UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

NÁVRH INFORMAČNÉHO SYSTÉMU Media Block Player - audiovizuálne jazykové vzdelávanie

OKTOBÉR 2019 Andrea Hajná, Michal Horváth, Šimon Drastich, Robert Sternmuller

Obsah

1	Úvod	3
	1.1 Účel dokumentu	3
2	Špecifikácia vonkajších interfejsov	3
	2.1 Používané technológie	3
	2.2 Súbory	3
	2.3 Vonkajšie interfejsy	
3	Dátový model perzistentných údajov, formátov súborov, komu-	
	nikačných protokolov	4
	3.1 Dátový model	4
	3.2 Formáty súborov	
	3.3 Komunikačné protokoly	
4	Návrh používateľského rozhrania	5
5	Návrh implementácie	5
	5.1 GUI interakcia s používateľom	5
	5.2 Triedy aplikácie	7
	5.3 Komponenty aplikácie	8

1 Úvod

1.1 Účel dokumentu

Tento dokument slúži ako návrh informačného systému Sync-file editor for Media Block Player, v ktorom sú podrobne popísané všetky aplikácie, súbory a zariadenia, s ktorými aplikácia komunikuje. Opisuje aj dátový model perzistentných údajov, formátov súborov, komunikačných protokolov a takisto návrh používateľského rozhrania. Dokument podáva návrh implementácie informačného systému.

2 Špecifikácia vonkajších interfejsov

2.1 Používané technológie

2.1.1 HTML, CSS

Používateľské rozhranie celej aplikácie je tvorené pomocou HTML a CSS.

2.1.2 JavaScript

Pomocou JavaScriptu sa rieši odchytávanie udalostí, prehrávanie audia, vytváranie synchronizačných súborov. Na prehrávanie audio súboru sa využíva knižnica howler.js. Pre posielanie requestov či získavanie údajov z online knižnice sa používa jQuery a AJAX.

2.1.3 PHP / MySQL

V MySQL databáze je uložený obsah online knižnice a zoznam používateľov. K databáze sa pripája pomocou PHP, t.j. vkladanie nových súborov do online knižnice, prihlasovací a registrovací systém používateľov je realizovaný pomocou PHP.

2.2 Súbory

Aplikácia už umožňuje načítavanie všetkých potrebných súborov(t.j. audio súbor, synchronizačný súbor, textový súbor) z lokálneho disku alebo stiahnutie z online knižnice, funkcionalita bude zachovaná aj v Sync-file editore.

2.3 Vonkajšie interfejsy

Aplikácia bude uložená na serveri a komunikuje s MySQL databázovým serverom, na ktorom je uložený obsah online knižnice a zoznam používateľov.

3 Dátový model perzistentných údajov, formátov súborov, komunikačných protokolov

3.1 Dátový model

3.2 Formáty súborov

3.2.1 Audio súbor

Súbor môže mať koncovku .wav alebo .mp3. Je rozdelený podľa synchronizačného súboru, a teda je ho možné prehrávať postupne po blokoch alebo náhodne.

3.2.2 Textový súbor

Súbor má koncovku .txt a kódovanie v UTF-8. Obsahuje text audia, v ktorom sú bloky oddelené znakom ".

3.2.3 Synchronizačný súbor

Dáta v tomto súbore sú uložené vo formáte json a určujú ako sú rozdelené bloky v audiu. V položke "blocks"sú uložené časové stopy,t.j. časovú stopu konca bloku. V položke "skips"sú zasa uložené bloky, ktoré reč neobsahujú a treba ich preskočiť. Kódovanie tohto súboru je v UTF-8. Súbor má koncovku .mbpsf.

3.3 Komunikačné protokoly

Ak sa súbory vyberajú z online knižnice, tak applikácia komunikuje so serverom pomocou AJAX requestov. Ak sa súbory vyberajú z lokálneho disku, na ich výber sa používa "filePicker"HTML5 element.

Na čítanie dát zo súboru(textového, synchronizačného) sa využíva js trieda FileReader, ktorá prečíta údaje a pošle ich na ďalšie spracovanie. Na spracovanie audio súboru sa používa konvertovanie na base64.

4 Návrh používateľského rozhrania

5 Návrh implementácie

5.1 GUI interakcia s používateľom

5.1.1

Tento stavový diagram reprezentuje do akých stavov sa môže dostať GUI.

5.1.2

Diagram modeluje stavy SyncFile editora, ktorý je iba časťou aplikácie.

5.1.3

Začiatok je označený s čiernym plným kruhom, a koncový stav je označený s čiernym plným kruhom s okrajom.

5.1.4

Prechody medzi stavmi vyvoláva používateľ.

5.1.5

Po vstupe do SyncFile editora bude používateľ vyzvaný k nahratiu súborov z lokálneho disku. Po nahraní súborov bude používateľovy umožnené priraďovanie časových značiek k blokom. Používateľ bude mať možnosť vstúpiť do editora bloku. Po opustení editora sa dostane späť k priraďovaniu časových značiek blokom. Následne používateľ dostane možnosť edivované súbory stiahnuť a SyncFile editor ukončiť.

5.2 Triedy aplikácie

5.2.1

Navigation Controller drží v pamäti práve ktorý screen aplikácie treba vyrenderovať.

5.2.2

Jednotlivé screeny predstavujú triedy odvodené od ViewController. Každá podtrieda má svoje funkcie aby splnil požiadavky čo na danom screen-e treba vykonať.

5.2.3

Trieda Block udržuje parametre jedného bloku - čas konca bloku a text bloku. V prípade, že text bloku nieje definovaný, tak daný blok predstavuje skipped interval.

5.3 Komponenty aplikácie

5.3.1

SyncFile editor pozostáva z jednej komponenty nazvanej editor, ktorá pracuje s lokálnymi dátami.