CHEME 546 FINAL PRESENTATION Prospecty

BACKGROUND

The goal of our project is to produce a python package that is able to efficiently analyze fourier-transform infrared spectroscopy (FTIR) data.

BACKGROUND

1.5 hrs per reading

~Steps

- 1. Subtracting water vapor
- Cutting wavenumbers to range of interest
- 3. Plot data
- 4. Take second derivative (of absorbance) and plot
- Add individual points to define baseline – relying on points identified from the second derivative plot
- 6. Fit peaks from your baselinesubtracted data
- 7. Plot subtracted baseline data

OBJECTIVES:

SUBTRACT WATER VAPOR.

WAVENUMBERS TO ROI.

PLOT DATA

TAKE 2ND DERIVATIVE
AND PLOT

☐ ADD INDIVID. PTS TO DEFINE BASELINE.

FIT PEAKS FROM

BASELINE-SUBTRAC

TED DATA

PLOT SUBTRACTED
BASELINE DATA

TEAM WORKFLOW

CREATE CODE SPACE MAKE SYNC TO LOCAL BRANCH

DEVELOPMENT WORKFLOW

ANALYSIS WORKFLOW

Data from Experiments

Create a Data Folder

.py Functions

Jupyter Notebook

Output: Graphs & Values

SUBTRACTING WATER VAPOR

CURRENT STATUS:

Working function which subtracts the water vapor spectrum.

CHALLENGES:

Robustness is insufficient due to limited water vapor data.

NEXT STEPS:

Gain more water vapor data to improve accuracy.

FUNCTION 1

Remove_wv.py performs water vapor subtraction on raw spectral data. It interpolates raw spectral data and water vapor spectrum to a common grid. Water vapor is subtracted to account for atmospheric noise.

CUTTING WAVENUMBERS TORANGE OF INTEREST

CURRENT STATUS: Complete with no bugs.

FUNCTION 2

Cut_range.py cuts the specified range from raw spectra data and performs atmospheric subtraction.

PLOT DATA

CURRENT STATUS:

Complete with no bugs.

NEXT STEPS:

Get user input on plot visuals and change accordingly.

TAKE 2ND DERIVATIVE & PLOT

CURRENT STATUS:

Second derivative plotted, visually identical to the example results shown in methodology video, second derivative peak identified and plotted.

CHALLENGES:

When to bring in the spline function

NEXT STEPS:

Running more data through it to see how the function responds to various sets of spectra data.

FUNCTION 3

Second_deriv.py takes the data set, gives spline function of 2nd derivative and returns two relevant variables to allow for future peak finding and plotting of the second derivative.

REMAINING OBJECTIVES/ NEXT STEPS

Feature details:

- Add individual points to address baseline
- Fit peaks from baseline-subtracted data
- Plot subtracted baseline data

General:

- More user stories to improve the applicability of package
- Add test for peak x values
- Make our own variable class to minimized package complexity

Thank you!

Questions?