Lecture 05.1 (v3.0.0)

Introduction to Classification

Daniel Lawson University of Bristol

Chihuahua or muffin?

Signposting

- ► The remainder of the course changes the focus towards machine-learning - especially the background of the key tools that are used in practice.
- ► It is important to emphasise that classification is statistics, though we use the parlance of machine learning.
 - ▶ Most of machine learning is also modern statistics.
 - ► The main distinction is about purpose: whether developed for prediction, or for understanding.
- ► Today is about traditional "baseline models". We discuss bleeding edge ensemble and tree methods next.

Questions

- ▶ Do we need a "baseline model"?
- ► How can we compare model performance?
- ► What is a "good classifier"?

Types of machine learning

- Unsupervised: no labels. For example,
 - Clustering
 - Dimensionality reduction
 - Smoothing
- Supervised: exploits labels. For example,
 - Classification
 - Regression
- Other types:
 - ► Semi-supervised: **some labels** are available
 - Active: can choose which labels to obtain
 - Reinforcement: reward based. explore vs exploit?
 - etc.

Classification

Machine Learning classification is about how to make good predictions of classes based on previous experience of how features relate to classes.

Examples of classification

- ► **Spam** filtering (spam/not spam)
- ► Face detection (image classification)
- Speech recognition
- Handwriting recognition
- ► Turing test ... though that is human, not machine!
- Classification is broadly the "detection, recognition, recall of prior experience".

Some Important Classifiers

- ► Logistic Regression (Block 2 and 5)
- ► K-Nearest Neighbours (Block 4 and 5)
- ► Linear Discriminant Analysis (Block 5)
- ► Support Vector Machines (Block 5)
- Decision Trees (Block 6)
- ► CART: Classification and Regression Trees (Block 6)
- ► Random Forests (Block 6)
- Neural Networks (Block 7)
- ► Naive Bayes (Block 8)

Classification

From Regression to Classification

► In Block 02 we discussed linear regression, i.e. obtaining solutions to:

$$y_i = \vec{x}_i \cdot \beta + e_i$$

- Definitions: scalar form with p' covariates; $\vec{x}_i = (1, x_{1,i}, \cdots, x_{p',i})$, so \vec{x}_i and β are vectors of length p = p' + 1; e_i are residuals whose squared-sum is minimised.
- ► Logistic regression estimates the probability that a binary outcome *y* is 1:

$$logit(p(y_i)) = ln\left(\frac{p(y_i)}{1 - p(y_i)}\right) = \vec{x}_i \cdot \beta + e_i$$

▶ with $y_i \sim \text{Bern}(p(y_i))$. The prediction is the log-odds ratio, with values > 0 predicting a 1 and values < 0 predicting a 0.

Logistic Regression fitting

- Logistic regression is an example of a generalised linear model or GLM.
- ► In general these cannot be directly solved with Linear Algebra. Options include:
- Maximum likelihood estimation:
 - Numerically) maximise the likelihood in terms of the parameters β , and σ the variance of e.
- ► Iteratively Reweighted **least squares** (IRLS):
 - The non-linearity is adopted into weights, and a linear algebra solution reached.
 - ► Then the weights are updated, and the procedure iterated.
- ► Co-estimation is relatively computationally costly (higher dimensional space) but has better estimation properties.

Logistic Regression example

Classification Performance

- We can always compare performance on test data, to prevent over-fitting.
- Classifiers are understood through their Confusion Matrix, that is a comparison between:
 - Ground truth class, and
 - Predicted classes.
- For binary classes, we summarise using (true/false)(positive/negative) outcomes.
- Binary classification is particularly convenient as most classifiers can provide scores rather than class predictions.
 - Scores are **ordered**. So we can choose a threshold to control the total proportion of **positive predictions**.
 - ► This provides a relationship between Positive Claims and True Positives.

Classification Performance Thresholding

	Y = 1	Y = 0	Condition
$\hat{Y} = 1$	TP	FP	Prediction positive
$\hat{Y} = 0$	FN	TN	Prediction negative
Claim	Truth positive	Truth Negative	

Classification Performance Representations

- ► There are many ways to represent performance
- ► The Receiver-Operator-Curve (ROC) is the most popular, as it holds regardless of the true distribution of the data.
 - ightharpoonup X-axis: False Positive Rate (FPR) = $P(\hat{Y}=1|Y=0)$
 - ▶ Y-axis: True Positive Rate (TPR) = $P(\hat{Y} = 1|Y = 1)$
 - ► The Area Under the Curve (AUC) is a measure of Accuracy (0.5=guessing, 1=perfect).
 - We need to care about the region of the ROC curve that matters.
- ► The Precision-Recall curve is appropriate when we care specifically about positive cases:
 - ightharpoonup X-axis: Precision $= P(Y=1|\hat{Y}=1)$
 - ► Y-axis: Recall=TPR = $P(\hat{Y} = 1|Y = 1)$

Some important properties

- ▶ Some nice things¹ can be said about ROC and PR curves:
- Dominance:
 - If one curve dominates (is always above) another in ROC, it dominates in PR
 - and vice-versa
- ROC curves can be linearly interpolated
 - ► This is "flipping a coin" to access classifiers in-between
- PR curves have a slightly more complex relationship but the same principle can be applied
- Integrating both scores leads to performance metric that can be optimized

¹Davis and Goadrich, "The Relationship Between Precision-Recall and ROC Curves", ICML 2006.

ROC/PR Curve Example

Metrics for Classification

- Accuracy (Proportion of samples classified correctly) is a terrible metric if classes are unequal
 - ► TPR at a given FPR is more flexible
- ► AUC characterises the whole ROC curve
- Area Under Precision-Recall Curve (AUPRC?) is also a thing people advocate for
- ▶ None are "right", we have to define the inference task
- Any of these and more are often optimized
 - If we optimise a parameter or perform model comparison based on test data, we need additional test data to test the meta-algorithm!

Classification

K-Nearest Neighbour classification

- ▶ In Block 4, we introduced K-NN for density estimation.
 - ► We defined some choices of distance function
 - We obtained the K nearest neighbours of points in R
- Armed with those neighbours, a classifier can be implemented by using **majority vote** of the labels of all *k* neighbours.
- ► A naive implementation scales poorly with *N*, but an approximate lookup can control complexity.
- ► See also: Condensed nearest neighbor² approaches to reduce the amount of data required at the classification stage.

²Hart P, The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 18 (1968) 515-516. doi: 10.1109/TIT.1968.1054155

K-Nearest Neighbour example

LDA and SVM

- Linear Discriminant Analysis (LDA) was developed in 1936 by R. A. Fisher³ and extended to the current multi-class form in 1948⁴.
 - ► Project a high dimensional space into *K* dimensions, maintaining (linear) classification ability.
- Support Vector Machines (SVM) choose a decision boundary to maximally separate the classes
 - ► Uses Quadratic Programming, a widely useful tool
- ► Performance lags modern approaches so we'll just use them as alterntive linear classifiers
 - ► Kernel versions also exist, occasionally competitive

³Fisher R, "The Use of Multiple Measurements in Taxonomic Problems" (1936) Annals of eugenics (!), now "Annals of Human Genetics"
⁴Rao C, "Multiple Discriminant Analysis" (1948) JRSSB

Wrapup

- ► These are baseline models
- Logistic regression is the go-to straw man classifier in machine learning:
 - ► It is a natural predictive model
 - It does surprisingly well in many settings
- Linear Discriminant Analysis and SVMs are still used
- k-NN is the interpolation method to beat
 - Neighbourhoods are always competitive, but are costly at test time

Reflection

- Why is LDA used with PCA, and not instead-of?
- How would you imagine an approximate lookup for k-NN would work?
- ► How sparse should the SVM solution be? In what sense is SVM efficient? When would it be cutting edge?
- ▶ By the end of the course, you should:
 - ▶ Be able to navigate the many approaches to classification
 - ▶ Understand and be able to explain the high level function of:
 - Logistic Regression, Nearest Neighbour classification, LDA, SVMs

References:

- ▶ References for classification basics:
 - Stack Exchange Discussion of ROC vs PR curves.
 - ▶ Davis and Goadrich, "The Relationship Between Precision-Recall and ROC Curves", ICML 2006.
 - ► Rob Schapire's ML Classification features a Batman Example. . .
 - Chapter 4 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- k-Nearest Neighbours:
 - ► Chapter 13.3 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- ► Linear Discriminant Analysis:
 - Sebastian Raschka's PCA vs LDA article with Python Examples
 - Chapter 4.3 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- SVMs:
 - Jason Weston's SVMs tutorial
 - ► e1071 Package for SVMs in R
 - ► Chapter 12 of The Elements of Statistical Learning: Data

Bonus material:

- ► Linear Discriminant Analysis and
- ► Support Vector Machines

Linear Discriminant Analysis

- ▶ Developed in 1936 by R. A. Fisher⁵ and extended to the current multi-class form in 1948⁶.
- ► The goal is to **project** a high dimensional space into *K* dimensions, **maintaining** (linear) classification ability.
- ▶ Prediction benefit comes only from reducing overfitting
- Strong relationship with PCA, often used in tandem (PCA then LDA)
- Assumes that each class k has a different mean μ_k and a shared covariance matrix Σ
- ► Kernel Discriminant Analysis exists⁷

⁵Fisher R, "The Use of Multiple Measurements in Taxonomic Problems" (1936) Annals of eugenics (!), now "Annals of Human Genetics"

⁶Rao C, "Multiple Discriminant Analysis" (1948) JRSSB

 $^{^7\}text{Mika}$, S et al "Fisher discriminant analysis with kernels" (1999) NIPS IX:

LDA algorithm

- 1. Compute the mean location μ_k for each class k and the overall mean μ , as well as the assignment sets D_k .
- 2. Compute the within-class scatter matrix S_W : $S_W = \sum_{k=1}^K S_k$ where

$$S_k = \sum_{i \in D_k} (\vec{x} - \vec{\mu}_k) (\vec{x} - \vec{\mu}_k)^T$$

3. Compute the between-class scatter matrix S_B :

$$S_B = \sum_{k=1}^{K} n_i (\vec{\mu}_k - \vec{\mu}) (\vec{\mu}_k - \vec{\mu})^T$$

- 4. Solve for the eigenvalues λ_k and eigenvectors v_k of $S_W^{-1}S_B$
- 5. Choose a dimension threshold K^* , either using the same methods as for PCA, or cross-validation
- 6. Predict using $\mu_k \dots$

LDA prediction

- Class prediction can use any information in the LDA data summary. Options include:
 - ► Nearest cluster
 - ▶ Likelihood: $\Pr(\vec{x}|y_k = c) = \text{Normal}(\mu_k, \Sigma)$
 - **Posterior**: $\Pr(y_k = c | \vec{x}) \propto \Pr(\vec{x} | y_k = c) p(y_k = c)$; i.e. reweight classes according to their frequency

LDA example

Towards Support Vector Machines

- ► LDA uses all the points for classification, which makes it slow
- It is obviously linear (without using a kernel)
- ► Moving towards SVM, we:
 - Can exploit the kernel-trick to make a non-linear decision boundary without explicit mapping
 - Switch focus from group means to making the largest group separation
 - ► If we only want to discriminate classes, we can only use a subset of the data, the support vectors, for the decision
- ► This makes the method:
 - robust to distributional assumptions
 - non-generative

Support Vector Machine overview

- ► Find the maximum margin hyperplane separating the classes closest points
- Allow soft margins: misclassified points are down-weighted
- Nonlinearity: express distances as inner products, allowing non-linearities via the Kernel trick
- Algorithm: finding the hyperplane is a "quadratic optimisation problem".

SVM illustration: solution space

Planar geometry

- ▶ The data are $\vec{x} \in D$ containing N examples
- ▶ The labels are $y_i \in \overline{(-1,1)}$
- ► A **hyperplane** is defined via:
 - $ightharpoonup ec{w}$, the coordinates of the plane
 - $ightharpoonup \vec{w}_0$, a point on the plane chosen such that \vec{w}_0 is perpendicular to \vec{w} :

$$\vec{w} \cdot (\vec{x} - \vec{w}_0) = \vec{w} \cdot \vec{x} + b = 0$$

SVM margins

► The distance of a point to the line is the residual after the point is projected onto the line:

$$d_{\vec{w}}(\vec{x}) = \vec{n} \cdot (\vec{x} - \vec{x}') = \frac{|\vec{w} \cdot \vec{x} + b|}{|\vec{w}|}$$

For a given hyperplane, the minimum margin is

$$M_{\vec{w}} = \operatorname{argmin}_{x \in D} d_{\vec{w}}(\vec{x})$$

► The maximum margin hyperplane is therefore:

$$\operatorname{argmax}_{\vec{w}} \operatorname{argmin}_{x \in D} d_{\vec{w}}(\vec{x})$$

SVM illustration: SVM solution

Computing the margins

- ► This is a classic Quadratic Programming problem⁸
- ► Broadly:
 - ▶ quadratic penalty: distance to the plane \propto squared norm of the hyperplane vector $\frac{1}{2} |\vec{w}|^2$
 - ▶ linear inequalities: none of the data are closer than $M_{\vec{w}}$. So $\forall i: y_i(\vec{w}\cdot\vec{x}+b) \geq 1$
- ▶ and pass these to a standard QP solver
- ► A computational trick: only evaluate the points on the margins

 $^{^8}$ For this course, you need to know what QP can do for you. You don't need to know how it works.

SVM problem

Imperfect classification with SVM

► To account for data the wrong side of the margins, the penalty is changed to:

$$\frac{1}{2} |\vec{w}|^2 + C \sum_{i=1}^{N} \epsilon_i$$

ightharpoonup where ϵ_i is the "distance" needed to move the point to the correct decision boundary, i.e.

$$\vec{w} \cdot \vec{x}_i + b \ge 1 - \epsilon_i$$
 if: $y_i = 1$ (1)

$$\vec{w} \cdot \vec{x}_i + b \le -1 + \epsilon_i$$
 if: $y_i = -1$ (2)

 \blacktriangleright and $\epsilon_i=0$ if already inside it, so also requiring the constraint $\epsilon_i\geq 0$

SVM example

kernel SVM example

