§15. Вычисление площадей с помощью определенного интеграла

П.1. Вычисление площадей в декартовых координатах

1) $f(x) \ge 0$ непрерывна на [a;b]. Тогда $\int_a^b f(x) dx$ равен площади криволинейной трапеции.

2) f(x) принимает как положительные, так и отрицательные значения и непрерывна на [a;b]. Тогда $\int_a^b f(x)dx = S_2 - S_1$.

3) $f(x) \ge g(x)$ на [a;b]. Тогда $S = \int_a^b (f(x) - g(x)) dx$.

4) Кривая задана параметрически $\begin{cases} x = x(t) \\ y = y(t) \end{cases}; t \in [\alpha; \beta]; x'(t) \neq 0; x(\alpha) = a; x(\beta) = b; a < b$. Тогда $S = \int_{\alpha}^{\beta} y(t) x'(t) dt$.

П.2. Вычисление площадей в полярных координатах

Пусть $\rho=\rho(\varphi), \varphi\in [\alpha;\beta]$ задает границу криволинейного сектора. Разобьем промежуток $[\alpha;\beta]$ на n частей: $\varphi_0=\alpha<\varphi_1<\dots<\varphi_n=\beta$, и в каждом промежутке выберем точку $\xi_i\in [\varphi_{i-1};\varphi_i]$. Тогда $\rho(\xi_i)$ – радиус кругового сектора, $\Delta\varphi_i=\varphi_i-\varphi_{i-1}$ – размер угла сектора. Площадь фигуры, составленной из получившихся круговых секторов, вычисляется как $\frac{1}{2}\sum_{i=1}^n \rho^2(\xi_i)\,\Delta\varphi_i$. При $\max_i \Delta\varphi_i \to 0$ формула сводится к интегральному виду $\frac{1}{2}\int_{\alpha}^{\beta} \rho^2(\varphi)d\varphi$. А

формула сводится к интегральному виду $\frac{1}{2} J_{\alpha} \rho^{-}(\phi) u \phi$. А площадь отдельно взятого i – го кругового сектора будет находиться как $\frac{1}{2} \rho^{2}(\xi_{i}) \Delta \phi_{i}$.

§16. Вычисление длины дуги

Пусть y = f(x) непрерывна и дифференцируема на [a;b] и требуется найти длину дуги графика функции. Разобьем [a;b] на n частей: точки $M_i(x_i;y(x_i))$ будут являться концами соответствующих хорд. В итоге вся дуга разобьется на n звеньев. Длина каждого звена будет вычисляться как $\Delta l_i = \frac{1}{\sqrt{2}}$

$$\sqrt{\Delta x_i^2 + \Delta y_i^2} = \sqrt{1 + \frac{\Delta y_i^2}{\Delta x_i^2}} * \Delta x_i$$
. Тогда длина всей дуги

будет равна сумме длин всех ломаных $\sum_{i=1}^n \sqrt{1+\left(\frac{\Delta y_i}{\Delta x_i}\right)^2}*\Delta x_i$. При $\max_i \Delta l_i \to 0$ формула сводится к интегральному виду $\int_a^b \sqrt{1+\left(f'(x)\right)^2} dx$.

<u>Замечание.</u> Длина графика функции существует, если функция непрерывна и дифференцируема. Такие кривые называются спрямляемыми. Если функция только непрерывна, то может возникнуть ситуация неспрямляемой кривой.

Если кривая задана параметрически $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$; $t \in [\alpha; \beta]$, то длина дуги вычисляется по формуле $L = \int_{\alpha}^{\beta} \sqrt{\big(x'(t)\big)^2 + \big(y'(t)\big)^2} dt$.

Если кривая задана в полярных координатах, то для вывода формулы выразим декартовы координаты x,y через полярные ρ,φ : $x=\rho(\varphi)\cos\varphi$, $y=\rho(\varphi)\sin\varphi$. Подставив получившиеся выражения в формулу длины дуги для параметрически заданной функции, получим $L=\int_{\alpha}^{\beta}\sqrt{\rho^2(\varphi)+\left(\rho'(\varphi)\right)^2}d\varphi$.

§17. Объем тела вращения

П.1. Объем тела через площади поперечного сечения

Пусть есть некоторое тело, которое можно спроектировать на ось Ox [a;b]. Введем непрерывную функцию S(x), отображающую площадь поперечного сечения в каждой точке [a;b]. Тогда объем тела можно вычислять как $V=\int_a^b S(x)dx$. Разобьем [a;b] на n частей таких, что $a=x_0< x_1< \cdots < x_n=b$. На каждом разбиении выберем точку $\xi_i\in [x_{i-1};x_i]$. Тогда $S(\xi_i)$ – площадь поперечного се-

чения, $S(\xi_i)\Delta x_i$ — объем цилиндрического тела. Складывая эти объемы, получаем $\sum_{i=1}^n \Delta V_i = \sum_{i=1}^n S(\xi_i)\Delta x_i \xrightarrow[m_{\hat{q}x} \Delta x_i \to 0]{b} \int_a^b S(x)dx$.

П.1. Объем тела вращения

Пусть есть непрерывная кривая y=f(x), заданная на [a;b]. Тогда радиус отдельно взятого поперечного сечения будет равен r=f(x), а площадь поперечного сечения равна $S(x)=\pi r^2=\pi f^2(x)$. Тогда объем тела вращения можно вычислять как $V=\pi\int_a^b f^2(x)dx$. Вывод аналогичный.

Глава 2. Функции нескольких переменных

§1. Основные понятия

Рассмотрим линейное пространство \mathbb{R}^n размерности n. Любой элемент $x \in \mathbb{R}^n$ может быть представлен как вектор $x(x_1,x_2,...,x_n)$. Их можно складывать, вычитать, умножать на число. Также говорят о расстоянии в линейном пространстве $||x-y|| = \sqrt{(y_1-x_1)^2+(y_2-x_2)^2+\cdots+(y_n-x_n)^2}$. Введем понятие n — мерного шара с центром в точке x_0 и радиусом r: $S_r(x_0) = \{x \in \mathbb{R}^n | \sqrt{(x_1-x_{01})^2+(x_2-x_{02})^2+\cdots+(x_n-x_{0n})^2} < r\}$.

С помощью этих шаром можно ввести понятие внутренней точки области. Пусть D — подмножество \mathbb{R}^n . Точка $x_0 \in D$ называется внутренней точкой множества D, если существует такое r, что n — мерный шар с центром в точке x_0 полностью лежит в D ($S_r(x_0) \in D$). Точка x_0 (уже не обязательно лежащей в D) называется граничной точкой множества D, если для любого r в $S_r(x_0)$ существуют точки, отличные от x_0 , принадлежащие D и не принадлежащие в D.

Множество $D \in \mathbb{R}^n$ называют открытым, если все его точки внутренние.

Множество $D \in \mathbb{R}^n$ называют замкнутым, если оно содержит и внутренние, и граничные точки.

Пусть заданы
$$\begin{cases} x_1 = x_1(t) \\ x_2 = x_2(t) \\ ... \\ x_n = x_n(t) \end{cases}$$
 — непрерывные дифференцируемые функции, $t \in \mathbb{R}^n$ кривую. Кривые задаются неод-

 $[\alpha, \beta]$. Тогда говорят, что эти функции задают в \mathbb{R}^n кривую. Кривые задаются неоднозначно.

Множество называется связным, если любые две его точки можно соединить кривой, лежащей в D.

Областью в \mathbb{R}^n называется открытое связное множество в \mathbb{R}^n . Пусть дана точка $x_0 \in \mathbb{R}^n$. Тогда любое открытое множество, содержащее x_0 , называется окрестностью этой точки. Шар с центром в точке x_0 и радиусом r называется r – окрестностью точки x_0 .

Пусть $D \in \mathbb{R}^n$ – область и пусть в D задана функция $f(x_1, x_2, ..., x_n)$. Эту функцию будет называть функцией нескольких переменный.

Пределом во внутренней точке $x_0 \in D$ функции f называется $A = \lim_{\substack{x_1 \to x_{01} \\ x_2 \to x_{02} \\ x_n \to x_{0n}}} f(x_1, x_2, \dots, x_n)$, если для любого $\varepsilon > 0$ существует такая δ – окрестность $S_{\delta}(x_0)$,

что если $x \in \dot{S}_{\delta}(x_0)$, то $f(x_1, x_2, ..., x_n) < \varepsilon$. Функция переводит точку из пространства \mathbb{R}^n в пространство \mathbb{R}^1 .

Замечание. Можно показать, что покоординатное стремление
$$\begin{cases} x_1 o x_{01} \\ x_2 o x_{02} \\ \dots \\ x_n o x_{0n} \end{cases}$$
 рав-

носильно стремлению по метрике $||x-x_0||$. Поэтому можно писать предел в виде $A=\lim_{||x-x_0||\to 0}f(x)$.

Если $\lim_{||x-x_0||\to 0} f(x)$ равен значению функции в точке, то f(x) непрерывна в этой точке.

Есть две формы записи: $\lim_{\substack{\Delta x_1 \to 0 \\ \Delta x_2 \to 0 \\ \Lambda x_n \to 0}} (f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - \frac{1}{2} (f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n))$

 $f(x_1,x_2,...,x_n) = 0$ и $\lim_{||\Delta x|| \to 0} \Delta f = 0$. При выполнении условия в любой из двух форм записи функция будет являться непрерывной. Δf называется приращением функции. Частным приращением функции f по x_1 называется $\Delta_{x_1}f = f(x_1 + \Delta x_1,x_2,...,x_n) - f(x_1,x_2,...,x_n)$.

Функция называется непрерывной на множестве $M \in \mathbb{R}^n$, если она непрерывна в каждой точке этого множества.

Пусть есть некоторая область $G \in \mathbb{R}^n$. Определим множество $\bar{G} = GV\partial G$ ($\partial G - \Gamma$ граница G), включающее в себя область и ее границу. Такое множество называется замкнутой областью. Если функция непрерывна в замкнутой области, то она достигает на ней своих наибольших и наименьших значений и принимает на этом множестве все промежуточные значения.