

US012391736B2

(12) United States Patent Plasterk

(10) Patent No.: US 12,391,736 B2

(45) **Date of Patent:** Aug. 19, 2025

(54) OFF-THE-SHELF CANCER VACCINES

(71) Applicant: CureVac Netherlands B.V., Amsterdam

(NL)

(72) Inventor: Ronald Hans Anton Plasterk,

Amsterdam (NL)

(73) Assignee: CureVac Netherlands B.V., Amsterdam

(NL)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1147 days.

(21) Appl. No.: 17/262,917

(22) PCT Filed: Jul. 25, 2019

(86) PCT No.: PCT/NL2019/050491

§ 371 (c)(1),

(2) Date: Jan. 25, 2021

(87) PCT Pub. No.: WO2020/022898

PCT Pub. Date: Jan. 30, 2020

(65) Prior Publication Data

US 2021/0238244 A1 Aug. 5, 2021

(30) Foreign Application Priority Data

Jul. 26, 2018	(NL)	 2021400
Jan. 24, 2019	(NL)	 2022447

C07K 14/47 (2006.01) A61K 39/00 (2006.01) C07K 5/083 (2006.01) C07K 7/08 (2006.01)

C12Q 1/6886 (2018.01)

(52) U.S. Cl.

(51) Int. Cl.

CPC C07K 14/4748 (2013.01); A61K 39/0011 (2013.01); A61K 39/001151 (2018.08); C07K 5/0808 (2013.01); C07K 7/08 (2013.01); C12Q 1/6886 (2013.01); A61K 39/00 (2013.01); A61K 2039/645 (2013.01); C07K 2319/00 (2013.01); C12Q 2600/156 (2013.01)

(58) Field of Classification Search

CPC C07K 14/4748; C07K 5/0808; C07K 7/08; C07K 2319/00; A61K 39/0011; A61K 39/001151; A61K 39/00; A61K 2039/645; A61K 2039/70; C12Q 1/6886; C12Q

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,115,390	B2	8/2015	Liss et al.
2005/0112134			Graddis et al.
2007/0083334			Mintz et al.
2016/0069895			Delamarre et al.
2016/0009893			Hacohen et al

2017/0028043 A1	2/2017	Benz et al.
2017/0028044 A1	2/2017	Soon-Shiong et al.
2017/0032082 A1	2/2017	Nguyen et al.
2017/0032103 A1	2/2017	Nguyen et al.
2017/0202939 A1	7/2017	Carreno et al.
2017/0312351 A1	11/2017	Niazi et al.
2018/0064793 A1	3/2018	Mcgranahan et al.
2018/0078624 A1	3/2018	Zhou et al.
2018/0078625 A1	3/2018	Moon et al.
2018/0318409 A1	11/2018	Valiante et al.
2018/0340944 A1	11/2018	Han et al.
2019/0022202 A1	1/2019	Granum et al.
2019/0030147 A1	1/2019	Artomov et al.
2019/0060428 A1	2/2019	Fritsch
2019/0083593 A1	3/2019	Sahin et al.
2019/0091316 A1	3/2019	Soon-Shiong et al.

FOREIGN PATENT DOCUMENTS

\mathbf{EP}	2071334 A1 *	6/2009	 C07K 16/32
WO	1995032731 A2	12/1995	
WO	20040111075 A2	12/2004	
WO	2007101227 A8	9/2007	
WO	2011143656 A2	11/2011	
WO	2012159754 A2	11/2012	
WO	2014168874 A2	10/2014	
WO	2015095811 A2	6/2015	
WO	2016040900 A1	3/2016	
WO	2016154544 A1	9/2016	
WO	2016172722 A1	10/2016	
	(Conti	nued)	

OTHER PUBLICATIONS

NLM, "Homo sapiens cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A), transcript variant 1, mRNA"; URL= https://www.ncbi.nlm.nih.gov/nuccore/NM_000389.2; Date= Feb. 24, 2008; Accessed Nov. 2, 2024 (Year: 2008).*

Rajasagi, M. et al., "Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia", Blood, 2014; 124(3):453-462; ISSN 0006-4971.

Roudko, V. et al., "Widespread immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors", bioRxiv 2019; doi: https://doi.org/10.1101/662262; pp. 1-53.

(Continued)

Primary Examiner — Anne M. Gussow

Assistant Examiner — Sydney Van Druff

(74) Attorney, Agent, or Firm — Verrill Dana, LLP

(57) ABSTRACT

The present invention relates generally to peptide comprising two or more tumor specific neo open-reading-frame peptides (NOPs), and isolated nucleic acids encoding such peptides, and the uses of these peptides and/or isolated nucleic acids to produce cancer vaccines and the like. With the present invention it becomes possible to provide off-the-shelf cancer vaccines and the like within a short period of time and for potentially 30% of the total population of patients suffering from cancer.

3 Claims, 6 Drawing Sheets

Specification includes a Sequence Listing.

(56)	References Cited	
	FOREIGN PATENT DOCUMENTS	
WO	2016187508 A2 11/2016	
WO	2016201049 A2 12/2016	
WO	2017020026 A1 2/2017	
WO	2017106638 A1 6/2017	
WO	2017118702 A1 7/2017	
WO	2017132547 A1 8/2017	
WO	2017139694 A1 8/2017	
WO	2017173321 A1 10/2017	
WO	2017177207 A1 10/2017	
WO	2017194170 A1 11/2017	
WO	2017223085 A2 12/2017	
WO	2018015433 A2 1/2018	
WO	2018026896 A1 2/2018	
WO	2018102584 A1 6/2018	
WO	2018136664 A1 7/2018	
WO	2018144082 A1 8/2018	
WO	2018144775 A1 8/2018	
WO	2018195357 A1 10/2018	
WO	2018200389 A1 11/2018	
WO	2018213803 A1 11/2018	
WO	2018223092 A1 12/2018	
WO	2018223094 A1 12/2018	
WO	2018224405 A1 12/2018	
WO	2018234506 A2 12/2018	
WO	2018234516 A2 12/2018	
WO	2019008364 A1 1/2019	
WO	2019008365 A1 1/2019	
WO	WO-2019012082 A1 * 1/2019 A61K 38	3/04
WO	2019036043 A2 2/2019	

OTHER PUBLICATIONS

Luhui, S. et al., "Abstract 469: Progress towards developing a universal, prophylactic cancer vaccine.", American Association for Cancer Research; vol. 73, No. 8, Suppl. 1, Apr. 2013 (Apr. 1, 2013). Schwitalle, Y. et al., "Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells", Cancer Immun. 2004 Academy of Cancer Immunology, CH-ISSN 1424-9734, vol. 4, Nr:1, pp. 1-10.

Koster, J. et al., "A library of Neo Open Reading Frame peptides (NOPs) as a sustainable resource of common neoantigens in up to 50% of cancer patients", Scientific Reports, 2019, vol. 9, Nr: 1. Zhang, J. et al., "Using Frameshift Peptide Arrays for Cancer Neo-Antigens Screening", Scientific Reports, vol. 8, No. 1, (2018), pp. 1-10.

Batista, M. T. et al., "Abstract 1463: FAST vaccines based on frameshift neoantigens may have advantages over personal vaccines", Proceedings of American Association for Cancer Research Annual Meeting 2019, Mar. 29, 2019, vol. 79, Nr.: 13, pp. 1-2. Orfanelli, T. et al., "Shared tumor antigens in uterine cancers with microsatellite instability: Putative targets for immunotherapeutic approaches", Gynecologic Oncology, Jun. 2019, 154(1):91, DOI:

10.1016/j.ygyno.2019.04.214. Linnebacher et al., "Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens", Int. J. Cancer: 93, pp. 6-11

Schumacher et al., "Neoantigens in cancer immunotherapy", Science, 2015, vol. 348, Issue 6230, pp. 69-74.

Rahma et al., "A pilot clinical trial testing mutant von Hippel-Lindau peptide as a novel immune therapy in metastatic Renal Cell Carcinoma", Journal of Translational Medicine, 2010, 8:8, 9 pages. Hacohen et al., "Getting Personal with Neoantigen-Based Therapeutic Cancer Vaccines", Cancer Immunol. Res., Jul. 2013; 1(1): 11-15, pp. 1-8.

Ito et al., "Cancer Neoantigens: A Promising Source of Immunogens for Cancer Immunotherapy", J Clin Cell Immunol 2015, 6:2, pp. 1-7

Tomczak et al., "The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge", Contemp Oncol (Pozn). 2015, 19 (1A): A68-A77.

The Cancer Genome Atlas Research Network. "Comprehensive molecular characterization of clear cell renal cell carcinoma", Nature (2013), 499, pp. 43-49.

Pavlopoulou et al., "Human cancer databases (review)", Oncology Reports, 33: pp. 3-18, 2015.

Rammensee, H-G et al., "Cancer Vaccines: Some Basic Considerations", Genomic and Personalized Medicine, 2009, Elsevier, pp. 573-589.

* cited by examiner

Fig. 1

Identify frame shift mutations in cancer patient cohort

Identify all potential neo-antigens that overlap with the identified frame shift mutations

Combine multiple neo-antigens in a single peptide or peptide encoding nucleotide sequence Identify genes for which at least two patients with frame shift mutations in tumor DNA/RNA have been found

Optionally identify potential neo-antigens in alternative splice products that overlap with the identified frame shift mutations

Fig. 2

Normal protein

Fig. 3

Aug. 19, 2025

Fig. 6

OFF-THE-SHELF CANCER VACCINES

FIELD OF THE INVENTION

The present invention relates generally to vaccines for use 5 in the treatment of cancer, wherein a vaccine is based on combining multiple tumor specific neo open-reading-frame peptides (NOPs) sequences in a single vaccine, preferably wherein said NOPs are derived from the same gene. The invention further relates to peptides comprising such sequences, nucleic acids encoding such peptides and methods for constructing such peptides, nucleic acids and vaccines.

BACKGROUND OF THE INVENTION

There are a number of different existing cancer therapies, including ablation techniques (e.g., surgical procedures and radiation) and chemical techniques (e.g., pharmaceutical agents and antibodies), and various combinations of such techniques. Despite intensive research such therapies are still frequently associated with serious risk, adverse or toxic side effects, as well as varying efficacy.

There is a growing interest in cancer therapies that aim to 25 target cancer cells with a patient's own immune system (cancer vaccines). Such therapies may indeed eliminate some of the known disadvantages of existing therapies, or be used in addition to the existing therapies for additional therapeutic effect. Cancer vaccines or immunogenic compositions intended to treat an existing cancer by strengthening the body's natural defenses against the cancer and based on tumor-specific neoantigens hold great promise as next-generation of personalized cancer immunotherapy. Evidence shows that such neoantigen-based vaccination can elicit T-cell responses and can cause tumor regression in patients.

Typically the immunogenic compositions/vaccines are composed of tumor antigens (antigenic peptides or nucleic acids encoding them) and may include immune stimulatory molecules like cytokines and that work together to induce antigen-specific cytotoxic T-cells that target and destroy tumor cells. Vaccines containing tumor-specific and patient-specific neoantigens requires sequencing of the patients' 45 genome, as well as the production of personalized compositions. Sequencing, identifying the patient's specific neoantigens and preparing such personalized compositions may require a substantial amount of time, time which may unfortunately not be available to the patient, given that for some tumors the average survival time after diagnosis is short, sometimes around a year or less.

Accordingly, there is a need for improved methods and compositions for providing subject-specific immunogenic compositions/cancer vaccines. In particular it would be 55 desirable to have available a vaccine for use in the treatment of cancer, wherein such vaccine is suitable for treatment of a larger number of patients, and can thus be prepared in advance and provided off the shelf.

In light of this, products, compositions, systems, methods 60 and uses that provide for vaccines for use in the treatment of cancer and that would take away some of the herein-described disadvantages would be highly desirable, but are not yet readily available. In particular there is a clear need in the art for off-the-shelf personalized vaccines which 65 induce an immune response to tumor specific neo antigens. Accordingly, the technical problem underlying the present

2

invention can be seen in the provision of such products, compositions, methods and uses for complying with any of the aforementioned needs.

The technical problem is solved by the embodiments characterized in the claims and herein below.

SUMMARY OF THE INVENTION

It is an aim of the present invention to provide for an off-the-shelf vaccine for the treatment of cancer in a subject.

It is an aim of the present invention to provide for an off-the-self vaccine wherein the vaccine comprises a peptide or protein, or a nucleic acid encoding such peptide or protein, the peptide or protein comprising at least two amino acid sequences that have been found in tumors in cancer patients, or encoded by genomes of the cancer cells in such cancer patients, and that are the consequence of frame-shift mutations that have been introduced in the genome of the cancer cells of cancer patients. The amino acid sequences are preferably selected from the sequences identified with SEQ ID Nos 1-4307.

It is an aim of the present invention to provide for an off-the-self vaccine wherein the vaccine comprises a peptide or protein, or a nucleic acid encoding such peptide or protein, the peptide or protein comprising all amino acid sequences that have been found in tumors in cancer patients, or encoded by genomes of the cancer cells in such cancer patients, and that are the consequence of frame-shift mutations that have been introduced in one and the same gene in the genome of the cancer cells of cancer patients. The genes and amino acid sequences are preferably selected from the genes identified as groups 1-1103 in Table 1, and the accompanying SEQ ID nos. per gene.

By identifying in a cancer patient the genes as disclosed herein and that have been hit by frameshift mutations causing the genome of the cancer cells to encode for peptides comprising the amino acid sequences as disclosed herein, the patient can be provided with, depending on the number of genes that have been hit with such frameshift mutation, one, two or more peptides according to the invention, wherein a first peptide comprises for a first hit gene (i.e. a first group in Table 1) at least two, preferably all, of the corresponding amino acid sequences as indicated in Table 1 (or an isolated nucleic acid encoding such peptide), a second peptide comprises for a second hit gene (i.e. a second group in Table 1) at least two, preferably all, of the corresponding amino acid sequences as indicated in Table 1 (or an isolated nucleic acid encoding such peptide), and so on.

It is also an aim of the present invention to provide for an off-the-self vaccine wherein the vaccine comprises a peptide or protein, or a nucleic acid encoding such peptide or protein, the peptide or protein comprising at least two amino acid sequences that are also present in the tumor of the patient, or encoded by the genome of the cancer cells, and that are the consequence of frame-shift mutations that have been introduced in the genome of the cancer cells.

It is an aim of the current invention that the peptide or protein comprising all amino acid sequences that are also present in the tumor of the patient, or encoded by the genome of the cancer cells, and that are the consequence of frame-shift mutations that have been introduced in the genome of the cancer cells. By providing one peptide or protein, or nucleic acid encoding such protein or peptide, comprising all such amino acid sequences, it has now become possible to treat a cancer patient with one vaccine and that comprises all amino acid sequences that are unique to the cancer cell as the consequence of frame-shift muta-

tions that are present in the genome of the cancer patient. Preferably all the amino acid sequences that are present in the tumor of a patient are selected from the group consisting of SEQ ID Nos 1 to 4307.

It is an aim of the present invention to provide for a 5 peptide comprising at least two amino acid sequences, wherein each of said amino acid sequence is independently selected from the group consisting of SEQ ID Nos 1 to 4307.

It is a further objective of the present invention to provide for an isolated nucleic acid comprising a nucleotide 10 sequence encoding said peptide.

It is a further objective of the present invention to provide for a vector comprising said isolated nucleic acid.

It is a further objective of the present invention to provide for an expression vector comprising a promoter operably 15 linked to said isolated nucleic acid.

It is a further objective of the present invention to provide for a host cell comprising said isolated nucleic acid.

It is a further objective of the present invention to provide for a vaccine comprising said peptide, or said isolated 20 nucleic acid, or said vector, or said expression vector, optionally further comprising a pharmaceutically acceptable excipient.

It is a further objective of the present invention to provide for said vaccine for use in the prevention or treatment of a 25 disease, preferably wherein said disease is cancer.

It is a further objective of the present invention to provide for a library comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, or more vaccines according to the invention, each vaccine individually comprising at least two, preferably all, amino 30 acid sequences selected from a group selected from the groups 1-1103 as listed in Table 1, or a nucleotide sequence encoding said amino acid sequences, and wherein said 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, or more vaccines each comprise amino acid sequences, or nucleotide sequences encoding 35 said amino acid sequences, from a different group selected from the groups of sequences listed in Table 1.

It is a further objective of the present invention to provide for a method for generating a nucleic acid coding for a peptide, the method comprising the steps of:

- a) identifying frame shift mutations in the tumor DNA and/or RNA of a cohort of cancer patients in order to obtain a frame shift library;
- b) identifying at least one gene which is changed by a frame shift mutation in the tumor DNA and/or RNA of 45 one or more patients in the cohort of cancer patients to obtain a frame shift gene:
- c) identifying each novel open reading frame in both the +1 and -1 reading frame that overlaps with or is adjacent to the frame shift location of the frame shifted 50 gene to obtain candidate novel open reading frame sequences;
- d) optionally when present, identifying each novel open reading frames in both the +1 and -1 reading frame that overlaps with or is adjacent to the frame shift location 55 for each alternative splicing construct of the frame shift gene to obtain candidate novel alternative splicing open reading frame sequences;
- e) combining each of the candidate open reading frame sequences and optionally the candidate novel alterna- 60 tive splicing open reading frame sequences of the frame shift gene in a nucleic acid construct.

This and other objectives are provided by the peptides, isolated nucleic acids, vectors, expression vectors, host cells, methods as defined throughout the description and as defined in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are further described hereinafter with reference to the accompanying drawings, in

FIG. 1: Schematic overview of a polyNOP peptide, an example of a peptide according to the invention and comprising multiple NOP amino acid sequences which are optionally linked by an amino acid linker sequence, as indicated.

FIG. 2: Schematic overview of a method according to the invention to select candidate NOPs and subsequent construction of a polyNOP peptide according to the invention.

FIG. 3: Graphical representation of the selection of candidate NOPs for a single identified frame shift mutation in a tumor of a cancer patient. The top bar represents a normal protein sequence, below that is a representation of the protein encoded in the tumor, where the frame shift mutation results in a neo open reading frame (in grey) until a stop codon is encountered. Below that are all potential NOP sequences for this protein, meaning all amino acid sequences that can be expressed in the +1 and -1 reading frames. Overlapping NOPs are selected by taking those NOPs which have corresponding nucleotide sequences with the area surrounding the frame shift location but in a different reading frame, as indicated with the dashed line (in this case NOP 3 for the +1 reading frame and NOP 7 for the -1 reading frame). Overlapping NOPs are then combined to form a single peptide, the individual NOP sequences are either directly linked or linked through an amino acid linker sequence.

FIG. 4: Example graphical representation of for the splice variants of the gene TP53. The reference sequence (wild type, without mutations) is graphically displayed, together with alternative splice products.

FIG. 5: Example graphical representation of a polyNOP peptide for the gene TP53. On the top all candidate NOPs overlapping with or adjacent to identified frame shift mutations in tumors from the TGCA patient cohort are listed for the gene TP51 and its splice variants. This list of NOPs include NOPs derived from splice variants and which also overlap or are adjacent to a frame shift mutation. Different shades of grey represent different amino acids in the peptides. On the bottom is a graphical representation of a polyNOP combining each of the NOP sequences such that the sequence of each individual NOP is represented in the polyNOP peptide, where sequence redundancy has been removed.

FIG. 6: Graphical representation of the number of patients in the TGCA cohort (https://cancergenome.nih.gov/publications/publicationguidelines) which have a frame shift mutation which is represented by a NOP (SEQ ID 1-4307) present in a library of polyNOP peptides, versus the amount of polyNOP peptides in present in the library. The data presented relates to the situation wherein each (individual) polyNOP covers all candidate NOPs for a single gene (e.g. all sequences of Group 1 or Group 2 or Group 3 Group 1103), and the polyNOPs are added to the library in order of abundance of frame shift mutations identified in said gene in the TCGA cohort, most frequent identified genes added first.

REFERENCE TO A SEQUENCE LISTING

The Sequence listing, which is a part of the present vaccines, vaccine compositions, compositions for use and 65 disclosure, includes a text file comprising amino acid sequences of the present invention. The subject matter of the Sequence listing is incorporated herein by reference in its

entirety. The information recorded in computer readable form is identical to the written sequence listing.

DEFINITIONS

The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.

A portion of this disclosure contains material that is subject to copyright protection (such as, but not limited to, diagrams, device photographs, or any other aspects of this submission for which copyright protection is or may be available in any jurisdiction). The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the Patent Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Various terms relating to the methods, compositions, uses and other aspects of the present invention are used throughout the specification and claims. Such terms are to be given their ordinary meaning in the art to which the invention pertains, unless otherwise indicated. Other specifically defined terms are to be construed in a manner consistent with the definition provided herein. Although any methods and 25 materials similar or equivalent to those described herein can be used in the practice for testing of the present invention, the preferred materials and methods are described herein.

For purposes of the present invention, the following terms are defined below.

The singular form terms "A," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a cell" includes a combination of two or more cells, and the like.

As used herein, the term "about," when referring to a 35 value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments $\pm 20\%$, in some embodiments $\pm 10\%$, in some embodiments $\pm 1\%$, in some embodiments $\pm 0.1\%$, in some embodiments $\pm 0.1\%$ from the specified amount, as such variations are appropriate to perform the disclosed method.

As used herein, ranges can be expressed as from "about" one particular value, and/or to "about" another particular value. It is also understood that there are a number of values 45 disclosed herein, and that each value is also herein disclosed as "about" that particular value in addition to the value itself. For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 50 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

The term "and/or" refers to a situation wherein one or more of the stated cases may occur, alone or in combination with at least one of the stated cases, up to with all of the 55 stated cases.

As used herein, the term "at least" a particular value means that particular value or more. For example, "at least 2" is understood to be the same as "2 or more" i.e., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 . . . etc. As used herein, 60 the term "at most" a particular value means that particular value or less. For example, "at most 5" is understood to be the same as "5 or less" i.e., 5, 4, 3 . . . -10, -11, etc.

The term "comprising" is construed as being inclusive and open ended, and not exclusive. Specifically, the term and 65 variations thereof mean the specified features, steps or components are included. These terms are not to be inter-

6

preted to exclude the presence of other features, steps or components. It also encompasses the more limiting "to consist of".

"Exemplary" means "serving as an example, instance, or illustration," and should not be construed as excluding other configurations disclosed herein.

As used herein, administration or administering in the context of treatment or therapy of a subject is preferably in a "therapeutically effective amount", this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of the disease being treated. Prescription of treatment, e.g. decisions on dosage etc., is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners.

As used herein, "therapy" or "treatment" refers to treatment of a tumor with a therapeutic substance. A treatment may involve administration of more than one substance. A substance may be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated. For example, the therapy may be a co-therapy involving administration of two agents, one or more of which may be intended to treat the tumor. The substances may be administered simultaneously, separately, or sequentially which may allow the agents to be present in the patient requiring treatment at the same time and thereby provide a combined therapeutic effect, which may be additive or synergistic. The therapy may be administered by one or more routes of administration, e.g. parenteral, intra-arterial injection or infusion, intravenous injection or infusion, intraperitoneal, intratumoral or oral. The therapy may be administered according to a treatment regime. The treatment regime may be a pre-determined timetable, plan, scheme or schedule of therapy administration which may be prepared by a physician or medical practitioner and may be tailored to suit the patient requiring treatment. The treatment regime may indicate one or more of: the type of therapy to administer to the patient; the dose of each drug; the time interval between administrations; the length of each treatment; the number and nature of any treatment holidays, if any etc. For a co-therapy a single treatment regime may be provided which indicates how each drug/agent is to be administered.

This term "cancer" refers to the physiological condition in mammals that is typically characterized by unregulated cell growth. The terms "cancer," "neoplasm," and "tumor," are often used interchangeably to describe cells that have undergone a malignant transformation that makes them pathological to the host organism. Primary cancer cells can be distinguished from non-cancerous cells by techniques known to the skilled person. A cancer cell, as used herein, includes not only primary cancer cells, but also cancer cells derived from such primary cancer cell, including metastasized cancer cells, and cell lines derived from cancer cells. Examples include solid tumors and non-solid tumors or blood tumors. Examples of cancers include, without limitation, leukemia, lymphoma, sarcomas and carcinomas (e.g. colon cancer, pancreatic cancer, breast cancer, ovarian cancer, glioblastoma, prostate cancer, lung cancer, melanoma, lymphoma, non-Hodgkin lymphoma, colon cancer, (malignant) melanoma, thyroid cancer, papillary thyroid carcinoma, lung cancer, non-small cell lung carcinoma, and adenocarcinoma of lung). As is well known, tumors may metastasize from a first locus to one or more other body

tissues or sites. Reference to treatment for a "neoplasm, "tumors" or "cancer" in a patient includes treatment of the primary cancer, and, where appropriate, treatment of metastases.

As used herein the term "antigen" is a substance, preferably a (poly) peptide that induces an immune response.

As used herein the term "neoantigen" or "neoantigenic peptide" is an antigen that has at least one alteration that makes it distinct from the corresponding wild-type, parental antigen, e.g., via mutation in a tumor cell. A neoantigen can include a polypeptide sequence or a nucleotide sequence. The term "neoantigenic peptide" also encompasses a nucleotide sequence encoding such neoantigen peptide. A tumor neoantigen" or "tumor-specific neoantigen" is a neoantigen present in a subject's tumor cell or tissue but not in the subject's corresponding normal cell or tissue. The neoantigen of the present invention are tumor-specific neoantigens.

As used herein the term "epitope" is the specific portion of an antigen typically bound by an antibody or T cell $_{20}$ receptor. As used herein the term "neoepitope" is the specific portion of a neoantigen typically bound by an antibody or T cell receptor.

The term "peptide" is used herein interchangeably with "mutant peptide" and "neoantigenic peptide" to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between adjacent amino acids. Similarly, the term "polypeptide" is used interchangeably with "mutant polypeptide" and "neoantigenic polypeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the adjacent amino acids. The polypeptides or peptides can be a variety of lengths. Particularly the term "peptide" is also used for novel amino acid sequences comprising two or more (neoantigenic) peptides, also referred to herein as polyNOP.

In certain embodiments the size of the at least one neoantigenic peptide (NOP) molecule may comprise, but is not limited to, about 5, about 6, about 7, about 8, about 9, 40 about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, 45 about 40, about 41, about 42, about 43, about 44, about 45, about 46, about 47, about 48, about 49, about 50, about 60, about 70, about 80, about 90, about 100, about 110, about 120 or greater amino acid molecule residues, and any range derivable therein. In specific embodiments the neoantigenic 50 peptide molecules are equal to or less than 50 amino acids.

In certain embodiments the size of the at least one peptide according to the invention (polyNOP) may comprise, but is not limited to, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 55 30, about 35, about 40, about 45, about 50, about 60, about 70, about 80, about 90, about 100, about 120, about 140, about 160, about 180, about 200, about 250, about 300, about 350, about 400, about 500, about 600, about 700, about 800, about 900, about 1000, about 1100, about 1200, 60 about 1300, about 1400, about 1500, about 1600, about 1700, about 1800, about 1900, about 2000, about 2200, about 2400, about 2600, about 2800, about 3000, about 3500, about 4000, about 4500 or greater amino acid molecule residues, and any range derivable therein. In specific 65 embodiments the peptide according to the invention are equal to or less than 1000 amino acids.

8

The neoantigens and polypeptides preferably does not induce an autoimmune response and/or invoke immunological tolerance when administered to a subject.

As used herein the term "ORF" means open reading frame. As used herein the term "neoORF" is a tumor-specific ORF arising from a mutation, in particular a frame shift mutation as described herein. A "frame shift mutation" is a mutation causing a change in the frame of the protein, for example as the consequence of an indel mutation as described herein.

Within the context of the current invention the mutation in the tumor cell that gives rise to the neoantigen is a frame shift mutation with a net change of sequence, compared to wildtype, that is not + or - 3 nucleotides or a multiplicity thereof (6, 9, 12, 15 etc.). For example the frame shift consists + or -1, 2, 4, 5, 7, 8 . . . nucleotides. As will be understood by the skilled person, the frame shift mutation within the context of the current invention and should not create a novel stop triplet on the spot. The frame shift within the context of the current invention gives rise to a neoORF, a novel open reading frame generated in the tumor by insertions, deletions or substitutions that bring in frame sequences encoding completely novel stretches of amino acids. The frame shift mutation within the context of the current invention is a mutation that occurs in the coding region of a gene; i.e. the region that encodes a protein. (Note that the new open reading frame can sometimes extend beyond the stop codon of the wild type gene).

When referring herein to reading frame, the +1 and -1 reading frame mean those reading frames starting at one nucleotide downstream or upstream respectively. It is further to be understood that the -1 reading frame is the same as the +2 reading frame, or the +5 reading frame, etc. Similarly, the +1 reading frame is the same as the -2 reading frame or the +4 reading frame, etc.

As used herein the term "immunogenic" is the ability to elicit an immune response, e.g., via T cells, B cells, or both. As used herein, an immunogenic composition is a composition comprising substances, in particular neoantigen with the ability to elicit an immune response. Such composition may for example be a neoantigen-based vaccine based on one or more neoantigens, e.g., a plurality of neoantigens.

As used herein the term "sequence" can refer to a peptide sequence, DNA sequence or RNA sequence. The term "sequence" will be understood by the skilled person to mean either or any of these, and will be clear in the context provided. For example, when comparing sequences to identify a match, the comparison may be between DNA sequences, RNA sequences or peptide sequences, but also between DNA sequences and peptide sequences. In the latter case the skilled person is capable of first converting such DNA sequence or such peptide sequence into, respectively, a peptide sequence and a DNA sequence in order to make the comparison and to identify the match.

As used herein the term "exome" is a subset of the genome that codes for proteins. An exome can be the collective exons of a genome.

As used herein the term "transcriptome" is the set of all RNA molecules is a cell or population of cells. In a preferred embodiment the transcriptome refers to all mRNA.

As used herein the term "sample" can include a single cell or multiple cells or fragments of cells or an aliquot of body fluid, taken from a subject, by means including venipuncture, excretion, ejaculation, massage, biopsy, needle aspirate, lavage sample, scraping, surgical incision, or intervention or other means known in the art.

As used herein the term "subject" encompasses a cell, tissue, or organism, human or non-human, whether in vivo, ex vivo, or in vitro, male or female. The term subject is inclusive of mammals including humans. Preferably the subject is a human subject diagnosed with cancer or suspected to have cancer.

As used herein the term "mammal" encompasses both humans and non-humans and includes but is not limited to humans, non-human primates, canines, felines, murines, bovines, equines, and porcines.

As used herein, we define a NeoORFeome as the set of all sequences in the human genome that are out of frame with known translated genes, but that as a result of a frame shift mutation can become in frame and encode a novel peptide of at least 8 or 10 amino acids in length before encountering a stop codon. The NeoORFeome is the complete space in which by single frame shift mutations novel peptides of significant length (here defined as 10 amino acids or longer) can be encoded and (potentially) expressed. In other words, 20 the NeoORFeome comprises the complete set of neo Open Reading Frame in the human genome, defined as the sum of open reading frames that are not found in frame in the wild type human genome without mutation, but which by a single insertion/deletion/substitution can be made to be in frame, 25 and then encode a peptide of at minimal length 8, 10 amino acids. The human NeoORFeome as here defined in its latest version (in which peptides whose initiations are in the UTR are removed) comprises 25,617,715 amino acids, approximately 26 million. This corresponds to approximately 105 30 Mb (Megabases) of encoding DNA. (The Human Genome is around 3000 Mb).

We define herein peptides that are not encoded by the wild type human genome, but after frame shift mutation as defined herein, and can be encoded by a tumor genome as a 35 novel open reading frame peptide, or NOP. For any potential NOP in the NeoORFeome the C-terminal sequence is fixed (bounded by the encounter of a stop codon) and not dependent on the precise location of the frame shift mutation; the N-terminus, however, is defined by the mutation site, which 40 is where potentially protein translation shifts into the novel frame. The most upstream novel sequence of a NOP is the most 5' triplet in the wild type human genome of the Neo Open Reading Frame sequence which is not a stop triplet. We define the potential NOPs, also referred to as the pNOPs, 45 as the amino acid sequences encoded by the longest possible sequence, so from the most upstream triplets as described to the stop triplet at the 3' end. Sequences of such potential NOPs are represented in the amino acid sequences as defined herein as NOPs, a selection of potential NOPs is 50 represented by the sequence listing (SEQ ID Nos 1-4307).

Indeed the selection of pNOPs represented by the sequence listing is defined as (part of) the subset of the Neo-Orfeome which we found to be the most frequently switched on by frame shift mutation in a very large set of 55 tumor sequence data; it is thus a listing of potential NOPs or pNOPs. The complete sequence listing (SEQ ID Nos 1-4307) contains pNOPs that are encountered in over 44% of all cancers as described in the TCGA database. Based on our analysis for any new tumor of which the genome (or 60 transcriptome or exome or ORFeome-which is also included in any of the embodiments described below referring to genome, exome or transcriptome) is sequenced, the chance is over 30% that it will encode a NOP that is listed in our library as described here. In other words: the NOPs as 65 provided by the sequence listing (SEQ ID Nos 1-4307) can potentially provide to over 44% of all cancer patients.

10

As used herein, we define polyNOP as a peptide which comprises at least two NOPs, preferably selected from SEQ ID 1-4307, which NOPS may, within the peptide, be adjacent to each other or be separated by, for example, small amino acid linkers (as will be discussed in more detail herein). As NOPs are defined by out of frame open reading frame peptides which are flanked by stop codons, it logically follows that multiple NOPs combined in one peptide or encoded in a single open reading frame is unlikely to occur in nature. PolyNOPs can for example be constructed by linking multiple NOP encoding nucleic acid sequences, with or without linker sequence, and in the same reading frame, followed by expression of the amino acid sequence encoded by such nucleic acid. It is disclosed herein that polyNOPs according to the invention may comprise two or more NOPs derived from the same gene or two or more NOPs derived from different genes. Preferably a polyNOP comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more NOPs, preferably, when the NOPs in a polyNOP are all obtained from the same gene, in a preferred embodiment, the peptide comprises all NOPs as defined herein for said gene.

When used herein, candidate NOP means a NOP which overlaps or is adjacent to a frame shift mutation is defined herein.

As used herein "off-the-shelf" means a vaccine or vaccine composition, e.g. comprising one or more peptides or nucleic acids as defined herein that is available and ready for administration to a patient. For example, when a certain frame shift mutation is identified in a patient, the term "off-the-shelf" would refer to a vaccine according to the invention that is ready for use in the treatment of the patient, meaning that, if the vaccine is peptide based, the corresponding polyNOP peptide may, for example already be expressed and for example stored with the required excipients and stored appropriately, for example at -20° C. or -80° C. Preferably the term "off-the-shelf" also means that the vaccine has been tested, for example for safety or toxicity. More preferably the term also means that the vaccine has also been approved for use in the treatment or prevention in a patient.

As used herein "overlap", when referring to a frame shift mutation to overlap with a NOP or vice versa, means that from all potential NOPs as encoded by the +1 and -1 reading frame for a certain gene, those NOPs are said to overlap with the frame shift location that contain an amino acid sequence that can be encoded by the sequence surrounding the frame shift location in the +1 reading frame and in the -1 reading frame.

For example in case of an insertion, if the non-frame shifted protein is encoded by the sequence: [sequence_1] [sequence_2] and encodes the amino acid sequence RHDGCRP, and the frame shift encoding sequence from a patients is [sequence_1]C[sequence_2] (insertion) and encodes the amino acid sequence: RHDALSA, then NOPs that overlap with the frame shift location are the NOP for which a part of the sequence can be encoded by [sequence_1][sequence_2] in reading frame +1 and the NOP for which a part of the sequence can be encoded by [sequence_1][sequence_2] in reading frame-1, for example the NOPs comprising the amino acids sequences VTTAVG and SRRLSA respectively.

For example in case of an deletion, if the non-frame shifted protein is encoded by the sequence: [sequence_1]AT [sequence_2] and encodes the amino acid sequence RHD-GIVG, and the frame shift encoding sequence from a patients is [sequence_1][sequence_2] (deletion) and encodes the amino acid sequence: RHDGCRP, then NOPs that over-

lap with the frame shift location are the NOP for which a part of the sequence can be encoded by [sequence_1][sequence_2] in reading frame +1 and the NOP for which a part of the sequence can be encoded by [sequence 1][sequence_2] in reading frame-1, for example the NOPs com- 5 prising the amino acids sequences VTTALSA and SRRHCRP respectively.

11

In case the frame shift location is very close or at the border of two neighboring NOPs (for example due to an out of frame stop codon), the NOPs are referred herein as 10 "adjacent", and defined as comprising a stretch of amino acids encoded by nucleotides corresponding to for example 9 consecutive nucleotides, or 10, 11, 12, 13, 14, 15, 16, 17 or 18 consecutive nucleotides, starting from 3 nucleotides upstream or downstream from the location of the frame shift 15 location and which are not defined as overlapping as defined

For example, if the non-frame shifted protein is encoded by [sequence_1]GCGCTGT[sequence_2] and the frame shift encoding sequence is [sequence_1]GCGTGT[se-20 quence 2], then the NOPs that comprise an amino acid sequence that can be encoded by either nucleic acid sequence 1 or nucleic acid sequence 2 in either reading frame +1 or reading frame -1 are said to be adjacent, provided they are not already defined as overlapping as 25 defined above.

DETAILED DESCRIPTION

NOP sequences (also referred to as neo Open Reading 30 Frames, neoORFs) have been previously described as potential cancer vaccines. See, for example, WO95/32731, WO2016172722 (Nantomics), WO2016/187508 (Broad), WO2017/173321 (Neon Therapeutics), US2018340944 com), as well as Rahma et al. (Journal of Translational Medicine 2010 8:8) which describes peptides resulting from frameshift mutations in the von Hippel-Lindau tumor suppressor gene (VHL) and Rajasagi et al. (Blood 2014 124 (3): 453-462) which reports the systematic identification of 40 personal tumor specific neoantigens.

The present disclosure uses NOP sequences that are shared among cancer patients to generate combinations of NOP sequences. The preferred combinations of NOP sequences, as claimed herein, can be used as off-the-shelf 45 therapeutic vaccines for a large proportion of cancer patients or for prophylactic use. The combination of the specific shared NOP sequences into a single vaccine and the use of the preferred combinations for treatment or prevention of cancer has not been described before in the art.

It is contemplated that any method, use or composition described herein can be implemented with respect to any other method, use or composition described herein. Embodiments discussed in the context of methods, use and/or compositions of the invention may be employed with respect 55 to any other method, use or composition described herein. Thus, an embodiment pertaining to one method, use or composition may be applied to other methods, uses and compositions of the invention as well.

As embodied and broadly described herein, the present 60 invention is directed to the surprising finding that developing a vaccine for neo open reading frame peptides (antigens) from frame shift mutations in relatively few genes are sufficient to develop a potential vaccines for a large percentage of cancer patients.

It was realized by the inventor of the present invention that it is possible to provide a peptide that comprises

(sequences of) neo open reading frame peptides that are found in tumor material of patients as the consequence of frame shift mutations that lead to a new open reading frame with a novel, common, tumor-specific protein sequence towards the C-terminal end, preferably comprising two or more sequences as defined in the sequence listing (SEQ ID Nos 1-4307). By comparing sequence information from a tumor sample of a patient with the sequence listing it has now become possible to quickly identify whether there is a match between sequences identified in the patient's material with a sequence in the sequence listing. A match is identified when a sequence identified in the patients material and a sequence from the sequence listing have a string, i.e. a peptide sequence (or RNA or DNA sequence encoding such peptide (sequence) in case the comparison is on the level of RNA or DNA) in common representative of at least 8, preferably at least adjacent amino acids. The thus identified tumor-specific mutant polypeptide encoded by a tumorspecific frame shift mutation in (expressed) genes of the subject having cancer can be used to provide for neoantigens comprising a tumor-specific neoepitope. With these limited amount of sequences, and based on the actual amount of sequences in the sequence listing (as described herein else-

12

In some more detail, it was realized by the inventor of the present invention that with the human genome being about 3×10^9 base pairs, about 1.5% of which is coding for protein, the number of possible point-mutations (nucleotide changes or SNVs) is virtually infinite, especially since each position (University of Connecticut), and WO2019/012082 (Nous- 35 can mutate into three others, and of course endless other rearrangements and indels are possible. Therefore the number of possible neoantigens that arise in tumors is also huge.

where) it is estimated that between about 5-30% of the population of patients having cancer can be provided with a

subject-specific and tumor-specific immunogenic composi-

tion comprising one or more neoantigens based on one or

more matches between sequence identified in the patients material and a sequence from the sequence listing.

A specific window of cancer mutations is derived from the reference human genome sequence. While the 3×10^9 base pairs can mutate in infinite ways, there is only a limited repertoire of possible neoantigens dictated by the coding (and expressed) part of the human genome sequence. The ORFeome (the complete set of open reading frames (ORFs) in a genome), as it has been referred to, is 'meant' to be read in the proper reading frame. However, there are two other frames of each gene, the -1 and +1. These alternative frames do not necessarily encode relevant peptides, since they may run into a stop triplet fast. The present inventor has defined that part of the genome that encodes peptides resulting from out of frame translation and that are at least the size of a potential epitope when it is seen as a neoantigen. These peptides are referred to as the neo open reading frame peptides, or NOPs. The maximal coding region for each of these NOPs (which we may refer to as pNOP, for potential NOP) begins immediately downstream of a stop triplet in the reference human genome sequence, contains then at least ten amino acid-encoding triplets, and finishes with a stop.

Thus each gene as defined in the reference genome sequence includes a set of pNOPs. These NOPs are commonly not expressed in the human body, and if they were they would therefore be seen by the immune system as entirely foreign. Since, other than SNV-neoantigens, they are not a small change in a known peptide chain, but a longer stretch of foreign amino acid sequence, it is a priori to be expected that these NOPs are seen by the immune system on average as much more foreign and antigenic than SNVneoantigens.

In the present invention simple insertions and deletions in coding regions are preferred, which—in order to cause a frame shift-could be of any length, but should not have a length that is 3 nucleotides or a multiple of 3 nucleotides, and should not create a novel stop triplet on the spot. Again, 5 the set of such frame shift causing mutations is, like the set of SNV-causing mutations, virtually infinite: at every position in the 1.5% coding region of the genome almost any insertion or deletion (or net result from insertion plus deletion) of net change of sequence of + or - 1, 2, 4, 5, 7, 10 8 etc. nucleotides could bring a NOP in frame.

According to the invention provided are peptide based vaccines, meaning vaccines comprising the at least two neo out-of-frame peptides selected from SEQ ID Nos 1-4307, or nucleic acid based vaccines comprising a nucleic acid 15 encoding at least two amino acid sequences selected from SEQ ID Nos 1-4307, to be used as personalized cancer vaccines.

A tumor of a patient can be screened for the presence of frame shift mutations, and once found a vaccine comprising 20 the peptide which comprises among others the corresponding NOP can be used to immunize the patient, so the immune system of the patient will target the tumor cells expressing the neo antigen.

Thus, in some embodiments according to the invention, 25 the peptide according to the invention is prepared/comprises at least two, preferably all the NOPs selected from SEQ ID 1-4307 and that have been identified in a cancer patient by screening for the presence of frame shift mutations that caused the NOP, or part thereof, to be encoded in the genome 30 of the cancer cells of that patient. For example, if based on screening of tumor material from the patient, frame-shift mutations are identified in the patient and that encode for amino acid sequence with, for example, SEQ ID NO 1, SEQ ID NO 31, SEQ ID NO 231, and SEQ ID NO 756, the 35 overlap with the frame shift mutations identified in the peptide according to the invention comprises at least two, e.g. SEQ ID NO 31 and SEQ ID NO 231, preferably all of these amino acid sequences. Alternatively an isolated nucleic acid may be provided, and that encodes for such peptide. According to this aspect of the invention, a vaccine 40 can be provided that, in one vaccine, e.g. in one peptide or nucleic acid encoding such peptide, comprises all NOPs encoded or expressed in the cancer cells in that patient.

One issue that may arise when considering NOPs as personalized cancer vaccines is that once a tumor from a 45 patient has been sequenced and one (or more) frame shift mutations have been identified, the corresponding NOP (or NOPs) need to be selected from the list of potential NOPS and made in a vaccine. This may be a time consuming process, while time is something the cancer patient usually 50 lacks as the disease progresses. An "off-the-shelf" solution, where each NOP is already available as a vaccine may become available in the future, but it would be beneficial to provide for alternative approaches as well.

According to the invention, it has now surprisingly been 55 found that an "off-the-shelf" (personalized) cancer vaccine can be achieved due to the finding that frame shift mutations in a relatively small number of genes contribute to a large extend to the presence of the total amount frame shift mutations identified in the TCGA patient cohort. This has 60 led to the finding that, by combining multiple NOPs in a single peptide according to the invention (also referred to as polyNOP), with a library of relatively few peptides according to the invention used as vaccines a large percentage of the patients would be covered with a potential vaccine.

Table 1 was constructed by the inventor by identifying all genes for which frame shift mutation have been found in at 14

least two separate patients in the TCGA patient cohort, and then sorting this list of genes from most frequently mutated (by frame shifts) to least frequently. Then for each identified frame shift mutation NOPs are identified that overlap with the frame shift mutations identified in the patients for each gene, and all these candidate NOPs are linked together to create a polyNOP for each gene. FIG. 6 presents a graphical representation of the number of patients in the TGCA cohort which have a frame shift mutation which is represented by a NOP (SEQ ID 1-4307) present in a library of polyNOP peptides, versus the amount of polyNOP peptides in present in the library. Using polyNOPs according to the invention for the 6 most frequently frame shifted genes (in tumors of cancer patients in the TCGA cohort), e.g. groups 1-6 in Table 1, the genes TP53 (SEQ ID Nos 1-21), ARID1A (SEQ ID Nos 22-61), KMT2D (SEQ ID Nos 62-100), GATA3 (SEQ ID Nos 101-109), APC (SEQ ID Nos 110-128) and PTEN (SEQ ID Nos 129-143), 10% of the patients in the TCGA would be covered, meaning a vaccine can be created for 10% of cancer patients from a polyNOP library of only 6 polyNOPs. By further extending this library to polyNOPs covering the 200 most frame shifted genes, about 30% of the patient's in the TCGA cohort would be covered.

In a preferred embodiment of the invention the vaccine comprises a peptide (or nucleic acid encoding this peptide) comprising all the candidate NOPs for a single gene, meaning each of the sequences of a group selected form the groups in Table 1. This makes it possible to construct a single vaccine for this gene which would be suitable for any patient which has a frame shift mutation in this gene, regardless of the location or reading frame.

The 1103 most frequently frame shifted genes identified by the above method are listed below in Table 1 together with the SEQ ID Nos representing the NOP peptides which natients.

TABLE 1

Group No.:	Gene:	SEQ ID Nos:
1	TP53	1-21
2	ARID1A	22-61
3	KMT2D	62-100
4	GATA3	101-109
5	APC	110-128
6	PTEN	129-143
7	ZNF429	144-148
8	VHL	149-157
9	CIC	158-175
10	ATRX	176-193
11	CDKN2A	194-199
12	PBRM1	200-223
13	NF1	224-244
14	RB1	245-254
15	ZFP36L2	255-258
16	ZFHX3	259-273

TABLE 1-continued				TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene:	SEQ ID Nos:	
17	CDH1	274-283	- 5	56	SETD2	671-681	
18	ZFP36L1	284-295	,	57	MUC6	682-691	
19	TTN	296-327		58	MUC5B	692-724	
20	MAP3K1	328-340		59	BRCA2	725-734	
21	NOTCH1	341-354	10	60	TCF12	735-744	
22	BAP1	355-364		61	APOB	745-752	
23	RUNX1	365-371		62	ROBO1	753 - 759	
24	KDM6A	372-387	15	63	LRP1B	760-769	
25	SOX9	388-394		64	CREBBP	770-777	
26	KMT2C	395-408		65	NCOR2	778-789	
27	MUC16	409-437	20	66	RNF43	790-798	
28	ELF3	438-444		67	ZNF420	799-805	
29	PCLO	445-461		68	HMCN1	806-813	
30	TOP2A	462-468	25	69	TLE1	814-818	
31	STK11	469-473		70	HOXA3	819-824	
32	FOXA1	474-479		71	AXIN1	825-830	
33	PCDHB2	480-484	30	72	B2M	831-833	
34	ARHGAP35	485-494		73	ASXL1	834-836	
35	FAT1	495-507		74	NCOR1	837-840	
36	ZNF750	508-512	35	75	ALB	841-845	
37	PIK3R1	513-519		76	CSMD2	846-850	
38	FLG	520-556		77	ZNF675	851-853	
39	KMT2B	557-571	40	78	SRCAP	854-864	
40	ARID2	572-580		79	FUBP1	865-870	
41	ZNF14	581-582		80	ARID1B	871-878	
42	FBN2	583-592	45	81	FAT2	879-888	
43	BCOR	593-600	73	82	LRP1	889-895	
44	CDKN1A	601-605		83	ABCA13	896-904	
45	HLA-A	606-614	50	84	TGIF1	905-913	
46	ZNF814	615-618	50	85	DDX3X	914-919	
47	ARID5B	619-623		86	SMAD4	920-922	
48	FBXW7	624-630		87	FOSL2	923-924	
49	CDK12	631-639	55	88	HRNR	925-945	
50	AJUBA	640-644		89	RANBP2	946-957	
51	TBX3	645-652		90	JARID2	958-967	
52	CDKN1B	653-656	60	91	YLPM1	968-972	
53	H2AFX	657-658		92	MGA	973-982	
54	ZNF468	659-661		93	SPEN	983-990	
55	MBD6	662-670	65	94	TG	991-999	

17
TABLE 1-continued

18
TABLE 1-continued

T	TABLE 1-continued			TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
95	ITGA10	1000-1003	- -	134	ELMSAN1	1252-1258	
96	ZMYM3	1004-1009	3	135	BCL9	1259-1265	
97	ACVR2A	1010-1015		136	CACNA1A	1266-1275	
98	ZNF658	1016-1019		137	DNAH5	1276-1285	
99	COL11A1	1020-1026	10	138	CUX1	1286-1291	
100	REV3L	1027-1034		139	CAMSAP2	1292-1296	
101	CTNND2	1035-1040		140	NEB	1297-1310	
102	PLXNB2	1041-1046	15	141	RERE	1311-1317	
103	RBM15B	1047-1050		142	TSHZ3	1318-1324	
104	KRT5	1051-1053		143	DAZAP1	1325-1331	
105	SELPLG	1054-1055	20	144	EP300	1332-1337	
106	ZNF256	1056-1057		145	GAS2L2	1338-1341	
107	ANKRD11	1058-1063		146	MEN1	1342-1345	
108	COL18A1	1064-1074	25	147	PCDHA6	1346-1347	
109	IRS1	1075-1080		148	GSE1	1348-1352	
110	AHNAK2	1081-1138		149	HIVEP3	1353-1360	
111	BCORL1	1139-1145	30	150	EPHA2	1361-1363	
112	COL7A1	1146-1154		151	SETD1B	1364-1369	
113	ZNF534	1155-1157		152	KCND2	1370-1372	
114	ADAMTSL1	1158-1162	35	153	KMT2E	1373-1377	
115	ROCK2	1163-1167		154	LRRIQ1	1378-1381	
116	COL22A1	1168-1173		155	PRRC2A	1382-1385	
117	INVS	1174-1177	40	156	RASA1	1386-1391	
118	MUC4 1	178-1188	70	157	RBM15	1392-1394	
119	TNFAIP3	1189-1194		158	COL11A2	1395-1404	
120	KANSL1	1195-1200	45	159	ITPR2	1405-1409	
121	MYO10	1201-1204	45	160	TCF4	1410-1413	
122	SEC63	1205-1205		161	TSC1	1414-1417	
123	INPPL1	1206-1210		162	MYO9B	1418-1423	
124	KMT2A	1211-1214	50	163	PRKAB1	1424-1427	
125	TUBB4A	1215-1217		164	CTAGE1	1428-1428	
126	ASXL2	1218-1220		165	PCDHGA11	1429-1431	
127	GPS2	1221-1223	55	166	BCHE	1432-1434	
128	OTOF	1224-1227		167	CHST2	1435-1437	
129	KDM5C	1228-1231		168	KAT6B	1438-1439	
130	PRKARIA	1232-1233	60	169	PEG3	1440-1444	
131	ZNF613	1234-1235		170	FLNC	1445-1448	
132	KEAP1	1236-1238		171	SPTBN2	1449-1452	
133	ZFHX4	1239-1251	65	172	ALS2	1453-1456	

20
TABLE 1-continued

	TABLE 1-CONCINUED				TABLE 1-Conclinued			
	Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
_	173	FAH	1457-1457	 5	212	ATP13A3	1635-1639	
	174	NF2	1458-1460	,	213	LMTK3	1640-1642	
	175	PTPRC	1461-1463		214	MEGF8	1643-1647	
	176	RBM10	1464-1468	4.0	215	PRRT2	1648-1651	
	177	TGFBR2	1469-1471	10	216	CHD3	1652-1658	
	178	ZNF436	1472-1473		217	FLNA	1659-1665	
	179	INHBA	1474-1476		218	HECA	1666-1669	
	180	PLCG1	1477-1479	15	219	ATXN2L	1670-1682	
	181	ADAMTS6	1480-1481		220	PCDHGA2	1683-1686	
	182	GRIN3A	1482-1483		221	KIAA2026	1687-1690	
	183	KIF1A	1484-1485	20	222	TRPA1	1691-1693	
	184	ASAH1	1486-1487		223	HMGB1	1694-1695	
	185	BCL2L11	1488-1488		224	HOXB3	1696-1698	
	186	FXR2	1489-1490	25	225	SZT2	1699-1703	
	187	RPL5	1491-1492		226	VWF	1704-1709	
	188	SALL1	1493-1494		227	NKX2-2	1710-1712	
	189	ZFP64	1495-1497	30	228	PRRC2B	1713-1717	
	190	ZNF841	1498-1501		229	TAFIC	1718-1724	
	191	ZNF90	1502-1507		230	TP53BP1	1725-1728	
	192	ANK3	1508-1515	35	231	ZDBF2	1729-1732	
	193	ATM	1516-1524		232	CELSR3	1733-1737	
	194	TNRC18	1525-1531		233	MED13	1738-1742	
	195	ZNF607	1532-1533	40	234	NCOA6	1743-1748	
	196	KIAA1217	1534-1548		235	PHF20L1	1749-1752	
	197	CTCF	1549-1556		236	REPIN1	1753-1756	
	198	POTEF	1557-1561	45	237	TECTA	1757-1761	
	199	TRIOBP	1562-1569	43	238	TNIK	1762-1766	
	200	ZNF292	1570-1577		239	ZNF687	1767-1771	
	201	CUBN	1578-1584	50	240	ACVR1B	1772-1777	
	202	FBN3	1585-1590	50	241	CYP2B6	1778-1779	
	203	KIAA1211	1591-1595		242	DLX6	1780-1781	
	204	FOXP4	1596-1604		243	FOXP1	1782-1787	
	205	TNS2	1605-1607	55	244	HDGF	1788-1792	
	206	IGSF9B	1608-1614		245	NBPF10	1793-1793	
	207	PDZD2	1615-1619		246	SCAF4	1794-1797	
	208	UNC79	1620-1623	60	247	SMAP1	1798-1800	
	209	ZNF549	1624-1625		248	ADGRB1	1801-1802	
	210	HNRNPL	1626-1627		249	ASIC2	1803-1806	
	211	ARHGAP33	1628-1634	65	250	MXD3	1807-1809	

22
TABLE 1-continued

T	TABLE 1-continued			TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene:	SEQ ID Nos:	
251	NBPF9	1810-1812	- -	290	CBLN1	1942-1943	
252	BRD2	1813-1817	3	291	DCLK1	1944-1945	
253	HOXD8	1818-1820		292	EED	1946-1947	
254	KCNA6	1821-1823		293	GIGYF2	1948-1949	
255	TBC1D10A	1824-1826	10	294	MUC1	1950-1950	
256	AARS2	1827-1829		295	NALCN	1951-1952	
257	ATP1A2	1830-1832		296	RAD21	1953-1954	
258	BCL3	1833-1834	15	297	ADAL	1955-1957	
259	EWSR1	1835-1840		298	AGL	1958-1959	
260	IHH	1841-1842		299	DDIT4	1960-1961	
261	KHSRP	1843-1846	20	300	EHD3	1962-1963	
262	MYOF	1847-1850		301	FZD5	1964-1964	
263	NLGN4X	1851-1853		302	HES1	1965-1966	
264	PKHD1	1854-1856	25	303	LATS1	1967-1969	
265	PLEKHA7	1857-1860		304	MYB	1970-1971	
266	RIPK4	1861-1864		305	NSRP1	1972-1973	
267	SF11	1865-1869	30	306	PLXND1	1974-1975	
268	SLC16A10	1870-1872		307	POM121	1976-1977	
269	SUN1	1873-1879		308	SEZ6L	1978-1979	
270	VPS13B	1880-1882	35	309	SOX10	1980-1980	
271	ADAMTS5	1883-1885		310	SPTBN5	1981-1982	
272	AFF4	1886-1888		311	ZNF408	1983-1984	
273	ATF7IP	1889-1894	40	312	ETS2	1985-1985	
274	CPEB4	1895-1896		313	PCDH17	1986-1986	
275	ING5	1897-1901		314	VCL	1987-1987	
276	MAPKBP1	1902-1903	45	315	WT1	1988-1988	
277	PLXNC1	1904-1906	43	316	WWC3	1989-1989	
278	PTPRZ1	1907-1909		317	ZNF208	1990-2005	
279	ADAMTS15	1910-1912		318	ZNF43	2006-2014	
280	APBB1IP	1913-1915	50	319	MAML2	2015-2016	
281	BRD7	1916-1919		320	ZNF816	2017-2018	
282	CA1	1920-1920		321	FMN2	2019-2024	
283	DOCK3	1921-1923	55	322	ZNF714	2025-2026	
284	GRIN2C	1924-1925		323	BCL9L	2027-2034	
285	IRF7	1926-1928		324	ZNF469	2035-2042	
286	LRRN2	1929-1931	60	325	ALG10	2043-2047	
287	NEIL1	1932-1936		326	CD93	2048-2051	
288	SLIT2	1937-1939		327	STAB1	2052-2058	
289	TRAM1L1	1940-1941	65	328	IRF2BPL	2059-2060	

24
TABLE 1-continued

TABLE 1-Concinued				TABLE 1-CONCINGED			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
 329	KDM6B	2061-2068	 5	368	AFF2	2242-2248	
330	ZNF439	2069-2070	,	369	COL4A1	2249-2253	
331	PPIG	2071-2075		370	CTAGE9	2254-2256	
332	TET1	2076-2081	4.0	371	EPHB6	2257-2260	
333	DIDO1	2082-2086	10	372	GPR158	2261-2266	
334	RBBP6	2087-2093		373	LAMB1	2267-2270	
335	SACS	2094-2100		374	NOD2	2271-2273	
336	KDM2B	2101-2106	15	375	PRDM2	2274-2278	
337	MPRIP	2107-2110		376	RNF213	2279-2283	
338	PDS5B	2111-2114		377	TCF7	2284-2288	
339	BAHCC1	2115-2121	20	378	TDRD5	2289-2291	
340	FIGN	2122-2125		379	TRIM46	2292-2294	
341	SLC9A4	2126-2129		380	COL8A1	2295-2299	
342	ADAMTS2	2130-2134	25	381	DMBT1	2300-2314	
343	ROCK1	2135-2140		382	FOLH1	2315-2318	
344	ZNF776	2141-2143		383	MIA3	2319-2323	
345	PSD3	2144-2147	30	384	NAB2	2324-2327	
346	NOS1	2148-2152		385	PRDM15	2328-2333	
347	ZNF233	2153-2153		386	TMEM92	2334-2335	
348	ARHGAP17	2154-2159	35	387	WASF3	2336-2339	
349	ASPM	2160-2167		388	ZNF395	2340-2342	
350	FAM214B	2168-2170		389	AGO2	2343-2344	
351	MAP1A	2171-2175	40	390	BAG4	2345-2346	
352	SMARCC2	2176-2184		391	COL6A3	2347-2352	
353	ARHGEF15	2185-2188		392	EGFLAM	2353-2356	
354	DST	2189-2192	15	393	EXPH5	2357-2360	
355	HECTD2	2193-2194	45	394	HOXA1	2361-2364	
356	HLA-B	2195-2199		395	INTU	2365-2366	
357	MYOCD	2200-2203		396	MAP3K4	2367-2368	
358	TIE1	2204-2207	50	397	MTA1	2369-2370	
359	WDFY3	2208-2211		398	MYRF	2371-2374	
360	ALPK3	2212-2214		399	NRIP1	2375-2377	
361	DYRK1A	2215-2217	55	400	NYAP1	2378-2379	
362	HGFAC	2218-2222		401	PLXNB1	2380-2382	
363	ITGB4	2223-2226		402	RTTN	2383-2385	
364	TET3	2227-2230	60	403	SLC27A3	2386-2389	
365	TNRC6B	2231-2234		404	TCF7L2	2390-2400	
366	ZNF443	2235-2237		405	TMEM184A	2401-2402	
367	ZNF831	2238-2241	65	406	TOPBP1	2403-2404	

25 **26** TABLE 1-continued TABLE 1-continued

TABLE 1-Conclined				TABLE 1-Concinued		
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene:	SEQ ID Nos:
407	ACTN4	2405-2407	 5	446	MTDH	2527-2528
408	COL9A2	2408-2411	3	447	MYH15	2529-2531
409	IGSF10	2412-2415		448	NLRP7	2532-2535
410	JAG2	2416-2418		449	NOTCH2	2536-2539
411	KDM3B	2419-2422	10	450	PTPRN	2540-2544
412	KIAA0556	2423-2424		451	SRRM2	2545-2548
413	KLHDC8B	2425-2427		452	TRAF3IP2	2549-2551
414	MAP3K12	2428-2430	15	453	AHNAK	2552-2561
415	NAV3	2431-2434		454	ANK1	2562-2564
416	NBEA	2435-2439		455	ARHGEF10	2565-2570
417	NFAT5	2440-2443	20	456	BCLAF1	2571-2572
418	NHLRC2	2444-2445		457	CCDC181	2573-2575
419	NHS	2446-2448		458	CNOT4	2576-2578
420	PKHD1L1	2449-2451	25	459	CP	2579-2580
421	SLC4A2	2452-2456		460	DBF4	2581-2582
422	ADAM28	2457-2459		461	DISP2	2583-2585
423	AKAP9	2460-2463	30	462	F13A1	2586-2588
424	ARL13B	2464-2467		463	FANCB	2589-2590
425	ATP1A1	2468-2471		464	FCGBP	2591-2595
426	CAMTA1	2472-2474	35	465	GRIK3	2596-2598
427	GPSM3	2475-2476		466	NAA25	2599-2601
428	HIVEP2	2477-2480		467	NFATC2	2602-2604
429	ROS1	2481-2484	40	468	PTPN14	2605-2607
430	SIPA1L2	2485-2488	40	469	PTPRB	2608-2610
431	SLC6A6	2489-2490		470	ST6GALNAC3	2611-2614
432	SYNE1	2491-2494		471	STAT6	2615-2617
433	TM9SF3	2495-2496	45	472	ZNF644	2618-2619
434	TPR	2497-2498		473	ADGRG1	2620-2621
435	TRIP10	2499-2501		474	ANKFY1	2622-2623
436	ZNF696	2502-2502	50	475	BRAP	2624-2624
437	DNMT3A	2503-2505		476	CDX2	2625-2626
438	EGR3	2506-2507		477	CNTLN	2627-2628
439	ELAC2	2508-2511	55	478	DOPEY2	2629-2630
440	ERICH3	2512-2515		479	GNAZ	2631-2632
441	FAM98A	2516-2518		480	HDX	2633-2634
442	FBXO38	2519-2520	60	481	ITPKB	2635-2636
443	FOXD4	2521-2522		482	МАОМЗ	2637-2638
444	HSPG2	2523-2524		483	NCAM2	2639-2643
445	MNDA	2525-2526	65	484	NCKAP5	2644-2645

27
TABLE 1-continued

28
TABLE 1-continued

TABLE 1-continued			_	TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:	_	Group No.:	Gene:	SEQ ID Nos:	
485	PCSK5	2646-2648		524	RBMX	2748-2749	
486	PLXNA3	2649-2650	5	525	RHBDF1	2750-2751	
487	RBMX2	2651-2652		526	SCAP	2752-2753	
488	RTN1	2653-2655	4.0	527	SMC4	2754-2755	
489	SCN2A	2656-2658	10	528	STK31	2756-2757	
490	SEZ6L2	2659-2661		529	SUPT20H	2758-2760	
491	SH3D21	2662-2664		530	TM6SF2	2761-2762	
492	SIGLEC10	2665-2668	15	531	ZNF518B	2763-2764	
493	SLC35G2	2669-2670		532	ZNF615	2765-2766	
494	SPDEF	2671-2674		533	ZNF804A	2767-2767	
495	SRSF11	2675-2676	20	534	ARID4B	2768-2769	
496	TAF3	2677-2678		535	BAZ2B	2770-2771	
497	TET2	2679-2681		536	C9orf152	2772-2772	
498	TP53BP2	2682-2684	25	537	CARD6	2773-2774	
499	UBC	2685-2694		538	CBFB	2775-2775	
500	ZC3H11A	2695-2697		539	CNTNAP1	2776-2777	
501	ZFX	2698-2699	30	540	COG5	2778-2779	
502	ACTB	2700-2701		541	COL14A1	2780-2781	
503	AOC2	2702-2703		542	CPT1B	2782-2783	
504	ARMCX3	2704-2705	35	543	DBF4B	2784-2785	
505	ASTN2	2706-2707		544	DDX5	2786-2786	
506	CD44	2708-2715		545	DEPDC5	2787-2788	
507	CHEK2	2716-2717	40	546	DPY19L2	2789-2790	
508	COX10	2718-2719		547	E2F3	2791-2793	
509	CUL7	2720-2721		548	EDNRB	2794-2795	
510	CYP4F2	2722-2722	45	549	EPAS1	2796-2797	
511	ENKUR	2723-2725	73	550	FBP1	2798-2799	
512	FLCN	2726-2726		551	FBX015	2800-2801	
513	FOXO4	2727-2728	•	552	GOT1	2802-2803	
514	HDAC4	2729-2730	50	553	GRAP2	2804-2804	
515	JUN	2731-2732		554	HIST1H1C	2805-2806	
516	KCNJ3	2733-2734		555	HNRNPA1	2807-2808	
517	MED12	2735-2735	55	556	HTR2B	2809-2810	
518	NAA15	2736-2737		557	HTR3A	2811-2812	
519	P2RY11	2738-2739		558	IGSF1	2813-2814	
520	PGR	2740-2741	60	559	KCNN2	2815-2816	
521	PHB	2742-2743		560	KHDRBS1	2817-2818	
522	PNPLA3	2744-2745		561	KIF5B	2819-2820	
523	RBM14	2746-2747	65	562	MRPS22	2821-2821	

TABLE 1-continued

30
TABLE 1-continued

TABLE 1-Conclined				TABLE 1-CONCINUED			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
563	MTRR	2822-2823	- -	602	WAC	2889-2890	
564	MTUS1	2824-2825	3	603	ACER2	2891-2891	
565	PCDHGA8	2826-2827		604	AFTPH	2892-2892	
566	PDZRN3	2828-2829		605	AGTR1	2893-2893	
567	POLM	2830-2833	10	606	ALPP	2894-2894	
568	PRDM16	2834-2835		607	ARFGAP2	2895-2896	
569	RASSF1	2836-2839		608	ARVCF	2897-2897	
570	RLIM	2840-2841	15	609	ATP10B	2898-2898	
571	SYNJ1	2842-2844		610	ATP13A1	2899-2899	
572	TAP2	2845-2847		611	AURKAIP1	2900-2900	
573	TFCP2	2848-2849	20	612	BASP1	2901-2901	
574	TMEM100	2850-2850		613	BTBD10	2902-2902	
575	TRIM15	2851-2852		614	CBR1	2903-2903	
576	TRMT112	2853-2853	25	615	CD274	2904-2904	
577	TROAP	2854-2856		616	CEP68	2905-2905	
578	UNG	2857-2858		617	CYP2R1	2906-2906	
579	VN1R1	2859-2859	30	618	DET1	2907-2907	
580	ZNF445	2860-2861		619	DOCK6	2908-2908	
581	ARIH2	2862-2863		620	DUSP16	2909-2909	
582	COL21A1	2864-2864	35	621	EME1	2910-2910	
583	DBR1	2865-2865		622	EP400	2911-2911	
584	DESI2	2866-2866		623	ESYT1	2912-2912	
585	FRMD3	2867-2867	40	624	FAM227B	2913-2913	
586	HSPD1	2868-2868		625	FBXO45	2914-2914	
587	KLK12	2869-2872		626	FTO	2915-2915	
588	MAGEA3	2873-2873	15	627	GOLGA3	2916-2916	
589	MTBP	2874-2874	45	628	GPRC5A	2917-2917	
590	NCDN	2875-2875		629	HAS3	2918-2918	
591	P2RY8	2876-2876		630	HHIPL 1	2919-2919	
592	PDE4A	2877-2877	50	631	HIPK2	2920-2920	
593	RBM48	2878-2878		632	HIST1H4J	2921-2921	
594	REM2	2879-2879		633	HMGCL	2922-2922	
595	RSPH1	2880-2881	55	634	HSPA8	2923-2924	
596	SEC22A	2882-2882		635	IKZF4	2925-2925	
597	SLC23A1	2883-2884		636	IL1RL1	2926-2926	
598	SPRY2	2885-2885	60	637	ISCA1	2927-2927	
599	STK39	2886-2886		638	KCNQ5	2928-2928	
600	TCEAL5	2887-2887		639	KCNT2	2929-2929	
601	TPBG	2888-2888	65	640	KIFC3	2930-2930	

31
TABLE 1-continued

32
TABLE 1-continued

T	TABLE 1-continued			TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene:	SEQ ID Nos:	
641	KLF15	2931-2931	- -	680	ZFP3	2982-2982	
642	KLF6	2932-2932	J	681	PTCH1	2983-2992	
643	KLHL28	2933-2933		682	BTBD7	2993-3002	
644	LRRC14	2934-2934		683	RAI1	3003-3007	
645	LYST	2935-2935	10	684	FAM193A	3008-3012	
646	MRPL22	2936-2936		685	ZC3H18	3013-3016	
647	NFAM1	2937-2937		686	ZNF529	3017-3019	
648	NFIX	2938-2939	15	687	PCDHB4	3020-3023	
649	иоио	2940-2940		688	SYNE2	3024-3034	
650	NPM1	2941-2941		689	AXIN2	3035-3042	
651	POGZ	2942-2942	20	690	ITGAX	3043-3045	
652	PTGER4	2943-2943		691	SCN9A	3046-3052	
653	RGMB	2944-2944		692	C5orf42	3053-3059	
654	RHEBL1	2945-2945	25	693	JAK1	3060-3064	
655	RREB1	2946-2946		694	MECOM	3065-3069	
656	RTN3	2947-2947		695	MKL1	3070-3073	
657	SLC25A43	2948-2948	30	696	PNISR	3074-3079	
658	SMCR8	2949-2949		697	POLG	3080-3081	
659	SNAI3	2950-2950		698	TTF1	3082-3083	
660	SOS1	2951-2951	35	699	ANKRD12	3084-3086	
661	STEAP4	2952-2953		700	CPAMD8	3087-3090	
662	SYN1	2954-2954		701	FOXA2	3091-3094	
663	TCFL5	2955-2955	40	702	HECTD4	3095-3100	
664	TFAP2A	2956-2956		703	IRX3	3101-3104	
665	TINF2	2957-2957		704	PEAR1	3105-3108	
666	TMED1	2958-2958	45	705	ZMYM1	3109-3112	
667	TMEM120A	2959-2959	15	706	ADNP	3113-3118	
668	TOB2	2960-2960		707	CASP8	3119-3124	
669	TOM1	2961-2962	50	708	GAS6	3125-3127	
670	TRMT61B	2963-2963	50	709	HDLBP	3128-3134	
671	TTC16	2964-2964		710	OBSCN	3135-3146	
672	TUBA1A	2965-2966		711	PYGO2	3147-3148	
673	UBXN1	2967-2968	55	712	RBM27	3149-3150	
674	USH1C	2969-2969		713	SBF1	3151-3154	
675	UTP3	2970-2970		714	ZBTB41	3155-3157	
676	ZBED2	2971-2971	60	715	ABR	3158-3163	
677	ZNF628	2972-2973		716	BRF1	3164-3168	
678	ZNF141	2974-2977		717	FOXQ1	3169-3171	
679	ZNF761	2978-2981	65	718	GTF3C1	3172-3180	

33
TABLE 1-continued

34
TABLE 1-continued

	TABLE 1-continued			_	TABLE 1-continued			
_	Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
_	719	HSPB8	3181-3182	 5	758	SETBP1	3330-3334	
	720	KIAA0100	3183-3187	3	759	UBR5	3335-3337	
	721	NAV1	3188-3194		760	ZNF484	3338-3340	
	722	RYR1	3195-3200	10	761	ZNF541	3341-3344	
	723	SPRED1	3201-3203	10	762	ZNF627	3345-3346	
	724	TSPYL2	3204-3205		763	ABCB1	3347-3349	
	725	ZNF677	3206-3207		764	AKAP12	3350-3353	
	726	ATP10D	3208-3211	15	765	BSN	3354-3359	
	727	DLGAP3	3212-3214		766	BTRC	3360-3361	
	728	ERG	3215-3219		767	CHD8	3362-3366	
	729	KCNH4	3220-3223	20	768	COPA	3367-3369	
	730	ULK2	3224-3226		769	DENND4B	3370-3371	
	731	COL4A2	3227-3231		770	DNAH10	3372-3376	
	732	DYSF	3232-3236	25	771	KIDINS220	3377-3380	
	733	FHDC1	3237-3239		772	MARK2	3381-3390	
	734	GDF5	3240-3242		773	MTSS1	3391-3395	
	735	MDN1	3243-3246	30	774	NBEAL1	3396-3398	
	736	NOTCH3	3247-3250		775	NYNRIN	3399-3403	
	737	PCDHB13	3251-3253		776	OAS2	3404-3406	
	738	PCDHB14	3254-3256	35	777	PHF21A	3407-3410	
	739	PCDHB3	3257-3259		778	PRPF40A	3411-3414	
	740	POLR2A	3260-3263		779	PRTG	3415-3416	
	741	PPP6R2	3264-3267	40	780	ROBO2	3417-3421	
	742	RAE1	3268-3270		781	RPRD2	3422-3423	
	743	RP1L1	3271-3278		782	SCAF1	3424-3426	
	744	TACC2	3279-3283	45	783	TCOF1	3427-3431	
	745	WRN	3284-3287	73	784	XRCC2	3432-3433	
	746	ARMCX5-GPRASP2	3288-3292		785	ZNF177	3434-3436	
	747	ATN1	3293-3296		786	ZNF790	3437-3438	
	748	Clorf112	3297-3298	50	787	ADGRA2	3439-3441	
	749	CHD1	3299-3302		788	CASD1	3442-3445	
	750	CLGN	3303-3306		789	ЕРНА4	3446-3448	
	751	DNAH6	3307-3310	55	790	FAS	3449-3450	
	752	KNOP1	3311-3314		791	FOXN2	3451-3454	
	753	LTBP4	3315-3317		792	FXR1	3455-3457	
	754	MAML3	3318-3318	60	793	HNF1A	3458-3459	
	755	MED23	3319-3322		794	LARP1	3460-3463	
	756	MSH3	3323-3326		795	MAP3K11	3464-3466	
	757	RING1	3327-3329	65	796	MK167	3467-3468	

35 TABLE 1-continued

36 TABLE 1-continued

TABLE 1-Conclinued							
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
 797	NSD1	3469-3473	_	836	JADE1	3588-3589	
798	PTCH2	3474-3476	,	837	KIF21A	3590-3593	
799	SHANK2	3477-3481		838	LAMC3	3594-3595	
800	UBR4	3482-3483	10	839	LOC107987545	3596-3596	
801	XRN1	3484-3485	10	840	MED12L	3597-3601	
802	ZNF670	3486-3486		841	MEX3B	3602-3603	
803	ZNF780A	3487-3490		842	MYO15A	3604-3605	
804	ALCAM	3491-3492	15	843	PSMC4	3606-3608	
805	ASAP2	3493-3495		844	RBM33	3609-3612	
806	CLUH	3496-3498		845	RBPJ	3613-3615	
807	FIGNL1	3499-3500	20	846	SCRIB	3616-3616	
808	GRIK2	3501-3504		847	SEMA5B	3617-3621	
809	HDAC2	3505-3507		848	SENP6	3622-3623	
810	HELZ2	3508-3510	25	849	TAF15	3624-3626	
811	HERC2	3511-3514		850	TUBGCP6	3627-3631	
812	IL7R	3515-3515		851	UGT1A1	3632-3632	
813	JAG1	3516-3519	30	852	WDR44	3633-3635	
814	PDZD4	3520-3526		853	YBX2	3636-3636	
815	PLOD3	3527-3528		854	ZBED4	3637-3638	
816	PSD2	3529-3531	35	855	ZHX2	3639-3642	
817	RASA2	3532-3533		856	ZRANB2	3643-3644	
818	RFC1	3534-3537		857	AHCTF1	3645-3647	
819	RNF217	3538-3540	40	858	BRD1	3648-3652	
820	SLITRK2	3541-3544		859	C19orf47	3653-3654	
821	ST6GALNAC5	3545-3548		860	CCAR1	3655-3657	
822	SYCP2	3549-3551	4.5	861	CCDC120	3658-3661	
823	TRIP12	3552-3553	45	862	CERK	3662-3663	
824	UGT1A9	3554-3555		863	COBLL1	3664-3665	
825	AHDC1	3556-3559		864	COL16A1	3666-3667	
826	C21orf59-TCP10L	3560-3561	50	865	COL17A1	3668-3670	
827	CBX8	3562-3562		866	DCLK3	3671-3671	
828	COL1A2	3563-3565		867	DDR1	3672-3675	
829	DSCAML1	3566-3569	55	868	DNAJC1	3676-3678	
830	EHBP1	3570-3573		869	DROSHA	3679-3682	
831	FRAS1	3574-3577		870	EGR1	3683-3684	
832	GIGYF1	3578-3579	60	871	ENTPD2	3685-3685	
833	GRB14	3580-3581		872	ETV1	3686-3690	
834	HSF4	3582-3584		873	FILIP1L	3691-3692	
835	IFIH1	3585-3587	65	874	GBE1	3693-3694	

38
TABLE 1-continued

T	TABLE 1-continued			TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
875	GGNBP2	3695-3696	- -	914	ALDOB	3809-3811	
876	HP1BP3	3697-3698	3	915	ATAD2	3812-3814	
877	IGF2R	3699-3700		916	BDP1	3815-3817	
878	ITSN1	3701-3705		917	BTAF1	3818-3819	
879	KIAA0391	3706-3708	10	918	C1QA	3820-3820	
880	LAMP3	3709-3710		919	CDHR2	3821-3822	
881	LILRB5	3711-3714		920	CENPF	3823-3824	
882	LTBR	3715-3718	15	921	CEP162	3825-3826	
883	MAP1B	3719-3722		922	CHD9	3827-3830	
884	MAST2	3723-3725		923	CIR1	3831-3832	
885	MICALL2	3726-3727	20	924	CLCA4	3833-3834	
886	MRPS5	3728-3729		925	CLCN3	3835-3838	
887	NEK1	3730-3732		926	CNTNAP3	3839-3840	
888	NUP214	3733-3735	25	927	COL15A1	3841-3843	
889	PHLPP1	3736-3736		928	CUL9	3844-3846	
890	PLEKHM1	3737-3737		929	DCX	3847-3853	
891	PRG4	3738-3740	30	930	EPB41L3	3854-3857	
892	PSME4	3741-3743		931	EPN2	3858-3859	
893	RAPH1	3744-3746		932	FAM168B	3860-3861	
894	RNF25	3747-3748	35	933	FCHO2	3862-3863	
895	RYR3	3749-3752		934	GLI1	3864-3865	
896	SAP130	3753-3758		935	GLIS1	3866-3867	
897	SENP7	3759-3760	40	936	GLYR1	3868-3871	
898	SLC12A7	3761-3763		937	HEPACAM2	3872-3874	
899	SMARCA1	3764-3766		938	HERC1	3875-3877	
900	SOCS3	3767-3768	45	939	HERC3	3878-3879	
901	SPEF2	3769-3772	43	940	HHIP	3880-3882	
902	TBCK	3773-3774		941	INF2	3883-3887	
903	TJP2	3775-3779	50	942	KCNH2	3888-3889	
904	TNKS	3780-3781	50	943	KIAA1324L	3890-3891	
905	TNRC6C	3782-3784		944	MED25	3892-3894	
906	TNS3	3785-3788		945	MKRN3	3895-3896	
907	WDFY4	3789-3791	55	946	NCOA3	3897-3898	
908	ZBTB20	3792-3793		947	OSM	3899-3900	
909	ZC3H12B	3794-3797		948	PAPLN	3901-3904	
910	ZNF212	3798-3798	60	949	PCDHB12	3905-3906	
911	ZNF318	3799-3802		950	PHGR1	3907-3907	
912	ABCA5	3803-3805		951	PPP2R5B	3908-3910	
913	ADAMTSL2	3806-3808	65	952	SEC24C	3911-3913	

40
TABLE 1-continued

TABLE 1-continued				TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos:	
953	SMC3	3914-3915		992	MGAT5	4022-4022	
954	SMC6	3916-3918	3	993	MMP10	4023-4024	
955	SPATA2L	3919-3920		994	MMP12	4025-4026	
956	SPG7	3921-3923		995	MRPL12	4027-4028	
957	STAU2	3924-3926	10	996	MSLN	4029-4030	
958	STON1	3927-3929		997	N4BP2	4031-4033	
959	TNKS1BP1	3930-3933		998	NAALADL1	4034-4036	
960	TNRC6A	3934-3935	15	999	NCAM1	4037-4039	
961	ZBTB22	3936-3938		1000	NRROS	4040-4042	
962	ZKSCAN4	3939-3940		1001	PCDHGB4	4043-4045	
963	ZNF609	3941-3943	20	1002	PER1	4046-4048	
964	ADAMTS9	3944-3946		1003	PLEC	4049-4059	
965	ANKRD36	3947-3952		1004	PLEKHG2	4060-4063	
966	ANXA11	3953-3955	25	1005	RAB40C	4064-4064	
967	ARHGAP30	3956-3958		1006	REXO1	4065-4066	
968	ATL1	3959-3959		1007	RPS6KA4	4067-4068	
969	BMP2K	3960-3961	30	1008	SEC31A	4069-4071	
970	C19orf44	3962-3963		1009	SH2B1	4072-4073	
971	CASKIN2	3964-3965		1010	SH3D19	4074-4077	
972	CDH13	3966-3968	35	1011	SIGLEC9	4078-4080	
973	CIITA	3969-3970		1012	SLC16A12	4081-4081	
974	CSF1	3971-3973		1013	SLC38A3	4082-4084	
975	ESPL1	3974-3976	40	1014	SMARCAD1	4085-4087	
976	ESPNL	3977-3978		1015	SNX18	4088-4089	
977	EYA1	3979-3983		1016	SQLE	4090-4090	
978	FRMD4A	3984-3986	45	1017	SREK1	4091-4092	
979	GBP1	3987-3989	10	1018	SUPT5H	4093-4094	
980	GTPBP10	3990-3990		1019	SYDE1	4095-4098	
981	HCFC2	3991-3993	50	1020	TBC1D10C	4099-4100	
982	HOXD3	3994-3996	50	1021	TEX1 4	4101-4103	
983	IL21R	3997-3999		1022	TMEM161B	4104-4106	
984	KAT5	4000-4003		1023	TRIM41	4107-4109	
985	KDM5B	4004-4005	55	1024	USP40	4110-4111	
986	KIAA0825	4006-4007		1025	ZNF432	4112-4113	
987	KLHL36	4008-4010		1026	ABCA12	4114-4116	
988	LRP2	4011-4013	60	1027	ABCC9	4117-4119	
989	LTN1	4014-4016		1028	ADAMTS18	4120-4121	
990	MAGED1	4017-4019		1029	AKAP6	4122-4123	
991	MED13L	4020-4021	65	1030	ASAP1	4124-4125	

41
TABLE 1-continued

42
TABLE 1-continued

TABLE 1-continued			TABLE 1-continued			
Group No.:	Gene:	SEQ ID Nos:		Group No.:	Gene :	SEQ ID Nos
1031	BAHD1	4126-4127	_ ₅	1070	PCNT	4220-4222
1032	CCDC148	4128-4128	3	1071	PDLIM4	4223-4224
1033	CCDC30	4129-4130		1072	PHTF2	4225-4227
1034	CD22	4131-4133		1073	PLEKHA4	4228-4231
1035	CDK13	4134-4136	10	1074	POR	4232-4233
1036	CMYA5	4137-4137		1075	POSTN	4234-4236
1037	COL6A6	4138-4140		1076	PRKCA	4237-4239
1038	CPVL	4141-4141	15	1077	PRPF40B	4240-4242
1039	CTNND1	4142-4145		1078	PRUNE2	4243-4246
1040	DACT1	4146-4147		1079	RALGAPA1	4247-4248
1041	DCHS2	4148-4150	20	1080	RBM12B	4249-4250
1042	DHX15	4151-4153		1081	SDK1	4251-4253
1043	DSP	4154-4155		1082	SHROOM2	4254-4255
1044	EPHA1	4156-4157	25	1083	SLC12A9	4256-4261
1045	ERBB3	4158-4160		1084	SLC4A5	4262-4262
1046	EVPL	4161-4163		1085	SLC9B2	4263-4264
1047	FAM160A2	4164-4165	30	1086	SLIT1	4265-4266
1048	FBXL19	4166-4167		1087	SPOCD1	4267-4269
1049	FGGY	4168-4168		1088	SREBF2	4270-4271
1050	FOXC2	4169-4169	35	1089	TFDP2	4272-4273
1051	GAS2L1	4170-4172		1090	TRIM27	4274-4276
1052	GPR37	4173-4174		1091	TTLL4	4277-4279
1053	HNRNPM	4175-4176	40	1092	UHRF1BP1	4280-4282
1054	HTATSF1	4177-4178		1093	USP36	4283-4285
1055	IARS2	4179-4181		1094	UTP14C	4286-4288
1056	IFI16	4182-4183	45	1095	VARS	4289-4290
1057	IFNAR1	4184-4185	45	1096	WDR81	4291-4292
1058	IGSF8	4186-4188		1097	ZDHHC8	4293-4295
1059	IREB2	4189-4191		1098	ZKSCAN1	4296-4297
1060	JAK3	4192-4192	50	1099	ZNF155	4298-4298
1061	KCNA3	4193-4194		1100	ZNF337	4299-4300
1062	LARP4B	4195-4198		1101	ZNF48	4301-4302
1063	LENG9	4199-4200	55	1102	ZNF507	4303-4305
1064	LRRC8E	4201-4204		1103	ZNF672	4306-4307
1065	MDM1	4205-4207	_			

4209-4214

4215-4217

4218-4219

1067

1068

1069

NFATC4

NUMA1

PATZ1

NOPs in a single peptide according to the invention.

⁶⁰ It is to be noted that the tumors in the TCGA are of different people, with different disease (one will be a Caucasian with a glioblastoma, the other of Japanese descent with a colon cancer) but they have one thing in common: they have cancer. That means that with the funneling effect described above a vaccine for many different tumors in different people can be provided by combining multiple

In summary, the present invention is based on the surprising finding that despite the fact that there are infinite possibilities for frame shift mutations in the human genome, a vaccine can be developed that targets a frame shift mutation in a tumor with potential use in a large population of cancer patients. This can be done by combining multiple NOPs in a single peptide. Doing so would allow for "off-the-shelf" personalized vaccines.

Peptides according to the invention comprising of polyN-OPs or nucleic acids encoding such, when used as a vaccine, 10 provide the following advantages:

a vaccine constructed from a single polyNOP, as opposed to single NOP, can benefit a large number of patients. For example, a polyNOP comprising multiple NOPs for a single gene as listed in Table 1, wherein the polyNOP 15 comprises for example two or more or each sequence listed for the gene in Table 1, makes the polyNOP suitable for many more patients having a frame shift mutation in the gene. In case each sequence as listed in Table 1 for a gene is included the polyNOP would cover 20 all frame shift mutations for that gene as identified in the TCGA patient cohort. Therefore such a polyNOP (comprising each sequence listed in Table 1 for a single gene (group)), would cover any frame shift mutation for said gene, as opposed to vaccines based on single 25 NOPs, in which case for each frame shift mutation the corresponding NOP needs to be elected, which could be the same NOP but more likely is not. This makes it feasible to construct and/or test the polyNOP in advance and have the vaccine available off-the-shelf. 30 This greatly reduces the time from screening a tumor from a patient to administering a potential vaccine for said tumor to the patient, as it eliminates the time of production, testing and approval. For example, the tumor of a cancer patient is sequenced and reveals a 35 frame shift mutation in a certain gene. The polyNOP vaccine according to this invention and for this respective gene can now be administered to the patient, because the vaccine was already constructed and tested it is available immediately. For example, in case the 40 patients comprises a frame shift mutation in gene KMT2D (group 3 in Table 1) causing the expressing of a NOP, it can be provided with a vaccine according to the invention that is based on two or more, preferably all of SEQ ID Nos 62-100, representing the NOPs for 45 said gene. The same vaccine is available for a further patient that also comprises a frame shift mutation in KMT2D causing the expression of a NOP, even if the mutation is different from the mutation of the first patient, for example the mutation is at another location 50 in the same gene or is an indel that is larger or smaller, or is an indel of same size, but causing a codon for a different amino acid.

a vaccine library of polyNOP based vaccines can be constructed for the most frequently frame shifted genes 55 (in tumors). The added advantage of such library is that in case multiple frame shift mutations are identified in a tumor from a patient, a combination of polyNOP based vaccines can be administered, thereby increasing the likelihood that an immune response is raised against 60 the tumor. An additional advantage is that with a library of limited size a relatively large percentage of patients can be covered with a potential vaccine.

Generally speaking and in one embodiment, the workflow for providing an antigenic peptide for use in an immunogenic composition is as follows. When a patient is diagnosed with a cancer for example a biopsy may be taken from the 44

tumor, or a sample set is taken of the tumor after resection. The genome, exome or transcriptome is sequenced by existing methods. The outcome is compared, for example using a web interface or software, to the polyNOP library. This will identify and display hits. In turn a patient and/or physician can, if they desire, be informed whether or not hits have been found. On average this is expected for up to 30% of the cases.

In its broadest sense there is provided for a peptide comprising at least two amino acid sequences, wherein each of said amino acid sequence is independently selected from the group consisting of SEQ ID Nos 1 to 4307. Sequences 1-4307 in the sequence listing each represent potential NOPs which have also been identified in the tumors of cancer patients in the TCGA cohort, meaning they are the longest possible NOPs that correspond with the NOPs which are expressed due to a frame shift in these patients.

By combining multiple amino acid sequences selected from the group consisting of SEQ ID Nos 1 to 4307, in one and the same peptide, the amount of potential patients that could be treated is increased. Therefore it is disclosed herein that any at least two amino acid sequences may be selected from the group consisting of SEQ ID Nos 1 to 4307 in order to increase the amount of potential patients that may be treated according to the current invention. For example, from the group consisting of SEQ ID Nos 1 to 4307, those amino acid amino acid sequences may be selected to correspond to those genomic regions that are most frequently hit by a frameshift mutation causing the expression of the NOPs are discussed herein. According to the invention it is however preferred to select for each peptide amino acid sequences belonging to the same gene (meaning sequences selected from the same group as listed in Table 1), or alternatively create a combination of the amino acid sequences selected from SEQ ID Nos 1-4307 covering the area's most frequently hit by frame shift mutations.

Combining at least two sequences would increase the potential pool of patients that could be treated by a peptide according to the invention, however it may be beneficial to construct the peptide according to the invention with more sequences selected from the group consisting of SEQ ID Nos 1 to 4307, for example using 3, 4, 5, 6, 7, 8, 9, 10, or more sequences.

The term "independently selected" should be interpreted as that the at least two sequences selected are not the same sequence.

The skilled person is aware that naturally variations may occur in the genome resulting in variation in proteins encoded by the human exome. It is therefore considered that a amino acid sequence may have at least 90% sequence homology with a sequence selected from the group consisting of SEQ ID Nos 1 to 4307, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, most preferably 100% sequence homology. Likewise, preferably the full length sequences as listed are used in the construction of the peptide according to the invention, however for practical considerations it may be possible to truncate the sequences for various reasons for example in order to prevent redundancy (i.e. to prevent the presence of more than one stretch of amino acids with (near) identical amino acid sequence, and wherein such stretch comprises at least 5, 6, 7, 8 or more amino acids). Therefore it is also disclosed herein that in some embodiments, the peptide according to the invention can be constructed with amino acid sequences each independently having 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 98%, 90%, 91%, 92%, 93%, 94%, 95%, 96%,

97%, 98% or 99%, most preferably 100% of the length of sequences selected from the group consisting of SEQ ID Nos 1 to 4307.

It is to be noted that the amino acid sequences selected from the group consisting of SEQ ID Nos 1 to 4307 may be 5 included in the peptide in any order, therefore the order is not limited to, for example, the order in which the different amino acid sequences appear in Table 1, or the order in which the corresponding NOPs appear in a protein. For example, in case the peptide according to the invention 10 would comprise two or more of the SEQ ID Nos 973-982 (Group 92 in Table 1, the MGA gene), for example, would comprise SEQ ID NO 973, 977 and 982, these amino acid sequences may be present in the peptide according to the invention, for example, in the order 973-977-982, but also, 15 for example, 977-973-982 or 982-973-977 or any other order.

In some preferred embodiments each of said amino acid sequences in the peptide according to the invention is independently selected from the sequences of one group 20 selected from the groups 1 to 1103 as listed in Table 1.

Table 1 lists NOPs which overlap with frame shift mutations identified in tumors of cancer patients, and represent a set of the most frequent encountered frame shift mutations. For example FIG. 3 provides a visual example of a protein, 25 and a protein containing a NOP resulting from a frame shift in a patient. Below are visualized all the potential NOPs that could be encoded by the +1 and -1 reading frame. The NOPs indicated with the dashed line are said to overlap, they are the longest possible NOPs that either include the NOP 30 sequence found in the patient or include an amino acid sequence encoded by the alternative reading frame. For example the NOP found in the patient is in the +1 reading frame, the longest potential NOP that contains the same sequence is NOP 3, the corresponding NOP in the alternative 35 reading frame (-1) is NOP 7, as it is encoded by the same nucleotide sequence but in the alternative reading frame (chosen from the frame shifted reading frames +1 and -1).

The list in Table 1 is sorted per gene (groups) and then sorted from genes in which most frequently a frame shift 40 mutation is identified to less frequent. The sequence mentioned per group (e.g. SEQ ID NO 110-128 for group 5 (the gene APC) are NOPs identified for said gene. According to the invention, in a preferred embodiment, it is beneficial to construct the peptide according to the invention based on 45 amino acid sequences from table 1 and derived from the same gene (i.e. from one group as identified in Table 1, for example and preferably 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more sequences from the same group and representing a single gene.

It is however not excluded that amino acid sequences from other genes (i.e. groups in Table 1) are still included in the peptide according to the invention, and/or in case a gene (group in Table 1) is only represented by a few amino acid sequences. It may be combined with amino acid sequences of another gene, for example, because it is also represented by only a few sequences.

In some preferred embodiment the number of amino acid sequences selected from the one group selected from the groups 1 to 1103 are (X-Y) sequences, wherein X represents 60 the total number of sequences in the selected group and Y represents an integer with a value ranging from 0 to (X-2).

The amount of sequences being (X-Y) sequences, wherein X represents the total number of sequences in the selected group and Y represents an integer with a value 65 ranging from 0 to (X-2), selected from one group selected from the groups 1 to 1103 means that at least two sequences

46

are selected from the same group (e.g Group 1 in Table 1), up to and including each of the sequences in said group *e.g. Group 1). For example if the group comprises 10 sequences, 2, 3, 4, 5, 6, 7, 8, 9, or 10 sequences may be selected.

In a preferred embodiment the peptide comprises all of the amino acid sequences listed in Table 1 for the selected group. For example in case group 1 is selected (gene TP53) the peptide comprises each of the sequences with SEQ ID Nos 1-21.

In some preferred embodiment said amino acid sequences comprised in the peptide according to the invention are directly adjacent to each other in the peptide, and/or between said amino acid sequences a linker amino acid sequence may be present. Preferably n between each of said amino acid sequences in the peptide according to the invention linker amino acid sequence is present. Preferably wherein said linker amino acid sequences, independently, have a length of 1, 2, 3, 4 or 5, or more amino acids.

It is disclosed herein that in the peptide according to the invention the amino acid sequences (e.g. those selected from SEQ ID NO 1-4307) may either be directly linked to each other or that they may be linked through linker amino acid sequences.

The use of linker amino acid sequences may be beneficial for example for introducing, among others, signal peptides or cleavage sites. Therefore each connection of the amino acid sequences (e.g. those selected from SEQ ID NO. 1-4307) in the peptide according to the invention may independently be either a direct link of the amino acid sequences (i.e. no linker amino acid sequence, no additional amino acids are present) or an indirect link through a linker amino acid sequence.

In some preferred embodiment at least one, preferably all of the linker amino acid sequences have the amino acid sequence VDD.

Also provided for is an isolated nucleic acid comprising a nucleotide sequence encoding the peptide according to the invention.

It is disclosed herein that both peptide and nucleotide based vaccines are suitable to achieve the effect of the invention. The skilled person will be capable of constructing a nucleic acid with a nucleotide sequence encoding the peptide as described herein using standard codon usage. For example, the nucleic acid having the desired nucleotide sequence can be constructed de novo. As will be understood any other and different codon usage can be implemented.

TABLE 2

most frequently used codon for each amino acid and most frequently used stop codon.					
A	GCC				
С	TGC				
D	GAC				
E	GAG				
F	TTC				
G	GGC				
Н	CAC				
I	ATC				
К	AAG				

48

most frequently used codon for each amino acid and most frequently used stop codon.				
L	CTG			
М	ATG			
И	AAC			
P	CCC			
Q	CAG			
R	CGG			
s	AGC			
Т	ACC			
V	GTG			
W	TGG			
Y	TAC			
Stop	TGA			

In some preferred embodiment in said isolated nucleic 25 acid at least 50%, 60%, 70%, 80%, 90%, or 100% of the amino acids in the peptide are encoded by a codon corresponding to a codon presented in Table 2.

Table 2 lists for each acid amino acid (and the stop codon) the most frequently used codon as encountered in the human 30

It is found that there are several advantages to using the most frequently used codons as listed in Table 2.

First of all it increases the likelihood of the peptide being 35 a new open reading frame. expressed well. Second, by using different codons, for example using the codons of Table 2, the nucleotide sequence of the nucleic acid according to the invention, and in particular those parts of the nucleic acid that encode for the amino acid sequences comprised in the peptide according to the invention are distinct from the nucleotide sequence as these will be found in the genome of the patient having a frameshift mutation that causes the expression of a NOP as described herein. In other words, the nucleic acid still includes nucleotide sequence that encodes for such 45 NOP, but these nucleotide sequences are different from the corresponding nucleotide sequences as found in a particular patient. If in the nucleic acid according to the invention a further, and undesired, frameshift mutation occurs, this will never cause for the expression of the wild-type protein (or 50 part thereof) because of the changed codon usage.

With at least 50%, 60%, 70%, 80%, 90%, or 100% of the amino acids in the peptide are encoded by a codon corresponding to a codon presented in Table 2 is meant that at least 50%, 60%, 70%, 80%, 90%, or 100% of the codons 55 contained in an expression vector. An "expression vector" is used in the peptide encoding nucleotide sequence are codons selected from Table 2.

In some preferred embodiment in said isolated nucleic acid, if a linker amino acid sequence is present in the peptide encoded by the nucleic acid, each nucleotide sequence in the 60 nucleic acid that encodes a linker amino acid sequence individually comprises at least one codon triplet, wherein the at least one codon triplet is chosen such that it codes for a stop codon when in the nucleic acid a frame shift occurs upstream of said out of frame stop codon, preferably wherein said codon triplet is chosen from the group consisting of: ATA, CTA, GTA, TTA, ATG, CTG, GTG, TTG,

AAA, AAC, AAG, AAT, AGA, AGC, AGG, AGT, GAA, GAC, GAG, and GAT. These codons do not code for a stop codon, but could create a stop codon in case of a frame shift, such as when read in the +1, +2, +4, +, 5, etc. reading frame. For example, two amino acid encoding sequences are linked by a linker amino acid encoding sequence as follows (linker amino acid encoding sequence in bold):

CTATACAGGCGAATGAGATTATG

Resulting in the following amino acid sequence (amino 10 acid linker sequence in bold):

LYRRMRL

In case of a +1 frame shift, the following sequence is encoded:

YTGE[stop]DY

As can be seen, the amino acid linker encoding sequence results in a stop codon.

An additional advantage may be presented by including out of frame stop codons in the sequences encoding the linker amino acid sequences in the peptide. In case a frame 20 shift occurs in the nucleotide sequence encoding the peptide such out of frame stop codon ensures that the reading frame is terminated.

In some preferred embodiments in said isolated nucleic acid the linker amino acid sequences are encoded by the nucleotide sequence GTAGATGAC.

In a most preferred embodiment, the linker amino acid sequences are encoded by the nucleotide sequence GTA-GATGAC, as it harbors two out of frame stop codons (TAG and TGA), one in the +1 and one in the -1 reading frame. The amino acid sequence encoded by this nucleotide sequence is VDD. The added advantage of using a nucleotide sequence encoding for this linker amino acid sequence is that any frame shift will result in a stop codon, wherein frame shift is defined as a shift in the sequence resulting in

Also provided for is a vector comprising an isolated nucleic acid according to the invention.

Vectors, including plasmid vectors, eukaryotic viral vectors and expression vectors are known to the skilled person. Vectors may be used to express a recombinant gene construct in eukaryotic cells depending on the preference and judgment of the skilled practitioner (see, for example, Sambrook et al., Chapter 16). For example, many viral vectors are known in the art including, for example, retroviruses, adeno-associated viruses, and adenoviruses. Other viruses useful for introduction of a gene into a cell include, but a not limited to, herpes virus, mumps virus, poliovirus, Sindbis virus, and vaccinia virus, such as, canary pox virus. The methods for producing replication-deficient viral particles and for manipulating the viral genomes are well known.

Also provided for is an expression vector comprising a promoter operably linked to an isolated nucleic acid according to the invention.

The nucleotide sequences of the present invention can be a DNA element, often of circular structure, having the ability to replicate autonomously in a desired host cell, or to integrate into a host cell genome and also possessing certain well-known features which, for example, permit expression of a coding DNA inserted into the vector sequence at the proper site and in proper orientation. Such features can include, but are not limited to, one or more promoter sequences to direct transcription initiation of the coding DNA and other DNA elements such as enhancers, polyadenylation sites and the like, all as well known in the art.

The expression vector can also be an RNA element that contains the sequences required to initiate translation in the

desired reading frame, and possibly additional elements that are known to stabilize or contribute to replicate the RNA molecules after administration. Therefore when used herein the term DNA when referring to an isolated nucleic acid encoding the peptide according to the invention should be 5 interpreted as referring to DNA from which the peptide can be transcribed or RNA molecules from which the peptide can be translated.

49

Also provided for is a host cell comprising an isolated nucleic acid according to the invention, or a vector according to the invention or an expression vector according to the invention.

The DNA or RNA construct of the present invention may be introduced into a cell (prokaryotic or eukaryotic) by standard methods. As used herein, the terms "transforma- 15 tion" and "transfection" are intended to refer to a variety of art recognized techniques to introduce a DNA into a host cell. Such methods include, for example, transfection, including, but not limited to, liposome-polybrene, DEAE dextran-mediated transfection, electroporation, calcium 20 phosphate precipitation, microinjection, or velocity driven microprojectiles ("biolistics"). Such techniques are well known by one skilled in the art. See, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2 ed. Cold Spring Harbor Lab Press, Plainview, N.Y.). Alternatively, one could 25 use a system that delivers the DNA construct in a gene delivery vehicle. The gene delivery vehicle may be viral or chemical. Various viral gene delivery vehicles can be used with the present invention. In general, viral vectors are composed of viral particles derived from naturally occurring 30 viruses. The naturally occurring virus has been genetically modified to be replication defective and does not generate additional infectious viruses, or it may be a virus that is known to be attenuated and does not have unacceptable side effects.

Also provided for is a vaccine comprising the peptide according to the invention, or the isolated nucleic acid according to the invention, or the vector according to the invention, or the expression vector according to the invention, optionally further comprising a pharmaceutically 40 acceptable excipient.

In some embodiments, the vaccine comprises a pharmaceutically acceptable excipient and/or an adjuvant. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological 45 conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like. Suitable adjuvants are well-known in the art and include but are not limited to, aluminum (or a salt thereof, e.g., aluminium phosphate and aluminium hydroxide), monophosphoryl 50 lipid A, squalene (e.g., MF59), montanide, hiltonol, poly-ICLC (polyriboinosinic-polyribocytidylic acid-polylysine carboxymethylcellulose), liposomes (e.g. CAF09, cationic adjuvant formulation 09), Amplivant, Resiquimod, Iscomatrix and cytosine phosphoguanine (CpG). A skilled person is 55 able to determine the appropriate adjuvant, if necessary, and an immune-effective amount thereof. As used herein, an immune-effective amount of adjuvant refers to the amount needed to increase the vaccine's immunogenicity in order to achieve the desired effect.

Also disclosed herein, the immunogenic composition or vaccine is capable of raising a specific T-cell response. The vaccine composition comprises either peptides or isolated nucleic acid as described herein. A person skilled in the art can, when desired, select preferred peptides or isolated 65 nucleic acid by testing, for example, the generation of T-cells in vitro as well as their efficiency and overall

50

presence, the proliferation, affinity and expansion of certain T-cells for certain peptides, and the functionality of the T-cells, e.g. by analyzing the IFN- γ production or tumor killing by T-cells. However this is not required, given that the peptides according to the invention are in their entirety foreign to the body and thus potentially highly antigenic.

Also provided for is the vaccine according to the invention for use in the prevention or treatment of a disease, preferably wherein said disease is cancer.

The vaccine according to the invention can be administered alone or in combination with other therapeutic agents. The therapeutic agent is for example, a chemotherapeutic agent, radiation, or immunotherapy. Any suitable therapeutic treatment r a particular, cancer may be administered. Examples of chemotherapeutic agents include, but are not limited to bleomycin, capecitabine, carboplatin, cisplatin, cyclophosphamide, docetaxel, doxorubicin, etoposide, interferon alpha, irinotecan, lansoprazole, levamisole, methotrexate, metoclopramide, mitomycin, omeprazole, ondansetron, paclitaxel, pilocarpine, rituxitnab, tamoxifen, taxol, trastuzumab, vinblastine, and vinorelbine tartrate.

The subject may, in some embodiments, be further administered an anti-immunosuppressive/immunostimulatory agent. For example, the subject is further administered an anti-CTLA antibody or anti-PD-1 or anti-PD-L1. Blockade of CTLA-4 or PD-L1 by antibodies can enhance the immune response to cancerous cells in the patient. In particular, CTLA-4 blockade has been shown effective when following a vaccination protocol.

The optimum amount of each peptide to be included in the vaccine composition and the optimum dosing regimen can be determined by one skilled in the art without undue experimentation. The composition may be prepared for injection of the peptide, DNA or RNA encoding the peptide, or any other carrier comprising such (such as a virus or liposomes). For example, doses of between 1 and 500 mg 50 μg and 1.5 mg, preferably 125 μg to 500 μg, of peptide or DNA may be given and will depend from the respective peptide or DNA. Other methods of administration of the immunogenic compositions are known to the skilled person.

The vaccine may be prepared so that the selection, number and/or amount of peptides present in the composition is patient-specific. Selection of one or more peptides is based on sequencing information from the tumor of the patient. For any frame shift mutation found a corresponding NOP is selected, in which case the polyNOP according to the invention is selected for the vaccine. In case multiple frame shift mutations are found, multiple polyNOPs with corresponding NOPs may be selected for the vaccine. For example, in the tumor of a patient two frame shift mutations were identified, in the genes PTEN and VHL. The polyNOPs comprising SEQ ID NOS 129-143 (PTEN) and the polyNOP comprising the SEQ ID Nos 149-157 (VHL) can be selected for this patient. The selection may also be dependent on the specific type of cancer, the status of the disease, earlier treatment regimens, the immune status of the patient, and, HLA-haplotype of the patient. Furthermore, the vaccine can contain individualized components, according to personal needs of the particular patient.

In therapeutic applications, vaccines are administered to a patient in an amount sufficient to elicit an effective CTL response to the tumor antigen and to cure or at least partially arrest symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose."

For therapeutic use, administration should preferably begin at or shortly after the detection or surgical removal of

tumors. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. For that reason being able to provide the immunogenic composition off-the-shelf or in a short period of time is very important. Preferably, the immunogenic compositions are 5 administered parenterally, e.g., intravenously, subcutaneously, intradermally, intramuscularly, or otherwise. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, 10 tonicity adjusting agents, wetting agents and the like.

For therapeutic purposes, nucleic acids encoding a peptide and optionally one or more of the peptides described herein can also be administered to the patient. Thus a vaccine can comprise multiple isolated nucleic acids as described herein. For example a vaccine can comprise an isolated nucleic acid encoding the sequences of group 2 (gene is ARID1A, SEQ ID Nos 22-61), an isolated nucleic acid encoding the sequences of group 4 (gene is GATA3, 20 SEQ ID Nos 101-109) and an isolated nucleic acid encoding the sequences of group 9 (gene is CIC, SEQ ID Nos 158-175). A number of methods are conveniently used to deliver the nucleic acids to the patient. For instance, the nucleic acid can be delivered directly, as "naked DNA". The 25 peptides and polypeptides can also be expressed by attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus as a vector to express nucleotide sequences that encode the peptide. Upon introduction into the subject the recombinant vaccinia virus expresses the peptide according to the invention, and thereby elicits a host CTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG 35 (Bacille Calmette Guerin) as described in Stover et al. (Nature 351:456-460 (1991)).

Also provided for is a library comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, or more vaccines according to the invention, each vaccine individually comprising at least two, preferably all, amino acid sequences selected from a group selected from the groups 1-1103 as listed in Table 1, or a nucleotide sequence encoding said amino acid sequences, and wherein said 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, or more 45 vaccines each comprise amino acid sequences, or nucleotide sequences encoding said amino acid sequences, from a different group selected from the groups of sequences listed in Table 1. For example, a library may comprise a first vaccine comprising a peptide with 2 or more sequences selected from group 6 of Table 1 or an isolated nucleic acid encoding such peptide, a second vaccine comprising a peptide with 2 or more sequences selected from group 23 of Table 1 or an isolated nucleic acid encoding such peptide, 55 and a third vaccine comprising a peptide with 2 or more sequences selected from group 78 of Table 1 or an isolated nucleic acid encoding such peptide.

A particular advantage is to construct a library of vaccines according to the invention, as it substantially increases the potential of a suitable vaccine being available for a patient wherein a frame shift mutation has been identified in the tumor DNA or RNA. For example, if vaccines are constructed comprising each sequence of one group of Table 1 (i.e. a first vaccine comprising a peptide comprising each of the SEQ ID Nos 1-21 of group 1, or the isolated nucleic acid

52

encoding such peptide, a second vaccine comprising a peptide comprising each of the SEQ ID Nos 176-193 of group 10, or the isolated nucleic acid encoding such peptide), a third vaccine comprising a peptide comprising each of the SEQ ID Nos 245-254 of group 14, or the isolated nucleic acid encoding such peptide)), by constructing a library of these vaccines representing the first 6 groups, a potential vaccine is available for 10% of the patients represented by the TCGA patient cohort.

In some preferred embodiment said library of 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, or more vaccines comprises vaccines each individually comprising at least two, preferably all, amino acid sequences selected from a group selected from the groups 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, 1 to 7, 1 to 8, 1 to 9, 1 to 10, 1 to 20, 1 to 30, or 1 to more selected from the groups of sequences listed in Table 1, or nucleotide sequences encoding said amino acid sequences. For example, the library comprises a first vaccine comprising a peptide with two or more sequences from group 1, a second vaccine comprising a peptide with two or more sequences from group 2, a third vaccine with a peptide comprising two or more sequences from group 3 and a fourth vaccine comprising a peptide with two or more sequences from group 4.

When used herein groups 1 to 2 means 1 up to and including 2, groups 1 to 3 mean up to and including 3, etc. Furthermore "1 to more" is used to represent the option when "more" is chosen as the number of vaccine (meaning, more than 30, so for example 31), and is meant to represent the groups 1 up to and including the number representing the number of vaccines selected for the library. In a particularly preferred embodiment, the library comprises 200 vaccines according to the invention, said 200 vaccines comprises sequences selected from groups 1 to 200 selected from the groups of sequences listed in Table 1, or nucleotide sequences encoding said amino acid sequences. For example, the library comprises a vaccine 1 comprising a peptide with at least 2 preferably all of the sequences of group 1, and a vaccine 2 comprising a peptide with at least 2 preferably all of the sequences of group 2, and a vaccine 3 comprising a peptide with at least 2 preferably all of the sequences of group 3, and . . . , and a vaccine 200 comprising a peptide with at least 2 preferably all of the sequences of group 200.

Also provided for is a method for generating a nucleic acid coding for a peptide, the method comprising the steps of:

- a) identifying frame shift mutations in the tumor DNA and/or RNA of a cohort of cancer patients in order to obtain a frame shift library;
- b) identifying at least one gene which is changed by a frame shift mutation in the tumor DNA and/or RNA of one or more patients in the cohort of cancer patients to obtain a frame shift gene;
- c) identifying each novel open reading frame in both the +1 and -1 reading frame that overlaps with or is adjacent to the frame shift location of the frame shifted gene to obtain candidate novel open reading frame sequences;
- d) optionally when present, identifying each novel open reading frames in both the +1 and -1 reading frame that

overlaps with or is adjacent to the frame shift location for each alternative splicing construct of the frame shift gene to obtain candidate novel alternative splicing open reading frame sequences;

 e) combining each of the candidate open reading frame sequences and optionally the candidate novel alternative splicing open reading frame sequences of the frame shift gene in a nucleic acid construct.

Identification of frame shift mutations can be done by 10 sequencing of RNA or DNA using methods known to the skilled person. Sequencing of the genome, exome or transcriptome may be complete, targeted or partial. In some embodiments the sequencing is complete (whole sequencing). In some embodiments the sequencing is targeted. With targeted sequencing is meant that purposively certain region or portion of the genome, exome or transcriptome are sequenced. For example targeted sequencing may be directed to only sequencing for sequences in the set of sequences obtained from the cancer patient that would provide for a match with one or more of the sequences in the sequence listing, for example by using specific primers. In some embodiment only portion of the genome, exome or transcriptome is sequenced. The skilled person is well-aware 25 of methods that allow for whole, targeted or partial sequencing of the genome, exome or transcriptome of a tumor sample of a patient.

For example any suitable sequencing-by-synthesis platform can be used including the Genome Sequencers from Roche/454 Life Sciences, the 1G Analyzer from Illumina/ Solexa, the SOLID system from Applied BioSystems, and the Heliscope system from Helicos Biosciences. The method of sequencing the genome, exome or transcriptome is not in particular limited within the context of the present invention.

In some preferred embodiments the genome is sequenced. In some preferred embodiments the exome is sequenced. In some preferred embodiments the transcriptome is sequenced. Preferably the transcriptome is sequenced, in particular the mRNA present in a sample from a tumor of the patient. The transcriptome is representative of genes and neo open reading frame peptides as defined herein being expressed in the tumor in the patient.

Following sequencing of the tumor, using any sequencing method known in the art, the tumor sequences are aligned and compared to a reference genome. Sequence comparison can be performed by any suitable means available to the skilled person. Indeed the skilled person is well equipped with methods to perform such comparison, for example using software tools like BLAST and the like, or specific software to align short or long sequence reads, accurate or noisy sequence reads to a reference genome, e.g. the human 55 reference genome GRCh37 or GRCh38. A match is identified when a sequence identified in the patients material and a sequence as disclosed herein have a string, i.e. a peptide sequence (or RNA or DNA sequence encoding such peptide (sequence) in case the comparison is on the level of RNA or DNA) in common representative of at least 8, preferably at least 10 adjacent amino acids. Furthermore, sequence reads derived from a patients cancer genome (or transcriptome) can partially match the genomic DNA sequences encoding 65 the amino acid sequences as disclosed herein, for example if such sequence reads are derived from exon/intron boundar54

ies or exon/exon junctions, or if part of the sequence aligns upstream (to the 5' end of the gene) of the position of a frameshift mutation. Analysis of sequence reads and identification of frameshift mutations and their protein products will occur through standard methods in the field. For sequence alignment, aligners specific for short or long reads can be used, e.g. BWA (Li and Durbin, Bioinformatics. 2009 Jul. 15; 25 (14): 1754-60) or Minimap2 (Li, Bioinformatics. 2018 Sep. 15; 34 (18): 3094-3100). Subsequently, frameshift mutations can be derived from the read alignments and their comparison to a reference genome sequence (e.g. the human reference genome GRCh37) using variant calling tools, for example Genome Analysis ToolKit (GATK), and the like (McKenna et al. Genome Res. 2010 September; 20 (9): 1297-303). The out-of-frame protein products (NOPs) resulting from frameshift mutations can be identified following the genetic triplet code known in the field and a database of reference sequences as publicly available through e.g. Ensembl, UCSC, NCBI or other sequence resources.

Preferably in step c) only the novel open reading frame is identified which corresponds to the same reading frame as the frame shift mutation identified in the patient that overlaps with or is adjacent to the frame shift location of the frame shifted gene to obtain candidate novel open reading frame sequences; Step d) can optionally be performed in case alternative splice constructs exist which overlap with the frame shift location, meaning the alternative splice construct would also be affected by the frame shift.

For practical reasons first a nucleic acid construct is generated, even if a peptide based vaccine is disclosed herein, however it is also disclosed herein that a peptide is directly synthesized in step e) based on the preceding steps. Therefore, alternatively step e) comprises combining each of the amino acid sequences encoded by the candidate open reading frame sequences and optionally by the candidate novel alternative splicing open reading frame sequences of the frame shift gene in a peptide.

In some preferred embodiment, in the method according to the invention multiple frame shift genes are identified in step b), and wherein candidate novel open reading frame sequences in step c), and optionally candidate novel alternative splicing open reading frame sequences in step d), for each of the frame shift genes identified in step b) are identified, and wherein the candidate open reading frame sequences and optionally the obtained candidate novel alternative splicing open reading frame sequences of the frame shift genes are combined in a single nucleotide construct or in separate nucleotide constructs for each frame shift gene.

In a preferred embodiment in step b) at least one gene is identified which is changed by a frame shift mutation in the tumor DNA and/or RNA of two or more patients in the cohort of cancer patients to obtain a frame shift gene.

In some preferred embodiment, in the method according to the invention, if candidate novel alternative splicing open reading frame sequences are identified, step e) further includes the step of reducing the amount of redundant overlapping sequence between corresponding candidate novel open reading frame sequences and candidate novel alternative splicing open reading frame sequences prior to combining the sequences in a nucleotide construct.

In some preferred embodiment, in the method according to the invention, in the combining of the sequences in step e) the sequences are directly linked adjacent to each other, or wherein between said sequences a linker nucleotide sequence may be present, preferably wherein between each of said sequences a linker nucleotide sequence is present, more preferably wherein said linker nucleotide sequences, independently, have a length of 3, 6, 9, 12 or 15 nucleotides, most preferably wherein each of said linker sequences has the nucleotide sequence GTAGATGAC.

The DNA and/or RNA for sequencing is preferably obtained by taking a sample from a tumor of the patient. The skilled person knowns how to obtain samples from a tumor 15 of a patient and depending on the nature, for example location or size, of the tumor. Preferably the tumor is a solid tumor. Preferably the sample is obtained from the patient by biopsy or resection. The sample is obtained in such manner that is allows for sequencing of the genetic material obtained therein. In order to prevent a less accurate identification of at least one antigen, preferably the sequence of the tumor sample obtained from the patient is compared to the sequence of other non-tumor tissue of the patient, usually 25 blood, obtained by known techniques (e.g. venipuncture).

Comparing of at least one sequence or portion thereof (i.e. part of the at least one sequence, preferably wherein the part is representative of at least 8 or 10 amino acids) from the set 30 of sequences and a (DNA, RNA or peptide) sequence in the database can be done by any suitable mean available to the skilled person. Indeed the skilled person is well equipped with method to perform such comparison, for example using software tools like BLAST and the like.

Alternatively, a method is provided for generating a nucleic acid coding for a peptide, the method comprising the steps of:

- a) identifying frame shift mutations in the tumor DNA and/or RNA of a cohort of cancer patients in order to obtain a frame shift library;
- b) identifying at least two genes which are changed by a frame shift mutation in the tumor DNA and/or RNA of obtain a frame shift gene;
- c) identifying each novel open reading frame in both the +1 and -1 reading frame that overlaps with or is adjacent to the frame shift location of the frame shifted gene to obtain candidate novel open reading frame sequences;
- d) optionally when present, identifying each novel open reading frames in both the +1 and -1 reading frame that overlaps with or is adjacent to the frame shift location 55 for each alternative splicing construct of the frame shift gene to obtain candidate novel alternative splicing open reading frame sequences;
- e) combining at least two of the candidate open reading frame sequences and optionally the candidate novel alternative splicing open reading frame sequences of different frame shift genes in a nucleic acid construct.

In a preferred embodiment in step b) at least two genes are identified which are changed by a frame shift mutation in the $_{65}$ tumor DNA and/or RNA of two or more patients in the cohort of cancer patients to obtain a frame shift gene.

56

Preferably in step c) only the novel open reading frame is identified which corresponds to the same reading frame as the frame shift mutation identified in the patient that overlaps with or is adjacent to the frame shift location of the frame shifted gene to obtain candidate novel open reading frame sequences;

Preferences, particularities and considerations expressed herein in the context of any other embodiment likewise apply to the above embodiment.

Indeed, it will be understood that all details, embodiments and preferences discussed with respect to one aspect of embodiment of the invention is likewise applicable to any other aspect or embodiment of the invention and that there is therefore not need to detail all such details, embodiments and preferences for all aspect separately.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which is provided by way of illustration and is not intended to be limiting of the present invention. Further aspects and embodiments will be apparent to those skilled in the art.

EXAMPLES

The NEO-ORFeome is defined as all peptides encoded by the human genome that can be translated from +1 or -1 frame shifts of the coding sequences for all reference sequences (NCBI RefSeqs). These are named proto novel open reading frame peptides or pNOPs. Encountered STOP codons define borders or the translation products (ends a peptide and initiates a new one on the next amino acid)

The length of the translated peptide is ideally 10 or more amino acids. All isoforms are considered separately (every splice-variant).

From the NEO ORFeome, only pNOP regions that overlap with frame-shift mutations (n=2 or more) as defined in the TCGA cohort (n=10,186 patients spanning 33 cancer types) are considered, and selected. A visual representation is given in FIG. 3.

For each of these peptides thus selected we go back to the one or more patients in the cohort of cancer patients to 45 human genome sequence and define the largest possible open reading frame within the predicted spliced mRNA: it runs from the most upstream stop triplet that is in frame withe the peptide to the c-terminal stop triplet. As shown in FIGS. 4 and 5 result in the case of p53 in 21 open reading frames and corresponding peptides that are encoded by them. The complete list of such peptides (neo open reading frame peptides) and corresponding open reading frames (neo open reading frames) is collected.

> All frame shift mutations defined in the TCGA cohort are superimposed on the remaining pNOPs and counted per gene (the collection of all isoforms), where a patient can be mentioned only once for any given gene (if a particular patient has more than 1 frame shift mutation in gene X, it still counts as 1 event). These patient counts per gene were then used to sort in descending order.

See Table 1. The first gene on the sorted list is the p53 gene (TP53), which has 21 neo-open reading frames peptides. These are encountered in 408 tumors/patients in the TCGA database. ARID1A: 229 patients, KMT2D: 160 patients, etc. Now these genes are ordered in a list of

descending order of frequency. Starting with p53, the genes are ordered by the number of new patients they add to the group. Note that this is not necessarily the same as ordering by the total numbers of patients in the TCGA that have a neo open reading frame hit, since tumors may contain (and sometimes indeed do contain) hits in more than one gene. The listing in Table 1 orders by the largest number of new patients added. Potentially it is beneficial to have vaccines against more than one neo open reading frame peptide.

For each gene the following routine may be followed; all neo open reading frames as defined above are combined and linked into one polypeptide sequence for every gene separately. Any concatenation can be used for vaccine preparation. In this case we ordered them by the length, starting from the longest peptide, but that is not crucial, since for use as a vaccine for each patient in principle only one domain of the polypeptide is relevant. The peptides can be separated by a amino acid linker sequence. The thus defined polypeptide $_{20}$ is then translated back into the encoding nucleotide sequence. In this case we used a table of the most often used and thus presumably most efficient triplet in cases where there is a choice. This defines one open reading frame. In FIGS. 4 and 5 it is illustrated how the p53 gene thus may 25 result in an ORF and encoded protein of 850 triplets and amino acids. This polypeptide now contains all the neo open reading frame peptides encountered in 408 patients in the TCGA database.

Splice variants may be dealt with in the following way: the variant encoding the longest peptide that fulfills the criteria defined above is included in total, for additional splice variants the peptide sequence not encoded by the longest variant is added independently, making sure that we 35 added at least 10 amino acids from the flanking sequence so that each potential epitope may be expected to be in the right context after proteasome trimming.

58

performed within a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation.

All references cited herein, including journal articles or abstracts, published or corresponding patent applications, patents, or any other references, are entirely incorporated by reference herein, including all data, tables, figures, and text presented in the cited references. Additionally, the entire contents of the references cited within the references cited herein are also entirely incorporated by references.

Reference to known method steps, conventional methods steps, known methods or conventional methods is not in any way an admission that any aspect, description or embodiment of the present invention is disclosed, taught or suggested in the relevant art.

The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art (including the contents of the references cited herein), readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein.

It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance presented herein, in combination with the knowledge of one of ordinary skill in the art.

SEQUENCE LISTING

The patent contains a lengthy sequence listing. A copy of the sequence listing is available in electronic form from the USPTO web site (https://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US12391736B2). An electronic copy of the sequence listing will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

The list of genes as constructed above is cut off after 1103 genes; the lowest ranking gene on the list still adds 3 new patients based on the TCGA cohort.

Each gene in Table 1 is described by the list of amino acid sequences s that have gone into the fusion product, i.e. the peptide according to the invention. Note that their order within the encoding fusion gene is reasonably expected to be of little systematic effect on the efficacy of a vaccine.

The genes in the list described above can now be used to devise vaccines. Given their length it is assumed that in practice they may also be provided in the form of RNA, DNA or recombinant vectors.

Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be

The invention claimed is:

- 1. A peptide comprising at least two amino acid sequences, wherein each of said at least two amino acid sequences is independently selected from the group consisting of SEQ ID NOS: 601 to 605, or an isolated nucleic acid comprising a nucleotide sequence encoding said peptide.
- 2. The peptide or isolated nucleic acid according to claim 1, wherein one of said at least two amino acid sequences is SEQ ID NO: 602, or a nucleic acid sequence encoding said peptide, and another of said at least two amino acid sequences is selected from the group consisting of SEQ ID NOS: 601, 603, 604, and 605, or an isolated nucleic acid comprising a nucleotide sequence encoding said peptide.

60

59

3. The peptide or isolated nucleic acid according to claim 2, wherein said at least two amino acid sequences comprise SEQ ID NO:602 and SEQ ID NO:601, or isolated nucleic acid sequences encoding said peptides.

* * * * *