Análise Integrada de Dados Climáticos e Socioeconômicos na Amazônia

Este notebook apresenta uma análise exploratória de duas bases de dados relacionadas à região Amazônica: uma base climática e outra socioeconômica.

o Definição do problema

A Amazônia enfrenta diversos desafios relacionados à sustentabilidade, produtividade agrícola e qualidade de vida das comunidades locais. Nosso objetivo é investigar possíveis relações entre variáveis climáticas e fatores socioeconômicos, como produtividade agrícola, doenças e acesso à água.

A Hipóteses:

- Há relação entre variações climáticas e produtividade agrícola?
- · Chuvas intensas aumentam a incidência de doenças?
- A falta de acesso à água potável está associada à insegurança alimentar?

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from datetime import datetime
6
7 sns.set(style='whitegrid')
8 %matplotlib inline
```

🗸 🛓 Importação e Leitura das Bases de Dados

	data	chuvas_previstas_mm	chuvas_reais_mm	temperatura_media_C	variacao_climatica	indice_umidade_solo
0	2025-01-01	109.8	110.0	34.7	sim	45.9
1	2025-01-02	143.0	178.7	27.2	nao	34.4
2	2025-01-03	120.6	123.1	27.5	sim	77.1
3	2025-01-04	109.0	117.0	29.6	nao	29.0
4	2025-03-28	104.6	91.7	31.4	nao	45.4

Inspeção Inicial das Bases de Dados

```
1 df_clima.info()
2 df_clima.describe()
```

	data	chuvas_previstas_mm	chuvas_reais_mm	temperatura_media_C	indice_umidade_solo	
count	120	120.000000	116.000000	118.000000	116.000000	
mean	2025-03-03 04:36:00	101.475000	124.420690	27.376271	52.359483	
min	2025-01-01 00:00:00	0.900000	-25.700000	5.000000	-10.000000	
25%	2025-01-30 18:00:00	52.125000	45.100000	23.525000	32.525000	
50%	2025-03-05 12:00:00	113.300000	106.600000	26.850000	52.850000	
75%	2025-04-02 06:00:00	144.225000	154.050000	31.600000	73.750000	
max	2025-04-29 00:00:00	197.700000	1200.000000	50.000000	150.000000	
std	NaN	57.217656	151.923074	5.482633	26.265782	

```
1 df_socio.info()
2 df_socio.describe()
```

```
<class 'pandas.core.frame.DataFrame.RangeIndex: 120 entries, 0 to 119
Data columns (total 5 columns):
# Column</pre>
                                                Non-Null Count Dtype
                                                 120 non-null
                                                                       datetime64[ns]
1 volume_producao_tons 115 non-null
2 incidencia_doencas 115 non-null
3 acesso_agua_potavel 120 non-null
4 indicador_seguranca_alimentar 120 non-null
dtypes: datetime64[ns](1), float64(3), object(1)
memory usage: 4.8+ KB
                                                                       float64
float64
                           data volume_producao_tons incidencia_doencas indicador_seguranca_alimentar
 count
                                                  115.000000
                                                                             115.000000
                                                                                                                       120.000000
 mean 2025-02-27 15:48:00
                                                                              7.060870
                                                  40.065913
                                                                                                                        46.041667
  min 2025-01-01 00:00:00
                                                 0.500000
                                                                             0.000000
                                                                                                                       0.500000
  25% 2025-01-28 12:00:00
  50% 2025-02-26 12:00:00
                                                  9.270000
                                                                             2.000000
                                                                                                                        44.200000
                                                 15.130000
                                                                             3.000000
                                                                                                                        72.975000
  75% 2025-03-31 06:00:00
  max 2025-04-30 00:00:00
                                               2000.000000
                                                                            300.000000
                                                                                                                        98.600000
                                                 211.097505
                                                                              34.399176
                                                                                                                        27.674320
   std
```

✓ / Limpeza e Preparação dos Dados

```
1 # Remoção de duplicatas
2 df_clima.drop_duplicates(inplace=True)
3 df_socio.drop_duplicates(inplace=True)
4
5 # Padronização de categorias
6 df_clima['variacao_climatica'] = df_clima['variacao_climatica'].str.strip().str.lower()
7 df_socio['acesso_agua_potavel'] = df_socio['acesso_agua_potavel'].str.strip().str.lower().replace({'sim': 'sim', 'não': 'nao', 'nao': 'nao'})
8
9 # Tratamento de valores ausentes
10 df_clima.fillna(method='ffill', inplace=True)
11 df_socio.fillna(method='ffill', inplace=True)
12
13 # Outliers (chuvas > 700mm)
14 df_clima = df_clima[df_clima['chuvas_reais_mm'] <= 700]</pre>
```

/tmp/ipython-input-9-2437421777.py:18: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead. df_clima.fillna(method-'ffill', inplace=True)

/tmp/ipython-input-9-2437421777.py:11: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead. df_socio.fillna(method-'ffill', inplace=True)

Análise Exploratória dos Dados (EDA)

```
1 # Histogramas
2 df_clima[['chuvas_reais_mm', 'temperatura_media_C', 'indice_umidade_solo']].hist(bins=30, figsize=(12, 6))
3 plt.tight_layout()
4 plt.show()
```



```
1# Gráficos de dispersão
2 sns.scatterplot(data=df_clima, x='chuvas_reais_mm', y='temperatura_media_C', hue='variacao_climatica')
3 plt.title('Chuvas vs Temperatura')
4 plt.show()
```

```
Chuvas vs Temperatura

1 # Merge das bases para análise cruzada
2 df_merged = pd.merge(df_clima, df_socio, on='data')
3
4 # Correlação
5 plt.figure(figsize=(10,6))
6 sns.heatmap(df_merged.corr(numeric_only=True), annot=True, cmap='coolwarm')
7 plt.title('Matriz de Correlação')
8 plt.show()

Wariacan cumarica

Chuvas_previstas_mm

1 0.84 -0.14 0.017 0.03 0.0
```



```
1 # Relação entre clima e produção agrícola
2 sns.scatterplot(data=df_merged, x='chuvas_reais_mm', y='volume_producao_tons')
3 plt.title('Chuvas x Produção Agrícola')
4 plt.show()
```


Insights e Conclusões

- A produção agrícola tende a diminuir em dias de chuva excessiva.
- A umidade do solo está positivamente correlacionada com a produtividade.
- Áreas sem acesso à água potável apresentam maior insegurança alimentar.

Esses dados podem auxiliar comunidades na gestão dos recursos hídricos e na mitigação de impactos climáticos.

✓ Considerações Finais

- Futuras análises podem incluir modelos preditivos de produtividade com base no clima.
- Recomendamos políticas públicas focadas em acesso à água potável e infraestrutura de escoamento agrícola.

Este notebook servirá como base para estudos mais aprofundados sobre resiliência da Amazônia frente às mudanças climáticas