Reporte de Avance 1INF42 Proyecto de Fin de Carrera 1

Saymon Nicho

PUCP

12 de mayo de 2025

Contenidos

- Generalidades
 - Introducción
 - Problemática
 - Objetivos
 - Resultados Esperados
 - Métodos, Herramientas y Técnicas
- Marco Referencial
 - Marco Teórico
 - Marco Conceptual
- Estado del Arte
- 4 Cronograma

1. Generalidades

Introducción

Figura 1: Historia de la IA

Propuesto por Francois Chollet en 2019 como un benchmark para evaluar el razonamiento abstracto en modelos de IA $^{[4]}$.

Figura 2: Benchmark ARC-AGI

Resolución neuro-simbólica del benchmark ARC-AGI usando LLMs ligeros y representación simbólica eficiente

Asesor: César Beltrán, PhD

Proponer un modelo ligero de IA con enfoque neuro-simbólico, de modo que sirva para resolver problemas que involucren razonamiento abstracto de forma eficiente, tomando como referencia el benchmark ARC-AGI para su evaluación.

Figura 3: Árbol de Problemas

Problema Seleccionado

La problemática principal es la dificultad actual que presentan los modelos de IA para realizar razonamiento abstracto y generalizar efectivamente a partir de pocos ejemplos.

En benchmarks como ARC-AGI se evidencia cómo las arquitecturas actuales, principalmente LLMs, tienen limitaciones significativas en términos de eficiencia, además de sufrir dependencia de grandes volúmenes de datos para su entrenamiento y operación.

Objetivos

Figura 4: Relación entre Problemas y Objetivos

O1. Diseñar una arquitectura híbrida que integre redes neuronales ligeras y módulos de razonamiento simbólico para abordar el benchmark ARC-AGI considerando				
las técnicas existentes en el estado del arte. Resultado Esperado Medio de Verificación IOV				
R1. Selección de técnicas y algoritmos usados en el estado del arte con enfoque neurosimbólico.	- Informe de selección de técnicas con análisis compa- rativo.	- Informe en el que se presen- ten al menos 4 técnicas usadas en arquitecturas neuro-simbóli- cas con justificación. Este debe ser aprobado por un experto en IA.		
R2. Selección de data- sets incluyendo el origi- nal de ARC-AGI.	- Repositorio en Google Drive.	- Documento donde se presen- ten al menos 3 datasets adicio- nales a ARC-AGI con justifica- ción y análisis.		
R3. Pipeline base donde se integren los módulos simbólicos y los LLM seleccionados.	- Código fuente en Python del pipeline base implemen- tado, junto a un informe técnico.	- Repositorio en línea con código fuente accesible. - Informe técnico que detalle la arquitectura propuesta y su jus- tificación. Este debe ser aproba- do por un experto en IA.		

Cuadro 1: Resultados Esperados, Medios de Verificación e IOV para el Objetivo 1

tareas preseleccionadas de ARC-

R3. Documentación que detalle

el uso de la biblioteca. las fun-

ciones que incluye y ejemplos de

reutilizables para la resolución de los distintos tipos de problemas propuestos en ARC-AGI, de forma que estas actúen como módulo de razonamiento simbólico				
en la arquitectura.				
Resultado Esperado	Medio de Verificación	IOV		
R1. Biblioteca en Python con transformaciones elementa- les como rotación, reflexión,	- Código fuente en Python de la bibliote- ca.	- Repositorio en línea con código fuente accesible don- de se implementen al menos		
coloreo, y otras operaciones que permitan la resolución de problemas de ARC-AGI.		10 operaciones atómicas.		
R2. Validación de la biblioteca	- Notebook para eva-	- Precisión superior al 80 %		
mediante su evaluación en sub-	luación automatizada	por parte de las funciones de		

sobre un subconiunto

de subtareas de los da-

- Notebooks que de-

muestren el uso de

la biblioteca con ejem-

tasets elegidos.

plos.

O2. Implementar una biblioteca de operaciones y transformaciones genéricas y

Cuadro 2: Resultados Esperados, Medios de Verificación e IOV para el Objetivo 2

la biblioteca para la resolu-

- Notebooks publicados en

el repositorio del proyecto

que demuestren el uso de

todas las funciones imple-

mentadas

ción de tareas atómicas.

AGI.

USO.

O3. Reducir el costo computacional de la arquitectura mediante técnicas de fine- tuning y test-time adaptation de manera que la solución sea eficiente en términos de recursos y tiempo de ejecución.					
Resultado Esperado Medio de Verificación IOV					
R1. Aplicación de fine-	- Registro de hiperparáme-	- Informe que incluya al menos			
tuning para ajuste de	tros y pesos finales del mo-	2 métricas comparativas entre			
capas y parámetros,	delo ajustado.	el modelo base y el modelo ajus-			
optimizando así la abs-	-	tado. Debe ser aprobado por un			
tracción.		experto en IA.			
R2. Evaluación cuan-	- Reporte con análisis com-	- Documento donde se presenten			
titativa de recursos	parativo entre los recursos	al menos 3 métricas compara-			
usados (consumo de	usados por el modelo base	tivas entre el modelo base y el			
GPU/CPU, memoria y	y el ajustado.	ajustado.			
tiempos de inferencia).	- Informe que detalle la re-	- Informe que detalle el proce-			
	lación costo/beneficio de la	so de evaluación y los resulta-			
	arquitectura propuesta en	dos obtenidos. Debe ser apro-			
	las fases de entrenamiento	bado por un experto en IA.			
	y evaluación.				

Cuadro 3: Resultados Esperados, Medios de Verificación e IOV para el Objetivo 3

04 5		ADC ACL		
O4. Evaluar la arquitectura				
con el estado del arte, publicando los resultados en un repositorio público para				
su uso por la comunidad científica.				
Resultado Esperado	Medio de Verificación	IOV		
R1. Evaluación de la ar-	Código en Python para	- Repositorio en línea con código ac-		
quitectura en los datasets	la evaluación del mode-	cesible donde se evidencie la evalua-		
público y semi-privado del	lo final.	ción del modelo.		
benchmark.		- Reporte de resultados en el reposi-		
		torio con las métricas obtenidas y su		
		justificación. Este debe ser aprobado		
		por un experto en IA.		
R2. Comparación de resul-	- Reporte con análisis	- Documento con análisis estadísti-		
tados con los de arquitectu-	comparativo entre los	co entre la solución propuesta y el		
ras del estado del arte.	resultados obtenidos y	estado del arte, incluyendo tablas y		
	los del estado del arte.	gráficos comparativos. Este debe ser		
		aprobado por un experto en IA.		
R3. Discusión final sobre	- Informe de conclusio-	- Informe en el repositorio con al me-		
limitaciones encontradas y	nes donde se discuta	nos 3 limitaciones identificadas y 2		
oportunidades de mejora.	la efectividades de las	oportunidades de mejora.		
, , , , , , , , , , , , , , , , , , , ,	técnicas utilizadas.			
R4. Publicación del proyec-	- Repositorio público	- Repositorio público en GitHub subi-		
to en un repositorio abierto.	en GitHub con licencia	do tras la finalización del proyecto.		
•	MIT, código fuente, re-	- README que resuma el reposito-		
	portes e informes.	rio.		

Cuadro 4: Resultados Esperados, Medios de Verificación e IOV para el Objetivo 4

Figura 5: Métodos, Herramientas y Técnicas

2. Marco Referencial

Marco Teórico

- Artificial Fluid Intelligence
- Razonamiento Abstracto
- Symbolic AI
- Redes Neuronales
- Neuro-Symbolic Integration Theory

Marco Conceptual

- ARC-AGI
- Generalización
- Eficiencia
- Lightweight Large Language Models
- Few-shot Learning

3. Estado del Arte

Estado del Arte

Se realizó una revisión sistemática de la literatura (SLR).

El objetivo principal fue proporcionar una evaluación exhaustiva y crítica de la literatura existente relacionada con **arquitecturas neuro-simbólicas que busquen resolver problemas que requieran razonamiento abstracto** y que sean similares a los del benchmark ARC-AGI.

Preguntas de Investigación

- P1: ¿Cuáles son las arquitecturas neuro-simbólicas existentes que han sido propuestas para resolver problemas de razonamiento abstracto y que funcionen con LLMs?
- P2: ¿Qué benchmarks y conjuntos de datos se han utilizado para evaluar estas arquitecturas y cómo se comparan con el original propuesto en ARC-AGI?
- P3: ¿Cuál ha sido la eficiencia computacional de cada enfoque en términos de tiempo de entrenamiento, consumo de recursos y complejidad de los modelos?
- P4: ¿Cuáles son las métricas de rendimiento y resultados obtenidos por cada enfoque en términos de accuracy, generalización y robustez?
- P5: ¿Qué brechas, limitaciones y direcciones futuras de investigación se han identificado en la literatura existente?

Clarivate Web of Science Vec Note: The content of the content o

Figura 6: Motores de búsqueda

Cadenas de Búsqueda

Motor de búsqueda	Cadena de búsqueda	Número de Resul- tados
Scopus	(''artificial intelligence'' OR ai OR ''machine learning'' OR ''deep learning'') AND (''neuro-symbolic AI'' OR ''neuro-symbolic reasoning'' OR ''neuro-symbolic learning'' OR ''compositional generalization'' OR ''compositional reasoning'') AND (''ARC-AGI'' OR arc OR ''abstract reasoning'') OR ''abstract reasoning benchmark'') AND PUBYEAR > 2017 AND PUBYEAR < 2026 AND (LIMIT-TO (DOCTYPE , ''ar'') OR LIMIT-TO (DOCTYPE , ''bk'')) OR LIMIT-TO (DOCTYPE , ''bk'')) AND (LIMIT-TO (LANGUAGE , ''English''))	108
Web of Science	((TS=((artificial intelligence OR AT OR ''machine learning'') RN ('deep learning'') AND (''neuro-symbolic AT'') OR ''neuro-symbolic reasoning'' OR ''neuro-symbolic learning'' OR ''compositional generalization'' OR ''compositional reasoning''))) AND LA=(English OR Spanish)) AND DDP=(2018/2024)	51
arXiv	(order: -announced.date.first; size: 100; date.range: from 2018-01-01 to 2025-12-31; classification: Computer Science (cs); include.cross_list: True; terms: AND all=((''neuro-symbolic'' OR compositional OR ''deep learning'' OR ''artificial intelligence'' OR AID AND (''ARC-AGI'' OR ''abstraction and reasoning corpus'')))	39

Cuadro 5: Cadenas y resultados en diferentes motores de búsqueda.

Criterios de Inclusión y Exclusión

Los criterios de inclusión son:

- Relevancia temática: Los estudios deben abordar el tema de IA neuro-simbólica y el razonamiento abstracto.
- Lenguaje: Los estudios deben estar escritos en inglés o español.
- Tipo de publicación: Se aceptan artículos, trabajos de conferencias, reportes técnicos y preprints de alta calidad.
- Fecha de publicación: Estudios publicados entre 2018 y 2025.
- Calidad metodológica: Los estudios deben presentar una metodología clara y resultados que respalden sus conclusiones.

Los criterios de exclusión son:

- Contenido irrelevante: Los estudios que no aborden el tema de IA neuro-simbólica o que no estén relacionados con el benchmark ARC-AGI, ni problemas de razonamiento abstracto.
- Poca documentación: Los estudios que no presenten datos suficientes o que no se puedan reproducir.
- Accesibilidad limitada: Los estudios que no sean accesibles en su totalidad o que solo presenten resúmenes o abstracts.

Documentos seleccionados

Motor de búsqueda	Cantidad de documentos	Porcentaje
Scopus	8	33.33 %
Web of Science	2	8.33 %
arXiv	11	45.83 %
Otras fuentes	3	12.50 %
Total	24	100 %

Cuadro 6: Cantidad de documentos seleccionados por motor de búsqueda.

Formulario de extracción de datos

Campo	Descripción	Pregunta
ID	Identificador primario del estudio	General
Título	Título del estudio	General
Autores	Autores que formaron parte del estudio	General
Año	Año de publicación	General
Fuente	Nombre de la revista o conferencia	General
Enlace de con-	URL al artículo completo	General
Abstract	Resumen del estudio	General
Citaciones	Número de citas recibidas	General
Arquitectura	Arquitectura neuro-simbólica propuesta	P1
Enfoque	Enfoque de razonamiento utilizado	P1
Dataset y benchmark	Dataset y benchmark utilizado para la evaluación	P2
Eficiencia computacional	Tiempo de entrenamiento, consumo de recursos y complejidad del modelo	P3
Resultados y métricas	Resultados obtenidos y métricas de rendimiento	P4
Limitaciones y brechas	Limitaciones y brechas identificadas en el estudio	P5
Direcciones fu- turas	Direcciones futuras de investigación propuestas	P5

Cuadro 7: Formulario de extracción de datos para la revisión sistemática.

P1. ¿Cuáles son las arquitecturas neuro-simbólicas existentes que han sido propuestas para resolver problemas de razonamiento abstracto y que funcionen con LLMs?

- Program Induction: Arquitecturas neuro-simbólicas que combinan modelos de lenguaje visual con módulos simbólicos para inducir programas desde ejemplos.
- Un enfoque reciente propone un ensemble entre un modulo de transducción y uno de inferencia para resolver ARC-AGI [10].
- Hay propuestas que se enfocan en test time fine-tuning y data augmentation durante el tiempo de inferencia [8, 6].
- Muchas arquitecturas usan técnicas de reducción dimensional para mejorar la eficiencia y el rendimiento [8].

P2. ¿Qué benchmarks y conjuntos de datos se han utilizado para evaluar estas arquitecturas y cómo se comparan con el original propuesto en ARC-AGI?

- La mayoría de estudios usan como benchmark principal el ARC-AGI original y variantes como ConceptARC y LARC [2, 1, 7, 6].
- También se utilizan datasets basados en Raven's Progressive Matrices (como RAVEN e I-RAVEN) [13, 9].
- Otros conjuntos, como GSM8K, SVAMP, AQuA y DARG, que evalúan habilidades en matemáticas, lenguaje natural o razonamiento en grafos [12, 11].

- P3. ¿Cuál ha sido la eficiencia computacional de cada enfoque en términos de tiempo de entrenamiento, consumo de recursos y complejidad de los modelos?
 - The ARCHitects utilizan 2 GPUs Nvidia T4 (16GB) con LLMs como Mistral-NeMo-Minitron-8B y Llama3.2-3B, adaptadores LoRA (64–256) y cuantización a 4 bits [8].
 - El modelo de Li et al. (2024) mejora el performance en un 20–30 % durante inferencia (20,000 muestras) al aumentar el presupuesto [10].
 - La solución de Cole y Osman (2025) implementa LongT5 en una GPU P100 (16GB) y logra la mejor eficiencia y métricas en el dataset privado de ARC-AGI [6].
 - El modelo de Zhang et al. (2022) usa **4 GPUs A100 (40GB)** y **LoRA** para reducir el uso de memoria y mejorar la eficiencia [13].

Respuesta a la pregunta P4

- P4. ¿Cuáles son las métricas de rendimiento y resultados obtenidos por cada enfoque en términos de accuracy, generalización y robustez?
 - Zhang et al. (2022) logra 78.45 % en sistematicidad, 79.95 % en productividad y 80.5 % en localismo usando RPMs [13].
 - Hersche et al. (2023) alcanza 87.7 % y 88.1 % de precisión en RAVEN e I-RAVEN, los mejores resultados en estos benchmarks [9].
 - En ARC-AGI, Cole y Osman (2025) logran el mejor resultado con **58.5 %** de precisión usando *test time fine-tuning* [6].
 - The ARCHitects alcanza 56.5 % [8].
 - Otros modelos oscilan entre 30-40 % [3].

Respuesta a la pregunta P5

P5. ¿Qué brechas, limitaciones y direcciones futuras de investigación se han identificado en la literatura existente?

- Las arquitecturas híbridas muestran buena precisión, pero tienen problemas de escalabilidad y alta dependencia de ejemplos anotados.
- El enfoque de test-time fine-tuning implica altos costos computacionales.
- Se sugiere investigar métodos de inducción simbólica automatizada y pipelines con múltiples enfoques.
- Se propone ampliar el benchmark ARC-AGI para evaluar más aspectos de la inteligencia y fomentar generalización sistemática [5].

Conclusiones

- Las arquitecturas híbridas neuro-simbólicas muestran alto potencial en tareas de razonamiento abstracto y generalización sistemática.
- El rendimiento mejora al combinar modelos ligeros, técnicas de inducción algebraica y estrategias como test-time fine-tuning.
- Es recomendable usar ARC-AGI, junto con sus variantes dados ue incluyen problemas más diversos y complementarios.
- Persisten limitaciones en escalabilidad, adaptabilidad y eficiencia computacional.

4. Cronograma

Cronograma

emana	Sesión de Clase	Entregables	Actividades	Envio del avance preliminar al asesor	Envio al asesor/publicación de la siguiente semana (antes del mediodia)	Revisor
1	Exposición de tema, cronograma y estado de avance	Cronograma de trabajo del curso		Miércoles	Viernes (antes del mediodia) / Lunes de la siguiente semana (antes del mediodia)	Asesor
2	Exposición de tema, cronograma y estado de avance.	E1: avance del 40%	 Revisión de literatura Elaboración del formulario de extracción Definición de preguntas de investigación 	Miércoles		
3	Exposición de tema, cronograma y estado de avance.	E1: avance del 90%	Elaboración del problem statement Análisis de las relaciones causa-efecto en el estudio a realizar Definición de resultados esperados	Miércoles		
4	Exposición 1	E1: Problemática, estado del arte, objetivos (general y específicos), resultados esperados, resultados trabajo en el curso	Revisión final del documento y ajuste de correcciones según retroalimentación	Miércoles	Viernes (antes del mediodia) /Lunes de la siguiente semana (antes del mediodia)	Profesor del curso
5	Exposición 2	E2 (avance 20%): Desarollo del merco conceptual y teórico	Identificación de conceptos clave Búsqueda de fuentes para la elaboración de definiciones	Miércoles		
6	Exposición 3	E2 (avance 60%): Definición de herramientas, métodos y procedimientos	Avance de la metodología a utilizar Definición y justificación de las herramientas a utilizar	Miércoles		
7	Exposición 4	E2 (avance 90%): Finalización de revisión del marco teórico y metodológico	- Conclusión de la metodología a utilizar - Corrección de observaciones	Miércoles		
8	Exposición 5	E2: Levantamiento de observaciones del E1, marco conceptual/teórico/legal, herramientas, métodos y procedimientos	Revisión final del documento y ajuste de correcciones según retroalimentación	Miércoles	Viernes (antes del mediodia) / Lunes de la siguiente semana (antes del mediodia)	Profesor del curso
9			EXÂMENES PARCIALES			
10	Exposición 6	E3 (avance 20%): Justificación y viabilidad bécnica y económica	- Evaluación de factibilidad del proyecto - Análisis de costos y de recursos	Miércoles		
11	Exposición 7	E3 (avance 60%): Definición del alcance y EDT	Desarrollo del EDT Validación del alcance del proyecto Identificación detallada de las tareas	Miércoles		
12	Exposición 8	E3 (avence 90%): Elaboración del cronograma detallado y análisis de riesgos	Planificación detallada de las tareas Asignación de tiempos y recursos Identificación de dependencias Elaboración del cronograma	Miércoles		
13	Exposición 9	E3: Proyecto de fin de carrera completo incluyendo: todas las correcciones y el Anexo de Plan de Proyectos	Revisión final del documento y ajuste de correcciones según retroalimentación	Miércoles	Viernes (antes del mediodia) / Lunes de la siguiente semana (antes del mediodia)	Jurado
14	Exposición 10					
	Exposiciones finales					Jurado
17			EXÁMENES FINALES			(4)

Figura 7: Cronograma

Gracias

¿Preguntas?

- Mattia Atzeni, Mrinmaya Sachan, and Andreas Loukas. Infusing lattice symmetry priors in attention mechanisms for sample-efficient abstract geometric reasoning.
 In International Conference on Machine Learning, pages 1200–1217. PMLR, 2023.
- [2]. Giacomo Camposampiero, Loïc Houmard, Benjamin Estermann, Joël Mathys, and Roger Wattenhofer. Abstract visual reasoning enabled by language. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2643–2647, 2023.
- [3]. Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical report, 2025.
- [4]. François Chollet.
 On the measure of intelligence.
 arXiv preprint arXiv:1911.01547, 2019.
- [5]. François Chollet. Announcing arc agi 2 and arc prize 2025, 2025.

Referencias II

[6]. Jack Cole and Mohamed Osman.

Don't throw the baby out with the bathwater: How and why deep learning for arc.

https:

//github.com/MohamedOsman1998/deep-learning-for-arc/blob/main/deep_learning_for_arc.pdf, 2025.

Manuscript hosted on GitHub.

- [7]. Sébastien Ferré.
 - Tackling the abstraction and reasoning corpus (arc) with object-centric models and the mdl principle.

 In International Symposium on Intelligent Data Analysis page
 - In International Symposium on Intelligent Data Analysis, pages 3–15. Springer, 2024.
- [8] Daniel Franzen, Jan Disselhoff, and David Hartmann. The Ilm architect: Solving arc-agi is a matter of perspective. 2024.

Referencias III

[9]. Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas Rahimi.

A neuro-vector-symbolic architecture for solving raven's progressive matrices.

Nature Machine Intelligence, 5(4):363–375, 2023.

[10]. Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn, Hao Tang, Michelangelo Naim, Dat Nguyen, et al.

Combining induction and transduction for abstract reasoning. arXiv preprint arXiv:2411.02272, 2024.

[11]. Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al.

Phenomenal yet puzzling: Testing inductive reasoning capabilities of language models with hypothesis refinement.

arXiv preprint arXiv:2310.08559, 2023.

Referencias IV

[12]. Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

[13]. Chi Zhang, Sirui Xie, Baoxiong Jia, Ying Nian Wu, Song-Chun Zhu, and Yixin Zhu.

Learning algebraic representation for systematic generalization in abstract reasoning.

In European Conference on Computer Vision, pages 692–709. Springer, 2022.