CS 228 : Logic in Computer Science

Krishna. S

GNBA

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set $\mathcal{F} = \{F_1, \dots, F_k\}$, each $F_i \subseteq Q$
- ▶ An infinite run ρ is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when $\mathcal{F} = \emptyset$, all infinite runs are accepting
- GNBA and NBA are equivalent in expressive power.

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - \blacktriangleright { a, c, ψ, φ }
 - $\{\neg a, c, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\{\neg a, \neg c, \psi, \varphi\}$
 - $\qquad \qquad \{ \neg a, \neg c, \neg \psi, \neg \varphi \}$

$$\longrightarrow \{a, c, \psi, \varphi\}$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\rightarrow$$
 $\{\neg a, c, \psi, \varphi\}$

$$\{ {\it a}, \neg {\it c}, \neg \psi, \neg \varphi \}$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\rightarrow \boxed{\{a, \neg c, \neg \psi, \varphi\}}$$

GNBA Acceptance Condition

- $\psi = \neg a Uc$
- $ightharpoonup \varphi = a U \psi$
- $F_1 = {B | ψ ∈ B → c ∈ B}$
- $F_2 = \{B \mid \varphi \in B \rightarrow \psi \in B\}$
- ▶ $\mathcal{F} = \{F_1, F_2\}$

Final States

$$\longrightarrow \{a,c,\psi,\varphi\} \in F_1,F_2$$

$$\{\neg a, \neg c, \psi, \varphi\} \in F_2 \longleftarrow$$

$$\rightarrow [\{\neg a, c, \psi, \varphi\} \in F_1, F_2]$$

$$\{a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{a, \neg c, \neg \psi, \varphi\} \in F_1$

▶ Given φ , build $Cl(\varphi)$, the set of all subformulae of φ and their negations

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B \text{ and } \psi \notin B \rightarrow \neg \psi \in B$
 - Whenever $\psi_1 \cup \psi_2 \in Cl(\varphi)$,
 - $\psi_2 \in B \rightarrow \psi_1 \cup \psi_2 \in B$
 - $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \notin B \rightarrow \psi_1 \in B$

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),
```

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in CI(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),

• Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}

• Q_0 = \{B \mid \varphi \in B\}
```

- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - ▶ If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in \mathit{Cl}(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$
- ▶ Prove that $L(\varphi) = L(A_{\varphi})$

• States of A_{φ} are subsets of $CI(\varphi)$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \mathsf{NBA}\ A_{\varphi}$: Number of states in $A_{\varphi} \leqslant |\varphi|.2^{|\varphi|}$