© Midpoint Circle Drawing Algorithm

A Structured Study Note with Code Examples

Quick Notes

- Also known as Bresenham's Circle Algorithm (the integer-only version is often derived via the midpoint approach).
- Efficiently draws circles on raster displays using primarily **integer arithmetic**.
- Evaluates the circle function at the **midpoint** between two candidate pixels to decide which pixel is closer to the ideal circle.
- Exploits **8-way symmetry** for performance, calculating points for only one octant.

▶ 1. Initial Setup

Similar to other incremental algorithms, we define the circle and starting parameters. We focus on the second octant (90 to 45 degrees).

- Circle Center $(x_c, y_c) = (0, 0)$
- \bullet Radius R
- Starting Point: $(x_0, y_0) = (0, R)$
- Circle Function: $f(x,y) = x^2 + y^2 R^2$. f(x,y) < 0 for points inside, f(x,y) > 0 for points outside.
- Initial Decision Parameter p_0 : Evaluate f(x,y) at the midpoint between the first two candidate pixels (1,R) and (1,R-1). The midpoint is $(1,R-\frac{1}{2})$.

$$p_0 = f(1, R - \frac{1}{2}) = 1^2 + (R - \frac{1}{2})^2 - R^2 = 1 + R^2 - R + \frac{1}{4} - R^2 = \frac{5}{4} - R$$

For integer-only arithmetic, we can define $p_k = f(x_k + 1, y_k - \frac{1}{2})$, which leads to an integer starting value:

$$p_0 = 1 - R$$

(This common simplification effectively shifts the decision boundary slightly but produces the same pixel choices).

• Example: For R = 5:

$$p_0 = 1 - 5 = -4$$

▶ 2. Decision Parameter and Update Rules

At each step k, starting with (x_k, y_k) , we consider the midpoint $M = (x_k + 1, y_k - \frac{1}{2})$ between the next two candidate pixels: East $E = (x_k + 1, y_k)$ and South-East $SE = (x_k + 1, y_k - 1)$. The decision parameter $p_k = f(M)$ determines which pixel is closer.

Table 1: Update Rules Based on Midpoint Decision Parameter p_k

Condition	Midpoint Location (Relative to Circle)	Next Point Chosen (x_{k+1}, y_{k+1})	$ \begin{array}{c} \textbf{Update Rule} \\ \textbf{for} \ \ p_{k+1} \end{array} $
$p_k < 0$	Midpoint is inside	$E = (x_k + 1, y_k)$	$p_{k+1} = p_k + 2x_k + 3$
$p_k \ge 0$	Midpoint is outside or on	$SE = (x_k + 1, y_k - 1)$	$p_{k+1} = p_k + 2(x_k - y_k) + 5$

The calculation proceeds from x = 0 and stops when $x \ge y$.

> 3. Step-by-Step Calculation (Example: R=5)

Given: R = 5, Center (0,0), Start Point (0,5), $p_0 = -4$.

Table 2: Midpoint algorithm calculation steps for R=5.

Step (k)	Current Point (x_k, y_k)	p_k	$p_k < 0?$	Next Point (x_{k+1}, y_{k+1})	Calculation for p_{k+1}	
0	(0, 5)	-4	Yes	(1, 5)	$\begin{vmatrix} p_1 = p_0 + 2x_0 + 3 \\ = -4 + 2(0) + 3 = -1 \end{vmatrix}$	
1	(1, 5)	-1	Yes	(2, 5)	$\begin{vmatrix} p_2 = p_1 + 2x_1 + 3 \\ = -1 + 2(1) + 3 = 4 \end{vmatrix}$	
2	(2, 5)	4	No	(3, 4)	$p_3 = p_2 + 2(x_2 - y_2) + 5$ $= 4 + 2(2 - 5) + 5$ $= 4 - 6 + 5 = 3$	
3	(3, 4)	3	No	(4, 3)	$p_4 = p_3 + 2(x_3 - y_3) + 5$ $= 3 + 2(3 - 4) + 5$ $= 3 - 2 + 5 = 6$	
Stop: $x = 4, y = 3 \implies x \ge y$						

The points generated in the second octant are: (0,5), (1,5), (2,5), (3,4), (4,3). (These are identical to the points generated by the Bresenham algorithm derivation used previously).

▶ 4. Exploiting 8-Way Symmetry

The Midpoint algorithm, like Bresenham's, calculates points for only one octant. The full circle is obtained by reflecting these points across the axes and diagonals (y = x, y = -x). If (x, y) is a point calculated in the second octant (from x = 0 to x = y), the following points are also on the circle:

Table 3: Mapping a Point (x, y) to All 8 Octants (Same as Bresenham)

Octant	Symmetric Point	Transformation from (x, y)
$1 (0^{\circ} - 45^{\circ})$	(y,x)	Swap x and y
$2 (45^{\circ} - 90^{\circ})$	(x, y)	Original point (calculated)
$3 (90^{\circ} - 135^{\circ})$	(-x,y)	Negate x
$4 (135^{\circ} - 180^{\circ})$	(-y,x)	Swap x and y , negate new x
$5 (180^{\circ} - 225^{\circ})$	(-y, -x)	Swap x and y, negate both
$6(225^{\circ} - 270^{\circ})$	(-x, -y)	Negate both
$7(270^{\circ} - 315^{\circ})$	(x, -y)	Negate y
$8 (315^{\circ} - 360^{\circ})$	(y, -x)	Swap x and y, negate new y

Applying Symmetry to R=5 Example Points:

The calculated points (0,5), (1,5), (2,5), (3,4), (4,3) generate the same full set of circle points as shown in the Bresenham example when symmetry is applied.

> 5. Visualization (TikZ)

Figure 1: Plot of points for R=5 generated by the Midpoint Circle algorithm, showing 8-way symmetry.

▶ 6. Code Implementations

▶ 6.1. C++ / OpenGL Snippet

This snippet shows the Midpoint Circle algorithm logic. Assumes 'drawPixel' and 'draw-CirclePoints' (for symmetry) exist as defined previously.

Graphics Notes Midpoint Circle Algorithm ⟨ C++ / OpenGL Implementation Snippet 1 #include <GL/glut.h> // Or your preferred GL header $_3$ // Assumed: drawPixel(x, y) and drawCirclePoints(cx, cy, x, y) exist 5 // Midpoint Circle Drawing Algorithm 6 void drawCircleMidpoint(int cx, int cy, int r) { int x = 0;int y = r;int p = 1 - r; // Initial decision parameter (integer version) 10 // Draw the first set of points based on the starting 11 point (0, r)drawCirclePoints(cx, cy, x, y); 12 13 // Calculate points for the second octant (from y-axis 14 to y=x line) while (x < y) { x++; // Always increment x16 **if** (p < 0) { 17 // Midpoint is inside, choose E pixel 18 // Update p for the next E candidate: p_new = p 19 $+ 2x_new + 1$ // Since $x_new = x_old + 1$, this is p + 2(x+1) + 11 = p + 2x + 3p = p + 2 * x + 3;21 // y remains the same 22 } else { 23 // Midpoint is outside or on the circle, choose 24 SE pixel// Update p for the next SE candidate: $p_new = p$ 25 $+ 2x_new - 2y_new + 1$ // Since $x_new = x+1$, $y_new = y-1$, this is p + y26 2(x+1) - 2(y-1) + 1// p + 2x + 2 - 2y + 2 + 1 = p + 2(x - y) + 5

// Draw the calculated point and its symmetric

y--; // Decrement y

counterparts

29 30

31

}

38 void display() {

p = p + 2 * (x - y) + 5;

drawCirclePoints(cx, cy, x, y);

37 // Example Usage in a GLUT display function:

▶ 6.2. Python Snippet

Python implementation of the Midpoint Circle algorithm.

```
Python Implementation Snippet
import matplotlib.pyplot as plt
3 def midpoint_circle_octant(r):
      0.00
      Calculates points for the second octant (90 to 45
         degrees)
      using the Midpoint Circle algorithm. Starts at (0, r).
      x = 0
9
      p = 1 - r # Initial decision parameter (integer version)
10
      points = []
11
12
      # Add the starting point
13
      points.append((x, y))
14
15
      # Iterate until x \ge y (end of the octant)
16
      while x < y:
17
          x += 1
18
          if p < 0:
19
               # Select E point (x+1, y)
20
              p = p + 2 * x + 3
21
22
          else:
               # Select SE point (x+1, y-1)
23
               y -= 1
24
              p = p + 2 * (x - y) + 5
25
26
          points.append((x, y))
27
28
      return points
29
```

```
def get_symmetric_points(x, y):
      """Generates all 8 symmetric points for a given point
         (x, y)."""
      # (Same function as in Bresenham example)
33
      return [
34
          (x, y), (y, x), (-x, y), (-y, x),
          (x, -y), (y, -x), (-x, -y), (-y, -x)
      ]
37
38
      get_all_midpoint_circle_points(cx, cy, r):
з9 def
      Generates all points for a circle centered at (cx, cy)
41
         with radius r
      using the Midpoint algorithm.
42
43
      octant_points = midpoint_circle_octant(r)
44
      all_points = set() # Use a set to avoid duplicates
46
      for x, y in octant_points:
47
          symmetric = get_symmetric_points(x, y)
48
          for sx, sy in symmetric:
49
              # Translate points relative to the center (cx,
50
              all_points.add((cx + sx, cy + sy))
      return list(all_points)
54
55 # --- Example Usage ---
56 \text{ radius} = 5
57 center_x = 0
58 center_y = 0
60 # Calculate points for the second octant
61 octant2_points_midpoint = midpoint_circle_octant(radius)
62 print(f"Points in the second octant (Midpoint, R={radius}):
     {octant2_points_midpoint}")
# Calculate all points for the circle
65 circle_points_midpoint =
     get_all_midpoint_circle_points(center_x, center_y, radius)
66 print(f"\nTotal unique points for the circle (Midpoint):
     {len(circle_points_midpoint)}")
# print(f"All points:
     \{sorted(list(circle\_points\_midpoint))\}") # Uncomment to
     see all points
69 # --- Optional: Plotting with Matplotlib ---
70 def plot_circle(points, title_suffix=""):
     if not points:
     print("No points to plot.")
```

```
return
74
      x_coords, y_coords = zip(*points) # Unzip points into x
75
         and y lists
76
      plt.figure(figsize=(6, 6))
77
      plt.scatter(x_coords, y_coords, color='green', s=10) #
         Plot points (green)
      plt.axhline(0, color='grey', lw=0.5)
79
      plt.axvline(0, color='grey', lw=0.5)
80
      plt.grid(True, linestyle='--', alpha=0.6)
81
      plt.gca().set_aspect('equal', adjustable='box') # Ensure
         aspect ratio is equal
      plt.title(f"Midpoint Circle Points{title_suffix}
83
         (R={radius}, Center=({center_x},{center_y}))")
      plt.xlabel("X-axis")
84
      plt.ylabel("Y-axis")
      # Set limits slightly larger than radius
      lim = radius + 1
87
      plt.xlim(-lim, lim)
88
      plt.ylim(-lim, lim)
89
      plt.show()
90
92 # Plot the calculated points
# plot_circle(circle_points_midpoint, title_suffix="
    Midpoint") # Requires matplotlib
```

> 7. Summary

✓ Key Takeaways

- The Midpoint Circle Algorithm is another highly efficient, integer-based method for rasterizing circles.
- It explicitly uses the midpoint between candidate pixels to make decisions based on the circle equation $f(x,y) = x^2 + y^2 R^2$.
- The resulting pixel coordinates and the update logic (using integer parameters) are often identical to those derived from Bresenham's approach.
- Like Bresenham's, it relies heavily on 8-way symmetry to minimize calculations.