Today:

J Review problem] tangent plane Linear Approximation Differentials

11.6] Chain rule

 $af = \frac{3x}{3t} ax + \frac{37}{3t} ax$

EXAMPLE 4 The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in each. Use differentials to estimate the maximum error in the calculated volume of the cone.

$$V(Y,h) = \frac{1}{3}\pi Y^{2}h$$

$$\frac{dV = ??}{dV} = \frac{\partial V}{\partial Y} dY + \frac{\partial V}{\partial h} dh$$

$$\frac{dV = dh = 0.1}{dV} = \frac{2}{3}PYh dY + \frac{1}{3}PY^{2}dh$$

$$V(Y,h) = \frac{1}{3}\pi Y^{2} dY + \frac{1}{3}\pi Y^{2} dY +$$

I−6 • Find an equation of the tangent plane to the given surface at the specified point.

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - x_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

$$\frac{\partial z}{\partial y} = -\frac{\partial z}{\partial x} (x - y_0) + \frac{\partial z}{\partial y} (y - y_0)$$

30. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation PV = 8.31T, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K.

$$P = 8.31 T/V$$

$$dP = ?? given V = 12, T = 310, dY = 0.3, dT = -5$$

$$dP = \frac{\partial f}{\partial V} dV + \frac{\partial f}{\partial T} dT$$

$$= -8.8 f_{1}$$

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial z}{\partial t}$$

Temperature at point (X,y)

$$x = \omega_{S}(t)$$

$$y = 8iu(t)$$

$$0 < t < \infty$$
what path is this?
$$\frac{1}{2}(t) = \omega_{S}t + \sin(t)$$

$$\frac{1}{2}(t) = \omega_{S}t + \cos(t)$$

$$\frac{1}{2}(t) =$$

EXAMPLE 1 If $z = x^2y + 3xy^4$, where $x = \sin 2t$ and $y = \cos t$, find dz/dt when t = 0.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= (2xy + 3x^4) (2\cos xt) + (x^2 + (2xy^3)) (-\sin t)$$

$$t = 0, x = 0, y = 1$$

EXAMPLE 3 If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\partial z/\partial s$ and $\partial z/\partial t$.

$$\frac{\partial z}{\partial t} = e^{x} \sin y$$
 ast $t = e^{x} \omega s y$ s^{2}

EXAMPLE 5 If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\partial u/\partial s$ when r = 2, s = 1, t = 0.

Today:

-> leview: chain rule

Justina Derivations Derivations

32. The radius of a right circular cone is increasing at a rate of 1.8 in/s while its height is decreasing at a rate of 2.5 in/s. At what rate is the volume of the cone changing when the radius is 120 in. and the height is 140 in.?

$$\frac{2h}{dt} = -2.5$$

$$\frac{dy}{dt} = 1.8$$

$$\frac{|y|}{|x|} = ?? = \frac{\partial y}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial y}{\partial h} \frac{\partial h}{\partial t}$$

$$= 27 x h dx + 2x^2 d$$

$$= 27 x h dx + 2x^2 d$$

$$\frac{9\pi}{9t} = \frac{9x}{9t} \frac{9\pi}{9x} + \frac{9x}{9t} \frac{9\pi}{9x}$$

$$\frac{90}{9t} = \frac{9x}{9t} \frac{90}{9x} + \frac{90}{9t} \frac{90}{9x}$$

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

$$\begin{aligned}
t &= 3 \\
\frac{\partial T}{\partial t} \Big|_{t=3} &= \frac{\partial T}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial T}{\partial y} \frac{\partial y}{\partial t} \\
&= \left(4 \cdot \frac{1}{2\sqrt{1+t}} + 3 \cdot \frac{1}{3}\right) \Big|_{t=3} \\
&= 1+1 = 2
\end{aligned}$$

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

11.6

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

DEFINITION The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

blue surface is the graph of $f(\pi_1\pi)$. base point $(\pi_0, \pi_0) = P'$

base point (xo, to) = p'

directional devivative
at point p', in the division

= rate of change of the start moring from point P' along the direction a

sketch the line passing through p & parallel & $\hat{U} = a\hat{U} + b\hat{A}$

11.6

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

DEFINITION The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists. $\hat{a} = a\hat{i} + b\hat{j}$

Directional derivative at pointp' in the direction of û

in the direction of
$$\alpha$$

$$f(\vec{P}' + h\vec{u}) - f(\vec{P}')$$

$$h \to 0$$

Today:

-> Finish 11.6

$$f(x,3) \qquad \nabla f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

$$\int_{\Omega} f(x,3) = ?? = \text{rate of change}$$
of f at $(x_0,3_0)$
in the divertion of f and f and

3 THEOREM If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{u}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)b$$

$$D_{u}f(x,y) = \lim_{h \to 0} \frac{f\left[e_{x}\right] + h\left(x,y\right) - f\left(x,y\right)}{h} = \frac{\partial f}{\partial x} \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha + \frac{\partial f}{\partial y} \alpha$$

$$= \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \cdot \alpha + \frac{\partial f}{\partial y} \alpha$$

EXAMPLE 1 Find the directional derivative $D_{\bf u} f(x,y)$ if $f(x,y) = x^3 - 3xy + 4y^2$ and $\bf u$ is the unit vector given by angle $\theta = \pi/6$. What is $D_{\bf u} f(1,2)$?

DEFINITION If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

EXAMPLE 3 Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ = 2i + 5j at the point (2, -1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

$$f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

$$= \left[2xy^{3} + \frac{\partial f}{\partial y} + \frac{\partial x^{2}}{\partial y^{2}} + \frac{\partial f}{\partial y} \right]_{x=1}^{x=1}$$

$$= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

$$= \frac{\partial f}{\partial y} + \frac{\partial f}{\partial y}$$

$$= \frac{\partial f}{\partial y$$

$$D_{\mathcal{G}}f = \left(-4^{2} + 8^{2}\right) \cdot \left(\frac{2}{4\pi} + \frac{1}{5\pi}\right)$$

EXAMPLE 4 If $f(x, y, z) = x \sin(yz)$ (a) find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

$$\int_{\mathcal{Q}} f\left(1,3,0\right) = \left(3^{2}\right) \cdot \left(\frac{1}{16} + \frac{2^{2}}{16} - \frac{1}{16}^{2}\right)$$

1 3/1 (a) wood = 17/ ws0 = [AB] will à in reference to 了。公 (5 max 5.4. Ω is perallel to 10/13/

Why Gradients are so famous?? MAXIMIZING THE DIRECTIONAL DERIVATIVE f(21/3) Directional derivatives : given a direction we can find out rate of change in that direction $D_{\alpha, f} \geq D_{\alpha} f$ for all α : Tfixed red or, û we can choose c.) T. û is as max as possible $\mathcal{D}_{\alpha}f = \nabla f \cdot \hat{u}$

=) if we want to move in the direction of fastest increment, then what should be our a ??

Aux: ??. go along the gradient

EXAMPLE 5

- (a) If $f(x, y) = xe^y$, find the rate of change of f at the point P(2, 0) in the direction from P to $Q(\frac{1}{2}, 2)$.
- (b) In what direction does f have the maximum rate of change? What is this maximum rate of change?

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\sqrt{f(2,0)} = \left[e^{4\hat{i}} + (xe^{4}) \hat{j} \right]_{x=2}$$

$$\left(\begin{array}{c} (2+2) \\ (2+2) \end{array} \right) \cdot \left(\begin{array}{c} -3 \\ 2 \end{array} \right) + 2 \end{array} \right) \sqrt{\frac{9}{4} + 4}$$

EXAMPLE 5

- (a) If $f(x, y) = xe^y$, find the rate of change of f at the point P(2, 0) in the direction from P to $Q(\frac{1}{2}, 2)$.
- (b) In what direction does f have the maximum rate of change? What is this maximum rate of change?

$$\sqrt{f(2,8)} = \left[e^{4\hat{i}} + (xe^{4}) \hat{j} \right]_{x=2}
 = \hat{i} + 2\hat{j}$$

Direction of max rate of change is along
$$\nabla f = \frac{\nabla f}{|\nabla f|}$$

$$\vec{v} = a\hat{i} + b\hat{i} \quad \vec{v} \cdot (\vec{v}) = (a\hat{i} + b\hat{i}) \cdot (\frac{a\hat{i} + b\hat{i}}{\sqrt{a^2 + b^2}})$$

$$= \frac{\alpha^2 + b^2}{\sqrt{\alpha^2 + b^2}} = \sqrt{\alpha^2 + b^2}$$

$$= \sqrt{3^2 + b^2}$$

EXAMPLE 6 Suppose that the temperature at a point (x, y, z) in space is given by $T(x, y, z) = 80/(1 + x^2 + 2y^2 + 3z^2)$, where T is measured in degrees Celsius and x, y, z in meters. In which direction does the temperature increase fastest at the point (1, 1, -2)? What is the maximum rate of increase?

