Digital transmission

Digital Transmission

- Digital to digital conversion
- Analog to digital conversion

Digital to digital conversion

- Line coding
- Block coding
- Scrambling optional

Characteristics of line coding

- Data element- smallest unit of data
- Signal element-smallest unit of signal
- Signal element carries data element
- Data elements are what we need to send and signal elements are what we can send
- Mapping of data symbols to Signals can be done based on r factor

Signal element versus data element

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Data rate Vs Signal rate

- Data rate(Bit rate)-no of data elements send /sec
- Signal rate- no of signal elements send/sec (pulse rate, modulation rate, baud rate)
- It is advisable to increase the data rate by reducing the signal rate

$$S = c*N*1/r$$

S-signal rate

N-Bit rate

c-case factor (worst, best & avg.)

r - ratio between data element & signal element

Data rate Vs Signal rate cont.

A data is carried by a signal element. If the bit rate is 100kbps, What is the baud rate if c is ½

$$S = c*N*1/2 = 50kbaud$$

Digital decoding issues

Baseline wandering

The running average of the received signal power is called baseline

Continuous zero or one leads to baseline wandering which prevent the receiver from interpreting the signal correctly

DC components

When the signal voltage is constant for a while frequency will become zero(direct current component).

Some media wont support low frequencies (e.g. telephone line-below 200Hz)

Self Synchronization- sender receiver clock should sync properly

a. Sent

b. Received

Line coding methods

Unipolar

- All signal levels are on one side of the time axis either above or below
- NRZ Non Return to Zero scheme is an example of this code. The signal level does not return to zero during a symbol transmission.
- Scheme is prone to baseline wandering and DC components.
- It has no synchronization or any error detection.
- It is simple but costly in power consumption.

Unipolar example

Data: 01001

Polar

- NRZ
- RZ
- Biphase
 - Manchester
 - Differential Manchester

Polar NRZ

- The voltages are on both sides of the time axis.
- Polar NRZ scheme can be implemented with two voltages. E.g. +V for 1 and -V for 0.
- There are two versions:
 - NZR Level (NRZ-L) positive voltage for one symbol and negative for the other
 - NRZ Inversion (NRZ-I) the change or lack of change in polarity determines the value of a symbol. E.g. a "1" symbol inverts the polarity a "0" does not.

Polar NRZ

- In NRZ-L the level of the voltage determines the value of the bit.
- In NRZ-I the inversion or the lack of inversion determines the value of the bit.
- NRZ-L and NRZ-I both have a DC component problem and baseline wandering, it is worse for NRZ-L.
- Both have no self synchronization &no error detection. Both are relatively simple to implement.

Polar NRZ-L and NRZ-I schemes

O No inversion: Next bit is 0

Inversion: Next bit is 1

Example: NRZ-L - 010110

NRZ-I - 011101

Polar NRZ-L and NRZ-I schemes-Examples

Example: NRZ-L - 010110

NRZ-I - 011101

Polar RZ

- The Return to Zero (RZ) scheme uses three voltage values. +, 0, -.
- Each symbol has a transition in the middle. Either from high to zero or from low to zero.
- This scheme has more signal transitions (two per symbol) and therefore requires a wider bandwidth.
- No DC components or baseline wandering.
- Self synchronization transition indicates symbol value.
- More complex as it uses three voltage level. It has no error detection capability.

Polar RZ cont.

Example: 101001110

Polar RZ cont.

Polar - Biphase: Manchester

- Manchester coding consists of combining the NRZ-L and RZ schemes.
 - Every symbol has a level transition in the middle: from high to low or low to high. Uses only two voltage levels.

Example : 10100111001

Polar - Biphase: Manchester

10100111001

Polar - Biphase: Differential Manchester

- Differential Manchester coding consists of combining the NRZ-I and RZ schemes.
 - Every symbol has a level transition in the middle. But the level at the beginning of the symbol is determined by the symbol value. One symbol causes a level change the other does not.

Polar - Biphase: Differential Manchester

Polar – Biphase schemes

- No DC component problem
- No Baseline wandering
- Self synchronization
- Signal rate is high