Задание № Б-2.1.2. Нейронные сети

1. Введение

В этом упражнении вы реализуете нейронную сеть для распознавания рукописных цифр.

Описание файлов задания:

- ex3 nn.m главный скрипт для выполнения упражнения,
- ex3data1.mat обучающая выборка с картинками рукописных цифр,
- ex3weights.mat значения весов для обученной нейронной сети,
- displayData.m функция для визуализации обучающей выборки,
- fmincg.m минимизирующий функционал,
- sigmoid.m сигмоида,
- * predict.m функция прогноза нейронной сети.

(*) – файлы, с которыми вам необходимо работать.

3. Нейронные сети

В предыдущем упражнении вы реализовали мультиклассовую логистическую регрессию для распознавания рукописных цифр. Однако логистическая регрессия не может формировать более сложные гипотезы, поскольку это всего лишь линейный классификатор.

В этой части упражнения вы реализуете нейронную сеть для распознавания рукописных цифр, используя ту же обучающую выборку, что и раньше. Для этого вы будете использовать параметры нейронной сети, которую мы уже обучили. Ваша цель — реализовать алгоритм прямого распространения, использующий уже готовые веса для работы сети. В следующем упражнении вы реализуете алгоритм обратного распространения ошибок для обучения нейронной сети.

Предоставленный скрипт ex3 nn.m поможет вам выполнить это упражнение.

3.1 Представление модели

Наша нейронная сеть показана на Рисунке 2. Она состоит из 3 слоев (входной, скрытый и выходной). Напомним, что входные данные представляют собой значения пикселей изображений. Поскольку изображения имеют размер 20х20, это дает нам 400 узлов¹ входного слоя (не считая специального узла, который всегда выдает +1). Как и прежде, обучающие данные будут загружены в переменные X и у.

Вам даются матрицы весов θ_1 и θ_2 уже обученной нейронной сети. Они хранятся в файле ex3weights.mat и загружаются скриптом ex3_nn.m в переменные Theta1 и Theta2. Они имеют размерности, соответствующие нейронной сети с 25 нейронами скрытого слоя 2 и 10 нейронами выходного слоя.

¹ Строго говоря, элементы входного слоя нельзя называть нейронами, потому что в них не происходит никаких вычислений. Они просто являются своего рода регистрами (входными переменными), куда мы загружаем элементы входного вектора. Поэтому подобные элементы нейронной сети мы будем называть узлами, а не нейронами. Соответственно, у входного слоя нет никаких весов, потому что і-тый элемент входного вектора просто «копируется» в і-тый узел входного слоя. Как правило, слои нейронной сети нумеруются с нуля, из-за чего слой с номером 1 – это уже первый скрытый слой с настоящими нейронами, а матрица весов $\theta^{[i]}$ относится к і-му слою. Всюду далее мы будем использовать эту нотацию и под *первым* слоем понимать *первый скрытый* слой (слой с номером 1).

² Обращаем ваше внимание на то, что узел, выдающий +1, присутствует на всех слоях, кроме выходного, и он *не принимает никаких входных данных*. Это влияет на размерности матриц весовых коэффициентов. Например, если входной слой имеет 400 узлов для элементов входного вектора плюс один узел для +1, а

Рисунок 2: Модель нейронной сети

3.2 Прямое распространение и вычисление прогноза нейронной сети

Вам необходимо реализовать прямое распространение для нейронной сети. Завершите код в predict.m, чтобы он возвращал значение гипотезы нейронной сети $h_{\theta}(x^{(i)})$ для каждого i-го вектора. Как и в первой части упражнения значением прогноза будет метка k, соответствующая наибольшему значению $h_{\theta}(x)_k$.

Когда вы закончите, ex3_nn.m вызовет вашу функцию predict, используя загруженные матрицы весов Theta1 и Theta2. Вы должны увидеть точность прогнозирования около 97,5%. После этого запустится демонстрация работы сети. Чтобы ее остановить, нажмите Ctrl-C.

первый слой составлен из 25 нейронов и одного узла, выдающего +1, то матрица весов $\theta^{[1]}$ будет иметь размерность 25×401 .