Python DeCal Week 4

Stitue

Announcements

- 2nd Hw was due just now!
- Office Hour
 - Thanks to those who showed up!!
- Attendance!
 - https://forms.gle/hZQCUHm1p7uCN3Ex5

Recap

- What is recursion?
- How are dictionaries different from lists?

How to make our code more POWERFUL?

- import statements:
 - math, random, numpy...
- You can import packages and libraries so that you don't have to write your own functions
 - How would you calculate the median of a list of a 10 unordered numbers?

How do you import?

- import package_name as alias:

- For example, let's talk about NUMPY today!
 - import numpy as np
- Generally put at the very beginning of your code

Numpy Arrays (1D)

- The most used tool in science
- This is a list

$$l = [0, 1, 2, 3, 4, 5, 6, 7]$$

- This is a numpy array

$$arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])$$

Same indexing rule as lists

IT IS SUPERIOR!!!!!!!!

Some review: What do the following commands do?

IT IS SUPERIOR!!!!!!!!

HOWEVER, THIS IS WHAT NUMPY ARRAY DOES!

```
arr1 = np.array([0, 1, 2, 3, 4, 5, 6, 7])
arr2 = np.array([0, 1, 2, 3, 4, 5, 6, 7])
```

Numpy arrays operate element-wise!

```
3*arr1 \rightarrow np.array([0, 3, 6, 9, 12, 15, 18, 21])
arr1 + arr2 \rightarray([0, 2, 4, 6, 8, 10, 12, 14])
```

Notice that the size of the two arrays have to be the same

What else can I do with 1D arrays?

Calculating the mean / average value:

```
sum(your_list)/len(your_list)
np.mean(your_array)
```

Calculating standard deviation (San Diego!!!)

Calculating median value:

```
np.median(your_arr)
```

2D Array!

You can think of it as a matrix, sometimes a table

You can store different information in a 2D-array

Many astronomical datasets are 2D arrays! (images, spectra)

Slicing & Indexing (you'll use this almost everyday)

Axis 1

Slicing & Indexing (you'll use this almost everyday)

Now I want the middle row....

"Axes-wise Operations"

```
>>> np.mean(arr, axis=0)
    np.array([2,1.67,2.33])
>>> np.median(arr,axis=1)
    np.array([2, 2, 2])
                                            Axis 1
```

Extra Material

Numpy stats functions

Sometimes we want to directly know some information about the array we have.

- Order Statistics
- Averages and Variances

The Basics

Order Statistics for Higher Dimensional Arrays

These functions will give us some insight on the range and distribution of the data.

```
numpy.amin outputs the minimum along a specified axis numpy.amax outputs the maximum along a specified axis
```

Order Statistics Demo

Order Statistics Demo

Averages and Variances

```
numpy.median
numpy.mean (arithmetic mean)
numpy.std
numpy.var
```

Correlating

These functions will give us some insight on the correlations

numpy.amin

numpy.amax

Do you want the correlations?

Idk what they are but they are on the numpy stat functions

Histograms

These functions will compute the histogram of a given set of data

```
numpy.histogram
numpy.histogram2d
numpy.histogramdd
numpy.bincount
numpy.histogram_bin_edges
numpy.digitize
```