## DNS

Domain Naming System

## **DNS - Domain Naming System**

- Netzwerkdienst
- Übersetzt Namen in IP-Adressen (DNS lookup)
- www.google.com ist z.B. via 142.251.36.142 erreichbar
- FQDN (Fully Qualified Domain Name)
  - ► Top-Level com (TLD ... top level domain)
  - Second-Level google
  - Third-Level www

## **DNS - Domain Naming System**



## Ablauf Namensauflösung



Quellen

hosts

Lokaler Cache

## DNS - Subdomains @ HTL-HL

- www.htl-hl.ac.at
- gwmail.htl-hl.ac.at
- ▶ letto.htl-hl.ac.at
- ▶ filr.htl-hl.ac.at
- moodle.htl-hl.ac.at

## DNS - Subdomains in der Praxis

- Filialen bzw. Abteilungen einer Firma
- ► Eigenständige Webauftritte
  - ► Allgemeine Homepage
  - Webshop
  - **▶** Webmail

## DNS - Arten von DNS-Server

- Primary DNS-Server:
  - ► Master-Kopie der Domain-Konfiguration
  - ► IP-Adressen und FQDN
- Secondary DNS-Server (Slave):
  - ▶ Read-Only-Kopie der Domain-Information vom Primary-Server
  - agiert als "Backup" falls Primary ausfällt
- Caching DNS-Server:
  - speichert Antworten von DNS-Anfragen und dient zur Entlastung der Primary/Secondary-Server

### DNS - Arten von DNS-Server

#### Authoritative DNS-Server:

▶ Diese Server halten Informationen über eine bestimmte Domain oder einen bestimmten Bereich und sind autorisiert, DNS-Abfragen für diese Domain oder diesen Bereich zu beantworten.

#### Recursive DNS-Server:

▶ Diese Server sind dafür verantwortlich, DNS-Abfragen von Clients zu beantworten, indem sie die angeforderten Informationen von anderen DNS-Servern abrufen. Sie arbeiten als Vermittler zwischen den Clients und den Authoritative DNS-Servern.

### DNS - Arten von DNS-Server

#### Forwarding DNS-Server:

leiten DNS-Abfragen von Clients an andere DNS-Server weiter, anstatt die Antworten selbst zu speichern. Forwarding-Server werden oft von Unternehmen oder ISPs eingesetzt, um den Netzwerkverkehr zu optimieren und die Latenz zu reduzieren.

#### Root DNS-Server:

▶ sind die höchste Ebene des DNS-Systems und sind dafür verantwortlich, Anfragen für Top-Level-Domains (wie .com, .org und .net) an die zuständigen TLD-Server weiterzuleiten. Es gibt 13 Root DNS-Server weltweit, die von verschiedenen Organisationen betrieben werden.

#### TLD DNS-Server:

Diese Server sind für die Verwaltung der Top-Level-Domains (wie .com, .org und .net) zuständig und leiten Anfragen für bestimmte Domains an die zuständigen Authoritative DNS-Server weiter.

## **Root-DNS-Server**

https://www.iana.org/domains/root/servers

| a.root-servers.net | <b>198.41.0.4</b> , 2001:503:ba3e::2:30 | Verisign, Inc.                                                       |
|--------------------|-----------------------------------------|----------------------------------------------------------------------|
| b.root-servers.net | 199.9.14.201, 2001:500:200::b           | University of Southern California,<br>Information Sciences Institute |
| c.root-servers.net | 192.33.4.12, 2001:500:2::c              | Cogent Communications                                                |
| d.root-servers.net | 199.7.91.13, 2001:500:2d::d             | University of Maryland                                               |
| e.root-servers.net | 192.203.230.10, 2001:500:a8::e          | NASA (Ames Research Center)                                          |
| f.root-servers.net | 192.5.5.241, 2001:500:2f::f             | Internet Systems Consortium, Inc.                                    |
| g.root-servers.net | 192.112.36.4, 2001:500:12::d0d          | US Department of Defense (NIC)                                       |
| h.root-servers.net | 198.97.190.53, 2001:500:1::53           | US Army (Research Lab)                                               |
| i.root-servers.net | 192.36.148.17, 2001:7fe::53             | Netnod                                                               |
| j.root-servers.net | 192.58.128.30,<br>2001:503:c27::2:30    | Verisign, Inc.                                                       |
| k.root-servers.net | 193.0.14.129, 2001:7fd::1               | RIPE NCC                                                             |
| l.root-servers.net | 199.7.83.42, 2001:500:9f::42            | ICANN                                                                |
| m.root-servers.net | 202.12.27.33, 2001:dc3::35              | WIDE Project                                                         |

## DNS - Record-Types

- A steht für *Adresse*, beinhaltet die IPv4 Adresse eines speziellen
  - Hostnamen oder einer Domain
- ► AAAA wie A-Record, zeigt allerdings IPv6 Adressen
- NS Nameserver klärt die Autorität einer Zone
- MX Mail Exchange ordnet E-Mail-Servern eine Domain zu
- CNAME Canonical Name definiert einen Alias
- ► SOA Start of Authority gibt Details über die Zone bekannt
- ▶ PTR Pointer ist für den Reverse-Lookup gedacht

# DNS - Namensauflösung von domain.net via Recusive DNS-Server

#### **Recursive DNS server**



## DNS - Namensauflösung von <u>www.google.com</u> via Recusive DNS-Server

- 1. Der Recursive DNS-Server empfängt die DNS-Anfrage vom Client und prüft, ob er bereits eine Antwort im Cache gespeichert hat.
- 2. Wenn der Recursive DNS-Server die Antwort nicht im Cache hat, sendet er eine Anfrage an einen Root DNS-Server und bittet um die IP-Adresse des DNS-Servers, der für die Top-Level-Domain ".com" verantwortlich ist.
- 3. Der Root DNS-Server antwortet mit dem IP-Adresse des DNS-Servers für die Top-Level-Domain ".com".
- 4. Der Recursive DNS-Server sendet nun eine Anfrage an den DNS-Server für die Top-Level-Domain ".com" und bittet um die IP-Adresse des DNS-Servers, der für die Domain "google.com." verantwortlich ist.

## DNS - Namensauflösung von <u>www.google.com</u> via Recusive DNS-Server

- 5. Der DNS-Server für die Top-Level-Domain ".com" antwortet mit dem IP-Adresse des DNS-Servers für die Domain "google.com.".
- 6. Der Recursive DNS-Server sendet nun eine Anfrage an den DNS-Server für die Domain "google.com." und bittet um die IP-Adresse des Hosts (A-Record) "www.google.com.".
- 7. Der DNS-Server für die Domain "google.com." antwortet mit der IP-Adresse des Hosts "www.google.com.".
- 8. Der Recursive DNS-Server sendet die IP-Adresse des Hosts "<u>www.google.com</u>." an den Client zurück.
- 9. Der Client kann nun eine Verbindung zum Host "<a href="www.google.com">www.google.com</a>." herstellen, indem er die IP-Adresse verwendet, die er vom Recursive DNS-Server erhalten hat.

## **Powershell Cmdlets**

Resolve-DNSName <a href="https://learn.microsoft.com/en-us/powershell/module/dnsclient/resolve-dnsname?view=windowsserver2022-ps">https://learn.microsoft.com/en-us/powershell/module/dnsclient/resolve-dnsname?view=windowsserver2022-ps</a>

DNS-Server
<a href="https://learn.microsoft.com/en-us/powershell/module/dnsserver/?view=windowsserver2022-ps">https://learn.microsoft.com/en-us/powershell/module/dnsserver/?view=windowsserver2022-ps</a>