

Na Liu*, Mark Dras, Wei Emma Zhang

Macquarie University, The University of Adelaide

na.liu8@students.mq.edu

Introduction

Adversarial Examples are constructed by carefully designed small perturbations of normal examples, that can fool a deep neural network to make wrong predictions. [3]

Figure 1. An example of an adversarial example in image[1]

	Example	Prediction
Original	This is a story of two misfits who don't stand a chance alone, but together they are magnificent.	Positive
Character- level	TZyTis is a sotry of two misifts who don't stad a ccange alUone, but tpgthr they are mgnificent.	Negative
Word-level	This is a conte of two who don't stands a opportunities alone, but together they are opulent.	Negative
Phrase-level	Why don't you have two misfits who don't stand a chance alone, but together they're beautiful.	Negative
Sentence- level	This is a story of two misfits who don't stand a chance alone, but together they are magnificent. ready south hundred at size expected worked whose turn poor.	Negative

Table 1. Examples of textual adversarial instances on a sentiment analysis task

Research Objective

Textual Adversarial Example Defence

- Proactive defence methods: increasing the robustness of deep neural networks (adversarial training).
- Reactive defence methods*: distinguishing real from adversarial examples (FGWS).

Approaches

Adapted Local Intrinsic Dimensionality (LID)

Local Intrinsic Dimensionality [2]

$$LID_F(r) \triangleq \lim_{\epsilon \to 0} \frac{ln(F((1+\epsilon) \cdot r)/F(r))}{ln(1+\epsilon)} = \frac{r \cdot F'(r)}{F(r)}$$
(1)

The Maximum Likelihood Estimator of the LID [2]

$$\widehat{LID}(x) = -\left(\frac{1}{k} \sum_{i=1}^{k} \log \frac{r_i(x)}{r_k(x)}\right)^{-1} \tag{2}$$

If neighbors of a reference sample x are compact, its estimated LID from Equation (2) is smaller, otherwise, its estimated LID is bigger.

Adaptation

- The x in the Equation (2) is a representation of an input text from a layer's hidden state of the target (BERT_{BASE}) model.
- An input of a detection classifier for an example is a 12-dimensional vector, where each element illustrates the corresponding layer's $\widehat{LID}(x)$.

MultiDistance Representation Ensemble Method (MDRE)

Intuitions

- Samples with a same predicted label from a deep neural net lie on a data submanifold.
- An adversarial example is generated because perturbations cause a correctly predicted example to transfer from one data submanifold to another.
- It is an out-of-distribution sample relative to training examples from its data submanifold.

MDRE

Figure 2. PCA results of MDRE inputs for the IMDB phreas level attack

- d(x', nearest neighbor of x') > d(x, nearest neighbor of x)
- ensemble learning can help identify this.
- *nearest neighbor is among training examples with the same predicted label as x' or x.

Experiments

Tasks & Datasets

Dataset	Training.	Validation.	Testing.	Correctly Predicted Test Examples	Adversaria Character.	_	Examples Phrase.
	20,000	5,000	25,000	23,226	12,299	9,627	6,315
	314,162	78,540	9,832	8,062	7,028	3,240	4,340

Results

Figure 3. The accuracy for detection classifiers

Conclusion and Future Work

- Adapted LID and MDRE help to detect adversarial examples.
- Exploring more effective distribution characteristics of data semantic representations among adversarial and normal examples, may help to build better detectors.

References

- [1] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples, 2014.
- [2] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song, M. E. Houle, and J. Bailey. Characterizing adversarial subspaces using local intrinsic dimensionality, 2018.
- [3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks, 2013.