

# STM32L4 – System operating modes with real applications examples

STM32L4 workshop



### Typical application profile \_\_\_\_\_



#### Application phases:

- OFF power is not applied to MCU
- STARTUP INITIALIZATION MCU performs configuration (peripherals, clocks, ...)
- **Tperiod** 
  - INACTIVE MCU is in low power mode to reduce power consumption
  - ACTIVE MCU is in normal mode and performs tasks



#### 120 μA / MHz\*\* RUN (Range1) at 80 MHz 100 μA / MHz\*\* RUN (Range2) at 26 MHz 112 μA / MHz\*\* **LPRUN at 2 MHz** $35 \mu A / MHz$ **SLEEP at 26 MHz** 48 μA / MHz LPSLEEP at 2 MHz **STOP 1 (full retention)** 6.6 μΑ / 6.9 μΑ\* 1.1 μΑ / 1.4 μΑ\* **STOP 2 (full retention)** STANDBY + 32 KB RAM 350 nA / 650 nA\* **STANDBY** 115 nA / 415 nA\*

### Overview 3

#### Application benefits

- High performance
  - → CoreMark score = 273
- Outstanding power efficiency
  - → ULPBbench score = 150



Wake-up

time

6 cycles

6 cycles

4 µs

5 µs

14 µs

14 µs

256 µs

30 nA / 330 nA\* SHUTDOWN

**VBAT** 4 nA / 300 nA\* Typ @ VDD =1.8 V @ 25 °C

\*: with RTC

\*\* : from SRAM1

### Key features 4

Down to 100 µA/MHz in Run mode with code execution from SRAM

Down to 30 nA with I/O wake-up (Shutdown)

Down to 350 nA with 32 KB RAM retained (Standby)

Wake-up from high number of peripherals (RTC in each mode)



Two Voltage Regulators

### Voltage regulators

 One Main regulator with two voltage ranges for Dynamic Voltage Scaling; used in Run and Sleep modes

 One Low-power regulator for Low-power run, Low-power sleep, Stop 1, and Stop 2 modes as well as for RAM retention in Standby

 In Standby and Shutdown mode both regulators are off.



#### **GPIO DMA FSMC** QUADSPI BOR PVD. PVM **USB OTG USART** LP UART 12C 1 / 12C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM** ADC DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens RNG AES CRC**

### Run mode: Range 1

- All MCU's resources are ON
- System frequency up to maximum value

**Cortex M4** 

Flash memorv (1 Mbyte)

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes) Main regulator (MR)

Range 1 (up to 80 MHz)

Range 2 (up to 26 MHz)

**Low-power regulator** (LPR) up to 2 MHz

Range 1 from Flash 131 uA/MHz at 80 MHz (10.5 mA)

**Available** clocks

**HSI HSE** LSI LSE **MSI** 

**Active cell** 

Clocked-off cell

Cell in powerdown

**Available** Periph and clock

#### **GPIO** DMA **FSMC** QUADSPI BOR PVD. PVM **USB OTG USART** LP UART 12C 1 / 12C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM** ADC DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens** RNG **AES CRC**

### Run mode: Range 2

- Most of MCU's resources are ON
- System frequency is limited

Cortex M4

Flash memorv (1 Mbyte)

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes) Main regulator (MR)

Range 1 (up to 80 MHz)

Range 2 (up to 26 MHz)

Low-power regulator (LPR) up to 2 MHz

Range 2 from SRAM1 100 uA/MHz at 26 MHz (2.6 mA)

**Available** clocks

**HSI HSE** LSI LSE **MSI** 

**Active cell** 

Clocked-off cell

Cell in powerdown

**Available** Periph and clock

#### Hands-on: important information ---

- Examples refer to real applications
- Software for each example was developed using tools:
  - STM32CubeMX initialization code generator
  - IAR EWARM IDE
- Hardware platform for the examples is STM32L476G-DISCO board



 Each example can be examined by attaching ammeter to the board and measuring current





# Running hands-on examples Make sure that software tools are installed

- - IAR EWARM 7.40
  - CubeMX 4.11.0
  - ST-Link driver
- Attach STM32L476G-DISCO board to laptop (mini USB cable required)



- Run the example by:
  - building it (from Menu: Project->Make or F7)
  - downloading it to MCU (from Menu: Project-> Download->Download Active Application)
  - or debugging it on MCU (from Menu: Project->Download and Debug)
- Measure MCU current consumption by attaching ammeter to Idd connector (JP5) instead of jumper switched to OFF position





#### Hands-on example 1: RUN mode

• Application: High-performance data processing unit

• **Description of application:** MCU executes COREMARK algorithm

Example path:

C:\STM32L4\_Workshop\HandsOn\1\_System\_Operating\_Modes\1\_RUNMODE

- Application's parameters:
  - Clock: 24MHz (MSI@4MHz) / 80 MHz (MSI@4MHz + PLL),
  - Execution space: FLASH/SRAM memory





#### Hands-on: RUN mode configuration —11

- Configuration:
  - Execution space (FLASH or SRAM2) can be changed by choose linker file



Clock frequency can be changed in main.c by uncomment Clock\_MSI24MHZ\_Enable(), PLL80MHz clock is default

```
//ART Disable();
//Clock MSI24MHZ Enable();
```

Printf instruction is redirected to UART2 / ST-Link Virtual Com Port, jumper SB13, SB16 should be soldered. Uart parameters: 115200b/s,8,N,1



Virtual Comport Driver should be installed on the target PC

#### Hands-on: RUN mode results 12

Result can be obtained in Terminal software:

Running from address: 0x08004495

Data at address: 0x200001A8

WS: 4 ART: ON

System Clock: 80000000

2K performance run parameters for coremark.

CoreMark Size : 666 Total ticks : 303264193 Total time (secs): 3.790802 Iterations/Sec : 263,796392

Iterations : 1000 Memory location: STACK

#### Results of COREMARK algorithm:

| Conditions            | COREMARK result | Average current consumption |
|-----------------------|-----------------|-----------------------------|
| FLASH / CLK=80MHz     | 263.8           | 14.3 mA (178 uA/MHz)        |
| SRAM1/SRAM2 CLK=80MHz | 269.8           | 14.1 mA (176 uA/ MHz)       |
| FLASH / CLK=24MHz     | 80.5            | 4.5 mA (187 uA/MHz)         |
| SRAM1/SRAM2 CLK=24MHz | 80.8            | 3.24 mA (135 uA/MHz)        |



#### **GPIO** DMA **FSMC** QUADSPI **BOR** PVD. PVM **USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM** ADC DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens** RNG **AES CRC**

### Low-power run mode 13

- Main regulator is OFF
- System frequency is limited

Cortex M4

Flash memorv (1 Mbyte)

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes) Main regulator (MR)

Range 1 (up to 80 MHZ)

Range 2 (up to 26 MHZ)

Low-power regulator (LPR) up to 2 MHz

from Flash 135 uA/MHz at 2 MHz (269 µA)

From SRAM1 112 µA/MHz at 2 MHz  $(225 \mu A)$ 

**Available** clocks

**HSI HSE** LSI LSE **MSI** 

**Active cell** 

**Clocked-off** cell

Cell in powerdown

**Available** Periph and clock

#### Power optimization versus frequency

#### Flexibility between required performance and consumption



#### Hands-on example 2: LOW POWER RUN

- Application name: Fast data acquisition logger (sensor hub), implementation #1
- **Description of application:** every 1 s ADC reads data from temperature sensor integrated in MCU, then data is sent by DMA to be displayed on LCD
- Example path: C:\STM32L4\_Workshop\HandsOn\1\_System\_Operating\_Modes\
   LOWPOWERRUN RAM
- Application's parameters:
  - Clock: 2 MHz (clock source: MSI),
  - Execution space: SRAM1 memory
- Current consumption:
  - Average in LPRUN: 410 uA
  - Distribution: flat current consumption profile







#### **Available peripherals**

**GPIO** DMA **FSMC** QUADSPI **BOR** PVD. PVM LCD **USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM** ADC DAC **OPAMP** COMP **Temp Sensor** Timers LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens RNG AES** CRC

### Sleep mode 16

- Core is stopped
- All peripherals and clocks are available
- Fastest wakeup time

Wakeup time: 6 cycles



Flash memorv (1 Mbyte)

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes) Main regulator (MR)

Range 1 (up to 80 MHZ)

Range 2 (up to 26 MHZ)

**Low Power regulator** (LPR) up to 2 MHz

Range 1 37 µA/MHz at 80 MHz (2.96 mA)

Range 2 35 µA/MHz at 26 MHz (0.92 mA)

**Available** clocks

**HSI HSE** LSI LSE **MSI** 

**Active cell** 

Clocked-off cell

Cell in powerdown

**Available** Periph and clock **Available peripherals** 

**GPIO** DMA **FSMC** QUADSPI **BOR** PVD. PVM **USB OTG USART** LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM** ADC DAC **OPAMP** COMP **Temp Sensor** Timers LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer Touch Sens RNG AES CRC** 

### Low-power sleep mode 17

- Core is stopped
- Main regulator is OFF
- Fastest wakeup time

Wakeup time: 6 cycles

Zzz Cortex M4

> Flash memorv (1 Mbyte)

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes) Main regulator (MR)

Range 1 (up to 80 MHZ)

Range 2 (up to 26 MHZ)

**Low Power regulator** (LPR) up to 2 MHz

Flash ON, SRAMs OFF 48 uA/MHz at 2 MHz (96 µA)

**Available** clocks

**HSI HSE** LSI LSE **MSI** 

**Active cell** 

Clocked-off cell

Cell in powerdown

**Available** Periph and clock

#### Hands-on example 3: SLEEP / LPSLEEP

**Application name:** Fast data acquisition logger (sensor hub), implementation #2

Description of application: in SLEEP mode data is acquired by ADC and transferred by DMA. In RUN mode data is displayed on LCD. In LPSLEEP data is transferred by UART (9600, 8, N, 1) with DMA.

**Example path:** 

C:\STM32L4 Workshop\HandsOn\1 System Operating Modes\3 SLEEP LPSLEEP

**Application's parameters:** 

Clock: 4 MHz MSI in SLEEP, 1 MHz MSI in LPSLEEP, 4 MHz MSI in RUN (clock source: MSI for all),

Average current consumption:



(Init) PSLEEP **DMA INT** RUN (Service – After (Service -SLEEP **UART** LCD) DMA INT SLEEP After init (Service – ADC **DMA** 

Time

**RUN** 

**PWR UP** 

Reset



### Batch Acquisition mode (BAM)

Optimized mode for transferring data with communication peripherals, while the rest of the device is in low power.

- Only the needed communication peripheral + Zzz
   DMA + 1 SRAM are configured with clock enabled in Sleep mode
- 2. Flash memory is put in Power-down mode and Flash clock is gated off during Sleep mode
- 3. Enter either Sleep or Low-power sleep mode
- Note that the I2C clock can be at 16 MHz even in Low-power sleep mode, allowing 1 MHz Fast-mode Plus support. U(S)ART/LPUART clock can also be HSI.



#### Stop modes 20

#### Lowest power modes with full retention

- SRAM1, SRAM2 and all peripheral registers retention
- All high-speed clocks are stopped
- LSE (32.768 kHz external oscillator) and LSI (32 kHz internal oscillator) can be enabled
- Several peripherals can be active and wake up from Stop mode
- System clock at wakeup can be HSI or MSI up to 48 MHz
- In Stop 2 current consumption is lower; in Stop 1 more active peripherals are supported and wake up time is shorter



I/Os kept, and configurable

### Stop 1 mode 21

**GPIO** DMA **FSMC** QSPI BOR PVD. PVM LCD **USB OTG** USART LP UART I2C 1 / I2C 2

w/o RTC: 6.6 μA @ 3.0 V

w/ RTC: 7.1 µA @ 3.0 V

Wakeup time for 48 MHz:

In SRAM: 4 µs

In Flash memory: 6 µs

**I2C 3** SPI CAN **SDMMC SWPMI** 

Zzz Cortex M4

Flash

memory

(1 Mbyte)

**Active cell** 

Main regulator (MR)

SAI **DFSDM ADC** 

DAC **OPAMP** 

COMP **Temp Sensor** 

> **Timers** LPTIM 1

LPTIM 2

**IWDG** 

**WWDG Systick Timer** 

**Touch Sens** 

**RNG AES** 

CRC

HSE LSI LSE

**Available** 

clocks

HSI

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes)

Clocked-off cell

**Low Power regulator** (LPR)

**Backup Register** (32x32-bits)

**RTC** 

Available cell

Wake-up

event

**NRST** 

**BOR PVD** 

**PVM** RTC + Tamper

I CD

**USB OTG** 

**USART** 

LP UART

12C 1 / 12C 2

**I2C 3** 

**SWPMI** 

COMP

LPTIM 1

LPTIM 2

**IWDG** 

**GPIOs** 

**Backup domain** 

Cell in power-down

PWR UP

**RUN** 

(Init)

Reset

RUN

(Service – volume and flow

update.

### Hands-on example 4: STOP1

- Application name: Water meter, implementation #1 (with UART wake-up capability)
- Description of application: MCU enters STOP1 mode. Interrupts wakes it up. After RTC interrupt (once every 60 s) MCU updates average flow. After EXTI interrupt (buttons) MCU provides user interface and counts volume. After UART interrupt MCU sends back volume data by UART.
- Example path: C:\STM32L4\_Workshop\HandsOn\1\_System\_Operating\_Modes\
   4\_WATER\_METER\_STOP1
- Application's parameters:
  - Clock: 16 MHz (clock source: HSI)



**GPIO** 

I/Os kept, and configurable

### Stop 2 mode 23

DMA **FSMC** QSPI BOR PVD. PVM LCD **USB OTG** USART

w/o RTC: 1.2 μA @ 3.0 V

w/ RTC: 1.7 µA @ 3.0 V

Wakeup time to 48 MHz:

In SRAM: 5 µs

In Flash memory: 8 µs

LP UART I2C 1 / I2C 2 **I2C 3** SPI CAN **SDMMC SWPMI** SAI **DFSDM ADC** DAC **OPAMP** COMP **Temp Sensor Timers** LPTIM 1 LPTIM 2

**IWDG** 

**WWDG** 

**Systick Timer** 

**Touch Sens** 

**RNG** 

**AES** 

CRC

Zzz Cortex M4

Main regulator (MR)

**NRST BOR PVD PVM** RTC + Tamper LCD

Wake-up

event

Flash memory (1 Mbyte)

SRAM 1 (96 Kbytes)

SRAM 2 (32 Kbytes) **Low Power regulator** (LPR)

\_P UART

**12C 3** 

COMP LPTIM 1

**IWDG GPIOs** 

(32x32-bits) **RTC** 

**Backup domain** 

**Backup Register** 

**Available** 

HSI HSE LSI LSE

Clocked-off cell

Cell in power-down

Available cell

clocks

**Active cell** 

#### Hands-on example 5: STOP2

Time

**Application name:** Water meter, implementation #2 (without UART wake-up capability)

**Description of application:** MCU enters STOP2 mode. Interrupts wakes it up. After RTC interrupt (every 60 s) MCU updates average flow. After EXTI interrupt (buttons) MCU provides user interface and counts volume.

**Example path:** C:\STM32L4 Workshop\HandsOn\1 System Operating Modes\ 5 WATER METER STOP2

#### **Application's parameters:**

Clock: 4 MHz (clock source: MSI)

Average current consumption: **EXT IRQ RTC IRQ** 2.1 uA **RUN** RUN RUN (Service - flow (Service - flow (Service - volume update. update. update, LCD) LCD) LCD) STOP2 STOP2



**PWR UP** 

### Stop 1 & Stop 2 comparison

| Voltage range         | Stop 1 mode                                                                                                                                                                          | Stop 2 mode                                                                                                           |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Consumption           | 25 °C, 3 V                                                                                                                                                                           | 25 °C, 3 V                                                                                                            |  |
|                       | 6.6 μA w/o RTC                                                                                                                                                                       | 1.2 μA w/o RTC                                                                                                        |  |
| Wakeup time to 48 MHz | 6 μs in Flash memory<br>4 μs in RAM                                                                                                                                                  | 8 μs in Flash memory<br>5 μs in RAM                                                                                   |  |
| Wakeup clock          | MSI configurable up to 48 MHz or HSI at 16 MHz                                                                                                                                       |                                                                                                                       |  |
|                       | LCD, RTC, I/Os, BOR, PVD, PVM, COMPs, IWDG                                                                                                                                           |                                                                                                                       |  |
| Peripherals           | USB (suspend, ADP) 2 LP TIMERs 1 LP UART (Start, address match or byte reception) 5 UARTx (Start, address match or byte reception) 3 I2C (address match) SWPMI (resume from suspend) | 1 LP TIMER ( <b>LPTIM1</b> ) 1 LP UART (Start, address match or byte reception) 1 I2C ( <b>I2C3</b> ) (address match) |  |



#### Lowest power mode with SRAM2 retention

Ultra low power consumption, down to 115 nA without SRAM retention

Possibility to retain 32 Kbytes of SRAM2

5 wakeup pins: the polarity of each of the 5 wakeup pins is configurable

Wakeup clock is MSI configurable from 1 to 8 MHz





#### Hands-on example 6: STANDBY 28

**Application name:** Long term temperature logger

**Description of application:** MCU enters STANDBY mode. After each RTC wake up MCU reads ADC data and displays it on LCD.

**Example path:** C:\STM32L4 Workshop\HandsOn\1 System Operating Modes\ 6 LONGTERM LOGGER STANDBY SRAM2

- **Application's parameters:** 
  - Clock: 4 MHz (clock source: MSI)
- **Average current consumption:**





#### Shutdown mode 29

#### Lowest power mode

- Similar to Standby but
  - NO power monitoring: no BOR, no switch to VBAT
  - NO LSI, no IWDG
- 128-byte backup registers
- Wakeup sources: 5 wakeup pins, RTC
- Wakeup clock is MSI 4 MHz



#### **Available** peripherals **GPIO** I/Os can be configured DMA **FSMC QSPI** BOR PVD. PVM LCD **USB OTG** USART LP UART 12C 1 / 12C 2 12C 3 SPI CAN **SDMMC SWPMI** SAI **DFSDM ADC** DAC **OPAMP** COMP Temp Sensor Timers LPTIM 1 LPTIM 2 **IWDG WWDG Systick Timer** Touch Sens RNG **AES** CRC

#### Shutdown mode

Cell in power-down

w/ or w/o pull-up w/ or w/o pull-down But floating when exit from Shutdown

**Active cell** 

LSE

MSI

w/o RTC: 60 nA @ 3.0 V

w/ RTC: 550 nA @ 3.0 V

Wakeup time to 4 MHz: In Flash memory: 250 µs



Clocked-off cell

Wake-up event

**NRST** 

RTC + Tamper

5 WKUP pins

Available cell

## Hands-on example 7: SHUTDOV Application name: Water meter, implementation #3 (with SHUTDOWN mode).

- Description of application: MCU enters SHUTDOWN mode. This refers to behavior, when already configured battery-operated device is held in warehouse and current consumption should be as low as possible. When the center button is pressed and held, MCU starts to execute water meter application (example 5). This refers to behavior after device is delivered to customer.
- **Example path:** C:\STM32L4 Workshop\HandsOn\1 System Operating Modes\ 7 WATER METER SHUTDOWN + STOP2 mode
- **Application's parameters:** 
  - Clock: 4 MHz (clock source: MSI)





### Low-power modes transitions 32





#### How to associate LP modes 33

- RUN: do you need high computation power, but would like to be green?
- LOW POWER RUN: do you have weak power source, but supercapacitors are too costly?
- SLEEP/LPSLEEP: do you need peripherals running all the time, but power budget is limited?
- **STOP:** do you need balance between wake up time and low power consumption?
- STANDBY: do you need to consume very little power, but still SRAM needs to be retained?
- **SHUTDOWN:** is a low power consumption a top priority in your design?











www.st.com/stm32l4

