

AUTHOR INDEX

- Ahlgren, G. H.** Effects of volume rate of solution supply and of potassium concentrations on growth of white clover, 229-235.
- Ballard, S. S.** and Dean, L. A. Soil studies with radioactive phosphorus, 173-183.
- Bear, F. E.** *See Prince A. L.* Toth, S. J., Blair, A. W., and.
- Bender, W. H.** and Eisenmenger, W. S. Intake of certain elements by calciphilic and calciphobic plants grown on soils differing in pH, 297-307.
- Berge, T. O.** Determination of nitrate-nitrogen with a photoelectric colorimeter, 185-191.
- Blair, A. W.** *See Prince A. L.* Toth, S. J., and Bear, F. E.
- Bowlsby, C. C.** *See Kardos L. T.*
- Bray, R. H.** *See Dickman S. R.*
- Browning, G. M.** Relation of field capacity to moisture equivalent in soils of West Virginia, 445-450.
- Carman, P. C.** Capillary rise and capillary movement of moisture in fine sands, 1-14.
- Chandler, R. F., Jr.** *See Heiberg S. O.*
- Chang, C. W.** Experimental study on development of adobe structures in soils, 213-227.
- Chapman, G. W.** Leaf analysis and plant nutrition, 63-81.
- Chepil W. S.** and Milne, R. A. Wind erosion of soil in relation to roughness of surface, 417-433.
- Compton, O. C.** *See Haas A. R. C.*
- Conn, H. J.** and Conn J. E. Synthetic soil as a bacteriological culture medium, 121-136.
- Conn, J. E.** *See Conn H. J.*
- Dean, L. A.** *See Ballard S. S.*
- DeTurk, E. E.** and Olson, L. C. Determination of boron in some soils of Illinois and Georgia, 351-357.
- Dickman, S. R.** and Bray, R. H. Replacement of adsorbed phosphate from kaolinite by fluoride, 263-273.
- Doop, J. E. A. den** Factors influencing availability of indigenous phosphorus in acid tropical soil, 101-120.
- Eisenmenger, W. S.** *See Bender W. H.*
- Graham, E. R.** Colloidal organic acids as factors in weathering of anorthite, 291-295.
- Greaves, J. E.** and Jones, L. W. Survival of microorganisms in alkali soils, 359-364.
- Haas, A. R. C.** and Compton, O. C. The pH of irrigated orchard soils, 309-333.
- Hanna, W. J.** and Purvis, E. R. Effect of borax and lime on activity of soil microorganisms in Norfolk fine sandy loam, 275-281.
- Heiberg, S. O.** and Chandler, R. F., Jr. Revised nomenclature of forest humus layers for northeastern United States, 87-99.
- Humbert, R. P.** and Shaw, B. Studies of clay particles with the electron microscope: I, 481-487.
- Jeffries, C. D.** Double centrifuge tube for separation of soil minerals by means of heavy liquids, 167-171; method of preparing soils for petrographic analysis, 451-454.
- Jones, L. W.** *See Greaves J. E.*
- Kardos, L. T.** and Bowlsby, C. C. Chemical properties of representative samples of great soil groups and their relation to genetic soil classification, 335-349.
- Lehr, J. J.** Importance of sodium for plant nutrition: I, 237-244; II, 373-379.
- Mack, W. B.** *See Thomas W.*
- Martin, J. P.** Organic matter in Collington sandy loam and in the eroded material, 435-443.
- Martin, J. P.** and Waksman, S. A. Influence of microorganisms on soil aggregation and erosion: II, 381-394.
- Milne, R. A.** *See Chepil, W. S.*
- Mitchell, J. H.** Sources and distribution of iodine in South Carolina with special reference to types of soil and rocks, 365-371.
- Myers, H. E.** Physicochemical aspects of soil aggregates, 469-480.

- Newman, A. S. *See Norman A. G.*
- Nikiforoff, C. C. Morphological classification of soil structure, 193-211.
- Norman, A. G., and Newman, A. S. Some effects of sheet erosion on soil microbiological activity, 31-46.
- Olson, L. C. *See DeTurk, E. E.*
- Papadakis, J. S. Soil reaction and varietal adaptation of wheat, 59-61.
- Prince, A. L., Toth, S. J., Blair, A. W., and Bear, F. E. Forty-year studies of nitrogen fertilizers, 247-261.
- Purvis, E. R. Effect of soil colloids on plant growth, 283-290; *see Hanna, W. J.*
- Retzer, J. L., and Russell, M. B. Differences in aggregation of a prairie and a gray-brown podzolic soil, 47-58.
- Reuther, W. Effect of orchard practices on potassium status of New York fruit soil, 155-165.
- Russell, M. B. *See Retzer, J. L.*
- Schuster, C. E. *See Stephenson, R. E.*
- Shaw, B. *See Humbert, R. P.*
- Stephenson, R. E., and Schuster, C. E. Laboratory, greenhouse, and field methods of studying fertilizer needs of orchard soils, 137-153.
- Thomas, W., and Mack, W. B. Foliar diagnosis in relation to soil heterogeneity, 455-468.
- Timonin M. I. Interaction of higher plants and soil microorganisms: III, 395-413.
- Toth, S. J. *See Prince A. L.* Blair, A. W., and Bear, F. E.
- Waksman, S. A. *See Martin, J. P.*
- Wilson, P. W. *See Wyss, O.*
- Wyss, O., and Wilson, P. W. Factors influencing excretion of nitrogen by legumes, 15-29.

SUBJECT INDEX

- Absorption by plants—
 calcium, 242, 301
 iron, 201
 magnesium, 301
 phosphorus, 72, 102, 301
 potassium, 73, 102, 162, 240, 301
 radioactive elements, 173–185
 sodium, 240
- Actinomycetes in rhizosphere, 399
- Adobe, chemical and physical characters, 214–217
- Adsorption by—
 colloids, 121–137
 kaolinite, of phosphates, fluorides, 268
- Aggregates—
 classification, 199
 physicochemical aspects, 469–480
 size distribution in soils, 53
 stability, as affected by—
 organic liquids, 471
 swelling, 476
 toluene, 475
 wetting, 474
- Aggregation—
 as affected by—
 casein, 385
 lignin, 384
 lime, 384
 microorganisms, 381–394
 organic matter, 55–56, 387, 389
 protein, 384
- in soils—
 cultivated, 52
 gray-brown podzolic, 47–58
 prairie, 47–58
 virgin, 52
- Anion replacement, 263–275
- Anorthite, weathering, 291
- Availability—
 concepts of, 105
 criterion of yields, 105
 of nutrients in soil, 141
- Bacteria—
 activity in eroded soils, 31–46
 carbon dioxide evolution by, 38, 276
- growth on synthetic soil, 121–130
 numbers, as affected by—
 borax, 278
 colloids, 127
 cornstalk, 41–44
 lime, 278
 phosphorus, 130
 potassium, 130
 numbers in soil, 37, 41, 361
 survival in alkali soils, 359–364
- Base-exchange capacity of—
 adobe, nonadobe soils, 214
 Albia soil, 51
 Clinton soil, 35
 Penn soil, 251
 soil, as affected by—
 ammonium sulfate, 251
 dried blood, 251
 manure, 251
 sodium nitrate, 251
 Weller soil, 51
 West Java soil, 101
- Bentonite—
 and cation saturation, 129
 use in synthetic soil, 121–136
- Books, *see* end of letter B
- Boron—
 availability in orchard soils, 146
 determination in soils—
 total, 354
 water-soluble, 355–356
- Effect on—
 bacterial activity, 275–282
 carbon dioxide evolution, 277
 fungi, 278
 sunflower yields, 144–146
- BOOKS**
- Abbot, C. G. *See* Zon, R.
Agrochemistry, 83
Biochemistry, Annual Review of, 245
Biochemistry, Practical Methods in, 415
Chemistry, 83
Collings, G. H. Commercial Fertilizers, ed. 3, 415
Colloidal Phenomena, 245
Conservation of Renewable Natural Resources, 245
Cooke, M. L. *See* Zon, R.

- Cooper, W. S. *See* Zon, R.
 Crops, Hunger Signs in, 84
 Dana, S. T. *See* Zon, R.
 Douglass, A. E. *See* Zon, R.
 Eisenhower, M. S. *See* Zon, R.
 Fernelius, W. C. *See* McPherson, W.
 Fertilizers, Commercial, 415
 Hauser, E. A. Colloidal Phenomena, 245
 Henderson, W. E. *See* McPherson, W.
 Huntington, E. *See* Zon, R.
 Jenny, H. Factors of Soil Formation, 415
 Kellogg, C. E. Soils That Support Us, 415
 Knott, J. E. Vegetable Growing, 416
 Koch, F. C. Practical Methods in Biochemistry, ed. 3, 415
 Krynine, D. P. Soil Mechanics, 85
 Land, Classification of, 83
 Luck, J. M., and Smith, J. H. C. (editors). Annual Review of Biochemistry, vol. X, 245
 McDougall, W. B. Plant Ecology, 84
 McGowin, J. F. *See* Zon, R.
 Mack, E. *See* McPherson, W.
 McPherson, W., Henderson, W. E., Fernelius, W. C., and Mack, E. Chemistry, 83
 Nichol, H. Plant Growth Substances, ed. 2, 246
 Pearson, G. A. *See* Zon, R.
 Pirone, P. P. Maintenance of Shade and Ornamental Trees, 84
 Plant Ecology, 84
 Plant Growth Substances, 246
 Prianishnikov, D. H. Agrochemistry, 83
 Sears, P. B. *See* Zon, R.
 Shantz, H. L. *See* Zon, R.
 Soil Formation, Factors of, 415
 Soil Mechanics, 85
 Soil Science Society of America, Proceedings, vol. 5, 246
 Soils, Farm, Their Fertilization and Management, 84
 Soils That Support Us, 415
 Trees, Maintenance of Shade and Ornamental, 84
 Vegetable Growing, 416
 Worthen, E. L. Farm Soils—Their Fertilization and Management, 84
 Zon, R., Cooper, W. S., Pearson, G. A., Shantz, H. L., Douglass, A. E., Abbot, C. G., Sears, P. B., Huntington, E., Cooke, M. L., Dana, S. T., Eisenhower, M. S., and McGowin, J. F. Conservation of Renewable Natural Resources, 245
- Calcium—**
 calciphilic, calciphobic plants, 297–307
 carbonate, effect on—
 bacterial numbers, 275
 carbon dioxide evolution, 275
 fungi, 275
 stability of soil aggregates, 217–218
 content of plants, 301–302
 exchangeable, in—
 adobe soils, 214
 orchard soils, 142
 Penn soil, 256
- nitrate, effect on yield of barley and vetch, 148
- Carbon—**
 content of soil, 35, 39, 53, 214, 230
 dioxide evolution from soils, 38, 41–44, 277–278
 effect on bacterial growth, 132
 nitrogen ratio of soil, 35, 340, 441
- Colloidal acids, organic, effect on anorthite weathering, 291–295**
- Colloids—**
 effect on bacterial growth, 126
 soil, effect on plant growth, 283–289
- Cover crop yields, barley and vetch, 148–149**
- Culture solutions—**
 effect of volume rate on deficiency symptoms, 229–233
 potash deficiency in clover, 231
- Electrodialysis, *see* Soil**
- Electron microscope—**
 study of shape of clay particles—
 dickite, 483
 kaolinite, 485
 montmorillonite, 483
 technique, 481–483
- Erosion—**
 chemical changes produced by, 35, 435–443
 microbial activity in eroded soil, 31–46
 organic matter changes, 435–443
 wind, effects of—
 soil flow, 424
 surface roughness, 419–422, 423
 wind velocity, 426
- Foliar diagnosis and soil heterogeneity, 455–468**
- Forest soils, revised nomenclature, humus layers, 87–92**
- Fungi—**
 growth as affected by borax, 275
 in rhizosphere, 402
- Humic acid, effect on anorthite weathering, 293**
- Humus—**
 definition, 89
 layers in forest soil, 87–92
 types—
 mor, 89–91
 mull, 89–91
- Hydrogen—**
 exchangeable in—
 adobe, nonadobe soils, 214
 Albia soil, 51
 Clinton soil, 35

- Hydrogen—
exchangeable in—(*continued*)
 Penn soil, 256
 Weller soil, 35
- ion concentration—
 adaptation of wheat, 59-61
 as affected by nitrogen sources, 253
 changes in soil by erosion, 35
 effect on nutrient absorption, 297-305
 of soils, 35, 56, 214, 256, 309-333
- Iodine content of—
 rocks, 367
 soils, 365-371
- Leaf analysis—
 as affected by—
 phosphorus, 76
 position of leaf, 67-69
 of apple, 163
 plant nutrition and, 63-81
- Lime, effect on—
 adobe structure, 217
 carbon dioxide evolution, 277
 growth of bacteria, fungi, 278
 plant composition, 297-305
- Magnesium, in—
 adobe, nonadobe soils, 214
 calciphilic, calciphobic plants, 300-302
 Penn soil, 256
- Manure, effect on—
 barley, vetch yields, 148
 exchange capacity and bases, 254-256
 exchangeable potassium, 159
 potassium content of apple leaves, 162
- Moisture—
 apparatus for measuring capillary rise, 9
 capillary rise and movement in sands, 1-14
 content of soil after rain, 448
 equivalent, relation to field capacity, 445-450
 soil, effect on hydrogen-ion concentration, 309-333
- Neutralization curves in soil classification, 335-349
- Nitrate—
 content of soil, 190
 determination by photoelectric colorimeter, 185-191
 production in alkali soil, 361
- Nitrite production in alkali soil, 361
- Nitrogen—
 content of plants, 69, 71, 76, 301
 content of soil, 35, 249, 340, 439
 excretion by legumes, 15-23
- fixation in alkali soils, 361
losses in drainage waters, 78
- Orchard soils, potassium status, 155-165
- Organic matter—
 balance in soil, 253
 effect on—
 aggregation, 55
 carbon dioxide evolution, 42-43
 exchangeable ions, 158, 257
 relationship in soils, 340
 soil crushing strength, 218
 losses by erosion, 440
 proximate analysis, 441
- Petrographic analysis, method for soil, 451-454
- Plant by-products, effect on microorganisms, 395
- Phosphorus—
 adsorbed, replacement, 263-273
 available in soil, 142
 availability in tropical Java soil, 101-120
 content of—
 plants, 69-73, 301
 soil, 142
 electrodialyzable, in soil, 256
 fixing capacity of soil, chemical, biological methods for determining, 179
 radioactive, retention by soil, 173-185
- Potassium—
 available, in orchard soils, 155-166
 content of plants, 163, 301
 effect on white clover, 229-233
 exchangeable, in soil, 142, 159, 256
 Neubauer values, 161
- Rhizosphere—
 bacterial population, 398
 fungus population, 399
- Root distribution in orchard soils, 140
- Rubber, growth rate, 75
- Sodium—
 exchangeable, in Penn soil, 256
 importance for plant nutrition, 237-244, 373-379
 nitrate, effect on beet yields, 375
- Soil—
 adobe, chemical and physical characters, 214-217
 adsorption by, colloids, 121-137
 aggregates, *see* Aggregates
 aggregation, *see* Aggregation
 bacterial activity in eroded, 31-46
 boron availability, 146
 calcium, exchangeable, 142, 214, 256

Soil—(*continued*)

carbon content, 35, 39, 53, 214
 carbon-nitrogen ratio, 35, 340, 441
 clay particles, shape, 481-483
 colloidal humic acid, 291-296
 dispersion, relation to dielectric constant and dipole movement, 471
 electrodialysis, 256
 equionic, pH, 344
 erosion, *see* Erosion
 exchange capacity, *see* Base Exchange
forest, see Forest soils
 hydrogen-ion concentration, *see* Hydrogen-ion concentration
 iodine content, 365-371
 lime, effect on adobe structure, 217
 mechanical analysis, 470
 minerals, apparatus for separation, 167-169
 mineralogical analysis, 167-169
moisture, see Moisture
 neutralization curves, 335-349
 nitrate content, 190
 nitrogen content, 35, 249
 petrographic analysis, 451-454
 physical properties, 140, 158, 470
 series, analyses, descriptions of, or experiments with—
 Aiken, 139, 213; Alamance, 369; Albia, 48; Altamont, 327; Amity, 138; Appling, 368; Ashe, 368; Barnes, 337; Bates, 470; Bayboro, 370; Benson, 361; Bermudian, 386; Blakely, 369; Capay, 213; Carlsbad, 327; Carnegie, 356; Carrington, 200; Cecil, 356, 368; Chenango, 297; Cherokee, 470; Chesterfield, 369; Cisne, 354; Clear Lake, 213; Clement, 354; Clinton, 33; Collington, 385, 435; Corinne, 361; Cowdle, 370; Coxville, 370; Crosby, 95; Davidson, 200, 354, 368; Decatur, 356; Diablo, 327; Ducor, 213; Dunkirk, 155; Dunmore, 168; Durham, 368; Ephrata, 337; Fallbrook, 327; Fargo, 213; Garrison, 337;

Geary, 470; Georgeville, 369; Gilpin, 168, 448; Greenfield, 313; Greenville, 337, 369; Grady, 369; Grundy, 354; Hagerstown, 168, 367, 453; Hanford, 311; Hayesville, 368; Helena, 368; Helmer, 337; Holston, 448; Hyde, 370; Hyden, 200; Iredell, 368; Kalmia, 370; Lindley, 33; Louise, 368; Lugonia, 316; Lynden, 337; Madera, 319; Marcuse, 213; Marlboro, 369; Marshall, 33, 357; Maxwell, 213; Mecklenburg, 368; Merriam, 328; Miama, 200; Monongahela, 448; Monserate, 327; Montezuma, 311; Muskingum, 97; Nebish, 200; Newberg, 138; Norfolk, 275, 354, 369; Oakly, 316; Olieenhain, 327; Orange, 369; Orangeburg, 369; Palouse, 337; Penn, 247; Placentia, 314; Porters, 368; Porterville, 213, 320; Ramona, 312; Roanoke, 369; Richland, 361; Rincon, 323; Ritzville, 337; Ruston, 354; Sacramento, 213; Salkum, 139; San Joaquin, 320; Shelby, 34; Sierra, 327; Sites, 139; Sorrento, 324; Spanaway, 337; Stockton, 213; Superior, 174; Surry, 368; Tifton, 369; Tirzah, 369; Upshur, 448; Vista, 328; Volusia, 97, 168; Webster, 200; Weller, 48; Westmoreland, 448; Wheeling, 448; Wickham, 369; Worsham, 368; Yolo, 311
silica-sesquioxide ratio, 344
structure, classification, 193-212
treatments, effect on crop yields, 148-149
Sudan grass, absorption of radioactive phosphorus, 179
Sunflower yields as affected by boron, 144-145
Tomato—
absorption of radioactive phosphorus, 173
yields, greenhouse, 458-459
Toluene, effect on—
soil aggregate stability, 469-480
swelling, 476

