Geometric Deep Learning

Tommaso Lamma

2021

Reti Convoluzionali

2 Convoluzione su Domini Euclidei

3 Convoluzione su Domini non Euclidei

4 Equivarianza

Reti Convoluzionali

Figura: Una rete neurale convoluzionale.

Convoluzione su Domini Euclidei

Siano $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$,

$$(f*g)(x) = \int_{\mathbb{R}} dx' f(x') g(x-x').$$

Cosa significa (x - x') in un dominio diverso da $\mathbb R$?

Cosa significa (x - x') in \mathbb{R} ?

Possiamo vedere (x-x') come l'azione dell'elemento (-x') del gruppo delle traslazioni $(\mathbb{R},+)$ sul dominio $\mathbb{R}(A$ priori della struttura di spazio vettoriale).

Notare:

Il gruppo $(\mathbb{R},+)$ è una simmetria globale del dominio \mathbb{R} .

Possiamo definire una convoluzione su un dominio a partire dalla simmetria globale del dominio?

Operatore Posizione

Definiamo spettralmente l'operatore posizione $\widehat{x}|x\rangle=x|x\rangle$, tale che

$$\langle x|x'\rangle = \delta(x-x'), \quad \int_{\mathbb{R}} dx |x\rangle \langle x| = \widehat{1}.$$

Operatore Impulso

Il generatore delle traslazioni $(\mathbb{R}^n,+)$ è l'operatore impulso \widehat{p} , tale che

$$\widehat{p}|p\rangle = p|p\rangle$$
,

che verifica

$$\langle
ho |
ho'
angle = \delta(
ho -
ho'), \quad \int_{\mathbb{R}} d
ho |
ho
angle \langle
ho | = \widehat{1}.$$

6/13

Tommaso Lamma Geometric Deep Learning 2

Trasformata di Fourier

Definiamo la trasformata di Fourier come $\langle x|\psi\rangle\mapsto\langle p|\psi\rangle$, che può essere calcolata nel seguente modo

$$\langle p|\psi\rangle = \langle p|\left(\int_{\mathbb{R}}dx|x\rangle\langle x|\right)|\psi\rangle = \int_{\mathbb{R}}dx\langle p|x\rangle\langle x|\psi\rangle.$$

Teorema della Convoluzione

Definiamo la convoluzione a partire dal teorema della convoluzione

$$\langle \mathbf{p}|\psi*\phi\rangle = \langle \mathbf{p}|\psi\rangle\langle \mathbf{p}|\phi\rangle.$$

7/13

Tommaso Lamma Geometric Deep Learning 20

Figura: Un dominio non euclideo \mathcal{G} .

Spazio dei Segnali su ${\cal G}$

Lo spazio dei segnali a valori reali definiti su questo dominio può essere rappresentato come

$$S = \{ |\psi\rangle = \sum_{i \in \mathbb{Z}_6} \psi_i |i\rangle : \psi_i \in \mathbb{R} \},$$

dove devono valere

$$\langle i|j\rangle = \delta_{ij},$$

$$\sum_{i\in\mathbb{Z}_6} |i\rangle\langle i| = \widehat{1}.$$

9/13

Una simmetria di questo spazio è il gruppo ciclico $(\mathbb{Z}_6,+)$ rispetto all'azione che segue.

Azione di \mathbb{Z}_6 su \mathcal{S}

Un'azione di \mathbb{Z}_6 sullo spazio dei segnali è data da

$$.:\mathbb{Z}_{6}\times\mathcal{S}\rightarrow\mathcal{S}$$

$$(j,|\psi\rangle)\mapsto j.|\psi\rangle = \sum_{i\in\mathbb{Z}_{\mathsf{s}}} \psi_i |i+j\rangle \in \mathcal{S}.$$

Vediamo come agisce il generatore del gruppo $\widehat{S}|i
angle=|i+1
angle.$

Azione del generatore

$$\widehat{S}|\psi\rangle = \sum_{j\in\mathbb{Z}_6} \psi_i |j+1\rangle.$$

Le componenti del nuovo segnale saranno

$$\langle i|\widehat{S}|\psi\rangle = \sum_{j\in\mathbb{Z}_6} \psi_j \delta_{i,j+1} = \psi_{i-1} = \langle i-1|\psi\rangle,$$

$$\mathsf{dove}\ \delta_{i,j+1} = \mathit{circ}(0,1,0,0,0,0) =: \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

L'operatore \widehat{S} è diagonalizzabile in \mathcal{C} con una base **ortonormale** $\widehat{S}|s_i\rangle = s_i|s_i\rangle$.

Trasformata di Fourier

Definiamo la trasformata di Fourier come $\langle i|\psi\rangle\mapsto\langle s_i|\psi\rangle$, che può essere calcolata nel seguente modo

$$\langle s_i | \psi \rangle = \langle s_i | \left(\sum_{j \in \mathbb{Z}_6} |j\rangle \langle j| \right) | \psi \rangle = \sum_{j \in \mathbb{Z}_6} \langle s_i | j\rangle \langle j| \psi \rangle.$$

Teorema della Convoluzione

Definiamo la convoluzione a partire dal teorema della convoluzione

$$\langle s_i | \psi * \phi \rangle = \langle s_i | \psi \rangle \langle s_i | \phi \rangle.$$

12 / 13

Tommaso Lamma Geometric Deep Learning 2021

Equivarianza

Dall'ultima equazione notiamo che se definiamo l'operatore \widehat{C}_ϕ in modo che

$$\widehat{C}_{\phi}|\psi\rangle = |\psi * \phi\rangle,$$

abbiamo che se definiamo $\widehat{\mathcal{C}}_\phi = \sum_{j \in \mathbb{Z}_6} |s_j\rangle\langle s_j|\phi\rangle\langle s_j|$ otteniamo

$$\langle s_i | \widehat{C}_{\phi} | \psi \rangle = \langle s_i | \sum_{j \in \mathbb{Z}_6} | s_j \rangle \langle s_j | \phi \rangle \langle s_j | \psi \rangle = \sum_{j \in \mathbb{Z}_6} \delta_{ij} \langle s_j | \phi \rangle \langle s_j | \psi \rangle = \langle s_i | \psi \rangle \langle s_i | \phi \rangle.$$

Notare

Essendo $\widehat{\mathcal{C}}_\phi$ definito spettralmente sulle autofunzioni di $\widehat{\mathcal{S}}$, avremo che

$$[\widehat{S},\widehat{C}_{\phi}]=0.$$

