EI313 Lab4

唐亚周 519021910804

在本次实验中,为了使实验效果更为显著,我选择了在物理机上直接运行qemu虚拟机,从而避免嵌套虚拟化带来的性能损耗。

1 在宿主机上开启Hugepage功能 ¹²

(1) Prepare 2MB or 1GB hugepages on your host server. Present your hugepage configure (e.g. /proc/meminfo).

// Note: If the OS supports transparent huge page, disable it when you do the tests.

首先将transparent hugepage关闭,即在 /etc/default/grub 中的 GRUB_CMDLINE_LINUX_DEFAULT 选项中添加 transparent hugepage=never,如下图所示,并重新生成grub配置然后重启。

```
# GRUB_boot loader configuration

GRUB_DEFAULT=0
GRUB_TIMEOUT=10
GRUB_DISTRIBUTOR="Arch"
GRUB_OSTRIBUTOR="Arch"
GRUB_CMDLINE_LINUX_DEFAULT="loglevel=3 quiet nvidia-drm.modeset=1 systemd.unified_cgroup_h
terarchy=0 transparent_hugepage=never
GRUB_CMDLINE_LINUX=""
```

检查transparent hugepage情况,输出如下,表示transparent hugepage已被关闭。

```
A ** cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

A ** ** 19:40:09 ©

19:40:09 ©
```

然后启用Hugepage。从下图可以看出,启用Hugepage前,宿主机上[HugePages_Total]为0,启用后为1024,说明设置了1024个大小为2kB的Hugepage。

```
/proc/meminfo | grep Huge
                                                                                      ✓ 19:40:35 ⊙
AnonHugePages:
                          0 kB
ShmemHugePages:
                         0 kB
FileHugePages:
                          0 kB
HugePages_Total:
HugePages_Free:
HugePages_Rsvd:
HugePages_Surp:
Hugepagesize:
                      2048 kB
A f ~ echo 1024 | <u>sudo</u> tee <u>/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages</u>
[sudo] adswt518 的密码:
Hugetlb:
1024
A % ~ cat .
AnonHugePages:
          cat <u>/proc/meminfo</u> | grep Huge

✓ 19:42:28 ②

ShmemHugePages:
                         0 kB
FileHugePages:
                         0 kB
HugePages_Total:
                      1024
HugePages_Free:
                       1024
HugePages_Rsvd:
HugePages_Surp:
Hugepagesize:
                      2048 kB
Hugetlb:
                   2097152 kB
```

2 配置虚拟机,并设置其使用/不使用Hugepage 12

- (2) Create a QEMU KVM virtual machine using hugepages on the host.
- (3) Create another QEMU KVM VM without hugepages.

在这里我们直接下载https://mirror.sjtu.edu.cn/archlinux/images/latest/中的archLinux镜像,并使用virt-manager进行安装。虚拟机信息如下。

要使虚拟机使用宿主机的Hugepage,只需要在编辑虚拟机对应的xml文件。我们在宿主机中输入以下命令进行编辑。

1 sudo virsh edit archlinux@beryllium

写入以下几行:

- 1 <memoryBacking>
- 2 <hugepages/>
- 3 </memoryBacking>

编辑后的文件如下图所示:

```
-: sudo virsh — Konsole
                                                                            □ 复制(C) □ 粘贴(P) Q 查找(F)
<domain type='qemu'>
<name>archlinux@beryllium</name>
 <uuid>8e91de06-82f1-4154-a6a6-e9d7d82a6c07</uuid>
 <metadata>
   <libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1</pre>
     <libosinfo:os id="http://archlinux.org/archlinux/rolling"/>
   </libosinfo:libosinfo>
 </metadata>
 <memory unit='KiB'>2097152
 <currentMemory unit='KiB'>2097152</currentMemory>
 <memoryBacking>
 <hugepages/>
 </memoryBacking>
 <vcpu placement='static'>2</vcpu>
   <type arch='x86_64' machine='pc-q35-6.1'>hvm</type>
   <boot dev='hd'/>
 </os>
 <features>
   <acpi/>
   <apic/>
   <vmport state='off'/>
 /tmp/virshD2HEE1.xml" 145 lines, 5639 characters
```

要使虚拟机不使用宿主机的Hugepage,则将这几行删去即可。

3 在虚拟机中开启Hugepage并安装测试所用软件

(4) In both VMs allocate and use hugepages or not.

方法与宿主机中完全相同。在虚拟机中启动了512个大小为2kB的Hugepage。

安装sysbench:

1 sudo pacman -S sysbench

4 进行内存测试

(5) Run memory instensive benchmark (e.g. sysbench memory test, in-memory database) on two VMs and record the performance.

这里我使用sysbench进行测试, 首先编写测试脚本如下:

其中,

- --memory-block-size 选项代表了测试内存块的大小,这里我将其设置为测试时输入。
- --memory-total-size 选项代表了传输数据的总大小,这里我将其设置为 2048G 。
- --memory-hugetlb 选项决定了测试时虚拟机是否启用Hugepage,这里我将其设置为测试时输入。
- --memory-access-mode 选项代表了测试时的存取方式,这里我将其设置为 rnd,代表随机读写。

接下来开始测试。由于默认的内存页大小为4kB,而Hugepage大小为2048kB,测试内存块的大小应该设置得大一些,从而凸显出二者的差别。经过测试,我发现当测试内存块的大小设置为刚好2MB时,效果较好。

4.1 宿主机不启用Hugepage,虚拟机不启用Hugepage

memoru-block-size= 2M		memory-block-size= 2M		> ./Frogramming/memoryTest.sh memory-bugethP [on/off] off memory-block-size= 21 sysbench 1.0.20 (using system LuaJIT 2.0.5)	
Number of threads: 1				Running the test with following options: Number of threads: 1 Initializing random number generator from current time	
Running menory speed test with the following options: block size: 209KHB total size: 209YISZHIB operation: write scope: global		Running nenory speed test with the following options: block size: 2040K/IB total size: 2007/ISZMIB operation: welte scope: global		Running memory speed test with the following options: block size: 2048KIB total size: 2037ESHIB operation: urite scope: global	
Initializing worker threads		Initializing worker threads		Initializing worker threads	
Threads started!		Ihreads started!		Threads started!	
Total operations: 808 (80.68 per second)		Total operations: 774 (77.32 per second)		Total operations: 742 (74.10 per second)	
1616.00 MiB transferred (161.35 MiB/sec)		1548.00 MiB transferred (154.63 MiB/sec)		1484.00 MiB transferred (148.21 MiB/sec)	
General statistics: total time: total number of events:	10.0085s 808	General statistics: total time: total number of events:	10.0050s 774	General statistics: total time: total number of events:	10.0074s 742
Latency (ms): min: aug: max: 95th percentile: sun:	9.93 12.34 30.12 16.12 9969.34	Latency (ms): min: aug: max: 95th percentile: sum:	9.85 12.88 65.06 16.41 9969.12	Latency (ns): nin: aug: nax: 95th percentile: sun:	9.90 13.45 79.22 15.55 9977.32
Threads fairness: events (aug/stddev): execution time (aug/stddev):	808.0000/0.00	Threads fairness: events (aug/stddev): execution time (aug/stddev):	774.0000/0.00 9.9691/0.00	Threads fairness: events (aug/stddev): execution time (aug/stddev):	742.0000/0.00 9.9773/0.00

三次测试,平均写入速率为154.73MiB/s。

4.2 宿主机不启用Hugepage,虚拟机启用Hugepage

> ./Programing/memoryTest.sh memory-buget1b? Convoff1 on memory-block-size= 2d sysbench 1.0.20 (using system LuaJIT 2.0.5)		memory-block-size= ZMB		2 ./Programming/memoryTest.sh memory-buget1b7 [onvoff] on memory-block-size= 2M sysbemch 1.0.20 (using system LuaJIT 2.0.5)		
Number of threads: 1		Running the test with following options: Number of threads: 1 Initializing random number generator from current time		Running the test with following options: Number of threads: 1 Initializing random number generator from current time		
Running memory speed test with the following options: block size: 2094BXIB total size: 2094TSZHIB operation: write scope: global		Running memory speed test with the following options: block size: 2048KIB total size: 2097ISZMIB operation: write scope: global		Running memory speed test with the following options: block size: 2008KISI total size: 2007ISZHIB operation: write scope: global		
Initializing worker threads		Initializing worker threads		Initializing worker threads		
Threads started!		Threads started!		Threads started!		
Total operations: 917 (91.60 pe	Total operations: 917 (91.60 per second)		Total operations: 842 (84.04 per second)		Total operations: 847 (84.56 per second)	
1834.00 MiB transferred (183.21 MiB/sec)		1684.00 MiB transferred (168.08 MiB/sec)		1694.00 MiB transferred (169.13 MiB/sec)		
General statistics: total time: total number of events:	10.0045s 917	General statistics: total time: total number of events:	10.0131s 842	General statistics: total time: total number of events:	10.0104s 847	
Latency (ns): nin: avg: nax: 95th percentile: sun:	9.84 10.88 31.14 13.22 9981.50	Latency (ns): nin: aug: nax: 95th percentile: sun:	9.87 11.87 26.36 14.73 9991.91	Latency (ns): nin: aug: nax: 95th percentile: sun:	9.86 11.79 28.68 15.00 9988.04	
Threads fairness: events (aug/stddev): execution time (aug/stddev):	917.0000/0.00	Threads fairness: euents (aug/stddeu): execution time (aug/stddeu):	842.0000/0.00	Threads fairness: events (avg/stddeu): execution time (avg/stddeu):	847.0000/0.00 9.9880/0.00	

三次测试,平均写入速率为173.47MiB/s。

4.3 宿主机启用Hugepage,虚拟机不启用Hugepage

```
2 Programs ing memory last ish senony-huget live on off) off source place is a special form off) off source place is a special folious special
```

4.4 宿主机启用Hugepage,虚拟机启用Hugepage

三次测试,平均写入速率为177.50MiB/s。

5 结论与分析

(6) Compare the result and try to give some explanation.

5.1 测试结果

测试结果如下:

	虚拟机不启用Hugepage	虚拟机启用Hugepage	
宿主机不启用Hugepage	154.73MiB/s	173.47MiB/s	
宿主机启用Hugepage	164.75MiB/s	177.50MiB/s	

可以看出,无论是宿主机还是虚拟机,启用Hugepage都会对内存的随机写入性能带来一定提升。当二者均启用Hugepage时,其性能要比均不启用时高出14.7%。

5.2 分析

经过查阅资料 ^{3 4 5} ,我认为Hugepage给内存性能带来提升,主要有以下几个原因。

- 使用Hugepage可以减少内存中的页表层级。这不仅可以降低页表的内存占用,也能降低从虚拟内存到物理内存转换的性能损耗。
- Hugepage能降低TLB(Translation lookaside buffer)的压力,在相同的内存大小情况下使得需要管理的虚拟地址数量变少,因此TLB可以包含更多的地址空间,从而带来更高的缓存命中率,CPU 有更高的几率可以直接在 TLB中获取对应的物理地址。
- 使用Hugepage可以减少获取大内存的次数,使用 HugePages 每次可以获取 2MB 的内存,是 4KB 的默认 页效率的 512 倍。

6 致谢

感谢我的同学秦健行、卿云帆、陈浩南、刘梓睿和蒋圩淏在本次实验中对我的帮助!在与他们的交流和讨论中我解决了许多困难,并学到了很多。

- 2. KVM Using Hugepages Community Help Wiki \leftrightarrow
- 3. 为什么 HugePages 可以提升数据库性能 面向信仰编程 →
- 4. Linux 中的"大内存页"(hugepage)是个什么? 知乎 →
- 5. Linux HugePage 特性*乐沙弥的世界-CSDN博客*hugepage ↔