8

Computational Linguistics

Assignment Project Exam Help

Fall 2018

8. Word sensetps://powcoder.com
disambiguation/

8. Word sensetps://powcoder.com

Gerald Penn
Department of Computer Science, University of Toronto

Reading: Jurafsky & Martin: 20.1-5.

Word sense disambiguation

 Word sense disambiguation (WSD), lexical disambiguation, resolving lexical ambiguity, lexical ambiguity resolution.

Assignment Project Exam Help

https://powcoder.com

How big is the problem?

- Most words of English have only one sense. (62% in Longman's Dictionary of Contemporary English; 79% in WordNet.)
- But the others tend to have several senses. (Avg 3.83 in LDOCE; 2.96 in WordNet.)
- Ambiguous words are more frequently used (In British National Corpus, 84% of instances have more than one sense in WordNet.)
- Some senses are more frequent than others.

Words occurring in the British National Corpus are plotted on the horizontal axis in rank order by frequency in the corpus. Number of WordNet senses per word is plotted on the vertical axis. Each point represents a bin of 100 words and the average number of senses of words in the bin.

Edmonds, Philip. "Disambiguation, Lexical." *Encyclopedia of Language and Linguistics* (second edition), Elsevier, 2006, pp 607–623.

In each column, the senses are ordered by frequency, normalized per word, and averaged over all words with that number of senses.

Edmonds, Philip. "Disambiguation, Lexical." *Encyclopedia of Language and Linguistics* (second edition), Elsevier, 2006, pp 607–623.

Sense inventory of a word

- Dictionaries, WordNet list senses of a word.
- Often, no agreement on proper sensedivision of words.
- Don't want sense-divisions to be too coarse-grained or too fine-grained.

Add WeChat powcoder

Frequent criticism of WordNet

trench (trěnch) n. 1. A deep furrow or ditch. 2. A long, narrow ditch embanked with its own soil and used for concealment and protection in warfare. 3. A long, steep-sided valley on the ocean floor. —trench v. trenched, trench·ing, trench·es. —tr. 1. To

The American Heritage DickionignmoethtePErigdish Language (3rd edition)

https://powcoder.com

trench /trent $\int n$ ditch dug in the ground, eg for Add WeChat powcoder drainage or to give troops shelter from enemy fire: *irrigation trenches* \circ *The workmen dug a trench for*

Oxford Advanced Learner's Dictionary (encyclopedic edition)

litter /'litə(r)/ n = 1 (a) [https://powcoderlcomg bits of paper, wrappings, bottles) left lying about, esp in a public place: *Please do not leave litter*. Sarticle at ENVIRONMENT. (b) [sing] state of untidiness: Her desk was covered in a litter of books and papers. • His room was a litter of old clothes, dirty crockery and broken furniture. 2 [U] straw, etc used as bedding for animals. 3 [CGp] all the young born to an animal at one time: a litter of puppies. 4[C](a)type of stretcher(1). (b) (formerly) couch carried on men's shoulders or by animals as a means of transport.

lit-ter (lĭt/ər) n. 1.a. A disorderly accumulation of objects; a

pile. b. Carelessly discarded refuse, such as wastepaper: the lit-

ter in the streets after a parade. 2. The offspring produced at one

birth by a multiparous mammal. See Synonyms at flock 1. 3.a.

Material, such as straw, used as bedding for animals. b. An ab-

sorbent material, such as granulated clay, for covering the floor of

an animal's cage or excretory box. 4. An enclosed or curtained

couch mounted on shafts and used to carry a single passenger. 5.

A flat supporting framework, such as a piece of canvas stretched

between parallel shafts, for carrying a disabled or dead person; a

stretcher. 6. The uppermost layer of the forest floor consisting

chiefly of fallen leaves and signment Project Exam Help — litter

What counts as the right answer?

- Often, no agreement on which sense a given word-token is.
- Some tokens seem to have two or more senses at the same Ptime Exam Help

https://powcoder.com

Which senses are these? 1

image

- 1. a picture formed in the mind;
- 2. a picture formed of an object in front of a mirror or lens;

 Assignment Project Exam Help
- 3. the general opinion about a person, organization, etc, formed or intentionally created in people's mindstd WeChat powcoder

[and three other senses]

"... of the Garonne, which becomes an unforgettable *image*. This is a very individual film, mannered, ..."

Example from: Kilgarriff, Adam. "Dictionary word sense distinctions: An enquiry into their nature." *Computers and the Humanities,* 26: 365–387, 1993. Definitions from *Longman Dictionary of Contemporary English*, 2nd edition, 1987.

Which senses are these? 2

distinction

- 1. the fact of being different;
- 2. the quality of being unusually good; excellence.

Assignment Project Exam Help

"... before the war, shares with Rilke and Kafka https://powcoder.com the *distinction* of having origins which seem to escape ..."

Add WeChat powcoder

What counts as the right answer?

- Therefore, hard to get a definitive sensetagged corpus.
- And hard to get human baseline for performance signment Project Exam Help
 - Human annotators by agree about 70–95% of the time.

 Add WeChat powcoder

 [Depending on word, sense inventory, context size, discussions, etc.]

Baseline algorithms 1

- Assume that input is PoS-tagged. Why?
- Obvious baseline algorithm:
 Pick most-likely sense (or pick one at random).

 Assignment Project Exam Help
 - Accuracy: 39—6tps://powcoder.com

Baseline algorithms 2

- Simple tricks (1):
 Notice when ambiguous word is in unambiguous fixed phrase.
 - private schoolgnprivatee ream Help (But maybe not right in all right.)

Baseline algorithms 3

- Simple tricks (2):
 "One sense per discourse":
 A homonymous word is rarely used in more than one sense in the same text.
 - If word occurs multiplectimes
 - Not true for polycemyhat powcoder
- Simple tricks (3): Lesk's algorithm (see below).

"Context" 1

- Meaning of word in use depends on (determined by) its context.
 - Circumstantial context.
 - Textual context nment Project Exam Help
 - Complete texts://powcoder.com
 - Sentence, paragraph.
 - Window of n words.

"Context" 2

- Words of context are also ambiguous; need for mutual constraints; often ignored in practice.
- "One sense per collocation" Help
- Collocation: words that tend to co-occur together.

 Add WeChat powcoder

Selectional preferences

 Constraints imposed by one word meaning on another—especially verbs on nouns.

Eagle Airways which has applied to serve New York ... Plain old bean soup served daily since the turn of the century ...

https://powcoder.com I don't mind washing **dishes** now and then.

Sprouted grains and seeds are used in preparing salads and dishes such as chop suey.

It was the most popular dish served in the Ladies' Grill.

Some words select more strongly than others.
 see (weak) — drink (moderate) — elapse (strong)

Limitations of selectional preferences

- Negation:
 - You can't eat good intentions.
 It's nonsense to say that a book elapsed.
 I am not a crook
 I am not a crook
 Project Exam Help
- Odd events: https://powcoder.com
 - Los Angeles sectetaryatjannene Swift married a 50-pound pet rock in a formal ceremony in Lafayette Park. (Newspaper report)

Limitations of selectional preferences

Metaphor:

The issue was acute because the exiled Polish Government in London, supported in the main by Britain, was still competing with the new Lublin Government formed behind the Red Army. More time was spent in trying to marry these incompatibles than over any subject discussed at Yalta. ... The application of these formulae could not please both sides, for they really attempted to marry the impossible to the inevitable.

Limitations of selectional preferences

- In practice, attempts to induce selectional preferences or to use them have not been very successful.
 - Apply in only about 20% of xoases, achieve about 50% accuracy https://powe6der.edm& Carroll 2003)
 - At best, they are accentise filter for other methods.

Lesk's algorithm 1

- Sense s_i of ambiguous word w is likely to be the intended sense if many of the words used in the dictionary definition of s_i are also used in the definitions of words in the context window.
- For each sense s_i of w_i let D_i be the bag of words in its dictionary definition p_i over p_i in p_i the p_i of p_i in p_i in p_i p_i p
- Bag of words: unordered set of words in a string, excepting those that are very frequent (stop list).
- Let B be the bag of words of the dictionary definitions of all senses of all words v≠ w in the context window of w. (Might also (or instead) include all v in B.)
- Choose the sense s_i that maximizes $overlap(D_i, B)$.

Lesk's algorithm Example

... the keyboard of the terminal was ...

terminal

- 1. a point on an electrical device at which electric current enters or leaves.
- 2. where transport vehicles load or unload passengers or goods.
- 3. an input-output device providing access to a computer.

keyboard

- 1. set of keys on a piano or organ or typewriter or typesetting machine or **computer** or the like.
- 2. an arrangement of hooks on which keys or locks are hung.

Lesk's algorithm 2

- Many variants possible on what is included in D_i and B.
 - E.g., include the examples in dictionary definitions.
 - E.g., include seither manifeathy tradded example texts.
 - PoS tags on definitions.
 - Give extra weight to infrequent words occurring in the bags.
- Results: Simple versions of Lesk achieve accuracy around 50–60%; Lesk plus simple smarts gets to nearly 70%.

Math revision: Bayes's rule

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

• Typical problemme Mediawen Beland want to know which A ispacywmost likely.

$$\underset{A}{\operatorname{argmax}} P(A \mid B) = \underset{A}{\operatorname{argmax}} \frac{P(B \mid A) \cdot P(A)}{P(B)}$$
$$= \underset{A}{\operatorname{argmax}} P(B \mid A) \cdot P(A)$$

- Classify contexts according to which sense of each ambiguous word they tend to be associated with.
 - Bayes decision rude: Projek senseurs, that is most probable in given context ic marginax, P(s, | C).
- Bag-of-words madebafpeontext.
- For each sense s_k of w in the given context C, we know the **prior probability** $P(s_k)$ of the sense, but require its **posterior probability** $P(s_k|C)$.

 Want sense s' of word w in context C such that P(s'|C) > P(s_k|C) for all s_k ≠ s'.

$$s' = Asargman Pick Feal Help$$

$$\begin{array}{ll} & \text{https://powcoder.com} \\ & P(C|s_k)P(s_k) \\ & = argman P(C|s_k)P(s_k) \\ & = argman P(C|s_k)P(s_k) \\ & = argman P(s_k) \prod_{v_j \text{ in } C} P(v_j|$$

• Naïve Bayes assumption: Attributes v_j of context C of sense s_k of w are conditionally independent of one another. Hence

$$P(C|s_k) = Ass[gnmept(Project)Exam Help v_j intes://powcoder.com

Add WeChat powcoder$$

$$P(s_k) = \frac{c(s_k)}{c(w)}$$

$$P(v_j|s_k)$$
 sign ment Pkoject Exam Help https://powcoder.com

and $c(v_j, s_k)$ is the number of times v_j occurs in the context window of s_k .

Training corpora for supervised WSD

- **Problem:** Need **large** training corpus with each ambiguous word tagged with its sense.
 - Expensive, time-consuming human work.
 - "Large" for astigment Psismatind WSD training.
- Some sense-tagged corpora:
 - SemCor: 700K PoS-tagged tokens (200K WordNet-sense-tagged) of Brown corpus and a short novel.
 - Singapore DSO corpus: About 200 "interesting" word-types tagged in about 2M tokens of Brown corpus and Wall Street Journal.

Evaluation

 Systems based on naïve Bayes methods have achieved 62–72% accuracy for selected words with adequate training data.

(Màrquez etal 2006, Edmonds 2006)

Assignment Project Exam Help

https://powcoder.com

Yarowsky 1995 Unsupervised decision-list learning

• **Decision list:** ordered list of strong, specific clues to senses not homo и минетр

https://powcoder.com

^{*}Yarowsky calls them "polysemous words".

Decision list for bass:

LogL	Context	Sense
10.98	fish in $\pm k$ words	FISH
10.92	striped bass	FISH
9.70	<i>guitar</i> in ±k words	MUSIC
9.20	bass player	MUSIC
9.10	Assignment Project Form He	MUSIC
8.87	Seappagoder.com	FISH
8.49	pladd bassat powcoder	MUSIC
8.31	<i>river</i> in ±k words	FISH
7.71	on bass	MUSIC
5.32	bass are	FISH

Yarowsky 1995 Basic ideas

- Separate decision list learned for each homonym.
- Bootstrapped from seeds, very large corpus, heuristics. Assignment Project Exam Help
 - One sense perhttiscourse:com
 - One sense per collocation.
- Uses supervised classification algorithm to build decision-list.
- Training corpus: 460M words, mixed texts.

Yarowsky 1995 Method 1

 1–2. Get data (instances of target word); choose seed rules; apply them.

Assignment Project Exam Help

https://powcoder.com

```
used to strain microscopic plant life from the
                         zonal distribution of plant life.
                           close-up studies of plant life and natural
too rapid growth of aquatic plant life in water
                             the proliferation of plant and animal life
establishment phase of the plant virus life cycle
                             that divide life into plant and animal kingdom
                                  many dangers to plant and animal life
            Assignment Project Exam Help mammals. Animal and plant life are delicately and Goldi apparent and Goldi apparent Project Exam Help and Goldi apparent Project E
    automated manufacturing plant in Fremont
                          vast manufacturing plant and distributione Chat powcoder
         chemical manufacturing plant, producing viscose
                 keep a manufacturing plant profitable without
        computer manufacturing plant and adjacent
       discovered at a St. Louis plant manufacturing
                 copper manufacturing plant found that they
copper wire manufacturing plant, for example
         s cement manufacturing plant in Alpena
```

vinyl chloride monomer plant, which is molecules found in plant and animal tissue Nissan car and truck plant in Japan is and Golgi apparatus of plant and animal cells https://powcoder.compn responses to plant closures. cell types found in the plant kingdom are company said the plant is still operating Although thousands of plant and animal species animal rather than plant tissues can be

Initial state after use of seed rules

Yarowsky 1995 Method 2

3. Iterate:

- 3a. Create a new decision-list classifier: supervised training with the data tagged so far. Looks for collocations as features for classification.
- 3b. Apply newholassified to whole data set, tag some new instances Chat powcoder
- 3c. Optional: Apply one-sense-per-discourse rule wherever one sense now dominates a text.

Intermediate state

Final state

Yarowsky 1995: Method 3

- 4. Stop when converged. (Optional: Apply one-sense-per-discourse constraint.)
- 5. Use final decision list for WSD.

Assignment Project Exam Help

https://powcoder.com

Yarowsky 1995 Evaluation

- Experiments: 12 homonymous words.
 - 400-12,000 hand-tagged instances of each.
 - Baseline (most frequent sense) = 63.9%.
- Best results, avg 96.5% accuracy.
 - https://powcoder.com

 Base seed on dictionary definition; use one-sense-per-discourse neuristic.
 - As good as or better than supervised algorithm used directly on fully labelled data.

Yarowsky 1995 Discussion 1

- Strength of method:
 - The one-sense heuristics.
 - Use of precise lexical and positional information.
 - Huge training corpus.
 - Bootstrapping: Unsupervised use of supervised algorithm.

 https://powcoder.com
 use of supervised algorithm.
 Add WeChat powcoder
- Disadvantages:
 - Train each word separately.
 - Homonyms only. Why?

- Not limited to regular words; e.g., in speech synthesis system:
 - / as fraction or date:
 3/4 → "three-quarters" round third of April".
 - Roman numbertas/pardinal ordinal:
 chapter VII Add Wednat powcoder ordinal:
 Henry VII → "Henry the seventh".

Yarowsky, David. "Homograph disambiguation in speech synthesis." In Jan van Santen, Richard Sproat, Joseph Olive and Julia Hirschberg (eds.), *Progress in Speech Synthesis*. Springer-Verlag, pp. 159–175, 1996.