Esame di Calcolo delle Probabilità e Statistica (per studenti di

Informatica)

Università degli studi di Bari Aldo Moro Docenti: Simone Del Vecchio, Stefano Rossi

22-09-2023

Esercizio 1. Si vuole effettuare un sondaggio per determinare la proporzione θ degli studenti che hanno copiato in un esame almeno una volta nella vita. Visto che gli studenti non sono inclini a rispondere in modo onesto al riguardo, si utilizza il seguente stratagemma. Ad ogni intervistato viene data una moneta truccata con probabilità che esca testa pari a p ed inoltre con scritto "SI" sul lato della testa e "NO" sul lato della croce. Viene chiesto all'intervistato di lanciare la moneta senza rivelarne il risultato e di dichiarare soltanto se il risultato ottenuto ("SI" o "NO") è concorde con la propria risposta alla domanda.

Sia ora X_i la variabile casuale che vale 1 se l'i-esimo intervistato dichiara che il risultato della moneta è concorde con la propria risposta, 0 altrimenti.

- (1) Qual'è la probabilità che X_i sia pari ad 1?
- (2) Determinare la distribuzione di $\sum_{i=1}^{n} X_i$ e il valore atteso $E(\sum_{i=1}^{n} X_i)$.
- (3) Costruire uno stimatore corretto per il parametro θ che sia una funzione delle statistiche X_i , ovvero che tenga conto del sondaggio effettuato (suggerimento: usare il punto precedente.)
- (4) Spiegare per quale motivo ai fini del sondaggio non è conveniente usare una moneta equilibrata $(p = \frac{1}{2})$.

Esercizio 2. Per ogni valore dei parametri $\tau, C \in \mathbb{R}$ con $\tau > 0$, si consideri la funzione $f : \mathbb{R} \to \mathbb{R}$ data da

$$f(x) := Ce^{-\frac{(x-2)^2}{2\tau^2}}\chi_{(-\infty,2)}(x)$$

per $x \in \mathbb{R}$, dove $\chi_{(-\infty,0)}$ è la funzione caratteristica dell'intervallo $(-\infty,0)$.

- (1) Determinare il valore di C per il quale f è la densità di una certa variabile aleatoria X.
- (2) Determinare lo stimatore di massima verosimiglianza di τ relativo al campione $\{X_1, X_2, \cdots, X_n\}$ di rango n distribuito come X.
- (3) Determinare la legge di $(X-2)^2$ quando $\tau=1$ e dire se si tratta di una legge notevole.
- (4) Determinare la legge della variabile aleatoria (quando $\tau = 1$)

$$Y := \sum_{i=1}^{n} (X_i - 2)^2.$$

Esercizio 3. Un ingegnere ha confrontato l'output di due differenti processi campionando indipendentemente da ciascuno di essi: ha estratto dal processo X un campione di numerosità n=64, da cui ha ottenuto una media campionaria $\bar{x}=12.5$; ha estratto dal processo Y un campione di numerosità m=100, da cui ha ottenuto una media campionaria $\bar{y}=11.9$. I due processi hanno deviazioni standard conosciute $\sigma_X=2.1$ e $\sigma_Y=2.2$.

Al livello di significatività $\alpha = 5\%$ l'ingegnere potrebbe concludere che i processi presentano output medi diversi? Calcolare anche il *p-value* del test usato per rispondere alla domanda precedente.