ØV1 - TRIGONOMETRI, KOMPLEKSE TALL OG GEOMETRISKE REKKER

Innleveringsfrist: fredag 1.sept, 2017.

Ukeoppgavene skal løses selvstendig og vurderes i øvingstimene. Det forventes at alle har satt seg inn i fagets øvingsopplegg og godkjenningskrav for øvinger. Dette er beskrevet påhjemmesiden til INF3470:

http://www.uio.no/studier/emner/matnat/ifi/INF3470/h17/informasjon-om-ovingsopplegget/

Mål: Kurset INF3470 krever en viss grad av kunnskap om matematikk, både i form av kjennskap til teori og erfaring med bruk og praktisk regning. Oppgavene her oppsummerer en del av de viktigste punktene man bør kjenne til.

Oppgave 1 Trigonometriske funksjoner

2 Poeng

- a) Plott følgende trigonometriske funksjoner under hverandre (med parallelle t-akser) for intervallet $-1 \le t \le 2.5$, slik at du får vist hvordan de forholder seg til hverandre mht. frekvens og faseskift.
 - 1. $cos(2\pi t)$
 - 2. $cos(2\pi t + \pi)$
 - 3. $cos(8\pi t)$
 - 4. $\cos(4\pi t \pi/3)$
- b) Finn frekvens, faseskift og amplitude for cosinus-funksjonene i figur 1.

Figur 1: Finn frekvens, faseskift og amplitude for cosinus-funksjonene i figur.

c) Bruk fasoraddisjon og vis at følgende funksjoner kan skrives på formen $\hat{A}\cos(\omega t + \hat{\phi})$:

1. $\cos(\omega t) + \cos(\omega t + \phi)$

$$\hat{A} = 2\cos(\phi/2), \hat{\phi} = ?$$

2. $4\cos(\omega t + \pi/2) + 1.5\cos(\omega t - \pi/3)$ $\hat{A} \approx 2.8, \hat{\phi} \approx 1.3$

$$\hat{A} \approx 2.8, \hat{\phi} \approx 1.3$$

3. $\cos(\omega t + 4\pi/3) + \cos(\omega t - 5\pi/3)$

Diskrete trigonometriske funksjoner Oppgave 2

2 Poeng

a) Hvilke av de følgende *diskrete* funksjonene er periodiske, og hva er periodene deres (dvs. N)?

- 1. $\cos(0.5n + \pi/2)$
- 2. $\cos(\pi n + \pi/2)$
- 3. $\cos\left(\frac{\sqrt{2}}{2}\pi n\right)$

b) Angi den cosinus-funksjonen i diskret tid som vi får ved å ta 5 sampler per halve periode av en cosinus i kontinuerlig tid. c) Angi den cosinus-funksjonen i diskret tid som vi får ved å ta sampler med avstand 1 sekunder av en cosinus i kontinuerlig tid med vinkelfrekvens 1.

Oppgave 3 Regning med komplekse tall

2 Poeng

a) Gjør følgende utregninger. Om svaret står oppgitt må mellomregning inkluderes.

- 1. |3 + j4| = ?
- 2. $\frac{1}{3+j4}$ til kartesisk form = ? $\left| \frac{3}{25} j \frac{4}{25} \right|$
- 3. $\frac{1+j2}{1+e^{j\pi/2}}$ til kartesisk form = ?
- 4. $(-1)^n + e^{j\pi n} = ?$, hvor n er et heltall

b) Vis at

$$(\cos(\theta) + j\sin(\theta))^n = (\cos(\theta n) + j\sin(\theta n))$$
 Ref. til de Moivres formel

Oppgave 4 Komplekse tall og det komplekse tallplanet

2 Poeng

(1)

Gitt et komplekst tall på kartesisk form z = a + jb. Vi kaller $a = \Re\{z\}$ for realdelen til z og $b = \Im\{z\}$ for imaginærdelen til z. $j = \sqrt{-1}$ er den såkalte *imaginære enheten*. (Merk at den imaginære enheten kalles ofte j i fysiske fag som dette, og i i matematiske fag som kompleks analyse.)

- a) Et komplekst tall på kartesisk form kan representeres i det kartesiske koordinatsystemet som punktet (a,b). Et annet koordinatsystem er det polare, der de to koordinatene (r, θ) angir hhv. avstand fra origo og vinkel mot førsteaksen. Lag en skisse og bruk trigonometri for å finne r og θ utifra a og b.
- **b)** En vanlig operasjon på komplekse tall er å komplekskonjugere: $z^* = (a+jb)^* = a-jb$. Dette tilsvarer å snu fortegnet på imaginærdelen. Hva slags geometrisk operasjon tilsvarer dette i det kartesiske koordinatsystemet?
- c) Gi en tolkning av $(e^{j\theta})^k$ i koordinatsystemet. Skisser for k = 1, 2, 3 og valgfri θ . Hva må θ være for at $(e^{j\theta})^k = 1$?

Oppgave 5 Regning med komplekse tall

2 Poeng

a) Regn ut f

ølgende for polar $(z = re^{j\theta})$ og/eller kartesisk (z = a + jb) form som angitt. Inkluder mellomregning, spesielt n

år svaret er oppgitt.

1. z* på polar form

2. zz^* på polar og kartesisk form (hva er dette det samme som?)

 $2r\cos\phi$

- 3. z^k på polar form
- 4. $z+z^*$ på polar og kartesisk form
- 5. $z-z^*$ på polar og kartesisk form
- 6. $\frac{1}{2}(z+z^*)$ på polar og kartesisk form
- 7. $\frac{1}{2i}(z-z^*)$ på polar og kartesisk form
- 8. z^{-1} på polar og kartesisk form (**Merk:** oppgaven er å finne c og d slik at $c+jd=\frac{1}{a+jb}$, samt s og ϕ slik at $se^{j\phi}=\frac{1}{re^{j\theta}}$.) $\boxed{\frac{a-jb}{a^2+b^2}, \frac{1}{r}e^{-j\phi}}$
- 9. Bruk punktene over for å finne et uttrykk for $\cos(\theta)$ og $\sin(\theta)$ ved komplekse eksponentialer (Euler identitetene).
- 10. Hva er mengden av alle punkter som kan beskrives med det komplekse eksponentialet $z=e^{j\theta}, 0\leq \theta < 2\pi$?
- 11. Hva er forskjellen på z^{-1} og z^* ? Beskriv z^{-1} utifra $|z|^2$ og z^* .
- **b**) Skriv følgende tall som komplekse tall på polar form (k er et vilkårlig heltall). Som eksempel kan tallet 1 skrives som $1e^{j\cdot 2\pi k}$.
 - 1. -1
 - 2. $(-1)^k$
 - 3. j^{k}

Oppgave 6 Geometriske rekker

2 Poeng

- a) Beregn verdien til følgende endelige geometriske rekker:
 - 1. $\sum_{k=0}^{100} 23^k = ?$
 - 2. $\sum_{k=5}^{19} (4.5)^k = ?$ (Tips: del opp summen for å endre summasjonsgrensene).
- b) Bestem hvilke av de følgende uendelige geometriske rekkene som konvergerer, og beregn verdien til disse:
 - $1. \ \sum_{k=0}^{\infty} 1^k$
 - 2. $\sum_{k=0}^{\infty} \left(\frac{3}{a}\right)^k, a > 4$
 - 3. $\sum_{k=-\infty}^{\infty} 2^{-k}$
 - 4. $\sum_{k=-\infty}^{\infty} 2^{-|k|}$
- c) Finn konvergensområdet til følgende uendelige geometriske rekker. Om svaret er oppgitt, vis mellomregning.
 - 1. $\sum_{k=0}^{\infty} \left(\frac{x}{2}\right)^k, x \in \mathbb{R}$
 - 2. $\sum_{k=0}^{\infty} (x^{-1})^k, x \in \mathbb{R}$
 - 3. $\sum_{k=0}^{\infty} (z^{-1})^k, z \in \mathbb{C}$ $\frac{1}{\sqrt{a^2 + b^2}} < 1$
 - 4. $\sum_{k=0}^{\infty} (x^2)^k, x \in \mathbb{R}$
 - 5. $\sum_{k=0}^{\infty} 2^k z^{-k}, z \in \mathbb{C}$ |z| > 2