Lecture 10 - Computational Linear Algebra Part 2

DSE 512

Drew Schmidt 2022-02-24

From Last Time

- Homework is out --- due Saturday
- Questions?

Revisiting Cholesky

A random draw from a multivariate normal distribution can be obtained using the Cholesky decomposition of Σ and a vector of univariate normal draws. The Cholesky decomposition of Σ produces a lower-triangular matrix A (the 'Cholesky factor') for which $AA^T = \Sigma$. If $z = (z_1, \ldots, z_d)$ are d independent standard normal random variables, then $\theta = \mu + Az$ is a random draw from the multivariate normal distribution with covariance matrix Σ .

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B., 1995. Bayesian data analysis. Chapman and Hall/CRC.

Two Techniques

- Principal Components Analysis (PCA)
- Linear Regression

Setup

- X is an $m \times n$ (model) matrix with m > n
- *y* is an *m*-length (response) vector
- Example code in R
- We will ignore some efficiency tricks for the moment
 - o crossprod(X) instead of t(X) %*% X
 - backsolve() over inversion
 - o etc.
- One thing at a time...

Principal Components Analysis

	Α	В	С	D
1	5.1	3.5	1.4	0.2
2	4.9	3	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5 6	5	3.6	1.4	0.2 0.4
	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5	3.4	1.5	0.3 0.2
9	4.4	2.9	1.4	0.2 0.1
10	4.9	3.1	1.5	0.1
11	5.4	3.7	1.5	0.2
12	4.8	3.4	1.6	0.2

PCA: The Black Box

- Via covariance matrix princomp()
- Via SVD prcomp()

- Pros
 - o It just works!
 - Reasonably efficient
- Cons
 - Stock methods do what they do...
 - What if we run out of memory?
 - What if we want to go parallel?

PCA: Covariance Matrix

- Step 1: compute covariance matrix Σ_X
- Step 2: compute $\Sigma_X = V \Delta V^T$
 - \circ "Standard deviations": $\sqrt{\delta_i}$
 - ∘ Loadings: *v*
 - Scores: *xv*

```
# compare to princomp()
X_cen = scale(X, center=TRUE, scale=FALSE)
eig = eigen(crossprod(X_cen))

sdev = sqrt(eig$values)
loadings = eig$vectors
scores = X_cen %*% eig$vectors
```

• Pros

- Very easy to implement
- Can be very fast
- Useful in distributed contexts
- Memory-efficient if n is small

Cons

- What happens to the condition number?
- What happens if n is very large?

PCA: SVD

- Step 1: mean-center *x*
- Step 2: compute $X = U\Sigma V^T$
 - \circ "Standard deviations": $\frac{\sigma_i}{n}$
 - ∘ Loadings: *v*
 - Scores: *xv*

```
# compare to prcomp()
X_cen = scale(X, center=TRUE, scale=FALSE
s = svd(X_cen)

sdev = s$d / n
loadings = s$v
scores = X_cen %*% s$v
```

- Pros
 - Numerically accurate
- Cons
 - Harder to parallelize in distributed contexts

An Observation

- Computing PCA is tantamount to computing SVD
- Many SVD algorithms
- We will revisit this when we get to parallelism

Schmidt, D., 2020, November. A Survey of Singular Value Decomposition Methods for Distributed Tall/Skinny Data. In 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA) (pp. 27-34). IEEE.

Question

What if we just want the first few components?

	Α	В	С	D
1	5.1	3.5	1.4	0.2
2	4.9	3	1.4	0.2
3	4.7	3.2	1.3	0.2 0.2 0.2 0.2
4	4.6	3.1	1.5	0.2
5	5	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5	3.4	1.5	0.3 0.2 0.2
9	4.4	2.9	1.4	0.2
10	4.9	3.1	1.5	0.1
11	5.4	3.7	1.5	0.2 0.2
12	4.8	3.4	1.6	0.2

Truncated SVD

svd

```
function (x, nu = min(n, p), nv = min(n, p))
    # ...
    n \leftarrow nrow(x)
    p \leftarrow ncol(x)
    # ...
    res <- if (is.complex(x))</pre>
         .Internal(La_svd_cmplx(jobu, x, double(min(n, p)), u,
             vt))
    else .Internal(La_svd(jobu, x, double(min(n, p)), u, vt))
    res <- res[c("d", if (nu) "u", if (nv) "vt")]
    if (nu && nu < nu0)
        res$u <- res$u[, seq_len(min(n, nu)), drop = FALSE]</pre>
    if (nv && nv < nv0)
         res$vt <- res$vt[seq_len(min(p, nv)), , drop = FALSE]</pre>
    res
```

Randomized SVD

PROTOTYPE FOR RANDOMIZED SVD

Given an $m \times n$ matrix \boldsymbol{A} , a target number k of singular vectors, and an exponent q (say q=1 or q=2), this procedure computes an approximate rank-2k factorization $\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^*$, where \boldsymbol{U} and \boldsymbol{V} are orthonormal, and $\boldsymbol{\Sigma}$ is nonnegative and diagonal.

Stage A:

- Generate an $n \times 2k$ Gaussian test matrix Ω .
- Form $Y = (AA^*)^q A\Omega$ by multiplying alternately with A and A^* .
- Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Stage B:

- 4 Form $B = Q^*A$.
- 5 Compute an SVD of the small matrix: $B = \widetilde{U}\Sigma V^*$.
- 6 Set $U = Q\widetilde{U}$.

Note: The computation of Y in Step 2 is vulnerable to round-off errors. When high accuracy is required, we must incorporate an orthonormalization step between each application of A and A^* ; see Algorithm 4.4.

Halko, N., Martinsson, P.G. and Tropp, J.A., 2009. Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions.

Randomized SVD

```
Algorithm 4: Randomized SVD
 Data: 1-d distributed real matrix A with m > n, integers
       k < n and q
 Result: \Sigma, optionally U and V
 Generate \Omega_{n\times 2k} random uniform or standard normal;
Let Y_{m \times 2k} = A\Omega;
 Compute Q_Y = qr_Q(Y) (CAQR);
for i \leftarrow 0 to q do
    Z_{n\times 2k}=A^TQ_Y;
   Q_Z = qr_Q(Z) (local);
   Y = AQ_Z;
   Q_Y = qr_Q(Y) (CAQR);
 end
Let B_{2k\times n} = Q_V^T A;
 Local SVD of B gives approximation for \Sigma, and
  optionally V^T. Recover U = Q_Y U_B if desired.
```

Randomized SVD

```
rsvd = function(x, k=1, q=3){
 n = ncol(x)
 Omega = matrix(runif(n*2L*k),
   nrow=n, ncol=2L*k)
 Y = x \% *\% Omega
 Q = qr.Q(qr(Y))
 for (i in 1:q){
    Y = crossprod(x, Q)
   Q = qr.Q(qr(Y))
    Y = x \% *\% Q
   Q = qr.Q(qr(Y))
 B = crossprod(Q, x)
 svd_B = La.svd(x=B, nu=0, nv=0)
 d = svd_B$d[1:k]
  d
```

- Pros
 - Fast
 - Memory efficient
 - "Good enough" for plotting
- Cons
 - Numerical accuracy
 - How do we recover *u* and *v*?(Hint: inspect *B*)

rsvd Benchmark

```
m = 1e6
n = 500
X = matrix(runif(m*n), nrow=m, ncol=n)
system.time(svd(X, nu=0, nv=0))
##
            system elapsed
      user
##
   164.000 22.959 32.814
system.time(rsvd(X, k=2))
     user system elapsed
##
           7.051
                    4.712
##
   18.599
```

Linear Regression

Linear Regression

```
library(ggplot2)
g = ggplot(data=mtcars, aes(hp, mpg)) +
   theme_bw() +
   geom_point() +
   geom_smooth(method="lm")
```


Regression: The Black Box

- Uses a rank-revealing QR
- Modified LINPACK (!) code
- Pivoting destroys statistical information...

lm.fit(X, y)\$coef

• Pros

- o It just works!
- It gets the statistics right when rank degenerate (THIS IS VERY HARD)
- Cons
 - Not very efficient
 - Same as before: memory,
 parallelism, etc

Regression: The Normal Equations

$$egin{aligned} y = Xeta &\iff X^Ty = X^TXeta \ &\iff ig(X^TXig)^{-1}X^Ty = eta \end{aligned}$$

```
solve(t(X) %*% X) %*% t(X) %*% y
```

- Pros
 - Easy to understand
 - Great for teaching
- Cons
 - Doesn't handle rank degeneracy
 - Other accuracy problems

Regression: QR Factorization

$$y = X\beta \iff y = QR\beta$$
$$\iff R^{-1}Q^Ty = \beta$$

qr.solve(qr(X), y)

- Pros
 - o Mostly like what lm.fit()
 is doing!
 - Numerically good
- Cons
 - LAPACK QR solver has pivoting issues (ANOVA)

Regression: SVD

$$y = Xeta \iff eta = V\Sigma^{-1}U^Ty$$

```
s = La.svd(X)
t(s$vt) %*% diag(1/s$d) %*% t(s$u) %*% y
```

• Pros

- Accurate
- Can accommodate rank degeneracy
- Cons
 - Not the fastest

Regression: Optimization Problem

$$\min_{eta \in \mathbb{R}^n} rac{1}{2m} \sum_{i=1}^m \left((Xeta)_i - y_i
ight)^2.$$

```
reg.fit(X, y)$par
```

• Pros

- Easy to implement
- Can easily re-purpose for other GLM's
- Parallelizes easily!

Cons

- Performance depends a lot on optimization method
- How even would we handle rank degeneracy?

Ungraded Homework

- Do some basic benchmarking of these methods. How do they compare to the stock R methods?
- Can we improve the performance of these (yes)?
- Implement your own conjugate gradient https://en.wikipedia.org/wiki/Conjugate_gradient_method#Example_code_in_Ma
- Implement these in Python using NumPy
- What relationship will (un-)optimized BLAS have to what we have seen today?
- Let x be the 7×7 Hilbert Matrix (see https://en.wikipedia.org/wiki/Hilbert_matrix). You can generate this in R via Matrix::Hilbert(7). Test your linear model fitters on this data (response can be random uniform). Does anything interesting happen?

Wrapup

- Next time:
 - GPGPU: The Easy Parts
 - Return to ISAAC
- Resources
 - McCullagh, P. and Nelder, J.A., 1989. Generalized Linear Models, no.
 37 in Monograph on Statistics and Applied Probability.
 - Duda, R.O., Hart, P.E. and Stork, D.G., 1973. Pattern classification (pp. 526-528). Wiley, New York.

Questions?