CS11-711 Advanced NLP Text Classification

Graham Neubig

Site https://phontron.com/class/anlp2021/

A General Framework for NLP Systems

 Formally, create a function to map an input X (language) into an output Y. Examples:

Input X	Output Y	Task
Text	Text in Other Language	Translation
Text	Response	Dialog
Text	Label	Text Classification
Text	Linguistic Structure	Language Analysis

- To create such a system, we can use
 - Manual creation of rules
 - Machine learning from paired data $\langle X, Y \rangle$

Reminder: Machine Learning

Learning Algorithm

Learned
Feature Extractor *f*Scoring Function *w*

$$\mathbf{h} = f(\mathbf{x})$$
$$s = \mathbf{w} \cdot \mathbf{h}$$

Inference Algorithm

Text Classification

- Classify sentences according to various traits
- Topic, sentiment, subjectivity/objectivity, etc.

```
I hate this movie ______ neutral negative
```

Generative and Discriminative Models

Generative vs. Discriminative Models

 Generative model: a model that calculates the probability of the input data itself

$$P(X)$$
 $P(X, Y)$ stand-alone joint

 Discriminative model: a model that calculates the probability of a latent trait given the data

Application to Text Classification

• Generative text classification: Learn a model of the joint P(X, y), and find

$$\hat{y} = \underset{\tilde{y}}{\operatorname{argmax}} P(X, \tilde{y})$$

• **Discriminative text classification:** Learn a model of the conditional $P(y \mid X)$, and find

$$\hat{y} = \underset{\tilde{y}}{\operatorname{argmax}} P(\tilde{y}|X)$$

Generative Text Classification

Language Modeling: Calculating the Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
Next Word Context

The big problem: How do we predict

$$P(x_i \mid x_1, \ldots, x_{i-1})$$

The Simplest Language Model: Count-based Unigram Models

 We'll cover more complicated models next class, so let's choose the simplest one for now!

• Independence assumption: $P(x_i|x_1,\ldots,x_{i-1})\approx P(x_i)$

Count-based maximum-likelihood estimation:

$$P_{\text{MLE}}(x_i) = \frac{c_{\text{train}}(x_i)}{\sum_{\tilde{x}} c_{\text{train}}(\tilde{x})}$$

Handling Unknown Words

- If a word doesn't exist in training data becomes zero!
- $\frac{c_{\text{train}}(x_i)}{\sum_{\tilde{x}} c_{\text{train}}(\tilde{x})}$
- Need a distribution that assigns some probability to all words!
 - Character/subword-based model: Calculate the probability of a word based on its spelling.
 - Uniform distribution: Approximate by assuming fixed size vocabulary and defining: $P_{\rm unk}(x_i) = 1/N_{\rm vocab}$
- Interpolate: Combine two probabilities w/ coefficient λ_{unk} :

$$P(x_i) = (1 - \lambda_{\text{unk}}) * P_{\text{MLE}}(x_i) + \lambda_{\text{unk}} * P_{\text{unk}}(x_i)$$

Parameterizing in Log Space

 Multiplication of probabilities can be re-expressed as addition of log probabilities

$$P(X) = \prod_{i=1}^{|X|} P(x_i) \longrightarrow \log P(X) = \sum_{i=1}^{|X|} \log P(x_i)$$

- Why?: numerical stability, other conveniences
- We will define these parameters θ_{xi}

$$\theta_{x_i} := \log P(x_i)$$

Generative Text Classifier

Joint probability can be based on the following decomposition

$$P(X,y) = P(X|y)P(y)$$

class-conditional LM, trained on data associated with that class

class prior probability (bias)

$$P(y) = \frac{c(y)}{\sum_{\tilde{y}} c(\tilde{y})}$$

Bag-of-words Generative Classifier

Also called a "Naive Bayes" classifier more generally

Discriminative Text Classification

Why Discriminative Classifiers?

- Generative models are somewhat roundabout
 - → spend lots of capacity modeling the input
- Discriminative models directly model the probability of the output → what we care about
- However, discriminative models don't have an easy count-based decomposition!

BOW Generative:

enerative:
$$P(X,y) = P(y) \prod_{i=1}^{|X|} P(x_i|y) = \frac{c(y)}{\sum_{\tilde{y}} c(\tilde{y})} \prod_{i=1}^{|X|} \frac{c(x_i,y)}{\sum_{\tilde{x}} c(\tilde{x},y)}$$
 is criminative:

BOW Discriminative:

$$P(y|X) = ??$$

Discriminative Model Training

 Instead, define model that calculates probability directly based on parameters θ

$$P(y|X;\theta)$$

 Define a loss function that is lower if the model is better, such as negative log likelihood over training data

$$\mathcal{L}_{\text{train}}(\theta) = -\sum_{\langle X, y \rangle \in \mathcal{D}_{\text{train}}} \log P(X, y; \theta)$$

And optimize the parameters directly to minimize loss

$$\hat{\theta} = \operatorname*{argmin}_{\tilde{\theta}} \mathcal{L}_{\mathrm{train}}(\tilde{\theta})$$

BOW Discriminative Model

 For binary classification of positive/negative, first calculate score

$$s_{y|X} = \theta_y + \sum_{i=1}^{|X|} \theta_{y|x_i}$$

• Convert into a **probability**, e.g. using *sigmoid* function

$$P(y|X;\theta) = \operatorname{sigmoid}(s_{y|X}) = \frac{1}{1 + e^{-s_{y|X}}}$$

Multi-class Classification: Softmax

- Sigmoid can be used for binary decisions
- For multi-class decisions, calculate score for each class and use softmax

$$P(y|X;\theta) = \frac{e^{s_{y|X}}}{\sum_{\tilde{y}} e^{s_{\tilde{y}|X}}}$$

$$s = \begin{pmatrix} -3.2 \\ -2.9 \\ 1.0 \\ 2.2 \\ 0.6 \end{pmatrix} \longrightarrow p = \begin{pmatrix} 0.002 \\ 0.003 \\ 0.329 \\ 0.444 \\ 0.090 \end{pmatrix}$$

. . .

Gradient Descent

Calculate the gradient of the loss function with respect to the parameters

$$\frac{\partial \mathcal{L}_{ ext{train}}(\theta)}{\partial heta}$$

- How? Use the chain rule more in later lectures.
- Update to move in a direction that decreases the loss

$$\theta \leftarrow \theta - \alpha \frac{\partial \mathcal{L}_{\text{train}}(\theta)}{\partial \theta}$$

- a is a learning rate dictating speed of movement
- This is *first-order* gradient descent
- Others, e.g. Newton's method and L-BFGS, consider secondorder (curvature) information and converge more quickly

Evaluation

Model Comparison

- We've built two models (e.g. a generative and discriminative model), how do we tell which one is better?
- Train both on the same training set, evaluate on a dev (test?) set, and compare scores!

Accuracy

 Simplest evaluation measure, what percentage of labels do we get correct?

$$\operatorname{acc}(\mathcal{Y}, \hat{\mathcal{Y}}) = \frac{1}{|\mathcal{Y}|} \sum_{i=1}^{|\mathcal{Y}|} \delta(y_i = \hat{y}_i)$$

Precision/Recall/F1

- Often, we care about a particular (usually minority) class (e.g. "toxic SNS posts detected"), we'll call it "1"
- Precision: percentage of system output "1"s correct

$$\operatorname{prec}(\mathcal{Y}, \hat{\mathcal{Y}}) = \frac{c(y = 1, \hat{y} = 1)}{c(\hat{y} = 1)}$$

Recall: percentage of human-labeled "1"s correct

$$rec(\mathcal{Y}, \hat{\mathcal{Y}}) = \frac{c(y=1, \hat{y}=1)}{c(y=1)}$$

· F1 Score, F-measure: harmonic mean of both

$$F_1 = \frac{2 \cdot \text{prec} \cdot \text{rec}}{\text{prec} + \text{rec}}$$

Statistical Testing

We have two models with similar accuracies

	Dataset 1	Dataset 2	Dataset 3
Generative	0.854	0.915	0.567
Discriminative	0.853	0.902	0.570

- How can we tell whether the differences are due to consistent trends that hold on other datasets?
- Statistical (significance) testing!
- Covered briefly, see Dror et al. (2018) for a complete overview

Significance Testing: Basic Idea

- Given a quantity, we test certain values of uncertainty with respect to the quantity, e.g.
- **p-value:** what is the probability that a difference with another quantity is by chance (lower = more likelihood of a significant difference)
- confidence interval: what is the range under which we could expect another trial to fall?

Unpaired vs. Paired Tests

- Unpaired Test: Compare means of a quantity on two unrelated groups
 - Example: test significance of difference of accuracies of a model on two datasets
- Paired Test: Compare means of a quantity on one dataset under two conditions
 - Example: test significance of difference of accuracies of two models on one dataset
- We are most commonly interested in the latter!

Bootstrap Tests

- A method that can measure p-values, confidence intervals, etc. by re-sampling data
- Sample many (e.g. 10,000) subsets from your dev/test set with replacement
- Measure accuracies on these many subsets

 Easy to implement, applicable to any evaluation measure, but somewhat biased on small datasets

Data Creation/Curation Basics

Task Definition

- What task do you want to perform and why?
- What are your classes?
- Creating an annotation standard:
 - Write down the classes and class definitions.
 - Try annotation yourself and note any hard examples.
 - Allow annotators to share hard examples with you, refine standard.

Source Data Collection

- Collect data textual data to annotate w/ labels
- Is the data:
 - Appropriate: Does it match the data you'll be expecting to process at test time?
 - Representative: Does it cover various demographics, languages, dialects, etc.?
 - Broad: Are you collecting data from a single domain or multiple ones?

Annotator Recruitment

- Friends: Good for small-scale, high-skill tasks
- Freelancing sites: Good for medium-scale, medium- or high-skill tasks
- Crowdsourcing sites: Good for large-scale, lower-skill tasks
- Can be very big difference in quality! (e.g. Lai et al. 2017)

	RACE-M	RACE-H	RACE
Random	24.6	25.0	24.9
Sliding Window	37.3	30.4	32.2
Stanford AR	44.2	43.0	43.3
GA	43.7	44.2	44.1
Turkers	85.1	69.4	73.3
Ceiling Performance	95.4	94.2	94.5

Turkers

CMU Students

Have multiple annotators annotate same data, measure agreement

Lai et al. RACE: Large-scale ReAding Comprehension Dataset From Examinations. EMNLP 2017.

Data Statements for NLP

(Bender and Friedman 2018)

- A checklist of things to document about your dataset, e.g.
- Curation rationale

Speech situation

Language variety

- Text characteristics
- Speaker demographic
 Recording quality
- Annotator demographic
- Other notes

Text Classification Datasets

Stanford Sentiment Treebank

(Socher et al. 2013)

 In addition to standard tags, each syntactic phrase tagged with sentiment

- Data: reviews from <u>rottentomatoes.com</u> collected by Pang and Lee (2004)
- Annotator details: People from MTurk

AG News

- News articles categorized into 4 classes
- Data: from an academic search engine (in 2004?)
- Curation Rationale: As a test bed for data mining and IR

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
 Zhang et al. Character-level Convolutional Networks for Text Classification. NIPS 2016.

DBPedia

- Classification of Wikipedia entity description text into 9, 70, or 219 classes
- Data: from Wikipedia first sections
- Curation rationale: As a testbed for text categorization

https://www.kaggle.com/danofer/dbpedia-classes

Generative Classifiers

Discriminative Classifiers

Classification Eval

Data Creation

Example Datasets

Questions?