Primeiro Trabalho na Cadeira de Lógica para a Computação

Analise de Transição de Fases usando pySat

Alan Victor e Mauro Filho

1. Análise de Transição de Fase para 3-SAT e 5-SAT

1.1. Geração de Instâncias (gerar_instancia_sat.py)

- Gera instâncias aleatórias de k-SAT com n variáveis e m cláusulas.
- Cada cláusula possui k literais únicos sem contradições (ex.: $\neg x$ v y em 3-SAT).
- O parâmetro alpha (m/n) varia de 1 a 10 para 3-SAT e de 1 a 30 para 5-SAT, explorando a região crítica de transição de fase.

1.2. Resolução de SAT (isso_e_satisfazivel.py)

- Utiliza o solver Glucose3 da biblioteca PySAT para determinar a satisfazibilidade.
- Retorna um booleano indicando se a instância é satisfazível (True/False).

1.3. Análise de Transição (analisar_transicao_de_fase.py)

- Avalia 30 instâncias por valor de alpha para estatísticas robustas.
- Registra para o 3-SAT:
 - Probabilidade de satisfatibilidade (gráfico phase_transition_3sat.png/5sat.png).
 - Tempo de execução (gráfico execution_time_3sat.png/5sat.png).
- Registra para o 5-SAT:
 - Probabilidade de satisfatibilidade (gráfico phase_transition_3sat.png/5sat.png).
 - Tempo de execução (gráfico execution_time_3sat.png/5sat.png).
- Valores de n testados:
 - **3-SAT**: n = {50, 100, 150, 200}.
 - **5-SAT**: $n = \{20, 30, 40, 50\}$ (devido à complexidade computacional).

1.4 Resultados February 22, 2025

1.4. Resultados

1.4.1. 3-SAT

• Transição de Fase: A probabilidade de satisfazibilidade cai abruptamente em alpha entre 4,2-4,3.

- Complexidade Computacional: O tempo de execução aumenta exponencialmente próximo a alpha = 4,2, refletindo a região crítica.
- Esses resultados alinham-se especificadamente com as teorias de (Mezard et al. 2002) e (Selman et al. 2021):
 - "Survey propagation (SP) up till 4.2 (empirical, Mezard, Parisi, Zecchina '02) approx. 1,000,000 vars near phase transition." (Selman et al. 2021)

1.4.2. 5-SAT

- Transição de Fase: A transição ocorre em alpha entre 21-22, significativamente mais alto que o 3-SAT.
- Complexidade Computacional: Requer valores menores de n para observar a transição devido à complexidade intrínseca do problema (k = 5).

1.5. Comparação entre 3-SAT e 5-SAT

1.5.1. Principais diferenças:

1. Localização da Transição de Fase:

- 3-SAT transita em um alpha menor (aproximadamente 4,2)
- 5-SAT transita em um alpha maior (aproximadamente 21)

2. Acentuação da Transição:

- 5-SAT apresenta uma transição mais abrupta
- 3-SAT tem uma mudança mais gradual

3. Complexidade Computacional:

- 5-SAT requer valores menores de n devido à maior complexidade
- Os tempos de execução aumentam de forma mais dramática com n para o 5-SAT

Característica	3-SAT	5-SAT
Transição de Fase	alpha 4,2 (transição suave)	alpha 21 (transição abrupta)
Complexidade	Menor sensibilidade a n	Tempo de execução explode com n
Tamanho de Instância	n maior (50-200)	n menor (10-40)

1.5.2. Grafico do Tempo de Execução do 3-SAT

Figure 1: 3-SAT-time.png/600

1.5.3. Grafico do Tempo de Execução do 5-SAT

Figure 2: 5-SAT-time.png/600

1.5.4. Grafico da Probabilidade de Satisfazibilidade do 3-SAT

Figure 3: 3-SAT-prob.png/600

1.5.5. Grafico da Probabilidade de Satisfazibilidade do 5-SAT

Figure 4: *5-SAT-prob.png*/*600*

1.6 Referências February 22, 2025

1.5.6. Interpretação:

• Maiores valores de k (ex.: 5-SAT) intensificam a complexidade, resultando em transições mais abruptas e maiores alpha críticos.

• O 5-SAT exige otimizações computacionais avançadas para escalabilidade.

1.6. Referências

- Mezard, M., Parisi, R., & Zecchina, R. (2002). "Random k-satisfiability problem: From an analytic solution to an efficient algorithm." Physical Review E, 66(5), 056126
- Selman, B. (2021). The Next Generation of Automated Reasoning Methods. Lecture Notes for CS6700, Cornell University, Spring 2021. Disponível em: https://www.cs.cornell.edu/courses/cs6700/2021sp/lecture_update_v3.pdf