Breadth First Search

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 4

Reachability in a graph

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked

2/13

Reachability in a graph

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked
- Choose an appropriate representation
 - Adjacency matrix
 - Adjacency list

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	{1,4}	
1	{2}	
2	{0}	
3	{4,6}	
4	{0,3,7}	

5	{3,7}
6	{5}
7	{4,8}
8	{5,9}
9	{8}

Reachability in a graph

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked
- Choose an appropriate representation
 - Adjacency matrix
 - Adjacency list
- Strategies for systematic exploration
 - Breadth first propagate marks in "layers"
 - Depth first explore a path till it dies out, then backtrack

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	{1,4}
1	{2}
2	{0}
3	{4,6}
4	{0,3,7}

5	{3,7}
6	{5}
7	{4,8}
8	{5,9}
9	{8}

2/13

Breadth first search (BFS)

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 -

Breadth first search (BFS)

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 -
- Each visited vertex has to be explored
 - Extend the search to its neighbours
 - Do this only once for each vertex!

Breadth first search (BFS)

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 -
- Each visited vertex has to be explored
 - Extend the search to its neighbours
 - Do this only once for each vertex!
- Maintain information about vertices
 - Which vertices have been visited already
 - Among these, which are yet to be explored

• Assume $V = \{0, 1, \dots, n-1\}$

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}\$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$
- Maintain a sequence of visited vertices yet be explored
 - A queue first in, first out
 - Initially empty

```
class Queue:
    def __init__(self):
        self.queue = []
    def addq(self,v):
        self.queue.append(v)
    def delq(self):
        v = None
        if not self.isemptv():
            v = self.queue[0]
            self.queue = self.queue[1:]
        return(v)
    def isempty(self):
        return(self.queue == [])
    def str (self):
        return(str(self.queue))
```

4 / 13

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}\$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$
- Maintain a sequence of visited vertices yet be explored
 - A queue first in, first out
 - Initially empty

```
q = Queue()
for i in range(3):
    q.addq(i)
    print(q)
print(q.isempty())
for j in range(3):
    print(q.delq(),q)
print(q.isemptv())
[0]
[0, 1]
[0, 1, 2]
False
0 [1, 2]
1 [2]
2 []
```

True

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$
- Maintain a sequence of visited vertices yet be explored
 - A queue first in, first out
 - Initially empty
- Exploring a vertex i
 - For each edge (i, j), if visited(j) is False,
 - Set visited(*j*) to True
 - Append j to the queue

```
q = Queue()
for i in range(3):
    q.addq(i)
    print(q)
print(q.isempty())
for j in range(3):
    print(q.delq(),q)
print(q.isemptv())
[0]
[0, 1]
[0, 1, 2]
False
0 [1, 2]
1 [2]
2 []
```

True

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - \blacksquare Add j to the queue

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add *j* to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue
- Stop when queue is empty

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue
- Stop when queue is empty

```
def BFS(AMat,v):
    (rows,cols) = AMat.shape
    visited = {}
    for i in range(rows):
        visited[i] = False
    q = Queue()
    visited[v] = True
    q.addq(v)
    while(not q.isempty()):
        i = q.delq()
        for k in neighbours(AMat, j):
            if (not visited[k]):
                visited[k] = True
                q.addq(k)
```

return(visited)

5 / 13

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue
- Stop when queue is empty

```
def BFSList(AList,v):
    visited = {}
    for i in AList.keys():
        visited[i] = False
    q = Queue()
    visited[v] = True
    q.addq(v)
    while(not q.isemptv()):
        i = q.delq()
        for k in AList[i]:
            if (not visited[k]):
                visited[k] = True
                q.addq(k)
    return(visited)
```

5 / 13

V	Visited							
0	False							
1	False							
2	False							
3	False							
4	False							
5	False							
6	False							
7	False							
8	False							
9	False							

To explore queue									

V	Visited						
0	False						
1	False						
2	False						
3	False						
4	False						
5	False						
6	False						
7	True						
8	False						
9	False						

To explore queue									
7									

■ Mark 7 and add to queue

V	Visited						
0	False						
1	False						
2	False						
3	False						
4	True						
5	True						
6	False						
7	True						
8	True						
9	False						

To explore queue										
4	5	8								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}

V	isited
0	True
1	False
2	False
3	True
4	True
5	True
6	False
7	True
8	True
9	False

To explore queue											
5	8	0	3								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}

V	isited
0	True
1	False
2	False
3	True
4	True
5	True
6	True
7	True
8	True
9	False

To explore queue											
8	0	3	6								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}

V	isited
0	True
1	False
2	False
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue											
0	3	6	9								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
3	6	9	1	2					

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue										
6	9	1	2							

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue											
9	1	2									

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6

V	Visited				
0	True				
1	True				
2	True				
3	True				
4	True				
5	True				
6	True				
7	True				
8	True				
9	True				

To explore queue									
1	2								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
2									

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

- G = (V, E)
 - |V| = n
 - |E| = m
 - If G is connected, m can vary from n-1 to n(n-1)/2

- G = (V, E)
 - |V| = n
 - |E| = m
 - If G is connected, m can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices

- G = (V, E)
 - |V| = n
 - |E| = m
 - If G is connected, m can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

- G = (V, E)
 - |V| = n
 - |E| = m
 - If *G* is connected, *m* can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

Adjacency matrix

- To explore i, scan neighbours(i)
- Look up n entries in row i, regardless of degree(i)

- G = (V, E)
 - |V| = n
 - |E| = m
 - If G is connected, m can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

Adjacency matrix

- To explore i, scan neighbours(i)
- Look up n entries in row i, regardless of degree(i)

Adjacency list

- List *neighbours*(*i*) is directly available
- Time to explore i is degree(i)
- Degree varies across vertices

- G = (V, E)
 - |V| = n
 - |E| = m
 - If *G* is connected, *m* can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

Adjacency matrix

- To explore *i*, scan *neighbours*(*i*)
- Look up n entries in row i, regardless of degree(i)

Adjacency list

- List *neighbours*(*i*) is directly available
- Time to explore i is degree(i)
- Degree varies across vertices

Sum of degrees

- Sum of degrees is 2*m*
- Each edge (*i*, *j*) contributes to *degree*(*i*) and *degree*(*j*)

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency list

- n steps to initialize each vertex
- 2m steps (sum of degrees) to explore all vertices
 - An example of amortized analysis
- Overall time is O(n+m)

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency list

- n steps to initialize each vertex
- 2m steps (sum of degrees) to explore all vertices
 - An example of amortized analysis
- Overall time is O(n+m)

- If $m \ll n^2$, working with adjacency lists is much more efficient
 - This is why we treat *m* and *n* as separate parameters

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency list

- n steps to initialize each vertex
- 2m steps (sum of degrees) to explore all vertices
 - An example of amortized analysis
- Overall time is O(n+m)

- If $m \ll n^2$, working with adjacency lists is much more efficient
 - This is why we treat *m* and *n* as separate parameters
- For graphs, O(m+n) is typically the best possible complexity
 - Need to see each each vertex and edge at least once
 - Linear time

Enhancing BFS to record paths

- If BFS from *i* sets visited(*k*) = True, we know that *k* is reachable from *i*
- How do we recover a path from i to k?

Enhancing BFS to record paths

- If BFS from *i* sets visited(*k*) = True, we know that *k* is reachable from *i*
- How do we recover a path from i to k?
- visited(k) was set to True when exploring some vertex j

Enhancing BFS to record paths

- If BFS from *i* sets visited(*k*) = True, we know that *k* is reachable from *i*
- How do we recover a path from i to k?
- visited(k) was set to True when exploring some vertex j
- Record parent(k) = j
- From *k*, follow parent links to trace back a path to *i*

```
def BFSListPath(AList.v):
    (visited, parent) = ({},{})
    for i in AList.keys():
        visited[i] = False
        parent[i] = -1
    q = Queue()
    visited[v] = True
    q.addq(v)
    while(not q.isempty()):
        j = q.delq()
        for k in AList[i]:
            if (not visited[k]):
                visited[k] = True
                parent[k] = j
                q.addq(k)
```

	Visited	Parent
0	False	-1
1	False	-1
2	False	-1
3	False	-1
4	False	-1
5	False	-1
6	False	-1
7	False	-1
8	False	-1
9	False	-1

	To explore queue									

	Visited	Parent
0	False	-1
1	False	-1
2	False	-1
3	False	-1
4	False	-1
5	False	-1
6	False	-1
7	True	-1
8	False	-1
9	False	-1

To explore queue									
7									

Mark 7, add to queue

	Visited	Parent
0	False	-1
1	False	-1
2	False	-1
3	False	-1
4	True	7
5	True	7
6	False	-1
7	True	-1
8	True	7
9	False	-1

To explore queue										
4	5	8								

- Mark 7, add to queue
- Explore 7, visit {4,5,8}

	Visited	Parent
0	True	4
1	False	-1
2	False	-1
3	True	4
4	True	7
5	True	7
6	False	-1
7	True	-1
8	True	7
9	False	-1

	To explore queue									
5	8	0	3							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}

	Visited	Parent
0	True	4
1	False	-1
2	False	-1
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	False	-1

To explore queue										
8	0	3	6							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}

	Visited	Parent
0	True	4
1	False	-1
2	False	-1
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
0	3	6	9						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
3	6	9	1	2					

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

	To explore queue									
6	9	1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
9	1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

	To explore queue									
1	2									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
2									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

Path from 7 to 6 is 7–5–6

_	Го	ex	plo	re	qu	eue	Э	

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

Path from 7 to 2 is 7-4-0-2

To explore queue									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

Enhancing BFS to record distance

- BFS explores neighbours level by level
- By recording the level at which a vertex is visited, we get its distance from the source vertex

Enhancing BFS to record distance

- BFS explores neighbours level by level
- By recording the level at which a vertex is visited, we get its distance from the source vertex
- Instead of visited(j), maintain level)(j)

```
(level,parent) = ({},{})
for i in AList.keys():
    level[i] = -1
    parent[i] = -1
q = Queue()
level[v] = 0
q.addq(v)
while(not q.isempty()):
    j = q.delq()
    for k in AList[i]:
        if (level[k] == -1):
            level[k] = level[i]+1
            parent[k] = j
            q.addq(k)
```

def BFSListPathLevel(AList.v):

Enhancing BFS to record distance

- BFS explores neighbours level by level
- By recording the level at which a vertex is visited, we get its distance from the source vertex
- Instead of visited(j), maintain level)(j)
- Initalize level(j) = -1 for all j
- Set level(i) = 0 for source vertex
- If we visit k from j, set level(k) to level(j) + 1
- level(j) is the length of the shortest path from the source vertex, in number of edges

```
def BFSListPathLevel(AList.v):
    (level,parent) = ({},{})
    for i in AList.keys():
        level[i] = -1
        parent[i] = -1
    q = Queue()
    level[v] = 0
    q.addq(v)
    while(not q.isempty()):
        j = q.delq()
        for k in AList[i]:
            if (level[k] == -1):
                level[k] = level[i]+1
                parent[k] = j
                q.addq(k)
```

	Level	Parent
0	-1	-1
1	-1	-1
2	-1	-1
3	-1	-1
4	-1	-1
5	-1	-1
6	-1	-1
7	-1	-1
8	-1	-1
9	-1	-1

To explore queue									

	Level	Parent
0	-1	-1
1	-1	-1
2	-1	-1
3	-1	-1
4	-1	-1
5	-1	-1
6	-1	-1
7	0	-1
8	-1	-1
9	-1	-1

To explore queue									
7									

■ Mark 7, add to queue

	Level	Parent
0	-1	-1
1	-1	-1
2	-1	-1
3	-1	-1
4	1	7
5	1	7
6	-1	-1
7	0	-1
8	1	7
9	-1	-1

To explore queue									
4	5	8							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}

	Level	Parent
0	2	4
1	-1	-1
2	-1	-1
3	2	4
4	1	7
5	1	7
6	-1	-1
7	0	-1
8	1	7
9	-1	-1

	To explore queue									
5	8	0	3							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}

	Level	Parent
0	2	4
1	-1	-1
2	-1	-1
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	-1	-1

	To explore queue								
8	0	3	6						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}

	Level	Parent
0	2	4
1	-1	-1
2	-1	-1
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

To explore queue									
0	3	6	9						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}

	Level	Parent
0	2	4
1	3	0
2	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

	To explore queue								
3	6	9	1	2					

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}

	Level	Parent
0	2	4
1	3	0
2	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

To explore queue									
6	9	1	2						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3

	Level	Parent
0	2	4
1	3	0
3	3	0
	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

To explore queue									
9	1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6

	Level	Parent
0	2	4
1	3	0
3	3	0
	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

	To explore queue									
1	2									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9

	Level	Parent			
0	2	4			
1		0			
3	3	0			
3	2	4			
4	1	7			
5	1	7			
6	2	5			
7	0	-1			
8	1	7			
9	2	8			

To explore queue									
2									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1

	Level	Parent			
0	2	4			
1	3	0			
3	3	0			
3	2	4			
4	1	7			
5	1	7			
6	2	5			
7	0	-1			
8	1	7			
9	2	8			

To explore queue									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

■ Breadth first search is a systematic strategy to explore a graph, level by level

13 / 13

Madhavan Mukund Breadth First Search PDSA using Python Week 4

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue

13 / 13

Madhavan Mukund Breadth First Search PDSA using Python Week 4

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex
- Maintain level information to record length of the shortest path, in terms of number of edges

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex
- Maintain level information to record length of the shortest path, in terms of number of edges
 - In general, edges are labelled with a cost (distance, time, ticket price, ...)

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex
- Maintain level information to record length of the shortest path, in terms of number of edges
 - In general, edges are labelled with a cost (distance, time, ticket price, ...)
 - Will look at weighted graphs, where shortest paths are in terms of cost, not number of edges