Week 8

Juan Patricio Carrizales Torres Section 6: Cartesian Products of Sets

September 14, 2021

Problem 62. Describe the graph of the circle whose equation is $x^2 + y^2 = 4$ as a subset of $\mathbb{R} \times \mathbb{R}$.

Solution. The graph of the equation $x^2+y^2=4$ is the set $C=\{(x,y)\in\mathbb{R}\times\mathbb{R}:x^2+y^2=4\}$. The set $C\subset\mathbb{R}^2$.

Problem 63. List the elements of the set $S = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : |x| + |y| = 3\}$. Plot the corresponding points in the Euclidean xy-plane.

Solution . The set

$$S = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : |x| + |y| = 3\}$$

= \{(1, 2), (-1, 2), (1, -2), (-1, -2), (3, 0), (-3, 0), (2, 1), (-2, 1), (2, -1), (-2, -1), (0, 3), (0, -3)\}

The next figure shows the plot of these points in the Euclidean xy-plane.

Problem 64. For $A = \{1, 2\}$ and $B = \{1\}$, determine $\mathcal{P}(A \times B)$.

Solution. The set $A \times B = \{(1,1), (2,1)\}$. Since $|A \times B| = 2$, it follows that $|\mathcal{P}(A \times B)| = 2^2 = 4$. The set $\mathcal{P}(A \times B) = \{\emptyset, \{(1,1)\}, \{(2,1)\}, A \times B\}$.

Problem 65. For $A = \{x \in \mathbb{R} : |x-1| \le 2\}$ and $B = \{y \in \mathbb{R} : |y-4| \le 2\}$, give a geometric description of the points in the xy-plane belonging to $A \times B$.

Solution. The sets A = [-1,3] and B = [2,6]. Since the cartesian product $A \times B = \{(a,b): a \in [-1,3] \text{ and } b \in [2,6]\}$, it follows that the points in $A \times B$ are found on and inside the square bounded by x = -1, x = 3, y = 2 and y = 6 (Note that each side is of length 4 units).

Problem 66. For $A = \{a \in \mathbb{R} : |a| \le 1\}$ and $B = \{b \in \mathbb{R} : |b| = 1\}$, give a geometric description of the points in the *xy*-plane belonging to $(A \times B) \cup (B \times A)$

Solution. The sets A = [-1,1] and $B = \{-1,1\}$. Each point in $A \times B = [-1,1] \times \{-1,1\}$ lies on one of the two horizontal parallel lines y = -1 and y = 1 with $x \in [-1,1]$. Also, each point in $B \times A = \{-1,1\} \times [-1,1]$ lies on one of the two vertical parallel lines x = -1 and x = 1 with $y \in [-1,1]$. Thus, all the points belonging to $(A \times B) \cup (B \times A)$ lie just on (not inside) the square bounded by x = -1, x = 1, y = -1 and y = 1.