When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations

School of Industrial and Management Engineering, Korea University

Yongwon Jo

Contents

- * Research Purpose
- Principled Optimizer for Convolution-Free Vision Architectures
- Conclusion

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations (arXiv, 2021)
 - 저자들은 Google Research 그룹과 UCLA 소속이며 2021년 8월 20일 기준 인용 횟수는 0회

When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations

Xiangning Chen^{1,2}*

Cho-Jui Hsieh²

Boqing Gong¹

¹Google Research

²UCLA

- * When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - Computer vision 분야에서 Vision transformer(ViT)와 Multi-layer perceptron(MLP)가 큰 화두
 - ▶ 이미지 내 미세한 특징 추출이 가능한 합성곱 신경망(Convolutional neural network, CNN)을 주로 사용
 - ▶ 미세한 특징 추출이 가능하다는 CNN의 Inductive bias와 같은 가정이 ViT와 MLP에는 존재×
 - ▶ 특정 가정이 없기에 두 모델은 많은 양의 데이터로 모델을 학습하거나 데이터 증강 기법이 반드시 필요
 - ▶ '작은 데이터와 증강 기법 없이 CNN 기반 모델과 유사한 성능을 낼 수 없을까?'

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - ViT 와 MLP-Mixer의 문제점
 - ① ViT와 MLP-Mixer는 방대한 데이터나 강력한 데이터 증강 기법(Strong data augmentation) 적용 필요
 - ② 또한 모델 Hyperparameter에 매우 민감한 것으로 알려짐
 - ③ 기존 CNN 기반 분류기보다 In distribution 뿐만 아니라 Out of distribution에서 성능이 낮음

Table 1: Number of parameters, NTK condition number κ , Hessian dominate eigenvalue λ_{max} , accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and MLP-Mixer suffer divergent κ and converge to sharp regions of big λ_{max} ; SAM rescues that and leads to better generalization.

						_
	ResNet-50	ResNet-152	Vi'l' R/16	T-B/16- SAM	Mixer-B/16 Mi	xer-B/16- SAM
#Params NTK κ Hessian λ_{max}	25M 2801.6 122.9	60M 2801.6 179.8	87M 4205.3 738.8	20.9	59M 14468.0 1644.4	22.5
ImageNet (%) ImageNet-C (%)	76.0 44.6	78.5 50.0	74.6 46.6	79.9 56.5	66.4 33.8	77.4 48.8

ImageNet-C: ImageNet 내 이미지에 변형을 가해 Robustness/Generalization ability 측정 시 사용하는 데이터 셋 (Out of distribution) vs ImageNet (In distribution)

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - 모델 파라미터들에 대한 Loss landscape를 시각화 하여 왜 ViT와 MLP 학습이 어려운지 설명
 - ➤ ResNet대비 ViT와 MLP-Mixer는 가파른 Local minima가 존재
 - ▶ 해당 minima에 빠질시 빠져나가기 어렵고 일반화 성능이 낮은 것으로 알려짐
 - ResNet과 같이 평평한 minima의 경우 일반화 성능이 높음
 - \triangleright Table 1 내 Hessian eigenvalue λ_{max} 가 높을수록 날카로운 Loss landscape를 가진다고 할 수 있음

Cross entropy loss function을 사용해 학습한 각 모델 별 Landscape

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - ViT와 MLP-Mixer의 학습 데이터 오차 비교
 - ▶ ViT 대비 MLP-Mixer 가 모델 파라미터 수도 적고 학습 데이터에 대한 성능은 높음
 - ▶ 하지만 테스트 데이터 셋에 대해서는 ViT 성능이 높기에 MLP-Mixer에서는 과적합이 발생한 것
 - Cross-token과 Self-attention 차이에서 발생하는 것으로 판단

- * When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - ViT 와 MLP-Mixer의 낮은 학습 가능성 (Trainability)
 - ▶ 학습 가능성을 입력 데이터와 가장 가까운 층의 가중치의 Jacobian matrix 이용해 정의
 - Neural tangent kernel(NTK): $\Theta(x, x') = J(x)J(x)^t$ 이며 J는 Jacobian matrix
 - ightharpoons NTK의 고유벡터를 산출하고 가장 큰 값을 가장 작은 값으로 나눈 값을 κ 라 정의
 - ▶ ResNet 대비 ViT와 MLP-Mixer의 경우 매우 큰 κ이며 이 때문에 ViT와 MLP-Mixer 학습이 어려움

Table 1: Number of parameters, NTK condition number κ , Hessian dominate eigenvalue λ_{max} , accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and MLP-Mixer suffer divergent κ and converge to sharp regions of big λ_{max} ; SAM rescues that and leads to better generalization.

	ResNet-50	ResNet-152	ViT-B/16 ViT-B/16- SAM		Mixer-B/16	Mixer-B/16- SAM
#Params	25M	60M		7M		OM
NTK κ Hessian λ_{max}	2801.6 122.9	2801.6 179.8	4205.3 738.8 20.9		1644.4	22.5
ImageNet (%) ImageNet-C (%)	76.0 44.6	78.5 50.0	74.6 46.6	79.9 56.5	66.4 33.8	77.4 48.8

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - First-order optimizer(ex. SGD, Adam)처럼 단순히 학습 데이터 오차만 줄이는 학습 방식 문제 제기
 - ▶ 일반적인 Deep neural network 최적화 문제는 Non-convex 이며 최적화하기 어려움
 - ➤ First-order optimizer 사용 시 손실 함수 Landscape 상에서 낮은 점을 찾을 수 있으나 일반화 성능↓
 - ➤ ViT와 MLP-Mixer와 유사한 Local minima가 학습 데이터에 과적합 되어 있고 일반화 성능↓
 - > 가정: Loss landscape를 평평하게 만드는 Optimizer는 없을까?
 - > Sharpness-Aware Minimization for Efficiently Improving Generalization
 - ➤ 저자들은 Google brain 소속이며 8월 23일 기준 47회 인용 (2021 ICLR)

SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLY IMPROVING GENERALIZATION

Pierre Foret *
Google Research
pierre.pforet@gmail.com

Ariel Kleiner Google Research akleiner@gmail.com Hossein Mobahi Google Research hmobahi@google.com

Behnam Neyshabur Blueshift, Alphabet neyshabur@google.com

- * When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - First-order optimizer(ex. SGD, Adam)처럼 단순히 학습 데이터 오차만 줄이는 학습 방식 문제 제기
 - ▶ 가정: Loss landscape를 평평하게 만드는 Optimizer는 없을까?
 - > Sharpness-Aware Minimization (SAM) for Efficiently Improving Generalization
 - SAM은 (Local/Global) minima 탐색 및 해당 포인트 주변도 낮은 Loss를 가지도록 하는 Optimization 기법
 - > SAM 관련된 상세 내용은 해당 논문 참고 부탁드리며 이번엔 실험에 초점을 맞추어 설명

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - SAM을 사용해 ViT와 MLP-Mixer를 학습하고 Loss landscape 시각화 결과
 - ▶ 많은 데이터를 사용하거나 Strong data augmentation을 적용하지 않음
 - ▶ 단순히 ImageNet만 사용해서 학습하고 성능 평가 진행
 - ▶ 기존 Loss landscape 대비 Loss 값이 낮은 지점 주변이 완만해진 것을 확인 가능

SAM으로 모델 파라미터 업데이터 진행 후 모델 별 Landscape

- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - SAM을 사용해 ViT와 MLP-Mixer를 학습하고 Loss landscape 시각화 결과
 - In distribution과 Out of distribution 데이터셋에 대한 정량적인 지표로 성능 향상 확인 가능

Table 2: Accuracy and robustness of ResNets, ViTs, and MLP-Mixers trained from scratch on ImageNet with SAM (improvement over the models trained using vanilla SGD is shown in the parentheses). We use the Inception-style preprocessing (with resolution 224) rather than a combination of strong data augmentations. ViTs achieve better accuracy and robustness than ResNets of similar size and throughput (calculated following [53]), and MLP-Mixers become on par with ResNets.

Model	#params	Throughput (img/sec/core)	ImageNet	Real	V2	ImageNet-R	ImageNet-C				
ResNet											
ResNet-50-SAM	25M	2161	76.7 (+0.7)	83.1 (+0.7)	64.6 (+1.0)	23.3 (+1.1)	46.5 (+1.9)				
ResNet-101-SAM	44M	1334	78.6 (+0.8)	84.8 (+0.9)	66.7 (+1.4)	25.9 (+1.5)	51.3 (+2.8)				
ResNet-152-SAM	60M	935	79.3 (+0.8)	84.9 (+0.7)	67.3 (+1.0)	25.7 (+0.4)	52.2 (+2.2)				
ResNet-50x2-SAM	98M	891	79.6 (+1.5)	85.3 (+1.6)	67.5 (+1.7)	26.0 (+2.9)	50.7 (+3.9)				
ResNet-101x2-SAM	173M	519	80.9 (+2.4)	86.4 (+2.4)	69.1 (+2.8)	27.8 (+3.2)	54.0 (+4.7)				
ResNet-152x2-SAM	236M	356	81.1 (+1.8)	86.4 (+1.9)	69.6 (+2.3)	28.1 (+2.8)	55.0 (+4.2)				
	Vision Transformer										
ViT-S/32-SAM	23M	6888	70.5 (+2.1)	77.5 (+2.3)	56.9 (+2.6)	21.4 (+2.4)	46.2 (+2.9)				
ViT-S/16-SAM	22M	2043	78.1 (+3.7)	84.1 (+3.7)	65.6 (+3.9)	24.7 (+4.7)	53.0 (+6.5)				
ViT-S/14-SAM	22M	1234	78.8 (+4.0)	84.8 (+4.5)	67.2 (+5.2)	24.4 (+4.7)	54.2 (+7.0)				
ViT-S/8-SAM	22M	333	81.3 (+5.3)	86.7 (+5.5)	70.4 (+6.2)	25.3 (+6.1)	55.6 (+8.5)				
ViT-B/32-SAM	88M	2805	73.6 (+4.1)	80.3 (+5.1)	60.0 (+4.7)	24.0 (+4.1)	50.7 (+6.7)				
ViT-B/16-SAM	87M	863	79.9 (+5.3)	85.2 (+5.4)	67.5 (+6.2)	26.4 (+6.3)	56.5 (+9.9)				
			MLP-Mi	xer		,					
Mixer-S/32-SAM	19M	11401	66.7 (+2.8)	73.8 (+3.5)	52.4 (+2.9)	18.6 (+2.7)	39.3 (+4.1)				
Mixer-S/16-SAM	18M	4005	72.9 (+4.1)	79.8 (+4.7)	58.9 (+4.1)	20.1 (+4.2)	42.0 (+6.4)				
Mixer-S/8-SAM	20M	1498	75.9 (+5.7)	82.5 (+6.3)	62.3 (+6.2)	20.5 (+5.1)	42.4 (+7.8)				
Mixer-B/32-SAM	60M	4209	72.4 (+9.9)	79.0 (+10.9)	58.0 (+10.4)	22.8 (+8.2)	46.2 (12.4)				
Mixer-B/16-SAM	59M	1390	77.4 (+11.0)	83.5 (+11.4)	63.9 (+13.1)	24.7 (+10.2)	48.8 (+15.0)				
Mixer-B/8-SAM	64M	466	79.0 (+10.4)	84.4 (+10.1)	65.5 (+11.6)	23.5 (+9.2)	48.9 (+16.9)				

ImageNet-C & ImageNet-R: ImageNet 내 이미지에 변형을 가해 Robustness/Generalization ability 측정 시 사용하는 데이터 셋

- * When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - SAM을 사용해 ViT와 MLP-Mixer의 Loss landscape를 의미하는 λ_{max} 값의 급격한 하락
 - Loss landscape가 완만해지고 ViT&MLP-Mixer 기존 문헌 보다 좋은 Local minima를 찾은 것
 - 모델 내 요소의 λ_{max} 값 계산을 통해 Self-attention, Cross-token 부분에서 큰 λ_{max} 감소 확인

Table 3: Dominant eigenvalue λ_{max} of the sub-diagonal Hessians for different network components, and norm of the model parameter w and the post-activation a_k of block k. Each ViT block consists of a MSA and a MLP, and MLP-Mixer alternates between a token MLP a channel MLP. Shallower layers have larger λ_{max} . SAM smooths every component.

Model		λ_{ma}	$ w _{2}$	$ a_1 _2$	$ a_6 _2$	$ a_{12} _2$					
1,10401	Embedding MSA/Token MLP MLP/Ch	MLP/Channel MLP	Block1	Block6	Block12	Whole		1 2	0 2	12 2	
ViT-B/16	300.4	179.8	281.4	44.4	32.4	26.9	738.8	269.3	104.9	104.3	138.1
ViT-B/16-SAM	3.8	8.5	9.6	1.7	1.7	1.5	20.9	353.8	117.0	120.3	97.2
Mixer-B/16	1042.3	95.8	417.9	239.3	41.2	5.1	1644.4	197.6	96.7	135.1	74.9
Mixer-B/16-SAM	18.2	1.4	9.5	4.0	1.1	0.3	22.5	389.9	110.9	176.0	216.1

- * When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - SAM의 효과로 기존 대비 객체를 정확히 인식하는 것을 확인 가능

Figure 3: Raw images (**Left**) and attention maps of ViT-S/16 with (**Right**) and without (**Middle**) sharpness-aware optimization. ViT-S/16 with less sharp local optimum contains perceptive segmentation information in its attention maps.

- * When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations
 - 학습 데이터 개수를 감소시키며 성능 변화를 확인하는 실험
 - 단순히 Cross entropy만 사용한 경우 ViT와 MLP-Mixer 성능 하락은 ResNet보다 더 큼
 - 하지만 SAM을 사용해 학습한다면 성능 하락 속도를 줄여줄 수 있음
 - Strong augmentation(ex. RandAugment, MixUp) 사용하여 성능 향상보다 SAM 성능 향상이 더큼

Table 4: Data augmentation, SAM, and their combination applied to different model architectures trained on ImageNet and its subsets.

Training Set	#Images	ResNe	t-152		ViT-	B/16			Mixer-B/16			
Training Set	#Images	Vanilla	SAM	Vanilla	SAM	AUG	SAM + AUG	Vanilla	SAM	AUG	SAM + AUG	
ImageNet	1,281,167	78.5	79.3	74.6	79.9	79.6	81.5	66.4	77.4	76.5	78.1	
i1k (1/2) i1k (1/4) i1k (1/10)	640,583 320,291 128,116	74.2 68.0 54.6	75.6 70.3 57.1	64.9 52.4 32.8	75.4 66.8 46.1	73.1 63.2 38.5	75.8 65.6 45.7	53.9 37.2 21.0	71.0 62.8 43.5	70.4 61.0 43.0	73.1 65.8 51.0	

Conclusion

Conclusion

- ViT와 MLP-Mixer 학습이 왜 어려운지 Loss landscape 관점에서 해석
- 날카로운 Loss landscape가 아닌 평평한 landscape를 위해 SAM 방식으로 두 모델 학습
- In distribution과 Out of distribution에 대해 기존 대비 성능 향상 성공
- Robustness 뿐만 아니라 다양한 방식으로 SAM 학습 방식이 ViT와 MLP-Mixer 학습에 적합하다는 것을 증명

❖ 본 논문 읽은 뒤 나의 생각

- Optimization에 대해 다시 한번 생각하게 되는 기회
- Loss landscape를 직접 시각화 해보고 필자가 하고 있는 연구에 적용 가능성 검토
- 방대한 양의 실험을 체계적으로 한 것 같다는 생각

References

- Chen, X., Hsieh, C. J., & Gong, B. (2021). When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations. arXiv preprint arXiv:2106.01548.
- Foret, P., Kleiner, A., Mobahi, H., & Neyshabur, B. (2020). Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412.

Thank you