

Facultad de Ingeniería

MODELACIÓN Y SIMULACIÓN

Sección 2 - 4 créditos

A. Información del profesor

Nombre del profesor

César Salvador Rojas Argueta

e-mail

cesarojas13@gmail.com

Horario:

Miércoles	18:00-19:20 (D-12)	Teoría
Sábado	07:00-07:40 (T-401)	Teoría
Viernes	07:40-08:20 (T-305)	Práctica

B. Información general

Descripción

El curso de Modelación y Simulación está incluido dentro del área Ingeniería Aplicada, como prerrequisito directo tiene el curso de Investigación de Operaciones, en el cual se aprenden todos los conceptos que tienen que ver con sistemas discretos y continuos, teoría de colas y logística, etc.

La modelación es una técnica que permite al estudiante comprender de mejor forma el funcionamiento de los sistemas, encontrando sus componentes y las relaciones que existen entre cada uno de ellos. La simulación se trata de crear un escenario, que, al ser manipulado, permite tomar decisiones para el mejor uso de los recursos de una compañía, un banco o un hospital sin poner en riesgo a los sistemas reales.

Este curso sirve al estudiante para que pueda ampliar su capacidad de análisis sistemático y la interpretación de resultados obtenidos para facilitar la toma de decisiones.

Modalidad

Presencial

Facultad de Ingeniería

El egresado landivariano se identifica por:

Pensamier lógico, reflex analógic	ivo y	Pensamiento Resolución d crítico problemas				
Habilidades investigaci		Uso de gestión inform	n de la		efectiva	nicación a, escrita y oral
Comprens lectora	ión	Compromiso ético y ciudadanía				erazgo tructivo
	Aprecio y		Crea	tivi	dad	

interculturalidad

COMPETENCIAS ESPECÍFICAS (propias del curso)

Competencia 1: Define adecuadamente qué es un sistema y sus componentes utilizando el pensamiento sistémico para abstraerlo desde un proceso de la vida real.

Competencia 2: Comprende las ventajas y desventajas de la simulación de los sistemas para decidir cuándo utilizarlos como una herramienta de toma de decisiones.

Competencia 3: Utiliza los modelos estadísticos para la simulación de variables aleatorias e identifica patrones de comportamiento para simular un sistema discreto.

Competencia 4: Aplica y valida modelos y simulaciones en ProModel para buscar la solución a problemas planteados.

METODOLOGÍA

Este curso se desarrollará a través de los siguientes métodos de aprendizaje-enseñanza:

Aprendizaje basado en proyectos

«Es una técnica didáctica en la que la exposición de contenido se hace por medio de Videos que pueden ser consultados en línea de manera libre, mientras el tiempo de aula se dedica a la discusión, resolución de problemas y Actividades prácticas bajo la supervisión y asesoría del profesor.» Principales tendencias pedagógicas 2016, KAREM SCHMITZ.

Aprendizaje Colaborativo

El aprendizaje colaborativo es una técnica didáctica que promueve el aprendizaje centrado en el estudiante basando el trabajo en pequeños grupos, donde las personas con diferentes niveles de habilidad utilizan una variedad de actividades de aprendizaje para mejorar su entendimiento sobre una materia.

Facultad de Ingeniería

PROGRAMACIÓN

COMPETENCIA 1

Define adecuadamente qué es un sistema y sus componentes utilizando el pensamiento sistémico para abstraerlo desde un proceso de la vida real.

Saber conceptual (contenido temático)

- 1.1 Modelación de sistemas
- 1.2 Partes de un sistema
- 1.2.1 Entidades
- 1.2.2 Locaciones
- 1.2.3 Recursos
- 1.2.4 Estados
- 1.2.5 Variables
- 1.2.6 Eventos
- 1.2.7 Atributos
- 1.3 Pasos de un estudio de simulación

Saber procedimental (habilidades y destrezas)

- Conoce las ventajas y desventajas de la modelación y simulación de sistemas.
- Identifica las diferentes partes de un sistema.
- Entiende los pasos de un estudio de simulación.
- Conoce los elementos básicos para garantizar el éxito de un modelo de simulación.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Participa activamente en las actividades de clase.
- Trabaja de forma colaborativa con sus compañeros.
- Realiza los trabajos asignados en tiempo.

Indicadores de logro 1 (resultado): Distingue las diferentes partes de un sistema y conoce cómo desarrollar los pasos de una simulación.

COMPETENCIA 2

Comprende las ventajas y desventajas de la simulación de los sistemas para decidir cuándo utilizarlos como una herramienta de toma de decisiones.

Saber conceptual (contenido temático)

- 2.1. Ventajas y desventajas de la simulación
- 2.2. Elementos para garantizar el éxito de un modelo de simulación
- 2.2.1. Tamaño de la corrida
- 2.2.2. Errores al establecer relaciones entre variables
- 2.2.3. Errores al determinar tipos de distribuciones
- 2.2.4.Uso incorrecto de la información

Facultad de Ingeniería

Saber procedimental (habilidades y destrezas)

- Practica la forma adecuada de analizar resultados de modelos de simulación.
- Selecciona las herramientas de simulación como proceso de análisis.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Participa activamente en las actividades de clase.
- Trabaja de forma colaborativa con sus compañeros.
- Realiza los trabajos asignados en tiempo.

Indicador de logro 2 (resultado):

Aplica estrategias para garantizar el éxito de un modelo de simulación a través de ejercicios prácticos.

COMPETENCIA 3

Utiliza los modelos estadísticos para la simulación de variables aleatorias e identifica patrones de comportamiento para simular un sistema discreto.

Saber conceptual (contenido temático)

- 3.1. Aleatoriedad en sistemas discretos
- 3.2. Generación de números pseudoaleatorios
- 3.2.1. Números
- 3.2.2. Generación
- 3.2.3. Propiedades
- 3.3. Variables aleatorias
- 3.3.1. Tipos
- 3.3.2. Distribuciones de probabilidad
- 3.3.3. Generación
- 3.4. Simulación de variables aleatorias
- 3.5. Modelos de simulación

¡Error! Marcador no definido.

Saber procedimental (habilidades y destrezas)

- Entiende las implicaciones de utilizar números pseudoaleatorios en modelos de simulación.
- Representa situaciones de la vida real utilizando distribuciones de probabilidad.
- Genera simulaciones de variables aleatorias.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Participa activamente en las actividades de clase.
- Trabaja de forma colaborativa con sus compañeros.
- Realiza los trabajos asignados en tiempo.

Indicador de logro 3 (resultado):

Tiene la capacidad de generar simulaciones de variables aleatorias para representar sistemas reales de diferentes industrias.

Facultad de Ingeniería

COMPETENCIA 4

Aplica y valida modelos y simulaciones en ProModel para buscar la solución a problemas planteados.

Saber conceptual (contenido temático)

- 4.1. Generación de un modelo preliminar
- 4.2. Verificación del modelo
- 4.3. Validación
- 4.4. Generación del modelo final
- 4.5. Determinación de escenarios
- 4.6. Análisis de sensibilidad
- 4.7. Documentación

Saber procedimental (habilidades y destrezas)

- Diseña modelos de simulación en ProModel utilizando el proceso de un estudio de simulación.
- Plantea escenarios en base a los elementos relevantes del modelo como alternativas de solución a problemas.
- Genera conclusiones con base en el análisis e interpretación de los resultados de la simulación en ProModel.
- Propone acciones específicas a implementar para la resolución de un caso.

Saber actitudinal (conductas observables)

- Escucha con atención las explicaciones del curso.
- Participa activamente en las actividades de clase.
- Trabaja de forma colaborativa con sus compañeros.
- Realiza los trabajos asignados en tiempo.

Indicador de logro 4 (resultado): Tiene la capacidad de plantear una simulación en ProModel y puede interpretar los resultados para generar recomendaciones sobre una problemática.

Facultad de Ingeniería

a. Estrategias de evaluación sumativa

Estrategias	Puntaje	
2 evaluaciones parciales (10 puntos c/u)	20	
Tareas y exámenes cortos	10	
Laboratorios	30	
1 proyecto final de aplicación	15	
Evaluación final	25	
Total	100	

b. Estrategias de evaluación formativa

Técnicas formativas	Procedimiento	
Retroalimentación	Se proporciona la resolución de todos los problemas de las hojas de trabajo, laboratorios y exámenes realizados.	
Diálogo socrático	Preguntas y respuestas orales a ejemplos y problemas que se realizarán lo largo de la secuencia de aprendizaje.	
Padlet colaborativo	Se utiliza en la actividad de contextualización y presentación del curso	
Exámenes cortos	Problemas de aplicación del tema seleccionado.	
Trabajos en pequeños grupos para resolver dudas	Hojas de trabajo y laboratorios que se resuelven de forma colaborativa entre estudiantes.	
Proyecto	Caso real donde se genera una solución en grupos utilizando la modelación como herramienta.	

Facultad de Ingeniería

CALENDARIO DE REFERENCIA POR TEMAS

Semana	Fechas	Tema	Actividad de evaluación
Semana 1	15/1 – 20/1	Presentación del curso	Ejercicios prácticos.
		Modelación de sistemas	
Semana 2	22/1- 27/1	Partes de un sistema	Ejercicios prácticos.
		Pasos de un estudio de simulación	
Semana 3	29/1 – 3/2	Ventajas y desventajas de la	Ejercicios prácticos y laboratorio.
		simulación	
		Elementos para garantizar el éxito de	
		un modelo de simulación	
		Aleatoriedad en sistemas discretos	
Semana 4	5/2 – 10/2	Generación de números	Ejercicios prácticos y laboratorio.
		pseudoaleatorios	
		Variables aleatorias	
Semana 5	12/2 – 17/2	Simulación de variables aleatorias	Ejercicios prácticos
		Modelos de simulación	Primer Examen Parcial.
Semana 6	19/2 – 24/2	Introducción a ProModel	Ejercicios prácticos y proyecto de
-	0.0.10 0.10		aplicación
Semana 7	26/2 – 2/3	Generación de un modelo preliminar	Ejercicios prácticos y laboratorio
Semana 8	4/3 –9/3	Verificación y validación del modelo	Ejercicios prácticos y laboratorio
		Generación del modelo final	
		Determinación de escenarios	
		y análisis de sensibilidad Documentación	
Semana 9	11/3 – 16/3	Usos de ProModel: Aplicaciones de	Ejercicios prácticos y casos de
Semana 9	11/3 – 10/3	StatFit	aplicación
		Statilit	Segunda evaluación parcial
Semanas	18/3 – 13/4	Usos de ProModel: Transformación de	Ejercicios prácticos y laboratorio
10-13	10/3 13/4	entidades	Light closs practices y laboratorio
Semana 14	15/4 – 20/4	Usos de ProModel: Utilización de	Ejercicios prácticos y laboratorio
Jemana 1	13, 1 20, 1	recursos	Segundo Examen Parcial.
Semana 15	22/4 – 27/4	Usos de ProModel: Configuración de	Ejercicios prácticos.
00	,, .	escenarios y análisis	_je: e:e:e: p: e:e:e:e:
Semana 16	29/4 – 4/5	Usos de ProModel: Configuración y	
	, ,	análisis de Reportería	
Semana 17	6/5 – 11/5	Aplicaciones Integrales en ProModel	
Semana 18-	13/5 – 25/5	Presentación de Proyecto.	
19	- -	•	
Semana 20			EXAMEN FINAL

REFERENCIAS BIBLIOGRÁFICAS

Facultad de Ingeniería

- García E., García H. & Cárdenas L. Simulación y Análisis de Sistemas con Promodel. 2ª. Edición 2013. ISBN: 978-607-32-1511-4.
- Barceló, Jaime. Simulación de sistemas discretos. Isdefe. 1ª. edición 1996. ISBN: 84-89338-12-4.
- Coss, Raúl. Simulación un enfoque práctico. Limusa. 2003. ISBN: 968-18-1506-8.

Complementaria:

- Ventana Systems, I. (1988-2005). The Ventana Simulation Environment VENSIM. Serial Number: PL9999, Academic Use Only.
- Johansen Bertoglio, Oscar. Introducción a la teoría general de sistemas. Limusa, México. 2,007.
 Clasificación Biblioteca URL: 658.4032 J652
- Sarabia, Angel A. La teoría general de sistemas. Gráficas Marte, S.A. España. 1ª. Edición. 1,995.