The srdp-mathematik package v1.11.0

Documentation

Christoph Weberndorfer Dezember 2022

Befehle und Unterstützung zur Erstellung von Beispielformaten im Rahmen der standardisierten schriftlichen Reife- und Diplomprüfung (sRDP) in Mathematik, gemäß den Vorlagen des Bundesministeriums für Bildung, Wissenschaft und Forschung (bmbwf).

1	Allg	gemeine I	Befehle	1
	1.1	Beispielu	mgebungen	1
		1.1.1 \\	begin{beispiel} \end{beispiel}	1
		1.1.2	begin{langesbeispiel} \end{langesbeispiel}	2
		1.1.3 \r	notenschluessel	2
		1.1.4	individualnotenschluessel	4
		1.1.5	beurteilung	5
		1.1.6	individualbeurteilung	5
	1.2	Paketopt	ion – Lösungseingabe: [solution_on/off]	6
		1.2.1 \a	antwort	6
		1.2.2 \a	antwortzeile	7
	1.3	Paketopt	ion - Erstellung von Gruppen: [random=0,1,2,]	7
		1.3.1 G	ruppenvariation von offenen Aufgabenformaten	7
	1.4	Paketopt	ion - Informationseingabe: [info_on/off]	8
	1.5	Weitere a	allgemeine Befehle	8
		1.5.1	leer	8
		1.5.2 \m	meinlr	8
		1.5.3 \r	meinlcr	9
		1.5.4	dint und \dx	9
		1.5.5	degre	10
		1.5.6	stretchstring	10
		1.5.7 \r	parallellines	11

2	Typ)-1-A u	fgaben	11
	2.1	\mult	iplechoice	12
		2.1.1	Add-on: \langmultiplechoice	15
	2.2	\luec	kentext	16
		2.2.1	\lueckentext - Option: Variable Breiten der Boxen	17
		2.2.2	\lueckentext - Option: Englischer Lückentext	18
	2.3	\zuor	dnen	18
		2.3.1	\zuordnen - Option: Variable Breiten der Boxen	19
3	Typ	o-2-Au	fgaben	21
	3.1	\begi	n{aufgabenstellung} \end{aufgabenstellung}	21
		3.1.1	\item und	21
		3.1.2	Ausgleichspunkte - \Aitem und	21
	3.2	\begi	n{loesung} \end{loesung}	21
Ei	nfüg	en von	GeoGebra-Grafiken	23

1 Allgemeine Befehle

Die allgemeinen Befehle erleichtern das Erstellen von Tests, Schularbeiten Prüfungen mithilfe einiger wichtigen Strukturen. Sie sollten stets verwendet werden, um die volle Funktionsfähigkeit dieses Pakets auszunutzen.

1.1 Beispielumgebungen

Jedes Beispiel sollte innerhalb einer Beispielumgebung gesetzt werden, welche bei der Formatierung und der Verarbeitung der Punkte unterstützt. Dabei werden zwei Beispiel-Typen unterschieden: beispiel und langesbeispiel.

1.1.1 \begin{beispiel} \ldots \end{beispiel}

Die beispiel-Umgebung dient zur Erstellung eines Beispiels einer Schularbeit, einer Prüfung, usw. Dabei sind praktisch alle Funktionen von LaTeX, wie Text, Formeln oder Grafiken möglich. Diese Umgebung erlaubt jedoch keinen Seitenumbruch! Die Beispiele werden automatisch nummeriert.

EINGABE:

\begin{beispiel}{6} %PUNKTE DES BEISPIELS

In diesen Bereich kommt das Beispiel. Dabei kann ein beliebig langer Text (ohne Seitenumbruch) geschrieben werden. Die Spalte mit den Punkten wird dabei immer frei gehalten. Aber auch mathematische Formeln sind möglich: $\frac{x^2+x+5}{\sqrt{x^3}}$.

\end{beispiel}

Ausgabe:

1. In diesen Bereich kommt das Beispiel. Dabei kann ein beliebig langer Text (ohne Seitenumbruch) geschrieben werden. Die Spalte mit den Punkten wird dabei immer frei gehalten. Aber auch mathematische Formeln sind möglich: $\frac{x^2+x+5}{\sqrt{x^3}}$

1.1.2 \begin{langesbeispiel} \dots \end{langesbeispiel}

Die langesbeispiel-Umgebung dient ebenso zur Erstellung eines Beispiels, funktioniert analog, erlaubt aber im Gegensatz zur beispiel-Umgebung Seitenumbrüche. Auch lange Beispiele werden weiterführend nummeriert.

EINGABE:

\begin{langesbeispiel} \item[8] %PUNKTE DES BEISPIELS

In diesen Bereich kommt das Beispiel und funktioniert praktisch analog zur beispiel-Umgebung. Ist das Beispiel jedoch länger als eine Seite (z.B bei Typ-2 Aufgaben), werden Seitenumbrüche automatisch gemacht. Auch hier sind mathematische Formeln möglich:

 $\frac{x^2+x+5}{\sqrt{x^3}}$

\end{langesbeispiel}

Ausgabe:

2. In diesen Bereich kommt das Beispiel und funktioniert praktisch analog zur beispiel-Umgebung. Ist das Beispiel jedoch länger als eine Seite (z.B bei Typ-2 Aufgaben), werden Seitenumbrüche automatisch gemacht. Auch hier sind mathematische Formeln möglich: $\frac{x^2+x+5}{\sqrt{x^3}}$.

1.1.3 \notenschluessel

Werden für alle Beispiele die beispiel- oder die langesbeispiel-Umgebung verwendet, wird die Gesamtpunktezahl sowie der Notenschlüssel automatisch berechnet. Die Werte in Klammer geben dabei den prozentualen Notenschlüssel vor und können beliebig variiert werden:

Ausgabe:

Erreichte Punkte	Gesamt	Not	te	
	48			
Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
48 - 44	43 - 39	38 - 31	30 - 24	unter 24

Der Befehl notenschluessel bietet auch die Eingabe von drei unterschiedlichen Optionen, die alle einzeln oder gemeinsam verwendet werden können. Wichtig: Wird Option 3 benötigt (jedoch Option 1 & 2 nicht) müssen die Optionen 1 & 2 jeweils mit leerer Klammer [] angegeben werden.

\notenschluessel - Option 1: Halbe Punkte-Schritte

Durch die Option 1 $\cite{L1/2}$ wird die Anzeige auf halbe Punkte-Schritten geändert.

EINGABE:

 $\notenschluessel[1/2]{0.91}{0.8}{0.64}{0.5}$

Ausgabe:

Erreichte Punkte	Gesamt	No	te	
	48			
Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
48 - 44	43,5 - 39	38,5 - 31	30,5 - 24	unter 24

\notenschluessel - Option 2: Prozentanzeige

Die Option 2 [prozent] ergänzt die erste Zeile des Notenschlüssel mit einer prozentuellen Angabe. EINGABE:

 $\notenschluessel[][prozent]{0.91}{0.8}{0.64}{0.5}$

Ausgabe:

Erreichte Punkte	Prozent	Gesamt	N	Vote
		48		
Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
48 - 44	43 - 39	38 - 31	30 - 24	unter 24

\notenschluessel - Option 3: Standard der Mittelschule

Die Option 3 ms ermöglicht die Darstellung des Notenschlüssels entsprechend des Standards der Mittelschule.

EINGABE:

 $\notenschluessel[][][ms]{0.91}{0.8}{0.64}{0.5}$

Ausgabe:

Erreichte Punkte	Gesamt	No	te	
	48			
		Befriedigend	Genügend	Nicht genügend
		38 - 31	30 - 24	unter 24

1.1.4 \individualnotenschluessel

In manchen Fällen ist die automatische Berechnung der Punkte durch die Prozentangaben nicht erwünscht. der Befehl individualnotenschluessel ermöglicht daher die individuelle Eingabe aller Punktegrenzen.

EINGABE:

 $\individual notenschluessel{42}{41}{38}{37}{31.5}{31}{24}$

Ausgabe:

Erreichte Punkte	Gesamt	No	te	
	48			
Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
48 - 42	41 - 38	37 - 31.5	31 - 24	unter 24

Standardmäßig wird die Gesamtpunktezahl als Punkteobergrenze festgelegt. Auch diese kann jedoch optional manuell geändert werden.

EINGABE:

 $\individual notenschluessel [50] {42}{41}{38}{37}{31.5}{31}{24}$

Ausgabe:

Erreichte Punkte	Gesamt	No	te	
	50			
Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
50 - 42	41 - 38	37 - 31.5	31 - 24	unter 24

Auch die Option der Prozentanzeige ist mit diesem Befehl möglich:

EINGABE:

 $\individual notenschluessel[][prozent]{42}{41}{38}{37}{31.5}{31}{24}$

Ausgabe:

Erreichte Punkte	Prozent	Gesamt	Note	
		48		
Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
48 - 42	41 - 38	37 - 31.5	31 - 24	unter 24

1.1.5 \beurteilung

Der Befehl \beurteilung ist ein für Schularbeiten angepasstes Beurteilungsschema der standardisierten Reifeprüfung und ist für das Deckblatt der Schularbeit vorgesehen. Dabei müssen die Punkte für Teil 1 und Teil 2 angegeben werden. Die in Klammer angegebenen Werte entsprechen der empfohlenen prozentuellen Notenverteilung, die jedoch jederzeit individuell angepasst werden können.

EINGABE:

```
\beurteilung{0.875}{0.75}{0.625}{1/2}{ % Prozentschluessel T1={16}, % Punkte im Teil 1 T2={8}, % Punkte im Teil 2 }
```

Ausgabe:

	Punkte	davon erreicht
Teil 1	16	
Teil 2	8	
	$\Sigma = 24$	

Beurteilung:

Sehr gut	Gut	Befriedigend	Genügend	Nicht genügend
24 - 21	20 - 18	17 - 15	14 - 12	unter 12

1.1.6 \individualbeurteilung

Analog zum individuellen Notenschlüssel kann auch das Beurteilungsschema beliebig durch die direkte Eingabe aller Punktegrenzen angepasst werden.

```
\individualbeurteilung{21}{20,5}{18}{17,5}{15}{14,5}{12}{ % Prozentschluessel T1={16}, % Punkte im Teil 1 T2={8}, % Punkte im Teil 2 }
```

1.2 Paketoption – Lösungseingabe: [solution_on/off]

Es besteht die Möglichkeit, die Lösung in der erstellten tex-Datei zu implementieren und diese bei Bedarf in der PDF-Datei ein- bzw. auszublenden. Um diese Funktion nutzen zu können, muss die solution_on/off Option im srdp-mathematik-Paket geladen werden. Diese kann durch hinzufügen durch "solution on" bzw. "solution_off" aktiviert bzw. deaktiviert werden. Also:

\usepackage[solution on]{srdp-mathematik}

oder

\usepackage[solution_off]{srdp-mathematik}

Die korrekte Lösungseingabe der vorformatierten Typ-1-Aufgaben wird bei den entsprechenden Befehlen direkt erklärt. Unabhängig davon, gibt es die Möglichkeit mithilfe des antwort-Befehls, beliebige Abschnitte als *Antwort* zu deklarieren. (verwendeter counter: Antworten=0, 1)

1.2.1 \antwort

Für offene Antworten kann der \antwort{}-Befehl verwendet werden. Darin können Textpassagen, mathematische Formeln oder Grafiken angegeben werden, die ausschließlich bei aktivierter Lösung ([solution_on]) und in rot angegeben werden.

\antwort - Option: Anzeige nur bei solution_off

Der antwort-Befehl erlaubt ein optionales Argument. Es können dadurch zusätzliche Textpassagen angegeben werden, die <u>ausschließlich</u> angezeigt werden, wenn die Lösungsanzeige deaktiviert ([solution_off]) ist. Das heißt:

EINGABE:

\antwort[Optionale Eingabe, die nur angezeigt wird, wenn 'solution_off' gewählt wird.]

{Dies ist die notwendige Angabe und wird in rot angezeigt und nur wenn 'solution on' eingestellt ist.}

AUSGABE, wenn \usepackage[solution_off]{srdp-mathematik} eingestellt ist:

Optionale Eingabe, die nur angezeigt wird, wenn 'solution_off' gewählt wird.

AUSGABE, wenn \usepackage[solution on]{srdp-mathematik} eingestellt ist:

Dies ist die notwendige Eingabe und wird in rot angezeigt und nur wenn 'solution_on' eingestellt ist.

1.2.2 \antwortzeile

In manchen Fällen ist es notwendig, dass ganze Zeilen einer Tabelle als Lösung ein- und ausgeblendet werden können. Zu diesem Zweck kann der Befehl \antwortzeile verwendet werden.

EINGABE:

```
\begin{tabular}{c|c}
$x$ & $f(x)$ \\ \hline
0 & 2 \\
2 & 4 \\
\antwortzeile 4 & 16 \\
\end{tabular}
```

1.3 Paketoption - Erstellung von Gruppen: [random=0,1,2,...]

Das srdp-mathematik-Paket ermöglicht auch die automatische Erstellung von Gruppen für Schularbeiten, durch Vertauschung der Antwortmöglichkeiten aller Typ-1-Aufgaben. Dazu kann die random-Option im srdp-mathematik-Paket eingebunden geladen werden. Also:

```
\usepackage[random=0]{srdp-mathematik}
```

oder

\usepackage[random=1]{srdp-mathematik}

usw.

Die Zahl "0" bedeutet dabei, dass keine Vertauschung stattfindet und somit die Antwortmöglichkeiten in der Reihenfolge angezeigt werden, in der sie in der tex-Datei eingegeben wurden. Durch das Ersetzen der Zahl "0" durch die Zahlen 1, 2, 3, . . . (und anschließendem Kompilieren) werden die Antwortmöglichkeiten bei allen Typ1-Formaten der Datei in einer zufälligen Reihenfolge vertauscht. Es können somit in kurzer Zeit mehrere Gruppen der selben Schularbeit erstellt werden. Die eingegebenen Lösungen werden gleichermaßen übernommen.

Die Erstellung der Gruppen ist dabei reproduzierbar. Die Reihenfolge der Antwortmöglichkeiten einer Gruppe bleibt daher immer gleich. Mithilfe des Befehls \Gruppe kann die Gruppennummer innerhalb der PDF-Datei (z.B. am Deckblatt) angezeigt werden. (verwendeter counter: Zufall=0, 1, 2, ...)

1.3.1 Gruppenvariation von offenen Aufgabenformaten

Da es bei offenen Antwortformaten keine Vertauschung der Antwortmöglichkeiten gibt, bietet das srdp-mathematik-Paket die Möglichkeit eine individuelle Gruppenvariation einzugeben. Mithilfe

des Befehls variation{...}{} können unterschiedliche Anzeigen – abhängig von der ausgewählten Gruppe – erstellt werden.

EINGABE:

\variation{Anzeige bei Gruppe A}{bei Gruppe B sichtbar}

Ausgabe:

[random=0]: Anzeige bei Gruppe A
[random=1]: bei Gruppe B sichtbar

1.4 Paketoption – Informationseingabe: [info_on/off]

Es ist darüber hinaus möglich zusätzliche Informationen (Erläuterungen, Hilfestellungen, ...) hinzuzufügen und einzublenden. Dazu kann die Option info_on/off im srdp-mathematik-Paket eingebunden werden. Die Infos werden in blau angegeben und nur dann angezeigt, wenn die Option info_on gewählt wurde (verwendeter counter: info=0,1). Also:

\usepackage[info on]{srdp-mathematik}

oder

\usepackage[info_off]{srdp-mathematik}

1.5 Weitere allgemeine Befehle

Außerdem gibt es noch weitere Befehle, die die Formatierung erleichtern.

1.5.1 \leer

Eine Leerzeile, etwa zwischen zwei Beispielen.

(Nach dem Befehl \leer muss in der .tex-Datei ein Leerzeile eingefügt werden!)

1.5.2 \meinlr

\meinlr{Dieser Teil steht links. Wenn dieser Text länger sein sollte, geht er automatisch in der nächsten Zeile weiter ohne auf die andere Seite über zu gehen.}{Dieser Teil steht rechts.}

Teilt die Seite in zwei gleich große Seiten.

Ausgabe:

Dieser Teil steht links. Wenn dieser Text länger sein sollte, geht er automatisch in der nächsten Zeile weiter ohne auf die andere Seite über zu gehen. Dieser Teil steht rechts.

\meinlr - Option: Variable Spaltenbreiten

Der Befehl \meinlr erlaubt durch die optionale Eingabe eine Abänderung der beiden Spaltenbreiten. Durch die Eingabe zwischen ca. -0.3 und 0.3 kann die Spaltenmitte nach links oder rechts verschoben und somit die Spaltenbreite variiert werden.

EINGABE:

\meinlr[-0.15]{Mit einem negativen Wert wird die linke Spalte verkleinert.} {Die rechte Spalte wird damit automatisch vergrößert. Dadurch ist es möglich, die Spaltenbreiten nach Belieben zu variieren.}

Ausgabe:

Mit einem negativen Wert wird die linke Spalte verkleinert.

Die rechte Spalte wird damit automatisch vergrößert. Dadurch ist es möglich, die Spaltenbreiten nach Belieben zu variieren.

1.5.3 \meinlcr

\meinlcr{Text ganz links}{Text in der Mitte. Auch hier sind längere Texte
möglich.}{Text auf der rechten Seite.}

Teilt die Seite in drei gleich große Teile

Ausgabe:

Text ganz links. Was passiert Text in der Mitte. Auch hier Text auf der rechten Seite. hier wenn dieser Teil länger ist? sind längere Texte möglich.

$1.5.4 \setminus dint \ und \setminus dx$

Die Befehle \dint und \dx vereinfacht die Eingabe eines Integrals (bestimmt oder unbestimmt).

EINGABE:

\$\dint_1^3 x^2 \dx\$

Ausgabe:

$$\int_{1}^{3} x^{2} dx$$

Wird eine Variable ungleich x integriert, kann diese mithilfe der Option $\dx[Variable]$ dargestellt werden.

EINGABE:

 $\int t^2 dx[t]$

Ausgabe:

$$\int t^2 \, \mathrm{d}t$$

1.5.5 \degre

Der \degre Befehl stellt das Einheitszeichen für Grad dar. Er kann im Text- und im Mathematik-Modus verwendet werden.

EINGABE:

Der Winkel Alpha ist 30\degre. (\\$\alpha = 30 \degre\\$)

Ausgabe:

Der Winkel Alpha ist 30°. ($\alpha = 30^{\circ}$)

1.5.6 \stretchstring

Der Befehl \stretchstring erleichtert es, einen Text (oder Zahlen) durch Leerzeichen zu trennen, um etwa Rechnungen auf Arbeitsblättern zum Ausfüllen zu erstellen.

EINGABE:

\begin{tabular}{r}
\stretchstring{35}\\
\stretchstring{724}\\
\stretchstring{28}\\
\stretchstring{436}\\ \hline
\stretchstring{1223}\\
\end{tabular}

```
AUSGABE:

3 5

7 2 4

2 8

4 3 6

1 2 2 3
```

Es ist außerdem möglich, den Abstand zwischen den Zeichen individuell anzugeben.

EINGABE:

\stretchstring[\,]{4126}

\stretchstring[\quad]{4126}

\stretchstring[\hspace{2cm}]{4126}

Ausgabe:

```
4126
4 1 2 6
4 1 2 6
```

1.5.7 \parallellines

Durch den Befehl \parallelines können in PsTricks-Grafiken Geraden als parallel gekennzeichnet werden. Der dafür übliche Doppelstrich wird dabei mit x und y Koordinaten positioniert und optional durch die Angabe von Grad gedreht.

EINGABE:

\parallellines{0}{0}

 $\parallellines[45]{1.5}{0.5}$

Ausgabe:

2 Typ-1-Aufgaben

Das srdp-mathematik-Paket ermöglicht die Verwendung vorgefertigter Aufgabenformate, die bei der österreichischen, standardisierten Reifeprüfung Anwendung finden.

2.1 \multiplechoice

Dieser Befehl liefert eine vollständige Formatierung für eine Multiplechoice-Aufgabe. Die Anzahl der Antwortmöglichkeiten kann dabei frei (max. 9) gewählt werden. Als Standard ist dabei das Format mit fünf Antwortmöglichkeiten eingestellt.

Die korrekten Antworten der Multiplechoice-Aufgabe werden dabei bei A1, A2, ..., A5 angegeben. Sollte beispielsweise die 1., die 4. und 5. Antwortmöglichkeit korrekt sein, muss je eine "0" durch 1, 4, und 5 ersetzt werden – Die Reihenfolge dabei ist nicht relevant. Also:

EINGABE:

```
\multiplechoice[5]{ %Anzahl der Antwortmoeglichkeiten, Standard: 5
L1={Hier},
             %1. Antwortmoeglichkeit
L2={werden},
               %2. Antwortmoeglichkeit
L3={die möglichen},
                      %3. Antwortmoeglichkeit
L4={Antworten}, %4. Antwortmoeglichkeit
L5={eingetragen}, %5. Antwortmoeglichkeit
L6={}, %6. Antwortmoeglichkeit
L7={}, %7. Antwortmoeglichkeit
L8={}, %8. Antwortmoeglichkeit
L9={}, %9. Antwortmoeglichkeit
%% LOESUNG: %%
A1=1, % 1. Antwort
A2=4, % 2. Antwort
A3=5, % 3. Antwort
A4=0, % 4. Antwort
A5=0, % 5. Antwort
}
```

Ausgabe:

mit \setcounter{Antworten}{0}:

Hier	
werden	
die möglichen	
Antworten	
eingetragen	

mit \setcounter{Antworten}{1}:

Hier	\boxtimes
werden	
die möglichen	
Antworten	\boxtimes
eingetragen	×

Die Zahl in eckigen Klammern gibt dabei die gewünschte Anzahl von Antwortmöglichkeiten an. Somit sind beispielsweise drei oder sieben Antwortmöglichkeiten einstellbar.

Wichtig zu erwähnen ist dabei, dass ausschließlich die Zahl in eckigen Klammern die Anzahl der Antwortmöglichkeiten angibt. Werden anschließend zu wenige oder zu viele Antwortmöglichkeiten angegeben, werden Leerzeilen erzeugt oder die Eingabe wird in der Ausgabe nicht berücksichtigt.

EINGABE:

```
\multiplechoice[3]{  %Anzahl der Antwortmoeglichkeiten, Standard: 5
L1={Durch die 3},  %1. Antwortmoeglichkeit
L2={in eckigen Klammern, werden},  %2. Antwortmoeglichkeit
L3={3 Antworten angezeigt},  %3. Antwortmoeglichkeit
%% LOESUNG: %%
A1=0,  % 1. Antwort
A2=0,  % 2. Antwort
A3=0,  % 3. Antwort
A4=0,  % 4. Antwort
A5=0,  % 5. Antwort
}
```

Ausgabe:

Durch die 3	
in eckigen Klammern, werden	
3 Antworten angezeigt	

EINGABE:

```
\multiplechoice[7]{ %Anzahl der Antwortmoeglichkeiten, Standard: 5
L1={Das Gleiche}, %1. Antwort
L2={passiert beim Eintragen von}, %2. Antwort
L3={sieben Möglichkeiten.}, %3. Antwort
L4={Dabei werden immer 7 Antworten}, %4. Antwort
L5={angezeigt, unabhängig ob sie ausgefüllt}, %5. Antwort
L6={sind oder nicht!}, %6. Antwort
L7={}, %7. Antwort
L8={}, %8. Antwort
L9={}, %9. Antwort
```

```
%% LOESUNG: %%
A1=0, % 1. Antwort
A2=0, % 2. Antwort
A3=0, % 3. Antwort
A4=0, % 4. Antwort
A5=0, % 5. Antwort
}
```

Ausgabe:

Das Gleiche	
passiert beim Eintragen von	
sieben Möglichkeiten.	
Dabei werden immer 7 Antworten	
angezeigt, unabhängig ob sie ausgefüllt	
sind oder nicht!	

Die Eingabe in eckiger Klammer ist dabei optional. Wird sie nicht angegeben, wird der Standard von 5 angenommen.

EINGABE:

```
\multiplechoice{ %Anzahl der Antwortmoeglichkeiten, Standard: 5
L1={In diesem}, %1. Antwort
L2={Fall wird der}, %2. Antwort
L3={Standard von}, %3. Antwort
L4={fünf Antwortmöglichkeiten}, %4. Antwort
L5={angenommen}, %5. Antwort
L6={}, %6. Antwort
L7={}, %7. Antwort
L8={}, %8. Antwort
L9={} %9. Antwort
}
```

Ausgabe:

In diesem	
Fall wird der	
Standard von	
fünf Antwortmöglichkeiten	
angenommen	

2.1.1 Add-on: \langmultiplechoice

Der langmultiplechoice-Befehl ist analog zum multiplechoice-Befehl zu verwenden. Der Unterschied besteht darin, dass Antwortmöglichkeiten auf zwei Spalten aufgeteilt werden. Dies ist vor allem dann sinnvoll, wenn Geogebra-Grafiken importiert werden, um eine bessere Lesbarkeit zu ermöglichen.

2.2 \lueckentext

Dieser Befehl dient zur Erstellung eines Lückentexts, basierend auf dem standardisierten Format des BIFIE. Der einleitenden Satz: "Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!" wird als Standard angenommen und automatisch angegeben. Im Bereich \text={} wird der Lückentext angegeben, wobei die Lücken immer mit \gap eingefügt werden und automatisch nummeriert werden. Analog zu den Lösungsangaben der Multiplechoice-Aufgabe, werden die korrekten Antworten bei A1, A2 oder A3 mit 1,2 oder 3 angegeben. (hier: Lösung links: 3 und rechts: 2)

EINGABE:

\lueckentext{ text={Hier wird der Text geschrieben. Die Lücke eins hat dabei die \gap, die Lücke zwei hat die \gap.}, %Lueckentext Luecke=\gap L1={Hier schreibt}, %1.Moeglichkeit links L2={man die Antwortmöglichkeiten}, %2.Moeglichkeit links L3={für die erste Lücke}, %3.Moeglichkeit links R1={und hier jene}, %1.Moeglichkeit rechts R2={für die Möglichkeiten}, %2.Moeglichkeit rechts R3={der zweiten Lücke. Theoretisch könnte dieser Text auch zweizeilig sein.}, %3.Moeglichkeit rechts %% LOESUNG: %% A1=3, % Antwort links A2=2 % Antwort rechts }

Ausgabe: Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!

Hier wird der Text geschrieben. Die Lücke eins hat dabei die ______(1)_____, die Lücke zwei hat die ______(2)____.

1	
Hier schreibt	
man die Antwortmöglichkeiten	
für die erste Lücke	

2	
und hier jene	
für die Möglichkeiten	
der zweiten Lücke. Theoretisch könnte dieser Text auch mehrzeilig sein.	

2.2.1 \lueckentext - Option: Variable Breiten der Boxen

Der lueckentext-Befehl erlaubt ein optionales Argument, um die Größen der beiden Boxen zu variieren. Dabei werden in den eckigen Klammern [] die Veränderung der linken Box (Änderung ca. zwischen -0.3 und 0.3) angegeben und die rechte Box wird automatisch angepasst. Will man etwa die linke Box vergrößern, gilt:

EINGABE:

\lueckentext[0.25]{
text={Hier wird der Text geschrieben. Die Lücke eins hat dabei
die \gap, die Lücke zwei hat die \gap.}, %Lueckentext Luecke=\gap
L1={In manchen Fällen sind die Antworten einer Lücke},
%1.Moeglichkeit links
L2={viel länger als die der zweite. In diesem Fall kann man},
%2.Moeglichkeit links
L3={die Größen der Boxen manuell variieren. Die Eingabe ist optional. },
%3.Moeglichkeit links
R1={Sehr}, %1.Moeglichkeit rechts
R2={kurze}, %2.Moeglichkeit rechts
R3={Antworten}, %3.Moeglichkeit rechts
%% LOESUNG: %%
A1=1, % Antwort links
A2=3 % Antwort rechts
}
Ausgabe:
Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass
eine korrekte Aussage entsteht!
Hier wird der Text geschrieben. Die Lücke eins hat dabei die, die Lücke zwei hat
die
1 2

In manchen Fällen sind die Antworten einer Lücke	
viel länger als die der zweite. In diesem Fall kann man die	
Größen der Boxen manuell variieren. Die Eingabe ist optional.	

2	
Sehr	
kurze	
Antworten	

Analog funktioniert die Verkleinerung der linken Box. Dazu müssen Werte kleiner 0 angegeben werden.

2.2.2 \lueckentext - Option: Englischer Lückentext

Der Befehl englueckentext ist analog zum lueckentext-Befehl zu verwenden. Jedoch wird der als Standard angenommene, einleitende Satz bei Lückentextaufgaben in Englisch angezeigt. EINGABE:

\englueckentext{

```
text={Hier wird der Text einer englischen Aufgabe geschrieben. Die Lücken \gap und \gap können analog angegeben werden.}, %Lueckentext Luecke=\gap L1={Auch}, %1.Moeglichkeit links
L2={der}, %2.Moeglichkeit links
L3={Rest}, %3.Moeglichkeit links
R1={wird}, %1.Moeglichkeit rechts
R2={gleich}, %2.Moeglichkeit rechts
R3={eingegeben}, %3.Moeglichkeit rechts
%% LOESUNG: %%
A1=1, % Antwort links
A2=3 % Antwort rechts
}
```

Ausgabe:

Complete the following sentence by putting a cross next to one of the given possibilities for each gap so that the sentence becomes a correct statement.

2.3 \zuordnen

Dieser Befehl dient zum Erstellen des Zuordnungsformats von vier aus sechs Möglichkeiten. Die korrekten Antworten können hier frei als Buchstaben eingegeben werden. (hier: F, C, A, D)

EINGABE:

```
\zuordnen{
R1={Hier sind die vier}, % Response 1
R2={Antworten, zu},% Response 2
R3={denen die Möglichkeiten der rechten Box richtig}, % Response 3
R4={zuzuordnen sind},% Response 4
%% Moegliche Zuordnungen: %%
A={Hier trägt}, %Moeglichkeit A
B={man den Text}, %Moeglichkeit B
C={oder die Formeln}, %Moeglichkeit C
D={für die sechs}, %Moeglichkeit D
E={Möglichkeiten, die man zuordnen muss}, %Moeglichkeit E
F={ein.}, %Moeglichkeit F
%% LOESUNG: %%
A1={F},% 1. richtige Zuordnung
A2={C},% 2. richtige Zuordnung
A3={A},% 3. richtige Zuordnung
A4={D},% 4. richtige Zuordnung
}
```

Ausgabe:

Hier sind die vier	
Antworten, zu	
denen die Möglichkeiten der rechten Box richtig	
zuzuordnen sind	

A	Hier trägt
В	man den Text
С	oder die Formeln
D	für die sechs
Е	Möglichkeiten, die man zuordnen muss
F	ein.

2.3.1 \zuordnen - Option: Variable Breiten der Boxen

Der zuordnen-Befehl erlaubt ein optionales Argument, um die Größen der beiden Boxen zu variieren. Dabei werden in den eckigen Klammern [] die Veränderung der linken Box (Änderung

ca. zwischen -0.3 und 0.3) angegeben und die rechte Box wird automatisch angepasst. Will man etwa die linke Box vergrößern, gilt:

EINGABE:

```
\zuordnen[0.25]{
R1={Dabei wird die linke Box vergrößert.},% Response 1
R2={Dies dient vor allem dazu,},% Response 2
R3={wenn eine Seite viel Text enthält, die andere hingegen}, % Response 3
R4={nur ganz wenig. Wird die [ ] nicht angegeben dann wird der Standardwert
0 angenommen.},% Response 4
%% Moegliche Zuordnungen: %%
A={Hier}, %Moeglichkeit A
B={sind}, %Moeglichkeit B
C={eher}, %Moeglichkeit C
D={kurze}, %Moeglichkeit D
E={Antworten}, %Moeglichkeit E
F={möglich}, %Moeglichkeit F
%% LOESUNG: %%
A1={},% 1. richtige Zuordnung
A2={},% 2. richtige Zuordnung
A3={},% 3. richtige Zuordnung
A4={},% 4. richtige Zuordnung
}
```

Ausgabe:

Dabei wird die linke Box vergrößert.	
Dies dient vor allem dazu,	
wenn eine Seite viel Text enthält, die andere hingegen	
nur ganz wenig. Wird die [] nicht angegeben dann wird der Standardwert 0 angenommen.	

A	Hier
В	sind
С	eher
D	kurze
Е	Antworten
F	möglich

Analog funktioniert die Verkleinerung der linken Box. Dazu müssen Werte kleiner 0 angegeben werden.

3 Typ-2-Aufgaben

Um die Struktur der Teil-2-Aufgaben ähnlich jener bei der standardisierten Reifeprüfung einhalten zu können, beinhaltet das Paket einige Befehle, die die Erstellung von Typ-2-Aufagben erleichtern.

$3.1 \ \text{begin{aufgabenstellung}} \dots \ \text{end{aufgabenstellung}}$

Typ-2-Aufgaben sollten innerhalb einer Prüfung mithilfe der langesbeispiel-Umgebung eingegeben werden, um die volle Funktionalität (wie notenschluessel) des Pakets zu ermöglichen. Der einleitenden Aufgabentext kann dann eingegeben werden. Für die Eingabe der Aufgabenstellung kann dann die aufgabenstellung-Umgebung verwendet werden.

3.1.1 \item und \Subitem{}

Innerhalb dieser Umgebung können dann mithilfe von \item (nummeriert mit a), b),c),...) und \Subitem{} (nummeriert mit 1), 2),...) die jeweiligen Items und Subitems der Aufgabe eingegeben werden.

$3.2 \setminus \{loesung\} \dots \setminus \{loesung\}$

Mithilfe der loesung-Umgebung kann die Lösungserwartung sowie der Lösungsschlüssel eingegeben werden. Analog zur Aufgabenstellung können \item und \Subitem{} verwendet werden. Die Eingabe innerhalb der loesung-Umgebung werden nur dann angezeigt, wenn die Lösungsanzeige aktiviert wurde. Die Nummerierung der Subitems kann man mit folgender Eingabe zurücksetzen: \setcountersubitemcounter0.

Eine vollständige Typ-2-Aufgabe könnte also wie folgt aussehen: EINGABE:

\begin{langesbeispiel} \item[0] %PUNKTE DES BEISPIELS Hier steht der einleitende Text der Typ-2-Aufgabe.

\begin{aufgabenstellung} \item Hier steht der Aufgabentext des ersten Items.

\Subitem{Aufgabentext des ersten Unterpunkts} %Unterpunkt1 \Subitem{Aufgabentext des zweiten Unterpunkts} %Unterpunkt2

\end{aufgabenstellung}

Aufgabenstellung:

- a) Hier steht der Aufgabentext des ersten Items.
 - 1) Aufgabentext des ersten Unterpunkts
 - 2) Aufgabentext des zweiten Unterpunkts

a) Lösungserwartung:

- 1) Lösungserwartung des ersten Unterpunkts
- 2) Lösungserwartung des zweiten Unterpunkts

Lösungsschlüssel:

- 1) Lösungsschlüssel des ersten Unterpunkts
- 2) Lösungsschlüssel des ersten Unterpunkts

Einfügen von GeoGebra-Grafiken

Folgende Schritte müssen befolgt werden, um Geogebra-Grafiken in LaTeX-Dokumente einfügen zu können.

- 1. Grafik in Geogebra zeichnen
- 2. Datei \rightarrow Export \rightarrow Grafik-Ansicht als PSTricks...
- 3. Parameter einstellen
- 4. Erzeuge PSTricks drücken
- 5. Gesamten Text, der zwischen \begin{document} und \end{document} steht, kopieren.
- 6. Im LaTeX-Dokument dort einfügen, wo die Grafik integriert werden soll. (Dies ist auch innerhalb von den unterschiedlichen Formaten (wie \zuordnen oder \multiplechoice möglich)
- 7. Die Größe der Grafik kann mithilfe des folgenden Befehls angepasst werden:

\resizebox{0.5\linewidth}{!}{Hier wird der Text von Geogebra eingefügt}

Der Faktor 0.5 gibt die Größe der Grafik an. Mit dem Wert 0.5 wird die Größe der Grafik somit halbiert.

Kopie des PSTricks-Exports von Geogebra (Originalgröße und mit \resizebox{0.5\linewidth}{!}{...})