Geometric Progression Filter

Mateus Carvalho 4th April 2022

Context

Filter out specific frequencies coming from electronic interference. Ex: Power grid (50Hz in France)

Experimental lift data from wind-tunnel

Description

In order to eliminate only the peaks generated by electronic interference, a new approach was created

- I. Compute the PSD
- II. Split the signal into windows
 - Constant window size
 - GP approach
- III.Apply median filter on each window

Constant Window Size

The signal is divided into segments of equal length I

Values higher than the window median by a pre-established factor **k** are replaced by the median itself

Constant Window Size

For statistical reasons, the spectrum of a signal has less resolution in the low frequency region. The length of the windows must be adjusted.

GP Approach

The window length *I* is set by a geometric progression rule

$$l_n = l_0 q^{n-1}$$
 Where \boldsymbol{q} is the ratio and \boldsymbol{n} is the nth element

The threshold $\mathbf{\tau}$ is defined as the product of the standard deviation of the window $\boldsymbol{\sigma}$ by a multiplication factor \boldsymbol{k}

$$\tau = k\sigma$$

GP Approach

Io, q and k must be optimized

Results comparison

By choosing optimal values for the parameters:

For this kind of application the GP filter seems to be the most suitable.