11) Publication number:

0 308 869 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 88115399.3

2 Date of filing: 20.09.88

(a) Int. Cl.4: H01L 39/12 , C30B 25/02 , C30B 29/16

Priority: 21.09.87 JP 236792/87
 21.09.87 JP 236793/87
 11.12.87 JP 314670/87
 15.12.87 JP 318074/87
 15.02.88 JP 33630/88
 10.03.88 JP 57207/88
 28.03.88 JP 75486/88

- ② Date of publication of application: 29.03.89 Bulletin 89/13
- Designated Contracting States:
 BE CH DE FR GB IT LI NL

- Applicant: Kanegafuchi Chemical Industry
 Co., Ltd.
 2-4 Nakanoshima 3-chome
 Kita-ku Osaka-shi Osaka-fu(JP)
- BE CH DE FR GB IT LI NL
- Applicant: Matsushita Electric Industrial Co., Ltd. 1006, Oaza Kadoma Kadoma-shi Osaka-fu, 571(JP)
- M DE FR GB NL
- Applicant: NEC CORPORATION 33-1, Shiba 5-chome, Minato-ku Tokyo 108(JP)
- M DE FR GB NL
- 71 Applicant: NIPPON MINING COMPANY LIMITED 12-32, Akasaka 1-chome Minato-ku Tokyo(JP)
- **⊗** DE FR GB NL
- 7) Applicant: NIPPON STEEL CORPORATION 6-3 Otemachi 2-chome Chiyoda-ku Tokyo 100(JP)
- @ DE FR GB IT NL

EP 0 308 869 A2

THIN FILM OF SINGLE CRYSTALLINE LnA₂Cu₃O_{7-x} HAVING THREE-LAYERED PEROVSKITE STRUCTURE AND PROCESS FOR PRODUCING THE SAME

10

15

The present invention relates to a thin film of a single crystalline oxide of the formula:

LnA₂Cu_{37-x} (I)

wherein Ln is at least one of the rare earth elements Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm and Yb and A is at least one of the alkaline earth metals Ba, Sr and Ca which has a three-layered perovskite structure and a process for producing the same.

A thin film of LnA₂Cu₃O_{7-x} having a three-layered perovskite structure exhibits superconductivity around 90 K will find various new applications such as wiring of LSI, SQUID and Josephson tunnel type elements.

For such applications, the LnA₂Cu₃O_{7-x} thin film should have a critical temperature Tc at 85 K or higher, a critical current density Jc of 10^5 A/cm² or higher when the film is not thicker than 5,000 Å and should be formed at a comparatively low temperature.

Since a wiring material of LSI is required to have a large current density, the single crystalline thin film should have a specific plane such as a (001), (110) or (103) plane parallel with a film plane so that electric current can flow in said specific plane.

In the Josephson tunnel type element using the superconducting $LnA_2Cu_3O_{7.x}$, an insulating ultrathin layer between the superconductors for tunnel junction is required to have a thickness of not larger than 30 Å. To form such junction, it is essential to produce a superconductive film having good surface smoothness and an ultrathin insulating layer on it. The thickness of the insulating ultrathin layer for forming a junction is limited by the coherence length of the superconductor. The coherence length in the direction perpendicular to the (001) plane is about 4 to 7 Å, and that in the direction parallel to said plane is about 15 to 30 Å.

Therefore, the thickness of the insulating ultrathin layer to be used for junction varies with the kind of the superconductor and its crystal direction to be connected. When the direction perpendicular to the (001) plane of the superconductor coincides with the direction perpendicular to the surface of the insulating layer, the thickness of the latter should be 10 Å or less. On the contrary, when the direction parallel with the (001) plane of the superconductor coincides with the direction perpendicular to the surface of the insulating layer, the thickness of the latter can be as thick as several ten Å, which makes the formation of tunnel junction easy.

Accordingly, a (110) oriented single crystal film may be more available for the tunnel type junction than a (001) oriented film.

In the practical applications, it is required to provide a single crystalline film having the (110) plane in the direction parallel with the film plane. In addition, since a single crystalline film with an other orientation can achieve a large current density, it is suitable for forming a wire to be used in a superconductive magnet.

In most cases, the single crystalline film of LnA₂Cu₃O_{7-x} has been prepared by a sputtering method. The sputtering method comprises irradiating a plasma of oxygen (O₂) and/or argon gas against a target consisting of a Ln-ACu base oxide in a vacuum vessel and depositing sputtered metals and the like on a substrate such as a SrTiO single crystal piece placed in said vessel to form a LnA₂Cu₃O_{7-x} thin film. To covert the deposited LnA₂Cu₃O_{7-x} thin film to a film exhibiting high quality superconductivity with Tc of 77 K or higher, it is necessary to thermally treat the film at a temperature of 800° C or higher.

By the scientists in the Watson Research Laboratory of IBM or the Stanford University, a superconductive oxide thin film is produced by electron beam deposition. But, the as-deposited film is amorphous and does not have superconductive characteristics as such. Therefore, the deposited film is post-heated at a high temperature of 800 to 1,000°C to crystallize the amorphous film to a perovskite crystal having a three-layered structure, whereby the produced film exhibits superconducting transition at 77 K or higher.

By the conventional sputtering method or the conventional electron beam deposition, no film which is substantially a single crystal having the (001), (110) or (103) plane parallel with the film surface has been provided, and either method has its own drawbacks.

For example, in the sputtering method, it is difficult to prepare the target with a composition optimum for the formation of the superconducting film. Since a desired material is deposited solely by attacking the target with ions, not only characteristics of the film are delicately changed according to conditions of the plasma atmosphere and to quality of the target, but also the substrate or the deposited film is easily modified by ions. Therefore, this method has poor reproducibility.

Another problem resides in that the epitaxially grown LnA₂Cu₃O_{7-x} oxide film should be thermally treated at a temperature of 800°C or higher to increase the critical temperature to 77 K or higher.

10

photographs showing the crystal structure of the thin film of YBa₂Cu₃O_{7-x} single crystal formed in Example 10,

Fig. 16 is a graph showing the relationship between the resistivity and absolute temperature of the thin film formed in Example 10,

Figs. 17A, 17B, 18A, 18B, 19A and 19B are the RHEED patterns revealing the crystal orientation of the thin film of ErBa₂Cu₃O_{7-x} single crystal formed in Example 11,

Figs. 20A and 20B are the RHEED patterns revealing the crystal orientation of the thin film of $YBa_2Cu_3O_{7-x}$ single crystal formed in Example 12, and

Fig. 21 is a graph showing the relationship between the resistivity and absolute temperature of the thin film formed in Example 12.

The microstructure, namely a polycrystalline or a single crystalline structure in the formed thin film of $LnA_2Cu_3O_{7-x}$ depends on a kind of the substrate.

That is, to produce the thin film of the $LnA_2Cu_3O_{7-x}$ single crystal with the orientation of the above (1) or (2), a single crystal of $SrTiO_3$, MgO, CoO, NiO and the like having the (001) plane or the (110) plane in its surface is used as a substrate, respectively.

The processes for producing the thin film of the $LnA_2Cu_3O_{7-x}$ single crystal can be applied to the production of a polycrystalline $LnA_2Cu_3O_{7-x}$. In this case, the kind of the substrate is not limited.

As described above, to produce the single crystalline $LnA_2Cu_3O_{7-x}$ having the specific crystal plane parallel with the substrate surface, the substrate should have said specific crystal plane on its surface.

The above requirements for the substrate are necessary conditions to make the specific crystal plane parallel with the substrate surface, but not sufficient conditions.

Suitable conditions for producing the thin film of the $LnA_2Cu_3O_{7\cdot x}$ single crystal of the orientation (1) and those for producing the thin film of the $LnA_2Cu_3O_{7\cdot x}$ single crystal of the orientation (2) are different as follows:

In the former case, the raw material metals are evaporated and deposited on the substrate heated at 500° C or higher, while in the latter case, the raw material metals are evaporated and deposited on the substrate heated at a temperature not lower than 500° C and lower than 550° C to form the single crystalline LnA₂Cu₃O_{7-x} having the orientation (2) and, after raising the substrate temperature to 550° C or higher, the metals are further deposited on the already formed single crystal.

Namely, the LnA₂Cu₃O_{7-x} single crystal having the orientation (1) can be produced under a relatively wide temperature range of 500 °C or higher,

preferably 520°C or higher but not so high as to adversely affect the substrate and the growing film. Thereby, a thin film having very good crystal structure is formed. On the contrary, when the thin film of the LnA2Cu3O7-x single crystal having the orientation (2) is produced, as described above, the substrate is heated at a temperature not lower than 500°C and lower than 550°C, preferably around 530°C in the first evaporation step so as to render the new substrate of LnA2Cu3O7-x thin film suitable for the formation of the desired material having the orientation (2) and, in the second step, the temperature at the new substrate is raised to 550°C or higher, preferably 600°C or higher. Under other conditions, no thin film having good superconductive characteristics is formed.

In other words, although the thin films formed in the first and second steps consist of the desired material, the thin film produced in the first step is used as a base film in the second step and only the thin film formed in the second step has good superconductive characteristics. As understood from below described working examples, the first and second steps are not necessarily carried out continuously.

In the present invention, the kind of the crystal plane is selected and the substrate temperatures are determined according to the orientation of the LnA₂Cu₃O_{7-x} single crystal to be formed on the substrate. The thin film of the LnA₂Cu₃O_{7-x} single crystal having the orientation (3) can be formed on the substrate at a higher temperature although the same crystal plane as in the case of the orientation (2) is used as the substrate. That is, to form the thin film of the LnA₂Cu₃O_{7-x} single crystal having the orientation (3), the thin film is deposited on the substrate heated at 550 °C or higher, preferably 600 °C or higher.

The process of the present invention will be explained further in detail.

The vacuum deposition vessel is firstly evacuated to high vacuum of, for example, about 10-6 Torr and then a small amount of the oxygen gas is continuously supplied towards the substrate from a distance close to the substrate to increase the pressure of oxygen at the substrate to 10-2 to 10-1 Torr while an interior gas in the vessel is continuously exhausted from a suitable part of the vessel to keep the background at 10-5 to 10-3 Torr in the vessel except near the substrate. The reason why the upper limit of the background pressure is selected to be 10-3 Torr is that Ln, A and Cu in the evaporation sources are constantly evaporated without deterioration of evaporation rates. The lower limit of 10⁻⁵ Torr. is the minimum gas pressure for generating the plasma. If the plasma is not utilized, this lower limit is not technically important.

The reason why the oxygen gas pressure is

55

distribution of the metal atoms which arrive at the surface is narrow and the number of such metal atoms is decreased to such extent that each atom does not come into collision with other metal atoms on the surface, the condition (1) is achieved. To prevent the change of energy of the impinging metal atoms, the molecular beam is desirable if possible. Therefore, the pressure (oxygen pressure) is decreased to an order of 10⁻⁴ Torr so as to increase their mean free path. In case of a metal having a low evaporation temperature such as Zn, it should be excited by RF to improve the quality of the ZnO single crystal.

As described above, the reactive evaporation has been found to be one of the best methods for controlling the crystal growth conditions of the oxide, and the present invention has been completed.

The present invention will be illustrated by the following Examples.

Example 1

A vacuum vessel having a diameter of 750 mm and a height of 1,000 mm was evacuated to 10^{-6} Torr by an oil diffusion pump.

As a substrate, a piece of sapphire (single crystal α -Al₂O₃) was used with the(0 $\overline{1}$ 12) plane forming the substrate surface (10 mm x 10 mm). After placing the sapphire substrate in the vacuum vessel, it was heated to 650 °C and kept at this temperature with a tungsten heater.

From two nozzles for supplying the oxygen gas provided near both ends of the substrate, the oxygen gas was directly blown onto the substrate, whereby the gas pressure was increased to 10⁻² to 10⁻¹ Torr only near the substrate, while the pressure near the evaporation sources which were placed apart from the substrate was increased to about 10⁻⁴ Torr.

Metals Y, Ba and Cu were evaporated from independent evaporation sources at such evaporation rates that the atomic ratio of Y:Ba:Cu was 1:2:3 on the substrate. For example, Y, Ba and Cu were evaporated at rates of 1 Å/sec., 2.3 Å/sec. and 1.7 Å/sec., respectively.

Between the substrate and the evaporation sources, a high-frequency (13.56 MHz) coil was placed, and high frequency was applied at 100 W so as to generate oxygen plasma, which activated the evaporated metals and accelerated the reactions on the substrate.

Under the above conditions, the metal oxides were deposited on the substrate to form a thin film having a thickness of 1,000 Å.

An X-ray diffraction pattern of the formed thin film is shown in Fig. 1.

Peaks for (013), (103) and (110) which are

specific to the YBa₂Cu₃O_{7-x} structure are clearly observed and the formation of a crystalline film is confirmed.

In the above procedures, Y and Ba were evaporated by an electron beam, and Cu was evaporated by resistance heating. The evaporation conditions were as follows:

10 Y:

A metal ingot (purity: 99.9 %) (50 g) was used and placed in a crucible cooled with water. The metal was evaporated by the application of an electron beam at an acceleration voltage of 5 KV and a filament current of 400 MA.

Ba:

20

25

35

40

A metal ingot (purity: 99.9 %) (50 g) was used and evaporated by the application of the electron beam at an acceleration voltage of 5 KV and a filament current of 100 MA.

Cu:

In an alumina crucible around which a tungsten filament was wound, metal Cu particles (particle size of 2 to 3 mm, purity of 99.9999 %) (10 g) were charged and heated by the application of electric current through the filament at 10 V, 30 A.

Example 2

A vacuum vessel having a diameter of 750 mm and a height of 1,000 mm was evacuated to 10^{-6} Torr. by an oil diffusion pump.

The (001) plane of a SrTiO₃ single crystal was used as a substrate (10 mm x 10 mm). After placing the substrate in the vacuum vessel, it was heated to 650° C and kept at this temperature with a tungsten heater.

From two nozzles for supplying the oxygen gas provided near both ends of the substrate, the oxygen gas was directly blown onto the substrate, whereby the gas pressure was increased to 10^{-2} to 10^{-1} Torr only near the substrate, while the pressure near the evaporation sources which were placed apart from the substrate was increased to about 10^{-4} Torr.

Metals Y, Ba and Cu were evaporated from separate evaporation sources at such evaporation rates that the atomic ratio of Y:Ba:Cu was 1:2:3 on the substrate. For example, Y, Ba and Cu were evaporated at rates of 1 Å/sec., 2.3 Å/sec. and 1.7

55

10

20

25

30

40

50

Since the thin film just formed on the substrate does not necessarily exhibit good superconductivity, it is sometimes post-treated in an oxygen-containing atmosphere.

In this Example, effects of the post-treatment was confirmed on the YBa₂Cu₃O_{7-x} single crystal formed in the same manner as in Example 2.

After deposition and cooling the evaporation sources (30 minutes), oxygen gas was introduced into the vacuum vessel to pressurize the vessel to 1 atm. During this period, the substrate temperature was decreased to 500°C. Then, the thin film of YBa2Cu3O7-x single crystal was kept at 500°C under an oxygen pressure of 1 atm. for 1 hour to adjust the oxygen content in the thin film. The lattice constant co of the non-oxidation-treated thin film in the [001] direction calculated from the X-ray diffraction pattern was 11.749 Å, while that of the oxidation-treated thin film was 11.686 Å. The lattice constant after post-treatment substantially corresponds to that of a bulk crystal having a critical temperature of 90 K class. The superconductive characteristics of the oxidation-treated thin film has been already shown in Example 4.

Example 6

In the same manner as in Example 2 but using $SrTiO_3$ with its (110) plane forming the surface and heating the substrate to $520\,^{\circ}$ C, a thin film of $YBa_2Cu_3O_{7-x}$ single crystal having a thickness of 2,000 Å was formed.

In this Example, RHEED photographs of the substrate itself and the formed thin film of $YBa_2Cu_3O_{7-x}$ single crystal were taken. The photographs confirmed that the (110) plane of the $YBa_2Cu_3O_{7-x}$ single crystal having the three-layered perovskite structure was epitaxially grown on the (110) plane of the substrate.

The SEM photograph of the thin film of the single crystal was taken to confirm the surface smoothness.

Example 7

In the same manner as in Example 1 but evaporating metals Y and Sr by electron beam heating and metal Cu by resistance heating and depositing them on the (001) plane of the SrTiO₂ substrate kept at 640° C, a thin film having a thickness of 1,000 Å was formed. An X-ray diffraction pattern of the formed film is shown in Fig. 6, in which the diffraction peak corresponding to the (005) peak of the three layered perovskite structure like YBa₂Cu₃O_{7-x}.

Example 8

In the same manner as in Example 2 but using Dy or Er in place of Y, a thin film was formed. The X-ray diffraction patterns were shown in Fig. 7 (for Dy) and Fig. 8 (for Er). The formed thin film in which Ln was Dy or Er was characterized in that the intensity of the (001) peak was stronger than that in the case where Ln was Y. This is because the spacing corresponding to the (001) peak is a spacing of the rare metal elements, so that, in case of Dy or Er having the larger atomic number, both the scattering factors for the X-ray are larger than that of Y and therefore the diffraction peak of (001) becomes stronger.

Example 9

In the same manner as in Example 2 except that an injection nozzle was inserted in a doughnut shaped oxygen diffusion chamber surrounding the periphery of the substrate, and oxygen injected from the nozzle was once diffused in the chamber and then supplied from slits provided on an inner peripheral wall over the substrate, surface, a thin film having a thickness of 100 Å was formed.

The X-ray diffraction pattern of the formed thin film is shown in Fig. 9. .

The thin film was then post-heat-treated in the oxygen atmosphere in the same manner as in Example 5. Change of the electrical resistance against temperature of the oxidation-treated thin film is shown in Fig. 10, and change of the complex susceptibility against temperature of the same thin film is shown in Fig. 11.

From these results, it is understood that the thin film of 100 Å in thickness was superconductive below 82 K.

Example 10

In the same manner as in Example 9 but using, as a substrate, the SrTiO₃ single crystal with a surface of its (110) plane and heating the substrate to 530°C, 550°C, 580°C or 630°C, a thin film having a thickness of 500 Å was formed.

On each of the four thin films, an electron beam was irradiated along a direction of [001] or [1 1 0] of the substrate to confirm the crystal orientation of each thin film by RHEED.

The results are shown in Figs. 12A, 13A, 14A and 15A (along the [001] direction) and Figs. 12B, 13B, 14B and 15B (along the [1 $\overline{10}$] direction). At 530°C, as seen from Figs. 12A and 12B, the thin film of YBa₂Cu₃O_{7-x} single crystal having the (110) plane which was parallel with the (110) plane of the

distance close to the substrate to form an oxygencontaining atmosphere having a relatively high pressure at the substrate.

- 7. A process for producing a thin film consisting of a single crystalline oxide of the formula LnA₂Cu₃O_{7-x} wherein Ln and A are defined as in claim 6, which comprises generating a plasma and simultaneously evaporating Ln, A and Cu in an atomic ratio of about 1:2:3 from discrete evaporation sources of Ln, A and Cu to deposit them on a substrate in a vacuum vessel while supplying oxygen gas from a distance close to the substrate to form an oxygen-containing atmosphere having a relatively high pressure at the substrate.
- 8. The process according to any one of claims 6 and 7, wherein a single crystal is used as the substrate with its (001) plane forming the substrate surface, and the (001) plane of the formed single crystal is parallel with the film surface.
- 9. The process according to claim 8, wherein the substrate is heated to a temperature of not lower than 500°C.
- 10. The process according to any one of claims 6 and 7, wherein a single crystal is used as the substrate with its (110) plane forming the substrate surface, and the (110) plane of the formed single crystal is parallel with the film surface.
- 11. The process according to claim 10, wherein firstly a thin film of the single crystal of the oxide of the formula (I) in which its (110) plane is parallel with the film surface is formed on the substrate heated to a temperature not lower than 500° C and lower than 550° C, and then an oxide of the formula (I) in which its (110) plane is parallel with the film surface is deposited on the firstly formed thin film heated at a temperature of not lower than 550° C.
- 12. The process according to any one of claims 6 and 7, wherein a single crystal is used as the substrate with its (110) plane forming the substrate surface, and the (103) plane of the formed single crystal is parallel with the film surface.
- 13. The process according to claim 12, wherein the substrate is heated to a temperature of not lower than 550°C.

5

10

15

20

25

30

55

40

45

50

55

ig.

Fig. 6

Fig. 15B Fig. 15A [301] [010] [301][-[30]] Fig. 17B Fig. 17A [110]-[110] [110] - [001] Fig. 18B Fig. 18A [301] [301] [301]

Fig. 19B

Fig. 12A

Fig. 12B

C1108t_look

Fig. 13A

Fig. 13B

[300[]10] [-[010],[001]

Fig. 14X

(301),[110],[303],[7103]

Fig. 14B

[301][110]_-[010],[001]

11 Publication number:

0 308 869 A3

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 88115399.3

22 Date of filing: 20.09.88

(5) Int. CL.5: H01L 39/12, H01L 39/24, C30B 25/02, C30B 29/16

Priority: 21.09.87 JP 236792/87
 21.09.87 JP 236793/87
 11.12.87 JP 314670/87
 15.12.87 JP 318074/87
 15.02.88 JP 33630/88
 10.03.88 JP 57207/88
 28.03.88 JP 75486/88

Date of publication of application: 29.03.89 Bulletin 89/13

Designated Contracting States:
 BE CH DE FR GB IT LI NL

Date of deferred publication of the search report: 31.10.90 Bulletin 90/44

71 Applicant: Kanegafuchi Chemical Industry Co., Ltd. 2-4 Nakanoshima 3-chome Kita-ku Osaka-shi Osaka-fu(JP)

BE CH DE FR GB IT LI NL

Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. 1006, Oaza Kadoma Kadoma-shi, Osaka-fu, 571(JP)

🕮 DE FR GB NL

Applicant: NEC CORPORATION 7-1, Shiba 5-chome Minato-ku Tokyo 108-01(JP)

₩ DE FR GB NL

Applicant: NIPPON MINING COMPANY LIMITED 12-32, Akasaka 1-chome Minato-ku Tokyo(JP)

Me DE FR GB NL

EP 0

Applicant: NIPPON STEEL CORPORATION 6-3 Otemachi 2-chome Chiyoda-ku

Tokyo 100(JP)

DE FR GB IT NL

Applicant: TDK Corporation 13-1, Nihonbashi 1-chome Chuo-Ku Tokyo-to(JP)

② DE FR GB NL

Applicant: Tosoh Corporation 4560, Oaza Tonda Shinnanyo-shi Yamaguchi-ken(JP)

❷ DE FR GB NL

Applicant: Toyo Boseki Kabushiki Kaisha No.2-8, Dojimahama 2-chome Kita-ku Osaka-shi Osaka 530(JP)

□ DE FR GB NL

Applicant: SEISAN KAIHATSU KAGAKU KENKYUSHO 15, Shimogamo Morimoto-cho Sakyo-ku Kyoto-shi Kyoto-fu(JP)

BE CH DE FR GB IT LI NL

Applicant: UBE INDUSTRIES, LTD. 12-32, Nishihonmachi 1-chome Ube-shi, Yamaguchi-ken 755(JP)

⊕ DE FR GB NL

2 Inventor: Takada, Toshio
1, Nishisenouchi-cho Kitashirakawa
Sakyo-ku, Kyoto-shi Kyoto-fu(JP)
Inventor: Terashima, Takahito
63, Higashiogura-cho Kitashirakawa
Sakyo-ku, Kyoto-shi Kyoto-fu(JP)
Inventor: Bando, Yoshichika
8-15, Koyo-cho
Ohtsu-shi Shika-ken(JP)

(2) Representative: Vossius & Partner Siebertstrasse 4 P.O. Box 86 07 67 D-8000 München 86(DE)

EUROPEAN SEARCH REPORT

Application Number

EP 88 11 5399

DOCUMENTS CONSIDERED TO BE RELEVANT				Page 1	
ategory	Citation of document with of relevant	n indication, where appropriate, passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)	
·	APPLIED PHYSICS LETTE		1, 2, 5,	H01L39/12	
	vol. 51, no. 11, 14 S	eptember 1987, NEW YORK US	6	H01L39/24	
1	pages 852 - 854; B. O	f et al:		C30B25/02	
["Critical current den	sities and transport in		C30829/16	
[superconducting YBa2Co	u307-d films made by		C30023/16	
- 1	electron beam coevapor	ration"			
	* page 852 *				
	* page 852 *		3, 10		
	JAPANESE JOURNAL OF A	DRITED DUVETCE 1-11-		·	
Y	vol. 26, no. 5, May 19	PPLIED PHISILS. letters	3		
	pages 876 - 878; M. ON	IODA AL AZ			
	"Codetal structures	OUA et al:			
	(Ln=Ho and Dy)"	f YBa2Cu3Ox and LnBa2Cu3Ox		•	
	* abstract *				
	" abstract "				
	JAPANESE JOURNAL OF AF	PRITED PHYSICS lottons			
	vol. 26, no. 7, July 1	1987 TOKYO 10	1, 2, 5		
	pages 1248 - 1250; Y.	ENOMOTO of all			
	"Largely anisotropic of	superconducting critical	1 1		
	current in enitarial	grown Ba2YCu307-y thin			
	film"	grown bazicusu/-y thin		TECHNICAL FIELDS	
	* pages 1248 - 1249 *			SEARCHED (Int. Cl.4)	
	* pages 1248 - 1249 *	•	1.0		
-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10	H01L	
	JAPANESE JOURNAL OF AP	PLIED PHYSICS letters	1, 2,		
	vol. 27, no. 1, Januar	v 1988 TOKYO IP	5-9		
	pages 91 - 93; T. TERA	SHIMA et al.	3-9		
	"Single-cristal YBa2Cu	307-y thin films by]		
	activated reactive evap	nonstion!			
	* pages 91 - 92 *	oora e ton			
	APPLIED PHYSICS LETTERS		1, 4, 5		
	vol. 51, no. 26, 28 Dec	cember 1987, NEW YORK US			
	pages 2263 - 2265; H. A	ADACHI et al:			
	"Low-temperature process for the preparation of				
	high Tc superconducting thin films"				
	* the whole document *				
	-				
		-/			
	The present search report has b	een drawn up for all claims	1		
Place of search Date of completion of the search			Tr.		
BERLIN			nouses	Examiner	
OFVETA		20 AUGUST 1990	I KOUSSI	EL A.T.	

EPO FORM 1503 03.82 (PO401)

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document

E: cariler patent document, but published on, or after the filing date

D: document cited in the application

L: document cited for other reasons

&: member of the same patent family, corresponding document