# Popular Phone Features in India

Adam Hall, Mohamed Hussien, Virginia Sahagun, Nazmus Sakib Sumon, Shadman Chowdhury

### **Table of Contents**

- 1. Background Information and Research Findings
- 2. Value Proposition of Our Research
- 3. Initial Hypothesis
- 4. Our Approach to the problem
- 5. Data Source Overview
- 6. Data Cleaning Process
- 7. Finding from Exploratory Data Analysis
- 8. Methodology
- 9. Results From Machine Learning Model
- 10. Conclusion and Future Plans

# Background Info & Research



- The Indian market is ultra-competitive
- Market expected to grow 10 % in 2023 to reach 175 million units[1]
- New Competitors emerging like Realme, Xiomi etc.
- Emergence of Ecommerce site like Flipkart helps increase sale of smartphones through partnership
- New market entrants needs insights on features that are the main drivers of popularity among the buyers

## **Value Proposition**



#### **Overview of the problem**

- What are the main drivers of ratings in Indian Smartphone market?
- No predictive method to determine rating based on smartphone configuration



#### **Planned Solution**

- A Regression based model to predict ratings
- Determining the features that impact the model the most(i.emain drivers)

## **Initial Hypothesis**

- Research show that price, brand, storage capacity, speed and battery life may be most useful predictors of popularity overall[2]
- Research done in Neighboring country
   Bangladesh showed that price and operating system are the main factors[3]
- The trend of choice has been similar throughout the years









## The Novelty in Our Approach



Focus in South Asian Market



Focusing on Historical Trend



Augmentation of the Data Source

## **Approach**

Initial Analysis

- Historical Data(2019) of Flipkart and gadget360 from Kaggle
- Data Cleaning and Exploratory Analysis
- •Feature Engineering
- Comparative
   Analysis between
   Regression Models

Analysis with New Data

- •Web scraping to extract data
- Data Cleaning and Feature Engineering
- •Similar Analysis between the Models

Final Result

- Conclusion derived from the research
- Final Report

## Similar projects review

- Google Play App Rating Prediction[4]
  - Regression based models used- Linear Regression, XGBoost Regressor, Random Forrest Regressor
  - Random Forrest Regressor had the lowest RMSE
  - Due to Multicollinearity Linear Regression had very high RMSE
- Phone Price Classification and Explanatory Data Analysis[5]
  - Main price driver is RAM and Battery life

## Web Scraping and Challanges

- Initial data found from 2019
- No research done on latest data(2023)
- Got the latest data from Gadget360 and Flipkart through Web Scraping
- Challenges-
  - Different URLs for getting the Full mobile specifications
  - Removing "rare" specifications.
  - A lot of sponsored Ad that caused trouble getting appropriate data



## **Data Cleaning and Processing Process**

- Two complementary datasets from Flipkart.com and Gadgets360.com (includes additional features missing in Flipkart).
- Two snapshots of time (each of 2 datasets):
  - 2019 version (Kaggle.com)
  - 2023 version (web scraped)



# **Summary of Datasets**

|                            | 2023 Dataset               |                            | 2019 Dataset               |                           |
|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|
| Step                       | Gadgets360                 | Flipkart                   | Gadgets360                 | Flipkart                  |
| Initial dataset size       | 8,695 rows<br>x 50 columns | 1,998 rows<br>x 17 columns | 1,359 rows<br>x 21 Columns | 3,114 rows<br>x 8 Columns |
| Remove unnecessary columns | 8,695 rows<br>x 6 columns  | 1,998 rows<br>x 13 columns | 1,359 rows<br>x 19 Columns | 3,114 rows<br>x 4 Columns |
| Drop missing values        | 7,800 rows                 | 1,998 rows                 | 1,359                      | 2,970 rows                |
| Drop Duplicates            | 4,268 rows                 | 1,040 rows                 | 1,359                      | 1,079 rows                |
| Final Merged Datasets      | 599 rows x 17 columns      |                            | 387 rows x 23 columns      |                           |

- Correlation matrix shows that:
  - Price, Battery capacity, RAM and cameras have the highest correlation coefficient with rating. (Initial hypothesis holds true)
  - High correlation coefficient between multiple parameters (e.g., RAM and number of cameras) indicating high risk of collinearity.
- This is further confirmed by the Variance Inflation Factor (VIF) shown below (especially for RAM and storage capacity).
- Similar conclusions were found for 2019 dataset



# Exploratory Data Analysis (EDA) – 2023 Dataset



## **Challenges Found through EDA**

- Response variable (Rating) is not Normally distributed due to the common rating of 4.2
- Simple variable transformations were not able to normalize the data.







# **Methodology Overview**

- Linear Regression
- Random Forest
- XGBoost
- Compare models with adjusted R<sup>2</sup>, MSE, and RMSE
- Training set- 70%, Test Set- 30%
- Outliers removed using Cook's distance
- Random Forest and XGBoost chosen to handle multicollinearity

## **2019 Top Features**

## **2023 Top Features**

**Brand** 

Brand

**Linear Regression** 

**Battery Capacity** 

Price

Internal Storage

Display

Rear Camera

Rear Camera

**Front Camera** 

## **Random Forest Top Features**

| Most Important Features |                     |                      |             |  |  |  |
|-------------------------|---------------------|----------------------|-------------|--|--|--|
| Node Purity             | 2019                | 2023                 | Node Purity |  |  |  |
| 4.01                    | Brand —             | → Brand              | 10.19       |  |  |  |
| 2.40                    | Price 🔍             | Screen Size          | 4.01        |  |  |  |
| 1.44                    | Screen Size         | Price                | 3.00        |  |  |  |
| 1.17                    | Battery Capacity —— | —→ Battery Capacity  | 2.33        |  |  |  |
| 0.95                    | Resolution 🔪        | 🗾 Days Since Release | 1.71        |  |  |  |
| 0.56                    | Storage —           | ✓ Storage            | 1.62        |  |  |  |
| 0.48/0.44               | Camera Quality 🗸    | RAM                  | 1.42        |  |  |  |
|                         |                     |                      |             |  |  |  |

## **XGBoost Top Features**

- Verbose=.5
- Max depth=3
- Learning Rate=0.1

### **2023 Variable Importance**



#### **2019 Variable Importance**



## **Results**

| 2023                    | Linear | Random Forest | XGBoost |
|-------------------------|--------|---------------|---------|
| R-Squared               | 66.41% | 67.70%        | 62.98%  |
| Mean Squared Error      | 0.026  | 0.025         | 0.029   |
| Root Mean Squared Error | 0.161  | 0.160         | 0.169   |

| 2019                    | Linear | Random Forest | XGBoost |
|-------------------------|--------|---------------|---------|
| R-Squared               | 57.38% | 63.20%        | 56.10%  |
| Mean Squared Error      | 0.024  | 0.023         | 0.026   |
| Root Mean Squared Error | 0.156  | 0.153         | 0.162   |

## **Conclusion and Future Impact**

- Brand, Price, Display, Battery Capacity and Storage are the most consistently significant factors across different models
- Historical Trend
  - Decreased importance of the cell phone's camera quality and resolution from 2019 to 2023
  - Increase of importance of Processing speed from 2019 to 2023
- We want to focus on feature importance for multiple price points in a future iteration of the research

## **Sources Cited**

- 1. B. Standard, "Business Standard," [Online]. Available: <a href="https://www.business-standard.com/article/technology/indiasmartphone-market-to-grow-10-to-reach-175-million-units-in-2023-122122300733">https://www.business-standard.com/article/technology/indiasmartphone-market-to-grow-10-to-reach-175-million-units-in-2023-122122300733</a> 1.html.
- 2. Pekka Kekolahti, Kalevi Kilkki, Heikki Hämmäinen, Antti Riikonen, Features as predictors of phone popularity: An analysis of trends and structural breaks, Telematics and Informatics, Volume 33, Issue 4, 2016, Pages 973-989, ISSN 0736-5853, <a href="https://doi.org/10.1016/j.tele.2016.03.001">https://doi.org/10.1016/j.tele.2016.03.001</a>.
- 3. Uddin, M. R., Lopa, N. Z., & Oheduzzaman, M. (2014). FACTORS AFFECTING CUSTOMERS'BUYING DECISIONS OF MOBILE PHONE: A STUDY ON KHULNA CITY, BANGLADESH. *International Journal of Managing Value and Supply Chains*, 5(2), 21.
- 4. <a href="https://medium.com/analytics-vidhya/is-it-possible-to-predict-rating-of-google-play-store-apps-based-on-the-given-information-da9a44a3ac1e">https://medium.com/analytics-vidhya/is-it-possible-to-predict-rating-of-google-play-store-apps-based-on-the-given-information-da9a44a3ac1e</a>
- 5. https://github.com/teguharia172/Phone-Price-Classification-and-Exploratory-Data-Analysis
- Khan Rakib, M. R. H., Pramanik, S. A. K., Amran, M. A., Islam, M. N., & Sarkar, M. O. F. (2022). Factors affecting young customers' smartphone purchase intention during Covid-19 pandemic. Heliyon, 8(2), e10599. <a href="https://doi.org/10.1016/j.heliyon.2022.e10599">https://doi.org/10.1016/j.heliyon.2022.e10599</a>
   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476370/
- 7. Odaymat, Rommy. (2019). Factors affecting mobile phone selection. <a href="https://www.researchgate.net/publication/333461879">https://www.researchgate.net/publication/333461879</a> Factors affecting mobile phone selection.