Options Réelles Valorisation et Gestion du Risque

Application à la valorisation et gestion de risque d'actifs industriels energétiques

P. Hénaff

14 Mai 2009

Problématique

Valorisation d'une Centrale Électrique

Valorisation par Simulation : Un Réservoir de Gaz Naturel

Problématique

Identifier le caractère optionnel d'un actif Réaliser la valeur optionelle

Valorisation d'une Centrale Électrique

Notation

Exemple de calcul sur une période

Monétiser l'Option : une Usine Virtuelle

Indicateurs de risque

Valorisation par Simulation : Un Réservoir de Gaz Naturel

L'environnement d'un Réservoir de Gaz Naturel Programmation Dynamique Sans Recours Programme Stochastique avec Recours

Application aux Décision d'investissement

Optionalité d'un actif

$$V = \max_{\theta \in \Theta} (Y(\theta) - X(\theta) - Z(\theta))$$
$$V = \max(Y - X - \hat{Z}, 0)$$

 θ : règle de décision.

Monétiser la valeur optionelle

Chaque année, on reçoit gratuitement une option 1 an, à l'argent, sur le CAC40 (valeur 14 EUR pour 100 EUR de nominal) . On ne peut pas la revendre.

Monétiser la valeur optionelle

Chaque année, on reçoit gratuitement une option 1 an, à l'argent, sur le CAC40 (valeur 14 EUR pour 100 EUR de nominal) . On ne peut pas la revendre.

1. Attendre et collecter la valeur d'exercice chaque année

Monétiser la valeur optionelle

Chaque année, on reçoit gratuitement une option 1 an, à l'argent, sur le CAC40 (valeur 14 EUR pour 100 EUR de nominal) . On ne peut pas la revendre.

- 1. Attendre et collecter la valeur d'exercice chaque année
- 2. Vendre synthétiquement l'option et collecter la prime, quelque soit la valeur d'exercice en fin d'année.

Résultat des deux stratégies

Problématique

Identifier le caractère optionnel d'un actif Réaliser la valeur optionelle

Valorisation d'une Centrale Électrique

Notation

Exemple de calcul sur une période

Monétiser l'Option : une Usine Virtuelle

Indicateurs de risque

Valorisation par Simulation : Un Réservoir de Gaz Naturel

L'environnement d'un Réservoir de Gaz Naturel Programmation Dynamique Sans Recours Programme Stochastique avec Recours Application aux Décision d'investissement

Une centrale électrique simplifiée

- Un input : Fuel lourd.
- Un output : Électricité
- Frais de fonctionnement :
 - 1. un coût variable fonction du volume traité
 - 2. un coût fixe pour démarrer la centrale après un arrêt

Une centrale électrique simplifiée

- Xt Prix du fuel
- Y_t Prix de l'électricité
- S_t État de la centrale (Arrêt=0, Marche=1)
 - c Coût variable
 - f Coût de démarage d'une centrale à l'arrêt
- $Z_t(S_t, S_{t-1})$ Coût total

$$Z_t(S_t, S_{t-1}) = \begin{cases} 0 & \text{if } S_t = 0 \\ c & \text{if } S_t = 1 \text{ and } S_{t-1} = 1 \\ c+f & \text{if } S_t = 1 \text{ and } S_{t-1} = 0 \end{cases}$$

 $V_t(X_t, Y_t, S_{t-1})$] Valeur de l'usine en t, pour la décision optimale S_t .

Exemple sur une période

En t = 0

X_0 (Fuel)	89
Y_0 (Électricité)	100
c (Coût variable)	10
(Coût de démarrage)	1

Exemple de calcul sur une période

Valeur sur une période

Valeur en fonction de l'état de l'usine

S_{-1}	S_0	Marge Brute	Cout	Valeur (V_0)
	0	0	0	0
Marche	Marche	11	10	1
Arrêt	Marche	11	10+1	0

- ▶ Si l'usine est en marche, la maintenir en marche
- ► Si l'usine est arrêtée, les deux choix sont equivalents

Valeur sur plusieurs périodes

- ► If y a deux sources de risque : X_t et Y_t, dont les dynamiques sont connues.
- Les actifs sous-jacents sont traités

Il s'agit d'un marché complet : la valeur de l'usine est l'espérance actualisée des flux futurs, sous la probabilité risque-neutre.

Exemple sur deux périodes

En t = T, 4 valeurs équiprobables pour la marge brute $M_T = Y_T - X_T$:

Marge	Fuel (X_T)	
Elec. (Y_T)	80	98
90	10	-8
110	30	12

$$E(M_T) = 11.0.$$

Etat en $t = 0$	Marche	Arrêt
$E(V_T)$	$\max(E(M_T)-c,0)$	$\max(E(M_T)-c-f,0)$
V_0	0 + 1	0

Il faut démarrer l'usine à t = 0!

Solution Générale

Le coût en t est fonction de la décision prise en t (S_t) et de l'état de l'usine en début de période (S_{t-1}).

On choisit la décision optimale en S_t pour maximiser la valeur de l'usine :

$$V_t(X_t, Y_t, S_{t-1}) = \max_{S_t} (Y_t - X_t - Z_t(S_t, S_{t-1}) + e^{-rT} E(V_{t+1}(X_{t+1}, Y_{t+1}, S_t)))$$

Exemple de calcul sur une période

Raisonnement sur plusieurs périodes

L'alea sur la marge est représenté dans un arbre à deux dimensions.

$$M_t^{i,j} = Y_t^j - X_t^i$$

Exemple de calcul sur une période

Raisonnement sur plusieurs périodes

Chaque noeud de l'arbre a 4 sucesseurs :

Valeur espérée future en T-1, avec $S_{i,j}=1$.

$$F_{T-1}(Y_i, X_j, S_{i,j} = 1) = \frac{1}{4} \left(V_T(Y_u, X_u, S_{i,j} = 1) + V_T(Y_u, X_d, S_{i,j} = 1) \right)$$

Raisonnement sur plusieurs périodes

Procédure de calcul:

- Partir de la dernière période (T), et calculer pour chaque noeud (i, j):
 - ▶ Valeur si l'usine est en marche à la période précédente : $V_T(Y_i, X_j, S_{T-1} = 1)$.
 - ▶ Valeur si l'usine n'est pas en marche à la période précédente : $V_T(Y_i, X_j, S_{T-1} = 0)$.
- 2. Reculer au temps T-1, et calculer la valeur optimale et la décision optimale à chaque noeud (i,j):
 - Si l'usine est en marche en (T − 2) :

$$V_{T-1}(Y_i, X_j, S_{T-2} = 1) = \max(Y_i - X_j - c + F_{T-1}(Y_i, X_j, S_{i,j} = 1),$$

▶ Si l'usine n'est pas en marche en (T-2):

$$V_{T-1}(Y_i, X_j, S_{T-2} = 0) = \max(Y_i - X_j - c - f + F_{T-1}(Y_i, X_j, S_{i,j} = 0))$$

3. Répéter jusqu'à t = 0.

Indicateurs de risque

Indicateurs de risque

Variation des indicateurs de risque en fonction du caractère de l'option de mise en marche (1 an d'exploitation, optimisation en 20 pas de temps).

M_0	V_0	$\frac{\partial V}{\partial V^1}$	$\frac{\partial V}{\partial V^2}$
4	7.92	.73	65
2	6.62	.67	60
0	5.43	.61	51
-2	4.41	.52	45
-4	3.54	.49	38

Les indicateurs de risque donne le portefeuille de réplication à vendre pour monétiser synthétiquement l'option de mise en marche.

Problématique

Identifier le caractère optionnel d'un actif Réaliser la valeur optionelle

Valorisation d'une Centrale Électrique

Notation

Exemple de calcul sur une période Monétiser l'Option : une Usine Virtuelle Indicateurs de risque

Valorisation par Simulation : Un Réservoir de Gaz Naturel

L'environnement d'un Réservoir de Gaz Naturel Programmation Dynamique Sans Recours Programme Stochastique avec Recours Application aux Décision d'investissement

L'environnement d'un Réservoir de Gaz Naturel

Vitesse d'injection et d'extraction

L'environnement d'un Réservoir de Gaz Nature

Prix et Volatilité

Programmation Dynamique Sans Recours

Acheter au plus bas, vendre au plus haut

Notation

- F_i Prix à terme durant $[T_i, T_{i+1}]$.
- r_i Flux injecté ou extrait durant $[T_i, T_{i+1}]$.
- $W_i(q)$ Valeur de l'actif au temps T_i , avec une quantité q en stock.
- $r_i^+(q), r_i^-(q)$ Flux maximum et minimum dans $[T_i, T_{i+1}]$, fonction du niveau q de stock.

Programmation Dynamique sans Recours

Maximiser la valeur actuelle d'une séquence déterministe de flux : valeur intrinsèque de l'actif.

$$\max_{r_i} \sum_{i=0}^N -r_i F_i e^{-\tau T_i}$$

Équation de Bellman pour $W_i(q)$:

$$W_i(q) = \max_{r_i^+(q) \le r_i \le r_i^-(q)} -r_i F_i + e^{-\tau \Delta_t} W_{i+1}(q+r_i)$$

Programmation Dynamique Sans Recours

Solution...

Programmation Dynamique Sans Recours

Pourquoi est-ce sous-optimal?

Programme Stochastique avec Recours

Soit X_i l'information connue en T_i .

$$egin{aligned} E[W_i(q) \mid \mathbb{X}_i] &= \max_{r_i^+(q) \leq r_i \leq r_i^-(q)} -r_i F_i + \ e^{- au \Delta_t} \int_{\mathbb{X}_{i+1}} E[W_{i+1}(q+r_i) \mid \mathbb{X}_{i+1}] P(\mathbb{X}_{i+1} \mid \mathbb{X}_i) \end{aligned}$$

Valeur aujourd'hui, avec un stock de gaz q_0 : $W_0(q_0)$. Mais :

$$P(X_{i+1} \mid X_i) = ???$$

Programme Stochastique avec Recours

Calcul de $E[W_i(q) \mid X_i]$

Supposons $E[W_{i+1}(q) \mid X_{i+1}]$ connu (vrai au dernier pas de temps).

Soit \mathbb{X}_{j}^{j} , $j=1,\ldots,m$ un ensemble de scénarios. Pour chaque chemin j, on peut résoudre le problème déterministe :

$$E(W_{i}^{j}(q) \mid X_{i}^{j}) = \max_{r_{i}^{+}(q) \leq r_{i} \leq r_{i}^{-}(q)} -r_{i}F_{i} + e^{-\tau \Delta_{t}}E[W_{i+1}(q+r_{i}) \mid X_{i+1}^{j}]$$

$$E(W_{i}^{j}(q) \mid X_{i}^{j}) = g(X_{i}^{j})$$

Résultat fondamental:

$$E[W_i(q) \mid \mathbb{X}_i] = \sum_{l} a_{l,i} \phi_l(\mathbb{X}_i)$$

Où ϕ_l () est une base de fonctions.

Calcul de $E[W_i(q) \mid X_i]...$

En utilisant les valeurs $W_i^j(q)$, on estime $a_{l,q}$ par régression pour chaque valeur de q:

$$\min \sum_{j=1}^{M} (\sum_{l=0}^{L} a_{l,q} \phi_{l}(\mathbb{X}_{i}^{j}) - W_{i}^{j}(q))^{2}$$

Finalement,

$$E[W_i(q) \mid \mathbb{X}_i] = \sum_{l=0}^{L} a_{l,q} \phi_l(\mathbb{X}_i)$$

Programme Stochastique avec Recours

Algorithme

```
foreach q_k, k = 1, ..., m do
     Calculer W_{T_n}(q), connu de manière certaine.
end
foreach [T_i, T_{i+1}], i = n - 1, ..., 0 do
     foreach q_k, k = 1, ..., m do
          foreach chemin i do
               Résoudre pour r
               W_{i}^{j}(q) = \max_{r_{i}^{+}(q) \leq r_{i} \leq r_{i}^{-}(q)} -r_{i}F_{i} + e^{-\tau \Delta_{t}} E[W_{i+1}(q+r_{i}) \mid \mathbb{X}_{i+1}^{j}])
          end
          Estimer a<sub>i</sub> par moindres carrés;
          E[W_i(q) \mid \mathbb{X}_i] = \sum_{l=0}^{L} a_{l,q} \phi_l(\mathbb{X}_i);
     end
end
```

Programme Stochastique avec Recours

Illustration

└ Valorisation par Simulation : Un Réservoir de Gaz Naturel

Programme Stochastique avec Recours

Règle de Décision

Programme Stochastique avec Recours

Détail des calculs

- ▶ 1000 scénarios,
- Stock q_k discrétisé en 100 niveaux,
- Recours quotidien à l'horizon plusieurs années.

Application aux Décision d'investissemen

Décision d'investissement

La valeur d'un réservoir est fonction de la vitesse d'injection et d'extraction.

Application aux Décision d'investissemen

Décision d'investissement

Valeur de l'actif en fonction de la vitesse d'injection et d'extraction.

Les réservoirs de matières premières sont aussi des réservoirs d'options!

- Les réservoirs de matières premières sont aussi des réservoirs d'options!
- La même analyse s'applique aux tankers, pipelines, barrages hydro-électriques, etc.

- Les réservoirs de matières premières sont aussi des réservoirs d'options!
- La même analyse s'applique aux tankers, pipelines, barrages hydro-électriques, etc.
- Cette approche permet non seulement de valoriser l'actif, mais aussi de calculer une règle de gestion permettant de monétiser la valeur optionelle de l'actif.

- Les réservoirs de matières premières sont aussi des réservoirs d'options!
- La même analyse s'applique aux tankers, pipelines, barrages hydro-électriques, etc.
- Cette approche permet non seulement de valoriser l'actif, mais aussi de calculer une règle de gestion permettant de monétiser la valeur optionelle de l'actif.
- ► La méthode de Monte-Carlo est notre outil préféré, bien que le temps de calcul et la stabilité numérique restent des sujets de recherche.