Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа по Базам данных №3 Вариант №6534

Работу выполнил:

Агаев Х. Р.

Группа:

P3234

СОДЕРЖАНИЕ

2	Исходні	ые отношения	4
	2.1	Даталогическая модель (исходная)	4
	2.2	Функиональные зависимости отношений (исходные)	4
3	Приведе	ение отношений в 3NF и BCNF	6
	3.1	Приведение в 1NF	6
	3.2	Приведение в 2NF	6
	3.3	Приведение в 3NF	6
	3.4	Даталогическая модель (исправленная)	7
	3.5	Функиональные зависимости отношений (исправленные)	7
	3.6	Приведение в BCNF	8
4	Полезні	ые денормализации	9
5	Использ	зование триггера и функции	10
3,	АКЛЮЧ	ЕНИЕ	12

Стр.

1 Текст задания

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

- Опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
- Приведите отношения в 3NF (как минимум). Постройте схему на основе NF (как минимум).
- Опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF (как минимум). Постройте схему на основеNF;
- Преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF. Если ваша схема находится уже в BCNF, докажите это;
- Какие денормализации будут полезны для вашей схемы? Приведите подробное описание.

Придумайте триггер и связанную с ним функцию, относящиеся к вашей предметной области, согласуйте их с преподавателем и реализуйте на языке PL/pgSQL.

Текст:

Никто не сомневался, что между черной глыбой ЛМА-1 и системой Сатурна есть какая-то связь, однако ни один ученый не допускал мысли, что существа, создавшие этот монолит, зародились и живут там. Ведь Сатурн еще меньше, чем Юпитер, пригоден для органической жизни, а его многочисленные спутники скованы вечной ледяной стужей космоса. Только один из них, Титан, обладает атмосферой, да и та - лишь тонкая оболочка из ядовитого метана.

2 Исходные отношения

2.1 Даталогическая модель (исходная)

Рисунок 2.1 - Даталогическая модель (исходная)

2.2 Функиональные зависимости отношений (исходные)

space objects:

- $id \rightarrow name;$
- $id \rightarrow type;$
- $id \rightarrow radius;$
- $id \rightarrow mass;$
- id \rightarrow composition;
- id \rightarrow description.

creatures:

- id \rightarrow name;

- id \rightarrow description.

$SO_connections:$

- $id \rightarrow SO_1st_id;$
- $id \rightarrow SO_2nd_id;$
- id \rightarrow description;
- (SO_1st_id, SO_2nd_id) \rightarrow id;
- (SO_1st_id, SO_2nd_id) \rightarrow description.

$life_suitabilities:$

- SO_id \rightarrow is_life_suitable;
- SO_id \rightarrow inhabitant_id.

climates:

- SO_id \rightarrow average_temperature;
- SO_id \rightarrow atmosphere_composition.

3 Приведение отношений в 3NF и BCNF

3.1 Приведение в 1NF

Все отношения приведены в 1NF, так как в каждой таблице на пересечений каждых строки и столбца находится по 1 значению, все атрибуты атомарны (неделимы).

3.2 Приведение в 2NF

Не во всех отношениях все атрибуты, не входящие в первичный ключ, находятся в полной функциональной зависимости от первичного ключа отношения. В отношении $SO_connections$ есть зависимости не только от первичного ключа id, но и от потенциальных ключей(SO_1st_id, SO_2nd_id). Для решения данной проблемы следует убрать первичный ключ id и сделать первичным ключем пару (SO_1st_id, SO_2nd_id).

3.3 Приведение в 3NF

Не во всех отношениях атрибуты, которые не входят в первичный ключ, не находятся в транзитивной функциональной зависимости от первичного ключа, в некоторых они все же находятся в транзитивной зависимости. В отношении $SO_connections$ есть зависимости $id \to (SO_1st_id, SO_2nd_id)$ и $(SO_1st_id, SO_2nd_id) \to description$. Для решения данной проблемы следует убрать первичный ключ id и сделать первичным ключем пару (SO_1st_id, SO_2nd_id) .

3.4 Даталогическая модель (исправленная)

Рисунок 3.1 - Даталогическая модель (исправленная)

3.5 Функиональные зависимости отношений (исправленные)

space objects:

- $id \rightarrow name;$
- $id \rightarrow type;$
- $id \rightarrow radius;$
- id \rightarrow mass;
- id \rightarrow composition;
- id \rightarrow description.

creatures:

- id \rightarrow name;
- id \rightarrow description.

$SO\ connections:$

- (SO_1st_id, SO_2nd_id) \rightarrow description.

life suitabilities:

- SO_id \rightarrow is_life_suitable;
- SO $id \rightarrow inhabitant id$.

climates:

- SO id \rightarrow average temperature;
- SO_id \rightarrow atmosphere_composition.

3.6 Приведение в BCNF

Во всех отношениях для всех функциональных зависимостей выполняется условие: детерминант — потенциальный ключ, ключевые аттрибуты никак не зависят от неключевых, следовательно можно сделать вывод, что отношение и так уже находится в BCNF (после его приведения в 3NF).

4 Полезные денормализации

Для приведенной модели БД в 3NF и BCNF можно сделать некоторые полезные денормализации для повышения производительности запросов. А именно можно объединить отношения space_objects, life_suitabilities, climates в одно отношение space_objects, храня в нем не только данные о параметрах космического объекта, но и информацию о пригодности планеты для жизни и ее климате. Но при такой реализации модели БД увеличится избыточность данных и будет требоваться больше усилий на поддержание её целостности.

Рисунок 4.1 - Даталогическая модель (денормализованная)

5 Использование триггера и функции

На основе предметной области и текста были созданы триггер и функция, реализующие добавление луны для планеты при добавлении новой планеты в таблицу $space_objects$. Эта луна добавляется также в таблицу $space_objects$, а также между луной и планетой устанавливается связь в таблице $SO_connections$. Коды триггера и функции представлены ниже вместе с результатами работы.

Листинг 5.1: Код триггера и функции CREATE OR REPLACE FUNCTION add SO moon() RETURNS trigger LANGUAGE plpgsql AS \$\$ DECLARE moon id integer; BEGIN IF (new.type = 'Planet') THEN INSERT INTO "space_objects"("name", "type") VALUES (new.name | | ' Moon', 'Moon') RETURNING id INTO moon id; INSERT INTO "SO_connections"("SO_1st_id", "SO 2nd id", description) VALUES (new.id, moon id, '2nd is Moon for 1st.'); END IF; RETURN new; END: \$\$:

CREATE TRIGGER add_moon AFTER INSERT ON "space_objects" FOR EACH ROW EXECUTE PROCEDURE add SO moon();

Рисунок 5.1 — Результат работы - 1

Рисунок 5.2 — Результат работы - 2

ЗАКЛЮЧЕНИЕ

В результате выполнения данной лабораторной работы были изучены функциональные зависимости, 3NF, BCNF, триггеры и функции и работа с ними.