Partial exam 2 - Wednesday 2 May 2018 - Duration: 60 min

No document, no phone, no computing machine.

Name: SKETCH OF First name: the foliation Signature:

Exercise 1: Exercise 2: Grade /20:

Exercise 1 (Gaussian Bayes Classifier, ≈ 8 pts)

Suppose you have the following training set with one real-valued input X and a categorical output Y that has two values A and B.

X	0	2	3	4	5	6	7
Y	A	A	В	В	В	В	В

1. You must learn the Gaussian Bayes Classifier from this data. Write the parameters of the classifiers in this table :

$\mu_A = \bigwedge$	$\sigma_A^2 = \Lambda$	Pr(Y = A) = 2/3
$\mu_B = $	$\sigma_B^2 = 2$	Pr(Y = B) = 5

Justify your calculation hereafter:

$$M_{4} = \frac{0+2}{2} = 1$$

$$C_{8}^{2} = \frac{1}{2} = 1$$

$$C_{8}^{2} = 1$$

$$C_{8}^{2$$

2. Calculate $\alpha = f_{X|Y}(X=2|Y=A)$ and $\beta = f_{X|Y}(X=2|Y=B)$. Do not propose any numerical approximation; just give a simplified closed form expression.

$$A = \frac{1}{2\pi} = \frac{1}{2\pi}$$

$$A = \frac{1}$$

3. What is the joint probability $f_{X,Y}(X=2,Y=A)$? The answer must be given in terms of α and β only.

4. What is the joint probability $f_{X,Y}(X=2,Y=B)$? The answer must be given in terms of α and β only.

5. What is $f_X(X = 2)$? The answer must be given in terms of α and β only.

6. What is the conditional probability Pr(Y = A|X = 2)?

$$P_{r}(Y=A|X=2) = \frac{1}{1} + \frac{1}{2} + \frac{1}{2}$$

7. Consider the figure 1. If you trained a new Bayes classifier on this data, what class would you predicted for the query location indicated with "?"? Explain carefully your answer.

FIGURE 1 – Training data set and query location indicated with "?".

Exercise 2 (Test and p-value, \approx 12 pts)

Assume that x is a sample of a random variable X following an exponential distribution with the unknown parameter θ . The exponential probability density function with parameter θ is

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & \text{for } x > 0, \\ 0 & \text{elsewhere.} \end{cases}$$

We want to test H_0 : $\{\theta = \theta_0\}$ versus H_1 : $\{\theta = \theta_1\}$ with $0 < \theta_1 < \theta_0$.

1. Calculate the cumulative distribution function $F_{\theta}(x)$ associated to $f_{\theta}(x)$.

$$F_{\rho}(x) = \int_{0}^{x} f_{0}(x) dt = \int_{0}^{x} \int_{0}^{x} \frac{1}{e^{-t/\theta}} dt = \int_{0}^{x}$$

UNS/LF 3/6 2017/2018

2. Calculate the decision function d(x) of the Neyman-Pearson test of size α . Simplify it such that the final decision function consists in comparing x to a threshold h_{α} .

3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form.

ha dehisties Th (
$$\alpha$$
 (h_{d})= d when α of f_{00})

So $f_{0}(h_{d}) = \alpha$
 $1 - e^{-\frac{h_{d}}{h_{0}}} = d$ Mu $d > 0$
 $h_{d} = -\theta_{0} \ln [1-d] > 0$
 $= f_{00}(\alpha)$

UNS/LF 4/6 2017/2018

4. Describe carefully the critical region C_{α} of the test.

5. Calculate the power of the test, i.e., the probability γ to reject H_0 when H_1 is true.

$$\mathcal{T}_{-} \mathcal{P}_{1} \left(x \leqslant h_{2} \right) \quad \text{When } \quad x \sim f_{0} \left(u \right) \\
\mathcal{T}_{-} \quad 1 - e^{-h_{0}} = 1 - e^{\frac{\theta_{0}}{\theta_{1}} \ln \left(1 - \lambda \right)} \\
= 1 - \left(1 - \lambda \right)^{\frac{\theta_{0}}{\theta_{0}}}$$

6. Show that $C_{\alpha} \subset C_{\alpha'}$ if $\alpha < \alpha'$.

$$\mathcal{A} d(a') \text{ Hen} \qquad 1-a > 1-a'$$

$$h(1-a) > \ln(1-a')$$

$$-\theta_0 \ln(1-a) (-0.h(1-a'))$$

$$h_d < h_d'$$

$$=> C_d C C_{2}$$

7. Calculate the *p*-value $\hat{p}(x)$ of the sample *x* from the definition of the *p*-value.

$$\begin{array}{lll}
\hat{p}(n) = i \sqrt{q} & \alpha : \alpha \in C_{\lambda} \\
\text{We get Mar } \hat{p} = \hat{p}(n) \text{ is the solution } \mathcal{G} \\
\text{Resp. } \alpha = \beta - \theta_0 \ln(n - \hat{p}) = \infty \\
\text{Resp. } \alpha = \beta - \theta_0 \ln(n - \hat{p}) = \infty \\
= \beta \hat{p} = 1 - e^{-n/\theta_0} = F_{\theta_0}(n)
\end{array}$$

8. Show that $\hat{p}(x)$ is uniformly distributed over [0, 1] when x follows the exponential distri-

9. Propose a test equivalent to the Neyman-Pearson test of question 2 whose decision function is $\hat{p}(x)$. Precise clearly the threshold of the test.

He lest is so that so it is equivalent to
$$F_0(x) \stackrel{H}{\subset} F_0(h_x)$$
 Where $F_0(x) \stackrel{H}{\subset} F_0(h_x) = d$.

Hence $\int_{0}^{\infty} f(x) \stackrel{H}{\sim} d$

6/6 UNS/LF 2017/2018