Package 'biodosetools'

November 16, 2022

```
Title An R Shiny Application for Biological Dosimetry
Version 3.6.1
Description A tool to perform all different statistical tests and calculations
      needed by Biological Dosimetry Laboratories.
License GPL-3
URL https://biodosetools-team.github.io/biodosetools/,
      https://github.com/biodosetools-team/biodosetools/
BugReports https://github.com/biodosetools-team/biodosetools/issues/
Depends R (>= 3.5.0)
Imports bsplus, dplyr (>= 1.0.0), ggplot2, magrittr, MASS, maxLik,
      mixtools, msm, rhandsontable, rlang (>= 0.4.0), rmarkdown,
      shiny, shinydashboard, shinyWidgets (>= 0.5.0), tidyr (>=
      1.0.0), config, golem, cli
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Suggests testthat (>= 3.0.0), covr, knitr, kableExtra, markdown,
      pander, tinytex, xtable
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Alfredo Hernández [aut, cre] (<a href="https://orcid.org/0000-0002-2660-4545">https://orcid.org/0000-0002-2660-4545</a>),
      David Endesfelder [aut],
      Pere Puig [aut] (<a href="https://orcid.org/0000-0002-6607-9642">https://orcid.org/0000-0002-6607-9642</a>)
Maintainer Alfredo Hernández <aldomann.designs@gmail.com>
Repository CRAN
Date/Publication 2022-11-16 16:00:02 UTC
```

2 AIC_from_data

R topics documented:

Index		26
	yield_fun	25
	yield_error_fun	25
	R_factor	24
	run_app	24
	protracted_g_function	
	project_yield	22 23
	prepare_maxlik_count_data	
	·	22
	plot_fit_dose_curve	20
	plot_estimated_dose_curve	20
	load_rmd_report	20
	include_help	19
	get_deltamethod_std_err	19
	fit_maxlik_method	18
	fit glm method	17
	fit	16
	estimate_whole_body_delta	15
	estimate_partial_body_dolphin	15
	estimate_netero_mixed_poisson	14
	estimate_hetero_mixed_poisson	13
	dna_content_fractions_morton	12
	dna_content_fractions_ihgsc	12
	correct_yield	11
	correct_negative_vals	11
	correct_conf_int	10
	correct_boundary	9
	calculate_yield	8 9
	calculate_trans_rate_sigurdson	7
	calculate_trans_rate_manual	7
	calculate_model_stats	6
	calculate_genome_factor	5
	calculate_aberr_table	4
	calculate_aberr	3
	biodosetools	3

Description

Calculate AIC (Akaike's 'An Information Criterion')

biodosetools 3

Usage

```
AIC_from_data(
   general_fit_coeffs,
   data,
   dose_var = "dose",
   yield_var = "yield",
   fit_link = "identity"
)
```

Arguments

general_fit_coeffs

Generalised fit coefficients matrix.

data

Data (dose, yield) to calculate AIC from.

dose_var

Name of the dose variable (enquoted).

yield_var

Name of the yield variable (enquoted).

fit_link

A specification for the model link function.

Value

Numeric value of AIC.

biodosetools biodosetools package

Description

Shiny App To Be Used By Biological Dosimetry Laboratories

Details

See the README on GitHub

calculate_aberr Aberration calculation functions

Description

Aberration calculation functions

4 calculate_aberr_table

Usage

```
calculate_aberr_power(data, aberr_prefix = "C", power = 1)

calculate_aberr_mean(X, N)

calculate_aberr_var(X, X2, N)

calculate_aberr_disp_index(mean, var)

calculate_aberr_u_value(X, N, mean, var, assessment_u = 1)

init_aberr_table(
    data,
    type = c("count", "case"),
    aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

Arguments

data Count or case data.

aberr_prefix Prefix of the aberrations in the data.

power Power of aberration.

X Sum of detected aberrations.N Number of cells analysed.

X2 Quadratic sum of detected aberrations.

mean Mean.
var Variance.

assessment_u Expected u-value of the assessment. For a Poisson distribution this should be

unity.

type Type of input data. Either "count" and "case".

aberr_module Aberration module.

calculate_aberr_table Calculate aberrations table

Description

Calculate aberrations table

Usage

```
calculate_aberr_table(
  data,
  type = c("count", "case"),
  aberr_module = c("dicentrics", "translocations", "micronuclei"),
  assessment_u = 1
)
```

Arguments

data Count or case data.

type Type of input data. Either "count" and "case".

aberr_module Aberration module, required for type = "case".

assessment_u Expected u-value of the assessment. For a Poisson distribution this should be

unity.

Value

Data frame containing cell count (N), aberrations (X), and other coefficients (dispersion index, u-value, ...), as well as raw count or case data.

calculate_genome_factor

Calculate genomic conversion factor

Description

Method based on the paper by Lucas, J. N. et al. (1992). Rapid Translocation Frequency Analysis in Humans Decades after Exposure to Ionizing Radiation. International Journal of Radiation Biology, 62(1), 53-63. doi:10.1080/09553009214551821.

Usage

```
calculate_genome_factor(dna_table, chromosomes, colors, sex)
```

Arguments

dna_table DNA content fractions table. Can be dna_content_fractions_morton or dna_content_table_ihgsc.

chromosomes Vector of stained chromosomes. colors Vector of colors of the stains.

sex Sex of the individual.

Value

Numeric value of genomic conversion factor.

calculate_model_stats

calculate_model_stats Calculate model statistics

Description

Calculate model statistics

Usage

```
calculate_model_stats(
  model_data,
  fit_coeffs_vec,
  glm_results = NULL,
  fit_algorithm = NULL,
  response = "yield",
  link = c("identity", "log"),
  type = c("theory", "raw"),
  Y = NULL,
  mu = NULL,
  n = NULL,
  npar = NULL,
  genome_factor = NULL,
  calc_type = c("fitting", "estimation")
)
```

Arguments

model_data Data of the model.

fit_coeffs_vec Vector of fitting coefficients.

glm_results Results of glm.

fit_algorithm String of the algorithm used.

response Type of response.

link Fit link.

type Theoretical or raw glm model statistics.

Y response (required in constraint-maxlik-optimization).
mu mu response required in constraint-maxlik-optimization).

n number of parameters (required in constraint-maxlik-optimization).

npar number of parameters (required in constraint-maxlik-optimization).

genome_factor Genomic conversion factor used in translocations. calc_type Calculation type, either "fitting" or "estimation".

Value

Data frame of model statistics.

```
calculate_trans_rate_manual
```

Calculate manual translocation rate

Description

Calculate manual translocation rate

Usage

```
calculate_trans_rate_manual(cells, genome_factor, expected_aberr_value)
```

Arguments

```
cells Number of cells N.

genome_factor Genomic conversion factor.

expected_aberr_value

Expected aberrations.
```

Value

Numeric value of translocation rate.

```
calculate_trans_rate_sigurdson
```

Calculate Sigurdson's translocation rate

Description

Method based on the paper by Sigurdson, A. J. et al. (2008). International study of factors affecting human chromosome translocations. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 652(2), 112-121. <doi:10.1016/j.mrgentox.2008.01.005>.

```
calculate_trans_rate_sigurdson(
  cells,
  genome_factor,
  age_value,
  sex_bool = FALSE,
  sex_value = "none",
  smoker_bool = FALSE,
  ethnicity_value = "none",
  region_value = "none"
)
```

8 calculate_yield

Arguments

cells Number of cells N.
genome_factor Genomic conversion factor.
age_value Age of the individual.
sex_bool If TRUE, sex_value will be used.
sex_value Sex of the individual, either "male" of "female".
smoker_bool Whether the individual smokes or not.
ethnicity_value
Ethnicity of the individual.

region_value Region of the individual.

Value

Numeric value of translocation rate.

calculate_yield

Calculate yield from dose

Description

Calculate yield from dose

Usage

```
calculate_yield(
  dose,
  type = c("estimate", "lower", "upper"),
  general_fit_coeffs,
  general_fit_var_cov_mat = NULL,
  protracted_g_value = 1,
  conf_int = 0.95
)
```

Arguments

calculate_yield_infimum

Value

Numeric value of yield.

```
calculate_yield_infimum
```

Calculate theoretical yield infimum

Description

Calculate theoretical yield infimum

Usage

```
calculate_yield_infimum(
  type = c("estimate", "lower", "upper"),
  general_fit_coeffs,
  general_fit_var_cov_mat = NULL,
  conf_int = 0.95
)
```

Arguments

```
type Type of yield calculation. Can be "estimate", "lower", or "upper".

general_fit_coeffs
Generalised fit coefficients matrix.

general_fit_var_cov_mat
Generalised variance-covariance matrix.

conf_int Curve confidence interval, 95% by default.
```

Value

Numeric value of yield infimum.

correct_boundary

Correct boundary of irradiated fractions to be bounded by 0 and 1

Description

Correct boundary of irradiated fractions to be bounded by 0 and 1

```
correct_boundary(x)
```

10 correct_conf_int

Arguments

Χ

Numeric value.

Value

Numeric value in [0, 1] range.

correct_conf_int

Correct yield confidence interval

Description

Correct yield confidence interval if simple method is required.

Usage

```
correct_conf_int(
  conf_int,
  general_fit_var_cov_mat,
  protracted_g_value = 1,
  type,
  dose = seq(0, 10, 0.2)
)
```

Arguments

```
\begin{array}{cccc} {\rm conf\_int} & {\rm Confidence\ interval.} \\ {\rm general\_fit\_var\_cov\_mat} \\ & {\rm Generalised\ variance\hbox{-}covariance\ matrix.} \\ {\rm protracted\_g\_value} \\ & {\rm Protracted\ } G(x) {\rm\ value.} \\ \\ {\rm type} & {\rm\ Type\ of\ yield\ calculation.\ Can\ be\ "estimate",\ "lower",\ or\ "upper".} \\ {\rm dose} & {\rm\ Numeric\ value\ of\ dose.} \\ \end{array}
```

Value

Numeric value of corrected confidence interval.

correct_negative_vals 11

```
\verb|correct_negative_vals| \textit{Correct negative values}
```

Description

Correct negative values

Usage

```
correct_negative_vals(x)
```

Arguments

Χ

Numeric value.

Value

Numeric value corrected to zero if negative.

correct_yield

Correct yields if they are below the curve

Description

Correct yields if they are below the curve

Usage

```
correct_yield(
  yield,
  type = "estimate",
  general_fit_coeffs,
  general_fit_var_cov_mat,
  conf_int
)
```

Arguments

Value

Numeric value of corrected yield.

```
dna_content_fractions_ihgsc
```

DNA Content Fractions of Human Chromosomes (IHGSC)

Description

Normalised DNA Content of Human Chromosomes from the International Human Genome Sequencing Consortium.

Usage

```
dna_content_fractions_ihgsc
```

Format

A data frame with 24 rows and 3 variables:

chromosome Chromosome.

fraction_male Normalised content of megabases on male human DNA.

fraction_female Normalised content of megabases on female human DNA.

Details

Last accessed in July 2020.

Source

```
https://www.ncbi.nlm.nih.gov/grc/human/data
```

```
dna_content_fractions_morton
```

DNA Content Fractions of Human Chromosomes (Morton 1991)

Description

Normalised DNA Content of Human Chromosomes from Morton, N. E. (1991). Parameters of the human genome. Proceedings of the National Academy of Sciences, 88(17), 7474-7476.

```
dna_content_fractions_morton
```

Format

A data frame with 24 rows and 3 variables:

chromosome Chromosome.

fraction_male Normalised content of megabases on male human DNA.

fraction_female Normalised content of megabases on female human DNA.

Source

```
doi:10.1073/pnas.88.17.7474
```

```
estimate_hetero_mixed_poisson
```

Heterogeneous dose estimation (Mixed Poisson model)

Description

Method based on the paper by Pujol, M. et al. (2016). A New Model for Biological Dose Assessment in Cases of Heterogeneous Exposures to Ionizing Radiation. Radiation Research, 185(2), 151-162. <doi:10.1667/RR14145.1>.

Usage

```
estimate_hetero_mixed_poisson(
  case_data,
  fit_coeffs,
  fit_var_cov_mat,
  conf_int = 0.95,
  protracted_g_value = 1,
  gamma,
  gamma_error
)
```

Arguments

Value

List containing estimated mixing proportions data frame, estimated yields data frame, estimated doses data frame, estimated fraction of irradiated blood data frame, AIC, and conf_int_* used.

```
estimate_partial_body_dolphin

Partial-body dose estimation (Dolphin's method)
```

Description

Method based on the paper by Dolphin, G. W. (1969). Biological Dosimetry with Particular Reference to Chromosome Aberration Analysis: A Review of Methods. International Atomic Energy Agency (IAEA) Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:45029080.

Usage

```
estimate_partial_body_dolphin(
  case_data,
  fit_coeffs,
  fit_var_cov_mat,
  conf_int = 0.95,
  protracted_g_value = 1,
  genome_factor = 1,
  gamma,
  aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

Arguments

```
case_data
                  Case data in data frame form.
fit_coeffs
                  Fitting coefficients matrix.
fit_var_cov_mat
                  Fitting variance-covariance matrix.
conf_int
                  Confidence interval, 95% by default.
protracted_g_value
                  Protracted G(x) value.
genome_factor
                  Genomic conversion factor used in translocations, else 1.
                  Survival coefficient of irradiated cells.
gamma
aberr_module
                  Aberration module.
```

Value

List containing estimated doses data frame, observed fraction of cells scored which were irradiated, estimated fraction of irradiated blood data frame, AIC, and conf_int_* used.

```
estimate_whole_body_delta
```

Whole-body dose estimation (delta method)

Description

Method based on 2001 manual by the International Atomic Energy Agency (IAEA). Cytogenetic Analysis for Radiation Dose Assessment, Technical Reports Series (2001). Retrieved from https://www.iaea.org/publications/6303/cytogenetic-analysis-for-radiation-dose-assessment.

Usage

```
estimate_whole_body_delta(
  case_data,
  fit_coeffs,
  fit_var_cov_mat,
  conf_int = 0.95,
  protracted_g_value = 1,
  aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

Arguments

Value

List containing estimated doses data frame, AIC, and conf_int used.

Description

Method based on the paper by Merkle, W. (1983). Statistical methods in regression and calibration analysis of chromosome aberration data. Radiation and Environmental Biophysics, 21(3), 217-233. <doi:10.1007/BF01323412>.

16 fit

Usage

```
estimate_whole_body_merkle(
   case_data,
   fit_coeffs,
   fit_var_cov_mat,
   conf_int_yield = 0.83,
   conf_int_curve = 0.83,
   protracted_g_value = 1,
   genome_factor = 1,
   aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

Arguments

Value

List containing estimated doses data frame, AIC, and conf_int_* used.

fit

Perform dose-effect fitting algorithm

Description

Perform dose-effect fitting. A generalized linear model (GLM) is used by default, with a maximum likelihood estimation (MLE) as a fallback method.

```
fit(
  count_data,
  model_formula,
  model_family,
  fit_link = "identity",
  aberr_module = c("dicentrics", "translocations", "micronuclei"),
  algorithm = c("glm", "maxlik")
)
```

fit_glm_method 17

Arguments

count_data Count data in data frame form.

model_formula Model formula.

model_family Model family.

fit_link Family link.

aberr_module Aberration module.

Optional selection of algorithm to be used, either "glm" (for GLM) or "maxlik"

Details

The GLM method is based on the paper by Edwards, A. A. et al. (1979). Radiation induced chromosome aberrations and the Poisson distribution. Radiation and Environmental Biophysics, 16(2), 89-100. <doi:10.1007/BF01323216>.

(for MLE). By default, "glm" is used, with "maxlik" as a fallback method.

The MLE method is based on the paperby Oliveira, M. et al. (2016). Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study. Biometrical Journal, 58(2), 259-279. <doi:10.1002/bimj.201400233>.

Value

List object containing fit results either using GLM or maxLik optimization.

fit_glm_method

Perform GLM (Generalised Linear Model) fitting

Description

Method based on the paper by Edwards, A. A. et al. (1979). Radiation induced chromosome aberrations and the Poisson distribution. Radiation and Environmental Biophysics, 16(2), 89-100. <doi:10.1007/BF01323216>.

```
fit_glm_method(
  count_data,
  model_formula,
  model_family = c("automatic", "poisson", "quasipoisson", "nb2"),
  fit_link = "identity",
  aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

18 fit_maxlik_method

Arguments

```
count_data Count data in data frame form.

model_formula Model formula.

model_family Model family.

fit_link Family link.

aberr_module Aberration module.
```

Value

List object containing GLM fit results.

fit_maxlik_method

Perform max-likelihood optimization fitting

Description

Method based on the paper by Oliveira, M. et al. (2016). Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study. Biometrical Journal, 58(2), 259-279. <doi:10.1002/bimj.201400233>.

Usage

```
fit_maxlik_method(
  data,
  model_formula,
  model_family = c("automatic", "poisson", "quasipoisson", "nb2"),
  fit_link,
  aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

Arguments

```
data Count data.

model_formula Model formula.

model_family Model family.

fit_link Family link.

aberr_module Aberration module.
```

Value

List object containing maxLik fit results.

```
get_deltamethod_std_err
```

Get standard errors using delta method

Description

Delta method for approximating the standard error of a transformation g(X) of a random variable X = (x1, x2, ...), given estimates of the mean and covariance matrix of X.

Usage

```
get_deltamethod_std_err(
   fit_is_lq,
   variable = c("dose", "fraction_partial", "fraction_hetero"),
   mean_estimate,
   cov_estimate,
   protracted_g_value = NA,
   d0 = NA
)
```

Arguments

```
\begin{tabular}{ll} {\bf fit\_is\_lq} & {\bf Whether the fit is linear quadratic (TRUE) or linear (FALSE).} \\ {\bf variable} & {\bf Variable resulting of the transformation } g(X). \\ {\bf mean\_estimate} & {\bf The estimated mean of } X. \\ {\bf cov\_estimate} & {\bf The estimated covariance matrix of } X. \\ {\bf protracted\_g\_value} & {\bf Protracted } G(x) \ {\bf value.} \\ {\bf d0} & {\bf Survival coefficient of irradiated cells.} \\ \end{tabular}
```

Value

Numeric value containing the standard error of the dose estimate.

include_help

Include Markdown help

Description

Include Markdown help

```
include_help(...)
```

Arguments

... Character vector specifying directory and or file to point to inside the current package.

load_rmd_report

Load RMarkdown report

Description

Load RMarkdown report

Usage

```
load_rmd_report(...)
```

Arguments

... Character vector specifying directory and or file to point to inside the current package.

```
plot_estimated_dose_curve
```

Plot dose estimation curve

Description

Plot dose estimation curve

```
plot_estimated_dose_curve(
   est_doses,
   fit_coeffs,
   fit_var_cov_mat,
   protracted_g_value = 1,
   conf_int_curve,
   aberr_name
)
```

plot_fit_dose_curve 21

Arguments

est_doses List of dose estimations results from estimate_*() family of functions.

fit_coeffs Fitting coefficients matrix.

fit_var_cov_mat

Fitting variance-covariance matrix.

protracted_g_value

Protracted G(x) value.

conf_int_curve Confidence interval of the curve.

aberr_name Name of the aberration to use in the y-axis.

Value

ggplot2 object.

plot_fit_dose_curve
Plot fit dose curve

Description

Plot fit dose curve

Usage

```
plot_fit_dose_curve(fit_results_list, aberr_name)
```

Arguments

fit_results_list

List of fit results.

aberr_name Name of the aberration to use in the y-axis.

Value

ggplot2 object.

22 project_yield

```
prepare_maxlik_count_data
```

Prepare count data for max-likelihood optimization fitting

Description

Prepare count data for max-likelihood optimization fitting

Usage

```
prepare_maxlik_count_data(
  count_data,
  model_formula,
  aberr_module = c("dicentrics", "translocations", "micronuclei")
)
```

Arguments

```
count_data Count data in data frame form.

model_formula Model formula.

aberr_module Aberration module.
```

Value

Data frame of parsed count data.

project_yield

Project yield into dose-effect fitting curve

Description

Project yield into dose-effect fitting curve

```
project_yield(
   yield,
   type = "estimate",
   general_fit_coeffs,
   general_fit_var_cov_mat = NULL,
   protracted_g_value = 1,
   conf_int = 0.95
)
```

protracted_g_function 23

Arguments

yield Yield to be projected.

type Type of yield calculation. Can be "estimate", "lower", or "upper".

general_fit_coeffs

Generalised fit coefficients matrix.

general_fit_var_cov_mat

Generalised variance-covariance matrix.

protracted_g_value

Protracted G(x) value.

conf_int Curve confidence interval, 95% by default.

Value

Numeric value of projected dose.

```
protracted_g_function Calculate protracted function G(x)
```

Description

Calculation based on the paper by Lea, D. E. & Catcheside, D. G. (1942). The mechanism of the induction by radiation of chromosome aberrations in *Tradescantia*. Journal of Genetics, 44(2-3), 216-245. <doi:10.1007/BF02982830>.

Usage

```
protracted_g_function(time, time_0 = 2)
```

Arguments

time Time over which the irradiation occurred.

time_0 The mean lifetime of the breaks, which has been shown to be on the order of ~

2 hours (default value).

Value

Numeric value of G(x).

24 R_factor

run_app

Run the Shiny Application

Description

Run the Shiny Application

Usage

```
run_app(...)
```

Arguments

... A series of options to be used inside the app.

Value

Used for side-effect.

R_factor

Calculate R regression confidence factor

Description

Calculate R regression confidence factor depending on selected confidence interval and type of fit.

Usage

```
R_factor(general_fit_coeffs, conf_int = 0.95)
```

Arguments

```
general_fit_coeffs
```

Generalised fit coefficients matrix.

conf_int

Confidence interval, 95% by default.

Value

Numeric value of R regression confidence factor.

yield_error_fun 25

yield_error_fun

Calculate yield error

Description

Calculate yield error using Merkle's method

Usage

```
yield_error_fun(dose, general_fit_var_cov_mat = NULL, protracted_g_value = 1)
```

Arguments

Value

Numeric value of yield error.

yield_fun

Calculate yield

Description

Calculate yield

Usage

```
yield_fun(dose, general_fit_coeffs, protracted_g_value = 1)
```

Arguments

Value

Numeric value of yield.

Index

```
* datasets
    dna_content_fractions_ihgsc, 12
    dna_content_fractions_morton, 12
AIC_from_data, 2
biodosetools, 3
calculate_aberr, 3
calculate_aberr_disp_index
        (calculate_aberr), 3
calculate_aberr_mean (calculate_aberr),
calculate_aberr_power
        (calculate_aberr), 3
calculate_aberr_table, 4
calculate_aberr_u_value
        (calculate_aberr), 3
calculate_aberr_var (calculate_aberr), 3
calculate_genome_factor, 5
calculate_model_stats, 6
calculate_trans_rate_manual, 7
calculate_trans_rate_sigurdson, 7
calculate_yield, 8
calculate_yield_infimum, 9
correct_boundary, 9
correct_conf_int, 10
correct_negative_vals, 11
correct_yield, 11
dna_content_fractions_ihgsc, 12
dna_content_fractions_morton, 12
estimate_hetero_mixed_poisson, 13
estimate_partial_body_dolphin, 14
estimate_whole_body_delta, 15
estimate_whole_body_merkle, 15
fit, 16
fit_glm_method, 17
fit_maxlik_method, 18
```

```
get_deltamethod_std_err, 19
include_help, 19
init_aberr_table (calculate_aberr), 3
load_rmd_report, 20
plot_estimated_dose_curve, 20
plot_fit_dose_curve, 21
prepare_maxlik_count_data, 22
project_yield, 22
protracted_g_function, 23
R_factor, 24
run_app, 24
yield_error_fun, 25
yield_fun, 25
```