Pseudo maille Maille hexagonale compacte, = 1/3 de la Maille HC HC page facebook exosup.com

Pseudo maille HC

Pseudo maille HC

Exprimer c = f(a)

Le triangle est rectangle
AGH au point G
AG² + GH² = AH²
or GH = c /2

$$a^2/3 + c^2/4 = a^2$$

$$c = \sqrt{\frac{8}{3}} \cdot \alpha$$

Le rapport c/a de la maille hex. Comp. est

une cte =
$$c/a = \sqrt{8/3} = 1,633$$
,
qui permet de savoir

Si l'empilement est compact ou non.

Compacité ou taux de remplissage T :

Compacité
$$T = \frac{n \cdot Volume(1atome)}{Volume(1 maille)}$$

Pseudo maille Hexagonal Compacte HC

n = nbre d'atomes par pseudo maille
= 1 + (4 x 1/6) + (4 x 1/12) = 2 atomes /maille

$$V(1atome) = (4/3) \pi R^3$$

$$V(1 \text{ pseudo maille}) = a^2 \cdot c \cdot \sin 120^\circ$$

Pseudo maille HC

n = 2 atomes/ pseudo maille

Relation de tangence :
$$2R = a$$

D'où la relation:

$$T = \frac{2 \cdot (4/3) \pi R^3}{a^2 \cdot c \cdot \sin 120^\circ} = \frac{2 \cdot (4/3) \pi (a/2)^3}{a^2 \cdot c \cdot \sin 120^\circ} = 0.74$$

exosup.com

Masse volumique:

$$\frac{\rho}{N.V} = \frac{n.M}{(en g/cm^3)}$$

n: nombre de motifs (atomes, molécules ou ions)/maille;

M: Masse molaire du motif;

V : volume de la maille

N: nombre d'Avogadro = 6,02.10²³

La densité est :
$$d = \rho / \rho_{eau}$$
 (sans unité)

avec
$$\rho_{eau} = 1 \text{ g/cm}^3$$

à T ambiante et à P = 1 atm

C: 2- Troisième plan compact

> la première est deux possibilités :

Succession des plans ABCABCAB page facebook

L'empilement compact ABCABC...

donne une structure cubique à faces centrées.

Maille Cubique à faces centrées

CFC

Coordonnées réduites

Coordonnées réduites

Coordonnées réduites

Structure Cubique à faces centrées

Mode du réseau cubique: Mode F

Coordonnées réduites

Structure Cubique à faces centrées, Mode F

On compte donc 8 atomes (sommets) x 1/8 + 6 atomes (faces) x 1/2

= 4 atomes/maillex

Structure Cubique à faces centrées, Mode F

$$T = n. volume(1atome)/V(maille)$$
 avec $n = 4$ atomes/maille

$$V(1 \text{ atome}) = (4/3) \pi R^3$$
 et $V(1 \text{ maille}) = a^3$

Or pour un CFC, les atomes sont tangents selon la diagonale de la face

Relation de tangence : $4R = a\sqrt{2}$

D'où la relation:

$$T = \frac{4 \cdot (4/3) \pi R^3}{a^3} = \frac{4 \cdot (4/3) \pi (a\sqrt{2}/4)^3}{a^3} = 0,74$$

exosup.com

Structure Cubique à faces centrées, Mode F

coord. = ?

2 atomes sont situés à la distance av2/2.

Chaque atome a 12 proches voisins

coord. = 12

Structure Cubique à faces centrées

Mode du réseau cubique: Mode F

Coordonnées réduites

Structure Cubique à faces centrées

exosup.com

page facebook

Structure Cubique à faces centrées, CFC

Mode du réseau cubique: Mode F

exosup.com

Structure Cubique à faces centrées, CFC

Mode du réseau cubique: Mode F

N.B. Les atomes sont colorés différemment mais sont du même type

Mode du réseau cubique: Mode P

Coordonnées réduites

(0, 0, 0)

La coordonnée réduite représente tous les sommets

Modèle compact

Mode du réseau cubique: Mode P

CS

Paramètre a de la maille

= Nbre des plus proches voisins à <u>égale distance</u>

= chaque atome a 6 voisins tangents situés à la distance a

Coord (Cub. Simple) = 6

L'atome rouge appartient à 4 mailles du même plan

Il comptera pour la maille par :

1/4 atome

Dans un plan, une maille contient 4 sommets : $4 \times \frac{1}{4} = 1$ atome/maille plane

Examinons la maille dans l'espace

L'atome rouge ---appartient à 8 mailles du l'espace

Il comptera pour la maille par :

1/8 atome

A trois dimensions, une maille contient

8 sommets: $8 \times 1/8 = 1$ atome/maille

exosup.com

page facebook

Mode du réseau cubique: Mode P

Mode du réseau cubique: Mode P

Structure Cubique simple Mode du réseau cubique: Mode P Coordonnées réduites (0, 0, 0)Projection sur le plan (002) = plan (002)= plan (002)Cote u = -1/2Cote exosup.com

Structure Cubique simple Mode du réseau cubique: Mode P Coordonnées réduites (0, 0, 0)Projection sur le plan (110) = plan (110)= plan (110)Cote u = 0Cote $u = + a\sqrt{2}/2$ Cote $u = -a\sqrt{2}/2$ exosup.com

Compacité ou taux de remplissage T :

Compacité
$$T = \frac{n \cdot Volume(1atome)}{Volume(1 maille)}$$

Structure Cubique simple

Mode du réseau cubique: Mode P

CS

n = nbre d'atomes par maille
=
$$8 \times 1/8 = 1$$
 atome /maille
 $V(1atome) = (4/3) \pi R^3$
 $V(1maille) = a^3$

CS

Mode du réseau cubique: Mode P

n = nbre d'atomes par maille
=
$$8 \times 1/8 = 1$$
 atome /maille
 $V(1atome) = (4/3) \pi R^3$

$$V(1maille) = a^3$$

les atomes sont tangents l'arête de la maille

Relation de tangence : 2R = a

D'où la relation:

$$T = \frac{1 \cdot (4/3) \pi R^3}{a^3} = \frac{1 \cdot (4/3) \pi (a/2)^3}{a^3} = 0,52$$

Le RESEAU CUBIQUE CENTRE : CC

Structure Cubique centrée

Mode du réseau cubique: Mode I

Coordonnées réduites

(0,0,0) représente tous les sommets

(1/2, 1/2, 1/2)

représente le centre la maille cubique

Structure Cubique centrée, Mode I

8 atomes (sommets) x 1/8

+ 1 atome (centre) x 1

= 2 atomes/maille

Structure Cubique centrée, Mode I

coord. = ?

2 atomes sont situés à la distance aV3/2.

Chaque atome a 8 proches voisins

coord. = 8

Structure Cubique centré

Mode du réseau cubique: Mode l

exosup.com page fa

Compacité ou taux de remplissage T :

Compacité
$$T = \frac{n \cdot Volume(1atome)}{Volume(1 maille)}$$

Structure Cubique centré

Mode du réseau cubique: Mode l

CC

n = nbre d'atomes par maille
=
$$8 \times 1/8 + 1 = 2$$
 atomes/maille
 $V(1atome) = (4/3) \pi R^3$
 $V(1maille) = a^3$

Ex: Cas d'une structure cubique centré, CC

n = 2 atomes/maille

Or pour un CC, les atomes sont tangents la grande diagonale de la maille

Relation de tangence : $4R = a\sqrt{3}$

D'où la relation:

$$T = \frac{2 \cdot (4/3) \pi R^3}{a^3} = \frac{2 \cdot (4/3) \pi (a\sqrt{3}/4)^3}{a^3} = 0.68$$

Résumé

Cubique simple, Mode P Cubique centré, Mode I

CFC, Mode F

$$coord. = 6$$

$$\tau = 0,52$$

1 at./maille

$$2R = a$$

$$\tau = 0.68$$

2 at./maille

$$4R = a\sqrt{3}$$

$$\tau = 0,74$$

4 at./maille

$$4R = a\sqrt{2}$$

Coordonnées réduites

Coordonnées réduites

Coordonnées réduites