Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

Does gym activity predict weight? /1

Does gym activity predict weight? /2

Raincloud plots

	weight
Mean	63.523
Variance	92.128

	weight		
gender	f	m	
Mean	56.625	70.212	
Variance	41.081	50.735	

weight smoke no yes Mean 63.098 65.071 Variance 89.410 106.379

Variance 92.128

Mean

weight

63.523

the fresher dataset

Independent Samples T-Test

1 The following problem(s) occurred while running the analysis: Number of factor levels is # 2 in gym

$$=\frac{m_1-m_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}$$

the one-way Anova

- consider as a Fixed Factor the gym physical activity
- ordered: not < occasional < sporty</p>
- as Dependent Variable the weight

the one-way Anova

Cases	Sum of Squares	df	Mean Square	F	р
gym Residuals	1020.400 4875.816	2 62	510.200 78.642	6.488	0.003

Models	P(M)	P(M data)	BF_{M}	BF_{10}	error $\%$
gym	0.500	0.933	14.018	1.000	
Null model	0.500	0.067	0.071	0.071	0.015

the multiple comparison issue /1

Consider the following simulations:

$$a = rnorm(n = 30, mean = 0, sd = 1)$$

$$b = rnorm(n = 30, mean = 0, sd = 1)$$

c = rnorm(n = 30, mean = 6, sd = 1)

Table: Post Hoc Comparisons - gym

		Mean Difference	SE	t	p _{tukey}
not	occasional	9.665	2.711	3.565	0.002
	sporty	6.373	2.740	2.326	0.060
occasional	sporty	-3.292	2.645	-1.245	0.432

Table: Post Hoc Comparisons - gym

		Prior Odds	Postrr Odds	BF _{10,<i>U</i>}	error %
not	occsnl	0.587	21.169	36.039	4.422×10^{-7}
	sporty	0.587	1.313	2.236	0.008
occsnl	sporty	0.587	0.328	0.558	0.006

Normality assumptions

Table: Equality of Variances (Levene's)

F	df1	df2	р
0.470	2.000	62.000	0.627

the multiple comparison issue /2

ALERT: very difficult with JASP

the tooth.ods dataset

? heteroskedasticity ?

Can you detect wether illb is a predictor of areainfl?

explore one-way anova and look to raincloud plot

Nonparametric one-way Anova

▼ Nonparametrics Kruskal-Wallis Test a gym

the multiple comparison issue /3

bad idea: to make multiple t-tests on all possible pairs of means

 $\alpha = 0.05$

$$1 - \left(1 - \frac{5}{100}\right) \cdot \left(1 - \frac{5}{100}\right) \cdot \left(1 - \frac{5}{100}\right) =$$
$$= 1 - \left(1 - \frac{5}{100}\right)^3 = 0.143$$

multiple tests increases the probability of a type-I error.

Carlo Bonferroni 'radical' solution (Bernoulli $1 + nh < (1 + h)^n$) n=3 groups, $n \cdot (n-1)/2=3$ comparisons, then $h = \alpha/3 = 0.05/3 = 0.017.$

Massimo Borelli

Master of Advanced Studies in Medical Physics

In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

Mass Severgree, "Mario de Denaro," Marins Borta, F Costans Villan, Auto Becrista" Department of Malind Physics - Supermore of Teograp, "Supermore of Malinian

a calibration procedure

Massimo Borelli

Caralistics for Madicine

classical linear regression

Table: classical linear regression - Fixed effects

Model		Unstndr	Std Err	Stndrd	t	р
H ₀	(Intercept)	63.523	1.191		53.357	< .001
H_1	(Intercept)	-83.891	16.677		-5.030	< .001
	height	0.854	0.096	0.744	8.850	< .001

Table: Random component

Model	R	R ²	Adjusted R ²	RMSE
H ₀	0.000	0.000	0.000	9.598
H ₁	0.744	0.554	0.547	6.459
	Massima Bassili		Canalasian for Mandial	

toward statistical modelling

246 Anthropological Miscellanea.

ANTHROPOLOGICAL MISCELLANEA.

REGRESSION towards Mediocrity in Hereditary Stature. By Francis Galton, F.R.S., &c.

[WITH PLATES IX AND X.]

This memoir contains the data upon which the remarks on the Law of Regression were founded, that I made in my Presidential Address to Section H, at Aberdeen. That address, which will appear in due course in the Journal of the British Association, has already been published in "Nature," September 24th. I reproduce here

Massimo Borelli

Statistics for Medicine

diagnostic tools: why we need them

the Anscombe's Quartet

$$y = 0.5x + 3$$
; $R^2 = \frac{2}{3}$

Massimo Borelli

Statistics for Medicine

the fresher.ods dataset

Table: Pearson's Correlations

Variable		height	
weight	Pearson's r	0.744	
	p-value	< .001	

Massimo Bore

Statistics for Medicin

diagnostic tools

Statistical Methods for

Practitioners

EPA QA/G-9S

Massimo Borelli

Statistics for Medicin

EP9/248/B-36/003 February 2000