1.2.1 (a) We must show that the square root of 3 is irrational. Suppose for contradiction that there exists $a,b \in \mathbb{Z}$ such that $\frac{a}{b} = \sqrt{3}$ and a,b are coprime. Therefore $a^2 = 3b^2$, 3 is a divisor of a^2 . By Euclid's lemma 3 is a divisor of a. Therefore there exists $c \in \mathbb{Z}$ such that a = 3c. Thus $3c^2 = b^2$. By similar reasoning above, 3 is a divisor of b. This is a contradiction, as a,b are coprime. Therefore $\sqrt{3}$ is irrational. A similar argument works for $\sqrt{6}$, one must simply choose a single prime from the prime factorization of 6 and then get the contradiction from a,b not being coprime.

- (b) The argument fails due to 4 having no prime factor of an odd power, no way to apply Euclid's lemma.
- 1.2.2 (a) If $A_1 \supseteq A_2 \supseteq \cdots$ are all sets containing an infinite number of elements, then the intersection of all of the sets must be infinite as well. This is false, if we have the sets $A_n = n, n+1, n+1, \cdots$ then the intersection $\bigcap_{n=1}^{\infty} A_n = \emptyset$
 - (b) If $A_1 \supseteq A_2 \supseteq \cdots$ are all sets containing a number of reals, then the intersection of all of the sets must be finite and non-empty. This is true
 - (c) $A \cap (B \cup C) = (A \cap B) \cup C$. This is false. If $A = \{1\}, B = \{2\}, C = \{2, 3\}$. Then $\emptyset = \{1\} \cap (\{2\} \cup \{2, 3\}) = A \cap (B \cup C) \neq (A \cap B) \cup C = \emptyset \cup \{2, 3\} = \{2, 3\}$
 - (d) true
 - (e) true
- 1.2.10 Let $y_1 = 1$ and for each $n \in \mathbb{N}$ define $y_{n+1} = \frac{3y_n + 4}{4}$.
 - (a) Use induction to prove that the sequence satisfies $y_n < 4$ for all $n \in \mathbb{N}$. Proof: For the base case, $y_1 = 1 < 4$. By the principle of mathematical induction for all $k \in \mathbb{N}$ if k < n then $y_k < 4$. We must show that $y_n < 4$. Since n - 1 < n, then by the induction hypothesis $y_{n-1} < 4$. Therefore,

$$y_{n-1} < 4$$

$$3y_{n-1} < 12$$

$$3y_{n-1} + 4 < 16$$

$$(3y_{n-1} + 4)/4 < 4$$

$$y_n < 4.$$

(b) We must show that (y_1, y_2, \cdots) is increasing. For the base case, $y_1 = 1, y_2 = \frac{3+4}{4} = \frac{7}{4}, 1 < \frac{7}{4}$. By PMI for all $k \in \mathbb{N}$ if k < n then $y_k < y_{k+1}$. Since n-1 < n, by the induction hypothesis $y_{n-1} < y_n$. Therefore,

$$y_{n-1} < y_n$$

$$3y_{n-1} + 4 < 3y_n + 4$$

$$\frac{3y_{n-1} + 4}{4} < \frac{3y_n + 4}{4}$$

$$y_n < y_{n+1}$$