

Mid Program Project Presentation

Fall 2024 Data Science Bootcamp

Topic: Music Recommendation System

Group 2 Members:
Thomas Zhang, Martin Chen, Kehan Lin, David Ren, Ruining Li

Table of Contents

Part 01: Exploratory Data Analysis (EDA)

Part 02: Data Visualization

Part 03: Next Steps

Objectives

- **Goal**: Recommend songs based on Spotify data, creating personalized listening experience.
- **Focus**: Analyze song characteristics (e.g., audio features, genre), understand user behavior, and apply machine learning techniques
- Tasks:
 - **Midterm:** EDA & Data Visualization
 - **Final:** machine learning & recommendation system algorithm

Exploratory Data Analysis

Import Packages

- Downloading and reading datasets directly from Kaggle:
 - os & kagglehub
- Data processing and manipulation:
 - numpy & pandas
- Data visualization:
 - matplotlib.pyplot & seaborn
 - plotly (express, graph_objects, make_subplots)
 - Yellowbrick.target (Feature Correlation Plot)

Datasets

- **Source:** Spotify Dataset on Kaggle
- Datasets:
- data.csv: 170653 rows, 19 columns
- data by genres.csv: 2973 rows (genres), 14 columns
- data by artist.csv: 28680 rows (artists), 16 columns
- data_by_year.csv: 100 rows (1921~2020), 14 columns
- data w genres.csv: 28680 rows, 15 columns

	object				int				float		normalized float (0-1)							dummy		others	
	id	name	artists	release_date	year	duration_ms	popularity	key	loudness	tempo	valence	acousticness	danceability	energy	instrumentalness	liveness	speechness	mode	explicit	genres	count
df									*							*					
genres																					\Box
artist																* *					
year																					
genre			9				*		1							*				*	

Variable Classification

- **Sound/Audio Features:** valence, acousticness, danceability, energy, liveness, instrumentalness, speechness
- **Music Composition:** key, mode, loudness, tempo
- Track Metadata: id, name, artists, release_date, year, explicit, duration_ms
- **Engagement:** popularity (A measure of the track's popularity, typically based on streams, likes, or other engagement metrics on the platform.)

Variable Definitions

Valence: the musical "positiveness" conveyed by a track.

Acousticness: the likelihood that a track is acoustic.

Danceability: describes how suitable a track is for dancing, based on a combination of tempo, rhythm stability,

beat strength, and overall regularity.

Energy: a perceptual measure of intensity and activity in the track.

Liveness: the presence of an audience in the recording

Instrumentalness: the likelihood that a track has no vocals

Speechiness: the presence of spoken words in a track.

Variable Definitions

Explicit: whether a track contains explicit content (1 = explicit, 0 = not explicit).

Year: when the track was released.

Artist: The name(s) of the artist(s) performing the track.

Duration_ms: The duration of the track in milliseconds.

release_date: The date when the track was released.

model: Indicates the modality (major or minor) of the track, with 1 for major and 0 for minor.

name: The title of the track.

Variable Definitions

key: The musical key of the track (e.g., C major, G minor), represented as an integer (0 = C, $1 = C \sharp /D \flat$, 2 = D, etc.).

id: A unique identifier for the track on Spotify.

loudness: The overall loudness of a track in decibels (dB).

tempo: The speed or pace of a track, measured in beats per minute (BPM).

Variables by Data Type

- **Object:** id, name, artists, release date
- **Integer:** duration ms, popularity, key
- Float: loudness, tempo
- Normalized Float (0~1): valence, acousticness, danceability, energy, liveness, speechness, instrumentalness
- **Dummy variables (0/1):** mode, explicit

Variables Processing

- **Potential Target Variable:** Popularity
- Variables to be dropped: id
- Variables to be modified: duration ms, loudness, tempo, mode, explicit

Imbalanced data/Outliers

- **Invalid values (N/A):** No null values in all datasets
- Out-of-bound values (Outliers): Several variables has outliers
- **Duplicates:** ~543 in data.csv, none in other datasets

Handlements and Motivations

Motivations:

- Distortion of Centroids
- Increased Cluster Count
- Increased Computational Complexity

Methods:

- Justification: Anova check categorical patterns
- Minimum Distortion: If pattern present, handle subgroup separately
- Handle: Capping using quantiles 1% to 99%

ANOVA p-value: 7.62e-07

Addressing Outliers: Variable Duration

Log Transformation for Duration

Discovery: Wide range of track lengths

Possibility: Classical, or Live recordings may be longer

Measured in **milliseconds**, exaggerating the issue

To Cope:

Log Transform: Variance Stabilized correct right skewness

Frequency Change: Change to minutes

Outlier Handlement

Addressing Duplicates

After careful examination, we have noticed:

Insights: The inherent duplicates may counting incorrect

Given size of duplicates are small

We keep them, avoid dropping unique values

Data Visualization

Feature Correlation with Popularity

- Plotted from Data.csv
- Feature Correlation Plot
- Why not heatmap?
- Too many numeric variables (int, float)
- Better demonstration of the relationships between numeric variables and Popularity (target variable)

Popularity by Decade

- Plotted from data.csv
- Barplot
- Numerical comparison across decades
- The mean popularity increases every decade...
 - which makes sense
- However, it is biased...
 - from today's perspective

Sound Features Revolution

- Plotted from data_by_year.csv
- Use plotly (go, make_subplots) for interactive graphs
- Conclusions:
- Energy and danceability increase over time
- Acousticness and instrumentalness decrease over time
- Liveness is relatively low and stable
- Valence fluctuates (no clear pattern) but relatively high

Top 10 Genres

- Plotted from data by genres.csv
- By popularity
- With Sound Features
- Used plotly (px)
- Matches the trends observed from "Sound Features Revolution"
- Energy and danceability high
- Acousticness and instrumentalness low
- Liveness generally low
- Valence generally high

Data_by_artist & data_w_genres

- Have the same row number (28680 rows)
- Could potentially be merged by the count function
 - assign weights for score calculation
 - for further ranking and recommendations

PART 03

Next Steps

Problems to be Solved

- Problems with Dataset/Models:
- e.g. Popularity Skewness

- Problems with Recommendation System:
- Cold Start (e.g., What songs should we recommend for a user without knowing his/her preferences)

Thanks for Listening!

