Rock Lichen data from Sunset Crater

M.K. Lau

Data Summary

- This is an analysis of the effect of Pinyon Pine tree traits on the saxicole (lichen and moss) community on rocks under the canopy of the trees.
- Trees were sampled in a pairwise design in which pairs were comprised of one tree that is susceptible to the herbivory of a stem boring moth (*Diorictria abietella*) and an adjacent tree that is resistant to the moth.
- As tree resistance to the moth is genetically based, pairwise sampling was conducted in order to isolate
 this genetic effect.
- Some trees that were sampled were dead, these trees were removed from the analysis.
- Plant data were observed by R. Michalet
 - Vegetation.xlsx
 - Light penetration.xls
 - light_&_litter(1).xls

Main Results

- Rock epiphyte communities were adequately sampled, based on species accumulation curves, with moth resistant trees accumulating slightly more lichen species.
- Several tree variables, including light availability, leaf litter abundance and rock abundance, were impacted by moth susceptibility, creating strong differences in sub-canopy conditions.
- Saxicole community abundance, richness, diversity, composition were significantly, generally negatively, affected by moth herbivory.
- Correlation analysis supported an indirect link between genetically based moth susceptibility and impacts on lichen communities via decreasing rock (i.e. habitat) availability through increased leaf abscission and accumulation on rocks under trees.

Plant Analysis Summary

•

Analysis and Results

Analyses were conducted in the ${f R}$ statistical programming language. The following section loads dependencies and custom functions used in the analysis.

Dependencies

```
cran.pkgs <- c("reshape2", "vegan", "ecodist", "xtable", "knitr")
## install packages that are not installed</pre>
```

```
if (any(!(cran.pkgs %in% installed.packages()[, 1]))){
    sapply(cran.pkgs[which(!(cran.pkgs %in%
                              installed.packages()[, 1]))],
           install.packages,
           dependencies = TRUE,
           repos = 'http://cran.us.r-project.org')
}
## Load libraries
sapply(cran.pkgs, library, quietly = TRUE, character.only = TRUE)
## This is vegan 2.5-6
##
## Attaching package: 'ecodist'
## The following object is masked from 'package:vegan':
##
##
       mantel
## Custom Functions
## se: Calculate the standard error of a variable.
se <- function(x){sd(x) / sqrt(length(x))}</pre>
```

Load Data

The following are variable descriptions (Variable, Type, Range, Definition):

- Moth,categorical,0 or 1, Was the tree susceptible (0) or resistant (1) to moth attack
- Live/Dead, categorical, 0 or 1, Was the tree dead (0) or alive (1)
- Litter %,continuous,0 to 100,Percent cover inside quadrat
- Rocks > 3cm %,continuous,0 to 100,Percent cover of rocks > 3cm? inside quadrat
- Rocks < 3cm %,continuous,0 to 100,Percent cover of rocks < 3cm? inside quadrat
- Shrubs %,continuous,0 to 100,Percent cover of shrubs inside quadrat
- Grass %,continuous,0 to 100,Percent cover of grass inside quadrat
- Branches %,continuous,0 to 100,Percent cover of branches on ground inside quadrat
- Distance, continuous, 0 to 100, "Distance from main trunk, converted to percent of crown radius at that azimuth"
- Azimuth,continuous,0 to 360,Compass direction from main trunk
- Slope, continuous, 0 to 90, Topographical steepness
- Aspect, continuous, 0 to 360, Compass direction of slope
- Light, continuous, Amount of light available to epiliths

```
## Data are in ../data/scrl
l.dat <- read.csv("./data/spp_env_combined.csv")

## Fix species names
colnames(l.dat)[colnames(l.dat) == "Acasup"] <- "Acaame"

## Summary of data
summary(l.dat)

## remove dead trees
l.dat <- l.dat[l.dat[, "Live.Dead"] != 0, ]</pre>
```

```
## Lichen species list
spp.l <- c("Acacon", "Acaame", "Acaobp", "Sterile.sp", "Brown.cr",</pre>
"Lobalp", "Canros", "Calare", "Phydub", "Rhichr", "Xanlin", "Xanpli",
"Xanele", "GrBr.cr", "Gray.cr")
spp.moss <- c("Synrur", "Cerpur.Bryarg")</pre>
## Create a community matrix
com <- l.dat[, colnames(l.dat) %in% c(spp.1, spp.moss)]</pre>
com.moss <- 1.dat[, colnames(1.dat) %in% spp.moss]</pre>
## Add the tree labels to the rownames
rownames(com) <- paste(l.dat[, "Moth"], l.dat[, "Tree.pairs"], sep = "_")</pre>
rownames(com.moss) <- paste(l.dat[, "Moth"], l.dat[, "Tree.pairs"], sep = "_")</pre>
rownames(1.dat) <- paste(1.dat[, "Moth"], 1.dat[, "Tree.pairs"], sep = "_")</pre>
## Paired environmental differences
total.rocks <- apply(l.dat[, c("Big.rocks..", "Small.rocks..")], 1, sum)
env <- l.dat[, c("Litter..", "Big.rocks..", "Small.rocks..",</pre>
                            "Shrubs..", "Grass..", "Branches..",
                            "Light...N", "Light...S", "Light...average")]
env <- cbind(env, total.rocks)</pre>
env.dif <- apply(env, 2, function(x, p) tapply(x, p, diff), p = l.dat[, "Tree.pairs"])</pre>
```

Saxicole communities were sufficiently sampled

```
spa.all <- specaccum(com, method = "exact")
spa.res <- specaccum(com[l.dat[, "Moth"] == 1, ], method = "exact")
spa.sus <- specaccum(com[l.dat[, "Moth"] == 0, ], method = "exact")

plot(spa.all,
    ylim = c(0, 20),
    xlab = "Cumulative Trees Sampled",
    ylab = "Species Observed",
    col = "grey", ci.col = 'lightgrey', ci.type = "poly", ci.lty = 0)
plot(spa.res, ci.col = "black", ci.type = "bar", lty = 1, add = TRUE, ci.lty = 1)
plot(spa.sus, ci.col = "black", ci.type = "bar", lty = 3, add = TRUE, ci.lty = 3)
legend("bottomright",
    legend = c("All", "Resistant", "Susceptible"),
    lty = c(1, 1, 3), lwd = c(5, 2, 2), col = c("lightgrey", "black", "black"))</pre>
```



```
pdf("./results/scrl_spp-accum.pdf", width = 5, height = 5)
plot(spa.all,
    ylim = c(0, 20),
    xlab = "Cumulative Trees Sampled",
    ylab = "Species Observed",
    col = "grey", ci.col = 'lightgrey', ci.type = "poly", ci.lty = 0)
plot(spa.res, ci.col = "black", ci.type = "bar", lty = 1, add = TRUE, ci.lty = 1)
plot(spa.sus, ci.col = "black", ci.type = "bar", lty = 3, add = TRUE, ci.lty = 3)
legend("bottomright",
    legend = c("All", "Resistant", "Susceptible"),
    lty = c(1, 1, 3), lwd = c(5, 2, 2), col = c("lightgrey", "black", "black"))
dev.off()
## pdf
```

Moth trees have different microenvironments

##

```
env.test.1 <- apply(env.dif, 2, t.test)
env.test.1 <- lapply(env.test.1, unlist)
env.test.tab <- do.call(rbind, env.test.1)
env.test.tab <- env.test.tab[, c(1, 2, 3, 6, 4, 5)]
env.test.tab <- apply(env.test.tab, 2, as.numeric)
rownames(env.test.tab) <- names(env.test.1)
colnames(env.test.tab) <- c("t", "df", "p-value", "Mean Difference", "Lower CI 95%", "Upper CI 95%")
kable(env.test.tab, digits = 4)</pre>
```

	t	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Litter	2.8665	29	0.0077	15.0700	4.3178	25.8222
Big.rocks	-2.4617	29	0.0200	-9.6837	-17.7289	-1.6384
Small.rocks	-2.0792	29	0.0466	-4.9750	-9.8688	-0.0812
Shrubs	-1.7605	29	0.0889	-0.5147	-1.1126	0.0832

	t	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Grass	-1.0000	29	0.3256	-0.0493	-0.1502	0.0516
Branches	1.0000	29	0.3256	0.1420	-0.1484	0.4324
LightN	-8.0191	29	0.0000	-15.9767	-20.0514	-11.9019
LightS	-7.5187	29	0.0000	-14.2900	-18.1772	-10.4028
Lightaverage	-9.2728	29	0.0000	-15.1333	-18.4712	-11.7955
total.rocks	-2.8178	29	0.0086	-14.6587	-25.2983	-4.0190

Moth trees have different lichen communities

```
abun <- apply(com, 1, sum)
rich <- apply(com, 1, function(x) sum(sign(x)))
shan <- apply(com, 1, diversity, index = "shannon")</pre>
tt.a <- t.test(tapply(abun, l.dat[, "Tree.pairs"], diff))</pre>
tt.r <- t.test(tapply(rich, l.dat[, "Tree.pairs"], diff))</pre>
tt.h <- t.test(tapply(shan, l.dat[, "Tree.pairs"], diff))</pre>
tt.arh <- do.call(rbind,
                  list(a = unlist(tt.a), r = unlist(tt.r), h = unlist(tt.h)))
data.frame(tt.arh)
           statistic.t parameter.df
                                                  p.value
                                                                    conf.int1
                                  29 0.0322967805096532 -2.94827641857598
## a -2.24872719194069
## r -2.95490149904486
                                  29 0.00615219062629224
                                                            -4.2867753443144
## h -2.44676815758056
                                  29 0.0207112921139992 -0.802255887812151
               conf.int2 estimate.mean.of.x null.value.mean
                                                                          stderr
## a -0.139723581424019
                                      -1.544
                                                            0 0.686610632687508
## r -0.779891322352267 -2.533333333333333
                                                            0 0.857332582541993
## h -0.0717134452340905 -0.436984666523121
                                                            0 0.17859667871239
   alternative
                             method
                                                                      data.name
## a two.sided One Sample t-test tapply(abun, l.dat[, "Tree.pairs"], diff)
       two.sided One Sample t-test tapply(rich, l.dat[, "Tree.pairs"], diff)
       two.sided One Sample t-test tapply(shan, l.dat[, "Tree.pairs"], diff)
composition is different (PERMANOVA, in text and supplement)
com.ds \leftarrow cbind(com, ds = rep(0.0001, nrow(com)))
com.ds.rel <- apply(com, 2, function(x) x/max(x))</pre>
com.ds.rel <- cbind(com.ds.rel, ds = rep(0.0001, nrow(com)))</pre>
com.ds.rel[is.na(com.ds.rel)] <- 0</pre>
set.seed(123)
ptab.moth <- adonis2(com.ds~ Moth, data = 1.dat,</pre>
                    strata = 1.dat[, "Tree.pairs"],
                    by = "margin", nperm = 100000)
set.seed(123)
ptab.moth.rel <- adonis2(com.ds.rel ~ Moth, data = 1.dat,</pre>
                          strata = 1.dat[, "Tree.pairs"],
                          by = "margin", nperm = 100000)
kable(ptab.moth)
```

	Df	SumOfSqs	R2	F	$\Pr(>F)$
Moth	1	0.8329281	0.0389768	2.352343	0.023

	Df	SumOfSqs	R2	F	Pr(>F)
Residual	58	20.5368939	0.9610232	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

kable(ptab.moth.rel)

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	0.8791695	0.0405034	2.448363	0.021
Residual	58	20.8269063	0.9594966	NA	NA
Total	59	21.7060758	1.0000000	NA	NA

three main species were reduced by moths (FDR paired t-tests, in text + supplement)

```
ind.spp <- lapply(com, function(x, p) t.test(tapply(x, p, diff)), p = l.dat[, "Tree.pairs"])
isp <- apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric)</pre>
```

```
## Warning in apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric): NAs
## introduced by coercion
```

```
## Warning in apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric): NAs
## introduced by coercion
```

Warning in apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric): NAs
introduced by coercion

```
rownames(isp) <- names(ind.spp)
isp[, "p.value"] <- p.adjust(isp[, "p.value"], method = "fdr")
isp.all <- isp[, !(apply(isp, 2, function(x) all(is.na(x))))]
isp <- isp[order(isp[, "p.value"]), ]</pre>
```

```
isp.all <- isp.all[, c(1, 2, 3, 6, 4, 5)]
colnames(isp.all) <- c("t", "df", "p-value", "Mean Difference", "Lower CI 95%", "Upper CI 95%")
kable(isp.all, digits = 4)</pre>
```

	\mathbf{t}	$\mathrm{d}\mathrm{f}$	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Acacon	-3.3776	29	0.0159	-0.0447	-0.0717	-0.0176
Acaame	-3.2421	29	0.0159	-0.1607	-0.2620	-0.0593
Acaobp	-1.0747	29	0.4341	-0.2860	-0.8303	0.2583
Sterile.sp	-1.0000	29	0.4341	-0.0020	-0.0061	0.0021
Brown.cr	NaN	29	NaN	0.0000	NaN	NaN
Lobalp	-2.0414	29	0.2016	-0.0047	-0.0093	0.0000
Canros	-3.5819	29	0.0159	-0.3837	-0.6027	-0.1646
Calare	-1.6076	29	0.2563	-0.0307	-0.0697	0.0083
Phydub	-1.9226	29	0.2061	-0.1053	-0.2174	0.0067
Rhichr	-1.5803	29	0.2563	-0.2310	-0.5300	0.0680
Xanlin	-0.6170	29	0.6672	-0.2267	-0.9781	0.5247
Xanpli	-0.2598	29	0.8500	-0.0277	-0.2455	0.1901
Xanele	-1.5662	29	0.2563	-0.0473	-0.1091	0.0145
GrBr.cr	1.0000	29	0.4341	0.0013	-0.0014	0.0041
Gray.cr	0.1093	29	0.9137	0.0003	-0.0059	0.0066
Synrur	0.3628	29	0.8221	0.0220	-0.1020	0.1460
Cerpur.Bryarg	-1.2357	29	0.4027	-0.0173	-0.0460	0.0114

```
write.csv(round(isp.all, 5), file = "results/scrl_isp_table.csv")
Calculate the average abundances of the indicators
isp.names <- as.character(na.omit(rownames(isp[isp[, "p.value"] < 0.05, ])))
isp.com <- com[,colnames(com) %in% isp.names]</pre>
isp.dif <- apply(isp.com, 2, function(x,y) tapply(x, y, diff), y = 1.dat[ ,"Tree.pairs"])</pre>
Create a multi-bar plot figure for the community.
isp.dat <- melt(isp.dif)</pre>
colnames(isp.dat) <- c("Tree.pairs", "Species", "diff")</pre>
isp.mu <- tapply(isp.dat[, "diff"], isp.dat[, "Species"], mean)</pre>
isp.se <- tapply(isp.dat[, "diff"], isp.dat[, "Species"], se)</pre>
ard.dif <- cbind(tapply(abun, l.dat[, "Tree.pairs"], diff),</pre>
                  tapply(rich, l.dat[, "Tree.pairs"], diff),
                  tapply(shan, l.dat[, "Tree.pairs"], diff))
colnames(ard.dif) <- c("Abundance", "Richness", "Diversity")</pre>
ard.dat <- melt(ard.dif)
colnames(ard.dat) <- c("Tree.pairs", "Stat", "diff")</pre>
ard.mu <- tapply(ard.dat[, "diff"], ard.dat[, "Stat"], mean)</pre>
ard.se <- tapply(ard.dat[, "diff"], ard.dat[, "Stat"], se)</pre>
pdf(file = "./results/scrl_isp_ard.pdf", width = 9, height = 5)
par(mfrow = c(1,2))
bp.out \leftarrow barplot(ard.mu, col = "darkgrey", ylim = c(-5, 0),
                   ylab = "Difference (S - R)", border = "NA")
segments(bp.out[, 1], ard.mu + ard.se,
         bp.out[, 1], ard.mu - ard.se,
         lwd = 1.5)
bp.out \leftarrow barplot(isp.mu, col = "darkgrey", ylim = c(-0.5, 0),
                   ylab = "Difference (S - R)", border = "NA",
            axisnames = TRUE,
            names.arg = sapply(names(isp.mu),
                 function(x)
                                      paste(c(substr(x, 1, 1),
                                               substr(x, 4, 4)), collapse = "")))
segments(bp.out[, 1], isp.mu + isp.se,
         bp.out[, 1], isp.mu - isp.se,
         lwd = 1.5)
dev.off()
## pdf
Create a plot of the two most indicative species
pdf(file = "./results/scrl_complot.pdf", width = 7, height = 7)
plot(com[, c("Acaame", "Canros")], pch = 1.dat[, "Moth"] + 1, cex = 3, col = 1.dat[, "Moth"] + 1)
legend("topleft", title = "Tree Type", legend = c("Resistant", "Susceptible"), pch = c(2, 1), col = c(2
dev.off()
## pdf
##
```

Create plot with indicator taxa

```
pdf(file = "./results/scrl_pdif.pdf", width = 7, height = 7)
plot(melt(isp.dif)[-1], xlab = "Species", ylab = "Abundance Reduction")
dev.off()
## pdf
```

pdf ## 2

Litter covering rocks was the main driver

Although light did significantly explain variation in the lichen community, this was not significant once the variation in litter was controlled for.

There was high correlation among environmental variables.

```
heatmap(abs(round(cor(env.dif), 3)))
```


	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Litter	1	1.0035484	0.0469610	2.972456	0.007
Lightaverage	1	0.4114619	0.0192543	1.218728	0.243
Residual	57	19.2441042	0.9005271	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Lightaverage	1	0.4114619	0.0192543	1.218728	0.243
Litter	1	1.0035484	0.0469610	2.972456	0.007
Residual	57	19.2441042	0.9005271	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

	Df	${\rm SumOfSqs}$	R2	F	$\Pr(>F)$
total.rocks	1	1.664876	0.0779078	4.900435	0.002
Residual	58	19.704946	0.9220922	NA	NA
Total	59	21.369822	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Big.rocks	1	2.428473	0.1136403	7.436188	0.001
Residual	58	18.941349	0.8863597	NA	NA
Total	59	21.369822	1.0000000	NA	NA

	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Small.rocks	1	0.2204425	0.0103156	0.604541	0.782
Residual	58	21.1493794	0.9896844	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Litter	1	1.714256	0.0802185	5.058457	0.002
Residual	58	19.655566	0.9197815	NA	NA
Total	59	21.369822	1.0000000	NA	NA

Because light was significantly, negatively correlated with litter and large rocks.

```
cor.test(env.dif[, "Big.rocks.."], env.dif[, "Litter.."])
```

```
##
##
  Pearson's product-moment correlation
##
## data: env.dif[, "Big.rocks.."] and env.dif[, "Litter.."]
## t = -11.106, df = 28, p-value = 9.054e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9530598 -0.8039735
## sample estimates:
##
          cor
## -0.9027609
pdf("./results/scrl_litterVbigrocks.pdf", width = 5, height = 5)
dev.off()
## pdf
##
par(mfrow = c(1,3))
plot(density(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff)),
   main = "", xlab = "Litter Difference (S - R)")
abline(v = mean(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff)),
   lwd = 0.5)
plot(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."],
     xlab = "Litter Difference (S - R)", ylab = "Rock Cover (size >3 cm) Difference (S - R)",
     pch = 19, cex = 1.5
abline(lm(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."]))
plot(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff),
   tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff),
   xlab = "Litter Difference (S - R)", ylab = "Light Difference (S - R)",
   pch = 19, cex = 1.5)
```

```
0.012
                                      20
  0.010
                                                                          0
                                   Rock Cover (size >3 cm) Difference (S - R)
  0.008
                                      0
                                                                       Light Difference (S - R)
  0.00
                                      -20
  0.004
                                                                          -20
  0.002
                                      4
                                                                          -30
  0.000
        -50
                                                                               -20
            Litter Difference (S - R)
                                                Litter Difference (S - R)
                                                                                    Litter Difference (S - R)
pdf("./results/scrl_litter_effects.pdf", width = 10, height = 5)
par(mfrow = c(1,3))
plot(density(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff)),
    main = "", xlab = "Litter Difference (S - R)")
abline(v = mean(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff)),
plot(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."],
     xlab = "Litter Difference (S - R)", ylab = "Rock Cover (size >3 cm) Difference (S - R)",
     pch = 19, cex = 1.5)
abline(lm(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."]))
plot(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff),
    tapply(l.dat[, "Light...average"], l.dat[, "Tree.pairs"], diff),
    xlab = "Litter Difference (S - R)", ylab = "Light Difference (S - R)",
    pch = 19, cex = 1.5)
dev.off()
## pdf
##
nmds.out <- nmds(vegdist(com.ds), 2, 2)</pre>
ord <- nmds.min(nmds.out, dims = 2)</pre>
## Minimum stress for given dimensionality: 0.2169355
## r^2 for minimum stress configuration: 0.6416469
ord.pch <- c("R", "S")[(1.dat[, "Moth"] + 1)]
plot(X2~ X1, data = ord, pch = ord.pch)
```


Litter not light was correlated with large rocks (dist cor, in text). Thus, higher amounts of litter under trees was not related to the penetration of light under the tree canopy.

```
cor.test(tapply(1.dat[, "Big.rocks.."], 1.dat[, "Tree.pairs"], diff),
         tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff))
##
##
   Pearson's product-moment correlation
##
## data: tapply(1.dat[, "Big.rocks.."], 1.dat[, "Tree.pairs"], diff) and tapply(1.dat[, "Litter.."], 1
## t = -11.106, df = 28, p-value = 9.054e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   -0.9530598 -0.8039735
## sample estimates:
##
          cor
## -0.9027609
cor.test(tapply(1.dat[, "Big.rocks.."], 1.dat[, "Tree.pairs"], diff),
         tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff))
##
##
   Pearson's product-moment correlation
##
## data: tapply(1.dat[, "Big.rocks.."], 1.dat[, "Tree.pairs"], diff) and tapply(1.dat[, "Light...avera
## t = 0.71624, df = 28, p-value = 0.4798
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   -0.2376184 0.4716125
## sample estimates:
##
         cor
## 0.1341335
```

```
cor.test(tapply(l.dat[, "Litter.."], l.dat[, "Tree.pairs"], diff),
         tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff))
##
   Pearson's product-moment correlation
##
##
## data: tapply(l.dat[, "Litter..."], l.dat[, "Tree.pairs"], diff) and tapply(l.dat[, "Light...average",
## t = -0.92053, df = 28, p-value = 0.3652
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5007401 0.2013096
## sample estimates:
##
          cor
## -0.1713898
cor.test(tapply(1.dat[, "Small.rocks.."], 1.dat[, "Tree.pairs"], diff),
         tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff))
##
##
   Pearson's product-moment correlation
##
## data: tapply(1.dat[, "Small.rocks.."], 1.dat[, "Tree.pairs"], diff) and tapply(1.dat[, "Litter.."],
## t = -4.994, df = 28, p-value = 2.819e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8391386 -0.4332285
## sample estimates:
##
## -0.6863699
```

Vegetation Analysis

From Richard Michalet

First sheet is the vegetation matrix with all relevés.

Second sheet are values of vegetation cover, rock cover and species richness in all replicates of all treatments + mean values of treatments and corresponding graphs.

From what I remember the methods were simple, quadrats of 1square meter in four treatments with a full factorial design, exposure (north and south of the tree), mortality (alive vs dead shrubs), tree susceptibility (resistant vs susceptible) and tree presence (below the canopy or outside the canopy in open conditions at the close vicinity of the trees).

You can see that without stats results are obvious: strong effect of tree susceptibility only below the tree and in both exposure for both alive and dead trees.

```
library(readxl)

veg <- readxl::read_xlsx("data/Vegetation.xlsx")

veg <- as.data.frame(veg)
l.raw <- read.csv("data/rawdata Sunset Crater for Matt.csv")
l.raw <- l.raw[!(grepl("cover", l.raw[,1])),]
le.raw <- read.csv("data/rawdata Sunset Crater for Matt_env.csv")
le.raw <- le.raw[!(grepl("cover", le.raw[,1])),]
le.raw <- na.omit(le.raw)</pre>
```

Observation checks

```
Do the saxicole community and environment data match?
```

```
all(apply(1.raw[,1:3], 2, as.character) == apply(le.raw[,1:3], 2, as.character))
## [1] TRUE
Are all of the trees in the saxicole dataset represented in the veg dataset?
all(unlist(lapply(lapply(l.raw[, "Tree.ID"], grepl, x = veg[, "Tree ID"]), any)))
## [1] TRUE
```

Coalesce datasets

```
head(1.raw)
     Tree.ID Q C Acacon Acasub Acaobp Sterile.sp Brown.cr Lobalp Canros Calare
## 1
          1RA Q1 A1
                           0
                                  0
                                          0
                                                       0
                                                                 0
          1RA Q1 A2
                                                                                         0
## 2
                           0
                                  0
                                                       0
                                                                 0
                                                                         0
                                                                                 0
                                          0
## 3
          1RA Q1 A3
                           0
                                  0
                                          0
                                                       0
                                                                 0
                                                                         0
                                                                                         0
## 4
          1RA Q1 B1
                                   0
                                                       0
                                                                         0
                                                                                 0
                                                                                        0
                           0
                                          0
                                                                 0
          1RA Q1 B2
                                                                                        0
## 5
## 6
          1RA Q1 B3
                                  0
                                                       0
                                                                 0
                                                                                        0
                           0
                                          0
     Phydub Rhichr Xanlin Xanpli Xanele GrBr.cr Gray.cr Synrur Cerpur.Bryarg
##
## 1
           0
                   0
                           0
                                  0
                                          0
                                                   0
                                                            0
                                                                    0
## 2
           0
                   0
                           0
                                  0
                                          0
                                                   0
                                                            0
                                                                    0
                                                                                    0
## 3
                                  0
                                                            0
                                                                    0
                                                                                    0
           0
                   0
                           0
                                          0
                                                   0
## 4
           0
                   0
                           0
                                  0
                                          0
                                                   0
                                                            0
                                                                    0
                                                                                    0
                                                            0
                                                                    0
                                                                                    0
## 5
           0
                                                   0
## 6
                                                                    0
                                                                                    0
                           0
1.d \leftarrow data.frame(le.raw[, -2:-3], l.raw[, -1:-3])
1.d <- split(1.d, 1.d[, "Tree.ID"])</pre>
1.d <- 1.d[names(1.d) %in% le.raw[, "Tree.ID"]]</pre>
1.d \leftarrow lapply(1.d, function(x) x[, -1])
1.d <- lapply(1.d, apply, 2, mean)</pre>
1.df <- do.call(rbind, 1.d)</pre>
trt <- strsplit(rownames(1.df), "")</pre>
moth.alive <- lapply(trt, function(x) x[x %in% c(letters, LETTERS)][1:2])
moth.alive <- do.call(rbind, moth.alive)</pre>
tree <- lapply(trt, function(x) x[x %in% 0:9])</pre>
tree <- as.numeric(unlist(lapply(tree, paste, collapse = "")))</pre>
1.df <- data.frame(Tree.pairs = tree,</pre>
                     Moth = moth.alive[, 1],
                     Live.Dead = moth.alive[, 2],
                     1.df)
1.df <- 1.df[1.df[, "Live.Dead"] == "A", ]</pre>
1.df[, "Moth"] <- as.character(1.df[, "Moth"])</pre>
1.df[1.df[, "Moth"] == "R", "Moth"] <- 1</pre>
1.df[1.df[, "Moth"] == "S", "Moth"] <- 0</pre>
moth.tree <- paste(l.df[, "Moth"], l.df[, "Tree.pairs"], sep = "_")</pre>
1.df <- 1.df[match(rownames(1.dat), moth.tree), ]</pre>
```

Check that 1.dat and 1.df are correctly coalesced:

```
all(1.df[, 1:2] == 1.dat[, 1:2])
## [1] TRUE
colnames(1.dat[, -10:-12]) == colnames(1.df)
        TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
   [1]
                                                                          TRUE
## [13]
        TRUE
              TRUE
                    TRUE TRUE TRUE TRUE TRUE TRUE TRUE
                                                              TRUE TRUE
                                                                          TRUE
## [25]
        TRUE
              TRUE
Check that the values of the variables match, excluding light:
1.dat[, c(-1:-3, -10:-12)] - 1.df[, c(-1:-3)]
##
            Litter..
                       Big.rocks.. Small.rocks..
                                                      Shrubs..
                                                                    Grass..
## 1_1
         0.0025925926 -0.0007407407
                                    0.000000000 -0.0018518519
                                                                0.00000000
## 0_1
        -0.0018518519
                      0.0018518519
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
                                                                0.00000000
## 1_2
       -0.002222222 -0.0011111111
                                    0.0033333333
                                                  0.000000000
## 0 2
        0.0007407407 -0.0007407407
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
  1_3
       -0.0007407407
                      0.0007407407
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 0_3
        0.0029629630 -0.0029629630
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 1_4
       -0.0040740741
                      0.000000000
                                    0.000000000
                                                  0.0040740741
                                                                0.00000000
## 0_4
        -0.002222222
                      0.002222222
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 1_5
        0.0007407407
                      0.0011111111
                                    0.000000000 -0.0018518519
                                                                0.00000000
## 0 5
        0.0025925926 -0.0033333333
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 1_6
                      0.000000000
        0.000000000
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 0 6
        -0.0040740741
                      0.0040740741
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
  1_7
        0.002222222 -0.0022222222
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
##
## 0_7
        -0.0025925926
                      0.0025925926
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
                                                                0.00000000
                      0.0040740741 -0.0011111111
                                                  0.000000000
## 1 8
       -0.0029629630
## 0 8
        0.0007407407 -0.0007407407
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 1 9
       -0.0018518519
                      0.004444444
                                    0.000000000 -0.0025925926
                                                                0.00000000
## 0 9
        0.0048148148
                      0.0003703704
                                    0.000000000
                                                  0.0048148148
                                                                0.00000000
## 1 10 -0.0040740741
                      0.0040740741
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
        0.0037037037 -0.0018518519
                                    0.000000000 -0.0018518519
                                                                0.00000000
## 0_10
## 1_11 -0.0003703704 0.0011111111
                                    0.000000000 -0.0007407407
                                                                0.00000000
                                                                0.00000000
## 0_11
        0.0040740741 -0.0040740741
                                    0.000000000
                                                  0.000000000
        0.002222222 -0.0014814815
                                                                0.00000000
## 1 12
                                    0.000000000 -0.0007407407
## 0_12
        0.0011111111 -0.0011111111
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
        0.0000000000
                      0.000000000
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 1_13
                      0.0003703704
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 0_13 -0.0003703704
## 1 14
        0.0048148148
                     0.0014814815
                                    0.0025925926
                                                  0.0011111111
                                                                0.00000000
## 0_14 0.0037037037 -0.0007407407 -0.0029629630
                                                  0.000000000
                                                                0.00000000
## 1 15 -0.0011111111
                      0.0018518519 -0.0007407407
                                                  0.000000000
                                                                0.00000000
## 0_15 0.0007407407 -0.0033333333
                                    0.0025925926
                                                  0.000000000
                                                                0.00000000
## 1 16 -0.0048148148
                      0.0000000000
                                    0.000000000
                                                  0.0048148148
                                                                0.00000000
## 0_16 0.0040740741
                      0.0018518519
                                    0.0040740741
                                                  0.000000000
                                                                0.00000000
## 1 17 -0.0025925926
                      0.0029629630 -0.0003703704
                                                  0.000000000
                                                                0.00000000
## 0 17 0.0037037037
                      0.0048148148
                                    0.0014814815
                                                  0.0000000000
                                                                0.00000000
## 1 18 -0.0048148148  0.0048148148
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 0_18
        0.0011111111 -0.0011111111
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
        0.0048148148 -0.0048148148
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
## 1_19
       0.0014814815 -0.0014814815
                                    0.000000000
                                                  0.000000000
                                                                0.00000000
                      0.0037037037 -0.0022222222
## 1_20 -0.0014814815
                                                  0.000000000
                                                                0.00000000
## 0_20
        0.0000000000
                      0.0000000000
                                    0.0000000000
                                                  0.000000000
                                                                0.00000000
```

0.000000000 -0.001481481

1_21 0.0040740741 0.0040740741 0.0033333333

```
## 1_22  0.0018518519  -0.0033333333  0.0014814815
                                            0.0000000000
                                                         0.000000000
                               0.000000000
                                            0.000000000
## 0 22 -0.0018518519 0.0018518519
                                                         0.000000000
0.0029629630
                                                         0.000000000
## 0 23 -0.0044444444 -0.0011111111
                                0.0029629630
                                            0.0025925926
                                                         0.000000000
## 1 24 0.000000000 0.000000000
                               0.0000000000
                                            0.000000000
                                                         0.000000000
## 0 24 0.000000000 0.000000000 0.000000000
                                            0.000000000
                                                         0.000000000
## 1 25 -0.0018518519 0.0029629630 -0.0011111111
                                            0.0000000000
                                                         0.000000000
## 0 25  0.0014814815  -0.00111111111  -0.0003703704
                                             0.0000000000
                                                         0.000000000
## 1_26 -0.0044444444 0.0029629630 0.0014814815
                                             0.000000000
                                                         0.00000000
## 0_26 -0.0014814815 0.0014814815 0.0000000000
                                            0.000000000
                                                         0.00000000
## 1_27 -0.0003703704 -0.0025925926 -0.0029629630 -0.0040740741
                                                         0.000000000
## 0_27 -0.0037037037 0.0037037037
                               0.0000000000
                                            0.000000000
                                                         0.000000000
                   0.0029629630
                               0.0007407407
## 1_28 0.0029629630
                                            0.000000000
                                                         0.00000000
## 0_28  0.0037037037  0.0037037037  0.0025925926
                                            0.000000000
                                                         0.00000000
0.000000000
                                                         0.00000000
## 0_29 -0.0025925926  0.0025925926
                               0.000000000
                                            0.000000000
                                                         0.00000000
       0.0033333333 -0.0033333333
                                0.000000000
                                            0.000000000
                                                         0.00000000
       0.000000000 -0.0033333333
                               0.0033333333
                                            0.000000000 0.00000000
##
                                                Acaobp Sterile.sp Brown.cr
        Branches..
                        Acacon
                                     Acaame
0.00000000 0.00444444
## 0 1 0.000000000
                   0.000000000 0.0048148148
                                            0.00000000 0.00000000
                   0.0014814815 -0.0022222222
                                            0.004444444 0.000000000
## 1_2 0.000000000
                                                                       0
                   0.000000000 0.000000000
                                            0.000000000 0.000000000
## 0 2 0.000000000
                                                                       0
                   0.0018518519 -0.0011111111
                                            0.00000000 0.00000000
## 1 3 0.000000000
                                                                       0
## 0_3
      0.0000000000
                   0.000000000 0.000000000
                                            0.001481481 0.000000000
                                                                       0
      0.000000000
                   0.000000000
                               0.000000000
                                            0.00000000 0.00000000
## 1_4
                                                                       0
                                            0.00000000 0.000000000
## 0_4
      0.000000000
                   0.000000000 0.000000000
                                                                       0
## 1_5 0.000000000
                   0.0014814815 0.0014814815
                                            0.00000000 0.00000000
                                                                       0
## 0_5
      0.0007407407
                   0.000000000 -0.0025925926
                                            0.00000000 0.00000000
                                                                       0
                   0.000000000 0.000000000
## 1_6
      0.0000000000
                                            0.00000000 0.00000000
                                                                       0
## 0_6
      0.000000000
                   0.000000000 -0.0040740741
                                            0.00000000 0.00000000
                                                                       0
  1_{-}7
      0.000000000
                   0.000000000 -0.0048148148
                                            0.002962963 0.000000000
                   0.000000000 0.004444444
                                            0.00000000 0.00000000
## 0_7
      0.000000000
                                                                       0
      0.000000000
                   0.0029629630 0.0000000000
                                            0.001851852 0.000000000
## 1 8
                                                                       0
                   0.0014814815 -0.0014814815
                                            0.002962963 0.000000000
## 0 8 0.000000000
                                                                       0
## 1 9 0.000000000
                   0.000000000 -0.0025925926
                                            0.00000000 0.00000000
## 0_9 0.000000000
                   0.000000000 0.0029629630
                                            0.00000000 0.00000000
                                                                       0
## 1 10 0.000000000 -0.0011111111 -0.0018518519
                                            0.00000000 0.00000000
                                                                       0
## 0_10 0.000000000
                   0.0029629630 0.0018518519
                                            0.00000000 0.00000000
                                                                       0
                                            0.00000000 0.00000000
## 1_11 0.0000000000
                   0.0029629630 0.0033333333
                                                                       0
## 0_11 0.000000000
                   0.0014814815 0.0029629630
                                            0.00000000 0.00000000
                                                                       0
## 1 12 0.0000000000
                   0.000000000
                               0.0014814815
                                            0.001481481 0.000000000
                                                                       0
## 0_12 0.0000000000
                   0.000000000 0.0029629630
                                            0.00000000 0.00000000
                                                                       0
## 1_13 0.0000000000
                   0.000000000
                               0.000000000
                                            0.00000000 0.00000000
                                                                       0
## 0_13 0.0000000000
                   0.000000000
                               0.000000000
                                            0.00000000 0.00000000
                                                                       0
## 1_14 0.000000000 -0.0025925926 -0.0040740741
                                            0.004444444 0.000000000
                                                                       0
                   0.000000000
## 0_14 0.000000000
                               0.000000000
                                            0.00000000 0.00000000
## 1_15 0.0000000000
                   0.000000000
                               0.000000000
                                            0.00000000 0.00000000
                                                                       0
## 0_15 0.0000000000
                   0.000000000
                               0.000000000
                                            0.00000000 0.00000000
                                                                       0
                   0.000000000 0.000000000
                                            0.00000000 0.00000000
## 1_16 0.000000000
                                                                       0
## 0 16 0.0000000000
                   0.0000000000 - 0.0011111111 - 0.004074074 0.000000000
## 1_17 0.0000000000
                   0
```

```
## 1_18 0.0000000000
                    0.000000000 0.000000000
## 0_18 0.0000000000
                    0.000000000 0.000000000
## 1 19 0.0000000000
                     0.000000000 -0.0025925926
                                               0.00000000 0.00000000
## 0_19 0.000000000
                    0.000000000
                                  0.0014814815
                                               0.004444444 0.000000000
## 1 20 0.0000000000
                    0.0033333333
                                  0.0037037037 -0.002592593 0.000000000
## 0 20 0.0000000000
                    0.000000000
                                  0.000000000
                                               0.00000000 0.00000000
                                               0.00000000 0.00000000
## 1 21 0.000000000
                     0.000000000
                                  0.0029629630
## 0 21 0.000000000
                    0.000000000 -0.0007407407
                                               0.00000000 0.00000000
## 1 22 0.0000000000
                     0.000000000
                                  0.000000000
                                               0.00000000 0.00000000
                                               0.00000000 0.00000000
## 0_22 0.0000000000
                    0.000000000
                                  0.000000000
## 1_23 0.000000000
                     0.000000000
                                  0.004444444
                                               0.001481481 0.000000000
                                  0.000000000
                                               0.00000000 0.00000000
## 0_23 0.0000000000
                    0.000000000
## 1_24 0.0000000000
                    0.0033333333
                                  0.0029629630 -0.002592593 0.000000000
                                  0.000000000
## 0_24 0.0000000000
                    0.000000000
                                               0.00000000 0.00000000
                    0.0029629630
                                  0.0029629630
                                               0.00000000 0.00000000
## 1_25 0.0000000000
## 0_25 0.0000000000
                    0.0029629630
                                  0.0048148148
                                               0.00000000 0.00000000
                                               0.00000000 0.00000000
## 1_26 0.0000000000
                    0.0014814815
                                  0.004444444
## 0 26 0.0000000000
                    0.0014814815
                                 0.0000000000
                                               0.00000000 0.00000000
## 1_27 0.0000000000 -0.0040740741 -0.0033333333 -0.004074074 0.000000000
## 0 27 0.000000000
                    0.0029629630 -0.0040740741
                                               0.00000000 0.00000000
## 1_28 0.0000000000 0.0048148148 0.0033333333 -0.002592593 0.000000000
## 0 28 0.000000000 0.0000000000
                                  0.0000000000
                                               0.00000000 0.00000000
## 1_29 0.000000000 -0.0011111111
                                  0.0029629630
                                               0.001481481 0.000000000
                    0.000000000
                                               0.000000000 0.000000000
## 0 29 0.000000000
                                  0.000000000
                                               0.00000000 0.00000000
## 1 30 0.000000000
                    0.0000000000
                                  0.0003703704
  0 30 0.0000000000
                    0.000000000
                                  0.000000000
                                               0.00000000 0.00000000
                                                   Phydub
##
            Lobalp
                         Canros
                                      Calare
                                                                Rhichr
## 1_1 0.00000000 -0.0018518519
                                0.004444444 0.000000000 0.0044444444
## 0_1 0.00000000 -0.0033333333
                                0.001481481
                                             0.000000000 -0.0018518519
## 1_2
       0.001481481 -0.0048148148
                                 0.00444444
                                             0.0048148148 -0.0040740741
## 0_2
       0.00000000 0.0018518519
                                 0.000000000
                                             0.000000000 0.000000000
## 1_3
       0.00000000 0.0011111111 -0.004074074 0.0029629630
                                                          0.000000000
       0.00000000 -0.0040740741
                                 0.001481481
                                             0.000000000
                                                           0.0048148148
                                 0.00000000
                                             0.0000000000
       0.000000000
                    0.000000000
                                                          0.000000000
##
  1_{-4}
       0.00000000
                    0.0018518519 -0.004074074 0.0000000000 -0.0022222222
## 0 4
                    0.0033333333
                                 0.00000000 0.000000000 -0.0040740741
## 1 5
       0.000000000
       0.000000000
                    0.0007407407
                                 0.000000000 -0.0025925926 -0.0040740741
       0.000000000
                    0.000000000
                                 0.00000000 0.000000000 0.000000000
## 1_6
       0.00000000 -0.0003703704
                                 0.00000000 -0.0040740741
## 0 6
                                                           0.000000000
       0.002962963 -0.0025925926
                                 0.002962963 -0.0018518519 0.0025925926
## 1_7
## 0 7
       0.000000000
                    0.0007407407
                                 0.000000000
                                            0.0044444444 -0.0014814815
       0.000000000
                   0.0040740741
                                 0.00000000 0.0025925926 -0.0040740741
## 1 8
## 0 8 0.00000000
                    0.0014814815
                                 0.00000000 0.000000000 0.0029629630
## 1_9 0.00000000
                   0.004444444
                                 0.00000000 -0.0011111111 -0.0025925926
## 0_9 0.00000000 0.004444444
                                 0.00000000 0.0029629630 -0.0040740741
## 1_10 0.00000000 -0.0003703704
                                 0.00000000 -0.0037037037
                                                          0.004444444
## 0_10 0.00000000 -0.0029629630
                                 0.00000000 0.0033333333
                                                          0.004444444
## 1_11 0.00000000 -0.0011111111
                                 0.002962963 0.0048148148 0.0014814815
## 0_11 0.00000000
                   0.0018518519
                                 0.00000000 0.000000000 -0.0025925926
## 1_12 0.00000000
                    0.0048148148
                                 0.00000000 -0.0040740741
                                                          0.0048148148
                                 0.00000000 -0.002222222
## 0_12 0.00000000
                   0.004444444
                                                          0.0000000000
## 1_13 0.000000000
                   0.000000000
                                 0.00000000 0.000000000
                                                          0.0000000000
## 0_13 0.00000000
                   0.000000000
                                 0.00000000 0.000000000 0.000000000
## 1 14 0.00000000 0.0033333333 0.000000000 0.0048148148 -0.0044444444
```

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

```
## 0 14 0.00000000 0.0029629630
                                  0.00000000 0.000000000 0.000000000
## 1_15 0.000000000
                    0.000000000
                                  0.000000000
                                              0.0000000000
                                                             0.000000000
                                                             0.000000000
## 0 15 0.000000000
                    0.000000000
                                  0.00000000
                                               0.000000000
## 1_16 0.000000000
                                  0.000000000
                                               0.000000000
                    0.000000000
                                                             0.000000000
## 0_16 0.000000000
                    0.0048148148
                                  0.001481481
                                               0.004444444
                                                             0.0029629630
## 1 17 0.002962963
                                  0.000000000
                                              0.000000000
                    0.0011111111
                                                             0.0048148148
## 0 17 0.00000000
                    0.000000000
                                  0.00000000
                                               0.000000000
                                                             0.000000000
## 1 18 0.002962963
                    0.0025925926
                                  0.00444444
                                               0.000000000
                                                             0.0033333333
## 0 18 0.00000000
                    0.000000000
                                  0.00000000
                                               0.0000000000
                                                             0.000000000
## 1_19 0.00000000 -0.0048148148
                                  0.00000000
                                               0.0014814815 -0.0011111111
## 0_19 0.000000000
                    0.0014814815
                                  0.00000000
                                               0.000000000
                                                             0.004444444
## 1_20 0.000000000
                    0.0029629630
                                  0.001481481 -0.0048148148 -0.0025925926
## 0_20 0.00000000
                    0.000000000
                                  0.000000000
                                              0.0000000000
                                                             0.000000000
                                                             0.000000000
## 1_21 0.00000000 -0.0025925926
                                  0.00000000
                                              0.000000000
                    0.000000000
                                  0.00000000
                                               0.000000000
## 0_21 0.00000000
                                                             0.000000000
## 1_22 0.000000000
                    0.000000000
                                  0.00000000
                                               0.000000000
                                                             0.000000000
## 0_22 0.000000000
                    0.000000000
                                  0.00000000
                                               0.000000000
                                                             0.000000000
## 1 23 0.000000000 -0.0007407407
                                  0.00000000
                                               0.000000000
                                                             0.000000000
                                                             0.000000000
## 0_23 0.000000000
                   0.0000000000
                                  0.000000000
                                              0.0000000000
## 1 24 0.00000000 -0.0048148148
                                 -0.002592593 -0.0018518519 -0.0040740741
## 0_24 0.00000000
                   0.000000000
                                  0.00000000
                                              0.000000000
                                                             0.000000000
## 1_25 0.000000000
                                              0.0000000000
                    0.004444444
                                  0.00000000
                                                             0.000000000
## 0_25 0.000000000
                    0.0003703704
                                  0.00000000
                                              0.0044444444 -0.0040740741
## 1 26 0.00000000 0.004444444
                                  0.000000000
                                              0.0000000000
                                                             0.000000000
## 0 26 0.000000000 -0.0040740741
                                  0.000000000
                                              0.0029629630
                                                             0.0029629630
## 1 27 0.00000000 -0.0037037037
                                  0.002962963
                                              0.0018518519
                                                             0.004444444
## 0_27 0.00000000 0.0014814815
                                  0.00000000
                                              0.000000000
                                                             0.000000000
## 1_28 0.000000000 -0.0011111111 -0.004074074 -0.0037037037
                                                             0.004444444
## 0_28 0.00000000 0.0014814815
                                  0.000000000
                                              0.000000000
                                                             0.000000000
## 1_29 0.00000000
                    0.0014814815
                                  0.000000000
                                              0.004444444
                                                             0.0003703704
## 0_29 0.00000000 0.000000000
                                  0.000000000
                                              0.0000000000
                                                             0.000000000
## 1_30 0.00000000 -0.0014814815
                                  0.000000000
                                              0.0003703704 -0.0018518519
  0_30 0.000000000 0.0014814815
                                  0.000000000
                                              0.0000000000
                                                             0.000000000
##
              Xanlin
                                                     GrBr.cr
                            Xanpli
                                          Xanele
                                                                  Gray.cr
        0.0025925926
                      0.0018518519
                                    0.000000000 0.000000000
                                                              0.00000000
## 1_1
## 0_1
                      0.0007407407
                                    0.000000000 0.00000000
       -0.0029629630
                                                              0.002962963
## 1 2
        0.002222222
                      0.000000000
                                    0.000000000 0.00000000
                                                              0.00000000
## 0_2
        0.000000000
                      0.0003703704
                                    0.000000000 0.000000000
                                                              0.00000000
        0.0014814815
                      0.0014814815
                                    0.000000000 0.000000000
                                                              0.00000000
## 1_3
                                    0.000000000 0.000000000
## 0_3
       -0.0014814815
                      0.004444444
                                                              0.00000000
                                    0.000000000 0.000000000
##
  1_{4}
        0.000000000
                      0.000000000
                                                              0.00000000
        0.0048148148
                      0.0000000000
                                    0.000000000 0.00000000
## 0_4
                                                              0.000000000
## 1_5
        0.0000000000
                     0.0011111111
                                    0.000000000 0.00000000
                                                              0.00000000
## 0_5
       -0.0040740741 -0.0040740741 -0.00111111111 0.002962963
                                                              0.002962963
## 1_6
        0.000000000
                      0.0000000000
                                    0.000000000 0.00000000
                                                              0.00000000
                      0.0037037037
                                    0.000000000 0.00000000
## 0_6
        0.0037037037
                                                              0.00000000
## 1_7
        0.004444444
                      0.0000000000 - 0.0007407407 \ 0.000000000 - 0.004074074
                      0.000000000 0.000000000 0.000000000
  0_{-}7
        0.0048148148
                                                              0.00000000
        0.0040740741
                      0.000000000 -0.0048148148 0.000000000
                                                              0.00000000
  1_8
## 0_8
        0.000000000 -0.0007407407
                                    0.000000000 0.00000000
                                                              0.00000000
        0.0048148148 0.0007407407
                                    0.0018518519 0.000000000
## 1_9
                                                              0.00000000
## 0_9
        0.0003703704 0.0000000000
                                    0.0018518519 0.000000000
                                                              0.00000000
       0.0007407407 0.0000000000
                                    0.0014814815 0.000000000
                                                              0.00000000
## 1_10
## 0 10 -0.0014814815 -0.0033333333  0.0000000000 0.000000000
                                                              0.00000000
```

```
0.0040740741
                                     0.000000000 0.000000000
                                                              0.00000000
## 1 11 -0.0011111111
## 0 11 0.0029629630 -0.0007407407
                                     0.000000000 0.00000000
                                                              0.00000000
                      0.000000000
  1 12 -0.0007407407
                                     0.0048148148 0.000000000
                                                               0.00000000
        0.000000000
                                     0.000000000 0.000000000
  0_12
                      0.0018518519
                                                               0.00000000
## 1 13
        0.000000000
                      0.000000000
                                     0.000000000 0.000000000
                                                               0.00000000
        0.000000000
                                     0.000000000 0.000000000
## 0 13
                      0.000000000
                                                               0.00000000
## 1 14 -0.0007407407
                       0.0044444444 -0.0025925926 0.000000000
                                                               0.00000000
## 0 14
        0.000000000
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
## 1_15
        0.000000000
                      0.000000000
                                     0.000000000 0.000000000
                                                               0.00000000
  0_{-}15
        0.000000000
                      0.000000000
                                     0.000000000 0.000000000
                                                               0.00000000
  1_16
        0.000000000
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
##
  0_{16}
        0.0011111111
                      0.0033333333
                                     0.0033333333 0.000000000
                                                               0.00000000
        0.0007407407
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
##
  1_{-}17
        0.000000000
                      0.000000000
                                     0.000000000 0.00000000
## 0 17
                                                               0.00000000
                                     0.0029629630 0.000000000
## 1_18 -0.0025925926
                      0.000000000
                                                               0.00000000
## 0_18
        0.000000000 -0.0040740741
                                     0.000000000 0.000000000
                                                               0.00000000
        0.0014814815
                      0.0029629630
                                     0.000000000 0.000000000
                                                               0.00000000
## 1_19
        0.000000000
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
  0 19
##
  1 20
        0.0003703704
                      0.0014814815
                                     0.000000000 0.00000000
                                                               0.00000000
## 0 20
        0.000000000
                      0.000000000
                                     0.0014814815 0.000000000
                                                               0.00000000
## 1 21
        0.0048148148
                      0.000000000
                                     0.000000000 0.000000000
                                                               0.00000000
                                     0.000000000 0.000000000
## 0 21
        0.000000000
                      0.000000000
                                                               0.00000000
                                     0.000000000 0.000000000
## 1_22
        0.0014814815
                      0.000000000
                                                               0.00000000
                                     0.000000000 0.000000000
## 0 22
        0.000000000
                      0.000000000
                                                               0.00000000
## 1 23
        0.0033333333
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
  0 23
        0.000000000
                      0.0011111111
                                     0.000000000 0.000000000
                                                               0.00000000
                                     0.000000000 0.000000000
##
  1_{24}
        0.0040740741
                      0.0007407407
                                                               0.00000000
## 0_24
        0.000000000
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
                                     0.000000000 0.000000000
##
  1_{25}
        0.000000000
                      0.0011111111
                                                               0.00000000
## 0 25
        0.000000000
                      0.0003703704
                                     0.000000000 0.00000000
                                                               0.00000000
## 1 26
        0.0014814815
                      0.000000000
                                     0.000000000 0.00000000
                                                               0.00000000
## 0_26
        0.000000000 -0.0037037037
                                     0.000000000 0.000000000
                                                               0.00000000
  1_{27}
         0.002222222
                      0.000000000 -0.0011111111 0.000000000
                                                               0.00000000
  0_27
                                     0.000000000 0.000000000
        0.000000000
                      0.000000000
                                                               0.00000000
##
        -0.004444444
                      0.0000000000
                                   -0.002222222 0.000000000
                                                               0.00000000
## 1 28
                                    0.000000000 0.000000000
## 0 28
        0.0029629630
                      0.000000000
                                                               0.00000000
  1 29 -0.0025925926 -0.0040740741
                                     0.000000000 0.000000000
                                                               0.00000000
## 0_29
                      0.000000000
                                     0.000000000 0.000000000
        0.000000000
                                                               0.00000000
## 1_30
        0.0048148148
                      0.0033333333
                                     0.000000000 0.000000000
                                                               0.00000000
                                     0.000000000 0.000000000
## 0_30
        0.000000000
                      0.0048148148
                                                              0.00000000
##
              Synrur Cerpur.Bryarg
##
  1 1
         0.000000000
                        0.00000000
## 0_1
        -0.0037037037
                        0.00000000
  1_2
        -0.0007407407
##
                        0.00000000
## 0_2
        0.000000000
                        0.00000000
## 1_3
         0.000000000
                        0.00000000
## 0_3
         0.000000000
                        0.00000000
   1_{4}
         0.000000000
                        0.00000000
  0_4
         0.000000000
                        0.00000000
  1_5
         0.000000000
                        0.00000000
##
## 0_5
         0.000000000
                        0.00000000
## 1_6
         0.000000000
                        0.00000000
## 0_6
         0.000000000
                        0.00000000
## 1 7
         0.000000000
                      -0.001111111
```

```
## 0_7
        0.000000000
                       0.00000000
## 1_8
       -0.0011111111
                       0.002592593
## 0_8
        0.000000000
                       0.00000000
                       0.00000000
## 1_9
        0.0048148148
## 0_9
        0.000000000
                       0.00000000
## 1 10 0.0029629630
                       0.00000000
## 0 10
       0.0000000000
                       0.00000000
## 1 11
        0.0029629630
                       0.00000000
## 0_11
        0.000000000
                       0.00000000
## 1_12
        0.000000000
                       0.00000000
## 0_12
       0.000000000
                       0.00000000
## 1_13
       0.0000000000
                       0.00000000
## 0_13 0.000000000
                       0.00000000
## 1_14 -0.004444444
                       0.00000000
## 0_14 0.000000000
                       0.00000000
## 1_15
        0.000000000
                       0.00000000
## 0_15
       0.000000000
                       0.00000000
## 1 16 0.0000000000
                       0.00000000
## 0_16 -0.0011111111
                       0.00000000
## 1 17 0.0000000000
                       0.00000000
## 0_17 0.000000000
                       0.00000000
## 1 18 0.000000000
                       0.00000000
## 0_18
       0.000000000
                       0.00000000
        0.000000000
## 1 19
                       0.00000000
## 0 19
        0.000000000
                       0.00000000
## 1_20
        0.000000000
                       0.00000000
## 0_20
        0.0000000000
                       0.00000000
## 1_21
       0.000000000
                       0.00000000
## 0_21
        0.000000000
                       0.00000000
## 1_22
        0.000000000
                       0.00000000
## 0_22
        0.000000000
                       0.00000000
## 1_23
        0.000000000
                       0.00000000
## 0_23
        0.000000000
                       0.00000000
## 1_24
        0.000000000
                       0.00000000
## 0 24
        0.000000000
                       0.00000000
## 1_25
        0.000000000
                       0.00000000
## 0 25
       0.000000000
                       0.00000000
## 1_26
        0.000000000
                       0.00000000
## 0_26
        0.000000000
                       0.00000000
## 1_27
        0.000000000
                       0.00000000
## 0 27 0.0000000000
                       0.00000000
## 1 28 -0.0025925926
                       0.000000000
## 0 28 0.0000000000
                       0.00000000
## 1_29
       0.000000000
                       0.00000000
## 0_29
       0.000000000
                       0.00000000
        0.000000000
                       0.00000000
## 1_30
## 0_30 0.000000000
                       0.00000000
```

The following vector should work to match-up the saxicoles with the veg data:

```
m.v <- rownames(1.df)
v.dat <- veg[match(m.v, veg[, "Tree ID"]), ]
v.dat[is.na(v.dat)] <- 0
v.tp <- v.dat[, "Tree ID"]</pre>
```

```
v.tp <- strsplit(v.tp, "")
v.tp <- unlist(lapply(v.tp, function(x) paste(x[x %in% 0:9], collapse = "")))
v.dat <- data.frame(v.dat[, 1:7], "Tree Pair" = v.tp, v.dat[, 8:ncol(v.dat)])

v.com <- v.dat[, 9:ncol(v.dat)]
v.com <- v.com[, apply(v.com, 2, sum) > 0]

v.com.ds <- cbind(v.com, ds = rep(1, nrow(v.com)))
v.com.ds.rel <- apply(v.com, 2, function(x) x/max(x))
v.com.ds.rel <- cbind(v.com.ds.rel, ds = rep(0.0001, nrow(v.com)))
v.com.ds.rel[is.na(v.com.ds.rel)] <- 0</pre>
```

Checking the vegetation and rock cover correlations. We find that vegetation cover is is significantly, but not strongly correlated with rock cover. Large rock cover measurements in the saxicole dataset is strongly correlated with total rock cover in the plant dataset.

Both vegetation and rock cover are strongly affected by moth susceptibility.

```
cor.test(v.dat[, "Vegetation.cover"], v.dat[, "Rock.cover"], alt = "greater")
##
   Pearson's product-moment correlation
##
##
## data: v.dat[, "Vegetation.cover"] and v.dat[, "Rock.cover"]
## t = 1.8835, df = 58, p-value = 0.03233
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.0269872 1.0000000
## sample estimates:
         cor
## 0.2400809
cor.test(1.dat[, "Big.rocks.."], v.dat[, "Rock.cover"], alt = "greater")
##
##
   Pearson's product-moment correlation
##
## data: l.dat[, "Big.rocks.."] and v.dat[, "Rock.cover"]
## t = 9.5342, df = 58, p-value = 8.816e-14
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.6809688 1.0000000
## sample estimates:
##
         cor
## 0.7813334
t.test(tapply(v.dat[, "Rock.cover"], v.dat[, "Tree.Pair"], diff))
##
##
   One Sample t-test
##
## data: tapply(v.dat[, "Rock.cover"], v.dat[, "Tree.Pair"], diff)
## t = -3.3582, df = 29, p-value = 0.002208
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -27.621617 -6.711716
```

```
## sample estimates:
## mean of x
## -17.16667
t.test(tapply(v.dat[, "Vegetation.cover"], v.dat[, "Tree.Pair"], diff))
##
##
    One Sample t-test
##
## data: tapply(v.dat[, "Vegetation.cover"], v.dat[, "Tree.Pair"], diff)
## t = -7.2026, df = 29, p-value = 6.269e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -28.67505 -15.99162
## sample estimates:
## mean of x
## -22.33333
Both plant richness and Shannon's Diversity index were significantly affected by moth susceptibility.
v.rich <- apply(v.com, 1, function(x) sum(sign(x)))</pre>
v.shan <- apply(v.com, 1, diversity)</pre>
t.test(tapply(v.rich, l.dat[, "Tree.pairs"], diff))
##
##
    One Sample t-test
##
## data: tapply(v.rich, l.dat[, "Tree.pairs"], diff)
## t = -7.477, df = 29, p-value = 3.062e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -1.6555988 -0.9444012
## sample estimates:
## mean of x
##
        -1.3
t.test(tapply(v.shan, l.dat[, "Tree.pairs"], diff))
##
    One Sample t-test
##
##
## data: tapply(v.shan, l.dat[, "Tree.pairs"], diff)
## t = -4.2192, df = 29, p-value = 0.00022
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.4386895 -0.1522394
## sample estimates:
## mean of x
## -0.2954645
```

This is a multivariate analysis of the plant community response to moth susceptibility (PERMANOVA). This analysis uses a modified Bray-Curtis Dissimilarity metric, which permits the inclusion of quadrats that had no plants in them. The analysis also accounts for the paired structure of the data (i.e. pairs of moth susceptible and resistant trees).

Here are the results of the multivariate plant community response.

kable(ptab.v.moth)

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	5.174376	0.3081168	25.82917	0.001
Residual	58	11.619181	0.6918832	NA	NA
Total	59	16.793557	1.0000000	NA	NA

Here are the results of the multivariate plant community response after relativizing by species max.

kable(ptab.v.moth.rel)

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	5.989174	0.288048	23.46617	0.001
Residual	58	14.803100	0.711952	NA	NA
Total	59	20.792275	1.000000	NA	NA

Do light or rock cover influence plant communities?

Light has a strong effect on the plant community. Litter also has an effect but it is small and marginally significant.

kable(ptab.v.env)

	Df	SumOfSqs	R2	F	Pr(>F)
Lightaverage	1	2.8692870	0.1708564	12.696810	0.001
Litter	1	0.6890028	0.0410278	3.048889	0.049
Big.rocks	1	0.3621592	0.0215654	1.602582	0.189
Residual	56	12.6551530	0.7535719	NA	NA
Total	59	16.7935571	1.0000000	NA	NA

kable(ptab.v.env.rel)

	Df	SumOfSqs	R2	F	Pr(>F)
Lightaverage	1	3.2173963	0.1547400	11.469106	0.001
Litter	1	0.7307945	0.0351474	2.605075	0.061
Big.rocks	1	0.5197916	0.0249993	1.852910	0.138
Residual	56	15.7095234	0.7555462	NA	NA
Total	59	20.7922745	1.0000000	NA	NA

After controlling for the effect of light, the effect of litter is no longer significant.

kable(ptab.v.env.seq)

	Df	SumOfSqs	R2	F	Pr(>F)
Lightaverage	1	3.2765116	0.1951053	14.498809	0.001
Litter	1	0.4997333	0.0297574	2.211358	0.103
Big.rocks	1	0.3621592	0.0215654	1.602582	0.189
Residual	56	12.6551530	0.7535719	NA	NA
Total	59	16.7935571	1.0000000	NA	NA

kable(ptab.v.env.rel.seq)

	Df	SumOfSqs	R2	\mathbf{F}	Pr(>F)
Lightaverage	1	3.8762571	0.1864278	13.81776	0.001
Litter	1	0.6867025	0.0330268	2.44790	0.059
Big.rocks	1	0.5197916	0.0249993	1.85291	0.138
Residual	56	15.7095234	0.7555462	NA	NA
Total	59	20.7922745	1.0000000	NA	NA

• Indicator species

```
## Warning in apply(do.call(rbind, lapply(ind.spp.v, unlist)), 2, as.numeric): NAs
## introduced by coercion
```

Warning in apply(do.call(rbind, lapply(ind.spp.v, unlist)), 2, as.numeric): NAs
introduced by coercion

Warning in apply(do.call(rbind, lapply(ind.spp.v, unlist)), 2, as.numeric): NAs
introduced by coercion

There are two species that are responding to moth susceptibility, Apahe plume and Asteraceae ovales.

```
kable(isp.all.v[, 1:6], digits = 4)
```

	\mathbf{t}	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Apache.plume	-4.6010	29	0.0007	-10.2667	-14.8304	-5.7029
Asteraceae.ovales	-3.9581	29	0.0020	-8.1333	-12.3360	-3.9307
Rhus.trilobata	-1.8410	29	0.1869	-3.1667	-6.6847	0.3514
Rabbit.brush	-1.0000	29	0.3256	-0.6667	-2.0302	0.6968
Avena	-1.7951	29	0.1869	-0.2000	-0.4279	0.0279
Juniperus.monosperma	-1.0000	29	0.3256	-0.1667	-0.5075	0.1742
Plante.grise.allongée	-1.0000	29	0.3256	-0.1000	-0.3045	0.1045
Scarlet.glia	-1.0000	29	0.3256	-0.0667	-0.2030	0.0697
Pinus.edulis.R	1.0000	29	0.3256	0.3333	-0.3484	1.0151

There is no significant multivariate correlation between the veg and saxicole communities, regardless of whether the community data are relativized. This is likely a result of the two communities responded to different variables with low correlation (i.e. rocks = saxicoles and light = plants).

```
v.d <- vegdist(v.com.ds)
1.d <- vegdist(com.ds)</pre>
mantel(v.d ~ 1.d)
        mantelr
                        pval1
                                     pval2
                                                   pval3
                                                            llim.2.5%
                                                                         ulim.97.5%
## -0.002762319 0.513000000
                               0.488000000 0.914000000 -0.034504235
                                                                       0.032707393
v.d <- vegdist(v.com.ds.rel)</pre>
1.d <- vegdist(com.ds.rel)</pre>
mantel(v.d ~ 1.d)
                     pval1
       mantelr
                                  pval2
                                               pval3
                                                       llim.2.5% ulim.97.5%
## 0.02328021 0.21200000 0.78900000 0.44300000 -0.01176642 0.05838093
```