Измеренные величины:

Таблица 1

$$x_{min} = 0 MM$$

 $x_{max} = 210 \, мм$

φ , B	1	2	4	6	8	9					
у, мм		х, мм									
10	21	48	94	129	170	190					
30	21	48	92	128	167	190					
50	22	46	90	129	169	190					
70	20	45	87	127	166	190					
90	20	43	84	125	165	188					
110	19	42	82	121	163	187					
130	20	42	80	118	162	186					
150	20	41	78	117	160	185					
170	21	40	77	114	160	183					

Таблица 2

 $y = 4.8 \, MM$

х,см	2	4	6	8	10	12	14	16
φ,Β	0,88	1,72	2,54	3,50	4,47	5,55	6,62	7,64

Таблица 3

 $r_{\text{внутр}} = 14 \text{ мм}$

 $r_{equal} = 100 \text{ MM}$

1	2	4	6	8	9						
	r , мм										
14	18	27	41	65	82						
14	17	27	40	64	81						
14	16	24	39	63	79						
14	17	26	40	64	80						
14	16	26	41	66	83						
14	16	26	40	65	81						
14	16	26	38	64	80						
14	17	25	40	64	81						
	14 14 14 14 14 14 14	14 18 14 17 14 16 14 17 14 16 14 16 14 16 14 16 14 16	14 18 27 14 17 27 14 16 24 14 17 26 14 16 26 14 16 26 14 16 26 14 16 26 14 16 26	r, mm 14 18 27 41 14 17 27 40 14 16 24 39 14 17 26 40 14 16 26 41 14 16 26 40 14 16 26 38	r, MM 14 18 27 41 65 14 17 27 40 64 14 16 24 39 63 14 17 26 40 64 14 16 26 41 66 14 16 26 40 65 14 16 26 38 64						

Таблица 4

 $\alpha = 202,5$

r , мм	15	18	20	25	30	35	40	50	60	80
φ, Β	1,60	2,55	3,23	4,10	4,86	5,48	6,04	6,96	7,82	8,93

Обработка результатов.

- 1. На обоих листах миллиметровой бумаги с отмеченными точками провести эквипотенциальные линии, соединив точки с равным потенциалом.
- 2. Для модели плоского конденсатора из точек с координатами X = 0, Y = 1; 3; 5; 7; 9; 11; 13; 15; 17 см перпендикулярно к потенциальным линиям провести силовые линии от одного электрода до другого.
- 3. По формуле (7) из данных таблицы 2 вычислить среднюю напряженность электростатического поля между точками 1-2, 3-4, 5-6, 7-8.

$$E_{12} = \frac{\varphi_1 - \varphi_2}{l_{12}}$$

xy	1-2	3-4	5-6	7-8
E_{xy}	-42,0	-48,0	-54,0	-51,0

4. Вывести формулу для расчета погрешности DE и вычислить погрешности для значений, найденных в п. 3.

$$\Delta E_{xy} = E_{xy} * \sqrt{\left(\frac{\Delta \varphi}{\varphi_{xy}}\right)^2 + \left(\frac{\Delta l}{l_{xy}}\right)^2}$$

xy	1-2	3-4	5-6	7-8
ΔE_{xy}	3,26	3,47	3,68	3,57

- 5. По данным таблицы 2 построить график зависимости $\varphi(r)$ потенциала от координаты в плоском конденсаторе (нанести точки и построить аппроксимирующую прямую).
- 6. Для модели цилиндрического конденсатора из точек на границе внутреннего электрода с угловыми координатами $\alpha = 0^\circ$; 45°; 90°; 135°; 180°; 225°; 270°; 315° перпендикулярно к потенциальным линиям провести силовые линии до внешнего электрода.
- 7. По данным таблицы 4 построить график зависимости $\varphi(r)$ потенциала от координаты в цилиндрическом конденсаторе (нанести точки и построить аппроксимирующую гладкую кривую).
- 8. По данным таблицы 4 заполнить таблицу 5.

Таблица 5.

ln	$\frac{r}{r_0}$	1,07	1,29	1,43	1,79	2,14	2,5	2,86	3,57	4,29	5,71
φ	, B	1,60	2,55	3,23	4,10	4,86	5,48	6,04	6,96	7,82	8,93

По данным таблицы 3 построить график зависимости потенциала от величины $\ln \frac{r}{r0}$ (нанести точки и построить аппроксимирующую прямую). По формуле (9) эта зависимость должна быть прямолинейной.

$$\varphi(r) = \varphi_0 + \frac{U \ln \frac{r}{r_0}}{\ln \frac{r_1}{r_0}}$$

Вывод:

В данной лабораторной работе я исследовал характер электрического поля плоского и цилиндрического конденсатора.

Электрическое поле плоского конденсатора не получилось однородным — в центре конденсатора наблюдается явное отклонение проекции эквипотенциальной поверхности от прямой линии, параллельной обкладкам. Это можно объяснить износившимся оборудованием — в центре данной бумажки проводилось наибольшее число измерений, появлялись царапины и подобное, что не могло не сказаться на сопротивлении бумажки и на других ее электрических характеристиках.