Falling Behind: Has Rising Inequality Fueled the American Debt Boom?

Moritz Drechsel-Grau

<u>Fabian Greimel</u>

University of Amsterdam

Wifo | January 10, 2024

Outline

Introduction

Relation to the Literature

Model & Results

Conclusion

Motivation I: Keeping up with the richer Joneses

Empirical Evidence of Social Comparisons

- When somebody wins in the lottery their neighbors buy bigger cars and borrow more (Kuhn et al., 2011; Agarwal et al., 2016)
- When top incomes rise, the bottom 80% shift expenditures towards visible goods (like housing; see Bertrand and Morse, 2016a)
- When someone builds a big house, their neighbors will lose satisfaction with their own house and invest in home improvements (Bellet, 2019)

Kuchler and Stroebel (2021)'s Review of "Social Finance" Literature: peer effects in household financial decisions are pervasive, large in magnitude, and come through several channels, including [...] "social utility" channels.

Open Question

What are the aggregate effects of social comparisons in light of increasing inequality?

Motivation I: Keeping up with the richer Joneses

Empirical Evidence of Social Comparisons

- When somebody wins in the lottery their neighbors buy bigger cars and borrow more (Kuhn et al., 2011; Agarwal et al., 2016)
- When top incomes rise, the bottom 80% shift expenditures towards visible goods (like housing; see Bertrand and Morse, 2016a)
- When someone builds a big house, their neighbors will lose satisfaction with their own house and invest in home improvements (Bellet, 2019)

Kuchler and Stroebel (2021)'s Review of "Social Finance" Literature: peer effects in household financial decisions are pervasive, large in magnitude, and come through several channels, including [...] "social utility" channels.

Open Question

What are the aggregate effects of social comparisons in light of increasing inequality?

Motivation I: Keeping up with the richer Joneses

Empirical Evidence of Social Comparisons

- When somebody wins in the lottery their neighbors buy bigger cars and borrow more (Kuhn et al., 2011; Agarwal et al., 2016)
- When top incomes rise, the bottom 80% shift expenditures towards visible goods (like housing; see Bertrand and Morse, 2016a)
- When someone builds a big house, their neighbors will lose satisfaction with their own house and invest in home improvements (Bellet, 2019)

Kuchler and Stroebel (2021)'s Review of "Social Finance" Literature:

peer effects in household financial decisions are pervasive, large in magnitude, and come through several channels, including [...] "social utility" channels.

Open Question

What are the aggregate effects of social comparisons in light of increasing inequality?

Motivation II: US Household Debt Boom and Income Inequality

Source: Distributional National Accounts (Piketty et al.)

Non-Rich Debt and Top Incomes Across US States, 2005-2007 vs. 1980-1982

Figure 1: Non-Rich Debt and Top Incomes: 1980 – 2007

Non-rich = bottom 90% | Top incomes = avg. income in top 10% | Source: DINA

This Paper

Research Questions

- How do redistribution affect aggregates through social comparisons?
- Can rising income inequality account for (part of) the mortgage debt boom?

A Tractable Macro Model with Social Externalities in Housing

- Time-invariant heterogeneity in income (and wealth)
- Arbitrary social comparisons in housing (Keeping up with the Joneses)

Findings

- Optimal choices are linear functions of incomes of reference agents
- With asymmetric comparisons, redistribution affects aggregates housing & debt increase iff redistribution towards more popular agents
- Rising inequality & upward-looking comparisons o up to 20% of debt boom

How Rising Income Inequality Raises Demand for Housing and Debt

rising top inequality

Keeping up with the *richer* Joneses

mortgage boom

- rich become richer (exogenously)
- 2. rich improve their houses, raise reference point
- 3. non-rich want to keep up with the richer Joneses
- 4. non-rich improve their houses using a mortage
- 5. higher debt-to-income ratios across the distribution

Note: non-rich \approx bottom 90 % (almost everyone!)

Outline

Introduction

Relation to the Literature

Model & Results

Conclusion

- Macroeconomics with housing and mortgages, housing (debt) boom e.g. Kumhof et al. (2015), Favilukis et al. (2017), Kaplan et al. (2020), Mian et al. (2021)
 - → new (demand-side) mechanism to complement supply-side factors
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990), Campbell and Cochrane (1999), Ljungqvist and Uhlig (2000)
 - ---- heterogenous agent model, use micro-evidence for parameterization
- Network economics e.g. Ballester et al. (2006), Ghiglino and Goyal (2010)
 - → Infinite-horizon model with general comparison network
- e.g. De Giorgi et al. (2019), Bertrand and Morse (2016b), Bellet (2019)
 - quantify effects on macroeconomic outcomes

- Macroeconomics with housing and mortgages, housing (debt) boom e.g. Kumhof et al. (2015), Favilukis et al. (2017), Kaplan et al. (2020), Mian et al. (2021)
 - → new (demand-side) mechanism to complement supply-side factors
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990), Campbell and Cochrane (1999), Ljungqvist and Uhlig (2000)
 - → heterogenous agent model, use micro-evidence for parameterization
- Network economics e.g. Ballester et al. (2006), Ghiglino and Goyal (2010)
 - → infinite-horizon model with general comparison network
- Empirical consumption externalities
 - e.g. De Giorgi et al. (2019), Bertrand and Morse (2016b), Bellet (2019)
 - → quantify effects on macroeconomic outcomes

- Macroeconomics with housing and mortgages, housing (debt) boom e.g. Kumhof et al. (2015), Favilukis et al. (2017), Kaplan et al. (2020), Mian et al. (2021)
 - → new (demand-side) mechanism to complement supply-side factors
- External habits (Keeping up with the Joneses)
 - e.g. Abel (1990), Campbell and Cochrane (1999), Ljungqvist and Uhlig (2000)
 - \leadsto heterogenous agent model, use micro-evidence for parameterization
- Network economics e.g. Ballester et al. (2006), Ghiglino and Goyal (2010)
 - → infinite-horizon model with general comparison network
- Empirical consumption externalities
 - e.g. De Giorgi et al. (2019), Bertrand and Morse (2016b), Bellet (2019)
 - → quantify effects on macroeconomic outcomes

- Macroeconomics with housing and mortgages, housing (debt) boom e.g. Kumhof et al. (2015), Favilukis et al. (2017), Kaplan et al. (2020), Mian et al. (2021)
 - → new (demand-side) mechanism to complement supply-side factors
- External habits (Keeping up with the Joneses)
 e.g. Abel (1990), Campbell and Cochrane (1999), Ljungqvist and Uhlig (2000)
 - → heterogenous agent model, use micro-evidence for parameterization
- Network economics e.g. Ballester et al. (2006), Ghiglino and Goyal (2010)
 - \leadsto infinite-horizon model with general comparison network
- Empirical consumption externalities
 - e.g. De Giorgi et al. (2019), Bertrand and Morse (2016b), Bellet (2019)
 - quantify effects on macroeconomic outcomes

Outline

Introduction

Relation to the Literature

Model & Results

Conclusion

Model: Households I

- types $j \in \{1, \dots, N\}$
- population weights ω_j
- constant incomes $y^1 < y^2 < \cdots < y^N$
- utility depends on
 - ullet consumption c
 - housing status $s(h, \tilde{h}) = h \phi \tilde{h}$
- reference housing of type-i agents

$$\tilde{h}_i = \sum_{j=1}^n g_{ij} h_j, \quad \text{where } g_{ij} \ge 0$$

- comparison matrix $G = (g_{ij})_{ij}$
- $\tilde{\mathbf{h}}_{N\times 1} = G \cdot \mathbf{h}_{N\times N}$

Model: Households I

- types $j \in \{1, \dots, N\}$
- population weights ω_j
- constant incomes $y^1 < y^2 < \cdots < y^N$
- utility depends on
 - ullet consumption c
 - housing status $s(h, \tilde{h}) = h \phi \tilde{h}$
- reference housing of type-i agents

$$ilde{h}_i = \sum_{j=1}^n g_{ij} h_j, \quad ext{where } g_{ij} \geq 0$$

- comparison matrix $G = (g_{ij})_{ij}$
- $\tilde{\mathbf{h}}_{N\times 1} = G \cdot \mathbf{h}_{N\times N}$

Model: Households I

- types $j \in \{1, \dots, N\}$
- population weights ω_j
- constant incomes $y^1 < y^2 < \cdots < y^N$
- utility depends on
 - ullet consumption c
 - housing status $s(h, \tilde{h}) = h \phi \tilde{h}$
- reference housing of type-i agents

$$ilde{h}_i = \sum_{j=1}^n g_{ij} h_j, \quad ext{where } g_{ij} \geq 0$$

- comparison matrix $G = (g_{ij})_{ij}$
- $\tilde{\mathbf{h}}_{N\times 1} = \underset{N\times N}{G} \cdot \underset{N\times 1}{\mathbf{h}}$

Simple Comparison Networks

Model: Households II

Preferences

- $\sum_{t=0}^{\infty} \beta^t u(c_t, s(h_t, \tilde{h}_t))$
- flow utility $u(c,s)=\frac{((1-\xi)c^{1-\varepsilon}+\xi s^{1-\varepsilon})^{\frac{1-\gamma}{1-\varepsilon}}}{1-\gamma}$

Endogenous states

- durable housing $h_{t+1} = (1 \delta)h_t + x_t$
- asset $a_{t+1} = y_t + (1+r)a_t c_t px_t$ (savings device and mortgage)
- $a_0 = 0$ for convenience

Equilibrium objects

- house price p, interest rate $r = 1/\beta 1$
- reference housing $ilde{m{h}}_{N imes 1}$

Proposition 1: Agents' Optimal Choices Depend on Others' Incomes

Assume the Leontief inverse $(I - \phi G)^{-1}$ exists. (\implies it is equal to $\sum_{i=0}^{\infty} \phi^i G^i$) **Then,** optimal housing and debt are given by:

$$oldsymbol{h} = \kappa_2 (I + {\color{red} L}) oldsymbol{\mathcal{Y}}. \ -oldsymbol{a} = \kappa_3 (I + {\color{red} L}) oldsymbol{\mathcal{Y}}$$

where $\kappa_1 \in (0,1)$, $\kappa_2, \kappa_3 > 0$ and $L = \sum_{i=1}^{\infty} (\kappa_1 \phi G)^i$ is the social externality matrix

L measures the strength of all externalities between any pair of agents (from all direct and indirect paths in the network of comparisons)

 L_{ij} = externality of j on i (how much does j's income impact i's decisions?)

Proposition 1: Agents' Optimal Choices Depend on Others' Incomes

Assume the Leontief inverse $(I - \phi G)^{-1}$ exists. (\implies it is equal to $\sum_{i=0}^{\infty} \phi^i G^i$) **Then,** optimal housing and debt are given by:

$$m{h} = \kappa_2 (I + \mathbf{L}) \mathbf{\mathcal{Y}}.$$
 $-\mathbf{a} = \kappa_3 (I + \mathbf{L}) \mathbf{\mathcal{Y}}$

where $\kappa_1 \in (0,1)$, $\kappa_2, \kappa_3 > 0$ and $L = \sum_{i=1}^{\infty} (\kappa_1 \phi G)^i$ is the social externality matrix

L measures the strength of all externalities between any pair of agents (from all direct and indirect paths in the network of comparisons)

 L_{ij} = externality of j on i (how much does j's income impact i's decisions?)

Examples: Social Externality Matrix

(a) no Joneses		(b) Mean Joneses	(c) Richer Joneses	(d) Rich Joneses
G	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$egin{pmatrix} \omega_P & \omega_M & \omega_R \ \omega_P & \omega_M & \omega_R \ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
L	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\frac{\tilde{\phi}}{1-\alpha} \begin{pmatrix} \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$\begin{pmatrix} 0 & \tilde{\phi} & \frac{\tilde{\phi}^2}{\phi^2} \\ 0 & 0 & \tilde{\phi} \\ 0 & 0 & 0 \end{pmatrix}$	$\frac{\tilde{\phi}}{1-\tilde{\phi}} \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{pmatrix}$

where $\tilde{\phi} = \kappa_1 \phi \in (0,1)$ and $\boldsymbol{\omega}^T = (\omega_P, \omega_M, \omega_R)$ are the population weights.

How optimal debt depends on others' incomes

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_3 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_3 \underbrace{\left(\sum_{i=1}^{\infty} \tilde{\phi}^i G^i\right)}_{\approx \text{Leontief inverse of } G} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

- ightsquigarrow Households need not be directly linked! (effects trickle-down)
- ightarrow Impact of changing y_i determined by column sums of I

How optimal debt depends on others' incomes

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_3 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_3 \begin{pmatrix} 0 & \tilde{\phi} & \tilde{\phi}^2 \\ 0 & 0 & \tilde{\phi} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

- → Households need not be directly linked! (effects trickle-down)
- ightarrow Impact of changing y_i determined by column sums of L

How optimal debt depends on others' incomes

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_3 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_3 \begin{pmatrix} 0 & \tilde{\phi} & \tilde{\phi}^2 \\ 0 & 0 & \tilde{\phi} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

- → Households need not be directly linked! (effects trickle-down)
- \longrightarrow Impact of changing y_i determined by column sums of L

Aggregate Effects of Redistribution

• Assume: Redistribute income from type i to type j (keeping the aggregate constant)

$$(\omega_j \underbrace{\Delta y_j}_{+} + \omega_i \underbrace{\Delta y_i}_{-} = 0)$$

What will happen to aggregate debt and house prices?

Useful Definition: Popularity

Agent j's popularity is the weighted sum of externalities from j onto other types i.

$$b_j = \sum_{i=1}^N \omega_i L_{ij} \ge 0$$

Population-weighted column sum of the social externality matrix L

Intuitively, type-j agents' popularity measures

- ullet how many other types are affected by type j, and how strongly: L_{1j},\dots,L_{Nj}
- how many of them exist in the population: ω_1,\ldots,ω_N

(Bonacich-Katz in-centrality)

Useful Definition: Popularity

Agent j's popularity is the weighted sum of externalities from j onto other types i.

$$b_j = \sum_{i=1}^N \omega_i L_{ij} \ge 0$$

Population-weighted column sum of the social externality matrix L

Intuitively, type-j agents' popularity measures

- ullet how many other types are affected by type j, and how strongly: L_{1j},\dots,L_{Nj}
- how many of them exist in the population: ω_1,\ldots,ω_N

(Bonacich-Katz in-centrality)

Examples of Popularities

	(a) no Joneses	(b) Mean Joneses	(c) Richer Joneses	(d) Rich Joneses
G	$ \left \begin{array}{ccc} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) $	$egin{pmatrix} \omega_P & \omega_M & \omega_R \ \omega_P & \omega_M & \omega_R \ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
L	$ \left $	$\frac{\alpha}{1-\alpha} \begin{pmatrix} \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$ \begin{pmatrix} 0 & \alpha & \alpha^2 \\ 0 & 0 & \alpha \\ 0 & 0 & 0 \end{pmatrix} $	$\frac{\alpha}{1-\alpha} \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{pmatrix}$
b	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$rac{lpha}{1-lpha}\cdot egin{pmatrix} \omega_P \ \omega_M \ \omega_R \end{pmatrix}$	$\begin{pmatrix} 0 \\ \omega_P \alpha \\ \omega_P \alpha^2 + \omega_M \alpha \end{pmatrix}$	$\frac{\alpha}{1-\alpha} \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix}$

Effects on aggregates

Lemma

Aggregate housing demand and aggregate debt can be written in terms of popularity.

$$\sum_i \omega_i h_i = \kappa_2 (oldsymbol{\omega} + oldsymbol{b})^T \mathbf{y}, \quad - \sum_i \omega_i a_i = \kappa_3 (oldsymbol{\omega} + oldsymbol{b})^T \mathbf{y}$$

Proposition

The impact of a change in type j's income y_j on aggregate housing and aggregate debt is proportional to j's popularity.

The Consequences of Redistribution

Redistribute income from type i to type j

$$(\omega_j \underbrace{\Delta y_j}_{+} + \omega_i \underbrace{\Delta y_i}_{-} = 0)$$

Result

• housing & debt rise iff j is more popular than i

Definition: Type j is more popular than type i

$$\frac{b_j}{\omega_j} > \frac{b_i}{\omega_i}$$

Towards General Equilibrium: Clearing the housing market

Housing demand

$$H = \sum_{i=1}^{N} \omega_i h_i$$

Housing supply (as in Favilukis et al., 2017; Kaplan et al., 2020)

• use effective labor ΘN_h and land permits \bar{L} for new construction

$$I_h = (\Theta N_h)^{\alpha} \bar{L}^{1-\alpha}$$

• optimal construction is $I_h^* = (p\alpha)^{\frac{\alpha}{1-\alpha}} \bar{L}$

Market clearing

$$I_h = \delta H$$

General Equilibrium I: Top incomes and house prices

Special case: Cobb-Douglas (arepsilon o 1)

- optimal debt is independent of p (previous results survive)
- the equilibrium house price is

$$p = \alpha^{-\alpha} \left(\frac{\delta \xi(\boldsymbol{\omega} + \boldsymbol{b})^T \boldsymbol{y}}{\bar{L}(r + \delta)} \right)^{1-\alpha}$$

• Redistribution increases $p \iff j$ is more popular than i

Does inequality drive debt and house prices? (I)

	no Joneses	mean Joneses	richer Joneses	rich Joneses
G	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \\ \omega_P & \omega_M & \omega_R \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
\boldsymbol{b}	(0, 0, 0)	$rac{ ilde{\phi}}{1- ilde{\phi}}(\omega_P,\omega_M,\omega_R)$	$\left(0,\omega_P\tilde{\phi},\omega_P\tilde{\phi}^2+\omega_M\tilde{\phi}\right)$	$rac{ ilde{\phi}}{1- ilde{\phi}}(0,0,1)$
$\frac{b_R}{\omega_R} > \frac{b_P}{\omega_P}$	no	no	yes	yes
$rac{b_R}{\omega_R} > rac{b_P}{\omega_P} \ rac{b_R}{\omega_R} > rac{b_M}{\omega_M}$	no	no	yes*	yes

Does inequality drive debt and house prices? (II)

- What comparison matrix G is empirically relevant?
 - comparison motive is strongest (and best documented) with respect to the rich (e.g. Clark and Senik, 2010; Ferrer-i-Carbonell, 2005; Card et al., 2012)
 - this would correspond to rich(er) Joneses
- model suggests: yes, income inequality drives mortgages and house prices
- what about non-mortgage debt?
 - mechanism only holds for durable and conspicuous goods
 - expect similar mechanism for cars, jewelry; but not for fancy food and hotels
 - model predicts weaker correlation, if any

Quantifying the effect

- 1. income types: Bottom 50%, Middle 40%, Top 10%
 - start from 1980 income shares and redistribute to match 2007 income shares
- 2. strength of the comparison motive
 - match sensitivity w.r.t others' housing
 - use estimate from Bellet (2019) as upper bound

Calibration

			comparis				
	Parameter description	no J.	mean J.	richer J.	rich J.	Source	
Prefe	rences						
$\frac{1}{m}$	average life-time	45.0	45.0	45.0	45.0	working age 20–65	
ρ	discount factor	0.147	0.147	0.147	0.147	internally calibrated	
ξ	utility weight of housing	0.162	0.0434	0.0306	0.0434	internally calibrated	
$\frac{1}{1-\varepsilon}$	elasticity of substitution (s vs c)	1.0	1.0	1.0	1.0	literature, see text	
ϕ	strength of comparison motive	0.716	0.765	1.13	0.457	internally calibrated	
Technology							
$\frac{\alpha}{1-\alpha}$	housing supply elasticity	1.5	1.5	1.5	1.5	Saiz (2010)	
$\delta^{-\alpha}$	depreciation rate of housing	0.134	0.134	0.134	0.134	internally calibrated	
$ar{L}$	flow of land permits	1.0	1.0	1.0	1.0	ad hoc	

Model Fit

		Мо	del			
Moment	no J.	mean J.	richer J.	rich J.	Target	Source
mortgage-to-income	0.462	0.462	0.462	0.462	0.462	DINA (1980)
expenditure share of housing	0.162	0.162	0.162	0.162	0.162	CEX (1982)
sensitivity to reference housing	0.0	0.8	0.8	0.8	0.8	Bellet (2019)
empl. share in construction sector	0.05	0.05	0.05	0.05	0.05	Kaplan et al. (2020)

The Effect on (Aggregate) Debt (I)

Take-away: Significant reaction of the Bottom 90% (With upward looking comparisons)

The Effect on (Aggregate) Debt (I)

Take-away: Significant reaction of the Bottom 90% (With upward looking comparisons)

The Effect on (Aggregate) Debt (II)

Take-away I: Only Upward looking comparisons generate rising debt in all groups

Take-away II: Rationalize about a quarter of the debt boom

26/27

The Effect on (Aggregate) Debt (II)

Take-away I: Only Upward looking comparisons generate rising debt in all groups

Take-away II: Rationalize about a quarter of the debt boom

26/27

Outline

Introduction

Relation to the Literature

Model & Results

Conclusion

Conclusion

- We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"
- We show analytically that aggregate debt-to-income ratio is increasing in top incomes if the rich are sufficiently popular
- We show empirically that higher top incomes are associated with higher mortgage debt and house prices across states and time
- We show that rising income inequality "keeping up with the Joneses" are a quantitatively important driver of mortgage debt

References i

- ABEL, A. B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80, 38–42.
- AGARWAL, S., V. MIKHED, AND B. SCHOLNICK (2016): "Does inequality cause financial distress? Evidence from lottery winners and neighboring bankruptcies," Working Papers 16-4, Federal Reserve Bank of Philadelphia.
- BALLESTER, C., A. CALVÓ-ARMENGOL, AND Y. ZENOU (2006): "Who's Who in Networks. Wanted: The Key Player," *Econometrica*, 74, 1403–1417.
- Bellet, C. (2019): "The McMansion Effect: Top Size Inequality, House Satisfaction and Home Improvement in US Suburbs," Working paper, Erasmus University Rotterdam.
- BERTRAND, M. AND A. MORSE (2016a): "Trickle-Down Consumption," Review of Economics and Statistics, 98, 863–879.
- --- (2016b): "Trickle-down Consumption," Review of Economics and Statistics.
- CAMPBELL, J. Y. AND J. H. COCHRANE (1999): "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," *Journal of Political Economy*, 107, 205–251.

References ii

- CARD, D., A. MAS, E. MORETTI, AND E. SAEZ (2012): "Inequality at Work: The Effect of Peer Salaries on Job Satisfaction," *American Economic Review*, 102, 2981–3003.
- CLARK, A. E. AND C. SENIK (2010): "Who Compares to Whom? The Anatomy of Income Comparisons in Europe," *Economic Journal*, 120, 573–594.
- DE GIORGI, G., A. FREDERIKSEN, AND L. PISTAFERRI (2019): "Consumption Network Effects," The Review of Economic Studies.
- FAVILUKIS, J., S. C. LUDVIGSON, AND S. VAN NIEUWERBURGH (2017): "The macroeconomic effects of housing wealth, housing finance, and limited risk sharing in general equilibrium," *Journal of Political Economy*, 125, 140–223.
- FERRER-I-CARBONELL, A. (2005): "Income and Well-being: An Empirical Analysis of the Comparison Income Effect," *Journal of Public Economics*, 89, 997–1019.
- GHIGLINO, C. AND S. GOYAL (2010): "Keeping up with the Neighbors: Social Interaction in a Market Economy," *Journal of the European Economic Association*, 8, 90–119.

References iii

- KAPLAN, G., K. MITMAN, AND G. L. VIOLANTE (2020): "The housing boom and bust: Model meets evidence," *Journal of Political Economy*.
- KUCHLER, T. AND J. STROEBEL (2021): "Social Finance," Annual Review of Financial Economics, 13, 37–55.
- Kuhn, P., P. Kooreman, A. Soetevent, and A. Kapteyn (2011): "The Effects of Lottery Prizes on Winners and Their Neighbors: Evidence from the Dutch Postcode Lottery," *American Economic Review*, 101, 2226–47.
- KUMHOF, M., R. RANCIÈRE, AND P. WINANT (2015): "Inequality, Leverage, and Crises," American Economic Review, 105, 1217–45.
- LJUNGQVIST, L. AND H. UHLIG (2000): "Tax policy and aggregate demand management under catching up with the Joneses," *American Economic Review*, 356–366.
- MIAN, A., L. STRAUB, AND A. SUFI (2021): "Indebted Demand," The Quarterly Journal of Economics, qjaboo7.
- SAIZ, A. (2010): "The geographic determinants of housing supply," *Quarterly Journal of Economics*, 125, 1253–1296.