AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

1. (Original) A compound comprising Formula XIX:

$$R_3$$
 Q N R_1 R_2

XIX

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein;

R₃ and R₄ are taken together to form a substituted or unsubstituted 5 or 6 membered ring; and

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted.

- 2. (Original) A compound according to claim 1, wherein V is selected from the group consisting of a primary, secondary or tertiary amine, a heterocycloalkyl comprising a nitrogen ring atom, and a heteroaryl comprising a nitrogen ring atom
- 3. (Original) A compound according to claim 1, wherein R₂ is selected from the group consisting of a substituted or unsubstituted 3, 4, 5, 6 or 7 membered ring wherein at least one substituent is selected from the group consisting of a primary, secondary or tertiary amine, a heterocycloalkyl comprising a nitrogen ring atom, and a heteroaryl comprising a nitrogen ring atom.
- 4. (Original) A compound according to claim 1, wherein the basic nitrogen of V is separated from the ring atom to which R₂ is attached by between 1-5 atoms.
- 5. (Original) A compound according to claim 1, wherein the basic nitrogen of V forms part of a primary, secondary or tertiary amine.
- 6. (Original) A compound according to claim 1, wherein the basic nitrogen of V is a nitrogen ring atom of a heterocycloalkyl comprising a nitrogen ring atom or a heteroaryl comprising a nitrogen ring atom.
- 7. (Currently amended) A compound according to claim 1, wherein -UV is selected from the group consisting of

$$-\xi - N >_{(R_8)_p} - \xi -$$

wherein p is $0.12 \cdot 1.12$ and each R₈ is independently selected from the group consisting of halo, perhalo(C₁₋₁₀)alkyl, CF₃, cyano, nitro, hydroxy, alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl,

cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, carbonyl group, imino group, sulfonyl group and sulfinyl group, each substituted or unsubstituted, with the proviso that at least one R₈ serves as V provides the basic nitrogen of V.

- 8. (Original) A compound according to claim 7, wherein at least one R₈ is a primary, secondary or tertiary amine.
- 9. (Original) A compound according to claim 7, wherein at least one R₈ is a substituted or unsubstituted heterocycloalkyl comprising a nitrogen ring atom or a substituted or unsubstituted heteroaryl comprising a nitrogen ring atom.
- 10. (Original) A compound according to claim 7, wherein at least one R_8 is selected from the group consisting of -NH₂, -NH(C_{1-5} alkyl), -N(C_{1-5} alkyl)₂, piperazine, imidazole, and pyridine.
- 11. (Currently amended) A compound according to claim 1, wherein -UV is selected from the group consisting of

$$-\frac{1}{2} \left(-\frac{1}{(R_8)_r} - \frac{1}{2} \left(-\frac{1}{(R_8)_r} - \frac{1}{(R_8)_r} - \frac{1}{2} \left(-\frac{1}{(R_8)_r} - \frac{1}{(R_8)_r} - \frac{1}{2} \left(-\frac{1}{(R_8)_r} - \frac{1}{(R_8)_r} -$$

wherein r is 0–13-1-13 and each R_8 is independently selected from the group consisting of halo, perhalo(C_{1-10})alkyl, CF_3 , cyano, nitro, hydroxy, alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, carbonyl group, imino group, sulfonyl group and sulfinyl group, each substituted or unsubstituted, with the proviso that at least one R_8 serves as V provides the basic nitrogen of V.

12. (Original) A compound according to claim 11, wherein at least one R₈ is a primary, secondary or tertiary amine.

- 13. (Original) A compound according to claim 11, wherein at least one R₈ is a substituted or unsubstituted heterocycloalkyl comprising a nitrogen ring atom or a substituted or unsubstituted heteroaryl comprising a nitrogen ring atom.
- 14. (Original) A compound according to claim 11, wherein at least one R_8 is selected from the group consisting of -NH₂, -NH($C_{1.5}$ alkyl), -N($C_{1.5}$ alkyl)₂, piperazine, imidazole, and pyridine.
- 15. (Original) A compound according to claim 1, wherein R₂ is selected from the group consisting of 3-amino-piperidin-1-yl, 3-aminomethyl-pyrrolidin-1-yl, azetidin-1-yl, 3-aminoazetidin-1-yl, pyrrolidin-1-yl, 3-aminocyclopent-1-yl, 3-aminomethylcyclopent-1-yl, 3-aminomethylcyclopent-1-yl, hexahydroazepin-1-yl, 3-aminohexahydroazepin-1-yl, 3-amino-cyclopex-1-yl, piperazin-1-yl, homopiperazin-1-yl, 3-amino-pyrrolidin-1-yl, and R-3-aminopiperidin-1-yl, each substituted or unsubstituted.
- 16. (Original) A compound according to claim 1, wherein Z provides 1-3 atom separation between R_m and the ring.
- 17. (Original) A compound according to claim 1, wherein Z provides 1 atom separation between R_m and the ring.
- 18. (Original) A compound according to claim 17, wherein the 1 atom separation is provided by an atom selected from the group consisting of C, N, O, and S.
- 19. (Original) A compound according to claim 17, wherein the 1 atom separation is provided by a carbon atom.
- 20. (Original) A compound according to claim 17, wherein the 1 atom separation is provided by an oxygen atom.

- 21. (Original) A compound according to claim 17, wherein the 1 atom separation is provided by a nitrogen atom.
- 22. (Original) A compound according to claim 1, wherein Z is selected from the group consisting of -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -C(O)-, -CH₂C(O)-, -C(O)CH₂-, -CH₂CH₂-, -NHCH₂-, -NHCH₂-, -NHCH₂-, -NHCH₂-, -NHCH₂-, -NHCH₂-, -CH₂CH₂NH-, -NH-C(O)-, -NCH₃-C(O)-, -C(O)NH-, -C(O)NCH₃-, -NHC(O)CH₂-, -C(O)NHCH₂-, -C(O)CH₂NH-, -CH₂NHC(O)-, -CH₂C(O)NH-, -NHCH₂C(O)-, -S-, -SCH₂-, -CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-, -CH₂CH₂S-, -C(O)S-, -C(O)SCH₂-, -CH₂C(O)S-, -C(O)CH₂S-, and -CH₂SC(O)-, each substituted or unsubstituted.
- 23. (Original) A compound according to claim 1, wherein Z is selected from the group consisting of -CH₂-, -C(O)-, -C(S)-, -C(NH)-, -C(NR₉)-, -O-, -N(H)-, -N(R₉)-, and -S-.
- 24. (Original) A compound according to claim 1, wherein R_m is a substituted or unsubstituted (C_{3-7}) cycloalkyl.
- 25. (Original) A compound according to claim 1, wherein R_m is a substituted or unsubstituted aryl.
- 26. (Original) A compound according to claim 1, wherein R_m is a substituted or unsubstituted phenyl.
- 27. (Original) A compound according to claim 1, wherein R_m is selected from the group consisting of (2-cyano)phenyl, (3-cyano)phenyl, (2-hydroxy)phenyl, (3-hydroxy)phenyl, (2-alkenyl)phenyl, (3-alkenyl)phenyl, (3-alkynyl)phenyl, (3-alkynyl)phenyl, (2-nitro)phenyl, (3-nitro)phenyl, (2-carboxy)phenyl, (3-carboxy)phenyl, (2-carboxamido)phenyl, (3-carboxamido)phenyl, (3-tetrazolyl)phenyl, (3-tetrazolyl)phenyl, (3-aminomethyl)phenyl, (3-aminomethyl)phenyl, (3-amino)phenyl, (3-aminomethyl)phenyl, (3-amino)phenyl, (

amino)phenyl, (2-hydroxymethyl)phenyl, (3-hydroxymethyl)phenyl, (2-phenyl)phenyl, (3-phenyl)phenyl, (2-CONH₂)phenyl, (3-CONH₂)phenyl, (2-CONH(C₁₋₇)alkyl)phenyl, (3-CONH(C₁₋₇)alkyl)phenyl, (2-CO₂(C₁₋₇)alkyl)phenyl, (3-CO₂(C₁₋₇)alkyl)phenyl, -NH₂, -OH, -(C₃₋₇)alkyl, -alkene, -alkyne, -CCH, -(C₃₋₇)cycloalkyl, and -aryl, each substituted or unsubstituted.

- 28. (Original) A compound according to claim 1, wherein R₁ is -OR₁₁, where R₁₁ is selected from the group consisting of substituted or unsubstituted alkyl, cycloalkyl, aryl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl.
- 29. (Original) A compound according to claim 1, wherein Z is a carbonyl.
- 30. (Original) A compound according to claim 1, wherein R₁ is selected from the group consisting of -(CH₂)-(2-cyano)phenyl, -(CH₂)-(3-cyano)phenyl, -(CH₂)-(2-hydroxy)phenyl, -(CH₂)-(3-hydroxy)phenyl, -(CH₂)-(2-alkenyl)phenyl, -(CH₂)-(3-alkenyl)phenyl, -(CH₂)-(3-alkenyl)phenyl, -(CH₂)-(3-alkynyl)phenyl, -(CH₂)-(3-alkynyl)phenyl, -(CH₂)-(3-carboxy)phenyl, -(CH₂)-(2-carboxamido)phenyl, -(CH₂)-(3-carboxy)phenyl, -(CH₂)-(2-sulfonamido)phenyl, -(CH₂)-(3-sulfonamido)phenyl, -(CH₂)-(3-sulfonamido)phenyl, -(CH₂)-(2-tetrazolyl)phenyl, -(CH₂)-(3-tetrazolyl)phenyl, -(CH₂)-(2-aminomethyl)phenyl, -(CH₂)-(3-aminomethyl)phenyl, -(CH₂)-(3-aminomethyl)phenyl, -(CH₂)-(3-aminophenyl, -(CH₂)-(3-phenyl)phenyl, -(CH₂)-(3-hydroxymethyl)phenyl, -(CH₂)-(3-phenyl)phenyl, -(CH₂)-(3-CONH₂)phenyl, -(CH₂)-(3-CONH₂)phenyl, -(CH₂)-(3-CONH₂)phenyl, -(CH₂)-(2-CONH₂)phenyl, -(CH₂)-(3-CONH₂)phenyl, -(CH₂-OH
- 31. (Original) A compound according to claim 1, wherein R_1 is selected from the group consisting of $-(C_1)$ alkyl-aryl, $-(C_1)$ alkyl-bicycloaryl, -aminoaryl, -aminoheteroaryl, aminobicycloaryl, -aminoheterobicycloaryl, -O-aryl, -O-heteroaryl, -O-bicycloaryl, -O-

heterobicycloaryl, -(S)-aryl, -(S)-heteroaryl, -(S)-bicycloaryl, -S-heterobicycloaryl, -C(O)-aryl, -C(O)-heteroaryl, -C(O)-heterobicycloaryl, -C(S)-aryl, -C(S)-heteroaryl, -C(S)-heteroaryl, -S(O)-heteroaryl, -S(O)-heteroaryl, -S(O)-bicycloaryl, -S(O)-bicycloaryl, -SO₂-heterobicycloaryl, -SO₂-heteroaryl, -SO₂-heteroaryl, -SO₂-heterobicycloaryl, -C(NR₉)-heteroaryl, -C(NR₉)-heterobicycloaryl, each substituted or unsubstituted.

- 32. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form an unsubstituted or substituted 5 or 6 membered cycloalkyl or heterocycloalkyl ring.
- 33. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form a substituted or unsubstituted phenyl ring.
- 34. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form a substituted or unsubstituted heteroaryl ring.
- 35. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form a substituted or unsubstituted heteroaryl selected from the group consisting of substituted or unsubstituted furan, thiophene, pyrrole, pyrazole, triazole, isoxazole, oxazole, thiazole, isothiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, imidazole, benzimidazole, indole, isoindole, quinoline, isoquinoline, cinnoline, quinazoline, naphthyridine, pyridopyridine, quinoxaline, phthalazine, and benzothiazole.
- 36. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form a 5 or 6-membered ring where the ring comprises at least one CO group.
- 37. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form a 5 or 6-membered ring comprising of 1-3 nitrogen ring atoms.

38. (Original) A compound according to claim 1, where R₃ and R₄ are taken together to form a 5 or 6-membered ring where the ring comprises a sulfur atom.

- 39. (Original) A compound according to claim 38, wherein the ring sulfur atom is in an oxidized form as SO or SO₂.
- 40. (Original) A compound according to claim 1, wherein the ring formed by R₃ and R₄ comprises substituents that form a ring fused to the ring formed by R₃ and R₄.
- 41. (Original) A compound according to claim 1, wherein R₃ and R₄ are taken together to form a ring system such that the compound of Formula XIX formed is selected from the group consisting of substituted or unsubstituted 4-oxo-4H-quinazoline, 3H-pyrido[2,3-d]pyrimidin-4-one, 3H-pyrido[3,4-d]pyrimidin-4-one and 3H-pyrido[4,3-d]pyrimidin-4-one.
- 42. (Original) A compound comprising Formula XX:

$$R_1$$
 R_2
 R_2

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

J, K, L, and M are each independently selected from the group of CR₁₂ and N;

 R_1 is -ZR_m, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and -R_m is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein;

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted; and

each R_{12} is hydrogen or is independently selected from the group consisting of halo, perhalo(C_{1-10})alkyl, CF_3 , alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, cyano, nitro, alkoxy, a carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted.

- 43. (Original) A compound according to claim 42, wherein the compound is a compound where J, K, L and M each comprise a carbon ring atom.
- 44. (Original) A compound according to claim 42, wherein the compound is a compound where J comprises a nitrogen ring atom.
- 45. (Original) A compound according to claim 42, wherein the compound is a compound where K comprises a nitrogen ring atom.
- 46. (Original) A compound according to claim 42, wherein the compound is a compound where L comprises a nitrogen ring atom.
- 47. (Original) A compound according to claim 42, wherein the compound is a compound where M comprises a nitrogen ring atom.
- 48. (Original) A compound according to claim 42, wherein the compound is a compound where J and L each comprise a nitrogen ring atom or J and K each comprise a nitrogen ring atom.

- 49. (Original) A compound according to claim 42, wherein the compound is a compound where K and L each comprise a nitrogen ring atom.
- 50. (Original) A compound according to claim 42, wherein the compound is a compound where K and M each comprise a nitrogen ring atom.
- 51. (Original) A compound according to claim 42, wherein the compound is a compound where J and M each comprise a nitrogen ring atom or L and M each comprise a nitrogen ring atom.
- 52. (Original) A compound according to claim 42, wherein at least two of J, K, L and M comprise a nitrogen ring atom.
- 53. (Original) A compound according to claim 42, wherein at least three of J, K, L and M comprise a nitrogen ring atom.
- 54. (Original) A compound according to claim 42, wherein the ring formed by J, K, L, and M comprises substituents that form a ring fused to or bridged to the ring formed by J, K, L, and M.
- 55. (Original) A compound according to claim 42, wherein K is CR₁₂, where R₁₂ is independently selected from the group consisting of halo, perhalo(C₁-10)alkyl, CF₃, alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, cyano, nitro, alkoxy, a carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted.
- 56. (Original) A compound according to claim 42, wherein K is CR₁₂, where R₁₂ is independently selected from the group consisting of halo, perhalo(C₁₋₁₀)alkyl, CF₃, cyano, nitro, alkyl, aryloxy, heteroaryloxy, amino, and alkoxy, each substituted or unsubstituted.

- 57. (Original) A compound according to claim 42, wherein K is CR₁₂, where R₁₂ is independently selected from the group consisting of heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryl, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, thio, a carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted.
- 58. (Original) A compound according to claim 42, wherein K is CR₁₂, where R₁₂ is independently selected from the group consisting of chloro, bromo, fluoro, iodo, methoxy, morpholin-4-yl, and pyrrolidin-1-yl, each substituted or unsubstituted.
- 59. (Original) A compound according to claim 42, wherein L is CR₁₂, where R₁₂ is independently selected from the group consisting of halo, perhalo(C₁-10)alkyl, CF₃, alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, cyano, nitro, alkoxy, a carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted.
- 60. (Original) A compound according to claim 42, wherein L is CR₁₂, where R₁₂ is independently selected from the group consisting of halo, perhalo(C₁-10)alkyl, CF₃, cyano, nitro, alkyl, aryloxy, heteroaryloxy, amino, morpholin-4-yl, and pyrrolidin-1-yl, and alkoxy, each substituted or unsubstituted.
- 61. (Original) A compound according to claim 42, wherein K and L are independently CR₁₂, where R₁₂ is independently selected from the group consisting of halo, perhalo(C₁-10)alkyl, CF₃, cyano, nitro, alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, a carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted.
- 62. (Original) A compound according to claim 42, wherein:

K is CR₁₂, where R₁₂ is independently selected from the group consisting of halo, perhalo(C₁₋₁₀)alkyl, CF₃, cyano, nitro, alkyl, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, a carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted; and

L is nitrogen.

63. (Original) A compound comprising a member selected from the group consisting of Formulae XXIa, XXIb, XXIc, XXId, XXIe and XXIf:

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

U.S. Application Serial No. 10/809,636 Office Action mailed April 27, 2006 Response to Office Action dated July 27, 2006

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein;

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted; and

each R₁₉ is independently selected from the group consisting of hydrogen, halo, perhalo(C₁₋₁₀)alkyl, CF₃, cyano, nitro, alkyl, alkene, alkyne, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted, with the proviso that R₁₉ is not alkylthio, arylthio, halo, cyano, nitro, and thio in the case where the ring atom to which R₁₉ is bound is nitrogen.

- 64. (Original) A compound according to claim 63, wherein two R₁₉ are taken together to form a substituted or unsubstituted fused or bridged ring.
- 65. (Original) A compound comprising Formula XXII:

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

- W, X, and Y are each independently selected from the group of moieties where the ring atom is either C, N, O or S;
- R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein; and

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted.

- 66. (Original) A compound according to claim 65, wherein at least one of W, X, and Y is CO.
- 67. (Original) A compound according to claim 65, wherein at least one of W, X, and Y is SO.
- 68. (Original) A compound according to claim 65, wherein at least one of W, X, and Y is SO₂.
- 69. (Original) A compound according to claim 65, wherein at least one of W, X, and Y comprises a ring nitrogen atom.
- 70. (Original) A compound according to claim 65, wherein at least two of W, X, and Y comprises a ring nitrogen atom.
- 71. (Original) A compound according to claim 65, wherein W and Y are taken together to form a substituted or unsubstituted bridged ring relative to the ring formed by W, X and Y.
- 72. (Original) A compound according to claim 65, wherein two of W, X, and Y are taken together to form a substituted or unsubstituted ring fused to the ring formed by W, X and Y.

73. (Original) A compound comprising a member selected from the group consisting of Formulae XXIIIa, XXIIIb or XXIIIc:

$$Q = \begin{pmatrix} R_{19} & R_{19} & R_{19} & R_{19} \\ R_{19} & R_{19} & R_{19} & R_{19} & R_{19} \\ XXIIIa & XXIIIb & XXIIIb \end{pmatrix}$$

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

R₂ is -UV, where U is a mojety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein;

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted; and

each R_{19} is independently selected from the group consisting of hydrogen, halo, perhalo(C_{1-10})alkyl, CF_3 , cyano, nitro, alkyl, alkene, alkyne, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted, with the proviso that R_{19} is not alkylthio, arylthio, halo, cyano, nitro, and thio in the case where the ring atom to which R_{19} is bound is nitrogen.

74. (Original) A compound according to claim 73, wherein two R₁₉ are taken together to form a substituted or unsubstituted bridged or spiro ring.

75. (Original) A compound comprising Formula XXIVa or Formula XXIVb:

wherein

O is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

W, X, and Y are each independently selected from the group of moieties where the ring atom is either C, N, O or S;

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein; and

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted.

76. (Original) A compound according to claim 75, wherein the compound is a compound of Formula XXIVa wherein Y is selected from the group consisting of CO, SO or SO₂.

77. (Original) A compound according to claim 75, wherein the compound is a compound of Formula XXIVb wherein W is selected from the group consisting of CO, SO or SO₂.

78. (Original) A compound according to claim 75, wherein W comprise a ring nitrogen atom.

- 79. (Original) A compound according to claim 75, wherein X comprise a ring nitrogen atom.
- 80. (Original) A compound according to claim 75, wherein Y comprise a ring nitrogen atom.
- 81. (Original) A compound according to claim 75, wherein at least two of W, X, and Y comprises a ring nitrogen atom.
- 82. (Original) A compound according to claim 75, wherein two of W, X, and Y are taken together and substituted through available valencies to form a substituted or unsubstituted ring fused or bridged to the ring formed by W, X and Y.
- 83. (Original) A compound according to claim 75, wherein W, X, and Y are selected such that the compound comprises a ring system selected from the group consisting of 4-oxo-4H-thieno[3,2-d]pyrimidine, 7-oxo-1,2,3,7-tetrahydro-8-thia-4,6-diaza-cyclopenta[a]indene, 7-methyl-6-oxo-6,7-dihydro-purine, and 6-oxo-6,9-dihydro-purine, each substituted or unsubstituted.
- 84. (Original) A compound comprising Formulae XXVa, XXVb, or XXVc:

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

X is selected from the group of moieties where the ring atom is either C, N, O or S in Formula XXVa, or X is selected from the group of moieties where the ring atom is either C or N in Formula XXVb or Formula XXVc;

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl;

 R_2 is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R_2 is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein;

R₀ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted; and

each R₁₉ is independently selected from the group consisting of hydrogen, halo, perhalo(C₁₋₁₀)alkyl, CF₃, cyano, nitro, alkyl, alkene, alkyne, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, cycloalkyl, heterocycloalkyl, amino, thio, alkoxy, carbonyl group, imine group, sulfonyl group and sulfinyl group, each substituted or unsubstituted, with the proviso that R₁₉ is not alkylthio, arylthio, halo, cyano, nitro, and thio in the case where the ring atom to which R₁₉ is bound is nitrogen.

- 85. (Original) A compound according to claim 84, wherein two R₁₉ are taken together to form a substituted or unsubstituted ring.
- 86. (Original) A compound according to claim 84, wherein the compound comprises Formula XXVa and the two R₁₉ are taken together to form a substituted or unsubstituted fused or bridged ring.
- 87. (Original) A compound comprising a member selected from the group of Formulae XXVIa, XXVIb and XXVIc:

U.S. Application Serial No. 10/809,636 Office Action mailed April 27, 2006 Response to Office Action dated July 27, 2006

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

J, K, L, and M are each independently selected from the group of moieties where the ring atom is either C, N, O or S;

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted (C_{3-7})cycloalkyl and aryl; and

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein.

88. (Original) A compound according to claim 87, wherein the compound is a compound where J, K, L and M each comprise a carbon ring atom.

89. (Original) A compound according to claim 87, wherein at least one of J, K, L and M comprise a nitrogen ring atom.

90. (Original) A compound according to claim 87, wherein the compound is a compound where J and K each comprise a nitrogen ring atom or J and L each comprise a nitrogen ring atom.

- 91. (Original) A compound according to claim 87, wherein the compound is a compound where K and L each comprise a nitrogen ring atom or K and M each comprise a nitrogen atom.
- 92. (Original) A compound according to claim 87, wherein the compound is a compound where J and M each comprise a nitrogen ring atom or L and M each comprise a nitrogen ring atom.

93. (Original) A compound according to claim 87, wherein at least two of J, K, L and M comprise a nitrogen ring atom.

- 94. (Original) A compound according to claim 87, wherein at least three of J, K, L and M comprise a nitrogen ring atom.
- 95. (Original) A compound according to claim 87, wherein at least one of J, K, L and M is CO.
- 96. (Original) A compound according to claim 87, wherein at least one of J, K, L and M is SO.
- 97. (Original) A compound according to claim 87, wherein at least one of J, K, L and M is SO₂.
- 98. (Original) A compound according to claim 87, wherein the ring formed by J, K, L, and M comprises substituents, through available valencies, that form a ring fused to the ring formed by J, K, L, and M or, in the case of Formula XXVIb, J and M form a bridged ring relative to the ring formed by J, K, L, and M.
- 99. (Original) A compound comprising Formula XXVII:

wherein

Q is selected from the group consisting of CO, CS, SO, SO₂, or C=NR₉;

J, K, L, and M are each independently selected from the group of moieties where the ring atom is either C, N, O or S;

 R_1 is $-ZR_m$, where Z is a moiety providing 1-6 atom separation between R_m and the ring to which R_1 is attached, and $-R_m$ is selected from the group consisting of a substituted or unsubstituted ($C_{3^{-7}}$)cycloalkyl and aryl;

R₂ is -UV, where U is a moiety providing 1-6 atom separation between V and the ring to which R₂ is attached and V comprises a basic nitrogen atom that is capable of interacting with a carboxylic acid side chain of an active site residue of a protein; and

R₉ is hydrogen or is selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, bicycloaryl, and heterobicycloaryl, each substituted or unsubstituted.

100. (Original) A compound according to claim 99, wherein at least one of J, K, L and M is CO.

101. (Original) A compound according to claim 99, wherein at least one of J, K, L and M is SO.

102. (Original) A compound according to claim 99, wherein at least one of J, K, L and M is SO₂.

103. (Original) A compound according to claim 99, wherein the compound is a compound where J, K, L and M each comprise a carbon ring atom.

104. (Original) A compound according to claim 99, wherein the compound is a compound where J comprises a nitrogen ring atom.

105. (Original) A compound according to claim 99, wherein the compound is a compound where K comprises a nitrogen ring atom.

106. (Original) A compound according to claim 99, wherein the compound is a compound where L comprises a nitrogen ring atom.

- 107. (Original) A compound according to claim 99, wherein the compound is a compound where M comprises a nitrogen ring atom.
- 108. (Original) A compound according to claim 99, wherein the compound is a compound where J and K each comprise a nitrogen ring atom or J and L each comprise a nitrogen ring atom.
- 109. (Original) A compound according to claim 99, wherein the compound is a compound where K and L each comprise a nitrogen ring atom or K and M each comprise a nitrogen atom.
- 110. (Original) A compound according to claim 99, wherein the compound is a compound where J and M each comprise a nitrogen ring atom or L and M each comprise a nitrogen ring atom.
- 111. (Original) A compound according to claim 99, wherein at least two of J, K, L and M comprise a nitrogen ring atom.
- 112. (Original) A compound according to claim 99, wherein at least three of J, K, L and M comprise a nitrogen ring atom.
- 113. (Original) A compound according to claim 99, wherein the ring formed by J, K, L, and M comprises substituents that form a ring fused to the ring formed by J, K, L, and M.
- 114. (Original) A compound according to claim 99, wherein the ring formed by J, K, L, and M comprises substituents that form a bridged ring relative to the ring formed by J, K, L, and M.