Regression Analysis

Adopted from:

Lecture Note, Prof. Anthony Tung, School of Computing, NUS http://sites.stat.psu.edu/~lsimon/stat501/sp03/handouts/index.htm https://onlinecourses.science.psu.edu/stat501/node/318

Overview

- Simple linear regression
 - Prediction concerning Y
 - Analysis of variance table
 - The general linear test
 - The lack of fit test
 - Transformations

Simple linear regression

Linear regression with one predictor variable

What is simple linear regression?

- A way of evaluating the <u>relationship</u> between two continuous variables.
- One variable is regarded as the **predictor**, **explanatory**, or **independent** variable (x).
- Other variable is regarded as the **response**, **outcome**, or **dependent** variable (y).

A deterministic (or functional) relationship

Other deterministic relationships

- Circumference = $\pi \times$ diameter
- Hooke's Law: $Y = \alpha + \beta X$, where Y = amount of stretch in spring, and X = applied weight.
- Ohm's Law: I = V/r, where V = voltage applied, r = resistance, and I = current.
- Boyle's Law: For a constant temperature, $P = \alpha/V$, where P = pressure, $\alpha = \text{constant}$ for each gas, and V = volume of gas.

A statistical relationship

Skin cancer mortality versus State latitude

A relationship with some "trend", but also with some "scatter."

Which is the "best fitting line"?

Notation

- y_i is the **observed response** for the ith experimental unit.
- \boldsymbol{x}_i is the **predictor value** for the ith experimental unit.
- $\hat{\boldsymbol{y}}_{i}$ is the **predicted response** (or **fitted value**) for the ith experimental unit.

Equation of best fitting line: $\hat{y}_i = b_0 + b_1 x_i$

i	\boldsymbol{X}_{i}	y_i	$\hat{\boldsymbol{\mathcal{Y}}}_{i}$
1	64	121	126.3
2	73	181	181.5
3	71	156	169.2
4	69	162	157.0
5	66	142	138.5
6	69	157	157.0
7	75	208	193.8
8	71	169	169.2
9	63	127	120.1
10	72	165	175.4

Prediction error (or residual error)

In using \hat{y}_i to predict the actual response y_i we make a **prediction error** (or a **residual error**) of size $e_i = y_i - \hat{y}_i$

A line that fits the data well will be one for which the *n* prediction errors are as small as possible in some overall sense.

The "least squares criterion"

Equation of best fitting line: $\hat{y}_i = b_0 + b_1 x_i$

Choose the values b_0 and b_1 that minimize the sum of the squared prediction errors.

That is, find b_0 and b_1 that minimize:

$$Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Which is the "best fitting line"?

w = -331.2 + 7.1 h

i	\boldsymbol{x}_{i}	${\cal Y}_i$	$\hat{oldsymbol{\mathcal{\hat{Y}}}}_i$	$(y_i - \hat{y}_i)$	$(y_i - \hat{y}_i)^2$
1	64	121	123.2	-2.2	4.84
2	73	181	187.1	-6.1	37.21
3	71	156	172.9	-16.9	285.61
4	69	162	158.7	3.3	10.89
5	66	142	137.4	4.6	21.16
6	69	157	158.7	-1.7	2.89
7	75	208	201.3	6.7	44.89
8	71	169	172.9	- 3.9	15.21
9	63	127	116.1	10.9	118.81
10	72	165	180.0	-15.0	225.00
					766.51

w = -266.5 + 6.1 h

i	\boldsymbol{x}_{i}	\mathcal{Y}_i	$\hat{\boldsymbol{y}}_i$	$(y_i - \hat{y}_i)$	$(y_i - \hat{y}_i)^2$
1	64	121	126.271	- 5.3	28.09
2	73	181	181.509	-0.5	0.25
3	71	156	169.234	- 13.2	174.24
4	69	162	156.959	5.0	25.00
5	66	142	138.546	3.5	12.25
6	69	157	156.959	0.0	0.00
7	75	208	193.784	14.2	201.64
8	71	169	169.234	-0.2	0.04
9	63	127	120.133	6.9	47.61
10	72	165	175.371	-10.4	108.16
					597.28

The least squares regression line

Using calculus, minimize (take derivative with respect to b_0 and b_1 , set to 0, and solve for b_0 and b_1):

$$Q = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

and get the least squares estimates b_0 and b_1 :

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

Regression analysis

The regression equation is weight = -267 + 6.14 height

Predictor	Coef	SE Coef	T	P
Constant	-266.53	51.03	- 5.22	0.001
height	6.1376	0.7353	8.35	0.000

S = 8.641 R-Sq = 89.7% R-Sq(adj) = 88.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	. 1	5202.2	5202.2	69.67	0.000
Residual E	rror 8	597.4	74.7		
Total	9	5799.6			

Prediction of future responses

A common use of the estimated regression line.

$$\hat{y}_{i,wt} = -267 + 6.14 x_{i,ht}$$

Predict mean weight of 66"-inch tall people.

$$\hat{y}_{i,wt} = -267 + 6.14(66) = 138.24$$

Predict mean weight of 67"-inch tall people.

$$\hat{y}_{i,wt} = -267 + 6.14(67) = 144.38$$

What do the "estimated regression coefficients" b₀ and b₁ tell us?

- We can expect the mean response to increase or decrease by b_1 units for every unit increase in x.
- If the "scope of the model" includes x = 0, then b_0 is the predicted mean response when x = 0. Otherwise, b_0 is not meaningful.

So, the estimated regression coefficients b_0 and b_1 tell us...

- We predict the mean weight to increase by 6.14 pounds for every additional one-inch increase in height.
- It is not meaningful to have a height of 0 inches. That is, the scope of the model does not include x = 0. So, here the intercept b_0 is not meaningful.

What do b_0 and b_1 estimate?

What do b₀ and b₁ estimate?

The simple linear regression model

The simple linear regression model

The simple linear regression model

- The mean of the responses, E(Y_i), is a **linear function** of the x_i.
- The errors, ε_i , and hence the responses Y_i , are independent.
- The errors, ε_i , and hence the responses Y_i , are **normally distributed**.
- The errors, ε_i , and hence the responses Y_i , have **equal variances** (σ^2) for all x values.

What about (unknown) σ^2 ?

It quantifies how much the responses (y) vary around the (unknown) mean regression line $E(Y) = \beta_0 + \beta_1 x$.

Will this thermometer yield more precise future predictions ...?

fahrenheit = 34.1233 + 1.61538 celsius

S = 4.76923 R-Sq = 96.1 % R-Sq(adj) = 95.5 %

... or this one?

fahrenheit = 17.0709 + 2.30583 celsius

S = 21.7918 R-Sq = 70.6 % R-Sq(adj) = 66.4 %

Recall the "sample variance"

The sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1}$$

estimates σ^2 , the variance of the one population.

Estimating σ^2 in regression setting

The mean square error

$$MSE = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$$

estimates σ^2 , the common variance of the many populations.

Estimating σ^2 from fitted line plot

Regression Plot

weight = -266.534 + 6.13758 height

R-Sq(adj) = 88.4 %

R-Sq = 89.7 %

210 — 200 — 190 — 180 — 170 — 160 — 150 — 140 — 130 — 120 — 75

height

S = 8.64137

Estimating σ^2 from regression analysis

The regression equation is weight = -267 + 6.14 height

Predictor	Coef	SE Coef	T	Р
Constant	-266.53	51.03	- 5.22	0.001
height	6.1376	0.7353	8.35	0.000

$$S = 8.641$$
 $R-Sq = 89.7\%$ $R-Sq (adj) = 88.4\%$

Analysis of Variance

Source D	F	SS	MS	F	P
Regression	1	5202.2	5202.2	69.67	0.000
Residual Er	ror 8	597.4	74.7		
Total	9	5799.6			

Inference for (or drawing conclusions about) β_0 and β_1

Confidence intervals and hypothesis tests

Relationship between state latitude and skin cancer mortality?

#	State	LAT	MORT
1	Alabama	33.0	219
2	Arizona	34.5	160
3	Arkansas	35.0	170
4	California	37.5	182
5	Colorado	39.0	149
!			
49	Wyoming	43.0	134

- •Mortality rate of white males due to malignant skin melanoma from 1950-1959.
- •LAT = degrees (north) latitude of center of state
- •MORT = mortality rate due to malignant skin melanoma per 10 million people

$(1-\alpha)100\%$ t-interval for slope parameter β_1

Formula in words:

Sample estimate ± (t-multiplier × standard error)

Formula in notation:

$$\boldsymbol{b}_{1} \pm \boldsymbol{t}_{\left(1-\frac{\alpha}{2},\boldsymbol{n}-2\right)} \times \left(\frac{\sqrt{\boldsymbol{MSE}}}{\sqrt{\sum \left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{2}}}\right)$$

Hypothesis test for slope parameter β_1

Null hypothesis H_0 : β_l = some number β Alternative hypothesis H_A : $\beta_l \neq$ some number β

Test statistic
$$t^* = \frac{b_1 - \beta}{\sqrt{MSE}} = \frac{b_1 - \beta}{se(b_1)}$$

P-value = How likely is it that we'd get a test statistic t* as extreme as we did if the null hypothesis is true?

The P-value is determined by referring to a **t-distribution** with **n-2** degrees of freedom.

Inference for slope parameter β_1

The regression equation is Mort = 389 - 5.98 Lat

Predictor	Coef	SE Coef	T	P	
Constant	389.19	23.81	16.34	0.000	
Lat	-5.9776	0.5984	-9.99	0.000	

S = 19.12 R-Sq = 68.0% R-Sq(adj) = 67.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	36464	36464	99.80	0.000
Residual Error	47	17173	365		
Total	48	53637			

$(1-\alpha)100\%$ t-interval for intercept parameter β_0

Formula in words:

Sample estimate ± (t-multiplier × standard error)

Formula in notation:

$$\boldsymbol{b}_0 \pm \boldsymbol{t}_{\left(1-\frac{\alpha}{2},\boldsymbol{n}-2\right)} \times \sqrt{\boldsymbol{MSE}} \sqrt{\frac{1}{\boldsymbol{n}}} + \frac{\overline{\boldsymbol{x}}^2}{\sum \left(\boldsymbol{x}_i - \overline{\boldsymbol{x}}\right)^2}$$

Hypothesis test for intercept parameter β_0

Null hypothesis H_0 : β_0 = some number β Alternative hypothesis H_A : $\beta_0 \neq$ some number β

Test statistic
$$t^* = \frac{b_0 - \beta}{\sqrt{MSE} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum (x_i - \overline{x})^2}}} = \frac{b_0 - \beta}{se(b_0)}$$

P-value = How likely is it that we'd get a test statistic t* as extreme as we did if the null hypothesis is true?

The P-value is determined by referring to a **t-distribution** with **n-2** degrees of freedom.

Inference for intercept parameter β_0

The regression equation is Mort = 389 - 5.98 Lat

Predictor	Coef	SE Coef	T	P
Constant	389.19	23.81	16.34	0.000
Lat	- 5.9776	0.5984	-9.99	0.000

S = 19.12 R-Sq = 68.0% R-Sq(adj) = 67.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	36464	36464	99.80	0.000
Residual Error	47	17173	365		
Total	48	53637			

What assumptions?

- The intervals and tests depend on the assumption that the error terms (and thus responses) follow a normal distribution.
- Not a big deal if the error terms (and thus responses) are only approximately normal.
- If have a large sample, then the error terms can even deviate far from normality.

Prediction concerning the response *Y*

Simple linear regression model

Simple linear regression model

Three different research questions

- What is the **mean response**, $E(Y_h)$, for a given value, x_h , of the predictor variable?
- What would one **predict a new observation**, $Y_{h(new)}$, to be for a given value, x_h , of the predictor variable?
- What would one predict the mean of m new observations, $\overline{Y}_{h(new)}$, to be for a given value, x_h , of the predictor variable?

Example: Skin cancer mortality and latitude

- What is the expected (mean) mortality rate for all locations at 40° N latitude?
- What is the predicted mortality rate <u>for 1</u> new randomly selected location at 40° N?
- What is the predicted mortality rate <u>for 10</u> new randomly selected locations at 40° N?

Example: Skin cancer mortality and latitude

"Point estimators"

 $\hat{Y}_h = b_0 + b_1 x_h$ is the best point estimator in each case.

That is, it is:

- the best guess of the mean response at x_h
- the best guess of a new observation at x_h
- the best guess of a mean of m new observations at x_h

But, as always, to be confident in the answer to our research question, we should put an interval around our best guess.

It is dangerous to "extrapolate" beyond scope of model.

It is dangerous to "extrapolate" beyond scope of model.

Confidence interval for the population mean response $E(Y_h)$

Again, what are we estimating?

$(1-\alpha)100\%$ t-interval for mean response $E(Y_h)$

Formula in words:

Sample estimate ± (t-multiplier × standard error)

Formula in notation:

$$\hat{y}_h \pm t_{\left(1-\frac{\alpha}{2},n-2\right)} \times \sqrt{MSE} \times \left(\frac{1}{n} + \frac{\left(x_h - \overline{x}\right)^2}{\sum \left(x_i - \overline{x}\right)^2}\right)$$

FIGURE 2.3 Effect on \widehat{Y}_h of Variation in b_1 from Sample to Sample in Two Samples with Same Means \overline{Y} and \overline{X} .

Implications on precision

- The greater the spread in the x_i values, the narrower the confidence interval, the more precise the prediction of $E(Y_h)$.
- Given the same set of x_i values, the further x_h is from the (sample) mean of the x_i , the wider the confidence interval, the less precise the prediction of $E(Y_h)$.

Predicted Values for New Observations

```
New Fit SE Fit 95.0% CI 95.0% PI

1 150.08 2.75 (144.6,155.6) (111.2,188.93)

2 221.82 7.42 (206.9,236.8) (180.6,263.07) X

X denotes a row with X values away from the center
```

Values of Predictors for New Observations

```
New Obs Latitude
1 40.0
2 28.0
```

Mean of Lat = 39.533

Comments on assumptions

- x_h is a value within scope of model, but it is not necessary that it is one of the x values in the data set.
- The confidence interval formula for $E(Y_h)$ works okay even if the error terms are only approximately normally distributed.
- If you have a large sample, the error terms can even deviate substantially from normality without greatly affecting appropriateness of the confidence interval.

Prediction interval for a new response $Y_{h(new)}$

Again, what are we predicting?

(1- α)100% prediction interval for new response $Y_{h(new)}$

Formula in words:

Sample prediction ± (t-multiplier × standard error)

Formula in notation:

$$\hat{\boldsymbol{y}}_{h} \pm \boldsymbol{t}_{\left(1-\frac{\alpha}{2},n-2\right)} \times \sqrt{MSE} \left(1 + \frac{1}{n} + \frac{\left(\boldsymbol{x}_{h} - \overline{\boldsymbol{x}}\right)^{2}}{\sum \left(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}}\right)^{2}}\right)$$

Prediction of $Y_{h(new)}$ if mean E(Y) is known

Assume
$$\sigma^2 = 25$$
 so $\sigma = 5$

Prediction of $Y_{h(new)}$ if mean E(Y) is known

Prediction of $Y_{h(new)}$ if mean E(Y) is not known

Summary of prediction issues

- We cannot be certain of the mean of the distribution of Y.
- Prediction limits for $Y_{h(new)}$ must take into account:
 - variation in the possible mean of the distribution of Y
 - variation in the responses Y within the probability distribution

Variation of the prediction

The variation in the prediction of a new response depends on two components:

- 1. the variation due to estimating the mean $E(Y_h)$ with $\hat{\boldsymbol{y}}_h$
- 2. the variation in Y within the probability distribution

$$\sigma^2 + \sigma^2(\hat{Y}_h)$$

which is estimated by:

$$MSE + MSE \left[\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right] = MSE \left[1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right]$$

(1- α)100% prediction interval for new response $Y_{h(new)}$

Formula in words:

Sample prediction ± (t-multiplier × standard error)

Formula in notation:

$$\hat{\boldsymbol{y}}_{h} \pm \boldsymbol{t}_{\left(1-\frac{\alpha}{2},n-2\right)} \times \sqrt{MSE} \left(1 + \frac{1}{n} + \frac{\left(\boldsymbol{x}_{h} - \overline{\boldsymbol{x}}\right)^{2}}{\sum \left(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}}\right)^{2}}\right)$$

Confidence intervals and prediction intervals for response

- Stat >> Regression >> Regression ...
- Specify response and predictor(s).
- Select Options...
 - In "Prediction intervals for new observations" box,
 specify either the X value or a column name containing multiple X values.
 - Specify confidence level (default is 95%).
- Click on OK. Click on OK.
- Results appear in session window.

$$S = 19.12$$
 R-Sq = 68.0% R-Sq(adj) = 67.3%

Predicted Values for New Observations

New Fit SE Fit 95.0% CI 95.0% PI

1 150.08 2.75 (144.6,155.6) (111.2,188.93)

2 221.82 7.42 (206.9,236.8) (180.6,263.07) X

X denotes a row with X values away from the center

Values of Predictors for New Observations

New Obs Latitude
1 40.0
2 28.0

Mean of Lat = 39.533

Comments on assumptions

- x_h is a value within scope of model, but it is not necessary that it is one of the x values in the data set.
- The formula for the prediction interval depends strongly on the assumption that the error terms are normally distributed.

A plot of the confidence interval and prediction interval

- Stat >> Regression >> Fitted line plot ...
- Specify predictor and response.
- Under Options ...
 - Select Display confidence bands.
 - Select Display prediction bands.
 - Specify desired confidence level (95% default)
- · Select OK. Select OK.

Analysis of variance approach to regression analysis

... an (alternative) approach to testing for a linear association

Example: Mortality and Latitude

The regression	equatio	n is Mo	ort = 389	- 5.98	Lat
Predictor Constant Lat -	Coef 389.19 -5.9776	2	Coef 23.81 5984	T 16.34 -9.99	
S = 19.12 R-Sq = 68.0% R-Sq(adj) = 67.3% Analysis of Variance					
Source Regression Residual Error Total	47	SS 36464 17173 53637	MS 36464 365	F 99.80	P 0.000

Example: Mortality and Latitude

Example: Height and GPA

```
The regression equation is gpa = 3.41 - 0.0066 height
Predictor Coef SE Coef
Constant 3.410 1.435 2.38 0.023
height -0.00656 0.02143 -0.31 0.761
S = 0.5423  R-Sq = 0.3%  R-Sq(adj) = 0.0%
Analysis of Variance
               SS
Source
                      MS
           DF
Regression 1 0.0276 0.0276 0.09 0.761
Residual Error 33 9.7055 0.2941
       34 9.7331
Total
```

Example: Height and GPA

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = 0.0276$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 9.7055$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = 9.7331$$

The basic idea

- Break down the variation in Y ("total sum of squares") into two components:
 - a component that is "due to" the change in X("regression sum of squares")
 - a component that is just due to random error ("error sum of squares")
- If the regression sum of squares is a large component of the total sum of squares, it suggests that there is a linear association.

$$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i)$$

The above decomposition holds for the sum of the squared deviations, too:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Total sum of squares (SSTO)

Regression sum of squares (SSR)

Error sum of squares (SSE)

$$SSTO = SSR + SSE$$

Breakdown of degrees of freedom

Degrees of freedom associated with SSTO

$$(n-1)=(1)+(n-2)$$

Degrees of freedom associated with SSR

Degrees of freedom associated with SSE

Example: Mortality and Latitude

The regression	equatio	n is Mo	ort = 389	- 5.98	Lat
Predictor Constant Lat -	Coef 389.19 -5.9776	2	Coef 23.81 5984	T 16.34 -9.99	
S = 19.12 R-Sq = 68.0% R-Sq(adj) = 67.3% Analysis of Variance					
Source Regression Residual Error Total	47	SS 36464 17173 53637	MS 36464 365	F 99.80	P 0.000

Definitions of Mean Squares

We already know the **mean square error** (**MSE**) is defined as:

$$MSE = \frac{\sum (y_i - \hat{y}_i)^2}{n-2} = \frac{SSE}{n-2}$$

Similarly, the regression mean square (MSR) is defined as:

$$MSR = \frac{\sum (\hat{y}_i - \overline{y})^2}{1} = \frac{SSR}{1}$$

Analysis of Variance (ANOVA) Table

Source of				
Variation	SS	df	MS	$E\{MS\}$
Regression	$SSR = \Sigma (\hat{Y}_i - \overline{Y})^2$	A BORNAS	$MSR = \frac{SSR}{1}$	$\sigma^2 + \beta_1^2 \Sigma (X_i - \overline{X})^2$
Error	$SSE = \Sigma (Y_i - \hat{Y}_i)^2$	n-2	$MSE = \frac{SSE}{n-2}$	σ^2
Total	$SSTO = \Sigma (Y_i - \overline{Y})^2$	n-1	interested here in t	follows

Expected Mean Squares

$$E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$E(MSE) = \sigma^2$$

- If $\beta_1 = 0$, we'd expect the ratio MSR/MSE to be ...
- If $\beta_1 \neq 0$, we'd expect the ratio MSR/MSE to be ...
- Use ratio, MSR/MSE, to reject whether or not $\beta_1 = 0$.

The formal F-test for slope parameter β_1

Null hypothesis H_0 : $\beta_1 = 0$ Alternative hypothesis H_A : $\beta_1 \neq 0$

Test statistic
$$F^* = \frac{MSR}{MSE}$$

P-value = What is the probability that we'd get an F* statistic as <u>large</u> as we did, if the null hypothesis is true? (One-tailed test!)

The P-value is determined by comparing F* to an F distribution with 1 numerator degree of freedom and n-2 denominator degrees of freedom.

Winning times (in seconds) in Men's 200 meter Olympic sprints, 1900-1996.

Are men getting faster?

Row	Year	Men200m
1	1900	22.20
2	1904	21.60
3	1908	22.60
4	1912	21.70
5	1920	22.00
6	1924	21.60
7	1928	21.80
8	1932	21.20
9	1936	20.70
10	1948	21.10
11	1952	20.70
12	1956	20.60
13	1960	20.50
14	1964	20.30
15	1968	19.83
16	1972	20.00
17	1976	20.23
18	1980	20.19
19	1984	19.80
20	1988	19.75
21	1992	20.01
22	1996	19.32

S = 0.298134 R-Sq = 89.9 % R-Sq(adj) = 89.4 %

Analysis of Variance Table

P = Probability that an F(1,20) random variable is greater than 177.7 = 0.000...

For simple linear regression model, the F-test and t-test are equivalent.

Predictor	Coef	SE Coef	T	P
Constant	76.153	4.152	18.34	0.000
Year	-0.0284	0.00213	-13.33	0.000

```
Analysis of Variance

Source DF SS MS F P

Regression 1 15.796 15.796 177.7 0.000

Residual Error 20 1.778 0.089

Total 21 17.574
```

$$(-13.33)^2 = 177.7$$
 $\left(t_{(n-2)}^*\right)^2 = F_{(1,n-2)}^*$

Equivalence of F-test to t-test

- For a given α level, the F-test of $\beta_1 = 0$ versus $\beta_1 \neq 0$ is algebraically equivalent to the two-tailed t-test.
- Will get exactly same P-values, so...
 - If one test rejects H_0 , then so will the other.
 - If one test does not reject H₀, then so will the other.

Should I use the F-test or the t-test?

- The F-test is only appropriate for testing that the slope differs from $0 \ (\beta_1 \neq 0)$.
- Use the t-test to test that the slope is positive ($\beta_1 > 0$) or negative ($\beta_1 < 0$).
- F-test is more useful for multiple regression model when we want to test that more than one slope parameter is 0.

Getting ANOVA table

- The Analysis of Variance (ANOVA) Table is default output for either command
 - Stat >> Regression >> Regression ...
 - Stat >> Regression >> Fitted line plot ...

The general linear test approach to regression analysis

Three basic steps

- Define a (larger) full model.
- Define a (smaller) reduced model.
- Use an **F statistic** to decide whether or not to reject the smaller reduced model in favor of the larger full model.

The full model

The full model (or unrestricted model) is the model thought to be most appropriate for the data.

For simple linear regression, the full model is:

$$\boldsymbol{Y_i} = \beta_0 + \beta_1 \boldsymbol{X_i} + \varepsilon_i$$

The full model

The reduced model

The reduced model (or restricted model) is the model described by the null hypothesis H_0 .

For simple linear regression, the null hypothesis is H_0 : $\beta_1 = 0$. Therefore, the reduced model is:

$$Y_i = \beta_0 + \varepsilon_i$$

The reduced model

The reduced model

The general linear test approach

- "Fit the full model" to the data.
 - Obtain least squares estimates of β_0 and β_1 .
 - Determine error sum of squares "SSE(F)."
- "Fit the reduced model" to the data.
 - Obtain least squares estimate of β_0 .
 - Determine error sum of squares "SSE(R)."

The general linear test approach (cont'd)

$$SSE(F) = 7.5028$$

$$SSE(R) = 7.5035$$

The general linear test approach (cont'd)

$$SSE(F) = 17173$$

 $SSE(R) = 53637$

$$SSE(R) = 53637$$

The general linear test approach (cont'd)

- Compare SSE(R) and SSE(F).
- SSE(R) is always larger than (or same as) SSE(F).
 - If SSE(F) is close to SSE(R), then variation around fitted full model regression function is almost as large as variation around fitted reduced model regression function.
 - If SSE(F) and SSE(R) differ greatly, then the additional parameter(s) in the full model substantially reduce the variation around the fitted regression function.

How close is close?

The test statistic is a function of SSE(R)-SSE(F):

$$F^* = \left(\frac{SSE(R) - SSE(F)}{df_R - df_F}\right) \div \left(\frac{SSE(F)}{df_F}\right)$$

The degrees of freedom (df_R and df_F) are those associated with the reduced and full model error sum of squares, respectively.

Reject H_0 if F* is large (or if P-value is small).

But for simple linear regression, it's just the same F test as before ...

$$F^* = \left(\frac{SSE(R) - SSE(F)}{df_R - df_F}\right) \div \left(\frac{SSE(F)}{df_F}\right)$$

$$df_R = n-1$$
 $SSE(R) = SSTO$
 $df_F = n-2$ $SSE(F) = SSE$

$$F^* = \left(\frac{SSTO - SSE}{(n-1) - (n-2)}\right) \div \left(\frac{SSE}{(n-2)}\right) = \frac{MSR}{MSE}$$

The formal F-test for slope parameter β_1

Null hypothesis H_0 : $\beta_1 = 0$ Alternative hypothesis H_A : $\beta_1 \neq 0$

Test statistic
$$F^* = \frac{MSR}{MSE}$$

P-value = What is the probability that we'd get an F* statistic as <u>large</u> as we did, if the null hypothesis is true? (One-tailed test!)

The P-value is determined by comparing F* to an F distribution with 1 numerator degree of freedom and n-2 denominator degrees of freedom.

Example: Alcoholism and Muscle strength?

- Report on strength tests for a sample of 50 alcoholic men
 - -X = total lifetime dose of alcohol (kg per kg of body weight)
 - -Y = strength of deltoid muscle in man's nondominant arm

Reduced Model Fit $\hat{y} = \overline{y} = 20.164$

$$\hat{y} = \overline{y} = 20.164$$

$$SSE(R) = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = 1224.32$$

$$SSE(F) = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = 720.27$$

The ANOVA table

Analysis of Variance

There is a statistically significant linear association between alcoholism and arm strength.

Lack of Fit (LOF) Test

An F test for checking whether a specific type of regression function adequately fits the data

Do the data suggest that a linear function is not adequate in describing the relationship between skin cancer mortality and latitude?

Do the data suggest that a linear function is not adequate in describing the relationship between the length and weight of an alligator?

Do the data suggest that a linear function is not adequate in describing the relationship between iron content and weight loss due to corrosion?

Lack of fit test for a linear function

- Use general linear test approach.
- Full model is most general model with no restrictions on the means μ_j at each X_j level.
- Reduced model assumes that the μ_j are a linear function of the X_j , *i.e.*, $\mu_j = \beta_0 + \beta_1 X_j$.

The full model

The reduced model

Assumptions and requirements

- The errors, ε_i , and hence the responses Y_i , are independent.
- The errors, ε_i , and hence the responses Y_i , are normally distributed.
- The errors, ε_i , and hence the responses Y_i , have equal variances (σ^2) for all x values.
- The LOF test requires repeat observations, called replicates, for at least one of the X values.

Notation

wgtloss iron 0.01 127.6 0.01 130.1 0.01 128.0 0.48 124.0 122.0 0.48 0.71 110.8 0.71 113.1 103.9 0.95 1.19 101.5 1.44 92.3 91.4 1.44 1.96 83.7 1.96 86.2

- c different levels of X (c=7 with $X_1=0.01, X_2=0.48, ..., X_7=1.96$)
- $\mathbf{n_j} = \mathbf{number of replicates}$ for j^{th} level of $X(X_j)$ ($n_1=3, n_2=2, ..., n_7=2$) for a total of $\mathbf{n} = \mathbf{n_1} + ... + \mathbf{n_c}$ observations.
- Y_{ij} = observed value of the response variable for the ith replicate of X_j (Y_{11} =127.6, Y_{21} =130.1, ..., Y_{27} =86.2)

The Full Model

Assume nothing about (or "put no structure on") the means of the responses, μ_i , at the jth level of X:

$$Y_{ij} = \mu_j + \varepsilon_{ij}$$

Least squares estimates of μ_j are sample means, $\hat{\mu}_j = Y_j$, of responses at X_i level.

"Pure error sum of squares"

$$SSE(F) = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2 = SSPE$$

The Reduced Model

Assume the means of the responses, μ_j , are a linear function of the jth level of X:

$$Y_{ij} = \beta_0 + \beta_1 X_j + \varepsilon_{ij}$$

Least squares estimates of μ_j are as usual: $\hat{Y}_{ij} = b_0 + b_1 X_j$

"Error sum of squares"

$$SSE(R) = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \hat{Y}_{ij})^2 = SSE$$

Decomposing the error

Decomposing the error

Error sum of squares decomposition

$$\left(Y_{ij} - \hat{Y}_{ij}\right) = \left(Y_{ij} - \overline{Y}_{j}\right) + \left(\overline{Y}_{j} - \hat{Y}_{ij}\right)$$

error deviation pure error deviation lack of fit deviation

$$\sum_{j} \sum_{i} \left(Y_{ij} - \hat{Y}_{ij} \right)^{2} = \sum_{j} \sum_{i} \left(Y_{ij} - \overline{Y}_{j} \right)^{2} + \sum_{j} \sum_{i} \left(\overline{Y}_{j} - \hat{Y}_{ij} \right)^{2}$$

$$SSE = SSPE + SSLF$$

The general linear test

$$F^* = \left(\frac{SSE(R) - SSE(F)}{df_R - df_F}\right) \div \left(\frac{SSE(F)}{df_F}\right)$$

$$df_R = n-2$$
 $SSE(R) = SSE$
 $df_F = n-c$ $SSE(F) = SSPE$

$$F^* = \left(\frac{SSE - SSPE}{(n-2) - (n-c)}\right) \div \left(\frac{SSPE}{(n-2)}\right) = \left(\frac{SSLF}{c-2}\right) \div \left(\frac{SSPE}{(n-2)}\right) = \frac{MSLF}{MSPE}$$

The test (intuitively)

- If the largest portion of the error sum of squares is due to lack of fit, the F test should be large.
- A large F* statistic leads to a small P-value (determined by F(c-2, n-2) distribution).
- If the P-value is small, reject the null and conclude significant lack of (linear) fit.

The formal LOF test

Null hypothesis H_0 : (Reduced) $Y_{ij} = \beta_0 + \beta_1 x_j + \varepsilon_{ij}$

Alternative hypothesis H_A : (Full) $Y_{ij} = \mu_j + \varepsilon_{ij}$

Test statistic
$$F^* = \frac{MSLF}{MSPE}$$

P-value = What is the probability that we'd get an F* statistic as <u>large</u> as we did, if the null hypothesis is true? (One-tailed test!)

The P-value is determined by comparing F^* to an F distribution with c-2 numerator degrees of freedom and n-2 denominator degrees of freedom.

LOF Test summarized in an ANOVA Table

TABLE 3.6 General ANOVA Table for Testing Lack of Fit of Simple Linear Regression Function and ANOVA Table for Bank Example.

	(a) General		
Source of Variation	SS	df	MS
Regression	$SSR = \Sigma \Sigma (\hat{Y}_{ij} - \overline{Y})^2$	1	$MSR = \frac{SSR}{1}$
Error	$SSE = \Sigma \Sigma (Y_{ij} - \hat{Y}_{ij})^2$	n-2	$MSE = \frac{SSE}{n-2}$
Lack of fit	$SSLF = \Sigma \Sigma (\overline{Y}_j - \hat{Y}_{ij})^2$	c-2	$MSLF = \frac{SSLF}{c - 2}$
Pure error	$SSPE = \Sigma \Sigma (Y_{ij} - \overline{Y}_j)^2$	n-c	$MSPE = \frac{SSPE}{n - c}$
Total	$SSTO = \sum \sum (Y_{ij} - \overline{Y})^2$	n-1	

LOF Test

- Stat >> Regression >> Regression ...
- Specify predictor and response.
- Under Options...
 - under Lack of Fit Tests, select the box labeled
 Pure error.
- Select OK. Select OK.

Do the data suggest that a linear function is not adequate in describing the relationship between skin cancer mortality and latitude?

Example 1: Mortality and Latitude

Analysis of Variance

```
      Source
      DF
      SS
      MS
      F
      P

      Regression
      1
      36464
      36464
      99.80
      0.000

      Residual Error
      47
      17173
      365

      Lack of Fit
      30
      12863
      429
      1.69
      0.128

      Pure Error
      17
      4310
      254

      Total
      48
      53637
```

19 rows with no replicates

Do the data suggest that a linear function is not adequate in describing the relationship between the length and weight of an alligator?

Example 2: Alligator length and weight

Analysis of Variance

```
Source DF SS MS F P
Regression 1 342350 342350 117.35 0.000
Residual Error 23 67096 2917
Lack of Fit 17 66567 3916 44.36 0.000
Pure Error 6 530 88
Total 24 409446
```

14 rows with no replicates

Do the data suggest that a linear function is not adequate in describing the relationship between iron content and weight loss due to corrosion?

Example 3: Iron and corrosion

Analysis of Variance

```
      Source
      DF
      SS
      MS
      F
      P

      Regression
      1 3293.8 3293.8 352.27 0.000

      Residual Error
      11 102.9 9.4

      Lack of Fit
      5 91.1 18.2 9.28 0.009

      Pure Error
      6 11.8 2.0

      Total
      12 3396.6
```

2 rows with no replicates

Do the data suggest that a linear function is not adequate in describing the relationship between mileage and groove depth?

Example 4: Tread wear

Analysis of Variance

```
Source DF SS MS F P

Regression 1 50887 50887 140.71 0.000

Residual Error 7 2532 362

Total 8 53419
```

No replicates. Cannot do pure error test.

Model Checking

Using residuals to check the validity of the linear regression model assumptions

The simple linear regression model

- The mean of the responses, E(Y_i), is a **linear function** of the x_i.
- The errors, ε_i , and hence the responses Y_i , are independent.
- The errors, ε_i , and hence the responses Y_i , are **normally distributed**.
- The errors, ε_i , and hence the responses Y_i , have **equal variances** (σ^2) for all x values.

The simple linear regression model

<u>Assume</u> (!!) response is **linear** function of trend and error:

$$\boldsymbol{Y}_{i} = (\beta_{0} + \beta_{1}\boldsymbol{X}_{i}) + \varepsilon_{i}$$

with the **independent** error terms ε_i following a **normal** distribution with mean 0 and **equal** variance σ^2 .

Why do we have to check our model?

- All estimates, intervals, and hypothesis tests have been developed assuming that the model is correct.
- If the model is incorrect, then the formulas and methods we use are at risk of being incorrect.

When should we worry most?

- All tests and intervals are very sensitive to
 - departures from independence.
 - moderate departures from equal variance.
- Tests and intervals for β_0 and β_1 are fairly robust against departures from normality.
- Prediction intervals are quite sensitive to departures from normality.

What can go wrong with the model?

- Regression function is **not linear**.
- Error terms are **not independent**.
- Error terms are **not normal**.
- Error terms do **not** have **equal variance**.
- The model fits all but one or a few outlier observations.
- An important predictor variable has been left out of the model.

The basic idea of residual analysis

The observed residuals:

$$e_i = y_i - \hat{y}_i$$

should reflect the properties assumed for the unknown true error terms:

$$\varepsilon_i = Y_i - E(Y_i)$$

So, investigate the observed residuals to see if they behave "properly."

Distinction between true errors ϵ_i and residuals e_i

The sample mean of the residuals e_i is always 0.

Regression Plot

x	y	RESIDUAL
1	9	1.60825
1	7	-0.39175
1	8	0.60825
2	10	-1.04639
3	15	0.29897
3	12	-2.70103
4	19	0.64433
5	24	1.98969
5	21	-1.01031
		0.00001
		(round-off error)

The residuals are not independent.

Regression Plot

y = 3.73711 + 3.65464 x

S = 1.55768R-Sq = 94.4 % R-Sq(adj) = 93.6 %

$$\boldsymbol{e}_1 = \boldsymbol{y}_1 - (\boldsymbol{b}_0 + \boldsymbol{b}_1 \boldsymbol{x})$$

$$e_1 = y_1 - (b_0 + b_1 x)$$

$$e_2 = y_2 - (b_0 + b_1 x)$$

$$\boldsymbol{e}_n = \boldsymbol{y}_n - (\boldsymbol{b}_0 + \boldsymbol{b}_1 \boldsymbol{x})$$

A residuals vs. fits plot

- A scatter plot with **residuals** on the y axis and **fitted values** on the x axis.
- Helps to identify non-linearity, outliers, and non-constant variance.

Example: Alcoholism and muscle strength?

strength = 26.3695 - 0.295868 alcohol

S = 3.87372 R-Sq = 41.2 % R-Sq(adj) = 39.9 %

A well-behaved residuals vs. fits plot

Characteristics of a well-behaved residual vs. fits plot

- The residuals "bounce randomly" around the 0 line. (Linear is reasonable).
- No one residual "stands out" from the basic random pattern of residuals. (No outliers).
- The residuals roughly form a "horizontal band" around 0 line. (Constant variance).

Durbin-Watson Procedure

- 1. Used to Detect Autocorrelation
 - Residuals in one time period are related to residuals in another period
 - Violation of independence assumption
- 2. Durbin-Watson Test Statistic

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

Durbin-Watson Rules

- For given α , n, & p:
- If $D < d_L$, then auto-correlation exists
- If $D > d_U$, then no auto-correlation exists
- If $d_L < D < d_U$, then no definite conclusion

X variables, excluding the intercept											
Obser	vations	1		2		3		4		5	
N	Prob.	D-L	D-U								
15	0.05	1.08	1.36	0.95	1.54	0.82	1.75	0.69	1.97	0.56	2.21
	0.01	0.81	1.07	0.7	1.25	0.59	1.46	0.49	1.70	0.39	1.96
20	0.05	1.20	1.71	1.10	1.54	1.00	1.68	0.90	1.83	0.79	1.99
	0.01	0.95	1.15	0.86	1.27	0.77	1.41	0.68	1.57	0.60	1.74
25	0.05	1.29	1.45	1.21	1.55	1.12	1.66	1.04	1.77	0.95	1.89
	0.01	1.05	1.21	0.98	1.30	0.90	1.41	0.83	1.52	0.75	1.65
30	0.05	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83
	0.01	1.13	1.26	1.07	1.34	1.01	1.42	0.94	1.51	0.88	1.61
40	0.05	1.44	1.54	1.39	1.60	1.34	1.66	1.39	1.72	1.23	1.79
	0.01	1.25	1.34	1.20	1.40	1.15	1.46	1.10	1.52	1.05	1.58
50	0.05	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.77
	0.01	1.32	1.40	1.28	1.45	1.24	1.49	1.20	1.54	1.16	1.59
60	0.05	1.55	1.62	1.51	1.65	1.48	1.69	1.44	1.73	1.41	1.77
	0.01	1.38	1.45	1.35	1.48	1.32	1.52	1.28	1.56	1.25	1.60
80	0.05	1.61	1.66	1.59	1.69	1.56	1.72	1.53	1.74	1.51	1.77
	0.01	1.47	1.52	1.44	1.54	1.42	1.57	1.39	1.60	1.36	1.62
100	0.05	1.65	1.69	1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.78
	0.01	1.52	1.56	1.50	1.58	1.48	1.60	1.46	1.63	1.44	1.65

A residuals vs. predictor plot

- A scatter plot with **residuals** on the y axis and the values of a **predictor** on the x axis.
- If the predictor on the x axis is the same predictor used in model, offers nothing new.
- If the predictor on the x axis is a new and different predictor, can help to determine whether the predictor should be added to model.

A residuals vs. predictor plot offering nothing new.

Example: What are good predictors of blood pressure?

- n = 20 hypertensive individuals
- **weight** = weight of individual
- duration = years with high blood pressure

Residuals (age only) vs. weight plot

Residuals (age, weight) vs. duration plot

How a **non-linear function** shows up on a residual vs. fits plot

- The residuals depart from 0 in some systematic manner:
 - such as, being positive for small x values,
 negative for medium x values, and positive
 again for large x values

Example: A linear relationship between tread wear and mileage?

mileage	groove
0	394.33
4	329.50
8	291.00
12	255.17
16	229.33
20	204.83
24	179.00
28	163.83
32	150.33

X = mileage in 1000 miles

Y = groove depth in mils

Is tire tread wear linearly related to mileage?

A residual vs. fits plot suggesting relationship is not linear

(response is groove)

How non-constant error variance shows up on a residual vs. fits plot

- The plot has a "fanning" effect.
 - Residuals are close to 0 for small x values and are more spread out for large x values.
- The plot has a "funneling" effect
 - Residuals are spread out for small x values and close to 0 for large x values.
- Or, the spread of the residuals can vary in some complex fashion.

Example: How is plutonium activity related to alpha particle counts?

A residual vs. fits plot suggesting non-constant error variance

How an **outlier** shows up on a residuals vs. fits plot

- The observation's residual stands apart from the basic random pattern of the rest of the residuals.
- The random pattern of the residual plot can even disappear if one outlier really deviates from the pattern of the rest of the data.

Example: Relationship between tobacco use and alcohol use?

Region	Alcohol	Tobacco
North	6.47	4.03
Yorkshire	6.13	3.76
Northeast	6.19	3.77
EastMidlands	4.89	3.34
WestMidlands	5.63	3.47
EastAnglia	4.52	2.92
Southeast	5.89	3.20
Southwest	4.79	2.71
Wales	5.27	3.53
Scotland	6.08	4.51
Northern Ireland	4.02	4.56

- •Family Expenditure Survey of British Dept. of Employment
- •X = average weekly expenditure on tobacco
- •Y = average weekly expenditure on alcohol

Example: Relationship between tobacco use and alcohol use?

A residual vs. fits plot suggesting an outlier exists

Residuals Versus the Fitted Values

(response is Alcohol)

How large does a residual need to be before being flagged?

- The magnitude of the residuals depends on the units of the response variable.
- Make the residuals "unitless" by dividing by their standard deviation. That is, use "standardized residuals."
- Then, an observation with a standardized residual greater than 2 or smaller than -2 should be <u>flagged for further investigation</u>.

Standardized residuals vs. fits plot

Identifies observations with large standardized residuals

```
Unusual Observations
Obs Tobacco Alcohol Fit SE Fit Resid St Resid
11 4.56 4.020 5.728 0.482 -1.708 -2.58R
```

R denotes an observation with a large standardized residual.

Anscombe data set #3

A residual vs. fits plot suggesting an outlier exists

Residuals vs. order plot

- Helps assess serial correlation of error terms.
- If the data are obtained in a time (or space) sequence, a "residuals vs. order" plot helps to see if there is any correlation between error terms that are near each other in the sequence.
- A horizontal band bouncing randomly around 0 suggests errors are independent, while a systematic pattern suggests not.

Residuals vs. order plots suggesting non-independence of error terms

Normal (probability) plot of residuals

- Helps assess normality of error terms.
- If data are Normal(μ , σ^2), then percentiles of the normal distribution should plot linearly against sample percentiles (with sampling variation).
- The parameters μ and σ^2 are unknown. Theory shows it's okay to assume $\mu = 0$ and $\sigma^2 = 1$.

Normal (probability) plot

of residuals

Ordered!
$$\left(\frac{i}{n+1}\right)$$
 $\left(\frac{i-\frac{3}{8}}{n+\frac{1}{4}}\right)$

x	У	i	RESI1	PCT	MTB_PCT	NSCORE
3	12	1	-2.70103	0.1	0.060976	-1.54664
2	10	2	-1.04639	0.2	0.158537	-1.00049
5	21	3	-1.01031	0.3	0.256098	-0.65542
1	7	4	-0.39175	0.4	0.353659	-0.37546
3	15	5	0.29897	0.5	0.451220	-0.12258
1	8	6	0.60825	0.6	0.548780	0.12258
4	19	7	0.64433	0.7	0.646341	0.37546
1	9	8	1.60825	0.8	0.743902	0.65542
5	24	9	1.98969	0.9	0.841463	1.00049

Normal (probability) plot of residuals (cont'd)

- Plot **normal scores** (theoretical percentiles) on vertical axis against **ordered residuals** (sample percentiles) on horizontal axis.
- Plot that is nearly linear suggests normality of error terms.

Normal (probability) plot

(response is y)

Normal (probability) plot

Average: -0.0000000 StDev: 1.45707

N: 9

Anderson-Darling Normality Test A-Squared: 0.205

P-Value: 0.813

Normal (probability) plot

A normal (probability) plot with non-normal error terms

Fixing problems with the model

Transforming the data so that the simple linear regression model is okay for the transformed data.

Options for fixing problems with the model

- Abandon simple linear regression model and find a more appropriate but typically more complex model.
- Transform the data so that the simple linear regression model works for the transformed data.

Abandoning the model

- If **not linear**: try a different function, like a quadratic (Ch. 7) or an exponential function (Ch. 13).
- If unequal error variances: use weighted least squares (Ch. 10).
- If error terms are not independent: try fitting a time series model (Ch. 12).
- If **important predictor variables omitted**: try fitting a multiple regression model (Ch. 6).
- If **outlier**: use robust estimation procedure (Ch. 10).

Choices for transforming the data

- Transform X values only.
- Transform *Y* values only.
- Transform both the X and the Y values.

Transforming the X values only

Transforming the X values only

- Appropriate when non-linearity is the only problem normality and equal variance okay with the model.
- Transforming the *Y* values would likely change the well-behaved error terms into badly-behaved error terms.

Memory retention

time	prop
1	0.84
5	0.71
15	0.61
30	0.56
60	0.54
120	0.47
240	0.45
480	0.38
720	0.36
1440	0.26
2880	0.20
5760	0.16
10080	0.08

- Subjects asked to memorize a list of disconnected items. Asked to recall them at various times up to a week later
- Predictor **time** = time, in minutes, since initially memorized the list.
- Response **prop** = proportion of items recalled correctly.

Fitted line plot

Residual vs. fits plot

Normal probability plot

Transform the X values

time	prop	log10_time
1	0.84	0.00000
5	0.71	0.69897
15	0.61	1.17609
30	0.56	1.47712
60	0.54	1.77815
120	0.47	2.07918
240	0.45	2.38021
480	0.38	2.68124
720	0.36	2.85733
1440	0.26	3.15836
2880	0.20	3.45939
5760	0.16	3.76042
10080	0.08	4.00346

Change ("transform") the predictor **time** to **log**₁₀(**time**).

Fitted line plot using transformed X values

Residuals vs. fits plot using transformed *X* values

Normal probability plot using transformed *X* values

Predicting new proportion

Estimated regression function:

$$\hat{Y} = 0.846 - 0.182 \times \log_{10}(time)$$

Therefore, we predict the proportion of words recalled after 1000 minutes is:

$$\hat{\mathbf{Y}} = 0.846 - 0.182 \times \log_{10}(1000)$$

$$\hat{\mathbf{Y}} = 0.846 - 0.182 \times 3 = 0.30$$

Predicting new proportion

```
Predicted Values for New Observations
```

```
New Fit SE Fit 95.0% CI 95.0% PI
1 0.299 0.00765 (0.282, 0.316) (0.245, 0.353)
```

Values of Predictors for New Observations

```
New Obs log10tim
1 3.00
```

We can be 95% confident that a person will recall between 24.5% and 35.3% of the words after 1000 minutes.

Transforming the Y values only

Transforming the Y values only

- Appropriate when **non-normality** and/or **unequal variances** are the problems.
- The transformation on Y may also help to "straighten out" a curved relationship.

Gestation time and birth weight for mammals

Mammal	Birthwgt	Gestation
Goat	2.75	155
Sheep	4.00	175
Deer	0.48	190
Porcupine	1.50	210
Bear	0.37	213
Hippo	50.00	243
Horse	30.00	340
Camel	40.00	380
Zebra	40.00	390
Giraffe	98.00	457
Elephant	113.00	670

- Predictor **Birthwgt** = birth weight, in kg, of mammal.
- Response **Gestation** = number of days until birth

Fitted line plot

Residual vs. fits plot

Normal probability plot

Transform the Y values

Mammal	Birthwgt	Gestation	log10Gest
Goat	2.75	155	2.19033
Sheep	4.00	175	2.24304
Deer	0.48	190	2.27875
Porcupine	1.50	210	2.32222
Bear	0.37	213	2.32838
Hippo	50.00	243	2.38561
Horse	30.00	340	2.53148
Camel	40.00	380	2.57978
Zebra	40.00	390	2.59106
Giraffe	98.00	457	2.65992
Elephant	113.00	670	2.82607

Change ("transform") the response **Gestation** to log_{10} (**Gestation**).

Fitted line plot using transformed *Y* values

Residual vs. fits plot using transformed *Y* values

Normal probability plot using transformed *Y* values

Predicting new gestation

Estimated regression function:

$$\log_{10}(\hat{\mathbf{G}est}) = 2.29 + 0.0045 \times \mathbf{Birthwgt}$$

Therefore, since:

$$\log_{10}(\hat{\mathbf{G}est}) = 2.29 + 0.0045 \times 50 = 2.515$$

we predict the gestation length of another mammal at 50 kgs to be:

$$\hat{G}est = 10^{\log_{10}(\hat{G}est)} = 10^{2.515} = 327.3$$

Predicting new gestation

Predicted Values for New Observations

```
New Fit SE Fit 95.0% CI 95.0% PI
1 2.5186 0.0306 (2.4494, 2.5878) (2.2951, 2.7421)
```

Values of Predictors for New Observations

```
Birthwgt
New
        50.0
```

$$10^{2.2951} = 197.3$$
$$10^{2.7421} = 552.2$$

$$10^{2.7421} = 552.2$$

We can be 95% confident that the gestation length for a new mammal at 50 kgs will be between 197.3 and 552.2 days.

Transforming both the *X* and *Y* values

Transforming both the *X* and *Y* values

- Appropriate when the error terms are **not normal**, have **unequal variances**, and the function is **not linear**.
- Transforming the *Y* values corrects the problems with the error terms (and may help the non-linearity).
- Transforming the X values corrects the non-linearity.

Diameter (inches) and volume (cu. ft.) of 70 shortleaf pines

Residuals vs. fits plot

Normal probability plot

Transform the Y values only

Diameter	Volume	logVol
4.4	2.0	0.69315
4.6	2.2	0.78846
5.0	3.0	1.09861
5.1	4.3	1.45862
5.1	3.0	1.09861
5.2	2.9	1.06471
5.2	3.5	1.25276
5.5	3.4	1.22378
5.5	5.0	1.60944
5.6	7.2	1.97408
5.9	6.4	1.85630
5.9	5.6	1.72277
7.5	7.7	2.04122
7.6	10.3	2.33214
and so	on	

Transform response **volume** to **log**_e(**volume**)

Fitted line plot using transformed *Y* values

Residuals vs. fits plot using transformed *Y* values

Normal probability plot using transformed *Y* values

Transform both the *X* and *Y* values

Diameter	Volume	logDiam	logVol
4.4	2.0	1.48160	0.69315
4.6	2.2	1.52606	0.78846
5.0	3.0	1.60944	1.09861
5.1	4.3	1.62924	1.45862
5.1	3.0	1.62924	1.09861
5.2	2.9	1.64866	1.06471
5.2	3.5	1.64866	1.25276
5.5	3.4	1.70475	1.22378
5.5	5.0	1.70475	1.60944
5.6	7.2	1.72277	1.97408
5.9	6.4	1.77495	1.85630
5.9	5.6	1.77495	1.72277
7.5	7.7	2.01490	2.04122
7.6	10.3	2.02815	2.33214
and so	on		

Transform predictor diameter to log_e(diameter)

Transform response volume to log_e(volume)

Fitted line plot using transformed *X* and *Y* values

Residual plot using transformed X and Y values

Normal probability plot using transformed *X* and *Y* values

Transformation strategies

Effects of transformations

- Transforming the Y values corrects the problems with the error terms and may simultaneously help non-linearity.
- Transforming the X values can only correct non-linearity.

Transformation strategies

- If form of the relationship between x and y is known, then it may be possible to **find a linearizing transformation analytically**.
- Fitting a regression model **empirically** generally requires **trial and error** try different transformations to see which does best.

Transformation strategies

Finding a linearizing transformation analytically

Knowing functional relationship is of the power form

If the relationship between x and y is of the **power form**:

$$y = \alpha x^{\beta}$$

taking log of both sides transforms it into a linear form:

$$\log_e y = \log_e \alpha + \beta \log_e x$$

Knowing functional relationship is of the exponential form

If the relationship between x and y is of **exponential form**:

$$y = \alpha e^{\beta x}$$

taking log of both sides transforms it into a linear form:

$$\log_e y = \log_e \alpha + \beta x$$

Transformation strategies

Finding a transformation by trial and error

Family of power transformations

The **most common transformation** involves transforming the response by taking it to some power λ . That is:

$$y' = y^{\lambda}$$

Most commonly, for interpretation reasons, λ is a number between -1 and 2, such as -1, -0.5, 0, 0.5, (1), 1.5, and 2.

When $\lambda = 0$, the transformation is taken to be the log transformation. That is:

$$y' = \log_e y$$

Effect of log_e transformation

Effect of log_e transformation

Natural log function

Some guidelines for specifying λ

- To make smaller values more spread out, use a smaller λ .
- To make larger values more spread out, use a larger λ .

X	y
\boldsymbol{x}^2	y
\boldsymbol{x}^3	y
X	$\log y$
X	-1/y

X	y
$\log x$	y
$-\frac{1}{x}$	y
X	y^3
X	y ²

X	y
$\log x$	y
$-\frac{1}{x}$	y
X	$\log y$
X	-1/y
$\log x$	$\log y$

X	y
\boldsymbol{x}^2	y
\boldsymbol{x}^3	y
x	\boldsymbol{y}^2
x	y^3

Transformation strategies

Variance stabilizing transformations

Common variance stabilizing transformations

If the response is a Poisson count, so that the variance is proportional to the mean, use the **square root transformation**:

$$\boldsymbol{y'} = \boldsymbol{y'}^{\frac{1}{2}} = \sqrt{\boldsymbol{y}}$$

If the response is a binomial proportion, use the **arcsine square root transformation**:

$$\hat{\boldsymbol{p}}' = \sin^{-1}\left(\sqrt{\hat{\boldsymbol{p}}}\right)$$

Common variance stabilizing transformations

If the variance is proportional to the mean squared, use the **natural log transformation**:

$$y' = \log_e(y)$$

If the variance is proportional to the mean to the fourth power, use the **reciprocal transformation**:

$$y' = -\frac{1}{y}$$