Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients

Howard C. Elman

Department of Computer Science University of Maryland at College Park

Collaborators: Qifeng Liao, Shanghai Tech University Virginia Forstall, University of Maryland

- Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
 - Problem Definition
 - Solution Methods
- Reduced Basis Methods
 - Offline Computations
 - Reduced Problem
 - Reduced Problem: Costs
 - Reduced Problem: Capturing Features of Model
- 3 Reduced Basis + Sparse Grid Collocation
 - Introduction
 - Performance for Diffusion Equation
 - Application to the Navier-Stokes Equations
- Iterative Solution of Reduced Problem
 - Introduction
 - Implementation
 - Performance
- Concluding Remarks

Partial Differential Equations with Uncertain Coefficients

Examples:

Diffusion equation: $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$

Concluding Remarks

Navier-Stokes equations:
$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla \vec{u}) + (\vec{u} \cdot \nabla)\vec{u} + \nabla p = \vec{f}$$

 $\nabla \cdot \vec{u} = 0$

Posed on $\mathcal{D} \subset \mathbb{R}^d$ with suitable boundary conditions

Sources: models of diffusion in media with uncertain permeabilities multiphase flows

Uncertainty / randomness:

 $a = a(\mathbf{x}, \boldsymbol{\xi})$ is a random field: for each fixed $\mathbf{x} \in \mathcal{D}$, $a(\mathbf{x}, \boldsymbol{\xi})$ is a random variable depending on m random parameters ξ_1, \ldots, ξ_m In this study: $a(\mathbf{x}, \boldsymbol{\xi}) = a_0(\mathbf{x}) + \sum_{r=1}^m a_r(\mathbf{x}) \boldsymbol{\xi}_r$

Possible sources:

Karhunen-Loève expansion

or

Piecewise constant coefficients on \mathcal{D}

The Stochastic Galerkin Method

Standard weak diffusion problem: find $u \in H^1_E(\mathcal{D})$ s.t.

Concluding Remarks

$$a(u,v) = \int_{\mathcal{D}} a \nabla u \cdot \nabla v dx = \int_{\mathcal{D}} f v dx \quad \forall v \in H_0^1(\mathcal{D})$$

Extended (stochastic) weak formulation: find $u \in H^1_E(\mathcal{D}) \otimes L_2(\Omega)$ s.t.

$$\underbrace{\int_{\Omega} \int_{\mathcal{D}} a \nabla u \cdot \nabla v \, dx \, dP(\Omega)}_{\int_{\Gamma} \int_{\mathcal{D}} f \, v \, dx \, dP(\Omega)} = \underbrace{\int_{\Omega} \int_{\mathcal{D}} f \, v \, dx \, dP(\Omega)}_{\int_{\Gamma} \int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}) \, \nabla u \cdot \nabla v \, d\mathbf{x} \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi}}_{\int_{\Gamma} \int_{\mathcal{D}} f \, v \, dx \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi}} \quad \forall \, v \in H_0^1(\mathcal{D}) \otimes L_2(\Omega)$$

- **Discretization** in physical space: $S_E^{(h)} \subset H_E^1(\mathcal{D})$, basis $\{\phi_j\}_{j=1}^N$ Example: piecewise linear "hat functions"
- **Discretization** in space of random variables: $\mathcal{T}^{(p)} \subset L^2(\Gamma)$, basis $\{\psi_\ell\}_{\ell=1}^M$ Example: m-variate polynomials in $\boldsymbol{\xi}$ of total degree p

Discrete solution:

$$u_{hp}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{j=1}^{N} \sum_{\ell=1}^{M} u_{j\ell} \phi_j(\mathbf{x}) \psi_{\ell}(\boldsymbol{\xi})$$

Requires solution of large coupled system

Concluding Remarks

Matrix (right):
$$G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$$

"Stochastic dimension":
$$M = \binom{m+p}{p}$$

(Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis, Xue, Schwab, Todor)

The Stochastic Collocation Method

Monte-Carlo (sampling) method: find $u \in H_E^1(\mathcal{D})$ s.t.

Concluding Remarks

$$\int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}^{(k)}) \nabla u \cdot \nabla v dx \quad \text{for all } v \in H^1_{E_0}(\mathcal{D})$$

for a collection of samples $\{\boldsymbol{\xi}^{(k)}\}\in L^2(\Gamma)$

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster)

Choose $\{\boldsymbol{\xi}^{(k)}\}$ in a special way (sparse grids), then construct construct discrete solution $u_{hp}(\mathbf{x},\boldsymbol{\xi})$ to interpolate $\{u_h(\mathbf{x},\boldsymbol{\xi}^{(k)})\}$

Structure of collocation solution:

$$u_{hp}(\mathbf{x},\boldsymbol{\xi}) := \sum_{\boldsymbol{\xi}^{(k)} \in \Theta_p} u_c(\mathbf{x},\boldsymbol{\xi}^{(k)}) L_{\boldsymbol{\xi}^{(k)}}(\boldsymbol{\xi})$$

Features:

- Decouples algebraic system (like MC)
- Applies in a straightforward way to nonlinear random terms
- Coefficients $\{u_c(\mathbf{x}, \boldsymbol{\xi}^{(k)})\}$ obtained from *large-scale* PDE solve
- Expensive when number of points $|\Theta_p|$ is large

Properties of These Methods

For both Galerkin and collocation

- Each computes a discrete function u_{hp}
- Moments of u estimated using moments of u_{hp} (cheap)

Concluding Remarks

- Convergence: $||E(u) E(u_{hp})||_{H_1(\mathcal{D})} \le c_1 h + c_2 r^p$, r < 1 Exponential in polynomial degree
- Contrast with Monte Carlo: Perform N_{MC} (discrete) PDE solves to obtain samples $\{u_h^{(s)}\}_{s=1}^{N_{MC}}$ Moments from averaging, e.g., $\hat{E}(u_h) = \frac{1}{N_{MC}} \sum_{s=1}^{N_{MC}} u_h^{(s)}$ Error $\sim 1/\sqrt{N_{MC}}$

One other thing: "p" has different meaning for Galerkin and collocation

• **Disadvantage of collocation:** For comparable accuracy # stochastic dof (collocation) $\approx 2^p$ (# stochastic dof (Galerkin))

Representative Comparison for Diffusion Equation

Concluding Remarks

Representative comparative performance (E., Miller, Phipps, Tuminaro)

Using mean-based preconditioner for Galerkin system Kruger, Pellisetti, Ghanem Le Maître, et al., E. & Powell

Question: Can costs of collocation be reduced?

Offline Computations Reduced Problem Reduced Problem: Costs Reduced Problem: Capturing Features of Model

- Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
- Reduced Basis Methods
 - Offline Computations
 - Reduced Problem
 - Reduced Problem: Costs
 - Reduced Problem: Capturing Features of Model
- 3 Reduced Basis + Sparse Grid Collocation
- 4 Iterative Solution of Reduced Problem
- Concluding Remarks

Offline Computations Reduced Problem Reduced Problem: Costs Reduced Problem: Capturing Features of Model

Reduced Basis Methods

Starting point: Parameter-dependent PDE $\mathcal{L}_{\xi}u = f$

In examples given: $\mathcal{L}_{\xi} = -\nabla \cdot (a_0 + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \xi_r) \nabla$

Discretize: Discrete system $\mathcal{L}_{h,\xi}(u_h) = f$

Algebraic system $\mathcal{F}_{\xi}(\mathbf{u}_h) = 0 \ (A_{\xi}\mathbf{u}_h = \mathbf{f})$ of order N

Complication:

Expensive if many realizations (samples of ξ) are required

Idea (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, ...):

Solve the problem on a reduced space

That is: by some means, choose $\boldsymbol{\xi}^{(1)}, \boldsymbol{\xi}^{(2)}, \dots, \boldsymbol{\xi}^{(n)}, \ n \ll N$

Solve
$$\mathcal{F}_{\boldsymbol{\xi}^{(i)}}(u_h^{(i)}) = 0$$
, $u_h^{(i)} = u_h(\cdot, \boldsymbol{\xi}^{(i)})$, $i = 1, \dots, n$

For other ξ , approximate $u_h(\cdot,\xi)$ by $\tilde{u}_h(\cdot,\xi) \in span\{u_h^{(1)},\ldots,u_h^{(n)}\}$

Terminology: $\{u_h^{(1)}, \dots, u_h^{(n)}\}$ called **snapshots**

Offline Computations

```
Strategy for generating a basis / choosing snapshots (Patera, et al.):
          For \tilde{u}_h(\cdot, \xi) \approx u_h(\cdot, \xi) (equivalently, \tilde{\mathbf{u}}_{\xi} \approx \mathbf{u}_{\xi}), use an
          error indicator \eta(\tilde{u}_h) \approx ||e_h||, e_h = u_h - \tilde{u}_h
          Given: a set of candidate parameters \mathcal{X} = \{\xi\},
                         an initial choice \boldsymbol{\xi}^{(1)} \in \mathcal{X}, and \boldsymbol{u}^{(1)} = \boldsymbol{u}(\cdot, \boldsymbol{\xi}^{(1)})
          Set Q = \mathbf{u}^{(1)}
          while \max_{\boldsymbol{\xi} \in \mathcal{X}} (\eta(\tilde{u}_h(\cdot, \boldsymbol{\xi}))) > \tau
                 compute \tilde{u}_h(\cdot, \boldsymbol{\xi}), \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi})), \forall \boldsymbol{\xi} \in \mathcal{X}
                                                                                                     % use current reduced
                 let \boldsymbol{\xi}^* = \operatorname{argmax}_{\boldsymbol{\xi} \in \mathcal{X}} \left( \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi})) \right)
                                                                                                      % basis
                 if \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi}^*)) > \tau then
                        augment basis with u_h(\cdot, \xi^*), update Q with \mathbf{u}_{\xi^*}
                 endif
          end
```

Potentially expensive, but viewed as "offline" preprocessing "Online" simulation done using reduced basis

For set of candidate parameters $\mathcal{X} = \{\xi\}$:

- Greedy search (Patera, et al.):
 Search over large set of parameters {\$\xi\$}
 May be randomly or systematically chosen
- Optimization methods (Bui-thanh, Willcox, Ghattas):
 Find \(\xi\$ that minimizes error estimator
 May need derivative information
- Not a concern in today's setting we will use sparse grids

Reduced Problem

For linear problems, matrix form:

Coefficient matrix A_{ξ} , nodal coefficients \mathbf{u}_h , $\tilde{\mathbf{u}}_h$, $\mathbf{u}^{(1)}$, ... $\mathbf{u}^{(n)}$ $Q = \text{orthogonal matrix whose columns span space spanned by } {<math>\mathbf{u}^{(i)}$ }

Galerkin condition: make residual orthogonal to spanning space

$$r = f - A_{\xi} \tilde{\mathbf{u}}_{\xi} = f - A_{\xi} Q \mathbf{y}_{\xi}$$
 orthogonal to Q

Result is **reduced problem**: Galerkin system of order $n \ll N$:

$$[Q^T A Q] \mathbf{y}_{\boldsymbol{\xi}} = Q^T f, \quad \tilde{\mathbf{u}}_{\boldsymbol{\xi}} = Q \mathbf{y}_{\boldsymbol{\xi}}$$

Goals: Reduced solution should

- be available at significantly lower cost
- capture features of the model

How are costs reduced?

- Matrix A of order N
- Reduced matrix Q^TAQ of order $n \ll N$
- Solving reduced problem is cheap for small n
- Note: making assumption that \mathcal{L}_{ξ} is affinely dependent on ξ

$$\mathcal{L}_{\xi} = \sum_{i=1}^{k} \phi_{i}(\xi) \mathcal{L}_{i}$$

$$\Rightarrow A_{\xi} = \sum_{i=1}^{k} \phi_{i}(\xi) A_{i}$$

$$\Rightarrow Q^{T} A_{\xi} Q = \sum_{i=1}^{k} \phi_{i}(\xi) [Q^{T} A_{i} Q]$$
part of offline computation

True for example seen so far, KL-expansion

- Consequence: constructing reduced matrix for new ξ is cheap
- Analogue for nonlinear problems is more complex

N.B. One other important issue:

Error indicator must be inexpensive to compute

In present study: use residual indicator

$$\eta_{\mathcal{Q}}(\boldsymbol{\xi}) \equiv \frac{\|A_{\boldsymbol{\xi}}\tilde{\mathbf{u}}_{\boldsymbol{\xi}} - \mathbf{f}\|_{2}}{\|\mathbf{f}\|_{2}} = \frac{\|A_{\boldsymbol{\xi}}Q\mathbf{y}_{\boldsymbol{\xi}} - \mathbf{f}\|_{2}}{\|\mathbf{f}\|_{2}}$$

Using affine structure $A_{\xi} = \sum_{i=1}^{k} \phi_i(\xi) A_i$, efficiency derives from

$$\begin{aligned} \|A_{\boldsymbol{\xi}}Q\mathbf{y}_{\boldsymbol{\xi}} - \mathbf{f}\|_{2}^{2} &= \mathbf{y}_{\boldsymbol{\xi}}^{T} \left(\sum_{i=1}^{K} \sum_{j=1}^{K} \phi_{i}\phi_{j} \underbrace{Q^{T}A_{i}^{T}A_{j}Q}_{\mathsf{Offline}} \right) \mathbf{y}_{\boldsymbol{\xi}} \\ &- 2\mathbf{y}_{\boldsymbol{\xi}}^{T} \sum_{i=1}^{K} \left(\phi_{i} \underbrace{Q^{T}A_{i}^{T}\mathbf{f}}_{i} \right) + \underbrace{\mathbf{f}^{T}\mathbf{f}}_{} \end{aligned}$$

Reduced Problem: Capturing Features of Model

Consider benchmark problems:

Diffusion equation $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$ in \mathbb{R}^2

Piecewise constant diffusion coefficient parameterized as a random variable $\boldsymbol{\xi} = [\xi_1, \cdots, \xi_{N_D}]^T$ independently and uniformly distributed in $\Gamma = [0.01, 1]^{N_D}$

(a) Case 1: N_D subdomains (b) Case 2: $N_D = \tilde{N} \times \tilde{N}$ subdomains

Does reduced basis capture features of model?

To assess this: consider

Full snapshot set, set of snapshots for all possible parameter values:

$$S_{\Gamma} := \{u_h(\cdot, \boldsymbol{\xi}), \, \boldsymbol{\xi} \in \Gamma\}$$

Finite snapshot set, for finite $\Theta \subset \Gamma$:

$$S_{\Theta} := \{u_h(\cdot, \boldsymbol{\xi}), \, \boldsymbol{\xi} \in \Theta\}$$

Question:

How many samples $\{\xi\}$ / $\{u_h(\cdot,\xi)\}$ are needed to accurately represent the features of S_{Γ} ?

Experiment: to gain insight into this, estimate "rank" of \mathcal{S}_{Γ} Generate a large set Θ of samples of $\boldsymbol{\xi}$ Generate the finite snapshot set S_{Θ} associated with Θ Construct the matrix S_{Θ} of coefficient vectors $\mathbf{u}_{\boldsymbol{\xi}}$ from \mathcal{S}_{Θ} Compute the rank of S_{Θ}

Results follow. Used 3000 samples

Experiment was repeated ten times with similar results

Offline Computations Reduced Problem Reduced Problem: Costs Reduced Problem: Capturing Features of Model

Estimated ranks of \mathcal{S}_Γ for two classes of benchmark problems

	N_D Grid	2	3	4	5	6	7	8	9	10
Case 1	$33^2 = 1089$	3	12	18	30	40	53	55 55	76	84
	$65^2 = 4225$	3	12	18	30	40	48		70	87
	$129^2 = 16641$	3	12	18	28	39	48	55	72	81
Case 2	N_D Grid	4	9		16	25	36	49		64
	$33^2 = 1089$	27	121		193	257	321	385		449
	$65^2 = 4225$	28	148	2	290	465	621	769		897
	$129^2 = 16641$	28	153	3	311	497	746	1016	ĵ	1298

Trends:

- Rank is dramatically smaller than problem dimension N
- Rank is independent of problem dimension (\sim (mesh size) $^{-2}$)
- In most cases, cost of treating reduced problem of given rank is low

- 1 Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
- Reduced Basis Methods
- Reduced Basis + Sparse Grid Collocation
 - Introduction
 - Performance for Diffusion Equation
 - Application to the Navier-Stokes Equations
- 4 Iterative Solution of Reduced Problem
- Concluding Remarks

Combine Reduced Basis with Sparse Grid Collocation

Concluding Remarks

Recall collocation solution

$$u_{hp}(x, \boldsymbol{\xi}^{(k)}) = \sum_{\boldsymbol{\xi}^{(k)} \in \Theta_g} u_c(x, \boldsymbol{\xi}^{(k)}) L_{\boldsymbol{\xi}^{(k)}}(\boldsymbol{\xi})$$
 (1)

Goal: Reduce cost of collocation via

- 1. Use sparse grid collocation points as candidate set \mathcal{X}
- 2. Use reduced solution as coefficient $u_c(\cdot, \boldsymbol{\xi}^{(k)})$ whenever possible

```
for each sparse grid level p

for each point \boldsymbol{\xi}^{(k)} at level p

compute reduced solution u_R(\cdot, \boldsymbol{\xi}^{(k)})

if \eta(u_R(\cdot, \boldsymbol{\xi}^{(k)})) \leq \tau, then

use u_R(\cdot, \boldsymbol{\xi}^{(k)}) as coefficient u_c(\cdot, \boldsymbol{\xi}^{(k)}) in (1)

else

compute snapshot u_h(\cdot, \boldsymbol{\xi}^{(k)}), use it as u_c(\cdot, \boldsymbol{\xi}^{(k)}) in (1)

augment reduced basis with u_h(\cdot, \boldsymbol{\xi}^{(k)}), update Q with \mathbf{u}_{\boldsymbol{\xi}^{(k)}}

endif

end
end
```

Number of Full System Solves, Diffusion Equation

Does this work? Look at diffusion problem Various sparse grid levels p (q = p + M)

Concluding Remarks

Case 1, 5×1 subdomains, 65×65 grid, rank=30

q	6	7	8	9	10	11	12	13	16
$ \Theta_q $ tol	11	61	241	801	2433	7K	19K	52K	870K
10-3	10	9	0	0	0	0	0	0	0
10-4	10	_ 11 _	_ 1	_ 0 _	0	_ 0	0_	_ 0_	0
10^{-5}	10	13	0	0	0	0	0	0	0

Case 1, 9×1 subdomains, 65×65 grid, rank=70, $tol = 10^{-4}$

q	10	11	12	13	14	15	16	17
$ \Theta_{p} $	19	181	1177	6001	26017	100897	361249	1218049
N _{full solve}	18	34	2	1	1	0	0	0

Number of Full System Solves, Diffusion Equation

Concluding Remarks

Case 2, 2×2 subdomains, 65×65 grid, rank=28

q	5	6	7	8	9	10	11	12	15
$ \Theta_q $	9	41	137	401	1105	2.9K	7.5K	18.9K	272K
10^{-3}	7	11	3	0	0	0	0	0	0
10^{-4}	7	12	3	0	0	0	0	0	0
10^{-5}	7	13	2	3	0	0	0	0	0

Case 2, 4×4 subdomains, 65×65 grid, rank=290, $tol = 10^{-4}$

~	17	10			
4	Ι/	18	19	20	21
$ \Theta_q $	33	545	6049	51137	353729
N _{full solve}	32	168	27	3	4

Refined Assessment of Accuracy

Examine error (vs. reference solution) in estimates of

Concluding Remarks

Expected values:

Full collocation
$$\epsilon_h \equiv \left\| \tilde{\mathbb{E}} \left(u_q^{hsc} \right) - \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0$$

Reduced collocation
$$\epsilon_R \equiv \left\| \tilde{\mathbb{E}} \left(u_q^{\textit{rsc}} \right) - \tilde{\mathbb{E}} \left(u_r^{\textit{hsc}} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{\textit{hsc}} \right) \right\|_0$$

Variances:

Full collocation
$$\zeta_h \equiv \left\| \tilde{\mathbb{V}} \left(u_q^{hsc} \right) - \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0$$

Reduced collocation
$$\zeta_R \equiv \left\| \tilde{\mathbb{V}} \left(u_q^{rsc} \right) - \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{V}} \left(u_r^{hsc} \right) \right\|_0$$

Errors in Expected Value

Case 1: 5×1 vertical subdomains

Case 2: 2×2 square subdomains

Comments:

Results for reduced/full systems are identical Results also compare favorably with Monte Carlo

Errors in Variance

Case 1: 5×1 vertical subdomains

Case 2: 2×2 square subdomains

Comments:

Trends for reduced/full systems are similar

Noteworthy because error indicator is not effective as a fem error estimator

Diffusion problem with truncated Karhunen-Loève expansion

Diffusion coefficient
$$a_0 + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \xi_r$$

From covariance function
$$c(\mathbf{x}, \mathbf{y}) = \sigma \exp\left(-\frac{|x_1 - y_1|}{c} - \frac{|x_2 - y_2|}{c}\right)$$

Smaller correlation length $c \sim$ more terms mExamine c = 4, m = 4 and c = 2.5, m = 8.

Comments on Costs

One difference from "pure" reduced basis method:

Concluding Remarks

"Offline" and "Online" steps are not as clearly separated

Statement of costs of collocation:

```
Full: (# of collocation points) × (cost of full system solve)

Reduced: (# of collocation points where error tolerance is met)

× (cost of reduced system solve) +

(# of collocation points where error tolerance is not met)

× (cost of augmenting reduced basis and updating offline quantities).
```

For Reduced Collocation:

Red costs depend on N, large-scale parameter Favors reduced if many collocation points use reduced model

Application to the Navier-Stokes Equations

$$\begin{aligned} -\nu\left(\cdot,\boldsymbol{\xi}\right) \nabla^{2} \vec{u}\left(\cdot,\boldsymbol{\xi}\right) + \vec{u}\left(\cdot,\boldsymbol{\xi}\right) \cdot \nabla \vec{u}\left(\cdot,\boldsymbol{\xi}\right) + \nabla p\left(\cdot,\boldsymbol{\xi}\right) &= 0 & \text{in} \quad D \times \Gamma \\ \nabla \cdot \vec{u}\left(\cdot,\boldsymbol{\xi}\right) &= 0 & \text{in} \quad D \times \Gamma \\ \vec{u}\left(\cdot,\boldsymbol{\xi}\right) &= \vec{g}\left(\cdot,\boldsymbol{\xi}\right) & \text{on} \quad \partial D \times \Gamma \end{aligned}$$

Possible sources of uncertainty:

- viscosity $\nu(x, \xi)$ (in multiphase flow)
- boundary conditions $g(x, \xi)$

Picard iteration (in weak form), for any realization of parameter ξ :

$$\begin{aligned} (\nu\nabla\delta\vec{u},\nabla\vec{v}) &+ (\vec{u}^{\ell}\cdot\nabla\delta\vec{u},\vec{v}) - (\delta p,\nabla\vec{v}) \\ &= -(\nu\nabla\vec{u}^{\ell},\nabla\vec{v}) - (\vec{u}^{\ell}\cdot\nabla\vec{u}^{\ell},\vec{v}) + (p^{\ell},\nabla\vec{v}) \quad \forall \vec{v} \in X_0^h \\ (\nabla\cdot\delta\vec{u},q) &= -(\nabla\cdot\vec{u}^{\ell},q) \quad \forall q \in M^h \\ \vec{u}^{\ell+1} &= \vec{u}^{\ell} + \delta\vec{u}, \quad p^{\ell+1} = p^{\ell} + \delta p. \end{aligned}$$

Result: Matrix equation

$$\begin{pmatrix} A_{\boldsymbol{\xi}} + N_{\mathbf{u}^{\ell},\,\boldsymbol{\xi}} & B^{T} \\ B & 0 \end{pmatrix} \begin{pmatrix} \delta \mathbf{u} \\ \delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{\mathbf{u}^{\ell},\,\mathbf{p}^{\ell},\,\boldsymbol{\xi}}^{r} \\ \mathbf{g}_{\mathbf{u}^{\ell},\,\mathbf{p}^{\ell},\,\boldsymbol{\xi}}^{r} \end{pmatrix}$$

Using div-stable Q_2 - P_{-1} element

Concluding Remarks

Reduced Problem: Given (matrix) representations Q_u , Q_p of velocity/pressure bases:

$$\begin{pmatrix} Q_{u}^{T}(A_{\xi} + N_{\mathbf{u}^{\ell}, \xi})Q_{u} & Q_{u}^{T}B^{T}Q_{p} \\ Q_{p}^{T}BQ_{u} & 0 \end{pmatrix} \begin{pmatrix} \delta \mathbf{w} \\ \delta \mathbf{y} \end{pmatrix} = \begin{pmatrix} Q_{u}^{T}\mathbf{f}_{\mathbf{u}^{\ell}, \mathbf{p}^{\ell}, \xi}^{r} \\ Q_{p}^{T}\mathbf{g}_{\mathbf{u}^{\ell}, \mathbf{p}^{\ell}, \xi}^{r} \end{pmatrix}$$
$$\delta \mathbf{u} \approx Q_{u}\delta \mathbf{w}, \quad \delta \mathbf{p} \approx Q_{p}\delta \mathbf{y}$$

Additional Requirements

Stability requirements As above, generate snapshots

Concluding Remarks

$$\left\{ \left(\begin{array}{c} \vec{u} \left(\cdot, \boldsymbol{\xi}^{(1)} \right) \\ p \left(\cdot, \boldsymbol{\xi}^{(1)} \right) \end{array} \right), \dots, \left(\begin{array}{c} \vec{u} \left(\cdot, \boldsymbol{\xi}^{(n)} \right) \\ p \left(\cdot, \boldsymbol{\xi}^{(n)} \right) \end{array} \right) \right\}$$

Complication: reduced solution does not automatically satisfy inf-sup condition

Fix: (Quarteroni & Rozza): Supplement velocity basis with supremizers $\vec{r}\left(\cdot, \boldsymbol{\xi}^{(k)}\right) \text{ that satisfy}$ $\vec{r}\left(\cdot, \boldsymbol{\xi}^{(k)}\right) = \arg\sup_{\vec{v} \in X^h} \frac{\left(p\left(\cdot, \boldsymbol{\xi}^{(k)}\right), \nabla \cdot \vec{v}\right)}{|\vec{v}|_1}.$

Result: Dim(reduced velocity space) = $2 \times dim(reduced pressure space)$

Treatment of nonlinearities

- Recall: affine structure of linear operators $A_{\xi} = \sum_{i=1}^{k} \phi_i(\xi) A_i$ \rightarrow offline construction $Q^T A_{\xi} Q = \sum_{i=1}^{k} \phi_i(\xi) [Q^T A_i Q]$
- At step ℓ of reduced Picard iteration, reduced velocity iterate is $\mathbf{u}^\ell = Q_u \mathbf{w}^\ell$

Convection operator has the form

$$\vec{u}^{\ell} \cdot \nabla = \sum_{i=1}^{n} w_{i}^{\ell} \left(\vec{q}^{(i)} \cdot \nabla \right)$$

Equivalently, convection matrix is $N = \sum_{i=1}^{n} N_i y_i$

Concluding Remarks

$$\Rightarrow Q_u^T N Q_u = \sum_{i=1}^n \underbrace{[Q_u^T N_i Q_u]}_{w_i^i} w_i^i$$

Offline computation cost $O(n^2N) \times n$

Navier-Stokes with Uncertain Viscosity

Concluding Remarks

$$\begin{split} -\nu \left(\cdot, \boldsymbol{\xi} \right) \nabla^2 \vec{u} \left(\cdot, \boldsymbol{\xi} \right) + \vec{u} \left(\cdot, \boldsymbol{\xi} \right) \cdot \nabla \vec{u} \left(\cdot, \boldsymbol{\xi} \right) + \nabla p \left(\cdot, \boldsymbol{\xi} \right) &= 0 \quad \text{in} \quad D \times \Gamma \\ \nabla \cdot \vec{u} \left(\cdot, \boldsymbol{\xi} \right) &= 0 \quad \text{in} \quad D \times \Gamma \\ \vec{u} \left(\cdot, \boldsymbol{\xi} \right) &= \vec{g} \left(\cdot, \boldsymbol{\xi} \right) \quad \text{on} \quad \partial D \times \Gamma \end{split}$$

Driven cavity problem with

variable random viscosity $\nu = [\nu_1, \nu_2, \nu_3]^T$ piecewise constant on subdomains independently and uniformly distributed in $[0.01, 1]^3$

Number of full system solves

Concluding Remarks

	q		3	4	5	6	7	8	9	
tol	Grids	$ \Theta_q $	1	7	25	69	177	441	1073	Total
10^{-4}	33 × 33		1	6	17	23	26	26	25	124
10^{-4}	65×65		1	6	16	20	21	21	18	103
10^{-5}	33×33		1	6	18	29	40	44	41	179
10^{-5}	65×65		1	6	18	27	32	40	32	156

Inf-sup constants γ_R^2 for reduced problem ($\gamma_h^2 = .2137$)

N _{II}	2	4	20	50	100	200
γ_R^2	0.2431	0.2430	0.2374	0.2359	0.2327	0.2292

Assessment of errors

- 1 Preliminary: Spectral Methods for PDEs with Uncertain Coefficients
- 2 Reduced Basis Methods
- 3 Reduced Basis + Sparse Grid Collocation
- 4 Iterative Solution of Reduced Problem
 - Introduction
 - Implementation
 - Performance
- Concluding Remarks

Iterative Solution of Reduced Problem

For methodology to be effective: Reduced solution must be cheap

Reduced linear problem and solution:

$$[Q^T A_{\xi} Q] \mathbf{y}_{\xi} = Q^T \mathbf{f}, \quad \tilde{\mathbf{u}}_{\xi} = Q \mathbf{y}_{\xi}$$

Dense system of order $k \ll N$
Cost of solution: $O(k^3)$

Concluding Remarks

• Full problem:

$$A_{\xi}\mathbf{u}_{\xi} = \mathbf{f}$$

Sparse discrete PDE of order N
Cost of solution by multigrid: $O(N)$

• A concern not addressed yet:

$$k \ll N$$
 but $k^3 \ll N$

• Reduced problem: $[Q^T A_{\xi} Q] \mathbf{y}_{\xi} = Q^T \mathbf{f}$ Solve by iterative method (e.g., conjugate gradient) Seek **preconditioner** $P \approx Q^T A_{\xi} Q$

Concluding Remarks

• Reformulate reduced problem as a saddle-point problem:

$$\left[\begin{array}{cc} A_{\xi}^{-1} & Q \\ Q^{T} & 0 \end{array}\right] \left[\begin{array}{c} \mathbf{v} \\ \mathbf{y}_{\xi} \end{array}\right] = \left[\begin{array}{c} \mathbf{0} \\ Q^{T} \mathbf{f} \end{array}\right]$$

Reduced matrix = **Schur complement operator** S

• Approximate Schur complement:

$$\hat{P}_{S} := (Q^{T} Q)(Q^{T} A_{\xi}^{-1} Q)^{-1} (Q^{T} Q) = (Q^{T} A_{\xi}^{-1} Q)^{-1}$$

- Approximate $A_{\boldsymbol{\xi}}^{-1}$ using multigrid: $P_{A_{\boldsymbol{\xi}}}^{-1} \longrightarrow P_{\mathcal{S}} = (Q^T P_{A_{\boldsymbol{\xi}}}^{-1} Q)^{-1}$
- ullet For preconditioning: require action of $P_{\mathcal{S}}^{-1} = Q^T P_{A_{\mathcal{E}}}^{-1} Q$

Implementation

For parameter ξ :

• Construct reduced matrix of order $k \ll N$

$$Q^{\mathsf{T}} A_{\boldsymbol{\xi}} Q = \sum_{i=1}^m \phi_i(\boldsymbol{\xi}) [Q^{\mathsf{T}} A_i Q]$$

- Explicitly construct preconditioning operator $P_S^{-1} = Q^T P_{A_{\xi}}^{-1} Q$ N.B. not practical, "**online**," costs O(N)
- Alternative: use a single ξ_0 , $P_{A_{\xi_0}}$ for all A_{ξ} Done once: Apply MG to each column of $Q \longrightarrow P_{A_{\xi_0}}^{-1} Q$ Premultiply result by Q^T Produces (dense) preconditioning operator of order n
- Variant: use a finite fixed set $\{\xi_j\}$ to construct $\{P_{S,j}^{-1}\}$ For A_{ξ} , use $P_{S,j}$ for ξ_j closest to ξ
- Cost per step of matrix operations $O(k^2)$, $k \ll N$

Experimental Performance

For all experiments:

- PDE posed on a square domain
- Spatial discretization: Bilinear fem
- Error indicator: Matrix residual norm

$$\frac{\|\mathbf{f} - A_{\boldsymbol{\xi}}\tilde{\mathbf{u}}\|_2}{\|\mathbf{f}\|_2} \le \tau, \quad \tau = 10^{-8}$$

• Iteration stopping test:

$$\frac{\|Q^T\mathbf{f} - Q^TA_{\boldsymbol{\xi}}Q\mathbf{y}_i\|_2}{\|Q^T\mathbf{f}\|_2} \leq \frac{\tau}{10},$$

- MG preconditioner: PyAMG (Bell, Olson, Schroder)
- Test: Solve 100 randomly generated systems

• One benchmark problem:

Diffusion equation
$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$$
 on $[0, 1] \times [0, 1]$ $a(x, \boldsymbol{\xi}) = \mu(x) + \sum_{i=1}^{m} \sqrt{\lambda_i} a_i(x)\xi_i$

Concluding Remarks

a derived from covariance function

$$C(x,y) = \sigma^2 exp\left(-\frac{|x_1 - y_1|}{c} - \frac{|x_2 - y_2|}{c}\right)$$

$$\{\xi_r\}$$
 uniform on [-1,1], $\sigma=$.5, $\mu\equiv 1$

(P)CG terations

m =# parameters

k = size of reduced basis

N	С	3	1.5	0.75
/ '	m	7	17	65
	k	97	254	607
	None	60.1	90.7	101.7
33^{2}	Single	10.0	9.3	9.5
	Online	10.0	9.0	9.0
	k	100	269	699
	None	68.8	129.3	175.5
65^{2}	Single	10.0	10.0	8.5
	Online	10.0	9.8	8.0
	k	102	269	729
	None	70.1	149.5	252.5
129^{2}	Single	11.2	14.6	12.9
	Online	11.0	14.8	13.0
	k	102	275	740
	None	70.4	154.0	293.6
257^{2}	Single	11.0	13.7	15.4
	Online	11.0	13.0	15.0

CPU times

m =# parameters

k = size of reduced

basis

C	7	3	1.5	0.75
N m		7	17	65
k		97	254	607
Full	AMG	0.0202	0.0205	0.0214
Reduced	Direct	0.0003	0.0016	0.0181
Reduced	Iterative	0.0004	0.0008	0.0036
ŀ	(100	269	699
Full	AMG	0.1768	0.1961	0.1947
Reduced	Direct	0.0003	0.0021	0.0262
Reduced	Iterative	0.0004	0.0010	0.0044
ŀ	(102	269	729
Full	AMG	0.1195	0.1286	0.1347
Reduced	Direct	0.0003	0.0020	0.0287
Reduced	Iterative	0.0005	0.0013	0.0070
ŀ	(102	275	740
Full	AMG	0.3163	0.2988	0.3030
Reduced	Direct	0.0004	0.0024	0.0302
Reduced	Iterative	0.0005	0.0012	0.0088
	Full Reduced Reduced Full Reduced Reduced Full Reduced	Full AMG Reduced Iterative k Full AMG Reduced Iterative k Full AMG Reduced Iterative k Full AMG Reduced Direct Iterative k Full AMG Reduced Direct Iterative k Full AMG Reduced Direct Iterative	m 7 k 97 Full AMG 0.0202 Reduced Direct 0.0003 Reduced Iterative 0.0004 k 100 Full AMG 0.1768 Reduced Direct 0.0003 Reduced Iterative 0.0004 Full AMG 0.1195 Reduced Direct 0.0003 Reduced Iterative 0.0005 k 102 Full AMG 0.3163 Reduced Direct 0.0004	m 7 17 k 97 254 Full AMG 0.0202 0.0205 Reduced Direct 0.0003 0.0016 Reduced Iterative 0.0004 0.0008 Full AMG 0.1768 0.1961 Reduced Direct 0.0003 0.0021 Reduced Iterative 0.0004 0.0010 Full AMG 0.1195 0.1286 Reduced Direct 0.0003 0.0020 Reduced Direct 0.0005 0.0013 k 102 275 Full AMG 0.3163 0.2988 Reduced Direct 0.0004 0.0024

- Reduced basis methods offer significant promise for reducing the cost of collocation methods for uncertainty quantification
- Addresses issue of cost associated with collocation
- Amenable to mildly nonlinear problems
- General nonlinear problems: active area of research