Grouping	Santl-Temkiv et al. (2013)	Osterholz et al. (2016)	Seidel et al. (2014)	Ohno et al. (2018)	Ohno and Ohno (2013)	Antony et al. (2017)	Ohno et al. (2014)	Ohno et al. (2010)	Sleighter et al. (2014)	Chen et al. (2018)	Hockaday et al. (2009)
Polyphenols		$0.5 < Al_{MOD} \le 0.66$									
Highly unsaturated aliphatics		Al _{MOD} ≤ 0.5 H/C < 1.5 O/C < 0.9									
Unsaturated aliphatics	2.0 > H/C ≥ 1.5	1.5 < H/C ≤ 2 O/C < 0.9 N = 0	2.0 > H/C ≥ 1.5		H/C = 0.70 - 1.50 O/C = 0.00 - 0.10	O/C = 0.0 - 0.1 H/C = 0.7 - 1.5	H/C = 0.70 - 1.50 O/C = 0.00 - 0.10	H/C = 0.7 - 1.5 O/C = 0 - 0.1	O/C = 0.0 - 0.1 H/C = 0.7 - 1.7	H/C = 0.7 - 1.5 O/C < 0.1	O/C < 0.1 H/C = 0.7 - 1.5
Saturated fatty acids		H/C > 2 O/C < 0.9 With or without NSP									
Carbohydrates		O/C > 0.9 With or without NSP			H/C = 1.50 – 2.40 O/C = 0.67 – 1.20	O/C = 0.6 - 1.2 H/C = 1.5 - 2.2	H/C = 1.50 - 2.40 O/C = 0.67 - 1.20	H/C = 1.50 - 2.40 O/C = 0.67 - 1.20	O/C = 0.6 - 1.2 H/C = 1.5 - 2.2	H/C ≥ 1.5 O/C ≥ 0.67	H/C > 1.5 O/C > 0.67
Peptides/proteins		1.5 < H/C < 2 O/C < 0.9 N > 0			H/C = 1.50 - 2.20 O/C = 0.30 - 0.67	O/C = 0.2 - 0.6 H/C = 1.5 - 2.2 N/C ≥ 0.05	H/C = 1.50 - 2.20 O/C = 0.30 - 0.67	H/C = 1.5 - 2.20 O/C = 0.3 - 0.67	O/C = 0.2 - 0.6 H/C = 1.5 - 2.2 N/C > 0.05	O/C = 0.2 - 0.55 H/C ≥ 1.5 N ≥ 1	N ≥ 1 H/C = 1.0 - 2.2 O/C = 0.1 - 0.67
Polycyclic aromatics (PCA)	AI _{MOD} > 0.66				H/C = 0.20 - 0.70 O/C = 0.00 - 0.67		H/C = 0.20 - 0.70 O/C = 0.00 - 0.67	H/C = 0.20 - 0.70 O/C = 0.00 - 0.67	O/C = 0.0 - 1.0 H/C = 0.3 - 0.7 $Al_{MOD} > 0.67$	O/C < 0.7	O/C = 0 - 0.67 H/C = 0 - 0.75
Polycyclic aromatics (PCA) Black Carbon- like		Al _{MOD} > 0.66, more than 15 C	Al _{MOD} > 0.66, more than 15 C	Al _{MOD} > 0.66							
Polycyclic aromatics (PCA) (regular)		Al _{MOD} > 0.66, less than 15 C									
Polycyclic aromatics (PCA) with heteroatom		Al _{MOD} > 0.66, heteroelement									
Highly aromatic compounds, which include polyphenols and PCAs with aliphatic chains			0.66 ≥ AI _{MOD} > 0.50	0.66 ≥ AI _{MOD} > 0.50							
Highly unsaturated compounds, which include phenols such as	Almod ≤ 0.50		Almod ≤ 0.50	Almod ≤ 0.50							
soil-derived products of lignin degradation (soil-derived humics)			H/C < 1.5	H/C < 1.5							
Saturated compounds, including fatty and sulfonic acids, and/or carbohydrates	$H/C \geqslant 2.0 \text{ or}$ $O/C \geqslant 0.9$		$H/C \geqslant 2.0$ or $O/C \geqslant 0.9$	H/C ≥ 2.0 or O/C ≥ 0.9							
Unsaturated aliphatic compounds containing N, which includes	0/0 ≥ 0.9		2.0 > H/C ≥ 1.5	2.0 > H/C ≥ 1.5							
peptide molecular formulae			N > 0	N > 0							
Unsaturated aliphatic compounds containing no N				2.0 > H/C ≥ 1.5 N = 0							
Lipids					H/C = 1.50 - 2.00 O/C = 0.00 - 0.30	O/C = 0.00 - 0.20 H/C = 1.70 - 2.20	H/C = 1.50 - 2.00 O/C = 0.00 - 0.30	H/C = 1.50 - 2.00 O/C = 0.00 - 0.30	O/C = 0.0 - 0.2 H/C = 1.7 - 2.2	O/C = 0.0 - 0.2 H/C = 1.5 - 2	H/C = 1.5 - 2.0 O/C < 0.3
Lignin					H/C = 0.70 - 1.50 O/C = 0.10 - 0.67	O/C = 0.10 - 0.60 H/C = 0.60 - 1.70 $AI_{MOD} < 0.67$	H/C = 0.70 - 1.50 O/C = 0.10 - 0.67	H/C = 0.70 - 1.50 O/C = 0.10 - 0.67	O/C = 0.1 - 0.6 H/C = 0.5 - 1.7 Al _{MOD} < 0.67	H/C = 1.5 - 0.7 O/C = 0.1 - 0.67	H/C = 1.5 - 0.7 O/C = 0.1 - 0.67
Tannins					H/C = 0.75 - 1.40 O/C = 0.67 - 0.85	O/C = 0.60 - 1.20 H/C = 0.50 - 1.50 Al _{MOD} < 0.67	H/C = 0.70 - 1.50 O/C = 0.67 - 1.20		O/C = 0.6 - 1.2 H/C = 0.5 - 1.5 Al _{MOD} < 0.67	H/C = 1.5 - 0.7 O/C ≥ 0.67	
CRAM						DBE/C = 0.30 - 0.68 DBE/H = 0.20 - 0.95 DBE/O = 0.77 - 1.75					
Aminosugars			_							O/C 0.55 − 0.67 O/C ≥ 1.5 N ≥ 1	

References

- Antony, R., Willoughby, A.S., Grannas, A.M., Catanzano, V., Sleighter, R.L., Thamban, M., Hatcher, P.G. and Nair, S. (2017) Molecular insights on dissolved organic matter transformation by supraglacial microbial communities. Environmental Science & Technology 51, 4328-4337.
- Chen, H., Yang, Z., Chu, R.K., Tolic, N., Liang, L., Graham, D.E., Wullschleger, S.D. and Gu, B. (2018) Molecular Insights into Arctic Soil Organic Matter Degradation under Warming. Environmental Science & Technology 52, 4555-4564.
- Hockaday, W.C., Purcell, J.M., Marshall, A.G., Baldock, J.A. and Hatcher, P.G. (2009) Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: A qualitative assessment. Limnology and Oceanography: Methods 7, 81-95.
- Ohno, T., He, Z., Sleighter, R.L., Honeycutt, C.W. and Hatcher, P.G. (2010) Ultrahigh Resolution Mass Spectrometry and Indicator Species Analysis to Identify Marker Components of Soil- and Plant Biomass-Derived Organic Matter Fractions. Environmental Science & Technology 44, 8594-8600.
- Ohno, T. and Ohno, P.E. (2013) Influence of heteroatom pre-selection on the molecular formula assignment of soil organic matter components determined by ultrahigh resolution mass spectrometry. Analytical and Bioanalytical Chemistry 405, 3299-3306.
- Ohno, T., Parr, T.B., Gruselle, M.C.I., Fernandez, I.J., Sleighter, R.L. and Hatcher, P.G. (2014) Molecular Composition and Biodegradability of Soil Organic Matter: A Case Study Comparing Two New England Forest Types. Environmental Science & Technology 48, 7229-7236.
- Ohno, T., Sleighter, R.L. and Hatcher, P.G. (2018) Adsorptive fractionation of corn, wheat, and soybean crop residue derived water-extractable organic matter on iron (oxy)hydroxide. Geoderma 326, 156-163.
- Osterholz, H., Kirchman, D.L., Niggemann, J. and Dittmar, T. (2016) Environmental drivers of dissolved organic matter molecular composition in the Delaware estuary. Frontiers in Earth Science 4, 1-14.
- Santl-Temkiv, T., Finster, K., Dittmar, T., Hansen, B.M., Thyrhaug, R., Nielsen, N.W. and Karlson, U.G. (2013) Hailstones: a window into the microbial and chemical inventory of a storm cloud. PLoS One 8, e53550.
- Seidel, M., Beck, M., Riedel, T., Waska, H., Suryaputra, I.G.N.A., Schnetger, B., Niggemann, J., Simon, M. and Dittmar, T. (2014) Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochimica et Cosmochimica Acta 140, 418-434.
- Sleighter, R.L., Cory, R.M., Kaplan, L.A., Abdulla, H.A.N. and Hatcher, P.G. (2014) A coupled geochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. Journal of Geophysical Research: Biogeosciences 119, 1520-1537.