

Chapter 4 Part II Time-Dependent Failure Models

The Normal Distribution

The Normal Probability Density Function

$$f(t) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \frac{(t-\mu)^2}{\sigma^2}}, -\infty < t < \infty$$

NORMAL PDF CURVES

$$MTTF = \mu$$

$$Std \ Dev = \sigma$$

Chapter 4

Normal Distribution - Applications

- Tool failures
- Brake lining wear
- Tire tread wear

It's the additive effect of temperature variation, material wear, friction, and other random stresses over time, isn't it?.

Finding Normal Cumulative Probabilities

If T is normally distributed, then let
$$z = \frac{T - \mu}{\sigma}$$

Then z has a normal distribution with a mean of 0 and a standard deviation of 1. The PDF for z is given by

Its cumulative distribution is then given by $\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$

$$\Pr\{Z \le z\} = \Phi(z) = \int_{-\infty}^{z} \phi(z') dz'$$

z is the standardized normal deviate

Normal Probability Tables

Z	Φ (Z)	1-Φ(Z)	
-0.55000	0.29116	0.70884	
-0.54000	0.29460	0.70540	
-0.53000	0.29806	0.70194	
-0.52000	0.30153	0.69847	
-0.51000	0.30503	0.69497	$- \Pr{Z <5} = .30854$
-0.50000	0.30854	< 0.69146	11(2 < .5) = .50054
-0.49000	0.31207	0.68793	
-0.48000	0.31561	0.68439	$\Pr\{Z >46 = .67724$
-0.47000	0.31918	0.68082	
-0.46000	0.32276	0.67724	
-0.45000	0.32636	0.67364	
-0.44000	0.32997	0.67003	

Normal Reliability Function

$$R(t) = \int_{t}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt'$$

$$R(t) = \Pr\{T \ge t\} = \Pr\left\{\frac{T - \mu}{\sigma} \ge \frac{t - \mu}{\sigma}\right\}$$

$$= \Pr\left\{z \ge \frac{t - \mu}{\sigma}\right\} = 1 - \Phi\left(\frac{t - \mu}{\sigma}\right)$$

Example Problem - Normal

The time to failure of a fan belt is normally distributed with a MTTF = 220 (in hundreds of vehicle miles) and a standard deviation of 40 (in hundreds of vehicle miles).

$$R(100) = 1 - \Phi[(100-220)/40] = 1 - \Phi(-3) = .99865$$

 $R(200) = 1 - \Phi[(200-220)/40] = 1 - \Phi(-.5) = .69146$
 $R(300) = 1 - \Phi[(300-220)/40] = 1 - \Phi(2) = .02275$
 $R(100|200) = R(300) / R(200) = .02275 / .69146 = .0329$
note: both the median and mode = MTTF = 22,000 miles

Chapter 4

Normal Example problem - design life

A new fan belt is developed from a higher grade of material. It has a time to failure distribution which is normal with a mean of 35,000 vehicle miles and a standard deviation of 7,000 vehicle miles. Find its designed life if a .97 reliability is desired.

```
R(t) = 1 - \Phi[ (t - 350)/70] = .97; find t!
From the normal table, 1 - \Phi(-1.88) = .96995
Therefore; (t - 350) / 70 = -1.88
and t<sub>.97</sub> = 350 - 1.88 (70) = 218.4 or 21,840 vehicle miles
```

Chapter 4

Student Exercise - Normal

The operating hours until failure of a halogen headlamp is normally distributed with a mean of 1200 hr. and a standard deviation of 450 hr.

Find:

- a. The 5 year reliability if normal driving results in the use of the headlamp an average of .2 hr. a day.
- b. The .90 design life in years.

Student exercise - solution

a. t = .2 hr./da. x 365 da./yr. x 5 yr. = 365 hr.R(365) = 1 - F[(365 - 1200)/450]= 1 - F[-1.86] = .96856b. $R(t_{90}) = .90$ or $1 - F[(t_{.90} - 1200)/450] = .90$ $(t_{90} - 1200) / 450 = -1.28$ $t_{90} = 1200 - 1.28 (450) = 624 \text{ hr.}$ or $t_{90} = 624 / (.2 \times 365) = 8.5 \text{ yr}.$

The Lognormal Failure Process

Let T = a random variable, the time to failure. If T has a lognormal distribution, then the logarithm of T has a normal distribution.

Lognormal Density Function

$$f(t) = \frac{1}{\sqrt{2\pi}s \ t} e^{-\frac{1}{2s^2} \left(\ln \frac{t}{t_{MED}}\right)^2}; t \ge 0$$

 t_{med} = median time to failure s = shape parameter

Lognormal/Normal Relationship

Given T is a lognormal random variable, then

Distribution

Lognormal

Log T Normal

Mean

$$t_{\mathrm{med}} e^{s^2/2}$$

ln t_{med}

Variance

$$t_{med}^2 e^{s^2} [e^{s^2} - 1]$$

 s^2

Mode

$$t_{\text{mode}} = \frac{t_{\text{med}}}{e^{s^2}}$$

ln t_{med}

Lognormal Failure & Reliability Distribution

$$F(t) = P\{T \le t\} = P\{\ln T \le \ln t\}$$

$$= P\left\{\frac{\ln T - \ln t_{MED}}{s} \le \frac{\ln t - \ln t_{MED}}{s}\right\}$$

$$= P\left\{z \le \frac{1}{s} \ln \frac{t}{t_{MED}}\right\} = \Phi\left(\frac{1}{s} \ln \frac{t}{t_{MED}}\right)$$

$$R(t) = 1 - \Phi\left(\frac{1}{s} \ln \frac{t}{t_{MED}}\right)$$

Lognormal Hazard Rate Function

Chapter 4 17

Lognormal Hazard Rate Function

1.0

8.

.6

.4

Mode

3.7

5.3

7.0

8.5

MTTF

16.5

13.8 12.0

10.8

Max $\lambda(t)$ 7

10

16

20

$$t_{\text{med}} = 10$$

Design Life

$$I - \Phi\left(\frac{1}{s} \ln \frac{t_R}{t_{med}}\right) = R$$
Find z_{1-R} such that:
$$\Phi(z_{1-R}) = I - R$$

$$\frac{1}{s} \ln \frac{t_R}{t_{med}} = z_{1-R}$$

$$\Phi\left(\frac{1}{s} \ln \frac{t_R}{t_{med}}\right) = I - R$$

$$t_R = t_{med} e^{s z_{1-R}}$$

Lognormal Example

The failure distribution of an exhaust system is lognormal with $t_{med} = 50,000$ vehicle miles and s = .8. Therefore:

- a. $MTTF = 50,000 e^{.64/2} = 68,856 mi$.
- b. $t_{\text{mode}} = 50,000 / e^{.64} = 26,640 \text{ mi.}$
- c. variance = $50,000^2$ e^{.64} [e^{.64} 1] and the standard deviation = 65,195 mi.

Chapter 4

Lognormal Example (continued)

$$R(10,000) = 1 - \Phi\left(\frac{1}{.8}\ln\frac{10,000}{50,000}\right) = 1 - \Phi(-2.01) = .9779$$

$$R(20,000) = I - \Phi\left(\frac{1}{.8}\ln\frac{20,000}{50,000}\right) = 1 - \Phi(-1.15) = .8749$$

$$R(10,000 \mid 10,000) = R(20,000) / R(10,000) = .8749 / .9770 = .8955$$

Example (continued)

Find the design life corresponding to a 90 percent reliability.

$$R(t_{.9}) = 1 - \Phi\left(\frac{1}{.8}\ln\frac{t_{.9}}{50,000}\right) = .90$$

from the normal probability tables:

$$\left(\frac{1}{.8}\ln\frac{t_{.9}}{50,000}\right) = -1.285$$

or
$$t_{.9} = 50,000 e^{-1.285(.8)} = 17,886 mi$$
.

Class Exercise - Lognormal

Reliability testing of the new 1.6 liter automotive engine has resulted in a time to failure distribution which is lognormal with $t_{med} = 100,000 \text{ mi.}$ and s = .70. Find:

- a. R(36,000 mi.)
- b. MTTF and Std. Dev.
- c. R(100,000|36,000)
- d. t_{.95}

Class Exercise - solution

- a. $R(36,000) = 1 \Phi[(1/.7)ln(36,000/100,000]$ = $1 - \Phi[-1.46] = .92786$
- b. MTTF = $100,000 e^{.49/2} = 127,762 mi$. Var = $100,000^2 e^{.49} [e^{.49} -1] = 1.032 x 10^{10}$ Std Dev = 101,594 mi.
- c. R(64,000|36,000) = R(100,000)/R(36,000) = 5. / .92786 = .539

Class Exercise - solution

d.
$$R(t_{.95}) = .95$$

 $1 - \Phi[(1/.7) \ln(t_{.95} / 100,000)] = .95$
 $(1/.7) \ln(t_{.95} / 100,000) = -1.645$
 $t_{.95} = 100,000 e^{-1.645 \times .7} = 31,616 mi.$

general approach:

$$t_R = t_{med} e^{z \times s}$$

The Gamma Distribution

$$f(t) = \frac{t^{\gamma - 1} e^{-t/\alpha}}{\alpha^{\gamma} \Gamma(\gamma)} \quad \text{for } \gamma, \alpha > 0 \text{ and } t \ge 0$$

γ - shape parameter

α - scale parameter

When $\gamma = 1$, the resulting distribution is exponential with a mean equal to α .

The Density Function Graphed

Chapter 4

The Reliability Function

$$F(t) = \int_0^t \frac{t'^{\gamma-1} e^{-t'/\alpha}}{\alpha^{\gamma} \Gamma(\gamma)} dt' = \frac{1}{\Gamma(\gamma)} \int_0^{t/\alpha} y^{\gamma-1} e^{-y} dy = \frac{I\left(\frac{t}{\alpha}, \gamma\right)}{\Gamma(\gamma)}$$
where $y = t'/\alpha$ and $I\left(\frac{t}{\alpha}, \gamma\right) = \int_0^{t/\alpha} y^{\gamma-1} e^{-y} dy$

Therefore
$$R(t) = 1 - \frac{I\left(\frac{t}{\alpha}, \gamma\right)}{\Gamma(\gamma)}$$

The Hazard Rate Function

Shape parameter	Hazard rate function
$0 < \gamma < 1$	DFR
$\gamma = 1$	CFR
$\gamma > 1$	IFR

Distribution Characteristics

$$MTTF = \gamma \alpha$$

$$\sigma^{2} = \gamma \alpha^{2}$$

$$t_{\text{mod } e} = \begin{cases} \alpha(\gamma - 1) \text{ for } \gamma > 1 \\ 0 \text{ otherwise} \end{cases}$$

EXAMPLE 4.11

Failures of a critical machine part due to cyclical vibration has a gamma distribution with a shape parameter of 2.3 and a scale parameter of 2,000 operating hours. Then

MTTF =
$$\gamma \alpha$$
 = (2.3) (2,000) = 4600 hr

$$\sigma = \sqrt{\gamma \alpha^2} = \sqrt{(2.3)(2,000)^2} = 3033.15 \text{ hr}$$

$$t_{\text{mod }e} = \alpha (\gamma - 1) = 2,000 (2.3 - 1) = 2,600 \text{ hr}$$

Using the Excel Chapter 4 template for the gamma distribution the median is found to be 3,953.25 hr and R(1000) = .9463

Summary

Reliability

MTTF

Exponential

$$R(t) = e^{-\lambda t}$$

 $1/\lambda$

Weibull

$$R(t) = e^{-\left(\frac{t}{\theta}\right)^{\mathrm{B}}}$$

 $\theta \Gamma \left(1 + \frac{1}{\beta}\right)$

Min Extreme Value $R(t) = \exp \left| -e^{\frac{(t-\mu)}{\alpha}} \right|$

 μ – .577215665 α

Normal

$$R(t) = 1 - \mathcal{D}\left(\frac{t - \mu}{\sigma}\right)$$

 μ

Lognormal

$$R(t) = 1 - \mathcal{D}\left(\frac{1}{s} \ln \frac{t}{t_{med}}\right)$$

 $t_{med} e^{s^2/2}$

Gamma

$$R(t) = 1 - \frac{I\left(\frac{t}{\alpha}, \gamma\right)}{\Gamma(\gamma)}$$

αγ

That's all folks!

I cannot wait to work the Chapter 4 problems and to start reading Chapter 5!

Chapter 4