Having fun with 1-D Kalman Filter

Sanjiban Choudhury

Suppose you are an alien beamed to earth ...

.. and you think you landed in UW

Current belief

$$bel(x_t)$$

Eventually GPS measurement comes in...

... and says you are in New York

What should we set as our new belief?

Depends on measurement uncertainty

Case A: Measurement uncertainty same as state

Case B: Uncertainty is 100x state

Case C: Uncertainty is anywhere on earth

Recap of the scenario

What should we set as our new belief?

If we were to do Bayes filtering in our head ...

Measurement Uncertainty

Updated belief

Small

(0.5 km)

Medium

(50 km)

Large (Anywhere on earth)

The Kalman Filter

(Bayes filter with Gaussian beliefs and linear models)

1-D Kalman Filtering

Belief is a Gaussian

$$bel(x_t) = P(x_t) = \frac{1}{\sqrt{2\pi\sigma_t^2}} e^{-\frac{(x_t - \mu_t)^2}{2\sigma_t^2}}$$
$$= \mathcal{N}(\mu_t, \sigma_t^2)$$

Motion model is linear with Gaussian noise

$$x_{t+1} = x_t + u_{t+1} + \mathcal{N}(0, \sigma_u^2)$$

Observation model is linear with Gaussian noise

$$z_{t+1} = x_{t+1} + \mathcal{N}(0, \sigma_z^2)$$

Step 0: Start with belief at time t

$$bel(x_t) = \mathcal{N}(\mu_t, \sigma_t^2)$$

Execute control action

$$\overline{bel}(x_{t+1}) = \int_{-\infty}^{\infty} P(x_{t+1}|x_t, \mathbf{u_{t+1}}) \ bel(x_t) \ dx_t$$

Gaussian

Gaussian

Gaussian

Step 1: Apply motion model

$$\overline{w}_{t+1}$$

$$\overline{bel}(x_{t+1}) = \mathcal{N}(\mu_t + u_{t+1}, \sigma_t^2 + \sigma_u^2)$$
$$= \mathcal{N}(\overline{x}_{t+1}, \overline{\sigma}_{t+1}^2)$$

Receive a measurement

Step 2: Apply Bayes' rule

$$bel(x_t)$$
 $bel(x_{t+1})$ $bel(x_{t+1})$ $P(x_{t+1}|z_{t+1})$

$$bel(x_{t+1}) = \eta P(z_{t+1}|x_{t+1}) \overline{bel}(x_{t+1})$$
(Gaussian) (Gaussian) (Gaussian)

Updated belief also a Gaussian!

$$bel(x_{t+1}) = \mathcal{N}\left(\frac{\frac{1}{\overline{\sigma}_{t+1}^2}\overline{x}_{t+1} + \frac{1}{\sigma_z^2}z_{t+1}}{\frac{1}{\overline{\sigma}_{t+1}^2} + \frac{1}{\sigma_z^2}}, \frac{1}{\frac{1}{\overline{\sigma}_{t+1}^2} + \frac{1}{\sigma_z^2}}\right)$$

Linearly interpolate prediction and measurement

$$bel(x_{t+1}) = \mathcal{N}\left(\frac{\frac{1}{\overline{\sigma}_{t+1}^2} \overline{x}_{t+1} + \frac{1}{\sigma_z^2} z_{t+1}}{\frac{1}{\overline{\sigma}_{t+1}^2} + \frac{1}{\sigma_z^2}}\right) \frac{1}{\frac{1}{\overline{\sigma}_{t+1}^2} + \frac{1}{\sigma_z^2}}\right)$$

Problem: Variance ALWAYS decreases!

... no matter what the measurement values are!

Back to example ...

What should we set as our new belief?

Measurement Uncertainty	Our reasonable guess	Kalman Filter
	84000	
Small	Large	$\mathrm{Small}~(<0.5\mathrm{km})$
(0.5 km)	(Anywhere on earth)	(Centered at midpoint!)
Medium	Large	Small $(<0.5\mathrm{km})$
(50 km)	(Anywhere on earth)	(Centered close to UW)
Large	Original belief	Original belief (0.5km)
(Anywhere on earth)	(UW, 500m)	(Centered at UW)

What is broken ?!?

Is the linear model broken?

Is the Gaussian assumption broken?

Is the
Bayes
filtering
broken?

Nothing is broken - Linear Gaussian model says the probability of event 1 and 2 is astronomically low.

Bayes filter in a nutshell

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \int P(x_t|\mathbf{u_t}, x_{t-1})bel(x_{t-1})dx_{t-1}$$

Step 2: Correction - apply Bayes rule given measurement

