1/6 POLYMORPHISMS IN THE FCER1A GENE

AAACAGAAGA AT	TAGTAAAG	GAATCCTGGA		GCTGTGTATT	100	
TAAAGGAGAA AG	GGAGATCA '	TGTTGGGAAA	T T T T T T T T T T T T T	AAAAGTAAAC	100	
AAAAGCTAGG AA		ATTAAATTA	TATGGCCTAG		200	
GTAATGGTTT AA		TTCCTGTGTT	CTGAGCCAGA	TTAGGGCACA	200	
GTAGAGAAAG AG	0110	GAAAATGTTT	CCAATTTCGC	TGGTCAGACA	300	
GCGGATCATC AG	~	ATGAAAATTT	GTGGATTTAT	GCACTAACTG	300	
ATCAGCAGGA AA	TTAAACAA	GAAAAGCGTT	GGTAGCTCTG	GTGAATCCCA	400	
AAAGAATTTG GC	AGTTGCTA	GCCATGCTCC	TGAATATGTA	TAAACAGTAC GTGTTTGAAC	400	
ATCATATGAC TA	AGAGTTTG	ACTTAGGGGT	TAGATTTTAT		500	
CCCAAATTAG TT		GTTGGCACCC	CAAAACAAGT	TACTTAACCT GATAGTATGT	300	
CACTAAGATT CA		GTTTATAAAA	TGTAGATAGT	TTTATTTAGG	600	
ACTTTATAGG AT	TATTGTGA	AAAATAAATG	AAATATCAGA	TTTATITAGG	000	
			G A A DURA CUURCO	TGCTGTTTTA		
ATAACACCTG GC		GGTATTCAGT	AATTAGTTGC	TGCIGIIIIA	700	
TTCTGCTCTC CC	CTTGCATCC	CACTTTTCTA	AGTTGTAAAC	TAAATAGITG	700	
С			man mmamaaa	AGACCTATGC		
		GAAAGGCTTG		ATAGGGAGTG	800	
CTCTCTCTCA CC	CAGATTCCA	GGTGTATATG		TCCTGAATAT	000	
GAGTAAGTGG GT	ATTATAAAT	AATTGCCCAG			900	
TATCTCTAAA GA	AAAGAAGCA	AAACCAGGCA		GTTAACCAGA	900	
TATGATACAG AF		CTTCTGCTTT	TTGGTTTTAA	GCCTATATTT		
С	T			~~ m~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1000	
GAAGCCTTAG AT	CTCTCCAG	CACAGTAAGC	ACCAGGAGTC	CATGAAGAAG	1000	
ATGGCTCCTG CC		CCCTACTCTA	CTGTGTGTAG	CCTTACTGTT		
[exon 2	: 1001			~~~~~~~~~~	1100	
CTTCGGTAAG TA	AGAGATTCA		CCAGGGAGGC	CCAAATGAAT	1100	
		Α				
	105					
TTGGGGAGCA G	CTGGGGTAG	GAACCTTTAC		GACTTTTTCT	. 1200	
AGGACATGTG CA	AAACTATTG	GGCATTTCCC	AGGGACTCTG		. 1200	
AAGCTAGAAA G				GGAGGAAGCC	1300	
AGACTGAAAG C'		TGCATTTGCT		CCAGAGTGCA	. 1300	
AATTTCCTAC C				GCTCTTTCTT	1400	
CCCCTGATTC T	CATTCCTGA	AAAGACGGTT		ATTCCATGGA	1400	
TGTAGATCTT A	TCCCCACAC	CCAGATTCTA	. GTCCTCTGGA	GATAAAGAAG	1	
ACTGCTGGAC A			CTTTTGCAGO	TCCAGATGGC	1500	
	С	A	,			
[exon 3	3: 1490					
GTGTTAGCAG G	TGAGTCCTC	TGTTCTTGTT	CCCTTGGTGT	ATCAACATGT		
15101						
CTGGGCATTG C	TTTCCTCTC	ACTATTTC	TCGTCCCATO	ACTTCTGCTT	1600	
TCTAATGAGC A	TGAATCTGT	TCCTTGGCC	A GACTACTTTC	CCTCTCCACC		
T					1700	
TTGCCTTGTC T	TTCTTTTTT	TCCCTGATT	C ATTGCATTC	CTCAAGTCAT	1700	
тстстсстст б	TTTTAGTCA	ATAACCATG	r CTGTTGCAC	A TATACATGTC	1000	
$TC\Delta TTCTCTC$	CCTAGACAC	TTTGGCATG	A TCTCGCTCA	A TAATTACATT	1800	
απταπταπτα Τ	TGCCATTT	ATAATTGAG	G ATGCTGAAA	TCAGTGATTT		
TCTGGTGGTT	CATGGCTAA	GGAACTGGA'	r TTCAACGTA	A GTTCCTTGGA	1900	
TCTAAGTCCA G	TTCTCTTCT	GACTATATC	A CCCTTTTGT	r ATCACCATGT		
ATCTACTTCT T	TGGTCTCTC	TTCAAATTT	G CACTACATC	C CCTTGTTCCA	2000	
GGAAGCCATT C	CAAGACTGAC	C TTTCTTAGT	G CCTCTCACT	A CTTTCTGGAA		

,			2/6		
CTGACATATG	TTTTTCACTC	TGTATATACT		TAGTCATAAA	2100
TATTCAGAGC	TTGGAGAAAC		ATCCAGTCCA		2200
CCATCCATAA	TTCACTCATT	CATTCACATA		AATGTAACAA	2200
TGGTTGAACA	TGGCAGACAG	TGTTTCTACC	TCAAAAGAGA		2200
CATTTACAGA	TACTGAATTG	AAATTAACAG		AGTCAGCTCA	2300
AATCACATAG	TGAATTGGTT	TCTTTGTTTT	TAAATCTCCT	GCATATGTGT	2300
CCTGTCTTTC	TCCCTGTGTT	GGGCGTTCCC		ATACTAATTT	2400
CTCCTTCCCC		AACAGGGTCT		AGAATAAGGA	2400
CICCIICCC	INGAAAICAA	G	INICACCANC	AUDALIAAUA	
САССТТСАСС	ACTGATTGTC		TTCGTTTGTA	Сттттаассс	2500
TAGACAGTTT	TCAATGACTT	TTTTTCTCTC	TACATGTCTT	TTCATATTTT	2300
	AAGTCCCTCA			ACCCTCCATG	2600
	4: 2564	GAAACCIAAG	GICICCIIGA	ACCCICCAIG	2000
	TTTAAAGGAG	$\Lambda C \Lambda^{'} \Lambda \Psi C \Psi C \Lambda C$	тсттасат ст	AATGGGAACA	
		ACCAAATGGT		CAGCCTTTCA	2700
	ATTCAAGTTT	GAATATTGTG	AATGCCAAAT		2700
GAAGAGACAA	ATICAAGIII	GAATATIGIG	G	TIGAAGACAG	
псслеллплс	7 7 7 mcmc7 cc	7.CC77.C77.C		CNACCHCHCH	2000
TGGAGAATAC	AAATGTCAGC	ACCAACAAGT	TAATGAGAGT	GAACCTGTGT	2800
	OFFICE OFFI	3.3.GEE	A	ma	
ACCTGGAAGT		AAGTTCCAGG	GATATGGAAA	TACAGATCTC	
	281	-			0000
		CTGAAGATGG			2900.
GGGTTAGGAC	ACCAGAGTGG	GATTCAAGGC		TAAGACCCCT	
			C		
GCATTGGCTG	GGCACAGTGG	CTCACGCCTG	TAATCCCAGC	ACTTTGGGAG	3000
	•			A	
GCTGAGGCAG	GTGGATCACG	AGGTCAGGAG	ATCGAGACCA		
				Α	
ATGGTGAAAC	CCCATCTCTG	CTAAAAAATA			3100
GGCGTAGTGG	TGGGCACCTG	TAGTCCCAGG	TACTCGGGAG	GCTGAGGCAG	
GAGAATGGTG	TGAACCCAGG	AGGTGGAGGT	TGCAGTGAGC	TGAGATCACG	3200
CCACTGCCCT	CCAGCCTGGG	CTACAGAGCA	AGACTCCGTC	TCAAAAAATA	
AATAAATAAA	TAAAAAAGAC	CCCTGCATCT	CTTTTCTTCT	ACCCCCTTCC	3300
• -	CTTGTATGCC		ATTCTAGTCA	TCTCTCAATA	
	ACCCTATTTT	CCTCTATCTT	TTCTGCCTAG		3400
		ATGACATATA	TGTGAACATT	TCAAAGAGCT	
GTGTATCTGG	AATAGGATCA	AAAGGTTTGA	CTTAAAGTTT	TGCTCTGCAT	3500
AATCCATATG	GCAGGACCTG	AATATTAGGT	TGTACTCTTC	GTTATGAAAC	
		ATGTCCTCTG			3600
TTTCATGCTT	GTTTCATTTT	TATCACTCCT	ACTGCCAACA	AATAGCATAG	
CATGCTTAGG	CACATGTGGC	TTAATTAGCA	AATGTTGAAT	AAACAAATTA	3700
		ATAGGTCTCT			
CTTGAGTGAA	AAAAAATGTT	TCAACCTCCA	TATGTAAATT	CCAAACACAA	3800
ACTAAAGCAA	TGTAGAATAG	CTTCTTTATT	CCCTGGAGTA	GGTTCTAGAG	•
AAGTCCTAAA	GGATTGGTCC	TAAATTAATT	ATGCTTATTA	TGCTAGCGAT	3900
ATTTCCTTTC	AAAATTCTCC	TTTAATGAAT	GCTTTTTAAT	TTTTACAAAA	
GCATTAACCA	TAGAATGTGA	TTCTTGTCTT	TCACTGACTC	ATTAGTGACA	4000
AATATTTGTT	GAGTACCTAC	CAACTCCTAA	GTATTGCTAC	CAACTCCTAA	
		AATAGAATGT			4100
ACTTCTTGGA	GCACAGAGCA	GTATGGGAAG	AGGACATTAA	ATAAAGAATT	
ACATAAGTAA	TTAATTTAAA	TTATACATGT	TTTGAAGAAG	TTTTTTTTG	4200
ACAACTATAA	TTAACACTAG	AACTGGGAAG	TTTCTATAAG	GTAAGAGAGG	
ACAAAATAGA	CACTCTCCTA	AGCTAAAATT	CCCAAGAAAG	ACTGTTTATT	4300
TTCCCCTAAC	TAACTAGAAC	TAGCAACAGA	AGATCTGAAA	GGAATTCTGG	

			3/6		
CTTTCAAGTG	TTCCATGTAT	GGACTCATCA	·	AGAGGCTTTG	4400
	CTGACTTTTC				1100
	AGCATTATTT		AAAAATCCAC		4500
AAAAAGTGAG		TTCATAGTTT			1500
GGCTCTCTTT		TTCTCTCTCT			4600
A	ICICIATICA	TICICICICI	CIICAIIIAI	IGIIAAAIAA	4000
ATAATGTAAT	CDDTCTTCTT	CAGACTGGCT	ССТССТТСАС	СССТСТССТС	
	5: 4624	CAGACIGGCI	GCICCIICAG	GCCTCTGCTG	
AGGTGGTGAT		CCCCTCTTCC	TCAGGTGCCA	тесттесьсе	4700
AACTGGGATG		GATCTATTAT			4700
	GAGAACCACA				4800
	CTACTACTGT				4000
ACAGIGGAAC	CIACIACIGI	T	IGIGGCAGCI	GGACIAIGAG	
TCTGAGCCCC	тсаасаттас	TGTAATAAAA	CCTCACTTCC	ТАЛАССАЛАС	4900
TOTOMOCCCC	488		0010/101100	1111100111110	4300
GAAAAGCATC	CATAGCAGGG	-	ΔαΔΔαττατα	ΔΕССΤΕΔΕСΔ	
GTTGCAGCTT		GGCACCTGTG			5000
GIIGCAGCII	GINGANGGGG	GGCACCIGIG	AIACACIGGA	T	5000
GACTTGCAAT	GAGGAGACCT	 СССТСАТАСТ	מיימיימיינים	-	
	ACTTGTTAAA				5100
CAAAGCCIIG	ACTIGITANA	C	AATACCIGCI	IGCACIAIGA	5100
አ አ ጥጥጥጥጥ አ ጥር	AAGATTAATG	TGGTAATATT	тстсалатса	C Ψ Ψ Ψ C Ψ Δ Δ Δ C	
TGTTAAGCAC		TAACAGATTG			5200
	TTGCTCCTGG				3200
	GTTGAATGAA				5300
	GAGGGCTGGG				5300
GCCTGTGTAT	TGAGGGAGGA		TTGATATGGA		5400
	CCTCTATGGC				3400
	GGGAGCCTGT		CTTTTGAAGG		5500
ACTTTTCCTT		GTACATAATA			3300
		CTAGCAGTTC	TCTGTTAACT		5600
TGAAGTGCTA	TGTACTTGTC	TCTAGGCTTC	CAGTATCTTC		3000
CAGAATATTT	GGTCTAGATT	CCATTAGAAT	CATTTGATAA		5700
ATATTGATGC	TCATGTCTCA		TTCTGATTTA		3700
GGTGCAGCCT	GGGTATACGT	ATTTTTCATA	GGTCTTTCAC		5800
	ATATTGAGAA		AGGTGATCTT		3000
	TATTCTGAGG	CTCTATAATT	TGAGACTAAT	-	5900
	ATAAACAGAC				3300
	CTAGTGCAAT	· ·			6000
	GATTGAGTAA				0000
	ACCCCTTAAT				6100
	TATCTTTCCT				0100
	TTAAGAGGAA				6200
	GCAACTCAAC				0200
	CACATCACGC				6300
	ATGAAACTCT				, 0300
	ATTGCATCTG				6400
	6: 6384	IGIICCACIA	CAGCICCGCG	IGAGAAGIAC	0400
-	TTTTTATCCC	אששכששככשכ	CTCATTCTCT	ттсстстссл	
	TTTATCTCAA				6500
	CAGGAAAGGC				0300
TIANUAUAAC	JOURAADUA	IICAGACIIC	A	TCCTAAGCCA	
ΔΔССССΔΔλλ	ACAACTGATA	ጥ አ ጥጥ አ ርጥር አ		CCAACATTAC	6600
MICCOCHAAA	656		TOTALLITATIL	COMMONITAG	0000
		~]			

TGGAGTAAAT GGGATTAAAG TT

4/6 TTTTTTCCA GCATCAGCAA TTGCTACTCA ATTGTCAAAC ACAGCTTGCA С ATATACATAG AAACGTCTGT GCTCAAGGAT TTATAGAAAT GCTTCATTAA 6700 ACTGAGTGAA ACTGGTTAAG TGGCATGTAA TAGTAAGTGC TCAATTAACA Α TTGGTTGAAT AAATGAGAGA ATGAATAGAT TCATTTATTA GCATTTGTAA 6800 AAGAGATGTT CAATTTCAAT AAAATAAATA TAAAACCATG TAACAGAATG CTTCTGAGTA TTCAAGGCTT GCTAGTTTGT TTGTTTGTTT TCTACTAAAG 6900 GCAAGGACCA TGAAGTTCTA GATTGGAAAT GTCCTCTT GACTATTGCA AGTGCGATCT AGGAATGAAA AGACATAGGA GGATGCCAGT GAGGTGGATC 7000 ATTTTTATGC TTCTTCTA GCTTACTAAA TATGAACTTT CAGTTCTTGG CAGAATCAGG GACAGTCTCA AGACATAGGA CTCTCAGGAT GAAGTAGAGT 7100 CCAGGATTCC TCTGTGATTG TTTTGCCCCT CCCAAATTTA TATCTTGAAC TTATGTCTTG TATCTTTATA CAGCACCTGA ACCAAGCATT TTGGAGAAAT 7200 TCCAGCTAAT AATAATAACC AAAACCTTCG GCTCTGAAAA CAGTCCAGGA CTGAATAAGA TCTTGGGCAA AAGAACTAGA CAGTTTTGGT TTATTTTCCC 7300 TTTCATTTTA TGTCTTCATC ATAGTCATTG GAGGCTCATT CTTCTTGTCA

7372

5/6 POLYMORPHISMS IN THE CODING SEQUENCE OF FCER1A

ATGGCTCCTG	CCATGGAATC	CCCTACTCTA	CTGTGTGTAG	CCTTACTGTT	
CTTCGCTCCA	GATGGCGTGT	TAGCAGTCCC	TCAGAAACCT	AAGGTCTCCT	100
TGAACCCTCC	ATGGAATAGA	ATATTTAAAG	GAGAGAATGT	GACTCTTACA	
TGTAATGGGA	ACAATTTCTT	TGAAGTCAGT	TCCACCAAAT	GGTTCCACAA	200
TGGCAGCCTT	TCAGAAGAGA	CAAATTCAAG	TTTGAATATT	GTGAATGCCA	
AATTTGAAGA	CAGTGGAGAA	TACAAATGTC	AGCACCAACA	AGTTAATGAG	300
G		•			
AGTGAACCTG	TGTACCTGGA	AGTCTTCAGT	GACTGGCTGC	TCCTTCAGGC	
A					
CTCTGCTGAG	GTGGTGATGG	AGGGCCAGCC	CCTCTTCCTC	AGGTGCCATG	400
GTTGGAGGAA	CTGGGATGTG	TACAAGGTGA	TCTATTATAA	GGATGGTGAA	
GCTCTCAAGT	ACTGGTATGA	GAACCACAAC	ATCTCCATTA	CAAATGCCAC	500
AGTTGAAGAC	AGTGGAACCT	ACTACTGTAC	GGGCAAAGTG	TGGCAGCTGG	
		T			
ACTATGAGTC	TGAGCCCCTC	AACATTACTG	TAATAAAAGC	TCCGCGTGAG	600
AAGTACTGGC	TACAATTTTT	TATCCCATTG	TTGGTGGTGA	TTCTGTTTGC	
TGTGGACACA	GGATTATTTA	TCTCAACTCA	GCAGCAGGTC	ACATTTCTCT	700
TGAAGATTAA	GAGAACCAGG	AAAGGCTTCA	GACTTCTGAA	CCCACATCCT	
				A	
AAGCCAAACC	CCAAAAACAA	CTGA			774

firm first f

6/6 ISOFORMS OF THE FCER1A PROTEIN

MAPAMESPTL	LCVALLFFAP	DGVLAVPQKP	KVSLNPPWNR	IFKGENVTLT	
CNGNNFFEVS	STKWFHNGSL	SEETNSSLNI	VNAKFEDSGE R	YKCQHQQVNE	100
SEPVYLEVFS N	DWLLLQASAE	VVMEGQPLFL	RCHGWRNWDV	YKVIYYKDGE	
ALKYWYENHN	ISITNATVED	SGTYYCTGKV M	WQLDYESEPL	NITVIKAPRE	200
KYWLQFFIPL	LVVILFAVDT	GLFISTQQQV	TFLLKIKRTR	KGFRLLNPHP K	
KPNPKNN			•		257