\mathbf{Index}

A halian Commo	
Abelian Groups	vol.1: p.24
Adjoint Operators	vol.1: pp.43 - 44, 87, 103
A 1:	vol.3: pp.134 - 135
Adjugate Matrix	vol.2: pp.120 - 121
Affine Spaces	vol.1: p.93
Algebraic Lyapunov Equation	vol.4: pp.80 - 82
Arrow Matrix	vol.4: pp.150 - 154
Asymptotically Stable	vol.2: p.76
	vol.3: pp.82 - 84
Average The LTD In	vol.4: pp.7, 61 - 62, 67 - 69, 75
Attracting Fixed Point	vol.2: p.76
	vol.3: pp.83 - 84
Attractiveness	vol.3: p.83
	vol.4: pp.61, 99
Augmented Lagrangian Optimization Method	vol.4: pp.209 - 221
Autonomous Systems	vol.1:p.7
B	
Basin Boundary	vol.2: p.89
Basin of Attraction	vol.2: p.89
Basis	vol.2: pp.125 - 127
Bendixson's Theorem	vol.4: pp.25 - 29
Bifurcation	vol.1: pp.11 - 12, 63 - 64
	vol.4: pp.12 - 13
Bifurcation (Fold)	vol.4: pp.12 - 13, 57
Bifurcation (Transcritical)	vol.4: pp.12-15
Bifurcation Diagram	vol.4: pp.12, 15-17
Body Velocity	vol.1:p.38
C	
Carrying Capacity	vol.4: p.9
Causal Systems	vol.2: p.152
	vol.3: pp.3-4
Cayley Hamilton Theorem	vol.2: pp.139 - 140
	vol.3: pp.121 - 122
Center Manifold Theory	vol.4: pp.39-45
Centers (Equilibrium Point)	vol.4:pp.22,26
Centroid of Area	vol.1:pp.4-6
Characteristic Equation	vol.2: pp.77, 138 - 139
	vol.3:p.37
	vol.4:p.34
Class K (Comparison Functions)	vol.4: pp.93 - 97, 102 - 112
Class K L (Comparison Functions)	vol.4: pp.93 - 97, 102 - 112
Class K_{∞} (Comparison Functions)	vol.4: pp.93 - 96, 105
Column Space	vol.2: pp.133 - 134
Comparison Function	vol.4: pp.93 - 96, 102 - 103

	Complex Conjugate Transpose	vol.3: pp.40 - 44
	Condition Number (Of a Matrix)	vol.3: pp.61 - 62
	Connection Vector Field	vol.1: pp.118 - 119
	Conservative System	vol.2: pp.89 - 91, 103
	Conservative Vector Fields	vol.1: pp.145 - 146
	Conserved Quantity	vol.2:p.90
	Constraint, Holonomic	vol.1: pp.76-77
	Constraint, Nonholonomic	vol.1: pp.110 - 117, 135 - 136
	Continuity w.r.t. Initial Conditions	vol.4: pp.53-55
	Continuity w.r.t. Parameters	vol.4: pp.54-55
	Continuously Differentiable	vol.4: pp.48 - 52
	Contour	vol.2: pp.91 - 92
	Control Lyapunov Function	vol.4: pp.167, 179-180
	Controllability	vol.3:p.132
	Controllability Gramian	vol.3:p.135
		vol.4:p.80
	Convolution	vol.3: pp.2-4
	Convolution (Discrete)	vol.3:pp.14,17
	Coordinate Transformation Matrix	vol.2: pp.128 - 129
		vol.4: pp.18, 20-41
	Coordinate Vector	vol.2: pp.126 - 127
	Corange	vol.2: pp.51 - 54
	Corank	vol.2: pp.51 - 54
	Cotangent Bundle	vol.1:p.126
	Cotangent Space	vol.1:p.126
	Cotangent Vector	vol.1: pp.127 - 130
	Cramer's Rule	vol.2:p.121
	Cross Product	vol.1: pp.1-2
	Curl (Vector)	vol.1:p.145
	Curvature (Constraint)	vol.1: pp.144 - 145
D		
	Dead Zone Nonlinearity	vol.2:p.151
	Deficient Matrix	vol.2: pp.140 - 141
	Degenerate Matrix	vol.2: p.139
	Degrees of Freedom	vol.1:p.17
	Detectable	vol.3: pp.145 - 146, 149
	Determinant	vol.2: pp.78 - 81, 115 - 119
	Diagonal Coordinate Form	vol.3: pp.38 - 46
	Diagonalization	vol.2: pp.142 - 144
		vol.3:p.46
		vol.4:p.79
	Diffeomorphic	vol.1:p.20
		vol.4:p.196
	Differentiable	vol.4:pp.51-52
	Differential Algebraic Equations	vol.2: pp.41 - 44,47 - 48
	Differential Algebraic Equations, Differentiation Index	vol.2: pp.47 - 48
	Differential Algebraic Equations, Model Consistency	vol.2:p.44

Differential Algebraic Equations, Regularity	vol.2:p.45
Differential Algebraic Equations, Solution	vol.2:p.44
Differential Lyapunov Equation	vol.4: pp.121-122, 128
Dimension (Of a Vector Space)	vol.2: pp.125 - 126
Direct Product of Two Sets	vol.1:p.20
Direct Sum	vol.1:p.20
Direct Sum of Two Sets	vol.1: p.125
Directional Linearity	vol.1: p.106
Dissipation Like Functions	vol.4: pp.206 - 208
Distribution (Allowable Velocities)	vol.1: pp.112, 148 - 150
Divergence	vol.4: pp.25 - 29
Dot Product	vol.2: pp.134 - 135
200 1 10ddol	vol.3: p.41
E	001.9 . p.41
Eigenspace	vol.2:p.140
Eigenvalue	vol.2: p740 vol.2: pp.77, 138 - 145
Digenvalue	vol.3: pp.36 - 45, 56 - 59
F:	vol.3: pp.30 - 45, 30 - 39 vol.2: pp.76 - 77, 138 - 145
Eigenvector	,
	vol.3: pp.36 - 45
Eigenvector (Left)	vol.3: pp.50 - 51
Elementary Row Operators	vol.2: p.107
Embedding	vol.1:p.96
Equilibrium Point	vol.3: pp.1, 5-10, 79-84
	vol.4: pp.3-4
Equivalent Vectors w.r.t. Functions	vol.1: pp.100 - 101
Estimation of Constant Parameters	vol.4: pp.130 - 149
Euler Lagrange Equation	vol.1:p.136
Existence And Uniqueness Theorem	vol.1:pp.11,13
	vol.2:p.82
	vol.4: pp.46 - 52, 91
Exponential Map	vol.1: pp.48 - 51, 103 - 104
Exponential Stability	vol.4: pp.103-104, 107, 116-123, 168
External Forces	vol.1:p.1
F	
Feedback Linearization	vol.4: pp.185, 194
Finite Escape Time	vol.4: pp.9 - 10
Focus Node	vol.4: pp.22, 33
Fold Bifurcation	vol.4: pp.12 - 13,57
Force Couple	vol.1:p.2
Force Couple System	vol.1:p.3
Forward Euler Integration	vol.2:p.148
Forward Kinematics	vol.1: pp.78, 83 - 84
Frequency Response	vol.3: pp.98, 105
Frobenius Norm	vol.3: pp.62, 103 vol.3: pp.62, 102 - 117
Fundamental Vector Field (Infinitesimal Generators)	vol.3: pp.02, 102 - 117 vol.1: pp.99 - 100
G	pp.33 - 100
Gait Generation	wol 1 · n 194
Gan Generation	vol.1:p.124

	10 104
Gaussian Elimination	vol.2: p.104
Generalized Coordinates	vol.1:p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Geometric Series	vol.4:p.92
Globally Asymptotically Stable	vol.3:p.93
	vol.4:pp.62,67
Gradient Vector Field	vol.1: pp.129 - 130
Gram Schmidt Orthogonality Procedure	vol.2:p.137
Green's Theorem	vol.4: pp.25-27
Group	vol.1: pp.21, 94-95
Group Invariant Vectors	vol.1:p.100
Group, Left/right Action	vol.1: pp.24 - 29, 33, 80, 96, 137
Group, Symmetry	vol.1: pp.108 - 109, 137
H	
H_{∞} Norm	vol.3: pp.108 - 119
Hartman Grobman Theorem	vol.4: pp.23-24
Hermitian Matrix	vol.3: p.107
Heteroclinic Trajectory	vol.2: p.94
Holonomic Constraint	vol.1: pp.76 - 77
Homeomorphic	vol.1 : p.19
Homeomorphic	vol.2: p.88
	vol.4: p.23
Hamamanitu	
Homogeneity	vol.3: p.1
Homogeneous Equations	vol.2: p.105
Hopf Bifurcation	vol.4: pp.35 - 38
Huber Function	vol.4: p.71
Hurwitz Matrix	vol.3: pp.94 - 96
	vol.4:pp.81-82
Hyperbolic Equilibrium Point	vol.4:pp.22-24
Hyperbolic Fixed Point	vol.2:pp.87-88
Hysteresis	vol.1: pp.66, 70-71
	vol.2: p.42
I	
Idempotent	vol.2:p.37
Image (Algebra)	vol.1:p.124
Impulse Response	vol.3: pp.19 - 20, 29 - 30, 36
Index Theory	vol.2: pp.98 - 101
	vol.4:p.35
Induced Norm	vol.3: pp.103 - 104
Infinity Norm	vol.3: pp.100 - 101
	vol.4:p.61
Inner Product	vol.2: pp.134 - 135
	vol.3:p.41
Input Output Linearization	vol.4: pp.185 - 187, 190 - 191, 197 - 199
Input To State Stability	vol.4: pp.201 - 208
Integrator Backstepping	vol.4: pp.165 - 178
Internal Forces	vol.1: p.1
111011101 1 01000	000.1 · p.1

Intersection (Spaces)	vol.2: pp.130 - 131
Invariance	vol.1:p.139
Invariant Manifold	vol.4: pp.42 - 45, 191 - 192
Invariant Set	vol.4:pp.74-77
Inverted Pendulum	vol.4: pp.192 - 194
Isocline	vol.2:pp.74,84
Isomorphic	vol.1:p.22
J	
Jacobi Liouville Formula	vol.3:p.27
Jacobian	vol.1: pp.84 - 86
	vol.2:p.85
	vol.4:pp.56-58
Jordan Blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K	
K Step Observability Matrix	vol.3: pp.138 - 139
Kalman Rank Test	vol.3:p.136
Kernel	vol.1: pp.124 - 125
Kinematic Locomotion	vol.1: pp.105 - 107
L	
L1 Norm	vol.3: pp.100 - 101
	vol.4:p.61
L2 Induced Gain of a System	vol.3:p.108
L2 Norm	vol.3: pp.100 - 101
	vol.4:p.61
La Salle's Invariance Principle	vol.4: pp.74 - 77,85 - 87
Lagrangian	vol.2:p.45
Lagrangian Multipliers	vol.2: pp.45 - 46
	vol.3:p.126
Laplace Transform	vol.2:p.147
	vol.3: pp.29 - 33
Level Sets	vol.4: pp.66 - 69
Liapunov Fixed Point	vol.2:p.76
Lie Algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
Lie Bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie Derivative	vol.4: pp.179 - 184
Lie Groups	vol.1: pp.21, 96 - 99
Lifted Actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Limit Cycle	vol.3:p.82
·	vol.4: pp.10 - 12, 33 - 38
Linear Combination	vol.2:p.124
Linear Equations	vol.2:p.104
Linear Independence	vol.2: pp.124 - 125
Linear Time Invariance	vol.2: p.152
	vol.3: pp.8 - 9, 17
Linear Transformation	vol.2: pp.131 - 133
	FF

vol.3:p.15

Linearity

Linearity (Mapping)	vol.1: pp.106-107
Linearity (Systems)	vol.2: p.152
	vol.3:p.1
Linearization at a Fixed Point	vol.1: pp.10-11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
	vol.4: pp.5 - 8, 23 - 24, 88
Lipschitz Continuous Function	vol.4: pp.49 - 55, 91
Local Connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locally Asymptotically Stable	vol.4: pp.61 - 62, 67 - 69
Locomotion	vol.1:p.104
Logistic Equation	vol.4:p.9
Lorenz Attractor	vol.4:p.12
Lotka Volterra Model of Competition	vol.2:p.88
Lyapunov Functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
	vol.4: pp.65 - 87
Lyapunov Stability	vol.4: pp.59 - 69, 106 - 121
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, Accessible	vol.1: pp.76-78
Manifolds, C^k Differentiable	vol.1:p.20
	vol.4: pp.48 - 52
Manifolds, Curvature	vol.1: p.93
Manifolds, Stable	vol.2: p.89
Manifolds, Topology	vol.1: p.93
Marginally Stable	vol.3: pp.53, 56
Markov Parameters	vol.3: p.20
	vol.4: pp.188 - 190
Matrix Cofactor	vol.2: pp.111, 118 - 120
Matrix Determinant	vol.2: pp.115 - 119
Matrix Exponentiation	vol.3: pp.26 - 27, 36
Matrix Inverse	vol.2: pp.110 - 115
Matrix Minor	vol.2: p.111
Matrix Operations	vol.2: p.106
Matthew Equation	vol.3: p.27
Memoryless Systems	vol.2: p.152
M () M ()	vol.3: p.4
Metzler Matrix	vol.4: p.31
Minima Phase Transfer Function	vol.4: pp.194 - 195
Minimum Energy Input	vol.3: pp.127 - 129, 133 - 136
Modal Contributions of Initial Conditions	vol.3: pp.41 - 45, 51
Modal Decomposition	vol.3: pp.35 - 45, 51
Model Consistency	vol.2: p.44
Model Reference Adaptive Control	vol.4: pp.154 - 165
Model Uncertainty	vol.3: pp.109 - 115
Modular Addition	vol.1: p.21
Momentum	vol.1: pp.138 - 140

	Manatania Function	nol 1 19
	Monotonic Function Moreau Envelope	vol.1: p.13 vol.4: pp.211 - 214
	Multiplicative Calculus	vol.4: pp.211 - 214 vol.1: pp.34 - 38, 46 - 47
N	-	voi.1 : pp.34 - 30, 40 - 41
1 v	Negative Semidefinite Function	vol.4: pp.67, 74 - 162
	Negative Semidefinite Matrix	vol.3: p.93
	Nesterov Acceleration	vol.4: p.98
	Neumann Series	vol.3 : p.22
	Neutrally Stable	vol.2 : p.76
	Nilpotent Matrix	vol.3 : p.35
	Node	vol.4: pp.21, 33
	Noether's Theorem	vol.1: pp.131 - 134
	Noncommutativity	vol.1 : p.147
	Nonconservativity	vol.1: pp.145 - 147
	Nonholonomic Constraint	vol.1: pp.110 - 117, 135 - 136
	Normal Form	vol.4: pp.195 - 200
	Normal Matrix	vol.3: pp.36 - 46
	Nullcline	vol.2: p.84
	Nullity	vol.2: p.134
	Nullspace	vol.2: pp.132 - 134
0	•	
	Observability	vol.3: pp.136 - 139
	·	vol.4: pp.86 - 87, 127, 130, 138 - 141
	Observability Gramian	vol.4: pp.80, 129
	Observer Based Controller	vol.3: pp.148 - 149
		vol.4: pp.135 - 136
	One Form	vol.1: pp.125, 127 - 129
	Optimal Frame	vol.1: p.83
	Orthogonal Compliment	vol.2: pp.137 - 138
	Orthogonal Set	vol.2: p.135
	Orthonormal	vol.2: pp.135 - 136
	Orthonormal Basis	vol.2: p.136
	Outer Product	vol.2: p.136
	Output Feedback Design	vol.3: p.147
	Overdetermined System	vol.2:pp.19,41
P		
	P Norm	vol.3: pp.100 - 102
		vol.4:p.61
	Parallel Linkage Mechanisms	vol.3: pp.59 - 60
	Pbh Test	vol.3:p.136
	Pendulum	vol.4: pp.7 - 8,63 - 64,72 - 77
	Periodic Orbits	vol.4: pp.25 - 34
	Pfaffian Constraint	vol.1: pp.111 - 117
	Phase (Angle)	vol.2: p.61
	Phase Coordinate Form	vol.3:p.6
	Phase Drift	vol.2: p.68
	Phase Lock	vol.2: p.67

Phase Portrait	vol.1:pp.7-9
	vol.2:pp.74,83
	vol.3:p.35
	vol.4: pp.5, 17-19
Pitchfork Bifurcation	vol.4: pp.12, 15-17
Poincare Bendixson Criterion	vol.4: pp.32 - 34
Poles (Transfer Function)	vol.2:p.147
	vol.3:pp.58-59
Position Trajectory	vol.1:p.105
Positive Definite Function	vol.4:pp.65-66
Positive Definite Matrix	vol.3:p.87
	vol.4:pp.78-79
Positive Invariant Set	vol.4: pp.21, 29 - 34, 69
Positive Semidefinite Matrix	vol.3:p.125
Positive System	vol.4:p.31
Potentials	vol.1:p.17
Power Spectral Density	vol.3: pp.116 - 119
Predator/prey Model	vol.4: pp.30 - 31
Preimage (Algebra)	vol.1: p.124
Principally Kinematic System	vol.1: p.139
Principle Minors	vol.3:p.88
Principle of Least Action	vol.1: pp.131 - 133
Projection Operator	vol.2: p.37
Proximal Operator	vol.4: pp.210 - 214
Q	FF.220
Quadratic Programming	vol.3: pp.125 - 126
R	· · · · · · · · · · · · · · · · · · ·
Radially Unbounded	vol.3:p.89
	vol.4: pp.67 - 68, 105 - 107
Range (Matrix)	vol.2: pp.132 - 133
Range of Entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reachability	vol.3: pp.120 - 126, 130, 132
Reachability Gramian	vol.3: pp.124 - 129, 133 - 135
Reaction Force	vol.1: p.4
Realization Theory	vol.2 : p.149
Reconstruction Equation	vol.1: pp.114 - 123, 138
Reference Signal Tracking	vol.4: pp.174 - 123, 138 vol.4: pp.177 - 178, 183, 199 - 200
Region of Attraction	vol.4: pp.177 - 178, 183, 199 - 200 vol.4: pp.15, 92 - 93
Regular Control Problem	vol.4: pp.15, 92 - 93 vol.2: p.45
· ·	
Relative Degree	vol.4: pp.181 - 193
Resolvent	vol.3: pp.17 - 18, 30, 36
Resonance	vol.3: p.50
Reversible System	vol.2: pp.92 - 95
Rigid Body	vol.1: p.23
Rigid Body, Left Lifted Action	vol.1: pp.38 - 41
Rigid Body, Right Lifted Action	vol.1: pp.41 - 43

Routh Hurwitz Criterion	vol.3: pp.77 - 80
	vol.4: pp.34, 83
Row Echelon Form	vol.2:p.107
Row Space	vol.2:p.134
Runge Kutta Method	vol.2:p.83
S	r
Saddle Connection	vol.2:p.94
Saddle Node	vol.4: pp.19 - 21
Sector Bounded Nonlinearities	vol.4:p.72
Semidirect Product of Two Sets	vol.1:p.24
Sensitivity Function	vol.4: pp.55 - 58
Separatrix	vol.2: p.89
Shape Trajectory	vol.1: p.105
Shift Operator	vol.3: p.100
Signal Norms	vol.3: pp.96 - 104
Similar Matrices	vol.2: pp.30 - 104
Singular Matrix	
~	vol.2: pp.41 - 42, 51, 110, 122
Singular Value Decomposition	vol.3: pp.104 - 110, 128 - 129
Singular Vectors	vol.3 : p.106
Sink Node	vol.4: pp.19, 21
Small Gain Theorem	vol.3: pp.109 - 114
Solution, Differential Algebraic Equations	vol.2 : p.44
Sontag's Formula	vol.4 : p.180
Source Node	vol.4: pp.19, 21
Span	vol.2: pp.124 - 125
Spatial Velocity	vol.1: pp.43,85
Special Euclidean Group	vol.1: p.23
	vol.2: pp.1-2
Special Orthogonal Group, $so(N)$	vol.1:p.22
	vol.2: pp.1-2
Stability	vol.3: pp.80 - 84
	vol.4: pp.5, 98-103
Stability Via Linearization	vol.4: pp.88 - 90
Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2:p.76
	vol.3: pp.53 - 59, 91 - 94
	vol.4:p.5
State Estimator Controller	vol.3: pp.144 - 147
State Feedback Controller	vol.3: pp.140 - 144
State Space Model	vol.2: pp.147 - 150
	vol.3:p.5
State Transition Matrix	vol.3:pp.11-13
	vol.4: pp.105 - 106, 121 - 123
State Vector	vol.2: pp.147 - 149
	vol.3:p.5
Strain Energy	vol.2:pp.5-7
Structural Stability	vol.2:p.88

		14 27 20
	Subcritical Hopf Bifurcation	vol.4: pp.37 - 38
	Subcritical Pitchfork Bifurcation	vol.4: p.17
	Subspace	vol.2: pp.129 - 130
	Sum (Spaces)	vol.2: pp.130 - 131
	Supercritical Hopf Bifurcation	vol.4: pp.35 - 37
	Supercritical Pitchfork Bifurcation	vol.4: pp.15 - 16
	Superposition	vol.3: pp.1, 13
	Supremum	vol.3:p.98
	Symmetric Matrix	vol.2:p.144
		vol.3: pp.86 - 96
		vol.4: p.78
	Symmetry	vol.1: pp.108 - 109, 131
	System Norms	vol.3: pp.99 - 120
T		
	Tangent Spaces	vol.1: pp.29 - 30
	Taylor Series Expansion	vol.3: pp.7 - 8
	•	vol.4: pp.6, 39 - 40, 44 - 45
	Tensor Product	vol.1: p.20
	Time Invariance	vol.2: p.152
		vol.3: pp.1 - 4
	Time Reversal Symmetry	vol.2: pp.92 - 93
	Toeplitx Matrix	vol.3: p.3
	Trace	vol.3 : pp.78 - 80
	Traction	vol.2: pp.60 - 61
	Transcritical Bifurcation	vol.4: pp.12 – 15
	Transfer Function	vol.2: pp.146 - 147, 150
		vol.3: pp.18 - 20, 36, 52
	Transmission	vol.3: p.61
U		
	Underactuated Robotic Mechanisms	vol.3: pp.59 - 77
	Underactuated System	vol.1:p.104
	Underdetermined System	vol.2: pp.19, 41
	Uniform Observability	vol.4: pp.129 - 130, 138 - 143
	Uniformly Asymptotically Stable	vol.4: pp.100 - 104, 107 - 116
	Uniformly Exponentially Stable	vol.4: pp.103 - 104, 107, 116 - 123
	Uniformly Stable	vol.4: pp.100 - 102, 104, 107 - 114
	Unitary Diagonal Coordinate Transformation	vol.3: pp.38 - 43,50
		vol.4: p.79
	Unstable	vol.2: p.76
V		
	Van Der Pol Oscillator	vol.4: pp.11 - 12
	Variance Amplication	vol.3: p.117
	Variations of Constants Formula	vol.3: pp.24, 54
		vol.4: p.203
	Varignon's Theorem	vol.1:p.1
	Vector Field	vol.1: pp.30 - 31
		vol.2: p.74
		•

Vector Mapping vol.2:p.127Vector Space vol.2:pp.122-123Vertical Space vol.1:p.125Virtual Work vol.3: pp.63 - 64WWhite in Time Gaussian Processes vol.3:pp.115-119Work (Mechanical) vol.1:p.145Z Transform vol.3:pp.14-22Zero Dynamics vol.4: pp.181 - 182, 185, 193 - 195Zero Set vol.1: pp.76, 110-111Zeros (Transfer Function) vol.2:p.147