NAME ____

The exam is closed book; students are permitted to prepare one 8.5×11 page of formulas, notes, etc. that can be used during the exam. A calculator is permitted but not necessary for the exam.

Do 4 out of the 5 problems (20 points each, 80 points total). Clearly indicate the problem that you are omitting; if it is not clear, then the first 4 problems will be graded.

Problem 1. (20 points) Suppose that $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ is an *n*-dimensional column vector of outputs,

(a - 6 pts) Let $Q(\beta) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$. Compute $\frac{\partial Q}{\partial \boldsymbol{\beta}}$.

(b) Now suppose that $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ where \mathbf{e} follows a Normal distribution with mean vector $\mathbf{0}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and covariance matrix $\sigma^2 \mathbf{I}_2 = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$ and that there is no real number c such that $x_i = c$ for all i.

(i - 4 pts) Let $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$ denote the maximum likelihood estimator of $\boldsymbol{\beta}$ and let $\boldsymbol{a} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$ be a

2-dimensional vector of fixed constants. What is the distribution of $\boldsymbol{a}^T \hat{\boldsymbol{\beta}}$?

(ii - 2 pts) Let $s^2 = \frac{\mathbf{r}^T \mathbf{r}}{n-2}$ denote the unbiased estimator of σ^2 , where $\mathbf{r} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$. What is the distribution of $\frac{(n-2)s^2}{\sigma^2}$?

(iii - 4 pts) Prove that $\hat{\boldsymbol{\beta}}$ and $\boldsymbol{r}^T\boldsymbol{r}$ are independent.

(iv - 4 pts) Prove that $\frac{\boldsymbol{a}^T\hat{\boldsymbol{\beta}} - \boldsymbol{a}^T\boldsymbol{\beta}}{s\sqrt{\boldsymbol{a}^T(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{a}}}$ follows a t(n-2) distribution.

Problem 2. (20 points) Suppose that $\sum_{i=1}^{10} x_i = 0$, $\sum_{i=1}^{10} y_i = 0$, $\sum_{i=1}^{10} x_i^2 = 6$, $\sum_{i=1}^{10} y_i^2 = 16$, and $\sum_{i=1}^{10} x_i y_i = 6$.

Assume the simple linear regression model where y_i are independent Normal($\beta_0 + \beta_1 x_i, \sigma^2$) random variables for i = 1, ..., 10. Perform a test of $H_0: \beta_1 = 2$ versus $H_A: \beta_1 < 2$ at level .05. Make sure to state your conclusion and to show sufficient details (such as your test statistic and the corresponding critical value or bound for the P-value) to justify your conclusion.

Problem 3. (20 points)

(a - 10 pts) The moment generating function of a random variable with a $\chi^2(\nu)$ distribution is $M(t) = \frac{1}{(1-2t)^{\nu/2}}$ Suppose that q_1, \ldots, q_k are independent χ^2 random variables with ν_1, \ldots, ν_k degrees of freedom, respectively. Prove that $q = \sum_{i=1}^{k} q_i$ has a $\chi^2\left(\sum_{i=1}^{k} \nu_i\right)$ distribution.

(b - 10 pts) Suppose that \boldsymbol{y} is an m-dimensional multivariate Normal($\boldsymbol{0}, \boldsymbol{V}$) random vector. Also, let $\lambda_1, \ldots, \lambda_m$ be eigenvalues of the covariance matrix \boldsymbol{V} . Let $\boldsymbol{V} = \boldsymbol{T} \boldsymbol{\Lambda} \boldsymbol{T}^T$ where $\boldsymbol{\Lambda}$ is a diagonal matrix with diagonal elements $\lambda_1, \ldots, \lambda_m$ and T is an $m \times m$ matrix such that $T^T T = I$.

If V is invertible, then prove that $y^TV^{-1}y$ has a $\chi^2(m)$ distribution.

Problem 4. (20 points) Suppose that y is a 5-dimensional Normal($X\beta, \sigma^2 I$) random vector where X is a 5×2 matrix with columns J and x, J is an 5-dimensional vector of ones, x is a non-random 5-dimensional vector, $\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ is a unknown vector of intercept and slope parameters, and σ^2 is the unknown variance

Let $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\sigma}^2$ denote the maximum likelihood estimators of β_0 , β_1 and σ^2 , respectively. If $\boldsymbol{J}^T\boldsymbol{x}=3$ and $\boldsymbol{x}^T\boldsymbol{x}=2$, find values A,B, and C such that

$$A\left(\frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}}\right)^2 + B\left(\frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}}\right)\left(\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}}\right) + C\left(\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}}\right)^2 \le 1$$

is a 95% confidence ellipse for β .

Problem 5. (20 points) Let $\mathcal{X}_k = \begin{bmatrix} 1 \\ x_k \end{bmatrix}$ for $k = 1, \dots, n$, let \boldsymbol{X} be an $n \times 2$ matrix with kth row \mathcal{X}_k^T , and let y be an n-dimensional vector where y_k denotes its kth element.

(a - 8 pts) Show that
$$(\mathbf{X}^T \mathbf{X})^{-1} \mathcal{X}_n = \begin{bmatrix} \frac{1}{n} - \frac{\bar{x}(x_n - \bar{x})}{S_{xx}} \\ \frac{x_n - \bar{x}}{S_{xx}} \end{bmatrix}$$
 where $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$.

(b - 4 pts) Compute
$$h_{nn} = \mathcal{X}_n^T (\mathbf{X}^T \mathbf{X})^{-1} \mathcal{X}_n$$
, the *n*th diagonal element of the hat matrix.
(c - 8 pts) Let $\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$ be the minimizer of $Q(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$ and let $\hat{\boldsymbol{\beta}}_{(n)} = \begin{bmatrix} \hat{\beta}_{0,(n)} \\ \hat{\beta}_{1,(n)} \end{bmatrix}$ be

the minimizer of
$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n-1} (y_i - \beta_0 - \beta_1 x_i)^2$$
. Show that $\hat{\beta}_{1,(n)} = \hat{\beta}_1 - \frac{(y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)(x_n - \bar{x})}{(1 - \frac{1}{n}) S_{xx} - (x_n - \bar{x})^2}$.

The critical value t^* is the value such that the area under the density curve of a t distribution with df degrees of freedom to the right of t^* is equal to p. It is also the value such that the area under the curve between $-t^*$ and t^* is equal to C.

t distribution critical values

	Upper-tail probability p						
df	.10	.05	.025	.01	.005		
1	3.08	6.31	12.71	31.82	63.66		
2	1.89	2.92	4.30	6.96	9.92		
3	1.64	2.35	3.18	4.54	5.84		
4	1.53	2.13	2.78	3.75	4.60		
5	1.48	2.02	2.57	3.36	4.03		
6	1.44	1.94	2.45	3.14	3.71		
7	1.41	1.89	2.36	3.00	3.50		
8	1.40	1.86	2.31	2.90	3.36		
9	1.38	1.83	2.26	2.82	3.25		
10	1.37	1.81	2.23	2.76	3.17		
	80%	90%	95%	98%	99%		
	Confidence level C						

The critical value χ^{2*} is the value such that the area under the density curve of a χ^2 distribution with df degrees of freedom to the right of χ^{2*} is equal to p.

 χ^2 distribution critical values

	Unnan tail nuahahilitu n						
	Upper-tail probability p						
df	.10	.05	.025	.01	.005		
1	2.71	3.84	5.02	6.63	7.88		
2	4.61	5.99	7.38	9.21	10.60		
3	6.25	7.81	9.35	11.34	12.84		
4	7.78	9.49	11.14	13.28	14.86		
5	9.24	11.07	12.83	15.09	16.75		

The critical value F^* is the value such that the area under the density curve of an F distribution with df1 degrees of freedom in the numerator and df2 degrees of freedom in the denominator to the right of F^* is equal to p.

F distribution critical values

df2

			p = .05		
			df1		
	1	2	3	4	5
1	161.45	199.5	215.71	224.58	230.16
2	18.51	19.00	19.16	19.25	19.30
3	10.13	9.55	9.28	9.12	9.01
4	7.71	6.94	6.59	6.39	6.26
5	6.61	5.79	5.41	5.19	5.05

			p = .025		
			df1		
	1	2	3	4	5
1	647.79	799.50	864.16	899.58	921.85
2	38.51	39.00	39.17	39.25	39.30
3	17.44	16.04	15.44	15.10	14.88
4	12.22	10.65	9.98	9.60	9.36
5	10.01	8.43	7.76	7.39	7.15

df2