(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 10 mai 2002 (10.05.2002)

PCT

(10) Numéro de publication internationale WO 02/37556 A1

(51) Classification internationale des brevets7:

H01L 21/762

(21) Numéro de la demande internationale :

PCT/FR01/03401

(22) Date de dépôt international :

5 novembre 2001 (05.11.2001)

(25) Langue de dépôt :

français

(26) Langue de publication :

francais

(30) Données relatives à la priorité:
00/14170 6 novembre 2000 (06.11.2000)

(71) Déposant (pour tous les États désignés sauf US): COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31/33, rue de la Fédération, F-75752 PARIS 15ème (FR). (72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement): MORICEAU, Hubert [FR/FR]; 26 rue du Fournet, F-38120 SAINT-EGREVE (FR). ASPAR, Bernard [FR/FR]; 110 lot. Le Hameau des Alpes, F-38140 RIVES (FR). JALAGUIER, Eric [FR/FR]; 205 chemin des Roux, Le Penet, F-38410 SAINT-MARTIN-D'URIAGE (FR). LETERTRE, Fabrice [FR/FR]; 33 quai Jongkind, F-38000 GRENOBLE (FR).

(74) Mandataire: LEHU, Jean; c/o BREVATOME, 3, rue du Docteur Lancereaux, F-75008 PARIS (FR).

(81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI,

[Suite sur la page suivante]

(54) Title: METHOD FOR MAKING A STACKED STRUCTURE COMPRISING A THIN FILM ADHERING TO A TARGET SUBSTRATE

(54) Titre: PROCEDE DE FABRICATION D'UNE STRUCTURE EMPILEE COMPRENANT UNE COUCHE MINCE ADHE-RANT A UN SUBSTRAT CIBLE

(57) Abstract: The invention concerns a method for making a stacked structure comprising at least a thin film adhering to a target substrate, comprising the following steps: a) forming a thin film from an initial substrate, the thin film having a free surface called first contact surface; b) placing in adhering contact the first contact surface with an intermediate support surface, the resulting structure being compatible with subsequent thinning of the initial substrate; c) thinning said substrate to expose a free surface of the thin film called second contact surface and facing the first contact surface; d) placing in adhering contact a surface of the target substrate with at least part of the

second contact surface, the resulting structure being compatible with a subsequent removal of all or part of the intermediate support; e) removing at least part of the intermediate support to obtain said stacked structure.

(57) Abrégé: L'invention concerne un procédé de fabrication d'une structure empilée comprenant au moins une couche mince adhérant à un substrat cible, comportant les étapes suivantes :a) formation d'une couche mince à partir d'un substrat initial, la couche mince présentant une face libre appelée première face de contact, b) mise en contact adhérent de la première face de contact avec une face d'un support intermédiaire, la structure obtenue étant compatible avec un amincissement ultérieur du substrat initial, c) amincissement dudit substrat initial pour exposer une face libre de la couche mince appelée deuxième face de contact et opposée à la première face de contact, d) mise en contact adhérent d'une face du substrat cible avec au moins une partie de la deuxième face de contact, la structure obtenue étant compatible avec un retrait ultérieur de tout ou partie du support intermédiaire, e) retrait d'au moins une partie du support intermédiaire permettant l'obtention de ladite structure empilée.

03/37556 A1

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" sigurant au début de chaque numéro ordinaire de la Gazette du PCT. WO 02/37556 PCT/FR01/03401

PROCEDE DE FABRICATION D'UNE STRUCTURE EMPILEE COMPRENANT UNE COUCHE MINCE ADHERANT A UN SUBSTRAT CIBLE

5

DESCRIPTION

DOMAINE TECHNIQUE

La présente invention concerne un procédé de 10 fabrication d'une structure empilée comprenant une couche mince adhérant à un substrat cible. L'invention s'applique notamment dans le domaine des semiconducteurs.

15 ETAT DE LA TECHNIQUE ANTERIEURE

Le document FR-A-2 681 472 (correspondant au brevet américain 5 374 564) décrit un procédé de fabrication de films minces de matériau conducteur. Ce document divulgue que l'implantation .20 d'un gaz rare et/ou d'hydrogène dans un substrat en matériau semi-conducteur est susceptible de créer une couche fragilisée pouvant comporter des microcavités ou microbulles (encore désignées par le "platelets" dans la terminologie anglo-saxonne) à une 25 voisine de la profondeur moyenne pénétration des ions implantés. Ce substrat est mis en contact intime, par sa face implantée avec un support de raidisseur. En outre, un traitement thermique peut être appliqué à une température 30 suffisante pour induire une interaction coalescence) entre les microcavités ou les microbulles conduisant à une séparation ou fracture du substrat semi-conducteur en deux parties : un film mince semiconducteur adhérant au raidisseur d'une part, le reste

15

20

25

30

du substrat semi-conducteur d'autre part qui peut être à son tour recyclé comme substrat donneur ou comme support. La séparation a lieu à l'endroit où microcavités ou microbulles sont présentes, c'est-àde la couche de long microcavités. traitement thermique est tel que l'interaction entre les microbulles ou microcavités créées par implantation induit une séparation entre le film mince et le reste du substrat. Il y a donc transfert d'un film mince depuis substrat un initial jusqu'à un raidisseur servant de support à ce film mince.

Par implantation ionique on entend tout type d'introduction des espèces définies précédemment seules en combinaison. On peut citer le bombardement ionique, la diffusion, etc.

Ce procédé peut également s'appliquer à fabrication d'un film mince de matériau solide autre qu'un matériau semi-conducteur (un matériau conducteur ou diélectrique), cristallin ou non. Ce film peut être monocouche ou multicouche (voir par exemple le document FR-A-2 748 850).

Ce procédé permet de réaliser à avantageux des plaquettes, par exemple des plaquettes SOI, de qualité électronique par transfert d'un film de silicium sur un substrat de silicium recouvert d'une couche d'oxyde.

L'article « A new characterization process used to qualify SOI films » de H. MORICEAU et al. paru dans E.C.S. Proc. Vol. 99-3, p. 173, divulgue qu'il est possible de coller une plaquette SOI réalisée par un tel procédé sur un substrat de silicium oxydé. Après retrait du substrat de silicium de la plaquette SOI et de sa couche d'oxyde au moyen d'une attaque chimique sélective (par exemple à base de HF), on obtient une 35 <u>autre plaquette SOI à film de silicium inversé puisque</u>

20

25

30

35

la face libre de ce film est celle qui adhérait à la couche d'oxyde enterrée de la plaquette SOI initiale. La raison de cette démarche était de pouvoir faire un examen des défauts du film de silicium. En effet, l'objectif de cette étude était de localiser défauts dans l'épaisseur du film et non pas de réaliser une nouvelle structure.

Les articles « Evaluation of defects in surface Si near Si/BOX interface in SIMOX wafers » de M. SUDOU et al. paru dans E.C.S. Proc. Vol. 97-23, p. 119 et « SIMOX technology and applications to wafer bonding » de A.J. AUBERTON-HERVE et al. paru dans E.C.S. Proc. Vol. 95-7, p. 12 divulguent des expériences de collage d'une plaquette SOI obtenue par le procédé directement sur un substrat en silicium ou en silice 15 pure. Ce procédé comporte une seule étape de collage et est suivi du retrait du substrat de la plaquette SOI. Le but de ces expériences était également l'examen des défauts du film de silicium. Une approche analogue a été utilisée dans l'article "Ultra thin silicon films directly bonded onto silicon wafers" de F. FOURNEL et paru dans Materials Science and Engineering, B 73 (2000), pages 42 à 46, pour réaliser un réseau de dislocations dans un plan d'interface, défini lors de la mise en contact d'un film mince et d'un substrat monocristallin de silicium. L'article ne renseigne pas sur le moyen d'obtenir la couche mince de la structure empilée tel que décrit par l'invention.

Le document FR-A-2 725 074 (correspondant brevet américain 5 863 830) divulgue un procédé fabrication d'une structure comportant un film mince semi-conducteur adhérant à un substrat cible. l'origine, le film mince est lié à un substrat initial par une première énergie de liaison. Le film mince est ensuite transféré du substrat initial vers le substrat

10

15

20

25

30

35

4

cible en mettant en œuvre des forces d'arrachement, permettant de vaincre la première énergie de liaison, et une adhésion du film mince sur le substrat cible. Ce transfert du film mince peut se faire au moyen d'un substrat intermédiaire ou manipulateur qui est à son tour séparé du film mince par arrachement. Ce procédé nécessite de contrôler les énergies de liaison entre les différentes interfaces de scellement associées au film mince pour permettre les arrachements successifs.

technique connue sous La le sigle n'utilise pas la séparation d'un film mince implantation d'espèces gazeuses. Une de ses principales caractéristiques est l'utilisation d'une couche d'arrêt permettant cristalline une attaque chimique sélective tout supportant une couche monocristalline, typiquement du silicium. Cette couche d'arrêt est une couche monocristalline ou une couche épitaxiée. Il peut s'agir d'une couche de silicium dopé, une couche obtenue par épitaxie de matériau cristallin de nature différente de celle du film mince (Si_xGe_{1-x} par exemple), une couche monocristalline de réalisée dans silicium rendue poreuse, la massive du substrat de silicium. Cette technique ne permet pas d'utiliser une couche d'arrêt amorphe si on désire déposer un film monocristallin sur cette couche d'arrêt. Elle ne renseigne pas sur l'utilisation d'un substrat intermédiaire.

Le procédé connu de réalisation de structures en couches minces, dit procédé direct et décrit dans FR-A-2 681 472, basé sur l'implantation d'hydrogène, l'adhésion moléculaire avec un support final et la séparation dans et/ou au voisinage de la zone implantée, ne permet pas d'obtenir facilement et/ou avec une qualité suffisante certaines structures ayant des propriétés spécifiques. Dans les cas suivants, le

35

procédé direct n'est pas applicable simplement et la solution technique à apporter, objet de cette invention, ne découle pas d'une simple adaptation du procédé.

. 5 Un premier cas concerne la réalisation structures de films empilés minces et/ou très minces possédant une couche cristalline présente à la surface d'une couche amorphe. Un premier exemple est réalisation de films devant avoir des épaisseurs inférieures à quelques dizaines de nanomètres, 10 exemple des films de silicium de 20 nm d'épaisseur sur des films de SiO₂ de 20 nm d'épaisseur et adhérant à un support en silicium massif. Des défauts de collage sont alors souvent révélés lors de l'étape de séparation du 15 procédé direct, ce qui peut être mis en évidence lorsque le procédé met en œuvre une étape de séparation comportant un traitement thermique à basse température exemple inférieure à 500°C) assisté ou mécaniquement. Un deuxième exemple est celui où la 20 structure en films minces ayant des propriétés spécifiques est soumise à des traitements thermiques à supérieures à celles de traitements des températures thermiques subis avant, pendant ou après l'amincissement de l'un des substrats utilisés (par 25 exemple en utilisant l'amincissement par le procédé direct). Des défauts de collage, par exemple des bulles gonflées de gaz, peuvent alors apparaître au détriment de la qualité de la structure.

Un deuxième cas concerne la réalisation de structures où les forces de collage sont très faibles avant l'étape de séparation par le procédé direct. Par exemple, pour certaines conditions de préparation des surfaces avant la mise en contact (nettoyage, niveau de procédé d'élaboration de composant d'où il résulte une certaine rugosité de surface, etc.), le collage entre

WO 02/37556 PCT/FR01/03401

5

10

15

6

le support final et la plaque génératrice du film à transférer présente une énergie très faible. L'étape de séparation du procédé direct ne peut pas alors s'effectuer.

Un troisième cas concerne la réalisation de structures empilées de matériaux dont les coefficients de dilatation thermique sont trop différents. Si matériau du film à transférer et le matériau du support final ont des coefficients de dilatation thermique trop différents, le collage va céder avant la séparation par le procédé direct si un traitement thermique appliqué au collage. C'est par exemple le silicium et du saphir dont les coefficients dilatation thermique sont dans un rapport de l'ordre de 2.

Un quatrième cas concerne la réalisation de structures où les forces de collage doivent être faibles ou très faibles après l'étape de séparation par le procédé direct. Il peut être souhaité que l'énergie 20 de scellement de la structure empilée reste faible après l'étape de séparation par le procédé direct, voire inférieure à celle nécessaire à la séparation, pour procurer ultérieurement un décollement au niveau l'interface de collage. Ceci s'applique 25 particulier lorsque divers traitements peuvent renforcer l'interface de scellement. Dans un premier exemple qui correspond par exemple à une application de démontable substrat cible pour être récupéré, l'amincissement, par oxydation sacrificielle à 950°C d'un film superficiel en silicium d'une structure SOI, 30 provoque une augmentation de l'énergie de scellement 1 J/m^2 , ce qui est défavorable à supérieure à séparation ultérieure de la structure empilée substrat cible. Dans un deuxième exemple, il peut être nécessaire de traiter (par diffusion thermique

d'espèces, oxydation localisée, etc.) tout ou partie des couches, ce qui est défavorable décollement de la structure empilée puisque ces opérations participent au renforcement de l'énergie de scellement. Il peut être également souhaité d'avoir une énergie de scellement très faible dans la structure finale par exemple dans le cas où l'on veut réaliser un dépôt sur cette structure, ce dépôt présentant une forte contrainte par rapport à tout ou partie de la structure empilée et du substrat cible. Cette interface faible joue alors le rôle de zone d'accommodation des contraintes. Cette application est du domaine de la compliance du support.

Un cinquième cas concerne la réalisation de 15 structures empilées de matériaux hétérogènes. L'utilisation de matériaux de natures différentes par exemple du silicium ou de l'oxyde thermique (diélectriques divers, matériaux métalliques, semiconducteurs, supra-conducteurs, etc.) peut être à l'origine de défauts de collage mis en évidence au 20 cours du procédé direct. Par exemple, le scellement d'une lame de silicium recouverte d'un film de nitrure silicium avec un film de nitrure de silicium lame de silicium entraîne recouvrant lui-même une souvent des défauts 25 collage facilement mis de évidence lors de l'étape de séparation par le procédé direct. On entend ici par lame un substrat ou un film ou une structure empilée recouvert en surface par le film cité.

30 Un sixième cas concerne la réalisation de structures empilées dans lesquelles un changement de phase ou de nature d'un matériau peut intervenir. Par exemple, l'utilisation de certains matériaux n'est pas compatible avec les budgets thermiques éventuellement employés dans le procédé direct. Ainsi, une structure

15

20

30

35

empilée constituée d'un film de silicium, d'un film de palladium et d'une plaque de silicium produit, dessus de 200°C, un siliciure apte à donner un bon collage. A plus haute température, le scellement se dégrade, par exemple au-dessus de 900°C, température typiquement utilisée pour faire l'oxydation d'un film de silicium en vue de réduire son épaisseur. Un autre exemple concerne les applications en optique où un miroir métallique peut être rapporté par adhésion moléculaire sur une lame de silicium. Ce miroir métallique ne supportant pas de traitement thermique au-delà de quelques dizaines de °C, il n'est pas envisageable d'appliquer les budgets thermiques qui peuvent être éventuellement utilisés dans le procédé de séparation.

Le procédé direct ne permet pas, dans certains cas, de réaliser des structures de films empilés avec conservation d'une surface spécifique, dite face avant.

A ce propos, on peut citer en premier exemple la réalisation de structures empilées dans lesquelles le film superficiel obtenu est difficile à polir. Par exemple, la structure amincie par le procédé direct présente après l'étape de séparation une rugosité de surface à diminuer en fonction de l'application prévue. Cette diminution de la rugosité peut être classiquement obtenue par exemple par polissage mécano-chimique (CMP) dans le cas du silicium. Pour beaucoup de matériaux, par exemple pour les matériaux "durs", ce polissage est soit inadapté (manque d'efficacité), soit trop long important). (coût industriel C'est le cas structure amincie par le procédé direct terminé en surface par exemple par un film de saphir, de SiC ou de diamant. Le film "dur" présente une micro-rugosité de surface à diminuer pour l'application voulue. Pour ce type de matériau, le polissage par CMP est très long à

mettre en œuvre et l'homogénéité de polissage sur la structure est très difficile à maîtriser. Le surcoût impliqué est alors important si on veut atteindre une qualité de type épitaxiale ("epi-ready" en anglais).

5 peut citer également la réalisation On structures empilées dans lesquelles l'un des films possède au moins une caractéristique différente sur ses deux faces. C'est le cas si la structure obtenue par le procédé direct présente, après l'étape de séparation, 10 une surface incompatible avec l'utilisation prévue. Par film de SiC monocristallin par exemple, un caractère polaire présente la caractéristique d'avoir, sur une face, une surface constituée majoritairement d'atomes de silicium (surface dite de type Si) et, sur l'autre face, une surface constituée majoritairement 15 d'atomes de carbone (surface dite de type C). reprise de croissance par épitaxie sur SiC suppose de disposer d'une surface libre de type Si. transfert d'un film de SiC, par exemple par le procédé direct, s'accompagne d'un changement, par retournement, de la nature de la surface. La surface libre initiale est de type Si car c'est la face facile à polir avec et la face facile à sceller par adhésion moléculaire. La face libre est donc de type C après transfert par le procédé direct. Il en va de même pour 25 une couche en GaN.

Exposé de l'invention

30 La présente invention permet de remédier aux inconvénients de l'art antérieur et de fournir une structure empilée comprenant soit un film présentant certaines propriétés spécifiques, soit présentant au moins une surface à propriété(s) 35 spécifique(s).

30

L'invention résulte du fait surprenant les inventeurs que, contrairement constaté procédé direct pour lequel il y a scellement sur le substrat cible puis amincissement, lorsque l'amincissement du substrat initial a lieu avant le scellement de la couche mince sur le substrat cible, tous les défauts répertoriés ci-dessus peuvent être évités. Pour inverser ces étapes de scellement et d'amincissement, il faut passer par l'utilisation d'un ou de plusieurs supports intermédiaires.

L'invention a donc pour objet un procédé de fabrication d'une structure empilée comprenant au moins une couche mince adhérant à un substrat cible, comportant les étapes suivantes :

- a) formation d'une couche mince à partir d'un substrat initial, la couche mince présentant une face libre appelée première face de contact,
- b) mise en contact adhérent de la première face de contact avec une face d'un support
 20 intermédiaire, la structure obtenue étant compatible avec un amincissement ultérieur du substrat initial,
 - c) amincissement dudit substrat initial pour exposer une face libre de la couche mince appelée deuxième face de contact et opposée à la première face de contact,
 - d) mise en contact adhérent d'une face du substrat cible avec au moins une partie de la deuxième face de contact, la structure obtenue étant compatible avec un retrait ultérieur de tout ou partie du support intermédiaire,
 - e) retrait d'au moins une partie du support intermédiaire permettant l'obtention de ladite structure empilée.

On entend par amincissement à l'étape c) ou 35 par retrait à l'étape e) toute technique permettant

10

30

35

d'éliminer le substrat initial ou le support intermédiaire. On peut citer en particulier décollement, la fracture (liée à la création d'une zone fragilisée par introduction d'espèces gazeuses), gravure mécanique et/ou chimique. Suivant le type d'amincissement et de retrait, le substrat et support peuvent être réutilisés.

Selon un mode de réalisation particulier, le substrat cible n'est qu'un support provisoire pour la couche mince, lesdites étapes du procédé étant en totalité ou en partie répétées, le substrat cible étant assimilé au substrat initial ou au support intermédiaire.

Ainsi, le procédé selon l'invention permet le transfert de la couche mince d'un support vers un 15 autre support autant de fois que nécessaire pour obtenir une structure empilée présentant caractéristiques souhaitées et en particulier un empilement avec des niveaux technologiques de 20 composant.

l'étape b) et/ou à l'étape compatibilité de ladite structure peut être obtenue par formation, à l'étape a), d'une couche permettant d'éviter des défauts d'adhérence respectivement lors de l'amincissement de l'étape c) et lors du retrait de l'étape e). Cette compatibilité peut résulter de l'épaisseur donnée à la couche mince et/ou du matériau ou des matériaux constituant ladite couche mince. La nature du support intermédiaire et/ou du substrat cible, en contact avec la couche mince, peut être choisie de manière à éviter une incompatibilité liée à un changement de phase de matériaux de structure obtenue. La nature du support intermédiaire et/ou du substrat cible, en contact avec la couche mince, peut être choisie de manière à éviter une

15

20

incompatibilité liée à une hétérogénéité de matériaux structure obtenue. La nature du support intermédiaire et/ou du substrat cible, en contact avec la couche mince, peut être choisie de manière à éviter incompatibilité liée à une différence coefficient de dilatation thermique avec la couche mince. Pour permettre cette compatibilité, la couche mince et/ou le support intermédiaire et/ou le substrat cible peut (peuvent) comprendre au moins une couche additionnelle présentant une (des) face(s) de contact. Dans ce cas, avant l'étape d), la couche additionnelle peut être pourvue de tout ou partie d'au moins un composant. La couche additionnelle peut être constituée par un oxyde ou du silicium polycristallin ou silicium amorphe.

Les étapes a) et c) peuvent être telles que la première face de contact de la couche mince et/ou du support intermédiaire présente une rugosité inférieure respectivement à celle de sa deuxième face de contact et/ou du substrat cible, la compatibilité de structure de l'étape d) étant obtenue grâce à la mise en contact adhérent de la deuxième face de contact de la couche mince et au retrait du support intermédiaire.

Le contact adhérent de la première face de contact et/ou de la deuxième face de contact de la couche mince permettant ladite compatibilité à l'étape b) et/ou à l'étape d) peut résulter de l'utilisation d'un traitement permettant le contact adhérent. Le traitement permettant le contact adhérent peut être choisi, seul ou en combinaison, parmi les traitements suivants : polissage mécano-chimique et/ou ionique, interposition d'une couche intermédiaire entre une face de contact correspondante de la couche mince et le support intermédiaire ou le substrat cible, traitement thermique et traitement chimique. Le traitement peut

être réalisé à haute température grâce à la compatibilité de la structure.

Avantageusement, la mise en contact adhérent de l'étape b) et/ou de l'étape d) est réalisée par adhésion moléculaire.

La première face de contact de la couche mince peut présenter une polarité en surface (polarité la nature des atomes de cette différente de celle de sa deuxième face de contact, la 10 compatibilité de structure de l'étape d) étant obtenue grâce à la mise en contact adhérent de la deuxième face de contact de la couche mince et du substrat cible, et retrait au du support intermédiaire première face de contact de la couche mince qui devient ainsi une face libre. La compatibilité de structure 15 réalisée à l'étape d) peut être obtenue grâce à la mise en contact adhérent de la deuxième face de contact de la couche mince avec le substrat cible avec une énergie de liaison apte à un éventuel retrait du substrat cible après l'étape e). Avantageusement, cette énergie de 20 liaison est faible. Entre l'étape c) et l'étape d), il peut être prévu une étape intermédiaire consistant à réaliser des éléments dans la deuxième face de contact de la couche mince et/ou dans le substrat cible, structure obtenue après l'étape d) étant compatible 25 avec la présence desdits éléments. Ces éléments peuvent être des cavités ou tout ou partie de composants (microélectroniques, optroniques.) et peuvent réaliser une certaine topologie de surface. Avant l'étape d), il peut être prévu une étape intermédiaire consistant en 30 une opération de détourage permettant d'isoler au moins une zone de la deuxième face de contact, l'étape d) mettant en contact adhérent au moins une de ces zones avec le substrat cible. L'opération de détourage peut éventuellement avoir lieu même avant l'étape a). Après 35

20

25

30

. 35

l'étape e) de retrait, la ou les zones de la couche qui ne sont pas en contact adhérent avec le substrat cible subsistent sur le support intermédiaire et peuvent faire l'objet de transfert ultérieur.

L'étape a) peut être réalisée à partir d'un substrat recouvert d'au moins une couche de matériau. Dans ce cas, après l'étape e), le procédé peut comporter une étape consistant à éliminer la couche de matériau recouvrant le substrat de l'étape a).

Selon un mode de réalisation préférentiel :

- l'étape a) comprend l'introduction
d'espèces gazeuses dans le substrat initial, au travers
de l'une de ses faces correspondant à ladite première
face de contact, pour former une couche fragilisée
séparant ledit film du reste du substrat initial et
devant conduire à une fracture du substrat initial lors
de l'étape c),

- l'étape c) consiste à réaliser un traitement permettant l'obtention de la fracture du substrat initial au niveau de la couche fragilisée.

Ce traitement peut être par exemple thermique et/ou mécanique. Le substrat initial peut être monocouche ou multicouche. Il peut en particulier comporter une couche épitaxiée. Il en va de même pour le substrat cible et pour le support intermédiaire.

Selon un mode préféré, le retrait d'au moins une partie du support intermédiaire peut être effectué par une introduction d'espèces effectuée soit au travers de la couche mince après mise en contact, soit au travers de la face de contact du support intermédiaire avant ou après sa mise en contact adhérent avec la première face de contact de la couche mince, cette introduction d'espèces gazeuses formant couche fragilisée permettant le retrait fracture d'une partie du support intermédiaire

éventuellement recouvert d'un film de la couche mince. Dans ce cas, le support intermédiaire peut être réutilisé par exemple comme un nouveau support.

Eventuellement, la structure empilée obtenue à l'issue de l'étape e) est amincie du côté de la première face de contact.

Le procédé peut mettre en œuvre un substrat initial de très bonne qualité et donc d'un coût élevé comme par exemple du silicium monocristallin de 300 mm 10 de diamètre, un support intermédiaire compatible avec le substrat initial au sens de l'étape b), par exemple un substrat de silicium monocristallin recouvert d'un film d'oxyde SiO2, un substrat cible en silicium polycristallin ou monocristallin de moindre qualité que le silicium du substrat initial, la couche mince 15 comportant par exemple de l'oxyde de silicium sur du silicium monocristallin provenant du substrat initial. De la même façon, le substrat cible pourra être autre que du silicium. A la fin du procédé, le film obtenu sur le substrat cible est alors de très bonne qualité. 20 En outre, le substrat initial peut être réalisé et, suivant sa qualité ou coût, son le intermédiaire sera réutilisable ou sacrifiable. Il peut aussi mettre en œuvre un substrat initial en SiC ou en 25 GaAs, un support intermédiaire en SiC ou en GaAs, un substrat cible en SiC ou en GaAs de moindre qualité que le matériau du substrat initial, la couche mince comportant du SiC ou du GaAs provenant du substrat initial.

La couche mince peut être une couche de matériau choisi parmi Si, GaN, SiC, LiNbO3, Ge, GaAs, InP, le saphir et les semi-conducteurs.

La présente invention procure, entre 35 autres, les avantages suivants :

10

15

20

35

WO 02/37556 PCT/FR01/03401

- On peut transférer un film monocristallin de bonne qualité cristalline alors que la couche d'arrêt pour l'amincissement du support intermédiaire est une couche amorphe.

16

- On peut utiliser un support intermédiaire recyclable, par exemple en maîtrisant son énergie de le substrat intermédiaire (qualité, scellement, si nature.) est d'un coût important. Ainsi un support intermédiaire de SiC polycristallin peut être utilisé pour le transfert d'un film monocristallin de SiC de fort coût et/ou de grande qualité. A titre d'exemple, la maîtrise de l'énergie de scellement peut être assurée par le contrôle de la rugosité d'une couche additionnelle de SiO2 déposée sur la couche mince ou support intermédiaire. En variante de la maîtrise de l'énergie de scellement du support intermédiaire, il est possible aussi d'utiliser un film consommable (par exemple un oxyde) à la surface de ce support intermédiaire pour permettre de le recycler (technique du "lift-off").
 - On peut choisir aisément l'épaisseur de l'oxyde enterré final ou de la couche intermédiaire (diélectrique, métallique.).
- Le principe de l'invention peut être 25 appliqué à des couches en d'autres matériaux monocristallins ou non que le silicium pour (au moins) un des films de la structure empilée. En particulier, on peut appliquer le procédé à un film de saphir, de SiC, de GaN, de LiNbO3, de Ge, de GaAs, de InP sur n'importe quel support.
 - Ce même principe peut être appliqué à d'autres types de substrat cible que le silicium, par exemple le quartz ou n'importe quel substrat, avantageusement un substrat bas coût (verre, plastique, céramique.).

- Ce procédé peut être appliqué à tout type de film semi-conducteur, par exemple aux semi-conducteurs III-V, II-VI et IV ou à un film de diamant, de nitrure ou à tout type de film, par exemple des oxydes tels que Al₂O₃, ZrO₂, SrTiO₃, LaAlO₃, MgO, YBa_xCu_yO_z, SiO_xN_y, RuO₂ ou à d'autres matériaux, en particulier piézoélectriques, supraconducteurs, isolants, métalliques, pyroélectriques, monocristallins ou non.
- On peut appliquer ce procédé à des matériaux ayant des surfaces à caractères polaires.
 - On peut appliquer ce procédé de façon répétitive à des matériaux pour obtenir par exemple des structures multicouches complexes.
- Le principe de fabrication uniquement 15 d'un film monocristallin par exemple de silicium sur un support final peut être avantageusement utilisé dans une application où le support final est une structure d'au moins une couche processée ou non. monocristallin de silicium transféré devient alors lui-20 l'objet d'étapes technologiques en l'élaboration d'un composant. Ce principe, s'il est réitéré. permet empilement 3D un de niveaux technologiques de composants.
- Le procédé selon l'invention permet de pallier au cours d'une même mise en œuvre à plusieurs types d'incompatibilités. Pour cela, il peut requérir l'utilisation successive d'un ou de plusieurs supports intermédiaires.
- Les substrats initiaux, substrats cibles et supports intermédiaires peuvent être des structures empilées.

Brêve description des dessins

L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :

- la figure 1 représente, en coupe transversale, un substrat appelé substrat initial 10 auquel s'applique la présente invention,
 - la figure 2 représente, en coupe transversale, le substrat initial recouvert d'une couche de matériau et subissant étape d'implantation ionique lors de la mise en œuvre du procédé selon l'invention,
 - la figure 3 illustre l'étape de mise en contact adhérent du substrat initial, via la couche de matériau, avec un support intermédiaire selon la présente invention,
- la figure 4 illustre l'étape d'élimination d'au moins une partie du substrat initial selon la présente invention,
 - la figure 5 illustre l'étape de mise en contact adhérent avec une face d'un substrat cible, via une éventuelle couche, selon la présente invention,
 - la figure 6 représente la structure empilée obtenue par le procédé selon l'invention.

Description détaillée de modes de réalisation de 30 l'invention

Plusieurs exemples de mise en œuvre de l'invention vont être décrits. Ces exemples étant des variations sur un procédé de mise en œuvre de

15

20

25

30

35

l'invention, on va d'abord décrire sommairement, selon un exemple, ce procédé grâce aux figures 1 à 6.

La figure 1 montre, en coupe transversale, une plaque 1 en silicium de 725 μm d'épaisseur et de 200 mm de diamètre constituant le substrat initial. La face 2 du substrat initial 1 est oxydée sur une épaisseur de 400 nm par traitement thermique pour fournir une couche d'oxyde 3 (voir la figure 2). On pourrait aussi utiliser une multicouche sur le substrat 1.

On procède ensuite à une implantation ionique du substrat initial 1 par des espèces gazeuses 4 au travers de sa face 2, donc en traversant également la couche d'oxyde 3 comme le montre la figure 2. Les espèces gazeuses 4 sont par exemple des ions hydrogène implantés à une énergie de 75 keV et selon une dose d'environ 6.10¹⁶ atomes/cm². On induit ainsi une couche fragilisée 5 dans un plan parallèle à la face 2.

La partie du substrat 1 comprise entre la face 2 et la couche fragilisée 5 constitue un film 6. L'ensemble constitué par l'empilement du film 6 et de la couche d'oxyde 3 constitue une couche mince 7. La couche mince 7 présente une face libre 8 appelée première face de contact.

La première face de contact 8 est nettoyée pour la rendre apte à une adhésion moléculaire, par exemple par une préparation destinée à la rendre suffisamment hydrophile, et est mise en contact par adhésion moléculaire avec une face 11 d'une autre plaque de silicium 10 appelée support intermédiaire comme le montre la figure 3. Dans une variante d'application, une couche (adhésif, couche fusible.) apte à provoquer une adhésion avec le support intermédiaire peut être réalisée en vue de l'adhésion avec ledit support.

30

L'ensemble constitué par le substrat initial 1 et le support intermédiaire 10 est soumis à un traitement de séparation, par exemple un traitement thermique, afin de séparer par fracture le film 6 du reste 9 du substrat initial 1 (voir la figure 4). Le film 6 reste solidaire du support intermédiaire 10 et présente une face libre 12.

Avantageusement, le scellement de la couche mince 7 sur le support intermédiaire 10 est renforcé par un traitement thermique à haute température. Suivant la température, l'énergie d'adhésion moléculaire entre ces deux parties peut alors atteindre par exemple une valeur de l'ordre de 1,5 J/m².

La face libre 12 du film 6 est alors lissée grâce à un traitement de surface, par exemple grâce à 15 un polissage mécano-chimique, un recuit par exemple sous atmosphère partielle ou totale d'hydrogène, ou un bombardement par des ions isolés ou en amas ou une attaque chimique permettant d'enlever tout ou partie du 20 film 6, libérant ainsi une face de la couche 3 dans le cas où la couche 3 est assez sélective par rapport au substrat intermédiaire. Elle peut être couverte d'un film 13 qui peut être multicouche et dont la face libre constitue la deuxième face de contact 14 (voir figure 5). Le film 13 peut être obtenu par dépôt, par 25 traitement thermique, par traitement chimique, etc.

Après nettoyage de la deuxième face de contact 14, celle-ci est mise en contact adhérent avec un substrat cible 15. Le scellement peut être renforcé par un traitement thermique à haute température.

Le support intermédiaire 10 est ensuite retiré par exemple par meulage complété par attaque chimique. La couche d'oxyde 3 peut aussi être retirée pour obtenir la structure empilée représentée à la

10

15

20

figure 6 et constituée du substrat cible 15, du film 13 et du film 6.

Selon une première variante de mise œuvre, le film 13 peut être une couche d'oxyde de 20 nm d'épaisseur réalisée thermiquement à la surface 12 du film 6. Le substrat cible 15 peut être en silicium et oxydé en surface (par exemple sur 20 nm) ou non. Dans ce cas, le scellement du film 13 sur le substrat cible 15 peut être renforcé par un traitement à 1100°C ou une adhésion de type moléculaire. Comme précédemment, un scellement par un matériau adhésif ou fusible ou autre peut aussi être utilisé. On obtient alors une structure empilée de qualité tout en évitant l'apparition de bulles . à l'interface de scellement. intermédiaire 10 est retiré par un meulage poursuivi par une attaque chimique dans une solution d'hydroxyde de tétraméthylammonium (TMAH) ou de potasse, la couche d'oxyde 3 servant alors de couche d'arrêt de gravure chimique du silicium. Cette couche d'oxyde éliminée au moyen d'une solution à base d'acide fluorhydrique. L'épaisseur finale du film 6 est adaptée par amincissement, par exemple au moyen d'une oxydation sacrificielle. Une épaisseur finale de 50 nm peut être obtenue avec une très bonne homogénéité.

25 Selon une deuxième variante œuvre, la couche d'oxyde 3 formée sur le substrat fait 400 nm d'épaisseur. L'implantation d'atomes d'hydrogène est effectuée sous conditions que précédemment. Après la séparation du film de silicium 6 du reste 9 du substrat initial 1, le 30 est aminci, par exemple par oxydation sacrificielle à 30 nm, et recouvert d'un oxyde 13 de 50 nm d'épaisseur. La deuxième face de contact 14 est scellée au substrat cible 15. Des traitements impliquant une haute température peuvent alors être 35

effectués sans risque d'apparition de bulles à l'interface de collage.

Une troisième variante de mise en œuvre permet de procurer une interface de scellement sur le substrat cible de faible énergie. Pour cela, la surface 5 12 du film 6, révélée par la séparation du film 6 du reste 9 du substrat initial (voir la figure 4), est lissée par exemple par un polissage mécano-chimique. On forme thermiquement un film d'oxyde 13 (voir la figure 5) de 1000 nm d'épaisseur. La surface libre du film 13 10 est alors rendue rugueuse avec une valeur moyenne RMS de 0,6 nm, par exemple par gravure au moyen d'une solution d'acide fluorhydrique à 10왕 pendant minutes. Après nettoyage, la deuxième face de contact 14 est scellée au substrat cible 15. Ce substrat cible 15 est un substrat de silicium, qui peut avoir été oxydé en surface, par exemple sur 1000 nm. Sa surface peut avoir été rendue rugueuse avec une valeur moyenne RMS de 0,6 nm par le même traitement chimique que celui mis en œuvre pour le film 13. L'énergie de scellement est 20 adaptable en fonction de la rugosité induite et d'un éventuel traitement thermique. A ce stade, possible d'avoir une énergie de scellement plus faible que celle nécessaire au bon déroulement du procédé 25 direct, dite énergie de scellement seuil.

Le support intermédiaire 10 en silicium est ensuite retiré, par exemple par un meulage complété par une attaque chimique dans une solution de TMAH ou de potasse, la couche d'oxyde 3 servant de couche d'arrêt à la gravure. Cette couche d'oxyde 3 est éliminée par attaque au moyen d'une solution d'acide fluorhydrique et l'épaisseur finale du film 6 est adaptée par amincissement, par exemple par oxydation sacrificielle.

Cette variante de mise en œuvre permet 35 d'obtenir un film 6 d'épaisseur finale de 200 nm

environ avec une très bonne homogénéité. L'énerqie de scellement avec le substrat cible 15 est faible, ce qui permet de récupérer le film, ultérieurement au procédé, par décollement d'avec le substrat cible 15. De facon avantageuse, et avant de récupérer le film, on peut réaliser tout ou partie d'un composant, par exemple applications pour des de microélectronique, d'optoélectronique, photovoltaïques, de capteurs, etc. De façon avantageuse, suivant une autre application, on peut utiliser une telle structure empilée, comportant une énergie de scellement faible, pour y réaliser des dépôts ou reports de film. Une autre application de cette variante concerne les substrats à coût élevé.

10

Suivant une variante encore, on s'attachera 15 pouvoir réutiliser les substrats initiaux intermédiaires. Suivant cette variante, la plaque initiale peut être en silicium monocristallin, de haute qualité et/ou de coût élevé, par exemple une plaque de 300 mm de diamètre. Le support cible peut être silicium monocristallin, de moindre 20 qualité, polycristallin, de faible coût. Les obstacles surmontés grâce à ce procédé seront, par exemple, des défauts d'adhérence ou l'apparition de bulles observables dans le procédé direct. Dans un premier exemple, lors de l'étape d), la face libre de la couche mince pourra 25 être scellée directement sur le substrat cible, par exemple, dans le cas où l'application suppose collage conducteur. Dans un deuxième exemple, lors de l'étape d), la face libre de la couche mince ou du substrat cible peut être recouverte d'un film d'oxyde, 30 par exemple pour permettre l'adhésion sur le substrat cible de faible coût. Dans ce dernier exemple, l'oxyde permet un lissage de la surface à mettre en adhérence et le substrat cible sera du silicium polycristallin.

10

30

Dans cette variante de procédé, le substrat intermédiaire en silicium peut être de faible coût, par exemple polycristallin. Une couche additionnelle pour le lissage de surface, par exemple en SiO₂, sera avantageusement déposée sur le substrat intermédiaire.

Dans cette variante encore, le intermédiaire peut être en silicium de haute qualité. Il est alors avantageux de le récupérer par exemple par une technique de lift-off ou par une implantation d'espèces gazeuses suivie d'une séparation ou par une technique prenant en compte, par exemple, une énergie d'adhésion assez faible après l'étape b) pour permettre séparation, par exemple, par voie mécanique, pneumatique.

Dans tous les cas de cette variante, le substrat initial de haute qualité et/ou de coût élevé, par exemple en silicium de 300 mm de diamètre, sera récupéré avantageusement en utilisant, par exemple, lors de l'étape a) une implantation d'espèces gazeuses et lors de l'étape c) une séparation du reste du substrat initial.

Une quatrième variante de mise en œuvre permet de procurer une interface de scellement sur le substrat cible de faible énergie afin de libérer le film et de récupérer le substrat cible. Cette variante de mise en œuvre, qui a beaucoup de points communs avec la variante précédente, permet de faire subir au film au substrat cible un certain nombre traitements, par exemple des étapes technologiques de réalisation de composants électroniques dont des traitements thermiques à haute température. Ces traitements thermiques rendraient quasiment impossible le décollement d'un film sur un substrat obtenu par le procédé direct.

10

15

30

35

On a vu précédemment qu'il est possible d'obtenir un scellement de faible énergie du film sur le substrat cible, par exemple une énergie de 0,5 J/m². Le contrôle de la rugosité des surfaces avant mise en contact à des valeurs RMS supérieures à 0,6 nm permet d'obtenir de telles énergies de scellement malgré des traitements thermiques à une température supérieure à 900°C. Ces énergies sont alors compatibles pour pouvoir libérer le film dit processé, par décollement du substrat cible après la mise en œuvre des étapes technologiques de réalisation de composants. Il est alors possible de récupérer le substrat cible, ce qui peut être avantageux en fonction de son coût.

A titre d'exemple de substrat cible de fort coût, on peut par exemple citer un substrat de silicium de 300 mm de diamètre. Seule la partie film du substrat est à utiliser pour les composants et il peut être important de récupérer le substrat initial et/ou le support intermédiaire et/ou le substrat cible.

20 Une cinquième variante de mise en œuvre s'applique au cas où la surface libre du film 6 délimité dans le substrat initial est telle l'adhésion directe sur un substrat cible est très faible, par exemple à cause des rugosités sur au moins une des deux surfaces à mettre en contact. L'énergie de 25 scellement sur le substrat cible est alors insuffisante pour permettre la séparation du film par le procédé direct.

Pour résoudre ce problème, après l'étape d'implantation ionique, la première face de contact 8 est préparée pour la rendre apte à un scellement, par exemple par le dépôt d'un film sacrificiel et par une étape supplémentaire de lissage dite de planarisation. Selon l'invention, on utilise un support intermédiaire, par exemple un substrat de silicium éventuellement

15

20

25

30

35

recouvert d'une couche d'oxyde (par exemple de 100 nm d'épaisseur) et présentant une face de contact peu rugueuse, par exemple avec une valeur moyenne RMS de 0,2 nm. Le fait de coller sur une surface faiblement rugueuse assure une énergie de scellement de valeur suffisante pour permettre par la suite l'étape de séparation du film 6 du reste du substrat initial.

fois Une la séparation réalisée. traitement thermique à haute température peut être mis en œuvre, par exemple pour renforcer le scellement ou fonction en des opérations nécessaires pour applications visées (diffusion d'un élément implanté, film d'oxyde déposé par la suite, etc.). Un traitement de surface, par exemple un polissage mécano-chimique, permet de lisser tout ou partie de la surface révélée du film séparé de son substrat initial.

Après nettoyage, la surface libre du film 6 film additionnel 13, dite deuxième ou du contact 14, est scellée sur le substrat cible silicium qui est par exemple recouvert d'une couche d'oxyde d'environ 1000 nm d'épaisseur dont la surface rendue rugueuse par traitement chimique. scellement est éventuellement adapté par un traitement thermique mais conserve une faible valeur. A ce stade, l'énergie de scellement entre le film 6 ou le film 13 et le substrat cible 15 (ou éventuellement sa couche superficielle) est plus faible que celle nécessaire au bon déroulement de l'étape de séparation film-reste du substrat initial. Le support intermédiaire ensuite retiré par exemple par meulage et attaque chimique et la couche d'oxyde 3 est éliminée attaque chimique. L'épaisseur finale du film 6 adaptée par amincissement, par exemple par oxydation sacrificielle. Cette épaisseur peut être de 50 nm avec une très bonne homogénéité.

Avantageusement, cette cinquième variante sera utilisée lorsque la rugosité de surface initiale des faces 2 ou 8 correspond à une topologie gravée sur le substrat initial ou sur la couche mince initiale ou 5 sur le substrat cible. Un film d'oxyde 13 (voir figure 5) de 1000 nm d'épaisseur peut être réalisé, par exemple thermiquement, à la surface du film 6. topologie de la surface, ne permettant pas initialement le procédé direct, peut être reproduite à cette étape, par exemple par un traitement de gravure chimique. On peut citer comme exemple d'application le cas de canaux placés au niveau de l'interface de scellement avec le substrat cible et aptes à induire un refroidissement de la structure par circulation d'un fluide. Dans un autre domaine, on peut citer la réalisation d'une texture à 15 l'interface de scellement du substrat cible pour des applications photovoltaïques. De plus, cette topologie peut être exclusivement ou partiellement réalisée dans le substrat cible, couvert ou non de couches 20 additionnelles.

Une sixième variante de mise en œuvre se distingue de la variante précédente en ce support intermédiaire peut être récupéré. solution s'avère intéressante car le support élément devant présenter une 25 intermédiaire est un certaine qualité pour permettre la séparation des films et son coût peut alors être important. Le procédé selon l'invention permet par exemple et avantageusement de conserver l'énergie de scellement du substrat initial 30 support intermédiaire à une valeur le supérieure à l'énergie seuil nécessaire pour permettre la séparation entre le film et le substrat initial. L'énergie de scellement du substrat initial et du support intermédiaire peut être contrôlée par le biais des rugosités des surfaces et de traitements thermiques 35

.35.

utilisés éventuellement en complément du traitement de séparation. Etant donné que l'on peut recycler le support intermédiaire, on peut utiliser comme support des substrats chers (compatibles avec l'application) ou même préparés spécialement pour faciliter le décollement à l'interface de premier scellement. La récupération du support intermédiaire après son scellement au substrat cible peut être réalisée par exemple par une technique de "lift-off" 10 descellement mécanique et/ou pneumatique, suivant un procédé en combinaison avec une implantation gazeuse, ces techniques pouvant être combinées entre elles.

Une septième variante de mise en œuvre s'applique notamment au cas où la surface libre du film séparé du substrat initial est difficile à polir ou présente une qualité de lissage insuffisante après un procédé direct.

Les films obtenus par le procédé direct 20 présentent souvent après l'étape de séparation une rugosité de surface à diminuer pour l'application prévue. Classiquement, un polissage mécano-chimique peut être effectué. Pour beaucoup de matériaux, par exemple les matériaux "durs" (saphir, SiC, diamant, 25 etc.), ce polissage est soit mal adapté (pas efficace pour polir un film du matériau dur alors qu'il a été mis au point pour le même matériau sous forme massive, qualité insuffisante, défaut d'homogénéité d'épaisseur), soit trop long (ce qui augmente le coût de fabrication). L'invention permet de résoudre ce 30 problème.

Prenons l'exemple d'un substrat initial 1 constitué par une plaquette de saphir monocristalline d'orientation [1-102] et polie en surface avec une qualité épitaxiale. La plaquette peut éventuellement

WO 02/37556 PCT/FR01/03401

5

10

30

29

être recouverte d'une couche d'oxyde de silicium. Le substrat initial 1 est implanté par des espèces gazeuses, par exemple par de l'hydrogène. En l'absence de couche d'oxyde, l'énergie d'implantation peut être de 60 keV pour une dose de 2.1017 atomes/cm2. En cas de présence de la couche d'oxyde, l'énergie d'implantation est alors augmentée pour tenir compte de l'épaisseur de cette couche d'oxyde. Après préparation de la face implantée (première face de contact), le substrat initial est mis en contact par adhésion moléculaire avec le support intermédiaire. La séparation du film de saphir est provoquée dans ou au voisinage de la couche fragilisée.

Après cette séparation, on désire obtenir 15 un film de saphir de faible micro-rugosité. Pour ce type de matériau, un polissage mécano-chimique est très long à mettre en œuvre et la qualité et l'homogénéité de polissage d'un film mince est difficile à maîtriser. La qualité de la surface n'étant pas de type épitaxial ou le surcoût impliqué étant important, le procédé 20 direct ne peut être appliqué. Le substrat initial en saphir étant vendu par le fournisseur de plaques avec une face qui est déjà de qualité épitaxiale, l'invention permet l'obtention d'une structure empilée comprenant un film dont la face libre (ou face avant) . 25 est cette face initiale de qualité épitaxiale.

L'étape de séparation du film d'avec reste du substrat initial est donc réalisée après mise en contact adhérent du substrat initial sur le support intermédiaire via un éventuel film initial additionnel. Après la séparation, la face libre du film de saphir présente une certaine rugosité. On y dépose une couche d'un matériau, par exemple une couche de SiO2, et un polissage mécano-chimique permet une planarisation de 35 sa surface. Après préparation de cette surface et de la

surface correspondante du substrat cible (par exemple en silicium), la deuxième étape de mise en contact adhérent est réalisée. Le retrait du support intermédiaire révèle la face avant initiale du film de saphir ou du film initial additionnel. Ce film initial additionnel peut être avantageusement un film d'oxyde de silicium. Dans ce cas, il peut être retiré par attaque chimique pour libérer la face avant initiale du film de saphir. Si cette face avant est recouverte d'une couche d'oxyde, cette couche peut être retirée par une attaque chimique.

10

15

Une huitième variante de mise en œuvre s'applique au cas où le film possède des faces présentant des caractéristiques différentes. C'est le cas mentionné dans l'état de la technique antérieure de la reprise de croissance par épitaxie sur le film 6, par exemple en SiC (matériau possédant une face de type Si et une face de type C) ou en GaN.

A titre d'exemple, un substrat initial de SiC est recouvert d'une couche d'oxyde d'environ 400 nm 20 initial est d'épaisseur. Le substrat implanté, travers de la couche d'oxyde, par des d'hydrogène d'énergie 120 keV et selon une dose de 8.10¹⁶ atomes/cm². La surface implantée est ensuite 25 rendue hydrophile et est mise en contact pour une liaison par adhésion moléculaire avec une face d'un support intermédiaire recouvert d'une couche d'oxyde de d'épaisseur par exemple. Un traitement séparation permet de séparer le film du reste du 30 substrat initial. Le film de SiC adhère alors intermédiaire via la support couche d'oxyde. traitement de surface (par exemple un polissage mécanodépôt d'un chimique ou le film permettant planarisation) permet de rendre la nouvelle surface libre du film de SiC apte à une adhésion ultérieure. 35

15

20

30

35

Cette surface libre est rendue hydrophile et est mise en contact pour une liaison par adhésion moléculaire avec une face correspondante du substrat cible. Après un traitement thermique à haute température destiné à renforcer le scellement, l'énergie d'adhésion moléculaire peut atteindre des valeurs supérieures ou égales à 1 J/m^2 .

Le support intermédiaire 10 est ensuite retiré, par exemple par un meulage complété par une attaque chimique, la couche d'oxyde 3 servant de couche d'arrêt à la gravure. La couche d'oxyde 3 est enfin retirée par attaque au moyen d'une solution à base d'acide fluorhydrique. L'épaisseur finale du film est adaptée, par exemple grâce à un traitement thermique amincissant.

Dans cette variante de mise en œuvre, une épaisseur finale du film 6 de 100 nm est obtenue avec une très bonne homogénéité sur une majeure partie de la structure. La surface libérée du film correspond à la surface apte à une reprise par croissance en épitaxie.

Une neuvième variante de mise en œuvre s'applique au cas où l'on désire récupérer le support intermédiaire et où le film (ou l'un des films) possède des faces présentant des caractéristiques différentes. Cette variante est un cas particulier de la variante précédente.

Après l'étape consistant à séparer le film 6 du reste 9 du substrat initial (voir la figure 4), une étape d'implantation ionique est effectuée au travers de la surface 12 pour induire une zone fragilisée dans le substrat intermédiaire ou dans une des couches additionnelles déposées sur le substrat intermédiaire ou la couche mince 7 suivant leur nature. Il peut s'agir d'une implantation d'hydrogène dans le substrat intermédiaire à une énergie de 140 keV et

10

selon une dose de 8.10¹⁶ atomes/cm² pour l'exemple des matériaux cités à la huitième variante et dans laquelle le substrat intermédiaire est en SiC.

Le substrat cible est mis en contact adhérent avec la deuxième face de contact. Le support intermédiaire est alors séparé de la structure empilée et peut être recyclé. Dans le cas d'un procédé de réalisation d'un film de SiC sur un substrat cible de silicium, la récupération du support intermédiaire en SiC est d'un intérêt économique certain. La couche d'oxyde 3 est retirée par attaque au moyen d'une solution d'acide fluorhydrique. L'épaisseur finale du film 6 est adaptée par amincissement, par exemple par oxydation sacrificielle.

Une dixième variante de mise en œuvre se 15 rapporte au cas où le film et le substrat cible ont au une caractéristique rendant incompatible procédé direct. Il peut s'agir du cas où les matériaux constituant le film et le substrat cible ont des 20 coefficients de dilatation thermique trop différents. A titre d'exemple on peut citer : le silicium et le quartz, le silicium et le saphir, le silicium l'arséniure de gallium, Si et InP, Si et LiNbO₃. traitement thermique utilisé avant ou pendant l'étape 25 de séparation, par le procédé direct, provoque soit un descellement à l'interface de mise en contact, soit une rupture de l'un des deux éléments mis en contact adhérent.

A titre d'exemple, on part d'un substrat initial 1 constitué d'une plaque de silicium recouverte d'une couche d'oxyde 3 de 400 nm d'épaisseur. Une couche fragilisée 5 est créée par implantation d'hydrogène à une énergie de 75 keV et avec une dose de 6.10¹⁶ atomes/cm². La face de contact 8 est scellée à un support intermédiaire 10 présentant un coefficient de

25

30

dilatation thermique compatible. Ce support intermédiaire peut être une autre plaque de silicium recouverte d'une couche d'oxyde de 200 nm d'épaisseur. Des traitements thermiques peuvent alors être réalisés. 5 traitements thermiques permettent d'augmenter l'énergie de scellement, ce qui conduira séparation de qualité entre le film et le reste du substrat initial. Une fois la séparation réalisée, l'empilement représenté à la figure 4. 10 traitement de surface permet de minimiser la microrugosité de surface du film 6. Après une éventuelle préparation de surface, l'empilement est scellé sur un substrat cible dont le coefficient de dilatation peut être très différent de celui du substrat initial, par 15 exemple une plaque de quartz ou de saphir et le support intermédiaire est retiré par exemple par meulage, par attaque chimique, par lift-off..

Un autre exemple de cette dixième variante consiste à provoquer une adhésion à l'étape b) dont l'énergie corresponde au moins à l'énergie seuil en dessous de laquelle l'étape c) ne peut avoir lieu. Avant l'étape d), une implantation ionique, par exemple d'hydrogène, est réalisée dans intermédiaire ou dans une des couches additionnelles de ce substrat intermédiaire à travers la face 12. Cette implantation v induit une couche fragilisée laquelle s'effectuera la séparation lors de l'étape e). Le substrat intermédiaire peut alors être récupéré et réutilisé.

Des exemples analogues peuvent être obtenus avec des substrats initiaux constitués eux-mêmes d'une structure empilée, par exemple une plaque de silicium d'une couche recouverte de nitrure alors substrat cible peut être une plaque recouverte d'une couche épaisse d'oxyde thermique. Le 35

35

coefficient de dilatation du film de nitrure peut être supérieur à 4.10-6/K alors que celui du film d'oxyde est inférieur à $10^{-6}/K$. Un traitement thermique à haute température utilisé lors ou à la suite du procédé direct, par exemple pour amincir le film de silicium 5 par oxydation sacrificielle, n'est pas compatible pour certaines conditions d'énergie d'adhésion entre les films de nitrure et de silice. Dans ce cas, l'usage du l'invention permet procédé selon de résoudre problème. Après l'étape c), la couche mince est traitée 10 haute température pour l'amincir par oxydation sacrificielle du silicium. Avant l'étape d), une couche additionnelle de nitrure (Si₃N₄) est réalisée sur la face libre de la couche mince et le substrat cible est recouvert d'un film d'oxyde (SiO2). Les deux couches 15 peuvent aussi être déposées sur la face libre de la couche mince ou sur le substrat cible. La structure finale correspond à la couche amincie silicium supportée par les deux films de coefficients de dilatation très différents. 20

Suivant une onzième variante, la caractéristique rendant incompatible le procédé direct peut être un changement de phase survenant dans un film. Par exemple, un film de palladium mis en contact avec un substrat de silicium permet une adhésion en formant un siliciure grâce à un traitement thermique à une température au-dessus de 200°C. Par contre, à 900°C, ce siliciure se dégrade, rendant par exemple ainsi impossible une étape d'oxydation sacrificielle à 900°C dans le procédé direct. L'invention permet de résoudre ce problème.

Après réalisation d'une couche mince 7 comportant un film de silicium 6 sur un support intermédiaire 10, le film de silicium est aminci à 900°C par oxydation sacrificielle, puis le film de

palladium est déposé après l'étape de lissage de la face libre 12 et constitue tout ou partie du film référencé 13. Le traitement thermique de scellement avec le substrat cible étant réalisé à une température inférieure à 870°C, le scellement sera de bonne qualité et le film de silicium sera à la bonne épaisseur.

10

15

REVENDICATIONS

- 1. Procédé de fabrication d'une structure empilée comprenant au moins une couche mince adhérant à un substrat cible (15), comportant les étapes suivantes:
- a) formation d'une couche mince (7) à partir d'un substrat initial (1), la couche mince (7) présentant une face libre appelée première face de contact (8),
- b) mise en contact adhérent de la première face de contact (8) avec une face (11) d'un support intermédiaire (10), la structure obtenue étant compatible avec un amincissement ultérieur du substratinitial,
- c) amincissement dudit substrat initial (1) pour exposer une face libre de la couche mince appelée deuxième face de contact (14) et opposée à la première face de contact (8),
- d) mise en contact adhérent d'une face du substrat cible (15) avec au moins une partie de la deuxième face de contact (14), la structure obtenue étant compatible avec un retrait ultérieur de tout ou partie du support intermédiaire,
- e) retrait d'au moins une partie du support intermédiaire (10) permettant l'obtention de ladite structure empilée.
- 2. Procédé selon la revendication 1, 30 caractérisé en ce que le substrat cible n'est qu'un support provisoire pour la couche mince, lesdites étapes du procédé étant en totalité ou en partie répétées, le substrat cible étant assimilé au substrat initial ou au support intermédiaire.

- 3. Procédé selon la revendication 1, caractérisé en ce que, à l'étape b) et/ou à l'étape d), la compatibilité de ladite structure est obtenue par la formation, à l'étape a), d'une couche mince permettant d'éviter des défauts d'adhérence respectivement lors de l'amincissement de l'étape c) et lors du retrait de l'étape e).
- 4. Procédé selon la revendication 3, 10 caractérisé en ce que ladite compatibilité résulte de l'épaisseur donnée à la couche mince et/ou du matériau ou des matériaux constituant ladite couche mince.
- 5. Procédé selon la revendication 3. caractérisé ce 15 en que la nature du support intermédiaire et/ou du substrat cible, en contact avec la couche mince, est choisie de manière à éviter une incompatibilité liée à un changement de phase matériaux de la structure obtenue.

20

- 6. Procédé selon la revendication 3, caractérisé en ce que la nature du support intermédiaire et/ou du substrat cible, en contact avec la couche mince, est choisie de manière à éviter une incompatibilité liée à une hétérogénéité de matériaux de la structure obtenue.
- 7. Procédé selon la revendication caractérisé en ce que la nature du intermédiaire et/ou du substrat cible, en contact avec 30 la couche mince, est choisie de manière à éviter une incompatibilité liée à une différence de coefficient de dilatation thermique avec la couche mince.

- 8. Procédé selon la revendication caractérisé en ce que la couche mince et/ou le support intermédiaire et/ou le substrat cible moins (comprennent) au une couche additionnelle présentant une (des) face(s) de contact.
- 9. Procédé selon la revendication 8, caractérisé en ce que, avant l'étape d), la couche additionnelle est pourvue de tout ou partie d'au moins un composant.
- 10. Procédé selon la revendication 8, caractérisé en ce que la couche additionnelle est constituée par un oxyde ou du silicium polycristallin ou du silicium amorphe.
- 11. Procédé selon la revendication 1, caractérisé en ce que les étapes a) et c) sont telles que la première face de contact de la couche mince et/ou du support intermédiaire présente une rugosité inférieure respectivement à celle de sa deuxième face de contact et/ou du substrat cible, la compatibilité de structure de l'étape d) étant obtenue grâce à la mise en contact adhérent de la deuxième face de contact de la couche mince et au retrait du support intermédiaire.
- 12. Procédé selon la revendication caractérisé en ce que le contact adhérent première face de contact et/ou de la deuxième face de 30 contact de la couche mince permettant compatibilité à l'étape b) et/ou à l'étape d) résulte de l'utilisation d'un traitement permettant le contact adhérent.

WO 02/37556 PCT/FR01/03401

39

13. Procédé selon la revendication 12, caractérisé en ce que le traitement permettant le contact adhérent est choisi, seul ou en combinaison, parmi les traitements suivants: polissage mécanochimique et/ou ionique, interposition d'une couche intermédiaire entre une face de contact correspondante de la couche mince et le support intermédiaire ou le substrat cible, traitement thermique et traitement chimique.

10

14. Procédé selon la revendication 1, caractérisé en ce que la mise en contact adhérent de l'étape b) et/ou de l'étape d) est réalisée par adhésion moléculaire.

15

20

- 15. Procédé selon revendication la caractérisé en ce que la première face de contact de la couche mince présente une polarité en surface (polarité la nature des atomes de cette différente de celle de sa deuxième face de contact, la compatibilité de structure de l'étape d) étant obtenue grâce à la mise en contact adhérent de la deuxième face de contact de la couche mince et du substrat cible, et grâce au retrait du support intermédiaire de première face de contact de la couche mince qui devient ainsi une face libre.
- 16. Procédé selon la revendication 1, caractérisé en ce que la compatibilité de structure réalisée à l'étape d) est obtenue grâce à la mise en contact adhérent de la deuxième face de contact de la couche mince avec le substrat cible avec une énergie de liaison apte à un éventuel retrait du substrat cible après l'étape e).

- 17. Procédé selon la revendication 1, caractérisé en ce que, entre l'étape c) et l'étape d), il est prévu une étape intermédiaire consistant à réaliser des éléments dans la deuxième face de contact de la couche mince et/ou dans le substrat cible, la structure obtenue après l'étape d) étant compatible avec la présence desdits éléments.
- 18. Procédé selon la revendication 1,

 10 caractérisé en ce que, avant l'étape d), il est prévu
 une étape intermédiaire consistant en une opération de
 détourage permettant d'isoler au moins une zone de la
 deuxième face de contact, l'étape d) mettant en contact
 adhérent au moins une de ces zones avec le substrat
 cible.
- 19. Procédé selon la revendication 1, caractérisé en ce que l'étape a) est réalisée à partir d'un substrat (1) recouvert d'au moins une couche de 20 matériau (3).
- 20. Procédé selon la revendication 19, caractérisé en ce que, après l'étape e), le procédé comporte une étape consistant à éliminer la couche de matériau (3) recouvrant le substrat (1) de l'étape a).
- 21. Procédé selon l'une des revendications 19 ou 20, caractérisé en ce que le substrat initial (1) étant en silicium, la couche de matériau (3) qui le 30 recouvre est en oxyde de silicium.
 - 22. Procédé selon la revendication 1, caractérisé en ce que :
- l'étape a) comprend l'introduction 35 d'espèces gazeuses dans le substrat initial (1), au

travers de l'une (2) de ses faces correspondant à ladite première face de contact (8), pour former une couche fragilisée (5) séparant ledit film (6) du reste (9) du substrat initial (1) et devant conduire à une fracture du substrat initial lors de l'étape c),

- l'étape c) consiste à réaliser un traitement permettant l'obtention de la fracture du substrat initial (1) au niveau de la couche fragilisée (5).

10

15

20

- 23. Procédé selon la revendication caractérisé en ce que le retrait d'au moins une partie support intermédiaire est effectué par introduction d'espèces gazeuses effectuée soit travers de la couche mince après mise en contact, soit travers dе la face de. contact du support intermédiaire avant ou après sa mise en contact adhérent avec la première face de contact de la couche mince, cette introduction d'espèces gazeuses formant une couche fragilisée permettant le retrait fracture d'une partie du support intermédiaire.
- 24. Procédé selon la revendication 1, caractérisé en ce que la structure empilée obtenue à
 25 l'issue de l'étape e) est amincie du côté de la première face de contact.
- 25. Procédé selon la revendication caractérisé en ce qu'il met en œuvre un substrat 30 initial en silicium monocristallin, un support intermédiaire en silicium monocristallin, un substrat cible en silicium polycristallin ou monocristallin de moindre qualité que le silicium du substrat initial.

- 26. Procédé selon la revendication 1, caractérisé en ce qu'il met en œuvre un substrat initial en SiC ou en GaAs, un support intermédiaire en SiC ou en GaAs, un substrat cible en SiC ou en GaAs de moindre qualité que le matériau du substrat initial, la couche mince comportant du SiC ou du GaAs provenant du substrat initial.
- 27. Procédé selon la revendication 1, 10 caractérisé en ce que la couche mince est une couche de matériau choisi parmi Si, GaN, SiC, LiNbO3, Ge, GaAs, InP, le saphir et les semi-conducteurs.

1/2

FIG. 2

FIG. 3

2/2

FIG. 6

INTERNATIONAL SEARCH REPORT

tm sonal Application No PCT/FR 01/03401

IPC 7	H01L21/762				
According	to International Potent Classification (IDC) and both and a large				
	to International Patent Classification (IPC) or to both national class 3 SEARCHED	ilication and IPC			
	ocumentation searched (classification system followed by classific	cation symbols)			
IPC 7	H01L	,			
Documenta	ation searched other than minimum documentation to the extent that	at such documents are included in the fields so	earched		
Electronic o	data base consulted during the international search (name of data	base and, where practical, search terms used)		
EPO-In	ternal, WPI Data, PAJ, INSPEC, IBM	-TDB			
с. посим	ENTS CONSIDERED TO BE RELEVANT	<u>`</u>			
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.		
ļ			Field valit to Califf (40,		
х	US 5 391 257 A (CHANG MAU-CHUNG 21 February 1995 (1995-02-21)	F ET AL)	1,3-9, 12-14, 16-19		
	abstract; claims; figures 2A-2F column 3, line 48 -column 5, line 48 -	ne 4			
Х	HAMAGUCHI T ET AL: "NOVEL LSI/S FABRICATION USING DEVICE LAYER TECHNIQUE" WASHINGTON, DEC. 1 - 4, 1985,WAS IEEE,US,	TRANSFER	1,3,8,9, 12,13		
	vol, 1 December 1985 (1985-1) pages 688-691, XP002037723 page 28.5, right-hand column, page 3,4; figure 1				
	-	-/	•		
X Furti	ner documents are listed in the continuation of box C.	X Patent family members are listed	in annex.		
Special ca	tegorles of cited documents:	"T" later document published after the Inte	mational filing date		
"A" docume consid	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the	the application but		
"E" earlier o	ocument but published on or after the International	invention "X" document of particular relevance; the o	laimed invention		
"L" docume which	"L" document which may throw doubts on priority dalm(s) or unlike is clied to establish the publication date of another cannot be considered novel or cannot be considered to uncover an inventive step when the document is taken alone				
"O" docume	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be considered to involve an in document is combined with one or mo	ventive step when the		
other means "P" document published prior to the international filing date but later than the priority date claimed "B" document member of the same patent family					
Date of the	actual completion of the international search	Date of mailing of the international sea			
20	0 February 2002	28/02/2002	·		
Name and n	nailing address of the ISA	Authorized officer			
	European Palent Office, P.B. 5818 Palentlaan 2 NL – 2280 HV Rijswijk				
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Wirner, C			

INTERNATIONAL SEARCH REPORT

tional Application No PCT/FR 01/03401

0.00		PCT/FR 01/03401		
C.(Continue Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·		
Calegory /	Citation of document, with indication, where appropriate, of the relevant passages	!'	Relevant to claim No.	
Y	ISHIKAWA Y ET AL: "EFFECTS OF ELECTRON TUNNELING INTO A SINGLE-CRYSTALLINE SI LAYER THROUGH AN ULTRATHIN BURIED OXIDE" EXTENDED ABSTRACTS OF THE INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS, JAPAN SOCIETY OF APPLIED PHYSICS. TOKYO, JA, September 1998 (1998-09), pages 182-183, XP000823131 abstract; figure 1 page 182, left-hand column, paragraph 3		1,22,23	
Y	FR 2 781 082 A (COMMISSARIAT ENERGIE ATOMIQUE) 14 January 2000 (2000-01-14) abstract; claims; figures		1,22,23	
4	WO 00 19499 A (MAX PLANCK GESELLSCHAFT) 6 April 2000 (2000-04-06)		1,3,5-7, 22,23, 25-27	
	abstract; claims; figures page 1 -page 6		L3-L1	
ĺ				
1		}		
j	•		· .	
		1		
		٠. ا	•	
			٠ .	
		ŀ		

INTERNATIONAL SEARCH REPORT

u ...lonal Application No PCT/FR 01/03401

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5391257	A	21-02-1995	NONE		<u> </u>
FR 2781082	A	14-01-2000	FR EP WO	2781082 A1 1103072 A1 0003429 A1	14-01-2000 30-05-2001 20-01-2000
WO 0019499	A	06-04-2000	US WO EP	6150239 A 0019499 A1 1118108 A1	21-11-2000 06-04-2000 25-07-2001

Form PCT/ISA/210 (patent family annex) (July 1992)

	RAPPORT DE RECHERCHE INTERNATIO	MALE	_	uonaie Mo
	<u> </u>		PCT/FR 01	/03401
A. CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE			
			•	
Selon la cla	ssification internationale des brevets (CIB) ou à la fois selon la classifi	cation nationale et la C)B	
	NES SUR LESQUELS LA RECHERCHE A PORTE			
Documenta CIB 7	tion minimale consultée (système de classification suivi des symboles HO1L	de dassement)		
010 /				
Documenta	tion consultée autre que la documentation minimale dans la mesure of	ù ces documents relève	ent des domaines s	ur lesquels a porté la recherche
Base de do	nnées électronique consultée au cours de la recherche internationale ((nom de la basa de doi	nnées, et si réalisat	le termes de recherche utilisée)
	ternal, WPI Data, PAJ, INSPEC, IBM-TI			,,
	ENTS CONSIDERES COMME PERTINENTS			
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication	des passages pertiner	nts	no. des revendications visées
Χ .	US 5 391 257 A (CHANG MAU-CHUNG F 21 février 1995 (1995-02-21)	ET AL)		1,3-9, 12-14, 16-19
	abrégé; revendications; figures 2/ colonne 3, ligne 48 -colonne 5, l	A-2F igne 4		10 19
X	HAMAGUCHI T ET AL: "NOVEL LSI/SON FABRICATION USING DEVICE LAYER TRA TECHNIQUE"	ANSFER		1,3,8,9, 12,13
	WASHINGTON, DEC. 1 - 4, 1985, WASHI IEEE, US, vol, 1 décembre 1985 (1985-12-0			
	pages 688-691, XP002037723 page 28.5, colonne de droite, alir figure 1	néas 3,4;		
	 	/		
X Voir I	la suite du cadre C pour la fin de la liste des documents	X Les document	s de familles de bre	vets sont indiqués en annexe
° Calégories	spáciales de documents cités:	C document ultérious	nublik appho la data	da di alla 1-1 1 1
'A' docume	de dépôt international ou la s à l'état de la mprendre le principe			
'E' docume	nt antáriour mala nublió à la data do dánat intermedia at	ou la meone consi de document naticuliè	liuani la case de l'il rement nertinent: fi	ivention
'L' documer priorité	nt pouvant Jeter un doute sur une revendication de	Inventive par rappo document particuliè	nime nouvelle ou co ort au document col rement pertinent: l'i	omme impliquant une activité asidéré isolément
"O" docume	nt se référant à une divulgation orale, à un usage, à	ne peut etre consk lorsque le docume	aeree comme implic at est associé à un	pant une activité inventive ou plusieurs autres
P* docume	position ou tous autres moyens ni publie avant la dale de dépôt international, mais	documents de mêr pour une personne	me nature, cette co: e du métler	nbinalson étant évidente
	eurement à la date de priorité revendiquée elle la recherche internationale a été effectivement achevée	L' document qui fait pa		nille de brevets le recherche internationale
				SIBNOIDE UITERNATIONALE
) février 2002	28/02/2	002	
Nom et adres	sse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk	Fonctionnaire autor	risé	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax. (+31-70) 340-3016	Wirner,	С	

RAPPORT DE RECHERCHE INTERNATIONALE

de Internationale No PCT/FR 01/03401

		PCT/FR 0	01/03401		
	CUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec,le cas échéant, l'indicationdes passages p	net le certe	Inc. dec minedia il		
	acreamy i indicationges passages pr	erunenus	no. des revendications visées		
Υ	ISHIKAWA Y ET AL: "EFFECTS OF ELECTRON TUNNELING INTO A SINGLE-CRYSTALLINE SI LAYER THROUGH AN ULTRATHIN BURIED OXIDE" EXTENDED ABSTRACTS OF THE INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS, JAPAN SOCIETY OF APPLIED PHYSICS. TOKYO, JA, septembre 1998 (1998-09), pages 182-183, XP000823131		1,22,23		
,	abrégé; figure 1 page 182, colonne de gauche, alinéa 3 ————————————————————————————————————		1.00.00		
	FR 2 781 082 A (COMMISSARIAT ENERGIE ATOMIQUE) 14 Janvier 2000 (2000-01-14) abrégé; revendications; figures		1,22,23		
\	WO 00 19499 A (MAX PLANCK GESELLSCHAFT) 6 avril 2000 (2000-04-06)		1,3,5-7, 22,23, 25-27		
	abrégé; revendications; figures page 1 -page 6 				
		•			
			:		
	<u> </u>				

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (juillet 1892)

RAPPORT DE RECHERCHE INTERNATIONALE

t ide Internationale No PCT/FR 01/03401

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
US 5391257	A	21-02-1995	AUCUN		
FR 2781082	Α .	14-01-2000	FR EP WO	2781082 A1 1103072 A1 0003429 A1	14-01-2000 30-05-2001 20-01-2000
WO 0019499	A	06-04-2000	US WO EP	6150239 A 0019499 A1 1118108 A1	21-11-2000 06-04-2000 25-07-2001