統計セミナー第6回 2010年11月26日

「系統解析」

川北篤

今日の話の内容

- 1. 系統解析とは何か?
- 2. どのように系統樹を求めるか?
- 3. 系統樹を用いたさまざまな解析
- 4. 種を単位とした統計の問題点
- 5. 系統的独立対比を用いた解析

先週までの統計解析

データ

現象

系統樹の本数

Table 3.1: The number of rooted, bifurcating, labeled trees for n species, for various values of n. The numbers for more than 20 species are approximate.

Species	Number of trees	
1 2 3 4 5 6 7 8	1 1 3 15 105 945 10,395 135,135	
9 10 11 12 13 14 15	2,027,025 34,459,425 654,729,075 13,749,310,575 316,234,143,225 7,905,853,580,625 213,458,046,676,875	
16 17 18 19 20 30 40 50	$6,190,283,353,629,375$ $191,898,783,962,510,625$ $6,332,659,870,762,850,625$ $221,643,095,476,699,771,875$ $8,200,794,532,637,891,559,375$ 4.9518×10^{38} 1.00985×10^{57} 2.75292×10^{76}	Felsenstein (2004) Inferring Phylogenies

系統解析で使う用語

解析の対象となる分類群に含まれない生物を「外群」として解析に加え、事後的に根の位置を決める

系統樹の推定法

- 1. 最節約法 Maximum parsimony
- 2. 近隣結合法 Neighbor-joining
- 3. 最尤法 Maximum likelihood
- 4. (ベイズ法 Bayesian method)

最節約法

- •原理が単純(形質を選ばない)
- •計算が速い
- •複数解が存在する
- •間違えることがある

近隣結合法 (距離法)

Inferring Phylogenies

- •計算が速い
- •単一解
- •距離に変換する分、情報量が減る
- •距離の求め方に結果が依存

最尤法

与えられた塩基置換モデルのもとで データを最もよく説明する系統樹を選ぶ

Jukes-Cantor model

Kimura's 2 parameter model

General-time-reversible model

データを最もよく説明する塩基置換モデルを選ぶ AICなどを使う

最尤法

尤度 = モデルのもとでデータが実現する確率

推定の信頼性を評価する ブートストラップ解析

データがどれほど一貫して仮説を支持しているかの指標

種を単位とした統計解析における問題

Smith et al. (2008) Evolution

系統的独立対比 Phylogenetic independent contrast (Felsenstein, 1985)

系統的独立対比 Phylogenetic independent contrast

ブラウン運動モデル Brownian motion model

系統的最小二乗法 Phylogenetic generalized least squares (PGLS) method

- •系統的独立対比の拡張版
- •ブラウン運動モデルを補正し、系統の効果を 調節する
- •α parameter

0のときブラウン運動モデルと同じ 大きい値をとるほど系統の効果がなくなる

参考文献

- •Felsenstein J (2004) Inferring Phylogenies. Sinauer Associates.
- •Hall B (2007) Phylogenetic Trees Made Easy: A How-to Manual, Third Edition. Sinauer Associates.
- •Harvey PH, Pagel MD (1991) The Comparative Method in Evolutionary Biology. Oxford University Press.
- •Lemey P, Salemi M, Vandamme AM (2009) The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing, 2nd Edition. Cambridge University Press.
- •三中信宏(1997)『生物系統学』東京大学出版会.
- •奥山雄大・川北篤(2008)系統解析プロトコルー塩基配列から分子系統樹へ。 『共進化の生態学』種生物学会編,文一総合出版。
- •上島励(1996)系統樹をつくる. 『生物の種多様性』岩槻邦男・馬渡峻輔編, 裳華房.