Notes for Week 2/1/18 - 2/8/18

Alden Green

February 8, 2019

For fixed integers $n_1+n_2=n$, let $\mathbf{X}=\{x_1,\ldots,x_{n_1}\}\subset\mathbb{R}^d$ and $\mathbf{Y}=\{y_1,\ldots,y_{n_2}\}$ be sampled i.i.d from distributions \mathbb{P} and \mathbb{Q} with density functions p and q, respectively, both with support on $D\subset\mathbb{R}^d$. Our statistical problem is testing the null hypothesis $H_0:\mathbb{P}=\mathbb{Q}$ vs. the alternative $H_1:\mathbb{P}\neq\mathbb{Q}$, where our knowledge of \mathbb{P} and \mathbb{Q} come from the samples \mathbf{X} and \mathbf{Y} .

Recall the Laplacian smooth and total variation smooth test statistics

$$T_{1}(\boldsymbol{\ell}; G_{n,r}) = \sup_{\boldsymbol{\theta}: \|\mathbf{B}\boldsymbol{\theta}\|_{1} \leq C_{n,r}} |\boldsymbol{\ell}^{T}\boldsymbol{\theta}|$$
$$T_{2}(\boldsymbol{\ell}; G_{n,r}) = \sup_{\boldsymbol{\theta}: \|\mathbf{B}\boldsymbol{\theta}\|_{2} \leq C_{n,r}} |\boldsymbol{\ell}^{T}\boldsymbol{\theta}|$$

where **B** is the incidence matrix of the r-neighborhood graph and $C_{n,r} = \frac{\sigma_k}{n^2 r_n^{d+2}}$.

Theorem 1 is the type of theorem we are looking for.

Theorem 1. Under assumptions,

$$\sqrt{n}T_2(\ell;G_{n,r}) \rightsquigarrow ???$$

under the null hypothesis $H_0: \mathbb{P} = \mathbb{Q}$.

The rest of this document details the strategy for proving this convergence.

1 Quantization

To ease proofs, we will assume $\mathcal{D} = [0, 1]^d$.

Construct $G_{lat} = (V_{lat}, E_{lat})$ a lattice graph with equal side lengths in $[0, 1]^d$, where

$$V_{lat} = P_{lat}(N) := \left\{ \left(\frac{i_1}{N} - \frac{1}{2N}, \dots, \frac{i_d}{N} - \frac{1}{2N} \right) : i_1, \dots, i_d \in \{1, \dots, N\} \right\}$$

$$(z, z') \in E_{lat} \text{ if and only if } ||z - z'|| \le \frac{1}{N}$$

where z and $z' \in P_{lat}(N)$.

Denoting $I = P_{lat}$, we define

$$P_I(x) = \operatorname{argmin} \{ \|x - z'\|_{\infty}, z' \in P_{lat}(N) \}$$

Then, let $C(z) = \{x \in [0,1]^d : z = P_I(x)\}$ be the collection of cells associated with the mesh $P_{lat}(N)$, noting that $\{C(z) : z \in P_{lat}(N)\}$ defines a partition over $[0,1]^d$.

For a given function f, the quantization \bar{f} over $\{C(z): z \in P_{lat}(N)\}$ is defined by

$$\overline{f}(x_0) = \frac{1}{\nu(C(z_0))} \int_{C(z_0)} f(x) d\nu(x)$$

where $x_0 \in C(z_0)$.

2 High-Level Proof Strategy for Theorem 1

For any function $f: \mathcal{D} \to \mathbb{R}$, let θ_f denote the evaluations of f over \mathbf{X} , meaning

$$(\theta_f)_i = f(x_i)$$

(i) Quantization: Consider the function class

$$\mathcal{W}_n = \left\{ C_{n,r} \frac{\overline{f}}{\|\mathbf{B}\theta_{\bar{f}}\|_2} : f \in \mathcal{W}^{1,2}(\mathcal{D}, \rho^2) \right\}. \tag{1}$$

Under assumptions,

$$\sup_{\theta:\|B\theta\|_2 \le 1} \left| \ell^T \theta \right| - \sup_{\widetilde{f} \in \mathcal{W}_n} \left| \mathbb{P}_n \widetilde{f} - \mathbb{Q}_n \widetilde{f} \right| = o_{\mathbb{P}}(n^{-1/2})$$

(ii) Donsker-convergence of empirical process: Write

$$\widetilde{f} = \frac{\overline{f}}{\|\mathbf{B}\theta_{\bar{f}}\|_2}.$$

Under assumptions,

$$\left\{ \mathbb{G}_{\mathbb{P}_n} \widetilde{f} : f \in \mathcal{W}^{1,2}(\mathcal{D}, \rho^2) \right\} \leadsto G_{\mathbb{P}}$$

and

$$\left\{ \mathbb{G}_{\mathbb{Q}_n} \widetilde{f} : f \in \mathcal{W}^{1,2}(\mathcal{D}, \rho^2) \right\} \leadsto G_{\mathbb{Q}},$$

where $G_{\mathbb{P}}$ is a tight Gaussian process with support on $\mathcal{W}^{1,2}(\mathcal{D}, \rho^2)$ and for measures P_n and P, $\mathbb{G}_{P_n,P} = \sqrt{n}(P_n - P)$ and we suppress notational dependence on P when obvious from context.

(iii) Continuous mapping: Under the null hypothesis $H_0: \mathbb{P} = \mathbb{Q}$, for any $\widetilde{f} \in \mathcal{W}_n$.

 $\sqrt{n}(\mathbb{P}_n\widetilde{f} - \mathbb{Q}_n\widetilde{f}) = (\mathbb{G}_{\mathbb{P}_n} - \mathbb{G}_{\mathbb{Q}_n})\widetilde{f}$

Thus, by i), the independence of \mathbb{P}_n and \mathbb{Q}_n , and the continuous mapping theorem,

$$\left\{\sqrt{n}(\mathbb{P}_n\widetilde{f}-\mathbb{Q}_n\widetilde{f}), f\in\mathcal{W}^{1,2}(\mathcal{D},\rho^2)\right\} \leadsto G_{\mathbb{P}}-G_{\mathbb{P}}'$$

where $G_{\mathbb{P}}$ and $G'_{\mathbb{P}}$ are i.i.d. Gaussian processes.

By the continuous mapping theorem again

$$\sup_{f \in \mathcal{W}^{1,2}(\mathcal{D},\rho^2)} \left| \sqrt{n} (\mathbb{P}_n \widetilde{f} - \mathbb{Q}_n \widetilde{f}) \right| \leadsto \sup_{f \in \mathcal{W}^{1,2}(\mathcal{D},\rho^2)} \left| (G_{\mathbb{P}} - G_{\mathbb{P}}') f \right|$$

3 Proof Strategy for Quantization

For a given $\theta \in \mathbb{R}^n$, let the quantization of θ be given by

$$(\bar{\theta})_i = \frac{\sum_{x_j \in C(z_0)} \theta_j}{|C(z_0)|}$$

where $x_i \in C(z_0)$, and $|C(z_0)| = \sum_{j=1}^n \mathbf{1}(x_j \in C(z_0))$ is the number of data points in $C(z_0)$.

Lemma 1.

$$\sup_{\theta:\|B\theta\|_2 \le C_{n,r}} \left| \boldsymbol{\ell}^T \boldsymbol{\theta} \right| \ge \sup_{\widetilde{f} \in \mathcal{W}_n} \left| \mathbb{P}_n \widetilde{f} - \mathbb{Q}_n \widetilde{f} \right|$$

Proof. For any $f: \mathcal{D} \to \mathbb{R}$, $\mathbb{P}_n f - \mathbb{Q}_n f = \ell^T \theta_f$, and so

$$\sup_{\widetilde{f} \in \mathcal{W}_n} \left| \mathbb{P}_n \widetilde{f} - \mathbb{Q}_n \widetilde{f} \right| = \sup_{\theta_{\widetilde{f}} : \widetilde{f} \in \mathcal{W}_n} \left| \boldsymbol{\ell}^T \theta_{\widetilde{f}} \right|$$

Then, for $\widetilde{f} \in \mathcal{W}_n$

$$\left\|B\theta_{\widetilde{f}}\right\|_{2} = \left\|B\theta_{\frac{C_{n,r}\overline{f}}{\left\|B\theta_{\widetilde{f}}\right\|_{2}}}\right\| = C_{n,r}.$$

and so $\left\{\theta_{\widetilde{f}}: \widetilde{f} \in \mathcal{W}_n\right\} \subset \left\{\theta: \left\|\mathbf{B}\theta\right\|_2 \leq C_{n,r}\right\}$.

Lemma 2. For any $\theta \in \mathbb{R}^n$

$$\ell^T(\theta - \overline{\theta}) \le 2 \|\mathbf{B}\theta\|_1$$

Theorem 2. For any $\theta \in \mathbb{R}^n$ such that $\|\mathbf{B}\theta\|_2 \leq C_{n,r}$, there exists some $f \in \mathcal{W}^{1,2}(\mathcal{D}, \rho^2)$ such that

$$\left| \mathbb{P}_n \widetilde{f} - \mathbb{Q}_n \widetilde{f} \right| \ge \left| \mathbb{P}_n \overline{\theta} - \mathbb{Q}_n \overline{\theta} \right| - o_{\mathbb{P}}(n^{-1/2})$$

Proof. For $\theta \in \mathbb{R}^n$, consider the quantized extension of θ , $\overline{f}_{\theta} : \mathcal{D} \to \mathbb{R}$ defined by

$$\overline{f}_{\theta}(x) = (\overline{\theta})_i$$

for any x_i in the same cell C(z) as x. Clearly,

$$\mathbb{P}_n \overline{f}_{\theta} - \mathbb{Q}_n \overline{f}_{\theta} = \mathbb{P}_n \overline{\theta} - \mathbb{Q}_n \overline{\theta}$$

Now, we have to show that either $\overline{f}_{\theta} \in \mathcal{W}_n$, or that it can be well-approximated by some $\widetilde{f} \in \mathcal{W}_n$.

4 Proof strategy for *Donsker-convergence of empirical processes*:

Consider the function class W_n given by (1). We wish to show

- (a) W_n is totally bounded.
- (b) For every sequence $\delta_n \downarrow 0$,

$$\sup_{\|f-g\|_{1,2,\rho^2} \le \delta_n} \mathbb{P}(\widetilde{f} - \widetilde{g})^2 \to 0$$

where f and g are arbitrary elements of $\mathcal{W}^{1,2}(\mathcal{D}, \rho^2)$.

(c) There exists a sequence of envelope functions F_n on W_n satisfying the Lindeberg condition

$$\mathbb{P}F_n^2 = \mathcal{O}(1)$$

$$\mathbb{P}F_n^2 \mathbf{1}F_n > \epsilon \sqrt{n} \to 0 \qquad \text{(for any } \epsilon > 0\text{)}$$

(d) The bracketing integral

$$\int_0^\delta \sqrt{\log N_{[]}(\epsilon, \mathcal{W}_n, L_2(\mathbb{P}))}$$

converges to 0 for any $\delta_n \downarrow 0$.

Then, the desired results holds by application of Theorem 3.

Theorem 3 (Donsker theorem for changing function classes). Let $\mathcal{F}_n = \{f_{n,t} : t \in T\}$ be a class of measurable functions indexed by a totally bounded semimetric space (T, ρ) satisfying

$$\sup_{\rho(s,t)<\delta_n} P(f_{n,s} - f_{n,t})^2 \to 0, \quad every \ \delta_n \downarrow 0$$

and with envelope function F_n satisfying the Lindeberg condition

$$PF_n^2 = \mathcal{O}(1)$$

$$PF_n^2 \mathbf{1} \left\{ F_n > \epsilon \sqrt{n} \right\} \to 0, \text{ for every } \epsilon > 0.$$

If $J_{[]}(\delta_n, \mathcal{F}_n, L_2(P)) \to 0$ for every $\delta_n \downarrow 0$, then the sequence $\{\mathbb{G}_n f_{n,t}, t \in T\}$ converges in distribution to a tight Gaussian process, provided the sequence of covariance functions

$$Pf_{n,s}f_{n,t} - Pf_{n,s}Pf_{n,t}$$

converges pointwise on $T \times T$.