WO 2005/023960 PCT/EP2004/051930

41

Claims

1. A pyridine compound of formula !

at least one of the groups W, X and Y is a group of formula

and the other groups are independently of each other an aryl group or a heteroaryl

group, especially a group of formula

wherein

 R^{11} , R^{12} , R^{12} , R^{12} , R^{13} , R^{13} , R^{15} , R^{15} , R^{16} , R^{16} , R^{17} , R^{17} , R^{41} , R^{41} , R^{42} , R^{42} , R^{44} , R^{44} , R^{44} , R^{45} , R^{45} , R^{46} , R^{46} , R^{47} and R^{47} are independently of each other H, E, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} aralkyl; or C_7 - C_{18} aralkyl which is substituted by G; or R^{11} and R^{12} , R^{12} and R^{13} , R^{15} and R^{16} , R^{16} and R^{17} , R^{44} and R^{48} and/or R^{45} and R^{47} are each a divalent group L^1 selected from an oxygen atom, an sulfur atom, $>CR^{18}R^{19}$

 R^{18} and R^{19} are independently of each other C_1 - C_{18} alkyl; C_1 - C_{18} alkoxy, C_6 - C_{18} aryl; C_7 - C_{18} aralkyl; or

R¹¹ and R¹¹, R¹² and R¹², R¹³ and R¹³, R¹³ and R¹⁴, R¹⁴ and R¹⁵, R¹⁵ and R¹⁵, R¹⁶ and R¹⁶, R¹⁷ and R¹⁷, R⁴¹ and R⁴¹, R⁴² and R⁴², R⁴² and R⁴³, R⁴¹ and R⁴³, R⁴⁴ and R⁴⁴, R⁴⁵ and R⁴⁵, R⁴⁶ and R⁴⁶, R⁴⁷ and R⁴⁷, R⁴⁶ and R⁴⁸ and/or R⁴⁷ and R⁴⁸ are each a divalent

group

 R^{30} , R^{31} , R^{32} , R^{33} , R^{49} and R^{50} are independently of each other H, C_1 - C_{18} alkyl; C_1 -C₁₈alkyl, which is substituted by E and/or interrupted by D; E; C₆-C₁₈aryl; C₆-C₁₈aryl, which is substituted by G;

R¹⁴ is H, C₂-C₃₀heteroaryl, or C₂-C₃₀heteroaryl, which is substituted by G, -NR⁷⁰R⁷¹; C₆-C₃₀aryl, or C₆-C₃₀aryl which is substituted by G, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is

substituted and/or interrupted D; especially E by by

R²⁴, R²⁵, R²⁶ and R²⁷ are independently of each other H, E, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; E; C₇-C₁₈aralkyl; C₇-C₁₈aralkyl which is substituted by G;

R⁴³ and R⁴⁸ are independently of each other H, E; C₁-C₁₈alkyl; C₁-C₁₈alkyl, which is substituted by E and/or interrupted by D; C2-C30heteroaryl; or C2-C30heteroaryl, which is substituted by G; -NR⁷⁰R⁷¹, wherein R⁷⁰ and R⁷¹ are independently of each other a C₈-C₁₈aryl group, which can be substituted by G; C₇-C₁₈aralkyl; C₇-C₁₈aralkyl which is substituted by G, or is a condensed C₁₀-C₃₀aryl group, such as naphthyl, as-indacnyl, s-indacenyl, acenaphthyl, fluorenyl, phenalenyl, phenanthrenyl, anthracenyl, fluoranthenyl, triphenlenyl, chrysenyl, naphthacen, picenyl, perylenyl, pentaphenyl, hexacenyl, or pyrenyl, which can be substituted by one or more groups G;

or R⁷⁰ and R⁷¹ together with the nitrogen atom to which they are bonded form a five or six-membered ring.

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; $SIR^{61}R^{62}$ -; -POR⁵-: -CR⁶³=CR⁶⁴-; or -C≡C-;

E is -OR5; -SR5; -NR5R6; -COR8; -COOR7; -CONR5R6; -CN; or halogen; G is E, or C₁-C₁₈alkyl, wherein

 R^{5} and R^{6} are independently of each other $C_{6}\text{-}C_{18}\text{aryl};~C_{6}\text{-}C_{18}\text{aryl}$ which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; or

R⁵ and R⁶ together form a five or six membered ring, in particular

$$- \sum_{i=0}^{N}$$

is

R⁷ is C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;

R⁸ is C₇-C₁₂alkylaryl; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;

R⁶¹ and R⁶² are independently of each other C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-, and

 R^{63} and R^{64} are independently of each other H, $C_6\text{-}C_{18}$ aryl; $C_6\text{-}C_{18}$ aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; with

the proviso that compounds of formula I, wherein Y is

2. A pyridine compound of formula I according to claim 1, wherein W, X and Y are independently of each other a group of formula

 R^{11} , R^{12} , R^{12} , R^{13} , R^{13} , R^{15} , R^{15} , R^{16} , R^{16} , R^{17} and R^{17} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by G; E, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} aralkyl; C_7 - C_{18} aralkyl which is substituted by G; and

D, E, R¹⁴, R¹⁸ and R¹⁹ are as defined in claim 1, or

W is a group of the formula -W1-W2-W3,

X is a group of the formula -X1-X2-X3 and

Y is a group of the formula $-Y^1-Y^2-Y^3$, wherein W^1 , W^2 , X^1 , X^2 , Y^1 and Y^2 are independently of each other a group of formula

and W3, X3 and Y3 are independently of

$$R^{14}$$
 , R^{14} , or R^{14}

each other a group of formula wherein R¹⁴ is as defined above.

3. The pyridine compound according to claim 1 or 2, wherein R¹¹, R¹¹, R¹², R¹², R¹³, R¹³, R¹⁵, R¹⁵, R¹⁶, R¹⁶, R¹⁷ and R¹⁷, R⁴¹, R⁴¹, R⁴², R⁴², R⁴², R⁴⁴, R⁴⁴, R⁴⁵, R⁴⁵, R⁴⁶, R⁴⁶, R⁴⁷, and R⁴⁷ as well as R¹⁴, R⁴³, and R⁴⁸ are independently of each other H, E; or C₁-C₈alkyl; wherein E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or F; wherein R⁵ and R⁶ are independently of each other C₆-C₁₂aryl, or C₁-C₈alkyl; R⁷ is C₇-C₁₂alkylaryl, or C₁-C₈alkyl; and

 R^8 is C_6 - C_{12} aryl; or C_1 - C_8 alkyl.

The pyridine compound according to any of claims 1 to 3, wherein 4.

W, X and Y are a group of formula

wherein

R¹³, R¹³, R¹⁵ and R¹⁵ are H and R²⁰ is H, especially R¹³ and R¹⁵ are H, R^{13'} and R^{15'} are independently of each other H, C₁-C₈alkyl, or C₁-C₈alkoxy, and R²⁰ is H, C₁-C₈alkyl, or C₁-C₈alkoxy; or

$$R^{32}$$
 R^{31} R^{33} R^{33} R^{30} R^{30} R^{30} R^{30} , or

$$R^{33}$$
 $\stackrel{}{\swarrow}$ R^{30} R^{30} , wherein

 R^{30} , R^{31} , R^{32} and R^{33} are H, C_1 - C_8 alkyl, or C_1 - C_8 alkoxy.

The pyridine compound according to any of claims 1 to 3, wherein 5. W, X and Y are independently of each other a group of formula

C1-C8alkyl.

6. The pyridine compound according to claim 1, wherein WO 2005/023960 PCT/EP2004/051930

46

$$R^{41}$$
 $R^{41'}$ $R^{44'}$ R^{46} $R^{46'}$ R^{46} $R^{46'}$ R^{42} R^{42} R^{42} $R^{45'}$ $R^{45'}$ $R^{47'}$ and

W and Y are a group of the formula -W1-(W2)b-W3, wherein b is 0, or, 1,

W1 and W2 are independently of each other a group of formula

 R^{17} , or $-NR^{60}R^{61}$, wherein R^{60} and R^{61} are

independently of each other a group of formula

$$\mathbb{R}^{52}$$
 , or \mathbb{R}^{53} , wherein \mathbb{R}^{52} , \mathbb{R}^{53} and \mathbb{R}^{54} are independently

of each other hydrogen, C₁-C₈alkyl, a hydroxyl group, a mercapto group, C₁-C₈alkoxy, C₁-C₈alkylthio, halogen, halo-C₁-C₈alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group or a siloxanyl group, wherein R¹¹, R¹¹, R¹², R¹², R¹³, R¹³, R¹⁴, R¹⁵, R¹⁵, R¹⁶, R¹⁶, R¹⁷, R¹⁷, R¹⁸, R¹⁹, R⁴¹, R⁴¹, R⁴², R⁴², R⁴⁴, R⁴⁴, R⁴⁵, R⁴⁵, R⁴⁶, R⁴⁶, R⁴⁷, and R⁴⁷ are as defined in claim 1, or X, W and Y are a group of the formula –W¹-(W²)_b-W³,

wherein b, W^1 , W^2 and W^3 are as defined above.

7. The pyridine compound according to claim 1, wherein

W and Y or W and X (= Y and X) are independently of each other a group of formula

formula group of is

Х

wherein R¹¹, R¹¹, R¹², R¹², R¹³, R¹³, R¹⁴, R¹⁵, R¹⁵, R¹⁶, R¹⁶, R¹⁷, R¹⁷, R⁴¹, R⁴¹, R⁴², R⁴², R^{44} , R^{45} , R^{45} , R^{46} , R^{46} , R^{47} , R^{47} , R^{47} and R^{48} are defined as in claim 1, especially H, C₁-C₈alkyl, C₁-C₈alkoxy, or phenyl.

The pyridine compound according to claim 1, wherein 8.

, wherein

48

$$R^{41}$$
 $R^{41'}$ $R^{41'}$ $R^{41'}$ R^{41} R^{41}

W and Y are a group Ar1-Ar2, wherein

Ar1 is a group of formula

Ar² is a group of formula

 R^{30} , R^{31} , R^{32} , R^{33} , R^{34} , R^{35} , R^{36} , R^{37} and R^{38} are independently of each other H, E, C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈aralkyl; or C₇-C₁₈aralkyl which is substituted by G;

e is an integer 1, or 2, or

X, W and Y are a group Ar¹-Ar², wherein Ar¹ and Ar² are as defined above, and D, E, G, R¹¹, R¹², R¹², R⁴¹, R⁴¹, R⁴², R⁴², and R¹⁴ are defined as in claim 1.

9. An electroluminescent device, comprising a pyridine compound of formula I according to any of claims 1 to 8 including compounds of formula I, wherein Y is

$$- \hspace{-1.5cm} \bigcirc \hspace{$$

- Electroluminescent device according to claim 9, wherein the electroluminescent device comprises in this order
 - (a) an anode
 - (b) a hole injecting layer and/or a hole transporting layer
 - (c) a light-emitting layer
 - (d) optionally an electron transporting layer and
 - (e) a cathode.
- 11. Electroluminescent device according to claim 10, wherein the pyridine compound of formula I forms the light-emitting layer.
- 12. Use of the pyridine compounds of formula I according to any of claims 1 to 8 for electrophotographic photoreceptors, photoelectric converters, solar cells, image sensors, dye lasers and electroluminescent devices.