Glossary of notation for "Limits of Computation" module

 \bigodot Billiejoe Charlton and Bernhard Reus 2009-17

\mathbf{Symbol}	Name	Description
Sets and functions:		
{-}	set brackets	E.g. $\{a,b,c\}$ is the set containing three elements a,b and c
{- -}	set comprehension	$\{x\mid P(x)\}$ is the set of objects x having property $P(x)$ E.g. $\{x\mid x\in\mathbb{N} \text{ and } x>3\}=\{4,5,6,\ldots\}$
N	natural numbers	The set of the natural numbers $0, 1, 2, 3, \ldots$
\mathbb{D}	set of binary trees	The set of binary trees built from nil and $()$
^U Assi	gnment	$A \cup B$ is the set of all elements in either A or B or both $B \cap B$ or bo
$\bigcup_{x \in S} A(x)$	indexed union	Means the union of $A(x)$ for all x s in S
	https://p	obweoder.com
\subseteq	subset	$A \subseteq B$ means every element of A is also in B
	Add We	$\mathbf{e}^{\{1\} \subseteq \{1,2\} \text{ but not } \{1,2\} \subseteq \{1\}} \mathbf{e}^{\{1\}}$
⊊	proper subset	$A \subsetneq B$ means that B contains all the elements of A and some more elements; A and B cannot be equal
×	Cartesian product	$A \times B$ is the set of pairs of one element from A and one from B E.g. $\{0,1\} \times \{a,b\} = \{(0,a),(0,b),(1,a),(1,b)\}$
\	set difference	$A\backslash B$ is the set of elements from A which are not in B E.g. $\{0,1,2\}\backslash\{1,3\}=\{0,2\}$
€	set membership	$x \in A$ means x is in (is an element of) the set A
€	set membership	$A \ni x$ means x is an element of set A (this is just $x \in A$ written in a different order)
\rightarrow		$A \to B$ denotes the set of functions from A to B $f: A \to B$ means that f is a function from A to B

Symbol	Name	Description
Sets and functions (continued):		
	bottom	$f(x) = \bot$ means that (partial) function f is undefined at x . In particular, \bot represents non-termination of programs
-1		X_{\perp} is the set X plus \perp as an additional element Hence $f:A\to B_{\perp}$ means f is a partial function from A to B
$f(a)\downarrow$		Means that partial function f is defined at a (same as $f(a) \neq \bot$)
$f(a)\uparrow$		Means that partial function f is not defined at a (same as $f(a) = \bot$)
L-programs		The set of programs written in language L
L- $data$		The set of data values used by programs written in language ${\cal L}$
$\frac{L\text{-store}}{f^n(x)} \mathbf{ASS}$	ignm	ent Project Exam Help project Exam Function f applied n times to x , e.g. $f^3(x)$ is $f(f(x))$
$\lambda x.$ –	https://dx	traction $\lambda x. f(x)$ means the function which maps x to $f(x)$
Symbol	Name	Description
Programming:	Add	WeChat powcoder
\Longrightarrow		Used for rewrite rules (not available in WHILE)
$[d_1, d_2, \cdots, d_n]$	list notation	A list of length n , with first element d_1 , second element d_2 etc.
$\langle d_1 \ . \ d_2 angle$		A binary tree with left subtree d_1 and right subtree d_2 In WHILE, one uses the cons operator: cons d_1 d_2
nil^n		A right-spined binary tree containing $n+1$ nils; encodes number n . E.g. $nil^3 = (nil.(nil.(nil.nil)))$

Symbol	Name	Description
Semantics:		
$\{X_i:d_i\}$	store	E.g. $\{X: nil, Y: (nil.nil)\}$ means a store in which variable X contains
		value nil and variable Y contains value (nil.nil)
$\sigma[\mathtt{X}:=V]$	store update	Means a store that's the same as $\sigma,$ except that variable ${\tt X}$ has the value V
$\llbracket - rbracket^L$	semantics of language L	The semantics (meaning) of a programming language L , which is a
		function L -programs $\rightarrow (L$ -data $\rightarrow L$ -data $_{\perp})$
$\llbracket p \rrbracket^L$	semantics of program p	The meaning of a $particular$ program p (written in language L) as a
		function from input to output, i.e. a function $L\text{-}data \to L\text{-}data_\perp$
$\mathscr{E}[\![E]\!]\sigma$		The value of a WHILE expression E in store σ
	For WHILE language:	
\mathbf{A}	ssignment	Project Exam Help Command C terminates when run in store σ , with resulting store σ'
$C \vdash \sigma \to \sigma'$	55-5	Command C terminates when run in store σ , with resulting store σ'
	For machine models:	•
	httng://r	Program (or machine) p transits from state s to state s' in a single step

$p \vdash s \to s'$	Program (or machine) p transits from state s to state s' in a single step
$p \vdash s \to^* s'$	Program (or machine) p transits from state s to state s' in 0, 1 or more steps
Computation models:	Add WeChat powcoder
TM	Turing Machines (with tapes and heads etc.)
GOTO	Goto language ("flowchart language"); has a "goto" statement instead of the "while" loop statement
SRAM	Successor Random Access Machines; has arbitrarily many registers holding natural numbers; allows indirect addressing
CM	Counter Machines: much simpler than SRAM; machines contain a limited number of counters
2CM	Counter Machines with only 2 counters

Symbol	Name	Description
Complexity symbols:		
$time^{\!\scriptscriptstyle m L}_{\!\scriptscriptstyle m p}({\tt d})$	running time	The time taken for a program $p \in L$ -programs to run on input d
\mathcal{T}		$\mathcal{T}E$ is the time taken to evaluate WHILE expression E
$C \vdash^{time} \sigma \Rightarrow t$		WHILE command C terminates after t time steps, when run in store σ'
$L \preceq^{ptime} M$		Language M can simulate language L up to a polynomial difference in time
$L \preceq^{lintime} M$		Language M can simulate language L up to a linear difference in time
$L \preceq^{lintime\text{-}pg\text{-}ind} M$		M can simulate L up to a $\emph{program-independent}$ linear difference in time
$L \equiv^{ptime} M$		Languages L and M are polynomially equivalent
$L \equiv^{lintime} M$		Languages L and M are linearly equivalent
$L \equiv^{lintime-pg-ind} M$ $L^{time(f(n))} \qquad \qquad SS1$	gnmen	Larguages L and M are strongly linearly equivalent. The set of L programs with time bound f (where $f: \mathbb{N} \to \mathbb{N}$)
\mathtt{L}^{ptime}		The set of L -programs bounded by some polynomial function
$L^{lintime}$	nttps://	10 WGOO Chined O Ion linear function
$\mathbf{TIME}^{\mathtt{L}}(f)$		The set of decision problems (not programs!) that the language L can decide in time f
P^L	Add W	The set of decision problems (not programs) that the language L can decide in polynomial time
$\mathbf{EXP}^{\mathrm{L}}$		The set of decision problems (not programs) that the language L can decide in exponential time
LIN^{L}		The set of decision problems (not programs) that the language L can decide in linear time
NP^L		The set of decision problems accepted by a nondeterministic L-program in polynomial time

Symbol	Name	Description
Other symbols:		
A		"for all"
iff		"if and only if"
\simeq		$x \simeq y$ means either x and y are both undefined, or both are defined and they are equal
	language matching	$S \sqsubseteq T$ means: any program in language S is also a program in language T , and has the same semantics
x	size	Denotes the size of an object (e.g. binary tree) x
$\lceil X \rceil$		The encoding or translation of some object X (see e.g. rules for encoding numbers or programs as binary trees)
n - m As	signmen	tiProjecta Exam Help
X^*	Kleene star	Strings built from 0 or more repetitions of the string expression X as used in regular expressions; e.g. $\{0,1\}^*$ denotes binary strings
ϵ	$\frac{\text{putting S.}}{\text{empty string S.}}$	Pseudon of the Control of the Contro

Add WeChat powcoder