Lesson 1 - The Natural Logarithm & Derivative of $y = e^x$

PART A: The Number €

There are many letters in mathematics which represent numbers. These include π and e. To 20 decimal places, e=2.71828182845904523536. The number e is named the Euler number after the Swiss mathematician Leonhard Euler.

This is the graph of
$$y = \left(1 + \frac{1}{x}\right)^x$$
.

The letter e represents the limit as x approaches infinity of this graph.

Therefore, e can be defined as follows:

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

There are many applications that use $y = e^x$ (which is called the natural exponential function).

PART B: Investigation

- 1. A table of values is given for $f(x) = e^x$. On the grid, graph the following:
 - $f(x) = e^x$
 - ii) f(x) = x (the line y = x)
 - iii) The reflection of the graph of $f(x) = e^x$ in the line y = x

Choose an appropriate scale for the axes.

	e ^x
X	(to the nearest
	hundredth)
-2	0.14
-1	0.37
0	1
1	2.72
2	7.39

Note: Uses of Euler # e

- 1. solution to many differential equations, modelling electric circuits, spring-mass systems
- 2. Newtons laws of cooling/heating in solution of differential equation

$$\frac{dT}{dt} = -k(T - T_o)$$

As you might remember from Advanced Functions, the logarithm is the inverse of the exponential function. For example: $y = \log_2 x$ is the inverse of $y = 2^x$. You may not realize it, but in the investigation above, you actually graphed the inverse of $y = e^x$. The inverse of $y = e^x$ is $y = \log_e x$. As you can see from the graph, the reflection of $y = e^x$ in the line y = x represents the graph of $y = \log_e x$.

The function $y = \log_e x$ can also be written as $y = \ln x$ and is called the **Natural** Logarithm Function.

2. Label the graphs above accordingly and complete the table below to compare the two graph

	$f(x)=e^x$	$g(x) = \ln(x)$
Domain	XER	x < R (x>0
Range	9E1K14>0	. Υ <i>€</i> Τ ₹
Asymptote	HA-39=0	V4 → ×= O
x-intercept(s)	None	(1,0)
y-intercept(s)	(0,1)	None
Intervals of increase	$(-\infty,\infty)$	(0,∞)
Concavity	C.U.	C.D

3. Does the inverse of the natural exponential function exist and, if yes, what is it?

Yes it is a function (passes VLT) and it is called the natural bygarithm (lnx) pronounced "lon"x

PART C: Investigation of $y = e^x$ and its derivative

1. Follow the investigation in the book on page 227 and fill in the table below based on the investigation.

x	f(x)	f'(x)
-2	0.135	0.135
-1	0.368	0.368
0	ı	1
1	2.718	೩.7।8
2	7.389	7.389
3	20.086	20.086

- 2. Answer the questions from the investigation below:
- D. the values of f(x) and f'(x) are the same

G the derivative of f(x)=ex is f'(x)=ex

PART D: Investigation Summary:

From the investigation, it should have been apparent that the values of $y = e^x$ and its derivative were identical. This means that the slope of the tangent at any point is the value of the function at that point.

The Derivative of
$$f(x) = e^x$$

For the function $f(x) = e^x$, $f'(x) = e^x$

Although the derivative of $f(x) = e^x$ is equal to the original function itself, this is not the case when we have composite functions involving e^x .

The Derivative of a Composite Function involving e^x

In general, if $f(x) = e^{g(x)}$, then $f'(x) = e^{g(x)} \cdot g'(x)$ by the chain rule.

Example 1: Determine the derivative of e^{x^2-x} .

$$f(x) = e^{x^2 - x}$$

$$f'(x) = e^{x^2 - x} \cdot (2x - 1)$$

Example 2: Determine the derivative of $x^2 \cdot e^x$.

$$f(x) = \chi^{2} \cdot e^{\chi}$$

$$f'(x) = 2\chi \cdot e^{\chi} + e^{\chi} \cdot \chi^{2}$$

$$= e^{\chi} (2\chi + \chi^{2})$$

$$= \chi \cdot e^{\chi} (2 + \chi)$$