Math 1010 - Homework 4

Milan Capoor

1 Problem 1 (Calculating square roots)

Let $x_1 = 2$ and define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$$

1. Show that x_n^2 is always greater than or equal to 2, and then use this to prove that $x_n - x_{n+1} \ge 0$. Conclude that $\lim x_n = \sqrt{2}$.

First observe $x_1^2 = 4 > 2$. Then,

$$x_{n+1}^{2} = \left[\frac{1}{2}\left(x_{n} + \frac{2}{x_{n}}\right)\right]^{2}$$

$$= \frac{1}{4}\left(x_{n} + \frac{2}{x_{n}}\right)^{2}$$

$$= \frac{1}{4}(x_{n}^{2} + 4 + \frac{4}{x_{n}^{2}})$$

Suppose $x_i^2 \ge 2$ for all $1 \le i \le n$. Then

$$x_{n+1}^2 \ge \frac{1}{4}((2)^2 + 4 + \frac{4}{(2)^2}) = \frac{9}{4} \ge 2$$

Thus, by induction, $x_n^2 \ge 2$ for all $n \in \mathbb{N}$.

Now consider

$$x_n - x_{n+1} = x_n - \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$

$$= x_n - \frac{1}{2} x_n - \frac{1}{x_n}$$

$$= \frac{x_n}{2} - \frac{1}{x_n} = \frac{x_n^2 - 2}{2x_n} \ge \frac{2 - 2}{2x_n} = 0$$

Thus, $x_n - x_{n+1} \ge 0$ for all $n \in \mathbb{N}$.

Since $x_n - x_{n+1} \ge 0$, the sequence (x_n) is decreasing. Since $x_1 = 2$, the sequence is bounded above by 2.

Since the sequence is bounded and monotone, it is convergent. Let $\lim x_n = L$. Then

$$L = \lim \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$
$$= \frac{1}{2} \lim x_n + \lim \frac{1}{x_n}$$

Define the sequence $y_n = 1$. Trivially, $(y_n) \to 1$. Then by the Algebraic Limit Theorem,

$$\lim \frac{1}{x_n} = \lim \frac{y_n}{x_n} = \frac{1}{L}$$

Then, substituting above

$$L = \frac{L}{2} + \frac{1}{L} = \frac{L^2 + 2}{2L} \implies 2L^2 = L^2 + 2 \implies L^2 = 2$$

Finally note that while (x_n) is decreasing, its terms are strictly positive and $x_1 = 2 > 0$ so $L = \lim x_n = \sqrt{2}$.

2. Modify the sequence (x_n) so that it converges to \sqrt{c} .

Let $(x_n) \to L$ given by sequence given by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right)$$

Then, as above,

$$\lim x_{n+1} = \lim \frac{L}{2} + \lim \frac{c}{2x_n}$$

$$L = \frac{L}{2} + \frac{c}{2L} = \frac{L^2 + c}{2L}$$

$$2L^2 = L^2 + c$$

$$L^2 = c \implies \lim x_n = \sqrt{c}$$

2 Problem 2 (Limit Superior)

Let (a_n) be a bounded sequence.

1. Prove that the sequence defined by $y_n = \sup\{a_k : k \ge n\}$ converges. (You are allowed to use the fact that for two nonempty sets A, B bounded above with $A \subset B$, we have $\sup A \le \sup B$.)

Let $|a_n| \leq M$. Then $A = \{a_k : k \geq n\}$ is a nonempty set bounded above by M. Therefore, $\sup A$ exists. Now denote $B = \{a_k : k \geq 1\}$. Clearly, $\sup B \leq M$. But since $A \subset B$, we have $\sup A \leq \sup B \leq M$. Thus, $y_n = \sup A$ is a bounded sequence.

Now notice

$${a_k : k \ge n+1} \subset {a_k : k \ge n}$$

SO

$$y_n = \sup\{a_k : k \ge n\} \ge \sup\{a_k : k \ge n+1\} = y_{n+1}$$

Therefore, (y_n) is decreasing sequence.

Since it is monotonic and bounded, it is convergent.

2. The *limit superior* of (a_n) , or $\limsup a_n$. is defined by

$$\lim \sup a_n = \lim y_n,$$

where y_n is the sequence from part 1). Provide a reasonable definition for $\lim \inf a_n$ and briefly explain why it always exists for any bounded sequence.

Denote

$$y_n = \inf \{a_n = \inf\{a_k : k \ge n\}$$

and consider $\lim y_n = \lim \inf \{a_k : k \ge n\}$.

As $|a_n| \leq M$, $\{a_k : k \geq n\}$ is a nonempty set bounded below by -M. Therefore, $\inf\{a_k : k \geq n\}$ exists. Further,

$${a_k : k \ge n} \subset {a_k : k \ge 1} \implies \inf{a_k : k \ge n} \ge \inf{a_k : k \ge 1}$$

so $\inf\{a_k : k \ge n\} \ge \inf a_n \ge -M \implies y_n \ge -M$.

Then, since y_n is non-empty, $\inf\{a_k : k \geq n\} \leq \sup\{a_k : k \geq n\} \leq M$, so $|y_n| \leq M$ and y_n is bounded.

Finally,

$$\{a_k: k \ge n+1\} \subset \{a_k: k \ge n\} \implies \inf\{a_k: k \ge n+1\} \ge \inf\{a_k: k \ge n\} \implies y_n \le y_{n+1} \implies y_n \text{ increasing } \{a_k: k \ge n\} \implies y_n \le y_{n+1} \implies y_n = y_n$$

Since the sequence is bounded and monotonic, it is convergent and so $\lim y_n = \liminf a_n$ exists.

3. Prove that $\liminf a_n \leq \limsup a_n$ for every bounded sequence, and give an example of a sequence for which the inequality is strict.

Let $A_n = \{a_k : k \ge n\}$. By definition of bounds,

$$\inf A_n \le A_n \le \sup A_n \implies \inf a_n \le \sup a_n$$

From parts 1) and 2), we have that $\liminf a_n$ and $\limsup a_n$ exist since (a_n) is bounded. Thus, we can take limits of the inequality to get

 $\lim\inf a_n \le \lim\sup a_n \quad \blacksquare$

4. Show that $\liminf a_n = \limsup a_n$ if and only if $\lim a_n$ exists. In this case, all three share the same value.

Suppose $\lim a_n = a$ so $\exists N \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ for all $n \ge N$. Then, for all $n \ge N$,

$$|a_n - a| = |a_n - \limsup a_n + \limsup a_n - a| \le |a_n - \limsup a_n| + |\limsup a_n - a| < \varepsilon$$

Since $|a_n - \limsup a_n| > 0$, we have that $|\limsup a_n - a| < \varepsilon$ so $\limsup a_n = a$.

Similarly,

$$|a_n - a| = |a_n - \liminf a_n + \liminf a_n - a| \le |a_n - \liminf a_n| + |\liminf a_n - a| < \varepsilon$$

and $|a_n - \liminf a_n| > 0 \implies |\liminf a_n - a| < \varepsilon$ so $\liminf a_n = a$.

Therefore, $\liminf a_n = \limsup a_n = a$.

Now, suppose $\liminf a_n = \limsup a_n = a$. Then, for $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that for all n > N,

$$|\inf\{a_k : k \ge n\} - a| < \varepsilon, \qquad |\sup\{a_k : k \ge n\} - a| < \varepsilon$$

We want to show that $|a_n - a| < \varepsilon$ for all n > N. Let M > N, then for all m > M,

$${a_k : k \ge n} = a_m \implies \inf{a_k : k \ge n} = a_m = \sup\inf{a_k : k \ge n}$$

so $\lim a_m = a$.

3 Problem 3

Assume (a_n) is a bounded sequence with the property that every convergent subsequence of (a_n) converges to the same limit $a \in \mathbb{R}$. Show that (a_n) must converge to a.

Let $(a_{n_k}) \to a$ and $(a_{n_j}) \to a$ be two subsequences of (a_n) . Let $\varepsilon > 0$. We want to show that $\exists N \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ for all $n \ge N$.

Since (a_{n_k}) converges, we can say that $\exists K \in \mathbb{N}$ such that $|a_{n_k} - a| < \frac{\varepsilon}{2}$ for all $k \geq K$. Similarly, $\exists J \in \mathbb{N}$ such that $|a_{n_j} - a| < \frac{\varepsilon}{2}$ for all $j \geq J$. Let $N = \max K, J$. Pick $m \in \{n_k\}$ and $n \in \{n_j\}$ such that $m > n \geq N$.

$$|a_m - a_n| = |a_m - a - a_n + a| \le |a_m - a| + |a_n - a| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

Therefore, (a_n) is Cauchy and so converges.

Since it is convergent and all subsequences converge to $a, (a_n) \to a$.

4 Problem 4

Let (a_n) be a bounded sequence, and define the set

$$S = \{x \in \mathbb{R} : x < a_n \text{ for infinitely many terms } a_n\}.$$

Show there exists a subsequence (a_{n_k}) converging to $s = \sup S$. This is a direct proof of the Bolzano-Weierstrass Theorem using the Axiom of Completeness.

By the axiom of completeness, $s = \sup S$ exists and is the least upper bound for S. That is, for all $x < a_n$, $x \le s < a_n$.

Let $\varepsilon > 0$. Then $s + \varepsilon \notin S$ so $s + \varepsilon \ge a_n$ for infinitely many terms a_n . Therefore, we can create a subsequence (a_{n_k}) from the set $\{a_n \mid s < a_n < s + \varepsilon\}$ with elements chosen such that $n_1 < n_2 < \cdots$.

Now we want to show that $(a_{n_k}) \to s$. By the choice of (a_{n_k}) , we have that for all $n_k \ge 1$,

$$|a_{n_k} - s| < |(s + \varepsilon) - s| = |\varepsilon| = \varepsilon$$

Therefore, $(a_{n_k}) \to s$.