Introdução ao Software R

Marcos Santos de Oliveira

Departamento de Matemática e Estatística - DEMAT, UFSJ 36307 – 904, São João Del - Rei, MG

mso@ufsj.edu.br

RESUMO

O objetivo desse mini-curso é apresentar um tutorial sobre o software R. O sistema R é um programa computacional estatístico distribuído gratuitamente e de código aberto. Ilustraremos aspectos básicos do sistema com ênfase na compreensão da linguagem, a estrutura e a forma de operar o programa. Tópicos básicos de matemática e estatística serão utilizados para ilustrar o uso da linguagem.

Palavras-chave: Software livre. Computação científica. Estatística.

Cronograma do minicurso

- Introdução
- Uso da Ajuda do R
- Operações Aritméticas
- Vetores
- Sequências
- Valores Lógicos e Índices
- Estatísticas elementares
- Matrizes
- Gráficos
- Integração Numérica

	4 =		200
Marcos S. Oliveira (UFSJ)	I ERMAC	Nov, 2010	3 / 40

O que é R?

- R é uma linguagem e ambiente para computação estatística e gráficos.
- Roda em ≠ plataformas (Unix, Linux, Windows, Macintosh, etc.)

Origem do R

- Iniciou-se com Robert Gentleman e Ross Ihaka (Statistics Department of the University of Auckland New Zealand) em 1991.
- Equipe principal do R foi formada em 1997.
- Fundação R em 2003.
- A última versão do R (2.12.0) foi disponibilizada em Outubro de 2010.

www.r-projet.org

O que é R?

- O R disponibiliza uma grande variedade de métodos estatísticos (modelagem linear e não linear, testes estatísticos clássicos, séries temporais, métodos multivariados, ...) e técnicas gráficas.
- Diferentes autores constrõem pacotes (packages) de suas pesquisas e disponibilizam as rotinas em R. Há atualmente 2574 pacotes disponíveis.
- Um dos pontos fortes do R é a facilidade com que gráficos bem delineados e de alta qualidade para impressão podem ser produzidos com possibilidade de inclusão de fórmulas e símbolos matemáticos quando necessário.

			10 pc
Marcos S. Oliveira (UFSJ)	I ERMAC	Nov, 2010	5 / 40
Por que R?			
Tor que it.			

- Software livre e de código aberto.
- Novas funcionalidades são facilmente implementadas e distribuídas.
- Possui interface com outros softwares.
- Instalação no Windows é ∼ 32 MB.
- Gráficos de alta definição.

Ilustração de gráficos em R

Marcos S. Oliveira (UFSJ) I ERMAC Nov., 2010 7 / 40

Rodando o R

R trabalha interativamente usando o modelo de perguntas e respostas:

- Inicie o R
- R providenciará uma linha de comando representado pelo símbolo > e aguardará por entradas
- Entre com um comando e pressione enter
- R executará esse comando e imprimirá os resultados
- R aguardará por mais entradas
- Para sair do R usamos a função q()

Usando a ajuda (Help) do R

O R tem um sistema de ajuda on-line que permite que a documentação seja exibida em um browser (explorer, netscape, mozilla ou similar). Para iniciar este sistema on-line digite:

- > options(helphtml=T)
- > help.start()

Este comando irá inicializar o seu browser e exibir a documentação on-line no browser.

- Clicando em packages uma página se abrirá com uma listagem dos pacotes disponíveis.
- Clicando em um dos pacotes será aberta uma página com uma lista das funções incluídas no pacotes e uma rápida descrição de cada uma delas.
- Clicando na função se abrirá uma janela com a documentação específica daquela função.

Marcos S. Oliveira (UFSJ) I ERMAC Nov, 2010 9 / 40

Usando a ajuda (Help) do R

Dentro do R você pode usar:

> help(mean)

ou simplesmente,

> ?mean

É possível fazer procura por tópicos usando **Search Engine & Keywords** na ajuda on-line.

- Esse mecanismo procura nas descrições de todas as funções do R a palavra chave digitada.
- Por exemplo, localize informações de palavra mean.

R como calculadora

Voce pode usar o R para avaliar algumas expressões aritméticas simples. Por exemplo:

```
> 2+3
                  somando números
[1] 6
> 2+3*4
                  prioridade de operações (multiplicação primeiro)
[1] 14
                  assim como na divisão
> 3/2+1
[1] 2.5
> \log(8)
                  logaritmo natural
[1] 2.079442
> log(8, base=2) logaritmo na base 2
[1] 3
                               LERMAC
```

R como calculadora

exponencial $> \exp(1)$ [1] 2.718282 $> 2^4$ potências são indicadas por ^ ou ** [1] 16 > sqrt(2)raiz quadrada [1] 1.414214 $> \sin(3.14159)$ seno(Pi radianos) é zero [1] 2.65359e - 06a resposta é bem próxima > sin(pi) [1] 1.224606e - 16bem mais próximo de zero

Algumas funções aritméticas no R

Nome	Operação
sqrt	raiz quadrada
abs	valor absoluto (positivo)
sin cos tan	funções trigonométricas
asin acos atan	funções trigonométricas inversas
sinh cosh tanh	funções hiperbólicas
asinh acosh atanh	funções hiperbólicas inversas
exp log	exponencial e logarítmo natural
log10	logarítimo base-10
pi	número pi (3,141593)

		r turr ter ter .	
Marcos S. Oliveira (UFSJ)	I ERMAC	Nov, 2010	13 / 40

Armazenando valores em objetos do R

R é uma liguagem orientada o objeto: variáveis, dados, matrizes, funções, etc, são armazenados na memória ativa do computador na forma de objetos.

Por exemplo:

> x < 10 # indica que o valor 10 foi armazenado na variável x.

Alternativamente pode-se usar o símbolos = ou ->. As linhas a seguir produzem o mesmo resultado:

$$> x <- sin(pi)$$

$$> x = sin(pi)$$

$$> sin(pi) -> x$$

Operando objetos em R

```
> z = 6 uma nova variável chamada z

> y = \text{sqrt}(16) uma nova variável chamada y

> z+y somando valores de z e y

[1] 10

> \text{sqrt}(\exp(z^3+y^2)) um pouco mais complexo

[1] 2.388691e + 50
```

- Note que ao atribuir um valor a um objeto o programa não imprime nada na tela.
- Digitando o nome do objeto o programa imprime seu conteúdo na tela.
- Digitando uma operação aritmética, sem atribuir o resultado a um objeto, faz com que o programa imprima o resultado na tela.

● Marcos S. Oliveira (UFSJ) I ERMAC Nov. 2010 15 / 40 Nov. 2010 15 / 40

Atribuindo nomes as variáveis

- Nomes de variáveis devem começar com uma letra e podem conter letras, números e pontos.
- Maiúsculas e minúsculas são consideradas diferentes.

Alguns exemplos válidos:

>
$$x = 25$$

> $x1 = x * sqrt(x)$
> $x2.1 = sin(x1)$
> $X = cos(x1)$

Alguns exemplos que NÃO são válidos:

```
> 99a = 10 '99a' não começa com letra

> a1 = \text{sqrt } 10 faltou o parênteses em sqrt

> a-1 = 99 hífens também não podem ser usados

> \text{sqrt}(x) = 10 não faz sentido
```

Marcos S. Oliveira (UFSJ) I ERMAC Nov, 2010 16 / 40

Criando vetores

- Até aqui todos os objetos criados continham um único valor, ou seja eram escalares. O R pode trabalhar com vetores, isto é, objetos que armazenam mais de um valor.
- A função c() é usada para criar um vetor a partir de seus argumentos.

Por exemplo:

```
> \times = c(2,3,5,7,11)
                        os 5 primeiros números primos
> x
[1] 2 3 5 7 11
```

Os argumentos de c() podem ser escalares ou vetores.

```
adicionando mais três nos primos
> y = c(x,13,17,19)
> y
```

7 11 13 17 19 [1] 2 5

Marcos S. Oliveira (UFSJ)

I ERMAC

Sequências

 Podemos gerar uma sequência de números inteiros usando os dois pontos ":"

```
> xx = 1:10
> xx
[1] 1 2 3 4 5 6 7 8 9 10
```

• Outra forma é usar a função seq() que tem como argumentos: início, fim e passos da sequência.

```
> seq(1,10,1)
                         o mesmo que 1:10
[1] 1 2 3 4 5 6 7 8 9 10
                         de 2 em 2
> seq(1,10,2)
[1] 1 3 5 7 9
                         não necessariamente termina em 10
                         sequência negativa
> seq(10,1,-3)
[1] 10 7 4 1
```

Comando repetição rep()

 A função rep() retorna o primeiro argumento repetido o número de vezes indicado pelo segundo argumento.

Exemplos:

 Se ambos argumentos tem mais de um elemento então cada elemento do primeiro argumento será associado ao elemento correspondente do segundo argumento.

Veja esses exemplos:

I ERMAC

Operações com vetores

 Operações aritméticas em vetores são efetuadas para cada um de seus elementos.

• Operações em dois vetores são também feitos em um elemento de cada vez.

Exemplo:

Operações com vetores

Importante característica de vetor

• Vetores com tamanhos diferentes: os elementos do menor vetor serão repetidos até atingir o tamanho do maior vetor.

Exemplos:

```
> x = 1:10
> y = c(1,2)
> x+y
[1] 2 4 4 6 6 8 8 10 10 12
> x = 1:10
> y = c(1,2,1)
> x + y
[1] 2 4 4 5 7 7 8 10 10 11
```

LERMAC

Caracteres em R

• O R pode armazenar dados alfanuméricos da mesma forma que armazena dados numéricos.

Exemplos:

$$>$$
 c1 = "Marcos" um caracter como escalar $>$ c1 [1] "Marcos"
$$>$$
 c2 = c("Sim", "Talvez", "Não") um vetor de caracteres $>$ c2 [1] "Sim" "Talvez" "Não"

Fatores em R

Fatores são usados para armazenar dados categóricos.

Exemplo: Suponha que você tem dados de altura de um grupo de pessoas e quer armazenar a informação sobre o sexo dos indivíduos.

```
> altura =
                                        > fator.sexo = as.factor(sexo)
c(1.84,1.78,1.69,1.72,1.75,1.81)
                                        > fator.sexo
                                        [1] M F F F M M
> altura
                                       Levels: F M
[1] 1.84 1.78 1.69 1.72 1.75 1.81
                                        > mean(altura)
> sexo = c('M', 'F', 'F', 'F', 'M', 'M')
                                       [1] 1.765
> sexo
[1] "M" "F" "F" "F" "M" "M"
                                        > by(altura,fator.sexo,mean)
                                        fator.sexo: F [1] 1.73
                                        fator.sexo: M [1] 1.8
```

Nov, 2010 23 / 40

I ERMAC

Valores lógicos

 O R possibilita computação com valores Booleanos. Estas variáveis podem ter valores TRUE ou FALSE (verdadeiro ou falso).

$$> x = 1:5$$

> x < 3

[1] TRUE TRUE FALSE FALSE FALSE

 É possível realizar operações numéricas com valores lógicos. O R interpreta TRUE como o valor 1 e FALSE como o valor 0. Isto pode ser utilizado, por exemplo, para contar o número de valores em um vetor que obedece a uma determinada condição.

Operadores lógicos

 Os operadores lógicos são: <, <=, >, >=, == para igualdade exata e!= para desigualdade.

```
> x = 36
> x == 36
[1] TRUE
> x != 36
[1] FALSE
> x != 18
[1] TRUE
```

• Você pode fazer operações do tipo "e" e "ou" em vetores usando os símbolos & e |, respectivamente.

```
> x > 2 \& x < 4
[1] FALSE FALSE TRUE FALSE FALSE
> x < 2 \mid x > 4
[1] TRUE FALSE FALSE FALSE TRUE
```

Índices

• O R possui diferentes mecanismos de indexação.

Exemplos:

$$> x = 8:1$$

 $> x[5]$ 5° elemento de x
[1] 4
 $> x[5:7]$ 5°, 6° e 7° elementos de x
[1] 4 3 2
 $> x[c(1,3,8)]$ 1°, 3° e 8° elementos de x
[1] 8 6 1
 $> x[-2]$ Todos os elementos de x, exceto o 2°
[1] 8 6 5 4 3 2 1
 $> x[x > 4]$ Todos os elementos de x que são maiores que 4
[1] 8 7 6 5

Estatísticas elementares

• O R possui várias funções que calculam estatísticas elementares.

Exemplos:

```
> x = 1:1000
> sum(x)
               soma dos elementos do vetor
[1] 500500
> length(x)
               quantidade de elementos do vetor
[1] 1000
> mean(x)
               média dos elementos do vetor
[1] 500.5
               mediana
> median(x)
[1] 500.5
               desvio padrão
> sd(x)
[1] 288.8194
```

LERMAC

Estatísticas elementares

Mais exemplos:

Matrizes

Matrizes são geradas no R usando a função matrix.

Exemplos:

```
> m = matrix(1:12,ncol=3)
       [,1]
                   [,3]
             [,2]
                                        Neste exemplo foi construída uma
 [1,]
              5
                    9
        1
                                        matrix de 4 linhas e 3 colunas usando
        2
 [2,]
              6
                    10
                                        os números de 1 a 12.
        3
              7
 [3,]
                    11
 [4,]
        4
                    12
> length(m)
                          > ncol(m)
                                                     > m[,2]
[1] 12
                                                     [1] 5 6 7 8
                          [1] 4
> dim(m)
                          > m[1,2]
                                                     > m[3,]
[1] 4 3
                          [1] 5
                                                     [1] 3 7 11
                          > m[2,2]
> nrow(m)
[1] 4
                          [1] 6
                                    LERMAC
```

Operações com matrizes

• Todas as funções usuais operam em matrizes da mesma forma que operam com vetores, isto é, elemento por elemento.

Exemplo:

Na multiplicação de matrizes usamos o símbolo %*% e não *.

Gráficos

• A função plot() inicia um novo gráfico. Em sua forma mais simples, a função recebe valores de coordenada x e y.

$$> x = 1:20$$

> y = x^3
> plot(x,y)

Marcos S. Oliveira (UFSJ) I ERMAC Nov. 2010 31 / 40

Gráficos

- Gráficos com linhas ligando os pontos podem ser obtidos utilizando o argumento opcional type="l" na função plot().
- > plot(x,y,type='l')
 - Há várias outras opções para os gráficos. Examine estes exemplos:
- > plot(x,y,type='b')
- > plot(x,y,type='o')
- > plot(x,y,type='s')
- > plot(x,y,type='c')
- > plot(x,y,type='h')

Editando o gráfico

- Podemos editar um gráfico adicionando determinadas opções:
- > plot(x,y,col="red")Mudando a cor
- Mudando o símbolo a ser plotado > plot(x,y,pch=2)
- > plot(x,y,type='l',lty=2)Mudando o tipo de linha
- > plot(x,y,type='l',lwd=2)Mudando o tamanho da linha
- Podemos acrescentar algumas informações ao gráfico, tais como:
- Construíndo o gráfico > plot(x,y)
- > title('Meu 1° gráfico') Título do gráfico
- > points(10,4000)Adicionando um ponto na posição (10,4000)
- > text(5,4000, 'Olá') Acionando um texto na posição (5,4000)
- E ainda escrever uma equação matemática dentro do gráfico:
- > text(15,2000, expression(hat(y) == alpha + beta*x))

LERMAC

Editando o gráfico

- Podemos identificar pontos em um gráfico.
- > x = rnorm(1000)Gerando valores da distribuição normal
- > plot(x)Construíndo o gráfico
- > identify(x, n=4) Identificando 4 pontos do gráfico
 - Podemos adicionar linhas horizontais, verticais e segmentos de reta.
- Adicionando duas linhas horizontais > abline(h=c(-2,2)) Adicionando uma linha vertical > abline(v=200)
- > segments(0,-2,1000,2) Adicionando um segmento de reta

Construção de vários gráficos

- Podemos construir vários gráficos em uma mesma janela.
- > par(mfrow=c(2,2))

Janela gráfica 2x2

> x = seq(1,20,by=0.01)

Valores de x

> plot(x,exp(x),type='l')

Gráfico de f(x) = exp(x)

- > plot(x,cos(x),type='l')
- > plot(x,sin(x),type='l')
- > plot(x, sqrt(1/x), type='l')

• Para retornar ao padrão com apenas um gráfico por janela digite

Marcos S. Oliveira (UFSJ)

ERMAC

₽ •040

Nov, 2010

35 / 40

Gráficos de funções

• Considere a seguinte função:

a)
$$f(x) = 1 - \frac{1}{x}sin(x)$$
 para $0 \le x \le 50$

 A idéia básica é criar um vetor com valores das abcissas (valores de x) e calcular o valor da função (valores de f(x)) para cada elemento da função e depois fazer o gráfico unindo os pares de pontos.

$$> x1 = seq(0,50, l=101)$$

$$> y1 = 1 - (1/x1) * sin(x1)$$

- > plot(x1, y1, type='l')
 - Outra forma seria:

$$>$$
 plot(function(x) 1 - (1/x) * sin(x), 0, 50)

Gráficos de funções

• Considere agora a seguinte função:

a)
$$f(x) = \frac{1}{\sqrt{2\pi \times 5^2}} \exp\left[-\frac{1}{2}(\frac{x-100}{5})^2\right]$$
 para $85 \le x \le 115$

- > x2 = seq(80, 120, l=101)
- $y^2 = (1/\sqrt{50*pi}) * \exp(-0.02 * (x^2-100)^2)$
- > plot(x2, y2, type='l')
 - Note que esta função é a densidade da distribuição normal. O gráfico pode também ser obtido com:
- > y2 = dnorm(x2, 100, 5)
- > plot(x2, y2, type='l')
 - Ou ainda:
- > plot(function(x) dnorm(x, 100, 5), 85, 115)

Obs: Na janela gráfica escolha: Arquivo ⊢ Salvar como ⊢ Extensão do arquivo (pdf, png, bmp, jpeg...) para salvar o gráfico.

Marcos S. Oliveira (UFSJ)

Nov, 2010 37 / 40

Gráficos estatísticos

- Composição de setores ("Pizza")
- > par(mfrow=c(1,2))
- > pie(rep(1, 12), col = rainbow(12), radius = 0.4)
- > pie(rep(1, 12), col = rainbow(12), radius = 0.9)
 - Barras
- > x = rbinom(100,20,0.5)
- > barplot(table(x))
 - Histograma
- > y=rnorm(100)
- > hist(y)

- Boxplot
- > y=rnorm(100)
- > boxplot(y)
 - Gráfico de pontos
- > dotchart(y)

Integração numérica

• A função integrate é usada para integração numérica em uma dimensão.

a)
$$I = \int_{-3}^{3} x^2 dx$$

Para resolver a integral devemos criar uma função no R com a expressão da função que vamos integrar e esta deve ser passada para integrate conforme este exemplo:

 $> fx = function(x) x^2$ > integrate(fx, -3, 3) 18 with absolute error < 2e-13 A integral corresponde à área mostrada no gráfico.

> x = seq(-4, 4, l=100) $> x^2 = x^2$

 $> plot(x, x^2, ty='l')$

> x = seq(-3, 3, l=100)

 $> x2 = x^2$

> polygon(rbind(cbind(rev(x),0),

cbind(x,x2)_col='gray') = = \sim \sim

Nov, 2010 39 / 40

Integração numérica em Estatística

- Sabemos que para distribuições contínuas de probabilidades a integral está associada a probabilidade em um intervalo. Seja f(x) uma f.d.p. de uma variável contínua, então $P(a < x < b) = \int_a^b f(x) dx$.
- Exemplo: Seja $X \sim N(100, 81)$. Portanto, $f(x) = \frac{1}{9\sqrt{2\pi}} e^{-\frac{1}{162}(x-100)^2}$. A probabilidade P(85 < x < 105) pode ser calculada das três formas diferentes mostradas a seguir.
- $> fx = function(x) \{(1/(9*sqrt(2*pi))) * exp(-(1/162)*(x-100)^2)\}$
- > integrate(fx, 85, 105)
- 0.6629523 with absolute error < 7.4e-15
- > integrate(function(x) dnorm(x, 100, 9), 85, 105)
- 0.6629523 with absolute error < 7.4e-15
- > pnorm(105, 100, 9) pnorm(85, 100, 9)

Marcos S. Oliveira (UFSJ)

[1] 0.6629523