Лабораторная работа № 2 Методы получения псевдослучайных чисел.

Задания.

Задание 1 (7 баллов).

- 1. Сформировать последовательности из 500 квазиравномерно распределенных псевдослучайных чисел
 - 1.1) с помощью мультипликативного линейного конгруэнтного датчика
 - 1) с параметрами $m = 10^8 + 1$, a = 23,
 - 2) с параметрами m = 2 147 483 399, a = 40 692;
 - 1.2) методом объединения двух мультипликативных линейных конгруэнтных датчиков;
 - 1.3) с помощью встроенного генератора С#.

<u>Указание к п. 1.3</u>).

Генерация псевдослучайных чисел, имеющих квазиравномерное распределение, выполняется с помощью методов класса *Random*. Описание класса, его методов и основных приемов работы с ними: http://msdn.microsoft.com/ru-ru/library/system.random.aspx

Для методов п. 1.1) и 1.2) попытаться оценить периоды получаемых последовательностей.

- 2. Для последовательностей, полученных каждым из перечисленных методов,
 - 2.1) найти оценки среднего значения и среднего квадратического отклонения и сравнить их с теоретическими значениями;
 - 2.2) проверить сгенерированную последовательность на согласование с теоретическим законом распределения с помощью критерия Пирсона, приняв уровень значимости, равный 0,05;
 - 2.3) выполнить графическое представление рассеяния точек (U_i , U_{i+1}), где U_i , U_{i+1} последовательные псевдослучайные числа в сгенерированной последовательности, и визуально оценить «равномерность» получаемой решетки.
- 3. Сделать выводы на основании проведенного исследования.
- 4. Оформить отчет.

Задание 2 дополнительное (10 баллов).

- 1. Изучить алгоритм определения значений $d_t(m, a)$ и применения спектрального критерия (Д. Кнут «Искусство программирования») для проверки качества линейного конгруэнтного генератора.
- 2. Написать программу (язык программирования С#), реализующую проверку мультипликативного линейного генератора с заданными параметрами *m* и *a* с помощью спектрального критерия.
- 3. Используя разработанную программу, выполнить проверку качества генераторов п. 1.1) задания 1.

Задание **3** (7 баллов).

- 1. Сформировать последовательность из 100 псевдослучайных чисел, имеющих показательное распределение с параметром $\lambda = 2$,
 - 1.1) методом обратных функций;
 - 1.2) методом просеивания.
- 2. Сформировать последовательность из 100 псевдослучайных чисел, распределенных по закону Пуассона с параметром a = 5,
 - 2.1) прямым методом;
 - 2.2) используя предельную теорему Пуассона.
- 3. Для всех последовательностей, полученных в п. 1 и 2,
 - 3.1) найти оценки среднего значения и среднего квадратического отклонения и сравнить их с теоретическими значениями;
 - 3.2) проверить полученные последовательности на согласование с теоретическим законом распределения с помощью критерия Пирсона, приняв уровень значимости, равный 0,05.
- 4. Сделать выводы на основании проведенного исследования.
- 5. Оформить отчет.

Задание 4 дополнительное (7 баллов).

- 1. Сформировать последовательность из 100 нормально распределенных псевдослучайных чисел, используя центральную предельную теорему.
- 2. Сформулировать алгоритм получения псевдослучайных чисел, имеющих нормальное распределение с заданными параметрами m и σ , на основе центральной предельной теоремы. Сформировать последовательность из 100 псевдослучайных чисел, имеющих нормальное распределение с параметрами m=3 и $\sigma=2$.
- 3. Для последовательностей, полученных в п. 1 и 2,
 - 3.1) найти оценки среднего значения и среднего квадратического отклонения и сравнить их с теоретическими значениями;
 - 3.2) проверить полученные последовательности на согласование с теоретическим законом распределения с помощью критерия Пирсона, приняв уровень значимости, равный 0,05.
- 4. Сделать выводы на основании проведенного исследования.
- 5. Оформить отчет.

Содержание отчета.

- 1. Название работы.
- 2. По заданию 1.
 - 2.1. Алгоритмы построения последовательностей псевдослучайных чисел с помощью методов, указанных в п. 1.1) и 1.2).
 - 2.2. Оценки периодов генерируемых последовательностей (с обоснованием).
 - 2.3. Оценки среднего значения и среднего квадратического отклонения для каждой из сгенерированных последовательностей; отклонение их от теоретических значений.

- 2.4. Результаты проверки каждой из сгенерированных последовательностей на согласование с теоретическим законом распределения (привести все необходимые расчеты и обоснования).
- 2.5. Графическое представление рассеяния точек (U_i , U_{i+1}) для каждой из сгенерированных последовательностей.
- 2.6. Выводы по результатам проведенного исследования.

3. По заданию 2.

- 3.1. Описание алгоритма применения спектрального критерия для проверки качества линейного конгруэнтного генератора.
- 3.2. Результаты проверки качества генераторов п. 1.1) задания 1.
- 3.3. Выводы по результатам проверки.

4. По заданию 3.

- 4.1. Алгоритмы построения последовательностей псевдослучайных чисел с помощью методов, указанных в п. 1 и 2.
- 4.2. Оценки среднего значения и среднего квадратического отклонения для каждой из сгенерированных последовательностей; отклонение их от теоретических значений.
- 4.3. Результаты проверки каждой из сгенерированных последовательностей на согласование с теоретическим законом распределения (привести все необходимые расчеты и обоснования).
- 4.4. Выводы по результатам проведенного исследования.

По заданию 4.

- 5.1. Алгоритм получения псевдослучайных чисел, имеющих нормальное распределение с заданными параметрами m и σ , на основе центральной предельной теоремы.
- 5.2. Оценки среднего значения и среднего квадратического отклонения для каждой из сгенерированных последовательностей; отклонение их от теоретических значений.
- 5.3. Результаты проверки каждой из сгенерированных последовательностей на согласование с теоретическим законом распределения (привести все необходимые расчеты и обоснования).
- 5.4. Выводы по результатам проведенного исследования.