General Topology - HW 4

SungBin Park, Physics, 20150462

November 7, 2018

Problem 8 in HW 3

Problem 1

Take arbitrary two point $x, y \in f(X)$. f is surjection for codomain f(X), so there exists $\alpha, \beta \in X$ such that $f(\alpha) = x$ and $f(\beta) = y$. Since X is path connected, there exists continuous $\gamma : [a, b] \to X$, $a, b \in \mathbb{R}$ such that $\gamma(a) = \alpha$, $\gamma(b) = \beta$. Consider $f \circ \gamma$, then $f \circ \gamma : [a, b] \to f(X)$ such that $f \circ \gamma(a) = f(\alpha) = x$ and $f \circ \gamma(b) = f(\beta) = y$. Then, it is path from x to y, and f(X) is path connected.

Problem 2

Let C, D be separation of $\bigcup A_n$, then for each i, $A_i \subset C$ or D since A_i 's are connected. WLOG, assume $A_1 \subset C$, and j be the smallest integer such that $A_j \subset D$ since \mathbb{N} is well-ordered set. Then, $A_{j-1} \subset C$ and it means connected $A_{j-1} \cup A_j$ have a separation C, D. Since $A_{j-1} \cap A_j \neq \phi$, it is connected, so it generates contradiction. Therefore, $A_i \subset C$ for all i, and it is contradiction to existence of separation. Therefore, $\bigcup A_n$ is connected.

Problem 3

Fix $x \in A_{\alpha_0}$ and let $\mathcal{C}_x = \{A_{\alpha} | x \in A_{\alpha}\}$, then $A_{\alpha_0} \bigcup_{A \in \mathcal{C}_x} A$ is connected. Let it B_x . Then, $\bigcup_{y \in A_{\alpha_0}} B_y$ is connected since $x \in A_{\alpha_0} \subset B_y$ for each $y \in A_{\alpha_0}$. Therefore, $\bigcup A_{\alpha}$ is connected.

Problem 4

Let $\overline{A} \cap \overline{X} - \overline{A} \cap C = \phi$. Then, $(\overline{A} \cap C) \cap (\overline{X} - \overline{A} \cap C) = \phi$. However, $(\overline{A} \cap C)^c$ and $(\overline{X} - \overline{A} \cap C)^c$ is open set in C and forms separation of C since $(\overline{A} \cap C) \cup (\overline{A} \cap C) = (\overline{A} \cup \overline{X} - \overline{A}) \cap C = C$ and they are disjoint. Therefore, C is not connected, which is contradiction. Therefore, $\overline{A} \cap \overline{X} - \overline{A} \cap C \neq \phi$.

Problem 5

I'll use modify the proof of the theorem in Munkers: A finite cartesian product of connected space is connected. Let's fix $a \in A^c$, $b \in B^c$ since they are proper subset. We know that $X \times b$ (resp. $a \times Y$) is connected since it is homeomorphic with X (resp. Y). As a result, $(X \times b) \cup (a \times Y)$ is connected. Define

$$T_x = (X \times b) \cup (x \times Y)$$

$$S_y = (X \times y) \cup (a \times Y),$$

then $\bigcup_{x \in A^c} T_x$ and $\bigcup_{y \in B^c} S_y$ are connected since they shares common point (a, b). By the same reason, $(\bigcup_{x \in A^c} T_x) \cup (\bigcup_{y \in B^c}) S_y$ is connected. For any point $(c, d) \in (X \times Y) - (A \times B)$, $c \notin A$ or $d \notin B$, and it means $(c, d) \in (\bigcup_{x \in A^c} T_x) \cup (\bigcup_{y \in B^c}) S_y$. Therefore, $(X \times Y) - (A \times B) = (\bigcup_{x \in A^c} T_x) \cup (\bigcup_{y \in B^c}) S_y$ and it is connected.

Problem 6

- A. Let $K = \{\alpha_1, \dots, \alpha_n\}$ and $\psi_K : X_K \to X^n$ such that $\psi_K = (\pi_{\alpha_1}, \dots, \pi_{\alpha_n})$. By the definition of X_K , ψ_K is bijective and bicontinuous. Thus X_K is connected.
- B. For all K, $a \in X_K$, so $\bigcup_{K \in F} X_K$ is connected.
- C. Since $X \supset \overline{\bigcup_{K \in F} X_K}$, we need to show that $X \subset \overline{\bigcup_{K \in F} X_K}$. Let $|K| < \infty$, then we can set $K = \{\alpha_1, \ldots, \alpha_{|K|}\}$, so $X = \overline{\bigcup_{K \in F} X_K}$. Let K is infinite set. Fix $x \in X$. For any open neighborhood of X $U, \pi_{\alpha}(U) = X$ for all but finitely many. For the finite set L, let

$$y = \begin{cases} a_{\alpha} & \text{For } \alpha \notin L \\ x_{\alpha} & \text{For } \alpha \in L \end{cases}$$

Then, $y \in U$. Therefore, $x \in \overline{\bigcup_{K \in F} X_K}$ and $X = \overline{\bigcup_{K \in F} X_K}$.

Problem 7

The nontrivial term is $\{0\} \times [-1,1]$, so I'll show that \overline{S} contains the term. Let $a \in (-1,1)$. For any r > 0, there exists n such that $\frac{1}{2\pi n + \frac{3\pi}{2}} < r$. For the n, $\left(\frac{1}{2\pi n + \frac{\pi}{2}}, 1\right)$, $\left(\frac{1}{2\pi n + \frac{3\pi}{2}}, -1\right) \in S$. We know that $\sin \frac{1}{x}$ is continuous(using real analysis and $\epsilon - \delta$ argument) on connected space $\left[\frac{1}{2\pi n + \frac{\pi}{2}}, \frac{1}{2\pi n + \frac{3\pi}{2}}\right]$, so there exists (b,a) such that $b \in \left(\frac{1}{2\pi n + \frac{\pi}{2}}, \frac{1}{2\pi n + \frac{3\pi}{2}}\right)$. It means $(b,a) \in B_r((0,a))$ and it means $(0,a) \in \overline{S}$ for $a \in (-1,1)$. For a = 1 or -1, we can use $x = \frac{1}{2\pi n + \frac{\pi}{2}}$ or $\frac{1}{2\pi n + \frac{3\pi}{2}}$ and make $B_r((0,a))$ contains it. Therefore, $\{0\} \times [-1,1] \subset \overline{S}$

Problem 8

Consider $f: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{n+1}$ such that $f(x) = \frac{x}{|x|}$. Then, the codomain of f is S^n and this is surjective on S^n since f(x) = x for $x \in S^n$. For $x \neq 0$, f(x) is continuous since $|x| = \sqrt{\sum_{i=1}^{n+1} x_i^2}$ is nonzero and continuous.

If we show that $\mathbb{R}^{n+1}\setminus\{0\}$ is path connected, we can show that S^n is path connected.

Let $x, y \in \mathbb{R}^{n+1} \setminus \{0\}$. If (1-t)x + ty for $0 \le t \le 1$ does not contains 0, take $\gamma : [0,1] \to \mathbb{R}^{n+1}$ such that $\gamma(t) = (1-t)x + ty$. This is a path from x to y.

Assume (1-t)x+ty contains 0 at $t \in (0,1)$. If (1-t)x+ty contains $(1,0,\ldots,0)$ for some $t \in (0,1)$, then take $\gamma_1(t)=(1-t)x+(0,1,0,\ldots,0)t$ for $0 \le t \le 1$ and $\gamma_2(t)=(0,1,0,\ldots,0)(2-t)+(t-1)y$ for $1 \le t \le 2$. Then, γ_1,γ_2 does not contains 0 since x,y is contained in a straight line through 0 and $(1,0,\ldots,0)$. Taking

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{For } 0 \le t \le 1\\ \gamma_2(t) & \text{For } 1 \le t \le 2 \end{cases}$$

we can take path from x to y.

If (1-t)x + ty does not contain $(1,0,\ldots,0)$, take $\gamma_1(t) = (1-t)x + (1,0,0,\ldots,0)t$ for $0 \le t \le 1$ and $\gamma_2(t) = (1,0,0,\ldots,0)(2-t) + (t-1)y$ for $1 \le t \le 2$. Then, γ_1,γ_2 does not contains 0 since x,y is does not be contained in a straight line through 0 and $(1,0,\ldots,0)$. Taking

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{For } 0 \le t \le 1\\ \gamma_2(t) & \text{For } 1 \le t \le 2 \end{cases}$$

we can take path from x to y.

Therefore, S^n is path connected.

Problem 9

Define $g: S^1 \to \mathbb{R}$ such that g(x) = f(x) - f(-x). Then, g(x) is continuous since f(-x) is continuous.($h: x \to -x$ is continuous on domain \mathbb{R}^2 so on domain S^1 .) Fix $(1,0) \in S^1$ and assume g((1,0)) > 0, then g((-1,0)) = -g((1,0)) < 0. Since g is continuous and S^1 is connected by previous problem, there exists c in S^1 such that g(c) = 0 and it means f(c) = f(-c).

Problem 10

Before staring, I'll prove an easy lemma.

Lemma 1. Let A and B are homeomorphic topological space and φ be the homeomorphism. For $A' = A \setminus \{a_1, a_2, \ldots, a_n\}$, A' is hemeomorphic with $\varphi(A') = B \setminus \varphi(\{a_1, a_2, \ldots, a_n\}) = B'.(Assume A', B' have subspace topology.)$

Proof. For simplicity, let $S = \{a_1, a_2, \dots, a_n\}$. Modify $\varphi \colon \varphi' = \varphi|_{A'}$. This is bijective, so I'll show that this is bicontinuous. For any open set V' in B', there exists V in B such that $V \setminus V' \subset \varphi(S)$. $\varphi^{-1}(V)$ is open in A and $(\varphi')^{-1}(V') = \varphi^{-1}(V) \setminus S$. Therefore, φ' is continuous and same argument for $(\varphi')^{-1}$ prove that the inverse is continuous. Therefore, φ' is hemeomorphism.

Let's subtract (-1,0), (1,0), (0,-1) from T and let it T', then T' is connected since $T' = ((-1,1) \times \{0\}) \cup (\{0\} \times (-1,0])$. However, subtracting three points from [0,1] is not connected: if we subtract a point in (0,1), it generate separation, so all we can do is subtracting 0,1 from [0,1], but finally, we should subtract a point from (0,1), making the interval disconnected.

Problem 11

Let $(a,b), (c,d) \in X \times Y$. Since X,Y is path connected, there exists path $\gamma_X : [\alpha,\beta] \to X$, $\gamma_Y : [\gamma,\delta] \to Y$ such that $\gamma_X(\alpha) = a$, $\gamma_X(\beta) = c$, $\gamma_Y(\gamma) = b$, $\gamma_Y(\delta) = d$. Normalise the domain by [0,1] using $h_X, h_Y : \mathbb{R} \to \mathbb{R}$, $h_X = (\beta - \alpha)x + \alpha$, $h_Y = (\delta - \gamma)x + \gamma$, $\gamma_X' = \gamma_X \circ h_X$, $\gamma_Y' = \gamma_Y \circ h_Y$. Make $\gamma : [0,1] \to X \times Y$ by $\gamma(t) = (\gamma_X(t), \gamma_Y(t))$, then it is continuous and $\gamma(0) = (a,b)$, $\gamma(1) = (c,d)$. Therefore, $X \times Y$ is path connected.

Problem 12

Let $p, q \in \mathbb{R}^2 \setminus A$ and consider $f_a(x) = (1, a)x + p$, $x \geq 0$. Let $f_a(\mathbb{R}) \cap A \neq \phi$ for all $a \in \mathbb{R}^+$, then we can set $h : \mathbb{R}^+ \to A$ such that h(a) is an element in $f_a(\mathbb{R}) \cap A$. Since $f_a(\mathbb{R}) \setminus \{p\}$ are disjoint for different a, h is injective and A is uncountable which is contradiction. Therefore, there exists a (even uncountable) that $f_a(\mathbb{R}) \cap A = \phi$. By the same argument there exists straight line g_b such that $g_b(0) = q$ and $g_b(\mathbb{R}) \cap A = \phi$. If a = b, we can choose another b different from a, so $g_b(\mathbb{R}) \cap f_a(\mathbb{R}) \neq \phi$. Let the intersection of point r and

glue two path from p to r by f_a and r to q by g_b . This is a path from p to q. Since it is true for arbitrary p and q, $\mathbb{R}^2 \setminus \{A\}$ is path connected.

Problem 13

I'll state a lemma.

Lemma 2. For any radius r, ball with radius r in \mathbb{R}^n is path-connected.

Proof. For any
$$p, q \in B_r(x)$$
 for some $x \in \mathbb{R}^n$, $p(1-t) + qt \in B_r(x)$ for $t \in [0,1]$ since $(p(1-t))^2 + (qt)^2 \le 2(1-t)tp \cdot q \le |p||q| \le r^2$.

Let's fix $p \in U$ which is open connected subset of \mathbb{R}^n . Let P be a path connected component in U containing p. This is not empty since open ball in U containing p is path connected. Let $P \neq U$. First, P is open since for any $q \in P$, the ball containing q is path connected, and joining path from p to q and from q to a point in the ball makes path from p to the point in the ball. Since U is connected, P is not closed, so $\overline{P} \setminus P \neq \phi$. Let a point in the set x. Take a ball in U containing x, then it intersect with P. Take a point in the intersection, then there exists path from p to the point and from the point to x. Therefore, $x \in P$, which is contradiction. Therefore, P = U and U is path connected.

Problem 14

A. Since determinant function is

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}$$

where S_n is symmetric group and $\operatorname{sgn}(\sigma)$ is the signature of σ . This is finite summation of polynomial, so continuous function and codomain is $\mathbb{R}\setminus\{0\}$. Since codomain is not continuous space, the domain is not continuous.

B. Fix $A \in GL^+(n)$. Since it is nonsignular, it can be diagonalized by $V\Lambda V^{-1}$ such that $\det V = 1$ and Λ is a diagonal matrix with eigenvalues. Consider a path $\gamma : [0,1] \to GL^+(n)$ such that

$$\gamma(t) = V \begin{bmatrix} \frac{\lambda_1}{(1-t)+|\lambda_1|t} & & \dots & \\ & \frac{\lambda_2}{(1-t)+|\lambda_2|t} & & \dots & \\ \vdots & & \vdots & & \vdots & \vdots \\ & & & \ddots & & \frac{\lambda_n}{(1-t)+|\lambda_n|t} \end{bmatrix} V^{-1}.$$

Then, $\gamma(t)$ is continuous since $(1-t)+|\lambda_i|t>0$ for $t\in[0,1]$. Also, $\gamma(0)=A$, $\gamma(1)$ is a diagonal matrix with ± 1 . I'll show that this matrix is path connected with I and conclude that A is path connected to I in $GL^+(n)$.

Let $\gamma(1) = D$. Then, det D = 1. Recognizing each column as a vector in \mathbb{R}^n , we can take rotation matrix R making $(-1, 0, \dots, 0)$ to $(1, 0, \dots, 0)$.

I'll let R_n be the rotation matrix in \mathbb{R}^n .

We can make D to I using rotation matrix by the algorithm: assume (1,1) element in D is -1, then using R_n , we can make the (1,1) term +1 and let the matrix D_1 . Assume 1 term appears in (k,k) term, then let $D_k = D_{k-1}$ and if the term is -1, we can take

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & R_{n-k+1} & \end{bmatrix}$$

to D_{k-1} and make (k, k) term +1. Let it D_k . Proceeding this algorithm, we can finally get I since the rotation matrix is determinant 1. Finally the multiplication of all rotation matrix used in this procedure is the path from D to I.(The domain would be $[0, \pi]$.) Therefore, A and I is path connected. For any $A, B \in GL^+(n)$, we can connect A, B by path through I:

$$\gamma = \begin{cases} \gamma_A(t) & \text{For } 0 \le t \le 1\\ \gamma_B(2-t) & \text{For } 1 \le t \le 2 \end{cases}$$

which γ_A, γ_B is a path form A, B to I. Since $\gamma_A(1) = \gamma_B(1)$, by pasting lemma, γ is continuous path from A to B.

C. We know that $GL(n) = GL^{-}(n) \cup GL^{+}(n)$. Using the same argument above, we can show that any matrix in $GL^{-}(n)$ is path connected to I'_{n} such that the only (n,n) term is -1, and prove that any $A, B \in GL^{-}(n)$ is path connected. Therefore, GL(n) has two path connected component.