

昇腾相关经历介绍

参与昇腾AI创新大赛

参与昇思开源实习

产业实践和	和大赛(以题目难度逐渐增加排序)	背景介绍	活动时间	题目类型	计划题量
		干源之夏(英文简称 OSPP)是开源软件供应链点亮计划的系列暑期活动,它由中国科学院软件研究所与 openEuler 社区共同举办。开源之夏将联合各大开源社区,针对重要开源软件的开发与维护提供项目,并向全球高校学生开放报名。	6月-9月	1. 模型套件 2. 应用实践	30+
	昇腾AI创新大赛	1. 基于Orange Pi AIpro 开发板进行应用创新,在支持广泛业界生态的同时,牵引使用昇思MindSpore AI框架开发可落地的作品方案。 2. 围绕MindSpore开源,设置算法等相关命题,实现精度/性能极致挑战提升。	5月-10月	AI解决方案征集+算 法赛题	30+
比赛	互联网+大赛	中国"互联网+"大学生创新创业大赛,由教育部与政府、各高校共同主办的一项技能大赛。	8月-12月	AI解决方案征集	不限
	华为ICT大赛	"华为ICT大赛"是华为公司面向全球大学生打造的ICT人才竞技交流赛事,旨在为华为ICT学院及有意愿成为华为ICT学院高校的学生提供国际化的竞技与交流平台,提升学生的ICT知识水平,加强学生的实践动手能力以及运用新技术、新平台的创新创造能力。	9月开始持续到次年	AI解决方案征集	不限
2	开源软件创新大赛	1. 代码评注赛: 注释类代码评注、技术博客类代码评注 2. 开源项目贡献赛: 解决Bug、实现功能、原创工具、创新生态应用	5月-10月	AI解决方案征集	不限

PEFT

(Parameter-Efficient Fine-Tuning)

What is Parameter-Efficient Fine-tuning

随着预训练模型的参数越来越大,让个人对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的**参数高效微调方法**(PEFT),即固定住预训练模型的大部分参数,仅调整模型的一小部分参数来达到与全部参数的微调接近的效果。

Fine-tuning是采用已经在某项任务上预训练过的模型,然后对其进行微调以执行类似任务的过程。例如,对在大规模英文数据集上训练的LLAMA3模型,进行数学运算数据集微调训练,以提升模型的数学能力。

Why use Parameter-Efficient Fine-Tuning?

- 大模型在下游任务上往往泛化性不够好
- 高效参数微调相比全量微调训练参数更少
- 高效参数微调忘的少,相比全量微调不容易过拟合

• 更适合online training

这张图展示了 PEFT 微调过程的基本原理,特别是如何利用用户与模型输出的交互来更新模型:

初始训练: 模型使用原始数据集进行初始训练。

用户交互: 用户与模型的输出进行交互,产生新的使用数据。

数据收集: 用户的交互数据被收集并存储。

模型更新: 使用数据被用于更新模型, 使模型能够更好地适应新的任务和用户需求。

通过这种方式, PEFT 能够在不改变模型原始权重的情况下, 通过用户交互数据动态地调整模型的行为, 使其更好地适应新任务和用户需求。

Once the training is done, we are not using the old dataset. But we will still store the new data.

PEFT Methods

PEFT Methods

- Additive PEFT(加性微调):在模型的特定位置添加可学习的模块或参数。
- Selective PEFT(选择性微调):在微调过程中只更新模型中的一部分参数,而保持其余参数固定。
- Reparameterization PEFT(重参数化微调):通过构建原始模型参数的低秩表示, 在训练过程中增加可学习参数,以实现参数高效微调。

(a) Additive PEFT (b) Selective PEFT (c) Reparameterization PEFT

Additive PEFT

Methods: prompt tuning, prefix tuning and adapters

Prompt Tuning(Soft Prompt Method)

Prompt

[X] is located in [Y]. (original)

[X] is located in which country or state? [Y].

[X] is located in which country? [Y].

[X] is located in which country? In [Y].

Hard Prompt:字符串文本提示

Soft Prompt:可学习的参数提示

Prompt Tuning

传统多任务训练推理

Prompt训练推理

Efficiency of Prompt Tuning

- Prompt参数长度超过20后,模型整体效果提升不明显
- 采用Class Label初始化Prompt参数效果比较好(从下游任务中取label对应的 token中取。)

Prefix Tuning

Prefix-Tuning方法在每个Transformer模块输入中加入Prefix Learnable Parameter,更好的学习提示表征

Efficiency of Prefix Tuning

	E2E					WebNLG							DART							
	BLEU	NIST	MET	R-L	CIDEr	1	BLEU			MET			TER \		BLEU	MET	TER ↓	Mover	BERT	BLEURT
						S	U	A	S	U	A	S	U	A			1010 1110 115	111		
										GP	T-2 _{ME}	DIUM								
FINE-TUNE	68.2	8.62	46.2	71.0	2.47	64.2	27.7	46.5	0.45	0.30				0.53	46.2	0.39	0.46	0.50	0.94	0.39
FT-TOP2	68.1	8.59	46.0	70.8	2.41	53.6	18.9	36.0	0.38	0.23	0.31	0.49	0.99	0.72	41.0	0.34	0.56	0.43	0.93	0.21
ADAPTER(3%)	68.9	8.71	46.1	71.3	2.47	60.4	48.3	54.9	0.43	0.38	0.41	0.35	0.45	0.39	45.2	0.38	0.46	0.50	0.94	0.39
ADAPTER (0.1%)	66.3	8.41	45.0	69.8	2.40	54.5	45.1	50.2	0.39	0.36	0.38	0.40	0.46	0.43	42.4	0.36	0.48	0.47	0.94	0.33
Prefix(0.1%)	69.7	8.81	46.1	71.4	2.49	62.9	45.6	55.1	0.44	0.38	0.41	0.35	0.49	0.41	46.4	0.38	0.46	0.50	0.94	0.39
										Gl	PT-2 _{LA}	RGE								
FINE-TUNE	68.5	8.78	46.0	69.9	2.45	65.3	43.1	55.5	0.46	0.38			0.53	0.42	47.0	0.39	0.46	0.51	0.94	0.40
Prefix	70.3	8.85	46.2	71.7	2.47	63.4	47.7	56.3	0.45	0.39	0.42	0.34	0.48	0.40	46.7	0.39	0.45	0.51	0.94	0.40
SOTA	68.6	8.70	45.3	70.8	2.37	63.9	52.8	57.1	0.46	0.41	0.44	-	()	-	-	(=)	1.5	-		(-

Advantages of Prefix/Prompt Tuning

- 需要学习的参数量非常少,占总参数量的0.1%不到。
 - 即使每个任务训练相应的Prompt 参数,总的参数量也很低。
- 预训练的LLM冻结,只需要训练很少的参数,因此训练显存占用少,可以在消费级显卡上训练较大模型。

Pitfalls of Prefix and Prompt Tuning

- 可解释性差:有论文研究过训练后的参数,发现与Prompt相似度最高的词汇组合起来毫无意义。
- 收敛更慢: 更少的参数想要挖掘更大模型的知识,需要更复杂的空间搜索, 相比全量微调收敛更慢。
- 针对不同任务,最适合的Prompt长度不确定
- 微调可能存在不稳定性: Prompt-tuning和P-tuning的GitHub里都有提到结果在SuperGLUE上无法复现的问题;

Adapters

- Adapters被加到预训练Transformer Block中间。
- 原始模型权重固定,只训练Adapters 模块和Layer Norm层。
- Adapters模块包括一个down-project,
 一个激活函数,一个up-project,同时 残差连接。

Adapters

Match performance with 0.15% of the parameters

Advantages of Adapter-Based Methods

- 在多任务学习中被证明非常有效,每个任务训练特定的Adapters,然后将他们结合起来解决跨任务的问题。
- 相比于全量微调,收敛更快。
- 相比于全量微调模型,对应微调数据的鲁棒性更强。

Pitfalls or Adapter Methods

- 增强Adapters模块会导致推理速度变慢。
- 加入Adapters模块模型变大,会导致模型出现显存不足的情况。
- 会影响模型的训练推理的并行。

Prefix Tuning in MindSpore NLP

参数初始化: Prefix Encoder模块,为防止直接更新Prefix参数导致训练不稳定,在Prefix层前面加上MLP结果,训练完成只保留Prefix参数。

```
if self.prefix_projection:
    prefix_tokens = self.embedding(prefix)
    past_key_values = self.transform(prefix_tokens)
else:
    past_key_values = self.embedding(prefix)
return past_key_values
```

得到past_key_values

在每一层Transformer Block中加入可学习的输入参数

在每一层的transformer block的key value前面,拼 接past_key_value

Selective PEFT

Methods: layer freezing, BitFit, diff pruning

Layer Freezing

- 研究表明, Transformer模型的较早层次倾向于捕捉语言现象和基础语言理解; 而较后层次则是进行特定任务学习的地方。
- 这意味着我们可以通过冻结较早层次,仅调整较后层次来学习新任务。

BitFit: Bias-terms Fine-tuning

只对模型的bias进行微调,在大模型中,bias主要存在于Q,K,V,MLP,LayerNorm中。

$$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell} \mathbf{x} + \mathbf{b}_q^{m,\ell}$$

$$\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_k^{m,\ell} \mathbf{x} + \mathbf{b}_k^{m,\ell}$$

$$\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_v^{m,\ell} \mathbf{x} + \mathbf{b}_v^{m,\ell}$$

$$\mathbf{h}_2^{\ell} = \text{Dropout}(\mathbf{W}_{m_1}^{\ell} \cdot \mathbf{h}_1^{\ell} + \mathbf{b}_{m_1}^{\ell}) \quad (1)$$

$$\mathbf{h}_3^{\ell} = \mathbf{g}_{LN_1}^{\ell} \odot \frac{(\mathbf{h}_2^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^{\ell}$$
 (2)

$$\mathbf{h}_4^{\ell} = \operatorname{GELU}(\mathbf{W}_{m_2}^{\ell} \cdot \mathbf{h}_3^{\ell} + \mathbf{b}_{m_2}^{\ell}) \quad (3)$$

$$\mathbf{h}_{5}^{\ell} = \text{Dropout} \left(\mathbf{W}_{m_{3}}^{\ell} \cdot \mathbf{h}_{4}^{\ell} + \mathbf{b}_{m_{3}}^{\ell} \right) \tag{4}$$

$$out^{\ell} = \mathbf{g}_{LN_2}^{\ell} \odot \frac{(\mathbf{h}_5^{\ell} + \mathbf{h}_3^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_2}^{\ell}$$
 (5)

		%Param	QNLI	SST-2	MNLI _m	MNLI _{mm}	CoLA	MRPC	STS-B	RTE	QQP	Avg.
	Train size		105k	67k	393k	393k	8.5k	3.7k	7k	2.5k	364k	
(V)	Full-FT†	100%	93.5	94.1	86.5	87.1	62.8	91.9	89.8	71.8	87.6	84.8
(V)	Full-FT	100%	91.7 ± 0.1	93.4±0.2	85.5±0.4	85.7±0.4	62.2±1.2	90.7±0.3	90.0±0.4	71.9±1.3	87.5±0.4	84.1
(V)	Diff-Prune†	0.5%	93.4	94.2	86.4	86.9	63.5	91.3	89.5	71.5	86.6	84.6
(V)	BitFit	0.08%	91.4±2.4	93.2±0.4	84.4±0.2	84.8 ± 0.1	63.6±0.7	91.7±0.5	90.3±0.1	73.2±3.7	85.4±0.1	84.2
(T)	Full-FT‡	100%	91.1	94.1	86.7	86.0	59.6	88.9	86.6	71.2	71.7	81.2
(T)	Full-FT†	100%	93.4	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	81.8
(T)	Adapters‡	3.6%	90.7	94.0	84.9	85.1	59.5	89.5	86.9	71.5	71.8	81.1
(T)	Diff-Prune†	0.5%	93.3	94.1	86.4	86.0	61.1	89.7	86.0	70.6	71.1	81.5
(T)	BitFit	0.08%	92.0	94.2	84.5	84.8	59.7	88.9	85.5	72.0	70.5	80.9

在Bert-Base/Bert-Large这种模型里,bias参数仅占模型全部参数量的0.08%~0.09%。在GLUE数据集上对Bert-Large的bias参数进行BitFit微调,能够在参数量远小于Adapter、Diff-Pruning的情况下,效果与Adapter、Diff-Pruning想当,甚至在某些任务上略优于Adapter、Diff-Pruning。

Intuition for DiffPruning

在先前讨论的方法中,我们手动决定哪些参数应该保持不变,哪些参数应该进行调整。为什么不通过学习来决定这个选择呢?

$$\theta_{\tau} = \theta + \delta_{\tau}$$

Diff pruning 将特定任务的微调表述为学习一个 diff 向量 $\delta \tau$,该向量被添加到 预先训练的模型参数 θ 中,该参数保持固定。我们首先对特定任务的模型参数 进行重新参数化, diff向量用L0-norm惩罚的可微近似值进行重构。

BitFit in MindSpore NLP

```
for n, p in model.named_parameters():
    if "bias" not in n :
        p.requires_grad = False
    else :
        p.requires_grad = True
```

冻结除bias外的所有参数,训练时只更新bias参数

Reparameterization PEFT

Methods: LoRA, AdaLoRA,(IA)³

LoRA - Low-Rank Adaptation

Adapter方法推理变慢

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

 $W_0 \in \mathbb{R}^{d \times k}$ $B \in \mathbb{R}^{d \times r}$ $A \in \mathbb{R}^{r \times k}$

LoRA

The data should be low-dimensional (low-rank):

$$\mathbf{A} = [\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}, \quad \operatorname{rank}(\mathbf{A}) \ll m.$$

有相关工作证明,微调过程中产生的权重更新量是低秩的。 LoRA就假设模型在下游任务上 微调得到的增量参数矩阵ΔW 是低秩的。

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

 $W_0 \in \mathbb{R}^{d \times k}$ $B \in \mathbb{R}^{d \times r}$ $A \in \mathbb{R}^{r \times k}$ 假设假设模型有一个具有 1,000 行和 2,000 列的

矩阵。这就是要在模型文件中存储的 2,000,000个数字(1,000 x 2,000)。LoRA 将该矩阵分解为一个 1,000x2 的矩阵和一个 2x2,000 的矩阵。这只需要 6,000 个数字(1,000 x 2 + 2 x 2,000),是原始矩阵大小的 333 倍。这就是 LoRA 参数数量小的原因。

Efficiency of LoRA

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL		
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5		
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5		
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5		
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5		
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8		
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1		
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9		
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1		

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results on WikiSQL have a fluctuation around $\pm 0.5\%$, MNLI-m around $\pm 0.1\%$, and SAMSum around $\pm 0.2/\pm 0.2/\pm 0.1$ for the three metrics.

LoRA在训练参数在训练参数不到0.1%的情况下,超过了全量微调的效果

LoRA in Stable Diffusion

在Stable Diffusion(SD)模型的应用中,LoRA被用作一种插件,允许用户在不修改SD模型的情况下,利用少量数据训练出具有特定画风、IP或人物特征的模型。这种技术在社区使用和个人开发者中非常受欢迎。例如,可以通过LoRA模型改变SD模型的生成风格,或者为SD模型添加新的人物/IP。

LoRA in MindSpore NLP


```
(1)
self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False)
self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False)
```

```
(2) result = self.base_layer(x, *args, **kwargs)
```


(IA)³ - Infused Adapter by Inhibiting and Amplifying Inner Activations

ia3_l向量与attention和mlp的weight相乘,然后得到的权重再与输入相乘,原来的权重都保持冻结,只训练这部分权重

Efficiency of IA3

Figure 2: Accuracy of PEFT methods with $L_{\rm UL}$ and $L_{\rm LN}$ when applied to T0-3B. Methods that with variable parameter budgets are represented with larger and smaller markers for more or less parameters.

Figure 3: Accuracy of different few-shot learning methods. T-Few uses (IA)³ for PEFT methods of T0, T0 uses zero-shot learning, and T5+LM and the GPT-3 variants use few-shot ICL. The x-axis corresponds to inference costs; details are provided in section 4.2.

$(IA)^3$


```
def update_layer(self, adapter_name, init_ia3_weights):
    # This code works for linear layers, override for other layer
    # Actual trainable parameters
    if self.is_feedforward:
        weight = torch.randn((1, self.in_features))
    else:
        weight = torch.randn((self.out_features, 1))
    self.ia3_l[adapter_name] = nn.Parameter(weight)
    if init_ia3_weights:
        self.reset_ia3_parameters(adapter_name)
    self.to(self.get_base_layer().weight.device)
    self.set_adapter(self.active_adapters)
```

```
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
    # no adapter to merge
    return

for active_adapter in adapter_names:
    if active adapter in self.ia3 l.keys():
        base_layer = self.get_base_layer()
        ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out)
        orig_dtype = base_layer.weight.data.dtype
        if safe_merge:
            orig_weights = base_layer.weight.data
            orig_weights = torch.mul(orig_weights, ia3_l)
```


Advantages of Re-Paramaterization Methods

- 训练往往更加节省内存,因为我们只需要计算少数参数的梯度并更新参数。
- 相比全量微调收敛更快
- 通过简单地替换调优后的权重,就可以直接在任务之间切换。

Homework

作业要求: 在华为云平台上,使用MindSpore NLP组件对

Roberta-Large模型进行IA3微调训练。

数据集 : GLUE-MRPC

具体要求:使用MindSpore NLP组件加载Roberta-Large模型,

设置IA3算法配置并初始化微调模型,加载数据

集进行微调训练,并最终使用微调后的模型在

验证集上进行评估。

