What is claimed is:

1. Use, as a catalyst for oxidation reactions using molecular oxygen and/or air, of at least one metal complex compound of formula (1)

$$[L_n Me_m X_p]^2 Y_q$$
 (1),

wherein

Me is manganese, titanium, iron, cobalt, nickel or copper,

X is a coordinating or bridging radical,

n and m are each independently of the other an integer having a value of from 1 to 8, p is an integer having a value of from 0 to 32,

z is the charge of the metal complex,

Y is a counter-ion,

q = z/(charge of Y), and

L is a ligand of formula (2)

$$R_3$$
 R_4
 R_5
 R_5
 R_7
 R_8
 R_9
 R_{10}
 R_{10}

wherein

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently of the others hydrogen; unsubstituted or substituted C_1 - C_{18} alkyl or aryl; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein R_{12} is in each case hydrogen, a cation or unsubstituted or substituted C_1 - C_{18} alkyl or aryl; -SR₁₃, -SO₂R₁₃ or -OR₁₃ wherein R_{13} is in each case hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or aryl; -NR₁₄R₁₅; -(C_1 - C_6 alkylene)-NR₁₄R₁₅; -N^{\oplus}R₁₄R₁₅R₁₆;

 $-(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}; -N(R_{13})-(C_1-C_6alkylene)-NR_{14}R_{15};$

 $-N[(C_1-C_6alkylene)-NR_{14}R_{15}]_2; -N(R_{13})-(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16};$

 $-N[(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}]_2;$ $-N(R_{13})-N-R_{14}R_{15}$ or $-N(R_{13})-N^{\oplus}R_{14}R_{15}R_{16}$ wherein R_{13} is as defined above and R_{14} , R_{15} and R_{16} are each independently of the other(s) hydrogen or

WO 2004/039933

unsubstituted or substituted C₁-C₁₈alkyl or aryl, or R₁₄ and R₁₅, together with the nitrogen atom linking them, form an unsubstituted or substituted 5-, 6- or 7-membered ring which may contain further hetero atoms.

- 2. Use according to claim 1, wherein Me is manganese, which is in oxidation state II, III, IV or V.
- 3. Use according to either claim 1 or claim 2, wherein X is CH₃CN, H₂O, F, Cl⁻, Br⁻, HOO⁻, O₂⁻², O²-, R₁₇COO⁻, R₁₇O⁻, LMeO⁻ or LMeOO⁻, wherein R₁₇ is hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl, and L and Me are as defined in claim 1.
- 4. Use according to any one of claims 1 to 3, wherein Y is R₁₇COO, ClO₄, BF₄, PF₆, R₁₇SO₃, R₁₇SO₄, SO₄², NO₃, F, Cl, Br or l, wherein R₁₇ is hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl.
- 5. Use according to any one of claims 1 to 4, whereinn is an integer having a value of from 1 to 4, especially 1 or 2.
- 6. Use according to any one of claims 1 to 5, wherein m is an integer having a value of 1 or 2, especially 1.
- 7. Use according to any one of claims 1 to 6, wherein p is an integer having a value of from 0 to 4, especially 2.
- 8. Use according to any one of claims 1 to 7, wherein z is an integer having a value of from 8- to 8+.
- 9. Use according to any one of claims 1 to 8, wherein aryl is phenyl or naphthyl each unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, cyano, nitro, carboxy, sulfo, hydroxy, amino, N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino, N-naphthylamino, phenyl, phenoxy or by naphthyloxy.
- 10. Use according to any one of claims 1 to 9, wherein

the 5-, 6- or 7- membered ring formed by R₁₄ and R₁₅ together with the nitrogen atom linking them is an unsubstituted or C₁-C₄alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring.

11. Use according to any one of claims 1 to 10, wherein

R₆ is preferably C₁-C₁₂alkyl; phenyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, cyano, nitro, carboxy, sulfo, hydroxy, amino, N-mono- or N₁N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino, N-naphthylamino, phenyl, phenoxy or by naphthyloxy; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein R₁₂ is in each case hydrogen, a cation, C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above; -SR₁₃, -SO₂R₁₃ or -OR₁₃ wherein R₁₃ is in each case hydrogen, C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above; -N(R_{13})-NR₁₄R₁₅ wherein R₁₃ is as defined above and R₁₄ and R₁₅ are each independently of the other hydrogen, unsubstituted or hydroxy-substituted C1-C12alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or R₁₄ and R₁₅, together with the nitrogen atom linking them, form an unsubstituted or C1-C4alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; -NR₁₄R₁₅ or -N[®]R₁₄R₁₅R₁₆ wherein R₁₄, R₁₅ and R₁₆ are each independently of the other(s) hydrogen, unsubstituted or hydroxy-substituted C1-C12alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or R₁₄ and R₁₅, together with the nitrogen atom linking them, form an unsubstituted or C1-C4alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; and

 R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} and R_{11} are as defined above or are hydrogen.

12. Use according to claim 11, wherein the ligand L is a compound of formula (3)

$$\begin{array}{c|c}
R'_{3} & B \\
N & N \\
N & N
\end{array}$$
(3)

wherein

R'₃, R'₆ and R'₉ have the meanings given for R₆ in claim 11.

13. Use according to claim 12, wherein

R'3, R'6 and R'9 are each independently of the others C1-C4alkoxy; hydroxy; phenyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, phenyl or by hydroxy; hydrazine; - 69 -

amino; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety; or an unsubstituted or C₁-C₄alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring.

- 14. Use according to claim 13, wherein R₆ is hydroxy.
- 15. Use according to any one of claims 1 to 10, wherein there is used at least one metal complex compound of formula (1')

$$[L'_nMe_mX_p]^2Y_q$$
 (1'),

wherein

Me is manganese, titanium, iron, cobalt, nickel or copper,

X is a coordinating or bridging radical,

n and m are each independently of the other an integer having a value of from 1 to 8, p is an integer having a value of from 0 to 32,

z is the charge of the metal complex,

Y is a counter-ion,

q = z/(charge of Y), and

L' is a ligand of formula (2')

$$R_3$$
 A
 A
 N
 N
 R_{10}
 R_{10}
 R_{10}

wherein

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently of the others hydrogen; unsubstituted or substituted C_1 - C_{18} alkyl or aryl; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein R_{12} is in each case hydrogen, a cation or unsubstituted or substituted C_1 - C_{18} alkyl or aryl; -SR₁₃, -SO₂R₁₃ or -OR₁₃ wherein R_{13} is in each case hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or aryl; -NR₁₄R₁₅; -(C₁-C₆alkylene)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylene)-NR₁₄R₁₅; -N[(C₁-C₆alkylene)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylene)-NR₁₄R₁₅; -N[(C₁-C₆alkylene)-NR₁₄R₁₅]₂; -N(R₁₃)-(C₁-C₆alkylene)-N[®]R₁₄R₁₅R₁₆;

WO 2004/039933

–N[(C₁-C₆alkylene)-N[®]R₁₄R₁₅R₁₆]₂; -N(R₁₃)-N-R₁₄R₁₅ or –N(R₁₃)-N[®]R₁₄R₁₅R₁₆, wherein R₁₃ is as defined above and R₁₄, R₁₅ and R₁₆ are each independently of the other(s) hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl, or R₁₄ and R₁₅, together with the nitrogen atom linking them, form an unsubstituted or substituted 5-, 6- or 7-membered ring which may contain further hetero atoms, with the proviso that at least one of the substituents R₁ to R₁₁ is a quaternised nitrogen atom that is not bonded directly to one of the three pyridine rings A, B or C.

16. Use according to claim 15, wherein

R₈ is C₁₂alkyl; phenyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, cyano, nitro, carboxy, sulfo, hydroxy, amino, N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino, Nnaphthylamino, phenyl, phenoxy or by naphthyloxy; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein R₁₂ is in each case hydrogen, a cation, C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above; -SR₁₃, -SO₂R₁₃ or -OR₁₃ wherein R₁₃ is in each case hydrogen, C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above; $-NR_{14}R_{15}$; -(C₁-C₆alkylene)- $NR_{14}R_{15}$; - $N^{\oplus}R_{14}R_{15}R_{16}$; -(C₁-C₆alkylene)- $N^{\oplus}R_{14}R_{15}R_{16}$; $-N(R_{13})-(C_1-C_6alkylene)-NR_{14}R_{15};$ $-N(R_{13})-(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16};$ $-N(R_{13})-N-R_{14}R_{15}$ or -N(R₁₃)-N[®]R₁₄R₁₅R₁₆, wherein R₁₃ may have any one of the above meanings and R₁₄, R₁₅ and R₁₆ are each independently of the other(s) hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or R_{14} and R_{15} , together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring which is unsubstituted or substituted by at least one unsubstituted C_1 - C_4 alkyl and/or substituted C_1 - C_4 alkyl, wherein the nitrogen atom may be quaternised, and R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₁ may be as defined in claim 1 or are hydrogen.

17. Use according to either claim 15 or claim 16, wherein the ligand L' is a compound of formula (3')

$$\begin{array}{c|c}
R'_{3} & B \\
N & C \\
R'_{9}
\end{array}$$
(3')

wherein

 R'_{3} , R'_{6} and R'_{9} have the meanings given for R_{6} in claim 15 or claim 16, but R'_{3} and R'_{9} may additionally be hydrogen.

18. Use according to claim 17, wherein

R'3, R'8 and R'9 are each independently of the others phenyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, phenyl or by hydroxy; cyano; nítro; -COOR₁₂ or -SO₃R₁₂ wherein R₁₂ is in each case hydrogen, a cation, C₁-C₄alkyl or phenyl; -SR₁₃, -SO₂R₁₃ or -OR₁₃ wherein R₁₃ is in each case hydrogen, C₁-C₄alkyl or phenyl; -N(CH₃)-NH₂ or -NH-NH₂; amino; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms not bonded to one of the three pyridine rings A, B or C, may be quaternised; N-mono- or N,N-di-C1-C4alkyl-N[®]R₁₄R₁₅R₁₆ unsubstituted or substituted by hydroxy in the alkyl moiety, wherein R₁₄, R₁₅ and R₁₆ are each independently of the others hydrogen, unsubstituted or hydroxy-substituted C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or R₁₄ and R₁₅, together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring which is unsubstituted or substituted by at least one C1-C4alkyl or by at least one unsubstituted C1-C4alkyl and/or substituted C1-C4alkyl, wherein the nitrogen atom may be quaternised; N-mono- or N,N-di-C₁-C₄alkyl-NR₁₄R₁₅ unsubstituted or substituted by hydroxy in the alkyl moiety, wherein R₁₄ and R₁₅ may be as defined above; or a radical

$$-(CH_2)_{04}N$$
 N R_{15}

wherein R₁₅ and R₁₆ have the meanings given above, preferably C₁-C₄alkyl, and the ring is unsubstituted or substituted, wherein R'₃ and R'₆ likewise may additionally be hydrogen.

- 19. Use according to either claim 17 or claim 18, wherein R_{θ} is hydroxy.
- 20. Use according to any one of claims 15 to 19, wherein at least one of the substitutents R_1 to R_{11} , preferably one of the substituents R_3 , R_6 , R_9 , R_9 , and/or R_9 , is one of the radicals

$$-C_1-C_4 \text{alkylene} - \text{N} + C_1-C_4 \text{alkyl} \\ C_1-C_4 \text{alkyl} \\ \text{or} - \text{N} + C_1-C_4 \text{alkyl} \\ C_1-C_4 \text{alkyl} \\ \text{or} - \text{N} + C_1-$$

wherein the unbranched or branched alkylene group may be unsubstituted or substituted and wherein the alkyl groups, which are unbranched or branched independently of one another, may be unsubstituted or each independently of the others substituted and wherein the piperazine ring may be unsubstituted or substituted.

21. Use according to any one of claims 15 to 20 wherein at least one of the substituents R_1 to R_{11} , preferably one of the substituents R_3 , R_3 , R_6 , R_6 , R_9 and/or R_9 , is one of the radicals

$$-C_1-C_2\text{alkylene}-\text{N} + C_1-C_2\text{alkyl} \\ C_1-C_2\text{alkyl} \\ \text{Or} -C_2\text{alkyl}$$

wherein the unbranched or branched alkylene group may be unsubstituted or substituted and wherein the alkyl groups, each independently of the others, may be unsubstituted or substituted and wherein the piperazine ring may be unsubstituted or substituted.

- 22. Use according to any one of claims 1 to 21 for the bleaching of stains or of soiling on textile material, or for the prevention of redeposition of migrating dyes in the context of a hydrogen peroxide-free washing process, or for the cleaning of hard surfaces.
- 23. Use according to any one of claims 1 to 21, wherein the metal complex compounds of formula (1) and/or (1') are used as catalysts for reactions using molecular oxygen and/or air for bleaching in the context of paper making.
- 24. Use according to any one of claims 1 to 21, wherein the metal complex compounds of formula (1) and/or (1') are used in selective oxidation reactions in the context of organic synthesis.
- 25. Use according to any one of claims 1 to 21, wherein the metal complex compounds of formula (1) and/or (1') are used in detergent, cleaning, disinfecting or bleaching compositions.

- 26. Use according to claim 25, wherein the metal complex compounds of formula (1) and/or (1') are formed in situ in the detergent, cleaning, disinfecting or bleaching composition.
- 27. A detergent, cleaning, disinfecting or bleaching composition containing
- I) from 0 to 50% by weight A) of at least one anionic surfactant and/or B) one non-ionic surfactant,
- II) from 0 to 70% by weight C) of at least one builder substance,
- III) D) at least one metal complex compound of formula (1) and/or (1') as defined in any one of claims 1 to 26 in an amount that, in the liquor, gives a concentration of from 0.5 to 100 mg/litre of liquor, preferably from 1 to 50 mg/litre of liquor, when from 0.5 to 20 g/litre of the detergent, cleaning, disinfecting or bleaching composition are added to the liquor, and
- IV) water ad 100% by weight, wherein the percentages are in each case percentages by weight, based on the total weight of the composition.

28. A solid formulation containing

- a) from 1 to 99% by weight of at least one metal complex compound as defined in any one of claims 1 to 21,
- b) from 1 to 99% by weight of at least one binder,
- c) from 0 to 20% by weight of at least one encapsulating material,
- d) from 0 to 20% by weight of at least one further additive and also
- e) from 0 to 20% by weight water.
- 29. A solid formulation according to claim 28, which is in the form of granules.