val        | Thr               | ccc<br>Pro<br>280 | atg<br>Met        | ctg<br>Leu        | aat<br>Asn        | cct<br>Pro        | gcc<br>Ala<br>285 | átc<br>Ile        | tat<br>Tyr        | acc<br>Thr        | 864 |
| ren                                           | aga<br>Arg<br>290          | aac<br>Asn        | aag<br>Lys        | gaa<br>Glu        | VaI               | atc<br>11e<br>295 | atg<br>Met        | gcc<br>Ala        | atg<br>Met        | aag<br>Lys        | aag<br>Lys<br>300 | ctg<br>Leu        | tgg<br>Trp        | agg<br>Arg        | agg<br>Arg        | 912 |
| aaa<br>Lys<br>305                             | aag<br>Lys                 | gac<br>Asp        | cct<br>Pro        | He                | ggt<br>Gly<br>310 | ccc<br>Pro        | ctg<br>Leu        | gag<br>Glu        | cac<br>His        | aga<br>Arg<br>315 | ccc<br>Pro        | tta<br>Leu        | cat<br>His        | tag               |                   | 957 |
| <210<br><211<br><212<br><213<br><400<br>Met J | > 3<br>> P:<br>> Ho<br>> 1 | Gln V             | lla A             | Asn H             |                   |                   | irg :             |                   | 10                |                   |                   | Chr \             |                   | 15                |                   |     |
| Ala V                                         | /al 1                      | fyr P<br>35       | he M              | et T              | hr V              | al V<br>4         | 'al (             | Gly .             | Asn 1             | Leu l             |                   |                   |                   | 7al 1             | le                |     |
| Val T                                         | hr S<br>O                  | er A              | sp P              | ro H              | is L<br>5         | eu H<br>5         | is 7              | Thr :             | Thr N             |                   | Tyr P             | he L              | eu I              | eu G              | Iy                |     |
| Asn L<br>65                                   | eu S                       | er Pi             | he L              | eu A:<br>7(       | sp Pi             | he C              | ys 1              | Cyr S             | Ser S             | er 1<br>'5        | le T              | hr A              | la P              |                   | rg<br>0           |     |
| Met L                                         | eu V                       | al A:             | sp Le             | eu Le<br>S        | eu Se             | er G              | ly A              | sn P              | ro T              | hr I              | le S              | er P              |                   | lу G<br>5         | ly                |     |
| Cys Le                                        | eu Ti                      | hr G1             | n Le              | eu Ph             | e Pi              | ne Pl             | ne н<br>1         | is P<br>05        | he I              | le G              | ly G              |                   | le L<br>10        | ys I.             | le                |     |
| Phe Le                                        | eu Le<br>11                | ev Th<br>15       | ır Va             | ıl Me             | t Al              | a Ty<br>12        | /r A              | sp A              | rg T              | yr I              | le Al             |                   | le S              | er G              | ln                | ·   |
| Pro Le                                        | eu Hi<br>BO                | s Ty              | r Th              | r Le              | u Il<br>13        | е Ме<br>5         | t A:              | sn G              | ln T              |                   | al Cy<br>40       | /s Al             | ia Le             | u Le              | eu                |     |
| Met Al<br>145                                 | a Al                       | a Se              | r Tr              | p Va<br>15        | 1 G1<br>0         | y Gl              | y Pi              | he I              |                   | is Se<br>55       | er Il             | e Va              | 1 G1              | in II             |                   |     |

Ala Leu Thr Ile Gln Leu Pro Phe Cys Gly Pro Asp Lys Leu Asp Asn 165 170 175Phe Tyr Cys Asp Val Pro Gln Leu Ile Lys Leu Ala Cys Thr Asp Thr 180 185 190 Phe Val Leu Glu Leu Leu Met Val Ser Asn Asn Gly Leu Val Thr Leu 200 Met Cys Phe Leu Val Leu Leu Gly Ser Tyr Thr Ala Leu Leu Val Met 210 215 220 Leu Arg Ser His Ser Arg Glu Gly Arg Ser Lys Ala Leu Ser Thr Cys 225 235 240 Ala Ser His Ile Ala Val Val Thr Leu Ile Phe Val Pro Cys Ile Tyr Val Tyr Thr Arg Pro Phe Arg Thr Phe Pro Met Asp Lys Ala Val Ser Val Leu Tyr Thr Ile Val Thr Pro Met Leu Asn Pro Ala Ile Tyr Thr 275 280 285 Leu Arg Asn Lys Glu Val Ile Met Ala Met Lys Lys Leu Trp Arg Arg 295 Lys Lys Asp Pro Ile Gly Pro Leu Glu His Arg Pro Leu His <210> 164 <211> 26 <212> DNA <213> Homo sapiens <400> 164 gaatccagca aatcattccc aggtgg 26 <210> 165 <211> 29 <212> DNA <213> Homo sapiens <400> 165 ctaatgtaag ggtctgtgct ccaggggac 29 <210> <211> 50 <212> DNA <213> Homo sapiens <400> 166 cactaccctt ttaaagtgca gggggcagtg atttcttttc ttttcttttt 50 <210> 167 <211> 972 <212> DNA <213> Homo sapiens <220> <221> CDS

Page 97

<222>

<223>

(1)..(972)

|                   |             |                    | ***                 | <i>y</i> 05.       | . 000               | 05                    |                     |                    |                    |                    |                      |                   |                      |                    |                   |                   |     |
|-------------------|-------------|--------------------|---------------------|--------------------|---------------------|-----------------------|---------------------|--------------------|--------------------|--------------------|----------------------|-------------------|----------------------|--------------------|-------------------|-------------------|-----|
|                   |             |                    |                     |                    |                     |                       |                     |                    |                    |                    | 161                  | 1 201             | 0 PC1                | r FI               | NAI.              | ST25              |     |
| a                 | let         | aad                | 167<br>c cc<br>n Pr | t ga               | aa aa<br>Iu As<br>5 | ac to<br>sn Ti        | gg ac<br>rp Th      | t ca<br>r Gl       | g gt<br>n Va       | a ac<br>1 Th<br>10 | a age<br>r Se:       | c tt              | t at                 | c ct               | t ct              | g ggt<br>u Gly    | 48  |
| t<br>P            | tc<br>he    | Pro                | ag<br>Se            | t ag<br>r Se<br>20 | er Hi               | c ct<br>is Le         | c at                | a ca<br>e Gl       | g tt<br>n Ph<br>25 | c ct<br>e Le       | g gte<br>u Val       | g tte<br>i Ph     | c cto                | 9 99<br>1 G1<br>30 | g tta<br>y Lea    | a atg<br>u Met    | 96  |
| g<br>V            | tg<br>al    | acc<br>Thi         | ta<br>Ty<br>35      | r I)               | t gt<br>.e Va       | a ac                  | a gc<br>r Al        | c ac<br>a Th<br>40 | r Gl               | c aa<br>y Ly:      | g cto<br>s Lei       | cta<br>Le         | a att<br>u Ile<br>45 | t at               | t gte<br>e Va     | g ctc<br>l Leu    | 144 |
| a<br>Si           | gc<br>er    | tgg<br>Trp<br>50   | at<br>Il            | aga<br>eAs         | ic ca               | a cg<br>n Ar          | c ct<br>g Le<br>55  | g ca<br>u Hi       | c ata              | a cae<br>e Gli     | g ato<br>n Met       | tac<br>Tyr<br>60  | c tto<br>r Phe       | tto<br>Phe         | cto<br>E Lei      | g cgg<br>u Arg    | 192 |
| a:<br>A:<br>6!    | sn          | t t c<br>Phe       | tc<br>Se            | c tt<br>r Ph       | c ct<br>e Le        | g ga<br>u G1<br>70    | u Le                | g tte              | g cto              | g gta<br>u Val     | a act<br>I Thr<br>75 | gtt<br>Val        | t gtg<br>l Val       | g gti<br>Val       | cco<br>Pro        | aag<br>Lys<br>80  | 240 |
| at<br>Me          | t g<br>e t  | ctt<br>Leu         | gt:<br>Va           | c gt<br>l Va       | c at<br>1 11<br>85  | e Le                  | c ace<br>u Th       | g gge<br>r Gly     | g gat<br>y Asp     | Cac<br>His<br>90   | acc<br>Thr           | ato<br>Ile        | tca<br>Ser           | ttt<br>Phe         | gto<br>Val<br>95  | agc<br>Ser        | 288 |
| t <u>C</u>        | gc<br>ys    | atc<br>11e         | at o                | c ca<br>e G1<br>10 | n Se                | c ta<br>r Ty          | c cto<br>r Lei      | tac<br>Ty          | tto<br>Phe<br>105  | Phe                | cta<br>Leu           | ggc<br>Gly        | acc<br>Thr           | Thr<br>110         | Asp               | ttc<br>Phe        | 336 |
| t t<br>Ph         | ic<br>ne    | ctc<br>Leu         | Let<br>115          | ı Al               | c gt<br>a Va        | c ato<br>1 Me         | g tci<br>t Sei      | cto<br>Let<br>120  | ı Asp              | cgt<br>Arg         | tac<br>Tyr           | ctg<br>Leu        | gca<br>Ala<br>125    | lle                | tgc<br>Cys        | cga<br>Arg        | 384 |
| ec<br>Pr          | 0           | ctc<br>Leu<br>130  | ege<br>Arg          | ta<br>j Ty         | t ga<br>r Gl        | g aco<br>u Thi        | c ctg<br>Lev<br>135 | Met                | aat<br>Asn         | ggc<br>Gly         | cat<br>His           | gtc<br>Val<br>140 | Cys                  | t cc<br>Ser        | caa<br>Gln        | cta<br>Leu        | 432 |
| gt<br>Va<br>14    | 11          | ctg<br>Leu         | gcc<br>Al a         | tc<br>Se:          | c tg                | g cta<br>p Lei<br>150 | ı Ala               | gga<br>Gly         | ttc<br>Phe         | ctc<br>Leu         | tgg<br>Trp<br>155    | gtc<br>Val        | ctt<br>Leu           | t gc<br>Cys        | ccc<br>Pro        | act<br>Thr<br>160 | 480 |
| gt<br>Va          | 1 1         | ctc<br>Leu         | atg<br>Met          | Ala                | a Ser<br>169        | Let                   | cct<br>Pro          | tto<br>Phe         | tgt<br>Cys         | ggc<br>Gly<br>170  | Pro                  | aat<br>Asn        | ggt<br>Gly           | att<br>Ile         | gac<br>Asp<br>175 | cac<br>His        | 528 |
| t t<br>Ph         | c i         | tt<br>Phe          | cgt<br>Arg          | gad<br>Asp<br>180  | Se <sub>1</sub>     | tgg<br>Trp            | ccc<br>Pro          | t t g<br>Leu       | ctc<br>Leu<br>185  | agg<br>Arg         | ctt<br>Leu           | tct<br>Ser        | tgt<br>Cys           | 999<br>Gly<br>190  | gac<br>Asp        | acc<br>Thr        | 576 |
| Ca<br>Hi          | c c         | etg<br>Leu         | ctg<br>Leu<br>195   | Lys                | cto<br>Leu          | g gtg<br>val          | gct<br>Ala          | ttc<br>Phe<br>200  | Met                | ctc<br>Leu         | tct<br>Ser           | acg<br>Thr        | ttg<br>Leu<br>205    | gtg<br>Val         | tta<br>Leu        | ctg<br>Leu        | 624 |
| 99<br>G1          | y S         | ca<br>Ser<br>210   | ctg<br>Leu          | gct<br>Ala         | Lev                 | acc<br>Thr            | tca<br>Ser<br>215   | gtt<br>Val         | tcc<br>Ser         | tat<br>Tyr         | gcc<br>Ala           | tgc<br>Cys<br>220 | att<br>lle           | ctt<br>Leu         | gcc<br>Ala        | act<br>Thr        | 672 |
| gt:<br>Va.<br>225 | I I         | tc<br>eu           | agg<br>Arg          | gcc                | Pro                 | aca<br>Thr<br>230     | Ala                 | gct<br>Ala         | gag<br>Glu         | cga<br>Arg         | agg<br>Arg<br>235    | aaa<br>Lys        | gcg<br>Ala           | ttt<br>Phe         | tcc<br>Ser        | act<br>Thr<br>240 | 720 |
| -tgc<br>€ys       | c g         | cc<br>la           | tcg<br>Ser          | cat<br>His         | ctt<br>Eeu<br>245   | Thr                   | gtg<br>Váľ          | gtg<br>Val         | gtc<br>Vàľ         | atc<br>Tre<br>250  | atc<br>Ife           | tat<br>Tyr        | ggc<br>Gľy           | agt<br>Ser         | tcc<br>Ser<br>255 | atc<br>Ile        | 768 |
| t t t<br>Phe      | c<br>e<br>L | tc<br>eu           | tac<br>Tyr          | att<br>Ile<br>260  | cgt<br>Arg          | atg<br>Met            | tca<br>Ser          | gag<br>Glu         | gct<br>Ala<br>265  | cag<br>Gln         | tcc<br>Ser           | aaa<br>Lys        | ctg<br>Leu           | ctc<br>Leu<br>270  | aac<br>Asn        | aaa<br>Lys        | 816 |
| ggt<br>Gly        | ; g<br>/ A  | la :               | tcc<br>Ser<br>275   | gtc<br>Val         | ctg<br>Leu          | agc<br>Ser            | tgc<br>Cys          | atc<br>Ile<br>280  | atc<br>Ile         | aca<br>Thr         | ccc<br>Pro           | ctc<br>Leu        | ttg<br>Leu<br>285    | aac<br>Asn         | cca<br>Pro        | ttc<br>Phe        | 864 |
| ato               | . P.        | tc ,<br>he !<br>90 | ect<br>Thr          | ctc<br>Leu         | cgc<br>Arg          | aat<br>Asn            | gac<br>Asp<br>295   | aag<br>Lys         | gtg<br>Val         | cag<br>Gln         | Gln .                | gca<br>Ala<br>300 | ctg<br>Leu           | aga<br>Arg         | gaa<br>Glu        | gcc<br>Ala        | 912 |

960

ttg ggg tgg ccc agg ctc act gct gtg atg aaa ctg agg gtc aca agt Leu Gly Trp Pro Arg Leu Thr Ala Val Met Lys Leu Arg Val Thr Ser 310

16U 200 PCT FINAL.ST25 315 320

caa agg aaa tga

305

Gln Arg Lys

972

- <210> 168
- <211> 323
- <212> PRT
- <213> Homo sapiens

<400> 168

Met Asn Pro Glu Asn Trp Thr Gln Val Thr Ser Phe Val Leu Gly 1 5 10 15

Phe Pro Ser Ser His Leu Ile Gln Phe Leu Val Phe Leu Gly Leu Met 20 25 30

Val Thr Tyr 11e Val Thr Ala Thr Gly Lys Leu Leu Ile Ile Val Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Ser Trp lle Asp Gln Arg Leu His Ile Gln Met Tyr Phe Phe Leu Arg 50 55 60

Asn Phe Ser Phe Leu Glu Leu Leu Leu Val Thr Val Val Val Pro Lys 65 70 75 80

Met Leu Val Val Ile Leu Thr Gly Asp His Thr Ile Ser Phe Val Ser 85 90 95

Cys Ile Ile Gln Ser Tyr Leu Tyr Phe Phe Leu Gly Thr Thr Asp Phe 100 105 110

Phe Leu Leu Ala Val Met Ser Leu Asp Arg Tyr Leu Ala Ile Cys Arg 115 120 125

Pro Leu Arg Tyr Glu Thr Leu Met Asn Gly His Val Cys Ser Gln Leu 130 135 140

Val Leu Ala Ser Trp Leu Ala Gly Phe Leu Trp Val Leu Cys Pro Thr 145 150 155 160

Val Leu Met Ala Ser Leu Pro Phe Cys Gly Pro Asn Gly 11e Asp His 165 170 175

Phe Phe Arg Asp Ser Trp Pro Leu Leu Arg Leu Ser Cys Gly Asp Thr 180 185 190

His Leu Leu Lys Leu Val Ala Phe Met Leu Ser Thr Leu Val Leu Leu 195 200 205

Gly Ser Leu Ala Leu Thr Ser Val Ser Tyr Ala Cys Ile Leu Ala Thr 210 215 220

Val Leu Arg Ala Pro Thr Ala Ala Glu Arg Arg Lys Ala Phe Ser Thr 225 230 235 240

Cys Ala Ser His Leu Thr Val Val Val Ile Ile Tyr Gly Ser Ser Ile 245 250 255

Phe Leu Tyr Ile Arg Met Ser Glu Ala Gln Ser Lys Leu Leu Asn Lys Page 99

265 270 Gly Ala Ser Val Leu Ser Cys Ile Ile Thr Pro Leu Leu Asn Pro Phe 280 Ile Phe Thr Leu Arg Asn Asp Lys Val Gln Gln Ala Leu Arg Glu Ala Leu Gly Trp Pro Arg Leu Thr Ala Val Met Lys Leu Arg Val Thr Ser 305 310 315 320 Gln Arg Lys <210> 169 <211> 25 <212> DNA <213> Homo sapiens <400> 169 tgtgctcagc tggatagacc aacgc 25 <210> <211> 30 <212> DNA <213> Homo sapiens <400> 170 ctgagaacag tggcaagaat gcaggcatag 30 <210> 171 <211> 450 <212> DNA <213> Homo sapiens <220> <221> CDS (1) . . (450) <222> <223> <400> 171 atg gac ctt ccc cat gtc cca gct ctg gac gcc cca ctc ttt gga gtc Met Asp Leu Pro His Val Pro Ala Leu Asp Ala Pro Leu Phe Gly Val ttc ctg gtg gtt tat gtg ctt act gtg ctg ggg aac ctc ctc atc ctg Phe Leu Val Val Tyr Val Leu Thr Val Leu Gly Asn Leu Leu Ile Leu 96 ctg gtg atc agg gtg tac tct cac ctc cac acc ccc aag tac tac ttc Leu Val Ile Arg Val Tyr Ser His Leu His Thr Pro Lys Tyr Tyr Phe 144 40 etc acc aat ctg tcc ttc att gac ttg tgg ttc ttc act gtc atg gtg Leu Thr Asn Leu Ser Phe Ile Asp Leu Trp Phe Phe Thr Val Met Val 192 ccc aaa atg ccg agg acc ttg ttg tcc ctg tgt ggc aag gct gtg tcc Pro Lys Met Pro Arg Thr Leu Leu Ser Leu Cys Gly Lys Ala Val Ser 65 70 75. 240 ttc cac agt tgt atg acc caa ctc tat ttc ttc tac ttc ctg ggg agc Phe His Ser Cys Met Thr Gln Leu Tyr Phe Phe Tyr Phe Leu Gly Ser 288 90 acc gag tgt ttg ctc tac acg gtc atg tcc tat gat cgc tat aga.gga
Thr Glu Cys Leu Leu Tyr Thr Val Met Ser Tyr Asp Arg Tyr Arg Gly
100 105 110 336 aat act cag cac ttc cca ggt agt gaa aac act ccc cac gaa gtg agc 384 Asn Thr Gln His Phe Pro Gly Ser Glu Asn Thr Pro His Glu Val Ser

16U 200 PCT FINAL.ST25

caa atg cta gtg gcc cgg ggg gca cac ggg ctc cca ctc atc atc ctg Gln Met Leu Val Ala Arg Gly Ala His Gly Leu Pro Leu Ile Ile Leu 130 135 140 432 gca gat ctg agt ggg taa Ala Asp Leu Ser Gly 450 <210> 172 <211> 149 <212> PRT <213> Homo sapiens <400> 172 Met Asp Leu Pro His Val Pro Ala Leu Asp Ala Pro Leu Phe Gly Val 1 5 10 15 Phe Leu Val Val Tyr Val Leu Thr Val Leu Gly Asn Leu Leu Ile Leu 20 25 30 Leu Val Ile Arg Val Tyr Ser His Leu His Thr Pro Lys Tyr Tyr Phe Leu Thr Asn Leu Ser Phe Ile Asp Leu Trp Phe Phe Thr Val Met Val 50 60Pro Lys Met Pro Arg Thr Leu Leu Ser Leu Cys Gly Lys Ala Val Ser 65 70 75 80 Phe His Ser Cys Met Thr Gln Leu Tyr Phe Phe Tyr Phe Leu Gly Ser 85 90 95 Thr Glu Cys Leu Leu Tyr Thr Val Met Ser Tyr Asp Arg Tyr Arg Gly 105 Asn Thr Gln His Phe Pro Gly Ser Glu Asn Thr Pro His Glu Val Ser 115 120 125 Gln Met Leu Val Ala Arg Gly Ala His Gly Leu Pro Leu Ile Ile Leu Ala Asp Leu Ser Gly <210> 173 <211> 23 <212> DNA \_<213> Homo sapiens <400> 173 agetetggae geceeactet ttg 23 <210> 174 <211> 27 <212> DNA <213> Homo sapiens <400> 174 acccactcag atctgccagg atgatga 27 <210> <211> 936 <212> DNA

Page 101

<213> Homo sapiens

|    | <2<br><2         | 20><br>21><br>22><br>23> | ()                 | ).         | . (9:             | 36)           |              |                    |                     |                     |            |                  |              |                     |                   |                  |                |              |            |                  |   |     |
|----|------------------|--------------------------|--------------------|------------|-------------------|---------------|--------------|--------------------|---------------------|---------------------|------------|------------------|--------------|---------------------|-------------------|------------------|----------------|--------------|------------|------------------|---|-----|
|    | at               | 00><br>g to<br>t So      | 17<br>cc a<br>er A | ac         | gco<br>Ala        | ag<br>Se<br>5 | c ct<br>r Le | ic g<br>eu V       | tg a<br>al T        | ca g<br>hr A        | ca<br>la   | tte<br>Phe<br>10 | c at<br>e Il | :с с<br>.е <b>L</b> | tc a              | aca<br>Thr       | gg<br>Gl       | с с<br>у L   | eu         | ccc<br>Pro       |   | 48  |
|    | ca<br>Hi         | t go                     | cc c<br>la P       | ca<br>ro   | 999<br>G1 y<br>20 | ct:<br>Le     | gga<br>uAs   | ic go              | cc c<br>la L        | tc c<br>eu L<br>2   | eu         | tt!<br>Phe       | t gg<br>e Gl | aa<br>y I.          | tc I<br>le I      | ttc<br>Phe       | ct<br>Le<br>30 | g gi<br>u Va | tg<br>al   | gtt<br>Val       |   | 96  |
|    | ta:<br>Ty:       | cgt<br>rVa               | g c<br>il L<br>3   | eu         | act<br>Thr        | gte<br>Val    | g ct<br>l Le | g gg<br>u Gl       | ggaa<br>ly As<br>40 | ac c<br>sn L        | tc<br>eu   | cto              | at<br>Il     | c ct                | eu I              | etg<br>Jeu<br>15 | gt:<br>Va      | g at         | e          | agg<br>Arg       |   | 144 |
|    | gt g<br>Val      | g ga<br>l As<br>50       | p S                | ct<br>er   | cac<br>His        | Lei           | ca<br>Hi     | c ac<br>s Th<br>55 | r Pi                | cc at               | t g<br>e t | tac<br>Tyr       | ta<br>Ty     | c ti<br>r Pi<br>60  | ne L              | t c<br>eu        | Thi            | c aa<br>r As | c<br>n     | ctg<br>Leu       |   | 192 |
|    | tco<br>Ser<br>65 | t t                      | cat<br>eI:         | tt<br>le i | gac<br>Asp        | atç<br>Met    | 70           | p Ph               | c to<br>e Se        | c ac                | et         | gtc<br>Val       | Th:<br>75    | ggt<br>rVa          | g c               | ro               | aaa<br>Lys     | a at<br>s Me | ţ          | ctg<br>Leu<br>80 |   | 240 |
|    | met              | . In                     | r Le               | י ט        | /al               | Ser<br>85     | Pr           | o Se               | r Gl                | y Ar                | g          | Ala<br>90        | 116          | e Se                | r P               | he               | His            | 95           | r          | Cys              |   | 288 |
|    | val              | A1                       | a 61               | .n. 1      | .eu<br>100        | Tyr           | Phe          | e Ph               | е Ні                | c tt<br>s Ph<br>10  | 15         | Leu              | G1 y         | / Se                | r T               | hr               | Glu<br>110     | Cy.          | S          | Phe              |   | 336 |
|    | rea              | 1 у:                     | 11                 | 5 ·        | a1                | Met           | Sei          | Ту                 | r As<br>12          |                     | g          | Tyr              | Leu          | a Al                | a I;              | 1 e<br>25        | Ser            | Ty:          | r          | Pro              |   | 384 |
|    | ren              | 130                      | )<br>)             | rī         | nr                | Ser           | Met          | 135                | t Se.               | t gg<br>r Gl        | У          | Ser              | Arg          | 14                  | s A]<br>0         | la               | Leu            | Lei          | 3 <i>7</i> | Ala              |   | 432 |
|    | 145              | GIS                      | , in               | r i        | гp                | Leu           | 150          | GIS                | r Sei               | t ct                | u I        | His              | Ser<br>155   | Ala                 | a Va              | 11 (             | Gln            | Thi          | 1          | 11e<br>160       |   | 480 |
|    | rea              | 101                      | Ph                 | ен         | 15                | 165           | Pro          | Туг                | Cys                 | gg<br>Gl            | y 1        | Pro<br>170       | Asn          | G] 1                | 11                | е (              | 51n            | His<br>175   | . 1        | yr               |   | 528 |
|    | riie             | Cys                      | AS                 | ) A.       | 30                | Pro           | Pro          | 116                | Leu                 | ) aaa<br>Lys<br>185 | 5 I        | eu               | Ala          | Cys                 | s Al              | a /              | Asp<br>190     | Thr          | S          | er               |   | 576 |
| •  | 120              | 731,                     | 199                | 5          | : C '             | Val           | 116          | rne                | 200                 |                     | > 1        | 16               | G1 y         | Ile                 | 20                | 1 A<br>5         | lla            | Ser          | G          | 1 y              |   | 624 |
| ٠, | .ys              | 210                      | val                | . ∟€       | eu j              | ııe           | ısv          | 215                | Ser                 | tat<br>Tyr          | · V        | al               | Ser          | 11e<br>220          | Va.               | 1 0              | ys             | Ser          | 1          | le               |   | 672 |
| 2  | 25               | ALY                      | 116                | Ar         | g 1               | nr            | Ser<br>230   | Asp                | Gly                 | agg<br>Arg          | A          | rg i             | Arg<br>235   | Ala                 | Pho               | e G              | 1n             | Thr          | 2 ·        | ys<br>40         |   | 720 |
| м  | 10               | 361                      | ніѕ                | Су         | S 1<br>2          | 1e \          | /aı          | Val                | Leu                 | tgc<br>Cys          | P<br>2     | he 1<br>50       | Phe          | Val                 | Pro               | o C              | ys             | Val<br>255   | V          | a 1              |   | 769 |
| •  | 16               | ıyı                      | Leu                | 26         | g P<br>0          | ro (          | ну           | Ser                | Met                 | gat<br>Asp<br>265   | A.         | la N             | let .        | Asp                 | G17               | 7 V.             | al '<br>70     | Val          | [A]        | la               | 1 | 316 |
| I. | le I             | Phe                      | tac<br>Tyr<br>275  | Th         | r V               | tg d<br>al I  | eu           | acg<br>Thr         | ccc<br>Pro<br>280   | ctt<br>Leu          | Le         | tc a<br>≥u A     | iac<br>Isn   | cct<br>Pro          | gtt<br>Val<br>285 | V                | tg i           | tac<br>Tyr   | ac<br>Th   | r                | E | 364 |

912

936

| cto                      | g aga<br>Arg<br>290 | y Ası                     | c aaq<br>n Lys | g gaç<br>s Glı | g gtg<br>ı Val        | l aag<br>Lys<br>295 | Lys        | gct<br>Ala | gtg<br>Val | ttg        | 200<br>aaa<br>Lys<br>300 | Ctt<br>Leu | aga        | qaq        | T25<br>aaa<br>Lys |
|--------------------------|---------------------|---------------------------|----------------|----------------|-----------------------|---------------------|------------|------------|------------|------------|--------------------------|------------|------------|------------|-------------------|
|                          | l Ala               |                           |                |                | 3 agg<br>3 Arg<br>310 | Lys                 |            | <b>a</b>   |            |            |                          |            |            |            |                   |
| <21<br><21<br><21<br><21 | 1><br>12>           | 176<br>311<br>PRT<br>Homo | o sap          | oiens          | <b>.</b>              |                     |            |            |            |            |                          |            |            |            |                   |
| < 40                     | 00>                 | 176                       |                |                |                       |                     |            |            |            |            |                          |            |            |            |                   |
| Met<br>1                 | Ser                 | Asr                       | Ala            | Ser<br>5       | Leu                   | Val                 | Thr        | : Ala      | Phe<br>10  | lle        | Leu                      | Thr        | Gly        | Leu<br>15  | Pro               |
| His                      | Ala                 | Pro                       | 61 y<br>20     | Leu            | Asp                   | Ala                 | Leu        | Leu<br>25  | Phe        | G1 y       | Ile                      | Phe        | Leu<br>30  | Val        | Val               |
| Тyr                      | Va]                 | Leu<br>35                 | Thr            | Val            | Leu                   | Gly                 | Аsл<br>40  | Leu        | Leu        | Ile        | Leu                      | Leu<br>45  | Val        | Ile        | Arg               |
| Val                      | Asp<br>50           | Ser                       | His            | Leu            | His                   | <b>7</b> hr<br>55   | Pro        | Met        | Туr        | Tyr        | Phe<br>60                | Leu        | Thr        | Asn        | Leu               |
| Ser<br>65                | Phe                 | Ile                       | Asp            | Met            | Trp<br>70             | Phe                 | Ser        | Thr        | Val        | Thr<br>75  | Val                      | Pro        | Lys        | Met        | Leu<br>80         |
| Met                      | Thr                 | Leu                       | Val            | Ser<br>85      | Pro                   | Ser                 | Gly        | Arg        | Ala<br>90  | Ile        | Ser                      | Phe        | His        | Ser<br>95  | Cys               |
| Val                      | Ala                 | Gln                       | Leu<br>100     |                | Phe                   | Phe                 | His        | Phe<br>105 | Leu        | Gly        | Ser                      | Thr        | Glu<br>110 | Cys        | Phe               |
| Leu                      | Тyr                 | Thr<br>115                |                | Met            | Ser                   | Tyr                 | Asp<br>120 |            | туr        | Leu        | Ala                      | Ile<br>125 | Ser        | Туr        | Pro               |
| Leu                      | Arg<br>130          | Туг                       | Thr            | Ser            | Met                   | Met<br>135          | Ser        | Gly        | Ser        | Arg        | Cys<br>140               | Ala        | Leu        | Leu        | Ala               |
| Thr<br>145               | G1 y                | Thr                       | Trp            | Leu            | Ser<br>150            | Gl y                | Ser        | Leu        | His        | Ser<br>155 | Ala                      | Val        | Gln        | Thr        | 11e<br>160        |
| Leu                      | Thr                 | Phe                       | His            | Leu<br>165     | Pro                   | Tyr                 | Cys        | Gly        | Pro<br>170 | Asn        | Gln                      | lle        | Gln        | His<br>175 | Tyr               |
| _Phe                     | Cys                 | Asp                       | Ala<br>180     | Pro            | Pro                   | lle                 | Leu        | Lys<br>185 | Leu        | Ala        | Cys                      | Ala        | Asp<br>190 | Thr        | Ser               |
| Ala                      | Asn                 | Val<br>195                | Met            | Val            | lle                   | Phe                 | Val<br>200 | Asp        | Ile        | Gly        | Ile                      | Val<br>205 | Ala        | Ser        | Gly               |
| Cys                      | Phe<br>210          | Val                       | Leu            | lle            | Val                   | Leu<br>215          | Ser        | туг        | Val        | Ser        | Ile<br>220               | Val        | Cys        | Ser        |                   |
| Leu<br>225               | Arg                 | lle                       | Arg            | Thr            | Ser<br>230            | Asp                 | Gly        | Arg        | Arg        | Arg<br>235 | Ala                      | Phe        | Gln        |            |                   |

Ala Ser His Cys Ile Val Val Leu Cys Phe Phe Val Pro Cys Val Val 245  $\phantom{\bigg|}250\phantom{\bigg|}$ 

lle Tyr Leu Arg Pro Gly Ser Met Asp Ala Met Asp Gly Val Val Ala 260 265 270

Ile Phe Tyr Thr Val Leu Thr Pro Leu Leu Asn Pro Val Val Tyr Thr 275 280 285

Leu Arg Asn Lys Glu Val Lys Lys Ala Val Leu Lys Leu Arg Asp Lys 290 295 300

Val Ala His Pro Gln Arg Lys

<210> 177

<211> 29

<212> DNA

<213> Homo sapiens

<400> 177

caaccagate cagcactact tetgtgacg

29

<210> 178

<211> 33

<212> DNA <213> Homo sapiens

<400> 178

ttatttcctc tgaggatgtg ctactttgtc tct

33

<210> 179

<211> 50

<212> DNA

<213> Homo sapiens

<400> 179

taggagaagc cctttaaaag caggcaatag taaggacatc agtaacaata 50

<210> 180

<211> 50 <212> DNA

<213> Homo sapiens

<400> 180

gctgggtgct ctttatatcc ccagagggag agagaccaag ggtgagaaga 50

<210> 181

<211> 921 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

-<222> (1)..(921)

<223>

<400> 181

atg gtg act gag ttt ctt ctt ctc ggc ttc tcc cac ctg gcc gac ctc

Met Val Thr Glu Phe Leu Leu Gly Phe Ser His Leu Ala Asp Leu

1 5 10 15

cag ggc ttg ctc ttc tct gtc ttt ctc act atc tac ctg ctg acc gtg
Gln Gly Leu Leu Phe Ser Val Phe Leu Thr Ile Tyr Leu Leu Thr Val

gca ggc aat ttc ctc att gtg gtg ctg gtc tcc act gat gcc ctc
Ala Gly Asn Phe Leu Ile Val Val Leu Val Ser Thr Asp Ala Ala Leu
35 40 45

Cag tcc cct atg tac ttc ttc ctg cgc acc ctc tcg gcc ttg gag att
Gln Ser Pro Met Tyr Phe Phe Leu Arg Thr Leu Ser Ala Leu Glu Ile
50 55 60

| 990<br>Gly<br>65  | tat<br>Tyr        | acg<br>Thr        | tct<br>Ser        | gtc<br>Val        | acg<br>Thr<br>70  | gtc<br>Val        | Pro               | ctg<br>Lev        | cta<br>Leu        | ctt<br>Lei<br>75  | cac<br>His        | cad<br>His        | cto<br>Lev        | ctt<br>Lei        | act<br>Thr<br>80  | 240 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| ggc<br>Gly        | cgg<br>Arg        | cgc               | cac<br>His        | atc<br>Ile<br>85  | tct<br>Ser        | cgc               | tct<br>Sex        | gga<br>Gly        | tgt<br>Cys<br>90  | gct<br>Ala        | ctc<br>Leu        | caç<br>Glr        | ato<br>Met        | tto<br>Phe        | ttc<br>Phe        | 288 |
| ttc<br>Phe        | ctc<br>Leu        | ttc<br>Phe        | ttt<br>Phe<br>100 | ggc<br>Gly        | gcc<br>Ala        | acg<br>Thr        | gag<br>Glu        | tgc<br>Cys<br>105 | Cys               | Lev               | ctg<br>Leu        | gca<br>Ala        | 900<br>Ala<br>110 | Met               | gcc<br>Ala        | 336 |
| tat<br>Tyr        | gac<br>Asp        | cgc<br>Arg<br>115 | tat<br>Tyr        | gca<br>Ala        | gcc<br>Ala        | atc<br>Ile        | tgt<br>Cys<br>120 | Glu               | ccc<br>Pro        | Leu               | cgc<br>Arg        | tac<br>Tyr<br>125 | Pro               | ctg<br>Leu        | ctg<br>Leu        | 384 |
| ctg<br>Leu        | agc<br>Ser<br>130 | cac<br>His        | cgg<br>Arg        | gtg<br>Val        | tgt<br>Cys        | cta<br>Leu<br>135 | cag<br>Gln        | cta<br>Leu        | gct<br>Ala        | 999<br>Gly        | tcg<br>Ser<br>140 | Ala               | tgg<br>Trp        | gcc<br>Ala        | tgt<br>Cys        | 432 |
| 999<br>Gly<br>145 | gtg<br>Val        | ctg<br>Leu        | gtg<br>Val        | G1 y              | ctg<br>Leu<br>150 | ggc<br>Gly        | cac<br>His        | acc<br>Thr        | cct<br>Pro        | ttc<br>Phe<br>155 | lle               | t t c<br>Phe      | tct<br>Ser        | ttg<br>Leu        | ccc<br>Pro<br>160 | 480 |
| ttc<br>Phe        | tgc<br>Cys        | ggc<br>Gly        | ccc<br>Pro        | aat<br>Asn<br>165 | acc<br>Thr        | atc<br>Ile        | ccg<br>Pro        | cag<br>Gln        | ttc<br>Phe<br>170 | ttc<br>Phe        | tgt<br>Cys        | gag<br>Glu        | atc<br>Ile        | Cag<br>Gln<br>175 | cct<br>Pro        | 528 |
| gtc<br>Val        | ctg<br>Leu        | cag<br>Gln        | ctg<br>Leu<br>180 | gta<br>Val        | tgt<br>Cys        | gga<br>Gly        | gac<br>Asp        | acc<br>Thr<br>185 | t cg<br>Ser       | ctt<br>Leu        | aat<br>Asn        | gaa<br>Glu        | ctg<br>Leu<br>190 | Gln               | att<br>Ile        | 576 |
| atc<br>Ile        | ctg<br>Leu        | gca<br>Ala<br>195 | aca<br>Thr        | gcc<br>Ala        | ctc<br>Leu        | ctc<br>Leu        | atc<br>Ile<br>200 | ctc<br>Leu        | tgc<br>Cys        | ccc<br>Pro        | ttt<br>Phe        | 99c<br>Gly<br>205 | ctc<br>Leu        | atc<br>Ile        | ctg<br>Leu        | 624 |
| ggc<br>Gly        | tcc<br>Ser<br>210 | tac<br>Tyr        | 61 A<br>838       | cgt<br>Arg        | atc<br>Ile        | ctc<br>Leu<br>215 | gtt<br>Val        | acc<br>Thr        | atc<br>Ile        | ttc<br>Phe        | cgg<br>Arg<br>220 | atc<br>Ile        | cca<br>Pro        | tct<br>Ser        | gtt<br>Val        | 672 |
| gcg<br>Ala<br>225 | ggc<br>Gly        | cgc<br>Arg        | cgc<br>Arg        | aag<br>Lys        | gcc<br>Ala<br>230 | ttc<br>Phe        | tcc<br>Ser        | acc<br>Thr        | tgc<br>Cys        | tcc<br>Ser<br>235 | tcc<br>Ser        | cac<br>His        | ctg<br>Leu        | atc<br>Ile        | gtg<br>Val<br>240 | 720 |
| gtc<br>Val        | tcc<br>Ser        | ctc<br>Leu        | ttc<br>Phe        | tat<br>Tyr<br>245 | ggc<br>Gly        | acc<br>Thr        | gca<br>Ala        | ctc<br>Leu        | ttt<br>Phe<br>250 | atc<br>Ile        | tat<br>Tyr        | att<br>Ile        | cgc<br>Arg        | cct<br>Pro<br>255 | aag<br>Lys        | 768 |
| gcc<br>Ala        | agc<br>Ser        | Tyr               | gat<br>Asp<br>260 | ccg<br>Pro        | gcc<br>Ala        | act<br>Thr        | gac<br>Asp        | cct<br>Pro<br>265 | ctg<br>Leu        | gtg<br>Val        | tcc<br>Ser        | ctc<br>Leu        | ttc<br>Phe<br>270 | tat<br>Tyr        | gct<br>Ala        | 816 |
| gtg<br>Val        | gtc<br>Val        | acc<br>Thr<br>275 | ccc<br>Pro        | atc<br>Ile        | ctc<br>Leu        | aac<br>Asn        | ccc<br>Pro<br>280 | atc<br>Ile        | atc<br>Ile        | tac<br>Tyr        | agc<br>Ser        | ctg<br>Leu<br>285 | cgg<br>Arg        | aac<br>Asn        | aca<br>Thr        | 864 |
| gag<br>Glu        | gtc<br>Val<br>290 | aaa<br>Lys        | gct<br>Ala        | gcc<br>Ala        | Leu               | aag<br>Lys<br>295 | aga<br>Arg        | acc<br>Thr        | atc<br>Ile        | cag<br>Gln        | aaa<br>Lys<br>300 | acg<br>Thr        | gtg<br>Val        | cct<br>Pro        | atg<br>Met        | 912 |
| gag<br>Glu<br>305 | att<br>Ile        | t ga              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 921 |
| <210<br><211      | > 3               | 92<br>06          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |     |
| <212<br><213      | > н               |                   | sapi              | ens               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <400              |                   |                   | Slu I             | Phe 1             | Len '             | Len               | Leu               | G) v              | Phe               | Ser               | Hic               | ĩ.eu              | e (A              | Δεν               | I.e.v             |     |
| 1                 | •                 |                   |                   | ,                 |                   |                   | _ <b></b>         |                   | 10                |                   |                   | u                 | 44                | 15                | <b>∠</b> ∉u       |     |
| Gln (             | Gly I             | eu l<br>2         | eu E<br>20        | Phe S             | Ser '             | Val               |                   | Leu '<br>25       | Thr               | Ile               | Tyr               |                   | Leu<br>30         | Thr               | Val               |     |

- Ala Gly Asn Phe Leu Ile Val Val Leu Val Ser Thr Asp Ala Ala Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$
- Gln Ser Pro Met Tyr Phe Phe Leu Arg Thr Leu Ser Ala Leu Glu Ile 50 55 60
- Gly Tyr Thr Ser Val Thr Val Pro Leu Leu Leu His His Leu Leu Thr 65 70 75 80
- Gly Arg Arg His 11e Ser Arg Ser Gly Cys Ala Leu Gln Met Phe Phe 85 90 95
- Phe Leu Phe Gly Ala Thr Glu Cys Cys Leu Leu Ala Ala Met Ala 100 105 110
- Tyr Asp Arg Tyr Ala Ala Ile Cys Glu Pro Leu Arg Tyr Pro Leu Leu 115 120 125
- Leu Ser His Arg Val Cys Leu Gln Leu Ala Gly Ser Ala Trp Ala Cys 130 135 140
- Gly Val Leu Val Gly Leu Gly His Thr Pro Phe Ile Phe Ser Leu Pro 145 150 155 160
- Phe Cys Gly Pro Asn Thr Ile Pro Gln Phe Phe Cys Glu Ile Gln Pro 165 170 175
- Val Leu Gln Leu Val Cys Gly Asp Thr Ser Leu Asn Glu Leu Gln Ile 180 185 190
- Ile Leu Ala Thr Ala Leu Leu Ile Leu Cys Pro Phe Gly Leu Ile Leu 195 200 205
- Gly Ser Tyr Gly Arg Ile Leu Val Thr Ile Phe Arg Ile Pro Ser Val 210 215 220
- Ala Gly Arg Arg Lys Ala Phe Ser Thr Cys Ser Ser His Leu Ile Val 225 230 235 240
- Val Ser Leu Phe Tyr Gly Thr Ala Leu Phe Ile Tyr Ile Arg Pro Lys 245 250 . 255
- Ala Ser Tyr Asp Pro Ala Thr Asp Pro Leu Val Ser Leu Phe Tyr Ala 260 265 270
- Val Val Thr Pro Ile Leu Asn Pro Ile Ile Tyr Ser Leu Arg Asn Thr 275 280 285
- Glu Val Lys Ala Ala Leu Lys Arg Thr Ile Gln Lys Thr Val Pro Met 290 295 . 300
- Glu Ile
- <210> 183
- <213> 20
- <212> DNA
- <213> Homo sapiens

|                   | ogge                              | 183<br>ttct              |                      | acct                | ggc               |                   |                   |                   |                      | 160               | J 200             | O PC              | r fi              | NAL.              | ST25              | 20  |
|-------------------|-----------------------------------|--------------------------|----------------------|---------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| <2<br><2          | 10><br>11><br>12><br>13>          | 184<br>23<br>DNA<br>Hom  |                      | pien                | s                 |                   |                   |                   |                      |                   |                   |                   |                   |                   |                   |     |
|                   | 00><br>cgcc                       | 184<br>aaag              |                      | agga                | aga               | aga               |                   |                   |                      |                   |                   |                   |                   |                   |                   | 23  |
| <2<br><2          | 10><br>11><br>12><br>13>          | 185<br>897<br>DNA<br>Hom |                      | pien                | s                 |                   |                   |                   |                      |                   |                   |                   |                   |                   |                   |     |
| <2:<br><2:        | 20><br>21><br>22><br>23>          | CDS<br>(1)               | (8:                  | 97)                 |                   |                   |                   |                   |                      |                   |                   |                   |                   |                   |                   |     |
| ate               | 00><br>g ggt<br>t G1 <sub>3</sub> | 185<br>t cga<br>y Arg    | a gga<br>g Gly       | a aad<br>y Asi<br>5 | e ago<br>n Sei    | act<br>Thi        | gaa<br>Glu        | gtç<br>Val        | g act<br>l Thr<br>10 | gaa<br>Glu        | tto<br>Phe        | cat<br>His        | t ctt<br>s Let    | cto<br>Lei<br>15  | gga<br>Gly        | 48  |
| tt1<br>Phe        | t ggt<br>≥ Gly                    | gto<br>Val               | C caa<br>l Glr<br>20 | e cad               | gaa<br>Glu        | ttt<br>Phe        | cag<br>Glm        | Cat<br>His<br>25  | gto<br>Val           | ctt<br>Leu        | tto<br>Phe        | att<br>Elle       | gta<br>Val<br>30  | ctt<br>Let        | ctt<br>Leu        | 96  |
| ct t<br>Lei       | ato<br>Ile                        | tat<br>Ty:<br>35         | t gtg<br>r Val       | aco<br>Thi          | tco<br>Ser        | ctg<br>Leu        | ata<br>Ile<br>40  | gga<br>Gly        | aat<br>Asn           | att<br>Ile        | gga<br>Gly        | atç<br>Met<br>45  | ato<br>: Ile      | tta<br>Leu        | ctc<br>Leu        | 144 |
| ato               | aag<br>Lys<br>50                  | acc<br>Thr               | gat<br>Asp           | tco<br>Ser          | aga<br>Arg        | ctt<br>Leu<br>55  | caa<br>Gln        | aca<br>Thr        | ccc                  | atg<br>Met        | tac<br>Tyr<br>60  | ttt<br>Phe        | ttt<br>Phe        | cca<br>Pro        | caa<br>Gln        | 192 |
| cat<br>His<br>65  | ttg<br>Leu                        | gct<br>Ala               | ttt<br>Phe           | gtt<br>Val          | gat<br>Asp<br>70  | atc<br>Ile        | tgt<br>Cys        | tat<br>Tyr        | act<br>Thr           | tct<br>Ser<br>75  | gct<br>Ala        | ato               | act<br>Thr        | ccc<br>Pro        | aag<br>Lys<br>80  | 240 |
| atg<br>Met        | ctc<br>Leu                        | Gln                      | ago<br>Ser           | tto<br>Phe<br>85    | aca<br>Thr        | gaa<br>Glu        | gaa<br>Glu        | aat<br>Asn        | aat<br>Asn<br>90     | ttg<br>Leu        | ata<br>Ile        | aca<br>Thr        | ttt<br>Phe        | cgg<br>Arg<br>95  | G) y              | 288 |
| tgt<br>Cys        | gtg<br>Val                        | ata<br>Ile               | caa<br>Gln<br>100    | Phe                 | tta<br>Leu        | gtt<br>Val        | tat<br>Tyr        | gca<br>Ala<br>105 | aca<br>Thr           | ttt<br>Phe        | gca<br>Ala        | acc<br>Thr        | agt<br>Ser<br>110 | gac<br>Asp        | tgt<br>Cys        | 336 |
| tac<br>Tyr        | ctc<br>Leu                        | cta<br>Leu<br>115        | Ala                  | att<br>Ile          | atg<br>Met        | Ala               | atg<br>Met<br>120 | gat<br>Asp        | tgt<br>Cys           | tat<br>Tyr        | gtt<br>Val        | gcc<br>Ala<br>125 | atc               | tgt<br>Cys        | aag<br>Lys        | 384 |
| ccc<br>Pro        | ctt<br>Leu<br>130                 | cgc<br>Arg               | tat<br>Tyr           | ccc<br>Pro          | atg<br>Met        | atc<br>Ile<br>135 | atg<br>Met        | tcc<br>Ser        | caa<br>Gln           | aca<br>Thr        | gtc<br>Val<br>140 | tac<br>Tyr        | atc<br>Ile        | caa<br>Gln        | ctc<br>Leu        | 432 |
| gta<br>Val<br>145 | gct<br>Ala                        | ggc<br>Gly               | tca<br>Ser           | tat<br>Tyr          | att<br>Fre<br>150 | ata<br>TTe        | ggc<br>GIy        | tca<br>Ser        | ata<br>Ile           | aat<br>Asn<br>155 | gcc<br>Ala        | tct<br>Ser        | gta<br>Val        | cat<br>His        | aca<br>Thr<br>160 | 480 |
| ggt<br>Gly        | ttt<br>Phe                        | aca<br>Thr               | ttt<br>Phe           | tca<br>Ser<br>165   | ctg<br>Leu        | tcc<br>Ser        | ttc<br>Phe        | tgc<br>Cys        | aag<br>Lys<br>170    | tct<br>Ser        | aat<br>Asn        | aaa<br>Lys        | atc<br>Ile        | aat<br>Asn<br>175 | cac<br>His        | 528 |
| ttt<br>Phe        | ttc<br>Phe                        | tgt<br>Cys               | gat<br>Asp<br>180    | ggt<br>Gly          | ctc<br>Leu        | cca<br>Pro        | att<br>Ile        | ctt<br>Leu<br>185 | gcc<br>Ala           | ctt<br>Leu        | tca<br>Ser        | tgc<br>Cys        | tcc<br>Ser<br>190 | aac<br>Asn        | att<br>Ile        | 576 |
| gac<br>Asp        | atc<br>Ile                        | aac<br>Asn<br>195        | atc<br>Ile           | att<br>Ile          | cta<br>Leu        | gat<br>Asp        | gtt<br>Val<br>200 | gtc<br>Val        | ttt<br>Phe           | gtg<br>Val        | gga<br>Gly        | ttt<br>Phe<br>205 | gac<br>Asp        | t t g<br>Leu      | atg<br>Met        | 624 |
| ttc<br>Phe        | act<br>Thr<br>210                 | gag<br>Glu               | ttg<br>Leu           | gtc<br>Val          | atc<br>Ile        | atc<br>Ile<br>215 | ttt<br>Phe        | tcc<br>Ser        | tac<br>Tyr           | atc<br>Ile        | tac<br>Tyr<br>220 | att<br>Ile        | atg<br>Met        | gtc<br>Val        | acc<br>Thr        | 672 |

| 16U 200 PCT FINAL.S | 51725 |
|---------------------|-------|
|---------------------|-------|

| atc<br>11e<br>225 | ctg<br>Leu        | aag<br>Lys        | atg<br>Met        | tct<br>Ser        | tct<br>Ser<br>230 | act<br>Thr        | gct<br>Ala        | 999<br>Gl y       | agg<br>Arg        | aaa<br>Lys<br>235 | aaa<br>Lys | tcc<br>Ser         | ttc<br>Phe        | tcc<br>Ser        | aca<br>Thr<br>240 | 720 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|--------------------|-------------------|-------------------|-------------------|-----|
| tgt<br>Cys        | gcc<br>Ala        | tcc<br>Ser        | cac<br>His        | ctg<br>Leu<br>245 | aca<br>Thr        | gca<br>Ala        | gta<br>Val        | acc<br>Thr        | att<br>Ile<br>250 | ttc<br>Phe        | tat<br>Tyr | 99 <b>9</b><br>Gly | aca<br>Thr        | ctc<br>Leu<br>255 | tct ·<br>Ser      | 768 |
| tac<br>Tyr        | atg<br>Met        | tac<br>Tyr        | tta<br>Leu<br>260 | cag<br>Gln        | cct<br>Pro        | cag<br>Gln        | tct<br>Ser        | aat<br>Asn<br>265 | aat<br>Asn        | tct<br>Ser        | cag<br>Gln | gag<br>Glu         | aat<br>Asn<br>270 | atg<br>Met        | aaa<br>Lys        | 816 |
| gta<br>Val        | gcc<br>Ala        | tct<br>Ser<br>275 | ata<br>Ile        | ttt<br>Phe        | tat<br>Tyr        | ggc<br>Gly        | act<br>Thr<br>280 | gtt<br>Val        | att<br>Ile        | ccc<br>Pro        | atg<br>Met | ttg<br>Leu<br>285  | aat<br>Asn        | cct<br>Pro        | tta<br>Leu        | 864 |
| lle               | tat<br>Tyr<br>290 | agc<br>Ser        | ttg<br>Leu        | aga<br>Arg        | aat<br>Asn        | aag<br>Lys<br>295 | gaa<br>Glu        | gga<br>Gly        | aaa<br>Lys        | taa               |            |                    |                   |                   |                   | 897 |

<210> 186

<211> 298

<212> PRT

<213> Homo sapiens

<400> 186

Met Gly Arg Gly Asn Ser Thr Glu Val Thr Glu Phe His Leu Leu Gly  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Phe Gly Val Gln His Glu Phe Gln His Val Leu Phe Ile Val Leu Leu 20 25 30

Leu Ile Tyr Val Thr Ser Leu Ile Gly Asn Ile Gly Met Ile Leu Leu  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$ 

Ile Lys Thr Asp Ser Arg Leu Gln Thr Pro Met Tyr Phe Phe Pro Gln 50 60

His Leu Ala Phe Val Asp lle Cys Tyr Thr Ser Ala Ile Thr Pro Lys 65 70 75 80

Met Leu Gln Ser Phe Thr Glu Glu Asn Asn Leu Ile Thr Phe Arg Gly 85 90 95

Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys 100 105 110

Tyr Leu Leu Ala Ile Met Ala Met Asp Cys Tyr Val Ala Ile Cys Lys
115 120 125

Pro Leu Arg Tyr Pro Met Ile Met Ser Gln Thr Val Tyr Ile Gln Leu 130 135 140

Val Ala Gly Ser Tyr Ile Ile Gly Ser Ile Asn Ala Ser Val His Thr 145 150 155 160

Gly Phe Thr Phe Ser Leu Ser Phe Cys Lys Ser Asn Lys Ile Asn His 165 170 175...

Phe Phe Cys Asp Gly Leu Pro Ile Leu Ala Leu Ser Cys Ser Asn Ile 180 185 190

Asp Ile Asn Ile Ile Leu Asp Val Val Phe Val Gly Phe Asp Leu Met 195 200 205

| Ph∈                      | 21               | r Gl<br>O                 | u Le              | υ Va             | 1 11             | e Ile<br>21      | Pho<br>5          | e Se:             | r Ty             | r Ile            | 22               | r Il              | e Mei             | t Va.            | l Thr            |     |
|--------------------------|------------------|---------------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|-----|
| 11e<br>225               | e Le             | u Ly                      | s Me              | t Se             | r Se<br>23       | r Thi            | r Ala             | a Gly             | y Ar             | 23!              |                  | s Se              | r Phe             | e Se             | r Thr<br>240     |     |
| Cys                      | Al.              | a Se                      | r Hi              | s Le             | u Th             | r Ala            | ı Val             | 1 Th              | r 11e<br>250     |                  | е Ту             | r Gly             | y Thi             | r Lei<br>25!     | ı Ser            |     |
| Tyr                      | Me               | t Ty                      | r Lei<br>26       | u Gli<br>O       | n Pro            | o Glr            | Sei               | 265               |                  | Sei              | Gli              | n Gle             | 3 Asr<br>270      |                  | Lys              |     |
| Val                      | Ala              | a Se:<br>27:              | r 116<br>5        | e Phe            | ≘ Ту             | r Gly            | 7 Thi<br>280      | r Val             | llle             | Pro              | Met              | Let<br>285        |                   | Pro              | ) Leu            |     |
| He                       | Ту:<br>290       | r Sei                     | r Lei             | ı Arç            | ) Ası            | Lys<br>295       |                   | 1 Gly             | / Lys            | ;                |                  |                   |                   |                  |                  |     |
| <21<br><21<br><21<br><21 | 1 ><br>2 >       | 187<br>930<br>DNA<br>Homo | o sap             | oiens            | i                |                  |                   |                   |                  |                  |                  |                   |                   |                  |                  |     |
| <22<br><22<br><22<br><22 | 1><br>2>         | CDS<br>(1).               | . (93             | 10)              |                  |                  |                   |                   |                  |                  |                  |                   |                   |                  |                  |     |
| <400<br>atg<br>Met<br>1  | aca              | 187<br>cta<br>Leu         | gga<br>Gly        | aac<br>Asn<br>5  | ago<br>Ser       | act<br>Thr       | gaa<br>Glu        | gtc<br>Val        | act<br>Thr<br>10 | gaa<br>Glu       | t t c            | tat<br>Tyr        | ctt<br>Leu        | ctg<br>Leu<br>15 | gga<br>Gly       | 48  |
| ttt<br>Phe               | ggt<br>Gly       | gcc                       | cag<br>Gln<br>20  | cat<br>His       | gag<br>Glu       | ttt<br>Phe       | tgg<br>Trp        | tgt<br>Cys<br>25  | atc<br>Ile       | ctc<br>Leu       | ttc<br>Phe       | att               | gta<br>Val<br>30  | ttc<br>Phe       | ctt<br>Leu       | 96  |
| ctc<br>Leu               | atc<br>Ile       | tat<br>Tyr<br>35          | gtg<br>Val        | acc<br>Thr       | tcc<br>Ser       | ata<br>Ile       | atg<br>Met<br>40  | ggt<br>Gly        | aat<br>Asn       | agt<br>Ser       | gga<br>Gly       | ata<br>Ile<br>45  | atc<br>Ile        | tta<br>Leu       | ctc<br>Leu       | 144 |
| atc<br>Ile               | aac<br>Asn<br>50 | aca<br>Thr                | gat<br>Asp        | tcc<br>Ser       | aga<br>Arg       | ttt<br>Phe<br>55 | caa<br>Gln        | aca<br>Thr        | ctc<br>Leu       | acg<br>Thr       | tac<br>Tyr<br>60 | ttt<br>Phe        | ttt<br>Phe        | cta<br>Leu       | caa<br>Gln       | 192 |
| cat<br>His<br>65         | ttg<br>Leu       | gct<br>Ala                | ttt<br>Phe        | gtt<br>Val       | gat<br>Asp<br>70 | atc<br>Ile       | tgt<br>Cys        | tac<br>Tyr        | act<br>Thr       | tct<br>Ser<br>75 | gct<br>Ala       | atc<br>Ile        | act<br>Thr        | ccc<br>Pro       | aag<br>Lys<br>80 | 240 |
| atg<br>Met               | ctc<br>Leu       | caa<br>Gln                | agc<br>Ser        | ttc<br>Phe<br>85 | aca<br>Thr       | gaa<br>Glu       | gaa<br>Glu        | aag<br>Lys        | aat<br>Asn<br>90 | ttg<br>Leu       | atg<br>Met       | tta<br>Leu        | ttt<br>Phe        | cag<br>Gln<br>95 | ggc<br>Gly       | 288 |
| tgt<br>Cys               | gtg<br>Val       | ata<br>Ile                | caa<br>Gln<br>100 | ttc<br>Phe       | tta<br>Leu       | gtt<br>Val       | tat<br>Tyr        | gca<br>Ala<br>105 | aca<br>Thr       | ttt<br>Phe       | gca<br>Ala       | acc<br>Thr        | agt<br>Ser<br>110 | gac<br>Asp       | tgt<br>Cys       | 336 |
| tat<br>Tyr               | ctc<br>Leu       | ctg<br>Leu<br>115         | gct<br>Ala        | atg<br>Met       | atg<br>Met       | gca<br>Ala       | gtg<br>Val<br>120 | gat<br>Asp        | cct<br>Pro       | tat<br>Tyr       | gtt<br>Val       | gcc<br>Ala<br>125 | atc<br>Ile        | tgt<br>Cys       | aag<br>Lys       | 384 |
| rio                      | 130              | HIS                       | Tyr               | Thr              | Val              | 11e<br>135       | Met               | Ser               | Arg              | Thr              | Val<br>140       | Cys               | atc<br>Ile        | Arg <sub>,</sub> | Leu              | 432 |
| 145                      | міа              | GIA                       | Ser               | Tyr              | 11e<br>150       | Met              | Gly               | Ser               | lle              | Asn<br>155       | Ala              | Ser               | gta<br>Val        | Gln              | Thr<br>160       | 480 |
| ggt 1<br>Gly 1           | ttt<br>Phe       | aca<br>Thr                | tgt<br>Cys        | tca<br>Ser       | ctg<br>Leu       | tcc<br>Ser       | ttc<br>Phe        | tgc<br>Cys        | aag<br>Lys       | tcc<br>Ser       | Asn              | agc<br>Ser<br>age | atc<br>Ile<br>109 | aat<br>Asn       | cac<br>His       | 528 |

|                                           | 165                                     | 17                                     | 16U 200 PCT                           | FINAL.ST25<br>175                 |     |
|-------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------|-----|
| ttt ttc tgt<br>Phe Phe Cys                | gat gtt ccc c<br>Asp Val Pro P<br>180   | ct att ctt gc<br>ro Ile Leu Al<br>185  | t ctt tca tgc<br>a Leu Ser Cys        | tcc aat gtt<br>Ser Asn Val<br>190 | 576 |
| gac atc aac<br>Asp lle Asn<br>195         | atc atg cta c<br>Ile Met Leu L          | tt gtt gtc tt<br>eu Val Val Ph<br>200  | t gtg gga tct<br>e Val Gly Ser<br>205 | aac ttg ata<br>Asn Leu Ile        | 624 |
| ttc act ggg<br>Phe Thr Gly<br>210         | Leu Val Val I                           | tc ttt tcc ta<br>le Phe Ser Ty<br>15   | c atc tac atc<br>r Ile Tyr Ile<br>220 | atg gcc acc .<br>Met Ala Thr      | 672 |
| atc ctg aaa<br>Ile Leu Lys<br>225         | atg tct tct a<br>Met Ser Ser S<br>230   | gt gca gga ag<br>er Ala Gly Ar         | g aaa aaa tcc<br>g Lys Lys Ser<br>235 | ttc tca aca<br>Phe Ser Thr<br>240 | 720 |
| tgt gct tcc<br>Cys Ala Ser                | cac ctg acc g<br>His Leu Thr A<br>245   | ca gtc acc at<br>la Val Thr Il<br>25   | t ttc tat ggg<br>e Phe Tyr Gly<br>O   | aca ctc tct<br>Thr Leu Ser<br>255 | 768 |
| tac atg tat<br>Tyr Met Tyr                | ttg cag tct ca<br>Leu Gln Ser Hi<br>260 | at tot aat aa<br>is Ser Asn Asi<br>265 | t tcc cag gaa<br>n Ser Gln Glu        | aat atg aaa<br>Asn Met Lys<br>270 | 816 |
| gtg gcc ttt<br>Val Ala Phe<br>275         | ata ttt tat go<br>Ile Phe Tyr G         | c aca gtt at<br>y Thr Val Ile<br>280   | t ccc atg tta<br>e Pro Met Leu<br>285 | aat cct tta<br>Asn Pro Leu        | 864 |
| atc tat agc<br>Ile Tyr Ser<br>290         | ttg aga aat aa<br>Leu Arg Asn Ly<br>29  | s Glu Val Lys                          | a gaa gct tta<br>s Glu Ala Leu<br>300 | aaa gtg ata<br>Lys Val Ile        | 912 |
| ggg aaa aag<br>Gly Lys Lys<br>305         |                                         |                                        |                                       | ·                                 | 930 |
| <210> 188 <211> 309 <212> PRT <213> Homo: | sapiens                                 |                                        |                                       |                                   |     |
| <400> 188                                 |                                         |                                        |                                       |                                   |     |
| Met Thr Leu (<br>1                        | Gly Asn Ser Th<br>5                     | r Glu Val Thr<br>10                    | Glu Phe Tyr                           | Leu Leu Gly<br>15                 |     |
|                                           | Gln His Glu Ph<br>20                    | e Trp Cys Ile<br>25                    | Leu Phe Ile                           | Val Phe Leu<br>30                 |     |
| Leu lle Tyr V<br>35                       | /al Thr Ser Il                          | e Met Gly Asn<br>40                    | Ser Gly Ile 1<br>45                   | ile Leu Leu                       |     |
| Ile Asn Thr A<br>50                       | Asp Ser Arg Pho<br>55                   | e Gln Thr Leu                          | Thr Tyr Phe I                         | he Leu Gln                        |     |
| His Leu Ala P<br>65                       | Phe Val Asp Ile<br>70                   | e Cys Tyr Thr                          | Ser Ala Ile 1<br>75                   | Chr Pro Lys<br>80                 |     |
| Met Leu Gln S                             | er Phe Thr Glu<br>85                    | Glu Lys Asn<br>90                      | Leu Met Leu F                         | Phe Gln Gly<br>95                 |     |
| Cys Val Ile G                             | ln Phe Leu Val<br>00                    | Tyr Ala Thr<br>105                     | Phe Ala Thr S                         | er Asp Cys<br>10                  |     |
| Tyr Leu Leu A<br>115                      | la Met Met Ala                          | Val Asp Pro<br>120                     | Tyr Val Ala I<br>125                  | le Cys Lys                        |     |
| Pro Leu His T                             | yr Thr Val Ile                          | Met Ser Arg                            | Thr Val Cys I                         | le Arg Leu                        |     |

OCID: <WO \_\_\_\_\_03089583A2 1 >

|                          | 13               | 0                         |                  |                 |                  | . 13             | 5                |                  |                  | 160              | J 200<br>140     |                  | r fi             | NAL.             | ST25             |          |
|--------------------------|------------------|---------------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------|
| Va<br>14                 | 1 Al<br>5        | a Gl                      | y Se             | r Ty            | r Il<br>15       | e Met<br>O       | <b>G</b> 1       | y Sei            | r Ile            | 2 Ası<br>15      | n Ala            | a Se             | r Va             | 1 G1             | n Th:            |          |
| G1                       | y Ph             | e Th                      | r Cy             | s Se<br>16      | r Le             | บ Sei            | r Ph             | e Cys            | 5 Ly:            | s Sei            | c Ası            | s Sei            | r Il             | e As.<br>17      |                  | 3        |
| Ph                       | e Ph             | e Cy                      | s As<br>18       | p Va<br>O       | l Pr             | o Pro            | 110              | e Lei<br>185     | ı Ala            | Let              | ı Ser            | : Cy:            | s Se<br>19       |                  | n Val            | l        |
| Asj                      | 11               | e As<br>19                | n Il<br>5        | e Me            | t Lei            | u Leu            | 200              | l Val            | Phe              | · Val            | Gly              | Se 1             |                  | n Lei            | u Ile            | <b>:</b> |
| Phe                      | 210              | r G1                      | y Le             | u Va.           | l Val            | l Ile<br>215     | Phe              | e Ser            | Туг              | lle              | 220              |                  | : Me             | t Ala            | a Thr            |          |
| 11e<br>225               | Lei              | ı Ly:                     | s Me             | t Se            | r Sei<br>230     | s Ser            | Ala              | 9 Gly            | Arg              | Lys<br>235       |                  | Ser              | Pho              | e Sei            | 240              |          |
| Cys                      | : Ala            | a Sei                     | r His            | s Lee<br>24!    | ı Thr            | Ala              | Va]              | Thr              | 11e<br>250       |                  | Туг              | G1 y             | Th:              | r Lei<br>255     |                  |          |
| Tyr                      | Met              | : Ту                      | r Lei<br>260     | o Glr<br>)      | n Ser            | His              | Ser              | 265              |                  | Ser              | Gln              | Glu              | 270              |                  | Lys              |          |
| Val                      | Ala              | 275                       | e Ile            | ≥ Phe           | e Tyr            | Gly              | Thr<br>280       | Val              | lle              | Pro              | Met              | Leu<br>285       |                  | n Pro            | Leu              |          |
| Ile                      | Туг<br>290       | Ser                       | . Lev            | ı Arç           | ) Asn            | Lys<br>295       | Glu              | val              | Lys              | Glu              | Ala<br>300       | Leu              | Lys              | val              | Ile              |          |
| Gly<br>305               |                  | Lys                       | . Leu            | Phe             | •                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |
| <21<br><21<br><21<br><21 | 1><br>2>         | 189<br>522<br>DNA<br>Homo | sap              | iens            |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |
| <22<br><22<br><22<br><22 | 1><br>2>         | CDS<br>(1).               | . (52            | 2)              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |
| <400<br>atg<br>Met<br>l  | ctc              | 189<br>caa<br>Gln         | agc<br>Ser       | ttc<br>Phe<br>5 | acg<br>Thr       | gaa<br>Glu       | gaa<br>Glu       | aag<br>Lys       | aat<br>Asn<br>10 | ttg<br>Leu       | ata<br>Ile       | tca<br>Ser       | ttt<br>Phe       | tgg<br>Trp<br>15 | ggc<br>Gly       | 48       |
| gc<br>Cys                | atg<br>Met       | ata<br>Ile                | caa<br>Gln<br>20 | tta<br>Leu      | ttg<br>Leu       | gtt<br>Val       | tat<br>Tyr       | gca<br>Ala<br>25 | aca<br>Thr       | ttt<br>Phe       | gca<br>Ala       | acc<br>Thr       | agt<br>Ser<br>30 | gac<br>Asp       | tgt<br>Cys       | 96       |
| at<br>Yyr                | ctc<br>Leú       | ctg<br>Leu<br>35          | gct<br>Ala       | atg<br>Met      | ata<br>Ile       | gca<br>Ala       | gtg<br>Val<br>40 | gac<br>Asp       | cat<br>His       | tat<br>Tyr       | gtt<br>Val       | gca<br>Ala<br>45 | atc<br>Ile       | tgt<br>Cys       | aag<br>Lys       | 144      |
| ro                       | ctt<br>Leu<br>50 | cac<br>His                | tat<br>Tyr       | acc<br>Thr      | gta<br>Val       | atc<br>Ile<br>55 | acg<br>Thr       | tcc<br>Ser       | caa<br>Gln       | aca<br>Thr       | gtc<br>Val<br>60 | tgc<br>Cys       | atc<br>Ile       | cat<br>His       | ttg<br>Leu       | 192      |
| ta<br>'al                | gct<br>Ala       | ggt<br>Gly                | tca<br>Ser       | tac<br>Tyr      | atc<br>Ile<br>70 | atg<br>Met       | ggc<br>Gly       | tca<br>Ser       | Ile              | aat<br>Asn<br>75 | gcc<br>Ala       | tct<br>Ser       | gta<br>Val       | cat<br>His       | aca<br>Thr<br>80 | 240      |
| gt                       | ttt              | gca                       | ttt              | tca             | ctg              | tct              | ttc              | tgc              | aag              | tcc              | aat              | aac              | atc              | aac              | cac              | 288      |

| Gly                       | Ph         | e Al                  | a Ph               | e Se<br>85          |                       | ı Se         | r Ph                  | е Су               | s Ly<br>90            | s Se                  |                    | 0 PC<br>in As      |                    |              | n His                 |          |
|---------------------------|------------|-----------------------|--------------------|---------------------|-----------------------|--------------|-----------------------|--------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|--------------|-----------------------|----------|
| ttt<br>Phe                | t t<br>Ph  | c tg<br>e Cy          | t ga<br>s As<br>10 | p Gl                | t ccc<br>y Pro        | CC.          | a at                  | t ct<br>e Le<br>10 | u Al                  | c ct<br>a Le          | t to<br>u Se       | a tg<br>r Cy       | c tc<br>s Se<br>11 | r As         | t att<br>n Ile        | 336      |
| gac<br>Asp                | ate<br>11  | c aa<br>e As<br>11    | n 11               | c at<br>e Me        | g cta<br>t Lei        | cti<br>Le    | t gti<br>u Val<br>120 | l Va               | c tt<br>l Ph          | t gt<br>e Va          | g gg               | a tt<br>y Ph<br>12 | e As               | c tt<br>n Le | g atg<br>u Met        | 384      |
| ttc<br>Phe                | act<br>Thi | GI                    | g tte              | g ga<br>u Gl        | g aat<br>u Asr        | ato<br>Mei   | t Lys                 | a gte<br>s Va.     | g gce<br>l Ala        | c tc<br>a Se          | t at<br>r Il<br>]4 | e Ph               | t ta<br>e Ty       | t gg<br>r Gl | c act<br>y Thr        | 432      |
| gtt<br>Val<br>145         | att<br>Ile | CCC<br>Pro            | c ate              | g tte               | g aat<br>u Asn<br>150 | Pro          | tta<br>Lei            | ato<br>1110        | tai<br>Tyi            | t age<br>r Sei<br>15! | r Le               | g ag<br>u Ar       | a aa<br>g Ası      | t aa<br>n Ly | g gaa<br>s Glu<br>160 | 480      |
| gta<br>Val                | aaa<br>Lys | gaa<br>Glu            | a gci<br>u Ala     | t tta<br>Lev<br>165 | a aaa<br>u Lys<br>S   | t t g<br>Leu | ata<br>Ile            | 999<br>Gly         | 3 aaa<br>7 Lys<br>170 | Lys                   | g tt               | c tt<br>e Pho      | t taa              | <b>a</b>     |                       | 522      |
| -216                      |            |                       |                    |                     |                       |              |                       |                    |                       |                       |                    |                    |                    |              |                       | •        |
| <210<br><211              | <b>!</b> > | 190<br>173            |                    |                     |                       |              |                       |                    |                       |                       |                    |                    |                    |              |                       |          |
| <212<br><213              |            | PRT<br>Homo           | sap                | piens               | <b>.</b>              |              |                       |                    |                       |                       |                    |                    |                    |              |                       |          |
| <400                      | )>         | 190                   |                    |                     |                       |              |                       |                    |                       |                       |                    |                    |                    |              |                       |          |
| Met<br>1                  | Leu        | Glr                   | Ser                | Phe<br>5            | Thr                   | Glu          | Glu                   | Lys                | Asn<br>10             | Leu                   | 116                | Ser                | Phe                | 15           | Gly                   |          |
| Cys                       | Met        | Ile                   | Gln<br>20          | Leu                 | Leu                   | Val          | Тyr                   | Ala<br>25          | Thr                   | Phe                   | Ala                | Thr                | Ser<br>30          | Asp          | Cys                   |          |
| <b>T</b> yr               | Leu        | Leu<br>35             | Ala                | Met                 | Ile                   | Ala          | Val<br>40             | Asp                | His                   | Tyr                   | Val                | Ala<br>45          | Ile                | Cys          | Lys                   |          |
| Pro                       | Leu<br>50  | His                   | Тyr                | Thr                 | Val                   | 11e<br>55    | Thr                   | Ser                | Gln                   | Thr                   | Val<br>60          | Cys                | Ile                | His          | Leu                   |          |
| Val .<br>65               | Ala        | Gly                   | Ser                | Туr                 | 11e<br>70             | Met          | Gly                   | Ser                | Ile                   | Asn<br>75             | Ala                | Ser                | Val                | His          | Thr<br>80             |          |
| Gly                       | Phe        | Ala                   | Phe                | Ser<br>85           | Leu                   | Ser          | Phe                   | Cys                | Lys<br>90             | Ser                   | Asn                | Asn                | lle                | Asn<br>95    | His                   |          |
| Phe I                     | Phe        | Cys                   | Asp<br>100         | G1 y                | Pro                   | Pro          | lle                   | Leu<br>105         | Ala                   | Leu                   | Ser                | Cys                | Ser<br>110         | Asn          | lle                   |          |
| Asp I                     | lle        | Asn<br>115            | lle                | Met                 | Leu                   | Leu          | Val<br>120            | Val                | Phe                   | Val                   | G1 y               | Phe<br>125         | Asn                | Leu          | Met                   |          |
| Phe 1                     | hr<br>30   | G1 y                  | Leu                | Glu                 | Asa                   | Met<br>135   | Lys                   | Val                | Ala                   | Ser                   | Jle<br>140         | Phe                | Tyr                | G1 y         | Thr                   |          |
| Val I<br>145              | le         | Pro                   | Met                | Leu                 | Asn<br>150            | Pro          | Leu                   | lle                | Tyr                   | Ser<br>155            | Leu                | Arg                | Asn                | Lys          | Glu<br>160            |          |
| Val L                     | ys         | Glu                   | Ala                | Leu<br>165          | Lys 1                 | Leu          | Ile                   |                    | Lys<br>170            | Lys                   | Phe                | Phe                |                    | ,            |                       | <i>:</i> |
| <210><211><211><212><213> | 4<br>Di    | 91<br>99<br>NA<br>omo | sapi               | ens                 |                       |              |                       |                    |                       |                       |                    |                    |                    |              |                       |          |

|        | <22<br><22               | 20><br>21><br>22><br>23> | CDS<br>(43        | :<br>) (            | 372)                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |            |
|--------|--------------------------|--------------------------|-------------------|---------------------|----------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------|
|        | < 4 (                    | 00>                      | 191               |                     |                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |            |
|        | cgt                      | tat                      | gtgg              | cct                 | tctgi                | aa o             | ссас             | etcca            | et ta            | tcca             | 9999             | gtt              |                  |                  | cag<br>Gln       |                   | 5          |
|        | cto<br>Lev<br>5          | tg<br>Cy                 | c at<br>s Il      | t aa<br>e Ly        | g Ctá<br>s Lei       | tta<br>Lev<br>10 | gtt<br>Val       | agt<br>Sei       | tca<br>Ser       | tat<br>Tyr       | gto<br>Val<br>15 | ato<br>Met       | 3 991<br>: Gly   | t tto<br>/ Phe   | cta<br>Lei       | aat<br>Asn<br>20  | 102        |
|        | gcc<br>Ala               | tc<br>Se                 | t at<br>r Il      | a aa<br>e As:       | c ata<br>n 11e<br>25 | agt<br>Ser       | tto<br>Phe       | act<br>Thi       | tto<br>Phe       | tca<br>Ser<br>30 | tto<br>Lei       | g aad<br>1 Asr   | tto<br>Phe       | tgc<br>Cys       | aaa<br>Lys<br>35 | tcc<br>Ser        | 150        |
|        | aaa<br>Lys               | aca<br>Thi               | a at              | t aa<br>e Asi<br>40 | t cac<br>n His       | ttt<br>Phe       | tto<br>Phe       | tgt<br>Cys       | gat<br>Asp<br>45 | gaa<br>Glu       | cct<br>Pro       | . cca<br>o Pro   | att<br>Ile       | att<br>11e<br>50 | gcc<br>Ala       | cta<br>Leu        | 198        |
|        | cca<br>Pro               | tge<br>Cy:               | s Sei             | c aat               | t att<br>n Ile       | gac<br>Asp       | ctc<br>Leu       | aac<br>Asn<br>60 | atc<br>Ile       | atg<br>Met       | tta<br>Leu       | tta<br>Leu       | aca<br>Thr<br>65 | gta<br>Val       | ttt.<br>Phe      | gtg               | . 246      |
|        | gga<br>Gly               | tta<br>Lei<br>70         | a aat<br>a Asi    | t ttg<br>n Lei      | g atg<br>u Met       | t gc<br>Cys      | act<br>Thr<br>75 | gtg<br>Val       | atg<br>Met       | gtg<br>Val       | gtc<br>Val       | atc<br>Ile<br>80 | att              | tcc<br>Ser       | t gc<br>Cys      | ata<br>Ile        | 294        |
|        | tat<br>Tyr<br>85         | gt <i>o</i><br>Val       | Lei               | g gtt<br>u Val      | gcc<br>Ala           | atc<br>Ile<br>90 | ctg<br>Leu       | agg<br>Arg       | ata<br>Ile       | tct<br>Ser       | tct<br>Ser<br>95 | gct              | gca<br>Ala       | 999<br>Gly       | aag<br>Lys       | aaa<br>Lys<br>100 | 342        |
|        | aaa<br>Lys               | gto<br>Val               | tci<br>Sei        | : Cta               | cat<br>His<br>105    | gtg<br>Val       | cct<br>Pro       | Pro              | acc<br>Thr       | tga              | cag              | cagt             | cac              | catt             | ttct             | at                | 392        |
|        |                          |                          |                   |                     | catg                 |                  |                  |                  |                  |                  |                  |                  |                  |                  | acaa             | gaaaaa            | 452<br>499 |
|        | <21<br><21<br><21<br><21 | 0><br>1><br>2>           | 192<br>109<br>PRT |                     | iens                 | 39 -             |                  |                  |                  | cuty             |                  | Bec              |                  |                  |                  |                   | 993        |
|        | <40                      |                          | 192               |                     |                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |            |
| :      | Met<br>1                 | Ser                      | Gln               | Arg                 | Leu<br>5             | Cys              | lle              | Lys              | Leu              | Leu<br>10        | Val              | Ser              | Ser              | Tyr              | Val<br>15        | Met               |            |
| (      | Sly                      | Phe                      | Leu               | Asn<br>20           | Ala                  | Ser              | lle              | Asn              | Ile<br>25        | Ser              | Phe              | Thr              | Phe              | Ser<br>30        | Leu              | Asn               |            |
| -<br>- | Phe                      | Cys                      | Lys<br>35         | Ser                 | Lys                  | Thr              | lle              | Asn<br>40        | His              | Phe              | Phe              | Cys              | Asp<br>45        | Glu              | Pro              | Pro               |            |
| 1      | le                       | 11e<br>50                | Ala               | Leu                 | Pro                  | Cys              | Ser<br>55        | Asn              | lle              | Asp              | Leu              | Asn<br>60        | Ile              | Met              | Leu              | Leu               |            |
| 6      | hr<br>5                  | Val                      | Phe               | Val                 | G] y                 | Leu<br>70        | Asn              | Leu              | Met              | Cys              | Thr<br>75        | Val              | Met              | Val              | Val              | 11e<br>80         |            |
| 1      | le                       | Ser                      | Cys               | Ile                 | Tyr<br>85            | Val              | Leu              | Val              | Ala              | Ile<br>90        | Leu              | Arg              | Ile              | Ser              | Ser<br>95        | Ala               |            |

```
16U 200 PCT FINAL.ST25
    <210>
               193
    <211>
               681
    <212>
               DNA
    <213> Homo sapiens
    <220>
    <221>
              CDS
               (1)..(681)
    <222>
    <223>
   <400> 193
   atg gct tat gac cgc tac atg gca atc tcc aag ccc ctg ctt tat tcc
Met Ala Tyr Asp Arg Tyr Met Ala Ile Ser Lys Pro Leu Leu Tyr Ser
                                                                                                                        48
   cgg gcc aca ttc cca gag tta tgt gcc agt ctt gtt gag gct tca cac
Arg Ala Thr Phe Pro Glu Leu Cys Ala Ser Leu Val Glu Ala Ser His
                                                                                                                        96
   ctt ggc ggc ttt gta aac tca acc atc acc agt gag aca cct acc
Leu Gly Gly Phe Val Asn Ser Thr Ile Ile Thr Ser Glu Thr Pro Thr
   ttg agc ttc tgt ggc agc aat atc att gat gat ttc ttc tgt gat ctg
                                                                                                                     192
   Leu Ser Phe Cys Gly Ser Asn Ile Ile Asp Asp Phe Phe Cys Asp Leu
  ccc cca ctt gta aag ttg gtg tgt gat gtg aag gag cgc tac cag gct
Pro Pro Leu Val Lys Leu Val Cys Asp Val Lys Glu Arg Tyr Gln Ala
65 70 75 80
                                                                                                                      240
  gtg ctg cat ttt atg ctt gcc tcc aat cat cac tcc cac tgc act tat
Val Leu His Phe Met Leu Ala Ser Asn His His Ser His Cys Thr Tyr
                                                                                                                      288
                                                             90
  tct tgc gtc cat ctc ttc atc att gca gcc atc tcg aag atc cgt tcc
Ser Cys Val His Leu Phe Ile Ile Ala Ala Ile Ser Lys Ile Arg Ser
                                                                                                                     336
                                                      105
  att aag ggc cgc ctc cag gtc ttc tcc act tgt ggg tct ccc ctg acg
Ile Lys Gly Arg Leu Gln Val Phe Ser Thr Cys Gly Ser Pro Leu Thr
                                                                                                                     384
                                               120
 get etc ace ttg tae tat ggt gea ate tte ttt att tae tee caa eea Ala Leu Thr Leu Tyr Tyr Gly Ala Ile Phe Phe Ile Tyr Ser Gln Pro
                                                                                                                     432
 aga act agc tat gcc tta aaa atg gat aaa ttg ggg tca gtg ttc tat
Arg Thr Ser Tyr Ala Leu Lys Met Asp Lys Leu Gly Ser Val Phe Tyr
                                                                                                                     480
                                 150
 act gtg gtg att cca atg cta aac ccc ttg atc tat agc tta aga aat Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn 165 170 175
                                                                                                                     528
 aag gat gtc aaa gat gcc ttg aag aaa atg tta gat aga ctt cag ttt
Lys Asp Val Lys Asp Ala Leu Lys Lys Met Leu Asp Arg Leu Gln Phe
180 185 185 190
                                                                                                                    576
ctt aaa gaa aaa tat tgt aga tat ggg ctg gcc tgt agt gag cgc tac
~Leu Lys Glu Lys Tyr Cys Arg Tyr Gly Leu Ala Cys Ser Glu Arg Tyr
195 200 205
                                                                                                                    624
 ctc ctg gct gcc atg ggt tat gac tgc tat gag gca atc tcc aag ccc
Leu Leu Ala Ala Met Gly Tyr Asp Cys Tyr Glu Ala Ile Ser Lys Pro
210 215 220
ctg ctt taa
                                                                                                                    681
Leu Leu
225
<210>
           194
<211>
           226
<212>
         PRT
          Homo sapiens
<213>
<400>
          194
```

Page 114

16U 200 PCT FINAL.ST25 Met Ala Tyr Asp Arg Tyr Met Ala Ile Ser Lys Pro Leu Leu Tyr Ser Arg Ala Thr Phe Pro Glu Leu Cys Ala Ser Leu Val Glu Ala Ser His Leu Gly Gly Phe Val Asn Ser Thr Ile Ile Thr Ser Glu Thr Pro Thr Leu Ser Phe Cys Gly Ser Asn Ile Ile Asp Asp Phe Phe Cys Asp Leu Pro Pro Leu Val Lys Leu Val Cys Asp Val Lys Glu Arg Tyr Gln Ala 65 70 75 80 Val Leu His Phe Met Leu Ala Ser Asn His His Ser His Cys Thr Tyr Ser Cys Val His Leu Phe Ile Ile Ala Ala Ile Ser Lys Ile Arg Ser Ile Lys Gly Arg Leu Gl $\dot{n}$  Val Phe Ser Thr Cys Gly Ser Pro Leu Thr 115 120 125 Ala Leu Thr Leu Tyr Tyr Gly Ala Ile Phe Phe Ile Tyr Ser Gln Pro 130 135 140 Arg Thr Ser Tyr Ala Leu Lys Met Asp Lys Leu Gly Ser Val Phe Tyr 145 150 160 Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Ala Leu Lys Lys Met Leu Asp Arg Leu Gln Phe 180 185 190Leu Lys Glu Lys Tyr Cys Arg Tyr Gly Leu Ala Cys Ser Glu Arg Tyr 195 200 205 Leu Leu Ala Ala Met Gly Tyr Asp Cys Tyr Glu Ala Ile Ser Lys Pro 210 215 220 Leu Leu <210> 195 <211> 1095 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1095) <223> <400> 195 atg gcc tct gag acc ttc aac act gaa gac cca gcc ggg ttg atg cac Met Ala Ser Glu Thr Phe Asn Thr Glu Asp Pro Ala Gly Leu Met His tcg gat gcc ggc acc agc tgc ccc gtc ctt tgc aca tgc cgt aac cag Ser Asp Ala Gly Thr Ser Cys Pro Val Leu Cys Thr Cys Arg Asn Gln

48

96

| gt<br>Vá          | ig gi<br>al Va     | tg g<br>al A<br>3      | sp C                             | gt a                 | gc aç<br>er Se        | gc ca<br>er Gl        | ng cg<br>n Ar<br>40   | g Le              | a tt<br>eu Ph        | c tc                  | c at                 | a cc                | c co               | a a                | ST25<br>acct<br>sple  | α 144        |
|-------------------|--------------------|------------------------|----------------------------------|----------------------|-----------------------|-----------------------|-----------------------|-------------------|----------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|-----------------------|--------------|
| Pr                | a at<br>o Me<br>50 | t A                    | ac ac                            | ec co                | ga aa<br>rg As        | c ct<br>in Le<br>55   | u Se                  | c ct<br>r Le      | g gc<br>eu Al        | c cad<br>a His        | c aad<br>s Asi<br>60 | c cg<br>n Ar        | c at               | c ac<br>e T)       | ca go<br>or Al        | ca 192<br>.a |
| 65                | ıl Pr              | O P                    | ro Gl                            | ly T)                | r Le<br>70            | u Th                  | r Cy:                 | ѕ Ту              | r Me                 | t G1u<br>75           | ı Lei                | u Gl                | n Va               | l Le               | eu As<br>80           | p            |
| t t<br>Le         | g ca<br>u Hi       | c aa<br>s As           | ncaa<br>an As                    | nc to<br>sn Se<br>85 | r Le                  | a at<br>u Me          | g ga<br>t Gli         | g ct<br>u Le      | g cco<br>u Pro<br>90 | c cgg<br>o Arg        | 3 gg6<br>3 Gly       | c ct                | c tt<br>u Ph       | c ct<br>e Le<br>95 | u Hi                  | t 288<br>s   |
| gc<br>Al          | c aa<br>a Ly       | g co                   | gc tt<br>g Le<br>10              | u Al                 | a ca<br>a Hi          | c tte                 | g gad<br>v Asj        | cte<br>Le<br>10   | g ago<br>u Sei<br>S  | tac<br>Tyr            | aac<br>Asr           | aai<br>Asi          | t tt<br>n Ph<br>11 | e Se               | c ca<br>r Hi          | t 336<br>s   |
| gt<br>Va          | g cc<br>1 Pr       | a gc<br>o Al<br>11     | a As                             | c at<br>p Me         | g tt<br>t Ph          | c cad                 | g gag<br>n Gli<br>120 | ı Ala             | c cat<br>a His       | : ggg<br>: Gly        | cta<br>Leu           | gte<br>1 Val<br>125 | l Hi               | c at<br>s Il       | c ga<br>e As          | c 384<br>p   |
| c t               | g ag<br>u Se<br>13 | r Hı                   | c aa<br>s As                     | c cc<br>n Pr         | c tg<br>o Trj         | g cto<br>p Lei<br>135 | ı Arg                 | ago<br>Aro        | g gtg<br>g Val       | cat<br>His            | CCC<br>Pro<br>140    | Glr                 | g gc               | c tt<br>a Ph       | t cad<br>e Gli        | g 432<br>n   |
| 99<br>G1:<br>14:  | A rei              | c at<br>u Me           | g ca<br>t Gl                     | g cte<br>n Le        | c cga<br>u Arg<br>150 | g Asp                 | ctg<br>Leu            | gad<br>Asp        | c ctc<br>c Leu       | agt<br>Ser<br>155     | tat<br><b>T</b> yr   | 617<br>996          | 9 gg(<br>/ Gl      | ct<br>y Le         | g gco<br>u Ala<br>160 | 3            |
| t to<br>Pho       | c cto              | ag<br>J Se             | c ct<br>r Le                     | g gag<br>u Gli<br>16 | u Ala                 | t ctt                 | gag<br>Glu            | G) y              | cta<br>Leu<br>170    | Pro                   | 999<br>Gly           | ctg<br>Lev          | gto<br>Val         | ace<br>Th:<br>17   | r Lei                 | g 528<br>1   |
| Glr               | ato<br>Ile         | gg<br>G1               | t gg<br>y Gl <sub>2</sub><br>180 | y Ası                | cco<br>Pro            | tgg<br>Trp            | gtg<br>Val            | tgt<br>Cys<br>185 | ggc<br>Gly           | tgc<br>Cys            | acc<br>Thr           | atg<br>Met          | gaa<br>Glu<br>190  | Pro                | c ctç<br>o Lev        | j 576<br>i   |
| Leu               | aag<br>Lys         | tg:<br>Tr <sub>1</sub> | o Lei                            | g cga<br>u Arg       | aac<br>Asn            | cgg<br>Arg            | atc<br>Ile<br>200     | cag<br>Gln        | cgc<br>Arg           | tgt<br>Cys            | aca<br>Thr           | gca<br>Ala<br>205   | Glu                | tca<br>Sei         | aggt<br>rGly          | 624          |
| Ser               | 210                | Lei                    | ı Pro                            | o Glu                | ı Glu                 | Ser<br>215            | Glu                   | Pro               | gag<br>Glu           | Ser                   | Trp<br>220           | Thr                 | Gly                | Glr                | Arg                   |              |
| 225               | . Ala              | vai                    | . 61t                            | ) Phe                | 230                   | Asp                   | Leu                   | Met               | cag<br>Gln           | Leu<br>235            | Gln                  | Asp                 | Leu                | Asp                | 240                   |              |
| agc<br>Ser        | tac<br>Tyr         | gaç<br>Glu             | aac<br>Asn                       | ctg<br>Leu<br>245    | gct<br>Ala            | ttc<br>Phe            | ctc<br>Leu            | aaa<br>Lys        | ctc<br>Leu<br>250    | aag<br>Lys            | gcc<br>Ala           | ctg<br>Leu          | agc<br>Ser         | agt<br>Ser<br>255  | Val                   | 768          |
| aac<br>Asn        | ttt<br>Phe         | 9 <b>9</b> 9           | His<br>260                       | Arg                  | caa<br>Gln            | gcg<br>Ala            | gtt<br>Val            | gtg<br>Val<br>265 | ggt<br>Gly           | gga<br>Gly            | ctt<br>Leu           | tcc<br>Ser          | aat<br>Asn<br>270  | CCC<br>Pro         | ctc<br>Leu            | 816          |
| tcc<br>Ser        | ttc<br>Phe         | cct<br>Pro<br>275      | 999<br>Gly                       | tac<br>Tyr           | ctc<br>Leu            | acc<br>Thr            | ctc<br>Leu<br>280     | cct<br>Pro        | ggc<br>Gly           | ttc<br>Phe            | Cys                  | gtt<br>Val<br>285   | aca<br>Thr,        | gat<br>Asp         | tct<br>Ser            | 864          |
| cag<br>Gln        | ctg<br>Leu<br>290  | gct<br>Ala             | gag<br>Glu                       | t gc<br>Cys          | cgg<br>Arg            | ддс<br>G1 у<br>295    | cct<br>Pro            | cct<br>Pro        | gaa<br>Glu           | Val (                 | gag<br>Glu<br>300 -  | Gly                 | gcc<br>Ala         | ccg<br>Pro         | ctc<br>Leu            | 912          |
| ttc<br>Phe<br>305 | tca<br>Ser         | ctc<br>Leu             | act<br>Thr                       | gag<br>Glu           | gag<br>Glu<br>310     | agc<br>Ser            | ttc<br>Phe            | aag<br>Lys        | gcc<br>Ala           | tgc o<br>Cys I<br>315 | cac<br>His           | ctg<br>Leu          | acc<br>Thr         | ctg<br>Leu         | acc<br>Thr<br>.320    | 960          |
| ctg<br>Leu        | gat<br>Asp         | gat<br>Asp             | tac<br>Tyr                       | cta<br>Leu<br>325    | ttc<br>Phe            | att<br>Ile            | gcg<br>Ala            | ttc<br>Phe        | gtg<br>Val<br>330    | ggc t<br>Gly I        | ttc (                | gtg<br>Val          | gtc<br>Val         | tcc<br>Ser<br>335  | att<br>Ile            | 1008         |
| gct<br>Ala        | tct<br>Ser         | gtg<br>Val             | gcc<br>Ala<br>340                | acc<br>Thr           | aac<br>Asn            | ttc<br>Phe            | Leu i                 | ctg<br>Leu<br>345 | ggc (<br>Gly :       | atc a<br>Ile 1        | hr I                 | Ala .               | aac<br>Asn<br>350  | tgc<br>Cys         | tgc<br>Cys            | 1056         |
|                   |                    |                        |                                  |                      |                       |                       |                       |                   |                      |                       |                      |                     |                    |                    |                       |              |

Page 116

#### 160 200 PCT FINAL ST25

|                          |            |                           |            |            |            |            |            |            |            | 160        | 200        | PCT        | FIN        | AL.S       | r25        |      |
|--------------------------|------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
|                          |            |                           | • Ser      |            | gcc<br>Ala |            |            | Glu        |            |            |            |            |            |            |            | 1095 |
| <21<br><21<br><21<br><21 | 1><br>2>   | 196<br>364<br>PRT<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |      |
| < 40                     | 0>         | 196                       |            |            |            |            |            |            |            |            |            |            |            |            |            |      |
| Met<br>1                 | Ala        | Ser                       | Glu        | Thr<br>5   | Phe        | Asn        | Thr        | Glu        | Asp<br>10  | Pro        | Ala        | Gly        | Leu        | Met<br>15  | His        |      |
| Ser                      | Asp        | Ala                       | G1 y<br>20 | Thr        | Ser        | Cys        | Pro        | Val<br>25  | ,Leu       | Cys        | Thr        | Cys        | Arg<br>30  | Asn        | Gln        |      |
| Val                      | Val        | Asp<br>35                 | Cys        | Ser        | Ser        | Gln        | Arg<br>40  | Leu        | Phe        | Ser        | Val        | Pro<br>45  | Pro        | Asp        | Leu        |      |
| Pro                      | Met<br>50  | Asp                       | Thr        | Arg        | Asn        | Leu<br>55  | Ser        | Leu        | Ala        | His        | Asn<br>60  | Arg        | Ile        | Thr        | Ala        |      |
| Va)<br>65                | Pro        | Pro                       | Gly        | Туr        | Leu<br>70  | Thr        | Cys        | Туг        | Met        | Glu<br>75  | Leu        | Gln        | Val        | Leu        | Asp<br>80  |      |
| Leu                      | His        | Asn                       | Asn        | Ser<br>85  | Leu        | Met        | Glu        | Leu        | Pro<br>90  | Arg        | Gly        | Leu        | Phe        | Leu<br>95  | His        |      |
| Ala                      | Lys        | Arg                       | Leu<br>100 |            | His        | Leu        | Asp        | Leu<br>105 |            | Туr        | Asn        | Asn        | Phe<br>110 | Ser        | His        |      |
| Val                      | Pro        | Ala<br>115                | Asp        | Met        | Phe        | Gln        | Glu<br>120 | Ala        | His        | Gly        | Leu        | Val<br>125 | His        | Ile        | Asp        |      |
| Leu                      | Ser<br>130 |                           | Asn        | Pro        | Trp        | Leu<br>135 | Arg        | Arg        | Val        | His        | Pro<br>140 | Gln        | Ala        | Phe        | Gln        |      |
| Gly<br>145               | Leu        | Met                       | Gln        | Leu        | Arg<br>150 | Asp        | Leu        | Asp        | Leu        | Ser<br>155 | Tyr        | G1 y       | G1 y       | Leu        | Ala<br>160 |      |
| Phe                      | Leu        | Ser                       |            | Glu<br>165 |            | Leu        | Glu        |            | Leu<br>170 |            | Gly        | Leu        | Val        | Thr<br>175 | Leu        |      |
| Gln<br>-                 | Ile        | Gly                       | Gly<br>180 | Asn        | Pro        | Trp        | Val        | Cys<br>185 | Gly        | Cys        | Thr        | Met        | Glu<br>190 | Pro        | Leu        |      |
| Leu                      | Lys        | Trp<br>195                | Leu        | Arg        | Asn        | Arg        | 11e<br>200 | G1n        | Arg        | Cys        | Thr        | Ala<br>205 | Glu        | Ser        | Gly        |      |
| Ser                      | Gly<br>210 | Leu                       | Pro        | Glu        | Glu        | Ser<br>215 | Glu        | Pro        | Glu        | Ser        | Trp<br>220 | Thr        | G] y       | Gln        | Arg        |      |
| Ala<br>225               | Ala        | Val                       | Glu        | Phe        | Gln<br>230 | Asp        | Leu        | Met        | Gln        | Leu<br>235 | Gln        | Asp        | Leu        | Asp<br>,   | Leu<br>240 |      |
| Ser                      | Tyr        | Glu                       | Asn        | Leu<br>245 | Ala        | Phe        | Leu        | Lys        | Leu<br>250 | Lys        | Ala        | Leu        | Ser        | Ser<br>255 | Val        |      |

Asn Phe Gly His Arg Gln Ala Val Val Gly Gly Leu Ser Asn Pro Leu 260 265 270

Ser Phe Pro Gly Tyr Leu Thr Leu Pro Gly Phe Cys Val Thr Asp Ser Gln Leu Ala Glu Cys Arg Gly Pro Pro Glu Val Glu Gly Ala Pro Leu Phe Ser Leu Thr Glu Glu Ser Phe Lys Ala Cys His Leu Thr Leu Thr 305 310 315 320 Leu Asp Asp Tyr Leu Phe Ile Ala Phe Val Gly Phe Val Val Ser Ile Ala Ser Val Ala Thr Asn Phe Leu Leu Gly Ile Thr Ala Asn Cys Cys His Arg Trp Ser Lys Ala Ser Glu Glu Glu Glu Ile <210> 197 <211> 27 <212> DNA <213> Homo sapiens <400> 197 gggatttggt gtccaacacg aatttca 27 <210> 198 <211> 34 <212> DNA <213> Homo sapiens <400> 198 gagcctataa tatatgagcc agctacgagt tgga 34 <210> 199 <211> 32 <212> DNA <213> Homo sapiens <400> 199 gtcactgaat tctatcttct gggatttggt gc 32 <210> 200 <211> 32 <212> DNA <213> Homo sapiens <400> 200 aaacctgttt gtacagaggc atttattgag cc 32 <210> 201 <211> 35 <212> DNA <213> Homo sapiens gatatcattt tggggctgca tgatacaatt attgg 35 <210> 202 <211> 33 <212> DNA <213> Homo sapiens <400> 202 ctccaaccca gtgaacatca agttaaatcc cac

Page 118

33

```
<210> 203
 <211>
        36
 <212>
        DNA
 <213>
       Homo sapiens
 <400> 203
 ttaagctatt agttagttca tatgtcatgg gtttcc
                                                                      36
 <210> 204
 <211> 36
 <212>
       DNA
 <213>
       Homo sapiens
 <400> 204
 ctcattaata cgatggcata gatacatgta agagag
                                                                      36
 <210> 205
 <211> 50
 <212>
       DNA
 <213> Homo sapiens
 atgttccatc taaatgaagc ctgagaaacc cagcactacc cacttgttag
                                                                     50
 <210> 206
 <211>
        50
 <212> DNA
 <213> Homo sapiens
 <400> 206
 acatccatta tataacaggg ttaatatact tgtaaagaat agcacctaga
                                                                     50
<210> 207
 <211>
        50
 <212> DNA
<213> Homo sapiens
<400> 207
aaatgtataa attctgcatg aaattggggg tggggcttgt actacttttg
                                                                     50
<210>
       208
<211>
       50
<212> DNA
<213> Homo sapiens
<400> 208
atgttccatc taaatgaagc ctgagaaacc cagcactacc cacttgttag
                                                                     50
<210> 209
<211>
       50
<212>
       DNA
<213>
       Homo sapiens
-<400> 209
acatccatta tataacaggg ttaatatact tgtaaagaat agcacctaga
                                                                     50
<210>
       210
<211>
       50
<212>
       DNA
<213> Homo sapiens
<400> 210
aaatatatat tttaaattgg ccaggcgcgg tggctcacgc ctataatccc
                                                                  50
<210> 211
<211> 50
<212> DNA
<213> Homo sapiens
<400> 211
```

| gg                     | ictca                    | cgc                      | : tat                | taato               | cca               | gçad              | tttg              | gg a              | ggco              |                   |                   |                   | T ÈI<br>gatca     |                   | ST25              | 50  |
|------------------------|--------------------------|--------------------------|----------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| <2<br><2               | 10><br>11><br>12><br>13> | 212<br>50<br>DNA<br>Hon  | 1                    | pier                | ıs                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
|                        | 00><br>ccaa              | 212<br>atat              |                      | tata                | tac               | acac              | acac              | ac a              | caca              | càca              | c ac              | atat              | atat              |                   |                   | 50  |
| <2<br><2               | 10><br>11><br>12><br>13> | 213<br>50<br>DNA<br>Hom  |                      | pien                | s                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
|                        | 00><br>caca              | 213                      |                      |                     |                   | caca              | cata              | ta t              | ttat              | aatc              | a tt              | taac              | aaca              |                   |                   | 50  |
| <2:<br><2:             | 10><br>11><br>12><br>13> | 214<br>933<br>DNA<br>Hom |                      | pien                | s                 |                   |                   |                   |                   |                   |                   |                   |                   |                   | -                 |     |
| ·<22                   | 22>                      | CDS<br>(1)               | (9)                  | 30)                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <40<br>ato<br>Met<br>1 | gca                      | 214<br>gaq<br>Glu        | g ato<br>u Met       | g aad<br>t Asr<br>5 | c cto<br>1 Lei    | aco<br>Thi        | tto<br>Lei        | g gtg<br>u Val    | aco<br>Thi        | gaç<br>Glu        | g tto<br>D Phe    | cte<br>Le         | c ctt<br>u Leu    | att<br>Ile<br>15  | gca<br>Ala        | 48  |
| t t c<br>Phe           | act<br>Thr               | gaa<br>Glu               | a tat<br>1 Tyr<br>20 | cct<br>Pro          | gaa<br>Glu        | tgg<br>Trp        | gca<br>Ala        | cto<br>Leu<br>25  | cct<br>Pro        | cto<br>Leu        | tto<br>Phe        | cto<br>Lei        | ttg<br>Leu<br>30  | t t t<br>Phe      | tta<br>Leu        | 96  |
| t t t<br>Phe           | atg<br>Met               | tat<br>Tyr<br>35         | cto<br>Lev           | ato<br>Ile          | acc<br>Thr        | gta<br>Val        | Leu<br>40         | 61 g              | aac<br>Asn        | tta<br>Leu        | gag<br>Glu        | atg<br>Met<br>45  | att<br>Ile        | att               | ctg<br>Leu        | 144 |
| atc<br>Ile             | ctc<br>Leu<br>50         | atg<br>Met               | gat<br>Asp           | cac<br>His          | cag<br>Gln        | ctc<br>Leu<br>55  | cac<br>His        | gct<br>Ala        | cca<br>Pro        | atg<br>Met        | tat<br>Tyr<br>60  | t t c             | ctt<br>Leu        | ctg<br>Leu        | agt<br>Ser        | 192 |
| cac<br>His<br>65       | ctc<br>Leu               | gct<br>Ala               | ttc<br>Phe           | atg<br>Met          | gac<br>Asp<br>70  | gtc<br>Val        | t g c<br>C y s    | tac<br>Tyr        | tca<br>Ser        | tct<br>Ser<br>75  | atc<br>Ile        | act               | gtc<br>Val        | ccc<br>Pro        | cag<br>Gln<br>80  | 240 |
| atg<br>Met             | ctg<br>Leu               | gca<br>Ala               | gtg<br>Val           | ctg<br>Leu<br>85    | ctg<br>Leu        | gag<br>Glu        | cat<br>His        | 999<br>Gly        | gca<br>Ala<br>90  | gct<br>Ala        | tta<br>Leu        | tct<br>Ser        | tac<br>Tyr        | aca<br>Thr<br>95  | cgc<br>Arg        | 288 |
| tgt<br>Cys             | gct<br>Ala               | gct<br>Ala               | cag<br>Gln<br>100    | Phe                 | ttt<br>Phe        | ctg<br>Leu        | ttc<br>Phe        | acc<br>Thr<br>105 | ttc<br>Phe        | ttt<br>Phe        | ggt<br>Gly        | tcc<br>Ser        | atc<br>Ile<br>110 | gac<br>Asp        | tgc<br>Cys        | 336 |
| tac<br>Tyr             | ctc<br>Leu               | ttg<br>Leu<br>115        | gcc<br>Ala           | ctc<br>Leu          | atg<br>Met        | gcc<br>Ala        | tat<br>Tyr<br>120 | gac<br>Asp        | cgc<br>Arg        | tac<br>Tyr        | ttg<br>Leu        | gct<br>Ala<br>125 | gtg<br>Val        | tgc<br>Cys        | cag<br>Gln        | 384 |
| ccc<br>Pro             | ctg<br>Leu<br>130        | ctt<br>Leu               | tat<br>Tyr           | gtc<br>Val          | acc<br>Thr        | atc<br>Ile<br>135 | ctg<br>Leu        | aca<br>Thr        | cag<br>Gln        | cag<br>Gln        | gcc<br>Ala<br>140 | cgc<br>Arg        | ttg<br>Leu        | agt<br>Ser        | ctt<br>Leu        | 432 |
| gtg<br>Val<br>145      | gct<br>Ala               | ggg<br>G1 y              | gct<br>Ala           | tac<br>Tyr          | gtt<br>Val<br>150 | gct<br>Ala        | ggt<br>Gly        | ctc<br>Leu        | atc<br>Ile        | agt<br>Ser<br>155 | gcc<br>Ala        | t t g<br>Le u     | gtg<br>Val        | Arg               | aca<br>Thr<br>160 | 480 |
| gtc<br>Val             | tca<br>Ser               | gcc<br>Ala               | ttc<br>Phe           | act<br>Thr<br>165   | ctc<br>Leu        | tcc<br>Ser        | ttc<br>Phe        | tgt<br>Cys        | 9ga<br>Gly<br>170 | acc<br>Thr        | agt<br>Ser        | gag<br>Glu        | att<br>Ile        | gac<br>Asp<br>175 | ttt<br>Phe        | 528 |
| att<br>Ile             | ttc<br>Phe               | tgt<br>Cys               | gac<br>Asp<br>180    | ctc<br>Leu          | cct<br>Pro        | cct<br>Pro        | ctg<br>Leu        | tta<br>Leu<br>185 | aag<br>Lys        | ttg<br>Leu        | acc<br>Thr        | tgt<br>Cys        | 999<br>Gly<br>190 | gag<br>Glu        | agc<br>Ser        | 576 |

|                              |                                |                                       | gaa<br>Glu                                          |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 624 |
|------------------------------|--------------------------------|---------------------------------------|-----------------------------------------------------|----------------------------|---------------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------|----------------------------|----------------------------------|--------------------------------|----------------------------------------------|---------------------------------------|-------------------------|---------------------------------------|-----|
|                              |                                | Met                                   | gtg<br>Val                                          |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 672 |
|                              | Met                            |                                       | atc                                                 |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 720 |
|                              |                                |                                       | ctc<br>Leu                                          |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 768 |
|                              |                                |                                       | aga<br>Arg<br>260                                   | Gl y                       |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 816 |
|                              |                                |                                       | ctt<br>Leu                                          |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 864 |
|                              |                                | Leu                                   | agg<br>Arg                                          |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 912 |
|                              |                                |                                       | aag<br>Lys                                          |                            |                                       | taa                            |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       | 933 |
| <21<br><21<br><21<br><21     | 1><br>2>                       | 215<br>310<br>PRT<br>Homo             | sap                                                 | iens                       |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       |     |
| - 40                         | n>                             | 215                                   |                                                     |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       |     |
| <40                          |                                | 213                                   |                                                     |                            |                                       |                                |                                |                                                     |                            |                                  |                                |                                              |                                       |                         |                                       |     |
|                              |                                |                                       | Met                                                 | Asn<br>5                   | Leu                                   | Thr                            | Leu                            | Val                                                 | Thr<br>10                  | Glu                              | Phe                            | Leu                                          | Leu                                   | 11e<br>15               | Ala                                   |     |
| Met<br>1                     | Ala                            | Glu                                   | Met<br>Tyr<br>20                                    | 5                          |                                       |                                |                                |                                                     | 10                         |                                  |                                |                                              |                                       | 15                      |                                       |     |
| Met<br>1<br>Phe              | Ala<br>Thr                     | Glu<br>Glu                            | Туг                                                 | 5<br>Pro                   | Glu                                   | Trp                            | Ala                            | Leu<br>25                                           | 10                         | Leu                              | Phe                            | Leu                                          | Leu<br>30                             | 15<br>Phe               | Leu                                   |     |
| Met<br>1<br>Phe              | Ala<br>Thr<br>Met              | Glu<br>Glu<br>Tyr<br>35               | Туг<br>20                                           | 5<br>Pro                   | Glu<br>Thr                            | Trp<br>Val                     | Ala<br>Leu<br>40               | Leu<br>25<br>Gly                                    | 10<br>Pro<br>Asn           | Leu<br>Leu                       | Phe<br>Glu                     | Leu<br>Met<br>45                             | Leu<br>30                             | 15<br>Phe<br>Ile        | Leu<br>Leu                            |     |
| Met<br>1<br>Phe<br>Phe       | Ala<br>Thr<br>Met<br>Leu<br>50 | Glu<br>Glu<br>Tyr<br>35<br>Met        | Tyr<br>20<br>Leu                                    | 5<br>Pro<br>Ile<br>His     | Glu<br>Thr<br>Gln                     | Trp<br>Val<br>Leu<br>55        | Ala<br>Leu<br>40<br>His        | Leu<br>25<br>Gly<br>Ala                             | 10<br>Pro<br>Asn<br>Pro    | Leu<br>Leu<br>Met                | Phe<br>Glu<br>Tyr<br>60        | Leu<br>Met<br>45<br>Phe                      | Leu<br>30<br>Ile<br>Leu               | 15<br>Phe<br>Ile<br>Leu | Leu<br>Leu<br>Ser                     |     |
| Met 1 Phe Phe His 65         | Ala Thr Met Leu 50             | Glu Tyr 35 Met                        | Tyr<br>20<br>Leu<br>Asp                             | Pro<br>Ile<br>His          | Glu<br>Thr<br>Gln<br>Asp<br>70        | Trp<br>Val<br>Leu<br>55<br>Val | Ala<br>Leu<br>40<br>His<br>Cys | Leu<br>25<br>Gly<br>Ala<br>Tyr                      | Pro Asn Pro                | Leu<br>Leu<br>Met<br>Ser<br>75   | Phe<br>Glu<br>Tyr<br>60        | Leu<br>Met<br>45<br>Phe<br>Thr               | Leu<br>30<br>Ile<br>Leu<br>Val        | Phe Ile Leu Pro         | Leu<br>Leu<br>Ser<br>Gin<br>80        |     |
| Met 1 Phe Phe His 65         | Ala Thr Met Leu 50 Leu         | Glu<br>Glu<br>Tyr<br>35<br>Met<br>Ala | Tyr<br>20<br>Leu<br>Asp                             | Pro Ile His Met            | Glu<br>Thr<br>Gln<br>Asp<br>70<br>Leu | Trp  Val  Leu 55  Val          | Ala<br>Leu<br>40<br>His<br>Cys | Leu<br>25<br>Gly<br>Ala<br>Tyr                      | Pro Asn Pro Ser Ala        | Leu<br>Leu<br>Met<br>Ser<br>75   | Phe<br>Glu<br>Tyr<br>60<br>Ile | Leu<br>Met<br>45<br>Phe<br>Thr               | Leu<br>30<br>Ile<br>Leu<br>Val        | Phe Ile Leu Pro Thr 95  | Leu<br>Leu<br>Ser<br>Gin<br>80        |     |
| Met 1 Phe Phe His 65         | Ala Thr Met Leu 50 Leu Ala     | Glu Tyr 35 Met Ala Ala                | Tyr<br>20<br>Leu<br>Asp<br>Phe<br>Val               | Pro Ile His Met Leu 85     | Glu Thr Gln Asp 70 Leu                | Trp Val Leu 55 Val Glu Leu     | Ala<br>Leu<br>40<br>His<br>Cys | Leu<br>25<br>Gly<br>Ala<br>Tyr<br>Gly<br>Thr        | Pro Asn Pro Ser Ala 90     | Leu<br>Met<br>Ser<br>75<br>Ala   | Phe Glu Tyr 60 Ile Leu Gly     | Leu<br>Met<br>45<br>Phe<br>Thr<br>Ser        | Leu<br>30<br>Ile<br>Leu<br>Val<br>Tyr | Phe Ile Pro Thr 95      | Leu<br>Leu<br>Ser<br>Gin<br>80<br>Arg |     |
| Met 1 Phe Phe His 65 Met Cys | Ala Thr Met Leu 50 Leu Ala     | Glu Tyr 35 Met Ala Ala Leu 115        | Tyr<br>20<br>Leu<br>Asp<br>Phe<br>Val<br>Gln<br>100 | Pro Ile His Met Leu 85 Phe | Glu Thr Gln Asp 70 Leu Phe            | Trp Val Leu S5 Val Glu Leu     | Ala Leu 40 His Cys Phe         | Leu<br>25<br>Gly<br>Ala<br>Tyr<br>Gly<br>Thr<br>105 | Pro Asn Pro Ser Ala 90 Phe | Leu  Met  Ser  75  Ala  Phe  Tyr | Phe Glu Tyr 60 Ile Leu Gly     | Leu<br>Met<br>45<br>Phe<br>Thr<br>Ser<br>Ser | Leu 30 Ile Leu Val Tyr Ile 110        | Phe Leu Pro Thr 95 Asp  | Leu  Ser  Gln 80  Arg  Cys            |     |

|                                                                |                                        | 16U 200 F                                    | CT FINAL. ST25                            |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------|
| Val Ser Ala Phe Thi<br>165                                     | r Leu Ser Phe                          | Cys Gly Thr Ser (<br>170                     | Glu Ile Asp Phe<br>175                    |
| lle Phe Cys Asp Leu<br>180                                     |                                        | Leu Lys Leu Thr C<br>185                     | ys Gly Glu Ser<br>190                     |
| Tyr Thr Gln Glu Val<br>195                                     | Leu Ile Ile I<br>200                   |                                              | he Val Ile Pro<br>OS                      |
| Ala Ser Met Val Val<br>210                                     | lle Leu Val S<br>215                   | Ser Tyr Leu Phe I<br>220                     | le lle Val Ala                            |
| lle Met Gly Ile Pro<br>225                                     | Ala Gly Ser (<br>230                   | In Ala Lys Thr P<br>235                      | he Ser Thr Cys<br>240                     |
| Thr Ser His Leu Thr<br>245                                     | Ala Val Ser I                          | eu Phe Phe Gly T<br>250                      | hr Leu 11e Phe<br>255                     |
| Met Tyr Leu Arg Gly<br>260                                     | Asn Ser Asp G                          | ln Ser Ser Glu L<br>65                       | ys Asn Arg Val<br>270                     |
| Val Ser Val Leu Tyr<br>275                                     | 280                                    | 28                                           | 35                                        |
| Tyr Ser Leu Arg Asn<br>290                                     |                                        | ys Glu Ala Leu Ai<br>300                     | g Lys Ile Leu                             |
| Asn Arg Ala Lys Leu<br>305                                     | Ser<br>310                             |                                              |                                           |
| <210> 216<br><211> 933<br><212> DNA<br><213> Homo sapiens      |                                        | ·                                            |                                           |
| <220> <221> CDS <222> (1)(930) <223>                           |                                        |                                              |                                           |
| <400> 216<br>atg gaa ggc aac aag<br>Met Glu Gly Asn Lys<br>1 5 | aca tgg atc ac<br>Thr Trp Ile Th       | a gac atc acc tt<br>r Asp Ile Thr Le<br>10   | g ccg cga ttc 48<br>u Pro Arg Phe<br>15 . |
| cag gtt ggt cca gca<br>Gln Val Gly Pro Ala<br>20               | ctg gag att ct<br>Leu Glu Ile Le<br>25 | u Leu Cys Gly Le                             | t ttc tct gcc 96<br>u Phe Ser Ala<br>30   |
| ttc tat aca ctc acc of the Tyr Thr Leu Thr 1                   | ctg ctg ggg aa<br>Leu Leu Gly As<br>40 | t ggg gtc atc tt<br>n Gly Val Ile Pho<br>45  | t ggg att atc 144<br>e Gly Ile Ile        |
| tgc ctg gac tgt aag o<br>Cys Leu Asp Cys Lys 1<br>50           | ctt cac aca cc<br>Leu His Thr Pr<br>55 | c atg tac ttc ttc<br>b Met Tyr Phe Phe<br>60 | c ctc tca cac 192<br>e Leu Ser His        |
| ctg gcc att gtt gac a<br>Leu Ala Ile Val Asp I<br>65           | ata tcc tat gc<br>lle Ser Tyr Al<br>70 | t tcc aac tat gto<br>a Ser Asn Tyr Val<br>75 | ccc aag atg 240<br>Pro Lys Met 80         |
| ctg acg aat ctt atg a<br>Leu Thr Asn Leu Met A<br>85           | aac cag gaa ago<br>Asn Gln Glu Sei     | acc atc tcc ttt<br>Thr Ile Ser Phe           | ttt cca tgc 288<br>Phe Pro Cys<br>95      |
| ata atg cag aca ttc t<br>Ile Met Gln Thr Phe L                 | tg tat ttg gct<br>eu Tyr Leu Ala       | ttt gct cac gta<br>Phe Ala His Val           | gag tgt ctg 336<br>Glu Cys Leu            |

|                              |              |                           | 100       |          |     |           |           | 105       |           | 1 6U | 200       | PCT       | FINA<br>110 | L.ST      | 25  |     |
|------------------------------|--------------|---------------------------|-----------|----------|-----|-----------|-----------|-----------|-----------|------|-----------|-----------|-------------|-----------|-----|-----|
|                              |              | gtg<br>Val<br>115         |           |          |     |           |           |           |           |      |           |           |             |           |     | 384 |
|                              |              | tac<br>Tyr                |           |          |     |           |           |           |           |      |           |           |             |           |     | 432 |
|                              |              | tcc<br>Ser                |           |          |     |           |           |           |           |      |           |           |             |           |     | 480 |
|                              |              | ctg<br>Leu                |           |          |     |           |           |           |           |      |           |           |             |           |     | 528 |
|                              |              | gaa<br>Glu                |           |          |     |           |           |           |           |      |           |           |             |           |     | 576 |
|                              |              | cag<br>61n<br>195         |           |          |     |           |           |           |           |      |           |           |             |           |     | 624 |
|                              |              | tgc<br>Cys                |           |          |     |           |           |           |           |      |           |           |             |           |     | 672 |
|                              |              | atc<br>Ile                |           |          |     |           |           |           |           |      |           |           |             |           |     | 720 |
|                              |              | cac<br>His                |           |          |     |           |           |           |           |      |           |           |             |           |     | 768 |
|                              |              | atg<br>Met                |           |          |     |           |           |           |           |      |           |           |             |           |     | 816 |
|                              |              | ctg<br>Leu<br>275         |           |          |     |           |           |           |           |      |           |           |             |           |     | 864 |
|                              |              | cta<br>Leu                |           |          |     |           |           |           |           |      |           |           |             |           |     | 912 |
|                              |              | gag<br>Glu                |           |          |     | tga       |           |           |           |      |           |           |             |           |     | 933 |
| <210<br><210<br><210<br><210 | 1> :<br>2> : | 217<br>310<br>PRT<br>Homo | sapi      | iens     |     |           |           |           |           |      |           |           |             |           |     |     |
| _<400                        | )> 2         | 217                       |           |          |     |           |           |           |           |      |           |           |             |           |     |     |
| Met<br>1                     | Glu          | Gly                       | Asn       | Lys<br>5 | Thr | Trp       | Ile       | Thr       | Asp<br>10 | Ile  | Thr       | Leu       | Pro         | Arg<br>15 | Phe |     |
| Gln                          | Val          | Gly                       | Pro<br>20 | Ala      | Leu | Glu       | Ile       | Leu<br>25 | Leu       | Cys  | Gly       | Leu       | Phe<br>30   | Ser       | Ala |     |
| Phe                          | Tyr          | Thr<br>35                 | Leu       | Thr      | Leu | Leu       | Gly<br>40 | Asn       | Gly       | val  | lle       | Phe<br>45 | Gly         | Ile,      | Ile |     |
| Cys                          | Leu<br>50    | Asp                       | Cys       | Lys      | Leu | His<br>55 | Thr       | Pro       | Met       | Tyr  | Phe<br>60 | Phe       | Leu         | Ser       | His |     |
| Leu                          | Ala          | lle                       | Val       | Asp      | lle | Ser       | Tyr       | Ala       | Ser       | Asn  | Туг       | Val       | Pro         | Lys       | Met |     |

| 65                               |            |                         |                |            | 70             |                       |            |            |            | 75         |            | J PC       | r F1       | NAL.             | 80         |    |
|----------------------------------|------------|-------------------------|----------------|------------|----------------|-----------------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|----|
| Let                              | Th         | r Asn                   | Lec            | Met<br>85  | Asr            | Glr                   | Glı        | ı Sei      | 7h:<br>90  | r 1,1      | e Se       | r Ph       | e Ph       | e Pr<br>95       | o Cys      |    |
| 11e                              | Met        | : Gln                   | Thr<br>100     | Phe        | e Leu          | Туг                   | Let        | 105        |            | e Al       | a His      | s Va       | 11:        |                  | s Leu      |    |
| Ile                              | Let        | 1 Val<br>115            |                | Met        | Ser            | Tyr                   | Asp<br>120 |            | туі        | r.Ala      | a Asp      | 125        |            | s Hi             | s Pro      |    |
| Leu                              | 130        | Tyr                     | Asn            | Ser        | Leu            | Met<br>135            |            | Trp        | Arç        | y Val      | 1 Cys      |            | va:        | l Lei            | ı Ala      |    |
| Val<br>145                       |            | Ser                     | Trp            | Val        | Phe<br>150     |                       | Phe        | Leu        | Leu        | 155        |            | val        | . Pro      | ) Lei            | val<br>160 |    |
| Leu                              | Ile        | Leu                     | Ser            | Leu<br>165 |                | Phe                   | Cys        | G1 y       | Pro<br>170 |            | Glu        | lle        | Ası        | 175              | s Phe      | ٠  |
| Phe                              | Cys        | Glu                     | Ile<br>180     | Leu        | Ser            | Val                   | Leu        | Lys<br>185 |            | Ala        | Cys        | Ala        | Asp<br>190 |                  | Trp        |    |
| Leu                              | Asn        | Gln<br>195              | Val            | Va1        | lle            | Phe                   | Ala<br>200 |            | Cys        | Val        | Phe        | 11e<br>205 |            | val              | Gly        |    |
| Pro                              | Leu<br>210 | Cys                     | Leu            | Val        | Leu            | Val<br>215            | Ser        | Tyr        | Leu        | Arg        | 11e<br>220 |            | Ala        | Ala              | lle        |    |
| Leu<br>225                       | Arg        | Ile                     | Gln            | Ser        | Gly<br>230     | Glu                   | Gly        | Arg        | Arg        | Lys<br>235 |            | Phe        | Ser        | Thr              | Cys<br>240 |    |
| Ser                              | Ser        | His                     | Leu            | Cys<br>245 | Val            | Val                   | G1 y       | Leu        | Phe<br>250 | Phe        | Gly        | Ser        | Ala        | Ile<br>255       | Val        |    |
| Thr                              | Туr        | Met                     | Ala<br>260     | Pro        | Lys            | Ser                   | Arg        | His<br>265 | Pro        | Glu        | Glu        | Gln        | Gln<br>270 | Lys              | Val        |    |
| Leu                              | Ser        | Leu<br>275              | Phe            | Tyr        | Ser            | Leu                   | Phe<br>280 | Asn        | Pro        | Met        | Leu        | Asn<br>285 | Pro        | . Leu            | Ile        |    |
|                                  | Ser<br>290 | Leu                     | Arg            | Asn        |                | G1u<br>295            | Val        | Lys        | Gly        | Ala        | Leu<br>300 | Arg        | Arg        | Ala              | Leu        |    |
| Arg<br>305                       | Lys        | Glu .                   | Arg            |            | Thr<br>310     |                       |            |            |            |            |            |            |            |                  |            |    |
| <210<br><211<br><212<br><213     | > 9<br>> b | 18<br>27<br>NA<br>Omo : | sapi           | ens        |                |                       |            |            |            |            |            |            |            |                  |            |    |
| <220:<br><221:<br><222:<br><223: | > CI       | DS<br>1)                | (924)          | <b>)</b>   |                |                       |            |            |            |            |            |            |            |                  |            | ÷  |
| <400:<br>atg (<br>Met )          | gcc a      | 18<br>etg o<br>Met 7    | gac a<br>Asp / | i azi      | gtc a<br>Val 1 | aca ç<br>îhr <i>F</i> | gca (      | Val :      | ttt<br>Phe | cag<br>Gln | ttt<br>Phe | ctc<br>Leu | ctt<br>Leu | att<br>Ile<br>15 | ggc<br>Gly | 48 |
| att t                            | ct a       | ac t                    |                |            | caa t          | gg a                  | ıga (      |            |            | ttt        | ttc .      | aca        | tta        |                  | ctg        | 96 |
|                                  |            |                         |                |            |                |                       |            |            |            |            |            | ige :      |            | -                |            |    |

| lle                  | Ser               | Asn               | Туг<br>20  | Pro        | Gln | Trp               | Arg        | Asp<br>25  | Thr        |            |                   | PCT<br>Thr |            |     |            |       |
|----------------------|-------------------|-------------------|------------|------------|-----|-------------------|------------|------------|------------|------------|-------------------|------------|------------|-----|------------|-------|
|                      |                   | tac<br>Tyr<br>35  |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 144   |
|                      |                   | ttt<br>Phe        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 192   |
|                      |                   | tct<br>Ser        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 240   |
|                      |                   | gtg<br>Val        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 288   |
|                      |                   | gct<br>Ala        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 336   |
|                      |                   | ctg<br>Leu<br>115 |            |            |     |                   |            |            |            |            |                   |            |            |     |            | · 384 |
|                      |                   | cgt<br>Arg        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 432   |
|                      |                   | acc<br>Thr        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 480   |
|                      |                   | ctg<br>Leu        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 528   |
|                      |                   | gag<br>Glu        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 576   |
|                      |                   | gaa<br>Glu<br>195 |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 624   |
|                      |                   | 61 y              |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 672   |
|                      |                   | att<br>Ile        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 720   |
|                      |                   | cac<br>His        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 768   |
| atg<br>-Met          |                   | atg<br>Met        |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 816   |
|                      |                   | gtg<br>Val<br>275 |            |            |     |                   |            |            |            |            |                   |            |            |     |            | 864   |
| tat<br>Tyr           | agc<br>Ser<br>290 | ctg<br>Leu        | aga<br>Arg | aaa<br>Lys | Lys | gat<br>Asp<br>295 | gtt<br>Val | aaa<br>Lys | cgg<br>Arg | gca<br>Ala | ata<br>Ile<br>300 | agg<br>Arg | aaa<br>Lys | Val | atg<br>Met | 912   |
|                      |                   | agg<br>Arg        |            | tga        |     |                   |            |            |            |            |                   |            |            |     |            | 927   |
| <210<br><211<br><212 | > 3               | 19<br>08<br>RT    |            |            |     |                   |            |            |            |            |                   |            |            |     |            |       |

<213> Homo sapiens

<400> 219

Met Ala Met Asp Asn Val Thr Ala Val Phe Gln Phe Leu Leu Ile Gly
1 5 10 15

lle Ser Asn Tyr Pro Gln Trp Arg Asp Thr Phe Phe Thr Leu Val Leu 20 25 30

lle 11e Tyr Leu Ser Thr Leu Leu Gly Asn Gly Phe Met 11e Phe Leu 35 40 45

lle His Phe Asp Pro Asn Leu His Thr Pro lle Tyr Phe Phe Leu Ser 50 60

Asn Leu Ser Phe Leu Asp Leu Cys Tyr Gly Thr Ala Ser Met Pro Gln 65 70 75 80

Ala Leu Val His Cys Phe Ser Thr His Pro Tyr-Leu Ser Tyr Pro Arg 85 90 95

Cys Leu Ala Gln Thr Ser Val Ser Leu Ala Leu Ala Thr Ala Glu Cys 100 105 110

Leu Leu Ala Ala Met Ala Tyr Asp Arg Val Val Ala Ile Ser Asn 115 120 125

Pro Leu Arg Tyr Ser Val Val Met Asn Gly Pro Val Cys Val Cys Leu 130 135 140

Val Ala Thr Ser Trp Gly Thr Ser Leu Val Leu Thr Ala Met Leu Ile 145  $\phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}160\phantom{\bigg|}$ 

Leu Ser Leu Arg Leu His Phe Cys Gly Ala Asn Val Ile Asn His Phe 165 170 175

Ala Cys Glu Ile Leu Ser Leu Ile Lys Leu Thr Cys Ser Asp Thr Ser 180  $$185\$ 

Leu Asn Glu Phe Met Ile Leu Ile Thr Ser Ile Phe Thr Leu Leu Leu 195  $\phantom{\bigg|}200\phantom{\bigg|}$ 

Pro Phe Gly Phe Val Leu Leu Ser Tyr 1le Arg Ile Ala Met Ala Ile 210 215 220

Tile Arg Ile Arg Ser Leu Gln Gly Arg Leu Lys Ala Phe Thr Thr Cys 225- 236- 235- 240

Gly Ser His Leu Thr Val Val Thr 11e Phe Tyr Gly Ser Ala 11e Ser 245 250 255

Met Tyr Met Lys Thr Gln Ser Lys Ser Tyr Pro Asp Gln Asp Lys Phe 260 265 270

Ile Ser Val Phe Tyr Gly Ala Leu Thr Pro Met Leu Asn Pro Leu  $^\circ$  Ile 275  $\phantom{\bigg|}280\phantom{\bigg|}285\phantom{\bigg|}$ 

Tyr Ser Leu Arg Lys Lys Asp Val Lys Arg Ala 11e Arg Lys Val Met 290 295 300

| Leu<br>305               |                   | , Arg                      | Thr        | :                 |                   |                   |             |            |                   |                   |                   |                   |            |                   |            |       |   |
|--------------------------|-------------------|----------------------------|------------|-------------------|-------------------|-------------------|-------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|------------|-------|---|
| <21<br><21<br><21<br><21 | 1><br>2>          | 220<br>1008<br>DNA<br>Homo |            | oiens             | ;                 |                   |             |            |                   |                   |                   |                   |            |                   |            |       |   |
| <22<br><22<br><22<br><22 | 1><br>2>          | CDS                        | . (10      | 05)               |                   |                   |             |            |                   |                   |                   |                   |            |                   |            |       |   |
|                          | gaa               |                            |            |                   |                   |                   |             |            |                   |                   |                   |                   |            |                   | tcc<br>Ser | 4.8   | ì |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   |                   |            |                   | ttg<br>Leu | 96    | ; |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | ttg<br>Leu<br>45  |            |                   |            | 144   | ĺ |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | cta<br>Leu        |            |                   | gac<br>Asp | 192   | ! |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | ctg<br>Leu        |            |                   |            | 240   | , |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | gtc<br>Val        |            |                   |            | 288   | i |
|                          |                   |                            |            | Phe               |                   |                   |             |            |                   |                   |                   | cag<br>Gln        |            |                   |            | 336   | • |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | tgc<br>Cys<br>125 |            |                   |            | 384   |   |
|                          |                   | Leu                        |            |                   |                   |                   |             |            |                   |                   |                   | ctc<br>Leu        |            |                   |            | 432   |   |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | ttc<br>Phe        |            |                   |            | 480   |   |
| ttt<br>Phe               | cac<br>His        | cct<br>Pro                 | cac<br>His | ttc<br>Phe<br>165 | gtg<br>Val        | ctg<br>Leu        | acc<br>Thr  | ctc<br>Leu | tcc<br>Ser<br>170 | tgc<br>Cys        | gtt<br>Val        | ggc<br>Gly        | ttc<br>Phe | ttc<br>Phe<br>175 | cca<br>Pro | · 528 |   |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | ctc<br>Leu        |            |                   |            | 576   |   |
|                          |                   |                            |            |                   |                   |                   |             |            |                   |                   |                   | gca<br>Ala<br>205 |            |                   |            | 624   |   |
| gct<br>Ala               | gga<br>Gly<br>210 | ggt<br>Gly                 | tat<br>Tyr | cga<br>Arg        | tcc<br>Ser        | cca<br>Pro<br>215 | cgg<br>Arg  | act<br>Thr | ccc<br>Pro        | agc<br>Ser        | gac<br>Asp<br>220 | ttc<br>Phe        | aaa<br>Lys | gct<br>Ala        | ctc<br>Leu | 672   |   |
| cgt<br>Arg<br>225        | act<br>Thr        | gtg<br>Val                 | tct<br>Ser | gtt<br>Val        | ctc<br>Leu<br>230 | att<br>Ile        | 61 Y<br>999 | agc<br>Ser | ttt<br>Phe        | gct<br>Ala<br>235 | cta<br>Leu        | tcc<br>Ser        | tgg<br>Trp | acc<br>Thr        | Pro<br>240 | 720   |   |
| ttc<br>Phe               | ctt<br>Leu        | atc<br>Ile                 | act<br>Thr | ggc<br>Gly<br>245 | att<br>Ile        | gtg<br>Val        | cag<br>Gln  | gtg<br>Val | gcc<br>Ala<br>250 | tgc<br>Cys        | cag<br>Gln        | gag<br>Glu        | tgt<br>Cys | cac<br>His<br>255 | ctc<br>Leu | 768   |   |

| tac<br>Tyr        | cta<br>Leu        | gtg<br>Val        | ctg<br>Leu<br>260 | gaa<br>Glu | cgg<br>Arg        | tac<br>Tyr        | ctg<br>Leu        | tgg<br>Trp<br>265 | ctg<br>Leu | ctc<br>Leu        | ggc<br>Gly        | gtg<br>Val        | ggc<br>Gly<br>270 | aac<br>Asn | tcc<br>·Ser       | 816  |
|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|------|
| ctg<br>Leu        | ctc<br>Leu        | aac<br>Asn<br>275 | cca<br>Pro        | ctc<br>Leu | atc<br>Ile        | tat<br>Tyr        | gcc<br>Ala<br>280 | tat<br>Tyr        | tgg<br>Trp | cag<br>Gln        | aag<br>Lys        | gag<br>Glu<br>285 | gtg<br>Val        | cga<br>Arg | ctg<br>Leu        | 864  |
| cag<br>Gln        | ctc<br>Leu<br>290 | tac<br>Tyr        | cac<br>His        | atg<br>Met | gcc<br>Ala        | cta<br>Leu<br>295 | gga<br>Gly        | gtg<br>Val        | aag<br>Lys | aag<br>Lys        | gtg<br>Val<br>300 | ctc<br>Leu        | acc<br>Thr        | tca<br>Ser | ttc<br>Phe        | 912  |
| ctc<br>Leu<br>305 | ctc<br>Leu        | ttt<br>Phe        | ctc<br>Leu        | tcg<br>Ser | gcc<br>Ala<br>310 | agg<br>Arg        | aat<br>Asn        | tgt<br>Cys        | ggc<br>Gly | cca<br>Pro<br>315 | gag<br>Glu        | agg<br>Arg        | ccc<br>Pro        | agg<br>Arg | gaa<br>Glu<br>320 | 960  |
| agt<br>Ser        | tcc<br>Ser        | tgt<br>Cys        | cac<br>His        | atc<br>Ile | gtc<br>Val        | act<br>Thr        | atc<br>Ile        | tcc<br>Ser        | agc<br>Ser | tca<br>Ser        | gag<br>Glu        | ttt<br>Phe        | gat<br>Asp        | ggc<br>Glv | taa               | 1008 |

<210> 221 <211> 335

<212> PRT

<213> Homo sapiens

325

<400> 221

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser 1 10 15

Leu lle lle Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu Leu 20 25 30

lle His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Alà  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp 50 60

Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu 65 70 75 80

Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val 85 90 95

Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg 100 105 110

Tyr Leu Lys Ile Met Ser Gly Phe Val Ala Gly Ala Cys Ile Ala Gly 115 120 125

Leu Trp Leu Val Ser Tyr Leu Lle Gly Bhe Leu Bro Leu Gly Ile Pro-130 135 140

Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val 145 150 155 160

Phe His Pro His Phe Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro

Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala 180 185 190

Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met 195 200 205

| A.                     | la G<br>2                | ly (<br>10               | Sly '              | Tyr 🏻             | arg S                   | er               | Pro<br>215         | Arg         | Th                 | r Pi               | co s             |                                         | Asp<br>220 |                  | e L               | ys A             | la        | Leu           |      |    |
|------------------------|--------------------------|--------------------------|--------------------|-------------------|-------------------------|------------------|--------------------|-------------|--------------------|--------------------|------------------|-----------------------------------------|------------|------------------|-------------------|------------------|-----------|---------------|------|----|
| A1<br>22               | rg T<br>25               | hr V                     | al s               | Ser V             | 'al L<br>2              | eu :<br>30       | lle                | 61 y        | Se:                | r Pł               | e A<br>2         | la<br>35                                | Leu        | Se               | r Tı              | p T              | hr        | Pro<br>240    |      |    |
| Pì                     | e L                      | eu I                     | le 1               | hr G<br>2         | ly I<br>45              | le 1             | /al                | Gln         | ۷a)                | 1 Al<br>25         | a C:             | ys (                                    | Gln        | G1               | u Cy              |                  | is<br>55  | Leu           |      |    |
| Ту                     | r L                      | eu V                     | al 1<br>2          | еи G<br>60        | lu A                    | rg T             | yr :               | Leu         | Trp<br>265         | ) Le               | u L              | eu (                                    | Gly        | Va               | 1 G1<br>27        |                  | ā         | Ser           |      |    |
| Le                     | u Le                     | 2 A                      | sn P<br>75         | ro L              | eu I                    | le T             | yr i               | Ala<br>280  | Тyr                | Tr                 | p G              | ln 1                                    | Lys        | G1:<br>28:       |                   | l Ar             | g         | Leu           |      |    |
| G1                     | n Le<br>29               | е <b>и Т</b><br>90       | уг н               | is M              | et A                    | la L<br>2        | eu (<br>95         | 51 y        | Val                | Ŀу                 | s Ly             |                                         | /al<br>300 | Lei              | ı Th              | r Se             | r         | Phe           |      |    |
| Le:                    | u Le<br>5                | eu Pl                    | ne L               | eu Se             | er Al                   | a A<br>10        | rg A               | Isn         | Cys                | G1;                | y Pr<br>31       | o 0                                     | Slu        | Arq              | ) Pr              | o Ar             |           | Glu<br>320    |      |    |
| Se                     | r Se                     | r Cy                     | ys H               | is 11<br>32       | le Va<br>25             | 1 T              | hr I               | le          | Ser                | Se:                | r Se             | r G                                     | lu         | Phe              | As <sub>1</sub>   | p G1<br>33       |           |               |      |    |
| <21<br><21             | 10><br>11><br>12><br>13> | 222<br>975<br>DNA<br>Hom | 5<br>1             | ріеп              | ıs                      |                  |                    |             |                    |                    |                  |                                         |            |                  |                   |                  |           |               |      |    |
| <22                    | 20><br>21><br>22><br>23> | CDS                      | (9                 | 72)               |                         |                  |                    |             |                    |                    |                  |                                         |            |                  |                   |                  |           |               |      |    |
| <40<br>atg<br>Met<br>1 | cg                       | 222<br>g cc<br>g Pr      | t ca               | g ga<br>n As<br>5 | c ag<br>p Se            | c ac<br>r Th     | c go               | gg (        | gtc<br>Val         | gcg<br>Ala<br>10   | ga<br>Gli        | g c                                     | t <i>c</i> | cag<br>Gln       | gag<br>Glu        | cce<br>Pro       | c (       | 999<br>Sly    |      | 48 |
| ct g<br>Leu            | Pro                      | g ct<br>> Le             | a ac<br>u Th<br>20 | g ga<br>r As      | cga<br>pAs <sub>l</sub> | t gc<br>o Al     | a co<br>a Pi       | ro I        | ccg<br>Pro<br>25   | ggc<br>Gly         | gco<br>Ala       | a a a                                   | ct (       | gag<br>Glu       | 30<br>G1 n        | ccg<br>Pro       | J 9       | gcg<br>Ma     |      | 96 |
| gcc<br>Ala             | gcc<br>Ala               | : ga<br>G1:<br>35        | g gc.<br>D Al      | agc:<br>aAla      | t ggg<br>a Gly          | g gc<br>/ Al     | g co<br>a Pi<br>40 | O           | gac<br>Asp         | cg <b>c</b><br>Arg | gtg<br>Va]       | 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Ly S       | tct<br>Ser<br>15 | tta<br>Leu        | t t t<br>Phe     | . g       | itt<br>'al    | 1    | 44 |
| aaa<br>Lys             | aaa<br>Lys<br>50         | gto<br>Val               | g caa              | gaq<br>n Asp      | c gto<br>Val            | : са<br>Ні<br>55 | t go<br>s Al       | t ç<br>la V | gta<br>/al         | gag<br>Glu         | att              | ag<br>Se<br>60                          | r          | gcg<br>Ala       | ttt<br>Phe        | cga<br>Arg       | t         | gt<br>ys      | 1    | 92 |
| gtg<br>Val<br>65       | ttc<br>Phe               | Caa<br>Glr               | ato<br>Met         | cta<br>Leu        | gtt<br>Val<br>70        | gt<br>Va         | t at               | c c<br>e P  | ro                 | tgc<br>Cys         | tta<br>Leu<br>75 | at<br>Il                                | a t<br>e T | ac               | aga<br>Arg        | aaa<br>Lys       | T         | ct<br>hr<br>0 | 2    | 40 |
| 999<br>G1 y            | ttt<br>Phe               | ata<br>Ile               | 990<br>Gly         | cca<br>Pro<br>85  | aaa<br>Lys              | ggt<br>G1)       | ca<br>Gl           | ac<br>n A   | rg                 | att<br>11e<br>90   | ttc<br>Phe       | ct<br>Le                                | са<br>в I  | tt<br>le         | ctc<br>Leu        | aga<br>Arg<br>95 | g<br>G    | ga<br>ly      | 28   | 38 |
| gtc<br>Val             | ctt<br>Leu               | ggt<br>Gly               | tct<br>Ser<br>100  | 1111              | gcc<br>Ala              | atg<br>Met       | at<br>Me           | t L         | tt .<br>eu :<br>05 | ata<br>Ile         | tac<br>Tyr       | ta<br>Ty                                | t g<br>r A | la               | tac<br>Tyr<br>110 | cag<br>Gln       | a (T)     | ca<br>hr      | , 33 | 36 |
| atg<br>Met             | tcc<br>Ser               | ctc<br>Leu<br>115        | gct<br>Ala         | gat<br>Asp        | gcc<br>Ala              | aca<br>Thr       | gt:<br>Va:<br>120  | 1 I.        | tc a<br>le :       | acg<br>Thr         | ttt<br>Phe       | ag<br>Se                                | r S        | gt<br>er<br>25   | cca<br>Pro        | gtg<br>Val       | t (       | t t<br>he     | 38   | 4  |
| ecg<br>Thr             | tcc<br>Ser               | ata<br>Ile               | ttt<br>Phe         | gct<br>Ala        | tgg<br>Trp              | ata<br>Ile       | tg!<br>Cys         | t ci        | tc a               | ag<br>Lys          | gaa<br>Glu       | aa.<br>Lys                              | at,        | at d             | agc<br>Ser        | cct<br>Pro       | t ç<br>Tı | cb<br>33      | 43   | 2  |

|                              | 13                | 0                         |               |           |                   |                   | 13:               | 5                 |                   |                     | 16                 | U 20<br>14        |                    | T FI                  | NAL.                 | ST25                  |      |
|------------------------------|-------------------|---------------------------|---------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|--------------------|-------------------|--------------------|-----------------------|----------------------|-----------------------|------|
| ga<br>As<br>14               | p Al              | t ci<br>a Le              | tt t<br>eu P  | tc<br>he  | acc<br>Thr        | gtq<br>Val<br>150 | l Phe             | c ac              | a ater Ile        | c ac<br>e Th        | t gg<br>r Gl<br>15 | y Va              | g at               | c ct<br>le Le         | t at<br>u Il         | c gtg<br>e Val<br>160 |      |
| ag.<br>Ar                    | a cc<br>g Pr      | a co<br>o Pi              | ca t          | he        | ttg<br>Leu<br>165 | Phe               | : ggt             | t to              | c gad<br>r Asj    | c ac<br>p Th:<br>17 | r Se               | g gg<br>r G1      | g at<br>y Me       | g ga<br>t Gl          | ia ga<br>u Gl<br>17  | a agc<br>u Ser<br>5   | 528  |
| ta:<br>Ty:                   | t tc<br>r Se      | a gç<br>r Gl              | y H           | is 1      | ctt<br>Leu        | aag<br>Lys        | 998<br>Gly        | aca<br>Thi        | tto<br>Pho<br>18  | e Ala               | agc<br>aAl         | a at<br>a Il      | t gg<br>e Gl       | a ag<br>y Se<br>19    | r Al                 | c gta<br>a Val        | 576  |
| tt1<br>Phe                   | gc<br>Al          | t go<br>a Al<br>19        | a Se          | eg a      | act<br>Thr        | cta<br>Leu        | gtt<br>Val        | 11e<br>200        | e Lei             | a aga<br>u Arg      | a aa<br>g Ly       | a at<br>s Me      | g gg<br>t G1<br>20 | у Lу                  | a tc<br>s Se         | t gtg<br>r Val        | 624  |
| gac<br>Asp                   | ta<br>7y:<br>21   | r Ph                      | t ci          | g a       | agc<br>Ser        | att<br>Ile        | tgg<br>Trp<br>215 | Tyr               | tat<br>Tyr        | gta<br>Val          | a gt               | e ct<br>Le<br>22  | u Gl               | c ct<br>y Le          | cgt<br>uVa           | t gaa<br>l Glu        | 672  |
| agt<br>Ser<br>225            | · Va.             | c at<br>l 11              | c at<br>e Il  | e I       | ctc<br>Leu        | tct<br>Ser<br>230 | Val               | tta<br>Leu        | gga<br>Gly        | gaç<br>Glu          | g tg<br>235<br>235 | se:               | t ct<br>r Le       | g cc<br>u Pr          | t ta<br>o Ty:        | c tgt<br>r Cys<br>240 | .720 |
| G1 y                         | Lei               | ga<br>1 As                | c ag<br>p Ar  | g I       | cta<br>Seu<br>245 | ttt<br>Phe        | ctc<br>Leu        | ata<br>Ile        | t t c<br>Phe      | att<br>11e<br>250   | : G1               | g cto<br>/ Lei    | tt<br>i Ph         | t gg<br>e Gl          | t tte<br>y Lei<br>25 | g ggg<br>5<br>5       | 768  |
| ggt<br>Gly                   | Caç<br>Glr        | at.                       | atte Ph<br>26 | e I       | le                | aca<br>Thr        | aaa<br>Lys        | gca<br>Ala        | ctt<br>Leu<br>265 | Gln                 | ata<br>Ile         | gaa<br>Glu        | a aaa<br>a Ly:     | a gca<br>s Ala<br>270 | 9 G1                 | g cca<br>/ Pro        | 816  |
| gta<br>Val                   | gca<br>Ala        | 110<br>27                 | e Me          | ga<br>t L | ag<br>ys          | aca<br>Thr        | atg<br>Met        | gat<br>Asp<br>280 | gtg<br>Val        | gtc<br>Val          | ttt<br>Phe         | gct<br>Ala        | 285                | e Ile                 | ttt<br>Phe           | cag<br>Gln            | 864  |
| att<br>Ile                   | att<br>11e<br>290 | Phe                       | tt<br>Ph      | ta<br>e A | at<br>sn          | aat<br>Asn        | gtg<br>Val<br>295 | cca<br>Pro        | acg<br>Thr        | tgg<br>Trp          | tgg<br>Trp         | aca<br>Thr<br>300 | Va]                | g ggt<br>L Gly        | ggt<br>Gly           | gct<br>Ala            | 912  |
| ctc<br>Leu<br>305            | tgc<br>Cys        | gt <i>a</i>               | gt<br>Va      | ag<br>lA  | la                | agt<br>Ser<br>310 | aat<br>Asn        | gtt<br>Val        | gga<br>Gly        | gcg<br>Ala          | gcc<br>Ala<br>315  | lle               | cgt<br>Arg         | aaa<br>Lys            | tgg<br>Trp           | tac<br>Tyr<br>320     | 960  |
|                              |                   |                           | Ly:           |           | ga                |                   |                   |                   |                   | •                   |                    |                   |                    |                       |                      |                       | 975  |
| <210<br><211<br><212<br><213 | l><br>?><br>}>    | 223<br>324<br>PRT<br>Homo | saj           | oier      | ns                |                   |                   |                   |                   |                     |                    |                   |                    |                       |                      |                       |      |
|                              |                   |                           | G) r          | As<br>5   | sp S              | Ser               | Thr               | 61 y              | Val               | Ala<br>10           | Glu                | Leu               | Gln                | Glu                   | Pro<br>15            | Gly                   |      |
| Leu                          | Pro               | Leu                       | Thr<br>20     | As        | sp #              | Asp .             | Ala               | Pro               | Pro<br>25         | .Gly                | Ala                | Thr               | Glu                | Glu<br>30             | Pro                  | Ala                   |      |
| Ala                          | Ala               | G1 ս<br>35                | Ala           | Al        | a G               | Sly A             |                   | Pro<br>40         | Asp               | Arg                 | Va]                | Gly               | Ser<br>45          | Leu                   | Phe                  | Val '                 |      |
| Lys                          | Lys<br>50         | Val                       | Gln           | As        | pν                | /al               | His 1             | Ala               | Val               | Glu                 | lle                | Ser<br>60         | Ala                | Phe                   |                      | Cys<br>               |      |
| Val<br>65                    | Phe               | G1 n                      | Met           | Le        | u V<br>7          | al V<br>0         | /al :             | Ile               | Pro               |                     | Leu<br>75          | lle               | Tyr                | Arg                   |                      |                       |      |
| Gly I                        | Phe               | Ile                       | Gly           | Pr        | o L               | ys (              | Sly (             | Sln i             | Arg               | lle                 | Phe                | Leu               | lle                | Leu                   | Arg                  | Gl y                  |      |

16U 200 PCT FINAL.ST25 5 90 95

Val Leu Gly Ser Thr Ala Met Met Leu Ile Tyr Tyr Ala Tyr Gln Thr 100 105 110

Met Ser Leu Ala Asp Ala Thr Val Ile Thr Phe Ser Ser Pro Val Phe 115 120 125

Thr Ser Ile Phe Ala Trp Ile Cys Leu Lys Glu Lys Tyr Ser Pro Trp 130 135 140

Asp Ala Leu Phe Thr Val Phe Thr Ile Thr Gly Val Ile Leu Ile Val 145 150 155 160

Arg Pro Pro Phe Leu Phe Gly Ser Asp Thr Ser Gly Met Glu Glu Ser 165 170 175

Tyr Ser Gly His Leu Lys Gly Thr Phe Ala Ala Ile Gly Ser Ala Val 180 185 190

Phe Ala Ala Ser Thr Leu Val Ile Leu Arg Lys Met Gly Lys Ser Val 195 200 205

Asp Tyr Phe Leu Ser Ile Trp Tyr Tyr Val Val Leu Gly Leu Val Glu 210 215 220

Ser Val Ile Ile Leu Ser Val Leu Gly Glu Trp Ser Leu Pro Tyr Cys 225 235 240

Gly Leu Asp Arg Leu Phe Leu Ile Phe Ile Gly Leu Phe Gly Leu Gly 255

Gly Gln Ile Phe Ile Thr Lys Ala Leu Gln Ile Glu Lys Ala Gly Pro 260 265 270

Val Ala Ile Met Lys Thr Met Asp Val Val Phe Ala Phe Ile Phe Gln 275 280 285

11e 11e Phe Phe Asn Asn Val Pro Thr Trp Trp Thr Val Gly Gly Ala 290 295 300

Leu Cys Val Val Ala Ser Asn Val Gly Ala Ala Ile Arg Lys Trp Tyr 305 310 315 320

Gln Ser Ser Lys

<210> 224

<211> 876

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(873)

<223>

<400> 224

atg tac aac atg agt gac cat ggt aca ggc ctg ttc atc ctt ttg ggt Met Tyr Asn Met Ser Asp His Gly Thr Gly Leu Phe Ile Leu Gly 1 5 10 15

atc cct gga ctt gag cag tac cac gtc tgg atc agc atc cca ttc tgc

96

48

| 11                           | e Pr              | o G1                  | y Lei<br>20       | ı Gle             | a Glr             | Туг               | His               | Val<br>25         | l Trp             |                   |                   |                   |                   | AL.S              | <b>т</b> 25<br>: Суѕ |     |
|------------------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-----|
|                              |                   |                       |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ctc<br>Leu           | 144 |
|                              |                   |                       |                   |                   |                   |                   |                   |                   | ccc<br>Pro        |                   |                   |                   |                   |                   |                      | 192 |
|                              |                   |                       |                   |                   |                   |                   |                   |                   | tcc<br>Ser        |                   |                   |                   |                   |                   |                      | 240 |
|                              |                   |                       |                   |                   |                   |                   |                   |                   | gac<br>Asp<br>90  |                   |                   |                   |                   |                   |                      | 288 |
| atg<br>Met                   | gca<br>Ala        | ttt<br>Phe            | gac<br>Asp<br>100 | Arg               | tat<br>Tyr        | atg<br>Met        | gcc<br>Ala        | att<br>Ile<br>105 | tgc<br>Cys        | tca<br>Ser        | ccc<br>Pro        | ttg<br>Leu        | aga<br>Arg<br>110 | Tyr               | act<br>Thr           | 336 |
|                              |                   |                       | Thr               |                   |                   |                   |                   |                   | aaa<br>Lys        |                   |                   |                   |                   |                   |                      | 384 |
|                              |                   | Ser                   |                   |                   |                   |                   |                   |                   | tgt<br>Cys        |                   |                   |                   |                   |                   |                      | 432 |
| tta<br>Leu<br>145            | Pro               | t t c<br>Phe          | tgc<br>Cys        | agg<br>Arg        | aca<br>Thr<br>150 | cat<br>His        | atc<br>Ile        | att<br>Ile        | tct<br>Ser        | cac<br>His<br>155 | aca<br>Thr        | tac<br>Tyr        | tgt<br>Cys        | gag<br>Glu        | cac<br>His<br>160    | 480 |
| ata<br>Ile                   | ggt<br>Gly        | gtt<br>Val            | gcc<br>Ala        | cag<br>Gln<br>165 | ctt<br>Leu        | gcc<br>Ala        | tgt<br>Cys        | gct<br>Ala        | gat<br>Asp<br>170 | atc<br>Ile        | tcc<br>Ser        | atc<br>Ile        | aat<br>Asn        | atc<br>Ile<br>175 | tgg<br>Trp           | 528 |
| tgt<br>Cys                   | gga<br>Gly        | ttt<br>Phe            | tgt<br>Cys<br>180 | gtt<br>Val        | ccc<br>Pro        | atc<br>Ile        | atg<br>Met        | acg<br>Thr<br>185 | gtg<br>Val        | atg<br>Met        | aca<br>Thr        | gac<br>Asp        | gtg<br>Val<br>190 | atc<br>Ile        | ctc<br>Leu           | 576 |
| att<br>Ile                   | gct<br>Ala        | gtc<br>Val<br>195     | tcc<br>Ser        | tac<br>Tyr        | acc<br>Thr        | ctc<br>Leu        | atc<br>Ile<br>200 | ctc<br>Leu        | tgt<br>Cys        | gct<br>Ala        | gtc<br>Val        | ttt<br>Phe<br>205 | tgc<br>Cys        | ctc<br>Leu        | ccc<br>Pro           | 624 |
| tcc<br>Ser                   | caa<br>Gln<br>210 | gat<br>Asp            | gcc<br>Ala        | cgt<br>Arg        | cag<br>Gln        | aag<br>Lys<br>215 | gcc<br>Ala        | ctt<br>Leu        | tgc<br>Cys        | tcc<br>Ser        | tgt<br>Cys<br>220 | ggt<br>Gly        | tcc<br>Ser        | cat<br>His        | gtc<br>Val           | 672 |
| tgt<br>Cys<br>225            | gtt<br>Val        | atc<br>lle            | ctc<br>Leu        | ata<br>Ile        | ttc<br>Phe<br>230 | tat<br>Tyr        | ata<br>Ile        | cca<br>Pro        | gca<br>Ala        | ttc<br>Phe<br>235 | ttc<br>Phe        | tcc<br>Ser        | att<br>Ile        | ctt<br>Leu        | gcc<br>Ala<br>240    | 720 |
| His                          | Cys               | Phe                   | G1 y              | His<br>245        | Asn               | Va]               | Pro               | His               | acc<br>Thr<br>250 | Phe               | His               | lle               | Met               | Phe<br>255        | Ala                  | 768 |
| _Asn                         | Leu               | Tyr                   | Val<br>260        | Ile               | lle               | Pro               | Pro               | Ala<br>265        |                   | Asn               | Ser               | Ile '             | Val<br>270        | Tyr               | Arg                  | 816 |
| ata<br>Ile                   | aag<br>Lys        | acc<br>Thr<br>275     | aag<br>Lys        | caa<br>Gln        | atc (<br>Ile (    | Gln               | aac<br>Asn<br>280 | aga<br>Arg        | atc<br>Ile        | ctt<br>Leu        | Leu               | ctc<br>Leu<br>285 | ttt<br>Phe        | CCC<br>Pro        | aag<br>Lys           | 864 |
| GJ A<br>GG A                 |                   |                       | tga               |                   |                   |                   | ٠                 | •                 |                   |                   |                   |                   |                   |                   |                      | 876 |
| <210<br><211<br><212<br><213 | > 2<br>> P        | 25<br>91<br>RT<br>omo | sapi              | ens               |                   |                   |                   |                   |                   |                   |                   |                   |                   | •                 |                      |     |
| <400                         | > 2               | 25                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                      |     |

Met Tyr Asn Met Ser Asp His Gly Thr Gly Leu Phe Ile Leu Leu Gly 1 5 10 15

lle Pro Gly Leu Glu Gln Tyr His Val Trp Ile Ser Ile Pro Phe Cys 20 25 30

Leu 11e Tyr Leu Met Ala Val Val Ala As<br/>n Ser 11e Leu Leu Tyr Leu 35 40 45

Ile Val Val Glu His Ser Leu His Ala Pro Met Phe Phe Leu Ser 50 60

Met Leu Ala 11e Thr Asp Leu I1e Leu Ser Thr Thr Cys Val Pro Lys 65 70 75 80

Thr Leu Ser Ile Phe Cys Phe Val Leu Asp Ser Ala Ile Leu Leu Ala 85 90 95

Met Ala Phe Asp Arg Tyr Met Ala Ile Cys Ser Pro Leu Arg Tyr Thr  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ 

Thr Ile Leu Thr Pro Lys Thr Ile Val Lys Ile Ala Val Gly Ile Cys 115 120 125

Phe Arg Ser Phe Cys Val Phe Val Pro Cys Val Phe Leu Val Asn Arg 130 135 140

Leu Pro Phe Cys Arg Thr His Ile Ile Ser His Thr Tyr Cys Glu His 145 150 155 160

Ile Gly Val Ala Gln Leu Ala Cys Ala Asp Ile Ser Ile Asn Ile Trp 165 170 175

Cys Gly Phe Cys Val Pro Ile Met Thr Val Met Thr Asp Val Ile Leu 180 185 190

Ile Ala Val Ser Tyr Thr Leu Ile Leu Cys Ala Val Phe Cys Leu Pro 195 200 205

Ser Gln Asp Ala Arg Gln Lys Ala Leu Cys Ser Cys Gly Ser His Val 210 215 220

Cys Val Ile Leu Ile Phe Tyr Ile Pro Ala Phe Phe Ser Ile Leu Ala 225 230 235 240

\_His Cys Phe Gly His Asn Val Pro His Thr Phe His Ile Met Phe Ala 245 250 255

As Leu Tyr Val Ile Ile Pro Pro Ala Leu As n Ser Ile Val Tyr Arg 260 265 270

Ile Lys Thr Lys Gln Ile Gln Asn Arg Ile Leu Leu Leu Phe Pro Lys 275 280 285

Gly Ser Gln

<210> 226 <211> 1949 <212> DNA

| <213>                            | Homo s                    | apiens                     |                               |                       | 16                        | U 200 PC                     | T FINAL                                | . ST25               |      |
|----------------------------------|---------------------------|----------------------------|-------------------------------|-----------------------|---------------------------|------------------------------|----------------------------------------|----------------------|------|
| <220><br><221><br><222><br><223> | CDS<br>(430).             | . (1164)                   |                               |                       |                           |                              |                                        |                      |      |
| <400><br>agaggg                  | 226<br>gcgg ga            | cttctcc                    | ggtcaag                       | gcc ag                | gtctctt                   | c cctgct                     | cggt gc                                | tatgttcc             | 60   |
| tgttcc                           | acgg gg                   | tggcgggt                   | cctggga                       | ggg ag                | gaagccca                  | g acccag                     | tgga ca                                | ctgacatt             | 120  |
| gtctct                           | gct gt                    | tcccagco                   | tttcca                        | ggc gt                | gtgactt                   | a atccgt                     | ttcc ac                                | agccagac             | 180  |
| cttttc                           | ccg tg                    | agttcctc                   | : agccagg                     | act go                | tgccatg                   | c cggtga                     | ctgt tad                               | ccaccca              | 240  |
| accgtca                          | acga cca                  | accatgcg                   | gtccccc                       | acc gt                | cgtaggg                   | t cctcta                     | gggc ccl                               | gatccag              | 300  |
| ccctg                            | gec te                    | ctccgcct                   | gctgcag                       | ctg gt                | gtccacc                   | t gcgtggi                    | cctt gto                               | actggtg              | 360  |
| gccagcç                          | itgg gc                   | gcctggaa                   | ggggcct                       | atg gg                | taactgg                   | t ccatgt                     | tcac cta                               | gtgtttc              | 420  |
| tgctttg                          | icc atg<br>Met<br>I       | acc ctg<br>Thr Leu         | gtc atc<br>Val 11e<br>5       | ctc c<br>Leu L        | tc gtg (<br>eu Val (      | gag ctg (<br>Glu Leu (<br>10 | ggc ggc<br>Sly Gly                     | tcc cag<br>Ser Gln   | 471  |
| gcc cgc<br>Ala Arg<br>15         | ttc co                    | c ttg to Leu P             | tt tgg co<br>he Trp Ai<br>O   | gc aac<br>g Asn       | ttc ccc<br>Phe Pro<br>25  | atc acc                      | ttt go<br>r Phe Al                     | c tgc<br>a Cys<br>30 | 519  |
| tat gcg<br>Tyr Ala               | gcc ct<br>Ala Le          | c ttg to<br>b Leu C<br>35  | gc ctc to<br>ys Leu Se        | g gcc<br>r Ala        | tcc ato<br>Ser Ile<br>40  | atc tac                      | c ccc ac<br>Pro Th<br>45               | r Thr                | 567  |
| tac ttg<br>Tyr Leu               | cag tt<br>Gln Ph<br>50    | e ren 26                   | cc cac gg<br>er His Gl        | c cgt<br>y Arg<br>55  | tcc cgc<br>Ser Arg        | gac cac<br>Asp His           | gcc at<br>Ala Il<br>60                 | c gcc<br>e Ala       | 615  |
| gcc atc<br>Ala Ile               | gtc tt<br>Val Ph<br>65    | c tct go<br>e Ser Gl       | gc atc gc<br>y Ile Al<br>70   | a Cys                 | gtg gct<br>Val Ala        | tac gcc<br>Tyr Ala<br>75     | acc gad                                | a gta<br>u Val       | 663  |
| acc tgg<br>Thr Trp<br>80         | acc cg<br>Thr Ar          | g gcc cg<br>g Ala Ar       | g ccc gg<br>g Pro Gl<br>85    | c gag<br>y Glu        | atc act<br>Ile Thr        | gac tac<br>Asp Tyr<br>90     | atg gcd<br>Met Ala                     | c tcc<br>s Ser       | 711  |
| gag ctg<br>Glu Leu<br>95         | ggg cte<br>Gly Le         | g ctg aa<br>u Leu Ly<br>10 | g gtg ct<br>s Val Le<br>0     | g gag<br>u Glu        | acc ttc<br>Thr Phe<br>105 | gtg gcc<br>Val Ala           | tgc cto<br>Cys Lei                     | atc<br>Ile<br>110    | 759  |
| ttc gtg<br>Phe Val               | ttc ato<br>Phe Ile        | aat ag<br>Asn Se<br>115    | c ccc tac<br>r Pro Ty.        | r Val                 | tac cac<br>Tyr His<br>120 | aac cgg<br>Asn Arg           | ccg gcc<br>Pro Ala<br>125              | Leu                  | 807  |
| gag tgg<br>Glu Trp               | tgg gtg<br>Trp Va)<br>130 | ATA VA                     | g tac gco<br>l Tyr Ala        | ctc<br>Leu<br>135     | tgc ttc<br>Cys Phe        | gtc ctg<br>Val Leu           | gcg gcc<br>Ala Ala<br>140              | ctc                  | 855  |
| act atc<br>Thr Ile               | ctg ctg<br>Leu Leu<br>145 | age et<br>Ser Lei          | g ggg cac<br>u Gly His<br>150 | Cys :                 | acc aac<br>Thr Asn        | atg ctg<br>Met Leu<br>155    | ccc atc<br>Pro lle                     | cgc<br>Arg           | 903  |
| ttc ccc<br>Phe Pro:<br>160       | agt ttc<br>Ser Phe        | Leu Le                     | g ggg ctg<br>Gly Leu<br>165   | gcc (<br>Ala )        | ttg ctg<br>Leu Leu        | tcc gtc<br>Ser Val<br>170    | ctc ctc<br>Leu Lev                     | tat<br>Tyr           | 951  |
| gcc act o<br>Ala Thr i<br>175    | gcc ctt<br>Ala Leu        | gtc ctc<br>Val Leu<br>180  | Trp Pro                       | ctc t<br>Leu 1        | tac cag<br>Tyr Gln<br>185 | ttc aac<br>Phe Asn           | gag aag<br>Glu Lys                     | tat<br>Tyr<br>190    | 999  |
| ggt gtc (<br>Gly Val (           | cag ccc<br>Sln Pro        | tgg cag<br>Trp Gln<br>195  | acg aga<br>Thr Arg            | Asp V                 | gtg agc<br>Val Ser        | tgc agc<br>Cys Ser           | gac aga <sup>,</sup><br>Asp Arg<br>205 | aac<br>Asn           | 1047 |
| ccc tac c<br>Pro Tyr 1           | ett gtg<br>eu Val<br>210  | tgt atc<br>Cys Ile         | tgg gac<br>Trp Asp            | cgc c<br>Arg A<br>215 | ga ctg<br>rg Leu          | Ala Val :                    | acc aac<br>Thr Asn<br>220              | ctg<br>Leu           | 1095 |
| acg gcc g                        | tc aac                    | ttg ctg                    | gcc tat                       | gtg g                 | gc gac                    | ctg gtg (                    | tac tct                                | gcc                  | 1143 |

| 16U 200 PCT FINAL.ST25 Thr Ala Val Asn Leu Leu Ala Tyr Val Gly Asp Leu Val Tyr Ser Ala 225 230 235                                                                                                                                                                                                                                              |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| cac ctg gtt ttt gtc aag gtc taagactccc aaagggcccc gtttgcctct<br>His Leu Val Phe Val Lys Val<br>240 245                                                                                                                                                                                                                                          | 1194  |
| ccaacctctt catcctgccc ccgctgagtt ttctttattg agtattcatt tcctgggttt                                                                                                                                                                                                                                                                               | 1254  |
| tectetteec tateteceet ceteceettt tettteette ecaatteate geaettteee                                                                                                                                                                                                                                                                               | 1314  |
| agttetetga tgtatgttet tecettteet etgetgttte ettettgttt tgttetgttg                                                                                                                                                                                                                                                                               | 1374  |
| cccacaacct gttttcaccc gtttctcttt ttccactctc tcttttgttt ctttcctctc                                                                                                                                                                                                                                                                               | 1434  |
| aattotttto taggittoot gitggittic tiatoigoot atticoogac catottotoo                                                                                                                                                                                                                                                                               | 1494  |
| tatttcctgg ggagccctga ggcttttctt ctcctgcccc caagcacctc cagcggtgat                                                                                                                                                                                                                                                                               | 1554  |
| gagetecaca eccecacace cattgeaget gtggegecac gteeteccaa ggggeettet                                                                                                                                                                                                                                                                               | 1614  |
| gcccgccccc gccctagctg tgccttagtc agtgtgtact tgtgtgtgtt tgggggagtg                                                                                                                                                                                                                                                                               | 1674  |
| ggaattgggc cccctttctc ccagtggagg aaggtgtgct gtgcacctcc cctttaaatt                                                                                                                                                                                                                                                                               | .1734 |
| aaaaaaaatg tatgtatctc tggaagtcaa taatttccag tgagcgggag gcttcaagcg                                                                                                                                                                                                                                                                               | 1794  |
| cagaccotgg gtccctagac ctcgcctagc actctgcctt gccagagatt ggctccagaa                                                                                                                                                                                                                                                                               | 1854  |
| tttgtgccag acttacagaa aacccactgc ctagaggcca tcttaaagga agcaatggat                                                                                                                                                                                                                                                                               | 1914  |
| ggatcccttt catcccaact gttcttcgcg gtatc                                                                                                                                                                                                                                                                                                          | 1949  |
| <210> 227<br><211> 245<br><212> PRT<br><213> Homo sapiens<br><400> 227                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                 |       |
| Met Thr Leu Val Ile Leu Leu Val Glu Leu Gly Gly Ser Gln Ala Arg  1 10 15                                                                                                                                                                                                                                                                        |       |
|                                                                                                                                                                                                                                                                                                                                                 |       |
| Phe Pro Leu Phe Trp Arg Asn Phe Pro Ile Thr Phe Ala Cys Tyr Ala                                                                                                                                                                                                                                                                                 |       |
| Phe Pro Leu Phe Trp Arg Asn Phe Pro Ile Thr Phe Ala Cys Tyr Ala 20 25 30  Ala Leu Leu Cys Leu Ser Ala Ser Ile Ile Tyr Pro Thr Thr Tyr Leu                                                                                                                                                                                                       |       |
| Phe Pro Leu Phe Trp Arg Asn Phe Pro Ile Thr Phe Ala Cys Tyr Ala 20                                                                                                                                                                                                                                                                              |       |
| Phe Pro Leu Phe Trp Arg Asn Phe Pro Ile Thr Phe Ala Cys Tyr Ala 20  Ala Leu Leu Cys Leu Ser Ala Ser Ile Ile Tyr Pro Thr Thr Tyr Leu 35  Gln Phe Leu Ser His Gly Arg Ser Arg Asp His Ala Ile Ala Ala Ile 50  Val Phe Ser Gly Ile Ala Cys Val Ala Tyr Ala Thr Glu Val Thr Trp                                                                     |       |
| Phe Pro Leu Phe Trp Arg Asn Phe Pro Ile Thr Phe Ala Cys Tyr Ala 20  Ala Leu Leu Cys Leu Ser Ala Ser Ile Ile Tyr Pro Thr Thr Tyr Leu 35  Gln Phe Leu Ser His Gly Arg Ser Arg Asp His Ala Ile Ala Ala Ile 50  Val Phe Ser Gly Ile Ala Cys Val Ala Tyr Ala Thr Glu Val Thr Trp 65  Thr Arg Ala Arg Pro Gly Glu Ile Thr Asp Tyr Met Ala Ser Glu Leu |       |

Trp Val Ala Val Tyr Ala Leu Cys Phe Val Leu Ala Ala Leu Thr Ile 130  $$135\$ 

Leu Leu Ser Leu Gly His Cys Thr Asn Met Leu Pro Ile Arg Phe Pro 145 150 155 160

|                                                             | r Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Le                                                                                                | u Le                                                                                   | u Gl<br>16                                                               | y Le                                                                                   | u Al                                                                                                 | a Le                                                                                   | u Lei                                                                                  | 3 Sea<br>170                                                                                |                                                                       | Leu                                                                       | l Le                                                                                   | u Ty                                                                            | r Al<br>17                                                                             | a Thr<br>5                                                               |                                 |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|
| Αĵ                                                          | a Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | υ Va                                                                                                | l Le                                                                                   | u Trg                                                                    | Pr                                                                                     | o Lei                                                                                                | ту:                                                                                    | r Gli<br>185                                                                           | n Phe                                                                                       | Asn                                                                   | Glu                                                                       | Ly:                                                                                    | 5 Ty:                                                                           |                                                                                        | y Val                                                                    |                                 |
| <b>G</b> 1                                                  | n Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Tr<br>19                                                                                          | p Gl:<br>5                                                                             | n Thi                                                                    | Ar                                                                                     | g Ası                                                                                                | 200                                                                                    |                                                                                        | Cys                                                                                         | Ser                                                                   | Asp                                                                       | 205                                                                                    |                                                                                 | ı Pr                                                                                   | Tyr                                                                      |                                 |
| Le                                                          | u Va<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Су.<br>0                                                                                          | s Ile                                                                                  | e Trp                                                                    | Ası                                                                                    | 215                                                                                                  | a Arç                                                                                  | , Lec                                                                                  | ı Ala                                                                                       | Val                                                                   | Thr<br>220                                                                |                                                                                        | ı Lei                                                                           | Th                                                                                     | r Ala                                                                    |                                 |
| Va.<br>22                                                   | l Ası<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Lei                                                                                               | u Lei                                                                                  | ala                                                                      | Ту:<br>23(                                                                             | : Val                                                                                                | G1 y                                                                                   | / Asp                                                                                  | Leu                                                                                         | Val<br>235                                                            | туг                                                                       | Ser                                                                                    | A) a                                                                            | His                                                                                    | 240                                                                      |                                 |
| Va:                                                         | l Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Val                                                                                               | l Lys                                                                                  | 245                                                                      |                                                                                        |                                                                                                      |                                                                                        |                                                                                        |                                                                                             |                                                                       |                                                                           |                                                                                        |                                                                                 |                                                                                        |                                                                          | -                               |
| <21<br><21                                                  | 10><br>11><br>12><br>13>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 228<br>2980<br>DNA<br>Homo                                                                          | )<br>sap                                                                               | iens                                                                     |                                                                                        |                                                                                                      |                                                                                        |                                                                                        |                                                                                             |                                                                       |                                                                           |                                                                                        |                                                                                 |                                                                                        |                                                                          |                                 |
| <22                                                         | 22>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDS<br>(213                                                                                         | 3)(                                                                                    | 2336                                                                     | )                                                                                      |                                                                                                      |                                                                                        |                                                                                        |                                                                                             |                                                                       |                                                                           |                                                                                        |                                                                                 |                                                                                        |                                                                          |                                 |
|                                                             | )0><br>:agag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 228<br>acc                                                                                          | cagg                                                                                   | ccgc                                                                     | gg a                                                                                   | a.<br>actg                                                                                           | gcag                                                                                   | g cg                                                                                   | tttca                                                                                       | agag                                                                  | cgto                                                                      | caga                                                                                   | ggc                                                                             | tgcg                                                                                   | gatgag                                                                   | 60                              |
| cag                                                         | actt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gga                                                                                                 | ggac                                                                                   | tcca                                                                     | gg c                                                                                   | caga                                                                                                 | gact                                                                                   | a gg                                                                                   | ctgg                                                                                        | gcga                                                                  | agag                                                                      | gtcg                                                                                   | agc                                                                             | gtga                                                                                   | aggggg                                                                   | 120                             |
| ctc                                                         | cggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cca                                                                                                 | gggt                                                                                   | gaca                                                                     | gg a                                                                                   | ggcg                                                                                                 | tgct                                                                                   | t ga                                                                                   | gagga                                                                                       | ana                                                                   | 2011                                                                      |                                                                                        | aaia                                                                            | nnss                                                                                   | ccaata                                                                   | 180                             |
| cga                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                        |                                                                          |                                                                                        |                                                                                                      |                                                                                        |                                                                                        | , ,,                                                                                        | uga                                                                   | ayıı                                                                      | .yac                                                                                   | 999                                                                             |                                                                                        | ccagig                                                                   | 100                             |
|                                                             | icggc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aaa                                                                                                 | tctc                                                                                   | gtgaa                                                                    | эс с                                                                                   | ttgg                                                                                                 | ggga                                                                                   |                                                                                        | atg                                                                                         |                                                                       | agg                                                                       | atg                                                                                    | cgg                                                                             | gtc                                                                                    | ccc                                                                      | 233                             |
| Ala                                                         | ctc<br>Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctc<br>Leu<br>10                                                                                    | gtc<br>Val                                                                             | ctc<br>Leu                                                               | ctc<br>Leu                                                                             | ttc<br>Phe                                                                                           | tgc<br>Cys<br>15                                                                       | ttc<br>Phe                                                                             | atg<br>Met<br>1<br>aga<br>Arg                                                               | ctc<br>Leu<br>999<br>Gly                                              | agg<br>Arg<br>aga<br>Arg                                                  | atg<br>Met<br>gca<br>Ala<br>20                                                         | cgg<br>Arg<br>5<br>ggc<br>Gly                                                   | gtc<br>Val<br>ccg<br>Pro                                                               | ccc<br>Pro<br>tcg<br>Ser                                                 |                                 |
| ccc<br>Pro                                                  | cat<br>His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctc<br>Leu<br>10<br>ttc<br>Phe                                                                      | gtc<br>Val<br>ctg<br>Leu                                                               | ctc<br>Leu<br>caa<br>Gln                                                 | ctc<br>Leu<br>cag<br>Gln                                                               | ttc<br>Phe<br>cca<br>Pro<br>30                                                                       | tgc<br>Cys<br>15<br>gag<br>Glu                                                         | ttc<br>Phe<br>gac<br>Asp                                                               | atg<br>Met<br>1<br>aga<br>Arg<br>ctg<br>Leu                                                 | ctc<br>Leu<br>9gg<br>Gly<br>gtg<br>Val                                | agg<br>Arg<br>aga<br>Arg<br>gtg<br>Val<br>35                              | atg<br>Met<br>gca<br>Ala<br>20<br>ctg<br>Leu                                           | cgg<br>Arg<br>5<br>ggc<br>Gly<br>ctg<br>Leu                                     | gtc<br>Val<br>ccg<br>Pro<br>ggg<br>Gly                                                 | ccc<br>Pro<br>tcg<br>Ser<br>gag<br>Glu                                   | 233                             |
| ccc<br>Pro<br>gaa<br>Glu<br>40                              | cat<br>His<br>25<br>gcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctc<br>Leu<br>10<br>ttc<br>Phe                                                                      | gtc<br>Val<br>ctg<br>Leu<br>ctg                                                        | ctc<br>Leu<br>caa<br>Gln<br>ccg<br>Pro                                   | ctc<br>Leu<br>cag<br>Gln<br>tgt<br>Cys<br>45                                           | ttc<br>Phe<br>cca<br>Pro<br>30<br>gct<br>Ala                                                         | tgc<br>Cys<br>15<br>gag<br>Glu<br>ctg<br>Leu                                           | ttc<br>Phe<br>gac<br>Asp<br>ggc<br>Gly                                                 | atg<br>Met<br>1<br>aga<br>Arg<br>ctg<br>Leu<br>gcc<br>Ala                                   | ctc<br>Leu<br>999<br>Gly<br>gtg<br>Val<br>tac<br>Tyr                  | agg<br>Arg<br>aga<br>Arg<br>gtg<br>Val<br>35<br>tgg                       | atg<br>Met<br>gca<br>Ala<br>20<br>ctg<br>Leu<br>ggg<br>Gly                             | cgg<br>Arg<br>5<br>ggc<br>Gly<br>ctg<br>Leu<br>cta                              | gtc<br>Val<br>ccg<br>Pro<br>ggg<br>Gly<br>gtt<br>Val                                   | ccc<br>Pro<br>tcg<br>Ser<br>gag<br>Glu<br>cag<br>Gln<br>55               | 233                             |
| ccc<br>Pro<br>gaa<br>Glu<br>40                              | cat<br>His<br>25<br>gcc<br>Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ctc<br>Leu<br>10<br>ttc<br>Phe<br>cgg<br>Arg                                                        | gtc<br>Val<br>ctg<br>Leu<br>ctg<br>Leu                                                 | ctc<br>Leu<br>caa<br>Gln<br>ccg<br>Pro                                   | ctc<br>Leu<br>cag<br>Gln<br>tgt<br>Cys<br>45                                           | ttc<br>Phe<br>cca<br>Pro<br>30<br>gct<br>Ala                                                         | tgc<br>Cys<br>15<br>gag<br>Glu<br>ctg<br>Leu                                           | ttc<br>Phe<br>gac<br>Asp<br>ggc<br>Gly                                                 | atg<br>Met<br>1<br>aga<br>Arg<br>ctg<br>Leu<br>gcc<br>Ala                                   | ggg<br>Gly<br>gtg<br>Val<br>tac<br>Tyr                                | agg<br>Arg<br>aga<br>Arg<br>gtg<br>Val<br>35<br>tgg<br>Trp                | atg<br>Met<br>gca<br>Ala<br>20<br>ctg<br>Leu<br>ggg<br>Gly                             | cgg<br>Arg<br>5<br>ggc<br>Gly<br>ctg<br>Leu<br>cta<br>Leu                       | gtc<br>Val<br>ccg<br>Pro<br>ggg<br>Gly<br>gtt<br>Val                                   | ccc<br>Pro<br>tcg<br>Ser<br>gag<br>Glu<br>cag<br>Gln<br>55               | 233<br>281<br>329               |
| ccc<br>Pro<br>gaa<br>Glu<br>40<br>tgg<br>Jrp                | catc Leu cat His 25 gcc Ala act Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctc<br>Leu<br>10<br>ttc<br>Phe<br>Cgg<br>Arg<br>Lys                                                 | gtc<br>Val<br>ctg<br>Leu<br>ctg<br>Leu<br>agt<br>Ser<br>tac<br>Tyr<br>75               | ctc<br>Leu<br>Caa<br>Gln<br>Ccg<br>Pro<br>9gg<br>Gly<br>60<br>tgg        | ctc<br>Leu<br>cag<br>Gln<br>tgt<br>Cys<br>45<br>ctg<br>Leu<br>ata<br>Ile               | ttc<br>Phe<br>cca<br>Pro<br>30<br>gct<br>Ala<br>gcc<br>Ala                                           | tgc<br>Cys<br>15<br>gag<br>Glu<br>ctg<br>Leu<br>cta<br>Leu                             | ttc<br>Phe<br>gac<br>Asp<br>ggc<br>Gly<br>ggg<br>Gly                                   | atg<br>Met<br>1<br>aga<br>Arg<br>ctg<br>Leu<br>gcc<br>Ala<br>ggc<br>Gly<br>65               | gtg Gly Val tac Tyr 50 caa Gln i                                      | agg<br>Arg<br>aga<br>Arg<br>gtg<br>gval<br>35<br>tgg<br>Trp<br>agg<br>Arg | atg<br>Met<br>gca<br>Ala<br>20<br>ctg<br>Leu<br>ggg<br>Gly<br>gac<br>Asp               | cgg<br>Arg<br>5<br>ggc<br>Gly<br>ctg<br>Leu<br>cta<br>Leu<br>cta<br>Leu         | gtc<br>Val<br>ccg<br>Pro<br>ggg<br>Gly<br>gtt<br>Val<br>cca<br>Pro<br>70               | tcg<br>Ser<br>gag<br>Glu<br>cag<br>Gln<br>55<br>ggg<br>Gly               | 233<br>281<br>329<br>377        |
| ccc<br>Pro<br>gaaa<br>Glu<br>40<br>tgg<br>Trp<br>tgg<br>Trp | catched Catche | ctc<br>Leu<br>10<br>ttc<br>Phe<br>cgg<br>Arg<br>Lys<br>cgg<br>Arg                                   | gtc<br>Val<br>ctg<br>Leu<br>ctg<br>Leu<br>agt<br>Ser<br>tac<br>Tyr<br>75<br>agg<br>Arg | ctc<br>Leu<br>Caa<br>Gln<br>ccg<br>Pro<br>999<br>Gly<br>60<br>tgg<br>Trp | ctc<br>Leu<br>cag<br>Gln<br>tgt<br>Cys<br>45<br>ctg<br>Leu<br>ata<br>alle              | ttc<br>Phe<br>cca<br>Pro<br>30<br>gct<br>Ala<br>gcc<br>Ala<br>tca<br>Ser                             | tgc<br>Cys<br>15<br>gag<br>Glu<br>ctg<br>Leu<br>ggg<br>Gly                             | ttc<br>Phe<br>gac<br>Asp<br>ggc<br>Gly<br>ggg<br>Gly<br>aat<br>Asn<br>80<br>gag        | atg<br>Met<br>1<br>aga<br>Arg<br>ctg<br>Leu<br>gcc<br>Ala<br>ggc<br>Gly<br>65<br>gca<br>Ala | ggg Gly Yal tac Tyr 50 Caa Gln J                                      | agg<br>Arg<br>aga<br>Arg<br>gtg<br>Val<br>35<br>tgg<br>Trp<br>agg<br>Arg  | atg<br>Met<br>gca<br>Ala<br>20<br>ctg<br>Leu<br>ggg<br>Gly<br>gac<br>Asp<br>ggc<br>Gly | cggg<br>S<br>ggc Gly<br>ctg<br>Leu<br>cta<br>Leu<br>cta<br>Leu<br>cta<br>Leu    | gtc<br>Val<br>ccg<br>Pro<br>ggg<br>Gly<br>gtt<br>Val<br>cca<br>Pro<br>70<br>cat<br>His | tcg<br>Ser<br>gag<br>Glu<br>cag<br>Gln<br>55<br>ggg<br>Gly<br>gac<br>Asp | 233<br>281<br>329<br>377<br>425 |
| ccc<br>Pro<br>gaa<br>Glu<br>40<br>tgg<br>Jrp<br>tgg<br>Trp  | catc<br>Leu<br>cat<br>His<br>25<br>gcc<br>Ala<br>act<br>Thr<br>tcc<br>Ser<br>cac<br>His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctc<br>Leu<br>10<br>ttc<br>Phe<br>cgg<br>Arg<br>Lys<br>Cgg<br>Arg<br>att<br>Ile<br>90<br>aca<br>Thr | gtc<br>Val<br>ctg<br>Leu<br>ctg<br>Leu<br>agt<br>Ser<br>tac<br>Tyr<br>75<br>agg<br>Arg | ctc<br>Leu<br>Caa<br>Gln<br>ccg<br>Pro<br>60<br>tgg<br>Trp<br>ccc<br>Pro | ctc<br>Leu<br>cag<br>Gln<br>tgt<br>Cys<br>45<br>ctg<br>Leu<br>ata<br>Ile<br>gtg<br>Val | ttc<br>Phe<br>cca<br>Pro<br>30<br>gct<br>Ala<br>gcc<br>Ala<br>tca<br>Ser<br>gag<br>Glu<br>ctc<br>Leu | tgc<br>Cys<br>15<br>gag<br>Glu<br>ctg<br>Leu<br>ggg<br>Gly<br>cta<br>Leu<br>ggg<br>Cly | ttc<br>Phe<br>gac<br>Asp<br>ggc<br>Gly<br>ggg<br>Gly<br>aat<br>Asn<br>80<br>gag<br>Glu | atg<br>Met<br>1<br>aga<br>Arg<br>ctg<br>Leu<br>gcc<br>Ala<br>ggc<br>Gly<br>65<br>gca<br>Ala | gtg Gly Val tac Tyr 50 Caa Gln 1 ggaa ggaa ggaa ggaa ggaa ggaa ggaa g | agg<br>aga<br>aga<br>Arg<br>gtg<br>Val<br>35<br>tgg<br>Trp<br>agg<br>Arg  | atg<br>Met<br>gca<br>Ala<br>20<br>ctg<br>Leu<br>ggg<br>Gly<br>gac<br>Asp<br>ggc<br>Gly | cggg Arg 5 5 ggc Gly ctg Leu cta Leu cta Leu cta Leu cag Gln 85 tat Tyr ctg Leu | gtc<br>Val<br>ccg<br>Pro<br>ggg<br>Gly<br>gtt<br>Val<br>cca<br>Pro<br>70<br>cat<br>His | tcg<br>Ser<br>gag<br>Glu<br>cag<br>Gln<br>55<br>ggg<br>Gly<br>gac<br>Asp | 233<br>281<br>329<br>377<br>425 |

| ct<br>Le          | ggt<br>uVa            | t g                | ct g<br>la G       | TA A               | tt c<br>al P<br>40   | ct go<br>ro Al        | eg aa<br>la As        | nc ct<br>sn Le        | g ac<br>o Th         | a tg                 | it co               | io ac              | nc cr                | gt ge<br>rg G         | ST25<br>gg ga<br>ly As<br>50 | + 665        |
|-------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|---------------------|--------------------|----------------------|-----------------------|------------------------------|--------------|
| gc<br>Al          | c co<br>a Ar          | gc co              | ro 1               | cc c<br>hr P<br>55 | ct ga<br>ro G        | aa ti<br>lu Le        | g ct<br>u Le          | g tg<br>u Tr<br>16    | p Ph                 | c cg<br>e Ar         | a ga<br>g As        | t gg<br>p Gl       | gg gt<br>Ly Va<br>16 | al Le                 | tg tt<br>eu Le               | .g 713<br>eu |
| ga<br>As          | t gg<br>p Gl          | y A.               | cc a<br>la T<br>70 | cc t<br>hr P       | tc ca<br>he Hi       | at ca<br>is Gl        | ig ac<br>in Th<br>17  | r Le                  | g ct<br>v Le         | g aa<br>u Ly         | g ga<br>s Gl        | a gg<br>u G1<br>18 | y Th                 | cc cc<br>or Pi        | ct gg<br>ro Gl               | rg 761<br>Y  |
| tc<br>Se          | a gt<br>r Va<br>18    | T C                | aga<br>lu S        | gc a<br>er Ti      | cc ti                | a ac<br>u Th          | r Le                  | g ac<br>u Th          | c cc<br>r Pr         | t tt<br>o Ph         | c ag<br>e Se<br>19  | r Hi               | it ga<br>s As        | it ga<br>sp As        | at gg<br>sp Gl               | a 809<br>y   |
| gc<br>Al<br>20    | a in                  | c tt<br>r Ph       | t g<br>ne V        | tc to              | ge eg<br>ys Ai<br>20 | g Al                  | c cg<br>a Ar          | gag<br>gSe            | c ca<br>r Gl         | g gc<br>n Al.<br>210 | a Le                | g cc<br>u Pr       | cac<br>oTh           | a gg<br>ir Gl         | a ag<br>y Ar<br>21           | g            |
| ga-<br>As         | c ac<br>p Th          | a go<br>r Al       | t at<br>a I        | tcad<br>leTh<br>22 | ir Le                | g ag<br>eu Se         | c ct                  | g car<br>v Gl         | g ta<br>n Ty:<br>22: | r Pro                | c cc                | aga<br>oGl         | g gt<br>u Va         | g ac<br>1 Th<br>23    | t ct<br>r Le                 | g 905<br>u   |
| t c               | t gc<br>r Al          | t tc<br>a Se       | g co<br>r Pr<br>23 | co Hi              | s Th                 | t gt<br>r Va          | g cad                 | g gag<br>n Gli<br>240 | 0 G1                 | a gaq<br>y Glu       | g aad<br>u Ly:      | g gt<br>s Va       | c at<br>l II<br>24   | e Ph                  | c cte                        | g 953<br>u   |
| tge<br>Cys        | ca<br>s Gl            | g gc<br>n Al<br>25 | a Th               | a go<br>ir Al      | c ca<br>a Gl         | g cc<br>n Pr          | t cc:<br>0 Pro<br>25! | o Val                 | c aca                | aggo<br>rGly         | tae<br>7 Tys        | 2 age              | g Tr                 | g gc<br>p Al          | a aaa<br>a Lys               | e 1001<br>s  |
| ggg<br>G1         | 9 999<br>7 G1:<br>26: | y 5e               | t cc<br>r Pr       | g gt<br>o Va       | g ct<br>l Le         | c ggg<br>u Gly<br>270 | y Ala                 | c cgo<br>a Aro        | g Gly                | g cca<br>y Pro       | a agg<br>Arg<br>275 | ) Lei              | a ga<br>u Gli        | g gt<br>v Va          | c gto<br>l Val               | g 1049<br>l  |
| gca<br>Ala<br>280 | ASI                   | c gc               | c to<br>a Se       | g tt<br>r Ph       | c ct<br>e Le<br>28   | u Thi                 | gag<br>Glu            | cco<br>Pro            | gto<br>Val           | s tcc<br>Ser<br>290  | Cys                 | gag<br>Glu         | g gto<br>a Vai       | c ag<br>1 Se          | c aac<br>r Asr<br>295        | )            |
| gcc<br>Ala        | gto<br>Val            | 99<br>G1           | t ag<br>y Se       | c gc<br>r Al<br>30 | a Ası                | n Arç                 | agt<br>Ser            | act<br>Thr            | gcg<br>Ala<br>305    | Leu                  | gat<br>Asp          | gtç<br>Val         | cto<br>Lei           | g tt:<br>3 Pho<br>310 | tggg<br>eGly<br>O            | 1145         |
| ccg<br>Pro        | att                   | . cte              | g ca<br>u G1<br>31 | n Al               | a aaq<br>a Ly:       | g ccg<br>s Pro        | gag<br>Glu            | ccc<br>Pro<br>320     | Val                  | tcc<br>Ser           | gtg<br>Val          | gac<br>Asp         | gto<br>Val<br>325    | Gly                   | g gaa<br>y Glu               | 1193         |
| лър               | міа                   | 330                | )<br>)             | e Sei              | r Cys                | s Ala                 | 335                   | Arg                   | Gly                  | Asn                  | Pro                 | Leu<br>340         | Pro                  | ) Arç                 | g gta<br>g Val               |              |
| acc<br>Thr        | tgg<br>Trp<br>345     | 101                | c cgo              | c cgc<br>g Arq     | : ggt<br>; G1)       | ggc<br>Gly<br>350     | Ala                   | cag<br>Gln            | gtg<br>Val           | ctg<br>Leu           | ggc<br>Gly<br>355   | tct<br>Ser         | gga<br>Gly           | gco<br>Ala            | aca<br>Thr                   | 1289         |
| 360               | ALG                   | rec                | Pro                | Ser                | 365                  | Gly                   | Pro                   | Glu                   | Asp                  | Ala<br>370           | Gly                 | Asp                | Tyr                  | Val                   | 375                          | 1337         |
| arg               | HIG                   | GIU                | Ala                | 380                | Leu                  | tcg.<br>Ser           | Gly                   | Leu                   | 385                  | Gly                  | Gly                 | Ala                | Ala                  | Glu<br>390            | Ala                          | 1385         |
| nrg               | Leu                   | Int                | 395                | Asn                | Ala                  | ccc<br>Pro            | Pro                   | Val<br>400            | Val                  | Thr                  | Ala                 | Leu                | Hjs<br>405           | Ser                   | Ala                          | 1433         |
| cct<br>Pro        | gcc<br>Ala            | ttc<br>Phe<br>410  | ctg<br>Leu         | agg<br>Arg         | ggc<br>Gly           | cct<br>Pro            | gct<br>Ala<br>415     | cgc<br>Arg            | ctc<br>Leu           | cag<br>Gln           | tgt<br>Cys          | ctg<br>Leu<br>420  | gtt<br>Val           | ttc<br>Phe            | gcc<br>Ala                   | 1481         |
| tct<br>Ser        | ccc<br>Pro<br>425     | gcc<br>Ala         | cca<br>Pro         | gat<br>Asp         | gcc<br>Ala           | gtg<br>Val<br>430     | gtc<br>Val            | tgg<br>Trp            | tct<br>Ser           | tgg<br>Trp           | gat<br>Asp<br>435   | gag<br>Glu         | ggc<br>Gly           | ttc<br>Phe            | Ctg<br>Leu                   | 1529         |
| gag<br>Glu<br>440 | gcg<br>Ala            | 61 y               | tcg<br>Ser         | cag<br>Gln         | ggc<br>Gly<br>445    | cgg<br>Arg            | ttc<br>Phe            | ctg<br>Leu            | Val                  | gag<br>Glu<br>450    | aca<br>Thr          | ttc<br>Phe         | cct<br>Pro           | gcc<br>Ala            | cca<br>Pro<br>455            | 1577         |

| ga<br>Gl          | g age<br>u Sei    | c cgc<br>r Arg    | : ggg             | 99a<br>61y<br>460 | Lei               | g ggt<br>g G1 y   | CC.               | 9 990<br>o 61         | cto<br>/ Leu<br>465   | 11                | c tcl<br>e Sei    | t gte<br>r Va     | g cta<br>l Lei    | a cad<br>3 His<br>470 | att<br>ile        | 1625 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|------|
| t co<br>Ser       | 9 999<br>r Gly    | g acc<br>Thr      | cag<br>Gln<br>475 | Glu               | tct<br>Ser        | gac<br>Asp        | ttl<br>Phe        | t ago<br>e Ser<br>480 | Arg                   | age<br>Se:        | c ttt<br>r Phe    | aad<br>Asi        | tgc<br>Cys<br>485 | Ser                   | gcc<br>Ala        | 1673 |
| Arg               | g aad<br>g Asn    | cgg<br>Arg<br>490 | Leu               | GJ y              | gag<br>Glu        | gga<br>Gly        | ggt<br>Gly<br>495 | / Ala                 | cag<br>Gln            | gco<br>Ala        | ago<br>Ser        | cto<br>Leu<br>500 | g ggc<br>i Gly    | cgt<br>Arg            | aga<br>Arg        | 1721 |
| gac<br>Asp        | Leu<br>505        | Leu               | ccc<br>Pro        | act<br>Thr        | gtg<br>Val        | cgg<br>Arg<br>510 | lle               | gtg<br>Val            | gcc<br>Ala            | G1 )              | gtg<br>Val<br>515 | Ala               | gct<br>Ala        | gcc<br>Ala            | acc<br>Thr        | 1769 |
| aca<br>Thr<br>520 | Thr               | ct c<br>Leu       | ctt<br>Leu        | atg<br>Met        | gtc<br>Val<br>525 | lle               | act<br>Thr        | 61 y                  | gtg<br>Val            | gcc<br>Ala<br>530 | Leu               | tgc<br>Cys        | tgc<br>Cys        | tgg<br>Trp            | cgc<br>Arg<br>535 | 1817 |
| cac<br>His        | agc<br>Ser        | aag<br>Lys        | gcc<br>Ala        | tca<br>Ser<br>540 | gcc<br>Ala        | tct<br>Ser        | t t c<br>Phe      | tcc<br>Ser            | gag<br>Glu<br>545     | caa<br>Gln        | aag<br>Lys        | aac<br>Asn        | ctg<br>Leu        | atg<br>Met<br>550     | cga<br>Arg        | 1865 |
| atc<br>Ile        | cct<br>Pro        | ggc<br>Gly        | agc<br>Ser<br>555 | agc<br>Ser        | gac<br>Asp        | ggc<br>Gly        | tcc<br>Ser        | agt<br>Ser<br>560     | tca<br>Ser            | cga<br>Arg        | ggt<br>Gly        | cct<br>Pro        | gaa<br>Glu<br>565 | gaa<br>Glu            | gag<br>Glu        | 1913 |
| gag<br>Glu        | aca<br>Thr        | ggc<br>Gly<br>570 | agc<br>Ser        | cgc<br>Arg        | gag<br>Glu        | gac<br>Asp        | cgg<br>Arg<br>575 | ggc<br>Gly            | ccc<br>Pro            | att<br>Ile        | gtg<br>Val        | cac<br>His<br>580 | act<br>Thr        | gac<br>Asp            | cac<br>His        | 1961 |
| agt<br>Ser        | gat<br>Asp<br>585 | ctg<br>Leu        | gtt<br>Val        | ctg<br>Leu        | gag<br>Glu        | gag<br>Glu<br>590 | aaa<br>Lys        | 9 <b>9</b> 9<br>61 y  | act<br>Thr            | ctg<br>Leu        | gag<br>Glu<br>595 | acc<br>Thr        | aag<br>Lys        | gac<br>Asp            | cca<br>Pro        | 2009 |
| acc<br>Thr<br>600 | aac<br>Asn        | ggt<br>Gly        | tac<br>Tyr        | tac<br>Tyr        | aag<br>Lys<br>605 | gtc<br>Val        | cga<br>Arg        | gga<br>Gly            | gtc<br>Val            | agt<br>Ser<br>610 | gtg<br>Val        | agc<br>Ser        | ctg<br>Leu        | agc<br>Ser            | ctt<br>Leu<br>615 | 2057 |
| ggc<br>Gly        | gaa<br>Glu        | gcc<br>Ala        | Pro               | gga<br>Gly<br>620 | gga<br>Gly        | ggt<br>Gly        | ctc<br>Leu        | ttc<br>Phe            | ctg<br>Leu<br>625     | cca<br>Pro        | cca<br>Pro        | ccc<br>Pro        | tcc<br>Ser        | ccc<br>Pro<br>630     | ctt<br>Leu        | 2105 |
| ggg<br>Gly        | ccc<br>Pro        | Pro               | 999<br>Gly<br>635 | acc<br>Thr        | cct<br>Pro        | acc<br>Thr        | ttc<br>Phe        | tat<br>Tyr<br>640     | gac<br>Asp            | ttc<br>Phe        | aac<br>Asn        | cca<br>Pro        | cac<br>His<br>645 | ctg<br>Leu            | ggc<br>Gly        | 2153 |
| atg<br>Met        | VaI               | ecc<br>Pro<br>650 | ccc<br>Pro (      | tgc<br>Cys        | aga<br>Arg        | Leu               | tac<br>Tyr<br>655 | aga<br>Arg            | gcc<br>Ala            | agg<br>Arg        | gca<br>Ala        | 660<br>61 y       | tat<br>Tyr        | ctc<br>Leu            | acc<br>Thr        | 2201 |
| Thr               | ccc<br>Pro<br>665 | cac o<br>His I    | cct (<br>Pro /    | cga<br>Arg        | Ala               | ttc<br>Phe<br>670 | acc<br>Thr        | agc<br>Ser            | tac<br>Tyr            | atc<br>Ile        | aaa<br>Lys<br>675 | ccc<br>Pro        | aca<br>Thr        | tcc<br>Ser            | ttt<br>Phe        | 2249 |
| Gly<br>680<br>-   | Pro .             | Pro A             | Asp I             | Leu               | A]a<br>685        | Pro               | G1 y              | Thr                   | Pro                   | Pro<br>690        | Phe               | Pro               | tat (<br>Tyr )    | Ala .                 | Ala<br>695        | 2297 |
| ttc<br>Phe        | ccc a             | aca c<br>Thr f    | ro S              | agc (<br>Ser 1    | cac (<br>His      | ecq (             | cgt<br>Arg        | Leu (                 | cag :<br>Gln :<br>705 | act<br>Thr        | cac<br>His        | gtg<br>Val        | tgac              | atct                  | tt                | 2346 |
| ccaa              | tggaa             | ag ag             | tcct              | ggga              | a tct             | сса               | actt              | gcc                   | ataaı                 | tgg               | attg              | ttct              | ga _t1            | ttct                  | gagga             | 2406 |
| gcca              | ggaca             | aa gt             | tggc              | gaco              | c tta             | ctc               | ctcc              | aaaa                  | ectga                 | ac                | acaa              | 9999              | ag g              | gaaaq                 | gatca             | 2466 |
| ttaca             | attt              | gt ca             | ggag              | catt              | tgt               | ata               | cagt              | cago                  | ctcaç                 | gc <i>c</i>       | aaag              | gaga              | tg co             | ccaa                  | agtgg             | 2526 |
|                   |                   |                   |                   |                   |                   |                   |                   |                       |                       |                   |                   |                   |                   |                       | gatgg             | 2586 |
|                   |                   |                   |                   |                   |                   |                   |                   |                       |                       |                   |                   |                   |                   |                       | gccg              | 2646 |
|                   |                   |                   |                   |                   |                   |                   |                   |                       |                       |                   |                   |                   |                   |                       | tgag              | 2706 |
| aggaa             | aggt              | a gc              | atag              | gata              | gat               | gaag              | atg               | aaga                  | igcat                 | ac o              | caggo             | ccc               | ec co             | tggc                  | tctc              | 2766 |

| WO 03/089583                                                                               |
|--------------------------------------------------------------------------------------------|
| 16U 200 PCT FINAL.ST25<br>cctgagggga actttgctcg gccaatggaa atgcagccaa gatggccata tactcccta |
| gaacccaaga tggccaccat cttgatttta ctttccttaa agactcagaa agacttgga                           |
| ccaaggagtg gggatacagt gagaattacc actgttgggg caaaatattg ggataaaaa                           |
| atttatgttt aataataaaa aaaagtcaaa gagg                                                      |
| And And A                                                                                  |
| <210> 229<br><211> 708                                                                     |
| <212> PRT                                                                                  |
| <213> Homo sapiens                                                                         |
| <400> 229                                                                                  |
| Met Leu Arg Met Arg Val Pro Ala Leu Leu Val Leu Leu Phe Cys Phe<br>1 10 15                 |
| Arg Gly Arg Ala Gly Pro Ser Pro His Phe Leu Gln Gln Pro Glu Asp 20 25 30                   |
| Leu Val Val Leu Leu Gly Glu Glu Ala Arg Leu Pro Cys Ala Leu Gly<br>35 40 45                |
| Ala Tyr Trp Gly Leu Val Gln Trp Thr Lys Ser Gly Leu Ala Leu Gly 50 55 60                   |
| Gly Gln Arg Asp Leu Pro Gly Trp Ser Arg Tyr Trp Ile Ser Gly Asn 75 80                      |
| Ala Ala Asn Gly Gln His Asp Leu His 11e Arg Pro Val Glu Leu Glu<br>85 90 95                |
| Asp Glu Ala Ser Tyr Glu Cys Gln Ala Thr Gln Ala Gly Leu Arg Ser<br>100 105 110             |
| Arg Pro Ala Gln Leu His Val Leu Val Pro Pro Glu Ala Pro Gln Val<br>115 120 125             |
| Leu Gly Gly Pro Ser Val Ser Leu Val Ala Gly Val Pro Ala Asn Leu<br>130 135 140             |
| Thr Cys Arg Ser Arg Gly Asp Ala Arg Pro Thr Pro Glu Leu Leu Trp 145 150 155 160            |
| Phe Arg Asp Gly Val Leu Leu Asp Gly Ala Thr Phe His Gln Thr Leu<br>165 170 175             |
| Leu Lys Glu Gly Thr Pro Gly Ser Val Glu Ser Thr Leu Thr Leu Thr                            |

Pro Phe Ser His Asp Asp Gly Ala Thr Phe Val Cys Arg Ala Arg Ser 195 200 205

185

Gln Ala Leu Pro Thr Gly Arg Asp Thr Ala Ile Thr Leu Ser Leu Gln 210 215 220

Tyr Pro Pro Glu Val Thr Leu Ser Ala Ser Pro His Thr Val Gln Glu 225 235 240

Gly Glu Lys Val Ile Phe Leu Cys Gln Ala Thr Ala Gln Pro Pro Val 245 250 . 255

- Thr Gly Tyr Arg Trp Ala Lys Gly Gly Ser Pro Val Leu Gly Ala Arg 260 265 270
- Gly Pro Arg Leu Glu Val Val Ala Asp Ala Ser Phe Leu Thr Glu Pro 275 280 285
- Val Ser Cys Glu Val Ser Asn Ala Val Gly Ser Ala Asn Arg Ser Thr 290 295 300
- Ala Leu Asp Val Leu Phe Gly Pro Ile Leu Gln Ala Lys Pro Glu Pro 305 310 315 320
- Val Ser Val Asp Val Gly Glu Asp Ala Ser Phe Ser Cys Ala Trp Arg 325 330 335
- Gly Asn Pro Leu Pro Arg Val Thr Trp Thr Arg Arg Gly Gly Ala Gln 340 345 350
- Val Leu Gly Ser Gly Ala Thr Leu Arg Leu Pro Ser Val Gly Pro Glu 355 360 365
- Asp Ala Gly Asp Tyr Val Cys Arg Ala Glu Ala Gly Leu Ser Gly Leu 370 375 380
- Arg Gly Gly Ala Ala Glu Ala Arg Leu Thr Val Asn Ala Pro Pro Val 385 390 395 400
- Val Thr Ala Leu His Ser Ala Pro Ala Phe Leu Arg Gly Pro Ala Arg 405 410 415
- Leu Gln Cys Leu Val Phe Ala Ser Pro Ala Pro Asp Ala Val Val Trp 420 425 430
- Ser Trp Asp Glu Gly Phe Leu Glu Ala Gly Ser Gln Gly Arg Phe Leu 435 445
- Val Glu Thr Phe Pro Ala Pro Glu Ser Arg Gly Gly Leu Gly Pro Gly 450 460
- Leu Ile Ser Val Leu His Ile Ser Gly Thr Gln Glu Ser Asp Phe Ser 465 470 475 480
- Arg Ser Phe Asn Cys Ser Ala Arg Asn Arg Leu Gly Glu Gly Gly Ala 485 490 495
- Glm Ala Ser. Leu Gly Arg Arg Asp Leu Leu Pro Thr Val Arg He Val 500 505 510
- Ala Gly Val Ala Ala Ala Thr Thr Thr Leu Leu Met Val Ile Thr Gly 515 520 525
- Val Ala Leu Cys Cys Trp Arg His Ser Lys Ala Ser Ala Ser Phe Ser 530 540
- Glu Gln Lys Asn Leu Met Arg Ile Pro Gly Ser Ser Asp Gly Ser Ser 545 550 555 560
- Ser Arg Gly Pro Glu Glu Glu Glu Thr Gly Ser Arg Glu Asp Arg Gly 565 570 575

Pro Ile Val His Thr Asp His Ser Asp Leu Val Leu Glu Glu Lys Gly 580 585 590

Thr Leu Glu Thr Lys Asp Pro Thr Asn Gly Tyr Tyr Lys Val Arg Gly 595 600 605

Val Ser Val Ser Leu Ser Leu Gly Glu Ala Pro Gly Gly Gly Leu Phe 610 620

Leu Pro Pro Pro Ser Pro Leu Gly Pro Pro Gly Thr Pro Thr Phe Tyr 625 630 635 640

Asp Phe Asn Pro His Leu Gly Met Val Pro Pro Cys Arg Leu Tyr Arg 645 650 655

Ala Arg Ala Gly Tyr Leu Thr Thr Pro His Pro Arg Ala Phe Thr Ser 660 665 670

Tyr Ile Lys Pro Thr Ser Phe Gly Pro Pro Asp Leu Ala Pro Gly Thr 675 680 685

Pro Pro Phe Pro Tyr Ala Ala Phe Pro Thr Pro Ser His Pro Arg Leu 690 695 700

Gln Thr His Val

705

<210> 230

<211> 5188 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (887)..(2974)

<223>

<400> 230

egegetetet tectecetea gacaactege ecceegeet eegeceeet ecaegtaatt 60 ccgaaagagc agaagaaaga gaaggagaac aggaaaagaa gagctagtaa gcgagagcga 120 gagcacagaa aagaaaaaaa aaagccttaa gaggaccgaa ggggaggaaa ggaaaaggat ggacaaccac aaaacgcagc gattgcggaa attttccagc gccattggct gggcagcgtg 240 agtccttcgg tcgggcgtga tttcagcacc ggggggaactg gacagcacct cggggggact 300 tctgggcaac ccgcaaccac agcaagaact ccaccagcag cctcaacaac agaagccgcg 360 gaaaaccctg ctttgtatca gagaggcaag gtcagtccga cgcacagcca tgcacaggca 420 gtgcgcctgt actacgctgc aaaccctctg cttgtttctc taacatgcac ttgcttctaa 480 ttactagcat tgtttcattt ctgatcagtg aagatcagta gatgagattc tgtaagggtg 540 tacttttaat ttatatgtat atatttaact tettttetg ttattttaa agtgttgtgg 600 gggagtgggg tittiticct actititit tittititt tictitgcit gccitgcact 660 acgigccigg atagititgig gatataatta tigaciggeg teigggetat igcagigegg 720 gggggttagg gaggaaggaa tccacccca ccccccaaa ccctttctt ctcctttcct 780 ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 840 gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaa atg ctg ctt 895 Met Leu Leu

| tg<br>Tr          | g at<br>p 11<br>5 | t c<br>e L         | tg t<br>eu L         | tg d<br>eu 1       | et g<br>Leu        | gag<br>Glu        | acq<br>Thi        | tc<br>Se          | t ct<br>r Le         | t tg<br>u Cy       | t tt<br>s Ph       | t gc<br>e Al<br>15   | a Al                | t gg<br>a Gl       | a aa<br>y As          | nc gt<br>sn Va        | t 943<br>1  |
|-------------------|-------------------|--------------------|----------------------|--------------------|--------------------|-------------------|-------------------|-------------------|----------------------|--------------------|--------------------|----------------------|---------------------|--------------------|-----------------------|-----------------------|-------------|
| ac<br>Th<br>20    | a gg<br>r Gl      | ig g<br>y A        | acg<br>spV           | tt t<br>al (       | gc<br>ys           | aaa<br>Lys<br>25  | gaq<br>Glu        | g aa<br>u Ly      | g ate<br>s Ile       | c tg<br>e Cy       | t tc<br>s Se<br>30 | r Cy                 | c aa<br>s As        | t ga<br>n Gl       | g at<br>u Il          | a ga<br>e Gli<br>35   | a 991<br>u  |
| 99<br>G1          | gga<br>yAs        | c ci<br>p L        | cac<br>eu H          | is V               | ita<br>Val<br>10   | gac<br>Asp        | tgt<br>Cys        | ga<br>Gl          | a aaa<br>u Ly:       | a aa<br>s Ly<br>45 | s Gl               | c tt<br>y Ph         | c ac<br>e Th        | a ag<br>r Se       | t ct<br>r Le<br>50    | g ca<br>u Gli         | g 1039<br>n |
| Cgt<br>Arg        | tt<br>g Ph        | c ac<br>e Tì       | et ge<br>or Al<br>5! | la P               | cg                 | act<br>Thr        | tcc<br>Ser        | Gl:               | g tti<br>n Phe<br>60 | t ta               | c ca<br>r Hi       | t tt<br>s Le         | att<br>uPh          | t ct<br>e Le<br>65 | g ca<br>u Hi          | t ggd<br>s Gly        | 2 1087<br>V |
| aat<br>Asr        | tc<br>Se          | c ct<br>r Le<br>70 | u Tì                 | et c               | ga<br>rg           | ctt<br>Leu        | ttc<br>Phe        | Pro<br>75         | t aat<br>o Asr       | ga<br>Gl           | g tte<br>u Phe     | c gc                 | t aa<br>a As:<br>80 | c tt<br>n Ph       | t ta<br>e Ty          | t aat<br>r Ası        | 1135        |
| gcg<br>Ala        | gt<br>Va.<br>85   | t ag<br>l Se       | t tt                 | g c                | ac i               | atg<br>Met        | gaa<br>Glu<br>90  | aac<br>Asr        | aat<br>Asn           | gg(                | tto<br>y Lei       | g cat<br>u His<br>95 | t ga<br>s Gl        | a ato<br>u Ilo     | e Va                  | t ccg<br>l Pro        | 1183        |
| 999<br>Gly<br>100 | Ala               | t tt<br>a Ph       | t ct<br>e Le         | g g<br>v G         | ly I               | ctg<br>Lev<br>105 | cag<br>Gln        | ct o              | g gtg<br>Val         | Lys                | agg<br>Arg<br>110  | ) Lei                | g cae<br>u Hi:      | c ato              | e Asi                 | c aac<br>n Asn<br>115 | L           |
| aac<br>Asn        | aaq<br>Lys        | g at<br>s Il       | c aa<br>e Ly         | 'S \$              | ct t<br>er f<br>20 | ttt<br>Phe        | cga<br>Arg        | aag<br>Lys        | cag<br>Gln           | act<br>Thi         | Phe                | cto<br>Lev           | g ggg<br>9 Gly      | g cto<br>y Lei     | g gad<br>1 Asj<br>130 | gat<br>Asp            | 1279        |
| ctg<br>Leu        | gaa<br>Glu        | a ta<br>ı Ty       | t ct<br>r Le<br>13   | u G                | agg<br>In <i>I</i> | gct<br>Ala        | gat<br>Asp        | ttt<br>Phe        | aat<br>Asn<br>140    | Leu                | tta<br>Leu         | cga<br>Arg           | gat<br>JAsp         | ata<br>116         | : Asp                 | c ccg<br>o Pro        | 1327        |
| 999<br>G1y        | gcc<br>Ala        | tt<br>Ph<br>15     | e G1                 | gga<br>nAs         | sc t               | tg<br>eu          | aac<br>Asn        | aag<br>Lys<br>155 | Leu                  | gag<br>Glu         | gtg<br>Val         | ctc<br>Leu           | 11e                 | Leu                | aat<br>Asr            | gac<br>Asp            | 1375        |
| aat<br>Asn        | cto<br>Leu<br>165 | 11                 | c ag                 | c ac               | ec c               | ta<br>eu          | cct<br>Pro<br>170 | gcc<br>Ala        | aac<br>Asn           | gtg<br>Val         | ttc<br>Phe         | Gln<br>175           | Tyr                 | gtg<br>Val         | Pro                   | atc<br>Ile            | 1423        |
| acc<br>Thr<br>180 | cac<br>His        | Lei                | ga<br>JAS            | c ct               | υA                 | gg<br>.rg<br>85   | ggt<br>Gly        | aac<br>Asn        | agg<br>Arg           | ctg<br>Leu         | aaa<br>Lys<br>190  | Thr                  | ctg<br>Leu          | CCC<br>Pro         | tat<br>Tyr            | gag<br>Glu<br>195     | 1471        |
| gag<br>Glu        | gtc<br>Val        | Lei                | g gag<br>I Gli       | g ca<br>3 G1<br>20 | n I                | tc<br>le          | cct<br>Pro        | ggt<br>Gly        | att<br>11e           | gcg<br>Ala<br>205  | gag<br>Glu         | atc<br>Ile           | ctg<br>Leu          | cta<br>Leu         | gag<br>Glu<br>210     | Asp                   | 1519        |
| aac<br>Asn        | cct<br>Pro        | t g                | 9 ac<br>Asp<br>215   | су Су              | ca<br>sT           | cc<br>hr          | tgt<br>Cys        | gat<br>Asp        | ctg<br>Leu<br>220    | ct <i>c</i><br>Lev | tcc<br>Ser         | ctg<br>Leu           | aaa<br>Lys          | gaa<br>Glu<br>225  | tgg<br>Trp            | ctg<br>Leu            | 1567        |
| gaa<br>Glu<br>-   | aac<br>Asn        | att<br>11e<br>230  | Pro                  | aa<br>Ly           | ga:<br>sA:         | at o              | Ala               | ctg<br>Leu<br>235 | atc<br>Ile           | ggc<br>Gly         | cga<br>Arg         | gtg<br>Val           | gtc<br>Val<br>240   | tgc<br>Cys         | gaa<br>Glu            | gcc<br>Ala            | 1615        |
| Pro               | acc<br>Thr<br>245 | aga<br>Arg         | Ctg<br>Leu           | Gl                 | g go<br>n Gl       | ly 1              | aaa<br>Lys<br>250 | gac<br>Asp        | ctc<br>Leu           | aat<br>Asn         | gaa<br>Glu         | acc<br>Thr<br>255    | acc<br>Thr          | gaa<br>Glu         | cag<br>Gln            | gac<br>Asp            | 1663        |
| ttg<br>Leu<br>260 | tgt<br>Cys        | cct<br>Pro         | t t g<br>Leu         | aa.<br>Lys         | a aa<br>s As<br>26 | sn A              | cga (<br>Arg '    | gtg<br>Val        | gat<br>Asp           | tct<br>Ser         | agt<br>Ser<br>270  | ctc.<br>Leu          | ccg<br>Pro          | gcġ<br>Ala         | ccc<br>Pro            | cct<br>Pro<br>275     | 1711        |
| gcc<br>Ala        | caa<br>Gln        | gaa<br>Glu         | gag<br>Glu           | Thi<br>280         | r Ph               | it g              | get e<br>Na 1     | Pro               | Gly                  | ccc<br>Pro<br>285  | ctg<br>Leu         | cca<br>Pro           | act<br>Thr          | cct<br>Pro         | ttc<br>Phe<br>290     | Lys                   | 1759        |
| aca<br>Thr        | aat<br>Asn        | G1 y               | caa<br>Gln<br>295    | gaç<br>Glu         | g ga<br>a As       | it c<br>sp H      | at q<br>lis /     | Ala               | aca<br>Thr<br>300    | cca<br>Pro         | 999<br>G1 y        | tct<br>Ser           | gct<br>Ala          | cca<br>Pro<br>305  | aac<br>Asn            | gga<br>Gly            | 1807        |
| ggt i             | aca               | aag                | atc                  | cca                | gg                 | c a               | ac t              | gg                | cag .                | atc                | aaa                |                      | aga<br>age          |                    | aca                   | gca                   | 1855        |

| G1         | y Th               | r Ly<br>31            | s 11<br>0             | e Pro                 | o Gl                | y Ası             | 7 Trp<br>315      |                   | ılle       | 16t<br>Ly: | 3 200<br>5 11    | PC7<br>e Are<br>320 | g Pro             | AL.S              | ST25<br>r Ala         |      |
|------------|--------------------|-----------------------|-----------------------|-----------------------|---------------------|-------------------|-------------------|-------------------|------------|------------|------------------|---------------------|-------------------|-------------------|-----------------------|------|
| gc<br>Al   | g at<br>a Il<br>32 | e Al                  | g ace<br>a Th         | g ggt<br>r Gly        | t ago<br>y Sei      | tco<br>Sei<br>330 | Arg               | aac<br>Asr        | aaa<br>Lys | a cco      | tta<br>Lei<br>33 | a Ala               | t aad<br>Asi      | agt<br>Sei        | t tta<br>r Leu        | 1903 |
| Pro<br>34  | о Су               | c cc<br>s Pr          | t gg<br>o Gl          | g ggd<br>y Gly        | tgo<br>Y Cys<br>345 | s Ser             | tgc<br>Cys        | gac<br>Asp        | cac<br>His | 350        | Pro              | a ggg               | g tcg<br>/ Sei    | ggt<br>Gly        | t tta<br>y Leu<br>355 | 1951 |
| aa<br>Ly:  | g at               | g aa<br>t As          | c tgi<br>n Cy:        | c aad<br>s Asr<br>360 | n Ası               | agg<br>Arg        | aac<br>Asn        | gtg<br>Val        | ser<br>365 | : Sei      | tto<br>Lei       | g gct<br>3 Ala      | gat<br>Asp        | ttg<br>Lev<br>370 | g aag<br>1 Lys<br>)   | 1999 |
| Pro        | c aa<br>b Ly:      | g cto<br>s Leo        | c tci<br>u Sei<br>375 | C Asr                 | gtg<br>Val          | g cag             | gag<br>Glu        | Ctt<br>Leu<br>380 | Phe        | cta<br>Lev | cga<br>Arg       | gat<br>g Asp        | aac<br>Asn<br>385 | Lys               | atc<br>lle            | 2047 |
| Cac<br>His | age<br>S Se:       | c ato<br>r 110<br>390 | e Arc                 | a aaa<br>; Lys        | tcg<br>Ser          | His               | ttt<br>Phe<br>395 | Val               | gat<br>Asp | tac<br>Tyr | aac<br>Lys       | aac<br>Asn<br>400   | Leu               | att               | ctg<br>Leu            | 2095 |
| Leu        | 405                | Let                   | 3 Gl                  | / Asn                 | Asn                 | 410               | lle               | Ala               | Thr        | Val        | Glu<br>415       | Asn                 | Asn               | Thr               | ttc<br>Phe            | 2143 |
| Lys<br>420 | Asr                | ı Leı                 | ı Leu                 | Asp                   | Leu<br>425          | Arg               | Trp               | Leu               | Tyr        | Met<br>430 | Asp              | Ser                 | Asn               | Tyr               | Leu<br>435            | 2191 |
| Asp        | Thi                | : Leu                 | ı Ser                 | 440                   | Glu                 | Lys               | Phe               | Ala               | Gly<br>445 | Leu        | Gln              | Asn                 | Leu               | Glu<br>450        |                       | 2239 |
| Leu        | Asn                | ı Val                 | 455                   | Tyr                   | Asn                 | Ala               | Ile               | Gln<br>460        | Leu        | lle        | Leu              | Pro                 | Gly<br>465        | Thr               | ttc<br>Phe            | 2287 |
| Asn        | Ala                | 470                   | Pro                   | Lys                   | Leu                 | Arg               | 11e<br>475        | Leu               | Ile        | Leu        | Asn              | Asn<br>480          | Asn               | Leu               |                       | 2335 |
| Arg        | Ser<br>485         | Leu                   | cct<br>Pro            | Val                   | Asp                 | Val<br>490        | Phe               | Ala               | Gly        | Val        | Ser<br>495       | Leu                 | Ser               | Lys               | Fen                   | 2383 |
| 500        | Leu                | His                   | aac<br>Asn            | Asn                   | Tyr<br>505          | Phe               | Met               | Tyr               | Leu        | Pro<br>510 | Val              | Ala                 | Gly               | Val               | Leu<br>515            | 2431 |
| Asp        | GIn                | Leu                   | acc<br>Thr            | Ser<br>520            | Ile                 | 11e               | Gln               | lle               | Asp<br>525 | Leu        | His              | Gly                 | Asn               | Pro<br>530        | Trp                   | 2479 |
| Glu        | Cys                | Ser                   | tgc<br>Cys<br>535     | Thr                   | Ile                 | Val               | Pro               | Phe<br>540        | Lys        | Gln        | Trp              | Ala                 | Glu<br>545        | Arg               | Leu                   | 2527 |
| PIÀ        | Ser                | 550                   | gtg<br>Val            | Leu                   | Met                 | Ser               | Asp<br>555        | Leu               | Lys        | Cys        | Glu              | Thr<br>560          | Pro               | Val               | Asn                   | 2575 |
| Pne        | 565                | Arg                   | aag<br>Lys            | Asp                   | Phe                 | Met<br>570        | Leu               | Leu               | Ser        | Asn        | Asp<br>575       | Glu                 | lle               | Cys               | Pro                   | 2623 |
| 580        | ren                | Туr                   | gct<br>Ala            | Arg                   | 11e<br>585          | Ser               | Pro               | Thr               | Leu        | Thr<br>590 | Ser              | His                 | Ser               | Lys               | Asn<br>595            | 2671 |
| ser        | Tnr                | GIA                   | t t g<br>Leu          | Ala<br>600            | Glu                 | Thr               | G1 y              | Thr               | His<br>605 | Ser        | Asn              | Ser                 | Tyr               | Leu<br>610        | Asp                   | 2719 |
| Thr        | agc<br>Ser         | agg<br>Arg            | gtg<br>Val<br>615     | tcc<br>Ser            | atc<br>Ile          | tcg<br>Ser        | Val               | ttg<br>Leu<br>620 | gtc<br>Val | ccg<br>Pro | gga<br>Gly       | ctg<br>Leu          | ctg<br>Leu<br>625 | ctg<br>Leu        | gtg<br>Val            | 2767 |

Page 143

| 16U 200 PCT FINAL.ST25 ttt gtc acc tcc gcc ttc acc gtg gtg ggc atg ctc gtg ttt atc ctg Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val Phe Ile Leu 630 635 640 | 2815 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| agg aac cga aag cgg tcc aag aga cga gat gcc aac tcc tcc gcg tcc<br>Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser Ser Ala Ser<br>645 650 655                  | 2863 |
| gag att aat tcc cta cag aca gtc tgt gac tct tcc tac tgg cac aat Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr Trp His Asn 660 665 670 675                    | 2911 |
| ggg cct tac aac gca gat ggg gcc cac aga gtg tat gac tgt ggc tct<br>Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp Cys Gly Ser<br>680 685 690                  | 2959 |
| cac tcg ctc tca gac taagacccca accccaatag gggagggcag agggaaggcg<br>His Ser Leu Ser Asp<br>695                                                                      | 3014 |
| atacatectt ecceaecgea ggeaeceegg gggetggagg ggegtgtace caaateeeeg                                                                                                  | 3074 |
| cgccatcagc ctggatgggc ataagtagat aaataactgt gagctcgcac aaccgaaagg                                                                                                  | 3134 |
| gcctgacccc ttacttagct ccctccttga aacaaagagc agactgtgga gagctgggag                                                                                                  | 3194 |
| agegeageca getegetett tgetgagage eeettttgac agaaageeca geacgaeeet                                                                                                  | 3254 |
| gctggaagaa ctgacagtgc cctcgccctc ggccccgggg cctgtggggt tggatgccgc                                                                                                  | 3314 |
| ggttctatac atatacat atatccacat ctatatagag agatagatat ctatttttcc                                                                                                    | 3374 |
| cctgtggatt agccccgtga tggctccctg ttggctacgc agggatgggc agttgcacga                                                                                                  | 3434 |
| aggcatgaat gtattgtaaa taagtaactt tgacttctga caaaaaacaa aaagtgctgc                                                                                                  | 3494 |
| atggctcgca tggaatccac gcgctccagg gactctgccc gcccccgcga ctggagacgg                                                                                                  | 3554 |
| catctcgttc acagcaccca ccctcttacc tgataagttc catcgtatca aactttctat                                                                                                  | 3614 |
| aaacaaaata cagtataatc agaaagtgcc atttcgccat tatttgtgat cggtaggcag                                                                                                  | 3674 |
| ttcagagcat aagttaactg tgaaaaaat gtaaaggttt tatttaggac atttgcatgg                                                                                                   | 3734 |
| ctagtcatca gtccatttta tgagttaaca atgtattttg ttgagggaag tttttagggg                                                                                                  | 3794 |
| ttgttttggg ttcttttatt ttgatggtga tgttttattt tattttattt ttttcagggg                                                                                                  | 3854 |
| gtctttttt taatacatat ccaataatgc cttccatctg aatgtaaaat aagtacccat                                                                                                   | 3914 |
| gatttctatt atagtatcag tgtaattatt taaaaaaatga ttttgaggca gttaagcatg                                                                                                 | 3974 |
| accaattaat gtcactctag tgcttaggct gcgatcctat ggtagcaatt ctgtgctggt                                                                                                  | 4034 |
| ataaatetta ettataaagt aggaaaagag aacegaggaa gcaegtgaaa ettaetaatt                                                                                                  | 4094 |
| ctattcgagg attttataat ggcatatttt ttcagtatta aagcgaaaat gttttcaact .                                                                                                | 4154 |
| ctgggtcctt acctttttcc agcttcatat ttgcaagtgg taaattggat ttgcggtgga                                                                                                  | 4214 |
| agagacaggg gagggaaacg gttggggtta gatcccttcc tgagctacat taaggctctt                                                                                                  | 4274 |
| tetetaateg cettaettag ettittaece titaagtage teetetteee tegeceecae                                                                                                  | 4334 |
| cetetacece accèceacet tegeteagae tttacegget ttececagte cataaaggte                                                                                                  | 4394 |
| ttgccccaac actcacccct tetttttte ecetetecaa atgcageagt gaatceettt                                                                                                   | 4454 |
| attaatactg gaaatccctc tctgctgctt ttgttggtgc tgcccacact gcagatatat                                                                                                  | 4514 |
| taaggatgtt aggagagatt tgatttaatt gactctgcct agataggtct cattaaacag                                                                                                  | 4574 |
| agtggagatt tcattggtca gcactcctca atgaaagaca gacctaatga ctggcatttg                                                                                                  | 4634 |
| agatgctgct ggcattttga attcaacatc tgctgaaaac ggtaaaacta attagtgccc                                                                                                  | 4694 |
| acceacete ecegececag caactgeata ttgaaatttg ttaaageact catetttatg                                                                                                   | 4754 |
| gaaattaatc attatcctaa agaagtgttt ctctcccatc atccggattt ctggttgtgg                                                                                                  | 4814 |
| Page 144                                                                                                                                                           |      |

| cccagcaatt | аасаааааса | gcttcaactg | ttcgaatttt | atgaaccaat | gtaactctgg | 4874 |
|------------|------------|------------|------------|------------|------------|------|
| cctcaatcat | attcctctgg | gatttctaaa | cagcagttaa | gctacaaaaa | gcaaacaaaa | 4934 |
| ccacacatat | tgatggagtc | tgcattccac | cacatatcca | cccttgagaa | gtatgtcaaa | 4994 |
| agactgcaga | ctatagattt | ttttttaata | taggattata | aatcagctag | tgaaagacct | 5054 |
| cagagcagtt | gtaagtagat | ctgccatcta | gaactcatat | tctaaaggga | agtgatttct | 5114 |
| cagaacagtg | atgttctgga | atatgtatta | tttattttaa | cactttttta | ataaaatctt | 5174 |
| tattataaac | catg       |            |            |            |            | 5188 |

<210> 231

<211> 696

<212> PRT

<213> Homo sapiens

<400> 231

Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala 1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr 35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe 50 . 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His 100 105 110

Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly 115 120 125

Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 130 135 140

1le Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile145150155160

Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 175

Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 180 185 190

Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 195 200 205

Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 210 215 220

- Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 225 230 230 235 240
- Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 250 255
- Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 260 265 270
- Ala Pro Pro Ala Glu Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 275 280 285
- Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 290 295 300
- Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 305 310 315 320
- Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala 325 330 335
- Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 340 345 350
- Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 355 360 365
- Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 370 375 380
- Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 385 390 395 400
- Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn 405 410 415
- Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser 420 425 430
- Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn 435  $\phantom{\bigg|}440\phantom{\bigg|}$
- Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro 450 455 460
- -Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 465 470 475 480
- Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 490 495
- Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 500 505 510
- Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His.Gly 515 520 525
- Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 530 535 540

| Gl u<br>545 | Arg | Leu | G1 y       | Ser        | Glu<br>550 | Val | Leu | Met | Ser        | Asp<br>555 | Leu | Lys | Cys | Glu        | Thr<br>560 |
|-------------|-----|-----|------------|------------|------------|-----|-----|-----|------------|------------|-----|-----|-----|------------|------------|
| Pro         | Val | Asn | Phe        | Phe<br>565 | Arg        | Lys |     | Phe | Met<br>570 | Leu        | Leu | Ser | Asn | Asp<br>575 | Glu        |
| Ile         | Cys | Pro | Gln<br>580 | Leu        | Tyr        | Ala | Arg | Ile | Ser        | Pro        | Thr | Leu | Thr | Ser        | His        |

Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser 595 600 605

Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 610 615 620

Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630 635 640

Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser 645 650 655

Ser Ala Ser Glu 11e Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr 660 665 670

Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 675 680 685

Cys Gly Ser His Ser Leu Ser Asp

<210> 232 <211> 506 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (32)..(346) <223> <400> 232

| ttcatctagc | tctggatggt | tgaactgtag ( | atg<br>Met<br>1 | gca<br>Ala | aag<br>Lys | atg<br>Met | ttt<br>Phe<br>5 | gat<br>Asp | ctc<br>Leu |  |
|------------|------------|--------------|-----------------|------------|------------|------------|-----------------|------------|------------|--|
|            |            |              |                 |            |            |            |                 |            |            |  |

agg acg aag atc atg atc ggc atc gga agc agc tta ctg gtt gcc gcg Arg Thr Lys lle Met lle Gly lle Gly Ser Ser Leu Leu Val Ala Ala 10 15 20

atg gtg ctc cta agt gtt gtg ttc tgt ctt tac ttc aaa gta gct aag 148 Met Val Leu Leu Ser Val Val Phe Cys Leu Tyr Phe Lys Val Ala Lys 25 30 35

gca cta aaa gct gca aag gac cct gat gct gtg gct gta aaa aat cac l96 Ala Leu Lys Ala Ala Lys Asp Pro Asp Ala Val Ala Val Lys Asn His 40 45 50 - 55

aac cca gac aag gtg tgt tgg gcc acg aac agc cag gcc aaa gcc acc Asn Pro Asp Lys Val Cys Trp Ala Thr Asn Ser Gln Ala Lys Ala Thr 60 60 70

acc atg gag tot tgt cca tot otc cag tgc tgt gaa ggt tgt aga atg
Thr Met Glu Ser Cys Pro Ser Leu Gln Cys Cys Glu Gly Cys Arg Met
75 80 85

cat gcc agt tct gat tcc ctg cca cct tgc tgt tgt gac ata aat gag
His Ala Ser Ser Asp Ser Leu Pro Pro Cys Cys Cys Asp Ile Asn Glu
90 95 100

Page 147

52

100

| ggc ctc tgacttggga aagctgggca caaaaatctt catgagcaat atttctttct<br>Gly Leu<br>105                                                                | 396 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| taatagaalg tittattatt caagicaagi totagagigi tiacatacia tiatataatg                                                                               | 456 |
| tacagtgtta ttttctgtac ttctgaataa atgtgcaata ttggaaataa                                                                                          | 506 |
| <210> 233<br><211> 105<br><212> PRT<br><213> Homo sapiens                                                                                       |     |
| ·<br><400> 233                                                                                                                                  |     |
| Met Ala Lys Met Phe Asp Leu Arg Thr Lys Ile Met Ile Gly Ile Gly 1 10 15                                                                         |     |
| Ser Ser Leu Leu Val Ala Ala Met Val Leu Leu Ser Val Val Phe Cys<br>20 25 30                                                                     |     |
| Leu Tyr Phe Lys Val Ala Lys Ala Leu Lys Ala Ala Lys Asp Pro Asp<br>35 40 45                                                                     |     |
| Ala Val Ala Val Lys Asn His Asn Pro Asp Lys Val Cys Trp Ala Thr 50 55 60                                                                        |     |
| Asn Ser Gln Ala Lys Ala Thr Thr Met Glu Ser Cys Pro Ser Leu Gln 65 70 75 80                                                                     |     |
| Cys Cys Glu Gly Cys Arg Met His Ala Ser Ser Asp Ser Leu Pro Pro<br>85 90 95                                                                     |     |
| Cys Cys Cys Asp 11e Asn Glu Gly Leu 100 105                                                                                                     |     |
| <210> 234<br><211> 1037<br><212> DNA<br><213> Homo sapiens                                                                                      |     |
| <220> <221> CDS <222> (180)(560)                                                                                                                |     |
| <223>                                                                                                                                           |     |
| <400> 234 gagcgaaggg aacatttaac cttgactttc cacagtcctg aggttcccaa aataaagggg                                                                     | 60  |
| aaccggaaat accaaaggat tatctccaat attccagggc cttctttctc atctctgtct                                                                               | 120 |
| ttaccatact tactggcctt ggctggctct tcagctcttg gatccttaat cgaggaagc                                                                                | 179 |
| atg acc acc aac ttg gat ctg aag gta tcc atg ctc agc ttc atc tca<br>Met Thr Thr Asn Leu Asp Leu Lys Val Ser Met Leu Ser Phe Ile Ser<br>1 5 10 15 | 227 |
| gct acc tgc ttg ctc ctc tgc ctc aac ctg ttt gtg gca cag gtt cac<br>Ala Thr Cys Leu Leu Cys Leu Asn Leu Phe Val Ala Gln Val His<br>20 25 30      | 275 |
| tgg cat act agg gat gcc atg gag tca gat ctc cta tgg acc tat tat Trp His Thr Arg Asp Ala Met Glu Ser Asp Leu Leu Trp Thr Tyr Tyr 35 40 45 ::     | 323 |
| ctt aac tgg tgc agt gac atc ttt tac atg ttt gct ggg atc atc tct<br>Leu Asn Trp Cys Ser Asp Ile Phe Tyr Met Phe Ala Gly Ile Ile Ser<br>50 55 60  | 371 |
| ctt ctc aac tac tta act tcc aga tcg cct gcc tgt gat gaa aac gtc                                                                                 | 419 |
| Page 148                                                                                                                                        |     |

| 16U 200 PCT FINAL.ST25 Leu Leu Asn Tyr Leu Thr Ser Arg Ser Pro Ala Cys Asp Glu Asn Val 65 70 75 80                                                |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| act gtg att cca aca gag aga tca agg ctg ggg gtt ggt ccg gtg act<br>Thr Val Ile Pro Thr Glu Arg Ser Arg Leu Gly Val Gly Pro Val Thr<br>85 90 95    | 467  |
| aca gta tca cct gct aaa gat gaa ggg cca agg tct gag atg gaa tct<br>Thr Val Ser Pro Ala Lys Asp Glu Gly Pro Arg Ser Glu Met Glu Ser<br>100 105 110 | 515  |
| cta agt gtg aga gag aaa aat tta cca aag tca gga ctg tgg<br>Leu Ser Val Arg Glu Lys Asn Leu Pro Lys Ser Gly Leu Trp Trp<br>115 120 125             | 560  |
| tgataggaaa acctaactat agcttgtctt aaaagcaggg gagaagctga gttgggaatg                                                                                 | 620  |
| gtcacataaa ttctgggaaa ctctcctaat atcatgtcca tattacttga ggagacagca                                                                                 | 680  |
| ttaaagctga tgaaatgtct tttgcgtgca ttggatccaa aatatatatg atagtcataa                                                                                 | 740  |
| agtaaataac tcacttaaga aaaacatttc taaaagaaaa caacaatgtt tagagtcatg                                                                                 | 800  |
| aatgaaagaa actagtgaaa gatgcagtgt gtagaccaga gacctctttg ggtatcaggg                                                                                 | 860  |
| atctcatgga ccagaatggc ccgtggagaa gaatgttaat tacttctgtt tggaattttc                                                                                 | 920  |
| tttattatgt gtggctttgg gtatactcag gatggaaagc acttggacaa atactgttga                                                                                 | 980  |
| atctgaactt aatagcatta ccagaaatgg aataaatatc aatggatata agaccta                                                                                    | 1037 |
| <210> 235<br><211> 127<br><212> PRT<br><213> Homo sapiens<br><400> 235                                                                            |      |
| Met Thr Thr Asn Leu Asp Leu Lys Val Ser Met Leu Ser Phe Ile Ser 1 5 10 15                                                                         |      |
| Ala Thr Cys Leu Leu Cys Leu Asn Leu Phe Val Ala Gln Val His<br>20 25 30                                                                           |      |
| Trp His Thr Arg Asp Ala Met Glu Ser Asp Leu Leu Trp Thr Tyr Tyr 35 40 45                                                                          |      |
| Leu Asn Trp Cys Ser Asp Ile Phe Tyr Met Phe Ala Gly Ile Ile Ser<br>50 55 60                                                                       |      |
| Leu Leu Asn Tyr Leu Thr Ser Arg Ser Pro Ala Cys Asp Glu Asn Val<br>65 70 75 80                                                                    |      |
| Thr Val Ile Pro Thr Glu Arg Ser Arg Leu Gly Val Gly Pro Val Thr 85 90 95                                                                          |      |
| Thr Val Ser Pro Ala Lys Asp Glu Gly Pro Arg Ser Glu Met Glu Ser<br>100 105 110                                                                    |      |
| Leu Ser Val Arg Glu Lys Asn Leu Pro Lys Ser Gly Leu Trp Trp 115 120 125                                                                           |      |
| <210> 236<br><211> 1054<br><212> DNA<br><213> Homo sapiens                                                                                        |      |
| <220> <221> CDS <222> (152)(895)                                                                                                                  |      |

| < | 2 | 2 | 3 | > |
|---|---|---|---|---|
|   |   |   |   |   |

| \2          | 237                |             |                  |            |            |             |            |                  |                   |            |                  |            |            |                  |                  |      |
|-------------|--------------------|-------------|------------------|------------|------------|-------------|------------|------------------|-------------------|------------|------------------|------------|------------|------------------|------------------|------|
|             | 00><br>tggc        | 236<br>attc | ggt              | ggtco      | etg (      | gcagt       | tago       | et ga            | agcac             | gccc       | tc:              | tgage      | ccgc       | tcg              | gtggaca          | 60   |
| cc          | aggca              | actc        | tagi             | taggo      | ct         | ggcct       | acco       | a ga             | aaca              | gcag       | gag              | gagag      | gaag       | aaad             | caggcca          | 120  |
| gc          | tgtga              | agaa        | gcca             | aagga      | eca (      | ccgag       | tcag       | gt c             | atg<br>Met<br>1   |            |                  |            |            |                  |                  | 172  |
|             |                    |             |                  |            |            |             |            |                  |                   |            |                  |            |            |                  | aaa<br>Lys       | 220  |
| Pro         | gaç<br>5 Glu<br>25 | gaa<br>Glu  | gac<br>Asp       | aag<br>Lys | aaç<br>Lys | g gac<br>30 | ggt<br>Gly | aaç<br>Lys       | g gag<br>s Glu    | CCA<br>Pro | tcg<br>Ser<br>35 | gac<br>Asp | aaa<br>Lys | cct<br>Pro       | caa<br>Gln       | 268  |
|             |                    |             |                  |            |            |             |            |                  |                   |            |                  |            |            |                  | gcg<br>Ala<br>55 | 316  |
| gtç<br>Val  | cag<br>Gln         | Pro         | aag<br>Lys       | His<br>60  | gaa<br>Glu | gtg<br>Val  | ggc<br>Gly | acg<br>Thr       | agg<br>Arg<br>65  | agg<br>Arg | 999<br>Gly       | tgt<br>Cys | cgc        | cgc<br>Arg<br>70 | tac<br>Tyr       | 364  |
| cgg<br>Arg  | tgg<br>Trp         | gaa<br>Glu  | tta<br>Leu<br>75 | aaa<br>Lys | gac<br>Asp | agc<br>Ser  | aat<br>Asn | aaa<br>Lys<br>80 | gag<br>Glu        | ttc<br>Phe | tgg<br>Trp       | Leu        | Leu<br>85  | 999<br>Gly       | cac<br>His       | 412  |
| Ala         | Glu                | 11e<br>90   | Lys              | He         | Arg        | Ser         | Leu<br>95  | Gly              | tgc<br>Cys        | Lev        | lle              | Ala<br>100 | Ala        | Met              | lle              | 460  |
| Leu         | Leu<br>105         | Ser         | Ser              | Leu        | Thr        | Val<br>110  | His        | Pro              | atc<br>Ile        | Leu        | Arg<br>115       | Leu        | Ile        | Ile              | Thr              | 508  |
| Met<br>120  | Glu                | Ile         | Ser              | Phe        | Phe<br>125 | Ser         | Phe        | Phe              | atc<br>Ile        | Leu<br>130 | Leu              | Tyr        | Ser        | Phe              | Ala<br>135       | 556  |
| lle         | His                | Arg         | Tyr              | 11e<br>140 | Pro        | Phe         | lle        | Leu              | tgg<br>Trp<br>145 | Pro        | Ile              | Ser        | Asp        | Leu<br>150       | Phe              | 604  |
| Asn         | Asp                | Leu         | 11e<br>155       | Ala        | Cys        | Ala         | Phe        | Leu<br>160       | gtg<br>Val        | Gly        | Ala              | Val        | Val<br>165 | Phe              | Ala              | 652  |
| Val         | Arg                | Ser<br>170  | Arg              | Arg        | Ser        | Met         | Asn<br>175 | Leu              | cac<br>His        | Tyr        | Leu              | Leu<br>180 | Ala        | Val              | Ile              | 700  |
| Leu         | 11e<br>185         | Gly         | Ala              | Ala        | Gly        | Val<br>190  | Phe        | Ala              | ttt<br>Phe        | Ile        | Asp<br>195       | Val        | Cys        | Leu              | Gln              | 748  |
| -Arg<br>200 | Asn                | His         | Phe              | Arg        | Gly<br>205 | Lys         | Lys        | Ala              |                   | Lys<br>210 | His              | Met        | Leu        | Val              | Pro<br>215       | 796  |
| Pro         | Pro                | Gly         | Lys              | Glu<br>220 | Lys        | Gly         | Pro        | Gln              | cag<br>Gln<br>225 | Gly        | Lys              | G1 y       | Pro<br>-   | Glu<br>230       | Pro              | 844  |
| Ala         | Lys                | Pro         | Pro<br>235       | Glu        | Pro        | Gly         | Lys        | Pro<br>240       | cca<br>Pro        | Gl y       | Pro              | Ala        | Lys<br>245 | Gly              | aag<br>Lys       | 892  |
| Lys         |                    |             |                  |            |            |             |            |                  | cgg               |            |                  |            |            |                  |                  | 945  |
| atat        | gttt               | сс а        | ctct             | cttc       | c tt       | gtct        | tctt       | tct              | ggaa              | tgg        | ttt              | cttt       | tc c       | attt             | tcatt            | 1005 |
| acca        | cctt               | tg c        | ttgg             | aaaa       | g aa       | tgga        | ttaa       | tgg              | attc              | taa .      | aagc             | ctaa       | a          |                  |                  | 1054 |

<210> 237

<211> 248

PRT <213> Homo sapiens

<400> 237

Met Ala Pro Lys Ala Ala Lys Gly Ala Lys Pro Glu Pro Ala Pro Ala 1 5 10 15

Pro Pro Pro Pro Gly Ala Lys Pro Glu Glu Asp Lys Lys Asp Gly Lys 20 25 30

Glu Pro Ser Asp Lys Pro Gln Lys Ala Val Gln Asp His Lys Glu Pro 35 40 45

Ser Asp Lys Pro Gln Lys Ala Val Gln Pro Lys His Glu Val Gly Thr 50 60

Arg Arg Gly Cys Arg Arg Tyr Arg Trp Glu Leu Lys Asp Ser Asn Lys 65 70 75 80

Glu Phe Trp Leu Leu Gly His Ala Glu Ile Lys Ile Arg Ser Leu Gly 85 90 95

Cys Leu Ile Ala Ala Met Ile Leu Leu Ser Ser Leu Thr Val His Pro  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Ile Leu Arg Leu lle Ile Thr Met Glu Ile Ser Phe Phe Ser Phe Phe 115 120 125

lle Leu Leu Tyr Ser Phe Ala Ile His Arg Tyr Ile Pro Phe Ile Leu 130 135 . . . 140

Trp Pro Ile Ser Asp Leu Phe Asn Asp Leu Ile Ala Cys Ala Phe Leu 145 150 155 160

Val Gly Ala Val Val Phe Ala Val Arg Ser Arg Arg Ser Met Asn Leu 165 170 175

His Tyr Leu Leu Ala Val Ile Leu Ile Gly Ala Ala Gly Val Phe Ala 180  $$180\,$ 

Phe 11e Asp Val Cys Leu Gln Arg Asn His Phe Arg Gly Lys Lys Ala 195 200 205

Lys Lys His Met Leu Val Pro Pro Pro Gly Lys Glu Lys Gly Pro Gln 216 226

Gln Gly Lys Gly Pro Glu Pro Ala Lys Pro Pro Glu Pro Gly Lys Pro

Pro Gly Pro Ala Lys Gly Lys Lys 245

<210> 238

<211> 487

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

| 16U 200 PCT <222> (17)(418)                                                                                                   | FINAL.ST25                              |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <223>                                                                                                                         |                                         |
| <400> 238<br>agtggcagct tggctg atg agc tat aag cca gcc ttg ttt gg<br>Met Ser Tyr Lys Pro Ala Leu Phe Gl<br>1 5                | g ttc cta ttc 52<br>y Phe Leu Phe<br>10 |
| ctt ctg ctg ttg ctt agc aac tgg ttg gtc aag tat gaa<br>Leu Leu Leu Leu Leu Ser Asn Trp Leu Val Lys Tyr Glu<br>15 20 25        | cac aag ctc 100<br>His Lys Leu          |
| acc ctc cca gag ccc cag cag gag gaa gag aaa cca aag a<br>Thr Leu Pro Glu Pro Gln Gln Glu Glu Glu Lys Pro Lys 3<br>30 35 40    | act tct gaa 148<br>Thr Ser Glu          |
| aac gac tcc aag aac agc aag gcc gtg aac aca aaa gaa g<br>Asn Asp Ser Lys Asn Ser Lys Ala Val Asn Thr Lys Glu V<br>45 50 55    | gtc aat aga 196<br>Val Asn Arg<br>60    |
| acg cat gcc tgc ttt gcc ctc cag gac gag atc ctc caa c<br>Thr His Ala Cys Phe Ala Leu Gln Asp Glu Ile Leu Gln A<br>65 70       | egg ctg ttg 244<br>Arg Leu Leu<br>75    |
|                                                                                                                               | Phe lle lle<br>10                       |
| tgg aat aaa atg aat cac cac ggg cgg tca agc aga cat c<br>Trp Asn Lys Met Asn His His Gly Arg Ser Ser Arg His A<br>95 100 105  | rg Asn Phe                              |
| CCC atg aaa aaa cac aga atg agg agg cat gag tca att t<br>Pro Met Lys Lys His Arg Met Arg Arg His Glu Ser Ile C<br>110 115 120 | ys Pro Thr                              |
| ctg tct gac tgt act tcg agt tcc ccc agc taatgaggcc ga<br>Leu Ser Asp Cys Thr Ser Ser Ser Pro Ser<br>125 130                   |                                         |
| ggcctctgcc galgttacct tttacctcag taaaacccag tcacagcct                                                                         | 487                                     |
| <210>. 239<br><211> 134<br><212> PRT<br><213> Homo sapiens                                                                    |                                         |
| <400> 239                                                                                                                     |                                         |
| Met Ser Tyr Lys Pro Ala Leu Phe Gly Phe Leu Phe Leu Lo<br>1 5 10                                                              | eu Leu Leu<br>15                        |
| Leu Ser Asn Trp Leu Val Lys Tyr Glu His Lys Leu Thr Le<br>20 25 30                                                            |                                         |
| Pro Gln Glu Glu Glu Lys Pro Lys Thr Ser Glu Asn As<br>35 40 .45                                                               | sp Ser Lys                              |
| Asn Ser Lys Ala Val Asn Thr Lys Glu Val Asn Arg Thr Hi 50 55 60                                                               | s Ala Cys                               |
| Phe Ala Leu Gln Asp Glu Ile Leu Gln Arg Leu Leu Phe Se<br>65 70 75                                                            | 80                                      |
| Lys Met Lys Val Leu Glu Asn Gln Met Phe Ile Ile Trp As<br>85 90                                                               | 95                                      |
| Asn His His Gly Arg Ser Ser Arg His Arg Asn Phe Pro Me<br>100 105 11                                                          |                                         |

His Arg Met Arg Arg His Glu Ser Ile Cys Pro Thr Leu Ser Asp Cys

115

120

16U 200 PCT FINAL.ST25 125

| Th                       | r Se<br>13               |                          | er Se            | r Pr               | o Se              | r                    |              |             |                      |                                  |                      |                   |                  |            |                   |             |
|--------------------------|--------------------------|--------------------------|------------------|--------------------|-------------------|----------------------|--------------|-------------|----------------------|----------------------------------|----------------------|-------------------|------------------|------------|-------------------|-------------|
| <2<br><2                 | 10><br>11><br>12><br>13> | 240<br>846<br>DNA<br>Hom | ,                | pien               | s                 |                      |              |             |                      |                                  |                      |                   |                  |            |                   |             |
| <2:<br><2:               | 20><br>21><br>22><br>23> | CDS<br>(10               | 8)               | (725               | )                 |                      |              |             |                      |                                  |                      |                   |                  |            |                   |             |
|                          | 00><br>tcta              | 240<br>gaga              |                  | tgati              | t aa              | ctan                 | rcag:        | at a        | aact                 | nact.                            | a ac                 | taaa              | ~~~              |            | gtgggt            | - 60        |
|                          |                          |                          |                  |                    |                   |                      |              |             |                      |                                  |                      |                   | t ato            | g gat      | t tcc<br>Ser      | g 60<br>116 |
| Caa<br>Gli               | a cad<br>Gli<br>5        | g ga<br>n Gl             | g gad<br>u Ası   | c cto<br>p Lei     | g cgo             | c tto<br>g Phe<br>10 | c cct<br>Pro | gg(<br>) Gl | g ato<br>y Met       | g tgg                            | g gte<br>p Vai<br>15 | c tca<br>l Sei    | a ttg<br>c Lev   | tac<br>Ty  | ttt<br>Phe        | 164         |
| gga<br>G1 <u>y</u><br>20 | ato<br>Ile               | c cte                    | a 617            | g cto<br>y Lei     | tgt<br>Cys<br>25  | t tct<br>s Ser       | gtg<br>Val   | ata<br>Ile  | act<br>Thi           | : gga<br>: G1 <sub>3</sub><br>30 | a ggg                | g tgo<br>y Cys    | att<br>ille      | ato        | ttt<br>Phe<br>35  | 212         |
| ctg<br>Leu               | cac<br>His               | c tgo                    | g agg<br>p Arg   | j aag<br>Lys<br>40 | aac<br>Asr        | ttg<br>1 Leu         | agg<br>Arg   | ego<br>Aro  | g gaa<br>g Glu<br>45 | gaç<br>Glu                       | g cat<br>n His       | t gcc<br>s Ala    | cag<br>Gln       | 61 Gln     | tgg<br>Trp        | 260         |
| gtg<br>Val               | gaç<br>Glu               | g gto<br>1 Val           | atg<br>Met<br>55 | aga<br>Arg         | gct<br>Ala        | gcc<br>Ala           | aca<br>Thr   | Phe<br>60   | acc<br>Thr           | tac<br>Tyr                       | : ago<br>: Ser       | cca<br>Pro        | ttg<br>Leu<br>65 | ttg<br>Leu | tac<br>Tyr        | 308         |
| ırp                      | 116                      | 70                       | ту5              | Arg                | Arg               | Arg                  | Tyr<br>75    | Gly         | Met                  | Asn                              | Ala                  | Ala<br>80         | Ile              | Asn        | acg<br>Thr        | 356         |
| GIY                      | 85                       | ) Ala                    | Pro              | Ala                | Val               | 7hr<br>90            | Lys          | Thr         | Glu                  | Thr                              | G1 u<br>95           | val               | Gln              | Asn        | cca<br>Pro        | 404         |
| 100                      | vai                      | ren                      | Тгр              | Asp                | 105               | Asp                  | lle          | Pro         | Glu                  | Gly<br>110                       | Arg                  | agc<br>Ser        | His              | Ala        | Asp<br>115        | 452         |
| GIN                      | ASP                      | ser                      | ASN              | 120                | Lys               | Ala                  | Glu          | Ala         | Pro<br>125           | Ala                              | Pro                  | ctg<br>Leu        | Gln              | Pro<br>130 | Ala               | 500         |
| Leu                      | GIN                      | Leu                      | 135              | Pro                | Gln               | Gln                  | Pro          | Gl n<br>140 | Ala                  | Arg                              | Ser                  | cca<br>Pro        | Phe<br>145       | Pro        | Leu               | 548         |
| PIO                      | 116                      | 150                      | GID              | GIU                | lev               | Pro                  | Phe<br>155   | Aľa         | Pro                  | Pro                              | Leu                  | tgc<br>Cys<br>160 | Æsn              | Leu        | Pro               | 596         |
| ccc<br>Pro               | ctg<br>Leu<br>165        | ctg<br>Leu               | aac<br>Asn       | cac<br>His         | tct<br>Ser        | gtc<br>Val<br>170    | tcc<br>Ser   | tat<br>Tyr  | cct<br>Pro           | ttg<br>Leu                       | gcc<br>Ala<br>175    | acc<br>Thr        | tgt<br>Cys       | cct<br>Pro | gaa<br>Glu        | 644         |
| agg<br>Arg<br>180        | aat<br>Asn               | gtt<br>Val               | ctc<br>Leu       | ttc<br>Phe         | cat<br>His<br>185 | tcc<br>Ser           | ctc<br>Leu   | ctg<br>Leu  | aat<br>Asn           | ctg<br>Leu<br>190                | gcc<br>Ala           | cag<br>Gln        | gaa<br>Glu       | gac<br>Asp | cat<br>His<br>195 | 692         |
| agc<br>Ser               | ttc<br>Phe               | aat<br>Asn               | Ala              | aag<br>Lys<br>200  | cct<br>Pro        | ttt<br>Phe           | cct<br>Pro   | tca<br>Ser  | gaa<br>Glu<br>205    | ctg<br>Leu                       | tago                 | ectec             | tc t             | cact       | .gaagg            | 745         |
| tggg                     | agct                     | gc a                     | iggaa            | tcag               | g tg              | caga                 | gtag         | gaa         | atgg                 | aac                              | taac                 | ctca              | gg a             | aggt       | ggtat             | 805         |
| tgac                     | agag                     | igt c                    | agga             | ссса               | c ct              | ggat                 | gtca         | tgc         | tatg                 | aaa                              |                      | 200               | 162              |            |                   | 846         |

<210> 241 <211> 206 PRT <212> <213> Homo sapiens <400> 241 Met Asp Ser Gln Glu Asp Leu Arg Phe Pro Gly Met Trp Val Ser Leu Tyr Phe Gly Ile Leu Gly Leu Cys Ser Val Ile Thr Gly Gly Cys 20 25 30Ile Ile Phe Leu His Trp Arg Lys Asn Leu Arg Arg Glu Glu His Ala Gln Gln Trp Val Glu Val Met Arg Ala Ala Thr Phe Thr Tyr Ser Pro Leu Leu Tyr Trp Ile Asn Lys Arg Arg Arg Tyr Gly Met Asn Ala Ala 65 70 75 80  $^{\circ}$ lle Asn Thr Gly Pro Ala Pro Ala Val Thr Lys Thr Glu Thr Glu Val Gln Asn Pro Asp Val Leu Trp Asp Leu Asp Ile Pro Glu Gly Arg Ser 105 His Ala Asp Gln Asp Ser Asn Pro Lys Ala Glu Ala Pro Ala Pro Leu Gln Pro Ala Leu Gln Leu Ala Pro Gln Gln Pro Gln Ala Arg Ser Pro Phe Pro Leu Pro Ile Phe Gln Glu Val Pro Phe Ala Pro Pro Leu Cys Asn Leu Pro Pro Leu Leu Asn His Ser Val Ser Tyr Pro Leu Ala Thr Cys Pro Glu Arg Asn Val Leu Phe His Ser Leu Leu Asn Leu Ala Gln Glu Asp His Ser Phe Asn Ala Lys Pro Phe Pro Ser Glu Leu 195 200 205 <210> 242 <211> 663 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (40)..(585) <223> <400> 242 tagtteetag agetgetget tattaaaatg teaacatet tea tet tet age tgg Ser Ser Ser Trp gac aac ctc tta gag tot ctc tot ctc agc aca gta tgg aat tgg ata

Asp Asn Leu Leu Glu Ser Leu Ser Leu Ser Thr Val Trp Asn Trp Ile

15

10

Page 154

54

102

| ca<br>G1                 | a gc<br>n Al        | a a<br>a S                | er         | ttt<br>Phe<br>25  | t t <u>c</u><br>Lev | 9 99<br>9 G1      | a gag<br>y Glu    | act<br>Th         | t ag<br>r Se<br>30 | r Al              | a cc                 | t cad                | g ca<br>n Gl      | a ac<br>n Th<br>35 | a ag<br>r Se          | t ttg<br>r Leu       | 150 |
|--------------------------|---------------------|---------------------------|------------|-------------------|---------------------|-------------------|-------------------|-------------------|--------------------|-------------------|----------------------|----------------------|-------------------|--------------------|-----------------------|----------------------|-----|
| G1<br>99                 | a ct<br>y Le        | a t<br>u L<br>4           | eu .       | gat<br>Asp        | aat<br>Asr          | cti<br>Lei        | t gct<br>ı Ala    | cca<br>Pro<br>45  | a gc               | t gte<br>a Val    | g caa                | a ato                | 2 at 11 50        | c tte              | g ag<br>u Ar          | g att<br>g Ile       | 198 |
| tc<br>Se                 | t tt<br>r Ph<br>55  | c ti<br>e L               | tg (       | att<br>Ile        | tta<br>Leu          | tto<br>Lei        | gga<br>Gly<br>60  | ata<br>Ile        | a gga<br>e Gly     | a ata<br>y Ilo    | a tai<br>e Tyi       | t gco<br>r Ala<br>65 | tt.               | a tg<br>u Tr       | g aa<br>D Ly:         | a cga<br>s Arg       | 246 |
| ag<br>Se;<br>70          | t at                | t ca<br>e Gi              | 3g 1       | tca<br>Ser        | att                 | Caq<br>G1r<br>75  | aaa<br>Lys        | aca<br>Thi        | tto<br>Lei         | g tte             | g tti<br>u Phe<br>80 | gta<br>Val           | ato<br>L Ile      | c aca              | a cte                 | c tac<br>u Tyr<br>85 | 294 |
| aaa<br>Lys               | a ct                | t ta<br>u Ty              | c a        | aag<br>Lys        | aag<br>Lys<br>90    | G17               | tca<br>Ser        | cat<br>His        | att<br>ille        | tt1<br>Phe<br>95  | t gaç<br>e Glu       | get<br>Ala           | tte<br>Le         | g cta<br>J Let     | 9 gcc<br>3 Ala<br>100 | c aac<br>a Asn<br>D  | 342 |
| eca<br>Pro               | gaa<br>Glu          | agg<br>uGl                | у 9        | egt<br>Ser<br>105 | ggt<br>Gly          | ctc<br>Leu        | cga<br>Arg        | att               | caa<br>Glr<br>110  | a Asp             | aat<br>Asn           | aat<br>Asn           | aat<br>Asr        | ctt<br>Lev<br>115  | Phe                   | c ctg<br>e Leu       | 390 |
| t co<br>Ser              | t te                | 9 99<br>1 Gl<br>12        | уI         | tg<br>.eu         | caa<br>Gln          | gag<br>Glu        | aaa<br>Lys        | att<br>11e<br>125 | Leu                | aaa<br>Lys        | a aaa<br>G Lys       | ctt<br>Leu           | aag<br>Lys<br>130 | Thr                | gtç<br>Va]            | gaa<br>l Glu         | 438 |
| aac<br>Asn               | : aaa<br>Lys<br>135 | s Me                      | ga<br>t L  | ag<br>.ys         | aac<br>Asn          | cta<br>Leu        | gaa<br>Glu<br>140 | G1 y              | ata<br>Ile         | ato<br>11e        | gtt<br>Val           | gct<br>Ala<br>145    | Glr               | aaa<br>Lys         | cct                   | gcc<br>Ala           | 486 |
| acg<br>Thr<br>150        | Lys                 | g ag<br>s Ar              | g g<br>g A | sp                | tgc<br>Cys          | tcc<br>Ser<br>155 | tct<br>Ser        | gag<br>Glu        | Pro                | tac<br>Tyr        | tgc<br>Cys<br>160    | Ser                  | t g c<br>Cys      | tct<br>Ser         | gac<br>Asp            | tgc<br>Cys<br>165    | 534 |
| Cag<br>Gln               | agt<br>Ser          | cc<br>Pr                  | c t<br>o L | eu :              | tcc<br>Ser<br>170   | aca<br>Thr        | tca<br>Ser        | 999<br>G1 y       | ttt<br>Phe         | act<br>Thr<br>175 | Ser                  | ccc<br>Pro           | att<br>11e        | tga                |                       | gtg<br>Val<br>180    | 582 |
| atg<br>Met               | gac                 | tcc                       | aat        | c t               | ttt                 | cag               | ga aa             | agca-             | ctgt               | t tc              | cctc                 | atgt                 | gtg               | cagt               | ggt                   |                      | 635 |
| gta                      | tcaa                | taa                       | ag         | ata               | gaga                | a c               | gctat             | tg                |                    |                   |                      |                      |                   |                    |                       |                      | 663 |
| <21<br><21<br><21<br><21 | 1><br>2>            | 243<br>178<br>PRT<br>Homo | o sa       | apie              | ens                 |                   |                   |                   |                    |                   |                      |                      |                   |                    |                       |                      |     |
| < 400                    | 0>                  | 243                       |            |                   |                     |                   |                   |                   |                    |                   |                      |                      |                   |                    |                       |                      |     |
| Ser<br>1                 | Ser                 | Sei                       | r Se       | er 1              | rp                  | Asp               | Asn               | Leu               | Leu                | Glu<br>10         | Ser                  | Leu                  | Ser               | Leu                | Ser<br>15             | Thr                  |     |
| Val                      | Trp                 | Asn                       | 2 Tı       | rp I<br>)         | le                  | Gln               | Ala               | Ser               | Phe<br>25          | Leu               | G1 y                 | Glu                  | Thr               | Ser<br>30          | Ala                   | Pro                  |     |
| ala                      | alə                 | Thr<br>35                 | Se         | er L              | еп                  | G1 y              | Leu               | Leu<br>40         | Asp                | Asn               | Leu                  | Ala                  | Pro<br>45         | Ala                | Val                   | Gln                  |     |
| lle                      | Ile<br>50           | Leu                       | Ar         | g I               | le :                | Ser               | Phe :             | Leu               | Ile                | Leu               | Leu                  | 60<br>61 y           | lle               | G1 y               | lle                   | Туг                  | 4.  |
| Ala<br>65                | Leu                 | Trp                       | Ly         | s A               | rg :                | Ser<br>70         | Ile (             | Sln               | Ser                | Ile               | Gln<br>75            | Lys                  | Thr               | Leu                | Leu                   | Phe<br>80            |     |
| Va]                      | Ile                 | Thr                       | Le         | u T               | yr 1                | Lys :             | Leu ?             | ryr               | Lys                | Lys               | Gly                  | Ser                  | His               | Ile                | Phe                   | Glu                  |     |

| Ala                              | Leu Le                 | 100                           | Asn Pro                | Glu G                    | ly Ser<br>105        |                        |                        |                      | FINAL.:<br>Gln As<br>110 |                  |      |
|----------------------------------|------------------------|-------------------------------|------------------------|--------------------------|----------------------|------------------------|------------------------|----------------------|--------------------------|------------------|------|
| Asn                              | Asn Lei<br>11!         |                               | Leu Ser                |                          | ly Leu<br>20         | Gln                    | Glu Ly                 | s Ile<br>125         | Leu Ly                   | s Lys            |      |
| Leu                              | Lys Thi<br>130         | val (                         | Glu Asn                | Lys Mo                   | et Lys               | Asn                    | Leu Gl                 |                      | lle Il                   | e Val            |      |
| Ala (                            | Gln Lys                | Pro A                         | la Thr<br>150          | Lys A                    | rg Asp               |                        | Ser Se<br>155          | r Glu                | Pro Ty                   | r Cys<br>160     |      |
| Ser (                            | Cys Ser                |                               | ys Gln<br>65           | Ser Pi                   | o Leu                | Ser<br>170             | Thr Se                 | r Gly                | Phe Thi                  |                  |      |
| Pro 1                            | lle                    |                               |                        |                          |                      |                        |                        |                      |                          |                  |      |
| <210:<br><211:<br><212:<br><213: | 541<br>DNA             | sapie                         | ns                     |                          |                      |                        |                        |                      |                          |                  |      |
| <220><221><222><222><223>        | CDS (62)               | (349                          | )                      |                          |                      |                        |                        |                      |                          |                  |      |
| <400><br>catat                   |                        | gccact                        | ctga gt                | ttggca                   | tt atq               | gtgtte                 | ga att                 | ttaac                | ca cata                  | tctatt           | 60 - |
| g atg<br>Met<br>1                | tgc t                  | tt <sup>:</sup> gct<br>he Ala | ggt tt<br>Gly Ph<br>5  | t agt<br>e Ser           | ttt aa<br>Phe Ly     | ng gaq<br>/s Glu<br>10 | g aaa a<br>u Lys I     | ta tt<br>le Ph       | t att g<br>e Ile A<br>l  | la Leu           | 109  |
| gca t<br>Ala T                   | gg atg<br>rp Met       | ccc ad<br>Pro Ly<br>20        | aa gct<br>ys Ala       | aca gt<br>Thr Va         | a cag<br>1 Gln<br>25 | gct g<br>Ala V         | jtg tta<br>/al Leu     | Gly                  | cct ctg<br>Pro Leu<br>30 | gct<br>Ala       | 157  |
| cta g<br>Leu G                   | aa aca<br>lu Thr<br>35 | gca ag<br>Ala Ai              | ga gtc<br>cg Val       | tct gc<br>Ser Al<br>40   | a ccc<br>a Pro       | cac t<br>His I         | tg gaa<br>.eu Glu      | cca (<br>Pro 1<br>45 | tat gcg<br>Tyr Ala       | aag<br>Lys       | 205  |
| gat g<br>Asp V<br>5              | al Met                 | tca gt<br>Ser Va              | a gca<br>al Ala        | ttt tt.<br>Phe Lec<br>55 | a gcc<br>u Ala       | atc t<br>lle S         | cg atc<br>er lle<br>60 | aca o                | gct cca<br>Na Pro        | aat<br>Asn       | 253  |
| gga g<br>Gly A<br>65             | ct cta<br>la Leu       | ctt at<br>Lev Me              | .g ggc<br>et Gly<br>70 | att cto<br>Ile Le        | 9 999<br>1 Gly       | Pro L                  | aa atg<br>ys Met<br>5  | ctt a<br>Leu T       | ca cgc                   | cat<br>His<br>80 | 301  |
| tat ga<br>Tyr A:                 | at cca<br>sp Pro       | agc aa<br>Ser Ly<br>85        | a ata<br>'s Ile        | aaa cto<br>Lys Led       | ı Gln                | ttg t<br>Leu S<br>90   | ca aca<br>er Thr       | tta g<br>Leu G       | aa cat<br>lu His<br>95   | cat<br>His       | 349  |
| taaaaa                           | agttt a                | cctgtc                        | atc at                 | etgect                   | c ttc                | tttta                  | at gaal                | tatt                 | c acato                  | gacaga           | 409  |
|                                  |                        |                               | ata tg                 |                          |                      |                        |                        |                      |                          |                  | 469  |
| tgattt                           | cagt a                 | cagggc                        | ttt tc                 | tggact                   | t ttt                | actcc                  | aa agtt                | aattt                | a ataaa                  | aataa            | 529  |
| tattaa                           | atgg a                 | a                             |                        |                          |                      |                        |                        |                      |                          |                  | 541  |
| <210>                            | 245                    |                               |                        |                          |                      |                        |                        |                      |                          |                  |      |
| <211><br><212>                   | 96<br>Prt              |                               |                        |                          |                      |                        |                        |                      |                          | •                |      |
| <213>                            |                        | sapien                        | s                      |                          |                      |                        |                        |                      |                          |                  |      |
| <400>                            | 245                    |                               |                        |                          |                      |                        |                        |                      |                          |                  |      |
| Met Cy<br>l                      | 's Phe i               | Ala Gly<br>5                  | y Phe S                | er Phe                   |                      | Slu Ly<br>10           | ys Ile                 | Phe I                | le Ala<br>15             | Leu              |      |

Ala Trp Met Pro Lys Ala Thr Val Gln Ala Val Leu Gly Pro Leu Ala Leu Glu Thr Ala Arg Val Ser Ala Pro His Leu Glu Pro Tyr Ala Lys Asp Val Met Ser Val Ala Phe Leu Ala Ile Ser Ile Thr Ala Pro Asn Gly Ala Leu Leu Met Gly Ile Leu Gly Pro Lys Met Leu Thr Arg His Tyr Asp Pro Ser Lys Ile Lys Leu Gln Leu Ser Thr Leu Glu His His <210> 246 <211> 2499 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (128)..(2284) <223> <400> 246 gcaagaggcc cettgtggcc accgagtcct ccgacgccct cgccaggctg gcctttgggt tggcccaggc aggacgggct gccgagagca ctcgggccgc gtcgccagga gccgcccagg 120 gtgagcc atg ttc gta ggc gtc gcc cgg cac tct ggg agc cag gat gaa Met Phe Val Gly Val Ala Arg His Ser Gly Ser Gln Asp Glu 1 5 10 gtc tca agg gga gta gag ccg ctg gag gcc gcg gcg ccg cca cct gct Val Ser Arg Gly Val Glu Pro Leu Glu Ala Ala Arg Ala Gln Pro Ala 15 aag gac agg agg gcc aag gga acc ccg aag tcc tcg aag ccc ggg aaa Lys Asp Arg Arg Ala Lys Gly Thr Pro Lys Ser Ser Lys Pro Gly Lys aaa cac cgg tat ctg aga cta ctt cca gag gcc ttg ata agg ttc ggc Lys His Arg Tyr Leu Arg Leu Leu Pro Glu Ala Leu Ile Arg Phe Gly 50 55 60 ggt ttc cga aaa agg aaa aaa gcc aag tcc tca gtt tcc aag aag ccg 361 Gly Phe Arg Lys Arg Lys Lys Ala Lys Ser Ser Val Ser Lys Lys Pro gga gaa gtg gat gac agt ttg gag cag ccc tgt ggt ttg ggc tgc tta 409 Gly Glu Val Asp Asp Ser Leu Glu Gln Pro Cys Gly Leu Gly Cys Leu gtc agc acc tgc tgt gag tgt tgc aat aac att cgc tgc ttc atg att 457 Val Ser Thr Cys Cys Glu Cys Cys Asn Asn Ile Arg Cys Phe Met Ile ttc tac tgc atc ctg ctc ata tgt caa ggt gtg gtg ttt ggt ctt ata Phe Tyr Cys Ile Leu Leu Ile Cys Gln Gly Val Val Phe Gly Leu Ile 505 gat gtc agc att ggc gat ttt cag aag gaa tat caa ctg aaa acc att Asp Val Ser lle Gly Asp Phe Gln Lys Glu Tyr Gln Leu Lys Thr lle 553 gag aag ttg gca ttg gaa aag agt tac gat att tca tct ggc ctg gta 601 Glu Lys Leu Ala Leu Glu Lys Ser Tyr Asp Ile Ser Ser Gly Leu Val 150

gca ata ttt ata gca ttc tat gga gac aga aaa aaa gta ata tgg ttt

Ala Ile Phe Ile Ala Phe Tyr Gly Asp Arg Lys Lys Val Ile Trp Phe

Page 157

649

|            | 160        |            |            |            |            | · 165      |            |            |                   | 160        | 200<br>170 |            | FIN        | AL.S       | r25        |       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|-------|
|            | gct<br>Ala | tcc        |            |            |            |            |            |            | gga<br>Gly        |            |            |            |            |            |            | 697   |
|            |            |            |            |            |            |            |            |            | agt<br>Ser<br>200 |            |            |            |            |            |            | 745   |
|            |            |            |            | Ile        |            |            |            |            | ggt<br>Gly        |            |            |            |            |            |            | 793   |
|            |            |            |            |            |            |            |            |            | ttc<br>Phe        |            |            |            |            |            |            | 841   |
|            |            | Ile        |            |            |            |            |            |            | atc<br>Ile        |            |            |            |            |            |            | 889   |
|            |            |            |            |            |            |            |            |            | ggt<br>Gly        |            |            |            |            |            |            | · 937 |
|            |            |            |            |            |            |            |            |            | ctg<br>Leu<br>280 |            |            |            |            |            |            | 985   |
|            |            |            |            |            |            |            |            |            | act<br>Thr        |            |            |            |            |            |            | 1033  |
|            |            |            |            |            |            |            |            |            | tgg<br>Trp        |            |            |            |            |            |            | 1081  |
|            |            |            |            |            |            |            |            |            | aca<br>Thr        |            |            |            |            |            |            | 1129  |
|            |            |            |            |            |            |            |            |            | cgg<br>Arg        |            |            |            |            |            |            | 1177  |
| Lys        | Gln        | Leu        | His        | Phe<br>355 | Phe        | Asp        | Ser        | Arg        | ctt<br>Leu<br>360 | Lys        | Asp        | Leu        | Lys        | Leu<br>365 | Gly        | 1225  |
| Thr        | Asn        | Ile        | Lys<br>370 | Ásp        | Leu        | Cys        | Ala        | Ala<br>375 | ctt<br>Leu        | Trp        | lle        | ren        | Met<br>380 | Arg        | Asn        | 1273  |
| Pro        | Val        | Leu<br>385 | Ile        | Cys        | Leu        | Ala        | Leu<br>390 | Ser        | aaa<br>Lys        | Ala        | Thr        | Glu<br>395 | Tyr        | Leu        | Val        | 1321  |
| _Ile       | 11e<br>400 | Gly        | Àla        | Ser        | Glu        | Phe<br>405 | Leu        | Pro        |                   | Tyr        | Leu<br>410 | Glu        | Asn        | Gln        | Phe        | 1369  |
| 11e<br>415 | Leu        | Thr        | Pro        | Thr        | Val<br>420 | Ala        | Thr        | Thr        | Ctt<br>Leu        | Ala<br>425 | Gly        | Leu        | Val        | Leu        | 11e<br>430 | 1417  |
| Pro        | Gly        | ĞÌy        | Ala        | Leu<br>435 | ĞÎy        | G1n        | Leu        | Leu        | gga<br>Gly<br>440 | Gly        | Val        | Ile        | Va1        | Ser<br>445 | Thr        | 1465  |
| Leu        | Glu        | Met        | Ser<br>450 | Cys        | Lys        | Ala        | Leu        | Met<br>455 | aga<br>Arg        | Phe        | Ile        | Met        | Val<br>460 | Thr        | Ser        | 1513  |
| Val        | Ile        | Ser<br>465 | Leu        | Ile        | Leu        | Leu        | Val<br>470 | Phe        | att<br>Ile        | Ile        | Phe        | Val<br>475 | Arg        | Cys        | Asn        | 1561  |
| cca        | gtg        | caa        | ttt        | gct        | 999        | atc        | aat        | gaa        | gat               | tat        | gat        | gga        | aca        | agg        | aag        | 1609  |

| Pro                     | Val<br>480        | Gln               | Phe               | Ala               | Gly               | 11e<br>485        | Asn               | Glu               | Asp               | 16U<br>Tyr        | 200<br>Asp<br>490 | PCT<br>Gly        | FINI<br>Thr       | AL.SI<br>Arg      | r25<br>Lys        |      |
|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ttg<br>Leu<br>495       | gga<br>Gly        | aac<br>Asn        | ctc<br>Leu        | acg<br>Thr        | gct<br>Ala<br>500 | cct<br>Pro        | tgc<br>Cys        | aat<br>Asn        | gaa<br>Glu        | aaa<br>Lys<br>505 | tgt<br>Cys        | aga<br>Arg        | tgc<br>Cys        | tca<br>Ser        | tct<br>Ser<br>510 | 1657 |
| tca<br>Ser              | att<br>Ile        | tat<br>Tyr        | tct<br>Ser        | tct<br>Ser<br>515 | ata<br>Ile        | tgt<br>Cys        | gga<br>Gly        | aga<br>Arg        | gat<br>Asp<br>520 | gat<br>Asp        | att<br>Ile        | gaa<br>Glu        | tat<br>Tyr        | ttt<br>Phe<br>525 | tct<br>Ser        | 1705 |
|                         |                   |                   |                   |                   |                   |                   |                   | tct<br>Ser<br>535 |                   |                   |                   |                   |                   |                   |                   | 1753 |
| atg<br>Met              | tac<br>Tyr        | tac<br>Tyr<br>545 | aat<br>Asn        | tgt<br>Cys        | tct<br>Ser        | tgc<br>Cys        | att<br>11e<br>550 | aaa<br>Lys        | gaa<br>Glu        | gga<br>Gly        | tta<br>Leu        | ata<br>Ile<br>555 | act<br>Thr        | gca<br>Ala        | gat<br>Asp        | 1801 |
| gca<br>Ala              | gaa<br>Glu<br>560 | ggt<br>Gly        | gat<br>Asp        | ttt<br>Phe        | att<br>Ile        | gat<br>Asp<br>565 | gcc<br>Ala        | aga<br>Arg        | ccc<br>Pro        | ggg<br>Gly        | aaa<br>Lys<br>570 | tgt<br>Cys        | gat<br>Asp        | gca<br>Ala        | aag<br>Lys        | 1849 |
| tgc<br>Cys<br>575       | tat<br>Tyr        | aag<br>Lys        | tta<br>Leu        | cct<br>Pro        | ttg<br>Leu<br>580 | ttc<br>Phe        | att<br>Ile        | gct<br>Ala        | ttt<br>Phe        | atc<br>11e<br>585 | ttt<br>Phe        | tct<br>Ser        | aca<br>Thr        | ctt<br>Leu        | ata<br>Ile<br>590 | 1897 |
| ttt.<br>Phe             | tct<br>Ser        | ggt<br>Gly        | ttt<br>Phe        | tct<br>Ser<br>595 | ggt<br>Gly        | gta<br>Val        | cca<br>Pro        | atc<br>11e        | gtc<br>Val<br>600 | ttg<br>Leu        | gcc<br>Ala        | atg<br>Met        | acg<br>Thr        | cgg<br>Arg<br>605 | gtt<br>Val        | 1945 |
| gta<br>Val              | cct<br>Pro        | gac<br>Asp        | aaa<br>Lys<br>610 | ctg<br>Leu        | cgt<br>Arg        | tct<br>Ser        | ctg<br>Leu        | gcc<br>Ala<br>615 | ttg<br>Leu        | ggt<br>Gly        | gta<br>Val        | agc<br>Ser        | tat<br>Tyr<br>620 | gtg<br>Val        | att<br>Ile        | 1993 |
| ttg<br>Leu              | aga<br>Arg        | ata<br>Ile<br>625 | ttt<br>Phe        | G1 y              | act<br>Thr        | att<br>Ile        | cct<br>Pro<br>630 | gga<br>Gly        | cca<br>Pro        | tca<br>Ser        | atc<br>Ile        | ttt<br>Phe<br>635 | aaa<br>Lys        | atg<br>Met        | tca<br>Ser        | 2041 |
| Gly                     | gaa<br>Glu<br>640 | act<br>Thr        | tct<br>Ser        | tgt<br>Cys        | att<br>Ile        | tta<br>Leu<br>645 | cgg<br>Arg        | gat<br>Asp        | gtt<br>Val        | aat<br>Asn        | aaa<br>Lys<br>650 | tgt<br>Cys        | gga<br>Gly        | cac<br>His        | aca<br>Thr        | 2089 |
| gga<br>Gly<br>655       | cgt<br>Arg        | tgt<br>Cys        | tgg<br>Trp        | ata<br>Ile        | tat<br>Tyr<br>660 | aac<br>Asn        | aag<br>Lys        | aca<br>Thr        | aaa<br>Lys        | atg<br>Met<br>665 | gct<br>Ala        | ttc<br>Phe        | tta<br>Leu        | ttg<br>Leu        | gta<br>Val<br>670 | 2137 |
| gga<br>Gly              | ata<br>Ile        | tgt<br>Cys        | Phe               | ctt<br>Leu<br>675 | tgc<br>Cys        | aaa<br>Lys        | cta<br>Leu        | tgc<br>Cys        | act<br>Thr<br>680 | atc<br>Ile        | atc<br>Ile        | ttc<br>Phe        | act<br>Thr        | act<br>Thr<br>685 | att<br>lle        | 2185 |
| gca<br>Ala              | ttt<br>Phe        | Phe               | ata<br>Ile<br>690 | tac<br>Tyr        | aaa<br>Lys        | cgt<br>Arg        | cgt<br>Arg        | cta<br>Leu<br>695 | aat<br>Asn        | gag<br>Glu        | aac<br>Asn        | Thr               | gac<br>Asp<br>700 | ttc<br>Phe        | cca<br>Pro        | 2233 |
| gat (<br>Asp            | Val '             | act<br>Thr<br>705 | gtg<br>Val        | aag<br>Lys        | aat<br>Asn        | Pro               | aaa<br>Lys<br>710 | gtt<br>Val        | aag<br>Lys        | aaa<br>Lys        | Lys               | gaa<br>Glu<br>715 | gaa<br>Glu        | act<br>Thr        | gac<br>Asp        | 2281 |
| _Leu                    | taac              | t gga             | tc a              | tcat              | tgtg              | a tt              | gcag              | atca              | ttt               | gagg              | atc.              | agag              | tgtg              | aa                |                   | 2334 |
| aacga                   | gtti              | tc to             | cttt              | taca              | g at              | tctc              | caag              | att               | tgtt              | tct               | gtgc              | ccaa              | ct t              | tcag              | aagag             | 2394 |
| gaaaa                   | tca               | ca ca             | atta              | tgtt              | t ac              | ataa              | gtag              | caa               | aaat              | ata               | ttta              | tggt              | ga t              | ctgc              | atttt             | 2454 |
| cataa                   | itaaa             | ag t              | gtcci             | tatt              | g tg              | aaac              | aaaa              | aaa               | aaaa.             | aaa               | aaaa              | а                 |                   |                   |                   | 2499 |
| <210;<br><211;          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <2112<br><212><br><213> | PF                | T.                | sapie             | ens               |                   |                   |                   |                   |                   |                   |                   |                   |                   | ,                 |                   |      |
| <400>                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| Met F                   | he v              | /al (             | 51y V             | /al /             | Ala i             | Arg I             | lis :             |                   | 51y 5<br>10       | Ser (             | 31n <i>)</i>      | Asp (             |                   | Val:              | Ser               |      |

- Arg Gly Val Glu Pro Leu Glu Ala Ala Arg Ala Gln Pro Ala Lys Asp 20 25 30
- Arg Arg Ala Lys Gly Thr Pro Lys Ser Ser Lys Pro Gly Lys Lys His  $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$
- Arg Tyr Leu Arg Leu Leu Pro Glu Ala Leu 11e Arg Phe Gly Gly Phe 50 55 60
- Arg Lys Arg Lys Lys Ala Lys Ser Ser Val Ser Lys Lys Pro Gly Glu 65 70 75 80
- Val Asp Asp Ser Leu Glu Gln Pro Cys Gly Leu Gly Cys Leu Val Ser 85 90 95
- Thr Cys Cys Glu Cys Cys Asn Asn Ile Arg Cys Phe Met Ile Phe Tyr 100 105 110
- Cys lle Leu Leu Ile Cys Gln Gly Val Val Phe Gly Leu Ile Asp Val 115 120 125
- Ser Ile Gly Asp Phe Gln Lys Glu Tyr Gln Leu Lys Thr Ile Glu Lys 130 135 140
- Leu Ala Leu Glu Lys Ser Tyr Asp Ile Ser Ser Gly Leu Val Ala Ile 145  $\phantom{\bigg|}150\phantom{\bigg|}$
- Phe Ile Ala Phe Tyr Gly Asp Arg Lys Lys Val Ile Trp Phe Val Ala 165 170 175
- Ser Ser Phe Leu Ile Gly Leu Gly Ser Leu Leu Cys Ala Phe Pro Ser 180 185 190
- Ile Asn Glu Glu Asn Lys Gln Ser Lys Val Gly Ile Glu Asp Ile Cys 195 200 205
- Glu Glu Ile Lys Val Val Ser Gly Cys Gln Ser Ser Gly Ile Ser Phe 210 215 220
- Gln Ser Lys Tyr Leu Ser Phe Phe Ile Leu Gly Gln Thr Val Gln Gly 225 235 240
- Ile Ala Gly Met Pro Leu Tyr Ile Leu Gly Ile Thr Phe Ile Asp Glu 245 250 255
- Asn Val Ala Thr His Ser Ala Gly Ile Tyr Leu Gly Ile Ala Glu Cys 260 265 270
- Thr Ser Met Ile Gly Tyr Ala Leu Gly Tyr Val Leu Gly Ala Pro Leu 275 280 285
- Val Lys Val Pro Glu Asn Thr Thr Ser Ala Thr Asn Thr Thr Val Asn 290 295 300
- Asn Gly Ser Pro Glu Trp Leu Trp Thr Trp Trp Ile Asn Phe Leu Phe 305 310 315 320
- Ala Ala Val Val Ala Trp Cys Thr Leu Ile Pro Leu Ser Cys Phe Pro

16U 200 PCT FINAL.ST25 25 330 335

Asn Asn Met Pro Gly Ser Thr Arg Ile Lys Ala Arg Lys Arg Lys Gln 340 345 350

Leu His Phe Phe Asp Ser Arg Leu Lys Asp Leu Lys Leu Gly Thr Asn 355 360 365

11e Lys Asp Leu Cys Ala Ala Leu Trp Ile Leu Met Arg Asn Pro Val 370 380

Leu Ile Cys Leu Ala Leu Ser Lys Ala Thr Glu Tyr Leu Val Ile Ile 385 390 395 400

Gly Ala Ser Glu Phe Leu Pro Ile Tyr Leu Glu Asn Gln Phe Ile Leu 405 410 410 415

Met Ser Cys Lys Ala Leu Met Arg Phe Ile Met Val Thr Ser Val Ile 450 455 460

Ser Leu Ile Leu Leu Val Phe Ile Ile Phe Val Arg Cys Asn Pro Val 465 470 475 480

Gln Phe Ala Gly Ile Asn Glu Asp Tyr Asp Gly Thr Arg Lys Leu Gly 485 490 495

Asn Leu Thr Ala Pro Cys Asn Glu Lys Cys Arg Cys Ser Ser Ser Ile  $500 \hspace{1cm} 505 \hspace{1cm} 510$ 

Tyr Ser Ser Ile Cys Gly Arg Asp Asp Ile Glu Tyr Phe Ser Ala Cys 515 520 525

Phe Ala Gly Cys Thr Tyr Ser Lys Ala Gln Asn Gln Lys Lys Met Tyr 530 535 540

Tyr Asn Cys Ser Cys Ile Lys Glu Gly Leu Ile Thr Ala Asp Ala Glu 545 550 555 560

Gly Asp Phe 11e Asp Ala Arg Pro Gly Lys Cys Asp Ala Lys Cys Tyr 565 570 575

Lys Leu Pro Leu Phe Ile Ala Phe Ile Phe Ser Thr Leu Ile Phe Ser 580 585 590

Gly Phe Ser Gly Val Pro Ile Val Leu Ala Met Thr Arg Val Val Pro 595 600 605

Asp Lys Leu Arg Ser Leu Ala Leu Gly Val Ser Tyr Val Ile Leu Arg 610 615 620

Ile Phe Gly Thr Ile Pro Gly Pro Ser Ile Phe Lys Met Ser Gly Glu 625 630 635 640

| Th                              | ır Se                                  | r Cy              | s Il               | e Le<br>64        |                   | g As              | p Va              | l As              | n Ly:<br>65       | s Cy:             |                   |                   | r FII<br>s Th     |                   | y Arg             |     |
|---------------------------------|----------------------------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| Су                              | s Tr                                   | р 11              | е Ту<br>66         | r As<br>O         | n Ly              | s Th              | r Ly:             | s Me<br>66        |                   | a Pho             | e Le              | u Le              | u Va<br>67        |                   | y Ile             |     |
| Су                              | s Ph                                   | e Le<br>67        | ս Су<br>5          | s Ly              | s Le              | u Cy              | s Th:             |                   | e Ile             | e Phe             | e Th              | r Th:             |                   | e Al              | a Phe             |     |
| Ph                              | e 11<br>69                             | е <b>Т</b> у<br>О | r Ly               | s Ar              | g Ar              | g Lei<br>69:      |                   | o Gl              | u Ası             | 1 Thi             | 700               |                   | e Pro             | o As              | p Val             |     |
| Th<br>70:                       | r Va<br>5                              | l Ly:             | s Ası              | n Pro             | 710               |                   | l Lys             | . Ly:             | s Lys             | 61u<br>715        |                   | th:               | . Ası             | ) Lei             | ı                 |     |
| <2:<br><2:<br><2:<br><2:<br><2: | 10><br>11><br>12><br>13><br>20><br>21> | CDS               | o sap              | oiens             | 5                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <22                             | 23>                                    |                   |                    | ,31,              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
|                                 | 00><br>:tcto                           | 248<br>cca        | gctç               | gagt              | ag g              | itggg             | ggag              | g cc              | agac              |                   |                   |                   |                   |                   | cca<br>Pro        | 54  |
| gto<br>Val                      | aga<br>Arg                             | tco<br>Ser        | s ago<br>Ser<br>10 | ctt<br>Leu        | ttg<br>Leu        | ggg<br>Gly        | atc               | ctg<br>Leu<br>15  | ttg<br>Leu        | cag<br>Gln        | gt t<br>Val       | acg<br>Thr        | agg<br>Arg<br>20  | Leu               | tca<br>Ser        | 102 |
| gtg<br>Val                      | Ctg<br>Leu                             | ttg<br>Leu<br>25  | gtt<br>Val         | Cag<br>Gln        | aac<br>Asn        | cga<br>Arg        | gat<br>Asp<br>30  | cac<br>His        | ctc<br>Leu        | tat<br>Tyr        | aat<br>Asn        | ttc<br>Phe<br>35  | ctg<br>Leu        | ctc               | ctc               | 150 |
| aag<br>Lys                      | atc<br>Ile<br>40                       | aac<br>Asn        | Ctc<br>Leu         | ttc<br>Phe        | aac<br>Asn        | cac<br>His<br>45  | tgg<br>Trp        | gtg<br>Val        | tca<br>Ser        | ggg<br>Gly        | ctg<br>Leu<br>50  | gcc<br>Ala        | cag<br>Gln        | gag<br>Glu        | gcc<br>Ala        | 198 |
| cgg<br>Arg<br>55                | 999<br>Gly                             | tcc<br>Ser        | tgt<br>Cys         | aac<br>Asn        | tgg<br>Trp<br>60  | cag<br>Gln        | gcc<br>Ala        | cac<br>His        | cta<br>Leu        | ccc<br>Pro<br>65  | ctg<br>Leu        | gga<br>Gly        | gct<br>Ala        | gca<br>Ala        | gcc<br>Ala<br>70  | 246 |
| t gc<br>Cys                     | ccc<br>Pro                             | Ctg<br>Leu        | Gly                | cag<br>Gln<br>75  | gct<br>Ala        | Leu               | Trp               | Ala               | 80<br>61 y<br>999 | ctg<br>Leu        | gct<br>Ala        | ctg<br>Leu        | ata<br>Ile        | cag<br>Gln<br>85  | gtc<br>Val        | 294 |
| ccc<br>Pro                      | gta<br>Val                             | tgg<br>Trp        | ctg<br>Leu<br>90   | gtg<br>Va]        | cta<br>Leu        | cag<br>Gln        | gga<br>Gly        | ccc<br>Pro<br>95  | agg<br>Arg        | ctg<br>Leu        | atg<br>Met        | tgg<br>Trp        | gct<br>Ala<br>100 | ggc<br>Gly        | atg<br>Met        | 342 |
| tgg<br>-Trp                     | ggc<br>Gly                             | agc<br>Ser<br>105 | acc<br>Thr         | aag<br>Lys        | ggc<br>Gly        | ctg<br>Leu        | ggс<br>Gly<br>110 | ctg<br>Leu        | gcc<br>Ala        | ttg<br>Leu        | ctc<br>Leu        | agt<br>Ser<br>115 | gcc<br>Ala        | tgg<br>Trp        | gag<br>Glu        | 390 |
| cag<br>Gln                      | ctg<br>Leu<br>120                      | ggc<br>Gly        | ctg<br>Leu         | tct<br>Ser        | gtg<br>Val        | gcc<br>Ala<br>125 | atc<br>Ile        | tgg<br>Trp        | aca<br>Thr        | gat<br>Asp        | ctg<br>Leu<br>130 | ttt<br>Phe        | ttg<br>Leu<br>-   | tca<br>Ser        | tgt<br>Cys        | 438 |
| ctg<br>Leu<br>135               | cac<br>His                             | ggc<br>Gly        | ctg<br>Leu         | atg<br>Met        | ttg<br>Leu<br>140 | gtg<br>Val        | gcc<br>Ala        | ttg<br>Leu        | ctc<br>Leu        | ttg<br>Leu<br>145 | gtg<br>Val        | gta<br>Val        | gtg<br>Val        | acc<br>Thr        | tgg<br>Trp<br>150 | 486 |
| agg<br>Arg                      | gtg<br>Val                             | tgt<br>Cys        | cag<br>Gln         | aag<br>Lys<br>155 | tcc<br>Ser        | cac<br>His        | tgc<br>Cys        | ttc<br>Phe        | cga<br>Arg<br>160 | ctg<br>Leu        | ggc<br>Gly        | agg<br>Arg        | cag<br>Gln        | ctc<br>Leu<br>165 | agt<br>Ser        | 534 |
| aag<br>Lys                      | gcc<br>Ala                             | Lev               | caa<br>Gln<br>170  | gtg<br>Val        | aac<br>Asn        | tgc<br>Cys        | Val               | gta<br>Val<br>175 | agg<br>Arg        | aag<br>Lys        | ctc<br>Leu        | ctg<br>Leu        | gta<br>Val<br>180 | cag<br>Gln        | ctg<br>Leu        | 582 |

| aga<br>Arg               | a cg<br>g Ar          | t cte<br>g Lee<br>18      | и Туі          | t tgg             | g tgg<br>o Trp    | gtg<br>Val        | ga<br>Gl:<br>190    | ı Thi      | ato<br>Met | act        | 200<br>t gcd<br>r Ala | cto        | aco<br>Thi | tce        | ST25<br>c tgg<br>r Trp |   | 630 |
|--------------------------|-----------------------|---------------------------|----------------|-------------------|-------------------|-------------------|---------------------|------------|------------|------------|-----------------------|------------|------------|------------|------------------------|---|-----|
| cac<br>His               | c cto<br>s Let<br>200 | u Ala                     | c tat<br>e Tyr | Let               | ato<br>111e       | acc<br>Thr<br>205 | Tr                  | g acc      | acc<br>Thr | tgo<br>Cys | c cto<br>Let<br>210   | ı Ala      | tco<br>Ser | cac<br>His | ctg<br>Leu             |   | 678 |
| cto<br>Let<br>215        | ı Glı                 | g gci<br>n Ala            | t gcc<br>a Ala | ttt<br>Phe        | gag<br>Glu<br>220 | His               | Thi                 | acc<br>Thr | cag<br>Glm | Leu<br>225 | Ala                   | gaç<br>Glu | gco<br>Ala | caç<br>Glı | g gag<br>n Glu<br>230  |   | 726 |
| gtt<br>Val               | gaa<br>Glu            | e cco                     | cag<br>o Glr   | gag<br>Glu<br>235 | val               | tca<br>Ser        | <b>GJ</b> 7         | tct<br>Ser | Ser<br>240 | Leu        | g ctg<br>i Lev        | Pro        | tea<br>Ser | Leu<br>245 | tct<br>Ser             |   | 774 |
|                          |                       |                           |                | Ser               |                   |                   |                     |            | Val        |            |                       |            |            | Gli        | act<br>Thr             |   | 822 |
|                          |                       | gaa<br>g Glu<br>265       |                | atgt              | atc               | ccca              | tetç                | icc        |            |            |                       |            |            |            |                        |   | 851 |
| <21<br><21<br><21<br><21 | 1><br>2>              | 249<br>265<br>PRT<br>Homo | sap            | iens              |                   |                   |                     |            |            |            |                       |            |            |            |                        |   |     |
| < 40                     | 0>                    | 249                       |                |                   |                   |                   |                     |            |            |            |                       |            |            |            |                        |   |     |
| Met<br>1                 | Glu                   | ı Ala                     | Leu            | Pro<br>5          | Pro               | Va]               | Arg                 | Ser        | Ser<br>10  | Leu        | Leu                   | Gly        | Ile        | Leu<br>15  | Leu                    |   |     |
| Gln                      | Val                   | Thr                       | Arg<br>20      | Leu               | Ser               | Val               | Leu                 | Leu<br>25  | Val        | Gln        | Asn                   | Arg        | Asp<br>30  | His        | Leu                    | - |     |
| Tyr                      | Asn                   | Phe<br>35                 | Leu            | Leu               | Leu               | Lys               | 11e<br>40           | Asn        | Leu        | Phe        | Asn                   | His<br>45  | Trp        | Val        | Ser                    |   |     |
| Gly                      | Leu<br>50             | Ala                       | Gln            | Glu               | Ala               | Arg<br>55         | Gly                 | Ser        | Cys        | Asn        | Trp<br>60             | Gln        | Ala        | His        | Leu                    |   |     |
| Pro<br>65                | Leu                   | Gly                       | Ala            | Ala               | Ala<br>70         | Cys               | Pro                 | Leu        | Gly        | Gl n<br>75 | Ala                   | Leu        | Тrр        | Ala        | Gly<br>80              |   |     |
| Leu                      | Ala                   | Leu                       | Ile            | Gl n<br>85        | Val               | Pro               | Val                 | Тгр        | Leu<br>90  | Val        | Leu                   | Gln        | G1 y       | Pro<br>95  | Arg                    | • |     |
| Leu                      | Met                   | Trp                       | Ala<br>100     | G1 y              | Met               | Trp               | Gly                 | Ser<br>105 | Thr        | Lys        | Gly                   | Leu        | Gly<br>110 | Leu        | Ala                    |   |     |
| Leu                      | Leu                   | Ser<br>115                | Ala            | Trp               | Glu               | Gln               | Leu<br>1 <i>2</i> 0 | Gly        | Leu        | Ser        | Val                   | Ala<br>125 | lle        | Trp        | Thr                    |   |     |
| Asp                      | Leu<br>130            | Phe                       | Leu            | Ser               | Cys               | Leu<br>135        | His                 | Gly        | Leu        | Met        | Leu<br>140            | Val        | Ala        | Leu        | Leu                    |   |     |
| Leu<br>145               | Val                   | Val                       | Val            | Thr               | Trp<br>150        | Arg               | Val                 | Cys        | Gln        | Lys<br>155 | Ser                   | His        | Cys        |            | 160                    | - |     |
| Leu                      | Gly                   | Arg                       | Gln            | Leu<br>165        | Ser               | Lys .             | Ala                 | Leu        | Gln<br>170 | Val        | Asn                   | Cys        | Val        | Val<br>175 |                        | • |     |
| Lys                      | Leu                   | Leu                       | Val<br>180     | Gln               | Leu .             | Arg :             | Arg                 | Leu<br>185 | Туr        | Trp        | Trp                   | Val        | Glu<br>190 | Thr        | Met                    |   |     |

Thr Ala Leu Thr Ser Trp His Leu Ala Tyr Leu Ile Thr Trp Thr Thr 195 200 205

Cys Leu Ala Ser His Leu Leu Gln Ala Ala Phe Glu His Thr Thr Gln 210 215 220

Leu Ala Glu Ala Gln Glu Val Glu Pro Gln Glu Val Ser Gly Ser Ser 225 230 235 240

Leu Leu Pro Ser Leu Ser Ala Ser Ser Asp Ser Glu Ser Gly Thr Val 245 250 255

Leu Pro Glu Gln Glu Thr Pro Arg Glu 260 265

| <210>                            | 250              |
|----------------------------------|------------------|
| <211>                            | 784              |
| <212>                            | DNA              |
| <213>                            | Homo sapiens     |
| <220><br><221><br><222><br><223> | CDS<br>(97)(579) |

| <400>  | 250  |            |            |            |            |            |    |
|--------|------|------------|------------|------------|------------|------------|----|
| gctttc | agtt | gtaacggact | tcatcacatc | acaaattgta | ctcgttctca | tccttttaag | 60 |

| aaagttcaga | cccaggaaaa | tttccatagt | acctta | atg | aaa | aag | ata | gaa | atc | 114 |
|------------|------------|------------|--------|-----|-----|-----|-----|-----|-----|-----|
|            |            |            |        | Met | Lys | Lys | lle | Glu | Ile |     |
|            | •          |            |        | 1   |     |     | •   | 5   |     |     |

| agt ggg acg tgt ctt t | ccc ttt cat ctc ctt ttc | ggc ttg gaa atc aga | 162 |
|-----------------------|-------------------------|---------------------|-----|
| Ser Gly Thr Cys Leu S | Ger Phe His Leu Leu Phe | Gly Leu Glu Ile Arg |     |
| 10                    | 15                      | 20                  |     |

| atg<br>Met | aga<br>Arg | agg<br>Arg<br>25 | att<br>Ile | gtt<br>Val | ttt<br>Phe | gct<br>Ala | ggt<br>Gly<br>30 | gtt<br>Val | atc<br>Ile | tta<br>Leu | ttc<br>Phe | cgc<br>Arg<br>35 | ct <i>c</i><br>Leu | tta<br>Leu | ggt<br>Gly | 210 |
|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|--------------------|------------|------------|-----|
|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|--------------------|------------|------------|-----|

| gtt<br>Val | atc<br>11e<br>40 | tta<br>Leu | ttc<br>Phe | cgc<br>Arg | ctc<br>Leu | tta<br>Leu<br>45 | ggt<br>Gly | gtt<br>Val | atc<br>Ile | tta<br>Leu | ttc<br>Phe<br>50 | ggc<br>Gly | cgc<br>Arg | tta<br>Leu | ggt<br>Gly | 25 | 8 |
|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|----|---|
|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|----|---|

| gac<br>Asp<br>55 | ctg<br>Leu | gga<br>G1 y | acc<br>Thr | tgc<br>Cys | cag<br>Gl·n<br>60 | aca<br>Thr | aaa<br>Lys | cct<br>Pro | ggt<br>Gly | cag<br>Gln<br>65 | tac<br>Tyr | tgg<br>Trp | aaa<br>Lys | gaa<br>Glu | gag<br>Glu<br>70 | 306 |
|------------------|------------|-------------|------------|------------|-------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|-----|
|------------------|------------|-------------|------------|------------|-------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|-----|

| gtc<br>Val | cac<br>His | att<br>Ile | caa<br>Gln | gat<br>Asp<br>75 | gtt<br>Val | gga<br>Gly | ggt<br>Gly | t t g<br>Le u | att<br>Ile<br>80 | t gc<br>Cys | aga<br>Arg | gca<br>Ala | tgc<br>Cys | aat<br>Asn<br>85 | ctt<br>Leu | : | 354 |
|------------|------------|------------|------------|------------------|------------|------------|------------|---------------|------------------|-------------|------------|------------|------------|------------------|------------|---|-----|
|------------|------------|------------|------------|------------------|------------|------------|------------|---------------|------------------|-------------|------------|------------|------------|------------------|------------|---|-----|

| ser Leu Pro Phe His Gly | tgt ctt tta gac ctg<br>Cys Leu Leu Asp Leu<br>95 | gga acc tgc cag gca<br>Gly Thr Cys Gln Ala<br>100 | 402 |
|-------------------------|--------------------------------------------------|---------------------------------------------------|-----|
|-------------------------|--------------------------------------------------|---------------------------------------------------|-----|

| gaa cct ggt cag tad<br>Glu Pro Gly Gln Tyd<br>105 | tgt aaa gaa<br>Cys Lys Glu<br>110 | Glu Val His | att caa ggt ggc a<br>lle Gln Gly Gly 1<br>115 | att 450<br>Ile |
|---------------------------------------------------|-----------------------------------|-------------|-----------------------------------------------|----------------|
|---------------------------------------------------|-----------------------------------|-------------|-----------------------------------------------|----------------|

| caa<br>Gln | tgg<br>Trp<br>120 | ıyr | tca<br>Ser | gtc<br>Val | aaa<br>Lys | ggc<br>Gly<br>125 | tgc<br>Cys | aca<br>Thr | aag<br>Lys | aac<br>Asn | aca<br>Thr<br>130 | tca<br>Ser | gag<br>Glu | tgc<br>Cys | ttc<br>Phe |  | 498 |
|------------|-------------------|-----|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|--|-----|
|------------|-------------------|-----|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|--|-----|

| Lys | agt<br>Ser | act<br>Thr | ctc<br>Leu | gtc<br>Val | Lys | aga<br>Arg | att<br>Ile | ctg<br>Leu | caa<br>Gln | Leu | cat<br>His | gaa<br>Glu | ctt<br>Leu | gta<br>Val | 'act<br>Thr | 546 |
|-----|------------|------------|------------|------------|-----|------------|------------|------------|------------|-----|------------|------------|------------|------------|-------------|-----|
| 135 |            |            |            |            | 140 | _          |            |            |            | 145 |            |            |            |            | 150         |     |

| act<br>Thr | cac<br>His | tgc<br>Cys | tgc<br>Cys | aat<br>Asn<br>155 | cat<br>His | tct<br>Ser | ttg<br>Leu | tgc<br>Cys | aat<br>Asn<br>160 | ttc<br>Phe | tgagtcagtg gcccatatct | 599 |
|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|-----------------------|-----|
|            |            |            |            | 100               |            |            |            |            | i nu              |            |                       |     |

aaaatgcttg gcagatcaat cagtctcgaa gcctgacctg gctatcacaa aatgatggct 65

| att                          | gtca        | att                        | agco       | cact             | tc a           | gaaa            | cctc         | a ga         | ccct               | tgta              | ggt          | agaa         | gga          | attt             | tgatct               | 719  |  |
|------------------------------|-------------|----------------------------|------------|------------------|----------------|-----------------|--------------|--------------|--------------------|-------------------|--------------|--------------|--------------|------------------|----------------------|------|--|
| gaa                          | att         | jact                       | ttgg       | tttt             | ca a           | tatt            | ccca         | a ta         | tctc               | cccc              | acc          | acct         | cca          | acto             | atctga               | 779  |  |
| gaa                          | at          |                            |            |                  |                |                 |              |              |                    |                   |              |              |              |                  |                      | 784  |  |
| <21<br><21<br><21<br><21     | 1><br>2>    | 251<br>161<br>PRT<br>Homo  | sap        | iens             |                |                 |              |              |                    |                   |              |              |              |                  |                      |      |  |
| < 40                         | 0>          | 251                        |            |                  |                |                 |              |              |                    |                   |              |              |              |                  |                      |      |  |
| Met<br>1                     | Lys         | . Lys                      | Ile        | Glu<br>5         | lle            | Ser             | Gly          | Thr          | Cys<br>10          | Leu               | Ser          | Phe          | His          | Leu<br>15        | Leu                  |      |  |
| Phe                          | Gly         | , Leu                      | Glu<br>20  | Ile              | Arg            | Met             | Arg          | Arg<br>25    | Ile                | Val               | Phe          | Ala          | G1 y         | Val              | Ile                  |      |  |
| Leu                          | Phe         | Arg<br>35                  | Leu        | Leu              | Gly            | Val             | Ile<br>40    | Leu          | Phe                | Arg               | Leu          | Leu<br>45    | Gly          | Val              | lle                  | •    |  |
| Leu                          | Phe<br>50   | Gly                        | Arg        | Leu              | Gly            | Asp<br>55       | Leu          | Gly          | Thr                | Cys               | Gln<br>60    | Thr          | Lys          | Pro              | G] y                 |      |  |
| Gln<br>65                    | Tyr         | Trp                        | Lys        | Glu              | Glu<br>70      | Val             | His          | Ile          | Gln                | Asp<br>75         | Val          | Gly          | Gly          | Leu              | lle<br>80            |      |  |
| Cys                          | Arg         | Ala                        | Cys        | Asn<br>85        | Leu            | Ser             | Leu          | Pro          | Phe<br>90          | His               | Gly          | Cys          | Leu          | Leu<br>95        | Asp                  |      |  |
| Leu                          | Gly         | Thr                        | Cys<br>100 | Gln              | Ala            | G1 u            | Pro          | Gly<br>105   | Gln                | Туr               | Cys          | Lys          | 61u<br>110   | Glu              | Val                  |      |  |
| His                          | lle         | Gln<br>115                 | Gly        | Gly              | lle            | G1n             | Trp<br>120   | Tyr          | Ser                | Val               | Lys          | Gly<br>125   | Cys          | Thr              | Lys                  |      |  |
| Asn                          | Thr<br>130  | Ser                        | Glu        | Cys              | Phe            | Lys<br>135      | Ser          | thr          | Leu                | Val               | Lys<br>140   | Arg          | lle          | Leu              | Gln                  |      |  |
| Leu<br>145                   | His         | Glu                        | Leu        | Val              | Thr<br>150     | Thr             | His          | Cys          | Cys                | Asn<br>155        | His          | Ser          | Leu          | Cys              | Asn<br>160           |      |  |
| Phe                          |             |                            |            |                  |                |                 |              |              |                    |                   |              |              |              |                  |                      |      |  |
| <210<br><211<br><212<br><213 | > ;<br>'> i | 252<br>2205<br>DNA<br>Homo | sapi       | ens              |                |                 |              |              |                    |                   |              |              |              |                  |                      |      |  |
| <220<br><221<br><222<br><223 | > (<br>>    | CDS<br>(24).               | . (18      | 50)              |                |                 |              |              |                    |                   |              |              |              |                  |                      |      |  |
| <400<br>gggc                 |             | 252<br>jta g               | tgca       | ggtc             | c gc           | c at<br>Me<br>1 | g gc<br>t Al | t ga<br>a Gl | g gc<br>u Al       | g tc<br>a Se<br>5 | a cg<br>r Ar | g tg<br>g Tr | g ca<br>p Hi | c cg<br>s Air    | a ggc<br>g Gly<br>10 | . 53 |  |
| 999<br>Gly                   | gct<br>Ala  | tcg<br>Ser                 | Lys        | cat<br>His<br>15 | aag :<br>Lys : | ttg<br>Leu      | cat<br>His   | Tyr          | aga<br>Arg :<br>20 | aag<br>Lys        | gaa<br>Glu   | gta<br>Val   | Glu          | att<br>Ile<br>25 | aca<br>Thr           | 101  |  |
| acc .                        | aca         | ctt                        | cag        | gaa              | ttg 1          | tta             | ctc          | tac          | ttt                | att               |              | tta<br>age : |              | aac              | cta                  | 149  |  |

| Th                | r Th                | r Le                 | u G1:<br>30       | n Gli             | u Lei             | ı Let             | l Let             | ту:<br>35         | r Phe             |                   |                   | PC1<br>e Le          |                   | e As              | ST25<br>n Leu        |       |
|-------------------|---------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|----------------------|-------|
| tg:<br>Cy:        | t at<br>5 11        | a tte<br>e Les<br>45 | g ac              | t tti             | t ggg<br>e Gly    | atg<br>/ Met      | gta<br>Val<br>50  | a aad<br>Asi      | cca<br>Pro        | a cat             | t ate             | g tai<br>t Tyi<br>55 | t ta<br>r Ty      | c tt.<br>r Le     | a aac<br>u Asn       | . 197 |
| aaq<br>Lys        | g gt<br>s Va:<br>60 | t ate                | g toa             | e tol             | t cta<br>r Lev    | ttt<br>Phe<br>65  | ttg<br>Leu        | gad<br>Asp        | act<br>Thi        | tct<br>Sei        | t gte<br>Vai      | g cct<br>l Pro       | t gg<br>5 G1      | t gaa             | a gaa<br>u Glu       | 245   |
| aga<br>Arq<br>75  | ace<br>Th:          | aac<br>Asi           | c tti<br>n Phe    | aaq<br>Lys        | s Ser<br>80       | att               | cgc<br>Arg        | e ago             | ata<br>Ile        | act<br>Thr<br>85  | gat<br>Ası        | t ttt<br>Phe         | tge<br>Tr         | g aaq<br>p Ly:    | g ttt<br>s Phe<br>90 | 293   |
| at ç<br>Me t      | gaa<br>Glu          | gga<br>Gly           | a cco<br>/ Pro    | ctt<br>Lev<br>95  | ttg<br>Leu        | gaa<br>Glu        | ggt<br>Gly        | ctg<br>Lev        | tac<br>Tyr<br>100 | Trp               | gat<br>Asp        | t tca<br>Ser         | tge<br>Tr         | tac<br>Tyr<br>10: | aat<br>Asn           | 341   |
|                   |                     |                      |                   | Tyr               |                   |                   |                   |                   | Ser               |                   |                   |                      |                   | Ту                | gaa<br>Glu           | 389   |
| aat<br>Asn        | ata<br>Ile          | ctt<br>Leu<br>125    | Leu               | gga<br>Gly        | gtt<br>Val        | ccc<br>Pro        | aga<br>Arg<br>130 | Val               | cgt<br>Arg        | caa<br>Gln        | cta<br>Leu        | aaa<br>Lys<br>135    | Va]               | a cgo             | aac<br>Asn           | 437   |
| aac<br>Asn        | Thr<br>140          | Cys                  | aaa<br>Lys        | gtc<br>Val        | tat<br>Tyr        | tca<br>Ser<br>145 | tct<br>Ser        | ttt<br>Phe        | cag<br>Gln        | tct<br>Ser        | Leu<br>150        | Met                  | agt<br>Ser        | gaa<br>Glu        | tgt<br>Cys           | 485   |
|                   | G1 y                |                      |                   |                   |                   | gca<br>Ala        |                   |                   |                   |                   | Ser               |                      |                   |                   |                      | 533   |
| caa<br>Gln        | att<br>Ile          | aat<br>Asn           | act<br>Thr        | gaa<br>Glu<br>175 | tgg<br>Trp        | aga<br>Arg        | tat<br>Tyr        | tct<br>Ser        | act<br>Thr<br>180 | Ser               | aat<br>Asn        | acc<br>Thr           | aac<br>Asn        | Ser<br>185        | Pro                  | 581   |
| tgg<br>Trp        | cac<br>His          | tgg<br>Trp           | gga<br>Gly<br>190 | t t t<br>Phe      | ctt<br>Leu        | ggt<br>Gly        | gtt<br>Val        | tac<br>Tyr<br>195 | cga<br>Arg        | aat<br>Asn        | 999<br>Gly        | gga<br>Gly           | tac<br>Tyr<br>200 | Ile               | ttc<br>Phe           | 629   |
|                   |                     |                      |                   |                   |                   | tct<br>Ser        |                   |                   |                   |                   |                   |                      |                   |                   |                      | 677   |
| cga<br>Arg        | ctg<br>Leu<br>220   | aac<br>Asn           | agc<br>Ser        | tgg<br>Trp        | atc<br>lle        | aca<br>Thr<br>225 | aga<br>Arg        | 61 y              | act<br>Thr        | aga<br>Arg        | gtt<br>Val<br>230 | att<br>Ile           | ttt<br>Phe        | att<br>Ile        | gat<br>Asp           | 725   |
| ttt<br>Phe<br>235 | tcc<br>Ser          | tta<br>Leu           | tat<br>Tyr        | aat<br>Asn        | gct<br>Ala<br>240 | aat<br>Asn        | gta<br>Val        | aat<br>Asn        | cta<br>Leu        | ttt<br>Phe<br>245 | tgt<br>Cys        | att<br>Ile           | atc<br>Ile        | aga<br>Arg        | ttg<br>Leu<br>250    | 773   |
| Val               | Ala                 | Glu                  | Phe               | Pro<br>255        | Ala               | act<br>Thr        | Gly               | G1 y              | 11e<br>260        | Leu               | Thr               | Ser                  | Trp               | G1n<br>265        | Phe                  | 821   |
| tac<br>-Tyr       | tct<br>Ser          | gtg<br>Val           | aag<br>Lys<br>270 | ctc<br>Leu        | ctc<br>Leu        | aga<br>Arg        | Tyr               | gtt<br>Val<br>275 | agc<br>Ser        | tac<br>Tyr        | tat<br>Tyr        | gac<br>Asp           | tat<br>Tyr<br>280 | ttt<br>Phe        | att<br>Ile           | 869   |
| gct<br>Ala        | tcc<br>Ser          | tgt<br>Cys<br>285    | gaa<br>Glu        | atc<br>Ile        | aca<br>Thr        | ttc<br>Phe        | tgt<br>Cys<br>290 | att<br>Ile        | ttt<br>Phe        | ctt<br>Leu        | ttt<br>Phe        | gtc<br>Val<br>295    | ttc<br>Phe        | aca<br>Thr        | aca<br>Thr           | 917   |
| caa<br>Gln        | gaa<br>Glu<br>300   | gtc<br>Val           | aaa<br>Lys        | aaa<br>Lys        | Ile               | aaa<br>Lys<br>305 | gaa<br>Glu        | ttt<br>Phe        | aag<br>Lys        | tct<br>Ser        | gcc<br>Ala<br>310 | tat<br>Tyr           | ttc<br>Phe        | aaa<br>Lys        | agt<br>Ser           | 965   |
| 11e<br>315        | Trp                 | Asn                  | Trp               | Leu               | Glu<br>320        | ttg<br>Leu :      | Leu I             | Leu               | Leu               | Leu<br>325        | Leu               | Cys                  | Phe               | Val               | Ala<br>330 .         | 1013  |
| gtt<br>Val        | tcc<br>Ser          | ttc<br>Phe           | Asn               | aca<br>Thr<br>335 | tac<br>Tyr        | tat a<br>Tyr i    | aat (<br>Asn 1    | Val               | caa<br>Gln<br>340 | att<br>Ile        | ttt<br>Phe        | ctc<br>Leu           | tta<br>Leu        | ctt<br>Leu<br>345 | gga<br>Gly           | 1061  |

|             |      |       |      |      |            |      |      |       |       | gat  | ttc  | tat  | ttt   | L.ST<br>ctt<br>Leu | gca    | 1109 |
|-------------|------|-------|------|------|------------|------|------|-------|-------|------|------|------|-------|--------------------|--------|------|
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | ttt<br>Phe         |        | 1157 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | atg<br>Met         |        | 1205 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | gga<br>Gly         |        | 1253 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | gga<br>Gly<br>425  |        | 1301 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | aat<br>Asn         |        | 1349 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | gct<br>Ala         |        | 1397 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | act<br>Thr         |        | 1445 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | att<br>Ile         |        | 1493 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | aga<br>Arg<br>505  |        | 1541 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | aat<br>Asn         |        | 1589 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | aag<br>Lys         |        | 1637 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | ggc<br>Gly         |        | 1685 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | aaa<br>Lys         |        | 1733 |
|             |      |       |      |      |            |      |      |       |       |      |      |      |       | tac<br>Tyr<br>585  |        | 1781 |
| _cct<br>Pro |      |       |      |      |            |      |      |       |       |      |      |      |       | tac<br>Tyr         |        | 1829 |
|             |      |       |      |      | agt<br>Ser |      | tgad | aaaa  | icg a | attt | aagt | a co | agco. | caagt              | :      | 1880 |
| acac        | acga | itg a | tago | ttca | a gg       | aata | caac | : tga | ctt   | atg  | atat | gaat | tt t  | caaç               | gaacg  | 1940 |
| tato        | ttat | at g  | gatt | ttga | a ga       | atct | tgtt | tgc   | ttat  | aag  | aact | tcaa | aga a | gcct               | aagct  | 2000 |
| tggc        | ttta | at t  | ttct | tgta | c to       | tctg | tact | cct   | caag  | jcac | tgga | acac | ga t  | cct                | tttct  | 2060 |
| 9990        | atto | ct a  | gggg | agaa | ia at      | aaaa | tttg | taa   | tgtt  | cta  | gaga | tcat | tt ç  | ggaaa              | aaaag  | 2120 |
| atco        | aaaa | gt t  | gtct | taat | a tg       | agac | atac | : tgt | tact  | aaa  | cata | agtt | ca a  | ataa               | iaaagt | 2180 |
| tgtt        | ctga | aa a  | aaaa | aaaa | a aa       | aaa  |      |       |       |      |      |      |       |                    |        | 2205 |

<210> 253
<211> 609
<212> PRT

<213> Homo sapiens

<400> 253

Met Ala Glu Ala Ser Arg Trp His Arg Gly Gly Ala Ser Lys His Lys  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Leu His Tyr Arg Lys Glu Val Glu Ile Thr Thr Thr Leu Gln Glu Leu 20 25 30

Leu Leu Tyr Phe Ile Phe Leu Ile Asn Leu Cys Ile Leu Thr Phe Gly  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Met Val Asn Pro His Met Tyr Tyr Leu Asn Lys Val Met Ser Ser Leu 50 55 60

Phe Leu Asp Thr Ser Val Pro Gly Glu Glu Arg Thr Asn Phe Lys Ser 65 70 75 80

Ile Arg Ser Ile Thr Asp Phe Trp Lys Phe Met Glu Gly Pro Leu Leu 85 90 95

Glu Gly Leu Tyr Trp Asp Ser Trp Tyr Asn Asn Gln Gln Leu Tyr Asn 100 105 110

Leu Lys Asn Ser Ser Arg Ile Tyr Tyr Glu Asn Ile Leu Leu Gly Val 115 120 125

Pro Arg Val Arg Gln Leu Lys Val Arg Asn Asn Thr Cys Lys Val Tyr 130 135 140

Ser Ser Phe Gln Ser Leu Met Ser Glu Cys Tyr Gly Lys Tyr Thr Ser 145 150 155 160

Ala Asn Glu Asp Leu Ser Asn Phe Gly Leu Gln Ile Asn Thr Glu Trp 165 170 . 175

Arg Tyr Ser Thr Ser Asn Thr Asn Ser Pro Trp His Trp Gly Phe Leu 180 185 190

Gly Val Tyr Arg Asn Gly Gly Tyr Ile Phe Thr Leu Ser Lys Ser Lys 195 200 205

Ser Glu Thr Lys Asn Lys Phe He Asp Leu Arg Leu Asn Ser Trp Ile 210 215 220

Thr Arg Gly Thr Arg Val lle Phe lle Asp Phe Ser Leu Tyr Asn Ala 225. 230 235 240

Asn Val Asn Leu Phe Cys Ile Ile Arg Leu Val Ala Glu Phe Pro Ala 245 250 255

Thr Gly Gly Ile Leu Thr Ser Trp Gln Phe Tyr Ser Val Lys Leu Leu 260 265 270

Arg Tyr Val Ser Tyr Tyr Asp Tyr Phe Ile Ala Ser Cys Glu Ile Thr 275 280 285

WO 03/089583 PCT/US03/11497

#### 16U 200 PCT FINAL.ST25

Phe Cys Ile Phe Leu Phe Val Phe Thr Thr Gln Glu Val Lys Lys Ile 290 295 300

Lys Glu Phe Lys Ser Ala Tyr Phe Lys Ser Ile Trp Asn Trp Leu Glu 305 310 315 320

Leu Leu Leu Leu Leu Cys Phe Val Ala Val Ser Phe Asn Thr Tyr 325 330 335

Tyr Asn Val Gln Ile Phe Leu Leu Leu Gly Gln Leu Leu Lys Ser Thr 340 345 350

Glu Lys Tyr Ser Asp Phe Tyr Phe Leu Ala Cys Trp His Ile Tyr Tyr 355 360 365

Asn Asn Ile Ile Ala Ile Thr Ile Phe Phe Ala Trp Ile Lys Ile Phe 370 375 380

Lys Phe Ile Ser Phe Asn Lys Thr Met Ser Gln Leu Ser Ser Thr Leu 385 390 395 400

Ser Arg Cys Val Lys Asp Ile Val Gly Phe Ala Ile Met Phe Ile 405 415

lle Phe Phe Ala Tyr Ala Gl<br/>n Leu Gly Phe Leu Val Phe Gly Ser Gl<br/>n 420 425 430

Val Asp Asp Phe Ser Thr Phe Gln Asn Ser Ile Phe Ala Gln Phe Arg 435 440 445

lle Val Leu Gly Asp Phe Asn Phe Ala Gly Ile Gln Gln Ala Asn Pro 450 455 460

Ile Leu Gly Pro Ile Tyr Phe Ile Thr Phe Ile Phe Phe Val Phe 465 470 480

Val Leu Leu Asn Met Phe Leu Ala Ile Ile Asn Asp Thr Tyr Ser Glu 485 490 495

Val Lys Ala Asp Tyr Ser lle Gly Arg Arg Pro Asp Phe Glu Leu Gly 500 505 510

Lys Met Ile Lys Gln Ser Tyr Lys Asn Val Leu Glu Lys Phe Arg Leu 515 520 525

Lys Lys Ala Gln Lys Asp Glu Asp Lys Lys Thr Lys Gly Ser Gly Asp  $530 \hspace{1.5cm} 535 \hspace{1.5cm} 540 \hspace{1.5cm}$ 

Leu Ala Glu Gln Ala Arg Arg Glu Gly Phe Asp Glu Asn Glu Ile Gln 545 550 560

Asn Ala Glu Gln Met Lys Lys Trp Lys Glu Arg Leu Glu Lys Lys Tyr 565 570 575

Tyr Ser Met Glu Ile Gln Asp Asp Tyr Gln Pro Val Thr Gln Glu Glu 580 585 590

Phe Arg Asp Gly Thr Thr Thr Lys Tyr Lys Met Arg Phe Ser Leu Ser Page 169 595 600 16U 200 PCT FINAL.ST25

Ala

| <210> 254<br><211> 1615<br><212> DNA<br><213> Homo sapiens                                                                                    |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <220> <221> CDS <222> (1)(1584) <223>                                                                                                         |                       |
| <400> 254 atg gcc gct tac caa caa gaa gag cag atg cag ctt ccc cga gct Met Ala Ala Tyr Gln Gln Glu Glu Gln Met Gln Leu Pro Arg Ala 1 5 10 15   | t gat 48<br>a Asp     |
| gcc att cgt tca cgt ctc atc gat act ttc tct ctc att gag cat<br>Ala Ile Arg Ser Arg Leu Ile Asp Thr Phe Ser Leu Ile Glu His<br>20 25 30        | ttg 96<br>Leu         |
| caa ggc ttg agc caa gct gtg ccg cgg cac act atc agg gag tta<br>Gln Gly Leu Ser Gln Ala Val Pro Arg His Thr Ile Arg Glu Leu<br>35 40 45        | ctt 144<br>Leu        |
| gat cct tcc cgc cag aag aaa ctt gta ttg gga gat caa cac cag<br>Asp Pro Ser Arg Gln Lys Lys Leu Val Leu Gly Asp Gln His Gln<br>50 55 60        | cta 192<br>Leu        |
| gtg cgt ttc tct ata aag cct cag cgt ata gaa cag att tca cat<br>Val Arg Phe Ser Ile Lys Pro Gln Arg Ile Glu Gln Ile Ser His<br>65 70 75        | gcc 240<br>Ala<br>80  |
| cag agg ctg ttg agc agg ctt cat gtg cgc tgc agt cag agg cca<br>Gln Arg Leu Ser Arg Leu His Val Arg Cys Ser Gln Arg Pro<br>85 90 95            | cct 288<br>Pro        |
| ctt tct ttg tgg gcc gga tgg gtc ctt gag tgt cct ctc ttc aaa<br>Leu Ser Leu Trp Ala Gly Trp Val Leu Glu Cys Pro Leu Phe Lys<br>100 105 110     | aac 336<br>Asn        |
| ttc atc atc ttc ctg gtc ttt ttg aat acg atc ata ttg atg gtt<br>Phe Ile Ile Phe Leu Val Phe Leu Asn Thr Ile Ile Leu Met Val<br>115 120 125     | gaa 384<br>Glu        |
| ata gaa ttg ctg gaa tcc aca aat acc aaa cta tgg cca ttg aag<br>Ile Glu Leu Leu Glu Ser Thr Asn Thr Lys Leu Trp Pro Leu Lys<br>130 135 140     | ctg 432<br>Leu        |
| acc ttg gag gtg gca gct tgg ttt atc ttg ctt att ttc atc ctg Thr Leu Glu Val Ala Ala Trp Phe Ile Leu Leu Ile Phe Ile Leu 145 150 155           | gag 480<br>Glu<br>160 |
| atc ctt ctt aag tgg cta tcc aac ttt tct gtt ttc tgg aag agt Ile Leu Leu Lys Trp Leu Ser Asn Phe Ser Val Phe Trp Lys Ser - 165 170 175         | gcc 528<br>Ala        |
| tgg aat gtc ttt gac ttt gtt gtt acc atg ttg tcc ctg ctt ccc<br>Trp Asn Val Phe Asp Phe Val Val Thr Met Leu Ser Leu Leu Pro<br>180 185 190     | gag 576<br>Glu        |
| gtt gtg gta ttg gta ggg gta aca ggc caa tcg gtg tgg ctt cag<br>Val Val Leu Val Gly Val Thr Gly Gln Ser Val Trp Leu Gln<br>195 200 205         | ctt 624<br>Leu        |
| ctg agg atc tgc cgg gtg ctg agg tct ctc aaa ctc ctt gca caa<br>Leu Arg Ile Cys Arg Val Leu Arg Ser Leu Lys Leu Leu Ala Gln<br>210 215 220     | ttc ∴672<br>Phe       |
| cgt caa att caa att att att ttg gtc ctg gtc agg gcc ctc aag a<br>Arg Gln Ile Gln Ile Ile Ile Leu Val Leu Val Arg Ala Leu Lys 9<br>225 230 235 | agc 720<br>Ser<br>240 |
| atg acc ttc ctc ttg atg ttg ctg ctc atc ttc ttc tac att ttt q                                                                                 | gct 768               |

| Met                          | Thr        | Phe                   | Leu  | Leu<br>245 | Met  | Leu               | Leu  | Leu | 11e<br>250 |     |     | PCT<br>Tyr |       |      |
|------------------------------|------------|-----------------------|------|------------|------|-------------------|------|-----|------------|-----|-----|------------|-------|------|
|                              |            |                       |      |            |      | ttc<br>Phe        |      |     |            |     |     |            |       | 816  |
|                              |            |                       |      |            |      | ttc<br>Phe        |      |     |            |     |     |            |       | 864  |
|                              |            |                       |      |            |      | acc<br>Thr<br>295 |      |     |            |     |     |            |       | 912  |
|                              |            |                       |      |            |      | gaa<br>Glu        |      |     |            |     |     |            |       | 960  |
|                              |            |                       |      |            |      | ctt<br>Leu        |      |     |            |     |     |            |       | 1008 |
| _                            | -          | _                     | _    | -          |      | aac<br>Asn        |      | -   |            |     |     |            | <br>- | 1056 |
|                              |            |                       |      |            |      | gag<br>Glu        |      |     |            |     |     |            |       | 1104 |
|                              |            |                       |      |            |      | aga<br>Arg<br>375 |      |     |            |     |     |            |       | 1152 |
|                              |            |                       |      |            |      | gag<br>Glu        |      |     |            |     |     |            |       | 1200 |
|                              |            |                       |      |            |      | gtg<br>Val        |      |     |            |     |     |            |       | 1248 |
|                              |            |                       |      |            |      | aca<br>Thr        |      |     |            |     |     |            |       | 1296 |
|                              |            |                       |      |            |      | cag<br>Gln        |      |     |            |     |     |            |       | 1344 |
|                              |            |                       | Ser  | Ser        | Ser  | tct<br>Ser<br>455 | G1 u |     | Arg        | Phe | Ser |            |       | 1392 |
|                              |            |                       |      |            |      | ctt<br>Leu        |      |     |            |     |     |            |       | 1440 |
|                              |            |                       |      |            |      | cgt<br>Arg        |      |     |            |     |     |            |       | 1488 |
|                              |            | Glu                   |      |            |      | aag<br>Lys        |      |     |            |     |     |            |       | 1536 |
|                              |            |                       |      |            |      | gtg<br>Val        |      |     |            |     |     |            |       | 1584 |
| taaa                         | gcaa       | tg g                  | atgg | cttc       | a at | atco              | ttgg | g   |            |     |     |            | ,     | 1615 |
| <210<br><211<br><212<br><213 | > 5<br>> p | 55<br>28<br>RT<br>omo | sapi | ens        |      |                   |      |     |            |     |     |            |       |      |

<400> 255

Met Ala Ala Tyr Gln Gln Glu Glu Gln Met Gln Leu Pro Arg Ala Asp 1 5 10 15

Ala Ile Arg Ser Arg Leu Ile Asp Thr Phe Ser Leu Ile Glu His Leu 20 25 30

Gln Gly Leu Ser Gln Ala Val Pro Arg His Thr Ile Arg Glu Leu Leu 35 40 45

Asp Pro Ser Arg Gln Lys Lys Leu Val Leu Gly Asp Gln His Gln Leu 50 60

Val Arg Phe Ser Ile Lys Pro Gln Arg Ile Glu Gln Ile Ser His Ala 65 70 75 80

Gln Arg Leu Leu Ser Arg Leu His Val Arg Cys Ser Gln Arg Pro Pro 85 90 95

Leu Ser Leu Trp Ala Gly Trp Val Leu Glu Cys Pro Leu Phe Lys Asn 100 105 110

Phe Ile Ile Phe Leu Val Phe Leu Asn Thr Ile Ile Leu Met Val Glu 115 120 125

Ile Glu Leu Leu Glu Ser Thr Asn Thr Lys Leu Trp Pro Leu Lys Leu 130 135 140

Thr Leu Glu Val Ala Ala Trp Phe Ile Leu Leu Ile Phe Ile Leu Glu 145 150 155 160

lle Leu Leu Lys Trp Leu Ser Asn Phe Ser Val Phe Trp Lys Ser Ala 165 170 175

Trp Asn Val Phe Asp Phe Val Val Thr Met Leu Ser Leu Leu Pro Glu 180 185 190

Val Val Val Leu Val Gly Val Thr Gly Gln Ser Val Trp Leu Gln Leu 195 200 205

Leu Arg Ile Cys Arg Val Leu Arg Ser Leu Lys Leu Leu Ala Gln Phe 210 215 220

Arg Gln Ile Gln Ile Ile Ile Leu Val Leu Val Arg Ala Leu Lys Ser 225 230 235 240

Met Thr Phe Leu Leu Met Leu Leu Leu Ile Phe Phe Tyr Ile Phe Ala

Val Thr Gly Val Tyr Val Phe Ser Glu Tyr Thr Arg Ser Pro Arg Gln
260 265 . 270

Asp Leu Glu Tyr His Val Phe Phe Ser Asp Leu Pro Asn Ser Leu Val 275

Thr Val Phe Ile Leu Phe Thr Leu Asp His Trp Tyr Ala Leu Leu Gln 290 295 300

Asp Val Trp Lys Val Pro Glu Val Ser Arg Ile Phe Ser Ser Ile Tyr
. Page 172

16U 200 PCT FINAL.ST25 310 -305 Phe Ile Leu Trp Leu Leu Gly Ser Ile Ile Phe Arg Ser Ile Ile Val Ala Met Met Val Thr Asn Phe Gln Asn Ile Arg Lys Glu Leu Asn Glu Glu Met Ala Arg Arg Glu Val Gln Leu Lys Ala Asp Met Phe Lys Arg Gln Ile Ile Gln Arg Arg Lys Asn Met Ser His Glu Ala Leu Thr 370 375 380 Ser Ser His Ser Lys Ile Glu Asp Arg Gly Ala Ser Gln Gln Arg Glu 305 390 395 400 Ser Leu Asp Leu Ser Glu Val Ser Glu Val Glu Ser Asn Tyr Gly Ala 405 415Thr Glu Glu Asp Leu Ile Thr Ser Ala Ser Lys Thr Glu Glu Thr Leu Ser Lys Lys Arg Glu Tyr Gln Ser Ser Ser Cys Val Ser Ser Thr Ser 435 440 445 Ser Ser Tyr Ser Ser Ser Ser Glu Ser Arg Phe Ser Glu Ser Ile Gly 450 455 460 Arg Leu Asp Trp Glu Thr Leu Val His Glu Asn Leu Pro Gly Leu Met 465 470 475 480 Glu Met Asp Gln Asp Asp Arg Val Trp Pro Arg Asp Ser Leu Phe Arg Tyr Phe Glu Leu Leu Glu Lys Leu Gln Tyr Asn Leu Glu Glu Arg Lys Lys Leu Gln Glu Phe Ala Val Gln Ala Leu Met Asn Leu Glu Asp Lys <210> 256 <211> 24 <212> DNA <213> Homo sapiens **-<400> 256** 24 tcatggatca ccagctccac gctc <210> <211> 25 <212> DNA <213> Homo sapiens <400> 257 . 25 caccaagate accaccatgg aagca 50 DNA <213> Homo sapiens

Page 173

<400> 258

```
16U 200 PCT FINAL.ST25
  ggattcaggc cttttaaacc ccactcagtg ggtgcatggc agggctttga
                                                                       50
  <210> 259
  <211>
         24
  <212> DNA
  <213> Homo sapiens
  <400> 259
  tgctgacgaa tcttatgaac cagg
                                                                       24
  <210> 260
  <211> 26
  <212> DNA
  <213> Homo sapiens
  <400> 260
  teacgleage eletectice teaglg
                                                                       26
  <210> 261
  <211>
        50
  <212> DNA
 <213> Homo sapiens
 <400> 261
 tcacaaatca tataaattag gggaaagaga gaggcaggta tactctaaaa
                                                                      50
 <210> 262
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <400> 262
 aatttettat ttaaaagace teagaaatgt caccatgett agttattta
                                                                      50
 <210> 263
 <211> 23
 <212> DNA
 <213> Homo sapiens
 <400> 263
 ggccatggac aatgtcacag cag
                                                                      23
 <210> 264
 <211> 31
 <212> DNA
<213> Homo sapiens
<400> 264
agcagacaca tactgggcca ttcataacca c
                                                                     31
<210> 265
<211> 50
<212> DNA
<213> Homo sapiens
<400> 265
ggtactattc tatattttgg gcacacagca atgaagaaaa cagaaaaacc
                                                                     50
<210>
       266
<211>
       50
<212>
       DNA
<213>
      Homo sapiens
<400> 266
ctgggtttca taaatatgga gcagaaagtt tttacaaata tagaacagca
                                                                     50
<210> 267
<211>
      50
<212>
     DNA
<213> Homo sapiens
```

Page 174

| <400> 267<br>tagaatgtgt tataaaaaat gaagcagggc taggggaaag agatgggtga | 50 |
|---------------------------------------------------------------------|----|
| <210> 268<br><211> 23                                               |    |
| <211> 23<br><212> DNA                                               |    |
| <213> Homo sapiens                                                  |    |
| <400> 268                                                           | 23 |
| cctcattggc ttcctcccac tcg                                           | 23 |
| <210> 269                                                           |    |
| <211> 30                                                            |    |
| <212> DNA<br><213> Homo sapiens                                     |    |
| <400> 269                                                           | 20 |
| gccatcaaac tctgagctgg agatagtgac                                    | 30 |
| <210> 270                                                           | ·  |
| <211> 50                                                            |    |
| <212> DNA                                                           |    |
| <213> Homo sapiens                                                  |    |
| <400> 270 ccaaggaact tttaaaactc ccattgcaca gttaccaccc agaataatta    | 50 |
| <210> 271                                                           |    |
| <211> 50                                                            |    |
| <212> DNA                                                           |    |
| <213> Homo sapiens                                                  |    |
| <400> 271 catcctggaa tatatttgcg tccaactctg caccttgctc tctattccct    | 50 |
| <210> 272                                                           |    |
| <211> 50<br><212> DNA                                               |    |
| <213> Homo sapiens                                                  |    |
| <400> 272                                                           | 50 |
| ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat              |    |
| <210> 273                                                           |    |
| <211> 26<br><212> DNA                                               |    |
| <213> Homo sapiens                                                  |    |
| <400> 273                                                           | 26 |
| tggcctcgtt gaaagtgtca tcatcc                                        |    |
| <210> 274                                                           |    |
| <211> 24                                                            |    |
| <212> DNA<br><213> Homo sapiens                                     |    |
| <400> 274                                                           | 24 |
| ttggtaccat ttacgaatgg ccgc                                          |    |
| <210> 275                                                           |    |
| <211> 50                                                            | •  |
| <212> DNA<br><213> Homo sapiens                                     |    |
| <400> 275                                                           | 50 |
| aaacggcatt ttaaaaatgc aggtttaaat tgttatcctc atctatggtt              |    |
| <210> 276                                                           |    |
| <211> 29                                                            |    |

Page 175

```
16U 200 PCT FINAL. ST25
  <212> DNA
  <213> Homo sapiens
  <400> 276
  ctggacttga gcagtaccac gtctggatc
                                                                      29
  <210> 277
  <211> 28
  <212> DNA
  <213> Homo sapiens
 <400> 277
 catattccca cagcaatttt gacaatgg
                                                                      28
 <210> 278
 <211>
        50
 <212> DNA
 <213> Homo sapiens
 <400> 278
 attitggtta tatatagagg agtctaggaa aagactcgtg ggtctgattc
                                                                      50
 <210> 279
 <211>
        50
 <212>
       DNA
 <213> Homo sapiens
 <400> 279
 tactcatatt tatatagcag caacttacat tgacccaggg agaactcagt
                                                                      50
 <210> 280
 <211>
       24
 <212> DNA
 <213> Homo sapiens
 <400> 280
gttacccacc caaccgtcac gacc
                                                                      24
<210> 281
<211> 24
<212> DNA
<213> Homo sapiens
<400> 281
caggcgatgc cagagaagac gatg
                                                                     24
<210> 282
<211> 50
<212>
      DNA
<213> Homo sapiens
<400> 282
ctagaattta cataaaaagg actggaggag cttttgcagc aactttgcat
                                                                     50
<210> 283
<211> 50
<212> DNA
<213> Homo sapiens
ttttcttctt ttaaaaacac gctttcactc tcaaaacagc agagaatgaa
                                                                     50
<210> 284
<211> 50
<212> DNA
<213> Homo sapiens
aactggggtc tataagagag ccagggcact tattcatcca agggcagatg
                                                                    50
```

| <210> 285<br><211> 26<br><212> DNA<br><213> Homo sapiens                              |      |
|---------------------------------------------------------------------------------------|------|
| <400> 285<br>ctatgacttc aacccacacc tgggca                                             | 26   |
| <210> 286<br><211> 24<br><212> DNA<br><213> Homo sapiens                              | 24   |
| <400> 286 aaggtcgcca acttgtcctg gctc                                                  |      |
| <210> 287<br><211> 50<br><212> DNA<br><213> Homo sapiens                              | 50   |
| <400> 287<br>gggcgggagt aaaaggcaga gtccaattcc accggccccc agtgtgggtg                   |      |
| <210> 288<br><211> 24<br><212> DNA<br><213> Homo sapiens                              |      |
| <400> 288<br>tcaatgccat gcccaaactg agga                                               | . 24 |
| <210> 289 <211> 24 <212> DNA <213> Homo sapiens <400> 289 caacaccgag atggacaccc tgct  | 24   |
| <210> 290<br><211> 50<br><212> DNA                                                    |      |
| <213> Homo sapiens  <400> 290  cttttaaggt taaaaatgtg ggttttagat gattgtcctt tctaaacagc | 50   |
| <210> 291<br><211> 50<br><212> DNA<br><213> Homo sapiens                              | 50   |
| -<400> 291<br>tcaggatgtc taaaaaagat ctctctagtg tacacacgtg cacacacaca                  |      |
| <210> 292<br><211> 50<br><212> DNA<br><213> Homo sapiens<br><400> 292                 | . 50 |
| <400> 292 agtaactcta tttaaaagac ctaaaaattt caaatcctaa aatgatctat                      |      |
| <210> 293<br><211> 50<br><212> DNA<br><213> Homo sapiens                              |      |
| <400> 293<br>aataaatgtt ttaaaagcac teettteega atggtggage tggtggggge<br>Page 177       | 50   |

| <210>   |                                                  |   |     |
|---------|--------------------------------------------------|---|-----|
| <211>   |                                                  |   |     |
| <212>   | DNA                                              |   |     |
| <213>   | Homo sapiens                                     |   |     |
|         | •                                                |   |     |
| <400>   | 294                                              |   |     |
|         |                                                  |   | 27  |
| cicag   | gacga agatcatgat cggcatc                         |   | 21  |
|         |                                                  |   |     |
|         |                                                  |   |     |
| <210>   | 295                                              |   |     |
| <211>   | 28                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   |                                                  |   |     |
| 12137   | nomo suprens                                     |   |     |
| <400>   | 205                                              |   |     |
| <400>   |                                                  |   |     |
| gaaga   | ttttt gtgcccagct ttcccaag                        |   | 28  |
|         |                                                  |   |     |
|         |                                                  |   |     |
| <210>   | 296                                              |   |     |
| <211>   | 50                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   |                                                  |   |     |
| (213)   | Homo sapiens                                     |   |     |
|         | 200                                              |   |     |
| <400>   | 296                                              |   |     |
| tattct  | cact tataagtggg agctaagcca tgagggcacc aaggcataag |   | 50  |
|         |                                                  |   |     |
|         |                                                  |   |     |
| <210>   | 297                                              |   |     |
| <211>   | 50                                               |   |     |
| <212>   | DNA                                              |   |     |
|         |                                                  |   |     |
| <213>   | Homo sapiens                                     |   |     |
|         |                                                  |   |     |
| <400>   | 297                                              |   |     |
| ttacat  | atgt atacatgtgc catgctggtg tgctgcaccc attaactcgt |   | 50  |
|         | •                                                |   |     |
|         |                                                  |   |     |
| <210>   | 298                                              |   |     |
| <211>   | 27                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   |                                                  |   |     |
| 12132   | Homo sapiens                                     |   |     |
| 4000    | 200                                              |   |     |
| <400>   | 298                                              |   |     |
| tccatg  | ctca gcttcatctc agctacc                          |   | 27  |
|         |                                                  |   |     |
|         |                                                  |   |     |
| <210>   | 299                                              |   |     |
| <211>   | 24                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   | Homo sapiens                                     |   |     |
|         | · · · · · · · · · · · · · · · · · · ·            |   |     |
| <400>   | 299                                              |   |     |
|         |                                                  |   | 2.4 |
| tccatc  | tcag accttggccc ttca                             |   | 24  |
|         |                                                  |   |     |
|         |                                                  |   |     |
| <210>   | 300                                              |   |     |
| <211>   | 50                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   | Homo sapiens                                     |   |     |
|         |                                                  |   |     |
| <400>   | 300                                              |   |     |
|         |                                                  |   | ra  |
| aaataa  | cccc attaaaaagt gggcaaaggg catgaacact tttcaaaaga |   | 50  |
|         |                                                  |   |     |
| .010    | 200                                              |   |     |
| <210>   | 301                                              |   |     |
| <211>   | 24                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   | Homo sapiens                                     |   |     |
|         | · • =                                            |   |     |
| <400>   | 301                                              | * |     |
|         |                                                  |   | 24  |
| -ggacy( | gtaa ggagccatcg gaca                             |   | 24  |
|         |                                                  |   |     |
| .016:   |                                                  |   |     |
| <210>   | 302                                              |   |     |
| <211>   | 23                                               |   |     |
| <212>   | DNA                                              |   |     |
| <213>   | Homo sapiens                                     |   |     |
|         |                                                  |   |     |

| 160 200 PCT FINAL.3123                                              |                                         |
|---------------------------------------------------------------------|-----------------------------------------|
| <400> 302                                                           | 23                                      |
| cttgccaggt tctggtggct tgg                                           |                                         |
|                                                                     |                                         |
| <210> 303                                                           |                                         |
| <210> 303<br><211> 50                                               |                                         |
| <211> 30<br><212> DNA                                               |                                         |
| <213> Homo sapiens                                                  |                                         |
|                                                                     |                                         |
| <400> 303<br>tctttttgtc tataaatagg actttgattt tctggactag agaattgtat | 50                                      |
| tettetigie tatadalayy activipates (333337)                          |                                         |
|                                                                     |                                         |
| <210> 304                                                           |                                         |
| <211> 24                                                            |                                         |
| <212> DNA                                                           |                                         |
| <213> Homo sapiens                                                  |                                         |
| <400> 304                                                           | 24                                      |
| acgactccaa gaacagcaag gccg                                          | 2.                                      |
| acque even y                                                        |                                         |
|                                                                     |                                         |
| <210> 305                                                           |                                         |
| <211> 24<br><212> DNA                                               |                                         |
| <213> Homo sapiens                                                  |                                         |
| <b>1137</b>                                                         |                                         |
| <400> 305                                                           | 24                                      |
| aaggtaacat cggcagaggc cagc                                          |                                         |
|                                                                     |                                         |
| <210> 306                                                           |                                         |
| <211> 50                                                            |                                         |
| <212> DNA                                                           |                                         |
| <213> Homo sapiens                                                  |                                         |
| <400> 306                                                           | 50                                      |
| <400> 306<br>gctagcattt tttaaaagct gatgtcttca ctgggcacgg ggactcacac | • • • • • • • • • • • • • • • • • • • • |
|                                                                     |                                         |
| 010. 207                                                            |                                         |
| <210> 307<br><211> 24                                               |                                         |
| <212> DNA                                                           |                                         |
| <213> Homo sapiens                                                  |                                         |
| 202                                                                 | •                                       |
| <400> 307<br>cggccaggta ccaaagctca gctg                             | 24                                      |
| Egyceaggea codosystes y                                             |                                         |
|                                                                     |                                         |
| <210> 308                                                           |                                         |
| <211> 29                                                            |                                         |
| <212> DNA<br><213> Homo sapiens                                     |                                         |
| (213) Homo Soprom                                                   |                                         |
| <400> 308                                                           | 29                                      |
| gccagattca ggagggaatg gaagagaac                                     |                                         |
|                                                                     |                                         |
| <210> 309                                                           |                                         |
| <211> 50                                                            |                                         |
| <212> DNA                                                           |                                         |
| <213> Homo sapiens                                                  |                                         |
| <400> 309                                                           | 50                                      |
| tgatctactt tttaaaagga tcatgctggc tgctggtggg atttaggata              | 30                                      |
|                                                                     |                                         |
|                                                                     |                                         |
| <210> 310                                                           |                                         |
| <211> 50<br><212> DNA                                               | •                                       |
| <212> DNA<br><213> Homo sapiens                                     |                                         |
|                                                                     |                                         |
| <400> 310                                                           | 50                                      |
| <400> 310 tgatagtgat aaaaaaaagt ggccagattt tggttatatt ttgaaataaa    |                                         |
|                                                                     |                                         |
| <210> 311                                                           |                                         |
| <211> 50                                                            |                                         |
| <212> DNA                                                           |                                         |
| Page 179                                                            |                                         |

| <213>          | Homo sapiens                                      |      |
|----------------|---------------------------------------------------|------|
|                |                                                   |      |
| <400>          |                                                   |      |
| tatag          | tgata tttaaagcca ggggtctggg tgagataact gatggaatga | 50   |
|                |                                                   |      |
| <210>          | 312                                               |      |
| <211>          |                                                   |      |
| <212>          |                                                   |      |
| <213>          | Homo sapiens                                      |      |
|                |                                                   |      |
| <400>          |                                                   |      |
| attgg          | aggac tataaagagg ggagtcatta aaatggtgct aagaagctga | 50   |
|                |                                                   |      |
| <210>          | 313                                               |      |
| <211>          |                                                   |      |
| <212>          |                                                   |      |
| <213>          | Homo sapiens                                      |      |
|                |                                                   |      |
| <400>          | 313                                               |      |
| agagg          | ggagt cattaaaatg gtgctaagaa gctgagctac aagcagtggt | 50 - |
|                |                                                   |      |
| <210>          | 314                                               |      |
| <211>          | 50                                                |      |
| <212>          | DNA                                               |      |
| <213>          | Homo sapiens                                      |      |
|                | •                                                 |      |
| <400>          | 314                                               |      |
| gacatt         | ccac ccaaaaaatg ccactggatg aagtcccctc cttccattaa  | 50   |
|                |                                                   |      |
| <210>          | 315                                               |      |
| <211>          | 26                                                |      |
| <212>          | DNA                                               |      |
| <213>          | Homo sapiens                                      |      |
|                |                                                   |      |
| <400>          | 315                                               |      |
| ttggga         | igaga ctagtgcacc tcagca                           | 26   |
|                |                                                   |      |
| <210>          | 316                                               |      |
| <211>          | 24                                                | •    |
| <212>          | DNA                                               |      |
| <213>          | Homo sapiens                                      |      |
|                |                                                   |      |
| <400>          | 316                                               |      |
| gagcaa         | tece tettegtgge aggt                              | 24   |
|                |                                                   |      |
| <210>          | 317                                               |      |
| <211>          | 50                                                |      |
| <212>          | DNA                                               |      |
| <213>          | Homo sapiens                                      |      |
|                |                                                   |      |
| <400>          | 317                                               |      |
| aaaagt         | gctt ttaaacaggg ggggtggagg ggcttatgag aaggggacca  | 50   |
|                |                                                   |      |
| <210>          | 210                                               |      |
| <210>          | 318<br>50                                         |      |
| <212>          | DNA                                               |      |
| <213>          | Homo sapiens                                      |      |
|                |                                                   |      |
| <400>          | 319                                               |      |
| ccattt         | ctac taaaaatgca gagatcagcc aggcgtggca cgtgcctgta  | 50   |
|                |                                                   |      |
| 221As          | 710                                               |      |
| <210>          | 319                                               |      |
| <211><br><212> | 50                                                |      |
| <213>          | DNA<br>Homo sapiens                               |      |
|                | nome addicina                                     |      |
| <400>          | 319                                               |      |
|                | laaa aaaaaaagcc ctgtttatat cctacctcct tgctgggtgc  | 50   |
|                |                                                   |      |
|                |                                                   |      |
| <210>          | 320                                               |      |
|                |                                                   |      |

| 160 200 PC1 F18/12/20                                                                                            |      |
|------------------------------------------------------------------------------------------------------------------|------|
| <211> 50<br><212> DNA<br><213> Homo sapiens                                                                      |      |
| <400> 320 aaaataaaaa taaaaaatcc catctcctca catttccatt caacctcaat                                                 | 50   |
| <210> 321<br><211> 35<br><212> DNA<br><213> Homo sapiens                                                         |      |
| <400> 321<br>acttccaaac atctacaact cctcagagtc tcatt                                                              | 35   |
| <210> 322<br><211> 25<br><212> DNA                                                                               |      |
| <213> Homo sapiens  <400> 322 tgcagcacca tcatgtaagg gacaa                                                        | 25   |
| <210> 323<br><211> 50<br><212> DNA<br><213> Homo sapiens                                                         |      |
| <213> Homo sapiens  <400> 323 ttttttaaac tataaaaagt ggggatcaga aaacacagtc ataagggaaa                             | 50   |
| <210> 324 <211> 50 <212> DNA <213> Homo sapiens <400> 324 gtatatgcta tatatatcag gattcacttt aatggcattg agttccagga | 50   |
| <210> 325<br><211> 50<br><212> DNA<br><213> Homo sapiens                                                         | 50   |
| <400> 325 ataaacaatt taaaaattag cccaccatgg tggtacacac ctgtcgttct                                                 | 50   |
| <211> 50<br><212> DNA<br><213> Homo sapiens                                                                      | 50   |
| <400> 326 -aaaaagtgaa aaaaaaaggt gagggagact ttaactttct gaaatatatt                                                |      |
| <210> 327<br><211> 24<br><212> DNA<br><213> Homo sapiens                                                         | 24   |
| <400> 327<br>ccaagaagcc gggagaagtg gatg                                                                          | . 24 |
| <210> 328<br><211> 28<br><212> DNA<br><213> Homo sapiens                                                         |      |
| <400> 328<br>tgacagaget aggeatatga geactgga                                                                      | 28   |

Page 181

OOCID: <WO\_\_\_\_\_03089583A2 1 >

```
<210>
         329
   <211>
         50
   <212> DNA
  <213> Homo sapiens
  <400> 329
  ctaaagagct tatatatcag cctaagaaaa gaaaaccaat aagaagttgc
  <210> 330
  <211>
        26
  <212> DNA
  <213> Homo sapiens
  <400> 330
  gcagttggtt cagaaccgag atcacc
                                                                   26
  <210> 331
  <211> 29
  <212> DNA
  <213> Homo sapiens
  <400> 331
  ggcagatggg gatacattta ttctctggg
                                                                  29
 <210> 332
 <211> 50
 <212>
       DNA
 <213> Homo sapiens
 actaaaaata caaaaaagta gccgggtatg gtggtaggcg cctataatcc
                                                                  50
 <210> 333
 <211> 50
 <212>
       DNA
 <213> Homo sapiens
 <400> 333
 ggtaggcgcc tataatccca gctacttggg aggctgaggc aggagaattg
                                                                  50
 <210> 334
 <211> 26
 <212>
       DNA
 <213> 'Homo sapiens
 <400> 334
tcggcttgga aatcagaatg agaagg
                                                                 26
<210> 335
<211>
       30
<212> DNA
<213> Homo sapiens
<400> 335
tgcacaaaga atgattgcag cagtgagtag
                                                                 30
<210>
      336
<211>
      50
      DNA
<213>
      Homo sapiens
<400> 336
<210>
      337
<211>
      50
<212>
      DNA
<213> Homo sapiens
<400> 337
```

Page 182

• :

| 16U 200 PCT FINAL. ST25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ggccaactta tataaaaggt ttatgttttt gttctgataa tttcgtttct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| <210> 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 |
| <400> 338<br>aagttaagtt ttaaaaagaa caggctacaa agttatagct atggggtgat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| aagitaagee etabarry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <210> 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <211> 21<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| (213) Beautiful Control of the Contr |    |
| <400> 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 |
| gggcggtgta gtgcaggtcc g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 |
| cctccagttg cagggaattc tgcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Coccodition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <210> 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 50<br><212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <212> DNA<br><213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (213) Homo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| <400> 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 |
| <400> 341 aattcaaata tttaaaacgg actgtctcct cttcacaaaa gtctagatct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 |
| ggctgttgag caggcttcat gtgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <210> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <211> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| <400> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 |
| ctcctctgga tgatctgccg cttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 000000009900000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| <210> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <210> 344<br><211> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| <213> Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| <400> 344<br>attgggtgca tatatattta ggatagttag etettettgt tgaattgate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 |
| actygytyca tatacacco gymriy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |