CS2022: 數位系統設計

# Digital System Design Flow

#### Outline

- Toy Design Flow Example
- Digital System Design Flow
- Computer-Aided Design

### Example of a Complex Digital System



### Let's Design a Grading System

- 5 homework assignments (25%)
- 6 in-class quizzes (ignore lowest score) (25%)
- 1 midterm examination (25%)
- 1 final-term examination (25%)
- 1 extra term project
- Some bonus class participation

#### Overall Data Flow Graph (Hierarchical)



# Data Flow Graph: Homework



# Data Flow Graph: Quiz



#### Overall Data Flow Graph (Hierarchical)



#### Overall Data Flow Graph (Collapsed)



#### Data Flow with Control Steps



### Multi-cycle Implementation



### Resource Binding



# Register Binding



#### Resource Allocation



#### Resource Allocation



# Cell and Module Connectivity



### Floorplanning



1-row height





2-row height

3-row height

4-row height

5-row height

#### Cell Placement in 2 Rows





#### Cell Placement in 3 Rows





### Cell Placement in 4 Rows





### Routing



### Routing



# Routing



### Layout and Spec of Modern Systems



| Apple Chips Specs                                                                          |                     |                |                             |                                   |
|--------------------------------------------------------------------------------------------|---------------------|----------------|-----------------------------|-----------------------------------|
| Chip                                                                                       | <b>Process Node</b> | Die Size (mm²) | Transistor Count (billions) | Transistor Density (millions/mm²) |
| A13                                                                                        | N7                  | 94.48          | 8.5                         | 89.97                             |
| A14                                                                                        | N5                  | 88.45          | 11.8                        | 133.41                            |
| A15                                                                                        | N5                  | 107.68         | 15                          | 139.3                             |
| M1                                                                                         | N5.                 | 118.91         | 16                          | 134.56                            |
| M2 <sup>(1)</sup>                                                                          | N5                  | 155.25         | 20                          | 128.82                            |
| M2 <sup>(2)</sup>                                                                          | N5                  | 141.7          | 20                          | 141.14                            |
| 1. Estimated die size based on scaling identical structures<br>2. Apple presented die size |                     |                |                             |                                   |

# CAD for Digital System Design







#### SUB-BLOCK SCHEMATIC

Transistor-level schematic drawings of the circuit blocks are created in Schematic Editor.

#### TRANSISTOR LEVEL SIMULATION

SPICE(or equivalent) simulation of circuit blocks is used to verify their functionality.

#### LAYOUT

Mask-layout of all circuit blocks are created in Layout Editor.

#### **EXTRACTION**

Actual device dimensions and parasitic parameters are determined from mask layout.

#### LAYOUT vs SCHEMATIC CHECK (LVS)

Automatic comparison of mask layout and circuit schematic.

# CTL Case Simulation Exercises 3.1 2.4 1.7 1.8 1. Componenter Code, at 10-9 9.8 1. par and negate eventures of a black The exercises shows the behavior of the black to pre-3ethers tops a venue.

#### POST-LAYOUT SIMULATION

Final SPICE simulation of the circuit of the circuit blocks using extracted parameters.



gn







#### PLACEMENT&ROUTING (TOP LEVEL)

Mask level layout of the entire chip



#### TOP LEVEL VERIFICATION

Simulation (mixed-mode) to verify functionality and performance of the entire chip.

#### TAPE-OUT

Create universal format file to describe mask layers to manufacturer.

#### **PROTOTYPING**

Sample chips manufactured in fab.

#### TEST

Performance verification and debugging of the prototype.

Mass-production of the designed chip.



#### **FABRICATION**





TOP LEVEL SIMULATION WAVEFORMS

48 . 100



#### Traditional Waterfall Model



### Spiral SOC Design Flow



Time

# Digital Systems

- **Finite primitive elements create almost infinite possibilities!** 
  - Enabling technology for almost EVERYTHING we take for granted today!



### Farewell & Happy New Year



羅賽塔和菲萊的彗星大冒險 https://www.youtube.com/playlist?list=PLzYYnhQlXmVGDAJ9Dmn7V\_alS5VBpZvMp

We thank you for pushing the frontiers of knowledge for the advancement of humanity.  $\odot$