Mathematics and Applications. Master's Degree Thesis. 2024-2025.

Draft

Name: Gonzalo Ortega Carpintero

1 Preliminaries (to do work)

The contents of this chapter are based on [1] and [2].

Definition 1.1 (Persistance module).

Definition 1.2 (Barcode).

Definition 1.3 (δ -interleaving).

Definition 1.4 (Interleaving distance).

Definition 1.5 (δ -matching).

Definition 1.6 (Bottleneck distance).

2 Structure Theorem

Theorem 2.1 (Structure). Let (V, π) be a persistence module.

$$(V,\pi) \equiv \bigoplus_{i=1}^{N} \mathbb{F}(I_i, c_i)^{m_i}$$

3 Stability Theorem

Lemma 3.1.

Theorem 3.1 (Stability). Given two persistence modules (V, π) , (W, ϕ) , we have

$$d_{int}((V,\pi),(W,\phi)) = d_{bot}(\text{bar}(V,\pi),\text{bar}(W,\phi)).$$

References

- [1] V. Nanda, "Computational algebraic topology, lecture notes," 2020.
- [2] L. Polterovich, D. Rosen, K. Samvelyan, and J. Zhang, *Topological Persistence in Geometry and Analysis*. American Mathematical Society, 2020.