TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity Time Shifting	3.5.1 3.5.2	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting Frequency Shifting	3.3.2	$x(t-t_0)$ $e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Conjugation	3.5.6	$x^*(t)$	$egin{aligned} a_{k-M} & & \ a_{-k}^* & & \end{aligned}$
Time Reversal	3.5.3	x(-t)	a_{-k}
Time Scaling	3.5.4	$x(\alpha t)$, $\alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k = a^*_{-k} \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ 4a_k = -4a_{-k} \end{cases}$
Real and Even Signals	3.5.6	x(t) real and even	a_k real and even
Real and Odd Signals	3.5.6	x(t) real and odd	a_k purely imaginary and odd
Even-Odd Decomposition		$\begin{cases} x_c(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re e\{a_k\}$
of Real Signals		$\begin{cases} x_o(t) = \mathbb{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$j\mathfrak{Gm}\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\left. egin{aligned} a_k \ b_k \end{aligned} \right\}$ Periodic with $\left. b_k \right\}$ period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x[-n]$ $x[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} a_{-k} $\frac{1}{m}a_{k}$ (viewed as periodic) with period mN
Periodic Convolution Multiplication	$\sum_{\substack{r=\langle N \rangle \\ x[n]y[n]}} x[r]y[n-r]$	Na_kb_k
First Difference	x[n] - x[n-1]	$\sum_{l=\langle N\rangle} a_l b_{k-l}$ $(1 - e^{-jk(2\pi/N)}) a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \begin{cases} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{cases}$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \leq a_k = - \not \leq a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	Re $\{a_k\}$ j ઉ $m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{N} \sum_{n = \langle N \rangle} |x[n]|^2 = \sum_{k = \langle N \rangle} |a_k|^2$$