Classifying Space

Usually look at this in the context of a topological group G, and denote BG the classifying space of G. It is the quotient of some contractible space EG by a free action of G, so we have something that looks like $G \to EG \to BG$ and BG = EG/G.

For a discrete group G, we have BG = K(G,1), so that $\pi_1(BG) = G$ and $\pi_k(BG) = 0$ for $k \neq 1$.

Question: what is a principal bundle? According to wikipedia, any G-principal bundle is a pullback of EG o BG.

Note that contractibility of EG shows that BG is K(G,1).

Examples

Note that ${\it EG}$ is always a contractible space upon which ${\it G}$ acts freely.

We also have $BX \simeq \Omega X$

- $G \rightarrow EG \rightarrow BG = EG/G$
- $\mathbb{Z} \to \mathbb{R} \to S^1$
- $\mathbb{Z}^n \to \mathbb{R}^n \to T^n$
- $\mathbb{Z}^{*n} \to ???? \to \bigvee_n S^1$
- $\mathbb{Z}_2 o S^{\infty} o \mathbb{RP}^{\infty}$
- $\mathbb{Z}_n o S^\infty o L_n^\infty$
- $S^0 o S^\infty o \mathbb{RP}^\infty$
- $S^1 \to S^\infty \to \mathbb{CP}^\infty$
- $S^3 \to S^\infty \to \backslash \mathbf{HP}^\infty$
- NOT TRUE: $S^7 \to S^\infty \to \backslash \mathbf{OP}^\infty$
- $T^n \to ? \to (\mathbb{CP}^\infty)^n$
- $O_n \to V_n(\mathbb{R}^{\infty}) \to Gr_n(\mathbb{R}^{\infty})$
- $GL_n(\mathbb{R}) o V_n(\mathbb{R}^{\infty}) o Gr_n(\mathbb{R}^{\infty})$
- $SO_n \rightarrow ? \rightarrow ?$
- $Gr_n(\mathbb{R}^{\infty}) \to ? \to Gr_n(\mathbb{R}^{\infty})$
- $\pi_1(\Sigma_q) \to ? \to \Sigma_q$
- $S_n \to ???? \to \{U \subset \mathbb{R}^\infty, |U| = n\}$

Note that $V_n(X)$ is the Stiefel manifold of dimension n orthonormal frames in X.

Also,
$$\pi_1(\Sigma_g) = <\{a_i,b_i\}_i^n> \mid \prod_i^g [a_i,b_i]>$$

A principal G bundle is a locally trivial free G-space with orbit space B. If G is discrete, then a principal G-bundle over X with total space \tilde{X} is equivalent to a regular covering map with $Aut(\tilde{X}) = G$. Under some hypothesis, there exists a classifying space BG such that

{isomorphism classes of G-bundles over X} \cong [X, BG], i.e. bundles of G's over X are equivalent to maps from X into the classifying space, i.e. $Hom(X, BG) \cong \{G \setminus dashbundles over X\}$

It is useful to think of BG as a space whose points are copies of G, so the classifying map $X \overset{f}{\to} BG$ assigns each $x \in X$ to the fiber above x, which is a G.

There is a standard procedure in homotopy theory for constructing a classifying space for every group. One starts by constructing a 2-complex with the given fundamental group, and then one inductively attaches higher dimensional cells to kill all higher homotopy groups. Each element $c \in \pi_n(X_{n-1})$ is represented by some continuous map $\gamma_c: S^n \to X_{n-1}$ with image in the $n \setminus dsh$ -skeleton. Let X_n be obtained from X_{n-1} by attaching an $(n+1) \setminus dsh$ -cell along γ_c , for each $c \in \pi_n(X_{n-1})$.

Conjecture: $B(G \times H) = BG \times BH$ Proof outline: $EG \times EH$ is contractible, and $G \times H$ acts freely on it with quotient equal to the RHS.

Conjecture: $B(G * H) = BG \lor BH$

Unknown: $B(G \otimes H) = BG \otimes BH$

Unknown: $B(G \rtimes_{\phi} H) = ?$

Paper on Chow Rings

Recent result: Chow Rings computed in 2005 for BGL_n , BSL_n , BSp_n , BO_n , BSO_n Cohomology for classifying spaces of linear algebraic groups (equivalently compact Lie Groups) have an algebraic analog: Chow rings of the classifying spaces. For a finite abelian group, the chow ring is the symmetric algebra on the group of characters.

There is a map from the Chow ring back into cohomology, which in general fails surjectivity and injectivity. Tensoring this map with \mathbb{Q} creates an isomorphism, though. In this case, both hve the ring structure of invariants under the Weyl group in the symmetric algebra of the ring of characters of a maximal torus. (Classical result, Leray and Borel.)

Chow rings have not been computed for PGL_n . Need to know about Chern classes, Euler classes,

 A_* known for all O_n and SO_n for n odd in 80s, general result for SO_n 2004. PGL_n case is much harder. Understood for n=2, since $PGL_2\cong SO_3$. Other bits that have been computed: $H^*(BPGL_3,\mathbb{Z}_3), H^*(BPGL_n,\mathbb{Z}_2)$ for $n=2 \mod 4$ in 70s/80s, incomplete results for $H^*(BPGL_p,\mathbb{Z}_p)$ in 2003.

Term "equivariant" pops up a lot, symplectic forms, schemes, stacks

Further Reading

Characteristic classes are elements of $H^*(BG)$, can be used to define char. classes for bundles.

Connected covers can kill higher homotopy?

You can realize any Eilenberg-MacLane space as a classifying space.

Claim: $\pi_{i+k}B^kG=\pi_iG$.

Proof: If G is a topological group, there is a universal principal $G\backslash dash$ bundle $EG\to BG$ which induces a LES in homotopy. Since EG is contractible, $\pi_i EG = \pi_{i+1} EG = 0$, so $\pi_{i+1} BG \cong \pi_i G$. When G is an E_2 space, BG is a topological group, and so $\pi_{i+2}(B^2G) = \pi_{i+2}(B(BG)) = \pi_{i+1}(BG) = \pi_i(G)$ and we conclude the result.

Corollary: If G is a discrete group, $B^kG=K(G,n)$. Proof: Then $\pi_0G=G$ and $\pi_iG=0$ for i>0, so $\pi_kB^kG=G$.

It's possible to take classifying spaces of stacks. E.g. there is a stack that classifies principal bundles *with connections*, but it has issues: it is not a presentable stack, i.e. not covered by a manifold, so an associated sheaf is not representable.

Stable homotopy of BG: same sort of techniques as in S^n , break into components.

EG can be constructed as $\bigcup_n G*G*\cdots*G$, where * is join of two spaces: the suspension of the smash product. For example, $G=\mathbb{Z}_2$ implies $EG=\bigcup_n \mathbb{Z}_2*\cdots=\bigcup_n S^{n-1}=S^\infty$.