(a)	SOLUTION	2006 PARCE
(i) For the system	un of six cubes	0 . 1-
	$F = 6ma$ $a = \frac{F}{6m}$	a = acceleation [2]
Acceleration and on syste	of each cube is $\alpha = \frac{F}{6m}$	
(ii)- kenebant f	arce on each cube = $ma = \frac{F}{6}$	
(iii) For cube 1,		$\rightarrow \left[\begin{array}{c} \leftarrow \\ R_{21} \end{array}\right]$
	F-R21 = ma R21 = F-ma = 6ma-1	
	Re = 5ma	
For oube 2,	$R_{12}-R_{32}=ma$	$\frac{1}{R_{12}} \leftarrow R_{32}$
	R32 =-ma + R12 = 4ma	as R12=R24
For cube 3,	$R_{23} - R_{43} = ma$ $R_{43} = R_{23} - ma$	$\overrightarrow{R_{13}} = \overrightarrow{3} + \overrightarrow{R_{43}}$ as $R_{23} = R_{32}$
	= 3ma	
For cube4	, Rsy = ma R Rsy = Rsy-ma	Allender Microsoft and a contract of the contr
Force exerted o	= 3 ma -ma = 5 by 4, R= Rsx = 2 ma = \$ f	as R34= R43] F [1]
		[[4]
Altmatuel	ly starbing from sexth cube R 56 = ma.) }[1½+1
Shaher: Con	$R_{45}-R_{65} = m\alpha$ $R_{45} = 1$ $Sider logether less two blooms = \frac{F}{Gm} = \frac{F}{3}$	$R_{54} = 2ma = \frac{1}{3}F \int = [2]$ $Zks \int \left[\frac{1}{2} \right]$
	6m 3	

SOWTIO N

The total resio. of 3 resistors in parallel on LHS = (+++++)=5

Total resis. of 2 resistors in parallel on RHS = (+++) = [-1]

Circuit reduces to

$$T = \frac{17E}{11r}$$

TOTAL [[4]]

and the second of the second o

and the second of the second o

and the second of the second o

(x,y,y) = (x,y) + (x

and the second of the second o

Let of be the leight of the oil surface above the bottom of the stick.

Weight of stick W = (46 × 46) lpg where l length of stick Li

Upthouston stick U = (4b)blpg + (x-b)(4b)lpg

Equating, W=U, for equilibrium

4 b g = b g + (x-b) p 3 b g = (x-b) g $x = \frac{3b}{6} + b$

$$x = \frac{3b}{5} + b$$

Fraction muneised F given by $F = \frac{x}{4b}$

Substituting
$$p = \frac{2}{3}p$$
.

$$F = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

[4]

[1]

[2]

TOTAL [[5]]

SOLUTIONS

	6.06
(1) The acceleration a produced by the Sun on the Earth and a mass in for by $\alpha = R_{SE}\omega^2$ where ω is the rangular frequency of the Earth	thabout the So
Consequently, relative to the Earth, there is no net acceleration out	the mass in free fe
Only one student produced this correct answer. Most students attempted to	culculate C4
a. We decided to give 3 marks for a correct calculation using the data	a provided
(note: Ms not given) (note: Ms not given) (a = RSEW ² = T ² RSE (i) Energy required for a many to jump 1 m on Earth is ing J.	[2]
= 482 (1.5×10") (365×24×60×60)2 = 6.0×10 m52	CIT
Escapeenergy from a spherical body radius r, mass M, for man ma	13 II
•	
$ugh = \frac{GMm}{r}$	[]
On Earth g given by $g = \frac{GM}{\Gamma}$ $g = \frac{GME}{R_E^2}$ 3	
On Earth g givenby	
From @ and B $ \Gamma = \frac{M}{M_E} \frac{R_E^2}{L} $ ©	
Sub ⁹ $k=1m$ and $M_E = \frac{r^3}{R_E^3}$ in @ assuming same unif	lour dencety
$\Gamma^{2} = R_{E} R_{E} = R_{E}$ as $R = 1$ $Sub^{9} R_{E} = 6.38 \times 10^{6} \text{m}$, $\Gamma = 2.53 \text{km}$	
Sub RE = 6-38×10m, r= 2.53km	<u>[[[6]</u>
(iii) Rate of working W = (keats/sec)(vol.y blood/sec)(pressure)	\(\frac{12-0}{2+\frac{1}{2}+\frac{1}{2}}\)
$= \left(\frac{72}{60}\right) \left(7.5 \times 10^{-5}\right) \left(19 \times 10^{3}\right)$	
= 1.7 W	

[[2]7

SOWTIONS copper strip at 0 (1) Rate of the object and The (i) bonsider the flow of heat from the copper strip through the insulating sheets. Heat, H, produced by current I, per unit length, is given by [1] H=IR = I2 (1+60) (11) In a steady state, constat temp gradient, from & to O°C. Heat conduction H = 2 KW + (2 faces of strip) (B) 口了 Equating (A) and (B) Ta(1+60) = 2KW 七 12 O(Irat-b) $\theta = \left(\frac{2\kappa\omega}{T_{n}^{2}t} - b\right)^{-1}$ [2] Thus 0 > 0 when 4 [1] Contrial werent $I_{c} = \sqrt{\frac{2(1.30 \times 10^{-1})(5.00 \times 10^{-3})}{(4.3 \times 10^{-3})(2.2 \times 10^{-2})(1 \times 10^{-3})}}$ [1] (111) [:] [[S]]

[[67]

het car be travelling horizontally at v ms'. Then relative to the carl motical they relative to the rainfis obtained by adding v, and (-v) II.

GRRECT DING [1]
$$\frac{car}{v} \rightarrow \frac{car}{v}$$

i. lan 30 = \$

} ~ []

(11) If Sixthe reaction on the cer $\frac{mv^2}{2} = mg - S$

$$v^2 = gR$$
= $(9.81) + 0$

(Hump raduis R)

AS [i.

(iii) Loss in PE = Loss of P.E. in 25m of rope decending 20m =
$$\left[\binom{25}{45}\right]_{5} g$$
 (20)

几24刀 [6] [1]

[4]

Using conservation of energy, with speed σ , $\frac{1}{2}mv^2 = m'gh''$ where m $\frac{1}{2}(15)v^2 = \frac{500}{3}g = \frac{500}{3}(9.81)$

$$(15)v^2 = \frac{500}{3}g = \frac{500}{3}(9.81)$$

:. V = 14.8 ms Doubling the mass of rope does not change V

Q1 (j)

(235.04 + 1.01) - (140.91+91.91+3× 1.01)u MASS DIFFERENCE Energy released = 0.20 × 931 = 186.20 MeV 235.04 × 10 3 kg of Uqz contains 6.02 × 10 3 atoms 10 kg of Uq2 contains 10 x 6.02 x 10 23 atoms Energy released by 10 kg of $U_{92}^{235} = 2.56 \times 10 \times 186.2 \text{ MeV}$ = $4.77 \times 10^{27} \text{ MeV}$ IL 47 lev= 1.6×10-19J. 77 ×1.6 × 1014 J.

and the second s

- (i) hight to totally intenally reflected at the interface between core and cladding (no mg) with negligable [12] loss in intenestry
- (ii) If the angle of incidence at the (nextra) interface is less than that for total interval reflection, the intersety is rapidly diminished due to refraction through the [12] cladding. This limits the angle of incidence, O, at the fibre face.

SOUTION

$$\phi = \sqrt{x^2 + \ell^2} - x$$

$$= x \left[\left(1 + \left(\frac{\ell}{x} \right)^2 \right)^{\frac{1}{2}} - 1 \right]$$

$$= x \left[\frac{1}{2} \left(\frac{\ell}{x} \right)^2 + \dots \right]$$

$$= \frac{x}{2} \left(\frac{\ell}{x} \right)^2$$

$$= \frac{1}{2} \left(\frac{\ell}{x} \right)^2$$

$$= \frac{1}{2}(\frac{1}{4})^{2} \frac{1}{2}$$
 as $\ell = \frac{1}{4}$

(1) Max occurs when
$$\frac{1}{32} = (n+1)$$
? as S, and S2 TT out of phase

(b) (1) Max occurs when

or
$$\sqrt{x^2+\ell^2}-x=(n+\frac{1}{\epsilon})\lambda$$

(11) Min. occurs when
$$\frac{1}{32} \frac{1}{x} = n\lambda$$
or $\sqrt{x^2 + \ell^2} - x = n\lambda$

CI J

凸了

"【字】

Now

$$\Lambda = \frac{c}{v} = \frac{330}{200 \times 10^3} = 1.65 \times 10^{-3} \text{ m}$$

(iii) Max. when

$$\frac{1}{32}\frac{1}{x} = (n+\frac{1}{2}) \cdot 1.65 \times 10^{-3}$$

$$n=0$$
 gues $n=1$ gues

$$x = 12.6 \text{ m}$$

[I]

 $\frac{1}{32} = n \left(1.65 \times 10^{-3} \right)$ Min. when

$$x = 18.9 \text{ m}$$

m>1 quies x<10

[I] [3]

Interference occurs, " S, and T Tout of phase, but minimum does not have zero intensity

WZ011/

Q3___

Solution

(a)(i)
$$i_{22}$$
 is i_{2} when $2V$ short exempted

 $i_{2,6}$ ii ii ii $6V$ ii ii

 $i_{1,2}$ is i_{1} ii $2V$ ii ii

 $i_{1,6}$ is i_{1} ii $6V$ ii, ii

$$i_{2,6} = \frac{240}{6 + (\frac{1}{2} + \frac{1}{4})^{-1}} = \frac{2\cdot 0}{6 + \frac{1}{4}3} = \frac{6}{22} = \frac{3}{11}$$
 amps
 $i_{2,6} = \frac{4}{6}(\frac{6}{22}) = -\frac{3}{11}$ amps

(i)
$$i_{1,2} = \frac{6.0}{2 + (\frac{1}{6} + \frac{1}{6})^{-1}} = \frac{6.0}{2 + (5/12)^{-1}} = \frac{5(6)}{22} = \frac{15}{11} \text{ amps}$$

$$0 \cdot i_{2,2} = -\frac{15}{10} \left(\frac{15}{11}\right) = -\frac{1}{11} \text{ amps}$$

$$\frac{15}{11} = \frac{15}{11} = \frac{15}{11$$

(b) (i)
$$\dot{i}_1 = \dot{i}_{12} + \dot{i}_{16} = -\frac{2}{11} + \frac{15}{11} = \frac{13}{11} = 1.18 \text{ aups}$$

$$\dot{i}_2 = \dot{i}_{12} + \dot{i}_{16} = \frac{3}{11} - \frac{6}{11} = -\frac{3}{11} = -0.27 \text{ aups}$$
[1)

(i) For
$$4D$$
 Attendantly $i_{1} = \frac{6}{10} \left(\frac{15}{11} \right) + \frac{2}{6} \left(\frac{3}{11} \right) = \frac{10}{11} = 0.91 \text{ amps}$ [7]

Attendantly $i_{1} = i_{1} + i_{2} = 1.18 - 0.27 = .91 \text{ in documend direction}$

From (b)(i) we also have
$$i_1+i_2=\frac{10}{11}$$

Sub wito RHS of A
$$2\left(\frac{13}{11}\right) + 4\left(\frac{10}{11}\right) = \frac{66}{11} = 6 = \text{ LHS}$$

Sub wito RHS of B $6\left(-\frac{3}{11}\right) + 4\left(\frac{10}{11}\right) = \frac{22}{11} = 2 = \text{ LHS}$

(c)(i) Power developed in
$$45\%$$
 = $\left(\frac{10}{11}\right)^2 + \frac{400}{121} = 3.31 \text{ W}$ [1]

$$\left(\frac{13}{11}\right)_{6} = \frac{78}{11} = 7.09 \text{ W}$$

6 = 2i, +4(i,+i2) A

2 = 612+4 (1,+12) (B)

(d)i) The voltages are replaced by

[2] F[1]

口了

[I]

07

口门

[17

[1]

$$i_{22} = \frac{3}{11} \cos \omega t$$

 $i_{16} = \frac{15}{11} \cos \omega t$

$$i_{12} = -\left(\frac{1}{11}\right) \cos \omega t \quad []$$

$$i_{26} = -\left(\frac{6}{11}\right) \cos \omega t \quad []$$

Alternative forms with cos replaced by sin (wt+\$) or cis (wt+\$) for any of, acceptable here and in(d)

$$i_1 = -\frac{2}{11} \cos \omega t + \frac{15}{11} \cos \omega t = \frac{13}{11} \cos \omega t$$

 $i_2 = \frac{3}{11} \cos \omega t + (\frac{-6}{11}) \cos \omega t = -\frac{3}{11} \cos \omega t$

any equivalent statement OK eg (wt TI) with sin/cos functions

[[7]]

TOTAL 112077.

SOLUTIONS Q4 1 MV0 = 1 m VB + 1 M Ve A (a) (1) Energy Earl. 门 MVo = mVB + MVc MOMENTOM EON. (i) Sub VA = VB = 0 and Vc = Vo in egn. A

LHS = \(\frac{1}{2}MV_0^2 \), RHS = \(\frac{1}{2}MV_0^2 \), HENCE EQUN. (A) SATISFIED [K SOLUTION Sub VA = VB = 0 and Vc = Vo mi B LHS = MYO, RHS = MYO, HENCE EQUN. (B) SATISFIED [K] SELOND (Sub Vc = M-m Vo, VB = M+m Vo and VA = 0 in A) $\frac{1}{2}MV_{0}^{2}$ $\frac{1}{2}m\left(\frac{2M}{M+m}\right)^{2}V_{0}^{2} + \frac{1}{2}M\left(\frac{M-m}{M+m}\right)^{2}V_{0}^{2}$ 1 MVe² [4mM + M² - 2mM + m²]

1 (Mtm)² [M² + 2mM+m²]

1 (Mtm)² [M² + 2mM+m²]

1 (M+m)² (M+m)² = 1 MV02 = LHS EQUATION VERLIFIED Substanto B RHS = m(2M/M+m) Vo + M(M-m) Vo = MV. = LHS EQUYERIFIED [] (III) Va=0 ar after collision only balls to experience change in velocity are B and C. Spring does not communicate a change in momentum to A initially First solution rejected as it does not correspond to a collision

(iv) (. of M. mones with average velocity of A and B as masses equal

Vom = (M) Vo (in direction of Vo) [1]

Trio7?

- velocités of all masses remain unchanged

Q5	Somition	
	I=4, $V=4428$ too large an increment from $I=3$ to $I=4$ compared with that produced by other integer changes which exclude $I=4$	
(h)	Last but one digit "2" (mistyped should be "0" in V=44	
	(no maks for just statuig "error") For answer "ignore reading give [2] inplace of [])	
	Plot graph of $R = \overline{I}$ against \overline{I}^2 Straight line graph with acceptable scale using full page of graph puper for range of values with table. Correct table of values	[2] [1]
(1 v)	$R = \lambda I^2 + R_0$	
	Error in Ro ± 0.05 acceptable L 2 value (gradient) 0.120	17
(6)	$E = \rho R^{\alpha} t^{-2}$ $ln(E) = ln(\rho) + \alpha ln(R) - 2 ln(t)$ $ln(t) = \frac{1}{2} (ln(\rho) - ln(E)) + \frac{1}{2} \alpha ln(R)$ $ln(t) = \frac{1}{2} ln(\frac{9}{E}) + \frac{1}{2} \alpha ln(R)$	
	Plot lutt) against lu(R), it la straight luie gradien \(\frac{1}{2}\times \text{ intercept } \frac{1}{2}\text{ lu (5/E)} \)	t [2]

(b)(1) Let $\frac{1}{2}\ln {3k \choose E} = k$, the interast along the lust) axis which of.

Then $\int_{E} = e^{2k}$ $\int_{E} = e^{2k}$ (ii) Plotting lutt against lust) gives a gradient of (x) from which of can be obtained

(iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (iv) Dimensions | units of equation (A) que's $\int_{E} = e^{2k}$ (I)

II 91

charge on a parte ze note. (C)(i) leanservation of energy requires $\frac{1}{14mu^2} = \frac{7e^2}{(4715a) \Gamma_1} = \frac{(2)79e^2}{(4715a) \Gamma_2}$ [2] $\Gamma_1 = \frac{2(79)e^2}{}$ (2) (4TEO) muz $r = \frac{79 e^2}{(41126) \text{mu}^2}$ [1] (11) Zero relative velocity at distance of closest approach \Box ie both particles have same speed, v x particle has mass 4 m Conservation of energy ques $\frac{1}{2}(4mu^{2}) = \frac{1}{2}(4mv^{2}) + \frac{1}{2}(197mv^{2}) + \frac{(2)79e^{2}}{(47720)r_{2}}$ bancervation of momentum gives 4mu= 4mv + 197mv [2] 4u = 201V $V = \frac{4u}{201}$ []Substituting V= 44 mito A $4u^2 = 201 \left(\frac{4u}{201}\right)^2 +$ (2)158e2 [17] $\frac{(804 - 16)u^2}{201} = \frac{(2)158e^2}{(41156)mr_2}$ (c) (i) $\Gamma_{2} = \frac{(2)(158)(201)e^{2}}{(41120)(788)mu^{2}}$ = (2)15,879 e2 31758e2 [1] 394 (4TTEO) MUZ 394 (41180) [[12]] * (NOTE $\frac{201}{788} \sim \frac{1}{4}$, compare result (c)(i))

TOTAL [[2]]

Solution

(a) (i) Venig " $v^2 = u^2 - 2gh''$ where v = 0 and u = v in formula quote $0 = v^2 - 2gH$ $H = \frac{V}{2a}$ (1) Vong "s=nt- 2gt2")(i) Resultant force mgJital B10 = vt-igt in do rection 日=tan 協) [i] t = 2v g bancider Rongontal motion. A distance s' horsontally is given by $s = ut + \frac{1}{2}(\alpha g)t^2$ B [1] From vertical motion, returning to ground in timet, using A $t = \frac{2V}{g}$ or Range $R = u\left(\frac{2V}{g}\right) + \frac{1}{2}(ag)\left(\frac{2V}{g}\right)^2$ $Sub^3. © nito (8)$ $R = \frac{2V}{g} \left[u + av\right]$ [i](in) Parabola Axis along direction of resultant force (see diagram) Careful Direction of AXIS

(AXIS

(CORRECT DRAWING and [1]

Inclination of axis resultant parallel to axis Axis of symmetry at angle $\theta = \tan(\frac{mg}{\alpha mg}) = \tan(\frac{1}{\alpha})$ (Armi case of no wind, $\alpha = 0$, axis along direction of mg)

1 (c) (i) For a conservative potential field, work done uidep.
of path. So as me can reach finial position by
following a horizontal path [1] $W = \arg R$ $W = \arg \frac{2v}{g}(u + xv)$ $W = 2 \sin v (u + \alpha v)$

en de la composition della com

and the second of the second o

and a summer of the commence of