En déduire qu'il existe des réels a₀, a₁,..., a_n tels que pour tout P ∈ R_n[X],

$$\int_0^n P(t)dt = \sum_{i=0}^n a_i P\left(\frac{i}{n}\right).$$

Exercice 9.

On considère le R-espace vectoriel $E = \mathbb{R}_3[X]$ muni de sa base canonique (e_0, e_1, e_2, e_3) , où $e_0=1, e_1=X, e_2=X^2, e_3=X^3$. Soit F la partie de E définie par :

$$P \in F \iff P(1) = 0 \text{ et } P''(0) = 0.$$

- Vérifier que F est un sous-espace vectoriel de E et déterminer une base de F.
- Montrer que

$$\forall \phi \in E^*, \ \phi \in F^{\perp} \Longleftrightarrow \phi(e_0) = \phi(e_1) = \phi(e_3).$$

Soient les formes linéaires

$$\phi_0 = e_2^*
\phi_1 = e_0^* + e_1^* + e_3^*
\phi_2 = e_1^* - e_2^*
\phi_3 = e_2^* - e_3^*$$

Vérifier que $(\phi_0, \phi_1, \phi_2, \phi_3)$ est une base de E^{\bullet} et déterminer sa base préduale.

Exercice 10.

On désigne par (e_1, e_2, e_3) la base canonique de $\mathbb{C}_2[X]$:

$$e_0 = 1$$
; $e_1 = X$; $e_1 = X^2$.

Déterminer la base duale (e₀, e₁, e₂) associée.

Soient a, b, c trois complexes distincts. On pose

$$P_1 = (X-b)(X-c), P_2 = (X-a)(X-c), P_3 = (X-a)(X-b).$$

- Montrer que (P₁, P₂, P₃) est une base de C₂[X] et trouver les coordonnées d'un polynôme $P \in \mathbb{C}_2[X]$ dans cette base.
- Déterminer la base duale (P₁, P₂, P₃) de (P₁, P₂, P₃).
- Soit u l'endomorphisme de C₂[X] défini par :

$$\forall P \in \mathbb{C}_2[X], u(P) = XP' + P.$$

Déterminer la transposée 'u de u.

Exercice 11.

Soient $a_0, a_1, \ldots, a_n \in \mathbb{K}$ deux à deux distincts et f_0, f_1, \ldots, f_n des formes linéaires sur le K-espace vectoriel $E := K_n[X]$ définiées par

$$f_i(P) = P(a_i), \forall P \in E.$$

- la matrice de passage de la base duale canonique à γ^* .
- Montrer que la famille γ = (P₀, P₁,..., P_n) définie par

$$P_{j}(X) = \prod_{i \neq j} \frac{X - a_{i}}{a_{j} - a_{i}}$$

est une base de $\mathbb{K}_n[X]$ de base duale γ^* .

3. En déduire l'inverse de la matrice de Vandermonde

$$V(a_0, a_1, \dots, a_n) = \begin{pmatrix} 1 & a_0^1 & a_0^2 & \dots & a_0^n \\ 1 & a_1^1 & a_1^2 & \dots & a_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n^1 & a_2^2 & \dots & a_n^n \end{pmatrix}$$

pour n=3.

Exercice 12.

Soit E un K-espace vectoriel de dimension n. On appelle hyperplan de E tout sous-espace vectoriel de dimension n-1.

- Montrer que les propositions suivantes sont équivalentes :
 - H est un hyperplan de E.
 - ii) Pour tout vevcteur v ∈ E, v ∉ H, E est somme directe de H et de K {v}.
- 2. Soit f une forme linéaire non identiquement nulle sur E. Montrer que son noyau est un hyperplan de E.
- 3. Soit H un hyperplan de E. Montrer qu'il existe une forme linéaire non nulle f sur E telle que H = Ker(f). On dit alors que f(x) = 0 est l'équation de H.
- Considérer le cas où E = R³. Qu'est-ce qu'un hyperplan? Trouver la forme linéaire un hyperplan donné.

Exercice 13.

Soit $B = (e_1, \ldots, e_n)$ une famille de n vecteurs d'un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On suppose que

$$\forall f \in E^*, \ f(e_1) = f(e_2) = \ldots = f(e_n) = 0 \Rightarrow f = 0.$$

Montrer que B est une base de E.

Exercice 14.

Soient E un K-espace vectoriel et l1,..., ln des formes linéaires sur E.

1. Montrer que l_1, \ldots, l_n engendrent E^* si et seulement si $\bigcap_{i=1}^n ker \ l_i = \{0_E\}$.

2. Quel lien y a-t-il entre la dimension du sous-espace engendré par l_1, \ldots, l_n et celle de $\bigcap_{i=1}^n ker \ l_i$?

Indication: Montrer que
$$\left(\bigcap_{i=1} Ker(l_i)\right)^{\perp} = \mathbb{K} \left\{l_i\right\}_{i=1}^n$$
 ou $\left(\mathbb{K} \left\{l_i\right\}_{i=1}^n\right)^{\circ} = \bigcap_{i=1} Ker(l_i)$.

Exercice 15.

Soient E un K-espace vectoriel de dimension infinie. Montrer que $\varphi_1, \varphi_2, \ldots, \varphi_n$ sont des formes linéaires sur E, alors

- ∩ⁿ_{i=1}Kerφ_i ≠ {0_E}.
- 2. $\bigcap_{i=1}^{n} Ker \varphi_i$ est de co-dimension finie.

Exercice 16.

Soient E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E tels que $E=F\oplus G$.

Montrer que E^{*} = F[⊥] ⊕ G[⊥].

Exercice 5.

Considérer le K-espace vectoriel $\mathbb{K}_n[X]$ des polynômes de l'interminée X de degrés $\leq n$, où $n \in \mathbb{N}^*$ est fixé à l'avance. Soient φ une forme linéaire sur E et $\alpha \mathbb{K}$ tels que pour tout polynôme $P \in \mathbb{K}_{n-1}[X]$, on a $\varphi((X-a)P) = 0$.

Montrer qu'il existe λ ∈ K tel que pour tout P ∈ E, φ(P) = λP(α).

Exercice 6.

Dans les questions suivantes, f_1 , f_2 , f_3 sont des formes linéaires sur le R-espace vectoriel $E=\mathbb{R}^3$.

1.

$$f_1(x,y,z) = x + y + z$$
, $f_2(x,y,z) = x - y + z$, $f_3(x,y,z) = x + z$.

Exprimer ces vecteurs dans la base duale $\{e_1^*, e_2^*, e_3^*\}$ de la base canonique $\{e_1, e_2, e_3\}$ de R³.

2.

$$f_1(x, y, z) = x + 2y - 3z, \ f_2(x, y, z) = 5x - 3y, \ f_3(x, y, z) = 2x - y - z.$$

Montrer que $\{f_1, f_2, f_3\}$ est une base de E^* et déterminer la base de E associée.

Exercice 7.

Soient n∈ N* et E = C_n[X]. Pour tout a∈ C, on définit l'application φ_a par :

$$\forall P \in E, \ \varphi_a(P) = P(a).$$

Montrer que pour tout $a \in \mathbb{C}$, $\varphi_a \in E^*$.

- 2. Soient $a_0, a_1, \ldots, a_n, n+1$ nombres complexes deux à deux distincts. Montrer que la famille φ_{a_i} , i = 0, 1, ..., n est une base de E^* et déterminer sa base préduale.
- Montrer qu'il existe λ₀, λ₁,..., λ_n ∈ C tels que pour tout P ∈ E,

$$\int_0^1 P(t) dt = \sum_{i=0}^n \lambda_i P(a_i),$$

puis donner la valeur des λ_i sous la forme d'une intégrale.

Exercice 8.

Pour tout entier naturel $n \geq 1$, on considère le R-espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels et de degré $\leq n$. Soit ϕ l'application définie de $\mathbb{R}_n[X]$ dans \mathbb{R} par :

$$\phi(P) = \int_0^1 P(t)dt, \ \forall P \in \mathbb{R}_n[X].$$

- Montrer que φ est une forme linéaire.
- 2. Pour tout $i \in \{0, 1, ..., n\}$, soit ϕ_i l'application définie de $\mathbb{R}_n[X]$ dans \mathbb{R} par :

$$\phi_i(P) = P\left(\frac{i}{n}\right).$$

Montrer que $\forall i \in \{0, 1, ..., n\}$, ϕ_i est une forme linéaire sur $\mathbb{R}_n[X]$ et que $(\phi_i)_{i=0}^n$ est une base du dual de $\mathbb{R}_n[X]$.

MAT218 : Algèbre multiliéaire - Courbes et Surfaces Fiche de TD n° 1. : Espace dual

Exercice 1.

Rappel: Une famille $(v_i)_{i \in I}$ est dite libre

Cas I fini: toute combinaison linéaire finie nulle est à coefficients tous nuls;

Cas I infini: toute sous-famille finie est libre.

- 1. Soit L une famille libre de E et $x \in E$. Montrer que si $x \notin \mathbb{K}L$, alors $F \cup \{x\}$ est libre.
- 2. Montrer que l'ensemble ${\cal L}$ des familles libres de E admet au moins un élément maximal B.

Rappel du Lemme de Zorn : Si toute chaîne d'un ensemble ordonné est majorée, alors l'ensemble ordonné possède au moins un élément maximal.

En déduire que B est une base de E.

Exercice 2.

Soit E un K-espace vectoriel de dimension fine.

- Soient f et g deux formes linéaires non nulles. Montrer qu'il existe au moins un vecteur $u \in E$ tel que $f(u) \neq 0$ et $g(u) \neq 0$.
- 2. On suppose qu'il existe p formes linéaires non nulles f_i , $i=1,\cdots,p$ telles que :

$$\forall x \in E$$
, si $\forall i = 1, \dots, p$ $f_i(x) = 0$, alors $x = 0$.

Montrer que $dim(E) \leq p$.

Exercice 3.

Déterminer la forme linéaire f définie sur R₂[X] telle que :

$$f(1+X+X^2)=0; \ f(2+X^2)=1; \ f(1+2X+3X^2)=4.$$

2. Donner une base du noyaux de f

Exercice 4.

Soient f_1 et f_2 deux formes linéaires sur \mathbb{R}^2 définies par :

$$f_1(x,y) = x + y \text{ et } f_2(x,y) = x - y.$$

- 1. Montrer que $\beta = (f_1, f_2)$ ets une base de du dual de E.
- Exprimer les formes linéaires suivantes dans la base β:

$$g(x,y) = y; h(x,y) = 2x - 5y.$$