西南交通大学 2018-2019 学年第(1)学期考试试卷 A

课程代码 3143401 课程名称 信号与系统 考试时间

题号	_			ΞΞ				四四	24 -124=
		1	2	1	2	3	4	1	总成绩
得分									

阅卷教师签字:

选择题(每小题5分,共25分)

- 1、下列信号的分类方法不正确的是(
- (A) 数字信号和离散信号

(B) 确定信号和随机信号

(C) 周期信号和非周期信号

- (D) 能量信号和功率信号
- 2、对信号 f(t) 进行理想抽样的奈奎斯特频率为 f_s ,则对信号 $f(\frac{t}{5})$ 进行抽样,则其奈奎斯

特频率为(

- (C) f_s
- (D) 不能判断结果

- 3、理想低通滤波器是(
- (A) 物理可实现的 (B) 是非因果的
- (C) 是因果的
 - (D) 是不稳定的
- 4、 某连续时间 LTI 系统,其单位冲激响应 $h(t) = e^{-4t}u(t-1)$,该系统是(

- (A) 因果稳定的 (B) 因果不稳定的 (C) 非因果稳定的 (D) 非因果不稳定的
- 5、某系统的幅频特性 $|H(\omega)|$ 和相频特性 $\varphi(\omega)$ 分别如图(a)和(b)所示,则下列信号通过该系统

时,不产生失真的是(

(A) $f(t) = \cos(t) + \cos(8t)$

(B) $f(t) = \sin(2t) + \sin(4t)$

(C) $f(t) = \sin(2t)\sin(4t)$

(D) $f(t) = \cos(8t)$

批

- 二、作图题(每题10分,共20分)
 - 1、绘出t[u(t-2)-u(t-3)]的波形图。
 - 2、已知连续信号 f(t-1) 的波形如题图所示,试画出 f(4-t/2) 的波形,并给以刻度标注。

三、计算解答题(共45分)

1. 计算函数 $f_1(t)$ 和 $f_2(t)$ 的卷积 $f_1(t)*f_2(t)$ 。(共 10 分)

其中:
$$f_1(t) = 2e^{-t} \cdot [u(t) - u(t-3)], f_2(t) = 4[u(t) - u(t-2)]$$

2. 求下列象函数 F(s) 的拉普拉斯反变换 $L^{-1}{F(s)}$ 。(共 10 分)

其中:
$$F(s) = \frac{1}{(s^2 + 3)^2}$$

3. 如题图所示 RC 低通网络,激励电压为 $e(t)=E[u(t)-u(t-\tau)]$,求电容器上的响应 $v_c(t)$ 。 (共 10 分)

- 4. 已知描述系统的差分方程为 y(n-1)+2y(n)=x(n)。(共 15 分)
 - (1) 如果y(-1)=2, 求系统的零输入响应 $y_{zi}(n)$;
 - (2) 如果输入 $x(n) = \left(\frac{1}{4}\right)^n u(n)$,求系统的零状态响应 $y_{zs}(n)$;
 - (3) 如果输入 $x(n) = \left(\frac{1}{4}\right)^n u(n)$,初始状态y(-1) = 2,求系统当 $n \ge 0$ 时的全响应。

四、选做题(10分)(仅计要求选做题,多做不多得分)

1. 专业词汇互译(每空0.5分)(教学1班选做)

Forward Difference	Continuous Temporal Signal
卷积定理	Excitation_
Time-invariant system	Complete Response
线性系统	
Convergence Region	Spectrum density function
Dirichlet Condition	抽样信号
积分器	
Loop Circuit	Complex Frequency Spectrum
Conjugated Complex Root	Undistorted Transmission
Bode chart	Minimum Phase Shift Function

2. 计算题(教学2班选做)

若如图所示的反馈系统中 $A(s) = \frac{1}{s+1}$, $F(s) = s - \beta$ (β 为实数),为使系统稳定,求 β 的取值范围。(要求:有详细的求解过程)

附录 1: 可能用到的卷积积分

序号	$f_1(t)$	$f_2(t)$	$f_1(t)^*f_2(t)$	
1	f(t)	$\delta(t)$	f(t)	
2	f(t)	$\delta'(t)$	f'(t)	
3	f(t)	u(t)	$\int_{-\infty}^{t} f(\tau) d\tau$	
4	u(t)	u(t)	tu(t)	
5	$e^{\alpha t}u(t)$	u(t)	$-\frac{1}{\alpha}(1-e^{\alpha t})u(t)$	
6	$e^{\alpha t}u(t)$	$e^{\alpha t}u(t)$	$te^{at}u(t)$	

附录 2: 可能用到的傅里叶变换

序号	f(t)	$F(\omega)$
1	$\delta(t)$	1
	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
2	$\operatorname{sgn}(t) = \frac{t}{ t }$	$\frac{2}{j\omega}$
3	K	$2\pi K\delta(\omega)$
4	$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
5	$\sin(\omega_0 t)$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
6	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
7	tu(t)	$j\pi\delta'(\omega)-\frac{1}{\omega^2}$
8	$u(t+\frac{T}{2})-u(t-\frac{T}{2})$	$TSa(\frac{\omega T}{2})$
9	$e^{-\alpha t}u(t) \alpha > 0$	$\frac{1}{j\omega+\alpha}$
10	$e^{-\alpha t } \alpha > 0$	$\frac{2\alpha}{\omega^2 + \alpha^2}$

附录 3: 可能用到的拉普拉斯变换

序号	f(t)	F(s)	序号	f(t)	F(s)
1	$\delta(t)$	1	6	cos(\omega t)	$\frac{s}{s^2+\omega^2}$
	u(t)	$\frac{1}{s}$	7	sin(\omega t)	$\frac{\omega}{s^2+\omega^2}$
2	t	$\frac{1}{s^2}$	8	$e^{\alpha t}\cos(\omega t)$	$\frac{s-\alpha}{(s-\alpha)^2+\omega^2}$
3	t ⁿ	$\frac{n!}{s^{n+1}}$	9	$e^{\alpha t}\sin(\omega t)$	$\frac{\omega}{(s-\alpha)^2+\omega^2}$
4	$e^{\alpha t}$	$\frac{1}{s-a}$	10	$t\cos(\omega t)$	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$
5	te ^{at}	$\frac{1}{(s-a)^2}$	11	t sin(\omega t)	$\frac{2s\omega}{(s^2+\omega^2)^2}$

附录 4: 与几种典型激励函数相应的特解函数形式

序号	激励函数 e(t)	响应函数 $r(t)$ 的特解函数形式 $B(t)$
1	E (常数)	В
2	t ^p	$B_1 t^p + B_2 t^{p-1} + \dots + B_p t + B_{p+1}$
3	$e^{\alpha t}$	$Be^{\alpha t}$ [如特解与齐次解形式相同,则为 $(B_1+B_2t)e^{\alpha t}$)或 $(B_1+B_2t+B_3t^2)e^{\alpha t}$]
4	cos(\omega t)	D (-0. D (-0.
5	sin(\omega t)	$= B_1 \cos(\omega t) + B_2 \sin(\omega t)$

参考答案:

- 一、 选择题 (每小题 5 分, 共 25 分)
- 1, A 2, B 3, B 4, A 5, B
- 二、 作图题 (每题 10 分, 共 20 分)

1、绘出 t[u(t-2)-u(t-3)] 2、已知连续信号 f(t-1) 的波形如题图所示,试画的波形图。 出 f(4-t/2) 的波形,并给以刻度标注。

三、 计算简答题

1. 计算函数 $f_1(t)$ 和 $f_2(t)$ 的卷积 $f_1(t) * f_2(t)$ 。其中:

$$f_1(t) = 2e^{-t} \cdot [u(t) - u(t-3)], \ f_2(t) = 4[u(t) - u(t-2)]$$
 (10 $\%$)

解: 由题意得:

$$g(t) = f_{1}(t) * f_{2}(t)$$

$$= \int_{-\infty}^{\infty} f_{1}(\tau) \cdot f_{2}(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} 2e^{-\tau} \left[u(\tau) - u(\tau - 3) \right] \cdot 4 \left[u(t-\tau) - u(t-\tau - 2) \right] d\tau$$

$$= 8 \left\{ \left[\int_{0}^{t} e^{-\tau} d\tau \right] \cdot u(t) - \left[\int_{0}^{t-2} e^{-\tau} d\tau \right] \cdot u(t-2) - \left[\int_{3}^{t} e^{-\tau} d\tau \right] \cdot u(t-3) + \left[\int_{3}^{t-2} e^{-\tau} d\tau \right] \cdot u(t-5) \right\}$$

$$= 8 \left(1 - e^{-t} \right) u(t) + 8 \left(e^{-t+2} - 1 \right) u(t-2)$$

$$+ 8 \left(e^{-t} - e^{-3} \right) u(t-3) - 8 \left(e^{-t+2} - e^{-3} \right) u(t-5)$$

2.求下列象函数 F(s) 的拉普拉斯反变换 $L^{-1}\{F(s)\}$ 。(10 分) 其中:

$$F(s) = \frac{1}{\left(s^2 + 3\right)^2}$$

解: 由题意得:

$$F(s) = \frac{1}{(s^2 + 3)^2} = \frac{K_{12}}{(s + \sqrt{3}i)^2} + \frac{K_{11}}{s + \sqrt{3}i} + \frac{K_{22}}{(s - \sqrt{3}i)^2} + \frac{K_{21}}{s - \sqrt{3}i}$$

$$K_{12} = (s + \sqrt{3}i)^2 \cdot F(s) \Big|_{s = -\sqrt{3}i} = -\frac{1}{12}$$

$$K_{11} = \frac{d}{ds} \left(\frac{1}{(s - \sqrt{3}i)^2} \right) \Big|_{s = -\sqrt{3}i} = -\frac{1}{12\sqrt{3}i}$$

$$K_{22} = (s - \sqrt{3}i)^2 \cdot F(s) \Big|_{s = -\sqrt{3}i} = -\frac{1}{12}$$

$$K_{21} = \frac{d}{ds} \left(\frac{1}{(s + \sqrt{3}i)^2} \right) \Big|_{s = \sqrt{3}i} = \frac{1}{12\sqrt{3}i}$$

$$\Rightarrow F(s) = \frac{1}{(s^2 + 3)^2} = -\frac{1}{12\sqrt{3}i} \cdot \frac{1}{s + \sqrt{3}i} - \frac{1}{12} \cdot \frac{1}{(s + \sqrt{3}i)^2} + \frac{1}{12\sqrt{3}i} \cdot \frac{1}{s - \sqrt{3}i} - \frac{1}{12} \cdot \frac{1}{(s - \sqrt{3}i)^2}$$

$$\Rightarrow f(t) = L^{-1} [F(s)] = -\frac{1}{12} t \cdot e^{-\sqrt{3}it} - \frac{1}{12} t \cdot e^{\sqrt{3}it} - \frac{1}{12\sqrt{3}i} e^{-\sqrt{3}it} + \frac{1}{12\sqrt{3}i} e^{\sqrt{3}it}$$

根据欧拉公式:

$$\Rightarrow f(t) = \left[-\frac{1}{6}t \cdot \cos\sqrt{3}t + \frac{\sqrt{3}}{18}\sin\sqrt{3}t \right] \cdot u(t)$$

3.如題图所示 RC 低通网络,激励电压为 $e(t) = E[u(t) - u(t-\tau)]$,求电容器上的响应 $v_e(t)$ 。(10 分)

解: 由题意得:

第一步: 求输入信号频谱:

$$E(\omega) = \{E[u(t) - u(t - \tau)]\}$$

$$= E[\pi\delta(\omega) + \frac{1}{j\omega}] - E[\pi\delta(\omega) + \frac{1}{j\omega}]e^{-j\omega\tau}$$

$$= \frac{E}{i\omega}[1 - e^{-j\omega\tau}]$$

第二步: 求系统函数 H(@):

$$H(\omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$

第三步: 求各频率分量的响应:

$$\begin{split} V_c(\omega) &= H(\omega)E(\omega) \\ &= \frac{1}{j\omega RC + 1} \cdot \frac{E}{j\omega} [1 - e^{-j\omega\tau}] \\ &= \frac{E}{j\omega} [1 - e^{-j\omega\tau}] - \frac{E}{j\omega + \frac{1}{RC}} [1 - e^{-j\omega\tau}] \end{split}$$

第四步: 求 V_c(ω) 的傅立叶反变换:

$$\operatorname{sgn}(t) \leftrightarrow \frac{2}{j\omega} \qquad e^{-\alpha t} u(t) \leftrightarrow \frac{1}{\alpha + j\omega}$$

$$\therefore v_c(t) = \frac{E}{2} \operatorname{sgn}(t) - \frac{E}{2} \operatorname{sgn}(t - \tau)$$

$$- E[e^{-\alpha t} u(t) - e^{-\alpha(t - \tau)} u(t - \tau)]$$

$$= \frac{E}{2} \{ [2u(t) - 1] - [2u(t - \tau) - 1] \}$$

$$- E[e^{-\alpha t} u(t) - e^{-\alpha(t - \tau)} u(t - \tau)]$$

$$= E(1 - e^{-\alpha t}) u(t) - E(1 - e^{-\alpha(t - \tau)}) u(t - \tau)$$

4.已知描述系统的差分方程为 y(n-1)+2y(n)=x(n)。(共 15 分)

(1) 如果
$$y(-1)=2$$
, 求系统的零输入响应 $y_{zi}(n)$; (5分)

$$x(n) = \left(\frac{1}{4}\right)^n u(n)$$
(2) 如果输入 ,求系统的零状态响应 $y_{zs}(n)$;(5 分)

 $x(n) = \left(\frac{1}{4}\right)^n u(n)$ (3) 如果输入 ,初始状态 y(-1) = 2,求系统当 $n \ge 0$ 时的全 响应。(5分)解:由题意得:

(1) 由于是求零输入响应 $y_{ij}(n)$,故令x(n)=0,从而得齐次差分方程:

$$y(n-1) + 2y(n) = 0$$

对该齐次方程取单边 z 变换得:

$$z^{-1}Y_{zi}(z) + y(-1) + 2Y_{zi}(z) = 0$$

将 y(-1)=2代入上式中,整理得:

$$Y_{zi}(z) = -\frac{1}{1 + \frac{1}{2}z^{-1}}$$

所以,系统的零输入响应:

$$y_{zi}(n) = -\left(-\frac{1}{2}\right)^n u(n)$$

(2) 由于是求零状态响应 $y_{zs}(n)$, 故可设系统的初始状态为 0, 对原差分方程取双边 z 变换,得:

$$\left(z^{-1}+2\right)Y_{zs}(z)=X(z)$$

因为 $x(n) = \left(\frac{1}{4}\right)^n u(n)$,推出 $X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}$,将其代入上式中可

得出零状态响应。

$$Y_{zs}(z) = \frac{1/2}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1}\right)} = \frac{1/6}{1 - \frac{1}{4}z^{-1}} + \frac{1/3}{1 + \frac{1}{2}z^{-1}}$$

所以,系统的零状态响应:

$$y_{zs}(n) = \left[\frac{1}{6}\left(\frac{1}{4}\right)^n + \frac{1}{3}\left(-\frac{1}{2}\right)^n\right]u(n)$$

(3) 直接对原差分方程两边取单边 z 变换,则:

$$(z^{-1}+2)Y(z)+y(-1)=X(z)$$

将
$$y(-1)=2$$
, $X(z)=\frac{1}{1-\frac{1}{4}z^{-1}}$ 代入上式中并整理可得:

$$Y(z) = \frac{-1/2 + 1/4 z^{-1}}{\left(1 - \frac{1}{4} z^{-1}\right) \left(1 + \frac{1}{2} z^{-1}\right)}$$

式中Y(z)是全响应v(n)的z变换

又因为Y(z)可分解为:

$$Y(z) = \frac{1/6}{1 - \frac{1}{4}z^{-1}} - \frac{-2/3}{1 + \frac{1}{2}z^{-1}}$$

所以,全响应为:

$$y(n) = \left[\frac{1}{6} \left(\frac{1}{4} \right)^n - \frac{2}{3} \left(-\frac{1}{2} \right)^n \right] u(n)$$

四、 选做题

1. 专业词汇互译 (每空 0.5 分, 共 10 分)

Forward Difference 前向差分 Continuous Temporal Signal 连续时间信号 卷积定理 Convolution Theorem Excitation 激励 Time-invariant system 非时变系统 Complete Response 全响应 Linear System _____ 傅里叶反变换 ___ Inverse Fourier Transform Convergence Region 收敛域 Spectrum density function 频谱密度函数 Dirichlet Condition **冰利赫里条件** 抽样信号 **Sample Signals** 拉普拉斯变换____Laplace Transform 积分器 Integrator Loop Circuit **环路** Complex Frequency Spectrum 复频谱 Conjugated Complex Root _ 共轭复根 Undistorted Transmission 无失真传输 Bode chart 波特图 Minimum Phase Shift Function 最小相移函数

2. 计算题 (教学 2 班选做)

若如图所示的反馈系统中 $A(s) = \frac{1}{s+1}$, $F(s) = s - \beta$ (β 为实数), 为使系统稳定,

求 β 的取值范围。(要求:有详细的求解过程)

$$X(s)$$
 Σ $E(s)$ $A(s)$ $Y(s)$

解: 如图所示反馈系统的系统函数为

$$H(s) = \frac{A(s)}{1 + A(s)F(s)} = \frac{\frac{1}{s+1}}{1 + \frac{s-\beta}{s+1}} = \frac{\frac{1}{2}}{s - \frac{\beta-1}{2}} \quad (+6 \%)$$

因为 β 为实数,为使系统稳定,H(s) 的极点应位于左半实轴,即

$$\frac{\beta-1}{2}$$
<0 ,所以 β <1时系统才稳定。(+4分)