Московский Физико-Технический Институт

Отчет по эксперименту

1.1.4

Изучение статистических закономерностей на примере измерения фона космического излучения

Выполнил: Студент 1 курса ФАКТ Группа Б03-504 Подмосковнов Лев

Аннотация

Цель работы: на примере статистики регистрации фоновых космических частиц изучить статистические закономерности однородного во времени случайного процесса; проверить возможность описания исследуемого процесса статистическими законами Пуассона и Гаусса; измерить среднее число регистрируемых космических лучей в секунду и определить погрешность результата.

В работе используются: счётчик Гейгера—Мюллера, компьютер с интерфейсом для связи со счётчиком, расчётная программа.

Базовые теоретические понятия

Далее будем для простоты считать, что все прочие погрешности, помимо статистических, пренебрежимо малы и рассматривать их не будем. В рамках нашего опыта это предположение хорошо выполняется.

Наиболее важной характеристикой является выборочное среднее значение числа измерений.

$$\langle n \rangle = \frac{1}{n} \sum_{i=1}^{N} n_i$$

Если продолжать проводить измерения, можно ожидать, что выборочное среднее будет стремиться к некоторому конечному пределу, который можно назвать «истинным» средним значением числа регистрируемых частиц.

$$\overline{n} = \lim_{N \to \infty} \langle n \rangle$$

Кроме среднего значения важно знать, насколько сильно флуктуируют значения n_i от опыта к опыту. Количественно меру флуктуаций принято измерять среднеквадратичным (или стандартным) отклонением σ_n . По определению, средний квадрат отклонения, называемый также дисперсией.

$$\sigma_n^2 \equiv \frac{1}{N} \sum_{i}^{N} (n_i - \langle n \rangle)^2$$

Короче будет так

$$\sigma_n^2 \equiv \langle n_i - \langle n \rangle \rangle^2$$

Аналогично, при $N \to \infty$ выборочная дисперсия должна стремиться к некоторому предельному («истинному») значению:

$$\overline{\sigma}^2 = \lim_{N \to \infty} \sigma_n^2 = \overline{(n - \overline{n})^2}$$

Погрешность среднего значения $\langle n \rangle$ при независимых измерениях связана со стандартным отклонением (погрешностью отдельного измерения) формулой

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}} \tag{1}$$

Таким образом, если среднеквадратичное отклонение σ_n стремится к конечному пределу при больших N погрешность среднего значения убывает с ростом числа измерений как $\frac{1}{\sqrt{N}}$ Иными словами, увеличивая количество измерений, среднее значение можно получать со всё более возрастающей точностью, приближаясь к «истинному» \overline{n} . А при конечном N можно записать, что истинное среднее с высокой вероятностью лежит в интервале

$$\overline{n} = \langle n \rangle \pm \frac{\sigma_n}{\sqrt{N}}$$

Пуассоновский процесс

Вероятности w_n того, что в эксперименте будет обнаружено n частиц, для распределения Пуассона имеют вид

$$w_n = \frac{\overline{n}^n}{n!} e^{-\overline{n}}$$

Наиболее характерным свойством распределения Пуассона является связь между его дисперсией и средним значением. А именно, для пуассоновского процесса (и только для него!) справедливо равенство

$$\sigma = \sqrt{\overline{n}} \tag{2}$$

На практике можно ожидать приближённое равенство для выборочных значений:

$$\sigma_n \approx \sqrt{\langle n \rangle}$$

Погрешность эксперимента

Подставим основное свойство распределения Пуассона (2) в формулу (1). Получим среднеквадратичную погрешность определения среднего:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}} = \sqrt{\frac{\langle n \rangle}{N}}$$

Обычно больший интерес представляет не абсолютное, а относительное значение погрешности. Для него находим:

$$\varepsilon_n = \frac{\sigma_{\langle n \rangle}}{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle N}} = \frac{1}{\sqrt{n_{\Sigma}}}$$

Выполнение задания

Сгруппируем и просуммируем соседние данные с различными интервалами группировки: $\tau=10~\mathrm{c};~20~\mathrm{c};~40~\mathrm{c};~80\mathrm{c}$

 Π ри au=10c

№Опыта	1	2	3	4	5	6	7	8	9	10
0	12	10	10	10	19	8	6	11	7	17
10	11	10	8	10	10	11	15	9	12	14
20	11	10	17	10	11	13	10	13	9	15
30	10	10	11	10	10	12	9	14	13	9
40	9	9	9	10	8	15	12	13	12	8
50	12	12	22	14	18	15	13	14	13	14
60	15	20	9	8	16	10	17	15	11	13
70	9	14	14	9	8	8	3	14	12	10
80	8	13	12	19	8	10	14	6	12	8
90	10	19	12	9	16	11	12	12	11	15
100	12	9	12	8	16	17	18	6	12	15
110	13	14	15	15	18	16	16	14	10	12
120	14	16	14	11	8	10	13	15	9	13
130	11	6	9	8	15	10	13	12	11	20
140	14	17	18	10	7	7	14	14	16	13
150	16	11	16	14	12	12	14	10	6	13
160	14	13	12	19	15	14	11	20	12	10
170	11	12	14	14	16	14	15	14	10	8
180	9	9	14	10	13	12	9	11	11	13
190	9	10	14	6	10	15	12	11	18	14
200	7	9	12	13	12	8	9	16	9	12
210	19	15	11	20	17	6	14	10	10	19
220	9	14	7	15	9	20	14	10	12	13
230	9	11	16	12	22	14	19	19	11	14
240	17	11	13	15	11	14	13	11	11	14
250	14	10	15	15	11	12	7	10	17	13
260	13	12	12	17	15	13	8	14	12	10
270	13	9	9	5	8	17	10	11	15	16
280	9	8	8	22	9	14	13	7	12	9
290	17	15	17	11	12	11	17	10	11	11
300	13	5	14	12	17	12	11	15	9	12
310	10	14	16	10	11	7	10	14	8	18
320	15	6	17	20	6	14	15	16	12	8
330	9	13	16	12	13	14	14	9	10	17
340	9	13	12	15	12	8	14	8	11	9
350	16	13	10	17	6	20	9	13	12	7
360	18	14	19	10	11	17	13	11	8	10
370	16	9	9	11	14	10	16	12	10	20
380	9	9	17	12	14	15	8	9	13	15
390	18	13	9	18	7	14	9	13	14	5

Число срабатываний счетчика за $\tau=10~\mathrm{c}$

$\langle n \rangle$	12.275
σ_n	3.41
$\sigma_{\langle n \rangle}$	0.17
$j = \frac{\langle n \rangle}{\tau}$	1.2275
σ_{j}	0.017

Доли случаев, когда отклонение числа отсчётов n от среднего значения не превышает (по модулю):

Одного стандартного отклонения: 0.71 Двух стандартных отклонений: 0.9625 Трёх стандартных отклонений: 1.0

Рис. 1: Наложение теоритического распределения Пуасона на экспериментальную диаграмму(для $\tau=10\mathrm{c}$)

При $\tau=20c$

№Опыта	1	2	3	4	5	6	7	8	9	10
0	22	20	27	17	24	21	18	21	24	26
10	21	27	24	23	24	20	21	22	23	22
20	18	19	23	25	20	24	36	33	27	27
30	35	17	26	32	24	23	23	16	17	22
40	21	31	18	20	20	29	21	27	24	26
50	21	20	33	24	27	27	30	34	30	22
60	30	25	18	28	22	17	17	25	25	31
70	31	28	14	28	29	27	30	24	24	19
80	27	31	29	31	22	23	28	30	29	18
90	18	24	25	20	24	19	20	25	23	32
100	16	25	20	25	21	34	31	23	24	29
110	23	22	29	24	25	20	28	36	38	25
120	28	28	25	24	25	24	30	23	17	30
130	25	29	28	22	22	22	14	25	21	31
140	17	30	23	20	21	32	28	23	27	22
150	18	26	29	26	21	24	26	18	24	26
160	21	37	20	31	20	22	28	27	23	27
170	22	27	20	22	20	29	27	26	22	19
180	32	29	28	24	18	25	20	24	28	30
190	18	29	29	17	28	31	27	21	22	19

Число срабатываний счетчика за $\tau=20\mathrm{c}$

$\langle n \rangle$	24.55
σ_n	4.715
$\sigma_{\langle n \rangle}$	0.33
$j = \frac{\langle n \rangle}{\tau}$	1.2275
σ_{j}	0.017

Доли случаев, когда отклонение числа отсчётов n от среднего значения не превышает (по модулю):

Одного стандартного отклонения: 0.71 Двух стандартных отклонений: 0.955 Трёх стандартных отклонений: 1.0

Рис. 2: Наложение теоритического распределения Пуасона на экспериментальную диаграмму
(для $\tau=20\mathrm{c})$

При $\tau = 40c$

№Опыта	1	2	3	4	5	6	7	8	9	10
0	42	44	45	39	50	48	47	44	43	45
10	37	48	44	69	54	52	58	47	39	39
20	52	38	49	48	50	41	57	54	64	52
30	55	46	39	42	56	59	42	56	54	43
40	58	60	45	58	47	42	45	43	45	55
50	41	45	55	54	53	45	53	45	64	63
60	56	49	49	53	47	54	50	44	39	52
70	47	43	53	51	49	44	55	45	44	50
80	58	51	42	55	50	49	42	49	53	41
90	61	52	43	44	58	47	46	59	48	41

Число срабатываний счетчика за $\tau=40\mathrm{c}$

$\langle n \rangle$	49.1
σ_n	6.66
$\sigma_{\langle n \rangle}$	0.67
$j = \frac{\langle n \rangle}{\tau}$	1.2275
σ_{j}	0.017

Доли случаев, когда отклонение числа отсчётов n от среднего значения не превышает (по модулю):

Одного стандартного отклонения: 0.66~Двух стандартных отклонений: 0.96~Трёх стандартных отклонений: 1.0~

Рис. 3: Наложение теоритического распределения Пуасона на экспериментальную диаграмму
(для $\tau=40\mathrm{c})$

 Π ри au=80c

№Опыта	1	2	3	4	5	6	7	8	9	10
0	86	84	98	91	88	85	113	106	105	78
10	90	97	91	111	116	101	81	115	98	97
20	118	103	89	88	100	86	109	98	98	127
30	105	102	101	94	91	90	104	93	100	94
40	109	97	99	91	94	113	87	105	105	89

Число срабатываний счетчика за $\tau=80\mathrm{c}$

$\langle n \rangle$	98.2
σ_n	10.298
$\sigma_{\langle n \rangle}$	1.46
$j = \frac{\langle n \rangle}{\tau}$	1.2275
σ_{j}	0.017

Доли случаев, когда отклонение числа отсчётов n от среднего значения не превышает (по модулю):

Одного стандартного отклонения: 0.68 Двух стандартных отклонений: 0.98 Трёх стандартных отклонений: 1.0

Рис. 4: Наложение теоритического распределения Пуасона на экспериментальную диаграмму
(для $\tau=80\mathrm{c})$

Обсуждение результатов

Можно заметить, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала au и числа точек $N=\frac{t}{-}$

Экспериментальные гистограммы с большой точностью согласуются с распределением Пуассона.

Основное свойство распределения Пуассона выполняется с точностью до десятых. Можно сделать вывод, что регистрация частиц является однородным во времени случайным процессом, а количество отсчётов в одном опыте подчиняется распределению Пуассона.

Можно сделать вывод, что при достаточно больших \overline{n} распределение Пуассона приближается к нормальному распределению (распределению Гаусса)

Вывод

В ходе выполнения работы познакомился с основными понятиями статистики. Определил среднее число регистрируемых космических лучей в секунду и определил погрешность результата. Выяснил, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала τ и числа точек $N=\frac{t}{\tau}$. Проверил возможность описания исследуемого процесса статистическими законами Пуассона и Гаусса.