Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники».

Институт микроприборов и систем управления имени Л.Н. Преснухина

Лабораторная работа №2

«Расчет и моделирование двушлейфного направленнного ответвителя»

По курсу «Моделирование антенно-фидерных устройств в среде Keysight Advanced Design System»

Москва, Зеленоград

Оглавление

Оглавление	2
Введение	2
Теоретические сведения	3
Методика выполнения работы	
Создание проекта	
Модель на идеальных линиях передачи	
Модель на схемном уровне в микрополосковом исполнении	
Модель на топологическом уровне	18
Статистический анализ выхода годных	25
Задание на выполнение	30
Требования к отчёту	35
Задание на самостоятельную работу	36
Контрольные вопросы	36
Литература	
I VI	

Введение

Цель работы: ознакомится расчетом и моделированием двушлейфного направленного ответвителя в среде Keysight Advanced Design System (ADS).

Используемое оборудование или ПО: материал подготовлен на основании версии Keysight Advanced Design System 2020 upd1. Однако, в работе не используются никакие специфичные для данной версии инструменты, все используемое и описываемое существует в ADS практически в таком же виде как минимум с версии ADS 2011.11.

Продолжительность работы: 4 часа.

В разделе «Методика выполнения» приведены только необходимые действия по выполнению лабораторной работы. Подробно описываются только новые приемы работы в ADS. Предполагается, что студент выполнил вводную лабораторную работу и освоил базовый предложенный маршрут.

Lab1	показывает места, которые подробно описаны в вводной лабораторной работе
•	показывает приемы, значительно упрощающие или ускоряющие использование ADS
STOP	показывает места, за которыми надо особенно следить и где легко совершить ошибку

Теоретические сведения

//TODO

Методика выполнения работы

Маршрут работы следующий:

- 1. Составление модели на идеальных линиях передачи и моделирование в режиме S-параметров и анализ результатов.
- 2. Преобразование модели на идеальных линиях передачи в схемотехническое представление на заданной ВЧ-подложке с помощью инструмента LineCalc. Моделирование в режиме S-параметров и анализ результатов. При необходимости подстройка модели.
- 3. Преобразование схемотехнической модели в топологическое представление. Моделирование методами моделирования uMoM (Microwave Momentun). Параметризация ЕМ-модели. При необходимости подстройка модели.
- 4. Статистический анализ выхода годных ЕМ-модели по точности размеров.

Создание проекта

Lab1 Проект должен быть подготовлен к ЕМ-моделированию, в том числе:

- В качестве библиотеки слоев необходимо дополнительно к библиотеке назначения слоев схемы «ads_schematic_layer» выбрать «ads_standard_layers» (назначение топологических слоев).
 - единицы длин проекта мм, с разрешением 10000 точек/мм
- рекомендовано сразу создать определение подложки tech.subst, в примере RO4003 (Er = 3,55, tanD = 0,0026), толщиной диэлектрика 0,5мм, толщиной металлизации 17мкм.

Модель на идеальных линиях передачи

Гибридный (на 3дБ) двушлейфный направленный ответвитель (Brach-Line Coupler, двушлейфный НО) при описании его на идеальных линиях передачи описывается согласно следующему рисунку.

Пусть двушлейфный НО настроен на часотту 8 ГГц.

Создаем схему BCoupler_Ideal. Собираем на идеальных линиях передачи (модель TLIN).

Нужно следить за нумерацией терминаторов Term (свойство Num). Оно определяет порядок обозначений в матрице S-параметров. Эту нумерацию надо будет сохранять одинаковой во всех схемах проекта, чтобы можно было сопоставлять графики.

Запускаем моделирование 🌼

Выводим два прямоугольных графика — один с амплитудными соотношениями относительно порта 1, второй с фазовыми. Для создания фазовых соотношений надо при выборе комплексных данных выбирать постобработку phase (результат в градусах). Для отображения данных для нескольких графиков воспользуемся линейным маркером .

Для амплитудных соотношений видно, что при подаче сигнала в порт 1 устройство на центральной частоте:

- имеет очень хорошее согласование по входу $dB(S11) \rightarrow -40 \text{ дБ}$;
- рабочее затухание dB(S31) и переходное ослабление dB(S41) близки к -3 дБ, т.е. устройство гибридное;
 - развязка dB(S21) также большая $-40~{\rm д}{\rm B}$
- устройство настроено точно на 8 ГГц видно по положению провала на dB(S21) и dB(S11).

При анализе фазовых соотношений видно:

- разность фаз между выходными плечами 4 и 3 составляет 90° ;
- перегиб ФЧХ рабочего плеча phase(S31) и разрыв ФЧХ коэффициента отражения phase(S11) на частоте $8\ \Gamma\Gamma$ ц также косвенно говорят о том, что двушлейфный НО настроен эту частоту.

Известна следующая формула, описывающая матрицу рассеяния двушлейфного НО на центральной частоте (порядок портов соответствует моделированию):

$$S = -\frac{1}{y_2} \begin{bmatrix} 0 & 0 & j & y_1 \\ 0 & 0 & y_1 & j \\ j & y_1 & 0 & 0 \\ y_1 & j & 0 & 0 \end{bmatrix},$$

где $y_1 = \sqrt{\frac{1}{m}}$ - нормированная проводимость параллельных шлейфов,

$$y_2 = \sqrt{\frac{m+1}{m}}\,$$
 - нормированная проводимость последовательных шлейфов,

$$m = \frac{P_3}{P_4} = \frac{\left|S_{31}\right|^2}{\left|S_{41}\right|^2}$$
 - коэффициент деления мощности между рабочим и

ответвленным плечом.

Lab1 Создадим в этом же окне графиков идеальную теоретическую матрицу рассеяния и сравним с ней результаты моделирования на идеальных линиях передачи.

Для задания матриц в ADS используется запись вида

Внутренние фигурные скобки задают вектор-строки (с разделением элементов запятыми), внешние фигурные скобки собирают матрицу.

Выведем в таблицу интересующие значения теоретической матрицы рассеяния. Форму результатов для каждого из выражений поставим dB/Degrees (амплитуда в дБ/фаза в градусах), чтобы можно было удобно сравнивать с результатами с графиков.

Таблица будет выглядеть следующим образом.

S_theor(1,1)	S_theor(2,1)	S_theor(3,1)	S_theor(4,1)
<-infinity> / 0.000	<-infinity> / 0.000 <-infinity> / 0.000		-3.010 / -180.000

Коэффициент отражения S11 и развязка S21 имеют значение по амплитуде $-\infty$ дБ (поэтому на фазу смотреть не имеет смысла). Рабочее затухание S31 и переходное ослабление S41 равны -3 дБ, по фазовым соотношениям также видна разность фаз между выходными плечами 4 и 3 в 90°.

Дополнительно рассчитаем волновые сопротивления параллельного и последовательного участков (относительно $Z_0 = 50 \, \mathrm{Om}$) исходя из теоретической матрицы.

Eqn<mark>Z0 = 50 Eqn</mark>Z_shunt = Z0/Yn_shunt <mark>Eqn</mark>Z_ser=Z0/Yn_ser

Yn	shunt Yn_ser Z_shunt		Z_ser	
	1.000	1.414	50.000	35.355

Zser незначительно отличаются от 35 Ом.

Модель на схемном уровне в микрополосковом исполнении

Преобразуем рассчитанную ранее схему цепь из идеальных линий передачи в микрополоковое представление на схемном уровне.

Создаем новую схему BCoupler_MLIN_Sch.

Напомним параметры подложки - RO4003 (Er = 3,55, tanD = 0,0026), толщиной диэлектрика 0.5мм, толщиной металлизации 17мкм.

Lab1 С помощью инструмента LineCalc рассчитаем геометрические размеры линий.

Чтобы два раза не заполонять параметры подложки (в блоке MSUB и инструменте LineCalc) можно сначала в схеме заполнить определение подложки MSUB, добавить одиночный MLIN и по команде Tools – LineCalc – Send Selected Component to LineCalc перенести параметры подложки в LineCalc.

Параллельные шлейфы (50 Ом, 90°) на частоте $8 \Gamma \Gamma \mu$ получают размеры Lshunt = 5,6мм, Wshunt = 1,1мм.

Последовательные шлейфы (35 Ом, 90°) на частоте 8 ГГц получают размеры Lser = 5,5мм, Wshunt = 1,9мм.

Собираем схему моделирования на микрополосковых линиях (MLIN). Дополнительно со стороны входов поставим 50-Омные участки W50 = 1,1мм, Lfeed = 2,5мм.

Указанные выше размеры вынесем в переменные (VAR).

Для быстрого заполнения блока переменных есть режим введения «Name=Value». Он позволяет сразу ввести несколько переменных.

Предварительное расположение микрополосков MLIN.

Добавим Т-образные перекрёстки (МТЕЕ_ADS). В соответствующих значениях ширин (W1, W2 и W3) нужно ввести значения ширин соответствующих подключённых микрополосков. Какой параметр ширины относится к какому выводу — можно узнать по справке (первый пин отмечен галочкой, второй — проход прямо, третий — в сторону).

Также можно в настройках схемы включить отображение номеров пинов у всех компонентов (меню Options – Preferences вкладка Pin/Tee галка Pin Numbers в группе Visibility (on/off)).

При расположении микрополоковых компонентов в схеме их можно только вращать (Rotate , Ctrl+R), зеркалить (Mirror About X, Mirror About Y, Shift+X или + Y) такие компоненты нельзя. Зеркалится только обозначение в схеме, при последующем переносе в топологию это приводит к некорректному построению.

При расположении компонентов можно перемещать привязанную текстовую информацию по ПКМ — Move Component Text (F5), так, чтобы получать чистую и читаемую схему.

Дополнительно добавим расчет КСВН по входу.

Общая готовая к моделированию схема представлена ниже.

Запускаем моделирование. В области графиков строим амплитудные характеристики.

Результаты показывают, что рабочая частота устройства уплыла вниз. Связанно это с тем, что были добавлены тройники и электрические длины шлейфов оказались больше, чем нужно.

С помощью инструмента Tune или Optimization настроим двушлейфный НО на 8 ГГц. Дополнительно настроим его так, чтобы он работал в некотором частотном диапазоне 7,7..8,3 ГГц. Наложим следующие ограничения:

- коэффициент отражения dB(S11) и развязка dB(S21) не должны превышать -20 дБ в данном частотном диапазоне;
- положение провалов коэффициента отражения dB(S11) и развязки dB(S21) должны быть как можно более к 8 ГГц;
- рабочее затухание dB(S31) и переходное ослабление dB(S41) не должны опускаться меньше $-3.5~\mathrm{дБ}.$

Имеет смысл работать с переменными Lshunt, Wshunt, Lser и Wser (каждая с шагом 0,05мм, уходить от номинального значения стоит не более, чем на 20%). Lshunt и Lser в результате должны стать меньше исходного значения, двигаться почти синхронно и в результате иметь почти одинаковые значения (т.к. они в паре определяют положение провалов dB(S21) и dB(S11)). Дополнительным подбором Wshunt и Wser можно добиться расширения рабочей полосы за счет уменьшения уровня развязки на центральной частоте.

В примере подобранные значения Lshunt = 4,95 мм, Wshunt = 1 мм, Lser = 4.95 мм и Wser = 1.7 мм.

Проанализируем теперь подстроенные результаты.

Как и было запланировано, центральная частота 8 ГГц. Амплитудные характеристики в полосе 7,7..8,3 ГГц соответствуют ожидаемым.

График фазовых соотношений стал сложноват для чтения (присутствуют разрывы через 360°). Обернем выражения в функцию unwrap() (ищет и убирает перескоки через 360°).

Характер ФЧХ аналогичен модели на идеальных линиях передачи. При этом присутствует дополнительный фазовый набег по отношению к модели на идеальных линиях передачи, связанный с наличием входных участков микрополосковых линий.

Определим, в пределах каких частот сохраняются заданные ограничения.

Чтобы не считать дельту по X или Y между маркерами, маркеру можно установить режим Delta и выбрать другой маркер, относительно которого давать данные.

Получается, что по S11 и S21 можно считать, что рабочая полоса двушлейфного HO ± 420 МГц (диапазон 7,58..8,42 ГГц).

Аналогичную операцию проведем на копии амплитудного графика с dB(S31) и dB(S41) по отношению к допустимому уровню -3,5 дБ. Т.к. ограничение снизу, то маркер надо ставить на более низком графике.

На нем не получается симметричного частотного диапазона. Кроме того, диапазон частот больше, чем по развязке или коэффициенту отражения и равен 1,5 ГГц (диапазон 7,34..8,84 ГГц).

Окончательно проверим стабильность работы рабочего и вторичного плеч по отношению друг другу. Определим выражение

Выведем на прямоугольные графики амплитуду в дБ и фазу этого соотношения и поставим маркеры по краям ранее определенного расширенного частотного диапазона 7,58..8,42 ГГц.

Чтобы на одном графике можно нормально отобразить данные различного характера по Y, но с одинаковой зависимостью от X, можно второму графику привязать отдельную ось Y справа (в свойствах графика на вкладке Plot Axes в выпадающем списке Y axis выбрать Right Y Axis).

Видно, что фазовое соотношение между выходами 3 и 4 сохраняется в пределах $\sim 1^{\circ}$, а амплитудное порядка 0,5 дБ.

Получим эти две оценки точно. С помощью функции build_subrange() выделим интересующий частотный поддиапазон из S31toS41. Затем найдем размах по амплитуде и по фазе (с использованием функций max() и min()).

EqnS31toS41inBand = build_subrange((S31toS41), 7.58GHz, 8.42GHz)

EqnS31toS41inBand_magRipple=max(dB(S31toS41inBand))-min(dB(S31toS41inBand))

EqnS31toS41inBand_phaseRipple=max(phase(S31toS41inBand))-min(phase(S31toS41inBand))

S31toS41inBand_magRipple	S31toS41inBand_phaseRipple
0.519	1.156

Модель на топологическом уровне

Следующий этап – сгенерировать топологию на основе схемного представления. Для параметризации топологии надо будет создать двухуровневую схему:

- схема верхнего уровня BCoupler_EM_Тор, в которой будет контроллер S-параметров, терминаторы и все измерительные выражения.
- схема нижнего уровня BCoupler_EM_Inner, только с микрополосками (MLIN и MTEE_ADS), подключённая наверх через пины.

Схему нижнего уровня BCoupler_EM_Inner надо будет сконвертировать в топологию; сделать всю ячейку BCoupler_EM_Inner параметризированной и настроить параметры EM моделирования (emSetup).

Далее кратко показаны основные картинки до начала моделирования

- создание иерархии

Автоматическое создание иерархий может выставить порядок пинов не в том порядке, как нам удобно. В примере переставлены местами пары пинов P1-P2 и P3-P4. Нужно эти пины переместить в нужные места (P1-P3 – основное плечо, P2-P4 - вторичное).

- генерация топологии подсхемы BCoupler_EM_Inner

- параметризация ячейки BCoupler_EM_Inner

- Lab1 Далее надо настроить emSetup подсхемы BCoupler_EM_Inner. Задать следующие настройки:
- метод моделирования Momentum Microwave, режим EM Simulation/Model.
- Frequency plan частотный план адаптивный от 0 до 10 ГГц, плюс точка 8 ГГп
- М Output plan отключено автоматическое отображение результатов и включено сохранение токов для всех расчетных частот.
- Mesh с точностью 40 ячеек/длина волны и включено автоматическое создание краевой сетки
 - включено создание и сохранение emModel

Перед запуском расчета можно по команде Tools - 3D EM Preview вызвать отдельное окно, в котором будет показано, как будет считаться модель.

Один раз посчитаем топологию по запуску из текущего emSetup (Generate:S-Parameters). Т.к. в текущей топологии нет переходных отверстий, то посчитается она быстро. После расчета можно по команде Tools – Visualization открыть окно визуализации результатов. Параметры отображения объектов в нем аналогичны окну 3D EM Preview. Для настройки

отображения результатов (поверхностных токов), нужно выполнить две настройки. На вкладке Solution Setup выбрать порт (или комбинацию портов) в списке Port Setup, относительно которого отображать результат и частоту отображения (список Frequency). Список частот соответствует тем частотам, для которых сохранялись поверхностные токи.

Выберем отображение относительно порта 1 на частоте 8 ГГц.

На вкладке Plot Properties включим логарифмический масштаб (галка dB Scale) и включим анимацию поверхностных токов.

Видно, что между выходами 3 и 4 есть сдвиг по фазе на 90°.

Полученные данные сохранены в emModel в составе ячейки BCoupler_EM_Inner. Можно из основного окна ADS развернуть состав ячейки и открыть emModel.

Вернемся в схему верхнего уровня BCoupler_EM_Top.

Приведем ее к следующему виду:

- отключим MSub1, т.к. в EM-анализе подложка берется из файла subst.

- отключим блок переменных VAR, т.к. переменные в топологию передаются через переменные ячейки.
- у подсхемы топологии BCoupler_EM_Inner по ПКМ Component Choose View for Simulation установим, что результаты надо брать из emModel.

Общий вид схемы BCoupler_EM_Тор получится следующий

Запускаем расчет.

Развязка и коэффициент отражения по входу практически не изменились. Рабочее затухание тоже находится в разумных пределах. А вот переходное ослабление просело до -3,6 дБ.

Статистический анализ выхода годных

Проведем статистический анализ выхода годных (Yield) полученной топологии.

Оценим, как будут меняться коэффициент отражения, рабочее затухание, развязка и переходное ослабление. Численные значения длин путь могут иметь случайное значение в пределах $\pm 0,05$ мм (по нормальному распределению). Угловые параметры - $\pm 1^{\circ}$ (по нормальному распределению).

Смягчим требования по рабочему затуханию и переходному ослаблению до -4 дБ.

Lab1 Создадим копию схемы BCoupler_EM под названием BCoupler_EM_Yield.

Yield-спецификацию по dB(S11) и dB(S21) установим в пределах -50..-20 дБ. Yield-спецификацию по dB(S31) и dB(S41) установим в пределах -4..0 дБ.

Число попыток 100, в промежуточных состояниях пусть сохраняются все данные.

Запускаем расчет. Т.к. при данном расчете при каждом запуске расчета S-параметров будет запускаться подчиненный EM-анализ, весь расчет будет идти довольно долго.

Поле окончания расчета нужно вывести таблицу со значениями Yield, NumPass и NumFail. Они говорят нам о том, сколько процентов попыток удалось или провалилось.

Yield	NumFail	NumPass	
36.000	64.000	36.000	

Получается успех всего в 36%. Это плохо, схема очень чувствительна к точности параметров. Надо проанализировать результаты, чтобы понять, в чем может быть причина проблема.

Выведем значения dB(S11), dB(S21), dB(S31) и dB(S41). Они были сохранены для каждой из попыток. Поставим маркеры на самых плохих результатах.

Видно, что по S31 и S41 попытки проходят всегда. Определим, точность какого параметра влияет на S11 и S21.

По графикам видно, что это попытка №73 (значение mcTrial). Выведем таблицу со значениями параметров W50, Lfeed, Wshunt, Lshunt, Wser и Lser. Они будут выведены относительно номера попытки mcTrial.

mcTrial	W50	Lfeed	Wshunt	Lshunt	Wser	Lser
73 74	1.144 m	2.501 m	1.069 m	4.972 m	1.617 m	4.963 m

Ни одна из переменных для данной попытки не слишком отличается от номинальных значений (mcTrial = 0). Поисследуем чувствительность с помощью функции histogram_sens().

Т.к. по dB(S31) и dB(S41) проходят попытки в 100%, то их поведение исследовать не имеет смысла.

Пройдемся по переменным и оценим чувствительность. По W50 и dB(S11) и dB(S21) имеют результат, близкий к 100% при W50 = 1,0..1,025мм (что вообще говоря, странно и требует дополнительного исследования).

По Lfeed есть слабая зависимость, но не ярко выраженная (что логично).

По Wshunt есть зависимость, 100% собирается близко к 0.850мм и 0.9мм. Провал до 0% при Wshunt = 0.87мм плохо объясним, скорее всего не хватает числа попыток для построения достоверной картинки.

По Lshunt есть зависимость, 100% собирается близко к 4,850мм.

По Wser есть зависимость, горб собирается близко к 1,76мм.

По Lser также есть зависимость, есть точные пики 100% близко к 4,86мм. При других значениях, от Lser успех не зависит.

Исходя из полученных выводов, получается, что надо подправить значения Wshunt в диапазон 0,85..0,9мм, Lshunt на 4,85мм, Wser на 1,76мм и Lser на 4,86мм. И еще раз провести анализ чувствительности, но теперь с учетом новый номинальных значений.

Задание на выполнение

В соответствии с вариантом рассчитать и спроектировать двушлейфный направленный ответвитель на заданную частоту (Fc) и ВЧ-подложку. Провести ее настройку и исследование на схемном и топологическом уровнях.

Варианты заданий приведены в таблице 1.

При выполнении ориентироваться на методику выполнения.

Таблица 1. Варианты заданий

№ E	Варианта	1	2	3	4	5
Центральная частота		6	4	3	3,5	4,5
Fc,	ГГц					
	Именование	FR-4	FR-4	RO4003C	RO4003C	RO4350B
	материала					
	Относительная	4,6	4,6	3,55	3,55	3,66
K	диэлектрическая					
) Ķ	проницаемость					
	Er, ед.					
Параметры подложки	Тангенс угла	0,01	0,01	0,0026	0,0026	0,004
)PI	диэлектрических					
eTĘ	потерь TanD, ед.					
ам	Толщина	0,508	0,203	0,813	0,508	0,254
 Iap	диэлектрика h,					
П	MM					
	Толщина	17	17	35	17	17
	металлизации t,					
	MKM					

Таблица 3. Продолжение

№ Варианта		1	2	3	4	5
Центральная частота Fc,		4,7	3,2	2,2	7	6
ГГц						
	Именование	RO4350B	RO3003	RO3003	Arlon	Arlon
	материала				AD255C	AD255C
И	Относительная	3,66	3,0	3,0	2,55	
ЖК	диэлектрическая					
OIU	проницаемость Er,					
	ед.					
1 19	Тангенс угла	0,004	0,0013	0,0013	0,0013	0,0013
dта	диэлектрических					
аще	потерь TanD, ед.					
Параметры подложки	Толщина	0,508	0,75	1,52	0,508	0,635
	диэлектрика h, мм					
	Толщина	17	17	35	35	17
	металлизации t, мкм					

* Материала Arlon AD255C нет в базе материалов ADS, его надо будет самостоятельно определить по кнопке Add Dielectric.

Каждый крупный этап рекомендовано делать в отдельных ячейках (схемах), т.к. при выполнении работы возможно придется возвращаться к предыдущим этапам.

Этапы выполнения:

- 1. Двушлейфный НО на идеальных линиях передачи (ячейка BCoupler_Ideal).
- 1.1. Составить схему для моделирования в режиме S-параметров согласующей цепи на идеальных линиях передачи.
 - Компоненты брать из палитры TLines-Ideal.
- Диапазон частот моделирования брать от 0 Γ ц до удвоенной частоты Fс.
 - 1.2. Промоделировать в режиме S-параметров.

- Показать, что двушлейфный HO цепь выполняет поставленную на него задачу.
 - Результаты контролировать только на центральной частоте Fc.
 - Построить графики амплитудных и фазовых соотношений
- Создать теоретическую матрицу S-параметров на центральной частоте и сравнить результаты.
- 2. Двушлейфный НО в микрополосковом исполнении на схемном уровне (ячейка BCoupler_MLIN_Sch).
- 2.1. Создать схему двушлейфного НО в микрополосковом исполнении на основании результатов, полученных в п.1.
- Для расчета геометрических размеров микрополосков использовать инструмент LineCalc.
 - Компоненты брать из палиты TLines-Microstrip.
 - Параметры подложки брать из таблицы 1.
- Дополнительно добавить 50 Омные участки длиной около 2-2,5 ширин 50 Ом-ной линии со стороны портов 50 Ом.
 - 2.2. Провести моделирование в режиме S-параметров.
- Диапазон частот моделирования брать от 0 Γ ц до удвоенной частоты Fс.
 - Результаты контролировать в диапазоне частот Fc±3%.
 - Считать, что двушлейфный НО выполняет свою задачу, если
 - а) Коэффициент отражения S11 в рабочей полосе менее –20 дБ;
 - б) Развязка S21 в рабочей полосе менее –20 дБ;
 - в) Рабочее затухание S31 в рабочей полосе менее, чем 3,5 дБ;
 - г) Переходное ослабление в рабочей полосе менее, чем 3,5 дБ;
- е) Центральная частота, на которую настроен двушлейфный НО близка к Fc (контролировать по положению провала на S11 и S21).

- 2.3. Если двушлейфный НО не проходит по требованиям, с помощью инструментов Tune или Optimization настроить ее.
- 2.4. После настройки определить предельные частотные параметры двушлейфного НО, в том числе
 - полный диапазон частот, при котором S11 и S21 меньше –20 дБ;
 - полный диапазон частот, при котором S31 и S41 больше –3,5 дБ;
- оценить стабильность рабочего и вторичного плеч по отношению друг другу (S31/S41) по амплитуде и по фазе.
- 3. Двушлейфный НО в микрополосковом исполнении на топологическом уровне (ячейка верхнего уровня BCoupler_EM_Top и подсхема BCoupler_EM_Inner).
- 3.1. Создать параметризированную топологию двушлейфного НО в микрополосковом исполнению с использованием результатов п.2.
- Создать определение подложки tech.subst в соответствии с методикой. Параметры брать из таблицы 1.
- Для параметризации топологии создать двухуровневую схему в соответствие с методикой.
- На уровень внутренней ячейки вынести все параметры, использованные в топлогии. Численные значения параметров задавать в соответствии с результатами п.2.
 - 3.2. Провести ЕМ-моделирование топологии.
 - Метод моделирования брать Momentum Microwave.
 - Результаты хранить с использованием emModel.
- Если расчет идет долго, то верхнюю границу диапазона частот моделирования можно сократить Fc+20%.
 - Сравнить результаты с результатами п.2.
 - Результаты контролировать в диапазоне частот Fc±3%.
 - Считать, что двушлейфный НО выполняет свою задачу, если:
 - б) Развязка S21 в рабочей полосе менее –20 дБ;

- в*) Рабочее затухание S31 в рабочей полосе менее, чем 3,5 дБ;
- г*) Переходное ослабление в рабочей полосе менее, чем 3,5 дБ;
- е) Центральная частота, на которую настроен двушлейфный НО близка к Fc (контролировать по положению провала на S11 и S21).
 - * При необходимости требование можно ослабить до 4 дБ.
- 3.3. Если согласующая цепь не проходит по требованиям, с помощью инструментов Tune или Optimization настроить ее.
- 4. Анализ выхода годных (ячейка верхнего уровня BCoupler_EM_Yeld, использует созданную ранее подсхему BCoupler_EM_Inner).
- 4.1. Подготовить схему для исследования топологии статистическим анализом выхода годных.
- Считать, что линейные размеры могут иметь погрешность $\pm 0{,}05$ мм, распределенную нормально.
 - Модель для исследования брать в топологическом представлении.
- Если расчет одной попытки идет долго, то верхнюю границу диапазона частот моделирования можно сократить Fc+20%.
 - Считать, что двушлейфный НО выполняет свою задачу, если
 - а) Коэффициент отражения S11 в рабочей полосе менее –20 дБ;
 - б) Развязка S21 в рабочей полосе менее –20 дБ;
 - в*) Рабочее затухание S31 в рабочей полосе менее, чем 3,5 дБ;
 - г*) Переходное ослабление в рабочей полосе менее, чем 3,5 дБ;
- е) Центральная частота, на которую настроен двушлейфный НО близка к Fc (контролировать по положению провала на S11 и S21).
 - * При необходимости требование можно ослабить до 4 дБ.
- 4.2. По результатам статистического моделирования провести анализ результатов.
- Если топология имеет процент выхода годных (Yield) меньше 100%, то провести анализ гистограммой чувствительности по параметрам и найти возможное решение для получения более устойчивого решения.

Требования к отчёту

Отчет о выполненной лабораторной работе должен представлять из себя структурированное описание всей выполненной работы, в том числе должен содержать:

- Титульный лист, с наименованием работы, указанием исполнителя и даты выполнения.
 - Цель (-и) работы.
 - Список использованных инструментов в лабораторной работе.
- Разделы работы, которые рекомендовано формировать в соответствии с этапами выполнения (аналогично методике и заданию на выполнение).
- Для каждого этапа необходимо привести все выполненные расчеты, подготовленные модели, результаты и анализ результатов.

Подробность описания этапов выполненной работе студент определяет самостоятельно. Самое простое правило, которому надо следовать — человек, незнакомый с выполненной работой (но знакомый с использованным инструментом) должен быть в состоянии по отчету повторить данную работу и понять, что в ней происходит.

Готовый отчет необходимо экспортировать в pdf.

Архив проекта ADS лучше всего делать встроенным инструментом File – Archive Workspace из основного окна ADS. При архивации проекта можно выбрать, какие составляющие проекта добавлять в архив. Если какие-то ячейки или результаты расчета не нужны, то их можно исключить из архивирования.

Созданный архив будет иметь расширение *.7zads и является фактическим 7z-архивом.

По окончании выполнения лабораторной работы и подготовки отчета, отчет и архив проекта надо выложить в ОРИОКС в домашнее задание в дисциплину, привязав к контрольному мероприятию ЗЛР (Защита лабораторных работ). Именование отчета и архива проекта должно давать возможность точно понять, к какой теме лабораторной работы они относятся (Например, AFU Lab BCoupler вместо непонятного Lab1 или Workspace1).

Задание на самостоятельную работу

1) Подготовка к лабораторному занятию

При подготовке к выполнению лабораторной работы необходимо продумать шаблон отчета, при необходимости внести краткие теоретические сведения, продумать и наметить количество, вид и расположение таблиц и графиков с измеренными данными. Для получения допуска необходимо подробно изучить теоретический материал.

2) С использованием навыков, полученных в лабораторной работе, выполнить соответствующий этап БДЗ.

Контрольные вопросы

//TODO

Литература

- 1. Банков, С. Е. Электродинамика для пользователей САПР СВЧ: учебник / С. Е. Банков, А. А. Курушин. Москва: СОЛОН-Пресс, 2017. 316 с. ISBN 978-5-91359-236-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/107661 (дата обращения: 02.02.2021). Режим доступа: для авториз. пользователей.
- 2. Курушин, А. А. Моделирование цифровых потоков радиосвязи в среде ADS/Ptolemy / А. А. Курушин, А. О. Мельников. Москва : СОЛОН-Пресс, 2005. 184 с. ISBN 5-98003-204-5 . Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/13705 (дата обращения: 02.02.2021). Режим доступа: для авториз. пользователей.

Перечень ресурсов сети «Интернет»

- 3. Сборник примеров работы в ADS «ADS Example Book: Focused on RF and Microwave Design», доступен после свободной регистрации https://www.keysight.com/main/editorial.jspx?cc=RU&lc=rus&ckey=2704333&id=2704333&cmpid=zzfindeesof-ads-rfmw-examples
- 4. База знаний Образовательного центра Keysight EEsof EDA Knowledge Center, доступен после свободной регистрации, http://edadocs.software.keysight.com/display/support/Knowledge+Center
- 5. Тематический раздел «Rf & Microwave Design» форума electronix.ru, доступен после свободной регистрации, https://electronix.ru/forum/index.php?showforum=63
- 6. Интернет-энциклопедия разработчиков СВЧ-аппаратуры «Microwaves101» https://www.microwaves101.com

Каналы Youtube с видеоуроками по Keysight Advanced Design System

- 7. Канал youtube образовательного центра Keysight EEsof EDA https://www.youtube.com/user/KeysightEESOF
- 8. Канал youtube Anurag Bhargava образовательного центра https://www.youtube.com/user/BhargavaAnurag
- 9. Канал youtube Keysight EEsof EDA Field https://www.youtube.com/c/EEsofAETips

Разработчик:

Ст. преподаватель Института МПСУ

Приходько Д.В.