Final Review Format · 1 Hour 45 Minutes · Half of the test like the midtern · Half of the test AP Calculus AB questions - bonus Cale BC questions Topics New Topics (60%) • Mclaurin & Taylor series • Riemann sums · the fundamental theorem of calculus, the definition of the integral · finding area with integrals · u-substitution integration by parts differential equations From The Midterm (40%) • graphing (shifts, features on graphs) • limits (elementary and L'Hopital), • limit definition of the derivate

From The Midterm (40%) • graphing (shifts, features on graphs) • limits (elementary and L'Hopital), • limit definition of the derivate • derivatives (polynomials, frigonometry, product rule, chain rule, quotient rule), • linear approximation, • implicit differentiation, • related rates, • extreme value problems, • optimization problems

Review Questions
1) Review the review questions on the midtern review
2) State the formulas for
a) Taylor series & Mclaurin Series
b) Left & right Riemann sums
c) the integral (as a limit of Riemann sums)
$d) \int x^n dx, \int \frac{1}{x} dx, \int e^x dx,$
e) $\int \sin(x) dx$, $\int \cos(x) dx$, $\int \frac{1}{1+x^2} dx$, $\int \sqrt{1-x^2} dx$
f) the fundamental theorem of calculus (both versions)
3) Make sure you can explain to yourself how to
a) find a taylor series
b) do u-substitution
c) do integration by parts
d) Solve a differential equation with an initial value
4) Fill in the blanks:
Say we compute $I = \int_{a}^{b} f(t) dt$ if f represents
velocity over time I is the distance traveled from time a to time b
acceleration over time I is from time a to time b
inflation I is from time a to time b
population growth rate I is from fine a to time be power over time I. is from time a to time be
power over time I. is from time a to time b
10 () () () () () () () () ()
AB Calculus Questions (One free response question, 15 multiple
choice questions)
From the 2012 exam on the course webpage do the questions 1, 3-12, 14, 16, 18, 19, 21, 22, 24, 25, 28
1, 5-12, 14, 16, 18, 19, 21, 22, 24, 25, 28

- 6. Consider the curve given by the equation $6xy = 2 + y^3$.
 - (a) Show that $\frac{dy}{dx} = \frac{1}{2}$
 - (b) Find the coordinates of a point on the curve at which the line tangent to the curve is horizontal, or explain why no such point exists.
 - (c) Find the coordinates of a point on the curve at which the line tangent to the curve is vertical, or explain why no such point exists.
 - (d) A particle is moving along the curve. At the instant when the particle is at the point $\left(\frac{1}{2}, -2\right)$, its horizontal position is increasing at a rate of $\frac{dx}{dt} = \frac{2}{3}$ unit per second. What is the value of $\frac{dy}{dt}$, the rate of change of the particle's vertical position, at that instant?

	x	0	2	4	7
f	(x)	10	7	4	5
f'	'(x)	$\frac{3}{2}$	-8	3	6
g	(x)	1	2	-3	0
g'	(x)	5	4	2	8

- 5. The functions f and g are twice differentiable. The table shown gives values of the functions and their first derivatives at selected values of x.
 - (a) Let h be the function defined by h(x) = f(g(x)). Find h'(7). Show the work that leads to your answer.
 - (b) Let k be a differentiable function such that $k'(x) = (f(x))^2 \cdot g(x)$. Let the graph of kFind k"(4)
 - (c) Let m be the function defined by $m(x) = 5x^3 + \int_0^x f'(t) dt$. Find m(2). Show the work that leads to your answer.

Graph of f'

- 4. The function f is defined on the closed interval [-2, 8] and satisfies f(2) = 1. The graph of f', the derivative of f, consists of two line segments and a semicircle, as shown in the figure.
 - (a) Does f have a relative minimum, a relative maximum, or neither at x = 6? Give a reason for your answer.

- (c) Find the value of $\lim_{x\to 2} \frac{6f(x)-3x}{x^2-5x+6}$, or show that it does not exist. Justify your answer.
- (d) Find the absolute minimum value of f on the closed interval [-2, 8]. Justify your answer.

Other Questions

Find the following definite integrals:

1) \int_{2}^{3} \times^{4} dx

2) $\int_{\mathcal{R}_{1}}^{\pi/2} \sin(x) + \cos(x) dx$

3) $\int_0^1 2xe^{x^2} dx$

Find the following in definite integrals:
4) \(\text{X} \) \(\text{E} \) \(\text{X} \)

5) $\int \cos(x) \cos(\sin(x)) dx$

6) $\int \frac{12x^2}{x^3+1} dx$

7) $\int \ln(x) x^3 dx$ (Hint: $u = \ln(x) dv = x^3 dx$)

Find the Taylor series for the following functions: 8) $f(x) = \frac{1+x}{1+x}$ at x = 0

9) $f(x) = e^{x} + e^{-x}$ at x = 0

10) $f(x) = 2\sin(x)$ at $x = 2\pi$

11) $f(x) = \ln(x)$ at x = 2

Find the following derivatives: 12) Lx Vx2+1

- 13) $\frac{1}{2}$ $\chi^7 + \chi^6 \chi^5$
- [H] $\int_{A}^{A} x^2 \sin(x)$
- 15) $\frac{d}{dx}$ $\frac{1+x}{1+\ln(x)}$

Find the following limits:

- 16) $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ where $f(x)=x^2-1$
- $|7| \lim_{x\to 0^+} 2 \operatorname{sqn}(-x)$
- 18) lim <u>cos (x)</u> x→2π X
- 19) lim <u>ln(x)</u>
 - 20) $\lim_{x\to\infty} \frac{3x^5+x^3}{5x^5-x^2+1}$
 - 21) $\lim_{x\to 0} \frac{\cos(2x)-1}{x^2}$ (Hint: L'Hopital twice)
 - 22) Solve the differential equation for y in terms of x: $y' = x^3y^4$, y(0) = 0
 - 23) Approximate the area under the curve f(x) = 1/xfrom 1 to 7 using 3 boxes and right Riemann sums

24) Suppose
$$x+y=6$$
 and $x \ge 0$, $y \ge 0$
What's the maximum value of

a) xy
b) xy^2

25) Find y' in terms of x and y given the equation
$$x^3+y^3=xy$$

26) Find the area bounded by the curves
$$y = x^2 + 1$$
 and $y = 2x^2$

27) Find the linear approximation for
$$f(x) = e^x$$
 at $x = 2$. (Express your answer as the equation of a line)

i) a) =
$$\lim_{h\to 0} \cos(x+h) - \cos(x)$$

b) =
$$\lim_{h \to D} (\cos(x+h) - \cos(x))/h$$

c) = $\lim_{h \to D} \cos(x+h) + \cos(x)$

$$c) = \lim_{h \to 0} \cos(x+h) + \cos(x)$$

$$d) = \lim_{h \to 0} (\cos(x+h) + \cos(x))/h$$

$$\begin{array}{ll} \text{ii)} & a) = \lim_{h \to 0} \left(\frac{\sin(x) \sin(h) - \cos(x) \cos(h) - \cos(x)}{h} \right) \\ b) = \lim_{h \to 0} \left(\cos(x) \cos(h) - \frac{\sin(x) \sin(h) - \cos(x)}{h} \right) \\ c) = \lim_{h \to 0} \left(\frac{\sin(x) h}{h} + \frac{\cos(x) - \cos(x)}{h} \right) \\ \end{array}$$

b) =
$$h = o(\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x))/h$$

$$c) = \lim_{n \to \infty} (\sin(x) h + \cos(x) - \cos(x))/h$$

$$d) = \lim_{h \to 0} (\cos(x) - \sin(x)h - \cos(x))/h$$

a) = $\lim_{h\to 0} \frac{\sinh(x)h}{h}$ b) = $\lim_{h\to 0} \frac{-\sinh(x)h}{h}$ c) = $\sinh(x) \frac{\lim_{h\to 0} \frac{\sinh(h)}{h} - \cos(x) \frac{\lim_{h\to 0} \frac{\cosh(h)+1}{h}}{h}$ d) = $-\sin(x) \frac{\lim_{h\to 0} \frac{\sinh(h)}{h} + \cos(x) \frac{\lim_{h\to 0} \frac{\cosh(h)-1}{h}}{h}$

iv) a) = Sin(x)

 $b) = -\sin(x)$ $c) = \sin(x) \cdot (-1) - \cos(x) \cdot 0$ $d) = \sin(x) \cdot (1) - \cos(x) \cdot 0$

 $e) = -\sin(x) \cdot (-1) - \cos(x) \cdot 0$ $f) = -\sin(x) \cdot (1) - \cos(x) \cdot 0$

a) Already done b) = sin(x)c) = -cin(x)

 $d = -\sin(-x)$

e = sin(-x)

vi) a) Already done

b) = $\sin(x)$ (Sin is an odd function)

c) = $-\sin(x)$ (Sin is an odd function)