Calcul Scientifique

Cours 1: Représentation des données

Alexis Lechervy

Sommaire

- Présentation du cours
- Représentation des données pour le calcul scientifique

Présentation du cours de Calcul Scientifique

Objectifs

- Acquérir une méthodologie de travail pour modéliser et résoudre à l'aide de l'informatique des problèmes nécessitant la mise en place de calculs scientifiques,
- Savoir modéliser les données, les éléments d'un problème concret, à l'aide d'outils à la fois mathématiques et informatiques,
- Mettre en œuvre des solutions mathématiques et algorithmique apportant une solution numérique à ces problèmes,
- Maîtriser la vectorisation d'un problème afin de faire la programmation par tableau (array programming) pour notamment bénéficier des accélérations matérielles des processeurs vectorielles et des GPU.

Organisation

- 10 CM de 1h15 le mercredi 11h-12h15,
- 10 TP de 1h15
- 1/2 Note de CC sur les TPs + 1/2 Note de CT 1h.
- Ressources : https://ecampus.unicaen.fr/course/view.php?id=14888

Sommaire

- Présentation du cours
- Représentation des données pour le calcul scientifique
 - Introduction
 - Les vecteurs
 - Les matrices
 - Les tenseurs

Outils informatiques utilisés dans ce cours

Langage de Programmation

- Python 3 : https://www.python.org/
- Documentation : https://docs.python.org/3/

Bibliothèque de calcul

- Numpy: http://www.numpy.org/
- Documentation : https://docs.scipy.org/doc/numpy/index.html
- Numpy permet la manipulation de données sous forme de tableau et met à disposition les mathématiques qui leurs sont associés.
- Déclaration en début de fichier : import numpy as np

Bibliothèque d'affichage

- Matplotlib : https://matplotlib.org/
- Matplotlib est librairies open source python permettant de visualiser des données sous formes de graphiques.
- Déclaration en début de fichier : import matplotlib.pyplot as plt

Les vecteurs

Les vecteurs en informatiques

Un vecteur est un tableau de nombre (à une dimension). Il permet de regrouper sous une même appellation une liste de nombre.

Création de vecteur en numpy

- Vecteur v de 10 zéros : v = np.zeros(10)
- Vecteur v de 10 un : v = np.ones(10)
- Vecteur v des nombres entiers de 3 à 10 compris : v = np.arange(3,11)
- Vecteur v de 10 valeurs comprises entre 0 et 1 : v = np.linspace(0,1,10)
- Vecteur v de valeur [42,13,38,51]: v = np.array([42,13,38,51])

Lien avec les listes python

- Transformer une liste I en vecteur : v = np.array(I)
- Transformer un vecteur v en liste python : I = list(v)
- Attention les opérations mathématiques ne marche pas sur les listes python.

Opérations sur les vecteurs

Dimension d'un vecteur v

- len(v): Retourne le nombre d'élément dans v.
- v.shape : Retourne une liste d'un élément, contenant la dimension du vecteur v.

Opération arithmétique entre un nombre et un vecteur

Règle générale : L'opération arithmétique est appliqué entre le nombre et chaque valeur du vecteur. Cela correspond à l'opération mathématique classique correspondante.

Exemples

- Additionner 2 à toutes les dimensions du vecteur : v2 = v + 2
- Multiplier 2 à toutes les dimensions du vecteur : v2 = 2*v
- Diviser 2 à toutes les dimensions du vecteur : v2 = v/2

Opérations sur les vecteurs

Opération arithmétique entre deux vecteurs

Règle générale : L'opération arithmétique est appliqué terme à terme entre les valeurs des deux vecteurs. Attention cela ne correspond pas toujours aux notations mathématiques.

Exemples

- Additionner les valeurs des vecteurs v1 et v2 : v3 = v1 + v2
- Multiplier les valeurs des vecteurs v1 et v2 : v3 = v1*v2
- Diviser les valeurs des vecteurs v1 et v2 : v3 = v1/v2

Fonction mathématique vectorisées (s'appliquant à toutes les valeurs d'un vecteur)

Liste des fonctions disponibles : https://docs.scipy.org/doc/numpy/reference/routines.math.html

- np.sin, np.cos, np.tan, np.arcos, np.arsin ...
- np.sinh, np.cosh, np.tanh,np.arcsinh ...,
- np.exp, np.log, np.log10,...
- np.sqrt,np.fabs,np.sign,np.square...

Exemple : v2 = np.sin(v)

Exemple d'application

Tracer une fonction donnée

- Fonction à tracé : $f(x) = \tanh(\cos(\frac{1}{\sqrt{2}}))$
- Intervalle : Entre 0.001 et 1
- Code :
 x = np.arange(1e-3,1,1e-6)
 fx = np.tanh(np.cos(1/x**2))
 plt.plot(x,fx)
 plt.show()

⇒ L'utilisation de vecteur permet d'effectuer le calcul de la fonction en même temps sur toutes les valeurs du vecteur sans utiliser de boucle for.

Opérations sur les vecteurs

Les fonctions d'agrégation

Principe : Agrège les valeurs d'un vecteur en une seule valeur.

Remarque: Si les valeurs sont des boolean, True \iff 1 et False \iff 0.

Exemples:

- np.sum , np.prod, np.mean, np.std,np.var ...
- np.min, np.max, np.argmax, np.argmin,...
- np.count_nonzero , np.all, np.any,...

Opérations sur des ensembles

• np.sort, np.argsort, np.unique, np.cumsum, np.cumprod ...

Opération booléenne sur les valeurs d'un vecteurs

- Test d'égalité : x == 1
- Test d'inégalité : x > 1
- Comparaison des valeurs de vecteur de même taille : x==y

Accès aux valeurs d'un vecteur

Indexation

- a[i] permet d'accéder à la ième valeur.
- L'indexation commence par la valeur 0.
- a[-i] permet d'accéder à la ième valeur en partant de la fin.
- la dernière valeur est à l'indexe -1.

Slicing

- a[m :n] permet de récupérer un sous-vecteur des valeurs comprises entre l'indice m et l'indice n.
- a[m :n :p] permet de récupérer un sous-vecteur des valeurs comprises entre l'indice m et l'indice n en prenant une valeur tout les p valeurs.

Accès aux valeurs d'un vecteur

Slicing avec des vecteurs

- Soit v un vecteur d'entier, a[v] permet de récupérer dans les valeurs de a aux indices données par v. v peut contenir plusieurs fois le même indice.
- Soit v un vecteur de boolean de même dimension que a, a[v] permet de récupérer les valeurs dans a au indice où v est vrai.

Exemple d'utilisation

x=np.array([5,4,3,2,1,0])

- \times [[1,1,0,2]] \rightarrow array([4, 4, 5, 3])
- $\bullet \ \mathsf{x}[\mathsf{x}{>}2] \to \mathsf{array}([\mathsf{3},\ \mathsf{4},\ \mathsf{5}])$

Exemple d'utilisation avancé

Soit x un vecteur contenant les notes d'examen de la promo.

 Compter le nombre d'étudiant au dessus de la moyenne de la classe : np.count_nonzero(x>np.mean(x))

Les matrices

Les matrices en informatiques

Une matrices est un tableau de nombre en 2D. On peut par exemple les utilisés pour stocker des images.

Création d'une matrice en numpy

- Matrice m de 10x5 zéros : m = np.zeros((10,5))
- Matrice m de 10x5 un : m = np.ones((10,5))
- Matrice identité m de taille 11 deux : m = np.eye(11)
- Matrice m de valeur $\begin{vmatrix} 31 & 29 \\ 16 & -1 \end{vmatrix}$: m = np.array([[31,29],[16,-1]])

Attention aux vecteurs

Attention une matrice a une seule dimension est différent d'un objet vecteur sous numpy. Convertir une matrice 1D en vecteur : m[:,0] ou m[0,:]

Convertir un vecteur en matrice 1D : v[:,np.newaxis] ou v[np.newaxis, :]

v[:,None] ou v[None,:]

Une image vu comme une matrice

Lecture d'une image

- Utilisation de la librairie matplotlib :
- import matplotlib.pyplot as pltm = plt.imread('mon_image.png')

Affichage d'une matrice comme une image noir et blanc

plt.imshow(m, cmap='gray')
plt.show()

Opérations sur les matrices

Dimension d'une matrice v

- m.size : Retourne le totale d'élément dans la matrice m.
- len(m): Retourne le nombre de lignes de la matrice m.
- m.shape: Retourne une liste de deux éléments, contenant les dimensions de la matrice m.

Opération arithmétique entre un nombre et une matrice

Règle générale : L'opération arithmétique est appliqué entre le nombre et chaque valeur de la matrice. Cela correspond à l'opération mathématique classique.

- Additionner 2 à toutes les dimensions de la matrice : m2 = m + 2
- Multiplier 2 à toutes les dimensions de la matrice : m2 = 2*m
- Diviser 2 à toutes les dimensions de la matrice : m2 = m/2

Opérations sur les matrices

Opération arithmétique entre deux matrices

Règle générale : L'opération arithmétique est appliqué entre les valeurs des deux matrices. Attention, cela ne correspond pas toujours aux notations mathématiques.

- Additionner des valeurs de deux matrices : m3 = m1 + m2
- Multiplier des valeurs de deux matrices : m3 = m1*m2
- Diviser les valeurs de deux matrice : m3 = m1/m2

Fonction mathématique vectorisées sur matrice

 $Liste\ des\ fonctions\ disponibles: https://docs.scipy.org/doc/numpy/reference/routines.math.html$

- np.sin, np.cos, np.tan, np.arcos, np.arsin ...
- np.sinh, np.cosh, np.tanh,np.arcsinh ...,
- np.exp, np.log, np.log10,...
- np.sqrt,np.fabs,np.sign,np.square...

Exemple: m2 = np.cos(m)

Opérations sur les matrices

Les fonctions d'agrégation

Principe: Agrège les valeurs d'une matrice en une valeur (par défaut) ou un vecteur (en précisant un axe d'agrégation).

- np.sum , np.prod, np.mean, np.std,np.var ...
- np.min, np.max, np.argmax, np.argmin,...
- np.count_nonzero, np.all, np.any...

Opération sur un axe donnée

Exemple: np.min(m,axis=0)

Accès aux valeurs d'une matrice

Indexation

- m[i,j] permet d'accéder à la valeur sur la ième ligne et la jème colonne.
- m[i] ou m[i, :] permet d'accéder aux valeurs sur la ième ligne. La valeur retourné est un vecteur et non une matrice ligne.
- m[:,j] permet d'accéder aux valeurs sur la j^{ème} colonne. La valeur retourné est un vecteur et non une matrice colonne.
- Test d'inégalité : x > 1
- Comparaison de matrice de même taille : x==y
- Sélection des valeurs d'une matrice selon une valeur de vérité : x[x>2]
- Sélection des valeurs d'un axe selon un vecteur de boolean : x[v!=0, :];
- Sélection des valeurs d'une matrice uniquement sur certaine ligne x[v, :].

16 / 21

Accès aux valeurs d'une matrice

Slicing avec des vecteurs

```
m = np.array([[0,1,2],[3,4,5]])
```

- m[np.array([1,0]), :] récupère les lignes 1 et 0 de m.
- m[:,np.array([1,0])] récupère les colonnes 1 et 0 de m.
- m[np.array([0,1]),np.array([2,1])] récupère les valeurs au cordonnées (0,2) et (1,1)
- m[np.array([True,False]), :] récupère la première ligne. Doit être de la même taille que le nombre de ligne.
- m[:,np.array([True,True,False])] récupère les deux premières colonnes. Doit être de la même taille que le nombre de colonne.
- m[np.array([True,False]),np.array([True,True,False])] récupère les colonnes 0 et 1 de la ligne 0.

Exemple d'utilisation

Binarisation d'une image noir et blanc.

On souhaite avoir une image où :

- Tout les pixels > 128 sont à 255.
- Tout les pixels \leq 128 sont à 0,

Code

$$im[im>128] = 255$$

 $im[im<=128] = 0$

Résultat Avant/Après

Exemple d'utilisation :Étirement d'histogramme

Avant

np.min(x) -> 93 np.max(x) -> 185

Après

np.min(x) -> 0 np.max(x) -> 255

Code

x2=255*(x-np.min(x))/(np.max(x)-np.min(x))

Les tenseurs

Les tenseurs en informatiques

Un tenseur peut être vu comme un tableau de nombre en n-dimension. On peut par exemple les utilisés pour stocker des images couleurs ou pour stocker une base d'image de même dimension.

Création d'un tenseur en numpy

- Tenseur t de 10x5x3 zéros : t = np.zeros((10,5,3))
- Tenseur s de 10x5x3x9 un : m = np.ones((10,5,3,9))
- Tenseur t composé des valeurs $\begin{bmatrix} 31 & 29 \\ 16 & -1 \end{bmatrix}$, $\begin{bmatrix} 13 & 92 \\ 61 & 1 \end{bmatrix}$: m = np.array([[[31,29],[16,-1]],[[13,92],[61,1]]])

Attention aux dimensions

Un tenseur de dimension (10,5,2) se comportera différemment du tenseur de dimension (10,5,2,1).

Exemple d'utilisation : Augmenter le rouge d'une image

Avant

Après

Code

import numpy as np import imageio

im=np.array(imageio.imread('lena.jpg'),dtype='uint16') # lecture de l'image

im[:,:,0] += 50 # rougir

im[im>255] = 255 # seuillage

UN (ZN = IN université se Caen Basse Hormande