Comparing Unsupervised Methods For High-Dimensional Data

Parag, Apurva, Sonia, Anugna

University of Massachusetts Dartmouth

May 3, 2017

Clustering

Clustering is one of the most important unsupervised learning methods, which deals with finding a structure in a collection of unlabeled data.

Hence, clusters are collection of objects which are similar between them and are dissimilar to the objects belonging to other clusters.

Clustering

What is a natural grouping among these objects?

Clustering is subjective

Simpson's Family

Females

Males

Types of Clusters

Types of Cluster

Hierarchical

It creates a hierarchical decomposition of the set of objects using some criterion It constructs various partitions & evaluate by some criterion.

Partitional

Methods

- Partition
 - -K-Means Clustering
- Hierachical
 - -Agglomerative(Bottom-up)
- Spectral Clustering

Datasets

Iris Identification

Instances:150, Attributes: 4

Yeast Identification

Instances:1484. Attributes: 9

Glass Identification

Instances:214. Attributes: 10

Iris Identifictaion

Glass Identificataion

Yeast Identificataion

K-means

- *Algorithm: works with numeric data only
 - Select a number (K) of cluster centers (at random)
 - Assign every item to its nearest cluster center (e.g. using Euclidean distance)
 - Move each cluster center to the mean of its assigned items
 - Repeat steps 2,3 until convergence (change in cluster assignments less than a threshold)
 - The centroid is (typically) the mean of the points in the cluster.

Euclidean Distance

 The Euclidean distance or Euclidean metric is the distance between two points in Euclidean space

$$\begin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} \\ &= \sqrt{\sum_{i=1}^n (q_i - p_i)^2}. \end{split}$$

Centroids: Iris

Centroids: Glass

Centroids: Yeast

Elbow Method: Iris

Elbow Method: Glass

Elbow Method: Yeast

Hierarchical Clustering

- Produces a set of growing clusters organized as a hierarchical tree
- Can be visualized as a dendrogram A tree -like diagram that records the sequences of merges or splits
- Types: 1)Agglomerative ,2)Divisive

Agglomerative Algorithm:

- 1. Compute the distance matrix between the input data points
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the distance matrix
- 6. Until only a single cluster remains

Key operation is the computation of the distance between two clusters

Closest Pair of Clusters

Many Variants to Defining Closest Pair of Clusters

- 1. SINGLE-LINK: Distance of the Closest points.
- 2. COMPLETE-LINK: Distance of the Furthest points.
- 3. AVERAGE-LINK: Average distance between pairs of Elements.

Single-Link Clustering

- Single-link distance between clusters \mathbf{C}_i and \mathbf{C}_j is the minimum distance between any object in \mathbf{C}_i and any object in \mathbf{C}_j
- The method is also known as nearest neighbor clustering
- Type equation here.

$$D_{sl}(C_i, C_j) = \min_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Iris Dataset

Single Cluster Dendrogram

Glass Dataset

Yeast Dataset

Single Cluster Dendrogram

Complete-linkage clustering

Complete-link distance between clusters Ci and Cj is the maximum distance between any object in Ci and any object in Cj

The method is also known as farthest neighbor clustering

$$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Iris Dataset

Complete Cluster Dendrogram

Glass Dataset

Yeast Dataset

Average-linkage clustering

Group average distance between clusters Ci and Cj is the average distance between any object in Ci and any object in Cj

$$D_{avg}(C_i, C_j) = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$

Iris Dataset

→□▶ →□▶ →□▶ →□▶ □ ♥9

Glass Dataset

Average Cluster Dendrogram

Yeast Dataset

Spectral Clustering

- The idea in spectral clustering is to construct similarity graphs that repre the local neighborhood relationships between observations.
- General steps of spectral clustering:
 - -- finds the m eigenvectors $Z_{N\ast m}$ corresponding to the m smallest eigenvalues of L (ignoring the trivial constant eigenvecto

Algorithm

- Obtain data representation in the low-dimensional space that can be easily clustered
- o Use k eigenvectors (k chosen by user)
- o Directly compute k-way partitioning
- o Experimentally has been seen to be "better
- o project your data into R^(n)
- define an Affinity matrix , using a Gaussian Kernel or say just an Adjacency matrix (i.e.
- construct the Graph Laplacian from A (i.e. decide on a normalization)

Continue.....

- o project your data into R^(n)
- define an Affinity matrix, using a Gaussian Kernel or say just an Adjacency matrix (i.e.
- construct the Graph Laplacian from A (i.e. decide on a normalization)
- solve an Eigenvalue problem (or a Generalized Eigenvalue problem)
- o select k eigenvectors corresponding to the k lowest (or highest) eigenvalues , to define a k-dimensional subspace
- o form clusters in this subspace using, say, k-means

Spectral Iris:

Spectral Glass:

GLASS

Glass Grid:

Glass Grid Graph

Glass Cluster Grid:

Glass Cluster grid

Yeast:

Yeast

Issue:

- 1. Choice of k, the number of clusters
- 2. Choice of scaling factor
- 3. Realistically, search over and pick value that gives the tightest clusters
- 4. Choice of clustering method

Cluster Evaluation:

The quality of a clustering is very hard to evaluate because We do not know the correct clusters Some methods are used:

User Inspection:

- * Study centroids, and spreads
- * Rules from a decision tree

Cluster evaluation: evaluation based on internal information

- 1. Intra-cluster cohesion (compactness):
- Study centroids, and spreadsCohesion measures how near the data points in a cluster are to the cluster centroid. Sum of squared error (SSE) is a commonly used measure.
- 2. Inter-cluster separation (isolation):
- Separation means that different cluster centroids should be far away from one another. In most applications, expert judgments are still the key

Result:

- * Accuracy
- * Error Rate

Accuracy

Dataset	K-means Accuracy(%)	Hierarchical clustering Accuracy(%)	Spectral Clustering Accuracy(%)
Iris	87.987	84	51.93
Glass	76.8	81.91	59.76
Yeast	67.231	47	43.83

Error Rate

K-Means

DATASET	ALGORITHM	No of CLUSTERS,k		ERROR RATE		
		i/p k	o/p k	MEAN	LEAST	MAXIMUM
IRIS	k-means	3	3	15.77	4	51.33
	k-means++			13.37	4	51.33
GLASS	k-means	6	6	55.86	28.65	67.29
	k-means++			56.1	44.86	64.95
YEAST	k-means	4	4	35.74	37.38	80.17
	k-means++			37.49	35.02	42.62

Hierarchical

DATASETS	SINGLE	COMPLETE	AVEREAGE
IRIS	8.67	9.33	6
GLASS	22.47	21.91	19.66
YEAST	65.63	62.5	62.5

Spectral

DATASETS	ERROR RATES
IRIS	42
GLASS	62
YEAST	72.75

Conclusion:

- 1. The three Algorithms are compared as:
- * The Size of Dataset
- * No. of Clusters
- * Type of Dataset
- * Type of Software
- 2. Inter-cluster separation (isolation): The performance of k-means Spectral algorithm is better than Hierarchical clustering algorithm.
- * K-means and Spectral have less accuracy.
- * Partitional Algorithm is recommended for Huge Dataset(better result).
- * Hierarchical clustering is recommended for Small Datasets.

References

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel (2012)

OPTICS: Ordering Points To Identify the Clustering Structure. In Proceedings of the International Conference on Management of Data

SIGMOD, volume 28(2) of SIGMOD Record, pages 4960, Philadelphia, PA.USA, 13 June 1996.ACM Press .

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications.

SIGMOD In Proceedings of the International Conference on Management of Data, (), volume 27(2) of SIGMOD Record, pages 94105, Seattle, WA, USA, 14 June 1998. ACM Press.

Michael R. Anderberg. M. 1973.

Cluster Analysis and Applications..

Academic Press New York.

www.wikipedia.com

Thank You