1. (-) Sea p(n) una función proposicional de la variable natural n. Admitiendo que cualquier subconjunto no vacío de \mathbb{N} tiene un mínimo, probar el llamado principio de inducción completa, esto es que que si p(1) es verdadera y válida para cualquier n la implicación $p(n) \Rightarrow p(n+1)$ entonces para cualquier $n \in \mathbb{N}$ se tiene que p(n) es verdadera.

Una segunda forma del mismo principio: si p(1) es verdadera y válida para cualquier n la implicación de que si p(k) es verdadera para cada natural k con $0 \le k < n$ entonces p(n) es verdadera, entonces para cualquier $n \in \mathbb{N}$ se tiene que p(n) es verdadera; probarlo.

 \clubsuit (Resp. Parcial) Si no se cumple el *principio de inducción completa* entonces el conjunto $S = \{n \in \mathbb{N} : p(n) \text{ es falsa}\}$ es un subconjunto no vacío de \mathbb{N} y tiene un primer elemento n_1 que no es 1 (pues p(1) es verdadera), mientras que el elemento anterior $n_1 - 1 \in \mathbb{N}$ no está en S (pues n_1 el el mínimo), de modo que $p(n_1)$ es verdadera y entonces debe serlo $p(n_1 - 1 + 1) = p(n_1)$. Esto es que $p(n_1)$ es falsa y es verdadera, lo que es imposible, de modo que debe ser $S = \phi$ (esto es, no hay ningún $n \in \mathbb{N}$ para el que p(n) es falsa).

Para la segunda forma, suponiendo nuevamente S no vacío, entonces con primer elemento n_1 que no es 1 (pues p(1) es verdadera), la hipótesis asegura que siendo para todo k tal que $1 \le k < n_1$ la proposición p(k) verdadera, entonces debe ser $p(n_1)$ verdadera, reencontrando la contradicción de la prueba anterior.

Observación: las dos formas (llamadas respectivamente débil y fuerte) son en realidad equivalentes, cada una puede deducirse de la otra y ambas se deducen del principio del buen orden aceptado como axioma; si, en cambio, se toma el principio de inducción como axioma, el principio del buen orden pasa a ser un resultado que se deduce del primero.

2. (+) Probar por inducción, detallando explícitamente el esquema de la prueba (las expresiones se entienden para todo n natural, a menos que se exprese lo contrario).

(a)
$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$
 (b) $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$ (c) $\sum_{k=1}^{n} k^3 = \frac{1}{4}[n(n+1)]^2$ (d) $\sum_{k=1}^{n} (2k-1) = n^2$

$$(e) \sum_{k=0}^{n-1} a^k = \frac{a^{n-1}}{a-1}, a \neq 1$$

$$(f) \sum_{k=0}^{n} k a^k = \frac{(a-1)(n+1)a^{n+1} - a^{n+2} + a}{(a-1)^2}, a \neq 1$$

$$(g) \sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

$$(h)\sum_{k=1}^{n}(-1)^{k}k^{2} = \frac{(-1)^{n}}{2}n(n+1) \qquad (i)\sum_{k=1}^{n}(2k-1)^{2} = \frac{1}{3}n(2n-1)(2n+1) \qquad (j)\sum_{k=1}^{n}k\,k! = (n+1)! - 1$$

$$(k) \ 9 \ | \ \sum_{k=n}^{n+2} k^3 \qquad \qquad (l) \ 133 \ | \ (11^{n+2} + 12^{2n+1}) \qquad \qquad (m) \ \sum_{k=1}^n \frac{1}{\sqrt{k}} \ge \sqrt{n} \qquad \qquad (n) \ 4^n (n!)^2 < (2n)! (n+1), n > 1 < (n+1) < (2n)! <$$

$$(\tilde{n}) \ (1+\alpha)^n \ge 1 + n\alpha, \alpha \ge -1$$

$$(o) \sum_{k=1}^n \frac{1}{n+k} > \frac{1}{2}, \ n \ge 2$$

$$(p) \ 2^{n-1} (\alpha^n + \beta^n) > (\alpha + \beta)^n, \ \alpha + \beta > 0, n > 1$$

$$(q) \sum_{k=0}^{n} x^{n-2k} \ge n+1, \ x>0 \qquad (r) \ 3^n > n^4, \ n \ge 8 \qquad (s) \ 7 \mid (8^n - 14n + 27) \qquad (t) \ 3^n n! > n^n n \le 8$$

(u)
$$\sum_{k=2}^{n} \frac{1}{k^2} < 1 - \frac{1}{n}, n > 1$$
 (v) $n! \ge 2^{n-1}$ (w) $|A| = n \Rightarrow |\mathcal{P}(A)| = 2^n$ (x) $6 |(n^3 + 11n)$ (y) $2^n(\alpha^n + 1) > 2(\alpha + 1)^n, \alpha > -1, n > 1$ (z) $2^n(\alpha^n + 1) > 2 + 2n\alpha, \alpha > -1, n > 1$

♣ (Resp. Parcial) (a) Se define para cada
$$n \in \mathbb{N}$$
 la proposición $p(n)$ como $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$. Como $\sum_{k=1}^{1} k = 1 = \frac{1}{2}1(1+1)$ es $p(1)$ verdadera; por otra parte $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{1}{2}n(n+1) + (n+1) = \frac{1}{2}(n+1)(n+2)$, donde la segunda igualdad resulta de la hipótesis inductiva, de modo que efectivamente $p(n) \Rightarrow p(n+1)$; ahora, por el principio de inducción completa, $p(n)$ es verdadera para todo $n \in \mathbb{N}$.

- (b) Se define para cada $n \in \mathbb{N}$ la proposición p(n) como $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$. Como $\sum_{k=1}^{1} k^2 = 1 = \frac{1}{6}1(1+1)(2+1)$ es p(1) verdadera; por otra parte $\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 = \frac{1}{6}n(n+1)(2n+1) + (n+1)^2 = \frac{1}{6}(n+1)(n(2n+1)+6(n+1)) = \frac{1}{6}(n+1)(2n^2+7n+6) = \frac{1}{6}(n+1)(n+2)(2n+3)$, donde la segunda igualdad resulta de la hipótesis inductiva, de modo que efectivamente $p(n) \Rightarrow p(n+1)$; ahora, por el principio de inducción completa, p(n) es verdadera para todo $n \in \mathbb{N}$.
- (c) Se define para cada $n \in \mathbb{N}$ la proposición p(n) como $\sum_{k=1}^n k^3 = \frac{1}{4}[n(n+1)]^2$. Como $\sum_{k=1}^1 k^3 = 1 = \frac{1}{4}[(1)(1+1)]^2$ es p(1) verdadera; por otra parte $\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^n k^3 + (n+1)^3 = \frac{1}{4}[n(n+1)]^2 + (n+1)^3 = \frac{1}{4}(n+1)^2(n^2+4n+4) = \frac{1}{4}(n+1)^2(n+2)^2 = \frac{1}{4}[(n+1)(n+2)]^2$, donde la segunda igualdad resulta de la hipótesis inductiva, de modo que efectivamente $p(n) \Rightarrow p(n+1)$; ahora, por el principio de inducción completa, p(n) es verdadera para todo $n \in \mathbb{N}$.
- (d) Se define para cada $n \in \mathbb{N}$ la proposición p(n) como $\sum_{k=1}^{n}(2k-1)=n^2$. Como $\sum_{k=1}^{1}(2k-1)=1=1^2$ es p(1) verdadera; por otra parte $\sum_{k=1}^{n+1}(2k-1)=\sum_{k=1}^{n}(2k-1)+2(n+1)-1=n^2+(2n+1)=n^2+2n+1=(n+1)^2$, donde la segunda igualdad resulta de la hipótesis inductiva, de modo que efectivamente $p(n) \Rightarrow p(n+1)$; ahora, por el principio de inducción completa, p(n) es verdadera para todo $n \in \mathbb{N}$.
- (e) Se define para cada $n \in \mathbb{N}$ la proposición p(n) como $\sum_{k=0}^{n-1} a^k = \frac{a^n-1}{a-1}, a \neq 1$. Como $\sum_{k=0}^0 a^k = a^0 = 1 = \frac{a-1}{a-1}$ es p(1) verdadera; por otra parte $\sum_{k=0}^n a^k = \sum_{k=0}^{n-1} a^k + a^n = \frac{a^n-1}{a-1} + a^n = \frac{a^n-1}{a-1} + a^n \frac{a-1}{a-1} = \frac{a^n-1+a^{n+1}-a^n}{a-1} = \frac{a^{n+1}-1}{a-1}$, donde la segunda igualdad resulta de la hipótesis inductiva, de modo que efectivamente $p(n) \Rightarrow p(n+1)$; ahora, por el principio de inducción completa, p(n) es verdadera para todo $n \in \mathbb{N}$.

- (f) Para aliviar el trabajo algebraico puede utilizarse la igualdad (e), considerada como la restricción a \mathbb{N} de una igualdad funcional con variable real a y observar que $(\sum_{k=0}^n a^k)' = \sum_{k=1}^n ka^{k-1}$ y entonces ver que $a(\sum_{k=0}^n a^k)' = \sum_{k=1}^n ka^k$. El resto es ya bastante directo.
- (g) Se define para cada $n \in \mathbb{N}$ la proposición p(n) como $\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$. Como $\sum_{k=1}^1 \frac{1}{1(1+1)} = \frac{1}{2} = \frac{1}{1+1}$ es p(1) verdadera; por otra parte $\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^n \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)} = \frac{1}{(n)(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}$, donde la segunda igualdad resulta de la hipótesis inductiva, de modo que efectivamente $p(n) \Rightarrow p(n+1)$; ahora, por el principio de inducción completa, p(n) es verdadera para todo $n \in \mathbb{N}$.
- (j) Si se define p(n) como $\sum_{k=1}^{n} k \, k! = (n+1)! 1$, vale p(1) pues $1 \, 1! = 1 = (1+1)! 1$; ahora se prueba que $p(n) \Rightarrow p(n+1)$: $\sum_{k=1}^{n+1} k \, k! = \sum_{k=1}^{n} k \, k! + (n+1)(n+1)! = (n+1)! 1 + (n+1)(n+1)! = (n+1)!(1+n+1) 1 = (n+2)(n+1)! 1 = (n+2)! 1$ (la primera igualdad por asociatividad de la suma, la segunda por p(n), la tercera por álgebra elemental, la cuarta por definición de factorial).
- (m) La prueba previa de las equivalencias n+1>n sii $\sqrt{n+1}>\sqrt{n}$ sii $\sqrt{n(n+1)}>n$ sii $\sqrt{n(n+1)}+1>n+1$ sii $\sqrt{n}+1/\sqrt{n+1}>\sqrt{n+1}$ hace casi todo el trabajo (observar que para n=2 vale que $1+1/\sqrt{2}>\sqrt{2}$).
- (n) Sea n natural mayor que 1; llamando p(n) a la proposición que afirma que $4^n(n!)^2 < (2n)!(n+1)$, puede verse que para n=2 es 4^2 2! = 64 < 120 = 4!5, de modo que p(2) es verdadera. Ahora se prueba que $p(n) \Rightarrow p(n+1)$: $4^{n+1}(n+1)!^2 = 4(n+1)^24^n(n!)^2 < 4(n+1)^2(2n)!(n+1) = (2n)!(2n+2)(2n+2)(n+1) = (2n)!(2n+2)(2n^2+4n+2) < (2n)!(2n+2)(2n^2+5n+2) = (2n)!(2n+2)(2n+1)(n+2) = (2n+2)!(n+2) = (2(n+1))!((n+1)+1)$ (seguir detalladamente la cadena de igualdades y desigualdades anterior, dando cuenta de una justificación de cada una de ellas). Así se tienen que p(2) es verdadera y para cualquier natural p(n) mayor que 1 es $p(n) \Rightarrow p(n+1)$, de donde por el principio de inducción completa, p(n) es verdadera para cualquier p(n)
- (ñ) Definiendo p(n) como $(1+\alpha)^n \ge 1+n\alpha$, se comprueba que vale trivialmente p(1) pues $(1+\alpha)^1 = 1+\alpha = 1+1\alpha$, restando probar la $implicación \ p(n) \Rightarrow p(n+1)$ (no se prueba ni p(n) ni p(n+1), ¡se prueba la implicación!): $(1+\alpha)^{n+1} = (1+\alpha)^n (1+\alpha) \ge (1+n\alpha)(1+\alpha) = 1+(n+1)\alpha+n\alpha^2 \ge 1+(n+1)\alpha$ (las dos igualdades por álgebra elemental, la primera desigualdad por p(n), la última por ser α^2 no negativo ¿dónde interviene que $\alpha \ge -1$?); por último, del principio de inducción resulta que p(n) vale para todo $n \in \mathbb{N}$.
- (o) Llamando $S_n = \sum_{k=1}^n \frac{1}{n+k}$, es $S_2 = \frac{7}{12} > \frac{1}{2}$, y como (¡hacerlo!) $S_{n+1} = S_n + \frac{1}{(2k+2)(2k+1)} > S_n$ resulta $(S_n > \frac{1}{2}) \Rightarrow (S_{n+1} > \frac{1}{2})$.
- (p). Para n=2 la proposición afirma que $2(\alpha^2+\beta^2)>(\alpha+\beta)^2$; puesto que $\alpha\neq\beta$ se sabe que $(\alpha-\beta)^2>0$, desigualdad que se mantiene sumando miembro la igualdad $(\alpha+\beta)^2=(\alpha+\beta)^2$, quedando así la desigualdad afirmada para n=2. Queda probado entonces que la proposición es verdadera para n=2. Ahora se quiere probar que si la desigualdad vale para n entonces también vale para n+1; admitiendo entonces que vale $2^{n-1}(\alpha^n+\beta^n)>(\alpha+\beta)^n$ y multiplicando esta desigualdad por el número positivo $(\alpha+\beta)$ se obtiene la desigualdad válida $2^{n-1}(\alpha^n+\beta^n)(\alpha+\beta)>(\alpha+\beta)^n(\alpha+\beta)=(\alpha+\beta)^{n+1}$. Ahora bien, la desigualdad (para n+1) que se quiere probar es $2^n(\alpha^{n+1}+\beta^{n+1})>(\alpha+\beta)^{n+1}$, para lo que basta probar que $2^n(\alpha^{n+1}+\beta^{n+1})>2^{n-1}(\alpha^n+\beta^n)(\alpha+\beta)$, que equivale a $\alpha^{n+1}+\beta^{n+1}>\alpha^n\beta+\alpha\beta^n$ que escrita de otro modo es $(\alpha^n-\beta^n)(\alpha-\beta)>0$. Se consideran dos casos para probar esta desigualdad; si $\alpha>\beta$, como se sabe que $\alpha>-\beta$, es $\alpha>|\beta|$ y entonces es $\alpha^n>\beta^n$, de modo que la desigualdad es válida por ser el producto de dos números positivos. Si, en cambio, es $\alpha<\beta$, usando los mismos argumentos es $\alpha^n<\beta^n$, de modo que también la desigualdad es válida al ser el producto de dos números negativos. Luego la desigualdad es válida en todos los casos. Ahora, el principio de inducción completa asegura el cumplimiento de la desigualdad para todo $n\in\mathbb{N}, n>2$.
- (q) La prueba, sin recurrir al cálculo diferencial, se puede hacer descomponiendo el problema en dos partes. Definiendo p(n) como la afirmación de que para todo $x > 0, x \in \mathbb{R}$ y para todo $n \in \mathbb{N}$ es

$$x^{n} + x^{n-2} + x^{n-4} + \dots + \frac{1}{x^{n-4}} + \frac{1}{x^{n-2}} + \frac{1}{x^{n}} \ge n+1$$

se tiene que para n=1 la afirmación $x+\frac{1}{x}\geq 2$ es verdadera, ya que equivale (multiplicando por el número positivo x a $x^2+1=2x$ que no es sino la desigualdad obvia $(x-1)^2\geq 0$. Por otra parte, para n=2 la afirmación dice que $x^2+1+\frac{1}{x^2}\geq 3$, lo que es verdadero pues por lo probado para n=1 válido para cualquier número positivo, en particular para x^2 dice que $x^2+\frac{1}{x^2}\geq 2$, y si a esto sumamos miembro a miembro la igualdad 1=1 se tiene precisamente $x^2+1+\frac{1}{x^2}\geq 3$. Luego hasta aquí se sabe que p(n) vale para n=1 y para n=2. Ahora, se prueba que $p(n)\Rightarrow p(n+2)$ para lo que basta ver que la desigualdad

$$x^{n+2} + x^n + x^{n-2} + x^{n-4} + \dots + \frac{1}{x^{n-4}} + \frac{1}{x^{n-2}} + \frac{1}{x^n} + \frac{1}{x^{n+2}} \ge n+3$$

se sigue de sumar miembro a miembro las desigualdades (1) y (2) siguientes (la primera es válida por hipótesis inductiva, la segunda es válida por lo probado para n = 1 para el número positivo x^{n+2}):

$$(1) x^{n} + x^{n-2} + x^{n-4} + \dots + \frac{1}{x^{n-4}} + \frac{1}{x^{n-2}} + \frac{1}{x^{n}} \ge n+1 \qquad (2) x^{n+2} + \frac{1}{x^{n+2}} \ge 2$$

Poniendo todo junto, se ha probado que $p(n) \Rightarrow p(n+2)$ y que p(1) y p(2) son verdaderas, luego por el principio de inducción completa lo son $p(3), p(5), p(7), p(9), \dots$ y también $p(4), p(6), p(8), p(10), \dots$ Esto completa la prueba.

(r) La afirmación para n=8 dice que $3^8=9^4>8^4$, lo que es verdadero. Llamando $a_n=3^n/n^4$, se quiere probar que $a_{n+1}=3^{n+1}/n+1)^4>1$, admitiendo $a_n>1$ (con $n\geq 8$). Como queda $a_{n+1}=3a_n(n/(n+1))^4>3(n/(n+1))^4$, solo hay que probar que $(n/(n+1))^4>1/3$. Pero como $(n/(n+1))^4=[1-1/(n+1)]^4$ es monótona creciente, basta asegurar que la desigualdad vale en n=8; en verdad, es $(8/9)^4=0.624>1/3$. Ahora, el principio de inducción completa asegura la validez para todo $n\geq 8$. Ahora, el principio de inducción completa asegura la validez para todo $n\geq 8$.

(s) Lamando $a_n = 8^n - 14n + 27$ es $a_1 = 21$ que es divisible en 7 . Se quiere probar ahora que a_{n+1} es divisible en 7 si lo es a_n , o lo que es equivalente, que $a_{n+1} - a_n$ es divisible en 7. Pero $a_{n+1} - a_n = 8^{n+1} - 14(n+1) - 8^n + 14n = 7 \cdot 8^n - 14 = 7(8^n - 2)$, que es divisible en 7. Ahora, el principio de inducción completa asegura la validez para todo $n \in \mathbb{N}$.

(t) Llamando $a_n = n!/(n/3)^n$, lo que debe probarse es que $\forall n \in \mathbb{N} : a_n > 1$. Para n = 1 es $a_1 = 3 > 1$. Ahora se quiere probar que si $a_n > 1$ entonces $a_{n+1} > 1$, o lo que es equivalente, que $a_{n+1}/a_n > 1$, y resulta que:

$$\frac{a_{n+1}}{a_n} = \frac{3^{n+1}(n+1)!}{(n+1)(n+1)} \frac{n^n}{3^n(n)!} = 3\left(\frac{n}{n+1}\right)^n$$

Pero la sucesión $(n/(n+1))^n$ es monótona decreciente y además $\lim_{n\to\infty}(n/(n+1))^n=1/e$, de modo que para cualquier n es $(n/(n+1))^n>1/e>1/3$, y entonces $a_{n+1}/a_n>1$. Ahora, el principio de inducción completa asegura la validez para todo $n\in\mathbb{N}$.

(u) El paso clave: $1 - \frac{1}{n} + \frac{1}{(n+1)^2} < 1 - \frac{1}{n} + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$.

(v) Es $(n+1)! = (n+1)n! \ge (\text{hipótesis inductiva})(n+1)2^{n-1} \ge 2 \ 2^{n-1} = 2^n$

(w) Para n=1 la afirmación es verdadera, pues el conjunto unitario $A=\{a\}$ tiene dos suconjuntos que constituyen $\mathcal{P}(A)$, que son $\{a\}$ (el mismo A) y el conjunto vacío ϕ . Supuesto que $A_n=\{a_1,a_2,\ldots,a_n\}$ tiene 2^n subconjuntos, se quiere probar que $A_{n+1}=\{a_1,a_2,\ldots,a_n,a_{n+1}\}$ tiene 2^{n+1} suconjuntos. Para la prueba, se divide a tales subconjuntos en dos clases: los que contienen a_{n+1} y los que no lo contienen. Los primeros son también suconjuntos de A_n , y entonces son 2^n (hipótesis inductiva). Los que contienen a_{n+1} son conjuntos que se obtienen añadiendo a un suconjunto cualquiera de A_n (y hay 2^n de ellos) el elmento a_{n+1} , de modo que también hay 2^n de esta clase. Luego el total es $2^n+2^n=2^{n+1}$. Ahora, el principio de inducción prueba que la afirmación vale para todo $n \in \mathbb{N}$.

Observación. Una prueba sin inducción consiste en considerar que cada subconjunto puede ser identificado de modo único por un vector de unos o ceros en la posición k según que el elemento a_k pertenezca o no al subconjunto. De esta manera, hay claramente 2^n vectores posibles.

(x) Llamando $a_n = n^3 + 11n$ se tiene que $a_1 = 12$ es divisible en 6. Ahora se quiere probar que si a_n es divisible en 6 entonces a_{n+1} es divisible en 6, o lo que es lo mismo, que $a_{n+1} - a_n$ es divisible en 6. Como $a_{n+1} - a_n = n(n+1)^3 + 11(n+1) - n^3 - 11n = 3n^2 + 3n + 1 + 11 = 3(n^2 + n + 4) = 3(n(n+1) + 4)$. Pero el producto n(n+1) debe ser par (¿por qué?), y también es par entonces su suma con 4, de modo que $a_{n+1} - a_n$ es divisible en 6. Ahora el principio de inducción completa la prueba.

(y) Es (p) con $\beta = 1$.

(z) Es (y) combinada con (\tilde{n}) .

3. (-) Sean a, b dos constantes reales. Hallar la solución de la ecuación lineal de primer orden $x_{n+1} = ax_n + b$ conocida la condición inicial x_0 (para $a \neq 1$, expresar la solución en función del punto de equilibrio $x^* = b/(1-a)$ y discutir el comportamiento cualitativo de la solución).

 \clubsuit (Resp. Parcial) Es $x_n : \mathbb{N}_0 \to \mathbb{R}$, $x_n = (x_0 - x^*)a^n + x^*$ si $a \neq 1$; si en cambio es a = 1, la ecuación es sencillamente $x_{n+1} = x_n + b$, con solución $x_n : \mathbb{N}_0 \to \mathbb{R}$, $x_n = x_0 + bn$. El punto de equilibrio x^* es un atractor sii |a| < 1 (es un repulsor sii |a| > 1, y si a = -1 la solución oscila alrededor de $x^* = b/2$). Las figuras recogen algunas de estas características.

 \clubsuit (Resp. Parcial) Siendo x_n el nivel de contaminaión en el enésimo período, resulta que al final del siguiente período es $x_{n+1} = (1-p)x_n + c_0$, ecuación de recurrencia cuya solución es $x_n = (c_0 - c_0/p)(1-p)^n + c_0/p$, de modo que a largo plazo (p < 1, naturalmente) debe tenerse que $x_\infty = c_0/p < \ell$ de donde el mantenimiento debe tener la capacidad de depuración $p > c_0/\ell$.

- 5. (–) Sea a una constante real no nula y b_n una función real definida para todo $n \in \mathbb{N}_0$. Hallar la solución de la ecuación lineal de primer orden $x_{n+1} = ax_n + b_n$ conocida la condición inicial x_0 . Resolver, en particular, la ecuación $x_{n+1} = x_n/2 + b_n$ con la condición inicial $x_0 = -2$, siendo $b_n = n$ si $n \le 2$, 0 en todo otro caso y determinar además $\min\{x_n : n \in \mathbb{N}_0\}$ y $\max\{x_n : n \in \mathbb{N}_0\}$. ¿Para algún valor inicial el atractor es un superatractor (esto es que es alcanzado en un número finito de pasos?
 - \clubsuit (Resp. Parcial) Resulta $x_n : \mathbb{N}_0 \to \mathbb{R}$, $x_n = x_0 a^n + \sum_{k=1}^n a^{n-k} b_k$; para el caso particular resulta que $x_1 = -1, x_2 = 1/2$ y para cualquier $n \ge 3$ es $x_n = 18/2^n$. Observar que el término b_n tiene un efecto transitorio y que finalmente $\lim_{n \to \infty} x_n = 0$. Sí, de ser $x_0 = -20$ resulta que $\forall n \in \mathbb{N} : n \ge 3$ es $x_n = 0$. El mínimo de la sucesión es -1 y se alcanza en n = 0, el máximo es 9/4 y se alcanza en n = 3.

6. (\leadsto) Nested for loops. En el siguiente fragmento de código se ejecuta la instrucción $x \leftarrow x+1$, que se halla en el núcleo de una estructura anidada con los diversos for . Plantear y resolver la ecuación de recurrencia que permite determinar la cantidad de veces que la intrucción $x \leftarrow x+1$ es ejecutada.

```
for i = 1 to n do
for j= 1 to i do
for k = 1 to j
x <- x+1</pre>
```

 \clubsuit (Resp. parcial) Llamando x_n a la cantidad buscada, es claro que si n=1 es i=j=k=1, de modo que la intrucción se ejecuta exactamente una vez, de modo que $x_1=1$; si ahora se tiene $n\geq 2$, mientras i recorre los valores hasta n-1, la instrucción es ejecutada (por definición de x_n) x_{n-1} veces. Ahora, cuando i=n el resto de la estructura queda entonces como

for
$$j=1$$
 to n do for $k=1$ to j $x <-x+1$

esto es que, para cada valor de j, con $1 \le j \le n$, el loop interno se ejecuta exactamente j veces, de modo que en total se ejecuta $\sum_{j=1}^{n} j = n(n+1)/2$ veces, de modo que la ecuación de recurrencia con $n \ge 1$ es $x_n = x_{n-1} + n(n+1)/2$, $x_0 = 0$ con solución $x_n = n(n+1)(n+2)/6$.

7. (+) Sean a_n, b_n dos funciones reales definidas para todos los naturales n tales que $n \ge n_0 \ge 0$, con $a_n \ne 0$. Hallar la solución de la ecuación lineal de primer orden $x_{n+1} = a_n x_n + b_n$ con la condición $x_{n_0} = x_0$. Resolver, además, las ecuaciones (a) $x_{n+1} = (n+1)x_n + (n+1)! 2^n, x_0 = c$; (b) $x_{n+1} = 3^n x_n, x_0 = 1$; (c) $(n+1)x_{n+1} = n x_n, x_1 = 2$.

a = -1, divergente no acotada sii |a| > 1 o a = 1. (a) $x_n = n!(2^n + c - 1)$; (b) $x_n = 3^{n(n-1)/2}$; (c) $x_n = 2/n$.

- 8. (-) Resolver las siguientes ecuaciones de recurrencia lineales de coeficientes constantes (esto es, hallar todas las funciones x_n que satisfacen la ecuación y las restricciones adicionales).
 - (a) $x_{n+1} = 3x_n + 1, x_0 = 0$

(b) $x_{n+1} = 2^{n+1} - x_n, x_0 = 1$

(c) $x_{n+1} = x_n + 2n, x_0 = 3$

(d) $x_{n+2} = 3x_{n+1} - 2x_n, x_0 = 1, x_1 = 2$

(e) $x_{n+2} = 6x_{n+1} - 8x_n + 3n - 4, x_0 = 1, x_1 = 5$ (g) $x_{n+2} = 4x_{n+1} - 4x_n, x_0 = 0, x_1 = 1, x_2 = 4$ (¿y si fuera $x_2 = 3$?)

 $(f) x_{n+2} = 4x_{n+1} - 4x_n, x_0 = 0$

(i) $x_{n+2} = 2n^2 + 2 - x_n, x_n > 0$

(j) $x_{n+2} = 5 - 2x_{n+1} - 2x_n, x_n$ acotada

(h) $x_{n+2} = 2x_{n+1} - x_n, x_0 = 1, x_1 = 4, x_2 = 9$

(k) $x_{n+3} = x_{n+2} - x_{n+1} + x_n, x_n$ convergente

(l) $2x_{n+3} = 3x_{n+2} + 3x_{n+1} - 2x_n - 2, x_0 = x_1 = x_2 = 1$

- (m) $2x_{n+3} = 3x_{n+2} + 3x_{n+1} 2x_n 2, x_n$ acotada
- ♣ (Resp. Parcial) Es $x_n : \mathbb{N}_0 \to \mathbb{R}$ con (a) $x_n = (3^n 1)/2$; (b) $x_n = (2^{n+1} (-1)^{n+1})/3$; (c) $x_n = n^2 n + 3$; (d) $x_n = 2^n$; (e) $x_n = 4^n + n$; (f) $x_n = cn2^n, c \in \mathbb{R}$; (g) $x_n = n2^{n-1}$, ninguna solución si se sobredetermina con $x_2 = 3$; (h) ninguna solución; (i) $x_n = c_1 \cos(\pi n/2) + c_2 \sin(\pi n/2) + (n-1)^2, -1 < c_1 < 1, c_2 > 0$; (j) $x_n = 1$; (k) $x_n = c, c \in \mathbb{R}$; (l) $x_n = 1$; (m) $x_n = 1 + c_1 2^{-n} + c_2 (-1)^n, c_1, c_2 \in \mathbb{R}$
- 9. (-) Construir, siempre que exista, una ecuación de recurrencia $x_{n+1} = a_n x_n + b_n$, dos de cuyas soluciones sean u_n y v_n y determinar una solución de esa ecuación que satisfaga la condición dada.
 - (a) $u_n = n, v_n = n + 3, x_0 = 0$
- (b) $u_n = n^3, v_n = n^3 + 1, x_0 = 2$
- (c) $u_n = 2^n n!, v_n = 2^n n! + n!, x_0 = 4$
- ♣ (Resp. Parcial) (a) $x_{n+1} = x_n + 1, x_n = n$; (b) $x_{n+1} = x_n + 3n^2 + 3n + 1, x_n = n^3 + 2$; (c) $x_{n+1} = (n+1)x_n + (n+1)! 2^n, x_n = n^3 + 2$ $n!(2^n+3).$
- 10. (-) Construir, siempre que exista, una ecuación de recurrencia $x_{n+2} + a x_{n+1} + b x_n = c_n$, que encuentre a las sucesiones dadas entre sus soluciones y determinar una solución de esa ecuación que satisfaga la condición dada.
 - (a) $u_n = 3^n + 2^n$, $v_n = 3^n + 1$, $w_n = 3^n$, $x_0 = 3$, $x_1 = 6$

(c) $u_n = 3^n + n, v_n = 3^n, x_0 = 1, x_1 = 7$

- (b) $u_n = n(1+2^n), v_n = n, x_0 = 1, x_1 = 1$ (d) $u_n = n^3 + 2n, v_n = 2n, x_0 = 1, x_1 = 2$
- ♣ (Resp. Parcial) (a) $x_{n+2} 3x_{n+1} + 2x_n = 2 \cdot 3^n, x_n = 1 + 2^n + 3^n$; (b) $x_{n+2} 4x_{n+1} + 4x_n = n 2, x_n = (1 n)2^n + n$; (c) $x_{n+2} - 2x_{n+1} + x_n = 4 \cdot 3^n, x_n = 4(3^n - 1) - n$; (d) imposible.
- 11. Formular cada una de las siguientes cuestiones en el lenguaje de inducción o de recurrencia y probar o resolver, según corresponda en cada caso.
 - (a) Determinar la cantidad de diagonales de un polígono de $n \ge 3$ puntos ubicados sobre una circunferencia; ¿cuánto suman sus ángulos interiores?
 - (b) Puede pagarse, sin requerir cambio, cualquier artículo de precio mayor que \$5 con solo billetes de \$3 y \$4. ¿Otros juegos de dos valores mayores que 2 que permitan lo mismo a partir de un dado precio?
 - (c) Cualquier número natural n mayor que 1 tiene un divisor primo; además, o es primo o es el producto de números primos.
 - (d) El producto de n números positivos de suma constante es máximo sii todos los números son iguales; la suma de n números positivos de producto constante es mínima sii todos son iguales.
 - (e) Hay 3^n palabras de longitud n que pueden construirse con un alfabeto Σ de tres letras a, b, c. ¿Cuántas tienen una cantidad impar de letras b? Y una cantidad par de letras b?
 - (f) Se disponen n discos de diámetro creciente apilados sobre un mástil y se requiere, moviéndolos de uno en uno, disponerlos del mismo modo en otro mástil ayudándose con un tercero, con la restricción de que nunca un disco mayor se encuentre sobre uno menor. ¿Cuántos movimientos son al menos necesarios?
 - (g) Dadas n líneas dispuestas en el plano en posición general (esto es, ningún par de rectas son paralelas y en ningún punto se cortan más de dos), sea x_n la cantidad de regiones en que queda dividido el plano (en la figura se observa que para tres líneas es $x_3 = 7$). Plantear la ecuación de recurrencia (justificar detalladamente), resolverla y mostrar en un dibujo que la solución predice la situación correcta para n=4, para la cual se observa un total de siete regiones.

- (h) Para las n líneas en posición general del caso anterior, determinar cuántas regiones acotadas se obtienen; por ejemplo, para n=3 se observa solo una región acotada, numerada con 5 en la figura.
- (i) Se suman los cubos de tres números naturales consecutivos: ¿el resultado es divisible por 9?
- (j) Con un alfabeto Σ binario con letras 0, 1. ¿Cuántas palabras de n letras sin dos 1 consecutivos hay?
- (k) Con $n \in \mathbb{N}_0$, sea $S_n = \{1, 2, ..., n\}$ si $n \ge 1$, mientras que $S_0 = \phi$ si n = 0. Determinar la cantidad de subconjuntos de S_n que no contienen dos enteros consecutivos.
- (l) Una escalera tiene n peldaños. Si el ascenso puede practicarse eligiendo en cada paso subir un peldaño o dos peldaños, determinar para todo $n \in \mathbb{N}$ la cantidad de modos de recorrer la escalera; por ejemplo, un modo de subir la escalera de la figura es de un peldaño por vez y otro es subir el primero, luego saltar al tercero y de allí al cuarto.
- (m) Un damero de $2 \times n$ cuadrados, siendo n un número natural, puede cubrirse con baldosas de 2×1 (esto es ubicadas horizontalmente) o baldosas dispuestas horizontalmente (en tal caso se dice que la baldosa es de 1×2). Dos cubrimientos cuentan como distintos si la disposición es distinta. Por ejemplo, en la figura se ven dos cubrimientos de un damero de 2×6 que cuentan como distintos pues difieren en la forma de cubrir el primer cuadrado de 2×2 (dos baldosas horizontales de 2×1 en el primero de los cubrimientos, dos baldosas verticales de 1×2 en el segundo), mientras que el resto del cuadriculado de 2×4 se ha cubierto con la misma disposición (la distribución de colores es meramente indicativa, no hace diferencia, solo están puestas para identificar la disposición de las baldosas, que son todas del mismo tipo y color). Se quiere determinar la cantidad de cubrimientos posibles x_n , para cada $n \in \mathbb{N}$.
- (n) Se dice que $n \in \mathbb{N}$ elipses E_1, E_2, \ldots, E_n se encuentran en posición general si dos cualesquiera de ellas se intersecan en dos puntos distintos (y entonces elipses tangentes o que no se intersequen no son permitidas) y no hay tres elipses con un punto en común. Determinar x_n , la cantidad de regiones en que queda dividido el plano por las n elipses. La figura ilustra sombreando con un color diferente cada una de las regiones determinadas por una, dos y tres elipses ($x_1 = 2, x_2 = 4, x_3 = 8$). ¿La solución del problema cambia si se reemplazan las elipses por la frontera de triángulos, o de rectángulos?

Dos de los $x_6 = 13$ cubrimientos posibles

- (o) En un torneo de $singles\ tennis\ participan\ 2n\ jugadores.$ ¿Cuántas formas hay de organizar los enfrentamientos en la primera rueda?
- (p) ¿La sucesión en que cada término es el promedio de los dos que le preceden, siendo los dos primeros 0,1 es convergente?
- (q) Un tetraedro regular de 1 m de longitud de arista tiene vértices A,B,C,D. Un escarabajo se encuentra en A y se desplaza por las aristas hacia vértices adyacentes escogiendo cada vez un vértice cualquiera al azar con igual probabilidad (en la elección también puede regresar al vértice innmediato anterior invirtiendo su marcha). Determinar la probabilidad de que se encuentre en el vértice A tras haber recorrido A tras haber recorri

- ♣ (Resp. Parcial) (a) $x_{n+1} = x_n + (n-2) + 1, x_3 = 0$ de donde hay (resolviendo la ecuación de recurrencia) $x_n = n(n-3)/2$ diagonales. Observación: una prueba directa considera que desde cada vértice parten diagonales a los n-3 restantes y como hay n vértices se tiene la mitad del producto de n(n-3) (pues no deben contarse dos veces).
- (b) Si X es el conjunto de naturales que puede escribirse como suma de cuatros y tres, 6, 7, 8 pertenecen a X (pues 6=3+3, 7=3+4, 8=4+4) y ahora suponiendo que $k \in X$ para 5 < k < n (jinducción fuerte!) con n > 8 se tiene que k=n-3>5 está en X y por lo tanto n mismo (sumando 3 a la descomposición de n-3); otro juego: 3, 5 desde 8. Uno más, el par 5, 9 a partir de 35.
- (c) Para n=2 es verdadero (pues 2 es divisible por 2, que es primo; ahora inducción fuerte: si dado un n mayor que 1, todos los $k=2,3,\ldots,n$ son divisibles por un primo, entonces si n+1 es primo, es divisible por un primo (él mismo); si no es primo, existen

 n_1, n_2 entre 2 y n tales que $n+1=n_1n_2$, pero entonces n_1 es divisible por un primo p (esto es $n_1=\alpha p$ para algún natural α), y entonces es $n+1=p\alpha n_2$, esto es que m+1 es divisible en un primo.

(d) El producto de n números positivos (n>1) de suma constante igual a s es máximo sii cada uno de ellos es igual a s/n, es la proposición p(n) y p(2) es verdadera pues si x_1, x_2 son números positivos tales que $x_1 + x_2 = s$ será para algún $a, x_1 = s/2 - a, x_2 = s/2 + a$ de modo que $x_1x_2 = (s/2 - a)(s/2 + a) = (s/2)^2 - a^2$ que es máximo sii a = 0 y entonces $x_1 = x_2 = s/2$. Ahora (n>2) se prueba que $p(n-1) \Rightarrow p(n)$; sean n factores positivos tales que $x_1 + x_2 + \cdots + x_n = s$ y sea a = s/n: si no todos los factores son iguales a a, debe existir un par (por ejemplo x_1, x_2) y dos números positivos p, q tales que $x_1 = a - p, x_2 = a + q$ (que suman 2a - p + q) y si se reemplaza el producto $x_1x_2 = (a - p)(a + q)$ por el de igual suma $a(a - p + q) = x_1x_2 + pq > x_1x_2$ queda que $x_1x_2\cdots x_n < a(a - p + q)x_3\cdots x_n$, y por p(n-1) es $(a - p + q)x_3\cdots x_n \le a^{n-1}$, de donde para el producto de los n factores desiguales supuestos es $x_1x_2\cdots x_n < a^n$, lo que prueba que $p(n-1) \Rightarrow p(n)$ y entonces por el principio de inducción completa, que p(n) vale para todo $n \ge 2$. En otras palabras, se ha probado que para todo n > 1 el producto de n factores desiguales $x_1x_2\cdots x_n < a^n = (s/n)^n$, esto es que $x_1 + x_2 + \cdots + x_n > n\sqrt[n]{x_1x_2\cdots x_n} = n\sqrt[n]{h}$, con la igualdad sii todos son iguales a $\sqrt[n]{h}$. Observar que para n = 2 se afirma que la media geométrica $p = \sqrt{x_1x_2}$ es menor o igual que su media aritmética $p = (x_1 + x_2)/2$ (e igual sii $x_1 = x_2 = g$), lo que resulta de la desigualdad inmediata $a^2 - g^2 = ((x_1 + x_2)/2)^2 - x_1x_2 = ((x_1 - x_2)/2)^2 \ge 0$.

(e) $x_{n+1} = 2x_n + (3^n - x_n), x_1 = 1$ de donde $x_n = (3^n - 1)/2$ palabras.

(f) Es $x_{n+1} = x_n + (x_n + 1), x_1 = 1$ de donde $x_n = 2^n - 1$ movimientos (este problema suele denominarse torre de Hanoi para n = 8 discos o torre de Brahma para n = 64 discos).

(g) $x_{n+1} = x_n + n + 1, x_1 = 2$ de donde la cantidad de regiones es $x_n = 1 + \frac{n(n+1)}{2}$ (este problema fue resuelto por primera vez en 1826 por Jacob Steiner).

(h) Llamando a_n a la cantidad de regiones acotadas, basta ver que la línea enésima más uno corta a las n anteriores en n puntos distintos añadiendo n-1 regiones acotadas (y dos regiones no acotadas), de modo que el total de regiones acotadas es $a_{n+1}=a_n+n-1$ con, naturalmente, la condición $a_1=0$. La solución de esta ecuación de recurrencia es $a_n=(n-1)(n-2)/2$. Observación: Respecto a las regiones x_n obtenidas en el punto anterior, se tiene que la cantidad de regiones acotadas es la cantidad de regiones en general disminuída en el doble de la cantidad de líneas, esto es que $a_n=x_n-2n$ (¡comprobarlo!). En particular, para n=4 resulta, como lo muestra la figura, $a_4=3$.

(i) Sí; el paso clave es la igualdad $(n+1)^3 + (n+2)^3 + (n+3)^3 = [n^3 + (n+1)^3 + (n+2)^3] + 9(n^2 + 3n + 3)$.

(j) Si x_n es el número de palabras buscado, es inmediato que $x_1=2$, pues de una letra, las palabras 0 y 1 cumplen el requisito (puede verse en la tabla que $x_2=3, x_3=5, x_4=8$). Las x_n palabras de n letras o bien terminan en 0 o bien terminan en 1. Si terminan en 0 la letra en la posición n-1 no tiene restricciones, de modo que de este tipo hay x_{n-1} (por definición de x_n). Si terminan en 1, la letra en la posición n-1 debe ser 0, de modo que de este tipo hay x_{n-2} , de modo que la ecuación de recurrencia de segundo orden (iFibonacci!) es $x_n=x_{n-1}+x_{n-2}, x_1=2, x_2=3$ con polinomio característico $p(\lambda)=\lambda^2-\lambda-1$ con raíces $\lambda_{1,2}=(1\pm\sqrt{5})/2$, solución general $x_n=c_1\lambda_1^n+c_2\lambda_2^n$ que con las condiciones iniciales $x_1=2, x_2=3$ resulta:

$$x_n = \frac{1}{\sqrt{5}} (\lambda_1^{n+2} - \lambda_2^{n+2}), \qquad n = 1, 2, 3, \dots$$

(k) Sea $x_n = |A_n|$. Para explicitar algunos de los subconjuntos se escriben los primeros cuatro $x_0 = 1$ (pues $S_0 = \phi$ solo tiene como subconjunto al mismo ϕ), $x_1 = 2$ (siendo $S_1 = \{1\}$ sus subconjuntos son ϕ , $\{1\}$), $x_2 = 3$ (los subconjuntos de $S_2 = \{1,2\}$ sin enteros consecutivos son ϕ , $\{1\}$, $\{2\}$), $x_3 = 5$ (los subconjuntos de $S_3 = \{1,2,3\}$ sin enteros consecutivos son ϕ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,3\}$). Para hallar la ecuación de recurrencia , se sabe ya que $x_0 = 1$, $x_1 = 2$, sea $n \ge 2$ y sea $A \subset S_n$ cumpliendo la condición; solo son posibles dos casos: o bien $n \in A$ o bien $n \notin A$. Si $n \in A$, entonces $(n-1) \notin A$ de modo que $S^* = \{1,2,\ldots,n-2\}$ tiene x_{n-2} suconjuntos que cumplen la condición. Si, en cambio, $n \notin A$, por definición de x_n hay x_{n-1} de tales subconjuntos. De esta manera se tiene que la ecuación de recurrencia de segundo orden (${}_iFibonacci!$) es $x_n = x_{n-1} + x_{n-2}, x_0 = 1, x_1 = 2$, con solución:

$$x_n = \frac{1}{\sqrt{5}} (\lambda_1^{n+2} - \lambda_2^{n+2}), \qquad n = 0, 1, 2, 3, \dots$$

Observación: se podría haber aprovechado la identificación de este problema con el anterior, estableciendo una biyección entre los subconjuntos y la secuencia de bits, de manera que, por ejemplo, la secuencia 101 indica el conjunto $\{1,3\}$ (el primer bit indica que el subconjunto contiene el primer elemento de S (esto es 1), el segundo bit (cero) indica que el conjunto no contiene al segundo elemento de S, el tercer 1 indica que el conjunto contiene al tercer elemento. De esta manera, el problema de determinar las sucesiones sin dos números 1 seguidos es esencialmente el mismo que el que aquí se resuelve.

(l) Si x_n es el número de formas de subir, es inmediato que $x_1=$ (un escalón); si en cambio son dos los escalones hay dos maneras: uno por vez, o un salto al segundo escalón. En general, sea $n\geq 3$, la subida puede iniciarse con un peldaño o con dos. Si se inicia con uno, quedan otras x_{n-1} formas de subir el resto; si se inicia con dos, quedan otras x_{n-2} para los restantes n-2 escalones. Luego, la ecuación de recurrencia de segundo orden (jFibonacci!) es $x_n=x_{n-1}+x_{n-2},x_1=1,x_2=2$ con polinomio característico $p(\lambda)=\lambda^2-\lambda-1$ con raíces $\lambda_{1,2}=(1\pm\sqrt{5})/2$, solución general $x_n=c_1\lambda_1^n+c_2\lambda_2^n$ que con las condiciones iniciales $x_1=1,x_2=2$ resulta:

$$x_n = \frac{1}{\sqrt{5}} (\lambda_1^{n+1} - \lambda_2^{n+1}), \qquad n = 1, 2, 3, \dots$$

Uno de los $x_4 = 5$ modos de subir

(m) Si x_n es el número de formas de cubrir el damero de $2 \times n$, es inmediato que $x_1 =$ (pues un tablero de 2×1 solo puede cubrirse con una baldosa dispuesta verticalmente); si en cambio el tablero es un cuadrado de 2×2 , se tienen dos formas de cubrirlos, con dos baldosas dispuestas horizontalmente o dos baldosas dispuestas verticalmente, de modo que $x_2 = 2$. En general, para $n \geq 3$, se considera la primera columna del tablero, que o bien está cubierta por una baldosa vertical (y entonces quedan otras x_{n-1} formas de cubrir el resto del tablero de $2 \times (n-1)$), o bien está cubierta por dos baldosas horizontales que también cubren la segunda columna (y entonces quedan x_{n-2} formas de cubrir el resto del tablero de $2 \times (n-2)$ cuadrados). Luego, la ecuación de recurrencia de segundo orden (iFibonacci!) es $x_n = x_{n-1} + x_{n-2}, x_1 = 1, x_2 = 2$ con polinomio característico $p(\lambda) = \lambda^2 - \lambda - 1$ con raíces $\lambda_{1,2} = (1 \pm \sqrt{5})/2$, solución general $x_n = c_1\lambda_1^n + c_2\lambda_2^n$ que con las condiciones iniciales $x_1 = 1, x_2 = 2$ resulta:

$$x_n = \frac{1}{\sqrt{5}} (\lambda_1^{n+1} - \lambda_2^{n+1}), \qquad n = 1, 2, 3, \dots$$

(n) Sea $n \ge 2$ y x_{n-1} la cantidad de regiones definidas por las n-1 elipses y se añade una elipse de modo que se tienen ahora n elipses en posición general, con cada una de las n-1 elipses intersecando a la n-ésima elipse en dos puntos, y entonces en 2(n-1) puntos $P_1, P_2, \ldots, P_{2(n-1)}$ que dividen a la n-ésima elipse en 2(n-1) arcos: el arco entre P_1 y P_2 , el arco entre P_2 y P_3 , ..., el arco entre $P_{2(n-1)-1}$ y $P_{2(n-1)}$ y el arco entre $P_{2(n-1)}$ y P_1 . Cada uno de estos arcos divide en dos a cada región formada por las n-1 elipses, de modo que se añaden 2(n-1) regiones, siendo entonces $x_n=x_{n-1}+2(n-1)$, ecuación de recurrencia que con la condición inicial devuelve la solución $x_n=n^2-n+2$. Naturalmente, el problema es el mismo siempre que se hable de curvas cerradas como frontera de un convexo.

Observación 1. El problema ya tratado de las regiones definidas por n rectas en posición general podría considerarse como un caso particular de este problema (cada recta se cierra en el punto impropio del plano y es frontera de un semiplano convexo), pero teneindo en cuenta que se cortan en un punto (y no en dos puntos), por lo que la ecuación de recurrencia es $x_n = x_{n-1} + (n-1)$, con $x_1 = 2$.

Observación 2. Para n=4 se tienen 14 regiones, lo que advierte de la limitación del uso de los esquemas en el álgebra proposicional, puesto que hay un total de 2^{16} proposiciones compuestas de cuatro proposiciones elementales y en cambio en un esquema solo se dispondrían de 2^{14} regiones compuestas. Las cantidades se van apartando cada vez más al aumentar n, coincidiendo solo en los tres primeros naturales (si con cuatro figuras se pretenden 16 regiones debe recurrirse ahora a no convexos).

(o) LLamando a_n a la cantidad pedida, es claro que $a_1=1$ (si solo hay dos jugadores, la primera rueda consiste en solo un partido entre ellos). Ahora, el jugador con el número 2n puede ser apareado con cualquiera de los 2n-1 jugadores restantes, y como a_{n-1} son los pares que pueden formarse con los remanentes 2(n-1) jugadores en los otros n-1 partidos, resulta que el problema es resolver $a_n=(2n-1)a_{n-1}$, $a_1=1$, ecuación de recurrencia lineal de primer orden con coeficientes variables, con solución (desarrollar los detalles) $a_n=1\cdot 3\cdots (2n-1)$. Todavía puede reescribirse de un modo más práctico multiplicando y dividiendo por el número $2\cdot 4\cdot 6\cdots 2n=2^n n!$ y entonces queda la siguiente expresión:

$$a_n = 1 \cdot 3 \cdot \cdot \cdot (2n - 1) \frac{2^n n!}{2^n n!} = \frac{1 \cdot 2 \cdot 3 \cdot \cdot \cdot (2n - 1) \cdot (2n)}{2^n n!} = \frac{(2n)!}{2^n n!}, \ n = 1, 2, \dots$$

(p) La ecuación de recurrencia que define la sucesión está dada por la siguiente expresión $x_{n+2}=(1/2)(x_n+x_{n+1})$ con las condiciones $x_0=0, x_1=1$, con polinomio característico $p(\lambda)=2\lambda^2-\lambda-1=0$ con raíces $\lambda_1=-1/2, \lambda_2=1$, que con las condiciones iniciales resulta:

$$x_n = \frac{2}{3} \left(1 - \frac{(-1)^n}{2^n} \right), n = 0, 1, 2, \dots$$

De la anterior expresón es claro que la sucesión converge a 2/3.

(q) Llamando x_n a la probabilidad de que el escarabajo se halle en A tras haber recorrido n metros, es claro que $a_1 = 0$ (pues arrancando en A, habiendo recorrido 1 metro solo puede estar en B, C o en D, nunca en A). Ahora para x_{n+1} debe considerarse que solo puede estar en A después de haber recorrido n+1 metros siempre que se cumpla que no estuviera en A al cabo de n metros recorridos (y esta situación tiene probabilidad $1-x_n$, por la misma definición de x_n) y desde ese cualquier vértice (que no es A) se dirija hacia A (y esto tiene probabilidad 1/3, ya que elije cualquiera de los tres vértices adyacentes). Así resulta la solución siguiente.

$$x_{n+1} = \frac{1}{3}(1-x_n), \quad x_1 = 0, \quad \text{con solución dada por } x_n = \frac{1}{4} + \left(\frac{3}{4}\right)\left(-\frac{1}{3}\right)^n$$

En particular, la probabilidad pedida es $x_7 = \frac{182}{789}$. Es conveniente observar que, como intuitivamente parece previsible, a largo plazo, la probabilidad converge a 1/4, esto es que el escarabajo pasa aproximadamente la misma cantidad de veces en cada uno de los cuatro vértices, diluyéndose la condición inicial de estar en A.

- 12. (\leadsto) Inducción doble. El principio de inducción que se aplica a proposiciones del tipo $\forall n, m \in \mathbb{N} : p(n)$, puede extenderse a proposiciones del tipo $\forall n, m \in \mathbb{N} : p(n, m)$, para lo que es necesario escoger qué p(n) utilizar y hay varias elecciones, una de las cuales es definir p(n) como $\forall x \in \mathbb{N} : q(x, n)$, la que a su vez se prueba por inducción. Probar que $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definida recursivamente por f(0, y) = y, f(x + 1, y) = f(x, y) + 1 es conmutativa, esto es que $\forall x, y \in \mathbb{N}_0 : f(x, y) = f(y, x)$.
 - ♣ (Resp. Parcial) Se prueba por inducción (simple) la proposición $\forall x \in \mathbb{N}_0 : [\forall y \in \mathbb{N}_0 : f(x,y) = f(y,x)]$, cuyo caso base es (para x=0) a su vez una proposición: $\forall y \in \mathbb{N}_0 : f(0,y) = f(y,0)$ que se prueba, ella misma por inducción (de allí el nombre de inducción doble). Se toma entonces el caso base subsidiario y=0 que afirma que f(0,0)=f(0,0) que se cumple trivialmente, y ahora se prueba la implicación $[f(0,y)=f(y,0)]\Rightarrow [f(0,y+1)=f(y+1,0)]$ mediante la cadena f(y+1,0)=f(y,0)+1=f(0,y)+1=y+1=f(0,y+1) (todas las igualdades por definición excepto la segunda que es la hipótesis inductiva). En este punto se ha completado la prueba del caso base de la inducción principal. Ahora se debe probar la implicación que afirma que si $\forall y \in \mathbb{N}_0 : f(x,y)=f(y,x)$ entonces $\forall y \in \mathbb{N}_0 : f(x+1,y)=f(y,x+1)$, que tiene a su vez su caso base que afirma que f(x+1,0)=f(0,x+1) pero esto se cumple pues antes se ha probado que $\forall y \in \mathbb{N}_0 : f(0,y)=f(y,0)$. Ahora se prueba que si se da la hipótesis inductiva subsidiariaf(x+1,y)=f(y,x+1)+1=f(y+1,x)+1=f(y,x+1)+1=f(y,x+
- 13. (-) Escribir la solución general de $x_{n+2} + a x_{n+1} + b x_n = c$ para todos los valores de a, b, c constantes reales (considerar las distintas situaciones que conducen a soluciones de diferente tipo). ¿Cuál es la relación entre la estabilidad asintótica y las raíces del polinomio característico?
 - ♣ (Resp. Parcial) Sea $\sigma(p) = \{\lambda_1, \lambda_2\}$ el espectro del polinomio característico $p(\lambda) = \lambda^2 + a \lambda + b$, esto es $\lambda_{1,2} = (-a \pm \sqrt{a^2 4b})/2$, si $1 \notin \sigma(p)$ y entonces $1 + a + b \neq 0$) y llamando $x^* = c/(1 + a + b)$, la solución general es $x_n = c_1\lambda_1^n + c_2\lambda_2^n + x^*$ si $a^2 \neq 4b$, mientras que si $a^2 = 4b$ es $\lambda_1 = \lambda_2 = -a/2$ siendo en tal caso $x_n = (c_1 + c_2 n)(-a/2)^n + x^*$. Si en cambio $1 \in \sigma(p)$ es 1 + a + b = 0 con $\lambda_1 = 1, \lambda_2 = b$, de modo que si $b \neq 1$ (y entonces $a \neq 2$) es $x_n = c_1 + c_2 b^n + c n/(1 b)$, mientras que si b = 1 (y entonces a = -2) es $x_n = c_1 + c_2 b^n + c n^2/2$.

$$x_n = \begin{cases} c_1 \lambda_1^n + c_2 \lambda_2^n + \frac{c}{1+a+b} & \text{si} \quad 1+a+b \neq 0, a^2 \neq 4b \\ (c_1 + c_2 n)(-\frac{a}{2})^n + \frac{c}{1+a+b} & \text{si} \quad 1+a+b \neq 0, a^2 = 4b \\ c_1 + c_2 b^n + \frac{c}{1-b} n & \text{si} \quad 1+a+b = 0, b \neq 1 \\ c_1 + c_2 n + \frac{c}{2} n^2 & \text{si} \quad 1+a+b = 0, b = 1 \quad \text{esto es } a = -2, b = 1 \end{cases}$$

Para que $\lim_{n\to\infty} x_n = x^*$ partiendo de cualesquiera condiciones iniciales (y entonces de cualesquiera c_1, c_2) se necesita y alcanza que $|\lambda_1| < 1, |\lambda_2| < 1$ (se dice que x^* es un atractor); en todo otro caso, siempre pueden escogerse c_1, c_2 que hagan la sucesión x_n divergente. La figura muestra un caso de convergencia.

- 14. (\leadsto) Transmisión de la información. Se disponen de dos señales s_1, s_2 para un sistema de transmisión, en el que los mensajes se codifican como una cadena de las dos señales, requiriendo s_1 una cantidad n_1 de unidades de tiempo y s_2 de n_2 unidades de tiempo para ser transmitidas. Determinar la capacidad del canal para el caso particular $n_1 = 1, n_2 = 2$.
 - (Resp. Parcial) Sea x_n de posibles mensajes de duración n; cualquiera sea el mensaje, o bien termina con s_1 o bien termina con s_2 . Si termina con s_1 , la última se nal debe empezar en $n-n_1$ (puesto que s_1 toma n_1 unidades de tiempo) y entonces hay x_{n-n_1} mensajes a los que se le puede añadir s_1 al final. Razonado del mismo modo para s_2 , hay x_{n-n_2} mensajes a los que se le puede añadir s_1 al final. De esta manera, el número total de mensajes satisface la ecuación de recurrencia $x_n = x_{n-n_1} + x_{n-n_2}$. Si es $n_2 \ge n_1$, esta ecuación equivale a $x_{n+n_2} x_{n+n_2-n_1} x_n = 0$, y en el caso particular específico $n_1 = 1, n_2 = 2$ queda (nuevamente, Fibonacci) la ecuación de recurrencia $x_{n+2} = x_{n+1} + x_n$ con polinomio característico $p(\lambda) = \lambda^2 \lambda 1$ con raíces $\lambda_{1,2} = (1 \pm \sqrt{5})/2$, solución general $x_n = c_1\lambda_1^n + c_2\lambda_2^n$ que con las condiciones con $x_0 = 0, x_1 = 1$ produce la solución:

$$x_n = \frac{1}{\sqrt{5}}(\lambda_1^n - \lambda_2^n), \qquad n = 0, 1, 2, 3, \dots$$

Con la capacidad C de un canal definida en teoría de la información (Claude Shannon 1916-2001, quien acuñara la palabra bit por binary digit en 1948), resulta para este canal:

$$C = \lim_{n \to \infty} \frac{\log_2(x_n)}{n} = \lim_{n \to \infty} \frac{\log_2(\frac{1}{\sqrt{5}})}{n} + \lim_{n \to \infty} \frac{\log_2(\lambda_1^n - \lambda_2^n)}{n} = \log_2 \lambda_1 \approx 0.7$$

- 15. (\leadsto) Probabilidad: ruina del apostador. Un apostador que tiene un capital n y pretende ganar la suma N > n tiene la probabilidad q de ganar \$1 (y entonces la probabilidad r = 1 q de perderlo). El apostador se retira cuando alcanza la suma N o cuando pierde su capital n, en cuyo caso se dice que se arruinó. Determinar la probabilidad p_n de que se arruine con n = 4, q = 0.3, N = 10
 - ♣ (Resp. Parcial) Con un capital n, si gana la apuesta (con probabilidad q), el capital pasa a ser n+1 y si la pierde (con probabilidad r), pasa a ser n-1, de manera que aplicando el resultado de la probabilidad total, debe ser $p_n = qp_{n+1} + rp_{n-1}$, o lo que es lo mismo, renumerando los índices, la siguiente ecuación de recurrencia, con las condiciones inmediatas $p_0 = 1$ (se arruinó) y $p_N = 0$ (ganó la suma N y se retiró).

$$p_{n+2} - \frac{1}{a}p_{n+1} - \frac{r}{a}p_n = 0, \quad n = 0, 1, 2, \dots, N$$

La ecuación característica $\lambda^2 - \frac{1}{q}\lambda - \frac{r}{q} = 0$ tiene raíces $\lambda_1 = \frac{r}{q}, \lambda_2 = 1$ que son distintas si $r \neq q$, mientras que son iguales a 1 si $r = q = \frac{1}{2}$, correspondiendo la solución general $p_n = c_1\lambda_1^n + c_2\lambda_2^n$ al primer caso, y $p_n = c_1 + c_2n$ al segundo, que con las condiciones $p_0 = 1, p_N = 0$ resuelve el problema.

$$p_n = \begin{cases} \frac{\lambda_1^n - \lambda_1^N}{1 - \lambda_1^N} & \text{si} \quad q \neq \frac{1}{2} \\ 1 - \frac{n}{N} & \text{si} \quad q = \frac{1}{2} \end{cases}$$

Para los valores particulares n=4, q=0.3, N=10 se tiene que $p_4\approx 0.994$ (ruina casi cierta).

- 16. (+) Dada $x_{n+2} + a x_{n+1} + b x_n = c$ con a, b, c constantes reales, probar que la condición |a| 1 < b < 1 es necesaria y suficiente para la convergencia de cualquier solución x_n (¿a qué converge?). Resolver, en particular, la ecuación $2x_{n+2} 2x_{n+1} + x_n = 1$ y graficar algunas soluciones x_n versus n para ilustrar la convergencia.
 - ♣ (Resp. Parcial) Es necesario y suficiente (ver ejercicio anterior) que sea menor que 1 el módulo de las raíces λ_1 y λ_2 de la ecuación característica $\lambda^2 + a\lambda + b = 0$; se sabe que $\lambda_1 + \lambda_2 = -a, \lambda_1\lambda_2 = b$. Necesidad: si $|\lambda_1| < 1, |\lambda_2| < 1$, debe ser |b| < 1 (y entonces |b+1| = b+1), y además $0 < (1-\lambda_1^2)(1-\lambda_2^2) = 1-(\lambda_1+\lambda_2)^2+2\lambda_1\lambda_2+\lambda_1^2\lambda_2^2 = (b+1)^2-a^2$, entonces $a^2 < (b+1)^2$, o bien |a| < |b+1| = b+1. Para la suficiencia, ver que la condición |a|-1 < b < 1 equivale a las dos condiciones $-1 < b < 1, a^2 < (b+1)^2$ que escritas escritas en el lenguaje de las raíces son $|\lambda_1\lambda_1| < 1, (\lambda_1+\lambda_2)^2 < (1+\lambda_1\lambda_1)^2$, la segunda de las cuales equivale a $0 < (1-\lambda_1^2)(1-\lambda_2^2)$, de donde o bien es $0 < (1-\lambda_1^2), 0 < (1-\lambda_2^2)$ (y en ese caso es efectivamente $|\lambda_1| < 1, |\lambda_2| < 1$) o bien es $0 > (1-\lambda_1^2), 0 > (1-\lambda_2^2)$ (pero esto último es imposible pues entonces resultaría $(\lambda_1\lambda_2)^2 > 1$, contra lo dicho de que $|\lambda_1\lambda_2| < 1$).

En la zona sombreada, para cualesquiera condiciones iniciales, las soluciones convergen al punto de equilibrio $x^* = \frac{c}{1+a+b}$ (observar que como $b > |a| - 1 \ge -a - 1$, es 1 + a + b > 0). La solución general de $2x_{n+2} - 2x_{n+1} + x_n = 1$ es $x_n = (\sqrt{2}/2)^n (c_1 \cos(\pi n/4) + c_2 \sin(\pi n/4)) + 1$.