Assignment 8: Forward Measure and Change of Numeraire

Course: Fixed Income Derivatives

Instructor: Lida Doloc Due Date: June 2nd, 2015

This is an individual assignment.

Where applicable, assume the setup from the lecture notes "Forward Measure and Change of Numeraire".

 ${f 1}.$ Consider a random variable X with the following values and corresponding probabilities:

- a) Calculate the mean and the variance of this random variable.
- b) Change the mean of this random variable to 0.05 by subtracting an appropriate constant from X, that is, calculate μ such that $Y = X \mu$ has mean 0.05.
 - c) Has the variance changed?
- d) Now do the same transformation by changing the probabilities, so that the variance remains constant.
 - e) Have the values of X changed?

2. Dynamic Measure Change - Change of Expectation

Let Z_t be a positive martingale with initial value 1. For all times T define a measure \mathbb{Q}_T on the σ -algebra \mathcal{F}_T by the standard formula

$$\widetilde{\mathbb{Q}}_T(A) \triangleq \mathbb{E}\left[Z_T \times 1_A\right].$$

Show that the expected value of a claim X under the measure $\widetilde{\mathbb{Q}}_T$ is given by:

$$\widetilde{\mathbb{E}}[X] = \mathbb{E}[Z_T X].$$

Moreover, show that if X is \mathcal{F}_t -measurable with $0 \le t \le T$, then its expected value is given by:

$$\widetilde{\mathbb{E}}[X] = \mathbb{E}[Z_t X].$$

3. Bayes' Rule

For the measure $\widetilde{\mathbb{Q}}$ defined in the previous problem, prove that if $0 \le t \le T$ and ξ is an \mathcal{F}_T -measurable random variable satisfying $\widetilde{\mathbb{E}}[|\xi|] < +\infty$, then

$$\widetilde{\mathbb{E}}\left[\xi|\mathcal{F}_{t}\right] = Z_{t}^{-1}\mathbb{E}\left[Z_{T}\xi|\mathcal{F}_{t}\right].\tag{1}$$

Hint: by definition of conditional expectation, $Y = \widetilde{\mathbb{E}}[\xi | \mathcal{F}_t]$ is the \mathcal{F}_t -measurable random variable that satisfies

$$\widetilde{\mathbb{E}}[1_A Y] = \widetilde{\mathbb{E}}[1_A \xi]$$

for all $A \in \mathcal{F}_t$. Show that the expression on the right-hand side of (1) satisfies this relation.

4. Forward Measure Pricing Formula

Prove that if X is an \mathcal{F}_T -measurable payoff, then

$$\pi_t(X) = P(t, T) \mathbb{E}^T [X | \mathcal{F}_t]$$

where \mathbb{E}^T is the expectation operator with respect to the *T*-forward measure \mathbb{O}^T .

Hint: apply Bayes' Rule.

5. Forward Prices are Martingales Under Forward Measure

Let A_t be the time t price of a traded asset. Let $F_A(t,T)$ denote its forward price at time t for settlement at time T. Show the following:

- 1. The forward price can be computed as $F_{A}\left(t,T\right)=\mathbb{E}^{T}\left[A_{T}|\mathcal{F}_{t}\right]$.
- 2. The forward price process $\{F_A(t,T)\}_{t=0}^T$ is a martingale under the T-forward measure \mathbb{Q}^T .

6. Forward Measure in Gaussian HJM

Show that a bond with maturity time S < T follows the SDE

$$dP(t,S) = (r(t) + \Sigma(t,T)\Sigma(t,S))P(t,S)dt + P(t,S)\Sigma(t,S)dW_t^T$$

and the instantaneous forward rate with maturity S follows the SDE

$$df(t,S) = (\Sigma(t,T) - \Sigma(t,S)) \sigma(t,S) dt + \sigma(t,S) dW_t^T$$

under the T-forward measure \mathbb{O}^T .

7. Consider the Black-Scholes setting applied to foreign currency denominated assets. Let r and f denote the domestic and foreign risk-free rates, respectively. Let S_t be the exchange rate, that is, the price of 1 unit of foreign currency in terms of domestic currency. Assume a geometric process for the dynamics of S_t under probablity measure \mathbb{P} :

$$dS_t = (r - f) S_t dt + \sigma S_t dW_t, \quad \sigma = \text{const.}$$

a) Show that

$$S_t = S_0 e^{\left(r - f - \frac{1}{2}\sigma^2\right)t + \sigma W_t}.$$

where W_t is a Brownian motion under probablity measure \mathbb{P} , is a solution of the above SDE.

b) Is the process

$$\frac{S_t e^{ft}}{S_0 e^{rt}} = e^{\sigma W_t - \frac{1}{2}\sigma^2 t}$$

a martingale under measure \mathbb{P} ?

c) Let $\widetilde{\mathbb{P}}$ be a new probability measure defined by:

$$\widetilde{\mathbb{P}}\left(A\right) = \int_{A} e^{\sigma W_{T} - \frac{1}{2}\sigma^{2}T} d\mathbb{P}$$

What does Girsanov's theorem imply about the process $(W_t - \sigma t)$ under $\widetilde{\mathbb{P}}$?