

Model Development Phase Template

Date	02 October 2024
Team ID	739759
Project Title	OptiInsight - Revolutionizing Ophthalmic Care With Deep Learning For Predictive Eye Disease Analysis
Maximum Marks	5 Marks

Model Selection Report

Major projects demonstrate strong proficiency in deep learning and its practical applications. Notable projects include "Optiinsight: Revolutionizing Ophthalmic Care with Deep Learning for Predictive Eye Disease Analysis" and "Age and Gender Detection Using Deep Learning." These initiatives showcase expertise in developing AI-driven solutions for healthcare and biometric advancements.

Model Selection Report:		
Model	Description	

Ĭ.	1
VGG19	VGG19 is a deep convolutional neural network (CNN) architecture
	introduced by the Visual Geometry Group (VGG) at the University of
	Oxford. It was proposed in the 2014 paper "Very Deep Convolutional
	Networks for Large-Scale Image Recognition" by Simonyan and
	Zisserman. VGG19 is an extension of the VGG16 model, consisting of 19
	layers, including 16 convolutional layers and 3 fully connected layers.
	Key Features of VGG19:

1. Small Convolutional Filters (3x3):

All convolutional layers use 3x3 filters with a stride of 1 and padding to maintain spatial dimensions.

Small filters allow the network to capture fine details and spatial hierarchies.

2. Deep Architecture:

Comprising 19 layers, VGG19 is deeper than its predecessors, enabling the learning of more complex features.

The architecture follows a uniform design: convolutional layers are stacked in increasing depth, followed by maxpooling layers.

3. **ReLU Activation:**

Rectified Linear Units (ReLU) are applied after each convolutional layer to introduce non-linearity and accelerate convergence.

4. Pooling Layers:

2x2 max-pooling layers with a stride of 2 reduce spatial dimensions, ensuring computational efficiency.

5. Fully Connected Layers:

The network concludes with three fully connected layers, with the last layer using a softmax activation for classification.

6. Weight Sharing:

The model leverages pre-trained weights on large datasets like ImageNet, making it suitable for transfer learning.