Дніпровський Національний університет імені Олеся Гончара Факультет прикладної математики

Кафедра обчислювальної математики та математичної кібернетики

Методи оптимізації

Завдання до лабораторної роботи

Чисельні методи розв'язання задач умовної оптимізації

Тема: Чисельні методи умовної оптимізації.

<u>Мета:</u> Познайомитись практично з ітераційними методами розв'язання задач умовної оптимізації.

Постановка завдання

Розв'язати задачу умовної оптимізації:

$$f(x) \rightarrow min,$$
 (1)

$$x \in X$$
 (2)

Цільова функція має вигляд:

$$f(x) = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2$$
.

Обмеження задачі:

1) випадок лінійних обмежень:

$$x_1 + x_2 \ge 4$$
, $x_1 + 4x_2 - 16 \le 0$, $11x_1 - 4x_2 - 44 \le 0$.

Коефіцієнти цільової функції визначаються номером індивідуального завдання і наведені в таблиці 1 (ті ж цільові функції, що і для задачі безумовної оптимізації).

- 1. Розробити програму знаходження оптимального розв'язку задачі умовної оптимізації методом умовного градієнту для функції f(x) при заданій точності ε .
- 2. Виконати геометричну інтерпретацію отриманих результатів.
- 3. Скласти звіт.

Література

- 1. Кісельова О. М., Шевельова А. Є. Чисельні методи оптимізації. Навч. посібник Д.: Вид-во ДНУ, 2008. 212 с.
- 2. Васильев Ф.П. Численные методы решения экстремальных задач. М.,1980.– 518 с.
- 3. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. M.,1986. 328c.

$N_{\underline{0}}$	а	b	С	d	e	№	а	b	С	d	e
1.	1	2	2	-2	-3	2.	7	1	1	-16	-3
3.	2	2	1	-2	-6	4.	1	2	3	-2	-3
5.	9	0	6	-90	-128	6.	1	-1	8	2	-1
7.	4	2	5	-2	-3	8.	6	2	1	6	6
9.	1	-1	1	-2	1	10.	3	2	1	-2	-3
11.	5	4	1	-16	-12	12.	8	2	1	-3	-6
13.	3	2	3	-2	-3	14.	9	5	1	6	2
15.	2	1	6	-5	-13	16.	7	-1	1	7	-4
17.	3	1	1	1	5	18.	7	5	1	6	3
19.	4	2	3	-2	-3	20.	9	1	1	2	-1
21.	5	4	1	6	4	22.	1	2	4	-2	-3
23.	3	3	1	6	5	24.	6	-1	1	-3	5
25.	4	2	1	-2	-3	26.	3	2	1	12	-6
27.	3	4	2	-2	4	28.	8	-2	1	-1	1
29.	2	2	3	-2	-3	30.	5	-2	1	-2	3
31.	1	2	5	-2	-3	32.	5	-2	2	2	3
33.	1	-4	1	2	2	34.	4	2	4	-2	-3
35.	5	2	1	-2	-10	36.	5	2	2	-4	-2
37.	6	2	1	-2	-3	38.	2	2	1	-2	-3
39.	5	4	6	-2	-6	40.	6	2	3	-2	-6
41.	7	-2	1	6	6	42.	2	2	5	-2	-3
43.	4	-5	3	-1	-4	44.	3	2	2	-2	-3
45.	1	2	3	1	1	46.	3	2	5	-2	-3