Exam Notes

Nicholas Land

Tuesday 23rd February, 2016

Processes

Process & Thread Synchronization

Background

- Parallelism can provide a distinct way of conceptualizing problems
- Concurrent access to shared data may result in data inconsistency
- Maintaining data consistency requires mechanisms to ensure that the orderly execution of cooperating processes
- Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers
 - We can do so by having an integer count that keeps track of the number of full buffers
 - Initially the **count** is set to 0
 - It is incremented by the producer after it produces a new buffer
 - It is decremented by the consumer after it consumers a buffer

Race Condition Race conditions can occur when two operations on shared variables are not atomic

Definitions

- **Synchronization** using atomic operations to ensure cooperation between threads
- Critical Section piece of code that only one thread can execute at once. Only one thread at a time will get into this section of code
 - Mutual Exclusion ensuring that only one thread does a particular thing at a time
 - Progress selecting a thread to enter cannot postpone indefinitely
 - Bounded Waiting before entering the critical section

Important idea: all synchronization involves waiting

Peterson's Solution

- A solution for two processes
- Assum that the LOAD and STORE instructions are atomic
 - Atomic == cannot be interrupted

- The two processes share two variables
 - int turnBoolean flag[2]
- The variable turn indicates whos turn it is to enter the critical section
- the flag array is used to indicate if a process is ready to enter the critical section
 - flag[i] = true implies that P_1 is ready

Alogrithm for Process P_1

```
 \begin{tabular}{ll} \be
```

Algorithm 1: Peterson's Solution

Semaphore

- Synchronization tool that does not require busy waiting
 - integer variable
 - Two standard operations
 - * $S.wait() \rightarrow P()$
 - * $S.signal() \rightarrow V()$