EE23BTECH11047 - Deepakreddy P

44 The switch S_1 was closed and S_2 was open for a long time. At t=0,switch S_1 is opened and S_2 is closed,simultaneously. The value of $i_c(0^+)$, in amperes, is (GATE EC 44)

Fig. 1. Circuit 1

Solution:

1) Switch S_1 was closed and S_2 was open

Fig. 2. Circuit 2

$$R_{eff} = 20\Omega \tag{1}$$

$$i_L(0^-) = \frac{25}{125}A = 0.2A$$
 (2)

$$i_L\left(0^-\right) = i_L\left(0^+\right) \tag{3}$$

(4)

Apply KVL

$$-V_c(0^-) + 20(1) = 0 (5)$$

$$V_c\left(0^-\right) = 20V\tag{6}$$

2) Switch S_1 is open and S_2 was closed

Fig. 3. Circuit 3

At $t=0^+$ The capacitor is charged. Thus, it acts as a voltage source. The inductor acts as the current source.

$$i_c(0^+) = -\left(i_L(0^-) + \frac{V_c(0^-)}{25s}\right)$$
 (7)

$$i_c(0^+) = -\left(0.2 + \frac{0.8}{s}\right)$$
 (8)

Taking Inverse Laplace Transform

$$i_c(0^+) = -0.2\delta(t) - 0.8u(t)$$
 (9)

$$= -1A \tag{10}$$

Parameter	Description	Remarks
$V_c(0^-)$	Voltage across capacitor in case 1	20V
$i_L(0^-)$	current across inductor in case 1	$\frac{0.2}{s}$
$i_L(0^+)$	current across inductor in case 2	$\frac{0.2}{s}$
C	Capacitance	0.01F
L	Inductance	1H

TABLE I PARAMETERS

Fig. 4. Plot of $V_c(0^-)$ vs time