Correctiemodel HAVO Wiskunde B - Voorbeeldexamen

1	а	$(\sqrt{x} = \sqrt{10 - 2x} \text{ kwadrateren geeft}) \ x = 10 - 2x$	1
		$x = 3\frac{1}{3} \text{ (vold.)}$	1
	b	$f(x) > g(x)$ als $3\frac{1}{3} < x \le 5$	2
		(voor $3\frac{1}{3} < x < 5$: 1 punt, voor $x > 3\frac{1}{3}$ geen punten toekennen)	
	С	$Voor f'(x) = \frac{1}{2\sqrt{x}}$	2
		De rc van de raaklijn is $f'(1) = \frac{1}{2}$	1
		Voor het opstellen van de vergelijking	2
	d	$\frac{1}{2}x + \frac{1}{2} = \sqrt{10 - 2x} \text{ wordt } x + 1 = 2\sqrt{10 - 2x} \text{ wordt } (x + 1)^2 = 4(10 - 2x)$	2
		Omwerken tot $x^2 + 10 x - 39 = 0$	2
		(of eerst kwadrateren en daarna vermenigvuldigen met 4)	
		x = -13 of $x = 3$ waarbij $x = -13$ vervalt	2
		Het snijpunt is $B(3, 2)$	1

2	а	Tussen $x=1$ en $x=3$ is de gemiddelde groeifactor $\left(\frac{20}{10}\right)^{\frac{1}{2}}\approx 1,41$	2
		Tussen $x=3$ en $x=6$ is de gemiddelde groeifactor $\left(\frac{56,6}{20}\right)^{\frac{1}{3}}\approx 1,41$ dus $g\approx 1,4$	2
		De beginwaarde is $a \approx \frac{10}{1,41} \approx 7,1 \text{ dus } y \approx 7,1 \cdot 1,4^x$	2
	b	Inzicht dat dan moet gelden: $y = a \cdot x^n$	2
		(1,10) invullen geeft $a=10$	1
		$(3,20)$ invullen geeft $10 \cdot 3^n = 20$ zodat $n = 3\log(2) \approx 0.63$	2
		(6; 56,6) invullen in $y \approx 10 \cdot x^{0.63}$ geeft 56,6 ≈ 30.9 dus geen machtsverband.	2
		Alternatief voor de laatste regel:	
		(6; 56,6) invullen geeft $10 \cdot 6^n = 56,6$ zodat $n = {}^6\log(5,66) \approx 0,97$	
		$0.97 \neq 0.63$, dus geen machtsverband.	

_		_
3 a	f(x) = g(x) oplossen geeft $x = 3$	2
	Voor 3 < x < 6	2
	(voor $3 < x \le 6$: 1 punt, voor $x > 3$ geen punten toekennen)	
b	Spiegeling in de $y-$ as (of vermenigvuldiging t.o.v. de $y-$ as met -1)	1
	Een verschuiving naar rechts met 6 eenheden	1
	Voor de juiste volgorde	1
	(Óf: verschuiving naar links met 6 eenheden, daarna verm. t.o.v. y -as met -1 .)	
С	767 667 - 8866 (777 -	2
	Herleiden tot $x (6-x) = 8$	2
	Oplossen tot $x = 2$ of $x = 4$	2
d	De y-coördinaat van A is $2\log(1\frac{1}{2})$	1
	Inzicht dat $g(x) = \log \left(1\frac{1}{2}\right)$ moet worden opgelost	2
	Dit geeft $x = 4\frac{1}{2}$	1
	AB = 3	1

4	а	De periode is 2, dus $q=rac{2\pi}{2}=\pi$	1
		De amplitude is 2, dus $p=2$	1
		De x -coördinaat van het maximum (een beginpunt) is $\frac{1}{2}$, dus $r=\frac{1}{2}$	1
	b	De periode van h is $\frac{2\pi}{3\pi} = \frac{2}{3}$	1
		Inzicht dat de x -coördinaten van de minima $x = \frac{3}{4} \cdot \frac{2}{3} + k \cdot \frac{2}{3}$ zijn	1
		$\operatorname{Dus}\left(\frac{1}{2},-2\right),\left(\frac{7}{6},-2\right)\operatorname{en}\left(\frac{11}{6},-2\right)$	2
	С	$2\sin(3\pi x) = 1$	1
		$\sin(3\pi x) = \frac{1}{2} \operatorname{geeft} 3\pi x = \frac{\pi}{6} + k \cdot 2\pi \vee 3\pi x = \frac{5\pi}{6} + k \cdot 2\pi$	2
		$x = \frac{1}{18} + k \cdot \frac{2}{3} \lor x = \frac{5}{18} + k \cdot \frac{2}{3}$	1
		$\sin(3\pi x) = \frac{1}{2} \operatorname{geeft} 3\pi x = \frac{\pi}{6} + k \cdot 2\pi \vee 3\pi x = \frac{5\pi}{6} + k \cdot 2\pi$ $x = \frac{1}{18} + k \cdot \frac{2}{3} \vee x = \frac{5}{18} + k \cdot \frac{2}{3}$ $\operatorname{Op} [0, 1]: x = \frac{1}{18} \vee x = \frac{5}{18} \vee x = \frac{13}{18} \vee x = \frac{17}{18}$	2

		2	
5	а	$(x-2)^2 + (y-5)^2 = \left(1\frac{1}{2}\right)^2$	2
		$x^2 - 4x + 4 + y^2 - 10y + 25 = 2\frac{1}{4}$	
		$x^2 + y^2 - 4x - 10y + 26\frac{3}{4} = 0$	1
	b	$\frac{\sin(\angle A)}{BC} = \frac{\sin(\angle C)}{AB} \text{ geeft } \frac{\sin(75^\circ)}{3\sqrt{2}} = \frac{\sin(\angle C)}{\frac{1}{2}\sqrt{65}}$	2
		2	
		$\sin(\angle C) = 0.9177 \dots \Rightarrow \angle C \approx 66.6^{\circ}$	1
		$\angle A + \angle B + \angle C = 180^{\circ}$ (hoekensom driehoek), dus $\angle B = 180^{\circ} - 75^{\circ} - 66,6^{\circ} \approx 38,4^{\circ}$	1
	С	Noem de lijn loodrecht op k door $M(2,5)$ m .	_
		Dan geldt: $k \perp m \Rightarrow rc_k \cdot rc_m = -1 \Rightarrow rc_m = -1$	2
		$m \text{ door } M(2,5) \text{ geeft } 5 = -2 + b \Rightarrow b = 7 \text{ (dus } m: y = -x + 7)$	1
		x-1=-x+7 geeft $x=4$, dus het snijpunt van k en m is $S(4,3)$	1
			1
		$MS = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$ $d(k, c) = 2\sqrt{2} - 1\frac{1}{2}$	1
		-	
	d	$l \parallel k \Rightarrow rc_l = rc_k = 1$	1
		$l \text{ door } P(4\frac{1}{2}, 5) \text{ geeft } 5 = 4\frac{1}{2} + b \Rightarrow b = \frac{1}{2} \text{ (dus } l: y = x + \frac{1}{2})$	1
		$y = x + \frac{1}{2}$ substitueren in de vergelijking van c geeft $(x - 2)^2 + \left(x - 4\frac{1}{2}\right)^2 = 2\frac{1}{4}$	1
		$x^2 - 4x + 4 + x^2 - 9x + 20\frac{1}{4} = 2\frac{1}{4}$	
		$2x^2 - 13x + 22 = 0$	1
		De discriminant van deze vergelijking is $(-13)^4 - 4 \cdot 2 \cdot 22 = -7 < 0$	4
		(dus de vergelijking heeft geen oplossingen)	1
		Lijn l heeft dus geen punten gemeenschappelijk met de cirkel en is dus geen raaklijn	1
			•