Cancer Medicine and Action Mechanisms (MoA) of Drugs

Vural Tagal, PhD

1-31-2025

IMAT Lecture

Department of Integrated Mathematical Oncology

H. Lee Moffitt Cancer Center and Research Institute

Cancer is an ancient disease

77-million year old *Centrosaurus apertus*

The Evolution of Cancer Therapeutic Agents

Examples for The First Chemotherapy

Agents
Herbal teas
Fruit juices
Salts
Figs
Boiled cabbage

Egg white

Pastes of arsenic,

iron, mercury,

copper

3500 years

Modern TargetedTherapy Agents
Kinase inhibitors
Receptor
inhibitor/activators
Apoptosis
enhancers
PARP inhibitors

. .

<u>Modern</u> <u>Chemotherapy</u>

<u>Agents</u>

Anti-metabolites
Alkylating agents
DNA-intercalating
agents
Microtubule
poisons

..

Nucleotide analogs

Immunotherapies
Immune checkpoint
inhibitors
CAR-T cell
antibodies

. . .

The hieroglyphic for the word *tumor* as described in the Edwin Smith papyrus. For details, refer to Breasted's translation of the document [1]. Reproduced with permission from Marcel Dekker, Inc., New York – Pitot HC (1986) Fundamentals of oncology, 3rd edn

Emerging Disciplines for Cancer Medicine

Milestones in cancer research and medicine

The New Era of Cancer Medicine

History of Cancer Research and Medicine

• Hippocrates (460-370 BC) and humoral theory

Surgery

• Celsus (50 CE)

A. CORN. CELSUS.

A. CORN. CEL

AUR. CORN.

MEDICINA
LIBRI OCTO

CAN AND INTEGRAL
JOANNIS CARARITI, ROBERTI CONSTANTINI,
JOANNIS CARARITI, RABETI CONSTANTINI,
JOANNIS BAPTIETAE MORGAGNI,
AC IOCH PARAICIE

TH. J. AE ALMELOVEEN,
M. D. ET PROTESSORES.

Spencer, Proc R Soc Med, 1926

Celsus "After excision, even when a scar has formed, none the less the disease has returned."

The first systematic use of chemotherapy

- Paracelsus (~1500) (Swiss physician-chemist)
 - Combination and pastes of
 - Mercury
 - Lead
 - Sulfur
 - Iron
 - Zinc
 - Copper
 - Arsenic
 - Iodine
 - Potassium

Cell theory (1839-1855)

Matthias Jakob Schleiden

Theodor Schwann

Rudolf Virchow

Three tenets of cell theory:

- 1. All living organisms are composed of one or more cells.
- 2. The cell is the most basic unit of life.
- 3. All cells arise only from preexisting cells.

Discovery of mitosis

Walther Flemming 1843 - 1905

24 h cycle

Stages of cell cycle

Classification of chemotherapeutic agents

Alkylating agents

Nitrogen mustards
(Discontinued)
Cyclophosphamide
Ifosfamide
Bendamustine
Chlorambucil
Melphalan
Uramustine
Carmustine
Lomustine
Streptozocin
Busulfan
Altretamine

Cisplatin
Carboplatin
Oxaliplatin
Dicycloplatin
Eptaplatin
Lobaplatin
Miriplatin
Nedaplatin
Picoplatin
Satraplatin
Triplatin tetranitrate
Procarbazine
Temozolomide

Anti-tumor antibiotics

Topoisomerase inhibitors Topoisomerase I inhibitors Camptothecins: Topotecan Irinotecan 1) Alkylating agents Belotecan 2) Anti-tumor antibotics **DNA REPLICATION**Overview of the eukaryotic process **DNA** damage Topoisomerase II inhibitors Doxorubicin Mitotic cell Daunorubicin cycle **Epirubicin** Idarubicin Etoposide Teniposide Dexrazoxane G2 Novobiocin Merbarone Aclarubicin

Timeline of the approved targeted therapies

Kinase inhibitors

- 1. Receptor Tyrosine Kinase Inhibitors
- 2. Non-receptor Tyrosine Kinase Inhibitors
- 3. Serine/Threonine Kinase Inhibitors

Epigenetic inhibitors

1. Writers: Modify DNA or histones

2. Erasers: Remove modifications

3. Readers: Recognize the

modifications

BCL-2 inhibitors (Pro-apoptotic agents)

- 1. BCL-2 family of proteins: Inhibits apoptosis (programmed cell death) or anti-apoptotic proteins
- 2. Pro-apoptotic effector proteins (BAX and BAK) and BCL-2 homology 3 (BH3)-only pro-apoptotic proteins

Hedgehog pathway inhibitors

Embryonic development and tissue regeneration

Proteosome inhibitors

1. Ubiquitin-proteosome system (UPS): Misfolded, unassembled, or damaged proteins form toxic aggregates

Zhong et al, Sig. Trans. Tar. Ther., 2021

PARP inhibitors (DNA Damage Repair inhibitors)

- 1. Genomic instability and chronic DNA damage is common in cancers.
- 2. Single strand and doublestrand break repair.

Immunotherapy

The pillars of cancer care

FIGURE 14 THE PILLARS OF CANCER CARE

Next: Drug resistance, adverse effects and drug discovery process

Roses, Nature Rev. Drug Disc., 2008