신용카드 이용 데이터 기반 고객 세그먼트 분석

실제 카드사 데이터를 활용한 고객 행동 특성과 세그먼트 등급 연관성 분석 및 모델 평가 프로젝트

조장 / 양유빈 조원 / 김태미 윤규남

CONTENTS

01

탐색적 데이터 분석 (EDA)

고객 이용행태 기반 가설 중심 EDA

02

예측 모델 구축

LightGBM 기반 세그먼트 예측 분류모델 개발

03

결론

고객 페르소나 정의, RFM 분석 및 개선점

04

부록

통계검정 방법

분석 방향 고객 세그먼트(A~E) 특성 분석

분석 배경

고객 등급이 높을수록 활동성이 높을 것이라는 일반적 가정을 실제 데이터로 검증하고자 함

분석 방법

A~E 등급 고객을 대상으로 카드 사용 행태, 거래 빈도 등 주요 변수에 대한 가설 기반 EDA 수행

분석 목적

고객 등급 별 특성의 차이를 파악하여 등급 체계의 타당성과 세그먼트의 구조를 검토

가설 1.

최근 3개월간 신용/체크카드 이용금액이 높을수록 고객 등급이 높을 것이다

- 최근 3개월간 카드 이용금액은 Segment **구분의 핵심 차별화 지표**로, 이용금액이 낮을수록 등급도 **일관되게** 하락함.
- A, B는 이용금액이 높은 고객, C, D는 중간수준이나 일부 높은 금액이 존재, E는 이용금액이 적은 고객이지만 데이터의 분포가 넓어 해석에 유의가 필요함.
- 다만 Segment A와 B의 그룹 간 차이는 사후검정 결과 통계적으로 유의하지 않아(p>0.05) 해석에 주의가 필요함.

가설 2.

카드 사용 빈도가 증가할수록 고객 등급이 높아질 것이다.

- A, B는 고빈도 거래 고객군, C는 중간 수준, D, E는 저빈도 거래군으로 거래빈도는 고객 등급 간 순차적 차이를 보임.
- 사후검정 결과 Segment A와 B, B와 C등급 간 카드 사용 빈도에 대한 차이가 유의하지 않아(p>0.05) 해석에 주의가 필요함.

가설 3.

실제 사용 중인 신용카드 수가 많을수록 고객 등급이 높을 것이다

- Segment A에서 E로 갈수록 실제 사용 중인 신용카드 수는 감소하는 경향을 보임.
- 다만 Segment B와 C, B와 D의 그룹 간 차이는 사후검정 결과 통계적으로 유의하지 않아(p>0.05) 해석에 주의가 필요함.

가설 4.

월 청구금액이 높을수록 Segment 등급도 높을 것이다

- 정상청구원금은 Segment 간 감소 추세를 보여 각 등급의 소비 규모 및 재정 건전성 차이를 반영함.
- 세그먼트 C, D, E에서는 고액 극단치가 나타나 일시적 이용 증가나 비정형적 소비 패턴의 가능성이 있음.
- Segment A와 B, B와 C간 '정상청구원금_B0M(당월 정상청구원금)'에 대한 차이가 통계적으로 유의하지 않음(p>0.05) 07

가설 5.

정상입금원금이 높을수록 고객이 상위 등급(Segment A 또는 B)에 속할 가능성이 높을 것이다

- 정상입금원금은 Segment A에서 E로 갈수록 점진적으로 감소하며, 전반적으로 상위 등급일수록 정상입금원금이 높은 경향을 보임.
- 다만 B와 C, B와 D등급 간에는 통계적으로 유의한 차이가 없어(p>0.05) 중간 등급 간 구분력은 제한적임.

가설 6.

카드사로부터 대출 금액이 클수록 고객 등급이 높을 것이다

- Segment B는 A보다 정상청구원금과 할부 이용금액이 많아 소비성향이 더 강한 것을 확인할 수 있음.
- 모든 그룹들 간 '할부이용금액'에 대한 차이는 통계적으로 유의함(p<0.05)
- 정상청구원금과 할부 이용금액 두 지표의 경우 A와 B를 구분할 수 있는 핵심 지표로 작용할 가능성이 있음 .

가설 7.

연체 잔액이 높은 고객은 주로 낮은 고객등급에 집중될 것이다

- Segment A와 B는 **높은 총 잔액임에도 불구하고 연체액이 거의 없어** 재정적으로 안정된 핵심 고객군으로 분류됨.
- 반면 Segment C~E는 총 잔액과 연체 잔액 모두에서 분포 편차가 크고 고액 연체자가 포함되어 있어 세그먼트 내에서 다양한 신용 위험 특성을 가진 고객군으로 해석할 수 있음 . 10
- 총 잔액에 대한 사후검정 결과, Segment A와 B 간의 차이는 통계적으로 유의하지 않은 것으로 나타남.

핵심 변수 도출 및 검증 절차

1 단계

- 고객 가치를 설명할 수 있는 **행동지표 기반 가설 변수**를 세그먼트별로 설정함.
- 변수 선정을 위해 Segment와 각 컬럼 간 스피어만 상관분석을 실시하고,
 |p| > 0.4인 변수를 유의미한 후보변수로 선정함.

2 단계

- Segment 간 차이를 검증하기 위해 Kruskal-Wallis H-test, Dunn's test 등을 수행함.
- 이 중 통계적으로 유의한 차이를 보인 변수를 머신러닝 모델에 포함할 핵심 피처로 선정함.
- 다만 통계적으로는 유의하지 않더라도 실무적 중요성이나 이론적 설득력이 있는 변수는 포함함.

(1) 정규성 확인

Segment 등급별 당월 정상입금원금 분포 (정규성 확인용)

• 모든 등급특에 대하여 양의 왜도가 존재하며 모든 등급들은 정규석을 만존하지 못하다

02 예측모델 구축

컬럼 선정

- 변수들의 비선형 관계를 고려해 **스피어만 상관계수가 0.4 이상인 변수들을 선별**하여 분석에 활용함.
- 선택된 변수들이 가설검정 결과와 논리적으로 일치하는지를 검토하여 **변수의 타당성을 확보**함.

학습모델 선정

- 대규모 정형 데이터를 기반으로 복잡한 비선형 관계를 학습하고 다중 클래스 분류 문제 해결을 위해 Logistic Regression(0.86), LightGBM(0.87), SGB(0.85), XGBoost(0.86) 모델을 적용함.
- Competition scoring 기준으로 성능을 비교한 결과, LightGBM이 가장 우수한 성능을 보여 최종 모델로 선정함.

속도와 효율성

- 대용량 데이터와 다수 변수에 대한 빠른 학습 및 예측 속도
- 멀티스레딩 지원 및 GPU 활용이 가능해 처리 시간 단축
- 리프 중심 트리 분할 방식으로 메모리 사용량 최적화

높은 예측 성능

- Gradient Boosting 기반으로 복잡한 비선형 관계 포착
- 과적합 방지 메커니즘 내장으로 안정적 성능 유지

결측치 및 범주형 변수 자동처리

- 별도 전처리 없이 결측치 자동 처리 기능 제공
- 범주형 변수에 대한 최적의 분할 방식 자동 적용
- 데이터 전처리 과정 간소화로 모델 구축 속도 향상

특성 중요도 해석 가능

- 각 변수의 중요도 시각화로 인사이트 도출 용이
- 세그먼트별 주요 영향 요인 식별 가능

02 예측모델 구축

모델 학습 방식

데이터셋 구성	변주형 변수 처리
에이더엣 구성 ● Seament 값윽 타겐 변수로 설정하고 과련 속성 변수득은 특징	 LightGBM의 내장 범주형 변수 자동 인식 기능을 활용하여 처리 효율성 향상 별도의 Label Encoding 없이도 범주형 변수 학습 가능
청크 단위 학습 적용	클래스 불균형 대응
• 순차적 누적 학습 방식을 적용하여 각 청크를 순차적으로 모델에 학습	 세그먼트 간 불균형 완화를 위해 모델 학습 시 가중치 옵션 적용 'class_weight = balanced'를 설정하여 소수 Segment에 가중치 보정수행 자동으로 클래스 빈도에 반비례하는 가중치를 부여하여 모델의 분류편향 최소화

02 예측모델 구축

하이퍼파라미터 튜닝

Optuna를 활용한 최적화

- Optuna는 머신러닝 모델의 성능을 높이기 위한 **하이퍼파라미터 자동 탐색 프레임워크**
- 사람이 수동으로 조합을 실험하는 방식 대신 자동으로 최적에 가까운 조합을 탐색함

Optuna 선택 이유

- LightGBM의 다양한 하이퍼파라미터에 따른 성능 변화 대응 필요
- Grid Search나 Random Search는 탐색 공간이 너무 넓고 비효율적
- Optuna는 유망한 파라미터 조합 위주로 **지능적 탐색 수행하여 탐색 효율성과 성능 개선 효과를 동시에 달성**할 수 있어 적합함

모델 성능 결과

- Accuracy (예측된Segment와 실제 Segment간 일치 비율): 0.84
- 안정성 (모델 성능의 일관성 지표) : ±0.0128
- Kaggle 점수 : **0.87567**

과정 요약

1. 가설 기반 분석설계	2. 통계 및 머신러닝 분석	3.결과
 사전 가설 수립과 변수 검토를 통해데이터탐색의 신뢰성을 확보함. 고객 세그먼트별 특성을 규명함. 세그먼트 구분에 중요한 역할을 하는 핵심 차별화 변수를 도출함 	● Kruskal-Wallis H-test, 사우검성, 스피어만 상과부선을 하여 LightGRM	 LightGBM이 다른 모델 대비 최고 예측 정확도(0.87)를 기록함 Optuna를 활용한 하이퍼파라미터 최적화로 성능 안정성을 확보함

고객 페르소나

Segment	고객특성	전략
A	● 거래규모가 크고, 장기 신뢰와 무결점 이력을 가진 최우수 고객	 VIP 전용 프로그램 맞춤형 리워드 빠른 응대 채널 운영 등
В	● 민먼안 거래와 높은 상완 의시 ■ 금융상품에 적극적	추천 리워드장기 고객 감사신상품 정보 우선 제공 등
C		대중 마케팅신규 서비스 체험 기회 제공 등
D	● 사용민도 및 금액 모두 낮고 반응성 낮음	관심 기반 콘텐츠 마케팅실속형 이벤트 메시지 등
E	위얼이 높음	재방문 쿠폰감성 메시지설문 기반 리마케팅 등

추가분석: RFM

분석 목적

- 기존 Segment 분류를 보완하기 위해 고객의 **거래 행동 데이터를 기반**으로 RFM 분석을 실시함.
- 이를 통해 거래 시점(Recency), 거래 빈도(Frequency), 거래 금액(Monetary) 지표를 통합적으로 고려한 고객 세분화를 시도함.
- 실제 행동에 기반한 세분화는 마케팅, 리텐션 전략 등에서 중요한 접근이라고 판단함.

RFM 등급 분류 기준

- VIP: 최근 거래 + 고빈도 + 고금액 → 핵심 우수고객
- Loyal: 거래 빈도는 높지만 금액은 중간 수준인 고객
 - → 장기 유지 고객 & 충성도가 높은 고객
- At Risk: 최근 거래량이 낮은 이탈 위험군
 - → 리텐션 캠페인, 재활성화 마케팅의 주요 타겟이 될 수 있음
- Regular: 평균 수준의 일반 고객
 - → 잠재 성장 가능성은 낮으나 안정성을 담당

추가분석 : RFM

분석결과(1)

- RFM 분석 결과, VIP 고객은 최근성(Recency)이 낮고 구매 빈도(Frequency)와 금액(Monetary)이 모두 높은 수준으로 나타나, 기업에 가장 높은 가치를 제공하는 고객군으로 식별됨.
- 반면 Loyal 및 Regular 고객은 상대적으로 구매 활동이 점진적으로 감소하는 양상을 보임.
- At Risk 고객은 구매 이력이 미미하거나 장기간 활동이 없어 이탈 위험이 높고, 이에 따른 재활성화 및 관리 전략의 필요성이 제기됨.

추가분석 : RFM

분석결과(2)

Customer_Segment
Regular 131086
Loyal 126477
At Risk 75552
VIP 51615

- 전체 고객의 약 65%는 Regular (34%) 및 Loyal (32%) 고객으로 안정적인 매출 기반을 형성함.
- VIP 고객 (14%)은 규모는 작지만 매출 기여도가 가장 높은 핵심 고객군으로 고도화된 유지 전략이 필요함.
- At Risk 고객(20%)은 이탈 가능성이 높아 재활성화를 위한 타겟 마케팅이 시급함.
- RFM 지표를 모델링에 통합했다면 고객의 가치 기반 세분화가 가능해져 예측 성능 향상에 기여했을 수 있음.

01

가설 기반 설계와 통계검정을 통해 변수의 논리성과 신뢰도를 확보함

02

머신러닝 이전 단계에서 변수 선택의 완성도를 높임

03

EDA 결과와 모델 입력 변수 간 연계, 피처 중요도 기반 전략 제안 등의 보완이 필요함

04

이를 통해 다음 분석에서는 모델 해석력과 전략 활용 가능성을 더욱 높일 수 있을 것으로 기대함

감사합니다

가설검정 과정

• 가설검정 과정은 다음의 4단계를 거침

가설 **1.**

최근 3개월간 신용/체크카드 이용금액이 높을수록 고객 가치가 높을 것이다

- 이론선(발간색 선)은 정규분포를 따를 경우 데이터가 위치해야 할 기준 직선임.
- Q-Q Plot 관찰 결과 모든 그룹에서 S자 형태로 만곡되어 있고, 양 끝 부분에서 실제 관측값이 이론선으로부터 현저히 이탈함.
- 해당 변수는 전 그룹에서 정규성 가정을 충족하지 않으며, 비모수 검정 등의 대안적 접근이 요구됨.

가설 **1**.

최근 3개월간 신용/체크카드 이용금액이 높을수록 고객 가치가 높을 것이다

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 56799.8862

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

	Α	В	С	D	E
Α	1.000000e+00	1.000000e+00	2.470422e-27	1.898502e-82	0.000000e+00
В	1.000000e+00	1.000000e+00	1.042800e-04	2.883591e-13	1.823854e-104
C	2.470422e-27	1.042800e-04	1.000000e+00	0.000000e+00	0.000000e+00
D	1.898502e-82	2.883591e-13	0.000000e+00	1.000000e+00	0.000000e+00
E	0.000000e+00	1.823854e-104	0.000000e+00	0.000000e+00	1.000000e+00

- Segment A와 B 간 이용금액_R3M_신용체크(최근 3개월 동안의 신용/체크카드 이용금액)에 대한 차이가 유의하지 않음(p=1)
- 나머지 그룹들 간 이용가능카드수_신용에 대한 차이는 유의함(p<0.05)

가설 **2.**

카드 사용 빈도가 증가할수록 고객 가치는 높아질 것이다.

- 종속변수: 총 거래 빈도 (= 이용건수_일시불_BOM + 이용건수_할부_BOM)
- 총 거래 빈도는 '이산형 수치형'이나 값의 범위가 충분히 커서 해당 컬럼에 대한 정규성을 확인함.
- 확인 결과 가설 1과 동일하게 모든 그룹에서 '총거래빈도'는 정규성을 만족하지 못함.

가설 **2.**

카드 사용 빈도가 증가할수록 고객 가치는 높아질 것이다.

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 611194.6708

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

- Segment A와 B, B와 C간 카드 사용 빈도에 대한 차이가 유의하지 않음(p>0.05)
- 나머지 그룹 간 카드 사용 빈도에 대한 차이는 유의함(p<0.05)

가설 3.

실제 사용 중인 신용카드 수가 많을 수록 고객 가치가 높을 것이다

- Q-Q Plot 상 데이터들이 불연속적인 수평선 형태로 나타남.
- 해당 형태는 종속변수인 이용카드수_신용 변수가 가지는 이산형 특성에 기인한 것으로 보임.
- 모든 그룹에서 종속변수는 정규성을 충족하지 않음.

가설 3.

실제 사용 중인 신용카드 수가 많을 수록 고객 가치가 높을 것이다

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 281950.7895 p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

	Α	В	С	D	E
Α	1.000000e+00	3.213828e-03	1.768081e-14	5.511538e-48	0.000000e+00
В	3.213828e-03	1.000000e+00	1.000000e+00	6.953753e-01	9.792257e-29
C	1.768081e-14	1.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00
D	5.511538e-48	6.953753e-01	0.000000e+00	1.000000e+00	0.000000e+00
E	0.000000e+00	9.792257e-29	0.000000e+00	0.000000e+00	1.000000e+00

- Segment B와 C, B와 D간 '이용카드수_신용'에 대한 차이가 통계적으로 유의하지 않음 (p>0.05)
- 나머지 그룹들 간 '이용카드수_신용'에 대한 차이는 유의함 (p<0.05)

가설 **4.**

월 청구금액이 높을수록 Segment등급도 높을 것이다

- 앞선 가설들과 동일한 패턴이 관찰됨.
- 모든 그룹에서 종속변수는 정규성을 충족하지 않음.

가설 **4.**

월 청구금액이 높을수록 Segment등급도 높을 것이다

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 93342.0572

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

- Segment A와 B, B와 C간 '정상청구원금_B0M(당월 정상청구원금)'에 대한 차이가 통계적으로 유의하지 않음(p>0.05)
- 나머지 그룹간 '정상청구원금_B0M'에 대한 차이는 유의함(p>0.05)

가설 5.

정상입금원금이 높을수록 고객이 상위 등급(Segment A 또는 B)에 속할 가능성이 높을 것이다

- 앞선 가설들과 동일한 패턴이 관찰됨.
- 모든 그룹에 대하여 종속변수인 '정상입금원금_B0M(당월 정상입금원금)'은 정규성을 만족하지 못함.

가설 5.

정상입금원금이 높을수록 고객이 상위 등급(Segment A 또는 B)에 속할 가능성이 높을 것이다

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 399455.4783

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

- Segment B와 C, B와 D간 '정상입금원금_B0M(당월 정상입금원금)'에 대한 차이가 통계적으로 유의하지 않음(p>0.05)
- 나머지 그룹간 '정상입금원금_B0M'에 대한 차이는 유의함(p>0.05)

가설 6.

카드사로부터 대출 금액이 클수록 고객의 중요도가 높을 것이다.

- 해당 가설의 종속변수는 정상청구원금_B0M(당월정상청구원금)과 할부이용금액이나 정상청구원금에 대해서는 가설 4에서 이미 검정을 완료했으므로, 가설 6에서는 할부이용금액에 대한 검정을 진행함.
- Q-Q plot 모두 정규분포 직선에서 명확히 벗어나는 형태를 보여 모든 그룹에 대하여 '할부이용금액'은 정규성을 만족하지 못함.

가설 6.

카드사로부터 대출 금액이 클수록 고객의 중요도가 높을 것이다.

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 16920.4486

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

	Α	В	С	D	E
Α	1.000000e+00	3.083985e-09	1.864258e-17	4.085953e-29	2.836542e-64
В	3.083985e-09	1.000000e+00	4.257771e-23	8.277081e-28	1.943415e-39
C	1.864258e-17	4.257771e-23	1.000000e+00	1.811649e-144	0.000000e+00
D	4.085953e-29	8.277081e-28	1.811649e-144	1.000000e+00	0.000000e+00
E	2.836542e-64	1.943415e-39	0.000000e+00	0.000000e+00	1.000000e+00

• 모든 그룹들 간 '할부이용금액'에 대한 차이는 통계적으로 유의함(p<0.05)

가설 **7.**

연체 잔액이 높은 고객은 주로 A, B등급의 핵심 고객군에 집중될 것이다 (총잔액)

- Segment A와 B은 정규분포 직선에서 약하게 벗어난 모습을 보인 반면, Segment C, D, E에서는 양쪽에서 크게 벗어나는 형태를 보임.
- 즉, 모든 그룹에 대하여 '총잔액'은 정규성을 만족하지 못함.

가설 **7.**

연체 잔액이 높은 고객은 주로 A, B등급의 핵심 고객군에 집중될 것이다 (총잔액)

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 76048.1284

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

- Segment A와 B간 총잔액에 대한 차이가 통계적으로 유의하지 않음(p>0.05)
- 나머지 그룹 간 총잔액에 대한 차이는 통계적으로 유의함(p<0.05)

가설 **7.**

연체 잔액이 높은 고객은 주로 A, B등급의 핵심 고객군에 집중될 것이다 (연체잔액)

- Segment A와 B의 경우 거의 모든 점이 0에 집중되어 있고 수평선 위에 존재함. 즉 정규성 판단 자체가 무의미함.
- Segment C, D, E의 경우 Q-Q plot 내 직선에서 크게 벗어나는 것을 확인할 수 있음. 즉 모든 그룹에서 정규성을 위배함.

가설 **7.**

연체 잔액이 높은 고객은 주로 A, B등급의 핵심 고객군에 집중될 것이다 (연체잔액)

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 57.4109

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

● H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

	A	В	C	D	E
Α	1.0	1.0	1.00000	1.000000e+00	1.000000e+00
В	1.0	1.0	1.00000	1.000000e+00	1.000000e+00
C	1.0	1.0	1.00000	3.472041e-02	1.000000e+00
D	1.0	1.0	0.03472	1.000000e+00	6.362873e-13
E	1.0	1.0	1.00000	6.362873e-13	1.000000e+00

- Segment C와 D, D와 E를 제외한 나머지 그룹 간 연체잔액 차이는 통계적으로 유의하지 않음.
- Segment C와 D, D와 E간 연체잔액 차이만 통계적으로 유의함.

가설 8.

세그먼트 E는 재무/소비 관련 지표에서 평균적인 특성을 보이는 세그먼트일 것이다 (카드론 이용금액 누적)

- 플롯 모두 오른쪽으로 갈수록 정규분포 직선(red line)에서 위로 벗어난 형태를 보이고 있음.
- 즉 모든 그룹에 대하여 '카드론이용금액_누적'은 정규성을 만족하지 못함.

가설 8.

세그먼트 E는 재무/소비 관련 지표에서 평균적인 특성을 보이는 세그먼트일 것이다 (카드론 이용금액 누적)

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 277622.6499

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

	Α	В	С	D	E
A	1.000000e+00	1.129372e-10	1.836057e-31	8.006862e-100	1.861399e-283
В	1.129372e-10	1.000000e+00	2.117444e-31	4.221611e-53	2.779288e-98
C	1.836057e-31	2.117444e-31	1.000000e+00	0.000000e+00	0.000000e+00
D	8.006862e-100	4.221611e-53	0.000000e+00	1.000000e+00	0.000000e+00
E	1.861399e-283	2.779288e-98	0.000000e+00	0.000000e+00	1.000000e+00

• 모든 그룹들 간 '카드론이용금액_누적'에 대한 차이는 통계적으로 유의함(p<0.05)

가설 8.

세그먼트 E는 재무/소비 관련 지표에서 평균적인 특성을 보이는 세그먼트일 것이다 (이용금액_일시불)

- 플롯 모두 정규분포 직선인 redline에서 벗어난 형태를 보이고 있음.
- 즉 모든 그룹에 대하여 '이용금액_일시불'은 정규성을 만족하지 못한다고 해석할 수 있음.

가설 8.

세그먼트 E는 재무/소비 관련 지표에서 평균적인 특성을 보이는 세그먼트일 것이다 (이용금액_일시불)

2. Kruskal-Wallis H-test (비모수 검정)

Kruskal-Wallis H-statistic: 78628.2552

p-value: 0.0000

→ 유의미한 차이가 있음. 귀무가설 기각됨

• H-test 결과 p<0.05로 귀무가설이 기각됨.

3. 사후검정 (Dunn's test)

- Segment A와 B, B와 C를 제외한 나머지 그룹들 간 이용금액_일시불 차이는 통계적으로 유의하지 않음(p>0.05)
- 나머지 그룹들 간 이용금액_일시불에 대한 차이는 통계적으로 유의함(p<0.05)