

Supervised: Ingredients

Outline

What's a good model?

Bias and Variance

Metrics

Model Tuning

A good model

A good fit vs a good model

A good fit vs a good model

A good fit vs a good model

What's the problem?

How can we solve it?

Good fit vs Good Prediction

How can check the prediction power of a model?

In-sample vs out sample error

Bias vs Variance

Paper

What do they depend on?

How can we reduce them?

Which one do we care more about?

Bias and Variance

What do they depend on?

How can we reduce them?

Which one do we care more about?

Bias and Variance: more detail

$$\mathcal{L}(Y, \overline{Y}) = \sum_{i} \left(Y^{i} - f_{w}(X^{i}) \right)^{2}$$

This depends on the Data.

$$\mathcal{L}_{D_i}(Y, \overline{Y})$$

$$\mathbb{E}_D[\mathcal{L}(Y, \overline{Y})]$$

Mehta, Pankaj, et al. "A high-bias, low-variance introduction to machine learning for physicists." Physics Reports (2019).

Bias and Variance: more detail

All the possible data

D2

D3

...

$$\mathbb{E}_D[\mathcal{L}(Y, \overline{Y})]$$

$$= \sum_{i} \mathbb{E}_{D} \left(Y^{i} - \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) + \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) - f_{w}(X^{i}) \right)^{2}$$

$$= \underbrace{\sum_{i} \left(Y^{i} - \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) \right)^{2}}_{i} + \underbrace{\sum_{i} \mathbb{E}_{D} \left(\mathbb{E}_{D} \left(f_{w}(X^{i}) \right) - f_{w}(X^{i}) \right)^{2}}_{Variance}$$

Mehta, Pankaj, et al. "A high-bias, low-variance introduction to machine learning for physicists." Physics Reports (2019).

For a good model

$$\mathbb{E}_D[\mathcal{L}(Y, \overline{Y})]$$

$$= \underbrace{\sum_{i} \left(Y^{i} - \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) \right)^{2}}_{\text{Bias}^{2}} + \underbrace{\sum_{i} \mathbb{E}_{D} \left(\mathbb{E}_{D} \left(f_{w}(X^{i}) \right) - f_{w}(X^{i}) \right)^{2}}_{\text{Variance}}$$

How can we reduce bias?

How can we reduce variance?

Training Data

In-sample error

Out-sample error

Check the code!

Validation curve

How much complexity?

How much data?

Do we have enough data?

Learning curve

Regularization

$$\mathcal{L}(Y,\bar{Y}) = \sum_{i} \left(Y^{i} - f_{w}(X^{i}) \right)^{2} + \alpha \| \boldsymbol{w} \|_{\boldsymbol{l}}$$

L2:
$$||w||_2 = \sum_i w_i^2$$

L1:
$$||w||_1 = \sum_i |w_i|$$

Metrics

Recap

Supervised: Ingredients

Code


```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X , Y, random_state=0)
```

Code


```
from sklearn.linear_model import SGDClassifier

clf = SGDClassifier()
clf.fit(X_train, Y_train)
```

```
y_predict = clf.predict(X_test)
error = np.abs(Y_test - y_predict).sum() / len(Y_test)
```

Code: full pipeline

```
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X , Y, random state=0)
from sklearn.linear model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
### Training the model
clf pipeline= Pipeline([('scaler', StandardScaler() ),
                        ('p transformer', PolynomialFeatures(degree = 3)),
                        ('clf', SGDClassifier())])
clf pipeline.fit(X train, Y train)
### Testing the model
y predict = clf pipeline.predict(X test)
out error = np.abs(Y test - y predict).sum() / len(Y test)
in error = np.abs(Y train - clf pipeline.predict(X train) ).sum() / len(Y train)
```