Project: Vaccination Rate

Rachel Diao

3/4/2022

vax <- read.csv('covid19vaccinesbyzipcode_test.csv')
#head(vax)</pre>

Question 1

Total number of people fully vaccinated is under column "persons_fully_vaccinated".

Question 2

Zip code tabulation area is under "zip_code_tabulation_area".

Question 3

The earliest date is 2021-01-05.

Question 4

The latest date is 2022-03-01.

Get an overview of the dataset with skim:

library(skimr)
skimr::skim(vax)

Table 1: Data summary

Name	vax
Number of rows	107604
Number of columns	15
Column type frequency:	
character	5
numeric	10
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	61	0
local_health_jurisdiction	0	1	0	15	305	62	0
county	0	1	0	15	305	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_miss ing nple	te <u>m</u> neatue	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_	_area0 1.00	93665.1	1817.3	39 0001	192257	. 193 658	. 595 380). 5 9 7 635	.0
vaccine_equity_metri	ic <u>5</u> qua rtile 0.95	2.44 1	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	on 0 1.00	18895.0	14 8993	.910	1346.9	933685	.B1756	5. 183 556	.7
age5_plus_population	n 0 1.00	20875.2	24 106	.020	1460.5	505364	.0304877		2.0
persons_fully_vaccina	at 48 338 0.83	12155.6	1 B063	.881	1066.2	257374.5	5 02 0005	5.OO744	.0
persons_partially_vac	cc inasta 0.83	831.741	1348.6	811	76.00	372.00	1076.	0 3 4219	.0
percent_of_populatio	n <u>1</u> 8888_va0c86	ate@1.51 (0.26	0	0.33	0.54	0.70	1.0	
percent_of_populatio	n <u>1</u> \$3338ially <u>0.</u> 836	ccinanted (0.09	0	0.01	0.03	0.05	1.0	
percent_of_populatio	n <u>1</u> 833381_1_0p83s		0.28	0	0.36	0.58	0.75	1.0	
booster_recip_count	$64317 \qquad 0.40$	4100.55	5900.2	2111	176.00	1136.0	06154.	5\$0602	.0

Question 5

There are 10 numeric columns in the dataset.

Question 6

There are 18338 missing values in the persons_fully_vaccinated column

Question 7

17.0421174% of persons_fully_vaccinated are missing.

Working with dates

Load in package 'lubridate'!

library(lubridate)

```
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

today()

```
## [1] "2022-03-04"
```

Convert data in as_of_date column to lubridate format!

```
vax$as_of_date <- ymd(vax$as_of_date)</pre>
```

Now we can actually do operations on dates. To calculate difference from today - the earliest date in this dataset is

```
today() - vax$as_of_date[1]
```

Time difference of 423 days

Days that the dataset spans:

```
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
```

```
## Time difference of 420 days
```

How many days have I been alive? - 9025 days

```
today() - ymd('1997-06-18')
```

Time difference of 9025 days

Question 9

Difference between today and the last date in the dataset:3

Question 10

There are 61 unique dates in the dataset (answer from the skimr summary)

Working with zipcodes

Load in package zipcodeR! With geocode_zip(), we can get the centroid of the region any zipcode covers.

```
library(zipcodeR)
geocode_zip('92037')
```

```
## # A tibble: 1 x 3
## zipcode lat lng
## <chr> <dbl> <dbl> <dbl> *dbl> 32.8 -117.
```

Calculate distance (in miles) between centroids of any two zipcodes:

```
zip_distance('92037','92109')
     zipcode_a zipcode_b distance
## 1
         92037
                   92109
                             2.33
Use reverse zipcode() to pull lots of info on zipcodes:
reverse_zipcode(c('92037', "92109") )
## # A tibble: 2 x 24
     zipcode zipcode_type major_city post_office_city common_city_list county state
##
             <chr>
                          <chr>
                                      <chr>
                                                                  <blob> <chr> <chr>
##
## 1 92037
             Standard
                          La Jolla
                                     La Jolla, CA
                                                             <raw 20 B> San D~ CA
## 2 92109
            Standard
                          San Diego San Diego, CA
                                                             <raw 21 B> San D~ CA
## # ... with 17 more variables: lat <dbl>, lng <dbl>, timezone <chr>,
      radius_in_miles <dbl>, area_code_list <blob>, population <int>,
       population density <dbl>, land area in sqmi <dbl>,
## #
      water_area_in_sqmi <dbl>, housing_units <int>,
       occupied_housing_units <int>, median_home_value <int>,
## #
## #
       median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
       bounds_north <dbl>, bounds_south <dbl>
## #
Focus on San Diego county
# Subset to San Diego county only areas
sd <- vax[vax$county=='San Diego', ]</pre>
Can also do the same in dplyr
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
sd <- filter(vax, county == "San Diego")</pre>
nrow(sd)
```

Filter for areas where population is greater than 10,000:

[1] 6527

Question 11

There are 107 distinct zip codes in SD county.

Question 12

92154 has the largest 12+ population in this dataset.

Data for 2022-03-01

```
recent <- filter(vax, county == "San Diego", as_of_date=='2022-03-01')
#Average percent of population fully vaccinated in San Diego on this day
mean(recent$percent_of_population_fully_vaccinated, na.rm=TRUE)</pre>
```

[1] 0.7052904

Question 13

70.53% of the population in San Diego was vaccinated by 03-01-2022.

Question 14

```
library(ggplot2)
ggplot(recent, aes(x=percent_of_population_fully_vaccinated)) +
  geom_histogram(bins=15) + geom_rug() +
  xlab('% Population Fully Vaccinated on 2022-03-01 (By Zip Code)') +
  ylab('Count')
```

Warning: Removed 1 rows containing non-finite values (stat_bin).

UCSD data

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Question 15

Vaccination rate time-course for UCSD zip code:

Compare to similarly-sized areas:

Question 16

73.5397433% people are vaccinated in areas as large as 92037.

Question 17

```
summary(vax.36$percent_of_population_fully_vaccinated)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3890 0.6554 0.7350 0.7354 0.8044 1.0000
```

Question 18

```
ggplot(vax.36) + aes(x=percent_of_population_fully_vaccinated) +
geom_histogram(bins=30) + geom_rug() +
xlim(c(0,1)) +
xlab('% Vaccinated by 03-01-2022') + ylab('Count')
```

Warning: Removed 2 rows containing missing values (geom_bar).

Question 19

92109~(55.20%) and 92040~(72.38%) averages are both below the average % vaccinated for all counties in California with population size similar or larger than 92037, though 92109 is only about 1% lower than the average.

```
vax %>% filter(as_of_date == "2022-03-01") %>%
  filter(zip_code_tabulation_area=="92040") %>%
  select(percent_of_population_fully_vaccinated)

## percent_of_population_fully_vaccinated
## 1 0.551981
```

```
vax %>% filter(as_of_date == "2022-03-01") %>%
filter(zip_code_tabulation_area=="92109") %>%
select(percent_of_population_fully_vaccinated)
```

```
## percent_of_population_fully_vaccinated
## 1 0.723778
```

Question 20

```
vax.36.all <- filter(vax, age5_plus_population > 36144)
```

```
ggplot(vax.36.all) +
    aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
    geom_line(alpha=0.2, color='blue') +
    ylim(c(0,1)) +
    labs(x='Date', y='% of Population Vaccinated (by Zip Code)',
        title='Vaccination Rates Across California',
        subtitle='Only areas with population above 36000 are shown') +
    geom_hline(yintercept = mean(vax.36$percent_of_population_fully_vaccinated), linetype='dashed')
```

Warning: Removed 311 row(s) containing missing values (geom_path).

Vaccination Rates Across California Only areas with population above 36000 are shown

