$9_{28} (K9a_5)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^3 + b - u + 1, \ -2u^2 + a - u + 1, \ u^4 + u^3 - u^2 - u + 1 \rangle \\ I_2^u &= \langle -2u^{15} + 8u^{13} + 3u^{12} - 14u^{11} - 10u^{10} + 8u^9 + 14u^8 + 6u^7 - 6u^6 - 11u^5 - 3u^4 + 3u^3 + 2u^2 + b + u + 2, \\ &- 2u^{15} + 8u^{13} + 4u^{12} - 14u^{11} - 13u^{10} + 6u^9 + 17u^8 + 10u^7 - 4u^6 - 13u^5 - 7u^4 + 3u^2 + a + 3u + 3, \\ &- u^{16} + u^{15} - 4u^{14} - 6u^{13} + 5u^{12} + 13u^{11} + 3u^{10} - 11u^9 - 12u^8 - 2u^7 + 8u^6 + 8u^5 + 2u^4 - 2u^3 - 2u^2 - 2u - 13u^4 - 2u^3 + 2u^4 - 2u^3 - 2u^2 - 2u - 13u^4 - 2u^3 + 2u^4 - 2u^3 - 2u^2 - 2u - 13u^4 - 2u^3 - 2u^3 - 2u^2 - 2u - 13u^4 - 2u^3 -$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^3 + b - u + 1, -2u^2 + a - u + 1, u^4 + u^3 - u^2 - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{3} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{2} + u - 1 \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{3} + 2u^{2} - u \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 2u - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 2u - 1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8u^2 + 4u 10$

Crossings	u-Polynomials at each crossing
c_1	$u^4 + 2u^2 + 3u + 1$
c_2, c_4, c_7 c_8	$u^4 - u^3 - u^2 + u + 1$
c_3, c_5	$u^4 + 3u^3 + 5u^2 + 3u + 1$
c_6, c_9	$u^4 - 2u^3 + 2u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^4 + 4y^3 + 6y^2 - 5y + 1$
c_2, c_4, c_7 c_8	$y^4 - 3y^3 + 5y^2 - 3y + 1$
c_3, c_5	$y^4 + y^3 + 9y^2 + y + 1$
c_{6}, c_{9}	$y^4 + 2y^2 + 3y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.692440 + 0.318148I		
a = 0.448952 + 1.199340I	-1.07760 - 1.41376I	-4.20419 + 4.79737I
b = -0.429304 - 0.107280I		
u = 0.692440 - 0.318148I		
a = 0.448952 - 1.199340I	-1.07760 + 1.41376I	-4.20419 - 4.79737I
b = -0.429304 + 0.107280I		
u = -1.192440 + 0.547877I		
a = 0.05105 - 2.06537I	-3.85720 + 11.56320I	-5.79581 - 8.26147I
b = -1.57070 - 1.62477I		
u = -1.192440 - 0.547877I		
a = 0.05105 + 2.06537I	-3.85720 - 11.56320I	-5.79581 + 8.26147I
b = -1.57070 + 1.62477I		

$$II. \\ I_2^u = \langle -2u^{15} + 8u^{13} + \dots + b + 2, \ -2u^{15} + 8u^{13} + \dots + a + 3, \ u^{16} + u^{15} + \dots - 2u - 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{15} - 8u^{13} + \dots - 3u - 3 \\ 2u^{15} - 8u^{13} + \dots - u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{15} - 4u^{13} - u^{12} + 7u^{11} + 3u^{10} - 5u^{9} - 4u^{8} + 2u^{6} + 2u^{5} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{15} - 9u^{13} + \dots - 3u - 3 \\ u^{15} - 5u^{13} + \dots - u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{15} - 9u^{13} + \dots - 3u - 3 \\ u^{15} - 5u^{13} + \dots - u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{12} 12u^{10} 4u^9 + 16u^8 + 8u^7 4u^6 8u^5 4u^4 + 4u^2 2u^4 + 4u^4 + 4u^2 2u^4 + 4u^4 + 4u^4 2u^4 + 4u^4 + 4u^4 2u^4 + 4u^4 + 4u^4 2u^4 + 4u^4 2u^4 + 4u^4 + 4u^4 2u^4 + 4u^4 + 4u^4 2u^4 2u^4 + 4u^4 2u^4 2u^4 + 4u^4 2u^4 2u^4$

Crossings	u-Polynomials at each crossing
c_1	$(u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1)^2$
c_2, c_4, c_7 c_8	$u^{16} - u^{15} + \dots + 2u - 1$
c_3, c_5	$u^{16} + 9u^{15} + \dots - 8u^2 + 1$
c_6, c_9	$(u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)^2$
c_2, c_4, c_7 c_8	$y^{16} - 9y^{15} + \dots - 8y^2 + 1$
c_3, c_5	$y^{16} - 5y^{15} + \dots - 16y + 1$
c_{6}, c_{9}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.685501 + 0.640105I		
a = 0.436635 - 0.582879I	3.21286	1.86404 + 0.I
b = 0.612928 - 0.418261I		
u = -0.685501 - 0.640105I		
a = 0.436635 + 0.582879I	3.21286	1.86404 + 0.I
b = 0.612928 + 0.418261I		
u = -0.203747 + 0.848147I		
a = -0.171437 - 0.597846I	-0.91019 - 6.44354I	-2.57155 + 5.29417I
b = -1.12222 + 1.11997I		
u = -0.203747 - 0.848147I		
a = -0.171437 + 0.597846I	-0.91019 + 6.44354I	-2.57155 - 5.29417I
b = -1.12222 - 1.11997I		
u = 1.082580 + 0.348383I		
a = 0.921772 + 0.891806I	-2.24921 - 1.13123I	-4.58478 + 0.51079I
b = -0.275134 + 0.901574I		
u = 1.082580 - 0.348383I		
a = 0.921772 - 0.891806I	-2.24921 + 1.13123I	-4.58478 - 0.51079I
b = -0.275134 - 0.901574I		
u = 1.14767		
a = 0.848070	-2.44483	-0.105540
b = 0.513726		
u = -1.134620 + 0.424735I		
a = 0.45794 - 2.18496I	-5.44928 + 2.57849I	-7.72292 - 3.56796I
b = -0.74376 - 2.19413I		
u = -1.134620 - 0.424735I		
a = 0.45794 + 2.18496I	-5.44928 - 2.57849I	-7.72292 + 3.56796I
b = -0.74376 + 2.19413I		
u = -1.130780 + 0.529217I		
a = -0.20737 + 1.95558I	-0.91019 + 6.44354I	-2.57155 - 5.29417I
b = 1.10166 + 1.54556I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.130780 - 0.529217I		
a = -0.20737 - 1.95558I	-0.91019 - 6.44354I	-2.57155 + 5.29417I
b = 1.10166 - 1.54556I		
u = 1.242710 + 0.322774I		
a = -1.21486 - 0.76329I	-5.44928 + 2.57849I	-7.72292 - 3.56796I
b = -0.28199 - 1.40795I		
u = 1.242710 - 0.322774I		
a = -1.21486 + 0.76329I	-5.44928 - 2.57849I	-7.72292 + 3.56796I
b = -0.28199 + 1.40795I		
u = -0.684028		
a = -2.18804	-2.44483	-0.105540
b = -1.62708		
u = 0.097535 + 0.616980I		
a = -0.552685 - 1.087970I	-2.24921 + 1.13123I	-4.58478 - 0.51079I
b = -0.234797 + 1.067950I		
u = 0.097535 - 0.616980I		
a = -0.552685 + 1.087970I	-2.24921 - 1.13123I	-4.58478 + 0.51079I
b = -0.234797 - 1.067950I		

III.
$$I_3^u = \langle u^5 - u^3 + b + u, \ u^2 + a, \ u^6 - u^4 - u^3 + u^2 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} \\ -u^{5} + u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} - u^{2} \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} - u \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} - u \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} - u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^5 + 4u^4 4u^3 2u^2 2u + 2$

Crossings	u-Polynomials at each crossing
c_1	$u^6 - 3u^5 + 5u^4 - 7u^3 + 9u^2 - 8u + 4$
c_2, c_4, c_7 c_8	$u^6 - u^4 + u^3 + u^2 - u + 1$
c_3,c_5	$u^6 + 2u^5 + 3u^4 + u^3 + u^2 - u + 1$
c_6, c_9	$u^6 - u^5 - u^4 + 3u^3 - u^2 - 2u + 2$

Crossings	Riley Polynomials at each crossing
c_1	$y^6 + y^5 + y^4 + y^3 + 9y^2 + 8y + 16$
c_2, c_4, c_7 c_8	$y^6 - 2y^5 + 3y^4 - y^3 + y^2 + y + 1$
c_3,c_5	$y^6 + 2y^5 + 7y^4 + 11y^3 + 9y^2 + y + 1$
c_6, c_9	$y^6 - 3y^5 + 5y^4 - 7y^3 + 9y^2 - 8y + 4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.856601 + 0.623578I		
a = -0.344917 + 1.068320I	2.72382 + 4.89103I	0.12173 - 6.59162I
b = -0.107958 + 0.512846I		
u = -0.856601 - 0.623578I		
a = -0.344917 - 1.068320I	2.72382 - 4.89103I	0.12173 + 6.59162I
b = -0.107958 - 0.512846I		
u = 1.140590 + 0.471635I		
a = -1.07851 - 1.07589I	-5.10856 - 5.32947I	-7.48262 + 4.54389I
b = 0.67021 - 1.38548I		
u = 1.140590 - 0.471635I		
a = -1.07851 + 1.07589I	-5.10856 + 5.32947I	-7.48262 - 4.54389I
b = 0.67021 + 1.38548I		
u = -0.283992 + 0.709987I		
a = 0.423430 + 0.403261I	1.56227 - 1.71504I	1.36090 + 1.32670I
b = 0.937752 - 0.810947I		
u = -0.283992 - 0.709987I		
a = 0.423430 - 0.403261I	1.56227 + 1.71504I	1.36090 - 1.32670I
b = 0.937752 + 0.810947I		

IV.
$$I_4^u = \langle b+1, \ a+1, \ u-1 \rangle$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_6, c_9	u
$c_2, c_3, c_5 \ c_7$	u+1
c_4, c_8	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_9	y
c_2, c_3, c_4 c_5, c_7, c_8	y-1

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u^{4} + 2u^{2} + 3u + 1)(u^{6} - 3u^{5} + 5u^{4} - 7u^{3} + 9u^{2} - 8u + 4)$ $\cdot (u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)^{2}$
c_2, c_7	$(u+1)(u^4 - u^3 - u^2 + u + 1)(u^6 - u^4 + u^3 + u^2 - u + 1)$ $\cdot (u^{16} - u^{15} + \dots + 2u - 1)$
c_3, c_5	$(u+1)(u^4+3u^3+5u^2+3u+1)(u^6+2u^5+3u^4+u^3+u^2-u+1)$ $\cdot (u^{16}+9u^{15}+\cdots-8u^2+1)$
c_4, c_8	$(u-1)(u^4 - u^3 - u^2 + u + 1)(u^6 - u^4 + u^3 + u^2 - u + 1)$ $\cdot (u^{16} - u^{15} + \dots + 2u - 1)$
c_6, c_9	$u(u^{4} - 2u^{3} + 2u^{2} - u + 1)(u^{6} - u^{5} - u^{4} + 3u^{3} - u^{2} - 2u + 2)$ $\cdot (u^{8} + u^{7} - u^{6} - 2u^{5} + u^{4} + 2u^{3} - 2u - 1)^{2}$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y^4 + 4y^3 + 6y^2 - 5y + 1)(y^6 + y^5 + y^4 + y^3 + 9y^2 + 8y + 16)$ $\cdot (y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)^2$
c_2, c_4, c_7 c_8	$(y-1)(y^4 - 3y^3 + 5y^2 - 3y + 1)(y^6 - 2y^5 + 3y^4 - y^3 + y^2 + y + 1)$ $\cdot (y^{16} - 9y^{15} + \dots - 8y^2 + 1)$
c_3,c_5	$(y-1)(y^4 + y^3 + 9y^2 + y + 1)(y^6 + 2y^5 + \dots + y + 1)$ $\cdot (y^{16} - 5y^{15} + \dots - 16y + 1)$
c_6, c_9	$y(y^4 + 2y^2 + 3y + 1)(y^6 - 3y^5 + 5y^4 - 7y^3 + 9y^2 - 8y + 4)$ $\cdot (y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)^2$