MATH7501: Mathematics for Data Science I

Final Lecture: The Normal Distribution

Definition (Gaussian Distribution) We say that X has a Gaussian/normal distribution with parameters μ and σ^2 on \mathbb{R} (denoted $X \sim N(\mu, \sigma^2)$) if its pdf is given by $f(X) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$

a random voriable

Properties of the Gaussian Distribution

If
$$X \sim N(\mu, \sigma^2)$$
 then $\mathbb{E}[X] = \mu$

$$Var[X] = \sigma^2.$$

Important Observation

The function $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 1 of 3 – Changing Variables)

Let
$$u = \frac{x - \mu}{\sigma}$$
, so that $\frac{du}{dx} = \frac{1}{\sigma}$.

Important Observation

The function $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 1 of 3 – Changing Variables)

Important Observation

The function $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 1 of 3 - Changing Variables)

Let $u = \frac{x-\mu}{\sigma}$, so that $\frac{du}{dx} = \frac{1}{\sigma}$. Then

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u)^2} du,$$

but $g(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(u)^2}$ is precisely the pdf of the normal distribution with $\mu = 0$ and $\sigma = 1$.

Important Observation

The function $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 1 of 3 - Changing Variables)

Let $u = \frac{x-\mu}{\sigma}$, so that $\frac{du}{dx} = \frac{1}{\sigma}$. Then

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u)^2} du,$$

but $g(u)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(u)^2}$ is precisely the pdf of the normal distribution with $\mu=0$ and $\sigma=1$. It therefore suffices to prove the result in this case.

Important Observation

The function $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 2 of 3 – Introducing a Volume Integral)

Recall we are trying to show that $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$.

Important Observation

The function $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 2 of 3 – Introducing a Volume Integral)

Recall we are trying to show that $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$. This is equivalent to showing that $\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right)^2 = 2\pi$.

Important Observation

The function $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 2 of 3 - Introducing a Volume Integral)

Recall we are trying to show that $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$. This is equivalent to showing that $\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right)^2 = 2\pi$. But

$$\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right)^2 = \left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy\right)$$

$$= \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy \right) dx$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy \right) dx$$

$$e^{-\frac{x^2+y^2}{2}} dy dx. = 2$$

Important Observation

The function $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 3 of 3 – Evaluating Volume Integral via Polar)

Using polar co-ordinates, we have
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dy dx = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^2}{2}} r dr d\theta.$$

Important Observation

The function $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 3 of 3 - Evaluating Volume Integral via Polar)

Using polar co-ordinates, we have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dy dx = \underbrace{\int_{0}^{2\pi}} \left(\int_{0}^{\infty} e^{-\frac{r^2}{2}} \mathbf{r} dr d\theta. \right)$$

Now using integration by substitution, we have
$$\int_0^\infty e^{-\frac{r^2}{2}} dr = 1$$
.

Important Observation

The function $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$ is actually a pdf, i.e., it is continuous, positive, and integrates to 1.

Proof (Part 3 of 3 – Evaluating Volume Integral via Polar)

Using polar co-ordinates, we have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2+y^2}{2}} dy dx = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^2}{2}} \mathbf{r} dr d\theta.$$

Now using integration by substitution, we have
$$\int_0^\infty e^{-\frac{r^2}{2}} dr = 1$$
. Therefore $\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-\frac{x^2+y^2}{2}} dy dx = \int_0^{2\pi} \left(\int_0^\infty e^{-\frac{r^2}{2}} \mathbf{r} dr d\theta = 2\pi$, as required.

Question

Suppose that $X \sim N(\mu, \sigma^2)$. Show that $\mathbb{E}[X] = \mu$.

Solution

Since the pdf is $\frac{1}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sigma}\right)^2}$,

Question

Suppose that $X \sim N(\mu, \sigma^2)$. Show that $\mathbb{E}[X] = \mu$.

Solution

Since the pdf is
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sigma}\right)^2}$$
, we have
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \frac{x}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sigma}\right)^2}dx$$

$$= \int_{-\infty}^{\infty} \frac{(y+\mu)}{\sigma\sqrt{2\pi}}e^{-\left(\frac{y}{\sigma}\right)^2}dy$$

$$= \int_{-\infty}^{\infty} \frac{y}{\sigma\sqrt{2\pi}}e^{-\left(\frac{y}{\sigma}\right)^2}dy + \int_{-\infty}^{\infty} \frac{y}{\sigma\sqrt{2\pi}}e^{-\left(\frac{y}{\sigma}\right)^2}dy \text{ of in leganl}$$

$$= \frac{y}{\mu} + \int_{-\infty}^{0} \frac{y}{\sigma\sqrt{2\pi}}e^{-\left(\frac{y}{\sigma}\right)^2}dy + \int_{0}^{\infty} \frac{y}{\sigma\sqrt{2\pi}}e^{-\left(\frac{y}{\sigma}\right)^2}dy$$

$$= \mu$$

Question

Suppose that $X \sim N(\mu, \sigma^2)$. Show that $Var[X] = \sigma^2$.

Solution (Sketch)

Question

Suppose that $X \sim N(\mu, \sigma^2)$. Show that $Var[X] = \sigma^2$.

Solution (Sketch)

We have to show that $\int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma\sqrt{2\pi}} e^{-\left(\frac{x-\mu}{\sigma}\right)^2} dx = \sigma^2$. After substituting $u = \frac{x-\mu}{2\sigma}$, we get

$$\int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma\sqrt{2\pi}} e^{-\left(\frac{x-\mu}{\sigma}\right)^2} dx = \underbrace{\frac{\sigma^2}{2\sqrt{\pi}}} \int_{-\infty}^{\infty} u^2 e^{-u^2} du.$$

Question

Suppose that $X \sim N(\mu, \sigma^2)$. Show that $Var[X] = \sigma^2$.

Solution (Sketch)

We have to show that $\int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma^{\sqrt{2\pi}}} e^{-\left(\frac{x-\mu}{\sigma}\right)^2} dx = \sigma^2$. After substituting $u = \frac{x-\mu}{2\sigma}$, we get

substituting
$$u=\frac{x-\mu}{2\sigma}$$
, we get
$$\int_{-\infty}^{\infty}\frac{(x-\mu)^2}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sigma}\right)^2}dx=\frac{\sigma^2}{2\sqrt{\pi}}\int_{-\infty}^{\infty}u^2e^{-u^2}du.$$
 Using integration by parts, we obtain the answer. What

Question

Suppose that $X \sim N(\mu, \sigma^2)$. Show that $Var[X] = \sigma^2$.

Solution (Sketch)

We have to show that $\int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma\sqrt{2\pi}} e^{-\left(\frac{x-\mu}{\sigma}\right)^2} dx = \sigma^2$. After substituting $u = \frac{x-\mu}{2\sigma}$, we get

$$\int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma\sqrt{2\pi}} e^{-\left(\frac{x-\mu}{\sigma}\right)^2} dx = \frac{\sigma^2}{2\sqrt{\pi}} \int_{-\infty}^{\infty} u^2 e^{-u^2} du.$$

Using integration by parts, we obtain the answer.

The Gaussian distribution comes up in physics.

The Gaussian distribution comes up in physics. Indeed, if we think of time t as the same as σ^2 and set $\mu=0$, then we get a time evolving function that describes how heat spreads out.

The Gaussian distribution comes up in physics. Indeed, if we think of time t as the same as σ^2 and set $\mu=0$, then we get a time evolving function that describes how heat spreads out.

https://math.stackexchange.com/questions/2871506/convexity-and-concavity-in-a-textbook-figure-of-the-fundamental-solution-of-the

The Gaussian distribution comes up in physics. Indeed, if we think of time t as the same as σ^2 and set $\mu=0$, then we get a time evolving function that describes how heat spreads out.

https://math.stackexchange.com/questions/2871506/convexity-and-concavity-in-a-textbook-figure-of-the-fundamental-solution-of-the

This function f(t,x) satisfies the so-called *heat equation*:

$$\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}.$$

Example (Brownian Motion)

Let P be a particle travelling according to Brownian motion in \mathbb{R} , with "speed" equal to 1.

Example (Brownian Motion)

Let P be a particle travelling according to Brownian motion in \mathbb{R} , with "speed" equal to 1. Suppose the particle starts at position $\mu \in \mathbb{R}$.

Example (Brownian Motion)

Let P be a particle travelling according to Brownian motion in \mathbb{R} , with "speed" equal to 1. Suppose the particle starts at position $\mu \in \mathbb{R}$.

Then the random variable X_t which describes the location of the particle P after time t is distributed as $X_t \sim N(\mu, t)$.

t small targe

Conclusion

Thankyou! I hope this course has prepared you for your future in data science!

Conclusion

Thankyou! I hope this course has prepared you for your future in data science!

AI & ML without mathematics