ECON 711 - PS 2

Alex von Hafften*

9/21/2020

Question 1. Convex production sets, concave production functions, convex costs

Consider a production function $f: \mathbb{R}^m_+ \to \mathbb{R}_+$ for a single-output firm.

(a) Prove that if the production set $Y = \{(q, -z) : f(z) \ge q\} \subset \mathbb{R}^{m+1}$ is convex, the production function f is concave.

Proof: Choose $(q, -z), (q', -z') \in Y$ such that f(z) = q and f(z') = q'. The convexity of Y implies that $t(q, -z) + (1-t)(q', -z') \in Y$ for $t \in (0, 1)$. Thus, $f(tz + (1-t)z') \ge tq + (1-t)q'$ by the definition of Y. Our choice of $(q, -z), (q', -z') \implies f(tz + (1-t)z') \ge tf(z) + (1-t)f(z')$. Therefore, f is concave. \square

(b) Prove that if f concave, the cost function

$$c(q, w) = \min w \cdot z$$
 subject to $f(z) \ge q$

is convex in q.

Proof: Fixing $w \in \mathbb{R}^k_+$, choose $q, q' \in \mathbb{R}$. Define $z \in Z^*(q, w), z' \in Z^*(q', w)$, and $\tilde{z} \in Z^*(tq + (1 - t)q', w)$ for $t \in (0, 1)$. By the concavity of f,

$$\tilde{z} \leq tz + (1-t)z'$$

$$\implies w\tilde{z} \leq w(tz + (1-t)z')$$

$$\implies w\tilde{z} \leq twz + (1-t)wz')$$

$$\implies c(f(\tilde{z}), w) \leq tc(f(z), w) + (1-t)c(f(z'), w)$$

$$\implies c(tq + (1-t)q', w) \leq tc(q, w) + (1-t)c(q', w)$$

Therefore, c is convex. \square

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

Question 2. Solving for the profit function given technology...

Let k = 2, and let the production set be

$$Y = \{(y_1, y_2) : y_1 \le 0 \text{ and } y_2 \le B(-y_1)^{\frac{2}{3}}\}$$

where B > 0 is a known constant. Assume both prices are strictly positive.

(a) Draw Y, or describe it clearly.

y_1

(b) Solve the firm's profit maximization problem to find $\pi(p)$ and $Y^*(p)$.

The firm's profit is

$$\pi(p) = \max_{y_1, y_2 \in Y} \{ p_1 y_1 + p_2 y_2 \}$$

Define $z = -y_1$. Notice that the firm will produce $y_2 = Bz^{2/3}$ because it is the maximum output given z units of input. Thus, we can rewrite the firm's profit function as

$$\pi(p) = \max_{z} \{ p_1(-z) + p_2 B z^{2/3} \} = \max_{z} \{ p_2 B z^{2/3} - p_1 z \}$$

Setting the first order condition of the profit function to zero:

$$\frac{\partial \pi}{\partial z} = p_2(2/3)Bz^{-1/3} - p_1$$
$$z^* = \left(\frac{2p_2B}{3p_1}\right)^3$$

Plugging z^* into transformations for y_1, y_2 :

$$y_1^* = -\left(\frac{2p_2B}{3p_1}\right)^3$$

$$y_2^* = B\left(\left(\frac{2p_2B}{3p_1}\right)^3\right)^{2/3}$$

$$= B^3\left(\frac{2p_2}{3p_1}\right)^2$$

Notice that $Y^*(p)$ is single-valued:

$$Y^*(p) = \left\{ (y_1, y_2) : y_1 = -\left(\frac{2p_2B}{3p_1}\right)^3, y_2 = B^3\left(\frac{2p_2}{3p_1}\right)^2 \right\} \implies y(p) = \left(-\left(\frac{2p_2B}{3p_1}\right)^3, B^3\left(\frac{2p_2}{3p_1}\right)^2\right)$$

Thus, the profit function is

$$\pi(p) = p_1 \left(-\left(\frac{2p_2B}{3p_1}\right)^3 \right) + p_2 \left(B^3 \left(\frac{2p_2}{3p_1}\right)^2 \right)$$

$$= \frac{B^3 p_2^3}{p_1^2} \left(\frac{2^2}{3^2} - \frac{2^3}{3^3}\right)$$

$$= \frac{4B^3 p_2^3}{27p_1^2}$$

- (c) Since $Y^*(p)$ is single-valued, I'll refer to it below as y(p). Verify that $\pi(\cdot)$ is homogeneous of degree 1, and $y(\cdot)$ is homogeneous of degree 0.
- (d) Verify that $y_1(p) = \frac{\partial \pi}{\partial p_1}(p)$ and $y_2(p) = \frac{\partial \pi}{\partial p_2}(p)$.
- (e) Calculate $D_p y(p)$, and verify it is symmetric, positive semidefinite, and $[D_p y]p = 0$

Question 3 ... and recovering technology from the profit function

Finally, suppose we didn't know a firm's production set Y, but did know its profit function was $\pi(p)Ap_1^{-2}p_2^3$ for all $p_1, p_2 > 0$ and A > 0 a known constant.

- (a) What conditions must hold for this profit function to be rationalizable? (You don't need to check them.)
- (b) Recall that the outer bound was defined as $Y^O = \{y: p \cdot y \leq \pi(p) \text{ for all } p \in P\}$. In this case, this is $Y^O = \{(y_1, y_2): p_1y_1 + p_2y_2 \leq Ap_1^{-2}p_2^3 \text{ for all } (p_1, p_2) \in \mathbb{R}^2_{++}\}$. Show that any $y \in Y^O$ must have $y_1 \leq 0$, i.e., that good 1 must be an input only.
- (c) Dividing both sides by p_2 and moving $\frac{p_1}{p_2}y_1$ to the right-hand side, we can rewrite Y^O as $Y^O = \{(y_1,y_2): y_2 \leq Ap_1^{-2}p_2^3 \frac{p_1}{p_2}y_1 \text{ for all } (p_1,p_2) \in \mathbb{R}^2_{++}\}$. Since the expression on the right depends only on the price ratio $\frac{p_2}{p_1}$ rather than the two individual prices, we can let $r \equiv \frac{p_2}{p_1} > 0$ denote this ratio, and write Y^O as $Y_O = \{(y_1,y_2): y_2 \leq Ar^2 \frac{y_1}{r} \text{ for all } r \in \mathbb{R}_{++}\} = \{(y_1,y_2): y_2 \leq \min_{r>0} (Ar^2 \frac{y_1}{r})\}$. Solve this minimization problem, and describe the production set Y^O .
- (d) Verify that a production set Y equal to the set Y^O you just calculated would generate the "data" $\pi(p)=Ap_1^{-2}p_2^3$ that we started with. [Hint: $2^{-2/3}+2^{1/3}=\frac{27}{4}$].