Statistics 2 - Notes

Dom Hutchinson

October 29, 2019

Contents

T	1.1 Introduction	2
2	The Likelihood Function	3
3	Maximum Likelihood Estimates 3.1 Determinig MLEs - The Tractable Case	4 5
4	Statistics and Estimators	7
5	Probabilistic Convergence 5.1 Probabilistic Convergence & Estimators	9 11
6	The Fisher Information	12
7	Efficiency and The Cramer-Rao Bound	15
8	Asymptotic Distribution of the Maximum Likelihood Estimator	17
9	Confidence Sets Around the Maximum Likelihood Estimator	20
10	Asymptotic Approximation of Confidence Intervals	21
0	Appendix 0.1 Notation 0.2 R 0.3 Probability Distributions	23 23 23 23

1 Estimation

1.1 Introduction

Definition 1.1 - Probabiltiy Space, $(\Omega, \mathcal{F}, \mathbb{P})$

A mathematical construct for modelling the real world. A *Probabilty Space* has three elements

- i) Ω Sample space.
- ii) \mathcal{F} Set of events.
- iii) \mathbb{P} Probability measure.

and most fulfil the following conditions

- i) $\Omega \in \mathcal{F}$;
- ii) $\forall A \in \mathcal{F} \implies A^c \in \mathcal{F}$;

iii)
$$\forall A_0, \dots, A_n \in \mathcal{F} \implies \left(\bigcup_i A_i\right) \in \mathcal{F};$$

iv) $\mathbb{P}(\Omega) = 1$; and,

v)
$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$
 for disjoint A_1, A_2, \dots (Countable Additivity).

Definition 1.2 - Random Variable

A function which maps an event in the sample space to a value e.g. $X: \Omega \to \mathbb{R}$.

Remark 1.1 - Probability Density Function for iid Random Variable Vector

For $\mathbf{X} \sim f_n(\cdot; \theta)$ where each component of \mathbf{X} is independent and identically distribution the probability density function of \mathbf{X} is

$$f_n(\mathbf{x}; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Definition 1.3 - Expectation

The mean value for a random variable. For rv X

$$\mathbb{E}(X) := \sum_{x \in \chi} x f_X(x) \quad \& \quad \mathbb{E}(X) := \int_{\mathbb{R}} x f_X(x) dx$$

Theorem 1.1 - Expection of a Function

For a function $g: \mathbb{R} \to \mathbb{R}$ and rv X with pmf f_X

$$\mathbb{E}(g(X)) := \sum_{g(x) \in \mathcal{X}} x f_X(x) \quad \& \quad \mathbb{E}(g(X)) := \int_{\mathbb{R}} g(x) f_X(x) dx$$

Theorem 1.2 - Expectation of a Linear Operator

For rv X with pmf $f_X \& a, b \in \mathbb{R}$

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

Definition 1.4 - Variance

For rv X

$$\operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Theorem 1.3 - Variance of a Linear Operator

For rv X and $a, b \in \mathbb{R}$

$$Var(aX + b) = a^2 Var(X)$$

Definition 1.5 - Moment of a Random Variable

For rv X the n^{th} moment of X is defined as $\mathbb{E}(X^n)$.

 $N.B. - \mathbb{E}(X^n) \neq \mathbb{E}(X)^n.$

Definition 1.6 - Covariance

For rv X & Y

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Theorem 1.4 - Properties of Covaraince

Let X & Y be independent random variables

- i) Cov(X, X) = Var(X);
- ii) Cov(X, Y) = 0

Theorem 1.5 - Variance of two Random Variables with linear operators

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Theorem 1.6 - Independent Random Variables

Random variables X_1, \ldots, X_n are independent iff

$$\mathbb{P}(X_1 \le a_1, \dots, X_n \le a_n) = \prod_{i=1}^n \mathbb{P}(X_i \le a_i) \ \forall \ a_1, \dots, a_n \in \mathbb{R}$$

2 The Likelihood Function

Definition 2.1 - Likelihood Function

Define $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and let \mathbf{x} be an observation of \mathbf{X} .

A Likelihood Function is any function, $L(\cdot; \mathbf{x}) : \Theta \to [0, \infty)$, which is proportional to the PMF/PDF of the observed realisation \mathbf{x} .

$$L(\theta; \mathbf{x}) := C f_b(\mathbf{x}; \theta) \ \forall \ C > 0$$

N.B. Sometimes this is called the *Observed* Likelihood Function since it is dependent on observed data.

Definition 2.2 - Log-Likelihood Function

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and \mathbf{x} be an observation of \mathbf{X} .

The Log-Likelihood Function is the natural log of a Likelihood Function

$$\ell(\theta; \mathbf{x}) := \ln f_n(\mathbf{x}; \theta) + C, \ C \in \mathbb{R}$$

Theorem 2.1 - Multidiensional Transforms

Let **X** be a continuous random vector in \mathbb{R}^n with PDF $f_{\mathbf{X}}$; $g: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous differentiable bijection; and, $h:=g^{-1}$.

Then $\mathbf{Y} = g(\mathbf{X})$ is a continuous random vector and its PDF is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(h(\mathbf{y})H_h(\mathbf{Y}))$$

where

$$J_h := \left| \det \left(\frac{\partial h}{\partial \mathbf{y}} \right) \right|$$

Proposition 2.1 - Invaraince of Likelihood Function by bijective transformation of the observations independent of θ

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a bijetive transformation which is independent of θ ; and $\mathbf{Y} := g(\mathbf{X})$.

Then \mathbf{Y} is a random variable with PDF/PMG

$$f_{\mathbf{Y}}(\mathbf{y};\theta) \propto f_{\mathbf{X}}(g^{-1}(\mathbf{y});\theta)$$

Hence, if $\mathbf{y} = g(\mathbf{x})$ then $L_{\mathbf{Y}}(\theta; \mathbf{y}) \propto L_{\mathbf{X}}(\theta; \mathbf{x})$

Proof 2.1 - Proposition 2.1

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be a bijective transformation which is independent of θ ; $h:=g^{-1}$; \mathbf{X}, \mathbf{Y} be a rvs st $\mathbf{Y}:=g(\mathbf{X})$.

i) Discrete Case - Consider the case when X is a discrete rv. Then

$$f_{\mathbf{Y}}(y;\theta) = \mathbb{P}(\mathbf{Y} = \mathbf{y}; \theta)$$

$$= \mathbb{P}(g^{-1}(\mathbf{Y}) = g^{-1}(\mathbf{y}); \theta)$$

$$= \mathbb{P}(h(\mathbf{Y}) = h(\mathbf{y}); \theta)$$

$$= \mathbb{P}(\mathbf{X} = h(\mathbf{y}); \theta)$$

$$= f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta)$$

ii) Continuous Case - Consider the case when ${\bf X}$ is a continuous rv. Then, by **Theorem 2.1**

$$f_{\mathbf{Y}}(\mathbf{y}; \theta) = f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta) J_{q^{-1}}(\mathbf{y})$$

Since $J_{q^{-1}}$ does not depend on θ this case is solved.

Thus in botoh cases $L_{\mathbf{Y}}(\theta; y) = f_{\mathbf{Y}}(y; \theta) \propto f_{\mathbf{X}}(g^{-1}(\mathbf{y}); \theta) = L_{\mathbf{X}}(\theta; \mathbf{x}).$

3 Maximum Likelihood Estimates

Definition 3.1 - Maximum Likelihood Estimate

Let $\mathbf{X} \sim f_n(\cdot; \theta)$; and \mathbf{x} be a realisation of \mathbf{X} .

The Maximum Likelihood Estimate is the value $\hat{\theta} \in \Theta$ st

$$\forall \theta \in \Theta \ f_n(\mathbf{x}; \hat{\theta}) \ge f_n(\mathbf{x}, \theta)$$

Equivalently

$$\forall \theta \in \Theta \ L(\hat{\theta}; \mathbf{x}) \ge L(\theta; \mathbf{x}) \quad \text{or} \quad \ell(\hat{\theta}; \mathbf{x}) \ge \ell(\theta; \mathbf{x})$$

i.e. $\hat{\theta}(\mathbf{x}) := \operatorname{argmax}_{\theta}(L(\theta; \mathbf{x}))$.

Remark 3.1 - The Maximum Likelihood Estimate may <u>not</u> be unique

Example 3.1 - MLE for Uniform Distribution

Consider $\mathbf{X}^{\text{iid}} \mathcal{U}[0, \theta]$ for $\theta > 0$.

Then

$$L(\theta; \mathbf{x}) \propto f_n(\mathbf{x}; \theta)$$

$$= \prod_{i=1}^n \frac{1}{\theta} \mathbb{1} \{ x_i \in [0, \theta] \}$$

$$= \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1} \{ x_i \in [0, \theta] \}$$

$$\implies \hat{\theta} = \max \{ x_i : x_i \in \mathbf{x} \}$$

Remark 3.2 - MLE of Reparameterisation

Define $\tau(\theta): \mathbb{R} \to \mathbb{R}$. Then

$$\hat{\tau} = \tau(\hat{\theta})$$

N.B. We often write \tilde{f} to represent the pmf when τ is taken as a parameter rate than θ . i.e. $f(x;\theta) = \tilde{f}(x;\tau(\theta))$.

Theorem 3.1 - Invariance of MLE under bijective Reparameterisation

Let $g:\Theta\to G$ be a bijective transformation of the statisitcal parameter $\theta.$

Let $\mathbf{X} \sim f(\cdot; \theta) = \tilde{f}(\cdot; g(\theta))$ for some θ , and let \mathbf{x} be a realisation of \mathbf{X} .

If
$$\hat{\theta}$$
 s an MLE of θ then $\hat{\tau} = g(\hat{\theta})$ is an MLE of τ .

Proof 3.1 - *Theorem 3.1*

This is a proof by contradiction.

Suppose $\exists \tau^* \in Gst\tilde{f}(x;\tau^*) > \tilde{f}(x;\tau^*)$ We know that $\forall \theta \in \Theta, f(x;\theta) = \tilde{f}(x;g(\theta))$ and $\forall \tau \in G, f(x;g^{-1}(\tau)) = \tilde{f}(x;\tau)$.

We deduce that

$$\begin{array}{lcl} f(x;g^{-1}(\tau^*)) & = & \tilde{f}(x;\tau^*) \\ & > & \tilde{f}(x;\hat{\tau}) \text{ by assumption} \\ & = & f(x;g^{-1}(\hat{\tau})) \\ & = & f(x;\hat{\theta}) \end{array}$$

This contradicts the assumption that $\hat{\theta}$ is an maximum likelihood estimate of θ .

Remark 3.3 - Not all Reparameterisations are Bijective

When reparameterisations $g: \mathbb{R} \to \mathbb{R}$ is not bijective it is helpful to consider the *induced likelihood*

$$L^*(\tau; \mathbf{x}) := \max_{\theta \in G_{\tau}} L(\theta; \mathbf{x}) \text{ where } G_{\tau} := \{\theta : g(\theta) = \tau\}$$

Since this reduces the domain to only where g is bijective.

3.1 Determinig MLEs - The Tractable Case

Proposition 3.1 - Differentiable Likelihood in the continuous case - Multivariate

When $L(\theta; \mathbf{x})$ is differentiable one can find MLEs by considering its extrema. This is done equating & solving the cases when the gradient is zero, *i.e.* $\nabla L(\theta; \mathbf{x}) = 0$, and then checking whether this is a maximum or minimum point.

A point is a local minimum if the Hessian at the point is Negative Definite i.e. $x^T A x < 0 \ \forall \ x \neq \mathbf{0}$.

Example 3.2 - MLE of Normal Distribution

Let $\mathbf{X}^{\text{iid}} \mathcal{N}(\mu, \sigma^2)$

$$L(\mu, \sigma^2; \mathbf{x}) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$\Rightarrow \qquad \ell(\mu, \sigma^2; \mathbf{x}) = C - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

$$\Rightarrow \qquad \nabla \ell(\mu, \sigma^2; \mathbf{x}) = \left(\frac{-1}{\sigma^2} \sum_{i=1}^n (x_i - \mu), -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2\right)$$
Setting
$$\frac{-1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

$$\Rightarrow \qquad \qquad \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}$$
Setting
$$-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Rightarrow \qquad \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \hat{\mu})^2$$

We now want to check whether $(\hat{\mu}, \hat{\sigma^2})$ is a minimum.

$$\nabla^{2}\ell(\mu, \sigma^{2}; \mathbf{x}) = \begin{pmatrix} \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial \mu^{2}} & \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial \mu \partial \sigma^{2}} \\ \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial \mu \sigma^{2}} & \frac{\partial^{2}\ell(\mu, \sigma^{2}; \mathbf{x})}{\partial (\sigma^{2})^{2}} \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{n}{\hat{\sigma}^{2}} & 0 \\ 0 & -\frac{n}{2\hat{\sigma}^{4}} \end{pmatrix}$$

Since $(z_1 z_2) \begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = -az_1^2 - bz_2^2 < 0 \ \forall \ a,b > 0$ and we have $\frac{n}{\hat{\sigma}^2}$, $\frac{n}{2\hat{\sigma}^4} > 0$ then we can conclude that $\nabla^2 \ell$ is negative definite.

Thus $\hat{\mu} = \bar{x} \& \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \hat{\mu})^2$ is an MLE for the normal distribution.

Example 3.3 - MLE for Capture-Recapture Model

Suppose you are wanting to calculate the unknown size of a population, n. The Capture-Recapture Model is one technique that can be used. You tag $t \leq n$ members of the population; wait for a while; then recapture $c \leq n$ members of which $x \leq \min\{t, c\} \leq n$ are tagged. With t, c, x known produce a MLE for n.

We first work out the associated probability distribution for X, the population size. We have

- i) $\binom{t}{x}$ ways of choosing x members among the tagged ones;
- ii) $\binom{n-t}{c-x}$ ways of choosing the remaining members among the non-tagged ones;
- iii) $\binom{n}{c}$ ways of choosing c members in a population of n individuals.

Thus

$$f_X(x;n) = \frac{\binom{t}{x}\binom{n-t}{c-x}}{\binom{n}{c}}$$

This means that $X \sim \text{Hypergeometric}(t, n, c)$ with t & c known.

Now we calculate the MLE for X

$$L(n;x) = f_X(x;n)$$

$$= \frac{\binom{t}{x}\binom{n-t}{c-x}}{\binom{n}{c}}$$

$$= \frac{t!}{\frac{x!(t-x)!}{(c-x)!(n-t-c+x)!}} \frac{(n-t)!}{\frac{n!}{c!(n-c)!}}$$

Now we consider L(n;x) = 0 when $x > \min\{t,c\}$. We want to indetify values of n for which $L(n;x) \ge L(n-1;x)$.

Consider $n-1 \ge \min\{t,c\} \implies L(n-1;x) > 0$

$$\operatorname{Let} r(n) := \frac{L(n;x)}{L(n-1;x)}$$

$$= \frac{n-t}{n-t-c+x} \frac{n-c}{n}$$

$$\Rightarrow \qquad 1 \leq r(n)$$

$$\Leftrightarrow \qquad 1 \leq \frac{n-t}{n-t-c+x} \frac{n-c}{n}$$

$$\Leftrightarrow \qquad n(n-t-c+x) \leq (n-t)(n-c)$$

$$\Leftrightarrow \qquad n^2 - nt - cn + xn \leq n^2 - nt - cn + ct$$

$$\Leftrightarrow \qquad xn \leq ct$$

$$\Leftrightarrow \qquad x \leq \frac{ct}{n}$$

So L(n;x) is increasing for $n \leq \lfloor \frac{ct}{x} \rfloor$ & decreasing for $n > \lfloor \frac{ct}{x} \rfloor$. Consequently $\hat{n}_{\text{MLE}}(x) = \lfloor \frac{tc}{x} \rfloor$

4 Statistics and Estimators

Definition 4.1 - Statistic

Given some data \mathbf{x} a statistic is a function of the data $T(\mathbf{x})$.

N.B. A statistic cannot depend on an unknown statistical parameter.

Definition 4.2 - Estimate

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ with $\theta^* \in \Theta$ and \mathbf{x} be a realisation of \mathbf{X} .

An Estimate θ^* is a statistic $\hat{\theta}(\mathbf{x}) = T(\mathbf{x})$ which is intended to approximate the real value of θ^* . N.B. An Estimate is a real value & thus is hard to evaluate.

Definition 4.3 - Estimator

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ with $\theta^* \in \Theta$ and \mathbf{x} be a realisation of \mathbf{X} .

An Estimator of θ^* is $\hat{\theta}$ where $\hat{\theta}(\mathbf{x})$ is an estimate.

N.B. We call $T(\mathbf{X})$ an estimator. This is a random variable.

Definition 4.4 - Distribution of an Estimator

Let $\mathbf{X}|sim f_n(\cdot; \theta^*)$ with $\theta^* \in \Theta \subseteq \mathbb{R}$.

If $\hat{\theta}(\mathbf{X})$ is a real-valued random variable, we can write its CDF as

$$F_{\hat{\theta}(\mathbf{X})}(t; \theta^*) = \mathbb{P}(\hat{\theta}(\mathbf{X}) \le t; \theta^*)$$
$$= \int_{\chi^n} \mathbb{1}\{\hat{\theta}(\mathbf{x}) \le t\} f_n(\mathbf{x}; \theta^*) d\mathbf{x}$$

Remark 4.1 - Estimator dependends upon true value

The distribution of $\hat{theta}(\mathbf{X})$ depends on the distribution of \mathbf{X} which in turn depends upon the distribution of θ^* .

Thus the distribution of an estimator depends on the true parameter of the variable it is estimating.

Remark 4.2 - Estimator Distribution & Sample Size

As sample size increases the distribution of an estimator may converge to a more standard distribution (e.g. Normal, Poisson).

Definition 4.5 - Bias

Bias is a measure of how much an estimator deviates from the true value, on average.

$$\begin{array}{lll} \mathrm{Bias}(\hat{\theta}; \theta^*) & := & \mathbb{E}(\hat{\theta}(\mathbf{X}) - \theta^*; \theta^*) \\ & = & \mathbb{E}(\hat{\theta}; \theta^*) - \mathbb{E}(\theta^*; \theta^*) \\ & = & \mathbb{E}(\hat{\theta}; \theta^*) - \theta^* \end{array}$$

Definition 4.6 - *Unbiased Estimator*

An Estimator, $\hat{\theta}$, is said to be Unbiased if $\forall \theta \in \Theta$, Bias $(\hat{\theta}; \theta) = 0$. Equivalently $\mathbb{E}(\hat{\theta}; \theta) = \theta$.

Definition 4.7 - Mean Square Error

The Mean Square Error of an estimator is the mean of the squared error associated with rv $\hat{\theta}$.

$$MSE(\hat{\theta}; \theta^*) := \mathbb{E}\left[(\hat{\theta}(\mathbf{X}) - \theta^*)^2; \theta^2\right]$$

Proposition 4.1 - Simplification of MSE Formula

The MSE is a combination of variance & bias.

$$\begin{split} MSE(\hat{\theta}; \theta^*) &= \mathbb{E}\left[(\hat{\theta}(\mathbf{X}) - \theta^*)^2; \theta^2\right] \\ &= \mathbb{E}\left[\left\{\hat{\theta} - \mathbb{E}(\hat{\theta}; \theta^*)\right\}^2; \theta^*\right] + \left(\mathbb{E}(\hat{\theta} - \theta^*; \theta^*)^2\right] \\ &= \operatorname{Var}(\hat{\theta}; \theta^*) + \operatorname{Bias}(\hat{\theta}; \theta^*)^2 \end{split}$$

Example 4.1 - Sample mean as an Estimator

Let $\mathbf{X}^{\text{iid}} \text{Poisson}(\lambda^*)$.

Suppose we are using the sample mean, $\hat{\lambda}(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} x_i$, as an estimate of λ^* . We first want to show this estimator is *Unbiased*

$$\mathbb{E}(\hat{\lambda}; \lambda) = \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_i; \lambda\right)$$

$$= d\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i; \lambda)$$

$$= \frac{1}{n} n \lambda$$

$$= \lambda$$

Thus $\hat{\lambda}$ is unbiased.

Now we consider the MSE of $\hat{\lambda}$

$$\begin{split} MSE(\hat{\lambda};\lambda) &= \operatorname{Var}(\hat{\lambda};\lambda) \\ &= \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i};\lambda\right) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i};\lambda) \\ &= \frac{1}{n^{2}}n\lambda \\ &= \frac{\lambda}{n} \end{split}$$

This shows that as the sample size increases the MSE of $\hat{\lambda}$ converges to 0.

5 Probabilistic Convergence

Remark 5.1 - Motivation

Here we consider the properties of a maximum likelihood estimators as the sample size increases.

Theorem 5.1 - Markov's Inequality

For a non-negative random variable X and a constant a > 0

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Proof 5.1 - Markov's Inequality

Consider continuous X. We have

$$a\mathbb{P}(X \ge a) = a \int_{\infty}^{\infty} f_X(x) dx$$

$$\le \int_{a_{\infty}}^{\infty} x f_X(x) dx$$

$$\le \int_{0}^{\infty} x f_X(x) dx$$

$$= \mathbb{E}(X)$$

$$\Rightarrow a\mathbb{P}(X \ge a) = \mathbb{E}(X)$$

$$\Rightarrow \mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Theorem 5.2 - Chebyshev's Inequality

Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \text{Var}(X)$. Then

$$\forall a > 0, \ \mathbb{P}(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Proof 5.2 - Chebyshev's Inequality

We have

$$\mathbb{P}(|X - \mu| \ge a) = \mathbb{P}(|X - \mu|^2 \ge a^2)$$

$$\le \frac{\mathbb{E}\left((X - \mu)^2\right)}{a^2} \text{ By Markov's Inequality}$$

$$= \frac{\sigma^2}{a^2}$$

Definition 5.1 - Convergence in Probability

We say the sequence of random variables $\{Z_n\}_{n\in\mathbb{N}}$ converges in probability to the random variable Z if

$$\forall \ \varepsilon > 0, \ \lim_{n \to \infty} \mathbb{P}(|Z_n - Z| > \varepsilon) = 0$$

N.B. This is denoted $Z_n \to_{\mathbb{P}} Z$.

N.B. The random variables $\{Z_n\}_{n\in\mathbb{N}}$ & Z must be in the same probability space.

Theorem 5.3 - Weak Law of Large Numbers

If $\{X_n\}_{n\in\mathbb{N}}$ are idependent & identically distributed and $\mathbb{E}(X_1)=\mu<\infty$ then

$$Z_n = \frac{1}{n} \sum_{i=1}^n X_i \to_{\mathbb{P}} \mu$$

N.B. This is an example of Convergence in Probability.

Definition 5.2 - Convergence in Distribution

We say the sequence of random variables $\{Z_n\}_{n\in\mathbb{N}}$ converges in distribution to random variable Z if

$$\forall z \in \mathbf{Z} \text{ where } \mathbb{P}(Z \leq z) \text{ is continuous, } \lim_{n \to \infty} \mathbb{P}(Z_n \leq z) = \mathbb{P}(Z \leq z)$$

N.B. This is denoted $Z_n \to_{\mathcal{D}} Z$.

N.B. The random variables $\{Z_n\}_{n\in\mathbb{N}}$ & Z need not be in the same probability space.

Remark 5.2 - Equivalent Statements to Convergence in Distribution

Saying that $Z_n \to_{\mathcal{D}} Z$ is equivalent to saying that

$$\forall z \in \mathbb{Z}$$
 where $F_Z(z)$ is continuous, $\lim_{n \to \infty} F_{Z_n}(z) = F_Z(z)$

Theorem 5.4 - Central Limit Theorem

If $\{X_n\}_{n\in\mathbb{N}}$ are idependent & identically distributed, $\mathbb{E}(X_1) = \mu < \infty$ and $\mathrm{Var}(X_1) = \sigma^2 < \infty$ then

$$\frac{\sqrt{n}}{\sigma}(Z_n - \mu) \to_{\mathcal{D}} Z \sim \text{Normal}(0, 1)$$

Theorem 5.5 - Convergence in Probability & Distribution

Convergence in probability \implies Convergence in distribution, **but** the opposite is not necessarily true.

Theorem 5.6 - Convergence in Probability & Distribution to a Constant

Convergence in distribution to a constant and convergence in probability to a constant are equivalent.

Example 5.1 -

Let $X \sim \text{Bernoulli}\left(\frac{1}{2}\right)$ and $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables where $X_i := (1-X) + \frac{1}{n}$. We have

$$F_X(x) = \begin{cases} 0 & , x < 0 \\ \frac{1}{2} & , x \in [0, 1) \\ 1 & , x \ge 1 \end{cases} \quad F_{X_n}(x) = \begin{cases} 0 & , x < \frac{1}{n} \\ \frac{1}{2} & , x \in \left[\frac{1}{n}, 1 + \frac{1}{n}\right) \\ 1 & , x \ge 1 + \frac{1}{n} \end{cases}$$

Clearly $F_{X_n}(x) \to F_X(x)$ at all points at which F_X is continuous (i.e. $x \in \mathbb{R} \setminus \{0, 1\}$). Thus $X_n \to_{\mathcal{D}} X$.

Theorem 5.7 - Continuous Mapping Theorem

Let $q: Z \to G$ be a continuous function. Then

- i) If $Z_n \to_{\mathbb{P}} Z$, then $g(Z_n) \to_{\mathbb{P}} g(Z)$;
- ii) If $Z_n \to_{\mathcal{D}} Z$, then $g(Z_n) \to_{\mathcal{D}} g(Z)$

Theorem 5.8 - Slutsky's Theorem

Let $\{Y_n\}_{n\in\mathbb{N}}$ & $\{Z_n\}_{n\in\mathbb{N}}$ be sequences of random variables, Y be a random variable & $c\in\mathbb{R}\setminus 0$ be a constant.

If $Y_n \to_{\mathcal{D}} Y$ and $Z_n \to_{\mathcal{D}} c$, then

- i) $Y_n + Z_n \to_{\mathcal{D}} Y + c$;
- ii) $Y_n Z_n \to_{\mathcal{D}} Y_c$; and,
- iii) $\frac{Y_n}{Z_n} \to_{\mathcal{D}} \frac{Y}{c}$.

Definition 5.3 - Convergence in Quadratic Mean

Let $\{Z_n\}_{n\in\mathbb{N}}$ be a sequence of random variables & Z be a random variable. We say that $\{Z_n\}_{n\in\mathbb{N}}$ Converges in Quadratic Mean to the random variable Z if

$$\lim_{n \to \infty} \mathbb{E}\left[(Z_n - Z)^2 \right] = 0$$

N.B. This is denoted $Z_n \to_{qm} Z$.

Theorem 5.9 - If $Z_n \rightarrow_{qm} Z$ then $Z_n \rightarrow_{\mathbb{P}} Z$

Proof 5.3 - *Theorem 5.9*

Fix any $\varepsilon > 0$. We have

$$\begin{array}{lcl} \mathbb{P}(|Z_n-Z|>\varepsilon) & = & \mathbb{P}(|Z_n-Z|^2>\varepsilon^2) \\ & \leq & \frac{1}{\varepsilon^2}\mathbb{E}\left[(Z_n-Z)^2\right] \text{ by Markov's Inequality} \\ & \to & 0 \text{ since } Z_n \to_{qm} Z. \end{array}$$

Hence $Z_n \to_{\mathbb{P}} Z$.

5.1 Probabilistic Convergence & Estimators

Definition 5.4 - Consistency of a Sequence of Estimators A sequence of estimators, $\{\hat{\theta}_n(\cdots): \chi^n \to \Theta\}$, are said to be Consistent if

$$\forall \theta \in \Theta \text{ with } \mathbf{X}_n \sim f_n(\cdot; \theta), \ \hat{\theta}_n(\mathbf{X}_n) \to_{\mathbb{P}(\cdot; \theta)} \theta$$

Remark 5.3 - Consistency of a Sequence of Estimators

- i) In numerous situations one will talk about the consistency of *the* estimator, *e.g.* for the MLE, but also for the mean, etc. This implicitly refers to the corresponding sequence of MLEs, sequence of means, etc.
- ii) Note the $\mathbb{P}(\cdot;\theta)$ in the limit above, and in particular the dependence on θ . This is often omitted in practice, you should however not forget what the symbols actually mean.
- iii) Quadratic mean / Mean Square convergence ⇒ consistency.

 That is, if the MSE of the estimator converges to 0, the estimator is consistent.

Example 5.2 - Consistency of Flipping Coins

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta^*)$ for some $\theta^* \in [0, 1]$.

The maximum likelihood estimate and method of moments for $\hat{\theta}_n$ are the sample mean.

$$\hat{\theta}_n(X_1,\dots,X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

By the Weak Law of Large Numbers we have that consistency of $\{\hat{\theta}n\}$, since $\mathbb{E}(X_1) = \theta^*$.

 ${\bf Example~5.3~-~} {\it Crude~Confidence~Interval~when~Flipping~Coins}$

Let \mathbf{X}^{iid} Bernoulli (θ^*) for some $\theta^* \in [0,1]$ and define $\hat{\theta}_n := \hat{\theta}_n(X_1,\ldots,X_n)$. We shall produce a *confidence interval* for θ^* .

$$\mathbb{E}(\hat{\theta}_n; \theta^*) = \theta^* \quad \text{and} \quad \operatorname{Var}(\hat{\theta}_n; \theta^*) = \frac{\theta^*(1 - \theta^*)}{\theta^*}$$

$$\mathbb{P}\left(|\hat{\theta}_n - \theta^*| \geq \varepsilon; \theta^*\right) \leq \frac{\theta^*(1-\theta^*)}{n\varepsilon^2} \text{ by Chebyshev's Inequality}$$
 We don't know θ^* , but can deduce that $\theta^*(1-\theta^*) \leq \frac{1}{4}$

$$\implies \mathbb{P}\left(|\hat{\theta}_n - \theta^*| \geq \varepsilon; \theta^*\right) \leq \frac{1}{4n\varepsilon^2}$$
Define $\alpha := \frac{1}{4n\varepsilon^2}$

$$\implies \mathbb{P}\left(|\hat{\theta}_n - \theta^*| \geq \frac{1}{2\sqrt{n\alpha}}; \theta^*\right) \leq \alpha$$

$$\implies \mathbb{P}\left(\hat{\theta}_n - \frac{1}{2\sqrt{n\alpha}} < \theta^* < \hat{\theta}_n + \frac{1}{2\sqrt{n\alpha}}; \theta^*\right) \geq 1 - \alpha$$

This means the random interval $(\hat{\theta}_n - \frac{1}{2\sqrt{n\alpha}}, \hat{\theta}_n + \frac{1}{2\sqrt{n\alpha}}; \theta^*)$ contains θ^* with probability $1 - \alpha$. We can note that the interval decreases as n increases, and increases as α decreases. $N.B. \hat{\theta}_n$ is a random variable, while θ^* is not.

Example 5.4 - Assymptotically Exact Confidence Interval when Flipping Coins This is an improvement on the bound produced in **Example 5.3**.

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta^*)$ for some $\theta^* \in [0, 1]$, $W \sim \text{Normal}(0, 1)$ and define $\hat{\theta}_n := \hat{\theta}_n(X_1, \dots, X_n)$. We shall show that

$$\frac{\sqrt{n}(\hat{\theta}_n - \theta^*)}{\sqrt{\hat{\theta}_n(1 - \hat{\theta}_n)}} \to_{\mathcal{D}} W$$

We know that $Var(X_1) = \theta^*(1 - \theta^*)$.

By the Weak Law of Large Numbers $\hat{\theta}_n \to_{\mathbb{P}} \theta^*$.

By the Central Limit Theorem

$$\frac{\sqrt{n}(\hat{\theta}_n - \theta^*)}{\sqrt{\hat{\theta}_n(1 - \hat{\theta}_n)}} \to_{\mathcal{D}} W$$

Define
$$Y_n = \frac{\sqrt{n}(\hat{\theta}_n - \theta^*)}{\sqrt{\theta^*(1 - \theta^*)}}$$
 and $Z_n = \frac{\sqrt{\theta^*(1 - \theta^*)}}{\sqrt{\hat{\theta}_n(1 - \hat{\theta}_n)}}$.

By the Continuous Mapping Theorem tells us that $Z_n \to_{\mathcal{D}} 1$ and $Z_n \to_{\mathbb{P}} 1$. Hence, by Slutsky's Theorem

$$\frac{\sqrt{n}(\hat{\theta}_n - \theta^*)}{\sqrt{\hat{\theta}_n(1 - \hat{\theta}_n)}} = Y_n Z_n \to_{\mathcal{D}} W$$

This gives us random interval

$$\left(\hat{\theta}_n - z_{\alpha/2} \sqrt{\frac{\hat{\theta}_n (1 - \hat{\theta}_n)}{n}}, \hat{\theta}_n + z_{\alpha/2} \sqrt{\frac{\hat{\theta}_n (1 - \hat{\theta}_n)}{n}}\right)$$

This interval captures θ^* asymptotically (in n) with probability $1 - \alpha$. $N.B. \ z_{\alpha} = \Phi^{-1}(1 - \alpha)$ where Φ is the cumulative denisty function of a Normal(0, 1).

6 The Fisher Information

Remark 6.1 - Motivation

In the next part of the content we shall show that given $\mathbf{X}_n \stackrel{\text{iid}}{\sim} f(\cdot; \theta^*)$ then for sufficiently regular models

- i) There exists a lower bound on the achievable performance of any estimate of θ^* .
- ii) A scaled & centered sequence of maximum likelihood estimators $\{\hat{\theta}_n(\mathbf{X}_n)\}\$ become asymptotically normal as $n \to \infty$.

Remark 6.2 - Measuring Performance of Estimator

We measure the performance of an estimator $\hat{\theta}$ in terms of variance, since its mean should be θ^* . Lower variance indicates better performance.

Definition 6.1 - The Score Function

Let $\ell(\theta; x) := \ln f(x; \theta)$.

The Score Function is a measure of the sensitivity of the likelihood function wrt θ

$$\ell'(\theta;x) := \frac{d}{d\theta}\ell(\theta,;x) = \frac{\frac{d}{d\theta}\ln f(x;\theta)}{\ln f(x;\theta)} = \frac{\ln L'(\theta;x)}{\ln L(\theta;x)}$$

Remark 6.3 - θ^* is a turning point of $\ell(\theta; x)$

Note that under the Fisher Information Regularity Conitions we have that $\forall \theta \in \Theta$

$$\mathbb{E}(\ell'(\theta;X);\theta) = \int_{S} \frac{\frac{d}{d\theta}f(x;\theta)}{f(x;\theta)}f(x;\theta)dx$$

$$= \int_{S} \frac{d}{d\theta}f(x;\theta)dx$$

$$= \frac{d}{d\theta} \int_{S} f(x;\theta)dx$$

$$= \frac{d}{d\theta}(1)$$

$$= 0$$

This shows that we expect the derivative to equal 0 at θ^* . Further, this means θ^* is a turning point of the log-likelihood function (hopefully a maximum).

Example 6.1 - Application of Remark 6.3

Let $X \sim \text{Poisson}(\theta)$. Then $f_X(x;\theta) = \frac{\theta^x}{x!} e^{-\theta} \mathbb{1}\{x \in \mathbb{N}\}.$

$$\Rightarrow \qquad \ell(\theta; x) = -\theta + x \ln \theta - \ln x!$$

$$\Rightarrow \qquad \ell'(\theta; x) = -1 + \frac{x}{\theta}$$

$$\Rightarrow \qquad \mathbb{E}(\ell'(\theta; X); \theta) = -1 + \frac{\theta}{\theta}$$

$$= 0$$

Definition 6.2 - Fisher Information Regularity Conditions

Let Θ be an open interval in \mathbb{R} and $f(x;\theta)$ be a pmf/pdf.

Below are conditions which a model is required to meet in order to be considered sufficiently regular such that *Fisher Information* can be drawn from it.

- i) Both $L'(\theta;x) = \frac{d}{d\theta}f(x;\theta)$ and $L''(\theta;x) = \frac{d^2}{d\theta^2}f(x;\theta)$ exist for any $x \in \mathcal{X}$.
- ii) $\forall \theta \in \Theta$ the set $S := \{x \in \mathcal{X} : f(x; \theta) > 0\}$ does not depend on $\theta \in \Theta$.
- iii) The idenity below exists

$$\int_{S} \frac{d}{d\theta} f(x;\theta) dx = \frac{d}{d\theta} \int_{S} f(x;\theta) dx = 0$$

Definition 6.3 - Fisher Information

Fisher Information is a technique for measuring the amount of information that an observable random variable X carries about an unknown parameter θ upon which the probability of X depends.

Let $X \sim f(\dots; \theta)$. Then the Fisher Information for any $\theta \in \Theta$ is

$$I(\theta) := \mathbb{E}(\ell'(\theta; X)^2; \theta) \ge 0$$

N.B. This is the Expectation of the score, squared \equiv Second moment of the score.

Remark 6.4 - Fisher Information

- i) Fisher Information is a function of the parameter, θ , not the data, X.
- ii) $I(\theta)$ can be thought of as being the average *information* brought by a single observation X about θ , assuming $X \sim f(\cdot; \theta)$.
- iii) Since $\forall \theta \in \Theta, \mathbb{E}(\ell'(\theta; X); \theta) = 0$ then

$$I(\theta) = \text{Var}(\ell'(\theta; X); \theta)$$

The variance of the score.

Example 6.2 - Fisher Information of Poisson

Let $X \sim \text{Poisson}(\theta)$.

From **Example 6.1** we kown that $\ell'(\theta; x) = -1 + \frac{x}{\theta}$. Then

$$I(\theta) = \operatorname{Var}(\ell'(\theta; X); \theta)$$

$$= \operatorname{Var}\left(-1 + \frac{X}{\theta}; \theta\right)$$

$$= \operatorname{Var}\left(\frac{X}{\theta}; \theta\right)$$

$$= \frac{1}{\theta^2} \operatorname{Var}(X; \theta)$$

$$= \frac{1}{\theta^2}.\theta \text{ since } X \sim \operatorname{Poisson}(\theta)$$

$$= \frac{1}{\theta}$$

Theorem 6.1 - Alternative Expression of Fisher Information

Let $f(x;\theta)$ be a pmf/pdf which statisfies the conditions of **Definition 6.2**. If

$$\forall \ \theta \in \Theta \quad \int_{\mathcal{X}} \frac{d^2}{d\theta^2} f(x;\theta) dx = \frac{d}{d\theta} \int_{\mathcal{X}} \frac{d}{d\theta} f(x;\theta) dx$$

Then

$$I(\theta) = -\mathbb{E}\left(\frac{d^2}{d\theta^2}\ell(\theta; X); \theta\right)$$

N.B. $\frac{d}{d\theta} \int_{\mathcal{X}} \frac{d}{d\theta} f(x;\theta) dx = 0$ by the regularity conditions.

Proof 6.1 - *Theorem 6.1*

By the Quotient Rule

$$\frac{d^2}{d\theta^2}\ell(\theta;x) = \frac{d}{d\theta} \frac{\frac{d}{d\theta}f(x;\theta)}{f(x;\theta)}
= \frac{\frac{d^2}{d\theta^2}f(x;\theta)}{f(x;\theta)} - \left(\frac{\frac{d}{d\theta}f(x;\theta)}{f(x;\theta)}\right)^2$$

Consequently

$$\mathbb{E}\left(\frac{d^2}{d\theta^2}\ell(\theta;X);\theta\right) = \int_S \frac{\frac{d^2}{d\theta^2}f(x;\theta)}{f(x;\theta)}f(x;\theta)dx - \int_S \left(\frac{\frac{d}{d\theta}f(x;\theta)}{f(x;\theta)}\right)^2 f(x;\theta)dx$$

$$= \int_S \frac{d^2}{d\theta^2}f(x;\theta)dx - \int_S \ell'(\theta;x)^2 f(x;\theta)dx$$

$$= 0 - \mathbb{E}(\ell'(\theta;X)^2;\theta)$$

$$= -I(\theta)$$

$$\Rightarrow I(\theta) = -\mathbb{E}\left(\frac{d^2}{d\theta^2}\ell(\theta;X);\theta\right)$$

7 Efficiency and The Cramer-Rao Bound

Definition 7.1 - IID Score Function

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} f(\cdot; \theta)$ for some $\theta \in \Theta$. Then the Score Function is

$$\ell'_n(\theta; \mathbf{x}) := \frac{d}{d\theta} \ell_n(\theta; \mathbf{x}) \text{ where } \ell_n(\theta; \mathbf{x}) := \ln f_n(\mathbf{x}; \theta) = \sum_{i=1}^n \ell(\theta; x_i)$$

N.B.
$$\frac{d}{d\theta}l_n(\theta; \mathbf{x}) = \frac{d}{d\theta} \sum \ell(\theta; x_i) = \sum \ell'(\theta; x_i).$$

Definition 7.2 - *IID Fisher Information*

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} f(\cdot; \theta)$ for some $\theta \in \Theta$. Then the Fisher Information is

$$I_n(\theta) := \mathbb{E}(l'_n(\theta; \mathbf{X})^2; \theta) = \operatorname{Var}(l'_n(\theta; \mathbf{X}); \theta)$$

Theorem 7.1 - Relationship between IID Fisher Information & Fisher Information Consider the situation where $\forall \theta \in \Theta, f_n(\mathbf{x}; \theta) = \prod_{i=1}^n f(x_i; \theta)$. Then

$$\forall \theta \in \Theta, I_n(\theta) = nI(\theta)$$

Proof 7.1 - *Theorem 7.1*

Let $\mathbf{X} \stackrel{iid}{\sim} f(\cdot; \theta)$. Then

$$I_n(\theta) = \operatorname{Var}(\ell'_n(\theta; \mathbf{X}); \theta)$$

$$= \operatorname{Var}\left(\sum_{i=1}^n \ell'(\theta; X_i); \theta\right)$$

$$= n\operatorname{Var}\left(\sum_{i=1}^n \ell'(\theta; X_1); \theta\right)$$

$$\implies I_n(\theta) = nI(\theta)$$

Theorem 7.2 - Cauchy-Schwarz Inequality for Expectation

Let X & Y be real-valued random variables in the same probability space. Then

$$\mathbb{E}(XY)^2 < \mathbb{E}(X^2)\mathbb{E}(Y^2)$$

Proof 7.2 - *Theorem 7.2*

If $\mathbb{E}(Y^2) = 0$ then $\mathbb{P}(Y = 0) = 1$ so $\mathbb{E}(XY) = 0$ and the statement holds.

Thus, assume $\mathbb{E}(Y^2) > 0$ and define $\lambda := \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}$. Then

$$0 \leq \mathbb{E}(X - \lambda Y)^{2})$$

$$= \mathbb{E}(X^{2}) - 2\lambda \mathbb{E}(XY) + \lambda^{2} \mathbb{E}(Y^{2})$$

$$= \mathbb{E}(X^{2}) - 2\frac{\mathbb{E}(XY)^{2}}{\mathbb{E}(Y^{2})} + \frac{\mathbb{E}(XY)^{2}}{\mathbb{E}(Y^{2})}$$

$$= \mathbb{E}(X^{2}) - \frac{\mathbb{E}(XY)^{2}}{\mathbb{E}(Y^{2})}$$

$$\implies \mathbb{E}(XY)^{2} \leq \mathbb{E}(X^{2})\mathbb{E}(Y^{2})$$

Theorem 7.3 - Covaraince Inequality

Let X and Y be real-valued random variables in the same probability space. Then

$$Cov(X, Y)^2 \le Var(X)Var(Y)$$

Proof 7.3 - Theorem 7.3

Let $W = X - \mathbb{E}(X)$ and $Z = Y - \mathbb{E}(Y)$ giving $\mathbb{E}(WZ) = \text{Cov}(X,Y)$, $\mathbb{E}(W^2) = \text{Var}(X)$ and $\mathbb{E}(Z^2) = \text{Var}(Y)$.

By applying the Cauchy-Schwarz inequality we get

$$\operatorname{Cov}(X,Y)^2 = \mathbb{E}(WZ)^2 \le \mathbb{E}(W^2)\mathbb{E}(Z^2) = \operatorname{Var}(X)\operatorname{Var}(Y) \iff \operatorname{Cov}(X,Y)^2 \le \operatorname{Var}(X)\operatorname{Var}(Y)$$

Remark 7.1 - Correlation value

The result in **Theorem 7.3** is the reason why correlation is valued in [-1, 1].

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Theorem 7.4 - Cramer-Rao Inequality - Scalar Parameter

Let $\mathbf{X}_n \stackrel{\text{iid}}{\sim} f(\cdot; \theta)$ and assume the Fisher Information Regularity Conditions hold. Let $\hat{\theta}_n(\cdot)$ be an estimator of θ with expectation $m(\theta) := \mathbb{E}(\hat{\theta}_n(\mathbf{X}_n); \theta)$ which statisfies

$$\forall \ \theta \in \Theta, \ \underbrace{\frac{d}{d\theta} \int \hat{\theta}_n(\mathbf{x}) f_n(\mathbf{x}; \theta) d\mathbf{x}}_{\mathbb{E}(\hat{\theta}_n)} = \int \hat{\theta}_n(\mathbf{x}) \frac{d}{d\theta} f_n(\mathbf{x}; \theta) d\mathbf{x}$$

Then

$$\forall \ \theta \in \Theta, \quad \operatorname{Var}(\hat{\theta}_n(\mathbf{X}); \theta) \ge \frac{m'(\theta)^2}{nI(\theta)}$$

Proof 7.4 - Theorem 7.4

We notice that

$$m'(\theta) = \frac{d}{d\theta} \mathbb{E}(\hat{\theta}_n(\mathbf{X}_n); \theta)$$

=
$$\frac{d}{d\theta} \int_{S^n} \hat{\theta}_n(\mathbf{x}_n) f_n(\mathbf{x}_n; \theta) d\mathbf{x}_n$$

The clever part of this proof is to observe that

$$Var(\hat{\theta}_n(\mathbf{X}_n); \theta) nI(\theta) = Var(\hat{\theta}_n(\mathbf{X}_n); \theta) Var(\ell_n(\theta; \mathbf{X}_n); \theta)$$

$$\geq Cov(\hat{\theta}_n(X_n), \ell'_n(\theta; \mathbf{X}_n); \theta)^2 \text{ by Covariance Inequality}$$

Thus

$$\operatorname{Cov}(\hat{\theta}_{n}(X_{n}), \ell'_{n}(\theta; \mathbf{X}_{n}); \theta)^{2} = \mathbb{E}(\hat{\theta}_{n}(X_{n})\ell'_{n}(\theta; \mathbf{X}_{n}); \theta) - \mathbb{E}(\hat{\theta}_{n}(\mathbf{X}_{n}); \theta)\mathbb{E}(\ell'_{n}(\theta; \mathbf{X}_{n}); \theta)$$

$$= \mathbb{E}(\hat{\theta}_{n}(X_{n})\ell'_{n}(\theta; \mathbf{X}_{n}); \theta) - \mathbb{E}(\hat{\theta}_{n}(\mathbf{X}_{n}); \theta) \times 0$$

$$= \mathbb{E}(\hat{\theta}_{n}(X_{n})\ell'_{n}(\theta; \mathbf{X}_{n}); \theta)$$

$$= \int_{S^{n}} \hat{\theta}_{n}(\mathbf{x}_{n})\ell'_{n}(\theta; \mathbf{x}_{n})f_{n}(\mathbf{x}_{n}; \theta)d\mathbf{x}_{n}$$

$$= \int_{S^{n}} \hat{\theta}_{n}(\mathbf{x}_{n})\frac{\frac{d}{d\theta}f_{n}(\mathbf{x}_{n}; \theta)}{f_{n}(\mathbf{x}_{n}; \theta)}f_{n}(\mathbf{x}_{n}; \theta)d\mathbf{x}_{n}$$

$$= \int_{S^{n}} \hat{\theta}_{n}(\mathbf{x}_{n})\frac{d}{d\theta}f_{n}(\mathbf{x}_{n}; \theta)$$

$$= \frac{d}{d\theta}\int_{S^{n}} \hat{\theta}_{n}(\mathbf{x}_{n})f_{n}(\mathbf{x}_{n}; \theta)d\mathbf{x}_{n} \text{ by regularity assumption}$$

$$= m'(\theta)$$

$$\operatorname{Var}(\hat{\theta}_{n}(X_{n}); \theta)nI(\theta) \geq m'(\theta)^{2}$$

Proposition 7.1 - Useful result from Cramer-Rao Inequality If $\hat{\theta}_n(\mathbf{X}_n)$ is an unbiased estimator (i.e. $m(\theta) = \theta$) then

$$\operatorname{Var}(\hat{\theta}_n(\mathbf{X}_n); \theta) = MSE(\hat{\theta}_n(\mathbf{X}_n); \theta) \ge \frac{1}{nI(\theta)}$$

This shows there is a lower bound on the possible performance of an estimator.

Definition 7.3 - Efficient Estimator

An *Estimator* is said to be *Efficient* when its variance is equal to the *Cramer-Rao lower bound* $\forall \theta^*$.

Example 7.1 - Efficient Coin Flipping

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ with $\theta \in [0,1]$, this corresponds to flipping a coin n times and considering each flip the random variable $X: \{H,T\} \to \{0,1\}$ such that X(H) = 1 and X(T) = 0 with probability distribution such that $\mathbb{P}(X=1;\theta) = \theta$ and $\mathbb{P}(X=0;\theta) = 1 - \theta$. We consider the intuitive estimator of θ

$$\hat{\theta}_n := \hat{\theta}_n(\mathbf{X}_n) := \frac{1}{n} \sum_{i=1}^n X_i$$

The estimator is unbiased $\forall n \in \mathbb{N}$ and its variance is

$$\operatorname{Var}(\hat{\theta}_n; \theta) = \frac{\operatorname{Var}(X_1; \theta)}{n} = \frac{\mathbb{E}(X_1^2; \theta) - \mathbb{E}(X_1; \theta)^2}{n} = \frac{\theta - \theta}{n} = \frac{\theta(1 - \theta)}{n}$$

Now we consider the Cramer-Rao bound

We find
$$L(\theta; x) = \theta^x (1 - \theta)^{1-x}$$

 $\Rightarrow \ell(\theta; x) = x \ln \theta + (1 - x) \ln(1 - \theta)$
 $\Rightarrow \ell'(\theta; x) = \frac{x}{\theta} - \frac{1-x}{1-\theta}$
 $\Rightarrow \ell''(\theta; x) = -\frac{x}{\theta^2} - \frac{1-x}{(1-\theta)^2}$

Thus we can use $I(\theta) = -\mathbb{E}(\ell''(\theta; X); \theta)$

$$\Longrightarrow I(\theta) = -\mathbb{E}\left(-\frac{X}{\theta^2} - \frac{1-X}{(1-\theta)^2}; \theta\right)$$

$$= \mathbb{E}\left(\frac{X}{\theta^2} + \frac{1-X}{(1-\theta)^2}; \theta\right)$$

$$= \frac{\theta}{\theta^2} + \frac{1-\theta}{(1-\theta)^2}$$

$$= \frac{1}{\theta} + \frac{1}{1-\theta}$$

$$= \frac{1}{\theta(1-\theta)}$$

$$I_n(\theta) = nI(\theta) \text{ Since } X_1, X_2, \dots \text{ are iid}$$

The Cramer-Rao bound for the variance is

$$\frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}$$

Thus our estimator is efficient.

8 Asymptotic Distribution of the Maximum Likelihood Estimator

Theorem 8.1 -

Suppose that $\mathbf{X}_n \stackrel{\text{iid}}{\sim} f(\cdot; \theta^*)$ for some $\theta^* \in \Theta$ and assume that

- i) The sequence of maximum likelihood estiamtors $\{\hat{\theta}_n(\mathbf{X}_n)\}$ is consistent;
- ii) The Fisher Information Regularity Conditions (**Definition 6.2**) hold and $I(\theta^*) = -\mathbb{E}[\ell''(\theta; X); \theta] > 0$

iii) $\exists C(\cdot): \mathcal{X} \to [0, \infty)$ such that $\mathbb{E}(C(X_1); \theta^*) < \infty$, $\Xi \subset \Theta$ an open set containing θ^* and $\Delta(\cdot): \Xi \to [0, \infty)$ continuous at 0 st $\Delta(0) == 0$, st $\forall \theta, \theta', x \in \Xi^2 \times \mathcal{X}$.

$$|\ell''(\theta;x) - \ell(\theta';x)| \le C(x)\Delta(\theta - \theta')$$

Then $\forall \theta^* \in \Theta$

$$\sqrt{nI(\theta^*)}(\hat{\theta}n(\mathbf{X}_n) - \theta^*) \to_{\mathcal{D}(:\theta^*)} Z \sim \text{Normal}(0, 1)$$

Theorem 8.2 -

Under the conditions of **Theorem 8.1**, with $\hat{\theta}_n := \hat{\theta}_n(\mathbf{X})$ the maximum likelihood etimator

$$\ell'_n(\hat{\theta}_n; \mathbf{X}) = \ell'_n(\theta^*; \mathbf{X}) + (\hat{\theta}_n - \theta^8) \{ \ell''_n(\theta^*; \mathbf{X}) + R_n \}$$

where $\frac{1}{n}R_n \to_{\mathbb{P}(\cdot;\theta^*)} 0$.

Proof 8.1 - *Theorem 8.1*

By **Theorem 8.2** $\ell'_n(\hat{\theta}_n; \mathbf{X}) = \ell'_n(\theta^*; \mathbf{X}) + (\hat{\theta}_n - \theta^8) \{ \ell''_n(\theta^*; \mathbf{X}) + R_n \}$ where $\frac{1}{n} R_n \to_{\mathbb{P}(\cdot; \theta^*)} 0$.

Since $\hat{\theta}_n$ is the maximum likelihood estimator & the Fisher Information Regularity Conditions hold, the score at $\ell'(\hat{\theta}_n; X) = 0$.

Hence, $0 = \ell''(\hat{\theta}_n; X) = \ell'_n(\theta; X) + (\hat{\theta}_n - \theta^*) \{ \ell''(\theta; X) + R_n \}.$

Rearranging & rescalling by \sqrt{n} gives

$$\sqrt{n}(\hat{\theta}_n - \theta^*) = \frac{\frac{1}{\sqrt{n}}\ell'(\theta^*; X)}{-\frac{1}{\sqrt{n}}\{\ell''(\theta^*; X) + R_n} =: \frac{U_n}{V_n - \frac{R_n}{n}}$$

Recall that $\ell'_n(\theta^*; X) = \sum_{i=1}^n \ell'(\theta; X_i)$ and $\ell''_n(\theta^*; X) = \sum_{i=1}^n \ell''(\theta^*; X_i)$.

Since $\mathbb{E}(\ell'(\theta^*; X_i); \theta^*) = 0$ and $\operatorname{Var}(\ell'(\theta^*; X_i); \theta^*) = I(\theta^*)$

 $\implies U_n \to_{\mathcal{D}(\cdot;\theta^*)} U \sim \text{Normal}(0, I(\theta^*)) \text{ by the } \textit{Central Limit Theorem.}$

We observed that $V_n \to_{\mathbb{P}(\cdot;\theta^*)} I(\theta^*)$ by the Weak Law of Large Numbers since $\mathbb{E}(-\ell''(\theta^*;X_i);\theta^*) = I(\theta^*)$. It follows that $V_n - \frac{1}{n}R_n \to_{\mathbb{P}(\cdot;\theta^*)} I(\theta^*)$ by Slutsky's Theorem.

Using Slutsky's Theorem again

$$\sqrt{n}(\hat{\theta}_n - \theta^*) = \frac{U_n}{V_n - \frac{1}{n}R_n} \to_{\mathcal{D}(\cdot;\theta^*)} \frac{\sqrt{I(\theta^*)}}{I(\theta^*)} Z \text{ where } Z \sim \text{Normal}(0,1)$$

We can rewrite this as

$$\sqrt{nI(\theta^*)}(\hat{\theta}_n - \theta^*) \to_{\mathcal{D}(\cdot;\theta^*)} Z \sim \text{Normal}(0,1)$$

Proof 8.2 - *Theorem 8.2*

This is an non-examinable, sketch proof of **Theorem 8.2**.

By the regularity conditions and the mean alue theorem

$$\frac{\ell'_n(\theta; \mathbf{x}) - \ell'_n(\theta^*; \mathbf{x})}{\theta - \theta^*} = \ell''_n(\tilde{\theta}; \mathbf{x})$$

for some $\tilde{\theta} \in (\theta, \theta^*)$. Hence, we deduce that

$$\ell'_{n}(\theta; \mathbf{x}) - \ell'_{n}(\theta^{*}; \mathbf{x}) = (\theta - \theta^{*}) \ell''_{n}(\tilde{\theta}; \mathbf{x})$$

$$= (\theta - \theta^{*}) \{ \ell''_{n}(\theta^{*}; \mathbf{x}) + [\ell''_{n}(\tilde{\theta}; \mathbf{x}) - \ell_{n}(\theta^{*}; \mathbf{x})] \}$$

$$= (\theta - \theta^{*}) \{ \ell''_{n}(\theta; \mathbf{x}) + R_{n}(\theta, \theta^{*}, \mathbf{x}) \}$$

Now we replace θ with the maximum likelihood estimator $\hat{\theta}_n := \hat{\theta}_n(\mathbf{X})$. We find

$$\ell'(\hat{\theta}_n; \mathbf{X}) = \ell'_n(\theta^*; \mathbf{X}) + (\hat{\theta}_n - \theta^*) \{ \ell''_n(\theta^*; \mathbf{X}) + R_n(\hat{\theta}_n, \theta^*, \mathbf{x}) \}$$

and we need to analyse R_n .

Since $\hat{\theta}_n \to_{\mathbb{P}(\cdot;\theta^*)} \theta^*$ we can take n large enough that $\mathbb{P}(\hat{\theta}_n \in \Xi;\theta^*)$ with arbitrarily high probability.

On the event $\{\hat{\theta} \in \Xi\}$ and we have $\{\tilde{\theta}_n \in \Xi\}$ since $\tilde{\theta}_n \in (\hat{\theta}_n, \theta^*)$ and

$$|\frac{1}{n}R_n| = \frac{1}{n}|\ell_n''(\tilde{\theta}_n; \mathbf{X}) - \ell_n''(\theta^*; \mathbf{X})|$$

$$= \frac{1}{n}\left|\sum_{i=1}^n \ell''(\tilde{\theta}_n; X_i) - \ell''(\theta^*; X_i)\right|$$

$$\leq \frac{1}{n}\sum_{i=1}^n \left|\ell''(\tilde{\theta}_n; X_i) - \ell''(\theta^*; X_i)\right|$$

$$\leq \Delta(\tilde{\theta}_n - \theta^*) \left\{\frac{1}{n}\sum_{i=1}^n C(X_i)\right\}$$

from the smoothness condition on ℓ'' .

From the Weak Law of Large Numbers

$$\frac{1}{n}\sum_{i=1}^{n}C(X_{i})\to_{\mathbb{P}(\cdot;\theta^{*})}\mathbb{E}(C(X_{1});\theta^{*})<\infty$$

and from the consistency of $\{\hat{\theta}_n\}$ and $\{\tilde{\theta}_n\}$ and continuity of $\Delta(\cdot)$ we have by the *Continuous Mapping Theorem*

$$\Delta(\tilde{\theta}_n - \theta^*) \to_{\mathbb{P}(\cdot;\theta^*)} 0$$

Hence,
$$\frac{1}{n}R_n \to_{\mathbb{P}(\cdot;\theta^*)} 0$$

Definition 8.1 - Asyptically Efficient

A sequence of estimators $\{\hat{\theta}_n(\mathbf{X})\}\$ is Asymptotically Efficient if either its mean-squared error converges to the Cramer-Rao Lower Bound

$$\forall \theta \in \Theta, \ n \text{MSE}(\hat{\theta}_n(\mathbf{X}_n); \theta) \xrightarrow[n \to \infty]{} \frac{1}{I(\theta)}$$

or $\hat{\theta}_n$ is Asumptotically Normally Distributed in the sense of **Theorem 8.1**

$$\forall \ \theta \in \Theta, \ \sqrt{nI(\theta)}(\hat{\theta} - \theta) \to_{\mathcal{D}(\cdot;\theta)} Z$$

N.B. The variance of $\frac{Z}{\sqrt{(nI(theta^*)}}$ is exactly $\frac{1}{nI(\theta)}$.

Theorem 8.3 -

Under the conditions of **Theorem 8.1** the maximum likelihood estimator is asymptotically efficient.

Definition 8.2 - Regular Statistical Model

Any Statistical Model which satisfies the condition of **Theorem 8.1** is a Regular Statistical Model.

Remark 8.1 - Why use MLE over others

Due to the $Asymptotic\ Efficieny$ of maximum likelihood estimators it is beter to use them in $Regular\ Statistical\ Models.$

9 Confidence Sets Around the Maximum Likelihood Estimator

Definition 9.1 - Coverage of an Interval

Let $\mathbf{X} \sim f_n(\cdot; \theta)$, $\theta \in \Theta = \mathbb{R}$, $L(\cdot) : \mathcal{X}^n \to \Theta$ and $U(\cdot) : \mathcal{X}^n \to \Theta$ where $\forall \mathbf{x} \in \mathcal{X}^n$, $L(\mathbf{x}) < U(\mathbf{x})$. Then, $\forall \theta \in \Theta$ the coverage $C_{\mathcal{I}}(\theta)$ of the random interval $\mathcal{I}(\mathbf{X}) := [L(\mathbf{X}), U(\mathbf{X})]$ at θ is

$$C_{\mathcal{I}}(\theta) := \mathbb{P}(\theta \in [L(\mathbf{X}), U(\mathbf{X})]; \theta) = \mathbb{P}(L(\mathbf{X}) \le \theta \le U(\mathbf{X}); \theta)$$

Remark 9.1 - Coverage of an Interval in Words

 $C_{\mathcal{I}}(\theta)$ is the probability that the deterministic quantity θ falls into the random interval $\mathcal{I}(\mathbf{X})$ under the probability distribution $\mathbb{P}(\cdot;\theta)$ wher $\mathbf{X} \sim f_n(\cdot;\theta)$.

Remark 9.2 - Multi-Dimensional Coverage

We can extend *Coverage of an Interval* to the multi-dimensional case by considering confidence sets and then considering the probability $\mathbb{P}(\theta \in \mathcal{I}(\mathbf{X}); \theta)$.

Definition 9.2 - Confidence Interval

 $\forall \ \alpha \in [0,1]$ we say that an inerval $\mathcal{I}(\mathbf{X}) := [L(\mathbf{X}), U(\mathbf{X})]$ is a $1-\alpha$ confidence interval if $\forall \ \theta \in \Theta$ its coverage is at least $1-\alpha$ or more formally $\inf_{\theta \in \Theta} C_{\mathcal{I}}(\theta) \ge 1-\alpha$.

Remark 9.3 - Exact Confidence Interval

If $C_{\mathcal{I}}(\theta) = 1 - \alpha \ \forall \ \theta \in \Theta$ then \mathcal{I} is an exact $1 - \alpha$ confidence interval.

Definition 9.3 - Observed Confidence Interval

For an interval $\mathcal{I}(\cdot) = [L(\cdot), U(\cdot)]$ with $L: \mathcal{X}^n \to \Theta$ and $U: \mathcal{X}^n \to \Theta$, and a realisation \mathbf{x} , the corresponding Observed Confidence Interval is $\mathcal{I}(\mathbf{x})$.

N.B. Nothing interesting can be said about the probability that $\theta \in \mathcal{I}(\mathbf{x})$ since θ and $\mathcal{I}(\mathbf{x})$ are deterministic.

Notation 9.1 - Quantile of Normal(0,1)

For any $\beta \in (0,1)$ let $z_{\beta} \in \mathbb{R}$ be such that for $Z \sim \text{Normal}(0,1)$, $1 - \Phi(z_{\beta}) = \mathbb{P}(Z > z_{\beta}) = \beta$.

Example 9.1 - Confidence interval for the mean of a Normal Distribution

Let $\mathbf{X} \stackrel{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^2)$ for $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}^{\geq 0}$ and wher σ^2 is known.

Consider the estimator $\hat{\mu}_n = \hat{\mu}_n(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^n X_i$ of μ . Then we know that the following non-asymptotic result holds.

We have $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \text{Normal}(\mu, \frac{\sigma^2}{n})$. Thus

$$\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu}{\sqrt{\sigma^{2}/n}} \sim \text{Normal}(0, 1)$$

Then

$$\forall \alpha \in (0,1) \quad , \quad \mathbb{P}\left(z_{1-\alpha/2} \le \frac{\hat{\mu}_n(\mathbf{X}) - \mu}{\sqrt{\sigma^2/n}} \le z_{\alpha/2}; \mu\right)$$

$$= \quad \mathbb{P}\left(\frac{\hat{\mu}_n(\mathbf{X}) - \mu}{\sqrt{\sigma^2/n}} \le z_{\alpha/2}\right) - \mathbb{P}\left(\frac{\hat{\mu}_n(\mathbf{X}) - \mu}{\sqrt{\sigma^2/n}} \le z_{1-\alpha/2}\right)$$

$$= \quad \left(1 - \frac{\alpha}{2}\right) - \left(1 - \left(1 - \frac{\alpha}{2}\right)\right)$$

$$= \quad 1 - \alpha$$

By symmetry we notice that $z_{1-\frac{\alpha}{2}} = -z_{\alpha}2$.

By rearranging we have the equivalence of events

$$\left\{ -z_{\alpha/2} \le \frac{\hat{\mu}_n(\mathbf{X}) - \mu}{\sqrt{\sigma^2/n}} \le z_{\alpha/2} \right\} = \left\{ \hat{\mu}_n(\mathbf{X}) - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \hat{\mu}_n(\mathbf{X}) + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right\}$$

To rearrange we separate into two events & treat then separately

$$\left\{ \frac{\hat{\mu}_n(\mathbf{X}) - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2} \right\} = \left\{ \frac{\hat{\mu}_n(\mathbf{X})}{\sigma/\sqrt{n}} - z_{\alpha/2} \le \frac{\mu}{\sigma/sqrtn} \right\} \\
= \left\{ \mu \ge \hat{\mu}_n(\mathbf{X}) - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$

Similarly

$$\begin{cases} -z_{\alpha/2} \le \frac{\hat{\mu}_n(X) - \mu}{\sqrt{\sigma^2/n}} \end{cases} = \begin{cases} \frac{\mu}{\sigma/\sqrt{n}} \le \frac{\hat{\mu}_n(X)}{\sigma/\sqrt{n}} + z_{\alpha/2} \end{cases}$$
$$= \begin{cases} \mu \le \hat{\mu}_n(X) + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{cases}$$

So the interval $\mathcal{I}(X) = [L(X), U(X)]$ where $L(\mathbf{x}) = \bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ and $U(\mathbf{x}) = \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is an $1 - \alpha$ exact confidence interval.

Remark 9.4 - Confidence Intervals with unknown σ^2

When σ^2 is unknown we can defined $\{\hat{\sigma}_n^2\}_{n\in\mathbb{N}}$ to be a consistent sequence of estimators of σ^2 (e.g. the sample variance)

$$\hat{\sigma}_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_n(\mathbf{X}))^2$$

10 Asymptotic Approximation of Confidence Intervals

Theorem 10.1 -

Assume $\mathbf{X} \sim f(\cdot; \theta^*)$. Let $\{\hat{\theta}_n\}_{n \in \mathbb{N}}$ be a consistent sequence of estimators of θ^* and assume that $\{\hat{\theta}_n\}$ is asymptotically normal in the sense that

$$\exists \sigma^2 > 0 \text{ st } \frac{\hat{\theta}_n(\mathbf{X}) - \theta^*}{\sqrt{\sigma^2/n}} \to_{\mathcal{D}(\cdot;\theta^*)} Z \sim \text{Normal}(0,1)$$

Then $\forall \alpha \in (0,1), \ \mathcal{I}_n(\mathbf{X}) - [L_n(\mathbf{X}), U_n(\mathbf{X})]$ is an asymptotically exact $1 - \alpha$ condifence interval, where $L_n(\mathbf{x}) := \hat{\theta}_n(\mathbf{x}) - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ and $U_n(\mathbf{x}) := \hat{\theta}(\mathbf{x}) + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

Proof 10.1 - Theorem 10.1

Let $\{W_n\}_{n\in\mathbb{N}}$ be defined by $W_n := \frac{\hat{\theta}_n(X) - \theta^*}{\sqrt{\sigma^2/n}}$.

Since $W_n \to_{\mathcal{D}(\cdot;\theta^*)} Z \sim \text{Normal}(0,1)$ we have

$$\mathbb{P}(-z_{\alpha/2} \le W_n \le z_{\alpha/2}) = F_{W_n}(z_{\alpha/2}) - F_{W_n}(-z_{\alpha/2})$$

$$\underset{n \to \infty}{\longrightarrow} \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2})$$

$$= 1 - \alpha$$

Similary to before we have the equivalence of events

$$\left\{-z_{\alpha/2} \le W_n \le z_{\alpha/2}\right\} = \left\{\hat{\theta}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \theta^* \le \hat{\theta}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right\}$$

So
$$\lim_{n\to\infty} \mathbb{P}\left(\hat{\theta}_n(X) - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \theta^* \le \hat{\theta}_n(X) + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \theta^*\right) = 1 - \alpha$$

Remark 10.1 - *Theorem 10.1*

The confidence interval is only asymptotically exact. For finite n, the overage of the confidence interval will be different from $1 - \alpha$ but the difference will converge to 0 as n increases. In practice σ^2 may be unknown, in these cases substitute for a consistent sequence of estimators of σ^2 .

Theorem 10.2 -

Assum $\mathbf{X} \sim f(\cdot; \theta^*)$ let $\{\hat{\theta}_n\}_{n \in \mathbb{N}}$ be a consistent sequence of estimators of θ^* and assume that $\{\hat{\theta}_n\}$ is asymptotically normal in the sense that

$$\exists \sigma^2 > 0 \text{ st } \frac{\hat{\theta}_n(\mathbf{X}) - \theta^*}{\sqrt{\sigma^2/n}} \to_{mathcalD(\cdot;\theta^*)} Z \sim \text{Normal}(0,1)$$

Assume also that $\{\hat{\sigma}_n^2\}_{n\in\mathbb{N}}$ is a consistent sequence of estimators of σ^2 . Then $\forall \alpha \in (0,1), \mathcal{I}_n(\mathbf{X}) =$ $[L_n(\mathbf{X}), U_n(\mathbf{X})]$ is an asymptotically exact $1 - \alpha$ confidence interval, where $L_n(\mathbf{x}) := \hat{\theta}_n(\mathbf{x}) - \alpha$ $z_{\alpha/2}\sqrt{\hat{\sigma}_n^2(\mathbf{x})/n}$ and $U_n(\mathbf{x}) := \hat{\theta}_n(\mathbf{x}) + z_{\alpha/2}\sqrt{\hat{\sigma}_n^2(\mathbf{x})/n}$.

Proof 10.2 - Theorem 10.2 Define
$$W_n := \frac{\hat{\theta}_n - \theta^*}{\sqrt{\hat{\sigma}_n^2(X)/n}} = \frac{\hat{\theta}_n(X) - \theta^*}{\sqrt{\sigma^2/n}} - \sqrt{\frac{\sigma^2}{\hat{\sigma}_n^2(X)}}$$
. By consistency of $\{\hat{\sigma}_n^2\}_{n \in \mathbb{N}}$ and the Continuous Mapping Theorem

$$\sqrt{\frac{\sigma^2}{\hat{\sigma}_n^2(X)}} \to_{\mathbb{P}(\cdot;\theta^*)} 1$$

By Slutsky's Theorem

$$W_n \to_{\mathcal{D}(\cdot;\theta^*)} Z \sim \text{Normal}(0,1)$$

The rest of the proof is the same as for **Theorem 10.1**.

Remark 10.2 - *Theorem 10.2*

For a given n the quality of the normal approximation will be affected by this additional approximation. One may find that for less accurate estimators of σ^2 , the n required for the confidence interval to have almost the right coverage will be higher.

0 Appendix

Definition 0.1 - Gradient

$$\nabla f(\boldsymbol{\theta}; \mathbf{x}) := \left(\frac{\partial f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1}, \dots, \frac{\partial f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n} \right)$$

Definition 0.2 - Hessian

$$\nabla f(\boldsymbol{\theta}; \mathbf{x}) := \begin{pmatrix} \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1^2} & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n \theta_1} \\ \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1^2} & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1 \theta_2} & \cdots & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n \theta_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_1 \partial \theta_n} & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_2 \theta_n} & \cdots & \frac{\partial^2 f(\boldsymbol{\theta}; \mathbf{x})}{\partial \theta_n^2} \end{pmatrix}$$

0.1 Notation

Notation	Denotes
$Z_n \to_{\mathbb{P}} Z$	$\{Z_n\}_{n\in\mathbb{N}}$ converges in <i>Probability</i> to random variable Z.
$Z_n \to_{\mathcal{D}} Z$	$\{Z_n\}_{n\in\mathbb{N}}$ converges in <i>Distribution</i> to random variable Z.
$Z_n \to_{qm} Z$	$\{Z_n\}_{n\in\mathbb{N}}$ converges in Quadratic Mean to random variable Z.
$\theta \in \Theta \subseteq \mathbb{R}^{d_{\theta}}$	Scalar or vector parameter characterising a probability distribution
$\mid \hat{ heta} \mid$	Estimation for the value of the parameter θ
θ^*	True value of the paramter θ
$ \mathbb{P} $	Probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$
Ω	Sample space
X	Scalar random variable
\mathcal{F}	Sigma field (Set of events)
$ \chi $	Support of rv XX. A set set X is definitely in it i.e. $\mathbb{P}(X \in \chi; \theta) = 1$
X	Vector consiting of scalar random variables

0.2 R

Command	Result
hist(a)	Plots a histogram of the values in array a
mean(a)	Returns the mean value of array a
rbinom(s,n,p)	Samples n of $Bi(n, p)$ random variables
rep(v,n)	Produces an array of size n where each entry has value v
$x \leftarrow v$	Maps value v to variable x

0.3 Probability Distributions

Definition 0.3 - Binomial Distribution

Let X be a discrete random variable modelled by a *Binomial Distribution* with n events and rate of success p.

$$\begin{array}{rcl} p_X(k) & = & \binom{n}{k} p^k (1-p)^{n-k} \\ \mathbb{E}(X) np & = & Var(X) = np(1-p) \end{array}$$

Definition 0.4 - Gamma Distribution

Let T be a continuous randmo variable modelled by a Gamma Distribution with shape parameter

 α & scale parameter λ . Then

$$f_T(x) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$
 for $x > 0$
 $\mathbb{E}(T) = \frac{\alpha}{\lambda}$ & $Var(T) = \frac{\alpha}{\lambda^2}$

N.B. $\alpha, \lambda > 0$.

Definition 0.5 - Exponential Distribution

Let T be a continuous random variable modelled by a *Exponential Distribution* with parameter λ . Then

$$\begin{array}{rcl} f_T(t) &=& \mathbb{1}\{t \geq 0\}.\lambda e^{-\lambda t} \\ F_T(t) &=& \mathbb{1}\{t \geq 0\}.\left(1 - e^{-\lambda t}\right) \\ \mathbb{E}(X) = \frac{1}{\lambda} & \& & Var(X) = \frac{1}{\lambda^2} \end{array}$$

N.B. Exponential Distribution is used to model the wait time between decays of a radioactive source.

Definition 0.6 - Normal Distribution

Let X be a continuous random variable modelled by a Normal Distribution with mean μ & variance σ^2 .

Then

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

$$M_X(\theta) = e^{\mu\theta + \sigma^2\theta^2(1/2)}$$

$$\mathbb{E}(X) = \mu \quad \& \quad Var(X) = \sigma^2$$

Definition 0.7 - Poisson Distribution

Let X be a discrete random variable modelled by a Poisson Distribution with parameter λ . Then

$$\begin{array}{rcl} p_X(k) & = & \frac{e^{-\lambda}\lambda^k}{k!} & \text{For } k \in \mathbb{N}_0 \\ \mathbb{E}(X) = \lambda & \& & Var(X) = \lambda \end{array}$$

N.B. Poisson Distribution is used to model the number of radioactive decays in a time period.