Matplotlib

Cours M2 CCN

Modélisation des problèmes scientifiques

2019/2020

À quoi ça sert?

Librairie python dédiée à l'affichage graphique (courbes, boxplot, 3d, etc.)

- → Sur le plan professionnel ; quand on parle à des clients, pour présenter des résultats plus lisibles que des données brutes ou des gros tableaux
- → Benchmarks
- → 1 graphe > 10 explications

Étude du ronflement

Matplotlib par l'exemple :

 On va étudier différents graphiques relatifs à un jeu de données fourni par le CHU d'Angers sur le ronflement

(voir ici; http://www.info.univ-angers.fr/~gh/Datasets/ronfle.htm)

	Age	Poids	Taille	Alcool	Sexe	Ronflement	Tabac
P0001	47	71	158	0	Homme	Non-Ronfleur	Fumeur
P0002	56	58	164	7	Homme	Ronfleur	Non-Fumeur
P0003	46	116	208	3	Homme	Non-Ronfleur	Fumeur
P0005	70	96	186	3	Homme	Non-Ronfleur	Fumeur
P0006	51	91	195	2	Homme	Ronfleur	Fumeur

Variable quali/quanti?

Nuage de points

Histogramme


```
plt.figure(figsize = (10,10))
plt.hist(ronfle['Age'], color = 'black')
plt.xlabel('Age en années', size = 15)
plt.ylabel("Nombre d'individus", size = 15)
plt.title("Histogramme de l'age des individus")
plt.show()
```

plt.figure permet de spécifier certaines options, comme la taille de la figure (figsize).

Pour construire un histogramme → plt.hist

On peut ajouter un titre à la figure à l'aide de plt.title

La majorité des fonctions de matplotlib ont un paramètre color, qui gère le choix de la couleur (voir http://www.python-simple.com/img/img41.png pour les choix de couleurs)

Les tailles des polices de légende peuvent être paramètrées à l'aide de l'option size.

Diagramme de Tukey (Boxplot)


```
plt.figure(figsize=(10,10))
plt.boxplot(ronfle['Taille'])
plt.scatter(1,np.mean(ronfle['Taille']), marker ="*", color="blue") # Ajout de La moyenne (l'étoile)
plt.title("Boxplot")
plt.xticks([]) # Pas de graduation des valeurs pour l'axe des abcisses
plt.ylabel("Taille (en cm)", size=15)
plt.show()
```


Dans le cas de valeurs aberrantes (trop grandes/petites par rapport au reste des donnnées), le maximum correspond à la valeur non aberrante la plus grande du jeu de données.

InterQuartile Range = Q3 - Q1

Seuil min = Q1-1,5*IQR Seuil max = Q3+1,5*IQR

Les valeurs aberrantes sont alors représentées sous forme de points.

Diagramme circulaire

Parfois, certains graphes simples d'apparence peuvent nécessiter de modifier les données. L'esthétique du graphe peut prendre quelques lignes, ne pas hésiter à aller regarder les options des différentes fonctions dans la doc!

pandas.DataFrame.plot(pie) marche aussi très bien!

Diagramme circulaire sur la proportion de ronfleurs

Pour aller plus loin

- D'autres types de graphiques plt.plot
- Par exemple, voir ce tutoriel : https://www.codingame.com/playgrounds/17176/recueil-dexercices-pour-apprend re-python-au-lycee/cours---representation-graphique-avec-matplotlib
- Voir la gallerie pour s'inpirer ; https://matplotlib.org/3.1.0/gallery/index.html
- Définir des sous-graphes avec plt.subplot
- Maîtriser les éléments de son graphique (axes, couleur, transparence, légende, etc.)
- En bonus : afficher des images (plt.imshow), graphiques en 3d, cartographie
- Toujours en bonus : Représenter des fonctions et des formes géométriques
 Voir http://desaintar.free.fr/python/tp/tp_graphiques.pdf
- Encore en bonus : Graphes dynamiques avec plt.ion