APPENDIX

A. Proof of Proposition 1

Proof: According to Proposition 18 in [18], if Σ is a finite alphabet of n alphabet symbols, the number of pairwise non-equivalent SOREs over Σ is s(n) with $n!2^{3n-r\log n} \le s(n) \le n!2^{7n}$, where r is a constant. This implies there is a finite number of non-equivalent SOREs.

For k-OREs, every symbol in Σ occurs at most k times, we treat the same symbol in a k-ORE as distinct. Then, let Σ_k for k-OREs be a finite alphabet of nk alphabet symbols, the number of pairwise non-equivalent k-OREs over Σ_k is s(nk) with $(nk)!2^{3nk-r\log(nk)} \leq s(nk) \leq (nk)!2^{7nk}$. This implies there is a finite number of non-equivalent k-OREs over Σ_k . Dk-OREs, which is the class of deterministic k-OREs, are subclass of k-OREs, the number of non-equivalent Dk-OREs over Σ_k is also finite.

Let $\mathcal{D} \in \{k\text{-OREs}, Dk\text{-OREs}\}$. Assume that there is a language $L \subseteq \Sigma_k^*$ such that no expression $\alpha \in \mathcal{D}$ is \mathcal{D} -descriptive of L. If an expression $\alpha_1 \in \mathcal{D}: \mathcal{L}(\alpha_1) \supseteq L$, then there is an expression $\alpha_2 \in \mathcal{D}: \mathcal{L}(\alpha_1) \supset \mathcal{L}(\alpha_2) \supseteq L$. There are infinite expressions $\alpha_1, \alpha_2, \cdots, \alpha_i, \cdots \in \mathcal{D}$ such that $\mathcal{L}(\alpha_1) \supset \mathcal{L}(\alpha_2) \supset \cdots \supset \mathcal{L}(\alpha_i) \supset \cdots \supseteq L$. This contradicts the fact that there is only a finite number of non-equivalent k-OREs (and, hence, Dk-OREs) over Σ_k . Hence, for every language L, a k-ORE-descriptive k-ORE and a Dk-ORE-descriptive Dk-ORE must exist.

B. Proof of Theorem 1

Proof: We first present some conclusions for the obtained SORE r, then the SORE r is proved to be a descriptive SORE by the derived conclusions. There are three conclusions for the r derived from MinSore. (1) r is a SORE. (2) $\mathcal{L}(r) \supseteq S$. (3) $\mathcal{L}(r)$ includes the minimum number of the strings, which are not recognized by the SOA A (SOA A_1 is referred to as SOA A for simplification).

For (1), an SOA as the input of the algorithm *MinSore*, contains distinct alphabet symbols as the label of the nodes. In algorithm *MinSore*, a regular expression is derived by modifying the SOA. And for every step, there are no duplicate alphabet symbols introducing into the label of a node in the SOA. Thus, a regular expression finally obtained from *MinSore* is a SORE.

We distinguish a number of different cases, depending on which clause was used for MinSore(A). Then, we conclude (2) and (3) by induction hypothesis. Since the labels of the nodes in an SOA are distinct, a node labelled with symbol a, is referred as node a. For a given finite language S, an SOA $A := \mathbf{2T\text{-INF}}(S)$ and r := MinSore(A), let M(r, S, A) = 1 denotes the corresponding conclusions (2) and (3) are both hold.

Case 1: The clause in line 1 or the clause in line 2 was used. The case for (2) and (3) is trivial.

Case 2: The clause in line 3 was used. U is a strongly connected looped component of A, it indicates that, for a node a in U, there exist substrings $s_1 = l_a \cdots$ and $s_2 = \cdots l'_a \cdots$

 $(l_a, l_a' \in \mathcal{L}(a))$ in S. B_0 is the SOA that U is extracted and processed by bend(), forbids the substrings such as s_1 and s_2 are both recognized. Let $r_0 := MinSore(B_0)$ and $r = r_0^+$, there exists the set S_{r_0} of the substrings extracted from S such that $B_0 = \mathbf{2T}\text{-INF}(S_{r_0})$. Let SOA $A_u = A.extract(U)$, and S_u be the set of the substrings extracted from S such that $A_u = \mathbf{2T}\text{-INF}(S_u)$. For r_0 , S_{r_0} and B_0 , $M(r_0, S_{r_0}, B_0) = 1$ hold by induction, then, for r, S_u and A_u , $\mathcal{L}(r) = \mathcal{L}(r_0^+) = \mathcal{L}(r_0)^+ \supseteq S_{r_0}^+ \supseteq S_u$. Because r_0 is a SORE, to ensure the expression derived from A_u is also a SORE, let $r = r_0^+$, then, the substrings such as s_1 and s_2 can be generated by r. The SORE r guarantees the minimum number of the strings, which are accepted by r but not recognized by the SOA A_u , Thus, $M(r, S_u, A_u) = 1$.

Case 3: The clause in line 8 was used. Let a=v.label() and U=A.exclusive(v), U is the set of the nodes, which can only be reached by passing node v from the source of A. U includes node v. Let $B_0=A.extract(U)$ and $r_0=MinSore(B_0)$, there exists the set S_0 of the substrings which are extracted from S such that $B_0=2$ T-INF (S_0) . Let v' be the node formed by $A.contract(U,r_0)$. v' represents the identification of the set of the substrings, which occur in S if and only if they begin with the symbol a or a' ($a' \in fst(a)^8$ if a is an expression.). This implies $\mathcal{L}(r_0)$ does not contain the additional strings, which do not begin with the symbol a or a' and are not recognized by B_0 . For r_0 , S_0 and B_0 , $M(r_0, S_0, B_0) = 1$ holds by induction.

Case 4: The clause in line 12 was used. This case is mainly to add a node labeled ε by addEpsilon(). However, in the current SOA A, we first identify the pairs of edges $(v_1, v_2) \in$ A.E, where $v_1 \in A.first(), v_2 \in A. \succ (q_0) \setminus A.first()$, and v_1 can reach the nodes which are not the successors of $A.q_0$. In addition, v_1 and v_2 are in the same strongly connected looped component (sclc) U. Let $V_s = \{v | v \in (A, \succ (v_1) \cup A, \succ (v_1) \cup A, \smile (v_$ $(v_2)\setminus (A. \succ (q_0)\cup \{A.q_f\})$. V_s is the set of the successors of the nodes v_1 and v_2 , but not including $A.q_f$ and the successors of $A.q_0$. We remove edges (v_1, v_2) . Otherwise, the clause in line 21 will be used, and then the clause in line 28 will be used, the expression $v_1.label()?v_2.label()?$ will be produced. Then, for nodes $v \in V_s$, v_1 and v_2 , they are processed by *MinSore* to form a new node v', the corresponding label v'.label() (i.e., an expression) will generate the strings not recognized by SOA A that each of them begins the symbol $l \in fst(v.label())$ instead of $l \in fst(v_1.label())$ or $l \in fst(v_2.label())$.

The edges (v_1, v_2) are removed⁹. Because v_1, v_2 $(v_1, v_2 \in A.first())$ and their successors $v \in V_s$ are in the same $selc\ U$, according to the clause in line 3, the subexpression $v_1.label()|v_2.label|$ under the iteration $^+$ will be computed if the clause in line 28 is used. And each successor $v \in V_s$ of the nodes v_1 and v_2 is processed by MinSore, according to the clause in 18, the edge $(v_1, A.q_f)$ is added, the node labeled ε will be introduced by addEpsilon() for the clause

⁸For a regular expression a, $fst(a) = \{b|bw \in \mathcal{L}(a), b \in \Sigma, w \in \Sigma^*\}.$

⁹The edges (v_1,v_2) are removed such that the SOA A does not derive the expression of form $v_1.label()?v_2.label()?$, which generates the strings that begin with symbol $a \in fst(v.label)$ $(v \in V_s)$ and are not recognized by the SOA A.

in 21. This implies that, for each successor $v \in V_s$ and its label, v.label()? will be produced when the clause in line 28 is used. Then the concatenation $v_1.label()v_2.label()$ can be formed by the iteration $^+$, and can recognize any substrings in S generated by them. That the edges (v_1, v_2) are removed not only ensures the finally derived SORE from U accepts a minimum number of the strings not recognized by the SOA A, but also guarantees the strings occurring in S can be derived by $v_1.label()v_2.label()$. Let A' = A.extract(U). S' is the set of the strings extracted from S such that $A' = \mathbf{2T\text{-INF}}(S')$. By induction, the generated expression v'.label() supports the corresponding conclusions (2) and (3), i.e., M(v'.label(), S', A') = 1.

Case 5: The clause in line 22 was used. Let v be the only successor of $A.q_0$, and a=v.label(). Let SOA A_a be the input of *MinSore* to generate a. Let SOA B_0 be the SOA which is obtained by $A.contract(\{A.q_0, v\}, q_0)$, and $r_0 = MinSore(B_0)$. There exists the set S_0 (resp. S_a) of the substrings, which can be extracted from S such that $B_0 = 2\mathbf{T} \cdot \mathbf{INF}(S_0)$ (resp. $A_a = 2\text{T-INF}(S_a)$). For $\mathcal{L}(r_0)$ (resp. $\mathcal{L}(a)$), S_0 (resp. S_a) and B_0 (resp. A_a), the correspond conclusions (2) and (3) hold by induction. i.e., $M(r_0, S_0, B_0) = 1$ and $M(a, S_a, A_a) = 1$. Then, let $r = concatenate(a, r_0) = ar_0$, for the language $S \subseteq S_a S_0$, $\mathcal{L}(r) = \mathcal{L}(ar_0) = \mathcal{L}(a)\mathcal{L}(r_0) \supseteq S_a S_0 \supseteq S$ for $\mathcal{L}(a) \supseteq S_a$ and $\mathcal{L}(r_0) \supseteq S_0$. This implies $\mathcal{L}(r)$ and S support conclusion (2). And the SOA A can be obtained by concatenating A_a with B_0 . For the SOA A_a (resp. SOA B_0), $\mathcal{L}(a)$ (resp. $\mathcal{L}(r_0)$) supports conclusion (3). Then, for the SOA A, $\mathcal{L}(r)$ supports conclusion (3). i.e., M(r, S, A) = 1.

Case 6: The clause in line 28 was used. Let u and v be chosen in line 28, and let a=u.label() and b=v.label(). There exist corresponding samples S_a , S_b and SOAs A_a , A_b such that $\mathcal{L}(a)$ and $\mathcal{L}(b)$ both support conclusions (2) and (3) by induction. i.e., $M(a,S_a,A_a)=1$ and $M(b,S_b,A_b)=1$. $u,v\in A.first()$, this implies the strings accepted by the current SOA A begin with the substrings, which are either generated by a or generated by b. Let r=or(u.label(),v.label())=or(a,b)=a|b. Then, $\mathcal{L}(r)=\mathcal{L}(a)\cup\mathcal{L}(b)\supseteq S$. $\mathcal{L}(a)$ with respect to the SOA A_a and $\mathcal{L}(b)$ with respect to the SOA A_b support conclusion (3), respectively, then for $\mathcal{L}(r)$ and the SOA A, the corresponding conclusion (3) holds. i.e., M(r,S,A)=1.

The all cases have been analyzed. By induction, for the given finite language S and the corresponding SOA A, the final SORE r is obtained from MinSore, $\mathcal{L}(r)$ with respect to S (resp. with respect to SOA A) supports the conclusion (2) (resp. conclusion (3)). i.e., M(r,S,A)=1. Assume r is not a descriptive SORE for S, then there exists a SORE δ such that $\mathcal{L}(r) \supset \mathcal{L}(\delta) \supseteq S$. Because of $\mathcal{L}(\mathbf{2T\text{-INF}}(\mathcal{L}(r))) = \mathcal{L}(r)$ and $\mathcal{L}(\mathbf{2T\text{-INF}}(\mathcal{L}(\delta))) = \mathcal{L}(\delta)$ (see Lemma 9 in [18]). And $\mathbf{2T\text{-INF}}(S)$ is SOA-descriptive of S [18], $\mathcal{L}(\mathbf{2T\text{-INF}}(S))$ contains the all strings, which are recognized by the SOA A. Then, $|\mathcal{L}(r) \setminus \mathcal{L}(\mathbf{2T\text{-INF}}(S))| > |\mathcal{L}(\delta) \setminus \mathcal{L}(\mathbf{2T\text{-INF}}(S))|$, this implies $\mathcal{L}(r)$ does not include the minimum number of the strings, which is not recognized by the SOA A. This is a contradiction for the SORE r that $\mathcal{L}(r)$ with respect to the SOA A supports

the conclusion (3). Thus, the above assumption does not hold, then the SORE r is a descriptive SORE for S.

C. Proof of Theorem 2

Proof: The initial constructed k_0 -OA A_{k_0} for a given finite sample S exactly recognizes S, i.e., $\mathcal{L}(A_{k_0}) = S$ which holds if only if $S \subseteq \mathcal{L}(A_{k_0})$ and $\mathcal{L}(A_{k_0}) \subseteq S$.

(1) $S\subseteq \mathcal{L}(A_{k_0})$. For a string $s\in S$, first, the suffix s_{ls} of s is computed, and then $s!s_{ls}$ is obtained. s is decomposed into the substrings s_1 and s_2 , where $s_1=s!s_{ls}, s_2=s_{ls}$ and $s=s_1s_2$. Let $\widehat{S}=\{s!s_{ls}|s\in S\}$, the PTA G_p (resp. PTA G_p') is constructed for \widehat{S} (resp. s_{ls}). According to the definition of PTA, $s_1\in \mathcal{L}(G_p)$ and $s_{ls}\in \mathcal{L}(G_p')$. In Algorithm 3, PTAs G_p and G_p' are connected to a graph G, then $s=s_1s_2\in \mathcal{L}(G)$. Some equivalent states in G are merged in lines $19{\sim}22$, G is transformed to a k_0 -OA A_{k_0} , then $\mathcal{L}(G)=\mathcal{L}(A_{k_0})$. Therefore, $s=s_1s_2\in \mathcal{L}(A_{k_0})$. This implies that $\forall s\in S:s\in \mathcal{L}(A_{k_0})$. Thus, $S\subseteq \mathcal{L}(A_{k_0})$.

(2) $\mathcal{L}(A_{k_0}) \subseteq S$. Consider a path (string) $p \in A_{k_0}$, in Algorithm 3, before some equivalent states are merged in lines $19{\sim}22$, the constructed PTAs G_p and G'_p are connected to a graph G. For the graph G, a path in graph A_{k_0} also exists in the graph G, then the path $p \in \mathcal{L}(G)$. For graphs G_p and G'_p , there exist paths p_1 and p_2 such that $p_1 \in \mathcal{L}(G_p)$, $p_2 \in \mathcal{L}(G'_p)$ and $p = p_1p_2$. For $p_1 \in \mathcal{L}(G_p)$ (resp. $p_2 \in \mathcal{L}(G'_p)$), there exists $s_1 \in \widehat{S}: s_1 = p_1$ (resp. $s_2 = s_{ls}$). For a string $\widehat{s} \in \widehat{S}$, $\widehat{s}s_{ls} \in S$. Then, $p = p_1p_2 = s_1s_2 \in S$. This implies that $\forall p \in \mathcal{L}(A_{k_0}): p \in S$. Thus, $\mathcal{L}(A_{k_0}) \subseteq S$.

 A_{k_0} is a deterministic k_0 -OA. For the PTAs G_p and G_p' , they are deterministic by definition. In line 4 of Algorithm 3, S_1 is obtained such that G_p and G_p' are connected to form a deterministic k-OA $(k \ge k_0)$ G. The final k_0 -OA A_{k_0} is obtained by merging some equivalent states in G in lines $19{\sim}22$. The obtained k_0 -OA A_{k_0} is also deterministic.

D. Proof of Theorem 3

Proof: For any given finite sample S and value of k, according to the algorithm ConsK-OA(S,k), proofs are provided by distinguishing a number of different subroutines, which were used in ConsK-OA. Each subroutine has a minimal generalization for processing the current MA such that a descriptive k-OA (w.r.t. the class of deterministic k-OA) can be finally obtained.

 $ConsK_0$ -OA. Initially, the deterministic k_0 -OA A_{k_0} is constructed for S, according to Theorem 2, $\mathcal{L}(A_{k_0}) = S$. If $k \geq k_0$, then A_{k_0} is returned as the constructed deterministic k-OA. A_{k_0} is descriptive of S (w.r.t. the class of deterministic k-OA).

If $k < k_0$, then to obtain the deterministic k-OA A_k , some states in A_{k_0} will be merged by calling subroutines mergeMA, minMerge, MergeSym, MergeEq and Determine.

mergeMA. mergeMA merges the specified pairs of states (in set V) in an MA \mathscr{A} . Assume that, the pairs of states in V are merged such that the finally returned MA has a minimal generalization.

minMerge. First, the specified pair of states (v_1, v_2) $((v_1, v_2) \in D_a)$ is searched. Condition (1) ensures that merge-MA merges the pairs of states in $T'(v_1, v_2)$ in MA $\mathscr A$ such that the returned MA has a minimal generalization. Condition (2) ensures that more states, whose labels use the symbols in $\mathscr A.\mathcal S$, can be merged such that the returned MA $\mathscr A$ has minimum number of states. Condition (3) ensures that more states, whose labels use the same symbol a $([v_1v_2]_{\mathscr A}^{=a})$, can be merged. Then, the pairs of states in $T'(v_1, v_2)$ are merged by calling mergeMA.

For condition (1), $gdn(v_1,v_2)$ measures the generalization degree of the new formed MA after v_1 and v_2 were merged. More states can be merged according to conditions (2) and (3). If it is just states v_1 and v_2 merged to state v, then $v.m = v_1.m \cup v_2.m$, and

$$\begin{aligned} v_1.m \cup v_2.m, \text{ and} \\ gdn(v_1,v_2) &= \sum_{u \in v.m} in(u) (\sum_{u \in v.m} out(u) - \sum_{a \in \Sigma} \\ (\sum_{u \in Succ(v.m)} in_a(u) - 1)) - \sum_{u \in v.m} in(u)out(u). \end{aligned}$$

Otherwise,

$$gdn(v_1, v_2) = gdn(v_1, v_2) + \sum_{(w_1, w_2) \in W} gdn(w_1, w_2).$$
 (2)

W is set of the pairs of states specified to be merged. According to Equation 1, it is easy to prove that Equation 2 holds. minGdn returns the set of pairs of states, where each pair of states (v_1,v_2) such that $gdn(v_1,v_2)$ has the minimum value for the pairs of states in specified set D_a . Thus, the searched states v_1,v_2 such that the pairs of states in $T'(v_1,v_2)$ are merged by mergeMA has a minimal generalization for the current obtained MA, then the finally returned MA can have a minimal generalization by induction.

MergeSym. In *MergeSym*, let P_l denote the set of pairs of states. Each pair of states (v_1, v_2) in P_l is a direct edge in the current MA. Let P'_l denote the set of pairs of states, for each pair of states (v_1, v_2) in P'_l , v_2 is reachable from v_1 , but (v_1, v_2) is not a direct edge in the current MA.

Let the current MA be \mathscr{A} . If step (1) is chosen, then the pair of states (v_1,v_2) $([v_1]=[v_2]\in\mathscr{A}.\mathcal{S})$ is selected from P_l such that there is a longest path (acyclic) from $\mathscr{A}.q_0$ to $v_2.$ v_1 and v_2 are merged to a new node v_1 such that a self loop is produced. Compared with the possibly produced the strongly connected loop component, self loop has a minimal generalization for MA \mathscr{A} .

If step (2) is chosen, then subroutine *minMerge* is called, the returned MA has a minimal generalization by induction.

If step (3) is chosen, then the pair of states (v_1, v_2) ($[v_1] = [v_2] \in \mathscr{A}.\mathcal{S}$) is selected from P'_l that there is a longest path (acyclic) from $\mathscr{A}.q_0$ to $v_2.$ v_1 and v_2 are merged to a new node v_1 such that a strongly connected loop component is produced. Here, there does not exist any pair of states that can be merged in step (1) and step (2). i.e., v_1 and v_2 are uniquely required to be merged for obtaining a deterministic k-OA. The produced strongly connected loop component has a minimal generalization for MA \mathscr{A} .

MergeEq. Let the current MA be \mathscr{A} . *MergeEq* returns an MA by recursively merging the two equivalent states in the MA \mathscr{A} . The two equivalent states are merged such that there is no generalization for MA \mathscr{A} .

Determine. If an MA M is a non-deterministic MA, then Determine returns a deterministic MA. Otherwise, Determine returns M directly. Some states are compulsory to be merged for obtaining a deterministic MA. The produced generalization for the current MA is inevitable.

Therefore, we prove all subroutines processing the current MA has a minimal generalization except the compulsory generalization for constructed deterministic k-OA. Since the initial constructed k_0 -OA is equivalent to the given finite sample S, and the labels of the states in MA are converted to the corresponding labels in a k-OA, thus, the constructed deterministic k-OA has a minimal generalization for the given finite sample S, i.e., the constructed deterministic k-OA A_k is descriptive of S (w.r.t. the class of deterministic k-OA).

E. Proof of Corollary 1

Proof: For any given finite sample S and value of k, a k-OA $A_k := ConsK$ -OA(S,k), according to Theorem 3, the deterministic k-OA A_k is descriptive of S (w.r.t. the class of deterministic k-OAs), then $\mathcal{L}(A_k) \supseteq S$. A k-ORE r_k is descriptive of S, then $\mathcal{L}(r_k) \supseteq S$. Consider $\overline{A_k} = marking(A_k)$, for a string $s = a_1 \cdots a_{|s|} \in S$, where $a_i \in \Sigma$ $(1 \le i \le |s|)$, there is an accepting run $q_0a_1 \cdots a_{|s|}q_f$ in the k-OA A_k , the corresponding accepting run in $\overline{A_k}$ is $q_0\overline{a_1}\cdots\overline{a_{|s|}}q_f$. Let $\overline{s}=\overline{a_1}\cdots\overline{a_{|s|}}$, then each $s \in S$, there exists a $\overline{s}=marking(s)$. Let $\overline{S}=\{\overline{s}|\overline{s}\in\mathcal{L}(\overline{A_k}), s \in S\}$, then $\overline{S}\subseteq\mathcal{L}(\overline{A_k})$. Similarly, there exists a mark for r_k such that $\overline{S}\subseteq\mathcal{L}(\overline{r_k})$.

Therefore, $\overline{r_k}$ (resp. $\overline{A_k}$) can be regarded as a SORE (resp. SOA), the k-ORE r_k is descriptive of S, then, the SORE $\overline{r_k}$ is descriptive of \overline{S} . The deterministic k-OA A_k is descriptive of S, then, the SOA $\overline{A_k}$ is descriptive of \overline{S} . According to Corollary 17 in [18], if the SORE $\overline{r_k}$ is descriptive of \overline{S} , then $\mathcal{L}(\overline{r_k}) \supseteq \mathcal{L}(\overline{A_k})$. Thus, $\mathcal{L}(r_k) \supseteq \mathcal{L}(A_k)$.

F. Proof of Theorem 4

Proof: For any given finite sample S and value of k, k-OA $A_k := ConsK$ -OA(S,k), then, according to Theorem 3, the deterministic k-OA A_k is descriptive of S (w.r.t. the class of deterministic k-OAs), then $\mathcal{L}(A_k) \supseteq S$. Let $r_k := Koa2Kore(A_k)$.

(1) $\mathcal{L}(r_k) \supseteq S$. $\overline{A_k} = marking(A_k)$, for $s \in S$, $s \in \mathcal{L}(A_k)$. For $\overline{A_k}$, there exist marks $\overline{s} = marking(s)$ such that $\overline{s} \in \mathcal{L}(\overline{A_k})$. Let $\overline{S} = \{\overline{s} | \overline{s} \in \mathcal{L}(\overline{A_k}), s \in S\}$, then for a string $\overline{s} \in \overline{S}$, $\overline{s} \in \mathcal{L}(\overline{A_k})$. Therefore $\overline{S} \subseteq \mathcal{L}(\overline{A_k})$. Since deterministic k-OA A_k is descriptive of S, for sample \overline{S} , $\overline{A_k}$ is an SOA-descriptive SOA.

In algorithm Koa2Kore, the SORE r is derived from the SOA \overline{A}_k by using algorithm MinSore. According to Theorem 1, for the sample \overline{S} , r is a SORE-descriptive SORE. Then,

according to Corollary 17 in [18], $\mathcal{L}(r) \supseteq \mathcal{L}(\overline{A_k})$. The k-ORE $r_k = \overline{r}$, and $\mathcal{L}(r) \supseteq \mathcal{L}(\overline{A_k}) \supseteq \overline{S}$. Therefore, $\mathcal{L}(r_k) \supseteq \mathcal{L}(A_k) \supseteq S$.

- (2) If r_k is a deterministic k-ORE, then r_k is descriptive of S (w.r.t. the class of deterministic k-OREs). Assume the deterministic k-ORE r_k is not descriptive of S, there exists a deterministic k-ORE δ_k such that $\mathcal{L}(r_k) \supset \mathcal{L}(\delta_k) \supseteq S$. For sample $S' = \overline{S}$, $\mathcal{L}(\overline{r_k}) \supseteq S'$, then there exist unified marks such that $\mathcal{L}(\overline{r_k}) \supset \mathcal{L}(\overline{\delta_k}) \supseteq S'$. $\overline{\delta_k}$ is a SORE. With respect to the class of SOREs, $\overline{r_k}$ is not a descriptive SORE for S'. There is a contradiction to the above conclusion that $\overline{r_k}$ is SORE-descriptive of S' (i.e. \overline{S}). Thus, the deterministic k-ORE r_k is descriptive of S (w.r.t. the class of deterministic k-OREs).
- (3) If $A_k = A_{k_0}$, then $\mathcal{L}(r_k) = S$. According to Theorem 2, $\mathcal{L}(A_k) = S$. The k-ORE r_k is transformed from the k-OA A_k by using algorithm MinSore, then $\mathcal{L}(r_k) \supseteq \mathcal{L}(A_k) = S$. Since $A_k = A_{k_0}$, the k-OA is constructed by connecting two PTAs built for S and merging some equivalent states. Then, the graph A_k does not include strongly connected looped components, and each node v in A_k , which satisfies that $v_1 \to v$, $v \to v_2$ and $(v_1, v_2) \in A_k \cdot E$, is not associated with any income edges. According to the procedures in algorithm MinSore, the operator $^+$ does not be introduced into a k-ORE, and the operator $^+$ does not be introduced into the subexpressions of a k-ORE, which should have been exactly matched by the substrings occurring in S. This implies that there are no any generalizations in converting the k-OA to a k-ORE. Thus, $\mathcal{L}(r_k) = \mathcal{L}(A_k) = S$.

G. Proof of Corollary 2

Proof: For any given finite sample S and value of k, $A_k := ConsK\text{-OA}(S, k)$, let $r_k := Koa2Kore(A_k)$, Corollary 1 shows that there is $\mathcal{L}(r_k) \supseteq \mathcal{L}(A_k) \supseteq S$.

If the k-OA A_k is an equivalent representation of a target k-ORE r_t , i.e., $\mathcal{L}(A_k) = \mathcal{L}(r_t)$. Then, $\mathcal{L}(r_k) \supseteq \mathcal{L}(r_t) \supseteq S$. There exists unified marks such that $\mathcal{L}(\overline{r_k}) \supseteq \mathcal{L}(\overline{r_t}) \supseteq \overline{S}$. $\overline{r_k}$ and $\overline{r_t}$ are SOREs. In Koa2Kore, for the given sample \overline{S} as input, $\overline{r_k}$ is derived by MinSore, if $\mathcal{L}(\overline{r_k}) \supset \mathcal{L}(\overline{r_t})$, then there is a contradiction to Theorem 1. Thus, $\mathcal{L}(\overline{r_k}) = \mathcal{L}(\overline{r_t})$, then $\mathcal{L}(r_k) = \mathcal{L}(r_t)$, $Koa2Kore(A_k)$ is equivalent to r_t .

H. Proof of Theorem 5

Proof: For any given finite language S, $r_k := InfKore(S)$, the subroutine Select, which is required to select a deterministic expression, guarantees that the finally returned r_k is a deterministic k-ORE. According to Theorem 4, if r_k is a deterministic k-ORE, then r_k is descriptive of S (w.r.t. the class of deterministic k-OREs). Thus, a deterministic k-ORE derived by InfKore is descriptive of S (w.r.t. the class of deterministic k-OREs).