

<u>Análisis</u> Matemático II

Trabajo Práctico N°7 – Bloque III

FUNCIONES VECTORIALES DE VARIABLE REAL

1) Dada las siguientes ecuaciones paramétricas. Dibuje la curva asignando valores al parámetro t, y obtenga la ecuación de la curva eliminando el parámetro t.

a)
$$x = 2t$$

$$y = 3t$$
 ten \Re

b)
$$x = t - 4$$
 $y = \sqrt{t}$ $0 \le t \le 4$

$$v = \sqrt{t}$$

$$0 \le t \le 4$$

2) Una partícula se mueve por la recta que pasa por los puntos $P_1(2,3,0) \wedge P_2(0,8,8)$. Hallar una función vectorial para su trayectoria.

3) Supongamos que la temperatura en un punto xyz del espacio está dado por $T(x, y, z) = x^2 + y^2 + z^2$. Una partícula se mueve de modo que el instante t, su posición está dada por el punto $(x, y, z) = (t, t^2, t^3)$. Encuentre la temperatura de la partícula en t = 1/2.

4) Determine la ecuación paramétrica en los siguientes casos.

a)
$$y = 4 - x$$

b)
$$x^2 + y^2 = 25$$

c)
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

Trabajo Práctico N°7 – Bloque III

5) Hallar las funciones vectoriales que representen la trayectoria indicada en cada figura.

a)

b)

6) Indicar la imagen de g(t) sin graficar.

a)
$$g(t) = (t^2, -t^3)$$

b)
$$g(t) = (t^2, t^2)$$

c)
$$g(t)=(t,t)$$

d)
$$g(t) = (sen(t), sen(t))$$

7) Analice la continuidad de las siguientes funciones.

a)
$$\lim_{t\to 2} \left(\vec{ti} + \frac{t^2}{t^2 - 2} \vec{j} + \frac{1}{2} \vec{k} \right)$$

b)
$$\lim_{t\to 0} \left(e^t \vec{i} + \frac{sent}{t} \vec{j} + e^{-t} \vec{k} \right)$$

c)
$$\lim_{t \to \frac{\pi}{4}} (\cos t, sent, t)$$

d)
$$\lim_{t\to 2} \left(\frac{t-2}{t^2-4}, \frac{t^2+t-6}{t-2} \right)$$

$$e) \lim_{t\to 0} \left(\frac{1}{t}, t+1\right)$$

Vector Velocidad y Aceleración

8) La posición de una partícula en el plano "xy" está dada por la trayectoria que describe g(t).

a) Encuentre la ecuación cartesiana que la representa.

Trabajo Práctico N°7 - Bloque III

- b) Determine además los vectores velocidad y aceleración en un tiempo t.
- c) Calcule la velocidad y aceleración instantánea, indique la dirección del movimiento.

8.1)
$$g(t) = (t+1, t^2-1)$$

$$t = 1$$

8.2)
$$g(t) = \left(e^{t}, \frac{2}{9}e^{2t}\right)$$

$$t = \ln 3$$

8.3)
$$g(t) = (\cos t, sent)$$

$$t = \frac{\pi}{\Delta}$$

9) g(t) describe la trayectoria de una partícula en el espacio en un tiempo t. Encuentre los vectores velocidad y aceleración de la partícula.

a)
$$g(t) = (t+1)\vec{i} + (t^2-1)\vec{j} + 2t\vec{k}$$

$$t = 1$$

b)
$$g(t) = (\cos^2 t, 3t - t^3, t)$$

$$t = 0$$

10) Dibuje la curva δ descripta por g(t) y trace el vector tangente g'(t) para el valor de t indicado.

a)
$$g(t) = (2\cos t, 6 \operatorname{sent})$$

$$t_0 = \frac{\pi}{6}$$

b)
$$g(t) = \left(2, t, \frac{4}{1+t^2}\right)$$

$$t_0 = 1$$

c)
$$g(t) = (e^t, t)$$

$$t_0 = 1$$

Recta Tangente

11) Dada las siguientes trayectorias, determine la ecuación en forma paramétrica y cartesiana de la recta tangente.

a)
$$g(t) = (\cos(t), sen(t))$$

$$t_0 = \frac{\pi}{\Delta}$$

b)
$$g(t) = (t, t, t^2)$$

$$t_0 = 1$$

c)
$$g(t) = (e^t, t)$$

$$t_0 = 1$$

<u>Análisis</u> Matemático II

UTN
Facultad
Regional
Villa Maria

Trabajo Práctico N°7 – Bloque III

d)
$$g(t) = (\cos^2(t), 3t - t^3, t)$$

$$t_0 = 0$$

Aceleración Normal y Tangencial

12) Dada las siguientes trayectorias, determine en forma escalar y vectorial la componente tangencial de la aceleración, calcule además en forma escalar la aceleración normal. En todos los casos evaluarlo para t=1.

a)
$$g(t) = (1, t, t^2)$$

d)
$$g(t) = (5\cos t, 5sent)$$

b)
$$g(t) = (t^2, (t^2 - 1), 2t^2)$$

e)
$$g(t) = (e^{-t}, e^{-t}, e^{-t})$$

c)
$$g(t) = (2t, t^2)$$

Longitud de curva

13) Determine la longitud de la curva entre los valores de *t* indicados.

a)
$$g(t) = (t^3 + 1, t^3)$$

$$t_0 = 0 \quad \wedge \quad t_1 = 1$$

b)
$$g(t) = (t+1,2t+2)$$

$$t_0 = 1$$
 \wedge $t_1 = 2$

c)
$$g(t) = \left(t^2, \frac{2}{3}t^3 - \frac{1}{2}t\right)$$

$$0 \le t \le 2$$

d)
$$g(t) = (\cos t, sent, t)$$

$$t_0 = 0 \quad \wedge \quad t_1 = 2\pi$$

14) Dada la función paramétrica g(t)=(3t;cost;sent) para qué valores de t el largo de la curva a partir de punto de coordenadas $(\frac{3}{2}\pi;0;1)$ es igual a 4

15) Suponga que una partícula sigue la trayectoria $g(t)=(t,t^2)$ hasta que sale por la tangente en $t_0=2$. ¿Dónde estará en t=3 ? Grafique

16) Supóngase que una partícula sigue la trayectoria $g(t) = (e^t, e^{-t}, \cos t)$ hasta que sale por la tangente en t = 1. ¿Dónde estará en t = 3?

Análisis Matemático II

Villa Maria

Trabajo Práctico N°7 – Bloque III

EJERCICIOS COMPLEMENTARIOS

1) Dada las siguientes ecuaciones paramétricas. Dibuje la curva asignado valores al parámetro t, y obtenga la ecuación de la curva eliminando el parámetro t.

a)
$$x = t^2$$
 ; $y = t^3$ $-1 \le t \le 2$

$$v = t^3$$

$$-1 \le t \le 2$$

b)
$$x = 3 sent$$
; $y = 5 cos t$ $0 \le t \le 2\pi$

$$v = 5\cos t$$

$$0 \le t \le 2\pi$$

2) Dibuje las curvas definidas paramétricamente por las siguientes funciones.

a)
$$f(t) = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} t + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad -\infty < t < \infty$$

$$-\infty < t < \infty$$

b)
$$f(t) = (2t, t)$$
 $-1 \le t \le 1$

$$-1 \le t \le 1$$

c)
$$f(t) = (t, t^2)$$
 $-\infty < t < \infty$

$$-\infty < t < \infty$$

3) Encuentre el límite de las siguientes funciones.

a)
$$\lim_{t\to 0} \left(\frac{1}{t}, t+1\right)$$

b)
$$\lim_{t\to 3} \left(\frac{1}{t}, t+1\right)$$

c)
$$\lim_{t \to 0} (e^{-t}, sen(t), 1 + e^{-t})$$

d)
$$\lim_{t \to -2} \left(1 + 2t, \frac{t+2}{t^2 - 4}, \frac{1}{t} \right)$$

4) g(t) describe la trayectoria de una partícula en el espacio en un tiempo t.

Encuentre los vectores velocidad y aceleración de la partícula, la velocidad y aceleración instantánea y la dirección del movimiento.

a)
$$g(t) = (2\cos t, 3sent, 4t)$$

$$t = \frac{\pi}{2}$$

b)
$$g(t) = \left(sen3t , \cos 3t , 2t^{\frac{3}{2}} \right)$$

$$t = 0$$

<u>Análisis</u> <u>Matemático II</u>

UTN
Facultad
Regional
Villa Mario

Trabajo Práctico N°7 – Bloque III

c)
$$g(t) = (\cos^2 t, 3t - t^3, t)$$

$$t = 0$$

d)
$$g(t) = (0, 0, t)$$

$$t = 1$$

e)
$$g(t) = (\cos t, sent, t)$$

$$t = \frac{\pi}{2}$$

5) Dibuje la curva δ descripta por g(t) y trace el vector tangente g'(t) para el valor de t indicado.

a)
$$g(t) = (\cos t, sent)$$

$$t_0 = \pi/4$$

b)
$$g(t) = (t, t, t^2)$$

$$t_0 = 1$$

c)
$$g(t) = (t, t^2, t)$$

$$t_0 = 0$$

6) Determine la longitud de la curva entre los valores de *t* indicados.

a)
$$g(t) = (a \cos t, a sent, ct)$$

$$0 \le t \le 2\pi$$

b)
$$g(t) = (e^t \cos 2t, e^t sen 2t, e^t)$$

$$0 \le t \le 3\pi$$

c)
$$g(t) = (2\cos t, 2sent, \sqrt{5} t)$$

$$0 \le t \le 2\pi$$

d)
$$g(t) = \left(t, 0, \frac{2}{3}t^{\frac{3}{2}}\right)$$

$$0 \le t \le 8$$

e)
$$g(t) = (0, \cos^3 t, sen^3 t)$$

$$0 \le t \le \pi/2$$

<u>Análisis</u> Matemático II

Villa Maria

Trabajo Práctico N°7 – Bloque III

RESPUESTAS TRABAJO PRACTICO N° 7

1) a)
$$y = \frac{3}{2}x$$
 b) $y = \sqrt{x+4}$

b)
$$y = \sqrt{x+4}$$

2)
$$g(t) = (-2t+2, 5t+3, 8t)$$

$$3) T\left(\frac{1}{2}\right) = \frac{21}{64}^{\circ}$$

4) a)
$$g(t) = (t, 4-t)$$

4) a)
$$g(t) = (t, 4-t)$$
 b) $g(t) = (5\cos(t), 5\sin(t))$ c) $g(t) = (5\cos(t), 4\sin(t))$

c)
$$g(t) = (5\cos(t), 4\sin(t))$$

5)

a)
$$g_1(t) = (t, 0)$$

$$0 \le t \le 4$$

$$g_2(t) = \left(t, -\frac{3}{2}t + 6\right) \quad 0 \le t \le 4$$

$$0 \le t \le 4$$

$$g_3(t) = (0,t) \qquad 0 \le t \le 6$$

$$0 \le t \le 6$$

b)
$$g_1(t) = (t, t^2)$$
 $0 \le t \le 2^{-1}$

$$0 \le t \le 2$$

$$g_2(t) = (t,4)$$
 $0 \le t \le 2$
 $g_3(t) = (0,t)$ $0 \le t \le 4$

$$0 \le t \le 2$$

$$g_3(t) = (0, t)$$

$$0 \le t \le 4$$

6)

a)
$$Ig = (-\infty, 0]$$
 b) $Ig = [0, \infty)$ c) $Ig = (-\infty, \infty)$ d) $Ig = [-1, 1]$

b)
$$Ig = [0, \infty)$$

c)
$$Ig = (-\infty, \infty)$$

d)
$$Ig = [-1,1]$$

7)

a) Continua en t = 2

b) Discontinuidad evitable en t = 0

c) Continua en $\frac{\pi}{4}$

d) Discontinuidad evitable en t = 2

e) Discontinuidad esencial en t = 0

8)

8.1)

a) y = x(x-2)

b) $\overline{v}(1) = (1,2);$ $\overline{a}(1) = (0,2)$

c)
$$v(1) = \sqrt{5}$$

$$a(1) = 2$$

c)
$$v(1) = \sqrt{5}$$
; $a(1) = 2$; $\hat{\zeta} = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$

8.2)

a)
$$y = \frac{2}{9}x^2$$

Trabajo Práctico N°7 – Bloque III

b)
$$\bar{v}(\ln 3) = (3,4); \bar{a}$$

$$\bar{a}(\ln 3) = (3,8)$$

c)
$$v(\ln 3) = 5$$

$$a(\ln 3) = \sqrt{73}$$

c)
$$v(\ln 3) = 5$$
 $a(\ln 3) = \sqrt{73}$; $\hat{\zeta} = \left(\frac{3}{5}, \frac{4}{5}\right)$

8.3)

a)
$$x^2 + y^2 = 1$$

b)
$$\overline{v}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right); \quad \overline{a}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$

$$\bar{a}\left(\frac{\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$

c)
$$v\left(\frac{\pi}{4}\right) = 1$$

$$a\left(\frac{\pi}{4}\right)=1$$
;

c)
$$v\left(\frac{\pi}{4}\right) = 1$$
; $a\left(\frac{\pi}{4}\right) = 1$; $\hat{\zeta} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

9) a)
$$\overline{v}(1) = (1, 2, 2); \overline{a}(1) = (0, 2, 0)$$

b)
$$\overline{v}(0) = (0,3,1); \overline{a}(0) = (-2,0,0)$$

10)

a)
$$\overline{v}\left(\frac{\pi}{6}\right) = \left(-1, 3\sqrt{3}\right)$$

b)
$$\overline{v}(1) = (0,1,-2)$$

c)
$$\overline{v}(1) = (e,1)$$

11)

a) Ecuación vectorial paramétrica:
$$r(t) = \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}t; \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}t\right)$$

Ecuación cartesiana: $g = -x + \sqrt{2}$

Trabajo Práctico N°7 – Bloque III

b) Ecuación vectorial paramétrica: r(t) = (1+t, 1+t, 1+2t)

Ecuación cartesiana simétrica de la recta tangente: $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{2}$

c) Ecuación vectorial paramétrica: r(t) = (e + et, 1 + t)

Ecuación cartesiana: $y = \frac{1}{x}$

d) Ecuación vectorial paramétrica de la recta tangente: r(t) = (1, 3t, t)

Ecuación cartesiana simétrica: $x = 1; \frac{y}{3} = \frac{z}{1}$

12)

a)
$$a_T = \frac{4}{\sqrt{5}}$$
; $\bar{a}_T = \left(0, \frac{4}{5}, \frac{8}{5}\right)$; $a_N = \frac{2}{\sqrt{5}}$

b)
$$a_T = 2\sqrt{6}$$
; $\overline{a}_T = (2, 2, 4)$; $a_N = 0$

c)
$$a_T = \frac{2}{\sqrt{2}}$$
; $\overline{a}_T = (1,1)$; $a_N = \frac{2}{\sqrt{2}}$

d)
$$a_T = 0$$
; $a_N = 5$

e)
$$a_T = -\frac{1}{e}\sqrt{3} \; ; \bar{a}_T = \left(\frac{1}{e}, \frac{1}{e}, \frac{1}{e}\right) \; ; \qquad a_N = 0$$

13) a)
$$\ell_c = \sqrt{2}$$

b)
$$\ell_c = \sqrt{5}$$

c)
$$\ell_c = \frac{19}{3}$$

13) a)
$$\ell_c = \sqrt{2}$$
 b) $\ell_c = \sqrt{5}$ c) $\ell_c = \frac{19}{3}$ d) $\ell_c = 2\sqrt{2}\pi$

14)
$$t = 2,836$$

15) En t = 3 estará en el punto (5,16)

16) En
$$t = 3$$
 estará en $\left(4e, -\frac{2}{e}, -1.98\right)$

EJERCICIOS COMPLEMENTARIOS

1) a)
$$y = x^{3/2}$$
; b) $\frac{x^2}{9} + \frac{y^2}{25} = 1$

2)

a)

<u>Análisis</u> <u>Matemático II</u>

UTN Facultad Regional Villa Maria

Trabajo Práctico N°7 – Bloque III

Análisis Matemático II

Trabajo Práctico N°7 – Bloque III

3) a)
$$\not\exists L$$
;

b)
$$L = \left(\frac{1}{3}, 4\right)$$

c)
$$L = (1,0,2)$$

3) a)
$$\not\exists L$$
; b) $L = \left(\frac{1}{3}, 4\right)$; c) $L = (1, 0, 2)$; d) $L = \left(-3, -\frac{1}{4}, -\frac{1}{2}\right)$

4)

$$\overline{v}\left(\frac{\pi}{2}\right) = (-2, 0, 4)$$

$$\overline{a}\left(\frac{\pi}{2}\right) = (0, -3, 0)$$

Velocidad instantánea = $v\left(\frac{\pi}{2}\right) = \sqrt{20}$; Aceleración instantánea: $a\left(\frac{\pi}{2}\right) = 3$

Dirección del movimiento en $t = \frac{\pi}{2}$, $\hat{\zeta} = \left(\frac{-2}{\sqrt{20}}, 0, \frac{4}{\sqrt{20}}\right)$

b)

$$\overline{v}(0) = (3,0,3);$$

$$\bar{a}(0) = (0, -9, 0)$$

Velocidad instantánea = $v(0) = \sqrt{18}$; Aceleración instantánea: a(0) = 9

Dirección del movimiento en t = 0, $\hat{\zeta} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$

c)

$$\overline{v}(0) = (0,3,1);$$

$$\overline{a}(0) = (2,0,0)$$

Velocidad instantánea = $v(0) = \sqrt{10}$; Aceleración instantánea: a(0) = 2

Dirección del movimiento en t = 0, $\hat{\zeta} = \left(0, \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$

d)

$$\overline{v}(1) = (0,0,1);$$

$$\overline{a}(1) = (0,0,0)$$

Velocidad instantánea = v(1) = 1; Aceleración instantánea: a(1) = 0

Dirección del movimiento en t = 1, $\hat{\zeta} = (0,0,1)$

$$\overline{v}\left(\frac{\pi}{2}\right) = (-1,0,1);$$

$$\overline{a}\left(\frac{\pi}{2}\right) = (0, -1, 0)$$

Velocidad instantánea = $v\left(\frac{\pi}{2}\right) = \sqrt{2}$; Aceleración instantánea: $a\left(\frac{\pi}{2}\right) = 1$

Dirección del movimiento en $t = \frac{\pi}{2}$, $\hat{\zeta} = \left(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$

<u>Análisis</u> <u>Matemático II</u>

UTN
Facultad
Regional
Villa Maria

Trabajo Práctico N°7 – Bloque III

c) $\ell_c = 6\pi$

5) A cargo del alumno

6) a)
$$\ell_c = 2\pi \sqrt{a^2 + c^2}$$

d)
$$\ell_c = \frac{52}{3}$$

b)
$$\ell_c = \sqrt{6}(e^{3\pi} - 1)$$

e)
$$\ell_c = \frac{3}{2}$$

12