# FOUNDATIONS IN IT SECURITY: SECURITY MODELS COMPUTER SYSTEMS SECURITY GORDON | RETNOLDS (2019)



#### **SECURITY MODELS**

- A model is a simplified representation used to explain a real world system
- Security models are used to design a system to protect secrets

COMPUTER SYSTEMS SECURITY

CORE SECURITY PRINCIPLES: BELL LAPADULA & BIBA SECURITY MODELS

GORDON | REYNOLDS (2018)

# BELL LAPADULA SECURITY MODEL (1973)

- State machine model that addresses the confidentiality of information.
- Uses No Read Up & No Write Down
- No Read Up (NRU)
  - A subject can read all documents at or below his level of security but cannot read any documents above his level of security
  - Prevents learning secrets at a higher security level

## BELL LAPADULA SECURITY MODEL (CONT.)

- No Write Down (NWD)
  - A subject can write documents at or above his level of security but cannot write documents below his level
  - Prevents leaks of secrets

# BELL LAPADULA SECURITY MODEL (CONT.)

■ What is the major flaw of this model?

#### BELL LAPADULA MODEL PROBLEM

- In Bell LaPadula
  - A subject at a lower security level can overwrite and potentially destroy secret information at a higher level (even though they cannot see it)
  - No Write Down and No Read Up don't prevent this "Write Up" operation
- Bell LaPadula protects confidentiality but not integrity

# BIBA SECURITY MODEL (1977)

- The first formal *integrity* model, by preventing modifications to data by unauthorized persons.
- A subject cannot read documents below his level (no read down, NRD)
- A subject cannot write documents above his level (no write up, NWU)

#### **EXAMPLE: MILITARY ORDERS**

- Write Down is allowed
  - A General may write orders to a Colonel, who can issue these orders to a Major
- Integrity is preserved
  - In this fashion, the General's original orders are kept intact and the mission of the military is protected
- Write Up is forbidden
  - Conversely, a Private can never issue orders to his Sergeant, who may never issue orders to a Lieutenant, also protecting the integrity of the mission

#### **COMPARING THE MODELS**

- If you need to **protect secrets**, use Bell-Lapadula
  - No Write Down
  - No Read Up
- If you need to **stay on target**, use Biba
  - No Write Up
  - No Read Down
- Both of these are designed for the military, to protect high-level secrets

COMPUTER SYSTEMS SECURITY CORE SECURITY PRINCIPLES: CLARK-WILSON SECURITY MODEL

GORDON | REYNOLDS (2018)

# CLARK-WILSON SECURITY MODEL (1987)

- Designed for businesses, to protect the integrity of data at all levels, not just the high value secrets
- Based on **Transactions** 
  - Well-formed transactions move a system from one consistent state to another consistent state

# CLARK-WILSON SECURITY MODEL (1987)

- A data integrity model
- Two principals: <u>users</u> and <u>programs</u> (called *transformation procedures*, or TPs)
- Two types of data: unconstrained data items (UDIs), and constrained data items (CDIs).

#### **UDIS AND CDIS**

- Unconstrained Data Items (UDIs)
  - Untrusted data, like user input
  - Not necessarily safe
  - May even be from an attacker
- Constrained Data Items (CDIs)
  - Data that has been verified and is now guaranteed to be valid
  - Data that is "safe"

#### **CLARK-WILSON SECURITY MODEL (CONT.)**

- Integrity Verification Procedure (IVP)
  - Transforms Unconstrained Data Items (UDIs) into Constrained Data Items (CDIs)
  - Changes "unsafe" data into "safe" data

#### **CLARK-WILSON SECURITY MODEL (CONT.)**

- Users must be authenticated
- Transaction logs are kept

# CORE SECURITY PRINCIPLES: ACCESS MATRIX SECURITY MODEL

GORDON | REYNOLDS (2018)

#### **ACCESS MATRIX SECURITY MODEL**

 Defines which subjects are permitted to access which objects

| Subject | Contracts<br>Directory | Personnel Directory | Expense<br>Reports |
|---------|------------------------|---------------------|--------------------|
| Warren  | Read                   | Read                | Submit             |
| Wilson  | None                   | None                | Approve            |
| Wyland  | Read/Write             | None                | Submit             |
| Yelte   | Read/Write             | None                | None               |

CORE SECURITY PRINCIPLES:
MULTI-LEVEL SECURITY
MODEL

#### **MULTI-LEVEL SECURITY MODEL**

- Several levels of security
  - Such as Confidential, Secret, Top Secret
- People have varying levels of security clearance
  - Such as Confidential, Secret, Top Secret
- System will control access to objects according to their level and the level of the persons accessing them

COMPUTER SYSTEMS SECURITY

CORE SECURITY PRINCIPLES:
MANDATORY ACCESS
CONTROL (MAC)
SECURITY MODEL

GORDON | REYNOLDS (2018

### MANDATORY ACCESS CONTROL (MAC) SECURITY MODEL

- System controls access to resources
- When a subject requests access to an object
  - The system examines the user's identity and access rights, and compares to access permissions of the object
- System then permits or denies the access
  - Example: shared file server where access permissions are administered by an administrator

COMPUTER SYSTEMS SECURITY

CORE SECURITY PRINCIPLES:
DISCRETIONARY ACCESS
CONTROL (DAC)
SECURITY MODEL

GORDON | REYNOLDS (2018)

#### DISCRETIONARY ACCESS CONTROL (DAC) SECURITY MODEL

- The owner of an object controls who and what may access it.
   Access is at the owner's discretion.
  - Example: shared file server where access permissions are administered by the owners (users) of its contents.

COMPUTER SYSTEMS SECURITY

CORE SECURITY PRINCIPLES:
ROLE-BASED ACCESS
CONTROL (RBAC)
SECURITY MODEL

GORDON | REYNOLDS (2018

# ROLE-BASED ACCESS CONTROL (RBAC) SECURITY MODEL

- An improvement over the mandatory access control (MAC) security model
- Access permissions are granted to "roles" instead of "persons."
  - Example: "Managers" can write to the Personnel folder, but "Help Desk Workers" cannot

# ROLE-BASED ACCESS CONTROL (RBAC) SECURITY MODEL (CONT.)

- Simplifies management in a complex system with many users and objects
- Makes changes much easier, because they involve changes to roles instead of to individuals

COMPUTER SYSTEMS SECURITY

# CORE SECURITY PRINCIPLES: INFORMATION FLOW SECURITY MODEL

GORDON | REYNOLDS (2018

#### INFORMATION FLOW SECURITY MODEL

- Based upon flow of information rather than on access controls
- Data objects are assigned to a class or level of security
- Flow of objects are controlled by security policy that specifies where objects of various levels are permitted to flow



#### **EXERCISE**

- DevTechIT is an IT based company with several users spread across several roles.
- Using several security models, such as RBAC, MAC and the Access Matrix model, propose an information access solution for DevTechIT.
- Requirements:
  - Managers can Read&Write&Delete to the Company's News Information Folder and to the Managers Information Folder and to the Team Leads Information Folder.
  - Team Leads can modify and append to the Company's News Information Folder and Read&Write&Delete to the Team Leads Information Folder.
  - General Users can Read the Company's News Information Folder.
  - All users have a Home Folder which they can Read&Write&Delete to/from. No one else has access to this folder, but users can share files and/or folders with other users.