

A fast algorithm to compute a curve of confidence upper bounds for the False Discovery Proportion using a reference family with a forest structure

Guillermo Durand ¹ Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay

Date published: 2024-06-30 Last modified: 2024-06-30

Abstract

This paper presents a new algorithm (and an additional trick) that allows to compute fastly an entire curve of post hoc bounds for the False Discovery Proportion when the underlying bound V_{\Re}^* construction is based on a reference family \Re with a forest structure à la Durand et al. (2020). By an entire curve, we mean the values $V_{\Re}^*(S_1), \dots, V_{\Re}^*(S_m)$ computed on a path of increasing selection sets $S_1 \subseteq \dots \subseteq S_m$, $|S_t| = t$. The new algorithm leverages the fact that going from S_t to S_{t+1} is done by adding only one hypothesis.

Keywords: multiple testing, algorithmic, post hoc inference, false discovery proportion, confidence bound

Contents

2	1	Introduction	2			
3	2 Notation and reference family methodology					
4		2.1 Multiple testing notation	2			
5		2.2 Post hoc bounds with reference families	2			
6		2.3 Deterministic regions with a forest structure	2			
7	3	New algorithms	2			
8		3.1 Pruning the forest	2			
9		3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection sets	2			
10	4	Numerical experiments				
11	5	Conclusion	2			
12	Re	eferences	2			
13	Se	Session information				

 $^{^{1}} Corresponding\ author:\ guillermo.durand@universite-paris-saclay.fr$

1 Introduction

- 2 Notation and reference family methodology
- 6 2.1 Multiple testing notation
- 2.2 Post hoc bounds with reference families
- 2.3 Deterministic regions with a forest structure
- 3 New algorithms
- 20 3.1 Pruning the forest
- 21 3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection sets
- **4** Numerical experiments
- 5 Conclusion

25 References

Guillermo Durand, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc false positive control for structured hypotheses. *Scand. J. Stat.*, 47(4):1114–1148, 2020. ISSN 0303-6898. doi: 10.1111/sjos.12453. URL https://doi.org/10.1111/sjos.12453.

Session information

loaded via a namespace (and not attached):

fastmap_1.1.1

[1] compiler_4.4.0

```
R version 4.4.0 (2024-04-24)
  Platform: x86_64-pc-linux-gnu
  Running under: Ubuntu 22.04.4 LTS
  Matrix products: default
           /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
  LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
37
  locale:
    [1] LC CTYPE=C.UTF-8
                               LC NUMERIC=C
                                                      LC TIME=C.UTF-8
    [4] LC_COLLATE=C.UTF-8
                               LC_MONETARY=C.UTF-8
                                                      LC_MESSAGES=C.UTF-8
    [7] LC_PAPER=C.UTF-8
                               LC_NAME=C
                                                      LC_ADDRESS=C
   [10] LC_TELEPHONE=C
                               LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
  time zone: UTC
44
  tzcode source: system (glibc)
45
  attached base packages:
   [1] stats
                 graphics grDevices datasets utils
                                                          methods
                                                                    base
```

cli_3.6.2

htmltools_0.5.8.1

52	[5] tools_4.4.0	yaml_2.3.8	rmarkdown_2.26	knitr_1.46
53	[9] jsonlite_1.8.8	$xfun_0.43$	digest_0.6.35	rlang_1.1.3
54	[13] renv_1.0.7	evaluate_0.23		