Методи оптимізації. Лекція 22.04.2022

Теореми про збіжність градієнтних методів

Теореми про збіжність сформулюємо для методу найшвидшого спуску. Вони будуть справедливі і для інших градієнтних методів.

Теорема 1 (умови 1-3). Нехай виконані умови:

- 1) $f(x) \in C^1(E^n)$;
- 2) f(x) обмежена знизу: inf $f(x) = f_* > -\infty$, $x \in E^n$;
- 3) градієнт функції f(x) задовольняє умову Ліпшиця:

$$||f'(x')-f'(x'')|| \le L||x'-x''||, \quad \forall x', x'' \in E^n,$$

L > 0 – константа Ліпшиця.

Тоді послідовність $\left\{x^{(k)}\right\}_0^\infty$, яку побудовано за методом (2),(3) є такою, що $\left\|f'\left(x^{(k)}\right)\right\| \to 0$ при $k \to \infty$ для будь-якого початкового наближення $x^{(0)}$.

<u>Доведення:</u> На промені $\left\{x: x = x^{(k)} - \alpha \, f'\Big(x^{(k)}\Big), \, \alpha > 0\right\}$ візьмемо довільну точку x .

 $-f'(x^{(k)})$ точки $x^{(0)}$: $f(x^{(k)})$ $f(x^{(k)})$

За теоремою про середнє для будь-якої початкової гочки $x^{(0)}$:

$$f(x)-f(x^{(k)})=(f'(\bar{x}^{(k)}),x-x^{(k)})=$$

{точка $\overline{x}^{(k)} \in [x^{(k)}, x]$ і може бути представлена як

$$\begin{split} \overline{x}^{(k)} &= x^{(k)} + \theta \Big(x - x^{(k)} \Big), \quad 0 \le \theta \le 1 \} \\ &= \Big(f' \Big(\overline{x}^{(k)} \Big) + f' \Big(x^{(k)} \Big) - f' \Big(x^{(k)} \Big), \quad x - x^{(k)} \Big) = \\ &= \Big(f' \Big(x^{(k)} \Big), \quad x - x^{(k)} \Big) + \Big(f' \Big(\overline{x}^{(k)} \Big) - f' \Big(x^{(k)} \Big), \quad x - x^{(k)} \Big) \le \end{split}$$

{застосуємо до другого доданку нерівність Коші-Буняковського: $|(a,b)| \le ||a|| \cdot ||b||$ }

$$\leq \left(f'\left(x^{(k)}\right), \quad x-x^{(k)}\right) + \left\|f'\left(\overline{x}^{(k)}\right) - f'\left(x^{(k)}\right)\right\| \cdot \left\|x-x^{(k)}\right\| \leq$$

{за умовою Ліпшиця}

$$\leq (f'(x^{(k)}), x-x^{(k)}) + L \|\overline{x}^{(k)} - x^{(k)}\| \cdot \|x-x^{(k)}\| \leq$$

{виберемо таку точку x, щоб $\theta = 1$ }

$$\leq (f'(x^{(k)}), x-x^{(k)})+L||x-x^{(k)}||^2=$$

{за ітераційною формулою $x - x^{(k)} = -\alpha f'(x^{(k)})$ }

$$=-\alpha \left\| f'\left(x^{(k)}\right) \right\|^2 + L\alpha^2 \left\| f'\left(x^{(k)}\right) \right\|^2.$$

Позначимо функцію відносно α як

$$\phi(\alpha) = -\alpha \left\| f'\left(x^{(k)}\right) \right\|^2 + L\alpha^2 \left\| f'\left(x^{(k)}\right) \right\|^2.$$

Функція $\phi(\alpha)$ є квадратичною і, отже, опуклою. Знайдемо мінімум функції $\phi(\alpha)$ класичним методом: $\phi'(\alpha) = 0$.

$$2L\alpha \left\| f'\left(x^{(k)}\right) \right\|^2 - \left\| f'\left(x^{(k)}\right) \right\|^2 = 0,$$

$$\alpha_{\min} = \frac{1}{2L}, \quad \phi\left(\alpha_{\min}\right) = \frac{\left(\left\| f'\left(x^{(k)}\right) \right\|^2 - 2\left\| f'\left(x^{(k)}\right) \right\| \right)}{4L} = \frac{-\left\| f'\left(x^{(k)}\right) \right\|^2}{4L}.$$

Отже,

$$x^{(k+1)} = x^{(k)} - \alpha_{\min} f'(x^{(k)}),$$

$$f(x^{(k+1)}) - f(x^{(k)}) \le f(x) - f(x^{(k)}) \le -\phi(\alpha_{min}) = -\frac{\|f'(x^{(k)})\|^2}{4L}.$$

За самою побудовою методу, виконується умова монотонності:

$$f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right), \lim_{k \to \infty} \left[f\left(x^{(k+1)}\right) - f\left(x^{(k)}\right) \right] = 0,$$

$$\left\| f'\left(x^{(k)}\right) \right\|^{2} \le -4L \left[f\left(x^{(k+1)}\right) - f\left(x^{(k)}\right) \right], \left\| f'\left(x^{(k)}\right) \right\|^{2} \to 0 \text{ при } k \to \infty. \quad \Box$$

Теорема 1 (з умовами 1-3) встановлює збіжність за функцією до нижньої межі.

Теорема 1 (умови 1-4). Нехай виконані умови 1)-3) та

4) множина
$$M(x^{(0)}) = \{ x \in E^n : f(x) \le f(x^{(0)}) \}$$
 – обмежена,

тоді

$$\lim_{k\to\infty}\rho(x^{(k)},S_*)=0,$$

де $S_* = \left\{ x \in M\left(x^{(0)}\right) \colon f'(x) = 0 \right\}$ – множина стаціонарних точок функції f(x) на $M\left(x^{(0)}\right)$, $\rho\left(x^{(k)}, S_*\right)$ – відстань від точки $x^{(k)}$ до множини S_* стаціонарних точок функції f(x).

У випадку виконання умов теореми 1 (з умовами 1-4) метод найшвидшого спуску забезпечує тільки збіжність до множини стаціонарних точок S_* , але при таких умовах неможливо оцінити швидкість збіжності і стверджувати збіжність до множини точок мінімуму X_* .

Теорема 2. Якщо виконуються умови (1)-(4) теореми 1 і, крім того, функція f(x) опукла на E^n , тоді:

- 1) послідовність $\{x^{(k)}\}_{0}^{\infty}$ є мінімізуючою,
- 2) послідовність $\left\{x^{(k)}\right\}_0^{\infty}$ збігається до множини точок мінімуму функції f(x),
- 3) має місце оцінка за функцію

$$f(x^{(k)}) - f(x_*) \le \frac{4D^2L}{k}, \ k = 1, 2, \dots$$

Тут D – діаметр множини $M(x^{(0)})$:

$$D = \max \|x' - x''\|, \quad x', x'' \in M\left(x^{(0)}\right).$$

Теорема 2 стверджує про збіжність за змінною і дає оцінку швидкості збіжності за функцією. Оцінка швидкості збіжності за змінною можлива лише при більш жорстких припущеннях щодо функції f.

Теорема 3. Нехай функція $f(x) \in C^2(E^n)$ і її матриця Гессе задовольняє умову:

$$m||z||^2 \le (f''(x)z, z) \le M||z||^2, \ 0 < m \le M, \ \forall x, z \in E^n,$$
 (8)

тоді послідовність $\left\{x^{(k)}\right\}_0^\infty$, побудована за формулами (2), (3) збігається до точки x_* зі швидкістю геометричної прогресії зі знаменником $q = \frac{M-m}{M+m}$ (лінійно) незалежно від початкового наближення та справедлива така оцінка

$$\left\| x^{(k+1)} - x_* \right\| \le \frac{M - m}{M + m} \left\| x^{(k)} - x_* \right\|. \tag{9}$$

Функція f(x), яка задовольняє умову (8), називається *сильно опуклою* функцією. Числа m та M — це найменше та найбільше власні числа матриці других похідних f''(x).

Геометричний сенс градієнтних методів

1. Градієнт $f'(x^{(k)})$ — перпендикулярний в точці $x^{(k)}$ лінії рівня $\Gamma_k = \left\{ x : f(x) = f\left(x^{(k)}\right) \right\}$ (рис. 1). Це властивість є справедлива для всіх градієнтних методів.

Рис. 1

2. Для методу **найшвидшого спуску** два послідовно знайдених напрямку спуску $\left(-f'\left(x^{(k)}\right)\right)$ та $\left(-f'\left(x^{(k+1)}\right)\right)$ є взаємно ортогональними (рис. 2).

Рис. 2

3. Градієнтний метод (відмінний від методу найшвидшого спуску) генерує послідовність точок $\left\{x^{(k)}\right\}_0^\infty$, які утворюють зигзагоподібну траєкторію $x^{(0)}, x^{(1)}, x^{(2)}, ..., x^{(k)}$ (рис. 3).

Рис. 3

Переваги градієнтних методів такі:

- 1) досить прості в реалізації,
- 2) вимоги до цільової функції не є дуже жорсткими (функція f(x) повинна бути диференційовна в E^n),
 - 3) є основою для розробки інших більш ефективних методів оптимізації,
- 4) часто використовуються на початковому етапі розв'язання задачі. Їх застосування доцільне у випадку, коли початкове наближення знаходиться далеко від точки мінімуму цільової функції, а кроки уздовж антиградієнту дозволяють значно зменшити значення цільової функції. Потім застосовуються інші більш ефективні методи оптимізації.

Недоліки градієнтних методів такі:

- 1) невисока швидкість збіжності (тільки лінійна) при таких жорстких вимогах до цільової функції як двічі неперервно-диференційовність і сильна опуклість (теорема 3);
- 2) повільна збіжність для функцій, в яких поверхні (лінії рівня) сильно витягнуті та функція має так званий «яружний» характер (рис. 4).

Вплив кривизни ліній рівня на швидкість збіжності

Нехай

$$f(x) = (A(x-x_*), x-x_*),$$

де A — симетрична додатно визначена матриця.

Функція $f(x) \in C^2(E^n)$ та є сильно опукла, тобто

$$m||z||^2 \le (Az,z) \le M||z||^2, \forall z \in E^n,$$

m та M ϵ найменше і найбільше власні числа матриці A .

Припустимо, що m = M, тоді $f(x) = M \|x - x_*\|^2$. Лінії рівня такої цільової функції є концентричними колами.

Чим більше будуть відрізнятися між собою m та M, тим більше будуть витягнутими будуть лінії рівня.

Чим більше витягнуті лінії рівня, тим гірше буде збігатися градієнтний метод. Це також видно з оцінки швидкості збіжності:

$$||x^{(k+1)} - x_*|| \le \frac{M - m}{M + m} ||x^{(k)} - x_*||.$$

Матриця f''(x) других похідних буде добре обумовленою, якщо m та M мало відрізняються один від одного і погано обумовленою, якщо $m \ll M$.

Якщо числа m та M мало відрізнятися між собою, тобто матриця f''(x) добре обумовлена, то число q близько до нуля і, отже, збіжність краще. Якщо $m/M \ll 1$, то q близько до 1 і метод збігається повільніше.

Геометричне тлумачення цього факту: зі зменшенням відношення m/M лінії рівня стають більш витягнутими та напрямок спуску (антиградієнт) у більшості точок істотно відхиляється від напрямку на точку мінімуму.

Шляхи прискорення збіжності для функцій з витягнутими лініями рівня:

1) масштабування, тобто перехід до іншої функції заміною змінних.

Наприклад: $f(x) = x_1^2 + 25x_2^2$, зробимо заміну змінних $\xi_1 = x_1$, $\xi_2 = 5x_2$. $g(\xi) = \xi_1^2 + \xi_2^2$ (рис. 5).

 x_2 ξ_2

- 2) створення методів, які з геометричних міркувань, враховують кривизну ліній рівня. В основному це евристичні методи (не доведена збіжність в загальному випадку). Наприклад, r-алгоритми Шора.
- 3) створення методів, які враховує інформацію про кривизну ліній рівня з використанням матриці других похідних (метод Ньютона).