

Performance Analysis of different Neural Network Models for Sentiment Analysis On Movie Reviews

Team members: Insha Javed (21K-3279)

Muhammad Tahir (21K-4503)

Muhammad Samamah (21K-3205)

Introduction to Sentiment Analysis

Introduction to Sentiment Analysis

Understanding Sentiment Analysis: A process that determines the sentiment expressed in textual data, categorizing it as positive or negative.

Importance in Movie Reviews: Analyzing sentiments in movie reviews helps gauge audience reactions and preferences, influencing marketing and production decisions.

Neural Network Models in Focus: Evaluation of various neural network architectures, including CNN, LSTM, and hybrid models, to assess their effectiveness in sentiment classification tasks.

Dataset Utilization: The analysis utilizes the Large Movie Review Dataset v1.0, comprising 50,000 labeled reviews, ensuring a balanced representation of sentiments with 25,000 positive and 25,000 negative reviews.

Dataset Description

Overview of the Dataset

The dataset consists of 50,000 labeled movie reviews, specifically designed for sentiment analysis tasks.

Data Split

Reviews are divided into:

Training Set: 25,000 reviews

Testing Set: 25,000 reviews

Sentiment Distribution

The dataset is balanced with:

Positive Reviews: 25,000 (scores of 7 or higher out of 10)

Negative Reviews: 25,000 (scores of 4 or lower out of 10)

Unlabeled Data for Unsupervised Learning

In addition to the labeled reviews, there are 50,000 unlabeled reviews available for exploring unsupervised learning techniques.

Evaluate Neural Network Models

Assess the performance of CNN, LSTM, CNN-LSTM, and LDA in sentiment analysis tasks.

Performance Metrics Analysis

Measure accuracy, precision, and recall to determine the effectiveness of each model.

Identify Optimal Model

Highlight the most effective model for binary sentiment analysis and discuss the strengths and limitations of each approach.

Project Objectives

Methodology Overview

01

Data Preprocessing

Begin with the preparation of text data through tokenization, stop-word removal, and stemming to ensure the data is clean and suitable for model training. 02

Model Training

Train various neural network models, including CNN, LSTM, CNN-LSTM, and LDA, using a labeled dataset consisting of 50,000 movie reviews, split evenly into 25,000 for training and 25,000 for testing.

03

Performance Evaluation

Calculate performance metrics such as accuracy, precision, and recall using the testing set to assess the effectiveness of each model in sentiment classification tasks. 04

Unsupervised Learning Exploration

Analyze an additional 50,000 unlabeled movie reviews to evaluate the capabilities of the models in handling unsupervised tasks, providing insights into their performance beyond labeled data.

Model Training Process

01

Data Preprocessing

Begin by preparing the text data through tokenization, stop-word removal, and stemming to ensure it is suitable for training the neural network models. 02

Model Training

Train the selected neural network models—CNN, LSTM, CNN-LSTM, and LDA—using the labeled training dataset, which consists of 25,000 positive and 25,000 negative movie reviews.

03

Performance Evaluation

After training, evaluate the models using the testing set of 25,000 reviews, calculating performance metrics such as accuracy, precision, and recall to determine the effectiveness of each model.

Performance Metrics

Performance Metrics

Model Accuracy

CNN: 0.86

LSTM: 0.84

CNN-LSTM: 0.87

LDA: 0.51

Model Comparison

Hybrid CNN-LSTM outperforms standalone models

LDA shows significantly lower performance, indicating lesser suitability

Evaluation Criteria

Metrics used: Accuracy, Precision, Recall

Focus on binary sentiment classification effectiveness

Insights and Implications

High effectiveness of CNN and CNN-LSTM models in sentiment analysis

Importance of model selection based on performance metrics for optimal results

Model Comparison

Hybrid CNN-LSTM Model

- Achieved the highest accuracy score of 0.87
- Demonstrating superior performance in sentiment analysis tasks by effectively integrating both convolutional and recurrent neural network techniques.

Linear Discriminant Analysis (LDA)

- · Scored significantly lower at 0.51
- Indicating its lesser suitability for sentiment analysis compared to the neural network models, highlighting the limitations of traditional statistical methods in this context.

Results and Analysis

87%

Accuracy

The hybrid CNN-LSTM model achieved the highest accuracy of 87%, demonstrating its effectiveness in sentiment analysis tasks.

84%

Accuracy

The LSTM model recorded an accuracy of 84%, showcasing its capability in handling sequential data for sentiment analysis. 86%

Accuracy

The CNN model followed closely with an accuracy of 86%, indicating strong performance in classifying sentiments in movie reviews.

51%

Accuracy

In contrast, the Linear Discriminant Analysis (LDA) model scored only 51%, highlighting its lesser suitability for this specific task compared to the neural network models.

Strengths and Limitations

S Strengths

 The hybrid CNN-LSTM model achieved the highest accuracy of 0.87, demonstrating superior performance in sentiment analysis tasks compared to other models.

Weaknesses

 Linear Discriminant Analysis (LDA) scored significantly lower at 0.51, indicating its limited effectiveness for sentiment classification in this context.

Opportunities

 The availability of 50,000 unlabeled reviews presents an opportunity for further exploration of unsupervised learning techniques to enhance model performance.

T Threats

 The diverse and challenging nature of movie review data may introduce variability that could affect model accuracy and generalizability in realworld applications.

Exploration of Unlabeled Data

Utilization of 50,000 unlabeled movie reviews to assess model capabilities in unsupervised tasks.

Model Performance Comparison

Evaluation of various neural network models, with the hybrid CNN-LSTM model demonstrating superior effectiveness in sentiment analysis.

Key Findings

Significant performance disparity noted, with LDA scoring only 0.51, while CNN and LSTM models achieved scores of 0.86 and 0.84, respectively.

Conclusion and Future Work

Model Performance Insights

The hybrid CNN-LSTM model demonstrated the highest effectiveness with an accuracy score of 0.87, outperforming standalone models.

Unsupervised Learning Potential

The exploration of unsupervised learning techniques using the unlabeled dataset presents opportunities for enhancing model capabilities in sentiment analysis.

LDA Limitations

Linear Discriminant Analysis (LDA) scored significantly lower at 0.51, indicating its lesser suitability for sentiment analysis tasks compared to other models.

Future Research Directions

Future work could focus on integrating additional neural network architectures and exploring advanced preprocessing techniques to further improve sentiment classification accuracy.