Masterarbeit

Inhaltsverzeichnis

I. Überblick	
1. Punktwolke	2
2. Daten	2
3	2
II. Berechnung	
1. Ablauf	2
2. Separierung in Bäume	2
3. Segmentierung von einem Baum	
4. Baumeigenschaften	
4.1. Krümmung	
4.2. Punkthöhe	
4.3. Varianz in Scheibe	3
4.4	3
5. Eigenschaften für Visualisierung	
5.1. Normale	3
5.2. Punktgröße	3
5.2.1. Detailstufe	3
6. Baumart	3
III. Meshing	
IV. Visualisierung	
1. Technik	2
2. Punkt	
3. Dynamische Eigenschaft	
3.1. Lookup Table	
4. Subpunktwolken (Bäume)	
4.1. Selektion (Raycast)	
5. Eye Dome	
6. LOD Octree	
6.1. Kostenbudget?	
7. Kamera/Projektion	
7.1. Kontroller	
7.1.1. Orbital	
7.1.2. First person	5
7.2. Projektion	
7.2.1. Perspektive	
7.2.2. Orthogonal?	
8. Bedienung/Interface	5

I. Überblick

1. Punktwolke

- Menge von Punkten
- · mindestens Position

2. Daten

- Waldstücke
- Deutschland
- · terrestrial und arial
- · zusätzlich manuelle Datenbestimmung
- nur Position bekannt

3. ...

II. Berechnung

1. Ablauf

Als Bild

- 1. Eingabedateien
 - Dateien laden
- 2. Punktmenge
 - · Segmentierung in Bäume, Boden...
- 3. Liste von Bäumen
 - Analyse der Bäume
- 4. Liste von analysierten Bäumen
 - Generierung von Octree
- 5. Octree + LOD für Visualisierung

getrennte Phasen (Phase ist in sich parallelisiert)

- 1. Laden der Dateien
- 2. Segmentierung
- 3. Analyse + Generierung

2. Separierung in Bäume

• ?

3. Segmentierung von einem Baum

• ?

4. Baumeigenschaften

4.1. Krümmung

- 1. Hauptkomponentenanalyse
 - λ_i mit $i \in \mathbb{N}_0^2$ und $\lambda_i > \lambda_j$ wenn i > j

2.
$$c \frac{3\lambda_2}{\lambda_0 + \lambda_1 + \lambda_2}$$
• $c \in [0, 1]$

4.2. Punkthöhe

1.
$$h = \frac{p_y - y_{\min}}{y_{\max} - y_{\min}}$$
•
$$h \in [0, 1]$$

4.3. Varianz in Scheibe

- 1. 5 cm Scheiben
- 2. geometrischen Schwerpunkt berechnen
- 3. Varianz *v* berechnen
- 4. $x = \frac{v_i}{v_{\text{max}}}$ • $x \in [0, 1]$

4.4. ...

5. Eigenschaften für Visualisierung

5.1. Normale

- 1. Hauptkomponentenanalyse
- 2. Eigenvektor für λ_2

5.2. Punktgröße

- 1. Durchschnittliche Abstand zu umliegenden Punkten
- 2. Ausgleichsfaktor?

5.2.1. Detailstufe

- 1. Grid
 - Größe abhängig von Leafgröße, wird gröber für größere Blätter
- 2. Kombination von Punkten
 - · Größe als Fläche addieren
 - Normale Durchschnitt
 - Position durchschnitt
 - · Eigenschaften?

6. Baumart

• ?

III. Meshing

• ?

IV. Visualisierung

1. Technik

- Rust
- WebGPU (wgpu)

- native Window (website?)
- LAS/LAZ

2. Punkt

- Instancing
- quad rect
- Ausdehnung mit Normale
- Discard mit Distanz für Kreis (Kreisfläche)

3. Dynamische Eigenschaft

3.1. Lookup Table

4. Subpunktwolken (Bäume)

4.1. Selektion (Raycast)

5. Eye Dome

- 1. Post processing
- 2. depth image
- 3. anliegender Pixel mit maximalem Abstand 1. (-1,0), (0,-1), (1,0), (0,1)
- 4. Parameter *m*
- 5. $x = \frac{\text{maximaler abstand}}{m}$

- 6. auf [0, 1] beschränken
- 7. Parameter color?
- 8. Pixel mit color und x als α überlagern

6. LOD Octree

- 1. (Octree begriffe in English)
- 2. Octree mit maximaler Blattgröße 1 ≪ 15? (32k)
- 3. Blätter mit mehr Punkten werden in 8 Kinderknoten geteilt
 - Punkte auf Kinder verteilen
- 4. non Leaf Knoten wird LOD aus Kindern berechnet
 - 1. Punkte kombinieren
 - 2. Für Eigenschaften wert von einem Punkt übernehmen
- 5. rekursiv von Kindern bis zum Root
- 6. Beim rendern für entferne Punkte nur Lod Stufe verwenden
 - 1. je näher so genauere LOD Stufe

6.1. Kostenbudget?

- · Anpassung der Genauigkeit
 - Verringerung des Aufwands

7. Kamera/Projektion

7.1. Kontroller

7.1.1. Orbital

7.1.2. First person

7.2. Projektion

7.2.1. Perspektive

• FOV

7.2.2. Orthogonal?

8. Bedienung/Interface

• ?