Fast approximate Bayesian inference for the Naomi model

Machine Learning and Global Health Network

Adam Howes

Imperial College London

June 2023

Doing precision public health requires granular data

- 1. The right interventions
- 2. in the right place
- 3. to the right populations
- 4. at the right time

Figure 1: Naomi is a district-level model of HIV indicators, like prevalence, treatment coverage, and incidence.

1	2	3	4	5	6	7
Upload inputs	Review inputs	Model options	Fit model	Calibrate model	Review output	Save results
BACK / CONTIN	NUE					
Spectrum file (r	required)					
Select new file)		Browse			
Area boundary	file (required)					
Select new file)		Browse			
Population (requ	uired)					
Select new file	•			Browse		
Household Sur	vey (required)					
Select new file	•			Browse		
ART						
Select new file)			Browse		
ANC Testing						
Select new file	•			Browse		
BACK / CONTIN	NIIE					

Figure 2: Estimate generation via a web interface promotes data ownership, data use, and data quality. From https://naomi.unaids.org/.

Better estimates by integration information from many sources

- 1. Household surveys infrequent, but gold-standard
- 2. Antenatal care clinic data frequent, only for pregnant women
- 3. Treatment service provision data frequent, but hard to interpret

Put together, it's a challenging Bayesian inference problem

We want our inference procedure to be

- 1. Fast enough for interactive review of estimates
- 2. Accurate enough for precision public health
- 3. Flexible enough for compatibility with a complex model

The model has a big, structured, Gaussian latent field x

- Fixed effects Gaussian
- Age structure AR1
- Spatial structure IID, ICAR, BYM2

Concatenate together as x, length 467

Smaller, non-Gaussian, hyperparameters $oldsymbol{ heta}$

- Standard deviations Half-Gaussian
- BYM2 proportion parameters Beta
- AR1 autocorrelation parameters Uniform

Concatenate together as θ , length 24

Approximate the marginal posterior of x by a Gaussian

Given hyperparameters θ we compute this as

$$ilde{
ho}_{ ext{G}}(extbf{x}\,|\, heta, extbf{y}) = \mathcal{N}(\hat{ extbf{x}}(heta),\hat{ extbf{H}}(heta))$$

If you input 24 length θ then it'll return a 467 length mean vector $\hat{\mathbf{x}}(\theta)$ and 467×467 length covariance matrix $\hat{\mathbf{H}}(\theta)$. Mean calculated using gradient based optimisation. Gradients, and Hessian, obtained using automatic differentiation.

Use adaptive Gauss-Hermite quadrature to integrate over $oldsymbol{ heta}$

Quadrature method based on the theory of polynomial interpolation which:

- 1. Works well when the integrand looks like a polynomial times a Gaussian
- 2. Adapts to the particular integrand based on the mode and Hessian
- 3. Is implemented by the aghq package (Stringer 2021)

Figure 3: Unadapted Gauss-Hermite nodes in two dimensions with k = 3.

Figure 4: Add the mode $\mathbf{z} + \hat{\boldsymbol{\theta}}$.

Figure 5: You could rotate by the lower Cholesky $\mathbf{Lz} + \hat{\boldsymbol{\theta}}.$

Figure 6: Or you could rotate using the eigendecomposition $\mathbf{E} \mathbf{\Lambda}^{1/2} \mathbf{z} + \hat{m{ heta}}.$

24 hyperparameters is too many for a dense grid

k = 3 points in 24 dimensions is not feasible

$$3 \times 3 \times \cdots \times 3 = 3^{24}$$

So we need to find something smaller (that still does a good job!)

Figure 7: An obvious thing to try is only keeping points from the largest eigenvectors: we call this PCA-AGHQ. Corresponds to variable choice of k by dimension.

Figure 8: .

Figure 9: .

Yes, but did it work?

Run NUTS¹ as gold-standard, then compare to TMB to PCA-AGHQ using:

- 1. Marginal distributions point estimates, ECDF e.g. KS or AD
- 2. Joint distributions PSIS, MMD
- 3. Policy relevant outcomes second 90, high incidence

¹For 3 days!

Figure 10: PCA-AGHQ modestly improves estimation of the posterior mean.

Figure 11: PCA-AGHQ substantially improves estimation of the posterior standard deviation. TMB systematically underestimates, which you'd expect.

Figure 12: Strata probabilities of having greater than 81% ART coverage, and as such meeting the second 90 target. Both approximate methods are inaccurate for females.

Figure 13: Strata probabilities of having greater than 1% HIV incidence, and as such being classified high incidence. Again, both approximate methods are inaccurate.

Further improvements look possible

- 1. Fix issues with scaling
 Logit scaled not uniformly more important than log scaled
- 2. Take into account importance for outputs of interest Variance of inputs isn't really what we care about
- 3. Take into account marginal skewness

 The more skewed, the more we should be placing lots of points

Figure 14: On the real scale, [0,1] hyperparameters appear to have more marginal variance than $[0,\infty)$ hyperparameters. This doesn't really make them more important though.

Get in touch to chat about

- 1. Further directions for this research
 - e.g. suggestions for short masters or PhD projects
- 2. Impactful academic or industry jobs using Bayesian statistics to begin around the end of this year when I graduate (hopefully!)

Method	Details		
Zulip	Adam Howes		
Email	ath19@ic.ac.uk		
Calendly	adamthowes		

For more information

- Code and notebooks: github.com/athowes/elgm-inf
- Working paper on the way², Any early readers greatly appreciated!
 - Fast approximate Bayesian inference for small-area estimation of HIV indicators using the Naomi model Adam Howes, Alex Stringer, Seth Flaxman, Jeff Eaton

 $^{^2 \}mbox{For sufficiently vague definition of "on the way"}$

Figure 15: Much of this work done in Waterloo, Canada visiting Alex Stringer last fall! Would definitely recommend the SAS department.

References I

Stringer, Alex. 2021. "Implementing Approximate Bayesian Inference using Adaptive Quadrature: the aghq Package." https://arxiv.org/abs/2101.04468.