Introdução à criptografia Assimétrica Auditoria e Segurança de SI

Prof. Roberto Cabral rbcabral@ufc.br

Universidade Federal do Ceará

 1° semestre/2023

• Criptografia de chave pública ou criptografia assimétrica?

- Criptografia de chave pública ou criptografia assimétrica?
- A criptografia simétrica foi usada por pelo menos 4000 anos.

- Criptografia de chave pública ou criptografia assimétrica?
- A criptografia simétrica foi usada por pelo menos 4000 anos.
- Criptografia assimétrica é bastante nova!

- Criptografia de chave pública ou criptografia assimétrica?
- A criptografia simétrica foi usada por pelo menos 4000 anos.
- Criptografia assimétrica é bastante nova!
 - o Foi introduzida pela primeira vez em 1976 por Diffie, Hellman e Merkle.

- Criptografia de chave pública ou criptografia assimétrica?
- A criptografia simétrica foi usada por pelo menos 4000 anos.
- Criptografia assimétrica é bastante nova!
 - o Foi introduzida pela primeira vez em 1976 por Diffie, Hellman e Merkle.
- A maioria dos algoritmos assimétricos são baseados na teoria dos números!

• Duas propriedades de criptossistemas simétricos:

- Duas propriedades de criptossistemas simétricos:
 - o A mesma chave é usada na encriptação e decriptação.

- Duas propriedades de criptossistemas simétricos:
 - o A mesma chave é usada na encriptação e decriptação.
 - As funções de encriptação e decriptação são muito similares (ou até mesmo idênticas).

• Seguro como um cofre, só Alice e Bob têm uma cópia da chave

- Seguro como um cofre, só Alice e Bob têm uma cópia da chave
 - o Encriptação da Alice: "bloqueia" a mensagem no cofre com sua chave.

- Seguro como um cofre, só Alice e Bob têm uma cópia da chave
 - o Encriptação da Alice: "bloqueia" a mensagem no cofre com sua chave.
 - o Decriptação de Bob: usa sua chave para abrir o cobre.

 Algoritmos simétricos, como AES ou 3DES, são muito seguros e rápidos, mas.

- Algoritmos simétricos, como AES ou 3DES, são muito seguros e rápidos, mas.
- Problema da distribuição de chaves: a chave secreta deve ser transportada de forma segura.

- Algoritmos simétricos, como AES ou 3DES, são muito seguros e rápidos, mas.
- Problema da distribuição de chaves: a chave secreta deve ser transportada de forma segura.
- Número de chaves: em uma rede, cada par de usuários deve possuir uma chave individual.

- Algoritmos simétricos, como AES ou 3DES, são muito seguros e rápidos, mas.
- Problema da distribuição de chaves: a chave secreta deve ser transportada de forma segura.
- Número de chaves: em uma rede, cada par de usuários deve possuir uma chave individual.
 - Seja n o número de usuários da rede, são necessárias $\frac{n*(n-1)}{2}$ chaves, cada usuário deve manter n-1 chaves.

- Algoritmos simétricos, como AES ou 3DES, são muito seguros e rápidos, mas.
- Problema da distribuição de chaves: a chave secreta deve ser transportada de forma segura.
- Número de chaves: em uma rede, cada par de usuários deve possuir uma chave individual.
 - Seja n o número de usuários da rede, são necessárias $\frac{n*(n-1)}{2}$ chaves, cada usuário deve manter n-1 chaves.
- Alice ou Bob podem trapacear o outro, pois eles possuem a mesma chave.

- Algoritmos simétricos, como AES ou 3DES, são muito seguros e rápidos, mas.
- Problema da distribuição de chaves: a chave secreta deve ser transportada de forma segura.
- Número de chaves: em uma rede, cada par de usuários deve possuir uma chave individual.
 - Seja n o número de usuários da rede, são necessárias $\frac{n*(n-1)}{2}$ chaves, cada usuário deve manter n-1 chaves.
- Alice ou Bob podem trapacear o outro, pois eles possuem a mesma chave.
 - Exemplo: Alice pode afirmar que nunca pediu uma TV online de Bob (ele poderia ter fabricado seu pedido). Para evitar isso: "não repúdio".

Exemplo

Ideia por trás da criptografia assimétrica

• Principio: "dividir" a chave

• Durante a geração de chaves, um par k_{pub} e k_{pr} é computado.

• Um cofre que possui uma chave pública (para depositar) e uma privada (para resgatar).

• Um cofre que possui uma chave pública (para depositar) e uma privada (para resgatar).

• Um cofre que possui uma chave pública (para depositar) e uma privada (para resgatar).

o Alice deposita (encripta) uma mensagem usando a - não secreta - chave pública k_{pub} .

• Um cofre que possui uma chave pública (para depositar) e uma privada (para resgatar).

- \circ Alice deposita (encripta) uma mensagem usando a não secreta chave pública k_{nub} .
- \circ Apenas Bob possui a secreta chave privada k_{pr} para reaver (decriptar) a mensagem.

Protocolo básico para encriptação usando criptografica assimétrica

Alice Bob $(K_{pubB}, K_{prB}) = K$ K_{pubB} Х $y=e_{K_{pubB}}(x)$ $x=d_{K_{DP}}(y)$

Protocolo básico para encriptação usando criptografia assimétrica

Alice $K_{pubB} \qquad (K_{pubB}, K_{prB}) = K$ x $y = e_{K_{pubB}}(x) \qquad y$

• Problema de distribuição de chaves resolvido*

 $x=d_{K_{nrB}}(y)$

Mecanismos de segurança com criptografia assimétricano estado com criptografia assimetro estado com criptografia estado com criptograf

• O que pode ser realizado usando criptografia assimétrica?

Mecanismos de segurança com criptografia assimétricano estado com criptografia assimetro estado com criptografia estado com criptograf

- O que pode ser realizado usando criptografia assimétrica?
 - Distribuição de chaves: distribuição das chaves sem segredo pré-compartilhado (Diffie-Helman key exchange, RSA).

Mecanismos de segurança com criptografia assimétricano

- O que pode ser realizado usando criptografia assimétrica?
 - **Distribuição de chaves:** distribuição das chaves sem segredo pré-compartilhado (Diffie-Helman key exchange, RSA).
 - Não repúdio e assinatura digital: prover a integridade das mensagens (RSA, DSA, ECDSA).

Mecanismos de segurança com criptografia assimétricano de segurança de segurança

- O que pode ser realizado usando criptografia assimétrica?
 - **Distribuição de chaves:** distribuição das chaves sem segredo pré-compartilhado (Diffie-Helman key exchange, RSA).
 - Não repúdio e assinatura digital: prover a integridade das mensagens (RSA, DSA, ECDSA).
 - Identificação, usando protocolos de resposta de desafio com assinaturas digitais.

Mecanismos de segurança com criptografia assimétricano de segurança de segurança

- O que pode ser realizado usando criptografia assimétrica?
 - **Distribuição de chaves:** distribuição das chaves sem segredo pré-compartilhado (Diffie-Helman key exchange, RSA).
 - Não repúdio e assinatura digital: prover a integridade das mensagens (RSA, DSA, ECDSA).
 - Identificação, usando protocolos de resposta de desafio com assinaturas digitais.
 - o Encriptação (RSA, Elgamal).

Mecanismos de segurança com criptografia assimétricano de segurança de segurança

- O que pode ser realizado usando criptografia assimétrica?
 - **Distribuição de chaves:** distribuição das chaves sem segredo pré-compartilhado (Diffie-Helman key exchange, RSA).
 - Não repúdio e assinatura digital: prover a integridade das mensagens (RSA, DSA, ECDSA).
 - Identificação, usando protocolos de resposta de desafio com assinaturas digitais.
 - o Encriptação (RSA, Elgamal).
 - Desvantagem: ineficiente computacionalmente! (1000 vezes mais lento que algoritmos simétricos.)

Protocolo básico de transporte de chaves

 Na prática, usa-se sistemas híbridos. Isto é, uma junção entre a algoritmos simétricos e assimétricos.

Protocolo básico de transporte de chaves

- Na prática, usa-se sistemas híbridos. Isto é, uma junção entre a algoritmos simétricos e assimétricos.
 - Estabelecimento de chaves (para esquemas simétricos) e assinatura digital são computados com algoritmos assimétricos (lentos).

Protocolo básico de transporte de chaves

- Na prática, usa-se sistemas híbridos. Isto é, uma junção entre a algoritmos simétricos e assimétricos.
 - Estabelecimento de chaves (para esquemas simétricos) e assinatura digital são computados com algoritmos assimétricos (lentos).
 - **Encriptação** de dados é feita (rápida) com algoritmos simétricos, por exemplo, cifras de bloco e cifras de fluxo.

Protocolo básico de transporte de chaves - Exemplo Protoc

• Exemplo de protocolo híbrido que usa o AES como cifra simétrica.

Protocolo básico de transporte de chaves - Exemplos

• Exemplo de protocolo híbrido que usa o AES como cifra simétrica.

• Como saber se a chave pública pertence a quem diz pertencer?

- Como saber se a chave pública pertence a quem diz pertencer?
- Uma forma de resolver esse problema é por meio de certificados.

- Como saber se a chave pública pertence a quem diz pertencer?
- Uma forma de resolver esse problema é por meio de certificados.
 - Grosseiramente falando, os certificados vinculam uma chave pública a uma determinada identidade

- Como saber se a chave pública pertence a quem diz pertencer?
- Uma forma de resolver esse problema é por meio de certificados.
 - Grosseiramente falando, os certificados vinculam uma chave pública a uma determinada identidade
- Um outro problema nas chaves públicas são os tamanhos da chaves públicas e o desempenho computacional.

• Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - \circ Calcular y = f(x) é computacionalmente fácil.

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - Calcular y = f(x) é computacionalmente fácil.
 - \circ Calcular $x = f^{-1}(y)$ é computacionalmente inviável.

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - \circ Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - ullet Dado um inteiro composto n, encontre seus fatores primos.

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - Dado um inteiro composto n, encontre seus fatores primos.
 - Multiplicar dois primos é fácil!

- Esquemas assimétricos são baseados em uma função de caminho único f().
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - ullet Dado um inteiro composto n, encontre seus fatores primos.
 - Multiplicar dois primos é fácil!
 - Logaritmo discreto: (Diffie-Hellman, Elgamal, DSA,...)

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - ullet Dado um inteiro composto n, encontre seus fatores primos.
 - Multiplicar dois primos é fácil!
 - o Logaritmo discreto: (Diffie-Hellman, Elgamal, DSA,...)
 - Dado um y e um m, encontre x tal que $a^x = y \mod m$

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - \circ Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - Dado um inteiro composto n, encontre seus fatores primos.
 - Multiplicar dois primos é fácil!
 - Logaritmo discreto: (Diffie-Hellman, Elgamal, DSA,...)
 - Dado um y e um m, encontre x tal que $a^x = y \mod m$
 - Exponenciação a^x é fácil.

- Esquemas assimétricos são baseados em uma função de caminho único f().
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - ullet Dado um inteiro composto n, encontre seus fatores primos.
 - Multiplicar dois primos é fácil!
 - o Logaritmo discreto: (Diffie-Hellman, Elgamal, DSA,...)
 - Dado um y e um m, encontre x tal que $a^x = y \mod m$
 - Exponenciação a^x é fácil.
 - Curvas Elípticas: (ECDH, ECDSA)

- Esquemas assimétricos são baseados em uma função de caminho único $f(\tt)$.
 - \circ Calcular y = f(x) é computacionalmente fácil.
 - \circ Calcular $x = f^{-1}(y)$ é computacionalmente inviável.
- Funções de caminho único são baseadas em problemas difícil da matemática.
- Três principais famílias:
 - o Fatoração de inteiros: (RSA...)
 - ullet Dado um inteiro composto n, encontre seus fatores primos.
 - Multiplicar dois primos é fácil!
 - Logaritmo discreto: (Diffie-Hellman, Elgamal, DSA,...)
 - Dado um y e um m, encontre x tal que $a^x = y \mod m$
 - Exponenciação a^x é fácil.
 - Curvas Elípticas: (ECDH, ECDSA)
 - Generalização do logaritmo discreto.

Tamanho de chaves e nível de segurança

Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus		crete arithm Group	Elliptic Curve	Hash (A)	Hash (B)
(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1**	
2016 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-512/224 SHA3-224	
2016 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/256 SHA3-256	SHA-1
2016 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-384 SHA3-384	SHA-224 SHA-512/224
2016 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-512 SHA3-512	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-512

FIM