los ejes principales de la deformación. Los valores característicos asociados dan las magnitudes de las deformaciones en la dirección de los ejes principales, con los valores característicos positivos se indica extensión y los valores característicos negativos significan compresión.

a) Para cada una de las siguientes matrices de medidas de deformación, encuentre la dirección (vector unitario) del eje principal de máxima extensión y la dirección (vector unitario) del eje principal de máxima compresión:

$$A = \begin{pmatrix} -.01969633 & .01057339 & -.005030409 \\ .01057339 & .008020058 & -.006818069 \\ -.005030409 & -.006818069 & .01158627 \end{pmatrix}$$

$$A = \begin{pmatrix} -.01470626 & .01001009 & -.004158314 \\ .01001901 & .007722046 & -.004482362 \\ -.004158314 & -.004482362 & .006984212 \end{pmatrix}$$

- b) Para cada matriz del inciso a), encuentre el ángulo que forma el eje principal de máxima deformación compresiva con el eje x (en las coordenadas del corte delgado). [Nota. El eje x está representado por el vector $(1\ 0\ 0)^{\mathsf{T}}$. Recuerde que el coseno del ángulo entre los vectores \mathbf{v} y \mathbf{w} es $\mathbf{v} \cdot \mathbf{w}/|\mathbf{v}||\mathbf{w}|$. Utilice la función acos de MATLAB y multiplique por $180/\pi$ para convertir a grados.]
- c) En un pliegue, la deformación de maclación se relaciona con la deformación total del pliegue. La adecuación de un modelo de pliegue para explicar su estructura se puede probar utilizando los datos de deformación. Un modelo es el deslizamiento simple paralelo a la estratificación (aquí la estratificación es paralela al eje x en las coordenadas del corte delgado). Para las localizaciones de las que se obtuvieron los datos del inciso a), el modelo de deslizamiento simple paralelo a la estratificación predice que el ángulo agudo entre las rectas determinadas por las capas (el eje x) y el eje principal de máxima deformación compresiva es bastante grande, cerca de 45° en muchos lugares. Utilizando los resultados del inciso b) argumente por qué este modelo es inadecuado para explicar la estructura de pliegues para el pliegue del que se obtuvieron los datos.

Reconocimiento. Los datos y las interpretaciones que forman la base de este problema se derivaron del trabajo del Dr. Richard Groshong, de la University of Alabama.

8.2 Un modelo de crecimiento de población (opcional)

En esta sección se muestra la manera en que se puede usar la teoría de los valores y vectores característicos para analizar un modelo de crecimiento de una población de pájaros.* En primer lugar se estudiará un modelo sencillo de crecimiento de la población. Se supone que cierta especie crece a una tasa constante; es decir, la población de la especie después de un periodo (que puede ser una hora, una semana, un mes, un año, etc.) es un múltiplo constante de la población del periodo anterior. Una forma de que esto suceda, por ejemplo, es que cada generación es distinta y cada organismo produce r crías y después muere. Si p_n denota la población después de n periodos, se puede tener

$$p_n = rp_{n-1}$$

El material de esta sección está basado en un artículo de D. Cooke: "A 2 × 2 Matrix Model of Population Growth", *Mathematical Gazette* 61(416):120-123.