

May 1997

NDH834P

P-Channel Enhancement Mode Field Effect Transistor

General Description

SuperSOTTM-8 P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as battery powered circuits or portable electronics where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- Proprietary SuperSOTTM-8 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings T_a = 25°C unless otherwise noted

Symbol	Parameter		NDH834P	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
I _D	Drain Current - Continuous	(Note 1a)	-5.6	Α
	- Pulsed		-15	
P _D	Maximum Power Dissipation	(Note 1a)	1.8	W
		(Note 1b)	1	
		(Note 1c)	0.9	
T _J ,T _{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			
R_{qJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	70	°C/W
R_{qJC}	Thermal Resistance, Junction-to-Case	(Note 1)	20	°C/W

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-20			V
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$				-1	μA
			$T_J = 55^{\circ}C$			-10	μA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)	•			•	·	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-0.4	-0.62	-1	V
			$T_{J} = 125^{\circ}C$	-0.3	-0.4	-0.8	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -5.6 \text{ A}$			0.029	0.035	Ω
			T _J = 125°C		0.039	0.063	
		$V_{GS} = -2.7 \text{ V}, I_{D} = -5.2 \text{ A}$			0.038	0.045	
D(on)	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$		-15			Α
		$V_{GS} = -2.7 \text{ V}, V_{DS} = -5 \text{ V}$		- 5			
FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -5.6 \text{ A}$			18		S
OYNAMIC	CHARACTERISTICS				_		
iss	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$			1820		pF
oss	Output Capacitance	f = 1.0 MHz			745		pF
C _{rss}	Reverse Transfer Capacitance				270		pF
WITCHIN	NG CHARACTERISTICS (Note 2)				_		
O(on)	Turn - On Delay Time	$V_{DD} = -5 \text{ V}, I_{D} = -1 \text{ A},$			15	30	ns
	Turn - On Rise Time	V_{GEN} = -4.5 V, R_{GEN} = 6 Ω			36	70	ns
D(off)	Turn - Off Delay Time				145	280	ns
	Turn - Off Fall Time				85	160	ns
Q_g	Total Gate Charge	$V_{DS} = -10 \text{ V},$			9.3	13	nC
Q_{gs}	Gate-Source Charge	$I_D = -5.6 \text{ A}, \ V_{GS} = -4.5 \text{ V}$			2.3		nC
Q_{gd}	Gate-Drain Charge				1.1		nC

Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
I _s	Maximum Continuous Drain-Source Diode Forward Current				-1.5	Α			
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -1.5 A (Note 2)		-0.7	-1.2	V			

Notes

1. R_{BA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BA} is guaranteed by design while R_{BCA} is determined by the user's board design.

$$P_{D}(t) = \frac{T_{J} T_{A}}{R_{\theta JA}(t)} = \frac{T_{J} T_{A}}{R_{\theta JC} + R_{\theta CR}(t)} = I_{D}^{2}(t) \times R_{DS(ON)} g_{TJ}$$

Typical $R_{\rm BJA}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

- a. 70°C/W when mounted on a 1 in² pad of 2oz copper.
- b. 125°C/W when mounted on a 0.026 in² pad of 2oz copper.
- c. 135°C/W when mounted on a 0.005 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Drain Current and Temperature.

Figure 5. Transfer Characteristics.

Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics

Figure 7. Breakdown Voltage Variation with Temperature.

Figure 9. Capacitance Characteristics.

Figure 11. Switching Test Circuit.

Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

Figure 10. Gate Charge Characteristics.

Figure 12. Switching Waveforms.

Typical Thermal Characteristics

Figure 13. Transconductance Variation with Drain **Current and Temperature.**

Figure 14. SOT-8 Maximum Steady-State Power **Dissipation versus Copper Mounting Pad** Area.

Figure 15. Maximum Steady-State Drain **Current versus Copper Mounting Pad** Area.

Figure 16. Maximum Safe Operating Area.

Figure 17. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in note 1c. Transient thermal response will change depending on the circuit board design.

