

Outline Machine learning techniques Regression Simple Linear regression Multiple Linear regression Classification K-Nearest Neigbor **Decision Tree Logistic Linear** Clustering Recommender Systems

Machine Learning Techniques

Machine Learning techniques :

- Regression/Estimation
 - Predicting continuous values
- Classification
 - Prediction the item class/ category of a case
- Clustering
 - Finding the structure of data / summarization
- Associations
 - Finding item that co-occur

- Anomaly detection
 - Discovering abnormal and unusual case
- Sequence mining
 - Predict next events
- Dimension Reduction
 - Reducing the size of data
- Recommendation systems
 - Recommending items

– What is Regression ?

Regression

- Type of Regression models :
 - Simple Linear Regression
 - Simple Linear Regression
 - Simple Non-Linear Regression
 - Multiple Linear Regression
 - Multiple Linear Regression
 - Multiple Non linear Regression

Applications of regression

- Sales forecasting
- Satisfaction analysis
- Price estimation
- Employment income

Simple Linear Regression

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

Simple Linear Regression

How to find the best fit?

 $x_1 = 5.4$ independent variable y= 250 actual Co2 emission of x1

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

Simple Linear Regression

ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB CO2EMISSIONS 2.0 2.4 221 1.5 5.9 11.1 255 10.0 3.5 10.1 232 3.7 11.1 255 3.7 267 11.6

$$\widehat{\mathbf{y}} = \mathbf{\theta_0} + \mathbf{\theta_1} \mathbf{x_1}$$

$$\mathbf{\theta_1} = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\overline{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.03$$

$$\overline{y} = (196 + 221 + 136 + \dots)/9 = 226.22$$

$$\theta_1 = \frac{(2.0 - 3.03)(196 - 226.22) + (2.4 - 3.03)(221 - 226.22) + \dots}{(2.0 - 3.03)^2 + (2.4 - 3.03)^2 + \dots}$$

$$\theta_1 = 39$$

$$\mathbf{\theta_0} = \overline{\mathbf{y}} - \mathbf{\theta_1} \overline{\mathbf{x}}$$

$$\theta_0 = 226.22 - 39 * 3.03$$

$$\overline{\theta_0} = 125.74$$

🗹 Sha

Multiple Linear Regression

Predicting continuous values with multiple linear regression

 $Co2 Em = \theta_0 + \theta_1 Engine \ size + \theta_2 Cylinders + ...$

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\hat{y} = \theta^T X$$

$$\theta^T = [\theta_0, \theta_1, \theta_2, \dots] \qquad X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \dots \end{bmatrix}$$

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
)	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
1	3.5	6	10.6	244
5	3.5	6	10.0	230
3	3.5	6	10.1	232
7	3.7	6	11.1	255
В	3.7	6	11.6	267
9	2.4	4	9.2	?

Y: Dependent variable

X: Independent variable

Multiple Linear Regression

Estimating multiple linear regression parameters

- How to estimate θ ?
 - Ordinary Least Squares
 - Linear algebra operations
 - Takes a long time for large datasets (10K+ rows)
 - An optimization algorithm
 - Gradient Descent
 - Proper approach if you have a very large dataset

Non-Linear Regression

🗹 Share

What is non-linear regression?

- To model non-linear relationship between the dependent variable and a set of independent variables
- \hat{y} must be a non-linear function of the parameters θ , not necessarily the features x

$$\hat{y} = \theta_0 + {\theta_2}^2 x$$

$$\hat{y} = \theta_0 + {\theta_1}{\theta_2}^x$$

$$\hat{y} = \log(\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3)$$

$$\hat{y} = \frac{\theta_0}{1 + {\theta_1}^{(x - \theta_2)}}$$

Classification

What is classification?

- A supervised learning approach
- Categorizing some unknown items into a discrete set of categories or "classes"
- The target attribute is a categorical variable

Classification

Normal

age	ed	employ	address	income	debtinc	creddebt	othdebt	default
41	3	17	12	176	9.3	11.359	5.009	1
27	1	10	6	31	17.3	1.362	4.001	0
40	1	15	14	55	5.5	0.856	2.169	0
41	1	15	14	120	2.9	2.659	0.821	0
24	2	2	0	28	17.3	1.787	3.057	1
41	2	5	5	25	10.2	0.393	2.157	0
39	1	20	9	67	30.6	3.834	16.668	0
43	1	12	11	38	3.6	0.129	1.239	0
24	1	3	4	19	24.4	1.358	3.278	1
36	1	0	13	25	19.7	2.778	2.147	0

age	ed	employ	address	income	debtinc	creddebt	othdebt	default
37	2	16	10	130	9.3	10.23	3.21	\bigcirc

Multiple

Age	Sex	BP	Cholesterol	Na	K	Drug
23	F	HIGH	HIGH	0.793	0.031	drugY
47	M	LOW	HIGH	0.739	0.056	drugC
47	М	LOW	HIGH	0.697	0.069	drugC
28	F	NORMAL	HIGH	0.564	0.072	drugX
61	F	LOW	HIGH	0.559	0.031	drugY
22	F	NORMAL	HIGH	0.677	0.079	drugX
49	F	NORMAL	HIGH	0.79	0.049	drugY
41	M	LOW	HIGH	0.767	0.069	drugC
60	M	NORMAL	HIGH	0.777	0.051	drugY
43	M	LOW	NORMAL	0.526	0.027	drugY

Age	Sex	BP	Cholesterol	Na	K	Drug
36	F	LOW	HIGH	0.697	0.069	

K-Nearest Neigbor

What is K-Nearest Neighbor (or KNN)?

- A method for classifying cases based on their similarity to other cases
- Cases that are near each other are said to be "neighbors"
- Based on similar cases with same class labels are near each other

Decision tree learning algorithm

- Choose an attribute from your dataset.
- 2. Calculate the significance of attribute in splitting of data.

Logistic Regression

Logistic regression applications

- Predicting the probability of a person having a heart attack
- Predicting the mortality in injured patients
- Predicting a customer's propensity to purchase a product or halt a subscription
- Predicting the probability of failure of a given process or product
- Predicting the likelihood of a homeowner defaulting on a mortgage

Logistic Regression

When is logistic regression suitable?

- If your data is binary
 - 0/1, YES/NO, True/False
- If you need probabilistic results
- When you need a linear decision boundary
- If you need to understand the impact of a feature

 Clustering is similar to regression and classification but mostly use for unlabeled dataset.

Clustering Applications

PUBLICATION:

- Auto-categorizing news based on their content
- Recommending similar news articles

MEDICINE:

Characterizing patient behavior

BIOLOGY:

Clustering genetic markers to identify family ties

RETAIL/MARKETING:

- Identifying buying patterns of customers
- Recommending new books or movies to new customers

BANKING:

- Fraud detection in credit card use
- Identifying clusters of customers (e.g., loyal)

• INSURANCE:

- Fraud detection in claims analysis
- Insurance risk of customers

Clustering Algorism

- Partitioned-based Clustering
 - Relatively efficient
 - E.g. k-Means, k-Median, Fuzzy c-Means
- Hierarchical Clustering
 - Produces trees of clusters
 - E.g. Agglomerative, Divisive
- Density-based Clustering
 - Produces arbitrary shaped clusters
 - E.g. DBSCAN

Recommender Systems

- Recommender systems capture the pattern of peoples' behavior and use it to predict what else they might want or like.
- Type of recommender systems :
 - Content-Based recommendation
 - Collaborative Filtering

Content-based vs Collaboration

