Classification-Logistic Regression

Week 4

What is Classification?

Which ones are classification problems?

☑ Predicting the price of a car (based on model, brand, year, etc.)

✓ Predicting if an email is spam or not

✓ Predicting if the price of a car is below \$15K or not

$$\hat{y} \in \{0, 1\}$$
 0: "Negative Class" 1: "Positive Class"

$$\hat{y} \in \{0, 1, 2, 3, 4\}$$

Multiclass Classification

Algorithm Development

If
$$h_{\theta}(X) >= 0.5$$
, then $\hat{y} = 1$

If
$$h_{\theta}(X) < 0.5$$
, then $\hat{y} = 0$

Algorithm Development

Algorithm Development

Another problem of using linear regression in classification,

In classification problems,
$$\hat{y} \in \{0, 1\}$$

In linear regression problems,
$$h_{\theta}(X) = \theta^T X$$
 can be larger than 1 or smaller than 0

In fact we want
$$0 \le h_{\theta}(X) \le 1$$

Logistic Regression Hypothesis

$$h_{\Theta}(X) = \frac{1}{1 + e^{-\Theta^T X}}$$

$$0.5$$

$$0$$

$$0$$

$$0$$

Suppose we know θ^T and we get $h_{\theta}(X_{new}) = 0.8$ for the new engine.

Question: What is the meaning of $h_{\theta}(X_{new}) = 0.8$?

Answer: There is an 80% chance that new engine is broken!

Logistic Regression Hypothesis

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}} = P(y = 1 | x, \theta)$$

$$h_{\theta}(X) = g(\theta^T X)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$0.5$$

$$g(z)$$

Predict
$$y=1$$
 if $h_{\theta}(X)=g(\theta^TX)\geq 0.5$ $\theta^TX=z\geq 0$ Predict $y=0$ if $h_{\theta}(X)=g(\theta^TX)<0.5$ $\theta^TX=z<0$

How this hypothesis makes predictions?

Decision Boundary

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta T_X}} = P(y = 1 | x, \theta)$$

$$\theta^T X = z \ge 0$$

$$0.5$$

$$g(z)$$

$$Predict $y = 0$

$$\theta^T X = z < 0$$

$$z = \theta^T X$$$$

Non-Linear Decision Boundary

What if we have even more non-linear terms?

$$h(\mathbb{Z}^T X) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \cdots)$$

Fitting θ_0 , θ_1 , θ_2 , ...

What we have:

What we want:

Find
$$\theta^T = [\theta_0, \theta_1, \theta_2, ...]$$
 in $h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$

Cost Function:

Linear regression

$$h_{\Theta}(X) = \Theta^T X$$

 $J(\theta)$ Convex

Logistic regression

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

 $J(\theta)$ Non-convex

Cost Function:

Different cost function which is convex:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right)$$

$$cost(h_{\theta}(x), y)$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x), y)$$

Cost Function:

$$cost(h_{\theta}(x), y) = -y^{(i)} \log(h_{\theta}(x)) - (1 - y^{(i)}) \log(1 - h_{\theta}(x))$$

When y=1:

$$cost(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

When y=0:

$$cost(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$$

Gradient Descent:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right)$$

```
To get, \min_{\theta} J(\theta): \theta_k := \theta_k - \alpha \frac{\partial}{\partial \theta_k} J(\mathbb{Z}) Repeat, \theta_k := \theta_k - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_k^{(i)} \theta_k := \theta_k - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_k^{(i)}
```

Feature Selection

Recursive Feature Elimination (RFE)

X4

number of features?

Kfold Cross Validation

Divide the whole data set to k buckets and select each bucket as test set and the rest as training sets.

RFE in Sklearn

The least important features are pruned from current set of features recursively.

sklearn.feature_selection.RFE(estimator, step=1, n_features_to_select=None, cv=3)

Example:

```
estimator = SVR(kernel="linear")
selector = RFE(estimator, step=1, )
selector = selector.fit(X, y)
```

```
selector. ranking_
array([1, 1, 1, 1, 1, 4, 2, 1, 1, 3])
```

RFE with Kfold Cross Validation

- Ranks the features with RFE.
- Cross-validates selection of the best number of features (K-Fold).

sklearn.feature_selection.RFECV(estimator, step=1, min_features_to_select=1, cv=3)

Example:

```
estimator = SVR(kernel="linear")
selector = RFECV(estimator, step=1, cv=5)
selector = selector.fit(X, y)
```

```
selector. ranking_
array([1, 1, 1, 1, 1, 4, 2, 1, 1, 3])
```

RFE in Sklearn

from sklearn import linear_model
estimator = linear_model.LinearRegression()

sklearn.feature_selection.RFE(estimator, n_features_to_select=None)

For other feature selection methods, refer to:

https://scikit-learn.org/stable/modules/feature_selection.html

