MA3252 Linear Programming

Final Examination Helpsheet

AY2023/24 Semester 2 · Prepared by Tian Xiao @snoidetx

Linear Programming Problem

where $\mathbf{a}_i = (a_{i,1}, a_{i,1}, \cdots, a_{i,n})^{\top} \in \mathbb{R}^n, b_i \in \mathbb{R}$.

- The feasible region $P \in \mathbb{R}^n$ is a polyhedron. An LP problem may have
- - → one unique solution; OR
 → one finite optimal cost with multiple optimal solutions; OR
 - ▶ unbounded optimal cost with no optimal solution; OR
- ▶ empty feasible set, where optimal cost equals +∞.
 Each variable/constraint in (P) gives a constraint/variable in D.

Graphical Representation: In \mathbb{R}^n , $\{\mathbf{x} \mid \mathbf{a}^\top \mathbf{x} = b\}$ is a hyperplane with

• Vector **c** corresponds to the direction of increasing $\mathbf{c}^{\top}\mathbf{x}$.

Standard Form: Minimization + equality + non-negative.

- Maximization objective: $\max \mathbf{c}^{\top} \mathbf{x} \Rightarrow \min -\mathbf{c}^{\top} \mathbf{x}$.
- Inequality constraints: $\mathbf{a}_i^{\top} \mathbf{x} \leq / \geq b_i \Rightarrow \begin{cases} \mathbf{a}_i^{\top} \mathbf{x} \pm s_i = b_i \\ s_i \geq 0 \end{cases}$
- \triangleright s_i is slack variable.
- Non-positive variables: $x_i \le 0 \Rightarrow x_i^- \ge 0$. Free variables: $x_i \Rightarrow (x_i^+ x_i^-); x_i^+, x_i^- \ge 0$.
- Convex Sets and Convex Functions: Convex set: $\forall \mathbf{x}, \mathbf{y} \in S \ \forall \lambda \in [0, 1] \ [\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in S].$
 - Convex combination: $\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i$, where $\lambda_i \in [0, 1]$ s.t. $\sum_{i=1}^{k} \lambda_i = 1$. \triangleright Any convex combination of two optimal solutions is also an op-

 - timal solution. Convex hull: Set of convex combinations. Convex function: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n \ \forall \lambda \in [0,1] \ [f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1-\lambda)\mathbf{y}$
 - $(1 \lambda)f(\mathbf{y})$]. $\triangleright f$ is concave if -f is convex.

 - ▷ Affine function $d + \mathbf{c}^{\top}\mathbf{x}$ is both convex and concave. ▷ Thm 1.5.1. If $f_1, f_2, \cdots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex, then $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x})\}$ is also convex.
 - * Cor 1.5.2. $\max_{i=1,2,\cdots,m} \{d_i + \mathbf{c}_i^{\top} \mathbf{x}\}$ is convex.

Example. Reformulate as LP problem:

- $\overline{\bullet} \max \min(x_1, x_2) \Rightarrow \max t \text{ s.t. } t \leq x_1; t \leq x_2.$
- $|x_1 x_2| \le 2 \Rightarrow x_1 x_2 \le 2; x_1 x_2 \ge -2.$
- $\min |x| \Rightarrow \min \max(x, -x) \Rightarrow \min t \text{ s.t. } t \ge x; t \ge -x.$

Polyhedra and Extreme Points:

- Polyhedron: $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}\}.$ \triangleright A polyhedron is a finite intersection of half-spaces. \triangleright A polyhedron has finite number of vertices/BFS.
- 3 definitions of corner points: Consider a convex set P ⊆ Rⁿ,
 Extreme point: A point x* ∈ P is an extreme point if whenever points y, z ∈ P and scalar λ ∈ (0,1) are such that x* = λy +
 - $(1 \lambda)\mathbf{z}$, we have $\mathbf{y} = \mathbf{z} = \mathbf{x}^*$. \triangleright Vertex: A point $\mathbf{x}^* \in P$ is a vertex if there is a $\mathbf{c} \in \mathbb{R}^n$ such that $\mathbf{c}^{\top}\mathbf{x}^* > \mathbf{c}^{\top}\mathbf{y}$ for all $\mathbf{y} \in P \setminus \{\mathbf{x}^*\}$. \triangleright Basic feasible solution (BFS): \mathbf{x}^* is a *BFS* of a polyhedron if n
 - **linearly independent** constraints are active at \mathbf{x}^* and $\mathbf{x}^* \in P$. * Basic solution: A point where n linearly independent constraints are active but not necessarily in P.
- Thm 2.1.5. In a non-empty polyhedron, an extreme point, a vertex and a BFS are equivalent.
 Degenerate: A basic solution (not necessarily feasible) is degenerate
- if more than n contraints are active at \mathbf{x}

Basic Feasible Solutions for Standard Polyhedra:

$$\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\},\$$

- where $\mathbf{A} \in \mathbf{R}^{m \times n}, m < n$ contains m linearly independent rows.

 Basic solution for standard polyhedra: \mathbf{x}^* is a basic solution iff

 > the equality constraints $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ hold; AND

 > $x_i^* = 0$ for n m indices; AND

 - by these n binding constraints are linearly independent. Thm 2.2.1. A vector $\mathbf{x}^* \in \mathbb{R}^n$ is a basic solution of the standard form LP iff $\mathbf{A}\mathbf{x}^* = \mathbf{b}$; AND \mathbf{b} There exists $B = \{B(1), B(2), \cdots, B(m)\} \subset \{1, 2, \cdots, n\}$ such that

 - - * the columns of $\mathbf{A}_B = (\mathbf{A}_{B(1)}, \mathbf{A}_{B(2)}, \cdots, \mathbf{A}_{B(m)})$ are linearly independent; AND

* $x_i^* = 0$ for $i \in N = \{1, 2, \cdots, n\} \setminus B$.

If in addition, $\mathbf{x}_B^* \geq \mathbf{0}$, then \mathbf{x}^* is a BFS.

- $\triangleright \mathbf{x}_B^* = \mathbf{A}_B^{-1} \mathbf{b}.$
- \triangleright A degenerate basic solution \mathbf{x}^* has more than n-m zero components. \triangleright If n = m + 1, then there are at most two BFSs.
- Adjacent BFS: Extreme points connected by an edge on the boundary.

 - \triangleright The corresponding bases share all but one basic column. \triangleright There are common n-1 linearly independent constraints that are active at both of them.

Optimal Solutions at Extreme Points:

- A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if $\exists \mathbf{x}^* \in P \ \exists \mathbf{d} \neq \mathbf{0} \in \mathbb{R}^n \ \forall \lambda \in \mathbb{R} \ [\mathbf{x}^* + \lambda \mathbf{d} \in P]$. A polyhedron containing an infinite line does not contain an extreme point.
- Thm 2.3.1. Let $\mathbf{A} \subseteq \mathbb{R}^{m \times n}, m \ge n$. Suppose $P = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} =$ b) $\neq \emptyset$. The following are equivalent: $\triangleright P$ does not contain a line; $\triangleright P$ has a BFS; $\triangleright P$ has n linearly independent constraints.
- Implication: Every non-empty bounded polyhedron and every non-empty standard form polyhedron has at least one BFS.
 Thm 2.3.3. If an LP has a BFS and an optimal solution, then there
- exists an optimal solution that is a BFS.

 > Hence, it suffices to check BFS.

1.1 The Simplex Method

Feasible Direction and Reduced Cost:

- Feasible direction: For a polyhedron P and a point x ∈ P, a vector d is a feasible direction if x + θd ∈ P for some θ > 0.
 For standard polyhedra, Ad = 0.
 Clm †. Let x = (x_B, x_N) with x_B ≥ 0, x_N = 0 be a BFS. A direction
- d moving from **x** to an adjacent BFS is of the form $\mathbf{d}^j = \left(\mathbf{d}_B^j, \mathbf{d}_N^j\right)$ for some $j \in N$, where
 - $\triangleright \mathbf{d}_{N}^{j} = \mathbf{e}_{j}$ where $e_{j,j} = 1$ and $e_{j,i} = 0$ for $i \in N \setminus \{j\}$; AND
 - $\triangleright \mathbf{d}_B^j = -\mathbf{A}_B^{-1}\mathbf{A}_j.$
- Reduced cost: Let \mathbf{x} be a basic solution. Let $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$. For each $\{a_1 \mid j \in \{1, 2, \dots, n\}, \text{ the } reduced \ cost \ \bar{c}_j \text{ of variable } x_j \text{ is defined by } \}$

$$ar{c}_j = c_j - \mathbf{c}_B^{ op} \mathbf{A}_B^{-1} \mathbf{A}_j$$

- $$\begin{split} &\bar{c}_j = c_j \mathbf{c}_B^{\top} \mathbf{A}_B^{-1} \mathbf{A}_j. \\ &\triangleright \text{ For } j \in B, \, \bar{c}_j = 0. \\ &\triangleright \text{ If } \bar{c}_j \geq 0 \text{ for all } j \in N \text{, then current BFS is the unique optimal} \end{split}$$
 solution.
- \triangleright A direction \mathbf{d}^j is an improving direction if $\bar{c}_i < 0$.
- ▷ Change in cost in any direction d:
 - $\mathbf{c}^{\top}\mathbf{d} = \mathbf{c}_B^{\top}\mathbf{d}_B + \mathbf{c}_N^{\top}\mathbf{d}_N = -\mathbf{c}_B^{\top}\mathbf{A}_B^{-1}\mathbf{A}_N\mathbf{d}_N + \mathbf{c}_N^{\top}\mathbf{d}_N.$
- Clm. Let \mathbf{x} be a BFS with basis B. Any feasible direction at \mathbf{x} can be represented as

$$\sum_{j \in N} \lambda_j \mathbf{d}^j \text{ for } \lambda_j \ge 0.$$

- Degenerate: A BFS is degenerate if some element of \mathbf{x}_B is zero. A BFS is non-degenerate if $\mathbf{x}_B = \mathbf{A}_B^{-1} \mathbf{b} > \mathbf{0}$.
- Thm 3.1.6. (Optimality conditions) Consider a BFS ${\bf x}$ associated with basis matrix ${\bf A}_B$, and let $\bar{\bf c}$ be corresponding vector of reduced costs
 - \triangleright If $\bar{\mathbf{c}} \geq \mathbf{0}$, then \mathbf{x} is optimal.
 - \triangleright If \mathbf{x} is optimal and non-degenerate, then $\bar{\mathbf{c}} \ge \mathbf{0}$.

Special Cases:

- Some $x_{B(k)} = 0$ at optimum \Rightarrow degenerate solution.
- Some nonbasic $\bar{c}_j = 0$ at optimum:

 - ▷ $\mathbf{u} \leq \mathbf{0}$ ⇒ unbounded optimum set; ▷ Otherwise ⇒ alternate optimum. ▷ $\mathbf{u} \leq \mathbf{0}$ and $\bar{c}_j < \mathbf{0}$ ⇒ unbounded problem.
 - \triangleright Some $y_i > 0$ at optimum for auxiliary problem \Rightarrow infeasible.

- (i) Start with basis B and its basic columns \mathbf{A}_B and BFS \mathbf{x} .
 - \triangleright Check that **x** is indeed a BFS.
- ② Compute reduced costs $\bar{c}_j = c_j \mathbf{c}_B^{\top} \mathbf{A}_B^{-1} \mathbf{A}_j$ for all $j \in N$. \triangleright If $\bar{c}_j \geq 0$ for all $j \in N$, then current BFS is optimal. END.
 - \triangleright Otherwise, choose some j for which $\bar{c}_j < 0$.
- (3) Compute $\mathbf{d}_B^j = -\mathbf{A}_B^{-1}\mathbf{A}_j$ (see Clm †.).
 - \triangleright If $\mathbf{d}_B^j \ge \mathbf{0}$, then problem is unbounded. END.
- Otherwise, let $\theta^* = \min \left\{ \frac{x_i}{-d_i^j} \middle| i \in B, d_i < 0 \right\}$.

 (4) Let $l \in B$ be such that $\theta^* = \frac{x_l}{-d_l^j}$. The corresponding x_l is the leaving variable.
- Form a new basis $\bar{B} = (B \setminus \{l\}) \cup \{j\}$.
- ⓐ The other basic variables are $x_i + \theta^* d_i^j$ for $i \neq l$. ② The entering variable x_j assumes $\theta^* = \frac{x_l}{-d_l^j}$. Go to Step ①.

Big-M Method:

- ① Multiply constraints by -1 to make $\mathbf{b} \geq \mathbf{0}$ as needed.
- ② Add artificial variables y_1, y_2, \dots, y_m to constraints without posi-
- ③ Apply simplex method on LP with cost min $\mathbf{c}^{\top}\mathbf{x} + M\sum_{y=1}^{m}y_{i}$, where $M \gg 0$ is treated as some algebraic variable.

Tableau Method:

(1) Start from basis B and its basic columns \mathbf{A}_B (preferably \mathbf{I} , and the corresponding BFS $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ (check)).

Basic	$x_j, j \in N$	$x_{B(1)}$	$x_{B(2)}$	Solution
c	c_{j}	$c_{B(1)}$	$c_{B(2)}$	
Ē	$c_j - \mathbf{c}_B^{T} \mathbf{A}_B^{-1} \mathbf{A}_j$	0	0	Obj: $-\mathbf{c}_B^{\top}\mathbf{x}_B$
B(1)	$-d_1^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_1$	1	0	$x_{B(1)}$
B(2)	$-d_2^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_2$	0	1	$x_{B(2)}$

- ② Choose some j such that $x_j < 0$. At that column, for all $-d_i^j >$ $0, i \in B$, calculate $\frac{x_i}{-d_i^j}$ and pick the smallest one i^* (0 is also considered).
- (3) i^* leaves and j enters. Normalize the row where this happens such that the cell $(x_j, x_j) = 1$.
- (4) Perform row operations to all rows including $\bar{\mathbf{c}}$ such that the column of x_i is all 0 but one 1.
- $\bar{\mathbf{c}}$ If all $\bar{\mathbf{c}} \geq \mathbf{0}$, END; else, return to $\bar{\mathbf{c}}$ again.

Two-Phase Method:

Phase I: Find BFS using auxiliary LP.

- (1) Multiply constraints by -1 to make $\mathbf{b} \geq \mathbf{0}$ as needed.
- ② Add artificial variables y_1, y_2, \dots, y_m to constraints without posi-
- (3) Apply simplex method on auxiliary LP with cost min $\sum_{i=1}^{m} y_i$.
- (4) If the optimal cost in auxiliary LP is
 - ▷ zero: A BFS to original LP is found.
 - ▷ positive: Original LP is infeasible. END.

Phase II: Solve original LP.

- ① Take BFS found in Phase I to start Phase II.
- 2) Use cost coefficients of original LP to compute reduced costs.
- ③ Apply simplex method to original LP.
 - ▶ Either finds an optimum, or detects unboundedness.

The Dual Simplex Method

- **Thm. 4.1.5.** The dual of the dual is the primal. **Weak Duality Thm.** If \mathbf{x} is feasible in (P) and \mathbf{p} is feasible in (D), then $\mathbf{p}^{\top}\mathbf{b} \leq \mathbf{c}^{\top}\mathbf{x}$ and thus $\sup_{\mathbf{p} \text{ feasible}} \mathbf{p}^{\top}\mathbf{b} \leq \inf_{\mathbf{x} \text{ feasible}} \mathbf{c}^{\top}\mathbf{x}$.
 - \triangleright Col. If feasible and $\mathbf{p}^{\top}\mathbf{b} = \mathbf{c}^{\top}\mathbf{x}$, then \mathbf{x} and \mathbf{p} optimal.
 - ▶ Col. Unboundedness in one implies infeasibility in another.
- * (P) and (D) can be both infeasible.

 Strong Duality Thm. If an LP has an optimum, so does its dual, and both optimal objective values are equal.
 - \triangleright An optimal solution to (D) is $\mathbf{p}^{\top} = \mathbf{c}_B^{\top} \mathbf{A}_B^{-1}$, where B is an
 - optimal basis for (P). \triangleright If there is a basis B_0 s.t. $\mathbf{A}_{B_0} = \mathbf{I}$, then an optimal solution to (D) is $\mathbf{p}^{\top} = \mathbf{c}_{B_0}^{\top} - \bar{\mathbf{c}}_{B_0}^{\top}$.
- \bullet Complementary Slackness Thm. If x is feasible in (P) and p is feasible in (D), then both are optimal if and only if

$$p_i\left(\mathbf{a}_i^{\top}\mathbf{x} - b_i\right) = 0 \text{ for all } i;$$

$$(c_i - \mathbf{p}^\top \mathbf{A}_i) x_i = 0 \text{ for all } j$$

 $\left(c_{j} - \mathbf{p}^{\top} \mathbf{A}_{j}\right) x_{j} = 0 \text{ for all } j.$ $\triangleright \mathbf{Prop.} \text{ If } \mathbf{x} \text{ is feasible, then } \mathbf{x} \text{ is optimal iff } \exists \mathbf{p} \text{ CS.}$

Dual Simplex Method: Nonnegative c and only \leq constraints.

(1) Start from basis B and its basic columns A_B (preferably I, and the corresponding BFS $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ (check)).

(-D)11/ (/)							
Basic	$x_j, j \in N$	$x_{B(1)}$	$x_{B(2)}$	Solution			
$\bar{\mathbf{c}}$	c_{j}	0	0	Obj: 0			
B(1)	A_{1j}	1	0	b_1			
B(2)	A_{2i}	0	1	b_2			

- ② Choose some i such that $b_i < 0$. At that row, for all columns j that are negative (neg), calculate $\frac{\bar{c}_j}{|\text{neg}|}$ and pick the smallest one j^* .
- (3) i leaves and j^* enters. Normalize the row where this happens such that the cell $(x_{j^*}, x_{j^*}) = 1$.
- (4) Perform row operations to all rows including $\bar{\mathbf{c}}$ such that the column of x_i is all 0 but one 1.
- (5) If all $b \ge 0$, END; else, return to (2) again.

Sensitivity Analysis

- $$\begin{split} \bullet \ \ &\text{Feasibility:} \ \mathbf{A}_B^{-1}\mathbf{b} \geq \mathbf{0}. \\ \bullet \ \ &\text{Optimality:} \ \mathbf{c}^\top \mathbf{c}_B^\top \mathbf{A}_B^{-1} \mathbf{A} \geq \mathbf{0}. \\ \mathbf{Change in b:} \ b_i = b_i + \delta. \end{split}$$

- Feasibility is checked by $\mathbf{x}_B^* + \delta(\mathbf{A}_B^{-1}\mathbf{e}_i) \geq \mathbf{0}$; optimality not affected.
- If not feasible, use dual simplex method. Dual p_i is the marginal cost of b_i . When b_i changes δ , the optimal cost changes by δp_i .

Change in c: $c_j = c_j + \delta_j$.

• Optimality: If x_j nonbasic $\bar{c}_j \leftarrow \bar{c}_j + \delta_j$; else for all $i \in N$, $\bar{c}_i \leftarrow$ $\bar{c}_i - \delta_j \mathbf{e}_i^{\mathsf{T}} \mathbf{A}_B^{-1} \mathbf{A}_i$. Feasibility not affected.

• If x_j nonbasic and not optimal, use primal simplex method.

Change in Nonbasic Column of A: $a_{ij} = a_{ij} + \delta$.

- Optimality: Only $\bar{c}_j \leftarrow \bar{c}_j \delta p_i$. Feasibility not affected. If not optimal, use primal simplex method.

Add a New Variable: Add c_{n+1} and A_{n+1} .

- Check optimality at (x*,0).
- If not optimal, continue primal simplex method by adding a new column $\begin{bmatrix} \bar{c}_{n+1} \\ \mathbf{A}_B^{-1} \mathbf{A}_{n+1} \end{bmatrix}$ to the final tableau.

Add a New Constraint: Add $\mathbf{a}_{m+1}^{\top} \mathbf{x} \leq b_{m+1}$.

- Check if the original solution is feasible.
- If not feasible, add new constraint to the bottom of the final tableau. Use row operations to make (\mathbf{x}_B, x_{n+1}) a basic solution. Use dual simplex method to solve new problem.

$\mathbf{2}$ Network Flow Problem

- Flow-outs Flow-ins = Supply b.
 Network has feasible flow ⇒ ∑b_i = 0.
 Formulation of minimum cost flow problem.
- **Shortest Path Problem:** Find the shortest path from s to t.

(P)
$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$
 | (D) $\max_{\mathbf{p} \in \mathbb{R}^m} \mathbf{p}^{\top} \mathbf{b}$ | $\max_{\mathbf{p} \in \mathbb{R}^m} p_s - p_t$ | s.t. $\mathbf{A}^{\top} \mathbf{p} \leq \mathbf{c}$; | $\max_{\mathbf{p} \in \mathbb{R}^m} p_s - p_t$ | s.t. $p_i - p_j \leq c_{ij}$, $\forall (i, j) \in E$.

- $b_s = 1; b_t = -1; b_{-s-t} = 0.$
- $\mathbf{x} \in \{0,1\}^n$ is equivalent as $\mathbf{x} \geq \mathbf{0}$ if no negative cycle.

Maximum Flow Problem: Find the maximum flow from s to t.

(P)
$$\max_{\mathbf{x} \in \mathbb{R}^n} v$$
 | (D) $\min_{\mathbf{z} \in \mathbb{R}^m} \mathbf{u}^\top \mathbf{z}$ | $\min_{\mathbf{z} \in \mathbb{R}^m} \sum u_{ij} z_{ij}$ | s.t. $\mathbf{A}\mathbf{x} = \mathbf{d}v$; | s.t. $\mathbf{d}^\top \mathbf{y} = 1$; | s.t. $y_i - y_j \le z_{ij} \& z_{ij} \ge 0 \ \forall (i,j) \in E$; | $\mathbf{z} \ge \mathbf{0}$. | $\mathbf{z} \ge \mathbf{0}$.

- $d_s = 1; d_t = -1; d_{-s-t} = 0.$ The dual is the minimum cut capacity problem.
- Thm. The maximum flow is equal to the capacity of the min cut.

The Network Simplex Method

Feasible Tree Solution and Reduced Cost:

- Truncated matrix: $\mathbf{A}\mathbf{x} = \mathbf{b}$ by removing any row from \mathbf{A} .

- Tree solution: (1) $\tilde{\mathbf{A}}\mathbf{x} = \tilde{\mathbf{b}}$; (2) A spanning tree. Feasible tree solution: Tree solution \mathbf{x} with $\mathbf{x} \geq \mathbf{0}$. Thm. 7.1.1. The columns corresponding to n-1 arcs form a basis of **A** iff these arcs form a spanning tree.
- Dual vector: Given basis B, $\mathbf{p}^{\top} = \mathbf{c}_B^{\top} \tilde{\mathbf{A}}_B^{-1}$.
- Reduced cost: $\bar{\mathbf{c}}^{\top} = \mathbf{c}^{\top} \mathbf{p}^{\top} \tilde{\mathbf{A}}$. \triangleright Let $p_n = 0$ for the truncated node n. Then $\bar{c}_{ij} = c_{ij} (p_i p_j)$ for all $(i, j) \in E$.
- (1) Start with a spanning tree T, feasible tree solution \mathbf{x} .
- ② Compute dual vector \mathbf{p} and $\bar{c}_{ij} = c_{ij} p_i + p_j$ for all arcs $(i, j) \notin T$. \triangleright If $\bar{c}_{ij} \geq 0$ for all $(i, j) \in E$, then current \mathbf{x} optimal. END.
 - \triangleright Otherwise, choose some (i,j) for which $\bar{c}_{ij} < 0$.
- (3) Follow the flow update scheme:
 - \triangleright Enter (i, j) gives a unique cycle. Identify the cycle.
 - \triangleright Orientate the cycle s.t. (i, j) is a forward arc.
 - \triangleright Let C_f and C_b be sets of forward and backward arcs in cycle.
 - $\vartriangleright \text{ If } C_b \neq \emptyset \text{, set } \theta^* = \min_{(k,l) \in C_b} x_{kl} \text{, attained by arc } (p,q).$
 - $\triangleright \text{ If } C_b = \emptyset, \text{ then } \theta^* = \infty, \text{ so objective is } -\infty.$
 - \triangleright Update **x** in cycle: if in C_f add θ^* ; if in C_b minus θ^* .
- (4) Form a new tree $T = (T \setminus \{p, q\}) \cup \{(i, j)\}$ and go to Step (2).

Two-Phase Method:

Phase I: Find initial BFS.

- ① For any $i \in V \setminus \{n\}$, if $b_i \geq 0/b_i < 0$ and $(i, n)/(n, i) \notin E$, create an artificial arc (i, n)/(n, i).
- ② Initial basis $B = \{(i, n) \text{ if } b_i \geq 0 \text{ or } (n, i) \text{ if } b_i < 0 \mid i \in V \setminus \{n\}\}.$
- (3) Initial flow $x_{in} = b_i$ when $b_i \ge 0$ and $x_{ni} = -b_i$ when $b_i < 0$.
- 4 Solve this using the Simplex method.

Phase II: Solve original LP.

Integrality:

- regrality:
 Thm. 7.3.1. Consider an uncapacitated network flow problem where underlying graph is connected. Then
 1 For every basis matrix Ã_B, Ã_B⁻¹ has integer entries.
 2 If b is integral, then every primal basic solution x is integral.
 S If c is integral, then every dual basic solution p is integral.
 Col. Consider an uncapacitated network flow problem and assume that the optimal cost is finite, then
 1 If b is integral then there is an integral optimal flow vector. • Thm.

 - - ① If **b** is integral, then there is an integral optimal flow vector. ② If **c** is integral, then there is an integral optimal solution to the dual problem.