DETECTING HORMONALLY ACTIVE COMPOUNDS

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the priority of U.S. provisional patent application number 60/410,414 filed on September 13, 2002.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

The invention was made with U.S. government support under grant number P42 ES07375 awarded by the National Institute of Environmental Health Sciences, and grant numbers CR826357-01-0, ID-5267-NTEX, and OD-5378-NTGX awarded by the Environmental Protection Agency. The U.S. government may have certain rights in the invention.

SEQUENCE LISTING

The present application contains a sequence listing on compact disc which is hereby incorporated herein by reference. The sequence listing file is entitled 5853-238.ST25.txt, contains 427 kilobytes and was created September 15, 2003.

FIELD OF THE INVENTION

The invention relates to the fields of molecular genetics, endocrinology, and toxicology. More particularly, the invention relates to compositions and methods for detecting androgenic/estrogenic agents in the environment and screening candidate agents for androgenic/estrogenic activity.

BACKGROUND OF THE INVENTION

The last decade saw the emergence of the field of endocrine disruption after it was discovered that a variety of anthropogenic chemicals act as weak estrogens. Through their interaction with estrogen receptors (ERs), these endocrine-disrupting compounds (EDCs) can alter normal expression of gene products and proteins at critical times during development and reproduction. Environmental contamination with EDCs is therefore a serious concern.

In an effort to detect EDCs in environmental samples, a number of methods have been developed including both *in vitro* and *in vivo* assays. Available *in vitro* assays include those based on hormone receptor-ligand binding, cell proliferation, and reporter gene expression. Although these are relatively inexpensive and amenable to high

10

15

20

25

30

throughput applications, they provide only limited information about how EDCs affect animals in the environment (see, e.g., Zacharewski T. Environ. Sci. Technol. 31:600-623, 1997; Baker V.A. Toxicol *In vitro* 15:413-419, 2001). *In vivo* exposure assays, on the other hand, provide useful information about whole animal responses to EDCs, but can be more cumbersome and expensive than *in vitro* assays. Moreover, such assays do not provide information about the molecular mechanisms underlying EDC-mediated changes in the animals.

5

10

15

20

25

30

SUMMARY

The invention is based on the discovery of a large number of sheepshead minnow (SHM) and largemouth bass (LMB) genes that are up-regulated or down-regulated in tissues that have been exposed to an estrogenic or androgenic agent. Thus, whether an environmental sample contains an estrogenic or androgenic agent can be determined by examining a fish (or biological sample obtained from the fish) that was exposed to the sample (e.g., a lake or river) for modulation of expression of these genes. A finding that these genes were modulated in the test fish compared to a control fish not exposed to the sample (or an estrogenic or androgenic agent) indicates that the sample contains an estrogenic or androgenic agent. It was also discovered that different classes of estrogenic or androgenic agents modulated expression of the genes in different patterns depending on the class or mechanism of action of the estrogenic or androgenic agent. Thus, the invention can be used to discern that a particular type of estrogenic or androgenic agent is present in the sample. Based on these discoveries, a screening assay to characterize an unknown molecule's hormonal (e.g., estrogenic or androgenic) activity was developed wherein a fish, fish tissue or fish cell is exposed to a test substance and the effect of the substance on gene expression is compared to known patterns of gene up- or down-regulation. On this basis, the agent can be classified as estrogenic or androgenic and is thus determined to be hormonally active.

Accordingly, the invention features a method for detecting the presence of an agent having estrogenic or androgenic activity in a sample (e.g., a water sample). The method includes the steps of: (A) providing at least one (e.g., at least 2, 3, 4, 5, 10, 25, 100) fish cell which was exposed to the sample; (B) analyzing the at least one fish cell for expression of at least one gene wholly or partially encoded by a nucleotide sequence of

SEQ ID NOs: 1-560; and (C) comparing the expression of the at least one gene in the cell compared to the expression of the at least gene in a control cell not exposed to the sample or an agent having estrogenic or androgenic activity. A difference in the expression of the at least one gene in the at least one fish cell compared to the expression of the at least one gene in the control cell indicates that the sample contains an agent having estrogenic or androgenic activity.

In the method, the fish cell can be a large mouth bass cell or a sheep's head minnow cell. It can also be one obtained from a fish that had been exposed to the sample.

5

10

15

20

25

30

Also in the method, the step of analyzing the at least one fish cell for expression of at least one gene (e.g., at least 2, 3, 4, 5, 10, 25, 100) might involve isolating RNA transcripts from the at least one cell, and the step of analyzing the at least one fish cell for expression of at least one gene can include contacting the isolated RNA transcripts or nucleic acids derived therefrom using the isolated RNA transcripts as templates with at least one probe (e.g., at least 2, 3, 4, 5, 10, 25, 100) that hybridizes under stringent hybridization conditions to at least one nucleotide sequence of SEQ ID NOs: 1-560.

The probe can be immobilized on a substrate such as nylon, nitrocellulose, glass, and plastic. It can be on conjugated with a detectable label. In one variation of the method of the invention, the isolated RNA transcripts or nucleic acids derived therefrom are conjugated with a detectable label.

The method of the invention might also include analyzing the control cell not exposed to the sample or an agent having estrogenic or androgenic activity for expression of at least one gene wholly or partially encoded by a nucleotide sequence of SEQ ID NOs: 1-560. In this version of the method, the step of analyzing the control cell for expression of at least one gene can include isolating RNA transcripts from the control cell and contacting the isolated RNA transcripts or nucleic acids derived therefrom using the isolated RNA transcripts as templates with at least one probe (e.g., at least 2, 3, 4, 5, 10, 25, 100) that hybridizes under stringent hybridization conditions to at least one nucleotide sequence (e.g., at least 2, 3, 4, 5, 10, 25, 100) of SEQ ID NOs: 1-560. Also in this version of the method, the RNA transcripts or nucleic acids derived therefrom isolated from the at least one fish cell can be conjugated with a first detectable label and the RNA

3

transcripts or nucleic acids derived therefrom isolated from the control cell are conjugated with a second detectable label differing from the first detectable label.

5

10

15

20

25

30

For example, the method can include isolating RNA transcripts from the at least one fish cell and contacting the RNA transcripts isolated from the at least one fish cell or nucleic acids derived therefrom using the RNA transcripts isolated from the at least one fish cell as templates with at least one molecule that hybridizes under stringent conditions to at least one nucleotide sequence of SEQ ID NOs: 1-560. The at least one probe can be conjugated with a first detectable label and the at least one molecule can be conjugated with a second detectable label differing in chemical structure from the first detectable label. The step of comparing the expression of the at least one nucleic acid in the cell compared to the expression of the at least one nucleic acid in a control cell not exposed to the sample or an agent having estrogenic or androgenic activity may be performed by quantifying the amount of first detectable label associated with the RNA transcripts isolated from the control cell or nucleic acids derived therefrom, and quantifying the amount of second detectable label associated with the RNA transcripts isolated from the at least one fish cell or nucleic acids derived therefrom.

An additional variation of the method of the invention also includes the steps of contacting the fish with the sample; and isolating the at least one fish cell from the fish contacted with the sample.

In another aspect, the invention features a method for determining whether an agent has estrogenic, anti-estrogenic, androgenic or anti-androgenic activity. This method includes the steps of: providing at least one fish cell; contacting the at least one fish cell with the agent; analyzing the at least one fish cell for expression of at least one gene wholly or partially encoded by a nucleotide sequence of SEQ ID NOs: 1-560; and comparing the expression of the at least one gene in the cell compared to the expression of the at least one nucleic acid in a control cell not exposed to the sample or an agent having estrogenic or androgenic activity. A difference in the expression of the at least one nucleic acid in the at least one fish cell compared to the expression of the at least one nucleic acid in the control cell indicates that the agent has estrogenic, anti-estrogenic, androgenic, or anti-androgenic activity.

4

Yet another aspect of the invention is a substrate having immobilized thereon at least one (e.g., at least 2, 3, 4, 5, 10, 25, 100) nucleic acid comprising a nucleotide sequence of SEQ ID NOs: 1-560 and complements thereof.

Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Commonly understood definitions of molecular biology terms can be found in Rieger et al., Glossary of Genetics: Classical and Molecular, 5th edition, Springer-Verlag: New York, 1991; and Lewin, Genes V, Oxford University Press: New York, 1994. Commonly understood definitions of microbiology can be found in Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 3rd edition, John Wiley & Sons: New York, 2002.

By the term "gene" is meant a nucleic acid molecule that codes for a particular protein, or in certain cases a functional or structural RNA molecule.

As used herein, a "nucleic acid" or a "nucleic acid molecule" means a chain of two or more nucleotides such as RNA (ribonucleic acid) and DNA (deoxyribonucleic acid). A "purified" nucleic acid molecule is one that has been substantially separated or isolated away from other nucleic acid sequences in a cell or organism in which the nucleic acid naturally occurs (e.g., 30, 40, 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 100% free of contaminants). The term includes, e.g., a recombinant nucleic acid molecule incorporated into a vector, a plasmid, a virus, or a genome of a prokaryote or eukaryote. Examples of purified nucleic acids include cDNAs, fragments of genomic nucleic acids, nucleic acids produced by polymerase chain reaction (PCR), nucleic acids formed by restriction enzyme treatment of genomic nucleic acids, recombinant nucleic acids, and chemically synthesized nucleic acid molecules. A "recombinant" nucleic acid molecule is one made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.

As used herein, "protein" or "polypeptide" are used synonymously to mean any peptide-linked chain of amino acids, regardless of length or post-translational modification, e.g., glycosylation or phosphorylation.

5

10

15

20

25

30

By the term "estrogenic" is meant acting to produce the effects of an estrogen. An "estrogenic agent" and an "estrogen mimic" is a substance that acts to produce the effects of an estrogen.

As used herein the term "androgenic" means acting to produce the effects of an androgen. An "androgenic agent" and an "androgen mimic" is a substance that acts to produce the effects of an androgen.

5

10

15

20

25

30

When referring to hybridization of one nucleic acid to another, "low stringency conditions" means in 10% formamide, 5X Denhardt's solution, 6X SSPE, 0.2% SDS at 42° C, followed by washing in 1X SSPE, 0.2% SDS, at 50° C; "moderate stringency conditions" means in 50% formamide, 5X Denhardt's solution, 5X SSPE, 0.2% SDS at 42° C, followed by washing in 0.2X SSPE, 0.2% SDS, at 65° C; and "high stringency conditions" means in 50% formamide, 5X Denhardt's solution, 5X SSPE, 0.2% SDS at 42° C, followed by washing in 0.1X SSPE, and 0.1% SDS at 65° C. The phrase "stringent hybridization conditions" means low, moderate, or high stringency conditions.

Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions will control. The particular embodiments discussed below are illustrative only and not intended to be limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a series of macroarrays demonstrating gene expression profiles from SHM exposed to E_2 , 17α -ethynyl estradiol (EE₂), diethylstilbestrol (DES), paranonylphenol (pNP), methoxychlor (MXC), endosulfan (ES) or untreated control fish. Three separate fish were used for each treatment.

FIG. 2 is two graphs showing quantification of the E₂, EE₂, DES, pNP, MXC, ES and control arrays for SHM. Panel A is a plot of the mean ±SEM intensity values for each of the cDNA clones arranged in order of their expression. Panel B is a plot of the mean intensity values for each of the cDNA clones for E₂, EE₂, DES, pNP, ES, or MXC divided by the mean intensity values of the respective cDNA clones for untreated control fish. Any clones above the line labeled 1.66 were considered up-regulated genes, any

clones below the line labeled 0.42 were considered down-regulated genes, and any clones between these lines were considered constitutive. Genes on the macroarray were designated as constitutive if their intensity values fell within the range of the mean plus one standard deviation of the highest and lowest values of the 11 clones that were used to normalize the data.

5

10

15

20

25

30

FIG. 3 is a series of graphs plotting the quantification of the EE_2 dose response arrays for SHM. Each graph contains a plot of a gene whose expression levels significantly changed more then 2-fold at one or more of the three EE_2 concentrations compared to controls as revealed by one way analysis of variance (P<0.05). AMBP= alpha-1-microglobulin/bikunin precursor protein. The data on both axes are plotted using a log_{10} scale.

FIG. 4 shows arrays on a plot for control and E_2 -treated fish and the results from the array analysis. Panels A and B are arrays that were hybridized with RNA from control (triethylene glycol (TEG)-treated) and E_2 -treated SHMs, respectively. Panel C is a plot of the mean intensity value of each cDNA clone on the E_2 -treated blots (N=3) over the mean intensity value of each cDNA clone on the control (TEG treated) blots (N=2). The black circles in panel C represent the 17 cDNA clones that were identified by DD analysis to be constitutive. Any clones above the dotted gray line labeled 1.27 were considered E_2 up-regulated genes, any clones below the dotted gray line labeled 0.83 were considered E_2 down-regulated genes, and any clones between the two gray dotted lines were considered constitutive genes. In panel C, a is transferrin, b is vitellogenin (Vtg) β , c is ZP2, and d is vitellogenin α . There is a break in the graph of panel C from 2 to 10 log (intensity) units.

FIG. 5 is two graphs showing gene expression profiles from control and E_2 -treated male LMB. (A) shows the mean \pm SEM intensity values for each of the cDNA clones arranged in order of their expression (black circles are E_2 , gray circles are control); (B) illustrates the mean intensity values for each of the cDNA clones for E_2 divided by the mean intensity values of the respective cDNA clones from control fish. Any genes outside of the upper and lower solid gray lines in the figure change by more then two-fold and are considered to be up or down-regulated. Genes that exhibited a significant change in expression at P < 0.05 are shown by a double asterisk; whereas genes that exhibited a

7

significant change in expression at P < 0.1 are shown by a single asterisk (t-tests). Three separate fish were used for each treatment. Only genes that were found in at least one of the treatments to be at least three standard deviations from the mean of the 12 ribosomal protein (r-protein) genes used to normalize the data (0.98 ± 0.41) are plotted. AR = androgen receptor, ER = estrogen receptor, and NADH = Nicotinamide Adenine Dinucleotide (reduced form).

FIG. 6 is two graphs showing gene expression profiles from control and 4-NP-treated male LMB. The order of genes in this figure corresponds to the order in Fig. 5.

5

10

15

20

25

30

FIG. 7 is two graphs showing gene expression profiles from control and p, p'-DDE treated male LMB. The order of genes in this figure corresponds to the order in Fig. 5.

FIG. 8 is two graphs showing gene expression profiles from control and p, p'-DDE treated female LMB. The order of genes in this figure corresponds to the order in Fig. 5.

FIG. 9 is a list of genes whose expression is increased or decreased more than two-fold following exposure of LMB to E₂, 4-NP, and p,p'-DDE.

DETAILED DESCRIPTION

The invention is premised in part on the discovery of nucleic acids (e.g., those of SEQ ID NOs:1-560) whose expression is modulated in response to estrogenic/androgenic agents in fish such as SHM and LMB. Several of these nucleic acids were not previously characterized. Thus, the invention includes these nucleic acids, variants of these nucleic acids, proteins encoded by these nucleic acids, antibodies against these proteins, as well as other embodiments that can be made by one of skill in the art having knowledge of these sequences. An important application of the discovery is an assay for detecting modulation of expression of these nucleic acids in order to analyze an environmental sample or uncharacterized sample molecule. Detection of such modulation in a biological sample indicates that the sample or molecule exerts a hormonal activity (e.g., estrogenic or androgenic activity) or an anti-hormonal activity (e.g., anti-estrogenic, anti-androgenic activity).

The below described preferred embodiments illustrate adaptations of these compositions and methods. Nonetheless, from the description of these embodiments,

other aspects of the invention can be made and/or practiced based on the description provided below.

Biological Methods

Methods involving conventional molecular biology techniques are described herein. Such techniques are generally known in the art and are described in detail in methodology treatises such as Molecular Cloning: A Laboratory Manual, 3rd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001; and Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates). Various techniques using PCR are described, e.g., in Innis et al., PCR Protocols: A Guide to Methods and Applications, Academic Press: San Diego, 1990. PCR-primer pairs can be derived from known sequences by known techniques such as using computer programs intended for that purpose (e.g., Primer, Version 0.5, ©1991, Whitehead Institute for Biomedical Research, Cambridge, MA). Methods for chemical synthesis of nucleic acids are discussed, for example, in Beaucage and Carruthers, Tetra. Letts. 22:1859-1862, 1981, and Matteucci et al., J. Am. Chem. Soc. 103:3185, 1981. Chemical synthesis of nucleic acids can be performed, for example, on commercial automated oligonucleotide synthesizers.

Novel Fish Genes

As several new genes were identified and characterized in making the invention, the invention provides several purified nucleic acids from SHM and LMB that are modulated in response to androgenic/estrogenic compounds. SHM nucleic acids of the invention have the nucleotide sequences of SEQ ID NOs: 151-419, while LMB nucleic acids of the invention have the nucleotide sequences of SEQ ID NOs: 1-150, 420-560.

Various assays described herein include a step of analyzing expression of a SHM or LMB gene modulated in response to an estrogenic or androgenic agent. Thus, polynucleotides that preferentially bind to nucleic acids encoded by the gene (e.g., mRNA, cDNA, DNA complements of cDNA, etc.) are also within the invention. Such polynucleotides can have the exact sequence of all or a portion of SEQ ID NOs: 1-560 or the complements of SEQ ID NOs: 1-560. Because hybridization of two nucleic acids does not generally require 100% complementarity, variants of such polynucleotides are

5

10

15

20

25

30

also within the invention. These might include naturally occurring allelic variants of native LMB or SHM nucleic acids or non-naturally occurring variants that show sequence similarity to all or portions of SEQ ID NOs: 1-560 or the complements of SEQ ID NOs: 1-560

5

10

15

20

25

30

Naturally occurring allelic variants of native LMB or SHM nucleic acids within the invention are nucleic acids isolated from LMB and SHM that have at least 75% (e.g., 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99%) sequence identity with native LMB and SHM nucleic acids, and encode polypeptides having at least one functional activity in common with LMB and SHM polypeptides. Homologs of native LMB and SHM nucleic acids within the invention are nucleic acids isolated from other species (e.g., other fish species) that have at least 75% (e.g., 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99%) sequence identity with native LMB and SHM nucleic acids, and encode polypeptides having at least one functional activity in common with native LMB and SHM polypeptides. Naturally occurring allelic variants of LMB and SHM nucleic acids and homologs of LMB and SHM nucleic acids can be isolated by using a library screen, other assays described herein, or other techniques known in the art. The nucleotide sequence of such homologs and allelic variants can be determined by conventional DNA sequencing methods. Alternatively, public or non-proprietary nucleic acid databases can be searched to identify other nucleic acid molecules (e.g., nucleic acids from other species) having a high percent (e.g., 70, 80, 90% or more) sequence identity to native LMB and SHM nucleic acids.

Non-naturally occurring LMB and SHM nucleic acids variants are nucleic acids that do not occur in nature (e.g., are made by the hand of man), have at least 75% (e.g., 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99%) sequence identity with native LMB and SHM nucleic acids, and encode polypeptides having at least one functional activity in common with native LMB and SHM polypeptides. Examples of non-naturally occurring LMB and SHM nucleic acids are those that encode a fragment of an LMB or SHM protein, those that hybridize to native LMB and SHM nucleic acids or a

complement of native LMB and SHM nucleic acids under stringent conditions, those that share at least 65% sequence identity with native LMB and SHM nucleic acids or a complement of native LMB and SHM nucleic acids, and those that encode an LMB or SHM fusion protein.

5

10

15

20

25

30

Nucleic acids encoding fragments of LMB and SHM polypeptides within the invention are those that encode, e.g., 2, 5, 10, 25, 50, 100, 150, 200, 250, 300, or more amino acid residues of LMB or SHM polypeptides. Shorter oligonucleotides (e.g., those of 6, 12, 20, 30, 50, 100, 125, 150 or 200 base pairs in length) that encode or hybridize with nucleic acids that encode fragments of LMB or SHM polypeptides can be used as probes, primers, or antisense molecules. Longer polynucleotides (e.g., those of 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200 or 1300 base pairs) that encode or hybridize with nucleic acids that encode fragments of LMB or SHM polypeptides can be used in place of native LMB or SHM polynucleotides in applications where it is desired to modulate a functional activity of native LMB or SHM polypeptides. Nucleic acids encoding fragments of LMB or SHM polypeptides can be made by enzymatic digestion (e.g., using a restriction enzyme) or chemical degradation of full length LMB or SHM nucleic acids or variants of LMB or SHM nucleic acids.

Nucleic acids that hybridize under stringent conditions to the nucleic acid of SEQ ID NOs: 1-560 or the complement of SEQ ID NOs: 1-560 are also within the invention. For example, nucleic acids that hybridize to SEQ ID NOs: 1-560 or the complement of SEQ ID NOs: 1-560 under low stringency conditions, moderate stringency conditions, or high stringency conditions are within the invention. Preferred such nucleic acids are those having a nucleotide sequence that is the complement of all or a portion of SEQ ID NOs: 1-560. Other variants of LMB or SHM nucleic acids within the invention are polynucleotides that share at least 65% (e.g., 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, and 99%) sequence identity to SEQ ID NOs: 1-560 or the complement of SEQ ID NOs: 1-560. Nucleic acids that hybridize under stringent conditions to or share at least 65% sequence identity with SEQ ID NOs: 1-560 or the complement of SEQ ID NOs: 1-560 can be obtained by techniques known in the art such as by making mutations in native LMB or SHM nucleic acids, by isolation from an organism expressing such a

nucleic acid (e.g., a fish expressing a variant of native LMB or SHM nucleic acids), or an organism other than a fish expressing a homolog of native LMB or SHM nucleic acids.

5

10

15

20

25

30

Nucleic acid molecules of the present invention may be in the form of RNA or in the form of DNA (e.g., cDNA, genomic DNA, and synthetic DNA). The DNA may be double-stranded (ds) or single-stranded (ss), and if single-stranded may be the coding (sense) strand or non-coding (anti-sense) strand. The nucleic acid molecules of the present invention may also be polynucleotide analogues such as peptide nucleic acids (PNA). See, e.g. Gambari R., Curr. Pharm. Des. 7:1839-1862, 2001; U.S. patent number. 6,395,474; and PCT patent application publication number WO 86/05518. The sequences which encode native LMB and SHM gene products may be identical to the nucleotide sequences shown in SEQ ID NOs:1-560. They may also be different sequences which, as a result of the redundancy or degeneracy of the genetic code, encode the same polypeptides as the polynucleotides of SEQ ID NOs:1-560. Other nucleic acid molecules within the invention are variants of nucleic acids of SEQ ID NOs: 1-560 such as those that encode fragments, analogs and derivatives of native proteins encoded by nucleic acids of SEQ ID NOs: 1-560. Such variants may be, e.g., a naturally occurring allelic variant of native nucleic acids of SEQ ID NOs: 1-560, a homolog of native nucleic acids of SEQ ID NOs: 1-560, or a non-naturally occurring variant of native nucleic acids of SEQ ID NOs:1-560. These variants have a nucleotide sequence that differs from native nucleic acids of SEQ ID NOs: 1-560 in one or more bases. For example, the nucleotide sequence of such variants can feature a deletion, addition, or substitution of one or more nucleotides of native nucleic acids of SEQ ID NOs: 1-560. Nucleic acid insertions are preferably of about 1 to 10 contiguous nucleotides, and deletions are preferably of about 1 to 30 contiguous nucleotides.

Probes and Primers

Nucleic acids that hybridize under stringent conditions to the nucleic acid sequences of SEQ ID NOs: 1-560 or the complement of the nucleic acid sequences of SEQ ID NOs: 1-560 can be used in the invention. For example, such nucleic acids can be those that hybridize to the nucleic acid sequences of SEQ ID NOs: 1-560 or the complement of the nucleic acid sequences of SEQ ID NOs: 1-560 under low stringency conditions, moderate stringency conditions, or high stringency conditions. Preferred such

nucleic acids are those having a nucleotide sequence that is the complement of all or a portion of a nucleic acid sequence of SEQ ID NOs: 1-560. Others that might be used include polynucleotides that share at least 65% (e.g., 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, and 99%) sequence identity to a native nucleic acid sequence of SEQ ID NOs: 1-560 or the complement of a native nucleic acid sequence of SEQ ID NOs: 1-560. Nucleic acids that hybridize under stringent conditions to or share at least 65% sequence identity with the nucleic acid sequences of SEQ ID NOs: 1-560 or the complement of the nucleic acid sequences of SEQ ID NOs: 1-560 can be obtained by techniques known in the art such as by making mutations in a native nucleic acid sequence of SEQ ID NOs: 1-560, or by isolation from an organism expressing such a nucleic acid (e.g., an allelic variant).

5

10

15

20

25

30

Methods of the invention utilize oligonucleotide probes (i.e., isolated nucleic acid molecules conjugated with a detectable label or reporter molecule, e.g., a radioactive isotope, ligand, chemiluminescent agent, or enzyme); and oligonucleotide primers (i.e., isolated nucleic acid molecules that can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a polymerase, e.g., a DNA polymerase). Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the PCR or other conventional nucleic-acid amplification methods.

PCR primers can be used to amplify the nucleic acid sequences of SEQ ID NOs: 1-560 using known PCR and RT-PCR protocols. Such primers can be designed according to known methods as PCR primer design is generally known in the art. See, e.g., methodology treatises such as Basic Methods in Molecular Biology, 2nd ed., ed. Davis et al., Appleton & Lange, Norwalk, CN, 1994; and Molecular Cloning: A Laboratory Manual, 3rd ed., vol.1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001.

Probes and primers utilized in methods of the invention are generally 15 nucleotides or more in length, preferably 20 nucleotides or more, more preferably 25 nucleotides, and most preferably 30 nucleotides or more. Preferred probes and primers are those that hybridize to a native nucleic acid sequence of SEQ ID NOs: 1-560 (or cDNA or mRNA) sequence under high stringency conditions, and those that hybridize to

homologs of the nucleic acid sequences of SEQ ID NOs: 1-560 under at least moderately stringent conditions. Preferably, probes and primers according to the present invention have complete sequence identity with a native nucleic acid sequence of SEQ ID NOs: 1-560. However, probes differing from this sequence that retain the ability to hybridize to a native nucleic acid sequence of SEQ ID NOs: 1-560 under stringent conditions may be designed by conventional methods and used in the invention. Primers and probes based on the nucleic acid sequences of SEQ ID NOs: 1-560 disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed nucleic acid sequences of SEQ ID NOs: 1-560 by conventional methods, e.g., by re-cloning and sequencing a native nucleic acid sequence of SEQ ID NOs: 1-560 or cDNA corresponding to a native nucleic acid sequence of SEQ ID NOs: 1-560.

5

10

15

20

25

30

Proteins Encoded By Nucleic Acid Sequences Of SEQ ID NOs: 1-560

The invention also provides polypeptides encoded in whole or in part by the nucleic acid sequences of SEQ ID NOs: 1-560. Some polypeptides encoded by the nucleic acids of SEQ ID NOs: 1-560 are expressed at higher levels when the nucleic acids are exposed to hormonal compounds compared to control nucleic acids not exposed to the hormonal compound. Other polypeptides encoded in whole or in part by the nucleic acid sequences of SEQ ID NOs: 1-560 are expressed at lower levels when exposed to hormonal compounds compared to the expression of nucleic acids not exposed to the hormonal compound.

Variants of native proteins encoded in whole or in part by nucleic acid sequences of SEQ ID NOs: 1-560 such as fragments, analogs and derivatives of native proteins encoded by nucleic acid sequences of SEQ ID NOs: 1-560 may also be used in methods of the invention. Such variants include, e.g., a polypeptide encoded in whole or in part by a naturally occurring allelic variant of a native nucleic acid sequence of SEQ ID NOs: 1-560, a polypeptide encoded by an alternative splice form of a native nucleic acid sequence of SEQ ID NOs: 1-560, a polypeptide encoded in whole or in part by a homolog of a native nucleic acid sequence of SEQ ID NOs: 1-560, and a polypeptide encoded in whole or in part by a non-naturally occurring variant of a native nucleic acid sequence of SEQ ID NOs: 1-560.

Protein variants encoded by a sequence having homology to a nucleic acid sequence of SEQ ID NOs: 1-560 have a peptide sequence that differs from a native protein encoded in whole or in part by a nucleic acid sequence of SEQ ID NOs: 1-560 in one or more amino acids. The peptide sequence of such variants can feature a deletion, addition, or substitution of one or more amino acids of a native polypeptide encoded in whole or in part by a nucleic acid sequence of SEQ ID NOs: 1-560. Amino acid insertions are preferably of about 1 to 4 contiguous amino acids, and deletions are preferably of about 1 to 10 contiguous amino acids. In some applications, variant proteins substantially maintain a native nucleic acid sequence of SEQ ID NOs: 1-560encoded protein functional activity. For other applications, variant proteins lack or feature a significant reduction in a nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein functional activity. Where it is desired to retain a functional activity of a native protein encoded in whole or in part by a nucleic acid sequence of SEQ ID NOs: 1-560, preferred protein variants can be made by expressing nucleic acid molecules within the invention that feature silent or conservative changes. Variant proteins with substantial changes in functional activity can be made by expressing nucleic acid molecules within the invention that feature less than conservative changes.

5

10

15

20

25

30

Nucleic acid sequences of SEQ ID NOs: 1-560-encoded protein fragments corresponding to one or more particular motifs and/or domains or to arbitrary sizes, for example, at least 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, and 250 amino acids in length may be utilized in methods of the present invention. Isolated peptidyl portions of proteins encoded by a nucleic acid sequence of SEQ ID NOs: 1-560 can be obtained by screening peptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such peptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. For example, a protein encoded by a nucleic acid sequence of SEQ ID NOs: 1-560 used in methods of the present invention may be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl

fragments which can function as either agonists or antagonists of a native nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein.

Methods of the invention may also involve recombinant forms of the nucleic acid sequences of SEQ ID NOs: 1-560-encoded proteins. Recombinant polypeptides preferred by the present invention, in addition to native nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein, are encoded by a nucleic acid that has at least 85% sequence identity (e.g., 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100%) with a native nucleic acid sequence of SEQ ID NOs: 1-560. In a preferred embodiment, variant proteins lack one or more functional activities of native nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein.

5

10

15

20

25

30

Protein variants can be generated through various techniques known in the art. For example, protein variants can be made by mutagenesis, such as by introducing discrete point mutation(s), or by truncation. Mutation can give rise to a protein variant having substantially the same, or merely a subset of the functional activity of a native protein encoded in whole or in part by a nucleic acid sequence of SEQ ID NOs: 1-560. Alternatively, antagonistic forms of the protein can be generated which are able to inhibit the function of the naturally occurring form of the protein, such as by competitively binding to another molecule that interacts with a protein encoded in whole or in part by a nucleic acid sequence of SEQ ID NOs: 1-560. In addition, agonistic forms of the protein may be generated that constitutively express one or more nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein functional activities. Other protein variants that can be generated include those that are resistant to proteolytic cleavage, as for example, due to mutations that alter protease target sequences. Whether a change in the amino acid sequence of a peptide results in a protein variant having one or more functional activities of a native nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein can be readily determined by testing the variant for a native nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein functional activity.

Antibodies

Antibodies that specifically bind nucleic acid sequence of SEQ ID NOs: 1-560-encoded proteins can be used in methods of the invention, for example, in the detection of nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein expression. Antibodies

of the invention include polyclonal antibodies and, in addition, monoclonal antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, and molecules produced using a Fab expression library. Antibodies can be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof.

5

10

15

20

25

30

Antibodies that specifically recognize and bind to nucleic acid sequence of SEQ ID NOs: 1-560-encoded proteins are useful in methods of the present invention. For example, such antibodies can be used in an immunoassay to monitor the level of the corresponding protein produced by a cell or an animal (e.g., to determine the amount or subcellular location of a nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein). Methods of the invention may also utilize antibodies, for example, in the detection of a nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein in an environmental sample. Antibodies also can be used in a screening assay to measure the effect of a candidate agent on expression or localization of a nucleic acid sequence of SEQ ID NOs: 1-560-encoded protein.

Detecting the Presence of an Agent Having Androgenic/Estrogenic Activity

Within the invention, SEQ ID NOs:1-560 are used in various methods for detecting the presence of estrogenic/androgenic agents (e.g., EDCs) such as E₂, EE₂, DES, MXC, ES, 4-NP, p-chlorophenyl, and p,p'-DDE in a sample. Examples of other EDCs that may be detected using compositions and methods of the invention include benzenehexachloride, 1,2-dibromoethane, chloroform, dioxins, furans, octachlorostyrene, PBBs, PCBs, PCB, hydroxylated PBDEs, and pentachlorophenol as well as others disclosed in Hormonally Active Agents In The Environment, Ed. by The Committee On Hormonally Active Agents In The Environment Board On Environmental Studies and Toxicology Commission On Life Sciences And National Research Council, National Academy Press, Washington D.C., 1999.

Methods for detecting the presence of an agent having estrogenic or androgenic activity in a sample involve a first step of providing at least one fish cell which was exposed to the sample. A fish cell of the invention can be a cell from any fish, preferably a cell from a SHM or LMB. A sample can be obtained from a number of sources, including a body of water (e.g., river, lake, stream, canal, estuary, pond, etc.) as well as sediment obtained from a body of water or from a site near or contacting a body of water

(e.g., sediment from a lake or river bed). The fish cell exposed to the sample can be a cell taken from a fish that was present in a body of water (or in contact with sediment) from which the sample (i.e., environmental sample) was taken. The fish cell can also be a cell isolated from a provided fish that was contacted with the sample (e.g., taken from a fish that was exposed to a sample in controlled, laboratory conditions). Alternatively, the fish cell can be one that was cultured and exposed to the sample *in vitro*.

5

10

15

20

25

30

A second step of this method involves analyzing the at least one fish cell for expression of at least one gene encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. A number of methods for analyzing gene expression are described below. A third step of this method involves comparing the expression of the at least one gene in the cell compared to the expression of the at least one gene in a control cell not exposed to the sample or an agent having estrogenic or androgenic activity, wherein a difference in the expression of the at least one gene in the at least one fish cell compared to the expression of the same at least one nucleic acid in the control cell indicates that the sample contains an agent having estrogenic or androgenic activity.

The step of analyzing the at least one fish cell can include analyzing the cell for expression of at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 100) different genes, each being wholly or partially encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. To analyze the cell for expression of at least one gene, RNA transcripts can be isolated from the at least one cell. The isolated RNA transcripts or nucleic acids derived therefrom can be used as templates and contacted with at least one probe that hybridizes under stringent conditions to at least one nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. This step can also include contacting the RNA transcripts or nucleic acids derived therefrom with at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100, 150) different probes that each hybridize under stringent conditions to a different nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. The at least one probe (or probes) or the isolated RNA transcripts (or nucleic acids derived therefrom) can be conjugated with a detectable label such as a fluorphore or a radioactive molecule or compound. The probe(s) can be immobilized on a substrate (e.g., array) before placed in contact with RNA transcripts isolated from a fish cell or control cell, or can be contacted with the

RNA transcripts in solution (e.g., real-time PCR assay) rather than in the presence of a substrate. Examples of substrates that may be used include nylon, nitrocellulose, glass, and plastic.

5

10

15

20

25

30

In another method of detecting the presence of an agent having estrogenic or androgenic activity in a sample, the control cell not exposed to the sample or an agent having estrogenic or androgenic activity is analyzed for expression of at least one gene encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. For example, RNA transcripts can be isolated from the control cell and contacted with the RNA transcripts or nucleic acids derived therefrom using the isolated RNA transcripts as templates with at least one probe that hybridizes under stringent conditions to at least one nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. This method can further include isolating RNA transcripts from the at least one fish cell and contacting the RNA transcripts isolated from the at least one fish cell (or nucleic acids derived therefrom) with at least one molecule that hybridizes under stringent conditions to at least one nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. In some applications, the at least one probe is conjugated with a first detectable label and the at least one molecule is conjugated with a second detectable label differing in chemical structure from the first detectable label. In other applications, the RNA transcripts (or nucleic acids derived therefrom) isolated from the at least one fish cell are conjugated with a first detectable label and the RNA transcripts isolated from the control cell are conjugated with a second detectable label differing in chemical structure from the first detectable label.

To compare expression of the at least one nucleic acid in the fish cell compared to the expression of the at least one nucleic acid in a control cell not exposed to the sample or an agent having estrogenic or androgenic activity, both 1) the amount of first detectable label associated with the RNA transcripts isolated from the control cell (or nucleic acids derived therefrom) and 2) the amount of second detectable label associated with the RNA transcripts isolated from the at least one fish cell (or nucleic acids derived therefrom) is quantified.

In one example of comparing expression of the at least one nucleic acid in the fish cell to the expression of the at least one nucleic acid in the control cell, the labeled RNA

transcripts (or nucleic acids derived therefrom) isolated from the at least one fish cell and from the control cell are contacted e.g., on an array as described herein. Hybridization of the differentially labeled transcripts to the nucleic acids is then detected (e.g., using an imaging device such as a phosphor screen or autoradiographic film) and signal intensities are quantitatively analyzed (e.g., using a software program such as AtlasImage™ 2.01 Clontech, Palo Alto, CA).

5

10

15

20

25

30

Among the traditional methods that can be employed for gene expression analyses are DD RT-PCR, nucleic acid arrays, quantitative PCR (e.g., real-time PCR), *in situ* hybridization, serial analysis of gene expression (SAGE), and subtractive hybridization. DD RT-PCR, for example, isolates differentially expressed genes using both arbitrary and anchored oligo-dT primers (Liang & Pardee, 1992; Liang et al., 1994; and Genome Analysis: A Laboratory Manual Series 1, ed: B. Birren et al., 1997, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). A typical DD RT-PCR protocol involves several steps including reverse transcription using anchored oligo-dT primers, amplification of cDNA using one anchored and one arbitrary primer, electrophoresis of PCR products, purification of the product of interest, and cloning and sequencing of the product. In one method, DD-RT-PCR is performed with the RNAimage mRNA Differential Display system (GenHunter; Nashville, TN) using one-base anchored oligo-dT primers (Liang et al., 1994) as described previously (Denslow et al., 1999a; and Denslow et al., 2001).

In vitro quantitation of gene expression can be performed using a number of real-time quantitative PCR assays. Real-time quantitative PCR assays typically involve labeling a target nucleic acid with a first fluorescing dye and labeling a probe with a second fluorescing dye. For example, Multiplex TaqMan® (Applied Biosystems, Foster City, CA) assays can be performed using the ABI PRISM® 7700 Sequence Detection System (Applied Biosystems, Foster City, CA), capable of detecting multiple dyes with distinct emission wavelengths. Some real-time quantitative PCR applications involve the use of fluorescence resonance energy transfer (FRET) between fluorochromes introduced into DNA molecules (e.g., molecular beacon assays). For a review of FRET techniques, see Vet et al., Expert Rev. Mol. Diagn. 2:77-86, 2002.

A preferred technique for detecting the presence of estrogenic compounds involves the use of nucleic acid arrays. Nucleic acid arrays allow the simultaneous monitoring of expression patterns of multiple genes from the same sample. Arrays are an appropriate tool for rapidly screening large numbers of genes. Examples of nucleic acid arrays include microarrays and macroarrays. Methods involving nucleic acid arrays are reviewed in Ringner et al., Pharmacogenomics 3:403-415, 2002; Epstein et al., Curr. Opin. Biotechnol. 11:36-41, 2000; Granjeaud et al., BioEssays 21:781-790, 1999; Hatakeyama K., Nippon Rinsho 57:465-473, 1999; DNA Microarrays: A Molecular Cloning Manual, ed: D. Bowtell and J. Sambrook, 2002, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, and U.S Patent No. 6,410,229. The construction and use of nucleic acid arrays containing fish genes is described below.

5

10

15

20

25

30

Arrays

The nucleic acids (and proteins and antibodies) of the invention are preferably useful for assaying a sample for the presence of a hormonal agent (e.g., an estrogenic, sample in an environmental water sample). In this regard, nucleic acid-based assays are presently preferred. The invention thus provides a substrate having immobilized thereon at least one nucleic acid including a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560 and complements thereof. A typical substrate having immobilized thereon at least one nucleic acid of the invention is an array of fish nucleic acids, including nucleic acids (e.g., genes and gene fragments) responsive to androgenic and estrogenic compounds. Arrays containing fish-derived nucleic acids responsive to androgenic and/or estrogenic compounds can be used in a number of applications. For example, the arrays can be used to monitor the presence and distribution of androgenic and estrogenic contaminants in the environment. The arrays can also be used to screen for synthetic or natural agents having androgenic or estrogenic activity. An example of an array provided by the invention is a macroarray containing LMB- or SHM-derived nucleic acids. On a preferred macroarray of the invention, a minimum number of nucleotides of 150 is included for each nucleic acid (e.g., 2, 10, 50, 75, 100, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 200, 250, 300, 350, 400 or more). A portion of the nucleic acids on the macroarray are responsive to estrogenic compounds. A list of

nucleic acids that may be contained within a macroarray of the invention is presented in Table III (SHM), Table II (LMB), and Table IV (SHM and LMB).

5

10

15

20

25

30

To construct a cDNA macroarray, cDNA is first prepared from RNA. Techniques for preparing cDNA from RNA are widely known, and are described in methodology treatises such as Sambrook and Russell *supra* and Ausubel et al., *supra*. In one example, cDNA clones (e.g., miniprep cDNAs) derived from DD RT-PCR analysis (as described above) are PCR-amplified using primers specific to the cloning vector (e.g., pGEMT-Easy, Promega, Madison, WI). Any suitable thermocycling conditions that result in amplification of the desired product may be used. After completion of the PCR, the products are purified (e.g., in a spin-column, Quiagen, Chatsworth, CA) and then concentrated (e.g., in a speed-vac). Aliquots of the PCR products are then resolved electrophoretically (e.g., run on a 1.2% agarose gel containing 0.3 mM ethidium bromide). The resultant gels are analyzed (e.g., digitally imaged using a UVP Bio Doc-It camera, Ultra Violet Laboratory Products, Upland CA) and the concentration of each PCR product is determined. Typically, concentrations of PCR products are determined by comparing the intensity of each band to a standard curve derived from a low DNA mass ladder (InVitrogen Corporation, Carlsbad, CA).

Once the PCR products are purified and their concentrations determined, they are then spotted onto a membrane (e.g., nylon membrane). Methods for spotting cDNAs onto membranes are discussed in Diehl et al., NAR 29:E38, 2001; Shieh et al., Biotechniques 32:1360-1362 & 1364-1365, 2002; and Schuchhardt et al., NAR 28:E47, 2000. In one method of spotting the cDNAs onto a membrane, PCR products are denatured, quenched on ice, and robotically spotted onto nylon membranes (Fisher Scientific). In this method, membranes are cross-linked and stored under vacuum at room temperature until the hybridization step. Various controls are also spotted onto the membranes. These controls provide information about cDNA labeling efficiency, blocking at the pre-hybridization step, and non-specific binding. Any genes that are not responsive to estrogen may be used as negative control genes on an array of the invention. Control genes that are not responsive to estrogen include *Arabidopsis thaliana* cDNA clones, Cot-1 repetitive sequences, polyA sequence (SpotReport 3, Stratagene, LaJolla, CA), and a M13 sequence (vector but no cDNA insert). The consistency of the

spotting technique may be assessed by spotting on the array multiple cDNA products from the same gene that were amplified in separate PCR reactions.

For the generation of probes, mRNA from fish exposed to an estrogenic compound (e.g., E₂, EE₂, DES, pNP, ES, MXC) and mRNA from control fish (i.e., fish not exposed to estrogenic compounds), is extracted and purified. mRNA may be purified by a number of known techniques, including the use of affinity columns (Qiagen, Chatsworth, CA). In addition to RNA probes, cDNA probes may also be used. The labeling of nucleotide probes is described in Relogio et al., NAR 30:351, 2002; and Yu et al., Mol. Vis. 8:130-137, 2002. Probes may be labeled using any of a number of techniques, including fluorescence (e.g., Atlas Glass Fluorescent Labeling Kit, Clontech, Palo Alto, CA), resonance light scattering (Bao et al., Anal. Chem. 74:1792-1797, 2002), gold nanoparticle labeling (Fritzsche et al., J. Biotechnol. 1:37-46, 2001) and radioactive methods. In one example of radiolabeling RNA probes, DNase-treated total RNA from fish is subjected to random primer labeling with α-³³P dATP (Strip-EZ RT, Ambion, Austin, TX). RNAs may also be radiolabeled using a kit such as AtlasPureTM RNA Labeling System. Typically, blots are prehybridized for several hours, hybridized overnight with probe-containing solution, and then washed several times.

10

15

20

25

30

To detect hybridization of the probe to nucleotides on an array, membranes are exposed to a suitable imaging device, such as a phosphor screen (Molecular Dynamics, Piscataway, NJ) or autoradiographic film for an appropriate period of time (e.g., several hours). Signal intensities may be quantitatively analyzed using a suitable software program, such as AtlasImage™ 2.01 (Clontech, Palo Alto, CA). Blots may also be quantitatively evaluated using a Typhoon 8600 imaging system (Molecular Dynamics). For each nucleotide (e.g., cDNA) clone on an array, the general background of each membrane is subtracted from the average value of the duplicate spots on the membrane. The values are normalized to the average value of several (e.g., 11) nucleotide (e.g., cDNA) clones. Gene array data is analyzed using a suitable statistical analysis. For example, linear regression and one-way analysis of variance, with Tukey post-hoc analysis (SigmaStat and SigmaPlot, Jandel, CA) may be used to analyze the gene array data.

Determining Whether An Agent Has Estrogenic, Anti-Estrogenic, Androgenic, or Anti-Androgenic Activity

5

10

15

20

25

30

In addition to detecting the presence of estrogenic compounds in the environment, nucleic acid arrays containing one or more nucleotide sequences of SEQ ID NOs: 1-560 of the invention may also be used to screen for compounds with estrogenic, antiestrogenic, androgenic, or anti-androgenic activity. Estrogenic compounds (e.g., estrogen, estrogen mimics) have possible uses in a number of disorders, including the treatment of cardiovascular disease, menopausal symptoms and menopausal osteoporosis. Molecules or compounds with anti-estrogenic activity (e.g., flavonoids) have a number of possible applications, including the treatment of breast cancer. Androgenic agents also have a number of applications, including the treatment of sexual dysfunction, depression and pelvic endometriosis. Androgenic agents are also fed to livestock as growth-inducing agents. For the treatment of prostate enlargement and acne, anti-androgenic agents are useful.

A method for determining whether an agent has estrogenic, anti-estrogenic, androgenic, or anti-androgenic activity involves several steps. A first step in this method includes providing at least one fish cell. In a second step of the method, the at least one fish cell is contacted with the agent. In a third step, the at least one fish cell is analyzed for expression of at least one gene wholly or partially encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-560. A fourth step of the method includes comparing the expression of the at least one gene in the cell compared to the expression of the at least one nucleic acid in a control cell not exposed to the sample or an agent having estrogenic, anti-estrogenic, androgenic or anti-androgenic activity. In this method, a difference in the expression of the at least one nucleic acid in the at least one fish cell compared to the expression of the at least one nucleic acid in the control cell indicates that the agent has estrogenic, anti-estrogenic, androgenic, or anti-androgenic activity.

In one embodiment of determining if a test agent increases or decreases expression of a gene responsive to estrogen, cells are first exposed to the test agent *in vitro*. For example, multiple compounds can be tested simultaneously by plating cells in a multi-well plate (e.g., in a 96 well tissue culture plate) and contacting one test compound

per well. RNA from the exposed cells as well as from control cells (i.e., negative control cells not exposed to the test compound and positive control cells exposed to the test compound) is isolated and reverse transcribed to cDNAs. The cDNAs are labeled to generate probes as described above, and contacted with the nucleic acid arrays of the invention. Hybridization of the labeled probes to the nucleic acids of the array (e.g., SEQ ID NOs: 1-560) is analyzed as described above. Alternatively, whole fish can be exposed to the test agents in the water or through the food. This allows for normal metabolic processes to occur within the various tissues of the fish to end up with an agent that has either the same or more or less activity then the parent agent.

10

15

20

25

30

5

EXAMPLES

The present invention is further illustrated by the following specific examples.

The examples are provided for illustration only and are not to be construed as limiting the scope or content of the invention in any way.

Example 1 - Expression Profiling of Estrogenic Compounds Using A SHM cDNA

Macroarray

Methods

Amplification of cDNA to be spotted on macroarrays: Minipreps of 30 cDNA clones derived from DD RT-PCR analysis (Denslow et al., Gen. Comp. Endocrinol. 121:250-260, 2001; Denslow et al., Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 129:277-282, 2001) were PCR amplified in a 300 μL reaction containing 1X PCR Buffer A (Promega, Madison, WI), 2mM MgCl₂ (Promega, Madison, WI), 160 μM each deoxynucleotide triphosphate (dNTP) (Statagene, La Jolla, CA), 0.4 μM M13 primers (5'-GTT TTC CCA GTC ACG ACG TTG (SEQ ID NO:561) and 5'-GCG GAT AAC AAT TTC ACA CAG GA (SEQ ID NO:562), and 1.25 units *Taq* polymerase (Promega, Madison, WI). The PCR reaction conditions were: 1 cycle at 80°C (1 min); 1 cycle at 94°C (2min); 32 cycles at 94°C (1 min) 57°C (1 min) 72°C (2 min); 1 cycle at 72°C (10 min); and then hold at 4°C. After completion of the PCR reactions the products were purified in a spin-column (Qiagen, Chatsworth, CA) and then concentrated in a speed-vac. Aliquots of the PCR products were run on a 1.2% agarose gel containing 0.3 mM ethidium bromide. The gels were digitally imaged using a UVP Bio Doc-It camera (Ultra Violet Laboratory Products, Upland CA) and the concentration of each PCR product was

25

determined by comparing the intensity of each band to a standard curve derived from a low DNA mass ladder (Invitrogen Corporation, Carlsbad, CA). The PCR products were adjusted to a concentration of $160 \text{ ng/}\mu\text{L}$ cDNA template.

5

10

15

20

25

30

Spotting of the macroarrays: The PCR products were loaded into 96 well plates (Fisher Scientific, Pittsburgh, PA), denatured with 3 M NaOH, heated to 65°C for 10 mins, and then immediately quenched on ice. 20 X saline sodium citrate (SSC) (3M NaCl, 0.3M sodium citrate, pH 7.0) containing 0.01 mM bromophenol blue was added to the samples to yield a final concentration of 0.3M NaOH, 6X SSC, and 100 ng/μL cDNA template. The PCR products were robotically spotted (Biomek 2000, Beckman Coulter, Fullerton, CA) in duplicate onto 11.5 by 7.6 cm neutral nylon membranes (Fisher Scientific) using 100 nL pins. Membranes were UV cross-linked at 1X10⁵ μJoules (UV Stratalinker 1800, Stratagene, La Jolla, CA) and stored under vacuum at room temperature until hybridization.

Array controls: Various controls were also spotted onto the membranes, which provided information about cDNA labeling efficiency, blocking at the pre-hybridization step, and non-specific binding. These controls included: 3 *Arabidopsis thaliana* cDNA clones, Cot-1 repetitive sequences, poly A sequence (SpotReport 3, Stratagene), and a M13 sequence (vector but no cDNA insert). The consistency of the technique was evaluated by spotting on the array multiple cDNA products from the same gene that were amplified in separate PCR reactions.

Sample extraction: Total hepatic messenger ribonucleic acid (mRNA) was extracted using affinity columns (Qiagen, Chatsworth, CA) from adult male SHMs treated by aqueous exposure to either 65.14 ng/L of E₂, 109 ng/L EE₂, 100 ng/L DES, 11.81 μg/L pNP, 590.3 ng/L ES or 5.59 μg/L MXC as described previously (Folmar et al., Aquatic Toxicol. 49:77-88, 2000; Hemmer et al., Environ. Toxicol. Chem. 20:336-343, 2001). Three fish were used per treatment group. Criteria for selection of samples from each compound tested were based on previously generated dose response curves (Folmar et al., Aquat. Toxicol. 49:77-88, 2000; Hemmer et al., Environ. Toxicol. Chem. 20:336-343, 2001) and chosen to give similar levels of expression of Vtg mRNA, a well established estrogenic biomarker (Bowman et al., Gen. Comp. Endocrinol. 120:300-313, 2000; Sumpter and Jobling, Environ. Health Perspect. 103:173-178, 1995). By selecting

the concentration and length of exposure to yield similar Vtg mRNA expression levels, differing potencies among the chemicals tested was accounted for. Based on this criterion, length of exposure was four days for EE₂ and DES, five days for E₂ and pNP, and thirteen days for MXC. ES treatment levels ranging from 68.8 ng/L to 788.33 ng/L failed to induce Vtg mRNA. A treatment of 590.3 ng/L of ES for these analyses was chosen. This level of ES was slightly below the maximum acceptable toxicant concentration (MATC) derived for ES for SHMs (Hansen and Cripe 1991).

5

10

15

20

25

30

Labeling of RNA and hybridization: Radiolabeled probes were generated by random primer labeling of DNase treated (DNA-*free*, Ambion, Austin, TX) total RNA from male SHM livers with [α-³³P] dATP (Strip-EZ RT, Ambion, Austin, TX). The blots were prehybridized with ultraArray hybridization buffer (Ambion, Austin, TX) at 64°C for 3 hours. Following prehybridization, each probe was diluted 20-fold with 10 mM disodium ethylenediaminetetraacetate (EDTA), pH 8.0 to yield 1X10⁶ cpm incorporated ³³P per mL hybridization solution. The diluted probes were heated to 95°C for 5 mins, quenched on ice for 1 min, and added directly to the prehybridization buffer. The blots were then hybridized overnight at 64°C. Following hybridization, the blots were washed 4 X 15 minutes each with low (2X SSC, 0.5% SDS) and high (0.5X SSC and 0.5% SDS) stringency washes (Ambion, Austin, TX) at 64°C.

Detection and normalization: The membranes were exposed to a phosphor screen (Molecular Dynamics, Piscataway, NJ) at room temperature for 48 hrs. The blots were quantitatively evaluated using a Typhoon 8600 imaging system (Molecular Dynamics, Piscataway, NJ). For each cDNA clone, the general background of each membrane was subtracted from the average value of the duplicate spots on the membrane. The values were normalized to the average value of 11 cDNA clones. These genes include ribosomal proteins L8, S9, two unique genes that are similar to ribosomal protein S9, and several clones that do not match any sequences in the National Center for Biotechnology Information (NCBI) database. These genes were chosen to normalize the data because they did not fluctuate appreciably (< 1.3 fold) on macro arrays from E2-treated and control fish and also were shown to be equally expressed in controls and treated fish by DD analysis data. Gene array data was analyzed using linear regression and one-way

analysis of variance, with Tukey post-hoc analysis (SigmaStat and SigmaPlot, Jandel, CA).

Results

As a first step toward using array technology, the variability between the macroarrays was determined. To accomplish this, aliquots of identical RNA samples were hybridized onto two separate membranes. A scatter plot correlating the intensity values for each spot on the two membranes was generated. The data points in the graph cluster along a slope of one for all of the spots, including both the low and highly expressed cDNA clones ($R^2 = 0.94$). Similar R^2 values ranging from 0.88-0.97 were observed in replicate experiments.

cDNAs corresponding to thirty unique genes were spotted on the macroarrays. These genes were originally isolated by comparing gene expression profiles from control and E2-treated fish by DD RT-PCR. Hepatic mRNA from exposed fish were radiolabeled and individually hybridized to membranes to determine if fish treated with E2, EE2, DES, pNP, MXC, and ES shared similar expression profiles. Three separate fish were used for each treatment. Figure 1 contains representative membranes from the different treatments and a graphical representation of the data is shown in Figure 2. Figure 2A illustrates the mean ±SEM intensity values for each of the cDNA clones arranged in order of their expression; Figure 2B illustrates the mean intensity values for each of the cDNA clones for E2, EE2, DES, pNP, MXC or ES divided by the mean intensity values of the respective cDNA clones from the untreated control fish.

Several of the genes that were spotted on the array were found to be up or-down regulated in E₂-treated fish compared to controls. These genes were identified by comparing their intensity values to constitutive genes after correcting for intra-membrane differences based on the intensity values of 11 cDNA clones used to normalize the data. Genes on the macroarray were designated as constitutive if their fold-induction values fell within the range of the mean plus one standard deviation of the highest and lowest values of the 11 clones. Based on this criteria, any cDNA clones in the macroarray experiments above a ~1.66-fold induction were designated as up-regulated genes respective to control fish, and any cDNA clones that had a value below ~0.42 were designated as down-regulated.

5

10

15

20

25

30

Of the 30 genes used on the array, 6 genes were found to be up-regulated by E_2 including Vtg $\,\alpha$ and $\,\beta$, choriogenin 2 and 3, ER $\,\alpha$, and coagulation factor XI. Three genes found to be down-regulated by E_2 were transferrin, beta actin, and alpha-1-microglobulin/bikunin precursor protein. The remaining genes did not appear to be differentially regulated by E_2 when compared to controls.

5

10

15

20

25

30

The 9 genes that were up or down-regulated by EE₂, DES, pNP, and MXC exposures showed a similar pattern of expression to the E₂ treatment. Interestingly, ubiquitin-conjugating enzyme 9 was significantly (P<0.05) up-regulated only in the pNP treatments suggesting its regulation is not mediated through the ER. Eight of the nine genes that were found to be up or down-regulated for E₂, EE₂, DES, pNP, and MXC did not fluctuate for ES-treated fish, but instead resembled the pattern observed in control fish. The primary exception was ER α , which appeared to be up-regulated for all of the compounds, including ES. An additional gene, 3-hydroxy-3-methylglutaryl CoA reductase, appeared to be slightly down-regulated in fish treated with ES compared to all of the other treatments and the controls.

To determine if the gene expression profiles on the array could be verified by other techniques that monitor mRNA expression, the expression profiles of several genes on the arrays were compared (Vtg $\,\alpha$, choriogenin 2, and transferrin) to their profile by Northern blots and DD RT-PCR. Both Vtg $\,\alpha$ and choriogenin 2 mRNA levels increase in fish treated with E2, as measured by Northern blots and DD RT-PCR. Transferrin decreases with E2 treatment, as measured by Northern blots and DD RT-PCR.

To assess whether the arrays could be used as a quantitative tool to measure the expression of multiple genes at varying concentrations of an estrogenic chemical, male SHMs exposed for 4 days to either 24, 109, or 832 ng/L of EE₂ were examined (Folmar et al., Aquatic. Toxicol. 49:77-88, 2000; Hemmer et al., Environ. Toxicol. Chem. 20:336-343, 2001) Figure 3 contains graphical illustrations of genes whose expression levels significantly changed more than 2-fold in one or more of the three EE₂ concentrations examined (P<0.05). Vtg α and β , choriogenin 2, choriogenin 3, ER α , and clone ND107-B were found to increase in a concentration dependent manner in the EE₂-exposed fish. Three other genes, transferrin, alpha-1-microglobulin/bikunin precursor protein, and beta actin, appeared to decrease in a dose-dependent manner. These results were consistent

with the same genes that were up or down- regulated in the E₂, DES, pNP, and MXC exposed fish (Figure 2).

Example 2 - Expression Profiling of E2 Using a SHM Array

A SHM estrogen responsive macroarray was developed to investigate the feasibility of applying array technology in monitoring the environmental distribution of endocrine disrupting compounds that mimic estrogen.

5

10

15

20

25

30

Total hepatic mRNA was extracted from 5 adult male SHMs treated by aqueous exposure to 100 ng/L of E2 dissolved in triethylene glycol (TEG) for 5 days. Minipreps of 54 cDNA clones derived from DD analysis were PCR amplified using primers specific to the M13 sequence of the cloning vector (pGEMT-Easy, Promega, Madison, WI). After the PCR reactions the products were purified in spin-columns (Qiagen, Chatsworth, CA) and then concentrated in a speed-vac. The cDNA samples were denatured with NaOH, heated to 65°C for 10 min, and then immediately quenched on ice. 20X SSC (3M NaCl, 0.3M sodium citrate, pH 7.0) that contained 0.01 mM bromophenol blue was then added to the samples to yield a final concentration of 0.3M NaOH, 6X SSC, and 100 ng/ μL cDNA template. The samples were then robotically spotted (Biomek 2000, Beckman Coulter, Fullerton, CA) in duplicate onto neutral nylon membranes (Fisher Scientific, Pittsburgh, PA) using 100 nL pins. The membranes were UV cross-linked and then stored under vacuum at room temperature until hybridized. Various controls, which provided information about the cDNA labeling efficiency, blocking, and non-specific binding of the arrays, were also spotted onto the membranes. These controls included: 3 Arabidopsis thaliana cDNA clones, Cot-1 repetitive sequences, poly A sequence (SpotReport 3, Stratagene, La Jolla, CA), and a M13 sequence (vector but no cDNA insert). Labeling of RNA probes and hybridization of blots was performed as described in Example 1.

The inter-membrane process variability between macroarrays was determined by hybridizing aliquots of identical RNA samples onto two separate membranes. A scatter plot correlating intensity values between the membranes was generated. The data points in the graph clustered along a slope of one (R2 of 0.95, Sigma Stat, Jandel, CA), a result which indicates that there is very little variability between membranes.

To determine if the gene transcripts found to be up- or down-regulated initially by DD analysis reflect the same induction pattern when spotted onto array membranes, RNA from adult male SHMs aqueously exposed to 100 ng/L of E2 dissolved in TEG were radiolabeled and hybridized to several membranes. Figures 4A and 4B contain blots of control (TEG-treated) and E2-treated fish, respectively. Figure 4C is a plot of the mean intensity values. Genes on the macroarray were designated as constitutive genes if their intensity values fell within the range of the highest (1.27) and lowest (0.83) value of the 17 cDNA clones that were used to normalize the data. Based on this criteria, any cDNA clone in the macroarray experiments that had an intensity value above ~1.27 was designated an E2 up-regulated gene, and any cDNA clone that had a value below ~0.83 was designated an E2 down-regulated gene. Of the 54 cDNA clones that were spotted on the array, 15 genes appeared to be up-regulated by E2, 32 clones appeared to be constitutive, and 7 genes appeared to be down-regulated by exposure to E₂. All of the highly up-regulated genes, including vitellogenin α and β and the choriogenic protein (ZP2) were also shown to be up-regulated on DD analysis. Interestingly, transferrin, a protein involved in iron transport that was identified to be down-regulated by DD analysis also appears to be down-regulated in response to E2 on the macroarrays. Example 3 - Gene Expression Profiles of LMB Exposed to 4-NP and ICI 182,780 Using a LMB Array

5

10

15

from American Sports Fish Hatchery (Montgomery, Alabama) and maintained in fiberglass tanks as previously described (Larkin et al., Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 133:543-557, 2002; Larkin et al., Marine Environ. Res. 54:395-399, 2002; and Larkin et al., Comparative Biochemistry and Physiology 133:543-557, 2002).

Array technology as a tool to monitor exposure of fish to xenoestrogens. Marine Environ. Res., 2002; Bowman et al., Mol. Cell. Endocrinol. 196:67-77, 2002). Each fish was injected IP with either 50 mg/kg 4-NP (Fluka, St. Louis, MO # 74430), the combination of 50 mg/kg 4-NP and 1.0 mg/kg ICI 182,780 (Tocris Cookson), or vehicle, which consisted of ethanol and DMSO (Sigma, St. Louis, MO #5879). Each dose was dissolved in 1 ml of ethanol and then diluted to the appropriate concentration with DMSO. The fish were euthanized by submersion in a water bath containing 50-100 ppm MS-22 48

hours post injection and sacrificed by a sharp blow to the head followed by cervical transaction. The livers were excised and immediately flash frozen in liquid nitrogen. The frozen tissues were stored at -80°C until RNA was isolated.

RNA Isolation: Isolation of total RNA from liver tissue was performed with the RNA Stat-60 reagent (Tel-test). Briefly, 30mg – 50mg of tissue stored in RNA later was homogenized in 0.9 mls STAT 60, choloroform was added, and the mixture was centrifuged at 12,000g for 15 minutes at 4°C. The extraction process was repeated and the pooled RNA was added to 500 µl isopropanol and allowed to precipitate at -20° C for at least one hour. Following centrifugation at 12,000g for 50 minutes, the pellet was washed with 70% ethanol, air dried and resuspended in an appropriate volume (50 µl-120 µl of RNA secure. The samples were treated with RNA secure (Ambion, Austin TX #7010) to inactivate contaminating RNases. All isolated RNA was treated with DNase solution (Ambion, Austin, TX #1906) following the manufacture's protocol. For all RNA samples, the quantity and quality of total RNA was assessed by spectrophotometric readings at 260nm and by electrophoresis through a 1% formaldahyde agarose gel stained with ethidium bromide.

10

15

20

25

30

Real-Time PCR: Real time PCR was performed using reagents and a 5700 thermocycler purchased from Applied Biosystems (ABI, Foster City, CA). The nucleotide sequences of the primers for the ER subtypes and Vtg 1 are as follows: 5' GACTACGCCTCCGGCTATCAYTATGG (SEQ ID NO:563) AND 5'CATCAGGTAGATCTCAGGGGGYTCNGCNTC (SEQ ID NO:564). Probes and primers for the ER subtypes and Vtg 1 are described in Bowman et al., Ecotoxicology 8:399-416, 1999; and Bowman et al., Mol. Cell Endocrinol. 196:67-77, 2002. Each real time PCR reaction consisted of 0.01 – 0.2 μg of reverse transcribed total RNA from liver tissue, 1X universal Taqman master mix (ABI, Foster City, CA), and primers and probes in a 25 μl reaction. To generate a standard curve, varying amounts of plasmid containing the specific cDNA inserts for each gene were used as template in the PCR reactions. For each gene, a 6 point standard encompassing a 1 x 10⁶ fold range of approximately 25 – 2.5 x 10⁶ copies of cDNA was constructed. Each sample was run in duplicate and normalized 18s rRNA, also obtained by real-time PCR. Both the intra-assay and interassay variability never exceeded 10%. The final data is graphed as the mean and

standard error of the relative copies of each ER or Vtg mRNA per µg of total RNA. Statistical differences between the treatments were determined by one way analysis of variance with Dunnets post-hoc analysis.

5

10

15

20

25

30

Amplification of cDNA to be spotted on the macro arrays: The macroarrays were prepared and printed as previously described (Larkin et al., Marine Environ. Res. 54:395-399, 2002). Briefly, the 132 LMB clones were PCR amplified using primers specific to the M13 sequence of the cloning vector (pGEMT-Easy, Promega, Madison, WI). After completion of the PCR reactions the products were purified using MultiScreen PCR plates (Millipore, Bedford, MA), concentrated, denatured with NaOH, heated to 65°C for 10 min, and then immediately quenched on ice. 20 X SSC (3M NaCl, 0.3M sodium citrate, pH 7.0) containing 0.01 mM bromophenol blue was added to the samples to yield a final concentration of 0.3M NaOH, 6X SSC, and 100 ng/µL cDNA template. The PCR products were robotically spotted (Biomek 2000, Beckman Coulter, Fullerton, CA) in duplicate onto neutral nylon membranes (Fisher Scientific, Pittsburgh, PA) using 100 nL pins. Membranes were UV cross-linked and stored under vacuum at room temperature until hybridization.

Labeling of RNA and hybridization was performed as described in Example 1. The membranes were exposed to a phosphor screen (Molecular Dynamics, Piscataway, NJ) at room temperature for 48 hours. The blots were quantitatively evaluated using a Typhoon 8600 imaging system (Molecular Dynamics, Piscataway, NJ). For each cDNA clone, the general background of each membrane was subtracted from the average value of the duplicate spots on the membrane. The values were normalized to the average value of 12 cDNA clones specific to ribosomal genes, which included S2, S3, S8, S15, S16, S27, L4, L5, L8, L13, L21, and L28. Ribosomal genes were chosen to normalize the data because they do not appear to fluctuate appreciably (< 1.3 fold) in response to estrogenic compounds. Genes were not included for analysis that had values less than the background value for two out of the three replicates and/or fluctuated more then two fold when aliquots of the same RNA were hybridized to blots printed at the beginning, middle, and the end of the array printing process.

Measurement of ER and Vtg 1 mRNA by real-time PCR: Real-time PCR is a sensitive assay that can be used to quantitate expression levels of genes. Using this

technology, assays were designed to quantitate the expression of 4 genes, estrogen receptors alpha, beta, and gamma, and Vtg 1 in LMB following exposure to 4-NP and 4-NP/ICI 182,780. Using primers and probes specific to each gene it was possible to differentiate between the ER isotypes with no cross reactivity. Exposure of LMB to a single IP injection of 4-NP (50 mg/kg) significantly increased ER α by 80 fold (p < 0.05) after 48 hours when compared to controls. During the same time frame, the levels of both ER β and ER γ decreased approximately 1.3-fold and 2.6-fold respectively, however these changes were not statistically significant from controls. When the LMB were exposed to a combination of 4-NP (50 mg/kg) and the anti-estrogen ICI 182,780 (1.0 mg/kg), the levels of ER α increased only 4-fold over controls (p < .08), suggesting that the anti-estrogen had interfered with the activation process. As with the 4-NP treatment, the expression of ER β and γ decreased (1.9-fold) but the values did not differ significantly from controls.

5

10

15

20

25

30

Since the Vtg gene is an E_2 -responsive gene that is under transcriptional control by ERs in the liver, the expression levels of Vtg 1 were also determined by real-time PCR. Exposure to 4-NP increased message levels by approximately 40-fold over controls (p < .05), however, this induction was not repressed by the addition of ICI 182,780.

LMB gene array analysis: In order to further characterize the effects of 4-NP alone or in conjunction with ICI 182,780 on hepatic gene regulation in LMB, the expression of 132 genes was examined, many of which are estrogen responsive, by gene arrays. Total hepatic RNA isolated from control and exposed fish was radiolabeled and hybridized to the membranes. Of the 132 genes on the array, only genes that changed by at least 3 standard deviations from the mean of the 12 ribosomal genes that were used to normalize the data are included. These include several that are up or down-regulated by more than 2-fold, a conservative cutoff generally used for array interpretation. The mean and standard error for each gene for control and treated LMB was determined. The fold induction of each gene over controls for both the NP and NP/ICI 182,780 treatments was determined.

In the 4-NP-treated fish (Fig. 6), 9 genes were up-regulated 2-fold or greater including 4 Vtgs, choriogenin 2, choriogenin 3, aspartic protease, signal peptidase, and

one unidentified clone designated 92-1. Two genes were found to be down-regulated by 4-NP including transferrin and clone 50-1. In the case of the mixture of 4-NP and ICI 182,780, some genes that were up-regulated by 4-NP treatment alone were reduced, but not all. In fact, the expression levels of 4 Vtgs, 2 choriogenins, and transferrin were not affected at all; instead they appear to be expressed to the same levels as with the 4-NP alone. Vtg 1, 2, 2a, and 3 were induced approximately 74, 28, 37, and 2-fold over controls respectively. The levels of both choriogenins increased to values approximately 35-fold over controls while aspartic protease was induced 16 fold over controls.

Genes which were reduced by the mixture and that exhibited at least a 2-fold change in expression included aspartic protease, protein disulfide isomerase, integral membrane protein, methionine sulfoxide reductase, ER γ , glucocorticoid receptor, aldose reductase, ER β , FK506 binding protein, and 21 unidentified clones. All of these genes except for clone 53-1 were down regulated by the addition of ICI 182,780 to the 4-NP.

Example 4 - Gene Expression Analysis of LMB Exposed to E_2 and p,p-DDE Using a LMB Array Materials and Methods

Amplification of cDNA to be spotted on the macro arrays: The 132 clones of LMB genes in pGEM-T Easy plasmids were PCR amplified in a 300 μL reaction containing 1X PCR Buffer A (Promega, Madison, WI), 2mM MgCl₂ (Promega, Madison, WI), 160 μM each dNTP (Statagene, La Jolla, CA), 0.4 μM M13 primers (5'-GTT TTC CCA GTC ACG ACG TTG (SEQ ID NO:?) and 5'-GCG GAT AAC AAT TTC ACA CAG GA (SEQ ID NO:?)), and 1.25 units Taq polymerase (Promega, Madison, WI). The PCR reaction conditions were 1 cycle at 80°C (1 min), 1 cycle at 94°C (2min), 32 cycles at 94°C (1 min), 57°C (1 min), and 72°C (2 min), 1 cycle at 72°C (10 min), and then hold at 4°C. After completion of the PCR reactions the products were purified using MultiScreen PCR plates (Millipore, Bedford, MA) and then concentrated in a speed-vac. Aliquots of the PCR products were run on a 1.2% agarose gel containing 0.3 mM ethidium bromide. The gels were digitally imaged using a UVP Bio Doc-It camera (Ultra violet Laboratory Products, Upland CA) and the concentration of each PCR product was determined by comparing the intensity of the gel band to a standard curve derived from a low DNA mass ladder (Invitrogen Corporation, Carlsbad, CA). The PCR products were adjusted to a concentration of 160 ng/ μL cDNA template.

10

15

20

25

30

Spotting of the gene arrays and various controls used are described in Example 1. Chemicals, Treatment, and Preparation of the hepatic samples: E₂ (# E-8875) and p, p'-DDE (#12,389-7) were obtained from Sigma-Aldrich Corporation (St Louis, MO); 4-NP (#74430, 85% para isomer) was obtained from Fluka (Milwaukee, WI).

5

10

15

20

25

30

Adult (~1.5 year old) LMB weighing 300 ± 71 grams were obtained from American Sports Fish Hatchery (Montgomery, Alabama). Fish were acclimated for a minimum of one month in an aerated holding tank prior to treatment. The fish were exposed to ambient light and fed Purina Aquamax 5D05 fish chow (St. Louis, MO). Groups of fish received a single IP dose of E₂ (2.5 mg/kg), 4-NP (50 mg/kg), or p, p'-DDE (100 mg/kg). E₂ and 4-NP were dissolved in 1mL of 100% ethanol and then diluted to the appropriate concentration with DMSO (Sigma, St. Louis, MO # 5879), whereas p, p'-DDE was dissolved directly in DMSO. Control fish received an IP injection of the ethanol/DMSO or DMSO diluent without any chemical. During the experimental period the fish were not fed.

The fish were euthanized 48 hours after the IP injection by addition of 50-100 parts per million (ppm) of tricaine methanesulfonate (MS-222) to the water followed by a sharp blow to the head and cervical transection. The livers were excised from the fish and immediately flash frozen with liquid nitrogen. Total RNA was extracted from the tissue samples using RNeasy affinity columns (Qiagen, Chatsworth, CA).

Labeling of RNA and hybridization was performed as described in Example 1. Detection and normalization was performed as described in Example 3. Transcript data were analyzed using linear regression and student t-tests (SigmaStat and SigmaPlot, Jandel, CA).

Results

Gene array technology has enabled researchers to analyze hundreds to thousands of genes on a single array. As a first step toward using array technology, the inter membrane variability between the gene arrays was determined. To accomplish this, aliquots of identical RNA samples were hybridized onto two separate membranes. A scatter plot correlating the intensity values for the cDNA clones between the two arrays was generated. The data points in the graph cluster along a slope of one starting with the

low to the high expressed cDNA clones (R2 of 0.98). Similar results were observed in a replicate experiment.

In order to determine the specific expression profile of 132 unique genes in LMB exposed to E2, or to the contaminants 4-NP and p, p'-DDE, hepatic total RNAs from exposed fish were radiolabeled and individually hybridized to separate membranes. Three separate fish were used for each treatment. A graphical representation of this data is shown in Fig. 5. Figure 5A illustrates the mean ±SEM intensity values for each of the cDNA clones arranged in order of their expression; Fig. 5B illustrates the mean intensity values for each of the cDNA clones for E2 divided by the mean intensity values of the respective cDNA clones from control fish. Only genes from any of the treatments (E2, NP or DDE) that were 3 standard deviations from the mean (0.98 ± 0.41) of the 12 rprotein genes that were used as constitutive controls are shown. While there are a number of genes whose expression levels meet this criterion, only genes that exhibit a two-fold or greater change in expression were considered to be differentially regulated. A two-fold cutoff is commonly used by researchers to demarcate up or-down regulated genes for array experiments (Nagahama, Y. Int. J. Dev. Biol. 38:217-229, 1994; Lin and Peter, Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 129:543-550, 2001). Of the 132 genes used on the array, 16 genes were up-regulated 2-fold or greater by E2 including four Vtg genes, choriogenin 2, choriogenin 3, aspartic protease, protein disulfide isomerase, aldose reductase, and 7 unidentified clones designated 23-1, 24-1, 34-1, 92-1, 101-1, 132-2, and 136-1. Two genes were down-regulated two-fold or more by $\rm E_2$ including transferrin and a clone designated 53-1.

Since the mode of action of p, p'-DDE has not been extensively characterized, the influences of this compound on the expression profiles of the 132 genes arrayed in both male and female fish was examined. In male fish (Fig. 7), four genes were up-regulated by p, p'-DDE including Vtg 1, Vtg 2, choriogenin 2, and choriogenin 3, whereas one gene, clone 47-2 was down-regulated. In female fish (Fig. 8) injected with p, p'-DDE, no genes were identified as up-regulated; however, 17 genes were down-regulated two-fold or greater. These included the four Vtg 's, aspartic protease, transferrin, chemotaxin, choriogenin 2, androgen receptor, and 8 unidentified clones designated 50-1, 53-1, 71-1, 101-1, 107-1, 118-1,120-1, and 128-1.

37

5

10

15

20

25

Summaries of the genes whose expression increased or decreases more than 2-fold for each exposure are depicted in Fig. 9. Light shading indicates down-regulated genes while dark shading indicates up-regulated genes.

Example 5 – Altered Gene Expression In Liver of LMB Exposed To Androgens

Methods

Suppressive subtractive hybridization: Juvenile LMB were treated with a single 50 µl intraperitoneal (IP) injection of either a 2 µM solution of dihydrotestosterone (DHT) or progesterone in DMSO (~2.5 nmol/g BWT). Fish were euthanized four days later and their livers were removed. Hepatic polyA+ RNA was isolated from these samples and subtractive hybridizations (Clontech, Palo Alto, CA) were performed in one direction using DMSO as the driver. The subtracted gene pools were then cloned into pGEM T-Easy (Promega, Madison, WI) and sequenced. Clones were identified using tBlastx at the National Center for Biotechnology Information (NCBI).

Gene arrays: cDNAs obtained from SSH were arrayed as previously described (Larkin et al., Marine Environ. Res. 54:395-399, 2002) and then hybridized with 33P-labeled single-stranded cDNAs isolated from adult male LMB treated with 62.5 μg/g DHT or 20 μg/g 11-ketotestosterone (11-KT) or vehicle (DMSO) (n=5 per treatment). For each cDNA clone, the general background of each membrane was subtracted from the average value of the duplicate spots on the membrane. The values were then normalized to the average value of seven cDNA clones specific to ribosomal genes and the fold change calculated by dividing the mean of each treatment by the mean of the control. Those genes which changed by 2-fold or more were graphed. Significant differences (p<0.05) were determined by ANOVA and secondary testing was done by using Tukey's LSD.

25 Results

5

10

15

20

30

The results are shown in Table 1. Genes that were the most elevated include Vtg 2, spermidine-spermine N¹-acetyltransferase (SSAT), and ZPCs 1 and 4, while the LDL receptor, RXR interacting protein, and Vtg receptor were the most decreased. While the patterns of regulation appeared similar for both androgens, some specific differences did occur. For instance, aspartic protease and glutathione peroxidase III were up- and down-regulated, respectively, by DHT alone. Conversely, a fish homolog to pituitary tumor

transforming protein (PTTP) and cystatin were up- and down-regulated, respectively by 11-KT alone. One gene that was up-regulated by both androgens was sSAT. This gene was shown to be unaffected by estradiol in the pig (Green et al., Biol. Reprod. 59:1251-1258, 1998).

Table 1 Genes Up/Down Regulated By 11-KT and DHT

			TREATED WITH	CHANGE
LOC	Gene ID	E-score	20MG/KG DHT	<u>BY 11KT</u>
D14	VTG PRECURSOR	1.33E-39	up	up
C13	SSAT	0	up	up
H7	EST SEASONAL 64	6.3	up	up
F2	97-8		up	NC
E12	EST SEASONAL 88	4	up	NC
011	RIKEN 1110001M01	2.61E-05	up	up
B14	EST SEASONAL 62	9.04	up	up
B13	SOLUTE CARRIER	2.29E-37	up	up
F12	EST SEASONAL 56	1.7	up	NC
G13	RHAMNOSE BINDING LECTIN	1.00E-43	up	NC
J13	TFIIIA	1.20E-30	up	NC
H14	ZPC1	0	up	up
D13	EST SEASONAL 9	7.58	up	up
114	ZPC4	2.58E-25	up	up
B8	EST SEASONAL 12		up	NC
<u> </u>	ASP PROT		up	NC
C14	UNNAMED PROTEIN	1.48E-36	up	NC
E3	ATPASE 6	3.17E-18	up	NC
<u> </u>	ATPASE SUBUNIT 6	5.13E-24	up	NC
M11	RETINOL DEHYDROGENASE	9.07E-38	up	up
K7	ATP SYNTHASE	1.35E-08	up	NC
K13	ESTP4 H07	2.16	up	up
013	EST SEASONAL F21	0.82	down	down
F5	ESTDHT60	6.92	down	NC
L2	ALPHA 1 ANTITRYPSIN	2.80E-27	down	NC
D12	RIKEN 2700038C09	1.50E-04	down	NC
M4	EST SEASONAL 55	1.32	down	down
B2	53-1		down	NC
C2	68-1		down	NC
M5	IGF-I	7.50E-03	down	NC
D6	ESTP4 E06	6.7	down	NC
G9	ESTP4_C04	1.78	down	NC
15	HAPTOGLOBIN	5.19E-28	down	NC
K2	ALDOLASE B	0		NC
C3	APOLIPOPROTEIN E	1.13E-26		NC
K12	EST SEASONAL 72	6.57	down	down
M2	ALPHA TUBULIN	2.93E-40	down	down
G5	GLUTATHIONE PEROXIDASE III	0		NC
K5	ESTP4 E01	3.43E+00	down	NC

39

14	24.4		down	down
L1	24-1		down	down
L14	ER GAMMA 5' 2F	2.49E-23	down	NC
J5	HEPCIDIN		down	down
L3	COMPLEMENT C3	3.20E-04		down
M12	TFIID (change to liver regeration related	1.88E-07	down	down
	protein)	0.00	down	down
K11	EST SEASONAL 51	0.39	down	down
K1	GP3 11C		down	
L11	RXR INTERACTING PROT	1.36E-09	down	down
M14	VTG RC		down	down
	LDL RC	1.62E-32	down	down
J10			down	NC
L9	EST SEASONAL 90		up	NC
N8	EST P4_D08	3.12E-22	up	NC
O10	PTTP	0.322	up	NC
D4	EST DHT64			up
E14	warm water acclim	3.18E-12	up	NC NC
L8	EST P4 06		up	
H10	EST SEASONAL 42	0.011	down	NC
B9	EST SEASONAL F17		down	NC
	EST SEASONAL 11	0.36	down	NC
06		8.39E-05	down	NC
O3_	CYSTATIN	1 0.00 = 00		

Example 6 – LMB And SHM Genes Up/down-regulated In Response to Estrogenic Agents

Table II LMB Gene Regulation

LMB#	Gene ID	Differentially expressed by
LMB_COMP FACTOR Bf/C2	Putative complement factor Bf/C2	
LMB ABMP	ABMP precursor	
LMB_GLUT-PEROX III	Glutathione peroxidase III	Dn-reg DHT
LMB_Srnp D1	Small ribonucleoprotein D1 polypeptide (16kD)	
LMB_RIBO L6	Ribosomal protein L6	
LMB_MYOSIN LIGHT	myosin regulatory light chain	
LMB_ZPC1	ZPC1	up-reg DHT;11-KT
LMB_CYTO-C OX 1	Cytochrome c oxidase subunit I	
LMB_LECTIN STL2	Rhamnose binding lectin STL2	up-reg DHT
LMB_EMAP2	Echinoderm microtubule associated protein like 2	

LMB ALDOLASE-B	Aldolase b	
LMB_RIBO L7A	60S ribosomal protein L7A	
LMB_PROTHROMBIN	Prothrombin precursor	
LMB_SSAT	SSAT	up-reg DHT; 11-KT
LMB_COMPLEMENT- C3	Complement C3 precursor	Dn-reg DHT; 11-KT
LMB_RIBO L7	Ribosomal protein L7	
LMB_H-ATPASE- SUBUNIT	H+-ATPase subunit, oligomycin sensitivity conferring protein	
LMB_RIBO L23A	Ribosomal protein L23a	
LMB_ALPHA-TUBULIN	alpha tubulin	Dn-reg 11-kt; DHT
LMB_RIBO-Sa	40S ribosomal protein Sa	
LMB_VTG	Vitellogenin prcursor	
LMB_NASCENT- POLYPEP	Nascent polypeptide- associated complex, alpha polypeptide	:
LMB ApoH	Apoliporotein H	
LMB_TBT-BP	TBT-binding protein	
LMB_SOL-CAR-25A#5	solute carrier family 25 alpha member 5	up-reg DHT; 11-KT
LMB_UNNAMED- PROTEIN	Unnamed protein product	
LMB_FIB-B-SUBUNIT	Fibrinogen B subunit	
LMB_CIS-RETIN DEHYDRO	cis-retinol dehydrogenase	up-reg DHT
LMB_SENES-ASSOC PROTEIN	Putative senscence- associated protein	
LMB_LDL RC	LDL receptor	Dn-reg DHT; 11-KT
LMB_ABC-TRANS	ABC transporter	
LMB_CATHEPSIN B	Cathepsin B	
LMB_SERPIN-CP9	Serpin CP9	
LMB_TFIIIA	Transcription factor IIIA (TFIIIA)	
LMB_ANTITHROMBIN	Antithrombin III	
LMB_RIKEN 1810056020	RIKEN cDNA 1810056020	
LMB_WEE-I	Wee I tyrosine kinase	
LMB_HAPTOGLOBIN	Haptoglobin	Dn-reg DHT

LMB APOA-I	APOPLIPOPROTEIN A-I	
LMB ALPHA-1	alpha -1 antitrypsin	Dn-reg DHT
ANTĪTRYPSIN	homolog precursor	
LMB APOE	Apolipoprotein E	
LMB_ZPC4	ZPC4	up-reg DHT; 11-KT
LMB_LECTIN 9	C-type lectin superfamily 9	
LMB_ATPASE 6	ATPase subunit 6	up-reg DHT
LMB_ITI	inter-alpha-trypsin inhibitor "ITI"	
LMB_EIF-3#7	Eukaryotic translation initiation factor 3 subunit 7	
LMB_HEPCIDIN	Hepcidin precursor	dn-reg DHT
LMB_PTTP	Pituitary tumor transforming protein	
LMB_TOXIN-1	Toxin-1	
LMB_COAG FACTOR	Coagulation factor VII	
LMB_CDC42-2	cdc 42 isoform 2	
LMB_WARM-WATER	Warm water acclimation-	up-reg 11-KT
ACC PROTEIN	related protein	
LMB_CYTO-C OX II	Cytochrome c oxidase subunit II	
LMB_L10A	60S ribosomal protein L10A	
LMB_KALLIKREIN	Kallikrein	
LMB_DANIO EST 3818635	Danio EST IMAGE:3818635	
LMB_ALPHA-2- MACROGLOB-1	alpha-2-macroglobulin-1	8
LMB_HAPTOGLOB RELATED PROT	Haptoglobin-related protein	
LMB_FILAMEN-B	Filamen B	
LMB UBIQUITIN	ubiquitin	
LMB_RXR INTERACT PROT	Retinoid X receptor interacting protein	Dn-reg 11- KT; DHT
LMB_MITOCHON- ATP-SYNTHASE	ATP synthase alpha chain mitochondrial precursor	up-reg DHT
LMB_TATA BOX BP	TATA-box binding protein	
LMB_DIFF-REG TROUT PROT-1	Diiferentially regulated trout protein 1	
LMB_LIVER-REGEN- REL PROT	liver regeneration related protein	
LMB_SERPIN-2B	Serpin 2b	
LMB_APO-A1	Apolipoprotein A-I-1 precursor	

LMB_M-PHASE PROT	M-phase phosphoprotein 6	
LMB PROSTAGLAND-	Prostaglandin D synthase-	
D-SYNTHASE	like protein (lipocalin type)	
LMB_LYRIC	LYRIC	
LMB_CYSTATIN- PREC	Cystatin precursor	Dn-reg 11-KT
LMB_RIKEN 2700038	RIKEN cDNA 2700038	
LMB_DIAZEPAM-	Membrane associated	
BINDING INHIB	diazepam-binding inhibitor	
LMB_IGF-I	IGF-I ESTP4 D11	
LMB_ESTP4_D11	ESTP4_DT1	
LMB_ESTDHT_6 LMB_ESTDHT_7	ESTDHT_6	
LMB_ESTDH1_/	ESTDHT 13	
LMB_ESTDHT_13	ESTDHT 50	
LMB_ESTDHT_51	ESTDHT 51	
LMB_ESTDHT_53	ESTDHT 53	
LMB_ESTDHT_60	ESTDHT_60	
LMB_ESTDHT_62	ESTDHT_62	up-reg DHT; 11-KT
LMB_ESTDHT_68	ESTDHT_68	
LMB_ESTDHT_69	ESTDHT_69	
LMB_ESTP4_A02	ESTP4_A02	
LMB ESTP4 B03	ESTP4 B03	
LMB_ESTP4_B04	ESTP4_B04	
LMB_ESTP4_B07	ESTP4_B07	
LMB_ESTP4_B08	ESTP4_B08	
LMB_ESTP4_B09	ESTP4_B09	
LMB_ESTP4_C03	ESTP4_C03	
LMB_ESTP4_C04	ESTP4_C04	
LMB_ESTP4_C06	ESTP4_C06	
LMB ESTP4 D04	ESTP4_D04	
LMB_ESTP4_D08	ESTP4_D08	
LMB_ESTP4_D10	ESTP4_D10	

LMB_ESTP4_E01	ESTP4_E01	
LMB ESTP4 E03	ESTP4 E03	
LMB_ESTP4_E06	ESTP4 E06	
LMB_ESTP4_E08	ESTP4_E08	
LMB_ESTP4_E12	ESTP4_E12	
LMB_ESTP4_F06	ESTP4_F06	
LMB_ESTP4_G06	ESTP4_G06	
LMB_ESTP4_G11	ESTP4_G11	
LMB_ESTP4_H02	ESTP4_H02	
LMB_ESTP4_H04	ESTP4_H04	
LMB_ESTP4_H05	ESTP4_H05	
LMB_ESTP4_H07	ESTP4_H07	
LMB_ESTP4_H08	ESTP4_H08	
LMB_EST- SEASONAL_02	EST-SEASONAL_02	
LMB_EST- SEASONAL_03	EST-SEASONAL_03	
LMB_EST- SEASONAL_04	EST-SEASONAL_04	
LMB_EST- SEASONAL_06	EST-SEASONAL_06	
LMB_EST- SEASONAL_09	EST-SEASONAL_09	up-reg DHT; 11-KT
LMB_EST- SEASONAL_11	EST-SEASONAL_11	dn-reg 11-KT
LMB_EST- SEASONAL_12	EST-SEASONAL_12	up-reg DHT
LMB_EST- SEASONAL-14	EST-SEASONAL-14	
LMB_EST- SEASONAL_16	EST-SEASONAL_16	
LMB_EST- SEASONAL_17	EST-SEASONAL_17	
LMB_EST- SEASONAL_22	EST-SEASONAL_22	
LMB_EST- SEASONAL_51	EST-SEASONAL_51	dn 11-KT; DHT
LMB_EST- SEASONAL_52	EST-SEASONAL_52	

LMB_EST-SEASONAL_54 EST-SEASONAL_55 Dn-reg 11-KT; DHT LMB_EST-SEASONAL_55 EST-SEASONAL_56 Up-reg DHT; LMB_EST-SEASONAL_56 EST-SEASONAL_56 Up-reg DHT; LMB_EST-SEASONAL_58 EST-SEASONAL_58 Up-reg DHT; LMB_EST-SEASONAL_59 EST-SEASONAL_59 EST-SEASONAL_59 LMB_EST-SEASONAL_61 EST-SEASONAL_61 Up-reg DHT; LMB_EST-SEASONAL_62 EST-SEASONAL_62 EST-SEASONAL_62 LMB_EST-SEASONAL_63 EST-SEASONAL_64 Up-reg DHT; LMB_EST-SEASONAL_64 EST-SEASONAL_68 EST-SEASONAL_70 LMB_EST-SEASONAL_70 EST-SEASONAL_70 EST-SEASONAL_71 LMB_EST-SEASONAL_71 EST-SEASONAL_72 Dn-reg DHT; LMB_EST-SEASONAL_75 EST-SEASONAL_75 EST-SEASONAL_75 LMB_EST-SEASONAL_75 EST-SEASONAL_85 Up-reg DHT; LMB_EST-SEASONAL_85 EST-SEASONAL_85 Up-reg DHT; LMB_EST-SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST-SEASONAL_91 EST-SEASONAL_91 EST-SEASONAL_91 LMB_EST-SEASONAL_97 EST-SEASONAL_F11 EST-SEASONAL_F11	LAD FOT	FOT CEACONAL FA	
SEASONAL_55 KT; DHT LMB_EST- SEASONAL_56 EST-SEASONAL_56 up-reg DHT; LMB_EST- SEASONAL_58 EST-SEASONAL_58 up-reg DHT; LMB_EST SEASONAL_59 EST-SEASONAL_59 up-reg LMB_EST SEASONAL_61 EST-SEASONAL_61 up-reg LMB_EST SEASONAL_62 EST-SEASONAL_62 up-reg LMB_EST SEASONAL_64 EST-SEASONAL_64 up-reg LMB_EST SEASONAL_70 EST-SEASONAL_70 up-reg LMB_EST SEASONAL_71 EST-SEASONAL_71 up-reg DHT; LMB_EST SEASONAL_72 EST-SEASONAL_72 Dn-reg DHT; LMB_EST SEASONAL_75 EST-SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_85 EST-SEASONAL_85 up-reg DHT; LMB_EST SEASONAL_80 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_92 EST-SEASONAL_92 LMB_EST SEASONAL_97 EST-SEASONAL_92 EST-SEASONAL_F11 LMB_EST SEASONAL_F11 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F21 ES	LMB_EST- SEASONAL_54	EST-SEASONAL_54	
SEASONAL_56 EST-SEASONAL_58 LMB_EST SEASONAL_59 EST-SEASONAL_59 LMB_EST SEASONAL_61 EST-SEASONAL_61 LMB_EST SEASONAL_62 EST-SEASONAL_62 LMB_EST SEASONAL_64 EST-SEASONAL_64 LMB_EST SEASONAL_68 EST-SEASONAL_68 LMB_EST SEASONAL_70 EST-SEASONAL_70 LMB_EST SEASONAL_71 EST-SEASONAL_71 LMB_EST SEASONAL_72 EST-SEASONAL_72 LMB_EST SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_85 EST-SEASONAL_85 LMB_EST SEASONAL_88 EST-SEASONAL_88 LMB_EST SEASONAL_90 EST-SEASONAL_90 LMB_EST SEASONAL_90 EST-SEASONAL_92 LMB_EST SEASONAL_97 EST-SEASONAL_97 LMB_EST SEASONAL_97 EST-SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F11 LMB_EST SEASONAL_F	_	EST-SEASONAL_55	
LMB_EST SEASONAL_58 EST-SEASONAL_58 LMB_EST SEASONAL_59 EST-SEASONAL_59 LMB_EST SEASONAL_61 EST-SEASONAL_61 LMB_EST SEASONAL_62 EST-SEASONAL_62 LMB_EST SEASONAL_64 EST-SEASONAL_64 LMB_EST SEASONAL_68 EST-SEASONAL_68 LMB_EST SEASONAL_70 EST-SEASONAL_70 LMB_EST SEASONAL_71 EST-SEASONAL_71 LMB_EST SEASONAL_72 EST-SEASONAL_72 LMB_EST SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_75 EST-SEASONAL_77 LMB_EST SEASONAL_85 EST-SEASONAL_85 LMB_EST SEASONAL_80 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_91 EST-SEASONAL_91 dn-reg DHT LMB_EST SEASONAL_92 EST-SEASONAL_91 Dn-reg DHT LMB_EST SEASONAL_F11 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT		EST-SEASONAL_56	up-reg DHT;
LMB_EST SEASONAL_59 EST-SEASONAL_59 LMB_EST SEASONAL_61 EST-SEASONAL_62 LMB_EST SEASONAL_62 EST-SEASONAL_62 LMB_EST SEASONAL_64 EST-SEASONAL_64 up-reg DHT;11KT LMB_EST SEASONAL_68 EST-SEASONAL_68 up-reg DHT;11KT LMB_EST SEASONAL_70 EST-SEASONAL_70 Dn-reg DHT; 11KT LMB_EST SEASONAL_71 EST-SEASONAL_71 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_85 EST-SEASONAL_85 up-reg DHT; LMB_EST SEASONAL_88 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_91 EST-SEASONAL_92 EST-SEASONAL_97 LMB_EST SEASONAL_F11 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F11 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_ER-ALPHA ESTROG	LMB_EST	EST-SEASONAL_58	
LMB_EST SEASONAL_61 EST-SEASONAL_61 LMB_EST SEASONAL_62 EST-SEASONAL_62 LMB_EST SEASONAL_64 EST-SEASONAL_64 up-reg DHT;11KT LMB_EST SEASONAL_68 EST-SEASONAL_68 DHT;11KT LMB_EST SEASONAL_70 EST-SEASONAL_70 DN-reg DHT; LMB_EST SEASONAL_71 EST-SEASONAL_72 Dn-reg DHT; LMB_EST SEASONAL_75 EST-SEASONAL_75 Dn-reg DHT; LMB_EST SEASONAL_75 EST-SEASONAL_77 EST-SEASONAL_85 LMB_EST SEASONAL_85 EST-SEASONAL_85 up-reg DHT; LMB_EST SEASONAL_88 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_91 EST-SEASONAL_97 EST-SEASONAL_97 LMB_EST SEASONAL_71 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F11 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT	LMB_EST	EST-SEASONAL_59	
LMB_EST SEASONAL_62 EST-SEASONAL_62 up-reg DHT;11KT LMB_EST SEASONAL_64 EST-SEASONAL_64 up-reg DHT;11KT LMB_EST SEASONAL_68 EST-SEASONAL_68 sest-seasonal_68 LMB_EST SEASONAL_70 EST-SEASONAL_70 sest-seasonal_70 LMB_EST SEASONAL_71 EST-SEASONAL_71 sest-seasonal_71 LMB_EST SEASONAL_72 EST-SEASONAL_72 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 sest-seasonal_75 LMB_EST SEASONAL_85 EST-SEASONAL_85 up-reg DHT; LMB_EST SEASONAL_88 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_91 EST-SEASONAL_92 sest-seasonal_97 LMB_EST SEASONAL_97 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F11 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT	LMB_EST	EST-SEASONAL_61	
LMB_EST SEASONAL_64 EST-SEASONAL_64 up-reg DHT;11KT LMB_EST SEASONAL_68 EST-SEASONAL_68 Up-reg DHT;11KT LMB_EST SEASONAL_70 EST-SEASONAL_70 Up-reg DHT; 11KT LMB_EST SEASONAL_71 EST-SEASONAL_71 Up-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 Up-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_77 Up-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_85 Up-reg DHT; 11KT LMB_EST SEASONAL_85 EST-SEASONAL_88 Up-reg DHT; 11KT LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_91 EST-SEASONAL_92 EST-SEASONAL_91 LMB_EST SEASONAL_97 EST-SEASONAL_F11 EST-SEASONAL_F11 LMB_EST SEASONAL_F11 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_ER-ALPHA ESTROGEN RECEPTOR ALPHA Up-reg E2; NP	LMB_EST	EST-SEASONAL_62	
LMB_EST SEASONAL_68 EST-SEASONAL_68 LMB_EST SEASONAL_70 EST-SEASONAL_70 LMB_EST SEASONAL_71 EST-SEASONAL_71 LMB_EST SEASONAL_72 EST-SEASONAL_72 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_75 EST-SEASONAL_77 LMB_EST SEASONAL_85 EST-SEASONAL_85 LMB_EST SEASONAL_88 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_92 EST-SEASONAL_92 EST-SEASONAL_97 LMB_EST SEASONAL_F11 EST-SEASONAL_F11 Dn-reg 11-KT LMB_EST SEASONAL_F17 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_ER-ALPHA EST-SEASONAL_F21 Dn-reg DHT LMB_ER-BETA ESTROGEN RECEPTOR ALPHA Up-reg E2; NP	LMB_EST	EST-SEASONAL_64	
LMB_EST SEASONAL_70 EST-SEASONAL_70 LMB_EST SEASONAL_71 EST-SEASONAL_71 LMB_EST SEASONAL_72 EST-SEASONAL_72 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_85 EST-SEASONAL_85 LMB_EST SEASONAL_88 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_92 EST-SEASONAL_92 EST-SEASONAL_97 LMB_EST SEASONAL_97 EST-SEASONAL_97 EST-SEASONAL_97 LMB_EST SEASONAL_F11 EST-SEASONAL_F11 Dn-reg 11-KT LMB_EST SEASONAL_F17 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_ER-BETA ESTROGEN RECEPTOR ALPHA Up-reg E2; NP	LMB_EST	EST-SEASONAL_68	·
LMB_EST SEASONAL_71 EST-SEASONAL_71 Dn-reg DHT; 11KT LMB_EST SEASONAL_72 EST-SEASONAL_72 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_77 EST-SEASONAL_85 Up-reg DHT; LMB_EST SEASONAL_85 EST-SEASONAL_88 Up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_92 EST-SEASONAL_92 EST-SEASONAL_97 LMB_EST SEASONAL_97 EST-SEASONAL_F11 EST-SEASONAL_F11 LMB_EST SEASONAL_F11 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_ER-BETA ESTROGEN RECEPTOR Up-reg E2; NP	LMB_EST	EST-SEASONAL_70	
LMB_EST SEASONAL_72 EST-SEASONAL_72 Dn-reg DHT; 11KT LMB_EST SEASONAL_75 EST-SEASONAL_75 LMB_EST SEASONAL_85 EST-SEASONAL_85 LMB_EST SEASONAL_88 EST-SEASONAL_88 up-reg DHT; LMB_EST SEASONAL_90 EST-SEASONAL_90 dn-reg DHT LMB_EST SEASONAL_92 EST-SEASONAL_92 EST-SEASONAL_97 LMB_EST SEASONAL_97 EST-SEASONAL_97 Dn-reg 11-KT LMB_EST SEASONAL_F11 EST-SEASONAL_F11 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F17 Dn-reg DHT LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT LMB_ER-ALPHA ESTROGEN RECEPTOR ALPHA Up-reg E2; NP	LMB_EST	EST-SEASONAL_71	
LMB_EST SEASONAL_75 LMB_EST SEASONAL_77 LMB_EST SEASONAL_85 LMB_EST SEASONAL_85 LMB_EST SEASONAL_88 LMB_EST SEASONAL_90 LMB_EST SEASONAL_90 LMB_EST SEASONAL_92 LMB_EST SEASONAL_92 LMB_EST SEASONAL_97 LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR ALPHA LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_72	
LMB_EST SEASONAL_77 LMB_EST SEASONAL_85 LMB_EST SEASONAL_88 LMB_EST SEASONAL_90 LMB_EST SEASONAL_92 LMB_EST SEASONAL_92 LMB_EST SEASONAL_97 LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F21 Dn-reg DHT SEASONAL_F10 LMB_ER-ALPHA ESTROGEN RECEPTOR LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_75	
LMB_EST SEASONAL_85 LMB_EST SEASONAL_88 LMB_EST SEASONAL_90 LMB_EST SEASONAL_90 LMB_EST SEASONAL_92 LMB_EST SEASONAL_97 LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 EST-SEASONAL_F17 Dn-reg 11-KT EST-SEASONAL_F21 LMB_EST SEASONAL_F21 ESTROGEN RECEPTOR ALPHA LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_77	
LMB_EST SEASONAL_88 LMB_EST SEASONAL_90 LMB_EST SEASONAL_92 LMB_EST SEASONAL_92 LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_85	
LMB_EST SEASONAL_90 LMB_EST SEASONAL_92 LMB_EST SEASONAL_97 LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR ALPHA LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_88	up-reg DHT;
LMB_EST SEASONAL_92 LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_90	dn-reg DHT
LMB_EST SEASONAL_97 LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F21 LMB_EST SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR ALPHA LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_92	
LMB_EST SEASONAL_F11 LMB_EST SEASONAL_F17 EST-SEASONAL_F17 Dn-reg 11-KT EST-SEASONAL_F21 LMB_EST SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT Dn-reg DHT EST-SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR ALPHA LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_97	
LMB_EST SEASONAL_F17 LMB_EST SEASONAL_F21 LMB_ER-ALPHA EST-SEASONAL_F21 EST-SEASONAL_F21 Dn-reg DHT Dn-reg DHT Up-reg E2; NP LMB_ER-BETA ESTROGEN RECEPTOR ALPHA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_F11	
LMB_EST SEASONAL_F21 LMB_ER-ALPHA ESTROGEN RECEPTOR up-reg E2; ALPHA LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_F17	Dn-reg 11-KT
ALPHA NP LMB_ER-BETA ESTROGEN RECEPTOR	LMB_EST	EST-SEASONAL_F21	Dn-reg DHT
	LMB_ER-ALPHA	1	
	LMB_ER-BETA		

LMB ER-GAMMA	ESTROGEN RECEPTOR	Dn-reg 11-
	GAMMA	KT; up-reg
		E2
LMB_STAR	STAR PROTEIN	up-reg cAMP;
		dn-reg b- sitosterol
LMB SF1	SF1 PROTEIN	310316101
	FRAGMENT	
LMB_ESTP4-E01	LMB_ESTP4-E01	down by DHT
LMB_ESTDHT64	LMB_ESTDHT64	up by 11KT
LMB_LIV-REGER- PROT	LMB_LIV-REGER-PROT	down by DHT
LMB_RIKEN 1110001M01	LMB_RIKEN 1110001M01	up by 11KT;
LMB EST-	LMB EST-SEASONALf17	DHT down by
SEASONALf17	LWB_EGT-GEAGGNAEIT	11KT
LMB1-3	unknown	
LMB2-2	unknown	
LMB3-1	unknown	
LMB4-1	unknown	
LMB5	vitellogenin-2A	Up reg E2;
		NP; Dn-reg
		DDE(F)
LMB6-1	AMBP protein precursor	
LMB7-1	Unknown	
LMB8-2	Unknown	
LMB9-1	Unknown	
LMB10-1	Unknown	
LMB11-2	Unknown	
LMB12-1	Zebrafish Oligosaccharyl	
	transferase integral	
	membrane protein	
LMB13-2	Unknown	
LMB14-1	Unknown	
LMB15-1	NADH dehydrogenase subunit 1	
	Subunit	
LMB16-2	unknown	
LMB17-2	Mitochondrial control region	
	initial control region	
LMB18-3	unknown	
	 	

LMB19-1	Insulin like growth factor	
LMD00.4	unknown	
LMB20-1	<u> </u>	
LMB21-1	unknown	
LMB22-1	unknown	115 55 52
LMB23-1	unknown	Up-reg E2
LMB24-1	Unknown	Up-reg E2, dn-reg DHT; 11-KT
LMB25-1	Ribosomal porotein S8	
LMB26-1	Transferrin	
LMB27-1	unknown	
LMB28-2	unknown	
LMB29-2	unknown	
LMB30-1	unknown	
LMB31	choriogenin	
LMB32-1	G-box binding factor (bacteria)	
LMB33-1	unknown	
LMB34-1	unknown	up-reg E2
LMB35-1	unknown	,
LMB36-1	hypothetical protein	
LMB37-1	unknown	
LMB38-1	40S ribosomal protein S2	
LMB39-1	unknown	
LMB40-1	alport syndrome chrom region gene	
LMB41-1	ribosomal protein L8	

LMB42-1	Gamma fibrinogen	
LMB43-1	FK506 binding protein, immunophillin	
LMB44-1	Dynein heavy chain	
LMB45-1	vitellogenin A	
LMB46-1	unknown	
LMB47-2	unknown	Down-reg DDE(M)
LMB48-1	elongation factor 1 beta	
LMB49-1	40S ribosomal protein S15	
LMB50-1	unknown	Down reg NP; DDE(F)
LMB51-1	unknown	
LMB52-1	unknown	
LMB53-1	unknown	Down-reg. E2; DDE (F); DHT
LMB54-2	L4 ribosomal	
LMB55-1	L4 ribosomal	
LMB56-1	40S ribosomal	
LMB57	ADP,ATP translocase	
LMB58-1	ribosomal L21	
LMB59-1	Unknown	
LMB60-1	unknown, AK010552	
LMB61-1	unknown	
LMB63-1		
-111000	unknown	

LMB65-1	unknown	
LMB66-1	unknown	
LMB67-1	signal peptidase, endopeptidase	Up-reg NP
LMB68-1	hypothetical protein	Dn-reg DHT
LMB69-2	unknown	
LMB70-2	NADH dehydrogenase subunit 1	
LMB71-1	unknown	down-reg DDE (F)
LMB72-1	unknown	
LMB73-1	NADH dehydrogenase subunit 1	
LMB74-3	unknown	
LMB75-1	40S ribosomal	
LMB76-2	unknown	
LMB77-1	unknown	
LMB78-1	unknown	
LMB79-2	unknown	
LMB80-1	unknown	
LMB81-1	unknown	
LMB82-1	unknown	
LMB83	vitellogenin-2	up-reg E2; NP; DDE(M); dn-reg DDE(F)
LMB84-1	STAR	
LMB85-1	CYP1A	
LMB86-1	ribosomal protein L28	
LMB87	vitellogenin-1	up-reg E2; NP; DDE(M); dn-reg DDE(F)
LMB88-1	unknown	

LMB89-1	glucocorticoid receptor	
LMB90-1	unknown	
LMB91-1	unknown	
LMB92-1	unknown	up-reg E2;NP
LMB93-1	estrogen receptor gamma	
LMB94-1	transferrin	Down-reg. E2;NP; DDE in F
LMB95-1	CAP-rich Zinc finger protein	
LMB96-1	unknown	
LMB97	choriogenin-3	Up-reg E2; NP; DDE(M); DHT
LMB98-1	estrogen receptor beta	
LMB99-1	estrogen receptor alpha	
LMB100-1	ribosomal protein L5	
LMB101-1	unknown	Up-reg E2, Dn for DDE(F)
LMB102-1	chemotaxin	down-reg DDE (F)
LMB103-1	proteosome subunit 9	
LMB104-3	60S ribosomal protein L13	
LMB105-1	unknown	
LMB107-1	unknown	down-reg DDE (F)

LMB108-1	choriogenin-2	Up-reg E2; NP; DDE(M); Dn-reg DDE (F)
LMB109-1	40S ribosomal protein S3A	
LMB110-1	Methionine sulfoxide reductase	
LMB112-1	cathepsin (Aspartic protease)	up-reg E; NP: DHT; Dn- DDE (F)
LMB116-1	aldose reductase	up-reg E2
LMB118-1	apolipoprotein precursor	down-reg DDE (F)
LMB120-1	hypothetical protein	donw-reg DDE (F)
LMB121-1	TBT binding protein	
LMB122-1	alpha2-HS glycoprotein	
LMB123-1	Urocanase	
LMB128-1	unknown	down-reg DDE (F)
LMB129-1	unknown	
LMB130-1	secreted phosphoprotein precursor	
LMB132-1	integrin beta	up-reg E2
LMB133-1	unknown	
LMB134-3	unknown	

LMB135	protein disulfide isomerase	up-reg E2
LMB136-1	protein disulfide isomerase like	up-reg E2
LMB137-2	unknown	
LMB138-1	unknown	
LMB139-1	apolipoprotein C2	
LMB140-1	unknown	
LMB141	vitellogenin-3	up reg E2; NP, dn DDE (F)
LMB142-1	hypothetical protein (FLJ10530)	
LMB144-1	vitellogenin like	
LMB150	androgen receptor	Dn-reg DDE(F)
LMB151	vitellogenin receptor	Dn-reg DHt- 11-KT

Table III SHM Gene Regulation

Clone ID	Identity	E value	Regulation
SHM IK 7A	40 S ribosomal protein S17 (Ictalurus punctatus)	2.00E-39	
SHM IK 24E	similar to ribosomal protein L37a, cytosolic	4.00E-34	
SHM IK 25C	ribosomal protein L5	5 E-05	
SHM IK 5D	60 S ribosomal protein L8	5.00E-26	
SHM IKIGF-1	IGF I		
SHM IKIGF-2	IGF 2		
Female Test (SSH)			
ndSHM-FT1-A03	sertotransferrin precursor (O. Latipes)	1.00E-99	
ndSHM-FT1-A09	putative transmembrane 4 superfamily member protein	7.88E-08	up-reg- E2

101114 574 440			up-reg-E2
ndSHM-FT1-A10	unknown	5 C4 F 44	
ndSHM-FT1-A11	phospholipid hydroperoxide glutathione peroxidase	5.61E-44	dn-reg E2
ndSHM-FT1-A12	sertotransferrin precursor (O. Latipes)	3.90E-35	dn-reg E2
ndSHM-FT1-B03	Unknown		
ndSHM-FT1-B07	Similar to aldehyde dehydrogenase 7 family, member A1	0	
ndSHM-FT1-B10	cytochrome b [Orestias silustani]	0	
ndSHM-FT1-C01	Similar to high mobility group box 1 [Danio rerio]	0	
ndSHM-FT1-C03	perforin 1 (pore forming protein) human,,	2.00E-19	up reg E2
ndSHM-FT1-C04	Prostaglandin D Synthase [Xenopus laevis]	1.01E-05	dn-reg E2
ndSHM-FT1-C09	endoplasmic reticulum lumenal L-amino acid oxidase	0	dn-reg E2
ndSHM-FT1-D06	Unknown		up-reg E2
ndSHM-FT1-D10	unknown		up-reg E2
ndSHM-FT1-D12	unknown		dn-reg E2
ndSHM-FT1-E01	probable complement regulatory plasma protein SB1 -	2.79E-09	dn-reg E2
ndSHM-FT1-E02	Cytochrome C oxidase subunit II	2.00E-62	
ndSHM-FT1-E08	unknown		up-reg E2
ndSHM-FT1-E09	unknown		up-reg E2
ndSHM-FT1-E12	Similar to chitinase, (D. rerio)	1.00E-83	dn-reg E2
ndSHM-FT1-F01	leucine-rich alpha-2-glycoprotein [Homo sapiens]	3.29E-13	
ndSHM-FT1-F06	complement component C3 [Paralichthys olivaceus]	0	dn-reg E2
ndSHM-FT1-F09	solute carrier family 27 (fatty acid transporter), member	6.13E-19	
ndSHM-FT1-F10	beta hemoglobin A [Seriola quinqueradiata]	1.00E-42	dn-reg E2
ndSHM-FT1-F11	unknown		dn-reg E2
ndSHM-FT1-F12			up reg E2
ndSHM-FT1-G02	unknown		
ndSHM-FT1-G04	Unknown	2.15847	up-reg E2
ndSHM-FT1-G08	endoplasmic reticulum lumenal L-amino acid oxidase	0	
ndSHM-FT1-H02	FUGRU complement component C9 precursor	3.00E-16	
ndSHM-FT1-H03	35 kDa serum lectin [Xenopus laevis]	1.85E-35	
ndSHM-FT1-H04	Similar to chitinase, acidid (D. rerio)	4.00E-83	dn-reg E2
ndSHM-FT1-H06	SPI-2 serine protease inhibitor (AA 1-407) [Rattus no	1.97E-09	
ndSHM-FT1-H07	unknown		up-reg E2
ndSHM-FT1-H10	Unknown		
ndSHM-FT1-H11	unknown		up-reg E2
ndSHM-FT1-H12	beta hemoglobin A	1.40E-45	up-reg E2
ndSHM-MC1-A02	Liver basic fatty acid bp	2.00E-43	dn-reg E2
ndSHM-MC1-A03	Polyadenylate-binding protein 1	0	
ndSHM-MC1-A04	unknown		up-reg E2
ndSHM-MC1-A05	beta galactosidase/ubiquitin fusion protein	3.00E-44	1
ndSHM-MC1-A07	Orla C3 (O. latipes)	9.00E-38	
TIGOT TIVITIVE T-AUT	Ond So (S. Iddpos)		<u> </u>

		0.005.00	J F0
ndSHM-MC1-A09	alpha-2-macroglobulin 2 (C. carpio)	2.00E-06	dn-reg E2
ndSHM-MC1-A11	alpha-1-antitrypsin [Sphenodon punctatus]	1.27E-11	dn-reg E2
ndSHM-MC1-B01	unknown		dn-reg E2
ndSHM-MC1-B03	cytochrome c oxidase, subunit Va	0	
ndSHM-MC1-B04	KIAA0018 protein [Homo sapiens]	9.29E-35	up-reg E2
ndSHM-MC1-B05	Unknown		up-reg E2
ndSHM-MC1-B08	complement component C5-1 [Cyprinus carpio]	5.61E-30	
ndSHM-MC1-B10	Serotransferrin precursor >gi 1814091 dbj BAA10901.1	2.00E-39	
ndSHM-MC1-B11	fibrinogen, B beta polypeptide	2.80E-45	dn-reg E2
ndSHM-MC1-C02	Similar to fibrinogen, gamma polypeptide [Danio rerio]	4.06E-41	up-reg-field
			dn-reg E2
ndSHM-MC1-C04	4-hydroxyphenylpyruvate-dioxygenase	0	
ndSHM-MC1-C05	unknown		up-reg E2
ndSHM-MC1-C08	serine proteinase inhibitor CP9 - common carp	8.08E-39	dn-reg E2
ndSHM-MC1-C10	prothrombin precursor [Takifugu rubripes]	0	
ndSHM-MC1-D01			
ndSHM-MC1-D02	ATPase, H+ transporting, lysosomal,	1.47E-25	
ndSHM-MC1-D03	fatty acid binding protein 2, hepatic (Japanese seapearch)	2.00E-58	up-reg-field
ndSHM-MC1-D04	Proteasome Regulatory Particle, ATPase-	0	
ndSHM-MC1-D06	expressed sequence AL022852 [Mus musculus]	1.63E-21	up-reg E2
ndSHM-MC1-D10	Scavenger receptor with C/type lectine type I (Human)	5.00E-14	dn-reg E2
ndSHM-MC1-E01	similar to monocarboxylate transporter 6	2.73E-17	
ndSHM-MC1-E05	elastase 4 precursor [Paralichthys	0	up-reg field
ndSHM-MC1-E06	Unknown		
ndSHM-MC1-E08	pre alpha inhibitor heavy chain 3 rat	3.00E-14	dn-reg E2
ndSHM-MC1-E10	Unknown		up-reg E2
ndSHM-MC1-E12	unknown		up-reg E2
ndSHM-MC1-F01	similar to charged amino acid rich leucine zipper factor-1	1.83E-11	up-reg E2
ndSHM-MC1-F02	chemotaxis (O. mykiss)	2.00E-60	
ndSHM-MC1-F03	dendritic cell protein [Homo sapiens]	0	
ndSHM-MC1-F06	Chain A, Alcohol Dehydrogenase	0	
ndSHM-MC1-F11	17-beta-hydroxysteroid dehydrogenase type	0	up-reg E2
ndSHM-MC1-F12	interferon induced protein 2 [Ictalurus punctatus]	2.49E-07	up-reg E2
ndSHM-MC1-G01	Alcohol dehydrogenase >gi 482344	0	up-reg E2
ndSHM-MC1-G02	14kDa apolipoprotein [Anguilla japonica]	1.45E-16	dn-reg E2
ndSHM-MC1-G03	serine (or cysteine) proteinase inhibitor, clade F	1.14E-29	dn-reg E2
ndSHM-MC1-G04	ribosomal protein XL1a - African clawed frog	0	
ndSHM-MC1-G05	microfibrillar-associated protein 4	3.27E-13	
11401111111101-000	apolipoprotein E [Scophthalmus maximus]	4.21E-37	

ndSHM-MC1-G11	aldehyde reductase AFAR2 subunit [Rattus norvegicus]	3.34E-36	up-reg E2
ndSHM-MC1-G12	Similar to RIKEN cDNA 1300018K11 gene [Homo sapiens]	4.21E-12	
ndSHM-MC1-H02	unknown		
ndSHM-MC1-H03	complement factor B/C2B (O. mykiss)	8.00E-28	
ndSHM-MC1-H04	similar to ribosomal protein S25, cytosolic [validated] -	1.07E-23	up-reg field
ndSHM-MC1-H06	unnamed protein product [Homo sapiens]	0.000421546	up-reg E2
ndSHM-MC1-H08	peroxisomal proliferator-activated receptor beta1 [Salmo salar]	2.00E-08	
ndSHM-MC1-H09	Ligand-gated ionic channel family member	1.93158	up-reg E2
ndSHM-MC1-H10	unknown	3.75692	up-reg E2
ndSHM-MC1-H12	Similar to sperm associated antigen 7 [Homo sapiens]	4.36E-18	
Male Test SSH			
ndSHM-MT1-A02	chicken fatty acid binding protein	3.00E-52	up-reg E2
ndSHM-MT1-A03	warm temperature acclimation related 65 kDa protein (O. latipes)	6.00E-40	
ndSHM-MT1-A05	Transducin beta/like 2 protein	e-107	up-reg E2
ndSHM-MT1-B09	putative mitochonrial inner membrane protease subunit (Human)	1.00E-34	up-reg E2
ndSHM-MT1-C05	unknown		up-reg E2
ndSHM-MT1-C08	vitellogenin I [Cyprinodon variegatus]	6.89E-43	up-reg E2
ndSHM-MT1-D04	WS beta-transducin repeats protein [Homo sapiens]	1.87E-05	
ndSHM-MT1-D05	mesau serum amyloid A/3 protein precursor	5.00E-25	up-reg E2
ndSHM-MT1-D07	vitellogenin (Sillago japonica)	8.00E-78	up-reg E2
ndSHM-MT1-E02	40 S ribosomal protein S3	E-105	
ndSHM-MT1-E03	Similar to transducin (beta)-like 2 [Xenopus laevis]	0	up-reg E2
ndSHM-MT1-E05	Predicted CDS, seven TM Receptor S	3.00782	up-reg E2
ndSHM-MT1-F11	Similar to transducin (beta)-like 2 [Xenopus laevis]	1.42E-16	
ndSHM-MT1-G03	60S ribosomal protein L10a >g	2.40E-38	
ndSHM-MT1-H05	Similar to transducin (beta)-like 2 [Xenopus laevis]	0	
METHOXYCHLOR -CONTROL SSH			
ndSHM-MXCc1-	Protein involved in recombination repair,	0.0928205	dn-reg E2
A04	homologous to S. pombe rad18.		
ndSHM-MXCc1- A09	no hit		
ndSHM-MXCc1- A10	KIAA0096 gene product is related to a protein kinase.	5.62E-12	up-reg E2
ndSHM-MXCc1- A11	alpha s HS glycogrotein (Platichthys flesus)	1.00E-47	
ndSHM-MXCc1- B02	dodecenoyl-Coenzyme A delta isomerase	3.82E-37	up-reg E2
ndSHM-MXCc1-	cytochrome P450 3A56 [Fundulus heteroclitus]	0	up-reg field
B03			

ndSHM-MXCc1- B06	Fibrinogen beta chain precursor [Contains: Fibrinopeptide B]	5.78E-24	dn-reg E2
ndSHM-MXCc1- B07	Apolipoprotein A/I precursor (sparus aurata)	5.00E-25	dn-reg E2
ndSHM-MXCc1- B08	Similar to retinol dehydrogenase type III [Danio rerio]	4.16E-32	
ndSHM-MXCc1- C04	Beta-2-glycoprotein I precursor (Apolipoprotein H) (1.92E-11	
ndSHM-MXCc1- C06	tyrosine kinase [Gallus gallus]	1.31312	
ndSHM-MXCc1- C11	ceruloplasmin [Danio rerio]	0	up-reg field
ndSHM-MXCc1- D03	vitellogenin I precursor (Mummichog)	4.00E-51	up-reg E2
ndSHM-MXCc1- D04	hypothetical protein [Ferroplasma acidarmanus]	0.826071	dn-reg E2
ndSHM-MXCc1- D05	cytochrome c oxidase subunit I [Engraulis japonicus]	8.28E-35	dn-reg E2
ndSHM-MXCc1- D08	no hit		up-reg E2
ndSHM-MXCc1- D10	Immunoglobulin domain-containing protein family	0.991091	up-reg E2
ndSHM-MXCc1- D12	hypothetical protein [Plasmodium falciparum 3D7]	8.1324	
ndSHM-MXCc1- E01	hypothetical protein [Magnetospirillum magnetotacticum]	0.61028	
ndSHM-MXCc1- E09	unknown protein		up-reg E2
ndSHM-MXCc1- E11	sorting nexin 11 [Homo sapiens]	0	
ndSHM-MXCc1- F01	vitellogenin B (M. aeglefinus)	6.00E-16	up-reg E2
ndSHM-MXCc1- F03	warm-temperature-acclimation-related- protein- [Oryzias latipes]	6.25E-25	dn-reg E2
ndSHM-MXCc1- F07	UDP-glucose pyrophosphorylase [Gallus gallus]	0	
ndSHM-MXCc1- F10	interferon-related developmental regulator 1 [Mus musculus]	6.68E-39	up-reg E2
ndSHM-MXCc1- G02	unknown protein	0.202018	up-reg E2
ndSHM-MXCc1- G03	thyroid hormone receptor interactor 12;	0	up-reg E2
ndSHM-MXCc1- G04	Putative ribosomal protein L21	0	
ndSHM-MXCc1- G12	putative delata 6-desaturase [Oncorhynchus masou]	0	up-reg E2
ndSHM-MXCc1- H05	complement control protein factor I-A [Cyprinus carpio]	1.72E-23	
ndSHM-MXCc1- H09	ATP synthase 6	3.00E-23	
METHOXYCHLOR TEST SSH		-	
ndSHM-MXCt1- B05	rat liver regeneration related protein	1.00E-48	

ndSHM-MXCt1-	BH2041~unknown conserved protein	6.52356	up-reg E2
B08 ndSHM-MXCt1-	[Bacillus halodurans] lysophospholipase (Rat)	1.00E-36	up-reg E2
C02			
ndSHM-MXCt1- C11	Unknown protein for MGC:63946 (D. rerio)	3.00E-29	
ndSHM-MXCt1- D09	unknown		up-reg E2
ndSHM-MXCt1- E04	unknown		up-reg E2
ndSHM-MXCt1- E06	CG4198-PA [Drosophila melanogaster]	0.385852	
ndSHM-MXCt1-	PROBABLE IRON OXIDASE PRECURSOR OXIDOREDUCTASE PROTEIN	3.15365	
ndSHM-MXCt1-	Vitellogenin I precursor (VTG I) [Contains:	0	up-reg E2
ndSHM-MXCt1-	Lipovitellin 1 (Unknown		up-reg E2
ndSHM-MXCt1- G03	Unknown		
ndSHM-MXCt1- H03	miro2 pending protein	4.00E-60	
ndSHM-MXCt1- H09	Group XIII secretory phospholipase A2 precursor	6.05E-40	up-reg E2
NONYLPHENOL			
CONTROL SSH			
ndSHM-NPc1-A12	unknown	0.005.45	6 14
ndSHM-NPc1-B01	NADH subunit 1 [Cyprinodon variegatus]	2.80E-45	up-reg field
ndSHM-NPc1-B08	Chain A, Complex Of The Catalytic Portion Of Human	1.20E-15	up-reg field
ndSHM-NPc1-B09	calreticulin [Danio rerio] >gi 6470259 gb	0	
ndSHM-NPc1-C04	hypothetical protein APE0566 -	0.667761	
ndSHM-NPc1-C06	Vitellogenin II precursor (VTG II) [Fundulus heteroclitus]	0	up-reg E2
ndSHM-NPc1-C11	translation elongation factor 1-alpha [Stylonychia mytilus]	7.14E-10	
ndSHM-NPc1-E01	vitellogenin I [Cyprinodon variegatus]	1.20E-33	up-reg E2
ndSHM-NPc1-E06	Unknown		
ndSHM-NPc1-E11	Unknown		up-reg E2
ndSHM-NPc1-F01	ubiquitin A-52 residue ribosomal protein [Homo sapiens]	2.00E-37	
ndSHM-NPc1-F05	vitellogenin A [Melanogrammus aeglefinus]	0.000293022	up-reg E2
ndSHM-NPc1-F06	Unknown		up-reg E2
ndSHM-NPc1-F07	LFA-3(delta TM) [Ovis sp.]	0.0763225	up-reg E2
ndSHM-NPc1-F08	CG32659-PA [Drosophila melanogaster]	0.0316684	
ndSHM-NPc1-G02	ribophorin I [Danio rerio]	0	
ndSHM-NPc1-G08	KIAA1560 protein [Homo sapiens]	6.27E-38	
ndSHM-NPc1-G11	ATP synthase alpha chain, mitochondrial precursor	1.29E-23	
ndSHM-NPc1-H01	similar to Tho2 [Homo sapiens] [Rattus norvegicus]	2.32887	
ndSHM-NPc1-H02	Transporter, truncation [Streptococcus pneumoniae R6]	5.24069	up-reg E2

		1.2944	
ndSHM-NPc1-H03	Hemoglobin beta chain	1.2944	
ndSHM-NPc1-H04	>gi 7439519 pir S70614 unknown		up-reg E2
ndSHM-NPc1-H05	Cytochrome c >gi 65467 pir C	3.47E-32	<u> </u>
	choriogenin L (O. latipes)	1.00E-70	up-reg E2
ndSHM-NPc1-H08	Chorlogeriii L (O. latipes)	1.002-70	ap rog Ez
NONYLPHENOL TEST SSH			
ndSHM-NPt1-A01	RIFIN [Plasmodium falciparum 3D7]	1.79528	
	>ail23498329le		
ndSHM-NPt1-A02	P0699H05.18 [Oryza sativa (japonica	0.244655	j
	cultivar-group)]	0.404400	
ndSHM-NPt1-A03	hypothetical aminotransferase	0.421189	
	[Bradyrhizobium japonicum] unknown		up-reg E2
ndSHM-NPt1-A04		9.34E-14	up-reg E2
ndSHM-NPt1-A05	serum amyloid A protein [Holothuria glaberrima]	9.546-14	up-leg Lz
ndSHM-NPt1-A08	unknwon		up-reg E2
ndSHM-NPt1-A09	DNAse II homolog F09G8.2 [Caenorhabditis	0.656008	up-reg E2
HUSHWHITH CI-AUS	elegans]	3.000000	
ndSHM-NPt1-B02	similar to peroxisomal long-chain acyl-coA	2.30E-17	up-reg E2
	thioesterase; peroxisomal long-chain acyl-		
	coA thioesterase ; putative protein [Homo		
	sapiens]	4.505.44	52
ndSHM-NPt1-B03	choriogenin Hminor [Oryzias latipes]	1.52E-14	up-reg E2
ndSHM-NPt1-B05	tryptophan 2,3 dioxygenase	1.00E-60	up-reg E2
ndSHM-NPt1-B06	ATP synthase 6 (Pomacentrus trilineatus)	2.00E-23	
ndSHM-NPt1-B07	unknown		up-reg E2
ndSHM-NPt1-B11	embyonic epidermal lectin (X. laevis)	4.00E-42	up-reg E2
ndSHM-NPt1-B12	perlecan (heparan sulfate proteoggllycan 2	2.00E-31	
ndSHM-NPt1-C01	immunoglobulin light chain [Seriola	1.38E-14	up-reg E2
ndSHM-NPt1-C03	quinqueradiata] cytochrome c oxidase subunit I [Arcos sp.	0	up-reg E2
nashivi-NPCI-Cus	KU-149] >gi 25006169 dbj BAC23776.1		up 10g ==
	cytochrome c oxidase subunit I [Arcos sp.		
	KU-149]		
ndSHM-NPt1-C05	C9 protein [Oncorhynchus mykiss]	8.96E-18	
ndSHM-NPt1-C06	pentraxin [Cyprinus carpio]	9.55E-15	up-reg E2
ndSHM-NPt1-C09	Very-long-chain acyl-CoA synthetase (Very-	1.09E-13	up-reg E2
	long-chain-fatty-acid-CoA ligase)		
	>gi 2645721 gb AAB87982.1 very-long-		
	chain acyl-CoA synthetase [Mus musculus]	5.60255	up-reg E2
ndSHM-NPt1-C12	dihydroorotate dehydrogenase electron	5.00255	up-reg Lz
	transfer subunit [Clostridium tetani E88] >gi 28204415 gb AAO36853.1	ē	
	dihydroorotate dehydrogenase electron		
	transfer subunit [Clostridium tetani E88]		
ndSHM-NPt1-D04	hypothetical protein [Plasmodium yoelii	1.69055	
	yoelii]	0.005.40	
ndSHM-NPt1-D05	Deoxyribonuclease II precursor (DNase II)	3.09E-16	
	(Acid DNase) (Lysosomal DNase II) >gi 7513450 pir JE0205 deoxyribonuclease		
	II (EC 3.1.22.1) - pig]
	(EC 3.1.22.1)		
	1 Silonor conference or conference	<u> </u>	

	Deoxyribonuclease II [Sus scrofa] >gi 3309153 gb AAC39263.1		
	deoxyribonuclease II [Sus scrofa]		
ndSHM-NPt1-D07	egg envelope protein winter flounder	4.00E-41	up-reg E2
	similar to olfactory receptor MOR149-1 [Mus	4.09975	dn-reg E2
ndSHM-NPt1-D07	musculus]		
ndSHM-NPt1-D09	CG31752-PA [Drosophila melanogaster] >gi 22946779 gb AAN11014.1 AE003660_32 CG31752-PA [Drosophila melanogaster]	1.73966	
ndSHM-NPt1-D11	Fibrinogen alpha (Rattus)	5.00E-05	up-reg field
ndSHM-NPt1-E02	heparin cofactor II [Danio rerio]	0	
ndSHM-NPt1-E03	F1F0-type ATP synthase subunit g [Homo	3.32E-22	up-reg E2
- JOUNA NIDM FOR	sapiens] unknown		
ndSHM-NPt1-E06		5.42E-09	
ndSHM-NPt1-E07	hypothetical protein XP_215519 [Rattus norvegicus]		
ndSHM-NPt1-E12	6.2 kd protein [Homo sapiens] >gi 12643829 sp Q9P0U1 OM07_HUMAN Probable mitochondrial import receptor subunit TOM7 homolog (Translocase of outer membrane 7 kDa subunit homolog)	1.75E-21	
	(Protein AD-014) >gi 7688665 gb AAF67473.1 AF150733_1 AD-014 protein [Homo sapiens] >gi 12804619 gb AAH01732.1 AAH01732 6.2 kd protein [Homo sapiens]		
ndSHM-NPt1-F01	hepatocyte growth factor activator [Rattus norvegicus]	5.12E-17	up-reg E2
ndSHM-NPt1-F05	Unknown		up-reg E2
ndSHM-NPt1-F07	complement component C9 [Paralichthys	4.46E-34	up-reg field
HUSHWELL-FOI	olivaceus)	1.10201	
ndSHM-NPt1-F11	alanine-glyoxylate aminotransferase 2 [Homo sapiens] >gi 17432913 sp Q9BYV1 AGT2_HUMAN Alanineglyoxylate aminotransferase 2, mitochondrial precursor (AGT 2) (Beta- alanine-pyruvate aminotransferase) (Beta- ALAAT II) >gi 12406973 emb CAC24841.1 alanine-glyoxylate aminotransferase 2 [Homo sapiens]	3.01E-28	50
ndSHM-NPt1-G03	KIAA1657 protein [Homo sapiens]	8.65698	up-reg E2
ndSHM-NPt1-G07	Unknown		up-reg E2
ndSHM-NPt1-G08	choriogenin H [Oryzias latipes]	3.54E-09	up-reg E2
ndSHM-NPt1-G11	glucose-6-phosphatase, catalytic; Glucose- 6-phosphatase [Rattus norvegicus] >gi 567864 gb AAA74381.1 glucose-6- phosphatase	7.73E-09	up-reg field
ndSHM-NPt1-G12	Orla C4 [Oryzias latipes]	1.04E-36	up-reg E2
ndSHM-NPt1-H03	N-acetylneuraminate pyruvate lyase [Mus musculus] >gi 12832930 dbj BAB22314.1 unnamed protein product [Mus musculus] >gi 18490967 gb AAH22734.1 RIKEN cDNA 0610033B02 gene [Mus musculus] >gi 26353976 dbj BAC40618.1 unnamed	3.50E-17	

	protein product [Mus musculus]		Г
ndSHM-NPt1-H04	apolipoprotein B - Atlantic salmon (fragment) >gi 854620 emb CAA57449.1 apolipoprotein	1.14E-10	up-reg field
	B [Salmo salar]		
ndSHM-NPt1-H11	putative aryl-CoA ligase EncN [Streptomyces maritimus]	0.513537	
MALE/FEMALE UNSUBTRACTED			
SHM-D03	cytochrome P450 (Ictalurus punctatus)	3.00E-36	up-reg E2; field
SHM-D02	unknown		up-reg E2
SHM-B02	retinol binding protein 4 (D. rerio)	1.00E-17	
SHM-B07	ribosomal protein L35 (galus)	2.00E-08	
SHM-B06	unknown	, , ,	up-reg E2
SHM-B12	Similar to 60S riboxomal protein L18A (D. rerio)	3.00E-40	
SHM-C03	ribosomal protein P2 (I. punctatus)	3.00E-21	
SHM-C07	C type lectin s (O. mykiss)	2.00E-11	dn-reg E2
SHM-E04	similar to 60S ribosomal protein L21	2.00E-15	
SHM-D06	unknown protein for MGC:64127 (D. rerio)	6.00E-68	up-reg E2
SHM-E01	G protein B subunit (Ambystoma tigrinum)	2.00E-25	
SHM-E07	precerebellin like protein (O. mykiss)	7.00E-27	
SHM-A06	AMBP protein precursor microglobulin	3.00E-30	
SHM-E02	Natural killer cel enhancement factor (O. mykiss)	8.00E-31	
SHM-C05	unknown		up-reg field
SHM-B10	Similar to ribosomal protein L10 (D. rerio)	1.00E-28	
SHM-D12	unknown		
SHM-C01	unknown		
SHM1	Glycosylate reductase	3.00E-14	
SHM2-1	vitellogenin alpha (2)	in genbank	up-reg E2; EE2, DES, NP, MXC
SHM3	vitellogenin beta (1)	in genbank	
SHM	Ribosomal protein S8	8.00E-45	
SHM26	choriogenin 3		
SHM6	Unknown		
SHM7-3	choriogenin 2	1.00E-45	
SHM29	beta actin	in genbank	
SHM9-1	ribosomal protein L8		
SHM74-1	3-hydroxy-3-methylglutaryl-CoA reductase	9.00E-51	dn-reg ES
SHM11	Transferrin		dn-reg E2; EE2, DES, NP, MXC
SHM13-1	Low molecular mass protein 2	2.00E-12	
SHM14	Unknown		
SHM22	Unknown		
SHM23-1	Ribosomal protein S9 like	6.00E-71	
SHM24	Unknown		
SHM25	Ribosomal protein S9 like	2.00E-45	

SHM39	Unknown		
SHM41	Ubiquitin-conjugating enzyme 9	EST match (putative)	up-reg NP
SHN42-1	Unknown		
SHM43	Unknown protein, Acession numberAAH10857	4.00E-23	
SHM48	Unknown		
SHM48-2	Unknown		
SHM51-3	Unknown		
SHM56-2	Unknown		
SHM62-2	Hepatic lipase precursor	7.00E-06	
SHM72-3	Coagulation Factor XI		up-reg E2; EE2, DES, NP, MXC
SHM73	Unknown		
SHM76-2	Alpha1-microglobulin/bikunin precursor (AMBP) protein	1.00E-11	d-reg E2; EE2, DES, NP, MXC
	Estrogen receptor alpha		up-reg E2; EE2, DES, NP, MXC, ES

)	
	BASS GENES			SHEEPSHEAD MINNOW GENES	
LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_COMP FACTOR Bf/C2	Putative complement factor Bf/C2		SHM IK 7A	Liver	
					151
LMB_ABMP	ABMP precursor	N			
			SHM IK 24E	Liver	152
LMB_GLUT-PEROX III	Glutathione peroxidase III	ω			
			SHM IK 25C	Liver	153
LMB_Srnp D1	Small ribonucleoprotein D1	4			
	polypeptide (16kD)	·			<u>.</u>
		ו	SHM IK 5D	Liver	154
LMB_RIBO L6	Ribosomal protein L6	On			
		-	SHM IKIGF-1	Liver	155

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_MYOSIN LIGHT	myosin regulatory light chain	0		÷	
LMB_ZPC1	ZPC1	7	SHM IKIGF-2	Liver	156
			ndSHM-FT1-A03	Liver	157
LMB_CYTO-C OX 1	Cytochrome c oxidase subunit I	ω			
	-		ndSHM-FT1-A09	Liver	158
LMB_LECTIN STL2	Rhamnose binding lectin STL2	9	,		
				·	
			ndSHM-FT1-A10	Liver	159

				- NAD#	Gene ID	Sequence ID
LMB#	Gene ID	Number	',	LIND#		Number
LMB_EMAP2	Echinoderm microtubule associated protein like 2	10			` .	
·				ndSHM-FT1-A11	Liver	160
LMB_ALDOLASE-B	Aldolase b	1				
				ndSHM-FT1-A12	Liver	161
LMB_RIBO L7A	60S ribosomal protein L7A	12				
				ndSHM-FT1-B03	Liver	162

LMB_COMPLEMENT- C3		LMB_SSAT	LMB_PROTHROMBIN	LMB#
Complement C3 precursor		SSAT	Prothrombin precursor	Gene ID
15		14	13	Sequence ID Number
ndSHM-FT1-C01	ndSHM-FT1-B10	ndSHM-FT1-B07		LMB#
Liver	Liver	Liver	•	Gene ID
165	164	163		Sequence ID Number

LMB# LMB_RIBO L7	Gene ID Ribosomal protein L7	Sequence ID Number 16	LMB#	Gene ID
LMB_H-ATPASE- SUBUNIT	H+-ATPase subunit, oligaomycin sensitivity conferring protein	17	ndSHM-FT1-C03	Liver
			ndSHM-FT1-C04	Liver
LMB_RIBO L23A	Ribosomal protein L23a	18		
LMB_ALPHA-TUBULIN alpha tubulin	alpha tubulin	19		
			ndSHM-FT1-D06	Liver

	LMB_ApoH		LMB_NASCENT- POLYPEP		LMB_VTG	LMB_RIBO-Sa	LMB#
	Apoliporotein H	alpha polypeptide	Nascent polypeptide- associated complex,		Vitellogenin prcursor	40S ribosomal protein Sa	Gene ID
	23		- 22		21	20	Sequence ID Number
ndSHM-FT1-E02		ndSHM-FT1-E01		ndSHM-FT1-D12		ndSHM-FT1-D10	LMB#
Liver		Liver		Liver		Liver	Gene ID
173		172		171		170	Sequence ID Numb r

		Sequence ID	LMB#	Gene ID	Sequence ID
LMB#	Gene ID	Number			Numb_r
LMB_TBT-BP	TBT-binding protein	24		÷	
			ndSHM-FT1-E08	Liver	174
LMB_SOL-CAR-25A#5	solute carrier family 25 alpha member 5	25			
			ndSHM-FT1-E09	Liver	175
LMB_UNNAMED- PROTEIN	Unnamed protein product	26			
			ndSHM-FT1-E12	Liver	176
LMB_FIB-B-SUBUNIT	Fibrinogen B subunit	27			
			ndSHM-FT1-F01	Liver	177
LMB_CIS-RETIN DEHYDRO	cis-retinol dehydrogenase	28	·		
				- - - - - -	178
			ndSHM-FT1-F06	Liver	1/0

		>	- »»D‡	Gene ID	Sequence ID
LMB#	Gene ID	Number			Number
LMB_SENES-ASSOC	Putative senscence-	29		c	
			ndSHM-FT1-F09	Liver	179
LMB_LDL RC	LDL receptor	30			
LMB ABC-TRANS	ABC transporter	31	ndSHM-FT1-F10	Liver	180
LMB_ABC-TRANS	ABC transporter	Ğ			
			ndSHM-FT1-F11	Liver	181

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Seguence ID Number
LMB_CATHEPSIN B	Cathepsin B	32		:	
			,		
			ndSHM-FT1-F12	Liver	182
LMB_SERPIN-CP9	Serpin CP9	33			
			ndSHM-FT1-G02	Liver	183
LMB_TFIIIA	Transcription factor	34			
			ndSHM-FT1-G04	Liver	184
LMB_ANTITHROMBIN	Antithrombin III	35		·	
			ndSHM-FT1-G08	Liver	185

	LMB_HAPTOGLOBIN Haptoglobin		LMB_WEE-I Wee I tyrosine kinase		LMB_RIKEN RIKEN cDNA 1810056020 1810056020	LMB# Gene ID
	38		37		36	Sequence ID Number
ndSHM-FT1-H04		ndSHM-FT1-H03		ndSHM-FT1-H02		LMB#
Liver		Liver		Liver		Gene ID
188		187		186		Sequence ID Number

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_APOA-I	APOPLIPOPROTEI N A-I	39	ndSHM-FT1-H06	Liver	189
LMB_ALPHA-1 ANTITRYPSIN	alpha -1 antitrypsin homolog precursor	40	ndSHM-FT1-H07	Liver	190
LMB_APOE	Apolipoprotein E	41			
			ndSHM-FT1-H10	Liver	191

		Sequence ID	LMB#	Gene ID	Sequence ID
LMB#	Gene ID	Number			<u>Number</u>
LMB_ZPC4	ZPC4	42		e .	
	•				
LMB_LECTIN 9	C-type lectin superfamily 9	43			1
			ndSHM-FT1-H12	Liver	193
LMB_ATPASE 6	ATPase subunit 6	44			
			ndSHM-MC1-A02	Liver	194
LMB_ITI	inter-alpha-trypsin inhibitor "ITI"	45	ndSHM-MC1-A03	Liver	19 5
			ndSHM-MC1-A03	Liver	195

LMB# ndSHM-MC1-A04	Gene ID
	·
Gene ID	

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
IND TOVIN 1	Toxis 1	A 0			
1		į		c	
I MB COAG FACTOR	Coagulation factor	አ O	ndSHM-MC1-A09	Liver	199
VII COAG FACTOR Coagulation factor	Coagulation factor VII	50			
			ndSHM-MC1-A11	Liver	200
LMB_CDC42-2	cdc 42 isoform 2	51			
			ndSHM-MC1-R01	- E P	201
			ndSHM-MC1-B01	Liver	201

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_WARM-WATER ACC PROTEIN	Warm water acclimation-related protein	52		. 6	
			ndSHM-MC1-B03	Liver	202
LMB_CYTO-C OX II	Cytochrome c oxidase subunit II	53			
			ndSHM-MC1-B04	Liver	203
LMB_L10A	60S ribosomal protein L10A	54			
			ndSHM-MC1-B05	Liver	204
LMB_KALLIKREIN	Kallikrein	55			
			ndSHM-MC1-B08	Liver	205

		Sequence ID	LMB#	Gene ID	Sequence ID
LMB#	Gene ID	Number			Number
LMB_DANIO EST 3818635	Danio EST IMAGE:3818635	56		č	
				-	
			ndSHM-MC1-B10	Liver	206
LMB_ALPHA-2- MACROGLOB-1	alpha-2- macroglobulin-1	57			
			ndSHM-MC1-B11	Liver	207
LMB_HAPTOGLOB	Haptoglobin-related	58			
RELATED PROT	protein				
			ndSHM-MC1-C02	Liver	208
LMB_FILAMEN-B	Filamen B	59			
			ndSHM-MC1-C04	Liver	209

LMB_TATA BOX BP	LMB_MITOCHON-ATP- ATP synthase alpha chain mitochondrial precursor	LMB_RXR INTERACT	LMB_UBIQUITIN	LMB#
TATA-box binding protein	ATP synthase alpha chain mitochondrial precursor	Retinoid X receptor interacting protein	ubiquitin	Gene ID
თ	62	61	60	Sequence ID Number
ndSHM-MC1-D01	ndSHM-MC1-C10	ndSHM-MC1-C08	ndSHM-MC1-C05	LMB#
Liver	Liver	Liver	Liver	Gene ID
213	212	211	210	Segu nce ID Number

219	Liver	ndSHM-MC1-E01		synthase-like protein (lipocalin type)	D-SYNTHASE
218	Liver	ndSHM-MC1-D10	80		
			68	M-phase phosphoprotein 6	LMB_M-PHASE PROT
217	Liver	ndSHM-MC1-D06			
			67	Apolipoprotein A-I-1 precursor	LMB_APO-A1
216	Liver	ndSHM-MC1-D04			
			g	Serpin 2b	LMB_SERPIN-2B
215	Liver	ndSHM-MC1-D03			
214	Liver	ndSHM-MC1-D02	6 5	liver regeneration related protein	LMB_LIVER-REGEN- REL PROT
			64	Diiferentially regulated trout protein 1	LMB_DIFF-REG TROUT PROT-1
Number	Gene ID	LMB#	Sequence ID Number	Gene ID	LMB#

	Liver	ndSHM-MC1-E12			
			74	IGF-I	LMB_IGF-I
	Liver	ndSHM-MC1-E10			
				inhibitor	
				associated diazepam-binding	BINDING INHIB
			73	Membrane	LMB_DIAZEPAM-
1	Liver	ndSHM-MC1-E08			
			72	RIKEN cDNA 2700038	LMB_RIKEN 2700038
	Liver	ndSHM-MC1-E06			
			71	Cystatin precursor	LMB_CYSTATIN-PREC
İ	Liver	ndSHM-MC1-E05			
	č		70	LYRIC	LMB_LYRIC
!			Number	Gene ID	LMB#
	Gene ID	LMB#	Sequence ID		

)	- 117#	7227	Seguence ID
LMB#	Gene ID	Number Number	IVI	Gelia	Number
LMB_ESTP4_D11	ESTP4_D11	75			
			ndSHM-MC1-F01	Liver	226
LMB_ESTDHT_6	ESTDHT_6	76			
	·		ndSHM-MC1-F02	Liver	227
LMB_ESTDHT_7	ESTDHT_7	77			
			ndSHM-MC1-F03	Liver	228
LMB_ESTDHT_13	ESTDHT_13	78			
			ndSHM-MC1-F06	Liver	229
LMB_ESTDHT_50	ESTDHT_50	79			
			ndSHM-MC1-F11	Liver	230
LMB_ESTDHT_51	ESTDHT_51	80			
			ndSHM-MC1-F12	Liver	231

LMB_ESTDHT_69	LMB_ESTDHT_68		LMB_ESTDHT_62		LMB ESTDHT 60	LMB_ESTDHT_53	LMB#
ESTDHT_69	ESTDHT_68		ESTDHT_62		ESTDHT_60	ESTDHT_53	Gene ID
85	. 4		83		82	81	Sequence ID Number
ndSHM-MC1-G05	ndSHM-MC1-G04	ndSHM-MC1-G03		ndSHM-MC1-G02	ndSHM-MC1-G01		LMB#
Liver	Liver	Liver	-	Liver	Liver	٤	Gene ID
236	235	234		233	232		Sequence ID Number

					5
LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Number
LMB_ESTP4_A02	ESTP4_A02	86		ē	
			ndSHM-MC1-G07	Liver	237
LMB_ESTP4_B03	ESTP4_B03	87	ndSHM-MC1-G11	Liver	238
LMB_ESTP4_B04	ESTP4_B04	88			
			ndSHM-MC1-G12	Liver	239
LMB_ESTP4_B07	ESTP4_B07	89			
			ndSHM-MC1-H02	Liver	240
LMB_ESTP4_B08	ESTP4_B08	90			
			ndSHM-MC1-H03	Liver	241

			117k	Cono ID	Sequence ID
LMB#	Gene ID	Number Number	LNIG#		Number
LMB_ESTP4_B09	ESTP4_B09	91		٥	
			ndSHM-MC1-H04	Liver	242
LMB_ESTP4_C03	ESTP4_C03	92			
			ndSHM-MC1-H06	Liver	243
LMB_ESTP4_C04	ESTP4_C04	93			
			ndSHM-MC1-H08	Liver	244
LMB_ESTP4_C06	ESTP4_C06	94	,		
IMR ESTP4 D04	ESTP4 D04	95	ndSHM-MC1-H09	Liver	245
LMB_ESTP4_D04	ESTP4_D04	Ç		Y	
			ndSHM-MC1-H10	Liver	246

		Seguence ID	LMB#	Gene ID	Sequence ID
LMB#	Gene ID	Number			Number
LMB_ESTP4_D08	ESTP4_D08	96		ē	
			ndSHM-MC1-H12	Liver	247
LMB_ESTP4_D10	ESTP4_D10	97			
		·	ndSHM-MT1-A02	Liver	248
LMB_ESTP4_E01	ESTP4_E01	98			
			ndSHM-MT1-A03	Liver	248
LMB_ESTP4_E03	ESTP4_E03	99			
			ndSHM-MT1-A05	Liver	249

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_ESTP4_E06	ESTP4_E06	100			
				•) n)
LMB_ESTP4_E08	ESTP4_E08	101			
			ndSHM-MT1-C05	Liver	251
LMB_ESTP4_E12	ESTP4_E12	102			
			ndSHM-MT1-C08	Liver	252
LMB_ESTP4_F06	ESTP4_F06	103			
			ndSHM-MT1-D04	Liver	253

				;	>
LMB#	Gene ID	Seguence ID Number	LMB#	Gene ID	Number
LMB_ESTP4_G06	ESTP4_G06	104		٠	
			ndSHM-MT1-D05	Liver	254
LMB_ESTP4_G11	ESTP4_G11	105			
			ndSHM-MT1-D07	Liver	255
LMB_ESTP4_H02	ESTP4_H02	106			
			ndSHM-MT1-E02	Liver	256
LMB_ESTP4_H04	ESTP4_H04	107			
			ndSHM-M11-EU3	Liver	100
LMB_ESTP4_H05	ESTP4_H05	108			
			ndSHM-MT1-E05	Liver	258

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_ESTP4_H07	ESTP4_H07	109			
LMB_ESTP4_H08	ESTP4_H08	110	ndSHM-MT1-F11	Liver	259
			ndSHM-MT1-G03	Liver	260
LMB_EST- SEASONAL_02	EST- SEASONAL_02	111 ·			
			ndSHM-MT1-H05	Liver	261
LMB_EST- SEASONAL_03	EST- SEASONAL_03	112			
			ndSHM-MXCc1-A04	Liver	262
	-		ndSHM-MXCc1-A04	Liver	262

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequenc ID Number
LMB_EST- SEASONAL_04	EST- SEASONAL_04	113		e '	
			ndSHM-MXCc1-A09	Liver	263
LMB_EST-	EST- SEASONAL_06	114			
A SALAN MARKANIN NO			ndSHM-MXCCT-ATO	Liver	407
LMB_EST- SEASONAL_09	EST- SEASONAL_09	115			
			ndSHM-MXCc1-A11	Liver	265
LMB_EST- SEASONAL_11	EST- SEASONAL_11	116		·	
	·				
LMB_EST- SEASONAL_12	EST- SEASONAL_12	117			
			ndSHM-MXCc1-B03	Liver	267

LMB# LMB_EST-SEASONAL- 14	Gene ID EST-SEASONAL-14	Sequence ID Number 118	LMB#	Gene ID
LMB_EST- SEASONAL_16	EST- SEASONAL_16	119	ndSHM-MXCc1-B04	
			ndSHM-MXCc1-B06	
LMB_EST- SEASONAL_17	EST- SEASONAL_17	120		
			ndSHM-MXCc1-B07	
LMB_EST- SEASONAL_22	EST- SEASONAL_22	121		
			ndSHM-MXCc1-B08	

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Segu nc ID Numb r
LMB_EST- SEASONAL_51	EST- SEASONAL_51	122		6	
			ndSHM-MXCc1-C04	Liver	272
LMB_EST- SEASONAL_52	EST- SEASONAL_52	123			
			ndSHM-MXCc1-C06	Liver	273
LMB_EST- SEASONAL_54	EST- SEASONAL_54	124			
			ndSHM-MXCc1-C11	Liver	274
LMB_EST- SEASONAL_55	EST- SEASONAL_55	125			
			ndSHM-MXCc1-D03	Liver	275

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Numb r
SEASONAL_56	EST- SEASONAL_56	126		9	
LMB_EST SEASONAL_58	EST- SEASONAL_58	127	ndSHM-MXCc1-D04	Liver	276
			ndSHM-MXCc1-D05	Liver	277
LMB_EST SEASONAL_59	EST- SEASONAL_59	128			
LMB_EST-	EST-	129	ndSHM-MXCc1-D08	Liver	278
			ndSHM-MXCc1-D10	Liver	279

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_EST SEASONAL_62	EST- SEASONAL_62	130			
			ndSHM-MXCc1-D12	Liver	280
SEASONAL_64	SEASONAL_64	131			
			ndSHM-MXCc1-E01	Liver	281
SEASONAL_68	SEASONAL_68	132			
LMB EST	FST.	133	ndSHM-MXCc1-E09	Liver	282
SEASONAL_70	SEASONAL_70	133			
			ndSHM-MXCc1-F11	No.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			ndSHM-MXCc1-E11	Liver	283

LMB_EST- EST- 134	LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
EST- 135 SEASONAL_72 136 ndSHM-MXCc1-F03 Liver EST- 136 SEASONAL_75 SEASONAL_77 137 ndSHM-MXCc1-F07 Liver EST- 137 SEASONAL_77 138 ndSHM-MXCc1-F10 Liver EST- 138 ndSHM-MXCc1-F10 Liver	LMB_EST SFASONAL 71	EST- SFASONAL 71	134			
EST- SEASONAL_72 136 EST- SEASONAL_75 137 ISSEASONAL_77 SEST- SEASONAL_77 138 INDICATE OF THE PROPERTY				ndSHM-MXCc1-F01	Liver	284
EST- 136 SEASONAL_75 SEASONAL_77 137 SEASONAL_77 SEASONAL_85 ndSHM-MXCc1-F07 Liver indSHM-MXCc1-F10 Liver indSHM-MXCc1-F10 Liver		EST- SEASONAL_72	135			
SEASONAL_75				ndSHM-MXCc1-F03	Liver	285
EST- 137 SEASONAL_77 SEASONAL_85 IndSHM-MXCc1-F10 Liver	LMB_EST SEASONAL_75	EST- SEASONAL_75	136			
EST- 137				ndSHM-MXCc1-F07	Liver	286
EST- 138 ndSHM-MXCc1-F10 Liver SEASONAL_85 ndSHM-MXCc1-G02 Liver	LMB_EST SEASONAL_77	EST- SEASONAL_77	137			
SEASONAL_85 ndSHM-MXCc1-G02 Liver				ndSHM-MXCc1-F10	Liver	287
Liver	LMB_EST SEASONAL_85	EST- SEASONAL_85	138			
					Liver	288

293	Liver	ndSHM-MXCc1-H09			
			143	EST- SEASONAL_F11	SEASONAL_F11
292	Liver	ndSHM-MXCc1-H05			
	,		142	EST- SEASONAL_97	LMB_EST SEASONAL_97
291	Liver	ndSHM-MXCc1-G12			
			141	SEASONAL_92	SEASONAL_92
290	Liver	ndSHM-MXCc1-G04			
			140	SEASONAL_90	SEASONAL_90
289	Liver	ndSHM-MXCc1-G03			
	÷		139	EST- SEASONAL_88	LMB_EST SEASONAL_88
Sequence ID Number	Gene ID	LMB#	Sequence ID Number	Gene ID	LMB#

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_EST SEASONAL_F17	EST- SEASONAL_F17	144		÷	
LMB_EST	EST-	145	ndSHM-MXCt1-B05	Liver	294
SEASONAL_F21	SEASONAL_F21				
LMB_ER-ALPHA	ESTROGEN RECEPTOR ALPHA	146			The state of the s
			ndSHM-MXCt1-C02	Liver	296
LMB_ER-BETA	ESTROGEN RECEPTOR BETA	147			
			ndSHM-MXCt1-C11	Liver	297
LMB_ER-GAMMA	ESTROGEN RECEPTOR GAMMA	148			
			ndSHM-MXCt1-D09	Liver	298

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
LMB_STAR	STAR PROTEIN	149			
			ndSHM-MXCt1-E04	Liver	299
LMB_SF1	SF1 PROTEIN FRAGMENT	150			
			ndSHM-MXCt1-E06	Liver	300
LMB1-3		420	ndSHM-MXCt1-E09	Liver	301
LMB2-2		421	ndSHM-MXCt1-F11	Liver	302
		422			
LMB3-1			ndSHM-MXCt1-E12	Liver	303
		423			
LMB4-1			ndSHM-MXCt1-G03	Liver	304
		424			,
LMB5			ndSHM-MXCt1-H03	Liver	305

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		. 425		٤	
LMB6-1		426	ndSHM-NPc1-A12	Liver	306
LMB7-1			ndSHM-NPc1-B01	Liver	307
		427			
LMB8-2		428	ndSHM-NPc1-B08	Liver	308
LMB9-1		428	ndSHM-NPc1-B09	Liver	309
		429			
LMB10-1			ndSHM-NPc1-C04	Liver	310

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		430		· .	
		431		·	·
LMB12-1			ndSHM-NPc1-C11	Liver	312
		432			
		433			
LMB14-1			ndSHM-NPc1-E06	Liver	314
		434			
LMB15-1			ndSHM-NPc1-E11	Liver	315

LMB20-1	LMB19-1	LMB18-3	LMB17-2	LMB16-2	LMB#
					Gene ID
439	438	437	436	435	<u>Sequence ID</u> <u>Number</u>
ndSHM-NPc1-F08	ndSHM-NPc1-F07	ndSHM-NPc1-F06	ndSHM-NPc1-F05	ndSHM-NPc1-F01	LMB#
Liver	Liver	Liver	Liver	Liver	Gene ID
320 .	319	318	316	316	Sequence ID Number

LMB23-1	LMB21-1 LMB22-1	Gene ID	Sequence ID Number 440 441	ndSHM-NPc1-G02	Gene ID
442 ndSHM-NPc1-G11 443 ndSHM-NPc1-H01 444	22-1		441	ndSHM-NPc1-G08	Liver
443 ndSHM-NPc1-H01 444	MB23-1		442	ndSHM-NPc1-G11	Liver
444	.MB24-1		443	ndSHM-NPc1-H01	Liver
LMB25-1 ndSHM-NPc1-H02 Liver	MB25-1		444	ndSHM-NPc1-H02	ive

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		445			·
LIMIDZO-1		446	idonw-NFC1-noo	Live	220
LMB27-1			ndSHM-NPc1-H04	Liver	327
		447			
LMB28-2			ndSHM-NPc1-H05	Liver	328
		448	·		
LMB29-2			ndSHM-NPc1-H08	Liver	329
LMB30-1/Forward		449			
LMB30-1/Reverse		450	ndSHM-NPt1-A01	Liver	330

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Numb_r
		451		2	
LMB31			ndSHM-NPt1-A02	Liver	331
·		452			
LMB32-1			ndSHM-NPt1-A03	Liver	332
LMB33-1/A		453			
LMB33-1/B		454	ndSHM-NPt1-A04	Liver	333
		455			
LMB34-1			ndSHM-NPt1-A05	Liver	334
		456			
LMB35-1	-		ndSHM-NPt1-A08	Liver	335

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		457			
LMB36-1			ndSHM-NPt1-A09	Liver	336
LMB37-1/A		458			
LMB37-1/B		459	ndSHM-NPt1-B02	Liver	337
		460			
LMB38-1			ndSHM-NPt1-B03	Liver	338
		461			
LMB39-1			ndSHM-NPt1-B05	Liver	339
·		462			
LMB40-1			ndSHM-NPt1-B06	Liver	340

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		463		÷	
LMB41-1		464	ndSHM-NPt1-B07	Liver	341
LMB42-1		·	ndSHM-NPt1-B11	Liver	342
	•	465			
		466			
LMB44-1			ndSHM-NPt1-C01	Liver	344
LMB45-1/Forward		467			
LMB45-1/Reverse		468	ndSHM-NPt1-C03	Liver	345

LMB#	<u>Gene ID</u>	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
·		469		č	
LMB46-1			ndSHM-NPt1-C05	Liver	346
		470			
LMB47-2		474	ndSHM-NPt1-C06	Liver	347
		471			
LMD40-1		770	ndSHM-NPt1-C09	Liver	348
		472			
LMB49-1			ndSHM-NPt1-C12	Liver	349
		473			
LMB50-1			ndSHM-NPt1-D04	Liver	350

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		474		ē	
LMB51-1			ndSHM-NPt1-D05	Liver	· 351
		475			·
LMB52-1			ndSHM-NPt1-D07	Liver	352
		476			
LMB53-1			ndSHM-NPt1-D07	Liver	353
		477			
LMB54-2			ndSHM-NPt1-D09	Liver	354
		478			
LMB55-1			ndSHM-NPt1-D11	Liver	355

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		479		c	
LMB56-1		480	ndSHM-NPt1-E02	Liver	356
MB57				•	
		481	TROCT INVITAL CITEOU	LING	30
LMB58-1			ndSHM-NPt1-E06	Liver	358
		482			
LMB59-1			ndSHM-NPt1-E07	Liver	359
		483			
LMB60-1			ndSHM-NPt1-E12	Liver	360

LMB63-1 LMB63-1 LMB63-1 LMB63-1 LMB64-1 LMB65-1 LMB65-1 A85 INCSHM-NPt1-F07 Liver A87 INCSHM-NPt1-F07 Liver A88	LMB#	Gene ID	Sequence ID Number 484	LMB#	Gene ID
485 ndSHM:NPt1-F01 486 ndSHM:NPt1-F05 486 ndSHM:NPt1-F07 487 ndSHM:NPt1-F11			484		
486 ndSHM-NPt1-F05 487 ndSHM-NPt1-F07 487 ndSHM-NPt1-F11	LMB61-1		485	ndSHM-NPt1-F01	Liver
486 ndSHM-NPt1-F07 487 ndSHM-NPt1-F11	LMB63-1			ndSHM-NPt1-F05	Liver
487 ndSHM-NPt1-F07 488 ndSHM-NPt1-F11			486		
ndSHM-NPt1-F11			487	ndsHivi-NPTI-FU/	Liver
	LMB65-1				Liver
			488		

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		489		•	
		490			
LMB68-1		401	ndSHM-NPt1-G08	Liver	367
LMB69-2		491	ndSHM-NPt1-G11	Liver	368
		492			
LMB70-2			ndSHM-NPt1-G12	Liver	369
		493			
LMB71-1			ndSHM-NPt1-H03	Liver	370

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		494		č	
LMB72-1			ndSHM-NPt1-H04	Liver	371
		495			
LMB/3-7		406	ndSHM-NPt1-H11	Liver	372
·		496			
LMB74-3			SHM-D03	Liver	373
		497			
LMB75-1			SHM-D02	Liver	374
		498			
LMB76-2			SHM-B02	Liver	375

LMB#	Gene ID	Sequence ID Number	LMB#	Gene ID	Sequence ID Number
		499		c	
LMB77-1		500	SHM-B07	Liver	376
LMB78-1			SHM-B06	Liver	377
LMB79-2		501	SHM-R19		378
		502			
LMB80-1		503	SHM-C03	Liver	379
LMB81-1			SHM-C07	Liver	380

LMB#	Gene ID	<u>Sequence ID</u> <u>Number</u>	LMB#	Gene ID	Sequence ID Number
		504		÷	
LMB82-1			SHM-E04	Liver	381
		505			
LMB83			SHM-D06	Liver	382
LMB84-1		507	SHM-E01	Liver	383
·		50/			
LMB85-1			SHM-E07	Liver	384
		508			
LMB86-1			SHM-A06	Liver	385

the of the contradict of the contradiction of the c

The second second second second

LMB94-1	LMB93-1	LMB92-1	LMB91-1		LMB90-1	LMB89-1	LMB88-1	LMB87	LMB#
									10
									Gene ID
516	515	514		513	512	511	510	509	Sequence ID Number
HS	HS	HS	Ş		<u>φ</u>	φ	φ	<u>φ</u>	
IM3	SHM2-1	SHM1	SHM-C01		SHM-D12	SHM-B10	SHM-C05	SHM-E02	LMB#
			Liver		Liver	Liver	Liver	Liver	Gene ID
393	392	391	390		389	388	387	386	Sequence ID Number

Seme ID Number SHM26 SHM66 S			Sequence ID	LMB#	Gano ID	
517 1 518 SHM26 519 SHM6 1 520 SHM7-3 1 521 SHM9-1 1 522 SHM9-1 1 523 SHM74-1 1 524 SHM11 1 525 SHM13-1 1 526 SHM13-1 1 528 SHM24-1 1 530 SHM23-1 1 531 SHM25-1 533 SHM25-1 534 SHM43-1 1 535 SHM43-1 1 535 SHM43-1 1 536 SHM43-1 1 537 SHM36-2 1 539 SHM51-3 1 539 SHM65-2 540 SHM28-2 541 SHM73-3 542 SHM73-3 545 SHM76-2 545 SHM76-2	LWB#	Gene ID	Number			Number
1 518 SHM26 1 519 SHM6 1 520 SHM7-3 1 520 SHM7-3 1 521 SHM9-1 1 522 SHM9-1 1 523 SHM7-1 1 524 SHM11 1 525 SHM3-1 1 526 SHM3-1 1 527 SHM-18 1 528 SHM-18 1 530 SHM2-1 1 530 SHM2-1 1 531 SHM2-1 1 532 SHM2-1 1 533 SHM2-1 1 533 SHM2-1 1 534 SHM2-1 1 538 SHM42-1 1 538 SHM42-1 1 538 SHM61-3 1 539 SHM61-3 1 540 SHM62-2 1 541 SHM72-3 1 542 SHM72-3 1 544 SHM76-2 1 645 SHM76-2 1 645 SHM76-2 1 646 SHM76-2 1 647 SHM76-2 1 647 SHM76-2 1 648 SHM76-2 1 648 SHM76-2 1 649 SHM76	LMB95-1		E47			
1 510 SHM26 1 520 SHM26 1 520 SHM23 1 521 SHM29 1 522 SHM29 1 523 SHM14 1 524 SHM13 1 525 SHM14 1 526 SHM14 1 527 SHM14 1 528 SHM23 1 530 SHM23 1 531 SHM23 1 533 SHM21 1 533 SHM21 1 534 SHM21 1 535 SHM42 1 536 SHM42 1 537 SHM48 1 538 SHM48 1 541 SHM72 1 541 SHM72 1 543 SHM72 1 544 SHM72 1 545 SHM72 1 545 SHM76 1 545 SHM76 1 545 SHM76 1 546 SHM76 1	LMB96-1		317			
519 SHM6 520 SHM7-3 1 521 SHM7-3 1 522 SHM9-1 1 523 SHM7-1 1 524 SHM11 1 526 SHM13-1 1 527 SHM-18 1 528 SHM23-1 1 530 SHM23-1 1 531 SHM24 1 532 SHM24 1 533 SHM29 1 536 SHM39 1 538 SHM33 1 538 SHM33 1 538 SHM33 1 538 SHM33 1 538 SHM31-3 1 540 SHM32-1 2 541 SHM56-2 3 SHM72-3 3 SHM72-3 4 542 SHM72-3 3 SHM76-2 4 545 SHM76-2 4 545 SHM76-2	I MR97		518	SHM26		302
520 SHM7-3 1	LWD97		519	SHM6		394
521 SHM29 -1 522 SHM9-1 -1 523 SHM74-1 -1 524 SHM11 -1 525 SHM13-1 -1 526 SHM13-1 -1 528 SHM2-1 -1 530 SHM2-1 -1 531 SHM2-1 -1 532 SHM39 -1 533 SHM41 -1 535 SHM41 -1 535 SHM42-1 -1 538 SHM48-2 -1 539 SHM39-2 -1 539 SHM51-3 -1 541 SHM51-3 -1 542 SHM72-3 -1 542 SHM76-2 -2 545 SHM76-2 -4 545 SHM76-2	LIMB90-1		520	SHM7-3		395
1-1 522 SHM9-1 1-1 523 SHM74-1 1-1 523 SHM74-1 1-1 524 SHM71 1-1 525 SHM71 1-2 526 SHM13-1 1-3 528 SHM14 1-1 528 SHM23-1 1-1 529 SHM23-1 1-1 530 SHM24 1-1 531 SHM24 1-1 531 SHM24 1-1 534 SHM49 1-1 535 SHM41 1-1 536 SHM41 1-1 537 SHM48 1-1 538 SHM48 1-1 538 SHM48-2 1-1 540 SHM2-2 1-1 541 SHM72-3 1-1 542 SHM72-3 1-1 543 SHM76-2 1-1 545 SHM76-2 1-1 54	LINB99-1		521	SCWHS		396
523 SHM74-1 1 524 SHM74-1 3 525 SHM13-1 3 526 SHM13-1 4 526 SHM14-1 527 SHM14-1 4 528 SHM23-1 53 SHM23-1 SHM23-1 4 531 SHM23-1 531 SHM24-1 SHM39-1 533 SHM41 SHM43-1 534 SHM43-1 SHM43-1 535 SHM48-1 SHM48-2 538 SHM48-2 SHM51-3 540 SHM62-2 SHM73-3 541 SHM72-3 SHM76-2 542 SHM73-3 SHM76-2 543 SHM76-2 SHM76-2 545 SHM76-2 SHM76-2	LMB100-1		522	CAMPS 62INI O		397
1.1 524 SHM1/4-1 1.1 525 SHM13.1 2.2 SHM13.1 1.1 526 SHM14.18 2.2 SHM22.1 1.1 530 SHM23.1 1.1 531 SHM23.1 1.1 532 SHM39 1.2 533 SHM41.1 1.1 534 SHM42.1 1.1 535 SHM43.1 1.1 537 SHM48.2 1.1 538 SHM48.2 1.2 539 SHM62.2 1.3 540 SHM51.3 1.4 541 SHM72.3 1.5 542 SHM72.3 1.5 543 SHM76.2 1.5 543 SHM76.2 2.5 544 SHM76.2 3.5 SHM76.2 4.5 545 SHM76.2	LMB101-1		523	SUM74 4		398
.3 525 SHM13-1 .3 526 SHM13-1 .4 527 SHM14 .4 528 SHM23-1 .5 530 SHM23-1 .4 531 SHM23-1 .4 532 SHM24 .4 532 SHM39 .5 SHM2-1 SHM2-1 .5 535 SHM41 .5 536 SHM48 .5 SHM48-2 .5 SHM2-1 .5 SHM2-1 .5 SHM48-2 .5 SHM56-2 .5 SHM75-3 .5 SHM76-2 .5 SHM76-2 <	LMB102-1		524	SUM74-1		399
3 526 SHM13-1 1 527 SHM14 1 528 SHM21 1 529 SHM23-1 1 530 SHM23-1 1 531 SHM24 1 533 SHM21 1 533 SHM41 1 534 SHM42-1 1 535 SHM43 1 536 SHM43 1 537 SHM48 1 538 SHM48-2 1 539 SHM48-2 1 540 SHM51-3 540 SHM56-2 541 SHM76-2 544 SHM76-2 544 SHM76-2 545 SHM76-2 546 SHM76-2 547 SHM76-2 548 SHM76-2 549 SHM76-2 540 SHM76-2 540 SHM76-2 541 SHM76-2 542 SHM76-2 543 SHM76-2	LMB103-1		727	SHIP		400
1 527 SHM14 1 528 SHM22 1 529 SHM23-1 1 530 SHM24 1 531 SHM25 1 532 SHM39 1 533 SHM41 1 535 SHM42-1 1 536 SHM48 1 538 SHM48-2 1 538 SHM81-3 1 539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM72-3 543 SHM76-2 545 SHM76-2	LMB104-3		828	SHW13-1		401
1 528 SHM-18 1 529 SHM23-1 1 530 SHM23-1 1 531 SHM24 1 532 SHM39 1 533 SHM41 1 534 SHM42-1 1 535 SHM43 1 536 SHM48 1 538 SHM48-2 1 539 SHM61-3 1 540 SHM62-2 541 SHM72-3 542 SHM73-3 543 SHM76-2 544 SHM76-2	LMB105-1		527	SHW14		402
1 520 SHMZ2 1 530 SHM23-1 1 1 531 SHM24 1 1 532 SHM39 1 1 534 SHM42-1 1 1 535 SHM43 1 1 536 SHM48-2 1 1 538 SHM51-3 1 1 539 SHM56-2 1 541 SHM62-2 SHM72-3 1 542 SHM73-3 SHM76-2 2 543 SHM76-2 SHM76-2 2 545 SHM76-2 3 3	LMB107-1		528	SHM-18		403
1	LMB108-1		520	SHMZZ		404
1 531 SHM24 1 531 SHM25 1 532 SHM39 1 533 SHM41 1 534 SHM42-1 1 535 SHM43 1 536 SHM48 1 537 SHM48-2 1 538 SHM48-2 1 539 SHM51-3 1 540 SHM56-2 540 SHM62-2 540 SHM62-2 541 SHM72-3 1 543 SHM76-2 544 SHM76-2	LMB109-1		530	SHMZ3-1		405
1 532 SHM25 1 532 SHM39 1 533 SHM41 1 534 SHM42.1 1 535 SHM43 1 536 SHM43 1 537 SHM48.2 1 538 SHM48.2 1 539 SHM51-3 1 539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2	LMB110-1		524	SHM24		406
1 532 SHM39 1 533 SHM41 1 534 SHM42-1 1 535 SHM43 1 536 SHM48 1 537 SHM48-2 1 538 SHM51-3 1 539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2	LMB112-1		500	SHM25		407
1 533 SHM41 1 534 SHN42-1 1 535 SHM43 1 536 SHM48 1 537 SHM48-2 1 538 SHM51-3 1 539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 545 SHM76-2	LMB116-1		200	SHM39		408
534 SHN42-1 1 535 SHM43 1 536 SHM48 1 537 SHM48-2 1 538 SHM51-3 1 539 SHM56-2 1 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2 545 SHM76-2	LMB118-1		533	SHM41		100
1 535 SHM43 1 536 SHM48 1 537 SHM48-2 1 538 SHM51-3 1 539 SHM56-2 1 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2 545 SHM76-2	LMB120-1		534	SHN42-1		410
536 SHM48 537 SHM48-2 538 SHM51-3 539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2 545 SHM76-2	MB121-1		535	SHM43		7 1
537 SHM48-2 538 SHM51-3 539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2 545 SHM76-2	I MB122-1		536	SHM48		4
538 SHM51-3 1 539 SHM56-2 1 540 SHM62-2 1 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2 545	I MB123-1		537	SHM48-2		412
539 SHM56-2 540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 545	I MB128-1		538	SHM51-3	.	1 1
540 SHM62-2 541 SHM72-3 542 SHM73 543 SHM76-2 544 SHM76-2	MB129-1		539	SHM56-2		1-1
541 SHM72-3 542 SHM73 543 SHM76-2 544 545	LMB130-1		540	SHM62-2		410
542 SHM73 543 SHM76-2 545	I MB132_1		541	SHM72-3		410
543 SHM76-2 544 545	WB422 4		542	SHM73		41/
544 545	MB134-3		543	SHM76-2		418
	LMB135		544			ŭ.
	LMB136-1		545			

The state of the s

	Gene ID	Number	Gene ID	Sequence ID Number
LMB137-2		546		
LMB138-1		547		
LMB139-1		549		
LMB140-1		550		
LMB141		551		
LMB142-1		552		
LMB144-1	The state of the s	553		
LMB150		554		
LMB151		555		
LMB_ESTP4-E01		556		
LMB_ESTDHT64		557		
LMB_LIV-REGER-PROT		558		
LMB_RIKEN 1110001M01		559		
LMB_EST-SEASONALf17		560		

Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

What is claimed is:

5

{WP104247;2} 117