TTK4125 - Exercise 2

 ${\rm Jonas\; B\; Olsen: jonasbol@stud.ntnu.no}$

September 8, 2025

Problems

Preliminary

Our Static Parameter Estimator (SPM) is given by: $y = \theta^* \phi(t)$, where θ is an estimate of θ^* which is an unknown constant. We define the parameter estimation error as:

$$\tilde{\theta}(t) = \theta(t) - \theta^*$$

We then have the estimation error as:

$$\varepsilon(t) = y(t) - \theta \phi = -\tilde{\theta}\phi(t)$$

The given Lyapunov function is:

$$V(t) = \frac{1}{2\gamma}\tilde{\theta}^2$$

Which is positive definite, and its derivative is:

$$\dot{V}(t) = \frac{1}{\gamma} \tilde{\theta} \dot{\tilde{\theta}} = -\frac{1}{\gamma} \tilde{\theta} \dot{\theta} = \frac{1}{\gamma} \tilde{\theta} (-\gamma \phi^2 \tilde{\theta}) = -\phi^2 \tilde{\theta}^2 = -\varepsilon^2 \le 0$$

Which is negative semi-definite. The update law is given as:

$$\dot{\theta} = \gamma \phi \varepsilon = -\gamma \phi^2 \tilde{\theta}$$

 $1. \theta \in \mathcal{L}_{\infty}$

This claim is the same as the condition: $\sup_{t\geq 0} |f(t)| < \infty \iff f \in \mathcal{L}_{\infty}$ We have a positive definite function V(t) with a semi-negative definite derivative $\dot{V}(t)$, given the update law. This means that since V is non-increasing and so is $\tilde{\theta}$, and since θ^* is constant, then $\theta(t)$ must be non-increasing aswell, implying that it's bounded implying that $\theta \in \mathcal{L}_{\infty}$.

 $2. \varepsilon \in \mathcal{L}_2$

Following the argumentation presented in lecture 2, we have:

$$\int_0^\infty |\varepsilon|^2 dt = \int_0^\infty -\dot{V} dt = V(0) - V(t)_\infty < \infty$$
Implying that $\varepsilon \in \mathcal{L}_2$.

3. $\varepsilon \in \mathcal{L}_{\infty}$ given that $\phi \in \mathcal{L}_{\infty}$

Meaning we need $\sup_{t\geq 0|\varepsilon|} < \infty$ which would imply $\sup_{t\geq 0} |\tilde{\theta}\phi| < \infty$. We have already shown that $\tilde{\theta} \in \mathcal{L}_{\infty}$, and since $\phi \in \mathcal{L}_{\infty}$ is given, then the product of the two must also be bounded, which implies that $\varepsilon \in \mathcal{L}_{\infty}$.

4. $\varepsilon \leftrightarrow 0$ given $\phi, \dot{\phi} \in \mathcal{L}_{\infty}$

By Lemma A.4.7, if $\varepsilon, \dot{\varepsilon} \in \mathcal{L}$, and $\varepsilon \in \mathcal{L}_p$ for some $p \in [1, \infty)$, then

 $\varepsilon \to 0 \text{ as } t \to \infty.$

We have already shown that $\varepsilon \in \mathcal{L}_2$, so we need to show that $\varepsilon, \dot{\varepsilon} \in \mathcal{L}_{\infty}$. Given that $\phi \in \mathcal{L}_{\infty}$ we have that $\varepsilon \in \mathcal{L}_{\infty}$ already.

Now, $\sup_{t\geq 0} |\dot{\varepsilon}| \Rightarrow \sup_{t\geq 0} |-\dot{\theta}\phi - \tilde{\theta}\dot{\phi}|$

Already, $\theta \in \mathcal{L}_{\infty}$

And with $\dot{\theta} = \gamma \varepsilon \phi$ and now if $\phi \in \mathcal{L}_{\infty}$ is given, then $\varepsilon \in \mathcal{L}_{\infty}$ giving $\dot{\theta} \in \mathcal{L}_{\infty}$.

Resulting in $\dot{\theta}$, $\theta \in \mathcal{L}_{\infty}$ using $\phi, \dot{\phi} \in \mathcal{L}_{\infty}$ and $\varepsilon, \dot{\varepsilon} \in \mathcal{L}_{\infty}$ and $\varepsilon \in \mathcal{L}_{2}$. Now by using "Barbalat's Lemma", we can say that $\varepsilon \to 0$ as $t \to \infty$.

From this we cannot conclude that $\theta \to \theta^*$.

From $\varepsilon = y - \theta \phi$ we see that this only tends to zero if either $\phi \to 0$ or $\tilde{\theta} \to 0$.

This shows that we can reach zero estimation error without zero parameter estimation error. In this case if $\varepsilon = 0$, $\dot{\theta} = 0$, our θ is not updating, even though it might be wrong. We can see this relation from

$$\dot{\tilde{\theta}} = -\gamma \tilde{\theta} \phi^2$$

So we need $\phi \neq 0$ for $\dot{\tilde{\theta}}$ to be driving $\tilde{\theta}$ to change.

This is known as persisten excitation.