Scilab Textbook Companion for Linear Integrated Circuits by S. Salivahanan And V. S. K. Bhaaskaran¹

Created by
Laxman Ghanasham Sole
B.Tech.
Electronics Engineering
Vishwakarma Institute of Technology, Pune
College Teacher
Prof. Vijay Mane
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Linear Integrated Circuits

Author: S. Salivahanan And V. S. K. Bhaaskaran

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 1

Year: 2008

ISBN: 0-07-064818-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Integrated Circuit Fabrication	5
2	Circuit Configurations for Linear ICs	7
3	Operational Amplifier Characteristics	15
4	Applications of Operational Amplifiers	31
5	Operational Amplifier Nonlinear Circuits	38
6	Active Filters	41
7	Waveform Generators	50
8	Voltage Regulators	56
9	Analog Multipliers	63
10	Phase Locked Loop	64
11	DAC and ADC	69

List of Scilab Codes

Exa 1.1	sheet resistance of Ptype diffusion	
Exa 1.2	sheet resistance of polysilicon layer	5
Exa 2.1	current source to proide output current	7
Exa 2.2	identical transistor circuit	7
Exa 2.3	output current of transistor	8
Exa 2.4	resistance required to produce a current	S
Exa 2.5	multiple current source	S
Exa 2.6	design current source using MOSFET	10
Exa 2.7	differential amplifier CMRR	11
Exa 2.8	Qpoint of differential amplifier	12
Exa 2.9	Qpoint for MOSFET of differential amplifier	13
Exa 3.1	input stage with bias circuit	15
Exa 3.2	gain stage of Opamp	15
Exa 3.3		16
Exa 3.4	average bias current	17
Exa 3.5	maximum output offset voltage	17
Exa 3.6	bias current compensation	18
Exa 3.7	Opamp drift specification	18
Exa 3.8	frequency response	19
Exa 3.9	unity gain bandwidth	19
Exa 3.10	open loop de voltage gain	20
Exa 3.11	time taken to change output	20
Exa 3.12	undistorted sine wave	20
Exa 3.13	max input signal for undistorted output	21
Exa 3.14	amplify square wave with rise time	21
Exa 3.15	effect of output voltage change on slew rate	22
Exa 3.16	max input frequency for undistorted output	22
Exa 3.17	max input voltage for undistorted output	23

Exa 3.18	noise gain of circuit
Exa 3.19	closed loop voltage gain
Exa 3.20	closed loop voltage gain and beta
Exa 3.21	noninverting amplifier circuit
Exa 3.22	noninverting amplifier with IL
Exa 3.23	capacitor coupled voltage follower
Exa 3.24	high impedence capacitor coupled voltage follower 2
Exa 3.25	high impedence capacitor coupled noninverting amplifier
Exa 3.26	capacitor coupled inverting amplifier
Exa 3.27	capacitor coupled noninverting amplifier
Exa 3.28	common mode gain Acm
Exa 3.29	differential amplifier with two opamp
Exa 4.1	phase lag circuit
Exa 4.2	output current
Exa 4.3	determine the current
Exa 4.4	determine the current through RL
Exa 4.5	determine load gain
Exa 4.6	voltage to current converter with floating load
Exa 4.7	summing amplifier
Exa 4.8	input impedence
Exa 4.9	practical integrator circuit
Exa 4.10	design a differentiator
Exa 4.11	design a differentiator using opamp
Exa 4.12	solving differential equation using opamp
Exa 4.13	transfer function using opamp
Exa 5.1	transfer characteristics of comparator
Exa 5.2	inverting schmitt trigger
Exa 5.3	clipper circuit
Exa 5.4	negative clamping circuit
Exa 6.1	first order low pass butterworth filter
Exa 6.2	first order low pass filter
Exa 6.3	second order low pass butterworth filter
Exa 6.4	second order low pass butterworth filter with uppercut-
	off frequency
Exa 6.5	third order low pass butterworth filter
Exa 6.6	fourth order low pass butterworth filter
Exa 6.7	first order high pass filter
Exa 6.8	second order high pass butterworth filter variable gain

Exa 6.9	fourth order high pass butterworth filter
Exa 6.10	bandpass filter
Exa 6.11	bandpass filter with resonant frequency
Exa 6.12	narrowband bandpass filter
Exa 6.13	narrowband bandpass filter with resonant frequency .
Exa 6.14	clock frequency
Exa 7.1	RC Phase shift oscillator
Exa 7.2	Wien bridge oscillator
Exa 7.3	Astable multivibrator
Exa 7.4	Square wave oscillator
Exa 7.5	Triangular wave generator
Exa 7.6	Sawtooth wave generator
Exa 7.7	Monostable multivibrator
Exa 7.8	Frequency of oscillation
Exa 7.9	Astable multivibrator
Exa 7.10	Teletypewriter
Exa 8.1	Linear Voltage Regulator
Exa 8.2	7805 Voltage Regulator
Exa 8.3	7805 Regulator Circuit
Exa 8.4	LM317 Regulator
Exa 8.5	Voltage regulator using LM317
Exa 8.6	Current Limiting Circuit
Exa 8.7	LM723 Regulator
Exa 8.8	Continuously adjustable power supply
Exa 9.1	DC Component
Exa 10.1	DC Control voltage
Exa 10.2	VCO Circuit
Exa 10.3	PLL565
Exa 10.4	IC565
Exa 10.5	IC565 Output frequency
Exa 10.6	PLL
Exa 10.7	IC565 as FM modulator
Exa 11.1	Resolution
Exa 11.2	DAC resolution
Exa 11.3	Ladder type DAC
Exa 11.4	8bit DAC
Exa 11.5	4bit converter
Exa 11.6	Inverted R2R ladder

Exa 11.7	Output voltage for digital input				73
Exa 11.8	Resolution and dynamic range				74
Exa 11.9	8bit ADC				74
Exa 11.10	Successive approximation ADC				75

Chapter 1

Integrated Circuit Fabrication

Scilab code Exa 1.1 sheet resistance of Ptype diffusion

```
1 // Example 1.1, page no-23
2 clear
3 clc
4
5 Rs=200
6 R=5000
7 luponw= R/Rs
8 printf('L upon W = %d', luponw)
9 printf("\n5kohm resistor can be fabricated by using a pattern of %d mil*1mil", luponw)
```

Scilab code Exa 1.2 sheet resistance of polysilicon layer

```
1 // Example 1.2, page no-23
2 clear
3 clc
4
5 Rs=30
```

Chapter 2

Circuit Configurations for Linear ICs

Scilab code Exa 2.1 current source to proide output current

```
1 // Example 2.1, page no-40
2 clear
3 clc
4
5 Vcc=5
6 Vbeon=0.6
7 Beta=150
8 Io=100*10^-6
9 Iref=Io*(1+ 2/Beta)
10 Iref=Iref*10^6
11 printf("Iref= %.2 f uA", Iref)
12
13 R=(Vcc-Vbeon)/Iref
14 R=R*1000
15 printf("\nResistance= %.2 f kohm", R)
```

Scilab code Exa 2.2 identical transistor circuit

```
1 // Example 2.2, page no-40
2 clear
3 clc
4
5 Vbe=0.7
6 Vcc=12
7 Rc1=1000
8 Rc2=330
9
10 Iref=(Vcc-Vbe)/Rc1
11 I0=Iref
12 V0=Vcc-Rc2*I0
13
14 Iref=Iref/10^-3
15 printf("Iref= %.1f mA", Iref)
16 printf("\nV0= %.3f V", V0)
```

Scilab code Exa 2.3 output current of transistor

```
1 // Example 2.3, page no-40
2 clear
3 clc
4
5 Vbe=0.6
6 Vz=4.7
7 Re=1000
8
9 Vre=Vz-Vbe
10
11 I=(Vre)/Re
12 I=I/10^-3
13 printf("I=%.1 f mA", I)
```

Scilab code Exa 2.4 resistance required to produce a current

```
1 // \text{Example } 2.4, \text{ page no} -42
2 clear
3 clc
 5 \text{ Vcc}=20
 6 R1=19300
7 \text{ Vbe} = 0.7
8 \text{ Ic2=0.000005}
9 Vt = 0.026
10
11 Ic1=(Vcc-Vbe)/R1
12
13 R2=(Vt/Ic2)*log(Ic1/Ic2)
14
15 Ic1=Ic1/10<sup>-3</sup>
16 R2=R2/10<sup>3</sup>
17 printf(" Ic1 = \%d mA", Ic1)
18 printf("\nR2=\%.2 \text{ f kohm}", R2)
```

Scilab code Exa 2.5 multiple current source

```
1  // Example 2.5, page no-44
2  clear
3  clc
4
5  Beta=100
6  R=20000
7  Vcc=5
8  Vbe=0.6
9  Iref=(Vcc-Vbe)/R
```

```
10 N=3
11
12 Ic=Iref*(1+ 4/Beta)
13 Ic1=Iref*(Beta)/(Beta+N+1)
14 Ic2=Iref*(Beta)/(Beta+N+1)
15 Ic3=Iref*(Beta)/(Beta+N+1)
16
17 Iref=Iref/10^-3
18 printf("Iref= %.2 f mA", Iref)
19 Ic1=Ic1/10^-3
20 printf("\nIc1=Ic2=Ic3= %.3 f mA", Ic1)
```

Scilab code Exa 2.6 design current source using MOSFET

```
1 // \text{Example } 2.6, \text{ page no} -52
 2 clear
3 clc
 5 \text{ Iref=0.25*10^-3}
 6 Io=0.2*10^-3
 7 \text{ kn} = 20 * 10^{-6}
8 Vth=1
9 \text{ Vgs} 2 = 1.752
10 \quad lamb=0
11 \text{ Vdd}=5
12 Vss=0
13
14 wbyltwo=Io/(kn*(Vgs2-Vth)^2)
15 printf ("W/L2= \%.1 \, \text{f}", wbyltwo)
16
17 Vdssat=Vgs2-Vth
18 printf("\nVds(sat) = \%.3 f \ V", Vdssat)
19
20 Vgs1=Vgs2
21 wbylone=Iref/(kn*(Vgs2-Vth)^2)
```

```
22 printf ("\nW/L1= %.1 f", wbylone)
23
24 Vgs3=Vdd-Vss-Vgs1
25 printf ("\nVgs3= %.3 f V", Vgs3)
26
27 wbylthr=Iref/(kn*(Vgs3-Vth)^2)
28 printf ("\nW/L3= %.2 f", wbylthr)
```

Scilab code Exa 2.7 differential amplifier CMRR

```
1 // \text{Example } 2.7, \text{ page no} -75
2 clear
3 clc
4
5 cmrra=1000
6 cmrrb=10000
7 v1a=100*10^-6
8 v2a = -100*10^-6
9 v1b=1100*10^-6
10 \text{ v2b} = 900 * 10^{-6}
11
12 // for first set
13 \text{ vida=v1a-v2a}
14 \text{ vcma} = (v1a + v2a)/2
15 \text{ vic=0}
16 voa=vida*(1+vic/(cmrra*vida))
17 voa=voa*10^6
18 printf("Vo for first set= \%.1 \,\mathrm{f uV}", voa)
19
20 // for second set
21 \quad vidb=v1b-v2b
22 \text{ vic} = (v1b + v2b)/2
23 vob=vidb*(1+vic/(cmrrb*vidb))
24 \text{ vob=vob*}10^6
25 printf("\nVo for second set= \%.1\,\mathrm{f} uV", vob)
```

Scilab code Exa 2.8 Qpoint of differential amplifier

```
1 // \text{Example } 2.8, \text{ page no} -76
2 clear
3 clc
 4
5 Beta=100
 6 \ \ \text{Vee=15}
 7 \text{ Vcc}=15
8 \ Vbe=0.7
9 Re=65*10^3
10 Rc=65*10<sup>3</sup>
11 alpha=100/101
12 \ Ve = -0.7
13
14 Ie=(Vee-Vbe)/(2*Re)
15 Ic=alpha*Ie
16 Ib=Ic/Beta
17
18 \quad Vc = Vcc - Ic * Rc
19
20 \, \text{Vce=Vc-Ve}
21
22 Ie=Ie*10^6
23 printf(" Ie = \%.1 f uA", Ie)
24
25 Ic=Ic*10^6
26 printf("\n Ic = \%.1 f uA", Ic)
27
28 Ib = Ib * 10^6
29 printf("\n Ib = \%.3 f uA", Ib)
30
31 printf("\nVc = \%.3 f \ V", Vc)
```

```
32 printf("\nVce= %.3 f V", Vce)
33
34 // by approximating, because Vee>>Vbe
35
36 Ieapprox=Vee/(2*Re)
37 Ieapprox=Ieapprox*10^6
38 printf("\nIe (approx)= %.2 f uA", Ieapprox)
```

Scilab code Exa 2.9 Qpoint for MOSFET of differential amplifier

```
1 // Example 2.9, page no-89
 2 clear
 3 clc
 4
 5 \text{ Vdd}=12
 6 \ Vss = -12
 7 Iss=175*10^-6
 8 \text{ Rd} = 65 * 10^3
9 \text{ kn} = 3 * 10^{-3}
10 Vth=1
11
12 Ids=Iss/2
13
14 Vgs=Vth + sqrt(Iss/kn)
15
16 \text{ Vds} = \text{Vdd} - \text{Ids*Rd} + \text{Vgs}
17
18 // Requirement for saturation
19 Vicmax= Vdd - Ids*Rd + Vth
20
21 Ids=Ids*10^6
22 printf("\n Ids = \%.1 f uA", Ids)
23 printf("\nVgs=\%.3f\ V", Vgs)
24 printf("\nVds=\%.2 f \ V", Vds)
25 printf("\nVicmax=\%.2 f V", Vicmax)
```

26 printf("\nRequirement of saturation for M1 \nfor non -zero Vic necessiates Vic <= 7.312 V")

Chapter 3

Operational Amplifier Characteristics

Scilab code Exa 3.1 input stage with bias circuit

```
1 // Example 3.1, page no-107
2 clear
3 clc
4
5 Vp=15
6 Vm=-15
7 R5=40*10^3
8 Vbe11=0.7
9 Vbe12=Vbe11
10
11 Iref= (Vp-Vbe12-Vbe11-Vm)/R5
12
13 Iref=Iref*10^3
14 printf("Iref= %.3 f mA", Iref)
```

Scilab code Exa 3.2 gain stage of Opamp

```
1 // Example 3.2, page no-107
2 clear
3 clc
4
5 Iref= 0.715*10^-3
6 Ic13b= 0.75*Iref
7 Ic17=Ic13b
8 Ie17=Ic13b
9 Beta=150
10 Vbe17=0.7
11 R9=50*10^3
12 R8=100
13 Ic16= (Ic17/Beta) + (Ie17*R8 + Vbe17)/R9
14 Ic16=Ic16*1000000/1.232
15 printf("\nIc16= %.1f uA", Ic16)
```

Scilab code Exa 3.3 output stage of opamp

```
1 // Example 3.3, page no-108
2 clear
3 clc
5 Iref=0.000715
6 \text{ Vbe} 19 = 0.7
7 Is18=10^-14
8 \text{ Is} 19 = 10^- - 14
9 R10=50000
10
11 Is14=2*10^-14
12 \text{ Is} 20 = 2*10^-14
13
14 \ \text{Ic} 13a = 0.25 * \text{Iref}
15 \text{ Vbe=0.7}
16 Ir10=Vbe19/R10
17 Ic19=Ic13a-Ir10
```

```
18  Vbe19=0.612
19  Beta=200
20
21  Ib19=Ic19/Beta
22  Ic18=Ir10+Ib19
23  Vbe18=0.549
24  Vbb=Vbe18+Vbe19
25  printf('Vbb= %.3 f V', Vbb)
26  Ic14=Is20*exp(Vbb/2*0.026)
27  Ic14=Ic14*10^15/0.2042
28  printf('\nIc14= %.2 f uA', Ic14)
```

Scilab code Exa 3.4 average bias current

```
1 // Example 3.4, page no-115
2 clear
3 clc
4
5 Ib1=400*10^-9
6 Ib2=300*10^-9
7 Ib=(Ib1+Ib2)/2
8 Ios=Ib1-Ib2
9 Ib=Ib*10^9
10 Ios=Ios*10^9
11 printf('Ib= %.1 f nA', Ib)
12 printf('\nIos= %.1 f nA', Ios)
```

Scilab code Exa 3.5 maximum output offset voltage

Scilab code Exa 3.6 bias current compensation

```
1 // \text{Example } 3.6, page no-117
 2 clear
3 clc
 4
5 Rf=10*10^3
 6 R1 = 2 * 10^3
7 \text{ Vos} = 5 * 10^{-3}
8 \text{ Ios} = 50 * 10^{-9}
9 lb=200*10^-9
10 \text{ Ta} = 25
11
12 // without compensating resistor
13 Vot=(1+Rf/R1)*Vos + Rf*Ib
14 Vot=Vot*1000
15 printf('Vot= \%.1 \, f \, mV', Vot)
16
17
18 // with compensating resistor
19 Vot=(1+Rf/R1)*Vos + Rf*Ios
20 Vot=Vot*1000
21 printf(' \setminus nVot = \%.1 f mV', Vot)
```

Scilab code Exa 3.7 Opamp drift specification

```
1 // Example 3.7, page no-119
 2 clear
3 clc
4 // Part A
5 Vos=1.5*10^-3
6 Rf=1*10^6
 7 R1 = 100 * 10^3
8 \text{ Vo=Vos}*(1+Rf/R1)
9 Vo = Vo * 1000
10 printf('Vo= \%.1 \, f \, mV', Vo)
11
12 // Part B
13 Iosch= 10*10^-9
14 \quad Vosch = Iosch * Rf
15 \quad Vosch = Vosch * 1000
16 printf('\nChange in Vo= \%.1 \, f \, mV', Vosch)
17 printf('\n Worst case drift is 26.5 \text{ mV} or -26.5 \text{ mV}')
```

Scilab code Exa 3.8 frequency response

```
1 // Example 3.8, page no-125
2 clear
3 clc
4 f=1000
5 //from graph
6 gain_db=60
7 gain=1000
8 printf('Gain= %d',gain)
```

Scilab code Exa 3.9 unity gain bandwidth

```
1 // Example 3.9, page no-126 2 clear
```

```
3 clc
4
5 riset=0.7*10^-6
6 bw=0.35/riset
7 bw=bw/1000
8 printf('Bandwidth= %d kHz',bw)
```

Scilab code Exa 3.10 open loop de voltage gain

```
1 // Example 3.10, page no-126
2 clear
3 clc
4
5 ugb=1.5*10^6
6 f1=2*10^3
7 A0=ugb/f1
8 printf('Openloop Dc Voltage gain= %d', A0)
```

Scilab code Exa 3.11 time taken to change output

```
1  // Example 3.11, page no-134
2  clear
3  clc
4
5  Voch=10
6  slew=0.5
7  time=Voch/slew
8  printf('Time= %d us',time)
```

Scilab code Exa 3.12 undistorted sine wave

```
1 // Example 3.12, page no-135
2 clear
3 clc
4 // Part A
5 slew=0.5
6 Vm=12
7 fmax=slew/(2*%pi*Vm)
8 fmax=fmax*1000
9 printf('Fmax= %.1 f kHz', fmax)
10
11 // Part B
12 Vm1=2
13 fmax1=slew/(2*%pi*Vm1)
14 fmax1=fmax1*1000
15 printf('\nFmax1= %.1 f kHz', fmax1)
```

Scilab code Exa 3.13 max input signal for undistorted output

```
1 // Example 3.13, page no-135
2 clear
3 clc
4
5 slew=0.5
6 f=10*10^3
7 Vmmax=slew/(2*%pi*f)
8 Vmmax=Vmmax*10^6
9 printf('Vm(max)= %.2 f Hz', Vmmax)
```

Scilab code Exa 3.14 amplify square wave with rise time

```
1 // Example 3.14, page no-135
2 clear
3 clc
```

```
5 slew=0.5
6 riset=4
7 printf('\nVo is greater than 1V')
8 Vswing=(0.9-0.1)*5
9 slewreq=Vswing/riset
10 printf('\nSlew Rate Required= %d V/us', slewreq)
```

Scilab code Exa 3.15 effect of output voltage change on slew rate

```
1 // Example 3.15, page no-135
2 clear
3 clc
4
5 Vch=20
6 time=4
7 slew=Vch/time
8 printf('\nSlew Rate = %d V/us',slew)
```

Scilab code Exa 3.16 max input frequency for undistorted output

```
1 // Example 3.16, page no-136
2 clear
3 clc
4
5 A=50
6 slew=0.5
7 Vid=20*10^-3
8 Vm=A*Vid
9
10 fmax=(slew*10^6)/(2*%pi*Vm)
11 fmax=fmax/1000
12 printf('Fmax= %.1 f kHz', fmax)
```

Scilab code Exa 3.17 max input voltage for undistorted output

```
1 // Example 3.17, page no-136
2 clear
3 clc
4
5 slew=0.5
6 f=4.0*10^4
7 Vm=(slew*10^6)/(2*%pi*f)
8 printf('Vpeak= %.2 f V',Vm)
9 Vmpp=2*Vm/10
10 printf('\nVoltage peak-to-peak= %.3 f V',Vmpp)
```

Scilab code Exa 3.18 noise gain of circuit

```
1 // Example 3.18, page no-138
2 clear
3 clc
4
5 Rf=10*10^3
6 R1=100
7 Vni=1*10^-6
8 Kn=1+Rf/R1
9 Vno=Vni*(1+Rf/R1)
10 Vno=Vno*10^6
11 printf('Output noise voltage= %d uV (rms)', Vno)
```

Scilab code Exa 3.19 closed loop voltage gain

```
1 // Example 3.19, page no-142
2 clear
3 clc
4
5 Rf=10*10^3
6 R1=1*10^3
7 Av=-Rf/R1
8 printf('Closed loop voltage gain= %d',Av)
```

Scilab code Exa 3.20 closed loop voltage gain and beta

```
1 // Example 3.20, page no-147
2 clear
3 clc
4
5 Rf=10*10^3
6 R1=1*10^3
7 Av=1+ Rf/R1
8 printf('Closed loop voltage gain= %d', Av)
9
10 Beta=R1/(Rf+R1)
11 printf('\nFeedback factor= %.3f', Beta)
```

Scilab code Exa 3.21 noninverting amplifier circuit

```
1 // Example 3.21, page no-147
2 clear
3 clc
4
5 R1=10*10^3
6 R2=1*10^3
7 R3=1*10^3
8 Rf=50*10^3
```

```
9 I=1/(R2+R3)

10 Vi1=I*R2

11 Vo=Vi1*(1+ Rf/R1)

12 printf('Vout= %d V', Vo)
```

Scilab code Exa 3.22 noninverting amplifier with IL

```
1 // Example 3.22, page no-147
2 clear
3 clc
4
5 \text{ Vi=} 0.6
6 \text{ Vil=0.6}
7 Vi2=0.6
8 R1=10*10^3
9 Rf = 20 * 10^3
10 RL=2*10<sup>3</sup>
11 I1=Vi/R1
12 I1=I1*1000
13 Av = 1 + Rf / R1
14 printf('Av=%d', Av)
15 Vo = Av * Vi
16 printf('\nVo=\%.1 f V', Vo)
17 IL=Vo/RL
18 IL=IL*1000
19 printf('\nI1=\%.1 f mA', IL)
20
21 //By Kirchhoff's current law
22 Io = I1 + IL
23 printf('\nIo=\%.2 f mA', Io)
```

Scilab code Exa 3.23 capacitor coupled voltage follower

```
1 // Example 3.23, page no-151
2 clear
3 clc
4
5 fL=50
6 RL=3.3*10^3
7 Ibmax=500*10^-9
8 R1max=140*10^3
9 C1=1/(2*%pi*fL*R1max/10)
10 C1=C1*10^6
11 printf('C1=%.3 f uF',C1)
12
13 C2=1/(2*%pi*fL*RL)
14 C2=C2*10^6
15 printf('\nC2=%.2 f uF',C2)
```

Scilab code Exa 3.24 high impedence capacitor coupled voltage follower

```
1 // Example 3.24, page no-153
2 clear
3 clc
4 \ Vbe=0.6
5 \quad Ibmax = 500 * 10^{-9}
6 \text{ fL}=50
7 RL=3.3*10<sup>3</sup>
8 R1max = 0.1*Vbe/Ibmax
9 R1=R1max/2
10 R2 = R1
11
12 C3=1/(2*\%pi*fL*RL)
13 C3=C3*10^6
14 printf('\nC3=\%.2 f uF',C3)
15
16 C2=1/(2*\%pi*fL*R2/10)
17 C2=C2*10^6
```

Scilab code Exa 3.25 high impedence capacitor coupled noninverting amplifier

```
1 // Example 3.25, page no-156
2 clear
3 clc
4
5 \text{ Vo}=3
6 \text{ Vi=}10*10^{-3}
7 R2=1*10^6
8 \text{ Av} = 300
9 \text{ fL} = 100
10 RL=15*10<sup>3</sup>
11 R3=R2/(Av-1)
12
13 R1=R2-R3
14 C2=1/(2*\%pi*fL*R3)
15 C2 = C2 * 10^6
16 printf ('\nC2=\%.2 \text{ f uF}', C2)
17
18 C3=1/(2*\%pi*fL*RL/10)
19 C3=C3*10^6
20 printf('\nC3=\%.2 \text{ f uF'}, C3)
```

Scilab code Exa 3.26 capacitor coupled inverting amplifier

```
1 // Example 3.26, page no-159
2 clear
3 clc
4
5 fL = 20
6 \text{ fH} = 2000
7 RL=300
8 R1=1.5*10^3
9 R2=56*10^3
10
11 C1=1/(2*\%pi*fL*R1/10)
12 C1=C1*10^6
13 printf ('\nCl= %d uF',C1)
14
15 C2=1/(2*%pi*fL*RL)
16 C2=C2*10^6
17 printf('\nC2= %.1 f uF',C2)
18
19 Cf = 1/(2*\%pi*fH*R2)
20 Cf=Cf*10^12
21 printf ('\nCf = \%d pF', Cf)
```

Scilab code Exa 3.27 capacitor coupled noninverting amplifier

```
1 // Example 3.27, page no-162
2 clear
3 clc
4
5 Ibmax=500*10^-9
6 Vcc=24
7 I2=50*10^-6
8 Vo=6
9 Av=100
10 fL=100
11 RL=5.6*10^3
```

```
12
13 I2=100*Ibmax
14 R1=Vcc/(2*I2)
15 R2 = R1
16 \text{ Vi=Vo/Av}
17
18 I4 = 100 * Ibmax
19 R4 = Vi/I4
20
21 R3=118.8*10<sup>3</sup>
22 R1pR2 = (R1+R2)/4
23
24 C1=1/(2*\%pi*fL*R1pR2/10)
25 C1=C1*10^6
26 printf('\nC1=\%.3 f uF',C1)
27
28 C2=1/(2*\%pi*fL*RL/10)
29 C2=C2*10^6
30 printf('\nC2=\%.3 f uF',C2)
31
32 C3=1/(2*\%pi*fL*R4)
33 \quad C3 = C3 * 10^6
34 printf('\nC3=\%.3 f uF',C3)
```

Scilab code Exa 3.28 common mode gain Acm

```
1 // Example 3.28, page no-166
2 clear
3 clc
4
5 cmrr=10^5
6 Adm=10^5
7 Acm=Adm/cmrr
8 printf('Common mode gain Acm= %d', Acm)
```

Scilab code Exa 3.29 differential amplifier with two opamp

```
1 // Example 3.29, page no-168
2 clear
3 clc
4
5 R1=560
6 R3 = 560
7 Rf = 5.6 * 10^3
8 R2=Rf
9 \ Vol = -2
10 Ri=2*10^6
11 \ Vo2 = -1
12
13 // Part 1
14 \text{ Ad} = 1 + Rf / R1
15 printf('\nAd = \%d', Ad)
16
17 // Part 2
18 \quad A = 200000
19 Ri1=Ri*(1+ (A*R2)/(R2+R3))
20 Ri1=Ri1/10^9
21 printf ('\nRi1=\%.1 f Gohm', Ri1)
22
23 Ri2=Ri*(1+ (A*R1)/(R1+Rf))
24 Ri2=Ri2/10^9
25 printf('\nRi2=\%.2f Gohm', Ri2)
26
27 // Part 3
28 Vid=Vo2-Vo1
29 Vo = (1 + Rf/R1) * Vid
30 Vo=Vo
31 printf ('\nVo=\%d\ V', Vo)
```

Chapter 4

Applications of Operational Amplifiers

Scilab code Exa 4.1 phase lag circuit

```
1 // Example 4.1, Page No-185
2 clear
3 clc
5 R1 = 20 * 10^3
6 R = 39 * 10^3
7 f = 2000
8 Rf = R1
9 C=10^-9
10 fo=1/(2*\%pi*R*C)
11
12 theta=-2*atan(f/fo)
13 theta=theta*180/%pi
14 printf('Phase angle=%.1f degree', theta)
15
16 td=theta/(f*360)
17 td=-td*10^6
18 printf('\nTime delay td= \%.1 f us',td)
```

Scilab code Exa 4.2 output current

```
1 // Example 4.2, Page No-187
2 clear
3 clc
4
5 Vee=12
6 Vcc=5
7 Vdiff=Vee-Vcc
8 RL=1000
9 IL=Vdiff/RL
10 IL=IL*1000
11 printf("Current through RL is IL= %d mA", IL)
```

Scilab code Exa 4.3 determine the current

```
1 // Example 4.3, Page No-187
2 clear
3 clc
4
5 V=5
6 R=1000
7 I=V/R
8 I=I*1000
9 printf("Current= %d mA", I)
```

Scilab code Exa 4.4 determine the current through RL

```
1 // Example 4.4, Page No-187
```

```
2 clear
3 clc
4
5 Vcc=15
6 Re2=1000
7 Vc1=5
8 Ve2=5
9 I=(Vcc-Ve2)/Re2
10 I=I*1000
11 printf("Current= %d mA", I)
```

Scilab code Exa 4.5 determine load gain

```
1 // Example 4.5, Page No-189
2 clear
3 clc
5 R1 = 22 * 10^3
6 \text{ Rf} = 1000
7 RL=10*10^3
8 Ii=10*10^-6
9
10 \text{ Ai} = 1 + R1 / Rf
11 Io=Ai*Ii
12 Io=Io*10^6
13 printf("Current Io= %f uA", Io)
14
15 Io=Io/10<sup>6</sup>
16 \quad Vmax=Io*RL + Ii*R1
17 printf("\nVmax= \%.2 f V", Vmax)
18 printf("\nHence output clipping doesnot occur")
```

Scilab code Exa 4.6 voltage to current converter with floating load

```
1 // Example 4.6, Page No-192
2 clear
3 clc
4
5 Rf=10*10^3
6 RL=2000
7 Vi=0.5
8
9 IL=Vi/Rf
10 IL=IL*10^6
11 printf("Current IL= %d uA", IL)
12
13 IL=IL/10^6
14 Vmax=IL*RL + IL*Rf
15 printf("\nVmax= %.2 f V", Vmax)
16 printf("\nHence output clipping doesnot occur")
```

Scilab code Exa 4.7 summing amplifier

Scilab code Exa 4.8 input impedence

```
1  // Example 4.8, Page No-201
2  clear
3  clc
4
5  // This is a theoretical problem
6  
7  //(Vi-0)/R1 = (Vi'-0)/R2
8  //(Vo-0)/2*R1 = (Vi'-0)/R2
9  //Vi'/R2=Vo/2*R1
10  //Hence, Vo=2*Vi
11
12  // Ii=(Vi-Vo)/R3 + (Vi-0)/R1
13  printf("Hence the input impedence of circuit Ri=R1*R3/(R3-R1)")
```

Scilab code Exa 4.9 practical integrator circuit

```
1 // Example 4.9, Page No-207
2 clear
3 clc
4
5 R1=10*10^3
6 Rf=100*10^3
7 Cf=10*10^-9
8
9 fa=1/(2*%pi*Rf*Cf)
10 printf("fa= %d Hz", fa)
```

Scilab code Exa 4.10 design a differentiator

```
1 // Example 4.10, Page No-210
2 clear
3 clc
4
5 fa=1*10^3
6 C1=1*10^-6
7
8 Rf=1/(2*%pi*fa*C1)
9 Rf=Rf/100
10 printf("Rf= %.2 f kohm", Rf)
```

Scilab code Exa 4.11 design a differentiator using opamp

```
1 // Example 4.11, Page No-213
2 clear
3 clc
5 fa = 200
 6 \text{ fmax=fa}
 8 \quad C1 = 0.1 * 10^{-6}
9 Rf=1/(2*\%pi*fa*C1)
10 Rf = Rf / 1000
11 printf("Rf= \%.3 \, f \, kohm", Rf)
12
13 \text{ fb=10*fa}
14 R1=1/(2*\%pi*fb*C1)
15 R1=R1/1000
16 printf("\nR1=\%.3 f \text{ kohm}", R1)
17
18 \text{ Cf} = \text{R1} * \text{C1} / \text{Rf}
19 Cf = Cf * 10^6
20 printf("\nCf = \%.2 f \ uF", Cf)
```

Scilab code Exa 4.12 solving differential equation using opamp

```
1 // Example 4.12, Page No-223
2 clear
3 clc
4
5 // This is theoretical problem
```

Scilab code Exa 4.13 transfer function using opamp

```
1 // Example 4.13, Page No-226
2 clear
3 clc
4
5 // TF is H(S)= 4/(s^2 + 3.3*s + 0.9)
6 // This is a theoretical problem
```

Chapter 5

Operational Amplifier Nonlinear Circuits

Scilab code Exa 5.1 transfer characteristics of comparator

```
1 // Example 5.1, Page No-234
2 clear
3 clc
4
5 Vz1=5.5
6 Vz2=5.5
7 Ao1=100000
8 Vd=0.7
9 Vo=Vz1+Vd // Plus or minus
10 Vich=Vo/Ao1
11 Vich=Vich*1000
12 printf('Delta Vi=%.3 f mV', Vich)
```

Scilab code Exa 5.2 inverting schmitt trigger

```
1 // Example 5.2, Page No-239
```

```
2 clear
3 clc
4
5 R1=56*10^3
6 R2=150
7 Vi=1
8 f=50
9 Vsat=13.5
10 Vref=0
11
12 Vut=Vsat*R2/(R1+R2)
13 Vut=Vut*1000
14 printf('Vut= %d mV', Vut)
15 VL=-Vut
16 printf('\nVL= %d mV', VL)
```

Scilab code Exa 5.3 clipper circuit

```
1 // Example 5.3, Page No-249
2 clear
3 clc
4
5 Vclip1=0.35
6 \text{ Vp=0.5}
7 gain=10
8 R = 1000
10 Vounclip=Vp*gain
11 printf('When unclipped, output voltage= %.1 f V',
      Vounclip)
12 Voclip=Vclip1*gain
13 printf('\nWhen clipped, output voltage= \%.1 \, f \, V',
      Voclip)
14 Vb = Voclip - 0.7
15 printf('\nZener diode breakdown voltage= \%.1 \, f \, V', Vb
```

```
) 16 printf('\nA 2.8V Zener diode should be connected')
```

Scilab code Exa 5.4 negative clamping circuit

```
1 // Example 5.4, Page No-251
2 clear
3 clc
5 \text{ Vref=} 1.5
7 // Part A
8 Vpp=5
9 \text{ Vnp} = 2.5
10 Vc=Vnp + Vref
11 printf('\nCapacitor voltage Vc = \%.1 f V', Vc)
12
13 // Part B
14 Vopeak=Vnp + Vref +Vpp
15 printf('\nPeak value of clamped output voltage Vo(
      peak = \%.1 f V', Vopeak)
16
17 // Part C
18 \text{ Voc=0.7 + Vref}
19 printf('\nOp-amp output voltage during charging Vo=
      \%.1 f V', Voc)
20
21 // Part D
22 Vd=Vref-Vopeak
23 printf('\nMaximum differential input voltage Vd= %.1
      f V', Vd)
```

Chapter 6

Active Filters

Scilab code Exa 6.1 first order low pass butterworth filter

```
1 // Example 6.1, Page No-269
2 clear
3 clc
4
5 fH=10*10^3
6 f=12*10^3
7 t=(f^2/fH^2)
8 Hif=1/(sqrt(1+t))
9 Hifdb=20*log(Hif)/log(10)
10 printf('Delta Vi=%.2f dB', Hifdb)
```

Scilab code Exa 6.2 first order low pass filter

```
1 // Example 6.2, Page No-270
2 clear
3 clc
4
5 fh=2000
```

```
6 A=2
7 C=0.01*10^-6
8 R=1/(2*%pi*fh*C)
9 R=R/1000
10 printf('R= %.3 f kohm', R)
11 //Rf/Ri=A-1
12 printf('\n Hence Rf=Ri=10kohm')
```

Scilab code Exa 6.3 second order low pass butterworth filter

```
1 // Example 6.3, Page No-272
2 clear
3 clc
4
5 fh=10*10<sup>3</sup>
6 f = 12 * 10^3
7 RC = 1/(2*\%pi*fh)
8 R = 200 * 10^3
9 C=RC/R
10 C3=1.414*C
11 \quad C4 = 0.707 * C
12
13 t=(f^4/fh^4)
14 Hif=1/(sqrt(1+t))
15 Hifdb=20*log(Hif)/log(10)
16 printf ('Hif= \%.2 \, f \, dB', Hifdb)
```

Scilab code Exa 6.4 second order low pass butterworth filter with upper-cutoff frequency

```
1 // Example 6.4, Page No-275
2 clear
3 clc
```

```
5 N=2
6 fh=2*10^3
7 C=0.1*10^-6
8 R=1/(2*%pi*fh*C)
9 Rkohm=R/1000
10 printf('R= %.1 f kohm', Rkohm)
11 alpha=1.414
12 A=3-alpha
13 RfbyRi=A-1
14 printf('\nRf/Ri= %.3 f', RfbyRi)
15 printf('\nHence, take Rf=5.86 kohm and Ri=10 kohm')
```

Scilab code Exa 6.5 third order low pass butterworth filter

```
1 // Example 6.5, Page No-276
2 clear
3 clc
5 fh=10*10<sup>3</sup>
6 f = 12 * 10^3
8 // For third order low pass butterworth filter
9 t = (f^6/fh^6)
10 Hif=1/(sqrt(1+t))
11 Hifdb=20*log(Hif)/log(10)
12 printf ('Hif= \%.4 \,\mathrm{f}\ \mathrm{dB}', Hifdb)
13
14 // For fourth order low pass butterworth filter
15 t = (f^8/fh^8)
16 Hif=1/(sqrt(1+t))
17 Hifdb=20*log(Hif)/log(10)
18 printf ('\nHif= %.2 f dB', Hifdb)
```

Scilab code Exa 6.6 fourth order low pass butterworth filter

```
1 // \text{Example } 6.6, Page No-276
2 clear
3 clc
4
5 N=2
6 \text{ fh} = 2000
7 C=0.1*10^-6
8 R=1/(2*\%pi*fh*C)
9 \text{ Rkohm} = R/1000
10 printf ('R=\%.1 \text{ f kohm'}, Rkohm)
11
12 \text{ alpha1} = 0.765
13 alpha2=1.848
14 A1=3-alpha1
15 \quad A2=3-alpha2
16
17 \quad Rf1byRi1 = A1 - 1
18 Rf2byRi2=A2-1
19
20 printf('\nRf1/Ri1= \%.3f', Rf1byRi1)
21 printf('\nHence, take Rf1=12.35 kohm and Ri1=10 kohm
22 printf ('\nRf2/Ri2=\%.3f', Rf2byRi2)
23 printf('\nHence, take Rf2=15.2 kohm and Ri2=100 kohm
       ')
```

Scilab code Exa 6.7 first order high pass filter

```
3 clc
4
5 A=2
6 fL=2*10^3
7 C=0.01*10^-6
8 R=1/(2*%pi*fL*C)
9 Rkohm=R/1000
10 printf('R= %.1 f kohm', Rkohm)
11
12 RfbyRi=A-1
13 printf('\nRf/Ri= %.3 f', RfbyRi)
14 printf('\nHence, take Rf=10 kohm and Ri=10 kohm')
```

Scilab code Exa 6.8 second order high pass butterworth filter variable gain

```
1 // Example 6.8, Page No-282
2 clear
3 clc
4
5 R2 = 16 * 10^3
6 R3 = 16 * 10^3
7 \text{ Rf} = 15.8 * 10^3
8 Ri = 27 * 10^3
9 \quad C2 = 0.01 * 10^{-6}
10 \quad C3 = 0.01 * 10^{-6}
11 fL=1/(2*%pi*sqrt(R2*R3*C2*C3))
12 fL=fL/1000
13 printf('\nfL= \%.1 f kHz', fL)
14
15 \quad A=1+Rf/Ri
16 printf ('\nA=\%.3 f', A)
```

Scilab code Exa 6.9 fourth order high pass butterworth filter

```
1 // Example 6.9, Page No-284
2 clear
3 clc
4
5 \text{ fh} = 50000
6 \quad C=0.001*10^-6
7 R=1/(2*\%pi*fh*C)
8 \text{ Rkohm} = R/1000
9 printf ('R= \%.3 \, \text{f kohm}', Rkohm)
10
11 R1=R/1.082
12 R2=R/0.9241
13 R3=R/2.613
14 R4=R/0.3825
15 printf('\nR1= \%.3 f \text{ kohm'}, R1/1000)
16 printf('\nR2 = \%.3 f \text{ kohm'}, R2/1000)
17 printf ('\nR3= \%.3 f kohm', R3/1000)
18 printf('\nR4=\%.3 f \text{ kohm'}, R4/1000)
19 Hif = 0.02
20 s = (Hif^2)/(1-Hif^2)
21 \text{ s1=s}^0.125
22 f = fh/1.6815 * s1
23 fkhz=f/1000
24 printf ('\nf= \%. 2 f kHz', fkhz)
```

Scilab code Exa 6.10 bandpass filter

```
1 // Example 6.10, Page No-286
2 clear
3 clc
4
5 fh=2500
6 fL=250
7 B=fh-fL
8 printf('Bandwdth B= %d Hz', B)
```

```
9
10 fr=sqrt(fh*fL)
11 printf('\nResonant Frequency fr= %.2 f Hz', fr)
12
13 fc=(fL+fh)/2
14 printf('\nCenter Frequency fr= %d Hz', fc)
15 printf('\nHence, resonant frequency is always less than center frequency')
```

Scilab code Exa 6.11 bandpass filter with resonant frequency

```
1 // Example 6.11, Page No-286
2 clear
3 clc
5 // Part A
6 \text{ fr} = 1000
7 B = 3000
8 Q=fr/B
9 printf('Quality factor Q = \%.2 \, f', Q)
10 printf('Since Q<0.5, this is a wideband filter')
11
12 // Part B
13 fL = sqrt((B*B/4)+fr^2) - B/2
14 printf('\nfL=\%.2 f Hz', fL)
15
16 // Part C
17 fh=fL+B
18 printf('\nfh= \%.2 f Hz', fh)
```

Scilab code Exa 6.12 narrowband bandpass filter

```
1 // Example 6.12, Page No-288
```

```
2 clear
3 clc
4
5 // Part A
6 // For a bandpass filter
7 R=20000
8 Rr=2700
9 C=0.01*10^-6
10
11 fr=0.1125*(sqrt(1+R/Rr))/(R*C)
12 printf('Resonant frequency= %.1 f Hz', fr)
13
14 // Part B
15 B=0.1591/(R*C)
16 printf('\nBandwidth= %.1 f Hz', B)
```

Scilab code Exa 6.13 narrowband bandpass filter with resonant frequency

```
1 // Example 6.13, Page No-289
2 clear
3 clc
4
5 fr=200
6 B=20
7 C=0.33*10^-6
8 Q=fr/B
9
10 R=0.1591/(B*C)
11 Rr=R/(2*Q*Q-1)
12 R=R/1000
13 printf('\nR= %.1 f kohm', R)
14 printf('\nRr= %.1 f ohm', Rr)
```

Scilab code Exa 6.14 clock frequency

```
1 // Example 6.14, Page No-307
2 clear
3 clc
4
5 R=1*10^6
6 C=40*10^-12
7 fck=1/(R*C)
8 fck=fck/1000
9 printf('Fck= %.1 f kHz', fck)
```

Chapter 7

Waveform Generators

Scilab code Exa 7.1 RC Phase shift oscillator

```
1 // Example 7.1, Page No-324
2 clear
3 clc
4
5 f=300
6 C=0.1*10^-6
7 t=f*C
8 R=1/(2*%pi*t*sqrt(6))
9 R=R/1000
10 printf('R= %.2 f kohm', R)
11 printf('\nLet R=2.2 kohm, hence R1=22 kohm')
12 R1=22000
13 Rf=29*R1
14 Rf=Rf/1000
15 printf('\nRf= %d kohm', Rf)
```

Scilab code Exa 7.2 Wien bridge oscillator

```
1 // Example 7.2, Page No-326
2 clear
3 clc
4
5 f = 2000
6 \quad C=0.05*10^-6
7 t=f*C
8 R=1/(2*\%pi*t)
9 R=R/1000
10 printf ('R= %.3 f kohm', R)
11 printf('\nLet R=1.8 kohm')
12 R1=1800
13 Rf = 2 * R1
14 Rf = Rf / 1000
15 printf('\nRf = \%d \text{ kohm'}, Rf)
16 printf('\nStandard value Rf= 3.3 kohm')
```

Scilab code Exa 7.3 Astable multivibrator

```
1 // Example 7.3, Page No-329
2 clear
3 clc
4
5 R1=116*10^3
6 R2=100*10^3
7 Vsat=14
8
9 // Part A
10 f=1000
11 T=1/f
12 // As log value is approx 1
13 RC=T/2
14 RC1=RC*1000
15 printf('RC= %.1 f *10^-3 sec', RC1)
```

```
17  // Part B
18  C=0.01*10^-6
19  R=RC/C
20  Rn=R/1000
21  printf('\nR= %d kohm', Rn)
22
23  // Part C
24  Vmax=2*Vsat*(R2/(R1+R2))
25  printf('\nMaximum value of differential input voltage= %.2 f V', Vmax)
```

Scilab code Exa 7.4 Square wave oscillator

```
1 // Example 7.4, Page No-330
2 clear
3 clc
4
5 fo=1000
6 Vcc=12
7 R1=10*10^3
8 R2=10*10^3
9 C=0.1*10^-6
10 R=1/(2.2*C*fo)
11 R=R/1000
12 printf('R= %.3 f kohm', R)
```

Scilab code Exa 7.5 Triangular wave generator

```
1 // Example 7.5, Page No-334
2 clear
3 clc
4
5 R1=100*10^3
```

```
6 R2 = 10 * 10^3
7 R3 = 20 * 10^3
8 \quad C1 = 0.01 * 10^{-6}
9 Vsat=14
10
11 // Part A
12 T = 4 * R1 * R2 * C1 / R3
13 \text{ Tn} = \text{T} * 1000
14 printf('Time period T= %d ms', Tn)
15
16 // Part B
17 f = 1/T
18 printf('\nfrequency f= \%d Hz', f)
19
20 // Part C
21 printf('\nPeak value is +14V and -14V')
22
23 // Part D
24 \text{ Vp=R2*Vsat/R3}
25 printf('\nTriangular wave oscillates between %d V
      and -\%dV', Vp, Vp)
```

Scilab code Exa 7.6 Sawtooth wave generator

```
1 // Example 7.6, Page No-336
2 clear
3 clc
4
5 Ri=10*10^3
6 Vp=10
7 Vref=10
8 fo=200
9 C1=0.1*10^-6
10 Vi=2
11 t=Vi/Vref
```

```
12 f=t/(Ri*C1)
13 printf('Frequency f= %d Hz', f)
```

Scilab code Exa 7.7 Monostable multivibrator

```
1 // Example 7.7, Page No-345
2 clear
3 clc
4
5 // Answer in textbook is wrong
6 C=0.1*10^-6
7 t=1*10^-3
8 R=t/(1.22*C)
9 R=R/1000
10 printf('R= %.1 f kohm', R)
```

Scilab code Exa 7.8 Frequency of oscillation

```
1  // Example 7.8, Page No-351
2  clear
3  clc
4
5  D=20  // 20  percent
6  Ton=1*10^-3
7  Tonpoff=100*Ton/D
8  Tonpoff1=Tonpoff*1000
9  printf('Ton + Toff= %d ms', Tonpoff1)
10  f=1/Tonpoff
11  printf('\nFrequency of oscillation= %d Hz', f)
```

Scilab code Exa 7.9 Astable multivibrator

```
1 // Example 7.9, Page No-351
2 clear
3 clc
4
5 D=0.7
6 f=1000
7
8 RB=10^4/(0.693*10/3)
9 RA=4*RB/3
10 RB1=RB/1000
11 printf('RB= %.1 f kohm', RB1)
12 RA1=RA/1000
13 printf('\nRA= %.1 f kohm', RA1)
14 printf('\n Answers in textbooks are wrong')
```

Scilab code Exa 7.10 Teletypewriter

```
1 // Example 7.10, Page No-352
2 clear
3 clc
4
5
6 f1=1070
7 RA=50000
8 C=0.01*10^-6
9 Rc=76//Standard Value
10 t=1.45/(f1*C)
11 RB=(t-RA)/2
12 printf('Assuming RA= 50 kohm and C= 0.01 uF')
13 RB=RB/1000
14 printf('\nHence, RB= %.2 f kohm', RB)
15 printf('\nRc= %d ohm (Standard Value)', Rc)
```

Chapter 8

Voltage Regulators

Scilab code Exa 8.1 Linear Voltage Regulator

```
1 // Example 8.1, Page No-362
2 clear
3 clc
5 \ Vo = 15
6 \quad Vimin = Vo + 3
8 \text{ Vr}=2
9 Vi = Vimin + Vr/2
10
11 \ Vz = Vi/2
12 printf('As Vz=\%.1f, use Zener diode 1N758 for 10V',
       Vz)
13
14 \ Vz = 10
15 Iz = 20 * 10^{-3}
16
17 R1 = (Vi - Vz)/Iz
18 printf('\nR1 = \%d \text{ ohm'}, R1)
19 I2=50*10<sup>-6</sup>
20 R2 = (Vo - Vz)/I2
```

```
21 R2=R2/1000
22 printf('\nR2= %.1 f kohm', R2)
23
24 R3=Vz/I2
25 R3=R3/1000
26 printf('\nR3= %d kohm', R3)
27 printf('\nSelect C1= 50uF')
28 Vcemax=Vi+Vr/2
29 IE=50*10^-6
30 IL=50*10^-6
31 P=(Vi-Vo)*IL
32 P1=P*1000000
33 printf('\nP= %.1 f mW', P1)
34 printf('\nUse the transstor 2N718 for Q1')
```

Scilab code Exa 8.2 7805 Voltage Regulator

```
1 // Example 8.2, Page No-366
2 clear
3 clc
4
5 IL=0.25
6 Vr=5
7 R=Vr/IL
8 printf('R= %d ohm', R)
9 RL=10
10 VL=IL*RL
11
12 Vo=Vr+VL
13 printf('\nVo= %.1 f V', Vo)
14 Vdrop=2
15 Vi=Vo+Vdrop
16 printf('\nVo= %.1 f V', Vi)
```

Scilab code Exa 8.3 7805 Regulator Circuit

```
1 // Example 8.3, Page No-368
2 clear
3 clc
4 VL=5
5 RL=100
6 IL=VL/RL
7 IL1=IL*1000
8 printf('Part A')
9 printf('\nLoad Current IL= %d mA', IL1)
10 R1=7
11 VR1=IL*R1
12 VR1x=VR1*1000
13 printf('\nVoltage accross R1= %d mV', VR1x)
14 printf('\nAs voltage < 0.7V, Q1 is OFF')
15 printf('\nHence IL=Io=Ii=50 mA')
16
17 printf('\n\nPart B')
18 VLb=5
19 RLb=2
20 ILb=VLb/RLb
21 printf('\nLoad Current IL= \%.1 f A', ILb)
22 R1 = 7
23 VR1 = ILb * R1
24 printf('\nVoltage accross R1= \%.1 f mV', VR1)
25 printf('\nAs voltage > 0.7V, Q1 is ON')
26 \text{ Io} = 0.147
27 Ic=ILb-Io
28 printf('\nHence Ic= \%.3 \, f A', Ic)
```

Scilab code Exa 8.4 LM317 Regulator

```
1 // Example 8.4, Page No-371
2 clear
3 clc
4
5 R1=240
6 R2=2000
7 Iadj=50*10^-6
8 Vref=1.25
9
10 Vo=(Vref*(1+R2/R1))+(Iadj*R2)
11 printf('Vo= %.2 f V', Vo)
```

Scilab code Exa 8.5 Voltage regulator using LM317

```
1 // Example 8.5, Page No-371
2 clear
3 clc
5 \text{ Iadjmax} = 100 * 10^{-6}
6 R1 = 240
7 Vref=1.25
9 // First case: Vo=4
10 \text{ Vo}=4
11 R2a1=(Vo-Vref)/(Vref/R1 + Iadjmax)
12 R2a=R2a1/1000
13 printf('\nR2= %.2 f kohm', R2a)
15 // First case: Vo=12
16 Vo=12
17 R2b1=(Vo-Vref)/(Vref/R1 + Iadjmax)
18 R2b = R2b1/1000
19 printf ('\nR2= %.2 f kohm', R2b)
```

Scilab code Exa 8.6 Current Limiting Circuit

```
1 // Example 8.6, Page No-377
2 clear
3 clc
4
5 ILmax=0.5
7 // Part 1
8 \text{ Rsc} = 0.7/ILmax
9 printf('Rsc= \%.1 \text{ f ohm'}, Rsc)
10
11 // Part 2
12 RL=100
13 Vo=20
14 IL=Vo/RL
15 printf('\nIL = \%.1 f A', IL)
16
17 // Part 3
18 RLn=10
19 IL=Vo/RLn
20 printf('\nIL = \%.1 f A', IL)
21 printf('\nSince IL > ILmax of 0.5A, current limiting
       will happen')
22 \quad Von=RLn*ILmax
23 printf('\nVo=\%.1 f V', Von)
```

Scilab code Exa 8.7 LM723 Regulator

```
1 // Example 8.7, Page No-378
2 clear
3 clc
```

```
4
5 R2=10000
6 Vo=12
7 Vref=7.15
8
9 R1=(Vo/Vref)*R2 - R2
10 R1a=R1/1000
11 printf('\nR1= %.2 f kohm', R1a)
```

Scilab code Exa 8.8 Continuously adjustable power supply

```
1 // Example 8.8, Page No-380
2 clear
3 clc
5 \text{ Vref} = 7.15
6 \text{ Vo} = 5
7 k=Vref/Vo
8 printf('(R1b+R2)/R2= \%.2 \, \text{f}', k)
9 k1=k-1
10 printf('\nR1 = \%.2 \, \text{f} * \text{R2}', k1)
11
12 // For min voltage of 2V
13 \quad Vom=2
14 \text{ km=Vref/Vom}
15 printf ('\n(R1a+R1b+R2)/R2= \%.3 f', km)
16 \text{ km1} = \text{km} - 1.43
17 printf ('\nR1a = \%.3 \, f * R2', km1)
18
19 R1a=10000
20 R1b=2000
21 R2=R1a/2.145
22 R2n=R2/1000
23 printf('\nR2= %.2 f kohm', R2n)
24 R1=6000
```

```
25 R3=(R1*R2)/(R1+R2)
26 R3n=R3/1000
27 printf('\nR3= %.2 f kohm', R3n)
```

Chapter 9

Analog Multipliers

Scilab code Exa 9.1 DC Component

```
1 // Example 9.1, Page No-411
2 clear
3 clc
5 // Part 1
6 	 th1 = acos(0)
7 th=th1*180/%pi
8 printf('Theta= + or -\%d degree', th)
9
10 // Part 2
11 Vodc = 4.47*4.47*cos(th1)/20
12 //For theta=+/-30 deg
13 Vodc1 = cos(30 * \%pi/180)
14 printf('\nVodc for 30 degree= \%.3 \, f \, V', Vodc1)
15 //For theta=\pm/-45 deg
16 Vodc2 = cos(45 * \%pi/180)
17 printf('\nVodc for 45 degree= %.3 f V', Vodc2)
18 //For theta=\pm/-60 deg
19 Vodc3 = cos(60 * \%pi/180)
20 printf('\nVodc for 60 degree= \%.1 \, f \, V', Vodc3)
```

Chapter 10

Phase Locked Loop

Scilab code Exa 10.1 DC Control voltage

```
1 // Example 10.1, Page No-429
2 clear
3 clc
4
5 fs=20000
6 fr=21000
7 VCOf=4000
8 Vcd=(fr-fs)/VCOf
9 printf('Vcd= %.2 f V', Vcd)
```

Scilab code Exa 10.2 VCO Circuit

```
1 // Example 10.2, Page No-430
2 clear
3 clc
4
5 // Part A
6 R1=15*10^3
```

```
7 R3=15*10^3
8 R2=2.2*10^3
9 \quad C1 = 0.001 * 10^{-6}
10 \ Vcc = 12
11 Vc = Vcc * (R3/(R2+R3))
12 printf('\nVc = \%.3 f V', Vc)
13 fo1=2*(Vcc-Vc)/(C1*R1*Vcc)
14 fo1n=fo1/1000
15 printf('\nFo=\%.2 f kHz', fo1n)
16
17 // Part B
18 \ Vc1=7
19 fo2=2*(Vcc-Vc1)/(C1*R1*Vcc)
20 \text{ fo2n=fo2/1000}
21 printf('\nFo=\%.3 f kHz', fo2n)
22 \ Vc2=8
23 fo3=2*(Vcc-Vc2)/(C1*R1*Vcc)
24 \text{ fo3n=fo3/1000}
25 printf('\nFo=\%.3 f kHz', fo3n)
26
27 fch=fo2n-fo3n
28 printf('\nChange in output frequency= \%.3 f kHz', fch
```

Scilab code Exa 10.3 PLL565

```
1 // Example 10.3, Page No-438
2 clear
3 clc
4
5 fo=100*10^3
6 C=2*10^-6
7 Vcc=6
8
9 fld=7.8*fo/(2*Vcc)
```

```
10 fldn=fld/1000
11 printf('\nDelta FL= +/- %d kHz', fldn)
12 LR=2*fldn
13 printf('\nLock Range= %d kHz', LR)
14
15 fcd=sqrt(fld/(C*2*%pi*3.6*10^3))
16 fcdn=fcd/1000
17 printf('\nDelta FC= +/- %.3 f kHz', fcdn)
18 CR=2*fcdn
19 printf('\nCapture Range= %.3 f kHz', CR)
20
21 R1=12*10^3
22 C1=1.2/(4*R1*fo)
23 C1n=C1*10^12
24 printf('\nC1= %d pF', C1n)
```

Scilab code Exa 10.4 IC565

```
1 // Example 10.4, Page No-438
2 clear
3 clc
4
5 R1=15000
6 \quad C1 = 0.01 * 10^{-6}
7 C=1*10^-6
8 V = 12
9 fo=1.2/(4*R1*C1)
10 fon=fo*10^-3
11 printf('\nCentre frequency of VCO is= \%.2 \, f kHz', for
      )
12
13 LR = 7.8 * fo/V
14 LR1=LR/1000
15 printf('\nLock Range = +/- %.1 f kHz', LR1)
16 fcd=sqrt(LR/(C*2*%pi*3.6*1000))
```

```
17 printf('\nDelta FC= \%.2 f Hz', fcd)
```

Scilab code Exa 10.5 IC565 Output frequency

```
1 // Example 10.5, Page No-439
2 clear
3 clc
5 C1 = 470 * 10^{-12}
6 C = 20 * 10^{-6}
7 V = 12
8 R1=15000
9 fo=1.2/(4*R1*C1)
10 \text{ fon=fo/} 1000
11 printf('\nCentre frequency of VCO is= \%.3\,\mathrm{f} kHz', fon
12
13 LR = 7.8 * fo/V
14 LR1=LR/1000
15 printf('\nLock Range = +/-\%.2 \, f \, kHz', LR1)
16 fcd=sqrt(LR/(C*2*%pi*3.6*1000))
17 printf('\nDelta FC= +/-\%.2 f Hz', fcd)
```

Scilab code Exa 10.6 PLL

```
1 // Example 10.6, Page No-439
2 clear
3 clc
4
5 fr=300
6 bw=50
7 ip=320
8 pdop=fr+ip
```

```
9 printf('\nPhase detector output= %d kHz', pdop)
10 difr=ip-fr
11 printf('\nDifference Frequency= %d kHz', difr)
12 printf('\nAs Bandwidth is greater than difference frequency,')
13 printf('\nPLL can acquire lock')
```

Scilab code Exa 10.7 IC565 as FM modulator

```
1 // Example 10.7, Page No-440
2 clear
3 clc
5 \quad C1 = 0.01 * 10^{-6}
6 \quad C=0.04*10^-6
7 V = 12
8 R1=10000
9 fo=120/(4*R1*C1)
10 fon=fo/1000
11 printf('\nCentre frequency of VCO is= \%.1 \, \text{f kHz}', fon
      )
12
13 fld=7.8*fo/(V)
14 fldn=fld/1000
15 printf('\nLock Range= %d kHz', fldn)
16
17 fcd=sqrt(fld/(C*2*%pi*3.6*10^3))
18 \text{ fcdn=fcd/}1000
19 printf('\nCapture Range= \%.2 f kHz', fcdn)
```

Chapter 11

DAC and ADC

Scilab code Exa 11.1 Resolution

```
1 // Example 11.1, Page No-460
2 clear
3 clc
4
5 n=12
6 lv=2^n
7 Vo=4
8 st=10^6*Vo/lv
9 printf('\nStep Size= %d uV', st)
10
11 dr=Vo/(st*10^-6)
12 printf('\nDynamic Range= %d', dr)
13 drdb=20*log10(dr)
14 printf('\nDynamic Range= %d dB', drdb)
```

Scilab code Exa 11.2 DAC resolution

```
1 // Example 11.2, Page No-460
```

```
2 clear
3 clc
4
5 n=8
6 lv=2^n - 1
7 Vo=2.55
8 st=10^3*Vo/lv
9 printf('\nStep Size= %d mV', st)
```

Scilab code Exa 11.3 Ladder type DAC

```
1 // Example 11.3, Page No-460
2 clear
3 clc
4
5 n=4
6 R = 10000
7 \ Vr = 10
8 //Part A
9 \text{ reso=Vr*10^6/(R*2^n)}
10 printf('\nResolution of 1 LSB= \%.1 \, f uA', reso)
11
12 // Part B
13 k=bin2dec('1101')
14 Io=reso*k/1000
15 printf('\nOutput Io for digital input 1101= %.4f uA'
      , Io)
```

Scilab code Exa 11.4 8bit DAC

```
1 // Example 11.4, Page No-461
2 clear
3 clc
```

Scilab code Exa 11.5 4bit converter

```
1 // Example 11.5, Page No-463
2 clear
3 clc
4
5 // Part A
6 printf('\nPart A')
7 R = 10000
8 Vr = 10
9 n=4
10 \, lsb=0.5
11 Rf = (R*2^n)*lsb/Vr
12 Rfn=Rf/1000
13 printf('\nRf = \%d \text{ kohm'}, Rfn)
14
15 printf('\nPart B')
16 b1=1
17 Rf1=R*6/(Vr*lsb)
18 Rfn1=Rf1/1000
19 printf ('\nRf= \%d kohm', Rfn1)
```

```
20
21    printf('\nPart C')
22    Vfs=12
23    Rf2=R*Vfs/Vr
24    Rfn2=Rf2/1000
25    printf('\nRf= %d kohm', Rfn2)
26    printf('\nPart D')
27    Vfs1=10
28    bb=0.9375
29    Rf3=R*Vfs1/(Vr*bb)
30    Rfn3=Rf3/1000
31    printf('\nRf= %.3 f kohm', Rfn3)
```

Scilab code Exa 11.6 Inverted R2R ladder

```
1 // Example 11.6, Page No-466
2 clear
3 clc
4
5 Vr = 10
6 R = 10 * 10^3
7 I1=Vr/(2*R)
8 I1n=I1*1000
9 printf('\nI1=\%.1f mA', I1n)
10 I2 = I1/2
11 I2n=I2*1000
12 printf('\nI2=\%.2 \text{ f mA'}, I2n)
13 I3=I1/4
14 I3n=I3*1000
15 printf('\nI3=\%.2 \text{ f mA'}, I3n)
16
17 Io=I1+I2+I3
18 Ion=Io*1000
19 printf('\nIo= \%.3 \text{ f mA'}, Ion)
20
```

```
21 Vo=-1*Io*R
22 printf('\nOutput Voltage Vo= %.2 f V', Vo)
```

Scilab code Exa 11.7 Output voltage for digital input

```
1 // Example 11.7, Page No-473
2 clear
3 clc
5 lsb=8*10^-6
6 Ifs=lsb*255
7 R = 5000
8 ip1= bin2dec('00000000')
9 Io1=ip1*lsb
10 Io1d=Ifs-Io1
11 Vo = -Io1d * R
12 printf('\nCase 1: Vo= \%.2 \, f \, V', Vo)
13
14 ip2= bin2dec('011111111')
15 Io2=(ip2*lsb)*1000
16 Io2d=Ifs*1000-Io2
17 Vo2 = -(Io2d*R)/1000
18 printf('\nCase 2: Vo= -0.04 V')
19
20 ip3= bin2dec('10000000')
21 Io3=ip3*1sb
22 \quad Io3d=Ifs-Io3
23 Vo3=-Io3d*R
24 printf('\nCase 3: Vo= 0.04 \text{ V'})
25
26 ip4= bin2dec('1111111111')
27 \quad Io4=ip4*lsb
28 Io4d=Ifs-Io4
29 Vo4=Io1d*R
30 printf('\nCase 4: Vo= \%.2 \, \text{f V'}, Vo4)
```

Scilab code Exa 11.8 Resolution and dynamic range

```
1 // Example 11.8, Page No-478
2 clear
3 clc
4
5 n=16
6 lv=2^n
7 V=2
8 st=V/lv
9 lvn=st*10^6
10 printf('\nStep Size= %.2 f uV', lvn)
11 dr=20*log10(lv)
12 printf('\nDynamic Range= %d dB', dr)
```

Scilab code Exa 11.9 8bit ADC

```
1 // Example 11.9, Page No-482
2 clear
3 clc
4
5 Vm=10
6 n=8
7 lv=2^n
8 lsb=Vm/lv
9 lsbn= lsb*1000
10 printf('\nPart A: 1 LSB= %.1 f mV', lsbn )
11
12 Vifs=Vm-lsb
13 printf('\nPart B: Vifs= %.3 f V', Vifs )
14
```

```
15  ip=4.8
16  d=1+ ip/lsb
17  printf('\nPart C: D= %d', d)
18  d=123
19  op=dec2bin(d,8)
20  printf('\n Digital Output= %s', op)
```

Scilab code Exa 11.10 Successive approximation ADC

```
1 // Example 11.10, Page No-494
2 clear
3 clc
4
5 n=8
6 cl=2*10^6
7 tp=1/cl
8 tpn=tp*10^6
9 printf('\n Time for one clock pulse= %.1f uS', tpn)
10 tm=(n+1)*tp
11 tmn=tm*10^6
12 printf('\n Time for resetting SAR and conversion= %.1f uS', tmn)
```