Изучение таймеров микроконтроллера

Таймер 1 –16-битный таймер / счетчик обеспечивает точное время выполнения программы, генерацию сигналов различной формы и измерение времени сигнала.

На рисунке приведена функциональная схема главного модуля таймера 1 – счётного.

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear TCNT1 (set all bits to zero).

clk_{T1} Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

Таймер 1 имеет три управляющих регистра: TCCR1A, TCCR1B и TCCR1C.

Bit	7	6	5	4	3	2	1	0	_
(0x80)	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
(0x81)	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	T
Initial Value	0	0	0	0	0	0	0	0	

Режим работы таймера выбирается битами WGM10-WGM13 (Waveform Generation Mode). Ниже приведена таблица с режимами.

Источник тактирования и коэффициент деления предделителя выбирается битами CS10-CS12.

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	ТОР	Update of OCR1x at	TOV1 Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, phase correct, 8-bit		TOP	BOTTOM
2	0	0	1	0	PWM, phase correct, 9-bit	0x01FF	TOP	BOTTOM
3	0	0	1	1	PWM, phase correct, 10-bit	0x03FF	TOP	BOTTOM
4	0	1	0	0	CTC	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	BOTTOM	TOP
8	1	0	0	0	PWM, phase and frequency correct	ICR1	воттом	воттом
9	1	0	0	1	PWM, phase and frequency correct	OCR1A	воттом	воттом
10	1	0	1	0	PWM, phase correct	ICR1	TOP	BOTTOM
11	1	0	1	1	PWM, phase correct	OCR1A	TOP	BOTTOM
12	1	1	0	0	CTC	ICR1	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICR1	BOTTOM	TOP
15	1	1	1	1	Fast PWM	OCR1A	ВОТТОМ	TOP

CS12	CS11	CS10	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /1 (no prescaling)
0	1	0	clk _{I/O} /8 (from prescaler)
0	1	1	clk _{I/O} /64 (from prescaler)
1	0	0	clk _{I/O} /256 (from prescaler)
1	0	1	clk _{I/O} /1024 (from prescaler)
1	1	0	External clock source on T1 pin. Clock on falling edge.
1	1	1	External clock source on T1 pin. Clock on rising edge.

Счётный регистр TCNT1 представляет собой два регистра TCNT1L и TCNT1H.

Bit	7	6	5	4	3	2	1	0	
0x16 (0x36)	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	TIFR1
Read/Write	R	R	R/W	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Регистр TIFR1 содержит флаги прерываний.

Bit	7	6	5	4	3	2	1	0	_
0x16 (0x36)	-	_	ICF1	-	-	OCF1B	OCF1A	TOV1	TIFR1
Read/Write	R	R	R/W	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Биты 7,6, 4, 3 зарезервированы и всегда читаются как ноль.

Бит ICF1 устанавливается при записи на выводе ICP1 (захват входного значения).

Биты OCF1B и OCF1A устанавливаются, когда значение счётчика (TCNT1) совпадает с выходным регистром сравнения (OCR1B и OCR1A соответственно). Данные биты сбрасываются после обработки прерывания, либо могут быть очищены записью в них логической единицы.

Бит TOV1 устанавливается при переполнении таймера. Данный бит также сбрасывается после обработки прерывания, либо может быть очищен записью в него логической единицы.

Нормальный режим работы

Самый простой из режимов – нормальный (англ. normal), WGM13:0 = 0. В этом режиме счётчик считает всегда инкрементируется. Счётчик переполняется, когда достигнет максимального значения, для 16 бит MAX=0xFFFF. В нормальном режиме работы флаг переполнения таймера/счетчика (TOV1) будет установлен в том же тактовом цикле таймера, когда TCNT1 станет равным нулю. Флаг TOV1 в этом случае ведет себя как 17-й бит, за исключением того, что он только устанавливается, а не сбрасывается. Однако в сочетании с прерыванием переполнения таймера, которое автоматически сбрасывает флаг TOV1, разрешение таймера может быть увеличено программно. В нормальном режиме нет особых случаев, которые следует учитывать, новое значение счетчика можно записать в любое время.

Режим сравнения выходных данных

В этом режиме 16-битный компаратор постоянно сравнивает TCNT1 с выходным регистром сравнения (OCR1x). Если TCNT равно OCR1x, компаратор сигнализирует о совпадении. При совпадении устанавливается флаг сравнения выходных данных (OCF1x) в следующем тактовом цикле таймера. Если включен (OCIE1x = 1), флаг сравнения выходов генерирует прерывание сравнения выходов. Флаг OCF1x автоматически сбрасывается при выполнении прерывания. В качестве альтернативы флаг OCF1x можно сбросить программно, записав логическую единицу в его расположение бита ввода / вывода.

На рисунке показана блок-схема блока сравнения выходов. Маленькая буква «п» в именах регистров и битов указывает номер устройства (n=1 для таймера / счетчика 1), а «х» указывает блок сравнения выходов (A / B). Элементы блок-схемы, которые не являются непосредственно частью блока сравнения выходных данных, заштрихованы серым цветом.

Функциональная схема модуля сравнения выходных данных:

Задание на лабораторную работу:

- 1. Написать программу, реализующую работу таймера 1 в нормальном режиме с использованием приведённых выше регистров (без использования библиотек и без прерываний). Время задержки выбрать самостоятельно.
- 2. Написать программу, реализующую работу таймера 1 в режиме сравнения (СТС).