§ 1 Gleichförmige Bewegung

Eine Bewegung ohne Richtungsänderung, bei der für die Geschwindigkeit $v(t) = v_0 = const.$ gilt (also v sich nicht mit der Zeit t verändert) heißt gleichförmig gradlinige Bewegung.

Ihr Graph entspricht im t-s-Diagramm einer Gerade mit der Steigung $\,v_0\,$ und im t-v-Diagramm einer Konstanten.

Daher gilt:

$$s(t) = v_0 \cdot t + s_0$$

...mit dem Startort so

$$v(t) = v_0 = const.$$

Merke:

Im t-s-Diagramm erscheint die Geschwindigkeit v_0 als Steigung des Graphen.

Im t-v-Diagramm erscheint die aufgrund von v_0 zurückgelegte Strecke als Fläche zwischen Graph und t-Achse

Beispiel:

Ein Auto beginnt seine Fahrt an der Streckenposition s_0 = 10 km. Es fährt mit konstanter Geschwindigkeit v_0 von 40 km/h.

$$s(t) = \left(40 \frac{km}{h}\right) \cdot t + 10km$$

$$v(t) = 40 \frac{km}{h}$$

Die Geschwindigkeit einer gleichförmig gradlinigen Bewegung lässt sich über die bekannte Steigungsformel für lineare Funktionen bestimmen:

$$v = \frac{s_2 - s_1}{t_2 - t_1} = \frac{\Delta s}{\Delta t}$$
 $\left(analog: \ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}\right)$

Vorsicht:

Falls $s_0 \neq 0$ oder $t_0 \neq 0$ ist, gilt die aus der Mittelstufe bekannte Formel $v = \frac{s}{t}$ nicht!

§ 2 Von der Durchschnittsgeschwindigkeit zur Momentangeschwindigkeit

Entspricht der Graph einer Bewegung im t-s-Diagramm einer beliebig gekrümmten Linie, so bedeutet dies, dass sich die Geschwindigkeit v mit der Zeit ändert.

In diesem Fall kann man eine <u>Durchschnittsgeschwindigkeit</u> \overline{v} für ein zeitliches Intervall $[t_1; t_2]$ angeben, falls die zugehörigen Orte bzw. Positionen $s(t_1)$ und $s(t_2)$ durch Messung bekannt sind:

$$\bar{v} = \frac{s(t_1) - s(t_2)}{t_1 - t_2} = \frac{\Delta s}{\Delta t}$$

Interessiert man sich für die Geschwindigkeit $v(t_1)$ zu einem Zeitpunkt t_1 , so erhält man immer bessere Werte für $v(t_1)$, je näher man t_2 an t_1 wählt.

Rückt man mit t_2 "unendlich nah" an t_1 heran, so ergibt sich ein exakter Wert für $v(t_1)$, der als **Momentangeschwindigkeit** bezeichnet wird. Sie entspricht graphisch der Steigung der Tangente im Punkt $(t_1/s(t_1))$.

Momentangeschwindigkeit mathematisch ausgedrückt:

$$v(t_1) = \lim_{t_2 \to t_1} \frac{s(t_2) - s(t_1)}{t_2 - t_1} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$