

Jamie L. Zimmerman

Introduction

Argument

Architecture

Result

Concluding Thoughts

Using Statistical Distributions to Generate Random Test Data

Jamie L. Zimmerman

Robert D. Clark Honors College Department of Computer and Information Science University of Oregon

25 May 2018

Overview

Jamie L. Zimmerman

Introduction

Argument

Architecture

Result

- 1 Introduction
- 2 Proposed Argument
- 3 Architecture
- A Results
- **6** Concluding Thoughts

What is Software Testing?

Jamie L. Zimmerman

Introduction

Argument

Architecture

Dooulto

Concluding Thoughts

Conclusion --> THEORY <-- Conslusion

Why is it so hard?

Jamie L. Zimmerman

Introduction

Proposed Argument

Alcillecture

Results

Concluding Thoughts

```
files/xoklpenvi/xvrr/xmnvinm/rrm.exe
files/xoklpenvi/xvrr/xmnvinm/vvfpm.c
files/xoklpenvi/xvrr/xmnvinm/vvfpm.h
files/xoklpenvi/xvrr/xmnvinm/vvfpm.o
files/xoklpenvi/xvrr/xmnvinm/xhavi.c
files/xoklpenvi/xvrr/xmnvinm/xhavi.h
files/xoklpenvi/xvrr/xmnvinm/xhavi.o
files/xoklpenvi/xvrr/xn/dcwhu.c
files/xoklpenvi/xvrr/xn/dcwhu.h
files/xoklpenvi/xvrr/xn/dmacv.c
files/xoklpenvi/xvrr/xn/dmacv.h
files/xoklpenvi/xvrr/xn/hrkwf.c
files/xoklpenvi/xvrr/xn/hrkwf.h
files/xoklpenvi/xvrr/xn/isola.c
files/xoklpenvi/xvrr/xn/isolg.h
files/xoklpenvi/xvrr/xn/itsvl.c
files/xoklpenvi/xvrr/xn/itsvl.h
files/xoklpenvi/xvrr/xn/iwchg.c
files/xoklpenvi/xvrr/xn/iwchg.h
files/xoklpenvi/xvrr/xn/ogeob.c
files/xoklpenvi/xvrr/xn/ogeob.h
files/xoklpenvi/vi/bbg.exe
files/xoklpenvi/vi/afmci.c
files/xoklpenvi/vi/afmci.h
files/xoklpenvi/vi/afmci.o
files/xoklpenyj/yj/witop.c
files/xoklpenvi/vi/witop.h
files/xoklpenyj/yj/witop.o
files/xaftrpg/cru/lixav.c
files/xqftrpq/cru/lixav.h
files/xqftrpq/cru/lixav.o
files/xqftrpq/cru/rklnx.c
files/xqftrpq/cru/rklnx.h
files/xaftrpa/cru/rklnx.o
files/xqftrpq/cru/sen.exe
files/xaftrpa/cru/wtmvn.c
files/xqftrpq/cru/wtmyn.h
files/xqftrpq/cru/wtmyn.o
files/xqftrpq/fay.tgz
files/xqftrpq/qcq.tqz
files/xqftrpq/vs/lpfqt.h
files/xqftrpq/vs/qywyn.c
```

files/xqftrpq/vs/qywyn.h

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

D 1.

Concluding Thoughts

Applications : Terminal - cis415@cis41... 15:37 cis415 Terminal - cis415@cis415-arch:~/uoregon-cis415/project2 File Edit View Terminal Tabs Help 📭 📸 🖷 🖺 🔾 💠 🖼 🧇 🦠 🐻 Info: application 7 has queued write to sector 3592 (blocking) Info: application B has acquired a sector descriptor. Info: application 8 is queueing write to sector 3987 Info: application 8 has queued write to sector 3987 (blocking) Info: application 1 has acquired a sector descriptor. Info: application 1 is queueing write to sector 1175 Info: application 1 has queued write to sector 1175 (nonblocking) [Device> sector 4004 successfully written by process 2 Info: application 9 has acquired a sector descriptor. Info: application 9 is queueing read of sector 3854 Info: application 9 has gueued read of sector 3854 (blocking) Info: application 5 has acquired a sector descriptor. Info: application 5 is queueing write to sector 1111 Info: application 5 has gueued write to sector 1111 (nonblocking) Info: application 3 has acquired a sector descriptor. Info: application 3 is queueing read of sector 1537 Info: application 3 has gueued read of sector 1537 (nonblocking) Info: application 9 has acquired a sector descriptor. Info: application 9 is queueing write to sector 3402 Info: application 9 has gueued write to sector 3402 (blocking) Info: application B has acquired a sector descriptor. Info: application 8 is queueing read of sector 3175 Info: application 8 has queued read of sector 3175 (blocking) Info: application 3 (writer) write to sector 2192 was successful [Device> sector 1091 successfully written by process 10 Info: application 5 (reader) read from sector 1477 was successful Info: application 5 (reader) has released a sector descriptor. Info: application 6 has acquired a sector descriptor. Info: application 6 is queueing read of sector 821 Info: application 6 has queued read of sector 821 (nonblocking) Info: application 2 (writer) write to sector 4004 was successful [Device> sector 3592 successfully written by process 7 Info: application 10 (reader) read from sector 1331 was successful Info: application 10 (reader) has released a sector descriptor. Info: application 2 has acquired a sector descriptor. Info: application 2 is queueing read of sector 117 Info: application 2 has gueued read of sector 117 (nonblocking) [Device> sector 3854 successfully read by process 9 [Device> sector 1537 successfully read by process 3 [Device> sector 3987 successfully written by process 8 Info: application 7 (writer) write to sector 3592 was successful

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Concluding

too big.csv tt to the first term of the f SmartArt Formulas ^ 0 ▼ 12 ▼ A* A▼ = abc ▼ Wrap Text ▼ General **BB** B I U → 🐧 - 🗘 - 🗏 Ξ Ξ 🥶 🕮 Marge - 🥞 - % , 😘 🚜 Delete Thomas Aav D G H I J K Timestamp Student Nam Your DuckID Python experies Java experies lavascript ex C experience C++ experier PHP experier HTML experier SQL experier Bash/Unix ex Monday Tuesday Wednesday Thursday 02:39.4 ICKWGvMSXi wqsqi 10:00 - 12:00 None 12:00 - 2:00; 10:00 - 12:00 degmx; Ilhbn 02:39.4 VrDMFHqNb drrba 4 12:00 - 2:00: 12:00 - 2:00 2:00 - 4:00 12:00 - 2:00: 2:00 - 4:00 reliek: eptcx 02:39.4 NAVdAxayXY kis)v 4 4:00 - 6:00 12:00 - 2:00; 10:00 - 12:00 None 12:00 - 2:00 |wosq; prylc 02:39.4 JpczzZiuPN olawm 2 2:00 - 4:00:4 10:00 - 12:00 12:00 - 2:00; 12:00 - 2:00; None hazmi: rbcno 02:39.4 bUcFthbCzE zfows 0 10:00 - 12:0(2:00 - 4:00:4 10:00 - 12:0(2:00 - 4:00 | 12:00 - 2:00: uviwk: ueril 02:39.4 MbuNCldBv zjogo 5 12:00 - 2:00; 10:00 - 12:0(10:00 - 12:0(10:00 - 12:0(12:00 - 2:00; gcvni; owhjm 02:39.4 YVTQIvoDbi rtmdm 12:00 - 2:00: None 2:00 - 4:00:4 fzfec: nmzeo 02:39.4 eloVHROfVIv room 0 10 00 - 12 00 12 00 - 2 00 | 2 00 - 4 00 4 2 00 - 4 00 | 10 00 - 12 00 tyrus rowia 3 12:00 - 2:00: 12:00 - 2:00: 10:00 - 12:0(10:00 - 12:0(2:00 - 4:00:4 sryoe; withsh 02:39.4 SPaBWwSUY cavaf 02:39.4 fPHCIplwPh difon 3 10:00 - 12:00 10:00 - 12:00 12:00 - 2:00: 12:00 - 2:00: 10:00 - 12:00 hfomi: xirbi 02:39.4 gfKBedzeHY simuq 2:00 - 4:00 10:00 - 12:00 12:00 - 2:00; 12:00 - 2:00; nsagg; cqedp 02:39.4 wHQnPpIDID evdfr 4 4:00 - 6:00 12:00 - 2:00: 2:00 - 4:00 12:00 - 2:00: 10:00 - 12:00 ixkod: nzieh 02:39.4 sNetYCIZLL mrwjz 2 12:00 - 2:00; 10:00 - 12:00 2:00 - 4:00;4 10:00 - 12:00 12:00 - 2:00; caarr; nakmi 02:39.4 NytQUbUI ehvox 2 12:00 - 2:00: 12:00 - 2:00: 12:00 - 2:00: 12:00 - 2:00: 4:00 - 6:00 ktwmd: ufocd 02:39.4 WdFiXTcVt azike 5 12:00 - 2:00: 12:00 - 2:00: 10:00 - 12:00 2:00 - 4:00:4 12:00 - 2:00: uppen: zoete 02:39.4 GlsnXjiTuH aggfn 5 2:00 - 4:00;4 2:00 - 4:00 12:00 - 2:00; None 12:00 - 2:00; leyzr; aczfu 02:39.4 aRNeLyysSZ hiyau 12:00 - 2:00: 4:00 - 6:00 | 12:00 - 2:00: 10:00 - 12:00 wkswx: rdgea 02:39.4 UeLgelYEol pxide 12:00 - 2:00 10:00 - 12:00 12:00 - 2:00 10:00 - 12:00 ohlve; boxcs 02:39.4 vKueZbyLQc rvzzz 02:39.4 ZmLeHEsuFH cszbt 2 12:00 - 2:00 12:00 - 2:00; 12:00 - 2:00; 2:00 - 4:00;4 None 02:39.4 nOzialiUGy lywds 5 10:00 - 12:00 4:00 - 6:00 2:00 - 4:00 10:00 - 12:00 12:00 - 2:00; hdnfa; ptgrc 02:39.4 eXWzOOGSv dfxfc 5 12:00 - 2:00: 10:00 - 12:0(2:00 - 4:00:4 12:00 - 2:00: 12:00 - 2:00: dcsbk: nmwax 02:39.4 fUBSVKumSz omlph 1 12:00 - 2:00; 2:00 - 4:00;4 12:00 - 2:00 12:00 - 2:00; 12:00 - 2:00; gmrmo; mspjy 02:39.4 mvKNbHQNvvdewt 12:00 - 2:00: 12:00 - 2:00: 12:00 - 2:00: 12:00 - 2:00: oktti: vhrmc 02:39.4 tPnBkGrzKO enumd 4 200 - 400 1200 - 200 1000 - 120(200 - 400 200 - 400 utyrt lytti 3 12:00 - 2:00; 2:00 - 4:00;4 12:00 - 2:00; 2:00 - 4:00;4 12:00 - 2:00; fvtly; zfkng 02:39.4 dINEHUIzNO, epkil 02:39.4 ATYPamb0XE clyrs 3 12:00 - 2:00; 12:00 - 2:00; 12:00 - 2:00; None 12:00 - 2:00; mkwou; ofovu 02:39.4 cHibVhLyop rinxu 1 12:00 - 2:00: None 12:00 - 2:00: 10:00 - 12:00 12:00 - 2:00: dolob: itbot 02:39.4 VUsgWgGXFIzzwve 2 2:00 - 4:00;4 12:00 - 2:00; 12:00 - 2:00; 12:00 - 2:00; 12:00 - 2:00; prcux; nmcgi 02:39.4 ZVkuRptifh xbdec 2 10:00 - 12:00 10:00 - 12:00 12:00 - 2:00: 10:00 - 12:00 12:00 - 2:00: nracl: vdhaf 02:39.4 Gazt icloon fetsu 5 None 12:00 - 2:00 10:00 - 12:00 12:00 - 2:00: 2:00 - 4:00:4 eelbn: efrwa 02:39.4 mykADalxcN cusyd 0 2:00 - 4:00;4 None 12:00 - 2:00; 12:00 - 2:00; 12:00 - 2:00; laand; klcqa 02:39.4 OeVizersSi gymps 02:39.4 CycO/WfbUz gmcax 1 2:00 - 4:00 | 2:00 - 4:00;4 10:00 - 12:00 None None print; uwishk 02:39.4 KKUOuguci5 eexay 02:39.4 weiAvNoYeb loows 12:00 - 2:00; 10:00 - 12:00 12:00 - 2:00; 10:00 - 12:00 pmgby; tajds 02:39.4 JFZzggXwFg emak) 5 12:00 - 2:00: 2:00 - 4:00;4 2:00 - 4:00;4 2:00 - 4:00;4 2:00 - 4:00;4 nmaoo; lbfrd 02:39.4 rfXfDlboOE xixim 5 12:00 - 2:00: 2:00 - 4:00:4 12:00 - 2:00: 2:00 - 4:00:4 4:00 - 6:00 | pmbdy: ytelli 02:39.4 tPfDvPWzAg agprw 3 12:00 - 2:00; 4:00 - 6:00 12:00 - 2:00; 2:00 - 4:00;4 12:00 - 2:00; gjolc; sgqul 02:39.4 aMDLRNAHV nmith 10:00 - 12:00 10:00 - 12:00 12:00 - 2:00: 10:00 - 12:00 mayy: sreul 02:39.4 powifixZolK pubml 2:00 - 4:00 12:00 - 2:00: 12:00 - 2:00: None owned: mende 02:39.4 mJGHDIWHif augoo too_big.csv + 2 2:00 - 4:00 12:00 - 2:00: 2:00 - 4:00 12:00 - 2:00: 10:00 - 12:00 hdvid: wzsh Normal View Ready Sum=0

Jamie L. Zimmermar

Introduction

Proposed Argument

Architecture

• •		tk			
Instructor:		TeamID: 42835 sNetYCiZLL CycOJWfbUz rfZzReHGCT Quality score: 10	TeamID: 115080 UCKQRguWHg CvmoFiNUqE szzdbUxKgH Quality score: 10	TeamID: 112968 acQzKervOd OkYgQrMpBy hsoPVKXbzB Quality score: 9	TeamID: 97891 aMDLRNAHVX qqwJBXZoJK HLoaUfsvLa Quality score: 9
		TeamID: 9588 NAVdAxayXY ATYPambIXE CtOWKoGmxG Quality score: 9	TeamID: 11958 JpcgzZiuPN fPHCJqlwPh xFiznhiYmA Quality score: 10	TeamID: 75675 dINEHJIZNQ rXmYDqnpZN EDmGBqDMfq Quality score: 9	TeamID: 24653 YyTQIvpDbi maqAOINRaH tRfXQUAtvj Quality score: 10
CRN:		TeamID: 7625 VrDMFHqNbt yzSXirkeBS BvpxdvzdHk Quality score: 9	TeamID: 94136 JFZzqgXwFq tPfDvPWzAg qOGffaPxUI Quality score: 11	TeamID: 70865 mvKNbHQNyu DEEIEDINFI ZqsMdgRiap Quality score: 12	TeamID: 89237 OeVjgersSi HRaRJIbCud rdItEXymkz Quality score: 10
Group Size:	3 ©	TeamID: 66685 qXWzOQGSvT bcDBZBtxbx rzATybbdKP Quality score: 9	TeamID: 104170 oDfoibyARI YTzTsjvgCw ECdONagJjh Quality score: 9	TeamID: 50768 GISNXJiTUH CHIDVhLypp mykADalxcN Quality score: 11	TeamID: 76960 SFhGtwaoCi XuOnfcEqFK MyomGiwQZR Quality score: 12
		TeamID: 2515 ICkWGvMSXm wejAyNpYgb cPMTrIZLLb Quality score: 11	TeamID: 15321 bUcFthbCzE gJoVHROfVM fUBSVKumSz Quality score: 10	TeamID: 57544 UeLqeJYEol wpWdIIfFwY dcaLFJAMjb Quality score: 10	TeamID: 21189 iXbuNCldBv fhKMmwToqk XmkXdvkDbL Quality score: 10
impo and e	veys in csv form can be orted, sorted into teams exported as a csv to the d for further changes if needed.	TeamID: 40365 wHQnPpIIXD AWjBmQizFd JeheNsevrQ Quality score: 10	TeamID: 45881 hlytQIJbUI rfXfDIbpOE pqsdrktbCY Quality score: 10	TeamID: 107617 DOLErVyMBU EuEPBdnaSF AnVdxEtyBC Quality score: 11	TeamID: 91594 KXUOuguciS mJGHDIWHjf iwoCxxbtin Quality score: 10
		TeamID: 53511 aRNgLvvsSZ VUsgWgGXFH nBZIOQFWYQ Quality score: 7	TeamID: 84342 ZVkuRptifh uBsZyechMA xigWEaHYeo Quality score: 7	TeamID: 29319 SPaBWwSUYK WdFijXTcVt tPqBkGrzKQ Quality score: 9	TeamID: 62381 ZmLeHEsuFH fpUqLjrllc VOHzqfSCwi Quality score: 7
import sort export		TeamID: 58642 vKueZbyLQc GxzLjcloon hSvzyYlvwn Quality score: 9	TeamID: 36024 gfKBedzeHY nOzialiUGy oecgDdLZsM Quality score: 6		

Well if it's so hard why bother?

Zimmerman

Introduction

Argumen

Architectur

Results

Thoughts

(c) 1993. Reprinted, with permission, from Computer, 26, 7 (July 1993) pp. 18-41

An Investigation of the Therac-25 Accidents

Nancy G. Leveson, University of Washington Clark S. Turner, University of California, Irvine

omputers are increasingly being introduced into safety-critical systems and, as a consequence, have been involved in accidents. Some of the most a widely cited software-related accidents in safety-critical systems involved a computerized radiation therapy machine called the Thera-25. Setween June 1985 and January 1987, six known accidents involved massive overdoses by the Thera-25—with resultant details and serious injuries. They have been discribed as the worst series of radiation accidents in the 35-year history of medical accelerators.¹

Overview

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Roculte

- 1 Introduction
- 2 Proposed Argument
- Architecture
- A Results
- **6** Concluding Thoughts

Jamie L. Zimmerman

Introduction

Proposed Argument

Architectu

_ .

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Result

Goals

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Result

- Ease of use
- End-to-end automation
- Insight into what the input looks like

GenSequence

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Result

Overview

Jamie L. Zimmerman

Introductio

Proposed Argument

Architecture

Results

- 1 Introduction
- Proposed Argument
- Architecture
- 4 Results
- 6 Concluding Thoughts

Pairwise Testing

Jamie L. Zimmerman

NEC

Pairwise Testing

- The total number of all-combination test cases is $2 \times 2 \times 2 = 8$
- However, a subset of four test cases, as shown in Table 9.5, covers all pairwise combinations

Test Case Id	Input X	Input Y	Input Z
TC_1	True	0	Q
TC_2	True	5	R
TC_3	False	0	Q
TC_4	False	5	R

Table 9.5: Pairwise test cases for system S.

Introduction

Argument

Architecture

Danisla

ParmGen

Jamie L. Zimmerman

Introduction

Argument

,

Results

Concluding Thoughts

Item Purchased	Price	Delivery Method
Large Item	Expensive	Lightspeed
Small Item	Mid-price	SnailMail
ExtraSmall Item	Cheap	Ultrafast

Tabel: Possibilities

Item Purchased	Price	Delivery Method
Boat	\$10,000.00	Space Rocket

Tabel: Concrete Test Vector

ParmGen Space

Jamie L. Zimmerman

Introduction

Argument

Roculte

Concluding Thoughts

Cats	Dogs
10	1

Tabel: Unit Parameter

Cats	Dogs
10	1
1	1
10	10
10	100
10	1
1	10
10	10
10	1
1	1
10	100
100	1
1	10

Tabel: System Parameter

ParmGen Space

Jamie L. Zimmerman

Introduction

Argument

Architecture

Result

Concluding Thoughts

Cats is not just 100.

Cats is [1, 2, 2, 3, 3, 3, 4, 3, 2, 1, 1]

ParmGen Space

Jamie L. Zimmerman

Introduction

Argument

Architecture

Results

Concluding Thoughts

Cats is not just 100.

Cats is [1, 2, 2, 3, 3, 3, 4, 3, 2, 1, 1]

100 points – average = 15, std. deviation = 5

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Doculto

Law of Large Numbers

Jamie L. Zimmerman

Introductio

Proposed Argument

Architecture

Poculto

- Bernoulli's Principle
- Selection Scheme

10,000 points – average = 15, std. deviation = 5

Jamie L. Zimmerman

Introduction

Proposed Argument

Architecture

Doculto

300 points – average = 15, std. deviation = 5

Jamie L. Zimmerman

Introduction

Proposed

Architecture

Rosults

Concluding Thoughts

300 of 10,000 Normally distributed sorted points verage=15, std. dev=5

A Variety of Statistical Distributions

Jamie L. Zimmerman

Introduction

Argument

Architecture

Roculte

Cardioids

Jamie L. Zimmerman

Introduction

Argument

Architectur

Results

$$r = \alpha \pm \alpha cos\theta$$

Preprocessor

Jamie L. Zimmerman

Introduction

Argument

Architectur

Roculte

GenSequence

Jamie L. Zimmerman

Introduction

Argument

Architecture

Results

Jamie L. Zimmerman

Introduction

Argumen

Architecture

Result

Overview

Jamie L. Zimmerman

Introduction

Argument

Architectu

Results

- 1 Introduction
- 2 Proposed Argument
- 3 Architecture
- 4 Results
- **6** Concluding Thoughts

Status Quo

Jamie L. Zimmerman

Introductio

Proposed Argumen

Architectur

Results

Concluding Thoughts

1 file to test with: "solarsystem.csv"

Multiple Test Cases

Jamie L. Zimmerman

Proposed Argument

Results

Concluding Thoughts 10-1-mass|uniform-position|left slanted-velocity|normal-diameter|uniform.csv 11-30-mass|uniform-position|right slanted-velocity|uniform-diameter| cardioid.csv 12-1-mass|right slanted-position|uniform-velocity|right slanted-diameter| cardioid.csv 13-70-mass|right_slanted-position|right_slanted-velocity|uniform-diameter|left_slanted.csv 14-1-mass|left_slanted-position|normal-velocity|uniform-diameter|right_slanted.csv 15-2-mass|left_slanted-position|right_slanted-velocity|left_slanted-diameter|normal.csv 16-30-mass|normal-position|right_slanted-velocity|normal-diameter|right_slanted.csv 17-70-mass|left_slanted-position|left_slanted-velocity|normal-diameter|_cardioid.csv 18-2-mass|uniform-position|left slanted-velocity|uniform-diameter|left slanted.csv 19-30-mass|cardioid-position|normal-velocity|cardioid-diameter|left slanted.csv 2-2-mass|uniform-position|right slanted-velocity|right slanted-diameter|right slanted.csv 20-1-mass|uniform-position|uniform-velocity|left slanted-diameter|normal.csv 21-2-mass|normal-position|normal-velocity|right slanted-diameter| cardioid.csv 22-2-mass|cardioid-position|left slanted-velocity|cardioid-diameter|normal.csv 23-1-mass|left_slanted-position|uniform-velocity|normal-diameter|left_slanted.csv 24-1-mass|normal-position|normal-velocity|left_slanted-diameter|left_slanted.csv 25-1-mass|right_slanted-position|normal-velocity|normal-diameter|uniform.csv 26-1-mass|cardioid-position|normal-velocity|cardioid-diameter|_cardioid.csv 27-30-mass|normal-position|normal-velocity|uniform-diameter|normal.csv 28-1-mass|normal-position|normal-velocity|right slanted-diameter|left slanted.csv 29-1-mass|normal-position|normal-velocity|left slanted-diameter| cardioid.csv 3-70-mass|cardioid-position|uniform-velocity|cardioid-diameter|right slanted.csv 4-70-mass|normal-position|left slanted-velocity|right slanted-diameter|normal.csv 5-2-mass|right slanted-position|normal-velocity|normal-diameter|normal.csv 6-70-mass|uniform-position|normal-velocity|left_slanted-diameter|uniform.csv 7-30-mass|left slanted-position|uniform-velocity|right slanted-diameter|uniform.csv 8-30-mass|right_slanted-position|left_slanted-velocity|left_slanted-diameter|right_slanted.csv 9-1-mass|cardioid-position|right_slanted-velocity|cardioid-diameter|uniform.csv

1-2-mass|normal-position|uniform-velocity|uniform-diameter|uniform.csv

Orbits Simulation

Jamie L. Zimmerman

Introductio

Argument

Architecture

Results

Thoughts

 $13\text{-}70\text{-}mass|right_slanted-position|right_slanted-velocity|uniform-diameter|left_slanted.csv}$

- Case 13
- 70 bodies
- Mass right-slant
- Position right-slant
- Velocity uniform
- Diameter left-slant

Starting Orbits

Jamie L. Zimmerman

Introduction

Argument

Architecti

Results

Starting Observations

Jamie L. Zimmerman

Introductio

Argument

Architecture

Results

- Sizes are mostly small-medium (from left-slant distribution)
- Locations are clustered (from right-slant distribution)

Ending Orbits

Jamie L.

Introductio

Argument

Architecti

Results

Concluding Thoughts

665 time steps

Ending Observations

Jamie L. Zimmerman

Introductio

Argument

Architecture

Results

- Behavior of gravity
- Path lengths are all different (from uniform velocity)

Earthquake Analysis

Jamie L. Zimmerman

Introduction Proposed

Architectu

Results

Concluding Thoughts

6-70-magnitudes|cardioid-latitudes|left_slanted-longitudes|right_slanted-depths|cardioid.csv

- Case 6
- 70 quake events
- Magnitude & Depth Cardioid relationship
- Trend: High Magnitude \rightarrow High Depth
- Low Magnitude → Low Depth
- Latitudes left-slant
- Longitudes right-slant

Magnitudes & Depths

Jamie L. Zimmerman

Introduction

Proposed

Architecture

Results

Concluding Thoughts

Magnitudes (in Richter Scale measurements)

8.75 - 10.0

7.5 - 8.74

6.25 - 7.4

5.0 - 6.24

3.75 - 4.9

2.5 - 3.74 1.25 - 2.4

1.25 - 2.4

0.0 - 1.24

Magnitudes & **Depths**

Jamie L. Zimmerman

Introduction

Proposed

Architecture

Results

Concluding Thoughts

Depths (in miles)

24.0 - 30.0

18.0 - 23.9

12.0 - 17.9

6.0 - 11.9

0.0 - 5.9

Observations

Jamie L. Zimmerman

Introduction

Argument

Results

- Mostly predicted events?
- Any outliers?

Magnitudes & Depths Frequent Occurrence

Introduction

Proposed

Architecture

Results

Concluding Thoughts

Magnitudes (in Richter Scale measurements)

- 8.75 10.0
- 7.5 8.74
- 6.25 7.4
- 5.0 6.24
- 3.75 4.9
- 2.5 3.74 1.25 - 2.4
- 1.25 2.4
 - 0.0 1.24

Magnitudes & **Depths** Frequent Occurence

Introduction

Argument

rchitecture

Results

Concluding Thoughts

Depths (in miles)

Magnitudes & Depths Frequent Occurrence

Introduction

Proposed

Architecture

Results

Concluding Thoughts

Magnitudes (in Richter Scale measurements)

- 8.75 10.0
- 7.5 8.74
- 6.25 7.4
- 5.0 6.24
- 3.75 4.9
- 2.5 3.74 1.25 - 2.4
- 1.25 2.4
 - 0.0 1.24

Magnitudes & **Depths** Frequent Occurence

Introduction

Proposed

Architecture

Results

Concluding Thoughts

Depths (in miles)

Magnitudes & Depths Outlier

Jamie L. Zimmerman

Introduction

Argument

Architecture

Results

Concluding Thoughts

Magnitudes (in Richter Scale measurements)

- 8.75 10.0
- 7.5 8.74
- 6.25 7.4
- 5.0 6.24
- 3.75 4.9

2.5 - 3.74

- 1.25 2.4
- 0.0 1.24

Magnitudes & **Depths** Outlier

Jamie L. 7immerman

Introduction

Proposed

Architectu

Results

Concluding Thoughts

Depths (in miles)

24.0 - 30.0

18.0 - 23.9

12.0 - 17.9

6.0 - 11.9

0.0 - 5.9

Predict

Jamie L. Zimmerman

Introductio

Argument

Architectui

Results

- North Up
- West Left
- East Right
- South Down
- right-slanted is high numbers
- left-slanted is low numbers
- right-leaning longitudes
- left-leaning latitudes
- · Quakes drift towards lower-right corner

Latitudes & Longitudes

Jamie L. Zimmerman

Introduction

Proposed Argument

Architectui

Results

Overview

Jamie L. Zimmerman

Introduction

Argument

Architectur

Results

- 1 Introduction
- 2 Proposed Argument
- Architecture
- A Results
- **6** Concluding Thoughts

GenSequence in all its Power

Jamie L. Zimmerman

Introduction

Argument

Architecture

Result

- It is what it says it is
- Nearly end-to-end automation
- Knowing about input informs the expected output?

Future Work

Jamie L. Zimmerman

Introductio

Argument

Results

- Test GenSequence against an open-source project
- Combine user-written spec files
- Machine Learning Models
- Database-Driven Applications

Citations

Jamie L. Zimmermar

Introductio

Argument

Architectur

- Robins, Annabel. Software Testing and QA: Theory of Practice. Univeristy of Waterloo: Naik and Tripathy, 2009. http://slideplayer.com/slide/5946428/20/images/10/Pairwise+Testing+Handouts.+The+total+number+combination+test+cases+is+2+%C3%97+2+%C3%97+2+=8.jpg
- N. G. Leveson and C. S. Turner. 1993. An Investigation of the Therac-25 Accidents. Computer 26, 7 (July 1993), 18-41. DOI: https://doi.org/10.1109/MC.1993.274940
- Klein, Dave. "The Scientific Method." Brooklyn College BIOL 1010: Lab Notes. Brooklyn College, 2016.