卷一甲部

題號	答案	題號	答案
1.	B (54)	26.	C (42)
2.	B (49)	27.	C (59)
3.	C (53)	28.	C (42)
4.	D (48)	29.	D (42)
5.	A (44)	30.	B (40)
6.	D (56)	31.	A (43)
7.	A (25)	32.	C (46)
8.	D (41)	33.	B (49)
9.	D (64)	34.	A (76)
10.	D (61)	35.	B (56)
11.	B (48)	36.	B (63)
12.	A (52)		
13.	D (35)		
14.	A (82)		
15.	B (66)		
16.	B (71)		
17.	A (63)		
18.	D (52)		
19.	C (53)		
20.	C (64)		
21.	A (56)		
22.	C (40)		
23.	A (46)		
24.	D (53)		
25.	C (58)		

註: 括號內數字為答對百分率。

卷一乙部

分數 $(1.5 \times 1000 \text{ kg}) \times 4200 \text{ J kg}^{-1} \, {}^{\circ}\text{C}^{-1} \times (80 - 60) \, {}^{\circ}\text{C} \times (1 - 15\%)$ 1M+1M $= 1.07 \times 10^8 \text{ J}$ 1A <u>3</u> (b) $1.07 \times 10^8 \text{ J} \div (4.5 \text{ kW}) \div 3600 \text{ s}$ 1M = 6.61 (小時) 1A 2 (c) 隨著水的溫度下降/室溫上升/溫差下降,加熱系統的熱傳遞率也下降。 1**A** 1 2. (a) 停止加熱和 1**A** 1**A** 2 把水徹底地攪拌。 (b) (i) $\frac{L-64}{L-64} = \frac{65-20}{L-64}$ 1M $\frac{1}{80-64} = \frac{1}{92-20}$ L - 64 = 101**A** 2 L = 74 mm(ii) $\frac{20-x}{}=\frac{64-0}{}$ 1**M** $\frac{1}{92-20} = \frac{1}{80-64}$ 1**A** 2 20 - x = 288 $x = -268 \, {}^{\circ}\text{C}$ 1M P = F v3. (a) (i) $= 8000 \text{ N} \times 2 \text{ m s}^{-1}$ 1**A** 2 = 16 kW1**A** 1 (ii) $P_{\text{H}} = 20 \text{ kW} - 16 \text{ kW} = 4 \text{ kW}$ 1M (b) (i) $P = 4 \text{ kW} + (8000 - 7000 \text{ N}) \times 2 \text{ m s}^{-1}$ 1A = 6000 W = 6 kW1A (ii) 電動機所需的功率輸出較小。 1 或電動機所需施力較小。 1**A** (iii) 不成立,升降機不能運作/升降機下跌 1A 2 因滑動產生/鋼索不能固定在鼓軸上/鼓軸不能施力於鋼索。 $F = qvB = (1.60 \times 10^{-19} \text{ C})(1.2 \times 10^7 \text{ m s}^{-1})(0.01 \text{ T})$ 1M (i) (a) $= 1.92 \times 10^{-14} \text{ N}$ 2 1A (ii) 指入紙面 $\times \times_{d} \times \times \times \times \times$ 的匀強磁場 1 1A

XXXXXXXXXX

D

(c) 增大了接觸面積,

因此在下跌時壓強減少,參加者較不容易受傷或鬆脫。

1A

1**A**

2

7. (a) $c = f\lambda$ => 3 × 10⁸ m s⁻¹ = f(0.02 m) ∴ $f = 1.5 \times 10^{10}$ Hz 或 15000 MHz

1M 1A <u>2</u>

(b) (i) 從狹縫 A 和 B 的繞射波至儀錶的程差沿 XY 變更,相長和相消干涉交替出現,產生極大和極小。

1A 1A <u>2</u>

(ii) $BP - AP = 1\frac{1}{2}\lambda$ BP - AP = 3 cm = 0.03 m $\therefore BP = 1.24 + 0.03 = 1.27 \text{ m}$

1**A**

2

2

2

1M

1M

1A

1A

(iii) 沿 XY 的程差 < AB $AB = 3 \times 2$ cm $= 3\lambda$ 因此容許的程差 $= 0\lambda$, 1λ , 2λ 極大的最大數目 = 3

(c) 頻率較低的無線電波會有(較長的波長,以致產生)較大的繞射效應。 無線電波繞過較小的障礙物/不會被小障礙物反射。 1A

8. (a) (i) 虚像

1A <u>1</u>

(ii) 凸透鏡 僅凸透鏡能產生放大(虛、正立)的像。 1A 1A <u>2</u>

(b) (i)

(ii) 確定 F 的光線正確 焦距 f= 17 cm (16.0 ± 17.5 cm)

1M 1A <u>2</u>

(c) 從 A' 或由透鏡至 E 的光線正確 \circ 全部正確 \circ

1A 1A <u>2</u>

(d) 放大鏡/遠視眼鏡/簡單顯微鏡

1A <u>1</u>

$$k = \frac{\ln 2}{5730 \times 3.16 \times 10^7} = 3.83 \times 10^{-12} (\text{s}^{-1})$$

 $t = 2.4 \times 10^{11} \text{ s 或 7571 (年) (接受 7500 至 7600 (年))}$

1**A**

放射性 A = kN

$$N = \frac{A}{k} = \frac{0.2}{3.83 \times 10^{-12}}$$
$$= 5.22 \times 10^{10}$$

1M

1A <u>3</u>

(b)
14
C的原子核數量: $N_0 = 1 \times 10^{23} \times (1.3 \times 10^{-12}) = 1.3 \times 10^{11}$

1A <u>1</u>

$$kt = \ln \frac{N_0}{N}$$

$$(3.83 \times 10^{-12}) \ t = \ln \frac{1.3 \times 10^{11}}{5.2 \times 10^{10}}$$

1M

1A <u>2</u>

10. (a) (i)
$$80 \Omega$$

1A <u>1</u>

(ii)

$$V_{AB} = \frac{120}{(80 + 120)} 12$$

1M

1A

<u>2</u>

(b) 因 R_v 和 120 Ω 電阻器以並聯連接,AB 間的 R_{eq} 小於120 Ω ,以致 AB 間所分得的電壓減低 / 比預期數值低。

1A 1A

使用比該部分電路的電阻更大的伏特計(例如 $10 \, M\Omega$ 的數碼伏特計)。

1A <u>3</u>

(c) (i)
$$V_{AB} = \frac{120}{(R+120)} 12 = 6.0 \text{ V}$$

 $R = 120 \Omega$

1A

對應的溫度為 16℃。

1A <u>2</u>

10. (c) (ii) 正確電路(即互換熱敏電阻器 R 和 120Ω電阻器)。

當溫度下降, 熱敏電阻器的電阻增加。

當電阻增加至一定數值使 $V_{AB} = 6.0 \text{ V}$ 或以上,驅動電子開關以啟動發熱裝置。

11. (a) $T\cos\frac{\theta}{2} = F_y = mg$ $T\sin\frac{\theta}{2} = F_x = \frac{Q^2}{4\pi \,\varepsilon_0 \,d^2}$ $\tan\frac{\theta}{2} = \frac{Q^2}{4\pi \,\varepsilon_0 \,d^2} (\frac{1}{mg})$ $= 9 \times 10^9 \times \frac{(3.1 \times 10^{-9})^2}{0.1^2} \times \frac{1}{(1.0 \times 10^{-5})(9.81)}$ $\frac{\theta}{2} = 5.0^\circ \text{ i.e. } \theta = 10.1^\circ$

(b) (i) d = 10 cm 10 cm E

d=10 cm 10 cm $1A \qquad \underline{1}$

(ii)
$$P$$
點的電勢
$$= \frac{Q}{4\pi \, \varepsilon_0 \, d} + \frac{Q}{4\pi \, \varepsilon_0 \, d} = \frac{2 \, Q}{4\pi \, \varepsilon_0 \, d}$$
 1M
$$= (9 \times 10^9) \, \frac{2 \times 3.1 \times 10^{-9}}{0.1}$$
 = 558 V 1A $\frac{2}{2}$

卷二

甲部:天文學和航天科學

1. B(78%)	2. D(43%)	3. A(44%)	4. D(33%)
5. A(43%)	6. B(56%)	7. C(61%)	8. C(46%)

分數

1. (a) 人造衛星保持位於地球赤道某地點的豎直上方, 1A 而週期=24小時,與地球自轉的週期相同, 1A 故此,易於從地球發射/接收訊號/無需移動天線來追蹤人造衛星。

2

(b) $\frac{mv^2}{r} = \frac{GMm}{r^2}$ 1M

 $v = \sqrt{\frac{GM}{r}} = \sqrt{\frac{4.0 \times 10^{14}}{(6.4 \times 10^6 + 0.3 \times 10^6)}}$

1A $= 7727 \text{ m s}^{-1}$

(i) 總能量 = $\frac{1}{2}mv^2 + (\frac{-GMm}{r})$ (c) 1M $=\frac{GMm}{2r}+(\frac{-GMm}{r})=\frac{-GMm}{2r} \qquad \qquad (\frac{mv^2}{r}=\frac{GMm}{r^2} \ \, \mathbb{E} \frac{mv^2}{2}=\frac{GMm}{2r})$ 1M 2

(ii) $\Delta E = \frac{-GMm}{2} (\frac{1}{r_{\rm B}} - \frac{1}{r_{\rm A}}) = \frac{1}{2} (4.0 \times 10^{14})(2000)(\frac{1}{6700} - \frac{1}{42400}) \times 10^{-3}$ 1M 1**A** 2

開普勒第三定律用於橢圓形軌道 $T^2 = \frac{4\pi^2 a^3}{GM}$ (iii) 1M $a = [r_A + r_B] \div 2$ $= \frac{6.7 \times 10^6 + 42.4 \times 10^6}{2} \text{ m}$ $= 2.455 \times 10^7 \text{ m}$

中 A 到 B 的時間 = $\frac{T}{2} = \frac{1}{2} \sqrt{\frac{4 \pi^2 a^3}{GM}} = \frac{2 \pi}{2} \sqrt{\frac{a^3}{GM}} = \pi \sqrt{\frac{(2.455 \times 10^7)^3}{4.0 \times 10^{14}}}$ 1**A** 2 =19107 s = 318.5 分鐘 / 5.3 小時

 $T^{2} \propto a^{3}$ $\left(\frac{T}{24}\right)^{2} = \left[\frac{(6700 + 42400) \div 2}{42400}\right]^{3}$ {或: T = 10.6 小時 $\Rightarrow t = 5.3$ 小時}

乙部:原子世界

1. D(50%)	2. C(42%)	3. C(49%)	4. D(44%)
5. A(64%)	6. B(73%)	7. B(22%)	8. A(44%)

分數

(a) (i) $E = hf = 功函數 + KE_{max}$ (最大動能) = 2.30 eV + 0.81 eV = 3.11 (eV) 1**A** 1

(ii) 只有金屬表面的傳導/自由電子才擁有最大動能。 或 金屬的功函數只是射出一粒電子所需的最小能量。 或 金屬內的傳導 / 自由電子各自有不同的能量。

1**A**

或 能量較少的電子受原子核束縛,需要更多能量才能擺脫原子核的吸引而自 由運動。

. 1

或 一些電子不在金屬的表面,故它們不會擁有最大動能。

原子吸收的能量=功函數 (b) (i)

(0.01 W m⁻²)×[0.01×(10⁻⁹)² m²]×ts = 2.30×(1.60×10⁻¹⁹) J

$$t = 3680 \text{ s} = 61.3$$
 分鐘

1M

如果單一光子有足夠能量把電子轟出,則電子只在一次的碰撞便會獲得足夠的 (ii)

1A

這是一對一的過程 / 若一粒電子接受了一粒能量較金屬功函數大的光子,則電 或 子可立即發射出來。

1

 $(0.01 \text{ W m}^{-2}) \times (4.00 \times 10^{-4} \text{ m}^2) \div [3.11 \times (1.60 \times 10^{-19}) \text{ J}]$ (c) = 8.04 ×10¹² (每秒的光子數目)

1**A**

 $(8.04 \times 10^{12}) \times 0.1 \times (1.60 \times 10^{-19}) \text{ A}$ $= 1.29 \times 10^{-7} \text{ A} = 0.13 \text{ }\mu\text{A}$

-2.00

1M 1A

3

(d)

2A

2

2.00

4.00

V/V

丙部:能量及能源的使用

1. A(55%)	2. B(75%)	3. C(78%)	4. D(56%)
5. B(59%)	6. D(30%)	7. A(71%)	8. C(55%)

				分	· <u>數</u>
3.	(a)		$0 \left[\frac{1}{4\pi (3.4)^2} \cos^3(\tan^{-1}(\frac{1.2}{3.4})) \right]$.5 (lm m ⁻²)	1M 1A	<u>2</u>
	(b)		E用粗糙的表面以達到 E射來減少刺眼眩光。	1A 1A	2
	(c)	(i)	14.5 kW + 15 × 0.1 kW + 6 × 0.08 kW = 16.48 (kW) (接受 16.48 kW 或 16.5 kW)	1M 1A	2
		(ii)	(6×0.1 kW + 16.48 kW × 50%) ×8×20×1.0 = \$ 1414.4 (接受 \$ 1414.4 或 \$1416)	1M 1M 1A	<u>3</u>
		(iii)	使用節能低輻射塗層窗戶。 或較厚的牆壁。 或以螢光燈取代燈泡。 或採用冷卻能力(製冷能力)/能效較高的空調系統。	1A	<u>1</u>

丁部:醫學物理學

1. A(47%)	2. C(59%)	3. C(38%)	4. A(41%)
5. D(37%)	6. B(36%)	7. B(53%)	8. D(77%)

<u>分數</u>

4. (a) (i) 2.25 cm

1A <u>1</u>

(ii)
$$x_{\frac{1}{2}} = \frac{\ln 2}{\mu}$$
 (或 $0.5I_0 = I_0 e^{-\mu x_{\frac{1}{2}}}$)
 $0.0225 = \frac{\ln 2}{\mu}$
 $\mu = 30.8 \text{ m}^{-1}$ (接受 30.8 m^{-1} 和 31.0 m^{-1})

1A <u>2</u>

1M

(iii) 介質 Q: 密度較低

1A <u>1</u>

2

2

- (b) (i) 當 X-射線穿過 (穿越) 介質時,強度會衰減 / 被吸收。 於骨骼的衰減 / 吸收較軟組織的大,所以骨骼在底片上呈現白色 (較淺色) / 軟組織呈現黑色 (較深色)。
- 1A 1A
- (ii) X-射線管及探測器圍繞病人轉動,以拍攝多幅 X-射線 投影 / 圖像。 這些投影會被重建 / 計算 / 製作反投影 / 合成 以得到斷層造影圖,提供更 多身體狀況的資料。
- 1A
- (iii) CT 掃描的輻射照射量或劑量較高 (達 8.0 mSv 相對於 X-射線放射攝影的 0.01 mSv)
- 1A

1A

- 不及 X-射線放射攝影般具可攜性或便於操作

1A <u>2</u>