Universidad de Granada

Modelos Matemáticos II

Doble Grado en Ingeniería Informática y Matemáticas

Prueba de clase

31 de mayo de 2021

Apellidos:		Firma:
Nombre:	D.N.I. o pasaporte:	

Ejercicio 1 (0,4 puntos). Razona si las siguientes afirmaciones son ciertas o no:

- 1. La función $f \colon (0,1) \to \mathbb{R}$ definida por f(x) = |x-1/2| está en $H^1(0,1)$.
- 2. El funcional $\mathcal{F}(u) = \int_0^1 (u'(x))^2 dx \int_0^1 u(x) dx$ definido en $H_0^1(0,1)$ alcanza un único mínimo.
- 3. Sea $B \subseteq \mathbb{R}^2$ la bola abierta centrada en 0 y de radio 1. Existe una única función u = u(x,y), $u \in \mathcal{C}^2(B)$ que cumple $\partial_x^2 u(x,y) + \partial_y^2 u(x,y) = 0$ en B.
- 4. Si $f: [-\pi, \pi]$ es una función continua e impar entonces su serie de Fourier converge uniformemente a f en $[-\pi, \pi]$.

Ejercicio 2 (0,5 puntos). Consideramos la ecuación de ondas $\partial_t^2 u = \partial_x^2 u$ con incógnita u = u(t, x), planteada en $t \in \mathbb{R}$, $x \in [0, L]$. Supongamos que tenemos una condición oscilatoria en el extremo derecho, y fija en el izquierdo:

$$u(t,0) = 0, \quad u(t,L) = \operatorname{sen}(\lambda t), \qquad t \in \mathbb{R}.$$

Encuentra todos los valores de $\lambda \in \mathbb{R}$ para los que esta ecuación tiene soluciones en variables separadas.

Ejercicio 3 (0,6 puntos). En el dominio $D := \{u \in \mathcal{C}^2[-1,1] \mid u(-1) = u(1) = 0\}$ consideramos el funcional $\mathcal{F} \colon D \to \mathbb{R}$ definido por

$$\mathcal{F}(u) := \int_{-1}^{1} (u'(x))^2 dx - u(0).$$

- 1. Demuestra que u se puede extender de forma única a un funcional $\widetilde{\mathcal{F}}$ definido en el espacio $H^1_0(-1,1)$.
- 2. Demuestra que $\widetilde{\mathcal{F}}$ tiene un único mínimo en $H_0^1(-1,1)$.
- 3. Demuestra que \mathcal{F} no tiene mínimo en D.