Problema de Otimização do Transporte

(versão #2.0 -- atualizada em 28/03/2018)

O Brasil tem a terceira maior frota de veículos do mundo, atrás dos EUA e China. Há diversas montadoras de veículos espalhadas pelo Brasil que suprem a demanda nacional e exportam. Este problema utiliza dados reais do ano de 2013, obtidos no DENATRAN, ANFAVEA e IBGE.

Suponha que seja necessário dimensionar e otimizar a frota de caminhões-cegonha de uma empresa de transporte. As montadoras têm rotas de distribuição de veículos desde a fábrica até grandes centros consumidores e, destes, para as cidades da sua região. A direção da empresa fictícia "Trans-cegonha" participa de uma concorrência para oferta de serviços de transportes dos veículos. Há diversas rotas disponíveis, porém a empresa deve selecionar as rotas que sejam mais lucrativas, de acordo com a sua capacidade de investimento.

1) Objetivo

A empresa Trans-cegonha tem uma frota limitada de caminhões-cegonha, e pretende instalar um número de sedes operacionais nas cidades das montadoras para as quais prestará serviço. É necessário determinar em quais locais serão instaladas as sedes, quais rotas serão servidas, quantos caminhões serão alocados a cada rota e qual o número de veículos será transportado. Isto deve ser otimizado de tal maneira maximizar o lucro do transporte, minimizar o número de caminhões utilizados e procurar satisfazer o máximo da demanda.

2) Detalhamento

A demanda mensal (máxima) de cada centro consumidor (considerando cada montadora) é mostrada na Tabela 1. Nesta tabela, as cidades-origem das montadoras estão em verde e as cidades-destino de cada centro consumidor está em vermelho As células vazias da Tabela 1 indicam que esta rota já está sendo servida por outra empresa. Isto também é ilustrado no grafo dirigido da Figura 1.

		destino							
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA	total/orig.
GMS	SCS		1701	1039	1072	975	374		5161
RNT	SJP	1903	684		431			218	3236
FRD	SBC		953			547		304	1804
FAT	BET	5246		1152		1081	414		7893
VKW	DIA		1689	1031		968		538	4226
HYD	PIR	1360			308	281	108	156	2213
PGT	PRL	458			104	95			657
	total/dest.	8967	5027	3222	1915	3947	896	1216	

Tabela 1: Matriz de **demanda** mensal dos veículos de cada montadora para cada centro consumidor.

Cada caminhão transporta <u>sempre 11 veículos</u> a cada viagem. Quando os caminhões trafegam carregados, a média de velocidade é de <u>50 Km/h</u>, e de <u>72 Km/h</u> quando trafegam descarregados (independentemente da rota e distância). A Tabela 2 que mostra a matriz Origem-Destino com as distâncias (em Km) entre cada origem e destino. Com base nesta tabela e nas velocidades médias, pode-se calcular o tempo de viagem de ida e volta, sempre arredondando para a hora inteira superior.

Figura 1: Grafo de conectividade origem-destino.

Para cada viagem, deve-se somar 1h para carga na origem e 2h para descarga no destino. Com estes dados é possível calcular o número <u>máximo</u> de viagens que um caminhão pode fazer em um mês (arredondando para o inteiro <u>inferior</u>), sabendo-se que podem operar até 24h/7d nos 30 dias do mês. Assim, pode-se obter o número máximo de veículos transportados em cada rota pelos caminhões durante o mês.

		destino							
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA	
GMS	SCS		448	1021	589	445	2709		
RNT	SJP	413	853		1001			728	
FRD	SBC		465			434		1162	
FAT	BET	554		746		962	2153		
VKW	DIA		465	1027		434		1162	
HYD	PIR	157			650	539	2745	1267	
PGT	PRL	287			421	698			

Tabela 2: Matriz mostrando a menor distância (em Km) entre origem e destino.

Os custos do transporte são função da distância percorrida e das condições das estradas, sempre considerando uma carga cheia de ida (11 veículos) e retorno vazio (ou vice-versa). Além disto, há outros custos que envolvem manutenção, pedágio e diárias dos motoristas. A Tabela 3 mostra os custos totais (em unidades monetárias arbitrárias) para cada rota para cada viagem completa de cada caminhão.

		destino							
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA	
GMS	SCS		7667	22509	9902	7010	64803		
RNT	SJP	5629	14539		16760			12407	
FRD	SBC		7739			6645		19279	
FAT	BET	7570		16344		15068	51191		
VKW	DIA		10619	30125		9118		26452	
HYD	PIR	1609			8431	6549	50587	16701	
PGT	PRL	2249			4076	6292			

Tabela 3: Matriz de **custos** totais de transporte por viagem completa realizada.

A remuneração do serviço de transporte é variável para cada montadora e é estabelecida por veículo e pela distância percorrida entre origem/destino. A Tabela 4 mostra a matriz de remuneração do transporte com carga completa (11 veículos) para cada viagem entre origem e destino.

		destino								
montadora	origem	SAO	RIO	BSB	CNF	CWB	REC	POA		
GMS	SCS		10703	24398	14069	10626	64746			
RNT	SJP	10615	21923		25729			18711		
FRD	SBC		12606			11759		31504		
FAT	BET	12188		16412		21164	47366			
VKW	DIA		11528	25465		10758		28820		
HYD	PIR	4961			20537	17028	86746	40040		
PGT	PRL	9427			13838	22946				

Tabela 4: Matriz de **remuneração** do transporte por viagem completa realizada.

3) Restrições e outras informações

O tamanho da frota de veículos da transportadora é de <u>70 caminhões</u>. Os caminhões são agrupados em sub-frotas sediadas na cidade de cada montadora e cada sub-frota serve somente a uma montadora. A Trans-cegonha pode escolher se vai ou não explorar cada rota, independentemente das demais. Se uma rota for explorada, um número de caminhões deve ser permanentemente alocado a ela.

Embora os caminhões possam ser utilizados 24h/7d durante os 30 dias de cada mês, pode haver rota onde o caminhão alocado não tenha que fazer viagens ocupando todo o tempo. Neste caso, o caminhão fica parcialmente ocioso devido à limitação da demanda.

Deve-se encontrar um arranjo de caminhões tal que a cobertura da demanda de transporte seja no mínimo 75% (idealmente, 100%).

O problema deve ser modelado para ser resolvido com Algoritmos Genéticos. Primeiramente identificar as variáveis e seus intervalos válidos, as restrições do problema e a política de penalidades. Estabelecer uma codificação apropriada para as variáveis, procurando minimizar o espaço de busca e tratando as restrições. Criar uma função de fitness que englobe a função objetivo a ser otimizada, as normalizações, bem como os demais fatores que influenciam o problema. Definir os parâmetros de controle do algoritmo e implementá-lo preferencialmente utilizando o software GALOPPS. Apresentar relatório com todas as informações do AG implementado, o gráfico das curvas de fitness e os valores da melhor solução obtida. Utilizar a planilha fornecida pelo professor para reportar os valores obtidos do processo de otimização (lucro, número de caminhões por rota, % de cobertura da demanda por rota e total).