# СТАЛЬ ГОРЯЧЕКАТАНАЯ ДЛЯ АРМИРОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

# Технические условия ГОСТ 5781-82

Hot-rolled steel for reinforcement of ferroconcrete structures. Specifications.

Настоящий стандарт распространяется на горячекатаную круглую сталь гладкого и периодического профиля, предназначенную для армирования обычных и предварительно напряженных железобетонных конструкций (арматурная сталь). В части норм химического состава низколегированных сталей стандарт распространяется также на слитки, блюмсы и заготовки.

(Измененная редакция, Изм. № 4).

#### 1. КЛАССИФИКАЦИЯ И СОРТАМЕНТ

- 1.1. В зависимости от механических свойств арматурная сталь подразделяется на классы A-I (A240), A-II (A300), A-III (A400), A-IV (A600), A-V (A800), A-VI (A1000).
- 1.2. Арматурная сталь изготовляется в стержнях или мотках. Арматурную сталь класса А-I (A240) изготовляют гладкой, классов А-II (A300), A-III (A400), A-IV (A600), A-V (A800), A-VI (A1000) периодического профиля. По требованию потребителя сталь классов А-II (A300), A-III (A400); A-IV (A600) и A-V (A800) изготовляют гладкой.

#### 1.1., 1.2. (Измененная редакция, Изм. № 5).

1.3. Номера профилей, площади поперечного сечения, масса 1 м длины арматурной стали гладкого и периодического профиля, а также предельные отклонения по массе для периодических профилей должны соответствовать указанным в табл. 1.

Таблица 1

| Номер профиля                                  | Площадь поперечного              | Масса 1 м профиля |                          |  |  |
|------------------------------------------------|----------------------------------|-------------------|--------------------------|--|--|
| (номинальный диаметр стержня, d <sub>н</sub> ) | сечения стержня, см <sup>2</sup> | теоретическая, кг | предельные отклонения, % |  |  |
| 6                                              | 0,283                            | 0,222             | +9,0                     |  |  |
| 8                                              | 0,503                            | 0,395             | -7,0                     |  |  |
| 10                                             | 0,785                            | 0,617             |                          |  |  |
| 12                                             | 1,131                            | 0,888             | +5,0<br>-6,0             |  |  |
| 14                                             | 1,540                            | 1,210             | 0,0                      |  |  |
| 16                                             | 2,010                            | 1,580             |                          |  |  |
| 18                                             | 2,540                            | 2,000             |                          |  |  |
| 20                                             | 3,140                            | 2,470             | +3,0                     |  |  |
| 22                                             | 3,800                            | 2,980             | -5,0                     |  |  |
| 25                                             | 4,910                            | 3,850             |                          |  |  |
| 28                                             | 6,160                            | 4,830             |                          |  |  |
| 32                                             | 8,040                            | 6,310             |                          |  |  |
| 36                                             | 10,180                           | 7,990             | +3,0                     |  |  |
| 40                                             | 12,570                           | 9,870             | +3,0<br>-4,0             |  |  |
| 45                                             | 15,000                           | 12,480            |                          |  |  |
| 50                                             | 19,630                           | 15,410            |                          |  |  |
| 55                                             | 23,760                           | 18,650            |                          |  |  |
| 60                                             | 28,270                           | 22,190            | +2,0<br>-4,0             |  |  |
| 70                                             | 38,480                           | 30,210            | <del>-1</del> ,0         |  |  |
| 80                                             | 50,270                           | 39,460            |                          |  |  |

- 1.4. Номинальные диаметры периодических профилей должны соответствовать номинальным диаметрам равновеликих по площади поперечного сечения гладких профилей. (Измененная редакция, Изм. № 3).
- 1.5. Масса 1 м профиля вычислена по номинальным размерам при плотности стали, равной  $7,85 \cdot 10^3$  кг/м<sup>3</sup>. Вероятность обеспечения массы 1 м длины должна быть не менее 0,9. (Измененная редакция, Изм. № 3).
- 1.6. Предельные отклонения диаметра гладких профилей должны соответствовать ГОСТ 2590-88 для обычной точности прокатки.
- 1.7. Арматурная сталь периодического профиля представляет собой круглые профили с двумя продольными ребрами и поперечными выступами, идущими по трехзаходной винтовой линии. Для профилей диаметром 6 мм допускаются выступы, идущие по однозаходной винтовой линии, диаметром 8 мм по двухзаходной винтовой линии.
- 1.8. Арматурная сталь класса А-II (А300), изготовленная в обычном исполнении, профилем, приведенным на черт. 1а, и специального назначения Ас-II (Ас300) профилем, приведенным на чертеже 2а, должна иметь выступы, идущие по винтовым линиям с одинаковым заходом на обеих сторонах профиля. Сталь класса А-III (А400), изготовляемая профилем, приведенным на чертеже 1б, и классов А-IV (А600), А-V (А800), А-VI (А1000) профилем, приведенным на чертеже 1б, 2б, должна иметь выступы по винтовым линиям, имеющим с одной стороны профиля правый, а с другой левый заходы. Арматурную сталь специального назначения класса Ас-II (Ас300) изготовляют профилями, приведенными на черт. 1а или 2а. Профиль, приведенный на черт. 2а, специального назначения изготовляется по согласованию изготовителя с потребителем. Форма и размеры профилей, приведенных на черт. 2а и б, могут уточняться.



Черт. 1



1.9. Размеры и предельные отклонения размеров арматурной стали периодического профиля, изготавливаемого по черт. 1а и б, должны соответствовать приведенным в табл. 2, а по черт. 2а и б — приведенным в табл. 3.

**ΓΟCT 5781-82** 3

| Номер профиля                                     |        | d h         |        | h           |                |                |    |      |                       |      |
|---------------------------------------------------|--------|-------------|--------|-------------|----------------|----------------|----|------|-----------------------|------|
| (номинальный<br>диаметр стержня, d <sub>н</sub> ) | номин. | пред. откл. | номин. | пред. откл. | d <sub>1</sub> | h <sub>1</sub> | t  | b    | <b>b</b> <sub>1</sub> | r    |
| 6                                                 | 5,75   |             | 0,5    | ±0,25       | 6,75           | 0,5            | 5  | 0,5  | 1,0                   | 0,75 |
| 8                                                 | 7,5    |             | 0,75   | ±0,23       | 9,0            | 0,75           | 5  | 0,75 | 1,25                  | 1,1  |
| 10                                                | 9,3    |             | 1,0    |             | 11,3           | 1,0            | 7  | 1,0  | 1,5                   | 1,5  |
| 12                                                | 11,0   | +0,3        | 1,25   |             | 13,5           | 1,25           | 7  | 1,0  | 2,0                   | 1,9  |
| 14                                                | 13,0   | -0,5        | 1,25   |             | 15,5           | 1,25           | 7  | 1,0  | 2,0                   | 1,9  |
| 16                                                | 15,0   |             | 1,5    | ±0,5        | 18,0           | 1,5            | 8  | 1,5  | 2,0                   | 2,2  |
| 18                                                | 17,0   |             | 1,5    | ±0,5        | 20,0           | 1,5            | 8  | 1,5  | 2,0                   | 2,2  |
| 20                                                | 19,0   |             | 1,5    |             | 22,0           | 1,5            | 8  | 1,5  | 2,0                   | 2,2  |
| 22                                                | 21,0   | +0,4        | 1,5    |             | 24,0           | 1,5            | 8  | 1,5  | 2,0                   | 2,2  |
| 25                                                | 24,0   | -0,5        | 1,5    |             | 27,0           | 1,5            | 8  | 1,5  | 2,0                   | 2,2  |
| 28                                                | 26,5   |             | 2,0    |             | 30,5           | 2,0            | 9  | 1,5  | 2,5                   | 3,0  |
| 32                                                | 30,5   |             | 2,0    | 0.7         | 34,5           | 2,0            | 10 | 2,0  | 3,0                   | 3,0  |
| 36                                                | 34,5   | +0,4        | 2,5    |             | 39,5           | 2,5            | 12 | 2,0  | 3,0                   | 3,5  |
| 40                                                | 38,5   | -0,7        | 2,5    | ±0,7        | 43,5           | 2,5            | 12 | 2,0  | 3,0                   | 3,5  |
| 45                                                | 43,0   |             | 3,0    |             | 49,0           | 3,0            | 15 | 2,5  | 3,5                   | 4,5  |
| 50                                                | 48,0   |             | 3,0    |             | 54,0           | 3,0            | 15 | 2,5  | 3,5                   | 4,5  |
| 55                                                | 53,0   | -0,4        | 3,0    |             | 59,0           | 3,0            | 15 | 2,5  | 4,0                   | 4,5  |
| 60                                                | 58,0   | -1,0        | 3,0    | ±1,0        | 64,0           | 3,0            | 15 | 2,5  | 4,0                   | 5,0  |
| 70                                                | 68,0   | -0,5        | 3,0    | ±1,0        | 74,0           | 3,0            | 15 | 2,5  | 4,5                   | 5,5  |
| 80                                                | 77,5   | -1,1        | 3,0    |             | 83,5           | 3,0            | 15 | 2,5  | 4,5                   | 5,5  |

#### Примечание:

По требованию потребителя предельные отклонения размера  $d_1$  не должны превышать предельных отклонений d плюс удвоенные предельные отклонения h.

Таблица 3

| Номер профиля                                     |        | d           |        | h              |                |                |                |                |    |     |                |    | α,    |
|---------------------------------------------------|--------|-------------|--------|----------------|----------------|----------------|----------------|----------------|----|-----|----------------|----|-------|
| (номинальный<br>диаметр стержня, d <sub>н</sub> ) | номин. | пред. откл. | номин. | пред. откл.    | d <sub>1</sub> | h <sub>1</sub> | $\mathbf{h_r}$ | h <sub>B</sub> | t  | b   | b <sub>1</sub> | r  | град. |
| 10                                                | 8,7    |             | 1,6    | 10.5           | 11,9           | 1,6            | 0,6            | 1,0            | 10 | 0,7 | 1,5            | 11 | 50    |
| 12                                                | 10,6   |             | 1,6    | ±0,5           | 13,8           | 1,6            | 0,6            | 1,0            | 10 | 0,7 | 2,0            | 11 | 50    |
| 14                                                | 12,5   | +0,3        | 2,0    |                | 16,5           | 2,0            | 0,8            | 1,2            | 12 | 1,0 | 2,0            | 12 | 50    |
| 16                                                | 14,2   | -0,5        | 2,5    | +0,65<br>-0,85 | 19,2           | 2,5            | 1,0            | 1,5            | 12 | 1,0 | 2,0            | 12 | 50    |
| 18                                                | 16,2   |             | 2,5    |                | 21,2           | 2,5            | 1,0            | 1,5            | 12 | 1,0 | 2,0            | 12 | 50    |
| 20                                                | 18,2   |             | 2,5    |                | 23,2           | 2,5            | 1,0            | 1,5            | 12 | 1,0 | 2,0            | 12 | 50    |
| 22                                                | 20,3   | +0,4        | 2,5    |                | 25,3           | 2,5            | 1,0            | 1,5            | 12 | 1,0 | 2,0            | 12 | 50    |
| 25                                                | 23,3   | -0,5        | 2,5    | 2,5            |                | 2,5            | 1,0            | 1,5            | 14 | 1,2 | 2,0            | 14 | 50    |
| 28                                                | 25,9   |             | 3,0    |                | 31,9           | 3,0            | 1,2            | 1,8            | 14 | 1,2 | 2,5            | 14 | 50    |
| 32                                                | 29,8   | +0,4        | 3,2    | +1,0           | 36,2           | 3,2            | 1,2            | 2,0            | 16 | 1,5 | 3,0            | 14 | 50    |
| 36                                                | 33,7   | -0,7        | 3,5    | -1,2           | 40,7           | 3,5            | 1,5            | 2,0            | 18 | 1,5 | 3,0            | 19 | 50    |
| 40                                                | 37,6   |             | 3,5    |                | 44,6           | 3,5            | 1,5            | 2,0            | 18 | 1,5 | 3,0            | 19 | 50    |

- 1.10. Относительные смещения винтовых выступов по сторонам профиля, разделяемых продольными ребрами, не нормируются. Размеры, на которые не установлены предельные отклонения, приведены для построения калибра и на готовом профиле не проверяются.
- 1.11. Овальность гладких профилей (разность наибольшего и наименьшего диаметров в одном сечении) не должна превышать суммы плюсового и минусового предельных отклонений по диаметру.

# 1.9.-1.11. (Измененная редакция, Изм. № 3).

ΓΟCT 5781-82

- 1.12. Арматурную сталь классов A-I (A240) и A-II (A300) диаметром до 12 мм и класса A-III (400) диаметром до 10 мм включительно изготовляют в мотках или стержнях, больших диаметров в стержнях. Арматурную сталь классов A-IV (A600), A-V (A800) и A-VI (A1000) всех размеров изготовляют в стержнях, диаметром 6 и 8 мм изготовляют по согласованию изготовителя с потребителем в мотках.
- 1.13. Стержни изготовляют длиной от 6 до 12 м:
- мерной длины;
- мерной длины с немерными отрезками длиной не менее 2 м не более 15% от массы партии;
- немерной длины.

В партии стержней немерной длины допускается наличие стержней длиной от 3 до 6 м не более 7% от массы партии. По согласованию изготовителя с потребителем допускается изготовление стержней от 5 до 25 м.

1.14. Предельные отклонения по длине мерных стержней должны соответствовать приведенным в табл. 4. Стержни повышенной точности изготовляют по требованию потребителя.

Таблииа 4

| П тиме оторумый м | Предельные отклоне | ния по длине при точности порезки, мм |
|-------------------|--------------------|---------------------------------------|
| Длина стержней, м | обычной            | повышенной                            |
| до 6 включ.       | +50                | +25                                   |
| св. б             | +70                | +35                                   |

1.15. Кривизна стержней не должна превышать 0,6% измеряемой длины.

#### Примеры условных обозначений

Арматурная сталь диаметром 20 мм, класса А-ІІ (А300):

20 — A-II ΓΟCT 5781-82

Арматурная сталь диаметром 18 мм, класса А-I (А240):

18 — A-I ΓΟCT 5781-82

В обозначении стержней класса A-II (A300) специального назначения добавляется индекс с: Ac-II (Ac300). (Измененная редакция, Изм. № 4).

## 2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Арматурную сталь изготовляют в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 2.2. Арматурную сталь изготовляют из углеродистой и низколегированной стали марок, указанных в табл. 5. Марка стали указывается потребителем в заказе. При отсутствии указания марку стали устанавливает предприятие-изготовитель. Для стержней класса A-IV (A600) марки стали устанавливают по согласованию изготовителя с потребителем.

Таблииа 5

| Класс арматурной стали | Диаметр профиля, мм                | Марка стали                 |
|------------------------|------------------------------------|-----------------------------|
| A-I (A240)             | 6-40                               | Ст3кп, Ст3пс, Ст3сп         |
| A-II (A300)            | 10-40<br>40-80                     | Ст5сп, Ст5пс<br>18Г2С       |
| Ac-II (Ac300)          | 10-32<br>(36-40)                   | 10ГТ                        |
| A-III (A400)           | 6-40<br>6-22                       | 35ГС, 25Г2С<br>32Г2Рпс      |
| A-IV (A600)            | 10-18<br>(6-8)<br>10-32<br>(36-40) | 80С<br>20ХГ2Ц               |
| A-V (A800)             | (6-8)<br>10-32<br>(36-40)          | 23Х2Г2Т                     |
| A-VI (A1000)           | 10-22                              | 22Х2Г2АЮ, 22Х2Г2Р, 20Х2Г2СР |

#### Примечания:

- 1. Допускается изготовление арматурной стали класса А-V (А800) из стали марок 22Х2Г2АЮ, 22Х2Г2Р, 20Х2Г2СР.
- 2. Размеры, указанные в скобках, изготовляют по согласованию изготовителя с потребителем.

(Измененная редакция, Изм. № 3, 4).

2.3. Химический состав арматурной углеродистой стали должен соответствовать ГОСТ 380-88, низколегированной стали — нормам, приведенным в табл. 6.

Таблица 6

| Managa ara ay |               | Массовая до | оля элементов, % |               |
|---------------|---------------|-------------|------------------|---------------|
| Марки стали   | углерод       | марганец    | кремний          | хром          |
| 10ГТ          | не более 0,13 | 1,00-1,40   | 0,45-0,65        | не более 0,30 |
| 18Γ2C         | 0,14-0,23     | 1,20-1,60   | 0,60-0,90        | не более 0,30 |
| 32Г2Рпс       | 0,28-0,37     | 1,30-1,75   | не более 0,17    | не более 0,30 |
| 35ГС          | 0,30-0,37     | 0,80-1,20   | 0,60-0,90        | не более 0,30 |
| 25Γ2C         | 0,20-0,29     | 1,20-1,60   | 0,60-0,90        | не более 0,30 |
| 20ХГ2Ц        | 0,19-0,26     | 1,50-1,90   | 0,40-0,70        | 0,90-1,20     |
| 80C           | 0,74-0,82     | 0,50-0,90   | 0,60-1,10        | не более 0,30 |
| 23Χ2Γ2Τ       | 0,19-0,26     | 1,40-1,70   | 0,40-0,70        | 1,35-1,70     |
| 22Х2Г2АЮ      | 0,19-0,26     | 1,40-1,70   | 0,40-0,70        | 1,50-2,10     |
| 22Х2Г2Р       | 0,19-0,26     | 1,50-1,90   | 0,40-0,70        | 1,50-1,90     |
| 20Χ2Γ2CP      | 0,16-0,26     | 1,40-1,80   | 0,75-1,55        | 1,40-1,80     |

Продолжение табл. б

|             |             |           | Массовая доля эле | ементов, % |       |        |      |
|-------------|-------------|-----------|-------------------|------------|-------|--------|------|
| Марки стали |             |           | алюминий          | никель     | cepa  | фосфор | медь |
|             | титан       | цирконий  | алюминии          |            | не б  | более  |      |
| 10ΓΤ        | 0,015-0,035 |           | 0,02-0,05         | _          | 0,040 | 0,030  | 0,30 |
| 18Г2С       | _           | _         | _                 | 0,30       | 0,045 | 0,040  | 0,30 |
| 32Г2Рпс     | _           | _         | 0,001-0,015       | 0,30       | 0,050 | 0,045  | 0,30 |
| 35ГС        | _           | _         | _                 | 0,30       | 0,045 | 0,040  | 0,30 |
| 25Г2С       | _           | _         | _                 | 0,30       | 0,045 | 0,040  | 0,30 |
| 20ХГ2Ц      | _           | 0,05-0,14 | _                 | 0,30       | 0,045 | 0,045  | 0,30 |
| 80C         | 0,015-0,040 | _         | _                 | 0,30       | 0,045 | 0,040  | 0,30 |
| 23Х2Г2Т     | 0,02-0,08   | _         | 0,015-0,050       | 0,30       | 0,045 | 0,045  | 0,30 |
| 22Х2Г2АЮ    | 0,005-0,030 | _         | 0,02-0,07         | 0,30       | 0,040 | 0,040  | 0,30 |
| 22Х2Г2Р     | 0,02-0,08   | _         | 0,015-0,050       | 0,30       | 0,040 | 0,040  | 0,30 |
| 20Х2Г2СР    | 0,02-0,08   | _         | 0,015-0,050       | 0,30       | 0,040 | 0,040  | 0,30 |

- 2.3.1. В стали марки 20ХГ2Ц допускается увеличение массовой доли хрома до 1,7% и замена циркония на 0,02-0,08% титана. В стали марки 23Х2Г2Т допускается замена титана на 0,05-0,10% циркония. В этом случае в обозначении стали марки 20ХГ2Ц вместо буквы Ц ставят букву Т, стали марки 23Х2Г2Т вместо буквы Т ставят букву Ц. В стали марки 32Г2Рпс допускается замена алюминия титаном или цирконием в равных единицах.
- 2.3.2. Массовая доля азота в стали марки  $22X2\Gamma2A$ Ю должна составлять 0.015-0.030%, массовая доля остаточного азота в стали марки  $10\Gamma T$  не более 0.008%.
- 2.3.3. Массовая доля бора в стали марок  $22X2\Gamma2P$ ,  $20X2\Gamma2CP$  и  $32\Gamma2P$ пс должна быть 0,001-0,007%. В стали марки  $22X2\Gamma2A$ Ю допускается добавка бора 0,001-0,008%.
- 2.3.4. Допускается добавка титана в сталь марок  $18\Gamma 2$ С,  $25\Gamma 2$ С,  $35\Gamma$ С из расчета его массовой доли в готовом прокате 0.01-0.03%, в сталь марки  $35\Gamma$ С из расчета его массовой доли в готовом прокате, изготовленном в мотках, 0.01-0.06%.
- 2.4. Отклонения по химическому составу в готовом прокате из углеродистых сталей по ГОСТ 380-88, из низколегированных сталей при соблюдении норм механических свойств по табл. 7. Минусовые отклонения по содержанию элементов (кроме титана и циркония, а для марки стали 20Х2Г2СР кремния) не ограничивают.

| Элементы | Предельные отклонения, % |
|----------|--------------------------|
| Углерод  | +0,020                   |
| Кремний  | +0,050                   |
| Марганец | +0,100                   |
| Хром     | +0,050                   |
| Медь     | +0,050                   |
| Сера     | +0,005                   |
| Фосфор   | +0,005                   |
| Цирконий | +0,010<br>-0,020         |
| Титан    | ±0,010                   |

#### Примечание:

По согласованию изготовителя с потребителем сталь может изготовляться с другими отклонениями по содержанию хрома, кремния и марганца.

#### (Измененная редакция, Изм. № 3).

- 2.5. Арматурную сталь классов A-I (A240), A-II (A300), A-III (A400); A-IV (A600) изготовляют горячекатаной, класса A-V (A800) с низкотемпературным отпуском, класса A-VI (A1000) с низкотемпературным отпуском или термомеханической обработкой в потоке прокатного стана. Допускается не проводить низкотемпературный отпуск стали классов A-V (A800) и A-VI (A1000) при условии получения относительного удлинения не менее 9% и равномерного удлинения не менее 2% при испытании в течение 12 ч после прокатки.
- 2.6. Механические нормы арматурной стали должны соответствовать нормам, указанным в табл. 8

Таблииа 8

| Класс<br>арматурной |                   | Предел текучести $\sigma_{\tau}$ |                   | менное<br>чивление<br>ыву σ <sub>в</sub> | O I HOCH I CABIOM CONTROL |        | Ударная вязкость<br>при температуре 60°C |                       | Испытание на изгиб в холодном состоянии (с – толщина оправки, |
|---------------------|-------------------|----------------------------------|-------------------|------------------------------------------|---------------------------|--------|------------------------------------------|-----------------------|---------------------------------------------------------------|
| стали               | H/mm <sup>2</sup> | кгс/мм²                          | H/mm <sup>2</sup> | кгс/мм <sup>2</sup>                      | 05, 70                    | Op, 70 | МДж/м <sup>2</sup>                       | кгс°м/см <sup>2</sup> | d – диаметр стержня)                                          |
|                     |                   |                                  |                   |                                          | не менее                  |        |                                          |                       |                                                               |
| A-I (A240)          | 235               | 24                               | 373               | 38                                       | 25                        | _      | _                                        | _                     | 180°; c=d                                                     |
| A-II (A300)         | 295               | 30                               | 490               | 50                                       | 19                        | _      | _                                        | _                     | 180°; c=3d                                                    |
| Ac-II (A300)        | 295               | 30                               | 441               | 45                                       | 25                        | _      | 0,5                                      | 5                     | 180°; c=d                                                     |
| A-III (A400)        | 390               | 40                               | 590               | 60                                       | 14                        | _      | _                                        | _                     | 90°; c=3d                                                     |
| A-IV (A600)         | 590               | 60                               | 883               | 90                                       | 6                         | 2      |                                          |                       | 45°; c=5d                                                     |
| A-V (A800)          | 785               | 80                               | 1030              | 105                                      | 7                         | 2      |                                          |                       | 45°; c=5d                                                     |
| AVI (A1000)         | 980               | 100                              | 1230              | 125                                      | 6                         | 2      | _                                        | _                     | 45°; c=5d                                                     |

### Примечания:

- 1. По согласованию изготовителя с потребителем допускается не проводить испытание на ударную вязкость арматурной стали класса Ас-II.
- 2. (Исключен, Изм. № 3).
- 3. Для арматурной стали класса A-IV диаметром 18 мм стали марки 80С норма изгиба в холодном состоянии устанавливается не менее 30°.
- 4. Для арматурной стали класса A-I (A240) диаметром свыше 20 мм при изгибе в холодном состоянии на 180°; c=2d, класса A-II (A300) диаметром свыше 20 мм c=4d.
- 5. В скобках указаны условные обозначения класса арматурной стали по пределу текучести.

#### (Измененная редакция, Изм. № 1, 3, 5).

Для стали класса, А-II (A300) диаметром свыше 40 мм допускается снижение относительного удлинения на 0,25% на каждый миллиметр увеличения диаметра, но не более чем на 3%. Для стали класса Ac-II (Ac300) допускается снижение временного сопротивления до 426 МПа (43,5 кгс/мм²) при относительном удлинении  $\delta_5$  30% и более. Для стали марки 25Г2С класса A-III (A400) допускается снижение временного сопротивления до 560 МПа (57 кгс/мм²) при пределе текучести не менее 405 МПа (41 кгс/мм²), относительном удлинении  $\delta_5$  не менее 20%.

2.7. Статистические показатели механических свойств стержней арматурной стали периодического профиля должны соответствовать приложению 1, с повышенной однородностью механических свойств — приложению 1 и табл. 9. Вероятность обеспечения механических свойств, указанных в табл. 8, должна быть не менее 0,95. (Измененная редакция, Изм. № 3).

Таблииа 9

|                  |               |                                        | s        |                                                                            | $S_0$         |                                                                                         | S/x                                  |                                     |       | S <sub>0</sub> /~x              |                                     |
|------------------|---------------|----------------------------------------|----------|----------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------|---------------------------------|-------------------------------------|
| Класс            | Номер профиля | для σ <sub>τ</sub> (σ <sub>0,2</sub> ) |          | для $\sigma_{\tau}$ ( $\sigma_{0,2}$ ) для $\sigma_{\scriptscriptstyle B}$ |               | для $\sigma_{_{\! B}}$ для $\sigma_{_{\! T}}$ ( $\sigma_{0,2}$ ) для $\sigma_{_{\! B}}$ |                                      |                                     |       |                                 |                                     |
| арматурной стали | помер профили | М                                      | Па (кгс/ | mm²)                                                                       | МПа (кгс/мм²) |                                                                                         | для $\sigma_{\tau}$ $(\sigma_{0,2})$ | для $\sigma_{\scriptscriptstyle B}$ | для о | $_{r}\left( \sigma_{0,2} ight)$ | для $\sigma_{\scriptscriptstyle B}$ |
|                  |               |                                        |          |                                                                            |               | не бо                                                                                   | лее                                  |                                     |       |                                 |                                     |
| A-II (A300)      | 10-40         | 29 (3)                                 | 29 (3)   | 15 (1,5)                                                                   | 15 (1,5)      | 0,08                                                                                    | 0,06                                 | (                                   | 0,05  | 0                               | ),03                                |
| A-III (A400)     | 6-40          | 39 (4)                                 | 39 (4)   | 20 (2,0)                                                                   | 20 (2,0)      | 0,08                                                                                    | 0,07                                 |                                     | 0,05  | 0                               | ),03                                |
| A-IV (A600)      | 10-32         | 69 (7) 69 (7) 3                        |          | 39 (4)                                                                     | 39 (4) 0,09   |                                                                                         | 0,07                                 | (                                   | 0,06  |                                 | ),05                                |
| A-V (A800)       | 10-32         | 78 (8)                                 | 78 (8)   | 49 (5)                                                                     | 49 (5) 0,09   |                                                                                         | 0,07                                 | (                                   | 0,06  | 0                               | ),05                                |
| AVI (A1000)      | 10-32         | 88 (9)                                 | 88 (9)   | 49 (5)                                                                     | 49 (5)        | 0,08                                                                                    | 0,07                                 | (                                   | 0,05  | 0                               | ),04                                |

#### Примечания:

- $1. \, \mathrm{S}$  среднеквадратическое отклонение в генеральной совокупности испытаний;  $\mathrm{S}_0$  среднеквадратическое отклонение в партии-плавке;  $\mathrm{x}$  среднее значение в генеральной совокупности испытаний;  $\mathrm{x}$  минимальное среднее значение в партии-плавке.
- 2. Для арматурной стали в мотках диаметром 6 и 8 мм допускается повышение норм по S и S<sub>0</sub> на 4,9 МПа (0,5 кгс/мм²).
- 3. (Исключен, Изм. № 5).
- 2.8. На поверхности профиля, включая поверхность ребер и выступов, не должно быть раскатанных трещин, трещин напряжения, рванин, прокатных плен и закатов. Допускаются мелкие повреждения ребер и выступов, в количестве не более трех на 1 м длины, а также незначительная ржавчина, отдельные раскатанные загрязнения, отпечатки, наплывы, следы раскатанных пузырей, рябизна и чешуйчатость в пределах допускаемых отклонений по размерам. (Измененная редакция, Изм. № 2).
- 2.9. Свариваемость арматурной стали всех марок, кроме 80С, обеспечивается химическим составом и технологией изготовления.
- 2.10. Углеродный эквивалент  $C_{_{ЭКВ}}$  ≤ C+ Mn/6+Si/10 для свариваемой стержневой арматуры из низколегированной стали класса A-III (A400) должен быть не более 0,62. (Введен дополнительно, Изм. № 5).

## 3. ПРАВИЛА ПРИЕМКИ

- 3.1. Арматурную сталь принимают партиями, состоящими из профилей одного диаметра, одного класса, одной плавки-ковша и оформленными одним документом о качестве. Масса партии должна быть до 70 т. Допускается увеличивать массу партии до массы плавки-ковша.
- 3.2. Каждая партия сопровождается документом о качестве по ГОСТ 7566-81 с дополнительными данными:
- номер профиля;
- класс;
- минимальное среднее значение  $\tilde{x}$  и среднеквадратические отклонения  $S_0$  в партии величин  $\sigma_{\tau}$  ( $\sigma_{0,2}$ ) и  $\sigma_{B}$ ;
- результаты испытаний на изгиб в холодном состоянии;
- значения равномерного удлинения для стали класса A-IV (A600), A-V (A800), A-VI (A1000).
- 3.3. Для проверки размеров и качества поверхности отбирают:
- при изготовлении арматурной стали в стержнях не менее 5% от партии;
- при изготовлении в мотках два мотка от каждой партии.

(Измененная редакция, Изм. № 3).

3.4. Для проверки химического состава пробы отбирают по ГОСТ 7565-81. Массовую долю алюминия изготовитель определяет периодически, но не реже одного раза в квартал.

3.5. Для проверки на растяжение, изгиб и ударную вязкость от партии отбирают два стержня. Для предприятияизготовителя интервал отбора стержней должен быть не менее половины времени, затраченного на прокатку одного размера профиля одной партии.

(Измененная редакция, Изм. № 3).

3.6. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей повторные испытания проводят по ГОСТ 7566-81.

### 4. МЕТОДЫ ИСПЫТАНИЙ

- 4.1. Химический анализ стали проводят по ГОСТ 12344-88, ГОСТ 12348-78, ГОСТ 12350-78, ГОСТ 12352-81, ГОСТ 12355-78, ГОСТ 12356-81, ГОСТ 18895-81 или другими методами, обеспечивающими требуемую точность.
- 4.2. Диаметр и овальность профилей измеряют на расстоянии не менее 150 мм от конца стержня или на расстоянии не менее 1500 мм от конца мотка при массе мотка до 250 кг и не менее 3000 мм при массе мотка более 250 кг.
- 4.3. Размеры проверяют измерительным инструментом необходимой точности.
- 4.4. От каждого отобранного стержня для испытания на растяжение, изгиб и ударную вязкость отрезают по одному образцу.
- 4.5. Отбор проб для испытания на растяжение, изгиб и ударную вязкость проводят по ГОСТ 7564-73.
- 4.6. Испытание на растяжение проводят по ГОСТ 12004-81.
- 4.7. Испытание на изгиб проводят по ГОСТ 14019-80 на образцах сечением, равным сечению стержня. Для стержней диаметром свыше 40 мм допускается испытание образцов, разрезанных вдоль оси стержня, на оправке, диаметром, уменьшенным вдвое по сравнению с указанным в табл. 4, с приложением усиления изгиба со стороны разреза.
- 4.8. Определение ударной вязкости проводят по ГОСТ 9454-78 на образцах с концентратором вида U типа 3 стержней диаметром 12-14 мм и образцах типа 1 для стержней диаметром 16 мм и более. Образцы изготовляют в соответствии с требованиями ГОСТ 9454-78.
- 4.9. Допускается применять статистические и неразрушающие методы контроля механических свойств и массы профилей.
- 4.10. Кривизна стержней измеряется на длине поставляемого профиля, но не короче 1 м.
- 4.11. Определение статистических показателей механических свойств в соответствии с обязательным приложением 2.
- 4.12. Качество поверхности проверяют без применения увеличительных приборов.
- 4.10.-4.12. (Введены дополнительно, Изм. № 3).
- 4.13. Измерение высоты поперечных выступов периодического профиля следует проводить по вертикальной оси поперечного сечения арматурного проката.

(Введен дополнительно, Изм. № 4).

# 5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Упаковка, маркировка, транспортирование и хранение по ГОСТ 7566-81 с дополнениями:
- концы стержней из низколегированных сталей класса A-IV (A600) должны быть окрашены красной краской, класса A-V красной и зеленой, класса A-VI (A1000) красной и синей. Допускается окраска связок на расстоянии 0,5 м от концов;
- стержни упаковывают в связки массой до 15 т, перевязанные проволокой или катанкой. По требованию потребителя стержни упаковывают в связки массой до 3 и 5 т.

На связки краска наносится полосами шириной не менее 20 мм на боковую поверхность по окружности (не менее ½ длины окружности) на расстоянии не более 500 мм от торца. На мотки краска наносится полосами шириной не менее 20 мм поперек витков с наружной стороны мотка. На неупакованную продукцию краска наносится на торец или на боковую поверхность на расстоянии не более 500 мм от торца. На ярлыке, прикрепленном к каждой связке стержней, наносят принятое обозначение класса арматурной стали (например, A-III) или условное обозначение класса по пределу текучести (A400).

(Измененная редакция, Изм. № 3, 5).

## ТРЕБОВАНИЯ К СТАТИСТИЧЕСКИМ ПОКАЗАТЕЛЯМ МЕХАНИЧЕСКИХ СВОЙСТВ

1. Предприятие-изготовитель гарантирует потребителю средние значения временного сопротивления  $\sigma_{\scriptscriptstyle B}$  и предела текучести (физического  $\sigma_{t}$  и условного  $\sigma_{0.2}$ ) в генеральной совокупности —  $x_{i}$  и минимальные средние значения этих же показателей в каждой партии-плавке — х;; значения которых устанавливаются из условий:

$$\begin{aligned} \mathbf{\bar{x}_i} &\geq \mathbf{x_{i\delta p}} + \mathbf{t} \cdot \mathbf{S} \\ \mathbf{\bar{x}_i} &> 0.9 \mathbf{x_{i\delta p}} + 3 \mathbf{S_0} \\ \mathbf{\bar{x}_i} &\geq \mathbf{x_{i\delta p}} \end{aligned}$$

где  $x_{iбp}$  — браковочные значения величин  $\sigma_{B}$  и  $\sigma_{0,2}$ , указанные в табл. 8 настоящего стандарта; t — величина квантиля, принимаемая равной 2 для классов A-II и A-III и 1,64 для стержней классов A-IV, A-VI.

- 2. Контроль качества показателей механических свойств продукции на предприятии-изготовителе.
- 2.1. Требуемые показатели качества профилей обеспечиваются соблюдением технологии производства и контролируются испытанием согласно требований п. 3.5, пп. 4.4.-4.8.
- 2.2. Величины х<sub>1</sub>, х<sub>2</sub>, S и S<sub>0</sub> устанавливаются в соответствии с результатами испытаний и положений приложения 2.
- 3. Контроль качества показателей механических свойств продукции на предприятии-потребителе.
- 3.1. Потребитель при наличии документа о качестве на продукцию высшей категории качества может не проводить испытания механических свойств.
- 3.2. При необходимости проверки механических свойств от каждой партии проводится испытание шести образцов, взятых из разных пакетов или мотков и от разных профилей, и по результатам проверяется выполнение условий:

$$\begin{array}{c} x_{min} \geq \tilde{\ } x_i \longrightarrow 1.64S_0 \\ \bar{\ } x_6 \geq \tilde{\ } x_i \geq \tilde{\ } x_{i\delta p} \end{array}$$

где x<sub>6</sub> — среднее значение механических свойств по результатам испытаний шести образцов;  $x_{min}$  — минимальное значение результатов испытаний шести образцов.

3.3. Минимальные значения относительного удлинения  $\delta_5$  и равномерного удлинения  $\delta_p$  должны быть не менее значений, приведенных в табл. 8.

(Измененная редакция, Изм. № 3, 5).

ГОСТ 5781-82 10

#### **МЕТОДИКА**

# определения статистических показателей прочностных характеристик механических свойств проката горячекатаного для армирования железобетонных конструкций

Настоящая методика распространяется на горячекатаный, ускоренно-охлажденный, термомеханически и термически упрочненный прокат периодического профиля, изготовленного в мотках или стержнях. Методика применяется при оценке надежности механических свойств в каждой партии-плавке и стали в целом, контроля стабильности технологического процесса.

- 1. Для определения статистических показателей механических свойств (предела текучести физического  $\sigma_{\tau}$  или условного  $\sigma_{0,2}$ , временного сопротивления разрыву  $\sigma_{\scriptscriptstyle B}$ ) используются контрольные результаты испытаний, называемые генеральными совокупностями.
- 2. Соответствие механических свойств проката требованиям нормативно-технической документации определяется на основании статистической обработки результатов испытаний, образующих выборку из генеральной совокупности. Все выводы, результаты и заключения, сделанные на основании выборки, относятся ко всей генеральной совокупности.
- 3. Выборка совокупность результатов контрольных испытаний, образующих информационный массив, подлежащий обработке. В выборку входят результаты сдаточных испытаний проката одного класса, одной марки и способа выплавки, прокатанной на один или группы близких профилеразмеров.
- 4. Выборка, на основании которой производится расчет статистических показателей, должна быть представительной и охватывать достаточно длительный промежуток времени, но не менее трех месяцев, в течение которого технологический процесс не изменяется. При необходимости промежуток времени для выборки можно увеличить. Проверка однородности выборки по нормативно-технической документации.
- 5. Количество партий-плавок в каждой выборке должно быть не менее 50.
- 6. При формировании выборки должно соблюдаться условие случайного отбора проб от партии-плавки. Оценка анормальности результатов испытаний проводится по нормативно-технической документации.
- 7. При статистической обработке определяется среднее значение  $\bar{x}$ , среднее квадратическое отклонение S каждой выборки (генеральной совокупности), среднее квадратическое отклонение внутри партии-плавки  $S_0$ , а также среднее квадратическое отклонение плавочных средних  $S_1$ . Величина  $S_1$  определяется по формуле:

$$S_1 = \sqrt{S^2 - S_0^2}$$

Величины тх, S определяются по нормативно-технической документации.

- 8. Проверку стабильности характеристик х и S проводят в соответствии с ОСТ 14-34-78.
- 9. Величина  $S_0$  определяется для ускоренно-охлажденной, термомеханически и термически упрочненной арматурной стали только экспериментальным методом, для горячекатаной экспериментальным методом и методом размаха по формуле:

$$S_0^2 = \frac{\varpi^2 + S_\omega^2}{2}$$

где  $\varpi$  и  $S_{\omega}$  — соответственно среднее значение и среднее квадратическое отклонение распределения размаха по двум испытаниям от партии. Минимальное значение  $S_0$  равно 1.

- 10. Определение величины  $S_0$  экспериментальным методом производится не менее чем на двух плавках для каждой марки стали, класса и профилеразмера проката путем случайного отбора не менее 100 проб от каждой плавки.
- 11. Величина минимального среднего значения прочностных характеристик ( $\sigma_{\tau}$  ( $\sigma_{0,2}$ ),  $\sigma_{B}$ ) в каждой партии-плавке  $\tilde{x}_{2}$  определяется из условия  $\tilde{x}_{1} = \tilde{x} t \cdot S_{1}$ , где t величина квантиля 1,64 для вероятности 0,95.

12. Минимальное значение результатов испытаний на растяжение двух образцов (n=2) каждой партии, подвергаемой контролю, должно быть не менее  $x_{min}$ , определяемого по формуле:

$$x_{min} \ge \tilde{x}_i - 1.64S_0$$

13. Для обеспечения гарантии потребителю механических свойств должны удовлетворяться следующие условия:

$$\begin{split} \tilde{\boldsymbol{x}}_i &\geq \boldsymbol{x}_{i\delta p} + 1.64\boldsymbol{S}_0; \\ \tilde{\boldsymbol{x}}_i &\geq \boldsymbol{x}_{i\delta p}; \\ \tilde{\boldsymbol{x}}_i &\geq 0.9\boldsymbol{x}_{i\delta p} + 3\boldsymbol{S}_0, \end{split}$$

где  $x_{i\delta p}$  — браковочное значение  $\sigma_{\tau}$  ( $\sigma_{0,2}$ ) и  $\sigma_{\text{в}}$ , указанное в соответствующей нормативно-технической документации. (Введено дополнительно, Изм. 3).

ΓΟCT 5781-82

# ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. Разработан и внесен Министерством черной металлургии СССР, Госстроем СССР. Разработчики: Н. М. Воронцов, к.т.н., И. С. Гринько, к.т.н., К. Ф. Перетятько, Г. И. Снимщикова, А. Г. Большова, Е. Д. Гавриленко, к.т.н., К. В. Михайлов, д.т.н., С. А. Маданян, к.т.н., Н. М. Мулин, к.т.н., В. З. Мешков, к.т.н., Б. П. Горячев, к.т.н., Б. Н. Фридлянов, В. И. Петина.
- 2. Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 17.12.1982 № 4800.
- 3. Взамен ГОСТ 5.1459-72, ГОСТ 5781-75.
- 4. Ссылочные нормативно-технические документы:

| Обозначение НТД,<br>на который дана ссылка | Номер пункта  | Обозначение НТД,<br>на который дана ссылка | Номер пункта |
|--------------------------------------------|---------------|--------------------------------------------|--------------|
| ГОСТ 380-88                                | 2.3, 2.4      | ГОСТ 12348-78                              | 4.1          |
| ГОСТ 2590-88                               | 1.6           | ГОСТ 12350-78                              | 4.1          |
| ГОСТ 7564-73                               | 4.5           | ГОСТ 12352-81                              | 4.1          |
| ГОСТ 7565-81                               | 3.4           | ГОСТ 12355-78                              | 4.1          |
| ГОСТ 7566-81                               | 3.2, 3.6, 5.1 | ГОСТ 12356-81                              | 4.1          |
| ГОСТ 9454-78                               | 4.8.          | ГОСТ 14019-80                              | 4.7          |
| ГОСТ 12004-81                              | 4.6           | ГОСТ 18895-81                              | 4.1          |
| ГОСТ 12344-88                              | 4.1           | OCT 14-34-78                               | Приложение 2 |

- 5. Ограничение срока действия снято по решению Межгосударственного совета по стандартизации, метрологии и сертификации (протокол 3-93 от 17.02.1993).
- 6. Переиздание (декабрь 1993 г.) с Изменениями № 1, 2, 3, 4, 5, утвержденными в феврале 1984 г., июне 1987 г., декабре 1987 г., октябре 1989 г., декабре 1990 г. (5-84, 11-87, 3-88, 1-90, 3-91).

ΓΟCT 5781-82