

Quantum Logic Gates

Quantum Logic Gates

- Hadamard Gate (H)
- Pauli-X Gate (X)
- Pauli-Y Gate (Y)
- Phase Gate (S)
- T Gate
- Controlled-NOT Gate (CNOT)
- Swap Gate
- Toffoli Gate (CCNOT)
- Fredkin Gate (CSWAP)

Single-Qubit Gates

- 1. Pauli-X Gate (X)
- 2. Pauli-Y Gate (Y)
- 3. Pauli-Z Gate (Z)
- 4. Hadamard Gate (H)
- 5. Phase Gate (S and T)

Two-Qubit Gates

- 1. Controlled-NOT Gate (CNOT)
- 2. Controlled-Z Gate (CZ)
- 3. SWAP Gate
- 4. Controlled-Hadamard Gate (CH)

Bloch sphere

Properties of Quantum Gates

- Reversibility
- Unitary Operations
- Linear Algebra

Single-Qubit Gates	Two-Qubit Gates
Operate on individual qubits	Operate on pairs of qubits
Change the state of a single qubit	Create entanglement and conditional operations
2x2 unitary matrices	4x4 unitary matrices
Easier to implement and understand	More complex due to interactions between qubits
All operations are reversible	All operations are reversible
Prepare initial states, apply transformations	Create entanglement, essential for quantum algorithms
Initializing and manipulating individual qubits	Implementing entanglement, executing quantum algorithms
Bloch sphere for single- qubit states	More complex state space representation
Basis for building more	Enable quantum speedup
	Operate on individual qubits Change the state of a single qubit 2x2 unitary matrices Easier to implement and understand All operations are reversible Prepare initial states, apply transformations Initializing and manipulating individual qubits Bloch sphere for single-qubit states

Quantum algorithms

- 1. Shor's Algorithm
- 2. Grover's Algorithm
- 3. Quantum Fourier Transform (QFT)
- 4. Deutsch-Jozsa Algorithm
- 5. Simon's Algorithm
- 6. Quantum Phase Estimation (QPE)
- 7. Amplitude Amplification
- 8. HHL Algorithm
- 9. Variational Quantum Eigensolver (VQE)
- 10. Quantum Approximate Optimization Algorithm (QAOA)