	Numer indeksu:	$Grupa^1$:		
Wersja: A	000000	000000		
	Logika dla informa	tyków		
Sprawdzian nr 1, 22 listopada 2013 czas pisania: 30+60 minut				
Zadanie 1 (2 punkty). Jeśli formuła $((p \lor q) \Rightarrow r) \land p \land \neg r$ jest sprzeczna to w prostokąt poniżej wpisz słowo "SPRZECZNA". W przeciwnym przypadku wpisz wartościowanie spełniające tę formułę.				
	SPRZECZNA	Δ		
Zadanie 2 (2 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $\neg(p\Rightarrow q) \land (r \lor s)$				
wierające wolne wysta oraz $(\forall x \varphi) \Rightarrow (\forall x \psi)$	ąpienia zmiennej x . Jeśli dla dowo	y rachunku kwantyfikatorów być może zablnych takich formuł formuły $\forall x (\varphi\Rightarrow\psi)$ poniżej wpisz słowo "RÓWNOWAŻNE". ykład.		

 $\varphi = (x = 5) \quad \psi = (x = 7)$

 $^{^{1}\}mathrm{Proszę}$ podać dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

	(2 punkty). W prostokąt poniżej wpisz dowód tautologii $p \land \neg q \Rightarrow \neg (p \Rightarrow q)$
v systemie na	aturalnej dedukcji.
Zadanie 5 ((2 punkty). Jeśli inkluzja $\bigcup (A_t \setminus B_t) \subseteq \bigcup A_t \setminus \bigcup B_t$ zachodzi dla dowolnyc
ndeksowanyo	ch rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK"
	em przypadku wpisz odpowiedni kontrprzykład.
. I	F7 F

	Numer indeksu:	Grupa ¹ :
Wersja: A	000000	000000

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

- 1. Jeśli φ oraz ψ są spełnialne, to $\varphi \Leftrightarrow \psi$ jest spełnialna.
- 2. Jeśli φ jest tautologią oraz ψ nie jest tautologią, to $\varphi \Rightarrow \psi$ nie jest tautologią.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Udowodnij, że każda formuła zbudowana wyłącznie ze zmiennej zdaniowej p i spójnika \Rightarrow (oraz nawiasów) jest równoważna jednej z dwóch formuł: p lub \top .

Zadanie 8 (5 punktów). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest *wstępująca*, jeżeli inkluzja $A_n\subseteq A_{n+1}$ zachodzi dla wszystkich $n\in\mathbb{N}$. Udowodnij, że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest wstępującą rodziną zbiorów, to

$$\bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty} A_i = \bigcup_{n=0}^{\infty} A_n.$$

 $^{^{1}\}mathrm{Proszę}$ podać dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

	Numer indeksu:	Grupa ¹ :		
Wersja: D	000000	000000		
	Logika dla informat	yków		
	Sprawdzian nr 1, 22 listopada 2013 czas pisania: 30+60 minut			
Zadanie 1 (2 punkty). Jeśli formuła $((p \lor q) \Rightarrow r) \land ((p \lor q) \Rightarrow \neg r)$ jest sprzeczna to w prostokąt poniżej wpisz słowo "SPRZECZNA". W przeciwnym przypadku wpisz wartościowanie spełniające tę formułę.				
	$\sigma(p) = F, \sigma(q) = F, \sigma(q)$	r) = F		
		,, .		
Zadanie 2 (2 punkty). Niech φ i ψ oznaczają formuły rachunku kwantyfikatorów, przy czym zmienna x nie ma wolnych wystąpień w formule φ (lecz może mieć w ψ). Jeśli dla dowolnych takich formuł formuły $\varphi \Rightarrow (\forall x\psi)$ oraz $\forall x(\varphi\Rightarrow\psi)$ są równoważne, to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.				
	RÓWNOWAŻNI	E		
Zadanie 3 (2 punk	ty). W prostokąt poniżej wpisz do	owód tautologii		
	$(p\Rightarrow q\wedge r)\Rightarrow (p\Rightarrow q)\wedge\\$	$(p \Rightarrow r)$		
w systemie naturalne	ej dedukcji.			

 $^{^{1}\}mathrm{Proszę}$ podać dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Zadanie 4 (2 punkty). Jeśli inkluzja $\bigcap_{t \in T} A_t \setminus \bigcap_{t \in T} B_t \subseteq \bigcap_{t \in T} (A_t \setminus B_t)$ zachodzi dla dowolnych			
indeksowanych rodzin zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, to w prostokąt poniżej wpisz słowo "TAK".			
W przeciwnym przypadku wpisz odpowiedni kontrprzykład.			
Zadanie 5 (2 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $\neg((p \land q) \Rightarrow \neg r)$			

	Numer indeksu:	Grupa ¹ :
Wersja: D	000000	000000

Zadanie 6 (5 punktów). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest *wstępująca*, jeżeli inkluzja $A_n\subseteq A_{n+1}$ zachodzi dla wszystkich $n\in\mathbb{N}$. Udowodnij, że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest wstępującą rodziną zbiorów, to

$$\bigcap_{n=0}^{\infty} \bigcup_{i=n}^{\infty} A_i = \bigcup_{n=0}^{\infty} A_n.$$

Zadanie 7 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

- 1. Jeśli φ oraz ψ są spełnialne, to $\varphi \Rightarrow \psi$ jest spełnialna.
- 2. Jeśli φ nie jest tautologią oraz ψ nie jest tautologią, to $\varphi \Leftrightarrow \psi$ nie jest tautologią.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 8 (5 punktów). Udowodnij, że dla każdej formuły zbudowanej wyłącznie ze zmiennych zdaniowych i spójników \land, \neg (oraz nawiasów) istnieje równoważna jej formuła zbudowana wyłącznie ze zmiennych zdaniowych i spójników \lor, \neg (oraz nawiasów).

 $^{^{1}\}mathrm{Proszę}$ podać dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.