# Differences between Hill Climbing Algorithm (first improvement, best improvement) and Simulated Annealing Algorithm in finding Global Minimum of numeric functions

George Butco

October 27, 2021

#### Abstract

In this paper, I compare the time and the minimum value found by a generic Hill Climbing Algorithm (using both first improvement and best improvement) with a simple Simulated Annealing Algorithm.

The comparison will be done using De Jong 1 function[1], Schwefel's function[2], Rastrigin's function[3], Michalewicz's function[4] in 5, 10, and 30 dimensions.

I try to prove with examples the following hypotheses:

- 1. Simulated Annealing is faster than Hill Climbing, at least for higher dimensions, but it has a higher error.
- 2. Hill Climbing "first improvement" is faster compared to "best improvement", but the minimum value found by "best improvement" is closer to the global minimum.
- 3. The only type of function that benefits from using Simulated Annealing over Hill Climbing are wave functions.

## 1 Introduction

Hill climbing method is an optimization technique that is able to build a search trajectory in the search space until reaching the local optima. It only accepts the uphill movement which leads it to easily get stuck in local optima. [5]

**Simulated annealing** is a well-studied local search meta-heuristic used to address discrete and, to a lesser extent, continuous optimization problems. The key feature of simulated annealing is that it provides a mechanism to escape local optima by allowing hill-climbing moves (i.e., moves which worsen the objective function value) in hopes of finding a global optimum.[6]

As for the **quantification** of how good an algorithm is, I will choose the best optima found and the time it was found. The sample size for each test is 30.

# 2 Implementation

The function useData(time, value) is the way the main program receives information about the state of the algorithm.

The function eval(vector) is a multi-variable numeric function with a single real number as output.

The function getCurrentTime() returns the time passed since the start of the algorithm in seconds as a real number.

The function neighborhood(vector) returns all the successors of the vector.

## 2.1 Hill Climbing

The function *improve(vectors)* returns the first successor better than the current candidate (first improvement) or the best successor among all the vectors (best improvement).

## Algorithm 1 Hill Climbing

```
procedure HC(useData, eval)
    t \leftarrow 0
    best \leftarrow eval(random candidate)
    repeat
        lower \leftarrow false
        v_c \leftarrow \text{random candidate}
        repeat
            v_n \leftarrow \texttt{improve}(\texttt{neighborhood}(v_c))
            if eval(v_n) is better than eval(v_c) then
                v_c \leftarrow v_n
            else
                lower \leftarrow true
            end if
        until\ lower
        if eval(v_c) is better than best then
            best \leftarrow eval(v_c)
            useData(getCurrentTime(), best)
        end if
    until t < MAX
end procedure
```

## 2.2 Simulated Annealing

## Algorithm 2 Simulated Annealing

```
procedure SA(useData, eval)
    initialize the temperature T
    v_c \leftarrow \text{random candidate}
    repeat
         for each v_n \in \text{shuffle(neighborhood}(v_c)) do
             if eval(v_n) is better than eval(v_c) then
                 v_c \leftarrow v_n
                 useData(getCurrentTime(), eval(v_c))
             else
                 if random[0,1) < e^{-\frac{|eval(v_n) - eval(v_c)|}{T}} then
                      v_c \leftarrow v_n
                      useData( getCurrentTime(), eval(v_c) )
                 end if
             end if
        end for
    \begin{array}{c} T \leftarrow \frac{T}{1+T\cdot\alpha} \\ \textbf{until } T \text{ is small enough} \end{array}
end procedure
```

## 2.3 Vectors

A vector with d dimensions is an array of  $n \cdot d$  bytes. Every dimension has n bytes that represent an unsigned integer.  $v_{max}$  is an unsigned integer where all the bits are 1.

The conversion from an unsigned integer x to a real number r, using  $b_l$  as the lower bound and  $b_u$  as the upper bound of the function:

$$r = \frac{x}{v_{max}}(b_u - b_l) + b_l$$

The precision of a vector  $(10^{-p})$ :

$$p = \log_{10} \left( \frac{2^{n \cdot 8}}{b_u - b_l} \right)$$

# 3 Comparisons

# 3.1 De Jong 1 Function

Function Definition:

$$f(x) = \sum_{i=1}^{n} x_i^2 - 5.12 \le x_i \le 5.12$$
$$min(f(x)) = 0$$

Precision used for testing  $=10^{-8.62}$ 



Figure 1: Schwefel's Function Graphic

# Comparison:

| Dimension        | 5       |             |         |         |         |         |  |
|------------------|---------|-------------|---------|---------|---------|---------|--|
| Algorithm        | HC FI   |             | HC BI   |         | SA      |         |  |
| Time (s) \Minima | Time    | Time Minima |         | Minima  | Time    | Minima  |  |
| Best             | 0.09116 | 0.00000     | 0.00359 | 0.00000 | 0.16880 | 0.00068 |  |
| Worst            | 1.78641 | 0.00000     | 0.00555 | 0.00000 | 1.05987 | 0.00431 |  |
| Average          | 1.02012 | 0.00000     | 0.00427 | 0.00000 | 0.76646 | 0.00213 |  |

| Dimension        |         | 10          |         |         |         |         |  |  |
|------------------|---------|-------------|---------|---------|---------|---------|--|--|
| Algorithm        | HC      | FI          | HC BI   |         | SA      |         |  |  |
| Time (s) \Minima | Time    | Time Minima |         | Minima  | Time    | Minima  |  |  |
| Best             | 0.16019 | 0.00000     | 0.01376 | 0.00000 | 0.88551 | 0.01190 |  |  |
| Worst            | 6.11886 | 0.00000     | 0.02351 | 0.00000 | 2.07062 | 0.03498 |  |  |
| Average          | 3.18844 | 0.00000     | 0.01811 | 0.00000 | 1.63137 | 0.02196 |  |  |

| Dimension        | 30       |             |         |         |         |         |  |  |
|------------------|----------|-------------|---------|---------|---------|---------|--|--|
| Algorithm        | HC       | FI          | HC      | BI      | SA      |         |  |  |
| Time (s) \Minima | Time     | Time Minima |         | Minima  | Time    | Minima  |  |  |
| Best             | 0.50992  | 0.00000     | 0.18687 | 0.00000 | 4.48161 | 0.15152 |  |  |
| Worst            | 61.24491 | 0.00000     | 0.29486 | 0.00000 | 8.16109 | 0.32255 |  |  |
| Average          | 26.92410 | 0.00000     | 0.21709 | 0.00000 | 5.93557 | 0.22453 |  |  |

## 3.2 Schwefel's Function

Function Definition:

$$f(x) = \sum_{i=1}^{n} (-x_i \sin(\sqrt{|x_i|}))$$
  $-500 \le x_i \le 500$ 

 $min(f(x)) = -n \cdot 418.9829$ 

Precision used for testing  $=10^{-6.63}$ 



Figure 2: Schwefel's Function Graphic[7]

| Dimension        | 5           |              |          |              |          |              |  |  |
|------------------|-------------|--------------|----------|--------------|----------|--------------|--|--|
| Algorithm        | H           | IC FI        | I.       | IC BI        | SA       |              |  |  |
| Time (s) \Minima | Time Minima |              | Time     | Minima       | Time     | Minima       |  |  |
| Best             | 0.070228    | -2094.809489 | 0.089141 | -2094.914410 | 0.147038 | -1875.884561 |  |  |
| Worst            | 3.977570    | -2060.367917 | 4.243352 | -2094.602810 | 1.080576 | -1134.486647 |  |  |
| Average          | 1.409107    | -2073.465037 | 1.982799 | -2094.820178 | 0.835157 | -1506.567675 |  |  |

| Dimension        | 10        |              |           |              |          |              |  |  |
|------------------|-----------|--------------|-----------|--------------|----------|--------------|--|--|
| Algorithm        | HC FI     |              | HC BI     |              | SA       |              |  |  |
| Time (s) \Minima | Time      | Minima       | Time      | Minima       | Time     | Minima       |  |  |
| Best             | 0.800135  | -4070.692393 | 1.450350  | -4189.103207 | 1.341476 | -3597.873265 |  |  |
| Worst            | 13.416435 | -3750.173074 | 24.727243 | -3998.896753 | 2.581541 | -2492.105525 |  |  |
| Average          | 6.729373  | -3928.126840 | 10.565069 | -4068.862745 | 1.992218 | -3067.723202 |  |  |

| Dimension        | 30          |               |            |               |          |               |  |  |
|------------------|-------------|---------------|------------|---------------|----------|---------------|--|--|
| Algorithm        | HC FI       |               | HC BI      |               | SA       |               |  |  |
| Time (s) \Minima | Time Minima |               | Time       | Minima        | Time     | Minima        |  |  |
| Best             | 1.418859    | -11039.503027 | 0.395691   | -11592.659353 | 4.974412 | -10337.482177 |  |  |
| Worst            | 138.074417  | -10610.823983 | 378.023560 | -11126.868731 | 6.123193 | -8261.315698  |  |  |
| Average          | 66.605833   | -10847.627730 | 198.344112 | -11378.970798 | 5.743173 | -9422.084350  |  |  |

# 3.3 Michalewicz's Function

$$f(x) = -\sum_{i=1}^{n} \sin(x_i) \cdot \left(\sin\left(\frac{i \cdot x_i^2}{\pi}\right)\right)^{2 \cdot m} \qquad m = 10, 0 \le x_i \le \pi$$

$$\min(f(x)) = -4.687 \qquad n = 5$$

$$\min(f(x)) = -9.66 \qquad n = 10$$

Precision used for testing  $\,=10^{-9.13}$ 



Figure 3: Michalewicz's Function Graphic [8]

| Dimension        |          | 5              |          |           |          |           |  |  |
|------------------|----------|----------------|----------|-----------|----------|-----------|--|--|
| Algorithm        | HC       | HC FI HC BI SA |          |           |          |           |  |  |
| Time (s) \Minima | Time     | Minima         | Time     | Minima    | Time     | Minima    |  |  |
| Best             | 0.032946 | -4.687648      | 0.012815 | -4.687658 | 0.063353 | -4.687046 |  |  |
| Worst            | 1.858042 | -4.652766      | 7.005613 | -4.682666 | 0.987068 | -4.374004 |  |  |
| Average          | 1.069647 | -4.681145      | 3.265170 | -4.686512 | 0.606711 | -4.583025 |  |  |

| Dimension        |          | 10             |           |           |          |           |  |  |
|------------------|----------|----------------|-----------|-----------|----------|-----------|--|--|
| Algorithm        | HC       | HC FI HC BI SA |           |           |          |           |  |  |
| Time (s) \Minima | Time     | Minima         | Time      | Minima    | Time     | Minima    |  |  |
| Best             | 0.148167 | -9.468502      | 0.836543  | -9.520684 | 0.301580 | -9.364155 |  |  |
| Worst            | 8.555991 | -8.873322      | 42.695731 | -9.203955 | 2.129440 | -8.547526 |  |  |
| Average          | 4.466485 | -9.214113      | 22.206963 | -9.385788 | 1.344480 | -9.089312 |  |  |

| Dimension        | 30        |            |            |            |          |            |  |
|------------------|-----------|------------|------------|------------|----------|------------|--|
| Algorithm        | HC FI     |            | HC BI      |            | SA       |            |  |
| Time (s) \Minima | Time      | Minima     | Time       | Minima     | Time     | Minima     |  |
| Best             | 1.069913  | -26.657838 | 28.435671  | -27.928919 | 3.719086 | -27.709873 |  |
| Worst            | 83.424811 | -25.246337 | 922.223990 | -26.502955 | 6.441927 | -25.271548 |  |
| Average          | 48.286689 | -25.831170 | 435.228857 | -27.076157 | 5.655194 | -26.907374 |  |

# 3.4 Rastrigin's Function

$$f(x) = 10 \cdot n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i)) - 5.12 \le x_i \le 5.12$$
$$\min(f(x)) = 0$$

Precision used for testing  $=10^{-8.62}$ 



Figure 4: Rastrigin's Function Graphic[9]

| Dimension        | 5        |          |          |          |          |           |
|------------------|----------|----------|----------|----------|----------|-----------|
| Algorithm        | HC       | FI       | HC BI    |          | SA       |           |
| Time (s) \Minima | Time     | Minima   | Time     | Minima   | Time     | Minima    |
| Best             | 0.018603 | 0.000000 | 0.038870 | 0.000000 | 0.162043 | 1.239108  |
| Worst            | 2.731234 | 1.994971 | 3.952659 | 1.000000 | 1.043209 | 24.256068 |
| Average          | 1.304426 | 1.045690 | 1.692400 | 0.530813 | 0.666320 | 11.050256 |

| Dimension        |           | 10       |           |          |          |           |  |  |
|------------------|-----------|----------|-----------|----------|----------|-----------|--|--|
| Algorithm        | HC        | FI       | HC BI     |          | SA       |           |  |  |
| Time (s) \Minima | Time      | Minima   | Time      | Minima   | Time     | Minima    |  |  |
| Best             | 0.417285  | 2.989766 | 1.338017  | 0.994959 | 1.076592 | 13.679208 |  |  |
| Worst            | 10.525889 | 8.200483 | 18.573040 | 5.461455 | 2.095559 | 40.873165 |  |  |
| Average          | 5.183360  | 5.801246 | 11.051008 | 3.856569 | 1.805863 | 26.502426 |  |  |

| Dimension        |           | 30        |            |           |          |            |  |  |
|------------------|-----------|-----------|------------|-----------|----------|------------|--|--|
| Algorithm        | HC        | FI        | HC BI      |           | SA       |            |  |  |
| Time (s) \Minima | Time      | Minima    | Time       | Minima    | Time     | Minima     |  |  |
| Best             | 2.773310  | 34.775586 | 3.339413   | 22.394448 | 4.534281 | 52.169252  |  |  |
| Worst            | 92.607008 | 48.102214 | 301.882618 | 34.277449 | 6.288821 | 115.992046 |  |  |
| Average          | 42.184061 | 39.989620 | 148.235979 | 28.633780 | 5.699633 | 79.151416  |  |  |

## 4 Conclusion

1. "Simulated Annealing is faster than Hill Climbing, at least for higher dimensions, but it has a higher error."

The average time of Simulated Annealing is better than Hill Climbing for both Wave Functions and paraboloid types of functions. The difference in average time between algorithms is higher as the number of dimensions increases.

Conclusion: The Hypothesis is true

2. "Hill Climbing "first improvement" is faster compared to "best improvement", but the minimum value found by "best improvement" is closer to the global minimum."

"first improvement" is faster than "best improvement" just when it comes to wave functions. De Jong's Function works better with "best improvement". The average minima found by "best improvement" is better for all functions.

Conclusion: The Hypothesis is false.

**Correction:** "best improvement" is faster for paraboloid types of functions.

3. "The only type of function that benefits from using Simulated Annealing over Hill Climbing are wave functions."

For paraboloid types of functions, Hill Climbing works better than Simulated Annealing with a small difference in speed. The difference in speed is noticeable for wave functions and as the number of dimensions increases, but the minimum is not as good as using Hill Climbing.

**Conclusion:** The Hypothesis is false for minima, but true for time.

## References

- [1] K. De Jong, "An analysis of the behavior of a class of genetic adaptive systems," 01 1975.
- [2] M. Jamil and X.-S. Yang, "A literature survey of benchmark functions for global optimisation problems," *International Journal of Mathematical Modelling and Numerical Optimisation*, vol. 4, no. 2, pp. 150–194, 2013.
- [3] L. A. Rastrigin, Systems of extremal control. Mir, Moscow, 1974.
- [4] T. Bäck, D. B. Fogel, and Z. Michalewicz, "Handbook of evolutionary computation," *Release*, vol. 97, no. 1, p. B1, 1997.
- [5] M. A. Al-Betar, "β-hill climbing: an exploratory local search," Neural Computing and Applications, vol. 28, no. 1, pp. 153–168, 2017.
- [6] M. Gendreau, J.-Y. Potvin, et al., Handbook of metaheuristics, vol. 2. Springer, 2010.
- [7] J. D. McCaffrey, "Plotting schwefel's function with scilab."
- [8] D. Moore, "A 2d test function known as the michalewicz function (michalewicz 1998)."
- [9] Wikipedia, "Rastrigin function."