Lessons touched by this meeting according to schedule:

- 12. 25/11/2024
 - Exercises
- 13. 26/11/2024
 - Recursive sets. Reduction. [\$7.1, see also \$6.1 and \$9.1]

DEFINITION 13.1. A set $A \subseteq \mathbb{N}$ is recursive if its characteristic function

$$\chi_A : \mathbb{N} \to \mathbb{N}$$

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

is computable.

In other words, a set is recursive if there exists an algorithm (computable function) that can decide membership in the set - given any $x \in \mathbb{N}$, it can determine in a finite number of steps whether x belongs to A or not.

The notion of recursiveness has several important implications:

- 1. Decidability: The membership problem " $x \in A$?" for a recursive set A is decidable. An algorithm exists that always terminates and correctly answers yes or no.
- 2. Closure properties: The class of recursive sets is closed under complement, union and intersection. If A and B are recursive, then so are \overline{A} , A \cup B and A \cap B.
- 3. Simple sets: All finite sets and some easily describable infinite sets like $\mathbb N$ itself are recursive. The set of prime numbers is also recursive.

On the other hand, the following sets are not recursive:

(a)
$$K = \{x \mid x \in W_x\}$$
, since

$$\chi_K(x) = \begin{cases} 1 & x \in W_x \\ 0 & x \notin W_x \end{cases}$$

is not computable;

(b)
$$\{x \mid \varphi_x \text{ total}\}$$

Another important implication:

Reductions: If $A \le m B$ (A many-one reduces to B) and B is recursive, then A is also recursive. Conversely, if A is not recursive and $A \le m B$, then B is not recursive either. This allows proving non-recursiveness of sets.

DEFINITION 13.5. Let $A, B \subseteq \mathbb{N}$. We say that the problem $x \in A$ reduces to the problem $x \in B$ (or simply that A reduces to B), written $A \leq_m B$ if there exists a function $f : \mathbb{N} \to \mathbb{N}$ computable and total such that, for every $x \in \mathbb{N}$

$$x \in A \Leftrightarrow f(x) \in B$$

In this case, we say that f is the reduction function.

Consider an example from the lesson:

Example 13.7. $K \leq_m T = \{x \mid \varphi_x \text{ total}\}\$

PROOF. We prove that there exists $s: \mathbb{N} \to \mathbb{N}$ computable and total such that $x \in k \Leftrightarrow s(x) \in T$. In other words

$$x \in W_x \Leftrightarrow \varphi_{f(x)}$$
 is total

To do so, we can define

$$g(x,y) = \begin{cases} 1 & x \in W_x \\ \uparrow & \text{otherwise} \end{cases}$$

which is computable, since

$$g(x,y) = \mathbf{1}(\varphi_x(x)) = \mathbf{1}(\Psi_U(x,x))$$

Then, by the *smn*-theorem we have that there exists $s:\mathbb{N}\to\mathbb{N}$ computable and total such that

$$\varphi_{s(x)}(y) = g(x,y)$$

and

$$x \in K \Rightarrow x \in W_x \Rightarrow \forall y \ \varphi_{s(x)}(y) = g(x,y) = 1 \Rightarrow \varphi_{s(x)} \ \text{total} \ \Rightarrow s(x) \in T$$
$$x \notin K \Rightarrow x \notin W_x \Rightarrow \forall y \ \varphi_{s(x)}(y) = g(x,y) \uparrow \Rightarrow \varphi_{s(x)} \ \text{not total} \ \Rightarrow s(x) \notin T$$

Let's jump immediately to related exercises:

Exercise 7.12. Prove that a set $A \subseteq \mathbb{N}$ is recursive if and only if $A \leq_m \{0\}$.

To prove that a set $A \subseteq \mathbb{N}$ is recursive if and only if $A \leq m \{0\}$, we will show both implications.

- (⇒) Assume A is recursive. Then its characteristic function χ _A is computable. Define the reduction function $f: \mathbb{N} \to \mathbb{N}$ as $f(x) = 1 \chi$ _A(x). Clearly, f is computable (composition of computable functions). Now, $x \in A \Leftrightarrow \chi$ _A(x) = 1 \Leftrightarrow $f(x) = 0 \Leftrightarrow f(x) \in \{0\}$. Thus, $A \leq m$ {0} via f.
- (\Leftarrow) Assume A ≤_m {0} via a computable function f. Then x ∈ A \Leftrightarrow f(x) ∈ {0} \Leftrightarrow f(x) = 0. So we can write $\chi_A(x) = sg(f(x))$, which is computable. Hence, A is recursive.

Therefore, $A \subseteq \mathbb{N}$ is recursive if and only if $A \leq m \{0\}$.

The key relationship between decidability/semi-decidability and recursive/recursively enumerable sets can be expressed through characteristic functions and predicates (important for later reasoning)

A set $A \subseteq N$ is recursive (decidable) if and only if its characteristic function χ_A is computable:

A set $A \subseteq N$ is recursively enumerable (r.e.) or semi-decidable if and only if its semi-characteristic function sc_A is computable:

```
sc_A(x) = \{
1 \text{ if } x \in A
\uparrow \text{ if } x \notin A
\}
```

The Structure Theorem for semi-decidable predicates states that $P(x^{\vec{}})$ is semi-decidable if and only if there exists a decidable predicate $Q(t,x^{\vec{}})$ such that:

$$P(x) \equiv \exists t.Q(t,x)$$

This is crucial because it:

- 1. Characterizes semi-decidable predicates in terms of decidable ones via existential quantification
- 2. Shows that semi-decidable predicates can be expressed as projections of decidable predicates
- 3. Leads to the Projection Theorem which states that if $P(x,y^{\rightarrow})$ is semi-decidable, then $\exists x. P(x,y^{\rightarrow})$ is also semi-decidable

These theorems provide powerful tools for:

- Proving predicates are semi-decidable by expressing them in terms of decidable predicates
- Showing closure properties of semi-decidable predicates under existential quantification
- Understanding the relationship between decidability and semi-decidability
- Constructing new semi-decidable predicates from existing ones

The theorems also help explain why semi-decidable predicates are not closed under complementation and universal quantification, which is key for understanding undecidability results.

Example of usage of such notions:

```
Exercise (30-06-2020)
```

Given two functions $f,g:\mathbb{N}\to\mathbb{N}$ with f total, define predicate $Q_{f_g}(x)="f(x)=g(x)"$. Show that if f and g are computable, then Q_{f_g} is semidecidable. Does the converse hold, so if Q_{f_g} is semidecidable, can we deduce f and g are computable?

Solution

Let f, g be computable functions. Let $e_1, e_2 \in \mathbb{N}$ $s.t. f = \phi_{e_1}$ and $g = \phi_{e_2}$.

Then $sc_{f_g} = \mathbf{1}(\mu w. | f(x) - g(x)|$ is computable, hence Q_{f_g} is semidecidable.

If Q_{f_g} is semidecidable and let e be an index of semicharacteristic function of Q, namely $\phi_e = sc_{Q_{f_g}}$

We have $f(x) = (\mu w. H(e, x, (w)_1, (w)_2) \vee H(e, y, (w)_1, (w)_3)$ which shows f and g are computable.

Coming back to other stuff:

Exercise 6.29. Is there a total non-computable function $f : \mathbb{N} \to \mathbb{N}$ such that the function $g : \mathbb{N} \to \mathbb{N}$ defined, for each $x \in \mathbb{N}$, by g(x) = f(x) - x is computable? Provide an example or prove that such a function does not exist.

Solution: Consider $f(x) = \chi_K(x)$. Then f(x) - x is the constant 0 for each $x \ge 1$, therefore computable.

Exercise 6.31. Is there a computable function $f : \mathbb{N} \to \mathbb{N}$ such that dom(f) = K and $cod(f) = \mathbb{N}$? Justify your answer.

Solution: Yes, it exists. For example, consider $f(x) = \varphi_x(x)$. Clearly dom(f) = K. Furthermore, for each $k \in N$, if we consider an index of the constant function k we have that $f(e) = \varphi_e(e) = k$. Thus $cod(f) = \mathbb{N}$.

Alternatively one can define

$$f(x) = (\mu t. H(x, x, t)) - 1$$

Clearly dom(f) = K since $f(x) \downarrow$ if there exists some t such that H(x, x, t), i.e., if $x \in K$. Furthermore, for each $x \in \mathbb{N}$ just take the program Z_k which consists of Z(1) repeated x times. For the corresponding index $y = \gamma(Z_k)$ we will have f(y) = k - 1, which shows that $cod(f) = \mathbb{N}$.

Exercise 3.2(p). State the theorem s-m-n and use it to prove that it exists a total computable function $s: \mathbb{N} \to \mathbb{N}$ such that $|W_{s(x)}| = 2x$ and $|E_{s(x)}| = x$.

This one is also present inside 2019-09-17 exam.

Given $m, n \ge 1$ there is a total computable function $s_{m,n}: \mathbb{N}^{m+1} \to \mathbb{N}$ such that $\forall \vec{x} \in \mathbb{N}^m, \forall \vec{y} \in \mathbb{N}^n, \forall e \in \mathbb{N}$

$$\phi_e^{(m+n)}(\vec{x},\vec{y}) = \phi_{s_{m,n}(e,\vec{x})}^{(n)}(\overrightarrow{y})$$

Given the domain should be 2x, we find a function in which we can parametrize a value < 2x; given the range is x, it's simply a function which allows us to be defined computably over x. Let's give

$$g(x,y) = \begin{cases} qt(x,y), & y < 2x \\ \uparrow, & otherwise \end{cases}$$

g(x,y) is computable and $sg(y)*qt(x,y)+\mu z.(y+1-2x)$ is computable itself, hence giving as range x.

By the smn-theorem, there is a computable function $g: \mathbb{N} \to \mathbb{N}$ $s.t. \phi_{s(x)}(y) = g(x,y) \ \forall x,y \in \mathbb{N}$. Therefore, for each function:

- $W_x = \{y \mid (g(x, y) \downarrow)\} = \{y \mid y < 2x\}$
- $E_{k(n)} = \{g(x,y) \mid x \in W_{s(x)}\} = \{qt(2,y) \mid y < 2x\} = \{y+1-2x \mid y+1 < 2x\} = [0,2x]$

as desired.