Produit de convolution

Christophe Antonini¹, Olivier Teytaud², Pierre Borgnat³, Annie Chateau⁴, and Edouard Lebeau⁵

¹Enseignant en CPGE, Institut Stanislas, Cannes ²Chargé de rechercher INRIA, Université d'Orsay, Orsay ³Chargé de recherche CNRS, ENS Lyon, Lyon ⁴Maitre de conférence, Université Montpellier-2, Montpellier ⁵Enseignant en CPGE, Lycée Henri Poincaré, Nancy

22 septembre 2021

Propriétés de base de la convolution.

1 Produit de convolution

Cette partie sera très enrichie par la lecture de la partie ??, consacrée à la convolution en probabilités, et de la partie ??, consacrée à l'approximation de fonctions, et faisant un large usage du produit de convolution.

1.1 Définitions et généralités

Définition 0.1 produit de convolution de f et g

Soient f et g deux applications de \mathbb{R}^n dans \mathbb{R} mesurables.

Alors on appelle **produit de convolution de** f **et** g et on note f * g, la fonction $x \mapsto \int_{\mathbb{R}^n} f(x-y)g(y)d\mu(y)$.

Application 0.1 La convolution servira beaucoup, beaucoup, beaucoup, pour les résultats d'approximation de la partie ?? (notamment une version utile du lemme d'Urysohn ??) et de la partie

??, consacrée à la convolution en probabilités. \parallel On remarquera que, pour tout $x \in \mathbb{R}^n$, la convolution est un produit scalaire entre la fonction g et la fonction $y \mapsto f(x-y)$.

Proposition 0.1 Commutativité

$$f*g=g*f$$

Démonstration Résulte du changement de variable u = x - y.

Domaine de définition de f * g

- •Si f et g sont L^1 alors f*g est L^1 et définie presque partout, et $\|fg\|_1 \leq \|f\|_1 \|g\|_1$. •Si f est L^∞ et g L^1 alors f*g est L^∞ et définie partout.
- •Si f est bornée sur tout compact (par exemple, f continue) et si g est L^1 à support compact alors f * g est définie partout.

Application 0.2 Ce résultat est utilisé par exemple dans la proposition ??.

Démonstration

- •Simple application du théorème de Fubini (théorème ??).
- Pour le second point, $\int_{\mathbb{R}^n} |f(x-y)g(y)| d\mu(y) \le M \int_{\mathbb{R}^n} |g(y)| d\mu(y)$ où M est un majorant essentiel de |f|.
- Pour le dernier, il suffit de voir que $t \mapsto f(x-t)$ admet un majorant sur le compact sur lequel g(.)n'est pas nul.

Théorème 0.3

Si f est L^1 et si g est L^p , pour $p \in [1, \infty]$, alors f * g est définie presque partout et appartient à L^p ; en outre $||f * g||_p \le ||f||_1 ||g||_p$.

Démonstration

Si $p = \infty$ ou si p = 1, c'est le théorème précédent.

Considérons donc maitenant 1 .

- $\bullet y \mapsto g(y)^p \text{ est } L^1.$
- $\int |f(x-y)| |g(y)|^p dy$ est fini, par le cas p=1. Posons q tel que $\frac{1}{p} + \frac{1}{q} = 1$.
- $\int (|f(x-y)|^{1/p} |g(y)|)^p dy$ est fini.
- Puisque $\int (|f(x-y)|^{1/q})^q dy$ est fini aussi, et par l'inégalité de Hölder ??,

$$\int |f(x-y)| |g(y)| dy \text{ est fini aussi et}$$

$$\leq \left(\int (|f(x-y)|^{1/p} |g(y)|)^p dy \right)^{1/p} \left(\int |f(x-y)| \right)^{1/q}$$

$$\leq \left(\int (|f(x-y)| |g(y)|^p) dy \right)^{1/p} \left(\int |f(x-y)| \right)^{1/q}$$

par le cas p = 1

$$\leq \|f(x-.)\|_{1}^{1/p} \|g(.)^{p}\|_{1}^{1/p} \|f(x-.)\|_{1}^{1/q} \leq \|f\|_{1} \|g\|_{p}$$

D'où le résultat.

Théorème 0.4 Propriété fondamentale du produit de convolution

- •Si f est C^k $(k \ge 0)$ et si g est L^1 à support compact, alors f * g est C^k . En outre pour tout ν tel que $|\nu| \le k$ $D^{\nu}(f * g) = (D^{\nu}f) * g$.
 - •On a le même résultat si f est C^k à support compact et g est L^1 .

Application 0.3 Ce théorème a pour conséquence la proposition 0.5, ou le résultat d'approximation ??. Il servira aussi pour le théorème ?? : la densité de l'ensemble des fonctions C^{∞} à support compact dans $C^k(\mathbb{R}^n)$.

Démonstration

On démontre simplement le premier point, le second étant similaire.

- ullet On montre le résultat sur toute boule de rayon R, B = B(0,R); c'est clairement suffisant pour avoir le résultat désiré.
 - •On se donne R' tel que le support de G soit inclus dans la boule B(0,R').
 - •Pour tout x dans B et tout y tel que g(y) est non nul, x + y est dans B(0, R + R').
 - •Il existe M tel que la somme des $|D^{\nu}f|$ pour $|\nu| \leq k$ soit inférieure à M sur B(0, R + R').
 - ullet On procède alors par récurrence sur k.
- •Initialisation de la récurrence : pour k=0, le résultat est donné par la continuité sous le signe intégral (voir théorème $\ref{eq:k}$).
- •Ensuite on suppose le résultat vrai jusqu'au rang k, et on se donne ν tel que $|\nu| = k+1$; alors pour un indice $i: D^{\nu} = \frac{\delta}{\delta x_i} D^{\eta}$ pour un certain η .
 - •Les trois points suivants sont clairement vérifiés :

$$y\mapsto D^{\eta}f(x-y)g(y)$$
 est intégrable
$$x\mapsto D^{\eta}f(x-y)g(y) \text{ est } C^1$$

$$|D^{\nu}f(x-y)|\ |g(y)|\leq M|g(y)| \text{ qui est intégrable}.$$

 $\bullet Alors:$

$$D^{\nu} \int_{\mathbb{R}^n} f(x-y)g(y)d\mu(y)$$

$$= \frac{\delta}{\delta x_i} D^{\eta} \int_{\mathbb{R}^n} f(x-y)g(y)d\mu(y)$$

$$= \frac{\delta}{\delta x_i} \int_{\mathbb{R}^n} D^{\eta} f(x-y)g(y)d\mu(y)$$

(par hypothèse de récurrence)

$$= \int_{\mathbb{D}^n} \frac{\delta}{\delta x_i} D^{\eta} f(x - y) g(y) d\mu(y)$$

(grâce aux résultats affirmés dans le •précédent et grâce au théorème ??)

$$= \int_{\mathbb{R}^n} D^{\nu} f(x-y) g(y) d\mu(y)$$

D'où le résultat.

1.2 Zoologie de la convolution

1.2.1 Convoluée d'un polynôme

Proposition 0.5

Si f est un polynôme à une variable et si g est L^1 à support compact, alors f*g est un polynôme.

Démonstration Il s'agit d'une application directe du théorème 0.4; il suffit de se rappeler qu'une application dont une dérivée est nulle est un polynôme.

On peut en fait étendre ce résultat au cas d'un polynôme à plusieurs variables.

1.2.2 Une fonction fondamentale pour la convolution

Proposition 0.6

Il existe une fonction ρ C^{∞} de \mathbb{R}^n dans \mathbb{R} , positive, d'intégrale 1, de support inclus dans B(0,1).

Démonstration On peut par exemple considérer $\rho(x) = K \exp(-\frac{1}{1-\|x\|^2})$ si x est de norme ≤ 1 et $\rho(x) = 0$ pour x de norme > 1, pour K convenablement choisi. On trouvera au lemme ?? une preuve du fait que cette fonction est convenable.

Application 0.4 Voir le lemme ?? et les pages suivantes pour des d'applications.

Corollaire 0.7

Pour tout ϵ , il existe une fonction ρ_{ϵ} C^{∞} , de support inclus dans $B(0,\epsilon) \subset \mathbb{R}^n$, et d'intégrale

Démonstration On utilise simplement la fonction ρ définie en 0.6, avec $\rho_{\epsilon}(x) = (\epsilon^{-n})\rho(x/\epsilon)$ Application 0.5 On a pour applications les résultats d'approximation suivants :

- approximation d'ensembles mesurables par des fonctions C^{∞} , voir proposition $\ref{eq:condition}$;
 - approximations de fonctions C^k par des fonctions C^∞ à support compact; voir le théorème ?? ·
 - approximations de fonctions L^p par des fonctions C^∞ à support compact : voir le théorème ??

Références