Data Mining Project 1

Scoring Mechanism

Programming (60 points)

1. FP-Tree (40 points)

TAs will sample 10 answers generated by your algorithm. Each correct answer gain 4 points.

2. Apriori (20 points)

TAs will sample 10 answers generated by your algorithm. Each correct answer gain 2 points.

Report (40 points)

Generate your own dataset with the IBM Generator (see IBM_Quest_Synthetic_Data_Generator_使用教學.pdf on Moodle) to test your algorithms.

1. Find and answer (40 points)

What do you observe in the below 4 scenarios?

(For both support and confidence, High and Low are arbitrary choices; you may set them according to your preference)

- High support, high confidence
- High support, low confidence
- Low support, low confidence
- Low support, high confidence
- Any topics you are interested in

Bonus (20 points)

- 1. Experiment with other dataset(s) selected from Kaggle/UCI.
 - Apply your algorithm to another dataset from Kaggle or UCI.
 - Do some experiments (eg. observe the 4 scenarios as requested for other datasets) and discover some other cool stuffs.
 - Make sure to specify the name of self-selected dataset(s), and include your discoveries in the report.

Programming Language

You could choose any programming language you are familiar with for this project.

- Python3:
 - \circ Please make sure your python version is >= 3.7.
 - You can only use the built-in-library in the programming implementation.
- Other programming languages:
 - Please schedule a time with TAs (nckudm@gmail.com) to come to IKM Lab(65903, CSIE New Building) to demo your project.

Submission

- Deadline: Oct 25, 2022 23:59.
- Late submission within 2 days (before Oct 27, 2022 23:59) will get a 20% discount. Submissions delayed for more than 2 days will not be accepted.
- Please make sure that your project contains main.py file, inputs directory and outputs directory.
- Your should submit a <code>.zip</code> file with the name <code>{student_id}_DM_Project1</code> . It should be unzipped into a directory with the same name, and the directory structure should be:

```
hw1
|-- inputs (directory for input files)
| -- kaggle.txt
| -- ibm-2021.txt
|-- main.py
... (maybe you have other module)
|-- outputs (directory for output files)
|-- kaggle-aprior.csv (result of aprior algorithm applied on kaggle.txt)
|-- kaggle-fp_growth.csv (result of fp_growth algorithm applied on kaggle.txt)
|-- ibm-2021-apriori.csv (result of aprior algorithm applied on ibm-2021.txt)
|-- ibm-2021-fp_growth.csv (result of fp_growth algorithm applied on ibm-2021.txt)
```

- The suggested code template following the above directory structure can be accessed here: hw1-example.zip. Note that there're some imprecisions in terms of data format information, please refer to the explanation in IBM_Quest_Synthetic_Data_Generator_使用教學.pdf as standard version.
- TAs will execute your main.py by first cd into the directory and executing python3 main.py with command-line arguments, then the outputs directory is expected to be generated along with the result files inside.

The most important thing

Don't Cheat!

If you cheat (copy others' works extensively, including code online) on this project, you will get a 0.