Systèmes dynamiques Corrigé DM n°3

Basé sur la copie de Manh-Linh Nguyen

Échauffement

1. (a) Si $f(q) \ge \frac{1}{2}$, le résultat est évident. On suppose donc que $f(q) < \frac{1}{2}$. Pour $x \in [0,1]$, s'il existe $p \in \mathbf{N}_{\ge 1}$ tel que

$$\left| x - \frac{p}{q} \right| < \frac{f(p)}{q} \tag{1}$$

alors |qx-p| < f(q),d'où $p < qx + f(q) < q + \frac{1}{2},$ i.e. $p \leq q.$ Ainsi

$$A_q = \bigcup_{p=1}^q A_{q,p}, \qquad A_{q,p} := [0,1] \cap \left(\frac{f(q)-p}{q}, \frac{f(q)+p}{q}\right).$$

Pour $p = 1, \dots, q$, $\ell(A_{q,p}) \le \ell\left(\left(\frac{f(q)-p}{q}, \frac{f(q)+p}{q}\right)\right) = \frac{2f(q)}{q}$. Donc

$$\ell(A_q) \le \sum_{p=1}^q \ell(A_{q,p}) \le \sum_{p=1}^q = \sum_{p=1}^q \frac{2f(q)}{q} = 2f(q).$$
 (2)

(b) Pour $x \in [0,1]$, (1) est vrai pour une infinité de couples (p,q) ssi pour tout $n \geq 1$, il existe (p,q) avec $q \geq 1$ vérifiant (1), i.e. $x \in A_q$. Il s'agit d'étudier la mesure de Lebesgue de l'ensemble $\bigcap_{n \geq 1} \bigcup_{q \geq n} A_q$. Sous l'hypothèse du second point du **Théorème**, la séries $\sum_{n \geq 1} \ell(A_q)$ converge. Par le lemme de Borel-Cantelli

$$\ell\left(\bigcap_{n\geq 1}\bigcup_{q\geq n}A_q\right)=0,$$

i.e. pour presque tout $x \in [0,1]$, (1) n'est vraie pour qu'un nombre fini de couples (p,q).

Développement en fractions continues

2. Pour m=1, on a

$$[a_1(x); T^1(x)] = \frac{1}{a(x) + T(x)} = \frac{1}{\lfloor 1/x \rfloor + \{1/x\}} = \frac{1}{1/x} = x.$$

Pour $m \geq 2$, on a

$$a_m(x) + T^m(x) = a(T^{m-1}(x)) + T^m(x) = \left\lfloor \frac{1}{T^{m-1}(x)} \right\rfloor + \left\{ \frac{1}{T^{m-1}(x)} \right\} = \frac{1}{T^{m-1}(x)}.$$

Ainsi

$$[a_1(x), \dots, a_m(x); T^m(x)] = \frac{1}{a_1(x) + \frac{1}{a_{m-1}(x) + \frac{1}{a_m(x) + T^m(x)}}}$$

$$= \frac{1}{a_1(x) + \frac{1}{a_1(x) + \frac{1}{a_{m-1}(x) + T^{m-1}(x)}}}$$

$$= [a_1(x), \dots, a_{m-1}(x); T^{m-1}(x)],$$

d'où le résultat.

3. Le sens « si » est clair. On démontre le sens « seulement si ». Pour $x \in I$ rationnel, on écrit $x = \frac{a}{b}$ avec $(a,b) \in \mathbb{N}^2_{\geq 1}$, $\gcd(a,b) = 1$ et a < b (les cas où x = 0 ou x = 1 sont faciles). Écrivons b = qa + c $(0 \le c < a)$, alors

$$T(x) = \left\{\frac{1}{x}\right\} = \left\{\frac{qa+c}{a}\right\} = \frac{c}{a}.$$

On voit que $T(x) \in \mathbf{Q}$ et que le dénominateur de T(x) (sous forme réduite) est strictement plus petit que celui de x. Ainsi, il existe $n \geq 1$ tel que $T^n(x)$ a dénominateur 1, i.e. $T^n(x) \in \{0,1\}$. Donc $T^{n+1}(x) = 0$.

4. (a) Quand n = 0, c'est clair. Pour $n \ge 1$

$$p_{n-1}(x)q_n(x) - p_n(x)q_{n-1}(x)$$

$$= p_{n-1}(x)(a_n(x)q_{n-1}(x) + q_{n-2}(x)) - (a_n(x)p_{n-1}(x) + p_{n-2}(x))q_{n-1}(x)$$

$$= -(p_{n-2}(x)q_{n-1}(x) - p_{n-1}(x)q_{n-1}(x)),$$

d'où le résultat suit (récurrence sur n).

(b) Quand n = 1, on a

$$\frac{p_1(x) + tp_0(x)}{q_1(x) + tq_0(x)} = \frac{1}{a_1(x) + t} = [a_1(x); t].$$

Quand n=2, on a

$$\begin{split} \frac{p_2(x) + tp_1(x)}{q_2(x) + tq_1(x)} &= \frac{a_2(x) + t}{a_1(x)a_2(x) + 1 + a_1(x)t} \\ &= \frac{1}{a_1(x) + \frac{1}{a_2(x) + t}} \\ &= [a_1(x), a_2(x); t]. \end{split}$$

On considère $n \geq 3$. Si $a_n(x) = 1$ et t = 0, par récurrence

$$[a_1(x), \dots, a_{n-1}(x), 1; 0] = \frac{1}{a_1(x) + \frac{1}{a_{n-2}(x) + \frac{1}{a_{n-1}(x) + 1}}}$$

$$= \left[a_1(x), \dots, a_{n-2}(x); \frac{1}{a_{n-1}(x) + 1}\right]$$

$$= \frac{p_{n-2}(x) + \frac{p_{n-3}(x)}{a_{n-1}(x) + 1}}{q_{n-2}(x) + \frac{q_{n-3}(x)}{a_{n-1}(x) + 1}}$$

$$= \frac{a_{n-1}(x)p_{n-2}(x) + p_{n-3}(x) + p_{n-2}(x)}{a_{n-1}(x)q_{n-2}(x) + q_{n-3}(x) + q_{n-2}(x)}$$

$$= \frac{p_{n-1}(x) + p_{n-2}(x)}{q_{n-1}(x) + q_{n-2}(x)}$$

$$= \frac{p_n(x)}{q_n(x)} \qquad (a_n(x) = 1).$$

Si $a_n(x)>1$ ou t>0, alors $\frac{1}{a_n(x)+t}<1.$ Par récurrence

$$[a_{1}(x), \dots, a_{n}(x); t] = \frac{1}{a_{1}(x) + \frac{1}{a_{n-1}(x) + \frac{1}{a_{n}(x) + t}}}$$

$$= \left[a_{1}(x), \dots, a_{n-1}(x); \frac{1}{a_{n}(x) + t}\right]$$

$$= \frac{p_{n-1}(x) + \frac{p_{n-2}(x)}{a_{n}(x) + t}}{q_{n-1}(x) + \frac{q_{n-2}(x)}{a_{n}(x) + t}}$$

$$= \frac{a_{n}(x)p_{n-1}(x) + p_{n-2}(x) + tp_{n-1}(x)}{a_{n}(x)q_{n-1}(x) + q_{n-2}(x) + tq_{n-1}(x)}$$

$$= \frac{p_{n}(x) + tp_{n-1}(x)}{q_{n}(x) + tq_{n-1}(x)}.$$

D'où le résultat.

(c) De **1.** et (4b), on a

$$\begin{vmatrix} x - \frac{p_n(x)}{q_n(x)} \end{vmatrix} = \frac{p_n(x) + T^n(x)p_{n-1}(x)}{q_n(x) + T^n(x)q_{n-1}(x)} - \frac{p_n(x)}{q_n(x)} \\
= \frac{T^n(x) |p_{n-1}(x)q_n(x) - p_n(x)q_{n-1}(x)|}{q_n(x)(q_n(x) + T^n(x)q_{n-1}(x))} \\
= \frac{1}{q_n(x) \left(\frac{q_n(x)}{T^n(x)} + q_{n-1}(x)\right)} \tag{4a}.$$

Il suffit de montrer que

$$q_n(x) + q_{n+1}(x) \ge \frac{q_n(x)}{T^n(x)} + q_{n-1}(x) \ge q_{n+1}(x).$$

En effet, comme $a_{n+1}(x) = \left\lfloor \frac{1}{T_n(x)} \right\rfloor$, on a

$$a_{n+1}(x) \le \frac{1}{T_n(x)} < a_{n+1}(x) + 1.$$

Il suit que

$$a_{n+1}(x)q_n(x)+q_{n-1} \le \frac{q_n(x)}{T_n(x)}+q_{n-1}(x) < a_{n+1}(x)q_n(x)+q_n(x)+q_{n-1}(x),$$

i.e.

$$q_{n+1}(x) \le \frac{q_n(x)}{T_n(x)} + q_{n-1}(x) < q_{n+1}(x) + q_n(x),$$

ce que nous voulions.

5. Les suites $(p_n(x))_{n\geq 1}$ et $(q_n(x))_{n\geq 1}$ sont croissantes et positives. Pour $n\geq 3$, on a

$$p_n(x) = a_n(x)p_{n-1}(x) + p_{n-2}(x) \ge p_{n-1}(x) + p_{n-2}(x) \ge 2\sqrt{p_{n-1}(x)p_{n-2}(x)}.$$

Il suit que

$$p_n(x) \cdots p_3(x) \ge 2\sqrt{p_{n-1}(x)p_{n-2}(x)} \cdots \sqrt{p_2(x)p_1(x)},$$

i.e. $p_n(x)\sqrt{p_{n-1}(x)} \ge 2^{n-2}p_2(x)\sqrt{p_1(x)} \ge 2^{n-2}$. Donc $p_n(x)^2 \ge 2^{n-2}$ et on trouve que $p_n(x) \ge 2^{\frac{n-2}{2}}$. De même, $q_n(x) \ge 2^{\frac{n-2}{2}}$, donc

$$p_n(x)q_n(x) \ge 2^{n-2}. (3)$$

On considère deux cas.

(a) n est pair. De **2.**, (4a) et (4b), on a

$$\begin{split} \frac{x}{p_n(x)/q_n(x)} &= \frac{q_n(x)(p_n(x) + T^n(x)p_{n-1}(x))}{p_n(x)(q_n(x) + T^n(x)q_{n-1}(x))} \\ &= 1 + \frac{T^n(x)(p_{n-1}(x)q_n(x) - p_n(x)q_{n-1}(x))}{p_n(x)(q_n(x) + T^n(x)q_{n-1}(x))} \\ &= 1 + \frac{T^n(x)}{p_n(x)(q_n(x) + T^n(x)q_{n-1}(x))} \\ &= 1 + \frac{1}{p_n(x)\left(\frac{q_n(x)}{T^n(x)} + q_{n-1}(x)\right)} > 1. \end{split}$$

Donc

$$\left|\log \frac{x}{p_n(x)/q_n(x)}\right| = \log \left(1 + \frac{1}{p_n(x)\left(\frac{q_n(x)}{T^n(x)} + q_{n-1}(x)\right)}\right)$$

$$\leq \frac{1}{p_n(x)\left(\frac{q_n(x)}{T^n(x)} + q_{n-1}(x)\right)}$$

$$\leq \frac{1}{p_n(x)q_n(x)} \qquad (T^n(x) \leq 1)$$

$$\leq \frac{1}{2^{n-2}} \qquad (d'après (3)).$$

(b) n est impair. Dans ce cas

$$\begin{split} \frac{p_n(x)/q_n(x)}{x} &= \frac{p_n(x)(q_n(x) + T^n(x)q_{n-1}(x))}{q_n(x)(p_n(x) + T^n(x)p_{n-1}(x))} \\ &= 1 + \frac{T^n(x)(p_n(x)q_{n-1}(x) - p_{n-1}(x)q_n(x))}{q_n(x)(p_n(x) + T^n(x)p_{n-1}(x))} \\ &= 1 + \frac{T^n(x)}{q_n(x)(p_n(x) + T^n(x)p_{n-1}(x))} \\ &= 1 + \frac{1}{q_n(x)\left(\frac{p_n(x)}{T^n(x)} + p_{n-1}(x)\right)} > 1, \end{split}$$

et l'argument est similaire.

La mesure de Gauss

6. On écrit $(0,1] = \bigsqcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n}\right]$. Pour $n \in \mathbb{N}_{\geq 1}$ et $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right]$, on a $n \leq \frac{1}{x} < n+1$, d'où

$$T(x) = \left\{ \frac{1}{x} \right\} = \frac{1}{x} - \left| \frac{1}{x} \right| = \frac{1}{x} - n.$$

Ainsi, pour toute fonction continue $f: I \to \mathbf{R}_{\geq 0}$, on a

$$\begin{split} &\int_{I} f d(T_{*}\mu) \\ &= \int_{I} f \circ T \, d\mu \\ &= \frac{1}{\log 2} \int_{0}^{1} \frac{f(T(x)) \, dx}{1+x} \\ &= \frac{1}{\log 2} \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{f\left(\frac{1}{x}-n\right) \, dx}{1+x} \qquad \text{(convergence monotone)} \\ &= \frac{1}{\log 2} \sum_{n=1}^{\infty} \int_{1}^{0} \frac{f(y)}{1+\frac{1}{y+n}} \cdot \left(-\frac{dy}{(y+n)^{2}}\right) \qquad (y = \frac{1}{x}-n) \\ &= \frac{1}{\log 2} \sum_{n=1}^{\infty} \int_{0}^{1} \frac{f(y) dy}{(y+n)(y+n+1)} \\ &= \frac{1}{\log 2} \sum_{n=1}^{\infty} \int_{0}^{1} \left(\frac{1}{y+n} - \frac{1}{y+n+1}\right) f(y) dy \\ &= \frac{1}{\log 2} \int_{0}^{1} \frac{f(y) dy}{y+1} \qquad \text{(convergence monotone)} \\ &= \int_{I} f \, d\mu. \end{split}$$

Donc $T_*\mu = \mu$.

7. (a) Soit $t \in [0,1)$ et $x = \psi_{a_1,\ldots,a_m}(t) = [a_1,\ldots,a_m;t]$. On va montrer que $a_j(x) = a_j$ pour tout $j = 1,\ldots,m$ par récurrence sur m (d'où on a $x \in I_{a_1,\ldots,a_m}$). Quand m = 1, on a $x = \frac{1}{a_1+t}$, donc $\frac{1}{a_1+1} < x \le \frac{1}{a_1}$, d'où $a_1 \le \frac{1}{x} < a_1 + 1$. Mais alors $a_1(x) = a(x) = \left[\frac{1}{x}\right] = a_1$. On considère $m \ge 2$. De **2.**, on sait que

$$x = [a_1(x), a_2(x), \dots, a_m(x); T^m(x)] = \frac{1}{a_1(x) + [a_2(x), \dots, a_m(x); t]}.$$

Il suit que

$$a_1 + [a_2, \dots, a_m; t] = \frac{1}{x} = a_1(x) + [a_2(x), \dots, a_m(x); T^m(x)].$$
 (4)

Si m=2 et t=0, alors $x=\frac{1}{a_1+\frac{1}{a_2}}=[a_1;\frac{1}{a_2}].$ Il suit du cas où m=1 que $a_1(x)=a_1.$ Si $m\geq 3$ où t>0, on aura

$$a_2 + \frac{1}{a_3 + \frac{1}{\ddots + \frac{1}{a_m + t}}} > 1,$$

 $\begin{aligned} &\operatorname{donc}\, 0 \leq [a_2,\ldots,a_m;t] < 1. \text{ En particulier } x \notin \mathbf{Z}. \text{ De } (4), [a_2(x),\ldots,a_m(x);T^m(x)] \notin \mathbf{Z}, \, \operatorname{donc}\, [a_2(x),\ldots,a_m(x);T^m(x)] < 1. \text{ Il suit que } a_1 = a_1(x). \text{ Dans} \\ &\operatorname{tous } \operatorname{cas, on a}\, a_1(x) = a_1 \text{ et puis } [a_2,\ldots,a_m;t] = [a_2(x),\ldots,a_m(x);T^m(x)]. \\ &\operatorname{Par l'hypothèse } \operatorname{de récurrence, } a_j(x) = a_j \text{ pour tout } 2 \leq j \leq m. \\ &\operatorname{Reciproquement, pour tout } x \in I_{a_1,ldots,a_m}, \text{ on a } a_j(x) = a_j \text{ pour } 1 \leq j \leq m. \end{aligned}$

$$x = [a_1, \dots, a_m; T^m(x)] = \psi_{a_1, \dots, a_m}(T^m(x)).$$

(b) Soit $x = \psi_{a_1,...,a_m}(t)$. Il suit du partie précédent que $x \in I_{a_1,...,a_m}$, i.e. $a_j(x) = a_j$ pour j = 1,...,m. Par récurrence, on a $p_j(x) = p_j$ et $q_j(x) = q_j$ pour tout j = 1,...,m. En outre, de (4b), on a

$$\psi_{a_1,\dots,a_m}(t) = [a_1(x),\dots,a_m(x);t] = \frac{p_m(x) + tp_{m-1}(x)}{q_m(x) + tq_{m-1}(x)} = \frac{p_m + tp_{m-1}}{q_m + tq_{m-1}}$$

(c) Il suit de (7b) que la fonction $\psi_{a_1,...,a_m}$ est continue est monotone. En particulier $I_{a_1,...,a_m} = \psi_{a_1,...,a_m}([0,1))$ est un intervalle dont les extrémités sont $\frac{p_m+p_{m-1}}{q_m+q_{m_1}}$ et $\frac{p_m}{q_m}$. Ainsi

$$\ell(I_{a_1,\dots,a_m}) = \left| \frac{p_m + p_{m-1}}{q_m + q_{m-1}} - \frac{p_m}{q_m} \right| = \frac{|p_{m-1}q_m - p_mq_{m-1}|}{q_m(q_m + q_{m-1})} = \frac{1}{q_m(q_m + q_{m-1})}$$

(en effet, pour n'importe quel $x \in I_{a_1,...,a_m}$, on a $p_{m-1}q_m - p_mq_{m-1} = p_{m-1}(x)q_m(x) - p_m(x)q_{m-1}(x) = (-1)^m$ par (4b)).

- (d) On a vu dans (7c) que les $I_{a_1,...,a_m}$ sont des intervalles, donc un sens est trivial. Pour le sens reciproque, il faut montrer que les boréliens sont dans la tribu \mathcal{F} engendrée par les intervalles de cette forme (et I). On divise la preuve en plusieurs étapes.
 - (i) On a

$$\forall n \in \mathbf{N}_{n \ge 1}, \qquad I_n = \psi_n([0, 1)) = \left\{ \frac{1}{n+t} | t \in [0, 1) \right\} = \left(\frac{1}{n+1}, \frac{1}{n} \right].$$

Ainsi les intervalles $\left(\frac{1}{n+1}, \frac{1}{n}\right]$ sont \mathcal{F} -mesurables. De plus, pour tout $n \in \mathbf{N}_{n \geq 1}$

$$\left(0, \frac{1}{n}\right] = \bigcup_{k > n} \left(\frac{1}{k+1}, \frac{1}{k}\right] \in \mathcal{F}.$$

(ii) Pour tous $n, k \in \mathbf{N}_{n>1}$, on a

$$I_{n,k} = \left\{ \frac{1}{n + \frac{1}{k+t}} | t \in [0,1) \right\} = \left[\frac{k}{nk+1}, \frac{k+1}{n(k+1)+1} \right].$$

Donc, puor tout $n \in \mathbf{N}_{n>1}$

$$\mathcal{F} \ni \bigcup_{k>1} \left[\frac{k}{nk+1}, \frac{k+1}{n(k+1)+1} \right) = \left[\frac{1}{n+1}, \frac{1}{n} \right).$$

Ainsi

$$(0,\frac{1}{n}) = \bigcup_{k > n} \left[\frac{1}{k+1}, \frac{1}{k}\right) \in \mathcal{F}.$$

En particulier, le singletons $\left\{\frac{1}{n}\right\}$, $n \in \mathbb{N}_{\geq 1}$ sont \mathcal{F} -mesurables.

(iii) Pour tout $k \in \mathbb{N}_{\geq 1}$, la fonction ψ_k est \mathcal{F} -mesurable. En effet ψ_k est évidemment injective d'image I_k . De plus, $\psi_k([0,1)) \cap \psi_{k'}([0,1)) = \emptyset$ si $k \neq k'$.

On considère un intervalle $I_{a_1,...,a_m}$. Par récurrence triviale, on a $\psi_{a_1,...,a_m} = \psi_{a_1} \circ \cdots \circ \psi_{a_m}$. En particulier

$$I_{a_1,\ldots,a_m} = \psi_{a_1,\ldots,a_m}([0,1)) \subseteq \psi_{a_1}([0,1)) = I_{a_1}.$$

Il suit que $\psi_k^{-1}(I_{a_1,\ldots,a_m})=\varnothing$ quand $a_1\neq k$. Si $a_1=k$, on aura

$$\psi_k^{-1}(I_{a_1,\dots,a_m}) = \psi_k^{-1}(\psi_{a_1} \circ \dots \circ \psi_{a_m})([0,1)) = \begin{cases} I_{a_2,\dots,a_m} & \text{si } m \ge 2\\ [0,1) & \text{si } m = 1. \end{cases}$$

Dans tous cas, $\psi_k^{-1}(I_{a_1,...,a_m}) \in \mathcal{F}$ ([0,1) $\in \mathcal{F}$) car {1} $\in \mathcal{F}$). La collection $\{A \in \mathcal{F} | \psi_k^{-1}(A) \in \mathcal{F}\}$ est une tribu contenant les intervalles $I_{a_1,...,a_m}$, donc égal à \mathcal{F} .

(iv) Les intervalles $(0, \frac{k}{n}]$ et $(0, \frac{k}{n})$ (où $1 \le k \le n$) sont \mathcal{F} -mesurables. On le démontre par récurrence sur n. Quand n = k (en pariculier quand n = 1), c'est traité. Pour $n \ge 2$ et k < n, écrivons

$$n = km + r$$
, $m > 1$, $0 < r < k$.

Si r=0, alors $\left(0,\frac{k}{n}\right]=\left(0,\frac{1}{m}\right]\in\mathcal{F}$ (cas (i)) et $\left(0,\frac{k}{n}\right)=\left(0,\frac{1}{m}\right)\in\mathcal{F}$ (cas (ii)). On suppose alors que r>0. Sans peine, on voit que

$$(0, \frac{k}{n}] = \psi_m^{-1}(\left[\frac{r}{k}, 1\right]) \in \mathcal{F}, \qquad (0, \frac{k}{n}) = \psi_m^{-1}(\left(\frac{r}{k}, 1\right]) \in \mathcal{F}$$

car $(0,1]\in\mathcal{F}$ et $\left(0,\frac{r}{k}\right),\left(0,\frac{r}{k}\right]\in\mathcal{F}$ par l'hypothèse de récurrence.

- (v) Il suit du cas précédent que tous les intervalles $(u,v]=(0,v]\setminus (0,u]$ avec $u,v\in \mathbf{Q}$ sont \mathcal{F} -mesurables. Ils engendrent la tribu borélienne sur I, donc \mathcal{F} coïncide avec cette tribu.
- 8. C'est vrai pour n'importe quel borélien J.

Observons tout d'abord que pour tous $x \in [0,1)$ et $k \in \mathbb{N}_{\ell \geq 1}$

$$T(\psi_k(x)) = T\left(\frac{1}{x+k}\right) = \{x+k\} = x.$$

Il suit que $T^m \circ \psi_{a_1,\dots,a_m} = \mathrm{id}_{[0,1)}$. Or, par l'injectivité de ψ_{a_1,\dots,a_m}

$$\ell(T^{-m}(J) \cap I_{a_1,...,a_m}) = \int_{I_{a_1,...,a_m}} \mathbb{1}_{T^{-m}(J)} d\ell$$

$$= \int_I (\mathbb{1}_{T^{-m}(J)} \circ \psi_{a_1,...,a_m}) d(\psi_{a_1,...,a_m})_* \ell$$

$$= \int_I \mathbb{1}_J |\psi'_{a_1,...,a_m}| d\ell$$

$$= \int_0^1 \mathbb{1}_J(x) \frac{|p_{m-1}q_m - p_m q_{m-1}|}{(q_m + xq_{m-1})^2} dx$$

$$= \int_0^1 \mathbb{1}_J(x) \frac{dx}{(q_m + xq_{m-1})^2}.$$

Pour tout $x \in I$, on a $(q_m + xq_{m-1})^2 \le (q_m + q_{m-1})^2 \le 2q_m(q_m + q_{m-1})$ (car $(q_m)_{m \ge 1}$ est croissante). De même

$$(q_m + xq_{m-1})^2 \ge q_m^2 \ge q_m \cdot \frac{q_m + q_{m-1}}{2}.$$

Ainsi, par (7b)

$$\int_0^1 \frac{\mathbbm{1}_J(x) dx}{(q_m + x q_{m-1})^2} \geq \frac{1}{2q_m(q_m + q_{m-1})} \int_0^1 \mathbbm{1}_J(x) \, dx = \frac{1}{2} \ell(I_{a_1, \dots, a_m}) \ell(J)$$

et

$$\int_0^1 \frac{\mathbb{1}_J(x)dx}{(q_m + xq_{m-1})^2} \le \frac{2}{q_m(q_m + q_{m-1})} \int_0^1 \mathbb{1}_J(x) dx = 2\ell(I_{a_1, \dots, a_m})\ell(J).$$

On conclut que

$$\frac{1}{2}\ell(I_{a_1,\dots,a_m}) \le \frac{\ell(T^{-m}(J) \cap I_{a_1,\dots,a_m})}{\ell(J)} \le 2\ell(I_{a_1,\dots,a_m}).$$

9. Soit $J \subseteq I$ un borélien tel que $T^{-1}(J) = J$. En particulier, pour tout intervalle $I_{a_1,...,a_m}$, on a (de **8.**)

$$\ell(J)\ell(I_{a_1,\ldots,a_m}) \le 2\ell(J \cap I_{a_1,\ldots,a_m}).$$

On va montrer que soit $\ell(J)=0$ soit $\ell(J^c)=0$ (d'où soit $\mu(J)=0$ soit $\mu(J)=1$ car $\mu\ll\ell$). Fixons $\varepsilon>0$. Par la construction de ℓ comme mesure extérieure, il existe un borélien $J'\supseteq J^c$, qui est une réunion disjointe d'intervalles de la forme I_{a_1,\dots,a_m} , tel que $0\leq \ell(J'\setminus J^c)<\varepsilon$. Ainsi, $\ell(J)\ell(J^c)\leq \ell(J)\ell(J')\leq 2\ell(J\cap J')=2\ell(J'\setminus J^c)<2\varepsilon$. C'est vrai pour tout ε , donc $\ell(J)\ell(J^c)=0$, d'où le résultat.

Applications aux approximations diophantiennes

10. Montrons par récurrence sur $m=1,\ldots,n$ que

$$\prod_{k=1}^{m} [a_k(x), \dots, a_n(x)] = \frac{1}{q_{m-2}(x) + \frac{q_{m-1}(x)}{[a_m(x), \dots, a_n(x)]}}.$$

Quand m=1, les deux côtés sont égales car $q_{-1}(x)=0$ et $q_0(x)=1$. Soit $m\geq 2$. Par l'hypothèse de récurrence, on a

$$\begin{split} \prod_{k=1}^{m} [a_k(x), \dots, a_n(x)] &= \frac{[a_m(x), \dots, a_n(x)]}{q_{m-2}(x)} \\ &= \frac{[a_{m-1}(x), \dots, a_n(x)]}{[a_{m-1}(x), \dots, a_n(x)]} \\ &= \frac{[a_m(x), \dots, a_n(x)]}{q_{m-3}(x) + (a_{m-1}(x) + [a_m(x), \dots, a_n(x)])q_{m-2}(x)} \\ &= \frac{[a_m(x), \dots, a_n(x)]}{q_{m-1}(x) + [a_m(x), \dots, a_n(x)]q_{m-2}(x)} \\ &= \frac{1}{q_{m-2}(x) + \frac{q_{m-1}(x)}{[a_m(x), \dots, a_n(x)]}}. \end{split}$$

D'où l'affirmation. En particulier, quand n=1

$$\prod_{k=1}^{n} [a_k(x), \dots, a_n(x)] = \frac{1}{q_{n-2}(x) + a_n(x)q_{n-1}(x)} = \frac{1}{q_n(x)}.$$

11. Pour tous $k > k' \in \mathbb{N}_{\geq 1}$, on a

$$a_k = a \circ T^{k-1} = (a \circ T^{k-k'-1}) \circ T^{k'} = a_{k-k'} \circ T^\ell.$$

Donc, de (4b), on a

$$[a_k(x), \dots, a_n(x)] = [a_1(T^{k-1}(x)), \dots, a_{n-k+1}(T^{k-1}(x))] = \frac{p_{n-k+1}(T^{k-1}(x))}{q_{n-k+1}(T^{k-1}(x))}.$$

En outre, il suit de (4c) que

$$|\log T^{k-1}(x) - [a_k(x), \dots, a_n(x)]| \le \frac{1}{2^{n-k+1}}.$$

En sommant par rapport à k = 1, ..., n, on obtient

$$\left| \sum_{k=1}^{n} \log T^{k-1}(x) - \log \prod_{k=1}^{n} [a_k(x), \dots, a_n(x)] \right| \le \sum_{k=1}^{n} \frac{1}{2^{n-k+1}}$$

i.e. (par **10.**)

$$\left| \sum_{k=1}^{n} \log T^{k-1}(x) - \log \frac{1}{q_n(x)} \right| \le 1 - \frac{1}{2^n} < 1.$$

Il suit que

$$\left|\frac{1}{n}\log\frac{1}{q_n(x)} - \frac{1}{n}\sum_{k=1}^n\log T^{k-1}(x)\right| = O\left(\frac{1}{n}\right), \qquad n\to\infty.$$

12. Puisque μ est ergodique pour T, il suit du théorème ergodique de Birkhoff et 11. que pour presque tout $x \in I \setminus \mathbf{Q}$ ($\mu(\mathbf{Q}) = 0$),

$$\lim_{n \to \infty} \frac{1}{n} \log \frac{1}{q_n(x)} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \log T^{k-1}(x) = \int_I \log d\mu = \frac{1}{\log 2} \int_0^1 \frac{\log x \, dx}{1+x}.$$

Pour tout $x \in (0,1)$, on a

$$\frac{\log x}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k \log x.$$

On a, pour tout $k \in \mathbb{N}$

$$\int_0^1 x^k \log x \, dx = \left. \frac{x^{k+1} \log x}{k+1} \right|_0^1 - \int_0^1 \frac{x^{k+1}}{k+1} \cdot \frac{dx}{x} = -\int_0^1 \frac{x^k \, dx}{k+1} = -\frac{1}{(k+1)^2}.$$

De plus

$$\sum_{k=0}^{\infty} \int_{0}^{1} |x^{k} \log x| \, dx = \sum_{k=0}^{\infty} \int_{0}^{1} (-x^{k} \log x) \, dx = \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}} < \infty.$$

Par convergence dominée, on a

$$\frac{\log x}{1+x} = \sum_{k=0}^{\infty} (-1)^k \cdot \left(-\frac{1}{(k+1)^2}\right)$$

$$= -\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$$

$$= -\sum_{k=1}^{\infty} \frac{1}{k^2} + 2 \cdot \sum_{k=1}^{\infty} \frac{1}{(2k)^2}$$

$$= -\frac{\pi^2}{6} + 2 \cdot \frac{1}{4} \cdot \frac{\pi^2}{6}$$

$$= -\frac{\pi^2}{12}.$$

Donc $\lim_{n\to\infty} \frac{1}{n} \log \frac{1}{q_n(x)} = -\frac{\pi^2}{12 \log 2}$ pour presque tout $x \in I \setminus \mathbf{Q}$. Finalement, pourt tel x, il suit de (4c) que

$$\frac{1}{2q_n(x)q_{n+1}(x)} \le \left| x - \frac{p_n(x)}{q_n(x)} \right| \le \frac{1}{q_n(x)q_{n+1}(x)}.$$

Ainsi

$$\frac{1}{n} \left(\log \frac{1}{q_n(x)} + \log \frac{1}{q_{n+1}(x)} - \log 2 \right) \le \frac{1}{n} \log \left| x - \frac{p_n(x)}{q_n(x)} \right|
\le \frac{1}{n} \left(\log \frac{1}{q_n(x)} + \log \frac{1}{q_{n+1}(x)} \right).$$

Il suit que $\frac{1}{n}\log\left|x-\frac{p_n(x)}{q_n(x)}\right|\to -\frac{\pi^2}{6\log 2}$ quand $n\to\infty.$

13. (a) Pour tous $x \in I$ et $n, k \in \mathbb{N}_{>1}$. On a équivalence

$$a_n(x) = k \Leftrightarrow a(T^{n-1}(x)) = k \Leftrightarrow k \leq \frac{1}{T^{n-1}(x)} < k+1 \Leftrightarrow T^{n-1}(x) \in \left(\frac{1}{k+1}, \frac{1}{k}\right].$$

Dono

$$\mu\{x \in I : a_n(x) = k\} = \mu\left(T^{n-1}\left(\left(\frac{1}{k+1}, \frac{1}{k}\right]\right)\right)$$

$$= \mu\left(\left(\frac{1}{k+1}, \frac{1}{k}\right]\right) \qquad (T \text{ est } \mu\text{-invariant})$$

$$= \int_{\frac{1}{k+1}}^{\frac{1}{k}} \frac{dx}{1+x}$$

$$= \log(1+x)\Big|_{1/(k+1)}^{1/k}$$

$$= \log\left(1 + \frac{1}{k}\right) - \log\left(1 + \frac{1}{k+1}\right).$$

Il suit que

$$\mu\{x \in I : a_n(x) \ge k\} = \sum_{\ell=k}^{\infty} \left(\log\left(1 + \frac{1}{\ell}\right) - \log\left(1 + \frac{1}{\ell+1}\right)\right) = \log\left(1 + \frac{1}{k}\right) \le \frac{1}{k}.$$

Pour une suite $\mathbf{a} = (a_n)_{n \geq 1}$ de réels strictement positifs, on note

$$E_n(\mathbf{a}) := \{ x \in I : a_n(x) > a_n \} = \{ x \in I : a_n(x) \ge \lfloor a_n \rfloor + 1 \}$$

Alors

$$A(\mathbf{a})^c = \bigcap_{n \ge 1} \bigcup_{m \ge n} E_m(\mathbf{a}).$$

On a

$$\sum_{n\geq 1} \mu(E_n(\mathbf{a})) = \sum_{n\geq 1} \frac{1}{\lfloor a_n \rfloor + 1} < \sum_{n\geq 1} \frac{1}{a_n} < \infty$$

Donc $\mu(A(\mathbf{a})^c) = 0$ (par le lemme de Borel-Cantelli), i.e. $\mu(A(\mathbf{a})) = 1$.

(b) On a

$$A(\mathbf{a}) = \bigcup_{n \ge 1} \bigcap_{m \ge n} E_m(\mathbf{a})^c.$$

Il faut donc démontrer que pour tout $n \ge 1$

$$\mu\left(\bigcap_{m\geq n} E_m(\mathbf{a})^c\right) = 0.$$

Commençons par le cas où n=1. Comme $\mu \ll \ell$, il suffira de démontrer que $\ell\left(\bigcap_{m\geq 1} E_m(\mathbf{a})^c\right)=0$. Pour tout $m\in \mathbf{N}_{\geq 1}$, on a

$$\bigcap_{k=1}^{m} E_k(\mathbf{a})^c = \{ x \in I : \forall k = 1, \dots, m, \ a_k(x) \le \lfloor a_k \rfloor \}$$

$$= \bigsqcup_{b_1 \le \lfloor a_1 \rfloor, \dots, b_m \le \lfloor a_m \rfloor} I_{b_1, \dots, b_m}.$$

Pour tous $m, b_1, \ldots, b_{m+1} \in \mathbb{N}_{\geq 1}$ et $x \in I_{b_1, \ldots, b_m}$, on a équivalence

$$T^m(x) \in I_{b_m+1} \Leftrightarrow a(T^m(x)) = b_{m+1} \Leftrightarrow a_{m+1}(x) = b_{m+1} \Leftrightarrow x \in I_{b_1,\dots,b_{m+1}}$$

i.e. $T^{-m}(I_{b_{m+1}}) \cap I_{b_1,...,b_m} = I_{b_1,...,b_{m+1}}$. En appliquant 8., on a

$$\ell\left(E_{m+1}(\mathbf{a})\cap I_{b_1,\ldots,b_m}\right) \leq 2\ell(I_{b_1,\ldots,b_m})\ell\left(E_{m+1}(\mathbf{a})\right),\,$$

de sorte que

$$\ell(E_{m+1}(\mathbf{a})^c \cap I_{b_1,...,b_m}) \le \ell(I_{b_1,...,b_m}) \left(1 - 2\ell(E_{m+1}(\mathbf{a}))\right)$$

$$\le \ell(I_{b_1,...,b_m}) \left(1 - \frac{C}{a_{m+1} + 1}\right),$$

où C est une constante qui ne dépend de rien puisque $\ell(E_{m+1}(\mathbf{a}))$ est de l'ordre de $1/(a_{m+1}+1)$ (en effet $\mu(\{x\in I,\ a_{m+1}(x)=k\})=\mu(\{x\in I,\ a_1(x)=k\})=1/k-1/(k+1)$ par $\mathbf{6}$., donc $\ell(E_{m+1}(\mathbf{a}))\geq C'\mu(E_{m+1}(\mathbf{a}))\geq \frac{C}{a_{m+1}+1}$). Par suite,

$$\ell\left(\bigcap_{k=1}^{m+1} E_k(\mathbf{a})^c\right) = \ell\left(\bigsqcup_{b_1 \le a_1, \dots, b_m \le a_m} I_{b_1, \dots, b_m} \cap E_{m+1}(\mathbf{a})^c\right)$$

$$\leq \left(1 - \frac{C}{a_{m+1} + 1}\right) \sum_{b_1 \le a_1, \dots, b_m \le a_m} \ell(I_{b_1, \dots, b_m})$$

$$= \left(1 - \frac{C}{a_{m+1} + 1}\right) \ell\left(\bigcap_{k=1}^m E_k(\mathbf{a})^c\right).$$

On obtient pour tout $m \in \mathbb{N}_{\geq 1}$

$$\log \ell \left(\bigcap_{k=1}^{m+1} E_k(\mathbf{a})^c \right) \le \log \left(1 - \frac{C}{a_{m+1} + 1} \right) + \log \ell \left(\bigcap_{k=1}^m E_k(\mathbf{a})^c \right).$$

Par continuité des mesures, on obtient

$$\log \ell \left(\bigcap_{m \ge 1} E_m(\mathbf{a})^c \right) \le \sum_{m \ge 1} \log \left(1 - \frac{C}{a_{m+1} + 1} \right) + \log \ell(E_1(\mathbf{a})^c).$$

La série $\sum_{m\geq 1}\frac{1}{a_m+1}$ diverge (si elle converge, on aura $\frac{1}{a_m+1}\to 0$, donc $a_m\to\infty$; en particulier, $\frac{1}{a_m}\leq \frac{2}{a_m+1}$ pour m assez grand, qui implique que $\sum_{m\geq 1}\frac{1}{a_m}$ converge, c'est absurde). Il suit que

$$\sum_{m\geq 1} \log\left(1 - \frac{C}{a_{m+1} + 1}\right) \le -\sum_{m\geq 1} \frac{1}{a_{m+1} + 1} = -\infty,$$

En conséquence, $\ell\left(\bigcap_{m\geq 1}E_m(\mathbf{a})^c\right)=0$, d'où $\mu\left(\bigcap_{m\geq 1}E_m(\mathbf{a})^c\right)=0$. Considérons maintenant $n\geq 1$ quelconque. Soit $\mathbf{a}':=(a_k')_{k\geq 1}$, où $a_k'=a_{k+n-1}$. Pour tout $x\in I$ et tout $m\geq n$, on a équivalence

$$x \in E_m(\mathbf{a}) \Leftrightarrow a_m(x) > a_m \Leftrightarrow a(T^{m-1}(x)) > a_m \Leftrightarrow a(T^{m-n}(T^{n-1}(x)) > a_m$$
$$\Leftrightarrow a_{m-n+1}(T^{n-1}(x)) > a'_{m-n+1} \Leftrightarrow T^{n-1}(x) \in E_{m-n+1}(\mathbf{a}').$$

Donc $E_m(\mathbf{a}) = T^{-n+1}(E_{m-n+1}(\mathbf{a}'))$. Par la μ -invariance de T, on a

$$\mu\left(\bigcap_{m\geq n} E_m(\mathbf{a})^c\right) = \mu\left(\bigcap_{m\geq n} E_{m-n+1}(\mathbf{a}')^c\right) = \mu\left(\bigcap_{m\geq 1} E_m(\mathbf{a}')^c\right) = 0.$$

La dernière égalité vient du fait que la série $\sum_{m\geq 1}\frac{1}{a'_m}=\sum_{m\geq n}\frac{1}{a_m}$ diverge, et qu'on a traité le cas où n=1.

14. (a) Pour presque tout $x \in I$, on a $\lim_{n \to \infty} \frac{1}{n} \log q_n(x) = \frac{\pi^2}{12 \log 2} < \log 4$ (Partie **12.**), donc il existe $N(x) \in \mathbf{N}_{n \ge 1}$ tel que

$$\forall n \ge N(x), \qquad q_n(x) < 4^n.$$

La suite $(qf(q)_q)$ est décroissante, donc

$$\varphi(n) = 4^n f(4^n) \le q_n(x) f(q_n(x))$$

pour tout $n \geq N(x)$.

(b) On a nécessairement f(q) > 0 pour tout q (s'il existe q_0 tel que $f(q_0) = 0$, comme $(qf(q))_q$ est décroissante, on aura f(q) = 0 pour

tout $q \geq q_0$, ce qui contredit le fait que $\sum_q f(q)$ diverge). Montrons que la série $\sum_n \varphi(n)$ diverge. On a, par décroissance de $(qf(q))_q$,

$$\sum_{q \geq 1} f(q) = \sum_{n \geq 0} \sum_{q = 4^n}^{4^{n+1} - 1} f(q) = \sum_{n \geq 0} \sum_{q = 4^n}^{4^{n+1} - 1} \frac{qf(q)}{q} \leqslant \sum_{n \geq 0} \varphi(n) \sum_{q = 4^n}^{4^{n+1} - 1} \frac{1}{q} \leq 3 \sum_{n \geq 0} \varphi(n).$$

Il suit de **13b.** que pour presque tout x, $a_{n+1}(x) > \frac{1}{\varphi(n)}$ infiniment souvent. Pour tel x et n, par (4c)

$$\left| x - \frac{p_n(x)}{q_n(x)} \right| \le \frac{1}{q_n(x)q_{n+1}(x)} \le \frac{1}{a_{n+1}(x)q_n(x)^2} < \frac{\varphi(n)}{q_n(x)^2}.$$

De (14a), on a

$$\left| x - \frac{p_n(x)}{q_n(x)} \right| < \frac{f(q_n(x))}{q_n(x)}$$

infiniment souvent. Mais la suite $(q_n(x))_{n\geq 1}$ est strictement croissante, d'où la preuve de la première partie du **Théorème**.