EPITA

Mathématiques S2

Partiel

Juin 2021

Durée: 3 heures

Nom:
Prénom :
Classe:
NOTE:
Le barème indiqué est sur 30 points qui seront ramenés à 20 par une règle de trois.
Consignes:
 Documents et calculatrices interdits. Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée. Ne pas écrire au crayon de papier.

Tout au long de ce partiel, chaque réponse doit être soigneusement justifiée.

Exercice 1 (4,5 points)

Soit $E = \mathbb{R}_2[X]$.

a. Déterminer pour chacune des familles suivantes s'il s'agit d'une base de E.

$$\mathcal{F}_1 = \{ P_1(X) = 2X + 2, \ P_2(X) = X^2 + X + 1 \}$$

$$\mathcal{F}_2 = \{Q_1(X) = X^2 + 2, \ Q_2(X) = X^2 + 4X, \ Q_3(X) = X^2 + 2X + 1\}$$

$$\mathcal{F}_3 = \{R_1(X) = X^2 + 2, R_2(X) = X^2 + 4X, R_3(X) = X^2 + 3X + 2\}$$

b. :	Déterminer les	coordonnées du j	polynôme $P(X)$	$)=2X^2+X$	$7 + 8 \mathrm{dans}$	chacune des	bases iden	itifiées o	ci-dessus
------	----------------	------------------	-----------------	------------	------------------------	-------------	------------	------------	-----------

Exercice 2 (2,5 points)

Soient $(a,b,c) \in \mathbb{R}^3$ et $\varphi : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax^2 + bx + c \end{array} \right.$

Déterminer les conditions nécessaires et suffisantes sur (a,b,c) pour que φ soit linéaire. Démontrez votre réponse

Exercice 3 (5 points)

On considère $E = \mathbb{R}^{\mathbb{R}}$, le \mathbb{R} -ev des fonctions de \mathbb{R} dans \mathbb{R} et deux sous-ensembles de $E : \mathcal{P}$ l'ensemble des fonctions paires $(\forall x \in \mathbb{R}, f(-x) = f(x))$ et \mathcal{I} l'ensemble des fonctions impaires $(\forall x \in \mathbb{R}, f(-x) = -f(x))$.

a. Montrer que \mathcal{P} est un sev de E. (On admettra que \mathcal{I} est aussi un sev de E)

b. Montrer à l'aide d'un contre-exemple que $\mathcal{P} \cup \mathcal{I} \neq E$

c. À partir d'une fonction $f \in E,$ on définit les deux fonctions :

$$f_p: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{f(x)+f(-x)}{2} \end{array} \right. \text{ et } f_i: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{f(x)-f(-x)}{2} \end{array} \right. .$$
 Montrer que f_p est paire et f_i impaire. Calculer f_p+f_i .

d. Montrer que \mathcal{P} et \mathcal{I} sont supplémentaires dans E.

Exercice 4 (4 points)

Soit $f: \left\{ \begin{array}{ll} \mathbb{R}^3 & \longrightarrow & \mathbb{R}[X] \\ (a,b,c) & \longmapsto & (a-b)X^4 + (2a+c)X^2 + (a+b+c) \end{array} \right.$

a. Déterminer $\operatorname{Ker} f$, $\dim \operatorname{Ker} f$ et $\dim \operatorname{Im} f$.

b. f est-elle injective?

c. f est-elle surjective?

Exercice 5 (4 points)

Soit $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$ l'application linéaire associée à la matrice $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 1 \end{pmatrix}$ dans les bases canoniques au départ et à l'arrivée.

On note $\mathcal{B}_3 = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et \mathcal{B}_4 la base canonique de \mathbb{R}^4 .

On définit : $\mathcal{D}_3 = \{u_1, u_2, u_3\}$ base de \mathbb{R}^3 où $u_1 = (1, 0, 1), u_2 = (1, -1, 0), u_3 = (0, 1, -1)$

et $\mathcal{D}_4 = \{v_1, v_2, v_3, v_4\}$ base de \mathbb{R}^4 où $v_1 = (1, 2, 1, 2), \ v_2 = (0, 3, 0, 3), \ v_3 = (1, 0, 0, 1), \ v_4 = (0, 0, 0, 1).$

a. Quelle est l'image des vecteurs de \mathcal{B}_3 par g?

b. Soit $(x, y, z) \in \mathbb{R}^3$, calculer g((x, y, z)).

c. Déterminer la matrice de g dans la base \mathcal{B}_3 au départ et \mathcal{D}_4 à l'arrivée.

d. Déterminer la matrice de g dans la base \mathcal{D}_3 au départ et \mathcal{D}_4 à l'arrivée.

Exercice 6 (4 points)

Soit
$$h: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (2x+y+3z,x-y,x+z) \end{array} \right.$$

a. Déterminer la matrice M associée à h dans la base canonique au départ et à l'arrivée.

b. On appelle C_1, C_2, C_3 les vecteurs colonnes de cette matrice. La famille $\{C_1, C_2, C_3\}$ est-elle libre? Sinon, en extraire une famille libre maximale.

c. En déduire $\operatorname{Im} h$, $\operatorname{rg}(h)$ et $\operatorname{Ker} h$.

Exercice 7 (3 points)

Soit \mathcal{B} la base canonique de \mathbb{R}^3 et $\mathcal{B}'=\{(1,0,-1);(4,-1,-3);(1,3,-3)\}$ une autre base de \mathbb{R}^3 . Soit f l'application linéaire associée à la matrice $P=\begin{pmatrix} 1 & 4 & 1 \\ 0 & -1 & 3 \\ -1 & -3 & -3 \end{pmatrix}$ dans la base canonique au départ et à l'arrivée.

a. Sans aucun calcul, que peut-on dire du rang de f? Comment appelle-t-on la matrice P?

b. Déterminer P^{-1} la matrice inverse de P, sans oublier de vérifier votre résultat.

Exercice 8 (4 points)

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z) & \longmapsto & \left(x, \frac{1}{2}(y - z), \frac{1}{2}(z - y)\right) \end{array} \right.$$

a. Montrer que f est un projecteur.

b. Déterminer Ker f et Im f sous forme d'espaces vectoriels engendrés et en déduire une base \mathcal{B}_1 de Ker f et une base \mathcal{B}_2 de $\operatorname{Im} f$.

c. On admet que la réunion des vecteurs de ces deux bases $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ est une base de \mathbb{R}^3 .

Déterminer la matrice de f dans la base ${\mathcal B}$ au départ et à l'arrivée.