Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Збірник лабораторних робіт з курсу "Методи моделювання систем"

для студентів факультету комп'ютерних наук та кібернетики спеціальність — Інформатика, Програмна інженерія

Зміст

1	Ди	кретне перетворення Фур'є	2		
	1.1	Дискретне паратворення Фур'є	2		
	1.2	Постановка задачі і метод визначення суттєвих внесків ча-			
		стот за спостереженнями	2		
	1.3	Лабораторна робота	3		
2	Me	год найменших квадратів	4		
	2.1	Постановка задачі ідентифікації параметрів математичної			
		моделі	4		
	2.2	Метод найменших квадратів	4		
	2.3	Лабораторна робота	5		
3	Побудова лінійної моделі з допомогою псевдообернених				
		раторів	6		
	3.1	Псевдообернена матриця. Формула Гревіля	6		
		3.1.1 Означення псевдооберненої матриці	6		
		3.1.2 Прективні матриці	7		
		3.1.3 Знаходження псевдооберненої матриці за допомо-			
		гою сингулярного розкладу	7		
		3.1.4 Формула Гревіля	8		
		3.1.5 Алгоритми знаходження псевдооберненої матриці.	8		
		3.1.6 Застосування псевдооберненої матриці до знаходже-			
		ння загального розв'язку системи лінійних алгебра-			
		їчних рівнянь	9		
	3.2	Метод побудови лінійної моделі з допомогою псевдообер-			
		en e	10		
	3.3	1 1	11		

Лабораторна робота 1

Дискретне перетворення Фур'є

1.1 Дискретне паратворення Фур'є

Дискретне перетворення Фур'є для дискретної послідовності $x(j), j = 0, 1, 2, \ldots, N-1$ визначається таким способом

$$c_x(k) = \frac{1}{N} \sum_{m=0}^{N-1} x(m) e^{-i2\pi km/N}.$$
 (1.1)

Тут $i^2 = -1$ – комплексна одиниця, $e^{i\phi} = \cos\phi + i\sin\phi$.

1.2 Постановка задачі і метод визначення суттєвих внесків частот за спостереженнями

Задані інтервал спостереження [0,T], T=5, спостереження $\hat{y}(t_i)$ в дискретні моменти часу $t_i \in [0,T]$, $i=0,1,\ldots N-1$, $t_{i+1}-t_i=\Delta t=0.01$. Спостереження записані послідовно у файл file.txt, що додається. Потрібно визначити суттєві внески частот за спостереженнями (задача про приховану періодичність).

- 1. Знаходимо $\Delta f = \frac{1}{T}$.
- 2. Для всіх $k=0,1,\ldots,N-1$ визначаємо модуль перетворення Фур'є $|c_{\hat{y}}(k)|$, за спостереженнями $\hat{y}(t_{j}),\,j=0,1,\ldots N-1.$
- 3. Визначаємо локальні максимуми k_* модуля перетворення Фур'є $|c_{\hat{y}}(k)|, k=0,1,\ldots,[N/2]-1.$
 - 4. Знаходимо частоти $f_* = k_* \Delta f$.

1.3 Лабораторна робота

- 1. Вивчити означення дискретного перетворення Φ ур'є і його властивості.
- 2. Написати програму, яка б за допомогою дискретного перетворення Фур'є визначала суттєві вклади частот $f_i, i=1,2,\ldots,k-3$ за спостереженнями $\hat{y}(t_i), i=1,2,\ldots N$. Спостереження записані у файлі, що додається.
- 3. Зробити аналіз функції модуля перетворення Фур'є дискретної послідовності $\hat{y}(t_i),\ i=1,2,\dots N$ і вивести його графік. Вивести знайдені значення $f_i,\ i=1,2,\dots,k-3$.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Лабораторна робота 2

Метод найменших квадратів

2.1 Постановка задачі ідентифікації параметрів математичної моделі

Задана математична модель в класі функцій

$$y(t) = a_1 t^3 + a_2 t^2 + a_3 t + \sum_{i=4}^{k} a_i \sin(2\pi f_{i-3}t) + a_{k+1}.$$
 (2.1)

Тут $a_j, j=1,2,\ldots,k+1,$ $f_i,$ $i=1,2,\ldots,k-3$ – невідомі параметри, які потрібно визначити. Визначення параметрів здійснюється за допомогою спостережень за y(t) на інтервалі спостереження [0,T]. Спостереження $\hat{y}(t_i)$ задані в дискретні моменти часу $t_i,$ $i=0,1,\ldots N-1$ і записані послідовно у файл file.txt, $t_{i+1}-t_i=\Delta t=0.01,$ t_i . Інтервал спостереження [0,T] відомий, T=5.

Задача полягає у тому, щоб за спостереженнями $\hat{y}(t_i), i=0,1,\ldots N-1$ визначити параметри математичної моделі $a_j, j=1,2,\ldots,k+1, f_i, i=1,2,\ldots,k-3.$

2.2 Метод найменших квадратів

При виконанні лабораторної роботи 1 ми визначили параметри f_i , $i=1,2,\ldots,k-3$ за спостереженнями $\hat{y}(t_i),\ i=1,2,\ldots N$. Тому в математичній моделі (2.1) невідомими є лише параметри $a_j,\ j=1,2,\ldots,k+1$. Для їх визначення застосовуємо метод найменших квадратів. Для цього записуємо функціонал похибки

$$F(a_1, a_2, \dots, a_{k+1}) = \frac{1}{2} \sum_{i=0}^{N-1} \left(a_1 t_j^3 + a_2 t_j^2 + a_3 t_j + \sum_{i=4}^k a_i \sin(2\pi f_{i-3} t_j) + a_{k+1} - \hat{y}(t_j) \right)^2.$$
 (2.2)

Параметри $a_j,\,j=1,2,\ldots,k+1$ шукаємо з умови

$$F(a_1, a_2, \dots, a_{k+1}) \to \min_{a_1, a_2, \dots, a_{k+1}}$$
.

Для цього записуємо систему рівнянь

$$\frac{\partial F(a_1, a_2, \dots, a_{k+1})}{\partial a_j} = 0, \tag{2.3}$$

j = 1, 2, ..., k+1. Ця система є системою лінійних алгебраїчних рівнянь. Розв'язавши (2.3) одним з відомих методів, знаходмо $a_j, j = 1, 2, ..., k+1$.

2.3 Лабораторна робота

- 1. Визначити суттєві вклади частот коливання f_i , i = 1, 2, ..., k-3 (лабораторна робота 1). Вивчити у чому полягає метод найменших квадратів.
- 2. Записати функціонал похибки (2.2), виходячи з кількості знайдених параметрів f_i , i = 1, 2, ..., k-3 в першій лабораторній роботі.
 - 3. Записати систему лінійних алгебраїчних рівнянь (2.3).
- 4. Створити програму знаходження a_j , $j=1,2,\ldots,k+1$. Вивести відповідні значення функціоналу похибки (2.2), а також графіки спостережень $\hat{y}(t_i)$, $i=0,1,\ldots N-1$, та математичної моделі (2.1) при знайдених параметрах. Порівняти ці графіки.
- 5. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Лабораторна робота 3

Побудова лінійної моделі з допомогою псевдообернених операторів

3.1 Псевдообернена матриця. Формула Гревіля

3.1.1 Означення псевдооберненої матриці

Нехай задана матриця A розмірності $m \times n$. За означенням Мура - Пенроуза, псевдооберненою матрицею A^+ називається матриця розмірності $n \times m$ вигляду

$$A^{+} = \lim_{\delta^{2} \to 0} \left\{ \left(A^{T} A + \delta^{2} E_{n} \right)^{-1} A^{T} \right\} = \lim_{\delta^{2} \to 0} \left\{ A^{T} \left(A A^{T} + \delta^{2} E_{m} \right)^{-1} \right\}. \quad (3.1)$$

Тут E_n – одинична матриця розмірності $n \times n$. Властивості псевдооберненої матриці такі:

- 1. Якщо матриця A невироджена, то $A^+ = A^{-1}$.
- 2. $A^{+} = (A^{T}A)^{+} A^{T}, A^{+} = A^{T} (AA^{T})^{+}.$
- 3. Якщо матриця $A^{T}A$ невироджена, то

$$A^+ = \left(A^T A\right)^{-1} A^T.$$

Якщо матриця AA^{T} – невироджена, то

$$A^+ = A^T \left(A A^T \right)^{-1}.$$

4. Якщо $a \in \mathbb{R}^n$ – вектор розмірності $n, a \neq 0$, то з означення Мура-Пенроуза (3.1) випливає, що

$$(a^T)^+ = \frac{a}{a^T a}, \ a^+ = \frac{a^T}{a^T a}.$$

Якщо a = 0, то з (3.1) випливає $a^+ = 0$.

- 5. $(A^+)^+ = A$. 6. $(A^T)^+ = (A^+)^T$

Теорема 3.1 (характеристична властивість псевдооберненої матриці). Матриця A^+ розмірності $n \times m$ є псевдооберненою матрицею до матриці A розмірності $m \times n$ тоді і тільки тоді, якщо виконуються такі умови:

- $AA^{+}A = A$:
- $A^{+}AA^{+} = A^{+}$:
- AA^+ симетрична матриия розмірності $m \times m$:
- A^+A симетрична матриия розмірності $n \times n$.

3.1.2 Прективні матриці

Матриця $Z(A) = E - A^{+}A$ – проектор на ядро Ker A матриці A, тобто

$$Z(A)\mathbb{R}^n = Ker A = \{x \in \mathbb{R}^n : Ax = 0\};$$

Матриця $Y(A^T) = A^+A$ – проектор на область значень матриця A^T , тобто

$$Y(A^{T})\mathbb{R}^{n} = Im A^{T} = \{ y \in \mathbb{R}^{n} : y = A^{T}x, x \in \mathbb{R}^{m} \};$$

Знаходження псевдооберненої матриці за допо-3.1.3 могою сингулярного розкладу

Теорема 3.2 (про сингулярний розклад матриці). $Ey\partial_{v}$ -яку матрицю A розмірності $m \times n$ можна єдиним способом представити у вигляді

$$A = U\Lambda V^T$$
,

 $\partial e\ U$ – унітарна матриця розмірності $m\times m,\ V$ – унітарна матриця розмірності $n \times n$, Λ – матриця розмірності $m \times n$, яка в правому верхньому кутку містить матрицю Λ_0 розмірності $r \times r$, яка є діагональною

$$\Lambda_0 = diag(\lambda_1, \lambda_2, \dots, \lambda_r), \Lambda = \begin{pmatrix} \Lambda_0 & 0 \\ 0 & 0 \end{pmatrix},$$

 $\lambda_1 > \lambda_2 > \dots, \lambda_r > 0$, а решта елементів матриці Λ є нульовими, r = rang A.

Нехай задана матриця A розмірності $m \times n$. Якщо відомий її сингулярний розклад

$$A = U\Lambda V^T$$
,

де позначення відповідають теоремі 3.2, то

$$A^+ = V\Lambda^+ U^T$$
,

$$\Lambda^{+} = \begin{pmatrix} \Lambda_{0}^{+} & 0 \\ 0 & 0 \end{pmatrix}, \ \Lambda_{0}^{+} = diag(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \dots, \lambda_{r}^{-1}).$$

3.1.4 Формула Гревіля

Якщо для матриці A відома псевдообернена (обернена) матриця $A^+,$ то для розширеної матриці $\left(\begin{array}{c}A\\a^T\end{array}\right)$ справедлива формула

$$\begin{pmatrix} A \\ a^T \end{pmatrix}^+ = \begin{cases} \begin{pmatrix} A^+ - \frac{Z(A)aa^TA^+}{a^TZ(A)a} \vdots \frac{Z(A)a}{a^TZ(A)a} \end{pmatrix}, & if \ a^TZ(A)a > 0 \\ A^+ - \frac{R(A)aa^TA^+}{1+a^TR(A)a} \vdots \frac{R(A)a}{1+a^TR(A)a} \end{pmatrix}, & if \ a^TZ(A)a = 0 \end{cases}, (3.2)$$

де $Z(A) = E - A^{+}A$ – проектор на ядро матриці $A, R(A) = A^{+} \left(A^{+} \right)^{T}.$

3.1.5 Алгоритми знаходження псевдооберненої матриці

Для знаходження псевдооберненої матриці реалізуються такі алгоритми:

1. алгоритм, заснований на означенні Мура-Пенроуза. З означення Мура-Пенроуза (3.1) випливає, що для наближеного визначення псевдооберненої матриці можна застосовувати одну з формул

$$A^{+} \approx \left(A^{T}A + \delta_0^2 E_n\right)^{-1} A^{T},\tag{3.3}$$

$$A^{+} \approx A^{T} \left(A A^{T} + \delta_0^2 E_m \right)^{-1}. \tag{3.4}$$

Тут $\delta_0^2 > 0$ –число, яке підбирається експерементально

2. алгоритм на основі формули Гревіля (3.2). Цей алгоритм є рекурентним. Представляємо матрицю A у вигляді

$$A = \begin{pmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_n^T \end{pmatrix}.$$

Для першого кроку алгоритму $(a_1^T)^+ = \frac{a_1}{a_1^T a_1}$, при $a_1 \neq 0$; $(a_1^T)^+ = 0$, якщо $a_1 = 0$. На наступному кроці додаємо до матриці другий рядок і шукаємо псевдообернену матрицю згідно формули Гревіля. Потім знову додаємо рядок і т.д. поки не вичерпаються всі рядки матриці A.

3. алгоритм, що базується на сингулярному розкладі матриці (теорема 3.2).

3.1.6 Застосування псевдооберненої матриці до знаходження загального розв'язку системи лінійних алгебраїчних рівнянь

Нехай задана матриця A розмірності $m \times n, b \in \mathbb{R}^m$ – відомий вектор і розглядається система лінійних алгебраїчних рівнянь

$$Ax = b, (3.5)$$

де $x \in \mathbb{R}^n$ — шуканий вектор. Така система може не мати точних розв'язків. Тоді шукають такі вектори $x \in \mathbb{R}^n$, що розв'язують задачу

$$||Ax - b||^2 \to \min_{x \in \mathbb{R}^n}$$
.

Найменшим за нормою серед таких векторів є вектор

$$\overline{x} = A^+ b$$
,

який називається псевдорозв'язком системи (3.5). Загальне представлення множини узагальнених розв'язків системи (3.5) таке

$$\Omega_x = A^+b + kerA = \left\{ A^+b + Z(A)v : v \in \mathbb{R}^n \right\},\,$$

де $Z(A) = E - A^+A$ – проектор на ядро kerA матриці A.

3.2 Метод побудови лінійної моделі з допомогою псевдообернених операторів

Будемо вважати, що на вхід системи перетворення, математична модель якої невідома, поступають послідовно дані у вигляді m-1 вимірних векторів x_j . На виході системи спостерігається сигнал у вигляді вектора y_i розмірності p.

Постановка задачі: для послідовності вхідних сигналів $x_j, j=1,2,...,n$ та вихідних сигналів $y_j, j=1,2,...n$ знайти оператор P перетворення вхідного сигналу у вихідний.

Рис. 3.1: Математична модель

Будемо шукати математичну модель оператора об'єкту в класі лінійних операторів

$$Dx_j + b = y_j, j = 1, 2, ..., n.$$
 (3.6)

Тут D –невідома матриця, b – невідомий вектор. Позначимо

$$A = \begin{pmatrix} D \\ b^T \end{pmatrix}.$$

Тоді з (3.6) випливає

$$A\begin{pmatrix} x_j \\ 1 \end{pmatrix} = y_j, j = 1, 2, \dots, n.$$
 (3.7)

Систему (3.7) запишемо у матричній формі

$$A\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ 1 & 1 & \dots & 1 \end{pmatrix} = (y_1, y_2, \dots, y_n),$$

або

$$AX = Y, (3.8)$$

де $X=\begin{pmatrix}x_1&x_2&\dots&x_n\\1&1&\dots&1\end{pmatrix}$ — матриця вхідних сигналів розмірності $m\times n,\ Y=(y_1,\,y_2,\,\dots,\,y_n)$ — матриця вихідних сигналів розмірності $p\times n.$ Тоді

$$A = YX^{+} + VZ^{T}(X^{T}), (3.9)$$

де матриця

$$V = \begin{pmatrix} v_{(1)}^T \\ v_{(2)}^T \\ \vdots \\ v_{(p)}^T \end{pmatrix},$$

розмірності $p \times m$, $Z(X^T) = I_m - XX^+$.

3.3 Лабораторна робота

Матрицю X будемо інтерпретувати як двовимірне вхідне зображення, а матрицю Y — як вихідне зображення. Потрібно побудувати лінійний оператор перетворення вхідного сигналу X у вихідний сигнал Y на основі формули (3.9).

- 1. Вивчити означення псевдооберненої матриці і її основні властивості.
- 2. Створити програму, яка за заданими двома зображеннями знаходить лінійний оператор переходу між цими зображеннями. Основою для програми є формула (3.9), де V довільна матриця (наприклад, нульова). Псевдообернену матрицю в (3.9) шукати двома методами: на основі формули Мура-Пенроуза (див. (3.3) або (3.4)) і на основі формули Гревіля. Правильність знаходження псавдооберненої матриці перевірити за допомогою теореми 3.1 про характеристичну властивість псевдооберненої матриці.
- 3. Вивести вихідне зображення і образ вхідного зображення при одержаному перетворенні. Зробити порівняння. Проаналізувати одержаний результат.
- 4. Оформити в друкованій формі звіт про виконання роботи, в якому викласти результати проведених обчислень.

Варіанти вхідних на вихідних сигналів, для яких потрібно побудувати лінійний оператор перетворення вхідного сигналу представлені у таблиці на сторінці 12.

Варіант	Вхідний сигнал	Вихідний сигнал
1	x1.bmp	y1.bmp
2	x1.bmp	y2.bmp
3	x1.bmp	y3.bmp
4	x1.bmp	y4.bmp
5	x1.bmp	y5.bmp
6	x1.bmp	y6.bmp
7	x1.bmp	y7.bmp
8	x1.bmp	y8.bmp
9	x1.bmp	y9.bmp
10	x2.bmp	y5.bmp
11	x2.bmp	y2.bmp
12	x3.bmp	y3.bmp
13	x3.bmp	y6.bmp
14	x3.bmp	y8.bmp
15	x3.bmp	y1.bmp
16	x3.bmp	y2.bmp
17	x3.bmp	y4.bmp
18	x3.bmp	y10.bmp
19	x3.bmp	y5.bmp
20	x3.bmp	y4.bmp