

Attribute Normalization, Standardization and Dimension Reduction of Data

Student's Name: Tarun Singla Mobile No: 8872526396

Roll Number: b19198 Branch:EE

1 a.

Table 1 Minimum and Maximum Attribute Values Before and After Min-Max Normalization

S. No.	Attribute	Before Min-Max Normalization		After Min-Max Normalization	
		Minimum	Maximum	Minimum	Maximum
1	Temperature (in °C)	10.085	31.375	3.000	9.000
2	Humidity (in g.m ⁻³)	34.206	99.720	3.000	9.000
3	Pressure (in mb)	992.655	1037.604	3.000	9.000
4	Rain (in ml)	0.000	2470.500	3.000	9.000
5	Lightavgw/o0 (in lux)	0.000	10565.352	3.000	9.000
6	Lightmax (in lux)	2259.000	54612.000	3.000	9.000
7	Moisture (in %)	0.000	100.090	3.000	9.000

Inferences:

- 1. After Replacing outlier with median (calculated from non-outliers) outliers are removed
- 2. After min-max normalization Data points are linearly transformed in the range from 3-9
- 3. Behavior of the Data points are not changed

b.

Table 2 Mean and Standard Deviation Before and After Standardization

S. No.	Attribute	Before Standardization		After Standardization	
		Mean	Std. Deviation	Mean	Std. Deviation
1	Temperature (in °C)	31.376	4.125	0.00	1.0
2	Humidity (in g.m ⁻³)	83.991	17.565	0.00	1.0
3	Pressure (in mb)	1014.793	6.121	0.00	1.0
4	Rain (in ml)	171.467	399.550	0.00	1.0
5	Lightavgw/o0 (in lux)	2237.892	2206.423	0.00	1.0
6	Lightmax (in lux)	21788.620	22064.993	0.00	1.0
7	Moisture (in %)	32.386	33.653	0.00	1.0

Attribute Normalization, Standardization and Dimension Reduction of Data

Inferences:

- 1. In Standardization we assume points to be a Gaussian Distribution and than linearly transformed into standard Gaussian Distribution
- 2. May be the behavior of data may have changed

2 a.

Figure 1 Scatter Plot of 2D Synthetic Data of 1000 samples

Inferences:

- 1. With the help of plot, we can say that attributes are positively correlated.
- 2. Data points are highly dense around the mean (0,0). As distance from mean is increasing, their density is decreasing
- 3. Shape of the distribution is elliptical.

b.

Attribute Normalization, Standardization and Dimension Reduction of Data

Figure 2 Plot of 2D Synthetic Data and Eigen Directions

Inferences:

- 1. The data is highly spread in the eigen direction of eigen value 18.1691. That means data point is highly spread in that eigen direction which corresponds to high eigen value.
- 2. Eigen axis intersects at origin. Where data points are highly dense. As we go away from it, density decreases.

c.

Figure 3 Projected Eigen Directions onto the Scatter Plot with 1st Eigen Direction highlighted

Attribute Normalization, Standardization and Dimension Reduction of Data

Figure 4 Projected Eigen Directions onto the Scatter Plot with 2nd Eigen Direction highlighted

Inferences:

- 1. Fig-3 corresponds to small eigen value and its projections lie in small range. On other hand, projection for Fig-4 lie on larger range, because it corresponds to larger eigen value..
- 2. . Variance of projections is also large on that eigen direction which has large eigen value i.e. eigen value=18.1691.
- d. Reconstruction Error = (report only up to three decimal places) = 0.000 (almost zero)

Inferences:

1. 1. In this case, l=d=2 (lower dimension and actual dimension are same). So, error is almost zero. As dimension decreases, the quality of reconstruction decreases

3 a.

Table 3 Variance and Eigen Values of the projected data along the two directions

Direction	Variance	Eigen Value	
1	2.223	2.224	
2 1.429		1.430	

Inferences:

Attribute Normalization, Standardization and Dimension Reduction of Data

- 1. Variances of the projected data are almost same as their respective eigen values.
- 2. High Eigen value means, more information holds in that eigen direction

Figure 5 Plot of Landslide Data after dimensionality reduction

Inferences:

- 1. Data points are highly dispersed after dimensionality reduction
- 2. It is comparably high dense in the origin region.

b.

Figure 6 Plot of Eigen Values in descending order

Attribute Normalization, Standardization and Dimension Reduction of Data

Inferences:

- 1. The magnitude of eigen value is decreasing gradually after second eigen value. But initial change (between 1st and 2nd eigen value) is Sharp.
- 2. Rate of decrease has changed after second eigen values.
- 3. So, use I=2 for dimension reduction will conserve most of the data

c.

Figure 7 Line Plot to demonstrate Reconstruction Error vs. Components

Inferences:

- 1. Reconstruction error increases as we decrease the lower dimension.
- 2. When I = d RMSE error approaches to zero.

Guidelines for Report (Delete this while you submit the report):

- The plot/graph/figure/table should be centre justified with sequence number and caption.
- Inferences should be written as a numbered list.
- Use specific and technical terms to write inferences.

Attribute Normalization, Standardization and Dimension Reduction of Data

- Values observed/calculated should be rounded off to three decimal places.
- The quantities which have units should be written with units.