Morgan Kaufmann Publishers is an imprint of Elsevier. 225 Wyman Street, Waltham, MA 02451, USA

© 2012 by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: <a href="https://www.elsevier.com/permissions">www.elsevier.com/permissions</a>.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

#### **Notices**

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

#### Library of Congress Cataloging-in-Publication Data

Han, Jiawei.

Data mining: concepts and techniques / Jiawei Han, Micheline Kamber, Jian Pei. - 3rd ed.

p. cm.

ISBN 978-0-12-381479-1

1. Data mining. I. Kamber, Micheline. II. Pei, Jian. III. Title.

QA76.9.D343H36 2011

006.3'12-dc22

2011010635

#### **British Library Cataloguing-in-Publication Data**

A catalogue record for this book is available from the British Library.

For information on all Morgan Kaufmann publications, visit our Web site at www.mkp.com or www.elsevierdirect.com

Printed in the United States of America

11 12 13 14 15

10 9 8 7 6 5 4 3 2 1

## Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

### **About the Authors**

Jiawei Han is a Bliss Professor of Engineering in the Department of Computer Science at the University of Illinois at Urbana-Champaign. He has received numerous awards for his contributions on research into knowledge discovery and data mining, including ACM SIGKDD Innovation Award (2004), IEEE Computer Society Technical Achievement Award (2005), and IEEE W. Wallace McDowell Award (2009). He is a Fellow of ACM and IEEE. He served as founding Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data (2006–2011) and as an editorial board member of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.

**Micheline Kamber** has a master's degree in computer science (specializing in artificial intelligence) from Concordia University in Montreal, Quebec. She was an NSERC Scholar and has worked as a researcher at McGill University, Simon Fraser University, and in Switzerland. Her background in data mining and passion for writing in easy-to-understand terms help make this text a favorite of professionals, instructors, and students.

Jian Pei is currently an associate professor at the School of Computing Science, Simon Fraser University in British Columbia. He received a Ph.D. degree in computing science from Simon Fraser University in 2002 under Dr. Jiawei Han's supervision. He has published prolifically in the premier academic forums on data mining, databases, Web searching, and information retrieval and actively served the academic community. His publications have received thousands of citations and several prestigious awards. He is an associate editor of several data mining and data analytics journals.

### Introduction

**This book is an introduction** to the young and fast-growing field of *data mining* (also known as *knowledge discovery from data*, or *KDD* for short). The book focuses on fundamental data mining concepts and techniques for discovering interesting patterns from data in various applications. In particular, we emphasize prominent techniques for developing effective, efficient, and scalable data mining tools.

This chapter is organized as follows. In Section 1.1, you will learn why data mining is in high demand and how it is part of the natural evolution of information technology. Section 1.2 defines data mining with respect to the knowledge discovery process. Next, you will learn about data mining from many aspects, such as the kinds of data that can be mined (Section 1.3), the kinds of knowledge to be mined (Section 1.4), the kinds of technologies to be used (Section 1.5), and targeted applications (Section 1.6). In this way, you will gain a multidimensional view of data mining. Finally, Section 1.7 outlines major data mining research and development issues.

#### Why Data Mining?

*Necessity, who is the mother of invention.* – Plato

We live in a world where vast amounts of data are collected daily. Analyzing such data is an important need. Section 1.1.1 looks at how data mining can meet this need by providing tools to discover knowledge from data. In Section 1.1.2, we observe how data mining can be viewed as a result of the natural evolution of information technology.

#### I.I.I Moving toward the Information Age

"We are living in the information age" is a popular saying; however, we are actually living in the data age. Terabytes or petabytes<sup>1</sup> of data pour into our computer networks, the World Wide Web (WWW), and various data storage devices every day from business,

<sup>&</sup>lt;sup>1</sup>A petabyte is a unit of information or computer storage equal to 1 quadrillion bytes, or a thousand terabytes, or 1 million gigabytes.

society, science and engineering, medicine, and almost every other aspect of daily life. This explosive growth of available data volume is a result of the computerization of our society and the fast development of powerful data collection and storage tools. Businesses worldwide generate gigantic data sets, including sales transactions, stock trading records, product descriptions, sales promotions, company profiles and performance, and customer feedback. For example, large stores, such as Wal-Mart, handle hundreds of millions of transactions per week at thousands of branches around the world. Scientific and engineering practices generate high orders of petabytes of data in a continuous manner, from remote sensing, process measuring, scientific experiments, system performance, engineering observations, and environment surveillance.

Global backbone telecommunication networks carry tens of petabytes of data traffic every day. The medical and health industry generates tremendous amounts of data from medical records, patient monitoring, and medical imaging. Billions of Web searches supported by search engines process tens of petabytes of data daily. Communities and social media have become increasingly important data sources, producing digital pictures and videos, blogs, Web communities, and various kinds of social networks. The list of sources that generate huge amounts of data is endless.

This explosively growing, widely available, and gigantic body of data makes our time truly the data age. Powerful and versatile tools are badly needed to automatically uncover valuable information from the tremendous amounts of data and to transform such data into organized knowledge. This necessity has led to the birth of data mining. The field is young, dynamic, and promising. Data mining has and will continue to make great strides in our journey from the data age toward the coming information age.

Example 1.1 Data mining turns a large collection of data into knowledge. A search engine (e.g., Google) receives hundreds of millions of queries every day. Each query can be viewed as a transaction where the user describes her or his information need. What novel and useful knowledge can a search engine learn from such a huge collection of queries collected from users over time? Interestingly, some patterns found in user search queries can disclose invaluable knowledge that cannot be obtained by reading individual data items alone. For example, Google's Flu Trends uses specific search terms as indicators of flu activity. It found a close relationship between the number of people who search for flu-related information and the number of people who actually have flu symptoms. A pattern emerges when all of the search queries related to flu are aggregated. Using aggregated Google search data, Flu Trends can estimate flu activity up to two weeks faster than traditional systems can.<sup>2</sup> This example shows how data mining can turn a large collection of data into knowledge that can help meet a current global challenge.

#### 1.1.2 Data Mining as the Evolution of Information Technology

Data mining can be viewed as a result of the natural evolution of information technology. The database and data management industry evolved in the development of

<sup>&</sup>lt;sup>2</sup>This is reported in [GMP<sup>+</sup>09].



**Figure 1.1** The evolution of database system technology.

several critical functionalities (Figure 1.1): data collection and database creation, data management (including data storage and retrieval and database transaction processing), and advanced data analysis (involving data warehousing and data mining). The early development of data collection and database creation mechanisms served as a prerequisite for the later development of effective mechanisms for data storage and retrieval, as well as query and transaction processing. Nowadays numerous database systems offer query and transaction processing as common practice. Advanced data analysis has naturally become the next step.

Since the 1960s, database and information technology has evolved systematically from primitive file processing systems to sophisticated and powerful database systems. The research and development in database systems since the 1970s progressed from early hierarchical and network database systems to relational database systems (where data are stored in relational table structures; see Section 1.3.1), data modeling tools, and indexing and accessing methods. In addition, users gained convenient and flexible data access through query languages, user interfaces, query optimization, and transaction management. Efficient methods for online transaction processing (OLTP), where a query is viewed as a read-only transaction, contributed substantially to the evolution and wide acceptance of relational technology as a major tool for efficient storage, retrieval, and management of large amounts of data.

After the establishment of database management systems, database technology moved toward the development of *advanced database systems*, *data warehousing*, and *data mining* for advanced data analysis and *web-based databases*. Advanced database systems, for example, resulted from an upsurge of research from the mid-1980s onward. These systems incorporate new and powerful data models such as extended-relational, object-oriented, object-relational, and deductive models. Application-oriented database systems have flourished, including spatial, temporal, multimedia, active, stream and sensor, scientific and engineering databases, knowledge bases, and office information bases. Issues related to the distribution, diversification, and sharing of data have been studied extensively.

Advanced data analysis sprang up from the late 1980s onward. The steady and dazzling progress of computer hardware technology in the past three decades led to large supplies of powerful and affordable computers, data collection equipment, and storage media. This technology provides a great boost to the database and information industry, and it enables a huge number of databases and information repositories to be available for transaction management, information retrieval, and data analysis. Data can now be stored in many different kinds of databases and information repositories.

One emerging data repository architecture is the **data warehouse** (Section 1.3.2). This is a repository of multiple heterogeneous data sources organized under a unified schema at a single site to facilitate management decision making. Data warehouse technology includes data cleaning, data integration, and online analytical processing (OLAP)—that is, analysis techniques with functionalities such as summarization, consolidation, and aggregation, as well as the ability to view information from different angles. Although OLAP tools support multidimensional analysis and decision making, additional data analysis tools are required for in-depth analysis—for example, data mining tools that provide data classification, clustering, outlier/anomaly detection, and the characterization of changes in data over time.

Huge volumes of data have been accumulated beyond databases and data warehouses. During the 1990s, the World Wide Web and web-based databases (e.g., XML databases) began to appear. Internet-based global information bases, such as the WWW and various kinds of interconnected, heterogeneous databases, have emerged and play a vital role in the information industry. The effective and efficient analysis of data from such different forms of data by integration of information retrieval, data mining, and information network analysis technologies is a challenging task.



**Figure 1.2** The world is data rich but information poor.

In summary, the abundance of data, coupled with the need for powerful data analysis tools, has been described as a *data rich but information poor* situation (Figure 1.2). The fast-growing, tremendous amount of data, collected and stored in large and numerous data repositories, has far exceeded our human ability for comprehension without powerful tools. As a result, data collected in large data repositories become "data tombs"—data archives that are seldom visited. Consequently, important decisions are often made based not on the information-rich data stored in data repositories but rather on a decision maker's intuition, simply because the decision maker does not have the tools to extract the valuable knowledge embedded in the vast amounts of data. Efforts have been made to develop expert system and knowledge-based technologies, which typically rely on users or domain experts to *manually* input knowledge into knowledge bases. Unfortunately, however, the manual knowledge input procedure is prone to biases and errors and is extremely costly and time consuming. The widening gap between data and information calls for the systematic development of *data mining tools* that can turn data tombs into "golden nuggets" of knowledge.

## .2

#### What Is Data Mining?

It is no surprise that data mining, as a truly interdisciplinary subject, can be defined in many different ways. Even the term *data mining* does not really present all the major components in the picture. To refer to the mining of gold from rocks or sand, we say *gold mining* instead of rock or sand mining. Analogously, data mining should have been more

#### **6** Chapter 1 *Introduction*



**Figure 1.3** Data mining—searching for knowledge (interesting patterns) in data.

appropriately named "knowledge mining from data," which is unfortunately somewhat long. However, the shorter term, *knowledge mining* may not reflect the emphasis on mining from large amounts of data. Nevertheless, mining is a vivid term characterizing the process that finds a small set of precious nuggets from a great deal of raw material (Figure 1.3). Thus, such a misnomer carrying both "data" and "mining" became a popular choice. In addition, many other terms have a similar meaning to data mining—for example, *knowledge mining from data*, *knowledge extraction*, *data/pattern analysis*, *data archaeology*, and *data dredging*.

Many people treat data mining as a synonym for another popularly used term, **knowledge discovery from data**, or **KDD**, while others view data mining as merely an essential step in the process of knowledge discovery. The knowledge discovery process is shown in Figure 1.4 as an iterative sequence of the following steps:

- **I. Data cleaning** (to remove noise and inconsistent data)
- **2.** Data integration (where multiple data sources may be combined)<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>A popular trend in the information industry is to perform data cleaning and data integration as a preprocessing step, where the resulting data are stored in a data warehouse.



**Figure 1.4** Data mining as a step in the process of knowledge discovery.

- **3. Data selection** (where data relevant to the analysis task are retrieved from the database)
- **4. Data transformation** (where data are transformed and consolidated into forms appropriate for mining by performing summary or aggregation operations)<sup>4</sup>
- **5. Data mining** (an essential process where intelligent methods are applied to extract data patterns)
- **6. Pattern evaluation** (to identify the truly interesting patterns representing knowledge based on *interestingness measures*—see Section 1.4.6)
- **7. Knowledge presentation** (where visualization and knowledge representation techniques are used to present mined knowledge to users)

Steps 1 through 4 are different forms of data preprocessing, where data are prepared for mining. The data mining step may interact with the user or a knowledge base. The interesting patterns are presented to the user and may be stored as new knowledge in the knowledge base.

The preceding view shows data mining as one step in the knowledge discovery process, albeit an essential one because it uncovers hidden patterns for evaluation. However, in industry, in media, and in the research milieu, the term *data mining* is often used to refer to the entire knowledge discovery process (perhaps because the term is shorter than *knowledge discovery from data*). Therefore, we adopt a broad view of data mining functionality: **Data mining** is the *process* of discovering interesting patterns and knowledge from *large* amounts of data. The data sources can include databases, data warehouses, the Web, other information repositories, or data that are streamed into the system dynamically.

## 1.3

#### What Kinds of Data Can Be Mined?

As a general technology, data mining can be applied to any kind of data as long as the data are meaningful for a target application. The most basic forms of data for mining applications are database data (Section 1.3.1), data warehouse data (Section 1.3.2), and transactional data (Section 1.3.3). The concepts and techniques presented in this book focus on such data. Data mining can also be applied to other forms of data (e.g., data streams, ordered/sequence data, graph or networked data, spatial data, text data, multimedia data, and the WWW). We present an overview of such data in Section 1.3.4. Techniques for mining of these kinds of data are briefly introduced in Chapter 13. Indepth treatment is considered an advanced topic. Data mining will certainly continue to embrace new data types as they emerge.

<sup>&</sup>lt;sup>4</sup>Sometimes data transformation and consolidation are performed before the data selection process, particularly in the case of data warehousing. *Data reduction* may also be performed to obtain a smaller representation of the original data without sacrificing its integrity.

#### 1.3.1 Database Data

A database system, also called a **database management system** (**DBMS**), consists of a collection of interrelated data, known as a **database**, and a set of software programs to manage and access the data. The software programs provide mechanisms for defining database structures and data storage; for specifying and managing concurrent, shared, or distributed data access; and for ensuring consistency and security of the information stored despite system crashes or attempts at unauthorized access.

A **relational database** is a collection of **tables**, each of which is assigned a unique name. Each table consists of a set of **attributes** (*columns* or *fields*) and usually stores a large set of **tuples** (*records* or *rows*). Each tuple in a relational table represents an object identified by a unique *key* and described by a set of attribute values. A semantic data model, such as an **entity-relationship** (**ER**) data model, is often constructed for relational databases. An ER data model represents the database as a set of entities and their relationships.

# **Example 1.2** A relational database for *AllElectronics*. The fictitious *AllElectronics* store is used to illustrate concepts throughout this book. The company is described by the following relation tables: *customer, item, employee*, and *branch*. The headers of the tables described here are shown in Figure 1.5. (A header is also called the *schema* of a relation.)

- The relation *customer* consists of a set of attributes describing the customer information, including a unique customer identity number (*cust\_ID*), customer name, address, age, occupation, annual income, credit information, and category.
- Similarly, each of the relations *item*, *employee*, and *branch* consists of a set of attributes describing the properties of these entities.
- Tables can also be used to represent the relationships between or among multiple entities. In our example, these include *purchases* (customer purchases items, creating a sales transaction handled by an employee), *items\_sold* (lists items sold in a given transaction), and *works\_at* (employee works at a branch of *AllElectronics*).

```
customer (cust_ID, name, address, age, occupation, annual_income, credit_information, category, ...)

item (item_ID, brand, category, type, price, place_made, supplier, cost, ...)

employee (empl_ID, name, category, group, salary, commission, ...)

branch (branch_ID, name, address, ...)

purchases (trans_ID, cust_ID, empl_ID, date, time, method_paid, amount)

items_sold (trans_ID, item_ID, qty)

works_at (empl_ID, branch_ID)
```

**Figure 1.5** Relational schema for a relational database, *AllElectronics*.

Relational data can be accessed by **database queries** written in a relational query language (e.g., SQL) or with the assistance of graphical user interfaces. A given query is transformed into a set of relational operations, such as join, selection, and projection, and is then optimized for efficient processing. A query allows retrieval of specified subsets of the data. Suppose that your job is to analyze the *AllElectronics* data. Through the use of relational queries, you can ask things like, "Show me a list of all items that were sold in the last quarter." Relational languages also use aggregate functions such as sum, avg (average), count, max (maximum), and min (minimum). Using aggregates allows you to ask: "Show me the total sales of the last month, grouped by branch," or "How many sales transactions occurred in the month of December?" or "Which salesperson had the highest sales?"

When mining relational databases, we can go further by searching for trends or data patterns. For example, data mining systems can analyze customer data to predict the credit risk of new customers based on their income, age, and previous credit information. Data mining systems may also detect deviations—that is, items with sales that are far from those expected in comparison with the previous year. Such deviations can then be further investigated. For example, data mining may discover that there has been a change in packaging of an item or a significant increase in price.

Relational databases are one of the most commonly available and richest information repositories, and thus they are a major data form in the study of data mining.

#### 1.3.2 Data Warehouses

Suppose that *AllElectronics* is a successful international company with branches around the world. Each branch has its own set of databases. The president of *AllElectronics* has asked you to provide an analysis of the company's sales per item type per branch for the third quarter. This is a difficult task, particularly since the relevant data are spread out over several databases physically located at numerous sites.

If *AllElectronics* had a data warehouse, this task would be easy. A **data warehouse** is a repository of information collected from multiple sources, stored under a unified schema, and usually residing at a single site. Data warehouses are constructed via a process of data cleaning, data integration, data transformation, data loading, and periodic data refreshing. This process is discussed in Chapters 3 and 4. Figure 1.6 shows the typical framework for construction and use of a data warehouse for *AllElectronics*.

To facilitate decision making, the data in a data warehouse are organized around *major subjects* (e.g., customer, item, supplier, and activity). The data are stored to provide information from a *historical perspective*, such as in the past 6 to 12 months, and are typically *summarized*. For example, rather than storing the details of each sales transaction, the data warehouse may store a summary of the transactions per item type for each store or, summarized to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional data structure, called a **data cube**, in which each **dimension** corresponds to an attribute or a set of attributes in the schema, and each **cell** stores the value of some aggregate measure such as *count* 



**Figure 1.6** Typical framework of a data warehouse for *AllElectronics*.

or *sum*(*sales\_amount*). A data cube provides a multidimensional view of data and allows the precomputation and fast access of summarized data.

**Example 1.3** A data cube for *AllElectronics*. A data cube for summarized sales data of *AllElectronics* is presented in Figure 1.7(a). The cube has three dimensions: *address* (with city values *Chicago, New York, Toronto, Vancouver*), *time* (with quarter values *Q1*, *Q2*, *Q3*, *Q4*), and *item* (with item type values *home entertainment, computer, phone, security*). The aggregate value stored in each cell of the cube is *sales\_amount* (in thousands). For example, the total sales for the first quarter, *Q1*, for the items related to security systems in Vancouver is \$400,000, as stored in cell 〈Vancouver, Q1, security〉. Additional cubes may be used to store aggregate sums over each dimension, corresponding to the aggregate values obtained using different SQL group-bys (e.g., the total sales amount per city and quarter, or per city and item, or per quarter and item, or per each individual dimension).

By providing multidimensional data views and the precomputation of summarized data, data warehouse systems can provide inherent support for OLAP. Online analytical processing operations make use of background knowledge regarding the domain of the data being studied to allow the presentation of data at *different levels of abstraction*. Such operations accommodate different user viewpoints. Examples of OLAP operations include **drill-down** and **roll-up**, which allow the user to view the data at differing degrees of summarization, as illustrated in Figure 1.7(b). For instance, we can drill down on sales data summarized by *quarter* to see data summarized by *month*. Similarly, we can roll up on sales data summarized by *city* to view data summarized by *country*.

Although data warehouse tools help support data analysis, additional tools for data mining are often needed for in-depth analysis. **Multidimensional data mining** (also called **exploratory multidimensional data mining**) performs data mining in



**Figure 1.7** A multidimensional data cube, commonly used for data warehousing, (a) showing summarized data for *AllElectronics* and (b) showing summarized data resulting from drill-down and roll-up operations on the cube in (a). For improved readability, only some of the cube cell values are shown.

multidimensional space in an OLAP style. That is, it allows the exploration of multiple combinations of dimensions at varying levels of granularity in data mining, and thus has greater potential for discovering interesting patterns representing knowledge. An overview of data warehouse and OLAP technology is provided in Chapter 4. Advanced issues regarding data cube computation and multidimensional data mining are discussed in Chapter 5.

#### 1.3.3 Transactional Data

In general, each record in a **transactional database** captures a transaction, such as a customer's purchase, a flight booking, or a user's clicks on a web page. A transaction typically includes a unique transaction identity number (*trans\_ID*) and a list of the **items** making up the transaction, such as the items purchased in the transaction. A transactional database may have additional tables, which contain other information related to the transactions, such as item description, information about the salesperson or the branch, and so on.

**Example 1.4** A transactional database for *AllElectronics*. Transactions can be stored in a table, with one record per transaction. A fragment of a transactional database for *AllElectronics* is shown in Figure 1.8. From the relational database point of view, the *sales* table in the figure is a nested relation because the attribute *list\_of\_item\_IDs* contains a set of *items*. Because most relational database systems do not support nested relational structures, the transactional database is usually either stored in a flat file in a format similar to the table in Figure 1.8 or unfolded into a standard relation in a format similar to the *items\_sold* table in Figure 1.5.

As an analyst of AllElectronics, you may ask, "Which items sold well together?" This kind of market basket data analysis would enable you to bundle groups of items together as a strategy for boosting sales. For example, given the knowledge that printers are commonly purchased together with computers, you could offer certain printers at a steep discount (or even for free) to customers buying selected computers, in the hopes of selling more computers (which are often more expensive than printers). A traditional database system is not able to perform market basket data analysis. Fortunately, data mining on transactional data can do so by mining frequent itemsets, that is, sets

| trans_ID | list_of_item_IDs |
|----------|------------------|
| T100     | I1, I3, I8, I16  |
| T200     | I2, I8           |
|          |                  |

**Figure 1.8** Fragment of a transactional database for sales at *AllElectronics*.

of items that are frequently sold together. The mining of such frequent patterns from transactional data is discussed in Chapters 6 and 7.

#### 1.3.4 Other Kinds of Data

Besides relational database data, data warehouse data, and transaction data, there are many other kinds of data that have versatile forms and structures and rather different semantic meanings. Such kinds of data can be seen in many applications: time-related or sequence data (e.g., historical records, stock exchange data, and time-series and biological sequence data), data streams (e.g., video surveillance and sensor data, which are continuously transmitted), spatial data (e.g., maps), engineering design data (e.g., the design of buildings, system components, or integrated circuits), hypertext and multimedia data (including text, image, video, and audio data), graph and networked data (e.g., social and information networks), and the Web (a huge, widely distributed information repository made available by the Internet). These applications bring about new challenges, like how to handle data carrying special structures (e.g., sequences, trees, graphs, and networks) and specific semantics (such as ordering, image, audio and video contents, and connectivity), and how to mine patterns that carry rich structures and semantics.

Various kinds of knowledge can be mined from these kinds of data. Here, we list just a few. Regarding temporal data, for instance, we can mine banking data for changing trends, which may aid in the scheduling of bank tellers according to the volume of customer traffic. Stock exchange data can be mined to uncover trends that could help you plan investment strategies (e.g., the best time to purchase AllElectronics stock). We could mine computer network data streams to detect intrusions based on the anomaly of message flows, which may be discovered by clustering, dynamic construction of stream models or by comparing the current frequent patterns with those at a previous time. With spatial data, we may look for patterns that describe changes in metropolitan poverty rates based on city distances from major highways. The relationships among a set of spatial objects can be examined in order to discover which subsets of objects are spatially autocorrelated or associated. By mining text data, such as literature on data mining from the past ten years, we can identify the evolution of hot topics in the field. By mining user comments on products (which are often submitted as short text messages), we can assess customer sentiments and understand how well a product is embraced by a market. From multimedia data, we can mine images to identify objects and classify them by assigning semantic labels or tags. By mining video data of a hockey game, we can detect video sequences corresponding to goals. Web mining can help us learn about the distribution of information on the WWW in general, characterize and classify web pages, and uncover web dynamics and the association and other relationships among different web pages, users, communities, and web-based activities.

It is important to keep in mind that, in many applications, multiple types of data are present. For example, in web mining, there often exist text data and multimedia data (e.g., pictures and videos) on web pages, graph data like web graphs, and map data on some web sites. In bioinformatics, genomic sequences, biological networks, and

3-D spatial structures of genomes may coexist for certain biological objects. Mining multiple data sources of complex data often leads to fruitful findings due to the mutual enhancement and consolidation of such multiple sources. On the other hand, it is also challenging because of the difficulties in data cleaning and data integration, as well as the complex interactions among the multiple sources of such data.

While such data require sophisticated facilities for efficient storage, retrieval, and updating, they also provide fertile ground and raise challenging research and implementation issues for data mining. Data mining on such data is an advanced topic. The methods involved are extensions of the basic techniques presented in this book.



#### What Kinds of Patterns Can Be Mined?

We have observed various types of data and information repositories on which data mining can be performed. Let us now examine the kinds of patterns that can be mined.

There are a number of *data mining functionalities*. These include characterization and discrimination (Section 1.4.1); the mining of frequent patterns, associations, and correlations (Section 1.4.2); classification and regression (Section 1.4.3); clustering analysis (Section 1.4.4); and outlier analysis (Section 1.4.5). Data mining functionalities are used to specify the kinds of patterns to be found in data mining tasks. In general, such tasks can be classified into two categories: **descriptive** and **predictive**. Descriptive mining tasks characterize properties of the data in a target data set. Predictive mining tasks perform induction on the current data in order to make predictions.

Data mining functionalities, and the kinds of patterns they can discover, are described below. In addition, Section 1.4.6 looks at what makes a pattern interesting. Interesting patterns represent *knowledge*.

## 1.4.1 Class/Concept Description: Characterization and Discrimination

Data entries can be associated with classes or concepts. For example, in the *AllElectronics* store, classes of items for sale include *computers* and *printers*, and concepts of customers include *bigSpenders* and *budgetSpenders*. It can be useful to describe individual classes and concepts in summarized, concise, and yet precise terms. Such descriptions of a class or a concept are called **class/concept descriptions**. These descriptions can be derived using (1) *data characterization*, by summarizing the data of the class under study (often called the **target class**) in general terms, or (2) *data discrimination*, by comparison of the target class with one or a set of comparative classes (often called the **contrasting classes**), or (3) both data characterization and discrimination.

**Data characterization** is a summarization of the general characteristics or features of a target class of data. The data corresponding to the user-specified class are typically collected by a query. For example, to study the characteristics of software products with sales that increased by 10% in the previous year, the data related to such products can be collected by executing an SQL query on the sales database.

There are several methods for effective data summarization and characterization. Simple data summaries based on statistical measures and plots are described in Chapter 2. The data cube-based OLAP roll-up operation (Section 1.3.2) can be used to perform user-controlled data summarization along a specified dimension. This process is further detailed in Chapters 4 and 5, which discuss data warehousing. An attribute-oriented induction technique can be used to perform data generalization and characterization without step-by-step user interaction. This technique is also described in Chapter 4.

The output of data characterization can be presented in various forms. Examples include **pie charts**, **bar charts**, **curves**, **multidimensional data cubes**, and **multidimensional tables**, including crosstabs. The resulting descriptions can also be presented as **generalized relations** or in rule form (called **characteristic rules**).

**Example 1.5 Data characterization.** A customer relationship manager at *AllElectronics* may order the following data mining task: *Summarize the characteristics of customers who spend more than \$5000 a year at AllElectronics*. The result is a general profile of these customers, such as that they are 40 to 50 years old, employed, and have excellent credit ratings. The data mining system should allow the customer relationship manager to drill down on any dimension, such as on *occupation* to view these customers according to their type of employment.

**Data discrimination** is a comparison of the general features of the target class data objects against the general features of objects from one or multiple contrasting classes. The target and contrasting classes can be specified by a user, and the corresponding data objects can be retrieved through database queries. For example, a user may want to compare the general features of software products with sales that increased by 10% last year against those with sales that decreased by at least 30% during the same period. The methods used for data discrimination are similar to those used for data characterization.

"How are discrimination descriptions output?" The forms of output presentation are similar to those for characteristic descriptions, although discrimination descriptions should include comparative measures that help to distinguish between the target and contrasting classes. Discrimination descriptions expressed in the form of rules are referred to as **discriminant rules**.

**Example 1.6 Data discrimination.** A customer relationship manager at *AllElectronics* may want to compare two groups of customers—those who shop for computer products regularly (e.g., more than twice a month) and those who rarely shop for such products (e.g., less than three times a year). The resulting description provides a general comparative profile of these customers, such as that 80% of the customers who frequently purchase computer products are between 20 and 40 years old and have a university education, whereas 60% of the customers who infrequently buy such products are either seniors or youths, and have no university degree. Drilling down on a dimension like *occupation*, or adding a new dimension like *income\_level*, may help to find even more discriminative features between the two classes.

Concept description, including characterization and discrimination, is described in Chapter 4.

#### 1.4.2 Mining Frequent Patterns, Associations, and Correlations

Frequent patterns, as the name suggests, are patterns that occur frequently in data. There are many kinds of frequent patterns, including frequent itemsets, frequent subsequences (also known as sequential patterns), and frequent substructures. A *frequent itemset* typically refers to a set of items that often appear together in a transactional data set—for example, milk and bread, which are frequently bought together in grocery stores by many customers. A frequently occurring subsequence, such as the pattern that customers, tend to purchase first a laptop, followed by a digital camera, and then a memory card, is a (*frequent*) *sequential pattern*. A substructure can refer to different structural forms (e.g., graphs, trees, or lattices) that may be combined with itemsets or subsequences. If a substructure occurs frequently, it is called a (*frequent*) *structured pattern*. Mining frequent patterns leads to the discovery of interesting associations and correlations within data.

**Example 1.7 Association analysis.** Suppose that, as a marketing manager at *AllElectronics*, you want to know which items are frequently purchased together (i.e., within the same transaction). An example of such a rule, mined from the *AllElectronics* transactional database, is

$$buys(X, "computer") \Rightarrow buys(X, "software") [support = 1 \%, confidence = 50 \%],$$

where X is a variable representing a customer. A **confidence**, or certainty, of 50% means that if a customer buys a computer, there is a 50% chance that she will buy software as well. A 1% **support** means that 1% of all the transactions under analysis show that computer and software are purchased together. This association rule involves a single attribute or predicate (i.e., *buys*) that repeats. Association rules that contain a single predicate are referred to as **single-dimensional association rules**. Dropping the predicate notation, the rule can be written simply as "*computer*  $\Rightarrow$  *software* [1%, 50%]."

Suppose, instead, that we are given the *AllElectronics* relational database related to purchases. A data mining system may find association rules like

$$age(X, "20..29") \land income(X, "40K..49K") \Rightarrow buys(X, "laptop")$$
  
[ $support = 2\%$ ,  $confidence = 60\%$ ].

The rule indicates that of the *AllElectronics* customers under study, 2% are 20 to 29 years old with an income of \$40,000 to \$49,000 and have purchased a laptop (computer) at *AllElectronics*. There is a 60% probability that a customer in this age and income group will purchase a laptop. Note that this is an association involving more than one attribute or predicate (i.e., *age, income*, and *buys*). Adopting the terminology used in multidimensional databases, where each attribute is referred to as a dimension, the above rule can be referred to as a **multidimensional association rule**.

Typically, association rules are discarded as uninteresting if they do not satisfy both a **minimum support threshold** and a **minimum confidence threshold**. Additional analysis can be performed to uncover interesting statistical **correlations** between associated attribute—value pairs.

Frequent itemset mining is a fundamental form of frequent pattern mining. The mining of frequent patterns, associations, and correlations is discussed in Chapters 6 and 7, where particular emphasis is placed on efficient algorithms for frequent itemset mining. Sequential pattern mining and structured pattern mining are considered advanced topics.

#### 1.4.3 Classification and Regression for Predictive Analysis

**Classification** is the process of finding a **model** (or function) that describes and distinguishes data classes or concepts. The model are derived based on the analysis of a set of **training data** (i.e., data objects for which the class labels are known). The model is used to predict the class label of objects for which the the class label is unknown.

"How is the derived model presented?" The derived model may be represented in various forms, such as *classification rules* (i.e., *IF-THEN rules*), *decision trees*, *mathematical formulae*, or *neural networks* (Figure 1.9). A **decision tree** is a flowchart-like tree structure, where each node denotes a test on an attribute value, each branch represents an outcome of the test, and tree leaves represent classes or class distributions. Decision trees can easily





**Figure 1.9** A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision tree, or (c) a neural network.

be converted to classification rules. A **neural network**, when used for classification, is typically a collection of neuron-like processing units with weighted connections between the units. There are many other methods for constructing classification models, such as naïve Bayesian classification, support vector machines, and *k*-nearest-neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, **regression** models continuous-valued functions. That is, regression is used to predict missing or unavailable *numerical data values* rather than (discrete) class labels. The term *prediction* refers to both numeric prediction and class label prediction. **Regression analysis** is a statistical methodology that is most often used for numeric prediction, although other methods exist as well. Regression also encompasses the identification of distribution *trends* based on the available data.

Classification and regression may need to be preceded by **relevance analysis**, which attempts to identify attributes that are significantly relevant to the classification and regression process. Such attributes will be selected for the classification and regression process. Other attributes, which are irrelevant, can then be excluded from consideration.

**Example 1.8** Classification and regression. Suppose as a sales manager of *AllElectronics* you want to classify a large set of items in the store, based on three kinds of responses to a sales campaign: *good response*, *mild response* and *no response*. You want to derive a model for each of these three classes based on the descriptive features of the items, such as *price*, *brand*, *place\_made*, *type*, and *category*. The resulting classification should maximally distinguish each class from the others, presenting an organized picture of the data set.

Suppose that the resulting classification is expressed as a decision tree. The decision tree, for instance, may identify *price* as being the single factor that best distinguishes the three classes. The tree may reveal that, in addition to *price*, other features that help to further distinguish objects of each class from one another include *brand* and *place\_made*. Such a decision tree may help you understand the impact of the given sales campaign and design a more effective campaign in the future.

Suppose instead, that rather than predicting categorical response labels for each store item, you would like to predict the amount of revenue that each item will generate during an upcoming sale at *AllElectronics*, based on the previous sales data. This is an example of regression analysis because the regression model constructed will predict a continuous function (or ordered value.)

Chapters 8 and 9 discuss classification in further detail. Regression analysis is beyond the scope of this book. Sources for further information are given in the bibliographic notes.

#### 1.4.4 Cluster Analysis

Unlike classification and regression, which analyze class-labeled (training) data sets, **clustering** analyzes data objects without consulting class labels. In many cases, class-labeled data may simply not exist at the beginning. Clustering can be used to generate



**Figure 1.10** A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.

class labels for a group of data. The objects are clustered or grouped based on the principle of *maximizing the intraclass similarity and minimizing the interclass similarity*. That is, clusters of objects are formed so that objects within a cluster have high similarity in comparison to one another, but are rather dissimilar to objects in other clusters. Each cluster so formed can be viewed as a class of objects, from which rules can be derived. Clustering can also facilitate **taxonomy formation**, that is, the organization of observations into a hierarchy of classes that group similar events together.

**Example 1.9** Cluster analysis. Cluster analysis can be performed on *AllElectronics* customer data to identify homogeneous subpopulations of customers. These clusters may represent individual target groups for marketing. Figure 1.10 shows a 2-D plot of customers with respect to customer locations in a city. Three clusters of data points are evident.

Cluster analysis forms the topic of Chapters 10 and 11.

#### 1.4.5 Outlier Analysis

A data set may contain objects that do not comply with the general behavior or model of the data. These data objects are **outliers**. Many data mining methods discard outliers as noise or exceptions. However, in some applications (e.g., fraud detection) the rare

events can be more interesting than the more regularly occurring ones. The analysis of outlier data is referred to as **outlier analysis** or **anomaly mining**.

Outliers may be detected using statistical tests that assume a distribution or probability model for the data, or using distance measures where objects that are remote from any other cluster are considered outliers. Rather than using statistical or distance measures, density-based methods may identify outliers in a local region, although they look normal from a global statistical distribution view.

**Example 1.10** Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by detecting purchases of unusually large amounts for a given account number in comparison to regular charges incurred by the same account. Outlier values may also be detected with respect to the locations and types of purchase, or the purchase frequency.

Outlier analysis is discussed in Chapter 12.

#### 1.4.6 Are All Patterns Interesting?

A data mining system has the potential to generate thousands or even millions of patterns, or rules.

You may ask, "Are all of the patterns interesting?" Typically, the answer is no—only a small fraction of the patterns potentially generated would actually be of interest to a given user.

This raises some serious questions for data mining. You may wonder, "What makes a pattern interesting? Can a data mining system generate all of the interesting patterns? Or, Can the system generate only the interesting ones?"

To answer the first question, a pattern is **interesting** if it is (1) *easily understood* by humans, (2) *valid* on new or test data with some degree of *certainty*, (3) potentially *useful*, and (4) *novel*. A pattern is also interesting if it validates a hypothesis that the user *sought to confirm*. An interesting pattern represents **knowledge**.

Several **objective measures of pattern interestingness** exist. These are based on the structure of discovered patterns and the statistics underlying them. An objective measure for association rules of the form  $X \Rightarrow Y$  is rule **support**, representing the percentage of transactions from a transaction database that the given rule satisfies. This is taken to be the probability  $P(X \cup Y)$ , where  $X \cup Y$  indicates that a transaction contains both X and Y, that is, the union of itemsets X and Y. Another objective measure for association rules is **confidence**, which assesses the degree of certainty of the detected association. This is taken to be the conditional probability P(Y|X), that is, the probability that a transaction containing X also contains Y. More formally, support and confidence are defined as

$$support(X \Rightarrow Y) = P(X \cup Y),$$
  
 $confidence(X \Rightarrow Y) = P(Y|X).$ 

In general, each interestingness measure is associated with a threshold, which may be controlled by the user. For example, rules that do not satisfy a confidence threshold of,

say, 50% can be considered uninteresting. Rules below the threshold likely reflect noise, exceptions, or minority cases and are probably of less value.

Other objective interestingness measures include *accuracy* and *coverage* for classification (IF-THEN) rules. In general terms, accuracy tells us the percentage of data that are correctly classified by a rule. Coverage is similar to support, in that it tells us the percentage of data to which a rule applies. Regarding understandability, we may use simple objective measures that assess the complexity or length in bits of the patterns mined.

Although objective measures help identify interesting patterns, they are often insufficient unless combined with subjective measures that reflect a particular user's needs and interests. For example, patterns describing the characteristics of customers who shop frequently at *AllElectronics* should be interesting to the marketing manager, but may be of little interest to other analysts studying the same database for patterns on employee performance. Furthermore, many patterns that are interesting by objective standards may represent common sense and, therefore, are actually uninteresting.

**Subjective interestingness measures** are based on user beliefs in the data. These measures find patterns interesting if the patterns are **unexpected** (contradicting a user's belief) or offer strategic information on which the user can act. In the latter case, such patterns are referred to as **actionable**. For example, patterns like "a large earthquake often follows a cluster of small quakes" may be highly actionable if users can act on the information to save lives. Patterns that are **expected** can be interesting if they confirm a hypothesis that the user wishes to validate or they resemble a user's hunch.

The second question—"Can a data mining system generate all of the interesting patterns?"—refers to the **completeness** of a data mining algorithm. It is often unrealistic and inefficient for data mining systems to generate all possible patterns. Instead, user-provided constraints and interestingness measures should be used to focus the search. For some mining tasks, such as association, this is often sufficient to ensure the completeness of the algorithm. Association rule mining is an example where the use of constraints and interestingness measures can ensure the completeness of mining. The methods involved are examined in detail in Chapter 6.

Finally, the third question—"Can a data mining system generate only interesting patterns?"—is an optimization problem in data mining. It is highly desirable for data mining systems to generate only interesting patterns. This would be efficient for users and data mining systems because neither would have to search through the patterns generated to identify the truly interesting ones. Progress has been made in this direction; however, such optimization remains a challenging issue in data mining.

Measures of pattern interestingness are essential for the efficient discovery of patterns by target users. Such measures can be used after the data mining step to rank the discovered patterns according to their interestingness, filtering out the uninteresting ones. More important, such measures can be used to guide and constrain the discovery process, improving the search efficiency by pruning away subsets of the pattern space that do not satisfy prespecified interestingness constraints. Examples of such a constraint-based mining process are described in Chapter 7 (with respect to pattern discovery) and Chapter 11 (with respect to clustering).

Methods to assess pattern interestingness, and their use to improve data mining efficiency, are discussed throughout the book with respect to each kind of pattern that can be mined.

#### Which Technologies Are Used?

As a highly application-driven domain, data mining has incorporated many techniques from other domains such as statistics, machine learning, pattern recognition, database and data warehouse systems, information retrieval, visualization, algorithms, highperformance computing, and many application domains (Figure 1.11). The interdisciplinary nature of data mining research and development contributes significantly to the success of data mining and its extensive applications. In this section, we give examples of several disciplines that strongly influence the development of data mining methods.

#### 1.5.1 Statistics

Statistics studies the collection, analysis, interpretation or explanation, and presentation of data. Data mining has an inherent connection with statistics.

A statistical model is a set of mathematical functions that describe the behavior of the objects in a target class in terms of random variables and their associated probability distributions. Statistical models are widely used to model data and data classes. For example, in data mining tasks like data characterization and classification, statistical



**Figure 1.11** Data mining adopts techniques from many domains.

models of target classes can be built. In other words, such statistical models can be the outcome of a data mining task. Alternatively, data mining tasks can be built on top of statistical models. For example, we can use statistics to model noise and missing data values. Then, when mining patterns in a large data set, the data mining process can use the model to help identify and handle noisy or missing values in the data.

Statistics research develops tools for prediction and forecasting using data and statistical models. Statistical methods can be used to summarize or describe a collection of data. Basic **statistical descriptions** of data are introduced in Chapter 2. Statistics is useful for mining various patterns from data as well as for understanding the underlying mechanisms generating and affecting the patterns. **Inferential statistics** (or **predictive statistics**) models data in a way that accounts for randomness and uncertainty in the observations and is used to draw inferences about the process or population under investigation.

Statistical methods can also be used to verify data mining results. For example, after a classification or prediction model is mined, the model should be verified by statistical hypothesis testing. A **statistical hypothesis test** (sometimes called *confirmatory data analysis*) makes statistical decisions using experimental data. A result is called *statistically significant* if it is unlikely to have occurred by chance. If the classification or prediction model holds true, then the descriptive statistics of the model increases the soundness of the model.

Applying statistical methods in data mining is far from trivial. Often, a serious challenge is how to scale up a statistical method over a large data set. Many statistical methods have high complexity in computation. When such methods are applied on large data sets that are also distributed on multiple logical or physical sites, algorithms should be carefully designed and tuned to reduce the computational cost. This challenge becomes even tougher for online applications, such as online query suggestions in search engines, where data mining is required to continuously handle fast, real-time data streams.

#### 1.5.2 Machine Learning

Machine learning investigates how computers can learn (or improve their performance) based on data. A main research area is for computer programs to *automatically* learn to recognize complex patterns and make intelligent decisions based on data. For example, a typical machine learning problem is to program a computer so that it can automatically recognize handwritten postal codes on mail after learning from a set of examples.

Machine learning is a fast-growing discipline. Here, we illustrate classic problems in machine learning that are highly related to data mining.

■ **Supervised learning** is basically a synonym for classification. The supervision in the learning comes from the labeled examples in the training data set. For example, in the postal code recognition problem, a set of handwritten postal code images and their corresponding machine-readable translations are used as the training examples, which supervise the learning of the classification model.

- Unsupervised learning is essentially a synonym for clustering. The learning process is unsupervised since the input examples are not class labeled. Typically, we may use clustering to discover classes within the data. For example, an unsupervised learning method can take, as input, a set of images of handwritten digits. Suppose that it finds 10 clusters of data. These clusters may correspond to the 10 distinct digits of 0 to 9, respectively. However, since the training data are not labeled, the learned model cannot tell us the semantic meaning of the clusters found.
- Semi-supervised learning is a class of machine learning techniques that make use of both labeled and unlabeled examples when learning a model. In one approach, labeled examples are used to learn class models and unlabeled examples are used to refine the boundaries between classes. For a two-class problem, we can think of the set of examples belonging to one class as the *positive examples* and those belonging to the other class as the *negative examples*. In Figure 1.12, if we do not consider the unlabeled examples, the dashed line is the decision boundary that best partitions the positive examples from the negative examples. Using the unlabeled examples, we can refine the decision boundary to the solid line. Moreover, we can detect that the two positive examples at the top right corner, though labeled, are likely noise or outliers.
- Active learning is a machine learning approach that lets users play an active role in the learning process. An active learning approach can ask a user (e.g., a domain expert) to label an example, which may be from a set of unlabeled examples or synthesized by the learning program. The goal is to optimize the model quality by actively acquiring knowledge from human users, given a constraint on how many examples they can be asked to label.



**Figure 1.12** Semi-supervised learning.

You can see there are many similarities between data mining and machine learning. For classification and clustering tasks, machine learning research often focuses on the accuracy of the model. In addition to accuracy, data mining research places strong emphasis on the efficiency and scalability of mining methods on large data sets, as well as on ways to handle complex types of data and explore new, alternative methods.

#### 1.5.3 Database Systems and Data Warehouses

**Database systems research** focuses on the creation, maintenance, and use of databases for organizations and end-users. Particularly, database systems researchers have established highly recognized principles in data models, query languages, query processing and optimization methods, data storage, and indexing and accessing methods. Database systems are often well known for their high scalability in processing very large, relatively structured data sets.

Many data mining tasks need to handle large data sets or even real-time, fast streaming data. Therefore, data mining can make good use of scalable database technologies to achieve high efficiency and scalability on large data sets. Moreover, data mining tasks can be used to extend the capability of existing database systems to satisfy advanced users' sophisticated data analysis requirements.

Recent database systems have built systematic data analysis capabilities on database data using data warehousing and data mining facilities. A **data warehouse** integrates data originating from multiple sources and various timeframes. It consolidates data in multidimensional space to form partially materialized data cubes. The data cube model not only facilitates OLAP in multidimensional databases but also promotes *multidimensional data mining* (see Section 1.3.2).

#### 1.5.4 Information Retrieval

**Information retrieval** (**IR**) is the science of searching for documents or information in documents. Documents can be text or multimedia, and may reside on the Web. The differences between traditional information retrieval and database systems are twofold: Information retrieval assumes that (1) the data under search are unstructured; and (2) the queries are formed mainly by keywords, which do not have complex structures (unlike SQL queries in database systems).

The typical approaches in information retrieval adopt probabilistic models. For example, a text document can be regarded as a bag of words, that is, a multiset of words appearing in the document. The document's **language model** is the probability density function that generates the bag of words in the document. The similarity between two documents can be measured by the similarity between their corresponding language models.

Furthermore, a topic in a set of text documents can be modeled as a probability distribution over the vocabulary, which is called a **topic model**. A text document, which may involve one or multiple topics, can be regarded as a mixture of multiple topic models. By integrating information retrieval models and data mining techniques, we can find

the major topics in a collection of documents and, for each document in the collection, the major topics involved.

Increasingly large amounts of text and multimedia data have been accumulated and made available online due to the fast growth of the Web and applications such as digital libraries, digital governments, and health care information systems. Their effective search and analysis have raised many challenging issues in data mining. Therefore, text mining and multimedia data mining, integrated with information retrieval methods, have become increasingly important.



#### Which Kinds of Applications Are Targeted?

Where there are data, there are data mining applications

As a highly application-driven discipline, data mining has seen great successes in many applications. It is impossible to enumerate all applications where data mining plays a critical role. Presentations of data mining in knowledge-intensive application domains, such as bioinformatics and software engineering, require more in-depth treatment and are beyond the scope of this book. To demonstrate the importance of applications as a major dimension in data mining research and development, we briefly discuss two highly successful and popular application examples of data mining: business intelligence and search engines.

#### 1.6. Business Intelligence

It is critical for businesses to acquire a better understanding of the commercial context of their organization, such as their customers, the market, supply and resources, and competitors. Business intelligence (BI) technologies provide historical, current, and predictive views of business operations. Examples include reporting, online analytical processing, business performance management, competitive intelligence, benchmarking, and predictive analytics.

"How important is business intelligence?" Without data mining, many businesses may not be able to perform effective market analysis, compare customer feedback on similar products, discover the strengths and weaknesses of their competitors, retain highly valuable customers, and make smart business decisions.

Clearly, data mining is the core of business intelligence. Online analytical processing tools in business intelligence rely on data warehousing and multidimensional data mining. Classification and prediction techniques are the core of predictive analytics in business intelligence, for which there are many applications in analyzing markets, supplies, and sales. Moreover, clustering plays a central role in customer relationship management, which groups customers based on their similarities. Using characterization mining techniques, we can better understand features of each customer group and develop customized customer reward programs.

#### 1.6.2 Web Search Engines

A **Web search engine** is a specialized computer server that searches for information on the Web. The search results of a user query are often returned as a list (sometimes called *hits*). The hits may consist of web pages, images, and other types of files. Some search engines also search and return data available in public databases or open directories. Search engines differ from **web directories** in that web directories are maintained by human editors whereas search engines operate algorithmically or by a mixture of algorithmic and human input.

Web search engines are essentially very large data mining applications. Various data mining techniques are used in all aspects of search engines, ranging from *crawling*<sup>5</sup> (e.g., deciding which pages should be crawled and the crawling frequencies), indexing (e.g., selecting pages to be indexed and deciding to which extent the index should be constructed), and searching (e.g., deciding how pages should be ranked, which advertisements should be added, and how the search results can be personalized or made "context aware").

Search engines pose grand challenges to data mining. First, they have to handle a huge and ever-growing amount of data. Typically, such data cannot be processed using one or a few machines. Instead, search engines often need to use *computer clouds*, which consist of thousands or even hundreds of thousands of computers that collaboratively mine the huge amount of data. Scaling up data mining methods over computer clouds and large distributed data sets is an area for further research.

Second, Web search engines often have to deal with online data. A search engine may be able to afford constructing a model offline on huge data sets. To do this, it may construct a query classifier that assigns a search query to predefined categories based on the query topic (i.e., whether the search query "apple" is meant to retrieve information about a fruit or a brand of computers). Whether a model is constructed offline, the application of the model online must be fast enough to answer user queries in real time.

Another challenge is maintaining and incrementally updating a model on fast-growing data streams. For example, a query classifier may need to be incrementally maintained continuously since new queries keep emerging and predefined categories and the data distribution may change. Most of the existing model training methods are offline and static and thus cannot be used in such a scenario.

Third, Web search engines often have to deal with queries that are asked only a very small number of times. Suppose a search engine wants to provide *context-aware* query recommendations. That is, when a user poses a query, the search engine tries to infer the context of the query using the user's profile and his query history in order to return more customized answers within a small fraction of a second. However, although the total number of queries asked can be huge, most of the queries may be asked only once or a few times. Such severely skewed data are challenging for many data mining and machine learning methods.

<sup>&</sup>lt;sup>5</sup>A Web crawler is a computer program that browses the Web in a methodical, automated manner.

## Major Issues in Data Mining

Life is short but art is long. - Hippocrates

Data mining is a dynamic and fast-expanding field with great strengths. In this section, we briefly outline the major issues in data mining research, partitioning them into five groups: mining methodology, user interaction, efficiency and scalability, diversity of data types, and data mining and society. Many of these issues have been addressed in recent data mining research and development to a certain extent and are now considered data mining requirements; others are still at the research stage. The issues continue to stimulate further investigation and improvement in data mining.

#### 1.7.1 Mining Methodology

Researchers have been vigorously developing new data mining methodologies. This involves the investigation of new kinds of knowledge, mining in multidimensional space, integrating methods from other disciplines, and the consideration of semantic ties among data objects. In addition, mining methodologies should consider issues such as data uncertainty, noise, and incompleteness. Some mining methods explore how user-specified measures can be used to assess the interestingness of discovered patterns as well as guide the discovery process. Let's have a look at these various aspects of mining methodology.

- Mining various and new kinds of knowledge: Data mining covers a wide spectrum of data analysis and knowledge discovery tasks, from data characterization and discrimination to association and correlation analysis, classification, regression, clustering, outlier analysis, sequence analysis, and trend and evolution analysis. These tasks may use the same database in different ways and require the development of numerous data mining techniques. Due to the diversity of applications, new mining tasks continue to emerge, making data mining a dynamic and fast-growing field. For example, for effective knowledge discovery in information networks, integrated clustering and ranking may lead to the discovery of high-quality clusters and object ranks in large networks.
- Mining knowledge in multidimensional space: When searching for knowledge in large data sets, we can explore the data in multidimensional space. That is, we can search for interesting patterns among combinations of dimensions (attributes) at varying levels of abstraction. Such mining is known as (exploratory) multidimensional data mining. In many cases, data can be aggregated or viewed as a multidimensional data cube. Mining knowledge in cube space can substantially enhance the power and flexibility of data mining.
- Data mining—an interdisciplinary effort: The power of data mining can be substantially enhanced by integrating new methods from multiple disciplines. For example,

to mine data with natural language text, it makes sense to fuse data mining methods with methods of information retrieval and natural language processing. As another example, consider the mining of software bugs in large programs. This form of mining, known as *bug mining*, benefits from the incorporation of software engineering knowledge into the data mining process.

- Boosting the power of discovery in a networked environment: Most data objects reside in a linked or interconnected environment, whether it be the Web, database relations, files, or documents. Semantic links across multiple data objects can be used to advantage in data mining. Knowledge derived in one set of objects can be used to boost the discovery of knowledge in a "related" or semantically linked set of objects.
- Handling uncertainty, noise, or incompleteness of data: Data often contain noise, errors, exceptions, or uncertainty, or are incomplete. Errors and noise may confuse the data mining process, leading to the derivation of erroneous patterns. Data cleaning, data preprocessing, outlier detection and removal, and uncertainty reasoning are examples of techniques that need to be integrated with the data mining process.
- Pattern evaluation and pattern- or constraint-guided mining: Not all the patterns generated by data mining processes are interesting. What makes a pattern interesting may vary from user to user. Therefore, techniques are needed to assess the interestingness of discovered patterns based on subjective measures. These estimate the value of patterns with respect to a given user class, based on user beliefs or expectations. Moreover, by using interestingness measures or user-specified constraints to guide the discovery process, we may generate more interesting patterns and reduce the search space.

#### 1.7.2 User Interaction

The user plays an important role in the data mining process. Interesting areas of research include how to interact with a data mining system, how to incorporate a user's background knowledge in mining, and how to visualize and comprehend data mining results. We introduce each of these here.

- Interactive mining: The data mining process should be highly interactive. Thus, it is important to build flexible user interfaces and an exploratory mining environment, facilitating the user's interaction with the system. A user may like to first sample a set of data, explore general characteristics of the data, and estimate potential mining results. Interactive mining should allow users to dynamically change the focus of a search, to refine mining requests based on returned results, and to drill, dice, and pivot through the data and knowledge space interactively, dynamically exploring "cube space" while mining.
- Incorporation of background knowledge: Background knowledge, constraints, rules, and other information regarding the domain under study should be incorporated

into the knowledge discovery process. Such knowledge can be used for pattern evaluation as well as to guide the search toward interesting patterns.

- Ad hoc data mining and data mining query languages: Query languages (e.g., SQL) have played an important role in flexible searching because they allow users to pose ad hoc queries. Similarly, high-level data mining query languages or other high-level flexible user interfaces will give users the freedom to define ad hoc data mining tasks. This should facilitate specification of the relevant sets of data for analysis, the domain knowledge, the kinds of knowledge to be mined, and the conditions and constraints to be enforced on the discovered patterns. Optimization of the processing of such flexible mining requests is another promising area of study.
- Presentation and visualization of data mining results: How can a data mining system present data mining results, vividly and flexibly, so that the discovered knowledge can be easily understood and directly usable by humans? This is especially crucial if the data mining process is interactive. It requires the system to adopt expressive knowledge representations, user-friendly interfaces, and visualization techniques.

#### 1.7.3 Efficiency and Scalability

Efficiency and scalability are always considered when comparing data mining algorithms. As data amounts continue to multiply, these two factors are especially critical.

- Efficiency and scalability of data mining algorithms: Data mining algorithms must be efficient and scalable in order to effectively extract information from huge amounts of data in many data repositories or in dynamic data streams. In other words, the running time of a data mining algorithm must be predictable, short, and acceptable by applications. Efficiency, scalability, performance, optimization, and the ability to execute in real time are key criteria that drive the development of many new data mining algorithms.
- Parallel, distributed, and incremental mining algorithms: The humongous size of many data sets, the wide distribution of data, and the computational complexity of some data mining methods are factors that motivate the development of parallel and distributed data-intensive mining algorithms. Such algorithms first partition the data into "pieces." Each piece is processed, in parallel, by searching for patterns. The parallel processes may interact with one another. The patterns from each partition are eventually merged.

Cloud computing and cluster computing, which use computers in a distributed and collaborative way to tackle very large-scale computational tasks, are also active research themes in parallel data mining. In addition, the high cost of some data mining processes and the incremental nature of input promote **incremental** data mining, which incorporates new data updates without having to mine the entire data "from scratch." Such methods perform knowledge modification incrementally to amend and strengthen what was previously discovered.

#### 1.7.4 Diversity of Database Types

The wide diversity of database types brings about challenges to data mining. These include

- Handling complex types of data: Diverse applications generate a wide spectrum of new data types, from structured data such as relational and data warehouse data to semi-structured and unstructured data; from stable data repositories to dynamic data streams; from simple data objects to temporal data, biological sequences, sensor data, spatial data, hypertext data, multimedia data, software program code, Web data, and social network data. It is unrealistic to expect one data mining system to mine all kinds of data, given the diversity of data types and the different goals of data mining. Domain- or application-dedicated data mining systems are being constructed for indepth mining of specific kinds of data. The construction of effective and efficient data mining tools for diverse applications remains a challenging and active area of research.
- Mining dynamic, networked, and global data repositories: Multiple sources of data are connected by the Internet and various kinds of networks, forming gigantic, distributed, and heterogeneous global information systems and networks. The discovery of knowledge from different sources of structured, semi-structured, or unstructured yet interconnected data with diverse data semantics poses great challenges to data mining. Mining such gigantic, interconnected information networks may help disclose many more patterns and knowledge in heterogeneous data sets than can be discovered from a small set of isolated data repositories. Web mining, multisource data mining, and information network mining have become challenging and fast-evolving data mining fields.

#### 1.7.5 Data Mining and Society

How does data mining impact society? What steps can data mining take to preserve the privacy of individuals? Do we use data mining in our daily lives without even knowing that we do? These questions raise the following issues:

- Social impacts of data mining: With data mining penetrating our everyday lives, it is important to study the impact of data mining on society. How can we use data mining technology to benefit society? How can we guard against its misuse? The improper disclosure or use of data and the potential violation of individual privacy and data protection rights are areas of concern that need to be addressed.
- Privacy-preserving data mining: Data mining will help scientific discovery, business management, economy recovery, and security protection (e.g., the real-time discovery of intruders and cyberattacks). However, it poses the risk of disclosing an individual's personal information. Studies on privacy-preserving data publishing and data mining are ongoing. The philosophy is to observe data sensitivity and preserve people's privacy while performing successful data mining.

Invisible data mining: We cannot expect everyone in society to learn and master data mining techniques. More and more systems should have data mining functions built within so that people can perform data mining or use data mining results simply by mouse clicking, without any knowledge of data mining algorithms. Intelligent search engines and Internet-based stores perform such invisible data mining by incorporating data mining into their components to improve their functionality and performance. This is done often unbeknownst to the user. For example, when purchasing items online, users may be unaware that the store is likely collecting data on the buying patterns of its customers, which may be used to recommend other items for purchase in the future.

These issues and many additional ones relating to the research, development, and application of data mining are discussed throughout the book.

## 8 Summary

- Necessity is the mother of invention. With the mounting growth of data in every application, data mining meets the imminent need for effective, scalable, and flexible data analysis in our society. Data mining can be considered as a natural evolution of information technology and a confluence of several related disciplines and application domains.
- **Data mining** is the process of discovering interesting patterns from massive amounts of data. As a *knowledge discovery process*, it typically involves data cleaning, data integration, data selection, data transformation, pattern discovery, pattern evaluation, and knowledge presentation.
- A pattern is *interesting* if it is valid on test data with some degree of certainty, novel, potentially useful (e.g., can be acted on or validates a hunch about which the user was curious), and easily understood by humans. Interesting patterns represent **knowledge**. Measures of **pattern interestingness**, either *objective* or *subjective*, can be used to guide the discovery process.
- We present a multidimensional view of data mining. The major dimensions are data, knowledge, technologies, and applications.
- Data mining can be conducted on any kind of data as long as the data are meaningful for a target application, such as database data, data warehouse data, transactional data, and advanced data types. Advanced data types include time-related or sequence data, data streams, spatial and spatiotemporal data, text and multimedia data, graph and networked data, and Web data.
- A data warehouse is a repository for long-term storage of data from multiple sources, organized so as to facilitate management decision making. The data are stored under a unified schema and are typically summarized. Data warehouse systems provide multidimensional data analysis capabilities, collectively referred to as online analytical processing.

- Multidimensional data mining (also called exploratory multidimensional data mining) integrates core data mining techniques with OLAP-based multidimensional analysis. It searches for interesting patterns among multiple combinations of dimensions (attributes) at varying levels of abstraction, thereby exploring multidimensional data space.
- **Data mining functionalities** are used to specify the kinds of patterns or **knowledge** to be found in data mining tasks. The functionalities include characterization and discrimination; the mining of frequent patterns, associations, and correlations; classification and regression; cluster analysis; and outlier detection. As new types of data, new applications, and new analysis demands continue to emerge, there is no doubt we will see more and more novel data mining tasks in the future.
- Data mining, as a highly application-driven domain, has incorporated technologies from many other domains. These include statistics, machine learning, database and data warehouse systems, and information retrieval. The interdisciplinary nature of data mining research and development contributes significantly to the success of data mining and its extensive applications.
- Data mining has many successful applications, such as business intelligence, Web search, bioinformatics, health informatics, finance, digital libraries, and digital governments.
- There are many challenging **issues in data mining research**. Areas include mining methodology, user interaction, efficiency and scalability, and dealing with diverse data types. Data mining research has strongly impacted society and will continue to do so in the future.

## 9 Exercises

- 1.1 What is *data mining*? In your answer, address the following:
  - (a) Is it another hype?
  - (b) Is it a simple transformation or application of technology developed from *databases*, *statistics*, *machine learning*, and *pattern recognition*?
  - (c) We have presented a view that data mining is the result of the evolution of *database technology*. Do you think that data mining is also the result of the evolution of *machine learning research*? Can you present such views based on the historical progress of this discipline? Address the same for the fields of *statistics* and *pattern recognition*.
  - (d) Describe the steps involved in data mining when viewed as a process of knowledge discovery.
- 1.2 How is a data warehouse different from a database? How are they similar?
- 1.3 Define each of the following *data mining functionalities*: characterization, discrimination, association and correlation analysis, classification, regression, clustering, and

- outlier analysis. Give examples of each data mining functionality, using a real-life database that you are familiar with.
- 1.4 Present an example where data mining is crucial to the success of a business. What data mining functionalities does this business need (e.g., think of the kinds of patterns that could be mined)? Can such patterns be generated alternatively by data query processing or simple statistical analysis?
- 1.5 Explain the difference and similarity between discrimination and classification, between characterization and clustering, and between classification and regression.
- 1.6 Based on your observations, describe another possible kind of knowledge that needs to be discovered by data mining methods but has not been listed in this chapter. Does it require a mining methodology that is quite different from those outlined in this chapter?
- 1.7 Outliers are often discarded as noise. However, one person's garbage could be another's treasure. For example, exceptions in credit card transactions can help us detect the fraudulent use of credit cards. Using fraudulence detection as an example, propose two methods that can be used to detect outliers and discuss which one is more reliable.
- 1.8 Describe three challenges to data mining regarding *data mining methodology* and *user interaction issues*.
- 1.9 What are the major challenges of mining a huge amount of data (e.g., billions of tuples) in comparison with mining a small amount of data (e.g., data set of a few hundred tuple)?
- 1.10 Outline the major research challenges of data mining in one specific application domain, such as stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.

## 1.10

### **Bibliographic Notes**

The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [P-SF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSS+96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF09]; Introduction to Data Mining by Tan, Steinbach, and Kumar [TSK05]; Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations by Witten, Frank, and Hall [WFH11]; Predictive Data Mining by Weiss and Indurkhya [WI98]; Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linoff [BL99]; Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01]; Mining the Web: Discovering Knowledge from Hypertext Data by Chakrabarti [Cha03a]; Web Data Mining: Exploring Hyperlinks, Contents, and Usage

Data by Liu [Liu06]; Data Mining: Introductory and Advanced Topics by Dunham [Dun03]; and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03].

There are also books that contain collections of papers or chapters on particular aspects of knowledge discovery—for example, *Relational Data Mining* edited by Dzeroski and Lavrac [De01]; *Mining Graph Data* edited by Cook and Holder [CH07]; *Data Streams: Models and Algorithms* edited by Aggarwal [Agg06]; *Next Generation of Data Mining* edited by Kargupta, Han, Yu, et al. [KHY<sup>+</sup>08]; *Multimedia Data Mining: A Systematic Introduction to Concepts and Theory* edited by Z. Zhang and R. Zhang [ZZ09]; *Geographic Data Mining and Knowledge Discovery* edited by Miller and Han [MH09]; and *Link Mining: Models, Algorithms and Applications* edited by Yu, Han, and Faloutsos [YHF10]. There are many tutorial notes on data mining in major databases, data mining, machine learning, statistics, and Web technology conferences.

*KDNuggets* is a regular electronic newsletter containing information relevant to knowledge discovery and data mining, moderated by Piatetsky-Shapiro since 1991. The Internet site *KDNuggets* (*www.kdnuggets.com*) contains a good collection of KDD-related information.

The data mining community started its first international conference on knowledge discovery and data mining in 1995. The conference evolved from the four international workshops on knowledge discovery in databases, held from 1989 to 1994. ACM-SIGKDD, a Special Interest Group on Knowledge Discovery in Databases was set up under ACM in 1998 and has been organizing the international conferences on knowledge discovery and data mining since 1999. IEEE Computer Science Society has organized its annual data mining conference, International Conference on Data Mining (ICDM), since 2001. SIAM (Society on Industrial and Applied Mathematics) has organized its annual data mining conference, SIAM Data Mining Conference (SDM), since 2002. A dedicated journal, *Data Mining and Knowledge Discovery*, published by Kluwers Publishers, has been available since 1997. An ACM journal, *ACM Transactions on Knowledge Discovery from Data*, published its first volume in 2007.

ACM-SIGKDD also publishes a bi-annual newsletter, SIGKDD Explorations. There are a few other international or regional conferences on data mining, such as the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), and the International Conference on Data Warehousing and Knowledge Discovery (DaWaK).

Research in data mining has also been published in books, conferences, and journals on databases, statistics, machine learning, and data visualization. References to such sources are listed at the end of the book.

Popular textbooks on database systems include *Database Systems: The Complete Book* by Garcia-Molina, Ullman, and Widom [GMUW08]; *Database Management Systems* by Ramakrishnan and Gehrke [RG03]; *Database System Concepts* by Silberschatz, Korth, and Sudarshan [SKS10]; and *Fundamentals of Database Systems* by Elmasri and Navathe [EN10]. For an edited collection of seminal articles on database systems, see *Readings in Database Systems* by Hellerstein and Stonebraker [HS05].

There are also many books on data warehouse technology, systems, and applications, such as *The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling* by Kimball and Ross [KR02]; *The Data Warehouse Lifecycle Toolkit* by Kimball, Ross, Thornthwaite, and Mundy [KRTM08]; *Mastering Data Warehouse Design: Relational and Dimensional Techniques* by Imhoff, Galemmo, and Geiger [IGG03]; and *Building the Data Warehouse* by Inmon [Inm96]. A set of research papers on materialized views and data warehouse implementations were collected in *Materialized Views: Techniques, Implementations, and Applications* by Gupta and Mumick [GM99]. Chaudhuri and Dayal [CD97] present an early comprehensive overview of data warehouse technology.

Research results relating to data mining and data warehousing have been published in the proceedings of many international database conferences, including the ACM-SIGMOD International Conference on Management of Data (SIGMOD), the International Conference on Very Large Data Bases (VLDB), the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), the International Conference on Data Engineering (ICDE), the International Conference on Extending Database Technology (EDBT), the International Conference on Database Theory (ICDT), the International Conference on Information and Knowledge Management (CIKM), the International Conference on Database and Expert Systems Applications (DEXA), and the International Symposium on Database Systems for Advanced Applications (DASFAA). Research in data mining is also published in major database journals, such as IEEE Transactions on Knowledge and Data Engineering (TKDE), ACM Transactions on Database Systems (TODS), Information Systems, The VLDB Journal, Data and Knowledge Engineering, International Journal of Intelligent Information Systems (JIIS), and Knowledge and Information Systems (KAIS).

Many effective data mining methods have been developed by statisticians and introduced in a rich set of textbooks. An overview of classification from a statistical pattern recognition perspective can be found in *Pattern Classification* by Duda, Hart, and Stork [DHS01]. There are also many textbooks covering regression and other topics in statistical analysis, such as *Mathematical Statistics: Basic Ideas and Selected Topics* by Bickel and Doksum [BD01]; *The Statistical Sleuth: A Course in Methods of Data Analysis* by Ramsey and Schafer [RS01]; *Applied Linear Statistical Models* by Neter, Kutner, Nachtsheim, and Wasserman [NKNW96]; *An Introduction to Generalized Linear Models* by Dobson [Dob90]; *Applied Statistical Time Series Analysis* by Shumway [Shu88]; and *Applied Multivariate Statistical Analysis* by Johnson and Wichern [JW92].

Research in statistics is published in the proceedings of several major statistical conferences, including Joint Statistical Meetings, International Conference of the Royal Statistical Society and Symposium on the Interface: Computing Science and Statistics. Other sources of publication include the *Journal of the Royal Statistical Society, The Annals of Statistics*, the *Journal of American Statistical Association, Technometrics*, and *Biometrika*.

Textbooks and reference books on machine learning and pattern recognition include *Machine Learning* by Mitchell [Mit97]; *Pattern Recognition and Machine Learning* by Bishop [Bis06]; *Pattern Recognition* by Theodoridis and Koutroumbas [TK08]; *Introduction to Machine Learning* by Alpaydin [Alp11]; *Probabilistic Graphical Models: Principles* 

and Techniques by Koller and Friedman [KF09]; and Machine Learning: An Algorithmic Perspective by Marsland [Mar09]. For an edited collection of seminal articles on machine learning, see Machine Learning, An Artificial Intelligence Approach, Volumes 1 through 4, edited by Michalski et al. [MCM83, MCM86, KM90, MT94], and Readings in Machine Learning by Shavlik and Dietterich [SD90].

Machine learning and pattern recognition research is published in the proceedings of several major machine learning, artificial intelligence, and pattern recognition conferences, including the International Conference on Machine Learning (ML), the ACM Conference on Computational Learning Theory (COLT), the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), the International Conference on Pattern Recognition (ICPR), the International Joint Conference on Artificial Intelligence (IJCAI), and the American Association of Artificial Intelligence Conference (AAAI). Other sources of publication include major machine learning, artificial intelligence, pattern recognition, and knowledge system journals, some of which have been mentioned before. Others include Machine Learning (ML), Pattern Recognition (PR), Artificial Intelligence Journal (AI), IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), and Cognitive Science.

Textbooks and reference books on information retrieval include *Introduction to Information Retrieval* by Manning, Raghavan, and Schutz [MRS08]; *Information Retrieval: Implementing and Evaluating Search Engines* by Büttcher, Clarke, and Cormack [BCC10]; *Search Engines: Information Retrieval in Practice* by Croft, Metzler, and Strohman [CMS09]; *Modern Information Retrieval: The Concepts and Technology Behind Search* by Baeza-Yates and Ribeiro-Neto [BYRN11]; and *Information Retrieval: Algorithms and Heuristics* by Grossman and Frieder [GR04].

Information retrieval research is published in the proceedings of several information retrieval and Web search and mining conferences, including the International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), the International World Wide Web Conference (WWW), the ACM International Conference on Web Search and Data Mining (WSDM), the ACM Conference on Information and Knowledge Management (CIKM), the European Conference on Information Retrieval (ECIR), the Text Retrieval Conference (TREC), and the ACM/IEEE Joint Conference on Digital Libraries (JCDL). Other sources of publication include major information retrieval, information systems, and Web journals, such as *Journal of Information Retrieval*, ACM Transactions on Information Systems (TOIS), Information Processing and Management, Knowledge and Information Systems (KAIS), and IEEE Transactions on Knowledge and Data Engineering (TKDE).

## Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods

**Imagine that you are** a sales manager at *AllElectronics*, and you are talking to a customer who recently bought a PC and a digital camera from the store. What should you recommend to her next? Information about which products are frequently purchased by your customers following their purchases of a PC and a digital camera in sequence would be very helpful in making your recommendation. Frequent patterns and association rules are the knowledge that you want to mine in such a scenario.

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that appear frequently in a data set. For example, a set of items, such as milk and bread, that appear frequently together in a transaction data set is a *frequent itemset*. A subsequence, such as buying first a PC, then a digital camera, and then a memory card, if it occurs frequently in a shopping history database, is a *(frequent) sequential pattern*. A *substructure* can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or subsequences. If a substructure occurs frequently, it is called a *(frequent) structured pattern*. Finding frequent patterns plays an essential role in mining associations, correlations, and many other interesting relationships among data. Moreover, it helps in data classification, clustering, and other data mining tasks. Thus, frequent pattern mining has become an important data mining task and a focused theme in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and correlations (Section 6.1) and study how they can be mined efficiently (Section 6.2). We also discuss how to judge whether the patterns found are interesting (Section 6.3). In Chapter 7, we extend our discussion to advanced methods of frequent pattern mining, which mine more complex forms of frequent patterns and consider user preferences or constraints to speed up the mining process.

### Basic Concepts

Frequent pattern mining searches for recurring relationships in a given data set. This section introduces the basic concepts of frequent pattern mining for the discovery of

interesting associations and correlations between itemsets in transactional and relational databases. We begin in Section 6.1.1 by presenting an example of market basket analysis, the earliest form of frequent pattern mining for association rules. The basic concepts of mining frequent patterns and associations are given in Section 6.1.2.

### 6.1.1 Market Basket Analysis: A Motivating Example

Frequent itemset mining leads to the discovery of associations and correlations among items in large transactional or relational data sets. With massive amounts of data continuously being collected and stored, many industries are becoming interested in mining such patterns from their databases. The discovery of interesting correlation relationships among huge amounts of business transaction records can help in many business decision-making processes such as catalog design, cross-marketing, and customer shopping behavior analysis.

A typical example of frequent itemset mining is **market basket analysis**. This process analyzes customer buying habits by finding associations between the different items that customers place in their "shopping baskets" (Figure 6.1). The discovery of these associations can help retailers develop marketing strategies by gaining insight into which items are frequently purchased together by customers. For instance, if customers are buying milk, how likely are they to also buy bread (and what kind of bread) on the same trip



Figure 6.1 Market basket analysis.

to the supermarket? This information can lead to increased sales by helping retailers do selective marketing and plan their shelf space.

Let's look at an example of how market basket analysis can be useful.

**Example 6.1** Market basket analysis. Suppose, as manager of an *AllElectronics* branch, you would like to learn more about the buying habits of your customers. Specifically, you wonder, "Which groups or sets of items are customers likely to purchase on a given trip to the store?" To answer your question, market basket analysis may be performed on the retail data of customer transactions at your store. You can then use the results to plan marketing or advertising strategies, or in the design of a new catalog. For instance, market basket analysis may help you design different store layouts. In one strategy, items that are frequently purchased together can be placed in proximity to further encourage the combined sale of such items. If customers who purchase computers also tend to buy antivirus software at the same time, then placing the hardware display close to the software display may help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store may entice customers who purchase such items to pick up other items along the way. For instance, after deciding on an expensive computer, a customer may observe security systems for sale while heading toward the software display to purchase antivirus software, and may decide to purchase a home security system as well. Market basket analysis can also help retailers plan which items to put on sale at reduced prices. If customers tend to purchase computers and printers together, then having a sale on printers may encourage the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item has a Boolean variable representing the presence or absence of that item. Each basket can then be represented by a Boolean vector of values assigned to these variables. The Boolean vectors can be analyzed for buying patterns that reflect items that are frequently *associated* or purchased together. These patterns can be represented in the form of **association rules**. For example, the information that customers who purchase computers also tend to buy antivirus software at the same time is represented in the following association rule:

$$computer \Rightarrow antivirus\_software [support = 2\%, confidence = 60\%].$$
 (6.1)

Rule **support** and **confidence** are two measures of rule interestingness. They respectively reflect the usefulness and certainty of discovered rules. A support of 2% for Rule (6.1) means that 2% of all the transactions under analysis show that computer and antivirus software are purchased together. A confidence of 60% means that 60% of the customers who purchased a computer also bought the software. Typically, association rules are considered interesting if they satisfy both a **minimum support threshold** and a **minimum confidence threshold**. These thresholds can be a set by users or domain experts. Additional analysis can be performed to discover interesting statistical correlations between associated items.

### 6.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules

Let  $\mathcal{I} = \{I_1, I_2, ..., I_m\}$  be an itemset. Let D, the task-relevant data, be a set of database transactions where each transaction T is a nonempty itemset such that  $T \subseteq \mathcal{I}$ . Each transaction is associated with an identifier, called a TID. Let A be a set of items. A transaction T is said to contain A if  $A \subseteq T$ . An association rule is an implication of the form  $A \Rightarrow B$ , where  $A \subset \mathcal{I}$ ,  $B \subset \mathcal{I}$ ,  $A \neq \emptyset$ ,  $B \neq \emptyset$ , and  $A \cap B = \phi$ . The rule  $A \Rightarrow B$  holds in the transaction set D with **support** s, where s is the percentage of transactions in D that contain  $A \cup B$  (i.e., the *union* of sets A and B say, or, both A and B). This is taken to be the probability,  $P(A \cup B)$ . The rule  $A \Rightarrow B$  has **confidence** c in the transaction set D, where c is the percentage of transactions in D containing A that also contain B. This is taken to be the conditional probability, P(B|A). That is,

$$support(A \Rightarrow B) = P(A \cup B) \tag{6.2}$$

$$confidence(A \Rightarrow B) = P(B|A). \tag{6.3}$$

Rules that satisfy both a minimum support threshold (*min\_sup*) and a minimum confidence threshold (*min\_conf*) are called **strong**. By convention, we write support and confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an **itemset**.<sup>2</sup> An itemset that contains k items is a k-itemset. The set {computer, antivirus\_software} is a 2-itemset. The **occurrence frequency of an itemset** is the number of transactions that contain the itemset. This is also known, simply, as the **frequency, support count**, or **count** of the itemset. Note that the itemset support defined in Eq. (6.2) is sometimes referred to as relative support, whereas the occurrence frequency is called the **absolute support**. If the relative support of an itemset I satisfies a prespecified **minimum support threshold** (i.e., the absolute support of I satisfies the corresponding **minimum support count threshold**), then I is a **frequent** itemset.<sup>3</sup> The set of frequent k-itemsets is commonly denoted by  $L_k$ .<sup>4</sup>

From Eq. (6.3), we have

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support\_count(A \cup B)}{support\_count(A)}. \tag{6.4}$$

<sup>&</sup>lt;sup>1</sup>Notice that the notation  $P(A \cup B)$  indicates the probability that a transaction contains the *union* of sets A and B (i.e., it contains every item in A and B). This should not be confused with P(A or B), which indicates the probability that a transaction contains either A or B.

<sup>&</sup>lt;sup>2</sup>In the data mining research literature, "itemset" is more commonly used than "item set."

<sup>&</sup>lt;sup>3</sup>In early work, itemsets satisfying minimum support were referred to as **large**. This term, however, is somewhat confusing as it has connotations of the number of items in an itemset rather than the frequency of occurrence of the set. Hence, we use the more recent term **frequent**.

<sup>&</sup>lt;sup>4</sup>Although the term **frequent** is preferred over **large**, for historic reasons frequent k-itemsets are still denoted as  $L_k$ .

Equation (6.4) shows that the confidence of rule  $A \Rightarrow B$  can be easily derived from the support counts of A and  $A \cup B$ . That is, once the support counts of A, B, and  $A \cup B$  are found, it is straightforward to derive the corresponding association rules  $A \Rightarrow B$  and  $B \Rightarrow A$  and check whether they are strong. Thus, the problem of mining association rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

- **1. Find all frequent itemsets:** By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, *min\_sup*.
- **2. Generate strong association rules from the frequent itemsets:** By definition, these rules must satisfy minimum support and minimum confidence.

Additional interestingness measures can be applied for the discovery of correlation relationships between associated items, as will be discussed in Section 6.3. Because the second step is much less costly than the first, the overall performance of mining association rules is determined by the first step.

A major challenge in mining frequent itemsets from a large data set is the fact that such mining often generates a huge number of itemsets satisfying the minimum support  $(min\_sup)$  threshold, especially when  $min\_sup$  is set low. This is because if an itemset is frequent, each of its subsets is frequent as well. A long itemset will contain a combinatorial number of shorter, frequent sub-itemsets. For example, a frequent itemset of length 100, such as  $\{a_1, a_2, \ldots, a_{100}\}$ , contains  $\binom{100}{1} = 100$  frequent 1-itemsets:  $\{a_1\}, \{a_2\}, \ldots, \{a_{100}\}; \binom{100}{2}$  frequent 2-itemsets:  $\{a_1, a_2\}, \{a_1, a_3\}, \ldots, \{a_{99}, a_{100}\}$ ; and so on. The total number of frequent itemsets that it contains is thus

$$\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} = 2^{100} - 1 \approx 1.27 \times 10^{30}.$$
 (6.5)

This is too huge a number of itemsets for any computer to compute or store. To overcome this difficulty, we introduce the concepts of *closed frequent itemset* and *maximal frequent itemset*.

An itemset X is **closed** in a data set D if there exists no proper super-itemset  $Y^5$  such that Y has the same support count as X in D. An itemset X is a **closed frequent itemset** in set D if X is both closed and frequent in D. An itemset X is a **maximal frequent itemset** (or **max-itemset**) in a data set D if X is frequent, and there exists no super-itemset Y such that  $X \subset Y$  and Y is frequent in D.

Let  $\mathcal{C}$  be the set of closed frequent itemsets for a data set D satisfying a minimum support threshold,  $min\_sup$ . Let  $\mathcal{M}$  be the set of maximal frequent itemsets for D satisfying  $min\_sup$ . Suppose that we have the support count of each itemset in  $\mathcal{C}$  and  $\mathcal{M}$ . Notice that  $\mathcal{C}$  and its count information can be used to derive the whole set of frequent itemsets.

<sup>&</sup>lt;sup>5</sup> Y is a proper super-itemset of X if X is a proper sub-itemset of Y, that is, if  $X \subset Y$ . In other words, every item of X is contained in Y but there is at least one item of Y that is not in X.

Thus, we say that  $\mathcal{C}$  contains complete information regarding its corresponding frequent itemsets. On the other hand,  $\mathcal{M}$  registers only the support of the maximal itemsets. It usually does not contain the complete support information regarding its corresponding frequent itemsets. We illustrate these concepts with Example 6.2.

**Example 6.2 Closed and maximal frequent itemsets.** Suppose that a transaction database has only two transactions:  $\{\langle a_1, a_2, \dots, a_{100} \rangle; \langle a_1, a_2, \dots, a_{50} \rangle\}$ . Let the minimum support count threshold be  $min\_sup = 1$ . We find two closed frequent itemsets and their support counts, that is,  $\mathcal{C} = \{\{a_1, a_2, \dots, a_{100}\}: 1; \{a_1, a_2, \dots, a_{50}\}: 2\}$ . There is only one maximal frequent itemset:  $\mathcal{M} = \{\{a_1, a_2, \dots, a_{100}\}: 1\}$ . Notice that we cannot include  $\{a_1, a_2, \dots, a_{50}\}$  as a maximal frequent itemset because it has a frequent superset,  $\{a_1, a_2, \dots, a_{100}\}$ . Compare this to the preceding where we determined that there are  $2^{100} - 1$  frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the frequent itemsets. For example, from C, we can derive, say, (1) { $a_2$ ,  $a_{45}$ : 2} since { $a_2$ ,  $a_{45}$ } is a sub-itemset of the itemset { $a_1$ ,  $a_2$ ,...,  $a_{50}$ : 2}; and (2) { $a_8$ ,  $a_{55}$ : 1} since { $a_8$ ,  $a_{55}$ } is not a sub-itemset of the previous itemset but of the itemset { $a_1$ ,  $a_2$ ,...,  $a_{100}$ : 1}. However, from the maximal frequent itemset, we can only assert that both itemsets ({ $a_2$ ,  $a_{45}$ } and { $a_8$ ,  $a_{55}$ }) are frequent, but we cannot assert their actual support counts.

### 6 7 Frequent Itemset Mining Methods

In this section, you will learn methods for mining the simplest form of frequent patterns such as those discussed for market basket analysis in Section 6.1.1. We begin by presenting **Apriori**, the basic algorithm for finding frequent itemsets (Section 6.2.1). In Section 6.2.2, we look at how to generate strong association rules from frequent itemsets. Section 6.2.3 describes several variations to the Apriori algorithm for improved efficiency and scalability. Section 6.2.4 presents pattern-growth methods for mining frequent itemsets that confine the subsequent search space to only the data sets containing the current frequent itemsets. Section 6.2.5 presents methods for mining frequent itemsets that take advantage of the vertical data format.

### 6.2. Apriori Algorithm: Finding Frequent Itemsets by Confined Candidate Generation

**Apriori** is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association rules [AS94b]. The name of the algorithm is based on the fact that the algorithm uses *prior knowledge* of frequent itemset properties, as we shall see later. Apriori employs an iterative approach known as a *level-wise* search, where k-itemsets are used to explore (k+1)-itemsets. First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and

collecting those items that satisfy minimum support. The resulting set is denoted by  $L_1$ . Next,  $L_1$  is used to find  $L_2$ , the set of frequent 2-itemsets, which is used to find  $L_3$ , and so on, until no more frequent k-itemsets can be found. The finding of each  $L_k$  requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the **Apriori property** is used to reduce the search space.

**Apriori property:** All nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset I does not satisfy the minimum support threshold,  $min\_sup$ , then I is not frequent, that is,  $P(I) < min\_sup$ . If an item A is added to the itemset I, then the resulting itemset (i.e.,  $I \cup A$ ) cannot occur more frequently than I. Therefore,  $I \cup A$  is not frequent either, that is,  $P(I \cup A) < min\_sup$ .

This property belongs to a special category of properties called **antimonotonicity** in the sense that *if a set cannot pass a test, all of its supersets will fail the same test as well.* It is called *antimonotonicity* because the property is monotonic in the context of failing a test.<sup>6</sup>

"How is the Apriori property used in the algorithm?" To understand this, let us look at how  $L_{k-1}$  is used to find  $L_k$  for  $k \ge 2$ . A two-step process is followed, consisting of **join** and **prune** actions.

- **1. The join step:** To find  $L_k$ , a set of **candidate** k-itemsets is generated by joining  $L_{k-1}$  with itself. This set of candidates is denoted  $C_k$ . Let  $l_1$  and  $l_2$  be itemsets in  $L_{k-1}$ . The notation  $l_i[j]$  refers to the jth item in  $l_i$  (e.g.,  $l_1[k-2]$  refers to the second to the last item in  $l_1$ ). For efficient implementation, Apriori assumes that items within a transaction or itemset are sorted in lexicographic order. For the (k-1)-itemset,  $l_i$ , this means that the items are sorted such that  $l_i[1] < l_i[2] < \cdots < l_i[k-1]$ . The join,  $L_{k-1} \bowtie L_{k-1}$ , is performed, where members of  $L_{k-1}$  are joinable if their first (k-2) items are in common. That is, members  $l_1$  and  $l_2$  of  $L_{k-1}$  are joined if  $(l_1[1] = l_2[1]) \land (l_1[2] = l_2[2]) \land \cdots \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1])$ . The condition  $l_1[k-1] < l_2[k-1]$  simply ensures that no duplicates are generated. The resulting itemset formed by joining  $l_1$  and  $l_2$  is  $\{l_1[1], l_1[2], \ldots, l_1[k-2], l_1[k-1], l_2[k-1]\}$ .
- **2.** The prune step:  $C_k$  is a superset of  $L_k$ , that is, its members may or may not be frequent, but all of the frequent k-itemsets are included in  $C_k$ . A database scan to determine the count of each candidate in  $C_k$  would result in the determination of  $L_k$  (i.e., all candidates having a count no less than the minimum support count are frequent by definition, and therefore belong to  $L_k$ ).  $C_k$ , however, can be huge, and so this could involve heavy computation. To reduce the size of  $C_k$ , the Apriori property

<sup>&</sup>lt;sup>6</sup>The Apriori property has many applications. For example, it can also be used to prune search during data cube computation (Chapter 5).

is used as follows. Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k-1)-subset of a candidate k-itemset is not in  $L_{k-1}$ , then the candidate cannot be frequent either and so can be removed from  $C_k$ . This **subset testing** can be done quickly by maintaining a hash tree of all frequent itemsets.

## **Example 6.3 Apriori.** Let's look at a concrete example, based on the *AllElectronics* transaction database, D, of Table 6.1. There are nine transactions in this database, that is, |D| = 9. We use Figure 6.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

- **1.** In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets,  $C_1$ . The algorithm simply scans all of the transactions to count the number of occurrences of each item.
- **2.** Suppose that the minimum support count required is 2, that is,  $min\_sup = 2$ . (Here, we are referring to *absolute* support because we are using a support count. The corresponding relative support is 2/9 = 22%.) The set of frequent 1-itemsets,  $L_1$ , can then be determined. It consists of the candidate 1-itemsets satisfying minimum support. In our example, all of the candidates in  $C_1$  satisfy minimum support.
- **3.** To discover the set of frequent 2-itemsets,  $L_2$ , the algorithm uses the join  $L_1 \bowtie L_1$  to generate a candidate set of 2-itemsets,  $C_2$ .  $C_2$  consists of  $\binom{|L_1|}{2}$  2-itemsets. Note that no candidates are removed from  $C_2$  during the prune step because each subset of the candidates is also frequent.

**Table 6.1** Transactional Data for an *AllElectronics* Branch

| TID  | List of item_IDs |
|------|------------------|
| T100 | I1, I2, I5       |
| T200 | I2, I4           |
| T300 | I2, I3           |
| T400 | I1, I2, I4       |
| T500 | I1, I3           |
| T600 | I2, I3           |
| T700 | I1, I3           |
| T800 | 11, 12, 13, 15   |
| T900 | I1, I2, I3       |
|      |                  |

 $<sup>^7</sup>L_1 \bowtie L_1$  is equivalent to  $L_1 \times L_1$ , since the definition of  $L_k \bowtie L_k$  requires the two joining itemsets to share k-1=0 items.



**Figure 6.2** Generation of the candidate itemsets and frequent itemsets, where the minimum support count is 2.

- **4.** Next, the transactions in D are scanned and the support count of each candidate itemset in  $C_2$  is accumulated, as shown in the middle table of the second row in Figure 6.2.
- **5.** The set of frequent 2-itemsets,  $L_2$ , is then determined, consisting of those candidate 2-itemsets in  $C_2$  having minimum support.
- **6.** The generation of the set of the candidate 3-itemsets,  $C_3$ , is detailed in Figure 6.3. From the join step, we first get  $C_3 = L_2 \bowtie L_2 = \{\{11, 12, 13\}, \{11, 12, 15\}, \{11, 13, 15\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\}\}$ . Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that the four latter candidates cannot possibly be frequent. We therefore remove them from  $C_3$ , thereby saving the effort of unnecessarily obtaining their counts during the subsequent scan of D to determine  $L_3$ . Note that when given a candidate k-itemset, we only need to check if its (k-1)-subsets are frequent since the Apriori algorithm uses a level-wise

```
(a) Join: C_3 = L_2 \bowtie L_2 = \{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\}\}

\bowtie \{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\}\}

= \{\{11, 12, 13\}, \{11, 12, 15\}, \{11, 13, 15\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\}\}.
```

- (b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates have a subset that is not frequent?
  - The 2-item subsets of  $\{I1, I2, I3\}$  are  $\{I1, I2\}$ ,  $\{I1, I3\}$ , and  $\{I2, I3\}$ . All 2-item subsets of  $\{I1, I2, I3\}$  are members of  $L_2$ . Therefore, keep  $\{I1, I2, I3\}$  in  $C_3$ .
  - The 2-item subsets of  $\{11, 12, 15\}$  are  $\{11, 12\}$ ,  $\{11, 15\}$ , and  $\{12, 15\}$ . All 2-item subsets of  $\{11, 12, 15\}$  are members of  $L_2$ . Therefore, keep  $\{11, 12, 15\}$  in  $C_3$ .
  - The 2-item subsets of  $\{I1, I3, I5\}$  are  $\{I1, I3\}$ ,  $\{I1, I5\}$ , and  $\{I3, I5\}$ .  $\{I3, I5\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{I1, I3, I5\}$  from  $C_3$ .
  - The 2-item subsets of  $\{12, 13, 14\}$  are  $\{12, 13\}$ ,  $\{12, 14\}$ , and  $\{13, 14\}$ .  $\{13, 14\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{12, 13, 14\}$  from  $C_3$ .
  - The 2-item subsets of  $\{12, 13, 15\}$  are  $\{12, 13\}$ ,  $\{12, 15\}$ , and  $\{13, 15\}$ .  $\{13, 15\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{12, 13, 15\}$  from  $C_3$ .
  - The 2-item subsets of  $\{12, 14, 15\}$  are  $\{12, 14\}$ ,  $\{12, 15\}$ , and  $\{14, 15\}$ .  $\{14, 15\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{12, 14, 15\}$  from  $C_3$ .
- (c) Therefore,  $C_3 = \{\{I1, I2, I3\}, \{I1, I2, I5\}\}$  after pruning.

**Figure 6.3** Generation and pruning of candidate 3-itemsets,  $C_3$ , from  $L_2$  using the Apriori property.

search strategy. The resulting pruned version of  $C_3$  is shown in the first table of the bottom row of Figure 6.2.

- **7.** The transactions in D are scanned to determine  $L_3$ , consisting of those candidate 3-itemsets in  $C_3$  having minimum support (Figure 6.2).
- **8.** The algorithm uses  $L_3 \bowtie L_3$  to generate a candidate set of 4-itemsets,  $C_4$ . Although the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {I2, I3, I5} is not frequent. Thus,  $C_4 = \phi$ , and the algorithm terminates, having found all of the frequent itemsets.

Figure 6.4 shows pseudocode for the Apriori algorithm and its related procedures. Step 1 of Apriori finds the frequent 1-itemsets,  $L_1$ . In steps 2 through 10,  $L_{k-1}$  is used to generate candidates  $C_k$  to find  $L_k$  for  $k \ge 2$ . The apriori\_gen procedure generates the candidates and then uses the Apriori property to eliminate those having a subset that is not frequent (step 3). This procedure is described later. Once all of the candidates have been generated, the database is scanned (step 4). For each transaction, a subset function is used to find all subsets of the transaction that are candidates (step 5), and the count for each of these candidates is accumulated (steps 6 and 7). Finally, all the candidates satisfying the minimum support (step 9) form the set of frequent itemsets, L (step 11).

**Algorithm: Apriori.** Find frequent itemsets using an iterative level-wise approach based on candidate generation.

#### Input:

- D, a database of transactions;
- *min\_sup*, the minimum support count threshold.

**Output:** *L*, frequent itemsets in *D*.

```
Method:
```

```
(1)
        L_1 = \text{find\_frequent\_1-itemsets}(D);
        for (k = 2; L_{k-1} \neq \phi; k++) {
(2)
(3)
            C_k = \operatorname{apriori\_gen}(L_{k-1});
            for each transaction t \in D { // scan D for counts
(4)
(5)
                 C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(6)
                for each candidate c \in C_t
(7)
                     c.count++;
(8)
(9)
            L_k = \{c \in C_k | c.count \ge min\_sup\}
(10)
(11)
        return L = \bigcup_k L_k;
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
(2)
            for each itemset l_2 \in L_{k-1}
                if (l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2])
(3)
                     \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
(4)
                     c = l_1 \bowtie l_2; // join step: generate candidates
(5)
                     if has_infrequent_subset(c, L_{k-1}) then
(6)
                          delete c; // prune step: remove unfruitful candidate
(7)
                     else add c to C_k;
(8)
(9)
        return C_k;
procedure has_infrequent_subset( c: candidate k-itemset;
            L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
(1)
        for each (k-1)-subset s of c
(2)
           if s \notin L_{k-1} then
(3)
                return TRUE;
(4)
        return FALSE;
```

**Figure 6.4** Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

A procedure can then be called to generate association rules from the frequent itemsets. Such a procedure is described in Section 6.2.2.

The apriori\_gen procedure performs two kinds of actions, namely, **join** and **prune**, as described before. In the join component,  $L_{k-1}$  is joined with  $L_{k-1}$  to generate potential candidates (steps 1–4). The prune component (steps 5–7) employs the Apriori property to remove candidates that have a subset that is not frequent. The test for infrequent subsets is shown in procedure has\_infrequent\_subset.

#### 6.2.2 Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found, it is straightforward to generate strong association rules from them (where *strong* association rules satisfy both minimum support and minimum confidence). This can be done using Eq. (6.4) for confidence, which we show again here for completeness:

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support\_count(A \cup B)}{support\_count(A)}.$$

The conditional probability is expressed in terms of itemset support count, where  $support\_count(A \cup B)$  is the number of transactions containing the itemsets  $A \cup B$ , and  $support\_count(A)$  is the number of transactions containing the itemset A. Based on this equation, association rules can be generated as follows:

- For each frequent itemset *l*, generate all nonempty subsets of *l*.
- For every nonempty subset s of l, output the rule " $s \Rightarrow (l-s)$ " if  $\frac{support\_count(l)}{support\_count(s)} \ge min\_conf$ , where  $min\_conf$  is the minimum confidence threshold.

Because the rules are generated from frequent itemsets, each one automatically satisfies the minimum support. Frequent itemsets can be stored ahead of time in hash tables along with their counts so that they can be accessed quickly.

**Example 6.4** Generating association rules. Let's try an example based on the transactional data for *AllElectronics* shown before in Table 6.1. The data contain frequent itemset  $X = \{I1, I2, I5\}$ . What are the association rules that can be generated from X? The nonempty subsets of X are  $\{I1, I2\}$ ,  $\{I1, I5\}$ ,  $\{I2, I5\}$ ,  $\{I1\}$ ,  $\{I2\}$ , and  $\{I5\}$ . The resulting association rules are as shown below, each listed with its confidence:

```
\{11,12\} \Rightarrow 15, confidence = 2/4 = 50\%

\{11,15\} \Rightarrow 12, confidence = 2/2 = 100\%

\{12,15\} \Rightarrow 11, confidence = 2/2 = 100\%

11 \Rightarrow \{12,15\}, confidence = 2/6 = 33\%

12 \Rightarrow \{11,15\}, confidence = 2/7 = 29\%

15 \Rightarrow \{11,12\}, confidence = 2/2 = 100\%
```

If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules are output, because these are the only ones generated that are strong. Note that, unlike conventional classification rules, association rules can contain more than one conjunct in the right side of the rule.

#### 6.2.3 Improving the Efficiency of Apriori

"How can we further improve the efficiency of Apriori-based mining?" Many variations of the Apriori algorithm have been proposed that focus on improving the efficiency of the original algorithm. Several of these variations are summarized as follows:

|                                       | $H_2$           |          |             |              |          |              |             |          |
|---------------------------------------|-----------------|----------|-------------|--------------|----------|--------------|-------------|----------|
|                                       | bucket address  | 0        | 1           | 2            | 3        | 4            | 5           | 6        |
| Create hash table $H_2$               | bucket count    | 2        | 2           | 4            | 2        | 2            | 4           | 4        |
| using hash function                   | bucket contents | {I1, I4} |             |              |          |              |             |          |
| $h(x, y) = ((order\ of\ x) \times 10$ |                 | {I3, I5} | $\{I1,I5\}$ | $\{I2,I3\}$  | {I2, I4} | $\{12, 15\}$ | $\{I1,I2\}$ | {I1, I3} |
| + (order of y)) mod 7                 |                 |          |             | $\{12, 13\}$ |          |              | $\{I1,I2\}$ | {I1, I3} |
|                                       |                 |          |             | {12, 13}     |          |              | {I1, I2}    | {I1, I3} |

**Figure 6.5** Hash table,  $H_2$ , for candidate 2-itemsets. This hash table was generated by scanning Table 6.1's transactions while determining  $L_1$ . If the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included in  $C_2$ .

**Hash-based technique** (hashing itemsets into corresponding buckets): A hash-based technique can be used to reduce the size of the candidate k-itemsets,  $C_k$ , for k > 1. For example, when scanning each transaction in the database to generate the frequent 1-itemsets,  $L_1$ , we can generate all the 2-itemsets for each transaction, hash (i.e., map) them into the different *buckets* of a *hash table* structure, and increase the corresponding bucket counts (Figure 6.5). A 2-itemset with a corresponding bucket count in the hash table that is below the support threshold cannot be frequent and thus should be removed from the candidate set. Such a hash-based technique may substantially reduce the number of candidate k-itemsets examined (especially when k = 2).

**Transaction reduction** (reducing the number of transactions scanned in future iterations): A transaction that does not contain any frequent k-itemsets cannot contain any frequent (k+1)-itemsets. Therefore, such a transaction can be marked or removed from further consideration because subsequent database scans for j-itemsets, where j > k, will not need to consider such a transaction.

**Partitioning** (partitioning the data to find candidate itemsets): A partitioning technique can be used that requires just two database scans to mine the frequent itemsets (Figure 6.6). It consists of two phases. In phase I, the algorithm divides the transactions of *D* into *n* nonoverlapping partitions. If the minimum relative support threshold for transactions in *D* is *min\_sup*, then the minimum support count for a partition is *min\_sup* × *the number of transactions in that partition*. For each partition, all the *local frequent itemsets* (i.e., the itemsets frequent within the partition) are found.

A local frequent itemset may or may not be frequent with respect to the entire database, *D*. However, *any itemset that is potentially frequent with respect to D must occur as a frequent itemset in at least one of the partitions.*<sup>8</sup> Therefore, all local frequent itemsets are candidate itemsets with respect to *D*. The collection of frequent itemsets from all partitions forms the *global candidate itemsets* with respect to *D*. In phase II,

<sup>&</sup>lt;sup>8</sup>The proof of this property is left as an exercise (see Exercise 6.3d).



**Figure 6.6** Mining by partitioning the data.

a second scan of *D* is conducted in which the actual support of each candidate is assessed to determine the global frequent itemsets. Partition size and the number of partitions are set so that each partition can fit into main memory and therefore be read only once in each phase.

**Sampling** (mining on a subset of the given data): The basic idea of the sampling approach is to pick a random sample *S* of the given data *D*, and then search for frequent itemsets in *S* instead of *D*. In this way, we trade off some degree of accuracy against efficiency. The *S* sample size is such that the search for frequent itemsets in *S* can be done in main memory, and so only one scan of the transactions in *S* is required overall. Because we are searching for frequent itemsets in *S* rather than in *D*, it is possible that we will miss some of the global frequent itemsets.

To reduce this possibility, we use a lower support threshold than minimum support to find the frequent itemsets local to S (denoted  $L^S$ ). The rest of the database is then used to compute the actual frequencies of each itemset in  $L^S$ . A mechanism is used to determine whether all the global frequent itemsets are included in  $L^S$ . If  $L^S$  actually contains all the frequent itemsets in D, then only one scan of D is required. Otherwise, a second pass can be done to find the frequent itemsets that were missed in the first pass. The sampling approach is especially beneficial when efficiency is of utmost importance such as in computationally intensive applications that must be run frequently.

Dynamic itemset counting (adding candidate itemsets at different points during a scan): A dynamic itemset counting technique was proposed in which the database is partitioned into blocks marked by start points. In this variation, new candidate itemsets can be added at any start point, unlike in Apriori, which determines new candidate itemsets only immediately before each complete database scan. The technique uses the count-so-far as the lower bound of the actual count. If the count-so-far passes the minimum support, the itemset is added into the frequent itemset collection and can be used to generate longer candidates. This leads to fewer database scans than with Apriori for finding all the frequent itemsets.

Other variations are discussed in the next chapter.

### 6.2.4 A Pattern-Growth Approach for Mining Frequent Itemsets

As we have seen, in many cases the Apriori candidate generate-and-test method significantly reduces the size of candidate sets, leading to good performance gain. However, it can suffer from two nontrivial costs:

- It may still need to generate a huge number of candidate sets. For example, if there are 10<sup>4</sup> frequent 1-itemsets, the Apriori algorithm will need to generate more than 10<sup>7</sup> candidate 2-itemsets.
- It may need to repeatedly scan the whole database and check a large set of candidates by pattern matching. It is costly to go over each transaction in the database to determine the support of the candidate itemsets.

"Can we design a method that mines the complete set of frequent itemsets without such a costly candidate generation process?" An interesting method in this attempt is called frequent pattern growth, or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it compresses the database representing frequent items into a frequent pattern tree, or FP-tree, which retains the itemset association information. It then divides the compressed database into a set of conditional databases (a special kind of projected database), each associated with one frequent item or "pattern fragment," and mines each database separately. For each "pattern fragment," only its associated data sets need to be examined. Therefore, this approach may substantially reduce the size of the data sets to be searched, along with the "growth" of patterns being examined. You will see how it works in Example 6.5.

# **Example 6.5** FP-growth (finding frequent itemsets without candidate generation). We reexamine the mining of transaction database, *D*, of Table 6.1 in Example 6.3 using the frequent pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set of frequent items (1-itemsets) and their support counts (frequencies). Let the minimum support count be 2. The set of frequent items is sorted in the order of descending support count. This resulting set or *list* is denoted by *L*. Thus, we have  $L = \{\{12: 7\}, \{11: 6\}, \{13: 6\}, \{14: 2\}, \{15: 2\}\}.$ 

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with "null." Scan database D a second time. The items in each transaction are processed in L order (i.e., sorted according to descending support count), and a branch is created for each transaction. For example, the scan of the first transaction, "T100: I1, I2, I5," which contains three items (I2, I1, I5 in L order), leads to the construction of the first branch of the tree with three nodes,  $\langle I2: 1 \rangle$ ,  $\langle I1: 1 \rangle$ , and  $\langle I5: 1 \rangle$ , where I2 is linked as a child to the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200, contains the items I2 and I4 in L order, which would result in a branch where I2 is linked to the root and I4 is linked to I2. However, this branch would share a common **prefix**, I2, with the existing path for T100. Therefore, we instead increment the count of the I2 node by 1, and create a new node,  $\langle I4: 1 \rangle$ , which is linked as a child to  $\langle I2: 2 \rangle$ . In general,



**Figure 6.7** An FP-tree registers compressed, frequent pattern information.

when considering the branch to be added for a transaction, the count of each node along a common prefix is incremented by 1, and nodes for the items following the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of **node-links**. The tree obtained after scanning all the transactions is shown in Figure 6.7 with the associated node-links. In this way, the problem of mining frequent patterns in databases is transformed into that of mining the FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an initial **suffix pattern**), construct its **conditional pattern base** (a "sub-database," which consists of the set of *prefix paths* in the FP-tree co-occurring with the suffix pattern), then construct its (*conditional*) FP-tree, and perform mining recursively on the tree. The pattern growth is achieved by the concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 6.2 and detailed as follows. We first consider I5, which is the last item in L, rather than the first. The reason for starting at the end of the list will become apparent as we explain the FP-tree mining process. I5 occurs in two FP-tree branches of Figure 6.7. (The occurrences of I5 can easily be found by following its chain of node-links.) The paths formed by these branches are  $\langle I2, I1, I5: 1\rangle$  and  $\langle I2, I1, I3, I5: 1\rangle$ . Therefore, considering I5 as a suffix, its corresponding two prefix paths are  $\langle I2, I1: 1\rangle$  and  $\langle I2, I1, I3: 1\rangle$ , which form its conditional pattern base. Using this conditional pattern base as a transaction database, we build an I5-conditional FP-tree, which contains only a single path,  $\langle I2: 2, I1: 2\rangle$ ; I3 is not included because its support count of 1 is less than the minimum support count. The single path generates all the combinations of frequent patterns:  $\{I2, I5: 2\}$ ,  $\{I1, I5: 2\}$ ,  $\{I2, I1, I5: 2\}$ .

For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}}, which generates a single-node conditional FP-tree, ⟨I2: 2⟩, and derives one frequent pattern, {I2, I4: 2}.

| Item | Conditional Pattern Base        | Conditional FP-tree                                      | Frequent Patterns Generated               |
|------|---------------------------------|----------------------------------------------------------|-------------------------------------------|
| I5   | {{I2, I1: 1}, {I2, I1, I3: 1}}  | ⟨I2: 2, I1: 2⟩                                           | {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2} |
| I4   | {{I2, I1: 1}, {I2: 1}}          | ⟨I2: 2⟩                                                  | {I2, I4: 2}                               |
| I3   | {{I2, I1: 2}, {I2: 2}, {I1: 2}} | $\langle I2: 4, I1: 2 \rangle$ , $\langle I1: 2 \rangle$ | {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2} |
| I1   | {{I2: 4}}                       | ⟨I2: 4⟩                                                  | {I2, I1: 4}                               |

**Table 6.2** Mining the FP-Tree by Creating Conditional (Sub-)Pattern Bases



**Figure 6.8** The conditional FP-tree associated with the conditional node I3.

Similar to the preceding analysis, I3's conditional pattern base is {{I2, I1: 2}, {I2: 2}, {I1: 2}}. Its conditional FP-tree has two branches, ⟨I2: 4, I1: 2⟩ and ⟨I1: 2⟩, as shown in Figure 6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}. Finally, I1's conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one node, ⟨I2: 4⟩, which generates one frequent pattern, {I2, I1: 4}. This mining process is summarized in Figure 6.9.

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent items as a suffix, offering good selectivity. The method substantially reduces the search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-based FP-tree. An interesting alternative is to first partition the database into a set of projected databases, and then construct an FP-tree and mine it in each projected database. This process can be recursively applied to any projected database if its FP-tree still cannot fit in main memory.

A study of the FP-growth method performance shows that it is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm.

#### 6.2.5 Mining Frequent Itemsets Using the Vertical Data Format

Both the Apriori and FP-growth methods mine frequent patterns from a set of transactions in *TID-itemset* format (i.e., {*TID: itemset*}), where *TID* is a transaction ID and *itemset* is the set of items bought in transaction *TID*. This is known as the **horizontal data format**. Alternatively, data can be presented in *item-TID\_set* format

**Algorithm: FP-growth.** Mine frequent itemsets using an FP-tree by pattern fragment growth. **Input:** 

- $\blacksquare$  D, a transaction database;
- *min\_sup*, the minimum support count threshold.

**Output**: The complete set of frequent patterns.

#### Method:

- 1. The FP-tree is constructed in the following steps:
  - (a) Scan the transaction database *D* once. Collect *F*, the set of frequent items, and their support counts. Sort *F* in support count descending order as *L*, the *list* of frequent items.
  - (b) Create the root of an FP-tree, and label it as "null." For each transaction *Trans* in *D* do the following.
    Select and sort the frequent items in *Trans* according to the order of *L*. Let the sorted frequent item list in *Trans* be [p|P], where p is the first element and P is the remaining list. Call insert\_tree([p|P], T), which is performed as follows. If T has a child N such that N.item-name = p.item-name, then increment N's count by 1; else create a new node N, and let its count be 1, its parent link be linked to T, and its node-link to the nodes with the same item-name via the node-link structure. If P is nonempty, call insert\_tree(P, N)
- **2.** The FP-tree is mined by calling FP\_growth( $FP\_tree$ , null), which is implemented as follows. procedure FP\_growth(Tree,  $\alpha$ )

```
(1) if Tree contains a single path P then
```

- (2) **for each** combination (denoted as  $\beta$ ) of the nodes in the path *P*
- (3) generate pattern  $\beta \cup \alpha$  with support\_count = minimum support count of nodes in  $\beta$ ;
- (4) **else for each**  $a_i$  in the header of *Tree* {
- (5) generate pattern  $\beta = a_i \cup \alpha$  with  $support\_count = a_i.support\_count$ ;
- (6) construct  $\beta$ 's conditional pattern base and then  $\beta$ 's conditional FP\_tree  $Tree_{\beta}$ ;
- (7) **if**  $Tree_{\beta} \neq \emptyset$  **then**

recursively.

(8)  $\operatorname{call} \mathsf{FP\_growth}(\mathit{Tree}_{\beta}, \beta); \}$ 

**Figure 6.9** FP-growth algorithm for discovering frequent itemsets without candidate generation.

(i.e., {item: TID\_set}), where item is an item name, and TID\_set is the set of transaction identifiers containing the item. This is known as the **vertical data format**.

In this subsection, we look at how frequent itemsets can also be mined efficiently using vertical data format, which is the essence of the **Eclat** (Equivalence Class Transformation) algorithm.

**Example 6.6 Mining frequent itemsets using the vertical data format.** Consider the horizontal data format of the transaction database, *D*, of Table 6.1 in Example 6.3. This can be transformed into the vertical data format shown in Table 6.3 by scanning the data set once.

Mining can be performed on this data set by intersecting the TID\_sets of every pair of frequent single items. The minimum support count is 2. Because every single item is

**Table 6.3** The Vertical Data Format of the Transaction Data Set *D* of Table 6.1

| itemset | TID_set                                    |
|---------|--------------------------------------------|
| I1      | {T100, T400, T500, T700, T800, T900}       |
| I2      | {T100, T200, T300, T400, T600, T800, T900} |
| I3      | {T300, T500, T600, T700, T800, T900}       |
| I4      | {T200, T400}                               |
| I5      | {T100, T800}                               |

**Table 6.4** 2-Itemsets in Vertical Data Format

| itemset  | TID_set                  |
|----------|--------------------------|
| {I1, I2} | {T100, T400, T800, T900} |
| {I1, I3} | {T500, T700, T800, T900} |
| {I1, I4} | {T400}                   |
| {I1, I5} | {T100, T800}             |
| {I2, I3} | {T300, T600, T800, T900} |
| {I2, I4} | {T200, T400}             |
| {I2, I5} | {T100, T800}             |
| {I3, I5} | {T800}                   |
|          |                          |

**Table 6.5** 3-Itemsets in Vertical Data Format

| itemset      | TID_set      |
|--------------|--------------|
| {I1, I2, I3} | {T800, T900} |
| {I1, I2, I5} | {T100, T800} |

frequent in Table 6.3, there are 10 intersections performed in total, which lead to eight nonempty 2-itemsets, as shown in Table 6.4. Notice that because the itemsets {I1, I4} and {I3, I5} each contain only one transaction, they do not belong to the set of frequent 2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every one of its 2-itemset subsets is frequent. The candidate generation process here will generate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. By intersecting the TID\_sets of any two corresponding 2-itemsets of these candidate 3-itemsets, it derives Table 6.5, where there are only two frequent 3-itemsets: {I1, I2, I3: 2} and {I1, I2, I5: 2}.

Example 6.6 illustrates the process of mining frequent itemsets by exploring the vertical data format. First, we transform the horizontally formatted data into the vertical format by scanning the data set once. The support count of an itemset is simply the length of the TID\_set of the itemset. Starting with k = 1, the frequent k-itemsets can be used to construct the candidate (k + 1)-itemsets based on the Apriori property.

The computation is done by intersection of the TID\_sets of the frequent k-itemsets to compute the TID\_sets of the corresponding (k+1)-itemsets. This process repeats, with k incremented by 1 each time, until no frequent itemsets or candidate itemsets can be found.

Besides taking advantage of the Apriori property in the generation of candidate (k+1)-itemset from frequent k-itemsets, another merit of this method is that there is no need to scan the database to find the support of (k+1)-itemsets (for  $k \ge 1$ ). This is because the TID\_set of each k-itemset carries the complete information required for counting such support. However, the TID\_sets can be quite long, taking substantial memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID\_sets, as well as the subsequent costs of intersections, we can use a technique called *diffset*, which keeps track of only the differences of the TID\_sets of a (k+1)-itemset and a corresponding k-itemset. For instance, in Example 6.6 we have  $\{I1\} = \{T100, T400, T500, T700, T800, T900\}$  and  $\{I1, I2\} = \{T100, T400, T800, T900\}$ . The *diffset* between the two is *diffset*( $\{I1, I2\}, \{I1\}$ ) =  $\{T500, T700\}$ . Thus, rather than recording the four TIDs that make up the intersection of  $\{I1\}$  and  $\{I2\}$ , we can instead use *diffset* to record just two TIDs, indicating the difference between  $\{I1\}$  and  $\{I1, I2\}$ . Experiments show that in certain situations, such as when the data set contains many dense and long patterns, this technique can substantially reduce the total cost of vertical format mining of frequent itemsets.

#### 6.2.6 Mining Closed and Max Patterns

In Section 6.1.2 we saw how frequent itemset mining may generate a huge number of frequent itemsets, especially when the  $min\_sup$  threshold is set low or when there exist long patterns in the data set. Example 6.2 showed that closed frequent itemsets<sup>9</sup> can substantially reduce the number of patterns generated in frequent itemset mining while preserving the complete information regarding the set of frequent itemsets. That is, from the set of closed frequent itemsets, we can easily derive the set of frequent itemsets and their support. Thus, in practice, it is more desirable to mine the set of closed frequent itemsets rather than the set of all frequent itemsets in most cases.

"How can we mine closed frequent itemsets?" A naïve approach would be to first mine the complete set of frequent itemsets and then remove every frequent itemset that is a proper subset of, and carries the same support as, an existing frequent itemset. However, this is quite costly. As shown in Example 6.2, this method would have to first derive  $2^{100} - 1$  frequent itemsets to obtain a length-100 frequent itemset, all before it could begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there exist only a very small number of closed frequent itemsets in Example 6.2's data set.

A recommended methodology is to search for closed frequent itemsets directly during the mining process. This requires us to prune the search space as soon as we

<sup>&</sup>lt;sup>9</sup>Remember that *X* is a *closed frequent* itemset in a data set *S* if there exists no proper super-itemset *Y* such that *Y* has the same support count as *X* in *S*, and *X* satisfies minimum support.

can identify the case of closed itemsets during mining. Pruning strategies include the following:

**Item merging:** If every transaction containing a frequent itemset X also contains an itemset Y but not any proper superset of Y, then  $X \cup Y$  forms a frequent closed itemset and there is no need to search for any itemset containing X but no Y.

For example, in Table 6.2 of Example 6.5, the projected conditional database for prefix itemset {I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its transactions contains itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2, I1} can be merged with {I5} to form the closed itemset, {I5, I2, I1: 2}, and we do not need to mine for closed itemsets that contain I5 but not {I2, I1}.

**Sub-itemset pruning:** If a frequent itemset X is a proper subset of an already found frequent closed itemset Y and support\_count(X)=support\_count(Y), then X and all of X's descendants in the set enumeration tree cannot be frequent closed itemsets and thus can be pruned.

Similar to Example 6.2, suppose a transaction database has only two transactions:  $\{\langle a_1, a_2, \ldots, a_{100} \rangle, \langle a_1, a_2, \ldots, a_{50} \rangle\}$ , and the minimum support count is  $min\_sup = 2$ . The projection on the first item,  $a_1$ , derives the frequent itemset,  $\{a_1, a_2, \ldots, a_{50} : 2\}$ , based on the *itemset merging* optimization. Because  $support(\{a_2\}) = support(\{a_1, a_2, \ldots, a_{50}\}) = 2$ , and  $\{a_2\}$  is a proper subset of  $\{a_1, a_2, \ldots, a_{50}\}$ , there is no need to examine  $a_2$  and its projected database. Similar pruning can be done for  $a_3, \ldots, a_{50}$  as well. Thus, the mining of closed frequent itemsets in this data set terminates after mining  $a_1$ 's projected database.

**Item skipping:** In the depth-first mining of closed itemsets, at each level, there will be a prefix itemset X associated with a header table and a projected database. If a local frequent item p has the same support in several header tables at different levels, we can safely prune p from the header tables at higher levels.

Consider, for example, the previous transaction database having only two transactions:  $\{\langle a_1, a_2, ..., a_{100} \rangle, \langle a_1, a_2, ..., a_{50} \rangle\}$ , where  $min\_sup = 2$ . Because  $a_2$  in  $a_1$ 's projected database has the same support as  $a_2$  in the global header table,  $a_2$  can be pruned from the global header table. Similar pruning can be done for  $a_3, ..., a_{50}$ . There is no need to mine anything more after mining  $a_1$ 's projected database.

Besides pruning the search space in the closed itemset mining process, another important optimization is to perform efficient checking of each newly derived frequent itemset to see whether it is closed. This is because the mining process cannot ensure that every generated frequent itemset is closed.

When a new frequent itemset is derived, it is necessary to perform two kinds of closure checking: (1) *superset checking*, which checks if this new frequent itemset is a superset of some already found closed itemsets with the same support, and (2) *subset checking*, which checks whether the newly found itemset is a subset of an already found closed itemset with the same support.

If we adopt the *item merging* pruning method under a divide-and-conquer framework, then the superset checking is actually built-in and there is no need to explicitly

perform superset checking. This is because if a frequent itemset  $X \cup Y$  is found later than itemset X, and carries the same support as X, it must be in X's projected database and must have been generated during itemset merging.

To assist in subset checking, a compressed **pattern-tree** can be constructed to maintain the set of closed itemsets mined so far. The pattern-tree is similar in structure to the FP-tree except that all the closed itemsets found are stored explicitly in the corresponding tree branches. For efficient subset checking, we can use the following property: If the current itemset  $S_c$  can be subsumed by another already found closed itemset  $S_a$ , then (1)  $S_c$  and  $S_a$  have the same support, (2) the length of  $S_c$  is smaller than that of  $S_a$ , and (3) all of the items in  $S_c$  are contained in  $S_a$ .

Based on this property, a **two-level hash index structure** can be built for fast accessing of the pattern-tree: The first level uses the identifier of the last item in  $S_c$  as a hash key (since this identifier must be within the branch of  $S_c$ ), and the second level uses the support of  $S_c$  as a hash key (since  $S_c$  and  $S_a$  have the same support). This will substantially speed up the subset checking process.

This discussion illustrates methods for efficient mining of closed frequent itemsets. "Can we extend these methods for efficient mining of maximal frequent itemsets?" Because maximal frequent itemsets share many similarities with closed frequent itemsets, many of the optimization techniques developed here can be extended to mining maximal frequent itemsets. However, we leave this method as an exercise for interested readers.

# Which Patterns Are Interesting?—Pattern Evaluation Methods

Most association rule mining algorithms employ a support—confidence framework. Although minimum support and confidence thresholds *help* weed out or exclude the exploration of a good number of uninteresting rules, many of the rules generated are still not interesting to the users. Unfortunately, this is especially true *when mining at low support thresholds or mining for long patterns*. This has been a major bottleneck for successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting and misleading (Section 6.3.1). We then discuss how the support–confidence framework can be supplemented with additional interestingness measures based on *correlation analysis* (Section 6.3.2). Section 6.3.3 presents additional pattern evaluation measures. It then provides an overall comparison of all the measures discussed here. By the end, you will learn which pattern evaluation measures are most effective for the discovery of only interesting rules.

#### 6.3. | Strong Rules Are Not Necessarily Interesting

Whether or not a rule is interesting can be assessed either subjectively or objectively. Ultimately, only the user can judge if a given rule is interesting, and this judgment, being

subjective, may differ from one user to another. However, objective interestingness measures, based on the statistics "behind" the data, can be used as one step toward the goal of weeding out uninteresting rules that would otherwise be presented to the user.

"How can we tell which strong association rules are really interesting?" Let's examine the following example.

**Example 6.7** A misleading "strong" association rule. Suppose we are interested in analyzing transactions at *AllElectronics* with respect to the purchase of computer games and videos. Let *game* refer to the transactions containing computer games, and *video* refer to those containing videos. Of the 10,000 transactions analyzed, the data show that 6000 of the customer transactions included computer games, while 7500 included videos, and 4000 included both computer games and videos. Suppose that a data mining program for discovering association rules is run on the data, using a minimum support of, say, 30% and a minimum confidence of 60%. The following association rule is discovered:

$$buys(X, "computer games") \Rightarrow buys(X, "videos")$$
  
 $[support = 40\%, confidence = 66\%].$  (6.6)

Rule (6.6) is a strong association rule and would therefore be reported, since its support value of  $\frac{4000}{10,000} = 40\%$  and confidence value of  $\frac{4000}{6000} = 66\%$  satisfy the minimum support and minimum confidence thresholds, respectively. However, Rule (6.6) is misleading because the probability of purchasing videos is 75%, which is even larger than 66%. In fact, computer games and videos are negatively associated because the purchase of one of these items actually decreases the likelihood of purchasing the other. Without fully understanding this phenomenon, we could easily make unwise business decisions based on Rule (6.6).

Example 6.7 also illustrates that the confidence of a rule  $A \Rightarrow B$  can be deceiving. It does not measure the *real strength* (or lack of strength) of the *correlation* and *implication* between A and B. Hence, alternatives to the support–confidence framework can be useful in mining interesting data relationships.

#### 6.3.2 From Association Analysis to Correlation Analysis

As we have seen so far, the support and confidence measures are insufficient at filtering out uninteresting association rules. To tackle this weakness, a correlation measure can be used to augment the support—confidence framework for association rules. This leads to *correlation rules* of the form

$$A \Rightarrow B$$
 [support, confidence, correlation]. (6.7)

That is, a correlation rule is measured not only by its support and confidence but also by the correlation between itemsets *A* and *B*. There are many different correlation measures from which to choose. In this subsection, we study several correlation measures to determine which would be good for mining large data sets.

**Lift** is a simple correlation measure that is given as follows. The occurrence of itemset A is **independent** of the occurrence of itemset B if  $P(A \cup B) = P(A)P(B)$ ; otherwise, itemsets A and B are **dependent** and **correlated** as events. This definition can easily be extended to more than two itemsets. The **lift** between the occurrence of A and B can be measured by computing

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}.$$
(6.8)

If the resulting value of Eq. (6.8) is less than 1, then the occurrence of A is negatively correlated with the occurrence of B, meaning that the occurrence of one likely leads to the absence of the other one. If the resulting value is greater than 1, then A and B are positively correlated, meaning that the occurrence of one implies the occurrence of the other. If the resulting value is equal to 1, then A and B are independent and there is no correlation between them.

Equation (6.8) is equivalent to P(B|A)/P(B), or  $conf(A \Rightarrow B)/sup(B)$ , which is also referred to as the *lift* of the association (or correlation) rule  $A \Rightarrow B$ . In other words, it assesses the degree to which the occurrence of one "lifts" the occurrence of the other. For example, if A corresponds to the sale of computer games and B corresponds to the sale of videos, then given the current market conditions, the sale of games is said to increase or "lift" the likelihood of the sale of videos by a factor of the value returned by Eq. (6.8). Let's go back to the computer game and video data of Example 6.7.

**Example 6.8 Correlation analysis using lift.** To help filter out misleading "strong" associations of the form  $A \Rightarrow B$  from the data of Example 6.7, we need to study how the two itemsets, A and B, are correlated. Let  $\overline{game}$  refer to the transactions of Example 6.7 that do not contain computer games, and  $\overline{video}$  refer to those that do not contain videos. The transactions can be summarized in a *contingency table*, as shown in Table 6.6.

From the table, we can see that the probability of purchasing a computer game is  $P(\{game\}) = 0.60$ , the probability of purchasing a video is  $P(\{video\}) = 0.75$ , and the probability of purchasing both is  $P(\{game, video\}) = 0.40$ . By Eq. (6.8), the lift of Rule (6.6) is  $P(\{game, video\})/(P(\{game\}) \times P(\{video\})) = 0.40/(0.60 \times 0.75) = 0.89$ . Because this value is less than 1, there is a negative correlation between the occurrence of  $\{game\}$  and  $\{video\}$ . The numerator is the likelihood of a customer purchasing both, while the denominator is what the likelihood would have been if the two purchases were completely independent. Such a negative correlation cannot be identified by a support–confidence framework.

The second correlation measure that we study is the  $\chi^2$  measure, which was introduced in Chapter 3 (Eq. 3.1). To compute the  $\chi^2$  value, we take the squared difference between the observed and expected value for a slot (A and B pair) in the contingency table, divided by the expected value. This amount is summed for all slots of the contingency table. Let's perform a  $\chi^2$  analysis of Example 6.8.

**Table 6.6**  $2 \times 2$  Contingency Table Summarizing the Transactions with Respect to Game and Video Purchases

| -              | game | game | $\Sigma_{\sf row}$ |
|----------------|------|------|--------------------|
| video          | 4000 | 3500 | 7500               |
| video          | 2000 | 500  | 2500               |
| $\Sigma_{col}$ | 6000 | 4000 | 10,000             |

**Table 6.7** Table 6.6 Contingency Table, Now with the Expected Values

|                | game        | game        | $\Sigma_{\it row}$ |
|----------------|-------------|-------------|--------------------|
| video          | 4000 (4500) | 3500 (3000) | 7500               |
| video          | 2000 (1500) | 500 (1000)  | 2500               |
| $\Sigma_{col}$ | 6000        | 4000        | 10,000             |

**Example 6.9** Correlation analysis using  $\chi^2$ . To compute the correlation using  $\chi^2$  analysis for nominal data, we need the observed value and expected value (displayed in parenthesis) for each slot of the contingency table, as shown in Table 6.7. From the table, we can compute the  $\chi^2$  value as follows:

$$\chi^{2} = \Sigma \frac{(observed - expected)^{2}}{expected} = \frac{(4000 - 4500)^{2}}{4500} + \frac{(3500 - 3000)^{2}}{3000} + \frac{(2000 - 1500)^{2}}{1500} + \frac{(500 - 1000)^{2}}{1000} = 555.6.$$

Because the  $\chi^2$  value is greater than 1, and the observed value of the slot (*game*, *video*) = 4000, which is less than the expected value of 4500, *buying game* and *buying video* are *negatively correlated*. This is consistent with the conclusion derived from the analysis of the *lift* measure in Example 6.8.

#### 6.3.3 A Comparison of Pattern Evaluation Measures

The above discussion shows that instead of using the simple support–confidence framework to evaluate frequent patterns, other measures, such as *lift* and  $\chi^2$ , often disclose more intrinsic pattern relationships. How effective are these measures? Should we also consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of in-depth research on scalable methods for mining frequent patterns. Recently, several other pattern evaluation measures have attracted interest. In this subsection, we present

four such measures: *all\_confidence*,  $max\_confidence$ , Kulczynski, and cosine. We'll then compare their effectiveness with respect to one another and with respect to the *lift* and  $\chi^2$  measures.

Given two itemsets, A and B, the all\_confidence measure of A and B is defined as

$$all\_conf(A,B) = \frac{sup(A \cup B)}{max\{sup(A), sup(B)\}} = min\{P(A|B), P(B|A)\}, \tag{6.9}$$

where  $max\{sup(A), sup(B)\}$  is the maximum support of the itemsets A and B. Thus,  $all\_conf(A, B)$  is also the minimum confidence of the two association rules related to A and B, namely, " $A \Rightarrow B$ " and " $B \Rightarrow A$ ."

Given two itemsets, A and B, the max\_confidence measure of A and B is defined as

$$max\_conf(A, B) = max\{P(A | B), P(B | A)\}.$$
 (6.10)

The *max\_conf* measure is the maximum confidence of the two association rules, " $A \Rightarrow B$ " and " $B \Rightarrow A$ ."

Given two itemsets, *A* and *B*, the **Kulczynski** measure of *A* and *B* (abbreviated as **Kulc**) is defined as

$$Kulc(A, B) = \frac{1}{2}(P(A|B) + P(B|A)).$$
 (6.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an average of two confidence measures. That is, it is the average of two conditional probabilities: the probability of itemset *B* given itemset *A*, and the probability of itemset *A* given itemset *B*.

Finally, given two itemsets, A and B, the **cosine** measure of A and B is defined as

$$cosine(A, B) = \frac{P(A \cup B)}{\sqrt{P(A) \times P(B)}} = \frac{sup(A \cup B)}{\sqrt{sup(A) \times sup(B)}}$$
$$= \sqrt{P(A|B) \times P(B|A)}. \tag{6.12}$$

The *cosine* measure can be viewed as a *harmonized lift* measure: The two formulae are similar except that for cosine, the *square root* is taken on the product of the probabilities of *A* and *B*. This is an important difference, however, because by taking the square root, the cosine value is only influenced by the supports of *A*, *B*, and  $A \cup B$ , and not by the total number of transactions.

Each of these four measures defined has the following property: Its value is only influenced by the supports of A, B, and  $A \cup B$ , or more exactly, by the conditional probabilities of P(A|B) and P(B|A), but not by the total number of transactions. Another common property is that each measure ranges from 0 to 1, and the higher the value, the closer the relationship between A and B.

Now, together with *lift* and  $\chi^2$ , we have introduced in total six pattern evaluation measures. You may wonder, "Which is the best in assessing the discovered pattern relationships?" To answer this question, we examine their performance on some typical data sets.

|                | 0 7  |                 |                    |  |  |
|----------------|------|-----------------|--------------------|--|--|
|                | milk | milk            | $\Sigma_{\sf row}$ |  |  |
| coffee         | тс   | mc              | С                  |  |  |
| coffee         | m̄c  | $\overline{mc}$ | $\overline{c}$     |  |  |
| $\Sigma_{col}$ | m    | $\overline{m}$  | $\Sigma$           |  |  |

**Table 6.8**  $2 \times 2$  Contingency Table for Two Items

**Table 6.9** Comparison of Six Pattern Evaluation Measures Using Contingency Tables for a Variety of Data Sets

| Data             |        |                |         |               |          |       |              |           |       |        |
|------------------|--------|----------------|---------|---------------|----------|-------|--------------|-----------|-------|--------|
| Set              | mc     | <del>т</del> с | m̄c     | <del>mc</del> | $\chi^2$ | lift  | $all\_conf.$ | max_conf. | Kulc. | cosine |
| $\overline{D_1}$ | 10,000 | 1000           | 1000    | 100,000       | 90557    | 9.26  | 0.91         | 0.91      | 0.91  | 0.91   |
| $D_2$            | 10,000 | 1000           | 1000    | 100           | 0        | 1     | 0.91         | 0.91      | 0.91  | 0.91   |
| $D_3$            | 100    | 1000           | 1000    | 100,000       | 670      | 8.44  | 0.09         | 0.09      | 0.09  | 0.09   |
| $D_4$            | 1000   | 1000           | 1000    | 100,000       | 24740    | 25.75 | 0.5          | 0.5       | 0.5   | 0.5    |
| $D_5$            | 1000   | 100            | 10,000  | 100,000       | 8173     | 9.18  | 0.09         | 0.91      | 0.5   | 0.29   |
| $D_6$            | 1000   | 10             | 100,000 | 100,000       | 965      | 1.97  | 0.01         | 0.99      | 0.5   | 0.10   |

**Example 6.10** Comparison of six pattern evaluation measures on typical data sets. The relationships between the purchases of two items, *milk* and *coffee*, can be examined by summarizing their purchase history in Table 6.8, a  $2 \times 2$  contingency table, where an entry such as *mc* represents the number of transactions containing both milk and coffee.

Table 6.9 shows a set of transactional data sets with their corresponding contingency tables and the associated values for each of the six evaluation measures. Let's first examine the first four data sets,  $D_1$  through  $D_4$ . From the table, we see that m and c are positively associated in  $D_1$  and  $D_2$ , negatively associated in  $D_3$ , and neutral in  $D_4$ . For  $D_1$  and  $D_2$ , m and c are positively associated because mc (10,000) is considerably greater than  $\overline{mc}$  (1000) and  $m\overline{c}$  (1000). Intuitively, for people who bought milk (m = 10,000 + 1000 = 11,000), it is very likely that they also bought coffee (mc/m = 10/11 = 91%), and vice versa.

The results of the four newly introduced measures show that m and c are strongly positively associated in both data sets by producing a measure value of 0.91. However, lift and  $\chi^2$  generate dramatically different measure values for  $D_1$  and  $D_2$  due to their sensitivity to  $\overline{mc}$ . In fact, in many real-world scenarios,  $\overline{mc}$  is usually huge and unstable. For example, in a market basket database, the total number of transactions could fluctuate on a daily basis and overwhelmingly exceed the number of transactions containing any particular itemset. Therefore, a good interestingness measure should not be affected by transactions that do not contain the itemsets of interest; otherwise, it would generate unstable results, as illustrated in  $D_1$  and  $D_2$ .

Similarly, in  $D_3$ , the four new measures correctly show that m and c are strongly negatively associated because the m to c ratio equals the mc to m ratio, that is, 100/1100 = 9.1%. However, *lift* and  $\chi^2$  both contradict this in an incorrect way: Their values for  $D_2$  are between those for  $D_1$  and  $D_3$ .

For data set  $D_4$ , both *lift* and  $\chi^2$  indicate a highly positive association between m and c, whereas the others indicate a "neutral" association because the ratio of mc to  $\overline{mc}$  equals the ratio of mc to  $m\overline{c}$ , which is 1. This means that if a customer buys coffee (or milk), the probability that he or she will also purchase milk (or coffee) is exactly 50%.

"Why are lift and  $\chi^2$  so poor at distinguishing pattern association relationships in the previous transactional data sets?" To answer this, we have to consider the null-transactions. A null-transaction is a transaction that does not contain any of the itemsets being examined. In our example,  $\overline{mc}$  represents the number of null-transactions. Lift and  $\chi^2$  have difficulty distinguishing interesting pattern association relationships because they are both strongly influenced by  $\overline{mc}$ . Typically, the number of null-transactions can outweigh the number of individual purchases because, for example, many people may buy neither milk nor coffee. On the other hand, the other four measures are good indicators of interesting pattern associations because their definitions remove the influence of  $\overline{mc}$  (i.e., they are not influenced by the number of null-transactions).

This discussion shows that it is highly desirable to have a measure that has a value that is independent of the number of null-transactions. A measure is **null-invariant** if its value is free from the influence of null-transactions. Null-invariance is an important property for measuring association patterns in large transaction databases. Among the six discussed measures in this subsection, only *lift* and  $\chi^2$  are not null-invariant measures.

"Among the all\_confidence, max\_confidence, Kulczynski, and cosine measures, which is best at indicating interesting pattern relationships?"

To answer this question, we introduce the **imbalance ratio** (**IR**), which assesses the imbalance of two itemsets, *A* and *B*, in rule implications. It is defined as

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)},$$
(6.13)

where the numerator is the absolute value of the difference between the support of the itemsets A and B, and the denominator is the number of transactions containing A or B. If the two directional implications between A and B are the same, then IR(A, B) will be zero. Otherwise, the larger the difference between the two, the larger the imbalance ratio. This ratio is independent of the number of null-transactions and independent of the total number of transactions.

Let's continue examining the remaining data sets in Example 6.10.

**Example 6.11** Comparing null-invariant measures in pattern evaluation. Although the four measures introduced in this section are null-invariant, they may present dramatically

different values on some subtly different data sets. Let's examine data sets  $D_5$  and  $D_6$ , shown earlier in Table 6.9, where the two events m and c have unbalanced conditional probabilities. That is, the ratio of mc to c is greater than 0.9. This means that knowing that c occurs should strongly suggest that m occurs also. The ratio of mc to m is less than 0.1, indicating that m implies that c is quite unlikely to occur. The  $all\_confidence$  and cosine measures view both cases as negatively associated and the Kulc measure views both as neutral. The  $max\_confidence$  measure claims strong positive associations for these cases. The measures give very diverse results!

"Which measure intuitively reflects the true relationship between the purchase of milk and coffee?" Due to the "balanced" skewness of the data, it is difficult to argue whether the two data sets have positive or negative association. From one point of view, only  $mc/(mc + m\overline{c}) = 1000/(1000 + 10,000) = 9.09\%$  of milk-related transactions contain coffee in  $D_5$  and this percentage is 1000/(1000 + 100,000) = 0.99% in  $D_6$ , both indicating a negative association. On the other hand, 90.9% of transactions in  $D_5$  (i.e.,  $mc/(mc + \overline{m}c) = 1000/(1000 + 100)$ ) and 9% in  $D_6$  (i.e., 1000/(1000 + 10)) containing coffee contain milk as well, which indicates a positive association between milk and coffee. These draw very different conclusions.

For such "balanced" skewness, it could be fair to treat it as neutral, as *Kulc* does, and in the meantime indicate its skewness using the *imbalance ratio* (*IR*). According to Eq. (6.13), for  $D_4$  we have IR(m,c) = 0, a perfectly balanced case; for  $D_5$ , IR(m,c) = 0.89, a rather imbalanced case; whereas for  $D_6$ , IR(m,c) = 0.99, a very skewed case. Therefore, the two measures, *Kulc* and *IR*, work together, presenting a clear picture for all three data sets,  $D_4$  through  $D_6$ .

In summary, the use of only support and confidence measures to mine associations may generate a large number of rules, many of which can be uninteresting to users. Instead, we can augment the support—confidence framework with a pattern interestingness measure, which helps focus the mining toward rules with strong pattern relationships. The added measure substantially reduces the number of rules generated and leads to the discovery of more meaningful rules. Besides those introduced in this section, many other interestingness measures have been studied in the literature. Unfortunately, most of them do not have the null-invariance property. Because large data sets typically have many null-transactions, it is important to consider the null-invariance property when selecting appropriate interestingness measures for pattern evaluation. Among the four null-invariant measures studied here, namely *all\_confidence*, *max\_confidence*, *Kulc*, and *cosine*, we recommend using *Kulc* in conjunction with the imbalance ratio.

### 6 4 Summary

The discovery of frequent patterns, associations, and correlation relationships among huge amounts of data is useful in selective marketing, decision analysis, and business management. A popular area of application is market basket analysis, which studies

- customers' buying habits by searching for itemsets that are frequently purchased together (or in sequence).
- Association rule mining consists of first finding frequent itemsets (sets of items, such as A and B, satisfying a minimum support threshold, or percentage of the task-relevant tuples), from which strong association rules in the form of  $A \Rightarrow B$  are generated. These rules also satisfy a minimum confidence threshold (a prespecified probability of satisfying B under the condition that A is satisfied). Associations can be further analyzed to uncover correlation rules, which convey statistical correlations between itemsets A and B.
- Many efficient and scalable algorithms have been developed for frequent itemset mining, from which association and correlation rules can be derived. These algorithms can be classified into three categories: (1) Apriori-like algorithms, (2) frequent pattern growth-based algorithms such as FP-growth, and (3) algorithms that use the vertical data format.
- The **Apriori algorithm** is a seminal algorithm for mining frequent itemsets for Boolean association rules. It explores the level-wise mining Apriori property that *all* nonempty subsets of a frequent itemset must also be frequent. At the kth iteration (for  $k \ge 2$ ), it forms frequent k-itemset candidates based on the frequent (k-1)-itemsets, and scans the database once to find the *complete* set of frequent k-itemsets,  $L_k$ .

Variations involving hashing and transaction reduction can be used to make the procedure more efficient. Other variations include partitioning the data (mining on each partition and then combining the results) and sampling the data (mining on a data subset). These variations can reduce the number of data scans required to as little as two or even one.

- **Frequent pattern growth** is a method of mining frequent itemsets without candidate generation. It constructs a highly compact data structure (an *FP-tree*) to compress the original transaction database. Rather than employing the generate-and-test strategy of Apriori-like methods, it focuses on frequent pattern (fragment) growth, which avoids costly candidate generation, resulting in greater efficiency.
- Mining frequent itemsets using the vertical data format (Eclat) is a method that transforms a given data set of transactions in the horizontal data format of *TID-itemset* into the vertical data format of *item-TID\_set*. It mines the transformed data set by *TID\_set* intersections based on the Apriori property and additional optimization techniques such as *diffset*.
- Not all strong association rules are interesting. Therefore, the support–confidence framework should be augmented with a pattern evaluation measure, which promotes the mining of *interesting* rules. A measure is **null-invariant** if its value is free from the influence of **null-transactions** (i.e., the *transactions that do not contain any of the itemsets being examined*). Among many pattern evaluation measures, we examined *lift*,  $\chi^2$ , *all\_confidence*, *max\_confidence*, *Kulczynski*, and *cosine*, and showed

that only the latter four are null-invariant. We suggest using the Kulczynski measure, together with the imbalance ratio, to present pattern relationships among itemsets.

### 6.5 Exercises

- **6.1** Suppose you have the set  $\mathcal{C}$  of all frequent closed itemsets on a data set D, as well as the support count for each frequent closed itemset. Describe an algorithm to determine whether a given itemset X is frequent or not, and the support of X if it is frequent.
- **6.2** An itemset X is called a *generator* on a data set D if there does not exist a proper sub-itemset  $Y \subset X$  such that support(X) = support(Y). A generator X is a *frequent generator* if support(X) passes the minimum support threshold. Let  $\mathcal{G}$  be the set of all frequent generators on a data set D.
  - (a) Can you determine whether an itemset A is frequent and the support of A, if it is frequent, using only  $\mathcal{G}$  and the support counts of all frequent generators? If yes, present your algorithm. Otherwise, what other information is needed? Can you give an algorithm assuming the information needed is available?
  - (b) What is the relationship between closed itemsets and generators?
- 6.3 The Apriori algorithm makes use of prior knowledge of subset support properties.
  - (a) Prove that all nonempty subsets of a frequent itemset must also be frequent.
  - (b) Prove that the support of any nonempty subset *s'* of itemset *s* must be at least as great as the support of *s*.
  - (c) Given frequent itemset l and subset s of l, prove that the confidence of the rule " $s' \Rightarrow (l s')$ " cannot be more than the confidence of " $s \Rightarrow (l s)$ ," where s' is a subset of s.
  - (d) A *partitioning* variation of Apriori subdivides the transactions of a database *D* into *n* nonoverlapping partitions. Prove that any itemset that is frequent in *D* must be frequent in at least one partition of *D*.
- 6.4 Let c be a candidate itemset in  $C_k$  generated by the Apriori algorithm. How many length-(k-1) subsets do we need to check in the prune step? Per your previous answer, can you give an improved version of procedure has\_infrequent\_subset in Figure 6.4?
- **6.5** Section 6.2.2 describes a method for *generating association rules* from frequent itemsets. Propose a more efficient method. Explain why it is more efficient than the one proposed there. (*Hint:* Consider incorporating the properties of Exercises 6.3(b), (c) into your design.)
- **6.6** A database has five transactions. Let  $min\_sup = 60\%$  and  $min\_conf = 80\%$ .

| TID  | items_bought           |
|------|------------------------|
| T100 | $\{M, O, N, K, E, Y\}$ |
| T200 | {D, O, N, K, E, Y }    |
| T300 | $\{M, A, K, E\}$       |
| T400 | $\{M, U, C, K, Y\}$    |
| T500 | {C, O, O, K, I, E}     |

- (a) Find all frequent itemsets using Apriori and FP-growth, respectively. Compare the efficiency of the two mining processes.
- (b) List all the *strong* association rules (with support *s* and confidence *c*) matching the following metarule, where *X* is a variable representing customers, and *item*<sup>*i*</sup> denotes variables representing items (e.g., "A," "B,"):

$$\forall x \in transaction, buys(X, item_1) \land buys(X, item_2) \Rightarrow buys(X, item_3) \quad [s, c]$$

- 6.7 (Implementation project) Using a programming language that you are familiar with, such as C++ or Java, implement three *frequent itemset mining* algorithms introduced in this chapter: (1) Apriori [AS94b], (2) FP-growth [HPY00], and (3) Eclat [Zak00] (mining using the vertical data format). Compare the performance of each algorithm with various kinds of large data sets. Write a report to analyze the situations (e.g., data size, data distribution, minimal support threshold setting, and pattern density) where one algorithm may perform better than the others, and state why.
- **6.8** A database has four transactions. Let  $min\_sup = 60\%$  and  $min\_conf = 80\%$ .

| cust_ID | TID  | items_bought (in the form of brand-item_category)                        |
|---------|------|--------------------------------------------------------------------------|
| 01      | T100 | {King's-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}                 |
| 02      | T200 | {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread} |
| 01      | T300 | {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}               |
| 03      | T400 | {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}                            |

(a) At the granularity of *item\_category* (e.g., *item<sub>i</sub>* could be "Milk"), for the rule template,

$$\forall X \in transaction, buys(X, item_1) \land buys(X, item_2) \Rightarrow buys(X, item_3) [s, c],$$

list the frequent k-itemset for the largest k, and all the strong association rules (with their support s and confidence c) containing the frequent k-itemset for the largest k.

(b) At the granularity of *brand-item\_category* (e.g., *item*<sub>i</sub> could be "Sunset-Milk"), for the rule template,

```
\forall X \in customer, \ buys(X, item_1) \land buys(X, item_2) \Rightarrow buys(X, item_3),
```

list the frequent *k*-itemset for the largest *k* (but do not print any rules).

- 6.9 Suppose that a large store has a transactional database that is *distributed* among four locations. Transactions in each component database have the same format, namely  $T_j: \{i_1, \ldots, i_m\}$ , where  $T_j$  is a transaction identifier, and  $i_k$   $(1 \le k \le m)$  is the identifier of an item purchased in the transaction. Propose an efficient algorithm to mine global association rules. You may present your algorithm in the form of an outline. Your algorithm should not require shipping all the data to one site and should not cause excessive network communication overhead.
- **6.10** Suppose that frequent itemsets are saved for a large transactional database, DB. Discuss how to efficiently mine the (global) association rules under the same minimum support threshold, if a set of new transactions, denoted as  $\Delta DB$ , is (incrementally) added in?
- 6.11 Most frequent pattern mining algorithms consider only distinct items in a transaction. However, multiple occurrences of an item in the same shopping basket, such as four cakes and three jugs of milk, can be important in transactional data analysis. How can one mine frequent itemsets efficiently considering multiple occurrences of items? Propose modifications to the well-known algorithms, such as Apriori and FP-growth, to adapt to such a situation.
- **6.12** (**Implementation project**) Many techniques have been proposed to further improve the performance of frequent itemset mining algorithms. Taking FP-tree–based frequent pattern growth algorithms (e.g., FP-growth) as an example, implement one of the following optimization techniques. Compare the performance of your new implementation with the unoptimized version.
  - (a) The frequent pattern mining method of Section 6.2.4 uses an FP-tree to generate conditional pattern bases using a bottom-up projection technique (i.e., project onto the prefix path of an item *p*). However, one can develop a *top-down projection* technique, that is, project onto the suffix path of an item *p* in the generation of a conditional pattern base. Design and implement such a top-down FP-tree mining method. Compare its performance with the bottom-up projection method.
  - (b) Nodes and pointers are used uniformly in an FP-tree in the FP-growth algorithm design. However, such a structure may consume a lot of space when the data are sparse. One possible alternative design is to explore *array- and pointer-based hybrid implementation*, where a node may store multiple items when it contains no splitting point to multiple sub-branches. Develop such an implementation and compare it with the original one.
  - (c) It is time and space consuming to generate numerous conditional pattern bases during pattern-growth mining. An interesting alternative is to *push right* the branches that have been mined for a particular item *p*, that is, to push them to the remaining branch(es) of the FP-tree. This is done so that fewer conditional pattern bases have to be generated and additional sharing can be explored when mining the remaining FP-tree branches. Design and implement such a method and conduct a performance study on it.

- **6.13** Give a short example to show that items in a strong association rule actually may be *negatively correlated*.
- 6.14 The following contingency table summarizes supermarket transaction data, where *hot dogs* refers to the transactions containing hot dogs, *hot dogs* refers to the transactions that do not contain hot dogs, *hamburgers* refers to the transactions containing hamburgers, and *hamburgers* refers to the transactions that do not contain hamburgers.

|                | hot dogs | hot dogs | $\Sigma_{row}$ |
|----------------|----------|----------|----------------|
| hamburgers     | 2000     | 500      | 2500           |
| hamburgers     | 1000     | 1500     | 2500           |
| $\Sigma_{col}$ | 3000     | 2000     | 5000           |

- (a) Suppose that the association rule "hot dogs ⇒ hamburgers" is mined. Given a minimum support threshold of 25% and a minimum confidence threshold of 50%, is this association rule strong?
- (b) Based on the given data, is the purchase of *hot dogs* independent of the purchase of *hamburgers*? If not, what kind of *correlation* relationship exists between the two?
- (c) Compare the use of the *all\_confidence*, *max\_confidence*, *Kulczynski*, and *cosine* measures with *lift* and *correlation* on the given data.
- **6.15** (**Implementation project**) The DBLP data set (*www.informatik.uni-trier .de/~ley/db/*) consists of over one million entries of research papers published in computer science conferences and journals. Among these entries, there are a good number of authors that have coauthor relationships.
  - (a) Propose a method to efficiently mine a set of coauthor relationships that are closely correlated (e.g., often coauthoring papers together).
  - (b) Based on the mining results and the pattern evaluation measures discussed in this chapter, discuss which measure may convincingly uncover close collaboration patterns better than others.
  - (c) Based on the study in (a), develop a method that can roughly predict advisor and advisee relationships and the approximate period for such advisory supervision.

# 6 6 Bibliographic Notes

Association rule mining was first proposed by Agrawal, Imielinski, and Swami [AIS93]. The Apriori algorithm discussed in Section 6.2.1 for frequent itemset mining was presented in Agrawal and Srikant [AS94b]. A variation of the algorithm using a similar pruning heuristic was developed independently by Mannila, Tiovonen, and Verkamo

[MTV94]. A joint publication combining these works later appeared in Agrawal, Mannila, Srikant et al. [AMS<sup>+</sup>96]. A method for generating association rules from frequent itemsets is described in Agrawal and Srikant [AS94a].

References for the variations of Apriori described in Section 6.2.3 include the following. The use of hash tables to improve association mining efficiency was studied by Park, Chen, and Yu [PCY95a]. The partitioning technique was proposed by Savasere, Omiecinski, and Navathe [SON95]. The sampling approach is discussed in Toivonen [Toi96]. A dynamic itemset counting approach is given in Brin, Motwani, Ullman, and Tsur [BMUT97]. An efficient incremental updating of mined association rules was proposed by Cheung, Han, Ng, and Wong [CHNW96]. Parallel and distributed association data mining under the Apriori framework was studied by Park, Chen, and Yu [PCY95b]; Agrawal and Shafer [AS96]; and Cheung, Han, Ng, et al. [CHN<sup>+</sup>96]. Another parallel association mining method, which explores itemset clustering using a vertical database layout, was proposed in Zaki, Parthasarathy, Ogihara, and Li [ZPOL97].

Other scalable frequent itemset mining methods have been proposed as alternatives to the Apriori-based approach. FP-growth, a pattern-growth approach for mining frequent itemsets without candidate generation, was proposed by Han, Pei, and Yin [HPY00] (Section 6.2.4). An exploration of hyper structure mining of frequent patterns, called H-Mine, was proposed by Pei, Han, Lu, et al. [PHL+01]. A method that integrates top-down and bottom-up traversal of FP-trees in pattern-growth mining was proposed by Liu, Pan, Wang, and Han [LPWH02]. An array-based implementation of prefix-tree structure for efficient pattern growth mining was proposed by Grahne and Zhu [GZ03b]. Eclat, an approach for mining frequent itemsets by exploring the vertical data format, was proposed by Zaki [Zak00]. A depth-first generation of frequent itemsets by a tree projection technique was proposed by Agarwal, Aggarwal, and Prasad [AAP01]. An integration of association mining with relational database systems was studied by Sarawagi, Thomas, and Agrawal [STA98].

The mining of frequent closed itemsets was proposed in Pasquier, Bastide, Taouil, and Lakhal [PBTL99], where an Apriori-based algorithm called A-Close for such mining was presented. CLOSET, an efficient closed itemset mining algorithm based on the frequent pattern growth method, was proposed by Pei, Han, and Mao [PHM00]. CHARM by Zaki and Hsiao [ZH02] developed a compact vertical TID list structure called *diffset*, which records only the difference in the TID list of a candidate pattern from its prefix pattern. A fast hash-based approach is also used in CHARM to prune nonclosed patterns. CLOSET+ by Wang, Han, and Pei [WHP03] integrates previously proposed effective strategies as well as newly developed techniques such as hybrid tree-projection and item skipping. AFOPT, a method that explores a *right push* operation on FP-trees during the mining process, was proposed by Liu, Lu, Lou, and Yu [LLLY03]. Grahne and Zhu [GZ03b] proposed a prefix-tree–based algorithm integrated with array representation, called FPClose, for mining closed itemsets using a pattern-growth approach.

Pan, Cong, Tung, et al. [PCT+03] proposed CARPENTER, a method for finding closed patterns in long biological data sets, which integrates the advantages of vertical

data formats and pattern growth methods. Mining max-patterns was first studied by Bayardo [Bay98], where MaxMiner, an Apriori-based, level-wise, breadth-first search method, was proposed to find *max-itemset* by performing *superset frequency pruning* and *subset infrequency pruning* for search space reduction. Another efficient method, MAFIA, developed by Burdick, Calimlim, and Gehrke [BCG01], uses vertical bitmaps to compress TID lists, thus improving the counting efficiency. A FIMI (Frequent Itemset Mining Implementation) workshop dedicated to implementation methods for frequent itemset mining was reported by Goethals and Zaki [GZ03a].

The problem of mining interesting rules has been studied by many researchers. The statistical independence of rules in data mining was studied by Piatetski-Shapiro [P-S91]. The interestingness problem of strong association rules is discussed in Chen, Han, and Yu [CHY96]; Brin, Motwani, and Silverstein [BMS97]; and Aggarwal and Yu [AY99], which cover several interestingness measures, including *lift*. An efficient method for generalizing associations to correlations is given in Brin, Motwani, and Silverstein [BMS97]. Other alternatives to the support—confidence framework for assessing the interestingness of association rules are proposed in Brin, Motwani, Ullman, and Tsur [BMUT97] and Ahmed, El-Makky, and Taha [AEMT00].

A method for mining strong gradient relationships among itemsets was proposed by Imielinski, Khachiyan, and Abdulghani [IKA02]. Silverstein, Brin, Motwani, and Ullman [SBMU98] studied the problem of mining causal structures over transaction databases. Some comparative studies of different interestingness measures were done by Hilderman and Hamilton [HH01]. The notion of null transaction invariance was introduced, together with a comparative analysis of interestingness measures, by Tan, Kumar, and Srivastava [TKS02]. The use of *all\_confidence* as a correlation measure for generating interesting association rules was studied by Omiecinski [Omi03] and by Lee, Kim, Cai, and Han [LKCH03]. Wu, Chen, and Han [WCH10] introduced the Kulczynski measure for associative patterns and performed a comparative analysis of a set of measures for pattern evaluation.

## **Advanced Pattern Mining**

Frequent pattern mining has reached far beyond the basics due to substantial research, numerous extensions of the problem scope, and broad application studies. In this chapter, you will learn methods for advanced pattern mining. We begin by laying out a general road map for pattern mining. We introduce methods for mining various kinds of patterns, and discuss extended applications of pattern mining. We include in-depth coverage of methods for mining many kinds of patterns: multilevel patterns, multidimensional patterns, patterns in continuous data, rare patterns, negative patterns, constrained frequent patterns, frequent patterns in high-dimensional data, colossal patterns, and compressed and approximate patterns. Other pattern mining themes, including mining sequential and structured patterns and mining patterns from spatiotemporal, multimedia, and stream data, are considered more advanced topics and are not covered in this book. Notice that pattern mining is a more general term than frequent pattern mining since the former covers rare and negative patterns as well. However, when there is no ambiguity, the two terms are used interchangeably.

## Pattern Mining: A Road Map

Chapter 6 introduced the basic concepts, techniques, and applications of frequent pattern mining using market basket analysis as an example. Many other kinds of data, user requests, and applications have led to the development of numerous, diverse methods for mining patterns, associations, and correlation relationships. Given the rich literature in this area, it is important to lay out a clear road map to help us get an organized picture of the field and to select the best methods for pattern mining applications.

Figure 7.1 outlines a general road map on pattern mining research. Most studies mainly address three pattern mining aspects: the kinds of patterns mined, mining methodologies, and applications. Some studies, however, integrate multiple aspects; for example, different applications may need to mine different patterns, which naturally leads to the development of new mining methodologies.



**Figure 7.1** A general road map on pattern mining research.

Based on pattern diversity, pattern mining can be classified using the following criteria:

■ **Basic patterns:** As discussed in Chapter 6, a frequent pattern may have several alternative forms, including a simple frequent pattern, a closed pattern, or a max-pattern. To review, a **frequent pattern** is a pattern (or itemset) that satisfies a minimum support threshold. A pattern *p* is a **closed pattern** if there is no superpattern *p'* with the same support as *p*. Pattern *p* is a **max-pattern** if there exists no frequent superpattern of *p*. Frequent patterns can also be mapped into **association rules**, or other kinds of rules based on interestingness measures. Sometimes we may also be interested in **infrequent** or **rare patterns** (i.e., patterns that occur rarely but are of critical importance, or **negative patterns** (i.e., patterns that reveal a negative correlation between items).

■ **Based on the** *abstraction* **levels involved in a pattern:** Patterns or association rules may have items or concepts residing at high, low, or multiple abstraction levels. For example, suppose that a set of association rules mined includes the following rules where *X* is a variable representing a customer:

$$buys(X, "computer") \Rightarrow buys(X, "printer")$$
 (7.1)

$$buys(X, "laptop computer") \Rightarrow buys(X, "color laser printer")$$
 (7.2)

In Rules (7.1) and (7.2), the items bought are referenced at different abstraction levels (e.g., "computer" is a higher-level abstraction of "laptop computer," and "color laser printer" is a lower-level abstraction of "printer"). We refer to the rule set mined as consisting of **multilevel association rules**. If, instead, the rules within a given set do not reference items or attributes at different abstraction levels, then the set contains **single-level association rules**.

■ Based on the *number of dimensions* involved in the rule or pattern: If the items or attributes in an association rule or pattern reference only one dimension, it is a **single-dimensional association rule/pattern**. For example, Rules (7.1) and (7.2) are single-dimensional association rules because they each refer to only one dimension, *buys*.¹

If a rule/pattern references two or more dimensions, such as *age*, *income*, and *buys*, then it is a **multidimensional association rule/pattern**. The following is an example of a multidimensional rule:

$$age(X, "20...29") \land income(X, "52K...58K") \Rightarrow buys(X, "iPad").$$
 (7.3)

■ **Based on the** *types of values* **handled in the rule or pattern:** If a rule involves associations between the presence or absence of items, it is a **Boolean association rule**. For example, Rules (7.1) and (7.2) are Boolean association rules obtained from market basket analysis.

If a rule describes associations between quantitative items or attributes, then it is a **quantitative association rule**. In these rules, quantitative values for items or attributes are partitioned into intervals. Rule (7.3) can also be considered a quantitative association rule where the quantitative attributes *age* and *income* have been discretized.

■ Based on the *constraints* or *criteria* used to mine *selective patterns*: The patterns or rules to be discovered can be **constraint-based** (i.e., satisfying a set of user-defined constraints), **approximate**, **compressed**, **near-match** (i.e., those that tally the support count of the near or almost matching itemsets), **top-***k* (i.e., the *k* most frequent itemsets for a user-specified value, *k*), **redundancy-aware top-***k* (i.e., the top-*k* patterns with similar or redundant patterns excluded), and so on.

<sup>&</sup>lt;sup>1</sup>Following the terminology used in multidimensional databases, we refer to each distinct predicate in a rule as a *dimension*.

Alternatively, pattern mining can be classified with respect to the kinds of data and applications involved, using the following criteria:

■ Based on kinds of data and features to be mined: Given relational and data warehouse data, most people are interested in itemsets. Thus, frequent pattern mining in this context is essentially frequent itemset mining, that is, to mine frequent sets of items. However, in many other applications, patterns may involve sequences and structures. For example, by studying the order in which items are frequently purchased, we may find that customers tend to first buy a PC, followed by a digital camera, and then a memory card. This leads to sequential patterns, that is, frequent subsequences (which are often separated by some other events) in a sequence of ordered events.

We may also mine **structural patterns**, that is, frequent *substructures*, in a *structured data set*. Note that *structure* is a general concept that covers many different kinds of structural forms such as directed graphs, undirected graphs, lattices, trees, sequences, sets, single items, or combinations of such structures. Single items are the simplest form of structure. Each element of a general pattern may contain a subsequence, a subtree, a subgraph, and so on, and such containment relationships can be defined recursively. Therefore, structural pattern mining can be considered as the most general form of frequent pattern mining.

- Based on *application domain-specific semantics*: Both data and applications can be very diverse, and therefore the patterns to be mined can differ largely based on their domain-specific semantics. Various kinds of application data include spatial data, temporal data, spatiotemporal data, multimedia data (e.g., image, audio, and video data), text data, time-series data, DNA and biological sequences, software programs, chemical compound structures, web structures, sensor networks, social and information networks, biological networks, data streams, and so on. This diversity can lead to dramatically different pattern mining methodologies.
- Based on *data analysis usages*: Frequent pattern mining often serves as an intermediate step for improved data understanding and more powerful data analysis. For example, it can be used as a feature extraction step for classification, which is often referred to as **pattern-based classification**. Similarly, **pattern-based clustering** has shown its strength at clustering high-dimensional data. For improved data understanding, patterns can be used for semantic annotation or contextual analysis. Pattern analysis can also be used in **recommender systems**, which recommend information items (e.g., books, movies, web pages) that are likely to be of interest to the user based on similar users' patterns. Different analysis tasks may require mining rather different kinds of patterns as well.

The next several sections present advanced methods and extensions of pattern mining, as well as their application. Section 7.2 discusses methods for mining multilevel patterns, multidimensional patterns, patterns and rules with continuous attributes, rare patterns, and negative patterns. Constraint-based pattern mining is studied in

Section 7.3. Section 7.4 explains how to mine high-dimensional and colossal patterns. The mining of compressed and approximate patterns is detailed in Section 7.5. Section 7.6 discusses the exploration and applications of pattern mining. More advanced topics regarding mining sequential and structural patterns, and pattern mining in complex and diverse kinds of data are briefly introduced in Chapter 13.

## Pattern Mining in Multilevel, Multidimensional Space

This section focuses on methods for mining in multilevel, multidimensional space. In particular, you will learn about mining multilevel associations (Section 7.2.1), multidimensional associations (Section 7.2.2), quantitative association rules (Section 7.2.3), and rare patterns and negative patterns (Section 7.2.4). *Multilevel associations* involve concepts at different abstraction levels. *Multidimensional associations* involve more than one dimension or predicate (e.g., rules that relate what a customer *buys* to his or her *age*). *Quantitative association rules* involve numeric attributes that have an implicit ordering among values (e.g., *age*). *Rare patterns* are patterns that suggest interesting although rare item combinations. *Negative patterns* show negative correlations between items.

#### 7.2. Mining Multilevel Associations

For many applications, strong associations discovered at high abstraction levels, though with high support, could be commonsense knowledge. We may want to drill down to find novel patterns at more detailed levels. On the other hand, there could be too many scattered patterns at low or primitive abstraction levels, some of which are just trivial specializations of patterns at higher levels. Therefore, it is interesting to examine how to develop effective methods for mining patterns at multiple abstraction levels, with sufficient flexibility for easy traversal among different abstraction spaces.

**Example 7.1 Mining multilevel association rules.** Suppose we are given the task-relevant set of transactional data in Table 7.1 for sales in an *AllElectronics* store, showing the items purchased for each transaction. The concept hierarchy for the items is shown in Figure 7.2. A concept hierarchy defines a sequence of mappings from a set of low-level concepts to a higher-level, more general concept set. Data can be generalized by replacing low-level concepts within the data by their corresponding higher-level concepts, or *ancestors*, from a concept hierarchy.

Figure 7.2's concept hierarchy has five levels, respectively referred to as levels 0 through 4, starting with level 0 at the root node for all (the most general abstraction level). Here, level 1 includes *computer*, *software*, *printer and camera*, and *computer accessory*; level 2 includes *laptop computer*, *desktop computer*, *office software*, *antivirus software*, etc.; and level 3 includes *Dell desktop computer*, ..., *Microsoft office software*, etc. Level 4 is the most specific abstraction level of this hierarchy. It consists of the raw data values.

**Table 7.1** Task-Relevant Data, D

| TID  | Items Purchased                                                           |
|------|---------------------------------------------------------------------------|
| T100 | Apple 17" MacBook Pro Notebook, HP Photosmart Pro b9180                   |
| T200 | Microsoft Office Professional 2010, Microsoft Wireless Optical Mouse 5000 |
| T300 | Logitech VX Nano Cordless Laser Mouse, Fellowes GEL Wrist Rest            |
| T400 | Dell Studio XPS 16 Notebook, Canon PowerShot SD1400                       |
| T500 | Lenovo ThinkPad X200 Tablet PC, Symantec Norton Antivirus 2010            |
| •••  |                                                                           |



**Figure 7.2** Concept hierarchy for *AllElectronics* computer items.

Concept hierarchies for nominal attributes are often implicit within the database schema, in which case they may be automatically generated using methods such as those described in Chapter 3. For our example, the concept hierarchy of Figure 7.2 was generated from data on product specifications. Concept hierarchies for numeric attributes can be generated using discretization techniques, many of which were introduced in Chapter 3. Alternatively, concept hierarchies may be specified by users familiar with the data such as store managers in the case of our example.

The items in Table 7.1 are at the lowest level of Figure 7.2's concept hierarchy. It is difficult to find interesting purchase patterns in such raw or primitive-level data. For instance, if "Dell Studio XPS 16 Notebook" or "Logitech VX Nano Cordless Laser Mouse" occurs in a very small fraction of the transactions, then it can be difficult to find strong associations involving these specific items. Few people may buy these items together, making it unlikely that the itemset will satisfy minimum support. However, we would expect that it is easier to find strong associations between generalized abstractions of these items, such as between "Dell Notebook" and "Cordless Mouse."

Association rules generated from mining data at multiple abstraction levels are called **multiple-level** or **multilevel** association rules. Multilevel association rules can be

mined efficiently using concept hierarchies under a support-confidence framework. In general, a top-down strategy is employed, where counts are accumulated for the calculation of frequent itemsets at each concept level, starting at concept level 1 and working downward in the hierarchy toward the more specific concept levels, until no more frequent itemsets can be found. For each level, any algorithm for discovering frequent itemsets may be used, such as Apriori or its variations.

A number of variations to this approach are described next, where each variation involves "playing" with the support threshold in a slightly different way. The variations are illustrated in Figures 7.3 and 7.4, where nodes indicate an item or itemset that has been examined, and nodes with thick borders indicate that an examined item or itemset is frequent.

■ **Using uniform minimum support for all levels** (referred to as **uniform support**): The same minimum support threshold is used when mining at each abstraction level. For example, in Figure 7.3, a minimum support threshold of 5% is used throughout (e.g., for mining from "computer" downward to "laptop computer"). Both "computer" and "laptop computer" are found to be frequent, whereas "desktop computer" is not.

When a uniform minimum support threshold is used, the search procedure is simplified. The method is also simple in that users are required to specify only



**Figure 7.3** Multilevel mining with uniform support.



**Figure 7.4** Multilevel mining with reduced support.

one minimum support threshold. An Apriori-like optimization technique can be adopted, based on the knowledge that an ancestor is a superset of its descendants: The search avoids examining itemsets containing any item of which the ancestors do not have minimum support.

The uniform support approach, however, has some drawbacks. It is unlikely that items at lower abstraction levels will occur as frequently as those at higher abstraction levels. If the minimum support threshold is set too high, it could miss some meaningful associations occurring at low abstraction levels. If the threshold is set too low, it may generate many uninteresting associations occurring at high abstraction levels. This provides the motivation for the next approach.

- Using reduced minimum support at lower levels (referred to as reduced support): Each abstraction level has its own minimum support threshold. The deeper the abstraction level, the smaller the corresponding threshold. For example, in Figure 7.4, the minimum support thresholds for levels 1 and 2 are 5% and 3%, respectively. In this way, "computer," "laptop computer," and "desktop computer" are all considered frequent.
- Using item or group-based minimum support (referred to as group-based support): Because users or experts often have insight as to which groups are more important than others, it is sometimes more desirable to set up user-specific, item, or group-based minimal support thresholds when mining multilevel rules. For example, a user could set up the minimum support thresholds based on product price or on items of interest, such as by setting particularly low support thresholds for "camera with price over \$1000" or "Tablet PC," to pay particular attention to the association patterns containing items in these categories.

For mining patterns with mixed items from groups with different support thresholds, usually the lowest support threshold among all the participating groups is taken as the support threshold in mining. This will avoid filtering out valuable patterns containing items from the group with the lowest support threshold. In the meantime, the minimal support threshold for each individual group should be kept to avoid generating uninteresting itemsets from each group. Other interestingness measures can be used after the itemset mining to extract truly interesting rules.

Notice that the Apriori property may not always hold uniformly across all of the items when mining under reduced support and group-based support. However, efficient methods can be developed based on the extension of the property. The details are left as an exercise for interested readers.

A serious side effect of mining multilevel association rules is its generation of many redundant rules across multiple abstraction levels due to the "ancestor" relationships among items. For example, consider the following rules where "laptop computer" is an ancestor of "Dell laptop computer" based on the concept hierarchy of Figure 7.2, and

where *X* is a variable representing customers who purchased items in *AllElectronics* transactions.

$$buys(X, "laptop computer") \Rightarrow buys(X, "HP printer")$$

$$[support = 8\%, confidence = 70\%]$$
(7.4)

$$buys(X, "Dell \ laptop \ computer") \Rightarrow buys(X, "HP \ printer")$$

$$[support = 2\%, confidence = 72\%] \tag{7.5}$$

"If Rules (7.4) and (7.5) are both mined, then how useful is Rule (7.5)? Does it really provide any novel information?" If the latter, less general rule does not provide new information, then it should be removed. Let's look at how this may be determined. A rule R1 is an **ancestor** of a rule R2, if R1 can be obtained by replacing the items in R2 by their ancestors in a concept hierarchy. For example, Rule (7.4) is an ancestor of Rule (7.5) because "laptop computer" is an ancestor of "Dell laptop computer." Based on this definition, a rule can be considered redundant if its support and confidence are close to their "expected" values, based on an ancestor of the rule.

**Example 7.2** Checking redundancy among multilevel association rules. Suppose that Rule (7.4) has a 70% confidence and 8% support, and that about one-quarter of all "laptop computer" sales are for "Dell laptop computers." We may expect Rule (7.5) to have a confidence of around 70% (since all data samples of "Dell laptop computer" are also samples of "laptop computer") and a support of around 2% (i.e.,  $8\% \times \frac{1}{4}$ ). If this is indeed the case, then Rule (7.5) is not interesting because it does not offer any additional information and is less general than Rule (7.4).

#### 7.2.2 Mining Multidimensional Associations

So far, we have studied association rules that imply a single predicate, that is, the predicate *buys*. For instance, in mining our *AllElectronics* database, we may discover the Boolean association rule

$$buys(X, "digital camera") \Rightarrow buys(X, "HP printer").$$
 (7.6)

Following the terminology used in multidimensional databases, we refer to each distinct predicate in a rule as a dimension. Hence, we can refer to Rule (7.6) as a **single-dimensional** or **intradimensional association rule** because it contains a single distinct predicate (e.g., *buys*) with multiple occurrences (i.e., the predicate occurs more than once within the rule). Such rules are commonly mined from transactional data.

Instead of considering transactional data only, sales and related information are often linked with relational data or integrated into a data warehouse. Such data stores are multidimensional in nature. For instance, in addition to keeping track of the items purchased in sales transactions, a relational database may record other attributes associated

with the items and/or transactions such as the item description or the branch location of the sale. Additional relational information regarding the customers who purchased the items (e.g., customer age, occupation, credit rating, income, and address) may also be stored. Considering each database attribute or warehouse dimension as a predicate, we can therefore mine association rules containing *multiple* predicates such as

$$age(X, "20...29") \land occupation(X, "student") \Rightarrow buys(X, "laptop").$$
 (7.7)

Association rules that involve two or more dimensions or predicates can be referred to as **multidimensional association rules**. Rule (7.7) contains three predicates (*age, occupation,* and *buys*), each of which occurs *only once* in the rule. Hence, we say that it has **no repeated predicates**. Multidimensional association rules with no repeated predicates are called **interdimensional association rules**. We can also mine multidimensional association rules with repeated predicates, which contain multiple occurrences of some predicates. These rules are called **hybrid-dimensional association rules**. An example of such a rule is the following, where the predicate *buys* is repeated:

$$age(X, "20...29") \land buys(X, "laptop") \Rightarrow buys(X, "HP printer").$$
 (7.8)

Database attributes can be nominal or quantitative. The values of **nominal** (or categorical) attributes are "names of things." Nominal attributes have a finite number of possible values, with no ordering among the values (e.g., *occupation*, *brand*, *color*). **Quantitative** attributes are numeric and have an implicit ordering among values (e.g., *age*, *income*, *price*). Techniques for mining multidimensional association rules can be categorized into two basic approaches regarding the treatment of quantitative attributes.

In the first approach, *quantitative attributes are discretized using predefined concept hierarchies*. This discretization occurs before mining. For instance, a concept hierarchy for *income* may be used to replace the original numeric values of this attribute by interval labels such as "0..20K," "21K..30K," "31K..40K," and so on. Here, discretization is *static* and predetermined. Chapter 3 on data preprocessing gave several techniques for discretizing numeric attributes. The discretized numeric attributes, with their interval labels, can then be treated as nominal attributes (where each interval is considered a category). We refer to this as **mining multidimensional association rules using static discretization of quantitative attributes**.

In the second approach, *quantitative attributes are discretized or clustered into "bins"* based on the data distribution. These bins may be further combined during the mining process. The discretization process is *dynamic* and established so as to satisfy some mining criteria such as maximizing the confidence of the rules mined. Because this strategy treats the numeric attribute values as quantities rather than as predefined ranges or categories, association rules mined from this approach are also referred to as **(dynamic) quantitative association rules**.

Let's study each of these approaches for mining multidimensional association rules. For simplicity, we confine our discussion to interdimensional association rules. Note that rather than searching for frequent itemsets (as is done for single-dimensional association rule mining), in multidimensional association rule mining we search for

frequent *predicate sets*. A **k-predicate set** is a set containing k conjunctive predicates. For instance, the set of predicates { age, occupation, buys} from Rule (7.7) is a 3-predicate set. Similar to the notation used for itemsets in Chapter 6, we use the notation  $L_k$  to refer to the set of frequent k-predicate sets.

#### 7.2.3 Mining Quantitative Association Rules

As discussed earlier, relational and data warehouse data often involve quantitative attributes or measures. We can discretize quantitative attributes into multiple intervals and then treat them as nominal data in association mining. However, such simple discretization may lead to the generation of an enormous number of rules, many of which may not be useful. Here we introduce three methods that can help overcome this difficulty to discover novel association relationships: (1) a data cube method, (2) a clustering-based method, and (3) a statistical analysis method to uncover exceptional behaviors.

#### **Data Cube-Based Mining of Quantitative Associations**

In many cases quantitative attributes can be discretized before mining using predefined concept hierarchies or data discretization techniques, where numeric values are replaced by interval labels. Nominal attributes may also be generalized to higher conceptual levels if desired. If the resulting task-relevant data are stored in a relational table, then any of the frequent itemset mining algorithms we have discussed can easily be modified so as to find all frequent predicate sets. In particular, instead of searching on only one attribute like *buys*, we need to search through all of the relevant attributes, treating each attribute–value pair as an itemset.

Alternatively, the transformed multidimensional data may be used to construct a data cube. Data cubes are well suited for the mining of multidimensional association rules: They store aggregates (e.g., counts) in multidimensional space, which is essential for computing the support and confidence of multidimensional association rules. An overview of data cube technology was presented in Chapter 4. Detailed algorithms for data cube computation were given in Chapter 5. Figure 7.5 shows the lattice of cuboids defining a data cube for the dimensions age, income, and buys. The cells of an *n*-dimensional cuboid can be used to store the support counts of the corresponding *n*-predicate sets. The base cuboid aggregates the task-relevant data by age, income, and buys; the 2-D cuboid, (age, income), aggregates by age and income, and so on; the 0-D (apex) cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it is possible that a data cube containing the dimensions that are of interest to the user may already exist, fully or partially materialized. If this is the case, we can simply fetch the corresponding aggregate values or compute them using lower-level materialized aggregates, and return the rules needed using a rule generation algorithm. Notice that even in this case, the Apriori property can still be used to prune the search space. If a given k-predicate set has support sup, which does not satisfy minimum support, then further



**Figure 7.5** Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by. The base cuboid contains the three predicates *age, income,* and *buys*.

exploration of this set should be terminated. This is because any more-specialized version of the *k*-itemset will have support no greater than *sup* and, therefore, will not satisfy minimum support either. In cases where no relevant data cube exists for the mining task, we must create one on-the-fly. This becomes an iceberg cube computation problem, where the minimum support threshold is taken as the iceberg condition (Chapter 5).

#### Mining Clustering-Based Quantitative Associations

Besides using discretization-based or data cube-based data sets to generate quantitative association rules, we can also generate *quantitative association rules* by clustering data in the quantitative dimensions. (Recall that objects within a cluster are similar to one another and dissimilar to those in other clusters.) The general assumption is that interesting frequent patterns or association rules are in general found at relatively dense clusters of quantitative attributes. Here, we describe a top-down approach and a bottom-up approach to clustering that finds quantitative associations.

A typical top-down approach for finding clustering-based quantitative frequent patterns is as follows. For each quantitative dimension, a standard clustering algorithm (e.g., *k*-means or a density-based clustering algorithm, as described in Chapter 10) can be applied to find clusters in this dimension that satisfy the minimum support threshold. For each cluster, we then examine the 2-D spaces generated by combining the cluster with a cluster or nominal value of another dimension to see if such a combination passes the minimum support threshold. If it does, we continue to search for clusters in this 2-D region and progress to even higher-dimensional combinations. The Apriori pruning still applies in this process: If, at any point, the support of a combination does not have minimum support, its further partitioning or combination with other dimensions cannot have minimum support either.

A bottom-up approach for finding clustering-based frequent patterns works by first clustering in high-dimensional space to form clusters with support that satisfies the minimum support threshold, and then projecting and merging those clusters in the space containing fewer dimensional combinations. However, for high-dimensional data sets, finding high-dimensional clustering itself is a tough problem. Thus, this approach is less realistic.

# Using Statistical Theory to Disclose Exceptional Behavior

It is possible to discover quantitative association rules that disclose exceptional behavior, where "exceptional" is defined based on a statistical theory. For example, the following association rule may indicate exceptional behavior:

$$sex = female \Rightarrow meanwage = \$7.90/hr (overall\_mean\_wage = \$9.02/hr).$$
 (7.9)

This rule states that the average wage for females is only \$7.90/hr. This rule is (subjectively) interesting because it reveals a group of people earning a significantly lower wage than the average wage of \$9.02/hr. (If the average wage was close to \$7.90/hr, then the fact that females also earn \$7.90/hr would be "uninteresting.")

An integral aspect of our definition involves applying statistical tests to confirm the validity of our rules. That is, Rule (7.9) is only accepted if a statistical test (in this case, a Z-test) confirms that with high confidence it can be inferred that the mean wage of the female population is indeed lower than the mean wage of the rest of the population. (The above rule was mined from a real database based on a 1985 U.S. census.)

An association rule under the new definition is a rule of the form:

$$population\_subset \Rightarrow mean\_of\_values\_for\_the\_subset,$$
 (7.10)

where the mean of the subset is significantly different from the mean of its complement in the database (and this is validated by an appropriate statistical test).

#### 7.2.4 Mining Rare Patterns and Negative Patterns

All the methods presented so far in this chapter have been for mining frequent patterns. Sometimes, however, it is interesting to find patterns that are rare instead of frequent, or patterns that reflect a negative correlation between items. These patterns are respectively referred to as rare patterns and negative patterns. In this subsection, we consider various ways of defining rare patterns and negative patterns, which are also useful to mine.

**Example 7.3** Rare patterns and negative patterns. In jewelry sales data, sales of diamond watches are rare; however, patterns involving the selling of diamond watches could be interesting. In supermarket data, if we find that customers frequently buy Coca-Cola Classic or Diet Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together

is considered a negative (correlated) pattern. In car sales data, a dealer sells a few fuel-thirsty vehicles (e.g., SUVs) to a given customer, and then later sells hybrid mini-cars to the same customer. Even though buying SUVs and buying hybrid mini-cars may be negatively correlated events, it can be interesting to discover and examine such exceptional cases.

An **infrequent** (or **rare**) **pattern** is a pattern with a frequency support that is *below* (or *far below*) a user-specified minimum support threshold. However, since the occurrence frequencies of the majority of itemsets are usually below or even far below the minimum support threshold, it is desirable in practice for users to specify other conditions for rare patterns. For example, if we want to find patterns containing at least one item with a value that is over \$500, we should specify such a constraint explicitly. Efficient mining of such itemsets is discussed under mining multidimensional associations (Section 7.2.1), where the strategy is to adopt multiple (e.g., item- or group-based) minimum support thresholds. Other applicable methods are discussed under constraint-based pattern mining (Section 7.3), where user-specified constraints are pushed deep into the iterative mining process.

There are various ways we could define a negative pattern. We will consider three such definitions.

**Definition 7.1:** If itemsets X and Y are both frequent but rarely occur together (i.e.,  $sup(X \cup Y) < sup(X) \times sup(Y)$ ), then itemsets X and Y are **negatively correlated**, and the pattern  $X \cup Y$  is a **negatively correlated pattern**. If  $sup(X \cup Y) \ll sup(X) \times sup(Y)$ , then X and Y are **strongly negatively correlated**, and the pattern  $X \cup Y$  is a **strongly negatively correlated pattern**.

This definition can easily be extended for patterns containing k-itemsets for k > 2.

A problem with the definition, however, is that it is not *null-invariant*. That is, its value can be misleadingly influenced by null transactions, where a *null-transaction* is a transaction that does not contain any of the itemsets being examined (Section 6.3.3). This is illustrated in Example 7.4.

**Example 7.4** Null-transaction problem with Definition 7.1. If there are a lot of null-transactions in the data set, then the number of null-transactions rather than the patterns observed may strongly influence a measure's assessment as to whether a pattern is negatively correlated. For example, suppose a sewing store sells needle packages *A* and *B*. The store sold 100 packages each of *A* and *B*, but only one transaction contains both *A* and *B*. Intuitively, *A* is negatively correlated with *B* since the purchase of one does not seem to encourage the purchase of the other.

Let's see how the above Definition 7.1 handles this scenario. If there are 200 transactions, we have  $sup(A \cup B) = 1/200 = 0.005$  and  $sup(A) \times sup(B) = 100/200 \times 100/200 = 0.25$ . Thus,  $sup(A \cup B) \ll sup(A) \times sup(B)$ , and so Definition 7.1 indicates that A and B are strongly negatively correlated. What if, instead of only 200 transactions in the database, there are  $10^6$ ? In this case, there are many null-transactions, that is, many contain neither A nor B. How does the definition hold up? It computes  $sup(A \cup B) = 1/10^6$  and  $sup(X) \times sup(Y) = 100/10^6 \times 100/10^6 = 1/10^8$ .

Thus,  $sup(A \cup B) \gg sup(X) \times sup(Y)$ , which contradicts the earlier finding even though the number of occurrences of *A* and *B* has not changed. The measure in Definition 7.1 is not null-invariant, where *null-invariance* is essential for quality interestingness measures as discussed in Section 6.3.3.

**Definition 7.2:** If *X* and *Y* are strongly negatively correlated, then

$$sup(X \cup \overline{Y}) \times sup(\overline{X} \cup Y) \gg sup(X \cup Y) \times sup(\overline{X} \cup \overline{Y}).$$

Is this measure null-invariant?

**Example 7.5** Null-transaction problem with Definition 7.2. Given our needle package example, when there are in total 200 transactions in the database, we have

$$sup(A \cup \overline{B}) \times sup(\overline{A} \cup B) = 99/200 \times 99/200 = 0.245$$
  
$$\gg sup(A \cup B) \times sup(\overline{A} \cup \overline{B}) = 199/200 \times 1/200 \approx 0.005,$$

which, according to Definition 7.2, indicates that A and B are strongly negatively correlated. What if there are  $10^6$  transactions in the database? The measure would compute

$$sup(A \cup \overline{B}) \times sup(\overline{A} \cup B) = 99/10^6 \times 99/10^6 = 9.8 \times 10^{-9}$$

$$\ll sup(A \cup B) \times sup(\overline{A} \cup \overline{B}) = 199/10^6 \times (10^6 - 199)/10^6 \approx 1.99 \times 10^{-4}.$$

This time, the measure indicates that *A* and *B* are positively correlated, hence, a contradiction. The measure is not null-invariant.

As a third alternative, consider Definition 7.3, which is based on the Kulczynski measure (i.e., the average of conditional probabilities). It follows the spirit of interestingness measures introduced in Section 6.3.3.

**Definition 7.3:** Suppose that itemsets X and Y are both frequent, that is,  $sup(X) \ge min\_sup$  and  $sup(Y) \ge min\_sup$ , where  $min\_sup$  is the minimum support threshold. If  $(P(X|Y) + P(Y|X))/2 < \epsilon$ , where  $\epsilon$  is a negative pattern threshold, then pattern  $X \cup Y$  is a **negatively correlated pattern**.

#### **Example 7.6** Negatively correlated patterns using Definition 7.3, based on the Kulczynski measure.

Let's reexamine our needle package example. Let  $min\_sup$  be 0.01% and  $\epsilon = 0.02$ . When there are 200 transactions in the database, we have sup(A) = sup(B) = 100/200 = 0.5 > 0.01% and (P(B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02; thus A and B are negatively correlated. Does this still hold true if we have many more transactions? When there are  $10^6$  transactions in the database, the measure computes  $sup(A) = sup(B) = 100/10^6 = 0.01\% \ge 0.01\%$  and (P(B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02, again indicating that A and B are negatively correlated. This matches our intuition. The measure does not have the null-invariance problem of the first two definitions considered.

Let's examine another case: Suppose that among 100,000 transactions, the store sold 1000 needle packages of *A* but only 10 packages of *B*; however, every time package *B* is

sold, package A is also sold (i.e., they appear in the same transaction). In this case, the measure computes  $(P(B|A) + P(A|B))/2 = (0.01 + 1)/2 = 0.505 \gg 0.02$ , which indicates that A and B are positively correlated instead of negatively correlated. This also matches our intuition.

With this new definition of negative correlation, efficient methods can easily be derived for mining negative patterns in large databases. This is left as an exercise for interested readers.

## Constraint-Based Frequent Pattern Mining

A data mining process may uncover thousands of rules from a given data set, most of which end up being unrelated or uninteresting to users. Often, users have a good sense of which "direction" of mining may lead to interesting patterns and the "form" of the patterns or rules they want to find. They may also have a sense of "conditions" for the rules, which would eliminate the discovery of certain rules that they know would not be of interest. Thus, a good heuristic is to have the users specify such intuition or expectations as *constraints* to confine the search space. This strategy is known as **constraint-based mining**. The constraints can include the following:

- **Knowledge type constraints:** These specify the type of knowledge to be mined, such as association, correlation, classification, or clustering.
- **Data constraints:** These specify the set of task-relevant data.
- Dimension/level constraints: These specify the desired dimensions (or attributes) of the data, the abstraction levels, or the level of the concept hierarchies to be used in mining.
- Interestingness constraints: These specify thresholds on statistical measures of rule interestingness such as support, confidence, and correlation.
- Rule constraints: These specify the form of, or conditions on, the rules to be mined. Such constraints may be expressed as metarules (rule templates), as the maximum or minimum number of predicates that can occur in the rule antecedent or consequent, or as relationships among attributes, attribute values, and/or aggregates.

These constraints can be specified using a high-level declarative data mining query language and user interface.

The first four constraint types have already been addressed in earlier sections of this book and this chapter. In this section, we discuss the use of *rule constraints* to focus the mining task. This form of constraint-based mining allows users to describe the rules that they would like to uncover, thereby making the data mining process more *effective*. In addition, a sophisticated mining query optimizer can be used to exploit the constraints specified by the user, thereby making the mining process more *efficient*.

Constraint-based mining encourages interactive exploratory mining and analysis. In Section 7.3.1, you will study metarule-guided mining, where syntactic rule constraints are specified in the form of rule templates. Section 7.3.2 discusses the use of *pattern space pruning* (which prunes patterns being mined) and *data space pruning* (which prunes pieces of the data space for which further exploration cannot contribute to the discovery of patterns satisfying the constraints).

For pattern space pruning, we introduce three classes of properties that facilitate constraint-based search space pruning: antimonotonicity, monotonicity, and succinctness. We also discuss a special class of constraints, called convertible constraints, where by proper data ordering, the constraints can be pushed deep into the iterative mining process and have the same pruning power as monotonic or antimonotonic constraints. For data space pruning, we introduce two classes of properties—data succinctness and data antimonotonicty—and study how they can be integrated within a data mining process.

For ease of discussion, we assume that the user is searching for association rules. The procedures presented can be easily extended to the mining of correlation rules by adding a correlation measure of interestingness to the support-confidence framework.

#### 7.3. Metarule-Guided Mining of Association Rules

"How are metarules useful?" Metarules allow users to specify the syntactic form of rules that they are interested in mining. The rule forms can be used as constraints to help improve the efficiency of the mining process. Metarules may be based on the analyst's experience, expectations, or intuition regarding the data or may be automatically generated based on the database schema.

**Example 7.7 Metarule-guided mining.** Suppose that as a market analyst for *AllElectronics* you have access to the data describing customers (e.g., customer age, address, and credit rating) as well as the list of customer transactions. You are interested in finding associations between customer traits and the items that customers buy. However, rather than finding *all* of the association rules reflecting these relationships, you are interested only in determining which pairs of customer traits promote the sale of office software. A metarule can be used to specify this information describing the form of rules you are interested in finding. An example of such a metarule is

$$P_1(X, Y) \land P_2(X, W) \Rightarrow buys(X, "office software"),$$
 (7.11)

where  $P_1$  and  $P_2$  are **predicate variables** that are instantiated to attributes from the given database during the mining process, X is a variable representing a customer, and Y and W take on values of the attributes assigned to  $P_1$  and  $P_2$ , respectively. Typically, a user will specify a list of attributes to be considered for instantiation with  $P_1$  and  $P_2$ . Otherwise, a default set may be used.

In general, a metarule forms a hypothesis regarding the relationships that the user is interested in probing or confirming. The data mining system can then search for rules that match the given metarule. For instance, Rule (7.12) matches or **complies with** Metarule (7.11):

$$age(X, "30..39") \land income(X, "41K..60K") \Rightarrow buys(X, "office software").$$
 (7.12)

"How can metarules be used to guide the mining process?" Let's examine this problem closely. Suppose that we wish to mine interdimensional association rules such as in Example 7.7. A metarule is a rule template of the form

$$P_1 \wedge P_2 \wedge \dots \wedge P_l \Rightarrow Q_1 \wedge Q_2 \wedge \dots \wedge Q_r,$$
 (7.13)

where  $P_i$  (i = 1, ..., l) and  $Q_j$  (j = 1, ..., r) are either instantiated predicates or predicate variables. Let the number of predicates in the metarule be p = l + r. To find interdimensional association rules satisfying the template,

- We need to find all frequent *p*-predicate sets,  $L_p$ .
- We must also have the support or count of the l-predicate subsets of  $L_p$  to compute the confidence of rules derived from  $L_p$ .

This is a typical case of mining multidimensional association rules. By extending such methods using the constraint-pushing techniques described in the following section, we can derive efficient methods for metarule-guided mining.

# 7.3.2 Constraint-Based Pattern Generation: Pruning Pattern Space and Pruning Data Space

Rule constraints specify expected set/subset relationships of the variables in the mined rules, constant initiation of variables, and constraints on aggregate functions and other forms of constraints. Users typically employ their knowledge of the application or data to specify rule constraints for the mining task. These rule constraints may be used together with, or as an alternative to, metarule-guided mining. In this section, we examine rule constraints as to how they can be used to make the mining process more efficient. Let's study an example where rule constraints are used to mine hybrid-dimensional association rules.

## **Example 7.8** Constraints for mining association rules. Suppose that *AllElectronics* has a sales multidimensional database with the following interrelated relations:

- item(item\_ID, item\_name, description, category, price)
- sales(transaction\_ID, day, month, year, store\_ID, city)
- trans\_item(item\_ID, transaction\_ID)

Here, the *item* table contains attributes *item\_ID*, *item\_name*, *description*, *category*, and *price*; the *sales* table contains attributes *transaction\_ID* day, *month*, *year*, *store\_ID*, and *city*; and the two tables are linked via the foreign key attributes, *item\_ID* and *transaction\_ID*, in the table *trans\_item*.

Suppose our association mining query is "Find the patterns or rules about the sales of which cheap items (where the sum of the prices is less than \$10) may promote (i.e., appear in the same transaction) the sales of which expensive items (where the minimum price is \$50), shown in the sales in Chicago in 2010."

This query contains the following four constraints: (1) sum(I.price) < \$10, where I represents the  $item\_ID$  of a cheap item; (2)  $min(J.price) \ge \$50$ ), where J represents the  $item\_ID$  of an expensive item; (3) T.city = Chicago; and (4) T.year = 2010, where T represents a  $transaction\_ID$ . For conciseness, we do not show the mining query explicitly here; however, the constraints' context is clear from the mining query semantics.

Dimension/level constraints and interestingness constraints can be applied after mining to filter out discovered rules, although it is generally more efficient and less expensive to use them *during* mining to help prune the search space. Dimension/level constraints were discussed in Section 7.2, and interestingness constraints, such as support, confidence, and correlation measures, were discussed in Chapter 6. Let's focus now on rule constraints.

"How can we use rule constraints to prune the search space? More specifically, what kind of rule constraints can be 'pushed' deep into the mining process and still ensure the completeness of the answer returned for a mining query?"

In general, an efficient frequent pattern mining processor can prune its search space during mining in two major ways: *pruning pattern search space* and *pruning data search space*. The former checks candidate patterns and decides whether a pattern can be pruned. Applying the Apriori property, it prunes a pattern if no superpattern of it can be generated in the remaining mining process. The latter checks the data set to determine whether the particular data piece will be able to contribute to the subsequent generation of satisfiable patterns (for a particular pattern) in the remaining mining process. If not, the data piece is pruned from further exploration. A constraint that may facilitate pattern space pruning is called a *pattern pruning constraint*, whereas one that can be used for data space pruning is called a *data pruning constraint*.

# Pruning Pattern Space with Pattern Pruning Constraints

Based on how a constraint may interact with the pattern mining process, there are five categories of pattern mining constraints: (1) *antimonotonic*, (2) *monotonic*, (3) *succinct*, (4) *convertible*, and (5) *inconvertible*. For each category, we use an example to show its characteristics and explain how such kinds of constraints can be used in the mining process.

The first category of constraints is **antimonotonic**. Consider the rule constraint " $sum(I.price) \le \$100$ " of Example 7.8. Suppose we are using the Apriori framework, which explores itemsets of size k at the kth iteration. If the price summation of the items in a candidate itemset is no less than \$100, this itemset can be pruned from the search space, since adding more items into the set (assuming price is no less than zero) will only make it more expensive and thus will never satisfy the constraint. In other words, if an itemset does not satisfy this rule constraint, none of its supersets can satisfy the constraint. If a rule constraint obeys this property, it is **antimonotonic**. Pruning by antimonotonic constraints can be applied at each iteration of Apriori-style algorithms to help improve the efficiency of the overall mining process while guaranteeing completeness of the data mining task.

The Apriori property, which states that all nonempty subsets of a frequent itemset must also be frequent, is antimonotonic. If a given itemset does not satisfy minimum support, none of its supersets can. This property is used at each iteration of the Apriori algorithm to reduce the number of candidate itemsets examined, thereby reducing the search space for association rules.

Other examples of antimonotonic constraints include " $min(J.price) \ge \$50$ ," " $count(I) \le 10$ ," and so on. Any itemset that violates either of these constraints can be discarded since adding more items to such itemsets can never satisfy the constraints. Note that a constraint such as " $avg(I.price) \le \$10$ " is not antimonotonic. For a given itemset that does not satisfy this constraint, a superset created by adding some (cheap) items may result in satisfying the constraint. Hence, pushing this constraint inside the mining process will not guarantee completeness of the data mining task. A list of SQL primitives—based constraints is given in the first column of Table 7.2. The antimonotonicity of the constraints is indicated in the second column. To simplify our discussion, only existence operators (e.g., =,  $\in$ , but not  $\neq$ ,  $\notin$ ) and comparison (or containment) operators with equality (e.g.,  $\leq$ ,  $\subseteq$ ) are given.

The second category of constraints is **monotonic**. If the rule constraint in Example 7.8 were " $sum(I.price) \ge \$100$ ," the constraint-based processing method would be quite different. If an itemset I satisfies the constraint, that is, the sum of the prices in the set is no less than \$100, further addition of more items to I will increase cost and will always satisfy the constraint. Therefore, further testing of this constraint on itemset I becomes redundant. In other words, if an itemset satisfies this rule constraint, so do all of its supersets. If a rule constraint obeys this property, it is **monotonic**. Similar rule monotonic constraints include " $min(I.price) \le \$10$ ," " $count(I) \ge 10$ ," and so on. The monotonicity of the list of SQL primitives—based constraints is indicated in the third column of Table 7.2.

The third category is **succinct constraints**. For this constraints category, we can *enumerate all and only those sets that are guaranteed to satisfy the constraint*. That is, if a rule constraint is **succinct**, we can directly generate precisely the sets that satisfy it, even before support counting begins. This avoids the substantial overhead of the generate-and-test paradigm. In other words, such constraints are *precounting prunable*. For example, the constraint " $min(J.price) \ge \$50$ " in Example 7.8 is succinct because we can explicitly and precisely generate all the itemsets that satisfy the constraint.

| Constraint                                   | Antimonotonic | Monotonic   | Succinct |
|----------------------------------------------|---------------|-------------|----------|
| $v \in S$                                    | no            | yes         | yes      |
| $S \supseteq V$                              | no            | yes         | yes      |
| $S \subseteq V$                              | yes           | no          | yes      |
| $min(S) \le v$                               | no            | yes         | yes      |
| $min(S) \ge v$                               | yes           | no          | yes      |
| $max(S) \le v$                               | yes           | no          | yes      |
| $max(S) \ge v$                               | no            | yes         | yes      |
| $count(S) \le v$                             | yes           | no          | weakly   |
| $count(S) \ge v$                             | no            | yes         | weakly   |
| $sum(S) \le v \ (\forall a \in S, a \ge 0)$  | yes           | no          | no       |
| $sum(S) \ge v \ (\forall a \in S, a \ge 0)$  | no            | yes         | no       |
| $range(S) \le v$                             | yes           | no          | no       |
| $range(S) \ge v$                             | no            | yes         | no       |
| $avg(S) \theta v, \theta \in \{\leq, \geq\}$ | convertible   | convertible | no       |
| $support(S) \ge \xi$                         | yes           | no          | no       |

no

yes

no

**Table 7.2** Characterization of Commonly Used SQL-Based Pattern Pruning Constraints

 $support(S) \leq \xi$ 

 $all\_confidence(S) \ge \xi$ 

 $all\_confidence(S) < \xi$ 

Specifically, such a set must consist of a nonempty set of items that have a price no less than \$50. It is of the form S, where  $S \neq \emptyset$  is a subset of the set of all items with prices no less than \$50. Because there is a precise "formula" for generating all the sets satisfying a succinct constraint, there is no need to iteratively check the rule constraint during the mining process. The succinctness of the list of SQL primitives—based constraints is indicated in the fourth column of Table  $7.2.^2$ 

yes

no

yes

no

no

The fourth category is **convertible constraints**. Some constraints belong to none of the previous three categories. However, if the items in the itemset are arranged in a particular order, the constraint may become monotonic or antimonotonic with regard to the frequent itemset mining process. For example, the constraint " $avg(I.price) \leq \$10$ " is neither antimonotonic nor monotonic. However, if items in a transaction are added to an itemset in price-ascending order, the constraint becomes *antimonotonic*, because if an itemset I violates the constraint (i.e., with an average price greater than \$10), then further addition of more expensive items into the itemset will never make it

<sup>&</sup>lt;sup>2</sup>For constraint  $count(S) \le v$  (and similarly for  $count(S) \ge v$ ), we can have a member generation function based on a cardinality constraint (i.e.,  $\{X \mid X \subseteq Itemset \land |X| \le v\}$ ). Member generation in this manner is of a different flavor and thus is called *weakly succinct*.

satisfy the constraint. Similarly, if items in a transaction are added to an itemset in price-descending order, it becomes *monotonic*, because if the itemset satisfies the constraint (i.e., with an average price no greater than \$10), then adding cheaper items into the current itemset will still make the average price no greater than \$10. Aside from " $avg(S) \le v$ " and " $avg(S) \ge v$ ," given in Table 7.2, there are many other convertible constraints such as " $variance(S) \ge v$ " " $standard\_deviation(S) \ge v$ ," and so on.

Note that the previous discussion does not imply that every constraint is convertible. For example, " $sum(S) \theta v$ ," where  $\theta \in \{ \leq , \geq \}$  and each element in S could be of any real value, is not convertible. Therefore, there is yet a fifth category of constraints, called **inconvertible constraints**. The good news is that although there still exist some tough constraints that are not convertible, most simple SQL expressions with built-in SQL aggregates belong to one of the first four categories to which efficient constraint mining methods can be applied.

#### **Pruning Data Space with Data Pruning Constraints**

The second way of search space pruning in constraint-based frequent pattern mining is *pruning data space*. This strategy prunes pieces of data if they will not contribute to the subsequent generation of satisfiable patterns in the mining process. We consider two properties: *data succinctness* and *data antimonotonicity*.

Constraints are **data-succinct** if they can be used at the beginning of a pattern mining process to prune the data subsets that cannot satisfy the constraints. For example, if a mining query requires that the mined pattern must contain digital camera, then any transaction that does not contain digital camera can be pruned at the beginning of the mining process, which effectively reduces the data set to be examined.

Interestingly, many constraints are **data-antimonotonic** in the sense that *during the mining process*, if a data entry cannot satisfy a data-antimonotonic constraint based on the current pattern, then it can be pruned. We prune it because it will not be able to contribute to the generation of any superpattern of the current pattern in the remaining mining process.

**Example 7.9 Data antimonotonicity.** A mining query requires that  $C_1 : sum(I.price) \ge \$100$ , that is, the sum of the prices of the items in the mined pattern must be no less than \$100. Suppose that the current frequent itemset, S, does not satisfy constraint  $C_1$  (say, because the sum of the prices of the items in S is \$50). If the remaining frequent items in a transaction  $T_i$  are such that, say,  $\{i_2.price = \$5, i_5.price = \$10, i_8.price = \$20\}$ , then  $T_i$  will not be able to make S satisfy the constraint. Thus,  $T_i$  cannot contribute to the patterns to be mined from S, and thus can be pruned.

Note that such pruning cannot be done at the beginning of the mining because at that time, we do not know yet if the total sum of the prices of all the items in  $T_i$  will be over \$100 (e.g., we may have  $i_3.price = $80$ ). However, during the iterative mining process, we may find some items (e.g.,  $i_3$ ) that are not frequent with S in the transaction data set, and thus they would be pruned. Therefore, such checking and pruning should be enforced at each iteration to reduce the data search space.

Notice that constraint  $C_1$  is a monotonic constraint with respect to pattern space pruning. As we have seen, this constraint has very limited power for reducing the search space in pattern pruning. However, the same constraint can be used for effective reduction of the data search space.

For an antimonotonic constraint, such as  $C_2 : sum(I.price) \le \$100$ , we can prune both pattern and data search spaces at the same time. Based on our study of pattern pruning, we already know that the current itemset can be pruned if the sum of the prices in it is over \$100 (since its further expansion can never satisfy  $C_2$ ). At the same time, we can also prune any remaining items in a transaction  $T_i$  that cannot make the constraint  $C_2$  valid. For example, if the sum of the prices of items in the current itemset S is \$90, any patterns over \$10 in the remaining frequent items in  $T_i$  can be pruned. If none of the remaining items in  $T_i$  can make the constraint valid, the entire transaction  $T_i$  should be pruned.

Consider pattern constraints that are neither antimonotonic nor monotonic such as " $C_3$ :  $avg(I.price) \le 10$ ." These can be data-antimonotonic because if the remaining items in a transaction  $T_i$  cannot make the constraint valid, then  $T_i$  can be pruned as well. Therefore, data-antimonotonic constraints can be quite useful for constraint-based data space pruning.

Notice that search space pruning by data antimonotonicity is confined only to a pattern growth—based mining algorithm because the pruning of a data entry is determined based on whether it can contribute to a specific pattern. Data antimonotonicity cannot be used for pruning the data space if the Apriori algorithm is used because the data are associated with all of the currently active patterns. At any iteration, there are usually many active patterns. A data entry that cannot contribute to the formation of the superpatterns of a given pattern may still be able to contribute to the superpattern of other active patterns. Thus, the power of data space pruning can be very limited for nonpattern growth—based algorithms.

### Mining High-Dimensional Data and Colossal Patterns

The frequent pattern mining methods presented so far handle large data sets having a small number of dimensions. However, some applications may need to mine *high-dimensional data* (i.e., data with hundreds or thousands of dimensions). Can we use the methods studied so far to mine high-dimensional data? The answer is unfortunately negative because the search spaces of such typical methods grow exponentially with the number of dimensions.

Researchers have overcome this difficulty in two directions. One direction extends a pattern growth approach by further exploring the vertical data format to handle data sets with a large number of *dimensions* (also called *features* or *items*, e.g., genes) but a *small* number of *rows* (also called *transactions* or *tuples*, e.g., samples). This is useful in applications like the analysis of gene expressions in bioinformatics, for example, where we often need to analyze microarray data that contain a *large* number of genes

(e.g., 10,000 to 100,000) but only a *small* number of samples (e.g., 100 to 1000). The other direction develops a new mining methodology, called *Pattern-Fusion*, which mines *colossal patterns*, that is, patterns of very long length.

Let's first briefly examine the first direction, in particular, a pattern growth—based row enumeration approach. Its general philosophy is to explore the *vertical data format*, as described in Section 6.2.5, which is also known as **row enumeration**. Row enumeration differs from traditional column (i.e., item) enumeration (also known as the *horizontal data format*). In traditional column enumeration, the data set, D, is viewed as a set of rows, where each row consists of an itemset. In row enumeration, the data set is instead viewed as an itemset, each consisting of a set of *row\_ID*s indicating where the item appears in the traditional view of D. The original data set, D, can easily be transformed into a transposed data set, T. A data set with a small number of rows but a large number of dimensions is then transformed into a transposed data set with a large number of rows but a small number of dimensions. Efficient pattern growth methods can then be developed on such relatively low-dimensional data sets. The details of such an approach are left as an exercise for interested readers.

The remainder of this section focuses on the second direction. We introduce Pattern-Fusion, a new mining methodology that mines *colossal patterns* (i.e., patterns of very long length). This method takes leaps in the pattern search space, leading to a good approximation of the complete set of colossal frequent patterns.

#### 7.4.1 Mining Colossal Patterns by Pattern-Fusion

Although we have studied methods for mining frequent patterns in various situations, many applications have hidden patterns that are tough to mine, due mainly to their immense length or size. Consider bioinformatics, for example, where a common activity is DNA or microarray data analysis. This involves mapping and analyzing very long DNA and protein sequences. Researchers are more interested in finding large patterns (e.g., long sequences) than finding small ones since larger patterns usually carry more significant meaning. We call these large patterns *colossal* patterns, as distinguished from patterns with large support sets. Finding colossal patterns is challenging because incremental mining tends to get "trapped" by an explosive number of midsize patterns before it can even reach candidate patterns of large size. This is illustrated in Example 7.10.

**Example 7.10** The challenge of mining colossal patterns. Consider a  $40 \times 40$  square table where each row contains the integers 1 through 40 in increasing order. Remove the integers on the diagonal, and this gives a  $40 \times 39$  table. Add 20 identical rows to the bottom of the table, where each row contains the integers 41 through 79 in increasing order, resulting in a  $60 \times 39$  table (Figure 7.6). We consider each row as a transaction and set the minimum support threshold at 20. The table has an exponential number (i.e.,  $\binom{40}{20}$ ) of midsize closed/maximal frequent patterns of size 20, but only one that is colossal:  $\alpha = (41,42,\ldots,79)$  of size 39. None of the frequent pattern mining algorithms that we have introduced so far can complete execution in a reasonable amount of time.

| row/col | 1  | 2  | 3  | 4  | <br>38 | 39 |
|---------|----|----|----|----|--------|----|
| 1       | 2  | 3  | 4  | 5  | <br>39 | 40 |
| 2       | 1  | 3  | 4  | 5  | <br>39 | 40 |
| 3       | 1  | 2  | 4  | 5  | <br>39 | 40 |
| 4       | 1  | 2  | 3  | 5  | <br>39 | 40 |
| 5       | 1  | 2  | 3  | 4  | <br>39 | 40 |
|         |    |    |    |    | <br>   |    |
| 39      | 1  | 2  | 3  | 4  | <br>38 | 40 |
| 40      | 1  | 2  | 3  | 4  | <br>38 | 39 |
| 41      | 41 | 42 | 43 | 44 | <br>78 | 79 |
| 42      | 41 | 42 | 43 | 44 | <br>78 | 79 |
|         |    |    |    |    | <br>   |    |
| 60      | 41 | 42 | 43 | 44 | <br>78 | 79 |

**Figure 7.6** A simple colossal patterns example: The data set contains an exponential number of midsize patterns of size 20 but only one that is colossal, namely (41, 42, ..., 79).



Figure 7.7 Synthetic data that contain some colossal patterns but exponentially many midsize patterns.

The pattern search space is similar to that in Figure 7.7, where midsize patterns largely outnumber colossal patterns.

All of the pattern mining strategies we have studied so far, such as Apriori and FP-growth, use an incremental growth strategy by nature, that is, they increase the length of candidate patterns by one at a time. Breadth-first search methods like Apriori cannot bypass the generation of an explosive number of midsize patterns generated,

making it impossible to reach colossal patterns. Even depth-first search methods like FP-growth can be easily trapped in a huge amount of subtrees before reaching colossal patterns. Clearly, a completely new mining methodology is needed to overcome such a hurdle.

A new mining strategy called *Pattern-Fusion* was developed, which fuses a small number of shorter frequent patterns into colossal pattern candidates. It thereby takes leaps in the pattern search space and avoids the pitfalls of both breadth-first and depth-first searches. This method finds a good approximation to the complete set of *colossal* frequent patterns.

The Pattern-Fusion method has the following major characteristics. First, it traverses the tree in a bounded-breadth way. Only a fixed number of patterns in a bounded-size candidate pool are used as starting nodes to search downward in the pattern tree. As such, it avoids the problem of exponential search space.

Second, Pattern-Fusion has the capability to identify "shortcuts" whenever possible. Each pattern's growth is not performed with one-item addition, but with an agglomeration of multiple patterns in the pool. These shortcuts direct Pattern-Fusion much more rapidly down the search tree toward the colossal patterns. Figure 7.8 conceptualizes this mining model.

As Pattern-Fusion is designed to give an approximation to the colossal patterns, a quality evaluation model is introduced to assess the patterns returned by the algorithm. An empirical study verifies that Pattern-Fusion is able to efficiently return high-quality results.

Let's examine the Pattern-Fusion method in more detail. First, we introduce the concept of **core pattern**. For a pattern  $\alpha$ , an itemset  $\beta \subseteq \alpha$  is said to be a  $\tau$ -core pattern of  $\alpha$  if  $\frac{|D_{\alpha}|}{|D_{\beta}|} \geq \tau$ ,  $0 < \tau \leq 1$ , where  $|D_{\alpha}|$  is the number of patterns containing  $\alpha$  in database



**Figure 7.8** Pattern tree traversal: Candidates are taken from a pool of patterns, which results in shortcuts through pattern space to the colossal patterns.

D.  $\tau$  is called the *core ratio*. A pattern  $\alpha$  is  $(d,\tau)$ -robust if d is the maximum number of items that can be removed from  $\alpha$  for the resulting pattern to remain a  $\tau$ -core pattern of  $\alpha$ , that is,

$$d = \max_{\beta} \{ |\alpha| - |\beta| | \beta \subseteq \alpha, \text{ and } \beta \text{ is a } \tau\text{-core pattern of } \alpha \}.$$

**Example 7.11** Core patterns. Figure 7.9 shows a simple transaction database of four distinct transactions, each with 100 duplicates:  $\{\alpha_1 = (abe), \ \alpha_2 = (bcf), \ \alpha_3 = (acf), \ \alpha_4 = (abcfe)\}$ . If we set  $\tau = 0.5$ , then (ab) is a core pattern of  $\alpha_1$  because (ab) is contained only by  $\alpha_1$  and  $\alpha_4$ . Therefore,  $\frac{|D_{\alpha_1}|}{|D_{(ab)}|} = \frac{100}{200} \ge \tau$ .  $\alpha_1$  is (2,0.5)-robust while  $\alpha_4$  is (4,0.5)-robust. The table also shows that larger patterns (e.g., (abcfe)) have far more core patterns than smaller ones (e.g., (bcf)).

From Example 7.11, we can deduce that large or colossal patterns have far more core patterns than smaller patterns do. Thus, a colossal pattern is more robust in the sense that *if a small number of items are removed from the pattern, the resulting pattern would have a similar support set.* The larger the pattern size, the more prominent this robustness. Such a robustness relationship between a colossal pattern and its corresponding core patterns can be extended to multiple levels. The lower-level core patterns of a colossal pattern are called **core descendants**.

Given a small c, a colossal pattern usually has far more core descendants of size c than a smaller pattern. This means that if we were to draw randomly from the complete set of patterns of size c, we would be more likely to pick a core descendant of a colossal pattern than that of a smaller pattern. In Figure 7.9, consider the complete set of patterns of size c = 2, which contains  $\binom{5}{2} = 10$  patterns in total. For illustrative purposes, let's assume that the larger pattern, abcef, is colossal. The probability of being able to randomly draw a core descendant of abcef is 0.9. Contrast this to the probability of randomly drawing a core descendent of smaller (noncolossal) patterns, which is at most 0.3. Therefore, a colossal pattern can be generated by merging a proper set of

| Transactions<br>(# of Transactions) | Core Patterns ( $\tau = 0.5$ )                                                                                                                                                   |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (abe) (100)                         | (abe), (ab), (be), (ae), (e)                                                                                                                                                     |
| (bcf) (100)                         | (bcf), (bc), (bf)                                                                                                                                                                |
| (acf) (100)                         | (acf), (ac), (af)                                                                                                                                                                |
| (abcef) (100)                       | (ab), (ac), (af), (ae), (bc), (bf), (be), (ce), (fe), (e), (abc), (abf), (abe), (ace), (acf), (afe), (bcf), (bce), (bfe), (cfe), (abcf), (abce), (bcfe), (acfe), (abfe), (abcef) |

**Figure 7.9** A transaction database, which contains duplicates, and core patterns for each distinct transaction.

its core patterns. For instance, *abcef* can be generated by merging just two of its core patterns, *ab* and *cef*, instead of having to merge all of its 26 core patterns.

Now, let's see how these observations can help us leap through pattern space more directly toward colossal patterns. Consider the following scheme. First, generate a complete set of frequent patterns up to a user-specified small size, and then randomly pick a pattern,  $\beta$ .  $\beta$  will have a high probability of being a core-descendant of some colossal pattern,  $\alpha$ . Identify all of  $\alpha$ 's core-descendants in this complete set, and merge them. This generates a much larger core-descendant of  $\alpha$ , giving us the ability to leap along a path toward  $\alpha$  in the core-pattern tree,  $T_{\alpha}$ . In the same fashion we select K patterns. The set of larger core-descendants generated is the candidate pool for the next iteration.

A question arises: Given  $\beta$ , a core-descendant of a colossal pattern  $\alpha$ , how can we find the other core-descendants of  $\alpha$ ? Given two patterns,  $\alpha$  and  $\beta$ , the pattern distance between them is defined as  $Dist(\alpha, \beta) = 1 - \frac{|D_{\alpha} \cap D_{\beta}|}{|D_{\alpha} \cup D_{\beta}|}$ . Pattern distance satisfies the triangle inequality.

For a pattern,  $\alpha$ , let  $C_{\alpha}$  be the set of all its core patterns. It can be shown that  $C_{\alpha}$  is bounded in metric space by a "ball" of diameter  $r(\tau)$ , where  $r(\tau) = 1 - \frac{1}{2/\tau - 1}$ . This means that given a core pattern  $\beta \in C_{\alpha}$ , we can identify all of  $\alpha$ 's core patterns in the current pool by posing a range query. Note that in the mining algorithm, each randomly drawn pattern could be a core-descendant of more than one colossal pattern, and as such, when merging the patterns found by the "ball," more than one larger core-descendant could be generated.

From this discussion, the Pattern-Fusion method is outlined in the following two phases:

- **1. Initial Pool:** Pattern-Fusion assumes an initial pool of small frequent patterns is available. This is the complete set of frequent patterns up to a small size (e.g., 3). This initial pool can be mined with any existing efficient mining algorithm.
- **2. Iterative Pattern-Fusion:** Pattern-Fusion takes as input a user-specified parameter, *K*, which is the maximum number of patterns to be mined. The mining process is iterative. At each iteration, *K* seed patterns are randomly picked from the current pool. For each of these *K* seeds, we find all the patterns within a ball of a size specified by *τ*. All the patterns in each "ball" are then fused together to generate a set of superpatterns. These superpatterns form a new pool. If the pool contains more than *K* patterns, the next iteration begins with this pool for the new round of random drawing. As the support set of every superpattern shrinks with each new iteration, the iteration process terminates.

Note that Pattern-Fusion merges small subpatterns of a large pattern instead of incrementally-expanding patterns with single items. This gives the method an advantage to circumvent midsize patterns and progress on a path leading to a potential colossal pattern. The idea is illustrated in Figure 7.10. Each point shown in the metric space



**Figure 7.10** Pattern metric space: Each point represents a core pattern. The core patterns of a colossal pattern are denser than those of a small pattern, as shown within the dotted lines.

represents a core pattern. In comparison to a smaller pattern, a larger pattern has far more core patterns that are close to one another, all of which are bounded by a ball, as shown by the dotted lines. When drawing randomly from the initial pattern pool, we have a much higher probability of getting a core pattern of a large pattern, because the ball of a larger pattern is much denser.

It has been theoretically shown that Pattern-Fusion leads to a good approximation of colossal patterns. The method was tested on synthetic and real data sets constructed from program tracing data and microarray data. Experiments show that the method can find most of the colossal patterns with high efficiency.

## Mining Compressed or Approximate Patterns

A major challenge in frequent pattern mining is the huge number of discovered patterns. Using a minimum support threshold to control the number of patterns found has limited effect. Too low a value can lead to the generation of an explosive number of output patterns, while too high a value can lead to the discovery of only commonsense patterns.

To reduce the huge set of frequent patterns generated in mining while maintaining high-quality patterns, we can instead mine a compressed or approximate set of frequent patterns. *Top-k most frequent closed patterns* were proposed to make the mining process concentrate on only the set of k most frequent patterns. Although interesting, they usually do not epitomize the k most representative patterns because of the uneven frequency distribution among itemsets. *Constraint-based mining* of frequent patterns (Section 7.3) incorporates user-specified constraints to filter out uninteresting patterns. Measures of

pattern/rule *interestingness* and *correlation* (Section 6.3) can also be used to help confine the search to patterns/rules of interest.

In this section, we look at two forms of "compression" of frequent patterns that build on the concepts of closed patterns and max-patterns. Recall from Section 6.2.6 that a *closed pattern* is a lossless compression of the set of frequent patterns, whereas a *max-pattern* is a lossy compression. In particular, Section 7.5.1 explores *clustering-based compression of frequent patterns*, which groups patterns together based on their similarity and frequency support. Section 7.5.2 takes a "*summarization*" approach, where the aim is to derive redundancy-aware top-*k* representative patterns that cover the whole set of (closed) frequent itemsets. The approach considers not only the representativeness of patterns but also their mutual independence to avoid redundancy in the set of generated patterns. The *k* representatives provide compact compression over the collection of frequent patterns, making them easier to interpret and use.

#### 7.5. Mining Compressed Patterns by Pattern Clustering

Pattern compression can be achieved by pattern clustering. Clustering techniques are described in detail in Chapters 10 and 11. In this section, it is not necessary to know the fine details of clustering. Rather, you will learn how the concept of clustering can be applied to compress frequent patterns. Clustering is the automatic process of grouping like objects together, so that objects within a cluster are similar to one another and dissimilar to objects in other clusters. In this case, the objects are frequent patterns. The frequent patterns are clustered using a tightness measure called  $\delta$ -cluster. A representative pattern is selected for each cluster, thereby offering a compressed version of the set of frequent patterns.

Before we begin, let's review some definitions. An itemset X is a **closed frequent itemset** in a data set D if X is frequent and there exists no proper super-itemset Y of X such that Y has the same support count as X in D. An itemset X is a **maximal frequent itemset** in data set X is frequent and there exists no super-itemset X such that  $X \subset Y$  and Y is frequent in X. Using these concepts alone is not enough to obtain a good representative compression of a data set, as we see in Example 7.12.

# **Example 7.12 Shortcomings of closed itemsets and maximal itemsets for compression.** Table 7.3 shows a subset of frequent itemsets on a large data set, where a, b, c, d, e, f represent individual items. There are no closed itemsets here; therefore, we cannot use closed frequent itemsets to compress the data. The only maximal frequent itemset is $P_3$ . However, we observe that itemsets $P_2$ , $P_3$ , and $P_4$ are significantly different with respect to their support counts. If we were to use $P_3$ to represent a compressed version of the data, we would lose this support count information entirely. From visual inspection, consider the two pairs $(P_1, P_2)$ and $(P_4, P_5)$ . The patterns within each pair are very similar with respect to their support and expression. Therefore, intuitively, $P_2$ , $P_3$ , and $P_4$ , collectively, should serve as a better compressed version of the data.

| ID               | Itemsets          | Support |
|------------------|-------------------|---------|
| $\overline{P_1}$ | $\{b,c,d,e\}$     | 205,227 |
| $P_2$            | $\{b,c,d,e,f\}$   | 205,211 |
| $P_3$            | $\{a,b,c,d,e,f\}$ | 101,758 |
| $P_4$            | $\{a,c,d,e,f\}$   | 161,563 |
| $P_5$            | $\{a,c,d,e\}$     | 161,576 |
|                  |                   |         |

**Table 7.3** Subset of Frequent Itemsets

So, let's see if we can find a way of clustering frequent patterns as a means of obtaining a compressed representation of them. We will need to define a good similarity measure, cluster patterns according to this measure, and then select and output only a *representative pattern* for each cluster. Since the set of closed frequent patterns is a lossless compression over the original frequent patterns set, it is a good idea to discover representative patterns over the collection of *closed* patterns.

We can use the following distance measure between closed patterns. Let  $P_1$  and  $P_2$  be two closed patterns. Their supporting transaction sets are  $T(P_1)$  and  $T(P_2)$ , respectively. The **pattern distance** of  $P_1$  and  $P_2$ ,  $P_2$  and  $P_3$ , is defined as

$$Pat\_Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}.$$
 (7.14)

Pattern distance is a valid distance metric defined on the set of transactions. Note that it incorporates the *support* information of patterns, as desired previously.

**Example 7.13 Pattern distance.** Suppose  $P_1$  and  $P_2$  are two patterns such that  $T(P_1) = \{t_1, t_2, t_3, t_4, t_5\}$  and  $T(P_2) = \{t_1, t_2, t_3, t_4, t_6\}$ , where  $t_i$  is a transaction in the database. The distance between  $P_1$  and  $P_2$  is  $Pat_Dist(P_1, P_2) = 1 - \frac{4}{6} = \frac{1}{3}$ .

Now, let's consider the *expression* of patterns. Given two patterns A and B, we say B can be **expressed** by A if  $O(B) \subset O(A)$ , where O(A) is the corresponding itemset of pattern A. Following this definition, assume patterns  $P_1, P_2, \ldots, P_k$  are in the same cluster. The representative pattern  $P_r$  of the cluster should be able to *express* all the other patterns in the cluster. Clearly, we have  $\bigcup_{i=1}^k O(P_i) \subseteq O(P_r)$ .

Using the distance measure, we can simply apply a clustering method, such as k-means (Section 10.2), on the collection of frequent patterns. However, this introduces two problems. First, the quality of the clusters cannot be guaranteed; second, it may not be able to find a representative pattern for each cluster (i.e., the pattern  $P_r$  may not belong to the same cluster). To overcome these problems, this is where the concept of  $\delta$ -cluster comes in, where  $\delta$  ( $0 \le \delta \le 1$ ) measures the tightness of a cluster.

A pattern P is  $\delta$ -covered by another pattern P' if  $O(P) \subseteq O(P')$  and  $Pat_ Dist(P, P') \le \delta$ . A set of patterns form a  $\delta$ -cluster if there exists a representative pattern  $P_r$  such that for each pattern P in the set, P is  $\delta$ -covered by  $P_r$ .

Note that according to the concept of  $\delta$ -cluster, a pattern can belong to multiple clusters. Also, using  $\delta$ -cluster, we only need to compute the distance between each pattern and the representative pattern of the cluster. Because a pattern P is  $\delta$ -covered by a representative pattern  $P_r$  only if  $O(P) \subseteq O(P_r)$ , we can simplify the distance calculation by considering only the supports of the patterns:

$$Pat\_Dist(P, P_r) = 1 - \frac{|T(P) \cap T(P_r)|}{|T(P) \cup T(P_r)|} = 1 - \frac{|T(P_r)|}{|T(P)|}.$$
 (7.15)

If we restrict the representative pattern to be frequent, then the number of representative patterns (i.e., clusters) is no less than the number of maximal frequent patterns. This is because a maximal frequent pattern can only be covered by itself. To achieve more succinct compression, we relax the constraints on representative patterns, that is, we allow the support of representative patterns to be *somewhat* less than *min\_sup*.

For any representative pattern  $P_r$ , assume its support is k. Since it has to *cover* at least one frequent pattern (i.e., P) with support that is at least  $min\_sup$ , we have

$$\delta \ge Pat\_Dist(P, P_r) = 1 - \frac{|T(P_r)|}{|T(P)|} \ge 1 - \frac{k}{min\_sup}.$$
 (7.16)

That is,  $k \ge (1 - \delta) \times min\_sup$ . This is the minimum support for a representative pattern, denoted as  $min\_sup_r$ .

Based on the preceding discussion, the pattern compression problem can be defined as follows: Given a transaction database, a minimum support min\_sup, and the cluster quality measure  $\delta$ , the pattern compression problem is to find a set of representative patterns R such that for each frequent pattern P (with respect to min\_sup), there is a representative pattern  $P_r \in R$  (with respect to min\_sup\_r), which covers P, and the value of |R| is minimized.

Finding a minimum set of representative patterns is an NP-Hard problem. However, efficient methods have been developed that reduce the number of closed frequent patterns generated by orders of magnitude with respect to the original collection of closed patterns. The methods succeed in finding a high-quality compression of the pattern set.

#### 7.5.2 Extracting Redundancy-Aware Top-k Patterns

Mining the top-k most frequent patterns is a strategy for reducing the number of patterns returned during mining. However, in many cases, frequent patterns are not mutually independent but often clustered in small regions. This is somewhat like finding 20 population centers in the world, which may result in cities clustered in a small number of countries rather than evenly distributed across the globe. Instead, most users would prefer to derive the k most interesting patterns, which are not only significant, but also mutually independent and containing little redundancy. A small set of

*k* representative patterns that have not only high significance but also low redundancy are called **redundancy-aware top-***k* **patterns**.

**Example 7.14** Redundancy-aware top-k strategy versus other top-k strategies. Figure 7.11 illustrates the intuition behind *redundancy-aware top-k patterns* versus *traditional top-k patterns* and k-summarized patterns. Suppose we have the frequent patterns set shown in Figure 7.11(a), where each circle represents a pattern of which the significance is colored in grayscale. The distance between two circles reflects the redundancy of the two corresponding patterns: The closer the circles are, the more redundant the respective patterns are to one another. Let's say we want to find three patterns that will best represent the given set, that is, k = 3. Which three should we choose?

Arrows are used to show the patterns chosen if using redundancy-aware top-k patterns (Figure 7.11b), traditional top-k patterns (Figure 7.11c), or k-summarized patterns (Figure 7.11d). In Figure 7.11(c), the **traditional top-k strategy** relies solely on significance: It selects the three most significant patterns to represent the set.

In Figure 7.11(d), the *k*-summarized pattern strategy selects patterns based solely on nonredundancy. It detects three clusters, and finds the most representative patterns to



**Figure 7.11** Conceptual view comparing top-*k* methodologies (where gray levels represent pattern significance, and the closer that two patterns are displayed, the more redundant they are to one another): (a) original patterns, (b) redundancy-aware top-*k* patterns, (c) traditional top-*k* patterns, and (d) *k*-summarized patterns.

be the "centermost" pattern from each cluster. These patterns are chosen to represent the data. The selected patterns are considered "summarized patterns" in the sense that they represent or "provide a summary" of the clusters they stand for.

By contrast, in Figure 7.11(d) the **redundancy-aware top-***k* **patterns** make a trade-off between significance and redundancy. The three patterns chosen here have high significance and low redundancy. Observe, for example, the two highly significant patterns that, based on their redundancy, are displayed next to each other. The redundancy-aware top-*k* strategy selects only one of them, taking into consideration that two would be redundant. To formalize the definition of redundancy-aware top-*k* patterns, we'll need to define the concepts of significance and redundancy.

A **significance measure** S is a function mapping a pattern  $p \in \mathcal{P}$  to a real value such that S(p) is the degree of interestingness (or usefulness) of the pattern p. In general, significance measures can be either objective or subjective. *Objective measures* depend only on the structure of the given pattern and the underlying data used in the discovery process. Commonly used objective measures include support, confidence, correlation, and tf-idf (or term frequency versus inverse document frequency), where the latter is often used in information retrieval. Subjective measures are based on user beliefs in the data. They therefore depend on the users who examine the patterns. A subjective measure is usually a relative score based on user prior knowledge or a background model. It often measures the unexpectedness of a pattern by computing its divergence from the background model. Let S(p,q) be the **combined significance** of patterns p and q, and S(p|q) = S(p,q) - S(q) be the **relative significance** of p given q. Note that the combined significance, S(p,q), means the collective significance of two individual patterns p and q, not the significance of a single super pattern  $p \cup q$ .

Given the significance measure S, the **redundancy** R **between two patterns** p and q is defined as R(p,q) = S(p) + S(q) - S(p,q). Subsequently, we have S(p|q) = S(p) - R(p,q).

We assume that the combined significance of two patterns is no less than the significance of any individual pattern (since it is a collective significance of two patterns) and does not exceed the sum of two individual significance patterns (since there exists redundancy). That is, the redundancy between two patterns should satisfy

$$0 \le R(p,q) \le \min(S(p), S(q)). \tag{7.17}$$

The ideal redundancy measure R(p,q) is usually hard to obtain. However, we can approximate redundancy using distance between patterns such as with the distance measure defined in Section 7.5.1.

The problem of finding redundancy-aware top-k patterns can thus be transformed into finding a k-pattern set that maximizes the marginal significance, which is a well-studied problem in information retrieval. In this field, a document has high marginal relevance if it is both relevant to the query and contains minimal marginal similarity to previously selected documents, where the marginal similarity is computed by choosing the most relevant selected document. Experimental studies have shown this method to be efficient and able to find high-significance and low-redundancy top-k patterns.

### Pattern Exploration and Application

For discovered frequent patterns, is there any way the mining process can return additional information that will help us to better understand the patterns? What kinds of applications exist for frequent pattern mining? These topics are discussed in this section. Section 7.6.1 looks at the automated generation of **semantic annotations** for frequent patterns. These are dictionary-like annotations. They provide semantic information relating to patterns, based on the context and usage of the patterns, which aids in their understanding. Semantically similar patterns also form part of the annotation, providing a more direct connection between discovered patterns and any other patterns already known to the users.

Section 7.6.2 presents an overview of applications of frequent pattern mining. While the applications discussed in Chapter 6 and this chapter mainly involve market basket analysis and correlation analysis, there are many other areas in which frequent pattern mining is useful. These range from data preprocessing and classification to clustering and the analysis of complex data.

#### 7.6. Semantic Annotation of Frequent Patterns

Pattern mining typically generates a huge set of frequent patterns without providing enough information to interpret the meaning of the patterns. In the previous section, we introduced pattern processing techniques to shrink the size of the output set of frequent patterns such as by extracting redundancy-aware top-k patterns or compressing the pattern set. These, however, do not provide any semantic interpretation of the patterns. It would be helpful if we could also generate semantic annotations for the frequent patterns found, which would help us to better understand the patterns.

"What is an appropriate semantic annotation for a frequent pattern?" Think about what we find when we look up the meaning of terms in a dictionary. Suppose we are looking up the term pattern. A dictionary typically contains the following components to explain the term:

- **1.** A set of definitions, such as "a decorative design, as for wallpaper, china, or textile fabrics, etc.; a natural or chance configuration"
- **2.** *Example sentences*, such as "*patterns* of frost on the window; the behavior *patterns* of teenagers, . . . "
- **3.** Synonyms from a thesaurus, such as "model, archetype, design, exemplar, motif, ...."

Analogically, what if we could extract similar types of semantic information and provide such structured annotations for frequent patterns? This would greatly help users in interpreting the meaning of patterns and in deciding on how or whether to further explore them. Unfortunately, it is infeasible to provide such precise semantic definitions for patterns without expertise in the domain. Nevertheless, we can explore how to approximate such a process for frequent pattern mining.

314

**Figure 7.12** Semantic annotation of the pattern "{frequent, pattern}."

In general, the hidden meaning of a pattern can be inferred from patterns with similar meanings, data objects co-occurring with it, and transactions in which the pattern appears. Annotations with such information are analogous to dictionary entries, which can be regarded as annotating each term with structured semantic information. Let's examine an example.

**Example 7.15** Semantic annotation of a frequent pattern. Figure 7.12 shows an example of a semantic annotation for the pattern "{frequent, pattern}." This dictionary-like annotation provides semantic information related to "{frequent, pattern}," consisting of its strongest context indicators, the most representative data transactions, and the most semantically similar patterns. This kind of semantic annotation is similar to natural language processing. The semantics of a word can be inferred from its context, and words sharing similar contexts tend to be semantically similar. The context indicators and the representative transactions provide a view of the context of the pattern from different angles to help users understand the pattern. The semantically similar patterns provide a more direct connection between the pattern and any other patterns already known to the users.

"How can we perform automated semantic annotation for a frequent pattern?" The key to high-quality semantic annotation of a frequent pattern is the successful context modeling of the pattern. For context modeling of a pattern, *p*, consider the following.

- A **context unit** is a basic object in a database, *D*, that carries semantic information and co-occurs with at least one frequent pattern, *p*, in at least one transaction in *D*. A context unit can be an item, a pattern, or even a transaction, depending on the specific task and data.
- The **context of a pattern**, p, is a selected set of weighted context units (referred to as **context indicators**) in the database. It carries semantic information, and co-occurs with a frequent pattern, p. The context of p can be modeled using a vector space model, that is, the context of p can be represented as  $C(p) = \langle w(u_1), v(u_1), v(u_1), v(u_1) \rangle$

 $w(u_2),...,w(u_n)\rangle$ , where  $w(u_i)$  is a weight function of term  $u_i$ . A transaction t is represented as a vector  $\langle v_1, v_2,..., v_m \rangle$ , where  $v_i = 1$  if and only if  $v_i \in t$ , otherwise  $v_i = 0$ .

Based on these concepts, we can define the basic task of **semantic pattern annotation** as follows:

- **1.** Select context units and design a strength weight for each unit to model the contexts of frequent patterns.
- **2.** Design similarity measures for the contexts of two patterns, and for a transaction and a pattern context.
- **3.** For a given frequent pattern, extract the most significant context indicators, representative transactions, and semantically similar patterns to construct a structured annotation.

"Which context units should we select as context indicators?" Although a context unit can be an item, a transaction, or a pattern, typically, frequent patterns provide the most semantic information of the three. There are usually a large number of frequent patterns associated with a pattern, p. Therefore, we need a systematic way to select only the important and nonredundant frequent patterns from a large pattern set.

Considering that the closed patterns set is a lossless compression of frequent pattern sets, we can first derive the closed patterns set by applying efficient closed pattern mining methods. However, as discussed in Section 7.5, a closed pattern set is not compact enough, and pattern compression needs to be performed. We could use the pattern compression methods introduced in Section 7.5.1 or explore alternative compression methods such as microclustering using the Jaccard coefficient (Chapter 2) and then selecting the most representative patterns from each cluster.

"How, then, can we assign weights for each context indicator?" A good weighting function should obey the following properties: (1) the best semantic indicator of a pattern, p, is itself, (2) assign the same score to two patterns if they are equally strong, and (3) if two patterns are independent, neither can indicate the meaning of the other. The meaning of a pattern, p, can be inferred from either the appearance or absence of indicators.

*Mutual information* is one of several possible weighting functions. It is widely used in information theory to measure the mutual independency of two random variables. Intuitively, it measures how much information a random variable tells about the other. Given two frequent patterns,  $p_{\alpha}$  and  $p_{\beta}$ , let  $X = \{0,1\}$  and  $Y = \{0,1\}$  be two random variables representing the appearance of  $p_{\alpha}$  and  $p_{\beta}$ , respectively. **Mutual information** I(X;Y) is computed as

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)},$$
(7.18)

where  $P(x=1,y=1) = \frac{|D_{\alpha} \cap D_{\beta}|}{|D|}$ ,  $P(x=0,y=1) = \frac{|D_{\beta}| - |D_{\alpha} \cap D_{\beta}|}{|D|}$ ,  $P(x=1,y=0) = \frac{|D_{\alpha}| - |D_{\alpha} \cap D_{\beta}|}{|D|}$ , and  $P(x=0,y=0) = \frac{|D| - |D_{\alpha} \cup D_{\beta}|}{|D|}$ . Standard Laplace smoothing can be used to avoid zero probability.

Mutual information favors strongly correlated units and thus can be used to model the indicative strength of the context units selected. With context modeling, pattern annotation can be accomplished as follows:

- 1. To extract the most significant context indicators, we can use cosine similarity (Chapter 2) to measure the semantic similarity between pairs of context vectors, rank the context indicators by the weight strength, and extract the strongest ones.
- **2.** To extract representative transactions, represent each transaction as a context vector. Rank the transactions with semantic similarity to the pattern *p*.
- **3.** To extract semantically similar patterns, rank each frequent pattern, *p*, by the semantic similarity between their context models and the context of *p*.

Based on these principles, experiments have been conducted on large data sets to generate semantic annotations. Example 7.16 illustrates one such experiment.

# **Example 7.16** Semantic annotations generated for frequent patterns from the DBLP Computer Science Bibliography. Table 7.4 shows annotations generated for frequent patterns from a portion of the DBLP data set.<sup>3</sup> The DBLP data set contains papers from the proceedings of 12 major conferences in the fields of database systems, information retrieval, and data mining. Each transaction consists of two parts: the authors and the title of the corresponding paper.

Consider two types of patterns: (1) frequent author or coauthorship, each of which is a frequent itemset of authors, and (2) frequent title terms, each of which is a frequent sequential pattern of the title words. The method can automatically generate dictionary-like annotations for different kinds of frequent patterns. For frequent itemsets like coauthorship or single authors, the strongest context indicators are usually the other coauthors and discriminative title terms that appear in their work. The semantically similar patterns extracted also reflect the authors and terms related to their work. However, these similar patterns may not even co-occur with the given pattern in a paper. For example, the patterns "timos\_k\_selli;" "ramakrishnan\_srikant," and so on, do not co-occur with the pattern "christos\_faloutsos," but are extracted because their contexts are similar since they all are database and/or data mining researchers; thus the annotation is meaningful.

For the title term "information retrieval," which is a sequential pattern, its strongest context indicators are usually the authors who tend to use the term in the titles of their papers, or the terms that tend to coappear with it. Its semantically similar patterns usually provide interesting concepts or descriptive terms, which are close in meaning (e.g., "information retrieval  $\rightarrow$  information filter)."

 $<sup>^{3}</sup>$  www.informatik.uni-trier.de/ $\sim$ ley/db/.

| Pattern               | Туре                                       | Annotations                                                                                                         |  |  |
|-----------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
|                       | Context indicator                          | spiros_papadimitriou; fast; use fractal; graph; use correlate                                                       |  |  |
| christos_faloutsos    | Representative transactions                | multi-attribute hash use gray code                                                                                  |  |  |
|                       | Representative transactions Representative | recovery latent time-series observe sum<br>network tomography particle filter<br>index multimedia database tutorial |  |  |
|                       | transactions                               | macx martimedia database tutoriai                                                                                   |  |  |
|                       | Semantic similar patterns                  | spiros_papadimitriou&christos_faloutsos;<br>spiros_papadimitriou; flip_korn;<br>timos_k_selli;                      |  |  |
|                       |                                            | ramakrishnan_srikant;<br>ramakrishnan_srikant&rakesh_agrawal                                                        |  |  |
|                       | Context indicator                          | w_bruce_croft; web information;<br>monika_ rauch_henzinger;<br>james_p_callan; full-text                            |  |  |
|                       | Representative transactions                | web information retrieval                                                                                           |  |  |
| information retrieval | Representative transactions                | language model information retrieval                                                                                |  |  |
|                       | Semantic similar patterns                  | information use; web information;<br>probabilistic information; information<br>filter;<br>text information          |  |  |

 Table 7.4
 Annotations Generated for Frequent Patterns in the DBLP Data Set

In both scenarios, the representative transactions extracted give us the titles of papers that effectively capture the meaning of the given patterns. The experiment demonstrates the effectiveness of semantic pattern annotation to generate a dictionary-like annotation for frequent patterns, which can help a user understand the meaning of annotated patterns.

The context modeling and semantic analysis method presented here is general and can deal with any type of frequent patterns with context information. Such semantic annotations can have many other applications such as ranking patterns, categorizing and clustering patterns with semantics, and summarizing databases. Applications of the pattern context model and semantical analysis method are also not limited to pattern annotation; other example applications include pattern compression, transaction clustering, pattern relations discovery, and pattern synonym discovery.

#### 7.6.2 Applications of Pattern Mining

We have studied many aspects of frequent pattern mining, with topics ranging from efficient mining algorithms and the diversity of patterns to pattern interestingness, pattern compression/approximation, and semantic pattern annotation. Let's take a moment to consider why this field has generated so much attention. What are some of the application areas in which frequent pattern mining is useful? This section presents an overview of applications for frequent pattern mining. We have touched on several application areas already, such as market basket analysis and correlation analysis, yet frequent pattern mining can be applied to many other areas as well. These range from data preprocessing and classification to clustering and the analysis of complex data.

To summarize, frequent pattern mining is a data mining task that discovers patterns that occur frequently together and/or have some distinctive properties that distinguish them from others, often disclosing something inherent and valuable. The patterns may be itemsets, subsequences, substructures, or values. The task also includes the discovery of rare patterns, revealing items that occur very rarely together yet are of interest. Uncovering frequent patterns and rare patterns leads to many broad and interesting applications, described as follows.

Pattern mining is widely used for **noise filtering and data cleaning** as **preprocessing** in many data-intensive applications. We can use it to analyze microarray data, for instance, which typically consists of tens of thousands of dimensions (e.g., representing genes). Such data can be rather noisy. Frequent pattern data mining can help us distinguish between what is noise and what isn't. We may assume that items that occur frequently together are less likely to be random noise and should not be filtered out. On the other hand, those that occur very frequently (similar to stopwords in text documents) are likely indistinctive and may be filtered out. Frequent pattern mining can help in background information identification and noise reduction.

Pattern mining often helps in the **discovery of inherent structures and clusters hidden in the data**. Given the DBLP data set, for instance, frequent pattern mining can easily find interesting clusters like coauthor clusters (by examining authors who frequently collaborate) and conference clusters (by examining the sharing of many common authors and terms). Such structure or cluster discovery can be used as preprocessing for more sophisticated data mining.

Although there are numerous classification methods (Chapters 8 and 9), research has found that frequent patterns can be used as building blocks in the construction of high-quality classification models, hence called **pattern-based classification**. The approach is successful because (1) the appearance of very infrequent item(s) or itemset(s) can be caused by random noise and may not be reliable for model construction, yet a relatively frequent pattern often carries more information gain for constructing more reliable models; (2) patterns in general (i.e., itemsets consisting of multiple attributes) usually carry more information gain than a single attribute (feature); and (3) the patterns so generated are often intuitively understandable and easy to explain. Recent research has reported several methods that mine interesting, frequent, and discriminative patterns and use them for effective classification. Pattern-based classification methods are introduced in Chapter 9.

Frequent patterns can also be used effectively for **subspace clustering in high-dimensional space**. Clustering is challenging in high-dimensional space, where the distance between two objects is often difficult to measure. This is because such a distance is dominated by the different sets of dimensions in which the objects are residing.

Thus, instead of clustering objects in their full high-dimensional spaces, it can be more meaningful to find clusters in certain subspaces. Recently, researchers have developed subspace-based pattern growth methods that cluster objects based on their common frequent patterns. They have shown that such methods are effective for clustering microarray-based gene expression data. Subspace clustering methods are discussed in Chapter 11.

Pattern analysis is useful in the analysis of spatiotemporal data, time-series data, image data, video data, and multimedia data. An area of spatiotemporal data analysis is the discovery of colocation patterns. These, for example, can help determine if a certain disease is geographically colocated with certain objects like a well, a hospital, or a river. In time-series data analysis, researchers have discretized time-series values into multiple intervals (or levels) so that tiny fluctuations and value differences can be ignored. The data can then be summarized into sequential patterns, which can be indexed to facilitate similarity search or comparative analysis. In image analysis and pattern recognition, researchers have also identified frequently occurring visual fragments as "visual words," which can be used for effective clustering, classification, and comparative analysis.

Pattern mining has also been used for the **analysis of sequence or structural data** such as trees, graphs, subsequences, and networks. In software engineering, researchers have identified consecutive or gapped subsequences in program execution as sequential patterns that help identify software bugs. Copy-and-paste bugs in large software programs can be identified by extended sequential pattern analysis of source programs. Plagiarized software programs can be identified based on their essentially identical program flow/loop structures. Authors' commonly used sentence substructures can be identified and used to distinguish articles written by different authors.

Frequent and discriminative patterns can be used as primitive **indexing structures** (known as graph indices) to help search large, complex, structured data sets and networks. These support a similarity search in graph-structured data such as chemical compound databases or XML-structured databases. Such patterns can also be used for data compression and summarization.

Furthermore, frequent patterns have been used in **recommender systems**, where people can find correlations, clusters of customer behaviors, and classification models based on commonly occurring or discriminative patterns (Chapter 13).

Finally, studies on efficient computation methods in pattern mining mutually enhance many other studies on **scalable computation**. For example, the computation and materialization of **iceberg cubes** using the BUC and Star-Cubing algorithms (Chapter 5) respectively share many similarities to computing frequent patterns by the Apriori and FP-growth algorithms (Chapter 6).

## **7** Summary

■ The **scope** of frequent pattern mining research reaches far beyond the basic concepts and methods introduced in Chapter 6 for mining frequent itemsets and associations. This chapter presented a road map of the field, where topics are organized

- with respect to the kinds of patterns and rules that can be mined, mining methods, and applications.
- In addition to mining for basic frequent itemsets and associations, **advanced forms of patterns** can be mined such as multilevel associations and multidimensional associations, quantitative association rules, rare patterns, and negative patterns. We can also mine high-dimensional patterns and compressed or approximate patterns.
- Multilevel associations involve data at more than one abstraction level (e.g., "buys computer" and "buys laptop"). These may be mined using multiple minimum support thresholds. Multidimensional associations contain more than one dimension. Techniques for mining such associations differ in how they handle repetitive predicates. Quantitative association rules involve quantitative attributes. Discretization, clustering, and statistical analysis that discloses exceptional behavior can be integrated with the pattern mining process.
- Rare patterns occur rarely but are of special interest. Negative patterns are patterns with components that exhibit negatively correlated behavior. Care should be taken in the definition of negative patterns, with consideration of the null-invariance property. Rare and negative patterns may highlight exceptional behavior in the data, which is likely of interest.
- Constraint-based mining strategies can be used to help direct the mining process toward patterns that match users' intuition or satisfy certain constraints. Many user-specified constraints can be pushed deep into the mining process. Constraints can be categorized into pattern-pruning and data-pruning constraints. Properties of such constraints include monotonicity, antimonotonicity, data-antimonotonicity, and succinctness. Constraints with such properties can be properly incorporated into efficient pattern mining processes.
- Methods have been developed for mining patterns in high-dimensional space. This includes a pattern growth approach based on *row enumeration* for mining data sets where the number of dimensions is large and the number of data tuples is small (e.g., for microarray data), as well as mining colossal patterns (i.e., patterns of very long length) by a *Pattern-Fusion* method.
- To reduce the number of patterns returned in mining, we can instead mine compressed patterns or approximate patterns. *Compressed patterns* can be mined with representative patterns defined based on the concept of clustering, and *approximate patterns* can be mined by extracting **redundancy-aware top-***k* **patterns** (i.e., a small set of *k*-representative patterns that have not only high significance but also low redundancy with respect to one another).
- **Semantic annotations** can be generated to help users understand the meaning of the frequent patterns found, such as for textual terms like "{frequent, pattern}." These are dictionary-like annotations, providing semantic information relating to the term. This information consists of *context indicators* (e.g., terms indicating the context of that pattern), the most representative data transactions (e.g., fragments or sentences

- containing the term), and the most *semantically similar patterns* (e.g., "{*maximal, pattern*}" is semantically similar to "{*frequent, pattern*}"). The annotations provide a view of the pattern's context from different angles, which aids in their understanding.
- Frequent pattern mining has many diverse applications, ranging from pattern-based data cleaning to pattern-based classification, clustering, and outlier or exception analysis. These methods are discussed in the subsequent chapters in this book.

## 7.8 Exercises

- 7.1 Propose and outline a **level-shared mining** approach to mining multilevel association rules in which each item is encoded by its level position. Design it so that an initial scan of the database collects the count for each item *at each concept level*, identifying frequent and subfrequent items. Comment on the processing cost of mining multilevel associations with this method in comparison to mining single-level associations.
- 7.2 Suppose, as manager of a chain of stores, you would like to use sales transactional data to analyze the effectiveness of your store's advertisements. In particular, you would like to study how specific factors influence the effectiveness of advertisements that announce a particular category of items on sale. The factors to study are the *region* in which customers live and the *day-of-the-week* and *time-of-the-day* of the ads. Discuss how to design an efficient method to mine the transaction data sets and explain how **multidimensional** and **multilevel mining** methods can help you derive a good solution.
- 7.3 Quantitative association rules may disclose exceptional behaviors within a data set, where "exceptional" can be defined based on statistical theory. For example, Section 7.2.3 shows the association rule

```
sex = female \Rightarrow mean\_wage = \$7.90/hr (overall\_mean\_wage = \$9.02/hr),
```

which suggests an exceptional pattern. The rule states that the average wage for females is only \$7.90 per hour, which is a significantly lower wage than the overall average of \$9.02 per hour. Discuss how such quantitative rules can be discovered systematically and efficiently in large data sets with quantitative attributes.

7.4 In multidimensional data analysis, it is interesting to extract pairs of *similar* cell characteristics associated with substantial changes in measure in a data cube, where cells are considered *similar* if they are related by roll-up (i.e, *ancestors*), drill-down (i.e, *descendants*), or 1-D mutation (i.e, *siblings*) operations. Such an analysis is called **cube gradient analysis**.

Suppose the measure of the cube is *average*. A user poses a set of *probe cells* and would like to find their corresponding sets of *gradient cells*, each of which satisfies a certain gradient threshold. For example, find the set of corresponding gradient cells that have an average sale price greater than 20% of that of the given probe cells. Develop an algorithm than mines the set of constrained gradient cells efficiently in a large data cube.

- 7.5 Section 7.2.4 presented various ways of defining negatively correlated patterns. Consider Definition 7.3: "Suppose that itemsets X and Y are both frequent, that is,  $sup(X) \ge min\_sup$  and  $sup(Y) \ge min\_sup$ , where  $min\_sup$  is the minimum support threshold. If  $(P(X|Y) + P(Y|X))/2 < \epsilon$ , where  $\epsilon$  is a negative pattern threshold, then pattern  $X \cup Y$  is a **negatively correlated pattern**." Design an efficient pattern growth algorithm for mining the set of negatively correlated patterns.
- **7.6** Prove that each entry in the following table correctly characterizes its corresponding **rule constraint** for frequent itemset mining.

|     | Rule Constraint     | Antimonotonic | Monotonic   | Succinct |
|-----|---------------------|---------------|-------------|----------|
| (a) | $v \in S$           | no            | yes         | yes      |
| (b) | $S \subseteq V$     | yes           | no          | yes      |
| (c) | $min(S) \le v$      | no            | yes         | yes      |
| (d) | $range(S) \le v$    | yes           | no          | no       |
| (e) | $variance(S) \le v$ | convertible   | convertible | no       |

- 7.7 The price of each item in a store is non-negative. The store manager is only interested in rules of certain forms, using the constraints given in (a)–(b). For each of the following cases, identify the kinds of **constraints** they represent and briefly discuss how to mine such association rules using **constraint-based pattern mining**.
  - (a) Containing at least one Blu-ray DVD movie.
  - (b) Containing items with a sum of the prices that is less than \$150.
  - (c) Containing one free item and other items with a sum of the prices that is at least \$200.
  - (d) Where the average price of all the items is between \$100 and \$500.
- 7.8 Section 7.4.1 introduced a core Pattern-Fusion method for **mining high-dimensional data**. Explain why a long pattern, if one exists in the data set, is likely to be discovered by this method.
- 7.9 Section 7.5.1 defined a **pattern distance measure** between closed patterns  $P_1$  and  $P_2$  as

$$Pat\_Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|},$$

where  $T(P_1)$  and  $T(P_2)$  are the supporting transaction sets of  $P_1$  and  $P_2$ , respectively. Is this a valid distance metric? Show the derivation to support your answer.

7.10 Association rule mining often generates a large number of rules, many of which may be similar, thus not containing much novel information. Design an efficient algorithm that compresses a large set of patterns into a small compact set. Discuss whether your mining method is robust under different pattern similarity definitions.

- **7.11** Frequent pattern mining may generate many superfluous patterns. Therefore, it is important to develop methods that mine compressed patterns. Suppose a user would like to obtain only *k* patterns (where *k* is a small integer). Outline an efficient method that generates the *k* most representative patterns, where more distinct patterns are preferred over very similar patterns. Illustrate the effectiveness of your method using a small data set.
- 7.12 It is interesting to generate **semantic annotations** for mined patterns. Section 7.6.1 presented a pattern annotation method. Alternative methods are possible, such as by utilizing type information. In the DBLP data set, for example, authors, conferences, terms, and papers form multi-typed data. Develop a method for automated semantic pattern annotation that makes good use of typed information.

## **79** Bibliographic Notes

This chapter described various ways in which the basic techniques of frequent itemset mining (presented in Chapter 6) have been extended. One line of extension is mining multilevel and multidimensional association rules. Multilevel association mining was studied in Srikant and Agrawal [SA95] and Han and Fu [HF95]. In Srikant and Agrawal [SA95], such mining was studied in the context of *generalized association rules*, and an R-interest measure was proposed for removing redundant rules. Mining multidimensional association rules using static discretization of quantitative attributes and data cubes was studied by Kamber, Han, and Chiang [KHC97].

Another line of extension is to mine patterns on numeric attributes. Srikant and Agrawal [SA96] proposed a nongrid-based technique for mining quantitative association rules, which uses a measure of partial completeness. Mining quantitative association rules based on rule clustering was proposed by Lent, Swami, and Widom [LSW97]. Techniques for mining quantitative rules based on *x*-monotone and rectilinear regions were presented by Fukuda, Morimoto, Morishita, and Tokuyama [FMMT96] and Yoda, Fukuda, Morimoto, et al. [YFM<sup>+</sup>97]. Mining (distance-based) association rules over interval data was proposed by Miller and Yang [MY97]. Aumann and Lindell [AL99] studied the mining of quantitative association rules based on a statistical theory to present only those rules that deviate substantially from normal data.

Mining rare patterns by pushing group-based constraints was proposed by Wang, He, and Han [WHH00]. Mining negative association rules was discussed by Savasere, Omiecinski, and Navathe [SON98] and by Tan, Steinbach, and Kumar [TSK05].

Constraint-based mining directs the mining process toward patterns that are likely of interest to the user. The use of metarules as syntactic or semantic filters defining the form of interesting single-dimensional association rules was proposed in Klemettinen, Mannila, Ronkainen, et al. [KMR<sup>+</sup>94]. Metarule-guided mining, where the metarule consequent specifies an action (e.g., Bayesian clustering or plotting) to be applied to the data satisfying the metarule antecedent, was proposed in Shen, Ong, Mitbander,

and Zaniolo [SOMZ96]. A relation-based approach to metarule-guided mining of association rules was studied in Fu and Han [FH95].

Methods for constraint-based mining using pattern pruning constraints were studied by Ng, Lakshmanan, Han, and Pang [NLHP98]; Lakshmanan, Ng, Han, and Pang [LNHP99]; and Pei, Han, and Lakshmanan [PHL01]. Constraint-based pattern mining by data reduction using data pruning constraints was studied by Bonchi, Giannotti, Mazzanti, and Pedreschi [BGMP03] and Zhu, Yan, Han, and Yu [ZYHY07]. An efficient method for mining constrained correlated sets was given in Grahne, Lakshmanan, and Wang [GLW00]. A dual mining approach was proposed by Bucila, Gehrke, Kifer, and White [BGKW03]. Other ideas involving the use of templates or predicate constraints in mining have been discussed in Anand and Kahn [AK93]; Dhar and Tuzhilin [DT93]; Hoschka and Klösgen [HK91]; Liu, Hsu, and Chen [LHC97]; Silberschatz and Tuzhilin [ST96]; and Srikant, Vu, and Agrawal [SVA97].

Traditional pattern mining methods encounter challenges when mining high-dimensional patterns, with applications like bioinformatics. Pan, Cong, Tung, et al. [PCT+03] proposed CARPENTER, a method for finding closed patterns in high-dimensional biological data sets, which integrates the advantages of vertical data formats and pattern growth methods. Pan, Tung, Cong, and Xu [PTCX04] proposed COBBLER, which finds frequent closed itemsets by integrating row enumeration with column enumeration. Liu, Han, Xin, and Shao [LHXS06] proposed TDClose to mine frequent closed patterns in high-dimensional data by starting from the maximal rowset, integrated with a row-enumeration tree. It uses the pruning power of the minimum support threshold to reduce the search space. For mining rather long patterns, called *colossal patterns*, Zhu, Yan, Han, et al. [ZYH+07] developed a core Pattern-Fusion method that leaps over an exponential number of intermediate patterns to reach colossal patterns.

To generate a reduced set of patterns, recent studies have focused on mining compressed sets of frequent patterns. Closed patterns can be viewed as a lossless compression of frequent patterns, whereas maximal patterns can be viewed as a simple lossy compression of frequent patterns. Top-k patterns, such as by Wang, Han, Lu, and Tsvetkov [WHLT05], and error-tolerant patterns, such as by Yang, Fayyad, and Bradley [YFB01], are alternative forms of interesting patterns. Afrati, Gionis, and Mannila [AGM04] proposed to use k-itemsets to cover a collection of frequent itemsets. For frequent itemset compression, Yan, Cheng, Han, and Xin [YCHX05] proposed a profile-based approach, and Xin, Han, Yan, and Cheng [XHYC05] proposed a clustering-based approach. By taking into consideration both pattern significance and pattern redundancy, Xin, Cheng, Yan, and Han [XCYH06] proposed a method for extracting redundancy-aware top-k patterns.

Automated semantic annotation of frequent patterns is useful for explaining the meaning of patterns. Mei, Xin, Cheng, et al. [MXC<sup>+</sup>07] studied methods for semantic annotation of frequent patterns.

An important extension to frequent itemset mining is mining sequence and structural data. This includes mining sequential patterns (Agrawal and Srikant [AS95]; Pei, Han, Mortazavi-Asl, et al. [PHM-A+01, PHM-A+04]; and Zaki [Zak01]); mining frequent espisodes (Mannila, Toivonen, and Verkamo [MTV97]); mining structural

patterns (Inokuchi, Washio, and Motoda [IWM98]; Kuramochi and Karypis [KK01]; and Yan and Han [YH02]); mining cyclic association rules (Özden, Ramaswamy, and Silberschatz [ORS98]); intertransaction association rule mining (Lu, Han, and Feng [LHF98]); and calendric market basket analysis (Ramaswamy, Mahajan, and Silberschatz [RMS98]). Mining such patterns is considered an advanced topic and readers are referred to these sources.

Pattern mining has been extended to help effective data classification and clustering. Pattern-based classification (Liu, Hsu, and Ma [LHM98] and Cheng, Yan, Han, and Hsu [CYHH07]) is discussed in Chapter 9. Pattern-based cluster analysis (Agrawal, Gehrke, Gunopulos, and Raghavan [AGGR98] and H. Wang, W. Wang, Yang, and Yu [WWYY02]) is discussed in Chapter 11.

Pattern mining also helps many other data analysis and processing tasks such as cube gradient mining and discriminative analysis (Imielinski, Khachiyan, and Abdulghani [IKA02]; Dong, Han, Lam, et al. [DHL<sup>+</sup>04]; Ji, Bailey, and Dong [JBD05]), discriminative pattern-based indexing (Yan, Yu, and Han [YYH05]), and discriminative pattern-based similarity search (Yan, Zhu, Yu, and Han [YZYH06]).

Pattern mining has been extended to mining spatial, temporal, time-series, and multimedia data, and data streams. Mining spatial association rules or spatial collocation rules was studied by Koperski and Han [KH95]; Xiong, Shekhar, Huang, et al. [XSH+04]; and Cao, Mamoulis, and Cheung [CMC05]. Pattern-based mining of time-series data is discussed in Shieh and Keogh [SK08] and Ye and Keogh [YK09]. There are many studies on pattern-based mining of multimedia data such as Zaïane, Han, and Zhu [ZHZ00] and Yuan, Wu, and Yang [YWY07]. Methods for mining frequent patterns on stream data have been proposed by many researchers, including Manku and Motwani [MM02]; Karp, Papadimitriou, and Shenker [KPS03]; and Metwally, Agrawal, and El Abbadi [MAE05]. These pattern mining methods are considered advanced topics.

Pattern mining has broad applications. Application areas include computer science such as software bug analysis, sensor network mining, and performance improvement of operating systems. For example, CP-Miner by Li, Lu, Myagmar, and Zhou [LLMZ04] uses pattern mining to identify copy-pasted code for bug isolation. PR-Miner by Li and Zhou [LZ05] uses pattern mining to extract application-specific programming rules from source code. Discriminative pattern mining is used for program failure detection to classify software behaviors (Lo, Cheng, Han, et al. [LCH+09]) and for troubleshooting in sensor networks (Khan, Le, Ahmadi, et al. [KLA+08]).