Университет ИТМО

Физико-технический мегафакультет

уппа РЗ208 К работе допущен				
Студенты Ступин Т.Р. Петров В.М. Есоян В.С.	<u> 2.</u> Работа выполнена			
Преподаватель Сорокина Е. К.	Отчет принят			
Рабочий протокол и отчет по лабораторной работе №4				
Исследование равноускоренн	ого вращательного движения			
(маятник	Обербека)			

1. Цель работы.

- 1. Проверка основного закона динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы.

- 1. Измерение времени падения груза при разной массе груза и раз ном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3. Объект исследования.

Ускорение груза, угловое ускорение крестовины и момент силы натяжения нити в зависимости от массы груза и положения утяжелителей на крестовине.

4. Метод экспериментального исследования.

Многократное измерение времени падения груза с фиксированной высоты при различной массе груза и различном положении утяжелителей на крестовине.

5. Рабочие формулы и исходные данные.

• Основной закон динамики вращения для крестовины с утяжелителями:

$$I\varepsilon = M - M_{\rm TD}$$

• Второй закон Ньютона для падающей гири:

$$ma = mg - T$$

• Среднее значение момента силы натяжения нити М при фиксированной риске:

$$M_{\rm cp} = \frac{\sum_{i=1}^4 M_i}{4}$$

• Среднее значение углового ускорения ε при фиксированной риске:

$$\varepsilon_{\rm cp} = \frac{\sum_{i=1}^{4} \varepsilon_i}{4}$$

• Коэффициент I в теоретической линейной зависимости $M = I\varepsilon + M_{\text{тр}}$:

$$I = \frac{\sum_{i=1}^{4} (\varepsilon_i - \varepsilon_{cp}) (M_i - M_{cp})}{\sum_{i=1}^{4} (\varepsilon_i - \varepsilon_{cp})^2}$$

• Коэффициент $M_{\rm TP}$ в теоретические линейной зависимости $M = I\varepsilon + M_{\rm TP}$:

$$M_{\rm Tp} = M_{\rm cp} - I * \varepsilon_{\rm cp}$$

• Ускорение груза

$$a = \frac{2h}{t^2}$$

• Связь между угловым ускорением крестовины и линейным ускорением груза:

$$\varepsilon = \frac{2a}{d}$$

Момент силы натяжения нити Т:

$$M = \frac{md}{2}(g - a)$$

• Зависимость момента инерции крестовины от расстояния между утяжелителями:

$$I = I_0 + 4m_{\rm yr}R^2$$

• Среднее значение момента инерции крестовины І по всем положениям утяжелителей

$$I_{\rm cp} = \frac{\sum_{i=1}^6 I_i}{6}$$

• Расстояние между осью вращение и центром утяжелителя

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b$$

• Среднее значение R^2 по всем положениям утяжелителей

$$R_{\rm cp}^2 = \frac{\sum_{i=1}^6 R_i^2}{6}$$

• Коэффициент $m_{_{
m YT}}$ в теоретической линейной зависимости $I=I_0+4m_{_{
m YT}}R^2$:

$$m_{\rm yr} = \frac{1}{4} \cdot \frac{\sum_{i=1}^{6} (R^2_i - R^2_{\rm cp}) (I_i - I_{\rm cp})}{\sum_{i=1}^{6} (R^2_i - R^2_{\rm cp})^2}$$

• Коэффициент I_0 в теоретической линейной зависимости $I = I_0 + 4m_{vr}R^2$:

$$I_0 = I - 4m_{\rm yr}R^2$$

• Среднеквадратичное отклонение I_0

$$\sigma_{I_0} = \sqrt{\left(\frac{1}{6} + \frac{R^2_{\text{cp}}}{\sum_{i=1}^{6} (R^2_i - R^2_{\text{cp}})^2}\right) \frac{\sum_{i=1}^{6} (I_i - (I_0 + 4m_{\text{yr}}R^2_i))^2}{6 - 2}}$$

• Абсолютная погрешность I_0

$$\Delta I_0 = t_{\alpha,N} \cdot \sigma_{I_0}$$

• Среднеквадратичное отклонение $m_{\rm yr}$

$$\sigma_{m_{y_{\text{T}}}} = \sqrt{\frac{1}{\sum_{i=1}^{6} (R_{i}^{2} - R_{\text{cp}}^{2})^{2}} \frac{\sum_{i=1}^{6} (I_{i} - (I_{0} + 4m_{y_{\text{T}}}R_{i}^{2}))^{2}}{6 - 2}}$$

• Абсолютная погрешность $m_{\rm yr}$

$$\Delta m_{\rm yr} = t_{\alpha,N} \cdot \sigma_{m_{\rm yr}}$$

• Среднее значение времени падения груза

$$t_{\rm cp} = \frac{\sum_{i=1}^3 t_i}{3}$$

• Среднеквадратичное отклонение $t_{\rm cp}$

$$\sigma_{t_{\rm cp}} = \sqrt{\frac{1}{3(3-1)} \sum_{i=1}^{3} (t_i - t_{\rm cp})^2}$$

• Доверительный интервал для $t_{\rm cp}$

$$\Delta_{t_{\rm cp}} = t_{\alpha,N} \cdot \sigma_{t_{\rm cp}}$$

• Абсолютная погрешность измерения времени

$$\Delta t = \sqrt{{\Delta_{t_{\rm cp}}}^2 + \left(\frac{2}{3} \cdot \Delta_{\rm M} t\right)^2}$$

• Относительная погрешность измерения времени

$$\delta_{\mathsf{t}} = \frac{\Delta t}{\mathsf{t}} \cdot 100\%$$

• Абсолютная погрешность а

$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial h} \cdot \Delta h\right)^2 + \left(\frac{\partial a}{\partial t} \cdot \Delta t\right)^2}$$

• Относительная погрешность а

$$\delta_a = \frac{\Delta a}{a} \cdot 100\%$$

• Абсолютная погрешность ε

$$\Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial a} \cdot \Delta a\right)^2 + \left(\frac{\partial \varepsilon}{\partial d} \cdot \Delta d\right)^2}$$

• Относительная погрешность ε

$$\delta_{\varepsilon} = \frac{\Delta \varepsilon}{\varepsilon} \cdot 100\%$$

• Абсолютная погрешность М

$$\Delta M = \sqrt{\left(\frac{\partial M}{\partial m} \cdot \Delta m\right)^2 + \left(\frac{\partial M}{\partial d} \cdot \Delta d\right)^2 + \left(\frac{\partial M}{\partial a} \cdot \Delta a\right)^2}$$

• Относительная погрешность М

$$\delta_M = \frac{\Delta M}{M} \cdot 100\%$$

6. Измерительные приборы.

Таблица 1 Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	[0,01; 10] c	0,01 c
2	Линейка	Измерительный	[0,700] мм	0,5 мм

	Параметры установки					
1.	Масса каретки (m_{κ})	$(47,0\pm0,5)$ Γ				
2.	Масса шайбы $(m_{\scriptscriptstyle m III})$	$(220,0\pm0,5)\ \Gamma$				
3.	Масса грузов на крестовине (m_{y_T})	$(408,0\pm0,5)\ \Gamma$				
4.	Расстояние от оси до первой риски (l_1)	$(57,0\pm0,5)$ mm				
5.	Расстояние между рисками (l_0)	$(25,0\pm0,2)\ { m MM}$				
6.	Диаметр ступицы (d)	$(46.0 \pm 0.5) \text{ mm}$				
7.	Диаметр груза на крестовине	$(40.0 \pm 0.5) \; \text{mm}$				
8.	Высота груза на крестовине (b)	$(40.0 \pm 0.5) \ \mathrm{MM}$				
9.	Расстояние, проходимое грузом (h)	$(700,0\pm0,5)$ mm				

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

Схема измерительного стенда с указанием сил и основных измеряемых параметром изображена на Рис. 2.

Рис. 2. Схема измерительного стенда

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 3. Результаты прямых измерений

Масса груза, г	Положение утяжелителей						
iviacca i pysa, i	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
	4,81	5,51	6,72	7,53	8,53	9,66	
267	4,89	5,51	6,57	7,55	8,51	9,79	
267	4,95	5,67	6,67	7,84	8,53	9,75	
	4,88	5,56	6,65	7,64	8,52	9,73	
	3,39	3,98	4,86	5,25	6,11	6,88	
487	3,21	4,02	4,58	5,54	6,13	6,96	
407	3,36	3,88	4,85	5,38	6,20	7,01	
	3,32	3,96	4,76	5,39	6,15	6,95	
	2,87	3,36	3,77	4,48	5,06	5,61	
707	2,90	3,40	3,75	4,45	5,25	5,82	
707	2,81	3,17	3,82	4,36	5,06	5,58	
	2,86	3,31	3,78	4,43	5,12	5,67	
	2,53	2,88	3,18	3,86	4,44	4,93	
927	2,38	2,92	3,48	3,80	4,31	4,93	
	2,45	2,90	3,42	3,88	4,30	4,77	
	2,45	2,90	3,36	3,85	4,35	4,88	

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Для начала вычислим средние значения времени для каждой серии измерений и занесём эти данные в таблицу 3

Для примера в первой серии измерений получим

$$t_{\rm cp} = \frac{\sum_{i=1}^{3} t_i}{3} = 4,88 \, \rm c$$

Теперь перейдём к заполнению таблицы 4

Вычислим ускорение a груза, угловое ускорение ε крестовины и момент M силы натяжения нити. Для примера рассчитаем все три значения для первой серии измерений

$$a = \frac{2 \cdot 700,0 \cdot 10^{-3}}{4,88^2} = 0,06 \frac{M}{c^2}$$

$$\varepsilon = \frac{2 \cdot 0,06}{46,0 \cdot 10^{-3}} = 2,55 \text{ c}^{-2}$$

$$m = m_{\text{K}} + m_{\text{III}} = 47 + 220 = 267 \text{ r}$$

$$M = \frac{267 \cdot 10^{-3} \cdot 46,0 \cdot 10^{-3}}{2} (9,82 - 0,06) = 0,06 \text{ H} \cdot \text{м}$$

Таблица 4. Результаты расчётов

Масса груза, г	t _{cp} , c	а, м/c ²	ε , c^{-2}	<i>М</i> , Н·м
	4,88	0,06	2,55	0,06
	5,56	0,05	1,97	0,06
267	6,65	0,03	1,38	0,06
207	7,64	0,02	1,04	0,06
	8,52	0,02	0,84	0,06
	9,73	0,01	0,64	0,06
	3,32	0,13	5,52	0,11
	3,96	0,09	3,88	0,11
487	4,76	0,06	2,68	0,11
467	5,39	0,05	2,10	0,11
	6,15	0,04	1,61	0,11
	6,95	0,03	1,26	0,11
	2,86	0,17	7,44	0,16
	3,31	0,13	5,56	0,16
707	3,78	0,10	4,26	0,16
707	4,43	0,07	3,10	0,16
	5,12	0,05	2,32	0,16
	5,67	0,04	1,89	0,16
	2,45	0,23	10,11	0,20
927	2,90	0,17	7,24	0,21
	3,36	0,12	5,39	0,21
941	3,85	0,09	4,11	0,21
	4,35	0,07	3,22	0,21
	4,88	0,06	2,56	0,21

Теперь для каждого положения утяжелителей на основе таблицы 1 по методу наименьших квадратов (МНК) рассчитаем момент I инерции крестовины с утяжелителями и момент силы трения $M_{\rm TD}$ занеся данные в таблицу 5

Для примера выполним расчёты для положения утяжелителей в риске 1 Вычислим средние значения для всех экспериментальных точек:

$$M_{\rm cp} = rac{0,06 + 0,11 + 0,16 + 0,20}{4} = 0,13 \ {
m H} \cdot {
m M}$$
 $\epsilon_{\rm cp} = rac{2,55 + 5,52 + 7,44 + 10,11}{4} = 6,41 \ {
m c}^{-2}$

Теперь основываясь на линейной зависимости $M = I\varepsilon + M_{\rm Tp}$ вычислим I и $M_{\rm Tp}$ как коэффициенты этой зависимости

$$I = \frac{\sum_{i=1}^{4} (\varepsilon_i - 6,41)(M_i - 0,13)}{\sum_{i=1}^{4} (\varepsilon_i - 6,41)^2} = 0,02 \text{ кг} \cdot \text{м}^2$$

$$M_{\text{TD}} = 0.13 - 0.02 * 6.41 = 0.002 \text{ H} \cdot \text{M}$$

Таблица 5. Результаты расчётов

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
I, кг · м²	0,02	0,03	0,04	0,05	0,06	0,08
M_{Tp} , Н·м	0,01	0,00	0,01	0,01	0,01	0,01
M_{c} р, Н·м	0,13	0,13	0,13	0,13	0,13	0,13
ε_{cp} , c ⁻²	6,41	4,66	3,43	2,59	2,00	1,59

Теперь для каждого положения утяжелителя найдём расстояние между осью вращения и центром утяжелителя, занеся данные в таблицу 6

Также занесём в таблицу значения R^2 и ранее вычисленные значения I из таблицы 5 Для примера рассчитаем R для первой риски (n=1):

$$R = 57.0 \cdot 10^{-3} + (1 - 1) \cdot 25.0 \cdot 10^{-3} + \frac{1}{2} \cdot 40.0 \cdot 10^{-3} = 0.077 \text{ M}$$

Таблица 6. Результаты расчётов

Риска	R, м	R^2 , M^2	I, кг · м²	
1	0,077	0,006	0,02	
2	0,102	0,010	0,03	
3	0,127	0,016	0,04	
4	0,152	0,023	0,05	
5	0,177	0,031	0,06	
6	0,202	0,041	0,08	
Среднее:	0,1395	0,021	0,05	

Наконец на основе найденных значений I и R^2 с помощью МНК определим коэффициенты I_0 и $m_{\rm vr}$ в теоретической зависимости, следующей из теоремы Штейнера:

$$I = I_0 + 4m_{\rm VT}R^2$$

Для начала вычислим средние значения экспериментальных точек

$$I_{\text{cp}} = \frac{\sum_{i=1}^{6} I_i}{6} = 0,05 \text{ кг} \cdot \text{м}^2$$
 $R_{\text{cp}}^2 = \frac{\sum_{i=1}^{6} R_i^2}{6} = 0,021 \text{ м}^2$

На основе известной зависимости вычислим сами коэффициенты

$$m_{ ext{yT}} = rac{1}{4} \cdot rac{\sum_{i=1}^{6} (R^{2}{}_{i} - 0.021)(I_{i} - 0.05)}{\sum_{i=1}^{6} (R^{2}{}_{i} - 0.021)^{2}} = 0.41 \text{ кг}$$
 $I_{0} = 0.05 - 4 \cdot m_{ ext{yT}} \cdot 0.021 = 0.01 \text{ кг} \cdot \text{м}^{2}$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Вычислим абсолютную и относительную погрешность среднего значения времени для первой серии измерений

Для начала рассчитаем среднеквадратичное отклонение среднего значения:

$$\sigma_{t_{\rm cp}} = \sqrt{\frac{1}{3(3-1)} \sum_{i=1}^{3} (t_{1_i} - 4.88)^2} = 0.041 c$$

Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$ при N=3:

$$t_{\alpha,N} = 4,30$$

Рассчитаем доверительный интервал:

$$\Delta_{t_{\rm cp}} = t_{\alpha,N} \, \cdot \, \sigma_{t_{\rm cp}} = 4,\!30 \cdot 0,\!041 = 0,\!174 \, {\rm c}$$

Определим абсолютную погрешность измерения времени с учетом доверительного интервала $\Delta_{t_{\rm cp}}$ и инструментальной погрешности $\Delta_{ut} = 0.01\,{\rm c}$ секундомера из таблицы 1, пересчитав её для доверительной вероятности $\alpha = 0.95$:

$$\Delta t = \sqrt{0.174^2 + \left(\frac{2}{3} \cdot 0.01\right)^2} = 0.174 c$$

$$\delta_{\rm t} = \frac{0.174}{4.88} \cdot 100\% = 3.6\%$$

Вычислим абсолютную и относительную погрешность ускорения груза a для первой серии измерений

Вычисляя частные производные по переменным h и t получаем:

$$\frac{\partial a}{\partial h} = \frac{2h}{t^2} \qquad \frac{\partial a}{\partial t} = -\frac{4h}{t^3}$$

Абсолютную погрешность Δh вычислим, используя инструментальную погрешность $\Delta_{\mathsf{u}h}$ из

таблицы 2 и пересчитав её для доверительной вероятности $\alpha = 0.95$

$$\Delta h = \frac{2}{3} \cdot 0.5 = 0.333 \text{ mm}$$

Подставляя все значения получаем

$$\Delta a = \sqrt{\left(\frac{2 \cdot 700,0 \cdot 10^{-3}}{4,88^2} \cdot 0,333 \cdot 10^{-3}\right)^2 + \left(-\frac{4 \cdot 700,0 \cdot 10^{-3}}{4,88^3} \cdot 0,003\right)^2} = 0,004 \frac{M}{c^2}$$

$$\delta_a = \frac{0,004}{0.06} \cdot 100\% = 6,7\%$$

Вычислим абсолютную и относительную погрешность углового ускорения ε для первой серии измерений

Вычисляя частные производные по переменным а и d получаем:

$$\frac{\partial \varepsilon}{\partial a} = \frac{2}{d} \qquad \frac{\partial \varepsilon}{\partial d} = -\frac{2a}{d^2}$$

Абсолютную погрешность Δd вычислим, используя инструментальную погрешность Δ_{ud} из таблицы 2 и пересчитав её для доверительной вероятности $\alpha=0.95$

$$\Delta d = \frac{2}{3} \cdot 0.5 = 0.333 \text{ MM}$$

Подставляя все значения получаем

$$\Delta \varepsilon = \sqrt{\left(\frac{2}{46,0 \cdot 10^{-3}} \cdot 0,004\right)^2 + \left(-\frac{2 \cdot 0,06}{(46,0 \cdot 10^{-3})^2} \cdot 0,333 \cdot 10^{-3}\right)^2} = 0,192 \text{ c}^{-2}$$

$$\delta_{\varepsilon} = \frac{0,192}{2.55} \cdot 100\% = 7,5\%$$

Вычислим абсолютную и относительную погрешность для момента силы натяжения нити М в первой серии измерений

Вычисляя частные производные по переменным m, d и a получаем:

$$\frac{\partial M}{\partial m} = \frac{d}{2}(g-a)$$
 $\frac{\partial \varepsilon}{\partial d} = \frac{m}{2}(g-a)$ $\frac{\partial \varepsilon}{\partial a} = -\frac{md}{2}$

Абсолютная погрешность Δd уже была вычислена ранее

Абсолютную погрешность Δm вычислим, используя инструментальную погрешность Δ_{um} из таблицы 2 и пересчитав её для доверительной вероятности $\alpha=0.95$

$$\Delta m = \frac{2}{3} \cdot 0.5 = 0.333 \,\mathrm{r}$$

Подставляя все значения получаем

$$\Lambda M =$$

$$\sqrt{\left(\frac{^{46,0}}{^{2}}(9,82-0,06)\cdot 0,333\cdot 10^{-6}\right)^{2}+\left(\frac{^{220}}{^{2}}(9,82-0,06)\cdot 0,333\cdot 10^{-6}\right)^{2}+\left(-\frac{^{220\cdot 46,0\cdot 10^{-6}}}{^{2}}\cdot 0,004\right)^{2}}=0,001\ \mathrm{H}\cdot\mathrm{M}$$

$$\delta_M = \frac{0,001}{0.06} \cdot 100\% = 1,7\%$$

Вычислим абсолютную погрешность ΔI_0

Для начала рассчитаем среднеквадратичное отклонение:

$$\sigma_{I_0} = \sqrt{\left(\frac{1}{6} + \frac{0,021}{\sum_{i=1}^{6}(R^2_i - 0,021)^2}\right) \frac{\sum_{i=1}^{6}\left(I_i - (0,01 + 4 \cdot 0,41 \cdot R^2_i)\right)^2}{6 - 2}} = 0,001 \; \text{kg} \cdot \text{m}^2$$

Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$ при N=6:

$$t_{\alpha N} = 2.57$$

Используя это значение рассчитаем искомую абсолютную погрешность ΔI_0

$$\Delta I_0 = t_{\alpha,N} \cdot \sigma_{I_0} = 2,57 \cdot 0,001 = 0,003 \ \mathrm{Kr} \cdot \mathrm{M}^2$$

Аналогично вычислим абсолютную погрешность $m_{\rm vr}$

$$\sigma_{m_{\text{ут}}} = \sqrt{\frac{1}{\sum_{i=1}^{6}(R^{2}{}_{i}-0.021)^{2}} \frac{\sum_{i=1}^{6}\left(I_{i}-(0.01\ +4\cdot 0.41\cdot R^{2}{}_{i})\right)^{2}}{6-2}} = 0.024\ \text{кг}$$

$$\Delta m_{\text{ут}} = 2.57\cdot \sigma_{m_{\text{ут}}} = 2.57\cdot 0.024\ = 0.062\ \text{кг}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость $M(\mathcal{E})$. Аппроксимирующие прямые для каждой риски.

 Γ рафик 2. Зависимость $I(R^2)$. Аппроксимирующая прямая и аналитически полученная зависимость.

График зависимости момента инерции от положения утяжелителей

12. Окончательные результаты.

• Ускорения груза а (в первой серии измерений)

$$\Delta a = (0.060 \pm 0.004) \frac{M}{c^2}$$
 $\delta_a = 6.7\%$ $\alpha = 0.95$

• Угловое ускорения ε (в первой серии измерений)

$$\Delta \varepsilon = (2,550 \pm 0,192) c^{-2}$$
 $\delta_{\varepsilon} = 7,5\%$ $\alpha = 0,95$

• Момент силы натяжения нити М (в первой серии измерений)

$$\Delta M = (0.060 \pm 0.001) \text{ H} \cdot \text{M} \quad \delta_{\varepsilon} = 1.7\% \quad \alpha = 0.95$$

13. Выводы и анализ результатов работы

После построения экспериментальной выборки были рассчитаны необходимые параметры и значения для проверки зависимости момента инерции от масс грузов-утяжелителей на спицах вращающейся крестовины. Также экспериментально подтверждена теория динамики вращения — был проверен основной закон, связывающий угловое ускорение с моментами сил трения и натяжения нити. Были получены доверительные интервалы для некоторых характеристик динамики вращения, построены соответствующие графики.