终身机器学习 Lifelong Machine Learning

3 类增量学习

主讲:梁国强

gqliang@nwpu.edu.cn

Outlines

- 3.1 持续学习
- 3.2 基于正则化的类增量学习
- 3.3 基于回放的类增量学习
- 3.4 基于模型结构的类增量学习

终身学习的关键特征

- 持续学习过程
- ■明确的知识积累和保存
- 使用已学知识帮助学习
- 发现新任务能力
- 边工作边学习能力

以分类任务为例,介绍终身学习

又称持续学习

数学描述

逐步学习一系列任务1, ...T, 其中第 $k \in T$ 个任务的训练数据集为

$$D_k = \left\{ \left((x_k^i, k), y_k^i \right)_{i=1}^{n_k} \right\}$$

 n_k : 第k个任务的样本数量

 $x_k^i \in X$: 输入样本; $y_k^i \in Y_k \in Y$ 对应标签, 且 $Y_k \cap Y_{k+1} = \emptyset$

目标: 学习映射 $f: X \times T \rightarrow Y$

测试: 在所有任务测试集上测试

Task ID; Task Boundary

任务增量学习Task-Incremental CL

- 训练和测试阶段,模型已知Task ID
- 假设 $Y_k \cap Y_{k+1} = \emptyset$
- 可以为每个任务训练一个模块

典型的神经网络结构

- > 多头输出网络,
- ▶ 输出任务独立,
- > 其它单元共享

最简单

任务增量学习Task-Incremental CL

Figure credit: Massimo Caccia

类增量学习Class-Incremental CL

- 训练时,模型已知Task ID;测试阶段,Task ID未知
- 测试时,模型需要额外推断其Task ID,解决所有任务
- 典型场景:序列学习新类别
- 假设

$$Y_k \cap Y_{k+1} = \emptyset$$

$$P(X_k) \neq P(X_{k+1})$$

$$P(Y_k) \neq P(Y_{k+1})$$

类增量学习Class-Incremental CL

Figure credit: Massimo Caccia

类增量学习Class-Incremental CL: 两个典型子类

- Batch CL
 - >在一个任务学习阶段,其训练数据一直可见
 - >可以训练任意轮次
- Online CL
 - > 训练数据以流式方式到达
 - > 当汇聚到一小批数据时,迭代进行一次训练
 - > 只能执行一次训练epoch

存储资源有限 不能存储全部任务数据

域增量学习Domain-Incremental CL

- 训练时,模型已知Task ID;测试阶段,Task ID未知
- 测试时,模型只需要解决任务,不需要推断Task ID
- 典型场景: 任务结构一致, 但是输入发生变化

$$Y_k = Y_{k+1}$$
 $Y_k \cap Y_{k+1} = \emptyset$
$$P(X_k) \neq P(X_{k+1})$$

$$P(Y_k) = P(Y_{k+1})$$

$$P(Y_k) \neq P(Y_{k+1})$$

域增量
类增量

例1: Split MNIST

不同持续学习下,测试阶段设定程序

类型	测试设定							
任务增量	任务给定,判断其是第一类还是第二类 (eg, 0 or 1)							
域增量	任务未知,判断其是第一类还是第二类(eg, in [0,2,4,6,8] or [1,3,5,7,9])							
类增量	任务未知,判断其数字(eg,属于0到9的哪一个)							

任务不可知Task-Agnostic CL

■ 训练和测试阶段, Task ID均未知

Figure credit: Massimo Caccia

对比

- 任务增量持续学习
 - ▶为每个任务单独训练模型
 - ▶测试时,任务ID已知
- 域增量持续学习
 - > 所有任务具有相同的类
 - ▶测试时,任务ID未知
- 类增量持续学习
 - ▶为所有模型训练一个模型
 - ▶测试时, ID未知

例子

- ▶2维特征
- ▶自由度为2

对于任务1,很容易获得一个高性能的分类器

例子

- ▶2维特征
- ▶自由度为2

新任务2到来

- 可以单独训练一个高性能的分类器
- 任务1和2的模型不同,即 模型参数发生变化

例子

- ▶2维特征
- ▶自由度为2

新任务2到来

- 可以单独训练一个高性能的分类器
- 任务1和2的模型不同,即 模型参数发生变化

例子

- ▶2维特征
- ▶自由度为2

CIL: 只需要一个最优的模型

如在所有任务上测试,旧任务性能不可分

灾难性遗忘(Catastrophic forgetting):在旧任务上的性能严重下降

灾难性遗忘! Why

目标

所有已训练任务

灾难性遗忘! Why

目标

所有已训练任务

服从任务t分布的样本数据

灾难性遗忘! Why

目标

灾难性遗忘! Why

目标

$$\sum_{t=1}^{\mathcal{T}} \mathbb{E}_{(\mathcal{X}^{(t)}, \mathcal{Y}^{(t)})} [\mathcal{L}(f_t(\mathcal{X}^{(t)}; \theta), \mathcal{Y}^{(t)})]$$

旧任务数据不可见!!!

实际优化

$$\underbrace{\sum_{N_{\mathcal{T}}}^{N_{\mathcal{T}}}}_{i=1} \ell(f(x_i^{(\mathcal{T})}; \theta), y_i^{(\mathcal{T})}) .$$

当前任务的样本数量

灾难性遗忘! Why

目标

$$\sum_{t=1}^{\mathcal{T}} \mathbb{E}_{(\mathcal{X}^{(t)}, \mathcal{Y}^{(t)})} [\mathcal{L}(f_t(\mathcal{X}^{(t)}; \theta), \mathcal{Y}^{(t)})]$$

实际优化

$$\frac{1}{N_{\mathcal{T}}} \sum_{i=1}^{N_{\mathcal{T}}} \ell(f(x_i^{(\mathcal{T})}; \theta), y_i^{(\mathcal{T})}) .$$

旧任务

旧任务数据不可见,不能计算风险损失,

发生灾难性遗忘

灾难性遗忘! Why

Loss(Task1)+ Loss(Task2)

任务1性能变差

灾难性遗忘! Why

已学习任务性能变化情况

灾难性遗忘

已学习任务性能急剧下降

已学习任务性能变化情况

无遗忘

已学习任务性能保持不变

已学习任务性能变化情况

已学习任务性能保持不变,

新任务性能较差

Why

- > 过度正则化
- > 网络性能不够

已学习任务性能变化情况

已学习任务性能保持不变, 新任务性能提高

前向传播:

学习的知识有助于新任务

已学习任务性能变化情况

已学习任务和新任务性能都提高

前向和后向传播:

已学习的知识有助于新任务

新任务知识也有助于旧任务

任务性能变化情况

评价准则

缺乏通用的评价准则,下面主要讨论Meta Table

R_{m,n}:模型在训练完M任务后在任务n上的性能

评价准则: Meta Table

R_{m,n}:模型在训练完M任务后在任务n上的性能

评价准则: Meta Table

R_{m.n}:模型在训练完M任务后在任务n上的性能

■ Forgetting Rate(FR)

$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{i,i} - R_{t,i}$$

■ Backward Transfer(BWT)

$$\frac{1}{T-1} \sum_{i=1}^{T-1} (R_{t,i}) - (R_{i,i})$$

Final results

Forward results

R_{m,n}:模型在训练完M任务后在任务n上的性能

Lopez-Paz and Ranzato, Gradient Episodic Memory for Continual Learning, NIPS 2017

评价准则: Meta Table

R_{m,n}:模型在训练完M任务后在任务n上的性能

使用平均准确率

评价准则: Meta Table

R_{m,n}:模型在训练完M任务后在任务n上的性能

		T_1	T_2	T_3	T_4	T_5	•••••	
		R_1	R_2	R_3	R_4	R_5		为每一个任务训
训练任务	T_1	$R_{1,1}$						作为非CL Base
	T_2	$R_{2,1}$	$R_{2,2}$					■ Forward Tran
	T_3	$R_{3,1}$	$R_{3,2}$	$R_{3,3}$				
	T_4	$R_{4,1}$	$R_{4,2}$	$R_{4,3}$	$R_{4,4}$			$\frac{1}{T-1} \sum_{i=1}^{T-1} R_i$
	T_5	$R_{5,1}$	$R_{5,2}$	$R_{5,3}$	$R_{5,4}$	$R_{5,5}$		判断是否发
	:							Transfer(F
	·	$R_{t,1}$		• • • • •				

训练一个模型, eline

nsfer(FWT)

$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{i,i} - R_i$$

发生Forward (FWT>0)

评价准则: Meta Table

R_{m.n}:模型在训练完M任务后在任务n上的性能

平均准确率: 在学习完成后, 计算所有任务结果

方法分类

目标
$$\sum_{t=1}^{\mathcal{T}} \mathbb{E}_{(\mathcal{X}^{(t)},\mathcal{Y}^{(t)})} [\mathcal{L}(f_t(\mathcal{X}^{(t)};\theta),\mathcal{Y}^{(t)})$$
 实际优化 $\frac{1}{N_{\mathcal{T}}} \sum_{i=1}^{N_{\mathcal{T}}} \ell(f(x_i^{(\mathcal{T})};\theta),y_i^{(\mathcal{T})})$.

旧任务数据不可见,不能计算风险损失,导致灾难性遗忘

- ■基于正则化的CL 无法计算旧任务风险→添加损失约束,保留旧任务知识
- 基于回放的CL 旧任务数据不可见→保存部分样本、生成旧任务数据
- 基于网络结构的CL模型能力弱→扩展网络结构,每一个任务是一个子网络

其它分类方式

其它分类方式

Algorithm Category	Subcategory		Reference			
§ 3.1	§ 3.1.1	Direct Replay	[35], [39], [40], [41], [42], [43], [44], [45], [46], [47]			
Data-Centric	Data Replay	Generative Replay	[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58]			
Class-Incremental Learning	§ 3.1.2: Data Regularization		[40], [59], [60], [61], [62], [63]			
		Neuron Expansion	[64], [65], [66]			
§ 3.2	§ 3.2.1 Dynamic Networks	Backbone Expansion	[20], [21], [22], [67], [68], [69], [70], [71]			
Model-Centric		Prompt Expansion	[23], [72], [73], [74], [75], [76]			
Class-Incremental Learning	§ 3.2.2: Paramete	r Regularization	[39], [77], [78], [79], [80], [81], [82], [83], [84]			
	§ 3.3.1 Knowledge Distillation	Logit Distillation	[32], [85], [86], [87], [88], [89], [90], [91], [92]			
		Feature Distillation	[93], [94], [95], [96], [97], [98], [99], [100]			
§ 3.3		Relational Distillation	[101], [102], [103], [104], [105]			
Algorithm-Centric Class-Incremental Learning	Model Rectify	Feature Rectify	[106], [107], [108], [109], [110], [111]			
		Logit Rectify	[87], [93], [112], [113], [114]			
		Weight Rectify	[115], [116], [117]			

Road Map

谢 谢!