Some Bayesian extensions of neural network-based graphon approximations

Creighton Heaukulani

Joint work with

Onno Kampman (Hong Kong)

EcoSta 2018, Hong Kong June 2018

1. Review neural network graphon approximation and its gradient-based inference. When are nnets useful?

- 1. Review neural network graphon approximation and its gradient-based inference. When are nnets useful?
- 2. Consider variational inference in such a model and why.

- 1. Review neural network graphon approximation and its gradient-based inference. When are nnets useful?
- 2. Consider variational inference in such a model and why.
- 3. Implement an infinite stochastic blockmodel, with good reason.

- 1. Review neural network graphon approximation and its gradient-based inference. When are nnets useful?
- 2. Consider variational inference in such a model and why.
- 3. Implement an infinite stochastic blockmodel, with good reason.
- 4. Review the pros and cons of being Bayesian here and other lessons learned along the way.

Relational data modeling

Relational data modeling

X n x m		Machine Learning Faradigms	per Prince Law Law Company	park	manufactural months months months	ma Marine Ma Marine Ma Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Marine Ma Marine Ma Marine Marine Marine Marine Marine Marine Marine Marine Marine Ma Ma Marine Marine Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma
	4	3		?	5	
	5		4		4	
	4		5	3	4	
		3				5
B		4				4
			2	4		5

"Minibatch learning" with these two data structures...

- ▶ What's the appropriate minibatch?
- ► Which entries are missing?

Lee et al. [2017]

Matrix factorization... linear models

Matrix factorization... linear models

The (n, m)-th entry of the matrix is modeled as

$$X_{n,m} \approx U_n^T V_m = \sum_{d=1}^D U_{n,d} V_{m,d}$$

Some $U_n \in \mathbb{R}^D$ and $V_m \in \mathbb{R}^D$, with D small. A linear model.

(Dziugaite and Roy [2015])

 $f(\cdot;\theta)$ is a neural network with parameters θ

(Dziugaite and Roy [2015])

$$f(\cdot;\theta)$$
 is a neural network with parameters θ

The (n, m)-th entry of the matrix is modeled as

$$X_{n,m} \approx U_n^T V_m = \sum_{d=1}^D U_{n,d} V_{m,d} f(U_n, V_m; \theta)$$

Generalized to a nonlinear model.

(Dziugaite and Roy [2015])

Matrix factorization

Network model

$$X_{n,m} \approx f(U_n, V_m; \theta)$$

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

E.g.,

$$X_{n,m} \approx W_o \sigma(W_h \cdot [U_n, V_m] + b_h) + b_o$$

(Dziugaite and Roy [2015])

Matrix factorization

Network model

$$X_{n,m} \approx f(U_n, V_m; \theta)$$

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

E.g.,

$$X_{n,m} \approx W_o \sigma(W_h \cdot [U_n, V_m] + b_h) + b_o$$

Within the graphon modeling/approximation framework (Lloyd et al. [2012], Orbanz and Roy [2015]).

(Dziugaite and Roy [2015])

Matrix factorization

Network model

$$X_{n,m} \approx f(U_n, V_m; \theta)$$

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

E.g.,

$$X_{n,m} \approx W_o \sigma(W_h \cdot [U_n, V_m] + b_h) + b_o$$

Within the graphon modeling/approximation framework (Lloyd et al. [2012], Orbanz and Roy [2015]).

Note: <u>Inputs</u> of the nnet are now parameters. (A Bayesian habit?)

(Dziugaite and Roy [2015])

Matrix factorization

Network model

$$X_{n,m} \approx f(U_n, V_m; \theta)$$

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

(Dziugaite and Roy [2015])

Matrix factorization

Network model

$$X_{n,m} \approx f(U_n, V_m; \theta)$$

$$X_{n,m} \approx f(U_n, V_m; \theta)$$
 $\mathbb{P}\{X_{n,m} = 1\} \approx \sigma(f(U_n, V_m; \theta))$

Gradient-based inference targeting, for example,

Loss =
$$\sum_{(n,m)} (X_{n,m} - f(U_n, V_m; \theta))^2 + \lambda_1 (||U||_F^2 + ||V||_F^2) + \lambda_2 ||\theta||_F^2$$

regularize inputs (?) L1/L2 regularization

(Dziugaite and Roy [2015])

Matrix factorization

Network model

$$X_{n,m} \approx f(U_n, V_m; \theta)$$

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

Gradient-based inference targeting, for example,

Loss =
$$\sum_{(n,m)} (X_{n,m} - f(U_n, V_m; \theta))^2 + \lambda_1 (||U||_F^2 + ||V||_F^2)$$
regularize inputs (?)
+ $\lambda_2 ||\theta||_F^2$ L1/L2 regularization

Competitive performance; dominates linear baselines

... for this matrix factorization problem anyway ...

... for this matrix factorization problem anyway ...

Pros:

▶ Black-box for incorporating side information

... for this matrix factorization problem anyway ...

Pros:

▶ Black-box for incorporating side information

► Gradient-based learning tools (e.g., Tensorflow/Torch/etc.)

... for this matrix factorization problem anyway ...

Cons:

- ► Lack of interpretability
- ▶ (What does that really mean? Why is this a problem?)

... for this matrix factorization problem anyway ...

Cons:

- Lack of interpretability
- ▶ (What does that really mean? Why is this a problem?)

Motivates things like a "stochastic blockmodel"...

- ▶ In some (most?) cases, consumers don't necessarily need to interpret the inferred nnet...
- ▶ Will often settle for some interpretable (inferred) components
 - ▶ like convincing clusterings of the users.

Let $Z_n \in \{1, ..., K\}$ denote to which of K clusters/components user n is assigned.

- Let $Z_n \in \{1, ..., K\}$ denote to which of K clusters/components user n is assigned.
- ▶ Let $U_k \in \mathbb{R}^D$ be the features for cluster k.

- ▶ Let $Z_n \in \{1, ..., K\}$ denote to which of K clusters/components user n is assigned.
- ▶ Let $U_k \in \mathbb{R}^D$ be the features for cluster k.
- ► Construct entries like:

Network modeling

$$X_{n,m} \approx f(U_{Z_n}, V_m; \theta)$$

$$\mathbb{P}\{X_{i,j}=1\} \approx \sigma(f(U_{\mathbf{Z}_i}, U_{\mathbf{Z}_j}; \theta))$$

- ▶ Let $Z_n \in \{1, ..., K\}$ denote to which of K clusters/components user n is assigned.
- ▶ Let $U_k \in \mathbb{R}^D$ be the features for cluster k.

Matrix factorization

Construct entries like:

Matrix factorization Network modeling
$$V \sim f(U, V; \theta) \qquad \mathbb{P}(V = 1) \sim \sigma(f(U, U; \theta))$$

$$X_{n,m} \approx f(U_{\mathbf{Z}_n}, V_m; \theta)$$
 $\mathbb{P}\{X_{i,j} = 1\} \approx \sigma(f(U_{\mathbf{Z}_i}, U_{\mathbf{Z}_j}; \theta))$

- \triangleright So, reduced N sets of parameters to just K
- ▶ ... like clustering the users (rows of the matrix)

▶ Without knowledge of $Z_n \Rightarrow$ infer from data.

- ▶ Without knowledge of $Z_n \Rightarrow$ infer from data.
- ▶ Requires (IMO) a Bayesian approach... Variational inference.

- ▶ Without knowledge of $Z_n \Rightarrow$ infer from data.
- ▶ Requires (IMO) a Bayesian approach... Variational inference.
- ► Straightforward application: "Variational inference for Dirichlet process mixtures" Blei and Jordan [2006]

- ▶ Without knowledge of $Z_n \Rightarrow$ infer from data.
- ▶ Requires (IMO) a Bayesian approach... Variational inference.
- ► Straightforward application: "Variational inference for Dirichlet process mixtures" Blei and Jordan [2006]
- ▶ Informally, prediction looks like

$$\mathbb{P}\{X_{i,j}^* = 1\} \approx \mathbb{E}_{q(Z)}[\sigma(f(U_{Z_i}, U_{Z_j}; \theta))]$$

 $q(Z) \approx p(Z \mid X)$ an approximation to the posterior.

Stick-breaking construction:

Let $V_i \sim \text{beta}(1,c)$, $i = 1, 2, \ldots$ and

$$\pi_k = V_k \prod_{\ell=1}^{k-1} (1 - V_\ell), \quad k = 1, 2, \dots,$$

$$Z_n \mid \pi \sim \text{Discrete}(\pi), \quad n \leq N.$$

Log likelihood is, for example,

$$\sum_{(i,j)} \log p(X_{i,j} \mid f(U_{Z_i}, U_{Z_j}; \theta)) + \log p(Z \mid V) + \log p(V)$$

Let q denote a "variational approximation" to the posterior:

$$q(V_k) = \text{beta}(V_k; a_k, b_k),$$

 $q(Z_n) = \text{Discrete}(Z_n; \eta_n).$

Maximize the following lower bound on the log marginal likelihood

$$\log p(X) \ge \mathbb{E}_{q(Z,V)} \left[\sum_{(i,j)} \log p(X_{i,j} \mid f(U_{Z_i}, U_{Z_j}; \theta)) \right]$$
$$- \text{KL}[q(Z,V) || p(Z,V)]$$

KL the Kullback–Leibler divergence.

Algorithm:

- ▶ Initialize q.
- ► Iterate:
 - Update

$$q(Z_n = k) \propto \exp\left\{\mathbb{E}_q[\log V_k] + \sum_{\ell \geq k+1} \mathbb{E}_q[\log(1 - V_\ell)] + \mathbb{E}_q\left[\sum_{(i,j)} \log p(X_{i,j} \mid Z, \{Z_n = k\})\right]\right\},$$

► Take a gradient step

$$\Theta \leftarrow \Theta + \eta \nabla_{\Theta} \left\{ \mathbb{E}_{q} \left[\sum_{(i,j)} \log p(X_{i,j} \mid f(U_{Z_{i}}, U_{Z_{j}}; \theta)) \right] - \text{KL}[q(Z, V) || p(Z, V)] \right\}$$

some schedule η and all parameters Θ

► Easily integrates with gradient-based learning (i.e., use Tensorflow/Torch/etc.)

- ► Easily integrates with gradient-based learning (i.e., use Tensorflow/Torch/etc.)
- ► Computing gradients requires stochastic approximation
 - ► Stochastic reparameterizations Salimans and Knowles [2013], Kingma and Welling [2014]
 - Score function estimators with control variates Ranganath et al. [2014], Paisley et al. [2012]

- ► Easily integrates with gradient-based learning (i.e., use Tensorflow/Torch/etc.)
- ► Computing gradients requires stochastic approximation
 - ► Stochastic reparameterizations Salimans and Knowles [2013], Kingma and Welling [2014]
 - Score function estimators with control variates Ranganath et al. [2014], Paisley et al. [2012]
 - Often easy with packages such as Tensorflow Contrib's "distributions"

We can learn the usual cool structure

Some inferred NIPS Coauthorship clusters:

$LeCun_Y$	$Giles_C$	$Jordan_M$	Ferguson_D
BengioY	$LeCun_{-}Y$	$Ghahramani_Z$	Jaakola_T
$Bottou_L$	Liu_S	$Bishop_C$	Doucet_A
$Dayan_P$	$Zemel_R$	$Amari_S$	Bartlett_P
$Frey_B_J$	$Mueller_P$	$Chapelle_O$	Bartlett_M
$Koller_D$	NgAY	$Burges_{-}C$	Guyon_I
$Bishop_{-}C$	$\operatorname{Opper_M}$	$Edelman_S$	Kearns_M
$Jackel_L$	Pearlmutter_B	Hinton	Burges_C
$\operatorname{Graf}_{-}H$	$Rumelhart_D$	$Buhmann_{J}$	$Hinton_G$
Doya_K	$Poggio_{-}T$	${\rm Johnson_D}$	$Jung_{-}T$

But it's not without pain points...

▶ With variational inference, hidden layers unnecessary. (Movielens 100K, comparing with Dziugaite and Roy [2015].)

- ▶ With variational inference, hidden layers unnecessary. (Movielens 100K, comparing with Dziugaite and Roy [2015].)
- ► Regularizing nnet weights important, inputs/features not so.

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

- ▶ With variational inference, hidden layers unnecessary. (Movielens 100K, comparing with Dziugaite and Roy [2015].)
- ► Regularizing nnet weights important, inputs/features not so.

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

▶ What does this mean for Bayesian inference? (!!)

- ▶ With variational inference, hidden layers unnecessary. (Movielens 100K, comparing with Dziugaite and Roy [2015].)
- ► Regularizing nnet weights important, inputs/features not so.

$$\mathbb{P}\{X_{n,m}=1\} \approx \sigma(f(U_n, V_m; \theta))$$

- ▶ What does this mean for Bayesian inference? (!!)
- \triangleright Some evidence layers useful when U contains <u>side information</u>.
 - ► E.g., Movie genre in Movielens 100K
 - ▶ Author word counts across papers in NIPS dataset

▶ Lots to be desired in current deep learning research

- ▶ Lots to be desired in current deep learning research
 - ▶ ...But it has its conveniences...

- ▶ Lots to be desired in current deep learning research
 - ▶ ...But it has its conveniences...
 - ...And produces some interesting suggestions for the Bayesian perspective.

- ▶ Lots to be desired in current deep learning research
 - ▶ ...But it has its conveniences...
 - ...And produces some interesting suggestions for the Bayesian perspective.
- ▶ With Bayesian inference on your deep nnet...

- ▶ Lots to be desired in current deep learning research
 - ▶ ...But it has its conveniences...
 - ...And produces some interesting suggestions for the Bayesian perspective.
- ▶ With Bayesian inference on your deep nnet...
 - ▶ You may find all that structure isn't necessary...

- ▶ Lots to be desired in current deep learning research
 - ▶ ...But it has its conveniences...
 - ...And produces some interesting suggestions for the Bayesian perspective.
- ▶ With Bayesian inference on your deep nnet...
 - ▶ You may find all that structure isn't necessary...
 - ...until you add data (not parameters).

- ▶ Lots to be desired in current deep learning research
 - ▶ ...But it has its conveniences...
 - ...And produces some interesting suggestions for the Bayesian perspective.
- ▶ With Bayesian inference on your deep nnet...
 - ▶ You may find all that structure isn't necessary...
 - ...until you add data (not parameters).
- ► I wish we focused more on (scalable) MCMC inference with deep learning architectures.

- D. M Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. <u>Bayesian Analysis</u>, 1(1): 121-143, 2006.
 G. K. Dziugaite and D. M. Roy. Neural network matrix factorization. <u>arXiv preprint arXiv:1511.06443</u>, 2015.
- D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In <u>ICLR</u>, 2014.
 J. Lee, C. Heaukulani, Z. Ghahramani, L. F. James, and S. Choi. Bayesian inference on random simple graphs with power law degree distributions. In <u>Proceedings of the 34th International Conference on</u>
- graphs with power law degree distributions. In <u>Proceedings of the 34th International Conference on Machine Learning</u>, 2017.

 J. Lloyd, P. Orbanz, Z. Ghahramani, and D. M. Roy. Random function priors for exchangeable arrays with applications to graphs and relational data. In Advances in Neural Information Processing Systems 25.
- 2012.

 P. Orbanz and D. M. Roy. Bayesian models of graphs, arrays and other exchangeable random structures.
- IEEE transactions on pattern analysis and machine intelligence, 37(2):437–461, 2015.
- J. Paisley, D. M. Blei, and M. I. Jordan. Variational Bayesian inference with stochastic search. In <u>ICML</u>, 2012.
- R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. In <u>AISTATS</u>, 2014.
 T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through stochastic linear registers. Pagesian Applied 9(4):827-823, 2012.
- regression. <u>Bayesian Analysis</u>, 8(4):837–882, 2013.