MATHEMATICS

UNIT

FACTORIZATION AND ALGEBRAIC MANIPULATION

EXERCISE 4.1

- Q.1. Factorize by identifying common factors.
- (i) 6x + 12
- Sol. 6 is common factor = 6(x + 2)
- (ii) $15y^2 + 20y$
- Sol. 5y is common factor
 - =5y(3y+4)
- (iii) $-12x^2 3x$
- Sol. -3x is common factor = -3x(4x + 1)
- $(iv) \quad 4a^2b + 8ab^2$
- Sol. 4ab is common factor = 4ab(a + 2b)
- $(v) \qquad xy 3x^2 + 2x$
- Sol. x is common factor
 - =x(y-3x+2)
- (vi) $3a^2h 9ab^2 + 15ab$
- Sol. 3ab is common factor = 3ab(a 3b + 5)
- Q.2. Factorize and represent pictorially:
- (i) 5x + 15
- Sol. 5 is common factor
 - =5x+15=5(x+3)

(ii)
$$x^2 + 4x + 3$$

Sol. $= x^2 + 3x + x + 3$
 $= x(x+3) + 1(x+3)$
 $= (x+3)(x+1)$

(iii)
$$x^2 + 6x + 8$$

Sol. $= x^2 + 4x + 2x + 8$
 $= x(x + 4) + 2(x + 4)$
 $= (x + 4)(x + 2)$

(iv)
$$x^2 + 4x + 4$$

Sol. $= x^2 + 2x + 2x + 4$
 $= x(x+2) + 2(x+2)$
 $= (x+2)(x+2)$

Q.3. Factorize:

(i)
$$x^2 + x - 12$$

Sol. $= x^2 + 4x - 3x - 12$
 $= x(x + 4) - 3(x + 4)$
 $= (x + 4)(x - 3)$

(ii)
$$x^2 + 7x + 10$$

Sol. $= x^2 + 5x + 2x + 10$

$$= x(x+5) + 2(x+5)$$
$$= (x+5)(x+2)$$

(iii)
$$x^2 - 6x + 8$$

Sol. =
$$x^2 - 4x - 2x + 8$$

= $x(x-4) - 2(x-4)$
= $(x-4)(x-2)$

(iv)
$$x^2 - x - 56$$

Sol. =
$$x^2 - 8x + 7x - 56$$

= $x(x - 8) + 7(x - 8)$
= $(x - 8)(x + 7)$

$$x^{2} - 10x - 24$$

$$x^{2} - 12x + 2x - 24$$

$$= x(x - 12) + 2(x - 12)$$

$$= (x - 12)(x + 2)$$

$$(vi) \quad y^{2} + 4y - 12$$

$$= y^{2} + 6x - 2y - 12$$

$$= y(y + 6) - 2(y + 6)$$

$$= (y + 6)(y - 2)$$

$$(vii) \quad y^{2} + 13y + 36$$

$$Sol. \quad = y^{2} + 4y + 9y + 36$$

$$= y(y + 4) + 9(y + 4)$$

$$= (y + 4)(y + 9)$$

$$(viii) \quad x^{2} - x - 2$$

$$Sol. \quad = x^{2} - 2x + x - 2$$

$$= x(x - 2) + 1(x - 2)$$

$$= (x - 2)(x + 1)$$
Q.4. Factorize:
(i)
$$2x^{2} + 7x + 3$$
Sol.
$$= 2x^{2} + 6x + x + 3$$

(i)
$$2x^2 + 7x + 3$$

Sol. $= 2x^2 + 6x + x + 3$
 $= 2x(x + 3) + 1(x + 3)$
 $= (x + 3)(2x + 1)$

(ii)
$$2x^2 + 11x + 15$$

Sol. $= 2x^2 + 6x + 5x + 15$
 $= 2x(x + 3) + 5(x + 3)$
 $= (x + 3)(2x + 5)$

(iii)

(iii)
$$4x^2 + 13x + 3$$

Sol. $= 4x^2 + 12x + x + 3$
 $= 4x(x+3) + 1(x+3)$
 $= (x+3)(4x+1)$

(iv)
$$3x^2 + 5x + 2$$

Sol. $= 3x^2 + 3x + 2x + 2$
 $= 3x(x + 1) + 2(x + 1)$
 $= (x + 1)(3x + 2)$

(v)
$$3y^2 - 11y + 6$$

Sol. =
$$3y^2 - 9y - 2y + 6$$

= $3y(y-3) - 2(y-3)$
= $(y-3)(3y-2)$

(vi)
$$2y^2 - 5y + 2$$

Sol. =
$$2y^2 - 4y - y + 2$$

= $2y(y-2) - 1(y-2)$
= $(y-2)(2y-1)$

(vii)
$$4z^2 - 11z + 6$$

Sol. =
$$4z^2 - 8z - 3z + 6$$

= $4z(z-2) - 3(z-2)$
= $(z-2)(4z-3)$

(viii)
$$6 + 7x - 3x^2$$

Sol. =
$$6 + 9x - 2x - 3x^2$$

= $3(2 + 3x) - x(2 + 3x)$
= $(2 + 3x)(3 - x)$

EXERCISE 4.2

Q.1. Factorize each of the following expressions:

(i)
$$4x^4 + 81y^4$$

Sol. =
$$(2x^2)^2 + (9y^2)^2 + 2(2x^2)(9y^2) - 2(2x^2)(9y^2)$$

= $(2x^2 + 9y^2)^2 - 36x^2y^2$
= $(2x^2 + 9y^2)^2 - (6xy)^2$
= $(2x^2 + 9y^2 + 6xy)(2x^2 + 9y^2 - 6xy)$

(ii)
$$a^4 + 64b^4$$

Sol. $= (a^2)^2 + (8b^2)^2 + 2(a^2)(8b^2) - 2(a^2)(8b^2)$
 $= (a^2 + 8b^2)^2 - 16a^2b^2$
 $= (a^2 + 8b^2) - (4ab)^2$
 $= (a^2 + 8b^2 + 4ab) (a^2 + 8b^2 - 4ab)$
(iii) $x^4 + 4x^2 + 16$
Sol. $= x^4 + 16 + 2x^2$
 $= (x^2)^2 + 4^2 + 2(x^2)(4) - 2(x^2)(4) + 2x^2$
 $= (x^2 + 4)^2 - 6x^2$
 $= (x^2 + 4)^2 - 6x^2$
 $= (x^2 + 4)^2 - (\sqrt{6}x)^2$
 $= (x^2 + 4 + \sqrt{6}x) (x^2 + 4 - \sqrt{6}x)$
 $= (x^2 + \sqrt{6}x + 4) (x^2 - \sqrt{6}x + 4)$
(iv) $x^4 - 14x^2 + 1$
Sol. $= x^4 + 1 - 14x^2$
 $= (x^2)^2 + 1^2 + 2(x^2)(1) - 2(x^2)(1) - 14x^2$
 $= (x^2 + 1)^2 - 2x^2 - 14x^2$
 $= (x^2 + 1)^2 - (4x)^2$
 $= (x^2 + 1)^2 - (4x)^2$
 $= (x^2 + 1 + 4x)(x^2 + 1 - 4x)$
 $= (x^2 + 4x + 1)(x^2 - 4x + 1)$
(v) $x^4 - 30x^2y^2 + 9y^4$
Sol. $= x^4 + 9y^4 - 30x^2y^2$
 $= (x^2)^2 + (3y^2)^2 + 6x^2y^2 - 36x^2y^2$
 $= (x^2 + 3y^2)^2 - (6xy)^2$
 $= (x^2 + 3y^2 + 6xy) (x^2 + xy^2 - 6xy)$
(vi) $x^4 + 11x^2y^2 + y^4$
Sol. $= x^4 + y^4 - 7x^2y^2$
Here correct question is $x^4 + y^2 - 7x^2y^2$
 $= x^4 + y^4 - 7x^2y^2$
Here correct question is $x^4 + y^2 - 7x^2y^2$
 $= x^4 + y^4 + 2x^2y^2 - 2x^2y^2 - 7x^2y^2$

$$= (x^{2} + y^{2})^{2} - 9x^{2}y^{2}$$

$$= (x^{2} + y^{2} + 3xy) (x^{2} + y^{2} - 3xy)$$

$$= (x^{2} + 3xy + y^{2})(x^{2} - 3xy + y^{2})$$

Q.2. Factorize each of the following expressions:

(i)
$$(x+1)(x+2)(x+3)(x+4)+1$$

Sol. Rearranging the terms

$$= (x + 1)(x + 4)(x + 2)(x + 3) + 1$$
$$= (x^2 + 5x + 4)(x^2 + 5x + 6) + 1$$

Let
$$x^2 + 5x = y$$

$$= (y+4)(y+6)+1$$

$$= y^2 + 4y + 6y + 24 + 1$$

$$= y^2 + 10y + 25$$

$$= y^2 + 5y + 5y + 25$$

$$= y(y+5) + 5(y+5)$$

$$=(y+5)(y+5)$$

$$=(x^2+5x+5)(x^2+5x+5)$$

(ii)
$$(x+2)(x-7)(x-4)(x-1)+17$$

Sol. Terms are already arranged

$$= (x^2 - 7x + 2x - 14)(x^2 - 4x - x + 4) + 17$$

$$= (x^2 - 5x - 14)(x^2 - 5x + 4) + 17$$

Let
$$x^2 - 5x = y$$

$$= (y-14)(y+4)+17$$

$$= y^2 + 4y - 14y - 56 + 17$$

$$= y^2 - 10y - 39$$

$$= y^2 - 13y + 3y - 39$$

$$= y(y-13) + 3(y-13)$$

$$=(y-13)(y+3)$$

$$= (x^2 - 5x - 13)(x^2 - 5x + 3)$$

(iii)
$$(2x^2 + 7x + 3)(2x^2 + 7x + 5) + 1$$

Sol. Let
$$2x^2 + 7x = y$$

$$= (y+3)(y+5)+1$$

$$= y^{2} + 3y + 5y + 15 + 1$$

$$= y^{2} + 8y + 16$$

$$= y(y + 4) + 4(y + 4)$$

$$= (y + 4)(y + 4)$$

$$= (2x^{2} + 7x + 4)(2x^{2} + 7x + 4)$$
(iv) $(3x^{2} + 5x + 3)(3x^{2} + 5x + 5) + 8$
Sol. Let $3x^{2} + 5x = y$

$$= (y + 3)(y + 5) - 3$$

$$= y^{2} + 3y + 5y + 15 - 3$$

$$= y^{2} + 8y + 12$$

$$= y(y + 6) + 2(y + 6)$$

$$= (3x^{2} + 5x + 6)(3x^{2} + 5x + 2)$$

$$= (3x^{2} + 5x + 6)(3x^{2} + 3x + 2x + 2)$$

$$= (3x^{2} + 5x + 6)(3x(x + 1) + 2(x + 1))$$

$$= (3x^{2} + 5x + 6)(3x(x + 1) + 2(x + 1))$$

$$= (3x^{2} + 5x + 6)(3x + 2)(x + 1)$$
(v) $(x + 1)(x + 2)(x + 3)(x + 6) - 3x^{2}$
Sol. Re-arranging terms
$$= (x + 1)(x + 6)(x + 2)(x + 3) - 3x^{2}$$

$$= (x^{2} + x + 6x + 6)(x^{2} + 2x + 3x + 6) - 3x^{2}$$

$$= (x^{2} + 6 + 7x)(x^{2} + 6 + 5x) - 3x^{2}$$
Let $x^{2} + 6 = y$

$$= (y + 7x)(y + 5x) - 3x^{2}$$

$$= y^{2} + 5xy + 7xy + 35x^{2} - 3x^{2}$$

$$= y^{2} + 5xy + 7xy + 35x^{2} - 3x^{2}$$

$$= y^{2} + 12xy + 32x^{2}$$

$$= y^{2} + 8xy + 4xy + 32x^{2}$$

$$= y(y + 8x) + 4x(y + 8x)$$

$$= (y + 8x)(y + 4x)$$

$$= (x^{2} + 6 + 8x)(x^{2} + 6 + 4x)$$

$$= (x^{2} + 6 + 8x)(x^{2} + 6 + 4x)$$

$$= (x^{2} + 8x + 6)(x^{2} + 4x + 6)$$

(vi)
$$(x+1)(x-1)(x+2)(x-2) + 13x^2$$

Sol. Rearranging terms
 $= (x+1)(x+2)(x-1)(x-2) + 13x^2$
 $= (x^2 + x + 2x + 2)(x^2 - x - 2x + 2) + 13x^2$
 $= (x^2 + 3x + 2)(x^2 - 3x + 2) + 13x^2$
 $= (x^2 + 2 + 3x)(x^2 + 2 - 3x) + 13x^2$
Let $x^2 + 2 = y$
 $= (y + 3x)(y - 3x) + 13x^2$
 $= y^2 - 9x^2 + 13x^2$
 $= y^2 + 4x^2$
 $= (x^2 + 2)^2 + 4x^2$
 $= (x^2 + 2)^2 + 4x^2$
 $= x^4 + 4x^2 + 4 - 4x^2 + 8x^2$
 $= (x^2 - 2)^2 + 4x^2$
Q.2. Factorize
(i) $8x^3 + 12x^2 + 6x + 1$
Sol. $= 8x^3 + 1 + 12x^2 + 6x$
 $= 8x^3 + 13 + 6x(2x + 1)$
 $= (2x)^3 + 1^3 + 3(2x)(1)(2x + 1)$
[: $a^3 + b^3 + 3ab(a + b) = (a + b)^3$]
(ii) $27a^3 + 108a^2b + 144ab^2 + 64b^3$
Sol. $= 27a^3 + 64b^3 + 108a^2b + 144ab^2$
 $= (3a)^3 + (4b)^3 + 36ab(3a + 4b)$
 $= (3a)^3 + (4b)^3 + 36ab(3a + 4b)$
 $= (3a + 4b)^3$
(iii) $x^3 + 48x^2y + 108xy^2 + 216y^3$
Sol. $= x^3 + 216y^3 + 48x^2y + 108xy^2$

Sol. =
$$x^3 + 216y^3 + 48x^2y + 108xy^2 + 216y^3$$

= $(x)^3 + (6y)^3 + 12xy(4x + 9y)$
Which cannot be factorized.

(iv)
$$8x^3 - 125y^3 + 150xy^2 - 60x^2y$$

Sol. $= (2x)^3 - (5y)^3 - 60x^2y + 150xy^2$
 $= (2x)^3 - (5y)^3 - 30xy(x - 5y)$
 $= (2x)^3 - (5y)^3 - 3(2x)(5y)(x - 5y)$
 $\therefore a^3 - b^3 - 3ab(a - b) = (a - b)^3$
Q.3. Factorize:

(i)
$$125a^3 - 1$$

Sol. $= (5a)^3 - 1^3$
 $[: a^3 - b^3 = (a - b)(a^2 + ab + b^2)]$
 $= (5a - 1)((5a)^2 + (5a)(1) + 1^2)$

$$= (5a-1)(25a^2+5a+1)$$
(ii) $64x^3+125$

Sol. =
$$(4x)^3 + (5)^3$$

[: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$]
= $(4x + 5)((4x)^2 - (4x)(5) + 5^2)$
= $(4x + 5)(16x^2 - 20x + 25)$

(iii)
$$x^6 - 27$$

Sol. =
$$(x^2)^3 - (3)^3$$

= $(x^2 - 3)((x^2)^2 + (x^2)(3) + 3^2)$
= $(x^2 - 3)(x^4 + 3x^2 + 9)$

(iv)
$$1000a^3 + 1$$

Sol. =
$$(10x)^3 + 1^3$$

= $(10x + 1)((10x)^2 - (10x)(1) + 1^2)$
= $(10x + 1)(100x^2 - 10x + 1)$

(v)
$$343x^3 + 216$$

Sol. =
$$(7x)^3 + (6)^3$$

= $(7x + 6)((7x)^2 - (7x)(6) + 6^2)$
= $(7x + 6)(49x^2 - 42x + 36)$

(vi)
$$27 - 512y^3$$

Sol. =
$$(3)^3 - (8y)^3$$

= $(3 - 8y)(3^2 + 3(8y) + (8y)^2)$
= $(3 - 8y)(9 + 24y + 64y^3)$

EXERCISE 4.3

(i)
$$21x^2y, 35xy^2$$

Sol.
$$21x^{2}y = 3 \times 7 \times x \times x \times y$$
$$35xy^{2} = 5 \times 7 \times x \times y \times y$$

Common factorization

$$=7 \times x \times y$$

$$HCF = 7xy$$

(ii)
$$4x^2 - 9y^2$$
, $2x^2 - 3xy$

Sol.
$$4x^2 - 9y^2 = (2x)^2 - (3y)^2$$

= $(2x + 3y)(2x - 3y)$

$$2x^2 - 3xy = y(2x - 3y)$$

Common factorization = 2x - 3y

$$HCF = 2x - 3y$$

(iii)
$$x^3 - 1, x^2 + x + 1$$

Sol.
$$x^3 - 1 = x^3 - 1^3$$

= $(x - 1)(x^2 + x + 1)$

Common factorization = $x^2 + x + 1$

$$HCF = x^2 + x + 1$$

HCF = a(a+3)

(iv)
$$a^3 + 2a^2 - 3a$$
, $2a^3 + 5a^2 - 3a$

Sol.

$$a^{3} + 2a^{2} - 3a$$

$$= a(a^{2} + 2a - 3)$$

$$= a(a^{2} + 3a - a - 3)$$

$$= a(a(a + 3) - 1(a + 3))$$

$$= a(a + 3)(a - 1)$$
Common factor = a(a + 3)
$$2a^{3} + 5a^{2} - 3a$$

$$= a(2a^{2} + 5a - 3)$$

$$= a(2a^{2} + 6a - a^{-3})$$

$$= a(2a(a + 3) - 1(a + 3))$$

$$= a(a + 3)(2a - 1)$$

$$t^{2} + 3t - 4, t^{2} + 5t + 4, t^{2} - 1$$

$$t^{2} + 3t - 4 = t^{2} + 4t - t - 4$$

$$= t(t + 4) - 1(t + 4)$$

$$= (t + 4)(t - 1)$$

$$t^{2} + 5t + 4 = t^{2} + 4t + t + 4$$

$$= t(t + 4) + 1(t + 4)$$

$$= (t + 4)(t + 1)$$

$$t^{2} - 1 = t^{2} - 1^{2}$$

$$= (t + 1)(t - 1)$$
Common factor = 1
$$HCF = 1$$

$$(vi) \quad x^{2} + 15x + 56, x^{2} + 5x - 24, x^{2} + 8x$$
Sol.
$$x^{2} + 15x + 56 = x^{2} + 7x + 8x + 56$$

$$= x(x + 7) + 8(x + 7)$$

$$= (x + 7)(x + 8)$$

$$x^{2} + 5x - 24 = x^{2} + 8x - 3x - 24$$

$$= x(x + 8) - 3(x + 8)$$

$$= (x + 8)(x - 3)$$

$$x^{2} + 8x = x(x + 8)$$
Common factor = x + 8

Common factor = x + 8

$$HCF = x + 8$$

Find HCF of the following expressions by using Q.2. division method.

(i)
$$27x^3 + 9x^2 - 3x - 9$$
, $3x - 2$
Sol. $9x^2 + 9x + 5$
 $3x - 2$) $27x^3 + 9x^2 - 3x - 9$
 $27x^3 \mp 18x^2$
 $27x^2 - 3x - 9$
 $27x^2 \mp 18x$
 $15x - 9$
 $15x \mp 10$

Since remainder is not zero.

(ii)
$$x^3 - 9x^2 + 21x - 15, x^2 - 4x + 3$$

Sol.

$$x^{2} - 4x + 3) x^{3} - 9x^{2} + 21x - 15$$

$$-x^{3} + 4x^{2} + 3x$$

$$-5x^{2} + 18x - 15$$

$$+5x^{2} + 20x + 15$$

$$-2x$$

$$HCF = 1$$

(iii)
$$2x^3 + 2x^2 + 2x + 2$$
, $6x^3 + 12x^2 + 6x + 12$

Sol.

$$2x^{3} + 2x^{2} + 2x + 2) 6x^{3} + 12x^{2} + 6x + 12$$

$$-6x^{3} + 6x^{2} + 6x + 6$$

$$6x^2 + 6$$

$$6(x^{2}+1)) 2x^{3} + 2x^{2} + 2x + 2$$

$$2x^{3} + 2x$$

$$2x^{2} + 2$$

$$2(x^{2}+1)) x^{2}+1$$

$$-x^{2}+1$$

$$HCF = x^2 + 1$$

(iv)
$$2x^3 - 4x^2 + 6x$$
, $x^3 - 2x$, $3x^2 - 6x$

Sol.
$$2x(x^2-2x+3)$$
, $x(x^2-2)$, $3x(x-2)$
As x is common in all factorization, so x is $\mathbb{R}^{|X|}$

Q.3. Find LCM of the following expressions by using prime factorization method.

(i)
$$2a^2b, 4ab^2, 6ab$$

(i)
$$2a^2b = 2 \times a \times a \times b$$

 $4ab^2 = 2 \times 2 \times a \times b \times b$
 $6ab = 2 \times 3 \times a \times b$

Common factors =
$$2 \times a \times b = 2ab$$

Non-common factors = $2 \times a \times b \times 3 = 6ab$

$$LCM = 2ab \times 6ab$$
$$= 12a^2b^2$$

(ii)
$$x^2 + x$$
, $x^3 + x^2$

Sol.
$$x^3 + x^2 = x^2(x+1)$$

Common factors = x(x + 1)

Non-common factors = x

So, LCM =
$$x \times x(x+1)$$

= $x^2(x+1)$

(iii)
$$a^2 - 4a + 4$$
, $a^2 - 2a$

Sol.
$$a^2 - 4a + 4 = (a - 2)^2$$

 $a^2 - 2a = a(a - 2)$

Common factors =
$$a - 2$$

Non-common factors = a(a-2)

LCM =
$$(a-2) \times a(a-2)$$

= $a(a-2)^2$

(iv)
$$x^4 - 16$$
, $x^3 - 4x$

Sol.
$$x^4 - 16 = (x^2)^2 - 4^2$$

 $= (x^2 + 4)(x^2 - 4)$
 $= (x^2 + 4)(x + 2)(x - 2)$
 $x^3 - 4x = x(x^2 - 4) = x(x + 2)(x - 2)$

Common factors =
$$(x + 2)(x - 2)$$

LCM =
$$x(x^2 + 4)(x^2 - 4)$$

= $x(x^4 - 16)$

(v)
$$16-4x^2, x^2+x-6, 4-x^2$$

Sol. $16-4x^2 = 4(4-x^2)$
 $= 4(2+x)(2-x)$
 $x^2+x-6=x^2+3x-2x-6$
 $= x(x+3)-2(x+3)$
 $= (x+3)(x-2)$
 $= (-x-3)(2-x)$
 $4-x^2 = 2^2-x^2$

Common factorization = 2 - x

=(2+x)(2-x)

Non-common factorization = 4(2 + x)(-x - 3)

LCM =
$$4(2 + x)(-x - 3)(2 - x)$$

= $4(2 + x)(x + 3)(x - 2)$
= $4(x + 2)(x - 2)(x + 3)$
= $4(x^2 - 4)(x + 3)$

4. The HCF of two polynomials is y - 7 and their LCM is $y^3 - 10y^2 + 11y + 70$. If one of the polynomials is $y^3 - 5y - 14$, find the other.

Sol. HCF =
$$y - 7$$

LCM = $y^3 - 10y^2 + 11y + 70$
One polynomial = $y^2 - 5y - 14$
Other polynomial = ?

One polynomial \times other polynomial = HCF \times LCM

Other polynomial
$$= \frac{HCF > LCM}{\text{one polynomial}}$$
$$= \frac{(y-7)(y^3 - 10y^2 + 11y + 70)}{y^2 - 5y - 14}$$

Other polynomial =
$$(y-7)(y-5)$$

= $y^2 - 7y - 5y + 35$
= $y^2 - 12y + 35$

- The LCM and HCF of two polynomial p(x) and q(x) are $36x^3(x + a)(x^3 a^3)$ and $x^2(x a)$ respectively. If $p(x) = 4x^2(x^2 a^2)$, find q(x).
- Sol. LCM = $36x^3(x + a)(x^3 a^3)$ HCF = $x^2(x - a)$ $p(x) = 4x^2(x^2 - a^2)$ q(x) = ?

We know that

$$p(x) \times q(x) = HCF \times LCM$$

$$q(x) = \frac{HCF \times LCM}{p(x)}$$

$$q(x) = \frac{x^{2}(x - a)(36x^{3})(x + a)(x^{3} - a^{3})}{4x^{2}(x^{2} - a^{2})}$$

$$= \frac{(x-a)(x+a)9x^3(x^3-a^3)}{(x^2-a^2)}$$

$$= \frac{9x^3(x^2-a^2)(x^3-a^3)}{(x^2-a^2)}$$

$$q(x) = 9x^3(x^3-a^3)$$

- The HCF and LCM of two polynomials is (x + a) and 6. $12x^2(x+a)(x^2-a^2)$ respectively. Find the product of the two polynomials.
- Sol. HCF = x + a $LCM = 12x^{2}(x + a)(x^{2} - a^{2})$ Let the polynomials be p(x) and q(x)

Then
$$p(x) \times q(x) = LCM \times HCF$$

= $12x^2(x+a)(x^2-a^2) \times (x+a)$
= $12x^2(x+a)(x+a)(x-a)(x+a)$
= $12x^2(x+a)^3(x-a)$

EXERCISE 4.4

- Q.1. Find the square root of the following polynomials by factorization method:
- $x^2 8x + 16$ (i) ·

Sol. =
$$x^2 - 4x - 4x + 16$$

= $x(x-4) - 4(x-4)$
= $(x-4)(x-4)$
= $(x-4)^2$
Taking square root = $-1\sqrt{x^2-4}$

Taking square root
$$= \pm \sqrt{(x-4)^2}$$

 $= \pm (x-4)$

(ii)
$$9x^2 + 12x + 4$$

Sol. =
$$9x^2 + 6x + 6x + 4$$

= $3x(3x + 2) + 2(3x + 2)$
= $(3x + 2)(3x + 2)$
= $(3x + 2)^2$
Taking square root = $\pm \sqrt{(3x + 2)^2}$
= $\pm (3x + 2)$

(iii)
$$36a^2 + 84a + 49$$

Sol. =
$$(6a)^2 + (7)^2 + 2(6a)(7)$$

= $(6a + 7)^2$ [: $a^2 + b^2 + 2ab = (a + b)^2$]
Taking square root = $\pm \sqrt{(6a + 7)^2}$
= $\pm (6a + 7)$

Sol. =
$$10(4x^2 + 12x + 9)$$

= $10((2x)^2 + (3)^2 + 2(2x)(3))$
= $10(2x + 3)^2$

Taking square root $= +\sqrt{10}(2x + 3)$

Find the square root of the following polynomials by Q.2. division method:

(i)
$$4x^4 - 28x^3 + 37x^2 + 42x + 9$$

Sol.

So, Square root is = $\pm (2x^2 - 7x - 3)$

Q.3. An investor's return R(x) in rupees after investing x thousand rupees is given by quadratic expression.

$$R(x) = -x^2 + 6x - 8$$

Factor the expression and find the investment levels that result in zero return.

Sol.
$$R(x) = -x^{2} + 6x - 8$$

$$= -x^{2} + 4x + 2x - 8$$

$$= -x(x - 4) + 2(x - 4)$$

$$= (-x + 2)(x - 4)$$

$$= (2 - x)(x - 4)$$

$$= (2 - x)(x - 4)$$

Put
$$R(x) = 0$$

$$\Rightarrow (2-x)(x-4) = 0$$

$$\Rightarrow 2-x = 0, x-4 = 0$$

x = 2, x = 4

Q.4. A company's profit P(x) in rupees from selling x units of a product is modeled by the cubic expression:

$$P(x) = x^3 - 15x^2 + 75x - 125$$

Find the break-even point(s), where the profit is zero.

Soil.
$$p(x) = x^3 - 15x^2 + 75x - 125$$

Put x = +5 above

$$p(-5) = (+5)^3 - 15(+5)^2 + 75(+5) - 125$$
$$= +125 - 15 \times 25 + 375 - 125$$
$$= -375 + 375 = 0$$

So (x - 5) is a factor of p(x).

$$x^{2} - 10x + 25$$

$$x - 5) x^{3} - 15x^{2} + 75y - 125$$

$$-x^{3} \mp 5x^{2}$$

$$-10x^{2} + 75x - 125$$

$$\mp 10x^{2} \pm 50x$$

$$25x - 125$$

$$-25x \mp 125$$

×

$$= x^2 - 10x + 25$$
$$= (x - 5)^2$$

So

$$p(x) = x^3 - 15x^2 + 75x - 125$$
$$= (x - 5)(x - 5)(x - 5)$$

At

$$x = 5$$

Profit is zero.

Q.5. The potential energy V(x) in an electric field varies as a cubic function of distance x, given by:

$$V(x) = 2x^3 - 6x^2 + 4x$$

Determine where the potential energy is zero.

Sol.
$$V(x) = 2x^3 - 6x^2 + 4x$$
$$= 2x(x^2 - 3x + 2)$$
$$= 2x(x^2 - 2x - x + 2)$$
$$= 2x(x(x - 2) - 1(x - 2))$$
$$= 2x(x - 2)(x - 1)$$

Potential energy is zero

i.e.
$$2x(x-1)(x-2) = 0$$

 $\Rightarrow x = 0, 1, 2$

So potential energy is zero at x = 0 and x = 1 and x = 2.

Q.6. In structural engineering, the deflection y(x) of a beam is given by:

$$Y(x) = 2x^2 - 8x + 6$$

This equation gives the vertical deflection at any point x along the beam. Find the points of zero deflection.

Sol.
$$Y(x) = 2x^2 - 8x + 6$$

 $= 2(x^2 - 4x + 3)$
 $= 2(x^2 - 3x - x + 3)$
 $= 2(x(x - 3) - 1(x - 3))$
 $= 2(x - 1)(x - 3)$

Points of zero deflection

$$x-1=0, x-3=0$$

$$x=1, x=1$$

Choose the correct option.

- Q.1. The factorization of 12x + 36 is: (i)
 - (a) 12(x+3)
- 12(3x)(b)
- 12(3x+1)
- (d) x(12 + 36x)

12x + 36 = 12(x + 3)Sol.

Option (a) is correct.

- The factor of $4x^2 12x + 9$ are: (ii)
 - (a) $(2x+3)^2$
- (b) $(2x-3)^2$
- (c) (2x-3)(2x+3) (d) $(2x+3x)(2-3x)^2$

 $4x^2 - 12x + 9$ Sol.

$$=4x^2-6x-6x+9$$

$$=2x(2x-3)-3(2x-3)$$

$$=(2x-3)(2x-3)$$

$$=(2x-3)^2$$

Option (b) is correct.

- (iii) The HCF of a³b³ and ab² is:
 - (a) a^3b^3

ab² (b)

(c) a4b5

 a^2b (d)

Sol. HCF of a3b3 & ab2 is ab2

Option (b) is correct.

- (iv) The LCM of $16x^2$, 4x and 30xy is:
 - (a) $480x^3y$

(b) 240xy

(c) $240x^2y$ Sol.

(d) $120x^4y$

 $16x^2 = 2 \times 2 \times 2 \times 2 \times x \times x$

$$4x = 2 \times 2 \times x$$

$$30xy = 2 \times 3 \times 5 \times x \times y$$

$$LCM = 2 \times 2 \times 3 \times 2 \times 2 \times 5 \times x \times x \times y$$

$$= 240x^{2}y$$

Option (c) is correct.

- Product of LCM and HCF of two (v) polynomials.
 - (a) sum

(b) difference

(c) product

- (d) quotient
- Product of LCM and HCF = Product of two polynomials. Sol. Option (c) is correct.
- The square root of $x^2 6x + 9$ is: (vi)
 - (a) $\pm (x-3)$
- (b) $\pm (x + 3)$

(c) x - 3

- (d) x + 3
- $x^2 6x + 9 = (x 3)^2$ Sol. Square root = $\pm(x-3)$ Option (a) is correct.
- The LCM of $(a b)^2$ and $(a b)^4$ is: (yii)
 - (a) $(a b)^2$
- (b) $(a-b)^3$ (d) $(a-b)^4$
- (c) $(a-b)^4$
- LCM of $(a b)^2$ & $(a b)^4 = (a b)^4$ Sol. So option (c) is correct.
- Factorization of $x^3 + 3x^2 + 3x + 1$ is: (viii)
 - (a) $(x+1)^3$
- (b) $(x-1)^3$
- (c) $(x+1)(x^2+x+1)$ (d) $(x-1)(x^2-x+1)$
- $x^3 + 3x^2 + 3x + 1$ Sol. $= x^3 + 1 + 3x^2 + 3x$ $= x^3 + 1 + 3x(x + 1)$ $=(x+1)^3$

Cubic polynomial has degree: (ix)

(a)

(b)

(c)

(d) 4

Cubic polynomial has degree 3. Sol.

- Option (c) is correct.
- One of the factors of $x^3 27$ is: (x)
 - (a) x-3

- (b) x + 3
- (c) $x^2 3x + 9$
- (d) Both a and c

 $x^3 - 27 = x^3 - 27$ Sol. $= x^3 - 3^3$ $= (x-3)(x^2+3x+9)$

- Option (a) is correct. Factorize the following expression. Q.2.
- $4x^3 + 18x^2 12x$ (i)
- $=2x(2x^2+9x-6)$ Sol.
- $x^3 + 64y^3$ (ii)

 $=(x)^3+(4y)^3$ Sol. $= (x + 4y)(x^2 - (x)(4y) + (4y)^2)$ $=(x+4y)(x^2-4xy+16y^2)$

 x^3v^3-8 (iii)

 $=(xy)^3-2^3$ Sol. $= (xy - 2)((xy)^{2} + (xy)(2) + 2^{2})$ $=(xy-2)(x^2y^2+2xy+4)$

(iv) $-x^2 - 23x - 60$

Sol. $= -(x^2 + 23x + 60)$ $=-(x^2+20x+3x+60)$ =-(x(x+20)+3(x+20))=-(x+20)(x+3)

(v)
$$2x^2 + 7x + 3$$

Sol. $= 2x^2 + 6x + x + 3$
 $= 2x(x + 3) + 1(x + 3)$
 $= (x + 3)(2x + 1)$
(vi) $x^4 + 64$
Sol. $= (x^2)^2 + 8^2 + 2(x^2)(8) - 2(x^2)(8)$
 $= (x^2 + 8) - 16x^2$
 $= (x^2 + 8) - (4x)^2$
 $= (x^2 + 8 + 4x)(x^2 + 8 - 4x)$
(vii) $x^4 + 2x^2 + 9$
Sol. $= (x^2)^2 + 3^2 + 2(x^2)(3) - 6x^2 + 2x^2$
 $= (x^2 + 3)^2 - (2x)^2$
 $= (x^2 + 3)^2 - (2x)^2$
 $= (x^2 + 3 + 2x)(x^2 + 3 - 2x)$
 $= (x^2 + 2x + 3)(x^2 - 2x + 3)$
(viii) $(x + 3)(x + 4)(x + 5)(x + 6) - 360$
Sol. $= (x + 3)(x + 60(x + 4)(x + 5) - 360$
 $= (x^2 + 9x + 18)(x^2 + 9x + 20) - 360$
 $= (x^2 + 9x + 18)(x^2 + 9x + 20) - 360$
 $= y^2 + 18y + 20y + 360 - 360$
 $= y^2 + 38y$
 $= y(y + 38)$
 $= (x^2 + 9x)(x^2 + 9x + 38)$
(ix) $(x^2 + 6x + 3)(x^2 + 6x - 9) + 36$
Sol. Let $x^2 + 6x = y$
 $= (y + 3)(y - 9) + 36$

Sol. Let
$$x^2 + 6x = y$$

= $(y + 3)(y - 9) + 36$
= $y^2 + 3y' - 9y - 27 + 36$
= $y^2 - 6y + 9$
= $(y - 3)^2$

 $= (x^2 + 6x - 3)^2$

Find LCM and HCF by prime factorization method:
$$4x^3 + 12x^2, 8x^2 + 16x$$
Sol.
$$4x^3 + 12x^2 = 4x^2(x+3)$$

$$8x^2 + 16x = 8x(x+2)$$
HCF = $4x$

$$LCM = 4x \times 2x \times (x+3)(x+2)$$

$$= 8x^2(x+2)(x+3)$$
(ii)
$$x^3 + 3x^2 - 4x, x^2 - x - 6$$
Sol.
$$x^3 + 3x^2 - 4x = x(x^2 + 3x - 4)$$

$$= x(x^2 + 4x - x - 4)$$

$$= x(x(x+4) - 1(x+4))$$

$$= x(x-1)(x+4)$$

$$x^2 - x - 6 = x^2 - 3x + 2x - 6$$

$$= x(x-3) + 2(x-3)$$

$$= (x-3)(x+2)$$
HCF = 1
$$LCM = x(x-1)(x+4)(x+2)(x-3)$$

$$= x(x-1)(x-3)(x+2)(x+4)$$
(iii)
$$x^2 + 8x + 16, x^2 - 16$$
Sol.
$$x^2 + 8x + 16, x^2 - 16$$
Sol.
$$x^2 + 8x + 16 = x^2 + 2(x)(4) + (4)^2$$

$$= (x+4)^2$$

$$x^2 - 16 = x^2 - 4^2$$

$$= (x+4)(x-4)$$
HCF = $x + 4$

$$LCM = (x+4)^2(x-4)$$

$$= (x+4)(x-4)$$

$$= (x+4)(x+4)(x-4)$$

$$= (x+4)(x-4)$$

$$= (x+4)(x+4)$$

$$= (x+4)(x+4)$$

$$= (x+4)(x+4)$$

$$= (x+4)(x+4)$$

$$= (x+4)(x+4)$$

$$x^{2}-4x+3 = x(x-3)-1(x-3)$$

$$= (x-3)(x-1)$$
HCF = x-3
$$LCM = x(x+3)(x-1)(x-3)$$

$$LCM = x(x-1)(x^{2}-9)$$

Q.4. Find square root by factorization and division method of the expression $16x^4 + 8x^2 + 1$.

Sol.
$$16x^4 + 8x^2 + 1 = (4x^2)^2 + 2(4x^2)(1) + 1^2$$

= $(4x^2 + 1)^2$
Square root = $\pm \sqrt{4x^2 + 1}$.

By division method

$$4x^{2} + 1$$

$$4x^{2} = 16x^{4} + 8x^{2} + 1$$

$$-16x^{4} = -8x^{2} + 1$$

$$-8x^{2} + 1$$

$$-8x^{2} + 1$$

$$+ 8x^{2} + 1$$

$$\times$$

Square root =
$$\pm \sqrt{4x^2 + 1}$$

Q.5. Huraira is analyzing the total cost of a loan is modeled by the expression $C(x) = x^2 - 8x + 15$, where x is the number of years. Find the optimal repayment period for Huraira's loan?

Sol.
$$C(x) = x^2 - 8x + 15$$

= $x^2 - 5x - 3x + 15$
= $x(x - 5) - 3(x - 5)$
= $(x - 5)(x - 3)$

To find optimal repayment period,

$$C(x) = 0$$

 $x - 5 = 0$; $x - 3 = 0$
 $x = 5$; $x = 3$