α) Το $P(x) = -x^3 - 4x^2 - x + 6$ έχει άθροισμα συντελεστών ίσο με το 0, οπότε έχει ρίζα το 1. Το σχήμα Horner για τη διαίρεση P(x): (x-1) φαίνεται στο παρακάτω σχήμα

-1	-4	-1	6	1		
	-1	-5	-6			
-1	-5	-6	0			

Συνεπώς η ανίσωση P(x) < 0 γίνεται ισοδύναμα $(x-1)(-x^2-5x-6) < 0$.

Ο πίνακας προσήμου του $(x-1)(-x^2-5x-6)$ φαίνεται στον παρακάτω πίνακα προσήμων

х	-∞		-3	}	-2	2		1		+∞
x-1		-		-			_	•	+	
$-x^2 - 5x - 6$		-	7	+	(F	-	T	-	
$(x-1)(-x^2-5x-6)$		+	7	_	(ļ	+	7	-	

Συνεπώς η ανίσωση P(x) < 0 αληθεύει για κάθε $x \in (-3, -2) \cup (1, +\infty)$.

β) Με βάση το α) ερώτημα, η γραφική παράσταση της πολυωνυμικής συνάρτησης P(x) θα πρέπει να είναι κάτω από τον άξονα xx', για κάθε $x \in (-3,-2) \cup (1,+\infty)$. Το μόνο από τα δοσμένα σχήματα που ικανοποιεί αυτήν την απαίτηση είναι το γ.

Εναλλακτικά, αφού P(0) = 6 θα πρέπει η γραφική παράσταση να διέρχεται από το σημείο (0,6) και το μόνο σχήμα που ικανοποιεί αυτήν την απαίτηση είναι το γ.

γ) Αν στο σχήμα γ συμπληρώσουμε τη γραφική παράσταση της $\ln x$ όπως φαίνεται παρακάτω, θα διαπιστώσομε ότι έχουν ένα μόνο κοινό σημείο με τετμημένη 1, που σημαίνει ότι η εξίσωση $P(x) = \ln x$ έχει μοναδική λύση την x = 1.

Εναλλακτικά, η εξίσωση $P(x) = \ln x$ ορίζεται για x > 0.

Για x > 1 έχουμε ότι $P(x) < 0 < \ln x$ που σημαίνει ότι η εξίσωση $P(x) = \ln x$ δεν έχει ρίζα στο $(1, +\infty)$.

Επίσης για 0 < x < 1 έχουμε ότι $\ln x < 0 < P(x)$ που σημαίνει ότι η εξίσωση $P(x) = \ln x$ δεν έχει ρίζα στο (0,1).

Τέλος $P(1) = \ln 1 = 0$ που σημαίνει ότι η εξίσωση $P(x) = \ln x$ έχει μοναδική λύση την x = 1.

