Zachary Seymour CS 575 Theory Assignment 2 September 24, 2013

1 What is the time complexity T(n) of the nest loops below? For simplicity you may assume that n is a power of 2. That is $n = 2^k$ for some positive integer. Find the count for countMe.

$$T(n) = O\left((\lg n)^2\right)$$

2 What is the time complexity T(n) of the nest loops below? For simplicity you may assume that n divides by 2. That is n = 2k for some positive integer. Find the count for countMe.

$$T(n) = \Omega(n^2)$$
. countMe executes $\sim \frac{1}{8}n^2$ times.

3 Show using limits that when b > a > 0, $a^n \in o(b^n)$.

$$\lim_{n\to\infty} \frac{a^n}{b^n} = \lim_{n\to\infty} \left(\frac{a}{b}\right)^n = 0, \text{ since, when } b > a > 0, 0 < \frac{a}{b} < 1. \text{ Therefore, } a^n \in o(b^n).$$

4 Show using the original definitions that if $g(n) \in o(f(n))$ then $g(n) \in O(f(n)) - \Omega(f(n))$.

By definition o (f(n)) is the set of g(n) s.t $\forall c > 0$, $\exists N > 0$ where $0 \le g(n) < cf(n)$. Since O (f(n)) is such a set where $\exists c > 0$ where $0 \le g(n) \le cf(n)$ and Ω (f(n)) is the similar set where $0 \le cf(n) \le g(n)$, subtracting the set of functions where $cf(n) \le g(n)$ from the set of functions where $g(n) \le cf(n)$ removes the case where cf(n) = g(n), thus we have the set of functions where $0 \le g(n) < cf(n)$, i. e. o (f(n)).

5 Fill in all the missing values. For column A you have to compute the sums. For column B you have to guess a function that does not contradict any of the yes/no answers in the next three columns. The last three columns contain yes/no answers.

Function	Function	Big Oh	Omega	Theta
A	В	A = O(B)	$A = \Omega(B)$	$A = \Theta(B)$
2^n	$5^{\ln n}$	no	yes	no
\sqrt{n}	n	yes	no	no
a^n for $a > 0$	n!	yes	no	no
ln n	n^k where $k > 0$	yes	no	no
$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	n^2	yes	yes	yes
$\sum_{i=0}^{n-1} 4^i = \frac{4^n - 1}{3}$	lg n	no	yes	no

6 Order the functions below by increasing growth rates.

$$n^n$$
, $n \ln n$, n^{ε} where $0 < \varepsilon < 1$, $2^{\lg n}$, $\ln n$, 10 , n^2

10,
$$\ln n$$
, n^{ε} where $0 < \varepsilon < 1$, $2^{\lg n}$, $n \lg n$, n^2 , n^n

7 Let f(n) and g(n) be asymptotically positive functions. Prove or show a counter example for each of the following conjectures.

7a
$$f(n) = \Omega(g(n))$$
 implies $f(n) = \Theta(g(n))$.

Consider $f(n) = n^2$ and g(n) = n. Then, $f(n) = \Omega(g(n))$, because n^2 is bounded below by n. However $\nexists c, d > 0$ such that $cn^2 \le n \le dn^2$ for some n, so $f(n) \ne \Theta(g(n))$.

7b
$$f(n) \in O(g(n))$$
 implies $\lg(f(n)) \in O(\lg(g(n)))$ where $\lg(g(n)) > 0$ and $f(n) \ge 1$ for all sufficiently large n . (Hint: consider $f(n) = 2^{1+\frac{1}{n}}$, $g(n) = 2^{\frac{1}{n}}$.)

Considering $f(n)=2^{1+\frac{1}{n}}$, $g(n)=2^{\frac{1}{n}}$, we have $f(n)\in O(g(n))$. Now, $\lg(2^{1+\frac{1}{n}})=1+\frac{1}{n}$ and $\lg(2^{\frac{1}{n}})=\frac{1}{n}$. Taking $\lim_{n\to\infty}\frac{1+\frac{1}{n}}{\frac{1}{n}}$ implies $\lg(f(n))=\Omega\left(\lg(g(n))\right)$, so the implication only holds when $\lg(f(n))=\Theta\left(\lg(g(n))\right)$, but not for all such f,g.

7c
$$f(n) \in O(g(n))$$
 implies $2^{f(n)} \in O(2^{g(n)})$. (Hint: consider $f(n) = 2n$ and $g(n) = n$.)

Taking f(n) = 2n and g(n) = n, we have $2^{f(n)} = 2^{2n}$ and $2^{g(n)} = 2^n$. Taking $\lim_{n \to \infty} \frac{2^{2n}}{2^n} = \lim_{n \to \infty} 2^n = \infty$ which again instead implies $2^{f(n)} = \Omega\left(2^{g(n)}\right)$.

7d $f(n) = O(f(n)^2)$. (Hint: consider $f(n) = \frac{1}{n}$.)

Taking $f(n) = \frac{1}{n}$, we have $f(n)^2 = \frac{1}{n^2}$. Taking $\lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n^2}} = \lim_{n \to \infty} n = \infty$, which instead implies $f(n) = \Omega\left(f(n)^2\right)$.

7e
$$f(n) = \Theta(f(\frac{n}{2})).$$

Taking $f(n)=2^n$, we have $f(\frac{n}{2})=2^{\frac{n}{2}}$. Taking $\lim_{n\to\infty}\frac{2^n}{2^{\frac{n}{2}}}=\lim_{n\to\infty}2^{\frac{n}{2}}=\infty$. Therefore, $f(n)=\Omega\left(f(\frac{n}{2})\right)$, but not necessarily in $f(n)=\Theta\left(f(\frac{n}{2})\right)$.

- 8 Show that $n^2 2n 10 \in \Theta(n^2)$ using both limits and the original definition.
 - Limits:

$$\lim_{n \to \infty} \frac{n^2 - 2n - 10}{n^2} = \lim_{n \to \infty} 1 - \frac{2}{n} - \frac{10}{n^2} = 1 + 0 + 0 = 1$$

which implies $n^2 - 2n - 10 \in \Theta(n^2)$.

• From the definition:

Proof. By the definition of the set $\Omega\left(n^2\right)$, $\exists c,d,N>0$ such that $cn^2\leq n^2-2n-10\leq dn^2\forall n\leq N$. We will show that $n^2-2n-10\in O\left(n^2\right)$ and $n^2-2n-10\in \Omega\left(n^2\right)$. From the definition of $O\left(n^2\right)$, $\exists c,N>0$ such that

$$0 \le n^2 - 2n - 10 \le cn^2, \forall n \le N$$

. Dividing by n^2 , we have $0 \le 1 - \frac{2}{n} - \frac{10}{n^2} \le c$, so we can clearly choose any $c \ge 1$. For c = 1, we have $0 \le 1 - \frac{2}{n} - \frac{10}{n^2} \le 1$ for all $n \ge 4$, so we choose N = 4.

To show $n^2 - 2n - 10 \in \Omega(n^2)$, there must exist c, N > 0 such that $0 \le cn^2 \le n^2 - 2n - 10$ for all $n \ge N$. Dividing by n^2 , we have $0 \le c \le 1 - \frac{2}{n} - \frac{10}{n^2}$, which holds for all c < 1, so choose $c = \frac{1}{2}$. We have $\frac{1}{2} \le 1 - \frac{2}{n} - \frac{10}{n^2}$ for all $n \ge 7$, so we choose N = 7.

Thus, $n^2 - 2n - 10 \in O(n^2)$ and $n^2 - 2n - 10 \in O(n^2)$, so $n^2 - 2n - 10 \in O(n^2)$.

Extra Credit 1 Give a $\Theta(\lg n)$ algorithm that computes the remainder when x^n is divided by positive integer p. For simplicity assume that n is a power of 2. That is $n = 2^k$ for some positive integer k.

Based on an algorithm given by Bruce Schneier in Applied Cryptography¹, we can find the remainder using a binary search by computing

$$\prod_{i=0}^{j-1} \left(x^{2^i} \right)_i^n \mod p$$

where n_i is the ith bit of n. Thus, we have

```
result = 1;

while exponent > 0 do

if exponent mod 2 == 1 then

result = (result * base) mod modulus;

end
exponent = exponent >> 1;
base = (base * base) mod modulus;

end
return result
```

where base, exponent, and modulus refer to x, n, and p, respectively.

Extra Credit 2 Write a $\Theta(n)$ algorithm that sorts n distinct integers ranging in size between 1 and kn inclusive. k is a positive integer and $k \ll n$.

The necessary algorithm here is a radix sort², which sorts the integers without using comparisons by looking iteratively at the place values.

```
Data: A[1..n] is a list of k-digit decimal integers, numbered right to left. buckets[10]; for i = 1 to k do for j = 1 to n do v = digit i \text{ of A[j]}; buckets[v] = A[j]; end A \leftarrow concatenation of buckets; end return A;
```

¹Found at http://en.wikipedia.org/wiki/Modular_exponentiation

²http://en.wikipedia.org/wiki/Radix_sort