33; 36: 'b'Rta vec'f g'Ektewkyu'Grgvt½plequ'3

Experimento 05: Análise em Frequência de Capacitores e Indutores

1) Objetivos

Avaliar a dependência da impedância de alguns dispositivos simples de dois terminais (resistor, capacitor e indutor) em regime permanente senoidal de corrente e tensão, em função da frequência.

2) Estudo pré-laboratorial

2.1) Conceitos

Pesquise e defina os conceitos a seguir para resistores, capacitores e indutores:

- a) Impedância;
- b) Reatância.

Pesquise e defina o conceito de decibel. A partir de (i) V = RI e (ii) P = VI, demonstre como P_{dB} = -3dB caso $V_O = V_i / \sqrt{2}$.

2.2) Cálculos teóricos

Encontre a função de transferência H(s) no domínio da frequência para o circuito da Fig. 2.1 considerando $R_g=0\,\Omega$ e os casos de carga a), b) e c). Para encontrar H(s), utilize a Transformada de Laplace e considere a tensão V_g como a entrada e a tensão V_o como a saída do circuito. A partir de H(s), encontre os ganhos do circuito para frequências de $10\,\mathrm{Hz}$, $100\,\mathrm{Hz}$, $1\,\mathrm{kHz}$, $100\,\mathrm{kHz}$ e $1\,\mathrm{MHz}$. Em seguida, determine a frequência de corte (queda de $3\,\mathrm{dB}$ no ganho). Lembre-se que $s=j\omega$ e que $\omega=2\pi f$.

- a) X é um resistor R_x
- b) X é um capacitor C
- c) X é um indutor ${\cal L}$

Figura 2.1: Circuito para avaliação de impedância em regime permanente senoidal.

2.3) Simulação

Simule o circuito da Fig. 2.1 considerando $R_g=0~\Omega$ e V_g sendo uma onda senoidal com 5~V de amplitude $(10~V_{pp})$. Obtenha o comportamento da tensão $V_o(t)$ para diferentes frequências do sinal de entrada $(10~{\rm Hz},~100~{\rm Hz},~1~{\rm kHz},~10~{\rm kHz},~100~{\rm kHz},~1~{\rm MHz})$ considerando os casos de carga a), b) e c) com $R_x=100~\Omega,~C=1,0~\mu{\rm F}$ e $L=330~\mu{\rm H}$. Atenção: não é necessário apresentar os gráficos obtidos, apenas os valores pico-a-pico das tensões simuladas.

Para cada caso, gere um gráfico do ganho $\frac{V_o}{V_g}$ x frequência f em escala logarítimica em dB (decibéis). Nos gráficos, indique a frequência de corte (queda de $3 \, \mathrm{dB}$).

3) Procedimento Experimental

Monte o circuito da Fig. 2.1, ajustando o gerador de funções V_g de forma a manter $V_i(t)=5\sin(\omega t+\phi)\,V$. Lembre-se que ω é dado em rad/s e que $\omega=2\pi f$, com f medido em Hz. Utilize $R=100\,\Omega$, e considere os casos de carga a), b, e c). Observe o comportamento do circuitos nas três configurações e obtenha experimentalmente o ganho. Use sempre a melhor escala em cada um dos canais do osciloscópio para medir $V_{i_{pp}}$ e $V_{o_{pp}}$.

4) Análise Gráfica (deve ser incluída no Relatório)

- a) A partir dos dados experimentais, plote os gráficos de $V_{o_{pp}}$ vs. f para os três casos. Use uma escala logarítmica em decibéis. Nos mesmos gráficos, para cada caso (resistor, capacitor e indutor), plote também as curvas teóricas e speradas. Há concordância entre os dados experimentais e a teoria? Considere o valor da resistência do indutor R_L nos seus cálculos, e a tolerância dos valores dos componentes. Anexe o código fonte gerado no Octave para plotar os gráficos.
- b) Obtenha as expressões matemáticas para as **impedâncias** ideais do resistor $Z_R(f)$, do capacitor $Z_C(f)$ e do indutor $Z_L(f)$ usados no experimento, em função da frequência. Plote os gráficos para frequências variando de $10\,\mathrm{Hz}$ a $1\,\mathrm{MHz}$.

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:	Data:/
Aluno:	Matrícula:

Experimento 05: Análise em Frequência de Capacitores e Indutores

Procedimento 3.1:					
Valores reais de resist	tência utiliza	dos			
$R = \underline{\hspace{1cm}}$	_ [Ω]	$R_x = \underline{\hspace{1cm}}$	[Ω]	$R_L = \underline{\hspace{1cm}}$	[Ω]

Procedimento 3.1 a): Leitura dos valores de tensão de entrada e de saída com X = Resistor:

	a) $X = Resistor(100 \Omega)$					
Frequência f (Hz)	$V_{o_{pp}}/V_{i_{pp}}$	$V_{o_{pp}}/V_{i_{pp}}$	$V_{i_{pp}}$	$V_{o_{pp}}$	$V_{o_{pp}}/V_{i_{pp}}$	
	(teórico)	(simulação)	(experimental)	(experimental)	(experimental)	
$10\mathrm{Hz}$						
100 Hz						
1 kHz						
10 kHz						
100 kHz						
1 MHz						

Procedimento 3.1 b): Leitura dos valores de tensão de entrada e de saída com X = Capacitor:

		b) X =	Capacitor ($C=1$,	$,0\mu F)$		
Frequência f (Hz)	$V_{o_{pp}}/V_{i_{pp}}$	$V_{o_{pp}}/V_{i_{pp}}$	$V_{i_{pp}}$	$V_{o_{pp}}$	$V_{o_{pp}}/V_{i_{pp}}$	
	(teórico)	(simulação)	(experimental)	(experimental)	(experimental)	
10 Hz						
100 Hz						
1 kHz						
$10\mathrm{kHz}$						
100 kHz						
1 MHz						

Procedimento 3.1 c): Leitura dos valores de tensão de entrada e de saída com X = Indutor:

	c) X = Indutor $(L=330\mu H)$					
Frequência f (Hz)	$V_{o_{pp}}/V_{i_{pp}}$	$V_{o_{pp}}/V_{i_{pp}}$	$V_{i_{pp}}$	$V_{o_{pp}}$	$V_{o_{pp}}/V_{i_{pp}}$	
	(teórico)	(simulação)	(experimental)	(experimental)	(experimental)	
10 Hz						
100 Hz						
1 kHz						
$10\mathrm{kHz}$						
100 kHz						
1 MHz						

Leitura das frequências de corte 3dB:

	b) Capacitor			c) Indutor		
	$V_{o_{pp}} = V_{i_{pp}} / \sqrt{2}$	$V_{o_{pp}} = V_{i_{pp}} / \sqrt{2}$	$V_{o_{pp}} = V_{i_{pp}}/\sqrt{2}$	$V_{o_{pp}} = V_{i_{pp}}/\sqrt{2}$	$V_{o_{pp}} = V_{i_{pp}}/\sqrt{2}$	$V_{o_{pp}} = V_{i_{pp}}/\sqrt{2}$
	(teórico)	(simulação)	(experimental)	(teórico)	(simulação)	(experimental)
Frequência f						