

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2019 – 1st Year Examination – Semester 1

IT1205 – Computer Systems I Multiple Choice Question Paper

22nd June, 2019 (TWO HOURS)

Important Instructions:

- The duration of the paper is 2 (two) hours.
- The medium of instruction and questions is English.
- The paper has 50 questions and 12 pages.
- All questions are of the **MCQ** (Multiple Choice Questions) type.
- All questions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All guestions will carry **equal** marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (All the incorrect choices are marked & no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.
- Calculators are not allowed.
- All Rights Reserved.

	1980srd readers that recorded		ed his weaving factory using a series of punch ation of holes.
	hat is the suitable option	_	
	(a) Charles Babbage	(b)	Herman Hollerith
	(c) Joseph-Marie Jacq		John Von Neuman
	(e) Howard Aiken		
W	hich of the following sta	atements is/are true	?
	(a) Ada Lovelace is co	onsidered to be the fi	rst computer programmer.
	(b) The Pascaline dev	eloped by Blaise Pas	cal read data from punch cards.
	(c) Joseph-Marie Jaco and subtraction.	quard developed by E	Blaise Pascal could perform addition with carr
	(d) John Von Neumar	n designed the Analyt	tical Engine.
	(e) The Differential E	Engine was developed	by Blaise Pascal.
	(\ D' ''	(1 \ D1 \ ()	() I' 1 (D
W	(a) Digitizer (d) Scanner hich of the following de	(b) Plotter (e) Magnetic Ink C evices is/are part of a	
W	(d) Scanner	(e) Magnetic Ink C	haracter Reader
W	(d) Scanner hich of the following de	(e) Magnetic Ink C evices is/are part of a er (b)	haracter Reader microprocessor?
W	(d) Scanner hich of the following de (a) Instruction Register	(e) Magnetic Ink C evices is/are part of a er (b)	haracter Reader microprocessor? Program Counter
W	(d) Scanner hich of the following de (a) Instruction Registe (c) Main Memory (e) Control Unit	(e) Magnetic Ink C evices is/are part of a er (b) (d)	haracter Reader microprocessor? Program Counter
W	(d) Scanner hich of the following de (a) Instruction Registe (c) Main Memory (e) Control Unit hich of the following state (PU)? (a) Cache memory h (b) Arithmetic-Logic	(e) Magnetic Ink C evices is/are part of a er (b) (d) attements is/are false	haracter Reader microprocessor? Program Counter Cache Memory
W	(d) Scanner hich of the following de (a) Instruction Register (c) Main Memory (e) Control Unit hich of the following state (PU)? (a) Cache memory h (b) Arithmetic-Logic CPU.	(e) Magnetic Ink C evices is/are part of a er (b) (d) attements is/are false olds data that can be c-Unit (ALU) and Co	haracter Reader microprocessor? Program Counter Cache Memory with respect to the Central Processing Unit readily accessed by the CPU.
W	(d) Scanner hich of the following de (a) Instruction Register (c) Main Memory (e) Control Unit hich of the following state (PU)? (a) Cache memory h (b) Arithmetic-Logic CPU. (c) Control Unit send (d) ALU determines	(e) Magnetic Ink C evices is/are part of a er (b) (d) attements is/are false olds data that can be c-Unit (ALU) and Co	haracter Reader microprocessor? Program Counter Cache Memory with respect to the Central Processing Unit readily accessed by the CPU. ntrol Unit (CU) are two principal parts of the components to perform sequenced operation be carried out according to the values in a

(a) 1911 (d) 2019	(b) 1991 (e) 2021	(c) 2011
What is the binary va	lue of decimal numbe	r ¹¹ / ₆₄ ?
(a) 0.010111	(b) 0.001101	(c) 0.001110
(d) 0.001011	(e) 0.000111	· · · · · · · · · · · · · · · · · · ·
What is the decimal v	value of the binary nur	mber 0.010101 ?
(a) $\frac{5}{64}$	(b) ¹³ / ₆₄	(c) ¹⁷ / ₆₄
$(d)^{21}/_{64}$	(e) $^{31}/_{64}$	
(a) NOT	(b) OR	(c) AND
wo's Complement b	onary numbers?	
(a) NOT (d) NAND		(c) AND
(a) NOT (d) NAND What is the IEEE star	(b) OR (e) XOR	(c) AND oint representation for the decimal number
(a) NOT (d) NAND What is the IEEE star 1999.328125?	(b) OR (e) XOR	oint representation for the decimal number
(a) NOT (d) NAND What is the IEEE star 1999.328125? (a) 0 10001001	(b) OR (e) XOR ndard 32-bit floating p	oint representation for the decimal number
(a) NOT (d) NAND What is the IEEE star 1999.328125? (a) 0 10001001 (b) 0 10000011	(b) OR (e) XOR and 32-bit floating p	oint representation for the decimal number
(a) NOT (d) NAND What is the IEEE star 1999.328125? (a) 0 10001001 (b) 0 10000011 (c) 0 10001011	(b) OR (e) XOR and 32-bit floating p 11110011110101010001111101010100011111010	point representation for the decimal number 000000 000000 000000
(a) NOT (d) NAND What is the IEEE star 1999.328125? (a) 0 10001001 (b) 0 10000011 (c) 0 10001011 (d) 0 10010011	(b) OR (e) XOR ndard 32-bit floating p 111100111101010100 11110011110101010	oint representation for the decimal number 000000 000000 000000 000000
(a) NOT (d) NAND What is the IEEE start 1999.328125? (a) 0 10001001 (b) 0 10000011 (c) 0 10001011 (d) 0 10010011 (e) 0 10001101 What is the 16-bit flo	(b) OR (e) XOR 111100111101010100 111100111101010100 111100111101010100 111100111101010100 111100111101010100 111100111101010100	oint representation for the decimal number 000000 000000 000000 000000
(a) NOT (d) NAND What is the IEEE start 1999.328125? (a) 0 10001001 (b) 0 10000011 (c) 0 10001011 (d) 0 10010011 (e) 0 10001101 What is the 16-bit flo	(b) OR (e) XOR ndard 32-bit floating p 111100111101010100 11110011110101010	000000 000000 000000 000000 000000 the decimal number +1999.3125? Assume that
(a) NOT (d) NAND What is the IEEE start 1999.328125? (a) 0 10001001 (b) 0 10000011 (c) 0 10001011 (d) 0 10010011 (e) 0 10001101 What is the 16-bit flow 6-bit floating point in	(b) OR (e) XOR 111100111101010100 111100111101010100 111100111101010100 111100111101010100 111100111101010100 111100111101010100 111100111101010100 111100111101010100	oint representation for the decimal number 000000 000000 000000 000000 the decimal number +1999.3125? Assume that a sign bit, 5-bit exponent and 10-bit mantissa.

6) What is the decimal value of the hexadecimal number 7E3?

12)	What is the loss of accuracy (round-off-error) when converting the decimal value
	+1999.3125 to a 16-bit floating point representation with a sign bit, 5-bit exponent and 10-bi
	mantissa?

(a) **0.3125**

(b) 0.25

(c) 0.1875

(d) 0.125

(e) 0.0625

(a) +1365.75

(b) +1365.5

(c) + 1365.25

(d) + 1365.125

(e) + 1365

14) Consider the following Boolean function

$$F(x,y) = (\overline{x} + y).(x + y)$$

Which of the following Boolean functions provide(s) a simplified form of F?

(a) \bar{x}

(b) \overline{y}

(c) x

(d) y

(e) **x.y**

15) Consider the following Boolean function

$$F(x,y) = (x.y).(\overline{x} + y).(y + \overline{y})$$

Which of the following Boolean functions provide(s) a simplified form of F?

(a) \bar{x}

(b) \overline{y}

(c) x

(d) *y*

(e) X. y

(6) Consider the following Boolean function

$$F = (A + B)C + A\overline{B} + (A + B)\overline{C} + (\overline{A}B)$$

Which of the following Boolean functions provide(s) a simplified form of F?

(a) A+C

(b) B+C

(c) A+B+C

(d) (A+B)C

(e) A+B

17) Consider the following Boolean function

$$F(A, B, C) = (A.B) + (A.C) + (B.C)$$

What is the minimum number of NAND gates required for the above Boolean function, if it is to be implemented only using NAND gates?

(a) 3

(b) 4

(c) 5

(d) 6

18)

20)

(e) 7

The output of the Boolean function $F(a, b, c) = (\overline{a.b}) + (\overline{b.c}) + (\overline{a.c})$ is 0 when

- (a) a=1, b=1, c=0
- (b) a=1, b=0, c=1
- (c) a=0, b=0, c=1

- (d) a=0, b=1, c=0
- (e) a=1, b=1, c=1

19) If any word of size 128 bit in a memory space can be addressed by using 33-bit memory address and each location holds one word, what should be the size of the memory space?

(a) 8GB

(b) 16GB

(c) 32GB

- (d) 64GB
- (e) 128GB

Suppose, a particular memory space can be addressed by using a 16-bit memory address and each location can hold a word of size 64 bits. If a 16-byte variable is stored starting at location 1110 0011 0010 0101, what is the address of next available storage location?

- (a) 1110 0011 0010 0110
- (b) 1110 0011 0010 0111
- (c) 1110 0011 0010 1001
- (d) 1110 0011 0010 1011
- (e) 1110 0011 0010 1011

Questions 21, 22 and 23 based on the following:

Consider a machine with an instruction format of the form **opcode R**# **R**# **M** where **R**# is a register address to specify one of 30 registers and **M** is a memory address. Instructions are 32 bits long and each of the instruction formats provides 5 bits for the op-code.

21) How large must the register address field be?

(a) 4 bits

(b) 5 bits

(c) 6 bits

(d) 7 bits

(e) 8 bits

(a) 8 bits	(b) 12 bits	(c) 15 bits
(d) 17 bits	(e) 20 bits	
Suppose in the above n	nachine, each memory location ca	n hold a word of size 128 bits. Wha
s the addressable capac	eity of this machine's memory?	
(a) 1 MB	(b) 2 MB	(c) 4 MB
(d) 8 MB	(e) 16MB	
A computer has a two-l	evel cache. Suppose that 80% of	the memory references hit on the
first level cache, 10% o	n the second level cache, and 109	6 misses. The access times are 10
, ,		the second level and 60 nsecfor the
nain memory reference	respectively. What is the effective	ve access time?
•		() 14
-	(b) 10 nsec	(c) 14 nsec
(a) 8 nsec	(b) 10 nsec	(c) 14 nsec
(a) 8 nsec (d) 16 nsec A non-pipelined system	(e) 18 nsec n A takes on average 80 nano sec	conds (to process an instruction). A
(a) 8 nsec (d) 16 nsec A non-pipelined system bipelined system B has the "Speed-Up Ratio":	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each second for system B for a 200 instruction	conds (to process an instruction). A tage takes 20 nano seconds. What is a program?
(a) 8 nsec (d) 16 nsec A non-pipelined system bipelined system B has	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each second for system B for a 200 instruction (b) 3.92	conds (to process an instruction). A tage takes 20 nano seconds. What is
(a) 8 nsec (d) 16 nsec A non-pipelined system bipelined system B has the "Speed-Up Ratio":	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each second for system B for a 200 instruction	conds (to process an instruction). A tage takes 20 nano seconds. What is a program?
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96 Which of the following	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each so for system B for a 200 instruction (b) 3.92 (e) 3.98	conds (to process an instruction). A tage takes 20 nano seconds. What is a program? (c) 3.94
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each so for system B for a 200 instruction (b) 3.92 (e) 3.98	conds (to process an instruction). A tage takes 20 nano seconds. What is a program? (c) 3.94
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96 Which of the following	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each so for system B for a 200 instruction (b) 3.92 (e) 3.98 registers is used to keep track of on is located?	conds (to process an instruction). A tage takes 20 nano seconds. What is a program? (c) 3.94
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96 Which of the following where the next instruction Reg	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each second for system B for a 200 instruction (b) 3.92 (e) 3.98 registers is used to keep track of on is located?	conds (to process an instruction). A tage takes 20 nano seconds. What is a program? (c) 3.94
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96 Which of the following where the next instruction	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each second for system B for a 200 instruction (b) 3.92 (e) 3.98 gregisters is used to keep track of on is located?	conds (to process an instruction). A tage takes 20 nano seconds. What is a program? (c) 3.94
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96 Which of the following where the next instruction Reg (b) Status Register	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each so for system B for a 200 instruction (b) 3.92 (e) 3.98 registers is used to keep track or on is located? ister e Register	conds (to process an instruction). A tage takes 20 nano seconds. What is a program? (c) 3.94
(a) 8 nsec (d) 16 nsec A non-pipelined system B has the "Speed-Up Ratio": (a) 3.6 (d) 3.96 Which of the following where the next instruction Reg (b) Status Register (c) General Purpos	(e) 18 nsec m A takes on average 80 nano sec s a 4-stage pipeline, where each sector system B for a 200 instruction (b) 3.92 (e) 3.98 registers is used to keep track of on is located? ister e Register ss Register	conds (to process an instruction). A tage takes 20 nano seconds. What is a program?

22) How large must the memory address field be?

u	ne Program Counter (PC) before fetching the instruction during the CPU Cycle.
S	elect the most suitable answer for the black
	(a) Status Register
	(b) Transition Lookaside Buffer (TLB)
	(c) Instruction Register
	(d) Cache Memory
	(e) General Purpose Registers
	Which of the following devices is/are loaded with the contents of the data, instruction or nemory address during the execution of the CPU Cycle.
	(a) Program Counter (PC)
	(b) Control Unit
	(c) Instruction Register
	(d) Cache Memory
	(e) General Purpose Registers
	Which of the following devices is/are partially visible to users and loaded with the contents f the data pointed to the Arithmetic Logic Unit (ALU)?
	f the data pointed to the Arithmetic Logic Unit (ALU)?
	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register
	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory
	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register
of W	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory
of W	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory (e) General Purpose Registers What type of control pins are needed in a microprocessor to regulate traffic on the bus, in
of W	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory (e) General Purpose Registers Vhat type of control pins are needed in a microprocessor to regulate traffic on the bus, in order to prevent two devices from trying to use it at the same time? (a) Control Unit
of W	(a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory (e) General Purpose Registers What type of control pins are needed in a microprocessor to regulate traffic on the bus, in order to prevent two devices from trying to use it at the same time? (a) Control Unit (b) Status Register
of W	f the data pointed to the Arithmetic Logic Unit (ALU)? (a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory (e) General Purpose Registers What type of control pins are needed in a microprocessor to regulate traffic on the bus, in order to prevent two devices from trying to use it at the same time? (a) Control Unit (b) Status Register (c) Arithmetic Logic Unit (ALU)
of W	(a) Status Register (b) Transition Lookaside Buffer (TLB) (c) Instruction Register (d) Cache Memory (e) General Purpose Registers What type of control pins are needed in a microprocessor to regulate traffic on the bus, in order to prevent two devices from trying to use it at the same time? (a) Control Unit (b) Status Register

	different units can handle data is the (a) Cache Memory
	(b) Memory
	(c) Virtual Memory
	(d) Memory Management Unit (MMU)
	(e) Buffer
)	Which of the following is an/are Optical Storage Device/s?
	(a) Memory Stick
	(b) Magnetic Tape
	(c) Zip Disk
	(d) Super Disk
	_
)	(e) CD-ROM Which of the following devices is a/are biometric device/s?
	Which of the following devices is a/are biometric device/s? (a) Barcode Readers (b) Smart Card Readers (c) Credit Card Readers (d) ePassport
	Which of the following devices is a/are biometric device/s? (a) Barcode Readers (b) Smart Card Readers (c) Credit Card Readers (d) ePassport (e) IRIS Scanners
	Which of the following devices is a/are biometric device/s? (a) Barcode Readers (b) Smart Card Readers (c) Credit Card Readers (d) ePassport (e) IRIS Scanners Which of the following devices is/are used to produce a 3-Dimensional display?
	Which of the following devices is a/are biometric device/s? (a) Barcode Readers (b) Smart Card Readers (c) Credit Card Readers (d) ePassport (e) IRIS Scanners Which of the following devices is/are used to produce a 3-Dimensional display? (a) Compressive Light Field Displays
	Which of the following devices is a/are biometric device/s? (a) Barcode Readers (b) Smart Card Readers (c) Credit Card Readers (d) ePassport (e) IRIS Scanners Which of the following devices is/are used to produce a 3-Dimensional display? (a) Compressive Light Field Displays (b) Volumetric Displays

V		
	(a) InkJet Printers	
	(b) Label Printer	
	(c) Dot Matrix Printers	
	(d) Game Boy Printer	
	(e) Solid Ink Printers	
V	Which of the following falls into the category of both an input and output device?	
	(a) Scanner	
	(b) Disk Drive	
	(c) Network Card	
	(d) Punch Card	
	(e) Serial Management Interface (SMI)	
	Which of the following technologies is/are used to set up short-range point-to-point communication?	
	Which of the following technologies is/are used to set up short-range point-to-point	
V	Which of the following technologies is/are used to set up short-range point-to-point communication? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave	to a
v	Which of the following technologies is/are used to set up short-range point-to-point communication? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave (e) HiperLAN Which of the following wireless technologies can be used to connect external devices	to a
V	Which of the following technologies is/are used to set up short-range point-to-point communication? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave (e) HiperLAN Which of the following wireless technologies can be used to connect external devices computer?	to a
v	Which of the following technologies is/are used to set up short-range point-to-point communication? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave (e) HiperLAN Which of the following wireless technologies can be used to connect external devices computer? (a) IrDA (b) Radio Frequency	to a
V	Which of the following technologies is/are used to set up short-range point-to-point communication? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave (e) HiperLAN Which of the following wireless technologies can be used to connect external devices computer? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave	
V	Which of the following technologies is/are used to set up short-range point-to-point communication? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave (e) HiperLAN Which of the following wireless technologies can be used to connect external devices computer? (a) IrDA (b) Radio Frequency (c) Bluetooth (d) Microwave (e) Wi-Fi Which of the following transmission media can be considered as unguided data transmission.	

(a) Laser	(b) Mircowave
(c) Flash Light	(d) Ultra Violet
(e) Infrared	
Which of the following software programs?	e is/are designed be able to modify the source code of the
(a) Compilers	(b) Freeware
(c) Open Source	(d) Assemblers
(e) Interpreters	
(e) User Interfaces	
Which of the following Operating	ng Systems is/are used in a typical embedded system?
(a) OpenZaurus	(b) Mobilinux
(c) MotoMagx	(d) Amoeba
(e) OPhone	
	e is/are utility type of software?
	e is/are utility type of software?
Which of the following software	e is/are utility type of software?
Which of the following software (a) Disk Compression	e is/are utility type of software?
Which of the following software (a) Disk Compression (b) File Synchronization	e is/are utility type of software?

	(a) Machine Deper	ndence	
	(b) Efficiency		
	(c) Accuracy		
	(d) Versatility		
	(e) Reliability		
An it?	error in software or l	nardware is called a bug. Wha	at is the alternative computer jargon
	(a) Leech	(b) Squid	(c) Slug
	(d) Rough	(e) Glitch	
huı	man intervention. Thi (a) Accuracy	s feature is known as (b) Reliability	(c) Automatic
		•	(c) Automatic
	(d) Vomootility		
	(d) Versatility	(e) Efficiency	
Γh	•	a logical sequence is called	
Th	•		(c) Reproducing
Th	e arranging of data in	a logical sequence is called	(c) Reproducing
	e arranging of data in (a) Sorting (d) Summarizing	a logical sequence is called (b) Classifying	
	e arranging of data in (a) Sorting (d) Summarizing	a logical sequence is called (b) Classifying (e) Clustering	
	e arranging of data in (a) Sorting (d) Summarizing e ability of a compute	a logical sequence is called (b) Classifying (e) Clustering er system to remain operational	al despite various failures is
The Wł	e arranging of data in (a) Sorting (d) Summarizing e ability of a compute (a) Relation (d) Versatility hich of the following	a logical sequence is called (b) Classifying (e) Clustering er system to remain operationa (b) Schema (e) Diligence will frequently produce obfusted, and is also useful in some	al despite various failures is (c) Resilience
The Wł	e arranging of data in (a) Sorting (d) Summarizing e ability of a compute (a) Relation (d) Versatility hich of the following sovery of lost source of	a logical sequence is called (b) Classifying (e) Clustering er system to remain operationa (b) Schema (e) Diligence will frequently produce obfusted, and is also useful in some	al despite various failures is (c) Resilience cated code which can be used for the