

1.7 波士顿房价预测案例详解

CSDN学院 2017年10月

▶第一步:理解任务,准备数据

- 任务描述
- 数据读取
- 数据探索
- 特征工程

▶波士顿房价预测

• 训练数据: $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$

训练样本数目N:506个样本

- 输入房屋属性x:13个特征(CRIM、...、LSTAT)

- 输出房价y: MEDV (y为连续值,所以这是一个回归问题)

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18	396.9	5.33	36.2

▶数据预处理

- from sklearn.preprocessing import ...
 - 数据标准化 (Standardization)
 - 某个特征的所有样本取值为0均值、1方差
 - 数据归一化(Scaling)
 - 某个特征的所有样本取值在规定范围内
 - 数据正规化(Normalization)
 - 每个样本模长为1
 - 数据二值化
 - 根据特征值取值是否大于阈值将特征值变为0或1,可用类Binarizer实现
 - 数据缺失
 - 数据类型变换(以后讲解)
 - 有些模型只能处理数值型数据。如果给定的数据是不同的类型,必须先将数据变成数值型。

▶数据标准化

- 在很多模型中,假设各特征的取值区间相同。如果数据不满足该假设,需要将数据进行变换。
- 标准化是一种常用数据转换方式,将输入特征变成标准正态分布:均值为0,方差为1。可用类<u>StandardScaler</u>实现。

#数据标准化

from sklearn.preprocessing import StandardScaler

#构造输入特征的标准化器

ss
$$X = StandardScaler()$$

#分别对训练和测试数据的特征进行标准化处理

X train = ss X.fit transform(X train)

$$X \text{ test} = ss X.transform(X \text{ test})$$

对每维特征单独处理

$$x_i' = \frac{x_i - \mu}{\sigma}$$

where
$$\mu = \sum_{i=1}^{N} x_i, \sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2$$

▶数据归一化

• 另一种数据预处理的方式是将特征取值范围归一化到某个区间(scaling),即将样本数据取值限定在特定范围,如 [0,1],可用类MinMaxScaler实现;或 MaxAbsScaler将特征取值缩放到[-1,1]。

• 动机:

- 对非常小的标准偏差的特征更鲁棒
- 在稀疏数据中保留零条目

$$x_i' = \frac{x_i - \min}{\max},$$

$$where \min = \min\{x_1, ..., x_N\}$$

$$\max = \max\{x_1, ..., x_N\}$$

▶数据正规化

• 数据正规化(normalization),将每个样本的模的长度变为单位长度1。可用类Normalizer实现。

$$\mathbf{x}_i' = \mathbf{x}_i / \left\| \mathbf{x}_i \right\|_2 = \mathbf{x}_i / \sqrt{\sum_{j=1}^D x_{ij}^2},$$

• 在求欧式距离(相似度度量指标)时就很必要

▶缺失值填补

- 由于各种原因,实际应用中总是存在一些缺失值,通常表示为NaN。
- scikit-learn的类<u>Imputer</u>提供一些常见填补方法
 - 均值mean (默认方法)
 - 中位数median
 - 众数most_frequent
- pandas库的fillna函数也可以处理缺失值,而且更加灵活,但是重用性较弱

▶ 第二步:模型确定和模型训练

- 1. 确定模型类型
 - 目标函数(损失函数、正则)
- 2、模型训练
 - 优化算法(解析法、梯度下降、随机梯度下降...)

▶线性回归模型

- 学习从输入x到输出y的映射 $f: \hat{y} = f(\mathbf{x})$
 - 输入x:13维的房屋属性
 - 输出 y:房屋价格
 - 回归器 / 模型 (scikit learn中的estimator)
 - 若采用线性回归模型,则 $y = f(\mathbf{x} | \mathbf{w}) = \mathbf{w}^T \mathbf{x}$
- 尝试三种不同的线性回归模型:OLS、岭回归、Lasso

► Scikit learn 中的线性回归模型

sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)

from sklearn.linear_model import LinearRegression

```
# 使用默认配置初始化
lr = LinearRegression()
```

训练模型参数 lr.fit(X_train, y_train)

预测 lr_y_predict = lr.predict(X_test)

Scikit learn 中estimator使用三部曲:

- 1. 构造estimator (可设置参数)
- 2. 训练模型:fit
- 3. 利用模型进行预测: predict

▶随机梯度下降线性回归模型


```
# 线性模型,随机梯度下降优化模型参数
from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线
sgdr = SGDRegressor()

# 训练:参数估计
sgdr.fit(X_train, y_train)

# 预测
sgdr_y_predict = sgdr.predict(X_test)
```


▶ 第四步:模型评估与模型选择

- 模型训练好后,需要在校验集上采用一些度量准则检查模型预测的效果
 - 校验集划分(train_test_split、交叉验证)
 - 评价指标 (sklearn.metrics)
 - 也可以检查残差的分布
 - 还可以打印预测值与真值的散点图
- 模型选择:选择预测性能最好的模型
 - 模型中通常有一些超参数,需要通过模型选择来确定
- 参数搜索范围:网格搜索(GridSearch)

▶预测残差分布


```
%matplotlib inline
```

```
from matplotlib import pyplot as plt
```

```
f, ax = plt.subplots(figsize=(7, 5))
f.tight_layout()
ax.hist(boston.target - predictions,bins=40, label='Residuals Linear', color='b', alpha=.5);
ax.set_title("Histogram of Residuals")
ax.legend(loc='best');
```


回忆:极大似然估计假设残差的分布围 0均值的正态分布

残差近似0均值的正态分布,看起来拟合得不错③,只是有点偏

▶ 预测值与真值散点图


```
plt.figure(figsize=(4, 3))
plt.scatter(y_train, lr_y_predict_train)
plt.plot([0, 3], [0, 3], '--k') #数据已经标准化, 3倍标准差即可
plt.axis('tight')
plt.xlabel('True price ($1000s)')
plt.ylabel('Predicted price ($1000s)')
plt.tight_layout()
```


▶线性回归中的模型选择

sklearn.model_selection

- Scikit learn中的model selection模块提供模型选择功能
 - 对于线性模型,留一交叉验证(N折交叉验证,亦称为leave-one-out cross-validation, LOOCV)有更简便的计算方式,因此Scikit learn提供了RidgeCV类和LassoCV类
 - 后续课程将讲述一般模型的交叉验证和参数调优GridSearchCV

RidgeCV

- RidgeCV中超参数λ用alpha表示
- RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normali ze=False, scoring=None, cv=None, gcv_mode=None, store_c v_values=False)

```
from sklearn.linear_model import RidgeCV
```

```
alphas = [0.01, 0.1, 1, 10,20, 30, 50, 60, 80,100]
```

reg = RidgeCV(alphas=alphas, store_cv_values=True)
reg.fit(X_train, y_train)

▶模型选择

• 可以通过在交叉验证误差曲线上找最佳值找到最佳模型

LassoCV

- LassoCV的使用与RidgeCV类似
- Scikit learn还提供一个与Lasso类似的LARS (least angle regression,最小角回归),二者仅仅是优化方法不同,目标函数相同。
- 当数据集中特征维数很多且存在共线性时, LassoCV更合适。

▶各模型比较

	线性回归	岭回归 (alpha=10)	LASSO (alpha=0.01)
CRIM	-0.10643777	-0.09781781	-0.07849129
ZN	0.13238196	0.11357219	0.09347763
INDUS	0.0252063	-0.00069185	0
CHAS	0.08244512	0.08574201	0.0807981
NOX	-0.17705123	-0.14911378	-0.12532951
RM	0.30530892	0.31400952	0.31939438
AGE	-0.00429841	-0.00946359	0
DIS	-0.33726245	-0.30439602	-0.26700207
RAD	0.2942942	0.22375134	0.15577565
TAX	-0.24568977	-0.17767457	-0.12534733
PTRAIO	-0.18931585	-0.18290525	-0.17643178
В	0.08015874	0.07997069	0.07117083
LATAT	-0.43340828	-0.41743638	-0.43518032

THANK YOU

