

Three-Server Web Infrastructure for www.foobar.com

This document outlines the design of a three-server web infrastructure to host the website www.foobar.com. The requirements, the purpose of each element, specific configurations, and potential issues with this setup will be covered in details.

Elements

1. Three Servers:

High Availability: Having three servers ensures redundancy and fault tolerance. If one server fails, the others can continue serving traffic.

Load Distribution: Distributing the load across multiple servers prevents overload and ensures better performance.

Scalability: Additional servers can be added to handle increased traffic.

2. Firewalls:

Security: Firewalls protect the servers from unauthorized access, malicious traffic, and potential attacks.

Access Control: Firewalls allow or deny traffic based on predefined rules.

3. SSL Certificate (HTTPS):

Encryption: HTTPS encrypts data transmitted between clients and servers, ensuring confidentiality and integrity.

Authentication: SSL certificates verify the authenticity of the website, preventing man-in-the-middle attacks.

4. Monitoring Clients (Data Collectors):

Performance Monitoring: Collecting metrics helps identify bottlenecks, resource utilization, and performance issues.

Alerts: Monitoring tools notify administrators of anomalies or failures.

Sumologic or Other Services: Sumologic collects logs and metrics, providing insights into server health and application performance.

Load Balancer Distribution Algorithm

Use a load balancer to distribute incoming requests across the three servers.

Algorithms like round-robin, least connections, or weighted round-robin can be used.

Active-Active vs. Active-Passive Setup

Active-Active: All servers handle traffic simultaneously.

Active-Passive: One server serves traffic while others remain idle as backups. Failover

occurs if the active server fails.

Database Primary-Replica (Master-Slave) Cluster

Set up a MySQL primary-replica cluster:

Primary (Master): Accepts writes and updates.

Replicas (Slaves): Serve read requests and replicate data from the primary.

Difference Between Primary and Replica Nodes

Primary Node:

Accepts writes.

Critical for data consistency.

Requires robust backup and recovery mechanisms.

Replica Nodes:

Serve read requests.

Improve read scalability.

Can be used for reporting or analytics.

Issues with the Infrastructure

Terminating SSL at the Load Balancer Level:

Issue: SSL termination at the load balancer exposes decrypted traffic within the internal network.

Solution: Implement end-to-end encryption by terminating SSL at the application servers.

Single MySQL Server Capable of Accepting Writes:

Issue: Single point of failure. If the MySQL server fails, writes are blocked.

Solution: Use a primary-replica cluster for redundancy and failover.

Servers with Identical Components:

Issue: Uniform vulnerabilities. If one server is compromised, others may be too.

Solution: Diversify components (e.g., different web server technologies) to reduce risk.