

# Exercícios de Gravitação Universal

Quer ver este material pelo Dex? Clique aqui

#### Exercícios

1. Sabe-se que a posição em que o Sol nasce ou se põe no horizonte muda de acordo com a estação do ano. Olhando-se em direção ao poente, por exemplo, para um observador no Hemisfério Sul, o Sol se põe mais à direita no inverno do que no verão.

O fenômeno descrito deve-se à combinação de dois fatores: a inclinação do eixo de rotação terrestre e

- a) precessão do periélio terrestre.
- **b)** translação da Terra em torno do Sol.
- c) nutação do eixo de rotação da Terra.
- d) precessão do eixo de rotação da Terra.
- e) rotação da Terra em torno de seu próprio eixo.
- 2. Os planetas do Sistema Solar giram em torno do Sol. A Terra, por exemplo, está a aproximadamente 150 milhões de km (1 u.a.) do Sol e demora 1 ano para dar uma volta em torno dele. A tabela a seguir traz algumas informações interessantes sobre o Sistema Solar.

| Planeta  | Distância média ao Sol (u.a.) | Diâmetro equatorial (km) |
|----------|-------------------------------|--------------------------|
| Mercúrio | 0,4                           | 4.800                    |
| Vênus    | 0,7                           | 12.000                   |
| Terra    | 1,0                           | 13.000                   |
| Marte    | 1,5                           | 6.700                    |
| Júpiter  | 5,2                           | 140.000                  |
| Saturno  | 9,5                           | 120.000                  |
| Urano    | 20,0                          | 52.000                   |
| Netuno   | 30,0                          | 49.000                   |

De acordo com a tabela a razão entre os diâmetros equatoriais de Júpiter e da Terra, vale aproximadamente:

- **a)** 10,8.
- **b)** 0,2.
- **c)** 0,9.
- **d)** 1,0.
- **e)** 5,2.



3. Os avanços nas técnicas observacionais têm permitido aos astrônomos rastrear um número crescente de objetos celestes que orbitam o Sol. A figura mostra, em escala arbitrária, as órbitas da Terra e de um cometa (os tamanhos dos corpos não estão em escala). Com base na figura, analise as afirmações:



- I. Dada a grande diferença entre as massas do Sol e do cometa, a atração gravitacional exercida pelo cometa sobre o Sol é muito menor que a atração exercida pelo Sol sobre o cometa.
- II. O módulo da velocidade do cometa é constante em todos os pontos da órbita.
- III. O período de translação do cometa é maior que um ano terrestre.

Está(ão) correta(s)

- a) apenas I.
- b) apenas III.
- c) apenas I e II.
- d) apenas II e III.
- **e)** I, II e III.



- 4. Muitos ainda acreditam que como a órbita da Terra em torno do Sol é uma elipse e o Sol não está no centro dessa elipse, as estações do ano ocorrem porque a Terra ora fica mais próxima do Sol, ora mais afastada. Se isso fosse verdade, como se explica o fato de o Natal ocorrer numa época fria (até nevar) nos países do hemisfério norte e no Brasil ocorrer numa época de muito calor? Será que metade da Terra está mais próxima do Sol e a outra metade está mais afastada? Isso não faz sentido. A existência das estações do ano é mais bem explicada
  - pelo fato de o eixo imaginário de rotação da Terra ser perpendicular ao plano de sua órbita ao redor do Sol.
  - **b)** pelo fato de em certas épocas do ano a velocidade de translação da Terra ao redor do Sol ser maior do que em outras épocas.
  - c) pela inclinação do eixo imaginário de rotação da Terra em relação ao plano de sua órbita ao redor do Sol.
  - d) pela velocidade de rotação da Terra em relação ao seu eixo imaginário não ser constante.
  - pela presença da Lua em órbita ao redor da Terra, exercendo influência no período de translação da Terra ao redor do Sol.
- **5.** A figura abaixo representa o Sol, três astros celestes e suas respectivas órbitas em torno do Sol: Urano, Netuno e o objeto na década de 1990, descoberto, de nome 1996 TL<sub>66</sub>.



Analise as afirmativas a seguir:

- Essas órbitas são elípticas, estando o Sol em um dos focos dessas elipses.
- **II.** Os três astros representados executam movimento uniforme em torno do Sol, cada um com um valor de velocidade diferente do dos outros.
- III. Dentre os astros representados, quem gasta menos tempo para completar uma volta em torno do Sol é Urano.

#### Indique:

- a) se todas as afirmativas são corretas.
- **b)** se todas as afirmativas são incorretas.
- c) se apenas as afirmativas I e II são corretas.
- d) se apenas as afirmativas II e III são corretas.
- e) se apenas as afirmativas I e III são corretas.



- **6.** Um satélite de telecomunicações está em sua órbita ao redor da Terra com período T. Uma viagem do Ônibus Espacial fará a instalação de novos equipamentos nesse satélite, o que duplicará sua massa em relação ao valor original. Considerando que permaneça com a mesma órbita, seu novo período T' será:
  - **a)** T' = 9T.
  - **b)** T' = 3T.
  - c) T' = T.
  - **d)** T' = T/3.
  - **e)** T' = T/9.
- 7. A força de atração gravitacional entre dois corpos de massas M e m, separados de uma distância d, tem intensidade F. Então, a força de atração gravitacional entre dois outros corpos de massas M/2 e m/2, separados de uma distância d/2, terá intensidade:
  - a) F/4
  - **b)** F/2
  - **c)** F
  - **d)** 2F
  - e) 4F
- **8.** O planeta Vênus descreve uma trajetória praticamente circular de raio 1,0x10<sup>11</sup> m ao redor do Sol. Sendo a massa de Vênus igual a 5,0x10<sup>24</sup> kg e seu período de translação 224,7 dias (2,0x10<sup>7</sup> segundos), podese afirmar que a força exercida pelo Sol sobre Vênus é, em newtons, aproximadamente:
  - a) 5,0x10<sup>22</sup>.
  - **b)**  $5.0 \times 10^{20}$ .
  - c)  $2,5x10^{15}$ .
  - **d)**  $5.0 \times 10^{13}$ .
  - **e)** 2,5x10<sup>11</sup>.
- **9.** Um planeta orbita uma estrela, descrevendo trajetória circular ou elíptica. O movimento desse planeta em relação à estrela:
  - a) não pode ser uniforme;
  - **b)** pode ser uniformemente variado;
  - c) pode ser harmônico simples;
  - **d)** tem características que dependem de sua massa, mesmo que esta seja desprezível em relação à da estrela;
  - e) tem aceleração exclusivamente centrípeta em pelo menos dois pontos da trajetória.



**10.** Na situação esquematizada na figura, os corpos <sub>P</sub>1 e P<sub>2</sub> estão fixos nas posições indicadas e suas massas valem 8M e 2M, respectivamente.



Deve-se fixar no segmento que une  $P_1$  a  $P_2$  um terceiro corpo  $P_3$ , de massa M, de modo que a força resultante das ações gravitacionais dos dois primeiros sobre este último seja nula. Em que posição deve-se fixar  $P_3$ ?

- **a)** A.
- **b)** B.
- **c)** C.
- **d)** D.
- **e)** E.



#### Gabarito

1. B

O fenômeno descrito depende também da posição relativa entre os corpos celestes, ou seja, do movimento de translação da Terra em torno do Sol.

2. A

A razão (r) pedida é:

$$r = \frac{D_J}{D_T} = \frac{140.000}{13.000} = \frac{140}{13} \quad \Rightarrow \qquad \boxed{ r \cong 10.8. }$$

3. B

[I] INCORRETA. Pelo Princípio da Ação-Reação, essas forças têm a mesma intensidade.

[II] INCORRETA. De acordo com a 2ª Lei de Kepler, se a trajetória do cometa é elíptica, seu movimento é acelerado quando ele se aproxima do Sol e, retardado, quando se afasta.

[III] CORRETA. A 3ª Lei de Kepler garante que corpos mais afastados do Sol têm maior período de translação.

4. C

A existência das estações é devido à inclinação do eixo de rotação da Terra em relação ao plano da eclíptica.

5. E

(I) Correta.1ª Lei de Kepler.

(II) Incorreta.

Os movimentos são variados.

(III) Correta.

Quanto menor for o raio médio de órbita, menor será o período de revolução (3ª Lei de Kepler).

6. C

O período de revolução do referido satélite só depende da massa da Terra.

7. C

1º caso: 
$$F = G \frac{M m}{d^2}$$
  
2º caso:  $F' = G \frac{\frac{M}{2} \cdot \frac{M}{2}}{\left(\frac{d}{2}\right)^2}$   
 $F' = \frac{4}{4} G \frac{M m}{d^2} \Rightarrow F' = F$ 



8. A

$$F = F_{cp} \Rightarrow F = M\omega^{2} R$$

$$F = m \left(\frac{2 \pi}{T}\right)^{2} R$$

Sendo m = 5,0  $\cdot$  10<sup>24</sup> kg, T = 2,0  $\cdot$  10<sup>7</sup>s, R = 1,0  $\cdot$  10<sup>11</sup> e adotando-se  $\pi \simeq$  3,1, obtém-se:

$$F = 5.0 \cdot 10^{24} \left( \frac{2 \cdot 3.1}{2.0 \cdot 10^7} \right) 1.0 \cdot 10^{11} \text{ (N)}$$

9. E

Se a trajetória for circular, a aceleração será exclusivamente centrípeta ao longo de toda a circunferência e, se for elíptica, a aceleração será exclusivamente centrípeta apenas no afélio e no periélio.

10. D

Sendo d a distância entre as posições d e P, e P, tem-se:

$$F_{1,3} = F_{2,3}$$

$$G \frac{8 M \cdot M}{d^2} = G \frac{2 M \cdot M}{(6x-d)^2}$$

$$\left(\frac{d}{6x-d}\right)^2 = 4 \Rightarrow \frac{d}{6x-d} = 2$$

$$d = 12x - 2d \Rightarrow 3d = 12x$$

$$d = 4x \text{ (ponto D)}$$