

Proyecto Final Aprendizaje Automático

José Juan Suárez Ramos A01224078

Kickstarted Database

Problemática

Mediante la base de datos de kickstarted, pronosticar si un proyecto podrá obtener el monto objetivo en dólares (usd_goal_real) a través de 5 modelos de clasificación.

Primeros Pasos

Analizando los datos

• Tipos de Datos, categóricos, fechas y numéricos

int64 ID object name object category main category object object currency deadline object float64 goal launched object pledged float64 object state backers int64 object country usd pledged float64 usd pledged real float64 usd_goal_real float64 dtype: object

• Data Types => Como nuestro problema es de clasificación, debemos de considerar transformar los datos categóricos y fechas a valores numéricos para que nuestros modelos sean más efectivos.

Nueva variable de salida

Como queremos calcular si un proyecto llegó a su objetivo o no, creamos un nuevo atributo llamado goal_reached

goal_reached (bool) => será nuestra nueva variable de salida, se calculará considerando que Usd Pledged Real sea mayor o igual a Usd Goal Real, con eso tendremos valores 1s y 0s.

```
# Transformación de Datos
data["name"] = encoder.fit_transform(data['name'].astype(str))
data["main_category"] = encoder.fit_transform(data["main_category"].astype(str))
data["currency"] = encoder.fit_transform(data["currency"].astype(str))
data["state"] = encoder.fit_transform(data["state"].astype(str))
data["category"] = encoder.fit_transform(data["category"].astype(str))
data["country"] = encoder.fit_transform(data["country"].astype(str))
data["goal"] = minmax_scaling(data["goal"], columns = [0])
data['deadline'] = pd.to_datetime(data['deadline'])
data["goal_reached"] = data["usd_pledged_real"] >= data["usd_goal_real"] # Nuestra nueva variable de salida
data["usd goal real"] = stats.boxcox(data["usd goal real"])[0]
data["goal_reached"] = encoder.fit_transform(data["goal_reached"].astype(bool))
data['deadline'] = data['deadline'].map(dt.datetime.toordinal)
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].map(dt.datetime.toordinal)
```

Llevamos a cabo una normalización de "usd_goal_real" para poder eliminar de una forma más sencilla los outliers

Resultado de transformación de Datos

Nueva tabla con puros datos numéricos.

0	data.head()															
]→	II	name	category	main_category	currency	deadline	goal	launched	pledged	state	backers	country	usd pledged	usd_pledged_real	usd_goal_real	goal_reached
	0 100000233	326290	108	12	5	735880	0.000010	735821	0.0	1	0	9	0.0	0.0	7.977321	0
	1 100000393	132984	93	6	13	736634	0.000300	736574	2421.0	1	15	22	100.0	2421.0	11.605945	0
	2 1000004038	357882	93	6	13	734925	0.000450	734880	220.0	1	3	22	220.0	220.0	12.119890	0
	3 100000754	338194	90	10	13	734609	0.000050	734579	1.0	1	1	22	1.0	1.0	9.390248	0
	4 100001104	76586	55	6	13	735839	0.000195	735783	1283.0	0	14	22	1283.0	1283.0	11.065033	0

Resultado de nueva variable de salida

Análisis de Matriz de Correlación

Variable State Alta correlación con la variable dependiente

Durante la correlación, podemos observar algo interesante. La variable de **state**, tiene una alta correlación con nuestra nueva variable de salida **goal_reached** por lo que tenemos que analizar un poco qué es lo que está sucediendo con estás variables.

Ya que la variable **state** tiene como datos si un proyecto fue **exitoso**, **fallido u otro**, si no la eliminamos, esta nos puede dar falsos negativos en nuestro modelo, ya que al tener esta variable disponible, es muy probable que nos de porcentajes de precisión altos cuando no es el caso en realidad.

Al utilizar la variable de **state**, nuestros primeros modelos dieron falsos positivos, precisión, recall y f1 por arriba del 98%, aspectos que nos hice re analizar una correlación con la variable dependiente.

Eliminación de Variables Futuras

Se llevó a cabo la eliminación de las siguientes variables como se menciona en los requisitos.

- goal
- Backers
- pledged
- usd pledged
- pledged
- •usd_pledged_real Se cambió por nuestra nueva variable de salida

Selección de Variables dependientes

Después de llevar a cabo el análisis anterior, se seleccionaron las variables

name	int64
category	int64
main_category	int64
currency	int64
deadline	int64
launched	int64
country	int64
usd_goal_real	float64

Nueva Matriz de Correlación

Tabla Final

	name	category	main_category	currency	deadline	launched	country	usd_goal_real	goal_reached
0	326290	108	12	5	735880	735821	9	7.977321	0
1	132984	93	6	13	736634	736574	22	11.605945	0
2	357882	93	6	13	734925	734880	22	12.119890	0
3	338194	90	10	13	734609	734579	22	9.390248	0
4	76586	55	6	13	735839	735783	22	11.065033	0

Outliers

Detectamos dos variables que tenían outliers bastante significativos.

Eliminación de Outliers

Detectamos dos variables que tenían outliers bastante significativos.

```
# Limpiamos valores que sean mayores a 73000
data = data[data["launched"] > 730000]
data.boxplot(column=["launched"])
data.shape
```


Resultados Modelo 1 MLP

- Partición de entrenamiento 50%
- Shuffle
- Random
- Binary Cross Entropy Ya que nuestro salidas son 0 y 1
- Optimizador Adam
- Métricas
 - Accuracy
 - MSE (Error cuadrado medio)
 - MAE (Error absoluto medio)
- 2 capas ocultas
 - Unidades: 64 (neuronas de salida)
 - Activation: Relu
 - Dropout: 0.15
- Capa de salida
 - 2 unidades
 - Softmax
- Épocas 300
- Batch Size: 64 -> Agilizar tiempos

Historial Errores

Historial Función Costo

Precisión Training vs Test

RESULTADOS FINALES

₽			precision	recall	f1-score	support
		0	0.70	0.89	0.78	115961
		1	0.64	0.33	0.44	66533
	micro	avg	0.69	0.69	0.69	182494
	macro	avg	0.67	0.61	0.61	182494
	weighted	avg	0.68	0.69	0.66	182494
	samples	ava	0.69	0.69	0.69	182494

Comentarios para siguientes modelos

Se llevo a cabo una partición de 40% de entrenamiento

Se escalaron las variables de los datos originales ya que de no hacerlo se estaban obteniendo malos resultados.

En algunos modelos pudimos llevar a cabo un randomized search pero en otros casos no, como lo fue en el SVM ya que tardó muchas horas y no pudo completarse

Modelo 2 KNN

- Number of Neighbors = 7
- Training 40%

Resultados

□→	precision	recall	f1-score	support	
0	0.70	0.80	0.75	147648	
1	0.49	0.36	0.41	79545	
accuracy			0.64	227193	
macro avg	0.59	0.58	0.58	227193	
weighted avg	0.62	0.64	0.63	227193	

Modelo 3 SVM

- Kernel Linear
- Bagging Classifier Agiliza modelo y reduce bias
- Num of Estimators 10

Resultados

₽		precision	recall	f1-score	support
	0	0.79	0.94	0.86	147386
	1	0.82	0.53	0.64	79807
accura	асу			0.79	227193
macro a	avg	0.80	0.73	0.75	227193
weighted a	avg	0.80	0.79	0.78	227193

Modelo 4

Random Forest with Randomized Search

Bootstrap	=>	
ccp_alpha	=>	0
Criterion	=>	gini
Estimator	=>	125
00B Scroe	=>	False

- Max depth 6
- Min Samples leaf 6
- Min Samples Split 6

Resultados

□→	precision	recall	f1-score	support
	0.85 0.78	0.89 0.71	0.87 0.75	147629 79564
accuracy macro ave weighted ave	0.82	0.80	0.83 0.81 0.83	227193 227193 227193

False

Modelo 5

Boosted Random Forest

- Bootstrapping True
- OOB Score True
- Entropy
- Max depth 6
- CCP Alpha 0
- Min Samples leaf 6
- Min Samples Split 6

Resultados

	precision	recall	f1-score	support
0	0.88	0.88	0.88	147629
1	0.77	0.77	0.77	79564
accuracy	•		0.84	227193
macro avg	0.82	0.82	0.82	227193
weighted avg	0.84	0.84	0.84	227193

Conclusiones

- 1. Mejor Modelo: Boosted Random Forest
- 2. Boosted y Random Forest fueron los que menor tiempo tardaron y mejores resultados obtuvieron.
- 3. Sería bueno analizar SVM con Randomized Search para ver si se vuelve más preciso, por cuestión de tiempos no fue posible (Se dejó corriendo 4 horas y no terminó).
- 4. Existe más área de oportunidad para analizar con diferentes hiperparámetros estos modelos y ver si se pueden obtener mejores resultados.
- 5. La red neuronal puede volverse más precisa si se cambian el número de épocas así como el batch size, se pueden llevar futuros análisis de lo mismo.
- 6. Fue un análisis muy divertido, retador, con datos modernos y reales.