High Performance Packet Processing with FlexNIC

Antoine Kaufmann, Naveen Kr. Sharma Thomas Anderson, Arvind Krishnamurthy Simon Peter

University of Washington

The University of Texas at Austin

Networks: Fast and Growing Faster

Networks: Fast and Growing Faster

... but Packet Processing is Slow

- Many cloud apps dominated by packet processing
 - Key-value store, real-time analytics, intrusion detection
- Recv+send network stack processing overheads
 - Linux: 3.4μs
 - Kernel bypass: 1.4μs
 - Can parallelize, but still too slow

RDMA

- Difficult to traverse/modify complex data structures
- Not well matched to client-server cloud apps

NIC & SW are not well Integrated

- Wasted CPU cycles
 - Packet parsing and validation repeated in software
 - Packet formatted for network, not software access
- Poor cache locality, extra synchronization
 - NIC steers packets to cores by connection
 - Application locality may not match connection

FlexNIC:

A Model for Integrated NIC/SW Processing

- Must be implementable at line rate with low cost
- Match+action pipeline:

Match+Action Programs: Actions

Match:

IF udp.port == kvs

Action:

core = HASH(kvs.key) % 2
DMA hash, kvs TO Cores[core]

Supports:

- Steer packet
- Calculate hash/Xsum
- Initiate DMA operations
- Trigger reply packet
- Modify packets

Does not support:

- Loops
- Complex calculations
- Keeping large state

FlexNIC: M+A for NICs

- Efficient application level processing in the NIC
 - Improve locality by steering to cores based on app criteria
 - Transform packets for efficient processing in SW
 - DMA directly into and out of application data structures
 - Send acknowledgements on NIC

Outline

- Motivation
- FlexNIC Programming model
- Key-Value Store
 - Optimizing Reads: Key-based Steering
 - Optimizing Writes: Custom DMA Interface
- Real-time Analytics
- Intrusion Detection System
- Performance Evaluation for Key-value Store
- Limitations and Future Work

K = 1, 7, 8

Hash Table

8

Optimizing Writes: Custom DMA

Event Queue	

Item 1

Item Log

- DMA to application-level data structures
- Requires packet validation and transformation

Optimizing Writes: Custom DMA

- DMA to application-level data structures
- Requires packet validation and transformation

Optimizing Writes: Custom DMA

- DMA to application-level data structures
- Requires packet validation and transformation

Real-time Analytics System

 Offload (de)multiplexing and ACK generation to FlexNIC

Real-time Analytics System

 Offload (de)multiplexing and ACK generation to FlexNIC

Snort Intrusion Detection

- Snort: Sniffs packets and analyzes them
- Parallelized by running multiple instances
- Status quo: Receive-side scaling for spreading to cores

FlexNIC:

- Analyze rules loaded into Snort
- Partition rules to cores
- Fine-grained steering to cores

Evaluation of the Model

- Measure impact on application performance
 - Without waiting for hardware implementation

- Re-use existing NIC functionality
 - Hash on certain fields
- Software emulation of M+A pipeline

Key-value store:

- Workload: 100k 32B keys, 64B values, 90% GET
- 6 Core Sandy Bridge Xeon 2.2GHz, 2x 10G links

Key-based steering

- Better scalability
 - PCle is bottleneck for 4+ cores
- 30-45% higher throughput
- Processing time reduced from 510ns to 310ns

Key-based steering

- Better seelebility
 - PCIe Steering and custom DMA
- 30-45% reduces time from 510ns to 200ns
- Processing mineral and manual manual and selections

Ongoing Work/Limitations

- End to end validation
 - Netronome, FPGA NIC: validate performance with PCIe
- Hardware validation
 - Can match+action be implemented cheaply at line rate?
- Programming model for mixed NIC/SW processing
 - Draw inspiration from P4 and click
- Secure isolation between multiple applications
 - Currently the kernel mediates M+A installation

Summary

- Networks are becoming faster
 - Server applications need to keep up
 - Fast I/O requires fine-grained app-level I/O control
- FlexNIC model can eliminate inefficiencies
 - Application control over where packets are processed
 - Efficient steering/validation/transformation
- Case study: Key-value store
 - 30-45% throughput speed-up
 - 60% processing time reduction