Лекция 10. Геометрическое представление графов. Планарные графы. Формула Эйлера для планарных графов. Критерий планарности Понтрягина-Куратовского.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Геометрическое представление графа в \mathbb{R}^n

Геометрическим представлением графа G=(V,E) в пространстве \mathbb{R}^n называется такое его отображение в \mathbb{R}^n , при котором:

- 1) каждой вершине $v \in V$ сопоставлена точка в \mathbb{R}^n , причем разным вершинам разные точки;
- 2) каждому $pefpy(v,w) \in E$ сопоставлена непрерывная *кривая*, соединяющая точки, соответствующие вершинам v и w, и не проходящая через точки, соответствующие другим вершинам;
- 3) кроме того, кривые, соответствующие различным ребрам, не пересекаются за исключением своих концов.

Геометрическое представление графа

Слева — изображение K_4 , не являющееся его геометрическим представлением на плоскости.

Справа — геометрическое представление K_4 на плоскости.

Геометрическое представление графов в \mathbb{R}^3

Теорема 10.1. Любой граф G допускает геометрическое представление в \mathbb{R}^3 .

Геометрическое представление графов в \mathbb{R}^3

Доказательство. Пусть
$$G=(V,E)$$
, где $V=\{v_1,\ldots,v_p\}$, $E=\{e_1,\ldots,e_q\}$.

Возьмем в \mathbb{R}^3 произвольную прямую / и отметим на ней p различных точек, которые обозначим v_1,\ldots,v_p . Сопоставим их вершинам графа G.

Возьмем q различных плоскостей π_1,\ldots,π_q , содержащих прямую I. Ребру $e_i=(v_{i_1},v_{i_2})$ графа G сопоставим кривую, соединяющую точки v_{i_1} и v_{i_2} , которую проведем в плоскости π_i , $i=1,\ldots,q$.

По построению кривые, сопоставленные ребрам, могут пересекаться только в концевых точках. Значит, получили геометрическое представление G в \mathbb{R}^3 .

Планарный граф

Граф G называется **планарным**, если найдется его геометрическое представление на плоскости (т. е. в \mathbb{R}^2).

В обратном случае граф G называется непланарным.

Грани

Геометрическое представление планарного графа в \mathbb{R}^2 назовем его укладкой на плоскости.

Связные области плоскости, ограниченные ребрами планарного графа при его укладке на плоскости, называются гранями, неограниченная область называется также внешней гранью.

Грани

Пусть G — планарный граф и $\Phi(G)$ — какая-то его укладка на плоскости.

Рассмотрим двуместное отношение R на $\mathbb{R}^2\setminus\Phi(G)$: если $a,b\in\mathbb{R}^2\setminus\Phi(G)$, то a R b в том и только в том случае, когда точки a и b можно соединить непрерывной кривой, не имеющей общих точек с $\Phi(G)$.

Отношение R — рефлексивно, симметрично и транзитивно, т. е. R — отношение эквивалентности на $\mathbb{R}^2 \setminus \Phi(G)$.

Каждый класс эквивавалентности по отношению R является гранью в укладке $\Phi(G)$.

Грани K_4 при его укладке на плоскости

Формула Эйлера

Теорема 10.2 (формула Эйлера для планарных графов). Если G = (V, E) — связный планарный граф с р вершинами и q ребрами, то для каждой его укладки на плоскости верно равенство p - q + r = 2, где r — число граней в этой укладке.

Доказательство проведем индукцией по q при заданном p.

Базис индукции: если q=p-1, то G — дерево. Каждое дерево — планарный граф с одной гранью, поэтому формула верна.

Формула Эйлера

Доказательство. *Индуктивный переход*: рассмотрим связный планарный граф G с p вершинами и $q \geqslant p$ ребрами. Пусть задана его укладка на плоскости, в которой r граней.

В графе G найдется хотя бы один цикл, и пусть e — любое ребро из какого-то его цикла.

Тогда граф G'=G-e— связный и планарный с p вершинами и q-1 ребрами, и его укладка на плоскости содержит r-1 граней, т. к. при удалении ребра e из укладки графа G две грани соединяются в одну.

Для графа G^{\prime} верно предположение индукции, т. е.

$$p-(q-1)+(r-1)=2$$
, откуда $p-q+r=2$.

Наибольшее число ребер в планарных графах

Теорема 10.3. Наибольшее число ребер в планарном графе (без петель и кратных ребер) с p, $p\geqslant 3$, вершинами равно 3p-6.

Наибольшее число ребер в планарных графах

Доказательство. Можно рассматривать связные графы.

1. Верхняя оценка. Пусть G = (V, E) — связный планарный граф с p вершинами и q ребрами.

Рассмотрим укладку графа G на плоскости, и пусть q_i — число ребер, встречающихся при обходе границы i-й грани в этой укладке, $i=1,\ldots,r$.

Тогда
$$\sum\limits_{i=1}^r q_i=2q$$
, т. к. каждое ребро:

- 1) либо разделяет две грани, а значит, считается при обходе границ этих двух граней;
- 2) либо лежит в одной грани, а значит, при обходе ее границы считается два раза.

Наибольшее число ребер в планарных графах

Доказательство. Из связности графа и $p\geqslant 3$ получаем $q_i\geqslant 3$, откуда $3r\leqslant 2q$, или $r\leqslant \frac{2}{3}\cdot q$.

По формуле Эйлера r=q-p+2, поэтому

$$q-p+2\leqslant \frac{2}{3}\cdot q,$$

а значит,

$$q \leqslant 3p - 6$$
.

Число ребер в планарных графах

Доказательство. 2. Достижимость верхней оценки. Построим графы, на которых достигается эта оценка. Это связные планарные графы, в которых любая грань (включая внешнюю) ограничена циклом длины три. Такие графы называются триангуляциями.

Если p = 3, то $G_p = K_3$.

Пусть уже построен связный планарный граф G_p с p вершинами и 3p-6 ребрами, каждая грань которого ограничена треугольником.

Тогда граф G_{p+1} получается из G_p добавлением новой вершины внутри какой-то грани и ребер, соединяющих эту вершину с тремя вершинами границы этой грани.

Число граней в планарных графах

Следствие. Наибольшее число граней в укладке планарного графа (без петель и кратных ребер) с p, $p \geqslant 3$, вершинами равно 2p-4.

Свойство планарных графов

Предложение 10.1. Любой планарный граф (без петель и кратных ребер) содержит вершину степени, не большей пяти.

Доказательство. Можно рассматривать связные графы.

Докажем от обратного: пусть G=(V,E) — связный планарный граф с p вершинами и q ребрами, в котором любая вершина имеет степень не менее шести, т. е. для любой вершины $v\in V$ верно $d_G(v)\geqslant 6$.

Тогда по формуле Эйлера для степеней вершин получаем:

$$2q = \sum_{v \in V} d_G(v) \geqslant 6p,$$

а значит, $q \geqslant 3p$.

Но по предыдущей теореме верно $q \leqslant 3p - 6$ — противоречие.

Значит, в G найдется вершина степени, не более пяти.

Граф K_5

Непланарность K_5

Теорема 10.4. Граф K_5 не является планарным.

Доказательство проведем от обратного: пусть граф K_5 планарен.

Тогда для произвольной его укладки на плоскости верно равенство:

$$p-q+r=2,$$

где p=5 — число вершин и q=10 число ребер в графе, а r — число граней в этой укладке. Поэтому r=7.

Непланарность K_5

Доказательство. Пусть q_i — число ребер, встречающихся при обходе границы i-й грани в этой укладке, $i=1,\ldots,r$.

Тогда $\sum\limits_{i=1}^r q_i = 2q$, т. к. каждое ребро считаем дважды.

Ho $q_i\geqslant 3$, поэтому $3r\leqslant 2q$, или $r\leqslant \frac{2}{3}\cdot q$.

Получаем: $7\leqslant \frac{2}{3}\cdot 10$ — противоречие.

Значит, граф K_5 не является планарным.

Граф $\overline{K_{3,3}}$

Непланарность $K_{3,3}$

Теорема 10.5. Граф $K_{3,3}$ не является планарным.

Доказательство проведем от обратного: пусть граф $K_{3,3}$ планарен.

Тогда для произвольной его укладки на плоскости верно равенство:

$$p-q+r=2,$$

где p=6 — число вершин и q=9 число ребер в графе, а r — число граней в этой укладке. Поэтому r=5.

Непланарность $K_{3,3}$

Доказательство. Пусть q_i — число ребер, встречающихся при обходе границы i-й грани в этой укладке, $i=1,\ldots,r$.

Тогда $\sum\limits_{i=1}^{r}q_{i}=2q$, т. к. каждое ребро считаем дважды.

Но $q_i\geqslant 4$, т. к. в $K_{3,3}$ наименьшая длина цикла равна четырем, поэтому $4r\leqslant 2q$, или $r\leqslant \frac{q}{2}$.

Получаем: $5 \leqslant \frac{9}{2}$ — противоречие.

Значит, граф $K_{3,3}$ не является планарным.

Гомеоморфизм графов

Говорят, что граф G'=(V',E') получен из графа G=(V,E) подразбиением ребра $e=(v,w)\in E$, если

$$V' = V \cup \{u\},$$
 где $u \notin V;$ $E' = E \setminus \{(v, w)\} \cup \{(v, u), (u, w)\}.$

Граф G' называется **подразбиением** графа G, если G' может быть получен из G конечным числом подразбиений ребер.

Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ называются гомеоморфными, если найдутся изоморфные их подразбиения G_1' и G_2' соответственно.

Критерий планарности

Теорема 10.6 (критерий Понтрягина-Куратовского).

Граф G = (V, E) планарен тогда и только тогда, когда в нем не найдется ни одного подграфа, гомеоморфного либо графу K_5 , либо графу $K_{3,3}$.

Пример. Проверим, являются ли планарными следующие графы:

1. Граф G_1 допускает укладку $\Phi(G_1)$ на плоскости. Значит, G_1 — планарный граф.

2. Найдем в графе G_2 подграф, гомеоморфный $K_{3,3}$:

Значит, G_2 — непланарный граф.

Задачи для самостоятельного решения

1. Докажите, что наибольшее число ребер среди планарных графов (без петель и кратных ребер) содержат только триангуляции.

Литература к лекции

1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.