QM 206-2022 PARCIAL I

NOMBRE: MARÍA CECILIA CÓRDOBA BURBANO CÉDULA: 4-819-2142

Realizar los siguientes cálculos utilizando los softwares utilizados en clases. Debe complementar sus cálculos con las imágenes correspondientes y anexar el enlace Github de los archivos generados

PROBLEMA 1: DIAGRAMA DE ENERGÍA

Construya un diagrama de energía vs ángulo de enlace para el 2,3-diclorobutano

2,3-diclorobutano optimizado

TABLA DE DATOS					
ÁNGULO °	ENERGÍA kcal/mol				
0°	37				
30°	27				
60°	18.2				
90°	22.7				
120°	24.6				
150°	19.04				
180°	14.2				
210°	19.04				
240°	24.6				
270°	22.7				
300°	18.2				
330°	26.9				
360°	37.4				

https://github.com/mariace2503/Parcial-N-1-Mar-a-C-rdoba/blob/main/2%2C3-Diclorobutano.png

PROBLEMA 2: OPTIMIZACIÓN DE LA GEOMETRÍA

- a) Optimizar la geometría de la molécula de 1-clorociclobutano
- b) Encontrar las energías de los diferentes modos de vibración

GEOMETRÍA DE 1-CLOROCICLOBUTANO OPTIMIZADA

Vibrational	Modes				S	how all
Mode	\$ Symmetry	Frequency (cm ⁻¹)	♦ IR Intensity	♦ Raman Intensity		ctions
1	A	101.91 (112.4844)	1.0004	0.7204	P	
2	Α	311.82 (344.1680)	0.9077	2.6369	P	
3	A	315.86 (348.6298)	3.8100	5.1506	P	
4	Α	555.07 (612.6551)	51.9062	23.2272	P	
5	Α	679.09 (749.5526)	13.6468	3.3393	P	
6	Α	730.89 (806.7176)	0.0420	0.0342	P	
7	Α	843.91 (931.4724)	3.0689	5.9824	P	
8	Α	857.90 (946.9057)	4.5615	7.7830	P	
9	Α	865.49 (955.2866)	2.0577	4.8818	P	
10	Α	899.49 (992.8177)	2.9436	11.9716	P	
11	Α	943.57 (1041.4652)	9.7555	26.9021	P	

12	Α	1067.43 (1178.1779)	4.2087	6.6259	P	
13	Α	1075.87 (1187.4970)	0.0898	3.4035	P	
14	Α	1170.18 (1291.5843)	0.2947	2.9049	P	
15	Α	1185.74 (1308.7680)	16.3053	15.0990	P	
16	Α	1240.75 (1369.4764)	0.7623	11.4133	P	
17	Α	1256.89 (1387.2946)	43.1615	4.0319	P	
18	Α	1273.90 (1406.0653)	2.6285	0.1958	P	
19	Α	1285.91 (1419.3249)	0.7771	0.1207	P	
20	Α	1288.72 (1422.4317)	8.0440	2.5125	P	
21	Α	1466.74 (1618.9227)	10.0072	7.2138	P	
22	Α	1472.74 (1625.5380)	3.8954	20.7925	P	
23	Α	1495.06 (1650.1757)	1.4224	5.9466	P	
24	Α	2941.80 (3247.0146)	22.4169	25.6103	P	
25	Α	2944.75 (3250.2743)	12.2096	131.1008	P	
26	Α	2960.42 (3267.5714)	24.8066	110.0607	P	
27	Α	3005.83 (3317.6949)	6.5652	67.0980	P	
28	Α	3018.41 (3331.5758)	5.6976	63.1267	P	
29	Α	3024.13 (3337.8875)	12.0247	50.8463	P	
30	Α	3051.18 (3367.7538)	10.1182	90.7045	P	
Frequency	Scale Factor				0.906	5
Normal Mo	ode Amplitude				1.0	
Animation	Speed				50	
IR Spectru	ım				P	
Raman Spectrum						
Peak Widt	h (cm ⁻¹)				40	

https://github.com/mariace2503/Parcial-N-1-Mar-a-C-rdoba/blob/main/1-clorociclobutano.png

PROBLEMA 3: ORBITALES MOLECULARES

a) Construya un diagrama de energía para los orbitales moleculares del propileno. Para cada nivel de energía presente la imagen con la estructura del OM correspondiente.

MOLECULA DE PROPILENO OPTIMIZADA

ORBITAL N°1= -11.173 au

ORBITAL N°3= -11.154 au

ORBITAL N°2= -11.159 au

ORBITAL N°4= -1.604 au

ORBITAL N°5= -0.935 au

ORBITAL N°7= -0.641 au

ORBITAL N°9= -0.568 au

ORBITAL N°11= -0.480 au

ORBITAL N°6= -0.755 au

ORBITAL N°8= -0.585 au

ORBITAL N°10= -0.522 au

ORBITAL N°12= -0.360 au

ORBITAL N°13= 0.186 au

ORBITAL N°14= 0.281 au

ORBITAL N°15= 0.311 au

ORBITAL N°16= 0.311 au

ORBITAL N°17=0.368 au

ORBITAL N°18=0.375 au

ORBITAL N°19=0.389 au

ORBITAL N°20=0.497

ORBITAL N°21=0.571 au

ORBITAL N° 23= 0.933 au

ORBITAL N°25= 1.012 au

ORBITAL N°27 =1.120 au

ORBITAL N° 22= 0.859 au

ORBITAL N°24= 0.962 au

ORBITAL N°26=1.044 au

ORBITAL N°28= 1.124 au

ORBITAL N°29= 1.219 au

ORBITAL N°31= 1.341 au

ORBITAL N° 33= 1.365 au

ORBITAL N° 35= 1.443 au

ORBITAL N°30=1.234 au

ORBITAL N°32= 1.347 au

ORBITAL N°34= 1.394 au

ORBITAL 36= 1.624 au

ORBITAL N° 37= 1.735 au

ORBITAL N°38= 2.011 au

ORBITAL N° 39= 2.183 au

TABLA DE DATOS					
NÚMERO DE ORBITAL	ENERGÍA				
1	-11				
2	-11				
3	-11.154				
4	-1.604				
5	-0.935				
6	-0.755				
7	-0.641				
8	-0.585				
9	-0.568				
10	-0.522				
11	-0.48				
12	-0.36				
13	0.186				
14	0.281				
15	0.311				
16	0.311				
17	0.368				
18	0.375				
19	0.497				
20	0.571				
21	0.859				
22	0.933				

23	0.962
24	1.012
25	1.044
26	1.12
27	1.124
28	1.219
29	1.234
30	1.341
31	1.347
32	1.365
33	1.394
34	1.443
35	1.624
36	1.735
37	2.011
38	2.183
39	2.183

https://github.com/mariace2503/Parcial-N-1-Mar-a-C-rdoba/blob/main/Propileno.png

PROBLEMA N°4: ION BROMONIO

a) Determine la estructura del ión bromonio indicado. Señale los ángulos correspondientes y distancia de enlaces C-Br

IÓN BROMONIO OPTIMIZADO

Bond 6	C-Br	C5	Br	1	No	1.98376
Bond 7	C-Br	C4	Br	1	No	1.97618

Angle Properties

Angle Properties						
	Type	Start Atom	Vertex	End Atom	Angle (°)	
Angle 1	ccc	C2	C1	C5	102.3813	
Angle 2	ССН	C2	C1	H1	111.6149	
Angle 3	ССН	C2	C1	H2	109.9606	
Angle 4	ССН	C5	C1	H1	110.3404	
Angle 5	ССН	C5	C1	H2	113.2236	
Angle 6	HCH	H1	C1	H2	109.2141	
Angle 7	CCC	C1	C2	C3	104.1360	
Angle 8	ССН	C1	C2	H3	106.5979	
Angle 9	ССН	C1	C2	H4	115.4640	
Angle 10	ССН	C3	C2	H3	106.6229	
Angle 11	ССН	C3	C2	H4	115.4273	
Angle 12	HCH	H3	C2	H4	107.9464	
Angle 13	CCC	C2	C3	C4	102.5167	
Angle 14	ССН	C2	C3	H5	109.9728	
Angle 15	ССН	C2	C3	H6	111.5532	
Angle 16	ССН	C4	C3	H5	113.2831	
Angle 17	ССН	C4	C3	H6	110.1446	
Angle 18	HCH	H5	C3	H6	109.2644	
Angle 19	CCC	C3	C4	C5	107.7770	
Angle 20	CCBr	C3	C4	Br	109.1815	
Angle 21	ССН	C3	C4	H7	122.6648	

Angle 22	CCBr	C5	C4	Br	68.6411
Angle 23	ССН	C5	C4	H7	128.2043
Angle 24	BrCH	Br	C4	H7	102.2694
Angle 25	CCC	C1	C5	C4	107.7323
Angle 26	CCBr	C1	C5	Br	108.6470
Angle 27	ССН	C1	C5	Н8	122.3186
Angle 28	CCBr	C4	C5	Br	68.0880
Angle 29	ССН	C4	C5	Н8	129.4397
Angle 30	BrCH	Br	C5	Н8	99.8381
Angle 31	CBrC	C4	Br	C5	43.2709

https://github.com/mariace2503/Parcial-N-1-Mar-a-C-rdoba/blob/main/I%C3%B3n%20bromonio.png