

Please renumber pages 22-26 of the original application papers containing the claims as pages 14-18.

In the Abstract:

Please insert the Abstract of the Disclosure attached herewith into the specification as page 19.

REMARKS

The foregoing amendments are presented to place the application in compliance with the sequence rules under 37 CFR 1.821-1.825.

Applicants have submitted a Sequence Listing in both paper and computer readable form as required by 37 C.F.R. 1.821(c) and (e). Amendments directing its entry into the specification have also been incorporated herein. The content of the paper and computer readable copies are the same and no new matter has been added.

The specification has also been carefully reviewed and editorial changes have been effected. All of the changes are minor in nature and therefore do not require extensive discussion. Specifically, the specification headings have been amended in conformance with U.S. practice.

Applicants have also prepared and filed a new Abstract Of The Disclosure based on the Abstract from the International application.

Also, the additional sequences disclosed in Figure 6 of the specification have been incorporated into the new Sequence Listing and labeled in the Brief Description of the Drawings (see Appendix A) in accordance with U.S. practice.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached page is captioned "Version with markings to show changes made."

In view of the foregoing, it is believed that each requirement set forth in the Notice has been satisfied, and that the application is now in compliance with the sequence rules under 37 CFR 1.821-1.825. Accordingly, favorable examination on the merits is respectfully requested.

Respectfully submitted,

Tamas LUKACSOVICH et al.

By:

Lee Cheng
Registration No. 40,949
Attorney for Applicants

LC/gtg
Washington, D.C. 20006-1021
Telephone (202) 721-8200
Facsimile (202) 721-8250
June 27, 2002

APPENDIX "A"

The 5'P end of vector, splice acceptor site of this figure is represented by SEQ ID No: 2. The stop-start seq., Gal4 gene of this figure is represented by SEQ ID No: 3. The mini-white gene of this figure is represented by SEQ ID No: 4. The splice donor site, 3'P end of GT vector of this figure is represented by SEQ ID No: 5. The anterior open cDNA exon 1 of this figure is represented by SEQ ID No: 6. The anterior open cDNA exon 2 of this figure is represented by SEQ ID No:7. The anterior open exon 1 - Gal 4 fusion cDNA is represented by the combination of SEQ ID No: 6 and 3 in this order. The mini-white-anterior open exon 2 fusion cDNA is represented by the combination of SEQ ID No: 4 and 7 in this order.

Version with Markings to
Show Changes Made

RECEIVED

JUL 08 2002

A Vector for Gene Trap, and A Method for Gene Trapping
by Using The Vector

5

Background of the Invention

1. Technical Field of the Invention

The present invention relates to a new vector system to facilitate the cloning and functional analysis of new genes of a fly, *Drosophila melanogaster*, and a method for gene trapping with the vector system.

2. Description of the Related Art

There are numerous examples for application of gene trapping methods in wide range of living organisms including maize and mouse (Gossler et al., Science, 244:463-465, 1989).

With respect to tools for gene trapping, the application of different types of enhancer trap P-element vectors (Wilson et al., Genes & Development, 3:1301-1313, 1989) for cloning and analyzing trapped genes, as well their use for mosaic analysis with the help of the Gal4/UAS transcription activator system has proven fruitful. However, sometimes the expression pattern of the Gal4 or other reporter gene of the vector construct is affected by enhancers belonging to more than one gene. Similarly, in some cases it is difficult to determine whether the enhancer trap insertion effects the function of one or more of the neighboring genes.

These circumstances altogether with the fact that in some cases the mutant phenotype could be attributed to the

changed expression of a gene with its nearest exon located more than 30 kB apart from the insertion site, can lead in unfortunate cases to an ordeal when it's time to clone and analyze the affected gene.

5 One object of this application is to provide a vector system that includes specifically designed artificial regulatory sequences as well as selection methods for easy screening of positive recombinant lines. More especially, this application intends to provide a vector system of this
10 invention offering much easier and faster cloning opportunities of the affected gene, compared to the widely used enhancer trap P-element vectors. Another object of this application is to provide easier detection method possibilities of the successful trapping events and much
15 higher chance to get more characteristic ("functional") expression patterns of the reporter gene because in the contrary with much of the cases with enhancer trap lines, when using the vector system of this invention, the reporter
20 gene expression is influenced only by a single endogenous transcription unit and effects only the expression of the very same gene.

Summary of the Disclosure of Invention

The first invention of this application is a vector for trapping an unknown gene of *Drosophila melanogaster*, which is
25 a recombinant plasmid comprising the following nucleotide sequences in this order:
an artificial consensus splicing acceptor site;
a synthetic "stop/start" sequence;
30 a reporter gene;

(b) selecting primary transformants for the vector A which are resistant to the drug, and selecting primary transformants for the vector B which have an eye color;

5 (c) crossing the primary transformants for the vector A with a transposase source strain to force the vector to jump into other locations;

(d) selecting secondary transformants for the vector A by picking up the flies having strong eye color;

10 (e) crossing the secondary transformants with the primary transformants for the vector B to obtain flies harboring both the vectors A and B;

15 (f) crossing the flies obtained in the step (e) with an UAS-luciferase harboring fly strain and measuring the reporter gene expression of the resultant flies after a heatshock treatment; and

(g) identifying the trapped gene by cloning and sequencing the cDNAs fused to the reporter gene and the gene responsible for a detectable phenotype of the fly.

20 Embodiments of the second and third inventions are corresponded to the embodiments of the first invention, and they will be more precisely described in the following description.

25 *the*
Brief Description of Drawings

Figure 1 shows the schematic map of the vector of this invention, pTrap-hsneo.

Figure 2 shows the schematic map of the vector of this invention, pTrap-G4-p53.

30 Figure 3 shows the schematic map of the vector of this

invention, pCasperhs-G4-LT.

Figure 4 shows the schematic map of the vector of this invention, pTrap-G4-luc.

Figure 5 shows the schematic drawing of a fly genome to which the vector of this invention is inserted for cloning.

Figure 6 shows the results of sequencing RT-PCR products of aop-Gal4 and m-white-aop fusion mRNAs.

Figure 7 presents pictures of characteristic beta-galactosidase staining patterns in different parts of the fly brain resulted from crossing positive gene trap lines with flies harboring a UAS-lacZ construct.

Description of the Preferred Embodiments

Best Mode for Carrying Out the Invention

A vector construct of the first invention, for example, can be based on the commonly used, P-element transformation vector, pCasper3 (Pirotta, Vectors: A survey of molecular cloning vectors and their uses, eds. Rodriguez, R.L. & Denhardt, D.T., Butterworths, Boston. 437-456, 1998) and the convenient Gal4-UAS expression system (Brand and Perrimon, Development, 118:401-415, 1993).

A promoterless Gal4 gene preceded by an artificial consensus splicing acceptor site and a synthetic "stop/start" sequence to govern the read through translation coming from upstream exon(s) of the trapped gene into the proper reading frame of Gal4 was inserted into the polycloning site of pCasper3.

The removal of the whole 3' UTR (untranslated region) sequence of the mini-white gene and replacement by an artificial splicing donor site resulted in a truncated gene without its own poly-adenylation site.

← Insert "Appendix"

Without a successful gene trapping event this truncated mini-white gene was not expected to confer any eye color, therefore in this invention a heatshock promoter directed neomycin-phosphotransferase (hs-neo) gene for helping 5 selection of primary transformants by antibiotic feeding has been inserted.

Figure 1 shows the schematic map of the gene trap construct (pTrap-hsneo), and SEQ ID No.1 is the complete nucleotide sequence of the vector pTrap-hsneo.

10 Another gene trap construct, pTrap-G4-p53 (Figure 2) is created by replacing the Gal4 coding sequence of plasmid pTrap-hsneo with a Gal4 DNA binding domain-P53 fusion gene (Clontech, Matchmaker Two Hybrid System, #K1605-1). When this construct coexists in the genome of the same fly with another 15 vector, pCasperhs-G4-LT (Figure 3) containing a heatshock promoter directed Gal4 activator domain-large T antigen (Clontech, Matchmaker Two Hybrid System, #K1605-1) fusion gene, the assembly of a functional Gal4 molecule, through p53-large T antigen interaction, can be regulated by external 20 heatshock.

In this way, the possibility of an intentional temporary control of Gal4 activity becomes available. In other words, the Gal4 expression in a pattern as already determined spatially by the promoter of the trapped gene now can be 25 induced at any desired stage of development by external heatshock.

In order to make the detection of Gal4 expression easier, the Gal4 gene in another construct is replaced with a Gal4-firefly luciferase fusion gene to get pTrap-G4-luc 30 (Figure 4). This artificial gene is coding for a fusion

terminator) instead of its removed ones. They are the most likely candidates for successful gene trap events. In case of these lines the vector probably has been inserted either into an intron of a gene or upstream from the first intron into 5 the 5' UTR in proper orientation (that is the direction of transcription is same for the "trapped gene" and the mini-white (and Gal4) genes as well). The mini-white gene has its own promoter therefore its expression pattern is supposed to be largely independent from that of the trapped gene.

10 These positive lines are to be checked in the next step for Gal4 expression by crossing them with a "marker" line harboring a UAS-luciferase reporter gene construct. (When using pTrap-G4-luc vector, this step is obviously not necessary.) Usually very strong correlation was found between 15 eye color and Gal4 expression: more than 90% of the lines having strong eye color proved to be expressing Gal4 by means of luciferase assay using luminometer (Brandes et al., Neuron, 16:687-692, 1996).

20 (2) Cloning:

When the gene trap construct is being inserted into an intron of an endogenous gene, the marker genes of the construct are supposed to be spliced ^{at} mRNA level to the exons of the trapped gene by using the artificial splicing 25 acceptor and donor sites. More exactly while the Gal4 mRNA should be ^{joined} to the exon(s) located upstream of the insertion site, at the same time the mini-white mRNA is fused to the following exon(s) accomplishing the dual tagging of the trapped gene (Figure 5).

30 This feature can be used for quickly and easily

by changed expression of gene(s) disturbed by insertion of the P-element. The rescue can be made by expressing the cDNA of the suspected gene most preferable with identical spatial and temporary pattern than that of the gene itself.

5 As it was expected, the vector constructs of the first invention usually cause strong phenotypes. It's not surprising at all because the trapped genes are supposed to be split into two parts on mRNA level resulting in null mutants in majority of the cases. Accordingly mutants 10 obtained by this method frequently show homozygous lethality or sterility. Hypomorphic mutants can be obtained by forcing imprecise excision of the gene trap P-element construct.

As mentioned above, the Gal4 expression is obliged to reflect precisely to that of the trapped gene simply because 15 the Gal4 gene has ^{not} its own promoter and they share a common, fused mRNA.

This identical expression provides unique opportunity to rescue the mutant phenotype by crossing this fly with another one harboring the UAS directed, cloned cDNA of the 20 trapped gene.

On this way either the original, homozygous null mutant gene trap fly or any transheterozygous derivative of that with some hypomorphic allele over the null mutant allele can be rescued.

25

(4) Determination of spatial and developmental expression pattern of the trapped gene:

Histochemical determination of the spatially and temporarily controlled expression of any trapped gene is also 30 easy following introduction of a UAS-lacZ construct into the

particular nucleotides of the artificial regulatory sequences where it was expected.

On Figure 7, there are pictures of characteristic beta-galactosidase staining patterns in different parts of the fly brain resulted from crossing positive gene trap lines with flies harboring a UAS-lacZ construct.

Industrial Applicability

The vector system of this invention offers an exceptional opportunity for easy and fast cloning of the gene responsible for the observed phenotype. Furthermore, by using the UAS-driven coding sequence of any gene of interest, that particular gene can be expressed in identical patterns than those of the trapped genes and these expressions can be regulated temporarily at any desired developmental stage.

Sequence Listing

<110> Japan Science and Technology Corporation
<120> A Vector for Gene Trap, and A Method for Gene Trapping
20 by Using The Vector
<150> Japan, Application No. 10-141952
<151> 22 May 1998
<160> 1
<170> PatentIn Ver. 2.0.
25 <210> 1
<211> 11206
<212> DNA
<213> Artificial sequence
<220>
30 <221> 3' P sequence

<222> (1) .. (237)

<220>

<221> synthetic splicing acceptor site and stop/start sequence

5 <222> (238) .. (274)

<220>

<221> Gal4 gene (coding region and 3' UTR)

<222> (275) .. (3164)

<220>

10 <221> hsp70 terminator

<222> (3165) .. (3426)

<220>

<221> synthetic junction sequence

<222> 3427-3457

15 <220>

<221> heat shock promoter directed neomycin resistance gene on complementer strand

<222> (3458) .. (4907)

<220>

20 <221> mini-white gene

<222> (4908) .. (8275)

<220>

<221> synthetic splicing donor site

<222> (8276) .. (8299)

25 <220>

<221> 5' P sequence

<222> (8300) .. (8446)

<220>

<221> bacterial part of pCasper3 shuttle vector including complete pUC8 sequence

<222> (8447) .. (11206)
 <220>
 <221> synthetic DNA
 <222> (238) .. (274)
 5 (3427) .. (3457)
 (4908) .. (4914)
 (8276) .. (8299)
 <400> 1

10	catgatgaaa taacataagg tggtccogtc ggcaagagac atccacttaa cgtatgcttg caataagtgc gagtgaaagg aatagtattc tgagtgttgtt attgagtctg agtgagacag cgatatgatt gttgattaac ccttagcatg tccgtgggt ttgaattaac tcataatatt aattagacga aattattttt aaagtttat ttttaataat ttgcgagttac gcaaagctct ttctcttaca ggtcgaattt atgtgatgga tccaatgaag ctactgtctt ctatcgaaca agcatgcgat atttgcgcac taaaaaagct caagtgccttcc aaagaaaaac cgaagtgcgc	60 120 180 240 300 360
15	caagtgtctg aagaacaact gggagtgtcg ctactctccc aaaacccaaa ggtctccgct gactagggca catctgacag aagtggaaatc aaggctagaa agactggAAC agctatttct actgattttt cctcgagaag accttgacat gattttgaaa atggattctt tacaggatatt aaaagcattt ttaacaggat tatttttaca agataatgtg aataaagatg ccgtcacaga tagattggct tcagtggaga ctgatatgcc tctaaccattt agacagcata gaataagtgc	420 480 540 600 660
20	gacatcatca tcggaagaga gtagtaacaa aggtcaaaaga cagttgactt tatcgattttga ctcggcagct catcatgata actccacaat tccgttgat tttatgccca gggatgctct tcatggattt gattggctcg aagaggatga catgtcgat ggcttgcctt tcctgaaaac ggaccccaac aataatgggt tctttggcga cggttctctc ttatgtattt tcgtatctat tggctttaaa ccggaaaattt acacgaacttca acgttaac aggctccgaa ccatgatttttac	720 780 840 900 960
25	ggatagatac acgttggctt cttagatccac aacatccgtt ttacttcaaa gttatctcaa taattttac ccctactgccc ctatcgatca ctcaccgacg ctaatgtatgt tgtataataa ccagattgaa atcgctcgaa aggtcaatg gcaaatcctt tttactgca tattagccat tggagcctgg tttatagagg gggatctac tgatatagat gtttttactt atcaaaatgc taaatctcat ttgacgagca aggtcttcga gtcaggttcc ataattttgg tgacagccct	1020 1080 1140 1200 1260
30	acatcttctg tcgcgatata cacagtggag gcagaaaaaca aatacttagctt ataaatttca	1320

Vol/cf

	cagctttcc ataagaatgg ccatatcatt gggcttgaat agggacctcc cctcgccctt	1380
	cagtgatgc agcattctgg aacaaagacg ccgaatttgg tggctgtct actcttggga	1440
	gatccaattg tccctgctt atggtcgatc catccagctt tctcagaata caatctcctt	1500
	cccttcttct gtcgacgatg tgcagcgtac cacaacaggt cccaccatat atcatggcat	1560
5	cattgaaaaca gcaaggctct tacaagttt cacaaaaatc tatgaactag aaaaaacagt	1620
	aactgcagaa aaaagtcccta tatgtgcaaa aaaatgcttg atgatttcta atgagattga	1680
	ggaggtttcg agacaggcac caaagtttt acaaattggat atttccacca ccgcctctaac	1740
	caatttgtt aaggaacacc cttggctatc ctttacaaga ttcaactga agtggaaaca	1800
	gttgtctt atcatttatg tattaagaga tttttact aattttaccc agaaaaagtc	1860
10	acaactagaa caggatcaa atgatcatca aagttatgaa gttaaacgtat gctccatcat	1920
	gttaagcgat gcagcacaaa gaactgttat gtctgttgtt agctatatgg acaatcataa	1980
	tgtcacccca tattttgcct ggaatttttc ttattacttg ttcaatgcag tccttagtacc	2040
	cataaaagact ctactctcaa actcaaaatc gaatgctgag aataacgaga ccgcacaatt	2100
	attacaacaa attaacactg ttctgtatgct attaaaaaaaaa ctggccactt ttaaaatcca	2160
15	gacttgcgaa aaatacattc aagtactgga agaggtatgt ggcgcgttcc tggtatcaca	2220
	gtgtgcaatc ccattaccgc atatcagttta taacaatagt aatggtagcg ccattaaaaa	2280
	tattgtcggt tctgcaacta tcgccccata ccctactttt ccggaggaaa atgtcaacaa	2340
	tatcagtgtt aaatatgttt ctccctggctc agtagggcct tcacctgtgc cattgaaatc	2400
	aggagcaagt ttcatgtatc tagtcaagct gttatctaact cgtccaccct ctcgttaactc	2460
20	tccagtgaca ataccaagaa gcacacccctc gcatcgctca gtcacgcctt ttcttagggca	2520
	acagcaacag ctgcaatcat tagtgcact gaccccgctc gctttgtttg gtggcgccaa	2580
	tttaaatcaa agtggaaata ttgctgatag ctcattgtcc ttcaacttca ctaacagttag	2640
	caacggtccg aacccataaa caactcaaac aaattctcaa gogcttcac aaccaattgc	2700
	ctccctctaac gttcatgata acttcatgaa taatgaaatc acggctagta aaattgtatc	2760
25	tggtaataat tcaaaaaccac tgtcacctgg ttggacggac caaactgcgt ataacgcgtt	2820
	tggaatcact acagggatgt ttaataccac tacaatggat gatgtatata actatctatt	2880
	cgtatgtaa gatacccccac caaaccaaaaaaa aaaaagatcaa aatgaatcgt agataactgaa	2940
	aaaccccgca agttcacttc aactgtgcatt cgtgcaccat ctcaatttctt ttcatattata	3000
	catcgttttg cttttttta tgtaactata ctccctctaag ttcaatctt ggccatgtaa	3060
30	cctctgtatct atagaatttt ttaaatgact agaattaatg cccatctttt ttttggacct	3120

delex

aaattttca tgaaaatata ttacgagggc ttattcagaa gcttatcgat accgtcgact 3180
 aaaggccaaat agaaatttatt cagttctggc ttaagttttt aaaagtgata ttattttattt 3240
 ggttgttaacc aaccaaaaga atgtaaataa ctaatacata attatgttag ttttaagttt 3300
 gcaacaaatt gattttagct atattagcta ctgggttaat aaatagaata tattttattt 3360
 5 aagataattc gtttttattt tcagggagtg agtttgctta aaaactcggt tagatccact 3420
 agaaggaccg cggctcctcg accggatcga aaggagggcg aagaactcca gcatgagatc 3480
 cccgcgctgg aggatcatcc agccggcgtc ccggaaaacg attccgaagc ccaaccttcc 3540
 atagaaggcg gcgggtggaat cgaaatctcg tcatggcagg ttggcgctcg ctggcggt 3600
 catttcgaac cccagagtcc cgctcagaag aactcgtaa gaaggcgata gaaggcgatc 3660
 10 cgctgcgaat cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg 3720
 ccaagctctt cagcaatatc acgggtagcc aacgctatgt cctgatagcg gtccgccaca 3780
 cccagccggc cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcgcc 3840
 aagcaggcat cgccatgggt cacgacgaga tcctcgccgt cggcatgcg cgccttgagc 3900
 ctggcgaaca gttcggctgg cgcgagcccc tcatggcttt cgtccagatc atcctgatcg 3960
 15 acaagaccgg cttccatccg agtacgtgct cgctcgatgc gatgtttcgc ttgggtgtcg 4020
 aatgggcagg tagccggatc aagcgtatgc agccgcccga ttgcatacgc catgatggat 4080
 actttctcg caggagcaag gtgagatgac agagatcct gccccggcac ttcgcccata 4140
 agcagccagt cccttcccgcc ttcaatgc acgtcgagca cagctgcgca aggaacgccc 4200
 gtcgtggcca gccacgatag cgcgctgcc tcgtcctgca gttcattcag ggcaccggac 4260
 20 aggtcggctc tgacaaaaag aaccgggcgc ccctcgctg acagccggaa cacggcggca 4320
 tcagagcagc cgattgtctg ttgtgccag tcatagccga atagcctctc caccgaagcg 4380
 gcccggagaac ctgcgtgcaa tccatcttgt tcaatcatgc gaaacgatcc tcattctgtc 4440
 tcttgatcag atcccttatt cagagtttc ttcttgatt caataattac ttcttgccag 4500
 atttcagtag ttgcagttga ttacttggt tgctggttac ttttaattga ttcaattaa 4560
 25 cttgcacttt actgcagatt gtttagctt ttcagctcgctt tgcattttt tgcatttttt 4620
 tcgcttagcg acgtgttcac ttgcgttgc tgaattgaat tgctcgctcg tagacgaagc 4680
 gcctctattt atactccggc gtcctttcg cgaacattcg aggcgcgcgc tctcgaaacca 4740
 acgagagcag tatgcgtttt actgtgtgac agagtggag agcattagtg cagagaggaa 4800
 gagacccaaa aagaaaagag agaataacga ataacggcca gagaaatttc tcgagttttc 4860
 30 tttctgccaa acaaatttgc taccacaata accagttttt tttggatct agtccctaat 4920

Delete

Delete

	tctagtagtgt atgtaaggta	ataaaaacocct ttttggaga atgttagattt aaaaaaaacat	4980
	atttttttt tattttttac	tgcactggac atcattgaac ttatctgatc agttttaaat	5040
	ttacttcgat ccaagggtat	ttgaagtacc aggttcttgc gattacctct cactcaaaat	5100
	gacattccac tcaaagttag	cgtgtttgc ctccctctct gtccacagaa atatcgccgt	5160
5	ctctttcgcc gctgcgtccg	ctatctctt cgccaccgtt tgttagcgta cctagcgtca	5220
	atgtccgcct tcagttgcac	tttgtcagcg gtttcgtgac gaagctccaa gcgggttacg	5280
	ccatcaatta aacacaaaatg	gctgtgccaa aactcctctc gcttcttatt tttgtttgtt	5340
	ttttgagtga ttgggggttgt	gattggttt gggggtaa gcaggggaaa gtgtgaaaaa	5400
	tcccggaat gggccaagag	gatcaggagc tattaattcg cggaggcagc aaacacccat	5460
10	ctgcccagca tctgaacaat	gtgagtagta catgtgcata catcttaagt tcacttgatc	5520
	tataggaact gcgattgcaa	catcaaatttgc tctgcggcgt gagaactgcg acccacaaaa	5580
	atcccaaacc gcaatcgac	aaacaaaatag tgacacgaaa cagattattc tggtagctgt	5640
	gctcgctata taagacaatt	tttaagatca tatcatgatc aagacatcta aaggcattca	5700
	ttttcgacta cattttttt	tacaaaaaat ataacaacca gatattttaa gctgatccta	5760
15	gatgcacaaa aaataaataa	aagtataaac ctacttcgtt ggatacttcg tttgttcgg	5820
	ggtttagatga gcataacgct	tgttagttgat atttgagatc ccctatcatt gcagggtgac	5880
	agcggacgct tcgcagagct	gcattaacca gggcttcggg caggccaaaa actacggcac	5940
	gctcctgcca cccagtcgc	cgaggactc cggttcaggg agcggccac tagccgagaa	6000
	cctcacctat gcctggcaca	atatggacat ctttggggcg gtcaatcagc cgggctccgg	6060
20	atggcggcag ctggtcaacc	ggacacgcgg actattctgc aacgagcgac acataccggc	6120
	gcccgaggaaa catttgctca	agaacggtga gtttctatic gcagtcggct gatctgtgt	6180
	aaatcttaat aaagggtcca	attaccaatt taaaacttag tttgcggcgt ggcctatccg	6240
	ggcgaacttt tggccgtgat	ggcagttcc ggtgccggaa agacgaccct gctgaatgcc	6300
	cttgccttc gatcgccgca	gggcatccaa gtatcgccat cgggatgac actgctaat	6360
25	ggccaacctg tggacgccaa	ggagatgcag gccagggtcg cctatgtcca gcaggatgac	6420
	ctctttatcg gtccttaac	ggccaggggaa cacctgattt tccaggccat ggtgcggatg	6480
	ccacgacatc tgacctatcg	gcagcgagtg gccgcgtgg atcaggtgat ccaggagctt	6540
	tcgctcagca aatgtcagca	cacgatcatc ggtgtgcccg gcagggtgaa aggtctgtcc	6600
	ggcggagaaa ggaagcgct	ggcattcgcc tccgaggcac taaccgatcc gccgcttctg	6660
30	atctgcgatg agcccaccc	cgactggac tcatttaccc cccacagcgt cgtccagggtg	6720

ctgaagaagc tgcgcagaa gggcaagacc gtcatcctga ccattcatca gccgtttcc 6780
 gagctgttg agctcttga caagatcctt ctgatggccg agggcagggt agctttcttg 6840
 ggcactccca gcgaagccgt cgacttctt tcctagttag ttcgatgtgt ttattaagg 6900
 tatctagcat tacattacat ctcaactcct atccagcgtg ggtgccagc gtcctaccaa 6960
 5 ctacaatccg gcggactttt acgtacaggt gttggccgtt gtgcgggac gggagatcga 7020
 gtcccgtat cggatcgcca agatatgcga caatttgct attagcaaag tagccggga 7080
 tatggagcag ttgttggcca ccaaaaattt ggagaagcca ctggagcagc cggagaatgg 7140
 gtacacctac aaggccacct ggttcatgca gttccggcg gtcctgtggc gatcctggct 7200
 gtcggtgctc aaggaaccac tcctcgtaaa agtgcgactt attcagacaa cggtgagtgg 7260
 10 ttccagtgga aacaaatgat ataacgctta caattcttgg aaacaaattc gctagatttt 7320
 agttagaatt gcctgattcc acacccttct tagttttttt caatgagatg tatagtttat 7380
 agttttgcag aaaataaata aatttcattt aactcgcgaa catgttgaag atatgaatat 7440
 taatgagatg cgagtaacat ttaatttgc agatgggtgc catcttgatt ggcctcatct 7500
 ttttggcca acaactcagc caagtggcg tgatgaatat caacggagcc atcttcctct 7560
 15 tcctgaccaa catgacccctt caaaacgtct ttgccacgat aaatgttaagt ctgtttaga 7620
 atacatttgc atattaataa ttactaact ttctaattgaa tcgattcgat ttaggtgttc 7680
 acctcagagc tgccagttt tatgagggag gcccgaagtc gactttatcg ctgtgacaca 7740
 tactttctgg gcaaaacgat tgccgaattt ccgtttttc tcacagtgcc actggcttc 7800
 acggcgattt cctatccgat gatcgactg cggccggag tgctgcactt cttcaactgc 7860
 20 ctggcgctgg tcactctggt ggccaatgtg tcaacgtcct tcggatatct aatatcctgc 7920
 gccagctcct cgacctcgat ggcgctgtct gtgggtccgc cggttatcat accattcctg 7980
 ctctttggcg gcttcttctt gaactcgggc tcggtgccag tatacctcaa atgggtgtcg 8040
 tacctctcat ggttccgtta cgccaaacgag ggtctgctga ttaaccaatg ggcggacgtg 8100
 gagccggcg aaattagctg cacatcgctg aacaccacgt gcccagttc gggcaaggc 8160
 25 atcctggaga cgcttaactt ctccggcc gatctggccg tggactacgt gggtctggcc 8220
 attctcatcg tgagcttccg ggtgctcgca tatctggctc taagacttcg ggcccgacgc 8280
 aaggagtaga aggttaagtag cggccgcacg taagggttaa tgtttcaaa aaaaaattcg 8340
 tccgcacaca accttcctc tcaacaagca aacgtgcact gaatttaagt gtatacttcg 8400
 gtaagctcg gctatcgacg ggaccacctt atgttatttc atcatggcc agacccacgt 8460
 30 agtccagcgg cagatcgccg gcggagaagt taagcgtctc caggatgacc ttgcccgaac 8520

Delete

Delete

	tggggcacgt ggtgttcgac	gatgtgcagc taattcgcc cggctccacg	tccgccatt	8580
	ggtaatcag cagaccctcg	ttggcgtaac ggaaccatga gaggtacgac	aaccatttga	8640
	ggtatactgg caccgagccc	gagttcaaga agaaggcggtt	tttccatagg ctccgcccc	8700
	ctgacgagca tcacaaaaat	cgacgctcaa gtcagaggtg	gcgaaacccg acaggactat	8760
5	aaagatacca ggcgtttccc	cctggaaagct ccctcgtcg	ctctcctgtt ccgaccctgc	8820
	cgcttacccg atacctgtcc	gcctttctcc cttcggaag	cgtggcgctt tctcaatgct	8880
	cacgctgttag gtatctcagt	tcggtgttagg tcgttcgctc	caagctggc tgtgtgcacg	8940
	aaccccccgt tca gcccgac	cgtcgccct tatccggtaa	ctatcgctt gagtccaacc	9000
	cggtaagaca cgacttatcg	ccactggcag cagccactgg	taacaggatt agcagagcga	9060
10	ggtatgttagg cggtgctaca	gagttcttga agtggtgcc	taactacggc tacactagaa	9120
	ggacagtatt tggtatctgc	gctctgctga agccagttac	cttcggaaaaa agagttggta	9180
	gctcttgatc cggcaaacaa	accaccgctg	gtacgggtgg ttttttgtt tgcaagcagc	9240
	agattacgcg cagaaaaaaaaa	ggatctcaag aagatcctt	gatctttct acgggtctg	9300
	acgctcagtg gaacgaaaac	tcacgttaag ggatttttgtt	catgagatta tcaaaaagga	9360
15	tcttcaccta gatccttttta	aattaaaaat gaagttttaa	atcaatctaa agtatatatg	9420
	agtaaacttg gtctgacagt	taccaatgct taatcagtga	ggcacctatc tcagcgatct	9480
	gtctatttcg ttcatccata	gttgcctgac tccccgtcgt	gtagataact acgatacggg	9540
	agggcttacc atctggcccc	agtgctgcaa tgataccgcg	agacccacgc tcaccggctc	9600
	cagatttac agcaataaac	cagccagccg	gaagggccga gcgcagaagt ggtcctgcaa	9660
20	ctttatccgc ctccatccag	tctattaatt gttgccggga	agctagagta agtagttcgc	9720
	cagttaatag tttgcgcaac	gttgggccca ttgctacagg	catcgtggtg tcacgctcgt	9780
	cgtttggat ggtttcattc	agctccgggtt	ccaaacgatc aaggcgagtt acatgatccc	9840
	ccatgttgtg caaaaaagcg	gttagctcct tcggcctcc	gatcggtgtc agaagtaagt	9900
	tggccgcagt gttatcactc	atggttatgg cagcactgca	taattctctt actgtcatgc	9960
25	catccgtaag atgctttct	gtgactggtg	agtactcaac caagtcatcc tgagaatagt	10020
	gtatgcggcg accgagttgc	tcttgcccg	cgtcaacacg ggataataacc gcgccacata	10080
	gcagaacttt aaaagtgctc	atcattggaa aacgttcttc	ggggcgaaaa ctctcaagga	10140
	tcttaccgct gttgagatcc	agttcgatgt	aacctactcg tgcacccaac tgatttcag	10200
	catcttttac ttccaccagc	gtttctgggt	gagcaaaaac aggaaggcaa aatgcgc当地	10260
30	aaaaggaaat aaggcgaca	cggaaatgtt	gaataactcat actcttcctt tttcaatatt	10320

attgaagcat ttatcagggt tattgtctca tgagcggata catatggaa tgtatggaa 10380
aaaataaaca aataggggtt ccgcgcacat ttcccccggaa agtgcacact gacgtctaag 10440
aaaccattat tatcatgaca ttaacctata aaaataggcg tatcacgagg cccttcgtc 10500
tcgcgcgttt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggta 10560
5 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 10620
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 10680
accatatgcg gtgtgaaata ccgcaccgaa tcgcgcggaa ctaacgacag tcgctccaag 10740
gtcgtcgaac aaaagggtgaa tgtgttgcgg agagcgggtg ggagacagcg aaagagcaac 10800
tacgaaacgt ggtgtggtg aggtgaatta tgaagagggc gcgcgatttg aaaagtatgt 10860
10 atataaaaaa tatatccgg ttttttatgt agcgataaac gagttttga tgtaaggtat 10920
gcaggtgtgt aagtcttttgc tttagaagac aaatccaaag tctacttgtg gggatgttcg 10980
aaggggaaat acttgttattc tataggtcat atcttggttt tattggcaca aatataatta 11040
cattagcttt ttgagggggc aataaacagt aaacacgatg gtaataatgg taaaaaaaaa 11100
aacaaggagt tatttcggat atatgtcggc tactccttgc gtccggcccg aagtcttaga 11160
15 gccagatatg cgagcaccccg gaagctcacg atgagaatgg ccagac 11206

delete

22 14

CLAIMS

What is Claimed is:

1. A vector for trapping an unknown gene of *Drosophila melanogaster*, which is a recombinant plasmid comprising the following nucleotide sequences in this order:
 - 5 an artificial consensus splicing acceptor site;
 - a synthetic "stop/start" sequence;
 - a reporter gene;
 - a drug resistance gene;
 - 10 a gene responsible for a detectable phenotype of the *Drosophila melanogaster*; and
 - a synthetic splicing donor site.
2. The vector of claim 1, wherein the recombinant plasmid
15 is derived from pCasper3.
3. The vector of claim 1 or 2, wherein the reporter gene
is the Gal4 gene.
- 20 4. The vector of claim 3, which has the nucleotide sequence of SEQ ID No. 1.
5. The vector of claim 1 or 2, wherein the reporter gene
is Gal4 DNA binding domain-P53 fusion gene.
- 25 6. The vector of claim 1 or 2, wherein the reporter gene
is the Gal4-firefly luciferase fusion gene.
7. The vector of any one of claims 1-6, wherein the gene
responsible for a detectable phenotype of the *Drosophila melanogaster* is mini-white gene.
30

~~28~~ 15

8. The vector of any one of claims 1-7, wherein the drug resistance gene is neomycin-phosphotransferase gene and its promoter is a heatshock promoter.

5

9 A vector derived from pCasperhs, which has the heatshock promoter directed Gal4 activator domain-large T antigen fusion gene within polycloning site of the pCasperhs.

10 10. A method for trapping an unknown gene of *Drosophila melanogaster* by using a vector which is a recombinant plasmid comprising the following nucleotide sequences in this order:
an artificial consensus splicing acceptor site;
a synthetic "stop/start" sequence;
15 a reporter gene;
a drug resistance gene;
a gene responsible for a detectable phenotype of the *Drosophila melanogaster*; and
a synthetic splicing donor site,

20 which method comprises the steps of:

- (a) introducing the vector into the genome of a white minus fly;
- (b) selecting primary transformants resistant to a drug;
- (c) crossing the primary transformants with a transposase source strain to force the vector to jump into other locations;
- (d) selecting secondary transformants by picking up the flies having strong eye color;
- (e) crossing the secondary transformants with UAS (Upstream Activator Sequence)-luciferase harboring strain and measuring

30

the reporter gene expression of the resultant flies; and
(f) identifying the trapped gene by cloning and sequencing
the cDNAs fused to the reporter gene and the gene responsible
for a detectable phenotype of the fly.

5

11. The method according to claim 10, wherein the
recombinant plasmid is derived from pCasper3.

10 12. The method according to claim 10 or 11, wherein the
reporter gene in the vector is the Gal4 gene, and in the step
(e) the Gal4 expression is measured.

15 13. The method according to claim 10 or 11, wherein the
reporter gene of the vector is the Gal4-firefly luciferase
fusion gene, and in the step (e) expression of said fusion
gene is measured without crossing the secondary transformants
with UAS-luciferase harboring strain.

20 14. The method according to any one of claims 10 to 14,
wherein the gene responsible for a detectable phenotype of
the *Drosophila melanogaster* is mini-white gene, and in the
step (f) the cDNAs fused to the reporter gene and the mini-
white gene are cloned and sequenced.

25 15. The method according to any one of claims 10 to 15,
wherein the drug resistance gene is neomycin-
phosphotranspherase gene and its promoter is a heatshock
promoter, and in the step (b) the transformants resistant to
G418 is selected.

30 16. A method for trapping an unknown gene of *Drosophila*

25 17

Drosophila melanogaster by using a vector A which is a recombinant plasmid comprising the following nucleotide sequences in this order:

- an artificial consensus splicing acceptor site;
- 5 a synthetic "stop/start" sequence;
- Gal4 DNA binding domain-P53 fusion gene as a reporter gene;
- a drug resistance gene;
- a gene responsible for a detectable phenotype of the *Drosophila melanogaster*; and
- 10 a synthetic splicing donor site,
- and a vector B derived from pCasperhs, which has the heatshock promoter directed Gal4 activator domain-large T antigen fusion gene within polycloning site of the pCasperhs, which method comprises the steps of:
- 15 (a) introducing each of the vectors A and B into the genomes of separate white minus flies;
- (b) selecting primary transformants for the vector A which are resistant to a drug, and selecting primary transformants for the vector B which have an eye color;
- 20 (c) crossing the primary transformants for the vector A with a transposase source strain to force the vector to jump into other locations;
- (d) selecting secondary transformants for the vector A by picking up the flies having strong eye color;
- 25 (e) crossing the secondary transformants with the primary transformants for the vector B to obtain flies harboring both the vectors A and B;
- (f) crossing the flies obtained in the step (e) with an UAS-luciferase harboring fly strain and measuring the reporter gene expression of the resultant flies after a

26.18

heatshock treatment; and

(g) identifying the trapped gene by cloning and sequencing the cDNAs fused to the reporter gene and the gene responsible for a detectable phenotype of the fly.

5

17. The method according to claim 16, wherein the vector A is derived from pCasper3.

18. The method according to claim 16 or 17, wherein the 10 gene responsible for a detectable phenotype of the *Drosophila melanogaster* is mini-white gene, and in the step (g) the cDNAs fused to the reporter gene and the mini-white gene are cloned and sequenced.

15 19. The method according to any one of claims 16 to 18, wherein the drug resistance gene is neomycin-phosphotranspherase gene and its promoter is a heatshock promoter, and in the step (b) the transformant resistant to G418 is selected.