姓名: 专业: 学号:

第 03 周作业

练习 1. 设 $\vec{u} = \vec{a} - \vec{b} + 2\vec{c}$, $\vec{v} = -\vec{a} + 3\vec{b} + \vec{c}$ 。 试用 \vec{a} , \vec{b} , \vec{c} 表示 $2\vec{u} - 3\vec{v}$ 。

练习 2. 把 $\triangle ABC$ 的 BC 边四等分,设等分点依次为 $D_1,\,D_2,\,D_3$ 。试以 $\overrightarrow{AB}=\vec{c},\,\overrightarrow{BC}=\vec{a}$ 表示向量 $\overrightarrow{D_1A},\,\overrightarrow{D_2A}$ 和 $\overrightarrow{D_3A}$ 。

练习 3. 已知两点 A(1,-3,7) 和 B(-2,5,1)。求 \overrightarrow{AB} 坐标,求模长 $|\overrightarrow{AB}|$,求 \overrightarrow{AB} 的方向余弦,求出 \overrightarrow{AB} 与 x,y,z 轴的夹角 α,β,γ (精确到小数点后一位)。(需要用到计算器,一些在线科学计算器,如 http://web2.0calc.com/,可能会帮到你)

练习 4. 求点 (x, y, z) 关于 (1) 各坐标面; (2) 各坐标轴; (3) 坐标原点的对称点的坐标。

	关于 xoy 面	关于 yoz 面	关于 zox 面	关于 x 轴	关于 y 轴	关于 z 轴	关于坐标原点
(x, y, z)							

练习 5. 求出在 y 轴上的点 M, 其到点 A(1, -3, 7) 和到点 B(5, 7, -5) 的距离相等。

练习 6. 设向量 \overrightarrow{AB} 在 x, y, z 轴上的投影分别是 4, -4, 7。假设点 B 为 (2, -1, 7),求出 A 点坐标。

练习 7. 设空间中三个点 $C(1,-1,2),\ A(3,3,1),\ B(3,1,3)$ 。令 $\vec{a}=\overrightarrow{CA},\ \vec{b}=\overrightarrow{CB},\ \theta$ 为 \vec{a} 和 \vec{b} 的夹角。求 $\vec{a}\cdot\vec{b},\ \theta,\ \mathrm{Prj}_{\vec{b}}\vec{a},\ \vec{a}\times\vec{b}$ 及三角形 ΔABC 的面积。

练习 8. 设 $\vec{c} = 2\vec{a} + \vec{b}$, $\vec{d} = k\vec{a} + \vec{b}$ 。 假设 $|\vec{a}| = 1$, $|\vec{b}| = 2$, 且 \vec{a} 和 \vec{b} 夹角 $\theta = \frac{1}{3}\pi$ 。 试问:

- 1. k 为何值时, $\vec{c} \perp \vec{d}$?
- 2. k 为何值时,以 \vec{c} , \vec{d} 为邻边的三角形面积为 6?

练习 9. 设有三个向量 $\vec{a} = (2, -3, 1), \ \vec{b} = (1, -2, 3)$ 和 $\vec{c} = (2, 1, 2).$

- 1. 求向量 $\vec{a} \times \vec{b}$ 。
- 2. 假设向量 \vec{r} 与 \vec{a} 、 \vec{b} 都垂直,且 $\mathrm{Prj}_{\vec{c}}\vec{r}=14$ 。求 \vec{r} 。