

编译原理

第四章自上而下的语法分析

授 课 教 师 : 郑艳伟

手 机: 18614002860 (微信同号)

邮 : zhengyw@sdu.edu.cn

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

4.1 语法分析器的功能

语法分析器,又 称分析器,对单 词符号串进行语 法分析,识别出 各类语法单位, 最终判断输入串 是否构成语法上 正确的"程序"

0

源程序 词法分析器 单词符号 语法分析器 表 出 错 语法单位 格 语义分析与中间代码生成器 管 处 理 理 中间代码 优化器 中间代码 目标代码生成器 目标代码

4.1 语法分析器的功能

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

【例4.1】文法: $G_1 = (\{S,A\}, \{x,y,z,*\}, \{S \to xAy|z, A \to ** |*\},S)$

【例4.2】文法: $G_2[S]: S \to aA, A \to S|\varepsilon$, 其表示的语言为 $L(G_2) = a^+$

【例4.3】 文法: $G_3[S]: S \to Sa|a$, 其表示的语言为 $L(G_2) = a^+$

【例4.4】文法: $G_3[S]: S \to aS|a$, 其表示的语言为 $L(G_2) = a^+$

【例4.2】文法: $G_2[S]: S \to aA, A \to S|\varepsilon$, 其表示的语言为 $L(G_2) = a^+$

【例4.3】文法: $G_3[S]: S \to Sa|a$, 其表示的语言为 $L(G_2) = a^+$

【例4.4】文法: $G_3[S]: S \to aS[a]$, 其表示的语言为 $L(G_2) = a^+$

a a #

【例4.2】文法: $G_2[S]: S \to aA, A \to S|\varepsilon$, 其表示的语言为 $L(G_2) = a^+$

【例4.3】文法: $G_3[S]: S \to Sa|a$, 其表示的语言为 $L(G_2) = a^+$

【例4.4】文法: $G_3[S]: S \to aS[a]$, 其表示的语言为 $L(G_2) = a^+$

【例4.2】文法: $G_2[S]: S \to aA, A \to S|\varepsilon$, 其表示的语言为 $L(G_2) = a^+$

【例4.3】文法: $G_3[S]: S \to Sa|a$, 其表示的语言为 $L(G_2) = a^+$

【例4.4】文法: $G_3[S]: S \to aS[a]$, 其表示的语言为 $L(G_2) = a^+$

a a #

左公因子造成不确定性

- □ 带回溯的自上而下分析面临的问题:
 - > 如果一个文法含有 $P \xrightarrow{+} P α$ 的左递归,则会造成无限循环。
 - 回溯,会导致走了一大段错路,最后必须回头,之前已经做的一大堆语义工作 (指中间代码生成和各种表格记录工作)就必须推倒重来,既麻烦又费时间, 因此最好设法消除回溯。
 - ▶ 上述的自上而下分析过程中,当一个非终结符号用某一个候选式匹配成功时, 这种成功可能是暂时的,这中虚假匹配需要更复杂的回溯技术;一般来说消除 虚假匹配很难,但如果从最长候选开始匹配,虚假匹配的现象会减少。
 - 当最终报告分析不成功时,难于知道输入串中出错的确切位置。
 - ▶ 由于带回溯的自上而下分析采用了一种穷尽一切可能的试探法,因此效率很低,代价极高,实践上价值不大。

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

消除直接左递归

- □ $P \to P\alpha \mid \beta$, 其中 β 的第一个符号不是P
 - ► 利用正规式做中介, $P \Rightarrow \beta \alpha^*$
 - ► 转为右递归文法: $P \rightarrow \beta P', P' \rightarrow \alpha P' | \epsilon$

消除直接左递归

【例4.5】消除如下文法G[E]的直接左递归

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid i$$

$$E \to TE'$$

$$E' \to +TE' \mid \varepsilon$$

$$T \to FT'$$

$$T' \to *FT' \mid \varepsilon$$

$$F \to (E) \mid i$$

【例4.6】隐式左递归文法G[S]

$$S \rightarrow Qc|c$$

$$Q \rightarrow Rb|b$$

$$R \rightarrow Sa|a$$

【例4.6】隐式左递归文法G[S]

$$S \to Qc|c$$

$$Q \to Rb|b$$

$$R \rightarrow Sa|a$$

- □ 隐式左递归确定: $S \Rightarrow Qc \Rightarrow Rbc \Rightarrow Sabc$
- □ 解决方案: 给定一个非终结符号的排序, $如A_1, A_2, ..., A_n$,使 $A_i \rightarrow \alpha$ 的产生式, α 中 仅含有 A_j ,其中 $j \geq i$

- □ 消除隐含左递归<mark>算法</mark>,要求文法不含回路,即不含形如 $P \stackrel{+}{\Rightarrow} P$ 的推导
 - ① 对非终结符号给出一个排序: $A_1, A_2, ..., A_n$

```
(2) for (i = 1; i \le n; i++)
          for (j = 1; j < i; j++)
               if (A_i \to A_i \gamma \&\& A_i \to \delta_1 |\delta_2| ... |\delta_k)
                           A_i \rightarrow \delta_1 \gamma |\delta_2 \gamma| \dots |\delta_k \gamma;
           消除A<sub>i</sub>的直接左递归;
```

③ 化简, 消除无用产生式, 即去除从开始符号永远无法到达的产生式。

[M]4.6】消除文法G[S]的隐式左递归

$$S \to Qc \mid c$$

$$Q \to Rb \mid b$$

$$R \to Sa \mid a$$

(2)
$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Rb \mid b$

$$R \Rightarrow Sa \mid a \Rightarrow Qca \mid ca \mid a \Rightarrow Rbca \mid bca \mid ca \mid a$$

 $R \rightarrow bcaR' \mid caR' \mid aR'$

$$R' \to bcaR' \mid \varepsilon$$

(3) 最终产生式:

$$S \to Qc \mid c$$

$$Q \rightarrow Rb \mid b$$

$$R \rightarrow bcaR' \mid caR' \mid aR'$$

$$R' \rightarrow bcaR' \mid \varepsilon$$

$[M_{4.6}]$ 消除文法G[S]的隐式左递归

$$S \to Qc \mid c$$

$$Q \to Rb \mid b$$

$$R \to Sa \mid a$$

- (1) 排序: R,Q,S
- (2) $S \Rightarrow Qc \mid c \Rightarrow Rbc \mid bc \mid c \Rightarrow Sabc \mid abc \mid bc \mid c$ $S \rightarrow abcS' \mid bcS' \mid cS'$ $S' \rightarrow abcS' \mid \varepsilon$ $Q \Rightarrow Rb \mid b \Rightarrow Sab \mid ab \mid b$ $Q \rightarrow Sab \mid ab \mid b$ $Q \rightarrow Sab \mid ab \mid b$
- (3) 最终产生式:

$$S \rightarrow abcS' \mid bcS' \mid cS'$$

 $S' \rightarrow abcS' \mid \varepsilon$

□ 按S, Q, R排序

$$S \rightarrow Qc \mid c$$

$$Q \rightarrow Rb \mid b$$

 $R \rightarrow bcaR' \mid caR' \mid aR'$

 $R' \rightarrow bcaR' \mid \varepsilon$

 $R' \Rightarrow (bca)^*$

 $R \Rightarrow (bca|ca|a)(bca)^*$

 $Q \Rightarrow (bca|ca|a)(bca)^*b \mid b$

 $S \Rightarrow (bca|ca|a)(bca)^*bc \mid bc \mid c$

- $\Rightarrow (bc|c|\varepsilon) a(bca)^*bc | bc | c$
- $\Rightarrow (bc|c|\varepsilon) (abc)(abc)^* | bc | c$
- $\Rightarrow (bc|c) (abc)(abc)^* | (abc)(abc)^* | (bc|c)$
- $\Rightarrow (bc|c)(abc)^* \mid (abc)(abc)^*$
- $\Rightarrow (abc|bc|c)(abc)^*$

□ 按R,Q,S排序

 $S \rightarrow abcS' \mid bcS' \mid cS'$

 $S' \rightarrow abcS' | \varepsilon$

 $S' \Rightarrow (abc)^*$

 $S \Rightarrow (abc|bc|c)(abc)^*$

□ a(bca)*bc
 a bc
 a bca bc
 a bca bca bc

 转换为: (abc)(abc)*

21

□ 消除隐含左递归

- \triangleright 含有回路的左递归无法消除: $A \stackrel{+}{\Rightarrow} A$;
- 消除左递归与非终结符号的排序无关;
- 》 如果从开始符号依次推导出 $A_1, A_2, ..., A_n$,则按其逆序排序时得到的产生式最少。

$$A_1 \Rightarrow A_2 \alpha_2$$

$$A_2 \Rightarrow A_3 \alpha_3$$

.

$$A_n \Rightarrow A_1 \alpha_1$$

$$\square$$
 按 $A_n, A_{n-1}, ..., A_1$ 排序

$$A_1 \Rightarrow A_1 \beta_1$$

$$A_2 \Rightarrow A_1 \beta_2$$

.

$$A_n \Rightarrow A_1 \beta_n$$

$$S \stackrel{*}{\Rightarrow} \dots A_1 \dots$$

$$A_2, A_3, ..., A_n$$
无法从 S 到达

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

消除回溯

【例4.7】 文法: $G_1 = (\{S,A\}, \{x,y,z,*\}, \{S \to xAy|z, A \to ** |*\}, S)$

- luepsilon S的两个候选式xAy和z的<mark>首符号不同</mark>,因此很容易确定用哪个候选式匹配。
- □ *A*的两个候选式**和*的<mark>首符号相同</mark>,无法确定用哪个候选式匹配,需要回溯。

消除回溯

- 候选式α的终结首符集(头符号集)
 - $ightharpoonup First(\alpha) = \left\{ a \middle| \alpha \stackrel{*}{\Rightarrow} a \dots, a \in V_T \right\}$
 - ▶ 特别地, \ddot{a} $\overset{*}{\Rightarrow}$ ε , 则 ε ∈ $First(\alpha)$
- 无回溯指派候选式要求
 - ▶ 对 $A \rightarrow \alpha_1 | ... | \alpha_n$ 的每对候选式,有 $First(\alpha_i) \cap First(\alpha_i) = \emptyset$,其中 $i \neq j$

提左公因子

- $\square P \to \alpha A_1 |\alpha A_2| \dots |\alpha A_n| \beta_1 |\beta_2| \dots |\beta_m|$

【例4.7】提取文法G[S]的左公因子

 $S \rightarrow if B then S else S \mid if B then S$

【解】
$$S \to if B then SA$$

 $A \to else S \mid \varepsilon$

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ▶ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

空字匹配问题

【例4.8】 文法: $G_1 = (\{S, A\}, \{x, y, z, *\}, \{S \to xAy | z, A \to * | \epsilon\}, S)$

当前输入符号为a, $A \to \alpha_1 | ... | \alpha_n$, $a \notin First(\alpha_i)$, $\varepsilon \in First(\alpha_j)$, 是否可以用 ε 匹配A?

口 只有a是跟在A后面的终结符时,才能运行A自动匹配,否则,a在这里的出现就是一种语法错误。

后继符号集

- 文法G[S]中,非终结符号A的后继终结符号集(后继符号集)
 - \succ Follow(A) = {a|S $\stackrel{*}{\Rightarrow}$... Aa ..., a $\in V_T$ }
 - ▶ 特别地, 若 $S \stackrel{*}{\Rightarrow} ... A$, 则# \in Follow(A)
- □ 当前输入符号为a, $A \rightarrow \alpha_1$... $|\alpha_n$, $a \notin First(\alpha_i)$, $\varepsilon \in First(\alpha_i)$, 是否可以 用 ε 匹配A?
 - ▶ 若 $a \in Follow(A)$,则可以用ε匹配A;
 - \triangleright 若 $a \notin Follow(A)$, 这里a的出现是一个语法错误。

LL(1)分析条件

- □ 构造不带回溯的自上而下分析的文法条件
 - > 文法不含左递归;
 - ▶ 对 $A \rightarrow \alpha_1 | ... | \alpha_n$ 的每对候选式,有 $First(\alpha_i) \cap First(\alpha_i) = \emptyset$,其中 $i \neq j$;
 - ▶ 对非终结符号A, 若ε ∈ First(A), 有First(A) ∩ Follow(A) = \emptyset .
- □ 满足以上条件的文法称为LL(1)文法
 - ▶ 第一个L表示从左到右扫描输入串;
 - ▶ 第二个L表示最左推导;
 - 1表示分析时每一步只需向右查看一个符号。

LL(1)分析条件

- □ 对 $A \rightarrow \alpha_1 | ... | \alpha_n$ 的匹配
 - ▶ 若 $a \in First(\alpha_i)$,则指派 α_i 去执行匹配任务;
 - $> 若(∀\alpha_i)a \notin First(\alpha_i), (∃\alpha_j)\varepsilon \in First(\alpha_j), 且a \in Follow(A), 则指派\alpha_j 去执行$ 匹配任务;
 - $> 若(∀\alpha_i)a \notin First(\alpha_i)$,但 $(∀\alpha_j)\varepsilon \notin First(\alpha_j)$,或者 $a \notin Follow(A)$,则a 的出现是一种语法错误。

- □ 如何构造 $First(\alpha)$?
- □ 如何构造Follow(A)?
- □ 如何根据当前输入符号a决定A的匹配式?

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ▶ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

求First(X)

- □ 重复以下步骤,直至First(X)不再增大为止
 - ① 若 $X \in V_T$, 则 $First(X) = \{X\}$;
 - ② 若 $X \in V_N$, 且有产生式 $X \to a$..., $a \in V_T$, 则 $First(X) = First(X) \cup \{a\}$;
 - ③ 若 $X \in V_N$, 且有产生式 $X \to \varepsilon$, 则 $First(X) = First(X) \cup \{\varepsilon\}$;
 - ④ 若有产生式 $X \to Y \dots, Y \in V_N$, 则 $First(X) = First(X) \cup (First(Y) \{\varepsilon\})$;
 - ⑤ 若有产生式 $X \to Y_1Y_2 \dots Y_k$, $\exists i \forall j (1 \leq j \leq i-1)$, $\varepsilon \in First(Y_j)$, 则 $First(X) = First(X) \cup (First(Y_i) \{\varepsilon\})$; 特别地,若 $Y_1Y_2 \dots Y_k \stackrel{*}{\Rightarrow} \varepsilon$,则 $First(X) = First(X) \cup \{\varepsilon\}$ 。

求First(X)

【例4.9】求*First(X)*

$$X \rightarrow Y_1 Y_2 Y_3 Y_4 Y_5$$

$$Y_1 \rightarrow a | \varepsilon$$

$$Y_2 \rightarrow bY_3 | \varepsilon$$

$$Y_3 \rightarrow Y_4 Y_5 | \varepsilon$$

$$Y_4 \rightarrow Y_5 c | \varepsilon$$

$$Y_5 \rightarrow dY_1 | \varepsilon$$

$$First(X) = \{a, b, c, d, \varepsilon\}$$

$$First(Y_1) = \{a, \varepsilon\}$$

$$First(Y_2) = \{b, \varepsilon\}$$

$$First(Y_3) = \{c, d, \varepsilon\}$$

$$First(Y_4) = \{c, d, \varepsilon\}$$

$$First(Y_5) = \{d, \varepsilon\}$$

求Follow (A)

□初始化

- ① 对 $\forall A \in V_N$, 令 $Follow(A) = \emptyset$;
- ② 若A是开始符号,则令 $Follow(A) = \{\#\};$
- □ 重复以下步骤,直至Follow(A)不再增大为止
 - ① 若有 $A \to \alpha B\beta$, $B \in V_N$, 置 $Follow(B) = Follow(B) \cup (First(\beta) \{\epsilon\})$;
 - ② 若有 $A \to \alpha B, B \in V_N$, 置 $Follow(B) = Follow(B) \cup Follow(A)$;
 - ③ 若有 $A \to \alpha B\beta$, $B \in V_N$, $\varepsilon \in First(\beta)$, 置 $Follow(B) = Follow(B) \cup Follow(A)$.

求Follow (A)

【例4.10】求文法G[E]的首符号集和后继符号集

$$E o TE'$$
 $E' o +TE' | \varepsilon$
 $T o FT'$
 $T' o *FT' | \varepsilon$
 $F o (E) | i$

$First(E) = \{(,i\}$	$First(TE') = \{(,i\}$	
$First(E') = \{+, \varepsilon\}$	$First(+TE') = \{+\}$	$First(\varepsilon) = \{\varepsilon\}$
$First(T) = \{(,i\}$	$First(FT') = \{(,i\}$	
$First(T') = \{*, \varepsilon\}$	$First(*FT') = \{*\}$	$First(\varepsilon) = \{\varepsilon\}$
$First(F) = \{(,i\}$	$First((E)) = \{(\}$	$First(i) = \{i\}$

$Follow(E) = \{\#, \}$
$Follow(E') = \{\#, \}$
$Follow(T) = \{+, \#, \}$
$Follow(T') = \{+, \#, \}$
$Follow(F) = \{*, +, \#, \}$

构造LL(1)分析表M[A,a]

- 当前符号为a时,非终结符号A可以用候选式 α 匹配的条件:
 - $a \in First(\alpha)$
 - $\succ \quad \varepsilon \in First(\alpha), \alpha \in Follow(A)$

$V_N \backslash V_T$	a_1	a_2	a_3	 a_k
A_1				
A_2				
•••				
A_n				

构造LL(1)分析表M[A, a]

- **口** $G = \{V_N, V_T, \mathcal{P}, S\}$,构造分析表,列为 $a \in V_T$,行为 $A \in V_N$,A与a对应的元素记为M[A, a],对每一个产生式 $A \to \alpha$:
 - ightharpoonup 若 $a \in First(\alpha)$,则置 $M[A,a] = A → \alpha$;
 - \succ 若 $\varepsilon \in First(\alpha), b \in Follow(A), 则置<math>M[A,b] = A \rightarrow \alpha;$
 - ➤ 若M[A, a]为空,则表示出错。
- □ 用上述方法构造的分析表称为LL(1)分析表。

构造LL(1)分析表M[A, a]

【例4.11】构造文法G[E]的LL(1)分析表

$E \rightarrow TE'$
$E' \to +TE' \varepsilon$
T o FT'
$T' \to *FT' \varepsilon$
$F \rightarrow (E) i$

$First(TE') = \{(,i\}$	
$First(+TE') = \{+\}$	$First(\varepsilon) = \{\varepsilon\}$
$First(FT') = \{(,i\}$	
$First(*FT') = \{*\}$	$First(\varepsilon) = \{\varepsilon\}$
$First((E)) = \{(\}$	$First(i) = \{i\}$

$Follow(E) = \{\#, \}$
$Follow(E') = \{\#,\}$
$Follow(T) = \{+, \#, \}$
$Follow(T') = \{+, \#, \}$
$Follow(F) = \{*, +, \#, \}$

	i	+	*	()	#
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' \to \varepsilon$	$T' \to *FT'$		$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F \rightarrow i$			$F \rightarrow (E)$		

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ➤ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

- □ 总控程序根据Stack栈顶符号X和当前输入符号a查LL(1)分析表:
 - ▶ 如果 $X ∈ V_T$
 - ① 若X = a = ' # ',成功,退出;
 - ② 若 $X = a \neq \#'$, 从栈顶弹出X, 让a指向下一个符号;
 - ③ 若 $X \neq a$, 出错, 退出。
 - ▶ 如果 $X \in V_N$
 - ① 若M(X,a)为产生式,则栈顶弹出X,产生式右部符号反序进栈;
 - ② 若M(X,a)的产生式右部为 ε ,则 ε 不进栈;
 - ③ 若*M(X,a*)为空, 出错, 退出。

郑艳伟, zhengyw@sdu.edu.cn

【例4.12】分析符号串: i*(i+i)+i

	i	+	*	()	#
E	$E \rightarrow TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' o \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' o \varepsilon$	$T' \rightarrow * FT'$		T' o arepsilon	$T' \to \varepsilon$
F	$F \rightarrow i$			$F \rightarrow (E)$		

序号	文法符号栈	输入串	所用产生式
1	#E	i*(i+i)+i#	
2	#E'T	i*(i+i)+i#	$E \rightarrow TE'$
3	#E'T'F	i*(i+i)+i#	$T \to FT'$
4	#E'T'i	i*(i+i)+i#	$F \rightarrow i$
5	# <i>E'T'</i>	*(i+i)+i#	
6	#E'T'F*	*(i+i)+i#	$T' \to *FT'$
7	#E'T'F	(i+i)+i#	
8	#E'T')E((i+i)+i#	$F \rightarrow (E)$
9	#E'T')E	i+i) + i #	
10	#E'T')E'T	i+i) + i #	$E \rightarrow TE'$
11	#E'T')E'T'F	i+i) + i #	$T \rightarrow FT'$

序号	文法符号栈	输入串	所用产生式
12	#E'T')E'T'i	i+i) + i #	$F \rightarrow i$
13	#E'T')E'T'	+i) + i #	
14	#E'T')E'	+i) + i #	$T' \to \varepsilon$
15	#E'T')E'T +	+i) + i #	$E' \rightarrow +TE'$
16	#E'T')E'T	i) + i#	
17	#E'T')E'T'F	i) + i#	$T \to FT'$
18	#E'T')E'T'i	i) + i#	$F \rightarrow i$
19	#E'T')E'T') + <i>i</i> #	
20	#E'T')E') + <i>i</i> #	$T' \to \varepsilon$
21	#E'T')) + <i>i</i> #	$E' \to \varepsilon$
22	# <i>E'T'</i>	+i#	

【例4.12】分析符号串: i*(i+i)+i

	i	+	*	()	#
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' o \varepsilon$	$T' \to *FT'$		$T' \to \varepsilon$	$T' o \varepsilon$
F	$F \rightarrow i$			$F \rightarrow (E)$		

序号	文法符号栈	输入串	所用产生式
22	#E'T'	+i#	
23	# <i>E'</i>	+i#	$T' \to \varepsilon$
24	#E'T +	+i#	$E' \rightarrow +TE'$
25	# <i>E'T</i>	i#	
26	#E'T'F	i#	$T \to FT'$
27	#E'T'i	i#	$F \rightarrow i$
28	#E'T'	#	
29	# <i>E'</i>	#	$T' o \varepsilon$
30	#	#	$E' \to \varepsilon$
31	#	#	Success

第四章 自上而下的语法分析

- □ 4.1 语法分析器的功能
- □ 4.2 自上而下分析面临的问题
- □ 4.3 LL(1)分析法
 - ▶ 4.3.1 左递归的消除
 - ▶ 4.3.2 消除回溯、提左公因子
 - ➤ 4.3.3 LL(1)分析条件
 - ➤ 4.3.4 LL(1)预测分析表的构造
 - ➤ 4.3.5 LL(1)预测分析程序的工作过程
 - ▶ 4.3.6 人工干预构造非LL(1)文法的LL(1)分析表

【例4.7】提取文法G[S]的左公因子

 $S \rightarrow if B then S else S | if B then S$

【解】
$$S \to if \ B \ then \ SA$$

 $A \to else \ S| \ \varepsilon$

- **型**整理: $G[S] = \{V_N, V_T, \mathcal{P}, S\}$
 - \triangleright $V_T = \{if, then, else, b, s\}$
 - $\triangleright V_N = \{S, A\}$
 - \triangleright P: S \rightarrow if b then SA|s, A \rightarrow else S| ε

【例4.13】 $G[S]: S \rightarrow if \ b \ then \ SA|s, A \rightarrow else \ S|s, 构造LL(1)分析表$

 $S \rightarrow if \ b \ then \ SA | \ s$ $A \rightarrow else S \mid \varepsilon$

$First(S) = \{if, s\}$	
$First(if\ b\ then\ SA) = \{if\}$	$First(s) = \{s\}$
$First(A) = \{else, \varepsilon\}$	
$First(else\ S) = \{else\}$	$First(\varepsilon) = \{\varepsilon\}$

$$Follow(S) = \{\#, else\}$$

 $Follow(A) = \{\#, else\}$

【例4.13】 $G[S]: S \rightarrow if \ b \ then \ SA|s, \ A \rightarrow else \ S|s, \$ 构造LL(1)分析表

$$S \rightarrow if \ b \ then \ SA \mid s$$

$$A \rightarrow else \ S \mid \varepsilon$$

$First(if\ b\ then\ SA) = \{i\}$	$First(s) = \{s\}$	
$First(else\ S) = \{else\}$	$First(\varepsilon) = \{\varepsilon\}$	
$Follow(S) = \{\#, else\}$ Foll		$low(A) = \{\#, else\}$

	if	then	else	b	S	#
S	$S \rightarrow if \ b \ then \ SA$				$S \rightarrow s$	
A			$\begin{array}{c} A \rightarrow else \ S \\ A \rightarrow else \ S \\ A \rightarrow \varepsilon \end{array}$			$A \to \varepsilon$

【例4.14】分析句子: if b then if b then s else s

	if	then	else	b	S	#
S	$S \rightarrow if \ b \ then \ SA$				$S \rightarrow s$	
A			$A \to else S$ $A \to \varepsilon$			$A \to \varepsilon$

序号	文法符号栈	输入串	所用产生式
1	#S	if b then if b then s else s#	
2	#AS then b if	if b then if b then s else s#	$S \rightarrow if \ b \ then \ SA$
3	#AS then b	b then if b then s else s#	
4	#AS then	then if b then s else s#	
5	#AS	if b then s else s#	
6	#AAS then b if	if b then s else s#	$S \rightarrow if \ b \ then \ SA$
7	#AAS then b	b then s else s#	
8	#AAS then	then s else s#	
9	#AAS	s else s#	

【例4.14】分析句子: if b then if b then s else s

	if	then	else	b	S	#
S	$S \rightarrow if \ b \ then \ SA$				$S \rightarrow s$	
A			$A \to else S$ $A \to \varepsilon$			$A o \varepsilon$

序号	文法符号栈	输入串	所用产生式
9	#AAS	s else s#	
10	#AAs	s else s#	$S \rightarrow S$
11	#AA	else s#	
12	#AS else	else s#	$A \rightarrow else S$
13	#AS	s#	
14	#As	s#	$S \rightarrow S$
15	#A	#	
16	#	#	
17	#	#	Success

	if	then	else	b	S	#
S	$S \rightarrow if \ b \ then \ SA$				$S \rightarrow s$	
A			$A \to else S$ $A \to \varepsilon$			$A \to \varepsilon$

- □ 规定else与最接近的if配对,因此发生冲突时, $A \rightarrow else\ S$ 优先于 $A \rightarrow \varepsilon$ 。
 - \triangleright P: $S \rightarrow if b then SA | s, A \rightarrow else S | <math>\varepsilon$
- 推广: 当一个候选式是另外一个候选式的前缀时,规定较长的候选式优先

	if	then	else	b	S	#
S	$S \rightarrow if \ b \ then \ SA$				$S \rightarrow s$	
A			$A \rightarrow else S$			$A \rightarrow \varepsilon$

第四章作业

【作业4-1】令文法为G[E]

$$E \to TE'$$

$$E' \to +E \mid \varepsilon$$

$$T \to FT'$$

$$T' \to T \mid \varepsilon$$

$$F \to PF'$$

$$F' \to *F' \mid \varepsilon$$

$$P \to (E) \mid a \mid b \mid^{\wedge}$$

- (1) 计算该文法每个非终结符号的终结首符集和后继符号集。
- (2) 这个文法是否为LL(1)文法。
- (3) 构造它的预测分析表。
- (4) 给出句子 $(a + b) * a^b$ 的分析过程。

第四章作业

【作业4-2】令文法为G[Expr](在左部出现的是非终结符号)

$$Expr o -Expr$$
 $Expr o (Expr)|Var ExprTail$
 $ExprTail o -Expr|\varepsilon$
 $Var o id VarTail$
 $VarTail o (Expr)|\varepsilon$

- (1) 构造LL(1)分析表。
- (2) 给出句子id(id -id)的分析过程。
- (3) 给出句子id -id((id))的分析过程。

第四章 自上而下的语法分析

The End

谢谢

授 课 教 师 : 郑艳伟

手 机 : 18614002860 (微信同号)

邮 箱: zhengyw@sdu.edu.cn