Probability and Statistics: Lecture-40

Monsoon-2020

by Dr. Pawan Kumar (IIIT, Hyderabad) on November 16, 2020

- * On the left, US exit poll results
- Poll on Trump Vs Biden
- * Sample size of 15,318
- * Error margin shown in grey
- Draw conclusions from the sample data
- * Will inference fail? How much it can fail?
- * How confident we are of this?

	POLL OF ALL POLLS					
	NDA	MAHAGATHBANDHAN	LJP	OTHERS		
JAN KI BAAT	104	128	6	5		
C-VOTER	116	120 7	1	6		
MY AXIS	_{>-} 80	150	4	9		
TV9 BHARATVARSH	115	120	4	4		
POLL OF POLLS	104	129	4	6		

	POLI	OF ALL PO	LLS	
	NDA	MAHAGATHBANDHAN	LJP	OTHERS
JAN KI BAAT	104	128	6	5
C-VOTER	116	120	1	6
MY AXIS	80	150	4	9
TV9 BHARATVARSH	115	120	4	4
POLL OF POLLS	104	129	4	6

BIHAR ASSEMBLY ELECTIONS RESULTS 2020

TOTAL SEATS 243

NDA	125	MGB	110	OTH	8
BJP	74	RJD	75	LJP	1
JD(U)	43	CONG	19	AIMIM	5
HAM	4	CPI-ML	11	BSP	1
VIP	4	СРМ	3	OTHERS	1
		CPI	2		

- * On the left, poll of polls showing clear majority for MAHAGATHBANDHAN
- * After election, NDA has full majority
- * How do we estimate such errors?

Definition of Statistical Inference

Definition of Statistical Inference

Statistical inference is a collection of methods that deal with drawing conclusions from data that are prone to random variation.

* knowledge of probability is used

Definition of Statistical Inference

- * knowledge of probability is used
- * we need to work with real data

Definition of Statistical Inference

- * knowledge of probability is used
- * we need to work with real data
- * distribution of the data may not be known

Definition of Statistical Inference

- * knowledge of probability is used
- * we need to work with real data
- distribution of the data may not be known

Definition of Statistical Inference

Statistical inference is a collection of methods that deal with drawing conclusions from data that are prone to random variation.

- * knowledge of probability is used
- * we need to work with real data
- distribution of the data may not be known

* Two types: Frequentist and Bayesian

Definition of Statistical Inference

Statistical inference is a collection of methods that deal with drawing conclusions from data that are prone to random variation.

- * knowledge of probability is used
- * we need to work with real data
- * distribution of the data may not be known

st Two types: Frequentist and Bayesian

Statistical Inference Problem

To determine an unknown quantity,

Definition of Statistical Inference

Statistical inference is a collection of methods that deal with drawing conclusions from data that are prone to random variation.

- * knowledge of probability is used
- * we need to work with real data
- * distribution of the data may not be known

* Two types: Frequentist and Bayesian

Statistical Inference Problem

To determine an unknown quantity, get some data,

Definition of Statistical Inference

Statistical inference is a collection of methods that deal with drawing conclusions from data that are prone to random variation.

- * knowledge of probability is used
- * we need to work with real data
- distribution of the data may not be known

* Two types: Frequentist and Bayesian

Statistical Inference Problem

To determine an unknown quantity, get some data, and then estimate the required quantity using this data.

Recall: A statistical inference problem is to estimate an unknown quantity

» Fr	equentis	t or C	lassical	Inference
------	----------	--------	----------	-----------

Recall: A statistical inference problem is to estimate an unknown quantity

Recall: A statistical inference problem is to estimate an unknown quantity

Frequentist Inference

Here the unknown quantity is assumed to be fixed quantity and not random.

Recall: A statistical inference problem is to estimate an unknown quantity

Frequentist Inference

Recall: A statistical inference problem is to estimate an unknown quantity

Frequentist Inference

Here the unknown quantity is assumed to be fixed quantity and not random. So, the unknown quantity θ is to be estimated by the observed data.

* Let θ be the percentage of people who will vote for a given candidate

Recall: A statistical inference problem is to estimate an unknown quantity

Frequentist Inference

- st Let heta be the percentage of people who will vote for a given candidate
 - $\hat{\Theta} = Y$ is the number of people among randomly chosen ones who will vote for candidate

Recall: A statistical inference problem is to estimate an unknown quantity

Frequentist Inference

- * Let θ be the percentage of people who will vote for a given candidate
 - $*\hat{\Theta} = \frac{\gamma}{n}$, Y is the number of people among randomly chosen ones who will vote for candidate
 - st Although, heta is non random, we estimate it via $\hat{\Theta},$ a random variable

Recall: A statistical inference problem is to estimate an unknown quantity

Frequentist Inference

- * Let θ be the percentage of people who will vote for a given candidate
 - $\hat{\Theta} = \frac{Y}{n}$, Y is the number of people among randomly chosen ones who will vote for candidate
 - st Although, heta is non random, we estimate it via $\hat{\Theta},$ a random variable
 - * Here $\hat{\Theta}$ is random variable, because it depends on random sample

What is Bayesian Inference?

Here the unknown quantity $\boldsymbol{\Theta}$ is assumed to be a random variable.

What is Bayesian Inference?

Here the unknown quantity Θ is assumed to be a random variable. Furthermore, we assume to have some initial guess about the distribution of Θ .

What is Bayesian Inference?

What is Bayesian Inference?

Here the unknown quantity Θ is assumed to be a random variable. Furthermore, we assume to have some initial guess about the distribution of Θ . After we observe the data, we can update the distribution of Θ using Bayes rule.

* Consider communication systems in which information is transmitted in the form of bits

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- * In each transmission,

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- * In each transmission, the transmitter sends a 1 with probability p,

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- st In each transmission, the transmitter sends a 1 with probability p, and sends a 0 with probability 1-p

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- * In each transmission, the transmitter sends a 1 with probability p, and sends a 0 with probability 1-p
- * Hence, if Θ is the transmitted bit,

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- st In each transmission, the transmitter sends a 1 with probability p, and sends a 0 with probability 1-p
- * Hence, if Θ is the transmitted bit, then $\Theta \sim \mathsf{Bernoulli}(p)$

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- * In each transmission, the transmitter sends a 1 with probability p, and sends a 0 with probability 1-p
- st Hence, if Θ is the transmitted bit, then $\Theta \sim \mathsf{Bernoulli}(p)$
- st Let us assume that at receiver end we get the output X

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- * In each transmission, the transmitter sends a 1 with probability p, and sends a 0 with probability 1-p
- * Hence, if Θ is the transmitted bit, then $\Theta \sim \text{Bernoulli}(p)$
- * Let us assume that at receiver end we get the output X
- * The problem now is to estimate Θ from the noisy output X

What is Bayesian Inference?

- * Consider communication systems in which information is transmitted in the form of bits
- * In each transmission, the transmitter sends a 1 with probability p, and sends a 0 with probability 1-p
- * Hence, if Θ is the transmitted bit, then $\Theta \sim \text{Bernoulli}(p)$
- * Let us assume that at receiver end we get the output X
- * The problem now is to estimate Θ from the noisy output X
- * We use the prior knowledge that $\Theta \sim \mathsf{Bernoulli}(p)$

1. Choose a random sample of size $n: X_1, \dots, X_n$ with replacement

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person.

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person.

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person. Again, every person in the population has the same chance of being chosen

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person. Again, every person in the population has the same chance of being chosen
- In general, X_i is the height of the ith person that is chosen uniformly and independently from the
 population

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person. Again, every person in the population has the same chance of being chosen
- * In general, X_i is the height of the *i*th person that is chosen uniformly and independently from the population
- * why do we do the sampling with replacement?

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person. Again, every person in the population has the same chance of being chosen
- * In general, X_i is the height of the *i*th person that is chosen uniformly and independently from the population
- * why do we do the sampling with replacement?
 - st if the population is large, then the probability of choosing one person twice is extremely low

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person. Again, every person in the population has the same chance of being chosen
- st In general, X_i is the height of the *i*th person that is chosen uniformly and independently from the population
- * why do we do the sampling with replacement?
 - st if the population is large, then the probability of choosing one person twice is extremely low
 - * big advantage of sampling with replacement is that X_i 's will be independent

- 1. Choose a random sample of size $n: X_1, \ldots, X_n$ with replacement
- 2. We chose a person uniformly at random from the population and let X_1 be the height of that person. Here, every person in the population has the same chance of being chosen
- 3. To determine the value of X_2 , again we choose a person uniformly (and independently from the first person) at random and let X_2 be the height of that person. Again, every person in the population has the same chance of being chosen
- In general, X_i is the height of the ith person that is chosen uniformly and independently from the population
- * why do we do the sampling with replacement?
 - st if the population is large, then the probability of choosing one person twice is extremely low
 - * big advantage of sampling with replacement is that X_i 's will be independent
 - * that is, working with independently and identically distributed makes analysis simpler

Definition of Random sample

The collection of random variables $X_1, X_2, X_3, ..., X_n$ is said to be a random sample of size n

Definition of Random sample

The collection of random variables $X_1, X_2, X_3, ..., X_n$ is said to be a random sample of size n if they are independent and identically distributed (i.i.d.), i.e.,

Definition of Random sample

The collection of random variables $X_1, X_2, X_3, ..., X_n$ is said to be a random sample of size n if they are independent and identically distributed (i.i.d.), i.e.,

- 1. $X_1, X_2, X_3, ..., X_n$ are independent random variables, and
- 2. they have the same distribution, i.e,

Definition of Random sample

The collection of random variables $X_1, X_2, X_3, ..., X_n$ is said to be a random sample of size n if they are independent and identically distributed (i.i.d.), i.e.,

- 1. $X_1, X_2, X_3, ..., X_n$ are independent random variables, and
- 2. they have the same distribution, i.e,

$$F_{X_1}(x) = F_{X_2}(x) = \dots = F_{X_n}(x), \quad \text{for all } x \in \mathbb{R}$$

Let X_1, X_2, \dots, X_n be random sample.

Definition of Sample Mean

Let $X_1, X_2, ..., X_n$ be random sample. That is, here $X_1, X_2, ..., X_n$ are i.i.d.

Definition of Sample Mean

Definition of Sample Mean

Let $X_1, X_2, ..., X_n$ be random sample. That is, here $X_1, X_2, ..., X_n$ are i.i.d. That is, following holds true for i.i.d. random variables

1. The X_i 's are independent (since they are i.i.d.)

Definition of Sample Mean

- 1. The X_i 's are independent (since they are i.i.d.)
- 2. $F_{X_1}(x)=F_{X_2}(x)=\cdots=F_{X_n}(x)=F_X(x)$ (the CDFs are same)

Definition of Sample Mean

- 1. The X_i 's are independent (since they are i.i.d.)
- 2. $F_{X_1}(x) = F_{X_2}(x) = \cdots = F_{X_n}(x) = F_X(x)$ (the CDFs are same)
- 3. $E[X_i] = E[X] = \mu < \infty$

Definition of Sample Mean

- 1. The X_i 's are independent (since they are i.i.d.)
- 2. $F_{X_1}(x)=F_{X_2}(x)=\cdots=F_{X_n}(x)=F_X(x)$ (the CDFs are same)
- 3. $E[X_i] = E[X] = \mu < \infty$
- 4. $0 < \mathsf{Var}(X_i) = \mathsf{Var}(X) = \sigma^2 < \infty$

Definition of Sample Mean

Let $X_1, X_2, ..., X_n$ be random sample. That is, here $X_1, X_2, ..., X_n$ are i.i.d. That is, following holds true for i.i.d. random variables

- 1. The X_i 's are independent (since they are i.i.d.)
- 2. $F_{X_1}(x)=F_{X_2}(x)=\cdots=F_{X_n}(x)=F_X(x)$ (the CDFs are same)
- 3. $E[X_i] = E[X] = \mu < \infty$
- 4. $0 < \operatorname{Var}(X_i) = \operatorname{Var}(X) = \sigma^2 < \infty$

Then the sample mean is defined as follows

Definition of Sample Mean

Let $X_1, X_2, ..., X_n$ be random sample. That is, here $X_1, X_2, ..., X_n$ are i.i.d. That is, following holds true for i.i.d. random variables

- 1. The X_i 's are independent (since they are i.i.d.)
- 2. $F_{X_1}(x) = F_{X_2}(x) = \dots = F_{X_n}(x) = F_X(x)$ (the CDFs are same)
- 3. $E[X_i] = E[X] = \mu < \infty$
- 4. $0 < \operatorname{Var}(X_i) = \operatorname{Var}(X) = \sigma^2 < \infty$

Then the sample mean is defined as follows

$$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$$

Properties of sample mean, \bar{X}

1.
$$E[X] = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$

Properties of sample mean, \bar{X}

1.
$$\emph{E}[ar{\emph{X}}]=\mu, \quad ext{Var}(ar{\emph{X}})=rac{\sigma^2}{n}$$
2. Weak law of large numbers (WLLN)

Properties of sample mean, \bar{X}

- 1. $E[\bar{X}] = \mu$, $Var(\bar{X}) = \frac{\sigma^2}{n}$
- 2. Weak law of large numbers (WLLN)

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

Properties of sample mean, \bar{X}

1.
$$E[\bar{X}] = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{r}$

2. Weak law of large numbers (WLLN)

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

3. Central limit theorem: The random variable

Properties of sample mean, \bar{X}

- 1. $E[\bar{X}] = \mu$, $Var(\bar{X}) = \frac{\sigma}{r}$
- 2. Weak law of large numbers (WLLN)

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

3. Central limit theorem: The random variable

$$Z_n = rac{X - \mu}{\sigma / \sqrt{n}} = rac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$

» Recall: Properties of Sample Mean...

Properties of sample mean, \bar{X}

- 1. $E[\bar{X}] = \mu$, $Var(\bar{X}) = \frac{\sigma^2}{n}$
- 2. Weak law of large numbers (WLLN)

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

3. Central limit theorem: The random variable

$$Z_n = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$

converges in distribution to the standard normal random variable

» Recall: Properties of Sample Mean...

Properties of sample mean, \bar{X}

- 1. $E[\bar{X}] = \mu$, $Var(\bar{X}) = \frac{\sigma^2}{n}$
- 2. Weak law of large numbers (WLLN)

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

3. Central limit theorem: The random variable

$$Z_n = rac{ar{X} - \mu}{\sigma/\sqrt{n}} = rac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$

converges in distribution to the standard normal random variable

$$\lim_{n\to\infty}P(Z_n\leq x)=\Phi(x),\quad\text{for all }x\in\mathbb{R},$$

» Recall: Properties of Sample Mean...

Properties of sample mean, \bar{X}

1.
$$E[\bar{X}] = \mu$$
, $Var(\bar{X}) = \frac{\sigma^2}{n}$

2. Weak law of large numbers (WLLN)

$$\lim_{n\to\infty} P(|\bar{X}-\mu| \ge \epsilon) = 0$$

3. Central limit theorem: The random variable

$$Z_n = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$

converges in distribution to the standard normal random variable

$$\lim_{n o \infty} extstyle{P}(extstyle{Z}_n \leq extstyle{x}) = \Phi(extstyle{x}), \quad ext{for all } extstyle{x} \in \mathbb{R},$$

where $\Phi(x)$ is standard normal CDF.

» Order Statistics and its PDF and CDF...

» Order Statistics and its PDF and CDF...

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$.

Let $X_1, X_2, ..., X_n$ be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest

» Order Statistics and its PDF and CDF...

Order Statistics and its PDF and CDF

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest i.e., $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ with

$$\label{eq:continuous_continuous} \textbf{\textit{X}}_{(1)} = \min(\textbf{\textit{X}}_1, \textbf{\textit{X}}_2, \cdots, \textbf{\textit{X}}_n) \quad \text{and} \quad \textbf{\textit{X}}_{(n)} = \max(\textbf{\textit{X}}_1, \textbf{\textit{X}}_2, \dots, \textbf{\textit{X}}_n),$$

» Order Statistics and its PDF and CDE...

Order Statistics and its PDF and CDF

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest i.e., $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ with

$$X_{(1)} = \min(X_1, X_2, \cdots, X_n)$$
 and $X_{(n)} = \max(X_1, X_2, \dots, X_n)$,

then $X'_{(i)}$ s is called order statistics.

» Order Statistics and its PDF and CDF...

Order Statistics and its PDF and CDF

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest i.e., $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ with

$$X_{(1)} = \min(X_1, X_2, \cdots, X_n)$$
 and $X_{(n)} = \max(X_1, X_2, \dots, X_n)$,

then $X'_{(i)}$ s is called order statistics. The CDF and PDF of $X_{(i)}$ are given by

Order Statistics and its PDF and CDF

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest i.e., $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ with

$$X_{(1)} = \min(X_1, X_2, \cdots, X_n)$$
 and $X_{(n)} = \max(X_1, X_2, \dots, X_n)$,

then $X'_{(i)}$ s is called order statistics. The CDF and PDF of $X_{(i)}$ are given by

$$f_{X_{(i)}} = \frac{n!}{(i-1)!(n-i)!} f_X(x) [F_X(x)]^{i-1} [1 - F_X(x)]^{n-i}$$

$$F_{X_{(i)}} = \sum_{k=i}^{n} \binom{n}{k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

» Order Statistics and its PDF and CDF...

Order Statistics and its PDF and CDF

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest i.e., $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ with

$$X_{(1)} = \min(X_1, X_2, \cdots, X_n)$$
 and $X_{(n)} = \max(X_1, X_2, \dots, X_n)$,

then $X'_{(i)}$ s is called order statistics. The CDF and PDF of $X_{(i)}$ are given by

$$f_{X_{(i)}} = \frac{n!}{(i-1)!(n-i)!} f_X(x) [F_X(x)]^{i-1} [1 - F_X(x)]^{n-i}$$

$$F_{X_{(i)}} = \sum_{k=i}^{n} \binom{n}{k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

Also, the joint PDF of $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ is given by

Order Statistics and its PDF and CDF

Let X_1, X_2, \ldots, X_n be random sample from a continuous distribution with CDF $F_X(x)$. If we order the random variables from smallest to largest i.e., $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ with

$$X_{(1)} = \min(X_1, X_2, \cdots, X_n)$$
 and $X_{(n)} = \max(X_1, X_2, \dots, X_n)$,

then $X'_{(i)}$ s is called order statistics. The CDF and PDF of $X_{(i)}$ are given by

$$f_{X_{(i)}} = \frac{n!}{(i-1)!(n-i)!} f_X(x) [F_X(x)]^{i-1} [1 - F_X(x)]^{n-i}$$

$$F_{X_{(i)}} = \sum_{k=i}^{n} \binom{n}{k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

Also, the joint PDF of $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ is given by

$$f_{X_{(1)},...,X_{(n)}}(x_1,\ldots,x_n) = \begin{cases} n! \ f_X(x_1,f_X(x_2)\cdots f_X(x_n)) & \text{for } x_1 \leq x_2 \leq \cdots \leq x_n \\ 0 & \text{otherwise} \end{cases}$$

Example (Order Statistics

Let X_1, X_2, \dots, X_4 be a random variable from the Uniform(0,1) distribution,

Example (Order Statistics

Let X_1, X_2, \ldots, X_4 be a random variable from the Uniform(0,1) distribution, and let $X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}$ be the order statistics of X_1, X_2, \ldots, X_4 .

Example (Order Statistics

Let X_1, X_2, \ldots, X_4 be a random variable from the Uniform(0,1) distribution, and let $X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)}$ be the order statistics of X_1, X_2, \ldots, X_4 . Find the PDFs of $X_{(1)}, X_{(2)}$, and $X_{(4)}$.

$$f_{X_{(2)}}(x) = \frac{4!}{(2-1)!.(4-2)!} f_{X_{(2)}}(x) \left[F_{X}(x)\right]^{2-1} \left[1-F_{X}(x)\right]^{4-2}$$

Definitions: point estimator, bias and unbiased estimators

1. Let θ be an unknown parameter to be estimated. For example, $\theta = \textit{E}[\textit{X}]$

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \ldots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = \textit{E}[\textit{X}]$
- 2. Let X_1, X_2, \ldots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate heta we define point estimator $\hat{\Theta}$ as follow

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \ldots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate θ we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta}=h(X_1,X_2,\ldots,X_n)$$

Definitions: point estimator, bias and unbiased estimators

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = \textit{E}[\textit{X}]$
- 2. Let X_1, X_2, \ldots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate θ we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

4. There can be many possible point estimators, which one to choose?

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \dots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate heta we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

- 4. There can be many possible point estimators, which one to choose?
 - * For example if $\theta = E[X]$, then $\hat{\Theta} = h(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n}$

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \dots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate θ we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

- 4. There can be many possible point estimators, which one to choose?
 - * For example if $\theta = E[X]$, then $\hat{\Theta} = h(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n}$
- 5. **Bias:** The <mark>bias</mark> of a point estimator $\hat{\Theta}$ is defined as

Definitions: point estimator, bias and unbiased estimators

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \dots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate heta we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

4. There can be many possible point estimators, which one to choose?

* For example if
$$\theta = E[X]$$
, then $\hat{\Theta} = h(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n}$

5. **Bias:** The bias of a point estimator $\hat{\Theta}$ is defined as

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta$$

Definitions: point estimator, bias and unbiased estimators

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \ldots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate θ we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

- 4. There can be many possible point estimators, which one to choose?
 - For example if $\theta = E[X]$, then $\hat{\Theta} = h(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n}$
- **Bias:** The bias of a point estimator $\hat{\Theta}$ is defined as

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta$$

If bias is close to 0, then $\hat{\Theta}$ is closer to θ

$$E[\Theta] = E[\Theta] - \theta$$

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \dots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate heta we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

- 4. There can be many possible point estimators, which one to choose?
 - * For example if $\theta = E[X]$, then $\hat{\Theta} = h(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n}$
- 5. **Bias:** The bias of a point estimator $\hat{\Theta}$ is defined as

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta$$

- * If bias is close to 0, then $\hat{\Theta}$ is closer to θ
- * We say that $\hat{\Theta}$ is an unbiased estimator for a parameter heta if

- 1. Let θ be an unknown parameter to be estimated. For example, $\theta = E[X]$
- 2. Let X_1, X_2, \dots, X_n be a random sample using which we want to estimate θ . Here X_i 's have same distribution
- 3. To estimate heta we define point estimator $\hat{\Theta}$ as follow

$$\hat{\Theta} = h(X_1, X_2, \dots, X_n)$$

- 4. There can be many possible point estimators, which one to choose?
 - * For example if $\theta = E[X]$, then $\hat{\Theta} = h(X_1, \dots, X_n) = \frac{X_1 + \dots + X_n}{n}$
- 5. **Bias:** The bias of a point estimator $\hat{\Theta}$ is defined as

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta$$

- * If bias is close to 0, then $\hat{\Theta}$ is closer to θ
- * We say that $\hat{\Theta}$ is an <u>unbiased</u> estimator for a parameter heta if

$$extbf{ extit{B}}(\hat{\Theta}) = 0, \quad ext{for all possible values of } heta$$

 $\ensuremath{\mathbf{w}}$ Unbiased Estimator is not Necessarily a Good Estimator...

» Unbiased Estimator is not Necessarily a Good Estimator...

Fact

Show that unbiased estimator is **not** necessarily a good estimator.

Pl:
$$x_1, x_2, \dots \times n$$
 Random sample. $1 = E[x_1] = E[x_2]$

Silve choose $\hat{\theta}_1 = x_1$, then $\hat{\theta}_2$ is also an unbiased estimator of $0 = X_1$, then $\hat{\theta}_2$ is also an unbiased estimator of $0 = X_1$, then $\hat{\theta}_2$ is $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_1 = \hat{\theta}$

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathit{E}[(\hat{\Theta} - \theta)^2]$$

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathbf{E}[(\hat{\Theta} - \theta)^2]$$

Example (Application of MSE

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean $E[X_i] = \underline{\theta}$, and variance $Var(X_i) = \sigma^2$.

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathit{E}[(\hat{\Theta} - \theta)^2]$$

Example (Application of MSE

Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean $E[X_i] = \theta$, and variance $Var(X_i) = \sigma^2$. For the following two estimators for θ

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathit{E}[(\hat{\Theta} - \theta)^2]$$

Example (Application of MSE

Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean $E[X_i] = \theta$, and variance $Var(X_i) = \sigma^2$. For the following two estimators for θ

1.
$$\hat{\Theta}_1 = X_1$$

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathit{E}[(\hat{\Theta} - \theta)^2]$$

Example (Application of MSE

Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean $E[X_i] = \theta$, and variance $Var(X_i) = \sigma^2$. For the following two estimators for θ

- 1. $\hat{\Theta}_1 = X_1$
- 2. $\hat{\Theta}_2 = \bar{X} = \frac{X_1 + X_2 + \dots + X_r}{n}$

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathit{E}[(\hat{\Theta} - \theta)^2]$$

Example (Application of MSE

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean $E[X_i] = \theta$, and variance $Var(X_i) = \sigma^2$. For the following two estimators for θ

1.
$$\Theta_1 = X_1$$

2.
$$\hat{\Theta}_2 = \bar{X} = \frac{X_1 + X_2 + \dots + X_r}{n}$$

Find $MSE(\hat{\Theta}_1)$ and $MSE(\hat{\Theta}_2)$ and show that for n>1

Mean squared error

The mean squared error (MSE) of a point estimator $\hat{\Theta}$ denoted by MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\hat{\Theta}) = \mathit{E}[(\hat{\Theta} - \theta)^2]$$

Example (Application of MSE

Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean $E[X_i] = \theta$, and variance $Var(X_i) = \sigma^2$. For the following two estimators for θ

1.
$$\hat{\Theta}_1 = X_1$$

2.
$$\hat{\Theta}_2 = \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Find $MSE(\hat{\Theta}_1)$ and $MSE(\hat{\Theta}_2)$ and show that for n > 1

$$\mathsf{MSE}(\hat{\Theta}_1) > \mathsf{MSE}(\hat{\Theta}_2)$$

» Answer to previous problem...

$$= E[(x_1 - E(x_1))^2] = Var(x_1) = 6$$

» Relationship of MSE, Variance, and Bias...

» Relationship of MSE, Variance, and Bias...

Property

If $\hat{\Theta}$ is a point estimator for θ ,

$$\mathsf{MSE}(\hat{\Theta}) = \mathsf{Var}(\hat{\Theta}) + \mathcal{B}(\hat{\Theta})^2$$

Pf.
$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}]$$

$$= Vax(\hat{\theta} - \theta) + (E[\hat{\theta} - \theta])$$

$$= Vax(\hat{\theta}) + B(\hat{\theta})^{2}$$

Definition of Consistent Estimator

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of $\theta.$

$$\hat{\Theta}_2 = \frac{\chi_1 + \chi_2}{2}$$

$$\hat{\Theta}_3 = \frac{\chi_1 + \chi_2 + \chi_3}{3}$$

Definition of Consistent Estimator

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ . We say that $\hat{\Theta}_n$ is a consistent estimator of θ , if

Definition of Consistent Estimator

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ . We say that $\hat{\Theta}_n$ is a consistent estimator of θ , if

$$\lim_{n\to\infty} P(|\hat{\Theta}_n - \theta| \ge \epsilon) = 0, \quad \text{for all } \epsilon > 0$$

Theorem

Definition of Consistent Estimator

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ . We say that $\hat{\Theta}_n$ is a consistent estimator of θ , if

$$\lim_{n\to\infty} P(|\hat{\Theta}_n - \theta| \ge \epsilon) = 0, \quad \text{for all } \epsilon > 0$$

Theorem

Let $\hat{\Theta}_1, \hat{\Theta}_2, \ldots$, be a sequence of point estimators of θ .

Definition of Consistent Estimator

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ . We say that $\hat{\Theta}_n$ is a consistent estimator of θ , if

$$\lim_{n\to\infty} P(|\hat{\Theta}_n - \theta| \ge \epsilon) = 0, \quad \text{for all } \epsilon > 0$$

Theorem

Let $\hat{\Theta}_1, \hat{\Theta}_2, \ldots$, be a sequence of point estimators of θ . If

$$\lim_{n\to\infty}\mathsf{MSE}(\hat{\Theta}_n)=0$$

Definition of Consistent Estimator

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ . We say that $\hat{\Theta}_n$ is a consistent estimator of θ , if

$$\lim_{n o \infty} P(|\hat{\Theta}_n - \theta| \ge \epsilon) = 0, \quad ext{for all } \epsilon > 0$$

Theorem

Let
$$\hat{\Theta}_1, \hat{\Theta}_2, \ldots$$
, be a sequence of point estimators of θ . If

then
$$\hat{\Theta}_n$$
 is a consistent estimator of θ

$$P(|\hat{\Theta}_n - \emptyset| > \hat{\epsilon}) = P(|\hat{\Theta}_n - \emptyset| > \hat{\epsilon})$$

Sample Variance and Sample Standard Deviation Qample

Let X_1, X_2, \dots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$.

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^2 = \frac{1}{n-1} \sum_{k=1}^{n} (X_k - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{k=1}^{n} X_k^2 - n\bar{X} \right)^2$$

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^2 = rac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X})^2 = rac{1}{n-1} \left(\sum_{k=1}^n X_k^2 - n \bar{X} \right)^2$$

We can check that sample variance is an unbiased estimator of σ^2 .

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^2 = rac{1}{n-1} \sum_{k=1}^n (X_k - ar{X})^2 = rac{1}{n-1} \left(\sum_{k=1}^n X_k^2 - n ar{X}
ight)^2$$

We can check that sample variance is an unbiased estimator of σ^2 . The sample standard deviation is defined as

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{k=1}^{n} X_{k}^{2} - n\bar{X} \right)$$

We can check that sample variance is an unbiased estimator of σ^2 . The sample standard deviation is defined as

$$S = \sqrt{S^2}$$

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^2 = rac{1}{n-1} \sum_{k=1}^n (X_k - ar{X})^2 = rac{1}{n-1} \left(\sum_{k=1}^n X_k^2 - n ar{X}
ight)^2$$

We can check that sample variance is an unbiased estimator of σ^2 . The sample standard deviation is defined as

$$S = \sqrt{S^2}$$
 \checkmark \checkmark

and it is usually used as an estimator for σ .

Sample Variance and Sample Standard Deviation

Let X_1, X_2, \ldots, X_n be a random variable with mean $E[X_i] = \mu < \infty$, and variance $0 < \text{Var}(X_i) < \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^2 = rac{1}{n-1} \sum_{k=1}^n (X_k - ar{X})^2 = rac{1}{n-1} \left(\sum_{k=1}^n X_k^2 - n ar{X}
ight)^2$$

We can check that sample variance is an unbiased estimator of σ^2 . The sample standard deviation is defined as

$$\mathcal{S}=\sqrt{\mathcal{S}^2}$$

and it is usually used as an estimator for $\sigma.$ Also, S is an unbiased estimator of σ

Example (Sample Mean, Sample Variance, Sample Standard Deviation

Let T be the time that is needed for a specific task in a factory to be completed.

Example (Sample Mean, Sample Variance, Sample Standard Deviation

Let T be the time that is needed for a specific task in a factory to be completed. In order to estimate the mean and variance of T, we observe a random sample T_1, T_2, \dots, T_6 .

Example (Sample Mean, Sample Variance, Sample Standard Deviation)

Let T be the time that is needed for a specific task in a factory to be completed. In order to estimate the mean and variance of T, we observe a random sample T_1, T_2, \dots, T_6 . Thus, T_i 's are i.i.d. and have the same distribution as T.

Example (Sample Mean, Sample Variance, Sample Standard Deviation)

Let T be the time that is needed for a specific task in a factory to be completed. In order to estimate the mean and variance of T, we observe a random sample T_1, T_2, \dots, T_6 . Thus, T_i 's are i.i.d. and have the same distribution as T. We obtain the following values (in minutes):

18, 21, 17, 16, 24, 20.

Example (Sample Mean, Sample Variance, Sample Standard Deviation)

Let T be the time that is needed for a specific task in a factory to be completed. In order to estimate the mean and variance of T, we observe a random sample T_1, T_2, \cdots, T_6 . Thus, T_i 's are i.i.d. and have the same distribution as T. We obtain the following values (in minutes):

Find the values of the sample mean, the sample variance, and the sample standard deviation for the observed sample.

Sample
$$T = \frac{T_1 + \cdots + T_C}{G} = \frac{16 + 21 + \cdots + 10}{G}$$

Sample $S^2 = \frac{1}{6 - 1} \sum_{k=1}^{2} (T_k - T_k)^2 = \cdots$
Variance $S = \sqrt{S^2}$

(000) 2:70 hue

Example

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this.

Example

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3.

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement.

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i \sim$ Bernoulli $\left(rac{ heta}{3}
ight)$

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i\sim$ Bernoulli $\left(\frac{\theta}{3}\right)$. After the experiment, we observe the values for X_i 's

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i\sim$ Bernoulli $\left(\frac{\theta}{3}\right)$. After the experiment, we observe the values for X_i 's

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1.$$

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i\sim$ Bernoulli $\left(\dfrac{\theta}{3}\right)$. After the experiment, we observe the values for X_i 's

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1.$$

From above, we have 3 blue balls and 1 red ball.

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i\sim$ Bernoulli $\left(\frac{\theta}{3}\right)$. After the experiment, we observe the values for X_i 's

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1.$$

From above, we have 3 blue balls and 1 red ball. Answer the following

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0, 1, 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i\sim$ Bernoulli $\left(\frac{\theta}{3}\right)$. After the experiment, we observe the values for X_i 's

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1.$$

From above, we have 3 blue balls and 1 red ball. Answer the following

1. Find the probability of the observed sample $(x_1,x_2,x_3,x_4)=(1,0,1,1)$ for each possible θ

I have a bag that contains 3 balls. Each ball is either red or blue, but I have no information in addition to this. Thus, the number of blue balls, call it θ , might be 0.(1) 2, or 3. I am allowed to choose 4 balls at random from the bag with replacement. We define the random variables X_1, X_2, X_3 , and X_4 as follows

$$X_i = \begin{cases} 1 & \text{if the } ith \text{ chosen ball is blue} \\ 0 & \text{if the } ith \text{ chosen ball is red} \end{cases}$$

We observe here that X_i 's are i.i.d. and $X_i \sim \text{Bernoulli}\left(\frac{\theta}{3}\right)$. After the experiment, we observe the values for X_i 's $x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} x_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ the values for X_i 's

$$x_1 = (1) x_2 = (0) x_3 = (1) x_4 = (1)$$

From above, we have 3 blue balls and 1 red ball. Answer the following

- 1. Find the probability of the observed sample $(x_1, x_2, x_3, x_4) = (1, 0, 1, 1)$ for each possible θ
- 2. Find the value of θ that maximizes the probability of the observed sample

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ .

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

$$L(x_1,x_2,\ldots,x_n;\theta)=P_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n;\theta)$$

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=P_{X_1,X_2,\ldots,X_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

2. If X_i 's are jointly continuous,

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=P_{\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

2. If X_i 's are jointly continuous, then the likelihood function is defined as

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=P_{\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

2. If X_i 's are jointly continuous, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=\mathbf{f}_{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=P_{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

2. If X_i 's are jointly continuous, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=f_{\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

In some problems, it is easier to work with the log likelihood function given by

Definition of Likelihood and log likehood Function

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Suppose that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

1. If X_i 's are discrete, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=P_{\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

2. If X_i 's are jointly continuous, then the likelihood function is defined as

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)=f_{\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_n}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

In some problems, it is easier to work with the log likelihood function given by

$$\ln L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

» Example

Example (Example

 $Find \ the \ likelihood \ function \ for \ the \ following \ random \ sample$

» Example

Example (Example

Find the likelihood function for the following random sample

1. $X_i \sim \text{Binomial}(3, \theta)$ and we have observed $(x_1, x_2, x_3, x_4) = (1, 3, 2, 2)$

» Example

Example (Example

Find the likelihood function for the following random sample

- 1. $X_i \sim \text{Binomial}(3, \theta)$ and we have observed $(x_1, x_2, x_3, x_4) = (1, 3, 2, 2)$
- 2. $X_i \sim \text{Exponential}(\theta)$ and we have observed $(x_1, x_2, x_3, x_4) = (1.23, 3.32, 1.98, 2.12)$

*Answer to previous problem...

Solution Recall that Random

L(x1, x2, x3, x4)
$$= (x_1, x_2, x_3, x_4)$$
 $= (x_1, x_2, x_3, x_4)$ $= (x_1, x_2, x_3, x_4)$

Definition of maximum likelihood estimator

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ .

Definition of maximum likelihood estimator

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Given that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$, a maximum likelihood estimate of θ , shown by $\hat{\theta}_{ML}$ is a value of θ that maximizes the likelihood function

Definition of maximum likelihood estimator

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Given that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$, a maximum likelihood estimate of θ , shown by $\hat{\theta}_{ML}$ is a value of θ that maximizes the likelihood function

$$L(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n;\theta)$$

Definition of maximum likelihood estimator

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Given that we have observed $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$, a maximum likelihood estimate of θ , shown by $\hat{\theta}_{ML}$ is a value of θ that maximizes the likelihood function

$$L(x_1,x_2,\ldots,x_n;\theta)$$

A maximum likelihood estimator (MLE) of the parameter θ , shown by $\hat{\theta}_{ML}$ is a random variable $\hat{\theta}_{ML} = \hat{\theta}_{ML}(X_1, X_2, \dots, X_n)$ whose value when $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ is given by $\hat{\theta}_{ML}$.

» Example of Maximum Likelihood Estimator...

» Example of Maximum Likelihood Estimator...

Example

For the following examples, find the maximum likelihood estimator (MLE) of $\boldsymbol{\theta}$:

» Example of Maximum Likelihood Estimator...

Example

For the following examples, find the maximum likelihood estimator (MLE) of θ :

1. $X_i \sim \text{Binomial}(m, \theta)$, and we have observed X_1, X_2, \dots, X_n

» Example of Maximum Likelihood Estimator...

Example

For the following examples, find the maximum likelihood estimator (MLE) of θ :

$$X_i \sim \text{Binomial}(m, \theta)$$
, and we have observed X_1, X_2, \dots, X_n

$$X_i \sim \text{Exponential}(\theta)$$
 and we have observed X_1, X_2, \dots, X_n

$$L(1/3,2/2;0) = 2788(1-0)^{4}$$

$$dL = 27[80^{7}(1-0)^{4} - 40^{8}(1-0)^{3}] = 0$$

$$do = 27[80^{7}(1-0)^{4} - 40^{8}(1-0)^{3}] = 0$$

» Example of Maximum Likelihood Estimators...

» Example of Maximum Likelihood Estimators...

Example (Example of maximum likelihood estimator)

Suppose that we have observed the random sample $X_1, X_2, X_3, ..., X_n$, where $X_i \sim N(\theta_1, \theta_2)$ so

$$\hat{\mathbf{x}}_i(\mathbf{x}_i; \mathbf{ heta}_1, \mathbf{ heta}_2) = rac{1}{\sqrt{2\pi heta_2}} \mathbf{e}^{-rac{(\mathbf{x}_i - \mathbf{ heta}_1)}{2 heta_2}}$$

» Example of Maximum Likelihood Estimators...

Example (Example of maximum likelihood estimator)

Suppose that we have observed the random sample $X_1, X_2, X_3, ..., X_n$, where $X_i \sim N(\theta_1, \theta_2)$ so

$$f_{\mathcal{X}_i}(\pmb{arkappa}_i; heta_1, heta_2) = rac{1}{\sqrt{2\pi heta_2}} \pmb{e}^{-rac{(\pmb{arkappa}_i-eta_1)^2}{2 heta_2}}$$

Find the maximum likelihood estimators for θ_1 and θ_2 .

Asymptotic Properties of MLEs

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a distribution with a parameter θ .

Asymptotic Properties of MLEs

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Let $\hat{\Theta}_{ML}$ denote the maximum likelihood estimator (MLE) of θ .

Asymptotic Properties of MLEs

Asymptotic Properties of MLEs

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Let $\hat{\Theta}_{ML}$ denote the maximum likelihood estimator (MLE) of θ . Then, under some mild regularity conditions,

1. $\hat{\Theta}_{\textit{ML}}$ is asymptotically consistent, i.e.,

Asymptotic Properties of MLEs

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Let $\hat{\Theta}_{ML}$ denote the maximum likelihood estimator (MLE) of θ . Then, under some mild regularity conditions,

1. $\hat{\Theta}_{\mathit{ML}}$ is asymptotically consistent, i.e., $\lim_{n \to \infty} P(|\hat{\Theta}_{\mathit{ML}} - \theta| > \epsilon) = 0$

Asymptotic Properties of MLEs

- 1. $\hat{\Theta}_{\mathit{ML}}$ is asymptotically consistent, i.e., $\lim_{n \to \infty} P(|\hat{\Theta}_{\mathit{ML}} \theta| > \epsilon) = 0$
- 2. $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e.,

Asymptotic Properties of MLEs

- 1. $\hat{\Theta}_{\mathit{ML}}$ is asymptotically consistent, i.e., $\lim_{n\to\infty} P(|\hat{\Theta}_{\mathit{ML}} \theta| > \epsilon) = 0$
- 2. $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e., $\lim_{n \to \infty} E[\hat{\Theta}_{ML}] = \theta$

Asymptotic Properties of MLEs

- 1. $\hat{\Theta}_{ML}$ is asymptotically consistent, i.e., $\lim_{n o\infty}P(|\hat{\Theta}_{ML}- heta|>\epsilon)=0$
- 2. $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e., $\lim_{n \to \infty} E[\hat{\Theta}_{ML}] = \theta$
- 3. As n becomes large, $\hat{\Theta}_{ML}$ is approximately a normal random variable.

Asymptotic Properties of MLEs

- 1. $\hat{\Theta}_{\mathit{ML}}$ is asymptotically consistent, i.e., $\lim_{n \to \infty} P(|\hat{\Theta}_{\mathit{ML}} \theta| > \epsilon) = 0$
- 2. $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e., $\lim_{n \to \infty} E[\hat{\Theta}_{ML}] = \theta$
- 3. As n becomes large, $\hat{\Theta}_{ML}$ is approximately a normal random variable. More precisely, the random variable

Asymptotic Properties of MLEs

- 1. $\hat{\Theta}_{ML}$ is asymptotically consistent, i.e., $\lim_{n\to\infty} P(|\hat{\Theta}_{ML} \theta| > \epsilon) = 0$
- 2. $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e., $\lim_{n\to\infty} E[\hat{\Theta}_{ML}] = \theta$
- 3. As n becomes large, $\hat{\Theta}_{ML}$ is approximately a normal random variable. More precisely, the random variable

$$rac{\hat{\Theta}_{\mathit{ML}} - heta}{\sqrt{\mathsf{Var}(\hat{\Theta}_{\mathit{ML}})}}$$

Asymptotic Properties of MLEs

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ . Let $\hat{\Theta}_{ML}$ denote the maximum likelihood estimator (MLE) of θ . Then, under some mild regularity conditions,

- 1. $\hat{\Theta}_{ML}$ is asymptotically consistent, i.e., $\lim_{n o\infty} P(|\hat{\Theta}_{ML}- heta|>\epsilon)=0$
- 2. $\hat{\Theta}_{ML}$ is asymptotically unbiased, i.e., $\lim_{n \to \infty} E[\hat{\Theta}_{ML}] = \theta$
- 3. As n becomes large, $\hat{\Theta}_{ML}$ is approximately a normal random variable. More precisely, the random variable

$$\frac{\hat{\Theta}_{\mathit{ML}} - \theta}{\sqrt{\mathsf{Var}(\hat{\Theta}_{\mathit{ML}})}}$$

converges in distribution to $\emph{N}(0,1)$.

Example

Show the following

1. Let $\hat{\Theta}_1$ be an unbiased estimator for θ , and W is a zero mean random variable.

Example

Show the following:

1. Let $\hat{\Theta}_1$ be an unbiased estimator for θ , and W is a zero mean random variable. Show that

$$\hat{\Theta}_2 = \hat{\Theta}_1 + W$$

is also an unbiased estimator for θ

Example

Show the following:

1. Let $\hat{\Theta}_1$ be an unbiased estimator for θ , and W is a zero mean random variable. Show that

$$\hat{\Theta}_2 = \hat{\Theta}_1 + W$$

is also an unbiased estimator for θ

2. Let $\hat{\Theta}_1$ be an estimator for θ such that $E[\hat{\Theta}_1] = a\theta + b$, where $a \neq 0$.

Example

Show the following:

1. Let $\hat{\Theta}_1$ be an unbiased estimator for θ , and W is a zero mean random variable. Show that

$$\hat{\Theta}_2 = \hat{\Theta}_1 + \mathcal{W}$$

is also an unbiased estimator for θ

2. Let $\hat{\Theta}_1$ be an estimator for θ such that $E[\hat{\Theta}_1] = a\theta + b$, where $a \neq 0$. Show that

$$\hat{\Theta}_2 = \frac{\hat{\Theta}_1 - k}{a}$$

is an unbiased estimator for θ

