Tessellating Stencils

Liang Yuan, Yunquan Zhang, Peng Guo, Shan Huang SKL of Computer Architecture, ICT, CAS

Outline

- Introduction
- Related work
- Tessellating Stencils

Stencil Overview

Stencil

- update each point in a d-dimensional space (data space) with a pre-defined pattern of neighbor points
- time-iterated updates (iteration space)

Stencil Overview

- Classification
 - grid dimensions (1D, 2D, ...)
 - number of neighbors (3-point, 5-point, ...)
 - shapes (box, star, …)
 - dependence types (Gauss-Seidel, Jacobi)
 - boundary conditions (constant, periodic, ...)

Related Work

- Overlapped tiling
 - Hyper-rectangle [PLDI'07]
 - 3.5d blocking [SC'10]
- Time skewing
 - eliminates the redundant computations [SC'01]
 - pipelined startup and limited concurrency [SPAA'01]

Related Work

Diamond tiling

- classic block [PLDI'08]
- higher dimensional [SC'12]
- hexagon in 2D and truncated octahedron in 3D [PPL'14]

Cache oblivious tiling

- serial cache oblivious stencil algorithms [ICS'05]
- parallel cache oblivious stencil algorithms [SPAA'06]
- Pochoir [SPAA'11]

Related Work

Split tiling

- avoids the overhead of the pipelined start-up in wavefront parallelization
- classic split tiling [IMPACT'13]
- nested split-tiling [ICS'13]
- Hybrid tiling
 - CATS [ICPP'11]
 - MWD [SIAMJOSC'15]
 - Grosser [CGO'14]
 - Hybrid split-tiling [ICS'13]

Reformulating Classic 1D Diamond Tiling

- Iteration space of 1D stencil
- Diamond tiling

- Each diamond is further split by a horizontal line
- 2D time tile.
 - The region between two splitting lines
 - every grid point in a time tile starts in a same time dimension and is updated by identical steps.
 - interleaved computations of triangle (\mathbb{B}_0) or inverted triangle (\mathbb{B}_1)

Extend to 2D Stencil

- Triangles in 1d stencil correspond to pyramids \mathbb{B}_0
- Inverted triangles correspond to inverted pyramids \mathbb{B}_2
- tetrahedrons \mathbb{B}_1

Implementation

- Coarsening
 - cut in different sizes
- Merge
 - $-\mathbb{B}_0$ and \mathbb{B}_1 in 1D stencil.
 - $-\mathbb{B}_0$ and \mathbb{B}_2 in 2D stencil.
- m-order stencil
 - combine every m points to a supernode.
 - 1-order one between supernodes.
- Periodic boundary
 - stretch and transform one block

1D code

bt: block size in time dimension bx: block size in data space bx ≠ bt: support of coarsening #B0B1 is different in different level Determine the scope of 1D data space

2D code

```
for(tt = -bt; tt < T; tt += bt){
     for(n = 0; n < #B0B2[level]; n++){
            for(t = max(tt,0); t < min(tt + 2*bt, T); t++){
                  calculate xmin, xmax, ymin, ymax of B0 and B2
                  for(x = xmin; x < xmax; x++) {
                       for(y = ymin; y < ymax; y++){
                              update(t, x, y); }}}}
     for(n = 0; n < #B1[0] + #B1[1]; n++){
            for(t = tt+bt; t < min(tt + 2*bt, T); t++) {
                  if(n<#B1[level]){</pre>
                       calculate xmin, xmax, ymin, ymax of B11}
                  else{
                       calculate xmin, xmax, ymin, ymax of B12}
                  for(x = xmin; x < xmax; x++) {
                       for(y = ymin; y < ymax; y++){
                             update(t, x, y); }}}}
      level = 1 - level;}
```

#B0B2 represents #B0 in level 0 or #B2 in level 1

two kinds of B1: B11 and B12

for 3D stencil we leave the unit-stride dimension uncut.

Evaluation

- two Intel Xeon E5-2670 processors with 2.70 GHz clock speed
- 32KB private L1 cache
- 256KB private L2 cache
- a unified 30MB L3 cache shared by 12 cores
- ICC complier version 16.0.1, flag '-O3 -openmp'.

Benchmark	Problem Size	our blocking	Pluto blocking
Heat-1D	12000000×4000	2000×1000	2000×2000
1d5p	12000000×4000	2000×500	2000 × 2000
Heat-2D	$6000^2 \times 2000$	$128\times256\times64$	$64 \times 64 \times 64$
2d9p	$6000^2 \times 2000$	$128\times256\times64$	$64 \times 64 \times 64$
Game of life	$6000^2 \times 2000$	$128\times256\times64$	$128\times128\times128$
Heat-3D	$256^3 \times 1000$	$24 \times 24 \times 12$	$12 \times 12 \times 12$
3d27p	$256^3 \times 1000$	$24 \times 24 \times 12$	$12 \times 12 \times 12$

Experimental Results

same to Pluto better than Pochoir

- Our scheme and PluTo produce the same diamond tiling codes
- Pochoir generates trapezoidal blocks of different sizes.

Experimental Results

Our code outperforms
Pluto and Pochoir
by 14% and 20% on average.

more suitable for box stencil.

Experimental Results

3D stencil leaves unit-stride uncut

3d7p

Our code and Pochoir exhibit better scalability than Pluto.
Our code outperforms
Pluto and Pochoir by a maximum of 33% and 68%, and by 22% and 31% on average.

3d27p

Our code outperforms

Pluto and Pochoir by a maximum of 74% and 100%,
and by 30% and 99% on average.

new?

extension of 1D diamond

Not that new!

- Existing techniques produce similar blocks
 - Cache oblivious [SPAA'11]
 - Nested split-tiling [ICS'13]
 - divide multiple dimensions simultaneously

Advantage!

- Diamond tiling
 - fixed tile size at compile time
 - small size at the apex of a diamond
 - hard to choose the proper tile sizes to ensure the concurrent start
- Cache oblivious tiling
 - overhead of recursion
 - artificial dependencies
- Split tiling
 - synchronization overhead 2^d

Formulating the two-level tessellation

Project \mathbb{B}_i in iteration space on data space, denoted as \mathbb{B}_i

Determine the number of updating of each point in B_i .

	B;	step1	step2	step3	P _i
i = 0	$\begin{array}{c} 0000000\\ 0111110\\ 0122200\\ 0123210\\ 0122210\\ 0111110\\ 0000000\\ \end{array}$		1 1 1 1 1 1 1 1 1	1	
i = 1	$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 & 2 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ф11 111	11111	
i = 1	$\begin{smallmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{smallmatrix}$	11111	1 1 1 1 1 1 1 1 1	1	
i = 2	0000000 0111110 0122210 0123210 0122210 0101110 000000	1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I

Formulating the two-level tessellation

- Consider a point $a(a0, \ldots, ad-1)$ in $B0(0, \ldots, 0)$
- updated time in Bi, denoted as Ti(a0, ..., ad-1).

$$T_i(a_0,\ldots,a_{d-1}) = \min(b,a_i,\ldots,a_{d-1}) - \max(0,a_0,\ldots,a_{i-1})$$

$$\sum_{i=0}^{d} T_i(a_0,\ldots,a_{d-1}) = (b-a_0) + (a_0-a_1) + \cdots + (a_{d-2}-a_{d-1}) + a_{d-1} = b$$

$$a_i > = a_{i+1}$$

Summary

- two-level tessellation scheme
 - with highly concurrent execution
 - executes without redundant computation
 - achieves maximize parallelism
 - without false dependencies.
 - Calculate blocks without relying on the compiler
 - Extend to n-dimensional stencil

- mathematical structure of tessellation
 - Associate coordinates of elements with number of updating steps for each block.