浙江大学 2009 - 2010 学年 夏 学期 《大学物理甲1》课程期末考试试卷(A)

课程号	:061E	30211	, 开课学院:	物理	[[系			
考试试	卷: A √卷	、 B 卷	(请在选定项	上打√)				
考试形	式: 闭√、	开卷(请在选定项上	打 /)				
允许带	_无存储工	力能的计	上算器_入场					
考试日	期: _2010	年_07_	月_06_日,考计	试时间,	120	分钟		
			信考试,沉着	< '	~ >	纪。		
考生姓名		号		院系/	1	王课老师_		_组号
题序	填空	计1	it 2 i	计3	计4	计 5	ो 6	总 分
得分		- X						
评卷人						Ay (1.1)	erie Van See	
气体摩尔 真空介电	常量 R = 常数 ϵ_0	8.71 (J·n 8.85×10	$\text{nol}^{-1} \cdot \text{K}^{-1}$)	· m ⁻²)				$0^{-23}(J \cdot K^{-1})$ (m/s)
一、填空局	题:(12是	题, 共4	8分)					
1. (本题 4 一质点 b、c 为大于 度 a _n =	沿半径为 零的常量	R 的圆周 ,且 b ² >	运动,其路程 <i>Rc</i> 。则此质点	星s 随时 [运动的	河子变化	的规律为 速度 a _t =_	s=bt-c	<i>t</i> ²/2 (SI),式「 ;法向加过

2. (本题 4分) 0082

如图所示,沿着半径为 R 的圆周运动的质点,所受 的儿个力中有一个是恒力 F_0 ,方向始终沿,轴正向,即 $F_0=F_0i$ 。当质点从A点沿逆时针方向走过 3/4 圆周到达 B点时,力 F_0 所作的功为 $W=_$

3. (本题 4分) 0373

质量为m的物体,在外力作用下从原点山静止开始沿x轴正向运动。所受外力方向沿x轴正向,大小为 F=kx。物体从原点运动到坐标为 x_0 的点的过程中所受外力冲量的大小为

4. (本题 4分) jt09

如图, 质量为 m、长度为 l 的均匀细杆在 xy 平面内, 与x轴夹角为 α ,其一端在原点o。则此杆对x轴的转动 惯量为_____

5. (本题 4分) 3153

6. (本题 4分) v001

如图所示, S_1 和 S_2 为两相干波源,它们的振动方向均垂直于图面,发出波长为 λ 的简谐波,P 点是两列波相遇区域中的一点,已知 $\overline{S_1P}=2\lambda$, $\overline{S_2P}=2.2\lambda$,两列·波在 P 点发生相消干涉。若 S_1 的振动方程为 $y_1=A\cos(2\pi t+\pi/2)$,则 S_2 的振动方程为

7. (本题 4 分) 4351

宇宙飞船相对于地面以速度 υ 作匀速直线飞行, 某一时刻飞船头部的宇航员向飞船尾部 发出一个光讯号, 经过Δt (飞船上的钟) 时间后, 被尾部的接收器收到, 则从地面上观测该 飞船的长度为 。(用 ο 表示真空中光速)

8. (本题 4分) 4735

9. (本题 4 分) 4555

在容积 $V=4\times10^{-3}\,\mathrm{m}^3$ 的容器中,装有压强 $p=5\times10^2\,\mathrm{Pa}$ 的现象气体,则容器中气体分子的平均平动动能总和为

10. (本题 4分) 4313

一定量的理想气体,从 p-V图上初态 a 经历 (1) 或 (2) 过程到达末态 b, 己知 a、b 两态处于同、条绝 热线上 (图中虚线是绝热线),则气体在过程 (1) 中 ,在过程 (2) 中 (填吸热、 放热或无法确定)

11. (本题 4分) y002

一个观察者站在铁路边,一列火车从远处开来, 他接收到的火车汽笛声的频率为 650 Hz。 当火车从身旁驰过而远离他时, 他测出的火车汽笛声频率为 540 Hz。已知空气中声速为 340 m/s,则火车行驶的速度为

12. (本题 4分) 1367

如图所示,真空中两个正点电荷 Q,相距 2R。若以其中一点电荷所在处 o 点为中心,以 R 为半径作高斯球面 S,则通过该球面的电通量为______; 高斯面上 a、b 两点的电场强度大小分别为______、

二、计算题: (6题, 共52分)

1. (本题 10分) 0565

半径分别为 r_a 和 r_B 的圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑 固定轴 o 转动,对轴的转动惯量为 J。两圆盘边缘都绕有轻绳,绳子下端分别挂有质量为 m_A 和 m_B 的物体 A 和物体 B,如图所示。若物体 A 以加速度 a_A 上升,证明物体 B 的质量:

$$m_{B} = \frac{Ja_{A} + m_{A}r_{A}^{2}(g + a_{A})}{r_{A}r_{B}g - r_{B}^{2}a_{A}}$$

2. (本題 10分) jt08

有一质量为 M、长为 l 的均匀细棒。其一端固定一质量也为 M 的小球,另一端可绕垂 直于细棒的水平轴 o 自由转动,组成一球摆。现有一质量为 m 的子弹,以水平速度 v 射向小 球, 子弹穿过小球后速率减为 7/2, 方向不变, 如图所示。如果要使球摆能在铅直平面内完 成一个完全的圆周运动、侧子弹射入速度 v 的大小至少为多大?

3. (本题 6分) y003

设由 N个气体分子组成一热力学系统, 其速率分布函数为:

$$f(v) = \begin{cases} -k(v - v_0)v & 0 \le v \le v_0 \\ 0 & v > v_0 \end{cases}$$

(1) 用 v_0 表示常量 k; (2) 求分子的 v_p ; (3) 求分子的 \overline{v} 。

4. (本题 10分) 4707

如图所示,用绝热材料包围的圆筒内盛有一定量的刚性双原子分子的理想气体,并用可活动的、绝热的轻活塞将其封住。图中 K 为用来加热气体的电热丝,M、N 是固定在圆筒上的环,用来限制活塞向上运动。I 、II 、III 是圆筒体积等分刻度线,每等分刻度为 1×10^{-3} m³。 开始时活塞在位置 I ,系统与大气同温、同压、同为标准状态(0°C,1 个大气压)。现将小砝码逐个加到活塞上,缓慢地压缩气体,当活塞到达位置III 时停止加砝码;然后接通电源缓慢加热使活塞至 II ;断开电源,再逐步移去所有砝码使气体继续膨胀至 I ,当上升的活塞被环 M、N 挡住后拿去周围绝热材料,系统逐步恢复到原来状态,完成一个循环。

--2014版-

- (1) 在 p-V 图上画出相应的循环曲线, 并标明各分过程名称;
- (2) 求出各分过程的始末状态温度;
- (3) 求该循环过程吸收的热量和放出的热量。

5. (本题 8分) 2144

一平面简谐被称 ∞ 轴的负方向传播,波长为 λ ,P处质点的振动规律如图所示。(1) 求 P处质点的振动方程。(2) 求此波的波动表达式;(3) 若图中 $d=\lambda/2$,求坐标原点 o处质点的振动方程。

6. (本题 8 分) jt01

带电球面,面电荷密度分布为 $\sigma=\sigma_0\cos\theta$,式中 σ_0 为常量, θ 角如图所示。求球心处电场强度 E。

