☆ 5.3 실시간 적재 파일럿 실행 1단계 - 아키텍처 Ŭ 실시간 적재 요구사항 (1/2)

- **요구사항 1:** 차량의 다양한 장치로부터 발생하는 로그 파일을 수집해서 기능별 상태를 점검한다.
- 요구사항 2: 운전자의 운행 정보가 담긴 로그를 실시간으로 수집해서 주행 패턴을 분석한다.

₩☆ 5.3 실시간 적재 파일럿 실행 1단계 - 아키텍처

☑ 실시간 적재 요구사항 (2/2)

실시간 적재 요구사항 구체화	분석 및 해결 방안
1. 1초 간격으로 발생하는 100명의 운행 정보(운행 정보 1건: 약 4KB)는 손실 없이 적재해야 한다.	카프카와 스톰을 이용해 수집한 데이터에 대해 분산 처리 및 무결성을 보장하며, 분산 처리가 완료된 데이터는 HBase에 적재
2. 적재한 운행 정보를 대상으로 조건 검색이 가능해야 하며, 필요 시 수정도 가능해야 한다.	HBase의 테이블에 적재된 데이터는 스캔 조건으로 검색하며, 저장 (Put) 기능을 이용해 기적재한 데이터에 대해 칼럼 기반으로 수정
3. 운전자의 운행 정보 중 30초를 기준으로 평균 속도가 80Km/h를 초과한 정보는 분리 적재한다.	에스퍼의 EPL에서 사용자별로 운행 정보를 그루핑하고, 30초의 윈도 우 타임(Window Time) 조건으로 평균 시속 집계 및 임계치별 이벤 트를 정의
4. 과속한 차량을 분리 적재하기 위한 조건은 별도의 룰 로 정의하고 쉽게 수정할 수 있어야 한다.	과속 기준을 80Km/h에서 100Km/h로 변경해야 할 경우 EPL의 평 균 속도를 체크하는 조건값만 수정
5. 분리 적재한 데이터는 외부 애플리케이션이 빠르게 접근하고 조회할 수 있게 해야 한다.	실시간 이벤트로 감지된 데이터는 인메모리 기반 저장소인 레디스에 적재해서 외부 애플리케이션에서 빠르게 조회
6. 레디스에 적재한 데이터는 저장소의 공간을 효율적으로 사용하기 위해 1주일이 경과하면 영구적으로 삭제한다.	레디스 클라이언트 라이브러리인 제디스(Jedis) 클라이언트를 이용해 데이터 적재 시 만료(Expire) 시간을 설정해 자동으로 영구 삭제 처리

₩☆ 5.3 실시간 적재 파일럿 실행 1단계 - 아키텍처

₫ 실시간 적재 아키텍처

