

High Quality Hypergraph Partitioning via Max-Flow-Min-Cut Computations

Master Thesis · February 16, 2018 **Tobias Heuer**

Institute of Theoretical Informatics · Algorithmics Group

Outline

Task

Developing a **refinement** algorithm based on **Max-Flow-Min-Cut** computations for the *n*-level hypergraph partitioner **KaHyPar**.

Outline

Task

Developing a **refinement** algorithm based on **Max-Flow-Min-Cut** computations for the *n*-level hypergraph partitioner **KaHyPar**.

Contributions

- Outperforms 5 different systems on 73% of 3216 benchmark instances
- Improve quality of KaHyPar by 2.5%, while only incurring a slowdon by a factor of 1.8
- Comparable running time to hMetis and outperforms it on 84% of the instances

Hypergraphs [from SEA'17]

- Generalization of graphs \Rightarrow hyperedges connect \geq 2 nodes
- Graphs \Rightarrow dyadic (2-ary) relationships
- lacktriangle Hypergraphs \Rightarrow (\mathbf{d} -ary) relationships
- Hypergraph $H = (V, E, c, \omega)$
 - Vertex set $V = \{1, ..., n\}$
 - Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$
 - Node weights $c: V \to \mathbb{R}_{\geq 1}$
 - Edge weights $\omega: E \to \mathbb{R}_{>1}$

Hypergraphs [from SEA'17]

- Generalization of graphs \Rightarrow hyperedges connect \geq 2 nodes
- lacktriangle Graphs \Rightarrow dyadic (**2-ary**) relationships
- lacktriangle Hypergraphs \Rightarrow ($\mathbf{d} extst{-ary}$) relationships
- Hypergraph $H = (V, E, c, \omega)$
 - Vertex set $V = \{1, ..., n\}$
 - Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$
 - Node weights $c: V \to \mathbb{R}_{\geq 1}$
 - lacksquare Edge weights $\omega: E
 ightarrow \mathbb{R}_{>1}$

$$|P| = \sum_{e \in E} |e| = \sum_{v \in V} d(v)$$

[from SEA'17]

Partition hypergraph $H = (V, E, c, \omega)$ into k non-empty disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

lacksim blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Karlsruhe Institute of Technology

[from SEA'17]

Partition hypergraph $H = (V, E, c, \omega)$ into k non-empty disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

• blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

[from SEA'17]

Partition hypergraph $H = (V, E, c, \omega)$ into k non-empty disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

lacksim blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

connectivity objective is **minimized**:

[from SEA'17]

Partition hypergraph $H = (V, E, c, \omega)$ into k non-empty disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

lacksim blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

connectivity objective is **minimized**:

$$\sum_{e \in \text{cut}} (\lambda - 1) \, \omega(e)$$
connectivity:
blocks connected by net e

[from SEA'17]

Partition hypergraph $H = (V, E, c, \omega)$ into k non-empty disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

lacks blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

connectivity objective is **minimized**:

$$\sum_{e \in \text{cut}} (\lambda - 1) \, \omega(e) = 6$$
connectivity:
blocks connected by net e

Applications

[from SEA'17]

VLSI Design

Application Domain

floorplanning & placement

Hypergraph Model

minimize communication

Goal

The Multilevel Framework

[from SEA'17]

FM Algorithm

Move-based heuristic that greedily move vertices between blocks based on local informations of incident nets

Moving lacktriangle from V_4 to V_3 reduces cut by 1

FM Algorithm

Move-based heuristic that greedily move vertices between blocks based on local informations of incident nets

Moving lacktriangle from V_4 to V_3 reduces cut by 1 gain

FM Algorithm

Move-based heuristic that greedily move vertices between blocks based on local informations of incident nets

- Performs moves of vertices with maximum gain in each step
- All modern hypergraph partitioners implements variations of the FM algorithm

FM Algorithm - Disadvantages

- Only incorparates local informations about the problem structure
 - Heavily depends on initial partition
 - In multilevel context: Depends on quality of coarsening

FM Algorithm - Disadvantages

- Only incorparates local informations about the problem structure
 - Heavily depends on initial partition
 - In multilevel context: Depends on quality of coarsening

- Large hyperedges induce Zero-Gain moves
 - Quality mainly depends on random decisions made within the algorithm

Capacity function $u: E \to \mathbb{R}_+$

Capacity function $u: E \to \mathbb{R}_+$

Flow function $f: E \to \mathbb{R}_+$

- $\forall (v, w) \in E : f(v, w) \leq u(v, w)$
- $\forall v \in V \setminus \{s, t\} :$ $\sum_{(w,v)\in E} f(w, v) = \sum_{(v,w)\in E} f(v, w)$

Capacity function $u: E \to \mathbb{R}_+$

Value of flow $|f| = \sum_{(v,t) \in E} f(v,t)$

Flow function $f: E \to \mathbb{R}_+$

- $\forall (v, w) \in E : f(v, w) \leq u(v, w)$
- $\forall v \in V \setminus \{s, t\} :$ $\sum_{(w,v)\in E} f(w, v) = \sum_{(v,w)\in E} f(v, w)$

Capacity function $u: E \to \mathbb{R}_+$

Value of flow $|f| = \sum_{(v,t) \in E} f(v,t)$

Maximum Flow Problem

Find a **maximum flow** f from s to t such that $\forall f': |f'| < |f|$

Flow function $f:E \to \mathbb{R}_+$

$$\forall v \in V \setminus \{s, t\} :$$

$$\sum_{(w,v)\in E} f(w, v) = \sum_{(v,w)\in E} f(v, w)$$

Residual Graph G_f

Minimum (s, t)-Bipartition

All nodes *reachable* from s are part of V_1 and $V_2 = V \setminus V_1$

Residual Graph G_f of a maximum flow f

Minimum (s, t)-Bipartition

All nodes *reachable* from s are part of V_1 and $V_2 = V \setminus V_1$

Residual Graph G_f of a maximum flow f

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Build Quotient Graph

Round 1

 $refine(V_1, V_2) = Improvement!$

Round 1

 $refine(V_3, V_4) = No Improvement!$

Round 1

 $refine(V_1, V_3) = No Improvement!$

Round 1

 $refine(V_2, V_4) = No Improvement!$

Round 1 Boundary did not change ⇒ Mark block as **inactive**

Round 2

 $refine(V_1, V_2) = No Improvement!$

Round 2

 $refine(V_1, V_3) = No Improvement!$

Round 2

 $refine(V_2, V_4) = No Improvement!$

Round 2 Boundary did not change ⇒ Mark block as **inactive**

Round 2 All blocks are **inactive** ⇒ Algorithm terminates

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Use $\epsilon' = \alpha \epsilon$ instead of ϵ

Use $\epsilon' = \alpha \epsilon$ instead of ϵ $\alpha = 1 \Rightarrow$ Improvement Found $\Rightarrow \alpha = \max(2\alpha, \alpha') = 2$

Use
$$\epsilon' = \alpha \epsilon$$
 instead of ϵ
 $\alpha = 2 \Rightarrow$ No Improvement $\Rightarrow \alpha = \min(\frac{\alpha}{2}, 1) = 1$

Use $\epsilon' = \alpha \epsilon$ instead of ϵ $\alpha = 1 \Rightarrow$ No Improvement \Rightarrow Terminate

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Bipartite Graph $G_*(H)$

Vertex Separator Problem

Bipartite Graph $G_*(H)$

Vertex Separator Problem

Vertex Separator Transformation

Hypergraph H

e₁ O e₂ O e₃

Bipartite Graph $G_*(H)$

Vertex Separator Problem

Vertex Separator Transformation

Lawler Network

Hypergraph H

e₁ O e₂ O e₃

Bipartite Graph $G_*(H)$

Vertex Separator Problem

Vertex Separator Transformation

Lawler Network

Hypergraph H

e₁ O e₂ O e₃

Bipartite Graph $G_*(H)$

Vertex Separator Problem

Vertex Separator Transformation

Lawler Network

Our Network

Our Network

A hypernode *v* induces . . .

- \blacksquare ... 2d(v) edges in the Lawler Network
- \blacksquare ... d(v)(d(v) 1) edges in our network

If $d(v) \le 3$, then $d(v)(d(v) - 1) \le 2d(v)$

Lawler Network

Wong Network

Our Network

Hybrid Network

Optimized Flow Problem Modeling Approach

Modeling Approach in KaFFPa

Optimized Flow Problem Modeling Approach

Modeling Approach in KaFFPa

Modeling Approach in KaFFPa

Not moveable after Max-Flow-Min-Cut computation B_1 B_2 Cut

Modeling Approach in KaHyPar

Extend flow problem with all vertices contained in a border hyperedge

Modeling Approach in KaHyPar

Moveable after Max-Flow-Min-Cut computation, but . . .

Modeling Approach in KaHyPar

... flow problem has significantly more nodes and edges.

$$S = \{e' \mid e \in I(S_1)\}\$$

 $T = \{e'' \mid e \in I(S_2)\}\$

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

Our Flow-Based Refinement Framework

Select two adjacent blocks for refinement

Build Flow Problem

Solve Flow Problem

Find feasible minimum cut

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Picard-Queryanne DAC

Contract all strongly connected components in the residual graph

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Find topological order

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

minimum (s, t)-cuts

Flow Graph Picard-Queryanne DAC

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph

Picard-Queryanne DAC

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph

Picard-Queryanne DAC

One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph

Picard-Queryanne DAC

KaHyPar is a <u>n-level</u> hypergraph partitioner

KaHyPar is a <u>n-level</u> hypergraph partitioner

Flow Execution Policies

Multilevel: Execute Max-Flow-Min-Cut computations (MF) on each level i with $i = 2^{j}$

Constant: Execute *Max-Flow-Min-Cut* computations (MF) on each level *i* with $i = \beta \cdot j$

KaHyPar is a <u>n-level</u> hypergraph partitioner

Flow Execution Policies

Multilevel: Execute Max-Flow-Min-Cut computations (MF) on each level i with $i = 2^{j}$

Constant: Execute *Max-Flow-Min-Cut* computations (MF) on each level *i* with $i = \beta \cdot j$

Note, each policy uses *flow*-based refinement on the **last level**:

KaHyPar is a <u>n-level</u> hypergraph partitioner

Flow Execution Policies

Multilevel: Execute Max-Flow-Min-Cut computations (MF) on each level i with $i = 2^{j}$

Constant: Execute *Max-Flow-Min-Cut* computations (MF) on each level *i* with $i = \beta \cdot j$

(R1) If cut between two blocks is small (e.g. \leq 10) skip flow-based refinement, except on the last level

(R2) Only execute flow-based refinement if previous computations lead to an improvement (except in first round)

Adaptive Flow Iterations

(R3) If no hypernode change its block after *Max-Flow-Min-Cut* computation, then break

Flow Configuration

- -+/- F = Enabled/Disabled Flow-based refinement
- -+/- M = Enabled/Disabled Most Balanced Minimum Cut
- -+/- FM = Enabled/Disabled FM Heuristic
- CONSTANT128 = (+F,+M,+FM) with **constant** flow execution policy and β = 128

Config.	(+F,-M	,-FM)	(+F,+M	(+F,+M,-FM)		(+F,+M,+FM)		NT128
α'	Avg [%]	<i>t</i> [<i>s</i>]						
1	-6.09	12.91	-5.60	13.40	0.23	15.37	0.53	55.75
2	-3.19	15.75	-2.07	16.74	0.74	18.06	1.09	87.93
4	-1.82	20.37	-0.19	21.88	1.21	22.49	1.61	144.42
8	-0.85	28.49	0.98	30.67	1.71	30.23	2.16	257.41
16	-0.19	43.32	1.75	46.66	2.21	43.53	2.69	498.29
Ref.	(-F,-M,	+FM)	6373.88	13.73				

Flow Configuration

- -+/- F = Enabled/Disabled Flow-based refinement
- -+/- M = Enabled/Disabled Most Balanced Minimum Cut
- -+/- FM = Enabled/Disabled FM Heuristic
- CONSTANT128 = (+F,+M,+FM) with **constant** flow execution policy and β = 128

Config.	(+F,-M	,-FM)	FM) (+F,+M		(+F,+M,+FM)		Constant128	
α'	Avg [%]	<i>t</i> [<i>s</i>]	Avg [%]	<i>t</i> [<i>s</i>]	Avg [%]	<i>t</i> [<i>s</i>]	Avg [%]	<i>t</i> [<i>s</i>]
1	-6.09	12.91	-5.60	13.40	0.23	15.37	0.53	55.75
2	-3.19	15.75	-2.07	16.74	0.74	18.06	1.09	87.93
4	-1.82	20.37	-0.19	21.88	1.21	22.49	1.61	144.42
8	-0.85	28.49	0.98	30.67	1.71	30.23	2.16	257.41
16	-0.19	43.32	1.75	46.66	2.21	43.53	2.69	498.29
Ref.	(-F,-M,	+FM)	6373.88	13.73				

Flow Configuration

Config.	(+F,-M,-FN	M) Avg [%]	(+F,+M,-F	M) Avg [%]	(+F,+M,+F	M) Avg [%]
α'	KaFFPa	Our	KaFFPa	Our	KaFFPa	Our
1	-15.48	-6.10	-15.26	-5.62	0.14	0.23
2	-10.50	-3.20	-10.12	-2.08	0.36	0.74
4	-5.98	-1.82	-5.08	-0.20	0.67	1.21
8	-3.22	-0.85	-1.64	0.98	1.25	1.71
16	-1.52	-0.20	0.51	1.75	1.87	2.21
Ref.	(-F,-M	,+FM)	637	' 3.88		

Algorithm	Avg [%]	Min [%]	$t_{\sf flow}[s]$	t[s]
KaHyPar-CA	7077.20	6820.17	-	29.26
KaHyPar-MF	-2.47	-2.12	43.04	72.30
$KaHyPar-MF_{(R1)}$	-2.41	-2.06	33.89	63.15
KaHyPar-MF _(R1,R2)	-2.40	-2.05	28.52	57.78
KaHyPar-MF _(R1,R2,R3)	-2.41	-2.06	21.23	50.49

Algorithm	Avg [%]	Min [%]	$t_{\sf flow}[s]$	t[s]
KaHyPar-CA	7077.20	6820.17	-	29.26
KaHyPar-MF	-2.47	$\sqrt{-2.12}$	43.04	72.30
KaHyPar-MF _(R1)	-2.41	-2.06	33.89	63.15
KaHyPar-MF _(R1,R2)	-2.40	-2.05	28.52	57.78
KaHyPar-MF _(R1,R2,R3)	-2.41	-2.06	21.23	50.49
		1		
	Compa	▼rable Quality	y	

Algorithm	Avg [%]	Min [%]	$t_{\sf flow}[s]$	<i>t</i> [<i>s</i>]
KaHyPar-CA	7077.20	6820.17	-	29.26
KaHyPar-MF	-2.47	-2.12	43.04	₹2.30
$KaHyPar-MF_{(R1)}$	-2.41	-2.06	33.89	6 3 .15
KaHyPar-MF _(R1,R2)	-2.40	-2.05	28.52	57.78
KaHyPar-MF _(R1,R2,R3)	-2.41	-2.06	21.23	5 0 49
				\

Speed-up by a factor of 2

Algorithm	Avg [%]	Min [%]	$t_{\sf flow}[s]$	t[s]
KaHyPar-CA	7077.20	6820.17	- /	29.26
KaHyPar-MF	-2.47	-2.12	43.04	72.30
$KaHyPar-MF_{(R1)}$	-2.41	-2.06	33.89	63.15
KaHyPar-MF _(R1,R2)	-2.40	-2.05	28.52	57.78
KaHyPar-MF _(R1,R2,R3)	-2.41	-2.06	21.23	50.49

Slow-down compared to KaHyPar-CA by factor of 1.72

Quality - Full Benchmark Set

Algorithm	Running Time t[s]								
	ALL	Dac	ISPD98	PRIMAL	Literal	DUAL	SРМ		
KaHyPar-MF	55.67	504.27	20.83	61.78	119.51	97.22	27.40		
KaHyPar-CA	31.05	368.97	12.35	32.91	64.65	68.27	13.91		
hMetis-R	79.23	446.36	29.03	66.25	142.12	200.36	41.79		
hMetis-K	57.86	240.92	23.18	44.23	94.89	125.55	35.95		
PaToH-Q	5.89	28.34	1.89	6.90	9.24	10.57	3.42		
PaToH-D	1.22	6.45	0.35	1.12	1.58	2.87	0.77		

Overall Running Time									
Algorithm		Running Time $t[s]$							
, ngo min	ALL	Dac	ISPD98	PRIMAL	Literal	DUAL	SРМ		
KaHyPar-MF	55.67	5 04.27	20.83	61.78	119.51	97.22	27.40		
KaHyPar-CA	31.05	3 68.97	12.35	32.91	64.65	68.27	13.91		
hMetis-R	79.23	446.36	29.03	66.25	142.12	200.36	41.79		
hMetis-K	57.86	240.92	23.18	44.23	94.89	125.55	35.95		
PaToH-Q	5.89	28.34	1.89	6.90	9.24	10.57	3.42		
PaToH-D	1.22	6.45	0.35	1.12	1.58	2.87	0.77		
Slow-down by a factor of 1.8									

Overall Running Time									
Algorithm		Running Time <i>t</i> [<i>s</i>]							
	ALL	Dac	ISPD98	PRIMAL	Literal	Dual	SРМ		
KaHyPar-MF	55.67	5 04.27	20.83	61.78	119.51	97.22	27.40		
KaHyPar-CA	31.05	3 68.97	12.35	32.91	64.65	68.27	13.91		
hMetis-R	79.23	446.36	29.03	66.25	142.12	200.36	41.79		
hMetis-K	57.86	240.92	23.18	44.23	94.89	125.55	35.95		
PaToH-Q	5.89	28.34	1.89	6.90	9.24	10.57	3.42		
PaToH-D	1.22	6.45	0.35	1.12	1.58	2.87	0.77		
		↓							

Comparable running time to hMetis-K

	Small Flow Network Instances									
Algorithm			Ru	nning Time	t[s]					
	ALL	DAC	ISPD98	PRIMAL	LITERAL	DUAL	SPM			
KaHyPar-MF	55.67	504.27	20.83	61.78	119.51	97.22	27.40			
KaHyPar-CA	31.05	368.97	2.35	32.91	64/65	68.27	13.91			
hMetis-R	79.23	446.36	29 .03	66.25	14 2/ 12	200.36	41.79			
hMetis-K	57.86	240.92	2 3 18	44.23	94.89	125.55	35.95			
PaToH-Q	5.89	28.34	1 89	6.90	9.24	10.57	3.42			
PaToH-D	1.22	6.45	0.35	1.12	1.58	2.87	0.77			
	•	Slow-down by a factor of 1.4								

Running Time - Full Benchmark Set

Conclusion

Appendix

Hypergraph Flow Network - Graph Edges

Hypergraph Flow Network - Graph Edges

Hypergraph Flow Network - Graph Edges

Wong Network

Lawler Network

Lawler Network

Lawler Network

Corresponds to Multi-Source Multi-Sink problem with

Lawler Network

All nodes *reachable* from s are part of V_1 and $V_2 = V \setminus V_1$

For each hypernode $v \in V_1$, there exists at least one $e \in I(v)$ with $e'' \in V_1$

All nodes *reachable* from s are part of V_1 and $V_2 = V \setminus V_1$

