Global HYCOM

Alan J. Wallcraft, A. Birol Kara and E. Joseph Metzger Naval Research Laboratory

8th Hybrid Coordinate Ocean Model Workshop

August 19, 2003

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding and DMB control number.	ion of information. Send commen arters Services, Directorate for Int	ts regarding this burden estimate formation Operations and Reports	or any other aspect of to , 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 19 AUG 2003			2. REPORT TYPE		3. DATES COVERED 00-00-2003 to 00-00-2003	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Global HYCOM				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory, Stennis Space Center, MS, 39529				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distribut	ion unlimited				
13. SUPPLEMENTARY NO	OTES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	42	RESI ONSIDLE I ERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

0.72 degree Global Domain

- Pan-Am Global Grid
 - 0.72 degree equatorial Mercator 78S-47N
 - Arctic bi-polar patch above 47N
 - Low resolution global had patch at 59N
 - * Can't include Hudson Bay
 - Double latitudinal resolution near the equator
 - Halve latitudinal resolution in Antarctic
- Coastline at 50m isobath
 - Closed Bering Strait
 - No Sigma (terrain-following) vertical coordinate
- Same 26-layers as 0.08 degree Atlantic
- Two configurations for fixed coordinates:
 - o First Z-level 3 m, increases 1.125x up to 12 m
 - First Z-level 3 m, increases 1.200x up to 60 m
- Also a 40-layer Z-coordinate case:
 - o First Z-level 1 m, increases 1.190x up to 878 m

47N: SCPY (km)

47N: Grid Aspect Ratio (SCPX/SCPY)

Three global resolutions

- 0.72, 0.24 and 0.08 degrees
- 0.72 degrees is inexpensive and non-eddying
 - Only resolution run so far
- 0.08 degrees is expensive and eddy resolving
 - Target resolution for operational use at NAVO
 - Concentrate on Atlantic and Pacific at 0.08 in FY04
- 0.24 degrees is (marginally) eddy permitting
 - Primary resolution in FY04
- Starting point for 0.24 and 0.08 is a 0.04 coastline/bathymetry
 - Interpolated from NRL 2 minute bathymetry
 - Extensive quality control in straits and near coastlines
 - Still under preparation

0.72 degree Global Standard Configuration

- KPP mixed layer
- Energy-Loan ice model
- Sigma-theta (some sigma2 runs)
- Horizontal diffusion chosen to suppress eddies
- Initialize from GDEM3
- ECMWF Reanalysis monthly mean forcing
 - Plus 6-hrly wind anomalies from sep94-sep95
- Longwave correction w.r.t. ECMWF SST
- Inexpensive approximation to COARE 2.6 bulk heat flux parameterization
- Monthly means of 15 largest rivers via precip bogus
- Strong relaxation to monthly GDEM3 SSS
 - o "30 days in 30 m" e-folding time
 - Necessary to prevent SSS drift
 - In addition to E-P forcing (monthly P)

Longwave Radiation and SST

- Longwave Radiation is sum of:
 - Upward blackbody longwave radiation

*
$$Q_{bb} = -0.98 (5.67 \times 10^{-8}) (T_s + 273.16)^4$$

- Downward atmospheric longwave flux
 - * Highly dependent on cloudiness
 - * Unknown dependence on SST (assume independent)
- If longwave was calculated using a SST of T_{so} :

$$\circ Q_{lw}(T_s) = Q_{lw}(T_{so}) + Q_{bb}(T_s) - Q_{bb}(T_{so})
\circ Q_{lw}(T_s) = Q_{lw}(T_{so}) + Q'_{bb}(T_s - T_{so})
\circ Q'_{bb} = -0.98 (5.67 \times 10^{-8}) 4 (T_s + 273.16)^3$$

- Ocean Model Intercomparison Project includes $(Q_{bb}(T_s) Q_{bb}(T_{so}))$ as a longwave correction
- HYCOM uses the approximation (in W/m^2):

$$Q'_{bb} = -4.506 - 0.0554 T_s$$

- This is similar to "30 days in 3.5 m" SST relaxation
 - 10x weaker than typically SSS relaxation

SST Metrics I

- Run for 5 years and form monthly means
 - Takes two days on 64 IBM POWER4 cpus
 - 25 year run gives "similar" SST
- Compare monthly SST to Reynolds and Smith climatology
 - Monthly anomalies
 - Annual mean difference
 - RMS difference
 - Correlation Coefficient
 - Skill Score
 - * Correlation squared Unconditional Bias - Conditional Bias
 - * Maximum is 1, but minium is -infinity
 - * Measure of error w.r.t. seasonal cycle (i.e. w.r.t. standard deviation)
 - Use a minimum of 1 degC for standard deviation
 - Still get poor skill scores near equator

SST Metrics II

- Purpose of comparison is to find "good enough" configuration
 - Assume that "skill" on climatological forcing is maintained on interannual forcing
 - o Is monthly thermal climatological forcing enough?
 - NLOM experience suggests that this is OK, but can't be certain until we run more interannual cases with HYCOM
- Targets:
 - Annual mean error < 0.5 degC
 - Correlation Coefficient > 0.6
 - Skill Score > 0.3
- Use zonal averages to reduce amount of data
 - Average not necessarily best statistic
 - * A few large negative skill scores can dominate the average
 - Same targets as for full field

Simulation History

- Expt 3.3:
 - Best as of February 2003
 - Levitus climatology
 - Annual rivers
 - o "Longwave" via SST relaxation
- Expt 9.0:
 - 40 Z-level case
 - PLM vertical remapping
- Expt 11.0:
 - o Standard sigma-theta case
 - o 3m-12m Z levels
 - Thin deep isopycnal layers

03.3 vs R&S SST: Mean Error

11.0 vs R&S SST: Mean Error

09.0 vs R&S SST: Mean Error

11.0 vs R&S SST: Mean Error yr 25

03.3 vs R&S SST: Skill Score

11.0 vs R&S SST: Skill Score

09.0 vs R&S SST: Skill Score

11.0 vs R&S SST: Skill Score yr 25

Interannual SST Comparisons

- Identify year-long time series at fixed locations
 - Always SST
 - Sometimes atmospheric fields
 - Sometimes subsurface T and/or S
- Compare observations to free-running and assimilative ocean models
 - HYCOM 0.72 global, free running (ECMWF or NOGAPS)
 - NLOM 1/8 near-global, free running ECMWF
 - NCOM 1/8 global, free running FNMOC and assimilative
- NLOM/NCOM 1/8 degree is 1/6 degree equatorial
 - 4x finer than HYCOM

Free-running HYCOM, NCOM and NLOM with no assimilation of SST Comparisons with 86 year-long daily buoy time series (1998–2000)

1/8° NLOM uses wind and thermal forcing from ECMWF
1/8° NCOM uses wind and thermal forcing from NOGAPS
0.72° HYCOM uses wind and thermal forcing from ECMWF

Error statistics with respect to buoy (365 days) ps: HYCOM and NCOM are free—running simulations

Conclusions (SST)

- Global 0.72 degree SST is similar to that in higher resolution Atlantic and Pacific simulations (not shown)
- KPP is performing well in HYCOM
- Thinner deep isopycnal layers are a major improvement on the equator
- Skill in southern mid-high latitudes and northern (Atlantic) high latitudes needs improving
- Most of the SST error is in the annual mean
- Not yet clear how much is due to forcing and how much due to KPP
 - o If it is due to forcing, we can apply a correction

Long Term Trends

- Most cases run only 5 years, but 11.0 has run 25 years
- No significant trend in SST or SSS
- No significant trend in heat flux or E-P
- Probably too little sea ice
 - Antarctic extent shrinks over time
- Some basin-wide averages show a trend
 - SSH increasing by 5 mm/year, rate changing -0.1 mm/year
 - * Steric change, i.e. lighter average density
 - Average T warming by 0.6 degC/century
 - * Even though net heat flux is cooling
 - Average S freshening by 0.05 psu/century
 - * Net E-P is also freshening
- We need to find a way to equilibrate SSH (density)

Thermohaline Circulation

- North Atlantic Overturning StreamFunction
 - Initially very strong in 11.0 (sigma-theta)
 - Weakens over time
- Sigma2* would presumably be better
 - But reference state isn't simultaneously stable in Antarctic and Labrador Sea

Thermobaricity in Global Models

- Need sigma2 to represent AABW
- Need thermobaricity to get a good SSH with sigma2
- MICOM/HYCOM include thermobaricity via "virtual potential density" (sigma2*)
 - Compressibility coefficient from a reference T&S
- Scheme is unstable if actual T&S are very different from reference T&S
- No single reference T&S works globally
- Tried using combination of two reference states
 - 3 degC and 35 psu north of 30N
 - 0 degC and 34 psu south of 30S
 - weighted sum between 30N and 30S
- Tested the method by shrinking the transition zone
 - Expt 16.1: 30S-30N (as above)
 - Expt 16.3: 30S-25S
 - Expt 16.4: 25N-30N
- This approach does not appear viable
- What else can we try?

HOW PLES THE

HOW PARE THE

Future Work

- In FY04, most of global effort will be at 0.24 degrees
 - o Perhaps a 0.08 degree "demo" run
- Continue to concentrate on "free running" SST
 - KPP vs GISS
 - Corrections for atmospheric biases
 - Interannual comparisons to buoys
- Other issues:
 - Add CICE sea ice model
 - * How to evaluate sea ice skill
 - o SSH/density drift
 - Thermobaricity
 - SST assimilation
 - What is the optimal surface salinity forcing