Лаба 4.4.4. Интерферометр Фабри—Перо

Цель работы: измерение длины волны жёлтых линий ртути, жёлтого дублета натрия, определение спектральных характеристик интерферометра Фабри—Перо.

В работе используются: интерферометр Фабри—Перо, линзы, светофильтры, ртутная и натриевая лампы, катетометр КН-6.

Теоретическая часть:

Рис. 1: Амплитуды волн в интерферометре Фабри–Перо. Для прошедших волн также указаны набеги фаз

1. Разность хода двух интерферирующих волн, падающих на интерферометр:

$$\Delta = 2L \left(\frac{1}{\cos \theta} - \operatorname{tg} \theta \sin \theta \right) = 2L \cos \theta,$$

где L — расстояние между зеркалами, или база интерферометра. Интерференционные максимумы:

$$2L\cos\theta_m = m\lambda$$

2. Для малых углов $\theta_m \ll 1$ и больших порядков спектра имеем $m \approx M = 2L/\lambda,$

$$-2L\sin\theta_m d\theta = -2L\theta_m d\theta = md\lambda \approx \frac{2L}{\lambda} d\lambda,$$

и угловая дисперсия:

$$D = \frac{d\theta}{d\lambda} = -\frac{m}{2L\sin\theta_m} \approx -\frac{1}{\lambda\theta_m}$$

Рис. 2: Условие Релея для интерферометра Фабри–Перо: а) интенсивности близких линий и их сумма (схематично); б) расчётное изображение спектра двух близких линий

Разрешающая способность для порядка спектра $m \approx 2L/\lambda$ равна:

$$R = \frac{\lambda}{\delta \lambda} = \frac{\pi \sqrt{r}}{1 - r} m$$

Экспериментальная установка:

Рис. 3: Схема экспериментальной установки

Схема экспериментальной установки приведена на рис. 1. Свет от лампы S, пройдя через линзу Π 0 и светофильтр C, попадает на интерферометр Фабри—Перо (ИФП). Линза L_0 служит для формирования пучка лучей (слегка сходящегося или слегка расходящегося). Интерференционные кольца наблюдаются в фокальной плоскости линзы Π . Картина рассматривается через зрительную трубу Π , сфокусированную на эту плоскость. Диаметры колец измеряются с помощью микроскопа катетометра. Зрительная труба Π , отсчётный микроскоп — элементы катетометра — прибора, предназначенного для измерения расстояний в вертикальной плоскости вдоль вертикальной оси.

Ход работы:

1. В спектре ртутной лампы лабораторная установка позволяет наблюдать интерференционные кольца от зелёной линии, двух жёлтых и одной фиолетовой, в спектре натриевой лампы — жёлтый дублет. С помощью катетометра измерим вертикальные координаты 5–6 диаметров для каждой спектральной линии. Пройдя центр, последовательно зафиксируем вторые координаты тех же колец. Пронумеровав предварительно кольца для каждой линии i = 1, ..., 5, 6 (i = 1 для кольца минимального диаметра), запишем соответствующие одному кольцу координаты друг под другом. Для спектра ртутной лампы измеряются диаметры зелёной и двух жёлтых линий (всего 30–36 отсчётов вертикальной координаты).

Положение центра — 170.52° .

Кольцо	1 Ж	13	2 Ж	23	3 Ж	33	4 Ж	43	5Ж	53
Начало, °	165.74	165.35	163.96	161.22	160.32	158.54	157.77	156.32	155.57	154.50
Конец, °	165.35	164.32	163.42	160.75	159.95	158.14	157.33	155.95	155.33	154.39

- 2. Параметры установки: $F_0 = 50$ мм, $F_1 = 110$ мм.
- 3. Рассчитаем номер центрального кольца:

$$m = \frac{2L\cos\theta}{\lambda} \approx 336$$

4. Рассчитаем дисперсионную область:

$$\Delta \lambda = \frac{\lambda}{m} \approx \frac{\lambda^2}{2L} \approx 1.8 \cdot 10^{-9}$$

- 5. Рассчитаем расстояние L между зеркалами: $L=\lambda 4f^2\frac{1}{k}\approx 0.12$ мм
- 6. Оценим аппаратную разрешающую способность интерферометра:

$$R = \frac{\lambda}{\delta \lambda} = \frac{4f^2}{D\delta r} \approx 1.5 \cdot 10^5$$

7. Рассчитаем теоретичские значения добротности и числа интерферирующих лучей:

$$Q \approx \frac{2\pi L}{\lambda(1-k)} \approx 9.2 \cdot 10^3$$

$$R = mN \rightarrow N = R/m \approx 4.5 \cdot 10^3$$

Вывод:

ознакомились с принципом работы интерферометра Фабри-Перо, определили его основные спектральные характеристики, определили длину волны желтого дуплета натрия.