Chapter 8 The Proofs of the PCP Theorems

Angsheng Li

Institute of Software Chinese Academy of Sciences

Advanced Algorithms, U CAS April, 2016

Outline

- 1. Backgrounds
- 2. CSP
- 3. Gap amplification
- 4. Hardness of 2CSP_W
- 5. Hastad's 3bit PCP

Three approaches

- 1. Local test approach (Arora, Sudan, 1992, full proof 1998)
- 2. Expander approach (Dinur, 06)
- 3. Fourier analysis approach (Hastad, 1998)

We introduce the two later approaches.

The first approach is a development of new ECC and new decoding algorithms of the ECC, based on the algebraic fundamental theorem.

CSP with non-binary alphabet

Definition

 $(qCSP_W)$ For $q, W \in \mathbb{N}$, qCSP with alphabet $[W] = \{0, 1, 2 \cdots, W - 1\}$.

For ρ < 1,

the ρ – GAP q CSP $_W$ problem.

Examples:

i) 3SAT: q = 3, W = 2, constraints are OR's of literals

ii) 3COL: 2CSP3.

Overall ideas of Dinur's proof

We know The PCP theorem $\iff \rho - \text{GAP}q\text{CSP}$ is NP-hard for $\rho <$ 1. Let $\rho = 1 - \epsilon$.

Theorem

Given a 3CSP instance ϕ , if ϕ is satisfiable, $val(\phi) = 1$, otherwise, then $val(\phi) \le 1 - \frac{1}{m}$.

Therefore, for $\rho = 1 - \frac{1}{m}$, the $\rho - \text{GAP3CSP}$ is NP-hard.

To prove the PCP theorem, it suffices to amplify the error from $\frac{1}{m}$ to a constant ϵ_0 .

Reduction

The proof is a reduction *R*:

$$R: qCSP \rightarrow q'CSP$$

$$\phi \mapsto \psi$$

$$val(\phi) \le 1 - \epsilon \Rightarrow val(\psi) \le 1 - 2\epsilon$$
.

Linear-blowup reduction

Definition

Let f be a function mapping CSP instances to CSP instances. We say that f is a complete linear-blowup reduction, written CL-reduction, if:

- i) f is polynomial time computable
- ii) (Completeness) If $val(\phi) = 1$, then so is $val(f(\phi))$.
- iii) (Linear blowup) If ϕ has m constraints, then $f(\phi)$ has at most cm constraints and alphabet W, where C, W depend on only the arity and alphabet of ϕ .

The PCP main lemma

Lemma

There exist constants q_0 , $\epsilon_0 > 0$ and a CL-reduction f:

- If ϕ is q_0 CSP, then so is $\psi = f(\phi)$,
- If $\epsilon < \epsilon_0$ and $val(\phi) \le 1 \epsilon$, then

$$val(\psi) \leq 1 - 2\epsilon$$
.

Consequently:

There exist constants q_0 , ϵ_0 such that

$$(1-2\epsilon_0)-\mathrm{GAP}q_0\mathrm{CSP}$$

is NP-hard.

Gap amplification lemma

Lemma

For every $I, q \in \mathbb{N}$, there exist $W \in \mathbb{N}$, $\epsilon_0 > 0$, CL-reduction g:

- If ϕ is qCSP, then $\psi = g(\phi)$ is 2CSP_W,
- for each $\epsilon < \epsilon_0$, if $val(\phi) \le 1 \epsilon$, then

$$val(\psi) \leq 1 - I \cdot \epsilon.$$

Arity:

$$q \Rightarrow 2$$

Alphabet:

$$2 \Rightarrow W$$

Error:

$$\epsilon \Rightarrow l\epsilon$$

Alphabet reduction lemma

Lemma

There exist q_0 , CL-reduction h:

- 1) If ϕ is $2CSP_W$, then $\psi h(\phi)$ is q_0CSP
- 2) If $val(\phi) \leq 1 \epsilon$, then

$$\operatorname{val}(\psi) \leq 1 - \frac{\epsilon}{3}$$
.

• Arity: $2 \Rightarrow q_0$

Alphabet: W ⇒ 2

• Error: $\epsilon \Rightarrow \frac{\epsilon}{3}$.

• Combining the gap amplification and the alphabet reduction lemmas with l = 6, $q = q_0$.

Intuition

- Parallel repetition
- To reduce the size, we use random walks in expanders

Basic tools

1) For a regular graph $G=(V,E),\ S\subseteq V,\ |S|\leq \frac{n}{2},\ |V|=n,$

$$\Pr_{(u,v)\in_{\mathbb{R}} E}[u\in \mathbb{S} \ \& \ v\in \mathbb{S}] \leq \frac{|\mathbb{S}|}{n}(\frac{1}{2}+\frac{\lambda(G)}{2}).$$

2)
$$\lambda(G^{l}) = (\lambda(G))^{l}.$$

For $T = \bar{S}$,

$$e(S,T) \geq (1-\lambda(G)) \frac{d|S| \cdot |T|}{n} \geq \frac{1-\lambda(G)}{2} \cdot d|S|$$

The probability that $v \in T$ under the condition of $u \in S$ is at least $\frac{1-\lambda(G)}{2}$.

The probability that $v \in S$ under the condition of $u \in S$ is $\frac{1}{2} + \frac{\lambda(G)}{2}$.

This gives 1). 2) as before.

Notation

Definition

We say that a $qCSP_W$ instance ϕ is "nice", if:

- P1 The arity q of ϕ is 2.
- P2 ϕ has a constraint graph G satisfying:
 - 0.1 for a constraint with variables u_i , u_i , there is an edge (i, j)
 - 0.2 G has parallel edges and self-loops
 - 0.3 *G* is *d*-regular, and half the edges are self-loops
- P3 G is an expander with $\lambda(G) \leq 0.9$, say.

Convention: Assume all CSP instances are nice.

Powering

Lemma

There is an algorithm that given any $2CSP_W$ instance ψ satisfying P1 - P3, and an integer $t \ge 1$, produces an instance ψ^t satisfying:

- 1. ψ^t is a $2CSP_{W'}$ instance, $W' < W^{d^{5t}}$, ψ^t has $d^{t+\sqrt{t}+1} \cdot n$ constraints.
- 2. If ψ is satisfied, then so is ψ^t .
- 3. For every $\epsilon < \frac{1}{d\sqrt{t}}$, if $\operatorname{val}(\psi) \le 1 \epsilon$, then $\operatorname{val}(\psi^t) \le 1 \epsilon'$, for $\epsilon' = \frac{\sqrt{t}}{10^5 dW^4} \epsilon$.
- 4. ψ^t is produced from ψ in time polynomial in m and W^{d^t} .

Proof - I

Outline of the reduction:

$$\psi \Rightarrow \psi^t$$

Variables y – the same y's

$$y \in W \Rightarrow y \in W^{d^{5t}}$$

Consider the constraint graph G of ψ .

Let y be a variable of ψ^t , the assignment of y in ψ^t defines the codes for all old variables of ψ in a ball of radius $t+\sqrt{t}$. For every path P in G of length 2t+1, define a constraint for ψ^t as follows:

Defining constraints for ψ^t

Suppose that

$$P = i_1, i_2, \cdots, i_{2t+1}.$$

Define the constraint c_P for ψ^t : c_P is false, if there is a $j \in [2t + 1]$ satisfying:

- (i) i_j is in the $(t + \sqrt{t})$ -radius ball around i_1 ,
- (ii) I_{j+1} is in the $(t + \sqrt{t})$ -radius ball of i_{2t+1} ,
- (iii) Let w be the value of i_j defined by i_1 , w' be the value of l_{j+1} defined by i_{2t+1} , and
- (iv) (w, w') fails to satisfy the constraint associated with i_j and i_{j+1} in ψ .

Lifting assignment for ψ^t

For every variable u in ψ^t , u defines a value $f_u(v)$ for every v in G such that $\operatorname{dist}(u,v) \leq t + \sqrt{t}$ in G.

For every assignment to the variables u_1, u_2, \cdots, u_n in ψ , we lift it to a canonical assignment to the variables $y_1, y_2, \cdots, y)n$ in ψ^t as follows:

For each y_i , define

$$f_i(y_j) = f(u_j)$$

for each y_j in the $t + \sqrt{t}$ -radius ball of u_i .

Completeness:

If $(u_1), \dots, f(u_n)$ satisfy ψ , then the assignment defined above for ψ^t satisfies all the constraints of ψ^t .

Soundness

$$\operatorname{val}(\psi) \le \epsilon \Rightarrow \operatorname{val}(\psi^t) \le 1 - \epsilon',$$

for $\epsilon' = \frac{\sqrt{t}}{10^5 dW_{\cdot}^4} \epsilon$.

Given an assignment f_1, f_2, \dots, f_n to the new variables y_1, y_2, \dots, y_n for ψ^t . Note that $f_i(j)$ is the value of y_j defined by y_i .

For a fixed j, define f(j) to be the majority $f_i(j)$ for all possible i's, and define f(j) to be the value of u_i for ψ .

Plurality assignment

Idea: Fix an assignment $\mathbf{y}=y_1,y_2,\cdots,y_n$ to ψ^t , define an assignment \mathbf{u} for ψ by plurality. Then:

If **u** violates a few (ϵ) constraints of ψ , then **y** violates many $(\epsilon' = \Omega(\sqrt{t}\epsilon))$ constraints of ψ^t .

Definition

(Plurality assignment) For every variable u_i of ψ , we define the random variable Z_i over $\{0, 1 \cdots, W-1\}$ as follows:

- (i) start from vertex i,
- (ii) take *t* step random walk in *G* to reach vertex *k*,
- (iii) let z_i be the most likely value of $y_k(i)$.
- (iv) let

$$\mathbf{z}=z_1,z_2,\cdots,z_n$$

be the plurality assignment.

Failure set

Note

$$\Pr[Z_i = z_i] \geq \frac{1}{W}.$$

Assume $val(\psi) \leq 1 - \epsilon$.

For the plurality assignment $\mathbf{z}=z_1,z_2,\cdots,z_n$, let F be the set of constraints of ψ that are not satisfied by \mathbf{z} . Then:

$$|F| \ge \epsilon m = \epsilon d \frac{n}{2}.$$

We call F the *failure set* of ψ . We will use the failure set F to show that \mathbf{y} fails to satisfy ϵ' fraction of the constraints of ψ^t .

Probability space

- 1) Pick a (2t+1) step path $i_1, i_2, \dots i_{2t+2}$ in G, i.e., a random constraint of ψ^t .
- 2) For each j, $1 \le j \le 2t + 1$, we say that the j-th edge in the path, i.e., (i_i, i_{i+1}) , is *truthful* if:
 - $-y_{i_i}$ gives the plurality value of i_j , and
 - $-y_{i_{2t+2}}$ gives the plurality value for i_{j+1} .

Fact: If there is an edge (i_j, i_{j+1}) which is both truthful and in F, then the constraint defined by the path is unsatisfied. What we will prove is: there are ϵ' fraction of the paths that contain the edges as above.

The probability that an edge is chosen

Lemma

(Property 1) For each edge e of G and each $j \in [2t + 1]$,

$$Pr[e \text{ is the } j\text{th edge of the path}] = \frac{1}{|E|} = \frac{2}{dn}.$$

The proof is by observation.

The probability that a chosen edge is truthful

Lemma

(Property 2) Let $\delta < \frac{1}{100W}$. For each edge e of G and j with $t \le j \le t + \delta \sqrt{t}$,

$$Pr[e \text{ is truthful } | e \text{ is the jth edge}] \ge \frac{1}{2W^2}.$$

Intuition: The edges in the middle of the paths are truthful with high probability.

Proof of Property 2 - I

By property 1, the set of walks of length 2t + 1 that contain $e = (i_j, i_{j+1})$ at the jth step can be generated by concatenating a random walk of length j from i_j , and a random walk of length 2t - j from i_{j+1} .

To property Property 2, it suffices to prove:

The probability that:

- $-y_{i_i}$ gives the plurality value of i_j , and
- $-y_{i_{2t+2}}$ gives the plurality value for i_{j+1} is at least $\frac{1}{2W^2}$.

Proof of Property 2 - II

Assume $j \in \{t, t+1, \cdots, t+\delta\sqrt{t}\}$. Recall that at each vertex of G, half edges are self-loops. For a random walk of I steps, we define a distribution S_I :

1) the number of the random coins that come up "heads",
2) take S_I "real" steps on the graph.
Then:

$$\Pr[S_I = k] = \binom{I}{k} 2^{-t}.$$

Proof of Property 2 - III

This gives

$$\frac{1}{2}\sum_{m}|\Pr[S_t=m]-\Pr[S_{t+\delta\sqrt{t}}=m]|\leq 10\delta.$$

Therefore, for each $j \in \{t, t+1, \cdots, t+\delta\sqrt{t}\}$,

Pr[y_{i_1} gives the plurality value for i_j and $y_{i_{2t+1}}$ gives the plurality value for i_{j+1}] $\geq (\frac{1}{W} - 10\delta)(\frac{1}{W} - 10\delta) \geq \frac{1}{2W^2}.$ (1)

Proof

Let V be the random variable denoting the number of edges among the middle $\delta\sqrt{t}$ edges that are truthful and in F. According to properties 1 and 2,

$$E[V] \ge \delta \sqrt{t} \times \frac{|F|}{|E|} \times \frac{1}{2W^2}.$$

Property 3

First,

$$E[V^2] \leq 30\epsilon\delta\sqrt{t}d$$
.

Let V': the number of edges in the middle that are in F. Then $V \leq V'$. We prove

$$E[V'^2] \leq 30\epsilon\delta\sqrt{t}d$$
.

For $j \in \{t, t+1, \cdots, t+\delta\sqrt{t}\}$,

$$I_j = \begin{cases} 1, & \text{if the } j \text{th edge is in } F, \\ 0, & \text{o.w.} \end{cases}$$
 (2)

Then

$$j \in \{t, t+1, \cdots, t+\delta\sqrt{t}\}$$

Proof of property 3 - II

$$\begin{split} &= E[\sum_{j} I_{j}^{2}] + E[\sum_{j \neq j'} I_{j} I_{j'}] \\ &= \epsilon \delta \sqrt{t} + E[\sum_{j \neq j'} I_{j} I_{j'}] \\ &= \epsilon \delta \sqrt{t} + 2 \sum_{j < j'} \Pr[(j \text{th edge is in } F \ \land \ (j' \text{th edge is in } F)] \\ &\leq \epsilon \delta \sqrt{t} + 2 \sum_{j < j'} \Pr[(j \text{th vertex in } S) \land (j' \text{th vertex in } S)] \end{split}$$

 $E[V'^2] = E[\sum_{i,i'} I_i I_{j'}]$

$$\leq \epsilon \delta \sqrt{t} + 2 \sum_{j < j'} \epsilon d(\epsilon d + (\lambda(G))^{j'-j})$$

$$\leq \epsilon \delta \sqrt{t} + 2\epsilon^2 \delta \sqrt{t} d^2 + 2\epsilon \delta \sqrt{t} d \sum_{k \geq 1} \lambda^k(G)$$

$$\leq \epsilon \delta \sqrt{t} + 2\epsilon^2 \delta \sqrt{t} d^2 + 20\epsilon \delta \sqrt{t} d$$

$$\leq 30\epsilon \delta \sqrt{t} d \cdot (\epsilon < \frac{1}{d\sqrt{t}}).$$
(3)

Finally,

$$\Pr[V > 0] \ge \frac{(E[V])^2}{E[V^2]} \ge \frac{(\delta \sqrt{t}\epsilon)^2}{30\epsilon \delta \sqrt{t}d} = \frac{\sqrt{t}}{10^5 dW^4} \epsilon = \epsilon'.$$

Proof of reducing alphabet size - I

Let ϕ be a 2CSP instance with:

- (i) n variables u_1, u_2, \cdots, u_n ,
- (ii) alphabet $\{0, 1, \cdots W 1\}$, and
- (iii) constraints C_1, C_2, \cdots, C_m .

Each variable takes value in [W], that is interpreted as a string in $\{0,1\}^{\log W}$.

Each constraint C_k involves variables u_i and u_j is regarded as a circuit \widehat{C}_k applied to the bit strings.

Let *I* be an upper bound of all the circuits size.

Then,

$$I \leq 2^{2^{\log W}} < W^4.$$

Now each \widehat{C}_k is a new constraint with binary variables.

Project property

For each constraint $C(y_1, y_2)$, for each value of y_1 , there is a unique y_2 such that $C(y_1, y_2)$ is satisfied.

A 2CSP instance ϕ is called *regular*, if every variable appears in the same number of constraints.

Raz's repetition Theorem

Theorem

There is a c > 1 such that for every t > 1, $\epsilon - \text{GAP2CSP}_W$ is NP-hard for $\epsilon = 2^{-t}$, $W = 2^{ct}$, and the result holds for 2CSP instances that are regular and have the projection property.

Intuition

Assume ϕ is a 2CSP_W instance such that either $\text{val}(\phi) = 1$ or $\text{val}(\phi) = \rho < 1$, and its is NP-hard to distinct the two cases. Construct ϕ^{*t} as follows.

For every *t*-tuple of constraints of ϕ :

$$\phi_1(y_1, z_1), \phi_2(y_2, z_2), \cdots, \phi_t(y_t, z_t)$$

 ϕ^{*t} has the constraint of the form:

$$\wedge_{i=1}^t \phi_i(\mathbf{y}_i, \mathbf{z}_i)$$

between variables (y_1, y_2, \dots, y_t) and (z_1, z_2, \dots, z_t) . Running the verifier for ϕ in parallel t times gives the theorem.

3-bit PCP Theorem

Theorem

For every $\delta > 0$ and every language $L \in NP$, there is a PCP verifier V for L making three binary queries haing completeness $1 - \delta$ and soundness at most $\frac{1}{2} + \delta$.

Moreover the tests used by V are linear. That is, given a proof $\pi \in \{0,1\}^m$, V chooses a triple $(i_1,i_2,i_3) \in [m]^3$ and $b \in \{0,1\}$ according to some distribution and accepts if and only if

$$\pi_{i_1} + \pi_{i_2} + \pi_{i_3} = b \pmod{2}.$$

Long code

Definition

The long code for [W] encodes each $w \in [W]$ by a table of all values of the function $\chi_{\{w\}}: \{\pm 1\}^{[W]} \to \{\pm 1\}$. Let $W \in \mathbb{N}$. For $w \in [W]$,

$$\chi_{\{w\}}(x_1, x_2, \cdots, x_W) = \prod_{i \in \{w\}} x_i = \prod_{i = w} x_i = x_w.$$

The long code or codeword defined by w is the table of the function $\chi_{\{w\}}$.

Given a function $f: \{\pm 1\}^W \to \{\pm 1\}$, we need to test if f is a long code $\chi_{\{w\}}$ for some $w \in [W]$.

Local test of long code

The local tester for long code \mathcal{T} :

- (1) Pick two uniformly random vectors x, y from $\{\pm 1\}^W$.
- (2) Pick a *noisy* $z \in \{\pm 1\}^W$ as follows: For each i with probability 1ρ , define z)i = +1,
 - o.w., then $z_i = -1$.
- (3) Accepts if:

$$f(x)f(y) = f(xyz).$$

Completeness

If $f = \chi_{\{w\}}$ for some $w \in [W]$, then

- $f(x)f(y) = x_w y_w$
- $\bullet \ f(xyz) = x_w y_w z_w$
- $f(x)f(y) = f(xyz) \iff x_w = 1$, which holds with probability 1ρ .

Soundness - I

Lemma

If the tester accepts with probability $\frac{1}{2} + \delta$, then

$$\sum_{\alpha} \widehat{f}_{\alpha}^{3} (1 - 2\rho)^{|\alpha|} \geq 2\delta.$$

Suppose the lemma holds.

If $|\alpha|$ is large, $(1-2\rho)^{|\alpha|}$ is negligible. Therefore, there are small α such that \widehat{f}_{α} is large, so f is close to χ_{α} .

For
$$k = \frac{1}{2\rho} \log \frac{1}{\epsilon}$$
, if $|\alpha| > k$, then

$$(1-2\rho)^{|\alpha|} < (1-2\rho)^{\frac{1}{2\rho}\log\epsilon^{-1}}$$

$$= ((1-2\rho)^{\frac{1}{2\rho}})^{\log\frac{1}{\epsilon}} < (\frac{1}{e})^{\log\frac{1}{\epsilon}} < \epsilon.$$
(4)

Soundness - II

By the lemma,

$$2\delta \leq \sum_{\alpha} \widehat{f}_{\alpha}^{3} (1 - 2\rho)^{|\alpha|}$$

$$= \sum_{|\alpha| \leq k} \widehat{f}_{\alpha}^{3} (1 - 2\rho)^{|\alpha|} + \sum_{|\alpha| > k} \widehat{f}_{\alpha}^{3} (1 - 2\rho)^{|\alpha|}$$

$$\leq \max_{|\alpha| \leq k} \widehat{f}_{\alpha} \sum_{\alpha, |\alpha| \leq k} \widehat{f}_{\alpha}^{2} (1 - 2\rho)^{|\alpha|} + \epsilon$$

$$\leq \max_{\alpha, |\alpha| \leq k} \widehat{f}_{\alpha} + \epsilon. \tag{5}$$

Therefore, there is an α such that $|\alpha| \leq k$, $\hat{f}_{\alpha} \geq 2\delta - \epsilon$. f is close to χ_{α} .

Proof of the lemma - I

If the tester accepts with prob $\frac{1}{2} + \delta$, then

$$E[f(x)f(y)f(xyz)]=2\delta.$$

Let
$$f = \sum_{\alpha} \widehat{f}_{\alpha} \chi_{\alpha}$$
.

$$2\delta \leq E_{x,y,z}[(\sum_{\alpha} \widehat{f}_{\alpha} \chi_{\alpha}(x))(\sum_{\beta} \widehat{f}_{\beta} \chi_{\beta}(y))(\sum_{\gamma} \widehat{f}_{\gamma} \chi_{\gamma}(xyz))]$$

$$= \sum_{\alpha} \widehat{f}_{\alpha}^{3} E_{z}[\chi_{\alpha}(z)]. \qquad (6)$$

By the choice of z,

$$E_{z}[\chi_{\alpha}(z)] = E_{z}[\prod_{i \in \alpha} z_{i}].$$

Proof of the lemma - II

By the independence, the later is

$$\prod_{i\in\alpha} E[z_i] = (1-2\rho)^{|\alpha|},$$

since $E[z_i] = 1 - 2\rho$. Therefore,

$$2\delta \leq \sum_{\alpha} \widehat{f}_{\alpha}^3 (1-2\rho)^{|\alpha|}.$$

Recall the instance

Assume: For a $2CSP_W$ instance ϕ , either $val(\phi) = 1$ or $val(\phi) \le 1 - \epsilon$. Suppose that

(i) ϕ has n variables x_1, x_2, \dots, x_n , taking values in [W], (ii) for each constraint $\phi_r(x_i, x_j)$, there is a function $h: [W] \to [W]$ such that ϕ_r is satisfied by π if and only if $\pi(j) = h(\pi(i))$.

→ロト 4回ト 4 重ト 4 重ト 重 めなべ

Bifolded

Observation For $v = (v_1, v_2, \cdots, v_W)$,

$$\chi_{\{w\}}(-v) = -\chi_{\{w\}}(v) = -v_w$$

.

Definition

We say that a function is biofolded, if for all $v \in \{\pm 1\}^W$, f(-v) = -f(v).

Bifolded lemma

Lemma

If $f: \{\pm 1\}^W \to \{\pm 1\}$ is bifolded and $\widehat{f}_{\alpha} \neq 0$, then $|\alpha|$ is odd. In particular, $|\alpha| \geq 1$.

By definition,

$$\widehat{f}_{\alpha} = \langle f, \chi_{\alpha} \rangle = E_{\nu}[f(\nu)\chi_{\alpha}(\nu)] = E_{\nu}[f(\nu)\prod_{i \in \alpha} v_i]$$

If $|\alpha|$ is even, then $\chi_{\alpha}(-v) = \chi_{\alpha}(v)$, in which case, if f is bifolded, f(-v) = -f(v). Therefore, $\widehat{f}_{\alpha} = E_{\nu}[f(v)\chi_{\alpha}(v)] = 0$.

Assume the functions are bifolded.

Hastad's verifier V_H

Assumptions:

1) The proof π is expected to be the assignment $w_1, w_2 \cdots, w_n$ to the variables v_1, v_2, \cdots, v_n such that each w_i is encoded by a bifolded long code.

 V_H assumes each w)i is treated as a function

- $f_i: \{\pm 1\}^W \to \{\pm 1\}.$
- 2) Randomly picks a constraint $\phi_r(i,j)$ in the $2CSP_W$ instance.
- 3) V_H checks:
- f_i , f_j encode two values in [W] that satisfy ϕ_r , i.e., if f)i, f_j are the long codes of w, w', then h(w) = w'.

$$V_H$$
 - II

For $u \in [W]$, let $h^{-1}(u) = \{w \mid h(w) = u\}$. For $y \in \{\pm 1\}^W$, $\mathcal{H}^{-1}(y)$ is the string z in $\{\pm 1\}^W$ such that for each $w \in [W]$, the wth bit of the z is $y_{h(w)}$. V_H proceeds as follows:

- 1. Pick random v, y from $\{\pm 1\}^W$,
- 2. Pick a noisy $z \in \{\pm 1\}^W$ by with prob 1ρ , $z_i = +1$, $-z_i = -1$, otherwise.
- 3. Accepts, if

$$f(v)g(y) = f(\mathcal{H}^{-1}(y)vz).$$

Completeness

If ϕ is satisfied, take a satisfying assignment and form a proof for V_H .

Suppose f, g are long codes of w, u with h(u) = w. Then

$$f(v)g(y)f(\mathcal{H}^{-1}(y)vz) = v_w y_u y_{h(w)} v_w z_w = z_w$$
 (7)

 V_H accepts with prob 1 – ρ .

Soundness- I

For $\alpha \subseteq [W]$,

$$h_2(\alpha) = \{ u \in [W] \mid |h^{-1}(t) \cap \alpha| \ge 1.$$

Lemma

Let $f, g: \{\pm 1\}^W \to \{\pm 1\}$ be bifolded functions and $h: [W] \to [W]$ such that they pass the test by V_H with prob $\geq \frac{1}{2} + \delta$. Then:

$$\sum_{\alpha \neq \emptyset} \widehat{f}_{\alpha}^2 \widehat{g}_{h_2(\alpha)} (1 - 2\rho)^{|\alpha|} \geq 2\delta.$$

Soundness - II

Lemma

Suppose that ϕ is a 2CSP_W instance with val $(\phi) < \epsilon$. If $\rho \delta^2 > \epsilon$, then V_H accepts with prob $< \frac{1}{2} + \delta$.