

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}_{\alpha} \ f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2} t_2}{3}$	[2]	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} +^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} \dagger^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} == 0$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	3
$\sigma_1^{\#2\alpha} == 0$	3
$\sigma_1^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} = 0$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	28

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	0	0	0	0
$ au_{0^{+}}^{\#1} +$	0	0	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}\dagger^{\alpha\beta\chi}$	0	0	0

? Pole residue: $-\frac{1}{r_2}$	>
$J^P = 0^-$ Polarisations: 1	
Square mass: $-\frac{t_2}{r_2}$	>
Spin: 0	
Parity: Od	d

(No massless particles)