Министерство образования и науки РФ

ФГАОУ ВО Национальный исследовательский ядерный университет "МИФИ"

Институт нанотехнологий в электронике, спинтронике и фотонике Кафедра физики конденсированных сред

Гравитационная динамика кластеров первичных чёрных дыр

Выпускная квалификационная работа бакалавра.

Направление подготовки: 01.03.02, прикладная математика и информатика

Выполнил: студент группы Б13-401 Лунов М.М. Научный руководитель: к.ф.-м.н., доц. каф. 40 НИЯУ МИФИ Кириллов А.А.

Содержание

Введение	3
1 Динамическая устойчивость кластера ЧД	5
1.1 Постановка задачи	6
1.2 Способ реализации задачи	6
2 Численный метод решения задачи N-тел и его применение	7
2.1 Схема Ахмада-Коэна [Ahmad–Cohen scheme]	9
2.1.1 Принцип работы схемы	9
2.2 Численные расчёты	11
2.2.1 Физические параметры задачи	14
3 Результаты моделирования эволюции кластера ПЧД в зависимости от начальных	
параметров	15
3.1 Критерий образования стабильного кластера	15
3.2 Результаты	17
Заключение	20
Список литературы	21

Введение

Исследования природы активных галактических ядер привело к общему убеждению о том, что центры галактик содержат сверхмассивные черные дыры (ЧД) с массами $10^6 - 10^9 \, M_\odot$ [1]. Одно из первых и наиболее очевидных возможных объяснений происхождения подобных ЧД предполагает коллапс и последующее слияние большой совокупности звезд за счет их высокой концентрации в галактических центрах. Однако существуют и другие механизмы их образования. Так, например, согласно [2], имеются серьезные основания полагать, что звездообразование и образование ядер галактик шло одновременно. В статьях [3–4] рассмотрена модель формирования галактик вокруг массивных ЧД и приводятся доводы именно в пользу этой модели.

Таким образом, вопрос о раннем происхождении черных дыр остается открытым. При этом в рамках некоторых моделей, в отличие от тех, в которых черные дыр возникают в результате эволюции массивных звезд и звездных систем, существуют косвенные свидетельства существования «первичных» черных дыр (ПЧД). Так, например, в моделях [5–6], построенных в рамках инфляционных сценариев рождения ПЧД, возможно формирование не одиночных черных дыр, а их кластеров с широким и нестепенным массовым спектром (см., например, рис. 1.). Такие сценарии предсказывают появление сверхмассивных черных дыр в галактических ядрах и черных дыр меньших масс с характерной структурой кластера в галактических гало на больших расстояниях от их центров [7]. Эти модели имеют ряд существенных преимуществ, поскольку позволяют одновременно давать объяснение ряду современных астрофизических и космологических проблем. Например:

• Образование сверхмассивных ПЧД в ранней Вселенной позволяет им стать естественными «зародышами» будущих квазаров [8], что особенно актуально в связи с обнаружением всё большего количества последних в дозвёздный период (на красных смещениях z > 6) [9].

- Небольшие кластеры маломассивных ПЧД, которые неминуемо возникают вместе с большими, могут составлять либо всю скрытую массы (тёмную материю), либо её долю [10–12].
- Взаимодействие нейтрального газа с продуктами излучения Хоукинга от маломассивных ПЧД может являться причиной реионизации Вселенной, имевшей место на z ~ 8 [13–14].
- Недавние случаи слияния достаточно массивных ЧД (десятки солнечных масс), зарегистрированные с помощью гравитационно-волнового эксперимента LIGO [15-17], могут быть связаны с их кластерной структурой.
- Излучение Хоукинга может также проявлять кластеры ПЧД в виде неидентифицированных точечных источников гамма-излучения [ссылки на работы], которые были обнаружены в значительном количестве космическими гамма-телескопами CGRO EGRET [18] и Fermi/LAT [19].

Все это может служить косвенными свидетельствами существования кластеров ПЧД.

Рис. 1. Типичные массовые спектры ПЧД (на рис. (а) $m_{BH} = M/M_{\odot}$ [20], рис. (б) [6]).

1 Динамическая устойчивость кластера ЧД

Несмотря на отмеченные выше достоинства модели, предсказывающей появление кластеров ПЧД, вопрос их динамической устойчивости в В работе [19] приводились литературе детально не исследовался. качественные оценки времени жизни кластера ПЧД. Оказалось, что оно превышает современный возраст Вселенной. значительно рассматривался вопрос искажения массового спектра за счёт хоукинговского приводящего К уменьшению маломассивной механизма испарения, составляющей части спектра (см. рис. 2.). При этом нерассмотренными остались два важных эффекта: изменение спектра в результате 1) слияния ПЧД и 2) возможного их вылета из кластера (при скоростях ПЧД больших, чем 2-я космическая). Исследованию последних двух вопросов посвящена данная работа.

Рис. 2. Изменение массового распределения первичных черных дыр в кластере за счет излучения Хоукинга, где $x = M/10^{15}$ г [19].

1.1 Постановка задачи

Задача состоит в исследовании гравитационной динамики кластера ПЧД, а именно — характер изменения со временем его массового спектра в процессе образования стабильного кластера.

1.2 Способ реализации задачи

Существуют 2 подхода при изучении динамики многочастичных гравитирующих объектов: построение и последующее решение эволюционных кинетических уравнений или моделирование взаимодействия N-тел. В настоящей работе рассматривался второй подход.

При моделировании использовались следующие приближения:

- \circ абсолютно неупругое столкновение ПЧД при их сближении на расстояние ближе суммы 3-х шварцшильдовских радиусов r_q [21];
- о не учитывается потеря энергии на излучение гравитационных волн;
- о не учитывается собственное вращение ЧД.

Подчеркнем, что в настоящей работе рассматривается качественное изменение массового спектра кластера без учёта "тонких" эффектов, к которым относятся, например, процессы, протекающие на расстояниях $< 3r_g$ (радиус последней устойчивой орбиты, на меньших расстояниях неизбежно происходит слияние ЧД [21, 22]). Известно, что поправки к силе взаимодействия между гравитирующими объектами, получаемые из ОТО, относятся следующим образом [22]:

$$\frac{\mathbf{F}_E}{\mathbf{F}_N} \propto \left(\frac{v}{c}\right)^2 \tag{1}$$

где ${\bf F}_E$ — сила, создаваемая неньютоновскими поправками, ${\bf F}_N$ — ньютоновская сила, v — скорость объекта, c — скорость света. Учет ${\bf F}_E$ становится существенным при достижении скоростей ЧД порядка c, что происходит при $r_{ij} \to r_g$. Это позволяет не учитывать эффекты искажения траекторий на расстояниях больше чем $3r_g$. Так же отметим, что время

слияния ЧД, зафиксированное в экспериментах LIGO и Virgo, меньше 1 секунды, а потери энергии на гравитационное излучение составляет ~5% [15-17]. Таким образом, можно сделать вывод, что учёт эффектов ОТО не оказывает существенного влияния на гравитационную динамику кластера в целом.

2 Численный метод решения задачи N-тел и его применение

На данный момент в общем виде задача N-тел для N > 3 может быть решена только численно, причём для N = 3 аналитическое решение в виде рядов, предложенное Зундманом, даже при современном уровне компьютеров использовать практически невозможно [23]. Остается единственная практическая возможность — численное решение уравнений движения.

В задаче N-тел взаимодействие вычисляется отдельно между парами частиц, \mathbf{f} — сила, действующая на каждую частицу (i-частицу), является суммой вкладов отдельных частиц (j- частиц), которые на нее действуют. Каждая частица характеризуется набором параметров, таких как масса, гравитационный радиус (в случае черных дыр) и т.п. Кроме того, каждая частица характеризуется скоростью \mathbf{v}_i и положением \mathbf{r}_i . Задачей ядра вычисления взаимодействия является расчет ускорения, которое частица испытывает в результате влияния на нее других частиц:

$$\mathbf{a}_i = \frac{1}{m_i} \sum_{j=1, j \neq i}^{N} \mathbf{f}_{ij} , \qquad (2)$$

где \mathbf{f}_{ij} — сила, с которой j-частица действует на i-частицу. При этом сила взаимодействия двух частиц зависит, вообще говоря, от их взаимного

положения, скорости, а также характеристик частиц. Для гравитационного взаимодействия на основании предыдущего выражения имеем:

$$\mathbf{a}_{i} = G \sum_{j=1, j \neq i}^{N} \frac{m_{j}}{\left|\mathbf{r}_{j} - \mathbf{r}_{i}\right|^{3}} (\mathbf{r}_{j} - \mathbf{r}_{i}). \tag{3}$$

Непосредственные вычисления по этой формуле являются достаточно ресурсоемкими: для N частиц объем вычислений растет как $\frac{N(N-1)}{2}$. Более того, известно, что численные методы сталкиваются с такой проблемой, что при тесных сближениях тел необходимо уменьшать шаг по времени. Это в свою очередь, приводит к быстрому росту времени вычисления. Однако, как было сказано выше, и без уменьшения шага при «прямом» ходе время вычислений силы для каждого шага растёт с ростом числа тел, по крайней мере, как $O(N^2)$, что делает практически невозможным моделирование систем, состоящих из десятков и сотен тысяч тел.

Таким образом, при моделировании задачи особое внимание требуется уделить двум проблемам:

- интегрирование уравнений движения вблизи точки столкновения приводит к приобретению телами нереалистичных ускорений, что при недостаточно малом временном шаге приводит к нефизичному разлету тел;
- время, необходимое для расчета силы, растет, по крайней мере, как $O(N^2)$ (где N число тел).

Для решения этих проблем применяют следующий алгоритм, называемый *схемой Ахмада-Коэна* [24]: нужно разделить силу, действующую на каждое тело, на 2 части — иррегулярную (от близких тел — «соседей») и регулярную (от более далёких тел). Соответственно, регулярную силу можно вычислять с гораздо большим шагом, чем иррегулярную. О чём подробнее будет сказано ниже.

2.1 Схема Ахмада-Коэна [Ahmad–Cohen scheme]

Было показано [25–27], что не все объекты в системе на каждом шаге времени фактически необходимы для перерасчета силы на конкретно рассматриваемом теле. Данная схема использует этот факт посредством деления силы, действующей на тело, на две составляющие: медленно изменяющуюся, вызванную «дальними» телами — регулярную силу, и иррегулярную, обусловленную телами в непосредственной близости от рассматриваемого объекта. Понятно, что сильно флуктуировать будет от ближайших соседей. Эффективность силы составляющая заключается в том, что регулярная сила изменяется гораздо медленнее, чем иррегулярная, и поэтому регулярная сила не должна рассчитываться так часто, как сила от близлежащих тел. В системах с большим числом тел преобладают дальние тела, что, следовательно, позволяет значительно сэкономить время при вычислении силы. Более того, так как шаг времени перестает быть фиксированным, устраняется проблема разлета тел.

2.1.1 Принцип работы схемы

Мы окружаем каждое i-е тело сферой радиуса R_i (радиус отбора соседей), который зависит от массы i-го тела, разделив общую силу \mathbf{F}_i , действующую на это тело, на две составляющие: иррегулярную силу и \mathbf{S}_i , которая является суммой сил от тел-соседей в пределах R_i , и регулярную силу \mathbf{K}_i — от тел остальной части системы.

Так как мы разделили силы на две составляющие, мы будем иметь два различных временных шага, связанных с каждым телом. Шаг по времени регулярной силы T (в данной работе мы берём его фиксированным) — это основной временной шаг. $t_i < T$ — относится к иррегулярной силе — у каждого тела он свой, и зависит от расстояния до ближайшего соседа.

Для нахождения временных шагов иррегулярной силы мы используем формулу[28]:

$$\delta t_i = \alpha \left[\min(r_{ij}) \right]^{3/2}, \tag{4}$$

где $\min(r_{ij})$ есть расстояние между *i*-м телом и его ближайшим соседом *j*. Константа α служит в качестве контроля ошибок интегрирования (в настоящей работе $\alpha = 5 \cdot 10^{-3}$).

Итак, данная схема действует следующим образом (см. рис. 3). В первую очередь находим все тела, которые должны обновляться с меньшим (по сравнению с основным) шагом разбиения по времени, их мы обнаруживаем путем нахождения минимума t_i . Для каждого такого i-го тела с минимальным t_i формируется подкластер соседей (тел с которыми возможно слияние данного i-го тела) с присвоением t_i всему подкластеру. Поиск таких i-тел ведётся до тех пор, пока не останется тел без соседей. И только после этого, когда все тела разделены на группы с соседями (где необходим перерасчет с разбиением силы на \mathbf{K}_i и \mathbf{S}_i составляющие) и без, можно приступать к вычислению ускорений. В результате, как только суммарное иррегулярное время в подкластерах сравняется с шагом регулярного времени, фиксируем полученные положения и скорости всех тел и запускаем цикл заново.

ПРИНЦИП РАБОТЫ СХЕМЫ

 \mathbf{S}_{i} — иррегулярная сила - является суммой сил от тел-соседей в пределах R_{i} t_{i} — иррегулярный шаг времени

 ${f K}_i$ — регулярная сила - сумма сил от тел остальной части системы T — регулярный шаг времени

Рис.3. Принцип работы схемы Ахмада-Коэна.

2.2 Численные расчёты

Так как при решении задачи N-тел массы черных дыр, а также положения и скорости в начальный момент времени считаются известными, то вычислив ускорение, которым будет обладать i-тело в начальный момент, можно вычислить его новые характеристики (\mathbf{v}_i и \mathbf{r}_i) в следующий временной шаг. Реализуется это за счет того, что в течение очень малого промежутка времени ускорение считаем приближено постоянным.

Для того чтобы перейти к 3-мерной картине требуется ввести зенитный и азимутальный углы:

$$\begin{cases} \varphi^{n} = \tan^{-1} \left| \frac{\mathbf{y}_{j}^{n} - \mathbf{y}_{i}^{n}}{\mathbf{x}_{j}^{n} - \mathbf{x}_{i}^{n}} \right|, \\ \theta^{n} = \tan^{-1} \left| \frac{\mathbf{z}_{j}^{n} - \mathbf{z}_{i}^{n}}{\sqrt{\left(\mathbf{x}_{j}^{n} - \mathbf{x}_{i}^{n}\right)^{2} + \left(\mathbf{y}_{j}^{n} - \mathbf{y}_{i}^{n}\right)^{2}}} \right|. \end{cases}$$
(5)

после чего получаем, спроецировав вычисляемые характеристики на оси координат, такие системы разностных по времени уравнений:

$$\begin{cases} \mathbf{a}_{\mathbf{x}i}^{n} = G \sum_{j=1,j\neq i}^{N} \frac{m_{j}}{\left|\mathbf{r}_{ij}^{\mathbf{n}}\right|^{2}} \cos \theta^{n} \cos \varphi^{n}, \\ \mathbf{a}_{\mathbf{y}i}^{n} = G \sum_{j=1,j\neq i}^{N} \frac{m_{j}}{\left|\mathbf{r}_{ij}^{\mathbf{n}}\right|^{2}} \cos \theta^{n} \sin \varphi^{n}, \\ \mathbf{a}_{\mathbf{z}i}^{n} = G \sum_{j=1,j\neq i}^{N} \frac{m_{j}}{\left|\mathbf{r}_{ij}^{\mathbf{n}}\right|^{2}} \sin \theta^{n}. \end{cases}$$

$$(6)$$

Здесь
$$\mathbf{r}_{ij}^{\mathbf{n}} = \sqrt{(\mathbf{x}_{j}^{n} - \mathbf{x}_{i}^{n})^{2} + (\mathbf{y}_{j}^{n} - \mathbf{y}_{i}^{n})^{2} + (\mathbf{z}_{j}^{n} - \mathbf{z}_{i}^{n})^{2}}.$$

Эволюция положений и скоростей от T_{n-1} до T_n определяется разложением в ряд Тейлора до третьего порядка производных сил

$$\mathbf{r}_{i}(T_{n+1}) = \mathbf{r}_{i}(T_{n}) + \mathbf{V}_{i}(T_{n})(\Delta T) + \frac{1}{2} \frac{\mathbf{F}_{i}(T_{n})}{m_{i}} (\Delta T)^{2} + \sum_{k=1}^{3} \frac{\mathbf{F}_{i}^{(k)}(T_{n})(\Delta T)^{k+2}}{m_{i}(k+2)!}, (7)$$

$$\mathbf{v}_{i}(T_{n+1}) = \mathbf{v}_{i}(T_{n}) + \frac{\mathbf{F}_{i}(T_{n})}{m_{i}} (\Delta T) + \sum_{k=1}^{3} \frac{\mathbf{F}_{i}^{(k)}(T_{n})(\Delta T)^{k+1}}{m_{i}(k+1)!}, (8)$$

$$\Delta T = T_{n+1} - T_n.$$

где \mathbf{F}_i является полной силой, действующей на i-ую частицу, и $\mathbf{F}_i^{(k)}$ является k-ой производной от силы по времени, вычисляемой в момент времени T_{n-1} . Силы и их производные состоят из суммы иррегулярной и регулярной частей

$$\mathbf{F}_{i}^{(k)} = \mathbf{K}_{i}^{(k)} + \mathbf{S}_{i}^{(k)}, \qquad k = 0,1,2,3.$$
 (9)

В промежутках между расчетами регулярной силы полиномиальный метод разделенной разности используется для экстраполяции силы и ее производных. Полином силы определяется как

$$\mathbf{F}_{i}(T_{n+1}) = \mathbf{F}_{i}(T_{n}) + \mathbf{D}[T_{n}, T_{n-1}](T_{n+1} - T_{n}) + \mathbf{D}^{2}[T_{n}, T_{n-2}](T_{n+1} - T_{n})(T_{n+1} - T_{n-1}) + \mathbf{D}^{3}[T_{n}, T_{n-3}](T_{n+1} - T_{n})(T_{n+1} - T_{n-1})(T_{n+1} - T_{n-2})$$
(10)

где T_n , T_{n-1} , T_{n-2} , — моменты времени последних трёх точных расчетов силы. Разделенные разности определяются следующим образом

$$\mathbf{D}[T_{n}, T_{n-1}] = \frac{\mathbf{F}_{i}(T_{n}) - \mathbf{F}_{i}(T_{n-1})}{T_{n} - T_{n-1}}$$

$$\mathbf{D}^{2}[T_{n}, T_{n-2}] = \frac{\mathbf{D}[T_{n}, T_{n-1}] - \mathbf{D}[T_{n-1}, T_{n-2}]}{T_{n} - T_{n-2}}$$

$$\mathbf{D}^{3}[T_{n}, T_{n-3}] = \frac{\mathbf{D}^{2}[T_{n}, T_{n-2}] - \mathbf{D}^{2}[T_{n-1}, T_{n-3}]}{T_{n} - T_{n-3}}$$
(11)

Преимуществом использования (10) и (11) является их легкость в расчете. Чтобы получить производные от силы в терминах разделенных разностей мы сравниваем (10) с разложением силы в ряд Тейлора

$$\mathbf{F}_{i}(T_{n+1}) = \mathbf{F}_{i}(T_{n}) + \sum_{k=1}^{3} \mathbf{F}^{(k)} \frac{(T_{n+1} - T_{n})^{k}}{k!}$$
(12)

чтобы получить

$$\mathbf{F}^{(1)} = \mathbf{D}[T_{n,}T_{n-1}] + T_1'\mathbf{D}^2[T_{n,}T_{n-2}] + T_1'T_2'\mathbf{D}^3[T_{n,}T_{n-3}]$$

$$\mathbf{F}^{(2)} = 2! \{\mathbf{D}^2[T_{n,}T_{n-2}] + (T_1'+T_2')\mathbf{D}^3[T_{n,}T_{n-3}]\}$$

$$\mathbf{F}^{(3)} = 3! \mathbf{D}^3[T_{n,}T_{n-3}]$$
(13)

где для $T'_k = T_n - T_{n-k}$, для k = 1,2,3. Соседи i-ой частицы обновляются к моменту $t_i + \delta t_i$, используя ряд Тейлора с членами силы только до первого порядка. Эта синхронизация позволяет рассчитать иррегулярного силу и ее производные. Было показано[24], что для этой цели вычисление членов более высокого порядка в ряде Тейлора не так эффективно, как контроль точности через α .

Таким образом, вид формул для вычисления скоростей и координат:

$$\begin{cases} \mathbf{x}_{i}^{n+1} = \mathbf{x}_{i}^{n} + \mathbf{V}_{\mathbf{x}i}^{n}\tau + \frac{\mathbf{a}_{\mathbf{x}i}^{n}\tau^{2}}{2} + \sum_{k=1}^{3} \frac{(\mathbf{a}_{\mathbf{x}i}^{n})^{(k)}\tau^{k+2}}{(k+2)!}, \\ \mathbf{y}_{i}^{n+1} = \mathbf{y}_{i}^{n} + \mathbf{V}_{\mathbf{y}i}^{n}\tau + \frac{\mathbf{a}_{\mathbf{y}i}^{n}\tau^{2}}{2} + \sum_{k=1}^{3} \frac{(\mathbf{a}_{\mathbf{y}i}^{n})^{(k)}\tau^{k+2}}{(k+2)!}, \\ \mathbf{z}_{i}^{n+1} = \mathbf{z}_{i}^{n} + \mathbf{V}_{\mathbf{z}i}^{n}\tau + \frac{\mathbf{a}_{\mathbf{z}i}^{n}\tau^{2}}{2} + \sum_{k=1}^{3} \frac{(\mathbf{a}_{\mathbf{z}i}^{n})^{(k)}\tau^{k+2}}{(k+2)!}. \end{cases}$$
(14)

$$\begin{cases} \mathbf{v}_{\mathbf{x}i}^{n+1} = \mathbf{v}_{\mathbf{x}i}^{n} + \mathbf{a}_{\mathbf{x}i}^{n} \tau + \sum_{k=1}^{3} \frac{(\mathbf{a}_{\mathbf{x}i}^{n})^{(k)} \tau^{k+1}}{(k+1)!}, \\ \mathbf{v}_{\mathbf{y}i}^{n+1} = \mathbf{v}_{\mathbf{y}i}^{n} + \mathbf{a}_{\mathbf{y}i}^{n} \tau + \sum_{k=1}^{3} \frac{(\mathbf{a}_{\mathbf{y}i}^{n})^{(k)} \tau^{k+1}}{(k+1)!}, \\ \mathbf{v}_{\mathbf{z}i}^{n+1} = \mathbf{v}_{\mathbf{z}i}^{n} + \mathbf{a}_{\mathbf{z}i}^{n} \tau + \sum_{k=1}^{3} \frac{(\mathbf{a}_{\mathbf{z}i}^{n})^{(k)} \tau^{k+1}}{(k+1)!}. \end{cases}$$
(15)

Т.к. шаг T - фиксированный, то $\Delta T = \text{const} = \tau$.

Для однозначного определения положения тел в пространстве достаточно ограничиться знанием их координат, но для выполнения закона сохранения импульса при абсолютно неупругом столкновении требуются так же и их скорости. В общем случае, при сближении тел на расстояние ближе заданного порога (суммарного гравитационного радиуса двух черных дыр) и при одновременном столкновении сразу нескольких k тел, вычисление скорости и координат в следующий шаг по времени будет осуществляться, посредством формул:

$$\begin{cases} \mathbf{v}_{\mathbf{x}i'}^{n+1} = \frac{\sum_{i=1}^{k} m_{i}^{n} \mathbf{v}_{\mathbf{x}i}^{n}}{\sum_{i=1}^{k} m_{i}^{n}}, \\ \mathbf{v}_{\mathbf{y}i'}^{n+1} = \frac{\sum_{i=1}^{k} m_{i}^{n} \mathbf{v}_{\mathbf{y}i}^{n}}{\sum_{i=1}^{k} m_{i}^{n}}, \\ \mathbf{v}_{\mathbf{z}i'}^{n+1} = \frac{\sum_{i=1}^{k} m_{i}^{n} \mathbf{v}_{\mathbf{y}i}^{n}}{\sum_{i=1}^{k} m_{i}^{n}}, \\ \mathbf{v}_{\mathbf{z}i'}^{n+1} = \frac{\sum_{i=1}^{k} m_{i}^{n} \mathbf{v}_{\mathbf{z}i}^{n}}{\sum_{i=1}^{k} m_{i}^{n}}, \\ \mathbf{z}_{i'}^{n+1} = \frac{\sum_{i=1}^{k} m_{i}^{n} \mathbf{z}_{i}^{n}}{\sum_{i=1}^{k} m_{i}^{n}}. \end{cases}$$

$$(16)$$

Для нового образовавшегося после слияния тела i координатами являются положения центра масс системы сталкивающихся чёрных дыр. При этом масса полученного объекта есть, очевидно, сумма масс столкнувшихся тел:

$$m_{i'}^{n+1} = \sum_{i=1}^{k} m_i^n. (17)$$

Как было сказано выше, потерей энергии на гравитационное излучение, которое, вообще говоря, будет вносить определенный вклад при слиянии массивных ПЧД, мы пренебрегаем.

2.2.1 Физические параметры задачи

Начальное распределение масс ПЧД задаётся в интервале $M_{pbh} \in [1; 10^4] [M_{\odot}]$, где их взаимное расположение меняется в диапазоне $[10^{-6}; 1] [\Pi \kappa]^3 \ (1[\Pi \kappa] \approx 3, 1 \cdot 10^{16} [M])$. При этом начальные скорости зависят от средней полной кинетической энергии системы (теорема о вириале).

Для перехода к безразмерным единицам берем:

1 [ед. массы] = $M_{\rm pbh}/M_{\odot}$ (при $M_{\rm pbh}=M_{\odot}$);

1 [ед. расстояния]= 1·10⁻⁸ [пк];

1 [ед. времени] = 1 [c];

Таким образом, для гравитационного радиуса $r_g = 2 \frac{GM}{c^2} \approx 2950 \cdot \frac{M}{M_{\odot}}$ [м] в результате получаем:

$$\tilde{r}_g = \frac{r_g}{1 \text{ [ед.расстояния]}} \in 9.56 \cdot [10^{-6}; 1].$$

Аналогично для скорости и ускорения при обновлении координат:

$$ilde{r}_n = ilde{r}_{n-1} + \left(v_{n-1} \cdot au + rac{a_{n-1} \cdot au^2}{2}
ight)\!\!/1$$
 [ед. расстояния], где $ilde{r} = rac{r}{1\,$ [ед.расстояния].

3 Результаты моделирования эволюции кластера ПЧД в зависимости от начальных параметров

3.1 Критерий образования стабильного кластера

В качестве критерия образования кластера выбиралось следующее соотношение для характерного времени изменения количества ЧД в нём:

$$\tau_{\text{xap}} = \left(\frac{N_i}{\dot{N}_i}\right)_k > t_{\text{c.B.}},\tag{18}$$

где $t_{\text{с.в.}} \approx 14$ млрд лет — время жизни современной Вселенной, k — число временных шагов, N_i — число ЧД в i-й момент времени, \dot{N}_i — скорость изменения количества ЧД от времени, которое может быть оценено следующим образом:

$$\dot{N}_i = \frac{N_i - N_{i-k}}{k\Delta T} \tag{19}$$

Здесь выбирался временной шаг $k\Delta T=1500\,\mathrm{c}$ для усреднения \dot{N}_i . При уменьшении $\dot{N}_i\to 0,~\tau_\mathrm{xap}\to \infty$ (см. рис.4-5), и, соответственно, будет превышать $t_\mathrm{c.b.}$, что говорит о том, что сформирование кластера произошло.

Для 50 ПЧД в кластере радиуса $10^{-5} [\text{пк}]$ с массой центральной ЧД $10^6 [M_{\odot}]$:

Рис.4. Изменение числа ПЧД в кластере в зависимости от времени.

Рис.5. Изменение $au_{\rm xap}$ ЧД в кластере в зависимости от времени.

3.2 Результаты

При гравитационной динамике ПЧД наблюдается образование стабильного кластера вокруг сформировавшегося массивного тела. На рис. 6-7 продемонстрированы типичные начальное и конечное пространственные распределение, а так же их массовые спектры для кластера с $R=10^{-5}$ [пк], $M_1=10^6[M_{\odot}]$. В зависимости от начальных параметров было оценено время образования стабильного кластера. Для каждого из рассматриваемых в таблице случаев было проделано по 3 моделирования. В таблице приведены усредненные данные по полученным результатам.

$M_1 [M_{\odot}]$	$\sum_{i=1}^{N} M_i [M_{\odot}]$	<i>R</i> [пк]	τ _{xap} [c]	N
10 ⁶	2.0e6	10^{-5}	<15000	50
10 ⁵	2.0e5	10^{-5}	<35000	50
104	2.0e4	10^{-5}	<80000	50

Здесь:

 M_1 [$M_{☉}$] – масса центральной ПЧД;

 $\sum_{i=1}^{N} M_i \left[M_{\odot} \right]$ — суммарная масса кластера ПЧД;

R [пк] — радиус кластера;

 $au_{\text{хар}}[c]$ — характерное время изменения количества ЧД (время образования стабильного кластера);

N – число разыгрываемых ПЧД.

Рис. 6.1. Начальное пространственное распределение ПЧД.

Рис. 6.2. Начальное распределение масс ПЧД в кластере.

Рис.7.1. Положение ПЧД в пространстве в конечный момент времени.

Рис. 7.2. Конечное распределение масс ПЧД в кластере.

Заключение

В (ПЧД) первичных рамках модели кластера черных дыр процесс Проводилось рассматривался ЭВОЛЮЦИИ ЭТОГО кластера. моделирование эволюции этого кластера для случая 50 ПЧД и различных их пространственных и массовых распределений. Получены конечные массовые спектры ПЧД для различных параметров. Была произведена оценка времени образования стабильного кластера в зависимости от суммарной массы кластера, оказалось, что это время не превышает 2-х дней для всех рассматриваемых случаев. Исходя из полученных результатов можно сделать вывод, что образование кластера имеет однотипный характер: во всех нами случаях образуются центральная массивная ЧД, разыгранных основную часть маломассивных ЧД, и черные поглощающая дыры промежуточных (между центральной маломассивными) И масс обращающихся вокруг неё. Отдельно стоит заметить, что вылет в результате взаимодействия оказывается многочастичного не существенным ДЛЯ разыгранного числа частиц.

Полученный результат показал на качественном уровне, что действительно образуется стабильный кластер, что позволяет переходить к моделированию эволюции кластеров с большим числом ПЧД и учётом более тонких физических эффектов (излучение гравитационных волн, сложные пространственное и массовое распределения ПЧД в кластере, и т.п.). В дальнейшем планируется учёт отмеченных эффектов совместно с переходом к большему числу ПЧД при моделировании, а также использование существующих программных пакетов по задаче N-тел (например [29-30]).

Список литературы

- [1] D. Rosenberg, J. Rutgers, «Galaxy formation: Was there a big bang shell?», arXiv: astro-ph/0012023.
- [2] S. Veilleux, «The starburst AGN connection», arXiv: astro-ph/001212.
- [3] M. Stiavelli, «Violent relaxation around a massive black hole», arXiv: astro-ph/9801021.
- [4] M. Merrifield, D. Forbes, A. Terlevich, «The black hole mass galaxy age relation», arXiv: astro-ph/0002350.
- [5] S. Rubin, M. Khlopov, A. Sakharov, «Primordial black holes from nonequilibrium second order phase transition», Grav. Cosmol. S. 6 (2000) 51.
- [6] С. Рубин, А. Сахаров, М. Хлопов, «Образование первичных ядер галактик при фазовых переходах в ранней вселенной», ЖЭТФ 91 (2001) 921.
- [7] M. Y. Khlopov, S. G. Rubin, A. S. Sakharov, «Primordial structure of massive black hole clusters», Astropart. Phys. 23 (2005) 265–277; arXiv: astro-ph/0401532.
- [8] V.I. Dokuchaev, Y.N. Eroshenko, S.G. Rubin, «Quasars formation around clusters of primordial black holes», Grav. Cosmol. 11 (2005) 99–104; arXiv: astro-ph/0412418.
- [9] Linhua Jiang et al., «The final SDSS high-redshift quasar sample of 52 quasars at Z > 5.7», (2016); arXiv: astro-ph.GA/1610.05369.
- [10] K. M. Belotsky et al., «Signatures of primordial black hole dark matter», Mod. Phys. Lett. A 29 (2014) 1440005.
- [11] K. M. Belotsky, A. A. Kirillov, N. O. Nazarova, S. G. Rubin, «Reionization effect enhancement due to primordial black holes», International Journal of Modern Physics D 26 (2017) 1750102; arXiv: astro-ph.CO/1702.06338
- [12] Bernard Carr, Florian Kuhnel, Marit Sandstad, «Primordial Black Holes as Dark Matter», Phys. Rev. D 94, 083504 (2016); arXiv: astro-ph.CO/1607.06077

- [13] К. М. Белоцкий, А. А. Кириллов, С. Г. Рубин, «Скопления первичных черных дыр и проблема реионизации», Ядерная физика 78 (2015) 417–422.
- [14] K. M. Belotsky, A. A. Kirillov, «Primordial black holes with mass 10¹⁶– 10¹⁷ g and reionization of the Universe», JCAP 01 (2015) 041; arXiv: astro-ph.CO/1409.8601.
- [15] LIGO Collaboration, «GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence», Phys. Rev. Lett. 116 (2016) 241103.
- [16] LIGO Collaboration, « Observation of Gravitational Waves from a Binary Black Hole Merger», Phys. Rev. Lett. 116 (2016) 061102.
- [17] LIGO Collaboration, «Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2», Phys. Rev. Lett. 118 (2017) 221101
- [18] The American Astronomical Society, «The third egret catalog of high-energy gamma-ray sources», The Astrophysical Journal Supplement Series, Volume 123, Issue 1, pp. 79-202.
- [19] K. M. Belotsky, et al., «Clusters of black holes as point-like gamma ray sources», Astropart. Phys. 35 (2011) 28–32.
- [20] V. I. Dokuchaev, et al., «Mechanism for the Suppression of Intermediate-Mass Black Holes», arXiv: astro-ph.CO/1010.5325.
- [21] Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т II. Теория поля. М.:ФИЗМАТЛИТ, 2003. 536 с.
- [22] Владимиров Ю.С. Классическая теория гравитации: Учебное пособие. М.:КНИЖНЫЙ ДОМ «ЛИБРОКОМ», 2009. 264 с.
- [23] А. П. Маркеев, «Задача трёх тел и её точные решения», Соросовский образовательный журнал 9 (1999) 112.
- [24] A. Ahmad, L. Cohen, «A Numerical Integration Scheme for the N-Body Gravitational Problem», Journal of computational physics 12 (1973) 389-402.
- [25] R. Wielen, Veroeffentlichungen Astr. Rechen-Institut Heidelberg Nr. 19 (1967).

- [26] S. J. Aarseth, F. Hoyle, Astrophysica Norwegica 29 (1964) 313.
- [27] A.Hayli, Bulletin Astronomique 2 (1967) 67.
- [28] M. Lecar, C. C. Gonzalez, «Bulletin Astronomique» (1968) 209
- [29] Long Wang, et al., «NBODY6++GPU: Ready for the gravitational million-body problem», MNRAS 450 (2015) 4070-4080
- [30] Volker Springel (MPA), «The cosmological simulation code GADGET-2», arXiv:astro-ph/0505010.