Hprépa, mécaniqu	ue du solide									
L.	cinétique des systèmes matériels	composition accélération / vite	esse, masse et centre d'inertie	, référentiel barycentrique, résu	ltante et moment cinétique, rés	ultante et moment dynamiq	ue, théorèmes de Ki	oenig, torseur cinétique et dynamiq	ие	top
	mouvement d'un solide	champ des vitesses, moment d	l'inertie, théorème de Huygen	s, solide en rotation autour d'ur	axe fixe					
l.	Etude dynamique des systèmes m	atériels beaucoup o	le torseurs, loi de la dynamiqu	e dans un référentiel galiléen et	non galiléen					
l.	Etude énergétique des systèmes r	matériels th Energie	inétique, puissance cinétique	, Emeca						
5.	Contact entre deux solides lois du	frotttement application	démarrage d'un cycliste, étu	ude cinématique roulement san	s glissement, action mécaniques	de contact				
5.	Rotation d'un solide autour d'un a	axe liaisons SI, o	orienté torseur							
Hprépa, mécaniqu		cées, oscillateur paramétrique bala	•							
inématique / dyn	namique du point / puissance et én	ergie / oscillations libres / oscillation	ns forcées / plan de phase / ch	angements de référentiels, réso	nance					
Iprépa, mécaniqu										
nécanique en réfe	férentiel non galiléen / mécanique t	errestre / marée statique, limites / f	orce de lorentz / systèmes de	points matériels (version 1ère a	nnée) / forces centrales / Intera	ction newtonienne. Annexe	onique			
Brasselet, mécanio										
dem que mécanio	que 1 / 2 + chapitre 5, 6 mécanique	du solide Oscilalteur	anharmonique bien fait dedar	ns (non linéarité)						
érez, mécanique										
hèmes classiques	s, marée, détail mathématique au d	ébut-fin, oscillateur anharmonique	et exemple de la vibration d'u	ne molécule, diffusion de Rhtuh	erford, chocs, lagrangien, hamil	tonien, gyroscope, oscilalteu	rs couplés, méca flu	ux, acoustique, effet Doppler	pq k invariant ?	
BFR, mécanique 1	1 chapitres classiques + relativité re	streinte, dynamique relativiste, prir	ncipe de relatrivité							
3FR, mécanique 2	oscilaltions couplés, mécanique d	u solide, gyroscope (simple, pour co	omprendre l'idée), méca flux, t	termes de marée						
Gié, mécanique 1	modèle de la dialtation thermique	e, thèmes classiques, électrostatique	e, cinématique et dynamique	relativiste, pendule pesant						
Gié, mécanique 2	fluide, contact entre solides, gyro	scope								
Mécanique, Benso	on thèmes classic	ues (moins approfondi), thermo pri	ncipe 1 et 2. thermomètrie							
La rotation dans I'	'univers									
Our, orienté lagrar	ngien hamiltonien, corps massif en	rotation, dynamique des solides								
Hecht, mécanique	e toute la physic	ue, physique nucléaire et atomique	, module d'Young, pas de déta	ail en général, bien pour les odg						
OM méca										
wikipédia pour la	physique du solide									
ivres de prépa (su	sup):									
/B	cours 1ère année PCSI, optique ge	éométrique, appareil photo,	top <3							
Boulomié	oscillateurs méca									
outonie										

Analyse phénoménologique des écoulements										
Porte bien son nom, odg, nombre de machin,	couche limite, convection	n, diffusion, écoul	ements turbulent	s, couche limite tu	rbulente					
Turbulence										
turbulence atmosphérique, instabilités, tourbill	ons, fluides de l'environr	nement								
Mécanique des fluides appliquée										
cinétique et dynamique des fluides parfaits inc	compressibles, visqueux,	compressibles								
Une introduction à la dynamique des fluides										
classique, décollement de la couche limite, on	des dans les fluides, sta	bilité des écoulen	nents, convection	thermique, fluide	en rotation, turb	ulence, magnétoh	ydrodynamique,	dynamique des ga	z, compléments n	naths
Hydrodynamique physique										
La bible										
écoulements potentiels, rhéologie, vorticité, lu	brification, turbulence									
Cours de M1										
Cours de Lyon sur la tension de surface										
Doc de Louis sur la tension de surface										
Cap prépa 2e année PC/PC* à la BU?										
wikipédia Rhéologie										

Livres (cote / auteurs / titre) ou lien	Fond agreg V/R	Fait dedans	
Thermodynamique PC/PC*, Gié		Corps noir, équilibre radiatif. Pas de	démo de Planck, cf Texier pour ça
Bréal PC/PC*		Potentiel thermo de façon concise	
Hprépa Thermodynamique 1ère année		Modélisation moteur thermique	
Diu thermodynamique		La bible	
Hprépa thermo 2ème année		Schéma maximisation de l'entropie p	our gaz en contact
Diu physique statistique			
Diu thermo			
Postulat et principes, changements de phases des corps	urs, mélanges des corps purs, équilibre thermo local,	équation de la chaleur, nuages, piles pour la chi	mie, accu au plomb
BFR thermo			
détente JGL, prop gaz parfaits			
Paul Roux et Jean-Robert Seigne, BUP 832, L'lenergie e	mllecanique et en thermodynamique		
S. Olivier thermodynamique 1ère et 2e année (Gié PC / F	C* ? Il semblerait)		
Corps noir, équilibre radiatif, machines thermiques, diffusi	on particule, diffusion thermique, P1 et P2		
Physique MP - MP*, Dunod			
C. Texier et G. Roux, physique statistique			
., , , ,			
Les Milles et une Questions en Prépa, Garing			
Ondes mécaniques et diffusion, Garing			

Livres (cote / au	teurs / titre) ou lier	n		Fond agreg V/R	Fait dedans												
-	E. Van Brackel	E1 Systèmes lin	éaires et stabilité		Notion des SLC	IT, signaux, foncti	on de transfert ord	fre 1 et 2, diagran	mes de bodes, in	npédance d'entrée	e, de sortie, stabilit	é des systèmes l	iénaires				
-	E. Van Brackel	E2 Amplificateur	s linéaires intégrés		Présentation de	l'ALI (linéaire / sa	turé / passe bas /	défauts), montag	amplicateur non	inverseur (fonction	on de transfert, pdf	gain bande pass	ante), comparate	ur à hystérésis, m	ontages classique	e d'ALI (linéaire / s	aturé)
-	E. Van Brackel	E3 Electronique	numérique		Discrétisation er	temps et en vale	eur, echantillonage	(Shannon - Nyqu	ist), quantification	n, filtrage numériq	ue (un peu)						
-	E. Van Brackel	E4 Oscillateur			Oscillateur quas	i sinusoïdal, de re	elaxation, Colpitts,	pont de Wien, dé	marrage oscillatio	n, critère de Bark	hausen						
Cours de JBD																	
CP1/2/3/4																	
H prépa électron	nique				Formalisme rétr	oaction, oscillateu	ırs quasi sinusoïd:	BUX									
Tout en un, PSI/	PSI*, Dunod																
Tout en un PCSI	I VB																

Livres (cote / auteurs / titre) ou lien			Fond agreg V/R	Fait dedans				
Garing : diffusion & ondes méca				Ondes acoustiqu	es dans les solide	es et calculs (appr	ox acoustique etc)
Cours d'Etienne <3								
Attention il n'y a pas de dispersion dans le câble	coax							
Garing : ondes électromagnétiques dans le vide e	et les milieux conduc	teurs						
Garing, Ondes EM dans diélectrique : fibre en op	tique géométrique (e	exo 3.6 p.104-108)					
Sanz, MP physique tout en un : guide d'onde met	allique							
http://www2.iap.fr/users/fioc/enseignement/2P011	I/preuve_effet_Dopp	ler_acoustique.pd	if	Effet Doppler dér	no un peu généra	ale		
VB								
http://www.etienne-thibierge.fr/agreg/ondes_poly	2015.pdf							

BFR 1	électrostatique milieux conducte	eurs, calculs classsiques, condensateurs										
BFR 2	phénomènes d'induction et élec	trocinétique, étude du RLC, notation complexe	régime sinusoidal forcé									
BFR 3	magnétisme induction, équation	s de maxwell et compléments d'électronique, r	ayonnement dipolaire, rétr	roaction des AO								
BFR 4	milieux diélectrique et milieux ai	mantés, aspects macro micro, ferromagnétism	e									
Gié 1	électrostatique, magnétostatique	e, lois de l'électromagnétisme, énergie										
Gié 2	Ondes électromagnétique, indu	ction, électromag des milieux martériels										
Gignoux, Di!le	electriques et autres											
P. Roux, !El	ectromagn‼etisme, modèle de l'élec	ctron élastiquement lié										
PUF Mauras,	#Electromagn#etisme											
Ashcroft et Me	ermin, Physique des solides	Drude, réseaux cristallins, Bragg, structure	de bandes, conduction da	ans les métaux, the	éorie du cristal ha	rmonique classiqu	ue et quantique ([Debye), phonons	semi conducteur	s, dia, paramagné	étisme, supracono	luctivité
Stéphane Oliv	ier, Physique des ondes											
Garing, Chapi	tre 3 Ondes et conducteur métalliqu	e ; Chapitre 4 Ondes dans un plasma										
BFR, EM 3 : Ir	nduction et Ondes EM, chapitre 12	(champ électromagnétique rayonné)										
Hprépa d'onde	es diagramme de rayonnement, mo	dèle électron lié, diffusion Rayleigh										
Cap prépa PC												
Sextant, optique	ue expérimentale, illustration eau +	lait										

Livres (cote / aute	urs / titre) ou lien				Fait dedans			
Magnétisme I/, T	remolet				Phénoménologie	e du magnétisme,	culture	
EM6, VB					Canalisation ligr	es de champ, calo	cul circuit magnéti	que
Diu physique sta	tistique							
La bible								

Cours Alain Asp	oet (laser)										
			livre Louis montag	e ?							
BFR d'optique	principe de ferm	at, optique géométrique, D	Descartes, principe de Huygh	ens, ondes électron	nag et optique						
Champeau ond	des lumineuses	optique géométriquee à	onlatoire, propagation d'une	onde, diffraction de	franhaufer, imagerie lum	ière incohérente / d	cohérente, cohérence te	emporelle / spatial	es, interf à N onde	es, optique anisotr	ope
Cap prépa											
Hprépa d'optiqu	ue ondulatoire	illustré, interférences ave	c une ou plusieurs sources	nono / polychromat	ique et étendue, réseaux	de diffraction, diffr	action des ondes lumin	euses			
Houard Optique	e expérimentale	optique couleurs lumière	s, optique géométrique, instr	uments d'optiques,	diffraction, laser						
Sextand Optique	e expérimentale	sources lumineuses et o	ptique géométrique, pupille o	'entrée etc, photode	étecteurs, optique ondula	toire exp, spectros	copie, optique anisotro	pe			
Physique expéri	imentale ALD										
R. Taillet, Optiqu	ue Physique, inter	férences à N ondes	ondes électromag	, Brewster, interfére	nces, diffraction, polarisa	ition, laser aspects	micro, guide lumière, la	asers			
Mauras d'optiqu	ıe										
Hecht d'optique	ondulatoire	photons, propagation lun	nière, polarisation, interféren	ces et diffraction, la	ser un peu						
Les lasers, Dan	ngoisse	modélisation système à p	olusieurs niveaux, faisceaux	gaussiens, les cavit	és, théorie semi classiqu	e du laser, compoi	tement dynamique des	lasers, principaux	lasers, optique n	on linéaire	
Portelli, physiqu	ue par la pratique	Optique géométrique, pri	inrcipe de Fermat								

Les lasers, Dangoissi	se mo	odélisation syst	tème à plusieurs	niveaux, faisceau	x gaussiens, les d	cavités, théorie se	emi classique du la	iser, comportemen	t dynamique des	lasers, principaux	lasers, optique no	on linéaire							
Dunod, Physique tout	ut-en-un, PC-PC*																		
Grynberg, Aspect, Fa	abre, Introduction	to Quantum C	Optics	pour la diffusion	de phase														
Physique Atomique, t	tome 2, Cagnac (pour l'effet pho	otoélectrique)																
Optique quantique 1 :	: Lasers, Aspect,	Fabre, Grynbe	erg (pompage op	tique)															
Source de photons un	uniques et interfére	ences à un sei	ul photon, thèse o	de Vincent jacques	3														
Mécanique quantique	ue tome 1, Aslangu	ul	Fondements et p	oremières applicat	ions	Rutherford, phol	toélectrique, Plan	ck, Bohr, noyau at	omique, théorie de	es quanta, fonctio	n d'onde, magnéti	sme atomique, po	stulats, opérateu	r, évolution, oscilla	teur harmonique				
Mécanique quantique	ue tome 2, Aslangu	ul (culture)	Développements	s et applications à	basse énergie	Symétries et lois	s de conservation	théorie du momer	nt cinétique, atom	e hydrogène, le s	pin, illustration de	s postulats (décol	nérence), méthod	es pertubatives, in	teraction chamlp i	matière, théorie d	liffusion, application	ons à basses éner	gies
Mécanique quantique	ue tome 2, Aslangu	ul (culture)	Développements	s et applications à	basse énergie	Symétries et lois	s de conservation	théorie du mome	nt cinétique, atom	e hydrogène, le s	pin, illustration de	s postulats (décol	nérence), méthod	es pertubatives, in	teraction chamlp i	matière, théorie d	liffusion, application	ons à basses éner	gies
Mécanique quantique Cohen, tome 1 et 2		ul (culture)	Développements	s et applications à	basse énergie	Symétries et lois	s de conservation	théorie du momer	nt cinétique, atom	e hydrogène, le s	pin, illustration des	s postulats (décol	nérence), méthod	es pertubatives, in	teraction chamlp i	matière, théorie d	liffusion, application	ons à basses éner	gies
		ul (culture)	Développements	s et applications à	basse énergie	Symétries et lois	s de conservation	théorie du momer	nt cinétique, atom	e hydrogène, le s	pin, illustration des	s postulats (décol	nérence), méthod	es pertubatives, in	teraction chamlp	matière, théorie d	liffusion, application	ons à basses éner	gies
Cohen, tome 1 et 2		ul (culture)	Développements	s et applications à	basse énergie	Symétries et lois	s de conservation	théorie du momer	nt cinétique, atom	e hydrogène, le s	pin, illustration de	s postulats (décol	nérence), méthod	es pertubatives, inf	teraction chamlp	matière, théorie d	liffusion, application	ons à basses éner	gies
Cohen, tome 1 et 2								théorie du momer								matière, théorie d	liffusion, application	ons à basses éner	gies

\bibitem{Grossetete}			
{Relativité Restreinte de Grossetete, bien pour la dynamique.}			
\bibitem{JMR}			
http://ressources.agreg.phys.ens.fr/media/ressources/RessourceFichiers/24	4-RaimondElectromagnetisme_et_relativite	e.pdf}{"Electromagnétisme et Rela	tivité" de JP Raimond}
\bibitem{BFR}			
{Version BFR de mécanique où il y a de la relat. pas mal sur notion d'invariant.} I	Pas mal d'OdG et exemples sur c invariant		
\bibitem{Hartle}{Hartle, Gravity. Dicussion d'expérience. Mieux}			
\bibitem{Caroll}{Sean Caroll, un peu plus mathématique}			
\bibitem{Berkeley}{Dans le cours de berkeley de mécanique. Discussion Michelo	on-Morlay. \war{Pas évident Michelon.}}		
\bibitem{Smith}{Smith, pour le paradoxe des jumeaux}			
\bibitem{Perez}{Relativité de Perez, beaucoup sur les particules chargées ; accé	Jórotouro)		
bibliem{Perez, Relativité de Perez, beaucoup sur les particules chargées ; acce	lerateurs}		
\bibitem{Delecroix}{Plasma, pour chercher un exemple un peu raffiné}			
ibibitering beleetology lasma, pour cherener un exemple un peu ramine)			
\bibitem{Silvestre-Brac}{Silvestre-Brac & Langlois pour les trucs de base ; petits	exercices}		
sisting in the same state of same state of same same state of same same state of same same same same same same same same	over electric		
\bibitem{Landau}{Landau, théorie des champs}			
\bibitem{Rindler}{Rindler, plutôt mathématiques}			
\bibitem{Bohm}{Bohm, assez maths}			
\bibitem{compo}			
{Sujet de composition de 2003, exercice 1 : barreau uniformément chargé, vitess	se \$\vec{v}\$, dans le cas galilée/einstein}		
\bibitem{Jean-Marc Levy-Leblond}			
\href{http://www.relativite.info/Une_derivation_de_plus.pdf}{Dérivation de la trans	sformée de Lorentz sans l'invariance de c}		

Cours de M1

Livres (cote / autel x	Fait dedans
Energie Nucléaire, Basdevant	Modèle goutte liquide bien développé
Physique Nucléaire appliquée, F. Mayet	Modèle goutte liquide + développé, chaque terme bien expliqué. Complet sur le modèle en couche. Parfait pour modélisation du noyau
http://www.umich.edu/~ners312/CourseLibrary/Dommelen.pdf	Données sur la désintégration alpha
Energie nuéclaire, Fission et fusion. P. Charles	Définition énergie de mase, de liaison. Beaucoup + pratique sur fusion/fission

Cours Berkeley, oscil	llateurs	Volume 1, mécanio	que, à ajouter ?							
Cours PNL		http://www.norma	alesup.org/~baglio/	physique/CoursNL.	.pdf					
Manips non linéarite	és ENS Paris	http://ressources.a	agreg.phys.ens.fr/st	tatic/TP/serie3/Phy	siqueNonLineaire.p	<u>df</u>				
Sur les non linéarité	s de l'oscillateur s	imple	https://www.resea	archgate.net/public	ation/327768287_E	tude des effets n	on lineaires obser	ves sur les oscilla	tions_d%27un_pen	dule_simple
530.5 BER 394000	000240728 Berg	é , Pierre (1934-1	997) L'ordre dans	le chaos : vers u	ne approche déte	rmin				
http://ressources.ur	niv-lemans.fr/Acce	esLibre/UM/Pedago	/physique/02/							
Strogatz , Steven N	Nonlinear dynam	39400000725447								

Couplage oscilalteurs, cours IPhO			https://fermat.mon-ent-occitanie.fr/lectureFichiergw.do?ID_FICHIER=1513881023365									
Couplage fort d'oscillateurs			http://b.louchart.free.fr/Documents/CE/01/Agregation/Agreg_ext_Physique_2009_C_Enonce.pdf									
Physique des ondes		2e année										

effet de serre 2e partie épreuve A 2011			http://b.louchart.free.fr/Documents/CE/01/Agregation/Agreg_ext_Physique_2011_A_Enonce.pdf							
Vid‼eos E-learnii	ng Physique sur Y	′outube : Eff∂et de	e serre-bilan radia							

Livres (cote / auteurs / titre) ou lien			Fond agreg V/R	Fait dedans											
53.8 ASC	SC Asch , Georges Les capteurs en instrumentation industrielle					Tout type de capteurs, en particulier : le thermocouple (effet Peltier - Seebeck), capteurs inductifs, capactifs moins d'image que le suivant mais plus de détails									
53.8 DAS Dassonvalle , Pas Les capteurs (50 exercices et problèmes)				Tout type de cap	teurs, thermo, opt	que, anéomètre à	fil chaud								