Chapter 1

Homework 21935004 谭焱

1.1 1.1.1

Exercise 1.1. Derive estimates for

$$\left| \left(D - \frac{\partial^3}{\partial x^3} \right) e^{i\omega x} \right|$$

. where $D = D_+^3, D_-D_+^2, D_-^2D_+, D_0D_+D_-$.

Solution. By

$$\begin{split} E^3 e^{i\omega x} &= (1+3i\omega h - \frac{9}{2}\omega^2 h^2 - \frac{27}{6}i\omega^3 h^3 + \frac{81}{24}\omega^4 h^4 + \mathcal{O}(\omega^4 h^4))e^{i\omega x} \\ E^2 e^{i\omega x} &= (1+2i\omega h - \frac{4}{2}\omega^2 h^2 - \frac{8}{6}i\omega^3 h^3 + \frac{16}{24}\omega^4 h^4 + \mathcal{O}(\omega^4 h^4))e^{i\omega x} \\ E e^{i\omega x} &= (1+i\omega h - \frac{1}{2}i\omega 2h^2 - \frac{1}{6}i\omega^3 h^3 + \frac{1}{24}\omega^4 h^4 \mathcal{O}(\omega^4 h^4))e^{i\omega x} \\ E^{-1} e^{i\omega x} &= (1-i\omega h - \frac{1}{2}i\omega 2h^2 + \frac{1}{6}i\omega^3 h^3 + \frac{1}{24}\omega^4 h^4 \mathcal{O}(\omega^4 h^4))e^{i\omega x} \\ E^{-2} e^{i\omega x} &= (1-2i\omega h - \frac{4}{2}i\omega 2h^2 + \frac{8}{6}i\omega^3 h^3 + \frac{16}{24}\omega^4 h^4 \mathcal{O}(\omega^4 h^4))e^{i\omega x} \\ E^3 e^{i\omega x} &= (1-3i\omega h - \frac{9}{2}\omega^2 h^2 + \frac{27}{6}i\omega^3 h^3 + \frac{81}{24}\omega^4 h^4 + \mathcal{O}(\omega^4 h^4))e^{i\omega x} \end{split}$$

1. $D = D_+^3$

$$\left| \left(D_+^3 - \frac{\partial^3}{\partial x^3} \right) e^{i\omega x} \right| = \left| \left(E^3 - 3E^2 + 3E - E_0 + i(\omega h)^3 \right) e^{i\omega x} / h^3 \right|$$
$$= \left| \left(\frac{3}{2} \omega^4 h^4 + \mathcal{O}(\omega^4 h^4) \right) e^{i\omega x} \right| = \mathcal{O}(\omega^3 h^3)$$

2. $D = D_- D_+^2$

$$\left| \left(D_- D_+^2 - \frac{\partial^3}{\partial x^3} \right) e^{i\omega x} \right| = \left| \left(E^2 - 3E + 3E_0 - E^{-1} + i(\omega h)^3 \right) e^{i\omega x} / h^3 \right|$$
$$= \left| \left(\frac{1}{2} \omega^4 h^4 + \mathcal{O}(\omega^4 h^4) \right) e^{i\omega x} \right| = \mathcal{O}(\omega^3 h^3)$$

3. $D = D_-^2 D_+$

$$\left| \left(D_{-}^{2} D_{+} - \frac{\partial^{3}}{\partial x^{3}} \right) e^{i\omega x} \right| = \left| \left(E - 3E_{0} + 3E^{-1} - E^{-2} + i(\omega h)^{3} \right) e^{i\omega x} / h^{3} \right|$$

$$= \left| \left(-\frac{1}{2} \omega^{4} h^{4} + \mathcal{O}(\omega^{4} h^{4}) \right) e^{i\omega x} \right| = \mathcal{O}(\omega^{3} h^{3})$$

4. $D = D_0 D_- D_+$

$$\left| \left(D_0 D_- D_+ - \frac{\partial^3}{\partial x^3} \right) e^{i\omega x} \right| = \left| \left(E^2 - 2E + 2E^{-1} + E^{-2} + i(\omega h)^3 \right) e^{i\omega x} / h^3 \right|$$
$$= \left| \left(\mathcal{O}(\omega^4 h^4) \right) e^{i\omega x} \right| = \mathcal{O}(\omega^4 h^4)$$

1.2 1.3.1

Exercise 1.2. Compute $||D_+D_-||_h$.

Solution. Firstly, we have

$$||D_+D_-||_h \le ||D_+||_h ||D_-||_h = \frac{4}{h^2}$$

Then, let $u_j = (-1)^j$, consider

$$||D_{+}D_{-}u||_{h}^{2} = \sum_{j} ((E - 2E_{0} + E^{-1})u_{j})^{2}/h^{4}$$
$$= \sum_{j} 16/h^{4} = \sum_{j} 16/h^{4}||u||_{h}^{2}$$

. That means

$$||D_+D_-||_h \ge \sqrt{\frac{||D_+D_-u||_h^2}{||u||_h^2}} = \frac{2}{h^2}$$

. In summary, $||D_{+}D_{-}||_{h} = \frac{2}{h^{2}}$.