Bounded Arithmetic, Constant-depth Frege Proofs, and the Linear Time Hierarchy

 ${
m COMP532}$ — Propositional Proof Complexity

Nathan Acheampong and Zhaoshen Zhai

April 1, 2025

Let $L_{\text{PA}} := \{0, +, \cdot, S, \leq\}$ be the first-order language of PA, whose axioms are the 'basic axioms' BASIC together with an axiom scheme IND, consisting of the induction axioms

$$[\varphi(0) \wedge \forall x (\varphi(x) \to \varphi(S(x)))] \to \forall x \varphi(x)$$

for each formula φ .

Let $L_{\text{PA}} := \{0, +, \cdot, S, \leq\}$ be the first-order language of PA, whose axioms are the 'basic axioms' BASIC together with an axiom scheme IND, consisting of the induction axioms

$$[\varphi(0) \land \forall x (\varphi(x) \to \varphi(S(x)))] \to \forall x \varphi(x)$$

for each formula φ .

Definition

A formula φ is said to be bounded if every quantifier in φ is of the form $\exists x \leq t$ or $\forall x \leq t$, for some L_{PA} -term t.

Let $L_{PA} := \{0, +, \cdot, S, \leq\}$ be the first-order language of PA, whose axioms are the 'basic axioms' BASIC together with an axiom scheme IND, consisting of the induction axioms

$$[\varphi(0) \land \forall x (\varphi(x) \to \varphi(S(x)))] \to \forall x \varphi(x)$$

for each formula φ .

Definition

A formula φ is said to be bounded if every quantifier in φ is of the form $\exists x \leq t$ or $\forall x \leq t$, for some L_{PA} -term t.

• Let Δ_0 be the set of all bounded formulas.

Let $L_{\text{PA}} := \{0, +, \cdot, S, \leq\}$ be the first-order language of PA, whose axioms are the 'basic axioms' BASIC together with an axiom scheme IND, consisting of the induction axioms

$$[\varphi(0) \land \forall x (\varphi(x) \to \varphi(S(x)))] \to \forall x \varphi(x)$$

for each formula φ .

Definition

A formula φ is said to be *bounded* if every quantifier in φ is of the form $\exists x \leq t$ or $\forall x \leq t$, for some L_{PA} -term t.

- Let Δ_0 be the set of all bounded formulas.
- Let Σ_1 be the set of formulas of the form $\exists \overline{x} \varphi(\overline{x})$, where $\varphi \in \Delta_0$.

Let $L_{PA} := \{0, +, \cdot, S, \leq\}$ be the first-order language of PA, whose axioms are the 'basic axioms' BASIC together with an axiom scheme IND, consisting of the induction axioms

$$[\varphi(0) \land \forall x (\varphi(x) \to \varphi(S(x)))] \to \forall x \varphi(x)$$

for each formula φ .

Definition

A formula φ is said to be bounded if every quantifier in φ is of the form $\exists x \leq t$ or $\forall x \leq t$, for some L_{PA} -term t.

- Let Δ_0 be the set of all bounded formulas.
- Let Σ_1 be the set of formulas of the form $\exists \overline{x} \varphi(\overline{x})$, where $\varphi \in \Delta_0$.

Definition

The L_{PA} -theory $I\Delta_0$ is the subtheory of PA axiomatized by BASIC and the restriction of IND to Δ_0 -formulas.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

Fix of propositional atoms p_{ij} for each $i, j \in \mathbb{N}$. For each $\overline{n} \in \mathbb{N}^{|\overline{x}|}$, define the boolean formula $\langle \varphi \rangle_{\overline{n}}$ by induction on $d(\varphi)$.

• If $\varphi(\overline{x}) = (s(\overline{x}) = t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := \top$ iff $s(\overline{n}) = t(\overline{n})$, and set $\langle \varphi \rangle_{\overline{n}} := \bot$ otherwise. Same for if $\varphi(\overline{x}) = (s(\overline{x}) \le t(\overline{x}))$.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

- If $\varphi(\overline{x}) = (s(\overline{x}) = t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := \top$ iff $s(\overline{n}) = t(\overline{n})$, and set $\langle \varphi \rangle_{\overline{n}} := \bot$ otherwise. Same for if $\varphi(\overline{x}) = (s(\overline{x}) \le t(\overline{x}))$.
- If $\varphi(\overline{x}) = R(s(\overline{x}), t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} \coloneqq p_{ij}$ where $i \coloneqq s(\overline{n})$ and $j \coloneqq t(\overline{n})$.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

- If $\varphi(\overline{x}) = (s(\overline{x}) = t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := \top$ iff $s(\overline{n}) = t(\overline{n})$, and set $\langle \varphi \rangle_{\overline{n}} := \bot$ otherwise. Same for if $\varphi(\overline{x}) = (s(\overline{x}) \le t(\overline{x}))$.
- If $\varphi(\overline{x}) = R(s(\overline{x}), t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := p_{ij}$ where $i := s(\overline{n})$ and $j := t(\overline{n})$.
- If $\varphi(\overline{x}) = \neg \psi(\overline{x})$, then $\langle \varphi \rangle_{\overline{n}} := \neg \langle \psi \rangle_{\overline{n}}$. Same for \wedge and \vee .

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

- If $\varphi(\overline{x}) = (s(\overline{x}) = t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := \top$ iff $s(\overline{n}) = t(\overline{n})$, and set $\langle \varphi \rangle_{\overline{n}} := \bot$ otherwise. Same for if $\varphi(\overline{x}) = (s(\overline{x}) \le t(\overline{x}))$.
- If $\varphi(\overline{x}) = R(s(\overline{x}), t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := p_{ij}$ where $i := s(\overline{n})$ and $j := t(\overline{n})$.
- If $\varphi(\overline{x}) = \neg \psi(\overline{x})$, then $\langle \varphi \rangle_{\overline{n}} := \neg \langle \psi \rangle_{\overline{n}}$. Same for \wedge and \vee .
- If $\varphi(\overline{x}) = \exists y \leq t(\overline{x}) \, \psi(\overline{x}, y)$, let $\langle \varphi \rangle_{\overline{n}} \coloneqq \bigvee_{m \leq t(\overline{n})} \langle \psi \rangle_{(\overline{n}, m)}$.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

- If $\varphi(\overline{x}) = (s(\overline{x}) = t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := \top$ iff $s(\overline{n}) = t(\overline{n})$, and set $\langle \varphi \rangle_{\overline{n}} := \bot$ otherwise. Same for if $\varphi(\overline{x}) = (s(\overline{x}) \le t(\overline{x}))$.
- If $\varphi(\overline{x}) = R(s(\overline{x}), t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := p_{ij}$ where $i := s(\overline{n})$ and $j := t(\overline{n})$.
- If $\varphi(\overline{x}) = \neg \psi(\overline{x})$, then $\langle \varphi \rangle_{\overline{n}} := \neg \langle \psi \rangle_{\overline{n}}$. Same for \wedge and \vee .
- If $\varphi(\overline{x}) = \exists y \le t(\overline{x}) \, \psi(\overline{x}, y)$, let $\langle \varphi \rangle_{\overline{n}} := \bigvee_{m \le t(\overline{n})} \langle \psi \rangle_{(\overline{n}, m)}$.
- If $\varphi(\overline{x}) = \forall y \leq t(\overline{x}) \, \psi(\overline{x}, y)$, let $\langle \varphi \rangle_{\overline{n}} := \bigwedge_{m \leq t(\overline{n})} \langle \psi \rangle_{(\overline{n}, m)}$.

Theorem (Paris-Wilkie, 1985; Krajíček, 1995)

Let R be a binary relation symbol and let $\varphi(x)$ be $\Delta_0(R)$ -formula. If $I\Delta_0(R) \vdash \forall x \varphi(x)$, then there is $d \in \mathbb{N}$ such that $S_{\mathsf{F}_d}(\langle \varphi \rangle_n) = \mathsf{poly}(n)$.

Fix of propositional atoms p_{ij} for each $i, j \in \mathbb{N}$. For each $\overline{n} \in \mathbb{N}^{|\overline{x}|}$, define the boolean formula $\langle \varphi \rangle_{\overline{n}}$ by induction on $d(\varphi)$.

- If $\varphi(\overline{x}) = (s(\overline{x}) = t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := \top$ iff $s(\overline{n}) = t(\overline{n})$, and set $\langle \varphi \rangle_{\overline{n}} := \bot$ otherwise. Same for if $\varphi(\overline{x}) = (s(\overline{x}) \le t(\overline{x}))$.
- If $\varphi(\overline{x}) = R(s(\overline{x}), t(\overline{x}))$, let $\langle \varphi \rangle_{\overline{n}} := p_{ij}$ where $i := s(\overline{n})$ and $j := t(\overline{n})$.
- If $\varphi(\overline{x}) = \neg \psi(\overline{x})$, then $\langle \varphi \rangle_{\overline{n}} := \neg \langle \psi \rangle_{\overline{n}}$. Same for \wedge and \vee .
- If $\varphi(\overline{x}) = \exists y \leq t(\overline{x}) \, \psi(\overline{x}, y)$, let $\langle \varphi \rangle_{\overline{n}} \coloneqq \bigvee_{m \leq t(\overline{n})} \langle \psi \rangle_{(\overline{n}, m)}$.
- If $\varphi(\overline{x}) = \forall y \leq t(\overline{x}) \, \psi(\overline{x}, y)$, let $\langle \varphi \rangle_{\overline{n}} := \bigwedge_{m \leq t(\overline{n})} \langle \psi \rangle_{(\overline{n}, m)}$.

Theorem (Cook, 1975)

Let $\varphi(x)$ be a Σ_1^b -formula. If $S_2^1 \vdash \forall x \varphi(x)$, then $S_{\mathsf{EF}}(\|\varphi\|^n) = \mathsf{poly}(n)$.

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

That is, for a subtheory $T \subseteq PA$, can we characterize which functions $f: \mathbb{N}^k \to \mathbb{N}$ are such that $T \vdash \forall \overline{x} \exists ! y(y = f(x))$?

• PA \leftrightarrow All computable functions.

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

- PA \leftrightarrow All computable functions.
- $I\Sigma_1 \leftrightarrow \text{Primitive recursive functions.}$

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

- PA \leftrightarrow All computable functions.
- $I\Sigma_1 \leftrightarrow \text{Primitive recursive functions}$.
- $S_2^1 \leftrightarrow$ Polynomial-time computable functions.

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

- PA \leftrightarrow All computable functions.
- $I\Sigma_1 \leftrightarrow \text{Primitive recursive functions}$.
- $S_2^1 \leftrightarrow \text{Polynomial-time computable functions.}$
- $S_2 \leftrightarrow$ Functions in the Polynomial Time Hierarchy PH.

Witnessing Theorems are those which characterize the functions which are 'provably-total' in subsystems of PA in terms of their complexity class.

- PA \leftrightarrow All computable functions.
- $I\Sigma_1 \leftrightarrow \text{Primitive recursive functions}$.
- $S_2^1 \leftrightarrow \text{Polynomial-time computable functions.}$
- $S_2 \leftrightarrow$ Functions in the Polynomial Time Hierarchy PH.
- $I\Delta_0 \leftrightarrow \text{Functions}$ in the Linear Time Hierarchy LTH.

Let T be an $L_{\rm PA}$ -theory and let Φ be a set of $L_{\rm PA}$ -formulas.

Let T be an $L_{\rm PA}$ -theory and let Φ be a set of $L_{\rm PA}$ -formulas.

Definition

A relation symbol R is said to be Φ -definable in T if there is a formula $\varphi(\overline{x}) \in \Phi$ such that $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \varphi(\overline{x}))$.

Let T be an $L_{\rm PA}$ -theory and let Φ be a set of $L_{\rm PA}$ -formulas.

Definition

A relation symbol R is said to be Φ -definable in T if there is a formula $\varphi(\overline{x}) \in \Phi$ such that $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \varphi(\overline{x}))$.

Definition

A function symbol f is said to be Φ -definable in T if there is a formula $\varphi(\overline{x}, y) \in \Phi$ such that

$$T \vdash \forall \overline{x} \exists ! y \varphi(\overline{x}, y)$$
 and $T \vdash \forall \overline{x} \forall y (y = f(\overline{x}) \leftrightarrow \varphi(\overline{x}, y)).$

Let T be an $L_{\rm PA}$ -theory and let Φ be a set of $L_{\rm PA}$ -formulas.

Definition

A relation symbol R is said to be Φ -definable in T if there is a formula $\varphi(\overline{x}) \in \Phi$ such that $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \varphi(\overline{x}))$.

Definition

A function symbol f is said to be Φ -definable in T if there is a formula $\varphi(\overline{x}, y) \in \Phi$ such that

$$T \vdash \forall \overline{x} \exists ! y \varphi(\overline{x}, y)$$
 and $T \vdash \forall \overline{x} \forall y (y = f(\overline{x}) \leftrightarrow \varphi(\overline{x}, y)).$

We call φ a defining formula for f, and say that f is provably total in T if it is Σ_1 -definable function in T.

Theorem (Witnessing Theorem for $I\Delta_0$)

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.

Theorem (Witnessing Theorem for $I\Delta_0$)

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.

Theorem (Witnessing Theorem for $I\Delta_0$)

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.

Theorem (Witnessing Theorem for $I\Delta_0$)

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Theorem (Buss's Witnessing Theorem, 1986)

- 1. f is Σ_1^b -definable in S_2^1 , i.e., f is provably total in S_2^1 .
- 2. There is a Σ_1^b -defining L-formula $\varphi(\overline{x},y)$ for f and an L-term $t(\overline{x})$ such that $S_2^1 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x},y)$.
- 3. f is polynomial-time computable.

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Proof.

Suppose towards a contradiction that $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ but $I\Delta_0 \not\vdash \forall \overline{x} \exists y \leq t(\overline{x}) \varphi(\overline{x}, y)$ for any term $t(\overline{x})$.

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Proof.

Suppose towards a contradiction that $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ but $I\Delta_0 \not\vdash \forall \overline{x} \exists y \leq t(\overline{x}) \varphi(\overline{x}, y)$ for any term $t(\overline{x})$. Then

$$I\Delta_0 \not\vdash \bigvee_i \forall \overline{x}\exists y \leq t_i(\overline{x}) \varphi(\overline{x}, y),$$

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Proof.

Suppose towards a contradiction that $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ but $I\Delta_0 \not\vdash \forall \overline{x} \exists y \leq t(\overline{x}) \varphi(\overline{x}, y)$ for any term $t(\overline{x})$. Then

$$I\Delta_0 \not\vdash \bigvee_i \forall \overline{x}\exists y \leq t_i(\overline{x}) \varphi(\overline{x}, y),$$

so the theory $I\Delta_0 \cup \{ \forall y \leq t(\overline{c}) \neg \varphi(\overline{c}, y) : t \text{ term} \}$ is satisfiable by the Compactness Theorem, and thus has a model M.

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Proof.

Suppose towards a contradiction that $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ but $I\Delta_0 \not\vdash \forall \overline{x} \exists y \leq t(\overline{x}) \varphi(\overline{x}, y)$ for any term $t(\overline{x})$. Then

$$I\Delta_0 \not\vdash \bigvee_i \forall \overline{x}\exists y \leq t_i(\overline{x}) \varphi(\overline{x}, y),$$

so the theory $I\Delta_0 \cup \{ \forall y \leq t(\overline{c}) \neg \varphi(\overline{c}, y) : t \text{ term} \}$ is satisfiable by the Compactness Theorem, and thus has a model M. Define

$$N := \{a \in M : M \models a \le t(\overline{c}), \text{ for some term } t\},\$$

The Engine of $I\Delta_0$: Parikh's Theorem

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Proof.

Suppose towards a contradiction that $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ but $I\Delta_0 \not\vdash \forall \overline{x} \exists y \leq t(\overline{x}) \varphi(\overline{x}, y)$ for any term $t(\overline{x})$. Then

$$I\Delta_0 \not\vdash \bigvee_i \forall \overline{x}\exists y \leq t_i(\overline{x}) \varphi(\overline{x}, y),$$

so the theory $I\Delta_0 \cup \{ \forall y \leq t(\overline{c}) \neg \varphi(\overline{c}, y) : t \text{ term} \}$ is satisfiable by the Compactness Theorem, and thus has a model M. Define

$$N:=\left\{a\in M: M\models a\leq t(\overline{c}), \text{ for some term } t\right\},$$
 which models $I\Delta_0.$

The Engine of $I\Delta_0$: Parikh's Theorem

Theorem (Parikh, 1971)

Let $\varphi(\overline{x}, y)$ be a bounded formula. If $I\Delta_0 \vdash \forall \overline{x} \exists y \, \varphi(\overline{x}, y)$, then there is an L_{PA} -term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists y \leq t(\overline{x}) \, \varphi(\overline{x}, y)$.

Proof.

Suppose towards a contradiction that $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ but $I\Delta_0 \not\vdash \forall \overline{x} \exists y \leq t(\overline{x}) \varphi(\overline{x}, y)$ for any term $t(\overline{x})$. Then

$$I\Delta_0 \not\vdash \bigvee_i \forall \overline{x}\exists y \leq t_i(\overline{x}) \varphi(\overline{x}, y),$$

so the theory $I\Delta_0 \cup \{ \forall y \leq t(\overline{c}) \neg \varphi(\overline{c}, y) : t \text{ term} \}$ is satisfiable by the Compactness Theorem, and thus has a model M. Define

$$N := \{a \in M : M \models a \le t(\overline{c}), \text{ for some term } t\},\$$

which models $I\Delta_0$. But $N \models \exists \overline{x} \forall y \neg \varphi(\overline{x}, y)$, contradiction.

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Proof that $1 \Leftrightarrow 2 \Leftrightarrow 3$.

The implications $3 \Rightarrow 2 \Rightarrow 1$ are clear.

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Proof that $1 \Leftrightarrow 2 \Leftrightarrow 3$.

The implications $3 \Rightarrow 2 \Rightarrow 1$ are clear. For $1 \Rightarrow 3$, use Parikh's Theorem:

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Proof that $1 \Leftrightarrow 2 \Leftrightarrow 3$.

The implications $3 \Rightarrow 2 \Rightarrow 1$ are clear. For $1 \Rightarrow 3$, use Parikh's Theorem: if $\exists \overline{w} \, \psi(\overline{x}, z, \overline{w})$ is a defining formula for f, then

$$I\Delta_0 \vdash \forall \overline{x} \,\exists z \,\exists \overline{w} \,\psi(\overline{x}, z, \overline{w}),$$

Theorem (Witnessing Theorem for $I\Delta_0$)

For any function $f: \mathbb{N}^k \to \mathbb{N}$, the following are equivalent.

- 1. f is Σ_1 -definable in $I\Delta_0$, i.e., f is provably total in $I\Delta_0$.
- 2. f is Δ_0 -definable in $I\Delta_0$.
- 3. There is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$.
- 4. The graph of f is in LTH and $f(\overline{x}) \leq t(\overline{x})$ for some term $t(\overline{x})$.

Proof that $1 \Leftrightarrow 2 \Leftrightarrow 3$.

The implications $3 \Rightarrow 2 \Rightarrow 1$ are clear. For $1 \Rightarrow 3$, use Parikh's Theorem: if $\exists \overline{w} \, \psi(\overline{x}, z, \overline{w})$ is a defining formula for f, then

$$I\Delta_0 \vdash \forall \overline{x} \exists z \exists \overline{w} \, \psi(\overline{x}, z, \overline{w}),$$

so $I\Delta_0 \vdash \forall \overline{x} \exists y \varphi(\overline{x}, y)$ where $\varphi(\overline{x}, y) := \exists z \leq y \exists \overline{w} \leq y \psi$.

Definition

 $\mathsf{LTH} \coloneqq \bigcup_{i=0}^\infty \Sigma_i^{\mathrm{lin}}$, where Σ_i^{lin} is the family of languages accepted in O(n) time by an alternating Turing machine with i alternations.

Definition

 $\begin{array}{l} \mathsf{LTH} \coloneqq \bigcup_{i=0}^\infty \Sigma_i^{\mathrm{lin}}, \text{ where } \Sigma_i^{\mathrm{lin}} \text{ is the family of languages accepted in } \\ O(n) \text{ time by an alternating Turing machine with } i \text{ alternations.} \\ \text{Equivalently, } \Sigma_1^{\mathrm{lin}} \coloneqq \mathsf{NLinTime} \text{ and } \Sigma_{i+1}^{\mathrm{lin}} \coloneqq \mathsf{NLinTime}^{\Sigma_i^{\mathrm{lin}}}. \end{array}$

Definition

LTH := $\bigcup_{i=0}^{\infty} \Sigma_i^{\text{lin}}$, where Σ_i^{lin} is the family of languages accepted in O(n) time by an alternating Turing machine with i alternations.

Equivalently, $\Sigma_1^{\text{lin}} := \mathsf{NLinTime} \text{ and } \Sigma_{i+1}^{\text{lin}} := \mathsf{NLinTime}^{\Sigma_i^{\text{lin}}}.$

Definition

LTH := $\bigcup_{i=0}^{\infty} \Sigma_i^{\text{lin}}$, where Σ_i^{lin} is the family of languages accepted in O(n) time by an alternating Turing machine with i alternations.

Equivalently, $\Sigma_1^{\text{lin}} := \text{NLinTime and } \Sigma_{i+1}^{\text{lin}} := \text{NLinTime}^{\Sigma_i^{\text{lin}}}$.

Definition

A function $f: \mathbb{N}^k \to \mathbb{N}$ is in *FLTH* if $G_f(\overline{x}, y) := (y = f(\overline{x}))$ is in LTH and there is an L_{PA} -term t such that $f(\overline{x}) \leq t(\overline{x})$.

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

To see that $\Delta_0^{\mathbb{N}} \subseteq \mathsf{LTH}$, let $\varphi(\overline{x})$ be a Δ_0 -formula defining $R \in \Delta_0^{\mathbb{N}}$ and induct on the number of alternations of φ .

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

To see that $\Delta_0^{\mathbb{N}} \subseteq \mathsf{LTH}$, let $\varphi(\overline{x})$ be a Δ_0 -formula defining $R \in \Delta_0^{\mathbb{N}}$ and induct on the number of alternations of φ . All atomic formulas can be decided in space $O(\log n)$, and $\mathsf{L} \subseteq \mathsf{LTH}$.

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

To see that $\Delta_0^{\mathbb{N}} \subseteq \mathsf{LTH}$, let $\varphi(\overline{x})$ be a Δ_0 -formula defining $R \in \Delta_0^{\mathbb{N}}$ and induct on the number of alternations of φ . All atomic formulas can be decided in space $O(\log n)$, and $\mathsf{L} \subseteq \mathsf{LTH}$. The induction step follows by definition of ATMs since all quantifiers are bounded.

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

To see that $\Delta_0^{\mathbb{N}} \subseteq \mathsf{LTH}$, let $\varphi(\overline{x})$ be a Δ_0 -formula defining $R \in \Delta_0^{\mathbb{N}}$ and induct on the number of alternations of φ . All atomic formulas can be decided in space $O(\log n)$, and $\mathsf{L} \subseteq \mathsf{LTH}$. The induction step follows by definition of ATMs since all quantifiers are bounded.

Conversely, we show that $\Sigma_1^{\text{lin}} \subseteq \Delta_0^{\mathbb{N}}$, for then $\mathsf{LTH} \subseteq \Delta_0^{\mathbb{N}}$ follows from an 'oracle bootstrapping' argument.

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

To see that $\Delta_0^{\mathbb{N}} \subseteq \mathsf{LTH}$, let $\varphi(\overline{x})$ be a Δ_0 -formula defining $R \in \Delta_0^{\mathbb{N}}$ and induct on the number of alternations of φ . All atomic formulas can be decided in space $O(\log n)$, and $\mathsf{L} \subseteq \mathsf{LTH}$. The induction step follows by definition of ATMs since all quantifiers are bounded.

Conversely, we show that $\Sigma_1^{\text{lin}} \subseteq \Delta_0^{\mathbb{N}}$, for then LTH $\subseteq \Delta_0^{\mathbb{N}}$ follows from an 'oracle bootstrapping' argument. To this end, note that we can encode the computation of a nondeterministic O(n) time Turing machine into a constant number of strings of linear length.

Lemma

A relation R on \mathbb{N} is Δ_0 -definable iff $R \in \mathsf{LTH}$.

Proof Sketch.

Let $\Delta_0^{\mathbb{N}}$ be the set of all Δ_0 -definable relations on \mathbb{N} .

To see that $\Delta_0^{\mathbb{N}} \subseteq \mathsf{LTH}$, let $\varphi(\overline{x})$ be a Δ_0 -formula defining $R \in \Delta_0^{\mathbb{N}}$ and induct on the number of alternations of φ . All atomic formulas can be decided in space $O(\log n)$, and $\mathsf{L} \subseteq \mathsf{LTH}$. The induction step follows by definition of ATMs since all quantifiers are bounded.

Conversely, we show that $\Sigma_1^{\text{lin}} \subseteq \Delta_0^{\mathbb{N}}$, for then $\mathsf{LTH} \subseteq \Delta_0^{\mathbb{N}}$ follows from an 'oracle bootstrapping' argument. To this end, note that we can encode the computation of a nondeterministic O(n) time Turing machine into a constant number of strings of linear length. Thus, for any $R \in \Sigma_1^{\text{lin}}$, we can decide whether $\overline{x} \in R$ by the formula asserting: 'on input \overline{x} , there is a valid computation encoded by a string of linear length that accepts'.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$. Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^{\mathbb{N}}$.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^{\mathbb{N}}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^{\mathbb{N}}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this. Instead, let $t(\overline{x})$ be a term such that $f(\overline{x}) \leq t(\overline{x})$ and let $\varphi_0(\overline{x}, y) \coloneqq G_f(\overline{x}, y) \vee y = t(\overline{x}) + 1$, so clearly $I\Delta_0 \vdash \forall \overline{x} \, \exists y \, \varphi_0(\overline{x}, y)$.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^\mathbb{N}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this. Instead, let $t(\overline{x})$ be a term such that $f(\overline{x}) \leq t(\overline{x})$ and let $\varphi_0(\overline{x}, y) \coloneqq G_f(\overline{x}, y) \vee y = t(\overline{x}) + 1$, so clearly $I\Delta_0 \vdash \forall \overline{x} \, \exists y \, \varphi_0(\overline{x}, y)$. Consider the formula

$$\varphi(\overline{x}, y) \coloneqq \varphi_0(\overline{x}, y) \land \forall z < y \, \neg \varphi_0(\overline{x}, z).$$

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^\mathbb{N}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this. Instead, let $t(\overline{x})$ be a term such that $f(\overline{x}) \leq t(\overline{x})$ and let $\varphi_0(\overline{x}, y) \coloneqq G_f(\overline{x}, y) \vee y = t(\overline{x}) + 1$, so clearly $I\Delta_0 \vdash \forall \overline{x} \, \exists y \, \varphi_0(\overline{x}, y)$. Consider the formula

$$\varphi(\overline{x}, y) \coloneqq \varphi_0(\overline{x}, y) \land \forall z < y \, \neg \varphi_0(\overline{x}, z).$$

Since φ_0 is a Δ_0 -formula, its induction axiom can be rewritten as

$$I\Delta_0 \vdash \forall \overline{x}(\exists y \, \varphi_0(\overline{x}, y) \to \exists ! y \, \varphi(\overline{x}, y)),$$

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^\mathbb{N}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this. Instead, let $t(\overline{x})$ be a term such that $f(\overline{x}) \leq t(\overline{x})$ and let $\varphi_0(\overline{x}, y) \coloneqq G_f(\overline{x}, y) \vee y = t(\overline{x}) + 1$, so clearly $I\Delta_0 \vdash \forall \overline{x} \, \exists y \, \varphi_0(\overline{x}, y)$. Consider the formula

$$\varphi(\overline{x}, y) \coloneqq \varphi_0(\overline{x}, y) \land \forall z < y \, \neg \varphi_0(\overline{x}, z).$$

Since φ_0 is a Δ_0 -formula, its induction axiom can be rewritten as

$$I\Delta_0 \vdash \forall \overline{x}(\exists y \, \varphi_0(\overline{x}, y) \to \exists ! y \, \varphi(\overline{x}, y)),$$

and so $I\Delta_0 \vdash \forall \overline{x} \exists ! y \varphi(\overline{x}, y)$.

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^\mathbb{N}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this. Instead, let $t(\overline{x})$ be a term such that $f(\overline{x}) \leq t(\overline{x})$ and let $\varphi_0(\overline{x}, y) \coloneqq G_f(\overline{x}, y) \vee y = t(\overline{x}) + 1$, so clearly $I\Delta_0 \vdash \forall \overline{x} \, \exists y \, \varphi_0(\overline{x}, y)$. Consider the formula

$$\varphi(\overline{x}, y) \coloneqq \varphi_0(\overline{x}, y) \land \forall z < y \, \neg \varphi_0(\overline{x}, z).$$

Since φ_0 is a Δ_0 -formula, its induction axiom can be rewritten as

$$I\Delta_0 \vdash \forall \overline{x}(\exists y \, \varphi_0(\overline{x}, y) \to \exists ! y \, \varphi(\overline{x}, y)),$$

and so $I\Delta_0 \vdash \forall \overline{x} \exists ! y \varphi(\overline{x}, y)$. Since $I\Delta_0 \vdash \forall \overline{x} \forall y (y = f(\overline{x}) \leftrightarrow \varphi(\overline{x}, y))$,

Theorem $(3 \Leftrightarrow 4)$

For any $f: \mathbb{N}^k \to \mathbb{N}$, there is a Δ_0 -defining formula $\varphi(\overline{x}, y)$ for f and a term $t(\overline{x})$ such that $I\Delta_0 \vdash \forall \overline{x} \exists ! y \leq t(\overline{x}) \varphi(\overline{x}, y)$ iff $f \in \mathsf{FLTH}$.

Proof.

The forward direction follows since $\Delta_0^{\mathbb{N}} = \mathsf{LTH}$.

Conversely, let $G_f \in \mathsf{LTH} = \Delta_0^\mathbb{N}$. Observe that $\mathbb{N} \models \forall \overline{x} \, \exists ! y \, G_f(\overline{x}, y)$, but we don't know if $I\Delta_0$ proves this. Instead, let $t(\overline{x})$ be a term such that $f(\overline{x}) \leq t(\overline{x})$ and let $\varphi_0(\overline{x}, y) \coloneqq G_f(\overline{x}, y) \vee y = t(\overline{x}) + 1$, so clearly $I\Delta_0 \vdash \forall \overline{x} \, \exists y \, \varphi_0(\overline{x}, y)$. Consider the formula

$$\varphi(\overline{x}, y) \coloneqq \varphi_0(\overline{x}, y) \land \forall z < y \, \neg \varphi_0(\overline{x}, z).$$

Since φ_0 is a Δ_0 -formula, its induction axiom can be rewritten as

$$I\Delta_0 \vdash \forall \overline{x}(\exists y \, \varphi_0(\overline{x}, y) \to \exists ! y \, \varphi(\overline{x}, y)),$$

and so $I\Delta_0 \vdash \forall \overline{x} \exists ! y \varphi(\overline{x}, y)$. Since $I\Delta_0 \vdash \forall \overline{x} \forall y (y = f(\overline{x}) \leftrightarrow \varphi(\overline{x}, y))$, we see that $\varphi(\overline{x}, y)$ is a Δ_0 -defining formula for f, as desired.

References

Thank you!

- Buss S. R. (1986), Bounded Arithmetic, Naples, Bibliopolis. (Revision of the 1985 Princeton University Ph.D. thesis.)
- Buss S. R. (1999), Bounded Arithmetic, Proof Complexity, and Two Papers of Parikh, Annals of Pure and Applied Logic, 96, pp. 43-55.
- Cook S. (1975), Feasibly Constructive Proofs and the Propositional Calculus, in: Proceedings of the 7th Annual ACM Symposium on Theory of Computing, pp. 83-97, ACM Press.
- Cook S. and Nguyen P. (2010), Logical Foundations of Proof Complexity, Perspectives in Logic, Cambridge University Press.
- Hájek P. and Pudlák P. (1993), Metamathematics of First-order Arithmetic, Perspectives in Mathematical Logic, Springer-Verlag.
- Krajíček J. (1995), Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press.
- Krajíček J. (1995), On Frege and Extended Frege proof systems, in: Feasible Mathematics II (Birkhäuser, Boston 1995), eds. P. Clote and J. Remmel, pp. 284-319.
- Parikh R. (1971), Existence and Feasibility in Arithmetic, J. Symbolic Logic, 36, pp. 494-508.
- Paris J. and Wilkie A. (1985), Counting Problems in Bounded Arithmetic, in: Methods in Mathematical Logic (Caracas, Venezuela 1983), eds. A. Dold and B. Eckmann, LNM, vol. 1130, pp. 317-340, Springer-Verlag.
- Wrathall, C. (1978), Rudimentary Predicates and Relative Computation, SIAM J. Computing, 7, pp. 194-209.