EE15 Comunicação de Dados

Aula 8-9 Modulação

Sinusóides

- Representação de fenômenos físicos e transporte de informação.
- I Isso é feito a partir da ALTERAÇÃO dos parâmetros A, fe ∮.
- I Por isso, é importante constatar o efeito da variação destes parâmetros sobre as respectivas sinusoides.

MODULAÇÃO

DEFINIÇÃO:

- I É o processo de modificar uma ou mais das características de uma onda denominada PORTADORA, segundo um sinal MODULANTE.
- I É o processo de colocar a informação num sinal denominado portador, isto é, "embutir" o sinal num portador da INFO.

PORTADORA:

- I É o sinal que transporta, que carrega a INFO.
- Dependendo do tipo de SINAL PORTADOR, a modulação pode ser ANALÓGICA ou DIGITAL.

SINAL MODULANTE:

- Informação que se deseja transportar pelo meio.
- Para o caso de comunicação é um sinal digital binário

MODULAÇÃO ANALÓGICA

- I Portador da INFO = SINAL ANALÓGICO
- Portador ANALÓGICO pode carregar INFO: DIGITAL → ASK, FSK, PSK, etc.
 - I ANALÓGICA → AM, FM
- I Modulação Analógica mais comum emprega sinais sinusoidais como portadores da INFO.
- Principais tipos: ASK, FSK, PSK.

ASK = Amplitude Shift Keying I Modulação por chaveamento/comutação de AMPLITUDE. I Representa-se a INFO DIGITAL a partir da variação da AMPLITUDE de ondas sinusoidais. INFO DIGITAL 1 0 1

FSK = Frequency Shift Keying

- I Modulação por chaveamento/comutação de Freqüência.
- l Representa-se a INFO DIGITAL a partir da variação da FREQÜÊNCIA de ondas sinusoidais.

PSK = Phase Shift Keying

- l Representa-se a INFO DIGITAL a partir da variação da FASE de ondas sinusoidais.
- I Modulação por chaveamento/comutação de FASE.
- I A fase depende da referência adotada. Assim, a fase do sinal é determinada a partir do sinal de referência ou a partir do sinal imediatamente anterior

2da etapa:

- A partir do Sinal Recodificado, modula-se a fase do sinal sinusoidal.
- I Isto é:
 - I DPSK=Recodificação + PSK sinal Binário

Técnicas Multinível

- I Verifica-se que, cada bit "0" e "1" que deseja-se transmitir a portadora sofre alguma mudança gora em uma de suas características.
- I Esta técnica denomina-se MONOBIT.

Técnica DIBIT

- I A técnica DIBIT, consiste em imprimir à onda portadora a informação de dois bits ao mesmo tempo.
- Para cada grupo de dois bits, a portadora assume a fase, conforme Tabela 1.

Tabela 1. Configurações DIBIT

	Fase da Portadora		
DIBIT	Alternativa A	Alternativa B	
00	00	45°	
01	90°	135º	
10	180º	225 ⁰	
11	270°	315º	

Tabela 2. Configurações TRIBIT

TRIBIT			Mudança de Fase
0	0	1	00
0	0	0	45°
0	1	0	900
0	1	1	135º
1	1	1	225 ⁰
1	1	0	180º
1	0	0	270°
1	0	1	315 ⁰

QAM = **Quadrature Amplitude Modulation**

- I Modulação por Amplitudes em quadratura.
- I Combinação de ASK com PSK:

O sinal sinusoidal apresenta variação de Amplitude e Fase simultâneamente.

I Também conhecida como:

QPSK= Quadrature PSK= PSK em quadratura.

I Para cada grupo de quatro bits (TETRABIT), a portadora assume um valor de amplitude e fase, ver Tabela 3.

Quadribit			t	Valor Fase	Valor Ampl.
0	0	0	1	00	3
0	0	0	0	45 ⁰	$\sqrt{2}$
0	0	1	0	900	3
0	0	1	1	135º	$\sqrt{2}$
0	1	1	1	180º	3
0	1	1	0	225 ⁰	$\sqrt{2}$
0	1	0	0	270°	3
0	1	0	1	315º	$\sqrt{2}$
1	0	0	1	315 ⁰	3√2
1	0	0	0	270°	5
1	0	1	0	225 ⁰	3√2
1	0	1	1	180º	5
1	1	1	1	135º	3√2
1	1	1	0	90º	5
1	1	0	0	45º	3√2
1	1	0	1	00	5

MODULAÇÃO DIGITAL

- Portador da INFO = SINAL DIGITAL
- I Conhecida como Codificação ou Sinalização
- I Transforma uma seqüência de pulsos, gerando sinais digitais com características especiais (codifica bits em pulsos).
- Alguns códigos usuais:

RZ, NRZ, AMI, MANCHESTER.

EXERCÍCIOS

- Gere sinais modulados ASK, FSK, PSK e DPSK para as seguintes seqüências de bits:
- 2. Gere sinais NRZ, RZ, AMI e MANCHESTER para as seguintes següências de bits:

