Chapter 05 Constraint Satisfaction Problem

Instructor LE Thanh Sach, Ph.D.

Instructor's Information

LE Thanh Sach, Ph.D.

Office:

Department of Computer Science, Faculty of Computer Science and Engineering, HoChiMinh City University of Technology.

Office Address:

268 LyThuongKiet Str., Dist. 10, HoChiMinh City, Vietnam.

E-mail: LTSACH@cse.hcmut.edu.vn

E-home: http://cse.hcmut.edu.vn/~ltsach/

Tel: (+84) 83-864-7256 (Ext: 5839)

Acknowledgment

The slides in this PPT file are composed using the materials supplied by

- Prof. Stuart Russell and Peter Norvig: They are currently from University of California, Berkeley. They are also the author of the book "Artificial Intelligence: A Modern Approach", which is used as the textbook for the course
- Prof. Tom Lenaerts, from Université Libre de Bruxelles

Outline

- **❖** CSP?
- Backtracking for CSP
- **❖** Local search for CSPs
- Problem structure and decomposition

Constraint satisfaction problems

- **❖** What is a CSP?
 - \cong Finite set of variables $V_1, V_2, ..., V_n$
 - \searrow Finite set of constraints C_1 , C_2 , ..., C_m
 - Nonemtpy domain of possible values for each variable $D_{V1}, D_{V2}, \dots D_{Vn}$
 - Each constraint C_i limits the values that variables can take, e.g., $V_1 \neq V_2$
- A state is defined as an assignment of values to some or all variables.
- * Consistent assignment: assignment does not not violate the constraints.

Constraint satisfaction problems

- ❖ An assignment is *complete* when every value is mentioned.
- ❖ A *solution* to a CSP is a complete assignment that satisfies all constraints.
- Some CSPs require a solution that maximizes an *objective* function.
- Applications: Scheduling the time of observations on the Hubble Space Telescope, Floor planning, Map coloring, Cryptography

CSP example: map coloring

- ❖ Variables: WA, NT, Q, NSW, V, SA, T
- \bullet Domains: $D_i = \{red, green, blue\}$
- * Constraints:adjacent regions must have different colors.
 - ✓ E.g. $WA \neq NT$ (if the language allows this)
 - ✓ E.g. (WA,NT) ≠ {(red,green),(red,blue),(green,red),...}

CSP example: map coloring

❖ Solutions are assignments satisfying all constraints, e.g. {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Constraint graph

- **SP** benefits
 - Standard representation pattern
 - □ Generic goal and successor functions
 - Generic heuristics (no domain specific expertise).

- Constraint graph = nodes are variables, edges show constraints.
 - Graph can be used to simplify search.
 - ✓ e.g. Tasmania is an independent subproblem.

Varieties of CSPs

Discrete variables

- \cong Finite domains; size $d \Rightarrow O(d^n)$ complete assignments.
 - ✓ E.g. Boolean CSPs, include. Boolean satisfiability (NP-complete).
- Infinite domains (integers, strings, etc.)
 - ✓ E.g. job scheduling, variables are start/end days for each job
 - ✓ Need a constraint language e.g StartJob₁ +5 ≤ StartJob₃.
 - ✓ Linear constraints solvable, nonlinear undecidable.

Continuous variables

- e.g. start/end times for Hubble Telescope observations.
- Linear constraints solvable in poly time by LP methods.

Varieties of constraints

- **!** Unary constraints involve a single variable.
 - ≥ e.g. *SA* ≠ *green*
- * Binary constraints involve pairs of variables.
 - \ge e.g. $SA \neq WA$
- * Higher-order constraints involve 3 or more variables.
 - ≥ e.g. cryptharithmetic column constraints.
- ❖ Preference (soft constraints) e.g. red is better than green often representable by a cost for each variable assignment → constrained optimization problems.

Example; cryptharithmetic

Variables: $F T U W R O X_1 X_2 X_3$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints

alldiff(F, T, U, W, R, O) $O + O = R + 10 \cdot X_1$, etc.

CSP as a standard search problem

- ❖ A CSP can easily expressed as a standard search problem.
- **❖** Incremental formulation

 - Successor function: Assign value to unassigned variable provided that there is not conflict.
 - ⊆ Goal test: the current assignment is complete.
 - > Path cost: as constant cost for every step.

CSP as a standard search problem

- ❖ This is the same for all CSP's !!!
- \diamond Solution is found at depth n (if there are n variables).
 - > Hence depth first search can be used.
- ❖ Path is irrelevant, so complete state representation can also be used.
- \clubsuit Branching factor b at the top level is nd.
- b=(n-l)d at depth l, hence $n!d^n$ leaves (only d^n complete assignments).

Commutativity

- **CSPs** are commutative.
 - The order of any given set of actions has no effect on the outcome.
 - Example: choose colors for Australian territories one at a time
 - ✓ [WA=red then NT=green] same as [NT=green then WA=red]
 - ✓ All CSP search algorithms consider a single variable assignment at a time \Rightarrow there are d^n leaves.

Backtracking search

- Cfr. Depth-first search
- Chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
- Uninformed algorithm
 - No good general performance (see table p. 143)

Backtracking search

function BACKTRACKING-SEARCH(*csp*) **return** a solution or failure **return** RECURSIVE-BACKTRACKING({} , *csp*)

```
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment according to CONSTRAINTS[csp] then
        add {var=value} to assignment
        result ← RRECURSIVE-BACTRACKING(assignment, csp)
        if result ≠ failure then return result
        remove {var=value} from assignment
        return failure
```


Improving backtracking efficiency

- ❖ Previous improvements → introduce heuristics
- General-purpose methods can give huge gains in speed:
 - ₩ Which variable should be assigned next?
 - In what order should its values be tried?

 - □ Can we take advantage of problem structure?

Minimum remaining values

 $var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(\text{VARIABLES}[csp], assignment, csp)$

- ❖ A.k.a. most constrained variable heuristic
- * Rule: choose variable with the fewest legal moves
- ❖ Which variable shall we try first?

Degree heuristic

- Use degree heuristic
- * Rule: select variable that is involved in the largest number of constraints on other unassigned variables.
- ❖ Degree heuristic is very useful as a tie breaker.
- ❖ *In what order should its values be tried?*

Least constraining value

- ❖ Least constraining value heuristic
- Rule: given a variable choose the least constraing value i.e. the one that leaves the maximum flexibility for subsequent variable assignments.

- **A** Can we detect inevitable failure early?
 - > And avoid it later?
- ❖ Forward checking idea: keep track of remaining legal values for unassigned variables.
- ❖ Terminate search when any variable has no legal values.

- **♦** Assign {*WA=red*}
- **!** Effects on other variables connected by constraints with WA
 - > NT can no longer be red
 - SA can no longer be red

- \diamond Assign {Q=green}
- ❖ Effects on other variables connected by constraints with WA
 - > NT can no longer be green
 - > NSW can no longer be green
 - SA can no longer be green
- ❖ *MRV heuristic* will automatically select NT and SA next, why?

- \bullet If *V* is assigned *blue*
- ***** Effects on other variables connected by constraints with WA
 - SA is empty
 - > NSW can no longer be blue
- ❖ FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.

Map coloring

4. BL: Bạc Liêu

7. AG: An Giang

1. PQ: Phú Quốc 2. KG: Kiên Giang 3. CM: Cà Mâu

> Cần Thơ 5. ST: Sóc Trăng 6. CT:

Map coloring

Step		PQ	KG	CM	BL	ST	СТ	AG
0		RGB	RGB	RGB	RGB	RGB	RGB	RGB
1	MRV	= R						
2	FC	= R	RGB	RGB	RGB	RGB	RGB	RGB
3	MRV	= R	=R					
4	FC	= R	= R	GB	GB	RGB	GB	GB
5	MRV	= R	=R	=G				
6	FC	= R	=R	=G	В	RGB	GB	GB
7	MRV	= R	= R	=G	= B			
8	FC	= R	= R	=G	= B	RG	G	GB
9	MRV	= R	= R	=G	= B		= G	

Artificial Intelligence: Constraint Satisfaction Problem

Map coloring

Step		PQ	KG	CM	BL	ST	СТ	AG
8	FC	= R	=R	=G	= B	RG	G	GB
9	MRV	= R	=R	=G	= B		= G	
10	FC	= R	=R	=G	= B	R	= G	В
11	MRV	= R	=R	=G	= B	=R	= G	
12	FC	= R	=R	=G	= B	=R	= G	В
13	MRV	=R	= R	=G	= B	=R	= G	=B

[4-Queens slides copied from B.J. Dorr CMSC 421 course on AI]

FW Checking → Remove

FW Checking → Remove

FW Checking → Remove

FW Checking → Remove

Do backtracking + Try another assignment for X1

Constraint propagation

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.
- ❖ FC checking propagates information from assigned to unassigned variables but does not provide detection for all failures.
 - NT and SA cannot be blue!
- ❖ Constraint propagation repeatedly enforces constraints locally

Arc consistency

- $X \to Y$ is consistent iff for *every* value x of X there is some allowed y
- ❖ $SA \rightarrow NSW$ is consistent iff SA=blue and NSW=red

Arc consistency

- $X \to Y$ is consistent iff for *every* value x of X there is some allowed y
- ❖ $NSW \rightarrow SA$ is consistent iff NSW=red and SA=blue NSW=blue and SA=???

Arc can be made consistent by removing *blue* from *NSW*

Arc consistency

- ❖ Arc can be made consistent by removing *blue* from *NSW*
- ❖ RECHECK neighbours !!
 - Remove red from *V*

Arc consistency Western Australia Northern Territory Queensland New South Wales Victoria Tasmania

- ❖ Arc can be made consistent by removing *blue* from *NSW*
- ❖ RECHECK neighbours !!
 - Remove red from V
- ❖ Arc consistency detects failure earlier than FC
- **Can** be run as a preprocessor or after each assignment.
 - Repeated until no inconsistency remains

Arc consistency algorithm

```
while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(\text{queue}) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_k in NEIGHBORS[X_i] - \{X_j\} do add (X_k, X_i) to queue \text{function REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \text{ return } \text{true } \text{ iff we remove a value } \text{removed} \leftarrow \text{false} for each x in DOMAIN[X_i] do if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraints between X_i and X_j then delete x from DOMAIN[X_i]; x removed x true return x removed
```

function AC-3(csp) **return** the CSP, possibly with reduced domains **inputs**: csp, a binary csp with variables $\{X_1, X_2, ..., X_n\}$

local variables: *queue*, a queue of arcs initially the arcs in *csp*

K-consistency

- * Arc consistency does not detect all inconsistencies:
 - ➣ Partial assignment {WA=red, NSW=red} is inconsistent.
- ❖ Stronger forms of propagation can be defined using the notion of k-consistency.
- ❖ A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
 - ≥ E.g. 1-consistency or node-consistency
 - ≥ E.g. 2-consistency or arc-consistency
 - ≥ E.g. 3-consistency or path-consistency

K-consistency

- ❖ A graph is strongly k-consistent if

 - Is also (k-1) consistent, (k-2) consistent, ... all the way down to 1-consistent.
- * This is ideal since a solution can be found in time O(nd) instead of $O(n^2d^3)$
- *YET *no free lunch*: any algorithm for establishing n-consistency must take time exponential in n, in the worst case.

Further improvements

- Checking special constraints
 - - ✓ E.g. {WA=red, NSW=red}
 - Checking Atmost(...) constraint
 - ✓ Bounds propagation for larger value domains
- **❖** Intelligent backtracking
 - Standard form is chronological backtracking i.e. try different value for preceding variable.
 - More intelligent, backtrack to conflict set.
 - ✓ Set of variables that caused the failure or set of previously assigned variables that are connected to X by constraints.
 - ✓ Backjumping moves back to most recent element of the conflict set.
 - ✓ Forward checking can be used to determine conflict set.

Local search for CSP

- Use complete-state representation
- ❖ For CSPs
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- ❖ Value selection: *min-conflicts heuristic*
 - Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP

Min-conflicts example 1

***** Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

- ❖ A two-step solution for an 8-queens problem using min-conflicts heuristic.
- ❖ At each stage a queen is chosen for reassignment in its column.
- ❖ The algorithm moves the queen to the min-conflict square breaking ties randomly.

Problem structure

- * How can the problem structure help to find a solution quickly?
- **Subproblem identification is important:**
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constrained graph.
- Improves performance

Problem structure

- \diamond Suppose each problem has c variables out of a total of n.
- **\Display** Worst case solution cost is $O(n/c d^c)$, i.e. linear in n
 - \searrow Instead of $O(d^n)$, exponential in n
- **\$** E.g. n=80, c=20, d=2
 - \geq 2⁸⁰ = 4 billion years at 1 million nodes/sec.
 - \approx 4 * 2²⁰= .4 second at 1 million nodes/sec

Tree-structured CSPs

- ❖ Theorem: if the constraint graph has no loops then CSP can be solved in $O(nd^2)$ time
- * Compare difference with general CSP, where worst case is $O(d^{n})$

Tree-structured CSPs

- ❖ In most cases subproblems of a CSP are connected as a tree
- Any tree-structured CSP can be solved in time linear in the number of variables.
 - Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering.
 - For *j* from *n* down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X_i), X_i)
 - \searrow For j from 1 to n assign X_i consistently with Parent(X_i)

- **Can more general constraint graphs be reduced to trees?**
- * Two approaches:
 - Remove certain nodes
 - Collapse certain nodes

- ❖ Idea: assign values to some variables so that the remaining variables form a tree.
- $Assume that we assign {SA=x} \leftarrow cycle cutset$
 - > And remove any values from the other variables that are inconsistent.
 - The selected value for SA could be the wrong one so we have to try all of them

- * This approach is worthwhile if cycle cutset is small.
- ❖ Finding the smallest cycle cutset is NP-hard
 - > Approximation algorithms exist
- ***** This approach is called *cutset conditioning*.

- Tree decomposition of the constraint graph in a set of connected subproblems.
- ❖ Each subproblem is solved independently
- * Resulting solutions are combined.
- * Necessary requirements:
 - Every variable appears in ar least one of the subproblems.
 - If two variables are connected in the original problem, they must appear together in at least one subproblem.
 - If a variable appears in two subproblems, it must appear in eacht node on the path.

Summary

- ❖ CSPs are a special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- ❖ Backtracking=depth-first search with one variable assigned per node
- ❖ Variable ordering and value selection heuristics help significantly
- ❖ Forward checking prevents assignments that lead to failure.
- Constraint propagation does additional work to constrain values and detect inconsistencies.
- ❖ The CSP representation allows analysis of problem structure.
- ❖ Tree structured CSPs can be solved in linear time.
- ❖ Iterative min-conflicts is usually effective in practice.