Reaction Wheel-Based CubeSat Attitude Control System

1. Working Principle & Features

• PID-Based Attitude Stabilization

The CubeSat utilizes a real-time PID control algorithm to stabilize its orientation along three axes (X, Y, Z) using reaction wheels.

• Triple BLDC Motor Configuration

Each axis has a dedicated NEMA17 BLDC motor controlled via a VESC. The X-axis motor is directly managed by the Arduino Nano through UART, while Y and Z axes communicate via CAN bus.

Sensor Fusion with MPU9250

The IMU provides 9-axis data, processed via the Madgwick filter on the Arduino Nano to derive precise orientation information for PID correction.

1. Components Used

Microcontroller

Arduino Nano acts as the central processor for PID control and communication with peripherals.

Sensors

- MPU9250: Real-time orientation data via I2C
- Hall Sensors (x3): Built-in RPM feedback from BLDCs
- NTC 10K Thermistors (x3): Temperature monitoring on motors

Actuators

- NEMA17 BLDC Motors (x3): Sensored motors acting as reaction wheels
- VESCs (x3): Configured motor controllers for precise control

Storage

Catalex MicroSD Card Module logs operational data via SPI.

1. System Behavior & Safety

Attitude Correction

If misalignment is detected, PID control commands the motors until the orientation matches the setpoint.

Fault Handling

In case of failure in Y or Z axis VESCs, the X-axis motor continues functioning. Faults

are logged for diagnosis.

• Thermal Protection

VESCs automatically slow down or shut off motors when temperature thresholds are reached:

Warning: 80°CCutoff Start: 80°CCutoff End: 100°C

RPM, Voltage & Current Limiting

VESC parameters are configured to prevent overdraw and ensure system safety.

1. Communication & Logging

• CAN Communication Setup

- VESC 0 (Master): CAN ID = 0, UART Enabled, Termination = Enabled
- VESC 1: CAN ID = 1, UART Disabled, Termination = Disabled
- VESC 2: CAN ID = 2, UART Disabled, Termination = Enabled

All VESCs have: Send CAN Status, Multiple VESCs, and CAN Forwarding enabled in VESC Tool.

• Real-Time Data Logging

Orientation, PID output, RPM, and temperature are logged for up to 24 hours.

Manual CSV Reset

A push-button resets the .csv log without reprogramming the SD card.

1. Setup Instructions

Arduino Nano Setup

- Upload PID control firmware
- Connect MPU9250 via I2C (A4/A5)
- Connect SD Module via SPI (D10-D13)
- Connect VESC UART via Software Serial (D8/D9)

VESC Configuration via USB & VESC Tool

- Set CAN IDs and termination resistors
- Enable CAN features
- Set temperature cutoffs and current/RPM limits

Wiring Notes

Ensure CANH and CANL lines are twisted pairs with proper termination. Use shielded wires for high-current and signal lines.