T320 - Introdução ao Aprendizado de Máquina II:

Redes Neurais Artificiais (Parte II)

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Fizemos uma analogia entre um neurônio e os modelos de McCulloch e Pitts e do Perceptron.
- Vimos a evolução do modelo de McCulloch e Pitts para o Perceptron.
- Aprendemos suas características, diferenças e como ambos funcionam.
- Verificamos que um Perceptron é semelhante ao regressor logístico.
- Constatamos que um único Perceptron não é capaz de separar classes não-lineares, como por exemplo, o problema do XOR.
- Porém, quando combinamos vários deles, conseguimos criar um separador não-linear.
- Neste tópico, veremos que esta união de Perceptrons origina o que chamamos de *redes neurais artificiais*.

- Em termos gerais, uma *rede neural* nada mais é do que uma coleção de *neurônios* conectados entre si através de *ligações direcionadas* (ou seja, as conexões têm uma direção associada).
- As propriedades da rede neural são determinadas por sua topologia e pelas propriedades dos neurônios (e.g., função de ativação e pesos).
- Algumas das limitações dos perceptrons (e.g., classificação apenas de classes linearmente separáveis) podem ser eliminadas adicionando-se camadas intermediárias (também chamadas de ocultas ou escondidas) de perceptrons.
- A RNA resultante é denominada *Perceptron de Múltiplas Camadas* (do inglês, *Multilayer Perceptron* MLP).

Cada ligação tem um peso (sináptico) associado.

Nó, unidade ou neurônio.

→ Ligação entre i-ésimo e j-ésimo nó.

 $W_{i,j}$ Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

OBS.: Neurônios também são chamados de *nós* ou *unidades*.

- Uma rede MLP é sempre densamente conectada.
 - Cada nó em uma camada se conecta a cada nó na camada seguinte através de um peso sináptico.
- Um exemplo de rede *MLP com duas camadas* intermediárias é mostrado na figura ao lado.
- As RNAs são o coração do Deep Learning.
 - Quando uma RNA tem duas ou mais camadas escondidas, ela é chamada de rede neural profunda (ou em inglês Deep Neural Network - DNN).
- **OBS**.: Em particular, uma MLP pode resolver o problema do XOR.
 - Lembrem-se que um único perceptron não é capaz de realizar essa tarefa.

Cada ligação tem um peso

Nó, unidade ou neurônio.

Ligação entre i-ésimo e i-ésimo nó.

 $W_{i,i}$ Peso da ligação entre i-ésimo e j-ésimo nó.

- A *camada de entrada* é o ponto de transferência dos *atributos* à rede.
- As *camadas intermediárias* realizam *mapeamentos não-lineares* que, idealmente, vão tornando a informação contida nos dados mais *"explícita"* do ponto de vista da tarefa que se deseja realizar.
 - Os mapeamentos são não-lineares devido às funções de ativação utilizadas não serem lineares, e.g., função logística, tangente hiperbólica, etc.
- Por fim, os *neurônios* da *camada de saída combinam a informação* que lhes é *oferecida pela última camada intermediária* para formar as saídas.
- Redes MLPs são formadas por múltiplas camadas de *Perceptrons*:
 - Portanto, tais redes têm por base o *modelo de neurônio do Perceptron*.
- Esse modelo, discutido anteriormente, é mostrado na figura seguinte.

- A *ligação* do *nó* i para o *nó* j é feita através do *peso* w_{ij} e serve para *propagar* o sinal de ativação do *nó* i para o *nó* j.
- O valor do *peso* determina a *força* e o *sinal* da *ligação*.
- Cada $n\acute{o}$ tem a entrada x_0 (o atributo de bias) sempre com valor igual a 1 e um peso associado w_{0j} .
 - Ou seja, esta entrada não está conectada a nenhum outro nó.
- Cada nó j, calcula a soma ponderada de suas entrada da seguinte forma

$$g(\mathbf{x}) = \sum_{i=0}^K w_{ij} x_i.$$

• Em seguida, o $n\acute{o}$ aplica uma função de ativação (i.e., de limiar), f(.), ao somatório acima para obter sua saída

$$y_j = f(g(\mathbf{x})) = f(\sum_{i=0}^N w_{ij} x_i) = f(\mathbf{w}^T \mathbf{x}).$$

- Existem vários tipos de funções de ativação que podem ser utilizadas pelos nós de uma rede MLP.
- Cada camada pode usar funções de ativação diferentes, mas a mesma camada usa a mesma função, em geral.

$$y_j = f(g(\textbf{\textit{x}})) = f\big(\textstyle\sum_{i=0}^K w_{ij}x_i\big),$$
 onde x_i é a saída do nó i e w_{ij} é o peso conectando a saída do nó i para este nó, o nó j .

- Devido suas características, não se utiliza a *função degrau* como função de ativação em MLPs.
 - Derivada sempre igual a zero, exceto na origem, onde é indeterminada.
- Até o surgimento das redes neurais profundas, a regra era utilizar as funções logística ou tangente hiperbólica, que são versões suavizadas da função degrau.
 - Essas funções *possuem derivada definida e diferente de 0 em todos os pontos*.
- A *função logística* tem a seguinte expressão:

$$y_j = f(z_j) = \frac{e^{z_j}}{e^{z_j} + 1} = \frac{1}{1 + e^{-z_j}},$$

onde z_i é a **combinação linear das entradas do nó**, i.e., g(x).

• Sua derivada é dada por

$$\frac{dy_j}{dz_i} = \frac{df(z_j)}{dz_i} = y_j(1 - y_j) \ge 0.$$

• A derivada será importante durante o processo de aprendizado da rede neural.

- A *função logística* e sua derivada são mostradas nas figuras abaixo.
- Percebam que o valor da derivada, d, sempre será menor do que 1, sendo no máximo igual a 0.25.

• Na sequência, veremos que isso causa um problema no aprendizado de redes com muitas camadas, i.e., redes profundas.

• A função tangente hiperbólica tem sua expressão dada por:

$$y_j = f(z_j) = \tanh(z_j) = \frac{e^{z_j} - e^{-z_j}}{e^{z_j} + e^{-z_j}}.$$

• Sua derivada é dada por

$$\frac{dy_j}{dz_j} = \frac{df(z_j)}{dz_j} = 1 - \tanh^2(z_j) > 0.$$

A derivada é no máximo igual a 1 quando z, g(x), é exatamente igual a 0.

• A função e sua derivada são mostradas nas figuras abaixo.

- É um problema encontrado quando treinamos *redes neurais profundas*, ou seja, com muitas camadas escondidas, com *métodos de aprendizado baseados no gradiente* e *funções de ativação sigmoide ou tangente hiperbólica*.
- Ocorre devido à natureza do *algoritmo de retropropagação*, que é usado para treinar a rede neural.
 - Para atualizar os pesos de nós das camadas ocultas, calcula-se a derivada do erro de saída em relação àquele peso e, para isso, usamos a regra da cadeia.

 Ou seja, o algoritmo propaga o erro de saída para as camadas ocultas usando a regra da cadeia.

- Lembrem-se que as funções de ativação como tangente hiperbólica ou logística, têm gradientes (i.e., derivadas parciais) no intervalo de 0 até 1.
- Durante o treinamento, para atualizar os pesos de cada camada da *rede neural*, o *algoritmo de retropropagação* calcula os gradientes das camadas ocultas através do uso da *regra da cadeia* (exemplo abaixo).

$$\frac{\partial y}{\partial x} = \frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x))}{\partial y} = \frac{\partial f(g(h(x)))}{\partial y} = \frac{\partial f(g(h(x))}{\partial y} = \frac{\partial f(g(h(x))}{$$

 Em outras palavras, devido à regra da cadeia, o gradiente para a atualização dos pesos de uma dada camada da rede neural inclui o produto das derivadas das funções de ativação desde a camada de saída até a camada desejada.

- Em uma rede com M camadas, a retropropagação tem o efeito de multiplicar M valores pequenos para calcular os gradientes das primeiras camadas.
- O que significa que o gradiente diminui exponencialmente com <math>M.

• Isso significa que os *nós das camadas iniciais aprendem muito mais* lentamente do que os nós das camadas finais, pois o valor do gradiente é muito pequeno, fazendo com que a atualização dos pesos também seja pequena (i.e.,

lenta).

Exemplo: Dissipação do Gradiente

$$x = \underbrace{w_1}_{f(.)} \underbrace{f(.)}_{v_2} \underbrace{f(.)}_{f(.)} \xrightarrow{\hat{y}}$$

Considerações:

- 2 x Perceptrons com função de ativação sigmoide, f(.).
- Minimização do erro quadrático médio, $J_e = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) y(i))^2$.
- $g_1 = xw_1 \rightarrow \text{entrada do primeiro perceptron.}$
- $a_1 = f(xw_1) \rightarrow \text{sa\'ida do primeiro perceptron.}$
- $g_2 = a_1 w_2 = f(xw_1)w_2 \rightarrow \text{entrada do segundo perceptron.}$
- $\hat{y} = f(f(xw_1)w_2) \rightarrow \text{sa\'ida do segundo perceptron.}$
- As *regras de atualização* dos dois pesos são dadas por

$$w_2 = w_2 - \frac{\partial J_e}{\partial w_2}$$
, onde $\frac{\partial J_e}{\partial w_2} = \frac{\partial J_e}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial g_2} \frac{\partial g_2}{\partial w_2}$,

$$w_1 = w_1 - \frac{\partial J_e}{\partial w_1}$$
, onde $\frac{\partial J_e}{\partial w_1} = \frac{\partial J_e}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial g_2} \frac{\partial g_2}{\partial a_1} \frac{\partial a_1}{\partial g_1} \frac{\partial g_1}{\partial w_1}$

onde $\frac{\partial J_e}{\partial w_1}$ e $\frac{\partial J_e}{\partial w_2}$ são obtidos com a regra da cadeia.

Derivadas da função de ativação.

- Com o surgimento das *redes neurais profundas*, uma outra função, conhecida como *função retificadora*, passou a ser a bastante utilizada por questões *numéricas* e *computacionais*.
- A *função retificadora* tem sua expressão dada por

$$y_j = f(z_j) = \max(0, z_j).$$

• Sua derivada é dada por

$$\frac{dy_j}{dz_j} = \frac{df(z_j)}{dz_j} = \begin{cases} 0, \text{ se } z_j < 0 \\ 1, \text{ se } z_j > 0 \end{cases}$$
 Função degrau

e é indefinida para $z_j = 0$, porém o valor da derivada em zero pode ser arbitrariamente escolhido como 0 ou 1.

- Um nó que emprega uma função de ativação retificadora é chamado de rectified linear unit (ReLU)
- A *função retificadora* e sua derivada são mostradas nas figuras ao lado.

- Vantagens da *função retificadora*:
 - A função e sua derivada são mais rápidas de se calcular do que as funções sigmóide e tangente hiperbólica.
 - Não sofre com o *problema da dissipação do gradiente*, pois seu gradiente é igual a 0 ou 1. O produto da derivada da função de ativação de várias camadas sempre será igual a 1 ou 0.
- Desvantagem
 - O nó é considerado morto quando o gradiente é igual a 0, pois os valores dos pesos permanecem inalterados (i.e., não há atualização).
- Outras funções de ativação são:
 - Parametric rectified linear unit (PReLU).
 - Leaky rectified linear unit (Leaky ReLU).
 - https://en.wikipedia.org/wiki/Activation function#Table of activation functions

Ambas têm gradiente diferente de zero para $z_j < 0$.

Tarefa

• Quiz: "T320 - Quiz — Redes Neurais Artificiais (Parte III)" que se encontra no MS Teams.

Conectando Neurônios

- Existem basicamente duas maneiras distintas para se conectar os nós de uma rede, direta e reversa.
- Na figura ao lado, os nós da rede têm conexões em apenas uma única direção.
- Esse tipo de rede é conhecida como *rede de alimentação direta* (do inglês, *feedforward*) ou *sem realimentação*.
- O sinal percorre a rede em uma única direção, da entrada para a saída.
- Os *nós* da mesma camada *não são conectados entre si*.
- Esse tipo de rede representa uma *função de suas entradas atuais* e, portanto, não possui um estado interno além dos próprios pesos.

Conectando Neurônios

- Na figura ao lado, os nós da rede têm conexões em 2 direções, desta forma, o sinal percorre a rede nas direções direta e reversa.
- Este tipo de rede é conhecida como *rede recorrente* ou *rede com realimentação*.
- Nessas redes, a saída dos *nós* alimentam *nós* da mesma camada (inclusive o próprio *nó*) ou de camadas anteriores.
- Isso significa que a rede forma um *sistema dinâmico* que pode atingir um estado estável, exibir oscilações ou mesmo um comportamento caótico, ou seja, divergir.
- Além disso, a saída da rede é função da entrada atual e de seu estado interno, ou seja, de entradas anteriores.
- Portanto, *redes recorrentes* possuem memória.
- Essas redes são úteis para o processamento de dados sequenciais, como som, dados de séries temporais (preços de ações, padrões cerebrais, etc.) ou linguagem natural (escrita e fala).

Regressão Não-Linear

escondida

saída

Entrada

- A rede MLP ao lado tem sua saída definida por

 $y=fig(m{w}^T f(m{W}^T m{x}) ig),$ onde f(.) é a **função de ativação** escolhida, $m{W}=egin{bmatrix} w_{11} & w_{12} \ w_{21} & w_{22} \end{bmatrix}$ e $m{w}=m{w}_1 \ w_2 \end{bmatrix}.$

- Percebam que a saída da rede é dada pelo *aninhamento* das saídas de *funções de ativação* não-lineares.
- Sendo assim, as funções que uma rede neural pode representar podem ser *altamente não-lineares* dependendo da quantidade de camadas e nós.
- Portanto, redes neurais podem ser vistas como ferramentas para a realização de *regressão* não-linear, mas também podemos resolver outros problemas como os de classificação.
- Com uma única camada oculta suficientemente grande, é possível representar *qualquer função contínua* das entradas com uma precisão arbitrária (depende da topologia).
- Com duas camadas ocultas, até funções descontínuas podem ser representadas.
- Portanto, dizemos que as redes neurais possuem *capacidade de aproximação universal* de funções.
- Veremos alguns exemplos desta capacidade de aproximação a seguir.

Aproximação universal de funções

- Fig. 1: Um nó aproxima uma função de limiar suave.
- Fig. 2: Combinando duas funções de limiar suave com direções opostas, podemos obter uma função em formato de onda.
- Fig. 3: Combinando duas ondas perpendiculares, nós obtemos uma função em formato cilíndrico.

Função XOR: MLP com 1

Exemplo: FunctionApproximationWithMLP.ipynb

Aproximação universal de funções

 Redes neurais podem ser usadas para aproximar funções como as mostradas abaixo:

•
$$f(x) = x^2, -1 \le x \le 1$$
,

•
$$f(x) = \frac{1}{x}, 1 \le x \le 100,$$

•
$$f(x) = \sin(x)$$
, $1 \le x \le 2\pi$.

Exemplo: function approximation.ipynb

0.25

> 0.00 -0.25 -0.50 -0.75 -1.00

Tarefas

- Quiz: "T320 Quiz Redes Neurais Artificiais (Parte IV)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #7.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser feitos em grupo, mas as entregas devem ser individuais.

Obrigado!

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog..

Figuras

- Vamos entender esse problema através de um exemplo.
- Dada a simplificação de uma rede neural mostrada na figura abaixo, a qual contém
 - Três nós com as seguintes funções de ativação h(.), g(.) e f(.).
 - Pesos w, 1 e 1, conectando os três nós, respectivamente.
 - Entrada x = 1.
- Para atualizarmos o valor do peso w com o gradiente descendente, precisamos encontrar a derivada parcial de y em relação à w.
- Para encontrar a derivada, usamos a regra da cadeia

$$\frac{\partial y}{\partial w} = \frac{\partial f(g(h(w)))}{\partial w} = \frac{\partial f(g(h(w)))}{\partial g(h(w))} \frac{\partial g(h(w))}{\partial h(w)} \frac{\partial h(w)}{\partial w}$$

$$x = 1 \xrightarrow{w} h(.) \xrightarrow{1} g(.) \xrightarrow{g(h(w))} f(.) \longrightarrow y = f(g(h(w)))$$

$$x \longrightarrow h(.) \xrightarrow{h(x)} g(.) \xrightarrow{g(h(x))} f(.) \longrightarrow y = f(g(h(x)))$$