HW7_anova and INLA

N. Barrus

2024-03-05

Purpose:

The purpose of this markdown document is to work through Homework 7 in Dr. Babcock's Bayesian Statistics Course at the University of Miami. Homework 7 deals with ANOVA and INLA

General Start to Code

```
rm(list = ls())
######github####
#note, only needed after 90 days from 1/16/2024
# usethis::create_github_token()
# gitcreds::gitcreds_set()
#####check for r updates####
#note, updateing may take some time so plan accordingly
#require(installr)
#check.for.updates.R()
#updateR() #only if needed
######check for package updates####
#note, updateing may take some time so plan accordingly
#old.packages()
# update.packages() #make the decision to the update the packages
```

Load packages

```
library(INLAutils)
library(INLA)
library(tidyverse)
library(R2jags)
```

```
library(rstan)
library(ggmcmc)
library(purrr)
library(magrittr)
library(here)
library(loo)
library(DHARMa)
theme_set(theme_bw(base_size=15))
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)
```

Data

The moth data will be used in the problem 1, and it contains three variables (Moth, Location, Bait). Moth is the number of spruce moths caught in a trap in 48 hours, Location is the location of the trap in the trees (Ground, Lower, Middle, Top), and Bait is the bait used (Chemical, Scent, Sugar).

The football data is the weight in lbs of randomly selected football players from randomly selected teams (coded as 1 to 5).

```
###problem 1 data
moth.data <- read_csv(here("data", "moth.csv")) |>
 mutate(LocationNum = as.numeric(as.factor(Location)),
        BaitNum = as.numeric(as.factor(Bait)))
## Rows: 60 Columns: 3
## -- Column specification ------
## Delimiter: ","
## chr (2): Location, Bait
## dbl (1): Moths
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
head (moth.data)
###problem 2 data
football.data <- read_csv(here("data", "football.csv"))</pre>
## Rows: 85 Columns: 2
## -- Column specification -----
## Delimiter: ","
## dbl (2): Team, Weight
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
head(football.data)
```

Problem 1: Fixed effects 2-way ANOVA JAGS

A) Fit an ANOVA model in JAGS to predict number of moths caught (y) as a function of the categorical (x) variables LocationNum and BaitNum. Do not include an interaction. Assume the error is normally distributed and all the factors are fixed effects. Use Chemical and Ground as the reference levels and estimate the differences from that reference level for the other levels of each factor. Use uninformative priors. Give the summary statistics. Which coefficients appear to be different from zero based on their credible intervals? table of contrasts

set up and run JAGS model

```
write("model
{ # two-way ANOVA without interaction term, using reference classes
  #set up contrast priors
  base ~ dnorm(0, 1.0E-6)
  a[1] <- 0 #reference location
  a[2] ~ dnorm(0.0, 1.0E-6)
  a[3] \sim dnorm(0.0, 1.0E-6)
  a[4] ~ dnorm(0.0, 1.0E-6)
  b[1] <- 0 #refernce bait
  b[2] ~ dnorm(0.0, 1.0E-6)
  b[3] \sim dnorm(0.0, 1.0E-6)
  tau ~ dgamma(0.001, 0.001) # uninformative precision
  for (i in 1:N) # for each of the samples
   ymean[i] <- base + a[X1[i]] + b[X2[i]]</pre>
   Y[i] ~ dnorm(ymean[i], tau)
   LL[i] < -0.5*log(2*3.14159)+0.5*log(tau)-0.5*tau*(Y[i]-ymean[i])*(Y[i]-ymean[i])
  }
",file=here("JAGS_mods","HW7-1A-ANOVA-2way-noint.txt"))
moth.list <- list(Y = moth.data$Moths,
                  X1 = moth.data$LocationNum,
                  X2 = moth.data$BaitNum,
                  N = length(moth.data$Moths))
jags.anova.2way.noint <-jags(data = moth.list,</pre>
  model.file=here("JAGS mods","HW7-1A-ANOVA-2way-noint.txt"),
  parameters.to.save=c("base","a","b","tau","LL"),n.chains=2,n.iter=110000,n.burnin=10000,n.thin=10)
```

output summary

```
LLs <- paste0("LL[",1:moth.list$N,"]")
summary.table <- as.data.frame(round(jags.anova.2way.noint$BUGSoutput$summary,digits = 3)) |>
   rownames_to_column() |>
   as.tibble() |>
   filter(!(rowname %in% LLs))|>
   rename(parameter = rowname)

summary.table|> knitr::kable(caption = "Summary Table")
```

Table 1: Summary Table

parameter	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
a[1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
a[1] a[2]	14.289	2.843	8.728	12.408	14.285	16.167	19.867	1.001	20000
a[3]	11.934	2.862	6.355	10.027	11.926	13.841	17.630	1.001	20000
a[4]	4.248	2.853	-1.342	2.329	4.268	6.155	9.924	1.001	15000
b[1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
b[2]	-2.766	2.467	-7.655	-4.417	-2.757	-1.127	2.060	1.001	20000
b[3]	0.295	2.465	-4.591	-1.357	0.309	1.957	5.156	1.001	20000
base	19.890	2.479	15.041	18.242	19.869	21.558	24.784	1.001	20000
deviance	415.342	3.940	409.665	412.407	414.666	417.527	424.691	1.001	20000
tau	0.017	0.003	0.011	0.015	0.017	0.019	0.024	1.001	20000

The reference class (Ground, Chemical), the location Lower (i.e., a[2]), the location Middle (i.e., a[3]).

B) Now add the 2-way interaction between location and bait to your model. Give the summary statistics. Which coefficients appear to be different from zero based on their credible intervals? table of contrasts

```
ar and the second
```

```
write("model
{ #two-way ANOVA with interaction term, using reference classes

#set up contrast priors- noninteractions
base ~ dnorm(0, 1.0E-6)
a[1] <- 0  #reference location
a[2] ~ dnorm(0.0, 1.0E-6)
a[3] ~ dnorm(0.0, 1.0E-6)
a[4] ~ dnorm(0.0, 1.0E-6)
b[1] <- 0  #reference bait
b[2] ~ dnorm(0.0, 1.0E-6)
b[3] ~ dnorm(0.0, 1.0E-6)</pre>
```

```
#set up contrast priors- interactions
  int[1,1] <- 0
  int[2,1] < 0
  int[3,1] < -0
  int[4,1] < 0
  int[1,2] <- 0
  int[2,2] ~ dnorm(0.0, 1.0E-6)
  int[3,2] ~ dnorm(0.0, 1.0E-6)
  int[4,2] ~ dnorm(0.0, 1.0E-6)
  int[1,3] <- 0
  int[2,3] ~ dnorm(0.0, 1.0E-6)
  int[3,3] ~ dnorm(0.0, 1.0E-6)
  int[4,3] ~ dnorm(0.0, 1.0E-6)
 tau ~ dgamma(0.001, 0.001) # uninformative precision
#model
 for (i in 1:N) # for each of the samples
    ymean[i] <- base + a[X1[i]] + b[X2[i]] + int[X1[i],X2[i]]</pre>
    Y[i] ~ dnorm(ymean[i], tau)
    LL[i] < -0.5*log(2*3.14159)+0.5*log(tau)-0.5*tau*(Y[i]-ymean[i])*(Y[i]-ymean[i])
  }
}
",file=here("JAGS_mods","HW7-1B-ANOVA-2way-int.txt"))
moth.list <- list(Y = moth.data$Moths,</pre>
                  X1 = moth.data$LocationNum,
                  X2 = moth.data$BaitNum,
                  N = length(moth.data$Moths))
jags.anova.2way.int <-jags(data = moth.list,</pre>
  model.file=here("JAGS_mods","HW7-1B-ANOVA-2way-int.txt"),
  parameters.to.save=c("base", "a", "b", "int", "tau", "LL"), n.chains=2, n.iter=110000, n.burnin=10000, n.thin=
output summary
LLs <- paste0("LL[",1:moth.list$N,"]")
```

```
LLs <- paste0("LL[",1:moth.list$N,"]")
summary.table <- as.data.frame(round(jags.anova.2way.int$BUGSoutput$summary,digits = 3)) |>
   rownames_to_column() |>
   as.tibble() |>
   filter(!(rowname %in% LLs)) |>
   rename(parameter = rowname)
summary.table|> knitr::kable(caption = "Summary Table")
```

Table 2: Summary Table

parameter	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
a[1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
a[2]	16.776	5.181	6.715	13.336	16.716	20.184	27.037	1.001	20000
a[3]	12.573	5.160	2.593	9.094	12.540	16.024	22.792	1.001	16000
a[4]	3.808	5.151	-6.304	0.357	3.825	7.244	13.967	1.001	20000
b[1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
b[2]	-2.227	5.197	-12.423	-5.686	-2.227	1.242	8.065	1.001	20000
b[3]	1.773	5.152	-8.336	-1.658	1.745	5.226	11.961	1.001	20000
base	19.200	3.644	12.062	16.747	19.231	21.624	26.328	1.001	20000
deviance	420.336	5.757	411.371	416.136	419.559	423.712	433.504	1.001	20000
int[1,1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
int[2,1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
int[3,1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
int[4,1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
int[1,2]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
int[2,2]	-0.948	7.342	-15.392	-5.894	-0.929	3.948	13.383	1.001	20000
int[3,2]	-1.681	7.324	-16.066	-6.592	-1.679	3.200	12.719	1.001	20000
int[4,2]	0.609	7.354	-13.817	-4.296	0.592	5.484	15.112	1.001	20000
int[1,3]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1
int[2,3]	-6.537	7.268	-20.970	-11.318	-6.509	-1.733	7.793	1.001	20000
int[3,3]	-0.150	7.269	-14.439	-5.114	-0.130	4.759	14.169	1.001	20000
int[4,3]	0.848	7.251	-13.351	-3.904	0.841	5.561	15.230	1.001	20000
tau	0.016	0.003	0.010	0.014	0.016	0.018	0.023	1.001	17000

the reference class-Ground, Chemical (i.e., base), the location lower (i.e., a[2]), the location middle (i.e., a[3])

C) Calculate the delta-WAIC. Which of these two models is best? Is that consistent with what you would expect from looking at the credible intervals of the parameter estimates?

```
## Warning: There were 2 warnings in 'mutate()'.
## The first warning was:
## i In argument: 'WAIC.ls = map(LL.ls, waic)'.
## Caused by warning:
## !
```

```
## 2 (3.3%) p_waic estimates greater than 0.4. We recommend trying loo instead. ## i Run 'dplyr::last_dplyr_warnings()' to see the 1 remaining warning.
```

```
WAIC.table |> select(-model.ls,-LL.ls,-WAIC.ls) |> knitr::kable(caption = "WAIC Table")
```

Table 3: WAIC Table

model	elpd_waic	p_waic	waic	deltaWAIC	weight
2way-Anova-noint	-211.1740	6.369937	422.3480	0.00000	1
2way-Anova-int	-216.7617	11.329449	433.5233	11.17532	0

Yes this is consistent with what I would expect, because all of the interaction coefficients CIs included zero (i.e., non-significant).

Problem 2: Mixed effects/ heirarchical models in JAGS or STAN

A) Treating team as a random effect, estimate the mean for each team, the grand mean, the standard deviation between teams and the standard deviation within teams (i.e. error sd). Assume the data are normally distributed. Assume the within group variance is the same for all groups. Use an exponential prior for the standard deviations. Show the summary statistics for all the parameters and use ggs_caterpillar to compare the means across teams. write and run the model

```
write("model {
      ##random effects for one-way ANOVA##
      #set up priors
      a \sim dnorm(0, 1.0E-6)
      for(i in 1:n.team) {
        d[i] ~ dnorm(0.0, tau_a)
      sd_among ~ dunif(0,100)
      sd_within ~ dunif(0,100)
      #convert sd to precision
      tau_a <- 1/(sd_among*sd_among)</pre>
      tau_w <- 1/(sd_within*sd_within)</pre>
      #model
      for(i in 1:N){
        ymean[i] <- a +d[team[i]]</pre>
        Y[i] ~ dnorm(ymean[i], tau_w)
        LL[i] < -0.5*log(2*3.14159)+0.5*log(tau w)-0.5*tau w*(Y[i]-ymean[i])*(Y[i]-ymean[i])
      }", file = here("JAGS_mods","JAGS_HW7-2A-ME.txt"))
football.list <- list(Y = football.data$Weight,</pre>
                       team = football.data$Team,
                       n.team = length(unique(football.data$Team)),
                       N = length(football.data$Weight))
```

```
JAGS.2A.1way.anova.me <- jags(data = football.list,model.file=here("JAGS_mods","JAGS_HW7-2A-ME.txt"),
    parameters.to.save=c("a","d","sd_among","sd_within","LL"),
    n.chains=2,n.iter=110000,n.burnin=10000,n.thin=10)</pre>
```

summary output

```
LLs <- paste0("LL[",1:football.list$N,"]")
summary.table <- as.data.frame(round(JAGS.2A.1way.anova.me$BUGSoutput$summary,digits = 3)) |>
   rownames_to_column() |>
   as.tibble() |>
   filter(!(rowname %in% LLs ))|>
   rename(parameter = rowname)

summary.table|> knitr::kable(caption = "Summary Table")
```

Table 4: Summary Table

parameter	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
a	248.432	3.776	241.026	246.553	248.438	250.335	255.804	1.001	3300
d[1]	-0.643	4.206	-9.538	-2.510	-0.325	1.229	7.640	1.001	20000
d[2]	1.280	4.238	-6.454	-0.742	0.688	3.153	10.850	1.001	13000
d[3]	2.978	4.562	-3.927	0.094	2.101	5.228	13.575	1.001	20000
d[4]	0.340	4.208	-8.075	-1.515	0.126	2.172	9.094	1.001	6500
d[5]	-3.805	4.783	-14.999	-6.330	-2.918	-0.447	2.997	1.001	9200
deviance	718.926	3.189	714.027	716.587	718.664	720.702	726.339	1.002	2600
sd_among	5.533	5.073	0.254	2.248	4.332	7.203	18.566	1.001	5500
sd _within	16.771	1.343	14.390	15.837	16.680	17.611	19.645	1.001	9800

 $caterpillar\ plot$

```
ggs(as.mcmc(JAGS.2A.1way.anova.me)) |>
filter(Parameter %in% paste0("d[",1:football.list$n.team,"]")) |>
ggs_caterpillar()
```



```
ggs(as.mcmc(JAGS.2A.1way.anova.me)) |>
filter(Parameter %in% c("sd_within","sd_among")) |>
ggs_caterpillar()
```

B) Compare the CIs of the standard deviations within and between groups. Based on these results, do you think the location random effect is necessary in this model?

Based on these results, the sd_within is greater than sd_among, thus I would say that random effects aren't necessary in the model.

C) Now run the model without the location random effect, with only the grand mean (i.e a null model). Show the WAIC values for the models in part a and part c. Does the WAIC support including the random effect in the model? write and run the model

```
write("model {
    ##Null model ##

#set up priors
    a ~ dnorm(0,1.0E-6)
    sd_within ~ dunif(0,100)

#convert sd to precision
    tau_w <- 1/(sd_within*sd_within)

#model
for(i in 1:N){
    ymean[i] <- a
    Y[i] ~ dnorm(ymean[i], tau_w)
    LL[i] <- -0.5*log(2*3.14159)+0.5*log(tau_w)-0.5*tau_w*(Y[i]-ymean[i])*(Y[i]-ymean[i])
}
}", file = here("JAGS_mods","JAGS_HW7-2A-ME.txt"))

football.list <- list(Y = football.data$Weight,</pre>
```

```
team = football.data$Team,
                      n.team = length(unique(football.data$Team)),
                      N = length(football.data$Weight))
JAGS.2C.1way.anova.null <- jags(data = football.list,model.file=here("JAGS_mods","JAGS_HW7-2A-ME.txt"),
  parameters.to.save=c("a","sd_within","LL"),
 n.chains=2,n.iter=110000,n.burnin=10000,n.thin=10)
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused va
## data
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused va
## data
summary output
LLs <- paste0("LL[",1:football.list$N,"]")
summary.table <- as.data.frame(round(JAGS.2C.1way.anova.null$BUGSoutput$summary, digits = 3)) |>
 rownames to column() |>
  as.tibble() |>
 filter(!(rowname %in% LLs ))|>
 rename(parameter = rowname)
summary.table|> knitr::kable(caption = "Summary Table")
```

Table 5: Summary Table

parameter	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
a	248.481	1.842	244.807	247.257	248.479	249.710	252.131	1.001	20000
deviance	721.071	2.089	719.063	719.603	720.404	721.847	726.748	1.001	15000
sd _within	16.975	1.348	14.605	16.028	16.886	17.821	19.870	1.001	5500

 $WAIC\ table$

Table 6: WAIC Table

model	elpd_waic	p_waic	waic	deltaWAIC	weight
team_random null			$723.2858 \\ 722.8447$	-	0.20212

The deltaWAIC of the random effect model was only 0.468 from the null model, suggesting that both models perform similarly. This also suggest that including the random effects doesn't add anything to the model, so i'd say it doesn't support using the random effect in the model.

D) When, if ever, would it make sense to model team as a fixed effect rather than a random effect? Explain your reasoning. It would make sense to model the team as a fixed effect if the goal was to assess different weights between teams. For example, if the research question was: which team has the heaviest players? In this instance, the mean value for each team is of interest.

Problem 3: INLA

A) Repeat the moth models from part 1 in INLA along with a 3rd model with location only, using default priors, and print the results with summary and autoplot. Do you get similar coefficients to part 1 for the same models? *models*

 $model\ summaries$

```
#bait+location
summary(moth.noint.inla)
```

```
##
## Call:
## Call:
## c("inla.core(formula = formula, family = family, contrasts = contrasts, ", " data = data, quantil
## quantiles, E = E, offset = offset, ", " scale = scale, weights = weights, Ntrials = Ntrials, stra
## strata, ", " lp.scale = lp.scale, link.covariates = link.covariates, verbose = verbose, ", " linc
## lincomb, selection = selection, control.compute = control.compute, ", " control.predictor =
```

```
##
      control.predictor, control.family = control.family, ", " control.inla = control.inla, control.fix
##
      control.fixed, ", " control.mode = control.mode, control.expert = control.expert, ", " control.ha
##
      control.hazard, control.lincomb = control.lincomb, ", " control.update = control.update, control.
      control.lp.scale, ", " control.pardiso = control.pardiso, only.hyperparam = only.hyperparam, ", "
##
##
      = inla.call, inla.arg = inla.arg, num.threads = num.threads, ", " keep = keep, working.directory
      working.directory, silent = silent, ", " inla.mode = inla.mode, safe = FALSE, debug = debug, .par
##
##
      = .parent.frame)")
## Time used:
       Pre = 0.19, Running = 0.18, Post = 0.447, Total = 0.817
## Fixed effects:
                           sd 0.025quant 0.5quant 0.975quant
                   mean
                 19.992 2.393
                                            19.990
## (Intercept)
                                  15.287
                                                       24.708 19.990
## LocationLower 14.096 2.762
                                   8.652
                                            14.099
                                                      19.524 14.099
                                                                      0
## LocationMiddle 11.772 2.762
                                   6.328
                                           11.775
                                                      17.200 11.775
## LocationTop
                  4.135 2.762
                                  -1.308
                                            4.137
                                                       9.564 4.137
                                                                      0
## BaitScent
                  -2.735 2.397
                                  -7.453
                                            -2.735
                                                       1.984 -2.735
                                                                      0
## BaitSugar
                  0.306 2.397
                                  -4.412
                                            0.306
                                                       5.025 0.306
                                                                      0
##
## Model hyperparameters:
## Deviance Information Criterion (DIC) ..... 422.07
## Deviance Information Criterion (DIC, saturated) ....: 69.39
## Effective number of parameters ...... 7.02
## Watanabe-Akaike information criterion (WAIC) ...: 422.32
## Effective number of parameters .....: 6.61
## Marginal log-Likelihood: -231.02
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
#bait*location
summary(moth.int.inla)
##
## Call:
      c("inla.core(formula = formula, family = family, contrasts = contrasts, ", " data = data, quantil
##
##
      quantiles, E = E, offset = offset, ", " scale = scale, weights = weights, Ntrials = Ntrials, stra
##
      strata, ", " lp.scale = lp.scale, link.covariates = link.covariates, verbose = verbose, ", " linc
##
      lincomb, selection = selection, control.compute = control.compute, ", " control.predictor =
      control.predictor, control.family = control.family, ", " control.inla = control.inla, control.fix
##
##
      control.fixed, ", " control.mode = control.mode, control.expert = control.expert, ", " control.ha
##
      control.hazard, control.lincomb = control.lincomb, ", " control.update = control.update, control.
      control.lp.scale, ", " control.pardiso = control.pardiso, only.hyperparam = only.hyperparam, ", "
##
      = inla.call, inla.arg = inla.arg, num.threads = num.threads, ", " keep = keep, working.directory
##
      working.directory, silent = silent, ", " inla.mode = inla.mode, safe = FALSE, debug = debug, .par
##
      = .parent.frame)")
##
## Time used:
       Pre = 0.201, Running = 0.144, Post = 0.92, Total = 1.26
## Fixed effects:
                                     sd 0.025quant 0.5quant 0.975quant
                             mean
## (Intercept)
                           19.630 3.318
                                            13.120
                                                     19.623
                                                                26.177 19.624
```

```
## LocationLower
                           16.095 4.717
                                             6.783
                                                     16.106
                                                                25.343 16.106
                           12.012 4.716
                                                                                0
## LocationMiddle
                                             2.707
                                                     12.021
                                                                21.264 12.020
## LocationTop
                           3.357 4.716
                                            -5.939
                                                     3.364
                                                                12.616 3.364
                           -2.603 4.674
                                                     -2.598
                                                                 6.576 -2.598
## BaitScent
                                           -11.815
## BaitSugar
                            1.305 4.675
                                            -7.912
                                                      1.312
                                                                10.480 1.312
## LocationLower:BaitScent -0.318 6.656
                                           -13.383
                                                    -0.328
                                                                12.805 -0.328
## LocationMiddle:BaitScent -1.223 6.655
                                           -14.293
                                                     -1.232
                                                                11.894 -1.231
                                                                14.111 0.998
## LocationTop:BaitScent
                            1.003 6.655
                                           -12.074
                                                      0.998
## LocationLower:BaitSugar -5.758 6.656
                                           -18.817
                                                     -5.771
                                                                 7.374 -5.771
## LocationMiddle:BaitSugar 0.448 6.656
                                           -12.619
                                                      0.438
                                                                13.569 0.438
## LocationTop:BaitSugar
                            1.292 6.655
                                           -11.782
                                                      1.285
                                                                14.404 1.285
## Model hyperparameters:
##
## Deviance Information Criterion (DIC) ..... 432.04
## Deviance Information Criterion (DIC, saturated) ....: 75.11
## Effective number of parameters ...... 12.74
## Watanabe-Akaike information criterion (WAIC) ...: 432.81
## Effective number of parameters .....: 11.62
## Marginal log-Likelihood: -240.54
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
#location
summary(moth.loc.inla)
##
## Call:
##
      c("inla.core(formula = formula, family = family, contrasts = contrasts, ", " data = data, quantil
     quantiles, E = E, offset = offset, ", " scale = scale, weights = weights, Ntrials = Ntrials, stra
##
##
     strata, ", " lp.scale = lp.scale, link.covariates = link.covariates, verbose = verbose, ", " linc
     lincomb, selection = selection, control.compute = control.compute, ", " control.predictor =
##
      control.predictor, control.family = control.family, ", " control.inla = control.inla, control.fix
##
     control.fixed, ", " control.mode = control.mode, control.expert = control.expert, ", " control.ha
      control.hazard, control.lincomb = control.lincomb, ", " control.update = control.update, control.
##
     control.lp.scale, ", " control.pardiso = control.pardiso, only.hyperparam = only.hyperparam, ", "
##
##
     = inla.call, inla.arg = inla.arg, num.threads = num.threads, ", " keep = keep, working.directory
     working.directory, silent = silent, ", " inla.mode = inla.mode, safe = FALSE, debug = debug, .par
     = .parent.frame)")
##
## Time used:
      Pre = 0.175, Running = 0.16, Post = 0.686, Total = 1.02
## Fixed effects:
                           sd 0.025quant 0.5quant 0.975quant
                   mean
                                                               mode kld
                                           19.180
## (Intercept)
                 19.182 1.953
                                  15.346
                                                      23.030 19.180
## LocationLower 14.097 2.762
                                           14.099
                                                      19.522 14.099
                                   8.654
## LocationMiddle 11.772 2.762
                                   6.330
                                           11.775
                                                      17.198 11.775
                                                                      0
## LocationTop
                  4.135 2.761
                                  -1.305
                                            4.137
                                                       9.562 4.137
## Model hyperparameters:
##
```

auto pioto

```
#bait+location
autoplot(moth.noint.inla)
```

Warning in autoplot.inla(moth.noint.inla): Plot 3 selected in which, but no random effects to plot m

Warning in autoplot.inla(moth.noint.inla): Plot 3 will not be plotted.


```
#bait*location
autoplot(moth.int.inla)
```

Warning in autoplot.inla(moth.int.inla): Plot 3 selected in which, but no random effects to plot mar
Warning in autoplot.inla(moth.int.inla): Plot 3 will not be plotted.

#location autoplot(moth.loc.inla)

Warning in autoplot.inla(moth.loc.inla): Plot 3 selected in which, but no random effects to plot marginal formula formula for the selected in which, but no random effects to plot marginal formula for the selected in which, but no random effects to plot marginal formula for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to plot marginal for the selected in which, but no random effects to

The coefficients were similar in INLA as they were to the JAGS versions in problem 1.

B) Calculate DIC and WAIC for all 3 models. Which model is preferred?

Table 7: DIC Table

model	dic	deltaDIC	weight
no_interaction	422.0685	2.010931	0.0176
interaction	432.0433	11.985740	0.0000
location_only	420.0575	0.000000	0.9824

Table 8: WAIC Table

model	waic	deltaWAIC	weight
no_interaction	422.3176	2.183729	$\begin{array}{c} 0.01252 \\ 0.00000 \\ 0.98748 \end{array}$
interaction	432.8145	12.680610	
location_only	420.1339	0.000000	

The model that only includes location is preferred.

```
moth.loc.df <- data.frame(moth.loc.inla$summary.fitted.values) |>
  bind_cols(moth.data) |>
  mutate(residual = Moths-mean)

moth.loc.df |>
  ggplot(aes(x=mean,y=residual))+
  geom_point()+
  geom_abline(intercept=0,slope=0)
```

C) Plot the residuals vs. fitted values and qqnormal of the residuals from the WAIC best model for the moth data. Does the normal model seem to fit adequately?


```
moth.loc.df |>
    ggplot(aes(x=mean,y=Moths))+
    geom_point()+
    geom_abline(intercept=0,slope=1)
```


The model seems to fit adequately, the residuals seem to be well distributed around zero across the predicted values. And the qqplot appears adequate.

D) Repeat the football models from part 2a and c in INLA, using default priors, and print the results with summary and autoplot. What did you get for the WAIC values and was the deltaWAIC result the same? models

 $model\ summaries$

```
#random effect
summary(football.me.inla)
```

```
##
## Call:
##
      c("inla.core(formula = formula, family = family, contrasts = contrasts, ", " data = data, quantil
      quantiles, E = E, offset = offset, ", " scale = scale, weights = weights, Ntrials = Ntrials, stra
##
##
      strata, ", " lp.scale = lp.scale, link.covariates = link.covariates, verbose = verbose, ", " linc
      lincomb, selection = selection, control.compute = control.compute, ", " control.predictor =
##
      control.predictor, control.family = control.family, ", " control.inla = control.inla, control.fix
##
      control.fixed, ", " control.mode = control.mode, control.expert = control.expert, ", " control.ha
##
##
      control.hazard, control.lincomb = control.lincomb, ", " control.update = control.update, control.
      control.lp.scale, ", " control.pardiso = control.pardiso, only.hyperparam = only.hyperparam, ", "
##
##
      = inla.call, inla.arg = inla.arg, num.threads = num.threads, ", " keep = keep, working.directory
      working.directory, silent = silent, ", " inla.mode = inla.mode, safe = FALSE, debug = debug, .par
##
##
      = .parent.frame)")
## Time used:
      Pre = 0.184, Running = 0.792, Post = 0.422, Total = 1.4
##
## Fixed effects:
##
                          sd 0.025quant 0.5quant 0.975quant
## (Intercept) 248.471 1.808
                                244.919 248.471
                                                    252.023 248.471
##
## Random effects:
##
    Name
             Model
       Team IID model
##
##
## Model hyperparameters:
##
## Deviance Information Criterion (DIC) ..... 722.74
## Deviance Information Criterion (DIC, saturated) ....: 89.14
## Effective number of parameters .....: 1.86
## Watanabe-Akaike information criterion (WAIC) ...: 722.60
## Effective number of parameters ...... 1.68
##
## Marginal log-Likelihood: -374.56
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
#no random effect
summary(football.inla)
##
## Call:
      c("inla.core(formula = formula, family = family, contrasts = contrasts, ", " data = data, quantil
##
      quantiles, E = E, offset = offset, ", " scale = scale, weights = weights, Ntrials = Ntrials, stra
##
      strata, ", " lp.scale = lp.scale, link.covariates = link.covariates, verbose = verbose, ", " linc
##
##
      lincomb, selection = selection, control.compute = control.compute, ", " control.predictor =
##
      control.predictor, control.family = control.family, ", " control.inla = control.inla, control.fix
      control.fixed, ", " control.mode = control.mode, control.expert = control.expert, ", " control.ha
##
      control.hazard, control.lincomb = control.lincomb, ", " control.update = control.update, control.
##
      control.lp.scale, ", " control.pardiso = control.pardiso, only.hyperparam = only.hyperparam, ", "
##
      = inla.call, inla.arg = inla.arg, num.threads = num.threads, ", " keep = keep, working.directory
##
      working.directory, silent = silent, ", " inla.mode = inla.mode, safe = FALSE, debug = debug, .par
##
      = .parent.frame)" )
##
```

```
## Time used:
      Pre = 0.165, Running = 0.118, Post = 0.346, Total = 0.629
##
## Fixed effects:
                         sd 0.025quant 0.5quant 0.975quant
##
                                                            mode kld
                 mean
##
  (Intercept) 248.471 1.809
                              244.915 248.471
                                                 252.026 248.471
##
## Model hyperparameters:
##
## Deviance Information Criterion (DIC) ..... 722.99
## Deviance Information Criterion (DIC, saturated) ....: 89.39
## Effective number of parameters .....: 1.99
## Watanabe-Akaike information criterion (WAIC) ...: 722.83
## Effective number of parameters ...... 1.78
## Marginal log-Likelihood: -374.48
  is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
```

autoplots

```
#random effect
autoplot(football.me.inla)
```



```
#no random effect
autoplot(football.inla)
```

Warning in autoplot.inla(football.inla): Plot 3 selected in which, but no random effects to plot mar
Warning in autoplot.inla(football.inla): Plot 3 will not be plotted.

Table 9: WAIC Table

model	waic	deltaWAIC	weight
Random Effects	722.5970	0.0000000	0.61311
No Random Effects	722.8272	0.2302118	0.38689

model	waic	deltaWAIC	weight

The results were similar in that the both models were within 1 WAIC unit from each other. However, the INLA model said that the random effect model had the Lowest WAIC. Though this was only 0.230 WAIC units away from the model without random effects.