

XM1008 /XM1009 数据手册

Rev1.0.5

目录

目录	2
1 说明	4
2产品综述	5
3 器件一览表	
4 订货代码	
5 功能描述	
5.1 Flash	
5.3 供电方案	
5.4 启动模式	
5.5 电源管理	
5.5.1 低功耗模式	
5.6 模数转换器(ADC)	
5.6.1 温度传感器(TS)	
5.6.2 内部参考电压	
5.6.3 VBAT 监测	9
5.7 Timer	9
5.8 实时时钟(RTC)和备用寄存器	9
5.9 USART	10
5.10 串行外设总线(SPI)	
5.11 I2C 总线	11
6 引脚定义	12
6.1 LQFP48	12
6.2 LQFP32	12
6.3 QFN32	12
6.4 QFN28	
6.5 TSSOP20	
6.6 引脚描述	13
7 I/O 复用	17
7.1 PA 复用功能	17
7.2 PB 复用功能	
8 性能指标	19
8.1 最大绝对额定值	19
8.1.1 极限电压特性	19
8.1.2 极限电流特性	19
8.1.3 极限温度特性	19

8.2 内部参考电压特性	19
8.3 工作参数	19
8.3.1 上下电指标	20
8.3.2 工作电流	21
8.4 低功耗唤醒时间	21
8.5 外部时钟特性	21
8.6 内部时钟特性	23
8.7 PLL 特性	24
8.8 MEMORY 特性	24
8.9 EMC 特性	24
8.10 IO 引脚特性	24
8.11 ADC 特性	25
8.12 温度传感器特性	26
8.13 VBAT 监测器特性	26
9 封装信息	27
9.1 LQFP48	27
9.2 LQFP32	
9.3 QFN32 和 QFN28	29
9.4 TSSOP20	30
10.修改记录	31

1 说明

本文档为 XM1008/XM1009 芯片数据手册。XM1008/XM1009 系列微控制器,嵌入高达 32Kbytes flash 和 8Kbytes SRAM,最高工作频率 48MHz。

2 产品综述

产品特性

● 内核

- 48MHz 32 位 CPU 平台

● 存储器

- 高达 32KByte 的 Flash 存储器。支持 0 等待(频率不高于 24MHz)
- 高达 8KByte SRAM,附带奇偶校 验,增强系统的稳定性

● 工作电压范围

- 双电源域:主电源 VDD 2.0V~
 5.5V、备份电池电源 VBAT 1.8V~
 ~ 5.5V 当主电源 VDD 掉电时,
 RTC 模块可继续工作在 VBAT 电源下工作

灵活的功耗管理系统

- Stop 待机功耗:6.8uA@3.3V
- Standby 待机功耗:2.2uA@3.3V

● 工作温度范围

-40°C~105°C或者 -40°C~85°C

● 时钟模块

- 内部高速振荡器 8MHz
- 内部高速振荡器 14MHz
- 内部低速振荡器 40KHz
- 外部高速晶振 4~32MHz
- 外部低速晶振 32.768KHz
- PLL, 最高 48MHz

● 复位

- 外部管脚复位
- 电源上电复位
- 软件复位
- 看门狗(IWDT和WWDT)复位
- 低功耗模式复位

● 一个 12 位 SAR ADC 转换器

- 10 个外部模拟信号输入通道
- 最高转换器频率: 1Mbps
- 支持自动连续转换、扫描转换

RTC

- 日历功能,当主电源关闭时候可以 保存 20 bytes 的数据

● 5 通道 DMA

● 定时器

- TIM1 高级控制定时器,有6通道 PWM 输出,死区和刹车等功能。
- TIM2/TIM3/TIM14/TIM15/TIM16/T IM17 通用定时器
- TIM6基本定时器
- 24 位 SystemTick 计时器
- 两种 WDT

● 通用外设接口

- 两路 SPI 接口:最快支持 16MBit/s,
 4~16 Bit 帧格式,不支持 I2S
- 3路 USART: 其中一路具有
 ISO7816接口、LIN、IrDA,自
 动波特率检测和支持 Stop 唤醒
- 2路 I2C: 其中一路支持快速模式 1MBit/s,支持 SMBus/PMBus,支 持 Stop 唤醒

● 封装

- TSSOP20
- QFN28
- QFN32
- LQFP32
- LQFP48

3 器件一览表

XM1008/9 系列包含以下不同的封装: TSSOP20, QFN28, QFN32, LQFP32 和 LQFP48。

		XM1008			XM1009			
Periph	eral	F4P6 F6P6 G6U6 K6U6 K6T6 C6T6			С6Т6			
Flash (Kk	oyte)	16				32		,
SRAM (K	byte)	4				8		
	高级型				1 (16Bi	t)		
Timers	通用型	5 (16Bit) 1 (32Bit)						
=	基本型	1 (16Bit)						
	RTC				1			
	SPI	1 2			2			
普通 外设	I2C				1			2
712	USART				2			3
ADC (通道数)	个数	1 (9 ext (10 ext+3int)						
I/O		15 23 27 25 39			39			
封装类型		TSSOP20 QFN2 QFN3 LQFP 2 LQFP)FP48			

www.chipma.cn ⁶

4 订货代码

产品型号	Flash 空间	封装类型	备注
XM1008F4P6	18 Kbytes	TSS0P20	
XM1008F6P6	32 Kbytes	TSSOP20	
XM1008G6U6	32 Kbytes	QFN28	
XM1008K6U6	32 Kbytes	QFN32	
XM1008C6T6	32 Kbytes	LQFP48	
XM1009C6T6	32 Kbytes	LQFP48	

www.chipma.cn ⁷

5 功能描述

5.1 Flash

32Kbytes 用于存数据和程序。

5.2 Sram

8Kbyte 嵌入式 SRAM,可产生奇偶校验异常。

5.3 供电方案

VDD = 2.0~5.5V: VDD 管脚为 I/O 管脚和内部 LDO 供电

VDDA = 2.0~5.5V: 为 ADC、 温度传感器模拟部分提供供电

 $VBAT = 1.8 \sim 5.5V$: 当关闭 VDD 时,内部电源切换电路将通过 VBAT 为 RTC、外部 32kHz 振荡器和后备寄存器供电

5.4 启动模式

BOOT0 管脚	nBOOT1 位	启动位置
0	X	Flash
1	1	SystemFlash
1	0	SRAM

5.5 电源管理

5.5.1 低功耗模式

一共 6 个外部唤醒 pin 用于 Standby mode 唤醒, 且均可以配置极性。

芯片支持多种功耗模式

● Sleep Mode: 睡眠模式

在睡眠模式,只有 CPU 停止,所有外设处于工作状态并可在发生中断/事件时唤醒 CPU。

● Stop Mode: 停机模式

在保持 SRAM 和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,所有内部时钟被关闭,PLL、HSI 和 HSE 的 RC 振荡器被关闭。可以通过任一配置成 EXTI 的信号把微控制器从停机模式中唤醒, EXTI 信号可以是 16 个外部 I/O 口之一、 PVD 的输出、 RTC 闹钟、 UART 帧头匹配以及 I2C 地址匹配。

● Standby Mode: 待机模式

在待机模式下可以达到最低的电能消耗。内部 LDO 被关闭,因此所有内部 1.5V 部分的供电被切断; PLL、 HSI 和 HSE 的 RC 振荡器也被关闭; 进入待机模式后, SRAM 和寄存器的内容将消失,但后备寄存器的内容仍然保留,待机电路仍工作。从待机模式退出的条件是: NRST 上的外部复位、IWDG 复位、WKUP 管脚上的边沿或 RTC 的闹钟。

5.6 模数转换器(ADC)

内嵌 1 个 12 位的模拟/数字转换器(ADC),可以实现单次或扫描转换。ADC 可以使用 DMA 进行操作。模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,可配置产生中断。由标准定时器(TIMx)和高级控制定时器(TIM1)产生的事件,可以分别内部级联到 ADC 的开始触发和注入触发,应用程序能使 AD 转换与时钟同步。。

5.6.1 温度传感器(TS)

www.chipma.cn ⁸

为了获得较好的线性,温度传感器需要首先被校准。校准值被存在系统存储器区域,它是只读的。

校准值名称	描述	地址
TS_CAL1	在 30°C(+/-5°C), TS_CAL1	
TS_CAL2	在 110°C(+/-5°C), VDDA=3.3V(+/-10mV)时 TS ADC 数据	0x1FFF F7C2 - 0x1FFF F7C3

5.6.2 内部参考电压

内部参考电压为 ADC 提供一个基准电压输出。V_{REFINT} 接到内部 ADIN_17 输入通道。每颗芯片的 V_{REFINT} 电压在量产时得到测量值并存储在 System Memory。

校准值名称	描述	存储地址
VREFINT_CAL	在 30℃(±5℃),V _{DDA} =3.3V (±10mV)获得 ADC 数据	0x1FFF F7BA - 0x1FFF F7BB

5.6.3 VBAT 监测

电池电压 VBAT 被送入 ADC 通道 ADIN_18,用来监控 VBAT 电压是否位于正常工作范围内。由于 VBAT 电压可能高于 VDDA,超出 ADC 输入范围,ADC 通道被内部连接到 1/2 VBAT 分压处。

5.7 Timer

1个高级 Timer、6个通用 Timer 和1个基本 Timer

Timer 类型	Timer	位宽	计数类型	预分频数	DMA 需 求	捕获和 比较通 道数	互补通 道数
高级	TIM1	16位	向上, 向下, 向上/下	1~65536 的整数	Yes	4	3
	TIM2	32 位	向上, 向下, 向上/下	1~65536 的整数	Yes	4	0
洛田	TIM3	16位	向上, 向下, 向上/下	1~65536 的整数	Yes	4	0
通用	TIM14	16位	向上	1~65536 的整数	No	1	0
	TIM15	16位	向上	1~65536 的整数	Yes	2	1
	TIM16	16位	向上	1~65536 的整数	Yes	1	1
	TIM17	16位	向上	1~65536 的整数	Yes	1	1
基本	TIM6	16位	向上	1~65536 的整数	Yes	0	0

5.8 实时时钟(RTC)和备用寄存器

RTC 的特性:

- BCD格式的日历,支持亚秒、秒、分钟、星期;
- 自动调整每月是 28/29/30/31 天
- 可编程闹钟具有从停止和待机模式唤醒的能力
- 数字校准电路具有 1 ppm 的分辨率,以补偿石英晶振的不准确性。
- 参考时钟检测:可使用更加精确的第二时钟源 (50 或 60 Hz)来提高日历的精确度

■ RTC 和备份寄存器采用 VDD 或 VBAT 脚供电。备份寄存器不会被系统复位和电源复位清除。

5.9 USART

USART 支持同步、异步全双工通信和单线半双工通信,最高可达 6Mbit/s。

USART 特性/模式	USART1	USART2	USART6
DMA 功能	支持	支持	不支持
自动波特率检测	支持	不支持	不支持
Modbus 通信	支持	不支持	不支持
智能卡模式	支持	不支持	不支持
LIN 模式	支持	不支持	不支持
IrDA 模式	支持	不支持	不支持
唤醒 STOP 模式	支持	不支持	不支持

5.10 串行外设总线 (SPI)

SPI 模块可以通过 SPI 协议和外部器件通信。

SPI支持主从机的发送和接收。它支持全双工模式和简单模式。

SPI 特性	SPI1	SPI2
硬件 CRC	支持	支持
Rx/Tx FIFO	支持	支持
NSS 脉冲模式	支持	支持
I2S 功能	不支持	不支持
TI 模式	支持	支持

5.11 I2C 总线

I2C 模块,能够工作于多主和从模式,支持标准模式(最高 100 kbit/s)、快速模式(最高 400 kbit/s) 和极速模式(最高 1 Mbit/s),有 20 mA 输出驱动。I2C 接口支持 7 位,不支持 10 位 寻址,7 位从模式时支持双从地址寻址。

I2C 提供了 SMBUS 2.0 和 PMBUS 1.1 的硬件支持: ARP 能力、主机通知协议、硬件 CRC (PEC) 生成/ 验证、超时验证、 ALERT 协议管理。

I2C 还有一个独立于 CPU 时钟域的时钟,这样 I2C 可在地址匹配时从停止模式唤醒 MCU。提供了一个工业级标准的 I2C 接口,可以工作在主模式和从模式。接口实现了标准模式、快速模式和超快速模式,CRC 计算和检查,系统管理总线和电源管理总线。I2C 接口支持 DMA 模式用于存储器和外设之间的高速通信,无需 CPU 参与。

/		
I2C	I2C1	I2C2
7位地址模式	支持	支持
10 位地址模式	不支持	不支持
标准模式	支持	支持
快速模式	支持	支持
超快速模式	支持	支持
独立时钟	支持	不支持
SMBus	支持	不支持
唤醒 Stop	支持	不支持

6 引脚定义

6.1 LQFP48

6.2 LQFP32

6.3 QFN32

6.4 QFN28

6.5 TSSOP20

6.6 引脚描述

Dina	Pin	T	Description		
Pins	Name	Туре	AF 功能	额外功能	
1	VBAT	S	电池电源		
2	PC13	I/O	-	RTC_TAMP1 RTC_TS RTC_OUT WKUP2	
3	PC14	I/O	-	LSE_IN	
4	PC15	I/O	-	LSE_OUT	
5	PF0	I/O	-	OSC_IN	
6	PF1	I/O	- E \(\). II.II	OSC_OUT	
7	NRST	I/O	复位脚		
8	VSSA	S	模拟地		
9	VDDA	S	模拟电源		
10	PA0	I/O	TIM2_CH1 TM2_ETR USART1_CTS ⁽¹⁾ USART2_CTS ⁽²⁾	ADC_IN0, RTC_TAMP2, WKUP1	
11	PA1	I/O	TIM2_CH2 EVENTOUT USART1_RTS ⁽¹⁾ USART2_RTS ⁽²⁾	ADC_IN1	
12	PA2	I/O	TIM2_CH3 TIM15_CH1 USART1_TX ⁽¹⁾ USART2_TX ⁽²⁾	ADC_IN2	
13	PA3	I/O	TIM2_CH4 TIM15_CH2 USART1_RX ⁽¹⁾ USART2_RX ⁽²⁾	ADC_IN3	
14	PA4	I/O	SPI1_NSS I2S1_WS TIM14_CH1 USART1_CK ⁽¹⁾ USART2_CK ⁽²⁾ USART6_TX	ADC_IN4	
15	PA5	I/O	SPI1_SCK I2S1_CK TIM2_CH1_ETR USART6_RX	ADC_IN5	
16	PA6	I/O	SPI1_MISO TIM3_CH1 TIM1_BKIN TIM16_CH1 EVENTOUT	ADC_IN6	
17	PA7	I/O	SPI1_MOSI I2S1_SD TIM3_CH2 TIM14_CH1 TIM1_CH1N TIM17_CH1 EVENTOUT	ADC_IN7	
18	PB0	I/O	TIM3_CH3 TIM1_CH2N EVENTOUT	ADC_IN8	
19	PB1	I/O	TIM3_CH4 TIM14_CH1	ADC_IN9	

			TIM1_CH3N	
20	PB2	I/O	-	-
			TIM2 CH3	
21	PB10	I/O	12C1 SCL ⁽¹⁾	
			I2C2 SCL ⁽²⁾	
			TIM2 CH4	
			EVENTOUT	
22	PB11	I/O	I2C1 SDA ⁽¹⁾	
			I2C2 SDA ⁽²⁾	
23	VSS	S	芯片地	1
_				
24	VDD	S	数字电源	
			SPI1_NSS ⁽¹⁾	
25	PB12	I/O	SPI2_NSS ⁽²⁾	_
			TIM1_BKIN	
			EVENTOUT	
			SPI1_SCK ⁽¹⁾	
26	PB13	I/O	SPI2_SCK ⁽²⁾	-
			TIM1_CH1N	
			TIM1_CH2N,	
27	PB14	I/O	TIM15_CH1,	_
21	1 1 1 1 1	1/0	SPI1_MISO,	-
			SPI2_MISO	
			TIM1_CH3N	
			TIM15_CH1N	
28	PB15	I/O	TIM15_CH2	RTC_REFIN
			SPI1_MOSI ⁽¹⁾	
			SPI2 MOSI ⁽²⁾	
			USART1 CK	
20	DAG	1/0	TIM1 CH1	
29	PA8	I/O	EVENTOUT	-
			MCO	
			USART1 TX	
2.0	D.1.0	1/0	TIM1 CH2	
30	PA9	I/O	TIM15 BKIN	
			I2C1 SCL ⁽¹⁾	
			USART1 RX	
			TIM1 CH3	
31	PA10	I/O	TIM17 BKIN	
			I2C1_SDA ⁽¹⁾	
			USART1 CTS	
32	PA11	I/O	TIM1 CH4	_
32	17111	1,0	EVENTOUT	
			USART1 RTS	+
33	PA12	I/O	TIM1 ETR	_
33	1712	1/0	EVENTOUT	-
			IR OUT	
34	PA13	I/O	SWDIO	
34	IAIS	1/0	USART6 RX	-
35	PF6	I/O	I2C1_SCL	
-			I2C2_SCL	
36	PF7	I/O	I2C1_SDA ⁽¹⁾	
			I2C2_SDA (2)	1
	D 4 1 4		USART1_TX ⁽¹⁾	
37	PA14	I/O	USART2_TX ⁽²⁾	-
			SWCLK	
			USART6_TX	
			SPI1_NSS	
38	PA15	I/O	EVENTOUT	-
L			USART6_RTS	

www.chipma.cn ¹⁵

			USART1 RX ⁽¹⁾	
			USART2 RX ⁽²⁾	
			TIM2_CH_ETR	
			SPI1_SCK,	
39	PB3	I/O	TIM2_CH2,	-
			EVENTOUT	
			SPI1_MISO,	
40	PB4	I/O	TIM3_CH1,	-
			EVENTOUT	
			SPI1 MOSI	
41	PB5	I/O	I2C1 SMBA	
41	PB3	1/0	TIM16 BKIN	-
			TIM3 CH2	
			I2C1 SCL	
42	DD.	1/0	USART1 TX	
42	PB6	I/O	TIM16_CH1N	-
			USART6 TX	
			I2C1 SDA	
42	DD7	I/O	USART1 RX	
43	PB7	I/O	TIM17 CH1N	-
			USART6 RX	
44	BOOT0	I	Boot 存储器选择	
15	DDO	I/O	I2C1 SCL	
45	PB8	I/O	TIM16_CH1	-
			I2C1_SDA	
46	PB9	I/O	IR_OUT	
40	ГБЭ	1/0	TIM17_CH1	-
			EVENTOUT	
47	VSS	S	Ground	
48	VDD	S	Digital VDD	

Note:

- 1. 只适用于 XM1008 系列产品.
- 2. 只适用于 XM1009C6T6 产品

7 I/O 复用

7.1 PA 复用功能

表 1 PA 口复用功能描述

引脚	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0		USART1_CTS (1) USART2_CTS (2)	TIM2_CH1_ETR					
PA1	EVENTOUT	USART1_RTS (1) USART2_RTS (2)	TIM2_CH2					
PA2	TIM15_CH1	USART1_TX (1) USART2_TX (2)	TIM2_CH3					
PA3	TIM15_CH2	USART1_RX (1) USART2_RX (2)	TIM2_CH4					
PA4	SPI1_NSS, I2S1_WS	USART1_CK (1) USART2_CK (2)			TIM14_CH1	USART6_TX		
PA5	SPI1_SCK, I2S1_CK		TIM2_CH1_ETR			USART6_RX		
PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN			TIM16_CH1	EVENTOU T	
PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N		TIM14_CH1	TIM17_CH1	EVENTOU T	
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT				
PA9	TIM15_BKIN	USART1_TX	TIM1_CH2		I2C1_SCL			
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3		I2C1_SDA			
PA11	EVENTOUT	USART1_CTS	TIM1_CH4					
PA12	EVENTOUT	USART1_RTS	TIM1_ETR					
PA13	SWDIO	IR_OUT			USART6_RX			
PA14	SWCLK	USART1_TX (1) USART2_TX (2)			USART6_TX			
PA15	SPI1_NSS, I2S1_WS	USART1_RX (1) USART2_RX (2)	TIM2_CH1_ETR	EVENTOUT	USART6_CK_ RTS			

⁽¹⁾ 适用于 XM1008x6系列

⁽²⁾ 适用于 XM1009x6系列

18

7.2 PB 复用功能

表 2 PB 口 AF 描述

引脚	AF 0	AF 1	AF2	AF3	AF4	AF 5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N			
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N			
PB2						
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2			
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT			
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA		
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	USART6_TX		
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	USART6_RX		
PB8		I2C1_SCL	TIM16_CH1			
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT		
PB10		I2C1_SCL (1) I2C2_SCL (2)	TIM2_CH3			
PB11	EVENTOUT	I2C1_SDA (1) I2C2_SDA (2)	TIM2_CH4			
PB12	SPI1_NSS (1) SPI2_NSS (2)	EVENTOUT	TIM1_BKIN			
PB13	SPI1_SCK (1) SPI2_SCK (2)		TIM1_CH1N			
PB14	SPI1_MISO (1) SPI2_MISO (2)	TIM15_CH1	TIM1_CH2N			
PB15	SPI1_MOSI (1) SPI2_MOSI (2)	TIM15_CH2	TIM1_CH3N	TIM15_CH1N		

⁽¹⁾ 适用于 XM1008x6系列 (2) 适用于 XM1009x6系列

8 性能指标

8.1 最大绝对额定值

最大额定值只是短时间的压力值。并且芯片在该值或者其他任何超出该推荐值的条件下工作是不可取的。超出下列最大额定值可能会给芯片造成永久性的损坏。长时间工作在最大额定值下可能影响 芯片的可靠性

8.1.1 极限电压特性

Symbol	Parameter	最小值	最大值	单位
VDD-VSS	外部主供电电压(包括 VDDA 和 VDD)	-0.3	6	V
VIN	IO 引脚的输入电压	VSS-0.3	VDD+	V
$ \Delta VDDx $	不同供电的电压差	-	50	mV
VSSx- VSS	不同接地引脚之间的电压差	-	50	mV

8.1.2 极限电流特性

Symbol	Parameter	最大值	单位
I_{VDD}	经过 VDD/VDDA 电源线的总电流	150	mA
IVSS	经过 VSS 地线的总电流(输出电流)	150	mA
т	任意 I/O 管脚的输出灌入电流	25	mA
I_{io}	任意 I/O 管脚的输出拉电流	-25	mA
I _{INJ(PIN)}	引脚上的注入电流	+/-5	mA
总 I _{INJ(PIN)}	所有 I/O 和控制引脚上的总注入电流	+/-25	mA

8.1.3 极限温度特性

Symbol	Parameter	参数值	单位
T_{STG}	储存温度范围	-45~150	° C
TJ	最大的结温度	125	° C

8.2 内部参考电压特性

Symbol	Parameter	Min	Тур	Max	Units
V _{REFINT}	Internal reference voltage	1.19	1.22	1.25	V
ΔVREFINT	Internal reference voltage variation over the temperature range	-	-	12	mV
Tcoeff	Temperature coefficient	-70	-	70	ppm/0C

8.3 工作参数

Symbol	Parameter	Conditions	Min	Max.	Units
f_{HCLK}	Internal AHB clock frequency	-	0	48	MHz
f_{PCLK}	Internal APB clock frequency		0	48	MHz
$V_{ m DD}$	Standard operating voltage		2	5.5	V
$V_{ m DDA}$	Analog operating voltage	Must have a potential equal to or higher than VDD	2	5.5	V

V_{BAT}	Standard operating voltage		1.65	5.5	V
V _{IO}	I/O input voltage		-0.3	5.5	V
T _A	Ambient temperature for the	Maximum power dissipation	-40	85	$^{\circ}$
	suffix 6 version	Low power dissipatio	-40	105	$^{\circ}$
Tj	Junction temperature range	suffix 6 version	-40	105	$^{\circ}\mathbb{C}$

8.3.1 上下电指标

Symbol	Parameter	Conditions	Min	Max.	Units
T_{VDD}	VDD rise time rate	-	0	∞	μs/V
T _{VDD}	VDD fall time rate	-	20	∞	μs/V
T _{VDDA}	VDD rise time rate	-	0	∞	μs/V
T _{VDDA}	VDD fall time rate	-	20	∞	μs/V

Symbol	Parameter	Conditions	Min	Тур.	Max	Units
V _{POR/PDR}	Power on/power down	Falling edge	1.80	1.88	1.96	V
	reset threshold	Rising edge	1.84	1.92	2	V
T_{VDD}	VDD fall time rate	-	20	∞		
TVDDA	VDD rise time rate	-	0	∞		
T _{VDDA}	VDD fall time rate	-	20	∞		

Symbol	Parameter	Conditions	Min	Тур.	Max	Units
		PLS[2:0]=0	2.10	2.18	2.26	V
		PLS[2:0]=1	2.17	2.28	2.37	V
	 可编程电压检测器的	PLS[2:0]=2	2.27	2.38	2.48	V
	检测电平选择(上升	PLS[2:0]=3	2.37	2.48	2.58	V
	,	PLS[2:0]=4	2.47	2.58	2.68	V
	沿	PLS[2:0]=5	2.57	2.68	2.79	V
		PLS[2:0]=6	2.67	2.78	2.9	V
W		PLS[2:0]=7	2.77	2.88	3.0	V
V_{PVD}		PLS[2:0]=0	2.00	2.08	2.17	V
		PLS[2:0]=1	2.09	2.18	2.27	V
	 可编程电压检测器的	PLS[2:0]=2	2.18	2.28	2.39	V
		PLS[2:0]=3	2.27	2.38	2.49	V
	检测电平选择 (下降 - 沿	PLS[2:0]=4	2.37	2.48	2.59	V
		PLS[2:0]=5	2.46	2.58	2.7	V
		PLS[2:0]=6	2.56	2.68	2.8	V
		PLS[2:0]=7	2.66	2.78	2.9	V

www.chipma.cn ²⁰

8.3.2 工作电流

Symbol	Parameter	Conditions	fHCLK	所有外	所有外设使能.	
				Тур	Max	
					105° C	
Ivdd	Run mode, 从	HSI or HSE clock, PLL on	48MHz	16.6	25	mA
	Flash 执行代码		24MHz	9.7	13.7	mA
		HSI or HSE clock, PLL off	8MHz	5	7.9	mA
I_{VDD}	Sleep mode, 在	HSI or HSE clock, PLL on	48MHz	12	17	mA
	Flash Or Sram 执行		24MHz	6.7	12	mA
	代码	HSI or HSE clock, PLL off	8MHz	3.2	8	mA

Symbol	Parameter	Conditions	fHCLK	VDDA	A=3.6	Units
				Тур	Max	
					105° C	
I _{VDDA}	Run mode, Sleep	HSI or HSE clock, PLL on	48MHz	330	460	uA
	mode, 在 Flash Or		24MHz	230	380	uA
	Sram 执行代码	HSI or HSE clock, PLL off	8MHz	3.8	6	uA

Symbol	Parameter	Conditions	VDD=VI	DDA=3.6	Units
			Тур	Max	
				105° C	
I_{VDD}	Stop Mode	Regulator 在运行模式,	25	48	uA
		所有时钟关闭			
		Regulator 在低功耗模	6	-	uA
		式,所有时钟关闭			
	Standby Mode	LSI ON and IWDG ON	1.2	-	uA
		HSI or HSE clock, PLL off	1.1	-	uA
I_{VDDA}	Stop Or Standby	VDDA monitoring ON,	3.8	-	uA
	Mode	LSI ON and IWDG ON			
		VDDA monitoring OFF,	1.5	-	uA
		LSI OFF and IWDG OFF			

8.4 低功耗唤醒时间

Symbol	Parameter	Conditions	Min	Тур.	Max
Т	Stop 模式下的唤醒时间		2	5 5	uS
TWUSTOP	(Regulator 正常模式)	-	3	5.5	
т	Stop 模式下的唤醒时间		4.3	0	uS
Twustop	(Regulator 低功耗模式)	-	4.3	9	
Twustandby	从 Standby 模式下的唤醒时间	-	59	-	uS
Twusleep	从 SLEEP 模式的唤醒时间	-	5 SYSCLK	-	uS

8.5 外部时钟特性

www.chipma.cn ²¹

外部高速时钟特性

Symbo 1	Parameter (1)	Min	Тур	Max	单位
F _{HSE_IN}	外部输入时钟的范围	1	8	32	MHz
$V_{\scriptsize HSEL}$	外部输入 HSE 低电平	GND	-	0.3*VDD	V
V_{HSEH}	外部输入 HSE 高电平	0.7*VDD	-	VDD	V
$T_{\rm w}$	HSE 外部输入时钟源低电平	15	-	=	nS
Trise/fal	HSE 外部输入低/高电平持续时间	_	-	20	nS

外部低速时钟特性

Symbol	Parameter (1)	Min	Тур.	Max	单位
f _{LSE-EXT}	外部输入时钟源的频率范围	-	32.768	1000	KHz
V _{LSEL}	LSE外部输入时钟源高电平	0.7*VDDI OX	ı	VDDIOX	V
V_{LSEH}	LSE外部输入时钟源低电平	GND	-	0.3*VDD IOX	V
$T_{\rm w}$	LSE 外部输入低/高电平持续时间	450	-	-	nS
T _{rise/fal}	LSE 外部输入时钟源上升/下降时 间	-	-	50	nS

HSE 晶振特性

Symbol	Parameter (1)	Conditions	Min	Тур	Max	Units
Fosc_in	晶振频率	-	4	8	32	MHz
IVDD	HSE 的功耗	启动时功耗			7	mA
		VDD = 3.3 V,				mA
		$Rm = 30 \Omega$,		0.4		
		CL = 10 pF@8 MHz				
		VDD = 3.3 V,				mA
		$Rm = 45 \Omega$,		0.4		
		CL = 10 pF@8 MHz				
		VDD = 3.3 V,				mA
		$Rm = 30 \Omega$,		0.4		
		CL = 5 pF@32 MHz				
		VDD = 3.3 V,				mA
		$Rm = 30 \Omega$,		0.5		
		CL = 10 pF@32 MHz				
		VDD = 3.3 V,				mA
		$Rm = 30 \Omega$,		0.9		
		CL = 20 pF@32 MHz				
Tsu(HSE)	建立时间			2		ms

LSE 特性

Symbol	P	arameter (1)	Min	Тур	Max	单位
	LSE 模块功耗	低驱动能力	-	0.5	0.9	uA
I_{DD}	LSE 模块功耗	中等驱动能力	-	-	1.3	uA
IDD	LSE 模块功耗	中等驱动能力	-	ı	1.6	uA
	LSE 模块功耗	高驱动能力	-	ı	2.2	uA
		低驱动能力	1.5	ı	-	uA/V
am	LSE 的跨导	中等驱动能力	3.5	ı	-	uA/V
gm		中等驱动能力	10.6	ı	-	uA/V
		高驱动能力	16.7	ı	-	uA/V
T _{setup}	LS	SE 建立时间	-	1.2	-	S

- 1. 设计保证,非测试保证
- 2 最大值没有特殊说明,表明在 VCC=3.6V ,温度在-40° C 到 105° C 下取得。

8.6 内部时钟特性

表 3 HSI 特性

Symbol	Parameter (1)	Min	Тур	Max	单位
f_{HSI}	HSI 输出频率	-	8	-	MHz
TRIM _{HSI}	HSI 校正精度	-	-	1	%
Duty _{HSI}	HSI 占空比	45	-	55	%
ACCHS I	HSI 频率的温度特性	-2.3	-	2.3	%
Tsu	HSI 的建立时间	-	-	1.5	uS
IDDA	HSI 模块功耗		73	110	uA

1. 由设计保证,未经生产测试。

表 4 HSI14 特性

Symbol	Parameter (1)	Min	Тур	Max	单位
$f_{ m HSI}$	HSI14 输出频率	-	14	-	MHz
TRIM _{HSI14}	HSI14 校正精度	-	-	1	%
Duty _{HSI14}	HSI14 占空比	45	-	55	%
ACCHSI14	HSI14 频率的温度特性	-2.3	-	2.3	%
Tsu	HSI14的建立时间	0.09	-	0.5	uS
IDDA	HSI14 模块功耗	-	106	165	uA

1. 由设计保证,未经生产测试。

表 5 LSI 特性

Symbol	Parameter (1)	Min	Тур	Max	单位
f _{LSI}	LSI 的频率	30	40	50	KHz
Tsu	LSI 的建立时间	-	-	84	uS
IDDA	LSI 模块功耗	-	0.78	1.3	uA

www.chipma.cn ²³

8.7 PLL 特性

Symbol	Parameter (1)		Тур	Max	单位
£	PLL 输入时钟频率	1	8	24	MHz
f _{PLL-IN}	PLL 输入时钟占空比	40	-	60	%
f _{PLL-OUT}	r PLL 时钟输出频率		-	48	MHz
tlock	PLL 锁定时间	-	-	200	uS
jitter _{PLL}	周期到周期间抖动	-	-	300	pS

8.8 Memory 特性

Symbol	Parameter (1)		Тур	Max	单位
T_{prog}	16位编程时间		40	45	uS
T _{erase}	页(1 kbytes) 擦除时间		18	20	mS
T_{ME}	整片擦除时间	25	31	36	mS
NEND	可擦写次数		-	-	Cycles
tRED	数据保存能力,85℃	20	-	-	Year
IKED	数据保存能力, 105℃	10	-	-	Year

8.9 EMC 特性

Symbol	Parameter (1)	Conditions	等级	值	单位
V _{ESD-HBM}	人体放电模型	温度+25℃	3A	≥4000	V
V _{ESD-MM}	机器放电模型	温度+25℃	C	≥400	V
Ilatchup	机器放电模型	温度 +105℃	II	≥200	mA

8.10 IO 引脚特性

Symbol	Parameter		Min	Тур	Max	单位
$V_{\rm IL}$	输入	入低电平	-	-	0.3*VDD	V
V_{IH}	输入	入高电平	0.7*VDD	-	-	V
	配置为数字端口时	$VSS < V_{IN} < VDD$	-	-	± 0.9	uA
	的漏电流					
I (1)	印柳电机	VDDIOX <v<sub>IN<vdda< td=""><td>-</td><td>-</td><td>± 0.9</td><td>uA</td></vdda<></v<sub>	-	-	± 0.9	uA
I _{leakage} (1)	配置为模拟端口时	VSS< V _{IN} <vdda< td=""><td>_</td><td>_</td><td>± 0.9</td><td>uA</td></vdda<>	_	_	± 0.9	uA
	的漏电流,	VBB VIN VDDA	_	_		u/1
		VDDIOX <v<sub>IN<5V</v<sub>		-	10	uA
R _{pull-up}	<u> </u>	拉电阻	25	40	55	Ω
R _{pull} -	下	拉电阻	25	40	60	Ω
down	,			10	00	
V _{OH}	输出高电平	$ I_{IO} =20$ mA, VDD \geqslant 2.7V	VDD-1.5	-	-	V
VOH	, that test test . C. 1	$ I_{IO} =6mA$	VDD-0.55	-	-	V
Vol	输出低电平	$ I_{IO} =20$ mA, VDD \geqslant 2.7V	-	-	1.3	V
VOL	制田区七一	$ I_{IO} =6mA$	-	-	0.4	V
	I2C 超快模式, I _{IO} =20mA, VDD≥2.7V		-	-	0.4	V
V _{OLFM+}	输出低电平	$ I_{IO} $ =10mA	-	-	0.4	V

www.chipma.cn ²⁴

OSPEED Ry 的值	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	最大频率		-	2	MHz
x0	$t_{f(IO)out}$	下降沿	CL=50pf	-	130	nS
	t _{r(IO)out}	上升沿		-	130	nS
	f _{max(IO)out}	最大频率		-	10	MHz
01	$t_{f(IO)out}$	下降沿	CL=50pf	-	25	nS
	$t_{r(IO)out}$	上升沿		-	25	nS
			CL=30pf, VDDIOx ≥2.7 V	-	50	MHz
	f _{max(IO)out} 最大频率	CL=50pf, VDDIOx \geq 2.7 V	-	30	MHz	
			CL=30pf, VDDIOx <2.7 V	-	20	MHz
		t _{f(IO)out} 下降沿	CL=30pf, VDDIOx ≥2.7 V	-	6	ns
11	$t_{f(IO)out}$		CL=50pf, VDDIOx \geq 2.7 V	-	9	ns
			CL=30pf, VDDIOx <2.7 V	-	13	ns
			CL=30pf, VDDIOx ≥2.7 V	-	6	ns
	t _{r(IO)out} 上升沿	CL=50pf, VDDIOx ≥ 2.7 V	-	9	ns	
		CL=30pf, VDDIOx <2.7 V	-	13	ns	

8.11 ADC 特性

Symbol	Parameter (1)	Conditions	Min	Тур	Max	单位
VDDA	ADC ON 的模拟 供电电压		2.4	-	5.5	V
I _{DDA (ADC)}	ADC 的电流消 耗(1)	VDD = VDDA = 3.3 V	-	0.8	-	mA
$f_{ m ADC}$	ADC 时钟频率		0.6	-	14	MHz
fs ⁽²⁾	采样率	12Bit Resolution	0.043	-	1	MHz
f _{TRIG(2)}	外部触发器频率	fADC = 14 MHz 12Bit Resolution	-	-	823	kHz
		12Bit Resolution	-	-	17	1/fADC
V_{AIN}	转换电压范围		0	-	VDDA	V
R _{AIN} ⁽²⁾	外部输入阻抗		-	-	50	kΩ
R _{ADC} ⁽²⁾	采样开关电阻		-	-	1	kΩ
C _{ADC} ⁽²⁾	内部采样和保持 电容		-		8	pF
t _{CAL} ^{(2) (3)}	校准时间	fADC = 14 MHz		5.9		μs
CAL 7	1又1庄中11中1			83		1/fADC
INL		fPCLK = 48 MHz, f_{ADC} =14MHz, R_{AIN} <10kΩ, VDDA \geq 2.7V	-	±1.3	±2.4	LSB
DNL		fPCLK = 48 MHz,		±0.9	±1.4	LSB

	f_{ADC} =14MHz, R_{AIN} <10k Ω , VDDA \geq 2.7V			
	fPCLK = 48 MHz,			
Offset	$f_{ADC}=14MHz$,	+2.0	+2.9	LSB
Offset	R_{AIN} <10k Ω ,			LSD
	VDDA≥2.7V			

- 1. 在转换采样值的期间(12.5 x ADC 时钟周期),模拟I_{DDA} 上有100 μA 及数字I_{DD} 上有60 μA 的额外消耗;
- 2. 由设计保证,未经生产测试;

8.12 温度传感器特性

Symbol	Parameter (1)	Min	Тур	Max	单位
TL ⁽¹⁾	VSENSE 相对于温度的线性度	-	+/-1	+/- 2	°C
Avg_Slope ⁽¹⁾	平均斜率	4.2	4.4	4.6	mV/° C
V30	30 ° C (± 5 ° C) 时的电压	1.34	1.43	1.52	V
t _{START} (1)	启动时间		-	7	μs
$t_{S_temp}^{(1)}$	读取温度时的 ADC 采样时间	4	-	-	μs

1. 由设计保证,未经生产测试;

8.13 VBAT 监测器特性

Symbol	Parameter (1)	Min	Тур	Max	单位
R	VBAT 的电阻桥		2x50		Kohm
Q	VBAT 测量比例		2		
Er ⁽¹⁾	Q值误差	-1		+1	%
Ts_vbat ⁽¹⁾	读取 VBAT,当 ADC 处于采样时间	5	-	-	us

1. 由设计保证,未经生产测试;

www.chipma.cn ²⁶

9 封装信息

9.1 LQFP48

图 4 LQFP48 封装框图

表 6 LQFP48 封装尺寸

Camala al	毫米				
Symbol	Min	Тур	Max		
A	-	-	1.600		
A1	0.050	-	0.150		
A2	1.350	1.400	1.450		
b	0.170	0.220	0.270		
С	0.090	-	0.200		
D	8.800	9.000	9.200		
D1	6.800	7.000	7.200		
D3	-	5.500	-		
Е	8.800	9.000	9.200		
E1	6.800	7.000	7.200		
E3	-	5.500	-		
e	-	0.500	-		
L	0.450	0.600	0.750		
L1	-	1.000	-		
k	0°	3.5°	7°		
ccc	-	-	0.080		

www.chipma.cn ²⁷

9.2 LQFP32

G11	毫米					
Symbol	Min	Тур	Max			
A	-	-	1.600			
A1	0.050	-	0.150			
A2	1.350	1.400	1.450			
b	0.300	0.370	0.450			
С	0.090	-	0.200			
D	8.800	9.000	9.200			
D1	6.800	7.000	7.200			
D3	-	5.600	-			
Е	8.800	9.000	9.200			
E1	6.800	7.000	7.200			
E3	-	5.600	-			
e	-	0.800	-			
L	0.450	0.600	0.750			
L1	-	1.000	-			
k	0°	3.5°	7°			
ccc	-	_	0.100			

www.chipma.cn ²⁸

9.3 QFN32 和 QFN28

图 5 QFN32 封装框图

	02						
Ch al		QFN32			QFN28		
Symbol	Min	Тур	Max	Min	Тур	Max	
A	0.70	0.75	0.80	0.70	0.75	0.80	
A1	-	0.02	0.05	-	0.02	0.05	
b	0.18	0.25	0.20	0.15	0.20	0.25	
D	4.9	5.0	5.1	3.90	4.00	4.10	
D2	3.4	3.5	3.6	2.70	2.80	2.90	
Е	4.9	5.0	5.1	3.90	4.00	4.10	
E2	3.4	3.5	3.6	2.70	2.80	2.90	
e		0.50REF			0.4REF		
L	0.35	0.40	0.45	0.30	0.35	0.40	
Н	0.30	0.35	0.40	0.25REF			
K	0.30	0.35	0.40	0.25REF			

单位:毫米

www.chipma.cn ²⁹

9.4 TSSOP20

Table 1 TSSOP20 package dimensions

Symbol	Millimeter		
	Min	Nom	Max
A	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
b	0.19	-	0.30
B1	0.19	0.22	0.25
c	0.09	-	0.20

www.chipma.cn ³⁰

10 修改记录

修改记录

Version	描述	日期
1.0.0	初版	2019-10-17
1.0.3	封装图	2019-12-17
1.0.4	I2C 明确不支持 10Bit 地址	2020-03-21
1.0.5	增加 F4P6	2020-04-23