CS 312 Work Assignment 5

Joseph Acosta

(b)
$$\vdash S_1 : c_1$$

$$\frac{\vdash S_1 : c_1 \qquad \vdash S_2 : c_2}{\vdash S_1 * S_2 : c_1 * c_2}$$

$$\vdash S_2 : c_2$$
 is not zero
 $\vdash S_1 : c_1$
 $\vdash S_1/S_2 : c_1/c_2$

$$\frac{\vdash e_2[e_1/x] : e}{\vdash \text{let } x = e_1 \text{ in } e_2 : e}$$

(c)
$$\frac{\Gamma \vdash S_1 : nonzero}{\Gamma \vdash S_1 * S_2 : nonzero} \frac{\Gamma \vdash S_2 : nonzero}{}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : zero}{\Gamma \vdash S_1 * S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : zero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 * S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : zero \qquad \Gamma \vdash S_2 : zero}{\Gamma \vdash S_1 * S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : zero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 / S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 / S_2 : nonzero}$$

$$\Gamma \vdash S_1 : t_1
t = t_1
\underline{\Gamma[x \leftarrow t] \vdash S_2 : t_2}
\underline{\Gamma \vdash letx = S_1 in S_2} : T_2$$

(d) Base:

nonzero i

$$\Gamma \vdash i : nonzero$$

$$\frac{zero\ i}{\Gamma\vdash i: zero}$$

Inductive Case 1:

$$\frac{\vdash S_1 : c_1 \qquad \vdash S_2 : c_2}{\vdash S_1 * S_2 : c_1 * c_2}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 * S_2 : nonzero}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : zero}{\Gamma \vdash S_1 * S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : \textit{zero} \qquad \Gamma \vdash S_2 : \textit{nonzero}}{\Gamma \vdash S_1 * S_2 : \textit{zero}}$$

$$\frac{\Gamma \vdash S_1 : zero \qquad \Gamma \vdash S_2 : zero}{\Gamma \vdash S_1 * S_2 : zero}$$

Since we know c_1 is a non zero or a zero, and c_2 is a non zero or a zero we know $c_1 * c_2$ is also non zero or zero.

Inductive Case 2:

$$\frac{\vdash S_1 : c_1 \quad \vdash S_2 : c_2}{\vdash S_1 / S_2 : c_1 / c_2}$$

$$\frac{\Gamma \vdash S_1 : \textit{zero} \qquad \Gamma \vdash S_2 : \textit{nonzero}}{\Gamma \vdash S_1 / S_2 : \textit{zero}}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 / S_2 : nonzero}$$

Since we know c_1 is a zero or a non zero, and we know c_2 is a non zero, c_1/c_2 must be a non zero.

Inductive Case 3:

$$\frac{\vdash e_2[e_1/x] : e}{\vdash \text{let } x = e_1 \text{ in } e_2 : e}$$

$$\Gamma \vdash S_1 : t_1$$

$$t = t_1$$

$$\Gamma[x \leftarrow t] \vdash S_2 : t_2$$

$$\Gamma \vdash letx = S_1 inS_2 : T_2$$

Since we know c_1 is zero or non zero, we know c_2 must also be zero or non_zero.

(e) Base:

nonzero i

 $\Gamma \vdash i : nonzero$

zeroi

 $\Gamma \vdash i : zero$

Clearly, if i types as zero or non zero, the corresponding operational semantics rule applies **Inductive Case 1:**

$$\frac{\vdash S_1 : c_1 \qquad \vdash S_2 : c_2}{\vdash S_1 * S_2 : c_1 * c_2}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 * S_2 : nonzero}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : zero}{\Gamma \vdash S_1 * S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : \textit{zero} \qquad \Gamma \vdash S_2 : \textit{nonzero}}{\Gamma \vdash S_1 * S_2 : \textit{zero}}$$

$$\frac{\Gamma \vdash S_1 : zero \qquad \Gamma \vdash S_2 : zero}{\Gamma \vdash S_1 * S_2 : zero}$$

We know from the inductive hypothesis that the evaluation of S_1 and S_2 will never get stuck. We also know from preservation that the expressions S_1 and S_2 must evaluate to zero or non zero, therefore the operational semantics rule for multiplication will always apply since the hypotheses only require that c_1 and c_2 are zero or non zero.

Inductive Case 2:

$$\frac{\vdash S_1 : c_1 \qquad \vdash S_2 : c_2}{\vdash S_1 / S_2 : c_1 / c_2}$$

$$\frac{\Gamma \vdash S_1 : zero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 / S_2 : zero}$$

$$\frac{\Gamma \vdash S_1 : nonzero \qquad \Gamma \vdash S_2 : nonzero}{\Gamma \vdash S_1 / S_2 : nonzero}$$

We know from the inductive hypothesis that the evaluation of S_1 and S_2 will never get stuck. We also know from preservation that the expression S_1 must evaluate to zero or non zero and S_2 must evaluate to non zero, therefore the operational semantics rule for division will always apply since the hypotheses only require that c_1 is a non zero or zero and c_2 is a non zero.

Inductive Case 3:

$$\frac{\vdash e_2[e_1/x] : e}{\vdash \text{let } x = e_1 \text{ in } e_2 : e}$$

$$\Gamma \vdash S_1 : t_1$$

$$t = t_1$$

$$\frac{\Gamma[x \leftarrow t] \vdash S_2 : t_2}{\Gamma \vdash letx = S_1 in S_2} : T_2$$

Here, we know from the inductive hypothesis that S_1 is of type t_1 and $E[x \leftarrow t]S_2 : t_2$ will not get stuck since they are well-typed. Therefore, this rule will also always apply.

2. (a) These are large step Operational Semantics.

(b) TU 'd'
$$\rightarrow' D'$$

 $TU'a' \rightarrow' A'$
 $TL'B' \rightarrow' b'$

- (c) 1. A char is defined as a char.
 - 2. AL returns a lowercase char if it's the correct case.
 - 3. AU returns an uppercase char if it's the correct case.
 - 4. TU converts a char to uppercase and returns it.
 - 5. TL converts a char to lowercase and returns it.
- (d) A runtime error will occur if AL is called on an uppercase char. A runtime error will also occur if AU is called on a lowercase char.
- (e) A type system to prevent runtime errors for this language would consist of the types lowercase and uppercase.

The concretization of the type lowercase is: $\gamma(lowercase) = 'a'-'b'$.

The concretization of the type uppercase is: $\gamma(uppercase) = 'A'-'B'$.

(f) lowercase c

$$\Gamma \vdash c : c$$

lowercase c

$$\Gamma \vdash c : c$$

 $\underline{\Gamma \vdash P : lowercase}$

 $\Gamma \vdash ALP : lowercase$

 $\Gamma \vdash P : uppercase$

 $\Gamma \vdash AU \ P : upper case$

 $\Gamma \vdash P : lowercase$

 $\Gamma \vdash TLP : lowercase$

 $\Gamma \vdash P : uppercase$

 $\overline{\Gamma \vdash TL\ P : lowerc}$ ase

 $\Gamma \vdash P$: uppercase

 $\overline{\Gamma \vdash TU \ P : upper case}$

 $\underline{\Gamma \vdash P : lowercase}$

 $\Gamma \vdash TU \ P : upper case$