Triadic Projection Semantics

Abstract

We refine the Deleuze-aligned difference triad to a mathematically auditable device that integrates with a pullback-based structural core. The projection pipeline

$$\Phi_{\kappa} = q_{\kappa} \circ \rho \circ \mathrm{Obs}_{\star} : X \to I_{\kappa}$$

induces three regimes: Displacement (kernel flow), Symmetry/Masquerade (a Φ_{κ} -preserving étale groupoid action), and Bifurcation (transverse discriminant crossings). We separate the discriminant into mechanism-side differential criticality, appearance-side image singularities, and policy-side semantic jumps, and we upgrade the space of forms by a jet-augmented orbit construction. On a regularity hypothesis we prove invariance laws, a short exact sequence

$$0 \to \ker d\Phi_{\kappa} \to TX \xrightarrow{d\Phi_{\kappa}} \Phi_{\kappa}^*(TI_{\kappa}) \to 0,$$

a Lie correspondence on the identity component, and a dynamic normal form (displacement of symmetry of displacement). Interfaces to the event-visible layer and to the pullback alignment space are stated explicitly.

1 Motivation and Adjustments

We adopt the standard academic naming and strengthen auditability: (i) rename Masquer-ade as Symmetry (Masquerade) to emphasize groupoid actions; (ii) explicitly use an étale groupoid for Φ_{κ} -preserving local diffeomorphisms, recording isotropy types; (iii) add a jetaugmentation to boundary types to stabilize audits near singular sets; (iv) separate the discriminant into three disjoint sources (mechanism/appearance/policy) to avoid conflation; (v) retain the triad as complete for regular-region classification; singular windows are handled by exception rules only.

Structure of the Section. Section 2 fixes notation and the regularity hypothesis. Section 3 defines the triad and the discriminant calculus. Section 4 constructs forms via groupoid orbits with jet augmentation. Section 5 proves the regular-region results (exactness, Lie correspondence, dynamic normal form). Section 6 states the event-visible and pullback interfaces. A two-line toy example closes the section.

2 Notation and Regularity

Let $X = \Delta_{\text{gen}}$ be the generated difference space. Fix a readable gate $U_{\star} \subseteq X$ and an observation map $\text{Obs}_{\star}: U_{\star} \to \delta_{\star}$ with a public test family T_{\star} (calibration, thresholds, time windows, sampling law). Let $\rho: \delta_{\star} \to \mathcal{R}$ be a least-form selector; let $q_{\kappa}: \mathcal{R} \to I_{\kappa}$ be an identity-criterion projection ($\kappa \in \{\text{identity, similarity, analogy, negation}\}$). Set $\Phi_{\kappa} = q_{\kappa} \circ \rho \circ \text{Obs}_{\star}: X \to I_{\kappa}$. Write $\Sigma \subset I_{\kappa}$ for appearance singularities and $I_{\kappa}^{\text{reg}} = I_{\kappa} \setminus \Sigma$. Let $\nu: I_{\kappa}^{\text{reg}} \to \mathcal{R}$ be the type map; define the kernel distribution $\mathcal{V} := \ker d\Phi_{\kappa} \subset TX$.

Regularity hypothesis (H_{reg}) . On $X \setminus Disc(\Phi_{\kappa})$ the differential $d\Phi_{\kappa}$ has locally constant rank; ρ is locally constant; ν is locally constant along Φ_{κ} -fibres.

3 The Triad and the Discriminant Calculus

Definition 3.1 (Difference triad). Displacement is the flow along $\mathcal{V} = \ker d\Phi_{\kappa}$; if $\dot{x} \in \mathcal{V}$, then $\Phi_{\kappa}(x(t))$ is locally constant. Symmetry (Masquerade) is the action of the Φ_{κ} -preserving étale groupoid

$$\operatorname{Aut}_{\Phi_{\kappa}} := \{ g : U \to V \text{ local diffeomorphism } | \Phi_{\kappa} \circ g = \Phi_{\kappa} \text{ on } U \}.$$

Bifurcation (deterritorialization) is a transverse crossing of the discriminant that changes the type ν .

Definition 3.2 (Discriminant split). The discriminant decomposes as

$$\operatorname{Disc}(\Phi_{\kappa}) = \underbrace{\operatorname{Crit}(\Phi_{\kappa})}_{mechanism: \ rank \ drop} \cup \underbrace{\Phi_{\kappa}^{-1}(\Sigma)}_{appearance: \ image \ folds} \cup \underbrace{J(\rho \circ \operatorname{Obs}_{\star})}_{policy: \ semantic \ jump}.$$

On $X \setminus \text{Disc}(\Phi_{\kappa})$ the map Φ_{κ} is a submersion and ν is locally constant.

Remark 3.1 (Boundary semantics). A pair (r_i, r_j) is a semantic boundary when $\overline{\nu^{-1}(r_i)}$ and $\overline{\nu^{-1}(r_j)}$ meet along $\operatorname{Disc}(\Phi_{\kappa})$. A boundary witness is a curve γ with $\gamma \cap \operatorname{Disc}(\Phi_{\kappa})$ and a recorded jet-type change.

4 Forms by Groupoid Orbits and Jet Augmentation

Definition 4.1 (Orbit forms). Let \mathcal{P} be the pseudogroup generated by local flows of vector fields in $\Gamma(\mathcal{V})$ and by arrows of $\operatorname{Aut}_{\Phi_{\kappa}}$. For $z, z' \in \delta_{\star}$, write $z \sim z'$ if $z' = h \cdot z$ for some $h \in \mathcal{P}$. The space of forms is $\mathcal{R} := \delta_{\star} / \sim$, stratified by isotropy type. A jet-augmented representative is

$$r = (\operatorname{nf}(z), [\operatorname{Iso}(z)], \mathbf{j}_z),$$

where [Iso(z)] is the stabilizer class and \mathbf{j}_z is a finite germ/jet anchored on Disc(Φ_{κ}) for auditable boundary types.

5 Regular-Region Results

Proposition 5.1 (Exactness at regular points). Under (H_{reg}) there is a short exact sequence of vector bundles

$$0 \longrightarrow \mathcal{V} \longrightarrow TX \xrightarrow{d\Phi_{\kappa}} \Phi_{\kappa}^*(TI_{\kappa}) \longrightarrow 0,$$

and
$$\mathcal{V}_x = T_x \Big(\Phi_{\kappa}^{-1} (\Phi_{\kappa}(x)) \Big)$$
.

Theorem 5.1 (Lie correspondence, identity component). Let $\Gamma(\mathcal{V}) = \{ V \in \mathfrak{X}(X) : d\Phi_{\kappa} \circ V = 0 \}$. If V integrates, its local flow ψ_t preserves Φ_{κ} . Conversely, a path $g_t \in \operatorname{Aut}_{\Phi_{\kappa}}$ with $g_0 = \operatorname{id}$ has generator $V \in \Gamma(\mathcal{V})$. Hence

$$\operatorname{Lie}\left(\operatorname{Aut}_{\Phi_{\kappa}}^{0}\right) \cong \Gamma(\mathcal{V}).$$

Theorem 5.2 (Dynamic normal form). Any local Φ_{κ} -preserving evolution on I_{κ}^{reg} factors as displacement \circ symmetry (masquerade) \circ displacement.

Near the singular set, bifurcations must be admitted.

Remark 5.1 (Exception window). At $\operatorname{Disc}(\Phi_{\kappa})$, the dimension of \mathcal{V} may jump; vertical flows may fail to preserve Φ_{κ} globally. Results above apply on regular open sets; singular cases require stratified or semialgebraic refinements.

6 Event-Visible and Pullback Interfaces

Event-visible layer. Equip the bridging theory \mathcal{A}_{\min} with time and replayable traces, producing \mathcal{A}_{evt} and a functor $J: \mathcal{A}_{\min} \to \mathcal{A}_{\text{evt}}$. Define the event-visible alignment space

$$\mathcal{P}_{\mathrm{evt}} := \mathcal{C}_W \times_{\mathcal{A}_{\mathrm{evt}}} \mathcal{D}_W.$$

Non-isolated interleavings that change Φ_{κ} or ν across executions break alignment; isolation/compensation must be declared.

Pullback interface. Let $F: \mathcal{C}_W \to \mathcal{A}_{\min}$ and $G: \mathcal{D}_W \to \mathcal{A}_{\min}$ be faithful bridging functors; let $S: \mathcal{A}_{\min} \to \delta_{\star}$ preserve T_{\star} . For $(X, A, \theta) \in \mathcal{P} := \mathcal{C}_W \times_{\mathcal{A}_{\min}} \mathcal{D}_W$, semantic compatibility holds when

$$\rho(S \circ F(X)) = \rho(S \circ G(A)), \qquad \Phi_{\kappa}(S \circ F(X)) = \Phi_{\kappa}(S \circ G(A))$$

on a regular neighborhood in $I_{\kappa}^{\rm reg}$.

7 Toy Example (two lines)

Let $\Phi(x, y) = (x, y^2)$ and $\rho(u, v) = \mathbf{1}_{\{v > 1\}}$. Then

$$\mathrm{Crit}(\Phi)=\{y=0\},\quad \Sigma=\{v=0\}=\Phi(\mathrm{Crit}),\quad J(\rho\circ\Phi)=\{y=\pm1\}.$$

Displacement flows slide along $\{(x,y): y \neq 0\}$ preserving $v=y^2$; symmetry adds $(x,y) \mapsto (x,-y)$; crossing $y=\pm 1$ flips the type ν .

Minimal Audit Ledger (this module)

Gate U_{\star} and tests T_{\star} ; ρ , q_{κ} , Φ_{κ} ; discriminant report $\operatorname{Crit} \cup \Phi_{\kappa}^{-1}(\Sigma) \cup J(\rho \circ \operatorname{Obs}_{\star})$; groupoid data (arrows, isotropy classes); jet-augmented form representatives; regularity domain; boundary witnesses (curves and jet-type transitions).