Лабораторная работа 4.2. Динамические соединения с базами данных

Цель работы: получить практические навыки создания ETL-процесса для загрузки данных из CSV-файла в базу данных MySQL с использованием Pentaho Data Integration.

Залачи:

- Создать динамические подключения к различным источникам данных.
- Разработать процесс выявления и обработки дублирующихся записей.
- Реализовать механизм объединения данных в единое хранилище.
- Настроить обработку ошибок при выполнении трансформации.

Программное обеспечение:

- Pentaho Data Integration 9.4.
- MySQL или PostgreSQL.
- CSV или Excel файлы с тестовыми данными.

Теоретические сведения

Динамические соединения в PDI позволяют:

- Использовать параметры подключения из внешних источников.
- Менять настройки соединения во время выполнения.
- Обрабатывать множество источников данных в одном процессе.

Компоненты обработки ошибок.

- wrt-execution_error запись информации об ошибках.
- abrt-execution_error прерывание выполнения при критических ошибках.

Ход работы

1. Подготовка.

Создайте новую базу данных MySQL используя предоставленный SQL скрипт.

Убедитесь, что файл samplestore-general.csv доступен

(https://github.com/BosenkoTM/workshop-on-

ETL/blob/main/data_for_lessons/samplestore-general.csv).

Настройте подключение к MySQL в Pentaho.

2. Порядок выполнения.

Трансформация 1 загружает customers.

Трансформация 2 загружает данные products.

Трансформация 3 загружает **Output**.

Job «CSV_to_MYsql. kjb» контролирует весь процесс.

3. Особенности решения:

Нормализованная структура БД.

Правильные связи между таблицами.

Обработка ошибок.

Логирование процесса.

Загрузка данных из веб-источника. Job CSV_to_MYsql.kjb

Структура Job с проверками:

Set Variables (установка CSV_FILE_PATH).

Write To Log (вывод пути для проверки).

Check File Exists (проверка файла).

Transformation 1: Load Orders.

Transformation 2: Load Customers.

Transformation 3: Load Products.

Настройка Job:

1. Добавьте шаг "Set Variables" в начало Job:

Имя переменной: CSV_FILE_PATH

Значение: /home/dba/Downloads/datain/samplestore-general.csv

Тип: String

2. В "Check File Exists" используйте:

Filename: \${CSV_FILE_PATH}

В каждой трансформации измените CSV Input:

Filename: \${CSV_FILE_PATH}

Загрузка файла по протоколу НТТР:

В поле "URL" укажите:

https://raw.githubusercontent.com/BosenkoTM/workshop-on-ETL/main/data_for_lessons//samplestore-general.csv

убедитесь, что:

- Директория ~/Downloads/datain существует.
- У вас есть права на запись в эту директорию.
- Если директория не существует, создайте её: mkdir -p ~/Downloads/datain

Если возникают проблемы с правами доступа, можно проверить и установить права:

chmod 755 ~/Downloads/datain

Общая настройка объекта НТТР представлена на рисунке ниже.

Целевой объект хранения – прописать полный путь, где будут храниться данные после загрузки.

file:///home/dba/Downloads/datain/samplestore-general.csv

Создание базы данные или таблиц в PostgreSQL/MySQL

-- Таблица заказов (основная информация о продажах)

CREATE TABLE orders (
row_id INT PRIMARY KEY,
order_date DATE,
ship_date DATE,
ship_mode VARCHAR(50),

```
sales DECIMAL(10,2),
  quantity INT,
  discount DECIMAL(4,2),
  profit DECIMAL(10,2),
  returned TINYINT(1) DEFAULT 0 - 1 = Yes, 0 = No
);
-- Таблица клиентов
DROP TABLE IF EXISTS customers;
CREATE TABLE customers (
  id INT AUTO_INCREMENT PRIMARY KEY,
  customer_id VARCHAR(20) NOT NULL,
  customer name VARCHAR(100),
  segment VARCHAR(50),
  country VARCHAR(100),
  city VARCHAR(100),
  state VARCHAR(100),
  postal_code VARCHAR(20),
  region VARCHAR(50),
  INDEX idx_customer_id (customer_id),
  INDEX idx_region (region)
);
-- создаем таблицу products
DROP TABLE IF EXISTS products;
CREATE TABLE products (
  id INT AUTO_INCREMENT PRIMARY KEY,
  product_id VARCHAR(20) NOT NULL,
  category VARCHAR(50),
  sub_category VARCHAR(50),
  product_name VARCHAR(255),
  person VARCHAR(100),
  INDEX idx_product_id (product_id),
  INDEX idx_category (category),
  INDEX idx_subcategory (sub_category)
);
-- Создаем индексы для оптимизации запросов
ALTER TABLE orders ADD INDEX idx_order_date (order_date);
ALTER TABLE orders ADD INDEX idx_ship_date (ship_date);
ALTER TABLE customers ADD INDEX idx region (region);
```

ALTER TABLE products ADD INDEX idx_category (category);

-- Установим правильную кодировку

ALTER DATABASE mgpu_ico_etl_prepod CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

ALTER TABLE orders CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

ALTER TABLE customers CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

ALTER TABLE products CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

Трансформация 1. lab_02_1_csv_orders.ktr

Объект Select values (конвертация типов):

Выбрать все поля, для явного преобразование типов.

В закладке Meta-data

- Row ID: Integer

- Order Date: Date (format: dd.MM.yyyy)

- Ship Date: Date (format: dd.MM.yyyy)

- Остальные поля не изменять.

Объект Memory group by:

Выбрать поля для таблицы БД orders:

- row_id (из Row ID)
- order_date (из Order Date)
- ship_date (из Ship Date)
- ship_mode (из Ship Mode)
- sales
- quantity
- discount
- profit
- returned

Объект Filter row:

Проверка даты order_date IS NOT NULL ship_date IS NOT NULL

Если true, то переходим в объект Table output, false – объект Write to log

Объект Value mapper

- Fieldname to use: returned
- Target fieldname: -

- Mappings:

Yes $\rightarrow 1$

 $No \rightarrow 0$

[empty] $\rightarrow 0$

Объект Table output:

Настраиваем коннектор согласно Вашим учетным данным подключения к БД.

Трансформация 2. lab_02_2_csv_customers.ktr

Настройка Select Fields для customers:

Выбрать поля:

- customer_id
- customer_name
- segment
- country
- city
- state
- postal_code
- region

Трансформация 3. lab_02_3_csv_products.ktr

Настройка Select Fields для products:

Выбрать поля:

- product_id
- category
- sub_category
- product_name
- person

Настройка **Table Output** для каждой таблицы:

Database connection:

- Type: MySQL

- Host: localhost

- Database: samplestore

- User/Password: ваши данные

Settings:

- Target table: соответствующая таблица

- Specify database fields: ✓

- Use batch update: ✓

Start Set Variables (FILE_PATH) Check File Exists HTTP Download Transform: Load Orders (lab_02_1) Transform: Load Customers (lab_02_2) Transform: Load Products (lab_02_3) Transform: Analytics 1 (lab_02_4) Transform: Analytics 2 (lab_02_5)

Варианты индивидуальных заданий 4.2.

№	Основной фильтр для загрузки в БД	Доп. задание 1	Доп. задание 2
1	Фильтр по дате: заказы за 2016 год	Анализ прибыльности по	Отчет по
		категориям	менеджерам
2	Фильтр по региону: только Central	Статистика по способам доставки	Анализ возвратов
3	Фильтр по сегменту: только Consumer	Отчет по скидкам	Анализ по штатам
4	Фильтр по категории: только Office Supplies	Анализ продаж по месяцам	Отчет по клиентам
5	Фильтр по размеру заказа: Quantity > 3	Статистика по регионам	Анализ прибыльности
6	Фильтр по прибыли: только Profit > 0	Отчет по категориям	Анализ доставки
7	Фильтр по скидке: Discount > 0	Анализ по сегментам	Отчет по возвратам
8	Фильтр по доставке: только Standard Class	Статистика продаж	Анализ по городам
9	Фильтр: только заказы без возвратов	Отчет по менеджерам	Анализ категорий
10	Фильтр по стране: только United States	Анализ скидок	Отчет по регионам
11	Фильтр по сумме: Sales > 100	Статистика по категориям	Анализ клиентов
12	Фильтр: срок доставки > 5 дней	Отчет по прибыли	Анализ продаж
13	Фильтр по штату: только Texas	Анализ возвратов	Отчет по доставке
14	Фильтр: только заказы с возвратами	Статистика по менеджерам	Анализ регионов
15	Фильтр по подкатегории: только Art	Отчет по городам	Анализ скидок
16	Фильтр: только заказы со скидкой > 15%	Анализ категорий	Отчет по сегментам
17	Фильтр по менеджеру: конкретное Person	Статистика доставки	Анализ прибыли
18	Фильтр: заказы 1-го квартала 2016	Отчет по регионам	Анализ возвратов
19	Фильтр по марже: (Profit/Sales) > 0.2	Анализ по штатам	Отчет по категориям
20	Фильтр: срочная доставка (Same Day)	Статистика по клиентам	Анализ продаж

Требования к отчету

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Описание архитектуры решения.
- 4. Скриншоты настроек компонентов.
- 5. SQL-скрипты создания структур данных.
- 6. Примеры обработанных данных. Схему трансформаций в Pentaho.
- 7. Выводы.

Критерии оценки

- Корректность работы с источниками (25 баллов).
- Обработка дублей (25 баллов).

- Обработка ошибок (25 баллов).
- Оформление отчета (25 баллов).

Контрольные вопросы

- 1. Что такое динамические соединения в РDІ?
- 2. Как организовать обработку ошибок в трансформации?
- 3. Какие методы выявления дублей существуют?
- 4. Как настроить параметризацию подключений?
- 5. Какие компоненты PDI используются для объединения данных?