Propiedad 1): Derivada de la Suma:

Demostración

Sean
$$y = f(x) + g(x) = h(x)$$

$$\Delta y = h(x + \Delta x) - h(x)$$

$$\Delta y = [f(x + \Delta x) + g(x + \Delta x)] - [f(x) + g(x)]$$

$$\Delta y = [f(x + \Delta x) - f(x)] + [g(x + \Delta x) - g(x)]$$

$$\Delta y = \frac{[f(x + \Delta x) - f(x)] + [g(x + \Delta x) - g(x)]}{\Delta x}$$
Divido todo por Δx

$$\frac{\Delta y}{\Delta x} = \frac{[f(x + \Delta x) - f(x)] + [g(x + \Delta x) - g(x)]}{\Delta x}$$
Distribuyo convenientemente
$$\frac{\Delta y}{\Delta x} = \frac{[f(x + \Delta x) - f(x)]}{\Delta x} + \frac{[g(x + \Delta x) - g(x)]}{\Delta x} = f'(x) + g'(x) = u' + v'$$

$$\therefore y' = f'(x) + g'(x) = u' + v'$$

y' = f'(x).g(x) + f(x).g'(x) = u'.v + u.v'

Propiedad 3): Derivada del Cociente:

• Sean
$$u$$
 y v dos funciones derivables en x y $u = f(x)$ y $v = g(x)$, $\cos g(x) \neq 0$

Si y $= \frac{u}{v}$ entonces $y' = \frac{u' v - u u v}{v^2}$

Demostración

Sean $y = \frac{f(x)}{g(x)} = h(x)$
 $\Delta y = \frac{f(x + \Delta x)}{g(x + \Delta x)} = \frac{f(x)}{g(x)}$
 $\Delta y = \frac{f(x + \Delta x)}{g(x + \Delta x)} = \frac{f(x)}{g(x)}$

Sumo y resto: $f(x)$
 $\Delta y = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)} + \frac{f(x)}{g(x)} = \frac{f(x)}{g(x)}$

Distribuyo convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)} + \frac{f(x)}{g(x + \Delta x)} = \frac{f(x)}{g(x)}$$

Distribuyo convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{g(x + \Delta x), g(x)}$$

Divido lodo por Δx

Divido lodo por Δx

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{g(x + \Delta x), g(x)}$$

Divido lodo por Δx

Divido lodo por Δx

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x)} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x) - g(x + \Delta x), f(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x), \Delta x}{dx}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x), \Delta x}{dx}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x), \Delta x}{dx}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x), \Delta x}{dx - dx}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x)}{\Delta x}$$

Operando convenientemente

$$\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{f(x), g(x + \Delta x), g(x)}{\Delta x}$$

Operando convenientemente

Propiedad. Teorema de la Derivada y la Continuidad: Si una función es derivable en un punto, entonces es continua en ese punto.

Propiedad

Sea una función f(x) definida en un intervalo abierto y sea x = a un punto de dicho intervalo.

Si la función f(x) es derivable en a, entonces es continua en a.

Demostración

Como f(x) es derivable en el punto a, Recordemos la definición de derivada en un punto x=a:

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

Si se escribe $x = a + \Delta x$, entonces $\Delta x = x - a$ y Δx tiende a 0 si y solo si x tiende a a. En consecuencia, una manera equivalente de expresar la definición de la derivada es:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 (1)

Para probar que f(x) es continua en x = a, primero vamos a probar que la diferencia f(x) - f(a) tiende a 0 cuando x tiende a a

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} \left[f(x) - f(a) \cdot \frac{x - a}{x - a} \right] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \cdot x - a \right] =$$

Multiplicamos y dividimos por x - a

Reagrupamos convenientemente

Por propiedades de limite

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} x - a = f'(a) \cdot 0 = 0$$

Por (1) y definición de limite

$$\lim_{x \to a} f(x) - f(a) = 0$$

Recordemos la definición de función continua en un punto:

La función f(x) es continua en x = a si y solo si $\lim_{x \to a} f(x) = f(a)$

Entonces: $\lim_{x \to a} f(x) = \lim_{x \to a} [f(x) - f(a) + f(a)] = \left[\lim_{x \to a} f(x) - f(a)\right] + \lim_{x \to a} f(a) = 0 + f(a) = f(a)$

Sumamos y restamos f(a)

Por propiedades de limite

$$f(x)$$
 es continua en $x = a$

Derivada de la Función Constante:

Derivada de funciones algebraicas Sea y = f(x)Si y = c, siendo c una constante, entonces y' = 0D'emostración Sea y = f(x) = c y $f(x + \Delta x) = c$ $\Delta y = f(x + \Delta x) - f(x)$ $\Delta y = f(x + \Delta x) - f(x) = c - c = 0$ Divido todo por Δx $\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{0}{\Delta x}$ $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0 = y'$ $\therefore y' = 0$

Derivada de la Función Identidad:

Derivada de la Función Potencia:

Derivada de funciones algebraicas

Si
$$y = f(x)$$
 es una función de la forma $y = x^n \operatorname{con} n \in \mathbb{N}$, entonces $y' = n.x^{n-1}$ Demostración
Sea $f(x) = x^n$ y $f(x + \Delta x) = (x + \Delta x)^n$

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^n - x^n = \left[\sum_{k=0}^n \binom{n}{k} x^{n-k} \cdot \Delta x^k\right] - x^n \qquad \text{Binomio de Newton}$$
Desarrollando el binomio
$$\Delta y = \left[x^n + \binom{n}{1} \cdot x^{n-1} \cdot \Delta x + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^2 + \dots + \binom{n}{n} \cdot (\Delta x)^n\right] - x^n$$

$$\frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} \cdot \Delta x + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^2 + \dots + \binom{n}{n} \cdot (\Delta x)^n \\ \Delta x \end{bmatrix} \qquad \text{Divido todo por } \Delta x$$

$$\frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\Delta y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\lambda y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\lambda y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\lambda y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\lambda y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}{n} \cdot (\Delta x)^{n-1} \\ \frac{\lambda y}{\Delta x} = \begin{bmatrix} \binom{n}{1} \cdot x^{n-1} + \binom{n}{2} \cdot x^{n-1} \cdot (\Delta x)^1 + \dots + \binom{n}$$

Derivada de la Función Logaritmo Natural:

Derivada de la Función Exponencial y la Función Exponencial Compuesta (usando regla de la cadena)

• Sea y = f(x) una función de la forma $y = \sqrt[2]{x}$ entonces $y' = \frac{1}{2\sqrt[2]{x}}$

$$y = \sqrt[2]{x} = x^{\frac{1}{2}} \implies y' = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2 \cdot \sqrt[2]{x}}$$

Por regla de la cadena:
• Si
$$y = \sqrt[2]{u}$$
 entonces $y' = \frac{u'}{2 \cdot \sqrt[2]{u}}$

Sea y = f(x) una función de la forma $y = e^x$ entonces $y' = e^x$

Demostración

$$\ln y = \ln(e^x)$$
 Tomamos \ln a ambos miembros

$$\ln y = x. \ln e$$
 Propiedad de logaritmos

$$(\ln y)' = (x.1)'$$
 Derivando ambos miembros

$$\frac{y'}{y} = 1$$

$$y' = y$$

$$y' = e^x$$

Por regla de la cadena:

$$y = e^u$$
 entonces $y' = u' \cdot e^u$
 $u = u(x)$

Demostraciones de Derivadas de Funciones Compuestas con Regla de la Cadena:

Por regla de la cadena:

Si
$$y = \ln u$$
 entonces $y' = \frac{1}{u} \cdot u' = \frac{u'}{u}$

Si
$$y = u^n$$
 entonces $y' = n.u^{n-1}.u'$

Demostración

$$\ln y = \ln(u^n)$$
 Tomamos \ln a ambos miembros

$$\ln y = n \cdot \ln u$$
 Propiedad de logaritmos

$$(\ln y)' = (n \cdot \ln u)'$$
 Derivando ambos miembros

$$\frac{y'}{y} = (n)' \cdot \ln(u) + n \cdot (\ln u)'$$

$$\frac{y'}{y} = n \cdot \frac{u'}{u}$$

$$y' = n \cdot \frac{u'}{u} \cdot y$$

$$y' = n \cdot \frac{u'}{u} \cdot u^n$$
$$y' = n \cdot u^{n-1} \cdot u'$$

$$y' = n. u^{n-1}. u'$$

$$\therefore y' = n.u^{n-1}.u'$$

• Sea y = f(x) una función de la forma $y = \sqrt[2]{x}$ entonces $y' = \frac{1}{2\sqrt[2]{x}}$

Demostración

$$y = \sqrt[2]{x} = x^{\frac{1}{2}} \implies y' = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2 \cdot \sqrt[2]{x}}$$

Por regla de la cadena:
• Si
$$y = \sqrt[2]{u}$$
 entonces $y' = \frac{u'}{2 \cdot \sqrt[2]{u}}$