Countable additivity axiom

Sunday, March 22, 2020 4:15 PM

Discreet but infinite sample space:

$$P(n) = \frac{1}{2^n}$$
 $n = 1, 2, ..., \infty$
Sample Space = $\{1, 2, 3, ...\}$
 $\frac{5}{2^n} = \frac{1}{2^n} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n}$
 $n = \frac{1}{2}$, $n = \frac{1}{2}$

P(outcome is even) = P(
$$\frac{5}{2}$$
, 4,6,... $\frac{3}{5}$)

= P($\frac{5}{2}$, $\frac{2}{3}$, $\frac{5}{4}$, $\frac{3}{3}$, $\frac{5}{3}$, $\frac{5}{3}$, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{4}$

But is this correct? We