四班都議為此格

ONTENIDO CONDENSADO

	Prologo v	
Capítulo 1	INTRODUCCIÓN A LA ELECTRÓNICA	1

PRIMERA PARTE DISPOSITIVOS Y CIRCUITOS BÁSICOS 58

Capítulo 2	AMPLIFIC	CADORES	OPERAC	IONALI	es <i>60</i>	
Capítulo 3	Diodos	122				
	_				(T)	

Capítulo 4 Transistores de unión bipolar (BJT) 221 Capítulo 5 Transistores de efecto de campo (FET) 353

SEGUNDA PARTE CIRCUITOS ANALÓGICOS 484

Capítulo 6	AMPLIFICADORES DIFERENCIALES Y DE VARIAS ETAPAS 487	
Capítulo 7	RESPUESTA EN FRECUENCIA 583	
Capítulo 8	RETROALIMENTACIÓN 667	
Capítulo 9	ETAPAS DE SALIDA Y AMPLIFICADORES DE POTENCIA 751	
Capítulo 10	CIRCUITOS INTEGRADOS ANALÓGICOS 810	
Capítulo 11	FILTROS Y AMPLIFICADORES SINTONIZADOS 884	
Capitula 12	CENIED ADODES DE SEÑIAI ES VICIDICITAS CONFORMADODES DE ONDAS	073

TERCERA PARTE CIRCUITOS DIGITALES 1040

Capítulo 13 CIRCUITOS DIGITALES MOS 1042
Capítulo 14 CIRCUITOS DIGITALES BIPOLARES Y DE TECNOLOGÍA AVANZADA 1158

APÉNDICES

A	TECNOLOGÍA DE FABRICACIÓN VLSI A-1	
В	PARAMETROS DE RED DE DOS PUERTOS B-1	
C	UNA INTRODUCCIÓN AL SPICE C-1	
D	Archivos de entrada para ejemplos del SPICE D-1	
E	ALGUNOS TEOREMAS ÚTILES DE REDES E-1	
F	CIRCUITOS DE UNA CONSTANTE DE TIEMPO $F-1$	
G	DETERMINACIÓN DE LOS VALORES DE PARÁMETRO DEL MODELO HÍBRIDO π BJT	G-1
\mathbf{H}	VALORES ESTÁNDAR DE RESISTENCIA Y PREFIJOS DE UNIDADES H-I	
I	RESPUESTAS A PROBLEMAS SELECCIONADOS I-1	

ÍNDICE IN-1

ONTENIDO DETALLADO

Prólogo v

Capítulo 1	INTRODUCCIÓN A LA ELECTRÓNICA 1
	Introducción I
1.1	Señales 2
1.2	Espectro de frecuencias de señales 3
1.3	Señales analógicas y digitales 6
1.4	Amplificadores 9
1.5	Modelos de circuitos para amplificadores 19
1.6	Respuesta en frecuencia de amplificadores 28
1.7	El inversor lógico digital 39
•	Resumen 47
	Bibliografia 48
	Problemas 48

PRIMERA PARTE DISPOSITIVOS Y CIRCUITOS BÁSICOS 58

Capítulo 2 AMPLIFICADORES OPERACIONALES 60

- 2.1 Los terminales del op amp 61
- 2.2 El op amp ideal 62
- 2.3 Análisis de circuitos con op amps ideales; la configuración inversora 64
- 2.4 Otras aplicaciones de la configuración inversora 71
 - 2.4.1 La configuración inversora con impedancias generales Z_1 y Z_2 71
 - 2.4.2 El integrador inversor 73
 - 2.4.3 El op amp diferenciador 78
 - 2.4.4 El sumador ponderado 80
- 2.5 La configuración no inversora 81
- 2.6 Ejemplos de circuitos con op amp 85
- 2.7 Efecto de ganancia finita a circuito abierto y ancho de banda en el funcionamiento de un circuito 92
- 2.8 Operación de op amps a gran señal 97
- 2.9 Imperfecciones de cd 101

 Resumen 108

 Bibliografía 109

 Problemas 110

Capítulo 3 Diodos 122

Introducción	122
--------------	-----

- 3.1 El diodo ideal 123
- 3.2 Curvas características terminales de diodos de unión 131
- 3.3 Operación física de diodos 137
 - 3.3.1 Conceptos básicos de semiconductores 138
 - 3.3.2 La unión pn en condiciones de circuito abierto 143
 - 3.3.3 La unión pn en condiciones de polarización inversa 146
 - 3.3.4 La unión pn en la región de ruptura 149
 - 3.3.5 La unión pn en condiciones de polarización directa 151
 - 3.3.6 Resumen 155
- 3.4 Análisis de circuitos con diodos 155
- 3.5 El modelo a pequeña señal y su aplicación 163
- 3.6 Operación en la región de ruptura inversa. Diodos Zener 172
- 3.7 Circuitos rectificadores 179
- 3.8 Circuitos limitadores y de fijación de amplitud 191
- 3.9 Tipos especiales de diodos 196
- 3.10 El modelo SPICE de un diodo y ejemplos de simulación 199
 Resumen 206
 Bibliografía 206
 Problemas 207

Capítulo 4 Transistores de unión bipolar (BJT) 221

- 4.1 Estructura física y modos de operación 222
- 4.2 Operación del transistor npn en el modo activo 223
- 4.3 El transistor pnp 232
- 4.4 Símbolos y convenciones de circuitos 234
- 4.5 Representación gráfica de curvas características de transistores 238
- 4.6 Análisis de circuitos transistorizados con cd 241
- 4.7 El transistor como amplificador 253
- 4.8 Modelos de circuito equivalente a pequeña señal 259
- 4.9 Análisis gráfico 272
- 4.10 Polarización del BJT para diseño de un circuito discreto 276
- 4.11 Configuraciones básicas de amplificadores de BJT de una etapa 282
- 4.12 El transistor como interruptor; corte y saturación 295
- 4.13 Un modelo general a gran señal para el BJT: el modelo Ebers-Moll (EM) 303
- 4.14 El inversor lógico básico de BJT 310
- 4.15 Curvas características estáticas completas, capacitancias internas y efectos de segundo orden 315
- 4.16 El modelo SPICE de un BJT y ejemplos de simulación 326 Resumen 331 Bibliografía 332 Problemas 333

xvi CONTENIDO DETALLADO

Capítulo 5	TRANSISTORES DE EFECTO DE CAMPO (FET)	252
Cabitulo 5	I RANSISTORES DE EFECTO DE CAMPO (FET)	333

pítulo 5	Transistores de efecto de campo (FET) 353	
	Introducción 353	
5.1	Estructura y operación física del MOSFET del tipo de enriquecimiento 354	
5.2	Curvas características de corriente contra voltaje del MOSFET de enriquecimiento 36	66
5.3	El MOSFET del tipo de agotamiento 376	
5.4	Circuitos con MOSFET en cd 380	
5.5	El MOSFET como amplificador 389	
5.6	Polarización en circuitos amplificadores MOS 400	
	5.6.1 Polarización de amplificadores MOSFET discretos 400	
	5.6.2 Polarización en amplificadores MOS de circuitos integrados 402	
5.7	Configuraciones básicas de amplificadores de una etapa con MOS	
	de circuito integrado 408	
	5.7.1 El amplificador CMOS de fuente común 409	
	5.7.2 El amplificador CMOS de compuerta común 413	
	5.7.3 La configuración de dren común o seguidor de fuente 416	
	5.7.4 Etapas amplificadoras con NMOS 419	
	5.7.5 Una observación final 425	
5.8	El inversor lógico digital CMOS 425	
5.9	El MOSFET como interruptor analógico 436	
5.10	Capacitancias internas del MOSFET y modelo de alta frecuencia 441	
5.11		
5.12	• • • • • • • • • • • • • • • • • • • •	
5.13	· · · · · · · · · · · · · · · · · · ·	
	Resumen 464	
	Bibliografia 464	
	Problemas 466	

CIRCUITOS ANALÓGICOS 484 SEGUNDA PARTE

Capítulo 6 AMPLIFICADORES DIFERENCIALES Y DE VARIAS ETAPAS 487

- El par diferencial BJT 487 6.1
- 6.2 Operación del amplificador diferencial BJT a pequeña señal 492
- Otras características no ideales del amplificador diferencial 504 6.3
- Polarización en circuitos integrados con BJT 508 6.4
- 6.5 El amplificador diferencial BJT con carga activa 522
- Amplificadores diferenciales con MOS 527 6.6
- 6.7 Amplificadores BiCMOS 537
- Amplificadores de GaAs 542 6.8
- 6.9 Amplificadores de varias etapas 551
- Ejemplo de simulación en el programa SPICE 558 6.10 Resumen 563 Bibliografia 564 Problemas 564

(1) (1) 经营业的

CONTENIDO DETALLADO xvii

Capítulo 7 RESPUESTA EN FRECUENCIA 5	83
--------------------------------------	----

Intro	lucción	583

- 7.1 Análisis del dominio s: polos, ceros y diagramas de Bode 584
- 7.2 Función de transferencia del amplificador 590
- 7.3 Respuesta a baja frecuencia de amplificadores de fuente común y emisor común 602
- 7.4 Respuesta a alta frecuencia de amplificadores de fuente común y emisor común 610
- 7.5 Las configuraciones de base común, compuerta común y cascodo 619
- 7.6 Respuesta en frecuencia de seguidores de emisor y de fuente 626
- 7.7 Cascada de colector común y emisor común 630
- 7.8 Respuesta en frecuencia de un amplificador diferencial 635
- 7.9 Ejemplos de simulación SPICE 645 Resumen 649 Bibliografía 650 Problemas 650

Capítulo 8 RETROALIMENTACIÓN 667

Introducción 667

- 8.1 Estructura general de retroalimentación 668
- 8.2 Algunas propiedades de la retroalimentación negativa 670
- 8.3 Cuatro topologías básicas de retroalimentación 675
- 8.4 Amplificador de retroalimentación en serie-paralelo 679
- 8.5 Amplificador de retroalimentación en serie-serie 688
- 8.6 Amplificadores con retroalimentación en paralelo-paralelo y paralelo-serie 696
- 8.7 Determinación de la ganancia de bucle 708
- 8.8 El problema de la estabilidad 713
- 8.9 Efecto de la retroalimentación en los polos de un amplificador 715
- 8.10 Estudio de estabilidad usando diagramas de Bode 725
- 8.11 Compensación de frecuencia 729
- 8.12 Ejemplos de simulación del SPICE 735 Resumen 740 Bibliografía 740 Problemas 741

Capítulo 9 ETAPAS DE SALIDA Y AMPLIFICADORES DE POTENCIA 751

- 9.1 Clasificación de etapas de salida 752
- 9.2 Etapa de salida clase A 753
- 9.3 Etapa de salida clase B 758

xviii CONTENIDO DETALLADO

- 9.4 Etapa de salida clase AB 764
- 9.5 Polarización del circuito clase AB 767
- 9.6 Los BJT de potencia 773
- 9.7 Variaciones en la configuración clase AB 780
- 9.8 Amplificadores de potencia de circuito integrado (IC) 785
- 9.9 Transistores MOS de potencia 792
- o 10 Ejemplo de simulación del SPICE 797

Resumen 802

Bibliografía 802

Problemas 803

Capítulo 10 CIRCUITOS INTEGRADOS ANALÓGICOS 810

Introducción 810

- 10.1 El circuito op amp 741 811
- 10.2 Análisis de cd del 741 815
- 10.3 Análisis a pequeña señal de la etapa de entrada del 741 822
- 10.4 Análisis a pequeña señal de la segunda etapa del 741 828
- 10.5 Análisis de la etapa de salida del 741 830
- 10.6 Ganancia y respuesta en frecuencia del 741 835
- 10.7 Op amps de CMOS 840
- 10.8 Configuraciones alternativas para op amps de CMOS y BiCMOS 850
- 10.9 Convertidores de datos; introducción 856
- 10.10 Circuitos convertidores D/A 860
- 10.11 Circuitos convertidores A/D 864
- 10.12 Ejemplo de simulación del SPICE 870

Resumen 874

Bibliografia 875

Problemas 876

Capítulo 11 FILTROS Y AMPLIFICADORES SINTONIZADOS 884

- 11.1 Transmisión de filtro, tipos y especificación 885
- 11.2 Función de transferencia de un filtro 889
- 11.3 Filtros Butterworth y Chebyshev 892
- 11.4 Funciones de filtro de primer orden y segundo orden 900
- 11.5 El resonador LCR de segundo orden 909
- 11.6 Filtros activos de segundo orden basados en cambio de inductor 915
- 11.7 Filtros activos de segundo orden basados en topología de lazo de dos integradores 923
- 11.8 Filtros activos bicuadráticos de un solo amplificador 930
- 11.9 Sensibilidad 938

CONTENIDO DETALLADO xix

11.10	Filtros de condensador conmutado	941
11.11	Amplificadores sintonizados 946	
11.12	Ejemplos de simulación del SPICE	959
	Resumen 965	
	Bibliografia 966	
	Problemas 967	

Capítulo 12 GENERADORES DE SEÑALES Y CIRCUITOS CONFORMADORES DE ONDAS 973

Introducción 973

- 12.1 Principios básicos de osciladores senoidales 974
- 12.2 Circuitos osciladores con op amp-RC 980
- 12.3 Osciladores LC y cristal 988
- 12.4 Multivibradores biestables 994
- 12.5 Generación de ondas cuadradas y triangulares por medio de multivibradores astables 1002
- 12.6 Generación de un pulso estandarizado; el multivibrador monoestable 1007
- 12.7 Temporizadores de circuito integrado 1009
- 12.8 Circuitos conformadores de onda no lineales 1014
- 12.9 Circuitos rectificadores de precisión 1018
- 12.10 Ejemplos de simulación del SPICE 1026 Resumen 1030 Bibliografía 1030 Problemas 1031

TERCERA PARTE CIRCUITOS DIGITALES 1040

Capítulo 13 CIRCUITOS DIGITALES MOS 1042

- 13.1 Diseño de circuitos digitales: un repaso 1043
 - 13.1.1 Tecnologías de IC digitales y familias de circuitos lógicos 1043
 - 13.1,2 Caracterización de circuito lógico 1045
 - 13.1.3 Estilos para diseño de sistemas digitales 1048.
 - 13.1.4 Abstracción de diseño y ayudas de computadora 1048
- 13.2 Análisis de diseño y operación del inversor CMOS 1049
- 13.3 Circuitos CMOS de compuertas lógicas 1058
- 13.4 Circuitos lógicos pseudo-NMOS 1070
- 13.5 Circuitos lógicos de transistor de paso 1080
- 13.6 Circuitos lógicos dinámicos 1090
- 13.7 Elementos de memoria (candados) y flip-flops 1097
- 13.8 Circuitos multivibradores 1106
- 13.9 Memorias de semiconductor: tipos y arquitecturas 1113

xx CONTENIDO DETALLADO

	Celdas de memoria de acceso aleatorio (RAM) 1116	
13.11	Amplificadores de salida y decodificadores de dirección	1123
	13.11.1 El amplificador de salida 1125	
	13.11,2 El decodificador de dirección de fila 1131	
	13.11.3 El decodificador de dirección de columna 1133	
	Memoria de sólo lectura (ROM) 1134	
13.13	Ejemplo de simulación del SPICE 1140	
	Resumen 1144	

Capítulo 14 Circuitos digitales BIPOLARES Y DE TECNOLOGÍA AVANZADA 1158

Introducción 1158

Bibliografia 1146 Problemas 1146

- 14.1 Operación dinámica del interruptor BJT 1159
- 14.2 Primeras formas de circuitos digitales BJT 1163
- 14.3 Circuitos lógicos de transistor-transistor (TTL o T²L) 1167
- 14.4 Curvas características de un TTL estándar 1180
- 14.5 Familias TTL con rendimiento mejorado 1187
- 14.6 Circuitos lógicos acoplados por emisor (ECL) 1195
- 14.7 Circuitos digitales con BiCMOS 1211
- 14.8 Circuitos digitales de arseniuro de galio 1216
- 14.9 Ejemplo de simulación del SPICE 1224
 Resumen 1230
 Bibliografía 1231
 Problemas 1232

APÉNDICES

- A TECNOLOGÍA DE FABRICACIÓN VLSI A-1
- **B** PARAMETROS DE RED DE DOS PUERTOS **B-1**
- C UNA INTRODUCCIÓN AL SPICE C-1
- D ARCHIVOS DE ENTRADA PARA EJEMPLOS DEL SPICE D-1
- E ALGUNOS TEOREMAS ÚTILES DE REDES E-1
- F CIRCUITOS DE UNA CONSTANTE DE TIEMPO F-1
- G DETERMINACIÓN DE LOS VALORES DE PARÁMETRO DEL MODELO HÍBRIDO π BJT G-1
- H VALORES ESTÁNDAR DE RESISTENCIA Y PREFIJOS DE UNIDADES H-1
- I RESPUESTAS A PROBLEMAS SELECCIONADOS I-1

ÍNDICE IN-1