ECONOMIES OF SCOPE IN TRANSPORTATION AND DOMESTIC TRADE

Brian C. Fujiy U.S. Census Bureau Gaurav Khanna UCSD Brock Rowberry World Bank Any opinions and conclusions expressed herein are those of the authors and do not represent the views of the U.S. Census Bureau or the World Bank.

MOTIVATION

- Freight transportation of goods: Economic foundation of a modern economy
- Road freight: Key in developing countries
 - ► India: 67% of transport sector + 3.1% of GDP
- How transporters leverage geography to gain efficiency?
 - ⇒ Group deliveries into a single shipment
 - \Rightarrow i.e. Trip chaining, **economies of scope**

THIS PAPER

Research questions

- Are there "economies of scope" from exploiting grouped shipments in transportation markets?
- How do economies of scope in transportation affect intensive and extensive margins of domestic trade?

Setting: Freight trucking within India

- Universe of transactions for one large state
- Can trace path trucks take to deliver shipments

Stylized Facts

- Grouped shipments common and characterize a large portion of domestic
- Evidence for economies of scope in transportation
 - ► Around 40% of trade by value

Quantitative Trade Model

Trade costs endogenous to trucker route choices

Counterfactuals

- Role of economies of scope on trade flows
 - ▶ Bilateral trade 30% lower due to loss of opportunities to group shipments (partial equilibrium)

LITERATURE AND CONTRIBUTIONS

- Trade Costs and Economic Geography: Samuelson (1954), Anderson and van Wincoop (2003), Eaton and Kortum (2002), Allen and Arkolakis (2014), Ahlfeldt et al. (2015)
 - ► <u>Contribution:</u> Focus on role of economies of scope and grouped shipments shaping trade costs.
- Transportation Sector in Economic Geography and International Trade: Hummels et al. (2009), Asturias (2020), Brancaccio et al. (2020), Yang (2021), Miyauchi et al. (2022), Wong (2022), Allen and Arkolakis (2022), Allen et al. (2023)
 - ▶ Contribution: Study effect of grouping shipments (ex ante trip chaining) (Allen et al., 2023).
- Production Location Decisions: Melitz (2003), Tintelnot (2016), Antras et al. (2017), Antras et al. (2022), Alfaro-Urena et al. (2023)
 - ► **Contribution:** Study role of domestic transportation sector in shaping market entry.

DATA AND CONTEXT

Transaction Data:

- Establishment-to-establishment transactions at the HS-8 level for a large Indian state for 2019.
- Censoring: All transactions that begin or end in the state.
- Key: Data generated when transporter picks up shipment.

Table 1: Example Data

Date	ID	Seller	Seller Pincode	Buyer	Buyer Pincode	Product	Value	Vehicle
2019-01-01-13:01:32	12345	Brian	48104	Gaurav	90210	Shoes	X	G0 B!U3
2019-01-01-13:01:32	12346	Brian	48104	Brock	90212	Socks	Y	G0 B!U3
2019-01-01-15:00:01	12347	J.J.	48127	Blake	90210	Shirts	Z	G0 B!U3

Defining Shipments:

- All uninterrupted transactions fulfilled by a vehicle that originate close together, in both space and time.
- Grouped shipments VS Direct shipments.

FACTS 1 + 2: GROUPED SHIPMENTS ARE COMMON AND IMPORTANT

Fact 1: Grouped shipments are common and important

TABLE 2: Prevalence of Grouped Shipments within the Sample

	Transactions	Shipments	Fraction of Trade	Vehicles	Sellers
Direct Shipments	0.4	0.79	0.6	0.96	0.90
Grouped Shipments	0.6	0.21	0.4	0.46	0.63

Fact 2: Sellers of grouped shipments are well-connected

- Sellers ever part of a grouped shipment: Average 13 customers, 12 destination locations.
 - ► Median: 3 customers, 3 destinations.
- Sellers never part of a grouped shipment: Average 2 customers, 2 destination locations.
 - ► Median: 1 customer, 1 destination.

FACT 3: GROUP SHIPMENTS' STOPS ARE CLOSE TOGETHER

FACT 4: VALUE OF TRANSACTIONS IN GROUPED SHIPMENTS ARE LOWER

MODEL

Setup: Allen and Arkolakis (2022) + Antras et al. (2022)

- J locations: L_i consumers in j immobile, supply labor inelastically.
- Production: Perfectly competitive final goods firms produce varieties, $\omega \in [0, 1]$.
- Preferences: CES with elasticity of substitution σ across *truckers* (φ) and varieties (ω).

Trade and Transportation Sector:

- Trade between locations requires use of monopolistically competitive truckers, φ .
 - ► Simplification: truckers *ex ante* homogeneous, not heterog. as in Antras et al. (2022)
- Final goods producer sell output to truckers at marginal cost.
- Truckers deliver *j*'s output via a route: $r \equiv \{j, d_1, d_2, \dots\} \in 2^J$.
- Truckers incur variable trade costs (Allen and Arkolakis, 2022):

$$r^{*}(\varphi,\omega) = \arg\min_{r \in \mathcal{R}_{ji}(\varphi)} \left\{ c_{ji,r} \left(\varphi, \omega \right) \right\} = \arg\min_{r \in \mathcal{R}_{ji}(\varphi)} \left\{ \frac{1}{\epsilon_{r} \left(\varphi, \omega \right)} \tau \left(r \right) \right\}, \quad \epsilon_{r} \left(\varphi, \omega \right) \sim \text{Frechet}(\theta)$$

- And fixed route-entry costs, f_r .
- Set of routes entered between *j* and *i*: $\mathcal{R}_{ii}(\varphi)$.

TRANSPORTATION SECTOR

Transportation Sector's Problems:

• (1) Enter into routes $(\mathcal{R}_{ji}(\varphi))$, (2) Route assignment $(r^*(\varphi,\omega) \in \mathcal{R}_{ji}(\varphi))$, (3) Pricing $(p_{ji}(\varphi,\omega))$.

Pricing Problem:

- $\pi_{ji,r^*}\left(\varphi,\omega\right) = \left(1 + \tau_{ji}\left(\varphi,\omega\right)\right) p_j\left(\varphi,\omega\right) q_{ji}\left(\varphi,\omega\right) \left(1 + c_{ji,r^*}\left(\varphi,\omega\right)\right) p_j\left(\varphi,\omega\right) q_{ji}\left(\varphi,\omega\right)$
- $\bullet \ \ p_{ji}\left(\varphi\right) = \mu p_{j}\left[\Xi\left(\mathcal{R}_{ji}\left(\varphi\right)\right)\right]^{\frac{1}{1-\sigma}}, \Xi\left(\mathcal{R}_{ji}\left(\varphi\right)\right) \in [0,1].$
- $\Xi \equiv$ "Efficiency of φ 's delivery capabilities."
 - ▶ When $\tau \downarrow$ or $\mathcal{R}_{ji}(\varphi) \uparrow \Rightarrow \Xi \rightarrow 1$, good for transportation firm given it is now the seller.

Entry Problem:

$$\pi_{j}\left(\varphi,\left\{\mathcal{R}_{ji}\left(\varphi\right)\right\}_{j=1}^{J}\right) \equiv \kappa \sum_{i \in \mathcal{J}} p_{j}^{1-\sigma} E_{i} P_{i}^{\sigma-1} \Xi\left(\mathcal{R}_{ji}\left(\varphi\right)\right) - \sum_{r \in \cup_{i} \mathcal{R}_{ji}\left(\varphi\right)} w_{j} f_{r}$$

ECONOMIES OF SCOPE?

Exercise: Consider shipment from O to d_1 and d_2 .

- $dist(\{d_1\}) = dist(\{d_2\}) = z$, where z is distance from origin
- $dist(\{d_1, d_2\}) = z + yz$, where $y \ge 0$ is fraction of distance between cities
- When is grouped shipment profitable?

12 / 14

QUANTIFICATION

Key parameters: Trade elasticity $\tau(r)$ + route choice heterogeneity (θ) + fixed costs of route entry (f_r) .

$$\tau(r) + \theta$$
: Details

- $\tau(r) = \kappa_0(\operatorname{distance}(r))^{\kappa_1}$.
- Leverage our data, an instrumental variables strategy, and model implied gravity equation.
- $\kappa_1 \approx 0.023$.
- $\theta \approx 1.197$.

Fixed costs:

- $f_r = \gamma \times \operatorname{distance}(r)$.
- Leverage equilibrium conditions:
 - ► All truckers ex ante identical, $\Omega_{ji} = \Omega_i$.
 - $\blacktriangleright L_i = \Omega_i \sigma \sum_j \sum_{r \in \mathcal{R}_{ij}} f_r.$

COUNTERFACTUALS AND CONCLUSION

Counterfactual: Details

- Effect of grouped shipments on domestic trade (intensive margin).
- Estimate how Ξ would change if no grouped shipments were allowed holding entry into markets constant.
- Find domestic bilateral would fall by about 30% in absence of ability to group shipments (in partial equilibrium).

Conclusion:

- Document presence and prevalence of grouped shipments in domestic trade.
- Develop quantitative model that can rationalize grouped shipments via economies of scope.
- Estimate a substantial degree of heterogeneity in route choices.
- Trade cost benefit from grouping shipments contributes to domestic trade via lower trade costs.

COMPARATIVE STATIC ASSUMPTIONS

Exercise: Consider shipment from O to d_1 and d_2 . When is grouped shipment profitable?

- $\mathcal{J} = \{O, d_1, d_2\}.$
- We consider the route entry decisions for a transporter, φ , located in O.
- The sets of possible routes for each destination are: $\mathcal{R}_{Od_1} \equiv \Big\{ \{d_1\}, \{d_1, d_2\} \Big\}$, $\mathcal{R}_{Od_2} \equiv \Big\{ \{d_2\}, \{d_1, d_2\} \Big\}$.
- The distance of the routes are: distance $(\{d_1\}) = \text{dist}(\{d_2\}) = z$, distance $(\{d_1, d_2\}) = z + yz$
- $\tau(r) = \operatorname{distance}(r)^{\rho}$.
- Normalize the following: $E_d P_d^{\sigma-1} = p_0^{1-\sigma} = \kappa \varphi^{\sigma-1} = w_0 = 1$, for each $d \in \{d_1, d_2\}$.
- Fixed costs are linear functions of distance: $f_r = \gamma \times (\text{distance}(r))$.
- Finally, $\sigma 1 < \theta$. More specifically: $\theta = 8$, $\sigma = 2$.

COMPARATIVE STATICS CONTINUED (2)

Exercise: Consider shipment from O to d_1 and d_2 . When is grouped shipment profitable?

FIGURE 5: Entry Decision as a function of Variable and Fixed Parameters Distance between destinations: 0.5 Distance between destinations: 1 0.100-0.100 -0.075-0.075-**Qamma** 0.050-**Gamma** 0.050-0.025 0.025 0.000-0.000-0.25 0.75 0.25 0.75 0.00 0.50 1.00 0.00 0.50 1.00 Rho Rho Optimal Choice No entry Direct only Indirect only Indirect and one direct All routes Optimal Choice No entry Direct only Indirect only Indirect and one direct All routes (A) Close Together (B) Equal Distance

COMPARATIVE STATICS CONTINUED (3)

Exercise: Consider shipment from O to d_1 and d_2 . When is grouped shipment profitable?

ESTIMATING θ

Estimation Equation (κ_1) :

$$\frac{\log(p_{sobdtvhi})}{\log(p_{od,r}(\varphi,\omega))} = \underbrace{\kappa_1 \times \log(\text{distance}(r))}_{\tau(r)} + \underbrace{f_{s,o,h,t}}_{\log(p_o(\omega))} + \underbrace{f_{\varphi,o,d,h}}_{-\log(\epsilon_{ji,r}(\varphi,\omega))} + f_{b,d,t} + f_{\text{unit}(hi)} + \beta \log(q_{sobdtvhi}) + \nu_{sobdtvhi}$$

- Note, omitted variable bias due to $\epsilon_{ji,r}(\varphi,\omega)$.
 - ▶ Instrument log(distance(r)) with bilateral distance between seller pincode and buyer pincode.
 - Need that productivity not correlated with the bilateral distance.

Gravity Equation:

$$\log(\lambda_{ji,r}) = -\theta \times \kappa_1 \log(\text{distance}(r)) + \log(\Omega_{ij,r}) + f_{ji} + \nu_{ji,r}$$

$$\lambda_{ji,r} \equiv X_{ji,r}/X_{ji}$$
, $\Omega_{ji,r}$ entrants into r .

ESTIMATING κ_1

TABLE 3: Estimation of κ_1

Dependent Variable:	Log(Unit Value)							
				OLS			_	IV
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables								
I(Shipment includes more than one destination) = 1		-0.0131***	-0.0176***		-0.0117***		-0.0135***	-0.0440***
		(0.0043)	(0.0038)		(0.0039)		(0.0050)	(0.0115)
Log(Bilateral Distance)	0.0072**		0.0071**					
	(0.0031)		(0.0031)					
Log(Route Distance)				-0.0070**	-0.0039			0.0223**
				(0.0033)	(0.0029)			(0.0099)
Log(Added Distance)						-0.0012***	0.0001	
						(0.0004)	(0.0005)	
Fixed-effects								
Unit	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HSN-Seller-Origin Pin-Year-Month	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle-Origin Pin-Destination Pin-HSN		Yes		Yes	Yes	Yes	Yes	
Buyer-Destination Pin-Year-Month	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle-HSN	Yes		Yes					Yes
Controls								
Log(Quantity)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fit statistics								
R ²	0.91719	0.92794	0.91719	0.92794	0.92794	0.92794	0.92794	0.91719
Observations	11,797,553	11,797,553	11,797,553	11,797,553	11,797,553	11,797,553	11,797,553	11,797,553
Kleibergen-Paap								210

Estimating θ

TABLE 4: Estimation of	θ
Dependent Variable:	$Log(\lambda)$
Model:	(1)
Variables	
Log(Route Distance)	-0.0267**
	(0.0105)
Log(Number of Vehicles)	1.414^{***}
	(0.0076)
Fixed-effects	
Origin Pin-Destination Pin	Yes
Fit statistics	
\mathbb{R}^2	0.84099
Observations	3,285,833

Counterfactual

Goal: Identify how presence of grouped shipments affect bilateral trade flows. Approach:

- Remove grouped shipments from \mathcal{R}_{od} .
- New route-entry sets: \mathcal{R}_{ad}^{D} .
- Given estimates* of θ , ζ , construct counterfactual $\Xi(\mathcal{R}_{od}^D)$. Effect on $\Xi(\mathcal{R}_{od}^D)$ ambiguous. Improves (approaches 1) or worsen (approaches 0), depending on:
 - (1) number of routes (route choice heterogeneity), (2) presence of grouped routes (longer variable trade costs).
- Estimate model's aggregate gravity equation:

$$\log(X_{od}) = f_o + f_d + \log(\Omega_{od}) + \log(\Xi_{od}(\mathcal{R}_{od})) + \epsilon_{od}$$

• Save f_0 , f_d and construct counterfactual $\log(X_{od})$ using $\Xi(\mathcal{R}_{od}^D)$.

Results: (more details on next slide)

Bilateral trade declines by about 30% across all od pairs.

COUNTERFACTUAL CONTINUED

TABLE 5: Aggregate Gravit Dependent Variable: Model:	$\frac{\text{y Regression}}{\log(X_{od})}$
Variables	
$log(\Xi(\mathcal{R}))$	0.6342***
	(0.0351)
$log(\Omega_{od})$	1.069***
, ,	(0.0184)
Fixed-effects	
Origin Pin	Yes
Destination Pin	Yes
Fit statistics	
\mathbb{R}^2	0.70837
Observations	66,098