

## 1 Leistungsanpassung

Es sei  $R_1 = 10k\Omega$ ,  $R_2 = 12k\Omega$ , C = 47nF und  $\underline{U}_0 = 30V$  mit f = 400Hz.

Die Schaltung soll an den Klemmen (A) (B) mit einer Impedanz  $\underline{Z}_L$  belastet werden, so dass  $R_3$  maximal mögliche Leistung aufnimmt.



- a) Welche Werte müssen R<sub>3</sub> und L haben?
- b) Welche Leistung wird dann R<sub>3</sub> zugeführt?

Tipp: Ersatzquelle bezüglich (A), (B)

[Lösung: a)  $6,04k\Omega$ ; 606mH; b) 14,46mW]

## 2 Wirk-, Scheinleistung und Leistungsfaktor

Gegeben sind  $\underline{Z}_1 = (5+j7,5)\Omega$ ;  $\underline{Z}_2 = (15+j5)\Omega$ ;  $\underline{Z}_3 = (5-j5)\Omega$  und  $\underline{U} = 220V$ .

- a) Berechnen Sie die gesamte Wirkleistung!
- b) Wie groß sind Scheinleistung und Leistungsfaktor?

[Lösung: 3,87kW; 4,33kVA; 0,894]



## 3 Blindstrom(teil)-kompensation

Ein Verbraucher (z.B. Motor) kann als Parallel-Ersatzschaltbild R//L beschrieben werden.

Berechnen Sie mit R = 12,5 $\Omega$ ; L = 0,04H; U<sub>0</sub> = 230V mit f = 50Hz die Größen

- Generatorstrom <u>I</u><sub>0</sub>
- Leistungsfaktor cos φ
- Blindleistung Q

für jeweils die folgenden Fälle:

- a. ohne  $C_K$
- b. mit  $C_K = 100 \mu F$
- c. berechnen Sie dasjenige  $C_K$ , bei dem gilt:  $|\underline{l}_0| = l_0 = 19,5A$



10.09.2018

[Lösung: a) 0,709; 25,9A $\angle$ -44,8°; 4,21kvar; b) 21,48A $\angle$ -31°; c) 164 $\mu$ F (und 342,7 $\mu$ F)]