(19) 日本国特許庁 (JP)

①特許出願公開

⑫ 公開特許公報(A)

昭58—110417

⑤ Int. Cl.³C 01 B 33/141

識別記号

庁内整理番号 7310-4G 43公開 昭和58年(1983)7月1日

発明の数 1 審査請求 未請求

(全 6 頁)

極シリカゾルの製造法

顧 昭56-204699

②出 願 昭56(1981)12月18日

⑫発 明 者 高瀬雄造

東京都荒川区東尾久7丁目2番 35号旭電化工業株式会社内

⑫発 明 者 三輪求

東京都荒川区東尾久7丁目2番

35号旭電化工業株式会社内

⑫発 明 者 多田修一

東京都荒川区東尾久7丁目2番35号旭電化工業株式会社内

⑪出 願 人 旭電化工業株式会社

東京都荒川区東尾久7丁目2番

35号

⑩代 理 人 弁理士 古谷馨

明 細 嘗

1. 発明の名称

20特

シリカゾルの製造法

2. 特許請求の範囲

- 活性な酸性シリカソル水溶液を70℃以上のアルカリ水溶液に、添加速度が1分間当たり酸性シリカソル水溶液中のシリカソル(810g換算)とアルカリ水溶液中のアルカリ(R20換算、Rはアルカリ金属又はMEI)のモル比(810g/R20)が10以下となる様に加えて安定なシリカソル水溶液を得るに瞬して、酸性シリカソル水溶液の添加をアルカリ金属の可溶性塩40~1000 ppm の存在下で行うことを特徴とするシリカソルの製造法。
- 2 アルカリ金属の可溶性塩がリチウム、ナトリウム、カリウム又はセシウムの塩酸、健康、 硝酸、炭酸、アルミン酸又はリン酸塩である 特許請求の範囲第1項記載の製造法。
- 5 アルカリ金属の可溶性塩が酸性シリカゾル 水溶液に加えられる特許請求の範囲第1項記

載の製造法の

- 4 アルカリ金属の可溶性塩がアルカリ水溶液 に加えられる特許請求の範囲第1項配数の製造法。
- 5 得られたシリカゾル水溶液を更に濃縮する 特許請求の範囲第1項記載の製造法。
- 6 機能方法が限外沪過法又は蒸発機能法である特許請求の範囲第5項記載の製造法。
- 7 更に 7 0 ℃以上で 0.5 ~ 4 時間 熱処 場を行 う 特許請求の範囲第 1 項記載の製造法。
- 3. 発明の詳細な説明

本発明はシリカゾルに含まれるシリカ粒子の 粒子径を成長せしめ、所望の粒子径で粒子後分 布の狭いシリカ粒子からなるシリカゾルを製造 する方法に関する。

向、本明細書で述べるシリカの平均粒子優とは、メテルレッド吸着法により側定された表面積 B (m²/ε)を次式に基づき粒子後 d (mμ) に換算したものである。

$$d(m\mu) = \frac{2720}{8(m^2/r)}$$

特開昭58-110417(2)

又、シリカの粒子径分布とは、電子顕微鏡に より測定した値を示す。

一般にシリカグルの製法は建酸ナトリウム等の建プルカリ金属等を原準とし、イオン交換塩で、 2 年齢を原準を原料とし、イオンの機構を原料を原料を受ける。 2 年齢をの手法を利いて、 2 年齢をの手法を利いて、 3 年齢をできる。 3 年齢をできる。 3 年齢をできる。 3 年齢をできる。 3 年齢をできる。 3 年齢を必要をできる。 3 年齢を必要をできる。 3 年齢を必要をできる。 3 年齢ののできる。 3 年齢ののできる。 4 年齢ののできる。 4 年齢ののできる。 4 年齢ののできる。 4 年齢のののできる。

これらの方法によつて製造されたシリカソル 水溶液中のシリカ粒子の平均粒子径は一般に10 ~14mmであり、しかも粒子径分布の広いもの が多い。この様なものはシリカソルの用途に応 じ所望の粒子径のものの提供を充分果たすこと ができないばかりでなく、粒子径が小さいこと

シリカゾルの安価を製造方法を見い出すに至り 本発明を完成した。

即ち、本発明の方法は、活性な微性シリカゾル水溶液を70℃以上のアルカリ水溶液に、添加速度が1分間当り酸性シリカゾル水溶液中のシリカゾル(8102 換算)とアルカリ水溶液中のアルカリ(R20換算、Rはアルカリ金属又はNH4)のモル比(8102 / R20)が10以下となる様に加えて安定なシリカゾル水溶液を得るに際して、酸性シリカゾル水溶液の添加をアルカリ金属の可溶性塩40~1000 ppm の存在下で行うことを特徴とするものである。

本発明で用いられる活性な酸性シリカソル水 お液とは例えばアルカリ金属強酸塩を水素型の 陽イオン交換樹脂で反応処理して得られる酸性 シリカゾル水溶液等の pB4 以下の非常に不安定 な酸性シリカゾル水溶液をさす。 この時の酸性 シリカゾル水溶液中の強酸(810₂)濃度は通常 2~10 5(重量基準、以下同じ)が普通である。 と粒子後分布が大きいことから高濃度に濃縮した場合ゲル化し易く、又、高粘稠物となり易い欠点がある。

本発明者らは、工業的に有利な方法でシリカ粒子後の増大及び粒子後分布のせまいシリカゾルの製造方法について値々検討した結果、円滑に粒子径を増大せしめ且つ粒子径分布のせまい

本発明では酸性シリカゾル水溶液及び/又はアルカリ水溶液中に 4 0 ~1 0 0 0 ppm のアルカリ金属の可溶性塩を存在せしめてシリカゾルを

このアルカリ金属の可裕性塩としてはリチウム、ナトリウム、カリウム又はセシウムの塩酸、砂酸、アルミン酸塩、が好ましいものとして挙げられ、更にこのアルカリ金属の可俗性塩は、単独もしくは複数塩で40~1080ppmが好ましく、40~500ppm、なるべくは50ppm以上がより好ましい。40ppm未満にかいては触ばの効果を発揮できず、粒子極の小はたいでものは必要十分でありこれ以上多量加えてもその効果は出ないからである。

このアルカリ金属可溶性塩の酸性シリカソル 水溶液への添加方法としては酸性シリカソル水 溶液に直接もしくは水で一度溶解希釈した後加 えてもよく、更に又、アルカリ水溶液に酸性シ リカゾル水糖液を連続的に添加する直前に混合 しても良い。

このアルカリ金属 可溶性塩の量と酸性シリカソル水溶液中の速酸 (810g) 濃度と安定化とのたシリカゾル水溶液中のシリカ平均粒子径との間には重要な関係がある。即ち、アルカリ金属可溶性塩の濃度の増加にともない、安定化されたシリカゾル水溶液中のシリカ粒子径が増大する。アルカリ金属可溶性塩の働く機構がどのシラスものであるかさだかではないが、 建酸のシラノール基の水酸基脱水線合に一種の触媒として重要な働きをもつているものと考えられる。

本発明にかいてアルカリ等の存在下でアルカリ金属可溶性塩を含んだ酸性シリカゾル水溶液を安定なシリカゾル水溶液に変える安定化槽は通常、槽容量の1/10~1/2の水溶液をみたし70℃以上の温度で十分攪拌する。安定化槽中の水溶液としては、モル比 8102/R20 が 0~200、8102 濃炭 0~4 0 5、R20 濃炭 0.0 1~1.0 5のものが良い。R20 微としては NaOH, LioH,

この場合の 8102 とは、あくまでも連続的に安定化槽に添加される酸性シリカゾル水薔薇中の 建設をさし、既に安定化槽中に存在する水薔薇 中の建酸分は含まない。なぜならば、安定化槽 中の水薔薇中に存在する強酸はすぐに安定化さ れコロイド粒子に成長しているからである。

安定化槽への酸性シリカゾル水溶液の添加は

KOH, OBOH, NH, OH, 四級アルキルアンモニウムハイドライド, 及びこれらの建酸塩が挙げられる。又、かかる安定化槽中のアルカリ水移蔵中にアルカリ金属可啓性塩を入れても良い。

更に又、本発明の方法によつて得られた安定なシリカゾル水溶液を安定化槽に入れ、更に建酸ナトリウム等のアルカリを添加し、との中にアルカリ金属可溶性塩を含んだ酸性シリカゾル水溶液を上記 8102 / R20 のモル比で連続的に添加していくこともできる。

更に又、アルカリ金属可溶性塩を含んだ酸性シリカゾル水溶液をアルカリ水溶液に連続的に 添加する時において、アルカリ水溶液の温度は 7 0 で以上に保つ必要があり、これ以下では、シリカ粒子の成長があそく、不適当である(更に好ましくは 8 0 で以上である)。又、酸酸性シリカゾル水溶液をアルカリ水溶液では、安定化されたシリカゾル水溶液中のシリカ粒子分布と重要な関係があり、アルカリ水溶液中に 1 分間当り酸酸性シリカゾル

戦 終 製 品 と して 望 み うる 610_2 $\angle R_2$ 0 モ ル 比 の と ころで 止 め れ ば 良 い が モ ル 比 2 0 \sim 1 0 0 0 が 好 ま し ζ 、 4 0 \sim 500 が よ り 好 ま し ζ 。

安定化槽で安定化されたシリカゾル水解液は、そのまま冷却しても十分安定であるが、好ましくは 0.5~ 4 時間、 7 0 ℃以上の温度で更に動処理した方がより、シリカ粒子の粒子径分布がせまくなる。

この様にして得られたシリカゾル水溶液を常法の蒸発濃縮法、もしくは限外炉過法により農 縮して本発明の粒子径のコントロールされたシ リカゾル水溶液を得る。

触媒としてシリカゾル水解板の中に入つているアルカリ金属可溶性塩は少量であり、使用上間組はないが、場合によつては水酸基型の陰イオン交換樹脂や活性白土の様な吸着剤により処理して取り除くこともできる。

本発明はシリカゾルに含まれるシリカ粒子の 粒子径を成長せしめ任意の粒子径で、しかも粒 子径分布の狭いシリカ粒子からなるシリカゾル をより工業的、経済的に有利な方法で提供するものであり、以下製造例、実施例をもつて本発明を説明するが、本発明はこれらの範囲にとどまるものではない。

製造例 1

塩化ナトリウム (特級) 1 1.7 *を蒸留水に とかし塩化ナトリウム 1 1.7 *の水溶液を得た。 これを触媒水溶液 I とする。

上記、酸性シリカゾル水溶液 400 m に触載水溶液 I 0.4 m を加えて触鉄入り酸性シリカゾル水溶液約 400 m (810₂ 6.0 m 、 NaCs 117 ppm)を得た。

継水溶液 I 0.8 『を加え、触媒入り酸性シリカソル水溶液約 400 『を得た。この触媒入り酸性シリカソル水溶液 400 『を 9 0 ℃に保ちつつ十分に提押されている Ne₂ ○ 0.51 ★水溶液 100 『の中に 1 分間当り 1 0 『/分の速度で添加した。 協加は約 4 0 分かかり、次いでそのまま 9 0 ℃ 一 1.5 時間提押して冷却し、安定なシリカソル水溶液 500 『を得た。

製造例 4

製造例3の中で触媒水溶液Iの添加量を 1.2 ・にしたほかは全て同じ処理をした。

製造例 5

製造例1の中で触媒水溶液Iを健酸ナトリウム14.25水溶液(以後触媒水溶液Iという) に変えたほかは全て同じ処理をした。

製造例 6

製造例1の中で触線水溶液Iを塩化カリウム 14.9 多水溶液(以後触線水溶液 E という)に 変えたほかは全て同じ処理をした。

製造例 7

この触媒入り酸性シリカゾル水俗液 400 ・を9 0 ℃に保ちつつ十分攪拌されている km2 0 0.31 多水溶液 100 * の中に 1 分間 2 0 * /分の速度で磁加した。磁加は約 20分で終わり、次いでそのまま 9 0 ℃、 2 時間攪拌して冷却し安定なシリカゾル水溶液 500 * を得た。

製造例 2

製造例1で用いたものと同じ酸性シリカゾル水溶液 400 * に製造例1で用いたものと同じ触離水溶液 I 0.2 * を加え、触離入り酸性シリカゾル水溶液約 400 * を得た。この触媒入り酸性シリカゾル水溶液 400 * を90 でに保ちつつ十分に攪拌されている Na2O 0.51 多水溶液 100 * の中に 1 分間あたり、5 * /分の速度で添加した。添加は約 8 0 分かかり、次いでそのまま90 で、1 時間攪拌して冷却し安定なシリカゾル水溶液 500 * を得た。

製造例 5

製造例1で用いたものと同じ酸性シリカゾル 水溶液 400 m に製造例1で用いたものと同じ触

製造例 5 で得られた安定なコロイダルシリカ9 6.5 * に3 号注当 3.5 * を加えて安定化槽に入れるアルカリ水溶液(8102 5.6 %、 Ma20 0.87 %、 MaC4 180 ppm)を調整した後、酸性シリカソル水溶液 400 * に触鰈水溶液 I 0.4 * を加えて、触鰈入り酸性シリカソル水溶液約 400 * (8102 6.0 %、 MaO4 117 ppm)を得た。この触鰈入り酸性シリカソル水溶液 400 * を90℃に保ちつつ十分に攪拌されているアルカリ水溶液 100 * (8102 5.6 %、 Ma20 0.57 %、 MaO4 180 ppm)の中に 1 分間当り 2 0 * /分の速度で添加した。添加は約 2 0 分で終わり、次いでそのまま90℃、 2 時間攪拌して冷却し安定なシリカゾル水溶液 500 * を得た。

比較製造例 1

製造倒 1 で用いたものと同じ軟性シリカゾル 水溶液 400 * を、 9 0 ℃に保ちつつ十分提押されている Na₂ O 0.51 ダアルカリ水溶液 100 * 中に 1 分間当り 2 0 * / 分の速度で添加した。添加は約 2 0 分で終わり、次いでそのまま、 9 0 で、2時間攪拌して冷却し安定なシリカゾル水 軽液 500 / を得た。

比較製造例 2

製造例1の中で触媒水溶液Iの量を0.04 P に変えたほかは製造例1と全く同じ操作を行つ て安定なシリカゾル水溶液500 Pを得た。

比較製造例 3

製造例1で用いた触棋入り酸性シリカゾル水解散 400 『を9 0 ℃に保ちつつ十分に提押されている Maz O 0.31 ラアルカリ水溶液 100 『中に1分間当り B 0 』/分の速度で添加した。添加が速いのでアルカリ水溶液の温度は一時的に80℃に下がつた。又、局部的にケイ酸のゲル化物もできたが、提押には問題とならなかつた。添加料了後 9 0 ℃で 2 時間提押して冷却し安定なシリカゾル水溶液を得た。

比較製造例 4

製造例 1 で用いた触媒入り酸性シリカゾル水 治液 400 * を 4 0 ℃に保ちつつ十分に提拌されている Na,0 0.51 % アルカリ水溶液 100 * の中 に1分間当り20 V/分の速度で臨加した。 額加は約20分で終了した。その使1℃/分の速度で全体を昇温した。温度が60℃になつた時全体がグル化した。そのまま2時間攪拌したらグルは再溶解した。更に昇温して90℃にし90℃で1時間攪拌して冷却し安定なシリカゾル500 Vを得た。

以上の結果を表ー1に示す。

lei E	_	1

								_								
		微性》	ノリカゾ	ル水溶液	安定化槽中の アルカリ水裕液				蘇 加 連 度 級加モル比		煞 処 埋		安定化したシリカゾル水裕液			
		#	810g (4)	触 媒 (ppm)	#	Na ₂ 0	触集 (ppm)	温度 (C)	(9/分)	(B102/R20)/33	温度 (℃)	時間 (bra)	810 ₂ (4)	R ₂ O (≸)	モル比 8102/K20	不純物 (ppm)
製造	69 1	400	6.0	Na.C.# 117	100	0.3 1	_	90	2 0	4	9 0	2	4.B	0.062	8 0	NaC&
. ,	2	400	6.0	NaO& 59	100	0.5 1	-	9 0	5	1	9 0	1	4.8	0.062	8 0	NaC&
,	5	400	6.0	Na.O.	100	0.5 1		90	1 0	2	90	1,5	4.8	0.062	8 0	Na C & 182
,	4	400	6.0	Na0#	100	0,5 1		90	1 0	2	9 0	1,5	4.8	0.062	8 0	Na.O.€ 281
•	5	400	6.0	Na 2 80 4	100	0.5 1	-	90	2 0	4,	90	2	4.8	0.062	8.0	Na 2 80
. ,	6	400	6.0	KO# 149	100	0.3 1	_	9 0	2 0	4	9 0	2	4.8	0.062	8 0	KO.# 119
,	7	400	6.0	N±0#	100	Na ₂ O 0,57 % 81O ₂ 5,6 %	700	9 0	2 0	3,5 5	9 0	2	5.92	0,074	8 3	Na 0 &
比較製造	64 1	400	6.0	-	100	0.5 1	-	9 0	2 0	4	9 0	2	4.8	0.062	8 0	_
, ,	2	400	6.0	Na.C.# 11,7	100	0.5 1	-	90	2 0	4	9 0	2	4.8	0.062	8 0	Na C &
	5	400	6.0	Na0#	100	0,5 1	-	90	8.0	1 6	一部	グル化	4.8	0.062	в 0	Ne C &
,	4	400	6,0	Na 0.4	100	0,3 1	_	4 0	2 0	4	一度 解 と 9 0	ゲル化 う後 2	4.8	0,062	8 0	Na G.L 94
		1	l .	1	1	1	1	1	1 .	1		1	4			

実施例1~7,比較例1~4

製造例 1 ~ 7 及び比較製造例 1 ~ 4 によつて得られたシリカソル水溶液を 810₂ 40 がまで蒸発機能した。その結果を表-2 に示す。

表-2から明らかなように本発明の方法は比較例に比べて粘度が低く、シリカ粒子径が大きくしかも粒子径分布巾が小さいシリカゾル水溶液が得られることがわかる。

表 一 2

/		安定化され	t		换	糋 液	組	成	*	シリカの平均粒子色	シリカの 粒子径分布
		シリカゾル	液	810 ₂ (\$)	Na20 (≰)	モル比 (8102/R20)	不 (名)	לאלי (מיסק קי (מיסק קי	粘 度 (20℃,cp)	(メチルレッド法) (m µ)	(電子顕微鏡)
実施例	1	製造例	1	4 0	0.5 2	8 0	Na C.	785	2.6	1 8,7	15~21
•	2	,	2	4 0	0,5 2	8 0	Na C #	392	5.2	1 4.3	1 1 ~ 1 7
,	3	,	8	4 0	0.5 2	6 0	NaOL	1570	2.3	2 3.8	20~27
,	4	,	4	4 0	0,5 2	8 9	Na C &	2340	2.2	2 7.5	2 4 ~ 5 0
,	5	,	5	4 0	0.5 2	8.0	Na.2 80 4	950	3.0	1 8.0	15~22
,	6	,	6	4 0	0,5 2	8 0	KO.	992	2.9	1 8.4	15~22
,	7	,	7	4 G	0,50	8 3	Nace	878	2.5	1 9,8	17~22
比較多	1 1	比較製造例	1	4 0	0,5 2	8 0	_	_	214	8.8	5~10
•	2	,	2	4 D	0,5 2	8 0	NeCe	7 8,3	180	9.2	7~12
	5	•	5	4 0	0,5 2	8 0	NaCs	783	40	1 4,0	8~20
	4	,	4	4 0	0,5 2	8 0	NaOs	783	5 3	1 3,5	8~20