Problem 1:3 P(cld, x,

 $P(c|d, x, 7s) = \alpha P(c, d, x, 7s)$ $= \alpha \sum_{p} P(c, d, x, 7s, p)$

~ P(P)P(75)P(C1P,75)P(X1C)P(d1C)+ ~ P(7P)P(75)P(C17P,75)P(X1C)P(d1C)

 $\propto (0.1 \times 0.7 \times 0.02 \times 0.5 \times 0.65 +) = \propto \times 0.000855855$

P(901d, x, 75) =

« P(P) P(75) P(C1)P;75) P(X17c) P(d17c)+

~ P(7p) P(7s) P(7c17p,7s) P(x17c) P(dte)=

 $\alpha \left[\begin{array}{c}
0.1 \times 0.7 \times 0.98 \times 0.2 \times 0.3 + \\
0.9 \times 0.7 \times 0.999 \times 0.2 \times 0.37
\end{array} \right] = \alpha \times 0.0418482$

Thus, a = 23,4

P(c/d, x, 75) = 0.02

Problem 2°

1) Model

Transition model:

X	Pax - nolvi			
00	P(X = 00 Xt)	P(X+1=01 (X+)	P(X+1=10 X+)	PCX+1=M(Xt)
01	0.25	0.25	0.00	0.00
10/	0.00	0.50	0.25	0.00
1	0.00	0.25	0,50	0.25
		0.00	0.25	0.75

Observation models

[Xt	P(e=1 Xt)	P(e=0 Xt)
001	0	1
111	1	0

2) Initial belief:
$$P(X_0) = [0.25, 0.25, 0.25]$$

Belief at time $t = 1$: $P(X_0)$

$$P(X_{1} = 00) = P(e_{1} | X_{1}) \sum_{x_{0}} P(x_{0}) P(x_{1} | X_{0})$$

$$= x_{0} \cdot 25 \times 0.75 + 0.25 \times 0.25 + 0 + 0$$

$$= x_{0} \cdot 25$$

$$P(x_{1}=01|e_{1}) = x P(e_{1}|x_{1}=01) \leq P(x_{0}) P(x_{1}=01|x_{0})$$

$$= x \times \{1 \times [0.25 \times 0.25 + 0.25 \times 0.5 + 0.25 \times 0.25]$$

$$= x \times 0.25$$

$$P(x_{1} = 10 | e_{1}) = P(e_{1}|x_{1} = 10) \times \sum_{x_{0}} P(x_{0}) P(x_{1} = 10|x_{0}) = 0$$

$$P(x_{1} = 111|e_{1}) = \alpha P(e_{1}|x_{1} = 11) \times \sum_{x_{0}} P(x_{0}) P(x_{1} = 11|x_{0})$$

$$= \alpha \times 0$$

$$= 0$$
Thus $\alpha = \frac{1}{2}$

$$P(x_{1}) = [0.50, 0.50, 0.0, 0.0]$$

P(X21e, P)=AP(P1X), EP(X1e) P(X1X) P(x=00|e,e)=dx1x[0.5x0.75+0.5x0.25] = X × 0.5 P(25=01/6,6)= x 1x [0.5x0.25+0.50x0.50] = Xx 0.375 P(x=10/2, C) = 0 x 0 = 0 P(2=11/2, 2) = X × 0 = 0 $\alpha = \frac{1}{0.875}$

 $P(\chi_{2}|e_{1},e_{2}) = [0.57,0.43,0.0,0.0]$

3) Smoothing: P(x, 1e, e) = x P(e, 1x,) P(x, 1e,) = x.P(x,19,) \ P(\x\1x))P(\x\1x) P(e2 | X=00) = 0.75 x 1 + 0.25 x 1 + 0 + 0 P(2 |X=01) = 0.25 × 1 + 0.50 × 1 + 025 × 0 P(X=00 | e, e) = x 1 x 0.5 P(X=01/e, C2) = xx0.75x0.5

 $\alpha = \frac{1}{0.875}$

Thus P(X, 1e, e2) = [0.57, 0.43, 0.0, 0.0]

4) Viterbi Algorithm:

State	ŧ=0	t=1 1	
00	0.25		t=2
01		0. 1875 × 1 = 0.1875 man	0.140625
11		×0=0	٠
H	0.25	-x0=0	

Most likely sequence is: $(0,0) \rightarrow (0,0) \rightarrow (0,0)$

Frediction:

$$P(e_3 | e_n e_2) = \sum_{\chi_2} P(\chi_1 | e_n, \xi_2) P(e_3 | \chi_2)$$

$$P(e_3 | \chi_2) = \sum_{\chi_2} P(\chi_3 | \chi_2) P(g_3 | \chi_2)$$

$$P(e_3 | \chi_2) = \sum_{\chi_2} P(\chi_3 | \chi_2) P(g_3 | \chi_3)$$

 $= \left[0.75,0 + 0.25,0 + 0.1 + 0.1 + 0.1 + 0.25,0 + 0.5,0 + 0.25,1 + 0.1 - 0.0 + 0.25,0 + 0.25,1 + 0.2$

P(B16, C2) = 0x0.57+0.25x0.43+0.45x0+1x0=0.1075

1)
$$V^{T}(s) = R(s,a) + 8 \sum_{s'} T(s,a,s') V^{T}(s')$$

2) State
$$| \frac{1}{4} | \frac{1$$

State	Action 1	Action 2
A	$\int 0 + 1 \times 0 = 0$	-1+1×(0.5×0+0.5×
B	5 + 1×10= 15	0+1×10=10

Problem 4:

- a) False
- b) True
- c) Palse
- d) True
- e) Flase
- f) True
- g) True
- h) False
- i) True
- i) False

Problem 3:
4) Bellman Equation for a stochastic policy
$$V^{T}(s) = \sum_{\alpha} \pi(s,\alpha) \times \left(R(s,\alpha) + 8 \sum_{s'} T(s,\alpha,s') \right) V^{T}(s')$$