Trường ĐHBK TPHCM Bộ môn Toán ứng dụng

ĐỀ THI HỌC KỲ MÔN XÁC SUẤT THỐNG KÊ Thời gian: 90 phút.

- Đề thi gồm 2 trang A4.
- Thí sinh được dùng các bảng tra số và máy tính bỏ túi.
- Thí sinh không được sử dụng tài liệu khác.

<u>Câu 1:</u> (2đ)

Một người viết n tấm thiệp khác nhau gửi cho n người bạn. Trong lúc lo đãng anh ta đã bỏ ngẫu nhiên n tấm thiệp này vào n bì thư đã ghi sẵn địa chỉ của những người bạn nói trên và gửi đi.

- a) Tìm xác suất trong những người bạn đó, có ít nhất một trong 2 người A và B sẽ nhận đúng thiệp dành cho mình.
- b) Tìm xác suất có ít nhất một người bạn nhận đúng thiệp dành cho mình?

Câu 2: (2đ)

Cho biết 2 đại lượng ngẫu nhiên X_1 , X_2 độc lập, có cùng phân phối mũ với hàm phân phối xác suất: $F(x) = \begin{cases} 0 & khi \ x < 0 \\ 1 - e^{-x} & khi \ x \ge 0 \end{cases}$,

và đại lượng ngẫu nhiên $Y = \min \{X_1, X_2\}$.

- a) Tìm các xác suất P($X_1 < 2$) và P(Y < 2).
- b) Tìm hàm phân phối xác suất của Y và tính E(Y); D(Y).

Câu 3: (1,5 đ)

Người ta khảo sát về mức thu nhập bình quân (đơn vị: triệu đồng/ 1 tháng) của người lao động ở trong cùng một ngành nghề tại thành phố Hà nội và thành phố Hồ Chí Minh. Số liêu mẫu thu được như sau:

Mức thu nhập	< 6	6 – 10	10 -15	≥ 15
Thành phố				
Hà nội	35	66	55	34
TP Hồ Chí Minh	42	88	68	42

Với mức ý nghĩa 5%, có thể xem như mức thu nhập của người lao động trong ngành này phụ thuộc vào thành phố mà họ làm việc hay không?

<u>Câu 4:</u> (1,5 đ)

Khi khảo sát số phế phẩm trong 100 sản phẩm được chọn ngẫu nhiên của mỗi công nhân, người ta có được số liệu mẫu sau đây:

Số phế phẩm trong 100 sản phẩm	0	1	2	3	4
Số công nhân	160	63	27	8	2

Với mức ý nghĩa 5%, có thể xem như mẫu này phù hợp với phân phối Poisson hay không?

Câu 5: (3 d)

Người ta tiến hành đo đường kính X (cm) và chiều cao Y (m) cho các cây cùng loại và cùng độ tuổi được trồng trong rừng để đánh giá hiệu quả của việc cải tiến phương pháp chăm sóc cây. Những cây có đường kính từ 26 cm và chiều cao từ 7 m trở lên được coi như cây loại 1. Dưới đây là số đo của 110 cây được lựa chọn ngẫu nhiên.

Y (m) X (cm)	5	6	7	8	9
20	1	3			
22	1	8	6		
24		6	21	8	
26		7	25	8	
28			4	8	4

- a) Hãy ước lượng chiều cao trung bình của các cây loại I với độ tin cậy 98%.
- b) Nếu muốn khoảng ước lượng cho tỉ lệ cây loại I trong rừng có độ dài là 0,16 và độ tin cậy là 98% thì người ta cần khảo sát thêm bao nhiều cây nữa?
- c) Theo một tài liệu nghiên cứu về sự sinh trưởng của cây thì ở độ tuổi này, với điều kiện chăm sóc truyền thống thì tỷ lệ cây loại I trong các cây cùng loại chiếm khoảng 35%. Với mức ý nghĩa 3%, chúng ta có thể nói rằng việc cải tiến phương pháp chăm sóc cây đã đem lại hiệu quả hay không?

BỞI HCMUT-CNCP

Chủ nhiệm Bộ môn

PGS.TS. Nguyễn Đình Huy

Câu 1: 2đ

a) (0,5đ) Gọi A, B là các biến cố thư của người A, người B bỏ đúng bì thư. Xác suất cần tìm:

$$P(A+C) = P(A) + P(B) - P(A) \cdot P(B) = \frac{1}{n} + \frac{1}{n} - \frac{1}{n} \times \frac{1}{n-1} = \frac{2n-3}{n(n-1)}$$

b) (1,5đ)

Goi A_i là biến cố bức thư thứ i bỏ đúng bì thư ; i = 1,2,3,...,n . Gọi E là biến cố có ít nhất 1 thư đến đúng được địa chỉ.

$$E = A_1 + A_2 + \ldots + A_n$$

Theo công thức cộng xác suất tổng quát, ta có được:

$$P(E) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) - \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$

$$= n * \frac{1}{n} - C_n^2 \times \frac{1}{n} \times \frac{1}{n-1} + C_n^3 \times \frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2} - C_n^4 \times \frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2} \times \frac{1}{n-3} + \dots - C_n^n \frac{1}{n} \times \frac{1}{n-1} \times \dots \times \frac{1}{1}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots + (-1)^{n-1} \frac{1}{n!}$$

Câu 2: 2đ

a) (0.5d + 0.5d)

*
$$P(X_1 < 2) = F(2) = 1 - e^{-2} = 0.8647$$

*
$$P(Y < 2) = P(\min\{X_1, X_2\} < 2) = 1 - P(X_1 > 2 \text{ và } X_2 > 2)$$

= $1 - P(X_1 > 2) * P(X_2 > 2)$
= $1 - [1 - F_{X_1}(2)] * [1 - F_{X_2}(2)] = 0.9817$

hoặc
$$P(Y < 2)$$
 = $P(min\{X_1, X_2\} < 2) = P(X_1 < 2 hoặc X_2 < 2)$
= $P(X_1 < 2) + P(X_2 < 2) - P(X_1 < 2) * P(X_2 < 2)$
= $F_{X_1}(2) + F_{X_2}(2) - F_{X_1}(2) * F_{X_2}(2)$
= 0.9817

b) (1đ)

* Hàm ppxs của Y:

$$F_{Y}(y) = P(\min\{X_{1}, X_{2}\} < y) = 1 - P(X_{1} > y) \times P(X_{2} > y) \text{ xem } a)$$

$$= \begin{cases} 0 & khi \ y < 0 \\ 1 - e^{-2y} & khi \ y \ge 0 \end{cases}$$

* Suy ra hàm mật độ xác suất của Y:

$$f_{Y}(y) = \begin{cases} 0 & khi \ y < 0 \\ 2e^{-2y} & khi \ y \ge 0 \end{cases}$$

Nhận thấy Y cũng có pp mũ, với $\lambda=2$ nên $E(Y)=\frac{1}{2}$; $D(Y)=\frac{1}{4}$.

Câu 3: 1,5 đ

Gtkđ H_o: Mức thu nhập của người lao động không phụ thuộc TP họ làm việc. Gtđ H₁: Mức thu nhập của người lao đông phu thuộc vào TP ho làm việc.

Mbb
$$(7,81; +\infty)$$

Bảng tần số thực tế O_{ii}:

_			1	
190	34	55	66	35
240	42	68	88	42
n= 430	76	123	154	77

Bảng tần số lý thuyết E_{ij}:

34,0233	68,0465	54,3488	33,5814
42,9767	85,9535	68,6512	42,4186

Tiêu chuẩn kđ: $\chi^2_{qs} = \sum_{i:j} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}} = 0,1838 \notin Mbb$ nên chưa bác bỏ được H_o .

Mức thu nhập của NLĐ trong ngành không phụ thuộc vào thành phố họ làm việc.

Câu 4: 1,5 đ

Gtkđ H_o: Số lỗi trên 100 sản phẩm của công nhân tuân theo pp Poisson,

$$P(\lambda), \lambda = \bar{x} = 0.5731$$

Gtđ H₁: Số lỗi trên 100 sản phẩm của công nhân không tuân theo pp Poisson.

Mbb: $(7,81; +\infty)$

1,100, (,,01,				, , ,		
К	0	1	2	3 (4	
O _i	160	63	27	8	2	n:
$P_i = e^{-\lambda} * \lambda^k / k!$	0,5638	0,3231	0,0926	0,0177	0,0025	
E _i =n*P _i	146,58	84,004	24,07	4,5981	0,6588	

n=260

Tiêu chuẩn kđ: $\chi^2_{qs} = \sum_{i=0}^4 \frac{\left(O_i - E_i\right)^2}{E_i} = 12,0839 \in Mbb$ nên ta bác bỏ H_o , chấp nhận H_1 .

Câu 5: 3 đ

a) (1đ) Viết lại số liệu mẫu cho chiều cao của các cây loại I:

	•		
y_j	7	8	9
n _i	29	16	4

$$n = 49$$
; $\overline{y} = 7,4898$; $s = 0,6494$

KUL:

$$\overline{y} \pm z_{\alpha} \times \frac{s}{\sqrt{n}} = 7,4898 \pm 2,33 \times \frac{0,6494}{\sqrt{49}} = 7,4898 \pm 0,2162 = (7,2736;7,7060)$$

b) (1đ) Giả thiết $2 \times \varepsilon = 0.16 \implies \varepsilon = 0.08$

$$\varepsilon = \frac{z_{\alpha}\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow n = \left(\frac{z_{\alpha}\sqrt{f(1-f)}}{\varepsilon}\right)^{2} = \left(\frac{2,33 \times \sqrt{\frac{49}{110}(1-\frac{49}{110})}}{0,08}\right)^{2} = 209,5426$$

Chọn n =210. Cần phải khảo sát thêm 210 - 110 = 100 cây nữa.

c) (1d) n= 200; \overline{y} = 3,225; s = 1,7593

Gọi p là tỉ lệ cây loại I trong các cây được chăm sóc theo phương pháp mới trong rừng.

C1: Gtkđ Ho: p = 35%

Gtkđ H₁:
$$p \neq 35\%$$

$$z_{\alpha} = 2,17$$

$$z_{qs} = \frac{f - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = \frac{\frac{49}{110} - 0.35}{\sqrt{0.35 \times 0.65}} \sqrt{110}$$
 = 2,0990

Do $|z_{qs}|$ < 2,17 nên ta chưa bác bỏ được H_0 . Có thể nói việc cải tiến chưa thực sự làm tăng tỷ lệ cây loại I.

C2: Gtkđ Ho: p = 35%

Gtkđ H₁:
$$p > 35\%$$

Mbb
$$W_{\alpha} = (1,88; +\infty)$$

$$z_{qs} = \frac{f - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = \frac{\frac{49}{110} - 0.35}{\sqrt{0.35 \times 0.65}} \sqrt{110} = 2,0990 \in W_{\alpha}$$

Do z > 2,17 nên ta bác bỏ H_0 , chấp nhận H_1 . Ta coi như việc cải tiến thực sự đã làm tăng tỷ lệ cây loại I.

