Hidden Markov Trees for Statistical Signal/Image Processing

Xiaoning Qian

ECEN689-613 Probability Models

Texas A&M University

Part I

Papers

- M. S. Crouse, R. D. Nowak, R. G. Baraniuk, *Wavelet-Based Statistical Signal Processing Using Hidden Markov Models*, TSP, **46**(4), 1998.
- H. Choi, R. G. Baraniuk, *Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models*, TIP, **10**(9), 2001.
- J. Romberg, M. Wakin, H. Choi, R. G. Baraniuk, *A Geometric Hidden Markov Tree Wavelet Model*, dsp.rice.edu, 2003.

Part II

Wavelet Transform

What is a wavelet?

 Wikepedia: A wavelet series representation of a square-integrable function is with respect to either a complete, orthonormal set of basis functions, or an overcomplete set of Frame of a vector space (also known as a Riesz basis), for the Hilbert space of square integrable functions.

What is a wavelet?

- The main idea of wavelets is from the idea of function representations. Wavelets are closely related to multiscale/multiresolution analysis:
 - Decompose functions into different scales/frequencies and study each component with a resolution that matches its scale.
- Wavelets are a class of a functions used to localize a given function in both space and scaling/frequency.
- For more information: http://www.amara.com/current/wavelet.html

An example - Haar basis

Example

• Haar wavelet: the wavelet function (mother wavelet) $\psi(t)$; scaling function (father wavelet) $\phi(t)$:

$$\psi(t) = \left\{ \begin{array}{ll} 1 & 0 \leq t < 1/2 \\ -1 & 1/2 \leq t < 1 \\ 0 & \text{otherwise} \end{array} \right. , \quad \phi(t) = \left\{ \begin{array}{ll} 1 & 0 \leq t < 1 \\ 0 & \text{otherwise} \end{array} \right. .$$

- "Daughter" wavelets: $\psi_{a,b}(t) = \frac{1}{\sqrt{|a|}} \psi(\frac{t-b}{a})$, a-scale; b-shift; $\psi_{J,K}(t) = \psi(2^J t K)$.
- Multi-dimensional wavelet tensor product of 1-dimensional wavelet

An example – Haar basis

Why wavelet?

- Wavelets are localized in both space and frequency whereas the standard Fourier transform is only localized in frequency.
- Multiscale analysis
- Less computationally complex
- . . .

Wavelet transform

Continuous wavelet transform (CWT):

$$z(t) = \int_{\mathbf{R}} W^{\psi}\{z\}(a,b)\psi_{a,b}(t)db$$

$$W^{\psi}\{z\}(a,b) = \int_{\mathbf{R}} z(t)\psi_{a,b}^{*}(t)dt$$

$$\int_{\mathbf{R}} \psi_{a,b}(t)\psi_{c,d}^{*}(t)dt = \delta_{ac}(t)\delta_{bd}(t)$$

Wavelet transform

• Discrete wavelet transform (DWT):

$$z(t) = \sum_{K} u_{K} \phi_{J_{0},K}(t) + \sum_{J=-\infty}^{J_{0}} \sum_{K} w_{J,K} \psi_{J,K}(t)$$
$$w_{J,K} = \int z(t) \psi_{J,K}^{*}(t) dt$$
$$\int \psi_{J',K'}(t) \psi_{J,K}^{*}(t) dt = \delta_{JJ'}(t) \delta_{KK'}(t)$$

Properties for wavelet transform

- Locality: Each wavelet is localized simultaneously in space and frequency.
- Multiresolution: Wavelets are compressed and dilated to analyze at a nested set of scales.
- Compression: The wavelet transforms of real-world signals tend to be sparse.

"Secondary" properties may be useful.

- Clustering: If a particular wavelet coefficient is large/small, adjacent coefficients are very likely to also be large/small.
- Persistence: Large/small values of wavelet coefficients tend to propagate across scales

Part III

Signal processing problems with wavelet applications

Denoising or signal detection

Denoising or signal detection

- Note: The signal model is in the wavelet domain.
- Signal model:

$$w_i^k = y_i^k + n_i^k,$$

where w_i^k is the *i*th wavelet coefficient by transforming the *k*th sample. And the task of denoising or detection is to estimate y_i^k .

 Traditional assumption is that they follow indenpendent Gaussian distribution. n_i is the white noise, adaptive thresholding is enough for denoising based on the "compression" property.

Image segmentation

Image segmentation

- Modeling the statistical dependency in images.
- Image model: $f(x_r|c_i)$, where c_i are the labels for different objects in an image, x_r are image regions with the same label; $c = \{c_i, \forall i\}$ can be considered as a random field while x_r is the observation.
- The model for c can be considered as prior knowledge.
- Maximum likelihood segmentation: $\max_c \prod_r f(x_r|c)$
- Maximum A Posteriori segmentation: $\max_c \prod_r f(x_r|c)f(c)$
- Note: The model can be either in the image domain or the wavelet domain;

Multiscale image segmentation

- Multiscale image segmentation: window size
- Note: the model in multiscale segmentation is again in the wavelet domain now; the label random field is in the quadtree structure.
- Different statistical properties for wavelet coefficients correspond to different image regions.
- Singularity structures (edges) have large wavelet coefficients (useful for heterogeneous regions).

Multiscale image segmentation

Basic assumptions in these applications

- Independent Gaussian for wavelet coefficients
- Better assumptions?
- Secondary properties?

Part IV

Hidden Markov Trees

Graphical models as probability models

- General settings: c random field (latent/hidden variables); x observations
- Independent c: $f(c_i)$ and $f(x|c) = \Pi f(x_i|c_i)$
- Markov random field (hidden Markov model): $f(c_i|x,c) = f(c_i|N_i)$ and $f(x|c) = \Pi f(x_i|c_i)$
- Conditional random field: $f(c_i|x,c) = f(c_i|x,N_i)$

Independent c

- Simplest assumption: c's are all independent: $f(c_i)$ and $f(x|c) = \Pi f(x_i|c_i)$
- Classification algorithms

Hidden Markov chain model

• c follows a Markov chain structure:

$$f(c_i|x,c) = f(c_i|c_{i-1},c_{i+1})$$

EM algorithms

More general hidden Markov model

- c has a complex neighbor structure: $f(c_i|x,c) = f(c_i|c_{i-2},c_{i-1},c_{i+1},c_{i+2})$
- EM algorithms

Conditional random field

- c has a Markov structure globally conditioned on x: $f(c_i|x,c) = f(c_i|x,N_i)$
- We usually assume that the probability (or transition function and state function) has some special form.
- Belief propagation algorithms

- Independent model for homogeneous image regions
- Simple classifiers for pixel intensities

Graphical model in the image domain

- Markov random field for noisy images or texture images
- Adding prior on hidden states for "neighbors"

Graphical model in the image domain

Conditional random field for more complicated appearance

• Hidden random field for image regions with different parts

Graphical model in the image domain

• Hidden random field for image regions with different parts

What is an appropriate model?

- Tradeoff between accuracy and complexity.
- Small sample size
- Overfitting ...

Hidden Markov trees for wavelet coefficients

- Residual dependency structure (nested structure) "secondary" properties;
- A model that reflects these properties would be appropriate, flexible but not too complicated;
- Nested multiscale graph (tree to be specific) model:

Independent mixture model for wavelet coefficients

 Mixture model provides appropriate approximation for non-Gaussian real-world signals.

Hidden Markov chain model for wavelet coefficients

• Hidden Markov chain at the same scale:

Hidden Markov tree for wavelet coefficients

 Dependence across scales according to the "secondary properties" of wavelet coefficients:

Hidden Markov tree for images

Probabilities in hidden Markov trees

 For a single wavelet coefficient, as the real world signal is always non-Gaussian, we model it with a mixture model:

$$f(w) = \sum_{m} f(w|c = m)f(c = m)$$

- Independent mixture model; Hidden Markov chain model; Hidden Markov tree model
 - for the tree root c_0 : $f(c_0)$;
 - for the tree nodes other than root transition probability: $f(c_i|c_{\rho(i)})$, where $\rho(i)$ denotes the parent node of i.

Parameters in HMT

- $f(c_0)$, $f(c_i|c_{\rho(i)})$;
- mixture means and variance: $\mu_{i,m}$, $\sigma_{i,m}^2$
- Notice the conditional independence properties of the model.

Problems of HMT

- As all of the graphical models, we need to solve
 - Training the model;
 - Computing the likelihood with the given observations;
 - Estimating the latent/hidden states.

Expectation-Maximization algorithm

- General settings for estimation: $\max_{\theta} f(x|\theta)$ (ML) or $\max_{\theta} f(\theta|x) \Leftrightarrow \max_{\theta} f(x|\theta)f(\theta)$ (MAP).
- EM algorithm provides a greedy and iterative way to solve the general estimation problem based on the hidden/latent variables c.
- $\log f(x|\theta) = \log f(x,c|\theta) \log f(c|x,\theta)$. Since this is the iterative algorithm, we take the expectation with respect to c with the estimated parameters θ^{k-1} :

$$\int \log f(x|\theta) f(c|x,\theta^{k-1}) dc = \int \log f(x,c|\theta) f(c|x,\theta^{k-1}) dc$$
$$- \int \log f(c|x,\theta) f(c|x,\theta^{k-1}) dc$$

Expectation-Maximization algorithm

• Jensen's inequality:

$$\int \log f(c|x,\theta) f(c|x,\theta^{k-1}) dc \leq \int \log f(c|x,\theta^{k-1}) f(c|x,\theta^{k-1}) dc$$

• To guarantee the increase of likelihood $\log f(x|\theta)$, we only need to solve:

$$\theta^k = \arg\max_{\theta} \int \log f(x, c|\theta) f(c|x, \theta^{k-1}) dc$$

• Hence, E-step is for computing $f(c|x, \theta^{k-1})$; M-step is to solve the above optimization problem.

Training hidden Markov trees with EM

- In HMT, $\theta = \{f(c_0), f(c_i|c_{\rho(i)}), \mu_{i,m}, \sigma_{i,m}^2\}$, where i denotes each wavelet coefficient; m denotes each component in the mixture.
- Update the similar equation:

$$\theta^k = \arg \max_{\theta} \int \log f(w, c|\theta) f(c|w, \theta^{k-1}) dc$$

• We need several tricks to complete the EM algorithm here since we do not have an easy form for $f(w, c|\theta)$.

Training hidden Markov trees with EM

- The main task to estimate the marginal state distribution $f(c_i = m|w, \theta)$ and the parent-child joint distribution $f(c_i = m, c_{\rho(i)} = n|w, \theta)$.
- Based on the conditional independence we have for HMT, we can write: $f(c_i = m, w|\theta) = f(w_{T_i}|w_{\widehat{T}_i}, c_i = m, \theta)f(c_i = m, w_{\widehat{T}_i}|\theta) = f(w_{T_i}|c_i = m, \theta)f(c_i = m, w_{\widehat{T}_i}|\theta) = \beta_i(m)\alpha_i(m)$; and similarly,

$$f(c_i = m, c_{\rho(i)} = n, w|\theta) = \beta_i(m)f(c_i|c_{\rho(i)})\alpha_{\rho(i)}(n)\beta_{\rho(i)\setminus i}(n).$$

• While $f(w|\theta) = \sum_m f(c_i = m, w|\theta) = \sum_m \alpha_i(m)\beta_i(m)$, we have these distributions expressed in terms of α, β .

Training hidden Markov trees with EM

- For the computation, we need to follow the downward algorithm from coarse to fine levels to estimate α 's and upward algorithm from fine to coarse levels to estimate β 's as described in the paper.
- M-step is simply the conditional means due to Gaussian assumption.
- Note the tricks to handle with K trees and tying.

Coming back to the denoising problem ...

• With the EM trained parameters, including $f(c_i = m | \mathbf{w}, \theta), \sigma'_{c_i} s$, and σ_n 's, the estimation for the signal is simple as solving the conditional mean estimates:

$$\mathbf{E}(y_i|\mathbf{w},\theta) = \sum_{m} f(c_i = m|\mathbf{w},\theta) \frac{\sigma_{i,m}^2}{\sigma_{i,m}^2 + \sigma_n^2} w_i$$

- 2D hidden Markov trees
- Similar setting as in 1D signal model
- Difference:
 - Subband independence:

$$f(w|\Theta) = f(w_{LH}|\Theta_{LH})f(w_{HL}|\Theta_{HL})f(w_{HH}|\Theta_{HH})$$
 (scaling);

- Leads to different expansion of α 's and β 's;
- Context-based interscale fusion: prior f(c): context vector
- Different EM

Extended hidden Markov trees

- Geometric hidden Markov trees:
 - Modeling contours explicitly;
 - Hidden state space: $c_i = \{d_m, \theta_m\}$
 - New conditional distribution of wavelet coefficients: $f(w_i|c_i) \propto \exp(-dist(w_i,e_m)^2/(2\sigma_g^2))$, where e_m is the response for edges with fixed distance d_m and angle θ_m (filter banks)
 - New transition probability: $f(n|m) \propto \exp(-HD(I_m, I_n))$, where $HD(I_m, I_n)$ is the Hausdorff distance between lines determined by distance and angle restricted to a square in the plane.

Take home message

- Know available tools;
- Do not force one tool for every problem;
- Have a right model and appropriate assumptions;
- Work hard to find the simplest (elegant) solution.