

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTIONS	ÉPREUVE ÉCRITE		
Mathématiques	E E C	Durée de l'épreuve : 2 heures		
	E, F, G	Date de l'épreuve : 8 juin 2018		

Partie I : Systèmes d'équations et d'inéquations

Question 1 (8 points)

Résoudre le système suivant

$$\begin{cases} 5x - y = 3 + 2z \\ \frac{3x - 2}{4} - \frac{2y - 1}{2} + \frac{z}{3} = 5 \\ 7(x - 3) - 3(y - x) = 4(z - 1) - 10 \end{cases}$$

Question 2 (12 points)

Un pâtissier amateur réalise deux types de gâteaux : des gâteaux d'anniversaire et des gâteaux de mariage.

Un gâteau d'anniversaire nécessite 500 grammes de sucre et 3 kilogrammes de chocolat. Il est vendu pour 12 €. Comme le gâteau d'anniversaire est très large, le pâtissier peut en stocker au maximum 6. Un gâteau de mariage nécessite un kilogramme de sucre et 2 kilogrammes de chocolat. Il est vendu pour 18 €.

Le pâtissier dispose d'un maximum de 24 kg de chocolat et de 8 kg de sucre.

Quel est le nombre de gâteaux de chaque type à réaliser pour que le bénéfice soit maximal? Quel est ce bénéfice maximal?

Partie II: Analyse

Question 3 (4+3=7 points)

Résoudre les équations suivantes et donner l'ensemble des solutions

a)
$$1 - 5 \cdot 3^{2x+1} = 5 - 7 \cdot 3^{2x+1}$$

b)
$$7 - 3\log_5(6 - x) = -2$$

Question 4 (4+3+2=9 points)

Soit f la fonction définie par $f(x) = -\frac{4}{3}x^3 - 2x^2 + 24x + 5$

- a) Dresser le tableau de variation de f et préciser les extrema éventuels.
- b) Dresser le tableau de concavité de f et préciser les points d'inflexion éventuels.
- c) Déterminer l'équation de la tangente t_1 à la courbe de f au point d'abscisse 1.

Question 5 (3+4=7 points)

Soit f une fonction.

On donne ci-contre la représentation graphique de la fonction dérivée f'.

- a) Dresser le tableau de variation de f.
- b) Tracer une courbe qui pourrait être celle de f (sur la farde).

Partie III: Probabilités et combinatoire

Question 6 (4+1+1+2=8 points)

Un réseau informatique d'une école contient 200 tablettes numériques dont

- 30 sont considérées comme neuves
- 90 sont considérées comme récentes
- les autres sont considérées comme anciennes.

Une étude statistique indique que

- 5% des tablettes neuves sont défaillantes
- 10% des tablettes récentes sont défaillantes
- 20% des tablettes anciennes sont défaillantes.

On choisit au hasard une tablette de cette école.

- a) Construire un diagramme en arbre montrant toutes les possibilités.
- b) Déterminer la probabilité d'obtenir une tablette ancienne.
- c) Calculer la probabilité d'obtenir une tablette neuve et défaillante.
- d) Calculer la probabilité d'obtenir une tablette défaillante.

Question 7 (2+(1+2+2)+2=9 points)

Dans une urne, il y a 1 jeton blanc, 2 jetons noirs, 3 jetons rouges, 4 jetons jaunes et 5 jetons verts.

- a) En tirant simultanément 5 jetons de l'urne, quelle est la probabilité d'obtenir un jeton de chaque couleur?
- b) On tire successivement 3 jetons de l'urne en remettant à chaque fois le jeton tiré dans l'urne avant de tirer le suivant. Quelle est la probabilité de tirer
 - 1) 3 jetons verts?
 - 2) 1 jaune puis 2 rouges?
 - 3) 3 jetons de même couleur?
- c) On tire successivement 3 jetons de l'urne sans remise. Quelle est la probabilité d'obtenir au moins 1 jeton rouge ?

Corrigé modèle

Question 1 (8 points)

$$\begin{cases} 5x - y = 3 + 2z \\ \frac{3x - 2}{4} - \frac{2y - 1}{2} + \frac{z}{3} = 5 \\ 7(x - 3) - 3(y - x) = 4(z - 1) - 10 \end{cases} \Leftrightarrow \begin{cases} 5x - y - 2z = 3 & (1) \\ 9x - 12y + 4z = 60 & (2) \\ 10x - 3y - 4z = 7 & (3) \end{cases}$$

(1):
$$y = 5x - 2z - 3$$
 (1')

$$(1') dans (2): -51x + 28z = 24 (2')$$

(1') dans (3):
$$-5x + 2z = -2 \Leftrightarrow z = -1 + \frac{5}{2}x$$
 (3')

(3') dans (2'):
$$x = \frac{52}{19}$$
 (4)

(4) dans (3'):
$$z = \frac{111}{19}$$
 (5)

$$(4), (5) dans (1'): y = -1$$

$$S = \left\{ \left(\frac{52}{19}; -1; \frac{111}{19} \right) \right\}$$

Question 2 (12 points)

Soit x le nombre de gâteaux de type anniversaire et y le nombre de gâteaux de type mariage.

Systèmes d'inéquations:
$$\begin{cases} 0 \le x \le 6 \\ y \ge 0 \end{cases}$$
$$\frac{1}{2}x + y \le 8$$
$$3x + 2y \le 24$$

On trace les droites suivantes dans un repère :

$$d_1 \equiv x = 0$$
 $d_2 \equiv x = 6$ $d_3 \equiv y = 0$ $d_4 \equiv \frac{1}{2}x + y = 8 \Leftrightarrow d_4 \equiv y = -\frac{1}{2}x + 8$
 $d_5 \equiv 3x + 2y = 24 \Leftrightarrow d_5 \equiv y = -\frac{3}{2}x + 12$

Test pour A(1; 1):

$$0 \le 1$$
 vrai $1 \le 6$ vrai $\frac{1}{2} + 1 \le 8$ vrai $3 + 2 \le 24$ vrai

Bénéfice: B(x; y) = 12x + 18y

Droite de départ:
$$d_0 \equiv 12x + 18y = 0 \Leftrightarrow d_0 \equiv y = -\frac{2}{3}x$$

Sur le graphique, on voit que le bénéfice est maximal pour C(4;6).

Vérification par calcul:
$$\begin{cases} y = -\frac{1}{2}x + 8 & (1') \\ y = -\frac{3}{2}x + 12 & (2') \end{cases}$$

(1') dans (2'):
$$-\frac{1}{2}x + 8 = -\frac{3}{2}x + 12 \Leftrightarrow x = 4$$

Dans (2'):
$$y = -\frac{3}{2} \cdot 4 + 12 = 6$$

Le bénéfice est donc maximal si le pâtissier réalise 4 gâteaux d'anniversaire et 6 gâteaux de mariage.

$$12 \cdot 4 + 18 \cdot 6 = 48 + 108 = 156$$

Le bénéfice maximal s'élève à 156€.

Question 3 (4+3=7 points)

a)
$$1 - 5 \cdot 3^{2x+1} = 5 - 7 \cdot 3^{2x+1}$$
$$\Leftrightarrow 2 \cdot 3^{2x+1} = 4$$
$$\Leftrightarrow 3^{2x+1} = 2$$

$$\Leftrightarrow 3^{2x+1} = 3^{\log_3 2}$$

$$\Leftrightarrow 2x + 1 = \log_3 2$$

$$\Leftrightarrow x = \frac{1}{2}(\log_3 2 - 1)$$

$$S = \left\{ \frac{1}{2} (\log_3 2 - 1) \right\}$$

b)
$$7 - 3\log_{5}(6 - x) = -2$$

$$\Leftrightarrow -3\log_5(6-x) = -9$$

$$\Leftrightarrow \log_5(6-x) = 3$$

$$\Leftrightarrow \log_5(6-x) = \log_5 5^3$$

$$\Leftrightarrow$$
 6 – x = 125

$$\Leftrightarrow x = -119$$

$$S = \{-119\}$$

Question 4 (4+3+2=9 points)

a)
$$f(x) = -\frac{4}{3}x^3 - 2x^2 + 24x + 5$$

$$f'(x) = -4x^2 - 4x + 24$$

Racines de
$$f'$$

Racines de
$$f'$$
 $\Delta = 16 + 384 = 400$ $x_1 = \frac{4+20}{-8} = -3$ $x_2 = \frac{4-20}{-8} = 2$

Tableau de variation

x	-∞	- 3		2	+∞
f'(x)		- 0	+	0 -	-
f(x)	7	-49 min	7	max 103 3	7

b)
$$f''(x) = -8x - 4$$

Racine de f''

$$f''(x) = 0 \Leftrightarrow x = -\frac{1}{2}$$

Tableau de concavité

x	-∞		$-\frac{1}{2}$		+ ∞
<i>f</i> ''(x)		+	0	_	
 C_f		U	$-\frac{22}{3}$ <i>P.I.</i>	n	

c)
$$t_1 \equiv y = f'(1)(x-1) + f(1)$$

c)
$$t_1 \equiv y = f'(1)(x-1) + f(1)$$
 avec $f(1) = \frac{77}{3}$ et $f'(1) = 16$

Donc
$$t_1 \equiv y = 16x + \frac{29}{3}$$

Question 5 (3+4=7 points)

a) Tableau de variation

x	-∞		-1		2		3	+ ∞
f'(x)		· · · · · ·	0	+	0		0	+
f(x)		7	min	7	max	\	min	7

b) Représentation graphique

Question 6 (4+1+1+2=8 points)

a)

b) $p(tablette\ ancienne) = \frac{80}{200} = \frac{2}{5}$

c)
$$p(tablette\ neuve\ et\ d\'efaillante) = \frac{30}{200} \cdot \frac{5}{100} = \frac{3}{400}$$

d)
$$p(tablette\ d\'efaillante) = \frac{30}{200} \cdot \frac{5}{100} + \frac{90}{200} \cdot \frac{10}{100} + \frac{80}{200} \cdot \frac{20}{100} = \frac{53}{400}$$

Question 7 (2+(1+2+2)+2=9 points)

a)
$$p(1 \ jeton \ de \ chaque \ couleur) = \frac{C_1^1 \cdot C_2^1 \cdot C_3^1 \cdot C_4^1 \cdot C_5^1}{C_{15}^5} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{3003} = \frac{40}{1001}$$

b) 1)
$$p(VVV) = \frac{5.5.5}{15.15.15} = \frac{1}{27}$$

2)
$$p(JRR) = \frac{4 \cdot 3 \cdot 3}{15 \cdot 15 \cdot 15} = \frac{4}{375}$$

3)
$$p(BBB, NNN, RRR, JJJ, VVV) = \frac{1 \cdot 1 \cdot 1 + 2 \cdot 2 \cdot 2 + 3 \cdot 3 \cdot 3 + 4 \cdot 4 \cdot 4 + 5 \cdot 5 \cdot 5}{15 \cdot 15 \cdot 15} = \frac{224}{3375}$$

c)
$$p(au\ moins\ 1\ rouge) = 1 - p(aucun\ rouge) = 1 - \frac{12\cdot11\cdot10}{15\cdot14\cdot13} = 1 - \frac{44}{91} = \frac{47}{91}$$