CS1021 Tutorial #3 Condition Code Flags

- (a) Determine whether the Overflow flag would be set after performing each of the following 4-bit arithmetic operations. (Assume a 4-bit microprocessor and a 4-bit 2's Complement system are being used.) Explain your answers.
 - (i) $0100_2 + 0010_2$

(iii) $1110_2 + 0101_2$

(ii) $0101_2 + 0100_2$

(iv) $1101_2 + 1001_2$

(b) Consider the sets of ARM Assembly Language instructions below. In each case, calculate the value stored in the destination register and state whether each of the N (Negative), Z (Zero), C (Carry) and V (Overflow) flags would be set or clear (1 or 0) after the execution of the highlighted instruction. Provide a detailed explanation for your answer in each case.

(i)

2 LDR R1, =0×51004000	
ADDS R2, R0, R1	

(ii)

1	LDR	R3, =0x92004000	1
2	SUBS	R4, R3, R3	ĺ

(iii)

г		
1	LDR	$R5 = 0 \times 74000100$
2	LDR	$R6 = 0 \times 40004000$
3	ADDS	R7, R5, R6

(iv)

```
LDR R1, =0x6E0074F2
LDR R2, =0x211D6000
3 ADDS R0, R1, R2
```

(v)

```
LDR R1, =0xBE2FDD2E
LDR R2, =0x41D022D2
ADDS R0, R1, R2
```

(c) Find pairs of 32-bit values which, when added together using the ADDS instruction, cause the following combinations of the conditions code flags to be set or cleared (1 or 0).

(i)
$$N = 0$$
; $Z = 0$; $C = 0$; $V = 0$

(vi)
$$N = 0$$
; $Z = 1$; $C = 0$; $V = 0$

(ii)
$$N = 1$$
; $Z = 0$; $C = 0$; $V = 0$

(vii)
$$N = 1$$
; $Z = 0$; $C = 0$; $V = 1$

(iii)
$$N = 0$$
; $Z = 0$; $C = 1$; $V = 0$

(viii)
$$N = 0$$
; $Z = 0$; $C = 1$; $V = 1$

(iv)
$$N = 1$$
; $Z = 0$; $C = 1$; $V = 0$

(ix)
$$N = 0$$
; $Z = 1$; $C = 1$; $V = 1$

(v)
$$N = 0$$
; $Z = 1$; $C = 1$; $V = 0$