

LU3EE104 : Réseaux électriques et Electronique de puissance

RÉSEAUX ÉLECTRIQUES

Ouvrage de référence :

Electrotechnique et énergie électrique, 2^e édition - Luc Lasne Editions Dunod - ISBN 978-2-10-059892-2 Chapitre 17

Réseau électrique :

Production

Transport & distribution

- 44% de l'énergie consommée en France est électrique
- Evolution des sources et des usages
- Besoin de contrôler les flux d'énergie

Consommation

France métropolitaine : évolution de la consommation brute d'électricité

En 2020, le secteur résidentiel a compté pour près de 38% de la consommation finale d'électricité en France métropolitaine selon RTE. (©Connaissance des Énergies, d'après RTE)

Entre production et consommation, il faut <u>transporter</u> l'énergie électrique

Du grid au « smart grid »

En 2019, en France, l'énergie électrique est acheminée vers :

- 32,8 millions de sites résidentiels (consommation totale de 152 TWh)
- 5,1 millions de sites non résidentiels comme les industries, les hôpitaux, les PMI-PME, les commerçants, etc. (consommation totale de 280 TWh).

VIII. Généralités sur les réseaux électriques

Un réseau électrique est un ensemble d'infrastructures permettant d'acheminer l'énergie électrique des centres de production vers les lieux de consommation d'électricité.

Structure d'un réseau électrique

Production

- Fournit la puissance active consommée par l'ensemble du réseau (dont les pertes, 2.5 % en France)
- Majoritairement produite par des alternateurs triphasés à partir d'énergies primaires (thermique, nucléaire, hydraulique, éolien, ...)
- Majoritairement produite par de grosses unités, en quelques points du territoire (fleuves, bord de mer, ...)
- Mix électrique(*): fonction des ressources naturelles d'un pays et de ses choix politiques

(*) répartition des différentes sources d'énergies primaires consommées dans une zone géographique donnée

Mix électrique

France / Allemagne :

ressources naturelles et choix politiques différents

RTE)

Données issues de https://www.connaissancedesenergies.org

Autres exemples :

Japon

Islande

Mix électrique

Evolution souhaitée en France (politique publique)

Quelques chiffres

https://www.rte-france.com/fr/eco2mix/chiffres-cles

2020:

Min = 29124 MW le 10/05/20, 7h Max = 83371 MW le 22/01/20, 9h30

2021:

Min = 29660 MW le 08/08/20, 7h Max = 88440 MW le 11/01/20, 9h30

Consommation électrique française

Lundi 16 septembre 2019

Consommation: 34,2 / 53,4 GW

Production: 41,4 / 51,4 GW

Lundi 16 septembre 2019

Consommation: 34,2 / 53,4 GW

Production : 41,4 / 51,4 GW

Lundi 16 septembre 2019

Consommation: 34,2 / 53,4 GW

Production : 41,4 / 51,4 GW

Échanges d'énergie entre la France et les pays voisins

Dimanche 3 mars 2019

Consommation: 46,0 / 57,2 GW

Production : 53,0 / 65,4 GW

(max: 4450 MW)

Données en énergie :

Classement des types de production

Problème fondamental des réseaux électriques :

- Assurer l'équilibre production/consommation instantanées (pas de stockage)
- S'adapter en temps réel aux aléas de production et de consommation

Deux types de production :

- Production de masse : fournit la valeur moyenne de la consommation
- Production de pointe : permet l'ajustement aux fluctuations de consommation

Classement des types de production

Critères de classement des différents types de source :

- Capacité de production (combien de watts ?)
- Temps de réaction (mobilisable en combien de temps ?)

Production de masse:

 Nucléaire, thermique - 100 GW – programmé selon les prévisions journalières – temps de réponse = qqs heures.

Production intermédiaire :

• Thermique, hydraulique au fil de l'eau, éolien – 1 GW – inertie moindre

Production de pointe :

Hydraulique, pompage, thermique – 100 MW – temps de réponse = qqs mn

Stockage par pompage : la centrale STEP Grand'Maison

parc hydraulique exploité par EDF en France).

Application immédiate

L'appel de puissance d'une municipalité varie entre 60 MW et 110 MW au cours d'une journée. La puissance moyenne journalière de de 80 MW. Pour produire cette énergie, on envisage deux possibilités :

- installer une centrale de base et une centrale de pointe à moteur diesel
- installer une centrale de base et une centrale de pointe à réserve pompée
 Déterminer les capacités des centrales de base et de pointe requises dans chaque cas.

Application immédiate

Solution 1:

• Centrale de pointe non réversible

Solution 2:

Centrale de pointe réversible

Réseau de transport

- Transport de l'énergie des unités de production vers les lieux de consommation
- Grandes distances à travers le territoire
- Transport en très haute tension (THT)
- Postes d'interconnexion électriques : répartissent les puissances, adaptent les niveaux de tension
- Caractéristiques générales :
 - Choix du mode : AC sauf cas particulier
 - o Fréquence normalisée : 50 ou 60 Hz
 - o Tensions normalisées

Interconnexions: réseau maillé

- Au sein du réseau & vers d'autres réseaux
- Intérêts : stabilité, continuité de service, économie

Transport et interconnexion

Maillage territorial et interconnexion

Fréquence normalisée : 50 Hz

Tensions normalisées : BT, HTA, HTB norme européenne

Exemple d'installation

Station de conversion du courant alternatif-continu des Mandarins (Pas-de-Calais) pour l'interconnexion France/Angleterre

Projet de réseau d'interconnexion entre l'Europe, l'Afrique du Nord et le Moyen-Orient

Intégration de l'éolien

https://www.energiesdelamer.eu/2018/08/03/l-essor-eolien-offshore-mer-du-nord/

Distribution et répartition

O Distribution :

- Maillage fin du territoire
- Chaque utilisateur est prêt d'un accès au réseau
- o Densification
- Passage progressif des THT vers les BT

Consommation:

- 1 client = puissances active + réactive
- Conso domestique très ramifiée, basse tension monophasée
- Clients industriels : triphasé,
 alimentation en moyenne tension pour les grosses puissances