# Moduli Space of Harmonic Tori in $S^3$

Ross Ogilvie

School of Mathematics and Statistics University of Sydney

June 2017

### Harmonic Map

- ▶ Let  $f: T^2 \rightarrow S^3 = SU(2)$  be a harmonic map.
- ▶ A harmonic map is a critical point of the energy functional.
- ▶ Long historical interest in minimal and constant curvature surfaces. A surface is CMC iff its Gauss map is harmonic.
- Minimal surfaces = conformal harmonic = CMC with zero mean curvature.
- ► Thought to be quite rare; Hopf Conjecture. Wente (1984) constructed immersed CMC tori.
- A classification of such maps is given by spectral data  $(\Sigma, \Theta, \tilde{\Theta}, E)$  (Hitchin, Pinkall-Sterling, Bobenko).

# Spectral Data $(\Sigma, \Theta, \tilde{\Theta}, E)$

ightharpoonup Spectral curve  $\Sigma$  is a real (possibly singular) hyperelliptic curve,

$$\eta^2 = \prod (\zeta - \alpha_i)(1 - \bar{\alpha}_i \zeta)$$

- $lackbox{ }\Theta, \tilde{\Theta}$  are differentials with double poles and no residues over  $\zeta=0,\infty.$
- ▶ Period conditions: The periods of  $\Theta$ ,  $\tilde{\Theta}$  must lie in  $2\pi i\mathbb{Z}$ .
- ▶ Closing conditions: for  $\gamma_+$  a path in  $\Sigma$  between the two points over  $\zeta=1$ , and  $\gamma_-$  between the points over  $\zeta=-1$  then

$$\int_{\gamma_+}\Theta,\int_{\gamma_-}\Theta,\int_{\gamma_+} ilde{\Theta},\int_{\gamma_-} ilde{\Theta}\in 2\pi i\mathbb{Z}.$$

► E is a quaternionic line bundle of a certain degree.

# CMC Moduli Space (Kilian-Schmidt-Schmitt)

- ▶ One can vary the line bundle *E*, so called isospectral deformations.
- ► CMC non-isospectral deformations. Maps come in one dimensional families.
- $lackbox{}{oldsymbol{\mathcal{M}}}_0^{\textit{CMC}}$  is disjoint lines parametrised by  $H\in\mathbb{R}$



► Components  $\mathcal{M}_1^{CMC}$  end in either  $\mathcal{M}_0^{CMC}$  or bouquet of spheres.

#### Harmonic Map Example

•  $f(x + iy) = \exp(-4xX) \exp(4yY)$ , for

$$\mathbf{X} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \mathbf{Y} = \begin{pmatrix} 0 & \delta \\ -\delta & 0 \end{pmatrix}, \qquad \mathfrak{Im}\,\delta > 0$$

▶ This map is periodic. Formula well-defined on any torus  $\mathbb{C}/\Gamma$ , where  $\Gamma$  is a sublattice of this periodicity lattice.



- ▶ Holding either *x* or *y* constant gives circles.
- ▶ As  $\delta \to \mathbb{R}^{\times}$ , image collapses to a circle.
- As  $\delta \to 0, \infty$ , the periodicity lattice degenerates.



#### Constructing Spectral Data

- ▶ Up to translations, f is determined by the Lie algebra valued map  $f^{-1}df$ , the pullback of the Mauer-Cartan form.
- ▶ Decompose into its dz and  $d\bar{z}$  parts  $f^{-1}df = 2(\Phi \Phi^*)$ .
- ▶ Use f to pull pack the Levi-Civita connection on SU(2) to get a connection A.
- ▶ Given a pair  $(\Phi, A)$ , we can make a family of flat  $SL(2, \mathbb{C})$  connections. Let  $\zeta \in \mathbb{C}^{\times}$  be the *spectral parameter* and define

$$d_{\zeta} := d_{A} + \zeta^{-1}\Phi - \zeta\Phi^{*}$$

Family of connections is

$$d_{\zeta} = d - \left[ (\mathbf{X} - i\mathbf{Y}) + \zeta^{-1}(\mathbf{X} + i\mathbf{Y}) \right] dz$$
$$- \left[ (\mathbf{X} + i\mathbf{Y}) + \zeta(\mathbf{X} - i\mathbf{Y}) \right] d\bar{z}$$
$$= d - \zeta^{-1} \left[ (\mathbf{X} + i\mathbf{Y}) + \zeta(\mathbf{X} - i\mathbf{Y}) \right] \left[ dz + \zeta d\bar{z} \right]$$

#### Holonomy

- ▶ Because the connections are flat, we can define holonomy for them.
- ▶ Pick a base point and generators for the fundamental group, ie take two loops around the torus.
- ▶ Parallel translating vectors with  $d_{\zeta}$  around one loop gives a linear map on the tangent space at the base point. Call this  $H(\zeta)$ . Around the other loop call the transformation  $\tilde{H}(\zeta)$ .

$$H_{\tau}(\zeta) = \exp\left\{\zeta^{-1}\left[(\mathbf{X} + i\mathbf{Y}) + \zeta(\mathbf{X} - i\mathbf{Y})\right]\left[\tau + \zeta\bar{\tau}\right]\right\}$$

#### Spectral curve

- ▶ The fundamental group of  $T^2$  is abelian, so H and  $\tilde{H}$  commute. Therefore they have common eigenspaces.
- ▶ Define

$$\Sigma = \mathsf{closure} \ \left\{ (\zeta, L) \in \mathbb{C}^{\times} \times \mathbb{C}\mathsf{P}^1 \mid L \text{ is an eigenline for } \mathit{H}(\zeta) \right\}$$

► The eigenvalues of  $H(\zeta)$  are  $\mu(\zeta)$ ,  $\mu(\zeta)^{-1}$ . The characteristic polynomial is

$$\mu^2 - (\operatorname{tr} H)\mu + 1 = 0$$

▶ Using the compactness of the torus, one can show that  $(\operatorname{tr} H)^2 - 4$  vanishes to odd order only finitely many times. The spectral curve is always finite genus for harmonic maps  $T^2 \to \mathbb{S}^3$ .

► From example

$$\Sigma = \left\{ \left( \zeta, \left[ \pm \sqrt{(1 - i\delta)(\zeta - \alpha)} : \sqrt{-(1 + i\overline{\delta})(1 - \overline{\alpha}\zeta)} \right] \right) \right\}$$

for

$$\alpha = \frac{1 + i\delta}{-1 + i\delta} \qquad \Leftrightarrow \qquad \delta = i\frac{1 + \alpha}{1 - \alpha}$$

ightharpoonup Can write equation for  $\Sigma$  as

$$\eta^2 = (\zeta - \alpha)(1 - \bar{\alpha}\zeta)$$

#### The Differentials

- ▶ The differentials come from the eigenvalues  $\mu(\zeta)$ ,  $\tilde{\mu}(\zeta)$  of  $H(\zeta)$ ,  $\tilde{H}(\zeta)$ . These functions have essential singularities.
- ▶ However  $\log \mu, \log \tilde{\mu}$  are holomorphic on  $\mathbb{C}^{\times}$  and have simple poles above  $\zeta = 0, \infty$ .
- ▶  $d \log \mu$  removes the additive ambiguity of log. Thus we set  $\Theta = d \log \mu$  and  $\tilde{\Theta} = d \log \tilde{\mu}$
- ▶ In order to recover the eigenvalues, one requires residue free double poles over  $\zeta = 0, \infty$  and that the periods of the differentials lie in  $2\pi i\mathbb{Z}$ .

▶ The eigenvalues of  $H_{\tau}(\zeta)$  are

$$\mu_{\tau}(\zeta,\eta) = \exp\left[i\left|1 - i\delta\right|(\tau + \bar{\tau}\zeta)\eta\zeta^{-1}\right].$$

► The corresponding differential is therefore

$$\Theta_{\tau} = i |1 - i\delta| d \left[ (\tau + \bar{\tau}\zeta)\eta\zeta^{-1} \right].$$

▶ On any given spectral curve, there is a lattice of differentials that may be used in spectral data. Different choices corresponds to coverings of the same image.

# Moduli Space $\mathcal{M}_0$

- ▶ Every spectral curve in genus zero arises from this class of examples.
- ▶ Choice amounts to branch point  $\alpha \in D^2$  and choice of pair of differentials from a lattice

$$\mathcal{M}_0 = \coprod D^2$$

- ▶ Image degenerates:  $\delta \to \mathbb{R}^{\times} \quad \Leftrightarrow \quad \alpha \to \mathbb{S}^1 \setminus \{\pm 1\}.$
- ▶ Lattice degenerates:  $\delta \to 0, \infty \Leftrightarrow \alpha \to \pm 1$ .
- ► Two dimensional (in contrast to CMC case).

# Moduli Space $\mathcal{M}_g$

#### **Theorem**

At a point  $(\Sigma, \Theta^1, \Theta^2) \in \mathcal{M}_g$  corresponding to a nonconformal harmonic map, if  $\Sigma$  is nonsingular, and  $\Theta^1$  and  $\Theta^2$  vanish simultaneously at most four times on  $\Sigma$  and never at a ramification point of  $\Sigma$ , then  $\mathcal{M}_g$  is a two-dimensional manifold in a neighbourhood of this point.

#### **Theorem**

At a point  $(\Sigma, \Theta^1, \Theta^2) \in \mathcal{M}_g$  corresponding to a conformal harmonic map, if  $\Sigma$  is nonsingular, and  $\Theta^1$  and  $\Theta^2$  never vanish simultaneously on  $\Sigma$  then  $\mathcal{M}_g$  is a two-dimensional manifold in a neighbourhood of this point.

Proof uses Whitham deformations.

#### Genus One

- ▶ Spectral curves have two pairs of branch points  $\alpha, \beta, \overline{\alpha}^{-1}, \overline{\beta}^{-1}$ . Let  $\mathcal{A}_1 = \{(\alpha, \beta) \in D^2 \times D^2 \mid \alpha \neq \beta\}$ .
- ▶ Not every spectral curve has differentials that meet all the conditions.
- ▶ There is always an exact differential  $\Theta^E$  that meets all conditions except closing condition.
- ightharpoonup A multiple of  $\Theta^E$  meets the closing condition if and only if

$$S(\alpha, \beta) := \frac{|1 - \alpha| |1 - \beta|}{|1 + \alpha| |1 + \beta|} \in \mathbb{Q}^+$$

▶ Fix a value of  $p \in \mathbb{Q}^+$ . Let  $\mathcal{A}_1(p) = S^{-1}(p)$ . It is an open three-ball with a line removed.



▶ Rugby football shaped. Ends are  $(\alpha, \beta) = (1, -1), (-1, 1)$ . Seams are points with both  $\alpha, \beta$  in  $\mathbb{S}^1$ .

- ► There is a second differential  $\Theta^P$  with periods 0 and  $2\pi i$ . Every differential that meets period conditions is a combination  $\mathbb{R}\Theta^E + \mathbb{Z}\Theta^P$ .
- ▶ Define T, up to periods of  $\Theta^P$ , by

$$2\pi iT := \rho \int_{\gamma_{-}} \Theta^{P} - \int_{\gamma_{+}} \Theta^{P}$$

- ▶ A curve admits spectral data if and only if both  $S \in \mathbb{Q}^+$  and  $T \in \mathbb{Q}$  (and the latter is well-defined).
- ▶ The connected components of the space of spectral curves are annuli if S=1 and strips  $(0,1)\times\mathbb{R}$  if  $S\neq 1$ .
- ▶ The connected components of the space of spectral data  $\mathcal{M}_1$  are all strips  $(0,1) \times \mathbb{R}$ .





#### Method of Proof

▶ Move to the universal cover of the parameter space

$$\pi_p: \tilde{\mathcal{A}}_1(p) \to \mathcal{A}_1(p).$$

- ▶ Define a function  $\tilde{T}$  on  $\tilde{\mathcal{A}}_1(p)$  such that  $\tilde{T} = T \circ \pi_p$ .
- ▶ In the right coordinates, the level sets of  $\tilde{\mathcal{T}}$  are graphs over  $(0,1) \times \mathbb{R}$ .
- Quotient by deck transformations to recover space of spectral curves.
- Consider how the lattice of differentials change as you change the spectral curve.

# Interior Boundary $\mathcal{M}_1$

- ▶  $\mathcal{M}_1 \cap \mathcal{A}_1(p)$  spirals around the diagonal line  $\{\alpha = \beta\} \cap \mathcal{A}_1(p)$ .
- ▶ Just a single point on this diagonal line is reachable along a finite path.
- ▶ This limit seems not to be well-defined.

# Exterior Boundary $\mathcal{M}_1$

- ▶ This boundary is where  $\alpha$  or  $\beta$  tends to  $\mathbb{S}^1$ .
- ► A singular curve with a double point over the unit circle corresponds to genus zero spectral data via normalisation (blow-up).
- ▶ We can consider  $\mathcal{M}_0 \subset \partial \mathcal{M}_1$ .
- ▶ Each face of the football  $\overline{A_1(p)}$  is a disc, identified with the space of genus zero spectral curves.
- ▶ Edges of  $\overline{\mathcal{A}_1(p)}$  correspond to all branch points on unit circle, ie a map to a circle.

#### Further questions

- ▶ Can we identify geometric properties that parameterise  $\mathcal{M}$ ?
- ▶ Is  $\mathcal{M}_0 \cup \mathcal{M}_1$  connected? No. What other maps need to be included to make it connected?
- ► Can one deform a harmonic map to a circle to a harmonic map of any spectral degree?
- ▶ How does  $\mathcal{M}_g$  sit inside the moduli space of harmonic cylinders? Harmonic planes?
- What deformations lead to topological changes of the image of the harmonic map?