T G G T 5 Ξ 5 N N 0 0 0 5 0 G T G T **5** Ξ 5 N N 0 0 5 0 0 T G T G 5 Ξ 5

Equation of a plane

$$\vec{r} : \langle x, y, z \rangle$$

 $\vec{n} : \langle h_1, h_2, h_3 \rangle$
 $\vec{h} : \vec{v} = 0$

Equation of plane
$$p$$
 $n_1 \times + n_2 y + n_3 z = 0$
perpendicular to \hat{v}

$$\vec{\nabla} \cdot \vec{n} = 0$$

$$\vec{\nabla} = \langle x - P_{1}, y - P_{2}, z - P_{3} \rangle$$

$$\vec{\nabla} \cdot \vec{n} = n_{1}(x - P_{1}) + n_{2}(y - P_{2}) + n_{3}(z - P_{3})$$

$$= n_{1}x + n_{2}y + n_{3}z - n_{1}P_{1} - n_{2}P_{2} - n_{3}P_{3} = 0$$

Equation of plane
$$p$$
 $n_1 \times + n_2 y + n_3 z = n_1 p_1 + n_2 p_2 + n_3 p_3$
perpendicular to \vec{v}

Example:

1. What is the equation of the plane through origin and is perpendicular to Z-axis.

$$\vec{n} = \langle 0, 0, 1 \rangle$$
 Plane: $0 + 0 + z = 0 \Rightarrow z = 0$ (x and y plane)
 $P = \langle 0, 0, 0 \rangle$

Systems of linear equations

Example:

3.
$$2x+3y-2=1$$
 $x+\frac{3}{2}y-\frac{1}{2}z=\frac{1}{2}$ $x=-\frac{7}{6}$ Each equation is a plane, thus the y-3z=2 \Rightarrow $y=1$ Solution is the intersection $4x+5y-2=1$ $z=-\frac{1}{3}$ of the planes.

A Solution set, or general solution to (a augmented matrix)

Row Reduction Steps

- (i) Switch the order of rows, or we can exchange rows Ri (> Rj
- (ii) mutiply a row by a non-zero scalar Ri (KRj , KER, K40
- (iii) Replace a vow with itself plus a multiple of another row Ri ↔ Ri+ KRj