Low-Rank 3D Tensor Completion

Marine Froidevaux

École Polytechnique Fédérale de Lausanne marine.froidevaux@epfl.ch

May 27, 2015

Overview

- Motivations
- Overview of algebraic tools
- 3 Description of the problem and algorithms
 - ALS
 - GeomCG
- 4 Examples

Motivations

- Movies
- Signal processing
- Multiple parameters approximation

Norm and matricization

• Generalization of Frobenius norm for $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times l_3}$:

$$\|\mathcal{X}\| = \sqrt{\sum_{i=1}^{l_1} \sum_{j=1}^{l_2} \sum_{k=3}^{l_3} x_{i,j,k}^2}$$

• Unfolding \mathcal{X} in the i^{th} dimension:

$$X_{(i)} \in \mathbb{R}^{I_i \times (I_j \cdot I_k)}, j \neq i, k \neq i, j$$

• *n*-mode product:

$$\mathcal{Y} = \mathcal{X} \times_n U \iff Y_{(n)} = UX_{(n)}$$

• n-rank of a tensor:

$$rank_n(\mathcal{X}) := rank \text{ of } X_{(n)}$$

Tucker Decomposition

• Core tensor $\mathcal{G} \in \mathbb{R}^{R_1 \times R_2 \times R_3}$, principal components in each mode $A_1 \in \mathbb{R}^{l_1 \times R_1}$, $A_2 \in \mathbb{R}^{l_2 \times R_2}$, $A_3 \in \mathbb{R}^{l_3 \times R_3}$:

$$\mathcal{X} = \mathcal{G} \times_1 A_1 \times_2 A_2 \times_3 A_3$$

• Higher-Order SVD: Find components that best capture the variation in mode-*n*, independently of other modes

Higher Order Singular Value Decomposition

```
 \begin{array}{l} \mathbf{procedure} \; \mathtt{HOSVD}(\mathbf{X}, R_1, R_2, \dots, R_N) \\ \quad \mathbf{for} \; n = 1, \dots, N \; \mathbf{do} \\ \qquad \qquad \mathbf{A}^{(n)} \leftarrow R_n \; \mathrm{leading} \; \mathrm{left} \; \mathrm{singular} \; \mathrm{vectors} \; \mathrm{of} \; \mathbf{X}_{(n)} \\ \quad \mathbf{end} \; \; \mathbf{for} \\ \qquad \qquad \mathbf{G} \leftarrow \mathbf{X} \times_1 \; \mathbf{A}^{(1)\mathsf{T}} \times_2 \; \mathbf{A}^{(2)\mathsf{T}} \dots \times_N \; \mathbf{A}^{(N)\mathsf{T}} \\ \qquad \qquad \mathrm{return} \; \mathbf{G}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)} \\ \mathbf{end} \; \mathbf{procedure} \\ \end{array}
```


Problem as in ALS

- Each frame is divided into Macro-Blocks (MBs) of size N
- For each incomplete Macro-Block P^0 , look for K-1 complete MBs minimizing

$$S_i = \|P_{\Omega}^0 - P_{\Omega}^i\|$$

• Stack all selected P^i into a tensor \mathcal{X} with P^0 at the top.

Alternating Least Square Algorithm

- 1. Form \mathcal{X} from $P^{0,\dots,K-1}$ using Block Matching criteria
- 2. $(\boldsymbol{\mathcal{X}}(:,:,1))_{\overline{\Omega}} = \left(\frac{1}{K-1} \sum_{i=1}^{K-1} \boldsymbol{P}^i\right)_{\overline{\Omega}}$
- 3. Choose mode ranks $\{R_1, R_2, R_3\}$, tolerance σ ; Initialize $A^{(1)}, A^{(2)}, A^{(3)}$
- 4. $\mathbf{A}^{(3)}(:,1) = [1,...,1]^T / K$
- 5. for n = 1,2,3

$$\mathbf{\mathcal{Y}} = \mathbf{\mathcal{X}} \times_1 ... \times_{n-1} \mathbf{A}^{(n-1)T} \times_{n+1} \mathbf{A}^{(n+1)T} ...$$

 $Y_n \leftarrow \text{unfold } \mathbf{\mathcal{Y}} \text{ in mode } n$

 $A^{(n)} \leftarrow \text{first } R_n \text{ principal component of } Y_n$

end

6.
$$G = X \times_1 A^{(1)T} \times_2 A^{(2)T} \times_3 A^{(3)T}$$

- 7. $\mathbf{X}_l = \mathbf{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \mathbf{A}^{(3)}$
- 8. If $\|\mathcal{X}_l \mathcal{X}\|_F \le \sigma$ STOP, otherwise return to Step 4.
- 9. Recover missing area in P^0 : $(P^0)_{\overline{\Omega}} = (\mathcal{X}_l(:,:,1))_{\overline{\Omega}}$

GeomCG

Optimization on the manifold

Movie reconstruction

Macro-Block size: N=8

$$\text{Relative error} = \frac{\|F_{\textit{original}} - F_{\textit{restored}}\|}{\|F_{\textit{original}}\|}$$

Importance of initial guess

Inpainting

 $[\]frac{1}{2} \mathsf{http:} / / \mathsf{www.briqueterie\text{-}chimot.fr/wpcproduct/la-brique\text{-}rouge\text{-}chimot/}$

 $^{{}^{2} \}text{http://images.forwallpaper.com/files/images/0/0249/0249d4f1/113975/winter-park-snow-bench.jpg}$

Comparison with GeomCG

Compare results for rank 1

D.T. Nguyen, M.D. Dao, T.D. Tran, *The John Hopkins University*, 2011 Error Concealment Via 3-Mode Tensor Approximation

18th IEEE Conference on Image Processing

D.Kressner, M. Steinlechner, B.Vandereycken, École Polytehcnique Fédérale de Lausanne, 2013

Low-Rank Tensor Completion by Riemannian Optimization

T.G. Kolda, B.W. Bader, *Sandia National Laboratories*, 2009 Tensor Decomposition and Applications

SIAM Review, Vol.51, No.3, pp. 455-500