EE 2000 Logic Circuit Design Semester A 2024/25

Tutorial 9

1. For the following circuits, (a) determine the state table and state diagram (calling the states 00, 01, 10, 11), (b) complete the timing diagram as shown.

$$D = x$$
 $J = q_1 + x$ $K = q'_1$ $z = q_1 q_2'$

Analysis Table

Present State (PS)	Input	Present Output	Flip-Flops' Excitations		Next State (NS)	
q_1q_2	x	z	D	J	K	$q_1^*q_2^*$
(0 0)	0	0	0	0	1	(0 0)
	1	0	1	1	1	(1 1)
(0.1)	0	0	0	0	1	(0 0)
(0 1)	1	0	1	1	1	(1 0)
(1.0)	0	1	0	1	0	(0 1)
(1 0)	1	1	1	1	0	(1 1)
(1 1)	0	0	0	1	0	(0 1)
	1	0	1	1	0	(1 1)

State Table

Present State	Inp	ut X	Present
	0	1	Output Z
00	00	11	0
01	00	10	0
10	01	11	1
11	01	11	0

State Diagram

Timing Diagram

2. Design a Mealy system using D-FFs with one input x and one output z such that z = 1 if x has been 1 for exactly two consecutive clock-times. A sample input/output trace for such a system is shown below.

X	0	1	1	1	1	0	1	1	0	0	1	0
Z	0	0	0	0	0	0	0	0	1	0	0	0

A: Input is '0'

B: one '1' is detected

C: two '1's are detected

D: more than two '1's are detected

Present	Input X				
State	0	1			
Α	A/0	B/0			
В	A/0	C/0			
С	A/1	D/0			
D	A/0	D/0			

Present	Input	Next:	stage	
State (Q_1Q_2)	X	$\boldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	0	0	0
B (0 1)	1	1	0	0
C (1 0)	0	0	0	1
C (1 0)	1	1	1	0
D (1 1)	0	0	0	0
D (1 1)	1	1	1	0

$$Q_1^* = D_1 = x(Q_1 + Q_2)$$

 $Q_2^* = D_2 = x(Q_1 + Q_2')$
 $z = x'Q_1Q_2'$

3. Design a Moore system with one input x and one output z such that z = 1 if a sequence of "101" has been detected (overlapping is allowed). A sample input/output trace for such a system is shown below.

X	0	1	0	1	1	0	1	0	1	0	0	0
Z	0	0	0	0	1	0	0	1	0	1	0	0

A: Input is '0'

B: one '1' is detected

C: Sequence "10" is detected

D: Sequence "101" are detected and output 1

Present State	Inp	ut X	Present
	0	1	Output Z
Α	Α	В	0
В	С	В	0
С	Α	D	0
D	С	В	1

Present	Input	Next :	stage	
State (Q_1Q_2)	X	Q_1^*	$oldsymbol{Q}_{2}^{*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	1	0	0
B (0 1)	1	0	1	0
C (1 0)	0	0	0	0
C (1 0)	1	1	1	0
D (1 1)	0	1	0	1
D (1 1)	1	0	1	1

$$Q_1^* = D_1 = xQ_1Q_2' + x'Q_2$$

$$Q_2^* = D_2 = x$$

$$z = Q_1 Q_2$$

4. Use both the partitioning method to minimize the number of states in the state table shown.

	Next	state	Out	put
Present state	x = 0	x = 1	x = 0	x = 1
A	F	В	0	0
В	D	C	0	0
С	F	Е	0	0
D	G	A	1	0
Е	D	С	0	0
F	F	В	1	1
G	G	Н	0	1
Н	G	A	1	0

	0	1
Α	F/0	B/0
В	D/0	C/0
С	F/0	E/0
D	G/1	A/0
Ε	D/0	C/0
F	F/1	B/1
G	G/0	H/1
Н	G/1	A/0

Р		0	1
	Α	F/0	B/0
1	В	D/0	C/0
1	С	F/0	E/0
	Ε	D/0	C/0
2	G	G/0	H/1
3	D	G/1	A/0
<u>၁</u>	Н	G/1	A/0
4	F	F/1	B/1

Р		0	1
1	Α	F/0	B/0
1	С	F/0	E/0
ر ر	В	D/0	C/0
2	Ε	D/0	C/0
3	G	G/0	H/1
4	D	G/1	A/0
4	Н	G/1	A/0
5	F	F/1	B/1