Answers to exam-style questions

Topic 1

1 C

2 B

3 D

4 A

5 B

6 B

7 C

. .

8 A

9 B

10 D

11 volume of ammonia in $dm^3 = \frac{227}{1000} = 0.227 dm^3$

no. moles of ammonia = $\frac{\text{volume}}{\text{molar volume}} = \frac{0.227}{22.7}$

 $= 0.0100 \,\mathrm{mol}$

From the equation, two moles of NH_3 produce one mole of N_2 .

 $0.0100 \, \text{mol NH}_3 \rightarrow 0.005 \, 00 \, \text{mol N}_2$

 $0.005\,00$ mol of N_2 has a volume of $0.005\,00 \times 22.7$, i.e. $0.1135\,\text{dm}^3$. This is $0.1135 \times 1000 = 113.5\,\text{cm}^3$, which is the theoretical yield of N_2 .

percentage yield =
$$\frac{85}{113.5} \times 100 = 75\%$$

Alternative method: NH_3 and N_2 are both gases and so we do not have to convert to moles. From the equation, two moles of NH_3 react to give one mole of N_2 . Therefore two volumes of NH_3 react to give one volume of N_2 , so 227 cm³ of NH_3 react to give $\frac{227}{2}$, i.e. 113.5 cm³ of N_2 . This is the theoretical yield of N_2 .

The rest of the method is the same as above. [3]

12 a Because the masses of the two substances are given, we must check to see if one of the substances is limiting.

 $molar \ mass \ of \ Mn_3O_4 = 228.82 \, g \, mol^{-1}$

no. moles of $Mn_3O_4 = \frac{100\,000}{228.82} = 437.0\,\text{mol}$

molar mass of Al = $26.98 \,\mathrm{g}\,\mathrm{mol}^{-1}$

no. moles of Al = $\frac{100000}{26.98}$ = 3706 mol

 $437.0 \,\mathrm{mol}$ of $\mathrm{Mn_3O_4}$ will react with $437.0 \times 8/3$, i.e. $1165 \,\mathrm{mol}$. The number of moles of Al is greater than this, so Al is present in excess and $\mathrm{Mn_3O_4}$ is the limiting reactant. So $\mathrm{Mn_3O_4}$ must be used in all calculations.

 $3 \text{ mol } Mn_3O_4 \text{ produces } 9 \text{ mol } Mn. \text{Therefore } 437.0 \text{ mol of } Mn_3O_4 \text{ will produce } 437.0 \times 3, i.e. 1311, \text{ mol of } Mn.$

molar mass of Mn = $54.94 \,\mathrm{g}\,\mathrm{mol}^{-1}$ mass of of Mn = 1311×54.94 , i.e. $72.030 \,\mathrm{g}$, i.e. $72.03 \,\mathrm{kg}$. [4]

b $3Mn_3O_4 + 8Al \rightarrow 4Al_2O_3 + 9Mn$

200.0 kg of Mn is $\frac{200000}{54.94}$, i.e. 3640 mol. This number of moles is produced from $\frac{3640}{3}$,

This number of moles is produced from $\frac{3640}{3}$, i.e. 1213 mol Mn₃O₄. The mass of 1213 mol Mn₃O₄ is 1213 × 228.82 = 277 661 g, i.e. 277.7 kg. To convert to tonnes, we divide by 1000 to get 0.2777 tonnes.

Therefore, the percentage Mn_3O_4 in the ore $= \frac{0.2777}{1.23} \times 100$, i.e 22.6%.

13 a A hydrocarbon contains carbon and hydrogen only. The percentage hydrogen in the hydrocarbon is 100 – 88.8, i.e. 11.2%.

 \mathbf{C} Н 88.8 11.2 88.8 11.2 divide by A_r 12.01 1.01 7.39 11.09 moles 11.09 divide by smallest 7.39 1.5 ratio

Multiplying by 2 to get whole numbers, we get C_2H_3 , which is the empirical formula. [3]

b To do this, we have to work out the relative molecular mass of the hydrocarbon.

Use PV = nRT to calculate the number of moles. Convert volume in cm³ to volume in m³:

$$\frac{98.9}{(1 \times 10^{6})} = 9.89 \times 10^{-5} \,\mathrm{m}^{3}$$

$$P = 1.00 \times 10^{5} \,\mathrm{Pa} \qquad V = 9.89 \times 10^{-5} \,\mathrm{m}^{3} \qquad n = ?$$

$$R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}} \qquad T = 320 \,\mathrm{K}$$

$$n = \frac{PV}{RT}$$

$$n = \frac{1.00 \times 10^{5} \times 9.89 \times 10^{-5}}{8.31 \times 320}$$

$$n = 3.72 \times 10^{-3} \,\mathrm{mol}$$

[3]

relative molecular mass =
$$\frac{\text{mass}}{\text{no. moles}} = \frac{0.201}{3.72 \times 10^{-3}}$$

= 54.0

The empirical formula mass

$$= (2 \times 12.01) + (3 \times 1.01) = 27.05$$
 and

$$\frac{54.0}{27.05} = 2$$

Therefore the molecular formula is $(C_2H_3)_2$, i.e. C_4H_6 . [3]

- 14 a volume of CO_2 in $m^3 = \frac{258}{1000000}$ = $2.58 \times 10^{-4} \text{m}^3$ $P = 1.10 \times 10^5 \text{Pa}$ $V = 2.58 \times 10^{-4} \text{m}^3$ n = ? $R = 8.31 \text{J K}^{-1} \text{mol}^{-1}$ T = 300 K $n = \frac{PV}{RT}$ $n = \frac{1.10 \times 10^5 \times 2.58 \times 10^{-4}}{8.31 \times 300}$ = 0.0114 mol [3]
 - **b** The number of moles of CaCO₃ that must react to produce this number of moles of CO₂ is worked out from the chemical equation: no. moles of CaCO₃ = $0.0114 \,\text{mol}$ molar mass of CaCO₃ = $100.09 \,\text{g mol}^{-1}$ mass of CaCO₃ = $0.0114 \times 100.09 = 1.14 \,\text{g}$ percentage CaCO₃ in the limestone = $\frac{1.14}{1.20} \times 100 = 95.0\%$ [3]
- **15 a** In this question the number of moles of copper(II) nitrate is equivalent to the number of moles of Cu²⁺ and the number of moles of potassium iodide is equivalent to the number of moles of I⁻.

no. moles of copper(II) nitrate = $\frac{25.0}{1000} \times 0.100$

 $= 2.50 \times 10^{-3} \text{ mol}$

no. moles of potassium iodide = $\frac{15.0}{1000} \times 0.500$

 $= 7.50 \times 10^{-3} \text{ mol}$

From the ionic equation we can deduce that two moles of $Cu(NO_3)_2$ will react with four moles of KI. Therefore 2.50×10^{-3} mol of $Cu(NO_3)_2$ will react with $2 \times 2.50 \times 10^{-3}$, i.e. 5.00×10^{-3} mol of KI. The number of moles of potassium iodide present is greater than this, so the KI is present in excess. [3]

b We must use the number of moles of the limiting reactant (Cu(NO₃)₂) for subsequent calculations. From the chemical equation, 2 mol Cu^{2+} react to form 1 mol I_2 . Therefore $2.50 \times 10^{-3} \text{ mol of}$ Cu(NO₃)₂ will react to form $\frac{2.50 \times 10^{-3}}{2}$, i.e. $1.25 \times 10^{-3} \text{ mol I}_2$.

molar mass of
$$I_2 = 253.80 \,\mathrm{g \, mol}^{-1}$$

mass of $I_2 = 1.25 \times 10^{-3} \times 253.80$, i.e. 0.317 g [3]

- 16 a molar mass of $PbI_2 = 461.0 \text{ g mol}^{-1}$ moles of $PbI_2 = \frac{0.1270}{461.0} = 2.755 \times 10^{-4} \text{mol}$ [2]
 - **b** $Pb(NO_3)_2(aq) + MI_2(aq) \rightarrow PbI_2(s) + M(NO_3)_2(aq)$ [1]
 - **c** From the chemical equation, we can deduce that the number of moles of MI_2 is the same as the number of moles of PbI_2 . Therefore the number of moles of MI_2 is 2.755×10^{-4} mol. [1]
 - **d** We know the mass of 2.755×10^{-4} mol of MI₂ is 0.0810 g. The molar mass of MI₂ is $\frac{0.0810}{2.755 \times 10^{-4}}$, i.e. 294.0 g mol⁻¹. Some of this mass is due to the two I⁻ ions in the formula these contribute 2×126.90 to the mass, i.e. 253.8. The relative atomic mass of M is 294.0 253.8 = 40.20. We know that this is a group 2 element, so from the periodic table we can see that it must be calcium.
- 17 a molar mass of BaSO₄ = 233.40 g mol⁻¹ no. moles of BaSO₄ formed = $\frac{3.739 \times 10^{-2}}{233.40}$ = 1.602 × 10⁻⁴ mol [2]

[3]

- **b** $CuSO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + CuCl_2(aq)$ [1]
- c From the chemical equation we can deduce that the number of moles of CuSO₄ is the same as the number of moles of BaSO₄. Therefore the number of moles of CuSO₄ is 1.602 × 10⁻⁴ mol. [1]
- **d** Only $10.00 \,\mathrm{cm^3}$ of the original solution $(100.0 \,\mathrm{cm^3})$ was used in the reaction, so the number of moles of $\mathrm{CuSO_4}$ that were dissolved in water was $10.00 \times 1.602 \times 10^{-4} \,\mathrm{mol}$, i.e. $1.602 \times 10^{-3} \,\mathrm{mol}$.
- e 0.4000 g of hydrated copper sulfate (CuSO₄·xH₂O) contains 1.602×10⁻³ mol of CuSO₄. The molar mass of CuSO₄ is 159.62 g mol⁻¹. The mass of CuSO₄ present in the sample is 1.602×10⁻³×159.62, i.e. 0.2557 g of CuSO₄. The rest of the hydrated copper sulfate is water. Therefore the mass of water present in the sample is 0.4000 0.2557, i.e. 0.1443 g.

no. moles of water = $\frac{0.1443}{18.02}$ = 8.008×10^{-3} mol

ratio of no. moles of water to no. moles of CuSO₄ $=\frac{8.008\times10^{-3}}{1.602\times10^{-3}}=4.999$

This will be a whole number in the formula. Therefore the value of x is 5, and the formula is $CuSO_4:5H_2O$. [3]