Ch 4.3 - Logistic Regression

Lecture 9 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds, Sep 21, 2022

Announcements

Lec#		Date	Topic	Reading	Homeworks
1	w	Aug 31	Intro / First day stuff / Python Review Pt 1	1	
2	F	Sep 2	What is statistical learning?	2.1	
	М	Sep 5	No class - Labor day		
3	W	Sep 7	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due
4	F	Sep 9	Linear Regression	3.1	
5	М	Sep 12	More Linear Regression	3.1/3.2	
6	W	Sep 14	Even more linear regression	3.2.2	HW #2 Due
7	F	Sep 16	Probably more linear regression	3.3	
8	М	Sep 19	Intro to classification, Logisitic Regression	2.2.3, 4.1, 4.2, 4.3	
9	W	Sep 21	More logistic regression		HW #3 Due
10	F	Sep 23	Review		
11	М	Sep 26	Midterm #1		
12	W	Sep 28	[No class, Dr Munch out of town]		
13	F	Sep 30	[No class, Dr Munch out of town]		

Announcements:

- Homework #3 Due tonight on Crowdmark
- Friday Review day
 - Nothing prepped
 - Bring your questions
- Monday Exam #1
 - ▶ Bring 8.5x11 sheet of paper
 - Handwritten both sides
 - Ahything you want on it, but must be your work
 - You will turn it in

Covered in this lecture

Last Time:

- Classification basics
- KNN classifier
- Started Logistic Regression

This time:

3/30

Logistic Regression

r. Munch (MSU-CMSE) Weds, Sep 21, 2022

Section 1

Review of Classification and Logistic Regression from last time

r. Munch (MSU-CMSE) Weds, Sep 21, 2022

Error rate

- Training data: $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

Training error rate:

$$\frac{1}{n}\sum_{i=1}^n\mathrm{I}(y_i\neq\hat{y}_i$$

Test error rate:

$$\operatorname{Ave}(\mathrm{I}(y_0 \neq \hat{y}_0))$$

Best ever classifier

We can't have nice things

Bayes Classifier:

Give every observation the highest probability class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

Bayes Decision Boundary

Dr. Munch (MSU-CMSE)

Bayes error rate

• Error at $X = x_0$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$

7/30

Munch (MSU-CMSE) Weds, Sep 21, 2022

K-Nearest Neighbors

$$K = 3$$

decision boundary

- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$

Pick j with highest value

Section 2

Logistic Regression

What is classification

- Classification: When the response variable is qualitative
- Goal: Model the probability that Y belongs to a particular category

10/30

r. Munch (MSU-CMSE) Weds, Sep 21, 2022

Linear regression (Don't want to do this)

$$p(balance) = Pr(default = yes | balance)$$

$$p(balance) = \beta_0 + \beta_1 balance$$

11/30

Munch (MSU-CMSE) Weds, Sep 21, 2022

Logistic regression (Do this)

$$p(exttt{balance}) = rac{e^{eta_0 + eta_1 exttt{balance}}}{1 + e^{eta_0 + eta_1 exttt{balance}}}$$

12/30

Or. Munch (MSU-CMSE) Weds, Sep 21, 2022

Odds

$$\frac{p(x)}{1 - p(x)} = \frac{\Pr(Y = 1 \mid X = x)}{1 - \Pr(Y = 1 \mid X = x)} = \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = 0 \mid X = x)}$$

Probability or risk =
$$\frac{p}{p+q}$$
 (p)

Odds =
$$p:q$$
 $p:q$

Dr. Munch (MSU-CMSE)

Calculate the odds

If the probabilty of default is 90%, what are the odds?

If the odds are 1/3, what is the probability of default?

14 / 30

Dr. Munch (MSU-CMSE) Weds, Sep 21, 2022

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

15 / 30

Playing with the logistic function: desmos.com/calculator/cw1pyzzgci

Using coefficients to make predictions

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is the estimated probability of default for someone with a balance of \$1,000?

What is the estimated probability of default for someone with a balance of \$2,000:

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Interpreting the coefficients

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

17 / 30

Munch (MSU-CMSE) Weds, Sep 21, 2022

Estimating Coefficients: Maximum Likelihood Estimation

• **Likelihood:** Probability that data is generated from a model

$$\ell(\textit{model}) = \mathbb{P}[\textit{data} \mid \textit{model}]$$

• Find the most likely model

$$\max_{model} \ell(model)$$

Hard to maximize likelihood, instead maximize log

$$\max_{model} \log(\ell(model))$$

 Strictly increasing log function doesn't change maximum

$$egin{aligned} \mathsf{Pr}(\mathit{Y}=1\mid \mathit{X}) &= \mathit{p}(\mathit{X}) \ &= rac{\mathrm{e}^{eta_0 + eta_1 \mathit{X}}}{1 + \mathrm{e}^{eta_0 + eta_1 \mathit{X}}} \end{aligned}$$

$$\ell(\beta_0, \beta_1) = \prod_{i | y_i = 1} p(x_i) \prod_{i' | y_{i'} = 0} (1 - p(x_{i'}))$$

Dr. Munch (MSU-CMSE)

More on that likelihood function

$$\begin{aligned} \mathsf{Pr}(Y = 1 \mid X) &= p(X) \\ &= \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \\ \ell(\beta_0, \beta_1) &= \prod_{i \mid y_i = 1} p(x_i) \prod_{i' \mid y_{j'} = 0} (1 - p(x_{i'})) \end{aligned}$$

19/30

. Munch (MSU-CMSE) Weds, Sep 21, 2022

Confusion Matrix: Predicting default from balance

		True default status		
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	23	81	104
	Total	9667	333	10000

	True			
		Yes	No	Total
Predicted	Yes	a	b	a+b
Fredicted	No	c	d	c+d
	Total	a+c	b+d	N

Truo

Do coding in jupyter notebook

Dr. Munch (MSU-CMSE) Weds, Sep 21, 2022

Section 3

Multiple Logistic Regression

. Munch (MSU-CMSE) Weds, Sep 21, 2022

Multiple Logistic Regression

Multiple features:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_
ho X_
ho}}{1 + e^{eta_0 + eta_1 X_1 + \cdots + eta_
ho X_
ho}}$$

Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Multiple Logistic Regression

Multiple features:

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}$$

Equivalent to:

$$\log\left(\frac{\rho(X)}{1-\rho(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Section 4

Multinomial Logistic Regression

Multinomial Logistic Regression

What if we have a categorical variable with more than two levels (let's say K of them)?

Plan A

Play the dummy variable game:

Make K the baseline:

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Calculated so that log odds between two classes is linear:

$$\log \left(\frac{\Pr(Y = k \mid X = x)}{\Pr(Y = K \mid X = x)} \right) = \beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p$$

26 / 30

Dr. Munch (MSU-CMSE) Weds, Sep 21, 2022

Example

Predict $Y \in \{ \text{stroke, overdose, seizure} \}$ for hospital visits based on Xp

$$\begin{split} \Pr(Y = \texttt{stroke} \mid X = x) &= \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ \Pr(Y = \texttt{overdose} \mid X = x) &= \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ \Pr(Y = \texttt{seizure} \mid X = x) &= \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \end{split}$$

Dr. Munch (MSU-CMSE) Weds, Sep 21, 2022

Softmax

Plan B: Softmax coding

Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

. Munch (MSU-CMSE) Weds, Sep 21, 2022

Softmax example

$$\begin{split} \Pr(Y = \texttt{stroke} \mid X = x) \\ &= \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ \Pr(Y = \texttt{overdose} \mid X = x) \\ &= \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ \Pr(Y = \texttt{seizure} \mid X = x) \\ &= \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{split}$$

Dr. Munch (MSU-CMSE) Weds, Sep 21, 2022

Next time

Lec#		Date	Topic	Reading	Homeworks
1	w	Aug 31	Intro / First day stuff / Python Review Pt 1	1	
2	F	Sep 2	What is statistical learning?	2.1	
	М	Sep 5	No class - Labor day		
3	W	Sep 7	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due
4	F	Sep 9	Linear Regression	3.1	
5	М	Sep 12	More Linear Regression	3.1/3.2	
6	W	Sep 14	Even more linear regression	3.2.2	HW #2 Due
7	F	Sep 16	Probably more linear regression	3.3	
8	М	Sep 19	Intro to classification, Logisitic Regression	2.2.3, 4.1, 4.2, 4.3	
9	W	Sep 21	More logistic regression		HW #3 Due
10	F	Sep 23	Review		
11	М	Sep 26	Midterm #1		
12	W	Sep 28	[No class, Dr Munch out of town]		
13	F	Sep 30	[No class, Dr Munch out of town]		

Dr. Munch (MSU-CMSE) Weds, Sep 21, 2022