

Sprint 4

Ahmed Kaddah, Shao Jie Hu Chen, Marlon Müller Edge Computing and the Internet of Things Technische Universität München München, 26.01.2024

Deep sleep

Reality

[https://vespermems.com/products/vm3011/]

Solution

Post-training quantization

int16	floating-point	fixed-point
Training	≈ 88%	≈ 85%
Testing	≈ 88%	≈ 80%

int8	floating-point	fixed-point
Training	≈ 88%	≈ 88%
Testing	≈ 88%	≈ 88%

[ESP32] 512 kB SRAM & heap

[https://blog.espressif.com/esp32-programmers-memory-model-259444d89387]

[ESP32] 512 kB SRAM & heap

IRAM Organisation

IRAM layout in dual core mode

[https://blog.espressif.com/esp32-programmers-memory-model-259444d89387]

[ESP32] 512 kB SRAM & heap

DRAM Organisation with Trace Memory

DRAM Layout with Tracing Enabled

[https://blog.espressif.com/esp32-programmers-memory-model-259444d89387]

Memory inference

Example: 5s, 16kHz, MFCC: 308x32, quantization int8

Free ≈350kB

Memory inference

Example: 5s, 16kHz, MFCC: 308x32, quantization int8

Free ≈350kB Used ≈65kB

infec in P	git convince	gghts conv ¹ outr	Pool loute	eogy ² wei	ghts conv2 outr	pa Pools out	Put conv ³ wei	conv ³ out	put pool3 out	put fcl.weighte	fel outpi	ji Çelmejejê	its fol outpi	> Σ
9.85 kB	256 B	48.96 kB	16.32 kB	2.32 kB	14.34 kB	3.58 kB	1.16 kB	1.34 kB	336 B	21.56 kB	64 B	260 B	4 B	
×	×	×												59.07 kB
		×	×											$65.28\mathrm{kB}$
			×	×	×									$32.98\mathrm{kB}$
					×	×								17.92 kB
						×	×	×						$6.08\mathrm{kB}$
								×	×					1.68 kB
									×	×	×			21.96 kB
											×	×	×	$0.32\mathrm{kB}$

LoRa pitch

LoRa logic

Initialization protocol:

- ESP -> RPi. MAC Address and GPS info
- RPi -> ESP. ACK and local_id information (8 bits)

Classification protocol:

- ESP -> RPi. Local id and classification status of each bird.
- RPi -> ESP. ACK.
- The initialization protocol is established every 24 hours. (max. 3 retries per cycle)
- The classification protocol is established every 15 min. (max. 3 retries per cycle)

LoRa initialization payload packages

1. LoRa initialization package: 0 6 ESP ID GPS 2. LoRa initialization package ACK: ESP ID Local ID

LoRa information payload packages

3. LoRa NN output package:

4. LoRa NN output package ACK:

```
Example: 00000000 00000100 110 means:
- ID: 0.
- Counter: 4.
- NN classification: true for class 1, true for class 2, false for class 3.
```

LoRa duty cycle

- Time on Air:
 - LoRa initialization package (112 bits) -> 105.1 ms / package
 - LoRa initialization ACK package (56 bits) -> 64.1 ms / package
 - LoRa information package (19 bits) -> 36 ms / package
 - LoRa information ACK package (16 bits) -> 33.4 ms / package
- In the worst case (every connection fails), the Time on Air is 7.17 s / 24 h.
- Time on Air is less than the fair use limit (30 s / 24 h).
- Time on Air is far less than legal limitations for LoRa (864 s / 24 h).

GPS Module

- Using the GY-GPS6MV2
- Using UART to send data to the ESP
- Cold start in ideal conditions is ~2 mins
- Cold start in non-ideal conditions is ~10-20 mins
- Timeout is set to 30 mins
- 2.5m accuracy in ideal conditions

DEMO