Capítulo 1

Estimação Pontual

1.1 Introdução

Inferência Estatística, ou "Aprendizado" como é chamado em Ciência da Computação, é o processo de buscar dados para inferir a distribuição que gera esses dados. Uma típica questão de Inferência Estatística é a seguinte:

Dado uma amostra
$$X_l, ..., X_n \sim F$$
, como inferimos F ?

Em alguns casos, podemos querer inferir apenas algumas características de F, como sua média por exemplo.

Um **modelo estatístico** \mathcal{F} é um conjunto de distribuições (ou densidades ou funções de regressão).

Um **modelo paramétrico** é um conjunto \mathcal{F} que pode ser parametrizado por um número finito de parâmetros.

Por exemplo, se nós assumimos que os dados provém de uma distribução Normal, então o modelo é:

$$\mathcal{F} = \left\{ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\}, \mu \in \mathbb{R}, \sigma > 0 \right\}$$

Este é um modelo de dois parâmetros. Escrevemos a densidade como $f(x; \mu, \sigma)$ para mostrar que x é um valor da variável aleatória enquanto μ, σ são parâmetros.

Em geral, um modelo paramétrico assume a forma:

$$\mathcal{F} = \{ f(x; \theta), \theta \in \Theta \}$$

onde θ é um parâmetro desconhecido (ou vetor de parâmetros) que pode levar valores no **espaço de parâmetros** Θ . Se θ é um vetor, mas estamos apenas interessados em um componente de θ , chamamos os parâmetros restantes de **parâmetros incômodos**.

Um **modelo não paramétrico** é um conjunto \mathcal{F} que não pode ser parametrizado por um número finito de parâmetros.

Estimadores e Estimativas Dado um parâmetro $\theta \in \Theta$ umestimador Muitos problemas in ferenciais p Estimação, Intervalos deconfiança ae Teste de hipóteses. Vamos tratar de todos esses problemas em detalla

Estimação Pontual Paramétrica ou Estimação Pontual é uma técnica que tenta for necerum a única" m

 $Ne ste cap\'itulo, vamo sabordarate oria sobre este as sunto. Para resumir, usar emos ot \^ermo estimativa en altre a compara de la compara de$

1.2 A Ideia básica da Estimação Pontual

O problema aqui, resumidamente declarado, é o seguinte. Seja X um v.a. com um f.d.p. f que, no entanto, envolve um parâmetro. Este é o caso, por exemplo, no Distribuição binomial B(1,p), a distribuição de Poisson $P(\lambda)$, a Exponencial negativa $f(x) = \lambda e^{-\lambda x}, x > 0$ a distribuição Uniforme $U(0,\alpha)$, e a distribuição normal $N(\mu,\sigma^2)$ com uma das quantidades μ e σ^2 conhecido. O parâmetro é geralmente denotado por θ , e o conjunto de seus valores possíveis, denotado por Θ é chamado de espaço de parâmetro. A fim de enfatizar o fato de que a f.d.p. depende de θ , escrevemos $f(;\theta)$. Assim, nas distribuições mencionadas acima, temos para as respectivos f.d.p.'s e os espaços de parâmetros:

$$f(x;\theta) = \theta^{x}(1 - \theta)^{1/x}, x = 0, 1, \theta \in \Theta = (0, 1).$$

$$f(x;\theta) = e^{-\theta} \frac{\theta^{x}}{x!}, x = 0, 1, ..., \theta \in \Theta = (0, \infty).$$

$$f(x;\theta) = \theta e^{-\theta x}, x > 0, \theta \in \Theta = (0, \infty).$$

$$f(x; \theta) = \begin{cases} \frac{1}{\theta}, & 0 < x < \theta \\ & \theta \in \Theta = (0, \infty) \\ 0 & \text{Caso contrário} \end{cases}$$

Distribuições normais são adequadas para modelar as situações descritas em Exemplos 16 e 17 do Capítulo 1.

Nosso objetivo é desenhar uma amostra aleatória de tamanho n, X_1,\ldots,X_n , do distribuição subjacente e, com base nela, construir uma estimativa pontual (ou estimador) para θ , ou seja, uma estatística $\widehat{\theta} = \widehat{\theta}, X_1,\ldots,X_n$, que é usada para estimar θ , onde uma estatística é uma função conhecida da amostra aleatória X_1,\ldots,X_n . Se x_1,\ldots,x_n são os valores realmente observados de v.a.'s X_1,\ldots,X_n , respectivamente, então o valor observado de nossa estimativa tem o valor numérico $\widehat{\theta}(x_1,\ldots,x_n)$. Os valores observados x_1,\ldots,x_n também são chamados de dados. Então, com base nos dados disponíveis, é declarado que o valor de θ é $\widehat{\theta}(x_1,\ldots,x_n)$ dentre todos os pontos possíveis em . Uma estimativa pontual é muitas vezes referida apenas como uma estimativa, e a notação $\widehat{\theta}$ é usada indiscriminadamente, tanto para a estimativa $\widehat{\theta}$ (X1,..., Xn) (que é um r.v.) e para seu valor observado $\widehat{\theta}$ (x1,..., Xn) (que é apenas um número).

A única restrição óbvia em $\theta \in \widehat{\theta}(x_1, \dots, x_n)$ é que se encontra em para todos valores possíveis de X_1, \dots, X_n . Além disso, há inúmeras estimativas pode-se construir portanto, a necessidade de assumir certos princípios e/ou inventar métodos para construir $\widehat{\theta}$. Talvez, o princípio mais amplamente aceito seja o chamado princípio da Máxima Verossimilhança (MV). Este princípio dita que formamos a junta p.d.f. dos xi's, para os valores observados dos $X_i's$, olhe para esta junta f.d.p. como uma função de θ (e chame-a de função de verossimilhança), e maximizar a função de verossimilhança em relação a θ . O ponto de maximização (assumindo que existe e é único) é uma função de (x_1, \dots, x_n) , e é o que nós chamamos de estimativa de máxima verossimilhança (MLE) de θ . A notação usada para o a função de verossimilhança é $L(\theta|x_1, \dots, x_n)$. Então, temos isso:

$$L(\theta|x_1,...,x_n) = f(x_1;\theta)...f(x_n;\theta), \theta \in \Theta.$$

O MLE será estudado extensivamente no Capítulo 9.

Outro princípio frequentemente usado na construção de uma estimativa para θ é o prin- princípio de imparcialidade. Neste contexto, uma estimativa geralmente é denotada por $U = U(X_1, \ldots, X_n)$. Então, o princípio da imparcialidade dita que U deve ser construído de modo a ser imparcial; ou seja, sua expectativa (valor médio) deve ser sempre θ , não importa qual seja o valor de θ . Mais formalmente, $E_{\theta}U = \theta$ para todos $\theta \in \Theta$. (No sinal de expectativa E, o parâmetro θ foi inserido para indicar que esta expectativa depende de θ , uma vez que é calculada usando o f.d.p. $f(\cdot;\theta)$.) Agora, é intuitivamente claro que, ao comparar duas estimativas imparciais companheiros, um escolheria o outro com a pequena servidão, uma vez que seria mais fortemente concentrado em torno de sua média θ . Visualize o caso que, dentro da classe de todas as estimativas imparciais, existe uma que

tem a menor variância (e isso é verdade para todos os $\theta \in Theta$). Essa estimativa é chamada de mínimo uniforme Estimativa de variância imparcial (UMVU) e é, claramente, uma estimativa desejável. Dentro No próximo capítulo, veremos como fazemos para construir essas estimativas.

O princípio (ou melhor, o método) baseado em momentos amostrais é outra forma de construir estimativas. O método dos momentos, no caso mais simples, dita para formar a média da amostra \overline{X} e igualá-la com a média (teórica) $E_{\theta}X$. Em seguida, resolva para θ (assumindo que pode ser feito, e, de fato, exclusivamente) na ordem para chegar a uma estimativa de momento de θ . Um método muito mais sofisticado de construção de estimativas de θ é o o chamado método teórico da decisão. Este método exige a introdução de uma série de conceitos, terminologia e notação, e será retomada na Próximo Capítulo.

Finalmente, outro método relativamente popular (em particular, no contexto de certos modelos) é o método dos mínimos quadrados (LS). O método de ligações LS para a construção de uma estimativa para θ , a Estimativa de Mínimos Quadrados (LSE) de θ , por meio de uma minimização (em relação a θ) da soma de certos quadrados. Esta soma dos quadrados representa os desvios quadrados entre o que realmente observar depois que a experimentação for concluída e o que esperaríamos ter com base em um modelo presumido. Mais uma vez, os detalhes serão apresentados mais tarde em, mais especificamente, no Capítulo 13.

Em toda a discussão anterior, foi assumido que o p.d.f. subjacente. dependia de um único parâmetro, denotado por θ . Pode muito bem ser caso haja dois ou mais parâmetros envolvidos. Isso pode acontecer, por exemplo, na distribuição uniforme $U(\alpha,\beta), -\infty < \alpha < \beta < \infty$, onde ambos α e β são desconhecidos; a distribuição normal, $N(\mu,\sigma^2)$, onde ambos μ e σ^2 são desconhecidos; e isso acontece na distribuição Multinomial, onde o o número de parâmetros é k, p_1, \ldots, p_k (ou mais precisamente, k-1, uma vez que o k-ésimo parâmetro, por exemplo, $p_k=1-p_1-\cdots-p_{k-1}$). Por exemplo, Exemplos 20 e 21 do Capítulo 1 referem-se a situações em que uma distribuição Multinomial é apropriado. Em tais casos de multiparâmetros, simplesmente se aplica a cada parâmetro separadamente o que foi dito acima para um único parâmetro. A opção alternativa de usar a notação vetorial para os parâmetros envolvidos simplifica as coisas de certa forma, mas também introduz algumas complicações de outras maneiras.

Seja X uma v.a. com f.d.p. $f(;\theta)$, onde θ é um parâmetro que está em um espaço de parâmetro Θ . Supõe-se que a forma funcional da f.d.p. é completamente conhecido. Portanto, se θ fosse conhecido, a f.d.p. seria conhecido, e consequentemente, poderíamos calcular, em princípio, todas as probabilidades relacionadas a X, a esperança de X, sua variância, etc. O problema, no entanto, é que na maioria das vezes na prática (e no presente contexto) θ não é conhecido. Então o objetivo é estimar θ com base em uma amostra aleatória de tamanho n de $f(;\theta), X_1, \ldots, X_n$. Então, substituindo θ em $f(;\theta)$ por uma estimativa "boa"dele,

seria de esperar ser capaz de usar a f.d.p. resultante para os fins descritos acima em um grau satisfatório.

1.3 Estimação de Máxima Verossimilhança: Motivação e Exemplos

O seguinte exemplo simples destina-se a esclarecer o que é intuitivo, mas bastante lógico, o princípio da Estimativa de Máxima Verossimilhança.

Exemplo 1 Sejam X_1, \ldots, X_{10} v.a's i.i.d. da distribuição $B(1,\theta)$, $0 < \theta < 1$, e se X_1, \ldots, X_{10} são os respectivos valores observados. Por conveniência, defina $t = x_1 + \ldots + x_{10}$. Além disso, suponha que nas 10 tentativas, 6 resultaram em sucessos, de modo que t = 6. Então, a função de verossimilhança envolvida é: $L(\theta|x) = \theta^6(1-\theta)^4, 0 < \theta < 1, x = (x_1, \ldots, x_{10})$. Assim, $L(\theta|x)$ é a probabilidade de observar exatamente 6 sucessos em 10 ensaios binomiais independentes, ocorrendo os sucessos nas tentativas para as quais $x_i = 1, i = 1, \ldots, 10$; esta probabilidade é uma função do parâmetro (desconhecido) θ . Vamos calcular os valores desta probabilidade para θ variando de 0,1 a 0,9. Observamos

Valores de θ	Valores de $L(\theta x)$
0.1	0.0000006561
0.2	0.0000262144
0.3	0.0001750329
0.4	0.0005308416
0.5	0.0009765625
0.6	0.0011943936
0.7	0.0009529569
0.8	0.0004194304
0.9	0.0000531441

que os valores de $L(\theta|x)$, são crescentes, atingem seu máximo valor em $\theta=0,6$, e então os valores vão diminuindo. Portanto, se esses 9 valores fossem os únicos valores possíveis para θ (o que eles nãoo são!), alguém poderia raciocinar habilmente escolha o valor de 0,6 como o valor de θ . O valor $\theta=0,6$ tem a distinção de maximizar (entre os 9 valores listados) a probabilidade de atingir os 6 sucessos já observados. Observamos que $0,6=\frac{6}{10}=\frac{t}{n}$ onde n é o número de tentativas e t

ó o número de sucessos. Veremos no Exemplo a seguir que o valor $\frac{t}{n}$, na verdade, maximiza a função de verossimilhança entre todos os valores de θ com $0 < \theta < 1$. Então $\frac{t}{n}$ será a estimativa de similaridade máxima de θ a ser denotada por $\widehat{\theta}$; ou seja, $\widehat{\theta} = \frac{t}{n}$.

Definição 1 Sejam $X_1, ..., X_n$ var. aleatórias independente e identicamente distribuídas(iid) com fdp $f(\cdot; \theta)$ com $\theta \in \Theta$, e sejam $x_1, ..., x_n$ os respectivos valores observados e $\mathbf{x} = (x_1, ..., x_n)$. A função de verossimilhança $L(\theta|\mathbf{x})$, é definida por:

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta)$$

o valor de θ que maximiza $L(\theta|\mathbf{x})$ é chamado de **Estimativa de Máxima Verossimi-Ihança** (**EMV**) de θ . Claramente, a **EMV** depende de \mathbf{x} , e geralmente escrevemos $\widehat{\theta} = \widehat{\theta}(\mathbf{x})$. Desse modo,

$$L(\widehat{\theta}|x) = \max\{L(\theta|x), \theta \in \Theta\}.$$

Vamos enunciar agora um resultado muito importante na determinação das \mathbf{EMV} 's

Proposição 1 Dada $f: \Omega \to \mathbb{R}$, $\Omega \subseteq \mathbb{R}^n$ contínua. Se $\log(f(x))$ possui um máximo x^* em Ω então x^* também é máximo de f.

Prova: Se x^* é um máximo de $\log(f(x))$ então $\log(f(x)) \le \log(f(x^*))$ para todo $x \in \Omega$ como a função $\log(x)$ é estritamente crescente temos que $f(x) \le f(x^*)$ para todo $x \in \Omega$ portanto x^* também é um máximo de f.

Exemplo 2 Em termos de uma amostra aleatória de tamanho n, X_1, \ldots, X_n de uma distribuição $X \sim B(1, \theta)$ com valores observados x_1, \ldots, x_n , determine a $EMV \widehat{\theta} = \widehat{\theta}(\mathbf{x})$ de $\theta \in (0, 1), \mathbf{x} = (x_1, \ldots, x_n)$.

Sendo $f(x_i, \theta) = \theta^{x_i} (1 - \theta)^{1-x_i}$, $x_i = 0$ ou 1, i = 1, ..., n, a função de verossimilhança é dada por:

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^t (1 - \theta)^{n - t}, \quad t = x_1 + \ldots + x_n$$

como $x_i = 0$ ou 1, então t = 0, 1, ..., n. Portanto:

$$log(L(\theta|\mathbf{x})) = tlog(\theta) + (n-t)log(1-\theta)$$

derivando com relação a θ obtemos a equação que denominamos **equação de verossimilhança**

$$\frac{\partial log\left(L(\theta|\mathbf{x})\right)}{\partial \theta} = 0$$

obtendo para este caso:

$$\frac{\partial log\left(L(\theta|\mathbf{x})\right)}{\partial \theta} = \frac{t}{\theta} - \frac{n-t}{1-\theta} = 0$$

o que concluindo-se que $\theta = \frac{t}{n}$. Fazendo-se agora o teste da derivada segunda temos:

$$\frac{\partial^2 log \left(L(\theta | \mathbf{x}) \right)}{\partial \theta^2} = -\frac{t}{\theta^2} - \frac{n-t}{(1-\theta)^2}$$

 $\begin{array}{l} como\ t \leq n, \frac{\partial^2 log\left(L(\theta|\boldsymbol{x})\right)}{\partial \theta^2} < 0\ para\ todo\ \theta\ em\ particular\ para\ \widehat{\theta} = \frac{t}{n}. \end{array}$ Portanto o **EMV** de θ é $\widehat{\theta} = \frac{t}{n}$.

Exemplo 3 Determine o $EMV \widehat{\theta} = \widehat{\theta}(x)$ de $\theta \in (0, \infty)$ na distribuição $P(\theta)$ (Poisson) em termos de uma amostra aleatória X_1, \ldots, X_n com valores observados x_1, \ldots, x_n . Sendo $f(x_i, \theta) = \frac{e^{-\theta}\theta^{x_i}}{x_i!}, x_i = 0, 1, \ldots, i = 1, \ldots, n$, a função de verossimilhança é dada por:

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \frac{e^{-\theta} \theta^{x_i}}{x_i!} = e^{-n\theta} \prod_{i=1}^{n} \frac{\theta^{x_i}}{x_i!},$$

$$log(L(\theta|\mathbf{x})) = -n\theta + nlog(\theta) \frac{\sum_{i=1}^{n} x_i}{n} - log\left(\prod_{i=1}^{n} x_i!\right)$$

derivando com relação a θ obtemos a equação que denominamos **equação de verossimilhança**

$$\frac{\partial log\left(L(\theta|\mathbf{x})\right)}{\partial \theta} = 0$$

obtendo para este caso:

$$\frac{\partial log\left(L(\theta|\mathbf{x})\right)}{\partial \theta} = -n + n\frac{\overline{x}}{\theta} = 0$$

o que concluindo-se que $\theta = \overline{x}$. Fazendo-se agora o teste da derivada segunda temos:

$$\frac{\partial^2 log\left(L(\boldsymbol{\theta}|\boldsymbol{x})\right)}{\partial \boldsymbol{\theta}^2} = -n\frac{\overline{x}}{\boldsymbol{\theta}^2}$$

como $x_i \ge 0, \overline{x} > 0$, $\log o \frac{\partial^2 L(\theta|\mathbf{x})}{\partial \theta^2} < 0$ para todo θ em particular para $\widehat{\theta} = \overline{x}$. Portanto o **EMV** de θ é $\widehat{\theta} = \overline{x} = \frac{\sum_{i=1}^n x_i}{n}$.

Exemplo 4 Determine o $EMV \widehat{\theta} = \widehat{\theta}(\mathbf{x})$ de $\theta \in (0, \infty)$ na distribuição Exponencial $Exp(\theta)$ em termos de uma amostra aleatória X_1, \dots, X_n com valores observados x_1, \dots, x_n .

Nesse caso $f(x_i, \theta) = \theta e^{-\theta x_i}, x_i > 0.$

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \theta e^{-\theta x_i} = \theta^n e^{-n\theta \frac{\sum_{i=1}^{n} x_i}{n}} = \theta^n e^{-n\theta \overline{x}},$$

$$\log\left(L(\theta|\boldsymbol{x})\right) = n\log(\theta) - n\overline{x}\theta$$

$$\frac{\partial \log \left(L(\theta | \mathbf{x}) \right)}{\partial \theta} = \frac{n}{\theta} - n\overline{\mathbf{x}} = 0$$

conclui-se que $\theta = \frac{1}{x}$

$$\frac{\partial^2 \log \left(L(\theta | \boldsymbol{x}) \right)}{\partial \theta^2} = -\frac{n}{\theta^2} < 0 \forall \theta$$

em particular para $\widehat{\theta} = \frac{1}{\overline{x}}$. Portanto o **EMV** de θ é $\widehat{\theta} = \frac{1}{\overline{x}} = \frac{n}{\sum_{i=1}^{n} x_i}$.

Exemplo 5 Seja $X_1, ..., X_n$ uma amostra aleatória de uma população com distribuição $\mathcal{N}(\mu, \sigma^2)$, onde apenas um dos parâmetros é conhecido. Determine a **EMV** do outro (desconhecido) parâmetro.

DISCUSSÃO Com $x_1, ..., x_n$ sendo valores observados de $X_1, ..., X_n$, nós temos:

$$L(\mu, \sigma; \mathbf{x}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right] = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^n e^{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}}, \mu \in \mathbb{R}, \sigma > 0.$$

• Se μ é desconhecido. Então:

$$\log\left(L(\mu|\boldsymbol{x})\right) = -n\log\left(\sqrt{2\pi}\sigma\right) - \frac{\sum_{i=1}^{n}\left(x_{i} - \mu\right)^{2}}{2\sigma^{2}}.$$

Fazendo

$$\frac{\partial \log \left(L(\mu|\mathbf{x}) \right)}{\partial \mu} = 0,$$

obtemos

$$\frac{\left(\sum_{i=1}^{n} x_i\right) - n\mu}{\sigma^2} = 0.$$

e consequentemente

$$\mu = \overline{x}$$
.

Como

$$\frac{\partial^2 \log \left(L(\mu | \mathbf{x}) \right)}{\partial \mu^2} = -\frac{n}{\sigma^2} < 0 \ para \ todo \ \mu,$$

concluímos que a *EMV* para para μ sendo σ conhecido é $\widehat{\mu} = \overline{x}$.

• Se σ^2 é desconhecido. Então:

$$\log (L(\sigma^{2}|\mathbf{x})) = -n \log (\sqrt{2\pi\sigma^{2}}) - \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{2\sigma^{2}}$$
$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^{2}) - \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{2\sigma^{2}}.$$

Fazendo

$$\frac{\partial \log \left(L(\sigma^2 | \mathbf{x}) \right)}{\partial \sigma^2} = 0,$$

obtemos

$$-\frac{n\sigma^2}{2\sigma^4} + \frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^4} = 0.$$

e consequentemente

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} = s^2.$$

Como

$$\frac{\partial^2 \log \left(L(\sigma^2 | \mathbf{x}) \right)}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{2\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^6}$$

$$= \frac{n}{2(\sigma^2)^2} - \frac{2n}{2(\sigma^2)^3} \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

$$= \frac{n}{2(\sigma^2)^2} - \frac{2n}{2(\sigma^2)^3} s^2$$

$$= \frac{n}{2(s^2)^2} - \frac{2n}{2(s^2)^3} s^2$$

$$= -\frac{n}{2(s^2)^2} < 0.$$

Portanto a **EMV** para para σ^2 com conhecido é $\widehat{\sigma^2} = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$.

Exemplo 6 Seja X_1, \ldots, X_n uma amostra aleatória de uma população com distribuição $\mathcal{U}(\alpha, \beta)$, onde apenas um dos parâmetros é conhecido. Determine a **EMV** do outro (desconhecido) parâmetro.

DISCUSSÃO Com $x_1, ..., x_n$ sendo valores observados de $X_1, ..., X_n$, nós temos:

$$L(\alpha, \beta | \mathbf{x}) = \frac{1}{(\beta - \alpha)^n} \prod_{i=1}^n I_{\left[\alpha, \beta\right]}(x_i) = \frac{1}{(\beta - \alpha)^n} I_{\left[\alpha, \beta\right]}(x_{min}) \times I_{\left[\alpha, \beta\right]}(x_{max})$$

onde

$$I_{\left[\alpha\beta\right]}(x) = I(\alpha \le x \le \beta) = \left\{ \begin{array}{l} \underline{I}, \quad se \ \alpha \le x \le \beta \\ \\ 0 \quad caso \ contrário \end{array} \right.$$

 \acute{e} a função indicadora do intervalo [α,β], $x_{min} = \min\{x_1,...,n\}$ e $x_{max} = \max\{x_1,...,x_n\}$.

• Se α é desconhecido.

$$\beta - \alpha \ge \beta - x_{min} \Rightarrow \frac{1}{(\beta - \alpha)^n} \le \frac{1}{(\beta - x_{min})^n}$$

portanto $\alpha = x_{min}$ e consequentemente $\widehat{\alpha} = x_{min}$ é a *EMV* de α .

• Se β é desconhecido.

$$\beta - \alpha \ge x_{max} - \alpha \Rightarrow \frac{1}{(\beta - \alpha)^n} \le \frac{1}{(x_{max} - \alpha)^n}$$

portanto $\beta = x_{max}$ e consequentemente $\widehat{\beta} = x_{max}$ é a **EMV** de β .

Exemplo 7 Seja $X_1, ..., X_n$ uma amostra aleatória de uma população com distribuição $\mathcal{N}(\mu, \sigma^2)$, onde os dois parâmetros são desconhecidos. Determine as *EMV's* desses parâmetros.

$$\log\left(L(\mu,\sigma^2|\boldsymbol{x})\right) = -n\log\left(\sqrt{2\pi}\sigma\right) - \frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}.$$

$$\nabla \log \left(L(\mu, \sigma^2 | \mathbf{x}) \right) = \begin{pmatrix} \frac{\left(\sum_{i=1}^n x_i\right) - n\mu}{\sigma^2} \\ -\frac{n\sigma^2}{2\sigma^4} + \frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^4} \end{pmatrix}$$

Fazendo

$$\nabla \log \left(L(\mu, \sigma^2 | \mathbf{x}) \right) = \mathbf{0}$$

Obtemos a única solução (μ, σ^2) deste sistema de equações não lineares dada por:

$$\mu = \frac{\sum_{i=1}^{n} x_i}{n} e \sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$$

A matriz Hessiana de $\log(L(\mu, \sigma^2|\mathbf{x}))$ é dada por:

$$\nabla^{2} \log \left(L(\mu, \sigma^{2} | \mathbf{x}) \right) = \begin{pmatrix} -\frac{n}{\sigma^{2}} & 2\frac{\left(\sum_{i=1}^{n} x_{i} - n\mu\right)}{2\sigma^{4}} \\ -\frac{\sum_{i=1}^{n} x_{i} - n\mu}{(\sigma^{2})^{2}} & \frac{n}{2(\sigma^{2})^{2}} - \frac{2n}{2(\sigma^{2})^{3}} s^{2} \end{pmatrix}$$

Substituindo nos valores obtidos de $\widehat{\mu}$ e $\widehat{\sigma^2}$ obtemos:

$$\nabla^2 \log \left(L(\widehat{\mu}, \widehat{\sigma^2} | \mathbf{x}) \right) = \begin{pmatrix} -\frac{n}{\sigma^2} & 0 \\ 0 & -\frac{n}{2(s^2)^2} \end{pmatrix}$$

Como $\nabla^2 \log \left(L(\widehat{\mu}, \widehat{\sigma^2} | \mathbf{x}) \right)$ é é uma matriz definida negativa o par $(\widehat{\mu}, \widehat{\sigma^2})$ é uma **EMV** para (μ, σ^2) .

Exemplo 8 Um experimento multinomial é realizado independentemente n vezes, de modo que a função de verossimilhança é dada por:

$$L(\theta_1,\ldots,\theta_r|\mathbf{x})=\frac{n!}{\prod_{i=1}^n x_i!}\theta_1^{x_1},\ldots,\theta_r^{x_r},$$

onde $x_i \ge 0$ e inteiro, $\sum_{i=1}^r x_i = n$, $0 < p_i < 1$, $\sum_{i=1}^r \theta_i = 1$, i = 1, ..., r. Determine as **EMV**'s para **p**.

DISCUSSÃO: Nesse caso trata-se de um problema de otimização com uma restrição de igualdade:

Maximize
$$\log(L(\theta_1, \dots, \theta_r | \mathbf{x})) = \sum_{i=1}^r x_i \log(\theta_i) - n! \log\left(\prod_{i=1}^n x_i!\right)$$

Sujeito à: $\sum_{i=1}^r \theta_i = 1, \ \theta_i > 0$

Cuja função Lagrangeana associada $\mathcal{L}: \mathbb{R}^r \times \mathbb{R} \to \mathbb{R}$ é dada por:

$$\mathcal{L}(\boldsymbol{\theta}, \lambda) = \sum_{i=1}^{r} x_i \log(\theta_i) - n! \log\left(\prod_{i=1}^{n} x_i!\right) - \lambda \left(\sum_{i=1}^{r} \theta_i - 1\right)$$

com as seguintes condições de otimalidade de 1^{a.} ordem:

$$\nabla \mathcal{L}(\boldsymbol{\theta}, \lambda) = \mathbf{0} \iff \frac{x_i}{\theta_i} - \lambda = 0, \ i = 1, \dots, r.$$

$$\sum_{i=1}^r \theta_i = 1.$$

 $\frac{x_i}{\theta_i} - \lambda = 0, \ i = 1, \dots, r. \ nos \ diz \ que \ \theta_i = \frac{x_i}{\lambda}, \ como \ \sum_{i=1}^r \theta_i = 1. \ substituindo \ os valores \ de \ \theta_i \ nessa \ equação \ obtemos \ \lambda = \sum_{i=1}^r x_i = n \ obtendo \ finalmente \ \theta_i = \frac{x_i}{n}.$ Portanto $\widehat{\boldsymbol{\theta}} = \frac{\boldsymbol{x}}{n}$, uma vez que a matriz Hessiana da função $\nabla^2 L(\boldsymbol{\theta})$ dada por:

$$\nabla^2 L(\boldsymbol{\theta}) = \begin{pmatrix} -\frac{x_1}{\theta_1^2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & -\frac{x_r}{\theta_r^2} \end{pmatrix} \acute{e} Semidefinida Negativa isto \acute{e}:$$

$$\sum_{i=1}^{r} \sum_{j=1}^{r} \frac{\partial^{2} L(\boldsymbol{\theta}, \lambda)}{\partial \theta_{i} \partial \theta_{j}} v_{i} v_{j} = -\sum_{i=1}^{r} \frac{x_{i}}{\theta_{i}^{2}} v_{i}^{2} < 0 \text{ para todo } \boldsymbol{v} \in \mathbb{R}^{r}.$$

1.3.1 A Família Exponencial e os Estimadores de Máxima Verossimilhança

Definição 2 (Família Exponencial: O caso Uniparamétrico)

Uma fdp $f(;\theta), \theta \in \Theta \subseteq \mathbb{R}$ *pertence a Família Exponencial*, *se* $f(x;\theta)$ *é da forma:*

$$f(x;\theta) = C(\theta)e^{Q(\theta)T(x)} \times h(x)$$

onde Q é estritamente monótona e h não envolve $\theta, C(\theta)$ é simplesmente uma constante de normalização.

Vejamos alguns exemplos de membros dessa família

Exemplo 9 *Se X* $\sim \mathcal{B}(n, \theta)$

$$f(x;\theta) = \frac{n!}{(n-x)!x!} \theta^k (1-\theta)^{n-x} I_A(x)$$

onde $A = \{1, 2, ..., n\}$. Podemos escrever esta fdp da seguinte forma:

$$f(x;\theta) = (1-\theta)^n \frac{n!}{(n-x)!x!} \left(\frac{\theta}{1-\theta}\right)^x I_A(x)$$
$$= (1-\theta)^n \frac{n!}{(n-x)!x!} e^{\ln\left[\left(\frac{\theta}{1-\theta}\right)^x\right]} I_A(x)$$
$$= (1-\theta)^n e^{\ln\left(\frac{\theta}{1-\theta}\right)x} \frac{n!}{(n-x)!x!} I_A(x)$$

Fazendo $C(\theta) = (1 - \theta)^n$, $Q(\theta) = \ln\left(\frac{\theta}{1 - \theta}\right)$, $T(x) = x e h(x) = \frac{n!}{(n - x)!x!}$ vemos que $f(x; \theta)$ é um membro da família exponencial.

Exemplo 10 Se $X \sim \mathcal{N}(\mu, \sigma^2)$ e μ é conhecido então $\sigma^2 = \theta$, logo

$$f_X(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

Se σ^2 é conhecido então $\mu = \theta$, logo

$$f(x;\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\theta)^2}{2\sigma^2}}, -\infty < x < \infty$$

$$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 - 2\theta x + \theta^2}{2\sigma^2}}, -\infty < x < \infty$$

$$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\theta^2}{2\sigma^2}} e^{\frac{\theta}{\sigma^2} x} e^{-\frac{x^2}{2\sigma^2}}, -\infty < x < \infty$$

Se μ é conhecido então $\sigma^2 = \theta$, logo

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

$$f(x; \theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-\mu)^2}{2\theta}}$$

$$= \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2\theta}(x-\mu)^2}$$

Fazendo $C(\theta) = \frac{1}{\sqrt{2\pi\theta}}$, $Q(\theta) = e^{\frac{1}{2\theta}}$, $T(x) = e^{-(x-\mu)^2} e h(x) = 1$, vemos que $f(x;\theta)$ é um membro da família exponencial.

Definição 3 (Família Exponencial: O caso Multiparamétrico)

Sejam X_1 , dots, X_r var aleat. iid e $X = (X_1, ..., X_r)^t$, dizemos que sua fdp conjunta pertence a a r- paramétrica família exponencial se ela puder ser escrita da seguinte forma:

$$f(\mathbf{x}; \boldsymbol{\theta}) = C(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{r} Q_{j}(\boldsymbol{\theta}) T_{j}(\mathbf{x}) \right] h(\mathbf{x})$$

onde $\mathbf{x} = (x_1, \dots, x_n)^t$, $x_i \in \mathbb{R}$ $i = 1, \dots, r$, $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)^t \in \Theta \subset \mathbb{R}^r$, $C(\boldsymbol{\theta}) > 0$ e $h(\mathbf{x}) > 0$ para $\mathbf{x} \in S$ sendo S o conjunto onde f é positiva.

Exemplo 11 A distribuição Multinomial

$$f(\mathbf{x}) = \frac{n!}{\prod_{j=1}^{r} x_{j}!} \prod_{j=1}^{r} p_{j}^{x_{j}}, \quad \sum_{j=1}^{r} p_{j} = 1, \quad p_{j} > 0.$$

$$f(\mathbf{x}; \boldsymbol{\theta}) = \frac{n!}{\prod_{j=1}^{r} x_{j}!} \prod_{j=1}^{r} \theta_{j}^{x_{j}} \sum_{j=1}^{r} \theta_{j} = 1, \quad \theta_{j} > 0.$$

$$= \frac{n!}{\prod_{j=1}^{r} x_{j}!} \theta_{r}^{r} \prod_{j=1}^{r} \left(\frac{\theta_{j}}{\theta_{r}}\right)^{x_{j}}$$

$$= \frac{n!}{\prod_{j=1}^{r} x_{j}!} (1 - \theta_{1} - \theta_{2} - \dots \theta_{r-1})^{r} \prod_{j=1}^{r} \left(\frac{\theta_{j}}{1 - \theta_{1} - \theta_{2} - \dots \theta_{r-1}}\right)^{x_{j}}$$

$$= (1 - \theta_{1} - \theta_{2} - \dots \theta_{r-1})^{r} \exp\left[\sum_{j=1}^{r} x_{j} \log\left(\frac{\theta_{j}}{1 - \theta_{1} - \theta_{2} - \dots \theta_{r-1}}\right)\right] \frac{n!}{\prod_{j=1}^{r} x_{j}!}$$

$$C(\boldsymbol{\theta}) = (1 - \theta_{1} - \theta_{2} - \dots \theta_{r-1})^{r}, \quad Q_{j}(\boldsymbol{\theta}) = \log\left(\frac{\theta_{j}}{1 - \theta_{1} - \theta_{2} - \dots \theta_{r-1}}\right), \quad T(\boldsymbol{x}) = \boldsymbol{x} \in h(\boldsymbol{x}) = \frac{n!}{\prod_{j=1}^{r} x_{j}!}$$

Exemplo 12 A distribuição Normal. Se $X \sim \mathcal{N}(\theta_1, \theta_2)$ vamos mostrar que X também é um membro de uma 2 paramétrica família exponencial

$$f(x; \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(x-\theta_1)^2}{2\theta_2}}, -\infty < x < \infty$$

$$= \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{x^2 - 2\theta_1 x + \theta_1^2}{2\theta_2}} = \frac{e^{-\frac{\theta_1^2}{2\theta_2}}}{\sqrt{2\pi\theta_2}} e^{-\frac{1}{2\theta_2} x^2 + \frac{\theta_1^2}{2\theta_2} x}$$

Fazendo $C(\theta) = \frac{e^{-\frac{\theta_1^2}{2\theta_2}}}{\sqrt{2\pi\theta_2}}$, $Q(\theta) = \left(\frac{1}{2\theta_2}, \frac{\theta_1^2}{2\theta_2}\right)^t e \ T(x) = \left(-x^2, x\right)^t$ podemos ver que trata-se de um membro da bi-paramétrica família exponencial.

1.3.2 Exercícios

- **1.1** Se X_1, \ldots, X_n são r.v. independentes distribuídos como $B(k, \theta), \theta \in \Theta = (0, 1)$, com os respectivos valores observados x_1, \ldots, x_n , mostre que $\widehat{\theta} = \frac{\overline{x}}{k}$ é a **EMV** de θ , onde \overline{x} é a média da amostra dos $x_i's$.
- **1.2** Se as v.a's independentes. X_1, \ldots, X_n têm distribuição geométrica com fdp:

$$f(x;\theta) = \theta(1-\theta)^{x-1}, x = 1, 2, \dots, \theta \in \Theta = (0,1),$$

e respectivos valores observados x_1, \ldots, x_n , mostre que $\theta = \frac{1}{\bar{x}}$ é a **EMV** de θ .

- **1.3** Com base em uma amostra aleatória de tamanho n com fdp: $f(x; \theta) = (\theta + 1)x^{\theta}, 0 < x < 1, \theta \in \Theta = (-1, \infty)$, encontre a **EMV** de θ .
- **1.4** Com base em uma amostra aleatória de tamanho n de de uma v.a com fdp. $f(x; \theta) = \theta x^{\theta-1}, \theta < x < 1, \theta \in \Theta = (0, \infty)$, encontre a **EMV** de θ .
- **1.5 i-** Mostre que a função $f(x; \theta) = \frac{1}{2\theta} e^{-|x|/\theta}, x \in \mathbb{R}, \theta \in \Theta = (0, \infty)$ é uma fdp, e desenhe seu gráfico. (f é a chamada Exponencial Dupla),
 - ii- Com base em uma amostra aleatória desta fdp., encontre a EMV de θ .
- **1.6 i** Verifique que a função $f(x;\theta) = \theta^2 x e^{-\theta x}$, x > 0 $\theta \in \Theta = (0, \infty)$ é uma fdp, observando que a mesma é uma distribuição Gamma e exibindo seus parâmetros.

- 17
- ii Com base em uma amostra aleatória desta fdp., encontre a EMV de θ .
- **1.7 i** Mostre que a função $f(x; \alpha, \beta) = \frac{1}{\beta} e^{-\frac{(x-\alpha)}{\beta}}, \ x \ge \alpha, \ \alpha \in \mathbb{R} \ \beta > 0$ é uma fdp. Com base em uma amostra aleatória desta fdp., encontre a **EMV** de:
 - ii α quando β é conhecido.
 - iii- β quando α é conhecido.
 - iv β e α quando ambos são desconhecidos.
- **1.8** Em cada um dos seguintes casos, mostre que a distribuição da v.a. X é um membro da *família exponencial* de um parâmetro e identificando as funções $C(\theta)$, $Q(\theta)$ e h(x) que a caracterizam.
 - i X tem distribuição de Poisson;
 - ii X tem distribuição Binomial Negativa;
 - iii X tem distribuição Gamma com β conhecido;
 - iv X tem distribuição Gamma com α conhecido;
 - v X tem distribuição Beta com β conhecido;
 - vi X tem distribuição Beta com α conhecido;
- **1.9** Em cada um dos seguintes casos, mostre que a distribuição do v.a *X* e o vetor aleatório *X* são da *família exponencial* multiparamétrica e identificando as várias funções que os caracterizam.
 - i X tem distribuição Gamma;
 - ii X tem distribuição Beta;
 - iii $X = (X_1, X_2)$ tem distribuição Normal Bivariada;

1.4 Propriedades das EMV's

Teorema 1 (*Invariância*) Seja $\widehat{\theta} = \widehat{\theta}(\mathbf{x})$ a *EMV* de θ com base nos valores observados x_1, \ldots, x_n da amostra aleatória X_1, \ldots, X_n de uma fdp $f(\cdot; \theta), \theta \in \Theta \subseteq \mathbb{R}$. Também, seja $\theta^* = g(\theta)$ uma função injetiva definida de Θ para $\Theta^* \subseteq \mathbb{R}$. Então a *EMV* de $\theta^*, \widehat{\theta^*}$, é dada por $\widehat{\theta^*}(\mathbf{x}) = g\left[\widehat{\theta}(\mathbf{x})\right]$.

Prova: Seja $\Theta^* = g(\Theta)$ e $L^* : \Theta^* \to \mathbb{R}$ definida por $L^*(\theta^*) = L(g^{-1}(\theta^*)|\mathbf{x})$, a injetividade de g garante a existência da $g^{-1} : \Theta^* \to \Theta$. Se $L(\theta|\mathbf{x}) = \prod_{i=1}^n f(x_i;\theta)$ possui um máximo, então:

$$L(\widehat{\theta}|\mathbf{x}) = \max L(\theta|\mathbf{x}) = \max L^*(\theta^*|\mathbf{x}) = L^*(\widehat{\theta^*}|\mathbf{x})$$

Da construção de L^* temos: $L(\theta|\mathbf{x}) = L^*(g(\theta)|\mathbf{x})$ para todo $\theta \in \Theta$, como $\widehat{\theta^*} = \widehat{g(\theta)}$, segue que $\widehat{g(\theta)} = \widehat{g(\theta)}$ provando o resultado.

Exemplo 13 Se $\widehat{\theta}$ é a EMV de uma v.a. $X \sim \mathcal{P}(\theta)$ e $g(\theta) = exp(-\theta)$ como $\widehat{\theta} = \overline{x}$, $\widehat{g(\theta)} = exp(-\overline{x})$ para $h(\theta) = \frac{1}{\theta} \widehat{h(\theta)} = \frac{1}{\overline{x}}$ pois ambas g e h são funções injetivas. da mesma forma quando temos $X \sim \mathcal{N}(\mu, \sigma^2)$, $\widehat{\sigma^2} = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$, fazendo tomando $h(\theta) = \sqrt{\theta}$ temos $\sigma = \widehat{\sqrt{\sigma^2}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \mu)^2}{n}}$.

Teorema 2 Seja $\widehat{\theta} = \widehat{\theta}(\mathbf{x})$ a **EMV** de θ com base nos valores observados x_1, \ldots, x_n da amostra aleatória X_1, \ldots, X_n de uma fdp $f(\cdot; \theta), \theta \in \Theta \subseteq \mathbb{R}$. Também, seja $\theta^* = g(\theta)$ definida de Θ para $\Theta^* \subseteq \mathbb{R}$ tal que a imagem de g seja Θ^* . Então a **EMV** de $\theta^*, \widehat{\theta^*}$, é dada por $\widehat{\theta^*}(\mathbf{x}) = g[\widehat{\theta}(\mathbf{x})]$.

Prova: Diferente do teorema anterior aqui não temos a hipótese da injetividade, logo pode existir em Θ vários θ 's tais que $g(\theta) = \theta^* \in \Theta^*$, nesse caso vamos definir para cada $\theta^* \in \Theta^*$ o conjunto de nível:

$$\Theta_{\theta^*} = \{\theta \in \Theta; g(\theta) = \theta^*\}$$

e em seguida definimos a função de verossimilhança induzida por $g L^* : \Theta_{\theta^*} \to \mathbb{R}$ dada por:

$$L^*(\theta^*) = \sup \{L(\theta) \mid \theta \in \Theta_{\theta^*}\}$$

Se $\widehat{\theta}$ é a **EMV** de θ existe um único $\widehat{\theta}^* \in \Theta^*$ tal que $g(\widehat{\theta}) = \widehat{\theta}^*$ e

$$L^*(\widehat{\theta}^*) = \sup \left\{ L(\theta); \ \theta \in \Theta_{\widehat{\theta}^*} \right\} = \sup \left\{ L(\theta); \ \theta \in \Theta; \ g(\theta) = g(\widehat{\theta}) \right\} = L(\widehat{\theta})$$

Agora, para todo $\theta^* \in \Theta^*$

$$L^*(\theta^*) = \sup\{L(\theta) \mid \theta \in \Theta_{\theta^*}\} \le \max\{L(\theta); \mid \theta \in \Theta_{\theta}\} = L(\widehat{\theta}) = L^*(\widehat{\theta}^*)$$

Esta última desigualdade mostra que $\widehat{\theta}^* = g(\widehat{\theta})$, provando assim o resultado.

Exemplo 14 Em termos de uma amostra aleatória de tamanho n, $X_1, ..., X_n$ de uma distribuição $X \sim B(1, \theta)$ com valores observados $x_1, ..., x_n$, determine a $EMV \widehat{\theta} = \widehat{\theta}(\mathbf{x})$ de $\theta \in (0, 1), \mathbf{x} = (x_1, ..., x_n)$. Sendo $f(x_i, \theta) = \theta^{x_i}(1 - \theta)^{1-x_i}, x_i = 0$ ou 1, i = 1, ..., n, a função de verossimilhança é dada por:

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^t (1 - \theta)^{n - t}, \quad t = x_1 + \ldots + x_n$$

,portanto o **EMV** de θ é $\widehat{\theta} = \frac{t}{n}$. Se $g(\theta) = \theta(1 - \theta)$ determine $\widehat{g(\theta)}$. Nesse caso a função $g: (0,1) \to (0,\frac{1}{4})$ não é injetiva mas pelo teorema acima:

$$\widehat{g(\theta)} = \widehat{g(\theta)} = \widehat{\theta}(1 - \widehat{\theta}) = \frac{t}{n}(1 - \frac{t}{n}).$$

Definição 4 (Suficiência)

Sejam X_1, \ldots, X_n é uma amostra aleatória com fdp $f(\cdot; \theta), \theta \in \Theta \subseteq \mathbb{R}$, e seja $T = T(X_1, \ldots, X_n)$ uma estatística. (uma função conhecida dos X_i 's). Então, se as distribuições condicionais dos X_i 's, dado T = t, não depende de θ dizemos que T é uma estatística suficiente para para θ .

Teorema 3 (*Fatorização de Fisher-Neyman*) Sejam $X_1, ..., X_n$ é uma amostra aleatória com fdp $f(;\theta), \theta \in \Theta \subseteq \mathbb{R}$, e seja $T = T(X_1, ..., X_n)$ uma estatística. Então, T é uma estatística suficiente para para θ se e somente se a fdp conjunta dos X_i 's pode ser escrita da seguinte forma:

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n;\theta)=g\left[T(X_1,\ldots,X_n;\theta)\right]\times h(x_1,\ldots,x_n)$$

Prova: Não será feita neste curso.

Exemplo 15 Se $X_1, \ldots, X_n \sim \mathcal{B}(1, p)$ e são v.a. ind. com f.d.p's

$$f(x;\theta) = \theta^{x_i} (1-\theta)^{1-x_i} I_{\{0,1\}}(x_i), \ i = 1, \dots, n$$

a distribuição conjunta de f é

$$L(\theta) = \theta^{t}(1-\theta)^{n-t} \times \prod_{i=1}^{n} I_{\{0,1\}}(x_i), \text{ onde } t = \sum_{i=1}^{n} x_i.$$

Fazendo $g(T(\mathbf{x}), \boldsymbol{\theta}) = \theta^t (1 - \theta)^{n-t}$, $e \ h(\mathbf{x}) = \prod_{i=1}^n I_{\{0,1\}}(x_i)$ vemos que $L(\boldsymbol{\theta}) = g(T(\mathbf{x}), \boldsymbol{\theta}) \times h(\mathbf{x})$ $e \ h \ independe \ de \ \boldsymbol{\theta}$ portanto $T = \sum_{i=1}^n X_i = n\overline{X}\acute{e}$ uma estatística suficiente para θ .

Exemplo 16 Se $X \sim \mathcal{P}(\theta)$ com $f(x, \theta) = e^{-\theta \frac{\theta^x}{x!}}$, $x = 0, 1, \dots, \theta > 0$.

$$L(\boldsymbol{\theta}) = e^{-n\theta} \prod_{i=1}^{n} \frac{\theta^{x_i}}{x_i!} = e^{-n\theta} \theta^{\sum_{i=1}^{n} x_i} \frac{1}{\prod_{i=1}^{n} x_i!}$$

Concluímos que $f(\mathbf{x}, \theta) = g(T(\mathbf{x}), \theta) \times h(\mathbf{x})$ onde $g(T(\mathbf{x}, \theta)) = e^{-n\theta} \theta^{\sum_{i=1}^{n} x_i} e h(\mathbf{x}) = \frac{1}{\prod_{i=1}^{n} x_i!}$ portanto $T = \sum_{i=1}^{n} X_i = n\overline{X}$ é uma estatística Suficiente para θ .

Exemplo 17 Se $X \sim \mathcal{E}xp(\theta)$ com $f(x_i, \theta) = \theta e^{-\theta x_i}$, $x_i > 0$.

$$f(\mathbf{x},\theta) = \prod_{i=1}^{n} f(x_i,\theta) = L(\boldsymbol{\theta}) = \theta^n e^{-\left(\theta \sum_{i=1}^{n} x_i\right)}$$

Concluímos que $f(x, \theta) = g(T(x), \theta) \times h(x)$ onde $g(T(x, \theta)) = \theta^n e^{-\theta(\sum_{i=1}^n x_i)}$ e $h(\mathbf{x}) = 1$ portanto $T = \sum_{i=1}^{n} X_i = n\overline{X}$ é uma estatística Suficiente para θ .

Exemplo 18 Seja X_1, \ldots, X_n uma amostra aleatória de uma população com distribuição $\mathcal{N}(\mu, \sigma^2)$:

$$L(\mu, \sigma; \boldsymbol{x}) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}}, \mu \in \mathbb{R}, \sigma > 0.$$

Se µ é desconhecido

$$L(\mu; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n \left(x_i^2 - 2x_i\mu + \mu^2\right)}{2\sigma^2}} = e^{-\frac{-2\mu\left(\sum_{i=1}^n x_i + \mu\right)}{2\sigma^2}} \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n x_i^2}{2\sigma^2}}, \mu \in \mathbb{R}.$$

Observamos que $T(x) = \sum_{i=1}^{n} x_i$ e também \overline{X} são estatísticas suficientes para μ . Se σ^2 é desconhecido

$$L(\sigma^{2}; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n} e^{-\frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{2\sigma^{2}}} \times 1.$$

 $T(\mathbf{x}) = \sum_{i=1}^{n} (x_i - \mu)^2 e \ também \ T(\mathbf{x}) = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} \ são \ estatísticas \ suficientes \ para$

Finalmente, se
$$\mu$$
 e σ^2 é desconhecidos
$$L(\mu, \sigma^2; \mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{\sum_{i=1}^n (x_i - \bar{x} + \bar{x} - \mu)^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)(\sum_{i=1}^n x_i - n\bar{x}) - n(\bar{x} - \mu)^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2} - n\frac{(\bar{x} - \mu)^2}{2\sigma^2}\right)}$$

As estatísticas $\left(\overline{X}, \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2\right)$ formam um par de estatísticas suficientes para o par (μ, σ^2) .

Exemplo 19 Com base em uma amostra aleatória de tamanho n, X_1, \ldots, X_n , de cada uma das f.d.p's dadas abaixo com valores observados x_1, \ldots, x_n , determine uma estatística suficiente estatística para θ

i-
$$f(x;\theta) = \frac{\theta}{x^{\theta+1}}, \ x \ge 1, \ \theta \in \Theta = (0,\infty).$$

ii-
$$f(x; \theta) = \frac{x}{\theta} e^{-\frac{x^2}{2\theta}}, \ x > 0, \ \theta \in \Theta = (0, \infty).$$

iii-
$$f(x; \theta) = (1 + \theta) x^{\theta}, \ 0 < x < 1, \ \theta \in \Theta = (-1, \infty)$$
.

iv-
$$f(x;\theta) = \frac{\theta}{x^2}, x \ge 0, \theta \in \Theta = (0,\infty).$$

Solução Se $x_{min} = \min\{x_1, \dots, x_n\}$ e $x_{max} = \max\{x_1, \dots, x_n\}$

i-
$$f(x;\theta) = \frac{\theta}{x^{\theta+1}} \log \theta$$

$$f(\mathbf{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \frac{\theta}{x_i^{\theta+1}} \prod_{i=1}^{n} I_{(1,\infty)}(x_i)$$
$$= \frac{\theta^n}{\prod_{i=1}^{n} x_i^{\theta}} \frac{1}{\prod_{i=1}^{n} x_i} I_{(1,\infty)}(x_{min}).$$

Portanto $T(X) = \prod_{i=1}^{n} X_i$ é uma estatística suficiente para θ .

$$\begin{aligned} \textbf{ii-} & \; Se \; f \left(x; \theta \right) = \frac{x_i}{\theta} e^{-\frac{x_i^2}{2\theta}} I_{(1,\infty)}(x) \; logo \\ & \; f \left(\boldsymbol{x}; \theta \right) \; = \prod_{i=1}^n f(x_i, \theta) \\ & = \prod_{i=1}^n \frac{x_i}{\theta} e^{-\frac{x_i^2}{2\theta}} \prod_{i=1}^n I_{(1,\infty)}(x_i) \\ & = \frac{e^{-\frac{\sum_{i=1}^n x_i^2}{2\theta}}}{\theta^n} \times \prod_{i=1}^n x_i I_{(1,\infty)}(x_{min}). \end{aligned}$$

Portanto $T(X) = \sum_{i=1}^{n} X_i^2$ é uma estatística suficiente para θ .

iii- Se
$$f(x; \theta) = (1 + \theta) x^{\theta} I_{(0,1)} logo$$

$$f(\mathbf{x}; \theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

$$= \prod_{i=1}^{n} (1 + \theta)^n \prod_{i=1}^{n} x_i^{\theta} \prod_{i=1}^{n} I_{(0,1)}(x_i)$$

$$= \prod_{i=1}^{n} (1 + \theta)^n (\prod_{i=1}^{n} x_i)^{\theta} I_{(0,1)}(x_{min}) \times I_{(0,1)}(x_{max}).$$

Portanto $T(X) = \prod_{i=1}^{n} X_i$ é uma estatística suficiente para θ .

iv- Se
$$f(x;\theta) = \frac{\theta}{x_i^2} I_{(\theta,\infty)}(x) \log \theta$$

$$f(\boldsymbol{x};\theta) = \prod_{i=1}^{n} f(x_i,\theta) = \prod_{i=1}^{n} \frac{\theta}{x_i^2} \prod_{i=1}^{n} I_{(\theta,\infty)}(x_i) = \theta^n I_{(\theta,\infty)}(x_{min}) \frac{1}{\prod_{i=1}^{n} x_i^2}.$$
Portanto $T(\boldsymbol{X}) = X_{min} = \min\{X_1, \dots, X_n\}$ é uma estatística suficiente para

Teorema 4 Se $\widehat{\theta_n} = \widehat{\theta_n}(X_1, \dots, X_n)$ é a *EMV* de $\theta \in \Theta \subseteq \mathbb{R}$ baseada numa amostra aleatóra (X_1, \ldots, X_n) com fdp $f(\cdot; \theta)$. Então, sob certas condições de regularidade $\{\widehat{\theta_n}\}$ é consistente no sentido de probablidade, isto é: $\widehat{\theta_n} \to \widehat{\theta}$ em P_{θ} – Probabilidade quando $n \to \infty$

Prova: Não será feita neste curso.

Teorema 5 Se $\widehat{\theta_n} = \widehat{\theta_n}(X_1, \dots, X_n)$ é a **EMV** de $\theta \in \Theta \subseteq \mathbb{R}$ baseada numa amostara aleatóra X_1, \ldots, X_n com fdp $f(\cdot; \theta)$. Então, sob certas condições de regularidade $\{\widehat{\theta_n}\}$ é assintoticamente normal, isto é:

$$\sqrt{n}\left(\widehat{\theta_n} - \theta\right) \xrightarrow{d} \mathcal{N}(0, \sigma_{\theta}^2)$$

onde

$$\sigma_{\theta}^2 = 1/I(\theta)eI(\theta) = E_{\theta} \left[\frac{\partial log(f(X;\theta))}{\partial \theta} \right]^2, \quad X \sim f(;\theta).$$

Prova: Não será feita neste curso.

Exercícios 1.4.1

- Se X_1, \ldots, X_n são v.a's i.i.d tendo fdp com distribuição exponencial $f(x, \theta) =$ $\theta e^{-\theta x}$, x > 0, $\theta \in \Theta = (0, \infty)$. Então:
 - **a** Mostre que $1/\overline{X}$ é uma **EMV** de θ ;
 - **b** Use Teorema 1 com o objetivo de provar que **EMV** de θ * na forma parametrizada $f(x; \theta*) = \frac{1}{\theta*} e^{-x/\theta*} x > 0$, é \overline{X} .

- **2-** Seja X uma v.a que denota a vida útil de um equipamento. Então a confiabilidade do equipamento no tempo x, R(x), é definido como a probabilidade de que X > x, isto é R(x) = P(X > x). Suponha agora que X tem fdp com distribuição Exponencial $f(x, \theta) = \frac{1}{\alpha}e^{-\frac{x}{\theta}}$, x > 0, $\theta \in \Theta = (0, \infty)$. Então:
 - **a** Calcule a confiabilidade de $R(x, \theta)$ com base nesta v.a X;
 - **b** Use Teorema 1 com o objetivo de encontrar que **EMV** de $R(x, \theta)$ com base de uma amostra aleatória X_1, \ldots, X_n da fdp. dada.
- 3- Seja *X* uma v.a. descrevendo a vida útil de um determinado equipamento, e suponha que a f.d.p. de *X* é $f(x, \theta) = \theta e^{-\theta x}, \ x > 0, \theta \in \Theta = (0, \infty)$. Então:
 - **a** Mostre que a probabilidade de que X seja maior ou igual ao tempo t unidades é $g(\theta) = e^{-t\theta}$;
 - **b** Sabemos (ver Exercício 1) que a **EMV** de θ , com base em uma amostra de tamanho n da f.d.p. acima, é $\widehat{\theta} = 1/\overline{X}$. Então determine a **EMV** de $g(\theta)$.
- **4-** Considere n variaveis aleatórias independentes e identicamentes distribuídas com fdp com distribuição Weibull $f(x,\theta) = \frac{\gamma}{\theta} x^{\gamma-1} e^{-\frac{x^{\gamma}}{\theta}}, \ x>0, \gamma>0$ conhecido , $\theta\in\Theta=(0,\infty)$
 - **a** Mostre que a $\widehat{\theta}^{\sum_{i=1}^{n} X_{i}^{\gamma}}$ é a **EMV** de θ ;
 - **b** Tome $\gamma = 1 = 1$ e relacione o resultado na parte (a) ao resultado do Exercício 1 item (b).
- 5- Se X_1, \ldots, X_n é uma amostra aleatória de tamanho n de uma distribuição normal $\mathcal{N}\left(\mu, \sigma^2\right)$ onde μ, σ são desconhecidos. Se $\theta = \left(\mu, \sigma^2\right)$ e 0 é um número conhecido. Então:
 - **a** Mostre que o ponto c para o qual temos $P_{\theta}(\overline{X} \le c) = p$ é dado por: $c = \mu + \frac{\sigma}{c}\phi^{-1}(p)$;
 - **b** Dado que as **EMV**'s de μ e σ^2 são $\widehat{\mu} = \overline{X}$ e $\widehat{\sigma^2} = S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$, determine a **EMV** de c, chame ela de \widehat{c} .
 - **c** Expresse \widehat{c} em termos de x_i se n = 25 e p = .95

6-

- **a** Mostre que a $f(x; \theta) = \frac{\theta}{x^{\theta+1}}, x \ge 1, \theta \in \Theta = (0, \infty)$. é uma fdp. ;
- **b** Com base em uma amostra aleatória de tamanho n deste p.d.f., mostre que a estatística $\prod_{i=1}^{n} X_i$ é suficiente para θ , assim como a estatística $\sum_{i=1}^{n} \log(X_i)$

7- Se X é uma v.a. tendo fdp com dist. Geométrica $f(x; \theta) = \theta(1 - \theta)^{x-1}, x = 1, 2, \dots, \theta \in \Theta = (0, 1)$. Mostre que \overline{X} é uma estatística suficiente para θ .

1.5 Estimativas Imparciais de Variancia Mínima Uniforme

Talvez o segundo método mais popular de estimar um parâmetro seja com base nos conceitos de imparcialidade e variância mínima. Este método será discutido aqui até certo ponto e também será ilustrado por exemplos.

Para iniciar, seja X_1, \ldots, X_n seja uma amostra aleatória com fdp. $f(;\theta), \theta \in \Theta \subseteq \mathbb{R}$, e vamos introduzir a notação $U = U(X_1, \ldots, X_n)$ para uma estimativa de θ .

Definição 5

Uma estimativa de U é dita Imparcial se $E_{\theta}U = \theta$ para todo $\theta \in \Theta$.

A seguir apresesentamos alguns exemplos de estimativas imparciais.

Exemplo 20 Sejam $X_1, ..., X_n$ uma amostra aleatória tendo uma das seguintes distribuições:

- (i) $X_i \sim B(1, \theta), \theta \in (0, 1), \overline{X}$ é uma estimativa imparcial para θ .
- (ii) $X_i \sim \mathcal{P}(\theta), \theta > 0 \ \overline{X} \ e \ Var_{\theta}(X_1) \ s\tilde{ao} \ estimativas \ imparciais \ para \ \theta.$
- (iii) Se $X_i \sim \mathcal{N}(\theta, \sigma^2)$, com σ conhecido , novamente \overline{X} é uma estimativa imparcial para θ .
- (iv) Se $X_i \sim \mathcal{N}(\mu, \theta)$, com $\sigma > 0$, μ conhecido, então a variância amostral $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$ é uma estimativa imparcial para θ .
- (v) Se $X_i \sim \Gamma(\theta, \beta), \beta = 1, \overline{X}$ é uma estimativa imparcial para θ .
- (vi) Se $X_i \sim \Gamma(\alpha, \theta)$, $\alpha = 1$, \overline{X} é uma estimativa imparcial para θ .

Solução

(i)
$$Se\ X_i \sim B(1,\theta), \theta \in (0,1), E\ [X_i] = \theta\ logo$$

$$E_{\theta}\left[\overline{X}\right] = E_{\theta}\left[\frac{\sum_{i=1}^n X_i}{n}\right] = \frac{\sum_{i=1}^n E[X_i]}{n} = \frac{n\theta}{n} = \theta.$$

$$Portanto\ \overline{X}\ \acute{e}\ uma\ estimativa\ imparcial\ para\ \theta.$$

(ii)
$$Se \ X_i \sim \mathcal{P}(\theta), \theta > 0 \ E[X_i] = \theta \log o$$

$$E_{\theta}\left[\overline{X}\right] = E_{\theta}\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{n\theta}{n} = \theta \ e \ Var_{\theta}(X_1) \ s\~{a}o \ estimativas \ imparciais \ para \ \theta.$$

- (iii) Se $X_i \sim \mathcal{N}(\theta, \sigma^2)$, com σ conhecido, novamente $E[X_i] = \theta \log o$ $E_{\theta}\left[\overline{X}\right] = E_{\theta}\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{n\theta}{n} = \theta. \text{ Portanto } \overline{X} \text{ \'e uma estimativa imparcial para } \theta.$
- (iv) Se $X_i \sim \mathcal{N}(\mu, \theta)$, com $\sigma > 0$, μ conhecido, então $\left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2 \sim \chi_1^2$ consequentemente $E_{\theta}\left[\left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2\right] = 1 \log o$ $E_{\theta}\left[S^2\right] = E_{\theta}\left[\frac{\sum_{i=1}^n (X_i \mu)^2}{n}\right] = \theta E_{\theta}\left[\frac{1}{n}\sum_{i=1}^n \left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2\right]$ $= \frac{\theta}{n}\sum_{i=1}^n E_{\theta}\left[\left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2\right] = \frac{\theta n}{n} = \theta.$

*Portanto S*² *é uma estimativa imparcial para* θ .

- (v) Se $X_i \sim \Gamma(\theta, \beta), \beta = 1, \overline{X}$ é uma estimativa imparcial para θ .
- (vi) Se $X_i \sim \Gamma(\alpha, \theta), \alpha = 1, \overline{X}$ é uma estimativa imparcial para θ .

Definição 6 Uma estimativa **Imparcial** $U = U(X_1, ..., X_n)$ de θ é dita Imparcial de Variância Mínima Uniforme (EIVMU), se para qualquer outra estimativa **imparcial** $V = V(X_1, ..., X_n)$ a seguinte desigualdade é válida:

$$Var_{\theta}(U) \leq Var_{\theta}(V) \ para \ todo \ \theta \in \Theta.$$

Teorema 6 *Desigualdade de Cramer-Rao* seja X_1, \ldots, X_n seja uma amostra aleatória com fdp. $f(;\theta), \theta \in \Theta \subseteq \mathbb{R}$ e suponha que certas condições de regularidade são conhecidas. Então, para qualquer estimativa **imparcial** $U = U(X_1, \ldots, X_n)$ de θ a seguinte desigualdade é válida:

$$Var_{\theta}(U) \ge \frac{1}{nI(\theta)} para todo \ \theta \in \Theta.$$
 (1.1)

onde

$$I(\theta) = E_{\theta} \left[\frac{\partial log(f(X;\theta))}{\partial \theta} \right]^2, \quad X \sim f(;\theta).$$
 (1.2)

Observação 1 As condições não especificadas mencionadas na formulação do teorema inclui a suposição de que o domínio de x na f.d.p. $f(x;\theta)$ não depende de θ ; assim, a distribuição $U(0,\theta)$, por exemplo, é deixada de fora. Além disso, as condições incluem a validade de intercambiar as operações de diferenciação e integração em certas expressões.

A quantidade $I(\theta)$ é denominada Informação de Fisher fornecida pela amostra aleatória X_1, \ldots, X_n sobre o parâmetro θ . Uma justificativa para a "informação" decorre do fato de que $\sigma_{\theta}^2 = 1/I(\theta)$, de modo que quanto maior $I(\theta)$ menor é a variância σ_{θ}^2 e, portanto $\widehat{\theta}$ é mais concentrado em torno de θ . O oposto acontece para pequenos valores de $I(\theta)$.

Observação 2 *Pode-se mostrar que, em condições adequadas, a quantidade I*(θ) *em* (1.2) *também pode ser calculado da seguinte forma:*

$$I(\theta) = -E_{\theta} \left[\frac{\partial^2 log(f(X;\theta))}{\partial \theta^2} \right]. \tag{1.3}$$

Essa expressão geralmente é mais fácil de calcular. A desigualdade de Cramér-Rao é usada da seguinte maneira.

- (i) Calcule as informação de Fisher por meio de (1.2) ou por meio de (1.3);
- (ii) Calcule o limite inferior de Cramér-Rao (C-R) apresentado em (8);
- (iii) Tente identificar uma estimativa imparcial cuja variância é igual ao C-R limite inferior de C-R(para todos $\theta \in \Theta$). Se tal estimativa for encontrada;
- (iv) Declare a estimativa descrita em (iii) como a estimativa UMVU de θ .

O uso da desigualdade será ilustrado por dois exemplos; outros casos são deixados como exercícios.

Exemplo 21 Sejam $X_1, ..., X_n, \sim B(1, \theta)$ $f(x_i, \theta) = \theta^{x_i} (1 - \theta)^{1 - x_i}, x_i = 0$ ou $1, i = (i) \log(f(X, \theta)) = X \log(\theta) + (1 - X) \log(1 - \theta)$;

$$1, \dots, n, \frac{\partial log(f(X;\theta))}{\partial \theta} = \frac{X}{\theta} - \frac{1-X}{1-\theta} e^{\frac{\partial^2 log(f(X;\theta))}{\partial \theta^2}} = -\frac{X}{\theta} - \frac{1-X}{(1-\theta)^2}$$

$$I(\theta) = -E_{\theta} \left[\frac{\partial^2 log(f(X;\theta))}{\partial \theta^2} \right] = \frac{X}{\theta^2} + \frac{1 - X}{(1 - \theta)^2} = \frac{1}{\theta(1 - \theta)}$$

(ii) O limite inferior de Cramér-Rao (C-R) é dado por $\frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}$;

(iii) Se
$$U = \overline{X}$$
 como $X \sim B(1, \theta)$ $E_{\theta}\left[\overline{X}\right] = \theta$, $\sigma^{2}\left[\overline{X}\right] = \frac{\sum_{i=1}^{n} \sigma^{2}[X_{i}]}{n^{2}} = \frac{n\theta(1-\theta)}{n^{2}} = \frac{1}{nI(\theta)}$

(iv) $U = \overline{X} \acute{e} uma EIVMU de \theta$.

Exemplo 22 Sejam $X_1, ..., X_n$, v.a i.id ~ $P(\lambda)$, $\lambda > 0$ fazendo $\lambda = \theta$ temos:

$$f(x;\theta) = e^{-\theta} \frac{\theta^k}{k!}, k = 0, \dots, \log(f(x;\theta)) = -\theta + k \log(\theta) - \log(k!)$$

Então

$$\frac{\partial log(f(X;\theta))}{\partial \theta} = -1 + \frac{k}{\theta} e$$

$$\left[\frac{\partial log(f(X;\theta))}{\partial \theta}\right]^2 = 1 + \frac{k^2}{\theta^2} - \frac{2k}{\theta}$$

 $Como\ E_{\theta}[X] = \theta\ e\ E_{\theta}[X^2] = \theta(1+\theta)$

$$I(\theta) = E_{\theta} \left[\frac{\partial log(f(X;\theta))}{\partial \theta} \right]^{2} = E_{\theta} \left[1 + \frac{k^{2}}{\theta^{2}} - \frac{2k}{\theta} \right] = \frac{1}{\theta}$$

Como $\frac{1}{nI(\theta)} = \frac{\theta}{n}$ é o limite de Cramér-Rao, \overline{X} , é uma Estatística Suficiente para θ e $Var_{\theta}\overline{X} = \frac{\theta}{n}$, \overline{X} é a EIVMU de θ .

Exemplo 23 Se $X \sim Exp(1/\theta)$ isto $\acute{e} f(X, \theta) = \frac{1}{\theta} e^{-\frac{X}{\theta}}$, então $E_{\theta}[X] = \theta e \sigma^{2}[X] = \theta^{2}$:

$$i \log(f(X, \theta)) = -\log(\theta) - \frac{X}{\theta}$$

$$\frac{\partial log(f(X;\theta))}{\partial \theta} = -\frac{1}{\theta} + \frac{X}{\theta^2}, \quad e \quad \frac{\partial^2 \log(f(X;\theta))}{\partial \theta^2} = \frac{1}{\theta^2} - \frac{2X}{\theta^3}$$

$$\begin{aligned} ii \ I(\theta) & = -E_{\theta} \left[\frac{\partial^2 \log(f(X;\theta))}{\partial \theta^2} \right] \\ & = E_{\theta} \left[\frac{1}{\theta^2} - \frac{2X}{\theta^3} \right] = -\frac{1}{\theta^2} + \frac{2}{\theta^2} = \frac{1}{\theta^2} \end{aligned}$$

iii A cota inferior C-R é dada por $\frac{1}{nI(\theta)} = \frac{\theta^2}{n}$

iv Considere
$$U = \overline{X} \sigma^2 [U] = \frac{\theta^2}{n} = \frac{1}{nI(\theta)}$$
. Portanto \overline{X} é uma EIVMU de θ .

Existe uma maneira alternativa de procurar EIVMU, em particular, quando a abordagem por meio da desigualdade de Cramér-Rao deixa de produzir tal estimativa. Esta abordagem depende fortemente do conceito de suficiência já introduzido e também de um conceito técnico adicional, denominado completude.

Definição 7 (Completude) Seja T uma var. aleatória $com fdp \ f_T(\cdot; \theta), \ \theta \in \Theta \subseteq \mathbb{R}$, a família $\{f_T(\cdot; \theta), \theta \in \Theta\}$ ou a var. aleatória T é dita **completa** se para $h : \mathbb{R} \to \mathbb{R}$ tal que $E_{\theta}h(T) = 0$ para todo $\theta \in \Theta$ então h(t) = 0.

Teorema 7 (*Rao-Blackwell, Lehmann-Scheffé*) Se X_1, \ldots, X_n é uma amostra aleatória com fdp $f(\cdot; \theta)$, $\theta \in \Theta \subseteq \mathbb{R}$ e $T = T(X_1, \ldots, X_n)$ é uma estatística suficiente para θ e completa. Se $U = U(X_1, \ldots, X_n)$ é uma estatística imparcial de θ defina a estatística

$$\phi(T) = E_{\theta}(U|T)$$

Então

i A var. aleat. $\phi(T)$ é função apenas da estatística suficiente T;

ii $\phi(T)$ é uma estatística imparcial de θ ;

iii
$$\sigma_{\theta}^{2}[\phi(T)] < \sigma_{\theta}^{2}[U], \ \theta \in \Theta \ provado \ que \ E_{\theta}U^{2} < \infty$$

iv $\phi(T)$ é única EIVMUde θ .

Os exemplos a seguir ilustram como aplicar o Teorema de **Rao-Blackwell, Lehmann-Scheffé** em casos concretos.

Exemplo 24 Determine a EIVMUde θ com base na amostra aleatória X_1, \dots, X_n da distribuição $P(\theta)$.

SOLUÇÃO: Já vimos nos exemplos 16 e 20 que se $X \sim P(\theta)$, $T = X_1 + \ldots + X_n$ e X_1 são estatistica suficiente e imparcial de θ respectivamente. Vamos construir agora a distribuição condicional de X_1 dado T = t.

$$P(X_{1} = x \mid T = t) = P(X_{1} = x \mid X_{2} + \dots + X_{n} = t - x)$$

$$= \frac{P(X_{1} = x; X_{2} + \dots + X_{n} = t - x)}{P(X_{1} + \dots + X_{n} = t)}$$

$$= \frac{P(X_{1} = x; X_{2} + \dots + X_{n} = t - x)}{\sum_{x=0}^{t} P(X_{1} = x) P(X_{2} + \dots + X_{n} = t)}$$

$$= \frac{e^{-\theta} \theta^{x}}{x!} \times \frac{e^{-(n-1)\theta} ((n-1)\theta)^{t-x}}{(t-x)!}$$

$$\times \frac{t!}{t! \sum_{x=0}^{t} P(X_{1} = x) P(X_{2} + \dots + X_{n} = t)}$$

$$= \frac{e^{-\theta} \theta^{x}}{x!} \times \frac{e^{-(n-1)\theta} ((n-1)\theta)^{t-x}}{(t-x)!}$$

$$\times \frac{t!}{e^{-\theta} e^{-(n-1)\theta} \sum_{x=0}^{t} t! \frac{\theta^{x} ((n-1)\theta)^{t-x}}{(t-x)!}}$$

$$= \frac{t!}{e^{-\theta} e^{-(n-1)\theta} \sum_{x=0}^{t} t! \frac{\theta^{x} ((n-1)\theta)^{t-x}}{(t-x)!}}$$

$$= \frac{t!}{x! (t-x)! (n\theta)^{t}} = \frac{t!}{x! (t-x)!} \left(\frac{\theta}{n\theta}\right)^{x} \left(\frac{(n-1)\theta}{n\theta}\right)^{t-x}$$

$$= \frac{t!}{x! (t-x)!} \left(\frac{1}{n}\right)^{x} \left(1 - \frac{1}{n}\right)^{t-x} \sim B\left(t, \frac{1}{n}\right)$$

Logo $E_{\theta}\left(X_{1}=x \mid T=t\right) = \frac{t}{n}$ então a $\phi(T)=E_{\theta}\left(X_{1}=x \mid T=t\right) = \frac{t}{n}=\overline{X}$ portanto \overline{X} é a EIVMU de θ .

Exemplo 25 Seja $X_1, ..., X_n$ é uma amostra aleatória da distribuição $N(\mu, \sigma^2)$. Suponha que σ^2 é conhecido e façamos $\mu = \theta$, então

$$f(x;\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\theta)^2}{2\sigma^2}}, x \in \mathbb{R}$$

e portanto

$$\log(f(x;\theta)) = \log\left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \frac{(x-\theta)^2}{2\sigma^2}.$$

Logo,

$$\frac{\partial \log (f(x;\theta))}{\partial \theta} = \frac{1}{\sigma} \frac{x - \theta}{\sigma},$$

$$\left[\frac{\partial \log (f(x;\theta))}{\partial \theta} \right]^2 = \frac{1}{\sigma^2} \left(\frac{x - \theta}{\sigma} \right)^2,$$

$$I(\theta) = E_{\theta} \left[\frac{\partial \log (f(X;\theta))}{\partial \theta} \right]^2 = \frac{1}{\sigma^2} E_{\theta} \left(\frac{X - \theta}{\sigma} \right)^2 = \frac{1}{\sigma^2}$$

Pois $\left(\frac{X-\theta}{\sigma}\right)^2 \sim \chi_1^2 \log D E_{\theta} \left(\frac{X-\theta}{\sigma}\right)^2 = 1$, consequentemente o limite inferior de Cramér-Rao é dado por $\frac{\sigma^2}{n}$. Calculando, $Var\left(\overline{X}\right) = \frac{\sigma^2}{n}$, como \overline{X} é uma estatística imparcial para θ pelo Teorema Cramér-Rao \overline{X} é uma EIVMU de θ quando σ é conhecido.

Suponha que μ é conhecido e façamos $\sigma^2 = \theta$, então

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-\mu)^2}{2\theta}}, x \in \mathbb{R}$$

e portanto

$$\log\left(f\left(x;\theta\right)\right) = -\frac{1}{2}\log\left(2\pi\right) - \frac{1}{2}\log\left(\theta\right) - \frac{(x-\mu)^2}{2\theta}.$$

Logo,

$$\frac{\partial \log (f(x;\theta))}{\partial \theta} = -\frac{1}{2\theta} + \frac{(x-\mu)^2}{2\theta^2},$$

$$\left[\frac{\partial \log (f(x;\theta))}{\partial \theta}\right]^2 = \frac{1}{4\theta^2} - 2\frac{1}{2\theta} \frac{(x-\mu)^2}{2\theta^2} + \left(\frac{(x-\mu)^2}{2\theta^2}\right)^2$$

$$= \frac{1}{4\theta^2} - \frac{1}{2\theta^2} \left(\frac{x-\mu}{\sqrt{\theta}}\right)^2 + \frac{1}{4\theta^2} \left(\frac{x-\mu}{\sqrt{\theta}}\right)^4$$

$$I(\theta) = E_{\theta} \left[\frac{\partial \log (f(X;\theta))}{\partial \theta}\right]^2 = E_{\theta} \left[\frac{1}{4\theta^2} - \frac{1}{2\theta^2} \left(\frac{x-\mu}{\sqrt{\theta}}\right)^2 + \frac{1}{4\theta^2} \left(\frac{x-\mu}{\sqrt{\theta}}\right)^4\right]$$

$$= \frac{1}{4\theta^2} - \frac{1}{2\theta^2} E_{\theta} \left(\frac{x-\mu}{\sqrt{\theta}}\right)^2 + \frac{1}{4\theta^2} E_{\theta} \left(\frac{x-\mu}{\sqrt{\theta}}\right)^4$$

$$= \frac{1}{4\theta^2} - \frac{1}{2\theta^2} + \frac{3}{4\theta^2} = \frac{1}{2\theta^2}$$

Pois $E_{\theta}\left(\frac{x-\mu}{\sqrt{\theta}}\right)^2 = 1$ e $E_{\theta}\left(\frac{x-\mu}{\sqrt{\theta}}\right)^4 = 3$ devido ao fato que $Z = \frac{x-\mu}{\sqrt{\theta}} \sim \mathcal{N}(0,1), \ E\left[Z^{2n}\right] = \frac{(2n)!}{2^n(n!)}$. Como μ é conhecido vamos considerar agora a estatística:

$$W = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sqrt{\theta}} \right)^2, \quad W \sim \chi_n^2 \quad E[W] = n, \quad Var[W] = 2n$$

$$Se \ U = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2, \quad U = \frac{\theta}{n} W, \quad E[U] = \theta \quad Var[W] = \frac{\theta^2}{n^2} Var[W] = \frac{2\theta^2}{n}.$$

Observe que U é imparcial e $Var[W] = \frac{1}{nI(\theta)}$ portanto U é uma EIVMU de θ quando μ é conhecido.

Vejamos agora o caso onde μ e σ são desconhecidos. Fazendo $\mu = \theta_1$ e $\sigma^2 = \theta_2$. Suponha que estejamos interessados ??em encontrar um estimador EIVMU de θ_2 . Já vimos que (\overline{X}, S^2) são estatística sificientes e imparaciais de μ , σ respectivamente. Calculando o limite de Cramér-Rao, considerando θ_1 constante temos:

$$\frac{1}{nI(\theta)} = \frac{2\theta_2^2}{n}$$

$$Var_{\theta_2}(S^2) = Var_{\theta_2}\left(\frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2\right)$$

$$= \frac{1}{(n-1)^2}\sum_{i=1}^n Var\left(\left(X_i - \overline{X}\right)^2\right)$$

$$= \frac{\theta_2}{(n-1)^2}Var\left(\sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sqrt{\theta_2}}\right)^2\right) = \frac{2\theta_2^2(n-1)}{(n-1)^2} = \frac{2\theta_2^2}{(n-1)} > \frac{2\theta_2^2}{n}$$

$$W = \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sqrt{\theta_2}} \right)^2 \sim \chi_{n-1}^2 \log o \ Var(W) = 2(n-1)$$

Conclusão: S^2 é uma EIVMU no entanto a designaldade de Cramér Rao não é satisfeita como igualdade.

1.6 Exercícios

Capítulo 2

Intervalos de Confiança e Regiões de Confiança

2.1 A Ideia Básica da Estimação Intervalar

Suponha que estejamos interessados em construir uma estimativa pontual da média μ em uma distribuição normal $N(\mu, \sigma^2)$ com variância conhecida; isso deve ser feito com base em uma amostra aleatória de tamanho n, X_1, \ldots, X_n , extraído da subjacente distribuição. Isso equivale a construir uma estatística adequada dos X_i , chamada $V = V(X_1, \ldots, X_n)$, que para os valores observados x_i de X_i , $i = 1, \ldots, n$ é uma entidade numérica e declara-a como o valor (desconhecido) de μ . Isso parece um tanto presunçoso, uma vez que, a partir do conjunto de valores possíveis para $\mu, -\infty < \mu < \infty$, apenas um é selecionado como seu valor. Pensando assim, pode ser mais razoável visar, em vez disso, um intervalo aleatório que conterá o valor (desconhecido) de μ com alta probabilidade (prescrita). Isso é exatamente o que um intervalo de confiança faz.

Para ser mais preciso, ao lançar o problema em um cenário geral, seja X_1, \ldots, X_n uma amostra aleatória de uma f.d.p. $f(;\theta), \theta \in \Theta \subseteq \mathbb{R}, L = L(X_1, ..., X_n)$ e $U = U(X_1, ..., X_n)$ duas estatísticas de X_i , tais que L < U. Então o intervalo com limites L e U, [L, U], é chamado de um intervalo aleatório. Seja α um pequeno número em (0, 1), como 0,005, 0,01, 0,05, e suponha que o intervalo aleatório [L, U] contém θ com probabilidade igual para $1 - \alpha$ (como 0,995, 0,99, 0,95), independentemente do valor verdadeiro de θ . Em outras palavras, suponha que:

$$P\theta(L \le \theta \le U) = 1 - \alpha$$
 para todo $\theta \in \Theta$. (1)

Se a relação (1) for mantida, então dizemos que o intervalo aleatório [L, U], é um intervalo de confiança para θ com nível de confiança $1 - \alpha$.

A interpretação da significância de um intervalo de confiança é baseada na interpretação da frequência relativa do conceito de probabilidade, da seguinte forma: Suponha que n v.a's independentes sejam extraídos de uma f.d.p. $f(;\theta)$, e $x_1, ..., x_n$ sejam seus valores observados. Além disso, seja $[L_1, U_1]$ o intervalo resultante a partir dos valores observados de $L = L(X_1, ..., X_n)$ e $U = U(X_1, ..., X_n)$; isto é, $L_1 = L(x_1, ..., x_n)$ e $U_1 = U(x_1, ..., x_n)$. Prossiga para constuir de forma independente um segundo conjunto de r.v.a.'s como acima, e seja $[L_2, U_2]$ o intervalo resultante. Repita este processo independentemente um grande número de vezes, N, digamos, com o intervalo correspondente sendo $[L_N, U_N]$. Então, a interpretação de (1) é que, em média, cerca de $100(1-\alpha)\%$ dos N intervalos acima irão, na verdade, contém o valor verdadeiro de θ . Por exemplo, para $\alpha = 0$, 05 e N = 1.000, a proporção de tais intervalos será de 95%; ou seja, seria de esperar 950 de dos 1.000 intervalos construídos como acima para conter o valor verdadeiro de θ . A evidência empírica mostra que tal expectativa é válida.

Também podemos definir um limite de confiança superior para θ , $U = U(X_1, ..., X_n)$, e um limite de confiança inferior para θ , $L = L(X_1, ..., X_n)$, ambos com nível de confiança $1 - \alpha$, se, respectivamente, os intervalos $(-\infty, U]$ e $[L, \infty)$ são intervalos de confiança para θ com nível de confiança $1 - \alpha$. Quer dizer:

$$P_{\theta}(-\infty < \theta \le U) = 1 - \alpha$$
, $P_{\theta}(L \le \theta < \infty) = 1 - \alpha$ para todo $\theta \in \Theta$. (2)

Existem algumas variações de (1) e (2). Por exemplo, quando a f.d.p. em questão é discreta, então igualdades em (1) e (2) raramente são obtidas para dados α e devem ser substituídos por desigualdades \geq . Além disso, exceto em casos especiais, igualdades em (1) e (2) são válidos apenas aproximadamente para grandes valores do tamanho da amostra n (mesmo nos casos em que os r.v. subjacentes são contínuos). Nesses casos, dizemos que os respectivos intervalos de confiança (limites de confiança) têm coeficiente de confiança aproximadamente $1 - \alpha$.

Finalmente, os parâmetros de interesse podem ser dois (ou mais) em vez de um, como presumimos até agora. Nesses casos, o conceito de intervalo de confiança é substituído por aquele de uma região de confiança (no parâmetros num espaço multidimensional). Este conceito será ilustrado por um exemplo ao estudarmos testes de hipótese, quando também expandiremos consideravelmente o que foi brevemente discutido aqui.

2.2 Intervalos de Confiança

Vamos formalizar na forma de uma definição alguns conceitos já introduzidos na seção anterior.

Definição 8 Se X_1, \ldots, X_n é uma amostra aleatória com f.dp. $f(\cdot; \theta), \theta \in \Theta \subseteq \mathbb{R}$. Então:

- (i) Um intervalo aleatório é um intervalo cujos limites são variaveis aleatórias.
- (ii) Um intervalo de confiança para θ com nível de confiança $1 \alpha(0 < \alpha < 1, \alpha)$ pequeno, é um intervalo aleatório cujos limites são estatisticas, digamos $L(X_1, \ldots, X_n)$ e $U(X_1, \ldots, X_n)$ tais que: $L(X_1, \ldots, X_n) < U(X_1, \ldots, X_n)$ e

$$P_{\theta}(L(X_1,\ldots,X_n) \leq \theta \leq U(X_1,\ldots,X_n)) \geq 1 - \alpha \text{ para todo } \theta \in \Theta$$

(iii) A estatística $L(X_1, ..., X_n)$ é dita limite inferior de confiança para θ com nível de confiança $1-\alpha$, se o intervalo $[L(X_1, ..., X_n), \infty)$ é um intervalo de confiança para θ com nível de confiança $1-\alpha$. Da mesma forma $U(X_1, ..., X_n)$ é dita limite superior de confiança para θ com nível de confiança $1-\alpha$, se o intervalo $(-\infty, U(X_1, ..., X_n)]$ é um intervalo de confiança para θ com nível de confiança $1-\alpha$.

Observação 3 A significância de um intervalo de confiança provém da interpretação da frequência relativa da probabilidade. Assim, com base nos valores observados x_1, \ldots, x_n de X_1, \ldots, X_n , constrói-se um intervalo com limites $L(X_1, \ldots, X_n)$ e $U(X_1, \ldots, X_n)$, e denota-se por $[L_1, U_1]$. Repete-se este experimento aleatório independentemente mais n vezes e da mesma forma, formando intervalo $[L_2, U_2]$. Repetindo-se este processo um grande número de vezes N independentemente cada vez, seja $[L_N, U_N]$ o intervalo correspondente. Então o fato de que $[L(X_1, \ldots, X_n), U(X_1, \ldots, X_n)]$ é um intervalo de confiança para θ com nível confiança $1-\alpha$ significa que aproximadamente $100(1-\alpha)\%$ dos N intervalos acima conterão θ , não importa qual seja seu valor.

Observação 4 Se $L(X_1,...,X_n)$ é um limite inferior e $U(X_1,...,X_n)$ é um limite superior de um intervalo de confiança para θ com nível de confiança $1-\frac{\alpha}{2}$ então $[L(X_1,...,X_n),U(X_1,...,X_n)]$ é um intervalo de confiança para θ com nível de confiança $1-\alpha$.

Esta seção é concluída com a construção de intervalos de confiança em alguns exemplos concretos. Ao fazer isso, nos baseamos fortemente na teoria da distribuição e estimativas pontuais. Seria, talvez, útil delinear as etapas que geralmente segue na construção de um intervalo de confiança.

1. Encontre uma v.a. que contém o parâmetro θ , as v.a.s $U(X_1, \ldots, X_n)$, de preferência na forma de uma estatística suficiente, e cuja distribuição é (exatamente ou pelo menos aproximadamente) conhecido.

CAPÍTULO 2. INTERVALOS DE CONFIANÇA E REGIÕES DE CONFIANÇA35

- 2. Determine os pontos adequados a < b de modo que a v.a. na etapa (a) encontre-se em [a, b] com P_{θ} -probabilidade $\geq 1 \alpha$.
- 3. Na expressão da etapa (b), reorganize os termos para chegar a um intervalo cujos limites são estatísticas e contendo θ .
- 4. O intervalo na etapa (c) é o intervalo de confiança necessário.

2.3 Alguns exemplos de Intervalos de Confiança

Vejamos agora alguns exemplos de Intervalo de confiança.

Exemplo 26 Sejam $U(X_1, ..., X_n)$ var. aleat. iid com distribuição $\mathcal{N}(\mu, \sigma^2)$. Inicialmente considere σ conhecido nesse caso μ será o parâmetro e vamos considerar a seguinte estatística $T_n(\mu) = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$, T_n depende das v.a's X_i através da estatística suficiente \overline{X} e de μ , além disso $T_n \sim \mathcal{N}(0, 1)$ para todo $\mu \in \mathbb{R}$.

A seguir vamos determinar a < b tais que

$$P[a \le \mathcal{N}(0,1) \le b] = 1 - \alpha, (3) \ como \ T_n \sim \mathcal{N}(0,1)$$

$$P\left[a \le \frac{\sqrt{n}\left(\overline{X} - \mu\right)}{\sigma} \le b\right] = 1 - \alpha$$

que é equivalente a

$$P\left[\overline{X} - b\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} - a\frac{\sigma}{\sqrt{n}}\right] = 1 - \alpha$$

Portanto

$$\left[\overline{X} - b\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} - a\frac{\sigma}{\sqrt{n}}\right] \quad (4)$$

É um intervalo de confiança para μ com nível de confiança $1-\alpha$, comprimento $(b-a)\frac{\sigma}{\sqrt{n}}$. Agora vamos determinar a e b de forma que entre todos os intervalos de confiança com nível de confiança $1-\alpha$ que são da forma (4), o mais curto é aquele para o qual b-a é o menor possível, onde a e b satisfazem (3). Isso acontece se b=c(>0) e a=-c, onde c é o quantil $\alpha/2$ superior da distribuição $\mathcal{N}(0,1)$ que denotamos por $z_{\alpha/2}$. Portanto o menor intervalo de confiança para μ com nível de confiança $1-\alpha$ (e que tem a forma (4)) é dado por

CAPÍTULO 2. INTERVALOS DE CONFIANÇA E REGIÕES DE CONFIANÇA36

$$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

Em seguida, suponha que μ seja conhecido, de modo que σ^2 é o parâmetro, nesse caso considere a seguinte v.a:

$$\overline{T}_n\left(\sigma^2\right) = \frac{nS_n^2}{\sigma^2} \text{ onde } S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

$$\overline{T}_n\left(\sigma^2\right) = \frac{n}{\sigma^2} \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$$

Agora vamos determinar dois números a e b tais que:

$$Prob\left(\left[a \le \chi_n^2 \le b\right]\right) = 1 - \alpha$$

$$Prob\left(\left[a \le \frac{nS_n^2}{\sigma^2} \le b\right]\right) = 1 - \alpha$$

$$Prob\left(\left[\frac{1}{b} \le \frac{\sigma^2}{nS_n^2} \le \frac{1}{a}\right]\right) = 1 - \alpha$$

$$Prob\left(\left[\frac{nS_n^2}{b} \le \sigma^2 \le \frac{nS_n^2}{a}\right]\right) = 1 - \alpha$$

O intervalo de confiança é dado por:

$$\left[\frac{nS_n^2}{b} \le \sigma^2 \le \frac{nS_n^2}{a}\right]$$

Agora utilizando a tabela da distribuição χ^2_n encontramos $\chi^2_{n;1-\alpha/2}$ e $\chi^2_{n;\alpha/2}$ tais que $Prob(X \leq \chi^2_{n;1-\alpha/2}) = Prob(X \geq \chi^2_{n;\alpha/2}) = \alpha/2$ e temos o seguinte intervalo:

$$\left[\frac{nS_n^2}{\chi_{n:\alpha/2}^2} \le \sigma^2 \le \frac{nS_n^2}{\chi_{n:1-\alpha/2}^2}\right],$$

Se n = 25, $\sigma = 1$ e $1 - \alpha = 0.95$ então $z_{\frac{\alpha}{2}} = 1.96$, $\chi^2_{n;1-\alpha/2} = 40.646$, $\chi^2_{n;\alpha/2} = 13,120$ nesse caso o Intervalo de confiança para a média é dado por:

$$IC_{\mu;1-\alpha} = \left[\overline{X} - 1, 96\frac{1}{\sqrt{25}}, \overline{X} + 1, 96\frac{1}{\sqrt{25}}\right]$$

O Intevalo de Confiança para σ^2 é dado por:

$$IC_{\sigma^2;1-\alpha} = \left[\frac{25S_n^2}{40,646} \le \sigma^2 \le \frac{25S_n^2}{13,120}\right],$$

2.4 Intervalos de Confiança na Presença de Parâmetros Incômodos