Intro to IP Tunneling

- Normal network comminication
 - Normal network communication:

- Tunneling
 - o Tunneling:

- IP tunneling
 - IP tunneling:

- IP-in-IP tunneling
 - IP-in-IP tunneling:

- Applications that make use of tunneling
 - Use of tunnels:

- Dictatic notes
 - The IP tunneling feature was introduced in in 1995 to the Internet Standard
 - The tunneling feature is *documented* in the Internet RFC 1853: click here
 - NOTE:
 - I will use IP-in-IP to explain the tunneling concept
- Encapsulation
 - Tunneling is a form of:
 - encapsulation !!!!
 The outer IP packet is used to transfer (= "tunnel") the inner IP packet to the "processing location" !!!
 - You have seen encapsulation before it was used in routers: click here
 - Encapsulation was used to:
 Transmit a (virtual) IP packet inside a (real) Physical (Ethenet) frame

Operation of an IP-in-IP tunnel

- Direct link and a virtual link
 - o Direct link:

• Tunnel ---- Virtual direct link:

- Operation of a secure IP-in-IP tunnel
 - Suppose a company has offices in 2 locations:

• Suppose we want to setup a secure tunnel between the company networks:

In other words:

Graphically:

- Packet transmission over a secure IP-in-IP tunnel
 - How to realize the secure transmission between 2 networks:

Postponed discussion:

- We will discuss how the router C can know when to perform encapsulate later
 The discussion is given here: click here
 (Obviously, router C should not do this all the time !!!)
- 3. The *encapsulated* **IP** packet is then routed using **IP** forwarding to the destination *M*:

Notice that:

4. When the **destination router** M receives the **(encapsulated) IP packet**:

Note:

• Summary:

Implementing the encapsulation procedure

- Real and virtual interface
 - Real network interface:

```
    Real network interface = a network card that a node uses to transmit physical frames
    Example:
    Ethernet interface
```

• Virtual network interface:

```
    Virtual network interface = an abstract representation (= object) of a computer network interface
    A Virtual network interface can be mapped:
    To a real network interface or
    To a IP destination (this is the more common usage)
```

- Layer 2 forwarding table with virtual interfaces
 - Recall the format of the (Layer 2) Forwarding Table

• Layer 2 forwarding table with virtual interfaces:

- Packet processing prior to encapsulation
 - Note:

• Processing prior to encapsulation:

• How to use a Layer 2 forwarding table with virtual interfaces

Processing on each type of interfaces:

• Example:

will be forwarded as follows:

• Network 7.7.7.0 found in forwarding table with *virtual* entry:

The router will encapsulate (optionally with some pre-processing):

■ Then the *encapsulated* **IP** packet is forwarded:

According to the routing table, the *encapsulated* IP packet will be forwarded to the *default* router !!!

• The *encapsulated* **IP** packet will eventually arrive at the *destination* router of the virtual interface:

Implementing the de-capsulation procedure

- Implementing the de-encapsulation procedure
 - Recall on *how* a router can determine that it need to perform *de-encapsulation*:

• The IP forwarding algorithm with support for tunneling:

- Example of the de-capsulation procedure
 - Suppose the encapsulated IP packet is received:

• The encapsulated IP packet is processed as follows:

Two-way (bi-directional) tunnels and overlay networks

- Notable fact
 - The tunnel setup:

created by the **virtual interface**:

Network ID	I	Interface (port)
7.7.7.0	Ī	4.4.4.1

is a

• Graphically:

- Two-way (bi-directional) IP-in-IP tunneling
 - Fact:

• How to set up a two-way tunnel:

Applications of IP Tunneling: Secure IP

- Secure IP networking
 - Private network:
 - Private Network (PN) = a secure communication network usually own by a coorporation and built with leased telecommunication lines
 Communication on a private network is very hard to tap (eaves drop)

Graphically:

(Commication is secure because the leased line cannot be easily tapped)

- Secure IP: (IPsec)
 - Secured IP communication = a secure communication built on top of the (unsecure) IP network
- Graphically:

- How to prevent *eaves dropping* and achieve privacy protection:
 - Encrypt the inner IP packet
 - Transmit the encrypted IP packet securely with the outer IP packet
- Graphically:

- Packet format of IPsec
 - Packet format used in Secure IP:

- Example Secure IP
 - Tunnel setup:

Note:

- The *optional* processing used before the IP packet is encapsulated is:

 Encryption (and authentication)
- How an (plain) IP packet will be transmitted:

• Postscript

- IPsec also provides an authentication mechanism that I have omitted
- External material with the complete description of IPsec: click here

Applications of IP Tunneling: IPv6 over IPv4

- Deploying IPv6...
 - o Fact:

• In other words:

- Tunneling encapsulates IPv6 packets within IPv4 packets so:
 - IPv6 packets can be sent over an IPv4 network, allowing isolated IPv6 networks to communicate without the need to upgrade the IPv4 routers that between them.
- Packet format used in IPv6-in-IPv4 encapsulation
 - Packet format used in IPv6 in IPv4 encapsulation:

- Example IPv6 in IPv4 tunneling
 - Tunnel setup:

Note:

- The edge routers must have a dual stack, running:

 IPv4 and
 IPv6

 routing software

 The IPv6 implementation contains the IPv4 encapsulation software to deploy over IPv4 !!!
- How an IPv6 packet will be transmitted:

The IPv4 packet will use the packet code 41 to indicate it is a IPv6 encapsulation

• The *encapsulated* IPv4 packet will be sent to the router 4.4.4.1:

• When the *encapsulated* IP packet arrives at 4.4.4.1, the router detects its *own* IP address and de-encapsulate

The router will process the *inner* packet an an IPv6 packet because the *outer* code = 41

• The IPv6 packet is forwarded further by the IPv6 routing software in the router:

- Postscript
 - 6bone:
- 6bone = the tunneled network consisting of the IPv6 networks

 Wikipedia: click here
- O Nowadays:

• Multicasting
• Multicasting:
■ Multicast = a transmission from a sender is received by multiple receivers
• IP-multicasting (multicast tunnels)
 IP-multicasting uses a special set of IP-addresses that are not assigned to IP-hosts/IP-networks.
◇ In other words:
Multicast packets uses a non-routable IP address

• The first implementation of IP-multicast uses IP-tunneling to networks that supported multicast operation.

■ I.e., the routing tables do *not* contain entries for multicast addresses

Applications of IP Tunneling: implement IP multicasting (MBone)

• The MBone is exactly the same concept as the IPv6-bone when IPv6 was being deployed....

Overlay networks

- Overlay network
 - Tunnels and virtual links:

Fact:

- We can create a network using virtual links (tunnels) !!!
- Overlay network:
 - Overlay network:
 Overlay networks = a network that is created by using tunnels on top of another network
 Wikipedia: click here
- How is the overlay network used?
 - o Fact:
- The overlay network technique is a powerful technique used to inplement novel services on top of the existing network
- Example: (IPv6 and Multicasting)
 - Suppose networks 1 and 2 have implemented a new network service (such as IPv6):

 Network 1

 Network 3

 Network 2

 new network service

 new network service

■ The *new* network service uses its *own* packet format !!

These packets *cannot* be sent on the existing network:

• We can **create** a *tunnel* between **nodes** that **support** the *new* **network service**:

• The *new* format packets can now be *encapsulated* inside an **IP** packet and sent *directly* between the *networks*:

