THE ASSAM KAZIRANGA UNIVERSITY

MINOR PROJECT ON:

PARKINSON'S DISEASE DETECTION

EXPERIMENT PAGES

GROUP MEMBERS:

1.	PALLAVI NIMODIA	ET18BTHCS034
2.	SAIKAT KAMAL HALDER	ET18BTHCS022
3.	RITUSHMITA BORAH	ET18BTHEC004
4.	TANGRIK CH MARAK	ET18BTHEE006L
5.	RECHAL L AYE	ET18BTHEE007L

TOOL(s) USED: Python

Description

A machine learning Based approach to detecting the presence of Parkison's disease from spiral teats of patients. The dataset was obtained from Kaggle.

The dataset contains test of 195 people out of which 147 are suffering from disease and has 24 columns(name, mdvp:fo, mdvp:fhi, mdvp:flo, mdvp:jitter and so on). The data is in ASCII CSV format.

There are several classification algorithms such as Logistic Regression, Random Forest, etc. to approach the problem statement. For this project, we have used SVM approach as it gave the best results as we will see further.

Importing the Libraries

The first and foremost step is to import all the important libraries and packages necessary for visualization and analysis.

In [127]:

8 import numpy as np

import pandas as pd

from sklearn.preprocessing import StandardScaler

X = StandardScaler()

from sklearn.model_selection import train_test_split

from sklearn import svm

from sklearn.metrics import accuracy_score

Data Collection cum Analysis

Second step is to upload the data and go through the dataset to identify any missing value and take necessary measures.

In [128]:

park_data=pd.read_csv('C:\parkinsons.csv')
park_data.head()

Out[128]:

name	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Ak
0 phon_R01_S01_1	119.992	157.302	74.997	0.00784	0.000
1 phon_R01_S01_2	122.400	148.650	113.819	0.00968	0.000
2 phon_R01_S01_3	116.682	131.111	111.555	0.01050	0.000
3 phon_R01_S01_4	116.676	137.871	111.366	0.00997	0.000
4 phon_R01_S01_5	116.014	141.781	110.655	0.01284	0.000

5 rows • 24 columns

```
In [129]:
          N park data.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 195 entries, 0 to 194
             Data columns (total 24 columns):
                  Column
                                    Non-Null Count Dtype
              0
                                                   object
                  name
                                    195 non-null
              1
                  MDVP:Fo(Hz)
                                    195 non-null
                                                   float64
                                    195 non-null
                                                   float64
              2
                  MDVP: Fhi (Hz)
              3
                  MDVP:Flo(Hz)
                                    195 non-null
                                                   float64
                                   195 non-null
                                                   float64
              4
                  MDVP: Jitter(%)
              5
                  MDVP: Jitter (Abs) 195 non-null
                                                   float64
              6
                  MDVP:RAP
                                   195 non-null
                                                   float64
              7
                                    195 non-null
                                                   float64
                  MDVP: PPQ
              8
                                   195 non-null
                                                   float64
                  Jitter:DDP
                  MDVP:Shimmer
              9
                                   195 non-null
                                                   float64
              10 MDVP:Shimmer(dB) 195 non-null
                                                   float64
                  Shimmer:APQ3
                                   195 non-null
                                                   float64
              12
                  Shimmer:APQ5
                                    195 non-null
                                                   float64
              13
                  MDVP:APQ
                                    195 non-null
                                                   float64
                  Shimmer:DDA
                                                   float64
              14
                                    195 non-null
              15
                  NHR
                                   195 non-null
                                                   float64
              16
                  HNR
                                    195 non-null
                                                   float64
              17
                  status
                                    195 non-null
                                                   int64
              18
                 RPDE
                                    195 non-null
                                                   float64
              19
                                    195 non-null
                                                   float64
                  DFA
              20
                                    195 non-null
                                                  float64
                  spreadl
              21
                  spread2
                                    195 non-null
                                                  float64
              22 D2
                                    195 non-null
                                                   float64
              23 PPE
                                    195 non-null
                                                   float64
             dtypes: float64(22), int64(1), object(1)
             memory usage: 36.7+ KB
```

```
In [130]: 8 park_data.shape
```

Out[130]: (195, 24)

```
In [131]:
            |H park_data.isnull().sum()
    Out[131]: name
                                     0
               MDVP:Fo(Hz)
                                     0
                                     0
               MDVP:Fhi(Hz)
               MDVP:Flo(Hz)
                                     0
               MDVP:Jitter(%)
               MDVP: Jitter (Abs)
               MDVP:RAP
                                     0
               MDVP: PPQ
                                     0
               Jitter:DDP
                                     0
               MDVP:Shimmer
               MDVP:Shimmer(dB)
                                     0
               Shimmer:APQ3
               Shimmer:APQ5
                                     0
                                     0
               MDVP:APQ
                                     0
               Shimmer:DDA
                                     0
               NHR
               HNR
                                     0
               status
                                     0
                                     0
               RPDE
                                     0
               DFA
                                     0
               spreadl
                                     0
               spread2
               D2
                                     0
               PPE
                                     0
               dtype: int64
```

In [132]: |H | park_

park_data . descr1be ()

#Here ue get the stottstcs o/ the data

Out[132]:

	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RA
count	195.000000	195.000000	195.000000	195.000000	195.000000	195.00000
mean	154.228641	197.104918	116.324631	0.006220	0.000044	0.00330
std	41.390065	91.491548	43.521413	0.004848	0.000035	0.00296
min	88.333000	102.145000	65.476000	0.001680	0.000007	0.00068
25%	117.572000	134.862500	84.291000	0.003460	0.000020	0.00166
50%	148.790000	175.829000	104.315000	0.004940	0.000030	0.00250
75%	182.769000	224.205500	140.018500	0.007365	0.000060	0.00383
max	260.105000	592.030000	239.170000	0.033160	0.000260	0.02144

8 rows 23 columns

```
In [133]: N #target vans ab Le counts
    park_data['status'].value_counts()

Out [133]: 1 147
    0 48
    Name: status, dtype: int64
```

1--> Parkinson's Disease Affected

0--> No Parkinson's Disease

```
In [134]: 8
                park data.groupby('status').mean()
    Out[134]:
                        MDVP:Fo(Hz) MDVP:Fhi(Hz)
                                                    MDVP:Flo(Hz)
                                                                  MDVP:Jitter(%) MDVP:Jitter(Abs) MDVP:RR
                 status
                           181.937771
                                         223.636750
                                                       145.207292
                                                                        0.003866
                                                                                         0.000023
                                                                                                     0.00191
                           145.180762
                                         188.441463
                                                                        0.006989
                                                                                         0.000051
                                                                                                     0.0037!
                      1
                                                       106.893558
                2 rows 22 columns
```

Preprocessing Stage

Feature and Target separation

```
In [135]: A = park_data.drop(columns=['name','status'],axis=1)
B = park_data['status']
```

In [136]: N	print(A)									
	0	MDVP:Fo(Hz) 119.992	MDVP	:Fhi(Hz)	MDVP:	Flo(Hz) 74.997		:Jitter(0.0078		
	1	122.400		148.650		113.819		0.0096		
	2	116.682		131.111		111.555		0.0105		
	3	116.676		137.871		111.366		0.0099		
	4	116.014		141.781		110.655		0.0128		
	190	174.188		230.978		94.261		0.0045	9	
	191	209.516		253. 017		89. 488		0.0056	4	
	192	174. 688		240.005		74.287		0.0136	0	
	193	198.764		396.961		74.904		0.0074		
	194	214.289		260.277		77. 973		0.0056	7	
		MDVP:Jitter								
	0			0.00370		0554	0.01		0.04374	
	1 2		0008			0696 0781		394 633	0.06134 0.05233	
	3		0009			0698	0.01		0.05492	
	4		00011	0.00655		0908	0.01		0.06425	
	190		00003	0.00263		0259	0.00		0.04087	
	191		0003	0.00331		0292	0.00		0.02751	
	192 193		00008	0.00624		0564	0.01		0.02308	
	193		00004	0.00370 0.00295		0390 0317	0.01		0.02296	
	154	0.0	70003	0.00233	0.0	0317	0.00	000	0.01004	
	RPDE			MDVI	P:APQ	Shimme	er:DDA	NHR	HNR	
	0 4783		. 426	0.0	02971	0.	06545	0.02211	21.033	0.41
	1 8359		.626	0.0	04368	0.	09403	0.01929	19.085	0.45
	2 9895	0	.482	0.0	03590	0.	08270	0.01309	20.651	0.42
	3 4969	0	.517	0.0	3772	0.	08771	0.01353	20.644	0.43
	4 7356	0	.584	0.0	04465	0.	10470	0.01767	19.649	0.41
	7330	'								
	190 8439		.405	0.0	02745	0.	07008	0.02764	19.517	0.44
	191 1674	0	.263	0.0	01879	0.	04812	0.01810	19.147	0.43
	192 7567	O	.256	0.0	01667	0.	03804	0.10715	17.883	0.40
	193 1221	0	.241	0.0	01588	0.	03794	0.07223	19.020	0.45
	194 2803	0	.190	0.0	01373	0.	03078	0.04398	21.209	0.46
	0	DFA s 0.815285 -4. 0.819521 -4.	813031		32 2.		0.284			

```
0. 825288 -4. 443179 0. 311173 2. 342259 0. 332634
                  0.819235 -4.117501 0.334147 2.405554 0.368975
                  0.823484 -3.747787 0.234513 2.332180 0.410335
             190 0.657899 -6.538586 0.121952 2.657476 0.133050
             191 0.683244 -6.195325 0.129303 2.784312 0.168895
             192 0.655683 -6.787197 0.158453 2.679772 0.131728
             193 0.643956 -6.744577 0.207454 2.138608 0.123306
             194 0.664357 -5.724056 0.190667 2.555477 0.148569
             [195 rows x 22 columns]
In [137]: N | print(B)
             0
                    1
             1
                    1
             3
                    1
             190
                    0
             191
             192
             193
                    0
             194
                    \cap
             Name: status, Length: 195, dtype: int64
```

Splitting of Test and Training Datasets

Splitting the dataset into training and testing sets keeping 20% of the data for testing.

We took test size 20 percentage of the total dataset

Standardization of Data

Model Training

SVM Model

```
In [144]: N model = svm.SVC(kernel='linear')
```

Classifier has Classes and Regression may have integer or floating values

```
In [145]: $ model.fit(X_train,Y_train)
#Here we fee the train ing dataset to the modeL

Out[145]: SVC(kernel='linear')
```

Model Evaluation

Accuracy of the Model

Training Data Accuracy : 0.8846153846153846

```
In [148]: N # accuracy oy < he test data
X_test_pred = model.predict(X_test)
test_data_accuracy accuracy_score(Y_test, X_test_pred)

In [149]: N print('Test Data Accuracy :',test_data_accuracy)
Test Data Accuracy : 0.8717948717948718</pre>
```

The output model of SVM shows 87% accuracy for the given dataset.

Building the Prediction System

Now, we built the prediction model on the basis of the analysis done.

```
input data = (116.68200, 131.11100, 111.55500, 0.01050, 0.00009, 0.00544, 0.00781, £
In [150]: N
              #convens i on to numpy array
              input data as numpy array = np.asarray(input data)
              #reshape for it needs on Ly one set of vaL ues
              input data reshaped
                                     input data as numpy array.reshape(1,-1)
              #standardi z i ng
              std data = X.fit transform(input data reshaped)
              prediction = model.predict(std data)
              if (prediction[0] == 0):
                  print("Not Parkinson's Disease Affected")
              else:
                  print("Parkinson's Disease Affected")
              print(prediction)
              Parkinson's Disease Affected
              [1]
  In [ ]:
 In [ ]: |4
  In [ ]:
```

Conclusion

In this project, SVM classification model is used to predict the status of the patient. The accuracy for training set is 88% and testing set is 87%.