Apresentação do Curso

CCMP0133 - Aula 02

Prof. Valdigleis S. Costa valdigleis.costa@univasf.edu.br 20 de julho de 2022

Universidade Federal do Vale do São Francisco Colegiado de Ciência da Computação Campus Salgueiro-PE

Roteiro

Conjuntos e Elementos

Operações Sobre Conjuntos

Operações Generalizadas

Partes e Partições

Conjuntos e Elementos

Conjuntos e Elementos

Definição (Conjunto)

Um conjunto A é uma coleção numa totalidade M de certos objetos n distintos e que satisfazem certas propriedades, tais objetos são chamados de elementos de A.

Conjuntos e Elementos

Definição (Conjunto)

Um conjunto A é uma coleção numa totalidade M de certos objetos n distintos e que satisfazem certas propriedades, tais objetos são chamados de elementos de A.

Definição (Notações Básicas)

As letras maiúsculas do alfabeto latino $A, B, \dots, M, N, \dots, Z$ como e sem indexação serão usadas como variáveis para representar conjuntos e as letras minúsculas $a, b, \dots, m, n, \dots, z$ como e sem indexação serão usadas como meta-variáveis para representar elementos.

Conjuntos Numéricos

Definição (Símbolos dos conjuntos numéricos)

O conjunto dos números naturais¹, inteiros, racionais, irracionais, reais e complexos são representados respectivamente por \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , \mathbb{R} e \mathbb{C} .

 $^{^{1}\}text{Neste}$ curso os naturais corresponde ao conjunto $\{0,1,2,\cdots\}.$

Notação Compacta

Definição (Notação compactada)

Um conjunto A definido por alguma propriedade **P** é representada na **forma compacta** como:

$$A = \{x \mid P\} \tag{1}$$

Notação Compacta

Definição (Notação compactada)

Um conjunto A definido por alguma propriedade **P** é representada na **forma compacta** como:

$$A = \{x \mid \mathbf{P}\}\tag{1}$$

Na notação compacta $A = \{x \mid P\}$:

- O símbolo A é chamado de rótulo do conjunto.
- $\{x \mid P\}$ é a forma estrutural do conjunto.

Relação: Elemento \times Conjunto e Conjunto \times Conjunto

Definição (Relação de Pertinência)

Seja A um conjunto definido sobre um discurso M por uma propriedade P e seja x um elemento do discurso. Se o elemento x possui (ou satisfaz) a propriedade P, então é dito que x pertence a A, denotado por $x \in A$. Caso x não possui (ou satisfaça) a propriedade P, então é dito que x não pertence a A, denotado por $x \notin A$.

Definição (Relação de inclusão)

Dado dois conjuntos A e B quaisquer, é dito que A é subconjunto de B, denotado por $A \subseteq B$, quando todo $x \in A$ é tal que $x \in B$.

Importante sobre notação compacta

Note que todo subconjunto A de um conjunto B pode ser visto como um conjunto construído sobre os elementos de B que satisfazem uma certa propriedade P, isto é, tem-se que todo subconjunto A é um conjunto da seguinte forma:

$$A = \{x \mid x \in B \text{ e } x \text{ satisfaz } P\}$$

também é possível encontrar a notação $A = \{x \in B \mid x \text{ satisfaz } \mathbf{P}\}.$

Relação de não inclusão e de igualdade

Definição (Relação de não inclusão)

Dado dois conjuntos A e B quaisquer, é dito que A é não subconjunto de B, denotado por $A \nsubseteq B$, quando existe pelo menos um $x \in A$ tal que $x \notin B$.

Definição (Igualdade de conjuntos)

Dois conjuntos A e B são iguais, denotado por A=B, se e somente se, $A\subseteq B$ e $B\subseteq A$.

Conjuntos Notáveis

Definição (Conjunto Universo)

O conjunto universo, ou universo do discurso, denotado por \mathbb{U} , é um conjunto que possui todos os elementos sobre os quais se "fala²".

 $^{^{2}\}mbox{O}$ termo fala aqui diz respeito ao ato pensar ou argumentar sobre os objetos.

Conjuntos Notáveis

Definição (Conjunto Universo)

O conjunto universo, ou universo do discurso, denotado por \mathbb{U} , é um conjunto que possui todos os elementos sobre os quais se "fala²".

Definição (Conjunto vazio)

O conjunto vazio, denotado por \emptyset , corresponde a um conjunto que não possui nenhum elemento.

²O termo fala aqui diz respeito ao ato pensar ou argumentar sobre os objetos.

Operações Sobre Conjuntos

A União

Definição (União de conjuntos)

Sejam A e B dois conjuntos quaisquer, a união de A com B, denotada por $A \cup B$, corresponde ao seguinte conjunto.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Exemplos

- Dados os dois conjuntos $A = \{x \in \mathbb{N} \mid x = 2i \text{ para algum } i \in \mathbb{N}\}$ e $B = \{x \in \mathbb{N} \mid x = 2j + 1 \text{ para algum } j \in \mathbb{N}\}$ tem-se que $A \cup B = \mathbb{N}$.
- Seja $N = \{1, 2, 3, 6\}$ e $L = \{4, 6\}$ tem-se que $N \cup L = \{1, 4, 6, 3, 2\}$.
- Dado $A = \{1, 2, 3\}$ e $B = \{a, b, c\}$ quem seria a $A \cup (B \cup B)$?

A interseção

Definição (Interseção de conjuntos)

Sejam A e B dois conjuntos quaisquer, a interseção de A com B, denotada por $A \cap B$, corresponde ao seguinte conjunto.

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}$$

Exemplos

- Dado $A_1 = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 2}\}$ e $A_2 = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 3}\}$ tem-se que $A_1 \cap A_2 = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 6}\}.$
- Seja $A = \{1, 2, 3\}, B = \{2, 3, 4, 5\}$ e $C = \{5\}$ tem-se que:
 - (a) $A \cap B = \{2, 3\}.$
 - (b) $A \cap C = \emptyset$.
 - (c) $B \cap C = \{5\}.$
 - (d) $B \cap B = \{2, 3, 4, 5\} = B$.
- Dado $A = \{1, 2, 3\}$ e $B = \{a, b, c\}$ quem seria a $A \cap (B \cap A)$?

Resultados Importantes (1)

identificador	None	União	Interseção
p_1	Idempotência	$A \cup A = A$	$A \cap A = A$
p_2	Comutatividade	$A \cup B = B \cup A$	$A \cap B = B \cap A$
<i>p</i> ₃	Associatividade	$A \cup (B \cup C) = (A \cup B) \cup C$	$A\cap (B\cap C)=(A\cap B)\cap C$
<i>p</i> ₄	Distributividade	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
p_5	Neutralidade	$A \cup \emptyset = A$	${\mathsf A}\cap \mathbb{U}={\mathsf A}$
<i>P</i> 6	Absorção	${\it A} \cup \mathbb{U} = \mathbb{U}$	$A \cap \emptyset = \emptyset$

Tabela 1: Tabela das propriedades das operações de união e interseção.

Monotonicidade da união e da interseção

Teorema

Para quaisquer conjuntos A e B tem-se que:

- i. $A \subseteq (A \cup B)$.
- ii. $(A \cap B) \subseteq A$

O Estado de Disjunção

Definição (Conjuntos disjuntos)

Dois conjuntos A e B são ditos disjuntos sempre que $A \cap B = \emptyset$.

O Estado de Disjunção

Definição (Conjuntos disjuntos)

Dois conjuntos A e B são ditos disjuntos sempre que $A \cap B = \emptyset$.

Exemplo:

Seja $A = \{1, 2, 3\}, B = \{2, 3, 5\}$ e $C = \{5\}$ tem-se que A e C são disjuntos, por outro lado, A e B não são disjuntos entre si, além disso, B e C também não são disjuntos entre si.

Operação Complemento

Definição (Complemento de conjuntos)

Seja $A \subseteq \mathbb{U}$ para algum universo \mathbb{U} , o complemento de A, denotado por \overline{A} , corresponde ao seguinte conjunto:

$$\overline{A} = \{ x \in \mathbb{U} \mid x \notin A \}$$

Exemplos

- Dado $P = \{x \in \mathbb{Z} \mid x = 2k \text{ para algum } k \in \mathbb{Z} \}$, tem-se então o seguinte complemento $\overline{P} = \{x \in \mathbb{Z} \mid x = 2k+1 \text{ para algum } k \in \mathbb{Z} \}$.
- Dado um universo do discurso $\mathbb U$ tem-se direto da definição que $\overline{\mathbb U}=\emptyset$, e obviamente, $\overline{\emptyset}=\mathbb U$.

Resultados Básicos Sobre o Complemento

(DM1) Lei De Morgan 1^a forma: $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ (DM2) Lei De Morgan 2^a forma: $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Resultados Básicos Sobre o Complemento

(DM1) Lei De Morgan 1^a forma:
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

(DM2) Lei De Morgan 2^a forma: $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Teorema

Dado um conjunto A tem-se que:

- i. $A \cup \overline{A} = \mathbb{U}$.
- ii. $A \cap \overline{A} = \emptyset$.
- iii. $\overline{\overline{A}} = A$.

A Diferenças Clássica de Conjuntos

Definição (Diferença de conjuntos)

Dado dois conjuntos A e B, a diferença de A e B, denotado por A — B corresponde ao seguinte conjunto:

$$A - B = \{ x \in A \mid x \notin B \}$$

Exemplos

- Dado os conjuntos $S = \{a, b, c, d\}$ e $T = \{f, b, g, d\}$ tem-se os seguintes conjuntos de diferença: $S T = \{a, c\}$ e $T S = \{f, g\}$.
- Dado so conjuntos \mathbb{Z} e \mathbb{Z}_+^* tem-se que $\mathbb{Z} \mathbb{Z}_+^* = \mathbb{Z}_-$.

Teorema Notável (1)

Teorema

Para todo A e B tem-se que:

i.
$$A - B = A \cap \overline{B}$$
.

ii. Se
$$B \subset A$$
, então $A - B = \overline{B}$.

Teorema Notável (2)

Teorema

Sejam A e B subconjuntos de um universo \mathbb{U} , tem-se que:

- a. $A \emptyset = A e \emptyset A = \emptyset$.
- b. $A \mathbb{U} = \emptyset$ $e \mathbb{U} A = \overline{A}$.
- c. $A A = \emptyset$.
- d. $A \overline{A} = A$.
- e. $\overline{(A-B)} = \overline{A} \cup B$.
- f. $A B = \overline{B} \overline{A}$.

Teorema (3)

Teorema

Sejam A, B e C subconjuntos de um universo \mathbb{U} , tem-se que:

a.
$$(A - B) - C = A - (B \cup C)$$
.

b.
$$A - (B - C) = (A - B) \cup (A \cap C)$$
.

c.
$$A \cup (B - C) = (A \cup B) - (C - A)$$
.

d.
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$
.

e.
$$A - (B \cup C) = (A - B) \cap (A - C)$$
.

f.
$$A - (B \cap C) = (A - B) \cup (A - C)$$
.

g.
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

h.
$$(A \cap B) - C = (A - C) \cap (B - C)$$
.

i.
$$A - (A - B) = A \cap B$$
.

j.
$$(A - B) - B = A - B$$
.

Diferença Simétrica

Definição

Dado dois conjuntos A e B, a diferença simétrica de A e B, denotado por $A \ominus B$, corresponde ao seguinte conjunto:

$$A \ominus B = \{x \mid x \in (A - B) \text{ ou } x \in (B - A)\}$$

Diferença Simétrica

Definição

Dado dois conjuntos A e B, a diferença simétrica de A e B, denotado por $A \ominus B$, corresponde ao seguinte conjunto:

$$A \ominus B = \{x \mid x \in (A - B) \text{ ou } x \in (B - A)\}$$

ATENÇÂO

Olhando atentamente a definição anterior é fácil notar que o conjunto da diferença simétrica é exatamente a união das possíveis diferenças entre os conjuntos, isto é, a diferença simétrica corresponde a seguinte igualdade: $A \ominus B = (A - B) \cup (B - A)$.

Teoremas (i) — Diferença Simátrica

Teorema

Sejam A e B subconjuntos quaisquer de um determinado universo \mathbb{U} , tem-se que $A \ominus B = (A \cup B) \cap \overline{(A \cap B)}$.

Teoremas (i) — Diferença Simátrica

Teorema

Sejam A e B subconjuntos quaisquer de um determinado universo \mathbb{U} , tem-se que $A \ominus B = (A \cup B) \cap \overline{(A \cap B)}$.

Corolário

Sejam A e B subconjuntos quaisquer de um determinado universo \mathbb{U} , tem-se que $A \ominus B = (A \cup B) - (A \cap B)$.

Teoremas (i) — Diferença Simátrica

Teorema

Sejam A e B subconjuntos quaisquer de um determinado universo \mathbb{U} , tem-se que $A \ominus B = (A \cup B) \cap \overline{(A \cap B)}$.

Corolário

Sejam A e B subconjuntos quaisquer de um determinado universo \mathbb{U} , tem-se que $A \ominus B = (A \cup B) - (A \cap B)$.

Teorema

Para todo A tem-se que $A \ominus \emptyset = A$.

Teorema

Para todo A tem-se que $A \ominus \mathbb{U} = \overline{A}$.

Teoremas (ii) — Diferença Simátrica

Teorema

Para todo A tem-se que $A \ominus \overline{A} = \mathbb{U}$.

Teorema

Para todo A tem-se que $A \ominus A = \emptyset$.

Teorema

Para todo $A \in B$ tem-se que $A \ominus B = B \ominus A$.

Teorema

Para todo $A, B \in C$ tem-se que $(A \ominus B) \ominus C = A \ominus (B \ominus C)$.

Teorema

Para todo A e B tem-se que $\overline{(A \ominus B)} = (A \cap B) \cup (\overline{A} \cap \overline{B})$.

Operações Generalizadas

União

Definição (União generalizada)

Dado uma família A então a união generalizada dos conjuntos em A corresponde respectivamente a:

$$A_{\cup} = \bigcup_{x \in A} x$$

União

Definição (União generalizada)

Dado uma família A então a união generalizada dos conjuntos em A corresponde respectivamente a:

$$A_{\cup} = \bigcup_{x \in A} x$$

Também é possível encontrar na literatura as formas:

- $\bullet \ A_{\cup} = x_1 \cup \cdots \cup x_n$
- $\bullet \ A_{\cup} = \bigcup_{i=1}^{n} x_{i}$

Exemplos

- Seja $A = \{\{a, b\}, \{a\}, \{b\}, \{c\}\}\}$ qual seria o conjunto A_{\cup} ?

Interseção

Definição (Interseção generalizada)

Dado uma família A então a interseção generalizada dos conjuntos em A corresponde respectivamente a:

$$A_{\cap} = \bigcap_{x \in A} x$$

Interseção

Definição (Interseção generalizada)

Dado uma família A então a interseção generalizada dos conjuntos em A corresponde respectivamente a:

$$A_{\cap} = \bigcap_{x \in A} x$$

Também é possível encontrar na literatura as formas:

- $\bullet \ A_{\cap} = x_1 \cap \cdots \cap x_n$
- $\bullet \ A_{\cap} = \bigcap_{i=1}^{n} x_i$

Exemplos

- Seja $D = \{\mathbb{Z}_+, \{0, -1, -2, -3\}, (\mathbb{Z}_- \cup \{0\})\}$, calcule a interseção generalizada de D.
- Dado $A = \{\{a, t, c, g\}, \{v, x, a, g, d\}, \{z, b, a, y, g\}, \{g, b, a\}\}$ calcule A_{\cap} .

Partes e Partições

Partes ou Potência

Definição (Conjunto das partes)

Seja A um conjunto. O conjunto das partes³ de A, é denotada por $\wp(A)$, e corresponde a seguinte família de conjuntos:

$$\wp(A) = \{x \mid x \subseteq A\}$$

³Em alguns livros é usado o termo conjunto potência em vez do termo conjunto das partes, nesse caso é usado a notação 2^A para denotar tal família de conjuntos.

Exemplos

- Seja $A = \{a, b, c\}$ determine o conjunto das partes de A.
- Dado o conjunto $X = \{1\}$ determine o conjunto das partes de X.
- Esboce o conjunto das partes do conjunto $A = \{\emptyset, \{\emptyset\}\}.$

Partições

Definição (Partição)

Seja A um conjunto não vazio, uma partição é uma família não vazia de subconjuntos disjuntos de A, ou seja, uma família $\{x_i \mid x_i \subseteq A\}$ tal que as seguintes condições são satisfeitas:

- (1) Para todo $y \in A$ tem-se que existe um único i tal que $y \in x_i$ para algum $x_i \subseteq A$.
- (2) Para todo i e todo j sempre que $i \neq j$, então $x_i \cap x_j = \emptyset$.

Exemplo

- Construa uma partição para o conjunto $A = \{2, a, i, 4\}$.
- Dado o conjunto $X = \{0, 1, 2, 3, 4, 5\}$ diga se as asserções a seguir são verdadeiras ou falsas e justifique:
 - $R = \{\{1,5\}, \{2,1,4\}, \{0,3\}\}$ é uma partição de X.
 - $S = \{\{1,5\}, \{0,4\}, \{3\}\}$ não é uma partição de X.
 - $T = \{\{0,5\}, \{1,3,4\}, \{2\}\}$ é uma partição de X.
 - $V = \{\{0,1\},\{4,5\},\{3,2\}\}$ não é uma partição