CPSC 314 Computer Graphics

Dinesh K. Pai

A first look at the Graphics Pipeline and WebGL

Many slides courtesy of Min Hyuk Kim, KAIST and Steven Gortler, Harvard

Announcements

- Today:
 - Introduction to the OpenGL Graphics Pipeline
 - Intro to programming with GLSL, WebGL, Three.js (Assignment 1)
- Assignment 1 out on Friday
 - Details will be available on Canvas

Hello World

A small preview we will look at the code next time

3

What is OpenGL/WebGL?

- OpenGL = Open Graphics Library
 - An open industry-standard API for hardware accelerated graphics drawing
 - Implemented by graphics-card vendors
 - Maintained by the Khronos group
- OpenGL ES = Embedded Systems version of OpenGL with reduced functions
- WebGL makes OpenGL accessible from JavaScript. Same underlying graphics architecture

Which WebGL?

- WebGL 1.0 is based on OpenGL ES 2.0
 Now supported in almost all browsers
- WebGL 2.0 is based on OpenGL ES 3.0
 Finalized in 2017. Supported in Chrome and Firefox, not yet in Safari, etc.
- We'll plan to use some features of WebGL 2.0 this term, so please use one of the compatible browsers. See

https://caniuse.com/#feat=webgl2

5

WebGL 2.0 and Sep 10, 2021 W

OpenGL Pipeline

- Reference: Textbook Chapter 1
- Shapes are "discretized" into primitives: triangles, line segments, ...

- We'll focus on triangles most of the time
- Triangles defined by positions of their vertices

7

OpenGL Pipeline: Vertex Shader

- Vertices are stored in a vertex buffer.
- When a draw call is issued, each of the vertices passes through the vertex shader
- On input to the vertex shader, each vertex (black) has associated attributes.
- On output, each vertex (cyan) has a value for gl_Position and for its "varying" variables (in WebGL 2, called "out/in").

OpenGL Pipeline: Rasterization

Rasterize

- The data in gl_Position are used to place the three vertices of the triangle on a virtual screen.
- The rasterizer figures out which pixels (orange) are inside the triangle and interpolates the varying variables from the vertices to each of these pixels.

(

OpenGL Pipeline: Fragment Shader

Frame buffer

- Each pixel (orange) is passed through the fragment shader, which computes the final color of the pixel (pink).
- The pixel is then placed in the framebuffer for display.

OpenGL Pipeline: Fragment Shader

 By changing the fragment shader, we can simulate light reflecting off of different kinds of materials.

11

A brief look at Three.js

- A high level library that can use WebGL for rendering
 - Can also use the basic HTML5 canvas for simple things
- Setup is much easier compared to WebGL
- Implements "scene" and "mesh" abstractions
- Mesh ≅ geometry + material properties
 - Warning: this usage of "mesh" is non-standard
- Scene contains a hierarchy of mesh objects
- Render a scene using a Camera

Demo

https://threejs.org/editor/

Summary

- What is OpenGL/WebGL?
 - A software interface that allows a programmer to communicate with the graphics hardware
 - A programming interface for rendering 2D and 3D graphics
 - A cross-language multi-platform API for computer graphics
- What is Three.js
 - A high level JavaScript library that provides easy setup and access to WebGL

Important Point!

- In this course we will use WebGL and Three.js to understand the principles of 3D computer graphics
- This is NOT a course about programming with WebGL and all the intricacies of Three.js
- Our primary focus will be on writing small shaders in GLSL to implement the key concepts of a computer graphics application

15

Preparation for next class

- Explore Threejs.org website's documentation, esp.
 - https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
- Read Chapter 2 of textbook