## ALVARADO PALACIOS FERNANDO TAPIA GARCÍA ANGEL GABRIEL ROSAS FRANCO DIEGO ANGEL JIMÉNEZ MILKE SAMUEL



# PUNTO EXTRA 1

ÁLGEBRA SUPERIOR

Diga cuáles de los siguientes conjuntos es elemento el conjunto vacío, justificando sus respuestas:

- (I)  $\varnothing$ )  $\varnothing \notin \varnothing$ , ya que los dos son conjuntos (el conjunto vacío) y este se define como el conjunto sin elementos.
- (II)  $\{\emptyset\}$ )  $\emptyset \in \{\emptyset\}$ , si pertenece ya que  $\{\emptyset\}$  es el conjunto unitario que tiene como elemento al conjunto vacío.
- (III)  $\{\{\varnothing\}\}\)$   $\varnothing \notin \{\{\varnothing\}\}\$ , ya que  $\{\{\varnothing\}\}\$  es el conjunto unitario, con un elemento que es el conjunto unitario por lo que el conjunto vacío no puede pertenecer.
- (IV)  $\{\emptyset, \{\{\emptyset\}\}\}\}\$   $\emptyset \in \{\emptyset, \{\{\emptyset\}\}\}\}$ , ya que  $\{\emptyset, \{\{\emptyset\}\}\}\}$  tiene dos elementos, el conjunto vacío y un conjunto unitario.

Considere el conjunto  $\mathbb{U}=\{-7,-2,-1,0,5,11,23,47,100\}$  y los subconjuntos  $A=\{-7,0,5,47,100\}$  y  $B=\{-1,0,5,11,23\}$  Encuentre:

- $A \cap B = \{0, 5\}$
- $A^c \cap B = A^c = \{-2, -1, 11, 23\} :: A^c \cap B = \{-1, 11, 23\}$
- $A \cap B^c = B^c = \{-7, -2, 47, 100\} :: A \cap B^c = \{-7, 47, 100\}$
- $A^c \cap B^c = \{-2\}$
- $(A \cap B)^c = \{-7, -2, -1, 11, 23, 47, 100\}$

Sea  $\mathbb U$  un conjunto universal. Demuestre que para cualquier subconjunto A de  $\mathbb U$  se tiene que:

 $\bullet$   $A \cap \varnothing = \varnothing$ 

Demostración por reducción a lo absurdo.

Supongamos que  $A \cap \emptyset \neq \emptyset$ , por definición tenemos:

 $A \cap \emptyset = \{x \in A \land x \in \emptyset\}$ , entonces de nuestra suposición estaríamos diciendo que  $x \in \emptyset$ , lo que es absurdo! ya que  $\emptyset$  no tiene elementos.

$$A \cap \emptyset = \emptyset$$

 $A \cup \mathbb{U} = \mathbb{U}$ 

Demostración por reducción al absurdo.

Supongamos que  $A \cup \mathbb{U} \neq \mathbb{U}$ , por definición de unión tenemos que  $A \cup \mathbb{U} = \{x \in A \lor x \in \mathbb{U}\}$ 

Entonces de nuestra suposición estaríamos diciendo que  $x \notin \mathbb{U}$ , lo que es absurdo ! ya que por hipótesis  $x \in \mathbb{U}$ 

$$A \cup \mathbb{U} \neq \mathbb{U}$$

 $A \cap A^c \neq \emptyset$ 

Demostración por reducción al absurdo.

Supongamos que  $A \cap A^c \neq \emptyset$ , lo que significaría que  $\exists x | x \in A \cap A^c$ Pero por definición tenemos que:

$$A \cap A^c = \{ x \in A \land x \notin A \land x \in \mathbb{U} \}$$

lo que nos lleva a una contradicción ! por que no puede ser que:

$$x \in A \land x \notin A$$

$$A \cap A^c = \emptyset$$

 $A \cup A^c = \mathbb{U}$ 

Demostración por reducción al absurdo.

Supongamos que  $A \cup A^c \neq \mathbb{U}$ , por definición de complemento sabemos que:

 $A^c = \{x \in \mathbb{U} \land x \notin A\}$ , pero por hipotesis sabemos que  $x \in A$ 

Por lo que  $\{(x \in \mathbb{U} \land x \notin A) \cup x \in A\}$ ! Por lo que es absurdo que  $x \notin A$  y que  $x \in \mathbb{U}$ .

Demuestra que para cualquiera conjunto A y B, se tiene que:

(a) 
$$A \subseteq B$$
 si y solo si  $A \setminus B = \emptyset$ ;  
 $(\Longrightarrow) A \subseteq B \Longrightarrow A \setminus B = \emptyset$ 

Demostración por contradicción:

$$A \subseteq B(1) \land A \setminus B \neq \emptyset(2)$$

Por definición podemos expresar a (1) y (2) como:

$$A \subseteq B := \forall x (x \in A \implies x \in B) \text{ y } x \in A \setminus B := (x \in A \land x \notin B)!$$

Esto nos lleva a una contradicción ya que la diferencia de A y B,  $x \in A$  y  $x \notin B$ , pero se dijo que  $\forall x (x \in A \implies x \in B)$  por lo que no puede ser que  $x \in A$  y  $x \notin B$ .

$$(\Leftarrow)A \setminus B = \varnothing \implies A \subseteq B$$

Demostración por contrapositiva:

Si  $A \subsetneq B \implies A \setminus B \neq \emptyset$ , por definición de diferencia tenemos que:

$$x \in A - B := (x \in A \land x \notin B)$$
, por hipótesis tenemos que:

 $A \subsetneq B := \exists x (x \in A \land x \notin B)$  por lo que si a esto le aplicamos una diferencia nos quedaría que:

 $x \in A \land x \notin B$  (def) y como  $\exists x (x \in A \land x \notin B)$  entonces  $A \setminus B \neq 0$  lo que demuestra que:

$$A \setminus B = \varnothing \implies A \subseteq B$$

(b) 
$$B \subseteq A$$
 si y solo si  $(A \setminus B) \cup B = A$ ;

$$(\Longrightarrow)B\subseteq A \Longrightarrow (A\setminus B)\cup B=A$$

Demostración por contradicción:

Si  $B \subseteq A(1) \land (A \setminus B) \cup B \neq A(2)$ , por definición, sabemos que:

$$B \subseteq \overline{A} := \forall x (x \in B \implies x \in A)$$

y que  $(A \setminus B) \cup B \neq A$  es  $x \in (\{x \in A \land x \notin B\} \lor x \in B)$  pero  $x \notin A!$ .

Esto es una contradicción ya que si  $\forall x (x \in B \implies x \in A)$ 

$$y (x \in A \land x \in B),$$

no puede ser  $x \notin A$  ya que en ambos casos  $x \in A$ .

$$\therefore B \subseteq A \implies (A \setminus B) \cup B = A.$$

$$(\Leftarrow=)(A \setminus B) \cup B = A \implies B \subseteq A$$

```
Por definición podemos expresar a (A \setminus B) \cup B = A como: x \in (\{x \in A \land x \notin B\} \lor x \in B) = A por lo tanto (\{x \in A \land x \notin B\} \lor x \in B) \subseteq A(1) y A \subseteq (\{x \in A \land x \notin B\} \lor x \in B), por (1) tenemos dos casos \{x \in A \land x \notin B\} \subseteq A que es cierto ya que por teorema de reflexibilidad(visto en clase ) A \subseteq A y tenemos el segundo caso B \subseteq A, lo que completa la demostración.
```