

Redes de Computadores

Licenciatura em Engenharia Informática

Trabalho de Laboratório nº 4:

Configuração e Teste de uma Rede com 2 Routers

Nome: Gabriel Ambrósio Número: 160221013

Docente: Teles Rodrigues

Ano Letivo 2020-2021

1. Introdução

Com este laboratório, pretende-se adquirir conhecimento sobre routers em específico, tendo como objetivo a familiarização com a sua operação e configuração.

Foram configurados 2 routers, cada um com a sua rede local, hostname, palavraspasse, mensagens de arranque e endereços de IP.

2. REALIZAÇÃO PRÁTICA (1 OU MAIS SECÇÕES)

2.1. CONFIGURAÇÃO DOS ROUTERS

GAD# show ip interface brief:

Interface	IP-Address	OK? Method Status	
Protocol			
FastEthernet0/0	192.168.0.1	YES manual up	
up			
FastEthernet0/1	192.168.1.1	YES manual up	
up			
Vlanl	unassigned	YES unset administratively	
down down			
GAD#			

Após ter sido inserido os comandos indicados, foi configurado o router GAD, as suas portas, com a sua descrição e endereço de IP. O comando mostra as portas do router, e a informação de cada.

Mensagem inicial do router GAD:

Acesso por consola:

```
***** Router GAD ****

User Access Verification

Password:
```

Acesso privilegiado:

Acesso remoto ao router pelo PC1:

Ping PC1 → GAD

```
C:\>ping 192.168.0.1

Pinging 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1: bytes=32 time<lms TTL=255
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

Configuração do Router BHM:

```
Router>enable
Router#conf
Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname BHM
BHM(config) #no ip domain-lookup
BHM(config)#interface f0/0
BHM(config-if) #description Rede Local do Router BHM
BHM(config-if) #no shutdown
BHM(config-if) #exit
BHM(config) #interface f0/1
BHM(config-if) #description Ligacao BHM-GAD
BHM(config-if) #no shutdown
BHM(config-if)#exit
BHM(config) #line console 0
BHM(config-line) #password cisco
BHM(config-line) #login
BHM(config-line) #exit
BHM(config) #enable secret class
BHM(config) #line vty 0 15
BHM(config-line) #password cisco
BHM(config-line) #login
BHM(config-line) #exit
BHM(config) #banner motd & **** Router BHM **** &
BHM(config) #exit
BHM#
```

Para configurar o router BHM, foram usados os mesmos comandos para configurar o router GAD.

Ping PC2 → BHM

```
₱ PC2

                                                                                         ×
  Physical
               Config
                                    Programming
                                                       Attributes
    Command Prompt
                                                                                                   Х
   Packet Tracer PC Command Line 1.0
    C:\>ping 192.168.2.1
    Pinging 192.168.2.1 with 32 bytes of data:
    Reply from 192.168.2.1: bytes=32 time<1ms TTL=255
   Reply from 192.168.2.1: bytes=32 time<1ms TTL=255
Reply from 192.168.2.1: bytes=32 time<1ms TTL=255
Reply from 192.168.2.1: bytes=32 time<1ms TTL=255
    Ping statistics for 192.168.2.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
         Minimum = Oms, Maximum = Oms, Average = Oms
```

2.2. OBSERVAÇÃO DAS TABELAS DE ROUTING

GAD# show ip route:

```
GAD#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.0.0/24 is directly connected, FastEthernet0/0 C 192.168.1.0/24 is directly connected, FastEthernet0/1
```

Quais as redes conhecidas?

As redes conhecidas são a Fa0/0 com o ip 192.168.0.0 e Fa0/1 com ip 192.168.1.0.

De que tipo são estas redes?

LAN

Show ip route BHM:

```
BHM#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.1.0/24 is directly connected, FastEthernet0/1 C 192.168.2.0/24 is directly connected, FastEthernet0/0
```

Quais as redes conhecidas?

As redes conhecidas são a Fa0/0 com o ip 192.168.2.0 e Fa0/1 com ip 192.168.1.0.

De que tipo são estas redes?

LAN

Ping PC1 \rightarrow PC2

```
C:\>ping 192.168.2.10

Pinging 192.168.2.10 with 32 bytes of data:

Reply from 192.168.0.1: Destination host unreachable.

Reply from 192.168.0.1: Destination host unreachable.

Request timed out.

Reply from 192.168.0.1: Destination host unreachable.

Ping statistics for 192.168.2.10:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Por que razão o ping não é bem sucedido?

Porque ainda não foi implementado o protocolo RIP, para que os routers consigam trocar pacotes entre si, para informar as redes locais.

2.3. CONFIGURAÇÃO DO PROTOCOLO DE ROUTING RIP

Show ip route depois da implementação do protocolo RIP:

```
GAD#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -
BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS
inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    192.168.0.0/24 is directly connected, FastEthernet0/0
    192.168.1.0/24 is directly connected, FastEthernet0/1
    192.168.2.0/24 [120/1] via 192.168.1.2, 00:00:09,
FastEthernet0/1
GAD#
```

```
BHM#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -
BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS
inter area

* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

R    192.168.0.0/24 [120/1] via 192.168.1.1, 00:00:10,
FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/1
C    192.168.2.0/24 is directly connected, FastEthernet0/0

BHM#
```

Como se pode saber que o protocolo RIP esta ativo?

É possivél ver uma nova conecção R – RIP em ambas as tabelas de routing.

Ping PC1 \rightarrow PC2

```
C:\>ping 192.168.2.10

Pinging 192.168.2.10 with 32 bytes of data:

Reply from 192.168.2.10: bytes=32 time<lms TTL=126
Reply from 192.168.2.10: bytes=32 time<lms TTL=126
Reply from 192.168.2.10: bytes=32 time<lms TTL=126
Reply from 192.168.2.10: bytes=32 time=lms TTL=126

Ping statistics for 192.168.2.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms</pre>
```

O ping é bem sucedido?

Após ter sido implementado o protocolo, o ping é bem sucedido.

2.4. COMANDOS

Comando	Descrição
No ip domain-lookup	Previne o router de correr comandos incorretos.
Interface f0/0	Editar uma interface
Ip address	Inserir um ip e mask numa interface.
Description	Adicionar uma descrição a uma interface.
No shutdown	Ligar o router
Show ip interface brief	Mostra todas as interfaces e os seus ip's.
Show ip route	Mostra o ip de todos os caminhos ligado ao router
Router rip	Configura um router

3. Conclusões

Este laboratório foi concluído sem grandes problemas, seguindo sempre o enunciado e tirando ao longo do seu desenvolvimento imagens do que foi feito.