Kit de survie pour la réduction des matrices carrées

Valentin KILIAN (IPESUP)

1 Changement de base

Soit E espace vectoriel de dimension n.

Définition 1.1. Soient $\mathcal{B}=(e_1,e_2,...,e_n)$ et $\mathcal{B}'=(e_1',e_2',...,e_n')$ deux bases de E. On appelle matrice de passage de la base \mathcal{B} à la base \mathcal{B}' et on note $P_{\mathcal{B},\mathcal{B}'}$ la matrice carrée d'ordre n dont les colonnes sont les coordonnées des vecteurs de \mathcal{B}' exprimées dans la base \mathcal{B} .

Proposition 1.2. Quand \mathcal{B} et \mathcal{B}' sont deux bases du même espace vectoriel de dimension finie E alors $P_{\mathcal{B},\mathcal{B}'}$ est inversible et son inverse est : $(P_{\mathcal{B},\mathcal{B}'})^{-1} = P_{\mathcal{B}',\mathcal{B}}$

Proposition 1.3. Soient \mathcal{B} et \mathcal{B}' deux bases de l'espace vectoriel E et $x \in E$.

Soit $X = Mat_{\mathcal{B}}(x)$ et $X' = Mat'_{\mathcal{B}}(x)$ matrices colonnes des coordonnées du vecteur x dans \mathcal{B} et \mathcal{B}' . On a alors : $X = P_{\mathcal{B},\mathcal{B}'}.X'$ et $X' = P_{\mathcal{B}',\mathcal{B}}.X = (P_{\mathcal{B},\mathcal{B}'})^{-1}.X$.

Proposition 1.4. Changement de base pour un endomorphismeSoit f un endomorphisme de E espace de dimension n muni de deux bases \mathcal{B} et \mathcal{B}' . Soient $A = Mat - \mathcal{B}(f)$ et $A' = Mat - \mathcal{B}(f)$ et $P = P_{\mathcal{BB}'}$. On a alors : $A = P.A'.P^{-1}$ et $A' = P^{-1}.A.P$

Définition 1.5. Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont dites semblables s'il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$B = P^{-1}.A.P.$$

Proposition 1.6. Deux matrices semblables représentent le même endomorphisme dans deux bases différentes.

2 Diagonalisation

2.1 Valeurs propres et vecteurs propres

Définition 2.1. On dit que $\lambda \in \mathbb{R}$ est une valeur propre de l'endomorphisme $f \in \mathcal{L}(E)$ (respectivement de la matrice $A \in \mathcal{M}_n(\mathbb{R})$) s'il existe un vecteur $u \neq 0_E$ (respectivement un vecteur colonne $U \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul) tel que $f(u) = \lambda.u$ (respectivement $A.U = \lambda U$).

Un tel vecteur u (ou U) non nul est appelé vecteur propre de f (respt A) associé à la valeur propre λ .

L'ensemble des valeurs propres d'un endomorphisme f (ou d'une matrice A)s'appelle le spectre de f (ou de A) et est noté Sp(f) (respt Sp(A)).

Notation Soit λ un réel, on notera $E_{\lambda} = \{x \in E/f(x) = \lambda.x\}$

Proposition 2.2. $E_{\lambda} = Ker(f - \lambda.id_E)$ (resp. $Ker(A - \lambda.I_n)$) est un sous-espace vectoriel de E (respt $\mathcal{M}_{n,1}(\mathbb{R})$).

Définition 2.3. Si λ est une valeur propre de l'endomorphisme f ou de la matrice A alors E_{λ} est appelé espace propre de f (ou de A) associé à la valeur propre λ .

Proposition 2.4. λ est une valeur propre de f (respt A) si et seulement si $E_{\lambda} \neq \{0_E\}$.

2.2 Propriétés

Proposition 2.5. Deux matrices semblables ont les mêmes valeurs propres

Proposition 2.6. *Une famille de vecteurs propres associés à des valeurs propres distinctes est libre.*

Proposition 2.7. Un endomorphisme d'un espace vectoriel de dimension n (respt une matrice carrée d'ordre n) de possède au plus n valeurs propres distinctes.

Proposition 2.8. λ est une valeur propre de $f \in \mathcal{L}(E)$ (respt $A \in \mathcal{M}_n(\mathbb{R})$) si et seulement si $f - \lambda.id_E$ n'est pas bijective. (respt $A - \lambda.I_n$ n'est pas inversible)

Proposition 2.9. $f \in \mathcal{L}(E)$ est bijective si et seulement si 0 n'est pas valeur propre de f.

Proposition 2.10. Soit $f \in \mathcal{L}(E)$ où $\dim E = n$. On suppose que dans une base \mathcal{B} donnée la matrice de f:

$$Mat_{\mathcal{B}}(f) = \left(\begin{array}{ccccc} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & * & \dots \\ . & 0 & . & . & \dots \\ . & . & . & . & * \\ 0 & . & . & 0 & \lambda_n \end{array} \right).$$

Alors $\lambda_1, \lambda_2, ..., \lambda_n$ sont les valeurs propres de f.

2.3 Conditions de diagonalisation

Définition 2.11. *Soit* $f \in \mathcal{L}(E)$ *où* dim E = n.

 \bullet On dit que f est diagonalisable s'il existe une base $\mathcal B$ de E telle que

$$Mat_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 & \dots & \dots & 0 \\ 0 & \lambda_2 & 0 & & \dots \\ \vdots & 0 & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & \vdots & \vdots & 0 & \lambda_n \end{pmatrix}$$

notée $diag(\lambda_1,...,\lambda_n)$ matrice diagonale avec les valeurs $\lambda_1,...,\lambda_n$ sur la diagonale.

- Diagonaliser un endomorphisme c'est trouver une telle base.
- Soit $\mathcal{B} = (u_1, u_2, ..., u_n)$ une base de E telle que $Mat_{\mathcal{B}}(f) = diag(\lambda_1, ..., \lambda_n)$

Alors $\forall i \in \{1,...,n\}$ on $a: f(u_i) = \lambda_i.u_i$ c'est-à-dire que u_i est un vecteur propre associé à la valeur propre λ_i .

Définition 2.12. Diagonaliser un endomorphisme (ou sa matrice associée A) c'est trouver une matrice P inversible et une matrice D diagonale telles que :

$$A = P.D.P^{-1}$$

Proposition 2.13. Si $f \in \mathcal{L}(E)$ où dim E = n possède n valeurs propres distinctes alors f est diagonalisable.

Proposition 2.14. Théorème de caractérisation Soit $f \in \mathcal{L}(E)$ où $\dim E = n$. On suppose que f admet p valeurs propres distinctes $\lambda_1, ..., \lambda_p$. alors : f est diagonalisable si et seulement si la somme des dimensions des espaces propres est égale à n. Ainsi f est diagonalisable ssi $\sum_{i=1}^p \dim E_{\lambda_i} = n$ On construit alors une base de vecteurs propres en concaténant les bases de chacun des sous-espaces propres E_{λ_i} .

Proposition 2.15. Tout matrice symétrique est diagonalisable.

2.4 Polynôme annulateur

Définition 2.16. Soit $P: x \mapsto \sum_{i=0}^{n} a_i.x^i$ une fonction polynôme non nulle. On dit que P est un polynôme annulateur de la matrice $A \in \mathcal{M}_k(\mathbb{R})$ si $P(A) = \sum_{i=0}^{n} a_i.A^i = 0_k$.

On dit que P est un polynôme annulateur de l'endomorphisme $f \in \mathcal{L}(E)$ si $P(f) = \sum_{i=0}^{n} a_i f^i = 0$ où $f^i = f \circ ... \circ f$ (i fois).

Proposition 2.17. Soit P un polynôme annulateur d'un endomorphisme f ou d'une matrice A. Toute valeur propre de f (ou A) est racine du polynôme annulateur.

Remarque : Par conséquent les valeurs propres possibles d'un endomorphisme ou d'une matrice carrée sont à rechercher dans les racines d'un polynôme annulateur.