Activités Mentales

24 Août 2023

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	560	560	1120
\overline{B}	240	240	480
Total	800	800	1600

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{B} \cap A)$. La calculer.
- **2** Que signifie $\mathbb{P}_A(B \cap A)$? La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	63	7	70
\overline{B}	567	63	630
Total	630	70	700

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A} \cap B)$. La calculer.
- **2** Que signifie $\mathbb{P}_B(B \cap A)$? La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	120	30	150
\overline{B}	280	70	350
Total	400	100	500

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A} \cap B)$. La calculer.
- **2** Que signifie $\mathbb{P}_B(B \cap A)$? La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	108	72	180
\overline{B}	252	168	420
Total	360	240	600

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A})$? La calculer.
- **2** Que signifie $\mathbb{P}_{\overline{B}}(\overline{B} \cap A)$. La calculer.

On considère le tableau ci-dessous récapitulant le nombres de personnes appartenant au groupe A, au groupe B, aux deux groupes ou à aucun des deux.

	Α	\overline{A}	Total
В	693	77	770
\overline{B}	297	33	330
Total	990	110	1100

- A l'évènement 'la personne tirée appartient au groupe A'.
- B l'évènement 'la personne tirée appartient au groupe B'.
- ① Que signifie $\mathbb{P}(\overline{A} \cap B)$. La calculer.
- **2** Que signifie $\mathbb{P}_B(B \cap A)$? La calculer.

 $\mathbb{P}(\overline{B}\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à B mais appartenant à A.

$$\mathbb{P}(\overline{B} \cap A) = \frac{240}{1600} = \frac{3}{20}$$

 $\mathbb{P}_A(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à A.

$$\mathbb{P}_A(B \cap A) = \frac{560}{800} = \frac{7}{10}$$

 $\mathbb{P}(\overline{A}\cap B)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A mais appartenant à B.

$$\mathbb{P}(\overline{A} \cap B) = \frac{7}{700} = \frac{1}{100}$$

 $\mathbb{P}_B(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à B.

$$\mathbb{P}_B(B \cap A) = \frac{63}{70} = \frac{9}{10}$$

 $\mathbb{P}(\overline{A}\cap B)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A mais appartenant à B.

$$\mathbb{P}(\overline{A} \cap B) = \frac{30}{500} = \frac{3}{50}$$

 $\mathbb{P}_B(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à B.

$$\mathbb{P}_B(B \cap A) = \frac{120}{150} = \frac{4}{5}$$

 $\mathbb{P}(\overline{A})$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A.

$$\mathbb{P}(\overline{A}) = \frac{240}{600} = \frac{2}{5}$$

 $\mathbb{P}_{\overline{B}}(\overline{B}\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à B mais appartenant à A parmi les personnes n'appartenant pas à B.

$$\mathbb{P}_{\overline{B}}(\overline{B} \cap A) = \frac{252}{420} = \frac{3}{5}$$

 $\mathbb{P}(\overline{A}\cap B)$ signifie que l'on cherche la probabilité d'avoir tiré une personne n'appartenant pas à A mais appartenant à B.

$$\mathbb{P}(\overline{A} \cap B) = \frac{77}{1100} = \frac{7}{100}$$

 $\mathbb{P}_B(B\cap A)$ signifie que l'on cherche la probabilité d'avoir tiré une personne appartenant à B et A parmi les personnes appartenant à B.

$$\mathbb{P}_B(B \cap A) = \frac{693}{770} = \frac{9}{10}$$