Following by Cao, 2016 ¶

Цель работы:

- 1. Реализовать алгоритмы спектральной и колориметрической реконструкции на основе применения взвешенных версий РСА, описанных в Cao et al.(2016).
- 2. Сравнить результаты реконструкций спектров на основании среднего RMSE. В случае колориметрической репродукции на основании двух метрик цветово го различия СІЕ L*a*b* 1976 и СІЕDE 2000.

Полную версию реализованного алгоритма и визуализации результатов можно найти <u>здесь (https://github.com/Slava1688/iitp-color/blob/main/Autumn/Following%20by%20Cao.ipynb</u>).

Обзор данных

В качестве обучающих данных в работе используются 1600 спектров поверхностного отражения Munsell colors glossy, в качестве тестовых данных - небольшой набор из датасета NCS, включающий в себя 183 спектра природных объектов (листья, цветы и проч.). Также, в последней части используются даные 337 спектров окрасок листьев берёз, 370 спектров хвои сосен и 349 спектров, соответсвюущих окраскам хвои елей.

Два основных осветителя, используемые для колориметрической реконструкции, - стандартные осветители СІЕ D65 и A (соответственно - нормальное дневное освещение и нормальное комнатное освещение вольфрамовой нитью).

В качестве функций чувствительности используются функции цветового захвата для стандаратного наблюдателя CIE 1931.

Все спектральные данные лежат в диапазоне длин волн от 400 нм до 700 нм с интервалом в 5 нм. Заметим, что в оригинальной работе Сао использовался несколько иной набор спектральных данных, и дискретизация составляла 10 нм.

Теоретическое описание эксперимента

Пусть R - матрица $m \times n$, где m - число спектров поверхностного отражения в используемом наборе данных, а n - число длин волн, использующихся для дискретизации (в нашем случае - 61). Взвешенная матрица данных может быть определена как:

$$R_w = RW$$
,

где W - диагональная $n \times n$ матрица, на диагонали которой расположены значения весовой функции.

Применяя сингулярное разложение ко взевешнной матрице данных, получим:

$$R_w = U_w \Sigma_w V_w^T,$$

где индекс w обозначает применение разложения ко взвешенным, а не оригинальным данным.

Реконструкцию спектральных данных при использовании весовой функции и d главных компонент можно выразить как:

$$\hat{R} = (\tilde{V}_w^T C_w + \bar{R}_w) W^{-1},$$

где $ilde{V}_w$ - первые d столбцов унитарной матрицы V из сингулярного разложения (базисные векторы), C_w - столбец коэффициентов, $ar{R}_w$ - среднее значение спектра во взвешенном наборе данных.

В работе Cao et al.(2016) были описаны следующие варианты весовых функций:

$$\begin{split} WF_1 &= (\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)) \, / \, max(\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)) \\ WF_2 &= (\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda) + 1) \, / \, max(\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda) + 1) \\ WF_3 &= (\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \, / \, max(\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \\ WF_4 &= (\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \times D_{65} \, / \, max((\sqrt{\bar{x}(\lambda)} + \sqrt{\bar{y}(\lambda)} + \sqrt{\bar{z}(\lambda)}) \times D_{65}), \end{split}$$

где $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ - функции цветового захвата стандартного наблюдателя СІЕ 1931, D_{65} - относительное спектральное распределение мощности стандратного осветителя СІЕ D65.

Рис. 1. Кривые весовых функций

Рис. 2. Относительное спектральное распределение мощности стандартных осветителей CIE D65 и CIE A

Рис. 3. Обзор сингулярных значений матрицы данных спектров Munsell Glossy после применения различных видов РСА

Можно видеть, что характер спада сингулярных значений от первого до четвертого сохраняется постоянным, независимо от использования весовой функции. Единственно, что меняется - величина самих значений, причём для оригинального РСА эти значения наибольшие.

Спектральная реконструкция

Рассмотрим несколько примеров спектральной реконструкции.

Standard PCA, RMSE: 0.0033 WF1 PCA, RMSE: 0.00665 WF2 PCA, RMSE: 0.00438 WF3 PCA, RMSE: 0.00584 WF4 PCA, RMSE: 0.00642

Reflectance spectrum from munsell set №1500

Standard PCA, RMSE: 0.0694 WF1 PCA, RMSE: 0.07383 WF2 PCA, RMSE: 0.07217 WF3 PCA, RMSE: 0.07152 WF4 PCA, RMSE: 0.07105

Reflectance spectrum from natural set №0

Усреднение по набору спектров используется для центрирования матрицы данных перед использованием РСА. В данном случае и ниже рассматриваются две ситуации, когда аппроксимация спектров из тестового набора происходит с помощью центрирования по собственному, тестовому среднему спектру, и когда используется предрассчитанный на обучающей выборке средний спектр.

Ниже представлена аппроксимация спектра из малого набора природных объектов с использованием предрассчитанного среднего спектра из набора Munsell Glossy.

Standard PCA, RMSE: 0.04255 WF1 PCA, RMSE: 0.14927 WF2 PCA, RMSE: 0.10187 WF3 PCA, RMSE: 0.07785 WF4 PCA, RMSE: 0.11412

Reflectance spectrum from natural set №0

Исследование ошибок спектральной реконструкции

Таблица 1. Ошибки спектральной реконструкции спектров при разном числе главных компонент, полученных из набора Munsell Glossy

Рис. 4. Зависимость величины ошибки спектральной реконструкции от числа главных компонент

Хорошо видно, что стандартный РСА обладет самой высокой точностью спектрального восстановления. Как и следовало ожидать, реконструкция природных спектров на основе главных компонент, полученных из набора Munsell, показывает более худшие результаты.

Что касается аппроксимации природных спектров с использованием предрассчитанного среднего по набору Munsell, то здесь стандартный РСА демонстрирует более лучшие результаты, чем с использованием среднего по самому набору природных спектров, в то время как все остальные методы показыают неадекватные результаты.

Отметим, что первые два графика практически полностью совпадают с аналогичными результатами Cao. Это позволяет удостовериться в непротиворечивости используемых здесь методов и методов, предложенных в статье.

Исследование ошибок колориметрической реконструкции

Рассмотрим ошибку колориметрической реконструкции вектор-стимулов с точки зрения формулы цветовой разности CIE 1976.

Таблица 2. Ошибки ΔΕ CIE 1976 колориметрической реконструкции с использованием спектров из набора Munsell Glossy и двух стандартных источников освещения при различном числе главных компонент

1											
In [65]:	1	munsel	l_delta_E	=							
Out[65]:					Mean ΔE C	IE 76 (D65)				Mean ΔE	CIE 76 (A
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4
	3	48.776540	37.623003	39.065721	30.915317	21.752613	31.349908	20.379730	17.357226	9.495627	10.878540
	4	21.144426	13.810725	6.691742	4.066266	3.106071	24.155650	17.458273	11.560459	7.689243	5.594527
	5	11.276947	8.909948	6.145395	3.879308	2.912693	11.357834	9.787405	6.280684	3.839130	3.647724
	6	10.775981	7.011560	5.341936	3.788762	1.313345	9.273009	5.992276	4.704038	2.939120	2.412941
	7	3.337176	4.038655	1.856463	0.606806	1.274771	2.513351	5.482523	2.438602	0.734632	1.539444
	8	2.585254	3.204024	0.698303	0.522604	0.879999	2.091139	4.167071	1.182442	0.650057	1.117401
	4										•

Таблица 3. Ошибки ΔΕ CIE 1976 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент

In [66]:	1	NCS_del	ta_E							
Out[66]:					Mean ΔE	CIE 76 (D65)				Mean
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF
	3	205.743696	201.739025	199.104657	199.474175	198.261287	226.210838	217.958818	216.324507	217.047316
	4	202.337215	197.621455	196.003388	196.698163	196.626465	223.008540	218.236471	215.809042	217.045342
	5	200.691628	196.961088	196.163667	196.799388	196.692906	218.310663	218.117596	216.051628	217.277949
	6	200.628923	195.955384	196.536968	196.504449	197.067539	219.218677	217.364060	215.930236	216.700933
	7	198.304238	197.535586	196.755398	197.205274	197.058144	217.989427	217.855084	215.956707	216.953657
	8	198.029164	198.101379	197.189369	197.351627	197.424671	217.633631	218.531336	216.566987	216.947151
	4									•

Таблица 4. Ошибки ΔΕ CIE 1976 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент, полученных путём центрирования данных по набору спектров Munsell Glossy

In [67]:	1	NCS_pre	calc_delt	a_E						
Out[67]:					Mean ΔE	CIE 76 (D65)				Mean <i>L</i>
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3
	3	115.994692	207.767380	259.235376	214.588592	305.010256	97.053565	202.431612	245.640463	202.503454
	4	89.334382	248.246489	162.077248	145.739838	280.692646	87.450769	219.484204	209.978240	197.894399
	5	63.069168	260.755636	164.221803	149.257204	278.287048	59.346072	254.109027	210.255517	205.538013
	6	56.204556	259.147259	143.902756	154.362364	274.468452	40.940234	282.460190	176.602585	218.248316
	7	13.500177	286.031437	155.489691	147.987252	276.174135	13.158314	278.152530	174.701404	214.498044
	8	10.612311	307.455674	151.958885	145.593746	278.448161	11.333710	308.341824	164.937715	217.905555

Теперь рассмотрим ошибку колориметрической реконструкции с точки зрения метрики CIEDE 2000.

Таблица 5. Ошибки ΔE CIEDE 2000 колориметрической реконструкции с использованием спектров из набора Munsell Glossy и двух стандартных источников освещения при различном числе главных компонент

In [68]:	1	1 munsell_delta_E_2000														
Out[68]:		Mean ΔE CIE 2000 (D65) Mean ΔE CIE 2000 (A)														
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4					
	3	7.925807	6.218281	6.776830	5.214478	3.555133	4.959469	2.645616	2.808463	1.264655	1.684607					
	4	2.912662	1.730049	0.901608	0.493561	0.427609	3.395873	2.149358	1.507626	0.910472	0.748922					
	5	1.630954	1.331513	0.858370	0.494229	0.412665	1.620014	1.503465	0.983940	0.509039	0.537501					
	6	1.571617	1.122874	0.687707	0.478940	0.184952	1.299208	1.110904	0.678121	0.386963	0.353045					
	7	0.445351	0.681053	0.348010	0.106393	0.180067	0.392006	0.994082	0.475401	0.135023	0.264298					
	8	0.348312	0.608873	0.096395	0.094067	0.150449	0.322860	0.828396	0.172619	0.109978	0.207700					

Таблица 6. Ошибки ΔE CIEDE 2000 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент

In [69]:	1	NCS_de	lta_E_200	90							
Out[69]:				N	Mean ΔE CIE	2000 (D65)				Mean ΔE C	CIE 2000 (
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF
	3	27.924891	28.202428	27.446391	27.875106	27.700026	30.993940	31.208850	30.388122	30.992131	30.68531
	4	27.603466	27.338412	26.857130	27.189690	27.212340	30.711803	31.118030	30.091612	30.946557	31.04568
	5	28.046494	27.122355	26.972928	27.215333	27.196286	30.933081	31.183526	30.399951	31.062225	31.11960
	6	28.275266	27.145280	27.085013	27.192632	27.276211	31.696988	31.326483	30.519399	30.991145	31.25624
	7	27.841940	27.419717	27.084161	27.288121	27.275860	31.465473	31.464560	30.620989	31.144631	31.17584
	8	27.584824	27.492190	27.311347	27.324396	27.339970	31.263087	31.543101	30.997534	31.124301	31.18372
	4										•

Таблица 7. Ошибки ΔE CIEDE 2000 колориметрической реконструкции с использованием спектров из набора NCS и двух стандартных источников освещения при различном числе главных компонент, полученных путём центрирования данных по набору спектров Munsell Glossy

Out[70]:

			N	lean ΔE CIE	2000 (D65)	5) Mean ΔE CIE 2000					
	PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4	
3	9.063578	17.463604	29.251831	26.731469	32.212348	9.512466	15.850357	27.506772	24.491189	31.348114	
4	8.708562	21.588995	13.223255	14.000492	26.106014	9.534631	16.475202	21.862345	23.034062	32.840727	
5	5.748382	20.970423	13.016822	14.318557	26.286279	5.244597	18.136707	19.542958	22.332234	33.025640	
6	5.734914	18.589660	11.464475	15.253097	25.286897	4.773428	23.021806	17.302270	24.729998	32.119576	
7	2.176629	23.356098	13.222272	12.758238	25.546187	2.112674	21.246901	15.342296	22.886126	34.165870	
8	1.677332	24.280456	13.262340	12.524340	25.372259	1.699141	21.991334	14.374947	23.124608	34.191014	
4										•	

Рис. 5. Зависимость ошибок CIE 1976 колориметрической реконструкции от числа главных компонент

Рис. 6. Зависимость ошибок CIEDE 2000 колориметрической реконструкции от числа главных компонент

Результаты колориметрической реконструкции для природных спектров не подтверждают результатов статьи. Только для спектров из набора Munsell Glossy можно заметить схожую зависимость с той, что описана в статье, однако сами величины ошибок в данном эксперименте на порядок выше для CIE 1976 и примерно в дава раза больше для CIEDE 2000.

Так как тестовый набор данных в данном эксперименте достаточно однообразен и мал, попробуем рассмотреть случай спектральной и колориметрической реконструкции для большего корпуса спектров.

Попытка улучшить результаты восстановления тестовых спектров путём увеличения объёма данных

Тестовый набор 183 спектров NCS был дополнен 337 спектрами окрасок листьев берёз, 370 спектрами окрасок хвои сосен и 349 спектрами, соответсвюущих окраскам хвои елей.

Спектральная реконструкция

Таблица 7. Ошибки спектральной реконструкции расширенной базы тестовых спектров при разном числе главных компонент, полученных из набора Munsell Glossy

In [81]:	1	forest	t_errors									
Out[81]:					RMSE NC	S & forest	RM	ISE NCS &	forest (Cen	tered by Mu	ınsell Set)	
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4	
	3	0.226635	0.227032	0.226769	0.226894	0.226947	0.015655	0.047969	0.045194	0.038639	0.064721	
	4	0.226510	0.226908	0.226626	0.226763	0.226809	0.014724	0.076775	0.057519	0.047771	0.075896	
	5	0.226362	0.226733	0.226452	0.226586	0.226628	0.013330	0.081309	0.063829	0.055928	0.088209	
	6	0.226288	0.226622	0.226342	0.226455	0.226577	0.012689	0.102664	0.077783	0.075928	0.088052	
	7	0.226168	0.226585	0.226271	0.226408	0.226445	0.011129	0.121930	0.079519	0.080948	0.124061	
	8	0.226143	0.226512	0.226227	0.226321	0.226369	0.010439	0.129726	0.082840	0.094644	0.129558	
In [82]:	1	all_e	rrors #	Ниже про	одублиро	вана та	блица 2	для удо	бства ср	авнения	•	
Out[82]:					RMS	E Munsell				R	MSE NCS	
		PCA	WF1	WF2	WF3	WF4	PCA	WF1	WF2	WF3	WF4	PC
	3	0.021134	0.026510	0.022945	0.024092	0.024941	0.072012	0.076329	0.073412	0.074761	0.075345	0.0441
	4	0.014436	0.018955	0.015725	0.016939	0.017557	0.070087	0.074778	0.071383	0.072991	0.073501	0.0408
	5	0.010574	0.015060	0.011600	0.013047	0.013577	0.068179	0.073226	0.069448	0.071198	0.071776	0.0352
	6	0.008268	0.012668	0.008966	0.010542	0.012275	0.066694	0.071490	0.067543	0.069102	0.070904	0.0322
	_	0.006289	0.011220	0.007254	0.009135	0.009606	0.064806	0.070522	0.066287	0.068140	0.068655	0.0282
	7	0.000203	0.011220	0.001201								
	8	0.005022		0.005636	0.007457	0.008237	0.064276	0.069756	0.065419	0.066747	0.067534	0.0269

Рис. 7. Зависимость величины ошибки спектральной реконструкции от числа главных компонент для расширенного тестового набора

Как видим, расширение спектральной тестовой выборки оказало отрицательное влияние на случай, когда не используется центрирование по обучающей выборке. Учитывая малые отклонения ошибок, увеличение числа главных компонент практически не улучшает спектральную реконструкцию в этом случае.

В то же время, это позволило более чем в два раза улучшить спектральную реконструкцию при использовании стандартного РСА для случая использования центрирования по обучающей выборке. Прочие версии РСА, хоть как и ранее не улучшают реконструкцию при увеличении числа компонент и проигрывают стандартному методу, также повысили точность на порядок.

Колриметрическая реконструкиция

In [97]:	1	NCS_pre	ecalc_de	lta_E							
Out[97]:					Mea	ın ΔE CIE 76	(D65)				Mean Z
		PCA	WF	=1 V	VF2	WF3	WF4	PCA	WF1	WF2	WF3
	3	115.994692	207.76738	30 259.235	376 214.58	8592 305.0	10256 97	7.053565	202.431612	245.640463	202.503454
	4	89.334382	248.24648	39 162.077	248 145.73	9838 280.6	92646 87	7.450769	219.484204	209.978240	197.894399
	5	63.069168	260.75563	36 164.221	803 149.25	7204 278.2	87048 59	9.346072	254.109027	210.255517	205.538013
	6	56.204556	259.14725	59 143.902	756 154.36	2364 274.4	68452 40	0.940234	282.460190	176.602585	218.248316
	7	13.500177	286.03143	37 155.489	691 147.98	7252 276.1	.74135 13	3.158314	278.152530	174.701404	214.498044
	8	10.612311	307.45567	74 151.958	885 145.59	3746 278.4	48161 13	1.333710	308.341824	164.937715	217.905555
	4 ■										>
	_										
In []:	1										
In [98]:	1	NCS_fo	rest_del	ta_E_200	0						
Out[98]:				N	lean ΔE CIE	2000 (D65)				Mean ΔE (CIE 2000 (A)
		PCA	WF1	WF2	WF3	WF4	PCA	w	F1 WF	2 WF3	WF4
	3	7.687776	12.777319	16.577661	14.701460	27.251338	5.902154	12.4739	63 23.87020	05 22.707882	35.587843
	4	5.786769	17.449147	9.705297	10.023602	24.658339	7.519545	13.3447	85 19.64118	38 22.120901	36.312583
	5	5.067541	16.298293	9.772811	10.460875	24.780936	4.257967	15.4955	07 16.43978	33 21.466030	36.383049
	6	5.140417	14.995303	9.201905	11.058010	23.911719	4.210805	20.6403	45 14.02450	04 24.220320	35.551085
	7	2.625279	17.626625	10.088148	9.721450	24.155986	3.225236	18.6654	46 13.08488	32 22.460151	38.285274
	8	1.940230	17.782917	10.430611	9.516520	24.021796	2.549139	19.4250	23 11.41619	95 22.779133	38.362851
	4										+
In [99]:	1	NCS_de	lta_E_20	00							
Out[99]:					Mean ΔE CIE	E 2000 (D65))			Mean Δ	E CIE 2000 (
		PCA	WF1	WF2	WF3	WF4	PC	CA	WF1 \	WF2 WI	3 WF
	3	27.924891	28.202428	27.446391	27.875106	27.700026	30.9939	40 31.20	8850 30.388	30.9921	30.68531
	4	27.603466	27.338412	26.857130	27.189690	27.212340	30.7118	03 31.11	8030 30.091	.612 30.9465	31.04568
	5	28.046494	27.122355	26.972928	27.215333	27.196286	30.9330	81 31.18	3526 30.399	951 31.06222	25 31.11960
	6	28.275266	27.145280	27.085013	27.192632	27.276211	31.6969	88 31.32	6483 30.519	30.9911	15 31.25624
	7	27.841940	27.419717	27.084161	27.288121	27.275860	31.4654	73 31.46	4560 30.620	989 31.14463	31.17584
	8	27.584824	27.492190	27.311347	27.324396	27.339970	31.2630	87 31.54	3101 30.997	7534 31.12430	01 31.18372
	4										•
In []:[1										

In [100]: NCS_forest_precalc_delta_E_2000 Out[100]: Mean ΔE CIE 2000 (D65) Mean ΔE CIE 2000 (A) WF2 **PCA** WF1 WF3 WF4 **PCA** WF1 WF2 WF3 WF4 7.687776 12.777319 16.577661 14.701460 27.251338 5.902154 23.870205 22.707882 35.587843 12.473963 17.449147 5.786769 9.705297 10.023602 24.658339 7.519545 13.344785 19.641188 22.120901 36.312583 5.067541 16.298293 9.772811 10.460875 24.780936 4.257967 15.495507 16.439783 21.466030 36.383049 5.140417 14.995303 9.201905 11.058010 23.911719 4.210805 20.640345 14.024504 24.220320 35.551085 2.625279 17.626625 10.088148 9.721450 24.155986 3.225236 18.665446 13.084882 22.460151 38.285274 1.940230 17.782917 10.430611 9.516520 24.021796 2.549139 19.425023 11.416195 22.779133 38.362851 4 In [101]: NCS_precalc_delta_E_2000 Out[101]: Mean ΔE CIE 2000 (D65) Mean ΔE CIE 2000 (A) WF2 WF4 PCA WF1 WF3 WF4 PCA WF1 WF2 WF3 9.063578 17.463604 29.251831 26.731469 32.212348 9.512466 15.850357 27.506772 24.491189 31.348114 8.708562 21.588995 13.223255 14.000492 26.106014 9.534631 16.475202 21.862345 23.034062 32.840727 5.748382 20.970423 13.016822 14.318557 26.286279 5.244597 18.136707 19.542958 22.332234 33.025640 5.734914 18.589660 11.464475 15.253097 25.286897 4.773428 23.021806 17.302270 24.729998 32.119576 2.176629 23.356098 13.222272 12.758238 25.546187 2.112674 21.246901 15.342296 22.886126 34.165870 12.524340 25.372259 1.677332 24.280456 13.262340 1.699141 21.991334 14.374947 23.124608 34.191014 NCS & forest, ΔE CIE 1976 (D65) NCS & forest, ΔE CIE 1976 (A) 441.0 443.2 440.8 440.6 440.4 ∜ 442.6 \exists 440.2 442.4 442.2 442.0 439.4 Number of principal components Number of principal components NCS & forest (Centered by Munsell Set), ΔE CIE 1976 (D65) NCS & forest (Centered by Munsell Set), ΔE CIE 1976 (A) 200 175 150 125 125 씽 ¥ 75 50

> PCA WF1 WF2 WF3 WF4

> > Number of principal components

Number of principal components

PCA WF1 WF2 WF3

1

Очевидно, попытка улучшить результаты за счёт увеличения числа тестовых данных, не принесла никаких положительных результатов в случае колориметрической реконструкции. В целом, учитывая однообразие дополнительных спектров, значительного улучшения ожидать и не приходилось. Это подтверждает идею о важности разнообразия спектров в наборах данных для полноценной реконструкции.

Вывод

В целом, большая часть результатов проведённых экспериментов не подтверждает, а местами прямо противоречит результатам Cao et al. Это может быть вызвано рядом причин, однако доказывает тот факт, что колориметрическая реконструкция сильно зависит от данных, а также их обработки и условий эксперимента. В связи с этим легко поставить под сомнение универсальность выводов в этой теме. Скорее всего, на потенциальной практике следует заранее проводить серию эксперименов с имеющимися данными, чтобы понять какой метод лучше.