

(1) Publication numb r: 0 480 730 A2

12

ì

EUROPEAN PATENT APPLICATION

(21) Application number: 91309338.1

2 Date of fling: 10.10.91

(51) Int. CI.⁵: **C12N 15/53,** C12N 15/82, A01H 1/00, C12N 9/04, A01H 5/00, A01N 63/00, // C07J9/00

30 Priority: 12.10.90 US 596467

(3) Date of publication of application: 15.04.92 Bulletin 92/16

Designated Contracting States:
 DE ES FR GB GR NL

71 Applicant: AMOCO CORPORATION 200 East Randolph Drive Chicago Illinois 60601 (US)

inventor: Chappel, Joseph
607 Tateswood Drive
Lexington, KY 40502 (US)
Inventor: Saunders, Court A.
210 Holmes
Claredon Hills, IL 60514 (US)
Inventor: Wolf, Fred Richard
912 Muirhead Avenue
Naperville, IL 60565 (US)
Inventor: Cuellar, Richard Elias
822 Hill Avenue
Gien Ellyn, IL 60137 (US)

Representative: Laredo, Jack Joseph et al Eikington and Fife Prospect House 8 Pembroke Road Sevenoaks, Kent TN13 1XR (GB)

- (54) Method and composition for increasing sterol accumulation in higher plants.
- A method of increasing sterol accumulation in a plant by increasing the copy number of a gene encoding a polypeptide having HMG-CoA reductase activity is disclosed. The copy number is preferably increased by transforming plants with a recombinant DNA molecule comprising a vector operatively linked to an exogenous DNA segment that encodes a polypeptide having HMG-CoA reductase activity, and a promoter suitable for driving the expression of said polypeptide. Also disclosed are a method of increasing cycloartenol accumulation in a plant, a method of increasing the resistance of plants to pests and the transformed plants themselves.

Technical Field

15

40

45

The present invention relates to methods and compositions for increasing the accumulation of sterols in higher plants, and more particularly to increasing sterol accumulation by increasing the number of copies of a gene encoding a polypeptid having HMG-CoA reductas activity.

Background of the invention

Mevalonate (C₆H₁₁O₄) is the metabolic precursor of a vast array of compounds vital for cell and organism viability. In plants, the major endproducts derived from mevalonate are the sterols and other isoprenoids. (see Figure 1).

Exemplary plant isoprenoids include the terpenes (volatile C₁₀ and C₁₅ compounds giving rise to fragrances of many plants) the carotenoids (C₄₀ compounds giving rise to the color of many plants) and polymers such as natural rubber.

Free sterols are constituents of virtually all eukaryotic membranes. The most abundant sterols of vascular plants are campesterol, 24-methylcholesterol, sitosterol and stigmasterol.

Mevalonate is formed from the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). The reduction of HMG-CoA to mevalonate is catalyzed by the enzyme HMG-CoA reductase.

The HMG-CoA reductase enzymes of animals and yeasts are integral membrane glycoproteins of the endoplasmic reticulum. The intact enzyme comprises three regions: a catalytic region, containing the active site of the enzyme, a membrane binding region, anchoring the enzyme to the endoplasmic reticulum and a linker region, joining the catalytic and membrane binding regions of the enzymes. The membrane binding region occupies the NH₂-terminal portion of the intact protein, whereas the catalytic region occupies the COOH-terminal portion of the protein, with the linker region constituting the remaining portion. Basson, M.E. et al., Mol. Cell Biol., 8(9):3797-3808 (1988). At present, the sub-cellular localization of HMG-CoA reductase in plants is not known. Russell, D.W. et al., Current Topics in Plant Biochemistry, vol. 4, ed. by D.D. Randall et al., Univ. of Missouri (1985).

The activity of HMG-CoA reductase in animals and yeasts is known to be subject to feedback inhibition by sterols. Such feedback inhibition requires the presence of the membrane binding region of the enzyme. See, e.g., Gil, G. et al., Cell, 41: 249-258(1985); Bard, M. and Downing, J.F. <u>Journal of General Microbiology</u>, 125:415-420(1981).

Given that mevalonate is the precursor for sterols and other isoprenoids, it might be expected that increases in the amount or activity of HMG-CoA reductase would lead to increases in the accumulation of both sterols and other isoprenoids. In yeasts and non-photosynthetic microorganisms, increases in HMG-CoA reductase activity are not associated with predictable increases in the production of sterols or other isoprenoids.

In mutant strains of the yeast <u>Saccharomyces cerevisiae</u> (S. cerevisiae) having abnormally high levels of HMG-CoA reductase activity, the production of two sterols, 4,14-dimethylzymosterol and 14-methylfecosterol, is markedly increased above normal. Downing, J.F. et al., <u>Biochemical and Biophysical Research Communications</u>, 94(3): 974-979(1980).

When HMG-CoA reductase activity was increased by illumination in non-photosynthetic microorganisms, isoprenoid (carotenoid), but not sterol (ergosterol), synthesis was enhanced. Tada, M. and Shiroishi, M. <u>Plant and Cell Physiology</u>, 23(4): 615-621(1982). There are no studies reporting the effects of such increases in HMG-CoA reductase activity in plants.

Summary of the invention

The present invention provides a method of increasing sterol accumulation in a plant that comprises increasing the copy number of a structural gene that encodes a polypeptide having HMG-CoA reductase activity, thereby increasing the activity of that enzyme relative to the activity in the native plant. A polypeptide having HMG-CoA reductase activity includes an intact HMG-CoA reductase enzyme as well as an active, truncated HMG-CoA reductase enzyme. In a preferred embodiment, an active, truncated HMG-CoA reductase enzyme comprises the catalytic and linker regions, but not the membrane binding region, of hamster HMG-CoA reductase.

The copy number of a gene encoding a polypeptide having HMG-CoA reductase activity is increased by transforming a plant with a recombinant DNA molecule comprising a vector op rativ ly link d to an exog nous DNA segment that encodes a polypeptide having HMG-CoA reductase activity, and a promoter suitable for driving the expression of said polypeptide in the plant. A preferred recombinant DNA mol cule is plasmid HMGRA227-pKYLX71.

The promoter is preferably a promoter whose regulatory function is substantially unaffected by the level of sterol in the transformed plant. A preferred promoter is the CaMV 35S promoter. In a particularly preferred application of the invention, the level of an accumulated sterol, cycloartenol, is particularly enhanced.

The present invention still further provides a method of increasing pest resistance in plants. In this method, the copy number of a structural gene that encodes a polypetide having HMG-CoA reductase activity is increased over that of the native, untransformed plant, as discussed before.

The present invention further provides a transformed plant having an increased copy number of a structural gene that encodes a polypeptide having HMG-CoA reductase activity. Such a plant exhibits a higher total sterol, particularly cycloartenol, content than does a native, untransformed plant. Such a transformed plant also exhibits resistance to pests such as hornworm, relative to an untransformed native plant.

The present invention further provides a plant seed capable of germinating into a plant which over accumulates sterol relative to a native, untransformed plant of the same strain plus mutants, recombinants and genetically engineered derivatives thereof and hybrids derived therefrom.

15 Brief Description of the Drawings

5

20

In the drawings which form a part of this disclosure:

Figure 1 is a schematic representation of the metabolism of acetyl coenzyme A to sterois and other isoprenoids in plants as published by Russell, D.W. et al., <u>Current Topics in Plant Biochemistry</u>, Vol. 4, ed. by D.D. Randall et al., Univ. of Missouri (1985).

Figure 2, shown as eleven panels designated Figure 2-1 through 2-11, is the composite nucleotide sequence of the cDNA corresponding to the mRNA for hamster HMG-CoA reductase (SEQ. ID no. 1), and the predicted amino acid sequence (SEQ. ID no. 2) of the protein as published by Chin, D.J. et al., Nature, 308:613-617 (1984). Nucleotides are numbered (right-hand side) in the 5' to 3' direction. The predicted amino acid sequence is shown below the nucleotide sequence. The amino acid residues are numbered below every fifth amino acid beginning with the initiator methionine.

Figure 3, shown as ten panels designated Figure 3-1 through 3-10 is the nucleotide base sequence (SEQ. ID no. 3) and derived amino acid residue sequence (SEQ. ID No. 4) for <u>S. cerevisiae</u> HMG-CoA reductase 1 published by Basson, M.E. et al., <u>Mol. Cell Biol.</u>, 8(9):3797-3808 (1988). Nucleotides are shown and numbered as discussed for Figure 2 as are the derived amino acid residues.

Figure 4 is a schematic drawing showing the structure of a plasmid (pRed-227 Δ) used to insert a truncated hamster gene encoding for hamster HMG-CoA reductase into cells lacking such hamster enzyme. Base pairs of the reductase coding sequence (nucleotides 28 to 1023) that encode amino acids 10 to 341 have been deleted and are shown externally of the plasmid. The hatched area denotes the reductase cDNA sequence portion of the plasmid. The reductase cDNA initiator methionine codon (nucleotide 1) and terminator codon (nucleotide 2662) are indicated, as are other features of the plasmid.

Figure 5 is a schematic restriction map of plasmid HMGRA227-pKYLX71 used to transform the plants of the present invention.

40 Detailed Description of the Invention

I. Definitions

45

55

The following words and phrases have the meanings set forth below.

Expression: The combination of intracellular processes, including transcription and translation undergone by a structural gene to produce a polypeptide.

Expression vector: A DNA sequence that forms control elements that regulate expression of structural genes when operatively linked to those genes.

Operatively linked: A structural gene is covalently bonded in correct reading frame to another DNA (or RNA as appropriate) segment, such as to an expression vector so that the structural gene is under the control of the expression vector.

Promoter: A recognition site on a DNA sequence or group of DNA sequences that provide an expression control element for a structural gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.

Recombinant DNA molecule: A hybrid DNA sequence comprising at least two nucleotide sequences n t normally found together in nature.

Structural gene: A DNA sequence that is expressed as a polypeptid, i.e., an amino a id residu sequnce.

Vector: A DNA molecul capable of replication in a cell and/or to which another DNA segment can be operatively linked so as to bring about replication of the attached segment. A plasmid is an exemplary vector.

II. The Invention

5

The present invention relates to compositions and methods for increasing sterol accumulation in plants, as well as to the plants that exhibit increased sterol accumulation relative to a native variety of the plant. This invention is applicable to plants which are vascular, multicellular higher plants. Such higher plants will hereinafter be usually referred to simply as "plants". Exemplary plants are tobacco, tomato, corn, carrot, soybean, cotton, barley, arabidopsis, guayule and petunia. A preferred plant is tobacco of the strain Nicotiana tabacum (N. tabacum).

A plant contemplated by this invention is transformed with an added structural gene that encodes a polypeptide having HMG-CoA reductase activity, said encoded polypeptide being expressed in the transformed plant. An untransformed plant which is a precursor to the transformed plant is referred to hereinafter as a "native" plant. The native and transformed plants when compared are of the same type such as siblings from the same seed pod, clones from the same parent, or plants of the same strain.

Sterol production in a plant of the present invention is surprisingly increased by increasing the cellular activity of the enzyme HMG-CoA reductase, which enzyme catalyzes the conversion of 3-hydroxy-3-methyl-glutaryl Coenzyme A (HMG-CoA) to mevalonate. As used hereinafter, "cellular activity" means the total catalytic activity of HMG-CoA reductase in a plant cell.

Cellular HMG-CoA reductase activity is increased by increasing the copy number of a gene encoding a polypeptide having HMG-CoA reductase catalytic activity. Expression of that encoded structural gene enhances the cellular activity of that enzyme.

The copy number is increased by transforming a plant cell with a recombinant DNA molecule comprising a vector operatively linked to an exogenous DNA segment that encodes a polypeptide having HMG-CoA reductase activity, and a promoter suitable for driving the expression of said polypeptide in said plant. Such a polypeptide includes intact as well as catalytically active, truncated HMG-CoA reductase proteins.

Thus, a transformed plant cell and plant have one or more added genes which encodes a polypeptide havlng HMG-CoA reductase activity relative to a native, untransformed plant of the same type. As such, a transformed plant can be distinguished from a native plant by standard technology such as agarose separation of
DNA fragments or mRNAs followed by transfer and appropriate blotting with DNA or RNA or by use of polymerase chain reaction technology, as are well known. Relative HMG-CoA reductase activity of the transformed and
native plants or cell cultures therefrom can also be compared, with a relative activity of 1.5:1 for transformedinative which, therefore, demonstrates transformation.

Sterol accumulation can also be used to distinguish native and transformed plants. A transformed plant has at least about twice the total sterol content as compared with the sterol content of a native plant, where a single added gene is present in the transformed plant.

A. Structural Genes

40

The present invention contemplates transforming a plant with a structural gene that encodes a polypeptide having HMG-CoA reductase activity. The HMG-CoA reductase enzymes of both animal and yeast cells comprise three distinct amino acid residue sequence regions, which regions are designated the catalytic region, the membrane binding region and the linker region. The catalytic region contains the active site of the HMG-CoA reductase enzyme and comprises about forty percent of the COOH-terminal portion of intact HMG-CoA reductase enzyme. The membrane binding region contains hydrophobic amino acid residues and comprises about fifty percent of the NH₂-terminal portion of intact HMG-CoA reductase enzyme. The linker region connects the catalytic and membrane binding regions, and constitutes the remaining about ten percent of the intact enzyme.

As discussed in greater detail below, only the catalytic region of HMG-CoA reductase is needed herein. Thus, a structural gene that encodes a polypeptide corresponding to that catalytic region is the minimal gene required for transforming plants. However, larger enzymes and their structural genes are preferred. Thus, the present invention contemplates use of both intact and truncated structural genes that encode a polypeptide having HMG-CoA reductase activity.

A structural gene encoding a polypeptide having HMG-CoA reductase activity can be obtained or constructed from a variety of sources and by a variety of methodologies. See e.g., Carlson, M. and Botstein, D., Cell, 28:145 (1982); Rine, J., et al., Proc. Nat. Acad, Sci. U.S.A., 80:6750 (1983). Exemplary of such structural genes are the mammalian and yeast genes encoding HMG-CoA reductase.

The mammalian genome contains a single gene incoding HMG-CoA reductas. This nucleotid is base sequ-

ence of the hamster and human gene for HMG-CoA reductase hav been described. A composite nucleotid sequence of cDNA corresponding to the mRNA (SEQ. ID No. 1), as well as the derived amino acid residue sequence (SEQ. ID No. 2), for hamster HMG-CoA reductase is provided in Figure 2, reprinted from Chin, D. J. et al., Nature. 308:613 (1984). The composite nucleotide sequence of Figure 2 (SEQ. ID No. 1), comprising about 4768 base pairs, includes the nucleotide sequence encoding the intact hamster HMG-CoA reductase enzyme.

Intact hamster HMG-CoA reductase comprises about 887 amino acid residues (SEQ. ID No. 2). A structural gene encoding an intact hamster HMG-CoA reductase enzyme of 887 amino acid residues comprises base pairs from about nucleotide position 164 to about nucleotide position 2824 of Figure 2 (SEQ. ID No. 1).

A preferred structural gene is one that encodes a polypeptide corresponding to only the catalytic region of the enzyme. Two catalytically active segments of hamster HMG-CoA reductase have been defined. Liscum, L. et al., N. Biol. Chem., 260(1):522 (1985). One catalytic region has an apparent molecular weight of 62 kDa and comprises amino acid residues from about position 373 to about position 887. A second catalytic region has an apparent molecular weight of 53 kDa segment and comprises amino acid residues from about position 460 to about position 887. The 62 kDa catalytically active segment is encoded by base pairs from about nucleotide position 1280 to about nucleotide position 2824 of Figure 2 (SEQ. ID No. 1). The 53 kDa catalytically active segment is encoded by base pairs from about nucleotide position 1541 to about nucleotide position 2824 of Figure 2 (SEQ. ID No. 1).

In a preferred embodiment, the utilized structural gene encodes the catalytic region and at least a portion of the linker region of HMG-CoA reductase. The linker region of hamster HMG-CoA reductase comprises amino acid residues from about position 340 to about position 373 or from about position 340 to about position 460, depending upon how the catalytic region is defined. These linker regions are encoded by base pairs from about nucleotide position 1283 or from about position 1180 to about position 1540 respectively of Figure 2 (SEQ. ID No. 1). The structural gene encoding the linker region is operatively linked to the structural gene encoding the catalytic region.

In one particularly preferred embodiment, a structural gene encoding a catalytically active, truncated HMG-CoA reductase enzyme can optionally contain base pairs encoding a small portion of the membrane region of the enzyme. A truncated hamster HMG-CoA reductase gene, designated HMGR- Δ 227, comprising nucleotides 164-190 and 1187-2824 from Figure 2 (SEQ. ID No. 1), which encodes amino acid residues 1-9 (from the membrane binding region) and 342-887 has been used to transform cells lacking HMG-CoA reductase. The schematic structure of the transforming plasmid (pRED-2274) containing the truncated gene is reprinted in Figure 4. A structural gene encoding a polypeptide comprising a catalytically active, truncated or intact HMG-CoA reductase enzyme from other organisms such as yeast can also be used in accordance with the present invention.

Yeast cells contain two genes encoding HMG-CoA reductase. The two yeast genes, designated HMG1 and HMG2, encode two distinct forms of HMG-CoA reductase, designated HMG-CoA reductase 1 and HMG-CoA reductase 2. The nucleotide base sequence of HMG1 (SEQ. ID No. 3) as well as the amino acid residue sequence of HMG-CoA reductase 1 (SEQ. ID No. 4) are presented in Figure 3, taken from Basson, M. E. et al., Mol. Cell Biol., 8(9):3797 (1988). The nucleotide base sequences of HMG2 (SEQ. ID No. 5) as well as the amino acid residue sequence of HMG-CoA reductase 2 (SEQ. ID No. 6) are set forth hereinafter in the Sequence Listing.

The entire HMG1 gene comprises about 3360 base pairs (SEQ. ID No. 3). Intact HMG-CoA reductase 1 comprises an amino acid sequence of about 1054 amino acid residues (SEQ. ID No. 4). Thus, the minimal portion of the HMG1 gene that encodes an intact enzyme comprises base pairs from about nucleotide position 121 to about position 3282 of Figure 3 (SEQ. ID No. 3).

40

45

55

The entire HMG2 gene comprises about 3348 base pairs (SEQ. ID No. 5). Intact HMG-CoA reductase 2 comprises about 1045 amino acid residues (SEQ. ID No. 6). Thus, the minimal portion of HMG2 gene that encodes intact HMG-CoA reductase 2 comprises base pairs from about nucleotide position 121 to about position 3255 of Figure 3 (SEQ. ID No. 5).

By analogy to the truncated hamster structural gene, structural genes encoding polypeptides comprising catalytically active, truncated HMG-CoA reductase enzymes from yeast can also be used in accordance with the present invention.

The catalytic region of HMG-CoA reductase 1 comprises amino acid residues from about residue 618 to about residue 1054: i.e., the COOH-terminus. A structural gene that encodes the catalytic region comprises base pairs from about nucleotide position 1974 to about position 3282 of Figure 3.

The linker region of HMG-CoA reductase 1 comprises an amino acid sequence from about residue 525 to about residue 617. A structural gene that encodes the linker region comprises nucleotides from about position 1895 to about position 1973 of Figure 3. A structural gene encoding a polypeptide comprising the catalytic region and at least a portion of the linker region of yeast HMG-CoA reductas 1 preferably comprises the structural

gen encoding the linker region of the enzyme operatively linked to the structural gine incoding the catalytic region of the enzyme.

Also by analogy to the truncated hamster gene, a truncated HMG1 gene can optionally contain nucleotide bas pair sequences encoding a small portion of the membrane binding region of the enzyme. Such a structural gene preferably comprises bas pairs from about nucleotide position 121 to about position 147 and from about position 1695 to about position 3282 of Figure 3.

A construct similar to those above from an analogous portion of yeast HMG-CoA reductase 2 can also be utilized.

It will be apparent to those skilled in the art that the nucleic acid sequences set forth herein, either explicitly, as in the case of the sequences set forth above, or implicitly with respect to nucleic acid sequences generally known and not presented herein, can be modified due to the built-in redundancy of the genetic code and non-critical areas of the polypeptide that are subject to modification and alteration. In this regard, the present invention extends to allelic variants of structural genes encoding a polypeptide having HMG-CoA reductase activity.

The previously described DNA segments are noted as having a minimal length, as well as total overall lengths. That minimal length defines the length of a DNA segment having a sequence that encodes a particular polypeptide having HMG-CoA reductase activity. As is well known in the art, so long as the required DNA sequence is present, (including start and stop signals), additional base pairs can be present at either end of the segment and that segment can still be utilized to express the protein. This, of course, presumes the sequence in the segment of an operatively linked DNA sequence that represses expression, expresses a further product that consumes the enzyme desired to be expressed, expresses a product other than the desired enzyme or otherwise interferes with the structural gene of the DNA segment.

Thus, so long as the DNA segment is free of such interfering DNA sequences, a DNA segment of the invention can be up to 15,000 base pairs in length. The maximum size of a recombinant DNA molecule, particularly an expression vector, is governed mostly by convenience and the vector size that can be accommodated by a host cell, once all of the minimal DNA sequences required for replication and expression, when desired, are present. Minimal vector sizes are well known.

B. Recombinant DNA Molecules

30

35

45

A recombinant DNA molecule of the present invention can be produced by operatively linking a vector to a useful DNA segment to form a plasmid such as those discussed and deposited herein. A particularly preferred recombinant DNA molecule is discussed in detail in Example 1, hereafter. A vector capable of directing the expression of a polypeptide having HMG-CoA reductase activity is referred to hereinafter as an "expression vector".

Such expression vectors contain expression control elements including the promoter. The polypeptide coding genes are operatively linked to the expression vector to allow the promoter sequence to direct RNA polymerase binding and expression of the desired polypeptide coding gene. Useful in expressing the polypeptide coding gene are promoters that are inducible, viral, synthetic, constitutive as described by Poszkowski et al., EMBO <u>J.</u>, 3:2719 (1989) and Odell et al., Nature, 313:810 (1985), and temporally regulated, spatially regulated, and spatiotemporally regulated as given in Chau et al., <u>Science</u>, 244:174-181 (1989). The promoter preferably comprises a promoter sequence whose function in regulating expression of the structural gene is substantially unaffected by the amount of sterol in the cell. As used hereinafter, the term "substantially unaffected" means that the promoter is not responsive to direct feedback control by the sterols which accumulate in the transformed cells.

A promoter is also selected for its ability to direct the transformed plant cell's transcriptional activity to the structural gene encoding a polypeptide having HMG-CoA reductase activity. Structural genes can be driven by a variety of promoters in plant tissues. Promoters can be near-constitutive, such as the CaMV 35S promoter, or tissue specific or developmentally specific promoters affecting dicots or monocots. Exemplary promoters are corn sucrose synthestase 1 (Yang, N.S., et al. Proc. Natl. Acad. Sci. U.S.A., 87:4144-48 (1990)), corn alcohol dehydrogenase 1 (Vogel, J.M., et al., J. Cell Biochem., (supplement 13D, 312)(1989)), corn zein 19KD gene (storage protein) (Boston, R.S., et al., Plant Physiol., 83:742-46), corn light harvesting complex (Simpson, J., Science, 233:34 (1986), corn heat shock protein (O'Dell, J.T., et al., Nature, 313:810-12 (1985), pea small subunit RuBP Carboxylase (Poulsen, C., et al., Mol. Gen. Genet., 205:193-200 (1986); Cushmore, A.R., et al., Gen. Eng. of Plants, Plenum Press, New York, 29-38 (1983), Ti plasmid mannopine synthase (Langridge, W.H.R., t al., Proc. Natl. Acad. Sci. U.S.A., 86:3219-3223 (1989), Ti plasmid n palin synthase (Langridge, W.H.R., et al., Proc. Natl. Acad., Sci. U.S.A., 86:3219-3223 (1989), petunia chalcon isomerase (Van Tunen, A.J., et al., EMBO J., 7:1257 (1988), bean glycin rich protein 1 (Keller, B., et al., EMBO J., 8:1309-14 (1989), CaMV 35s transcript (O'Dell, J.T., et al., Nature, 313:810-12 (1985) and P tato patatin (Wenzler, H.C., et al., Plant

Mol. Biol., 12:41-50 (1989). Preferred promoters are the cauliflower mosaic virus (CaMV) 35S promoter and the S-E9 small subunit RuBP carboxylase promoter.

The choice of which expression vector and ultimately to which promoter a polypeptide coding generatively linked depends directly on the functional properties desired, ...g. the location and timing of protein expression, and the host cell to be transformed. These are will known limitations inherent in the art of constructing recombinant DNA molecules. However, a vector useful in practicing the present invention is capable of directing the expression of the polypeptide coding gene included in the DNA segment to which it is operatively linked.

Typical vectors useful for expression of genes in higher plants are well known in the art and include vectors derived from the tumor-inducing (Ti) plasmid of <u>Agrobacterium tumefaciens</u> described by Rogers et al., <u>Meth. in Enzymol.</u>, 153:253-277 (1987). However, several other expression vector systems are known to function in plants including pCaMVCN transfer control vector described by Fromm et al., <u>Proc. Natl. Acad. Sci. USA</u>, 82:5824 (1985). Plasmid pCaMVCN (available from Pharmacia, Piscataway, NJ) includes the cauliflower mosaic virus CaMV 35 S promoter.

The use of retroviral expression vectors to form the recombinant DNAs of the present invention is also contemplated. As used herein, the term "retroviral expression vector" refers to a DNA molecule that includes a promoter sequence derived from the long terminal repeat (LTR) region of a retrovirus genome.

In preferred embodiments, the vector used to express the polypeptide coding gene includes a selection marker that is effective in a plant cell, preferably a drug resistance selection marker. One preferred drug resistance marker is the gene whose expression results in kanamycin resistance, i.e., the chimeric gene containing the nopaline synthase promoter, Tn5 neomycin phosphotransferase II and nopaline synthase 3' nontranslated region described by Rogers et al., in Methods For Plant Molecular Biology, A. Weissbach and H. Weissbach, eds., Academic Press Inc., San Diego, CA (1988). Another preferred marker is the assayble chloramphenical acetyltransferase (cat) gene from the transposon Tn9.

A variety of methods has been developed to operatively link DNA to vectors via complementary cohesive termini or blunt ends. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted and to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

Alternatively, synthetic linkers containing one or more restriction endonuclease sites can be used to join the DNA segment to the expression vector. The synthetic linkers are attached to blunt-ended DNA segments by incubating the blunt-ended DNA segments with a large excess of synthetic linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are DNA segments carrying synthetic linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction endonuclease and ligated into an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the synthetic linker. Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including New England BioLabs, Beverly, MA.

Also included within the scope of the present invention are RNA equivalents of the above described recombinant DNA molecules.

A preferred recombinant DNA molecule utilized in accordance with the present invention is plasmid HMGRA227-pKYLX71.

C. Transformed Plants and Methods of Transformation

The copy number of a gene coding for a polypeptide having HMG-CoA reductase activity is increased by transforming a desired plant with a suitable vector that contains that structural gene. Expression of that gene in the transformed plant enhances the activity of HMG-CoA reductase.

Methods for transforming polypeptide coding genes into plants include Agrobacterium-mediated plant transformation, protoplast transformation, gene transfer into pollen, injection into reproductive organs and injection into immature embryos. Each of these methods has distinct advantages and disadvantages. Thus, one particular method of introducing genes into a particular plant species may not necessarily be the most effective for another plant species, but it is well known which methods are useful for a particular plant species.

Agrobacterium-mediated transfer is a widelyapplicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated expression vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described by Fraley et al., Bi technology, 3:629 (1985) and Rogers et al., Methods in Enzymology, 153:253-277 (1987). Further, the integration of the Ti-DNA is a relatively precise process resulting in few rearrangements. The region of DNA to be transferred is defined by the border sequences, and intervening DNA is usually inserted into the plant genomenal as described

5

20

30

by Spielmann et al., Mol. Gen, G. net., 205:34 (1986) and Jorgensen t al., Mol. Gen. Genet., 207:471 (1987).

Modern Agrobacterium transformation vectors are capable of replication in E. Coli as well as Agrobacterium, allowing for convenient manipulations as described by Klee et al., in Plant DNA Infectious Agents, T. Hohn and J. Schell, eds., Springer-Verlag, New York (1985) pp. 179-203.

Moreover, recent technological advances in vectors for <u>Agrobacterium</u>-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate construction of vectors capable of expressing various polypeptide coding genes. The vectors described by Rogers et al., <u>Methods in Enzymology</u>, 153:253 (1987), have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes.

In those plant species where, <u>Agrobacterium</u>-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.

Agrobacterium-mediated transformation of leaf disks and other tissues appears to be limited to plant species that Agrobacterium naturally infects. Agrobacterium-mediated transformation is most efficient in dicotyledonous plants. Few monocots appear to be natural hosts for Agrobacterium, although transgenic plants have been produced in asparagus using Agrobacterium vectors as described by Bytebier et al., Proc. Natl. Acad. Sci., U.S.A., 84:5345 (1987). Therefore, commercially important cereal grains such as rice, corn, and wheat must be transformed using alternative methods. However, as mentioned above, the transformation of asparagus using Agrobacterium can also be achieved. See, for example, Bytebier, et al., Proc. Natl. Acad. Sci., 84:5345 (1987).

A plant transformed using Agrobacterium typically contains a single gene on one chromosome. Such plants are heterozygous for the added gene. A heterozygous transformant containing a single structural gene that encodes a polypeptide having HMG-CoA reductase activity is a preferred transformed plant.

More preferred is a plant that is homozygous for the added structural gene; i.e., a plant that contains two added genes, one gene on each chromosome of a chromosome pair. A homozygous transformed plant can be obtained by sexually mating (selfing) a heterozygous plant, germinating some of the seed produced and analyzing the resulting plants produced for enhanced HMG-CoA reductase activity or sterol accumulation, or both, relative to a control or a heterozygous plant. A homozygous plant exhibits enhanced HMG-CoA reductase activity and sterol accumulation.

Transformation of plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments. See, for example, Potrykus et al., Mol. Gen. Genet., 199:183 (1985); Lorz et al., Mol. Gen. Genet., 199:178 (1985); Fromm et al., Nature, 319:791 (1986); Uchimiya et al., Mol. Gen. Genet., 204:204 (1986); Callis et al., Genes and Development, 1:1183 (1987); and Marcotte et al., Nature, 335:454 (1988).

Application of these systems to different plant species depends upon the ability to regenerate that particular plant species from protoplasts. Illustrative methods for the regeneration of cereals from protoplasts are described in Fujimura et al., Plant Tissue Culture Letters, 2:74 (1985); Toriyama et al., Theor Appl. Genet., 73:16 (1986); Yamada et al., Plant Cell Rep., 4:85 (1986); Abdullah et al., Biotechnology, 4:1087 (1986).

To transform plant species that cannot be successfully regenerated from protoplasts, other ways to introduce DNA into intact cells or tissues can be utilized. For example, regeneration of cereals from immature embryos or explants can be effected as described by Vasil, Biotechnology, 6:397 (1988). In addition, "particle gun" or high-velocity microprojectile technology can be utilized.

Using that latter technology, DNA is carried through the cell wall and into the cytoplasm on the surface of small metal particles as described in Klein et al., Nature, 327:70 (1987); Klein et al., Proc. Natl. Acad. Sci. U.S.A., 85:8502 (1988): and McCabe et al., Biotechnology, 6:923 (1988). The metal Particles penetrate through several layers of cells and thus allow the transformation of cells within tissue explants.

Metal particles have been used to successfully transform com cells and to produce fertile, stably transformed tobacco plants as described by Gordon-Kamm, W.J. et al., <u>The Plant Cell</u>, 2:603-618 (1990); Klein, T.M. et al., <u>Plant Physiol</u>. 91:440-444 (1989); Klein, T.M. et al., <u>Proc. Natl. Acad. Sci. USA</u>, 85:8502-8505 (1988); and Tomes, D.T. et al., <u>Plant Mol. Biol</u>. 14:261268 (1990). Transformation of tissue explants eliminates the need for passage through a protoplast stage and thus speeds the production of transgenic plants.

DNA can also be introduced into plants by direct DNA transfer into pollen as described by Zhou et al., Methods in Enzymology, 101:433 (1983); D. Hess, Intern Rev. Cytol., 107:367 (1987); Luo et al., Plant Mol. Biol. Reporter, 6:165 (1988). Expression of polypeptide coding genes can be obtained by injection of the DNA into reproductive organ of a plant as described by Pena et al., Nature, 325:274 (1987). DNA can also be injected directly into the cells of immature embryos and the rehydration of desiccated embryos as described by Neuhaus et al., Theor. Appl. Genet., 75:30 (1987); and Benbrook et al., in Proceedings Bio Expo 1986, Butterworth, Stoneham, MA, pp. 27-54 (1988).

The regeneration of plants from either single plant protoplasts or various explants is well known in the art.

See, for example, Methods for Plant Molecular Biology, A. Weissbach and H. Weissbach, eds., Academic Press, Inc., San Diego, CA (1988). This regeneration and growth process includes the steps of selection of transformant cells and shoots, rooting the transformant shoots and growth of the plantiets in soil.

The regeneration of plants containing the foreign gene introduced by <u>Agrobacterium</u> from leaf explants can be achieved as described by Horsch et al., <u>Science</u>, 227:1229-1231 (1985). In this procedure, transformants are grown in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant species being transformed as described by Fraley et al., <u>Proc. Natl. Acad. Sci. U.S.A.</u>, 80:4803 (1983).

This procedure typically produces shoots within two to four months and these transformant shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Transformants shoots that are rooted in the presence of the selective agent to form plantlets are then transplanted to soil or other media to allow the production of roots. These procedures vary depending upon the particular plant species employed, such variations being well known in the art.

Mature regenerated plants are obtained which exhibit increased sterol accumulation due to expression of the HMG-CoA reductase polypeptide gene. Preferably, the regenerated plants are self pollinated. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important, preferably inbred lines. Conversely, pollen from plants of those important lines is used to pollinate regenerated plants. The presence of the added gene in the progeny is assessed as discussed hereinafter.

A plant of the present invention containing a desired HMG-CoA reductase polypeptide is cultivated using methods well known to one skilled in the art. Any of the transgenic plants of the present invention can be cultivated to isolate the desired sterol products they contain.

A transformed plant of this invention thus has an increased copy number of a structural gene that encodes a polypeptide having HMG-CoA reductase activity. A preferred transformed plant is heterozygous for the added HMG-CoA reductase structural gene, whereas a more preferred transformed plant is homozygous for that gene, and transmits that gene to all of its offspring on sexual mating.

A transformed plant of the invention over accumulates sterols relative to a native plant, as is discussed immediately below. A transformed plant also exhibits resistance to pests such as the hornworms as is discussed hereinafter.

D. Development of Commercial Hybrid Seed

Seed from a transformed plant is grown in the field or greenhouse and self-pollinated to generate true breeding plants. The progeny from these plants become true breeding lines that are evaluated for sterol accumulation, preferably in the field, under a range of environmental conditions.

The commercial value of a plant with increased sterol accumulation is enhanced if many different hybrid combinations are available for sale. The user typically grows more than one kind of hybrid based on such differences as maturity, standability or other agronomic traits. Additionally, hybrids adapted to one part of a country are not necessarily adapted to another part because of differences in such traits as maturity, disease and herbicide resistance. Because of this, sterol accumulation is preferably bred into a large number of parental lines so that many hybrid combinations can be produced.

Adding an enhanced sterol accumulation trait to an agronomically elite line is accomplished by a variety of techniques well known to those skilled in the art. For example, parent plants that are either homozygous or heterozygous for enhanced sterol accumulation are crossed with lines having other desireable traits, such as herbicide resistance (U.S. Patent No. 4,761,373) to produce hybrids. Preferably, plants homozygous for enhanced sterol accumulation are used to generate hybrids.

For example, a plant homozygous for enhanced sterol accumulation is crossed with a parent plant having other desired traits. The progeny, which are heterozygous for enhanced sterol accumulation, are backcrossed with the parent to obtain plants having enhanced sterol accumulation and the other desired traits. The backcrossing of progeny with the parent may have to be repeated more than once to obtain a plant that possesses all desireable traits.

Alternatively, plants with the enhanced sterol accumulation trait are transformed by introducing into such plants other genes that encode and express other desireable traits or mutated as with radiation, e.g. X-rays or gamma rays, as in U.S. Patent No. 4,616,099, whose disclosures are incorporates by reference. Thus, the present invention also includes within its scope mutants and genetically engineered derivatives of plants having enhanced sterol accumulation.

E. Accumulation of Sterols In Transformed Plants

The present invention provides methods for increasing the accumulation of sterol, particularly cycloar-

9

55

20

30

35

40

45

tenol, in plants. This is accomplished by increasing the copy numb r of a gen encoding for a polypeptid having HMG-CoA reductase activity and subsequent expression of that encoded polypeptide.

In normal, non-transformed plants sterol accumulation is equal to about 0.3 weight percent of the dry weight on the plant. The predominant sterols accumulated by such normal plants are campesterol, sitosterol, stigmasterol and derivatives of cholesterol. These sterols, $\Delta 5$ -derivatives of cycloartenol that have undergone desaturation of the 5(6) carbon-carbon bond of cycloartenol, comprise over 80 weight percent of total sterols in normal plants. Cycloartenol normally comprises from about 3 to about 30 percent of the total sterols present in a plant.

Plants having an increased copy number of a gene encoding a polypeptide having HMG-CoA reductase activity demonstrate a marked increase in total sterol accumulation. Further, the predominant sterol found in such plants is cycloartenol, which represents from about 60 to about 70 weight percent of total sterols of a transformed plant.

Thus, the present invention provides plants that over accumulate sterols relative to a native plant. Transformed heterozygous plants accumulate total sterol to a level of about twice that which is found in native untransformed plants. In particular, transformed heterozygous plants accumulate cycloartenol to a level of from about ten to about one hundred times greater than that which is found in native plants.

These results are surprising and unexpected in light of studies relating to HMG-CoA reductase activity and sterol accumulation in other organisms.

In yeast, increases in HMG-CoA reductase activity are associated with increases in squalene (a sterol precursor), 4,14-dimethylzymosterol and 14-methylfecosterol (analogous to the Δ5-sterols of plants). Downing, J.F. et al., <u>Biochemical and Biophysical Research Communications</u>, 94(3): 974-979(1980). Increases in HMG-CoA reductase activity of yeast were not associated with increases in lanosterol, (a sterol of yeast analogous to cycloartenol). Benveniste, P., Ann. Rev. Plant Physiol., 37: 275-308 (1986).

In non-photosynthetic microorganisms, increases in HMG-CoA reductase activity were not associated with increases in sterol accumulation. Tada, M. and Shiroishi, M. Plant and Cell Physiology, 23(4): 615-621(1982).

F. Harvesting of Sterols

10

25

35

40

If desired, after cultivation, the transgenic plant is harvested to recover the sterol product. This harvesting step can consist of harvesting the entire plant, or only the leaves, or roots of the plant. This step can either kill the plant or, if only a non-essential portion of the transgenic plant is harvested, can permit the remainder of the plant to continue to grow.

In preferred embodiments this harvesting step further comprises the steps of:

- (i) homogenizing at least a sterol-containing portion of the transgenic plant to produce a plant pulp and using the sterol-containing pulp directly, as in dried pellets or tablets as where an animal food is contemplated; or
- (ii) extracting the sterol(s) from the plant pulp with an appropriate solvent such as an organic solvent or by supercritical extraction [Favati et al., J. Food Sci., 53:1532 (1988) and the citations therein] to produce a sterol-containing liquid solution or suspension; and
- (iii) isolating the sterol(s) from the solution or suspension.

At least a portion of the transgenic plant is homogenized to produce a plant pulp using methods well known to one skilled in the art. This homogenization can be done manually, by a machine, or by a chemical means as long as the transgenic plant portions are broken up into small pieces to produce a plant pulp. This plant pulp consists of a mixture of the sterol of interest, residual amounts of precursors, cellular particles and cytosol contents. This pulp can be dried and compressed into pellets or tablets and eaten or otherwise used to derive the benefits, or the pulp can be subjected to extraction procedures.

The sterol can be extracted from the plant pulp produced above to form a sterol-containing solution or suspension. Such extraction processes are common and well known to one skilled in this art. For example, the extracting step can consist of soaking or immersing the plant pulp in a suitable solvent. This suitable solvent is capable of dissolving or suspending the sterol present in the plant pulp to produce a sterol-containing solution or suspension. Solvents useful for such an extraction process are well known to those skilled in the art and include several organic solv into and combinations thereof such as methanol, ethanol, isopropanol, aceton, acetonitrile, tetrahydrofuran (THF), hexane, and chloroform as well as water-organic solvent mixtures. A vegetable oil such as peanut, corn, soybean and similar oils can also be used for this extraction.

A plant transfected with a structural gen for a polypeptide having HMG-CoA reductas activity is grown under suitable conditions for a period of time sufficient for sterols to be synthesized. The sterol-containing plant cells, preferably in dried form, are then lysed chemically or mechanically, and the sterol is extracted from the lysed cells using a liquid organic solvent, as described before, to form a sterol-containing liquid solution or suspension. The sterol is thereafter isolated from the liquid solution or suspension by usual means such as

chromatography.

5

15

20

30

45

The sterol is isolated from the solution or suspension produced above using methods that are well known to those skilled in the art of sterol isolation. These methods include, but are not limited to, purification procedures based on solubility in various liquid media, chromatographic techniques such as column chromatography and the like.

G. Pest Resistance of Transformed Plants

Certain sterols accumulated by the transformed plants of the present invention have use as systemic pesticidal agents. This embodiment of the present invention relates to a method of increasing pest resistance of a plant comprising transforming a native plant with a recombinant DNA molecule comprising a vector operatively linked to an exogenous DNA segment that encodes the catalytic region of HMG-CoA reductase, and a promoter suitable for driving the expression of said reductase in said plant. In a preferred embodiment, the exogenous DNA segment also encodes at least a portion of the linker region but not the membrane binding region of HMG-CoA reductase. Use of the hamster gene is particularly preferred.

Tobacco homworm larvae grown on the leaves of plants transformed with a truncated hamster HMG-CoA reductase gene, which plants have increased levels of cyclartenol, demonstrated retarded development. Pre-liminary studies also indicate that boil worms fed on leaves of a similarly transformed plant had retarded development under similar condition.

The following examples illustrate the preferred methods of carrying out the invention and are not to be construed as limiting of the specification and claims in any way.

Method of Carrying out the Invention

EXAMPLE 1: Transformation of Plant Cells

Plant cells were transformed in accordance with standard methods for expressing foreign genes in plants. Schardl, C. L., et al. <u>Gene</u> 61:1-11 (1987). A pKYLX series of vectors was used as the expression system. Preferred vectors are plasmids pKYLX6 and pKYLX7. Berger, P.J., et al., <u>Proc. Natl. Acad. Sci. USA</u>, 86: 8402-8408 (1989).

Transformations were performed with a truncated Hamster HMG-CoA reductase gene (HMGR-Δ227) obtained from the laboratories of Dr. J.L. Goldstein, See, e.g., Gil, G. et al., Cell, 41: 249-258(1985); Bard, M. and Downing, J.F. Journal of General Microbiology, 125:415-420(1981).

The HMGR- Δ 227 gene was incorporated into modified vectors pKYLX8 (an <u>E. coli</u>, vector designed for intermediate constructs) and pKYLX7 (an <u>A. tunefaciens</u> vector designed for integration of cloned genes). Berger, P.J., et al., <u>Proc. Natl. Acad. Sci. USA</u>, 86: 8402-8406 (1989). The modified vectors pKYLX61 and pKYLX71 contained Hind III, Xho I, Barn HI, Pst I, and Sst I sites in place of the original Hind III Sst I fragment multiple cloning site region.

The HMGR-Δ227 gene was digested with Bam HI and Sst I, and the approximately, 2500bp HMGR-Δ227-Bam HI-Sst I fragment was inserted into plasmid pKYLX61. The resulting HMGRΔ227-pKYLX61 construct was cleaved with Eco RI and Cla I, and an approximately 4000bp fragment containing the promoter-gene-terminator was inserted into corresponding sites of pKYLX71 to generate plasmid HMGRΔ227-pKYLX71 (see Figure 5). In plasmid HMGRΔ227-KYLX71, the truncated HMGR-Δ227 gene is under control of the strong, constitutive CaMV35S promoter.

The HMGRA227-pKYLX71 plasmid was mobilized into <u>Agrobacterium tumefaciens</u> by a standard triparental mating between <u>E. coli</u>, harboring the HMGRA227-pKYLX71 construct, <u>Argrobacterium tumefaciens</u>, harboring a disarmed Ti-plasmid, GV3850, and <u>E. coli</u>, harboring the conjugation helper plasmid pRK2013. See <u>e.g.</u>, Schardl, et al., <u>Supra</u>; Ditta, G. et al., <u>Proc. Natl. Acad. Sci. USA</u> 77:7347-7351 (1980). As a result of the cross, <u>Agrobacterium</u> harboring the HMGRA227-pKYLX71 construct, was selected for by resistance to rifampicin (encoded on the chromosome of <u>Agrobacterium</u>), and to tetracycline and kanamycin (encoded on the pKYLX71 vector).

Nicotiana tabacum L. cv. xanthii (N. tabacum) was transformed by th well known "leaf disk method". Horsch, R.B., t al., Science 27:1229-1231 (1985). Leaf disks were incubated with Agrobacteria containing Δ227-pKYLX71 for about 3 days. Transformed tissu was selected for by resistance to kanamycin (encoded by the pKYLX71 vector), cured of Agrobacteria using the antibiotic mefoxin, and regenerated into whole plants. Horsch, R.B., et al., Science 27:1229-1231 (1985).

Plant tissu was checked for the presence of integrated copies of the HMGR \$\triangle 227\$ gene sequences by the method of Mettler, Plant Mol. Biol. Reporter 5:346-349 (1987). RNA transcription levels were determined by

northern blotting or S-1 protection assays. Maniatis, T., et al., Molecular Cloning: A Laborat ry Manual, Cold Spring Harbour, Lab., Cold Spring Harbour, N.Y. (1982).

Plants exhibiting HMG-CoA reductase activity greater than control plants [untransformed (native) or transformed without the HMGR-Δ227-construct] were sexually crossed with themselves, to generate progeny.

EXAMPLE 2: HMG-CoA Reductase Enzyme Activity in Transgenic Plants

Transgenic plants were screened for expression of the truncated HMGR gene by examining HMG-CoA reductase activity in the 100,000xG supernatant of lysed cells using a standard assay, Chappell, J., and Nable, R., Plant Physiol. 85:469-473 (1987).

Soluble HMG-CoA reductase enzyme activity was measured in callus cultures grown on selection (kanamycin) medium, seedlings germinated in the presence of kanamycin or on moistened filter paper, and leaves of various sizes from plants grown in the greenhouse. Results of studies of HMG-CoA reductase activity in leaves from greenhouse-grown plants are also summarized in Table 1 below:

Table 1

20	Plant Sample No.	Total HMG-CoA Reductase Activity (pmol/hr./leaf)	<pre>\$ of Control</pre>
	Control		•
25	30	258	100
	Transformed		
	5	860	300
30	14	1,100	390
	15	633	220
35	18	456	160
	23	713	250

The control plant, 30, was transformed with a selection marker but not with the $\Delta 227$ gene. Plants 5, 14, 15, 18 and 23 (independently transformed) were transformed with the HMGR- $\Delta 227$ gene.

Total HMG-CoA reductase activity was 1.6 to 3.9 times greater in plants harboring the $\Delta 227$ gene as compared to the control plant.

EXAMPLE 3: Stereol Accumulation in Transformed Plants

N. tabacum, transformed with the HMGR- Δ 227 gene according to the method of Example 1 were analyzed for total sterol content. Sterols were measured by analytical gas chromatography using an internal standard. The results are presented in Table 2.

55

*5*0

45

5

Table 2

5		-CoA Reductase	Total Sterols (* of dry wt)
10	Control Plants (n=6)	2.00±0.19	0.27±0.02
15	Transformed Plants (n=12)	5.75±1.55	0.89±0.17

Transformed plants had elevated HMG-CoA reductase activity and increased sterol content. In addition to determining total sterol content, transformed N. tabacum were examined for the accumulation of specific sterols. The results of such an analysis in a control (Cntrl) and HMGR-Δ227 transformed (Trf) plant are presented in Table 3.

Table 3
Percent Dry weight of Sterols

Sterols	Cntrl	Callus Trf	Lea: Cntrl	_	Root Cntrl	
Campesterol	0.009	0.021		0.056	0.058	0.022
Cholesterol	0.004	tr	tr	tr	tr	tr
Cycloartenol	0.003	0.258	0.011	0.678	0.039	0.642
Sitosterol	0.027	0.077	0.083	0.187	0.029	0.194
Stigmasterol	0.003	0.012	0.132	0.078	tr	0.238
tr=trace (<0.	001 % dry	vt.)				

In the control plant, cycloartenol represented from about 3(0.011/0.283) percent dry weight) (leaf) to about 30(0.039/0.126) percent dry weight) (root) percent of total sterol accumulation. The predominant sterols accumulated by control plants (i.e. sitosterol, campesterol) are $\Delta 5$ -sterol derivatives of cycloartenol that have undergone additional metabolic transformation.

As a result of transformation with the HMGR- $\Delta 227$ gene, the ratio of cycloartenol to its derivatives is reversed. In transformed plants, cycloartenol accumulation represents from about 60 (root) to about 70 (leaf) percent by weight of total sterol accumulation.

These data show that transformed plants of the present invention over accumulate sterols relative to a native, untransformed plant. Transformed, heterozygous plants over accumulate total sterols to a level about twice that found in a native plant. The data further show that transformed heterozygous plants over accumulate cycloartenol to a level about ten to about one hundred times greater than found in a native plant.

EXAMPLE 4: Insecticidal Effects of Transformed Plants

55

25

30

40

First instar larva of the tobacco pests Tobacco Hornworm or Manduca Sexta, were placed onto leaves of control or HMGR-Δ227 transformed N. tabacum on a moistened filtered paper in a petri dish. Additional leaf material, from control r transformed plants, wa added to each dish, and the larvae were grown for an additional

7 days. Larvae were thin examined to different growth and divelopm into the results are presented in Table 4.

5	Table 4												
		Control	Transformed										
	Development												
10	<pre>t of larvae in second instar</pre>	28.6	100										
	<pre>t of larvae in premolt or third instar</pre>	71.4	0										
15	Growth												
	Fresh Wet Weight (mg)	42.8	24.4										

Tobacco Hornworm or Manduca Sexta larvae grown on leaves from HMGR- $\Delta 227$ -transformed plants demonstrated retarded development (no progression beyond the second instar stage) and inhibited growth (wet weight) as compared to controls. The cycloartenol levels of the control and transformed plants used in this study were 0.017 and 1.02 percent of dry leaf weight, respectively. This study thus illustrates both the method of increasing the accumulation of cycloartenol in a plant and of enhancing pest resistance in a plant.

Preliminary studies with a member of the helio- thus group of insect pests, the boll worm, indicate a slower growth rate for Insects fed on leaves of transformed plant 14 (Example 2) than on leaves of the native, control plant 30 (Example 2). An effect on the fecundity of the insects fed on either type of leaf was also noted.

EXAMPLE 5: Homozygous Transformed Plants

30

45

50

55

The previously described transformed plants were heterozygous for the introduced HMG-CoA reductase gene. One of those plants, plant 14 of Example 2, was selfed; i.e., sexually mated with itself.

Twelve seeds from that cross were germinated and raised into plants. The tissues of those siblings were then analyzed for HMG-CoA reductase activity, total protein and total sterol content. The specific activity of HMG-CoA reductase was also calculated. The results of that assay compared to similar data from siblings from a selfing of plant 30 (Example 2) are presented in Table 5, below.

7 days. Larvae were then examined to determine growth and dev lopment. The results are presented in Table 4.

	T	ble 4	
	• .	Control	Transformed
Development	.: •		
<pre>t of larvae in second instar</pre>		28,6	100
t of larvae in premolt or third	instar	71.4	o .
Growth			
Fresh Wet Weight	(mg)	42.8	24.4

Tobacco Hornworm or Manduca Sexta larvae grown on leaves from HMGR- $\Delta 227$ -transformed plants demonstrated retarded development (no progression beyond the second instar stage) and inhibited growth (wet weight) as compared to controls. The cycloartenol levels of the control and transformed plants used in this study were 0.017 and 1.02 percent of dry leaf weight, respectively. This study thus illustrates both the method of increasing the accumulation of cycloartenol in a plant and of enhancing pest resistance in a plant.

Preliminary studies with a member of the helio- thus group of insect pests, the boll worm, indicate a slower growth rate for insects fed on leaves of transformed plant 14 (Example 2) than on leaves of the native, control plant 30 (Example 2). An effect on the fecundity of the insects fed on either type of leaf was also noted.

EXAMPLE 5: Homozygous Transformed Plants

·5,

15

30

55

The previously described transformed plants were heterozygous for the introduced HMG-CoA reductase gene. One of those plants, plant 14 of Example 2, was selfed; i.e., sexually mated with itself.

Twelve seeds from that cross were germinated and raised into plants. The tissues of those siblings were then analyzed for HMG-CoA reductase activity, total protein and total sterol content. The specific activity of HMG-CoA reductase was also calculated. The results of that assay compared to similar data from siblings from a selfing of plant 30 (Example 2) are presented in Table 5, below.

Table 5

	Plant	HMGR Activity ¹	Protein ²	Specific Activity	Sterols ⁴
5	30-1	3.78	30.22	184	0.20
	30-2	2.20	30.00	146	0.25
•	30-3	1.44	18.70	154	0.29
10	30-4	2.13	23.67	180	0.31
	30-5	1.70	19.27	176	0.36
	30-6	1.77	19.32	183	0.22
	14-1	1.36	23.60	115	0.21
15	14-2	2.07	26.55	156	0.17
	14-3	10.28	17.60	1168	1.10
•	14-4	7.08	27.25	520 .	0.74
20	14-5	4.13	20.92	394	1.59
	14-6	1.58	11.00	143	0.25
	14-7	20.35	16.77	2,426	2.05*
25	14-8	4.87	24.20	402	0.97
23	14-9	2.37	12.95	366	0.19
	14-10	7.94	11.00	1,444	1.02
	14-11	2.56	15.25	334	1.10
30	14-12	4.39	21.10	416	1.29

pmoles/0.5 hours.

35

40

45

50

On the basis of the above data, the plants were classified as to (a) having no added HMG-CoA reductase gene, (b) being heterozygous for the added gene, as was plant 14, or (c) homozygous for the added gene. Illustratively, plant 14-2 was thus determined to be heterozygous for the added gene, plant 14-6 was determined to be heterozygous for the added gene; i.e., it contained an added gene on each of two chromosomes.

These data show that seeds from a transformed plant are capable of germinating into a plant capable of expressing enhanced sterol accumulation due to an increased copy number of gene encoding a polypeptide having HMG-CoA reductase activity.

Taken together with the data of Example 3, these data show that the transformed plants of the present invention over accumulate sterols relative to a native plant and that such plants are capable of producing seeds, which germinate into plants that over accumulate sterols.

Seeds from a selfing of plant 14-8 were deposited pursuant to the Budapest Treaty requirements with the American Type Culture Collection (ATCC) at 12301 Parklawn Drive, Rockville, MD 20852 U.S.A. on September 28, 1990, and were assigned accession number ATCC 40904.

The present invention has been described with respect to preferred embodiments. It will be clear to those skill d in the art that modifications and/or variations of the disclosed subject matter can be made without departing from the scope of the invention set forth herein.

² micrograms (mg).

pmoles of enzyme/hour/mg of total protein.

⁴ percentage of dry weight.

^{*} this plant died.

SEQUENCE LISTING

5	(1)	INFORMATION FOR SEQ ID NO:1:
		SEQUENCE CHARACTERISTICS:
10		(A) LENGTH: 4768 base pairs
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
15		(D) TOPOLOGY: linear

0

MOLECULE TYPE: cDNA

Original Source Organism: Hamster Properties: HMG-CoA reductase gene

10	TGT	atgt	CII	GTCT	TTCT	CC I	aagg	GGCG	Ţ AG	GCTC	ATTG	ATA	actc	ATG	TCCT	CACCTT	60
	GCA	CTCC	TTT '	TGGA	atta'	TT T	GGTT	TGAG	T GL	I GAL	GACC	GGA	CCTT	CGA	GGTT	CGCAAC	120
. 15	TTA	AACA	ATA (GACT	TGTG.	AG G	ATCC.	AGG G	A CC	Cact	GGCT	ACA				CGA Arg	175
	CTT Leu 5	TTC Phe	CGT	ATG Met	CAT His	GGC Gly 10	CTC Lau	TIT	GTG Val	GCC Ala	TCC Ser 15	CAT His	CCC Pro	TGG Trp	GAA Glu	GTT Val 20	223
20	ATT	GTG Val	GGG Gly	ACG Thr	GTG Val 25	ACA Thr	CTT	ACC	ATC Ile	TGT Cys 30	ATG Met	ATG Mot	TCC Ser	ATG Met	AAC Asn 35	ATG Met	271
25	TTC Phe	ACT	GGC	AAC Asn 40	AAC Asn	AAG Lys	ATC Ile	TGT Cys	GGT Gly 45	TGG Trp	aat asn	TAC Tyr	GAG Glu	TGC Cys 50	CCA Pro	AAA Lys	319
23	TTT	GAG Glu	GAG Glu 55	GAT Asp	GTA Val	TTG Leu	AGC Ser	AGT Ser 60	GAC Asp	ATC Ile	ATC Ile	ATC Ile	CTC Leu 65	ACC Thr	ATA Ile	ACA Thr	367
30) Arg	TGC Cys 70	ATC Ile	GCC Ala	ATC Ile	CTG Leu	TAC Tyr 75	ATT Ile	TAC Tyr	TTC Phe	CAG Gln	TTC Phe 80	CAG Gln	AAC Asn	TTA Leu	CGT	415
	CAG Gln 85	CTT Leu	GGG Gly	TCG Ser	AAG Lys	TAT Tyr 90	ATT Ile	TTA Leu	GGT Gly	ATT Ile	GCT Ala 95	gjy GCC	CTG Leu	TTC Phe	ACA Thr	ATT Ile 100	463
35	TTC Phe	TCA Ser	AGT Ser	TTT Phe	GTC Val 105	TTT Phe	AGT Ser	ACA Thr	GTC Val	GTC Val 110	ATT Ile	CAC His	TTC Phe	TTA Leu	GAC Asp 115	AAA Lys	511
40	GAA Glu	CTG Leu	ACG Thr	GGC Gly 120	TTA Leu	AAT Asn	GAA Glu	GCT Ala	TTG Leu 125	CCC Pro	TTT Phe	TTC Phe	CTG Leu	CTT Leu 130	TTG Leu	ATT Ile	559
	GAC Asp	CTT Leu	TCT Ser 135	A GA	GCG Ala	AGT Ser	GCA Ala	CTA Leu 140	GCA Ala	AAG Lys	TTT Phe	GCC Ala	CTA Leu 145	AGT Ser	TCA Ser	AAC Asn	607

5		
	TCT CAG GAT GAA GTA AGG GAA AAT ATA GCT CGC GGA ATG GCA ATT CTG Ser Gln Asp Glu Val Arg Glu Asn Ile Ala Arg Gly Met Ala Ile Leu 150 155 160	655
10	GGC CCC ACA TTC ACC CTT GAT GCT CTT GTG GAA TGT CTT GTA ATT GGA Gly Pro Thr Phe Thr Leu Asp Ala Leu Val Glu Cys Leu Val Ile Gly 165 170 175 180	703
15	GTT GGC ACC ATG TCA GGG GTG CGT CAG CTT GAA ATC ATG TGC TGC TTT Val Gly Thr Met Ser Gly Val Arg Gln Leu Glu Ile Met Cys Cys Phe 185 190 195	751
	GGC TGC ATG TCT GTG CTT GCC AAC TAC TTC GTG TTC ATG ACA TTT TTC Gly Cys Net Ser Val Leu Ala Asn Tyr Phe Val Phe Net Thr Phe Phe 200 205 210	799
20	CCA GCG TGT GTG TCC CTG GTC CTT GAG CTT TCT CGG GAA AGT CGA GAG Pro Ala Cys Val Ser Leu Val Leu Glu Leu Ser Arg Glu Ser Arg Glu 215 220 225	847
25	GGT CGT CCA AIT TGG CAG CTT AGC CAT TTT GCC CGA GTT TTG GAA GAA Gly Arg Pro Ile Trp Gln Leu Ser His Phe Ala Arg Val Leu Glu Glu 235 240	895
	GAA GAG AAT AAA CCA AAC CCT GTA ACC CAA AGG GTC AAG ATG ATT ATG Glu Glu Asn Lys Pro Asn Pro Val Thr Gln Arg Val Lys Net Ile Net 245 250 250	943
30	TCT TTA GGT TTG GTT CTT GTT CAT GCT CAC AGT CGA TGG ATA GCT GAT Ser Leu Gly Leu Val Leu Val His Ala His Ser Arg Trp Ile Ala Asp 265 270 275	991
	CCT TCC CCT CAG AAT AGC ACA ACA GAA CAT TCT AAA GTC TCC TTG GGA Pro Ser Pro Gln Asn Ser Thr Thr Glu His Ser Lys Val Ser Leu Gly 280 285 290	1039
35	CTG GAT GAA GAT GTG TCC AAG AGA ATT GAA CCA AGT GTT TCT CTC TGG Leu Asp Glu Asp Val Ser Lys Arg Ile Glu Pro Ser Val Ser Leu Trp 295 300 305	1087
40	CAG TTT TAT CTC TCC AAG ATG ATC AGC ATG GAC ATT GAA CAA GTG GTT Gln Phe Tyr Leu Ser Lys Met Ile Ser Met Asp Ile Glu Gln Val Val 310	1135
	ACC CTG AGC TTA GCT TTT CTG TTG GCT GTC AAG TAC ATT TTC TTT GAA Thr Leu Ser Leu Ala Phe Leu Leu Ala Val Lys Tyr Ile Phe Phe Glu 325 330 335	1183
45	CAA GCA GAG ACA GAG TCC ACA CTG TCT TTA AAA AAT CCT ATC ACG TCT Gln Ala Glu Thr Glu Ser Thr Leu Ser Leu Lys Asn Pro Ile Thr Ser 345	1231

5																	
	CCT Pro	GTC Val	GT G Val	ACC Thr 360	CCA Pro	aag Lys	aaa Lys	GCT Ala	CCA Pro 365	GAC Asp	AAC Asn	TGT Cys	TGT Cys	AGA Arg 370	CGG	GAG Glu	1279
10	CCT Pro	cig Leu	CTT Leu 375	GTG Val	AGA Arg	agg arg	AGC Ser	GAG Glu 380	aag Lys	CIT	TCA Ser	TCG Ser	GTT Val 385	GAG Glu	GAG Glu	GAG Glu	1327
15	CCT Pro	GGG Gly 390	GTG Val	AGC Ser	CAA Gln	GAT As p	AGA Arg 395	aaa Lys	GTT Val	GAG Glu	GTT Val	ATA Ile 400	iya Lya	CCA Pro	TTA Leu	GTG Val	1375
	GTG Val 405	GAA Glu	ACT Thr	GAG Glu	AGT Ser	GCA Ala 410	AGC Ser	AGA Arg	GCT Ala	ACA Thr	TTT Phe 415	GTG Val	CTT	GGC Gly	ğCC Àla	TCT Ser 420	1423
20	GGG Gly	ACC Thr	AGC Ser	CCT Pro	CCA Pro 425	GTG Val	GCA Ala	GCG Ala	agg	ACA Thr 430	CAG Gln	GAG Glu	CIT	GAA Glu	ATT Ile 435	GAA Glu	1471
	CTC Leu	CCC Pro	AGT Ser	GAG Glu 440	Pro	Arg	CCT Pro	aat asn	GAA Glu 445	GAA Glu	TGT Cys	CTG Leu	CAG Gln	ATA Ile 450	CIG Leu	GAG Glu	1519
25	AGT Ser	GCC	GAG Glu 455	Lys	GCT	GCA Ala	lys	Phe 460	Leu	AGC Ser	GAT Asp	GCA Ala	GAG Glu 465	ATC	ATC Ile	CAG Gln	1567
30	TTG Lau	GTC Val 470	λsn	GCC	aag Lys	CAC	ATC Ile 475	Pro	GCC Ala	TAC Tyr	AAA Lys	TIG Lau 480	GAA Glu	ACC	TTA Leu	ATG Met	1615
	GAA Glu 485	Thr	CAT His	GAA Glu	CGT	GGT Gly 490	Val	TCT	ATT	CGC	CGG Arg 495	Gln	CTC	CTC Leu	TCC Ser	ACA Thr 500	1663
35	AA G Lys	Leu	CCA Pro	Glu	Pro 505	Ser	TCT	CTG	CAG Gln	TAC Tyr 510	Leu	CCT Pro	TAC	AGA Arg	GAT Asp 515	TAT Tyr	1711
	λλΤ λεη	TAT	TCC Ser	CTG Leu 520	Val	ATG Met	GGA Gly	GCT	TGC Cys 525	CAR	GAG Glu	AAT Asn	GTG Val	Ile 530	Gly	TAT	1759
40	ATG	Pro	ATC Ile 535	Pro	GTC Val	Gly	GTA Val	GCA Ala 540	Gly	Pro	CTG	Cys	Leu 545	Asp	GGT	Lys	1807
45	GAG Glu	TAC Tyr 550	Gl	GTI Val	Pro	ATG Met	GCA Ala 555	Thr	ACG Thr	GAA Glu	GGC Gly	Cys 560	Leu	GTG Val	GCC	AGC Ser	1855

. 10	ACC Thr 565	AAC Asn	AGA Arg	GGC Gly	TGC Cys	AGG Arg 570	GCA Ala	ATA Ile	GLY GLY	CTT	GGT Gly 575	GGA Gly	GCT Gly	GCC Ala	AGC Ser	AGC Ser 580	1903
													GTG Val				1951
15	CGT	GCT Ala	TGT Cys	GAT Asp 600	TCT Ser	GCA Ala	GAA Glu	GTG Val	lys 605	GCC Ala	TGG Trp	CIT	GAA Glu	ACA Thr 610	CCC Pro	GAA Glu	1999
													AGC Ser 625			GCA Ala	2047
20													AAC Asn				2095
25	CGT Arg 645	TTC Phe	CAG Gln	TCC Ser	AAG Lys	ACA Thr 650	Gly	GAT Asp	GCC Ala	ATG Het	GGG Gly 655	ATG Met	AAC ABN	ATG Met	ATT	TCC Ser 660	2143
													TTC				2191
30					Ala								Asp			CCT Pro	. 2239
									Arg							GAA Glu	2287
35			Ile					Val					Lys			ACG Thr	2335
40		λla										Leu				GCC Ala 740	2383
						Gly										GTC Val	2431
45					Ile					Asp			CAG Gln		Val	GGG Gly	2479

	AGT TCA AAC TGT ATT ACT TTA ATG GAA GCA AGT GGT CCC ACG AAT GAA Ser Ser Asn Cys Ile Thr Leu Met Glu Ala Ser Gly Pro Thr Asn Glu 775 780 785	2527
10	GAC TTG TAT ATC AGC TGC ACC ATG CCA TCT ATA GAG ATA GGA ACT GTG Asp Leu Tyr Ile Ser Cys Thr Met Pro Ser Ile Glu Ile Gly Thr Val 790 795 800	2575
15	GGT GGT GGG ACC AAC CTC CTA CCA CAG CAG GCC TGT CTG CAG ATG CTA Gly Gly Gly Thr Asn Leu Leu Pro Gln Gln Ala Cys Leu Gln Net Leu 805 810 820	2623
	GGT GTT CAA GGA GCG TGC AAA GAC AAT CCT GGA GAA AAT GCA CGG CAA Gly Val Gln Gly Ala Cys Lys Asp Asn Pro Gly Glu Asn Ala Arg Gln 825	2671
20	CTT GCC CGA ATT GTG TGT GGT ACT GTA ATG GCT GGG GAG TTG TCC TTG Leu Ala Arg Ile Val Cys Gly Thr Val Het Ala Gly Glu Leu Ser Leu 840 845	2719
25	ATG GCA GCA TTG GCA GCA GGA CAT CTT GTT AGA AGT CAC ATG GTT CAT Met Ala Ala Leu Ala Ala Gly His Leu Val Arg Ser His Met Val His 855	2767
	AAC AGA TCG AAG ATA AAT TTA CAA GAT CTG CAA GGA ACG TGC ACC AAG Asn Arg Ser Lys Ile Asn Leu Gln Asp Leu Gln Gly Thr Cys Thr Lys 870 880	2815
30	AAG TCA GCT TGAGCAGCCT GACAGTATTG AACTGAAACA CGGGCATTGG Lys Ser Ala 885	2864
	GTTCTCAAGG ACTAACATGA AATCTGTGAA TTAAAAATCT CAATGCAGTG TCTTGTGGAA	2924
35	GATGAATGAA CGTGATCAGT GAGACGCCTG CTTGGTTTCT GGCTCTTTCA GAGACGTCTG	2984
	AGGTCCTTTG CTCGGAGACT CCTCAGATCT GGAAACAGTG TGGTCCTTCC CATGCTGTAT	3044
40	TCTGAAAAGA TCTCATATGG ATGTTGTGCT CTGAGCACCA CAGATGTGAT CTGCAGCTCG	3104
	TTTCTGAAAT GATGGAGTTC ATGGTGATCA GTGTGAGACT GGCCTCTCCC AGCAGGTTAA	3164
45	AAATGGAGTT TTAAATTATA CTGTAGCTGA CAGTACTTCT GATTTTATAT TTATTTAGTC	3224
	TGAGTTGTAG AACTTTGCAA TCTAAGTTTA TTTTTTGTAA CCTAATAATT CATTTGGTGC	3284

•	TGGTCTATTG	ATTTTTGGGG	GTAAACAATA	TTATTCTTCA	GAAGGGGACC	TACTTCTTCA	334
	TGGGAAGAAT	TACTITTATI	CTCAAACTAC	AGAACAATGT	GCTAAGCAGT	GCTAAATTGT	340
10	TCTCATGAAG	AAAACAGTCA	CTGCATTTAT	CTCTGTAGGC	CTTTTTTCAG	AGAGGCCTTG	346
	TCTAGATTTT	TGCCAGCTAG	GCTACTGCAT	GTCTTAGTGT	CAGGCCTTAG	GAAAGTGCCA	352
15	CGCTCTGCAC	TAAAGATATC	AGAGCTCTTG	GTGTTACTTA	GACAAGAGTA	TGAGCAAGTC	358
	GGACCTCTCA	GAGTGTGGGA	ACACAGTTTT	GAAAGAAAAA	CCATTTCTCT	AAGCCAATTT	364
20	TCTTTAAAGA	CATTITAACT	TATTTAGCTG	AGTTCTAGAT	TTTTCGGGTA	AACTATCAAA	370
	TCTGTATATG	TTGTAATAAA	GTGTCTTATG	CTAGGAGTTT	ATTCAAAGTG	TTTAAGTAAT	376
25	AAAAGGACTC	AAATTTACAC	TGATAAAATA	CTCTAGCTTG	GGCCAGAGAA	GACAGTGCTC	382
	ATTAGCGTTG	TCCAGGAAAC	CCTGCTTGCT	TGCCAAGCCT	AATGAAGGGA	AAGTCAGCTT	388
30 ·	TCAGAGCCAA	TGATGGAGGC	CACATGAATG	GCCCTGGAGC	TGTGTGCCTT	GTTCTGTGGC	394
	CAGGAGCTTG	GTGACTGAAT	CATTTACGGG	CTCCTTTGAT	GGACCCATAA	AAGCTCTTAG	400
35	CTTCCTCAGG	GGGTCAGCAG	AGTTGTTGAA	TCTTAATTTT	TTTTTTAATG	TACCAGTTTT	406
	GTATAAATAA	TAATAAAGAG	CTCCTTATTT	TGTATTCTAT	CTAATGCTTC	GAGTTCAGTC	412
40	TTGGGAAGCT	GACATCTCAT	GTAGAAGATG	GACTCTGAAA	GACATTCCAA	GAGTGCAGCG	418
	GCATCATGGG	AGCCTCTTAG	TGATTGTGTG	TCAGTATTAT	TGTGGAAGAT	TGACTTTGCT	424
4 5	TTTGTATGTG	AAGTTTCAGA	TIGCTCCTCT	TGTGACTTTT	TAGCCAGTAA	CATTTTATTT	430
	ACCTGAGCTT	GTCATGGAAG	TGGCAGTGAA	AAGTATTGAG	TATTCATGCT	GGTGACTGTA	436

5		
	ACCANTGTCA TCTTGCTAAA AACTCATGTT TTGTACAATT ACTAAATTGT ATACATTTTG	4424
	TTATAGAATA CTTTTTCCAG TTGAGTAAAT TATGAAAGGA AGTTAACATT AACAGGTGTA	4484
10	AGCGGTGGCT TTTTTAAAAT GAAGGATTAA CCCTAAGCCC GAGACCCAGA AGCTAGCAAA	4544
	GTCTGGCAGA GTGGTAAACT GTCCTGCTGG GGCCATCCAA TCATCTCTCT CCATTACACT	4604
15	TTCTAACTIT GCAGCATTGG TGCTGGCCAG TGTATTGTTT CATTGATCTT CCTTACGCTT	4664
	AGAGGGTTTG ATTGGTTCAG ATCTATAATC TCAGCCACAT TGTCTTGGTA TCAGCTGGAG	4724
20	AGAGTTAAGA GGAAGGGAAA ATAAAGTTCA GATAGCCAAA ACAC	4768
	(2) INFORMATION FOR SEQ ID NO:2:	
25	SEQUENCE CHARACTERISTICS: (A) LENGTH: 887 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	MOLECULE TYPE: protein	
30	Original Source Organism: Hamster Properties: HMG-CoA reductase enzyme	
	Met Leu Ser Arg Leu Phe Arg Met His Gly Leu Phe Val Ala Ser His 1 5 10 15	
35	Pro Trp Glu Val Ile Val Gly Thr Val Thr Leu Thr Ile Cys Met Met 20 25 30	
	Ser Met Asn Net Phe Thr Gly Asn Asn Lys Ile Cys Gly Trp Asn Tyr 35 40 45	
40 , ,	Glu Cys Pro Lys Phe Glu Glu Asp Val Leu Ser Ser Asp Ile Ile Ile 50 55 60	
	Leu Thr'lle Thr Arg Cys Ile Ala Ile Leu Tyr Ile Tyr Phe Gln Phe 65 70 75 80	
45	Gln Asn Leu Arg Gln Leu Gly Ser Lys Tyr Ile Leu Gly Ile Ala Gly 85 90 95	
	Leu Phe Thr Ile Phe Ser Ser Phe Val Phe Ser Thr Val Val Ile His	

(a

5	Phe	Leu	Asp 115	Lys	Glu	Leu	Thr	Gly 120	Leu	Asn	Glu	Ala	Leu 125	Pro .	Phe	Phe
	Leu	Leu 130	Leu	Ile	Asp	Leu	Ser 135	Arg	Ala	Ser	Ala	Leu 140	Ala	Lys	Phe	Ala
10	Leu 145	Ser	Ser	Asn	Ser	Gln 150	Asp	Glu	Val	yrd	Glu 155	Asn	Ile	Ala	Arg	Gly 160
	Met	Ala	Ile	Leu	Gly 165	Pro	Thr	Phe	Thr	Leu 170	Двр	Ala	Leu	Val	Glu 175	Cys
15	Leu	Val	Ile	Gly 180	Val	Gly	Thr	Met	Ser 185	Gly	Val	Arg	Gln	Leu 190	Glu	Ile
•	Met	Cys	Cys 195	Phe	Gly	Cys	Het	Ser 200	Val	Leu	Ala	As n	Tyr 205	Phe	Val	Phe
20	Met	Thr 210	Phe	Phe	Pro	Ala	Cys 215	Val	Ser	Leu	Val	Leu 220	Glu	Leu	Ser	Arg
	Glu 225	Ser	yrd	Glu	Gly	Arg 230	Pro	Ile	Trp	Gln	Leu 235	Ser	His	Phe	Ala	Arg 240
25	Val	Leu	Glu	Glu	Glu 245	Glu	Asn	Lys	Pro	Asn 250	Pro	Val	Thr	Gln	Arg 255	Val
	Lys	Met	Ile	Met 260	Ser	Leu	Gly	Leu	Val 265	Leu	Val	His	Ala	H1s 270	Ser	Arg
30	Trp	Ile	Ala 275	Asp	Pro	Ser	Pro	Gln 280	Asn	Ser	Thr	Thr	Glu 285	His	Ser	Lys
	Val	Ser 290	Leu	Gly	Leu	Asp	Glu 295	Asp	Val	Ser	Lys	Arg 300	Ile	Glu	Pro	Ser
35	Val 305	Ser	Leu	Trp	Gln	Phe 310	Tyr	Leu	Ser	Lys	Met 315	Ile	Ser	Met	Asp	Ile 320
	Glu	Glń	Val	Val	Thr 325	Leu	Ser	Leu	Ala	Phe 330	Leu	Leu	Ala	Val	Lys 335	Tyr
40	Ile	Phe	Phe	Glu 340	Gln	Ala	Glu	Thr	Glu 345	Ser	Thr	Leu	Ser	Leu 350	Lys	Asn
4.5	Pro	Ile	Thr 355	Ser	Pro	Val	Val	Thr 360	Pro	Lys	Lys	Ala	Pro 365	yab	Asn	Cys
45	Сув	Arg 370	_	Glu	Pro	Leu	Leu 375		Arg	Arg	Ser	Glu 380	_	Leu	Ser	Ser

5	Val 385	Glu	Glu	Glu	Pro	Gly 390	Val	Ser	Gln	Хsр	Arg 395	Lys	Val	Glu	Val	Ile 400
	Lys	Pro	Leu	Val	Val 405	Glu	Thr	Glu	Ser	Ala 410	Ser	Arg	Ala	Thr	Phe 415	Val
10	Leu	Gly	Ala	Ser 420	Gly	Thr	Ser	Pro	Pro 425	Val	Ala	Ala	Arg	Thr 430	Gln	Glu
	Leu	Glu	Ile 435	Glu	Leu	Pro	Ser	Glu 440	Pro	Arg	Pro	As n	Glu 445	Glu	Cys	Leu
15 .	Gln	Ile 450	Leu	Glu	Ser	Ala	Glu 455	Lys	Gly	Ala	Lys	Phe 460	Leu	Ser	Asp	Ala
	Glu 465	Ile	Ile	Gln	Leu	Val 470	Asn	Ala	Lys	His	Ile 475	Pro	Ala	Tyr	Lys	Leu 480
20	Glu	Thr	Leu	Met	Glu 485	Thr	His	Glu	λrg	Gly 490	Val	Ser	Ile	Arg	Arg 495	Gln
	Leu	Leu	Ser	Thr 500	Lys	Leu	Pro	Glu	Pro 505	Ser	Ser	Leu	Gln	Tyr 510	Leu	Pro
25	Tyr	Arg	Asp 515	Tyr	Asn	Tyr	Ser	Leu 520	Val	Ket	Gly	Ala	Cys 525	Cys	Glu	Asn
	Val	Ile 530	Gly	Tyr	Met	Pro	Ile 535	Pro	Val	Gly	Val	Ala 540	Gly	Pro	Leu	Cys
30	Leu 545	Asp	Gly	Lys	Glu	Tyr 550	Gln	Val	Pro	Met	Ala 555	Thr	Thr	Glu	Gly	Cys 560
	Leu	Val	Ala	Ser	Thr 565	Asn	Arg	Gly	Cys	Arg 570	Ala	Ile	Gly	Leu	Gly 575	Gly
35	Gly	Ala	Ser	Ser 580	Arg	Val	Leu	Ala	Asp 585	Gly	Met	Thr	Arg	Gly 590	Pro	Val
40	Val	Arg	Leu 595	Pro	Arg	Ala	Сув	Asp 600	Ser	Ala	Glu	Val	Lys 605	Ala	Trp	Leu
••	Glu	Thr 610	Pro	Glų	Gly	Phe	Ala 615	Val	Ile	Lys	Asp	Ala 620	Phe	Asp	Ser	Thr
45	Ser 625	Arg	Phe	Ala	Arg	Leu 630	Gln	Lys	Leu .	His	Val 635	Thr	Met	Ala	Gly	Arg 640
	Asn	Leu	Tyr	Ile	λr g 645	Phe	Gln	Ser	Lys	Thr 650	Gly	». Asp	Ala	Met	Gly 655	Met

5 ·	Asn	Met	Ile	Ser 660	Lys	Gly	Thr	Glu	Lys 665	Ala	Leu	Leu	Lys	Leu 670	Gln	Glu
	Phe	Phe	Pro 675	Glu	Met	Gln	Ile	Leu 680	Ala	Val	Ser	Gly	Asn 685	Tyr	Cys	Thr
10	Asp	Lys 690	Lys	Pro	Ala	Ala	Ile 695	Asn	Trp	Ile	Glu	Gly 700	Àrg	Gly	Lys	Thr
	Val 705	Val	Сув	Glu	Ala	Val 710	Ile	Pro	Ala	Lys	Val 715	Val	Àrg	Glu	Val	Leu 720
15	Lys	Thr	Thr	Thr	Glu 725	Ala	Met	Ile	Asp	Val 730	Asn	Ile	Asn	Lys	As n 735	Leu
	Val	Gly	Ser	Ala 740	Met	Ala	Gly	Ser	Ile 745	Gly	Gly	Tyr	Asn	Ala 750	His	Ala
20	Ala	Asn	Ile 755	Val	Thr	Ala	Ile	Tyr 760	Ile	Ala	Cys	Gly	Gln 765	Asp	Ala	Ala
•	Gln	As n 770	Val	Gly	Ser	Ser	As n 775	Сув	Ile	Thr	Leu	Net 780	Glu	Ala	Ser	Gly
25	Pro 785	Thr	Asn	Glu	Asp	Leu 790	Tyr	Ile	Ser	Cys	Thr 795	Met	Pro	Ser	Ile	Glu 800
	Ile	Gly	Thr	Val	Gly 805	Gly	Gly	Thr	Asn	Leu 810	Leu	Pro	Gln	Gln	Ala 815	Сув
30	Leu	Gln	Ket	Leu 820	Gly	Val	Gln	Gly	Ala 825	Сув	Lys	Asp	As n	Pro 830	Gly	Glu
	Asn	Ala	Arg 835	Gln	Leu	Ala	Arg	Ile 840	Val	Сув	Gly	Thr	Val 845	Met	Ala	Gly
35	Glu	Leu 850	Ser	Leu	Met	Ala	Ala 855	Leu	Ala	Ala	Gly	His 860	Leu	Val	Àrg	Ser
	His 865	Met	Val	His	Asn	Arg 870	Ser	Lys	Ile	Asn	Leu 875	Gln	Хар	Leu	Gln	Gly 880
40	Thr	Cys	Thr	_	Lys 885	Ser	Ala									

(2) INFORMATION FOR SEQ ID NO:3:

SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3360 base pairs
(B) TYPE: nucleic acid

55

50

5

.10

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

MOLECULE TYPE: DNA (genomic)

Original Source Organism: Yeast

Properties: HMG-CoA reductase 1 gene

15

	TIT	ATTA	ACT :	IATT:	TIT	C T	CIT	rcta(CCI	MITM	CTAG	TCA	GAN	NAG :	ACTAI	AGGGCT	60
	GGA	LCAT	AGT (TAT(:ATT	et c	PAAT:	rgt i (ati	CAN	AGTA	GAT	NAT	ACA !	raaa	ACAAGC	120
20							_								ATT Ile 15	GCC Ala	168
. 25		_													CTT		216
															TAT Tyr		264
30			Gly												GCT Ala		312
															TAC Tyr		360
35															GCT Ala 95		408
40															TTC Phe		456
															GTT Val		504
45															GTT Val		552

50

5													
	 		_	TCT Ser									600
10				TTC Phe 165									648
15				aat asn									696
				TAC Tyr									744
20				AAG Lys								ACA Thr	792
25	 Val											CAA Gln 240	840
_	 			Lys 245								TTG	888
30				GTT Val								GCC Ala	936
			Leu	GAG Glu								ATT	984
35		Asp				Glu				Glu		CGT	1032
40	Ile								Phe			TCT Ser 320	1080
 .					Leu			λsn				TCA Ser	1128
45				Ile			Leu				Tyr	TCT Ser	1176

5 .														
			_	-							CAC His 365			1224
10											CCA Pro			1272
15						•				•	TCT Ser			1320
											ATA Ile			1368
20								-	-		GTC Val	_		1416
25											CTA Leu 445			1464
	_					_			_		GCT Ala			1512
30											TAC			1560
											GTT Val			1608
35			_	_			_		_		GTA Val		_	1656
40								_			CAT His 525			1704
											AAG Lys		ACT Thr	1752
45		Pro								Thr	AAT Asn			1800

5											
		 		 _				GCG Ala		 	1848
10	_	_						TCC Ser			1896
15								TTA Leu			1944
			_		_			GAG Glu 620			1992
20		_					_	GAG Glu			2040
25					_	_		GCT Ala		 	2088
								CCA Pro			2136
30								AAT Asn			2184
								GTT Val 700		ACA Thr	2232
35								TGT Cys			2280
40								GLY			2328
								GTA Val			2376
45								TTA Leu			2424

5																	
													TCA Ser				2472
10													TTA Leu				2520
16													aat asn				2568
													GAG Glu				2616
20	GAA Glu	GAT Asp	ATG Met 835	GAG Glu	GTT Val	GTC Val	TCC Ser	GTT Val 840	TCT Ser	GGT Gly	AAC Asn	TAC Tyr	TGT Cys 845	ACC	Asp	AAA Lys	2664
25	AAA Lys	CCA Pro 850	GCT Ala	GCC Ala	ATC Ile	aac asn	TGG Trp 855	ATC Ile	GAA Glu	GGT Gly	CGT Arg	GGT Gly 860	AAG Lys	AGT Ser	GTC Val	GTC Val	2712
æ	GCA Ala 865	GAA Glu	GCT Ala	ACT Thr	ATT Ile	CCT Pro 870	GGT Gly	GAT Asp	GTT Val	GTC Val	AGA Arg 875	AAA Lys	GTG Val	TTA Leu	AAA Lys	AGT Ser 880	2760
<i>30</i>	Asp	GTT Val	TCC Ser	GCA Ala	TTG Leu 885	GTT Val	GAG Glu	TTG Leu	AAC Asn	ATT Ile 890	GCT Ala	AAG Lys	AAT	TTG Leu	GTT Val 895	GGA Gly	2808
	TCT Ser	GCA Ala	ATG Met	GCT Ala 900	GGG Gly	TCT Ser	GTT Val	GGT Gly	GGA Gly 905	TTT Phe	AAC Asn	GCA Ala	CAT His	GCA Ala 910	GCT Ala	aat Asn	2856
35	TTA Leu	GTG Val	ACA Thr 915	GCT Ala	GTT Val	TTC Phe	TTG Leu	GCA Ala 920	TTA Leu	GGA Gly	CAA Gln	GAT Asp	CCT Pro 925	GCA Ala	CAA Gln	XAT Asn	2904
40													GTG Val				2952
	TTG Leu 945	AGA Arg	ATT	TCC Ser	GTA Val	TCC Ser 950	ATG Net	CCA Pro	TCC Ser	ATC Ile	GAA Glu 955	GTA Val	GGT Gly	ACC Thr	ATC Ile	GGT Gly 960	3000
45	GGT Gly	GGT Gly	ACT Thr	GTT Val	CTA Leu 965	GAA Glu	CCA Pro	CAA Gln	GGT Gly	GCC Ala 970	ATG Met	TTG Leu	GAC Asp	TTA Leu	TTA Leu 975	GGT Gly	3048

													GCA Ala				3096
10							_		Leu				TTA Leu 1005	Ser			3144
15			Leu				.	Leu				_	Het			AAC . Asn	3192
		Lys					Thr					Leu	gac as p				3240
20						Asp					Cys		aaa Lys				3282
	TAA	CTI	GT (CATAC	CTC	NT T	GTA:	PTCT	TT	:AAA:	AAGA	AGC	ACAA	AG (CACC	ATGTGT	3342
25	TAC	STAN	AAT I	ATTT!	CTT												3360
	(2)	INFO	ORMA!	MOIN	POR	SEQ	ID I	NO:4:	:								
30				SEQUI (A) (B) (D) MOLEO	TY:	NGTH: PE: 0	: 10: amin GY:	54 ar 5 ac: line:	aino ld	_	is						
			ı	Orig	inal	Sou	rce	Orga	nism	: Ye	ast						
35				Prop	erti	es:	HMG-	CoA	redu	ctas	e 1						
	Met 1	Pro 	Pro	Leu	Phe 5	Lys	Gly	Leu	Lys	Gln 10	Met	Ala	Lys	Pro	Ile 15	Ala	
40	Tyr	Val	Ser	Arg 20	Phe	Ser	Ala	Lys	Arg 25	Pro	Ile	His	Ile	Ile 30	Leu	Phe	
••	Ser	Leu	Ile 35	Ile	Ser	Ala	Phe	Ala 40	Tyr	Leu	Ser	Val	Ile 45	Gln	Tyr	Tyr	
	Phe	Asn 50	Gly	Trp	Gln	Leu	As p 55		Asn	Ser	Val	Phe 60	Glu	Thr	Ala	Pro	
45	As n 65	Lys	λsp	Ser	A sn	Thr 70		Phe	Gln	Glu	Cys 75	Ser	His	Tyr	Tyr	Arg 80	

5	Asp	Ser	Ser	Leu	ДБР 85	Gly	Trp	Val	Ser	Ile 90	Thr	Ala	His	Glu	Ala 95	Ser
	Glu	Leu	Pro	Ala 100	Pro	His	His	Tyr	Tyr 105	Leu	Leu	Asn	Leu	Asn 110	Phe	Asn
10	Ser	Pro	Asn 115	Glu	Thr	Хsр	Ser	Ile 120	Pro	Glu	Leu	Ala	A sn 125	Thr	Val	Phe
	Glu	Lys 130	yab	Asn	Thr	Lys	Tyr 135	Ile	Leu	Gln	Glu	Asp 140	Leu	Ser	Val	Ser
15	Lys 145	Glu	Ile	Ser	Ser	Thr 150	Хsр	Gly	Thr	Lys	Trp 155	ХГĞ	Leu	Arg	Ser	Asp 160
20	Arg	Lys	Ser	Leu	Phe 165	Хsр	Val	Lys	Thr	Leu 170	Ala	Tyr	Ser	Leu	Tyr 175	Asp
20	Val	Phe	Ser	Glu 180	λsn	Val	Thr	Gln	Ala 185	Asp	Pro	Phe	Asp	Val 190	Leu	Ile
25	Met	Val	Thr 195	Ala	Tyr	Leu	Met	Met 200	Phe	Tyr	Thr	Ile	Phe 205	Gly	Leu	Phe
	Asn	Asp 210	Met	λrg	Lys	Thr	Gly 215	Ser	Asn	Phe	Trp	Leu 220	Ser	Ala	Ser	Thr
30	Val 225	Val	Asn	Ser	Ala	Ser 230	Ser	Leu	Phe	Leu	Ala 235	Leu	Tyr	Val	Thr	Gln 240
	Cys	Ile	Leu	Gly	Lys 245	Glu	Val	Ser	Ala	Leu 250	Thr	Leu	Phe	Glu	Gly 255	Leu
35	Pro	Phe	Ile	Val 260	Val	Val	Val	Gly	Phe 265	Lys	His	Lys	Ile	Lys 270	Ile	Ala
	Gln	Tyr	Ala 275	Leu	Glu	Lys	Phe	Glu 280	Arg	Val	Gly	Leu	Ser 285	Lys	Arg	Ile
40	Thr	Thr 290	λsp	Glu	Ile	Val	Phe 295	Glu	Ser	Val	Ser	Glu 300	Glu	Gly	Gly	Arg
	Leu 305	Ile	Gln	ДSP	His	Leu 310	Leu	Сув	Ile	Phe	Ala 315	Phe	Ile	Gly	Суз	Ser 320
45	Met	Tyr	Ala	His	Gln 325	Leu	Lys	Thr	Leu	Thr 330	Asn	Phe	Cys	Ile	Leu 335	Ser
	Ala	Phe	Ile	Leu 340	Ile	Phe	Glu	Leu	Ile 345	Leu	Thr	Pro	Thr	Phe 350	Tyr	Ser

5	Ala	Ile	Leu 355	λla	Leu	Arg	Leu	Glu 360	Met	Asn	Val	Ile	His 365	λrg	Ser	Thr
	Ile	11e 370	Lys	Gln	Thr	Leu	Glu 375	Glu	Asp	Gly	Val	Val 380	Pro	Ser	Thr	Ala
10	Arg 385	Ile	Ile	Ser	Lys	Ala 390	Glu	Lys	Lys	Ser	Val 395	Ser	Ser	Phe	Leu	Asn 400
15	Leu	Ser	Val	Val	Val 405	Ile	Ile	Ket	Lys	Leu 410	Ser	Val	Ile	Leu	Leu 415	Phe
	Val	Phe	Ile	As n 420	Phe	Tyr	Asn	Phe	Gly 425	Ala	Asn	Trp	Val	Asn 430	-	Ala
20	Phe	Asn	Ser 435	Leu	Tyr	Phe	yeb	Lys 440	Glu	Дrg	Val	Ser	Leu 445		Asp	Phe
	Ile	Thr 450	Ser	Asn	Ala	Ser	Glu 455	Asn	Phe	Lys	Glu	Gln 460	Ala	Ile	Val	Ser
25	Val 465	Thr	Pro	Leu	Leu	Tyr 470	Tyr	Lys	Pro	Ile	Lys 475	Ser	Tyr	Gln	Arg	Ile 480
	Glu	Asp	Met		Leu 485		Leu	Leu		Asn 490		Ser	Val	Ala	Ile 495	Arg
30	Asp	Arg	Phe	Val 500	Ser	Lys	Leu	Val	Leu 505	Ser	Ala	Leu	Val	Cys 510	ser	Ala
	Val	Ile	As n 515	Val	Tyr	Leu	Leu	Asn 520	λla	Ala	Arg	Ile	His 525	Thr	Ser	Tyr
35	Thr	Ala 530	Asp	Gln	Leu	Val	Lys 535	Thr	Glu	Val	Thr	Lys 540	Lys	Ser	Phe	Thr
	Ala 545	Pro	Val	Gln	Lys	Ala 550	Ser	Thr	Pro	Val	Leu 555	Thr	Asn	Lys	Thr	Val 560
40	Ile	Ser	Gly	Ser	Lys 565	Val	Lys	Ser	Leu	Ser 570	Ser	Ala	Gln	Ser	Ser 575	Ser
	Ser	Gly	Pro	Ser 580	Ser	Ser	Ser	Glu	Glu 585	Asp	Asp	Ser	Arg	λ sp 590	Ile	Glu
45	Ser	Leu	λs p 595	Lys	Lys	Ile	λrg	Pro 600	Leu	Glu	Glu	Leu	Glu 605	Ala	Leu	Leu
	Ser	Ser 610	Gly	A sn	Thr	Lys	Gln 615	Leu	Lys	Asn	Lys	Glu 620	Val	λla	Ala	Leu

5	Val 625	Ile	His	Gly	Lys	Leu 630	Pro	Leu	Tyr	λla	Leu 635	Glu	Lys	Lys	Leu	Gly 640
	Asp	Thr	Thr	Arg	Ala 645	Val	Ala	Val	Arg	Arg 650	Lys	Ala	Leu	Ser	Ile 655	Leu
10	Ala	Glu	Ala	Pro 660	Val	Leu	Ala	Ser	Asp 665	Arg	Leu	Pro	Tyr	Lys 670	Asn	Tyr
	Asp	Tyr	Asp 675	Arg	Val	Phe	Gly	Ala 680	Сув	Cys	Glu	Asn	Val 685	Ile	Gly	Tyr
15	Met	Pro 690	Leu	Pro	Val	Gly	Val 695	Ile	Gly	Pro	Leu	Val 700	Ile	Asp	Gly	Thr
20	Ser 705	Tyr	His	Ile	Pro	Met 710	Ala	Thr	Thr	Glu	Gly 715	Сув	Leu	Val	Ala	Ser 720
	Ala	Het	Arg	Gly	Cys 725	Lys	Ala	Ile	Asn	Ala 730	Gly	Gly	Glý	Ala	Thr 735	Thr
25	Val	Leu	Thr	Lys 740	Asp	Gly	Net	Thr	Arg 745	Gly	Pro	Val	Val	Arg 750	Phe	Pro
	Thr	Leu	Lys 755	Arg	Ser	Gly	Ala	Cys 760	Lys	Ile	Trp	Leu	Asp 765	Ser	Glu	Glu
30	Gly	Gln 770	Asn	Ala	Ile	Lys	Lys 775	Ala	Phe	λsn	Ser	Thr 780	Ser	Arg	Phe	Ala
	Arg 785	Leu	Gln	His	Ile	Gln 790	Thr	Cys	Leu	Ala	Gly 795	Asp	Leu	Leu	Phe	Met 800
35	Arg	Phe	Arg	Thr	Thr 805	Thr	Gly	Asp	Ala	Met 810	Gly	Met	Asn	Met	Ile 815	Ser
	Lys	Gly	Val	Glu 820	Tyr	Ser	Leu	Lys	Gln 825	Ket	Val	Glu	Glu	Tyr 830	Gly	Trp
40	Glu	yeb	Met 835	Glu	Val	Val	Ser	Val 840	Ser	Gly	Asn	Tyr	Cys 845	Thr	Asp	Lys
	Lys	Pro 850	Ala	Ala	Ile	Asn	Trp 855	Ile	Glu	Gly	λrg	Gly 860	Lys	Ser	Val	Val
4 5	Ala 865	Glu	Ala	Thr	Ile	Pro 870	Gly	Asp	Val	Val	Arg 875	Lys	Val	Leu	Lys	Ser 880
	Asp	Val	Ser	Ala	Leu 885	Val	Glu	Leu	Asn	Ile 890	Ala	Lys	Asn	Leu	Val 895	Gly

50

. **55**

	Ser	Ala	Met	Ala 900	Gly	Ser	Val	Gly	Gly 905	Phe	Asn	Ala	His	Ala 910	Ala	Asn
10	Leu	Val	Thr 915	Ala	Val	Phe	Leu	Ala 920	Leu	Gly	Gln	Asp	Pro 925	Ala	Gln	Asn
	Val	Glu 930	Ser	Ser	Asn	Cys	Ile 935	Thr	Leu	Ket	Lys	Glu 940	Val	yab	Gly	Asp
15	Leu 945	Arg	Ile	Ser	Val	Ser 950	Net	Pro	Ser	Ile	Glu 955	Val	Gly	Thr	Ile	Gly 960
	Gly	Gly	Thr	Val	Leu 965	Glu	Pro	Gln	Gly	Ala 970	Net	Leu	Asp	Leu	Leu 975	Gly
20	Val	Arg	Gly	Pro 980	His	Ala	Thr	Ala	Pro 985	Gly	Thr	Asn	Ala	Arg 990	Gln.	Leu
	Ala	Arg	Ile 995	Val	Ala	Cys	Ala	Val 1000		Ala	Gly	Glu	Leu 1005		Leu	Cys
ne.	Ala	Ala 1010		Ala	Ala	Gly	His 101		Val	Gln	Ser	His 1020		Thr	His	Asn
25	Arg 1025	Lys	Pro	Ala	Glu	Pro 1030		Lys	Pro	Asn	Asn 1035		Asp	Ala	Thr	Asp 1040
	Ile	Asn	Arg	Leu	Lys 1045		Gly	Ser	Val	Thr 1050	_	Ile	Lys	Ser		
30	/ 2\	TVDC	\D&& \ #	TAN	BAB	CBA		.			٠					
	(2)	TNPC			FOR ECH											
35			(A (E (C) LE 3) TY 3) ST	ngth Pe: Tand Polo	nucl DNE	48 t eic SS:	ase acid sing	pair l	s	•					
			MOI	ECUI	E TY	PE:	DNA	(gen	onic	:)						
40				•	Sour es: H		•			øene						
			2 1 ()		. L											
4 5																
	GGAA	TATI	TT G	TACC	BAGCA	A GI	TATA	GTAA	GAC	ACTI	CAG	TGAG	aaat	TA A	TCTG	ACTTA 60
50																

5																	
	CTT	TAC!	TA J	TTG	GTT	T T	CCA	LATTA	GTI	CAAC	AYC	GTTC	CCAC	AT A	CAAC	CTCAA	120
10	ATG Met 1	TCA Ser	CTT Leu	CCC Pro	TTA Leu 5	AAA Lys	ACG Thr	ATA Ile	GTA Val	CAT His 10	TTG Leu	GTA Val	aag Lyb	CCC - Pro	TTT Phe 15	GCT Ala	168
	TGC	ACT Thr	GCT Ala	AGG Arg 20	TTT Phe	AGT Ser	GCG Ala	AGA Arg	TAC Tyr 25	CCA Pro	ATC Ile	CAC His	GTC Val	ATT Ile 30	GTT Val	GTT Val	216
15	GCT Ala	GTT Val	TTA Leu 35	TTG Lau	AGT	GCC Ala	GCT Ala	GCT Ala 40	TAT Tyr	CTA Leu	TCC Ser	GTĠ Val	ACA Thr 45	CAA Gln	TCT Ser	TAC Tyr	264
20	CTT Leu	AAC Asn 50	GAA Glu	TGG Trp	AAG Lys	CTG Leu	GAC Asp 55	TCT	aat Asn	CAG Gln	TAT Tyr	TCT Ser 60	ACA Thr	TAC Tyr	TTA Leu	AGC Ser	312
	ATA Ile 65	Lys	CCG Pro	GAT Asp	GAG Glu	TTG Leu 70	TTT Phe	GAA Glu	AAA Lys	TGC Cys	ACA Thr 75	CAC His	TAC Tyr	TAT Tyr	AGG Arg	TCT Ser 80	360
25	CCT Pro	GTG Val	TCT Ser	GAT Asp	ACA Thr 85	Trp	aag Lys	TTA Leu	CTC	AGC Ser 90	TCT Ser	AAA Lys	G AA Glu	GCC Ala	GCC Ala 95	GAT Asp	408
	ATT	TAT	ACC	Pro 100	Phe	CAT	TAT	TAT Tyr	TTG Leu 105	TCT Ser	ACC	ATA Ile	AGT Ser	TTT Phe 110	CAA Gln	AGT Ser	456
30	AAG Lys	GAC Asp	AAT Asn 115	Ser	ACG	ACT	TIG	Pro 120	Ser	CTT	GAT Asp	GAC Asp	GTT Val 125	ATT	TAC	AGT Ser	504
35	GTT Val	Asp 130	His	ACC	AGG Arg	TAC	TTA Leu 135	Leu	AGT Ser	GAA Glu	GAG Glu	CCA Pro 140	Lys	ATA Ile	CCA Pro	ACT Thr	552
	GAA Glu 145	Leu	GTG Val	TCI Ser	GAA Glu	AAC Asn 150	Gly	ACG	Lys	TGG Trp	AGA Arg 155	Leu	AGA Arg	AAC Asn	AAC Asn	AGC Ser 160	600
40	AAT Asn	TTI	ATT Ile	TTG	GAC Asp 165	Leu	CAT	AAT Asn	ATT	TAC Tyr 170	Arg	AAT Asn	ATG Met	GTG Val	Lys 175	CAA Gln	648
	TTI Phe	TCI	AAC Ast	Lys	Thi	AGC Ser	GAA Glu	TTI Phe	GAT Asp 185	Gln	TTC	GAT Asp	TTG	Phe 190	Ile	ATC Ile	696

5															
	CTA GC.			 											744
10	GAC ATO	t Arg					_						_		792
15	TCA AAG Ser Ass 225			 					_			_			840
	TTA TTO Let Let			 						_	_	_			888
20	TTT AT														936
25	TTC TO		Gln	 		_								_	984
	GTA AG Val Se 29	r Asn		 				-	_		_			-	1032
<i>3</i> 0	ATC CG				Tyr	_			_	_			_	_	1080
	TAT GC		_		_		_				_				1128
35	TTT AT														1176
40	ATT TT		Met												1224
	ATC AG	g Gln				Asp									1272
45	ATT AT Ile Il 385									_					1320

5														
					_						GGT Gly			1368
10				_							GCT Ala			1416
15						_	_				CCA Pro 445		- -	1464
		Lys		_							ATC Ile			1512
20					_						CAT His		_	1560
25				_					Ser		GCT Ala			1608
		 	_		_		-	_	_	_	GTT Val			1656
30											ACA Thr. 525			1704
	_	 _	_				_				GTT Val			1752
35		_	_	_							ATG Net			1800
40											ATT			1848
	_										TCC Ser			1896
45	_								•		GAG Glu 605			1944

5																	
	TTA Lou	Lys 610	Asn	ATG Met	AAT Asn	aat asn	ACT Thr 615	Glu	GTT Val	TCG Ser	AAT Asn	CTT Leu 620	Val	GTC Val	AAC Asn	GGT Gly	1992
10	lys 625	Leu	Pro	TTA Leu	TAT Tyr	TCC Ser 630	TTA	GAG Glu	lys	AAA Lys	TTA Leu 635	GAG Glu	GAC Asp	ACA Thr	ACT	CGT Arg 640	2040
15	Ala	Val	Leu	Val	Arg 645	Arg	Lys	Ala	Leu	Ser 65 0	Thr	Leu	Ala	Glu	Ser 655		2088
	ATT Ile	TTA Leu	GTT Val	TCC Ser 660	GAA Glu	lys	TIG	Pro	Phe 665	Arg	AAT	TAT	GAT Asp	TAT TYP 670	yab Gyl	CGC Arg	2136
20	GTT Val	TTT	GGA Gly 675	GCT Ala	TGC Cys	TGT Cys	GAA Glu	AAT Asn 680	GTC Val	ATC Ile	GCC	TAT Tyr	ATG Met 685	CCA Pro	ATA Ile	CCA Pro	2184
•	GTT Val	GCT Gly 690	GTA Val	ATT Ile	GGT Gly	CCA Pro	TTA Leu 695	ATT	ATT	GAT Asp	GGA	ACA Thr 700	TCT Ser	TAT Tyr	CAC His	ATA Ile	2232
25	CCA Pro 705	Het	GCA Ala	ACC Thr	ACG Thr	GAA Glu 710	Gly	TGT Cys	TTA Leu	GTG Val	GCT Ala 715	TCA Ser	GCT Ala	ATG Net	CGT Arg	GGT Gly 720	2280
<i>30</i>	cys	Lys	Ala	Ile	725	Ala	Gly	Gly	Gly	Ala 730	Thr	ACT	Val	Leu	Thr 735	Lys	2328
	Asp	Gly	Net	Thr 740	Arg	Gly	Pro	Val	Val 745	Arg	Phe	CCT Pro	Thr	Leu 750	Ile	Arg	2376
35	ser	Gly 	755	Сув	Lys	Ile	Trp	Leu 760	Asp	Ser	Glu	GAG Glu	Gly 765	Gln	As n	Ser	2424
40	IIe	Lys 770	Lys	λla	Phe	Asn	Ser 775	Thr	Ser	Arg	Phe	GCA Ala 780	Arg	Leu	Gln ·	His	2472
	785	Gln	Thr	Сув	Leu	Ala 790	Gly	Asp	Leu	Leu	Phe 795	Met	Arg	Phe	Arg	Thr 800	2520
4 5	ACT Thr	ACC Thr	GGT Gly	yeb	GCA Ala 805	ATG Met	GGT Gly	ATG Het	AAC Asn	ATG Met 810	ATA Ile	TCG Ser	aaa Lys	GGT Gly	GTC Val 815	GAA Glu	2568

5																	
	TYE	Ser	Leu	820	Gln	Het	. Val	Glu	61u 825	Tyr	Gly	Trp	Glu	Asp 830	Met	GAA Glu	2616
10	GTT Val	Val	Ser 835	AST	TCT	GGT	AAC	TAT Tyr 840	CAR	ACT	GAT As p	AAG Lys	Lys 845	Pro	GCC	GCA Ala	2664
42	ATC Ile	AAT Asn 850	IIP	Ile	GAA Glu	Gly	Arg 855	Gly	Lys	AGT Ser	GTC Val	GTA Val 860	GCT Ala	GAA Glu	GCT	ACT Thr	2712
16	ATT Ile 865	PTO	GGT Gly	GAT Asp	GTC Val	GTA Val 870	Lys	AGT Ser	GTT Val	TTA Leu	AAG Lys 875	AGC Ser	GAT Asp	GTT Val	TCC Ser	GCT Ala 880	2760
20	TTA Leu	GTT Val	GAA Glu	TTA Leu	AAT Asn 885	ATA	TCC Ser	aag Lys	AAC Asn	TTG Leu 890	GTT Val	GGA Gly	TCC Ser	GCA Ala	ATG Met 895	GCT Ala	2808
	GGA Gly	TCT	GIT Val	GGT Gly 900	GGT Gly	TTC Phe	AAC	GCG Ala	CAC His 905	GCA Ala	GCT Ala	AAT Asn	TTG Leu	GTC Val 910	ACT Thr	GCA Ala	2856
25	CTT Leu	TTC Phe	TTG Lou 915	GCA Ala	TTA	GGC	CAA Gln	SSO SSD SSD SSD SSD SSD SSD SSD SSD SSD	CCT Pro	GCG Ala	CAG Gln	AAC Asn	GTC Val 925	GAA Glu	AGT Ser	TCC Ser	2904
30	AAC Asn	TGT Cys 930	ATA Ile	ACT Thr	TTG Leu	ATG Ket	Lys 935	GAA Glu	GTT Val	GAT Asp	ggt Gly	GAT Asp 940	TTA Leu	AGG Arg	ATC Ile	TCT Ser	2952
	GTT Val 945	TCC Ser	ATG Met	CCA Pro	TCT Ser	ATT Ile 950	GAA Glu	GTT Val	GGT Gly	ACG Thr	ATT Ile 955	GGC Gly	GGG Gly	GGT Gly	ACT Thr	GTT Val 960	3000
35	CTG Leu	GAG Glu 	CCT Pro	CAG Gln	GGC Gly 965	GCC Ala	ATG Met	CTT Leu	GAT Asp	CTT Leu 970	CTC Leu	GGC Gly	GTT Val	CGT Arg	GGT Gly 975	CCT Pro	3048
40	CAC His	CCC Pro	ACT Thr	GAA Glu 980	CCT Pro	GGA Gly	GCA Ala	AAT Asn	GCT Ala 985) Arg	CAA Gln	TTA Leu	GCT Ala	AGA Arg 990	ATA Ile	ATC Ile	3096
	GCG Ala	TGT Cys	GCT Ala 995	GTC Val	TTG Leu	GCT Ala	GGT Gly	GAA Glu 1000	Leu	TCT Ser	CTG Leu	TGC Cys	TCC Ser 1005	λla	CTT	GCT Ala	3144
45	VIG	GGT Gly 1010	U12	CIG Leu	GTA Val	CAA Gln	AGC Ser 1015	His	ATG Met	ACT Thr	His	AAC Asn 1020	Arg	AAA Lys	ACA Thr	AAC Asn	3192

5																	
	Lys 102	Ala	AAT Asn	GAA Glu	CTG	Pro 103	Gln	CCA Pro	AGT Ser	AAC Asn	Lys 103	Gly	Pro	Pro	TGI Cys	Lys 1040	3240
10	ACC	TCA Ser	GCA Ala	TTA Leu	TTA Leu 104		CTCT	TGT	actt	TÀCÀ	TG G	TGAI	acti	T AT	ATCT	TTGT	3295
	ATT	GTCT	AGC	TATT	CTAA	AT C	atci	gcat	g ta	ataa	GAAG	TTG	ATCA	λλλ	TGA		3348
15																	
	(2)	INP	ORMA	TION	FOR	SEQ	ID	XO: 6	:								
20				(A (B (D	ENCE) LE) TY) TO ULE T	ngth Pe: Polo	: 10 amin GY:	45 a o ac line	mino id	_	đs			:			
					inal			•									
		_	•	_	ertic												
25	Met 1	Ser	Leu	Pro	Leu 5	Lys	Thr	Ile	Val	His 10	Leu	Val	Lys	Pro	Phe 15	Ala	
	Сув	Thr	Ala	Arg 20	Phe	Ser	Ala	Arg	Tyr 25	Pro	Ile	His	Val	Ile 30	Val	Val	
30	Ala	Val	Leu 35	Leu	Ser	λla	Ala	Ala 40	Tyr	Leu	Ser	Val	Thr 45	Gln	Ser	Tyr	
	Leu	As n 50	Glu	Trp	Lys	Leu	Asp 55	Ser	Asn	Gln	Tyr	Ser 60	Thr	Tyr	Leu	Ser	
35	Ile 65	Lys	Pro	Asp	Glu	Leu 70	Phe	Glu	Lys	Cys	Thr 75	His	Tyr	Tyr	Arg	Ser 80	٠
	Pro	Val-	Ser	Asp	Thr 85	Trp	Lys	Leu	Leu	Ser 90	Ser	Lys	Glu	Ala	Ala 95	Asp	
40	Ile	Tyr	Thr	Pro 100	Phe	His	Tyr	Tyr	Leu 105	Ser	Thr	Ile	Ser	Phe 110	Gln	Ser	
	Lys	Asp	As n 115	Ser	Thr	Thr	Leu	Pro 120	Ser	Leu	Дар	Asp	Val 125	Ile	Tyr	Ser	
45	Val	Asp 130	His	Thr	Arg	Tyr	Leu 135	Leu	Ser	Glu	Glu	Pro 140	Lys	Ile	Pro	Thr	
	Glu 145	Leu	Val	Ser	Glu	As n 150	Gly	Thr	Lys	Trp	Arg 155	Leu	λrg	naƙ	Asn	Ser 160	

5	A sn	Phe	Ile	Leu	Asp 165	Leu	His	Asn	Ile	Tyr 170	Arg	Asn	Met	Val	Lys 175	Gln
	Phe	Ser	A sn	Lys 180	Thr	Ser	Glu	Phe	Asp 185	Gln	Phe	Asp	Leu	Phe 190	Ile	Ile
10	Leu	Ala	Ala 195	Tyr	Leu	Thr	Leu	Phe 200	Tyr	Thr	Leu	Cys	Сув 205	Leu	Phe	Asn
	yeb	Met 210	Arg	Lys	Ile	Gly	Ser 215	Lys	Phe	Trp	Leu	Ser 220	Phe	Ser	λla	Leu
16	Ser 225	As n	Ser	Ala	Cys	Ala 230	Leu	Tyr	Leu	Ser	Leu 235	Tyr	Thr	Thr	His	Ser 240
	Leu	Leu	Lys	Lys	Pro 245	Ala	ser	Leu	Leu	Ser 250	Leu	Val	Ile	Gly	Leu 255	Pro
20	Phe	Ile	Val	Val 260	Ile	Ile	Gly	Phe	Lys 265	His	Lys	Val	λrg	Leu 270	Ala	Ala
25	Phe	Ser	Leu 275	Gln	Lys	Phe	His	Arg 280	Ile	Ser	Ile	ДSP	Lys 285	Lys	Ile	Thr
<i>2</i> 3	Val	Ser 290		Ile	Ile	Tyr	Glu 295	λla	Met	Phe	Gln	Glu 300	Gly	Ala	Tyr	Leu
30	Ile 305	Arg	Asp	Tyr	Leu	Phe 310	Tyr	Ile	Ser	Ser	Phe 315	Ile	Gly	Сув	Ala	Ile 320
	Tyr	Ala	Arg	His	Leu 325	Pro	Gly	Leu	Val	Asn 330	Phe	Сув	Ile	Leu	Ser 335	Thr
35	Phe	Met	Leu	Val 340	Phe	λsр	Leu	Leu	Leu 345	Ser	Ala	Thr	Phe	Tyr 350	Ser	Ala
	Ile	Leu	Ser 355	Met	Lys	Leu	Glu	Ile 360	Asn	Ile	Ile	His	Arg 365		Thr	Val
40	Ile	Arg 370		Thr	Leu	Glu	Glu 375		Gly	Val	Val	Pro 380		Thr	Ala	Asp
	Ile 385		Туг	Lys	Asp	Glu 390		Ala	Ser	Glu	Pro 395	His	Phe	Leu	Arg	Ser 400
45	λsn	Val	λla	Ile	Ile 405		Gly	Lys	λla	Ser 410		Ile	Gly	Leu	Leu 415	Leu
	Leu	Ile	Asn	Leu 420	-	Val	Phe	Thr	Asp		Leu	Asn	Ala	Thr 430	Ile	Leu

5	Asn	Thr	Val 435	Tyr	Phe	Asp	Ser	Thr 440	Ile	Tyr	Ser	Leu	Pro 445	Asn	Phe	11
	Asn	Tyr 450	Lys	Хsр	Ile	Gly	Asn 455	Leu	Ser	A sn	Gln	Val 460	Ile	Ile	Ser	Val
10	Leu 465	Pro	Lys	Gln	Tyr	Tyr 470	Thr	Pro	Leu	Lys	Lys 475	Tyr	His	Gln	Ile	Glu 480
	Asp	Ser	Val	Leu	Leu 485	Ile	Île	As p	Ser	Val 490	Ser	Asn	Ala	Ile	Arg 495	Asp
15	Gln	Phe	Ile	Ser 500	Lys	Leu	Leu	Phe	Phe 505	Ala	Phe	Ala	Val	Ser 510	Ile	Ser
	Ile	As n	Val 515	Tyr	Leu	Leu	Asn	Ala 520	Ala	Lys	Ile	His	Thr 525	Gly	Tyr	Ket
20	Asn	Phe 530	Gln	Pro	Gln	Ser	Asn 535	Lys	Ile	Asp	Asp	Leu 540	Val	Val	Gln	Gln
	Lys 545	Ser	Ala	Thr	Ile	Glu 550	Phe	Ser	Glu	Thr	Arg 555		Net	Pro	Ala	Ser 560
25	Ser	Gly	Leu	Glu	Thr 565	Pro	Val	Thr	Ala	Lys 570	Хsр	Ile	Ile	Ile	Ser 575	Glu
	Glu	Ile	Gln	As n 580	Asn	Glu	Cys	Val	Tyr 585	Ala	Leu	Ser	Ser	Gln 590		Glu
30	Pro	Ile	Arg 595		Leu	Ser	Asn	Leu 600		Glu	Leu	Met	Glu 605	Lys	Glu	Gln
35	Leu	Lys 610		Met	Asn	Asn	Thr 615		Val	Ser	Asn	Leu 620		Val	λsn	Gly
•	Lys 625		Pro	Leu	Tyr	Ser 630		Glu	Lys	Lys	Leu 635	Glu	Asp	Thr	Thr	Arg 640
40	λla	Val	Leu	Val	λrg 645		Lys	Ala	Leu	Ser 650		Leu	Ala	Glu	Ser 655	Pro
	Ile	Leu	Val	Ser 660		Lys	Leu	Pro	Phe 665		A sn	Tyr	Asp	Tyr 670		Arg
45	Val	Phe	Gly 675		Cys	Сув	Glu	Asn 680		Ile	Gly	Tyr	Met 685		Ile	Pro
	Val	Gly 690		Ile	Gly	Pro	Leu 695		Ile	Asp	Gly	Thr 700		Tyr	His	Ile

5	Pro 705	Ket	Ala	Thr	Thr	Glu 710	Gly	Сув	Leu	Val	Ala 715	Ser	Ala	Met	Arg	Gly 720
	Cys	Lys	Ala	Ile	Asn 725	Ala	Gly	Gly	Gly	Ala 730	Thr	Thr	Val	Leu	Thr 735	Lys
10	Хsр	Gly	Met	Thr 740	Arg	Gly	Pro	Val	Val 745	Arg	Phe	Pro	Thr	Leu 750	Ile	Arg
15	Ser	Gly	Ala 755	Cys	Lys	Ile	Trp	Leu 760	Asp	Ser	Glu	Glu	Gly 765	Gln	Asn	Ser
:	Ile	Lys 770	Lys	Ala	Phe	As n	Ser 775	Thr	Ser	Arg	Phe	Ala 780	Arg	Leu	Gln	His
20	Ile 785	Gln	Thr	Cys	Leu	Ala 790	Gly	Asp	Leu	Leu	Phe 795	Ket	Arg	Phe	Arg	Thr 800
	Thr	Thr	Gly	λs p	Ala 805	Met	Gly	Het	Asn	Met 810	Ile	Ser	Lys	Gly	Val 815	Glu
25	Tyr	Ser	Leu	Lys 820	Gln	Met	Val	Glu	Glu 825	Tyr	Gly	Trp	Glu	Asp 830	Met	Glu
	Val	Val	Ser 835	Val	Ser	Gly	Asn	Tyr 840	Cys	Thr	Хsр	Lys	Lys 845	Pro	Ala	Ala
30	Ile	Asn 850	Trp	Ile	Glu	Gly	Arg 855	Gly	Lys	Ser	Val	Val 860	Ala	Glu	Ala	Thr
	11e 865	Pro	Gly	Asp	Val	Val 870	_	ser	Val	Leu	Lys 875	Ser	Asp	Val	Ser	Ala 880
35	Leu	Val	Glu	Leu	As n 885	Ile	Ser	Lys		Leu 890		Gly	Ser	Ala	Met 895	Ala
	Gly	Ser	Val	Gly 900	_	Phe	A sn	Ala	His 905	Ala	Ala	Asn	Leu	Val 910	Thr	Ala
40	Leu	Phe	Leu 915	Ala	Leu	Gly	Gln	Asp 920	Pro	Ala	Gln	Asn	Val 925		Ser	Ser
	Asn	Cys 930	Ile	Thr	Leu	Met	Lys 935		Val	A sp	Gly	Asp 940	Leu	λrg	Ile	Ser
45 .	Val 945		Met	Pro	Ser	Ile 950		Val	Gly	Thr	Ile 955		Gly	Gly	Thr	Val 960
	Leu	Glu	Pro	Gln	Gly 965		Net	Leu	λsp	Leu 970		Gly	Val	Arg	Gly 975	Pro

His Pro Thr Glu Pro Gly Ala Asn Ala Arg Gln Leu Ala Arg Ile Ile 980 985 990

Ala Cys Ala Val Leu Ala Gly Glu Leu Ser Leu Cys Ser Ala Leu Ala 995 1000 1005

Ala Gly His Leu Val Gln Ser His Met Thr His Asn Arg Lys Thr Asn 1010 1015 1020

Lys Ala Asn Glu Leu Pro Gln Pro Ser Asn Lys Gly Pro Pro Cys Lys 1025 1030 1035 1040

Thr Ser Ala Leu Leu 1045

15

5

10

Claims

20

30

40

- 1. A method of increasing sterol accumulation in a plant comprising increasing the copy number of a structural gene encoding a polypeptide having HMG-CoA reductase activity.
- 2. The method according to claim 1 wherein the copy number is increased by transforming said plant with a recombinant DNA molecule comprising a vector operatively linked to an exogenous DNA segment that encodes a polypeptide having HMG-CoA reductase activity, and a promoter suitable for driving the expression of said polypeptide in said plant.
 - 3. A method of increasing pest resistance of a plant comprising increasing the copy number of a structural gene encoding a polypeptide having HMG-CoA reductase activity.
 - 4. The method according to claim 1, 2 or 3 wherein said encoded polypeptide is an intact HMG-CoA reductase enzyme.
- 5. The method according to claim 1, 2 or 3 wherein said encoded polypeptide is an active, truncated HMG-CoA reductase enzyme.
 - 6. The method according to claim 1, 2 or 3 wherein said structural gene encodes an active, truncated HMG-CoA reductase enzyme comprising the catalytic and at least a portion of the linker region but is free from the membrane binding region of a HMG-CoA reductase enzyme.
 - 7. The method according to claim 1, 2 or 3 wherein said structural gene encodes an active, truncated HMG-CoA reductase enzyme comprising the catalytic and at least a portion of the linker region but is free from the membrane binding region of hamster HMG-CoA reductase enzyme.
 - 8. A transformed plant having an increased copy number of a structural gene that encodes a polypeptide having HMG-CoA reductase activity.
- 9. A transformed plant according to claim 8 wherein said encoded polypeptide is an intact HMG-CoA reductase enzyme.
 - 10. A transformed plant according to claim 8 wherein said encoded polypeptide is an active, truncated HMG-CoA reductase enzyme.
- 11. A transformed plant according to claim 8 wherein said structural gen encodes an active, truncated HMG-CoA reductas enzyme comprising the catalytic and at least a portion of the linker region but is fre from the membrane binding region of a HMG-CoA reductase enzyme.

- 12. A transformed plant according to claim 8 wherein said tructural gine incodes an active, truncated HMG-CoA reductase enzyme comprising the catalytic and at least a portion of the linker region but is free from the membrane binding region of hamster HMG-CoA reductase in nzyme.
- 13. A method of increasing sterol accumulation in a plant comprising transforming said plant with a recombinant DNA molecule comprising a vector operatively linked to an exogenous DNA segment that encodes the catalytic region and at least a portion of the linker region but is free from the membrane binding region of hamster HMG-CoA reductase, and a promoter suitable for driving the expression of said reductase in said plant.
 - 14. A method according to claim 13 wherein the sterol which accumulates in the transformed plant is cycloar-tenol.
 - 15. A method of increasing pest resistance of a plant comprising transforming said plant with a recombinant DNA molecule comprising a vector operatively linked to an exogenous DNA segment that encodes the catalytic region and at least a portion of the linker region but is free from the membrane binding region of hamster HMG-CoA reductase, and a promoter suitable for driving the expression of said reductase in said plant.
- 20 16. The method according to claim 1, 2, 3, 4, 5, 6, 7, 13, 14 or 15 wherein said plant is tobacco of the strain N. tabacum.
 - 17. A transformed plant according to claim 8, 9, 10, 11 or 12 wherein said plant is tobacco of the strain N. tabacum.
 - 18. The method according to claim 13, 14 or 15 wherein the promoter is a promoter whose regulatory function is substantially unaffected by the level of sterol in said plant.
 - 19. The method according to claim 13, 14 or 15 wherein the promoter is the CaMV 35S promoter.
 - 20. A plant seed having ATCC accession No. 40904.
 - 21. A transformed plant that over accumulates sterols relative to a native, untransformed plant of the same strain wherein said over accumulation is conferred by an increased copy number of a gene that encodes a polypeptide having HMG-CoA reductase activity.
 - 22. A plant seed capable of germinating into a plant wherein said plant over accumulates sterol relative to a native, untransformed plant of the same strain.
- 23. A plant seed capable of germinating into a plant wherein said plant over accumulates sterol relative to a native, untransformed plant of the same strain and mutants, recombinants, genetically engineered derivatives thereof and hybrids derived therefrom.
 - 24. A plant seed derived from deposited seed ATCC accession No. 40904, and mutants, recombinants, genetically engineered derivatives thereof and hybrids derived therefrom.
 - 25. The use of a method for increasing sterol accumulation in a plant according to claim 1 to increase the pest resistance of said plant.
- 26. The use of a method for increasing sterol accumulation in a plant according to claim 13 to increase the pest resistance of said plant.

10

15

25

30

35

FIGURE 1

9	120	175	223	271	318	367	415
TGTATGTCTT GTCTTTCTCC TAAGGGGGGGT AGGCTCATTG ATAACTCATG TCCTCACTT	GGTTCGCAAC	CGA Arg	GTT Val 20	ATG	AAA Lys	ACA Thr	CGT
CCTC	GTTC	TCA	GAA Glu	AAC Asn 35	CCA	ATA Ile	TTA
TG 1	SGA (TTG	TGG	ATG	ТGС СУВ 50	ACC	CAG AAC Gln Asn
CTCA	GGACCTTCGA	ATG Met	CCC Pro	TCC	GAG Glu	CTC Leu 65	
ATAA	GGAC	ACA	CAT	ATG Met	TAC	ATC Ile	TTC Phe
TTG	ACC	GCT	TCC Ser 15	ATG	AAT	ATC Ile	CAG Gln
CICA	GAAGAAGACC	CCGAGTGGCT	GCC	TGT Cys 30	TGG	ATC Ile	TTC
AGG			GTG	ATC Ile	GGT G1Y 45	GAC	TAC
GCGT	TGGTTTGAGT	GATCCAGGGA	TTT Phe	ACC	TGT Cys	AGT Ser 60	ATT Ile
AGGG	GTTT	TCCA	CTC	CTT	ATC Ile	AGC	TAC TYT
C TA			GGC G1Y 10	ACA	AAG Lys	TTG	CTG
TCTC	TGGAATTATT	GACTTGTGAG	CAT	GTG Val 25	AAC	GTA	ATC Ile
TCT	GGAA	ACTI	ATG	ACG	AAC Asn 40	GAT	GCC
TT G			CGT	666 61y	66C 61y	GAG Glu 55	ATC Ile
TGTC	GCACTCCTTT	TTAAACAATA	TTC	GTG Val	ACT	GAG Glu	TGC
TGTA	GCAC	TTAA	CTT Leu 5	ATT Ile	TTC	rrr Phe	CGG

			•		2	re 2-2	Figur							· ·		
751	TTT Phe	TGC Cys 195	TGC Cys	ATG	ATC Ile	GAA Glu	CTT Leu 190	CAG Gln	CGT	GTG	GGG Gly	TCA Ser 185	ATG	ACC	GGC	GTT Val
703	GGA G1y 180	ATT Ile	GTA	CFT	TGT Cys	GAA G1u 175	GTG Val	CFT	GCT	GAT	CTT Leu 170	ACC	TTC	ACA	CCC	66C 61Y 165
655	CTG	ATT Ile	GCA	ATG	GGA G1y 160	CGC	GCT Ala	ATA Ile	AAT	GAA G1u 155	AGG	GTA	GAA	GAT	CAG Gln 150	TCT S r
607	AAC	Ser	AGT	CTA Leu 145	GCC	TTT Phe	AAG Lys	GCA	CTA Leu 140	GCA	AGT	GCG	AGA Arg	TCT Ser 135	CTT	GAC Asp
559	ATT	TTG	CTT Leu 130	CTG	TTC	TTT	CCC Pro	TTG Leu 125	GCT	GAA	AAT	TTA	GGC Gly 120	ACG Thr	CTG	GAA
511	AAA Lys	GAC Asp 115	TTA	TTC	CAC	ATT Ile	GTC Val 110	GTC Val	ACA	AGT	TTT	GTC Val 105	TTT Phe	AGT Ser	TCA	TTC Phe
463	ATT Ile 100		TTC ACA Phe Thr	CTG	660 617	GCT Ala 95	ATT Ile	GGT G1y	TTA Leu	ATT Ile	TAT TYr 90	AAG Lys	TCG	666 61y	CIT	CAG Gln 85

799	847	895	943	991	103	108
TTC Phe	GAG Glu	GAA	ATG Met 260	GAT	GGA Gly	TGG. Trp
TTT Phe	CGA	GAA Glu	ATT Ile	GCT Ala 275	TTG	CTC
ACA Thr 210	AGT	TTG	ATG	ATA Ile	TCC Ser 290	TCT
ATG	GAA Glu 225	GTT Val	AAG Lys	TGG	GTC Val	GTT Val 305
TTC Phe	CGG Arg	CGA Arg 240	GTC	CGA	AAA Lys	AGT
GTG Val	TCT Ser	GCC	AGG Arg 255	AGT	TCT Ser	CCA
TTC Phe	Crr	TTT Phe	CAA Gln	CAC His 270	CAT	GAA Glu
TAC TYF 205	GAG Glu	CAT	Acc	GCT	GAA G1u 285	ATT Ile
AAC	CTT Leu 220	AGC	GTA	CAT	ACA	AGA Arg 300
GCC	GTC	CTT Leu 235	CCT	GTT Val	ACA	AAG Lys
CTT	CTG	CAG Gln	AAC Asn 250	CIT	AGC	TCC
GTG	TCC	TGG Trp	CCA	GTT Val 265	AAT	GTG Val
TCT Ser 200	GTG Val	ATT Ile	AAA Lys	TTG	CAG Gln 280	GAT Asp
ATG	TGT Cys 215	CCA	AAT	GGT Gly	CCT	GAA Glu 295
TGC Cys	GCG	CGT Arg 230	GAG	TTA	TCC	GAT
66c 61y	CCA	GGT	GAA Glu 245	TCT	CCT	CTG
•						

1135	1183	1231	1279	1327	1375	1423
GTT Val	GAA G1u 340	TCT Ser	GAG Glu	GAG Glu	GTG Val	TCT Ser 420
GTG Val	TTT Phe	ACG Thr 355	CGG	GAG Glu	TTA	GCC
CAA Gln	TTC	ATC Ile	AGA Arg 370	GAG Glu	CCA	66C 61y
GAA Glu	ATT	CCT	TGT Cys	GTT Val 385	AAA Lys	CTT
ATT Ile 320	TAC Tyr	AAT	TGT Cys	TCG	ATA I1e 400	GTG
GAC	AAG Lys 335	AAA Lys	AAC	TCA	GTT Val	TTT Phe 415
ATG	GTC	TTA Leu 350	GAC	CTT	GAG Glu	ACA
AGC	GCT	TCT Ser	CCA Pro 365	AAG Lys	GTT Val	GCT
ATC Ile	TTG	CTG	GCT	GAG G1u 380	AAA Lys	AGA
ATG Met 315	CTG	ACA	AAA Lys	AGC	AGA Arg 395	AGC
AAG Lys	TTT Phe 330	TCC	AAG	AGG Arg	GAT	GCA Ala 410
TCC	GCT	GAG Glu 345	CCA	AGA Arg	CAA Gln	AGT
CTC	TTA	ACA	ACC Thr 360	GTG Val	AGC	GAG Glu
TAT Tyr	AGC	GAG Glu	GTG	CTT Leu 375	GTG Val	ACT Thr
TTT Phe 310	CTG	GCA	GTC	CTG	666 61y 390	GAA
CAG Gln	ACC Thr 325	CAA	CCT	CCT	CCT	GTG Val 405

Figure 2-4

1471	1519	1567	1615	1663	1711	1759
GAA Glu	GAG Glu	CAG Gln	ATG	ACA Thr 500	TAT Tyr	TAT Tyr
ATT Ile 435	CTG	ATC Ile	TTA	TCC	GAT Asp 515	GGA G1y
GAA	ATA Ile 450	ATC	Acc Thr	CTC	AGA Arg	ATC Ile 530
CTT	CAG Gln	GAG Glu 465	GAA	CTC	TAC Tyr	GTG
GAG Glu	CTG	GCA	TTG Leu 480	CAG Gln	CCT	AAT
CAG Gln	TGT Cys	GAT Asp	AAA Lys	CGG Arg 495	CTG	GAG
ACA Thr 430	GAA Glu	AGC	TAC Tyr	CGC	TAC Tyr 510	TGT Cys
AGG Arg	GAA Glu 445	CTT	GCC	ATT Ile	CAG Gln	TGC Cys
GCG	AAT Asn	TTC Phe 460	CCA	TCT Ser	CTG	GCT
GCA	CCT	AAG Lys	ATC Ile 475	GTA	TCT	GGA Gly
GTG	CGG	GCA	CAC His	GGT Gly 490	TCT	ATG
CCA Pro 425	CCT	GGT Gly	AAG Lys	CGT	CCT Pro 505	GTG Val
CCT	GAG Glu 440	AAA Lys	GCC	GAA	GAG Glu	CTG Leu
AGC Ser	AGT Ser	GAG Glu 455	AAT	CAT	CCA	TCC
ACC Thr	CCC	GCC	GTC Val 470	ACT	CTT	TAT Tyr
666 61y	CTC	AGT	TTG	GAA Glu 485	AAG Lys	AAT

Figure 2-

	1807	1855	1903	1951	1999	2047	2095		
	AAA Lys	AGC	AGC Ser 580	CCT	GAA	GCA Ala	ATC Ile		
	GGT Gly	GCC	AGC	CTT Leu 595	Pro	TTT Phe	TAC Tyr		
	GAT	GTG Val	GCC	CGT	ACA Thr 610	AGA Arg	CTG	•	
	CTG Leu 545	CTG	GGT	GTG	GAA	AGC Ser 625	AAC		
	TGC	TGT Cys 560	GGA	GTG	CTT	ACT	CGC Arg 640	9	
	CTG	66c 61y	GGT G1y 575	Pro	TGG	AGC	666 61y	e 2-6	
	Pro	GAA Glu	CET	GGC G1y 590	GCC	GAT	GCA	Figure	
	666 61y	ACG	GGT	CGG	AAG Lys 605	TTC	ATG	<u> </u>	
	GCA Ala 540	ACA	ATA Ile	Acc	GTG	GCC Ala 620	ACC		
	GTA	GCA Ala 555	GCA	ATG	GAA	GAC	GTG Val 635		
	GGA Gly	ATG	AGG Arg 570	666 G1y	GCA	AAG	CAT		
	GTC	CCA	TGC	GAT Asp 585	TCT	ATA	CTT		
-	CCT	GTT	GGC	GCA	GAT Asp 600	GTG	AAG Lys		
	ATC Ile 535	CAG Gln	AGA	CTT	TGT	GCG Ala 615	CAG Gln		
	CCC	TAC TYF 550	AAC	GTC	GCT	TTT	CTA Leu 630	•	
•	ATG	GAG	ACC Thr 565	Arg	CGT	666 61y	CGT		
	- , -	- -	•	,	•				
				54					

2143	2191	2239	2287	2335	2383	2431
TCC Ser 660	GAA Glu	CCT	GAA Glu	ACG	GCC Ala 740	GTC
ATT Ile	CCT Pro 675	AAA Lys	TGT Cys	ACT Thr	TCT Ser	ATC 11e 755
ATG	TTT	AAG Lys 690	GTG Val	ACA	GGT	AAC
AAC	TTC Phe	GAC	GTT Val 705	AAG Lys	GTG Val	GCA Ala
ATG	GAG Glu	ACT Thr	ACA Thr	TTA Leu 720	CIT	GCA Ala
GGG G1y 655	CAG Gln	TGC	AAG Lys	GTA Val	AAT Asn 735	CAT
ATG Met	CTT Leu 670	TAC Tyr	GGA Gly	GAA Glu	AAG Lys	GCC Ala 750
GCC	AAG Lys	AAC Asn 685	AGA Arg	AGA Arg	AAC	AAT
GAT Asp	CTG	GGT	GGA G1y 700	GTG Val	ATT	TAC
666 61 y	CTT	AGT	GAG Glu	GTG Val 715	AAC Asn	GGC Gly
ACA Thr 650	GCA Ala	GTT Val	ATC	AAG Lys	GTA Val 730	GGA
AAG Lys	aaa Lys 665	GCA	TGG Trp	GCC	GAC Asp	ATA Ile 745
TCC	GAG Glu	CTG Leu 680	AAC	CCA	ATT Ile	AGC
CAG Gln	ACT	ATT Ile	ATA Ile 695	ATT	ATG Met	666 61y
TTC	66c 61y	CAG Gln	GCC Ala	GTT Val 710	GCT	GCT
CGT Arg 645	AAG Lys	ATG	GCC	GCT	GAA Glu 725	ATG

Figure

55

2479	2527	2575	2623	2671	2719	2767
666 G1y	GAA Glu	GTG	CTA Leu 820	CAA Gln	TTG	CAT . His
GTG	AAT	ACT	ATG	CGG Arg 835	TCC	GTT Val
AAT Asn 770	Acg Thr	GGA G17	CAG Gln	GCA	TTG Leu 850	ATG
CAG Gln	CCC Pro 785	ATA Ile	CTG	AAT	GAG Glu	CAC His 865
GCA Ala	GGT	GAG G1u 800	TGT Cys	GAA Glu	666 61y	AGT
GCA Ala	AGT	ATA Ile	GCC Ala 815	GGA G1y	GCT	AGA
GAT	GCA	TCT Ser	CAG Gln	CCT Pro 830	ATG	GTT
CAG Gln 765	GAA	CCA	CAG Gln	AAT	GTA Val 845	CTT
66c 61y	ATG Met 780	ATG	CCA	GAC	ACT	CAT His 860
TGT	TTA	ACC Thr 795	CTA	AAA Lys	GGT	GGA Gly
GCA	ACT	TGC	CTC Leu 810	TGC Cys	TGT Cys	GCA
ATT Ile	ATT Ile	AGC	AAC	GCG Ala 825	GTG Val	GCA Ala
TAC Tyr 760	TGT Cys	ATC Ile	ACC	GGA Gly	ATT Ile 840	TTG
ATC Ile	AAC Asn 775	TAT Tyr	666 61y	CAA	CGA	GCA Ala 855
GCT	TCA	TTG Leu 790	GGT	GTT Val	GCC	GCA
ACT	AGT	GAC	GGT G1Y 805	GGT	CTT	ATG

staure 2-8

2815	2864	2924	2984	3044	3104	3164	3224	3284	3344	3404	3464
TCG AAG ATA AAT TTA CAA GAT CTG CAA GGA ACG TGC ACC AAG Ser Lys Ile Asn Leu Gln Asp Leu Gln Gly Thr Cys Thr Lys 875		ACTAACATGA AATCTGTGAA TTAAAAATCT CAATGCAGTG TCTTGTGGAA	CGTGATCAGT GAGACGCCTG CTTGGTTTCT GGCTCTTTCA GAGACGTCTG	CTCGGAGACT CCTCAGATCT GGAAACAGTG TGGTCCTTCC CATGCTGTAT	TCTCATATGG ATGTTGTGCT CTGAGCACCA CAGATGTGAT CTGCAGCTCG	GATGGAGTTC ATGGTGATCA GTGTGAGACT GGCCTCTCCC AGCAGGTTAA	TTAAATTATA CTGTAGCTGA CAGTACTTCT GATTTTATAT TTATTTAGTC	AACTITGCAA TCTAAGTITA TTTTTGTAA CCTAATAATT CATTTGGTGC	ATTTTGGGG GTAAACAATA TTATTCTTCA GAAGGGGACC TACTTCTTCA	TACTTTTATT CTCAAACTAC AGAACAATGT GCTAAGCAGT GCTAAATTGT	TCTCATGAAG AAAACAGTCA CTGCATTTAT CTCTGTAGGC CTTTTTTCAG. AGAGGCCTTG
TGC Cys	TTGG	GTG. 1	TCA (TCC	GAT (7 222	TAT	ATT	Acc	AGT	CAG.
ACG	GGCA	TGCA	TCTT	TCCT	ATGT	CTCT	TTTA	AATA	ອອອອ	AAGC	TTTI
GGA G1y 880	Ö ∀	CAA	၁၅၅	TGG	CAG	၁၅၅	GAT	CCI	GAA	GCT	CTT
CAA Gln	MAAC	ATCT	PTCT	AGTG	ACCA	SACT	rrcr	STAA	ITCA	ATGT	AGGC
CTG	\CTG	MAA	rggT	AAAC	SAGC	3TGA(STAC	PPT	ATTC	AACA	CTGT
GAT Asp	ဥ	TT	CLIO	799 J	CTC	\ GTC	CAC	TT	TT.	AG.	r CT
CAA Gln	TAT	TGA	CCTO	ATC	TGC	SATC	CTG!	TTT	PAAT	CTAC	rttai
TTA Leu 875	GCT TGAGCAGCCT GACAGTATTG AACTGAAACA CGGGCATTGG	ATCTG	AGACO	CTCAG	TGTT	TGGT	TGTAC	CTAAC	TAAAC	TCAA	TGCA
AAT Asn	CT	SA A	e E	O H	3G A	IC A	ra c	AA T	9	rr c	CA C
ATA Ile	CAGO	CAT	TCA	AGA	TAT	SAGT	TTA	rtgc	rtgg	rtta.	CAGT
AAG Lys	TGAG	CTA	GTG	TCGC	rctc	BATG	FTAA	ACT	ATT	FACT	AAAA
TCG	GCT										AAG 1
AGA Arg 870	TCA	GTTCTCAAGG	GATGAATGAA	AGGTCCTTTG	TCTGAAAAGA	TTTCTGAAAT	AAATGGAGTT	TGAGTTGTAG	TGGTCTATTG	TGGGAAGAAT	ATG
AAC	AAG Lys 885	GTTC	GATG	AGG1	TCTG	TTT	AAA1	TGAC	TGG1	TGGC	TCT

Figure

430	CATTTTTTT	TAGCCAGTAA	TGTGACTTTT	TTTGTATGTG AAGTTTCAGA TTGCTCCTCT TGTGACTTTT TAGCCAGTAA CATTTTATTT	AAGTTTCAGA	TTTGTATGTG
424	TGACTTTGCT	TCAGTATTAT TGTGGAAGAT TGACTTTGCT	TCAGTATTAT	TGATTGTGTG	GCATCATGGG AGCCTCTTAG	GCATCATGGG
418	GAGTGCAGCG	GACTCTGAAA GACATTCCAA GAGTGCAGCG	GACTCTGAAA	GTAGAAGATG	GACATCTCAT	TTGGGAAGCT
412	GAGTTCAGTC	TGTATTCTAT CTAATGCTTC GAGTTCAGTC	TGTATTCTAT	CTCCTTATTT	TAATAAAGAG	GTATAAATAA
406	TACCAGTTTT	TCTTAATTT TTTTTAATG TACCAGTTTT	TCTTAATTTT	AGTTGTTGAA	GGGTCAGCAG	CTTCCTCAGG
400	AAGCTCTTAG	CTCCTTTGAT GGACCCATAA AAGCTCTTAG	CTCCTTTGAT	CATTTACGGG	GTGACTGAAT	CAGGAGCTTG
394	GTTCTGTGGC	GCCCTGGAGC TGTGTGCCTT GTTCTGTGGC	GCCCTGGAGC	CACATGAATG	TGATGGAGGC	TCAGAGCCAA
388	AAGTCAGCTT	TGCCAAGCCT AATGAAGGGA AAGTCAGCTT	TGCCAAGCCT	CCTGCTTGCT	TCCAGGAAAC	ATTAGCGTTG
382	GACAGTGCTC	CTCTAGCTTG GGCCAGAGAA GACAGTGCTC	CTCTAGCTTG	TGATAAAATA	AAAAGGACTC AAATTTACAC	AAAAGGACTC
376	TTTAAGTAAT	CTAGGAGTTT ATTCAAAGTG TTTAAGTAAT	CTAGGAGTTT	GTGTCTTATG	TTGTAATAAA	TCTGTATATG
370	AACTATCAAA	TTTTCGGGTA	AGTTCTAGAT	TATTTAGCTG AGTTCTAGAT TTTTCGGGTA AACTATCAAA	CATTTTAACT	TCTTTAAAGA
364	AAGCCAATTT	GAAAGAAAA CCATTTCTCT AAGCCAATTT	GAAAGAAAA	ACACAGTTTT	GAGTGTGGGA	GGACCTCTCA
358	TGAGCAAGTC	GTGTTACTTA GACAAGAGTA TGAGCAAGTC	GTGTTACTTA	AGAGCTCTTG	TAAAGATATC	CGCTCTGCAC
352	GAAAGTGCCA	GTCTTAGTGT CAGGCCTTAG GAAAGTGCCA	GTCTTAGTGT		TCTAGATTTT TGCCAGCTAG GCTACTGCAT	TCTAGATTTT

Figure 2-10

	ACAC	GATAGCCAAA	ATAAAGTTCA	GGAAGGGAAA	AGAGTTA AGA
TCAGCTGGAG	TGTCTTGGTA	TCAGCCACAT	ATCTATAATC	ATTGGTTCAG	AGAGGGTTTG
CCTTACGCTT	CATTGATCTT	TGTATTGTTT	TGCTGGCCAG	GCAGCATTGG	<i>PTCTAACTTT</i>
CCATTACACT	TCATCTCT	GGCCATCCAA	GTCCTGCTGG		STCTGGCAGA
AGCTAGCAAA	GAGACCCAGA	CCCTAAGCCC	GAAGGATTAA	TTTTTAAAAT	AGCGGTGGCT
AACAGGTGTA	AGTTAACATT	TATGAAAGGA	TTGAGTAAAT		LTATAGAATA
ATACATTTTG	ACTAAATTGT	TTGTACAATT	AACTCATGTT	TCTTGCTAAA	ACCAATGTCA
GGTGACTGTA	TATTCATGCT	AAGTATTGAG	TGGCAGTGAA	GTCATGGAAG	ACCTGAGCTT
	GGTGACTGTA ATACATTTTG AACAGGTGTA CCATTACACT CCATTACGCTT TCAGCTGGAG	TATTCATGCT GGTGACTGTA ACTAAATTGT ATACATTTTG AGTTAACATT AACAGGTGTA GAGACCCAGA AGCTAGCAAA TCATCTCTCT CCATTACACT CATTGATCTT CCTTACGCTT TGTCTTGGTA TCAGCTGGAG ACAC	TTGTACAATT ACTAAATTGT ATACATTTTG TATGAAAGGA AGTTAACATT AACAGGTGTA CCCTAAGCCC GAGACCCAGA AGCTAGCAAA GGCCATCCAA TCATCTCT CCATTACACT TGTATTGTTT CATTGATCTT CCTTACGCTG GATAGCCAAA ACAC	TGGCAGTGAA AAGTATTGAG TATTCATGCT GGTGACTGTA AACTCATGTT TTGTACAATT ACTAAATTGT ATACATTTTG TTGAGTAAAT TATGAAAGGA AGTTAACATT AACAGGTGTA GAAGGATTAA CCCTAAGCC GAGACCCAGA AGCTAGCAAA GTCCTGCTGG GGCCATCCAA TCATCTCTCT CCATTACACT TGCTGGCCAG TGTATTGTTT CATTGATCTT CCTTACGCTT ATCAAAGTTCA GATAGCCAAA ACAC	GTCATGGAAG TGGCAGTGAA AAGTATTGAG TATTCATGCT TCTTGCTAAA AACTCATGTT TTGTACAATT ACTAAATTGT CTTTTTTAAAAT GAAGGATTAA CCCTAAGGA AGTTAACATT GTGGTAAACT GTCCTGCTGG GGCCATCCAA TCATCTCT GCAGCATTGG TGCTGGCCAG TGTATTGTTT CATTGATCTT ATTGGTTCAG ATCTATAATC TCAGCCACA TGTCTTGGTA GGAAGGGAAA ATAAAGTTCA GATAGCCAAA ACAC

Figure

9	120	168	216	264	312	360	408
CCAATTCTAG TCAGGAAAAG ACTAAGGGCT	GGAACATAGT GTATCATTGT CTAATTGTTG ATACAAGTA GATAAATACA TAAAACAAGC	GCC	TTT	TAC	CCA Pro	AGA Arg 80	AGT
CTA	AAAA	ATT Ile 15	CTT	TAT Tyr	GCT	TAC	GCT Ala 95
AG A	T 43	CCA Pro	ATA Ile 30	CAG Gln	ACT	TAC	GAA Glu
GAAA	AATA	GCA AAG Ale Lys	ATA Ile	ATT Ile 45	GAA Glu	CAT His	ĆAT His
TCAG	GATA	GCA	CAT	GTC	TTT Phe 60	TCC Ser	GCG
TAG	GTA	ATG	ATT Ile	TCC Ser	GIT	TGT Cys 75	Acc
ATTC	CAAA	CAG Gln 10	CCA Pro	CTA	AGT	GAA Glu	ATC Ile 90
	ATA	AAA Lys	CGA Arg 25	TAT	AAT Asn	CAA Gln	TCA
TATTITIC ITCITICIAC	GITG	GGA CTG AAA Gly Leu Lys	AAA Lys	GCT Ala 40	TCA	TTT Phe	GTA
CFFI	AATT	GGA Gly	GCG	TTC	GAT Asp 55	CTA	TGG Trp
S E	E E	AAG Lys	TCG	GCA	CTA	ACT Thr 70	GGT Gly
TITI	ATT	TTC Phe 5	TTT	TCC	CAA Gln	AAC	GAT Asp 85
APT	TAT	CTA	AGA Arg 20	ATA Ile	TGG	TCC	CTA
	GT G	CCG	TCA	ATC Ile 35	GGT Gly	GAC	TCT
TTTATTAACT	CATA	CCG	GTT Val	CTA	AAT Asn 50	AAA Lys	TCC
TTL	GGAA	ATG Met	TAT	TCT	TTC Phe	AAT Asn 65	GAT

•	456	504	552	009	648	969	744
	AAT Asn	TTT	TCC	GAC Asp 160	GAT	ATT	TTC . Phe
	TTC	GTT	GTT Val	AGT	TAC Tyr 175	CIT	CTC
	AAC Asn 110	ACG	AGT	AGA Arg	CTC	GTC Val 190	66c 61y
•	CTG	AAC ABN 125	CTC	TTA	TCT Ser	GAC	TTC Phe 205
	AAC	GCT	GAT ASP 140	AGG Arg	TAT Tyr	TTT	ATA Ile
	TTA	CTA	GAA	TGG Trp 155	GCA	CCG Pro	ACC
,	CTA	GAA	CAA Gln	AAA Lys	TTA Leu 170	GAC	TAC
	TAT Tyr 105	CCA	CTG	Acgura	Acg	GCA Ala 185	TTC
	TAC	ATT Ile 120	ATT Ile	GGA Gly	AAG Lys	CAA Gln	ATG Met 200
	CAT	TCC	TAT Tyr 135	GAT	GTA	Acc	ATG Met
	CAC His	GAC Asp	AAA Lys	ACT Thr 150	GAC Asp	GTA	CTA
	CCA	ACT	ACA	TCT Ser	TTC Phe 165	AAT	TAC Tyr
	GCC Ala 100	GAA Glu	AAT Asn	TCT	CIT	GAA Glu 180	GCC
	CCA	AAT Asn 115	GAT	ATT	AGT	TCA	ACT Thr 195
	TTA	CCT	AAA Lys 130	GAA	AAA Lys	TTT	GTT Val
	GAG Glu	AGT	GAG	AAA Lys 145	AGA	GTA	ATG

792	840	888	936	984	1032	1080
ACA	CAA Gln 240	TTG	GCC	ATT Ile	CGT	TCT Ser 320
rer Ser	ACC	GGT G1Y 255	ATT Ile	AGG	GGT Gly	TGC
	GTC	GAA	AAG Lyb 270	AAA Lys	GGT Gly	GGA G1y
AGC GCC Ser Ala	TAT Tyr	TTT Phe	ATC Ile	rcr Ser 285	GAG Glu	ATC Ile
TTG Leu 220	TTG	Crr	AAA	TTA	GAA G1u 300	TTT
TGG	GCA A18 235	ACT	CAC H18	GGT	AGC	GCC Ala 315
TTT	TTA	TTA Leu 250	AAG Lyb	GTC	GTG Val	TTT
AAT	TTC	GCA	TTC Phe 265	AGA	TCC	ATT Ile
TCA	CIT	TCC	GGT	GAA Glu 280	GAA Glu	TGT Cys
666 61y 215	TCA	GTT	GTT	TTT	TTT Phe 295	CTT
ACC	TCA Ser 230	GAA	GTT	AAA	GTT Val	TTG Leu 310
AAG	GCA Ala	AAA Lys 245	GIT	GAG Glu	ATC Ile	CAT
AGG	TCT	66c 61y	GTA Val 260	CTG	GAA Glu	GAC
ATG	AAT	CTA	ATT	GCC Ala 275	GAT	CAA
GAC ASP 1	GTC	ATT Ile	TTC	TAT Tyr	ACC Thr 290	ATT Ile
AAT (Asn)	3TG (val val val	rgr cys	CCT	CAG Gln	ACT	TTG Leu 305

1128	1176	1224	1272	1320	1368	1416
TCA	TCT	ACT	GCA	AAT Asn 400	TTT Phe	GCC
TTA Leu 335	TAT Tyr	rer	ACA	TTA	TTG Leu 415	gat Asp
ATA Ile	TTT Phe 350	AGA TCT Arg Ser	TCT	TTC	Cic	AAT Asn 430
TTC TGC ATA Phe Cys Ile	ACA	CAC H16 365	CCA	TCT Ser	ATA Ile	GTC Val
TTC Phe	CCT	ATC Ile	GTT Val 380	TCT Ser	GTC	TGG
AAC	ACT	GTT	GTT	GTA Val 395	TCT Ser	AAT Asn
ACA Thr 330	TTA Leu	AAT	GGT Gly	TCC	CTC Leu 410	GCA Ala
TTG	ATT Ile 345	ATG	GAC	AAA Lys	aaa Lys	GGT G1y 425
ACT	TTG	GAA Glu 360	GAA	AAG Lyb	ATG Met	rrr Phe
AAG Lys	GAA Glu	CTG Lea	GAA Glu 375	GAA	ATC Ile	AAC
TTG	TTT Phe	AGA	TTA	GCA Ala 390	ATT Ile	tat Tyf
CAA G1n 325	ATT TTT Ile Phe	CTT	ACA	AAA Lys	GTC Val 405	TTT
CAC His	CTA Leu 340	GCG	CAA	TCT Ser	GTT Val	AAC Asn 420
GCT	ATC Ile	TTA Leu 355	AAG Lys	ATT Ile	GTG Val	ATC Ile
TAT Tyr	rrr Phe	ATC Ile	ATC Ile 370	ATC Ile	AGT	TTC Phe
ATG	GCA	GCT	AITI	AGA Arg 385	CTC	GTT Val

Figure 3

Phe Asn Ser Leu Tyr Phe Asp Lys Glu Arg Val Ser Leu Pro Asp Phe 435 ATT ACC TCG AAT GCC TCT GAA AAC TTT AAA GAG CAA GCT ATT GTT AGT Ile Thr Ser Asn Ala Ser Glu Asn Phe Lys Glu Glu Ala Ile Val Ser TTA TTA TAT TAT TAT TAT TAT TAT TAT TA	1464	1512	1560	1608	1656	1704	1752
AST TCA TTG TAC TTC GAT AAG GAA CGT GTT TCT CTA CCA 435 ACC TCG AAT GCC TCT GAA AAC TTT AAA GAG CAA GCT ATT Thr Ser Asn Ala Ser Glu Asn Phe Lys Glu Gln Ala Ile 450 ACC CCA TTA TTA TAT TAC AAA CCC ATT AAG TCC TAC CAA THR TAT TYR TYR Lyr Lys Pro Ile Lys Ser Tyr Gln Asp Met Val Leu Leu Leu Leu Arg Asn Val Ser Tyr Gln Ala Asp Pro Ile Lys Ser Tyr Gln 490 AGG TTC GTC AGT AAA TTA GTT CTT TCC GCC TTA GTA TGC AGG TTC AAT GTC TTC GTC AAT GTC TTA TGC AAT GTC TTA TTA TTG AAT GTT CTC GCC TTA GTA TGC ATT AAG TTC GTC TTA GTA TGC ATT TAC AAT TTG AAT GTT TTC GCC TTA GTA TGC ATT TTA TTG AAT GTT TCC GCC TTA GTA TGC ATT GTA TGC AAT GTC TAT TTA TTG AAT GCT GCT AGA ATT CAT ACC IILE ASN VAL TYR Leu Leu ASN ALA ATA AA A	TTT Phe	AGT	ATT Ile 480	CGT	GCT	TAT Tyr	ACT
AST TCA TTG TAC TTC GAT AAG GAA CGT GTT TCT CTA CCA ASD Lys Glu Arg Val Ser Leu Pro 440 ACC TCG AAT GCC TCT GAA AAC TTT AAA GAG CAA GCT ATT Thr Ser Asn Ala Ser Glu Asn Phe Lys Glu Gln Ala Ile 450 ACC CCA TTA TTA TAT TAC AAA CCC ATT AAG TCC TAC CAA TTR Pro Leu Leu Tyr Tyr Lys Pro Ile Lys Ser Tyr Gln GAT ATG TTC CTT CTT TTC AAT GTC GCT GCC ATT AGG TCC TAC CAA ASP Met Val Leu	GAT	GTT	Arg	ATT Ile 495	AGT	AGT Ser	TTT Phe
Asn Ser Ieu Tyr Phe Asp Lys Glu Arg Val Ser Ieu 445 ACC TCG AAT GCC TCT GAA AAC TTT AAA GAG CAA GCT Thr Ser Asn Ala Ser Glu Asn Phe Lys Glu Gln Ala 450 ACC CCA TTA TTA TAT TAC AAA CCC ATT AAG TCC TAC 475 ACC CCA TTA TTA TAT TAC AAA CCC ATT AAG TCC TAC 470 ACC CCA TTA TTA TAT TAC AAA CCC ATT AAG TCC TAC ATP Thr Pro Leu Leu Tyr Tyr Lys Pro lle Lys Ser Tyr Asp Met Val Leu Leu Leu Leu Leu Leu Arg Asn Val Ser Val Asp Met Val Ser Lys Leu Leu Leu Val Leu Ser Ala Leu Val Leu Son ATT TCG GCT TCG GCT TAG ATP GTG TAT TTA TTG AAT GCT GCT AGA ATT CAT ILE Asn Val Tyr Leu Leu Asn Ala Ala Arg lle His 500 GCA GAC CAA TTG GTG AAA ACT GAA GTC ACC AAG ATT CAT ILE Asn Val Tyr Leu Leu Asn Ala Ala Arg lle His 530 AGC GAC CAA TTG GTG AAA ACT GAA GTC ACC AAG AAG AAI AAI AND AND AAI Thr Lys Lys Lys Lys Ala Asp Gln Leu Val Lys Thr Glu Val Thr Lys Lys Lys Ala Asp Gln Leu Val Lys Thr Glu Val Thr Lys Lys Lys Ala Asp Gln Leu Val Lys Thr Glu Val Thr Lys Lys Lys Ala Asp Gln Leu Val Lys Thr Glu Val Thr Lys Lys Lys 530	CCA	ATT Ile	CAA Gln	GCC	1GC Cys 510	Acc	
AST TCA TTG TAC TTC GAT AAG GAA CGT GTT 435 ACC TCG AAT GCC TCT GAA AAC TTT AAA GAG TAT SET ASD ASO TTT TAC ASD TAS GIU ASD BY GUN GAG TAT AAA GAG TAT TAC TAT TAC AAA CCC ATT AAG GAG TAT TAC TAT TAC TAT TAC AAA CCC ATT AAG TAT TAC TAT TAC AAT GAT GAT ATG GTT CTT TAC TAT TAC GAT AAT GAS ASD AGG TTC GTT CTT TAC TAT TAC ATG GAT ATG GTT CTT TAC AAT GAT GAT GAT TAC AAT GTT TAC AAT GAT TAC AAT GTT TAC AAT GAT GAT TAC AAT GTG TAT TTA TTG AAT GCT GCT AGA ILE ASD WAL TYT LEU LEU ASD AAT GCT GCT AGA ILE ASD WAL TYT LEU LEU ASD AAT GCT GCT AGA ILE ASD GTD TAT TAC AAT GTG TAC AGA ATG GAG GAC CAA TTG GTG AAA ACT GAA GTC ACC AGA TTG GTG AAA ACT GAA GTC ACC ATG ATG GTG AAA ACT GAA GTC ACC AGA TTG GTG AAA ACT GAA GTC ACC ATT TAC ATG GTG AAA ACT GAA GTC ACC ATG ATG GTG AAA ACT GAA GTC ACC ACC ATG ATG GTG AAA ACT GAA GTC ACC ACC ATG ATG GTG AAA ACT GAA GTC ACC ACC ACC ATG ATG GTG AAA ACT GAA GTC ACC ACC ACC ACC ACC ACC ACC ACC ACC A	CTA Leu 445	GCT	TAC	GTT	GTA	CAT His 525	AAG Lys
AST TCA TTG TAC TTC GAT AAG GAA CGT ASD Ser Leu Tyr Phe Asp Lys Glu Arg Thr Ser Asn Ala Ser Glu Asn Phe Lys ACC CCA TTA TTA TAT TAC AAA CCC ATT Thr Pro Leu Leu Tyr Tyr Lys Pro Ile ASP Met Val Leu Leu Leu Leu Asn Arg Asn AGG TTC GTC AGT AAA TTA GTT CTT TCC AGG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC AGT AAA TTA GTT CTT TCC ATG TTC GTC TTA TTA TTG AAT GTT TCC ATG TAT GTG TAT TTA TTG AAT GTT GTT Ile Asn Val Tyr Leu Leu Asn Ala Ala 515 GCA GAC CAA TTG GTG AAA ACT GAA GTC Ala Asp GIN Leu Val Lys Thr Glu Val 530	TCT Ser	CAA Gln 460	TCC	AGT	TTA		AAG Lys 540
AST TCA TTG TAC TTC GAT AAG GAA ASD Ser Leu Tyr Phe Asp Lys Glu ACC TCG AAT GCC TCT GAA AAC TTT Thr Ser Asn Ala Ser Glu Asn Phe 450 ACC CCA TTA TTA TAT TAC AAA CCC Thr Pro Leu Leu Tyr Tyr Lys Pro GAT ATG GTT CTT CTA TTG CTT CGT ASP Met Val Leu Leu Leu Leu Arg AGG TTC GTC AGT AAA TTA GTT CTT ATC AAT GTG TAT TTA TTG AAT GCT Ile Asn Val Tyr Leu Leu Asn Ala 515 GCA GAC CAA TTG GTG AAA ACT GAA Ala Asp Gln Leu Val Lys Thr Glu 530 Ala Asp Gln Leu Val Lys Thr Glu	GTT Val	GAG Glu	AAG Lyb 475	GTC	GCC	AGA	ACC
AAT TCA TTG TAC TTC GAT AAG ASN Ser Leu Tyr Phe Asp Lys ACC TCG AAT GCC TCT GAA AAC Thr Ser Asn Ala Ser Glu Asn A50 ACC CCA TTA TTA TAT TAC AAA Thr Pro Leu Leu Leu Leu Leu Leu Asp Met Val Leu Leu Leu Leu Leu Arg Phe Val Ser Lys Leu Val ATC AAT GTG TAT TTA TTG AAT Ile Asn Val Tyr Leu Leu Asn Ala Asp Gln Leu Val Lys Thr 530	CGT	aaa Lys	AIT	AAT Asn 490	TCC	GCT	GTC Val
AST TCA TTG TAC TTC GAT ASD SET Leu TYT Phe ASP ACC TCG AAT GCC TCT GAA Thr Ser Asn Ala Ser Glu 450 ACC CCA TTA TTA TAT TAC Thr Pro Leu Leu Tyr Tyr ASP Met Val Leu Leu Leu Leu ASG TTC GTC AGT AAA TTA ATC AAT GTG TAT TTA TTG	GAA	TTT	Pro	CGT	CTT Leu 505	GCT	GAA Glu
AAT TCA TTG TAC TTC ASS SET Leu TYT Phe 435 ACC TCG AAT GCC TCT Thr Ser Asn Ala Ser 450 ACC CCA TTA TTA TAT Thr Pro Leu Leu Tyr ARG TTC GTT CTT CTA ASP MET VAl Leu Leu AGG TTC GTC AGT AAA ATG Phe Val Ser Lys 500 ATC AAT GTG TAT TTA Ile Asn Val Tyr Leu 515 GCA GAC CAA TTG GTG Ala Asp Gln Leu Val 530	AAG Lys 440	AAC	AAA Lys	CIT	GTT Val	AAT Asn 520	ACT
AAT TCA TTG TAC ASS Leu TYT 435 ACC TCG AAT GCC Thr Ser Asn Ala 450 ACC CCA TTA TTA Thr Pro Leu Leu ASP Met Val Leu ASP Met Val Leu ASP Met Val CTT ASP Met Val CTT ASP ASP CTC GTC AGT ATC AAT GTG TAT Ile Asn Val TYF 515 AIR ASP GIN Leu 530	gat Asp	GAA Glu 455	TAC	TTG	TTA	TTG	AAA Lys 535
AAT TCA TTG ASD SET LEU 435 ACC TCG AAT Thr Ser Asn Thr Ser Asn Thr Pro Leu ASP Met Val ASP Met Val ASP Phe Val 500 515 Ile Asn Val 515 Ala Asp Gln 530	TTC Phe	TCT	TAT Tyr 470	CTA	AAA Lys	TTA	GTG
AAT TCA ASS SET ASS TOS Thr Ser 450 ACC TCG Thr Ser 450 ACC TCG Thr Pro ASP Met ASP Phe ASP ASP 515 Ala Asp	TAC	GCC	TTA	CTT Leu 485	AGT	TAT	TTG
AAT ABD ACC Thr ASD	TTĠ Leu	AAT	TTA	GTT Val	GTC Val 500	GTG Val	
	TCA Ser 435	TCG	CCA	ATG Met	TTC Phe	AAT Asn 515	GAC
Phe Phe CAT I I E GAT ASP GAT ASP	AAT Asn	ACC Thr 450		GAT	AGG Arg	ATC Ile	GCA Ala 530
	TTC	ATT Ile	GTC Val 465	GAG Glu	GAT	GTC	ACT

	650 Figur			645	
				ָּבָּבָּי בַּבָּבָבָּי	
GAG	GCT	TTG		AAG Lys	CAC GGT His Gly
GAG Glu 620	AAC	TTG		ACA	GGA AAT Gly Asn
neg T	Leu Glu (Pro 600			395
	GAA	CCT	ATA CGT	AAA	GAT AAG ASP LYS
TCC Ser TTA	GAT	GAG		TCA Ser Lys	
Ala Ala Ser TTA	TCA Ser 570 GAT ABP	AGT Ser GAG Glu	•	AAA Lys 565 Ser Ser Lys	
	Glu Leu Glu AAA GAG GTC Lys Glu Val 620 620 635 635 635 AAG GCT CTT Lys Ala Leu Lys Ala Leu	AAC AAA GAG ASn Lys Glu GCT TTG GAG Ala Leu Glu 635 635 650 650 650	TTG AAG AAC AAA GAG Leu Lys Asn Lys Glu 620 TTG TAC GCT TTG GAG Leu Tyr Ala Leu Glu 635 67A CGT AGG AAG GCT Val Arg Arg Lys Ala 650	CAA TTG AAG AAC AAA GAG Gln Leu Lys Asn Lys Glu 615 CCT TTG TAC GCT TTG GAG Pro Leu Tyr Ala Leu Glu 635 GCG GTA CGT AGG AAG GCT Ala Val Arg Arg Lys Ala 650	ACA AAA CAA TTG AAG AAC AAA GAG Thr Lys Gln Leu Lys Asn Lys Glu 615 AAG TTA CCT TTG TAC GCT TTG GAG Lys Leu Pro Leu Tyr Ala Leu Glu 630 GCG GTT GCG GTA CGT AGG AAG GCT Ala Val Ala Val Arg Arg Lys Ala 645 Figure 3-6

2136	2184	2232	2280	2328	2376	2424
TAT	TAC	ACA	TCT Ser 720	ACT	CCA	GAG Glu
ASH		GGT	GCT	ACA Thr 735	TTC	GAA
AAA AAT Lys Asn 670	ATA GGT Ile Gly	GAT	TTG GTA GCT Leu Val Ala	GCA	Arg 750	TCA
TAT	GTT Val 685	ATC GAT Ile Asp	TTG	GGT	GTC Val	GÁC ASP 765
CCA TAT Pro Tyr	AAT	GTT Val 700	TGT Cys	GGT	GTA	TTA
TTA	GAA Glu	TTG	GGT G1Y 715	66C	Pro	TGG
Arg	TGT	CC Pro	GAG Glu	GCT Ala 730	66c 61y	ATA Ile
GAT Asp 665	TGT	66c 61y	ACA	AAT	AGA Arg 745	TGT AAG Cys Lys 760
TCT	GCT Ala 680	ATA Ile	ACT	ATC Ile	ATG ACA Met Thr	
GCA	66c 61y	GTT Val 695	SCA Ala	GCA		GCC
TTA	Phe	GGT	ATG Met 710	AAG Lys	GGT Gly	GGT
	GTA	GTT	CCA	TGT Cy8 725	GAT	TCT
CCT GTA Pro Val 660	CGC	CCC	ATA	660 61y	AAG Lys 740	AGA
GCT	GAC Asp 675	TTG	CAT	CGT	ACT	AAA Lys 755
GAA	TAC	CCT Pro 690	TAT	ATG	TTA	TTG
GCA	GAC	ATG M t	TCT S r 705	GCC	GTT	ACT

2472	2520	2568	2616	2664	2712	2760
GCA	ATG Met 800	TCT Ser	TGG	AAA Lys	GTC Val	AGT Ser 880
TTT	TTC Phe	ATT Ile 815	66c 61y	GAC	GTC Val	AAA Lys
AGA	CTC Leu	ATG	TAT Tyr 830	ACC GAC Thr Asp	AGT	TTA Leu
TCA	TTA	AAT	GAG Glu	TGT Cys 845	AAG Lys	GTG Val
ACA Thr 780	GAT	ATG	GAA	TAC	GGT G1y 860	AAA Lys
TCT Ser	GGA G1y 795	GGT Gly	GTA	AAC Asn	CGT	AGA Arg 875
AAC Asn	GCA	ATG Met 810	ATG	GGT Gly	GGT Gly	GTC Val
TTT Phe	CTA	GCA	CAA Gln 825	TCT Ser	GAA Glu	GTT Val
GCT	TGT Cys	GAC Asp	AAG Lys	GTT Val 840	ATC Ile	GAT
AAA Lyb 775	Act Thr	GGT Gly	TTA	TCC	TGG Trp 855	GGT Gly
AAA Lys	CAA Gln 790	ACT Thr	TCA	GTC	AAC	CCT Pro 870
ATT Ile	ATT Ile	ACT Thr 805	TAC	GTT Val	ATC Ile	ATT Ile
GCA	CAT	ACA	GAA Glu 820	GAG Glu	GCC Ala	ACT
AAC	CAA	AGA Arg	GTC	ATG Met 835	GCT	GCT
CAA Gln 770	CTG	TTT Phe	GGT Gly	GAT Asp	CCA Pro 850	GAA Glu
GGA Gly	CGT Arg 785	AGA	AAA Lys	GAA	AAA Lys	GCA Ala 865

Figure 3-8

2808	2856	2904	2952	3000	3048	3096
GGA Gly	AAT	AAT	GAT	GGT G1y 960	GGT	TTA
GTT Val 895	GCT	CAA Gln	GGT Gly	ATC Ile	TTA Leu 975	CAA Gln
TTG	GCA Ala 910	GCA. CAA Ala Gln	GAC	Acc	TTA	CGT Arg 990
AAT Asn	CAT His	CCT Pro 925	GTG	GGT Gly	GAC	GCA Ala
AAG	GCA	GAT	AAA GAA Lys Glu 940	GTA	Ter 1	AAC
GCT	AAC Asn	CAA Gln	AAA	GAA G1u 955	ATG Met	Acc
ATT Ile 890	TTT	GGA Gly	ATG	ATC Ile	GCC Ala 970	GGT Gly
AAC	GGA G1y 905	TTA	TTG	TCC	GGT	CCT Pro 985
TTG	GGT Gly	GCA Ala 920	ACA	CCA	CAA Gln	GCT Ala
GAG Glu	GTT Val	TTG	ATA Ile 935	ATG	CCA	Acc
GTT Val	TCT	TTC	TGT Cys	TCC Ser 950	GAA Glu	GCT
TTG Leu 885	666 61y	GTT Val	AAC Asn	GTA Val	CTA Leu 965	CAT
GCA	GCT Ala 900	GCT	TCC	TCC	GTT Val	CCG Pro 980
TCC	ATG	ACA Thr 915	AGT	ATT Ile	ACT Thr	66C 61Y
GTT Val	GCA	GTG Val	GAA Glu 930	AGA Arg	GGT	AGA Arg
GAT	TCT	TTA	GTT Val	TTG Leu 945	GGT	GTA

Figure 3-9

A TGT 314 u Cys	C AAC 319 s Asn	T GAT 324 r Asp 1040	328	CATGTGT 334	336
A TTA TCC TTA TGT 1 Leu Ser Leu Cys 1005	r ATG ACC CAC s Met Thr His 20	AAT TTG GAC GCC ACT Asn Leu Asp Ala Thr 1035	r AAA TCC e Lys Ser	TTGAAAAAA AGCACAACAG CACCATGTGT	
TTG GCA GGT GAA Leu Ala Gly Glu	CAA AGT CAT Gln Ser His 1020	AAC	ACC TGC ATT Thr Cys Ile 1050	GAAAAAGA AG	
GCC GTC TTG GCA Ala Val Leu Ala 1000	CAT TTG GTT His Leu Val 1015	ACA AAA CCT Thr Lys Pro	GGG TCC GTC Gly Ser Val	TGGTATTCTC TT	
GTT GCC TGT Val Ala Cys	GCA GCC GGC Ala Ala Gly	GCT GAA CCA Ala Glu Pro 1030	TTG AAA GAT Leu Lys Asp 1045		TTACTT
GCA AGA ATA G Ala Arg Ile V 995	GCT GCC CTA G Ala Ala Leu A 1010	AGG AAA CCT G Arg Lys Pro A 1025	ATA AAT CGT T Ile Asn Arg L	TAAACTTAGT CATACGTCAT	TACGTAAAAT ATTTACTT
- 7	→		•	•	•

Figure 3-10

FIGURE 4

Øy e

FIGURE <