UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Práctica 1 (Lógica)

Problema 1. Considere las fórmulas proposicionales

(a)
$$(p \longleftrightarrow q) \longleftrightarrow [(p \land q) \lor (\sim p \land \sim q)]$$

(b)
$$(p \to q) \longleftrightarrow (q \to p)$$

(c)
$$(p \to q) \longleftrightarrow [\ (p \land \sim q) \to \text{contradicción}\]$$

(d)
$$[(p \rightarrow q) \land \sim q] \rightarrow p$$

(e) (
$$p \to \text{contradicción}$$
) $\longleftrightarrow \sim p$

Se pide:

- (i) usar una tabla de verdad para determinar si corresponden a equivalencias lógicas, o a implicaciones lógicas.
- (ii) usar la equivalencia lógica de (a) para obtener una equivalencia para $\sim (p \longleftrightarrow q)$ que sólo tenga conectivos \sim , \wedge o \vee .
- (iii) dar un contra-ejemplo para hacer ver que (d) no es una implicación lógica.

Problema 2. Con P, Q y R indicaremos proposiciones compuestas que dependen de las mismas proposiciones variables p, q, \cdots .

Demuestre que:

(a)
$$(P \iff Q) \Longrightarrow (Q \iff P)$$

(b)
$$[(P \iff Q) \land (Q \iff R)] \implies (P \iff R)$$

(c)
$$[(P \Longrightarrow Q) \land (Q \Longrightarrow P)] \Longrightarrow (P \Longleftrightarrow Q)$$

(d)
$$[(P \Longrightarrow Q) \land (Q \Longrightarrow R)] \Longrightarrow (P \Longrightarrow R)$$

Problema 3. Probar las siguientes implicaciones lógicas que son algunas de las llamadas reglas de inferencia.

(a)
$$p \Longrightarrow (p \lor q)$$
 (Adición)

(b)
$$(p \land q) \Longrightarrow p$$
 (Simplificación)

(c)
$$[p \land (p \rightarrow q)] \Longrightarrow q$$
 (Modus ponens)

(d) [
$$(p \to q) \land \sim q$$
] $\Longrightarrow \sim p$ (Modus tollens)

(e)
$$[(p \lor q) \land \sim p] \Longrightarrow q$$
 (Silogismo disyuntivo)

(f)
$$[(p \to q) \land (q \to r)] \Longrightarrow (p \to r)$$
 (Silogismo hipotético)

Problema 4. El conectivo \veebar o ∇ (disyunción excluyente) verifica:

$$\begin{array}{c|cccc} p & q & p & \stackrel{\vee}{ } q \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \\ \end{array}$$

Pruebe que $p \veebar q \iff \sim (p \longleftrightarrow q)$ y luego exprese $p \veebar q$ sólo usando los conectivos $\sim, \ \land \ \text{o} \lor$.

Problema 5.- Escriba los siguientes enunciados en forma simbólica y determine si corresponden o no a una tautología.

- (a) Si los perros no ladran o los gallos no cantan, entonces no es verdad que los perros ladran y los gallos cantan.
- (b) Para aprobar álgebra es suficiente estudiar y para conseguir un trabajo es necesario sacar buenas notas. En consecuencia, si estudio tendré trabajo.
- (c) Para que ande con paraguas es necesario y suficiente que llueva. Luego, si no ando con paraguas no lloverá.

Problema 6. Considere la implicación lógica

$$[\ p \land (p \to q)\] \Longrightarrow q$$

y las proposiciones p: La Luna es un queso blanco y q: La Luna es un queso de cabra.

Comente sobre el significado de la implicación lógica y respecto del valor de verdad del consecuente lógicamente implicado.

Problema 7. Considere los teoremas:

- (a) Si p(x) es un polinomio de grado n, entonces p(x)=0 tiene n raíces en $\mathbb C$
- (b) Si la función f es derivable, entonces la función f es continua.

Enuncie las proposiciones correspondientes a los teoremas derivados de cada uno de los teoremas anteriores. Además, escriba la negación de los teoremas dados en (a) y (b).

Problema 8. Escriba la negación de las siguientes proposiciones.

- (a) Estoy en práctica de álgebra si y sólo si hoy es viernes.
- (b) Una condición necesaria para que esté en práctica de álgebra es que hoy sea día miércoles.
- (c) Todos los políticos son mentirosos.
- (d) Existe un sol en nuestra galaxia.
- (e) Existe <u>un único</u> sol en nuestra galaxia.

Problema 9. Considere el conjunto $A = \{1, 2, \dots, 100\}$ y las proposiciones

- (a) $\forall n \in A : n^2 \le 100$
- (b) $\exists n \in A : n^2 = 50$
- (c) $\exists ! \ n \in A : \qquad 2^n = n^2$

Se pide:

- i) Determine el valor de verdad de cada una.
- ii) Escriba la negación de cada una.

Problema 10. Encuentre el valor de verdad y luego niegue cada una de las proposiciones que siguen

3

- (a) $\forall m \in \mathbb{N}$, $\exists n \in \mathbb{N}$ tal que m = 3n
- (b) $\exists m \in \mathbb{N}, \quad \exists n \in \mathbb{N} \text{ tal que } m \cdot n = 11$
- (c) $\exists ! \ n \in \mathbb{N} \ \text{tal que} \ \forall m \in \mathbb{N} : \ m \cdot n = m$
- (d) $\exists x \in I\!\!R, \ \exists y \in I\!\!R: \ x^2 + y^2 < 0.$
- (e) $\exists \epsilon > 0, \ \exists \ x \in I\!\!R, \ \forall \ y \in I\!\!R: \ |x-y| > \epsilon$
- (f) $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R} : xy \leq 0 \land |x y| = 2x$

Problema 11. De un contra-ejemplo para establecer la falsedad de las proposiciones que siguen. Considere $x, y \in \mathbb{R}$.

- (a) Si x > 0 e y > 0, entonces xy = 4 o x + y = 4.
- (b) Si $x^2 = y^2$, entonces x = y.
- (c) $\exists ! \ x \in \mathcal{R} \ \text{tal que } x^2 5x + 6 = 0.$

Problema 12. Dada la red de interruptores:

determinar qué interruptores deben estar cerrados y cuales abiertos para que circule la corriente.

Problema 13. Diseñe una red de interruptores de modo que la corriente circule en los casos indicados por la tabla

p	q	r	Red
V	V	V	F
V	V	F	\mathbf{F}
V	F	V	F
V	F	\mathbf{F}	V
F	V	V	\mathbf{F}
F	V	\mathbf{F}	V
F	F	V	V
F	F	F	F

Problema 14. En una sala de teatro se desea poder encender o apagar las luces desde cualesquiera de tres interruptores. Diseñar una red que cumpla este objetivo.

Problema 15. En la caja fuerte de un banco hay tres cerraduras. Por razones de seguridad, cada una de las llaves se encuentra en poder de una persona distinta. Anotando por p, q y r los interruptores que se cierran si y sólo si es introducida la llave correspondiente, diseñe una red de interruptores que deje pasar corriente si y sólo si al menos dos de las llaves se encuentran en la cerradura que le corresponde.