

TEST REPORT

FCC ID: 2AEXY507DRX

Product: X4 STAR FPV

Model No.: H507D

Additional Model: N/A

Trade Mark: Hubsan

Report No.: TCT161201E014

Issued Date: Dec. 12, 2016

Issued for:

SHENZHEN HUBSAN INTELLIGENT COMPANY LIMITED

13th Floor, Bldg 1C, Shenzhen Software Industry Base, Xuefu Road,
Nanshan District, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab.

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

								3
2. Tes	st Result	Summar	у	(8)				4
4. Ge	nera Info	rmation.	<u>(c)</u>		<u>(c)</u>		<u>(c)</u>	6
4.1.	Test Enviro	nment and M	Mode					6
5. Fac	cilities an	d Accred	ditations	<u>((())</u>		(0)		7
				ent Data				
				Data				
		- / ~ \		(0)				
6.3.	Radiated Er	mission Mea	surement					13
6.4.	20dB Occup	pied Bandwi	dth					21
Appen	dix A: Ph	otograpl	ns of Tes	st Setup				
Appen	dix B: Ph	otograpl	ns of EU	Т				

Test Certification

Product:	X4 STAR FPV
Model No.:	H507D
Additional Model:	N/A
Applicant:	SHENZHEN HUBSAN INTELLIGENT COMPANY LIMITED
Address:	13th Floor, Bldg 1C, Shenzhen Software Industry Base, Xuefu Road, Nanshan District, Shenzhen, China
Manufacturer:	DONGGUAN TENGSHENG INDUSTRIAL CO., LTD
Address:	A22# Luyi Street, Tianxin Village, Tangxia Town, Dongguan, China
Date of Test:	Dec. 01 – Dec. 09, 2016
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Garen

Date: Dec. 09, 2016

Garen

Date: Dec. 12, 2016

Joe Zhou

Approved By:

Tomsin

Date: Dec. 12, 2016

Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§2.1053 §15.249 (a) (d)/ §15.209	PASS
Band Edge	§2.1053 §15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§2.1049 §15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

EUT Description

Product Name:	X4 STAR FPV
Model:	H507D
Additional Model:	N/A
Trade Mark:	Hubsan
Operation Frequency:	2410-2465MHz
Number of Channel:	12
Modulation Technology:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain:	2dBi
Power Supply:	Rechargeable Li-ion Battery DC7.6V

Operation Frequency Each of Channel

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2410 MHz	5	2430MHz	9	2450MHz
2	2415 MHz	6	2435MHz	10	2455MHz
3	2420 MHz	7	2440MHz	11	2460MHz
4	2425 MHz	8	2445MHz	12	2465MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2410MHz
The middle channel	2435MHz
The Highest channel	2465MHz

Genera Information

1.1. Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

1.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	XC-0500-100U	1	(6) 1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 6 of 36

Report No.: TCT161201E014

Facilities and Accreditations

1.3. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 572331
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing
- CNAS Registration No.: CNAS L6165
 Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005
 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

1.4. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

Tel: 86-755-36638142

1.5. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item		MU
1	Conducted Emission		±2.56dB
2	RF power, conducted		±0.12dB
3	Spurious emissions, conducted		±0.11dB
4	All emissions, radiated(<1GHz)	()	±3.92dB
5	All emissions, radiated(>1GHz)		±4.28dB
6	Temperature		±0.1°C
7	Humidity		±1.0%

Test Results and Measurement Data

1.6. Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 2.0dBi.

1.7. Conducted Emission

1.7.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	AC.		
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50		
Test Setup:	LISN 40cm	J.T EMI Receiver	Iter — AC power		
Test Mode:	Transmitting mode with	n modulation	7		
Test Procedure:	1. The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the magnetic power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2013 of the conducted interface.	e impedance stabovides a 50ohm leasuring equipm les are also connects with 50ohm term diagram of the line are checked in ce. In order to fine must be changed in the context of the less must be changed in the context of the less must be changed in the line are checked in	pilization network of 2004 coupling ent. ected to the main a 500hm/50uH nination. (Please test setup and ed for maximum of the maximum ipment and all of ged according to		
Test Result:	PASS				

1.7.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCS30	100139	Aug. 11, 2017		
LISN	Schwarzbeck	NSLK 8126	8126453	Aug. 16, 2017		
Coax cable	TCT	CE-05	N/A	Aug. 11, 2017		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

1.7.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site Chamber #2	Phase:	L1	Temperature: 25 (C)
Limit: FCC Part 15B Class B Conduction(QP)	Power:	AC 120V/60Hz	Humidity: 54 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	35.06	11.52	46.58	65.99	-19.41	QP	
2		0.1500	22.13	11.52	33.65	55.99	-22.34	AVG	
3		0.1734	34.32	11.50	45.82	64.79	-18.97	QP	
4		0.1734	24.07	11.50	35.57	54.79	-19.22	AVG	
5		0.2242	33.58	11.47	45.05	62.66	-17.61	QP	
6	*	0.2242	24.92	11.47	36.39	52.66	-16.27	AVG	
7		0.2477	32.40	11.46	43.86	61.83	-17.97	QP	
8		0.2477	21.33	11.46	32.79	51.83	-19.04	AVG	
9		0.2945	29.87	11.43	41.30	60.39	-19.09	QP	
10		0.2945	19.81	11.43	31.24	50.39	-19.15	AVG	
11		0.4195	26.86	11.35	38.21	57.46	-19.25	QP	
12		0.4195	15.41	11.35	26.76	47.46	-20.70	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

Page 11 of 36

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15B Class B Conduction(QP) Power:

Power: AC 120V/60Hz Humidity: 54 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- mont	Limit	Over		
	MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1	0.2203	35.03	11.47	16.50	62.80	-16.30	QΡ	
2	0.2203	23.47	11.47	34.94	52.80	-17.86	AVG	
3	0.2711	35.82	11.44	47.26	61.08	-13.82	QΡ	
4 *	0.2711	26.46	11.44	37.90	51.08	-13.18	AVG	
5	0.3180	34.29	11.42	45.71	59.76	-14.05	QP	
6	0.3180	23.39	11.42	34.81	49.76	-14.95	AVG	
1	0.3414	32.61	11.41	44.02	59.17	-15.15	QΡ	
8	0.3414	22.01	11.41	33.42	49.17	15.75	۸۷G	
9	0.3648	29.06	11.39	40.45	58.62	-18.17	QΡ	
10	0.3648	16.08	11.39	27.47	48.62	-21.15	AVG	
11	0 4664	32 05	11 33	43 38	56 58	-13 20	ØБ	
12	0.4664	21.87	11.33	33.20	46.58	-13.38	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

Page 12 of 36

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

1.8. Radiated Emission Measurement

1.8.1. Test Specification

C. Y									
Test Requirement:	FCC Part15	C Section	15.209/	Part 2 J	Section 2.1053				
Test Method:	ANSI C63.1	10:2013							
Frequency Range:	FCC Part15 C Section 15.209/ Part 2 J Section 2.1053 ANSI C63.10:2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Value 150kHz- Quasi-peak 120kHz 300kHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Frequency Limit (dBuV/m @3m) Remark 2400MHz-2483.5MHz 114.00 Peak Value Frequency Limit (dBuV/m @3m) Remark 0.009-0.490 2400/F(KHz) Quasi-peak Value 1.705-30 30 Quasi-peak Value 1.705-30 30 Quasi-peak Value 1.705-30 30 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation. 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to								
Measurement Distance:	ANSI C63.10:2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz- 30MHz Quasi-peak 120kHz 30kHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Above 1GHz Peak 1MHz 10Hz Average Value Frequency Limit (dBuV/m @3m) Remark 2400MHz-2483.5MHz 94.00 Average Value Frequency Limit (dBuV/m @3m) Remark 0.009-0.490 2400/F(KHz) Quasi-peak Value 0.490-1.705 24000/F(KHz) Quasi-peak Value 1.705-30 30 Quasi-peak Value 1.705-30 30 Quasi-peak Value 88MHz-216MHz 40.0 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 74.0 Peak Value Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation. 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the								
Antenna Polarization:	Horizontal &	& Vertical							
	Frequency	Detector	RBW	VBW	Remark				
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value				
Receiver Setup:		Quasi-peak	9kHz	30kHz	Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	_							
	710070 10112	Peak	1MHz	10Hz	Average Value				
Limit(Field strength of the	Freque	ency	Limit (dBu\	//m_@3m)					
fundamental signal):	2400MHz-2	183 5MHz	94.	00	Average Value				
Turidamentai Signai).	2 4 001/11 12-2-	400.5WII 12	114	.00	Peak Value				
	Freque	ency	Limit (dBu\	//m @3m)	Remark				
	0.009-0	0.490	2400/F	(KHz)	Quasi-peak Value				
	0.490-1	1.705	24000/	F(KHz)	Quasi-peak Value				
	1.705	-30	3	0	Quasi-peak Value				
Limit(Spurious Emissions):									
	960MHz	-1GHz							
	Above '	1GHz							
	Emissions	radiated a			•				
Limit (band edge) :	bands, excelleast 50 dB general rad	ept for har below the diated em	monics, s level of t ission lir	shall be a he funda nits in S	attenuated by at mental or to the				
Test Procedure:	meters below 1GHz. determing 2. The Einterfere on the to 3. The anteres a value of the second	above the 1GHz, 1.5 The table ne the posi UT was ence-received por a variation above the get the field	ground am above was retion of the set 3 reing anter able-height is varied ground to distrength.	at a 3 me e the gr otated 3 e highest neters a nna, whice that anten d from or determinent.	eter chamber in ound in above 60 degrees to radiation. away from the ch was mounted				

the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. For radiated emissions below 30MHz Distance = 3m Computer Pre -Amplifier EUT Turn table Ground Plane 30MHz to 1GHz Antenna Tower Test setup: Search Antenna EUT RF Test Turn Table *''''''''* Ground Plane Above 1GHz (The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

1.8.2. Test Instruments

ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Aug. 11, 2017
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 12, 2017
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Aug. 11, 2017
Pre-amplifier	HP	8447D	2727A05017	Aug. 11, 2017
Loop antenna	ZHINAN	ZN30900A	12024	Aug. 13, 2017
Broadband Antenna	Schwarzbeck	VULB9163	340	Aug. 13, 2017
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Aug. 13, 2017
Horn Antenna	Schwarzbeck	BBHA 9170	373	Aug. 13, 2017
Coax cable	TCT	RE-low-01	N/A	Aug. 11, 2017
Coax cable	TCT	RE-high-02	N/A	Aug. 11, 2017
Coax cable	тст	RE-low-03	N/A	Aug. 11, 2017
Coax cable	TCT	RE-high-04	N/A	Aug. 11, 2017
Antenna Mast	CCS	CC-A-4M	N/A	N/A
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

1.8.3. Test Data

Field Strength of Fundamental

Frequency (MHz)	Emission PK/AV (dBuV/m)	Horizontal /Vertical	Limits PK/AV (dBuV/m)	Margin (dB)
2410	84.05(PK)	Н	114(PK)	-29.95
2410	83.45(AV)	Н	94(AV)	-10.55
2435	83.59(PK)	Н	114(PK)	-30.41
2435	82.84(AV)	Н	94(AV)	-11.16
2465	82.08(PK)	(C)H	114(PK)	-31.92
2465	81.55(AV)	Н	94(AV)	-12.45
2410	89.35(PK)	V	114(PK)	-24.65
2410	88.64(AV)	V	94(AV)	-5.36
2435	88.95(PK)	V	114(PK)	-25.05
2435	88.23(AV)	V	94(AV)	-5.77
2465	87.83(PK)	V	114(PK)	-26.17
2465	87.08(AV)	V	94(AV)	-6.92

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
💝		
	1	
(c)-	(6) (6)	-(, ¿)

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Page 16 of 36

1000.000

25

54 %

400

500 600 700

30.000

Frequency Range (30MHz-1GHz) Horizontal: 80.0 dBuV Limit: Margin: 0.0

Temperature: Site Polarization: Horizontal Humidity: Limit: FCC Part 15B Class B RE_3 m Power: DC 7.6V

70 80

50

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		67.3110	36.27	-13.95	22.32	40.00	-17.68	QP		0	
2	,	180.0302	34.23	-13.85	20.38	43.50	-23.12	QΡ		0	
3	2	252.2521	43.10	-10.00	33.10	46.00	-12.90	QΡ		0	
4	* (322.5896	50.30	-7.64	42.66	46.00	-3.34	QΡ		0	
5	(505.7891	31.78	-2.69	29.09	46.00	-16.91	QP		0	
6	7	765.6480	26.83	4.41	31.24	46.00	-14.76	QP		0	

(MHz)

Vertical:

Limit: FCC Part 15B Class B RE_3 m Power: DC 7.6V Humidity: 54 %

No.	Mk.	Freq.	Reading Lovel	Correct Factor	Measure- mont	Limit	Over		Antenna Height	Table Degree	
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1	*	47.3688	41.54	-10.93	30.61	40.00	-9.39	QP		0	
2		67.3110	36.17	-13.95	22.22	40.00	-17.78	QP		0	
3		121.4621	43.25	-14.10	29.15	43.50	-14.35	QP		0	
4		322.5896	37.02	-7.64	29.38	46.00	-16.62	QP		0	
5		484.9067	29.48	-3.56	25.92	46.00	-20.08	QP		0	
6		749.6761	26.18	4.78	30.96	46.00	-15.04	QP		0	

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

				Above	1GHz				
				Low channe	el: 2410MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390.00	Н	52.48		-4.2	48.28		74.00	54.00	-5.72
2390.00	Н		49.27	-4.2		45.07	74.00	54.00	-8.93
4820.00	Н	51.35		-3.94	47.41		74.00	54.00	-6.59
7230.00	Н	49.03		0.52	49.55		74.00	54.00	-4.45
	4-				/	-		<i></i>	
	(O)		120)				$(C_{\mathcal{O}})$	
2390.00	V	50.25		-4.2	46.05		74.00	54.00	-7.95
2390.00	V		48.99	-4.2		44.79	74.00	54.00	-9.21
4820.00	V	48.39		3.94	52.33		74.00	54.00	-1.67
7230.00	V	46.33		0.52	46.85		74.00	54.00	-7.15
9)		K-27		(7)		K2.		

			N	liddle chann	el: 2435M	Hz			
Eroguonov	Ant Bol	Peak	AV	Correction	Emissio	on Level	Peak limit	۸\/ limit	Margin
Frequency (MHz)	H/V	reading	reading	g Factor Pea		AV		(dBµV/m)	(dB)
(1011 12)	1 I/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ασμν/ιιι)	(ασμ ν/ιτι)	(ub)
4870.00	Н	52.16		-3.98	48.18		74.00	54.00	-5.82
7305.00	Н	49.27		0.57	49.84		74.00	54.00	-4.16
Z)		/\(\)			X\				
<u> </u>		(LC)		(20	(``ر		(,C+`)		{ _X C
					/				
			T			1	I		
4870.00	V	51.26		-3.98	47.28		74.00	54.00	-6.72
7305.00	V	49.05		0.57	49.62		74.00	54.00	-4.38
	رب.)		-120)		(O 1/2		<u>k</u> 0)	

				High channe	el: 2465MF	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2486.58	H	51.85		-2.38	49.47		74.00	54.00	-4.53
2486.58	H		43.01	-2.38		40.63	74.00	54.00	-13.37
4930.00	Н	53.01		-3.98	49.03		74.00	54.00	-4.97
7395.00	Н	48.69		0.57	49.26		74.00	54.00	-4.74
					X \				
2483.51	V	51.04		-2.38	48.66		74.00	54.00	-5.34
2483.51	V		43.82	-2.38		41.44	74.00	54.00	-12.56
4930.00	V	51.62		-3.98	47.64		74.00	54.00	-6.36
7395.00	V	50.37		0.57	50.94		74.00	54.00	-3.06
	4.5					/- }-			

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Band Edge Requirement

Low chann	el: 2410 M	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2400	Н	52.07	/	-4.2	47.87		74.00		-26.13
2400	Н		42.48	-4.2		38.28		54.00	-15.72
0.100							- 4.00		
2400	V	50.16	(.	-4.2	45.96	()	74.00	(.C.	-28.04
2400	V		41.73	-4.2		37.53		54.00	-16.47

High channel: 2465MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	H	51.97		-4.2	47.77		74.00		-26.23
2483.5	(AB)		41.39	-4.2		37.19		54.00	-16.81
									
2483.5	V	52.43		-4.2		48.23	74.00		-25.77
2483.5	V		42.65	-4.2		38.45		54.00	-15.55
'\\''			/		7-		*		🖔

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- Margin (dB) = Emission Level (Peak/Average)(dBμV/m)-(Peak/Average) limit (dBμV/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

1.9.20dB Occupied Bandwidth

1.9.1. Test Specification

FCC Part15 C Section 15.215(c)/ Part 2 J Section 2.1049			
ANSI C63.10: 2013			
N/A			
 1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report. 			
Spectrum Analyzer EUT			
Transmitting mode with modulation			
PASS			

1.9.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 12, 2017			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

1.9.3. Test data

Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion	
Lowest	90		PASS	
Middle	90		PASS	
Highest	90		PASS	

Test plots as follows:

Appendix A: Photographs of Test Setup Product: X4 STAR FPV

Product: X4 STAR FPV Model: H507D Radiated Emission

Appendix B: Photographs of EUT
Product: X4 STAR FPV
Model: H507D
External Photos

