Exos AL2 - Déterminants

Exercice 1

Donner une forme factorisée des déterminants suivants (avec $(a, b, c) \in \mathbb{K}^3$):

$$D_1 = \begin{vmatrix} a & b & ab \\ a & c & ac \\ b & c & bc \end{vmatrix}; \qquad D_2 = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}; \qquad D_3 = \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \qquad D_4 = \begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$

Exercice 2

Résoudre dans \mathbb{R} :

$$\begin{vmatrix} 3-x & 2 & -1 \\ 2 & -x & 2 \\ 2 & -3 & 5-x \end{vmatrix} = 0; \qquad \begin{vmatrix} 1-x & 1 & \cdots & 1 \\ 2 & 2-x & \cdots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ n & n & \cdots & n-x \end{vmatrix} = 0 \text{ où } n \in \mathbb{N}^*.$$

Exercice 3

Calculer les déterminants d'ordre n suivants :

$$\Delta_{1}(n) = \begin{vmatrix} 1 & n & n & \cdots & n \\ n & 2 & n & \cdots & n \\ n & n & 3 & \cdots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & \cdots & n \end{vmatrix}; \qquad \Delta_{2}(n) = \begin{vmatrix} 0 & 1 & \cdots & 1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \cdots & -1 & 0 \end{vmatrix}; \qquad \Delta_{3}(n) = \begin{vmatrix} 2 & 1 & 0 & \cdots & 0 \\ 1 & 2 & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 2 & 1 \\ 0 & \cdots & 0 & 1 & 2 \end{vmatrix}$$

${f Exercice}\, {f 4}$

Pour $a \in \mathbb{R}^*$ et $n \in \mathbb{N}^*$, on considère le déterminant d'ordre n suivant :

$$D_n = \begin{vmatrix} 1+a^2 & a & 0 & \cdots & 0 \\ a & 1+a^2 & \ddots & (0) & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & (0) & \ddots & 1+a^2 & a \\ 0 & \cdots & 0 & a & 1+a^2 \end{vmatrix}$$

1. Montrer que pour tout $n \geq 3$, on a :

$$D_n = (1+a^2)D_{n-1} - a^2D_{n-2}.$$

2. En déduire la valeur de D_n pour tout $n \in \mathbb{N}^*$.

Exercice 5

Soit
$$a \in \mathbb{C}$$
 et $M = \begin{pmatrix} 1 & a & & 0 \\ & \ddots & & \\ 0 & & \ddots & a \\ a & 0 & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$

- **1.** Calculer det(M) en fonction de a.
- **2.** Déterminer le rang de M en fonction de a.

Exercice 6

Soit $n \in \mathbb{N}^*$. Calculer le déterminant de l'endomorphisme :

$$f: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P \mapsto XP' + P.$$

Exercice 7

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ telles que $D \in GL_n(\mathbb{K})$ et CD = DC. Montrer que :

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC).$$

Indication : Calculer $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A_1 & 0 \\ C_1 & D_1 \end{pmatrix}$ où A_1, C_1 et D_1 sont des matrices de $\mathcal{M}_n(\mathbb{K})$ judicieusement choisies.

Exercice 8

Soient $n \in \mathbb{N}$ tel que $n \geq 2$ et $(x_1, ..., x_n) \in \mathbb{R}^n$.

On définit le déterminant de Vandermoonde d'ordre n, noté $V(x_1,...,x_n)$ par :

$$V_n(x_1, ..., x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}.$$

Montrer par récurrence que $\forall n \geq 2, V_n(x_1, ...x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i).$