

Valore della rete

Legge di Metcalf

- Il valore della rete cresce con il quadrato del numero dei nodi n(n-1)/2
- Se ho 4 PC ognuno parla con altri 3; il valore è 6
- Se aggiungo un altro PC in rete il valore sale a 10, e poi 15, 21...
- Alcuni, Odlvzko e Tilly, sostengono che non tutti i nodi hanno lo stesso valore e dicono che il valore della rete sale solo come n * logn
- Altri come Reed dicono il contrario, il valore della rete non è dato solo dalla rete nelle sua interezza ma anche da tutti i sottoinsiemi di nodi che si possono creare all'interno della rete stessa

Modi di uso

Wireless	Mobile	Applicazione
No	No	PC in ufficio, edifici cablati
No	Si	Notebook in albergo, es via modem o via cavo
Si	No	Notebook in ufficio o casa, edifici non cablati
Si	Si	Tablet, SmartPhone, schede GPRS, UMTS

Dimensioni

Dimensioni della rete

- Rete interne (multicomputer, matrici di switch, Infiniband, Myrinet)
- PAN Personal Area Network (pochi metri intorno alla persona, bluetooth)
- LAN da 10 m a 1 km (stanza, edificio, campus)
- MAN 10 km (città)
- WAN da 10 km a 10.000 km (regione, stato, intercontinentale)
- Internet (pianeta)

Regola generale

- le reti piccole e localizzate tendono ad essere di tipo broadcast
- reti geograficamente disperse tendono ad essere punto a punto
- ma ci sono moltissime eccezioni

Mesh

Magliata

- I collegamenti necessari sono n * (n-1) quindi aumentano con il quadrato dei nodi
- Svantaggio economico (costo di link e di porte di I/O)
- Vantaggio: affidabile, sicura, permette di isolare parti guaste (nodi, link)
- Usata soprattutto per connettere centrali telefoniche o POP di reti IP

Star

29

Stella

- Connessa ad un Hub centrale
- Il traffico ora non può andare diretto da un nodo all'altro ma deve passare per l'hub.
- Molto semplice ed economico, un solo collegamento per nodo
- Svantaggio. Se l'hub si rompe nulla funziona

Bus

- Utilizza un collegamento multipunto (il bus) che collega tutti i nodi
- Ogni nodo è fisicamente collegato al bus, quindi quando un segnale passa lo sente ma il segnale diminuisce di intensità attraversando il bus. Questo limita il numero di nodi
- Facile inserire nuovi nodi, basta attaccare un nuovo connettore sul bus
- Svantaggi: Difficile risolvere problemi relativi al bus, es se i connettori non sono distanziati correttamente o se uno provoca rumore.

Ring

- Anello
- Ogni nodo si collega punto punto con altri due nodi
- I dati viaggiano in una direzione e i nodi si passano il messaggio da uno all'altro fino alla destinazione
- Facile da installare (due collegamenti da cambiare per ogni inserimento o rimozione)
- Svantaggi: i dati devono fare percorsi lunghi e se un nodo non funziona interrompe l'anello

Ibride

Un mix delle topologie indicate

- Es. un hub centrale unisce tre reti con topologia a bus,

Data Transfer

- Direzione dei dati (slide seguente)
 - Simplex: I dati vanno in una unica direzione
 - Half Duplex: I dati vanno in entrambe le direzioni ma non contemporaneamente
 - Full Duplex: I dati viaggiano in entrambi le direzioni allo stesso istante
- Quanti canali logici sullo stesso canale fisico
 - Spesso ci sono almeno due canali, uno per i dati normali e uno per i dati urgenti (o per la gestione dei dati)

Modi di comunicazione

Error control

- Controllo degli errori
 - I circuiti di comunicazione non sono perfetti
 - Ci sono diversi metodi di error correction e error detection ma entrambe le parti devono concordare quale usare e poi serve un modo per dire al mittente cosa non è arrivato bene

Data order

- Ordine dei messaggi
 - Se il canale non garantisce l'ordine dei messaggi il protocollo deve assegnare un numero sequenziale per permettere il riassemblaggio
 - Poi resta da decidere cosa fare dei messaggi fuori sequenza

Flow control

Flow Control

- Come evitare che un trasmittente veloce intasi un ricevente lento
- Qualche forma di feedback (implicito o esplicito) sulla situazione del ricevente
- Contrattazione tra i due di un transmission rate adeguato