Packet 3

Packet 3.1: Sections 15.1-15.3 and 15.7

15.1 Double Integrals over Rectangles

Definition 1. We define the **double integral** of a function f(x,y) over a region R to be

$$\iint_{R} f(x,y) dA = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{n,i}, y_{n,i}) \Delta A_{n,i}$$

where for each positive integer n we've defined a way to partition R into n pieces

$$\Delta R_{n,1}, \Delta R_{n,2}, \ldots, \Delta R_{n,n}$$

where $\Delta R_{n,i}$ has area $\Delta A_{n,i}$, contains the point $(x_{n,i}, y_{n,i})$, and

$$\lim_{n \to \infty} \max(\Delta A_{n,i}) = 0$$

Remark 2. This basically defines the double integral to be the **Riemann sum** of a bunch of rectangular box volumes, just as the single definite integral is the Riemann sum of a bunch of rectangle areas. Therefore it represents the net volume between the curve z = f(x, y) and the xy-plane above/below R.

Theorem 3. For the rectangle

$$R: a \le x \le b, c \le y \le d$$

the Midpoint Rule says that

$$\iint_{R} f(x, y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(\overline{x_{i}}, \overline{y_{j}}) \Delta A$$

where $(\overline{x_i}, \overline{y_j})$ is the midpoint of the $i \times j$ rectangle.

Problem 4. Divide $R: 0 \le x \le 4, 0 \le y \le 2$ into four congruent pieces arranged two-by-two, and then use the midpoint rule to approximate the double integral $\iint_R 2x + 2y + 4 dA$.

Solution.

Contributors.

Problem 5. Divide $R: -2 \le x \le 2, 0 \le y \le 2$ into four congruent pieces arranged two-by-two, and then use the midpoint rule to approximate the double integral $\iint_{\mathbb{R}} 12x^2y \, dA$

Solution. \Diamond

Contributors.

Problem 6. Divide $R: 0 \le x \le \pi/2, 0 \le y \le \pi/2$ into four congruent pieces arranged two-by-two, and then use the midpoint rule to approximate the double integral $\iint_R \cos(x+y) dA$

Solution.

Contributors.

15.2 Iterated Integrals

Definition 7. If a solid is embedded in xyz space, and A(x) is the area of that solid's cross-section for each x-value, then the solid's volume is

$$V = \int_{a}^{b} A(x) \, dx$$

Theorem 8. A double integral over a rectangle

can be evaluated using the **iterated integrals**:

$$\iint_{R} f(x,y) \, dA = \int_{x=a}^{x=b} \left[\int_{y=c}^{y=d} f(x,y) \, dy \right] \, dx = \int_{y=c}^{y=d} \left[\int_{x=a}^{x=b} f(x,y) \, dx \right] \, dy$$

Remark 9. Iterated integrals are often shortened as follows:

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{x=a}^{x=b} \left[\int_{y=c}^{y=d} f(x, y) \, dy \right] \, dx$$
$$\int_{a}^{d} \int_{c}^{b} f(x, y) \, dx \, dy = \int_{x=a}^{y=d} \left[\int_{y=c}^{x=b} f(x, y) \, dx \right] \, dy$$

Remark 10. When evaluating iterated integrals, only the innermost d-variable acts as a variable, while other variables act as constants. Put another way, find the partial anti-derivatives.

Remark 11. The order of a double iterated integral with constant bounds may be reversed by swapping **both** the bounds of integration and the differentials dx/dy. (This will not work if there are any variables in the bounds as we'll see in the next section.)

Problem 12. Evaluate
$$\int_{0}^{3} \int_{2}^{4} xy^{2} + x^{3} dx dy$$
.

Solution.

Contributors.

Problem 13. If $R: 0 \le x \le 4, 0 \le y \le 2$, then write $\iint_R 2x + 2y + 4 dA$ as an iterated integral. Then evaluate it, comparing its value to the approximation you found in the previous section.

Solution.

Contributors.

Problem 14. If $R: -2 \le x \le 2, 0 \le y \le 2$, then write $\iint_R 12x^2y \, dA$ as an iterated integral. Then evaluate it, comparing its value to the approximation you found in the previous section.

Solution.

Contributors.

Problem 15. If $R: 0 \le x \le \pi/2, 0 \le y \le \pi/2$, then write $\iint_R \cos(x+y) dA$ as an iterated integral. Then evaluate it, comparing its value to the approximation you found in the previous section.

Solution.

Contributors.