# Machine Learning

Lecture 18-19: Clustering

COURSE CODE: CSE451

2021

## Course Teacher

#### **Dr. Mrinal Kanti Baowaly**

**Associate Professor** 

Department of Computer Science and Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh.

Email: baowaly@gmail.com



# What is Unsupervised Learning?

- Unsupervised learning is where you only have unlabeled input data (X) and allow the algorithm to work on its own to discover the interesting structure or pattern in the data.
- These are called unsupervised learning because unlike supervised learning there is no correct answers and there is no teacher (i.e., learning from the labeled training data).
- Unsupervised learning problems can be further grouped into clustering and association rule mining.

# What is Unsupervised Learning?

- Unsupervised learning is where you only have unlabeled input data (X) and allow the algorithm to work on its own to discover the interesting structure or pattern in the data.
- These are called unsupervised learning because unlike supervised learning there is no correct answers and there is no teacher (i.e., learning from the labeled training data).
- Unsupervised learning problems can be further grouped into clustering and association rule mining.

# What are the differences between supervised and Unsupervised Learning?



# What is Cluster Analysis / Clustering?

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



# Clustering (cont.)

- Cluster: a collection of data objects in which objects are similar to one another within the same cluster and dissimilar to the objects in other clusters.
- Good Clustering: produces high quality clusters in which intracluster similarity is high and inter-cluster similarity is low.

# Factors that affect quality of clustering

- Similarity/distance measure and its implementation
- Definition and representation of cluster chosen
- Clustering algorithm

## Applications of Clustering

- Customer Segmentation: This strategy is across functions, including banking, telecom, e-commerce, sports, advertising, sales, etc.
- Document Clustering: Cluster similar documents together
- Image Clustering: You can group similar images together.
- Image Segmentation: You can apply clustering to create clusters having similar pixels in the image together.
- Recommendation Engines: You can look at the songs liked by a person and then use clustering to find similar songs and finally recommend the most similar songs to him.

# Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters

## Types of Clusters: Well-Separated

#### Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.





3 well-separated clusters

## Types of Clusters: Center-Based or Partitioned

#### Center-based or Partitioned Clusters:

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster



4 center-based clusters

## Types of Clusters: Contiguity-Based

Contiguous Clusters (Nearest neighbor or Transitive):

 A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.



## Types of Clusters: Density-Based

#### Density-based clusters:

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.



## Popular Clustering Algorithms

- k-Means Clustering
- Hierarchical Clustering
- DBSCAN Clustering

## k-Means Clustering

- This is a center-based, partitioned clustering technique that attempts to find a user-specified number of clusters (k), which are represented by their centroids.
- The algorithm is simple

## k-Means Algorithm

#### Given k, the k-means algorithm:

Step 1: Select Initial centroids select k initial centroids randomly

Step 2: Relocation assign each object to the nearest centroid

Step 3: Update Centroids

compute mean as the centroids of the clusters of the current partition

Step 4: Go back to Step 2, stop when no more new relocation

# Example: k-Means Clustering



# Animated Example: k-Means Clustering



Source: Andrey A.
Shabalin

## Some issues with k-Means Clustering

- How do we choose the number of clusters k?
  - Try different values of k, evaluate them and choose the best k value.
- How do we choose the initial centroids?
  - Randomly choose k examples (data points) from the dataset as the initial centroids or Randomly choose k points in the dataset space as the initial centroids
- How to assign data points to centroids?
  - Assign each data point to the closest centroid. 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- How do we recompute/update the centroids?
  - Centroid of each cluster is (typically) the mean of the data points in the cluster. If there are n points on a 2D space, the mean calculation looks like:  $\sum_{i=1}^{n} x_i$ ,  $\sum_{i=1}^{n} y_i$

# Evaluating k-Means Clustering

- The basic idea of k-means is to minimize variance or sum of squared errors (SSE) within clusters
  - For each point, the error is the distance to the nearest cluster
  - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

where x is a data point in cluster  $C_i$  and  $m_i$  is the representative point (centroid) for cluster  $C_i$ 

# Stopping Criteria for k-Means Algorithm

- Centroids of newly formed clusters do not change
- No more new relocation i.e., no data points change their cluster location
- Maximum number of iterations are reached

# Strength and weakness of k-Means Clustering

#### Strength

- Relatively efficient: O(tkn), where n is # of objects, k is # of clusters, and t is # of iterations. Normally, k, t << n.
- Often terminates at a local optimum.

#### Weakness

- Applicable only when mean is defined
- Need to specify *k*, the *number* of clusters, in advance.
- Unable to handle noisy data and outliers.
- Cannot handle clusters of different sizes & densities
- Not suitable to discover clusters with non-convex shapes.

# HW: k-Means Clustering Example & Implementation

- K-Means Clustering with Scikit-Learn
- Introduction to K-Means Clustering in Python with scikit-learn
- K-Means Clustering in Python with scikit-learn

## **Hierarchical Clustering**

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits





### **Strengths of Hierarchical Clustering**

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

### **Hierarchical Clustering**

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - ◆ At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - ◆ At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

### **Agglomerative Clustering Algorithm**

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
  - 1. Compute the proximity matrix
  - Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the proximity matrix to reflect the proximity between the new cluster & other clusters
  - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms

#### **Starting Situation**

Start with clusters of individual points and a proximity matrix







#### **Intermediate Situation**

After some merging steps, we have some clusters



#### **Intermediate Situation**

We want to merge the two closest clusters (C2 and C5) and update the proximity

C4

C2

C1

C3

**C5** 

matrix.



#### **After Merging**

The question is "How do we update the proximity matrix?"





|           | р1 | <b>p2</b> | рЗ | p4 | <b>p</b> 5 | <u>.</u> . |
|-----------|----|-----------|----|----|------------|------------|
| p1        |    |           |    |    |            |            |
| <b>p2</b> |    |           |    |    |            |            |
| рЗ        |    |           |    |    |            |            |
| <b>p4</b> |    |           |    |    |            |            |
| р5        |    |           |    |    |            |            |
|           |    |           |    |    |            |            |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|                 | <b>p1</b> | <b>p2</b> | р3 | p4 | <b>p</b> 5 | <u> </u> |
|-----------------|-----------|-----------|----|----|------------|----------|
| <b>p1</b>       |           |           |    |    |            |          |
| <b>p2</b>       |           |           |    |    |            |          |
| р3              |           |           |    |    |            |          |
| p4              |           |           |    |    |            |          |
| <u>p4</u><br>p5 |           |           |    |    |            |          |
|                 |           |           |    |    |            |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error





- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|           | <b>p1</b> | p2 | р3 | p4 | <b>p</b> 5 | <u>.</u> |
|-----------|-----------|----|----|----|------------|----------|
| <b>p1</b> |           |    |    |    |            |          |
| p2        |           |    |    |    |            |          |
| p2<br>p3  |           |    |    |    |            |          |
| <b>p4</b> |           |    |    |    |            |          |
| р5        |           |    |    |    |            |          |
|           |           |    |    |    |            |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

#### **How to Define Inter-Cluster Similarity**





- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

**Proximity Matrix** 

## **Cluster Similarity: MIN or Single Link**

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph.

|    | <b>I</b> 1                           | 12   | <b>I</b> 3 | <b>I</b> 4 | <b>I</b> 5 |
|----|--------------------------------------|------|------------|------------|------------|
| 11 | 1.00                                 | 0.90 | 0.10       | 0.65       | 0.20       |
| 12 | 0.90                                 | 1.00 | 0.70       | 0.60       | 0.50       |
| 13 | 0.10                                 | 0.70 | 1.00       | 0.40       | 0.30       |
| 14 | 0.65                                 | 0.60 | 0.40       | 1.00       | 0.80       |
| 15 | 1.00<br>0.90<br>0.10<br>0.65<br>0.20 | 0.50 | 0.30       | 0.80       | 1.00       |



# **Hierarchical Clustering: MIN**



**Nested Clusters** 

**Dendrogram** 

# **Strength of MIN**



**Original Points** 

**Two Clusters** 

Can handle non-elliptical shapes

#### **Limitations of MIN**





**Original Points** 

**Two Clusters** 

Sensitive to noise and outliers

#### **Cluster Similarity: MAX or Complete Linkage**

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
  - Determined by all pairs of points in the two clusters

|    | <b>I</b> 1                           | <b>l</b> 2 | <b>I</b> 3 | <b>1</b> 4 | <b>I</b> 5 |
|----|--------------------------------------|------------|------------|------------|------------|
| 11 | 1.00                                 | 0.90       | 0.10       | 0.65       | 0.20       |
| 12 | 0.90                                 | 1.00       | 0.70       | 0.60       | 0.50       |
| 13 | 0.10                                 | 0.70       | 1.00       | 0.40       | 0.30       |
| 14 | 0.65                                 | 0.60       | 0.40       | 1.00       | 0.80       |
| 15 | 1.00<br>0.90<br>0.10<br>0.65<br>0.20 | 0.50       | 0.30       | 0.80       | 1.00       |



## **Hierarchical Clustering: MAX**



0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 3 6 4 1 2 5

**Nested Clusters** 

**Dendrogram** 

# **Strength of MAX**



**Original Points** 

**Two Clusters** 

Less susceptible to noise and outliers

#### **Limitations of MAX**



**Original Points** 

**Two Clusters** 

- Tends to break large clusters
- Biased towards globular clusters

#### **Example of Single Link and Complete Link**

# HW: Hierarchical Clustering Example & Implementation

- Hierarchical Clustering with Python and Scikit-Learn
- Scikit-Learn Hierarchical Clustering
- A Beginner's Guide to Hierarchical Clustering and how to Perform it in Python

# Study Materials of Clustering

<u>Lecture Notes for Chapter 7, Introduction to Data Mining by Tan, Steinbach, Kumar</u>

An Introduction to Clustering and different methods of clustering

Getting your clustering right

JavaTpoint: <u>Clustering in Machine Learning</u>, <u>K-Means Clustering Algorithm</u>, <u>Hierarchical Clustering</u>