Linear Regression

Straight-line linear regression:

involves a response variable y and a single predictor variable x

$$y = W_0 + W_1 X$$

- w₀: y-intercept
- w₁: slope
- w₀ & w₁ are regression coefficients

Linear regression

 Method of least squares: estimates the best-fitting straight line as the one that minimizes the error between the actual data and the estimate of the line.

$$w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{|D|} (x_{i} - \bar{x})^{2}} \qquad w_{0} = \bar{y} - w_{1}\bar{x}$$

- *D:* a training set
- x: values of predictor variable
- y: values of response variable
- /D/: data points of the form(x1, y1), (x2, y2),..., (x/D/, y/D/).
- \bar{x} : the mean value of x1, x2, ..., x/D/
- y: the mean value of y1, y2, ..., y/D/

Example: Salary problem

 The table shows a set of paired data where x is the number of years of work experience of a college graduate and y is the corresponding salary of the graduate.

x years experience	y salary (in \$1000s)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Linear Regression

- The 2-D data can be graphed on a scatter plot.
- The plot suggests a linear relationship between the two variables, x and y.

Example: Salary data

Given the above data, we compute

$$\bar{x} = 9.1 \text{ and } \bar{y} = 55.4$$

we get

$$w_1 = \frac{(3-9.1)(30-55.4) + (8-9.1)(57-55.4) + \dots + (16-9.1)(83-55.4)}{(3-9.1)^2 + (8-9.1)^2 + \dots + (16-9.1)^2} = 3.5$$

$$w_0 = 55.4 - (3.5)(9.1) = 23.6$$

The equation of the least squares line is estimated by

$$y = 23.6 + 3.5x$$

Example: Salary data

