

Machine Learning

Advice for applying machine learning

Deciding what to try next

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
- Try decreasing λ
- Try increasing λ

Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

Machine Learning

Advice for applying machine learning

Evaluating a hypothesis

Evaluating your hypothesis

Fails to generalize to new examples not in training set.

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size
```

 x_{100}

Evaluating your hypothesis

Dataset:

Size	Price	
2104	400	$(x^{(1)}, y^{(1)})$
1600	330	$(x^{(2)}, y^{(2)})$
2400	369	: :
1416	232	
3000	540	$(x^{(m)}, y^{(m)})$
1985	300	
1534	315	
1427	199	$(x_{test}^{(1)}, y_{test}^{(1)})$
1380	212	$\xrightarrow{(x_{test}, y_{test})} (x_{test}^{(2)}, y_{test}^{(2)})$
1494	243	:
		$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Training/testing procedure for linear regression

- Learn parameter θ from training data (minimizing training error $J(\theta)$)

- Compute test set error:

Training/testing procedure for logistic regression

- Learn parameter heta from training data
- Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

- Misclassification error (0/1 misclassification error):

Machine Learning

Advice for applying machine learning

Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \dots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Model selection

- 1. $h_{\theta}(x) = \theta_0 + \theta_1 x$
- 2. $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
- 3. $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$
 - •
- **10.** $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

Choose $\theta_0 + \dots \theta_5 x^5$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter (d = degree of polynomial) is fit to test set.

Evaluating your hypothesis

Dataset:

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

 $(x^{(1)}, y^{(1)})$

 $(x^{(2)}, y^{(2)})$

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model selection

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

:

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$

Machine Learning

Advice for applying machine learning

Diagnosing bias vs. variance

Bias/variance

High bias (underfit)

"Just right"

High variance

(overfit)

 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

Andrew Ng

Bias/variance

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Training error: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

Variance (overfit):

Machine Learning

Advice for applying machine learning

Regularization and bias/variance

Linear regression with regularization

"Just right"

 $\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$ $h_{\theta}(x) \approx \theta_0$

High bias (underfit)

High variance (overfit)

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_j^2$$

- 1. Try $\lambda = 0$
- 2. Try $\lambda = 0.01$
- 3. Try $\lambda = 0.02$
- 4. Try $\lambda = 0.04$
- 5. Try $\lambda = 0.08$
 - •
- **12.** Try $\lambda = 10$

Pick (say) $\theta^{(5)}$. Test error:

Bias/variance as a function of the regularization parameter λ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

Machine Learning

Advice for applying machine learning

Learning curves

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1\\m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

Machine Learning

Advice for applying machine learning

Deciding what to try next (revisited)

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc})$
- Try decreasing λ
- Try increasing λ

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting)

Computationally more expensive.

Use regularization (λ) to address overfitting.