NAME: Chanda Dunani

SUBJECT: Introduction to Data Science

15/02/2022

https://github.com/chandadunani/ids7

Problem 1

- **4** Excel Work
- **Prepare the dataset to establish a relation between an urban population category and a crime type.**

State M	urdei 💌 A	Assault 🔽 Urb	inPop 🔽	Urban_pop_cat	crime_type
Alabama	13.2	236	58	medium	Very High
Alaska	10	263	48	small	Very High
Arizona	8.1	294	80	Extra large	Very High
Arkansas	8.8	190	50	medium	High
California	9	276		Extra large	Very High
Colorado					
	7.9	204	197707	Extra large	Very High
Connecticut	3.3	110	77	Extra large	less
Delaware	5.9	238	72	Extra large	Very High
Florida	15.4	335	80	Extra large	Very High
Georgia	17.4	169.94	60	large	Very High
Hawaii	5.3	46	83	Extra large	less
Idaho	2.6	120		medium	less
Illinois	10.4	249	72/710	Extra large	
	-				Very High
Indiana	7.2	113	2007	large	less
lowa	2.2	56	57	medium	least
Kansas	6	115	66	large	less
Kentucky	9.7	109	52	medium	less
Louisiana	15.4	249	66	large	Very High
Maine	2.1	83	1270	medium	least
Maryland	11.3	300			
				large	Very High
Massachusetts	4.4	149		Extra large	less
Michigan	12.1	255	74	Extra large	Very High
Minnesota	2.7	72	66	large	least
Mississippi	16.1	259	44	small	Very High
Missouri	9	178	70	Extra large	High
Montana	6	109	53	medium	less
Nebraska	4.3	102		large	less
Nevada	12.2	252		Extra large	Very High
New Hampshire	2.1	57		medium	least
New Jersey	7.4	159		Extra large	High
New Mexico New York	11.4	285 254		Extra large Extra large	Very High Very High
North Carolina	13	337		small	Very High
North Dakota	0.8	45		small	least
Ohio	7.3	120		Extra large	less
Oklahoma	6.6	151	68	large	High
Oregon	4.9	159	67	large	High
Pennsylvania	6.3	106		Extra large	less
Rhode Island	3.4	174		Extra large	High
South Carolina	14.4	279		small	Very High
South Dakota	3.8	86		small	least
Tennessee Texas	13.2	188 201		medium Extra large	High Vecy High
Utah	3.2	120		Extra large	Very High
Vermont	2.2	48		small	least
Virginia	8.5	156		large	High
Washington	4	145		Extra large	less
West Virginia	5.7	81		small	less
Wisconsin	2.6	53	66	large	least
Wyoming	6.8	161	60	large	High

Plot Murder rate vs. Assault rate.

Plot Murder rates for all 50 states.

Plot histogram of assaults.

♣ MySQL Work

† Data Discovery

In this part, we discover the variable types and their summary statistics in the data. First, we upload the USArrests dataset.

† Detect Missing values

Find min, max, mean, and variance of all numeric attributes in SQL

♥ Which state has the maximum murder rate?

\$\Pi\$ List of states in ascending order of urban population percentages.

† How many states have higher murder rates than Arizona? List those states.

List of States:

Conclusion:

To conclude, in this article, we examine the explanatory data analysis and which visualization types we can use for the explanatory data analysis. As stated above it is a very crucial step and it must be done before future engineering and model building to better understand data. This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973. Also given is the percent of the population living in urban areas. This is a systematic approach for identifying and analyzing patterns and trends in crime using USArrest dataset.

https://github.com/chandadunani/ids7

Problem 2

Learning Excel Work

Under-Five mortality rate and neonatal mortality rate.

† Infant mortality rate and neonatal mortality rate.

♦ Year and infant mortality rate.

♣ MySQL Work

† Display the entire table.

Which years have the lowest and highest infant mortality years, respectively?

In what years the neonatal mortality rates were above average?

26 10:52:38 select year from child_mortality where infant_mortality_rate=64.8 LIMIT 0, 1000

27 10:53:01 select Year from child_mortality where infant_mortality_rate=30.5- min LIMIT 0, 1000

30 10:56:14 select Year from child_mortality where neonatal_mortality_rate>=27.49 LIMIT 0, 1000

29 10:55:26 select avg(under_five_mortality_rate).avg(infant_mortality_rate).avg(neonatal_mortality_rate) from child_mortality... 1 row(s) returned

1 row(s) returned

1 row(s) returned

13 row(s) returned

28 10.53.39 select Year from child mortality where infant, mortality rate=30.5-min select avglunder five_mortality_rate).av... Error Code: 1064, You have an error in your SQL syntax; check the manual that corresponds to your MySQL se... 0.000 sec

0.000 sec / 0.000 sec

0.000 sec / 0.000 sec

0.000 sec / 0.000 sec 0.000 sec / 0.000 sec **Display** the sorted infant mortality rates in descending order.

Display min, max, mean, variance, and standard deviation for each mortality rate.

Add a new column called above-five mortality rate and populate it with appropriate values. Hint: use alter table add column.

Conclusion

Childhood is a significant stage of life and deprivation during this period can have a long-term adverse impact on the wellbeing of children. Reduction in infant and child morality is likely the most important of the millennium development goals, as children are the most important assets of a nation. The focus of this paper is to examine the determinants of childhood mortality and child health in India and the factors explaining the differential performance of the child immunization and treatment of childhood diseases. For this purpose data are taken from the three rounds of the National Family Health Survey of India (NFHS) conducted in 1992-93, 199899 and 2005-06.