Homework 9

Aleck Zhao

April 14, 2017

• Let F be a field, and define projective n-space $\mathbb{P}^n(F)$ to be the set of 1-dimensional F-subspaces in F^{n+1} . Give a group G and a G-set X such that the set of orbits for the action is in natural bijection with $\mathbb{P}^n(F)$. When F is a finite field with q elements, deduce from this that

$$\#\mathbb{P}^n(F) = \frac{q^{n+1}-1}{q-1}$$

Section 10.1: Galois Groups and Separability

- 2. Prove: If $E \supseteq F$ are fields, $G = \operatorname{Aut}_F(E), u \in E$, and $\sigma \in G$, then
 - (1) $\sigma[f(u)] = f[\sigma(u)]$ for all $f \in F[x]$.
 - (2) In particular, if u is a root of f, then $\sigma(u)$ is also a root of f.
 - (3) If u is algebraic over F, and $\sigma, \tau \in \operatorname{Aut}_F(F(u))$, then $\sigma = \tau$ if an only if $\sigma(u) = \tau(u)$.
- 13. If $E = \mathbb{Q}(\sqrt[4]{2}, i)$, show that $\operatorname{Aut}_{\mathbb{Q}}(E) \cong D_4$.
- 20. Let F = K(t) denote the field of rational forms over a field K in an indeterminate t. Show that $x^2 t$ is irreducible over F but is not separable if char K = 2.
- 22. (a) Show that the following are equivalent for a polynomial $f \in F[x;]$.
 - (1) f has no repeated root in any extension field of f.
 - (2) f has no repeated root in some splitting field over F.
 - (3) f and f' are relatively prime in F[x].
 - (b) If f is as in (a), show that f is separable, but not conversely.
- 25. If $E \supseteq F$ and $f \in F[x]$ is separable over F, show that f is separable over E.
- 26. If $E \supseteq K \supseteq F$ and $E \supseteq F$ is a separable extension, show that both $E \supseteq K$ and $E \supseteq F$ are separable extensions.
- 27. Let F have characteristic p. If $f = x^p a$ where $a \in F$, show that f is irreducible or a power of a linear polynomial. (Hint: Lemma 5 and Theorem 4)