Internal Model Control (IMC)

IMC: apply feedback only when system G and model \hat{G} differ!

- Assume G stable. Note: feedback from the model error $y \widehat{y}$.
- $\bullet\,$ Design: assume $\widehat{G}\approx G$ and choose Q stable with $Q\approx G^{-1}.$

Example

$$\widehat{G}(s) = \frac{1}{T_1 s + 1}$$

Choose

$$Q = \frac{T_1 s + 1}{\tau s + 1}, \quad \tau < T_1$$

Gives the controller

$$F(s) = \frac{Q}{1 - Q\widehat{G}} \Rightarrow$$

$$F(s) = \frac{T_1 s + 1}{\tau s} = \frac{T_1}{\tau} \left(1 + \frac{1}{T_1 s} \right)$$

PI-controller!

IMC with Static Nonlinearity

Include nonlinearity in model

Choose $Q \approx G^{-1}$.

Example (cont'd)

Assume r=0 and abuse of Laplace transform notation

$$u = -Q(y - \widehat{G}v) = -\frac{T_1s + 1}{\tau s + 1}y + \frac{1}{\tau s + 1}v$$

if
$$|u| < u_{\text{max}}$$
 ($v = u$): PI controller $u = \frac{-(T_1s + 1)}{\tau s}y$

If
$$|u| > u_{\text{max}} \ (v = \pm u_{\text{max}})$$
:

$$u = -\frac{T_1 s + 1}{\tau s + 1} y \pm \frac{u_{\text{max}}}{\tau s + 1}$$

No integration.

An alternative way to implement anti-windup!