M2 ISTR - Vérification et Validation

Model Checking

Julien Brunel, ONERA

Julien.Brunel@onera.fr

Plan

Introduction

Formal semantics of systems

Formal property languages

Propositional logic

Linear time

Branching-Time

Introduction

Formal Methods

- Techniques based on mathematical methods to reason in a rigourous way
- Used in the design and validation of critical systems (railways, aeronautics, space, automotive)
- Costly (in terms of time and expertise) but errors and bugs are even more!
- Allow to have guarantees by proof

Model checking

- 1. Building of a formal model of the system
- Formal expression of the properties to check (derived from the specification or from requirements)
- 3. Answer the question : Does the model of the system satisfy the properties?

Model checking

- Step 1 can be done by hand, or automatically.
 The system can be a simple program, an hardware architecture, or the abstraction of a more complex system, made of IT components and non-IT components (hydraulics for instance).
- Step 2 must be done by hand, and may need some expertise on the property language.
- Step 3 is in principle entirely automatic.

Advantages and drawbacks of model checking

Advantages

- can be used in early phases of development cycle
- · automatic approach
- exhaustive exploration of the states of the system
- nice expressiveness (lots of properties can be expressed)
- efficiency according to the data structures

Limits

- needs formalisation
- expression of properties is non trivial
- · finite number of states
- state explosion problem

Mitigate the state explosion problem

- efficient data structures : Binary Decision Diagram (BDD)
- abstract the model to decrease the number of states
- partial order reduction: do not consider several times executions that are equivalent for the satisfaction of the desired property
- · induction : allows to represent in a finite way infinite structures

• ...

History of model checking

1977 1981 1980-1990	Pnueli proposes to use temporal logic Model checking of CTL par Clarke et al., Sifakis et al. Many theoretical results
1990-2000	Huge performance improvements
	Extensions : probabilities, real-time, infinite structures
2000	MC adopted by main chip marker corporations (e.g. Intel)
	Starting of software model checking (Microsoft)
	ACM Paris Kanellakis Award 1998 et 2005
2007	Turing Award to Clarke, Sifakis et Emerson
2010	new SAT-based algorithms

In practice

- Check properties of electronic circuits (Intel, Motorola, IBM, etc.)
- Check the absence of bugs, or find bugs in software (software model checking)
 - on Scade programs
 - on C code (BLAST from Berkeley, SLAM from Microsoft)
 - on Java code (JavaPathFinder)
 - on ByteCode, binary, . . .
- Analyse the dependability of a system (AltaRica du LaBri/Dassault)
- Check the correctness of distributed systems (TLA+ used for instance by AWS)

Expression of the properties to check

Non temporal properties

Property about the value of variables or the data structure

- The value of the integer variable x is greater than y.
- The array is sorted.
- ⇒ out of the scope of model checking

Temporal Properties

Temporal aspects can have various forms

- If a process requests to be executed, the OS will execute it eventually.
- It is always possible to go back to the initial state.
- Each time a failure is detected, an alarm is launched.
- Each time an alarm is launched, a failure has been detected earlier.

Formal semantics of systems

Transition system

Definition (Transition system (TS))

- a set S of states
- a set $I \subseteq S$ of initial states
- a set L of labels
- a transition relation $\rightarrow \subseteq S \times L \times S$

Notation

$$s_1 \stackrel{a}{\rightarrow} s_2 \stackrel{def}{=} (s_1, a, s_2) \in \rightarrow$$

 $s_1 \rightarrow s_2 \stackrel{def}{=} \exists a \in L.s_1 \stackrel{a}{\rightarrow} s_2$

Transition system (symbolic definition)

- States can be defined by variables
- Transitions can be defined by variable updates

A (very) simple resource allocator

```
VAR
```

```
request : boolean;
state : {ready,busy};
INIT
state = ready
TRANS
if (state = ready & request)
then state' = busy
else state' = ready || state' = busy
```

Terminology

We find different terms for very close concepts:

- Kripke models/structures in logic (model theory)
- State machine in software engineering
- Automata
 - · in language theory,
 - or to model control structures at a higher level than TS (e.g., with variables)

Main differences between variants

- · Finite of infinite number of states
- Determinism
- Label on states and/or transitions

Why so many similar frameworks?

Historical reason

History of automata

- 1940s: to model neurons...
- 1960s: languages, computability
- 1970s : systems models
- 1980s: model checking
- Different scientific communities
- Finite automata: simple formalism, limited expressiveness, efficient algorithms
- · Many results in various domains
- Many extensions: pushdown automata, automata with data structures (integers, ...), timed automata, Petri Nets

Properties to check on a transition system

Categories of properties

- Safety Something bad never happens
- · Liveness Something good will happen eventually
- Accessibility A given state can be reached
- Invariance If a given property is true before a transition, it is still true after this transition
- Fairness Transitions that are executable are executed eventually

Formal property languages

Need for a property language

We want to express formally these kinds of properties.

What properties for this system?

VAR

```
request : boolean;
state : {ready,busy};

INIT
   state = ready

TRANS
   if (state = ready & request)
   then state' = busy
   else state' = ready || state' = busy
```

Propositional logic (syntax)

Definition (Syntax)

Given a set P of atomic propositions, the language of propositional logic is defined by :

- If $p \in P$ then p is a formula
- If A and B are formulas, then
 - $\neg A$ is a formula, $A \wedge B$ is a formula

Propositional logic (semantics)

Definition (Semantics)

A model, or valuation, for a formula A is a function

 $V: P \rightarrow \{true, false\}$ which associates each atomic proposition with a truth value (V is a line in the truth table).

$$V \models p$$
 iff $V(p)$
 $V \models \neg A$ iff $V \nvDash A$
 $V \models A_1 \land A_2$ iff $V \models A_1$ and $V \models A_2$

Remark

Define Boolean connectives \vee and \Rightarrow in terms of \neg and \wedge .

Propositional logic (axiomatics)

Definition (Axiomatics)

Axioms

•
$$A_1 \Rightarrow (A_2 \Rightarrow A_1)$$

Ax1

•
$$(A_1 \Rightarrow (A_2 \Rightarrow A_3)) \Rightarrow ((A_1 \Rightarrow A_2) \Rightarrow (A_1 \Rightarrow A_3))$$

Ax2

Inference rule

$$\bullet \ \frac{A_1 \quad A_1 \Rightarrow A_2}{A_2}$$

(Modus Ponens)

Valid formulas and theorems

Valid formula

A formula A is valid ($\models A$) if it is true for every valuation :

$$\models A$$
 iff $\forall V \ V \models A$

Theorem

A formula A is a theorem ($\vdash A$) if it is an axiom or it is obtained by applying inference rules to axioms..

Exercise

Prove that $A \Rightarrow A$ is valid, and then prove that it is a theorem.

Valid formulas and theorems

Valid formula

A formula A is valid ($\models A$) if it is true for every valuation :

$$\models A$$
 iff $\forall V \ V \models A$

Theorem

A formula A is a theorem ($\vdash A$) if it is an axiom or it is obtained by applying inference rules to axioms.

Exercise

Prove that $A \Rightarrow A$ is valid, and then prove that it is a theorem.

Definition (Correctness and completeness)

- A deduction system is correct if every theorem is valid.
- It is complete if every valid formula is a theorem.

Decision procedure

To know if a formula is valid (or satisfiable), there are different methods.

- · the simplest : truth table
- many algorithms have been developed recently with the aim of efficiency
- method that will be useful for temporal logics: tableaux method
 Goal: build a model of a formula, if there is one. It is important to
 make sure the method is complete (if it does not produce a
 model, then there does not exist any).

Expressiveness of propositional logic

Try to express in propositional logic:

- Function compute_position returns a correct result if functions gps and measure_speed return correct results.
- · At least two of these three functions return a correct result.
- Each level 1 function returns a correct result if all the level 2 functions (on which it depends) return a correct result.
- After an incorrect result of function gps, function compute_position returns a result that stays incorrect for the whole system execution.

First order logic

Definition

First order logic extends propositional logic with

- variables *x*₁, *x*₂, . . .
- quantifiers \exists , \forall on variables
- functions on variables (succ if we reason on integers)
- predicates which replace propositions, and which apply to terms (variables or function applications) (≤ for instance):

$$\forall x. \forall y. \exists z. \leqslant (x,z) \Rightarrow \leqslant (succ(y),z)$$

First order logic is more expressive than propositional logic but it is undecidable.

Temporal logics

Temporal logics extend propositional logic to express dynamic behaviours instead of static properties.

- p will be true eventually.
- p will always be true.
- p is always followed by q.
- there exists an execution that will satisfy p.
- ...

Definition (Syntax)

Given a set P of atomic propositions, the syntax of LTL is defined by :

- If $p \in P$ then p is a formula
- If A and B are formulas, then
 - $\neg A$ is a formula, $A \land B$ is a formula
 - X A is a formula, A U B is a formula

- X A: A will be true in the next state
- A₁ U A₂ : A₁ will remain true until A₂ becomes true

To define in terms of the previous operators

- F A: A will be true at some instant in the future
- G A: A will always be true

Definition (Semantics)

A model is an infinite sequence $\sigma \in S^{\omega}$ of states $(s_0, s_1, ...)$ with a valuation function $V: S \to 2^P$.

$$\sigma, i \models p$$
 iff $p \in V(\sigma_i)$
 $\sigma, i \models \neg A$ iff $\sigma, i \nvDash A$
 $\sigma, i \models A_1 \land A_2$ iff $\sigma, i \models A_1$ and $\sigma, i \models A_2$

Definition (Semantics)

A model is an infinite sequence $\sigma \in S^{\omega}$ of states $(s_0, s_1, ...)$ with a valuation function $V: S \to 2^P$.

$$\begin{array}{lll}
\sigma, i \models \rho & \text{iff} & \rho \in V(\sigma_i) \\
\sigma, i \models \neg A & \text{iff} & \sigma, i \nvDash A \\
\sigma, i \models A_1 \land A_2 & \text{iff} & \sigma, i \models A_1 \text{ and } \sigma, i \models A_2 \\
\sigma, i \models A_1 \cup A_2 & \text{iff} & \exists i' \geqslant i \text{ such that } \sigma, i' \models A_2 \text{ and} \\
\forall i'' \in \mathbb{N} & \text{if} & i \leqslant i'' < i' \text{ then } \sigma, i'' \models A_1
\end{array}$$

Definition (Semantics)

A model is an infinite sequence $\sigma \in S^{\omega}$ of states $(s_0, s_1, ...)$ with a valuation function $V: S \to 2^P$.

$$\sigma, i \models \rho$$
 iff $\rho \in V(\sigma_i)$
 $\sigma, i \models \neg A$ iff $\sigma, i \nvDash A$
 $\sigma, i \models A_1 \land A_2$ iff $\sigma, i \models A_1$ and $\sigma, i \models A_2$
 $\sigma, i \models A_1 \cup A_2$ iff $\exists i' \geqslant i$ such that $\sigma, i' \models A_2$ and $\forall i'' \in \mathbb{N}$ if $i \leqslant i'' < i'$ then $\sigma, i'' \models A_1$
 $\sigma, i \models X A$ iff ...

Expressiveness of LTL

Try to express in LTL

- p will be true at least once.
- Each time p is true, q will be true later on
- p is true at most once
- p is true exactly twice
- · p will only be true after q
- When p is true, there is an execution on which q will be true, and an execution in which r will be true

Computation-Tree Logic (CTL)

Definition (Syntax)

Given a set *P* of atomic propositions, CTL syntax is defined as follows:

- If $p \in P$ then p is a formula
- If A and B are formulas, then
 - $\neg A$ is a formula, $A \land B$ is a formula
 - **EX** A is a formula, **E**[$A \cup B$] is a formula, **A**[$A \cup B$] is a formula
- EX A: there exists a successor state satisfying A
- E[A₁ U A₂] / A[A₁ U A₂]: there exists / all paths starting from the current state (that) satisfy(ies) A₁ U A₂

CTL

To define in terms of the previous operators :

- AX A: all the successors of the current state satisfy A
- AG A: A will always be true (in all the paths that start from the current state)
- **E**G *A*, **A**F *A*, **E**F *A*

CTL

Definition (CTL model)

A CTL model is a Kripke structure (S, I, \rightarrow, V) , où

- S is a set of states
- $I \subseteq S$ the set of initial states
- $\rightarrow \subseteq S \times S$ is the transition relation
- $V: S \to 2^P$ is a function mapping each state to the set of atomic propositions that are true in this state

CTL

Definition (Semantics)

$$s \models p$$
 iff $p \in V(s)$ where $p \in P$
 $s \models \neg A$ iff $s \nvDash A$
 $s \models A_1 \land A_2$ iff $s \models A_1$ and $s \models A_2$
 $s \models \mathbf{E} X A$ iff $\exists s' \in S$ such that $s \rightarrow s'$ and $s' \models A$
 $s \models \mathbf{A}[A_1 \cup A_2]$ iff $\forall \sigma \in Paths(s) \exists i \in \mathbb{N}$ such that $\sigma_i \models A_2$
and $\forall j \in \mathbb{N}$ if $0 \leqslant j < i$ then $\sigma_j \models A_1$
 $s \models \mathbf{E}[A_1 \cup A_2]$ iff $\exists \sigma \in Paths(s) \exists i \in \mathbb{N}$ such that $\sigma_i \models A_2$
and $\forall j \in \mathbb{N}$ if $0 \leqslant j < i$ then $\sigma_j \models A_1$

CTL semantics

Given
$$M = (S, I, \rightarrow, V)$$
 a model and A a CTL formula,

$$M \models A$$
 iff $\forall s \in I \ s \models A$

LTL and CTL standard connectives

$$F A \stackrel{def}{=} (\neg A) U A$$

$$G A \stackrel{def}{=} \neg F \neg A$$

$$AX A \stackrel{def}{=} \neg EX \neg A$$

$$EF A \stackrel{def}{=} E[\neg A U A]$$

$$AF A \stackrel{def}{=} A[\neg A U A]$$

$$EG A \stackrel{def}{=} \neg AF \neg A$$

$$AG A \stackrel{def}{=} \neg EF \neg A$$

Comeback to LTL

Satisfaction of an LTL formula by a model Given $M = (S, I, \rightarrow, V)$ a model and A an LTL formula,

$$M \models A$$
 iff $\forall \sigma \in Paths(M)$, $\sigma, 0 \models A$

Theoretical results about LTL et CTL

Theorem

LTL and CTL are decidable. They both have correct and complete axiomatic systems.

Expressiveness of LTL and CTL

Expressive power of two logics

Let L_1 and L_2 two logics having the same semantic models.

 $L_1 \leqslant L_2$ (L_2 is more expressive than L_1ss) if for any $A_1 \in L_1$, there is $A_2 \in L_2$ s.t. the models satisfying A_1 are the same as the models satisfying A_2 .

Expressiveness of LTL and CTL

Expressive power of two logics

Let L_1 and L_2 two logics having the same semantic models.

 $L_1 \leqslant L_2$ (L_2 is more expressive than L_1ss) if for any $A_1 \in L_1$, there is $A_2 \in L_2$ s.t. the models satisfying A_1 are the same as the models satisfying A_2 .

Expressive power of LTL and CTL

Do we have LTL \leq CTL or CTL \leq LTL ?